Distributed Sparse Optimization

Wotao Yin

UCLA Math Dept.

2013/9/18 - Peking University

Zhimin Peng, Ming Yan, Wotao Yin. Parallel and Distributed Sparse Optimization, 2013

Optimization meets big data: Background

- ► Tech. advances in data gathering
- \implies rapid proliferation of massive data in many areas:
 - Internet (Google, Baidu, Facebook)
 - business (Walmart, SuNing, JingDong)
 - signal processing
 - · climate, cosmology
 - · medicine, medical imaging
- ▶ To make sense of the data, new computational methods must be introduced
- ► Structured solutions (e.g., sparse vector, low-rank matrix, ...) have grown enormously important in many areas: statistics (LASSO, sparse logistic regression), machine learning (sparse SVM and PCA), image processing (total variation), seismic imaging, compressive sensing, natural language processing, bioinformatics, and many more...

Massive data ⇒ parallel & distributed computing

- ▶ Many modern applications of sparse optimization has big data
- ▶ Many problems cannot be solved on a single workstation
- \Rightarrow Moving to parallel/distributed/cloud computing is a viable option

► This talk introduces parallel sparse optimization algorithms running on clusters or cloud computers

The basic idea

To explore two useful structures in the model and data:

1. Separability

- ▶ (block)-separable: $f(\mathbf{x}) = \sum_{s=1}^{S} f_s(\mathbf{x}_s)$
- ightharpoonup partial (block)-separable: $f(\mathbf{x}) = \sum_{s=1}^S f_s(\mathbf{x})$
- \blacktriangleright common, e.g., ℓ_1 , $\ell_{1,2}$, Huber, elastic net, square/logistic/hinge loss
- ⇒ enables computation divide and conquer, well known and widely used

2. Data is "nearly orthogonal" and solution is sparse

- ⇒ enables only updating a few coordinates each time
- ⇒ enables these coordinates are greedily selected (seemingly awkward for parallel computing, but not really)
- ⇒ intermediate points are sparse, cheaper updates, fewer total iterations

Related prior art

- ► ADMM (alternating direction method of multipliers)
 - dates back to the 50', recently becomes popular
 - based on operator-splitting and variable-splitting
 - solves many convex signal processing problems
 - its distributed versions scale poorly for big data (#.itr \sim #.splitting)

► Parallel coordinate descent²

- update multiple (blocks of) coordinates each time
- (typically) select coordinates cyclically or at random
- not tailored for nearly-orthogonal data and sparse solutions

This talk: parallelizes existing 1st-order algorithms and introduce an algorithm Solve LASSO with 170GB data in 1.7 minutes to 5-digit accuracy under \$1 cost

¹Boyd, Parikh, Chu, Peleato, and Eckstein [2011], Mota, Xavier, Aguiar, and Puschel [2012]

²Bradley, Kyrola, Bickson, Guestrin, and Guestrin [2011], Scherrer, Halappanavar, Tewari, and Haglin [2012a], Scherrer, Tewari, Halappanavar, and Haglin [2012b]

Model

Many sparse optimization model has the form

$$\min_{\mathbf{x}} \ \lambda \mathcal{R}(\mathbf{x}) + \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{b})$$

- $ightharpoonup \mathcal{R}(\mathbf{x})$ encourages \mathbf{x}^* to have structure, often non-smooth but simple
- $ightharpoonup \mathcal{L}(\mathbf{A}\mathbf{x},\mathbf{b})$ penalizes data fidelity loss, often differentiable

Consider

- ▶ very large A
- \blacktriangleright one, or both, of $\mathcal R$ and $\mathcal L$ is (partially) separable

First-order approaches:

- prox-linear: $\mathbf{x}^{k+1} \leftarrow \min \lambda \mathcal{R}(\mathbf{x}) + \langle \mathbf{A}^T \nabla \mathcal{L}(\mathbf{A}\mathbf{x}^k, \mathbf{b}), \mathbf{x} \rangle + \frac{1}{2\delta_k} \|\mathbf{x} \mathbf{x}^k\|^2$
- accelerated prox-linear
- dual / Bregman / linearized Bregman / ...
-

