TITULNÍ LIST
Namísto této stránky vložte **titulní list** (s logem) vygenerovaný v IS VUT.

ZADÁNÍ
Namísto této stránky vložte stránku **zadání FEKT** vygenerovanou v IS VUT.

ABSTRAKT

Abstrakt práce v originálním jazyce

KLÍČOVÁ SLOVA

Klíčová slova v originálním jazyce

ABSTRACT

Překlad abstraktu (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

KEYWORDS

Překlad klíčových slov (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

Vysázeno pomocí balíčku thesis verze 4.07; http://latex.feec.vutbr.cz

Prohlášení autora o původnosti díla

Jméno a příjmení autora: Bc. Viktor Slezák

VUT ID autora:	203745							
Typ práce:	Semestrální práce							
Akademický rok:	2022/23							
Téma závěrečné práce:	Světelné animace pro systém Spectoda na základě analýzy parametrů z hudeb- ních nahrávek							
cí/ho závěrečné práce a s použitím o	sem vypracoval samostatně pod vedením vedou- dborné literatury a dalších informačních zdrojů, vedeny v seznamu literatury na konci práce.							
závěrečné práce jsem neporušil autor nedovoleným způsobem do cizích aut a jsem si plně vědom následků porušel kona č. 121/2000 Sb., o právu autorsk a o změně některých zákonů (autorsk	ále prohlašuji, že v souvislosti s vytvořením této ská práva třetích osob, zejména jsem nezasáhl orských práv osobnostních a/nebo majetkových ní ustanovení § 11 a následujících autorského zákém, o právech souvisejících s právem autorským ký zákon), ve znění pozdějších předpisů, včetně ývajících z ustanovení části druhé, hlavy VI. díl 4							
Brno	podpis autora*							

^{*}Autor podepisuje pouze v tištěné verzi.

PODĚKOVÁNÍ	
Rád bych poděkoval vedoucímu diplomové práce panu Ing. Matěj Ištvánek za od vedení, konzultace, trpělivost a podnětné návrhy k práci.	borné

Obsah

Ú	vod		21
1	Teo	rie	23
	1.1	MIR - Music information retrieval	23
		1.1.1 Beat and tempo detection	25
		1.1.2 Parametrizace hudebních signálů	25
	1.2	Systém Spectoda	25
	1.3	Hudební signál jako animace	25
2	Výs	sledky studentské práce	27
	2.1	Programové řešení	27
	2.2	Výsledky měření	27
		2.2.1 Etiam quis quam	27
Zá	ivěr		31
Se	znan	n symbolů a zkratek	33
Se	znan	n příloh	35
\mathbf{A}	Něk	které příkazy balíčku thesis	37
	A.1	Příkazy pro sazbu veličin a jednotek	37
	A.2	Příkazy pro sazbu symbolů	37
В	Dru	ıhá příloha	39
\mathbf{C}	Příl	klad sazby zdrojových kódů	41
	C.1	Balíček listings	41
D	Obs	sah elektronické přílohy	45

Seznam obrázků

1.1	Retězec procesů l	ИII	? [?]													24
B.1	Alenčino zrcadlo																39

Seznam tabulek

1.1	Typické procesy n	na základně	vstupních a	výstupních d	lat	 	25
A.1	Přehled příkazů .					 	37

Seznam výpisů

C.1	Ukázka sazby zkratek	41
C.2	Příklad Schur-Cohnova testu stability v prostředí Matlab	42
C.3	Příklad implementace první kanonické formy v jazyce C	43

Úvod

V rámci semestrální práce vzniknou algoritmy analyzující hudební nahrávku. Tyto algoritmy budou sloužit k získání potřebných dat jako jsou zejména beat detection, získání tempa skladby a následné získání chromavektorů. Při získávání parametrů je potřeba počítat s jejich následujícím využití v algoritmu generujícím animace pomocí systému Spectoda.

Práce je rozložena do tří na sebe navazujících cílů.

