EE4-45: Wavelets And Applications

Coursework

Name: Meng Kiang SEAH

CID: 00699092 Date: 27th March 2017

Contents

1.	Ran	$\operatorname{dom} S$	Signals & Stochastic Processes	1	
	1.1	1.1 Statistical Estimation			
		1.1.1	Uniform Random Variable	1	
7.	Refe	erences	s	2	

1. Random Signals & Stochastic Processes

1.1 Statistical Estimation

1.1.1 Uniform Random Variable

The uniform random variable (RV) is $X \sim U(0,1)$, and has a probability density function (PDF):

$$f_X(x) = \begin{cases} 1 & 0 \le t \le 1\\ 0 & \text{otherwise} \end{cases}$$

The expected value of X, or theoretical mean (m) and the standard deviation (σ) are given by Equation 1.1 and 1.2 respectively [1].

$$m = \mathbb{E}[X] \qquad \sigma = \sqrt{E[X^2] - (E[X])^2} \qquad (E[X])^2 = \left(\frac{1}{2}\right)^2$$

$$= \int_{-\infty}^{+\infty} x f_X(x) dx \qquad E[X^2] = \int_{-\infty}^{+\infty} x^2 f_X(x) dx \qquad = \frac{1}{4}$$

$$= \int_0^1 x dx \qquad = \int_0^1 x^2 dx \qquad \sqrt{E[X^2] - (E[X])^2} = \sqrt{\frac{1}{3} - \frac{1}{4}}$$

$$= \left[\frac{x^2}{2}\right]_0^1 \qquad = \left[\frac{x^3}{3}\right]_0^1 \qquad = \sqrt{\frac{1}{12}}$$

$$= \frac{1}{2} \qquad (1.1) \qquad = \frac{1}{3} \qquad \approx 0.2887 \qquad (1.2)$$

Using the rand.

7. References

[1] M. Shell. (2002) IEEE tran homepage on CTAN. [Online]. Available: http://www.ctan.org/tex-archive/macros/latex/contrib/supported/IEEE tran/