Common bottleneck: $\mathbf{A}^T \nabla \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{b})$

Row partition of A:

• let $A_{(i)}$ be the *i*th row block of A

- ullet compute $\mathbf{A}\mathbf{x}$: broadcast \mathbf{x} , if needed, and parallel $\mathbf{A}_{(i)}\mathbf{x}$
- compute $\mathbf{A}^T\mathbf{y}$: parallel $\mathbf{A}_{(i)}^T\mathbf{y}_{(i)}$ and reduce $\mathbf{A}^T\mathbf{y} = \sum_{i=1}^M \mathbf{A}_{(i)}^T\mathbf{y}_{(i)}$
- \Rightarrow compute $\mathbf{A}^T \nabla \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{b}) = \sum_{i=1}^M \mathbf{A}_{(i)}^T \nabla \mathcal{L}_i(\mathbf{A}_{(i)}\mathbf{x}, \mathbf{b}_i)$:
 - (1) broadcast x, if needed;
 - (2) parallel $\mathbf{A}_{(i)}^T \nabla \mathcal{L}_i(\mathbf{A}_{(i)}\mathbf{x}, \mathbf{b}_i)$;
 - (3) reduce $\mathbf{A}^T \nabla \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{b})$.

Bottleneck: $\mathbf{A}^T \nabla \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{b})$

Column partition of A:

• let A_i be the jth column block of A

- compute $\mathbf{A}\mathbf{x}$: parallel $\mathbf{A}_j\mathbf{x}_j$ and reduce $\sum_{j=1}^N \mathbf{A}_j\mathbf{x}_j$
- ullet compute $\mathbf{A}^T\mathbf{y}$: broadcast \mathbf{y} , if needed, and parallel $\mathbf{A}_j^T\mathbf{y}$
- \Rightarrow compute $\mathbf{A}^T \nabla \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{b})$ (left to the reader)

Bottleneck: $\mathbf{A}^T \nabla \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{b})$

Two-way block partition of A:

• let $A_{i,j}$ be the (i,j)th block of A

• compute Ax and A^Ty : mixed use of broadcast, parallel, and reduce \Rightarrow compute $A^T\nabla \mathcal{L}(Ax, \mathbf{b})$ (left to the reader)

Load balancing:

- blocks can have different sizes
- assign larger blocks to faster nodes for better load balance

Example: parallel/distributed ISTA for LASSO

LASSO

$$\min f(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

ISTA algorithm

$$\mathbf{x}^{k+1} = \operatorname{shrink}\left(\mathbf{x}^{k} - \delta_{k}\mathbf{A}^{T}\mathbf{A}\mathbf{x}^{k} + \delta_{k}\mathbf{A}^{T}\mathbf{b}, \, \lambda\delta_{k}\right)$$

Serial code

- 1: initialize $\mathbf{x} = \mathbf{0}$ and δ ;
- 2: pre-compute $\mathbf{A}^T \mathbf{b}$
- 3: while not converged do
- 4: $\mathbf{g} = \mathbf{A}^T \mathbf{A} \mathbf{x} \mathbf{A}^T \mathbf{b}$
- 5: $\mathbf{x} = \operatorname{shrink}(\mathbf{x} \delta \mathbf{g}, \lambda \delta);$
- 6: end while

Example: parallel/distributed ISTA for LASSO

distribute blocks of rows to M nodes

- 1: initialize $\mathbf{x} = \mathbf{0}$ and δ ;
- 2: $i = find_my_processor_id$
- 3: processor i loads $\mathbf{A}_{(i)}$
- 4: pre-compute $\delta \mathbf{A}^T \mathbf{b}$
- 5: while not converged do
- 6: processor i computes $\mathbf{c}_i = \mathbf{A}_{(i)}^T \mathbf{A}_{(i)} \mathbf{x}$
- 7: $\mathbf{c} = \mathsf{allreduce}(\mathbf{c}_i, \mathsf{SUM})$
- 8: $\mathbf{x} = \operatorname{shrink} \left(\mathbf{x}^k \delta \mathbf{c} + \delta \mathbf{A}^T \mathbf{b}, \lambda \delta \right);$
- 9: end while

