>>> IF013 - Fundamentos Teóricos de Informática
>>> Licenciatura de Sistemas - UNPSJB - Sede Trelew

Name: Celia Cintas[†], Pablo Navarro[‡], Samuel Almonacid[§]

Date: August 2, 2017

[-]\$ _

[†]cintas@cenpat-conicet.gob.ar, cintas.celia@gmail.com, @RTFMCelia

 $^{^{\}ddagger}$ pnavarro@cenpat-conicet.gob.ar, pablo1n7@gmail.com

[§]almonacid@cenpat-conicet.gob.ar, almonacid.samuel.tw@gmail.com

>>> Unidad 1

- 1. Autómatas finitos. Reconocedores. Traductores. Diagrama de estados. Autómatas finitos no deterministas.
- 2. Equivalencia entre autómatas finitos deterministas y no deterministas. Morfismos sobre autómatas. Autómata Cociente.
- 3. Propiedades de lenguajes aceptados por Autómatas Finitos. Expresiones y lenguajes regulares.
- Propiedades algebraicas de los lenguajes regulares.
 Equivalencia entre autómatas finitos y lenguajes regulares.
- 5. Teorema de Kleene. Gramáticas regulares. Relación entre gramáticas regulares y autómatas finitos.
- 6. Usos y aplicaciones de los autómatas finitos y lenguajes regulares.

[1. Unidad 1]\$ _ [2/23]

>>> Autómatas Finitos No Determinísticos

Hay dos formas posibles de entender cómo funciona un AFND.

- * Cuando hay varias alternativas, el AFND elige alguna de ellas.
- * Imaginarse que el AFND está en varios estados a la vez. Si luego de leer la cadena puede estar en un estado final, acepta la cadena.

En cualquier caso, es bueno por un rato no pensar en cómo implementar un AFND.

>>> Autómatas Finitos No Determinísticos

Definición

Un AFND es la 5-upla $M=(K,\Sigma,\delta,S,F)$, donde K,Σ,δ y F tienen el mismo significado que en AFD, pero $\delta:K\times\Sigma\to P(K)$.

Definición

La función de transición se puede generalizar para que acepte cadenas en Σ , es decir $\hat{\delta}:K\times\Sigma^*\to P(K)$.

$$\begin{split} \hat{\delta}(q,\lambda) &= \{q\} \\ \hat{\delta}(q,xa) &= \{p: \exists r \in \hat{\delta}(q,x) | p \in \delta(r,a)\} \text{ con } x \in \Sigma^* \text{ y } a \in \Sigma \end{split}$$

>>> Autómatas Finitos No Determinísticos (Cont.)

Definición

Se dice que una cadena x es aceptada por un AFND $M=(K,\Sigma,\delta,S,F)$ si y solo si $\delta(S,x)\cap F\neq\emptyset$

Definición

Dado un AFND $M=(K,\Sigma,\delta,S,F)$, el lenguaje aceptado por M, el cual se denotará L(M), es el conjunto de cadenas aceptadas por M y se define como:

$$L(M) = \{x : \delta(S, x) \cap F \neq \emptyset\}$$

>>> Autómatas Finitos No Determinísticos (Cont.)

Podemos extender la función de transición aún más, haciendo que mapee conjuntos de estados y cadenas en conjuntos de estados, es decir:

Definición

Función de transición $\delta: \overline{P}(K) imes \Sigma^* o P(K)$, dada por:

$$\delta(P,x) = \bigcup_{k \in P} \delta(k,x)$$

Para todo AFD existe un AFND y para cada AFND existe un AFD equivalente.

>>> Autómatas Finitos No Determinísticos (Cont.)

Ejemplo: AFND que acepte el lenguaje de las cadenas formadas por concatenación de 0 o más cadenas de ab o aba (sin importar el orden).

$$M = (K, \Sigma, \delta, S, F)$$

$$K = \{k_0, k_1, k_2, k_3\}$$

$$\Sigma = \{a, b\}$$

$$F = \{k_0\}$$

$$S = k_0$$

$$\delta \quad a \quad b$$

$$k_0 \quad \{k_1\} \quad \{k_3\}$$

$$k_1 \quad \{k_3\} \quad \{k_0, k_2\}$$

$$k_2 \quad \{k_0\} \quad \{k_3\}$$

$$k_3 \quad \{k_3\} \quad \{k_3\}$$

Sea un AFND $M=(K,\Sigma,\delta,S,F)$ donde:

$$K = \{k_0, k_1, k_2\}$$

$$\Sigma = \{a, b\}$$

$$F = \{k_1\}$$

$$S = k_0$$

$$\frac{\delta \mid a \quad b}{k_0 \mid \{k_0, k_1\} \mid \{k_1\} \mid \{k_2\} \mid \{k_0, k_1\} \mid \{k_2\} \mid \{k_3\} \mid \{k_4\} \mid \{k_4\}$$

Obtengamos un AFD M^\prime que reconozca el mismo lenguaje utilizando el teorema anterior.

[3. AFND a AFD]\$ _

>>> Conversión de AFND a AFD (cont.)

Construyamos un AFD $M' = (K', \Sigma', \delta', S', F')$ donde:

$$K' = \{\{k_0\}, \{k_1\}, \{k_2\}, \{k_0, k_1\}, \{k_0, k_1, k_2\}\}\}$$

$$\Sigma' = \Sigma$$

$$F' = \{\{k_1\}, \{k_0, k_1\}, \{k_0, k_1, k_2\}\}\}$$

$$S' = \{k_0\}$$

δ	a	b	Aceptador
$s_0 = \{k_0\}$	$\{k_0, k_1\}$	$\{k_1\}$	0
$s_1 = \{k_1\}$	$\{k_2\}$	$\{k_0, k_1\}$	1
$s_2 = \{k_2\}$	$\{k_2\}$	$\{k_2\}$	0
$s_3 = \{k_0, k_1\}$	$\{k_0, k_1, k_2\}$	$\{k_0, k_1\}$	1
$s_4 = \{k_0, k_1, k_2\}$	$\{k_0, k_1, k_2\}$	$\{k_0, k_1, k_2\}$	1

[3. AFND a AFD]\$ _ [9/23]

[3. AFND a AFD]\$ _ [10/23]

>>> Equivalencia entre AFD y AFND

Definición

Sea L un lenguaje aceptado por un autómata finito no determinista, entonces existe un autómata finito determinista que también acepta L. Agregar demostración

[3. AFND a AFD]\$ _ [11/23]

>>> Conversión de AFND a AFD (cont.)

lero

[3. AFND a AFD]\$ _

>>> Conversión de AFND a AFD (cont.)

lero

[3. AFND a AFD]\$ _

>>> Autómatas Finitos $A ar F N D - \lambda$

lero

>>> Autómatas Finitos $A ar F N D - \lambda$

lero

[3. AFND a AFD]\$ _

>>> Gramáticas Regulares

>>> Gramáticas Regulares y Autómatas Finitos

>>> Gramáticas Regulares y Expresiones Regulares

>>> Pumping Lemma para AFD

>>> Gracias!

[11. The End]\$ _