### Clustering

Victor Kitov

v.v.kitov@yandex.ru

Yandex School of Data Analysis



### Table of Contents

- M-means
- 2 Hierarchical clustering

### K-means algorithm

- Suppose we want to cluster our data into g clusters.
- Cluster *i* has a center  $\mu_i$ , i=1,2,...g.
- Consider the task of minimizing

$$\sum_{n=1}^{N} \rho(x_n, \mu_{z_n})^2 \to \min_{z_1, \dots z_N, \mu_1, \dots \mu_g}$$
 (1)

where  $z_i \in \{1, 2, ...g\}$  is cluster assignment for  $x_i$  and  $\mu_1, ...\mu_g$  are cluster centers.

- Direct optimization requires full search and is impractical.
- K-means is a suboptimal algorithm for optimizing (1).

# K-means algorithm

```
Initialize \mu_j, j=1,2,...g.

repeat while stop condition not satisfied:

for i=1,2,...N:
  find cluster number of x_i:
  z_i = \arg\min_{j \in \{1,2,...g\}} ||x_i - \mu_j||

for j=1,2,...g:
  \mu_j = \frac{1}{\sum_{n=1}^N \mathbb{I}[z_n=j]} \sum_{n=1}^N \mathbb{I}[z_n=j] x_i
```

#### Possible stop conditions:

- cluster assignments  $z_1, ... z_N$  stop to change (typical)
- maximum number of iterations reached
- cluster means  $\{\mu_i, i = 1, 2, ...g\}$  stop changing significantly

### K-means properties

- Only local optimum is found
- Results depends on initialization
  - It is common to run algorithm multiple times with different initializations and then select the result minimizing criterion in (1).
- Complexity: O(NDgI), where g is the number of clusters and I is the number of iterations. Why?
  - If clusters exist, algorithm converges with few iterations and complexity is O(NDg)









#### Gotchas

• K-means assumes that clusters are convex:



- It always finds clusters even if none actually exist
  - need to control cluster quality metrics

### K-means for non-convex clusters



### K-means for data without clusters



### Table of Contents

- 1 K-means
- 4 Hierarchical clustering

# Hierarchical clustering

#### Hierarchical clustering may be:

- top-down
  - hierarchical K-means
- bottom-up
  - agglomerative clustering

### Bottom-up clustering demo



# Agglomerative clustering



# Agglomerative clustering - distances

- Consider clusters  $A = \{x_{i_1}, x_{i_2}, ...\}$  and  $B = \{x_{j_1}, x_{j_2}, ...\}$ .
- We can define the following natural distances
  - nearest neighbour (or single link)

$$\rho(A,B) = \min_{a \in A, b \in B} \rho(a,b)$$

furthest neighbour (or complete-link)

$$\rho(A,B) = \max_{a \in A, b \in B} \rho(a,b)$$

group average link

$$\rho(A,B) = \mathsf{mean}_{a \in A, b \in B} \rho(a,b)$$

• centroid distance  $(\mu_U = \frac{1}{|U|} \sum_{x \in U} x)$ 

$$\rho(A,B) = \rho(\mu_A,\mu_B)$$

• median distance  $(m_U = median_{x \in U}\{x\})$ 

$$\rho(A,B) = \rho(m_a,m_b)$$

# Agglomerative clustering - distance properties

- nearest neighbour may create stretched clusters
- furtherst neighbour creates very compact clusters.
- group average link, centroid and median distance give the compromise.
- however centroid and median distance may lead to non-monotonous joining distance sequences in agglomerative algorithm.
- in short group average link is preferred.