Prvním z nich je nashromaždění dostatku teoretických informací o problematice MIR (Music information retrieval - Obor zabývsjící se vyhledávání informací v hudebních dílech) a možnostech dolování informací z hudební nahrávky.

Druhým cílem práce pak je na základě získaných znalostí navrhnout vhodnou strukturu algoritmu pro generování sekvencí světelných animací pracujících na systému Spectoda.

Posledním cílem semestrální práce je právě vytvoření funkčního systému pro analýzu hudební nahrávky a dolování získávání předem stanovených parametrů.

1 Teorie

Semestrální práce se zejména zabývá problematikou MIR. Popsánou v kapitole (!doplnit kapitolu!). Důležitou roli zde hraje i úvaha nad realizací světelných animací. Je důležité aby bylo přemýšleno nad principem reakce světelných animací na hudbu. Nabízejí se otázky jak by měla daná animace reagovat na konkrétní děj skladby. Jakým způsobem navrhnout strukturu ...

V táto části je popsána teorie zpracování hudební nahrávky pomocí známých algoritmů jako je například FFT (Fast Fourier transform - Rychlá Fourierova transformace) či nabízené možnosti strojového učení. Struktura a možnosti systému Spectoda pro generování interaktivních světelných animací. Uměleckou částí, jak by měla animace prezentovat hudbu.

1.1 MIR - Music information retrieval

Music information retrieval je interdisciplinární vědní obor sostředící se na získávání infromací z hudebních nahrávek. Jsou zde kombinovány znalosti mnoha oborů jako jsou muzikologie, psychoakustika, strojové učení, zpracování signálů a další.

Výstup jeho výzkumu je využíván populárními technologiemi. Jednou z aplikací je personalizované doporučování hudebních skladeb, která se nachází v moderních streamovacích platformách. Další využítí je v programech pro mixování hudby používaných diskžokeji k plynulejší práci díky alanýze tempe a klíčových částí skladby. Tyto technologie se nachází v mnoha dalších aplikacích a s šířením se digitálního audia jejich důležitost stále poroste.

V MIR jako vstupní data využívají zejména hudební informace v digitální potobě. Tyto data se rozlišují do více typů. Mohou to být obrázky představující digitální formu zápisu hudby pomocí symbolů (not). Dalším možným typem je "digitální hudba", představovaná zápisem v MIDI notách. V této práci budou jako vstupní data yvužívány digitální hudební nahrávky ("digitální audio").

Pipeline - řetězec zpracování (TODO: najít vhodné slovíčko v češtině)

Téměř standardně využívaný řetězec procesů v aplikacíc MIR je popsána níže. Pokud jsou vstupní data komplexní na začátku je v řetězci zařezen blok předzpracování, která se stará o komprimaci vstupních singálů. U hudebních signálů se jedná například o konverzi stereo signálů na mono signál a jeho následnou komprimaci popsanou více v bodě (TODO: odkaz na bod audio) Dalším bodem v řetězci je extrakce vlastností signálu. Zde je je nastaven poměr mezi vlastnostmi důležitými pro strojové učení lidskou expertní znalost. Poměr mezi těmito vlastnostmi závisí na aplikaci pro kterou je algoritmus určen. Ná základě získaných vlastností je nastavena struktura algoritmu pro odvození výsldných parametrů. (Popsat víc + přidat

Obr. 1.1: Řetězec procesů MIR [?]

Zpracování audio signálů je již dvě desetilétí hlavním trendem výzkumu MIR. Je to přirození tím, že zde není téměř žádná přirozená hranice a je možné téměř vše. Právní podmínky jsou zde příznivé a vědecké instituce nemají problém pro svou práci získat velké množství materiálu chráněného autorským právem. Z důvodu velké komplexsnosti vstupních signálů se využívá několik technik komprimaca signálů kterými jsou. Slučování vícekanálových nahrávek do mono sginálu. Převzorkování signálu na nižší vzorkovací kmitočty, a rozložení signálu na krátké překrývající

se úseky ze kterých mohou být nezávisle extrahovány jejich vlastnosti. Výsledkem je kolekce paralelně složených sekvencí hodnot vlastností, které se následně použijí pro odvozování (inference).

