Chapitre 1 : Lois de Kirchhoff, dipôles électrocinétiques

I Le courant électrique

A) Définition

1) Courant électrique

C'est un mouvement d'ensemble de particules chargées.

- Courant de conduction : mouvement de porteurs de charges dans un matériau conducteur fixe. Exemple : électron dans un métal, ions dans un électrolyte.
- Courant de convection : matériau chargé (charges fixes par rapport au support matériel). Le mouvement du matériau provoque un courant de convection.
- Courant particulaire : mouvement de particules chargées dans le vide (exemple : télévision)

2) Intensité du courant

On note dq la charge totale qui traverse S entre les instants t et t + dt.

dq > 0 si les charges + vont dans le sens de \vec{n} ou les charges - dans le sens de $-\vec{n}$. Sinon, dq < 0.

Alors i ou $i_S = \frac{dq}{dt}$, intensité du courant traversant S dans le sens donné par \vec{n} . le sens de \vec{n} définit le signe de i.

$$[i] = A = C.s^{-1}$$

B) Conservation de la charge en régime stationnaire

- un régime est continu ou stationnaire lorsque toutes les grandeurs sont indépendantes du temps, c'est-à-dire $\frac{\partial \bullet}{\partial t} = 0$
- Circuit simple : ensemble de conducteurs en série formant une boucle fermée :

$$\begin{array}{c}
M \\
\downarrow \\
i(M,t)
\end{array}$$

Dans un circuit simple en régime stationnaire, i(M,t) = I = cte.

Démonstration:

Déjà, *i* ne dépend pas de *t* (régime stationnaire).

Soient M_1 et M_2 deux sections. On note:

Q(t) la charge totale dans le conducteur entre M_1 et M_2 à l'instant t,

 dq_1 la charge totale traversant M_1 entre t et t + dt

 dq_2 la charge totale traversant M_2 entre t et t + dt

A l'instant t + dt, on a :

$$Q(t+dt) = Q(t) + dq_1 - dq_2$$

$$\Leftrightarrow Q(t+dt)-Q(t)=dq_1-dq_2=i(M_1,t)dt-i(M_2,t)dt$$

$$\Leftrightarrow \frac{dQ}{dt} = i(M_1, t) - i(M_2, t)$$

Le circuit est stationnaire. Donc $\frac{dQ}{dt} = 0$

Donc
$$i(M_1,t) = i(M_2,t)$$

Représentation:

C) Approximation des régimes quasi-stationnaires (ARQS)

On considère un circuit simple en régime variable :

$$i(M,t_0)$$
 M
 L
 M

Si le courant est $i(M, t_0)$ en M à t_0 , il devient $i(M, t_0)$ en M' à $t_0 + \Delta t$, où Δt est le temps nécessaire pour que l'information arrive à M', c'est-à-dire $\Delta t = \frac{L}{c}$

Donc $i(M, t_0) = i(M', t_0 + \Delta t)$

si $\Delta t \ll T$ (temps caractéristique des variations de i en M), $i(M,t) \approx i(M',t) = i(t)$

$$\Delta t \ll T \Leftrightarrow \frac{L}{c} \ll \frac{1}{f} \Leftrightarrow f \ll \frac{c}{L}$$

En général, $L \sim 1 \text{m}$. Il faut donc que $f \ll 3.10^8 \, \text{s}^{-1}$; en général, $f \approx 10^6 \, \text{Hz}$

La condition est donc satisfaite.

Représentation:

D) Loi des nœuds

Définition : un réseau est un circuit non simple :

Un nœud est un point de connexion de 3 branches ou plus du réseau.

En régime continu ou en supposant l'ARQS:

Conservation de la charge : la charge délimitée par S_1 , S_2 , S_3 , S_4 , S_5 est indépendante du temps. La charge qui rentre entre t et t+dt est donc égale à la charge qui sort entre t et t+dt. Donc $dq_1+dq_2+dq_4=dq_5+dq_3$, soit $i_1+i_2+i_4=i_5+i_3$, ou $i_1+i_2-i_3+i_4-i_5=0$

Dans le cas général :
$$\sum_{k \text{ branches}} \varepsilon_k i_k = 0$$
, où $\begin{cases} \varepsilon_k = 1 \text{ si le courant entre} \\ \varepsilon_k = -1 \text{ si le courant sort} \end{cases}$

II Potentiel et tension électrique

A) Potentiel électrique

On admet l'existence, en tout point M de l'espace et à tout instant t, d'une grandeur v(M,t), appelée potentiel électrique. Ainsi, une charge q située en M à t possède une énergie potentielle électrique $E_p = q \times v(M,t)$

B) Tension – loi des mailles

$$\begin{array}{ccc}
& U_{MM'} \\
\times & \times \\
M & M' \\
U_{MM'}(t) = v(M, t) - v(M', t)
\end{array}$$

On considère un réseau électrocinétique. Une maille est un ensemble de mailles formant une boucle fermée :

