Notes for Paper

Create by

CHEN HUANNENG

Update at 21 February 2025

Final review by Abel

Notes for Paper

Mira hacia el cielo, eres infinito Romperás el capullo, volarás tan alto Sigue avanzando, has llegado lejos

> Mira Hacia El Cielo G.E.M.

Chen Huaneng (Abel)
Xiamen University
huanengchen@foxmail.com

Contents

1 TDRP: Truck-Drone collaborative Routing Problem · · · · · · · · · ·		1					
1	Theoretical Basis · · · · · · · · · · · · · · · · · ·						
	1.1 Traveling Salesman Problem · · · · · · · · · · · · · · · · · · ·	3					
	1.2 Vehicle Routing Problem · · · · · · · · · · · · · · · · · · ·	4					
2	Traveling Salesman Problem with Drone · · · · · · · · · · · · · · · · · · ·	7					
	2.1 Flying Sidekick Traveling Salesman Problem · · · · · · · · · · · · · · · · · · ·	7					
	2.1.1 Flying Sidekick Traveling Salesman Problem with Multiple Drops · · · · · · · · · · · · · · · · · · ·	9					
Re	eferences · · · · · · · · · · · · · · · · · · ·	11					

B CONTENTS

Part

1

TDRP: Truck-Drone collaborative Routing Problem

Theoretical Basis

1.1 Traveling Salesman Problem

旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的经典问题之一,其核心目标是给定城市列表和每对城市之间的距离,求恰好访问每个城市一次并返回起始城市的最短可能路线。该问题于 1930 年正式提出,是优化中研究最深入的问题之一,被用作许多优化方法的基准。自从该问题被正式提出以来,一直是运筹学、计算机科学和物流管理等领域的研究热点,尽管该问题在计算上很困难,但许多启发式方法和精确算法是已知的[1-2]。

图 1-1: TSP 示意图

TSP 可以表述为整数线性规划模型^[3]: 假设共有 N 个城市,每个城市的编号为 $1, \dots, N$,从城市 i 到城市 j 的旅行成本(距离)为 $c_{ij} > 0$ 。旅行商的目标是从任意一个城市出发访问完所有的城市,每个城市只能访问一次,最后回到最初的城市,目标是找到一条依次访问所有城市且访问城市不重

4 THEORETICAL BASIS

复的最短路线。TSP 中的决策变量为 $x_{ij} = \begin{cases} 1, & \text{存在从城市 } i \text{ 到城市 } j \text{ 的路径} \\ 0, & \text{其他} \end{cases}$,城市节点集合表示

为 V(|V|=N)。由于可能存在子回路,所以在构建 TSP 模型时需要消除会产生子回路的情况,这里 采用 Miller-Tucker-Zemlin(MTZ) 约束进行子回路的消除 $^{[4]}$,引入连续变量 $u_i(\forall i \in V, u_i \geq 0)$,其取值可以为任何非负实数(实数集合表示为 R)。这里用 u_i 表示编号为 i 的城市的访问次序,比如当 $u_i=5$ 时表示编号为 i 的城市是从出发点开始,第 i 个被访问到的点。因此,TSP 的数学模型可以表示为 MILP i 1.1:

目标函数1-1表示最小化访问所有城市的成本(距离),约束1-2和1-3保证每个城市节点的入度和出度为 1,即每个城市只进入一次和出去一次,保证了每个城市只访问一次,不会被重复访问,约束1-4消除子回路,约束1-5和1-6表示变量的取值范围。

1.2 Vehicle Routing Problem

车辆路径规划问题(Vehicle Routing Problem, VRP)是物流配送领域中的核心优化问题之一,由 George Dantzig 和 John Ramser 于 1959 年首次提出[5]。其目的是为一组具有容量限制的车辆设计最优配送路线,使得所有客户需求被满足且总运输成本(如距离、时间或费用)最小化。当车辆容量足够大时,VRP 退化为 TSP,即当车辆容量足够时,所有货物都可以在一次行驶中全部配送,只需要经过一次配送中心。大多数情况下 VRP 的车辆容量总是小于需要配送的所有货物重量的总和,所以与旅行商问题(TSP)不同,VRP 需要同时考虑多车辆协同、客户需求分配、车辆容量限制等复杂约束,因此更具现实意义和研究挑战性。

VRP 表述为整数规划问题 [6]: 假设存在一个配送中心(仓库)和若干顾客点,顾客点需求为 $q_i(i=1,2,\cdots,n)$,车辆载重上限为 Q,每辆车从仓库出发并最终返回仓库。定义决策变量 $x_{ijk}=\begin{cases} 1, & \text{车辆 } k \ \text{从 } i \text{ 行驶到 } j \\ 0, & \text{其他} \end{cases}$ 节点集合 $V=\{0,1,2,\cdots,n\}$,其中 0 表示配送中心, $S=\{1,2,\cdots,n\}$ 表示顾客节点,车辆集合 $K=\{1,2,\cdots,m\}$, c_{ij} 表示从点 i 到点 j 的行驶成本(距离或时间),同样在 VRP 中为了消除子回路,引入辅助变量 u_i 表示车辆访问顾客点 i 时的累计载重量。因此,VRP 的数学模型可以表示为:

