Secure Hash Algorithm 3 (SHA3)

Ching Tzu Chen

Cryptanalysis Laboratory, Department of Computer Science, National Chiao Tung University

May 2016

Outline

- Introduction
- Sponge Construction
- Iteration function
- References

Introduction

- In 2006, NIST announced to hold NIST hash function competition to create a new hash standard SHA3
- In 2008 and 2009, Keccak was selected as one of the candidates and advanced to the last round in 2010
- In 2012, Keccak was selected as the winner of the SHA-3 competition
- In 2015, NIST announced that SHA-3 had become a hashing standard

Introduction

NIST didn't mean to replace SHA-2 by SHA-3 since no significant attack on SHA-2 has been revealed.

It's because of the total break on MD-5 and SHA-0, the theoretical attack on SHA-1, NIST sought to find an alternatively secure hash different from SHA-2, which become SHA-3

Introduction

Keccak won because of:

- High security, high quality
- Elegant, clean design
- Best hardware performance
- Design diversity from SHA-2

The basic scheme of SHA3 is based on Sponge construction, which can be defined by the 3 parameters:

- 1. f: The internal function used to process each input block
- 2. *r* : The size of bit of the input block, also called **bitrate**
- 3. pad : The padding algorithm

An input message of n bits will be partitioned into k fixed-size blocks of r bit each, say,

$$Input = P_0||P_1||...||P_{k-1}$$
 where P_i is r -bit, $Input$ is n -bit, and so $n = r \times k$

In SHA-3, a padding is always added, in the case of $n \mod r = 0$, a padding block of r bit is added.

Two padding algorithms in sponge specification are provided:

- 1. **Simple padding**: Appends 10^* to the message M such that resulting length is $r \times k$ bits
- 2. **Multirate padding**: Appends 10^*1 to the message M such that resulting length is $r \times k$ bits

After processing, the Sponge function generates the sequence of blocks $Z_0, Z_1, ..., Z_{j-1}$ as output, where j is the number of output blocks such that $(j-1) \times r < l \le j \times r$ if the desired output is l bits.

In each iteration of Sponge construction, the sponge operates on a state variable s of b = r + c bits, which is initialized to all zeros.

Note that r is the bitrate and c is referred to as the **capacity**, which is the achievable level of security.

The Sponge construction consists of two phases:

- 1. Absorbing phase
- 2. Squeezing phase

1. **Absorbing phase**: In each iteration, the input block to be processed is padded with zeroes to extend its length to b bits. Then XOR it with the state variable s, this forms b bits as input to the iteration function f, the output of f is the value of the next s.

2. **Squeezing phase**: If the desired l-bit output satisfies $l \le r$, it will simply return the first l bits of s at the completion of the absorbing phase.

Otherwise, The first r bits of s are retained as block Z_0 , then s is updated by executing with f, and to obtain the next r bits of s as Z_1 , until there're j blocks such that $(j-1)\times r < l \le j \times r$. Then returns the first l bits of the concatenation of these Z_i .


```
Algorithm The sponge construction SPONGE [f, pad, r]
Require: r < b
 Interface: Z=\operatorname{sponge}(M,\ \ell) with M\in Z_2^*, integer \ell>0 and Y\in Z_2^\ell
  P=M \parallel pad[r](|M|)
  s = 0^b
  for i = 0 to |P|_r - 1 do
       s = s \oplus (Pi \parallel 0^{b-r})
       s = f(s)
  end for
  Z = |s|r
 while |Z|_r r < \ell do
    s = f(s)
    Z = Z || |s|_r
  end while
 return | Z |
```

Notation:

- |M|: the length in bits of a bit string M
- $|M|_x$: the number of fix-length block with length x in M
- $|M|_l$: the truncation of M to its first l bits

SHA-3 parameters

Message Digest Size	224	256	384	512
Message Size	no maximum	no maximum	no maximum	no maximum
Block Size (bitrate r)	1152	1088	832	576
Word Size	64	64	64	64
Number of Rounds	24	24	24	24
Capacity c	448	512	768	1024
Collision Resistance	2112	2 ¹²⁸	2 ¹⁹²	2 ²⁵⁶
Second Preimage Resistance	2 ²²⁴	2 ²⁵⁶	2384	2 ⁵¹²

The above are all measured in bits The default value for SHA-3 are $c=1024,\ r=576$ and therefore b=1600

Internal function f takes a 1600-bit variable s as input, s is organized as a $5 \times 5 \times 64$ array a, The 64-bit units are referred as **lanes**.

