EU DCC Value Set Updates

A Client-Server Proposal

Gaby Whitehead Dutch Ministry of Public Health, Welfare and Sport 2021-07-12

The Current Problem: 48 Hours...

DCC Value Sets will be updated regularly.

These updates will be made available at a well-known endpoint.

Clients (Issuer or Verifier applications) will need to be able to update at a frequency and timescale they deem suitable

The current DCCG solution has a turn-around time of 48 hours for propagating a value set update.

For updates that are required to be made available (e.g. urgent patch fix to be distributed) a 48-hour turnaround time is unacceptable.

A matter of (single-digit) minutes would be an appropriate turn-around time in this scenario.

Requirements for DCC Value Set Updates

- * It shall be possible for a client to:
- * update to the latest DCC value sets as soon as they are published at the well-known DCCG endpoint
 - * update to the latest DCC value sets within a time-scale acceptable to the client
- * maintain control of if, how and when any new value set shall be updated at the client side
- * The server
 - * shall ideally be stateless to allow for ease of re-start if there is a server outage
 - * shall not persist any client identity on the server-side

Deployment Constraints

- * WAN connectivity loosely-coupled clients
- * Highly Dynamic clients can come and go in no predetermined fashion
- * Highly Scalable many clients possible
- * Must be robust to be both client and server outages

Possible Architectural Solutions: Server-Push

Design Pattern: Observer / Publish-Subscribe

- * Pro's
 - * already implemented for notifier apps (EFGS)
 - * development teams are familiar with the mechanism
- * Con's
- * requires subscribers to be available once they have subscribed (not come and go in a highly dynamic manner)
- * persistence of client connection information is required in order to call back to the client
- * error handling becomes somewhat involved (although not impossible) if subscribers disappear without warning
 - * subscribers will simply not be notified if there is a server outage

Possible Architectural Solutions: Client-Pull

Design: client polling model

- * Pro's
 - * clients can dynamically come and go
 - * server-side is stateless
 - * no persistence of client connections
 - * robust with respect to client outages (handled by standard HTTP / TCP / IP protocols)
 - * robust with respect to server outages client knows immediately if server not available
- * Con's
 - * more bandwidth required overall than for the server-push model (due to client polling)

Chosen Architectural Approach: Client-Pull

Server End-Points:

- * value set date-time / HTTP GET
 - gets regularly polled, returns only a few bytes
- * value set / HTTP GET (POST?)
 - called by client *if* client decides to want to download the valueset

More at:

- https://github.com/ehn-dcc-development/ehn-dcc-vsu
- https://github.com/ehn-dcc-development/ehn-dcc-vsu/blob/main/README.md