

IN THE CLAIMS:**Claim 1 (cancelled).****Claim 2 (currently amended and reformatted): A compound of the formula****IIa:**

(IIa)

wherein

X is $\text{C}(\text{O})$, $\text{C}(\text{S})$, $\text{C}=\text{NOH}$, or $\text{CH}(\text{R}^7)$ - wherein R^7 is hydrogen, hydroxy, C_{1-7} alkoxy, $-\text{OR}^8$ or $-\text{NR}^8\text{R}^9$ - (wherein

R^8 is a group $-\text{Y}^1\text{R}^{10}$ - (wherein

Y^1 is a direct bond, $-\text{C}(\text{O})$ -, $-\text{C}(\text{S})$ -, $-\text{S}-$, $-\text{C}(\text{O})\text{O}-$, $-\text{C}(\text{O})\text{NR}^{11}-$, $-\text{SO}_2-$ or $-\text{SO}_2\text{NR}^{12}-$ (wherein R^{11} and R^{12} , which may be the same or different, each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and

R^{10} is selected from one of the following nine groups:

1) hydrogen, C_{1-7} alkyl, C_{3-7} cycloalkyl, C_{1-4} alkyl Y^8C_{1-4} alkyl wherein Y^8 is as defined herein, or phenyl, (which alkyl, cycloalkyl, alkyl Y^8 alkyl or phenyl group may bear one or more substituents selected from:

halogeno, amino, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, hydroxy, carboxy, carbamoyl, C_{1-4} alkoxy, C_{1-4} alkylsulphanyl, C_{1-4} alkylsulphonyl, C_{1-4} alkoxycarbonylamino, C_{1-4} alkanoyl, phenyl, nitro, sulphate, phosphate, Z^1 - (wherein Z^1 represents a 5-6 membered saturated heterocyclic group

(linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄aminoalkyl, C₁₋₇alkanoyl, cyanoC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl and Z² (wherein Z² is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄aminoalkyl, C₁₋₇alkanoyl, cyanoC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl and C₁₋₄alkylsulphonylC₁₋₄alkyl});

C₁₋₄alkyl|Z¹ (wherein Z¹ is as defined herein), and

a group -Y²R¹³-(wherein Y² is -NR¹⁴C(O)- or -O-C(O)- (wherein R¹⁴ represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹³ is C₁₋₇alkyl, C₃₋₇cycloalkyl or a group R¹⁵ wherein R¹⁵ is a phenyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from

hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, cyano, -CONR¹⁶R¹⁷ and -NR¹⁸COR¹⁹ (wherein R¹⁶, R¹⁷, R¹⁸ and R¹⁹, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

2) R¹⁵ wherein R¹⁵ is as defined herein;

3) C₂₋₇alkenylR¹⁵ (wherein R¹⁵ is as defined herein);

4) C₃₋₇alkynylR¹⁵ (wherein R¹⁵ is as defined herein));

- 5) Z^1 (wherein Z^1 is as defined herein);
- 6) $C_{1-7}\text{alkyl}Z^1$ (wherein Z^1 is as defined herein);
- 7) $C_{1-7}\text{alkyl}Y^8Z^1$ (wherein Z^1 is as defined herein and Y^8 is $-\text{C}(\text{O})-$, $-\text{NR}^{59}\text{C}(\text{O})-$, $-\text{NR}^{59}\text{C}(\text{O})\text{C}_{1-4}\text{alkyl}-$, $-\text{C}(\text{O})\text{NR}^{60}-$ or $-\text{C}(\text{O})\text{NR}^{60}\text{C}_{1-4}\text{alkyl}-$, (wherein R^{59} and R^{60} , which may be the same or different, each represents hydrogen, $C_{1-3}\text{alkyl}$, $C_{1-3}\text{hydroxyalkyl}$ or $C_{1-3}\text{alkoxyC}_{2-3}\text{alkyl}$));
- 8) $(C_{1-7}\text{alkyl})_cY^9Z^3$ (wherein c is 0 or 1, Z^3 is an amino acid group and Y^9 is a direct bond, $-\text{C}(\text{O})-$ or $-\text{NR}^{61}-$ (wherein R^{61} is hydrogen, $C_{1-3}\text{alkyl}$ or $C_{1-3}\text{alkoxyC}_{2-3}\text{alkyl}$)); and
- 9) $C_{1-7}\text{alkyl}R^{15}$ (wherein R^{15} is as defined herein);

and R^9 is hydrogen, $C_{1-7}\text{alkyl}$ or $C_{3-7}\text{cycloalkyl}$, which alkyl or cycloalkyl group may bear one or more substituents selected from $C_{1-4}\text{alkoxy}$ and phenyl);

