Components of a robot

Joints:

- We will cover robotic designs with prismatic and revolute joints
- Other joint configuration are possible

Actuators

• The actuation principle of a robot highly depends on its precision requirements, environment, cost, ...

Transmissions

• The choice of a transmission is based on the chosen actuators, the required precision, the task to be performed, the allowed weight, ...

Sensors

Are used to sense position, speed, force and torque of joints or end effector.

End Effectors

End effector vary according to the performed task. Almost everything is possible.

Degrees of freedom vs. degrees of mobility

Degrees of freedom (DoF in a d-dimensional space)

Number of independent movements an object can make w.r.t. a coordinate system

d: translational DoF

→ 3 DoF in 2D space, 6 DoF in 3D space

• $\frac{d(d-1)}{2}$: rotational DoF

Degrees of freedom of the end effector

- Number of independent motions of the end effector
- The number of joints determines the number of DOF
- May depend on robot configuration

Degrees of Mobility of a robot

The number of independently controlled joints on a robot

DoF ≠ DoM in the case of parallel robots or in singular configurations

Precision, accuracy, and resolution

- Precision = "Repeatability" of two or more measurements
- Accuracy = "Closeness" to a standard or known value

Precision = std(M)

 $Accuracy = mean(M) - M_R$

Precision, accuracy, and resolution

Resolution

- Actuator = Smallest Commendable Distance
- Sensor = Smallest Measurable Interval

