Linear independence and different subspaces

Rohit Budhiraja, IITK

Applied Linear Algebra for Wireless Communications

Recap and agenda for today's class

- Discussed the following in the last lecture
 - Systematically calculate complete solution of $A\mathbf{x} = \mathbf{b}$

Recap and agenda for today's class

- Discussed the following in the last lecture
 - Systematically calculate complete solution of $A\mathbf{x} = \mathbf{b}$
- Discuss the linear independence, column space and row space today
 - Chapter 3.4 and 3.5 of the book

ullet Illustrate linear independence (and dependence) with three vectors in ${f R}^3$

• If three vectors are not in the same plane, they are linearly independent

- If three vectors are not in the same plane, they are linearly independent
 - No combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ gives zero except $0\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3$ i.e.,

- If three vectors are not in the same plane, they are linearly independent
 - No combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ gives zero except $0\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3$ i.e.,
 - $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + \dots + x_n\mathbf{v}_n = 0$ only happens when $x_1, x_2, \dots, x_n = 0$

- If three vectors are not in the same plane, they are linearly independent
 - No combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ gives zero except $0\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3$ i.e.,
 - $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + \dots + x_n\mathbf{v}_n = 0$ only happens when $x_1, x_2, \dots, x_n = 0$
- $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ are in the same plane, they are dependent $\mathbf{w}_1 + \mathbf{w}_3 = \mathbf{w}_2$

- If three vectors are not in the same plane, they are linearly independent
 - No combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ gives zero except $0\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3$ i.e.,
 - $x_1\mathbf{v}_1+x_2\mathbf{v}_2+x_3\mathbf{v}_3+\ldots x_n\mathbf{v}_n=0$ only happens when $x_1,x_2,\ldots,x_n=0$
- ullet ${f w}_1,{f w}_2,{f w}_3$ are in the same plane, they are dependent ${f w}_1+{f w}_3={f w}_2$
 - Three vectors in R² cannot be independent

- If three vectors are not in the same plane, they are linearly independent
 - No combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ gives zero except $0\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3$ i.e.,
 - $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + \dots + x_n\mathbf{v}_n = 0$ only happens when $x_1, x_2, \dots, x_n = 0$
- ullet ${f w}_1,{f w}_2,{f w}_3$ are in the same plane, they are dependent ${f w}_1+{f w}_3={f w}_2$
 - Three vectors in R² cannot be independent
 - Matrix A with these 3 columns vector must have a free variable

- If three vectors are not in the same plane, they are linearly independent
 - No combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ gives zero except $0\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3$ i.e.,
 - $x_1\mathbf{v}_1+x_2\mathbf{v}_2+x_3\mathbf{v}_3+\ldots x_n\mathbf{v}_n=0$ only happens when $x_1,x_2,\ldots,x_n=0$
- ullet $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ are in the same plane, they are dependent $\mathbf{w}_1 + \mathbf{w}_3 = \mathbf{w}_2$
 - Three vectors in R² cannot be independent
 - Matrix A with these 3 columns vector must have a free variable
 - Ax = 0 will have special soltn

Illustrate linear independence (and dependence) with three vectors in R³

- If three vectors are not in the same plane, they are linearly independent
 - No combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ gives zero except $0\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3$ i.e.,
 - $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3 + \dots + x_n \mathbf{v}_n = 0$ only happens when $x_1, x_2, \dots, x_n = 0$
- $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ are in the same plane, they are dependent $\mathbf{w}_1 + \mathbf{w}_3 = \mathbf{w}_2$
 - Three vectors in R² cannot be independent
 - Matrix A with these 3 columns vector must have a free variable
 - Ax = 0 will have special soltn
 - Any set of n vectors in \mathbb{R}^m must be linearly dependent if n > m

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = R$$

• Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = R$$

• $\mathbf{x}_n = (3, 1, 0)$ is the special solution, columns of this A are dependent

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = R$$

- $\mathbf{x}_n = (3, 1, 0)$ is the special solution, columns of this A are dependent
- For an $m \times n$ matrix A, ways to check linear independence of columns

