Exáctamente una de las tres.
 Exáctamente dos de las tres.

PROGRAMACIÓN DECLARATIVA CURSO 2019-20

Control Programación Funcional

- Cada pregunta tiene una única respuesta correcta. Marcad con un aspa la opción elegida.
- Cada respuesta correcta suma un punto; cada respuesta incorrecta resta medio punto; las respuestas en blanco ni suman ni restan.
- 1. Considérense las siguientes expresiones: let x = (:) in x (x 0 []) []let $\{x = (:) \ 0 \ ; \ y = []\}$ in zip $(x \ y) \ y$ let x = (0:[]) in x !! 2O Hay exactamente dos que están mal tipadas. O Hay exactamente una que está mal tipada. ⊗ Ninguna está mal tipada. 2. Dadas las siguientes expresiones: $e_1 = (+ y) ((f x) (y ^ x))$ $e_2 = (f x ((^) y x)) + y$ $e_3 = ((f x) (y^*) x) + y$ \bigcirc $e_1 \not\equiv e_2 \not\equiv e_3 \not\equiv e_1$ $\bigcirc e_1 \equiv e_3 \not\equiv e_2$ $\bigotimes e_1 \equiv e_2 \not\equiv e_3$ $(\x y \rightarrow (\x \rightarrow y) x) 2$ es equivalente a: 3. La reducción de la expresion 4. Sea f definida por f x y z = y x z. El tipo de f es: \bigcirc (a -> b) -> (b -> c) -> a -> c () a -> (a -> b) -> c -> b -> c \bigotimes a -> (a -> b -> c) -> (b -> c) 5. Sea f definida por las siguientes ecuaciones: f x y True = y f 1 y z = yf x y z = z¿Cuál de las siguientes afirmaciones es cierta? La función es estricta en sus tres argumentos. 🛇 La función es estricta solo en el tercer argumento. O Las dos anteriores son falsas. 6. La evaluación de (map head (iterate tail [1..])) !! 1 da como resultado: 1 \otimes 2 No termina. 7. ¿Cuántas de las tres siguientes definiciones de tipos son correctas? data T1 a b = C1 b | C2 (T1 a) data T2 a = C1' Int | C2' (Int, Bool) a data T3 a = C1'', Int Bool | C2'' a O Las tres.

 8. El resultado de evaluar la expresión let f x = let g = (\((x,y) -> y - x) in (if x > 0 then g (x, 1) else undefined) in f 1 da como resultado: Error de ejecución. No se puede evaluar porque está mal tipada. Las dos anteriores son falsas.
9. El tipo de (\x y -> drop x) es: (Sint -> b -> [a] -> [a] () Int -> Int -> [a] -> [a] () Está mal tipada.
 10. La evaluación de [take j [3i] i <- [14], i > 2, j <- [i-1,i]] produce como resultado: ○ Una lista de números de longitud 4, siendo los dos primeros iguales entre sí. ○ Una lista de listas de números, siendo las dos primeras listas vacías. ⊗ Una lista, cuyos dos últimos elementos son iguales.
11. La expresión: foldr f [] (zip (filter p xs) (filter q ys)) where f (x,y) xs = (:) (x * y) xs se evalúa igual que: foldr (*) (product \$ filter q ys) (filter p xs) zipWith (*) (filter p xs) (filter q ys) concat [[x * y x <- filter p xs] y <- filter q ys]
 12. La evaluación de foldl (\x y → x++y) [] [[],undefined] da como resultado: ○ Error de tipos. ◇ Error de ejecución. ○ Una expresión de tipo [a].
13. ¿A cuál de las expresiones de abajo es equivalente la siguiente lista intensional? [(x,y) x <- [1n], p x, y <- [1m], q y] Solution concat (map f (filter p [1n])) where f z = map (\y -> (z, y)) (filter q [1m]) map f (filter p [1n]) where f x = map (\y -> (x, y)) (filter q [xm]) filter p \$ concat (map f [1n]) where f x = map (\y -> (x,y)) (filter q [1m])
14. Considerando la definición de tipos data Ta = P Qa (Ta) deriving (Show, Eq. Ord) ¿Cuántas de las siguientes expresiones son sintácticamente correctas? Q[]PQPP[Q1(Q1P),P] QP(QP)Q[](Q[P]P)(P,P1)
○ Todas menos una.⊗ Todas menos dos.

 \bigcirc Todas menos tres.