Design and Analysis of Algorithm

Divide and Conquer strategy (Convex Hull Problem)

Lecture -25

Overview

• Learn the implementation techniques of "divide and conquer" in the context of the Convex Hull Problem with analysis.

Convex Hull

- Given a set of pins on a pinboard, and a rubber band around them.
- How does the rubber band look when it snaps tight? Just imagine.

Convex Hull

• Given a set of pins on a pinboard, and a rubber band around them.

How does the rubber band look when it snaps tight? Just

imagine.

• We represent the convex hull as the sequence of points on the convex hull polygon, in counter- clockwise order.

Convex Hull

• Definition:

- ➤ Informal: Convex hull of a set of points in plane is the shape taken by a rubber band stretched around the nails pounded into the plane at each point.
- Formal: The convex hull of a set of planar points is the smallest convex polygon containing all of the points.

Graham Scan

- Concept:
 - ➤ Start at point guaranteed to be on the hull. (the point with the minimum y value)
 - Sort remaining points by polar angles of vertices relative to the first point.
 - ➤ Go through sorted points, keeping vertices of points that have left turns and dropping points that have right turns.

Graham Scan

- Concept:
 - ➤ Start at point guaranteed to be on the hull. (the point with the minimum y value)
 - Sort remaining points by polar angles of vertices relative to the first point.
 - ➤ Go through sorted points, keeping vertices of points that have left turns and dropping points that have right turns.


```
GRAHAM-SCAN(Q)
    let p_0 be the point in Q with the minimum y-coordinate,
             or the leftmost such point in case of a tie
 2 let \langle p_1, p_2, \dots, p_m \rangle be the remaining points in Q,
             sorted by polar angle in counterclockwise order around p_0
             (if more than one point has the same angle, remove all but
             the one that is farthest from p_0)
    PUSH(p_0, S)
4 PUSH(p_1, S)
 5 PUSH(p_2, S)
6 for i \leftarrow 3 to m
         do while the angle formed by points NEXT-TO-TOP(S), TOP(S),
                       and p_i makes a nonleft turn
                 do Pop(S)
             Push(p_i, S)
10
    return S
```

```
GRAHAM-SCAN(Q)
    let p_0 be the point in Q with the minimum y-coordinate,
                                                                     O(n)
            or the leftmost such point in case of a tie
 2 let \langle p_1, p_2, \dots, p_m \rangle be the remaining points in Q,
            sorted by polar angle in counterclockwise order around p_0
                                                                    --O(nlogn)
            (if more than one point has the same angle, remove all but
            the one that is farthest from p_0)
 3 PUSH(p_0, S) ----- 0(1)
4 PUSH(p_1, S) ------------------------(1)
6 for i \leftarrow 3 to m
        do while the angle formed by points NEXT-TO-TOP(S), TOP(S),
                     and p_i makes a nonleft turn
                do Pop(S)
            Push(p_i, S)
10
    return S
```

```
GRAHAM-SCAN(Q)
    let p_0 be the point in Q with the minimum y-coordinate,
                                                                        \mathbf{0}(\mathbf{n})
            or the leftmost such point in case of a tie
 2 let \langle p_1, p_2, \dots, p_m \rangle be the remaining points in Q,
            sorted by polar angle in counterclockwise order around p_0
                                                                       --O(nlogn)
            (if more than one point has the same angle, remove all but
            the one that is farthest from p_0)
 3 PUSH(p_0, S) ----- 0(1)
4 PUSH(p_1, S) ------ 0(1)
6 for i \leftarrow 3 to m
         do while the angle formed by points NEXT-TO-TOP(S), TOP(S),
                      and p_i makes a nonleft turn
                do Pop(S)
            Push(p_i, S)
10
    return S
               T(n) = O(n) + \left[2T\left(\frac{n}{2}\right) + O(n)\right] + O(1) + O(1) + O(1) + O(n)
               T(n) = O(n \lg n) + O(n)
```

- Time complexity of Graham's scan:
 - $\triangleright O(n \log n)$ time required to sort of angles in step 2.
 - \triangleright O(n) time required for visiting n points.(step 6 to step 9)

Hence we can write the complexity of Graham's scan as:

$$T(n) = O(n \lg n) + O(n) = O(n \lg n)$$

- QuickHull uses a <u>Divide and Conquer</u> approach similar to the Quick Sort algorithm.
- Benchmarks showed it is quite fast in most average cases.
- Recursive nature allows a fast and yet clean implementation.