For convenience, we denotes:

- a[x, y, z]: an individual bit in state array.
- L[x, y]: a 5 × 5 matrix where each entry is a 64-bit lane.

The mapping between the bits of s and bits of a is :

$$s[64(5y + x) + z] = a[x, y, z]$$

State variable as 5 × 5 matrix A of 64-bit words

	x = 0	x = 1	x = 2	x = 3	x = 4
y = 4	L[0, 4]	L[1, 4]	L[2, 4]	L[3, 4]	L[4, 4]
y = 3	L[0, 3]	L[1, 3]	L[2, 3]	L[3, 3]	L[4, 3]
y = 2	L[0, 2]	L[1, 2]	L[2, 2]	L[3, 2]	L[4, 2]
y = 1	L[0, 1]	L[1, 1]	L[2, 1]	L[4, 1]	L[4, 1]
y = 0	L[0,0]	L[1, 0]	L[2, 0]	L[3, 0]	L[4, 0]

Bit labeling of 64-bit words

Structure of *f*

f takes 1600-bit state variable as input, and converts it into a 5×5 matrix of 64-bit lanes, this matrix then passes through 24 rounds of processing, each round consists of 5 steps.

Suppose a round is denoted by a function R, then we have

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

Structure of *f*

Function	Туре
θ	Substitution
ρ	Permutation
π	Permutation
χ	Substitution
ι	Substitution

θ step function

For a bit in a[x, y, z], θ does the following:

$$\theta: a[x, y, z] \leftarrow a[x, y, z] \oplus \sum_{y=0}^{4} a[(x-1), y, z] \oplus \sum_{y=0}^{4} a[(x+1), y, (z-1)]$$

Note that **Addition** and **XOR** have the same effect on \mathbb{Z}_2

More clear explanation of θ

Let
$$C[x] = \sum_{i=0}^{4} L[x, i]$$

- $\sum_{y=0}^{4} a[(x-1), y, z]$: Performing XOR of the lanes in column $(x-1) \mod 5$ to form C[x-1]
- $\sum_{y=0}^{\tau} a[(x+1),y,(z-1)]$: Performing XOR of the lanes in column $(x+1) \mod 5$, and then rotate bits in lanes such that the bit in position z is mapped into position $z+1 \mod 64$, this forms ROT(C[x+1],1)

Illustration of θ

	x = 0	x = 1	x = 2	x = 3	x = 4
y = 4	L[0, 4]	L[1, 4]	L[2, 4]	L[3, 4]	L[4, 4]
y = 3	L[0, 3]	L[1, 3]	L[2, 3]	L[3, 3]	L[4, 3]
y = 2	L[0, 2]	L[1, 2]	L[2, 2]	L[3, 2]	L[4, 2]
y = 1	L[0, 1]	L[1, 1]	L[2, 1]	L[3,1]	L[4, 1]
y = 0	L[0, 0]	L[1, 0]	L[2, 0]	L[3, 0]	L[4, 0]
	L[2,3]	— C[1] (L[2,3]	ROT(C[3], 1)	

ρ step function

The ρ function is defined as follows:

$$\rho: a[x,y,z] \leftarrow a[x,y,z] \text{ if } x=y=0$$

$$\rho: a[x,y,z] \leftarrow a[x,y,\left(z-\frac{(t+1)(t+2)}{2}\right) \mod 64] \text{ otherwise}$$

where t satisfying $0 \le t < 24$ and

$$\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}^t \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{Z}_5^{2 \times 1}$$

More clear explanation of ρ

- The lane L[0,0] is unaffected, other lanes will be performed by a circular bit shift
- t used to compute the amount of circular bit shift and which lane is assigned which shift value
- As t varies from 0 to 23, each iteration will be performed the respective bit shift value $\frac{(t+1)(t+2)}{2}$ mod 64

