

Generative Modeling

Learning an underlying distribution of data to generate new examples

Overview of GANs

- ► Goodfellow et al. (2014)
- Generator
 - Generates new data
- Discriminator
 - Classifies given image samples as real or fake

Goodfellow et al. https://arxiv.org/pdf/1406.2661.pdf

StyleGAN (2019)

- Karras et al. (2019-2021), NVIDIA
- Mapping network
 - ▶ Makes inputs easier to learn from
- Allows for application of styles
 - Layering and mixing of stylized features
 - ► Hair color, eye color, texture, etc.

styleGAN3

Research Objectives

- 1. Evaluate effectiveness of transfer learning in training generative adversarial networks
- 2. Assess the viability of small, created datasets

Dataset Assimilation

- 1. Data scraping
- 2. Data filtration

Data Scraping

- Instaloader package
 - Automates the extraction of media and their metadata directly from Instagram
 - Capabilities to scrape any public post by user profiles, hashtags, and a general search

Examples of scraped images for "#freedomtowernyc:

Raw Data Examples

- High variability in subjects and quality of collected photos
- Standardize raw data

Data Filtration

- Discard images that are not suitable for training
- Mimic manual classification
- ► Train with resulting dataset

Discard Criteria

- Filtering Criteria
 - 1. Any file without a valid image format (.jpg, .png, .webp, etc.)
 - 2. Low-resolution images (80% of 1024px)
 - 3. Blurry images
 - 4. Grayscale images
 - 5. Images containing prominent text
 - 6. Images containing human faces

Parameter Tuning

 Example: Misclassification of desired and undesired images

Text detection

- False positive classification of text appearances.
- Tradeoff between false positive classification and lenience

Facial recognition

- Difficulty parsing out accessories (sunglasses, mask, hat, etc.)
- 45-degree facial profiles

Blurriness

- Fine experimentation with how much blur is considered "blurry"
- Blurry backgrounds

Training

- 1. GAN Training
 - i. Training from small datasets
- 2. Transfer learning
- 3. Experiments
 - Dataset changes
 - ii. Network changes

GAN Training

- Advantages
 - High-quality modeling
 - Uses unlabeled data
 - Generator updates without data examples

- Disadvantages
 - Careful synchronization of G and D
 - Unstable training
 - Vanishing gradients
 - ► Mode collapse
 - ► Non-convergence

Performance metric: Frechet Inception Distance (FID) score

Training Limited Datasets

- Overfitting when training from scratch on small datasets
 - Small Instagram datasets (500-1,500 images)
 - Poor quality or unrealistic results
- Solutions
 - ► Obtain larger dataset (50,000-100,000 images)
 - ► Transfer learning

FID of various data augmentation methods

Transfer Learning

- Applying a model pre-trained on one task to another task or domain
- Leverages learning done from the previous model
- Transfer learning approach
 - Cost efficient
 - Testing the limits of limited domains

TRADITIONAL MACHINE LEARNING

Initial Experiments

NVIDIA AFHQV2 Network
Animal Faces-HQ (16,130 images)

MACHINE LEARNING MODEL 1

- NVIDIA AFHQV2 Network
- #beachsunset (640 images)

MACHINE LEARNING MODEL 1

Initial Experiments

- Intelligible, passable examples after 3500 steps
- Network adaptation

Initial Experiments

Generated image

Training snapshot

- Generation difficulties
- High variance in foreground objects
- Confuses generator training

- ► Hypothesis: datasets easier to learn than others
 - NVIDIA AFHQV2 Network
 - Animal Faces-HQ (16,130 images)

MACHINE LEARNING MODEL 1

 NVIDIA AFHQV2 Network #bettaphotography (811 images)

MACHINE LEARNING MODEL 1

Generated image

Training snapshot

FIDs by dataset

- Vast improvement in generation quality, objectivity
- Less frequent nonsense
- Minimum of 41.52 FID on betta fish dataset

- ► Hypothesis: datasets easier to learn than others
 - NVIDIA AFHQV2 Network
 - Animal Faces-HQ (16,130 images)

MACHINE LEARNING MODEL 1

MACHINE LEARNING MODEL 1

Generated image

• Training snapshot

FIDs by dataset

- More improvements in generation quality, objectivity
- Less frequent nonsense
 - Further training possible

Network Change

- Top: NVIDIA FFHQ Network
 - Flickr Faces (70,000 images)
- Bottom: NVIDIA Metfaces Network
 - Metropolitan Museum of Art (1,336 images)

MACHINE LEARNING MODEL 1

- NVIDIA FFHQ Network
- #fighterjet (650 images)

MACHINE LEARNING MODEL 1

Network Change

Generated images

• AFHQ-V2

FFHQ

Metfaces

FIDs by network

- Generally similar quality of generations
- Oscillations around similar FID score
- Multiple networks viable on one dataset

Conclusions

- Transfer learning is promising method of training networks on limited datasets
 - 1. Domain of the dataset can have a large role
 - Generation from a dataset can be robust across multiple pre-trained networks
 - Augmentations are a necessity for small datasets, even in transfer learning
- Further work
 - 1. Explore specific measures optimal training datasets
 - 2. Test on a wider range of starting networks
 - 3. Comparison of training from scratch to transfer learning

