	Nome
Cognome	
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 08/06/2023

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Nota: nelle domande da Q2 a Q6 una risposta giusta da 1 punto, una risposta sbagliata sottrae 0.25 punti. Si puó scegliere di non rispondere, nel qual caso non vengono dati né sottratti punti.

Q1 (5 punti). Nel seguito, sia code(-) una funzione iniettiva calcolabile che codifichi macchine di Turing come stringhe in {0,1}*. Per ciascuno dei seguenti linguaggi, indica se é (1) decidibile, (2) indecidibile ma riconoscibile, (3) non riconoscibile.

	Linguaggio	Decidicible	Indecidibile ma riconoscibile	Non riconoscibile
(a)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M si ferma sulla stringa 010}			
(b)	$\{y \in \{0,1\}^* \mid y = \text{code}(M) \text{ per qualche TM } M$ e M va sempre a destra durante la computazione $\}$			
(c)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M $ e M non si ferma su $\operatorname{code}(M)\}$			
(d)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M \text{ e} \\ M \text{ si ferma su almeno una stringa di lunghezza pari} \}$			
(e)	$\{\langle y, x \rangle \in \{0, 1\}^* \times \{0, 1\}^* \mid y = \operatorname{code}(M) \text{ e } x = \operatorname{code}(M') \text{ per qualche TM } M, M', \text{ e } M \text{ si ferma sulle stesse stringe di } M'\}$			

Q2 (5 punti). Indica (con un Si o No) a quali dei linguaggi di Q2 (indicati con (a), (b), (c) e (d)) é applicabile il teorema di Rice.

	Rice?								
(a)		(b)		(c)		(d)		(e)	

Q3 (5 punti). Per ciascuno dei seguenti linguaggi, indica se l'algoritmo noto di complessità minore é nella classe P o NP. Si assume che $\langle - \rangle$ sia una codifica di un oggetto del problema (grafo, strategia, formula, etc.) come stringa del linguaggio. Come in classe, assumiamo che calcolare $\langle - \rangle$ impieghi tempo al più polinomiale.

	Linguaggio	P	NP
	Considera il seguente problema riferito a grafi diretti G:		
(a)	$\{\langle G,s,t\rangle\mid \text{ esiste un percorso da } s \text{ a } t \text{ in } G\}$		
	Dato un grafo indiretto G , ricorda che un k -clique in G		
	é un sottografo G' di G con k nodi, tale che ogni coppia di		
(b)	nodi di G^{\prime} é collegata da un arco. Considera il linguaggio		
	$\{\langle G,k \rangle \mid G ext{ ha un } k ext{-clique}\}$		
	Dato un grafo indiretto G , ricorda che un k -clique in G		
	é un sottografo G' di G con k nodi, tale che ogni coppia di		
(c)	nodi di G' é collegata da un arco. Considera il linguaggio		
	$\{\langle G\rangle \mid G \text{ ha un 3-clique}\}$		
	Considera il seguente problema riferito a grafi indiretti G :		
(d)	$\{\langle G \rangle \mid \text{ esiste un percorso in } G \text{ che visita tutti i nodi esattamente una volta}\}$		
(e)	Considera il seguente problema riferito a grafi diretti G :		
	$\{\langle G,s,t\rangle\mid \text{ non esiste alcun percorso da }s\text{ a }t\text{ in }G\}$		

Cognome	Nome
Matricola	_ Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 08/06/2023

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Q4 (10 punti). Indica (senza dimostrazione) quali di queste affermazioni sono vere, quali sono false, e quali sono problemi aperti.

	Linguaggio	V	F	Aperto
(a)	Se L é in NP , allora anche il suo complemento é in NP .			
(b)	Sia L in P . Se $SAT \leq_p L$, allora $P = NP$.			
(c)	La classe dei linguaggi in P é chiusa sotto l'operazione di unione.			
(d)	3SAT é in P .			
(e)	PSPACE = NPSPACE.			
(f)	Esistono linguaggi L_1 e L_2 tali che $L_1 \leq L_2$ ma $L_1^- \not\leq L_2^-$, dove L^- indica il complemento di L .			
(g)	Esiste un linguaggio decidibile non in PSPACE.			
(h)	Esiste un linguaggio $EXPTIME$ -completo in P .			
(i)	$NP \subseteq PSPACE$.			
(j)	Se $P=NP$, allora il linguaggio della fermata $HALT$ é in P , dove: $HALT=\{\langle y,x\rangle\in\{0,1\}^\star\mid y=\operatorname{code}(M)\text{ per qualche TM }M\text{ e }M\text{ si ferma su }x\}$			

