Алёшин Александр Денисович. ИУ5-63Б, ЛР1 ТМО

1) Текстовое описание набора данных

В качестве набора данных буду использовать набор данных о ценах на жильё в Бостоне - https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

Датасет состоит из трех файлов:

housing_data.txt - обучающая выборка (в этом примере используется только данный файл) housing_names.txt - описание датасета index.txt Файл содержит следующие колонки:

CRIM - Криминальный уровень преступности на душу населения по городу.

ZN - доля жилой земли, зонированной для участков площадью более 25 000 кв. футов.

INDUS - доля промышленных предприятий, не связанных с розничной торговлей, в акрах на город.

СНАЅ - фиктивная переменная реки Чарльз (= 1, если тракт граничит с рекой; 0 в противном случае).

NOX - концентрация оксидов азота (частей на 10 миллионов).

RM - среднее количество комнат в одном жилом помещении.

AGE - доля квартир, занятых владельцами, построенных до 1940 года.

DIS - взвешенные расстояния до пяти бостонских центров занятости.

RAD - индекс доступности радиальных магистралей.

ТАХ - налог на недвижимость по полной стоимости-ставка налога на недвижимость за 10 000 долларов США.

PTRATIO - соотношение учащихся и учителей в разбивке по городам.

В - 1000(Вк - 0,63)², где Вк-доля чернокожего населения по городам.

LSTAT - % более низкий статус населения.

MEDV - средняя стоимость домов, занимаемых владельцами, в 1000 долларов США.

Импорт библиотек

Импортируем библиотеки с помощью команды import. Как правило, все команды import размещают в первой ячейке ноутбука, но мы в этом примере будем подключать все библиотеки последовательно, по мере их использования.

In [31]:

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.datasets import load_boston %matplotlib inline sns.set(style="ticks")

Загрузка данных

Загрузим файлы датасета в помощью библиотеки Pandas.

Не смотря на то, что файлы имеют расширение txt они представляют собой данные в формате CSV (https://ru.wikipedia.org/wiki/CSV). Часто в файлах такого формата в качестве разделителей используются символы ",", ";" или табуляция. Поэтому вызывая метод read_csv всегда стоит явно указывать разделитель данных с помощью параметра sep. Чтобы узнать какой разделитель используется в файле его рекомендуется предварительно посмотреть в любом текстовом редакторе.

In [55]:

Будем анализировать данные только на обучающей выборке data = pd.read_csv('dataset/housing_data1.txt', sep="\s+|\t+|\s+\t+|\t+\s+", engine = 'python') #boston = load_boston() #data = pd.DataFrame(boston.data, columns=boston.feature_names)

2) Основные характеристики датасета

```
data.head()
#print(data.keys())
```

Цикл по колонкам датасета #for col in data.columns:

data.isnull().sum()

Количество пустых значений - все значения заполнены

temp_null_count = data[data[col].isnull()].shape[0]
print('{} - {}'.format(col, temp_null_count))

πριι	ni(uaia.i	neys(//														
																	Oı
•	CRIM		INDUS				AGE		RAD		PTRATIO		LSTAT				
		18.0	2.31			6.575		4.0900	1			396.90 396.90	4.98	24.0			
	0.02731	0.0	7.07 7.07		0.469	7.185		4.9671 4.9671		242.0 242.0	17.8	392.83	9.14 4.03	21.6 34.7			
	0.03237	0.0	2.18		0.458			6.0622		222.0		394.63	2.94	33.4			
	0.06905	0.0	2.18					6.0622		222.0		396.90	5.33	36.2			
																	l _r
	<i>азмер д</i> i.shape	атас	сета-5	506+ ст	⁻рок, 1	'4 коло	нок										lr
(506	14)																Οι
(300)	, 14)																Ir
tota prin	l_count t('Всего	= data стро	a.shape к: {}'.for	:[0] mat(tot:	al_cou	nt))											
Всег	о строк	: 506															1
	писок ка a.columr		DΚ														lr
Inde	x(['CRIM	1', 'ZN	J', 'INDL	JS', 'CH	IAS', 'N	√0X', 'F	₹M', 'A	GE', 'DIS	S', 'RA	D', 'TA	X',						Οι
	PTRAT			\Т', 'МЕ	∃DV'],												
																	Ir
	писок ко a.dtypes		ОКСТИ	пами да	анных												
uala	atypes																
CRIN	∕l flo	at64															Οι
ZN	float	t64															
INDL CHA	S i	oat64 nt64															
NOX RM	floa floa	at64 ıt64															
AGE	floa	at64															
DIS RAD		t64															
TAX PTR	floa htto	at64 float6	4														
B LSTA	floate	64															
MED	V flo	oat64 oat64															
dtype	e: object	t															Ir
# [7]	роверии	N UOD	MUMD LI	ICT LIV	วบวบอา	лий											
	ика по к					IFIFI											

```
Out[61]:
```

```
CRIM
ZN
INDUS
         0
CHAS
        0
NOX
RM
       0
AGE
        0
DIS
       0
RAD
        n
TAX
       0
PTRATIO
          0
В
      0
LSTAT
MEDV
         0
dtype: int64
```

