Quick Permutation Test (QuiPT)

Piotr Sobczyk¹, Michał Burdukiewicz²

¹Wrocław University of Technology, Institute of Mathematics and Computer Science, Poland
²University of Wrocław, Department of Genomics, Poland

- n-grams
 - n-gram definition
 - Positioned n-grams
- Permutation test
 - Testing framework
 - Advantages
 - Drawbacks
 - p-value resolution
- QuiPT
 - Contingency tables
 - Multinomial distribution of target-feature relationship
 - Advantages over permutation test
- Simulation scheme
 - Power of the test
 - False significant features
 - Conclusion

- n-grams
 - n-gram definition
 - Positioned n-grams
- Permutation test
 - Testing framework
 - Advantages
 - Drawbacks
 - p-value resolution
- QuiPT
 - Contingency tables
 - Multinomial distribution of target-feature relationship
 - Advantages over permutation test
- 4 Simulation scheme
 - Power of the test
 - False significant features
 - Conclusion

n-grams (k-tuples) are sets of n characters derived from the input sequence(s). They may form continuous sub-sequences or be discontinuous.

	X1	X2	Х3	X4	X5	X6
1	1	2	1	4	2	1
2	3	1	4	3	3	2
3	4	1	3	3	4	2

Sample sequences.

1	2	3	4
3	2	0	1
1	1	3	1
1	1	2	2

 ${\sf Unigrams}.$

X1_1_0	X2_1_0	X3_1_0	X4_1_0	X5_1_0	X6_1_0	X1_2_0
1	0	1	0	0	1	0
0	1	0	0	0	0	0
0	1	0	0	0	0	0

A fraction of possible unigrams with position information.

Positioned n-gram data is binary.

Number of possible positioned n-grams:

$$n_{max} = L \times m^n$$

- n-grams
 - n-gram definition
 - Positioned n-grams
- Permutation test
 - Testing framework
 - Advantages
 - Drawbacks
 - p-value resolution
- QuiPT
 - Contingency tables
 - Multinomial distribution of target-feature relationship
 - Advantages over permutation test
- Simulation scheme
 - Power of the test
 - False significant features
 - Conclusion

• Calculate test statistic for the given positioned n-gram and etiquettes (T_R) .

- Calculate test statistic for the given positioned n-gram and etiquettes (T_R) .
- **②** Permute counts of n-grams and calculate permuted test statistic (T_P) .

- Calculate test statistic for the given positioned n-gram and etiquettes (T_R) .
- **②** Permute counts of n-grams and calculate permuted test statistic (T_P) .
- Repeat step 2. N times.

- Calculate test statistic for the given positioned n-gram and etiquettes (T_R) .
- **②** Permute counts of n-grams and calculate permuted test statistic (T_P) .
- Repeat step 2. N times.
- Calculate p-value using:

$$p
-value = \frac{N_{T_P > T_R}}{N}$$

 $N_{T_P > T_R}$ is number of times when T_P was bigger than T_R

Model independent.

- Model independent.
- Statistic independent.

• Computationally expensive (number of cases, number of features).

- Computationally expensive (number of cases, number of features).
- Single feature analysis (no feature interaction).

- Computationally expensive (number of cases, number of features).
- Single feature analysis (no feature interaction).
- Unfeasible precise estimation of low p-values.

The number of permutations is inversely proportional to the interval between p-values.

Example: with 10×10^6 permutation the smallest possible p-values are: 0, 1×10^{-6} , 2×10^{-6} and so on.

- n-grams
 - n-gram definition
 - Positioned n-grams
- Permutation test
 - Testing framework
 - Advantages
 - Drawbacks
 - p-value resolution
- QuiPT
 - Contingency tables
 - Multinomial distribution of target-feature relationship
 - Advantages over permutation test
- 4 Simulation scheme
 - Power of the test
 - False significant features
 - Conclusion

The binary positioned n-gram data tabulated by binary label can be easily described in 2d contingency table.

sequence ID	feature	target
1	1	0
2	1	0
3	0	0
4	1	1
5	0	1

Positioned n-grams with a label.

	target	feature		
0	n _{1,1}	n _{1,0}		
1	n _{0,1}	$n_{0,0}$		
Contingency table.				

Test statistics used by QuiPT (information gain, Kullback-Leibler divergence) measure inbalance of contingency tables.

If probability that target equals 1 is p and probability that feature equals 1 is q and feature and target are independent then each of them has the following probabilities

$$P(\mathit{Target}, \mathit{Feature}) = (1,1)) = p \cdot q$$
 $P(\mathit{Target}, \mathit{Feature}) = (1,0)) = p \cdot (1-q)$
 $P(\mathit{Target}, \mathit{Feature}) = (0,1)) = (1-p) \cdot q$
 $P(\mathit{Target}, \mathit{Feature}) = (0,0)) = (1-p) \cdot (1-q)$

$$F(n_{1,1}, n_{1,0}, n_{0,1}, n_{0,0}) = \binom{n}{n_{1,1}} (p \cdot q)^{n_{1,1}} \binom{n - n_{1,1}}{n_{1,0}} (p \cdot (1 - q))^{n_{1,0}}$$
$$\binom{n - n_{1,1} - n_{1,0}}{n_{0,1}} ((1 - p) \cdot q)^{n_{0,1}}$$
$$\binom{n - n_{1,1} - n_{1,0} - n_{0,1}}{n_{0,0}} ((1 - p) \cdot (1 - q))^{n_{0,0}}$$

In addition to this: $n_{1,\cdot}=n_{1,1}+n_{1,0}$ and $n_{\cdot,1}=n_{1,1}+n_{0,1}$ are known and fixed.

