### Devoir Surveillé

#### Consignes:

- Épreuve de 2 heures,
- calculatrice non-graphique autorisée
- documents interdits (voir les formulaires en fin de sujet),
- . Il est conseillé de lire les 10 questions entièrement avant de commencer.
- Un devoir de mathématiques est un exercice de rédaction... propre et concise!

  Une réponse ne comportant pas de phrase française explicitant un raisonement ne sera pas corrigée.

### I. Transformation de Fourier

On étudie trois signaux :

- la porte  $\Pi_2(t)$  valant 1 lorsque  $-1 \le t \le 1$  et 0 partout ailleurs,
- x(t) défini comme étant  $t \cdot \Pi_2(t)$
- et y(t) égal à  $\cos(5\pi t) \cdot \Pi_2(t)$ .
  - 1. Représenter ces trois signaux dans le domaine temporel.
  - 2. Calculer leurs transformées de Fourier (pour  $\Pi_2$ , vous n'utiliserez pas directement le résultat du formulaire, mais établirez la transformée par un calcul de votre choix).
  - 3. Les spectres des trois signaux ont été représentés ci-après (partie réelle en trait plein : \_\_\_\_\_ et partie imaginaire en pointillés : \_\_\_\_\_). Attribuez chacune des figures A, B, C aux signaux temporels proposés :  $\Pi_2$ , x et y. Explicitez vos raisonnements.







## II. Transformation de Laplace

 $\tau$  est une constante exprimée en secondes. On pose  $e(t) = t \cdot H(t) - (t - \tau) \cdot H(t - \tau)$ .

4. Calculer le produit de convolution de la porte P(t) valant 1 entre 0 et  $\tau$  avec la fonction H d'Heaviside (faites des schémas soignés) :





5. Représenter le signal e(t), calculer son image de Laplace, vérifier le théorème de la valeur finale.

On utilise le signal e(t) comme entrée du système suivant :



système pour lequel, on a

$$s' + s = e$$

6. Commencez par étudier la réponse de ce système à une rampe :  $r(t) := t \cdot H(t)$ . En déduire la réponse s(t) du système à l'entrée e(t), sachant que s(0) = 0.

### III. Série de Fourier

Voici un signal carré T-périodique de rapport cyclique  $\theta$  que nous allons décomposer en séries de Fourier :



7. Démontrer que ses coefficients de Fourier sont

$$c_n = \theta \operatorname{sinc}(n\pi\theta) = \begin{cases} \theta & \text{si} \quad n = 0, \\ \frac{\sin(n\pi\theta)}{n\pi} & \text{si} \quad n \neq 0, \end{cases}$$

8. Que représente  $c_0$ ?

Quel spectre obtient-on pour  $\theta = 1$ ?

Représenter le spectre d'amplitude, mais cette fois, pour une faible valeur de  $\theta$ .

9. Montrer que les sommes partielles de la série de Fourier  $S_N(x)(t)$  peuvent s'exprimer comme

$$S_N(x)(t) = \theta \left[ 1 + 2 \sum_{n=1}^{N} \operatorname{sinc}(n\pi\theta) \cos(2n\pi t/T) \right].$$

10. En remplaçant  $\theta$  par  $\frac{1}{2}$  et t par 0, établir que  $\sum_{k\geqslant 1}\frac{(-1)^k}{2k+1}=\frac{\pi}{4}.$ 

Écrire l'identité de Parseval et montrer que, pour tout  $\theta \in [0;1]$ ,  $\sum_{n\geqslant 1} \left(\frac{\sin(n\pi\theta)}{n\pi}\right)^2 = \frac{\theta(1-\theta)}{2}$ .