R^1 , R^2 and R^3 are each independently hydrogen, PO_3H_2 , sulphate, $C_{3-7}\text{cycloalkyl}$, $C_{2-7}\text{alkenyl}$, $C_{2-7}\text{alkynyl}$, $C_{1-7}\text{alkanoyl}$, a group $R^{20}C_{1-7}\text{alkyl}$ (wherein R^{20} is phenyl which may bear one or more substituents selected from $C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkoxy}$, $C_{1-4}\text{aminoalkyl}$ and $C_{1-4}\text{hydroxyalkoxy}$), $C_{1-7}\text{alkyl}$ or $C_{1-7}\text{alkylsulphonyl}$, (which alkyl or alkylsulphonyl group may bear one or more substituents selected from:

halogeno, amino, $C_{1-4}\text{alkylamino}$, $\text{di}(C_{1-4}\text{alkyl})\text{amino}$, hydroxy, $C_{1-4}\text{alkoxy}$, $C_{1-4}\text{alkylsulphonyl}$, $C_{1-4}\text{alkylsulphonyl}$, $C_{1-4}\text{alkoxycarbonylamino}$, $C_{1-4}\text{alkanoyl}$, carboxy, phenyl, nitro, sulphate, phosphate and a group $-Y^2R^{21}$ (wherein

Y^2 is $-\text{NR}^{22}\text{C}(\text{O})-$ or $-\text{O}-\text{C}(\text{O})-$, (wherein R^{22} represents hydrogen, $C_{1-3}\text{alkyl}$ or $C_{1-3}\text{alkoxyC}_{2-3}\text{alkyl}$) and

R^{21} is $C_{1-7}\text{alkyl}$, $C_{3-7}\text{cycloalkyl}$ or a group R^{23} wherein R^{23} is a phenyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, $C_{1-4}\text{alkyl}$, $C_{1-4}\text{haloalkyl}$, $C_{1-4}\text{alkoxy}$, $C_{1-4}\text{hydroxyalkyl}$, $C_{1-4}\text{aminoalkyl}$, $C_{1-4}\text{alkylamino}$, $C_{1-4}\text{hydroxyalkoxy}$, carboxy,

cyano, -CONR²⁴R²⁵ and -NR²⁶COR²⁷ (wherein R²⁴, R²⁵, R²⁶ and R²⁷, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

with the proviso that at least two of R¹, R² and R³ are C₁₋₇alkyl;

R⁴ is hydrogen, cyano, halogeno, nitro, amino, hydroxy, C₁₋₇alkoxy, C₁₋₇thioalkoxy, C₁₋₇alkanoyl or C₁₋₇alkyl, (which alkyl group may bear one or more substituents selected from:

halogeno, amino, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, hydroxy, C₁₋₄alkoxy, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonylamino, C₁₋₄alkanoyl, carboxy, phenyl, nitro, sulphate, phosphate and a group -Y³R²⁸ (wherein Y³ is -NR²⁹C(O)- or -O-C(O)- (wherein R²⁹ represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and

R²⁸ is C₁₋₇alkyl, C₃₋₇cycloalkyl or a group R³⁰ wherein R³⁰ is a phenyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, cyano, -CONR³¹R³² and -NR³¹COR³² (wherein R³¹, R³², R³³ and R³⁴, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

R⁵ and R⁶ are each independently selected from hydrogen, -OPO₃H₂, phosphonate, cyano, halogeno, nitro, amino, carboxy, carbamoyl, hydroxy, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇thioalkoxy, C₁₋₇alkyl, (which alkyl group may bear one or more substituents selected from:

halogeno, amino, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, hydroxy, C₁₋₄alkoxy, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonylamino, C₁₋₄alkanoyl, carboxy, phenyl, sulphate, phosphate and a group -Y³R²⁸ (wherein Y³ is -NR²⁹C(O)- or -O-C(O)- (wherein R²⁹ represents hydrogen, C₁₋₃alkyl or

