sine basis 08

Statistics:

Design matrix p-values adjusted for search volume

Classical production to a volume											
set-level cluster-level				peak-level					mm mm mm		
р с	p_{FWE-c}	g corrFDR-corr	$r_{\sf E} p_{\sf uncorr}$	$\rho_{\text{FWE-corrFDR-corr}}$ ($(Z_{\equiv}) p_{\text{uncorr}}$				•
	1.000 1.000 1.000 1.000 1.000	0.851 1 0.851 1 0.851 1 0.851 1 0.851 1 0.851 4	0.851 0.851 0.851 0.851 0.851 0.666	1.000 1.000 1.000 1.000 1.000	0.998 0.998 0.998 0.998 0.998	2.51 2.49 2.49 2.49 2.47 2.47	2.50 2.48 2.48 2.48 2.46 2.46	0.006 0.007 0.007 0.007 0.007	-46 14 6 -34 28	-12 -4 -2 -2 6 - 16 1	34 40 26 -8 L8
	1.000 1.000 1.000 1.000 1.000	0.851 6 0.851 1 0.851 2 0.851 1 0.851 2 0.851 4	0.587 0.851 0.774 0.851 0.774 0.666	1.000 1.000 1.000 1.000 1.000	0.998 0.998 0.998 0.998 0.998	2.46 2.43 2.42 2.40 2.40 2.40	2.46 2.42 2.41 2.40 2.40 2.40	0.007 0.008 0.008 0.008 0.008	24 -30 34 24 32 -22	-12 2 -76 - 12 3 -34 3	52 24 -8 32 34 L8
	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.851 3 0.851 1 0.851 2 0.851 1 0.851 1 0.851 1 0.851 1 0.851 1 0.851 2	0.715 0.851 0.774 0.851 0.851 0.851 0.851 0.851 0.851	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998	2.39 2.39 2.39 2.38 2.37 2.37 2.37 2.36 2.36	2.38 2.38 2.38 2.38 2.37 2.36 2.36 2.36 2.35	0.009 0.009 0.009 0.009 0.009 0.009 0.009	-48 8 -14 -22 -14 -28 -20 -20 28 34	8 -1 -26 4 0 6 -46 7 10 2 -4 4 0 4 -86 -1	18 46 74 22 42 46 10