

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ – CAMPUS MARACANAÚ EIXO TECNOLÓGICO DA INDÚSTRIA

FRANCISCO ERICK DE OLIVEIRA SOUSA BRUNO PEREIRA TAKAZONO

TRABALHO 01 DE INTELIGÊNCIA COMPUTACIONAL APLICADA (ICA)
SISTEMAS DE INFERÊNCIA FUZZY - 2023.1

MARACANAÚ 2023

FRANCISCO ERICK DE OLIVEIRA SOUSA BRUNO PEREIRA TAKAZONO

TRABALHO 01 DE INTELIGÊNCIA COMPUTACIONAL APLICADA (ICA) SISTEMAS DE INFERÊNCIA FUZZY - 2023.1

Trabalho apresentado ao Curso de Engenharia de Controle e Automação do Instituto Federal de Educação, Ciência e Tecnologia do Ceará – IFCE Campus Maracanaú, como requisito parcial para aprovação na disciplina de Inteligência Computacional Aplicada. Orientador: Prof. Dr. José Daniel de Alencar Santos.

MARACANAÚ 2023

SUMÁRIO

1. Introdução	4
2. Controle de um guindaste	4
2.1 Fuzzyficação de entrada	5
2.2 Testes de diferentes simulações	6
2.3 Modificações	6
2.4 Testes das modificações após diferentes simulações	7
3. Estacionamento de um Veículo	7
3.1 Fuzzyficação de entrada	8
3.2 Testes de diferentes simulações	9
3.3 Modificações	9
3.4 Testes das modificações após diferentes simulações	10
4. Conclusão	10
5. Apêndice	10

1. Introdução

Este estudo de inteligência computacional aplicada tem como objetivo a aplicação de conceitos teóricos fundamentais da teoria da lógica fuzzy em dois problemas práticos vistos em sala de aula: controle de um guindaste e estacionamento de um veículo. A teoria da lógica fuzzy oferece uma abordagem flexível para lidar com incertezas e imprecisões em problemas de tomada de decisão, permitindo a modelagem de sistemas complexos e não-lineares.

Neste trabalho, serão apresentados os principais conceitos da teoria da lógica fuzzy, incluindo a função de pertinência, operações fuzzy e a composição de regras fuzzy. Esses conceitos serão aplicados na resolução dos problemas práticos mencionados, demonstrando a eficácia da abordagem fuzzy em problemas de tomada de decisão complexos.

2. Controle de um guindaste

O exemplo do guindaste consiste no controle da potência de um motor levando em conta a distância do navio até o porto e da angulação da carga em relação ao motor.

Com as seguintes variáveis linguísticas e regras fuzzy: distância do navio até o porto e ângulo em relação da carga transportada com o motor como variáveis de

entrada e potência do guindaste como de saída:

- Distância (longe, médio, perto)
- Ângulo (negativo, zero, positivo)
- Potência (baixa, média, alta)

Estudo de caso:

- Se distância = longe ou ângulo = negativo ⇒ potência = alta
- Se distância = média ⇒ potência = média
- Se distância = perto ou ângulo = positivo ⇒ potência = baixa

2.1 Fuzzyficação de entrada

Foi utilizado os mesmos valores de entradas das notas de aula a fim de comparar com os resultados obtidos na simulação.

Distância = 3

 \hat{A} ngulo = 30°

Saídas obtidas:

Saída nota de	Saída
aula	simulação
16.7	16.7345

Para que fosse possível replicar o sistema com perfeição foi preciso fazer uma alteração na saída invertendo os valores entre "alta" e "baixa" da potência do motor.

2.2 Testes de diferentes simulações

distância	ângulo	potência
9	-30	13,0918
0	0	2,1271
8	10	19,7183
2	-45	4,2781

2.3 Modificações

Modificação 1: Conjuntos Fuzzy de Entrada e Saída:

Para o conjunto fuzzy de entrada da distância, foi utilizado o conjunto gaussiano, com valores "muito longe", "longe", "médio", "perto" e "muito perto". Para o conjunto fuzzy de entrada do ângulo, foi utilizado o conjunto trapezoidal, com valores "muito negativo", "negativo", "zero", "positivo" e "muito positivo". Para o conjunto fuzzy de saída, foi utilizado o conjunto triangular, com valores "baixa", "média" e "alta".

Modificação 2: Valores das Variáveis de Entrada:

Foram testados diferentes valores de entrada para ver como o sistema reage a diferentes situações. Foi observado que, quando a distância é "muito perto" e o ângulo é "muito negativo", a potência deve ser baixa. Além disso, quando a distância é "muito longe" e o ângulo é "positivo", a potência deve ser alta.