$C_{1-3}alkoxyC_{2-3}alkyl)$ and R^{28} is $C_{1-7}alkyl$, $C_{3-7}cycloalkyl$ or a group R^{30} wherein R^{30} is a phenyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, $C_{1-4}alkyl$, $C_{1-4}haloalkyl$, $C_{1-4}alkoxy$, $C_{1-4}hydroxyalkyl$, $C_{1-4}aminoalkyl$, $C_{1-4}alkylamino$, $C_{1-4}hydroxyalkoxy$, carboxy, cyano, $-CONR^{31}R^{32}$ and $-NR^{31}COR^{32}$ (wherein R^{31} , R^{32} , R^{33} and R^{34} , which may be the same or different, each represents hydrogen, $C_{1-3}alkyl$ or $C_{1-3}alkoxyC_{2-3}alkyl$)), and

a group $-Y^4R^{35}$ (wherein

Y^4 is $-C(O)-$, $-OC(O)-$, $-O-$, $-SO-$, $-SO_2-$, $-OSO_2-$, $-NR^{36}-$, $-C_{1-4}alkylNR^{36}-$, $-C_{1-4}alkylC(O)-$, $-NR^{37}C(O)-$, $-OC(O)O-$, $-C(O)NR^{38}-$ or $-NR^{39}C(O)O-$ (wherein R^{36} , R^{37} , R^{38} and R^{39} , which may be the same or different, each represents hydrogen, $C_{1-3}alkyl$ or $C_{1-3}alkoxyC_{2-3}alkyl$) and

R^{35} is a sugar moiety, a mono-peptide, a di-peptide, a tri-peptide, a tetra-peptide, sulphate, hydroxy, amino, $C_{1-7}alkyl$, $C_{1-7}alkoxy$, $C_{1-7}alkanoyl$, $C_{1-7}alkylamino$, $di(C_{1-7}alkyl)amino$, $aminoC_{1-7}alkylamino$, $C_{1-7}alkylaminoC_{1-7}alkylamino$, $C_{1-7}alkanoylaminoC_{1-7}alkyl$, $di(C_{1-7}alkyl)aminoC_{1-7}alkylamino$, $C_{1-7}alkylphosphate$, $C_{1-7}alkylphosphonate$, $C_{1-7}alkylcarbamoylC_{1-7}alkyl$, (which alkyl, alkoxy, alkanoyl, alkylamino, dialkylamino, aminoalkylamino, alkylaminoalkylamino, alkanoylaminoalkyl, dialkylaminoalkylamino, alkylphosphate, alkylphosphonate or alkylcarbamoylalkyl, may bear one or more substituents selected from:

halogeno, amino, $C_{1-4}alkylamino$, $di(C_{1-4}alkyl)amino$, hydroxy, $C_{1-4}hydroxyalkyl$, $C_{1-4}alkoxy$, $C_{1-4}alkylsulphanyl$, $C_{1-4}alkylsulphonyl$, $C_{1-4}alkoxycarbonylamino$, $C_{1-4}alkanoyl$, carboxy, phenyl, nitro, sulphate, phosphate and a group $-Y^5R^{40}$ (wherein Y^5 is $-NR^{41}C(O)-$, $-C(O)NR^{42}-$, $-C(O)-O-$ or $-O-C(O)-$ (wherein R^{41} and R^{42} which may be the same or different each represents hydrogen, $C_{1-3}alkyl$ or $C_{1-3}alkoxyC_{2-3}alkyl$) and R^{40}

is C₁₋₇alkyl, C₃₋₇cycloalkyl, carboxyC₁₋₇alkyl or a group R⁴³ wherein R⁴³ is a phenyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, cyano, -CONR⁴⁴R⁴⁵ and -NR⁴⁶COR⁴⁷ (wherein R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl)),

R⁴⁸ (wherein R⁴⁸ is a phenyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from

hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, di(C₁₋₄hydroxyalkyl)aminoC₁₋₄alkyl, di(C₁₋₄aminoalkyl)aminoC₁₋₄alkyl, C₁₋₄hydroxyalkoxy, carboxy, C₁₋₄carboxyalkyl, phenyl, cyano, -CONR⁴⁹R⁵⁰, -NR⁵¹COR⁵² (wherein R⁴⁹, R⁵⁰, R⁵¹ and R⁵², which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and C₁₋₄alkylR⁵³ (wherein R⁵³ is as defined herein),

C₁₋₇alkylR⁴⁸ (wherein R⁴⁸ is as defined herein),

R⁵³ (wherein R⁵³ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄carboxyalkyl, C₁₋₄aminoalkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl and R⁵⁴ (wherein R⁵⁴ is a 5-6-membered saturated

heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl and C₁₋₄alkylsulphonylC₁₋₄alkyl)), or