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = R$$

- $\mathbf{x}_n = (3, 1, 0)$ is the special solution, columns of this A are dependent
- For an $m \times n$ matrix A, ways to check linear independence of columns
 - Its columns are linearly independent when only solution to $A\mathbf{x} = 0$ is $\mathbf{x} = 0$

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = R$$

- $\mathbf{x}_n = (3, 1, 0)$ is the special solution, columns of this A are dependent
- For an $m \times n$ matrix A, ways to check linear independence of columns
 - Its columns are linearly independent when only solution to $A\mathbf{x} = 0$ is $\mathbf{x} = 0$
 - Its columns are independent exactly when the rank is r = n

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = R$$

- $\mathbf{x}_n = (3, 1, 0)$ is the special solution, columns of this A are dependent
- For an $m \times n$ matrix A, ways to check linear independence of columns
 - Its columns are linearly independent when only solution to $A\mathbf{x} = 0$ is $\mathbf{x} = 0$
 - Its columns are independent exactly when the rank is r = n
 - There are n pivots and no free variables, only x = 0 is in the N(A)

• A set of vectors spans a space if their linear combinations fill the space

- A set of vectors spans a space if their linear combinations fill the space
- $oldsymbol{v}_1=egin{bmatrix}1\\0\end{bmatrix}$ and $oldsymbol{v}_2=egin{bmatrix}0\\1\end{bmatrix}$ span the full two-dimensional $oldsymbol{R}^2$ space

- A set of vectors spans a space if their linear combinations fill the space
- ullet ${f v}_1=egin{bmatrix}1\\0\end{bmatrix}$ and ${f v}_2=egin{bmatrix}0\\1\end{bmatrix}$ span the full two-dimensional ${f R}^2$ space
- $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$ span the full two-dimensional \mathbf{R}^2 space

- A set of vectors spans a space if their linear combinations fill the space
- ullet ${f v}_1=egin{bmatrix}1\\0\end{bmatrix}$ and ${f v}_2=egin{bmatrix}0\\1\end{bmatrix}$ span the full two-dimensional ${f R}^2$ space
- $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$ span the full two-dimensional \mathbf{R}^2 space
- ullet ${f v}_1=egin{bmatrix}1\\1\end{bmatrix}$ and ${f v}_2=egin{bmatrix}-1\\1\end{bmatrix}$ span only a line in ${f R}^2$

• Column space of A consists of all combinations $A\mathbf{x}$ of columns

- Column space of A consists of all combinations Ax of columns
 - ullet Column space is spanned by the columns, is the subspace of ${f R}^m$

- Column space of A consists of all combinations Ax of columns
 - ullet Column space is spanned by the columns, is the subspace of ${\bf R}^m$
- ullet Row space is spanned by the rows, is the subspace of ${f R}^n$

- Column space of A consists of all combinations Ax of columns
 - ullet Column space is spanned by the columns, is the subspace of ${f R}^m$
- Row space is spanned by the rows, is the subspace of \mathbf{R}^n
 - Row space of A is $C(A^T)$. It is the column space of A^T

- Column space of A consists of all combinations Ax of columns
 - ullet Column space is spanned by the columns, is the subspace of ${f R}^m$
- Row space is spanned by the rows, is the subspace of \mathbf{R}^n
 - Row space of A is $C(A^T)$. It is the column space of A^T
- Describe the column space and the row space of

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 7 \\ 3 & 5 \end{bmatrix}, A^{\mathsf{T}} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 7 & 5 \end{bmatrix}$$

- Column space of A consists of all combinations Ax of columns
 - \bullet Column space is spanned by the columns, is the subspace of \mathbf{R}^m
- Row space is spanned by the rows, is the subspace of \mathbf{R}^n
 - Row space of A is $C(A^T)$. It is the column space of A^T
- Describe the column space and the row space of

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 7 \\ 3 & 5 \end{bmatrix}, A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 7 & 5 \end{bmatrix}$$

• C(A) is the plane in \mathbb{R}^3 spanned by the two columns of A

- Column space of A consists of all combinations $A\mathbf{x}$ of columns
 - \bullet Column space is spanned by the columns, is the subspace of \mathbf{R}^m
- ullet Row space is spanned by the rows, is the subspace of ${f R}^n$
 - Row space of A is $C(A^T)$. It is the column space of A^T
- Describe the column space and the row space of