# Transformation de Laplace

| domaine temporel             | domaine opérationnel                   | remarque             |
|------------------------------|----------------------------------------|----------------------|
| f'(t)                        | $pF(p) - f(0^+)$                       |                      |
| $\int_0^t f(u)  \mathrm{d}u$ | $\frac{F(p)}{p}$                       |                      |
| tf(t)                        | -F'(p)                                 |                      |
| $(-1)^n t^n f(t)$            | $F^{(n)}(p)$                           | $(n \in \mathbb{N})$ |
| $\frac{f(t)}{t}$             | $\int_{p}^{+\infty} F(s)  \mathrm{d}s$ |                      |
| $e^{at}f(t)$                 | F(p-a)                                 | $(a \in \mathbb{C})$ |
| f(t-a)                       | $e^{-pa}F(p)$                          | $(a\geqslant 0)$     |
| f(kt)                        | $\frac{1}{k}F\left(\frac{p}{k}\right)$ | (k > 0)              |

Théorèmes des valeurs initiale et finale : Si les limites temporelles existent et sont finies, on a

$$\lim_{p \to +\infty} pF(p) = f(0^+) \quad \text{et} \quad \lim_{p \to 0} pF(p) = f(+\infty)$$

| original causal  | image                                                      | remarque             |
|------------------|------------------------------------------------------------|----------------------|
| f(t)             | F(p)                                                       |                      |
| 1 ou $H(t)$      | $\frac{1}{p}$                                              |                      |
| t                | $\frac{1}{p^2}$                                            |                      |
| $\frac{t^n}{n!}$ | $\frac{1}{p^{n+1}}$                                        |                      |
| $e^{at}$         | $\frac{1}{p-a}$                                            | $(a \in \mathbb{C})$ |
| $\cos(\omega t)$ | $\frac{p}{p^2 + \omega^2}$ $\frac{\omega}{p^2 + \omega^2}$ |                      |
| $\sin(\omega t)$ | $\frac{\omega}{p^2 + \omega^2}$                            |                      |
| $\delta(t)$      | 1                                                          |                      |

## Transformation de Fourier

| domaine temporel                                                       | domaine fréquentiel                                                   |
|------------------------------------------------------------------------|-----------------------------------------------------------------------|
| $f(t) = \int_{-\infty}^{+\infty} \widehat{f}(\nu) e^{2j\pi\nu t} d\nu$ | $\widehat{f}(\nu) = \int_{-\infty}^{+\infty} f(t) e^{-2j\pi\nu t} dt$ |
| f(at)                                                                  | $\frac{1}{ a }\widehat{f}\left(\frac{\nu}{a}\right)$                  |
| f(-t)                                                                  | $\widehat{f}(- u)$                                                    |
| f(t-a)                                                                 | $e^{-2j\pi a\nu}\widehat{f}(\nu)$                                     |
| $e^{2j\pi at}f(t)$                                                     | $\widehat{f}( u-a)$                                                   |
| $\frac{\mathrm{d}f}{\mathrm{d}t}$                                      | $2j\pi u\widehat{f}( u)$                                              |
| $-2j\pi t f(t)$                                                        | $\frac{\mathrm{d}\widehat{f}}{\mathrm{d} u}$                          |
| $(f_1 * f_2)(t)$                                                       | $\widehat{f}_1( u)\widehat{f}_2( u)$                                  |
| $f_1(t) f_2(t)$                                                        | $(\widehat{f}_1 * \widehat{f}_2)(\nu)$                                |
| $\Pi_a(t)$                                                             | $a \operatorname{sinc}(\pi a \nu)$                                    |
| $H(t)e^{-\lambda t}, \operatorname{Re}(\lambda) > 0$                   | $\frac{1}{\lambda + 2j\pi\nu}$                                        |
| $\frac{1}{1+t^2}$                                                      | $\pi e^{-2\pi \nu }$                                                  |
| $e^{-t^2}$                                                             | $\sqrt{\pi}e^{-\pi^2\nu^2}$                                           |
| $\delta(t)$                                                            | 1                                                                     |
| 1                                                                      | $\delta( u)$                                                          |
| $\mathrm{III}_T(t)$                                                    | $\frac{1}{T} \amalg_{\frac{1}{T}} (\nu)$                              |

$$(f_1 * f_2)(x) = \int_{-\infty}^{+\infty} f_1(y) f_2(x - y) dy = \int_{-\infty}^{+\infty} f_1(x - y) f_2(y) dy$$