- 8. The range of T is the subspace $\{T(\mathbf{v}) \mid \mathbf{v} \text{ in } V\}$ of V', and the kernel $\ker(T)$ is the subspace $\{\mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}'\}$ of V.
- 9. T is one-to-one if and only if $\ker(T) = \{0\}$. If T is one-to-one and has as its range all of V', then T^{-1} : $V' \to V$ is well-defined and is a linear transformation. In this case, both T and T^{-1} are isomorphisms.
- 10. If $T: V \to V'$ is a linear transformation and $T(\mathbf{p}) = \mathbf{b}$, then the solution set of $T(\mathbf{x}) = \mathbf{b}$ is $\{\mathbf{p} + \mathbf{h} \mid \mathbf{h} \in \ker(T)\}$.
- 11. Let $B = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$ and $B' = (\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_m)$ be ordered bases for V and V', respectively. The matrix representation of T relative to B, B' is the $m \times n$ matrix A having $T(\mathbf{b}_j)_{B'}$ as its jth column vector. We have $T(\mathbf{v})_{B'} = A(\mathbf{v}_B)$ for all $\mathbf{v} \in V$.

EXERCISES

In Exercises 1–5, let F be the vector space of all functions mapping \mathbb{R} into \mathbb{R} . Determine whether the given function T is a linear transformation. If it is a linear transformation, describe the kernel of T and determine whether the transformation is invertible.

- 1. $T: F \to \mathbb{R}$ defined by T(f) = f(-4)
- 2. $T: F \to \mathbb{R}$ defined by $T(f) = f(5)^2$
- 3. $T: F \to F$ defined by T(f) = f + f
- T: F → F defined by T(f) = f + 3, where 3 is the constant function with value 3 for all x ∈ R.
- 5. $T: F \to F$ defined by T(f) = -f
- 6. Let $C_{0,2}$ be the space of continuous functions mapping the interval $0 \le x \le 2$ into \mathbb{R} . Let $T: C_{0,2} \to \mathbb{R}$ be defined by $T(f) = \int_0^2 f(x) dx$. See Example 3. If possible, give three different functions in $\ker(T)$.
- Let C be the space of all continuous functions mapping R into R, and let T: C → C be defined by T(f) = ∫₁^x f(t) dt. See Example 4. If possible, give three different functions in ker(T).
- Let F be the vector space of all functions mapping R into R, and let T: F → F be a linear transformation such that T(e^{2x}) = x², T(e^{3x}) = sin x, and T(1) = cos 5x. Find the following, if it is determined by this data.
 - a. $7(e^{5x})$
- c. $T(3e^{4x})$
- **b.** $T(3 + 5e^{3x})$
- **d.** $T\left(\frac{e^{4x}+2e^{5x}}{e^{2x}}\right)$

9. Note that one solution of the differential equation $y'' - 4y = \sin x$ is $y = -\frac{1}{5}\sin x$. Use summary item 10 and Illustration 1 to describe all solutions of this equation.

Let D_{∞} be the vector space of functions mapping \mathbb{R} into \mathbb{R} that have derivatives of all orders. It can be shown that the kernel of a linear transformation $T: D_{\infty} \to D_{\infty}$ of the form $T(f) = a_n f^{(n)} + \cdots + a_1 f' + a_0 f$ where $a_n \neq 0$ is an n-dimensional subspace of D_{∞} .

In Exercises 10–15, use the preceding information, summary item 10, and your knowledge of calculus to find all solutions in D_{∞} of the given differential equation. See Illustration 1 in the text.

- 10. $y' = \sin 2x$
- 13. $y'' + 4y = x^2$
- 11. $y'' = -\cos x$
- 14. $y'' + y' = 3e^x$
- 12. y' y = x
- 15. $v^{(3)} 2v'' = x$
- 16. Let V and V' be vector spaces having ordered bases $B = (\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3})$ and $B' = (\mathbf{b_1'}, \mathbf{b_2'}, \mathbf{b_3'}, \mathbf{b_4'})$, respectively. Let $T: V \to V'$ be a linear transformation such that

$$T(\mathbf{b}_1) = 3\mathbf{b}_1' + \mathbf{b}_2' + 4\mathbf{b}_3' - \mathbf{b}_4'$$

$$T(\mathbf{b_2}) = \mathbf{b_1'} + 2\mathbf{b_2'} - \mathbf{b_3'} + 2\mathbf{b_4'}$$

$$T(\mathbf{b}_3) = -2\mathbf{b}_1' - \mathbf{b}_2' + 2\mathbf{b}_3'.$$

Find the matrix representation A of T relative to B,B'.

