Transect Report Lone Cabbage

Overview

This report provides summary statistics and figures for ongoing transect sampling. The first section of the report focuses on the current sampling (Winter 2022-2023) and how the collected data compare to last year's sampling (Winter 2021-2022). So far 7 days have been sampled this season. The second half of the report gives summaries of all of the data that have been collected since the beginning of the project (2010-05-27). In total, 151 days have been sampled over this entire project.

Definition of Localities

LOCALITY	LOCATION
$\overline{\mathrm{BT}}$	Big Trout
CK	Cedar Key
CR	Corrigan's Reef
HB	Horseshoe Beach
LC	Lone Cabbage
LT	Little Trout
NN	No Name

Definition of Strata

STRATA	DEFINITION
Y_N	Yes Harvest, No Rock
Y_Y	Yes Harvest, Yes Rock
N_N	No Harvest, No Rock
N_Y	No Harvest, Yes Rock
N_PILOT	No Harvest, Pilot Rocks

Current Sampling

Here, we provide a progress bar showing how much of the sampling has been completed for this season, plus summary tables and plots comparing live counts and density of oysters between this current season and last year. The current sampling period is period 26, and last year's sampling period is period 24.

Field Sites - Strata Progress

Summary Tables for Periods 20, 22, 24, and 26

These summary tables provide summary statistics on live counts and oyster densities for just periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023).

Summary statistics include:

- Locality or Strata or Period Mean
- Median
- Standard Deviation (SD)
- Variance (Var)
- Coefficient of variation (CV)
- Standard Error (SE)

LC

LT

NN

168

320

233

- Lower 95% Confidence Interval assuming normal distribution (L95)
- Upper 95% Confidence Interval assuming normal distribution (U95)
- Bootstrap Mean (Bstrap Mean)
- Lower 95% Confidence Interval from Bootstrap Values (L95 Bstrap)
- Upper 95% Confidence Interval from Bootstrap Values (U95 Bstrap)

Data are aggregated by station and period and then summarized in the tables below. Live counts are the number of live oysters summarized by locality, strata, and period, and density is the number of live oysters per square meter summarized by locality, strata, and period.

Summary of Live Counts for Periods 20, 22, 24, and 26

Live Oyster Coun	ts by Loca	lity							
Locality Mean M	edian SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
BT 1331	766 2188	4789476	1.64	607	141	2521	1325	579	2571
LC 1920	1200 2083	4338305	1.08	194	1539	2301	1922	1539	2351
LT 1097	877 582	338863	0.53	150	802	1392	1095	854	1401
NN 842	714 639	408613	0.76	202	446	1238	842	521	1251
Live Oyster Counts by Strata									
Strata Mean Me	dian SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
N_N 1083	767 1185	1403189 1	.09 1	L54	781	1385	1088	840	1414
N_PILOT 2180	3009 1582	2501624 0	.73 9	913	390	3970	2190	356	3174
N_Y 3650	3674 2182	4759072 0	.60 4	112	2842	4458	3654	2864	4504
Y_N 740	626 662	437764 0	.89	95	555	926	741	563	934
Y_Y 3861	3230 2836	8044464 0	.73 7	758 :	2375	5347	3913	2526	5411
Live Oyster Coun	ts by Peri	od							
Period Mean Med	ian SD	Var C	V SE	E L	95 U	95 Bs	trap_Mean L9	5_Bstrap U9	5_Bstrap
20 1844 1	253 2125 4	517189 1.	2 310	123	36 24	51	1849	1310	2508
22 1334	702 1693 2	867783 1.	3 242	2 8	60 18	80	1329	885	1838
24 1729	942 1845 3	403035 1.	1 266	3 12	07 22	51	1742	1256	2246
26 3107 3	690 2496 6	230888 0.	8 832	2 14	76 47	38	3124	1682	4591
Live Density by	Locality								
Locality Mean M	edian SD	Var C	V SE	L95	U95	Bstra	p_Mean L95_B	strap U95_B	strap
BT 235	205 192	37004 0.8	2 53	131	340		237	152	348

168

320

230

149

256

123

188

386

377

161 110 12103 0.65 10 148 188

321 129 16749 0.40 33 255 386

174 230 52911 0.99 73 91 376

Live Density by Strata

Strata	Mean	Median	SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
N_N	239	192	163	26724	0.69	21	197	280	239	201	281
N_PILOT	143	147	39	1557	0.28	23	98	188	143	102	180
N_Y	179	180	83	6878	0.46	16	148	209	178	150	206
Y_N	162	153	134	18016	0.83	19	125	200	163	131	204
ΥΥ	147	145	75	5563	0.51	20	108	186	146	108	182

