Detalhes do Plano de Ensino

Código	CMP1190
Nome da Disciplina	SISTEMAS DISTRIBUÍDOS
Carga Horária	60
Créditos	4
Ementa	Comunicação entre processos em sistemas distribuídos. Tolerância a falhas em sistemas distribuídos. Sistemas operacionais distribuídos. Heterogeneidade e Integração em sistemas distribuídos.

Objetivos Gerais

- Compreender conceitos inerentes aos sistemas distribuídos;
- Conhecer e compreender paradigmas e arquiteturas de software;
- Capacitar-se para a utilização e a construção de aplicações distribuídas.

Objetivos Específicos

- Identificar serviços e modelos de sistemas distribuídos;
- Identificar aspectos internos da implementação de plataformas de suporte;
- Compreender mecanismos e políticas para a troca de mensagens;
- Compreender e exercitar processos para o desenvolvimento de aplicações distribuídas;
- Conhecer e avaliar algoritmos para problemas de sincronização e controle de consistência;
- Aprimorar a habilidade em Programação, pela compreensão e experimentação de bibliotecas para a construção de software distribuído.

Conteúdo Programático

- Introdução: definições, objetivos e classificações de Sistemas Distribuídos;
- Modelos de Sistema: arquitetura cliente-servidor e sistemas peer-to-peer e multicast;
- Sistemas multicamadas e middleware; modelo publicar-sobrescrever, código móvel e agentes.
- Suporte do Sistema Operacional: comunicação interprocessos e o mecanismo de sockets; processos clientes e processos servidores; compartilhamento de contexto e controle de concorrência, virtualização;
- Middleware: Chamada ao Procedimento Remoto; Middleware orientado a objetos e especificação CORBA;
 Tecnologia Java e o RMI; Sistemas Baseados em Comunicação Indireta; Middleware baseado em Serviços Web;
- Serviços: transações, serviço de nomes e diretórios, sistemas de arquivos distribuídos.
- Sincronização Distribuída: sincronização com base no Tempo Físico; Relógio Lógico e o algoritmo de Lamport;
 Algoritmos para Garantia de Exclusão Mútua; Algoritmos para Eleição de Líder; Deadlocks em Sistemas
 Distribuídos; Análise da complexidade de algoritmos distribuídos.
- Novos desafios e tecnologias para suporte à computação ubíqua e sistemas distribuídos multimídia.

Atividades Externas da Disciplina (AED)

Projeto e Implementação de um Aplicativo para Live Streaming

Objetivo da Atividade

Compreender os princípios e avaliar possibilidades para o desenvolvimento de um sistema para transmissão de voz e vídeo em tempo real; Melhorar a compreensão de conceitos e modelos por meio da experimentação com bibliotecas de software específica; Compreender desafios e identificar soluções para a construção de aplicativos multimídia; Utilizar as ferramentas aprendidas ao longo do curso nas disciplinas: CMP4151,CMP1056, CMP1099,CMP1068, CMP1074; Conhecer e aprimorar-se na redação de relatórios em formato de artigo científico (*paper*).

Descrição da Atividade

Os grupos deverão determinar os requisitos e especificações para a aplicação pretendida, incluindo a descrição estrutural e comportamental do sistema de software. Em seguida, deverá proceder com a implementação do protótipo. Para isso, sugere-se a biblioteca OpenCV, GSTREAMER e a ferramenta Processing. Ao término, deve-se verificar os requisitos, em especial, os requisitos não funcionais. Ao final, deve ser entregue um relatório impresso, no formato de artigo científico, com seis páginas, no máximo. Além disso, é necessária a entrega e a apresentação de um vídeo mostrando a execução dos testes no protótipo construído, com duração máxima de dois minutos. Este trabalho pode ser desenvolvido e apresentado por grupos de três pessoas, no máximo.

Cronograma

Os alunos poderão buscar orientação às terças-feiras, das 9:00 às 10:00h, por meio da plataforma Teams. Esta atividade deverá ser apresentada e entregue no dia 21/06/2022.

Forma de Registro

Os alunos deverão entregar um artigo no formato IEEE ou SBC, para artigos em conferências. Este artigo deve relatar toda a consecução do trabalho, apresentando o detalhamento técnico, as justificativas e as conclusões alcançadas. O artigo deve ser organizado em seções: I – Introdução, II – Materiais e Métodos, IV – Resultados e IV – Conclusões. Além do registro para avaliação da atividade, o relatório em formato de artigo tem como objetivo aprimorar habilidades necessárias para a formação do bacharel, como, a redação, capacidade de síntese e opinião.

