The transformation of a DECA is given as

 $\times \exp(: V_A:) \exp(: aL:) \exp(: H_A/2:) \exp(: bL:) \exp(: F_{out}:)$ where L and H_4 are the Hamiltonians of a drift of length L and a thin decapole kick with integrated strength

 $\exp(: F_{in}:) \exp(: aL:) \exp(: H_4/2:) \exp(: bL:)$

 $H_4 = \frac{\text{K4}}{5!} \Re(x - iy)^5$ (107)

(106)

respectively. The coefficients are $a \equiv 1/2 - 1/\sqrt{12}$ and b = 1/2 - a. Terms exp(: $F_{\rm in}$:) and exp(: $F_{\rm out}$:) are

transformations for entrance and exit nonlinear fringes. The term $\exp(:V_4:)$ is a correction to adjust the third-order terms in L:

$$V_4 = \sum -\frac{\beta}{2} H_{4,k}^2 + \gamma H_{4,j} H_{4,k} H_{4,j,k} , \qquad (108)$$

where , i represents the derivative by x or y. We have also introduced two coefficients $\beta \equiv 1/6 - 1/\sqrt{48}$ and

K4: