AMENDMENTS TO THE SPECIFICATION

Please replace the three paragraphs from page 3, line 19 to page 4, line 11 of the specification with the following:

--Another embodiment of the invention relates to a circuit arrangement in a variable speed automotive electric motor controller. The circuit arrangement includes a controller logic circuit for operating a controller logic finite state machine, in which the state machine sets the voltage supplied to an electric motor. It can also include a closed loop feedback for generating a signal indicating the voltage across the electric motor, which can then be <u>used for comparison to the</u> voltage set by the state machine input to the state machine for monitoring thereof.--

--In another embodiment, the invention includes a system incorporating at least the above-described automotive electric motor linear speed control. In another embodiment, the invention includes a system for controlling the speed of an automotive electric motor, in which the voltage across the electric motor determines the speed of the electric motor. This system can include a digital to analog converter means for converting a digital signal to analog voltage for setting voltage across the electric motor, a microprocessor and associated digital memory for generating the digital signal, where the microprocessor is configured to instantiate and operate a digital state machine for converting the duty cycle of an input signal to the microprocessor and associated digital memory for setting the voltage supplied to the electric motorgenerated by an associated closed loop feedback means, and a closed loop feedback loop means for monitoring the voltage across the motor and generating a signal for input to the microprocessor. The invention also relates to an automobile including the above-described system. In a preferred embodiment, the system includes a temperature-control system.--

--In one preferred embodiment, the invention relates to a linear speed control for an automotive electric motor that includes a digital state machine for converting the duty cycle of an input signal generated by an associated closed loop feedback, an over-current sense circuit for monitoring the current across said electric motor, an over/under voltage sense circuit for monitoring a supply voltage to the electric controller, a digital to analog converter for converting an 8-bit digital signal to analog voltage for setting voltage across said electric motor, and a closed loop feedback loop for monitoring the voltage across said motor and generating a feedback signal for adjusting the voltage supplied to the motorinput to said digital state machine.--