KSU/CCIS **CSC227**

Tutorial #4 – CPU Scheduling SUMMER - 2010

Question # 1: Select the most appropriate answer for each of the following questions:

1.	is the number of processes that complete their execution per time unit
	Throughput
	Turnaround time
	Waiting time
	CPU utilization
2.	Amount of time to execute a particular process
	Throughput
	Turnaround time
	Waiting time
	CPU utilization
3.	Amount of time a process has been waiting in the ready queue
	Throughput
	Turnaround time
$\sqrt{}$	Waiting time
	CPU utilization
4.	One of the optimization criteria for scheduling algorithms
	Min CPU utilization
	Min Throughput
	Min Turnaround time
	Max waiting time
5.	If the time quantum is small in RR, then
$\sqrt{}$	The context switch overhead is too high.
	The context switch overhead is low.
	The context switch overhead is same.
	None of the above.
6.	Which of the following statements is (are) true of multilevel queue scheduling?
	Processes can move between queues.
√	Each queue has its own scheduling algorithm.
	It is the most general CPU-scheduling algorithm.
	All of the above
7.	The scheduling algorithm is designed especially for time-sharing systems.
	SJF
	FCFS
	RR
	Multilevel queue
9.	Which of the following scheduling algorithms must be nonpreemptive?
	SJF
	RR
	FCFS
	priority algorithms

10.	scheduling is approximated by predicting the next CPU burst with an
	exponential average of the measured lengths of previous CPU bursts.
	Multilevel queue
	RR
	FCFS
$\sqrt{}$	SJF
11.	in a round-robin scheduler gives better response time for interactive
	users but less efficient use of the CPU.
$\sqrt{}$	A short quantum.
	A long quantum
	A long quantum It's same.

Question # 2:

List and define the different metrics by which we might evaluate a scheduler

Answer Q 2:

CPU Utilization: The percentage of time that the CPU is busy.

Throughput: The number of processes completing in a unit of time.

Turnaround time: The length of time it takes to run a process from initialization to

termination, including all the waiting time.

Waiting time: The total amount of time that a process is in the ready queue.

Response time: The time between when a process is ready to run and its next I/O request.

Question #3:

What are preemptive and non-preemptive scheduling policies?

Answer Q 3:

With the non-preemptive scheduling policy, scheduling only occurs when a process enters the wait state or terminates. With the preemptive scheduling policy, scheduling also occurs when a process switches from running to ready due to an interrupt, and from waiting to ready (i.e., I/O completion).

Question #4:

What are the advantages and disadvantages in choosing a small length of the time-slice in Round Robin scheduling?

Answer Q 4:

- Better response time for interactive users.
- Less efficient use of the CPU.
- The context switch overhead is too high.

Question # 5:

What is the major problem in Priority Schduling? And how to solve it?

Answer Q 5:

Problem is Starvation – low priority processes may never execute Solution is Aging – as time progresses increase the priority of the process

Question # 6:

In what way is SJF Optimal?

Answer Q 6:

Shortest remaining Time First (Preemptive SJF).

Question # 7:

Why is it hard to implement SJF as CPU-scheduler?

Answer Q 7:

Prediction of the next CPU burst.

Question #8:

Five processes P1, P2, P3, P4 and P5 arrived in this order at the same time with the following CPU burst and priority values. A smaller value means a higher priority.

	CPU Burst	Priority
P1	4	2
P2	6	4
P3	2	1
P4	5	3
P5	3	5

- a) Draw the Gantt chart for each scheduling algorithms.
- b) Fill the entries of the following table for each indicated scheduling policy and each process. Ignore context switching overhead.
- c) Which of the schedules results in the minimal average waiting time (over all processes)
- d) Which of the schedules results in the minimal average turnaround time (over all processes)

	Waiting Time			Average		
Scheduling Policy	P1	P2	<i>P3</i>	P4	P5	Waiting Time
FCFS						
SJF (Non-Preemptive)						
Priority						
Round- $Robin$ ($Time$ $quantum = 2$)						
	Turnaround Time					
		Turne	arouna	l Time		Average
Scheduling Policy	P1	Turno P2	round P3	Time P4	P5	Average Turnaround Time
Scheduling Policy FCFS	P1				P5	
	P1				P5	
FCFS	P1				P5	

Question #9:

Five processes are entering the ready queue at a certain point of time. Each process is assigned a priority (0 should be the highest):

Process	Arrival Time	Burst Time	Priority	Waiting Time
P1	0	8	4	
P2	3	28	1	
P3	7	12	0	
P4	9	3	2	
P5	15	4	3	

- a) Draw a Gantt chart or X-Y graph for illustrating the execution of these processes using *Short-Job-Time-First scheduling with preemption*, when a process arrive with a lower remaining processing time.
- b) Fill the table be finding the waiting time for each process in part (a).
- c) Draw a Gantt chart or X-Y graph for illustrating the execution of these processes using *Highest-Priority-First without preemption*. (same way in Question #8)

Question # 10:

Consider the <u>preemptive</u> <u>Priority</u> <u>CPU</u> <u>scheduling</u>, and the following six processes (all time unit are expressed in ms), A smaller value means a higher priority.

	Arrival Time	Priority	CPU Bursts
P1	0	4	4
P2	2	2	6
P3	4	1	2
P4	0	3	8
P5	6	0	6
P6	0	5	4

- a) Draw the Gantt diagram showing the scheduling of the above processes.
- b) Fill in the following table.

	Waiting	Turnaround		
	Time	Time		
P1				
P2				
Р3				
P4				
P5				
P6				
Average				
CPU Utilization % =				