Steven Rosendahl Homework 7

1. If p is prime and $x, y \in \mathbb{Z}_p$, prove that $(x - y)^p \equiv x^p - y^p \mod p$.

$$(x-y)^p \equiv (x-y) \mod p$$
 by the corollary to FLT
 $\equiv (x \mod p) - (y \mod p)$
 $\equiv (x^p \mod p) - (y^p \mod p)$ by the corollary to FLT
 $\equiv x^p - y^p \mod p$

- 2. Suppose that p is prime and k is a positive integer, and $x \in \mathbb{Z}_p$.
 - (a) Prove that $x^{p^k} \equiv x \mod p$.
 - (b) Prove that $x^{p^k-1} \equiv 1 \mod p$ if and only if $\gcd(x, p) = 1$.
- 3. Let p, n, and r be non-negative integers with p prime. Further, assume that r is the remainder when n is divided by p-1. Prove that $a^n \equiv a^r \mod p$.
- 4. Assume that n is a positive integer. Prove that $1^n + 2^n + 3^n + 4^n$ is divisible by 5 if and only if n is not divisible by 4.
- 5. Determine whether there exists a solution to each of the following systems of congruences. If there is a solution, find all solutions to the system by writing the solution set as a single residue class modulo n for some $n \geq 2$. If there is no solution, prove that there is no solution.

(a)
$$x \equiv 5 \mod 7$$

 $x \equiv 0 \mod 4$

$$x_0 = a_1c_1d_1 + 1_2c_2d_2$$

$$= 5c_1d_1 + 0c_2d_2$$

$$= 5 \cdot 4 \cdot d_1$$

$$= 5 \cdot 4 \cdot 2$$

$$= 40$$

$$\equiv 12 \mod 28$$

(b)
$$x \equiv 5 \mod 7$$

 $x \equiv 1 \mod 4$
 $x \equiv 0 \mod 5$

The gcd(7,4,5) = 1, so by the Chinese remainder theorem, we have a solution.

$$\begin{aligned} x_0 &= a_1c_1d_1 + a_2c_2d_2 + a_3c_3d_3 \\ &= 5 \cdot c_1 \cdot d_1 + 1 \cdot c_2 \cdot d_2 + 0 \\ &= 5 \cdot 20 \cdot d_1 + 1 \cdot 35 \cdot d_2 \\ &= 5 \cdot 20 \cdot -1 + 1 \cdot 35 \cdot 3 \\ &= -100 + 105 \\ &= 5 \\ &\equiv 5 \mod 140 \end{aligned}$$

(c)
$$x \equiv 5 \mod 6$$

 $x \equiv 2 \mod 4$

We cannot use Chinese remainder theorem here since 6 and 4 are not coprime. Suppose, however, that there is a solution. We can form a new system by determining the prime factorization of 6.

$$\begin{cases} x \equiv 5 \mod 2 \\ x \equiv 5 \mod 3 \\ x \equiv 2 \mod 4 \end{cases} \rightarrow \begin{cases} x \equiv 1 \mod 2 \\ x \equiv 2 \mod 3 \\ x \equiv 2 \mod 4 \end{cases}$$

If this is the case, then $x \equiv 1 \mod 2$ implies that the solution is odd, and $x \equiv 2 \mod 4$ implies the solution is even. This is not possible; therefore there is no solution.

(d)
$$3x \equiv 1 \mod 10$$

 $5x \equiv 2 \mod 7$

We cannot initially use Chinese remainder theorem to solve this problem. If we find 3^{-1} in \mathbb{Z}_{10} , then we can multiply both sides of the congruence by that value to produce a new congruence. We have $3x \equiv 1 \mod 10$, which is satisfied by $x = 7 = 3^{-1}$. We can rewrite this congruence as $x \equiv 7 \mod 10$. Similarly, we can find 5^{-1} in \mathbb{Z}_7 . We have that $5x \equiv 1 \mod 7$, so $x = 3 = 5^{-1}$. Multiplying both sides of the congruence yields the new system

$$\begin{cases} x \equiv 7 \mod 10 \\ x \equiv 3 \mod 7 \end{cases}.$$

We know this has a solution by the Chinese remainder theorem, since 10 and 7 are coprime.

$$x_0 = a_1c_1d_1 + a_2c_2d_2$$
= $7 \cdot 7 \cdot d_1 + 3 \cdot 10 \cdot d_2$
= $7 \cdot 7 \cdot 3 + 3 \cdot 10 \cdot 5$
= $147 + 150$
= 297
= $13 \mod 70$

6. Find all solutions to the congruence $97x \equiv 301 \mod 315$. It may be helpful to note that $315 = 3^2 \cdot 4 \cdot 7$.

We can split this congruence into several parts.

$$\begin{cases} 97x \equiv 301 \mod 9 \\ 97x \equiv 301 \mod 5 \\ 97x \equiv 301 \mod 7 \end{cases} \rightarrow \begin{cases} 7x \equiv 4 \mod 9 \\ 2x \equiv 1 \mod 5 \\ 6x \equiv 0 \mod 7 \end{cases} \rightarrow \begin{cases} x \equiv 7 \mod 9 \\ x \equiv 3 \mod 5 \\ x \equiv 0 \mod 7 \end{cases}$$

By the Chinese remainder theorem, which we can use since 9, 7, and 5 are coprime, we have that

$$x_0 = 7c_1d_1 + 3c_2d_2 + 0c_3d_3$$

$$= 7 \cdot 35 \cdot d_1 + 3 \cdot 63 \cdot d_2 + 0$$

$$= 7 \cdot 35 \cdot -1 + 3 \cdot 63 \cdot 2 + 0$$

$$= -245 + 378$$

$$= 133$$

$$\equiv 133 \mod 315.$$

7. Find all solutions to the congruence $x^{1000} \equiv 1 \mod 10$.

By the prime factorization of 10, we have that

$$5 \mid (x^{1000} - 1)$$
 and $2 \mid (x^{1000} - 1)$.

Since $2 \mid (x^{1000} - 1)$, we have that $x^{1000} \equiv 1 \mod 2$, implying that x is odd. This leaves us with two possibilities in \mathbb{Z}_5 , namely $\{1,3\}$. We can express 1000 as $5 \cdot 5 \cdot 5 \cdot 8$, so we have

 $((((x)^8)^5)^5)^5 \equiv (((x)^8)^5)^5 \equiv ((x)^8)^5 \equiv x^8 \equiv 1 \mod 5$. We can express 8 as $4 \cdot 2$, so we have $(x^2)^4 \equiv 1 \mod 5$, which means $x^2 \equiv 1 \mod 5$ by Fermat's Little Theorem. We know x is either 1 or 3, so we can test the values. If we try 3, we get that $9 \equiv 1 \mod 5$, which is not true, whereas if we try 1, we get $1 \equiv 1 \mod 5$, which is true. Therefore, x = 1.