- ullet assume $\mathbf{A} \in \mathbb{R}^{m imes n}$
- one allreduce per iteration
- speedup

$$pprox rac{1}{
ho/M + (1-
ho) + O(\log(M))}$$

- ρ is close to 1
- requires synchronization

Example: parallel ISTA for LASSO

distribute blocks of columns to N nodes

- 1: initialize $\mathbf{x} = \mathbf{0}$ and δ ;
- 2: $i = find_my_processor_id$
- 3: processor i loads \mathbf{A}_i
- 4: pre-compute $\delta \mathbf{A}_i^T \mathbf{b}$
- 5: while not converged do
- 6: processor i computes $\mathbf{y}_i = \mathbf{A}_i \mathbf{x}_i$
- 7: $\mathbf{y} = \mathsf{allreduce}(\mathbf{y}_i, \mathsf{SUM})$
- 8: processor i computes $\mathbf{z}_i = \mathbf{A}_i^T \mathbf{y}$
- 9: $\mathbf{x}_i^{k+1} = \operatorname{shrink} (\mathbf{x}_i^k \delta \mathbf{z}_i + \delta \mathbf{A}_i^T \mathbf{b}, \lambda \delta);$
- 10: end while

- one allreduce per iteration
- speedup

$$\approx \frac{1}{\rho/N + (1-\rho) + O(\frac{m}{n}\log(N))}$$

- ρ is close to 1
- requires synchronization
- if $m \ll n$, this approach is faster

Example of allreduce SUM

 $\log(N)$ layers, N parallel communications per layer

Example: parallel FISTA³

Algorithm P-FISTA

```
1: node j keeps \mathbf{A}_{j}, \mathbf{b}, initializes \mathbf{x}_{j}^{0} = \mathbf{x}_{j}^{1} = 0;

2: for k = 1, 2, \dots, K do

3: \bar{\mathbf{x}}_{j} \leftarrow \mathbf{x}_{j}^{k} + \frac{k-2}{k+1} \left( \mathbf{x}_{j}^{k} - \mathbf{x}_{j}^{k-1} \right);

4: \mathbf{w} \leftarrow \sum_{j=1}^{N} \mathbf{A}_{j} \bar{\mathbf{x}}_{j} by Allreduce;

5: \mathbf{y} \leftarrow \nabla \mathcal{L}(\mathbf{w}; \mathbf{b});

6: \mathbf{g}_{j} \leftarrow \mathbf{A}_{j}^{T} \mathbf{y};

7: \mathbf{x}_{j}^{k+1} \leftarrow \mathbf{prox}_{\lambda \| \cdot \|_{1}} (\bar{\mathbf{x}}_{j} - \delta_{k} \mathbf{g}_{j});

8: end for
```

Also: parallel algorithms for sparse logistic regression, sparse SVM, ...

³Beck and Teboulle [2009]

Block-coordinate descent

Definition: update one block of variables each time, keeping others fixed (a better name would be *block coordinate update*)

Advantage: each update is simple

Disadvantages:

- more iterations (with exceptions)
- may stuck at non-stationary points if problem is non-convex and/or non-smooth (with exceptions)

Selection rules: cycle (Gauss-Seidel), parallel (Jacobi), random, greedy

How many coordinates can be updated non-cooperatively?

► Example 1: (figures show 2D projection of a 3D problem)

1 coordinate update

3 coordinate update

► Example 2:

3 coordinate update

How many coordinates can be updated non-cooperatively?