• $n_{1,1}$ is from range $[0, min(n_{\cdot,1}, n_{1,\cdot})]$.

- $n_{1,1}$ is from range $[0, min(n_{\cdot,1}, n_{1,\cdot})]$.
- The probability of certain contingency table is given as the conditional distribution, as impose restrictions on two parameters $n_{\cdot,1}$ and $n_{1,\cdot}$.

- $n_{1,1}$ is from range $[0, min(n_{\cdot,1}, n_{1,\cdot})]$.
- The probability of certain contingency table is given as the conditional distribution, as impose restrictions on two parameters n_{.,1} and n_{1,..}
- The test statistic is computed for each possible value of $n_{1,1}$.

- $n_{1,1}$ is from range $[0, min(n_{\cdot,1}, n_{1,\cdot})]$.
- The probability of certain contingency table is given as the conditional distribution, as impose restrictions on two parameters $n_{\cdot,1}$ and $n_{1,\cdot}$.
- The test statistic is computed for each possible value of $n_{1,1}$.
- The distribution of test statistics under hypothesis that target and feature are independant is computed using values from 3.

	Target	Feature	Freq
1	0	0	50
2	1	0	50
3	0	1	50
4	1	1	50

• QuiPT is faster.

- QuiPT is faster.
- Using the exact distribution of possible values of the criterion QuiPT yields precise small p-values without increasing the computation time.

- n-grams
 - n-gram definition
 - Positioned n-grams
- Permutation test
 - Testing framework
 - Advantages
 - Drawbacks
 - p-value resolution
- QuiPT
 - Contingency tables
 - Multinomial distribution of target-feature relationship
 - Advantages over permutation test
- 4 Simulation scheme
 - Power of the test
 - False significant features
- Conclusion

• Random 4000 sequences (20 nucleotides each). The half of the sequences has label 0.

- Random 4000 sequences (20 nucleotides each). The half of the sequences has label 0.
- Ohoose a single position between 3 and 18 (to avoid border cases).

- Random 4000 sequences (20 nucleotides each). The half of the sequences has label 0.
- Ohoose a single position between 3 and 18 (to avoid border cases).
- **②** Resample nucleotides at chosen position. The dominant nucletoide has probability of occurrence $p_d = 0.25$. Other nucleotides have probability of occurrence $p_o = (1 p_d)/3$.

- Random 4000 sequences (20 nucleotides each). The half of the sequences has label 0.
- Ohoose a single position between 3 and 18 (to avoid border cases).
- **②** Resample nucleotides at chosen position. The dominant nucletoide has probability of occurrence $p_d = 0.25$. Other nucleotides have probability of occurrence $p_o = (1 p_d)/3$.
- Perform QuiPT (Information Gain) and choose significant features (with p-value < 0.001).

- Random 4000 sequences (20 nucleotides each). The half of the sequences has label 0.
- ② Choose a single position between 3 and 18 (to avoid border cases).
- **②** Resample nucleotides at chosen position. The dominant nucletoide has probability of occurrence $p_d = 0.25$. Other nucleotides have probability of occurrence $p_o = (1 p_d)/3$.
- Perform QuiPT (Information Gain) and choose significant features (with p-value < 0.001).
- Iterate steps 1-4 over other values of p_d 0.38, 0.51, 0.65, 0.78, 0.91.

- Random 4000 sequences (20 nucleotides each). The half of the sequences has label 0.
- ② Choose a single position between 3 and 18 (to avoid border cases).
- **②** Resample nucleotides at chosen position. The dominant nucletoide has probability of occurrence $p_d = 0.25$. Other nucleotides have probability of occurrence $p_o = (1 p_d)/3$.
- Perform QuiPT (Information Gain) and choose significant features (with p-value < 0.001).
- Iterate steps 1-4 over other values of p_d 0.38, 0.51, 0.65, 0.78, 0.91.
- Repeat steps 1-5 200 times.

- n-grams
 - n-gram definition
 - Positioned n-grams
- Permutation test
 - Testing framework
 - Advantages
 - Drawbacks
 - p-value resolution
- QuiPT
 - Contingency tables
 - Multinomial distribution of target-feature relationship
 - Advantages over permutation test
- Simulation scheme
 - Power of the test
 - False significant features
 - Conclusion

n-grams
Permutation test
QuiPT
Simulation scheme
Conclusion

Quick permutation test is a powerful and quick equivalent of permutation test in binary feature-binary target testing scenario.