Context-free Grammars

Def: A Context-free Grammar (CFG) is a 4-tuple

 $G=(N, \Sigma, P, S)$

where:

- 1. N is a finite, nonempty set of symbols (non-terminals)
- 2. Σ is a finite set of symbols (terminals)
- 3. $N \cap \Sigma = \Phi$
- 4. $V = N \cup \Sigma$ (vocabulary)
- 5. $S \in N$ (Goal symbol or start symbol)
- 6. P is a finite subset of $N \times V^*$ (Production rules).

Sometimes written as $G=(V, \Sigma, P,S)$, $N = V \setminus \Sigma$.

University of Illinois at Urbana-Champaign

Page

University of Illinois at Urbana-Champaign

CS 326 Lecture 3 - Context Free Grammars

Derivations of a Grammar

Directly Derives or ⇒:

If α and β are strings in V* (vocabulary), then α <u>directly derives</u> β (written $\alpha \Rightarrow \beta$) *iff* there is a production $A \rightarrow \delta$ s.t.

- A is a symbol in α
- Substituting string δ for A in α produces the string β

Canonical Derivation Step:

The above derivation step is called $\underline{rightmost}$ if A is the rightmost non-terminal in α . (Similarly, leftmost.)

A rightmost derivation step is also called canonical.

Example Grammar: Arithmetic Expressions

 $G = (N, \Sigma, P, E)$ where:

$$\begin{aligned} \mathbf{N} &= \{ \, \mathsf{E}, \, \mathsf{T}, \, \mathsf{F} \} \\ \mathbf{\Sigma} &= \{ \, (, \,), \, +, \, *, \, \underline{\mathsf{id}} \} \\ \mathbf{P} &= \{ \, \mathsf{E} \to \mathsf{T} \\ &= \mathsf{E} \to \mathsf{E} + \mathsf{T} \\ &\mathsf{T} \to \mathsf{F} \\ &\mathsf{T} \to \mathsf{T}^* \mathsf{F} \\ &\mathsf{F} \to \underline{\mathsf{id}} \\ &\mathsf{F} \to (\mathsf{E}) \, \} \end{aligned} \qquad \begin{aligned} & \textit{Note: } \mathsf{P} \subseteq \mathsf{NxV}^*, \, \text{where} \\ &\mathsf{V} &= \mathsf{N} \cup \Sigma = \{ \, \mathsf{E}, \mathsf{T}, \mathsf{F}, \mathsf{C}, (,), +, \, *, \underline{\mathsf{id}} \} \\ &\mathsf{V} &= \mathsf{N} \cup \Sigma = \{ \, \mathsf{E}, \mathsf{T}, \mathsf{F}, \mathsf{C}, (,), +, \, *, \underline{\mathsf{id}} \} \\ &\mathsf{Note: } (\mathsf{A}, \, \alpha \,) \in \mathsf{P} \, \text{is usually written} \\ &\mathsf{A} \to \alpha \\ &\mathsf{or} \quad \mathsf{A} :: = \alpha \\ &\mathsf{or} \quad \mathsf{A} : \alpha \end{aligned}$$

CS 326 Lecture 3 – Context Free Grammars

Derivations and Sentential Forms

Derivation:

A sequence of steps $\alpha_0 \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n$ where $\alpha_0 = S$ is called a *derivation*. It is written $S \Rightarrow^* \alpha_n$

If every derivation step is rightmost, then this is a canonical derivation.

Sentential Form

Each α_i in a derivation is called a <u>sentential form</u> of G.

Sentences and the Language L(G)

A sentential form α_{i} consisting only of tokens (i.e., terminals) is called a sentence of G.

The <u>language generated by G</u> is the set of all sentences of G. It is denoted L(G).

Parse Trees of a Grammar

A **Parse Tree** for a grammar G is any tree in which:

- The root is labeled with S
- Each leaf is labeled with a token a ($a \in \Sigma$) or ε (the empty string)
- Each interior node is labeled by a non-terminal.
- If an interior node is labeled A and has children labeled $X_1...X_n$, then $A \rightarrow X_1...X_n$ is a production of G
- If A $\rightarrow \varepsilon$ is a production in G, then a node labeled A may have a single child labeled ϵ

The string formed by the leaf labels (left to right) is the **yield** of the parse tree.

