The Grothendieck-Teichmüller Group and the Operad of Parenthesized Braids

by Yaxin Li

A thesis submitted in partial fulfillment for the degree of Master of Science

to the
Faculty of Science
School of Mathematics and Statistics
THE UNIVERSITY OF MELBOURNE

June 2025

THE UNIVERSITY OF MELBOURNE

Abstract

Faculty of Science School of Mathematics and Statistics

Master of Science

by Yaxin Li

We introduce the operad of parenthesized braids **PaB**, show that algebras over **PaB** correspond to braided monoidal categories, and describe the action of the Grothendieck-Teichmüller group **GT** on **PaB**.

Contents

A	bstract	i
1	Introduction	1
2	Algebras of PaB	2
	2.1 Braided Monoidal Categories	2
	2.2 The Operad PaB of Parenthesized Braids	4

Chapter 1

Introduction

 $\mathcal{M}_{g,n}$ is the moduli stack (i.e. 2-scheme) of genus-g curves over \mathbb{Q} with n marked points. In his Sketch of a Program [?] from 1983, Grothendieck proposes that we study $G_{\mathbb{Q}} \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ through its action on the Teichmüller Tower — the collection of

$$\pi_1^{\mathrm{geom}}(\mathcal{M}_{g,n}) \stackrel{\mathrm{def}}{=} \pi_1^{\mathrm{et}}(\overline{\mathbb{Q}} \times_{\mathbb{Q}} \mathcal{M}_{g,n})$$

for all $g, n \in \mathbb{N}$. Here, π_1^{et} takes the étale fundamental group, which is the inverse limit of the automorphism groups (analogous to the groups of deck transformations) of finite étale covers.

In genus-0, it is known that $\pi_1^{\text{geom}}(\mathcal{M}_{0,4}) \cong \widehat{F_2}$, the profinite completion of the free group on two generators. It follows from a theorem of Belyi's [?] that $G_{\mathbb{Q}}$ acts faithfully on $\pi_1^{\text{geom}}(\mathcal{M}_{0,4})$, hence also $\{\mathcal{M}_{0,n}\}_n$. In [?], Ihara showed that the image of the action of $G_{\mathbb{Q}}$ includes into the image of $\widehat{\mathbf{GT}}$, the profinite completion of the inertia-preserving automorphisms of $\{\mathcal{M}_{0,n}\}_n$, i.e. the automorphisms F such that on $\widehat{F_2}$, F maps the procyclic subgroups $\langle x \rangle, \langle y \rangle, \langle (xy)^{-1} \rangle$ to conjugate subgroups, where x and y are the generators of F_2 [?].

In [?], Drinfeld constructs a pro-unipotent version of \mathbf{GT} , and uses its action on braided monoidal categories (i.e. $\widehat{\mathbf{PaB}}$ -algebras) to prove a result about quasitriangular quasi-Hopf algebras. In [?], Petersen uses the corresponding action on $\widehat{\mathbf{PaB}}$ to show that E_2 (the operad of little 2-disks) is formal.

Chapter 2

Algebras of PaB

2.1**Braided Monoidal Categories**

Definition 2.1 (monoidal category). A category \mathcal{C} with a bifunctor $-\otimes -: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ C (the monoidal, or tensor product), unit object 1, and natural isomorphisms

$$\alpha: (-\otimes -) \otimes - \Rightarrow - \otimes (-\otimes -) \tag{2.1}$$

$$\alpha: (-\otimes -) \otimes - \Rightarrow - \otimes (-\otimes -)$$

$$\lambda: \mathbf{1} \otimes - \Rightarrow \mathrm{id}_{\mathcal{C}}$$

$$\rho: -\otimes \mathbf{1} \Rightarrow \mathrm{id}_{sC}$$

$$(2.1)$$

respectively called the associator, left unitor, right unitor, is monoidal if when we write \otimes to act componentwise on natural transformations,

