Command	Argument
Forward	Number of steps

Number	Commands
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

1, how heavy is our payload?

the total weight in the cyan box. Fill in the gaps on the right, and then use a calculator to work out | The volume of the balloon is how big it is.

_		
	Payload part	Weight
	Raspberry Pi	31g
	Fuel cell	
	Fuel cell controller	60g
	Mounting plate	
	Camera	3g
	Balloon	
	Extra lift	100g
	Total weight	9

2, how much Hydrogen do we need?

Volume =
$$\frac{Total \text{ weight}}{Lift \text{ of hydrogen}}$$

Volume = $\frac{Total \text{ weight}}{Lift \text{ of hydrogen}}$

Volume

3, how big will the balloon be?

Volume =
$$\frac{4}{3} \times \pi \times r^3$$

which is the same as

$$Volume = 4.2 \times r \times r \times r$$

Write 3 guesses for r in the blue boxes. Use metres for your guesses.

	r	
	rxrxr	
	Volume	

we found in the yellow box? Which is the volume that is closest to the one

Write the radius for the volume in the green box.