# 競馬への機械学習の応用

### 競馬とは?

- 騎手の乗った馬が着順を競い合うスポーツ
- その着順を予測する**ギャンブル**

### 競馬で勝つ! → 着順を予測したい!



### 競馬における機械学習で解くべき問題

#### 機械学習と競馬予想が相性の良い理由

- データ数が多い
  毎週土日に,各レース平均10頭,100レース
  毎週1000 頭分のデータ数
- 明確に順位という教師が与えられる レースが終わるごとに明確に、順位が数字で付けられ、予測に用いやすい

#### 目的

実際の競馬では、レース内の3着以内の、勝敗やその組み合わせを予想それ以外は、払い戻しに全く関係がない



その馬が、3着以内に入るか、入らないか(1,0)の予測

### データの確保

データは全て, netkeiba.com https://www.netkeiba.com/?rf=navi」から 2015~2020年の6年分スクレイピング

当日レース情報,過去レース情報,各馬情報,各騎手情報



レース結果

天皇賞(秋) GD WIN5 15:40発走 / 芝2000m (左) / 天候:曇 4回 東京 8日目 サラ系3歳以上 オープン 本賞金:15000,6000,3800,2300,15007 馬名 アーモンドアイ 2 フィエールマン クロノジェネシス 3 6 11 ダノンプレミアム キセキ ダイワキャグニー 12 ジナンボー 2 カデナ 10 スカーレットカラー ウインブライト 10 ブラストワンピース ダノンキングリー 12

順位 タイム 途中結果

## データの前処理

#### レース内の3着以外は予測しても意味がない

レース場所

天候

コースの距離

コースの向き

何頭出場するか

馬番

枠番

負担重量

馬体重

馬体重増減

性別

人気

etc...

データの整形 型変更・統一 欠損値埋め ダミー変数化 ラベルエンコーディング 特徴量追加 11R 天皇賞(秋) G WIN5

15:40発走 / 芝2000m (左) / 天候:曇 4回 東京 8日目 サラ系3歳以上 オープン 本賞金:15000,6000,3800,2300,1500万

|    | 1,342 |    |           |  |  |  |
|----|-------|----|-----------|--|--|--|
| 着順 | 枠     | 馬番 | 馬名        |  |  |  |
| 1  | 7     | 9  | アーモンドアイ   |  |  |  |
| 2  | 5     | 6  | フィエールマン   |  |  |  |
| 3  | 6     | 7  | クロノジェネシス  |  |  |  |
| 4  | 8     | 11 | ダノンプレミアム  |  |  |  |
| 5  | 6     | 8  | キセキ       |  |  |  |
| 6  | 3     | 3  | ダイワキャグニー  |  |  |  |
| 7  | 8     | 12 | ジナンボー     |  |  |  |
| 8  | 2     | 2  | カデナ       |  |  |  |
| 9  | 7     | 10 | スカーレットカラー |  |  |  |
| 10 | 5     | 5  | ウインブライト   |  |  |  |
| 11 | 1     | 1  | ブラストワンピース |  |  |  |
| 12 | 4     | 4  | ダノンキングリー  |  |  |  |

| 着順<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 2値化<br>1<br>1<br>1<br>0<br>0<br>0<br>0 |
|--------------------------------------------|----------------------------------------|
|                                            |                                        |
| •                                          | •                                      |
| •                                          | •                                      |
|                                            |                                        |

## 特徴量エンジニアリング例:レース内正規化

ある馬がレースで勝てるかどうかは, その馬の絶対的な能力ではなく, 同じレースの他の馬とのの相対的な能力で決まる

同じレースの馬のデータだけを集めて正規化

|              | 単勝    | 体重  | 体重変化 | 着順平均_5R   | 獲得賞金平均_5R | 勝率_1Y | 連対率_1Y | 複勝率_1Y |
|--------------|-------|-----|------|-----------|-----------|-------|--------|--------|
| 201503010101 | 2.0   | 484 | 8    | 4.800000  | 91.000000 | 0.043 | 0.093  | 0.143  |
| 201503010101 | 11.6  | 494 | -8   | 5.000000  | 83.333333 | 0.029 | 0.062  | 0.094  |
| 201503010101 | 250.2 | 472 | -6   | 12.500000 | 0.000000  | 0.020 | 0.040  | 0.067  |
| 201503010101 | 35.4  | 508 | 0    | 0.000000  | NaN       | 0.023 | 0.048  | 0.089  |
| 201503010102 | 108.6 | 482 | -2   | 8.000000  | 0.000000  | 0.017 | 0.047  | 0.081  |
| 201503010102 | 7.1   | 436 | -2   | 6.000000  | 0.000000  | 0.076 | 0.149  | 0.235  |
| 201503010102 | 75.2  | 456 | -1   | 14.000000 | 0.000000  | 0.020 | 0.040  | 0.067  |
| 201503010102 | 42.4  | 484 | -2   | 12.000000 | 0.000000  | 0.034 | 0.092  | 0.185  |
|              |       |     |      |           |           |       |        |        |