Data	Vyhledávání informací	Klasifikace a odhad	Sekvenční značení
Audio	Identifikace skladby, Řa-	Identifikace umělce a	Extrakce melodie,
	zení, Měření podobnosti,	skladatele, Žánr a ná-	Odhad akordů,
	Získání otisku, Genero-	lada, Určení tempa	Detekce nástupů,
	vání seznamu skladeb		Segmentace

Tab. 1.1: Typické procesy na základně vstupních a výstupních dat.

1.1.1 Beat and tempo detection

1.1.2 Parametrizace hudebních signálů

1.2 Systém Spectoda

1.3 Hudební signál jako animace

2 Výsledky studentské práce

Praktická část a výsledky studentské práce vhodně rozdělené do částí.

2.1 Programové řešení

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nulla pulvinar eleifend sem. Integer in sapien. Etiam sapien elit, consequat eget, tristique non, venenatis quis, ante. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit. Aliquam erat volutpat. Nullam faucibus mi quis velit [?].

2.2 Výsledky měření

Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. Fusce tellus. Morbi scelerisque luctus velit. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Quisque porta. Fusce suscipit libero eget elit. Nulla non lectus sed nisl molestie malesuada. Phasellus faucibus molestie nisl. Integer vulputate sem a nibh rutrum consequat. Proin mattis lacinia justo. Phasellus et lorem id felis nonummy placerat. Etiam ligula pede, sagittis quis, interdum ultricies, scelerisque eu. Cras elementum. Aenean placerat. Donec ipsum massa, ullam-corper in, auctor et, scelerisque sed, est. Aliquam ante. Integer imperdiet lectus quis justo. Vivamus ac leo pretium faucibus. Nullam faucibus mi quis velit.

2.2.1 Etiam quis quam

Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Aliquam erat volutpat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit [?, ?]. Nunc auctor. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Maecenas lorem. Maecenas libero. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Nullam rhoncus aliquam metus.

Integer rutrum orci vestibulum

Integer rutrum, orci vestibulum ullamcorper ultricies, lacus quam ultricies odio, vitae placerat pede sem sit amet enim. Ut enim ad minim veniam, quis nostrud

exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. Nullam eget nisl. Nunc auctor. Etiam dui sem, fermentum vitae, sagittis id, malesuada in, quam. Fusce dui leo, imperdiet in, aliquam sit amet, feugiat eu, orci. Curabitur vitae diam non enim vestibulum interdum. Aliquam erat volutpat. Pellentesque sapien. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit.

Eger rutrum orci westibulum

Fusce dui leo, imperdiet in, aliquam sit amet, feugiat eu, orci. Maecenas aliquet accumsan leo. Aliquam ornare wisi eu metus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam erat volutpat. Donec iaculis gravida nulla. Sed elit dui, pellentesque a, faucibus vel, interdum nec, diam. Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Nulla non arcu lacinia neque faucibus fringilla. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit. Praesent vitae arcu tempor neque lacinia pretium [?, ?, ?].

Aliquam erat volutpat. Quisque porta. Integer imperdiet lectus quis justo. Nullam justo enim, consectetuer nec, ullamcorper ac, vestibulum in, elit. Nullam faucibus mi quis velit. Fusce tellus. Fusce consectetuer risus a nunc. Cras pede libero, dapibus nec, pretium sit amet, tempor quis. Morbi imperdiet, mauris ac auctor dictum, nisl ligula egestas nulla, et sollicitudin sem purus in lacus [?, ?, ?]. Mauris elementum mauris vitae tortor. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Quisque porta. Integer vulputate sem a nibh rutrum consequat. Nulla pulvinar eleifend sem. Praesent id justo in neque elementum ultrices [?].

