WIMA FKP 2

Impulsfeste Polypropylen (PP) - Film/Folien-Kondensatoren im Rastermaß 5 mm

Spezielle Eigenschaften

- Impulsbelastbar
- Enge Toleranzen bis ±2,5 % (±1 % auf Anfrage)
- Sehr niedriger Verlustfaktor
- Negative Kapazitätsänderung über Temperatur
- Sehr niedrige dielektrische Absorption
- Konform RoHS 2011/65/EU

Anwendungsgebiete

Einsatz in frequenzbelasteten Applikationen wie z.B.

- Sample and Hold
- Timing
- LC-Filter
- Schwingkreise
- Audio-Bereich

Aufbau

Dielektrikum:

Polypropylen (PP) Folie

Beläge:

Metallfolie

Innerer Aufbau:

Umhüllung:

Lösungsmittelresistentes, flammhemmendes Kunststoffgehäuse mit Epoxidharzverguß, UL 94 V–0

Anschlüsse:

Verzinnter Draht.

Kennzeichnung:

Farbe: Rot. Aufdruck: Schwarz. Epoxidharzverguß: Gelb

Elektrische Daten

Kapazitätsspektrum:

33 pF bis 0,033 μ F (E12-Werte auf Anfrage)

Nennspannungen:

63 V-, 100 V-, 250 V-, 400 V-, 630 V-, 800 V-, 1000 V-

Kapazitätstoleranzen:

 $\pm 20\%$, $\pm 10\%$, $\pm 5\%$, $\pm 2,5\%$ (als Präzisionskondensatoren mit $\pm 2\%$, $\pm 1,5\%$ oder $\pm 1\%$ auf Anfrage)

Betriebstemperaturbereich:

-55° C bis +100° C

Prüfungen:

Nach IEC 60384-13

Klimaprüfklasse:

55/100/56 nach IEC

Isolationswerte bei +20° C:

 $\geq 5 \cdot 10^5 M\Omega$

(Mittelwert: 1 · 106 MΩ)

Meßspannung:

 $\begin{array}{lll} U_N = & 63 \text{ V: } U_{\text{me}\beta} = & 50 \text{ V/1 min.} \\ U_N \geqslant & 100 \text{ V: } U_{\text{me}\beta} = & 100 \text{ V/1 min.} \end{array}$

Verlustfaktoren bei +20° C: tan δ

Prüfspannung	: 2 U _N , 2s.
Impulsbelastu	ng:

Flankensteilheit 1000 V/µs bei vollem Spannungshub

Dielektrische Absorption: 0.05%

Temperaturbeiwert:

-200 · 10-6/° C (typisch)

Spannungsderating:

Die zulässige Spannung vermindert sich gegenüber der Nennspannung bei Gleichspannungsbetrieb ab +85° C, bei Wechselspannungsbetrieb ab +75° C um 1,35% je 1K.

Zuverlässigkeit:

Betriebszeit > 300 000 h

Ausfallrate < 5 fit (0,5 \cdot U_N und 40° C)

Gemessen bei	C ≤ 1000 pF	1000 pF < C ≤ 4700 pF	C > 4700 pF
1 kHz	≤ 3 · 10-4	≤ 4 ⋅ 10-4	≤ 4 ⋅ 10-4
10 kHz	≤ 3 ⋅ 10-4		≤ 4 · 10 ⁻⁴
100 kHz	≤ 4 ⋅ 10-4	≤ 5 · 10 ⁻⁴	-
1 MHz	≤ 10 · 10 ⁻⁴	-	-

Mechanische Prüfungen

Zugtest Anschlußdrähte:

10 N in Drahtrichtung nach IEC 60068-2-21

Schwingen:

6 h bei 10...2000 Hz und 0,75 mm Auslenkung bzw. 10 g nach IEC 60068-2-6.

Unterdruck:

1 kPa = 10 mbar nach IEC 60068-2-13

Stoßtest:

4000 Stöße mit 390 m/s^2 nach IEC 60068-2-29.

Verpackung

Gegurtet lieferbar.

Detaillierte Gurtungsangaben und Maßzeichnungen am Ende des Hauptkataloges.

Weitere Angaben siehe Technische Information.

