Worksheet 4, Oct 1, 2020

Norms and condition numbers

1. Compute $||A||_{\infty}$ and $||A||_{1}$ for the matrix

$$A = \begin{bmatrix} 1 & -1 & 2 & -3 \\ 7 & 2 & 3 & 5 \\ 2 & -4 & 3 & 8 \\ -3 & 5 & 3 & 1 \end{bmatrix}$$

2. Find $||A||_2$ for the matrix

$$A = \begin{bmatrix} 1 & \varepsilon \\ \varepsilon & 1 \end{bmatrix},$$

where $\varepsilon \in (0,1)$ (Hint: for symmetric matrices A, the eigenvalues of A^TA are simply the squares of the eigenvalues of A).

3. Continued from previous item: Suppose that you have two systems

$$x_1 + \varepsilon x_2 = b_1$$
 and $\tilde{x}_1 + \varepsilon \tilde{x}_2 = \tilde{b}_1$ $\varepsilon x_1 + x_2 = b_2$ $\varepsilon \tilde{x}_1 + \tilde{x}_2 = \tilde{b}_2$

where $\tilde{\boldsymbol{b}}=(\tilde{b}_1,\tilde{b}_2)^T$ is approximately equal to $\boldsymbol{b}=(b_1,b_2)^T$, with a 5% relative error, that is $\frac{\|\tilde{\boldsymbol{b}}-\boldsymbol{b}\|_2}{\|\boldsymbol{b}\|_2}\leq 0.05$. Find an upper bound for the relative error $\frac{\|\tilde{\boldsymbol{x}}-\boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2}$ where $\tilde{\boldsymbol{x}}=(\tilde{x}_1,\tilde{x}_2)^T$ and $\boldsymbol{x}=(x_1,x_2)^T$. This upper bound will depend on ε .

- 4. Show that for symmetric positive definite (i.e., all eigenvalues are positive) matrices $A \in \mathbb{R}^{n \times n}$, the 2-norm condition number can also be computed as the ratio between the largest and the smallest eigenvalue of A, i.e.: $\kappa_2(A) = \lambda_{\max}/\lambda_{\min}$. Hint: Think about what the largest eigenvalue of A^{-1} is.
- 5. The Hilbert matrix $H \in \mathbb{R}^{n \times n}$ is a matrix with entries

$$h_{ij} = \frac{1}{i+j-1}.$$

Using MATLAB or Python, compute the 2-norm based condition numbers for n=3,5,10,20,25. Let's consider a relative right hand side perturbation $\delta \boldsymbol{b}$ of a linear system with $\|\delta \boldsymbol{b}\|_2/\|\boldsymbol{b}\|_2 \approx 10^{-15}$. Write down the corresponding bounds $\|\delta \boldsymbol{x}\|_2/\|\boldsymbol{x}\|_2$ from the theory we discussed in class.

Now, let's compute the actual error. Use the right hand side vector with entries $b_i = \sum_{j=1}^n (j/(i+j-1))$ chosen such that the solution vector has entries $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$. Now, Compute the numerical solutions $x_i = i$.

¹Note that all these computations contain tiny errors due to the final precision of computer computations.