NMF

William Zhang, Eva, Jerry

2025-01-09

```
# load the packages
library(NMF)
library(tidyverse)
library(gridExtra)
library(readxl)
```

Procedure

- 1. Remove hourly observation with missing observation for any chemical
- 2. Remove background noise level using min values (except for chemicals with minimum value < 2*LOD and maximum value > 100*LOD)
- 3. Zero values are converted to a random value between 0 and 0.5*LOD
- 4. Normalize using min and max
- 5. Compute weight matrix according to Guha's paper, without LOQ

Reading the data

```
select(c('day', 'time_utc', vocs, non_vocs, 'wdr_deg', 'wsp_ms')) %>%
  na.omit()
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use 'all_of()' or 'any_of()' instead.
##
     # Was:
##
     data %>% select(vocs)
##
##
     # Now:
##
     data %>% select(all_of(vocs))
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use 'all_of()' or 'any_of()' instead.
##
     # Was:
##
     data %>% select(non vocs)
##
##
     # Now:
     data %>% select(all_of(non_vocs))
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
# retrieving the vocs, removing everything else except the vocs
hourly_vocs <- hourly_nona %>% select(any_of(vocs))
# retrieving the non-vocs: co2_ppm, nox, ch4, h2s, so2, o3
# double check this
hourly_non_vocs <- hourly_nona %>% select(all_of(non_vocs))
hourly_full_nona <- cbind(hourly_non_vocs, hourly_vocs)</pre>
# retrive a vector of yearmonth
hourly_dates <- hourly_nona %>%
  mutate(yearmonth = substring(day, 0, 7)) %>%
 pull(yearmonth)
```

Data visualisation

```
non_vocs <- c('ch4', 'co2', 'co', 'h2s', 'so2', 'nox', 'o3')
for (compound in non_vocs) {
   assign(paste0(compound, '_boxplot'),
        ggplot(hourly_non_vocs) +
        geom_boxplot(aes(y = .data[[compound]])) +</pre>
```


grid.arrange(h2s_boxplot, so2_boxplot, nox_boxplot, o3_boxplot, nrow = 1)


```
for (compound in vocs) {
  assign(paste0(compound, '_boxplot'),
         ggplot(hourly_vocs) +
           geom_boxplot(aes(y = .data[[compound]])) +
           labs(x = compound, y = '') +
           theme_minimal())
}
grid.arrange(get(paste0(vocs[1], '_boxplot')), get(paste0(vocs[2], '_boxplot')),
             get(paste0(vocs[3], '_boxplot')), get(paste0(vocs[4], '_boxplot')), nrow = 1)
                                                   1250
   2000
                           15
                                                   1000
   1500
                                                                           4
                                                    750
                           10
   1000
                                                    500
                                                                           2
                            5
    500
                                                    250
       -0.4-0.20.0 0.2 0.4
                             -0.4-0.2 0.0 0.2 0.4
                                                       -0.4-0.20.0 0.2 0.4
                                                                           -0.4 - 0.2 \ 0.0 \ 0.2 \ 0.4
            ethane
                                   ethene
                                                           propane
                                                                                  propene
```