WIMA FKP 2

Fortsetzung

Wertespektrum

V '4 "· 4				63 V-/4	40 V~*				100 V-/	′63 V~*
Kapazität	В	Н	L	RM**	Bestellnummer	В	Н	L	RM**	Bestellnummer
100 pF 150 " 220 " 330 " 470 " 680 "	4,5 4,5 4,5 4,5 4,5 4,5	6 6 6 6 6	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	FKP2C001001D00 FKP2C001501D00 FKP2C002201D00 FKP2C003301D00 FKP2C004701D00 FKP2C006801D00	4,5 4,5 4,5 4,5 4,5 4,5	6 6 6 6	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	FKP2D001001D00 FKP2D001501D00 FKP2D002201D00 FKP2D003301D00 FKP2D004701D00 FKP2D006801D00
1000 pF 1500 ,, 2200 ,, 3300 ,, 4700 ,, 6800 ,,	4,5 4,5 4,5 4,5 4,5 4,5	6 6 6 6	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	FKP2C011001D00 FKP2C011501D00 FKP2C012201D00 FKP2C013301D00 FKP2C014701D00 FKP2C016801D00	4,5 4,5 4,5 5,5 5,5 5,5	6 6 7 7 7	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	FKP2D011001D00 FKP2D011501D00 FKP2D012201D00 FKP2D013301G00 FKP2D014701G00 FKP2D016801G00
0,01 µF 0,015 " 0,022 " 0,033 "	5,5 6,5 7,2 8,5	7 8 8,5 10	7,2 7,2 7,2 7,2	5 5 5 5	FKP2C021001G00 FKP2C021501I00 FKP2C022201J00 FKP2C023301L00	6,5 7,2 8,5	8 8,5 10	7,2 7,2 7,2	5 5 5	FKP2D021001I00 FKP2D021501J00 FKP2D022201L00
Kapazität					160 V~*			4		220 V~*
1.apaziiai	В	Н	L	RM**	Bestellnummer	В	Н	L	RM**	Bestellnummer

IZ 11"1			2	250 V-/	160 V~*				100 V-/2	220 V~*
Kapazität	В	Н	L	RM**	Bestellnummer	В	Н	L	RM**	Bestellnummer
100 pF	4,5	6	7,2	5	FKP2F001001D00	4,5	6	7,2	5	FKP2G001001D00
150 "	4,5	6	7,2	5	FKP2F001501D00	4,5	6	7,2	5	FKP2G001501D00
220 "	4,5	6	7,2	5	FKP2F002201D00	4,5	6	7,2	5	FKP2G002201D00
330 "	4,5	6	7,2	5	FKP2F003301D00	4,5	6	7,2	5	FKP2G003301D00
470 "	4,5	6	7,2	5	FKP2F004701D00	4,5	6	7,2	5	FKP2G004701D00
680 "	4,5	6	7,2	5	FKP2F006801D00	4,5	6	7,2	5	FKP2G006801D00
1000 pF	4,5	6	7,2	5	FKP2F011001D00	4,5	6	7,2	5	FKP2G011001D00
1500 "	4,5	6	7,2	5	FKP2F011501D00	4,5	6	7,2	5	FKP2G011501D00
2200 "	4,5	6	7,2	5	FKP2F012201D00	4,5	6	7,2	5	FKP2G012201D00
3300 "	5,5	7	7,2	5	FKP2F013301G00	5,5	7	7,2	5	FKP2G013301G00
4700 "	6,5	8	7,2	5	FKP2F014701I00	6,5	8	7,2	5	FKP2G014701I00
6800 "	6,5	8	7,2	5	FKP2F016801I00	7,2	8,5	7,2	5	FKP2G016801J00
0,01 µ F 0,015 "	7,2 8,5	8,5 10	7,2 7,2	5 5	FKP2F021001J00 FKP2F021501L00	8,5	10	7,2	5	FKP2G021001L00

^{*} Wechselspannungen: f \leq 1000 Hz; 1,4 · U eff \sim + U- \leq U N

** RM = Rastemaß.

Individuelle Werte sowie Werte der E12-Reihe ab 27 pF auf Anfrage.

Alle Maße in mm.

