COMPUTER SCIENCE / COMPUTER SCIENCE AND ENGINEERING COURSE DETAILS

COMPUTER SCIENCE / COMPUTER SCIENCE AND ENGINEERING COURSE DETAILS

SEMESTER I

KU1DSCCSE101 PRINCIPLES OF PROGRAMMING

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
1	DSC	100	KU1DSCCSE101	4	90

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
2	4	1	50	50	100	2(T)+3(P)*

^{*} ESE duration: 2 hours for theory and 3 hours for Lab

Course Description: Computer Science is all about developing correct and efficient solutions for our day-to-day problems. The process of developing solutions is not centered on learning a programming language and doing coding straight away. Instead, a blueprint of the proposed solution should be outlined and tested for correctness. Once a proposed blueprint leads to a correct solution, it can be implemented using a suitable programming language. The objective of this course is to impart knowledge to the learner about building the blueprint of a solution. Learners are also exposed to implementing the solutions using the C programming language.

Course Objectives:

• To impart knowledge about various constructs for developing solutions

- To become familiar with using the various constructs to develop solutions
- To compare and contrast various constructs for solution development for selection
- To compare and contrast various constructs for solution development for iteration
- To implement solutions using C programming language

Course Outcomes:

At the end of the Course, the Student will be able to:

SL#	Course Outcomes						
CO1	Illustrate the foundations of developing solutions using flowcharts and						
	algorithms						
CO2	Develop solutions using various selection constructs and implement them in the						
	C programming language						
CO3	Develop solutions using various iteration constructs and implement them in the						
	C programming language						
CO4	Understand advanced concepts in direct memory handling, file handling and						
	functions.						

Mapping of COs to PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	√	√	√	√	✓
CO2	✓	✓	✓	✓	✓
CO3	✓	✓	✓	✓	✓
CO4	✓	✓	✓	✓	✓

COURSE CONTENTS

Module 1: Problem-Solving: Preparing Solutions using Flowcharts: Conventions - Structure - Symbols. Preparing Solutions using Algorithms - Conventions - Top-Down and bottom-up approach. Program: Characteristics - Modular Approach - Style - Documentation and Maintenance - Compilers and Interpreters - Preparing, Running and Debugging Programs - Types of Errors. Fundamentals of C Language: Evolution and Features - Program Structure - Elements - Constructs. Character Set, Tokens, Keywords, Identifier. Data Types, Constants, Symbolic Constants, Variables, Data Input and Output, Statements - Assignment statements. Operators in C: arithmetic, relational, logical, assignment, auto increment, auto decrement, conditional, comma operators. Precedence of operators - expressions - evaluation of expressions, type conversion in expressions - precedence and associativity. (15 hours)

Module 2: Selection Constructs: Simple if - if else - if else if ladder - switch. Branching statements: break, goto. Case study: Developing solutions (flowcharts and algorithms) for problems using various selection constructs - Comparative Study of various Selection Constructs - Converting a solution using one selection construct with other selection constructs. (20 Hours)

Module 3: Iteration Constructs: Top Tested Vs Bottom Tested - while - for - do while - Nesting of loops - skipping breaking loops. Arrays - 1D and 2D, 3 D - Case study: Developing solutions (flowcharts and algorithms) for problems using various iteration constructs - Comparative Study of various iteration constructs - Converting a solution

using one iteration construct with other iteration constructs. Functions and function calling mechanisms. (20 hours)

Module 4: Advanced concepts in C: Concepts of memory allocation for variables-Direct memory accessing - Pointers- pointer arithmetics- structures- files and file operations- preprocessor directives- preparing customized header files. **(25 hours)**

Module X:

C programing for embedded systems: concepts of embedded systems - microcontrollers- basic programing with microcontroller. (10 Hours)

Core Compulsory Readings

- 1. J.B Dixit, Computer Fundamentals and Programming in C, Firewall Media
- 2. Anil Bikas Chaudhuri, The Art Of Programming Through Flowcharts Algorithms, Laxmi Publications, New Delhi.
- 3. Maureen Spraknle and Jim Hubbard, Problem Solving and Programming Concepts, Pearson
- 4. E Balagruswamy, Programming in ANSI C, TMH, 5th Edition

Core Compulsory Readings

- 1. RG Dromey, How to Solve by Computer, Pearson Education, 5th Edition
- 2. Brian W. Kernighan and Dennis M. Ritchie, C Programming Language, PHI
- 3. Kanetkar, Let Us C, BPB Publications, 8th Edition

TEACHING LEARNING STRATEGIES

 Lecturing, case study/mini projects, Team Learning, presenting seminars on selected topics, Digital Learning

MODE OF TRANSACTION

Lecture, Seminar, Discussion, Demonstration, Questioning and Answering,
 Video tutorial

ASSESSMENT RUBRICS

Refer to section 7 of FYIMP- Computational Science - Scheme and Syllabus for the 4 credit courses with 2 Credit Theory + 2 Credit Practical.

Sample Questions

- 1. Define algorithms?
- 2. Discuss various characteristics of Algorithms ?
- 3. Explain flowchart and it symbols?
- 4. Draw flowcharts swapping two number with using an additional variable and without using additional variable
- 5. Write a program to illustrate the use of if-else statement
- 6. Explain nested-if statement
- 7. Compare between if-else and else-if ladder
- 8. Explain various methods for iteration
- 9. Explain switch case statement
- 10. Write a program to generate the series 1, 2, 4, 7, 11, 16.......
- 11. What is function and how function is called
- 12. What is direct memory accessing,
- 13. Define pointers
- 14. Explain various file operations.

Semester II

KU2DSCCSE102 FOUNDATIONS OF COMPUTER SCIENCE

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
1	DSC	100	KU2DSCCSE102	4	90