Agunda: 12/8/15 Lesson 73 Culc AB

Integrals of a and loga(x)

 $\frac{d}{dx}(a^{x}) = a^{x} \cdot \ln(a)$ Recall:

$$\frac{d}{dx}(a^{x}) = a^{x} \cdot \ln(a)$$

s
$$\int a^{x} dx = \frac{a^{x}}{\ln(a)} + C$$
 because $\frac{d}{dx} \left(\frac{a^{x}}{\ln(a)} \right) = a^{x}$

because
$$\frac{d}{dx}(x\ln(x)-x) = \ln(x) + \frac{x}{x} - x = \ln(x)$$

Thus $\int \log_a(x) dx = \int \frac{\ln(x)}{\ln(a)} dx = \frac{1}{\ln(a)}(x\ln(x)-x) + C$

Ex. Integate:
$$\int 5x \, a^{3x^2-7} \, dx$$
 $u=3x^2-7$ $du=6x \, dx$

Ex. 73.3 Find the volume of the solid obtained by notating about the x-axis the region bounded by X=3 and the boordinate axes.

Volume =
$$\int_{3}^{3} \pi \left(5^{x_{2}} \right)^{2} dx = \pi \int_{0}^{3} 5^{x} dx$$

$$= \pi \left[5^{x} \cdot \frac{1}{|n(5)|} \right]_{0}^{3}$$

$$= \frac{\pi}{|n(5)|} \cdot |24 \text{ unite}^{2}$$