Data preprocessing

```
# Define LOD for each chemical
LOD_non_voc \leftarrow c('ch4' = 0.9,
             co2' = 0.0433,
             'co' = 40,
             'h2s' = 0.4,
             'so2' = 0.4,
             'nox' = 0.05,
             '03' = 1)
LOD_voc_monthly <- read_csv('../data/LNM_VOC_LOD_Rounded.csv') %>% select(-1)
# extract the yearmonth from date variables
LOD_voc_monthly <- LOD_voc_monthly %>%
  mutate(yearmonth = strftime(as.POSIXct(start_date, format = '%Y-%m-%d %H:%M:%S', tz = 'UTC'), '%Y-%m'
LOD_voc_monthly <- LOD_voc_monthly %>%
  select(-c(start_date, end_date)) %>%
  select(!any_of(ends_with('half_ldl')))
colnames(LOD_voc_monthly) <- str_replace_all(names(LOD_voc_monthly), '_ldl', '')</pre>
LOD_voc_avg <- read_xlsx('../data/LNM_VOC_Uncertainties.xlsx', skip = 1)
LOD_voc_avg <- LOD_voc_avg %>%
```

```
select(1, 4) %>%
  rename('LOD' = 2, 'chemical' = 1) %>%
  head(20)
# find the min for background-levels
background_levels <- sapply(hourly_full_nona, min)</pre>
background_levels
##
             ch4
                             co2
                                             CO
                                                          h2s
                                                                          so2
##
        1928.000
                        411.300
                                        59.910
                                                        0.200
                                                                       0.200
##
             nox
                              о3
                                        ethane
                                                       ethene
                                                                     propane
##
           0.025
                          0.500
                                         0.916
                                                        0.011
                                                                       0.224
##
         propene 1_3-butadiene
                                      i-butane
                                                     n-butane
                                                                   acetylene
##
           0.009
                          0.007
                                         0.035
                                                        0.090
                                                                       0.019
##
    cyclopentane
                      i-pentane
                                     n-pentane
                                                     n-hexane
                                                                    isoprene
##
           0.005
                          0.038
                                         0.042
                                                        0.021
                                                                       0.005
##
                        benzene
                                      n-octane
                                                      toluene ethyl-benzene
       n-heptane
                                         0.004
                                                        0.004
                                                                       0.004
##
           0.004
                          0.017
##
      m&p-xylene
                       o-xylene
##
           0.004
                          0.004
get_info <- function(column) {</pre>
  N <- length(column)</pre>
  background <- quantile(column, 0)</pre>
  quantile1 <- quantile(column, 0.01)</pre>
  quantile99 <- quantile(column, 0.99)</pre>
  n_background <- sum(column == background)</pre>
  max <- max(column)</pre>
  return(c(N, quantile1, quantile99, max, background, n_background))
}
info_table <- hourly_full_nona %>%
  reframe(across(everything(), ~ get_info(.x)))
info_table <- info_table %>%
  mutate(rownames = c('N', '1st percentile', '99th percentile', 'Max', 'Background', '# Background')) %
  pivot_longer(-rownames) %>%
  pivot_wider(names_from = rownames, values_from = value)
knitr::kable(info_table)
```

						#
name	N	1st percentile	99th percentile	Max	Background	Background
ch4	4788	1962.98700	6286.12400	34010.900	1928.000	1
co2	4788	416.47870	460.62260	503.990	411.300	1
CO	4788	84.23050	442.08860	2513.440	59.910	1
h2s	4788	0.20000	5.20986	27.700	0.200	829
so2	4788	0.20000	1.78686	8.578	0.200	3266
nox	4788	0.22974	89.72371	452.959	0.025	2
o3	4788	0.50000	76.02600	103.100	0.500	259
ethane	4788	1.84422	526.44700	2060.000	0.916	1