An example of ρ

Suppose t = 3, we have

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}^3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mod 5 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

so a[1,2,z] will be shifted to $a[1,2,\left(z-\frac{4\times 5}{2}\right) \mod 64]$ for all z=0,1,...63

Rotation value of ρ

t	g(t) mod 64	<i>x</i> , <i>y</i>
0	1	1,0
1	3	0, 2
2	6	2, 1
3	10	1, 2
4	15	2, 3
5	21	3, 3
6	28	3, 0
7	36	0, 1
8	45	1,3
9	55	3, 1
10	2	1,4
11	14	4, 4

	-(0164	
I	g(t) mod 64	<i>x</i> , <i>y</i>
12	27	4, 0
13	41	0, 3
14	56	3, 4
15	8	4, 3
16	25	3, 2
17	43	2, 2
18	62	2,0
19	18	0, 4
20	39	4, 2
21	61	2,4
22	20	4, 1
23	44	1, 1

Note:
$$g(t) = (t+1)(t+2)/2$$

 $\binom{x}{y} = \binom{0}{2} \frac{1}{3} \binom{1}{0} \mod 5$

Rotation values by word position in matrix

	x = 0	x = 1	x = 2	x = 3	x = 4
y = 4	18	2	61	56	14
y = 3	41	45	15	21	8
y = 2	3	10	43	25	39
y = 1	36	44	6	55	20
y = 0	0	1	62	28	27

π step function

The π function is defined as follows:

$$\pi \colon L[x,y] \leftarrow L[x^*,y^*]$$
where $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x^* \\ y^* \end{bmatrix} \mod 5$

 π simply permutes the 5 imes 5 matrix by:

- The new x position is the old y position
- The new y position is determined by $(2x+3y) \mod 5$

Illustration of π

χ step function

The χ function is defined as follows:

$$\chi: a[x, y, z] \leftarrow$$

 $a[x, y, z] \oplus (\mathsf{NOT}(a[x+1, y, z]) \ \mathsf{AND} \ a[x+2, y, z])$

Note that χ it's only function in SHA-3 which provides the non-linear mapping on bits.

Illustration of χ

	x = 0	x = 1	x = 2	x = 3	x = 4
y = 4	L[0, 4]	L[1, 4]	L[2, 4]	L[3, 4]	L[4, 4]
y = 3	L[0, 3]	L[1, 3]	L[2, 3]	L[3, 3]	L[4, 3]
y = 2	L[0, 2]	L[1, 2]	L[2, 2]	L[3, 2]	L[4, 2]
<i>y</i> = 1	L[0, 1]	L[1, 1]	L[2, 1]	L[4, 1]	L[4, 1]
y = 0	<i>L</i> [0, 0]	<i>L</i> [1, 0]	<i>L</i> [2, 0]	L[3, 0]	L[4, 0]
					$\overline{}$
		L[2,3]	- <i>L</i> [2, 3] ⊕	$\int \overline{L[3,3]} AN$	L[4,3]

ι step function

The ι function is defined as follows:

$$\iota$$
: $L[0,0] \leftarrow L[0,0] \oplus RC[i]$
where $0 \le i < 24$ and RC is the array of 64—bit round

where $0 \le i < 24$ and RC is the array of 64—bit round constants.

Note that ι only XOR RC with the first lane of the state variable. And L[0,0] will be XORed with different value of RC[i] in each round.

RC array

Round Constants in SHA-3

Round	Constant (hexadecimal)
0	00000000000000001
1	0000000000008082
2	800000000000808A
3	8000000080008000
4	000000000000808B
5	0000000080000001
6	8000000080008081
7	8000000000008009
8	000000000000008A
9	000000000000088
10	0000000080008009
11	000000008000000A

Round	Constant (hexadecimal)
12	000000008000808B
13	800000000000008B
14	8000000000008089
15	8000000000008003
16	8000000000008002
17	800000000000000000
18	000000000000800A
19	800000008000000A
20	8000000080008081
21	8000000000008080
22	0000000080000001
23	8000000080008008

References

- [1] https://en.wikipedia.org/wiki/SHA-3
- [2] Cryptography and Network Security 6th edition by William Stallings
 (All figures in the slides are excerpted from it.)