In [62]:

Основные статистические характеристки набора данных data.describe()

												Ou	t[62]:
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	12.0
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	7.
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.1
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	6.
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	11.
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	16.9
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	37.
.1											100000		*****

<u>▶</u> In [63]:

Определим уникальные значения для целевого признака data['MEDV'].unique()

Out[63]:

```
array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15.,
            21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 13.6, 19.6, 15.2, 14.5,
            15.6, 13.9, 16.6, 14.8, 18.4, 21., 12.7, 13.2, 13.1, 13.5, 20.
            24.7, 30.8, 34.9, 26.6, 25.3, 21.2, 19.3, 14.4, 19.4, 19.7, 20.5,
            25., 23.4, 35.4, 31.6, 23.3, 18.7, 16., 22.2, 33., 23.5, 22.,
            17.4, 20.9, 24.2, 22.8, 24.1, 21.4, 20.8, 20.3, 28., 23.9, 24.8,
            22.5, 23.6, 22.6, 20.6, 28.4, 38.7, 43.8, 33.2, 27.5, 26.5, 18.6,
           20.1, 19.5, 19.8, 18.8, 18.5, 18.3, 19.2, 17.3, 15.7, 16.2, 18.
            14.3, 23., 18.1, 17.1, 13.3, 17.8, 14., 13.4, 11.8, 13.8, 14.6,
            15.4, 21.5, 15.3, 17. , 41.3, 24.3, 27. , 50. , 22.7, 23.8, 22.3,
            19.1,\, 29.4,\, 23.2,\, 24.6,\, 29.9,\, 37.2,\, 39.8,\, 37.9,\, 32.5,\, 26.4,\, 29.6,\, 39.8,\, 37.9,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 39.8,\, 
            32., 29.8, 37., 30.5, 36.4, 31.1, 29.1, 33.3, 30.3, 34.6, 32.9,
            42.3, 48.5, 24.4, 22.4, 28.1, 23.7, 26.7, 30.1, 44.8, 37.6, 46.7,
            31.5, 31.7, 41.7, 48.3, 29., 25.1, 17.6, 24.5, 26.2, 42.8, 21.9,
            44., 36., 33.8, 43.1, 48.8, 31., 36.5, 30.7, 43.5, 20.7, 21.1,
            25.2, 35.2, 32.4, 33.1, 35.1, 45.4, 46., 32.2, 28.5, 37.3, 27.9,
            28.6, 36.1, 28.2, 16.1, 22.1, 19., 32.7, 31.2, 17.2, 16.8, 10.2,
            10.4, 10.9, 11.3, 12.3, 8.8, 7.2, 10.5, 7.4, 11.5, 15.1, 9.7,
            12.5,\ 8.5,\ 5.\ ,\ 6.3,\ 5.6,\ 12.1,\ 8.3,\ 11.9,\ 17.9,\ 16.3,\ 7.\ ,
              7.5, 8.4, 16.7, 14.2, 11.7, 11., 9.5, 14.1, 9.6, 8.7, 12.8,
            10.8, 14.9, 12.6, 13., 16.4, 17.7, 12., 21.8, 8.1])
Целевой признак является действительным.
```

3) Визуальное исследование датасета

Для визуального исследования могут быть использованы различные виды диаграмм, мы построим только некоторые варианты диаграмм, которые используются достаточно часто.