Toleranz: 20% = M10% = K5% = J2,5 % = H 2% = G1,5% = F1% = EVerpackung: lose = S Drahtlänge: 6-2 = SDGurtungsangaben Seite 140

Bestellnummer-Ergänzung:

Fortsetzung Seite 36

WIMA FKP 2

Fortsetzung

Wertespektrum

V ava av=it iit			(530 V-/2	250 V~*	800 V-/250 V~*						
Kapazität	В	Н	L	RM**	Bestellnummer	В	Н	L	RM**	Bestellnummer		
100 pF 150 ,, 220 ,, 330 ,, 470 ,, 680 ,,	4,5 4,5 4,5 4,5 4,5 4,5	6 6 6 6	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	FKP2J001001D00 FKP2J001501D00 FKP2J002201D00 FKP2J003301D00 FKP2J004701D00 FKP2J006801D00	4,5 4,5 4,5 4,5 5,5 5,5	6 6 6 6 7 7	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	FKP2L001001D00 FKP2L001501D00 FKP2L002201D00 FKP2L003301D00 FKP2L004701G00 FKP2L006801G00		
1000 pF 1500 ,, 2200 ,, 3300 ,, 4700 ,, 6800 ,,	4,5 4,5 5,5 6,5 6,5 7,2	6 6 7 8 8 8,5	7,2 7,2 7,2 7,2 7,2 7,2	5 5 5 5 5	FKP2J011001D00 FKP2J011501D00 FKP2J012201G00 FKP2J013301100 FKP2J014701100 FKP2J016801J00	5,5 5,5 6,5 7,2 8,5	7 7 8 8,5 10	7,2 7,2 7,2 7,2 7,2	5 5 5 5	FKP2L011001G00 FKP2L011501G00 FKP2L012201100 FKP2L013301J00 FKP2L014701L00		
0,01 µ F	8,5	10	7,2	5	FKP2J021001L00							

Vana araitärt			1	000 V-/	′250 V~*
Kapazität	В	Н	L	RM**	Bestellnummer
33 pF	4,5	6	7,2	5	FKP2O100331D00
47 "	4,5	6	7,2	5	FKP2O100471D00
68 "	4,5	6	7,2	5	FKP2O100681D00
100 pF	4,5	6	7,2	5	FKP2O101001D00
150 "	4,5	6	7,2	5	FKP2O101501D00
220 "	4,5	6	7,2	5	FKP2O102201D00
330 "	4,5	6	7,2	5	FKP2O103301D00
470 "	5,5	7	7,2	5	FKP2O104701G00
680 "	5,5	7	7,2	5	FKP2O106801G00
1000 pF	6,5	8	7,2	5	FKP2O111001100
1500 "	7,2	8,5	7,2	5	FKP2O111501J00
2200 "	8,5	10	7,2	5	FKP2O112201L00

Individuelle Werte sowie Werte der E12-Reihe ab 27 pF auf Anfrage.

Alle Maße in mm.

Bestellnummer-Ergänzung:							
Toleranz:	20% = M						
	10% = K						
	5 % = J						
	2,5% = H						
	2% = G						
	1,5 % = F						
	1 % = E						
Verpackung Drahtlänge	y: lose = S : 6-2 = SD						
9							
Gurtungsar	ngaben Seite 140						

Abweichungen und Konstruktionsänderungen vorbehalten.

Zulässige Wechselspannung in Abhängigkeit von der Frequenz bei 10° C Eigenerwärmung (Richtwerte).

11.14

^{*} Nennspannungen: f \leq 1000 Hz; 1,4 \cdot U eff \sim + U- \leq U N

^{**} RM = Rastermaß.

Verarbeitungs- und Applikations- —— empfehlungen für bedrahtete Bauteile

Lötprozess

Auf die Innentemperatur der Kondensatoren muss wie folgt geachtet werden:

Polyester: Vorheizphase: $T_{max.} \le 125^{\circ}$ C Lötphase: $T_{max.} \le 135^{\circ}$ C

Polypropylen: Vorheizphase: $T_{max.} \le 100^{\circ} \text{ C}$ Lötphase: $T_{max.} \le 110^{\circ} \text{ C}$

Wellenlöten

Lotbadtemperatur: T < 260 ° C Einwirkdauer: t < 5 s

Doppelwellenlöten

Lotbadtemperatur: T < 260 ° C Einwirkdauer: $\Sigma t < 5$ s

Aufgrund der vielfältigen Verfahren versteht sich das dargestellte Diagramm lediglich

als Empfehlung zur Ausarbeitung eines geeigneten praxisorientierten Lötprofils.

WIMA Qualitäts- und Umweltphilosophie

ISO 9001:2008 Anerkennung

ISO 9001:2008 ist eine internationale Grundnorm zur Zertifizierung von Qualitätssicherungssystemen für alle Industriebereiche. Allen WIMA-Fertigungsstätten wurde durch das VDE-Prüf- und Zertifizierungsinstitut die Herstelleranerkennung gemäß ISO 9001:2008 erteilt. Damit wird bestätigt, dass Organisation, Einrichtungen und Qualitätssicherungsmaßnahmen international anerkannten Standards entsprechen.