						#
name	N	1st percentile	99th percentile	Max	Background	Background
ethene	4788	0.01100	3.50826	16.970	0.011	163
propane	4788	0.84674	300.79000	1211.000	0.224	1
propene	4788	0.00900	0.69739	5.528	0.009	411
1_3-butadiene	4788	0.00700	0.05900	1.207	0.007	3357
i-butane	4788	0.15148	60.89400	296.600	0.035	1
n-butane	4788	0.37248	166.52100	536.900	0.090	1
acetylene	4788	0.04900	2.61304	8.471	0.019	2
cyclopentane	4788	0.00500	3.06899	13.460	0.005	96
i-pentane	4788	0.10987	49.60210	215.900	0.038	1
n-pentane	4788	0.10487	55.95980	258.800	0.042	1
n-hexane	4788	0.04300	18.17780	93.360	0.021	2
isoprene	4788	0.00500	0.03313	0.362	0.005	2816
n-heptane	4788	0.01500	6.57669	30.470	0.004	5
benzene	4788	0.02800	3.78693	9.610	0.017	3
n-octane	4788	0.00400	2.00839	6.867	0.004	100
toluene	4788	0.01300	3.52165	9.077	0.004	11
ethyl-benzene	4788	0.00400	0.31613	0.931	0.004	918
m&p-xylene	4788	0.00400	1.29156	3.123	0.004	851
o-xylene	4788	0.00400	0.45700	0.922	0.004	1330

```
# PROCEDURE STEP 2:
#adjustments that were made according to paper
#William: I'm guessing this refers to Gunnar's paper section 2.2 and Guha 3.3

# Check whether chemical has background noise level that needs to be removed
# i.e, NO ADJUSTMENT if minimum value < 2*LOD and maximum value > 100*LOD

adjusting_neg_bg_from_lod <- function(chemical, LOD, background, hourly_data){
    # get min and max
    min_value <- min(hourly_data[chemical], na.rm = TRUE)
    max_value <- max(hourly_data[chemical], na.rm = TRUE)

# if min less than double LOD or max > 100 times LOD
# adjust to -100 (for entire column???)
    if (min_value < 2 * LOD & max_value > 100 * LOD ){
        return (0)
    }
    return (background)
}
```

```
adjusted_background = adjusting_neg_bg_from_lod(chemical, LOD, background, hourly_full_nona))
# Check if background is negligible for voc
# merge background and LOD
background_lod_voc <- LOD_voc_avg %>%
  left_join(tibble(chemical = setdiff(names(background_levels), non_vocs),
                   background = background_levels[setdiff(names(background_levels), non_vocs)]))
## Joining with 'by = join_by(chemical)'
adjusted_background_voc <- background_lod_voc %>%
  rowwise() %>%
  mutate(min = min(hourly_full_nona[chemical], na.rm = TRUE),
         LODx2 = 2 * LOD,
         criterion1 = min(hourly_full_nona[chemical], na.rm = TRUE) < 2 * LOD,</pre>
         max = max(hourly_full_nona[chemical], na.rm = TRUE),
         LODx100 = 100 * LOD,
         criterion2 = max(hourly_full_nona[chemical], na.rm = TRUE) > 100 * LOD,
         adjusted_background = adjusting_neg_bg_from_lod(chemical, LOD, background, hourly_full_nona))
# So now we have the adjusted background concentrations
hourly nona bgrm <- hourly full nona %>%
  mutate(across(adjusted_background_non_voc$chemical, ~ .x - adjusted_background_non_voc$adjusted_back
hourly_nona_bgrm <- hourly_nona_bgrm %>%
 mutate(across(adjusted_background_voc$chemical, ~ .x - adjusted_background_voc$adjusted_background[a
# look at zero values
colSums(hourly_nona_bgrm == 0)
##
                            co2
                                                         h2s
             ch4
                                           СО
                                                                       so2
##
                                                         829
                                                                      3266
                              1
               1
                                            1
##
             nox
                             о3
                                       ethane
                                                      ethene
                                                                   propane
##
               0
                              0
                                            1
##
         propene 1_3-butadiene
                                     i-butane
                                                    n-butane
                                                                 acetylene
##
                           3357
               0
                                            1
                                                           1
##
    cyclopentane
                     i-pentane
                                                    n-hexane
                                                                  isoprene
                                    n-pentane
##
                                                                      2816
               0
                              1
                                            1
                                                           2
##
       n-heptane
                       benzene
                                     n-octane
                                                     toluene ethyl-benzene
##
                              0
                                            0
                                                           0
                       o-xylene
##
      m&p-xylene
##
# PROCEDURE STEP 3
# replace zero values with random values between 0 and 0.5*LOD
set.seed(123)
replace_zero_with_random <- function(column, name, LOD_df){</pre>
  LOD <- LOD_df$LOD[LOD_df$chemical == name]</pre>
  column <- if else(column == 0, round(runif(length(column), 0, 0.5 * LOD), 3), column)</pre>
  return (column)
}
```

```
hourly_nona_bgrm_zerorepl <- hourly_nona_bgrm %>%
    mutate(across(adjusted_background_non_voc$chemical, ~ replace_zero_with_random(.x, cur_column(), adju
hourly_nona_bgrm_zerorepl <- hourly_nona_bgrm_zerorepl %>%
    mutate(across(adjusted_background_voc$chemical, ~ replace_zero_with_random(.x, cur_column(), adjusted
```