- 1. the triangle identity is satisfied, i.e. $\rho \otimes id_{\mathfrak{C}} = (id_{\mathfrak{C}} \otimes \lambda) \circ \alpha$
- 2. the pentagon identity holds, i.e. for all $w, x, y, z \in \text{Obj}(\mathcal{C})$, the following diagram commutes

$$((w \otimes x) \otimes (y \otimes z))$$

$$((w \otimes x) \otimes y) \otimes z$$

$$(w \otimes (x \otimes y)) \otimes z \longrightarrow w \otimes ((x \otimes y) \otimes z)$$

or as natural transformations, $\alpha \circ \alpha = (\mathrm{id}_{\mathfrak{C}} \otimes \alpha) \circ \alpha \circ (\alpha \otimes \mathrm{id}_{\mathfrak{C}})$

A monoidal category is *strict* if the components of the associator and unitors are identity morphisms.

algebras of PaB

Definition 2.2 (braided monoidal category). If $(\mathcal{C}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$ is a monoidal category with a natural isomorphism $\beta_{x,y} : x \otimes y \to y \otimes x$, then it is *braided* if it satisfies the hexagon identities, i.e. the following diagrams commute

$$(x \otimes y) \otimes z \xrightarrow{\alpha} x \otimes (y \otimes z) \xrightarrow{\beta} (y \otimes z) \otimes x$$

$$\downarrow^{\beta \otimes \mathrm{id}_{\mathfrak{C}}} \qquad \qquad \downarrow^{\alpha}$$

$$(y \otimes x) \otimes z \xrightarrow{\alpha} y \otimes (x \otimes z) \xrightarrow{\mathrm{id}_{\mathfrak{C}} \otimes \beta} y \otimes (z \otimes x)$$

$$x \otimes (y \otimes z) \xrightarrow{\alpha^{-1}} (x \otimes y) \otimes z \xrightarrow{\beta} z \otimes (x \otimes y)$$

$$\downarrow^{\mathrm{id}_{\mathfrak{C}} \otimes \beta} \qquad \qquad \downarrow^{\alpha^{-1}}$$

$$x \otimes (z \otimes y) \xrightarrow{\alpha^{-1}} (x \otimes z) \otimes y \xrightarrow{\beta \otimes \mathrm{id}_{\mathfrak{C}}} (z \otimes x) \otimes y$$

We will now build up to Mac Lane's Coherence Theorem

Definition 2.3 (monoidal functor, or strong monoidal functor at nLab). Suppose $(\mathcal{C}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$, and $(\mathcal{C}', \otimes', \mathbf{1}', \alpha', \lambda', \rho')$, are monoidal categories, then a monoidal functor consists of a functor $F: \mathcal{C} \to \mathcal{C}'$ such that $\mathbf{1}' \cong F(\mathbf{1})$, and a natural isomorphism $m: F(-) \otimes F(-) \to F(-\otimes -)$ such that the following diagram commutes

$$(F(X) \otimes F(Y)) \otimes F(Z) \xrightarrow{\alpha'} F(X) \otimes (F(Y) \otimes F(Z))$$

$$\downarrow^{m \otimes \mathrm{id}_{\mathbb{C}}} \qquad \qquad \downarrow^{\mathrm{id}_{\mathbb{C}} \otimes m}$$

$$F(X \otimes Y) \otimes F(Z) \qquad \qquad F(X) \otimes F(Y \otimes Z)$$

$$\downarrow^{m} \qquad \qquad \downarrow^{m}$$

$$F((X \otimes Y) \otimes Z) \xrightarrow{F(\alpha)} F(X \otimes (Y \otimes Z))$$

A monoidal functor that happens to be an equivalence of categories is called an equivalence of monoidal categories.