Live Density by Period

Period	Mean	${\tt Median}$	SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
20	256	203	187	35057	0.73	27	203	310	255	207	306
22	137	121	93	8638	0.68	13	111	163	137	111	163
24	185	181	92	8385	0.49	13	159	211	185	159	210
26	207	198	124	15322	0.60	41	126	288	206	128	278

Summary of Dead Counts for Periods 20, 22, 24, and 26

Dead Oyster Counts by Locality			
Locality Mean Median SD Var CV SE L95 U95 Bst	rap_Mean L9	5_Bstrap U95	_Bstrap
BT 163 98 175 30535 1.07 48 68 258	164	95	268
LC 182 130 185 34048 1.02 17 148 216	181	149	215
LT 206 137 151 22760 0.73 39 130 282	204	132	277
NN 102 72 94 8760 0.92 30 44 160	103	60	163
Dead Oyster Counts by Strata	м тог	D	D .
Strata Mean Median SD Var CV SE L95 U95 Bstra			
N_N 171 115 167 27877 0.97 22 129 214	172	132	215
N_PILOT 136 127 131 17150 0.97 76 -13 284	135	9	270
N_Y 196 166 143 20537 0.73 27 143 249	197	147	248
Y_N 128 81 130 16802 1.01 19 92 164	128	93	164
Y_Y 348 246 299 89594 0.86 80 191 504	347	206	485
Dead Oyster Counts by Period			
Period Mean Median SD Var CV SE L95 U95 Bstrap	p_Mean L95_1	Bstrap U95_E	}strap
20 148 107 140 19727 0.95 20 108 188	148	112	193
22 191 128 193 37399 1.01 28 137 245	191	145	242
24 192 130 194 37816 1.01 28 137 247	192	140	248
26 178 171 149 22311 0.84 50 81 276	178	102	270
Dead Oyster Density by Locality Locality Mean Median SD Var CV SE L95 U95 Bstrap	p_Mean L95_1	Bstrap U95_F	Bstrap
BT 36 28 23 534 0.64 6.4 23 48	36	24	47
LC 22 13 22 467 1.00 2.0 18 26	22	18	26
LT 56 50 30 881 0.53 7.7 41 71	55	42	70
NN 27 21 22 500 0.83 7.1 13 41	27	15	40
Dead Oyster Density by Strata			_
Strata Mean Median SD Var CV SE L95 U95 Bstr			
N_N 37.9 32.5 26.5 700 0.70 3.4 31.2 45	37.9	31.9	44
N_PILOT 7.6 7.6 5.0 25 0.66 2.9 1.9 13	7.6	2.6	13
N_Y 9.9 9.6 6.4 42 0.65 1.2 7.5 12	10.0	7.7	13
Y_N 27.4 19.4 25.6 658 0.94 3.7 20.2 35	27.3	20.5	34
Y_Y 12.3 13.1 5.2 27 0.42 1.4 9.5 15	12.3	9.7	15
Dood Oughon Donaitu bu Donied			
Dead Oyster Density by Period Period Mean Median SD Var CV SE L95 U95 Bstra	an Maan IOF	Patron HOE	Datmor
	ap_mean L95. 28		_BSTRAP 35
		20.3	
22 28 14 28.4 807 1.00 4.1 20.5 36	28	21.0	37
24 26 19 20.9 438 0.81 3.0 19.8 32	26	20.4	32
26 13 10 7.6 58 0.58 2.5 8.1 18	13	8.9	18

Summary Plots for Periods 20, 22, 24, and 26

Live Oyster Density by Locality for Periods 20, 22, 24, and 26

Figure- Calculated live oyster density by locality for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2022-12-11.

Dead Oyster Density by Locality for Periods 20, 22, 24, and 26

Figure- Calculated dead oyster density by locality for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2022-12-11.

Live Oyster Density by Strata for Periods 20, 22, 24, and 26

Figure- Calculated live oyster density by strata for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2022-12-11.

Dead Oyster Density by Strata for Periods 20, 22, 24, and 26

Figure- Calculated dead oyster density by strata for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2022-12-11.

The following summary plot is calculated in R using the <code>geom_density</code> (https://ggplot2.tidyverse.org/reference/geom_density.html) statistical function in <code>ggplot</code>. The <code>geom_density</code> function computes and draws kernel density estimates, which is then represented as a smoothed version of a histogram.

Figure- Calculated live oyster density by periods 20 (Winter 2019-2020) and 22 (Winter 2020-2021) using a probability density function with the last sample date of period 22 as 2022-12-11.

Oyster density per m^2

600

800

400

200

0.000

Ö

Figure- Calculated dead oyster density by periods 20 (Winter 2019-2020) and 22 (Winter 2020-2021) using a probability density function with the last sample date of period 22 as 2022-12-11.