图 1-2: VRP 示意图

$$\min \quad \sum_{k \in K} \sum_{i \in V} \sum_{j \in V, j \neq i} c_{ij} x_{ijk}$$
s.t.
$$\sum_{j \in S} x_{0jk} = 1, \qquad \forall k \in K$$

$$(1-7)$$

$$\text{s.t.} \quad \sum_{j \in S} x_{0jk} = 1, \qquad \qquad \forall k \in K$$

$$\sum_{i \in S} x_{i0k} = 1, \qquad \forall k \in K$$
 (1-9)

$$\sum_{k \in K} \sum_{i \in V, i \neq j} x_{ijk} = 1, \qquad \forall j \in S$$
 (1-10)

$$\sum_{i \in V, i \neq j} x_{ijk} = \sum_{i \in V, i \neq j} x_{jik}, \qquad \forall j \in V, k \in K$$
 (1-11)

$$u_j \ge u_i + q_j - Q(1 - x_{ijk}), \qquad \forall i, j \in S, k \in K$$
 (1-12)

$$q_j \le u_j \le Q, \qquad \forall j \in S \tag{1-13}$$

$$x_{ijk} \in \{0, 1\}, \qquad \forall i, j \in V, k \in K \tag{1-14}$$

目标函数1-7表示最小化所有车辆的总行驶成本,约束1-8和1-9确保每辆车从配送中心出发并最终返 回,约束1-10保证每个顾客点只被访问一次,约束1-11保证了流量守恒,即保证了路径的连续性,约 束1-12和1-13通过 MTZ 方法消除子回路并满足车辆的容量限制,约束1-14对变量进行限制。

THEORETICAL BASIS

2

Traveling Salesman Problem with Drone

2.1 Flying Sidekick Traveling Salesman Problem

Flying Sidekick Traveling Salesman Problem (FSTSP) 由 Murray(2015) 等[7]提出。

FSTSP 数学模型的符号含义如表2-1:

表 2-1: FSTSP 模型符号及含义

符号	含义
0	起点车场
c+1	终点车场
$\mathbf{C} = \{1, 2, \cdots, c\}$	全部客户集合
$\mathbf{C}'\subseteq\mathbf{C}$	无人机可访问的客户集合
$N_0 = \{0, 1, 2, \cdots, c\}$	流出节点集合
$N_{+} = \{1, 2, \cdots, c+1\}$	流入节点集合
$N = \{0, 1, 2, \cdots, c, c + 1\}$	全部节点集合
$\langle i, j, k \rangle \in P, i \in N_0, j \in \mathbf{C}', j \neq i, k \in N_+, k \neq i, k \neq j$	无人机飞行路径集合(符合模型约束的路
	径)
$ au_{ij}'/ au_{ij}$	弧 (i,j) 的飞行/行驶时间成本
S_L/S_R	无人机发射/回收耗时
e	无人机续航时长
$x_{ij} \in \{0, 1\}$	卡车路由决策变量
$y_{ijk} \in \{0, 1\}$	无人机路由决策变量
$1 \le u_i \le c + 2$	卡车破子圈辅助变量
t_i^\prime/t_i	无人机/卡车有效到达时间戳辅助变量
$p_{ij} \in \{0,1\}$	无人机架次先后辅助变量

FSTSP 数学模型如下:

Model 2.1: FSTSP MILP $\min t_{c+1}$ (2-1)s.t. $\sum_{\substack{i \in N_0 \\ i \neq j}} x_{ij} + \sum_{\substack{i \in N_0 \\ i \neq j}} \sum_{\substack{k \in N_+ \\ i \neq j \ | i \neq k \setminus CP}} y_{ijk} = 1, \quad \forall j \in C$ (2-2) $\sum_{j \in N_+} x_{0j} = 1$ (2-3) $\sum_{i \in N_c} x_{i,c+1} = 1$ (2-4) $u_i - u_j + 1 \le (c+2)(1-x_{ij}), \quad \forall i \in C, j \in \{N_+ : j \ne i\}$ (2-5) $\sum_{\substack{i \in N_0 \\ i \neq j}} x_{ij} = \sum_{\substack{k \in N_+ \\ k \neq j}} x_{jk}, \quad \forall j \in C$ (2-6) $\sum_{\substack{j \in C \\ i \neq i}} \sum_{\substack{k \in N_+ \\ k \neq i}} y_{ijk} \le 1, \quad \forall i \in N_0$ (2-7) $\sum_{\substack{i \in N_0 \\ i \neq k}} \sum_{\substack{j \in C \\ \langle i, j, k \rangle \in P}} y_{ijk} \le 1, \quad \forall k \in N_+$ (2-8) $t'_{j} \ge t'_{i} + \tau'_{ij} - M(1 - \sum_{\substack{k \in N_{+} \\ \langle i, j, k \rangle \in P}} y_{ijk}), \quad \forall j \in C', i \in \{N_{0} : i \ne j\}$ (2-9) $t'_k \ge t'_j + \tau'_{jk} + s_R - M(1 - \sum_{\substack{i \in N_0 \\ (i,j,k) \in P}} y_{ijk}), \quad \forall j \in C', k \in \{N_+ : k \neq j\}$ (2-10) $t'_k - (t'_j - \tau'_{ij}) \le e + M(1 - y_{ijk}), \quad \forall k \in N_+, j \in \{C : j \ne k\}, i \in \{N_0 : \langle i, j, k \rangle \in P\}$ (2-11)(2-12)

