

Projektowanie modeli łączenia źródeł danych

Dokumentacja projektu

Gabriel Lichacz

Rzeszów, 2022

Spis treści

1.	Dan	le	3	
2.	Odr	zucenie danych	3	
	2.1.	Wstępne odrzucenie	3	
	2.2.	Regresja obliczona wstępnie	4	
	2.3.	Hellwig	4	
	2.4.	Podsumowanie	5	
3.	Mod	del	5	
4.	Wer	ryfikacja modelu	6	
5.	. Podsumowanie i prognoza teoretyczna			
6.	Spis	rysunków	10	

1. Dane

Wszystkie dane zostały pobrane ze strony banku danych lokalnych. Jako wartość y przyjmuję liczbę lokali mieszkalnych ogółem w Polsce w latach 2008-2020. Chcę przewidzieć zmianę ich liczby w najbliższych latach.

Jako zmienne objaśniające wybieram:

- Drogi ogółem każdy lokal mieszkalny potrzebuje drogi dojazdowej
- Liczba nowo utworzonych miejsc pracy więcej miejsc pracy oznacza mniejsze bezrobocie a więc w teorii zamożniejsze społeczeństwo
- Stopa bezrobocia podobnie jak wyżej
- Małżeństwa zawarte małżeństwa na ogół potrzebują miejsca do życia
- Wartość brutto środków trwałych na 1 mieszkańca zamożność społeczeństwa
- Mieszkania rozpoczęta budowa rozpoczęcie budowy niekoniecznie musi być jednoznaczne z jej zakończeniem
- Rynkowa sprzedaż lokali mieszkalnych duża sprzedaż oznacza duży popyt na lokale mieszkalne
- Liczba i kwoty wypłaconych dodatków mieszkaniowych pomoc państwa przy zakupu lokali mieszkaniowych
- Ilość miast miasta są bardziej zabudowane niż tereny wiejskie

2. Odrzucenie danych

2.1. Wstępne odrzucenie

Na początku obliczam współczynnik zmienności i współczynnik korelacji Pearsona. Przyjmuję jako wartość krytyczną współczynnika zmienności 15%, a współczynnika korelacji Pearsona 75%.

W ten sposób odrzucam zmienne objaśniające, które nie spełniają powyższych kryteriów:

- Drogi ogółem współczynnik zmienności mniejszy niż 15%
- Liczba nowo utworzonych miejsc pracy oba kryteria niższe niż wartości krytyczne
- Małżeństwa zawarte współczynnik zmienności mniejszy niż 15%
- Rynkowa sprzedaż lokali mieszkalnych współczynnik zmienności niższy niż 15%
- Ilość miast współczynnik zmienności mniejszy niż 15%

Wybieram do dalszej analizy:

- Wartość brutto środków trwałych na 1 mieszkańca
- Mieszkania rozpoczęta budowa
- Stopa bezrobocia
- Liczba i kwoty wypłaconych dodatków mieszkaniowych

rys. 2-2 Przykład odrzuconej zmiennej objaśniającej

2.2. Regresja obliczona wstępnie

Następnie korzystając z pakietu Analiza danych w MS Excel obliczam regresję. Dzięki niej wiem, że wartość p dla jednej zmiennej jest zbyt wysoka. Zmiennej objaśniającej jeszcze nie odrzucam.

rys. 2-3 Regresja obliczona wstępnie

2.3. Hellwig

Kolejny krok to użycie algorytmu Hellwiga. Z najlepszych wartości wybieram 10 najlepszą opcję. Dzięki uprzednio obliczonej regresji wiem, że jest to najbardziej optymalna do odrzucenia zmienna.

rys. 2-4 Najlepsze wartości

2.4. Podsumowanie

Po odrzuceniu zmiennych obliczam regresję z pozostałych oraz tworzę model. Pozostałe zmienne to:

- Mieszkania rozpoczęta budowa
- Stopa bezrobocia
- Wartość brutto środków trwałych na 1 mieszkańca

3. Model

Postać modelu:

$$Y = 1,44 * X_1 + 24587,25 * X_2 + 15,98 * X_3 + 4327063,59$$

Model	Liczba lokali mieszkalnych ogółem w Polsce
5746132	5 751 174
5826025	5 820 763
5905658	5 869 959
5988566	6 006 608
6054750	6 063 721
6112427	6 123 726
6174639	6 182 136
6252058	6 244 730
6301965	6 308 344
6379968	6 375 734
6466479	6 443 611
6572503	6 629 920
6676138	6 636 883

rys. 3-1 Wartości modelu oraz wartości oryginalne

rys. 3-2 Porównanie modelu i danych

4. Weryfikacja modelu

Statystyki regresji								
Wielokrotność R	0,99627713							
R kwadrat	0,99256812	wysokie						
Dopasowany R kwadrat	0,990090827							
Błąd standardowy	28655,56542							
Obserwacje	13							
ANALIZA WARIANCJI								
	df	22	MS	F	Istotność F	•		
Regresja	3	9,87011E+11	3,29004E+11	400,6663639	6,78265E-10	niskie		
Resztkowy	9	7390272865	821141429,4					
Razem	12	9,94402E+11						
		5			0.1.050/	0' 050'	0.1.05.00/	01 050
	Współczynniki	Błąd standardowy	t Stat	Wartość-p	Doine 95%	Górne 95%	Dolne 95,0%	Górne 95,0
Przecięcie	4327063,586	244087,1818	17,72753306	2,62338E-08	3774900,019	4879227,152	3774900,019	4879227,1
Mieszkania rozpoczęta budowa	1,442951779	0,787305009	1,832773527	0,100053926	-0,338055887	3,223959445	-0,338055887	3,2239594
		0000 100000	2 400672577	0.022000034	2336,246505	46838,25732	2336,246505	46838,257
Stopa bezrobocia	24587,25191	9836,189003	2,499672577	0,033880024	2000,240000	40030,23732	2330,240303	40030,237
Stopa bezrobocia Wartość brutto środków trwałych na 1 mieszkańca	24587,25191 15,98138525	0,74632353	21,4134817	4,9676E-09	14,29308413	17,66968637	14,29308413	17,669686