Normalize the non-vocs

```
#normalizing function
normalize_column <- function(column){
  background <- quantile(column, 0)
  max <- quantile(column, 1) # this could be adjusted
  return ((column - background)/(max - background))
}</pre>
```

normalize all

hourly_nona_bgrm_zerorepl_norm <- as_tibble(sapply(as.list(hourly_nona_bgrm_zerorepl), normalize_column summary(hourly_nona_bgrm_zerorepl_norm)

```
##
         ch4
                                                                h2s
                            co2
                                              CO
##
   Min.
           :0.000000
                      Min.
                              :0.0000
                                              :0.00000
                                                          Min.
                                                                  :0.00000
   1st Qu.:0.005795
                      1st Qu.:0.1384
                                        1st Qu.:0.02592
                                                          1st Qu.:0.01022
  Median :0.014603
                       Median :0.1823
                                        Median :0.03884
                                                          Median :0.02335
   Mean
           :0.026837
                       Mean
                              :0.2000
                                              :0.04761
                                                          Mean
                                                                  :0.03500
                                        Mean
##
   3rd Qu.:0.037200
                       3rd Qu.:0.2418
                                        3rd Qu.:0.05970
                                                           3rd Qu.:0.04525
           :1.000000
                              :1.0000
                                               :1.00000
##
   Max.
                       Max.
                                        Max.
                                                          Max.
                                                                :1.00000
##
         so2
                            nox
                                                о3
                                                                 ethane
                                          Min.
##
           :0.000000
                              :0.000000
                                                 :0.00000
                                                            Min.
                                                                    :0.000000
   Min.
                       Min.
   1st Qu.:0.007997
                       1st Qu.:0.006534
                                          1st Qu.:0.09747
                                                            1st Qu.:0.008386
                                                            Median :0.026672
##
   Median :0.016114
                      Median :0.020262
                                          Median :0.25487
           :0.026320
                                                 :0.26676
                       Mean
                              :0.036440
                                          Mean
                                                            Mean
                                                                    :0.050993
##
   3rd Qu.:0.023633
                       3rd Qu.:0.049978
                                          3rd Qu.:0.40546
                                                             3rd Qu.:0.075376
##
   Max.
           :1.000000
                       Max.
                              :1.000000
                                          Max.
                                                 :1.00000 Max.
                                                                    :1.000000
##
        ethene
                                                             1 3-butadiene
                         propane
                                            propene
                                         Min.
  Min.
           :0.00000
                      Min.
                             :0.000000
                                                :0.000000 Min.
                                                                    :0.000000
   1st Qu.:0.01268
                      1st Qu.:0.009285
                                         1st Qu.:0.005979
                                                            1st Qu.:0.001667
##
  Median :0.03547
                      Median :0.028411
                                         Median :0.018482
                                                            Median: 0.004167
  Mean
          :0.05042
                      Mean :0.053805
                                         Mean
                                                :0.028772
                                                            Mean
                                                                    :0.007368
   3rd Qu.:0.07266
                      3rd Qu.:0.080132
                                         3rd Qu.:0.042761
                                                             3rd Qu.:0.007500
##
   Max.
          :1.00000
                      Max. :1.000000
                                         Max.
                                                :1.000000
                                                            Max.
                                                                    :1.000000