Fusce suscipit libero eget elit. Integer vulputate sem a nibh rutrum consequat. Aliquam erat volutpat. Etiam neque. Nulla turpis magna, cursus sit amet, suscipit a, interdum id, felis. Nullam rhoncus aliquam metus. Etiam dui sem, fermentum vitae, sagittis id, malesuada in, quam. Nunc auctor. Nunc dapibus tortor vel mi dapibus sollicitudin. Praesent in mauris eu tortor porttitor accumsan. Nulla non arcu lacinia neque faucibus fringilla. Nullam lectus justo, vulputate eget mollis sed, tempor sed magna. Maecenas lorem. Aenean placerat. Donec vitae arcu. Maecenas lorem. Donec iaculis gravida nulla. Nulla non lectus sed nisl molestie malesuada.

Duis pulvinar. Nulla est. Duis condimentum augue id magna semper rutrum. Integer pellentesque quam vel velit. Aliquam ante. Nulla quis diam. Proin mattis lacinia justo. Aenean fermentum risus id tortor. Nunc auctor. Nullam justo enim, consectetuer nec, ullamcorper ac, vestibulum in, elit. In dapibus augue non sapien.

Etiam bibendum elit eget erat. In sem justo, commodo ut, suscipit at, pharetra vitae, orci. Maecenas libero.

Nulla non lectus sed nisl molestie malesuada. Donec vitae arcu. Aenean fermentum risus id tortor. Praesent in mauris eu tortor porttitor accumsan. Nulla pulvinar eleifend sem. Duis viverra diam non justo. Integer imperdiet lectus quis justo. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In rutrum. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Nulla non lectus sed nisl molestie malesuada. Aliquam erat volutpat. Mauris tincidunt sem sed arcu. Duis bibendum, lectus ut viverra rhoncus, dolor nunc faucibus libero, eget facilisis enim ipsum id lacus. Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. In enim a arcu imperdiet malesuada. Nulla non lectus sed nisl molestie malesuada. Proin mattis lacinia justo.

Aliquam in lorem sit amet leo accumsan lacinia. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Duis sapien nunc, commodo et, interdum suscipit, sollicitudin et, dolor. Suspendisse sagittis ultrices augue. Nullam lectus justo, vulputate eget mollis sed, tempor sed magna. In convallis. Praesent id justo in neque elementum ultrices. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

Pellentesque pretium lectus id turpis. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Curabitur ligula sapien, pulvinar a vestibulum quis, facilisis vel sapien. Praesent dapibus. Sed elit dui, pellentesque a, faucibus vel, interdum nec, diam. Duis viverra diam non justo. Duis ante orci, molestie vitae vehicula venenatis, tincidunt ac pede. Phasellus rhoncus. Maecenas fermentum, sem in pharetra pellentesque, velit turpis volutpat ante, in pharetra metus odio a lectus. Proin pede metus, vulputate nec, fermentum fringilla, vehicula vitae, justo. Fusce aliquam vestibulum ipsum. Nullam at arcu a est sollicitudin euismod.

Závěr

Shrnutí studentské práce.

Seznam symbolů a zkratek

MIR Music information retrieval - Obor zabývsjící se vyhledávání

informací v hudebních dílech

FFT Fast Fourier transform - Rychlá Fourierova transformace

MIDI Musical Instrument Digital Interface - Digitální rozhraní hudebních

nástrojů

Seznam příloh

A	Některé příkazy balíčku thesis	37
	A.1 Příkazy pro sazbu veličin a jednotek	37
	A.2 Příkazy pro sazbu symbolů	37
В	Druhá příloha	39
\mathbf{C}	Příklad sazby zdrojových kódů	41
	C.1 Balíček listings	41
D	Obsah elektronické přílohy	45

A Některé příkazy balíčku thesis

A.1 Příkazy pro sazbu veličin a jednotek

Tab. A.1: Přehled příkazů pro matematické prostředí

Příkaz	Příklad	Zdroj příkladu	Význam
	β_{\max}	<pre>\$\beta_\textind{max}\$</pre>	textový index
	$\mathrm{U_{in}}$	<pre>\$\const{U}_\textind{in}\$</pre>	konstantní veličina
	$u_{ m in}$	<pre>\$\var{u}_\textind{in}\$</pre>	proměnná veličina
	$oldsymbol{u}_{ m in}$	<pre>\$\complex{u}_\textind{in}\$</pre>	komplexní veličina
	y	<pre>\$\vect{y}\$</pre>	vektor
	${f Z}$	$\infty \$	matice
	kV	$\infty \$ \unit{kV}\$ $\check{c}i \$ \unit{kV}	jednotka

