Name:	
Vorname:	
Studiengang:	Biol 🖵
	Pharm 🖵
	BWS □

Basisprüfung Winter 2012 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1		Aufgabe 6	
Aufgabe 2		Aufgabe 7	
Aufgabe 3		Aufgabe 8	
Aufgabe 4		Aufgabe 9	
Aufgabe 5			
Total OC I		Total OC II	
Note OC I		Note OC II	
		Note OC	

1. Aufgabe (9.5 Pkt)

2. Aufgabe (5.5 Pkt)

Tragen Sie in den folgenden Formeln die fehlenden Formalladungen ein: a) 2 Pkt. $\oplus NH_3$ b) 1 1/2 Pkt. Zeichnen Sie je eine weitere möglichst gute Grenzstruktur der untenstehenden Verbindungen oΘ HO 0 c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten Atomen an. Bindungsgeometrie Hybridisierung $3 \text{ sp}^2 + \text{p}$ trigonal planar trigonal pyramidal 2 4 sp³ 3 4 sp³ tetraedrisch linear 2 sp + 2 p4 Punkte Aufgabe 2

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folgenden Strukturen Isomerie vor? Wenn ja, um welche Art von Isomerie handelt es sich?			
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
НООС	ноос	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
OH OH OH	OH OH OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
Br Br	Br Br	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

,	gebenen Moleküle sind ch eziehung zwischen a und			
OH OH OH a chiral achiral	b X	C X	d M	
Moleküle	a und d sind Dias	ntiomere stereoisomere tisch	\	
c) 5 Pkt. Die Fischerprojel	ction eines Sorbits ist unte	n angegeben.		
$ \begin{array}{c c} & 1 \\$	2) OH H OI H OH H	COOH	3) 1COOH HO 2 H H 3 OH HO 4 H H 5 OH COOH	
Idarsäure	Perspektivforme	I	Enantiomeres	
c1) 1/2 Pkt. Handelt es sich um D- oder L-Idarsäure?		D . L X		
 c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen). c3) 1/2 Pkt Zeichnen Sie die Fischerprojektion des zur dargestellten Idarsäure enantiomeren Moleküls (Projektion ergänzen). 				
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C3 und C4 in der abgebildeten Idarsäure mit CIP Deskriptoren. C3: R S S C4: R S S c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? 				
10 (2 Mesoformen un	d 4 Enantiomerenpaare)	file and A d d a	
			Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung).

d) 3 Pkt. WelcheTopizität haben	die eingekreisten Atompaare?		
H H	N	N H	
homotop (C ₃)	enantiotop (σ)	homotop (C ₂)	
homotop (C ₃)	konstutitop	diastereotop	
		Punkte Aufgabe 3	

4. Aufgabe (16.5 Pkt)

Aufgabe 4 (Fortsetzung).

b) 5 Pkt. (je ½ für richtige Wahl und Begründung pro Paar) Welche der beiden Säuren ist stärker? (ankreuzen). Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen. Wichtgste Effekte: 1. Elektronegativität des direkt an das Proton gebunden Atoms. 2. Atomgrösse/Polarisierbarkeit des direkt an das Proton gebunden Atoms. 3. Hybridisierung des durch Deprotonierung entstehenden lone pairs 4. σ -Akzeptor = -I Effekt. 5. π -Akzeptor Effekt (-M). 6. π -Donor Effekt (+M). 7. Solvatation (Wechselwirkung mit dem Lösungsmittel). 8. Wasserstoffbrücken. wichtigster Effekt (1-8) 7 8 3 4 6 Übertrag Aufgabe 4

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

Begründung

Die sekundäre Aminogruppe ist basicher als Pyridin und Anilin

Begründung

Die Amidgruppen werden vor der Ketogruppe protoniert (p K_a =0 vs p K_a -6). Von den beiden Amidgruppen ist die untere leichter protonierbar, weil die Säureform eine Wasserstoffbrücke ausbilden kann und weil die obere Amidgruppe durch den π -Akzeptoreffekt der linear konjugierten Ketogruppe weniger basisch ist.