约束2-1追求最小化卡车到达终点车场 c+1 的有效时间 t_{c+1} ,通过约束约束条件可以分为四类^[8]:

• 客户有关的约束: 约束2-2要求对于任何一位顾客 j,必须且只能被卡车(或无人机)服务一次。

• 卡车有关的约束:

- 卡车流平衡约束:约束2-3要求卡车从起点车场流出,约束2-4要求卡车从终点车场流入,约束2-6要求卡车在中间节点满足流入和流出相等的流平衡约束。
- 卡车破子圈约束: 约束2-5是 MTZ 形式的破子圈约束 [9-10] , 去除了子圈存在的可能, 这里 M 取到了 $u_i u_j + 1$ 的上界 c + 2 , u_i 可以理解为点 i 的访问次序,比如 $u_1 = 5$ 可以理解为点 1 是从出发点开始,第五个被访问到的点。

• 无人机有关的约束:

- 无人机发射、回收节点流约束:约束2-7表示无人机可以从非终点车场流出,约束2-8表示无人机可以从非起点车场流入。

- 无人机访问、回收节点时间戳约束:约束2-9表示无人机访问顾客的时间戳应该符合时间逻辑,即不早于起飞时间戳 t_i' + 前往服务顾客点的飞行时长 τ_{ij}' ,约束2-10表示无人机回到卡车的时间戳应该符合时间逻辑,即不早于访问顾客点的 t_j' + 返回卡车的飞行时长 τ_{jk}' + 回收无人机用时 s_R 。
- 无人机电量续航约束:

2.1.1 Flying Sidekick Traveling Salesman Problem with Multiple Drops

References

- [1] OENCAN T, ALTINEL I K, LAPORTE G. A comparative analysis of several asymmetric traveling salesman problem formulations[J/OL]. Computers & Operations Research, 2009, 36(3): 637-654. DOI: 10.1016/j.cor.2007.11.008.
- [2] ROBERTI R, TOTH P. Models and algorithms for the asymmetric traveling salesman problem: an experimental comparison[J/OL]. Euro Journal on Transportation & Logistics, 2012, 1(1-2): 113-133. DOI: 10.1007/s13676-012-0010-0.
- [3] PAPADIMITRIOU C H, STEIGLITZ K. Combinatorial optimization: algorithms and complexity[M]. Dover edition ed. Mineola, NY: Dover Publications, 1998: 308-309.
- [4] MILLER C E, TUCKER A W, ZEMLIN R A. Integer programming formulation of traveling salesman problems[J/OL]. Journal of the Acm, 1960, 7(4): 326-329. DOI: 10.1145/321043.321046.
- [5] DANTZIG G B, RAMSER J H. The truck dispatching problem[J/OL]. Management Science, 1959, 6(1): 80-91. DOI: 10.1287/mnsc.6.1.80.
- [6] TOTH P, VIGO D. Vehicle routing: Problems, methods, and applications, second edition[J/OL]. Society for Industrial and Applied Mathematics, 2014: 4-6. DOI: 10.1137/1.9781611973594.fm.
- [7] MURRAY C C, CHU A G. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery[J/OL]. Transportation Research Part C: Emerging Technologies, 2015, 54: 86-109. DOI: 10.1016/j.trc.2015.03.005.
- [8] 运筹 OR 帷幄. 交通 | 带飞行助手的旅行商问题:无人机协助的配送优化建模及求解(附代码) [EB/OL]. 2024[2025-02-21]. https://zhuanlan.zhihu.com/p/3235861366.
- [9] 运筹 OR 帷幄. 优化 | 浅谈旅行商问题(TSP)的七种整数规划模型[EB/OL]. 2022 年 01 月 19 日 20:37[2025-02-23]. https://mp.weixin.qq.com/s/tDYOxlSQHKRJkf5EcaBJ1A.
- [10] 运筹 OR 帷幄. 优化 | TSP 中两种不同消除子环路的方法及 callback 实现(Python 调用 Gurobi 求解) [EB/OL]. 2020 年 09 月 26 日 20:30[2025-02-23]. https://mp.weixin.qq.com/s/i7I-o0LiC_JP3vVOQw2AIw.