At =
$$\lambda I$$
. ; λ : eigenvalue. , χ : eigenvector.
The row exchanges change the eigenvalue λ . + we use determinant

$$\Rightarrow (A - \lambda I) \alpha = 0.$$

$$\Rightarrow$$
 for non-zero vector x , $A-\lambda L$ should be singular. det $(A-\lambda L)=0$.

$$\det(A - \lambda L) = (4 - \lambda)(-3^{1} - \lambda) + 10 = \lambda^{2} - \lambda - 2 = 0. \quad \lambda = 2 \text{ or } -1.$$

$$\lambda = 2 \qquad (A - \lambda I) \chi = \begin{bmatrix} 2 & -5 \\ 2 & -5 \end{bmatrix} \chi = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \chi_3 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

2) From each eigenvalue, solve the equation
$$(A - \lambda I) \mathcal{I} = 0$$
.

NO 2	
Ex 3) A= [4 5]	
0 7 6	
6 0 4	
Γ 1 - λ 4 5]	
$\det (A - \lambda I) = 0 \stackrel{?}{\cancel{4}} - \lambda 6 = (1 - \lambda) \left(\stackrel{?}{\cancel{4}} - \lambda \right) \left(\stackrel{!}{\cancel{5}} - \lambda \right)$	
$\begin{bmatrix} 0 & 0 & \pm \lambda \end{bmatrix} = \underbrace{(1-\lambda)(2-\lambda)(3-\lambda)}_{0}$	
2 2 7 7	
· Eigenvalues are different from pivots in Gauss elimination.	
$\int \mathfrak{S} = \prod_{i \in A} f(x) = \prod_{i \in A} f(x) = \int \mathfrak{S} f(x) =$	
$\bigcirc . \text{ Trace of } A = \lambda_1 + \lambda_2 + \cdots + \lambda_m = \alpha_1 + \alpha_{12} + \cdots + \alpha_m.$	
$\Rightarrow \alpha \leq \alpha = \alpha =$	
\Rightarrow assume det $(A - \lambda I) = 0$ has n . roots, $\lambda_1, \lambda_2, \dots \lambda_n$, t .	hen.
$\det(A + \lambda \mathbf{I}) = (\lambda - \lambda)(\lambda - \lambda) \cdot (\lambda - \lambda) = 0$	
$\frac{1}{2} = (-\lambda)^n + (\lambda_1 + \lambda_2 + \cdots + \lambda_n)(-\lambda)^{n-1} + \cdots + \lambda_1 \lambda_n$	λ_n . (1)
$\det(A - \lambda \mathbf{I}) = \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix} + (A)$	•
$\det (A - \lambda I) = \begin{cases} a_{11} & a_{22} - \lambda \end{cases} \qquad a_{2n} \rightarrow \lambda = 0 \rightarrow \det (A)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\lambda_n = \det A$.
$A_{m} - \lambda$	
+ + the + 1 (, m / , m)	
\Rightarrow to get the terms of $(-\lambda)^m$ and $(-\lambda)^{m+1}$, they are derived from	n
$(a_{11}-\lambda)$ $(a_{11}-\lambda)$ $(a_{11}-\lambda)$ and $(a_{11}-\lambda)$	$(\lambda)^{n-1}$
come from, $ (0, 1) (0, 2) $	
$ \frac{\partial}{\partial u} = \lambda \left(\frac{\partial u}{\partial x} - \lambda \right) \cdot \cdot \cdot \cdot \cdot \left(\frac{\partial u}{\partial x} - \lambda \right) \cdot \left(\frac{\partial u}{\partial x} - \lambda \right) \cdot \cdot \cdot \cdot \cdot \cdot \left(\frac{\partial u}{\partial x} - \lambda \right) \cdot $	
$= (-\lambda)^n + (a_n + a_{nn} + \cdots + a_{nn})(-\lambda)^n + \cdots$	2
by $0 = 0$ for $\forall (\lambda)'$, $(-\lambda)^2$, $(-\lambda)^n$	
$\frac{2}{17}\lambda_i = \frac{2}{17} \Omega_{ii}$	