(CH₂)_aY⁶(CH₂)_bR⁵³ (wherein R⁵³ is as defined herein, a is 0, or an integer 1-4, b is 0 or an integer 1-4 and Y⁶ represents a direct bond, -O-, -C(O)-, -NR⁵⁵-, -NR⁵⁶C(O)- or -C(O)NR⁵⁷- (wherein R⁵⁵, R⁵⁶, and R⁵⁷, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl), and wherein one or more of the (CH₂)_a or (CH₂)_b groups may bear one or more substituents selected from hydroxy, amino and halogeno));

with the proviso that R⁵ is not hydroxy, alkoxy, substituted alkoxy (wherein R⁵ is Y⁴R³⁵ and Y⁴ is -O- and R³⁵ is C₁₋₇alkyl bearing one or more substituents selected from the list given herein), -OPO₃H₂, -O-C₁₋₇alkanoyl or benzyloxy;

with the further proviso that at least one of R⁵ or R⁶ is a group -Y⁴R³⁵ (wherein Y⁴ and R³⁵ are as defined herein) but with the further provisos that when R⁵ is -Y⁴R³⁵ and R⁶ is hydrogen, hydroxy, methoxy or methoxycarbonyl, -Y⁴R³⁵ is not selected from cases wherein:

Y⁴ is -C(O)-, -OC(O)-, -O-, -SO-, -OSO₂-, -NR³⁶-, -NR³⁷C(O)- or -C(O)NR³⁸- (wherein R³⁶, R³⁷ and R³⁸, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and

R³⁵ is a glycine, valine or lysine group, a dipeptide of glycine and valine groups, C₁₋₇alkyl, C₁₋₇alkoxy, C₁₋₇alkanoyl, (which alkyl, alkoxy or alkanoyl may bear one or more substituents selected from:

halogeno, hydroxy, and a group -Y⁵R⁴⁰ (wherein Y⁵ is -O-C(O)- and R⁴⁰ is C₁₋₇alkyl)), or R⁴⁸ (wherein R⁴⁸ is a tetrazolyl group (which may or may not be substituted as herein defined), a phenyl group or a benzyl group which phenyl or benzyl group may bear one or more substituents selected from C₁₋₄alkyl); and

that when R^6 is $-Y^4R^{35}$ and R^5 is hydrogen, hydroxy, methoxy or methoxycarbonyl, $-Y^4R^{35}$ is not selected from cases wherein:

Y^4 is $-C(O)-$, $-O-$ or $-OSO_2-$ and

R^{35} is $C_{1-7}alkyl$, $C_{1-7}alkoxy$ (which alkyl, alkoxy or alkanoyl may bear one or more substituents selected from: halogeno), R^{48} (wherein R^{48} is a benzyl group which benzyl group may bear one or more substituents selected from $C_{1-4}alkyl$), or R^{53} (wherein R^{53} is piperidinyl);

or a salt thereof.

Claim 3 (cancelled).

Claim 4 (original): A compound according to claim 2 wherein X is $-CH(R^7)-$ wherein R^7 is $-OR^8$ or $-NR^8R^9$ (wherein R^8 is a group $-Y^1R^{10}$ (wherein Y^1 is $-C(O)-$, $-C(O)O-$ or $-C(O)NR^{11}-$ (wherein R^{11} represents hydrogen, $C_{1-3}alkyl$ or $C_{1-3}alkoxyC_{2-3}alkyl$) and R^{10} is as defined in claim 2) and R^9 is as defined in claim 2).

Claim 5 (previously amended): A compound according to claim 2 wherein R^1 , R^2 and R^3 are each methyl.

Claim 6 (previously amended): A compound according to claim 2 wherein R^4 is hydrogen.

Claim 7 (currently amended and reformatted): A compound according to claim 2 wherein R^6 is hydrogen, halogeno, amino, carboxy, hydroxy, $C_{1-7}alkoxy$ or a group Y^4R^{35} (wherein

Y^4 is $-C(O)-$, $-O-$ or $-OSO_2-$ and

R^{35} is C_{1-7} alkyl, C_{1-7} alkoxy (which alkyl or alkoxy may bear one or more substituents selected from halogeno), R^{48} (wherein R^{48} is a benzyl group) or R^{53} (wherein R^{53} is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms selected independently from O, S and N)).

Claim 8 (previously amended): A compound according to claim 2 wherein R^6 is hydrogen, $C(O)OCH_3$ or methoxy.

