逻辑航线信息学奥赛系列教程

P1205 [USACO1.2] 方块转换 Transformations

题目描述

一块 n×n 正方形的黑白瓦片的图案要被转换成新的正方形图案。写一个程序来找出将原始图 案按照以下列转换方法转换成新图案的最小方式:

转 90°: 图案按顺时针转 90°。

转 180°: 图案按顺时针转 180°。

转 270°: 图案按顺时针转 270°。

反射:图案在水平方向翻转(以中央铅垂线为中心形成原图案的镜像)。

组合:图案在水平方向翻转,然后再按照 1~3 之间的一种再次转换。

不改变:原图案不改变。

无效转换:无法用以上方法得到新图案。

如果有多种可用的转换方法,请选择序号最小的那个。

只使用上述 7 个中的一个步骤来完成这次转换。

输入格式

第一行一个正整数 n。

然后 n 行,每行 n 个字符,全部为 @ 或 -,表示初始的正方形。

接下来 n 行,每行 n 个字符,全部为 @ 或 -,表示最终的正方形。

输出格式

单独的一行包括 1~7 之间的一个数字(在上文已描述)表明需要将转换前的正方形变为转换 后的正方形的转换方法。

输入样例

3

@-@

@@-

@-@

输出样例

1

解析

这道题的几个关键字:找规律、模拟、遍历。即,首先找到前四个操作中数据的变化规律,然后挨个模拟七种行为,直到找到答案。

1、旋转90度的规律

原始图像

		774.7 -	I	
		0	1	2
	0	1	2	3
У	1	4	5	6
	2	7	8	9
		7	7	

顺时针旋转90度

	0	1	2
0	7	4	1
1	8	5	2
2	9	6	3

把对应关系列成表, 找规律

n	у1	x1	у2	x2
3	0	0	0	2
3	0	1	1	2
3	0	2	2	2
3	1	0	0	1
3	1	1	1	1
3	1	2	2	1
3	2	0	0	0
3	2	1	1	0
3	2	2	2	0

$$y2 = x1$$

$$x2 = n-1-y1$$

$$b[x][n-y-1] = a[y][x]$$

将a点的数据映射到b点

2、旋转180度的规律

原始图像

_					
		0	1	2	
	0	1	2	3	
	1	4	5	6	
	2	7	8	9	

顺时针旋转180度

	0	1	2
0	9	8	7
1	6	5	4
2	3	2	1

把对应关系列成表, 找规律

	1	1	0	0
n	уl	x1	у2	x2
3	0	0	2	2
3	0	1	2	1
3	0	2	2	0
3	1	0	1	2
3	1	1	1	1
3	1	2	1	0
3	2	0	0	2
3	2	1	0	1
3	2	2	0	0

$$y2 = n-1-y1$$

$$x2 = n-1-x1$$

$$b[n-y-1][n-x-1] = a[y][x]$$

3、旋转270度的规律

原始图像

	//\\ \\\	四水	
	0	1	2
0	1	2	3
1	4	5	6
2	7	8	9

顺时针旋转270度

	0	1	2
0	3	6	9
1	2	5	8
2	1	4	7

把对应关系列成表, 找规律

	_			
n	у1	x1	у2	x2
3	0	0	2	0
3	0	1	1	0
3	0	2	0	0
3	1	0	2	1
3	1	1	1	1
3	1	2	0	1
3	2	0	2	2
3	2	1	1	2
3	2	2	0	2

$$y2 = n-1-x1$$

$$x2 = y1$$

$$b[n-x-1][y] = a[y][x]$$

4、镜像

原始图像

	0	1	2	
0	1	2	3	
1	4	5	6	
2	7	8	9	

1	-	12		_
		1/2	ы	-
- 4	-EI	112	~	I_{r}

0L 10K/12					
	0	1	2		
0	3	2	1		
1	6	5	4		
2	9	8	7		

把对应关系列成表, 找规律

n	у1	x1	у2	x2
3	0	0	0	2
3	0	1	0	1
3	0	2	0	0
3	1	0	1	2
3	1	1	1	1
3	1	2	1	0
3	2	0	2	2
3	2	1	2	1
3	2	2	2	0

$$x2 = n-x1-1$$

$$y2 = y1$$

$$b[y][n-x-1] = a[y][x]$$

编码

#include<bits/stdc++.h>

using namespace std;

//原始字符数组 char a[12][12]; //变化后的字符数组 char b[12][12];

```
//待对比的字符数组
char c[12][12];
//临时用数组
char temp[12][12];
int n;
bool compare(char org[12][12], char to[12][12]) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (org[i][j] != to[i][j]) {
               return false;
            }
       }
    }
   return true;
}
//90度旋转
void rotation90(char org[12][12], char to[12][12]) {
    for (int y = 0; y < n; y++) {
        for (int x = 0; x < n; x++) {
            to[x][n - y - 1] = org[y][x];
        }
    }
}
//180度旋转
void rotation180(char org[12][12], char to[12][12]) {
    for (int y = 0; y < n; y++) {
        for (int x = 0; x < n; x++) {
            to[n - y - 1][n - x - 1] = org[y][x];
    }
}
//270度旋转
void rotation270(char org[12][12], char to[12][12]) {
    for (int y = 0; y < n; y++) {
        for (int x = 0; x < n; x++) {
            to[n - x - 1][y] = org[y][x];
    }
}
//镜像
void mirror(char org[12][12], char to[12][12]) {
    for (int y = 0; y < n; y++) {
```

```
for (int x = 0; x < n; x++) {
           to[y][n - x - 1] = org[y][x];
       }
   }
}
//组合方式
bool component(char org[12][12], char to[12][12]) {
    //先镜像
   mirror(org, temp);
   //再执行各个旋转
   rotation90(temp, to);
    if (compare(c, to)) {
       return true;
    }
    rotation180(temp, to);
    if (compare(c, to)) {
       return true;
    rotation270(temp, to);
    if (compare(c, to)) {
       return true;
    return false;
}
int main() {
   scanf("%d", &n);
   //读入原始字符
   for (int y = 0; y < n; y++) {
        for (int x = 0; x < n; x++) {
           cin >> a[y][x];
       }
    }
    //读入对比字符
   for (int y = 0; y < n; y++) {
        for (int x = 0; x < n; x++) {
           cin >> c[y][x];
       }
    rotation90(a, b);
    if (compare(c, b)) {
       cout << 1;
       return 0;
    }
    rotation180(a, b);
    if (compare(c, b)) {
       cout << 2;
       return 0;
```

```
rotation270(a, b);
if (compare(c, b)) {
    cout << 3;
   return 0;
}
mirror(a, b);
if (compare(c, b)) {
   cout << 4;
   return 0;
}
if (component(a, b)) {
    cout << 5;
   return 0;
}
if (compare(c, b)) {
   cout << 6;
   return 0;
cout << 7;
return 0;
```

}

逻辑航线培优教育,信息学奥赛培训专家。

扫码添加作者获取更多内容。

