

AZ-104

Administer Virtual Networking

About this course: Course Outline

06: Administer Network Traffic Management

Administer Virtual Networking Introduction

Configure Virtual Networks

Configure Virtual Networks Introduction

- Create Virtual Networks
- Plan IP Addressing
- Create Public IP Addresses
- Associate Public IP Addresses
- Associate Private IP Addresses
- Demonstration Virtual Networks
- Summary and Resources

Plan Virtual Networks

Logical representation of your own network

Create a dedicated private cloud-only virtual network

Securely extend your datacenter with virtual networks

Enable hybrid cloud scenarios

Create Subnets

+ Subnet + Ga	teway subnet 💍 Ref	resh % Manage u	users 🗓 Delete	
Name ↑↓	IPv4 ↑↓	IPv6 ↑↓	Available IPs ↑↓	Delegated
subnet0_	10.0.0.0/24	-	250	-
subnet1	10.0.1.0/24	-	251	-
subnet2	10.0.2.0/24	-	251	-
AzureBastionSubnet	10.0.30.0/27	-	27	-
GatewaySubnet	10.0.3.0/27	-	availability dependent on dyr	namic use -

A virtual network can be segmented into one or more subnets

Subnets provide logical divisions within your network

Subnets can help improve security, increase performance, and make it easier to manage the network

Each subnet must have a unique address range – cannot overlap with other subnets in the vnet in the subscription

Create Virtual Networks

Create new virtual networks at any time

Add virtual networks when you create a virtual machine

Need to define the address space, and at least one subnet

Be careful with overlapping address spaces

Plan IP Addressing

Private IP addresses - used within an Azure virtual network (VNet), and your on-premises network, when you use a VPN gateway or ExpressRoute circuit to extend your network to Azure

Public IP addresses - used for communication with the Internet, including Azure public-facing services

New- Met Net Ip Address Adress

Create Public IP Addresses

Available in IPv4 or IPv6 or both

Basic vs Standard SKU

Dynamic vs Static

Zone redundant (Standard SKU)

Range of contiguous addresses available as a prefix

IP Version	* ①
IPv4 (☐ IPv6 ☐ Both
SKU * i	
Basic	Standard
Pv4 IP Ad	dress Configuration
Name *	
My Pip	
1100 Str. 178	assignment *

Associate Public IP Addresses

Public IP addresses	IP address association	Dynamic	Static
Virtual Machine	NIC	Yes	Yes
Load Balancer	Front-end configuration	Yes	Yes
VPN Gateway	Gateway IP configuration	Yes	Yes*
Application Gateway	Front-end configuration	Yes	Yes*

A public IP address resource can be associated with virtual machine network interfaces, internet-facing load balancers, VPN gateways, and application gateways

^{*}Static IP addresses only available on certain SKUs.

Associate Private IP Addresses

Private IP Addresses	IP address association	Dynamic	Static
Virtual Machine	NIC	Yes	Yes
Internal Load Balancer	Front-end configuration	Yes	Yes
Application Gateway	Front-end configuration	Yes	Yes

Dynamic (default). Azure assigns the next available unassigned or unreserved IP address in the subnet's address range

Static. You select and assign any unassigned or unreserved IP address in the subnet's address range

Demonstration – Virtual Networks

Summary and Resources – Configure Virtual Networks

Knowledge Check

<u>Design an IP addressing schema for your Azure deployment (Sandbox)</u>

Implement Windows Server laaS VM IP addressing and routing

A sandbox indicates a hands-on exercise.

Configure Network Security Groups

Configure Network Security Groups Introduction

Implement Network Security Groups (NSGs)

Determine NSG Rules

Determine NSG Effective Rules

Create NSG Rules

Implement Application Security Groups (ASGs)

Demonstration – NSGs

Summary and Resources

Implement Network Security Groups (NSGs)

Limits network traffic to resources in a virtual network Lists the security rules that allow or deny inbound or outbound network traffic

Associated to a subnet or a network interface

Can be associated multiple times

Determine NSG Rules

Inbound security	rules					
Priority	Name	Port	Protocol	Source	Destination	Action
100	▲ RDP_Inbound	3389	Any	Any	Any	Allow
65000	AllowVnetInBound	Any	Any	VirtualNetwork	VirtualNetwork	Allow
65001	AllowAzureLoadBalancerInBound	Any	Any	AzureLoadBalancer	Any	Allow
65500	DenyAllInBound	Amir	A	A		A D
	DenyAminbound	Any	Any	Any	Any	Deny
Outbound securit	ty rules					
		Port	Protocol	Source	Destination	Action
Outbound securit	ty rules					
Outbound securit	ty rules Name	Port	Protocol	Source	Destination	Action

Security rules in NSGs enable you to filter network traffic that can flow in and out of virtual network subnets and network interfaces

There are default security rules.
You cannot delete the default rules,
but you can add other rules with
a higher priority

Determine NSG Effective Rules

NSGs are evaluated independently for the subnet and NIC

An "allow" rule must exist at both levels for traffic to be admitted

Use the Effective Rules link if you are not sure which security rules are being applied

Create NSG rules

Source (Any, IP addresses, service tags, application security group)

Destination (Any, IP addresses, virtual network, application security group)

Service (HTTPS, SSH, RDP, DNS, POP3, custom, ...)

