

Xinyan Ling¹, Pinhan Fu¹, Qian Guo², Keyin Zheng¹, Yuhua Qian^{1,*}

¹ Institute of Big Data Science and Industry, Shanxi University, China,

² School of Computer Science and Technology, Taiyuan University of Science and Technology, China. Email: liangxinyan48@163.com

Introduction

Challenge: Despite the encouraging results achieved by existing multi-modal NAS methods in various multi-modal tasks, for example, MMTM[1], MFAS[2], and BM-NAS[3], most methods require to train a large number of multimodal neural networks in each update step, often consuming more time than non-NAS methods.

Replication

Solution: Propose a population-based multimodal NAS method called Divide-and-Conquer Neural Architecture Search (DC-NAS), which exhibits high computational efficiency and scalability to large search spaces. DC-NAS can effectively adapt to various multi-modal feature fusion strategies learn DNN architectures to handle different multi-modal classification tasks.

Advantages: ADC-NAS where most individuals evolve with the partial data, only few individuals evolve with the entire data, and knowledge is allowed to exchange between them achieves the comparable performance with one where all individuals evolve with the entire data. This design theoretically and empirically reduces the computation time.

Proposed Method 2. Divide and conquer 3. Optimal individual selection . Multi-modal feature extractors evolutionary algorithm Part 1 Part 1 Part 2 Part 2 individual in eacl Selection Part K Part K Part K Multi-modal data Part 1 M_7 M_1 M_5 Part K **Optimal** individual

Uinmodal feature extraciton: $X = \{(X_1(s_i), X_2(s_i), X_v(s_i), y_i)\}_{i=1}^n$. Here, $X_i(s_i)$ represents the j-th feature representation extracted from the multimodal dataset.

Primitive operations: Feature fusion operator set *F* including five basic fusion operators: concatenation, addition, multiplication, max, average.

Main steps of the DC-NAS framework include population initialization, fitness evaluation, offspring generation, and selection.

- **Population initialization**: A population P with M individuals is randomly generated, and then divide it into K+1 sub-populations.
- Fitness evaluation: Each individual is decoded into a multi-modal classification model, which is then trained and evaluated using the corresponding sub-dataset.

Experiments

Method

▶Performance evaluation

Method	Modality	F1-W(%)				
Unimodal methods						
Maxout MLP (ICML13)	Text	57.54				
VGG Transfer (ICLR15)	Image	49.21				
Multi-modal methods						
Two-stream (NIPS14)	Image + Text	60.81				
GMU (ICLR17)	Image + Text	61.70				
CentralNet (ECCV18)	Image + Text	62.23				
MFAS (CVPR19)	Image + Text	62.50				
BM-NAS (AAAI22)	Image + Text	62.92±0.03				
DC-NAS (ours)	Image + Text	63.70± 0.11				

Table1: Multi-label genre classification

results on MM- IMDB dataset

_	DC-NAS (ours)			Video + Po	se	90.85±0.05
	Table 2:	Action	rec	cognition	r	esults
	on NTU	RGB-D	dat	aset		

DC-NAS(ours) MM-IMDB

Inflated ResNet-50 (CVPR18)

Co-occurence (IJCAI18)

Two-stream (NIPS14)

CentralNet (ECCV18)

GMU (ICLR17)

MMTM (CVPR20)

MFAS (CVPR19)

DC-NAS(ours)

BM-NAS

BM-NAS (AAAI22)

Method	Modality	Acc (%)
VGG-16 + LSTM (CVPR17)	RGB + Depth	81.40
C3D + LSTM + RSTTM	RGB + Depth	92.20
I3D (CVPR17)	RGB + Depth	92.78
MMTM (CVPR20)	RGB + Depth	93.51
MTUT (3DV19)	RGB + Depth	93.87
3D-CDC-NAS2 (TIP21)	RGB + Depth	94.38
BM-NAS (AAAI22)	RGB + Depth	94.96±0.07
DC-NAS (ours)	RGB + Depth	95.22±0.05

Table 3: Gesture recognition results on EgoGesture dataset

Table 2: Action recognition results on NTU RGB-D dataset					
Method	Dataset	Parameters	Time	CP (%)	
MMTM	NTU	8.61M	-	88.92	
MFAS	NTU	2.16M	603.64	89.50	
BM-NAS	NTU	0.98M	53.68	90.48	
DC-NAS(ours)	NTU	0.26M	13.63	90.85	
BM-NAS	Ego	0.61M	20.67	94.96	

Unimodal methods

Multi-modal methods

Acc (%)

83.91

85.24

88.60

85.80

88.92

89.36

Modality

Pose

Video + Pose | 89.50±0.60

 $|Video + Pose| 90.48 \pm 0.24$

1.24

62.94

1.19 | 63.70

Table 4: Comparison of model size, search cost, and performance (CP)

0.65M

0.42M

MM-IMDB

• DC-NAS outperforms state-of-the-art multi-modal methods comprehensively in terms of parameters, efficiency, and performance.

> Ablation Study

Feature selection strategies	ACC (%)
Random	88.81±0.11
Late fusion	89.47±0.07
Searched (MFAS)	89.50±0.60
Searched (BM-NAS)	90.48±0.24
Searched (DC-NAS)	90.85±0.05

Table 7.	Impact Analysis on Fusion
rable 7.	impact imarysis on i usion
Strategy	

Version				·
				90.86±0.03[8.0e-01]
DC-NAS ₂	True	False	11.10	90.52±0.06[9.5e-06]
DC-NAS	True	True	13.63	90.85±0.05

Table 5: Impact Analysis of Each Component of DC-NAS 88.71 89.20 88.84 88.07

Table 6: Impact Analysis on Feature Selection Strategies

Crossover, mutation and selection

Model encoding and decoding

Relationship among variables

References

[1] Vaezi Joze, H. R.; Shaban, A.; Iuzzolino, M. L.; and Koishida, K. 2020. MMTM: Multimodal Transfer Module for CNN Fusion. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13286-13296.

[2] Perez Rua, J.; Vielzeuf, V.; Pateux, S.; Baccouche, M.; and Jurie, F. 2019. MFAS: Multimodal Fusion Architecture Search. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6959–6968.

[3] Yin, Y.; Huang, S.; Zhang, X.; and Dou, D. 2022. BM-NAS: Bilevel Multimodal Neural Architecture Search. In Association for the Advancement of Artificial Intelligence, 8901–8909.