Oyster density per m^2

Live Oyster Density by Period (22 and 24)

Figure- Calculated live oyster density by periods 22 (Winter 2020-2021) and 24 (Winter 2021-2022) using a probability density function with the last sample date of period 24 as 2022-12-11.

Dead Oyster Density by Period (22 and 24)

Figure- Calculated dead oyster density by periods 22 (Winter 2020-2021) and 24 (Winter 2021-2022) using a probability density function with the last sample date of period 24 as 2022-12-11.

Live Oyster Density by Period (24 and 26)

Figure- Calculated live oyster density by periods 24 (Winter 2021-2022) and 26 (Winter 2022-2023) using a probability density function with the last sample date of period 26 as 2022-12-11.

Figure- Calculated dead oyster density by periods 24 (Winter 2021-2022) and 26 (Winter 2022-2023) using a probability density function with the last sample date of period 26 as 2022-12-11.

Live and Dead Oyster Count Comparison for Periods 20, 22, 24, and 26

Figure- Live and dead oyster count comparison by periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) last sample date of period 26 as 2022-12-11.

Live Counts Double Pass Results

Figure- Boxplot of the difference in live counts between pass 1 and pass 2 (pass 1 live counts - pass 2 live counts) for period 18, 20, 22, 24,and 26

locality	period	${\tt mean_difference}$	${\tt sd_difference}$	CV
BT	18	-5.43	60.0	-11.1
LC	18	3.58	30.0	8.4
NN	18	13.17	15.5	1.2
LC	20	4.33	22.4	5.2
LT	20	2.64	39.2	14.9
BT	22	-1.00	18.9	-18.9
LC	22	0.14	9.0	63.6
LT	22	3.38	10.9	3.2
BT	24	9.23	14.0	1.5
LC	24	-0.44	8.7	-19.5
LC	26	1.07	26.3	24.5

Dead Counts Double Pass Results

Figure- Boxplot of the difference in dead counts between pass 1 and pass 2 (pass 1 dead counts - pass 2 dead counts) for period 18, 20, 22, 24, and 26

locality	period	CV_1	CV_2
BT	18	0.78	0.82
LC	18	2.35	2.06
NN	18	0.55	0.73
LC	20	1.93	1.62
LT	20	0.76	0.67
BT	22	0.60	0.66
LC	22	1.09	1.07
LT	22	0.69	0.66
BT	24	0.54	0.51
LC	24	1.13	1.11
LC	26	0.87	1.30

Sampling for all Periods

Next, we provide summary tables and plots for all transect sampling. These data were collected between 2010-05-27 and 2022-12-11. The following are only for live oysters.

Definitions of Periods

PERIOD	SEASON	YEAR
1	Summer	2010
2	Winter	2010-2011
3	Summer	2011
4	Winter	2011-2012
5	Summer	2012
6	Winter	2012-2013
7	Summer	2013
8	Winter	2013-2014
9	Summer	2014
10	Winter	2014-2015
11	Summer	2015
12	Winter	2015-2016
13	Summer	2016
14	Winter	2016-2017
15	Summer	2017
16	Winter	2017-2018
17	Summer	2018
18	Winter	2018-2019
19	Summer	2019
20	Winter	2019-2020
21	Summer	2020
22	Winter	2020-2021
23	Summer	2021
24	Winter	2021-2022
25	Summer	2022
26	Winter	2022-2023

Summary of Effort for all Periods

Locality Number of Transects Total Length (m)

Effort by Locality

BT

LC

LT

NN

These effort summaries show the total number of transects and total number of meters walked per locality, strata, locality per period, and strata per period. These tables contain all data collected on the transects.

BT	19	640
CK	26	734
CR	46	1375
НВ	45	1129
LC	240	14245
LT	21	542
NN	14	357
Effort by Stra	ta	
	r of Transects Total	Length (m)
N N	134	4379
N_PILOT	15	1050
_ N_Y	41	4785
Y_N	203	5912
Y_Y	18	2895
-		
Effort by Peri	od	
	of Transects Total	Length (m)
1	42	1086
2	30	753
3	25	619
6	33	919
7	8	528
10	8	512
11	8	511
16	8	528
18	61	2660
19	35	944
20	47	2586
22	49	3535
24	48	3059
26	9	782
20	J	102
Fffort by Loca	lity and Period	
	ty Number of Transec	ts Total Length (m)
	CK	9 242
	CR	10 300
	HB	12 293
	LC	11 250
	LC	
	LC	
16	LC	8 528