##
       i-butane
                          n-butane
                                            acetylene
                                                             cyclopentane
           :0.000000
                              :0.000000
                                                 :0.00000
                                                                    :0.000000
                                                            1st Qu.:0.007432
   1st Qu.:0.006153
                      1st Qu.:0.008783
                                          1st Qu.:0.02674
   Median :0.019261
                       Median :0.027528
                                          Median :0.05135
                                                            Median :0.022668
   Mean
##
           :0.038384
                              :0.054906
                                                 :0.07436
                       Mean
                                          Mean
                                                            Mean
                                                                    :0.043730
   3rd Qu.:0.053703
                       3rd Qu.:0.077047
                                          3rd Qu.:0.10211
                                                             3rd Qu.:0.062653
##
   Max.
           :1.000000
                      Max.
                              :1.000000
                                          Max.
                                                 :1.00000
                                                            Max.
                                                                    :1.000000
##
      i-pentane
                         n-pentane
                                             n-hexane
                                                                 isoprene
##
           :0.000000
                       Min.
                              :0.000000
                                          Min.
                                                 :0.000000
                                                                    :0.000000
  \mathtt{Min}.
                                                             \mathtt{Min}.
   1st Qu.:0.006293
                       1st Qu.:0.005681
                                          1st Qu.:0.004725
                                                             1st Qu.:0.002801
                                          Median :0.016060
  Median :0.019932
                      Median :0.018371
                                                             Median :0.005602
```

```
## Mean
         :0.041085 Mean
                          :0.038859
                                            :0.035000
                                                      Mean
                                                             :0.010304
## 3rd Qu.:0.057848 3rd Qu.:0.054837
                                     3rd Qu.:0.049564
                                                      3rd Qu.:0.011204
## Max.
         :1.000000 Max.
                                                            :1.000000
                          :1.000000 Max.
                                           :1.000000 Max.
##
     n-heptane
                       benzene
                                       n-octane
                                                        toluene
                          :0.00000 Min.
                                           :0.000000 Min.
## Min.
         :0.000000 Min.
                                                            :0.00000
## 1st Qu.:0.005473 1st Qu.:0.01637 1st Qu.:0.008269 1st Qu.:0.01389
## Median: 0.018348 Median: 0.04222 Median: 0.026009 Median: 0.04276
        :0.039328 Mean
                          :0.07655 Mean
                                          :0.054341 Mean
## Mean
                                                            :0.07825
## 3rd Qu.:0.055866 3rd Qu.:0.10779 3rd Qu.:0.076497
                                                     3rd Qu.:0.11333
## Max. :1.000000
                   Max. :1.00000 Max. :1.000000
                                                     Max. :1.00000
## ethyl-benzene
                      m&p-xylene
                                        o-xylene
## Min.
         :0.000000 Min.
                          :0.000000 Min.
                                           :0.00000
## 1st Qu.:0.007551
                   1st Qu.:0.007374
                                    1st Qu.:0.00000
                   Median: 0.039115 Median: 0.04139
## Median :0.034520
## Mean
        :0.062378
                         :0.077508 Mean
                                           :0.08650
                   Mean
## 3rd Qu.:0.090615
                    3rd Qu.:0.115742
                                     3rd Qu.:0.12881
        :1.000000
                    Max. :1.000000
## Max.
                                     Max. :1.00000
```

Combine and Transpose

```
normalized_matrix <- as.matrix(hourly_nona_bgrm_zerorepl_norm) #important: using the normalized VOCs fo

# Transpose <- cbind(Normalized_Data, Merged_VOCs)

# rownames(Transpose) <- as.character(Transpose[,1]) # I'm not able to run this line, but it shouldn't

# transpose_normalized_matrix <- t(as.matrix(normalized_matrix))

number_row<- dim(normalized_matrix)[1] #store number of rows (used for checking)
number_column<- dim(normalized_matrix)[2] #store number of columns
```