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Die beiden Stellungen α zur Ketogruppe unterscheiden sich durch die π -Akzotor und π -Donor Substituenten in para und ortho Stellung: die Cyanogruppe als π -Akzeptor erhöht die Azidität in para, während die Methoxygruppe als π -Donor die Azidität in ortho erniedrigt. Der CH₃-O- Substituent in meta-Stellung hat keine π -Donor Wirkung.

Begründung:

Die Protonen in α -Stellung zu Estergruppen (pK_a = 25) sind zwar weniger sauer als solche in α zu Ketogruppen (pK_a = 19)

Hier kann aber aus der Ketogruppe kein Enolat gebildet werden, weil beide α -Protonen an Brückenköpfen liegen (Bredtsche Regel).

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

2)
$$\kappa_2 = 0.0001$$

3)
$$\kappa_3 = 2$$

Schätzen Sie die Grösse der Gleichgewichtskonstante \mathbf{K}_3 ab.

Antwort: $K_3 = 0.1$. Lösungsweg: $K_1 = 10$ da -5.7 kJ/mol bei RT einem Faktor 10 entsprechen. Gleichgewicht **2)** enthält zwei Phenylsubstituenten, also für einen $\sqrt{K_2} = 0.01$. $K_3 = K_1 \cdot \sqrt{K_2} = 0.1$

b) 2 Pkt. (Keine Punkte ohne Lösungsweg!)

Die freie Aktivierungsenthalpie für die Umklappung von Ammoniak (1) ist 24 kJ/mol. N-Methylaziridin (2) klappt bei Raumtemperatur (298 K) **10**⁸ mal langsamer um als NH₃.

Wie gross ist die freie Aktivierungsenthalpie für das Umklappen von *N*-Methylaziridin? Antwort: $\Delta G^{\sharp}(2) = 70 \text{ kJ/mol}.$

Erhöhung der freien Aktivierungsenthalpie um 5.7 kJ/mol verlangsamt die Reaktion bei 298 K um einen Faktor 10. Also 24 kJ/mol + 8•5.7 kJ/mol = ca. 70 kJ/mol

c) 2 Pkt. Zeichnen Sie die Konformere von (2R,3S)-2,3-Diiodbutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(θ)] der Rotation um die C(2)-C(3) Bindung (θ = Diederwinkel C(1)-C(2)-C(3)-C(4), d.h. θ =0°, wenn die Bindungen C(1)-C(2) und C(3)-C(4) verdeckt stehen).

Punkte Aufgabe 5

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

Punkte Aufgabe 7

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Welche Hauptprodukte erwarten Sie bei den folgenden Umsetzungen und um welchen Reaktionstyp, bzw. um welche Namensreaktion handelt es sich dabei? (Wo erforderlich, Stereochemie angeben!). 2 Stereoisomere a) CH₃ CH₃ CH₃ 1) CH₃MgI in Et₂O 2) H₂O HO' $H_3\tilde{C}$ H₃C Typ: Grignard-Addition b) CH₃ CH_3 ⊕ K *tert-*BuO H_3C DMSO, 8 h 50° H_3C Typ: E2 (anti-El.) c) CrO₃ 0 $3 \text{ M H}_2 \text{SO}_4$ OH Typ: Jones-Oxidation (Cr(VI)) Aceton als Lsgsm. 1 h 0° d) COOH COOH 68% HNO₃ 100% H₂SO₄ COOH 16 h 80° Typ: elektrophile arom. Subst. COOH e) ΚI Aceton als Lsgsm. 16 h 24° Ph Typ: S_N2 unter Inversion

Punkte Aufgabe 8

8. Aufgabe (a=8 Pkt, b=2 Pkt; total 10 Pkt)

9. Aufgabe (*a*=6 *Pkt*,*b*=2*x*2 *Pkt*; total 10*Pkt*)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung! Mechanismus:

1) 2 M KOH nucleophile Add.

2) 1 M HCl bis pH 2

Säure-Base Reaktion

$$K = 16.5$$
 $K = 4.2$

Antwort: Basenvermittelte Verseifung oder: Esterhydrolyse

b) Wie lautet die moderne Fassung der Regel von *Markownikow*? Geben Sie ein Anwendungsbeispiel!

Regel: Ein Elektrophil lagert sich so an eine asymmetrische Doppelbindung an, dass das stabilere Carbenium entsteht.

Anwendungsbeispiel:

Punkte Aufgabe 9