Modificação 3: Regras de Inferência:

Foi adicionada uma regra que diz que se a distância é "muito perto" e o ângulo é "zero", a potência deve ser baixa. Isso é útil para situações em que a carga está muito próxima do quindaste e a lança está nivelada.

Resultados:

O sistema de controle fuzzy foi simulado com diferentes valores de entrada e os resultados foram comparados com os valores esperados. Foi observado que o sistema se comporta de acordo com as regras de inferência e conjuntos fuzzy definidos.

2.4 Testes das modificações após diferentes simulações

distância	ângulo	potência
9	-30	22,4072
0	0	20,4712
8	10	20,6356
2	-45	4,5542

3. Estacionamento de um Veículo

O exemplo do estacionamento do veículo consiste na simulação do sistema de um veículo autônomo em direção a um local predeterminado, representado por uma vaga de estacionamento.

Com as seguintes variáveis linguísticas e regras fuzzy: distância no eixo horizontal (x) e ângulo do veículo em relação ao eixo horizontal (Φ) como variáveis de entrada e ângulo da roda do veículo (θ) como de saída:

Base de regras na forma matricial

ϕ^{x}	LE	LC	CE	RC	RI
RB	PS	PM	PM	PB	PB
RU	NS	PS	PM	PB	PB
RV	NM	NS	PS	PM	PB
VE	NM	NM	ZE	PM	PM
LV	NB	NM	NS	PS	PM
LU	NB	NB	NM	NS	PS
LB	NB	NB	NM	NM	NS

Se (x = LE) e (
$$\phi$$
 = RB) en \tilde{t} ao (θ = PS).

3.1 Fuzzyficação de entrada

Foi utilizado os mesmos valores de entradas das notas de aula a fim de comparar com os resultados obtidos na simulação.

$$x = 65$$

 $\phi = 113$

Saídas obtidas:

Saída nota de aula	Saída simulação
≈10	11.1533

3.2 Testes de diferentes simulações

Х	phi	theta
10	200	-24,3162
90	-90	23,6666
70	0	24,4285
35	-10	9,6116

3.3 Modificações

Modificação:

Foi feita uma alteração do método de defuzzyficação de "centróide" para "bisector". Este método calcula a posição sob a curva onde as áreas de ambos os lados são iguais. Ele gera a ação que divide a área em duas regiões com a mesma área.

Resultados:

O sistema de controle fuzzy foi simulado utilizando outro métodos de defuzzyficação, e o resultado obtido foi comparado com o valor esperado. Observou-se que o sistema teve um pequeno desvio para esquerda, pois o método calcula a média da área do sistema e apresentou conformidade com as regras de inferência e conjuntos fuzzy previamente definidos.

3.4 Testes das modificações após diferentes simulações

х	phi	theta
10	200	-24,5833
90	-90	23,75
70	0	24,75
35	-10	7,9788

4. Conclusão

Em suma, o sistema de inferência fuzzy é uma técnica de controle flexível e adaptável que tem sido amplamente utilizada em diversos campos de engenharia e controle. Este estudo mostrou que o uso do sistema de inferência fuzzy é eficaz para controlar a potência de um guindaste e o sistema de estacionamento de um veículo autônomo. As modificações realizadas nos conjuntos fuzzy de entrada e saída, nos valores das variáveis de entrada, nas regras de inferência e no método de defuzzificação demonstraram ser fundamentais para uma melhor adaptação do sistema a diferentes situações, proporcionando um melhor desempenho em termos de precisão e estabilidade do controle. Portanto, o sistema de inferência fuzzy representa uma ferramenta promissora e eficaz para uma ampla gama de aplicações em controle e engenharia, proporcionando uma alternativa valiosa e flexível para os métodos tradicionais de controle.

5. Apêndice

Código guindaste:

https://colab.research.google.com/drive/1VhX2yS5aJ8CgCeF2TYUmndyQd1PZZ5h

Código guindaste modificações:

https://colab.research.google.com/drive/1_VHFf7gEnMOTilfilhcdJSCi1f-6Oc9U Código estacionamento:

https://colab.research.google.com/drive/1 0IM9cQ7ZpQVc5RQ7M37rIOG6WGJhK2

<u>S</u>

Código estacionamento modificações:

 $\underline{https://colab.research.google.com/drive/1hSw2rwRRPZ18d0_xzIOICl7p4r5adPu} \underline{G}$