Priority – The lower the number, the higher the priority

Implement Application Security Groups

Extends your application's structure

ASGs logically group virtual machines – web servers, application servers

Define rules to control the traffic flow

Wrap the ASG with an NSG for added security

Demonstration – Network Security Groups

Access the NSGs blade

Add a new NSG

Explore inbound and outbound rules

Summary and Resources – Configure Network Security Groups

Knowledge Check

Microsoft Learn Modules (docs.microsoft.com/Learn)

Secure and isolate access to Azure resources by using network security groups and service endpoints (Sandbox)

A sandbox indicates a hands-on exercise.

Configure Azure Firewall Introduction

Determine Azure Firewall Uses

Create Azure Firewalls

Create Azure Firewall Rules

Summary and Resources

Hub-Spoke-Topo

Determine Azure Firewall Uses

Stateful firewall as a service

Built-in high availability with unrestricted cloud scalability

Create, enforce, and log application and network connectivity policies

Threat intelligence-based filtering

Fully integrated with Azure Monitor for logging and analytics

Support for hybrid connectivity through deployment behind VPN and ExpressRoute Gateways

Create Azure Firewalls — Basi

NVA Network Virtual Appliance UDR User Defined Ronte

A Hub-Spoke network topology is recommended

Shared services are placed in the hub virtual network

Each environment is deployed to a spoke to maintain isolation

Create Azure Firewall Rules

Azure Firewall Manager centralizes firewall management

Firewall policies container rules and settings to control access

NAT rules allow incoming connections

Network rules contain source and destination addresses, protocols, and destination ports

Application rules provide qualified domain names (FQDNs) that can be accessed from a subnet

Summary and Resources - Azure Firewall

Knowledge Check

Microsoft Learn Modules (docs.microsoft.com/Learn)

Introduction to Azure Firewall

<u>Introduction to Azure Firewall Manager</u>

Configure Azure DNS

Configure Azure DNS Introduction

Identify Domains and Custom Domains

Verify Custom Domain Names (optional)

Create Azure DNS Zones

Delegate DNS Domains

Add DNS Record Sets

Plan for Private DNS Zones

Determine Private Zone Scenarios

Demonstration – DNS Name Resolution

Summary and Resources

On Prem contoso.com

Identity Domains and Custom Domains

Conto50,165

SOA

When you create an Azure subscription an Azure AD domain is created for you

The domain has initial domain name in the form domainname.onmicrosoft.com

You can customize/change the name

After the custom name is added it must be verified – this demonstrates ownership of the domain

Create Azure DNS Zones

A DNS zone hosts the DNS records for a domain

Where multiple zones share the same name, each instance is assigned different name server addresses

Root/Parent domain is registered at the registrar and pointed to Azure NS

Delegate DNS Domains

When delegating a domain to Azure DNS, you must use the name server names provided by Azure DNS – use all four

Once the DNS zone is created, update the parent registrar

For child zones, register the NS records in the parent domain

Add DNS Record Sets

A record set is a collection of records in a zone that have the same name and are the same type

You can add up to 20 records to any record set

A record set cannot contain two identical records

Changing the drop-down Type, changes the information required

Plan for Private DNS Zones

Use your own custom domain names

Provides name resolution for VMs within a VNet and between VNets

Automatic hostname record management

Removes the need for custom DNS solutions

Use all common DNS records types

Available in all Azure regions

Determine Private Zone Scenarios

DNS resolution in VNet1 is private and not accessible from the Internet

DNS queries across the virtual networks are resolved Reverse DNS queries are scoped to the same virtual network

Demonstration - DNS

Summary and Resources – Configure Azure DNS

Knowledge Check

Host your domain on Azure DNS (Sandbox)

Implement DNS for Windows Server laaS VMs

A sandbox indicates a hands-on exercise.

Lab 04 – Implement Virtual Networks

Lab 04 – Implement Virtual Networking

Lab scenario

You plan to create a virtual network in Azure that will host a couple of Azure virtual machines. You will deploy them into different subnets of the virtual network. You also want to ensure that their private and public IP addresses will not change over time. To comply with Contoso security requirements, you need to protect public endpoints of Azure virtual machines accessible from Internet. Finally, you need to implement DNS name resolution for Azure virtual machines both within the virtual network and from Internet

Objectives

Task 1:

Create and configure a virtual network

Task 4:

Configure network security groups

Task 2:

Deploy virtual machines into the virtual network

Task 5:

Configure Azure DNS for internal name resolution

Task 3:

Configure private and public IP addresses of Azure VMs

Task 6:

Configure Azure DNS for external name resolution

Next slide for an architecture diagram (>)

Lab 04 – Architecture diagram

End of presentation