同じレース

#### レース内正規化



|     | features impor  | tance |     |
|-----|-----------------|-------|-----|
| 36  | オッズ_0           | 8088  |     |
| 254 | season_cos      | 8014  |     |
| 201 | 正規化_前走着差        | 7136  |     |
| 56  | <u> </u>        | 6757  |     |
| 249 | days_interval_0 | 6669  |     |
| 224 | 正規化_獲得賞金平均_allR | 6352  | ١ < |
| 3   | horse_id        | 6347  |     |
| 186 | 正規化_オッズ_0       | 5647  |     |

| _            | 正規化 単勝   | 正規化 体重   | 正規化 体重変化 | 正規化 着順平均 5R | 正規化 獲得賞金平均 5R | 正規化 勝率 1Y | 正規化 連対率 1Y | 正規化 複勝率 1Y |
|--------------|----------|----------|----------|-------------|---------------|-----------|------------|------------|
| 201503010101 | 0.000000 | 0.693878 | 0.900    | 0.300000    | 1.000000      | 0.500000  | 0.513812   | 0.572000   |
| 201503010101 | 0.038678 | 0.795918 | 0.100    | 0.312500    | 0.915751      | 0.337209  | 0.342541   | 0.376000   |
| 201503010101 | 1.000000 | 0.571429 | 0.200    | 0.781250    | 0.000000      | 0.232558  | 0.220994   | 0.268000   |
| 201503010101 | 0.134569 | 0.938776 | 0.500    | 0.000000    | NaN           | 0.267442  | 0.265193   | 0.356000   |
| 201503010102 | 0.813364 | 0.857143 | 0.500    | 0.571429    | 0.000000      | 0.000000  | 0.049645   | 0.076503   |
| 201503010102 | 0.033794 | 0.387755 | 0.500    | 0.428571    | 0.000000      | 0.855072  | 0.773050   | 0.918033   |
| 201503010102 | 0.556836 | 0.591837 | 0.625    | 1.000000    | 0.000000      | 0.043478  | 0.000000   | 0.000000   |
| 201503010102 | 0.304916 | 0.877551 | 0.500    | 0.857143    | 0.000000      | 0.246377  | 0.368794   | 0.644809   |

### モデル作成・パラメータ最適化

機械学習アルゴリズムは、LightGBMを選択

決定木アルゴリズムに基づいた勾配ブースティングの機械学習フレームワーク

- 1, 欠損値をそのまま扱える
- 2,特徴量のスケーリングが不要
- 3, feature importanceが確認できる
- 4, 精度が出やすくKaggleでもよく用いられている
- ハイパーパラメータは、Optunaを使って最適化
- いろいろなモデルを模索

#### 3着以内に入るか入らないか (分類) を予測するモデル

2着以内に入るか入らないか (分類) を予測するモデルタイム (回帰) を予測するモデルオッズを予測して (回帰) 能力と人気の乖離を予測するモデルレース内の馬の相対的な強さ (LambdaRank) を予測するモデル ↑のアンサンブルモデル

etc ···

### 結果·検証①

#### 2020/11/01天皇賞(秋)

予測



| 馬番 | 馬名        | 人気 | 予測確率  |
|----|-----------|----|-------|
| 9  | アーモンドアイ   | 1  | 1.0   |
| 7  | クロノジェネシス  | 2  | 0.691 |
| 6  | フィエールマン   | 5  | 0.541 |
| 8  | キセキ       | 4  | 0.452 |
| 4  | ダノンキングリー  | 3  | 0.399 |
| 11 | ダノンプレミアム  | 6  | 0.365 |
| 12 | ジナンボー     | 9  | 0.276 |
| 1  | ブラストワンピース | 7  | 0.27  |

#### 予測が当たっている!

結果

9 - 6 - 7

11R 3

天皇賞(秋) GD WIN5

15:40発走 / 芝2000m (左) / 天候:曇 4回 東京 8日目 サラ系 3歳以上 オープン 本賞金:15000,6000,3800,2300,15007

| 着順 | 枠 | 馬番 | 馬名        |
|----|---|----|-----------|
| 1  | 7 | 9  | アーモンドアイ   |
| 2  | 5 | 6  | フィエールマン   |
| 3  | 6 | 7  | クロノジェネシス  |
| 4  | 8 | 11 | ダノンプレミアム  |
| 5  | 6 | 8  | キセキ       |
| 6  | 3 | 3  | ダイワキャグニー  |
| 7  | 8 | 12 | ジナンボー     |
| 8  | 2 | 2  | カデナ       |
| 9  | 7 | 10 | スカーレットカラー |
| 10 | 5 | 5  | ウインブライト   |
| 11 | 1 | 1  | ブラストワンピース |
| 12 | 4 | 4  | ダノンキングリー  |

### 結果·検証②

テストデータ(2018年~2020年途中,約5000レース)の単勝の回収率と複勝の的中率



枚数を単勝回収率85%, 複勝的中率75%達成

### 今後やりたいこと

单勝回収率85%, 複勝的中率75%達成

### このままでは勝てない

- 完璧に予測が可能であるわけではない どのぐらいのモデルの予測で買うべきか?
- 人気がある馬では的中した際の払戻金は少ない どれぐらいのリターンが見込めたら買うべきか?
- ・ 馬券の買い方は, 自分次第(予測はできても, 買い方を間違える)

「複勝」は一番当てやすく,一番配当の低い賭け方複勝,単勝,ワイド,3連複,3連単,馬連,馬単

期待値の高い勝負を続ける必要がある!

数理最適化?



GAなどによって, 近似解を探索したい

期待値を考慮した, 馬券の買い方や組み合わせを最適化

## 概要とアピールポイント

#### 概要

- 機械学習を勉強したい + 好きな競馬に機械学習を応用したい
- 趣味で, 競馬の順位を予測するAIを自作
- テストデータ(2018年~2020年)で
  単勝回収率85%, 複勝的中率75%達成
- 数理最適化を使うことで, 期待値を考慮した買い目や賭け金の最適化に挑戦したい

### アピールポイント

- 独学でPython文法・機械学習を学んだ
- データのスクレイプ,特徴量加工,モデル作成,パラメータ最適化, 検証など全体を通して行った
- 2020年5月から8月までの短期間で開発した
- とりあえず最後予測できるまで作り上げることを意識した