WIMA WPCS

Das WIMA Process Control System IWPCSI ist ein von WIMA entwickeltes Qualitätsüberwachungs- und Qualitätssicherungssystem, das als Hauptbestandteil der qualitätsorientierten WIMA-Fertigung zu sehen ist. Die Einsatzstellen innerhalb des Fertigungsprozesses sind

- Wareneingangskontrolle
- Metallisierung
- Folienkontrolle
- Schoopen
- Ausheilen
- Kontaktieren
- Gießharzaufbereitung/Vergießen
- 100%ige Endkontrolle
- Kundenspezifische Prüfungen

WIMA Umweltpolitik

Alle WIMA Kondensatoren, bedrahtet wie SMD, werden aus umweltverträglichen Materialien gefertigt. Weder in der Fertigung, noch in den Produkten selbst werden toxische Stoffe verwendet, wie z. B.

- Blei PBB / PBDE
- PCB Arsen
- FCKW Cadmium
- CKW Quecksilber
- Chrom 6+ etc.

Bei der Verpackung unserer Bauteile werden ausschließlich sortenreine, recyclebare Materialien verwendet, wie z.B.

- Graukarton
- Wellpappe
- Papierklebeband
- Polystyrol

Zur Minimierung des Verpackungsaufwandes können Kunststoffteile zur Wiederverwertung zurückgenommen werden, z.B.

- WIMA EPS-Paletten
- WIMA Kunststoffhaspeln

Auf folgende Verpackungsmaterialien wird weitgehend verzichtet:

- Styropor[®]
- Kunststoffklebebänder
- Metallklammern

RoHS Schadstoffverordnung

Gemäß der EU Schadstoffverordnung, die sich in der RoHS-Richtlinie (2011/65/EU) widerspiegelt, dürfen ab 01.07.2006 bestimmte Schadstoffe wie Blei, Cadmium, Quecksilber usw. nicht mehr in elektronischen Geräten verarbeitet werden. Der Umwelt zuliebe verzichtet WIMA bereits seit Jahrzehnten auf den Einsatz dieser Substanzen.

Kennzeichnungsband für bleifreie WIMA Kondensatoren.

DIN EN ISO 14001:2004

WIMA hat sein Umweltmanagementsystem gemäß den Richtlinien der DIN EN ISO 14001:2004 ausgelegt um Energie und Ressourcen im Produktionsprozess so umweltschonend wie möglich einzusetzen.