19	CK	9	221
19	CR	9	249
19	HB	9	247
19	LC	8	226
2	CR	9	283
2	HB	11	271
2	LC	10	199
20	BT	2	96
20	LC	34	2188
20	LT	7	176
20	NN	4	126
22	BT	5	132
22	LC	37	3228
22	LT	4	96
22	NN	3	78
24	BT	5	122
24	LC	36	2780
24	LT	4	87
24	NN	3	69
26	BT	1	52
26	LC	8	731
3	CR	9	269
3	HB	7	184
3	LC	9	167
6	CK	8	271
6	CR	9	272
6	HB	6	134
6	LC	10	242
7	LC	8	528

Effort by Strata and Period Period Strata Number of Tr

Period	Strata	Number	of	${\tt Transects}$	Total	Length	(m)
1	N_N			8			149
1	Y_N			34			937
10	N_N			4			256
10	N_PILOT			4			256
11	N_N			4			255
11	N_PILOT			4			256
16	N_N			4			264
16	N_PILOT			4			264
18	N_N			18			571
18	N_Y			13			977
18	Y_N			26			728
18	Y_Y			4			384
19	N_N			5			93
19	Y_N			30			851
2	N_N			8			148
2	Y_N			22			605
20	N_N			18			595
20	N_PILOT			1			23
20	N_Y			6			903
20	Y_N			17			602
20	Y_Y			5			464
22	N_N			20			546

22	N_Y	9	1324
22	Y_N	15	526
22	Y_Y	5	1138
24	N_N	19	521
24	N_PILOT	2	251
24	N_Y	9	1174
24	Y_N	15	412
24	Y_Y	3	700
26	N_N	2	128
26	N_Y	4	408
26	Y_N	2	38
26	Y_Y	1	209
3	N_N	8	147
3	Y_N	17	472
6	N_N	8	178
6	Y_N	25	740
7	N N	8	528

Effort Plot Summaries for all Periods

Total Transect Length Sampled by Locality

Figure – Bar plot of total transect length in meters sampled by locality for all periods.

Total Transect Length Sampled by Strata

Figure – Bar plot of total transect length in meters sampled by strata for all periods.

Total Transect Length Sampled by Period

Figure – Bar plot of total transect length in meters sampled by period for all periods.

Summary Tables for all Periods

These summaries display summary statistics of live oysters by locality, strata, and period. These contain all data collected on the oyster transects.

The summary statistics include:

- Locality or Strata or Period Mean
- Median
- Standard Deviation (SD)
- Variance (Var)
- Coefficient of variation (CV)
- Standard Error (SE)
- Lower 95% Confidence Interval assuming normal distribution (L95)
- Upper 95% Confidence Interval assuming normal distribution (U95)
- Bootstrap Mean (Bstrap Mean)
- Lower 95% Confidence Interval from Bootstrap Values (L95 Bstrap)
- Upper 95% Confidence Interval from Bootstrap Values (U95 Bstrap)

Live Count Statistics for all Periods

Live Oyster C	ounts by	Local	lity							
Locality Mea	n Median	SD	Vai	r (cv s	E L9	5 U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
BT 137	2 872	1908	3638919	9 1.3	39 43	8 51	.4 2230	1371	731	2310
CK 85	7 444	1091	1190933	3 1.2	27 21	4 43	88 1277	861	492	1286
CR 102	6 716	1035	1072162	2 1.0	1 15	3 72	7 1325	1034	756	1343
HB 90	2 364	1047	1095622	2 1.1	6 15	8 59	2 1211	900	601	1220
LC 131	8 704	1665	2770934	1 1.2	26 10	8 110	6 1529	1319	1110	1526
LT 102	6 877	551	30372	1 0.5	54 12	0 79	0 1262	1031	813	1298
NN 73	5 674	584	34129	5 0.7	79 15	6 42	9 1041	744	471	1072
Live Oyster O	ounts by	Strat	ta							
Strata Mean	•	SD	Var	CI	I SE	L95	U95	Bstrap_Mean	L95 Bstrap	U95 Bstrap
N N 989			1025017				1161	991	828	1189
N_PILOT 1318		925	856059				1787	1326	905	1827
N_Y 2912		2212	4892643	0.76	345	2235	3589	2914	2271	3592
Y N 763		890	791857					762	647	890
Y_Y 3106	2086	2876	3268636	0.93	678	1778	4435	3127	1913	4547
Live Oyster C	ounts by	Perio	od							
Period Mean	Median	SD	Var	CV	SE	L95	U95 E	strap_Mean L	95_Bstrap U	95_Bstrap
1 1404	1018 1	288 16	657932 (0.92	199	1014	1793	1409	1028	1771
2 890	476	945 8	893727	1.06	176	546	1234	886	563	1246
3 738	296	817	668064	1.11	167	411	1065	731	437	1055
6 433	176	534	284791	1.23	96	245	621	427	255	622
7 50	29	56	3186	1.12	20	11	90	50	16	90
10 1207	1074	671	449607 (0.56	237	743	1672	1212	815	1689
11 886	776	678	459708 (77.	240	416	1356	874	456	1331
16 494	366	467	217855 (0.95	165	170	817	495	223	818
18 982	695	935	374733 (0.95	120	748	1217	987	777	1227
19 555	329	573	328431	1.03	97	365	745	556	371	748
20 1844	1253 2	125 4	517189	1.15	310	1236	2451	1846	1286	2488
22 1334	702 1	693 28	367783	1.27	242	860	1808	1321	907	1850
24 1729	942 1	845 34	403035	1.07	266	1207	2251	1725	1244	2274
26 3107	3690 2	496 62	230888 (08.0	832	1476	4738	3125	1646	4518