University of Illinois at Urbana-Champaign

CS 326 Lecture 3 - Context Free Grammars

id * id

University of Illinois at Urbana-Champaign

CS 326 Lecture 3 - Context Free Grammars

Derivations and Parse Trees

id * id

Parse Trees (continued)

 An intermediate parse tree is the same as a parse tree except the leaves can be non-terminals.

Notes:

- Every $\alpha \in L(G)$ is the yield of *some* parse tree. Why?
- Consider a derivation, $S \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n$, where $\alpha_n \in L(G)$ For each α_{i} , we can construct an intermediate parse tree. The last one will be the parse tree for the sentence α_n
- · A parse tree ignores the order in which symbols are replaced to derive a string.

Uniqueness of Derivations

Derivations and Parse Trees

• Every parse tree has a unique derivation: Yes? No?

• Every parse tree has a unique rightmost derivation: Yes? No?

• Every parse tree has a unique leftmost derivation: Yes? No?

Derivations and Strings of the Language

• Every $u \in L(G)$ has a unique derivation: Yes? No?

• Every $u \in L(G)$ has a unique rightmost derivation: Yes? No?

• Every $u \in L(G)$ has a unique leftmost derivation: Yes? No?

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign

Ambiguity

Def. A grammar, G, is said to be <u>unambiguous</u> if \forall u \in L(G), \exists exactly one canonical derivation $S \Rightarrow^* u$. Otherwise, G is said to be **ambiguous**.

E.g., Grammar: $E \rightarrow E + E \mid E * E \mid (E) \mid \underline{id}$

Two parse trees for u = id + id * id

These are different syntactic interpretations of the input code

University of Illinois at Urbana-Champaign

Page 9

CS 326 Lecture 3 - Context Free Grammars

Detecting Ambiguity

<u>Caution:</u> There is no mechanical algorithm to decide whether an arbitrary CFG is ambiguous.

But one common kind of ambiguity can be detected:

If a symbol, $A \subseteq N$ is both left-recursive (i.e., $A \Rightarrow^+ A\alpha$, $|\alpha| \ge 0$) and right-recursive (i.e., $A \Rightarrow^+ \beta A$, $|\beta| \ge 0$), then G is ambiguous, provided that G is "reduced" (i.e., has no "redundant" symbols).

Order of Evaluation of Parse Tree

Note: These are conventions, not theorems

- Code for a non-terminal is evaluated as a single "block"
 - I.e., cannot partially execute it, then execute something else, then evaluate the rest
 - A different parse tree would be needed to achieve that
 - E.g. 1: Non-terminal T enforces precedence of * over +
 - E.g. 2: E → E + T enforces left-associativity,
 E → T + E enforces right-associativity.
- Parse tree does not specify order of execution of code blocks
 - Must be enforced by the code generated for parent block. Obey:
 - » Operator (e.g, +) cannot be evaluated before operands
 - » Associativity rules

University of Illinois at Urbana-Champaign

Page

CS 326 Lecture 3 - Context Free Grammars

Removal of Ambiguity: Example 1

1. Enforce higher precedence for *

$$E \rightarrow E + E \mid T$$

 $T \rightarrow T * T \mid \underline{id} \mid (E)$

2. Eliminate right-recursion for $E \rightarrow E + E$ and $T \rightarrow T * T$.

$$E \rightarrow E + T \mid T$$
$$T \rightarrow T * \underline{id} \mid T * (E) \mid \underline{id} \mid (E)$$

Removal of Ambiguity: Example 2

```
The Infamous Dangling-Else Grammar:

Stmt → if expr then stmt

| if expr then stmt else stmt
| other

Solution: Introduce new non-terminals to distinguish matched then/else

Stmt → matched_stmt | unmatched_stmt

matched_stmt → if expr then matched_stmt else matched_stmt

| other

unmatched_stmt → if expr then stmt

| if expr then matched_stmt else unmatched_stmt
```

University of Illinois at Urbana-Champaign

Page 13