Critérios de Avaliação

A avaliação é dividia em duas partes: argüição e avaliação do relatório (artigo). Durante a argüição o professor fará quatro perguntas para averiguar a proficiência técnica do estudante e, principalmente, a ocorrência de plágio, diante do vídeo apresentado. Com respostas satisfatórias em pelo menos duas das quatro questões, o professor receberá o trabalho escrito para avaliação detalhada. Nesta atividade, os aspectos técnicos da solução proposta, bem como da redação serão pontuados. A formatação e a redação adequada do texto contribuem em 50% para a totalização dos pontos atribuídos ao trabalho.

Bibliografia de Consulta

GSTREAMER – Open Source Multimedia Framework. Disponível em: https://gstreamer.freedesktop.org/documentation/.

PROCESSING. Disponível em: https://processing.org/books/.

OPENCV TUTORIALS. Disponível em: http://docs.opencv.org/2.4/doc/tutorials/tutorials.html.

Bibliografia Complementar

COULOURIS, George. Distributed systems: concepts and design. 5. ed. Londres: Addison-Wesley, 2012.

Metodologia

Em CMP1190 a metodologia aplicada baseia-se em PjBL (em inglês, *Project-based Learning*) consorciada com aulas expositivas.

Avaliação

As avaliações são organizadas em dois conjuntos. Em cada um, no mínimo, duas atividades acadêmicas devem ser executadas e avaliadas. A nota resultante do primeiro conjunto de avaliações, cujo grau máximo é de dez pontos, tem valor equivalente a 40% (quarenta inteiros por cento) para composição da Nota Final. A nota resultante do segundo conjunto de avaliações, cujo grau máximo é de dez pontos, tem valor equivalente a 60% (sessenta inteiros por cento) para a composição da Nota Final. A Nota Final de cada disciplina resulta da média ponderada das duas notas conforme a seguinte expressão: NF = 0,4 N1 + 0,6 N2 Onde: NF = Nota Final, N1 = Nota resultante do primeiro conjunto de avaliações e N2 = Nota resultante do segundo conjunto de avaliações. Diante disso, a nota **N1** é calculada pela seguinte expressão:

N1 = (PROVA1 * 0,5) + (PROVA2 * 0,5).

A Nota **N2** é calculada pela seguinte expressão:

N2 = {[(PROVA3 * 0,5) + (PROVA4* 0,5)] *0,9} + AI. Neste caso, a AI é pontuada com 1,0 pontos.

As provas 1,2,3 e 4 serão avaliações escritas e individuais, cujas questãoes serão elaboradas com base no conteúdo corrente, incluíndo teoria e prática (programação).

As atividades Externas da Disciplina (**AED**) referem-se às atividades exigidas para a complementação da carga horária da disciplina. Para CMP1190 são exigidas 8 horas/semestre em AED.

A freqüência será anotada em cada encontro depois de chamada nominal, executada depois de transcorridos 15 minutos do horário previsto para o início de cada aula. Será considerado aprovado na disciplina o aluno que obtiver a freqüência mínima de 75% e Nota Final igual ou superior a seis.

Avaliação Interdisciplinar (**AI**) refere-se a uma avaliação escrita de natureza interdisciplinar abordando assuntos previamente estudados e será aplicada de acordo com o calendário acadêmico.

Cronograma

Cronograma

Crono		
Encon	tro Dia/Mê	sConteúdo/Atividades/Avaliações
1	1208	Apresentação
	1200	Acolhida e exposição do Plano de Ensino
		Introdução
2	16/08	Definição do objeto de estudo e conceitos e definições
		Capítulo 1, item 1, Bibliografia Básica.
		Introdução
3	19/08	Exemplos de Sistemas Distribuídos. Resolução de Exercícios
		Capítulo 1, item 2, Bibliografia Básica.
4	2200	Arquiteturas de Sistemas
	2308	Capítulo 2, item 1 e 2, Bibliografia Básica.
5	26 (00	Aquiteturas de Sistemas
	26/08	Capítulo 2, item 1 e 2, Bibliografia Básica.
6	30/08	Aquiteturas de Sistemas
	30/00	Capítulo 2, item 1 e 2, Bibliografia Básica
		Suporte do Sistema Operacional
7	02/09	Comunicação entre processos: sockets
ı		Trabalho 1: Desenvolvimento de uma aplicação cliente servidor utilizando sockets.
8	06/09	Suporte do Sistema Operacional
O	00/09	Revisão de multiprogramação e controle de concorrência
Ω	09/09	Suporte do Sistema Operacional
9	09/09	Implementação de servidores concorrentes: forked, multithread e orientado a eventos
10	13/09	PROVA1
11	16/09	Sistemas P2P e o paradigma publicar/sobrescrever
11	16/09	Estudos de caso: exemplos em linguagem C e em Java
12	20,000	Sistemas P2P e o paradigma publicar/sobrescrever
12	20/09	Estudos de caso: exemplos em linguagem C e em Java