Live Density Statistics for all Periods

Live Densi	,	,													
Locality	Mean	Median	SI) Va	ar	CV	SE	L95	U95	Bstrap_N	1ean	L95_Bs1	trap	U95_Bst	rap
BT	238	218	168	2836	33 0.	71	38.6	162	313		238		170		317
CK	241	112	321	10292	27 1.	33	62.9	118	364		241		134		369
CR	283	178	294	8660	05 1.	04	43.4	198	368		282		200		371
HB	257	101	303	9205	52 1.	18	45.7	168	347		255		165		347
LC	157	132	141	. 1974	48 0.	90	9.1	139	174		156		138		174
LT	279	261	132	1746	60 0.	47	28.8	222	335		279		225		337
NN	215	174	202	409	19 0.	94	54.1	109	321		214		132		334
Live Densi	ity by	y Strat	a												
Strata M	lean l	Median	SD	Var	CV	SE	L95	U95	Bsti	rap_Mean	L95_	Bstrap	U95_	Bstrap	
N_N	253	190	239	56963	0.94	21	212	294		253		215		292	
N_PILOT	118	121	59	3467	0.50	15	88	148		118		91		148	
N_Y	169	159	97	9362	0.57	15	139	198		169		139		201	
Y_N	183	117	211	44489	1.15	15	154	212		183		156		215	
Y_Y	121	118	82	6711	0.68	19	84	159		123		89		163	
Live Densi	ity by	y Perio	d												
Period Me	ean Me	edian	SI) Va	ar	CV	SE	L95	US	95 Bstrap	_Mea	n L95_I	Bstra	ap U95_F	3stra
										· ·		_			

Live Density by Period												
Period	Mean	Median	SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap	
1	393	300.8	362.6	131444	0.92	56	283.8	503.1	393	287.7	507.9	
2	255	119.0	285.2	81348	1.12	53	151.3	358.9	255	161.0	358.8	
3	234	85.3	269.3	72523	1.15	55	126.1	341.6	235	139.2	345.9	
6	121	72.2	150.9	22767	1.25	27	68.1	174.3	122	73.8	179.0	
7	5	2.9	5.6	31	1.12	2	1.1	8.9	5	1.8	8.6	
10	124	113.3	67.4	4536	0.54	24	76.9	170.3	124	82.4	166.8	
11	90	79.5	67.8	4596	0.75	24	43.4	137.4	91	53.1	135.7	
16	49	36.3	46.4	2154	0.95	16	16.9	81.2	50	22.2	81.3	
18	176	154.5	130.2	16945	0.74	17	143.7	209.0	176	143.3	208.2	
19	154	72.7	168.5	28408	1.10	28	97.9	209.6	154	99.4	212.9	
20	256	202.8	187.2	35057	0.73	27	202.6	309.6	257	207.2	310.8	
22	137	120.6	92.9	8638	0.68	13	111.2	163.3	137	111.5	164.1	
24	185	180.6	91.6	8385	0.49	13	159.3	211.1	185	159.3	210.1	
26	207	198.0	123.8	15322	0.60	41	125.9	287.6	205	126.8	281.2	