P (#. non-cooperative coordinate updated) depends on **block spectral radius**

$$\rho_P = \max_{\mathbf{M} \in \mathcal{M}} \rho(\mathbf{M}),$$

where \mathcal{M} is the set of all $P \times P$ submatrices that we can obtain from $\mathbf{A}^T \mathbf{A}$ corresponding to selecting exactly one column from each of the P blocks

Theorem

Assume each column of **A** has unit 2-norm. If $\rho_P < 2$, then any P parallel (prox-linear) updates per iteration gives

$$\mathcal{F}(\mathbf{x} + \mathbf{d}) - \mathcal{F}(\mathbf{x}) \le \frac{\rho_P - 2}{2} \beta \|\mathbf{d}\|_2^2$$

moreover,

$$\mathcal{F}(\mathbf{x}^k) - \mathcal{F}(\mathbf{x}^*) \le \frac{2C^2 \left(2L + \beta \sqrt{\frac{N}{P}}\right)^2}{(2 - \rho_P)\beta} \cdot \frac{1}{k}.$$

(see our paper for parameter definitions and proof; partial credits to Scherrer, Tewari, Halappanavar, and Haglin [2012b])

Greedy coordinate selection

Greed is good for sparse optimization!

- select P coordinates based on some merit (e.g., most descent, largest step)
- widely used in matching pursuit (build solution by coordinate)
- applied to sparse optimization with P=1 by Li and Osher [2009]
- we extend it to $P \ge 2$ (or dynamic P) in parallel
- if solution is sparse, then exceptionally effective!
 - \blacktriangleright coordinates in $supp(\mathbf{x}^*)$ are selected and updated
 - ▶ most zero variables stay zero the whole time
 - ightharpoonup since $\mathbf{x}^k \mathbf{x}^*$ is sparse, objective is effectively strongly convex
 - ▶ "problem dimension" is reduced ⇒ #.iterations is reduced
 - ► caution: selection requires "sorting", which can be expensive

GRock: greedy coordinate-block descent

Consider:

$$\min \lambda \|\mathbf{x}\|_1 + f(\mathbf{A}\mathbf{x} - \mathbf{b})$$

lacktriangledown decompose $\mathbf{A}\mathbf{x} = \sum_{i} \mathbf{A}_{i}\mathbf{x}_{j}$; block \mathbf{A}_{j} and \mathbf{x}_{j} are kept on node j

Parallel GRock:

1. (parallel) compute coordinate-merit, for each coordinate i

$$d_i = \operatorname*{arg\,min}_d \ \lambda \cdot r(x_i + d) + g_i d + \frac{1}{2} d^2, \quad \text{where } g_i = \mathbf{A}_{(i)}^T \nabla \mathbf{f} (\mathbf{A} \mathbf{x} - \mathbf{b})$$

2. (parallel) compute block-merit, for each block i

$$m_i = \max\{|d| : d \text{ is an element of } \mathbf{d}_i\}$$

 s_i denotes the index of the maximal coordinate in block j

- 3. (allreduce) $\mathcal{P} \leftarrow \text{select } P \text{ blocks with largest } m_i, \ 2 \leq P \leq N$
- 4. (parallel) update $x_{s_i} \leftarrow x_{s_i} + d_{s_i}$ for all $j \in \mathcal{P}$
- 5. (allreduce) update Ax

Compare different selection rules

- LASSO test with $\mathbf{A} \in \mathbb{R}^{512 \times 1024}$, N = 64 column blocks
- GRock uses P = 8 updates each iteration
- greedy CD^4 uses P=1
- mixed CD⁵ selects P = 8 random blocks and best coordinate

⁴Li and Osher [2009]

⁵Scherrer, Tewari, Halappanavar, and Haglin [2012b]

Numerical comparison

 $\begin{cal}Compared algorithms: flops+communication, per iteration, N parallel nodes \\ \end{cal}$

- parallel FISTA⁶: $O(\frac{mn}{N}) + O(n \log N)$
- parallel dual ADMM: $O(\frac{mn}{N} + 2m^2) + O(mN \log N)$, matrix factor cache
- GRock: $O(\frac{mn}{N} + Pm) + O(n \log N + N \log N)$

At each iteration

- ▶ parallel FISTA and GRock have comparable per-iteration cost
- ▶ parallel dual-ADMM needs more communication

⁶Beck and Teboulle [2009]

Test on cluster STIC @ Rice U.