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 7 \\ 3 & 5 \end{bmatrix}, A^{\mathsf{T}} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 7 & 5 \end{bmatrix}$$

- C(A) is the plane in \mathbb{R}^3 spanned by the two columns of A
- $C(A^T)$ is spanned by the three rows of A, and is all of \mathbf{R}^2

• A basis for a vector space is a sequence of vectors with two properties

- A basis for a vector space is a sequence of vectors with two properties
 - They are linearly independent and they span the space

- A basis for a vector space is a sequence of vectors with two properties
 - They are linearly independent and they span the space
- Example: Columns of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ produce the "standard basis" for \mathbf{R}^2

- A basis for a vector space is a sequence of vectors with two properties
 - They are linearly independent and they span the space
- Example: Columns of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ produce the "standard basis" for \mathbf{R}^2
 - ullet Two basis vector are independent and they span ${f R}^2$

- A basis for a vector space is a sequence of vectors with two properties
 - They are linearly independent and they span the space
- Example: Columns of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ produce the "standard basis" for \mathbf{R}^2
 - Two basis vector are independent and they span R²
- Columns of every invertible $n \times n$ matrix give a basis for \mathbb{R}^n

- A basis for a vector space is a sequence of vectors with two properties
 - They are linearly independent and they span the space
- Example: Columns of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ produce the "standard basis" for \mathbf{R}^2
 - Two basis vector are independent and they span R²
- Columns of every invertible $n \times n$ matrix give a basis for \mathbb{R}^n

- A basis for a vector space is a sequence of vectors with two properties
 - They are linearly independent and they span the space
- Example: Columns of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ produce the "standard basis" for \mathbf{R}^2
 - Two basis vector are independent and they span R²
- Columns of every invertible $n \times n$ matrix give a basis for \mathbb{R}^n

• Only solution to $A\mathbf{x} = \mathbf{0}$ is $x = A^{-1}\mathbf{0} = \mathbf{0}$

- A basis for a vector space is a sequence of vectors with two properties
 - They are linearly independent and they span the space
- Example: Columns of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ produce the "standard basis" for \mathbf{R}^2
 - Two basis vector are independent and they span R²
- Columns of every invertible $n \times n$ matrix give a basis for \mathbb{R}^n

- Only solution to $A\mathbf{x} = \mathbf{0}$ is $x = A^{-1}\mathbf{0} = \mathbf{0}$
- Columns are independent, they span the whole space \mathbf{R}^n

- A basis for a vector space is a sequence of vectors with two properties
 - They are linearly independent and they span the space
- Example: Columns of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ produce the "standard basis" for \mathbf{R}^2
 - Two basis vector are independent and they span R²
- Columns of every invertible $n \times n$ matrix give a basis for \mathbb{R}^n

- Only solution to $A\mathbf{x} = \mathbf{0}$ is $x = A^{-1}\mathbf{0} = \mathbf{0}$
- ullet Columns are independent, they span the whole space ${\bf R}^n$
 - Thus R_n has infinitely many different bases

- A basis for a vector space is a sequence of vectors with two properties
 - They are linearly independent and they span the space
- Example: Columns of $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ produce the "standard basis" for \mathbf{R}^2
 - Two basis vector are independent and they span R²
- Columns of every invertible $n \times n$ matrix give a basis for \mathbb{R}^n

- Only solution to $A\mathbf{x} = \mathbf{0}$ is $x = A^{-1}\mathbf{0} = \mathbf{0}$
- ullet Columns are independent, they span the whole space ${f R}^n$
 - Thus R_n has infinitely many different bases
- Vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are a basis for \mathbf{R}^n when they are the columns of an $n \times n$ invertible matrix

• Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)
 - Second column of A would be a different basis for the same C(A)

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)
 - Second column of A would be a different basis for the same C(A)
- Notice that the pivot column (1,0) of R ends in zero

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)
 - Second column of A would be a different basis for the same C(A)
- Notice that the pivot column (1,0) of R ends in zero
 - This column is a basis for the C(R), but it doesn't belong to C(A)