Dead Count Statistics for all Periods

Dead Oyst	er Co	unts by	Loc	ality							
Locality	Mean	Median	SD	Vai	· (CV SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
ВТ	249	160	278	77233	l 1.3	12 64	123.6	374	245	136	372
CK	78	32	106	11170	1.3	36 37	4.3	151	78	20	153
CR	R 60	47	38	1444	1 0.6	33 13	35.2	85	60	39	85
HE	3 44	21	45	2000	1.0)2 15	14.8	73	44	19	72
LC	134	76	159	25236	3 1.1	19 11	112.0	156	134	115	156
LT	218	141	180	32543	3 0.8	33 39	140.5	295	218	147	290
NN	1 98	72	87	7493	3 0.8	38 23	52.5	143	99	59	148
D 10 .	~		a .								
Dead Oyst					O.	, ап		- D	. W TO	- D	- D .
Strata				Var					trap_Mean L9	=	=
N_N	157						120 19		157	123	195
N_PILOT	98						65 13		97	70	134
N_Y	145						102 18		145	105	187
Y_N	103						81 12		104	82	127
Y_Y	274	152	298	88766	1.09	9 70	136 41	1	278	154	417
Dead Oyst	er Co	unts by	Per	iod							
Period M	lean Me	edian	SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
7	29	18	30	898	1.03	10.6	8.2	50	29	12	48
10	80	88	65	4245 (0.82	23.0	34.5	125	79	40	121
11	50	40	25	620 (.49	8.8	33.2	68	51	36	68
16	44	28	41	1708 (0.93	14.6	15.6	73	44	18	72
18	133	55 1	92 3	6903	L.44	24.6	85.1	182	134	88	190
19	63	44	67	4548 :	1.08	11.6	40.0	85	62	41	86
20	148	107 1	40 1	9727 (.95	20.5	107.6	188	147	110	189
22	191	128 1	93 3	7399	1.01	27.6	137.2	245	190	143	247
24	192	130 1	94 3	7816	1.01	28.1	136.8	247	192	142	249
26	178	171 1	49 2	2311 (.84	49.8	80.8	276	179	95	287

Dead Density Statistics for all Periods

Dead Oy	ster De	ensity	by Lo	ocalit	у								
Locali [.]	ty Mea	n Media	n SD	Var	CV	SE	L95	U95	Bst	rap_Mean	L95_Bstrap	U95	_Bstrap
]	BT 46	3 3	34 33	1076	0.72	7.5	30.9	60		46	32.4		61
(CK 2:	1 1	.1 28	757	1.29	9.7	2.3	40		21	6.1		40
(CR 18	3 1	1 16	247	0.87	5.2	7.8	28		18	9.4		29
]	HB 13	3	8 14		1.12					13	5.0		22
]	LC 18	3 1	.0 20	413	1.14	1.4	15.1	21		18	15.0		21
]	LT 54	1 4	7 35	1232	0.64	7.7	39.5	70		55	40.8		69
]	NN 28	3 2	21 22	463	0.78	5.7	16.4	39		27	17.9		38
Dead Oy	ster De	ensity	by St	trata									
		Median	•	D Var	CV	SE	L95	U95	Bst	rap Mean	L95_Bstrap	U95	Bstrap
N I	N 33.1	27.7		5 928						33.0	27.5		39
N_PILO	Т 8.7	8.7	4.3	3 18	0.49	1.1	6.5	11		8.8	6.7		11
_ N_	Y 8.4	8.0	6.6	6 43	0.78	1.0	6.4	10		8.4	6.4		10
Y_1	N 23.0	15.5	23.	5 550	1.02	2.3	18.5	28		23.0	18.7		28
Υ_,	y 9.8	9.4	6.6	6 44	0.68	1.6	6.7	13		9.8	6.8		13
Dead Oy	ster De	ensity	by Pe	eriod									
Period	Mean 1	Median	SD	Var	CV	I S	SE .	L95	U95	Bstrap_N	Mean L95_Bs	trap	U95_Bstrap
7	2.9		3.0		1.03			.82	4.9		2.8	1.0	4.8
10	8.2	8.9	6.6	44.0				.58	12.8		8.2	4.1	12.4
11	5.2	4.1	2.6	6.6	0.49	0.9	91 3	.41	7.0		5.2	3.6	7.0
16	4.4	2.8	4.1	16.9	0.93	3 1.4	15 1	.55	7.2		4.4	1.8	7.1
	26.4			979.8						2		19.2	
19	17.5			371.9							17.5	11.7	24.4
	27.7			681.6								20.1	
22	28.5			807.0						2	28.5	20.9	36.3
24	25.7	19.1	20.9	438.3	3 0.81	1 3.0)2 19	.83	31.7	2	25.8	20.4	32.0

13.0

8.9

18.1

26 13.1 10.3 7.6 58.1 0.58 2.54 8.15 18.1

Summary Density Plots for all Periods

Figure – Calculated live oyster density by locality for all periods including period 22 (current period).

Figure – Calculated dead oyster density by locality for all periods including period 22 (current period).

Figure – Calculated live oyster density by strata for all periods including period 22 (current period).

Figure – Calculated dead oyster density by strata for all periods including period 22 (current period).

Figure – Calculated live oyster density for all periods including period 24 (current period) using a probability densit

Figure – Calculated Dead oyster density for all periods including period 22 (current period) using a probability densit

Live Oyster Density by Locality

Figure – Box plot depicting live oyster density by locality for all periods including period 22 (current period).

