Random Number Generation

1. Using the *Linear Congruent Generator* with the following parameters and initial seed, generates N = 10000 samples of a *Uniform* distribution in the range [0,1).

m	2 ³²
а	1664525
С	1013904223
seed	521191478

- 2. With the numbers generated at the previous step, generate:
 - a. $N_1 = 10000$ samples of an Exponential distribution of rate $\lambda = 0.1$
 - b. $N_2 = 10000$ samples of a Pareto distribution with parameters a = 1.5, m = 5
 - c. $N_3 = 2500$ samples of an Erlang distribution with k = 4, and $\lambda = 0.4$
 - d. $N_4 = 5000$ samples of a Hypo-Exponential distribution with rates $\lambda_1 = 0.5$, $\lambda_2 = 0.125$
 - e. $N_5 = 5000$ samples of a Hyper-Exponential distribution with rates $\lambda_1 = 0.5$, $\lambda_2 = 0.05$, $p_1 = 0.55$

Please note that each of the previous cases should use exactly all the N = 10000 samples of the *Uniform* distribution in the range (0,1) generated in the previous step.

- 3. For each distribution, compare on a plot the *Empirical distribution* obtained from the samples, with the corresponding real distribution (using its formula), in the range x = [0,25].
- 4. The previous distributions correspond to the length of a file, expressed in GB. The charge for storing and making available each file by a provider is:
 - a. 0.01 \$/GB if the file is less than 10 GB
 - b. 0.02 \$/GB if the file is greater than 10 GB

In other words, a file that is 2.5 GB costs 0.025 \$, while one that is 12 GB costs 0.24 \$. Compute the total cost for storing the N_i files in each of the previous five scenarios.