NMF section

```
if (j == 1) {
    # based on equation 6, we sqrt ch4 (at column = 1) and times by 1
    weight_matrix[i, j] <- sqrt(xij)
} else if (j == 2) {
    # 0.25 for co2
    weight_matrix[i, j] <- 0.25 * sqrt(xij)
} else if (j == 3) {
    # 0.5 for CO
    weight_matrix[i, j] <- 0.5 * sqrt(xij)
} else if (xij <= LOD) {
    weight_matrix[i, j] <- 2 * LOD # equation 5a) in reference paper
} else {
    weight_matrix[i, j] <- sqrt(((0.1 * xij)**2 + LOD**2)) #equation 5c) in reference paper
}
}
# write_csv(as_tibble(weight_matrix) %>% setNames(colnames(normalized_matrix)) %>% select(-o3) %>% muta
```

plots the NMF rank survey
plot(estimate_rank)

NMF rank survey

Factorization rank

Source contributions

NMF - SVD seed

NMF Reconstruction Error vs. Number of Components

Method comparisons

Remove Ozone

4 Components

```
normalized_matrix_less_o3 <- normalized_matrix[ ,setdiff(colnames(normalized_matrix), "o3")]
# Store this for other use
\# write_csv(as_tibble(normalized_matrix_less_o3) %>% mutate(time_utc = hourly_nona\#time_utc), 'normalized_matrix_less_o3) %>% mutate(time_utc = hourly_nona\#time_utc), 'normalized_matrix_less_o4) % mutate(time_utc = hourly_nona) % mutate(time_utc = h
nmf_result_4c_less_o3 <- nmf(normalized_matrix_less_o3, rank = 4, method = "KL", seed='nndsvd')
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
## Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
           Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
        Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
        Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
## Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
          Use c() or as.vector() instead.
basis_matrix_4c_less_o3 <- basis(nmf_result_4c_less_o3)</pre>
coef_matrix_4c_less_o3 <- coef(nmf_result_4c_less_o3)</pre>
par(mfrow = c(1, 2))
image(basis_matrix_4c_less_o3, main = "Basis Matrix (W)")
image(coef_matrix_4c_less_o3, main = "Coefficient Matrix (H)")
```

Basis Matrix (W)

2 0.4 0.6 0.8 1.0

0.0

0.2

0.0

0.4

0.6

8.0

1.0

Coefficient Matrix (H)

5 Components

```
nmf_result_5c_less_o3 <- nmf(normalized_matrix_less_o3, rank = 5, method = "KL", seed='nndsvd')</pre>
```

Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre ## Use c() or as.vector() instead.

Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre ## Use c() or as.vector() instead.

Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre ## Use c() or as.vector() instead.

Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
Use c() or as.vector() instead.

Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
Use c() or as.vector() instead.

Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre ## Use c() or as.vector() instead.

Warning in sqrt(S[i] * termp) * uup: Recycling array of length 1 in array-vector arithmetic is depre ## Use c() or as.vector() instead.

Warning in sqrt(S[i] * termp) * vvp: Recycling array of length 1 in array-vector arithmetic is depre
Use c() or as.vector() instead.

```
basis_matrix_5c_less_o3 <- basis(nmf_result_5c_less_o3)
coef_matrix_5c_less_o3 <- coef(nmf_result_5c_less_o3)

par(mfrow = c(1, 2))
image(basis_matrix_5c_less_o3, main = "Basis Matrix (W)")
image(coef_matrix_5c_less_o3, main = "Coefficient Matrix (H)")</pre>
```

Basis Matrix (W)

Coefficient Matrix (H)


```
# Convert H to a data frame for ggplot
H_df_5c_less_o3 <- as.data.frame(coef_matrix_5c_less_o3)</pre>
# Add a column for chemicals
H_df_5c_less_o3$Component <- rownames(H_df_5c_less_o3)</pre>
# Reshape data to long format
H_long_5c_less_o3 <- pivot_longer(H_df_5c_less_o3, cols = -Component, names_to = "Chemical", values_to
# Plot
nmfplt_1_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,</pre>
                                             '1', '1) Traffic emissions factor')
nmfplt_2_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,</pre>
                                             '2', '2) Component 2 nndsvd Less ozone, 5c')
nmfplt_3_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,</pre>
                                             '3', '3) Oil & Gas emssions factor')
nmfplt_4_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,</pre>
                                             '4', '4) Flaring factor II (other directions)')
nmfplt_5_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,</pre>
                                             '5', '5) Flaring Factor I (SW pad\'s flare)')
```