Dead Oyster Density by Locality NN LT LC CR CK ВТ 50 100 Oyster density per m^2

Figure – Box plot depicting dead oyster density by locality for all periods including period 22 (current period).

Figure – Box plot depicting live oyster density by strata for all periods including period 22 (current period).

Figure – Box plot depicting dead oyster density by strata for all periods including period 22 (current period).

Live Oyster Density by Period

Figure – Box plot depicting live oyster density by period for all periods including period 22 (current period).

Dead Oyster Density by Period Period Oyster density per m^2

Figure – Box plot depicting dead oyster density by period for all periods including period 22 (current period).

Live Oyster Density by Locality and Period

Figure – Live oyster density by locality and period for all periods including period 22 (current period).

Dead Oyster Density by Locality and Period

Figure – Dead oyster density by locality and period for all periods including period 22 (current period).

Live Oyster Density by Strata and Period

Figure – Live oyster density by strata and period for all periods including period 22 (current period).

Figure – Dead oyster density by strata and period for all periods including period 22 (current period).

Live and Dead Count Comparison For All Periods

Figure- Live and dead oyster comparison for all periods, last sample date of period 26 is 2022-12-11.

Summary Plots for Pilot Study Sites

A subset of the oyster transect locations were sampled over time for a pilot study. Here we provide plots of live oyster counts and density for these pilot stations with Lone Cabbage (LCO10B, LCO11A, LCO8B, LCO9A).

Average Density by Station and Period

Figure - Average live oyster density comparison by station and period for all stations that were sampled during the pilc

Figure – Average live oyster density comparison by station and strata for all stations that were sampled during the

Latest Data Entered

Displayed are the entries for the last date of sampling (2022-12-11).

date	station	tran_length	count live	count dead	treatment	strata
2022-12-11	LC013	2.5	- 8	- 2	rocks	Y_Y
2022-12-11	LC013	5.0	8	0	rocks	Y_Y
2022-12-11	LC013	7.5	16	2	rocks	YY
2022-12-11	LC013	10.0	47	0	rocks	Y_Y
2022-12-11	LC013	12.5	15	2	rocks	Y_Y
2022-12-11	LC013	15.0	50	0	rocks	Y_Y
2022-12-11	LC013	17.5	83	4	rocks	Y_Y
2022-12-11	LC013	20.0	99	2	rocks	Y_Y
2022-12-11	LC013	22.0	49	3	rocks	Y_Y
2022-12-11	LC013	22.3	12	1	rocks	Y_Y
2022-12-11	LC013	2.5	46	0	rocks	Y_Y
2022-12-11	LC013	5.0	5	1	rocks	Y_Y
2022-12-11	LC013	7.5	21	4	rocks	Y_Y
2022-12-11	LC013	10.0	13	0	rocks	Y_Y
2022-12-11	LC013	12.5	77	4	rocks	Y_Y
2022-12-11	LC013	15.0	112	10	rocks	YY
2022-12-11	LC013	17.5	85	4	rocks	YY
2022-12-11	LC013	20.0	64	3	rocks	Y_Y
2022-12-11	LC013	22.0	12	0	rocks	Y_Y
2022-12-11	LC013	23.4	19	1	rocks	Y_Y
2022-12-11	LC013	2.5	30	7	rocks	Y_Y
2022-12-11	LC013	5.0	31	2	rocks	Y_Y
2022-12-11	LC013	7.5	44	5	rocks	Y_Y
2022-12-11	LC013	10.0	69	6	rocks	Y_Y
2022-12-11	LC013	12.5	63	2	rocks	Y_Y
2022-12-11	LC013	15.0	74	9	rocks	Y_Y
2022-12-11	LC013	17.5	62	1	rocks	Y_Y
2022-12-11	LC013	20.0	41	3	rocks	Y_Y
2022-12-11	LC013	22.0	38	4	rocks	Y_Y
2022-12-11	LC013	22.7	11	0	rocks	Y_Y
2022-12-11	LC013	2.5	27	3	rocks	Y_Y
2022-12-11	LC013	5.0	17	1	rocks	Y_Y
2022 12 11	LC013	7.5	39	1	rocks	Y_Y
2022 12 11	LC013	10.0	87	1	rocks	Y_Y
2022 12 11 2022-12-11	LC013	12.5	51	3	rocks	Y_Y
2022 12 11	LC013	15.0	81	2	rocks	Y_Y
2022 12 11 2022-12-11	LC013	17.5	59	0	rocks	Y_Y
2022 12 11 2022-12-11	LC013	20.0	46	2	rocks	Y_Y
2022 12 11	LC013	22.0	45	1	rocks	Y_Y
2022 12 11	LC013	22.7	10	0	rocks	Y_Y
2022 12 11 2022-12-11	LC013	2.5	59	0	rocks	Y_Y
2022 12 11 2022-12-11	LC013	5.0	99	0	rocks	Y_Y
2022 12 11 2022-12-11	LC013			3	rocks	
2022-12-11	LC013	7.5 10.0	73 100	4	rocks	Y_Y v v
2022-12-11	LC013	10.0	96	0	rocks	Y_Y Y_Y
2022-12-11	LC013	15.0	157	6	rocks	Y_Y
2022-12-11	LC013	17.5	104	3	rocks	Y_Y
2022-12-11	LC013	20.0	104	4	rocks	
2022-12-11	LC013			2		Y_Y v v
2022-12-11	TC012	22.0	105	2	rocks	Y_Y