Theorem 2.4 (Mac Lane's Strictness Theorem). For any monoidal category $(\mathcal{C}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$, there exists a strict monoidal category $(\mathcal{C}', \otimes', \mathbf{1}', \alpha', \lambda', \rho')$ and an equivalence of monoidal categories $L : \mathcal{C} \to \mathcal{C}'$.

Proof. see pg. 20 of [?] from the 2009 lecture notes to "Topics in Lie Theory". \Box

The next theorem is a corollary of Mac Lane's Strictness Theorem.

Theorem 2.5 (Mac Lane's Coherence Theorem). Suppose P and P' are parenthesizations of $X_1 \otimes \cdots \otimes X_n$ with arbitrary insertions of $\mathbf{1}$, and $f, g: P \to P'$ are isomorphisms built by composing associator and unitor components, then f = g.

4

Proof. see pg. 1 of [?]

2.2 The Operad PaB of Parenthesized Braids

Operads are an unbiased way of keeping track of n-ary operations and how they compose. The "elements" of P(n), we imagine to be corollas, i.e., rooted trees of depth 1 with n+1 half-edges. We can treat \otimes in this "unbiased" way (i.e. ignoring how products are parenthesized, and products with units) because of Mac Lane's Coherence Theorem 2.5.

Definition 2.6 (planar operad, symmetric operad). A planar operad P in a monoidal category $(\mathfrak{C}, \otimes, \mathbf{1}, a, l, r)$ is a collection of objects $\{P(n)\}_n$, with operadic composition

$$c_{m;n_1,\cdots,n_m}: P(m)\otimes P(n_1)\otimes\cdots\otimes P(n_m)\to P(n_1+\cdots+n_m)$$

such that 1. and 2. of following are satisfied. If each object P(n) has a right S_n -action (S_n being the *n*th symmetric group), and 3. is staisfied, then P is a *symmetric operad*, which is what "operad" refers to from now on.

1. Associativity: if

(a)
$$\sum_{i=1}^{m_i} n_{i_i} = n_i$$
 for each $1 \le i \le k$,

(b)
$$\sum_{i=1}^{k} n_i = l$$
,

(c)
$$\sum_{i=1}^{k} m_i = m$$
,

then the following commutes

$$P(k) \otimes \bigotimes_{i=1}^{k} \left(P(m_i) \otimes \bigotimes_{j=1}^{m_i} P(n_{i_j}) \right) \xrightarrow{\cong} \left(P(k) \otimes \bigotimes_{i=1}^{k} P(m_i) \right) \otimes \left(\bigotimes_{i=1}^{k} \bigotimes_{j=1}^{m_i} P(n_{i_j}) \right)$$

$$\downarrow^{\operatorname{id}_{\mathfrak{C}}} \otimes \bigotimes_{i=1}^{k} c_{m_i;n_{i_1},\cdots,n_{i_{m_i}}} \qquad \circ_{k;m_1,\cdots,m_k} \otimes \operatorname{id}_{\mathfrak{C}}^{\otimes m} \downarrow$$

$$P(k) \otimes \bigotimes_{i=1}^{k} P(n_i) \qquad \qquad P(m) \otimes \left(\bigotimes_{i=1}^{k} \bigotimes_{j=1}^{m_i} P(n_{i_j}) \right)$$

$$\downarrow^{\circ_{k;n_1,\cdots,n_k}} \qquad \circ_{m;n_{1_1},\cdots,n_{k_{(m_k)}}} \downarrow$$

$$P(l) \xrightarrow{=} P(l)$$

2. Unit: there exists a map $e: \mathbf{1} \to P(1)$ such that the following hold for all n

$$P(n) \xrightarrow{\lambda^{-1}} \mathbf{1} \otimes P(n) \xrightarrow{e \otimes \mathrm{id}_{\mathfrak{C}}} P(1) \otimes P(n) \xrightarrow{\circ_{1;n}} P(n)$$

