

IIC2433 Minería de Datos Regresión lineal

Profesor: Mauricio Arriagada

REGRESIÓN LINEAL

OBJETIVO

- Entender cóm predecir variables numéricas
- Estudiar regresiones lineales simples y múltiples

Algunas aplicaciones

- Electricidad
 - obtener el valor de una resistencia en un circuito y su error mediante un ajuste de regresión lineal
- Sensores
 - Calibración de un sensor de temperatura en función de la caída de tensión y la temperatura
- Construcción
 - Para caracterizar diversas cualidades del hormigón. A partir del módulo de elasticidad es posible predecir la resistencia a la compresión de una determinada composición de un hormigón
- Negocios
 - Para estimar compras en base a la cantida de productos comprados anteriormente

Métodos de aprendizaje

- No supervisados
 - Donde no hay información previa
 - Reglas de asociación: busca patrones en los datos

- Supervisados
 - Existe información previa
 - Por ejemplo: etiquetas, tags, etc,
 - La evaluación se hace sobre un conjunto llamado testeo

Modelos de Regresión

Lineales

- Simple
- Múltiple

Regresión lineal simple (RLS)

Técnica de análisis estadístico utilizada para estimar el efectos de una variable (independientes /predictores) en otra variable cuantitativa (dependiente/ predicha/ respuesta).

 Técnica de análisis estadístico utilizada para predecir una variable dependiente, a partir de otra independiente.

Motivación

 Determinar cómo afecta la variable independiente en la variable dependiente

 Predecir la variable dependiente a partir de la variable independiente

$$Y = \alpha + \beta X$$

donde:

 α = donde corta en Y β = pendiente de la recta

Regresión lineal multiple (RLM)

Técnica de análisis estadístico utilizada para estimar el efectos de varias variables (independientes /predictores) en otra variable cuantitativa (dependiente/ predicha/ respuesta).

 Técnica de análisis estadístico utilizada para predecir una variable dependiente, a partir de otras independientes.

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

donde:

 $X_1...X_k$ = variables independientes Y = variable dependiente α = intersección en eje Y β_1 β_k = efecto de X en Y

No lineales

Combinaciones lineales

Cambio de base

No implica ajustar una recta

Consideraciones de un modelo supervisado

- Training set
- Validation set
- Testing set
- Unlabeled data

REFERENCIAS

- ▶ Han, J., Pei, J., & Kamber, M. (2011). *Data mining: concepts and techniques*. Elsevier.
- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). *Data Mining: Practical machine learning tools and techniques*. Morgan Kaufmann.
- ▶ Hand, D. J. (2006). Data Mining. *Encyclopedia of Environmetrics*, 2.