1

NCERT 11.15. Q10

EE23BTECH11010 - Venkatesh Bandawar*

Question: For the travelling harmonic wave y(x, y)t) = $2.0 \cos 2\pi (10t - 0.0080 x + 0.35)$ where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of

- (a) 4 m,
- (b) 0.5 m,
- (c) $\lambda/2$,
- (d) $3\lambda/4$

Solution:

Method I

$$K = 2\pi(0.008)$$

$$\therefore K = \frac{2\pi}{\lambda}$$

$$\lambda = \frac{2\pi}{K}$$

$$\lambda = \frac{2\pi}{2\pi \times 0.008}$$

$$\lambda = 125$$

: phase difference(in radians) = distance between two points $\times 2\pi$

$$\frac{\frac{\text{distance between two points}}{\lambda} \times 27$$

(a) phase difference =
$$\frac{4}{125} \times 2\pi$$

= $\frac{8\pi}{125}$ radians

(b) phase difference =
$$\frac{0.5}{125} \times 2\pi$$

= $\frac{\pi}{125}$ radians

(c) phase difference =
$$\frac{125/2}{125} \times 2\pi$$

= π radians

(d) phase difference =
$$\frac{3 \times 125/4}{125} \times 2\pi$$

= $3\pi/2$ radians

Method II

harmonic wave: $y(x, t) = 2.0 \cos 2\pi (10t - 0.0080 x + 0.35)$ phase of harmonic wave (at x): $= 2\pi (10t - 0.0080x)$

+ 0.35)
(a) phase of harmonic wave (at x=4):
=
$$2\pi$$
 (10t - 0.0080(x+4) + 0.35)
 \Rightarrow phase difference:
= 2π (10t - 0.0080(x+4) + 0.35) -
 2π (10t - 0.0080x +0.35)
= $2\pi \times 0.0080 \times 4$
= $\frac{8\pi}{125}$ radians

(b) phase of harmonic wave (at x=0.5):
=
$$2\pi$$
 (10t - 0.0080(x+0.5) + 0.35)
 \Rightarrow phase difference:
= 2π (10t - 0.0080(x+0.5) + 0.35) - 2π (10t - 0.0080x +0.35)
= $2\pi \times 0.0080 \times 0.5$
= $\frac{\pi}{125}$ radians

(c) phase of harmonic wave (at
$$x=\lambda/2$$
):
= 2π (10t - 0.0080($x+\lambda/2$) + 0.35)
 \Rightarrow phase difference:
= 2π (10t - 0.0080($x+\lambda/2$) + 0.35) - 2π (10t - 0.0080x +0.35)
= $2\pi \times 0.0080 \times \lambda/2$
($\therefore \lambda = 125$)
= $2\pi \times 0.0080 \times 125/2$
= π radians

(d) phase of harmonic wave (at
$$x=3\lambda/4$$
):
= 2π (10t - 0.0080($x+3\lambda/4$) + 0.35)
 \Rightarrow phase difference:
= 2π (10t - 0.0080($x+3\lambda/4$) + 0.35) - 2π (10t - 0.0080 x +0.35)
= $2\pi \times 0.0080 \times 3\lambda/4$
($\therefore \lambda = 125$)
= $2\pi \times 0.0080 \times 3 \times 125/4$

 $= 3\pi/2$ radians