In Exercises 17-19, let V and V' be vector spaces with ordered bases $B = (\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3})$ and $B' = (\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3})$, $\mathbf{b_3}$, $\mathbf{b_4}$, respectively, and let $T: V \to V'$ be the linear transformation having the given matrix A as matrix representation relative to B,B'. Find $T(\mathbf{v})$ for the given vector \mathbf{v} .

17.
$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 2 & 0 \\ 0 & 6 & 1 \\ 2 & 1 & 3 \end{bmatrix}, \mathbf{v} = \mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$$

18. A as in Exercise 17, $v = 3b_3 - b_1$

19.
$$A = \begin{bmatrix} 0 & 4 & -1 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \mathbf{v} = 6\mathbf{b}_1 - 4\mathbf{b}_2 + \mathbf{b}_3$$

In Exercises 20–33, we consider A to be the matrix representation of the indicated linear transformation T (you may assume it is linear) relative to the indicated ordered bases B and B'. Starting with Exercise 21, we let D denote differentiating once, D² differentiating twice, and so on.

20. Let V and V' be vector spaces with ordered bases B = (b₁, b₂, b₃) and B' = (b'₁, b'₂, b'₃), respectively. Let T: V → V' be the linear transformation such that

$$T(\mathbf{b}_1) = \mathbf{b}_1' + 2\mathbf{b}_2' - 3\mathbf{b}_3'$$

$$T(\mathbf{b}_2) = 3\mathbf{b}_1' + 5\mathbf{b}_2' + 2\mathbf{b}_3'$$

$$T(\mathbf{b}_3) = -2\mathbf{b}_1' - 3\mathbf{b}_2' - 4\mathbf{b}_3'.$$

- a. Find the matrix A.
- b. Use A to find $T(v)_{B'}$, if $v_{B} = [2, -5, 1]$.
- c. Show that T is invertible, and find the matrix representation of T^{-1} relative to B', B.
- d. Find $T^{-1}(\mathbf{v}')_B$ if $\mathbf{v}'_{B'} = [-1, 1, 3]$.
- e. Express $T^{-1}(\mathbf{b}_1')$, $T^{-1}(\mathbf{b}_2')$, and $T^{-1}(\mathbf{b}_3')$ as linear combinations of the vectors in B.
- 21. Let $T: P_3 \rightarrow P_3$ be defined by T(p(x)) = D(p(x)), the derivative of p(x). Let the ordered bases for P_3 be $B = B' = (x^3, x^2, x, 1)$.
 - a. Find the matrix A.
 - b. Use A to find the derivative of $4x^3 5x^2 + 10x 13$.

- c. Noting that $T \circ T = D^2$, find the second derivative of $-5x^3 + 8x^2 3x + 4$ by multiplying a column vector by an appropriate matrix.
- 22. Let $T: P_3 \to P_3$ be defined by T(p(x)) = x D(p(x)) and let the ordered bases B and B' be as in Exercise 21.
 - a. Find the matrix representation A relative to B.B'.
 - b. Working with the matrix A and coordinate vectors, find all solutions p(x) of $T(p(x)) = x^3 3x^2 + 4x$.
 - c. The transformation T can be decomposed into $T = T_2 \circ T_1$, where $T_1 \colon P_3 \to P_2$ is defined by $T_1(p(x)) = D(p(x))$ and $T_2 \colon P_2 \to P_3$ is defined by $T_2(p(x)) = xp(x)$. Find the matrix representations of T_1 and T_2 using the ordered bases B of P_3 and $B'' = (x^2, x, 1)$ of P_2 . Now multiply these matrix representations for T_1 and T_2 to obtain a 4×4 matrix, and compare with the matrix A. What do you notice?
 - d. Multiply the two matrices found in part (c) to obtain a 3 × 3 matrix. Let T₃: P₂ → P₂ be the linear transformation having this matrix as matrix representation relative to B",B" for the ordered basis B" of part (c). Find T₃(a₂x² + a₁x + a₀). How is T₃ related to T₁ and T₂?
- 23. Let V be the subspace $\operatorname{sp}(x^2e^x, xe^x, e^x)$ of the vector space of all differentiable functions mapping $\mathbb R$ into $\mathbb R$. Let $T: V \to V$ be the linear transformation of V into itself given by taking second derivatives, so $T = D^2$, and let $B = B' = (x^2e^x, xe^x, e^x)$. Find the matrix A by
 - a. following the procedure in summary item
 - b. finding and then squaring the matrix A_1 that represents the transformation D corresponding to taking first derivatives.
- 24. Let $T: P_3 \to P_2$ be defined by T(p(x)) = p'(2x + 1), where p'(x) = D(p(x)), and let $B = (x^3, x^2, x, 1)$ and $B' = (x^2, x, 1)$.
 - a. Find the matrix A.
 - **b.** Use A to compute $T(4x^3 5x^2 + 4x 7)$.
- 25. Let $V = \text{sp}(\sin^2 x, \cos^2 x)$ and let $T: V \to V$ be defined by taking second derivatives.