Fingerprint plot

```
contrib_prop <- apply(H_df_5c_less_o3[,1:(length(H_df_5c_less_o3)-1)], MARGIN = 2, FUN = function(x) {x
contrib_prop %>%
    as_tibble() %>%
    mutate(Component = c('Traffic', 'Component 2', 'Oil & Gas', 'Flare 1', 'Flare 2')) %>%
    pivot_longer(cols = -Component, names_to = "Chemical", values_to = "Contribution_prop") %>%
    mutate(Chemical = factor(Chemical, levels = desired_order)) %>%
    ggplot(aes(fill=Component, y=Contribution_prop, x=Chemical)) +
    geom_bar(position="fill", stat="identity") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    labs(x = "Chemical", y = "Contribution Proportion",
        title = 'Contribution proportion of each component') +
    theme(panel.grid.major = element_blank(),
```

```
panel.grid.minor = element_blank(),
panel.background = element_blank())
```

Contribution proportion of each component

Wind plots

```
hourly_wind_nona <- hourly_nona %>%
   select(wdr_deg, wsp_ms)

data_to_plot <- tibble(
   component1 = basis(nmf_result_5c_less_o3)[,1],
   component2 = basis(nmf_result_5c_less_o3)[,2],
   component3 = basis(nmf_result_5c_less_o3)[,3],
   component4 = basis(nmf_result_5c_less_o3)[,4],
   component5 = basis(nmf_result_5c_less_o3)[,5],
   wd = round(hourly_wind_nona$wdr_deg, -1)
)</pre>
```

NMF factor expression vs Wind Direction (Component 1)

NMF factor expression vs Wind Direction (Component 2)

NMF factor expression vs Wind Direction (Component 3)

NMF factor expression vs Wind Direction (Component 4)

NMF factor expression vs Wind Direction (Component 5)

Factor analysis

```
# First look at how well this approximates
fitted_5c_less_o3 <- fitted(nmf_result_5c_less_o3)
sum(abs(normalized_matrix_less_o3-fitted_5c_less_o3))</pre>
```