$$P(n) \xrightarrow{(\rho^{-1})^{\circ n}} P(n) \otimes \mathbf{1}^{\otimes n} \xrightarrow{\mathrm{id}_{\mathcal{C}} \otimes e^{\otimes n}} P(n) \otimes P(1) \xrightarrow{\circ_{n;1,\dots,1}} P(n)$$

algebras of PaB

3. Equivariance: the right action $-\cdot \sigma: P(n) \to P(n)$ of $\sigma \in S_n$ on P(n) is given by σ permuting the n inputs of each "element" of P(n), so that on operadic composition maps, we have

$$\circ_{n;m_1,\cdots,m_n}\circ(-\cdot\sigma)=\circ_{n;m_{\sigma^{-1}(1)},\cdots,m_{\sigma^{-1}(n)}},$$

then equivariance is the condition that the following commutes

$$P(n) \otimes \bigotimes_{i=1}^{n} P(m_{i})_{id_{\mathbb{C}} \otimes (-)\sigma} P(n) \otimes \bigotimes_{i=1}^{n} P(m_{\sigma^{-1}(i)})$$

$$\downarrow^{-\cdot \sigma \otimes id_{\mathbb{C}}^{\otimes n}} \xrightarrow{\circ_{n;m_{\sigma^{-1}(1)},\cdots,m_{\sigma^{-1}(n)}}} \downarrow$$

$$P(n) \otimes \bigotimes_{i=1}^{n} P(m_{i}) \xrightarrow{\circ_{n;m_{1},\cdots,m_{n}}} P(m_{1}+\cdots+m_{n})$$

(where $(-)\sigma$ is the isomorphism given by σ permuting the n factors of $\bigotimes_{i=1}^{n} P(m_i)$)

Example 2.1 (the endomorphism operad in Cat). If $(\mathfrak{C}, \otimes, \mathbf{1}, \alpha, \lambda, \rho, \beta)$ is a braided monoidal category, then the endomorphism operad, defined by $\operatorname{End}(\mathfrak{C})(n) \stackrel{\text{def}}{=} \operatorname{Fun}(\mathfrak{C}^{\times n}, \mathfrak{C})$ for $n \in \mathbb{N}_{>0}$, is a symmetric operad, with

- 1. ide as the unit,
- 2. the standard composition as the circle product,
- 3. $\sigma \in S_n$ acting on each element $\theta \in \text{Fun}(\mathbb{C}^{\times n}, \mathbb{C})$ by permuting the inputs, i.e. $\theta \cdot \sigma(x_1, \dots, x_n) = \theta(x_{\sigma^{-1}(1)}, \dots, x_{\sigma^{-1}(n)})$.

Definition 2.7 (operad morphism). A morphism $f: P \to Q$ of operads is a collection of maps $\{f_n: P(n) \to Q(n)\}_n$ such that

- 1. The unit is preserved, i.e. $f_1: P(1) \to Q(1)$ satisfies $f_1 \circ e^P = e^Q$.
- 2. Composition is preserved, i.e. for all $k, n_1, \dots, n_k \in \mathbb{N}_{\geq 1}$ with $l = \sum_{i=1}^k n_i$, the following commutes

$$P(k) \otimes \bigotimes_{i=1}^{k} P(n_{i}) \xrightarrow{f_{k} \otimes \bigotimes_{i=1}^{k} f_{n_{i}}} Q(k) \otimes \bigotimes_{i=1}^{k} Q(n_{i})$$

$$\downarrow^{\circ_{k;n_{1},\dots,n_{k}}^{P}} \qquad \downarrow^{\circ_{k;n_{1},\dots,n_{k}}^{Q}}$$

$$P(l) \xrightarrow{f_{l}} Q(l)$$

3. The S_n -actions are preserved, i.e. for all $n \in \mathbb{N}_{\geq 1}$, $\sigma \in S_n$, $f \circ (-\cdot^P \sigma) = (-\cdot^Q \sigma) \circ f$.