Taking $B = B' = (\sin^2 x, \cos^2 x)$, find A in two ways.

- a. Compute A as described in summary item 11.
- b. Find the space W spanned by the first derivatives of the vectors in B, choose an ordered basis for W, and compute A as a product of the two matrices representing the differentiation map from V into W followed by the differentiation map from W into V.
- 26. Let $T: P_3 \to P_3$ be the linear transformation defined by $T(p(x)) = D^2(p(x)) 4D(p(x)) + p(x)$. Find the matrix representation A of T, where $B = (x, 1 + x, x + x^2, x^3)$.
- 27. Let $W = \operatorname{sp}(e^{2x}, e^{4x}, e^{8x})$ be the subspace of the vector space of all real-valued functions with domain \mathbb{R} , and let $B = (e^{2x}, e^{4x}, e^{8x})$. Find the matrix representation A relative to B, B of the linear transformation $T: W \to W$ defined by $T(f) = D^2(f) + 2D(f) + f$.
- 28. For W and B in Exercise 27, find the matrix representation A of the linear transformation T: $W \to W$ defined by $T(f) = \int_{-\infty}^{\infty} f(t) dt$.
- 29. For W and B in Exercise 27, find $T(ae^{2x} + be^{4x} + ce^{8x})$ for the linear transformation T whose matrix representation relative to B,B is

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

30. Repeat Exercise 29, given that

$$A = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3 \end{bmatrix}.$$

- 31. Let W be the subspace sp(sin 2x, cos 2x) of the vector space of all real-valued functions with domain \mathbb{R} , and let $B = (\sin 2x, \cos 2x)$. Find the matrix representation A relative to B, B for the linear transformation T: $W \rightarrow W$ defined by $T(f) = D^2(f) + 2D(f) + f$.
- 32. For W and B in Exercise 31, find $T(a \sin 2x + b \cos 2x)$ for $T: W \to W$ whose matrix representation is

$$\mathcal{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

33. For W and B in Exercise 31, find $T(a \sin 2x + b \cos 2x)$ for T: $W \rightarrow W$ whose matrix representation is

$$A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}.$$

- 34. Let V and V' be vector spaces. Mark each of the following True or False.
- a. A linear transformation of vector spaces preserves the vector-space operations.
- b. Every function mapping V into V' relates the algebraic structure of V to that of V'.
- c. A linear transformation T: V → V' carries the zero vector of V into the zero vector of V'.
- d. A linear transformation T: V → V' carries a pair v,-v in V into a pair v',-v' in V'.
- e. For every vector b' in V', the function $T_{b'}$: $V \to V'$ defined by $T_{b'}(v) = b'$ for all v in V is a linear transformation.
- f. The function $T_0: V \to V'$ defined by $T_{0'}(\mathbf{v}) = \mathbf{0}'$, the zero vector of V', for all \mathbf{v} in V is a linear transformation.
- g. The vector space P_{10} of polynomials of degree ≤ 10 is isomorphic to \mathbb{R}^{10} .
- h. There is exactly one isomorphism $T: P_{10} \to \mathbb{R}^{11}$.
- i. Let V and V' be vector spaces of dimensions n and m, respectively. A linear transformation $T: V \rightarrow V'$ is invertible if and only if m = n.
- ___ j. If T in part (i) is an invertible transformation, then m = n.
- 35. Prove that the two conditions in Definition 3.9 for a linear transformation are equivalent to the single condition in Eq. (3).
- 36. Let V, V', and V" be vector spaces, and let T: V → V' and T': V' → V" be linear transformations. Prove that the composite function (T' ∘ T): V → V" defined by (T' ∘ T)(v) = T'(T(v)) for each v in V is again a linear transformation.
- 37. Prove that, if T and T' are invertible linear transformations of vector spaces such that $T' \circ T$ is defined, $T' \circ T$ is also invertible.
- 38. State conditions for an $m \times n$ matrix A that are equivalent to the condition that the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ for \mathbf{x} in \mathbb{R}^n is an isomorphism.

