

Evaluation of Cognitive Function using Time-Domain Optical Neuroimaging

Zack Goldblum¹, Saqer Alshehri¹, Adrian Curtin, PhD¹, Hasan Ayaz, PhD¹⁻⁵

1 School of Biomedical Engineering, Science, and Health Systems, Drexel University, 2 Department of Psychological and Brain Sciences, Drexel University, 3 Solutions Institute, Drexel University, 4 Department of Family and Community Health, University of Pennsylvania, 5 Center for Injury Research and Prevention, Children's Hospital of Philadelphia

Background

- Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor changes in cortical blood oxygenation as a measure of brain activity [1].
- Recent advancements have enabled time-domain (TD)-fNIRS measurements from which absolute concentrations of oxy- (HbO) and deoxy-hemoglobin (HbR) can be derived.
- A new system with a high-density TD-sensor array in a compact, headset form factor is Kernel Flow (Kernel Inc., Los Angeles, CA) [2].
- We selected eight cognitive tasks with previously studied neural correlates for our experiment.
- In this study, we utilized these tasks to investigate the neural correlates of cognitive function as measured with Kernel Flow.

Methods - Experiment

Participants

• 15 healthy volunteers (11 males, mean age 23.33 ± 3.09 years).

Experimental Protocol

- We conducted an optical brain imaging study to assess the cognitive, behavioral, and physiological responses of participants across eight computerized cognitive tasks.
- Each participant was seated in front of a stimuli presentation computer, fitted with the Kernel Flow headset, a smart watch, and completed the cognitive task blocks in sequence.
- Participant response time and response accuracy to presented stimuli were measured.

Cognitive Task	Domain of Cognition	
Audio narrative	Recall, attention, audio processing	
Go/no-go	Motor response inhibition	
King Devick	Attention and language function	
N-back	Working memory	
Resting state	Default mode network and resting cortical relationships	Kernel FI
Tower of London	Visual problem solving	N-
Video narrative	Recall, attention, audio and video processing	
vSAT	Visuospatial sustained attention	
Example e	_	
Block 1	Block 2 Bloc	k 3
 Tower of London N-back Video narrative 1 	5. King Devick 8. Go/ne	ng state o-go o narrative 2

Flow Experiment setup

Optical modules

Methods - Analysis

Preliminary Results

• There is a significant main effect of N-back task difficulty (0-, 1-, and 2-back conditions) for response time (F=159.19, p<<0.001) and response accuracy (F=33.62, p<<0.001).</p>

Discussion

- As N-back task difficulty increased, there was an increase in response time and a decrease in response accuracy consistent with prior neuroimaging studies that used this task [3].
- Significant task load level-related differences were observed in dorsolateral prefrontal cortex (DLPFC) oxygenation changes from TD-fNIRS, as expected.
- These are the first results using Kernel Flow TD-fNIRS for a cognitive task experiment.

References

1. Ayaz, H., Baker, W. B., Blaney, G., Boas, D. A., Bortfeld, H., Brady, K., Brake, J., Brigadoi, S., Buckley, E. M., Carp, S. A., Cooper, R. J., Cowdrick, K. R., Culver, J. P., Dan, I., Dehghani, H., Devor, A., Durduran, T., Eggebrecht, A. T., Emberson, L. L., Fang, Q., ... Zhou, W. (2022). Optical imaging and spectroscopy for the study of the human brain: status report. Neurophotonics, 9(Suppl 2), S24001. https://doi.org/10.1117/1.NPh.9.S2.S24001.

2. Ban, H. Y., Barrett, G. M., Borisevich, A., Chaturvedi, A., Dahle, J., Dehghani, H., Dubois, J., Field, R. M., Gopalakrishnan, V., Gundran, A., Michael, H., Ho, W., Hughes, H. D., Jin, R., Kates-Harbeck, J., Landy, T., Leggiero, M., Lerner, G., Aghajan, Z. M., ... Zhu, Z. (2022). Kernel Flow: a high channel count scalable time-domain functional near-infrared spectroscopy system. Journal of Biomedical Optics, 27(07). https://doi.org/10.1117/1.jbo.27.7.074710.

3. Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P. A., McKendrick, R., & Parasuraman, R. (2012). Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Frontiers in human neuroscience, 7, 871. https://doi.org/10.3389/fnhum.2013.00871.