A.2 Příkazy pro sazbu symbolů

- \E, \eul sazba Eulerova čísla: e,
- \J, \jmag, \I, \imag sazba imaginární jednotky: j, i,
- \dif sazba diferenciálu: d,
- \sinc sazba funkce: sinc,
- \mikro sazba symbolu mikro stojatým písmem¹: μ,
- \uppi sazba symbolu π (stojaté řecké pí, na rozdíl od \pi, což sází π).

Všechny symboly jsou určeny pro matematický mód, vyjma \mikro, jenž je použitelný rovněž v textovém módu.

¹znak pochází z balíčku textcomp

B Druhá příloha

Obr. B.1: Zlepšené Wilsonovo proudové zrcadlo.

Pro sazbu vektorových obrázků přímo v LATEXu je možné doporučit balíček TikZ. Příklady sazby je možné najít na TEXample. Pro vyzkoušení je možné použít programy QTikz nebo TikzEdt.

C Příklad sazby zdrojových kódů

C.1 Balíček listings

Pro vysázení zdrojových souborů je možné použít balíček listings. Balíček zavádí nové prostředí lstlisting pro sazbu zdrojových kódů, jako například:

```
\section{Balíček lstlistings}
Pro vysázení zdrojových ůsoubor je žmoné žpouít
  balíček \href{https://www.ctan.org/pkg/listings}%
  {\texttt{listings}}.
Balíček zavádí nové řprostedí \texttt{lstlisting} pro
  sazbu zdrojových kóůd.
```

Podporuje množství programovacích jazyků. Kód k vysázení může být načítán přímo ze zdrojových souborů. Umožňuje vkládat čísla řádků nebo vypisovat jen vybrané úseky kódu. Např.:

Zkratky jsou sázeny v prostředí acronym:

6 \begin{acronym}[KolikMista]

Šířka textu volitelného parametru KolikMista udává šířku prvního sloupce se zkratkami. Proto by měla být zadávána nejdelší zkratka nebo symbol. Příklad definice zkratky symfvz! je na výpisu C.1.

Výpis C.1: Ukázka sazby zkratek

1 | ů

Ukončení seznamu je provedeno ukončením prostředí:

26 ů

Poznámka k výpisům s použitím volby jazyka czech nebo slovak:

Pokud Váš zdrojový kód obsahuje znak spojovníku -, pak překlad může skončit chybou. Ta je způsobená tím, že znak - je v českém nebo slovenském nastavení balíčku babel tzv. aktivním znakem. Přepněte znak - na neaktivní příkazem \shorthandoff{-} těsně před výpisem a hned za ním jej vratte na aktivní příkazem \shorthandon{-}. Podobně jako to je ukázáno ve zdrojovém kódu šablony.

Výpis C.2: Příklad Schur-Cohnova testu stability v prostředí Matlab.

```
%% Priklad testovani stability filtru
1
2
  |% koeficienty polynomu ve jmenovateli
4 \mid a = [5, 11.2, 5.44, -0.384, -2.3552, -1.2288];
  disp( 'Polynom:'); disp(poly2str( a, 'z'))
7 | disp('Kontrola pomoci korenu polynomu:');
  zx = roots(a);
  if ( all( abs( zx) < 1))
      disp('System je stabilni')
10
  else
11
      disp('System je nestabilni nebo na mezi stability');
12
  end
13
14
15 disp(' '); disp('Kontrola pomoci Schur-Cohn:');
16 ma = zeros( length(a)-1,length(a));
17 \mid ma(1,:) = a/a(1);
  for (k = 1: length(a) - 2)
18
      aa = ma(k, 1:end-k+1);
19
      bb = fliplr( aa);
20
      ma(k+1,1:end-k+1) = (aa-aa(end)*bb)/(1-aa(end)^2);
21
  end
22
23
  if( all( abs( diag( ma.'))))
24
      disp('System je stabilni')
25
26
  else
      disp('System je nestabilni nebo na mezi stability');
27
  end
28
```