rys. 4-1 Podsumowanie modelu w MS Excel

```
Call:
lm(formula = y \sim x1 + x2 + x3)
Residuals:
            1Q Median
   Min
                             3Q
                                    Max
 Min 1Q
-39255 -7328
                 5042
                          8971 57417
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.327e+06 2.441e+05 17.728 2.62e-08 ***
             1.443e+00 7.873e-01 1.833 0.1001
2.459e+04 9.836e+03 2.500 0.0339 *
x1
x2
              1.598e+01 7.463e-01 21.413 4.97e-09 ***
х3
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 28660 on 9 degrees of freedom
Multiple R-squared: 0.9926, Adjusted R-squared: 0.9901 F-statistic: 400.7 on 3 and 9 DF, p-value: 6.783e-10
```

rys. 4-2 Podsumowanie modelu w R

Niska wartość testu Fishera-Snedecora (F) oznacza, że model jest istotny statystycznie. Wysoka wartość R², czyli jakość dopasowania modelu jest wysoka. P-value mniejsze niż 0.1 dla wszystkich zmiennych, więc wszystkie są istotne statystycznie. Model jest koincydentny, tzn. znaki przy zmiennych objaśniających zgadzają się z tymi stojącymi przy obliczonych wartościach.

Reszty	Różnica %
5 042	0,087740414
-5 262	-0,090324596
-35 699	-0,604479853
18 042	0,301282008
8 971	0,148162207
11 299	0,184856326
7 497	0,121409858
-7 328	-0,117215491
6 379	0,101228932
-4 234	-0,06636922
-22 868	-0,353646402
57 417	0,873587626
-39 255	-0,587986471

rys. 4-3 Reszty modelu

rys. 4-4 Wykres ACF

Autokorelacja reszt nie występuje.

rys. 4-5 Reszty względem wartości dopasowanych

Reszty modelu są małe. Ich różnica w procentach również jest niska. Rozkład ujemnych reszt do dodatnich jest dość równy i wynosi 6:7.

Hipoteza	Rozkład jest normalny
Test JB	2,003172254
Chi test	0,3672964
	Nie mamy podstaw by odrzucić hipotezy

rys. 4-6 Test na normalność rozkładu reszt w MS Excel

rys. 4-7 Test na normalność rozkładu reszt w R

Reszty mają rozkład normalny. Wartości p są większe niż 0.05.

rys. 4-8 Wykres reszt od wartości modelu

Homoskedastyczność rozkładu. Reszty nie są większe, im większe są wartości zmiennej objaśniającej. Wariancja jest stała.

mean(y)	odchylenie(reszt)	Wyrazistość modelu
6 189 024	24816,44761	0,004009752

rys. 4-9 Wyrazistość modelu

Wyrazistość modelu wynosi wiele poniżej 15%. Oznacza to dużą zgodność modelu z danymi empirycznymi

AIC	308.952656647616
AICC	317.524085219044
BIC	311.777403434923

rys. 4-10 Wartości kryteriów informacyjnych

Kryterium AIC jest dość niskie w porównaniu do wartości modelu.

5. Podsumowanie i prognoza teoretyczna

rys. 5-1 Model z prognozą na rok

Prognozę przeprowadziłem na podstawie dostępnych danych dla stopy bezrobocia, interpolacji liniowej wartość brutto środków trwałych na 1 mieszkańca (wartość rośnie prawie liniowo na przestrzeni lat) oraz prognozy liczby rozpoczętych budów mieszkań w 2021 roku według głównego urzędu statystycznego.

Według prognozy na kolejny rok (2021) liczba lokali mieszkalnych w Polsce będzie się zwiększać. Obserwując tendencje rynkowe i popyt na lokale mieszkalne prognoza może się sprawdzić.

6. Spis rysunków

rys. 1-1 Dane	3
rys. 2-1 Przykład wybranej zmiennej objaśniającej	
rys. 2-2 Przykład odrzuconej zmiennej objaśniającej	4
rys. 2-4 Najlepsze wartości	4
rys. 3-1 Wartości modelu oraz wartości oryginalne	
rys. 3-2 Porównanie modelu i danych	
rys. 4-1 Podsumowanie modelu w MS Excel	
rys. 4-2 Podsumowanie modelu w R	
rys. 4-3 Reszty modelu	
rys. 4-4 Wykres ACF	
rys. 4-5 Reszty względem wartości dopasowanych	
rys. 4-6 Test na normalność rozkładu reszt w MS Excel	
rys. 4-7 Test na normalność rozkładu reszt w R	
rys. 4-8 Wykres reszt od wartości modelu	
rys. 4-9 Wyrazistość modelu	
rys. 4-10 Wartości kryteriów informacyjnych	
rys. 5-1 Model z prognozą na rok	