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)
 - Second column of A would be a different basis for the same C(A)
- Notice that the pivot column (1,0) of R ends in zero
 - This column is a basis for the C(R), but it doesn't belong to C(A)
 - C(A) and C(R) are different, their bases are different

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)
 - Second column of A would be a different basis for the same C(A)
- Notice that the pivot column (1,0) of R ends in zero
 - This column is a basis for the C(R), but it doesn't belong to C(A)
 - C(A) and C(R) are different, their bases are different
- Pivot rows of A are a basis for its row space $C(A^T)$

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)
 - Second column of A would be a different basis for the same C(A)
- Notice that the pivot column (1,0) of R ends in zero
 - This column is a basis for the C(R), but it doesn't belong to C(A)
 - C(A) and C(R) are different, their bases are different
- Pivot rows of A are a basis for its row space $C(A^T)$
 - Also, $C(A^T)$ is the same as $C(R^T)$

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)
 - Second column of A would be a different basis for the same C(A)
- Notice that the pivot column (1,0) of R ends in zero
 - This column is a basis for the C(R), but it doesn't belong to C(A)
 - C(A) and C(R) are different, their bases are different
- Pivot rows of A are a basis for its row space $C(A^T)$
 - Also, $C(A^T)$ is the same as $C(R^T)$
 - It contains (2, 4) and (1, 2) and all other multiples of those vectors

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)
 - Second column of A would be a different basis for the same C(A)
- Notice that the pivot column (1,0) of R ends in zero
 - This column is a basis for the C(R), but it doesn't belong to C(A)
 - C(A) and C(R) are different, their bases are different
- Pivot rows of A are a basis for its row space $C(A^T)$
 - Also, $C(A^T)$ is the same as $C(R^T)$
 - It contains (2, 4) and (1, 2) and all other multiples of those vectors
- As always, there are infinitely many bases to choose from

- Consider the following matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ reduces to $R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
- Pivot columns of A are a basis for its column space
 - Column 1 of A is the pivot column, which alone is a basis for C(A)
 - Second column of A would be a different basis for the same C(A)
- Notice that the pivot column (1,0) of R ends in zero
 - This column is a basis for the C(R), but it doesn't belong to C(A)
 - C(A) and C(R) are different, their bases are different
- Pivot rows of A are a basis for its row space $C(A^T)$
 - Also, $C(A^T)$ is the same as $C(R^T)$
 - It contains (2, 4) and (1, 2) and all other multiples of those vectors
- As always, there are infinitely many bases to choose from
 - Pick nonzero rows of R (rows with a pivot)

• Number of vectors, in a basis is the "dimension" of the space

- Number of vectors, in a basis is the "dimension" of the space
- C(A) and $C(A^T)$ for last example have dimension 1

- Number of vectors, in a basis is the "dimension" of the space
- C(A) and $C(A^T)$ for last example have dimension 1
 - C(A) and $C(A^T)$ of a $m \times n$ matrix A have the same dimension i.e., r (rank)

- Number of vectors, in a basis is the "dimension" of the space
- C(A) and $C(A^T)$ for last example have dimension 1
 - C(A) and $C(A^T)$ of a $m \times n$ matrix A have the same dimension i.e., r (rank)
- Recall C(A) is subspace in \mathbf{R}^m

- Number of vectors, in a basis is the "dimension" of the space
- ullet C(A) and $C(A^T)$ for last example have dimension 1
 - C(A) and $C(A^T)$ of a $m \times n$ matrix A have the same dimension i.e., r (rank)
- Recall C(A) is subspace in \mathbb{R}^m
 - N(A) is calculated by solving $A\mathbf{x} = 0$ and it is a subspace in \mathbf{R}^n

- Number of vectors, in a basis is the "dimension" of the space
- C(A) and $C(A^T)$ for last example have dimension 1
 - C(A) and $C(A^T)$ of a $m \times n$ matrix A have the same dimension i.e., r (rank)
- Recall C(A) is subspace in \mathbb{R}^m
 - N(A) is calculated by solving Ax = 0 and it is a subspace in \mathbb{R}^n
 - Dimension of N(A) is then n-r