MOOKEUK

MOOKEUK

< Remark	1>
İ	f λ_1 , λ_2 , \cdots λ_n are distinct, then n eigenvectors
	re independent.
pf⇒ assur	me $\alpha_1 = C_2 \alpha_1 + \cdots + C_n \alpha_n \rightarrow 1$ inearly dependent. α_1
V	me $A_1 = C_2 X_1 + \cdots + C_n X_n \rightarrow \text{linearly dependent} \cdot A_1$. $A_{1} = A \left(C_2 X_2 + \cdots + C_n X_n \right) \text{independent} A_2 \sim$
	$\lambda_1 \underline{\mathcal{X}_1} = C_2 \lambda_2 \underline{\mathcal{X}_2} + \cdots + C_n \lambda_n \underline{\mathcal{X}_n}$
	$\lambda_1 \left(C_1 \chi_1 + \cdots + C_n \chi_n \right) = C_2 \lambda_2 \chi_2 + \cdots + C_n \lambda_n \chi_n$
⇒ G	$(\lambda_1 - \lambda_2) \mathcal{I}_2 + C_3 (\lambda_1 - \lambda_2) \mathcal{I}_3 + \cdots + C_n (\lambda_1 - \lambda_n) \mathcal{I}_{\eta} = 0$
i i	$= \cdots = C_{\eta} = 0$ $(G \cup W)/V$
Remark 2.	
*	S is not unique. An eigenvector can be multiplied by a
	constant,
Remark 3.	
)	The order of eigenvalues and eigenvectors in S and A
	are the same.
Romark 4.	
7	Not all matrices have a linearly independent eigenvectors, so
	Not all matrices have n incorpy independent eigenvectors, so not all matrices are diagonalizable.
	$A = \begin{bmatrix} 0 & 1 \end{bmatrix} \rightarrow \chi^2 = 0. \mathcal{A} = \begin{bmatrix} C \end{bmatrix}$
	$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \rightarrow x^2 = 0. x = \begin{bmatrix} c \\ 0 \end{bmatrix},$ $b double rout.$
⇒ D1	
	agonalization fails only if there are repeated eigenvalues. I not always (for A = I)

Invertibility of A depends on non-zero eigenvectors.

Lif $\lambda = 0$ det A = 0,

Examples of Diagonalization $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \rightarrow \det(Ao - \lambda I) = 0 \Rightarrow \lambda = 1 \text{ or } 0$ $S = \begin{bmatrix} 1 & 1 \end{bmatrix} \qquad \bigwedge = \begin{bmatrix} 1 & 0 \end{bmatrix} \rightarrow S^{\dagger} A S = \bigwedge,$ $\begin{bmatrix}
0 & -1 \\
-1 & 0
\end{bmatrix}$ $\det (K - \lambda I) = 0, \quad \lambda = i, -i, \quad (\hat{\lambda} + 1) = 0, \quad (\hat{\lambda}$ ex2) 9° rotetion K= ② Powers and Products: A^{K} and AB⇒ reigenvalues of A^{K} ⇒ A^{K} A^{k}\alpha = \chi^{k} \cdot x$ peigmrectors are the same! $\Lambda^{k} = S^{\dagger} A^{k} S.$

	NO 6
0	A^{-1} : $A \chi = \lambda \chi$.
· · · · · · · · · · · · · · · · · · ·	$A' : Ax = \lambda x.$ $A' = 3 A' \lambda x \Leftrightarrow A' x = \frac{1}{\lambda} x. \Rightarrow \lambda^{-1},$
t. 1	The eignvalue of A+ are 1.
o usually	AB (product of A,B) does not have same eigenvectors.
	$Ax_1 = x_1 I_1. \qquad Bx_2 = x_3 x_2.$ $AB = x_1 X_2 Y_2.$
assume	
o\ /	$A = S\Lambda_1 S^{-1}$, and $B = S\Lambda_2 S^{-1}$
	$AB = S \Lambda_1 \Lambda_2 S^{-1}$, $BA = S \Lambda_2 \Lambda_1 S^{-1}$.
\	$AB = S \Lambda_1 \Lambda_2 S^{-1}$, $BA = S \Lambda_2 \Lambda_1 S^{-1}$. $sm \alpha = \Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1 \implies then AB = BA$
	(* · × *)
assi	me AB = BA
	$A\alpha = \lambda \alpha$.
	$\underline{B} \underline{A} x = B \lambda x = \lambda B x. \qquad AB = B A.$
	ABx = ABx.
	→ Bx is the eigenvector of A with a
	\rightarrow Bx is the eigenvector of A with α \rightarrow α and $\beta\alpha$ share α , \rightarrow $\beta\alpha$ is multiple of α .
HW 5.2	15, 16, 22, 31.

MOOKEUK