Extreme Space Weather: Risk Assessment and Mitigation

Devan Wainright
Lucy Ren
Jachin Friday
Nagaprasad Rudrapatna

Defining The Problem

Eruption on the Sun's surface

Interaction between a CME and the Earth's magnetosphere

Disturbances and damage to essential technology and infrastructure on Earth

Defining the Problem

Source: Oughton et al. (2017)

Scenarios

- What could happen?
 - Electric grid operated by ConEd seriously damaged
 - Partial blackout of New York City

Historical Context: the Carrington Event of 1859

A splendid exhibition of the Aurora Borealis, or "Northern Lights," took place on Sunday evening. They were so brilliant that they gave rise to the rumor of a large fire. The air became affected by them, being made very cool, and singularly enough the telegraph wires were also acted upon so much as to be almost useless.

Source: New York Sun

Characterizing The Uncertainty

- Identifying the **peak** of the 11-year solar cycle
- **Extreme** storms occur during the descending phase
- Probability of an extreme
 geomagnetic storm with 95%
 confidence: (0.0046, 0.0188)*

Narratives and Risk Tolerance

Evaluating the narratives surrounding current practices and risk tolerance levels:

- Anthropocentrism
 - Perception around addressing risks
 - Western, first-world country biases
- Risk Tolerance
 - Stakeholders (private vs. public) often have different risk-awareness levels

Expected Utility Maximization

EU = VoLL * Expected offline time *
Electricity demand * Probability estimate

Metric	Value
Value of Lost Load (VoLL)	\$12.70 per unserved kWh
Expected offline time	120 hours
Electricity demand	29.2 kW * (8,336,817 + 1,050,911)
95% CI (probability)	(0.0046, 0.0188)
Budget	\$1.9B - \$7.9B

Recommendations

Implementing safeguards to regulate power flow and protect transformers

Increasing reserves of both active and reactive power*

Funding geophysics, transmission network, & transformer modeling research*

*(Royal Academy of Engineering, 2013)

Risk Outreach

- Increasing public awareness of and preparation for geomagnetic storms
 - Various channels: email, phone, social media
 - Emergency plans ("good" vs. "bad" examples)
- Avoiding outrage
 - Contextualize the probability estimate
 - Neutral wording

Remaining Questions & Challenges

- Science and Technology
 - Will scientists ever be able to accurately forecast a geomagnetic storm?
 - Which future technological advances might help mitigate the damage potential of geomagnetic storms?
- Policy Implementation
 - How do we create meaningful policy solutions that address the needs of the public and private sector?

References

Moriña, D., Serra, I., Puig, P., & Corral, Á. (2019). Probability estimation of a Carrington-like geomagnetic storm. *Scientific Reports*, 9(1). doi: 10.1038/s41598-019-38918-8

Royal Academy of Engineering. (2013). Extreme space weather: impacts on engineered systems and infrastructure (1-903496-96-9). Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/pace-weather-summary-report

References

Oughton, E. J., Skelton, A., Horne, R. B., Thomson, A. W., & Gaunt, C. T. (2017). Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. *Space Weather*, *15*(1), 65–83. doi: 10.1002/2016sw001491