1301	23/09	Sistemas P2P e o paradigma publicar/sobrescrever
		Estudos de caso: exemplos em linguagem C e em Java
14	27/09	Introdução ao Middleware
		Chamada Remota de Procedimento
15	30/09	Introdução ao Middleware
		Estudo de casos: Exemplos SUN-RPC
	04/10	Middleware de objetos distribuídos
16		Definições e exemplos
		Capítulos 10, item 2, Bibliografia Básica.
17	07/10	PROVA 2
		Serviços
18	11/10	Nomes, Arquivos e Transações Distribuídas
		Capítulos 13 e 16, item 1, Bibliografia Básica.
		Serviços
19	14/10	Nomes, Arquivos e Transações Distribuídas
		Capítulos 13 e 16, item 1, Bibliografia Básica.
20	18/10	Semana de C&T
21	21/10	Semana de C&T
		Web Services
22	25/10	Estudos de Caso: Middleware XML
		Capítulo 9, item 1, Bibliografia Básica.
	28/10	Web Services
23		Estudos de Caso: Rest/Resfull API
		Trabalho 1: implementação de uma aplicação cliente para o sistema twitter.
24	01/11	Sistemas de Computação Pervasiva
24		Paradigmas, Requisitos e Estudos de Casos
) E	04/11	Sistemas de Computação Pervasiva
25		Paradigmas, Requisitos e Estudos de Casos
26	08/11	PROVA3
27	11/11	Sicronização com base no Tempo Físico e Relógio Lógico
Z I		Capítulo 6, item 2, Bibliografia Básica.
28	18/11	Exclusão Mútua
20		Capítulo 6, item 2, Bibliografia Básica.
29	22/11	Eleição de Líder
29		Capítulo 6, item 2, Bibliografia Básica.
30	25/11	Resolução de Exercícios
31	29/11	Resolução de Exercícios
32	02/12	Avaliação de AED
33	06/12	PROVA4
34	09/12	Esclarecimento de dúvidas e correção de exercícios

35	12/12	Prova substitutiva para os alunos com amparo legal	
36	16/12	Finalização e Entrega de Resultados	

Os encontros para o esclarecimento de dúvidas serão agendados oportunamente, de acordo com as demandas da turma.

Bibliografia Básica

- 1. COULOURIS, George. Distributed systems: concepts and design. 5. ed. Londres: Addison-Wesley, 2012.
- 2. STEVENS, W. Richard. Programação de rede UNIX: API para soquetes de rede. 3. ed. Porto Alegre: Bookman, 2005. v. 1.
- 3. TANEBAUM, A. S. e STEEN V. M. Sistemas Distribuídos: princípios e paradigmas, 2ª.Edição, Pearson Prentice Hall, 2008.

Bibliografia Complementar

- 1. BARBOSA C. V. An Introduction to Distributed Algorithms. Cambridge: MIT Press, 2003.
- 2. GRABA, Jan. An Introduction to networking programming with Java. New York: Springer, 2007.
- 3. JIA, W.; ZHOU, W. Distributed networked systems: from concepts to implementation. New York: Springer, 2005.
- 4. MUHL G.; Fiege L., Pietzuch P. Distributed event-based systems. New York: Springer, 2010.
- 5. TANEBAUM, A. S. e STEEN V. M. Sistemas Distribuídos: principles and paradigms, 2nd. Edition, New Jersey: Pearson education, 2007.

Material de Apoio

- Plataforma Microsoft Teams e bibliotecas virtuais de acesso gratuito;
- Ferramentas para a resolução de exercícios:
 - Linux, compilador GCC 5.x;
 - o OpenJDK.