- Number of vectors, in a basis is the "dimension" of the space
- C(A) and $C(A^T)$ for last example have dimension 1
 - C(A) and $C(A^T)$ of a $m \times n$ matrix A have the same dimension i.e., r (rank)
- Recall C(A) is subspace in \mathbb{R}^m
 - N(A) is calculated by solving $A\mathbf{x} = 0$ and it is a subspace in \mathbf{R}^n
 - Dimension of N(A) is then n-r
- $C(A^T)$ is subspace in \mathbb{R}^n

- Number of vectors, in a basis is the "dimension" of the space
- C(A) and $C(A^T)$ for last example have dimension 1
 - C(A) and $C(A^T)$ of a $m \times n$ matrix A have the same dimension i.e., r (rank)
- Recall C(A) is subspace in \mathbb{R}^m
 - N(A) is calculated by solving $A\mathbf{x} = 0$ and it is a subspace in \mathbf{R}^n
 - Dimension of N(A) is then n-r
- $C(A^T)$ is subspace in \mathbf{R}^n
 - Left null space $N(A^T)$ is calculated by solving $A^T \mathbf{y} = 0$

- Number of vectors, in a basis is the "dimension" of the space
- C(A) and $C(A^T)$ for last example have dimension 1
 - C(A) and $C(A^T)$ of a $m \times n$ matrix A have the same dimension i.e., r (rank)
- Recall C(A) is subspace in \mathbb{R}^m
 - N(A) is calculated by solving Ax = 0 and it is a subspace in \mathbb{R}^n
 - Dimension of N(A) is then n-r
- $C(A^T)$ is subspace in \mathbf{R}^n
 - Left null space $N(A^T)$ is calculated by solving $A^T \mathbf{y} = 0$
 - It is a subspace in \mathbf{R}^m and its dimension is m-r

• Conside the following matrix

$$R = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ with } m = 3, \ n = 5 \text{ and } r = 2$$

• Conside the following matrix

$$R = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 with $m = 3$, $n = 5$ and $r = 2$

• Pivot rows 1 and 2, first two rows are a basis

• Conside the following matrix

$$R = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 with $m = 3$, $n = 5$ and $r = 2$

- Pivot rows 1 and 2, first two rows are a basis
- Row space contains combinations of all three rows
 - Third row adds nothing new. So rows 1 and 2 span $C(R^T)$
 - $C(R^T)$ has dimension 2, matching the rank

• Conside the following matrix

$$R = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ with } m = 3, \ n = 5 \text{ and } r = 2$$

- Pivot rows 1 and 2, first two rows are a basis
- Row space contains combinations of all three rows
 - Third row adds nothing new. So rows 1 and 2 span $C(R^T)$
 - $C(R^T)$ has dimension 2, matching the rank
- Pivot columns 1 and 4, these two columns form a basis
 - Other columns adds nothing new. So column 1 and 4 span C(R)
 - C(R) has dimension 2, matching the rank

• Consider the following matrix

$$R = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ with } M = 3, n = 5 \text{ and } r = 2$$

• Consider the following matrix

$$R = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ with } M = 3, n = 5 \text{ and } r = 2$$

• N(R) has dimension n-r=5-2 with n-r=3 free variables x_2,x_3,x_5

• Consider the following matrix

$$R = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ with } M = 3, \ n = 5 \text{ and } r = 2$$

• N(R) has dimension n-r=5-2 with n-r=3 free variables x_2, x_3, x_5

$$\bullet \ \mathbf{s}_1 = \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{s}_3 = \begin{bmatrix} -5 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \ \mathbf{s}_5 = \begin{bmatrix} -7 \\ 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$
 are special solutions

• Consider the following matrix

$$R = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ with } M = 3, \ n = 5 \text{ and } r = 2$$

• N(R) has dimension n-r=5-2 with n-r=3 free variables x_2,x_3,x_5

$$\bullet \ \mathbf{s}_1 = \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{s}_3 = \begin{bmatrix} -5 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \ \mathbf{s}_5 = \begin{bmatrix} -7 \\ 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$
 are special solutions

• $N(R^T)$ has dimension m-r=3-2=1