- 39. Let v and w be independent vectors in V, and let $T: V \to V'$ be a one-to-one linear transformation of V into V'. Prove that T(v) and T(w) are independent vectors in V'.
- 40. Let V and V' be vector spaces, let $B = \{b_1, b_2, \ldots, b_n\}$ be a basis for V, and let $c'_1, c'_2, \ldots, c'_n \in V'$. Prove that there exists a linear transformation $T: V \to V'$ such that $T(b_i) = c'_i$ for $i = 1, 2, \ldots, n$.
- 41. State and prove a generalization of Exercise 40 for any vector spaces V and V', where V has a basis B.
- 42. If the matrix representation of $T: \mathbb{R}^n \to \mathbb{R}^n$ relative to B,B is a diagonal matrix, describe the effect of T on the basis vectors in B.

Exercises 43 and 44 show that the set L(V, V') of all linear transformations mapping a vector space V into a vector space V' is a subspace of the vector space of all functions mapping V into V'. (See summary item 5 in Section 3.1.)

43. Let T_1 and T_2 be in L(V, V'), and let $(T_1 + T_2)$: $V \rightarrow V'$ be defined by

$$(T_1 + T_2)(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v})$$

for each vector \mathbf{v} in V. Prove that $T_1 + T_2$ is again a linear transformation of V into V'.

44. Let T be in L(V, V'), let r be any scalar in \mathbb{R} , and let $rT: V \to V'$ be defined by

$$(rT)(\mathbf{v}) = r(T(\mathbf{v}))$$

for each vector \mathbf{v} in V. Prove that rT is again a linear transformation of V into V'.

のでは、100mmの

3.5

- 45. If V and V' are the finite-dimensional spaces in Exercises 43 and 44 and have ordered bases B and B', respectively, describe the matrix representations of $T_1 + T_2$ in Exercise 43 and rT in Exercise 44 in terms of the matrix representations of T_i , T_2 , and T relative to B_iB' .
- 46. Prove that if $T: V \to V'$ is a linear transformation and $T(\mathbf{p}) = \mathbf{b}$, then the solution set of $T(x) = \mathbf{b}$ is $\{\mathbf{p} + \mathbf{h} \mid \mathbf{h} \in \ker(T)\}$.
- 47. Prove that, for any five linear transformations T_1 , T_2 , T_3 , T_4 , T_5 mapping \mathbb{R}^2 into \mathbb{R}^2 , there exist scalars c_1 , c_2 , c_3 , c_4 , c_5 (not all of which are zero) such that $T = c_1T_1 + c_2T_2 + c_3T_3 + c_4T_4 + c_5T_5$ has the property that $T(\mathbf{x}) = \mathbf{0}$ for all \mathbf{x} in \mathbb{R}^2 .
- 48. Let T: Rⁿ → Rⁿ be a linear transformation. Prove that, if T(T(x)) = T(x) + T(x) + 3x for all x in Rⁿ, then T is a one-to-one mapping of Rⁿ into Rⁿ.
- 49. Let V and V' be vector spaces having the same finite dimension, and let T: V→ V' be a linear transformation. Prove that T is one-to-one if and only if range(T) = V'. [Hint: Use Exercise 36 in Section 3.2.]
- 50. Give an example of a vector space V and a linear transformation T: V → V such that T is one-to-one but range(T) ≠ V. [HINT: By Exercise 49, what must be true of the dimension of V?]
- 51. Repeat Exercise 50, but this time make range(T) = V for a transformation T that is not one-to-one.

INNER-PRODUCT SPACES (Optional)

In Section 1.2, we introduced the concepts of the length of a vector and the angle between vectors in \mathbb{R}^n . Length and angle are defined and computed in \mathbb{R}^n using the dot product of vectors. In this section, we discuss these notions for more general vector spaces. We start by recalling the properties of the dot product in \mathbb{R}^n , listed in Theorem 1.3, Section 1.2.