Диаграмма рассеяния Позволяет построить распределение двух колонок данных и визуально обнаружить наличие зависимости. Не предполагается, что значения упорядочены (например, по времени).

In [74]:

 $\label{eq:figsize} \begin{array}{l} \text{fig, ax = plt.subplots(figsize=(10,10))} \\ \text{sns.scatterplot(ax=ax, x='B', y='CRIM', data=data, hue='MEDV')} \end{array}$

<AxesSubplot:xlabel='B', ylabel='CRIM'>

In [70]:

Out[70]:

Гистограмма

Позволяет оценить плотность вероятности распределения данных.

In [80]:

fig, ax = plt.subplots(figsize=(10,10)) sns.distplot(data['CRIM'])

C:\Users\79772\anaconda3\\ib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='CRIM', ylabel='Density'>

Jointplot

Комбинация гистограмм и диаграмм рассеивания.

In [82]:

sns.jointplot(x='CRIM', y='B', data=data)

sns.jointplot(x='CRIM', y='B', data=data, kind="hex")

<seaborn.axisgrid.JointGrid at 0x2ba622e4160>

sns.jointplot(x='CRIM', y='B', data=data, kind="kde")

In [83]:

Out[83]:

In [84]:

<seaborn.axisgrid.JointGrid at 0x2ba63b41ca0>

"Парные диаграммы"

Комбинация гистограмм и диаграмм рассеивания для всего набора данных.

Выводится матрица графиков. На пересечении строки и столбца, которые соответстуют двум показателям, строится диаграмма рассеивания. В главной диагонали матрицы строятся гистограммы распределения соответствующих показателей.

In [86]:

sns.pairplot(data)

С помощью параметра "hue" возможна группировка по значениям какого-либо признака.

In [88]:

sns.pairplot(data, hue="CRIM")

Ящик с усами

Отображает одномерное распределение вероятности.

In [89]:

sns.boxplot(x=data['TAX'])

<AxesSubplot:xlabel='TAX'>

По вертикали sns.boxplot(y=data['TAX'])

<AxesSubplot:ylabel='TAX'>

Распределение параме тра Humidity сгруппированные по Оссирапсу. sns.boxplot(x='RM', y='MEDV', data=data)

 $<\!\!AxesSubplot:\!xlabel=\!'RM',\,ylabel=\!'MEDV'\!\!>$

Violin plot

sns.violinplot(x=data['NOX'])

In [90]:

Out[89]:

Out[90]:

In [103]:

Out[103]:

In [104]:

fig, ax = plt.subplots(2, 1, figsize=(10,10)) sns.violinplot(ax=ax[0], x=data['NOX'])sns.distplot(data['NOX'], ax=ax[1])

C:\Users\79772\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='NOX', ylabel='Density'>

Из приведенных графиков видно, что violinplot действительно показывает распределение плотности.

0.6

NOX

0.7

0.8

0.9

1.0

Распределение параметра Humidity сгруппированные по Оссирапсу. sns.violinplot(x='CHAS', y='MEDV', data=data)

0.5

0.4

In [105]:

Out[105]:

In [111]:

sns.catplot(x='CHAS', y='MEDV', data=data, kind="violin", split=True)

In [112]:

Out[112]:

4) Информация о корреляции признаков

Проверка корреляции признаков позволяет решить две задачи:

CHAS

Понять какие признаки (колонки датасета) наиболее сильно коррелируют с целевым признаком. Именно эти признаки будут наиболее информативными для моделей машинного обучения. Признаки, которые слабо коррелируют с целевым признаком, можно попробовать исключить из построения модели, иногда это повышает качество модели. Нужно отметить, что некоторые алгоритмы машинного обучения автоматически определяют ценность того или иного признака для построения модели. Понять какие нецелевые признаки линейно зависимы между собой. Линейно зависимые признаки, как правило, очень плохо влияют на качество моделей. Поэтому если несколько признаков линейно зависимы, то для построения модели из них выбирают какой-то один признак.

