Homework Assignment 4

Due via Canvas, March 28th by midnight

SDS 384-11 Theoretical Statistics

- 1. Consider an i.i.d. sample of size n from a discrete distribution parametrized by p_1, \ldots, p_{m-1} on m atoms. A common test for uniformity of the distribution is to look at the fraction of pairs that collide, or are equal. Call this statistic U.
 - (a) Is U a U statistic? When is it degenerate?
 - (b) What is the variance of *U*? Please give the exact answer, without approximation.
 - (c) For a hypothesis test, we will consider alternative distributions which have $p_i = \frac{1+a}{m}$ for half of the atoms in the distribution and $\frac{1-a}{m}$ for the other half $(0 \le a \le 1)$, for some a > 0. Assume that there are an even number of atoms. (Hint: think of this as a multinomial distribution.)
 - i. What are the mean and variance of this statistic under the null?
 - ii. What are the mean and variance of this under the alternative?
 - iii. What is the asymptotic distribution of U under the null hypothesis that $p_i = 1/m$? Hint: you can use the fact that for $X_1, \ldots, X_N \overset{i.i.d}{\sim} multinomial(q_1, \ldots, q_k)$, $\sum_{i=1}^k (N_i Nq_i)^2/Nq_i \overset{d}{\to} \chi^2_{k-1}$, where N_i is the number of datapoints with value i.
 - iv. Under the alternative hypothesis, is it always the case that U has a limiting normal distribution? Can you give a sufficient condition on the number of atoms m so that this is true? Hint: Your variance will have two parts, and when the first one (with 1/n dependence on n) dominates the second (with $1/n^2$ dependence on n), you have a normal convergence. Typically, if m is small, the first one will dominate, however, it is possible that m is very large, in so you need n to be sufficiently large for the first term to dominate the second
- 2. (7 pts) Look at the seminal paper "Probability Inequalities for Sums of Bounded Random Variables" by Wassily Hoeffding. It should be available via lib.utexas.edu. You can assume that n is a multiple of m (the degree of the kernel). Assume that the kernel is bounded, i.e. $|h(X_1, \ldots, X_m) \theta| \leq b$, where $\theta = E[h(X_1, \ldots, X_m)]$.
 - (a) Read and reproduce the proof of equation 5.7 for large sample deviation of order m U statistics.
 - (b) Also prove Bernstein's inequality (see below) for U statistics. This is buried in the paper, you will have to find the bits and pieces and put them together. The Bernstein inequality is given by:

$$P(|U_n - \theta| \ge \epsilon) \le a \exp\left(-\frac{n\epsilon^2/m}{c_1\sigma^2 + c_2\epsilon}\right),$$

where $\sigma^2 = \text{var}(h(X_1, \dots, X_m))$ and a, c_1, c_2 are universal constants.

- 3. Compute the VC dimension of the following function classes. You can take it as everything on or inside the shape is +ve.
 - (a) Circles in \mathbb{R}^2
 - (b) Axis aligned rectangles in \mathbb{R}^2
 - (c) Axis aligned squares in \mathbb{R}^2