Typische Maßangaben für die Radial Gurtung

Skizze 2: RM 10/15 mm

Skizze 3: RM 22,5 und 27,5*mm
*RM 27,5-Gurtung auch mit 2 Führungsloch-Abständen

				Maßang	aben zur Radial	-Gurtung					
Bezeichnung	Symbol	RM 2,5-Gurtung	RM 5-Gurtung	RM 7,5-Gurtung	RM 10-Gurtung*	RM 15-Gurtung*	RM 22,5-Gurtung	RM 27,5-Gurtung			
Trägerbandbreite	W	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5	18,0 ±0,5			
Klebebandbreite	W ₀	6,0 für Heißsiegel- klebeband	6,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband	12,0 für Heißsiegel- klebeband			
Lage der Führungslöcher	Wı	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5	9,0 ±0,5			
Lage Klebeband	W ₂	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,	0,5 bis 3,0 max,			
Führungsloch-Durchmesser	D ₀	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2	4,0 ±0,2			
Abstand der Bauelemente	Р	12,7 ±1,0	12,7 ±1,0	12,7 ±1,0	25,4 ±1,0	25,4 ±1,0	38,1 ±1,5	38,1 ±1,5 bzw, 50,8 ±1,			
Abstand der Führungslöcher	P ₀	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,	12,7 ±0,3 kumulativ nach 20 Schritten 1,0 max,			
Abstand Führungsloch zu Drahtanschluß	P ₁	5,1 ±0,5	3,85 ±0,7	2,6 ±0,7	7,7 ±0,7	5,2 ±0,7	7,8 ±0,7	5,3 ±0,7			
Abstand Führungsloch zu Bauelementmitte	P ₂	6,35 ±1,3	6,35 ±1,3	6,35 ±1,3	12,7 ±1,3	12,7 ±1,3	19,05 ±1,3	19,05 ±1,3			
Abstand Führungsloch	Н▲	16,5 ±0,3	16,5 ±0,3	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5	16,5 ±0,5			
zur Bauelementunterkante	''-	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5	18,5 ±0,5			
Abstand Führungsloch zur Bauelementoberkante	H ₁	H+H _{Bauelement} < H ₁ 32,25 max,	$H+H_{Bauelement} < H_1$ 32,25 max,	H+H _{Bauelement} < H ₁ 24,5 bis 31,5	H+H _{Bauelement} < H ₁ 25,0 bis 31,5	H+H _{Bauelement} < H ₁ 26,0 bis 37,0	H+H _{Bauelement} < H ₁ 30,0 bis 43,0	H+H _{Bauelement} < H ₁ 35,0 bis 45,0			
Rastermaß Oberkante Trägerband	F	2,5 ±0,5	5,0 ^{+0,8} _{-0,2}	7,5 ±0,8	10,0 ±0,8	15 ±0,8	22,5 ±0,8	27,5 ±0,8			
Draht-Durchmesser	d	0,4 ±0,05	0,5 ±0,05	*0,5 ±0,05 o, 0,6 +0.06 -0,05	*0,5 ±0,05 o, 0,6 +0,06	0,8 +0,08 -0,05	0,8 +0,08	0,8 +0.08 -0,05			
Parallelität	Δh	\pm 2,0 max,	\pm 2,0 max,	± 3,0 max,	± 3,0 max,	\pm 3,0 max,	± 3,0 max,	± 3,0 max,			
Gesamtdicke des Bandes	t	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2	0,7 ±0,2			
		ROLL//	AMMO			AMMO					
Verpackung (siehe dazu auch Seite 141)	•	REEL Ø 360 max. Ø 30 ±1	B 52 ±2 abhängig von Bauform	REEL # 360 max. 52 ±2 852 oder REEL # 500 max. 54 ±2 obhänging von RM 4 00 ±1 66 ±2 over REEL # 525 ±1 68 ±2 over REEL # 500 max.							
Einheit				si	ehe Angaben auf Seite 1	42.					

 $^{{\}color{black} \blacktriangle}$ Bei Bestellung bitte Maß H und gewünschte Verpackungsart angeben.

Draht-Durchmesser gem. Werteübersichten.

Alle Maße in mm. Anwenderspezifische Abweichungen sind mit dem Hersteller zu klären.

RM 10 und RM 15 kann auf RM 7,5 gekröpft werden. Es gelten die Gurtungsangaben der entsprechenden Rastermaße, Bauteilposition jedoch wie bei RM 7,5 (Skizze 11. $P_0 = 12,7$ oder 15,0 ist möglich.

Gurt-Verpackungsarten für Kondensatoren mit radialen Anschlüssen

■ Rollenverpackung ROLL

Lagenverpackung AMMO

■ Trommelverpackung REEL

BAR CODE Kennzeichnung

Etikettierung der Verpackungseinheiten klartextlich und mit alphanumerischem Strichcode.

Scanner-Decodierung von

- WIMA-Liefernummer
- Kunden-Bestellnummer
- Kunden-Sachnummer
- WIMA-Bestätigungsnummer
- WIMA Bestellnummer
- Losnummer
- Datums-Code
- Stückzahl

Zusätzlich im Klartext Artikelbeschreibung

- Artikel
- Kapazitätswert
- Nennspannung
- Abmessungen
- Kapazitätstoleranz
- Verpackung

sowie Gewicht und Kundenname.

BARCODE "Code 39"

Verpackungseinheiten für Kondensatoren mit radialen Anschlüssen in den Rastermaßen 2,5 mm bis 22,5 mm