Výpis C.3: Příklad implementace první kanonické formy v jazyce C.

```
// první kanonická forma
                                                                       1
short fxdf2t( short coef[][5], short sample)
                                                                       2
                                                                       3
{
 static int v1[SECTIONS] = {0,0}, v2[SECTIONS] = {0,0};
                                                                       4
 int x, y, accu;
                                                                       5
                                                                       6
 short k;
                                                                       7
 x = sample;
                                                                       8
 \underline{for}(k = 0; k < SECTIONS; k++){
                                                                       9
    accu = v1[k] >> 1;
                                                                       10
    y = _sadd(accu, _smpy(coef[k][0], x));
                                                                       11
    y = _sshl(y, 1) >> 16;
                                                                       12
                                                                       13
    accu = v2[k] >> 1;
                                                                       14
    accu = _sadd( accu, _smpy( coef[k][1], x));
                                                                       15
    accu = _sadd( accu, _smpy( coef[k][2], y));
                                                                       16
    v1[k] = _sshl( accu, 1);
                                                                       17
                                                                       18
    accu = \_smpy(coef[k][3], x);
                                                                       19
    accu = _sadd( accu, _smpy( coef[k][4], y));
                                                                       20
    v2[k] = _sshl(accu, 1);
                                                                       21
                                                                       22
                                                                       23
    x = y;
                                                                       24
                                                                       25
 return( y);
                                                                       26
```

D Obsah elektronické přílohy

Elektronická příloha je často nedílnou součástí semestrální nebo závěrečné práce. Vkládá se do informačního systému VUT v Brně ve vhodném formátu (ZIP, PDF ...).

Nezapomeňte uvést, co čtenář v této příloze najde. Je vhodné okomentovat obsah každého adresáře, specifikovat, který soubor obsahuje důležitá nastavení, který soubor je určen ke spuštění, uvést nastavení kompilátoru atd. Také je dobře napsat, v jaké verzi software byl kód testován (např. Matlab 2018b). Pokud bylo cílem práce vytvořit hardwarové zařízení, musí elektronická příloha obsahovat veškeré podklady pro výrobu (např. soubory s návrhem DPS v Eagle).

Pokud je souborů hodně a jsou organizovány ve více složkách, je možné pro výpis adresářové struktury použít balíček dirtree.

/.	kořenový adresář přiloženého archivu
L	_logologa školy a fakulty
	BUT_abbreviation_color_PANTONE_EN.pdf
	BUT_color_PANTONE_EN.pdf
	FEEC_abbreviation_color_PANTONE_EN.pdf
	FEKT_zkratka_barevne_PANTONE_CZ.pdf
	UTKO_color_PANTONE_CZ.pdf
	UTKO_color_PANTONE_EN.pdf
	VUT_barevne_PANTONE_CZ.pdf
	VUT_symbol_barevne_PANTONE_CZ.pdf
	VUT_zkratka_barevne_PANTONE_CZ.pdf
\downarrow	_ obrazky ostatní obrázky
	soucastky.png
	spoje.png
	ZlepseneWilsonovoZrcadloNPN.png
	ZlepseneWilsonovoZrcadloPNP.png
-	$_\operatorname{\mathtt{pdf}}$ pdf stránky generované informačním systémem
	student-desky.pdf
	student-titulka.pdf
	student-zadani.pdf
\perp	$_$ text zdrojové textové soubory
	literatura.tex
	prilohy.tex
	reseni.tex
	uvod.tex
	vysledky.tex
	zaver.tex
	zkratky.tex
-	$_$ sablona-obhaj.texhlavní soubor pro sazbu prezentace k obhajobě
-	$_$ sablona-prace.texhlavní soubor pro sazbu kvalifikační práce
	_ thesis.sty balíček pro sazbu kvalifikačních prací