Claim 9 (presently amended and reformatted): A compound according to claims 2 wherein

R^5 is hydrogen, halogeno, amino, carboxy, carbamoyl, C_{1-7} alkanoyl, C_{1-7} thioalkoxy, or a group $-Y^4R^{35}$ (wherein

Y^4 is $-C(O)-$, $-OC(O)-$, $-O-$, $-SO-$, $-OSO_2-$, $-NR^{36}-$, $-NR^{37}C(O)-$ or $-C(O)NR^{38}-$ (wherein R^{36} , R^{37} and R^{38} , which may be the same or different, each represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and

R^{35} is a sugar moiety, a mono-peptide, a di-peptide, a tri-peptide, a tetra-peptide, C_{1-7} alkyl, C_{1-7} alkoxy, C_{1-7} alkanoyl, C_{1-7} alkanoylamino C_{1-7} alkyl, (which alkyl, alkoxy, alkanoyl, alkanoylaminoalkyl may bear one or more substituents selected from: halogeno, amino, hydroxy, carboxy, and a group $-Y^5R^{40}$ (wherein

Y^5 is $-C(O)-O-$ or $-O-C(O)-$ and

R^{40} is C_{1-7} alkyl or a group R^{43} wherein R^{43} is a benzyl group),

R^{48} (wherein R^{48} is a phenyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, fluoro, amino, C_{1-4} alkoxy, C_{1-4} hydroxyalkyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, di(C_{1-4} alkyl)amino C_{1-4} alkyl, di(C_{1-4} hydroxyalkyl)amino C_{1-4} alkyl, di(C_{1-4} aminoalkyl)amino C_{1-4} alkyl,

C_{1-4} hydroxyalkoxy, carboxy, C_{1-4} carboxyalkyl, cyano, $-CONR^{49}R^{50}$, $-NR^{51}COR^{52}$ (wherein R^{49} , R^{50} , R^{51} and R^{52} , which may be the same or different, each represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and C_{1-4} alkyl R^{53} (wherein R^{53} is as defined herein), C_{1-7} alkyl R^{48} (wherein R^{48} is as defined herein), R^{53} (wherein R^{53} is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, fluoro, chloro, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} carboxyalkyl, C_{1-4} aminoalkyl, di(C_{1-4} alkyl)amino C_{1-4} alkyl, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl and R^{54} (wherein R^{54} is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl and C_{1-4} alkylsulphonyl C_{1-4} alkyl)), or $(CH_2)_aY^6(CH_2)_bR^{53}$ (wherein R^{53} is as defined herein, a is 0, or an integer 1-4, b is 0 or an integer 1-4 and Y^6 represents a direct bond, $-O-$, $-C(O)-$, $-NR^{55}-$, $-NR^{56}C(O)-$ or $-C(O)NR^{57}-$ (wherein R^{55} , R^{56} , and R^{57} , which may be the same or different, each represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl), and wherein one or more of the $(CH_2)_a$ or $(CH_2)_b$ groups may bear one or more substituents selected from hydroxy, amino and halogeno)); with the proviso that R^5 is not alkoxy, substituted alkoxy (wherein R^5 is Y^4R^{35} and Y^4 is $-O-$ and R^{35} is C_{1-7} alkyl bearing one or more substituents selected from the list given herein), $-O-C_{1-7}$ alkanoyl or benzyloxy.

Claim 10 (original): A compound according to claim 2 selected from:

(5S)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dibenzo[*a,c*]cyclohepten-3-yl 3-{{[(2*R*)-2,6-diaminohexanoyl]amino}propanoate,

(5*S*)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]cyclohepten-3-yl
3-[(2-aminoacetyl)amino]propanoate,

N-[(5*S*)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]cyclohepten-3-yl]oxymethyl)-2-morpholinoacetamide,

(2*S,3S,4S,5R,6R*)-6-{{(5*S*)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]cyclohepten-3-yl]oxy}-3,4,5-trihydroxytetrahydro-2*H*-pyran-2-carboxylic acid,

N-[(5*S*)-3-(4-{4-methylpiperazin-1-ylmethyl}phenylcarbonyloxy)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]cyclohepten-5-yl]acetamide,

N-[(5*S*)-3-(4-{morpholinomethyl}phenylcarbonyloxy)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]cyclohepten-5-yl]acetamide,

(5*S*)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]cyclohepten-3-yl
3-[4-methylpiperazin-1-ylcarbonyl]propanoate,

5-[(5*S*)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]cyclohepten-3-yl]oxycarbonyl]pentanoic acid,

4-(3-[(5*S*)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]cyclohepten-3-yl]oxy-3-oxopropyl)benzoic acid and

(2*S*)-*N*-[(5*S*)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]-cyclohepten-3-yl]-2-amino-3-hydroxypropanamide,

and salts thereof.