								Stücl			
Rastermaß		Bau	form		lose	ROLL		Ø 360	EL Ø 500	AM 340 × 340	MO 490 × 370
Rasiemab					iose	H16,5 H1	8,5		H16,5 H18,5	H16,5 H18,5	H16,5 H18,5
	В	Н	L	Codes	S	N ()	FI	H J	A C	B D
	2,5	7	4,6	OB	5000	2200		2500	-	2800	-
2,5 mm	3 3,8	7,5 8,5	4,6 4,6	0C 0D	5000 5000	2000 1500		2300 1800	_	2300 1800	_
2,5 11111	4,6	9	4,6	0E	5000	1200		1500	_	1500	_
	5,5	10	4,6	0F	5000	900		1200	-	1200	_
	2,5	6,5	7,2	1A	5000	2200		2500	_	2800	-
	3	7,5	7,2	1B	5000	2000		2300	-	2300	-
	3,5 4,5	8,5 6	7,2 7,2	1C 1D	5000 6000	1600 1300		2000 1500	_	2000 1500	-
	4,5	9,5	7,2	1E	4000	1300		1500	_ _	1500	_
	5	10	7,2	1F	3500	1100		1400	_	1400	_
5 mm	5,5	7	7,2	1G	4000	1000		1200	-	1200	-
5	5,5	11,5	7,2	1H	2500	1000		1200	-	1200	_
	6,5 7,2	8 8,5	7,2 7,2	11 1J	2500 2500	800 700		1000 1000	_	1000 1000	_
	7,2	13	7,2	1K	2000	700		950	_	1000	_
	8,5	10	7,2	1L	2000	600		800	_	800	_
	8,5	14	7,2	1M	1500	600		800	-	800	-
	11	16	7,2	1N	1000	500		600	_	400	_
	2,5	7	10	2A	5000	-		2500	4400	2500	-
	3 4	8,5 9	10 10	2B 2C	5000 4000	_		2200 1 <i>7</i> 00	4300 3200	2300 1700	4150 3100
7,5 mm	4,5	9,5	10,3	2D	3500	_		1500	2900	1400	2800
7,5	5	10,5	10,3	2E	3000	_		1300	2500	1300	-
	5,7	12,5	10,3	2F	2000	_		1000	2200	1100	_
	7,2	12,5	10,3	2G	1500	-		900	1800	1000	-
	3	9	13	3A	3000	-		1100	2200	-	1900
	4	8,5 9	13,5 13	FA 3C	3000 3000	-		900 900	1600 1600	-	1450 1450
	4	9,5	13	3D	3000	_		900	1600	_	1400
10 mm	5	10	13,5	FB	2000	-		700	1300	-	1200
	5	11	13	3F	3000	-		700	1300	-	1200
	6	12	13	3G	2400	-		550	1100	-	1000
	6 8	12,5 12	13 13	3H 3I	2400 2000	_		550 400	1100 800	_ _	1000 <i>7</i> 40
	5	11	18	4B	2400	_		600	1200	_	1150
	5	13	19	FC	1000	_		600	1200	_	1200
	6	12,5	18	4C	2000	-		500	1000	-	1000
	6	14	19	FD	1000	-		500	1000	-	1000
	7	14	18	4D	1600	-		450	900	-	850
15 mm	7 8	15 15	19 18	FE 4F	1000 1200	-		450 400	900 800	-	850 740
15 11111	8	17	19	FF	500	_		400	800	_	740
	9	14	18	4H	1200	-		350	700	-	650
	9	16	18	4J	900	-		350	700	-	650
	10	18	19	FG	500	-		300	650	-	590 540
	11 5	14 14	18 26,5	4M	1000	-		300	600	-	540
	6	15	26,5	5A 5B	1200 1000	_		_	800 <i>7</i> 00	_	770 640
	7	16,5	26,5	5D	760	_		_	600	_	550
	8	20	28	FH	500	-		-	500	-	480
22,5 mm	8,5	18,5	26,5	5F	500	-		-	480	-	450
	10	22	28	FI	540*	-		-	420	_	380
	10,5 10,5	19 20,5	26,5	5G 5H	680* 680*	-		-	400 400	-	360 360
	10,5	20,5	26,5 26,5	5H	680*	-		_	380	_	350
	12	24	28	FJ	450*	_		-	350	-	310
					.00						

^{*} EPS (Einstapel-Paletten-System). Bei Laschenversionen abweichende VPE. Muster und Vorserienbedarf auf Anfrage.

Änderungen vorbehalten.

Formverguß.