In [113]:

data.corr()

														Out[113]:
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
CRIM	1.000000	0.200469	0.406583	0.055892	0.420972	0.219247	0.352734	0.379670	0.625505	0.582764	0.289946	0.385064	0.455621	0.388305
ZN	0.200469	1.000000	0.533828	0.042697	0.516604	0.311991	0.569537	0.664408	0.311948	0.314563	0.391679	0.175520	0.412995	0.360445
INDUS	0.406583	0.533828	1.000000	0.062938	0.763651	0.391676	0.644779	0.708027	0.595129	0.720760	0.383248	0.356977	0.603800	0.483725
CHAS	0.055892	0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	0.099176	0.007368	0.035587	0.121515	0.048788	0.053929	0.175260
NOX	0.420972	0.516604	0.763651	0.091203	1.000000	0.302188	0.731470	0.769230	0.611441	0.668023	0.188933	0.380051	0.590879	0.427321
RM	0.219247	0.311991	0.391676	0.091251	0.302188	1.000000	0.240265	0.205246	0.209847	0.292048	0.355501	0.128069	0.613808	0.695360
AGE	0.352734	0.569537	0.644779	0.086518	0.731470	0.240265	1.000000	0.747881	0.456022	0.506456	0.261515	0.273534	0.602339	0.376955
DIS	0.379670	0.664408	0.708027	0.099176	0.769230	0.205246	0.747881	1.000000	0.494588	0.534432	0.232471	0.291512	0.496996	0.249929
RAD	0.625505	0.311948	0.595129	0.007368	0.611441	0.209847	0.456022	0.494588	1.000000	0.910228	0.464741	0.444413	0.488676	0.381626
TAX	0.582764	0.314563	0.720760	0.035587	0.668023	0.292048	0.506456	0.534432	0.910228	1.000000	0.460853	0.441808	0.543993	0.468536
PTRATIO	0.289946	0.391679	0.383248	0.121515	0.188933	0.355501	0.261515	0.232471	0.464741	0.460853	1.000000	0.177383	0.374044	0.507787
В	0.385064	0.175520	0.356977	0.048788	0.380051	0.128069	0.273534	0.291512	0.444413	0.441808	0.177383	1.000000	0.366087	0.333461
LSTAT	0.455621	0.412995	0.603800	0.053929	0.590879	0.613808	0.602339	0.496996	0.488676	0.543993	0.374044	0.366087	1.000000	0.737663
MEDV	0.388305	0.360445	0.483725	0.175260	0.427321	0.695360	0.376955	0.249929	0.381626	0.468536	0.507787	0.333461	0.737663	1.000000

Корреляционная матрица содержит коэффициенты корреляции между всеми парами признаков.

Корреляционная матрица симметрична относительно главной диагонали. На главной диагонали расположены единицы (корреляция признака самого с собой).

На основе корреляционной матрицы можно сделать следующие выводы:

По умолчанию при построении матрицы используется коэффициент корреляции Пирсона. Возможно также построить корреляционную матрицу на основе коэффициентов корреляции Кендалла и Спирмена. На практике три метода редко дают значимые различия.

In [114]:

data.corr(method='pearson')