[1] 1060.414

```
# NMF factorizes V = WH
# Store Basis matrix (W) and Coef Matrix (H)
saveRDS(basis_matrix_5c_less_o3, 'result_rfiles/nmf_norm_5c_less_o3_basis.rds')
saveRDS(coef_matrix_5c_less_o3, 'result_rfiles/nmf_norm_5c_less_o3_coef.rds')

# Merge basis matrix into hourly observations
basis_matrix_5c_less_o3 <- as_tibble(basis_matrix_5c_less_o3) %>%
setNames(c('Factor1', 'Factor2', 'Factor3', 'Factor4', 'Factor5'))
```

```
## Warning: The 'x' argument of 'as_tibble.matrix()' must have unique column names if
## '.name_repair' is omitted as of tibble 2.0.0.
## i Using compatibility '.name_repair'.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
```

```
normalized_hourly_data_5c_less_o3 <- hourly_nona[,c('day', 'time_utc')] %>%
  cbind(normalized_matrix_less_o3) %>%
  cbind(basis_matrix_5c_less_o3) %>%
  right_join(hourly_data %>% select(-'day'), join_by(time_utc), suffix = c('_norm', ''))
# saveRDS(normalized_full_data_5c_less_o3, 'result_rfiles/normalized_hourly_data_5c_less_o3.rds')
# Also compute a daily dataset
normalized_daily_data_5c_less_o3 <- normalized_hourly_data_5c_less_o3 %>%
  group_by(day) %>%
  summarise(across(where(is.numeric), ~ mean(.x, na.rm = T)))
# saveRDS(normalized_daily_data_5c_less_o3, 'result_rfiles/normalized_daily_data_5c_less_o3.rds')
# Check if relationship between # flares and flare factor (4 & 5)
# Linear model
flare_factor <- lm(n_flare_100 ~ Factor4 + Factor5, data = normalized_daily_data_5c_less_o3)
summary(flare_factor)
##
## Call:
## lm(formula = n_flare_100 ~ Factor4 + Factor5, data = normalized_daily_data_5c_less_o3)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
## -5.4658 -3.0946 -0.3795 2.2016 17.1266
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  3.592
                             0.456
                                     7.878 7.71e-14 ***
                  6.625
                            20.357
                                     0.325
                                              0.745
## Factor4
## Factor5
                 42,500
                            27,706
                                     1.534
                                              0.126
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.787 on 276 degrees of freedom
     (1 observation deleted due to missingness)
## Multiple R-squared: 0.01269,
                                    Adjusted R-squared: 0.005536
## F-statistic: 1.774 on 2 and 276 DF, p-value: 0.1716
flare_factor_weighted <- lm(weighted.count ~ Factor4 + Factor5, data = normalized_daily_data_5c_less_o3
summary(flare factor weighted)
##
## Call:
## lm(formula = weighted.count ~ Factor4 + Factor5, data = normalized_daily_data_5c_less_o3)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -10.209 -3.167 -0.377
                             1.832 120.250
```

##

```
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                           1.007
## (Intercept)
                 5.030
                                   4.996 1.04e-06 ***
              -103.752
                           44.944 -2.308 0.02171 *
## Factor4
## Factor5
               193.540
                           61.168
                                    3.164 0.00173 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.361 on 276 degrees of freedom
     (1 observation deleted due to missingness)
## Multiple R-squared: 0.03869,
                                   Adjusted R-squared: 0.03173
## F-statistic: 5.554 on 2 and 276 DF, p-value: 0.004316
# Poisson model
flare_factor_pois <- glm(n_flare_100 ~ Factor4 + Factor5, family = 'poisson', data = normalized_daily_d
summary(flare_factor_pois)
##
## Call:
## glm(formula = n_flare_100 ~ Factor4 + Factor5, family = "poisson",
      data = normalized_daily_data_5c_less_o3)
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
                           0.0586 22.132 < 2e-16 ***
## (Intercept)
                1.2970
## Factor4
                1.6290
                           2.5155
                                    0.648 0.51724
                9.2161
                           3.2936
                                    2.798 0.00514 **
## Factor5
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 1022.1 on 278 degrees of freedom
##
## Residual deviance: 1010.7 on 276 degrees of freedom
    (1 observation deleted due to missingness)
## AIC: 1758
## Number of Fisher Scoring iterations: 5
# Check relationship between avg flare distance and flare factor (4 & 5)
# Linear model
flare_factor_dist <- lm(distToLovi ~ Factor4 + Factor5, data = normalized_daily_data_5c_less_o3)
summary(flare_factor_dist)
##
## lm(formula = distToLovi ~ Factor4 + Factor5, data = normalized_daily_data_5c_less_o3)
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
## -17.8872 -4.0924 -0.6397 3.1281 15.8871
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.3055
                         0.8902 22.809 <2e-16 ***
              78.3034
                                  1.946
                                            0.053 .
## Factor4
                         40.2421
## Factor5
              -61.7593
                         51.8998 -1.190
                                            0.235
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.536 on 218 degrees of freedom
    (59 observations deleted due to missingness)
## Multiple R-squared: 0.01769,
                                  Adjusted R-squared: 0.008681
## F-statistic: 1.963 on 2 and 218 DF, p-value: 0.1429
```

6 Components

Wind plots

Remove Ozone + chemicals with more than 500+ background values

4 Components

5 Components

Compare to 4 components