2022-12-11	LC013	22.7	20	0	rocks	Y_Y
2022-12-11	LC013	2.5	78	1	rocks	Y_Y
2022-12-11	LC013	5.0	157	12	rocks	Y_Y
2022-12-11	LC013	7.5	123	6	rocks	Y_Y
2022-12-11	LC013	10.0	111	2	rocks	Y_Y
2022-12-11	LC013	12.5	73	1	rocks	Y_Y
2022-12-11	LC013	15.0	142	7	rocks	Y_Y
2022-12-11	LC013	17.5	125	6	rocks	Y_Y
2022-12-11	LC013	20.0	162	12	rocks	Y_Y
2022-12-11	LC013	22.0	67	5	rocks	Y_Y
2022-12-11	LC013	23.0	18	0	rocks	Y_Y
2022-12-11	LC013	2.5	21	0	rocks	Y_Y
2022-12-11	LC013	5.0	6	0	rocks	Y Y
2022-12-11	LC013	7.5	13	1	rocks	$\mathbf{Y} \mathbf{Y}$
2022-12-11	LC013	10.0	11	0	rocks	Y_Y
2022-12-11	LC013	12.5	9	0	rocks	Y_Y
2022-12-11	LC013	15.0	3	0	rocks	y _ Y
2022-12-11	LC013	17.5	11	0	rocks	Y_Y
2022-12-11	LC013	20.0	0	0	rocks	Y_Y
2022-12-11	LC013	22.0	5	0	rocks	Y_Y
2022-12-11	LC013	22.8	25	2	rocks	Y_Y
2022-12-11	LC013	2.5	104	5	rocks	Y_Y
2022-12-11	LC013	5.0	82	6	rocks	ΥΥ
2022-12-11	LC013	7.5	77	0	rocks	ΥΥ
2022-12-11	LC013	10.0	118	4	rocks	Y_Y
2022-12-11	LC013	12.5	121	2	rocks	Y_Y
2022-12-11	LC013	15.0	111	7	rocks	Y_Y
2022-12-11	LC013	17.5	72	3	rocks	Y_Y
2022-12-11	LC013	20.0	55	2	rocks	Y_Y
2022-12-11	LC013	22.0	73	3	rocks	Y_Y
2022-12-11	LC013	24.2	58	5	rocks	Y_Y
2022-12-11	LC013	2.5	30	0	rocks	Y_Y
2022-12-11	LC013	5.0	78	3	rocks	Y_Y
2022-12-11	LC013	7.5	207	5	rocks	Y_Y
2022-12-11	LC013	10.0	142	3	rocks	Y_Y
2022-12-11	LC013	12.5	28	0	rocks	Y_Y
2022-12-11	LC013	15.0	82	3	rocks	Y_Y
2022-12-11	LC013	17.5	82	2	rocks	Y_Y
2022-12-11	LC013	20.0	50	2	rocks	Y_Y
2022-12-11	LC013	22.0	30	1	rocks	Y_Y
2022-12-11	LC013	24.1	43	2	rocks	Y_Y
2022-12-11	LC013	2.5	62	7	rocks	Y_Y
2022-12-11	LC013	5.0	72	9	rocks	Y_Y
2022-12-11	LC013	7.5	104	10	rocks	Y_Y
2022-12-11	LC013	10.0	80	3	rocks	Y_Y
2022-12-11	LC013	12.5	116	7	rocks	Y_Y
2022-12-11	LC013	15.0	82	5	rocks	Y_Y
2022-12-11	LC013	17.5	63	5	rocks	Y_Y
2022-12-11	LC013	20.0	30	5	rocks	Y_Y
2022-12-11	LC013	22.0	56	4	rocks	Y_Y
2022-12-11	LC013	23.6	51	1	rocks	Y_Y
2722 12 11	10010	20.0	01	_	LOCKD	