# Thomas Denewiler

Robotics Engineer

□ tdenewiler@gmail.com
 □ denewiler.us
 in www.linkedin.com/in/tdenewiler/
 `github.com/tdenewiler
 `github.com/tdenewiler
 `github.com/tdenewiler
 `github.com/tdenewiler



Prediction is very difficult, especially if it's about the future.

NIELS BOHR

# Skills

### **Expert Skills**

Hardware Robotic Sensors (Perception, Localization)

Algorithm Kalman Filters, Vehicle Control

Development

Systems \*\*\*

Engineering

## Development

Languages C, C++, Python, Shell/Bash, GNU Tools CMake, Doxygen, Trac, Confluence,

Make Jira, Stash, GitHub, Jenkins

Source SVN, Git, Mercurial Robotics Robot Operating System<sup>†</sup>,
Management Frameworks Autonomous Capabilities Suite\*

Office and tools

Office OpenOffice/LibreOffice, Microsoft Documentation TEX, LATEX

Office, Gimp, Inkscape

# Experience

# Robotics Experience

<sup>201</sup>**Principal Investigator**, *SPAWAR Pacific*, San Diego.

ONR Code 30 Ground Autonomy Systems Integration

2011

Lead Engineer, SPAWAR Pacific, San Diego.

Long Range Obstacle Detection

- Outfitted Ford Escape Hybrid with large number of perception and localization sensors and computing.
  - Perception: Velodyne lidar, Ibeo lidar, Delphi automotive radar, GigE stereo cameras, FLIR stereo cameras.
  - Localization: Novatel DGPS, DGPS serial radio, Microstrain IMU, GINA IMU, KVH gyro.
  - Computing: Installed rack, rackmount servers, and power distribution, created read-only Linux filesystem.
- Ported autonomy algorithms from ACS to ROS.
- Created URDF for system from SolidWorks 3D CAD models.
- Implemented joystick teleoperation of vehicle.
- Directed implementation of supervised learning algorithm for lidar calibration and object segmentation.

<sup>\*</sup>Developer

<sup>†</sup>Contributor

Systems Engineer, SPAWAR Pacific, San Diego.

**EOD Robotics Autonomy Developer** 

- Improved Kalman filter for localization using coordinate ascent machine learning.
- Implemented control Lyapunov function-based control algorithm for waypoint navigation and showed significant improvement over PID controller.
- Added use of CMake macros and functions to Autonomous Capabilities Suite build system to greatly simplify addition of new modules to architecture.
- Installed Trac on main development server for management and developer use.

Lead Engineer, SAIC at SPAWAR Pacific.

Autonomous UAV-UGV Refueling

Mechanical Engineer, SAIC at SPAWAR Pacific.

Mobile Detection, Assessment and Response System (Ground)

- Managed wireless communications infrastructure for mobile robots.
- Created tools to map wireless signal strength and GPS satellite observability.
- Rapid prototyping of novel large UGV hardware (marsupial capability, UAV landing/refueling pad, automatic gate operation).
- Supported large number of system test events at remote locations throughout U.S.

### Other Experience



**Engineering Mentor**, *University of California*, San Diego.

Computer Science Department, Prof. Ryan Kastner's Lab

Education

2009–20 Master's, Mechanical Engineering, University of California, San Diego.

Focus on Controls & Estimation, Thesis: Improving Autonomous Navigation in EOD Robots, Class notes available on homepage

2004

**C/C++ Programming**, *University of California Extension*, San Diego.

Introductory Course

<u>1996</u>–2000

Bachelor's, Mechanical Engineering, University of California, San Diego.

# Personal interests

Sports Volleyball, Basketball, Hiking, Swimming

Contributions Robot Operating System, UCSD Lecture Notes

Volunteer Mentor in Big Brothers, Big Sisters from 2005 - 2009

Others Traveling, Reading, Gardening