

85
45

WHAT IS CLAIMED IS:

CallSeq™

1 1. In a computer system, a method of identifying
2 an unknown base in a sample nucleic acid sequence, said method
3 comprising the steps of:

4 4. inputting a plurality of probe intensities, each of
5 said probe intensities being associated with a probe on a
6 chip;

7 7. said computer system comparing said plurality of
8 probe intensities wherein each of said plurality of probe
9 intensities is substantially proportional to a probe
10 hybridizing with at least one sequence; and
11 calling said unknown base according to said
12 comparison of said plurality of probe intensities.

1 1. The method of claim 1, wherein said at least
2 one sequence includes said sample sequence.

1 3. The method of claim 2, further comprising the
2 step of said computer system calculating a ratio of a higher
3 probe intensity to a lower probe intensity.

1 4. The method of claim 3, further comprising the
2 step of calling said unknown base as being a base complement
3 of said probe associated with said higher probe intensity if
4 said ratio is greater than a predetermined ratio value.

1 5. The method of claim 3, wherein said ratio is
2 approximately 1.2.

1 6. The method of claim 2, further comprising the
2 step of sorting said plurality of probe intensities.

1 7. The method of claim 1, wherein said at least
2 one sequence includes said sample sequence and a reference
3 sequence.

86
46

1 8. The method of claim 7, further comprising the
2 step of said computer system comparing probe intensities of a
3 probe hybridizing with said sample sequence to probe
4 intensities hybridizing with said reference sequence.

1 9. The method of claim 7, further comprising the
2 step of calculating first ratios of a wild-type probe
3 intensity to each probe intensity of a probe hybridizing with
4 said reference sequence, wherein said wild-type probe
5 intensity is associated with a wild-type probe.

1 10. The method of claim 9, further comprising the
2 step of calculating second ratios of the highest probe
3 intensity of a probe hybridizing with said sample sequence to
4 each probe intensity of a probe hybridizing with said sample
5 sequence.

1 11. The method of claim 10, further comprising the
2 step of calculating third ratios of said first ratios to said
3 second ratios.

1 12. The method of claim 7, further comprising the
2 step of comparing neighboring probe intensities of said
3 plurality of probe intensities.

1 13. The method of claim 7, wherein probe
2 intensities of a probe hybridizing with said reference
3 sequence are from a plurality of experiments.

1 14. The method of claim 13, further comprising the
2 step of said computer system comparing probe intensities of a
3 probe hybridizing with said sample sequence to statistics
4 about said plurality of experiments.

1 15. The method of claim 14, wherein said statistics
2 include a mean and standard deviation.

1 16. The method of claim 13, further comprising the
2 step of normalizing said plurality of probe intensities by
3 dividing each probe intensity by a sum of related probe
4 intensities.

1 17. The method of claim 1, further comprising the
2 step of subtracting a background intensity from each of said
3 plurality of probe intensities.

1 18. The method of claim 1, further comprising the
2 step of setting a probe intensity equal to a relative small
3 positive number if said probe intensity is less than or equal
4 to zero.
Guilay
A4

1 19. The method of claim 1, further comprising the
2 step of indicating said unknown base is unable to be called if
3 said plurality of probe intensities have insufficient
4 intensity to call said unknown base.

1 20. The method of claim 1, wherein said unknown
2 base is called as being A, C, G, or T.

Pooling Processing

1 21. A method of processing first and second nucleic
2 acid sequences, comprising the steps of:
3 providing a plurality of nucleic acid probes;
4 labeling said first nucleic acid sequence with a
5 first marker;
6 labeling said second nucleic acid sequence with a
7 second marker; and
8 hybridizing said first and second labeled nucleic
9 acid sequences at the same time.

1 22. The method of claim 21, wherein said plurality
2 of nucleic acid probes are on a chip.

1 23. The method of claim 21, further comprising the
2 step of fragmenting said first and second nucleic acid
3 sequences at the same time.

1 24. The method of claim 21, further comprising the
2 step of scanning for said first and second markers on said
3 chip, said first and second labeled nucleic acid sequences
4 being on said chip.

1 25. The method of claim 21, wherein said first and
2 second markers are fluorescent markers.

1 26. The method of claim 25, wherein said first and
2 second markers emit light at different wavelengths upon
3 excitation.

ViewSeq™

1 27. In a computer system, a method of analyzing a
2 plurality of sequences of bases, said plurality of sequences
3 including at least one reference sequence and at least one
4 sample sequence, the method comprising the steps of:

5 displaying said at least one reference sequence in a
6 first area on a display device; and

7 displaying said at least one sample sequence in a
8 second area on said display device;

9 whereby a user is capable of visually comparing said
10 plurality of sequences.

1 28. The method of claim 27, wherein said plurality
2 of sequences are monomer strands of DNA or RNA.

1 29. The method of claim 27, wherein said bases are
2 A, C, G, or T.

1 30. The method of claim 27, wherein said at least
2 one reference sequence includes a chip wild-type that has been
3 tiled on a chip.

1 31. The method of claim 30, wherein said chip wild-
2 type sequence is displayed as a first sequence in said first
3 area.

1 32. The method of claim 30, further comprising the
2 step of displaying a label in said first area to identify said
3 chip wild-type sequence.

1 33. The method of claim 32, wherein said label is a
2 capital C.

1 34. The method of claim 27, wherein said at least
2 one sample sequence has been hybridized on a chip.

1 35. The method of claim 27, further comprising the
2 step of indicating bases that differ among a plurality of user
3 selected sequences.

1 36. The method of claim 27, further comprising the
2 steps of:

3 displaying a name associated with each of said at
4 least one reference sequence in said first area; and

5 displaying a name associated with each of said at
6 least one sample sequence in said second area.

1 37. The method of claim 27, further comprising the
2 step of linking at least one reference sequence in said first
3 area with at least one sample sequence in said second area.

1 38. The method of claim 37, further comprising the
2 step of indicating on said display device which sequences are
3 linked.

1 39. The method of claim 38, wherein said indicating
2 step includes the step of displaying a common symbol next to
3 said linked sequences.

90
50

1 40. The method of claim 39, wherein said common
2 symbol is a link number.

1 41. The method of claim 37, further comprising the
2 step of indicating bases of said at least one sample sequence
3 that are not equal to a corresponding base in said at least
4 one reference sequence.

1 42. The method of claim 27, wherein said at least
2 one reference sequence and said at least one sample sequence
3 are aligned on said display device.

1 43. The method of claim 27, further comprising the
2 step of exposing sequences to probes.

1 44. The method of claim 43, further comprising the
2 step of evaluating said exposed sequences according to
3 hybridization with said probes.

add
B7

add