									Stüc	kzahl					
		Bau	r			RC	DLL		RE	EL			AM	МО	
Rastermaß		pan.	rorm		lose			ø3	ø 360 ø 500			340 × 340 490 × 33		× 370	
						H16,5	H18,5	H16,5	H18,5	H16,5	H18,5	H16,5	H18,5	H16,5	H18,5
	В	Н	L	Codes	S	N	0	F	ı	Н	J	Α	С	В	D
	9	19	31,5	6A	640*	-	_	_	-	460/	340*		_	4	120
	11	21	31,5	6B	544*	-	_	-	_		280*		_	3	350
	13	24	31,5	6D	448*	-	_	-	_	3	00	340 × 340 5 H16,5 H18,5 A C	2	290	
	13	25	33	FK	336*	-	-			H16,5 H18,5 H A C		_			
27,5 mm	15	26	31,5	6F	384*	_		-	-	2	70	- - - -	2	250	
27,3 111111	15	26	33	FL	288*	-	-	-	-	-	-		_		-
	17	29	31,5	6G	1 <i>7</i> 6*	-	-	-	-	-	-		_		_
	17	34,5	31,5	61	176*	-	-	-	-	-	-		_		_
	20	32	33	FM	216*		-	-	-		-				_
	20	39,5	31,5	6J	144*	-				-		-			
	9	19	41,5	7A	480*	-	-	-	-	-	-		-	-	-
	11	22	41,5	7B	408*	-	-	-	-	-	-		_	-	_
	13	24	41,5	7C	252*	-	-	-	-	-	-		-	-	_
	15	26 29	41,5	7D	144*	-	_	-	-	-	-		_		_
07.5	17 19	32	41,5 41,5	7E 7F	132* 108*		-	-	_	-	_		_		_
37,5 mm	20	39,5	41,5	7G	108*		_		_		_		_		_
	24	45,5	41,5	7H	84*		_	_	_	_	_		_		_
	27	15	41,5	7M	100*										
	31	46	41,5	71	72*	-	-	-	-	-	-		_		_
	35	50	41,5	7J	35*	-	-	-	_	-	_		_		_
	40	55	41,5	7K	28*	-	-	-	_	-	_		_		_
	19	31	56	8D	50*	-	_	-	_	-	_		_		_
	23	34	56	8E	72*	-	-	-	-	-	-		_		_
48,5 mm	27	37,5	56	8H	60*	-	-	-	-	-	-		_	-	-
-	33	48	56	8J	48*	-	-	-	-	-	-		_	-	_
	37	54	56	8L	25*	-	_	-		-	-		-		_
-o -	35	50	57	9F	25*	-	-	-	-	-	-		-		_
52,5 mm	45	55	57	9H	20*	-	-	-	-	-	-		-		-
_	45	65	57	9J	20*	-	_	-	-	-	-		_		-

^{*} bei 2-Zoll Transportschritt.

Formverguß.

Änderungen vorbehalten.

EPS (Einstapel-Paletten-System). Bei Laschenversionen abweichende VPE. Muster und Vorserienbedarf auf Anfrage.

WIMA Bestellnummer-Systematik

Eine WIMA Bestellnummer bestehend aus 18 Zeichen stellt sich wie folgt zusammen:

- Feld 1 4: Typenbezeichnung
- Feld 5 6: Nennspannung
- Feld 7 10: Kapazität
- Feld 11 12: Bauform und Rastermaß
- Feld 13 14: Versions-Code (z. B. Snubber Versionen)
- Feld 15: Kapazitätstoleranz
- Feld 16: Verpackung
- Feld 17 18: Drahtlänge (ungegurtet)