On pose:

$$\begin{split} &U_1 = U_{A_2A_1} \; ; \quad U_2 = U_{A_3A_2} \; ; ...; \quad U_i = U_{A_{i}\circ_1A_i} \; ; ...; \quad U_n = U_{A_1A_n} \\ &\text{Ainsi, } U_1 + U_2 + ... + U_n = v_{A_2} - v_{A_1} + v_{A_3} - v_{A_2} + ... + v_{A_1} - v_{A_n} = 0 \end{split}$$

D'où la loi des mailles : la somme des tensions dans une maille est égale à 0 à condition de prendre comme sens pour les tensions le sens de parcours de la maille :

$$\sum_{k \text{ branches}} \mathcal{E}_k U_k = 0 \text{ , où } \begin{cases} \mathcal{E}_k = 1 \text{ si la tension est dans le même sens} \\ \mathcal{E}_k = -1 \text{ si la tension est dans le sens inverse} \end{cases}$$
$$[v] = [u] = \text{Volt (V)} = \text{kg.m}^2.\text{s}^{-3}.\text{A}^{-1}$$

III Dipôles électrocinétiques

A) Définition

A et B sont les bornes du dipôle.

Le fonctionnement du dipôle est complètement caractérisé par deux grandeurs :

- Intensité *I* le traversant.
- Tension *U* entre ses bornes.

B) Notation et convention d'orientation

 i_{AB} ou $i_{A\rightarrow B}$: courant i allant de A vers B. $i_{A\rightarrow B}=-i_{B\rightarrow A}$

$$U_{AB} = v_A - v_B = -U_{BA}$$

- Convention récepteur : U_{AB} et i_{AB} sont en sens opposé
- Convention générateur : U_{AB} et i_{AB} ont le même sens

C) Caractéristique d'un dipôle

Généralement, u(t) ne dépend que de i(t) (et vice-versa)

Soit
$$\begin{cases} u = f(i) & \text{(caract\'eristique tension - courant)} \\ \text{ou} \\ \text{i} = g(u) & \text{(caract\'eristique courant - tension)} \end{cases}$$

Cela nécessite de préciser la convention générateur/récepteur choisie.

Exemple : pile (convention générateur)

Caractéristique tension - courant

Caractéristique courant - tension

Remarque : pour certains dipôles (condensateur, bobine), il n'y a pas de relation instantanée.

D) Propriétés

1) Dipôle (non) polarisé

Le dipôle est non polarisé si U est changé en -U quand i est changé en -i:

(On a ainsi une fonction impaire)

Exemples:

Résistance:

Récepteur de force contre-électromotrice :

Si
$$i > 0, u = e' + ri$$

Si
$$i < 0, u = -e' + ri$$

Si
$$u \in [-e'; e'], i = 0$$

Dipôle polarisé: (convention récepteur)

 V_s : tension de seuil

Caractéristique affine par morceaux : $\begin{cases} i = 0 \text{ si } u \leq V_S \\ u = V_S \text{ si } i > 0 \end{cases}$

2) Dipôle actif ou passif

Un dipôle actif est un dipôle dont la caractéristique ne passe pas par O, ou $i \neq 0$, même si U = 0. Exemple : générateur linéaire.

E) Point de fonctionnement

Exemple:

Le point (u, i) de fonctionnement appartient à la fois à la caractéristique de la pile (en convention générateur) et à celle de la diode (en convention récepteur). Il appartient donc à l'intersection des deux.

Si
$$V_s < e$$
: $u = V_s$; $i = \frac{e - V_s}{r} > 0$

$$\operatorname{Si} V_{s} > e$$
: $u = e$; $i = 0$

F) Puissance électrocinétique reçue par un dipôle

dQ: quantité de charge qui entre en A entre t et t+dt. $i_{AB}=\frac{dQ}{dt}$; $dQ=i_{AB}dt$

dQ': quantité de charge qui entre en B entre t et t+dt. $dQ'=i_{AB}dt=dQ$

La charge dQ apporte une énergie électrique $dQ \times v_A$

La charge dQ' emporte une énergie électrique $dQ \times v_R$

 δW (énergie reçue par le dipôle entre t et t + dt) = $dQ \times v_A - dQ' \times v_B$

$$\delta W = i_{AB} \times dt \times (v_A - v_B) = i_{AB} \times dt \times u_{AB}$$

On définit $P = \frac{\delta W}{dt}$, puissance électrique reçue par le dipôle.

Ainsi, $P = i_{AB} \times u_{AB} = u \times i$ (convention récepteur), ou $P = -u \times i$ (générateur)

- Si P>0: le dipôle reçoit de l'énergie électrique qu'il convertit en énergie mécanique (moteur), lumineuse (ampoule), chaleur (résistance) ou chimique (électrolyseur). Le dipôle est qualifié de récepteur.
- Si P < 0: Le dipôle fournit de l'énergie électrique en transformant l'énergie mécanique (dynamo), lumineuse (photopile) ou chimique (pile). Le dipôle est qualifié de générateur.