Acceleration methods: Reducing variance

Dr. Uma Ravat

PSTAT 194CS

Acceleration methods

Clever methods to reduce the variance of a Monte Carlo estimate of an integral.

- Antithetic variables
- Control variates

Antithetic variables

This is another variance reduction method. The idea is that it may be helpful to generate samples of correlated variables in estimating integrals

Recall, covariance of X and Y is

$$Cov(X,Y) = E((X - EX)(Y - EY)) = E(XY) - (EX)(EY)$$

Suppose X_1 and X_2 are identically distributed then

$$Var(\frac{X_1 + X_2}{2}) = \frac{1}{4}(Var(X_1) + Var(X_2) + 2Cov(X_1, X_2))$$

So, variance is reduced if X_1 and X_2 are negatively correlated.

Antithetic Variables approach

Given two samples $X_1, X_2, \ldots, X_m \sim f$ and $Y_1, Y_2, \ldots, Y_m \sim f$ for estimating

$$I = \int h(x)f(x)dx$$

where X_i and Y_i are **negatively correlated** and h is a monotone(increasing or decreasing) function.

Define an antithetic pair

$$\frac{h(X_i)+h(Y_i)}{2}$$

then the antithetic estimator

$$\hat{I} = \frac{1}{m} \sum_{i=1}^{m} \frac{h(X_i) + h(Y_i)}{2}$$

is more efficient than the estimate based only on X's and Y's.

Question:

How to get negatively correlated X_i and Y_i

- Using inversion
 - $U \sim \text{Unif}(0,1)$
 - U and 1-U are negatively correlated
 - So, $X = F^{-1}(U)$ and $Y = F^{-1}(1 U)$ are negatively correlated.
- Use symmetry
 - $X \sim f(x)$ which is symmetric about μ
 - $X \mu$ has the same distribution as μX
 - So X has the same distribution as $2\mu X$

Example: Want to compute

$$\int_0^\infty x^2 e^{-x} dx$$

 $g(x) = x^2$ is monotone on 0 to ∞ , so could use antithetic approach.

- Be careful, $g(x) = x^2$ is not monotone on $(-\infty, \infty)$.
- 1. Boring way
 - Generate $X_1, X_2, \ldots, X_m \sim \operatorname{Exp}(1)$

$$\hat{I} = \frac{1}{m} \sum_{i=1}^{m} X_i^2$$

- 2. Better way
 - Generate $U_1, U_2, \ldots, U_m \sim \text{Unif}(0, 1)$
 - Let $X_i = -\ln(U_i)$ and $Y_i = -\ln(1-U_i)$

$$\hat{I} = \frac{1}{m} \sum_{i=1}^{m} \frac{X_i^2 + Y_i^2}{2}$$

Activity:

For the above example, compare antithetic variable approach with simple monte-carlo. What is the reduction in variance?

Control Variates

Another variance reduction technique.

Problem: We are looking to estimate *EY*.

The idea here is that you have a bi-variate random variable (C, Y) and a simulated sample of size m:

$$(c_1, y_1), (c_2, y_2), \cdots, (c_m, y_m)$$

Suppose we know *EC*. We can use this to speed up convergence of *EY*.

When C and Y are strongly positively correlated then variance is improved over the naive estimator \bar{y} . C is called the control variable.

Notation: $EC = \mu_c$ is known in advance. σ_C^2 is the variance of C, σ_Y^2 is the variance of Y and ρ_{cY} is the correlation between C and Y