3. Угловая скорость вращения вентилятора рассчитывается по формуле $\omega = 2\pi n$. Вентилятор будет неподвижным с тремя лопастями, если за время между вспышками т лопасти повернутся на угол $\Delta \varphi = \frac{2\pi}{3}k, \quad k = 1,2,3... \quad \text{(естественно,}$

что все лопасти предполагаем, вентилятора одинаковы). Таким образом, условие будет выполнено при

 $2\pi n\tau = \frac{2\pi}{3}k$, или при частотах вспышек $v = \frac{1}{\tau} = \frac{3n}{k}$. Так как минимальна частота стробоскопа равняется $2\Gamma u$, то максимальное значение $k_{max} = 15$.

Вентилятор будет казаться неподвижным с шестью лопастями, если за время между вспышками лопасти повернутся на угол

$$\Delta \phi = \frac{\pi}{3} + \frac{2\pi}{3} k$$
, $k = 0,1,2,...$ Следовательно, частоты вспышек стробоскопа в этом случае можно найти из уравнения $2\pi n \tau = \frac{\pi}{3} + \frac{2\pi}{3} k$, или $v = \frac{1}{\tau} = \frac{3n}{k + \frac{1}{2}}$.

Максимальное значения k в этом случае равно 14.

Наконец, вентилятор будет казаться вращающимся противоположную сторону с частотой n_1 , если за время между

лопасти повернутся вспышками $\Delta \varphi = -2\pi n_1 \tau + \frac{2\pi}{3} k, k = 1,2,3...$ Соответствующе уравнения для определения частот стробоскопа имеет вид $2\pi n\tau = -2\pi n_I \tau + \frac{2\pi}{3} k$. Из которого

следует
$$v = \frac{1}{\tau} = \frac{3(n+n_1)}{k}$$
; $k = 1,2,3...15$.

4. В ходе перемещения поршня на него действуют силы давления $F_1 = P_0 a(a - h)$ воздуха

и воды
$$F_2 = (\rho g \frac{h}{2} + P_0)ah$$
 (2),

где ρ -плотность воды, h- изменяющаяся высота уровня воды в сосуде, $\rho g \frac{h}{2}$ - среднее давление воды на поршень. Так как поршень