Hardware:

- 170 Appro Greenblade E5530 nodes each with two quad-core 2.4GHz Xeon (Nahalem) CPUs
- each node has 12GB of memory shared by all 8 cores
- ullet # of processes used on each node = 8

Test dataset:

	${f A}$ type	${f A}$ size	λ	sparsity of \mathbf{x}^*
dataset I	Gaussian	1024×2048	0.1	100
dataset II	Gaussian	2048×4096	0.01	200

iterations vs cores

Note: we set P = number of cores

time vs cores

Note: we set P = number of cores

Big data LASSO on Amazon EC2

Amazon EC2 is an elastic, pay-as-you-use cluster

Advantage: no hardware investment, everyone can have an account

Test dataset

- A dense matrix, 20 billion entries, and 170GB size
- x: 200K entries, 4K nonzeros, Gaussian values

Requested system from Amazon

- 20 "high-memory quadruple extra-large instances"
- each instance has 8 cores and 60GB memory

Code

• written in C using GSL (for matrix-vector multiplication) and MPI

parallel versions of dual-ADMM, FISTA, GRock

p D-ADMM	p FISTA	GRock
n/a	1.6	n/a
51	n/a	n/a
105	40	1.7
2500	2500	104
30.7	9.5	0.5
1E-1	1E-3	1E-5
156	41.6	1.7
\$85	\$22.6	\$0.93
	n/a 51 105 2500 30.7 1E-1 156	n/a 1.6 51 n/a 105 40 2500 2500 30.7 9.5 1E-1 1E-3 156 41.6

- ADMM performance is sensitive to penalty parameter β , which we picked as the best out of only a few trials (we cannot afford more)
- parallel dual-ADMM and FISTA were capped at 2500 iterations
- GRock used adaptive P and stopped at relative error 1E-5

Summary

- ▶ Big data applications requires parallel and distributed computing
- ► Separability structure enables parallel algorithms
- ▶ Greed is good (for sparse solutions) and greedy algorithms are parallelizable
- ▶ Algorithms are rather simple and must be simple to parallelize

Overheads of parallelism

- computing overhead: start up time, synchronization wait time, data communication time, termination (data collection time)
- I/O overhead: slow read and write of non-local data
- algorithm overhead: extra variables, data duplication
- coding overhead: language, library, operating system, debug, maintenance

Software codes can be found in the author's website.

Funding agencies: NSF, DoD

Acknowledgements: Qing Ling (USTC) and Zaiwen Wen (PKU)

References:

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends in Machine Learning*, 3(1):1–122, 2011.

João FC Mota, João MF Xavier, Pedro MQ Aguiar, and Markus Puschel. Distributed basis pursuit. Signal Processing, IEEE Transactions on, 60(4):1942–1956, 2012.

- Joseph K. Bradley, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Carlos Guestrin. Parallel coordinate descent for ℓ_1 -regularized loss minimization. In *ICML*, pages 321–328, 2011.
- Chad Scherrer, Mahantesh Halappanavar, Ambuj Tewari, and David J Haglin. Scaling up coordinate descent algorithms for large ℓ_1 regularization problems. Technical report, Pacific Northwest National Laboratory (PNNL), Richland, WA (US), 2012a.
- C. Scherrer, A. Tewari, M. Halappanavar, and D. Haglin. Feature clustering for accelerating parallel coordinate descent. In NIPS, pages 28–36, 2012b.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Y. Li and S. Osher. Coordinate descent optimization for ℓ_1 minimization with application to compressed sensing: a greedy algorithm. *Inverse Problems and*

Imaging, 3(3):487-503, 2009.