						<u> </u>		
Typenbezeichr	nung:	Nennspa	ınnung:	Kapazität:	Bauform:		Toleranz:	
SMD-PET	= SMDT	50 V-	= B0	22 pF = 0022	4,8 x 3,3 x 3 Size 1812	= KA	$\pm 20\% = M$	
SMD-PEN	= SMDN	63 V-	= C0	47 pF = 0047	4,8 x 3,3 x 4 Size 1812	= KB	$\pm 10\% = K$	
SMD-PPS	= SMDI	100 V-	= D0	100 pF = 0100	5,7 x 5,1 x 3,5 Size 222	O = QA	$\pm 5\% = J$	
FKP 02	= FKPO	250 V-	= FO	150 pF = 0150	5,7 x 5,1 x 4,5 Size 222		$\pm 2.5\% = H$	
MKS 02	=MKS0	400 V-	=G0	220 pF = 0220	7,2 x 6,1 x 3 Size 2824	=TA	$\pm 1\% = E$	
FKS 2	= FKS2	450 V-	=H0	330 pF = 0330	7,2 x 6,1 x 5 Size 2824	= TB		
FKP 2	= FKP2	600 V-	= 10	470 pF = 0470	10,2x7,6x5 Size 4030	$) = \forall A \mid$		
MKS 2	=MKS2	630 V-	= J0	680 pF = 0680	12,7 x 10,2 x 6 Size 5040	=XA		
MKP 2	=MKP2	700 V-	= K0	1000 pF = 1100	15,3 x 13,7 x 7 Size 6054	I = YA	Verpackung:	
FKS 3	= FKS3	800 V-	=L0	1500 pF = 1150	2,5 x 7 x 4,6 RM 2,5	= OB	AMMO H16,5 34	$0 \times 340 = A$
FKP 3	= FKP3	850 V-	=M0	2200 pF = 1220	3×7,5×4,6 RM 2,5	= 0C	AMMO H16,5 49	$90 \times 370 = B$
MKS 4	= MKS4	900 V-	= N0	3300 pF = 1330	2,5 x 6,5 x 7,2 RM 5	= 1A	AMMO H18,5 34	$0 \times 340 = C$
MKP 4	=MKP4	1000 V-	= 01	4700 pF = 1470	3×7,5×7,2 RM5	= 1B	AMMO H18,5 49	$0 \times 370 = D$
MKP 10	=MKP1	1100 V-	= PO	6800 pF = 1680	2,5 x 7 x 10 RM 7,5	=2A	REEL H16,5 360	= F
FKP 4	= FKP4	1200 V-	= Q0	$0.01 \mu F = 2100$	3×8,5×10 RM7,5	= 2B	REEL H16,5 500	=H
FKP 1	= FKP1	1250 V-	= RO	$0.022 \mu F = 2220$	3x9x13 RM 10	=3A	REEL H18,5 360	=
MKP-X2	=MKX2	1500 V-	= S0	$0.047 \mu F = 2470$	4×9×13 RM 10	= 3C	REEL H18,5 500	= J
MKP-X2 R	=MKXR	1600 V-	= T0	$0.1 \mu F = 3100$	5 x 11 x 18 RM 15	= 4B	ROLL H16,5	=N
MKP-X1 R	=MKX1	2000 V-	= U0	$0,22 \mu F = 3220$	6 x 12,5 x 18 RM 15	= 4C	ROLL H18,5	$=$ \bigcirc
MKP-Y2	=MKY2	2500 V-	= V0	$0,47 \mu F = 3470$	5 x 14 x 26,5 RM 22,5	=5A	BLISTER W12 180	
MP 3-X2	=MPX2	3000 V-	= W0	$1 \mu F = 4100$	6 x 15 x 26,5 RM 22,5	= 5B	BLISTER W12 330	=Q
MP 3-X1	=MPX1	4000 V-	=X0	$2,2 \mu F = 4220$	9x 19x 31,5 RM 27,5	= 6A	BLISTER W16 330	=R
MP 3-Y2	=MPY2	6000 V-	= Y0	$4.7 \mu F = 4470$	11 x21 x 31,5 RM 27,5	= 6B	BLISTER W24 330	=T
MP 3R-Y2	=MPRY	250 V~	= 0VV	$10 \mu F = 5100$	9x 19x41,5 RM 37,5	= 7A	Schüttware/EPS St	andard = S
Snubber MKP	= SNMP	275 V~	= 1W	$22 \mu F = 5220$	11 x 22 x 41,5 RM 37,5	= 7B		
Snubber FKP	= SNFP	300 V~	=2W	$47 \mu F = 5470$	19x31x56 RM 48,5	= 8D		
GTO MKP	= GTOM	305 V~	= AVV	$100 \mu F = 6100$	35 x 50 x 57 RM 52,5	= 9F		
DC-LINK MKP 3		400 V~	=3W	$220 \mu F = 6220$				
DC-LINK MKP 4		440 V~	=4VV	$1000 \mu F = 7100$				
DC-LINKMKP4		500 V~	=5W	$1500 \mu F = 7150$				
DC-LINK MKP 5					Versions-Code:		D 1.10	>
DC-LINK MKP 6					Standard $= 00$		Drahtlänge (ung	jegurtet)
DC-LINK HC	= DCHC				Version A1 $= 1A$		$3.5 \pm 0.5 = C9$	
DC-LINK HY	= DCHY				Version A1.1.1 = 1B		6 - 2 = SD	
					Version A2 $= 2A$		$16 \pm 1 = P1$	

Die Daten auf dieser Seite sind nicht vollständig und dienen lediglich der Systemerläuterung. Bestellnummer-Angaben befinden sich auf den Seiten der jeweiligen Reihen.