10.2 Classwork: Tangent inverse

CCSS.HSG.SRT.C.8

1. Graph and label $\triangle ABC$ with A(0,0), B(3,6), and C(3,0). Calculate each value:

(a)
$$AC = 3$$

(b)
$$BC = 6$$

(c) Express first as a radical, then approximate with a decimal rounded to two decimal places.

$$AB = \sqrt{3^{2}+6^{2}}$$

$$= \sqrt{9+36}$$

$$= \sqrt{45}$$

$$= \sqrt{9} \sqrt{5}$$

(d) Use a protractor to measure $m \angle BAC = \theta$ in degrees.

(e) The tangent of an angle is the ratio of the side lengths opposite over adjacent to the angle. Write down the value as a fraction.

$$\tan\theta = \frac{6}{3} = 2$$

(f) Find $m \angle BAC = \theta$ in degrees with a calculator's inverse tangent function.

$$\theta = \tan^{-1}(\frac{opp}{adj})$$

$$= \tan^{-1}(2) = 63.4349...$$

(g) Convert θ to radians. (180° = π radians)

Mastery topic: Calculator use

2. Express the result to the nearest thousandth.

(c)
$$\tan 15^{\circ} = 0.267949...$$

(b)
$$\tan 81^{\circ} = 3.3/37...$$

(d)
$$\tan 65^{\circ} = 2.1445^{\circ}$$
...

3. Round each value to the nearest degree.

(a)
$$\tan^{-1}(2) = 63.4349...$$
 (c) $\tan^{-1}(1) = 45^{\circ}$

(c)
$$tan^{-1}(1) = 45$$
°

(b)
$$\tan^{-1}(0.5) = 26.5650...$$
 $\approx \frac{47}{27}$

(d)
$$\tan^{-1}(\frac{1}{\sqrt{3}}) = 3$$

Mastery topic: Modeling. Do Not Solve

4. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}$, JK = 11, $m \angle J = 18^{\circ}$. (mark the diagram)

Let x be the length of the side opposite $\angle J$, x = KL. Write an equation expressing $\tan \angle J$ as a ratio of opposite over adjacent.

5. Given right $\triangle ABC$ with $m \angle C = 90^{\circ}$, BC = 5, $m \angle A = 38^{\circ}$. (mark the diagram)

Let x be the length of the side adjacent to $\angle A$, x = AC. Write an equation expressing $\tan \angle A$ as a ratio of *opposite* over *adjacent*.

$$\tan 31 = \frac{5}{x}$$

6. Given right $\triangle ABC$ with $m \angle C = 90^{\circ}$, BC = 11, AC = 17, and $m \angle A = x^{\circ}$. (mark the diagram)

Write an equation expressing tan x as a ratio of opposite over adjacent.

7. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}, JK = 20, m \angle J = 11^{\circ}$. (mark the diagram)

Let x be the length of the side opposite $\angle J$, x = KL. Write an equation expressing $\tan \angle J$ as a ratio of *opposite* over *adjacent*.

Mastery topic: Algebraic solution

Use your calculator and solve each equation for x, rounding to the nearest tenth.

8.
$$\tan 75^{\circ} = \frac{x}{15}$$

9.
$$\tan 26^{\circ} = \frac{4}{x}$$

$$x = \frac{4}{4 \times 26}$$

$$= 8.201215... \approx 8.2$$

10.
$$x = \tan^{-1}(\frac{2}{3.5})$$

= $29.74488...$
 $\approx 29.7^{\circ}$

11.
$$\tan x^{\circ} = \frac{17}{9}$$

$$\gamma = \tan^{-1} \left(\frac{17}{9} \right)$$

$$= \left(2.10 \ 272...\right)$$

$$\approx 62.1^{\circ}$$