Department of Mathematics Indian Institute of Technology Patna

MA - 201: B.Tech. 2nd year Autumn Semester: 2017-18

Tutorial-3: Complex Analysis

- 1. Prove that if f'(z) = 0 everywhere in a domain D then f(z) must be constant throughout D.
- 2. Use Cauchy-Riemann equations to check whether or not the function $f(z) = e^{\bar{z}}$ is analytic anywhere.

3. Verify the following inequalities.
 (i)
$$|e^{2z+i}+e^{iz^2}| \le e^{2x}+e^{-2xy}$$
 (ii) $|e^{z^2}| \le e^{|z|^2}$ (iii) $|e^{-2z}| < 1$ iff $Re(z) > 0$

- 4. Find all values of z such that:
 - $e^z = 2$ (ii) $e^z = 1 + \sqrt{3} i$ (iii) $e^{2z-1} = 1$ (iv) $e^z = -4$ (v) $e^z = \sqrt{3} i$

5.

- Show that $\overline{\exp(iz)} = exp(i\bar{z})$ if and only if $z = n\pi$, $(n = 0, \pm 1, \pm 2, ...)$ (i)
- (ii) e^z is real then what restriction is placed on z.
- (iii) e^z is imaginary then what restriction is placed on z.
- 6. Show that:
 - $Log(1+i)^2 = 2Log(1+i)$ (i)
 - $Log(-1+i)^2 \neq 2Log(-1+i)$ (ii)

 - (iv)
 - $log(i^2) = 2log(i)$ when $log(z) = ln(r) + i\theta(r > 0, \frac{\pi}{4} < \theta < \frac{9\pi}{4})$ $log(i^2) \neq 2log(i)$ when $log(z) = ln(r) + i\theta(r > 0, \frac{3\pi}{4} < \theta < \frac{11\pi}{4})$ the set of values for $log(i^{1/2})$ and (1/2)log(i) are same also find that common values (v)
 - if $Re(z_1) > 0$ and $Re(z_2) > 0$ then $Log(z_1z_2) = Log(z_1) + Log(z_2)$ (vi)
- 7. Find:
 - the values of $(1+i)^i$ (ii) the values of $(-1)^{1/\pi}$ (i)
 - (iv) principal value of $[(e/2)(-1-\sqrt{3}\ i)]^{3\pi i}$ principal value of i^i (iii)
 - all z for which $Log(z) = 1 (\pi/4)i$ (vi) all z for which $e^z = -ie$ (v)
- 8. Show that:
 - (ii) $\overline{\cos(z)} = \cos \bar{z}$ (iii) $\overline{\cos(iz)} = \cos i\bar{z}$ $\sin(z) = \sin \bar{z}$ (i)
 - $\overline{\sin(iz)} = \sin i\bar{z} \text{ iff } z = n\pi i, \ (n = 0, \pm 1, \pm 2, \ldots)$
 - $\sin \bar{z}$ and $\cos \bar{z}$ is nowhere analytic
- 9. Find the roots of the following equations:
 - (iii) $\sin z = i \sinh 1$ (iv) $\sinh z = -1$ (v) $\sinh z = e^z$ $\sin z = \cosh 4$ (ii) $\cos z = 2$
 - (vi) $\cosh z = -2$ (vii) $\sinh z = i$
- 10. Show that:
 - $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$ (ii) $\cos(z_1 + z_2) = \cos z_1 \cos z_2 \sin z_1 \sin z_2$
 - $|\sin z| \ge |\sin x|$ and $|\cos z| \ge |\cos x|$ (iv) $|\sinh y| \le |\sin z| \le \cosh y$ (iii)
 - (vi) $|\sinh x| \le |\cosh z| \le \cosh x$ $|\sinh y| \le |\cos z| \le \cosh y$ (v)
 - $\cosh^2 z \sinh^2 z = 1$ (vii)
- 11. Derive formula for $\sin^{-1} z$, $\cos^{-1} z$, $\tan^{-1} z$, $\sinh^{-1} z$, $\cosh^{-1} z$, $\tanh^{-1} z$.
- 12. Find values of $\tan^{-1}(2i)$, $\cosh^{-1}(-1)$, $\tanh^{-1}0$.
- 13. Solve the equations $\sin z = 2$ and $\cos z = \sqrt{2}$.