Claim 11 (original): A compound according to claim 2 selected from

N-[(5*S*)-3-(4-{4-methylpiperazin-1-ylmethyl}phenylcarbonyloxy)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]cyclohepten-5-yl]acetamide and

(2*S*)-*N*-[(5*S*)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5*H*-dibenzo[*a,c*]-cyclohepten-3-yl]-2-amino-3-hydroxypropanamide,

and salts thereof.

Claim 12 (original): A compound according to claim 2 selected from
 $(2S)$ -*N*-[($5S$)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro- $5H$ -dibenzo[*a,c*]-cyclohepten-3-yl]-2-amino-5-[(2-nitroethanimidoyl)amino]pentanamide
 and salts thereof.

Claim 13. (original; reformatted): A process for the manufacture of a compound of formula IIa as defined in claim 2 which comprises:

(a) for the preparation of compounds of formula IIa and salts thereof in which R^5 or R^6 is a group Y^4R^{35} (wherein R^{35} is as defined in claim 2 and Y^4 is a group -OC(O)- or -NHC(O)-), the reaction of a compound of formula III or IV:

(III)

(IV)

(wherein X , R^1 , R^2 , R^3 , R^4 , R^5 , R^6 are as defined in claim 2 and Y^7 is -O- or -NH-), by acylation or coupling reactions;

(b) for the preparation of compounds of formula IIa and salts thereof in which R^5 or R^6 is a group Y^4R^{35} (wherein R^{35} is C_{1-7} alkoxy which may be substituted as defined in claim 2 and Y^4 is a group -OC(O)- or -NHC(O)-), the reaction of a compound of formula III and IV, by acylation reactions;

(c) for the preparation of compounds of formula IIa and salts thereof in which R^5 or R^6 is a group Y^4R^{35} (wherein R^{35} is amino C_{1-7} alkylamino, C_{1-7} alkylamino C_{1-7} alkylamino, di(C_{1-7} alkyl)amino C_{1-7} alkylamino and may be substituted as defined in claim 2, or is

R^{53} (wherein R^{53} is as defined in claim 2) and Y^4 is a group -OC(O)- or -NHC(O)-), can be prepared by the reaction of a compound of formula III or IV, acylation reactions;

- (d) for the preparation of compounds of formula IIa and salts thereof in which R^5 or R^6 is a group Y^4R^{35} (wherein R^{35} is a sugar moiety and Y^4 is a group -O- or -NH-), the reaction of a compound of formula III or IV, glycosylation reactions;
- (e) for the preparation of compounds of formula IIa and salts thereof in which R^5 or R^6 is a group Y^4R^{35} (wherein R^{35} is sulphate and Y^4 is a group -O- or -NH-), the reaction of a compound of formula III or IV, by sulphonylation reactions;
- (f) for the preparation of compounds of formula IIa and salts thereof in which R^5 or R^6 is a group Y^4R^{35} (wherein R^{35} is C_{1-7} alkylphosphate and may be substituted as defined in claim 2 and Y^4 is a group -O- or -NH-), the reaction of a compound of formula III or IV, by phosphorylation reactions;
- (g) for the preparation of compounds of formula IIa and salts thereof in which R^5 is amino the reaction of a carboxylic acid of formula V:

(V)

(wherein X , R^1 , R^2 , R^3 , R^4 and R^6 are as defined in claim 2) via Curtius rearrangement and hydrolysis; and

- (h) for the preparation of compounds of formula IIa and salts thereof in which R^5 or R^6 is chloro the reaction of a compound of formula III or IV by the Sandmeyer reaction;

and when a pharmaceutically acceptable salt of a compound of formula IIa is required, reaction of the compound obtained with an acid or base whereby to obtain the desired pharmaceutically acceptable salt.

Claim 14 (original): A pharmaceutical composition which comprises as active ingredient a compound of formula IIa as defined in claim 2 or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable excipient or carrier.

Claim 15 (original): A method for producing a vascular damaging effect in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula IIa or a pharmaceutically acceptable salt thereof as defined in claim 2.