														Out[114]:
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
CRIM	1.000000	0.200469	0.406583	0.055892	0.420972	0.219247	0.352734	0.379670	0.625505	0.582764	0.289946	0.385064	0.455621	0.388305
ZN	0.200469	1.000000	0.533828	0.042697	0.516604	0.311991	0.569537	0.664408	0.311948	0.314563	0.391679	0.175520	0.412995	0.360445
INDUS	0.406583	0.533828	1.000000	0.062938	0.763651	0.391676	0.644779	0.708027	0.595129	0.720760	0.383248	0.356977	0.603800	0.483725
CHAS	0.055892	0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	0.099176	0.007368	0.035587	0.121515	0.048788	0.053929	0.175260
NOX	0.420972	0.516604	0.763651	0.091203	1.000000	0.302188	0.731470	0.769230	0.611441	0.668023	0.188933	0.380051	0.590879	0.427321
RM	0.219247	0.311991	0.391676	0.091251	0.302188	1.000000	0.240265	0.205246	0.209847	0.292048	0.355501	0.128069	0.613808	0.695360
AGE	0.352734	0.569537	0.644779	0.086518	0.731470	0.240265	1.000000	0.747881	0.456022	0.506456	0.261515	0.273534	0.602339	0.376955
DIS	0.379670	0.664408	0.708027	0.099176	0.769230	0.205246	0.747881	1.000000	0.494588	0.534432	0.232471	0.291512	0.496996	0.249929
RAD	0.625505	0.311948	0.595129	0.007368	0.611441	0.209847	0.456022	0.494588	1.000000	0.910228	0.464741	0.444413	0.488676	0.381626
TAX	0.582764	0.314563	0.720760	0.035587	0.668023	0.292048	0.506456	0.534432	0.910228	1.000000	0.460853	0.441808	0.543993	0.468536
PTRATIO	0.289946	0.391679	0.383248	0.121515	0.188933	0.355501	0.261515	0.232471	0.464741	0.460853	1.000000	0.177383	0.374044	0.507787
В	0.385064	0.175520	0.356977	0.048788	0.380051	0.128069	0.273534	0.291512	0.444413	0.441808	0.177383	1.000000	0.366087	0.333461
LSTAT	0.455621	0.412995	0.603800	0.053929	0.590879	0.613808	0.602339	0.496996	0.488676	0.543993	0.374044	0.366087	1.000000	0.737663
MEDV	0.388305	0.360445	0.483725	0.175260	0.427321	0.695360	0.376955	0.249929	0.381626	0.468536	0.507787	0.333461	0.737663	1.000000

In [115]:

 $data.corr(method \verb=='kendall')$

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Out[115]: MEDV
CRIM	1.000000	0.462057	0.521014	0.033948	0.603361	0.211718	0.497297	0.539878	0.563969	0.544956	0.312768	0.264378	0.454837	0.403964
ZN	0.462057	1.000000	0.535468	0.039419	0.511464	0.278134	0.429389	0.478524	0.234663	0.289911	0.361607	0.128177	0.386818	0.339989
INDUS	0.521014	0.535468	1.000000	0.075889	0.612030	0.291318	0.489070	0.565137	0.353967	0.483228	0.336612	0.192017	0.465980	0.418430
CHAS	0.033948	0.039419	0.075889	1.000000	0.056387	0.048080	0.055616	0.065619	0.021739	0.037655	0.115694	0.033277	0.041344	0.115202
NOX	0.603361	0.511464	0.612030	0.056387	1.000000	0.215633	0.589608	0.683930	0.434828	0.453258	0.278678	0.202430	0.452005	0.394995
RM	0.211718	0.278134	0.291318	0.048080	0.215633	1.000000	0.187611	0.179801	0.076569	0.190532	0.223194	0.032951	0.468231	0.482829
AGE	0.497297	0.429389	0.489070	0.055616	0.589608	0.187611	1.000000	0.609836	0.306201	0.360311	0.251857	0.154056	0.485359	0.387758
DIS	0.539878	0.478524	0.565137	0.065619	0.683930	0.179801	0.609836	1.000000	0.361892	0.381988	0.223486	0.168631	0.409347	0.313115
RAD	0.563969	0.234663	0.353967	0.021739	0.434828	0.076569	0.306201	0.361892	1.000000	0.558107	0.251913	0.214364	0.287943	0.248115
TAX	0.544956	0.289911	0.483228	0.037655	0.453258	0.190532	0.360311	0.381988	0.558107	1.000000	0.287769	0.241606	0.384191	0.414650
PTRATIO	0.312768	0.361607	0.336612	0.115694	0.278678	0.223194	0.251857	0.223486	0.251913	0.287769	1.000000	0.042152	0.330335	0.398789
В	0.264378	0.128177	0.192017	0.033277	0.202430	0.032951	0.154056	0.168631	0.214364	0.241606	0.042152	1.000000	0.145430	0.126955
LSTAT	0.454837	0.386818	0.465980	0.041344	0.452005	0.468231	0.485359	0.409347	0.287943	0.384191	0.330335	0.145430	1.000000	0.668656
MEDV	0.403964	0.339989	0.418430	0.115202	0.394995	0.482829	0.387758	0.313115	0.248115	0.414650	0.398789	0.126955	0.668656	1.000000