Initial Input

 The initial input to the algorithm is an arbitrary set of points as shown in the figure.

First Two Points on the Convex Hull

• Starting with the given set of points the first operation done is the calculation of the two maximal points on the horizontal axis. i.e.

- Next the line formed by these two points is used to divide the set into two different parts.
- Everything left from this line is considered onepart, everything right of it is considered another one.
- Both of these parts are processed recursively.

Max Distance Search

- To determine the next point on the convex hull a search for the point with the greatest distance from the dividing line is done.
- This point, together with the line start and end point forms a triangle.

Point Exclusion

- All points inside this triangle can not be part of the convex hull polygon, as they are obviously lying in the convex hull of the three selected points.
- Therefore, these points can be ignored for every further processing step.

- Having this in mind the recursive processing can take place again.
- Everything right of the triangle is used as one subset, everything leftof it as anotherone.

- Having this in mind the recursive processing can take place again.
- Everything right of the triangle is used as one subset, everything leftof it as anotherone.

- Having this in mind the recursive processing can take place again.
- Everything right of the triangle is used as one subset, everything leftof it as anotherone.

- Having this in mind the recursive processing can take place again.
- Everything right of the triangle is used as one subset, everything leftof it as anotherone.

- Having this in mind the recursive processing can take place again.
- Everything right of the triangle is used as one subset, everything leftof it as anotherone.

Abort Condition

- At some point the recursively processed point subset does only contain the start and end point of the dividing line.
- If this is case this line has to be a segment of the searched hull polygon and the recursion can come to an end.

Algorithm

Quick Hull(S)
//Find convex hull from the set S on n points Convex

Hull= $\{\}//$

- 1. Find left and right most points, say A & B and add \overline{AB} to Convex Hull.
- 2. Segment \overline{AB} divides the remaining (n-2) points into two groups S_1 and S_2 . Where S_1 are points in S that are on the right side of the oriented line from A to B. And S_2 are points in S that are on the right side of the oriented line from B to A.
- 3. Find Hull (S_1 , A, B)
- 4. Find Hull (S_2 , B, A)

Algorithm

```
Find \operatorname{Hull}(S_k, P, Q) //{Find points on Convex Hull from the set S_k points, that are on the right side of the oriented from P to Q}// If S_k has no point then return
```

- From the given set of points in S_k , find farthest point, say C. from segment PQ.
- Add point C to the Convex Hull at the location between P and Q. Three points P, Q, and C partition the remaining points of S_k into three subsets S_0 , S_1 , and S_2 .

Algorithm

- Where S_0 are points inside triangle PCQ, and S_1 are points on the right side of the oriented line from P to C, and S_2 are the points on the right side of the oriented line from C to Q.
- \triangleright Find Hull (S_1 , P, C)
- \triangleright Find Hull (S_2 , C, Q)

Time Complexity of Quickhull

- The running time of Quickhull, as with QuickSort, depends on how evenly the points are split at each stage.
- If we assume that the points are "evenly" distributed, the running time will solve to $O(n \log n)$.
- if the splits are not balanced, then the running time can easily increase to $O(n^2)$.

Time Complexity of Quickhull

$$T(n) = T(l) + T(n-l) + O(n)$$

Where,

- $T(l) \longrightarrow \text{Point in left side of AB.}$
- $T(n-l) \rightarrow \text{Point in right side of AB.}$
- $O(n) \rightarrow To$ find the farthest point.

Assume that T(I) contain (n/2) points and T(n-I) contain (n/2) points. Hence ,

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

After applying Master Method

$$T(n) = \Theta(n \lg n)$$
 in average case $T(n) = \Theta(n^2)$ in worst case.