In [116]:

			-											Out[116]:
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
CRIM	1.000000	0.571660	0.735524	0.041537	0.821465	0.309116	0.704140	0.744986	0.727807	0.729045	0.465283	0.360555	0.634760	- 0.558891
ZN	0.571660	1.000000	0.642811	0.041937	0.634828	0.361074	0.544423	0.614627	0.278767	0.371394	0.448475	0.163135	0.490074	0.438179
INDUS	0.735524	0.642811	1.000000	0.089841	0.791189	0.415301	0.679487	0.757080	0.455507	0.664361	0.433710	0.285840	0.638747	0.578255
CHAS	0.041537	0.041937	0.089841	1.000000	0.068426	0.058813	0.067792	0.080248	0.024579	0.044486	0.136065	0.039810	0.050575	0.140612
NOX	0.821465	0.634828	0.791189	0.068426	1.000000	0.310344	0.795153	0.880015	0.586429	0.649527	0.391309	0.296662	0.636828	0.562609
RM	0.309116	0.361074	0.415301	0.058813	0.310344	1.000000	0.278082	0.263168	0.107492	0.271898	0.312923	0.053660	0.640832	0.633576
AGE	0.704140	0.544423	0.679487	0.067792	0.795153	0.278082	1.000000	0.801610	0.417983	0.526366	0.355384	0.228022	0.657071	0.547562
DIS	0.744986	0.614627	0.757080	0.080248	0.880015	0.263168	0.801610	1.000000	0.495806	0.574336	0.322041	0.249595	0.564262	0.445857
RAD	0.727807	0.278767	0.455507	0.024579	0.586429	0.107492	0.417983	0.495806	1.000000	0.704876	0.318330	0.282533	0.394322	0.346776
TAX	0.729045	0.371394	0.664361	0.044486	0.649527	0.271898	0.526366	0.574336	0.704876	1.000000	0.453345	0.329843	0.534423	0.562411
PTRATIO	0.465283	0.448475	0.433710	0.136065	0.391309	0.312923	0.355384	0.322041	0.318330	0.453345	1.000000	0.072027	0.467259	0.555905
В	0.360555	0.163135	0.285840	0.039810	0.296662	0.053660	0.228022	0.249595	0.282533	0.329843	0.072027	1.000000	0.210562	0.185664
LSTAT	0.634760	0.490074	0.638747	0.050575	0.636828	0.640832	0.657071	0.564262	0.394322	0.534423	0.467259	0.210562	1.000000	0.852914
MEDV	0.558891	0.438179	0.578255	0.140612	0.562609	0.633576	0.547562	0.445857	0.346776	0.562411	0.555905	0.185664	0.852914	1.000000

В случае большого количества признаков анализ числовой корреляционной матрицы становится неудобен.

Для визуализации корреляционной матрицы будем использовать "тепловую карту" heatmap которая показывает степень корреляции различными цветами.

Используем метод heatmap библиотеки seaborn - https://seaborn.pydata.org/generated/seaborn.heatmap.html

In [117]:

sns.heatmap(data.corr())

Вывод значений в ячейках sns.heatmap(data.corr(), annot=**True**, fmt='.3f')

In [118]:

ax[2].title.set_text('Spearman')

Корреляционные матрицы, построенные различными методами

Необходимо отметить, что тепловая карта не очень хорошо подходит для определения корреляции нецелевых признаков между собой.

В примере тепловая карта помогает определить значимую корреляцию между признаками Humidity и HumidityRatio, следовательно только один из этих признаков можно включать в модель.