SESIÓN LA RED NEURONAL ARTIFICIAL

CONTENIDOS:

- Qué es una red neuronal artificial.
- Problemas que se pueden resolver con redes neuronales.
- Elementos de una red neuronal:
 - a. El perceptrón.
 - b. Capas de entrada, salida, capas ocultas.
 - c. Función de activación.
 - d. Pesos y sesgos.
- Arquitectura de una red neuronal densa.
- Entrenamiento de una red neuronal: loss-function.
- Forward pass y Back propagation.

QUÉ ES UNA RED NEURONAL ARTIFICIAL

Una **red neuronal artificial (RNA)** es un modelo computacional inspirado en la estructura y el funcionamiento del cerebro humano. Está compuesta por **neuronas artificiales**, organizadas en capas, que procesan información mediante conexiones ponderadas. Su objetivo es aprender patrones a partir de datos, ajustando los pesos de las conexiones a través de un proceso de entrenamiento.

Las redes neuronales se componen de tres tipos de capas principales:

- Capa de entrada: recibe los datos de entrada.
- Capas ocultas: procesan la información mediante funciones de activación.
- Capa de salida: genera la respuesta final del modelo.

El aprendizaje en una red neuronal se basa en la **retropropagación del error**, utilizando algoritmos como el **descenso del gradiente** para ajustar los pesos y mejorar la precisión del modelo.

Ilustración 1 Esquema redes neuronales. OpenWebinars

PROBLEMAS QUE SE PUEDEN RESOLVER CON REDES NEURONALES

Las redes neuronales artificiales se utilizan para resolver una gran variedad de problemas en distintos campos, como:

- 1. **Clasificación**: asignación de etiquetas a datos (ej. detección de spam en correos electrónicos, reconocimiento de imágenes).
- 2. **Regresión**: predicción de valores continuos (ej. predicción de precios de viviendas, análisis financiero).
- Procesamiento de imágenes: reconocimiento facial, segmentación de imágenes médicas, detección de objetos.
- Procesamiento de lenguaje natural (NLP): traducción automática, análisis de sentimientos, chatbots.
- 5. **Series temporales y predicciones**: predicción del clima, detección de fraudes, análisis de tendencias de mercado.
- Sistemas de recomendación: recomendaciones de productos en plataformas como Netflix, Amazon o Spotify.
- 7. **Control y automatización**: conducción autónoma, robótica, sistemas de control en la industria.

ELEMENTOS DE UNA RED NEURONAL

Las redes neuronales artificiales están compuestas por varios elementos fundamentales que permiten su funcionamiento y aprendizaje. Entre ellos se destacan:

El perceptrón

El **perceptrón** es la unidad básica de una red neuronal artificial. Fue desarrollado por **Frank Rosenblatt** en 1958 y representa el modelo más simple de una neurona artificial. Su funcionamiento se basa en los siguientes pasos:

- 1. **Recepción de entradas**: recibe múltiples valores de entrada x_1,x_2,...,x_n.
- 2. **Asignación de pesos**: cada entrada tiene un peso asociado w_1, w_2,\\lambda ldots, 1_n que indica su importancia.
- 3. **Cálculo de la suma ponderada**: se multiplica cada entrada por su peso y se suma con un valor adicional llamado **sesgo** (b).
- 4. **Aplicación de la función de activación**: el resultado se pasa por una función matemática que determina si la neurona se activa o no.
- 5. Salida del perceptrón: se obtiene un valor de salida y.

Fórmula del perceptrón:

$$y = f\left(\sum (w_i \cdot x_i) + b
ight)$$

Ilustración 2 Formula del perceptrón

Donde f es la función de activación.

Capas en una Red Neuronal

Las redes neuronales están organizadas en distintas capas:

- Capa de entrada: recibe los datos de entrada y los transmite a la siguiente capa. No realiza cálculos, solo distribuye los valores.
- Capas ocultas: son capas intermedias entre la entrada y la salida. Aquí ocurre el procesamiento mediante la combinación de pesos, sesgos y funciones de activación. A mayor número de capas ocultas, más complejidad y capacidad de aprendizaje tiene la red.
- 3. Capa de salida: genera la respuesta final del modelo. El número de neuronas en esta capa depende del problema; por ejemplo, en clasificación binaria hay una sola neurona, mientras que en clasificación multiclase hay tantas neuronas como categorías.

Modelo Multicapa (L capas)

Ilustración 3 Modelo Multicapa. Universidad Politécnica de Madrid

Función de activación

Las funciones de activación son operaciones matemáticas que introducen no linealidad en la red, permitiendo resolver problemas complejos. Algunas de las más utilizadas son:

• Sigmoide: útil en problemas de clasificación binaria.

$$f(x) = \frac{1}{1+e^{-x}}$$

Ilustración 4 Función sigmoide

 ReLU (Rectified Linear Unit): se usa en redes profundas debido a su eficiencia computacional.

$$f(x) = \max(0,x)$$

Ilustración 5 Función ReLu

• Tangente hiperbólica (tanh): similar a la sigmoide, pero con valores entre -1 y 1.

$$f(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$$

Ilustración 6 Función Tangente hiperbólica

• Softmax: ideal para clasificación multiclase, ya que convierte los valores en probabilidades.

Pesos y sesgos

Los **pesos (w)** determinan la importancia de cada conexión en la red. Se ajustan durante el entrenamiento para mejorar la precisión del modelo.

El **sesgo** (b) es un valor adicional que permite desplazar la función de activación, lo que ayuda a la red a aprender patrones más complejos.

ARQUITECTURA Y ENTREGAMIENTO DE UNA RED NEURONAL

Las redes neuronales artificiales requieren una estructura bien definida y un proceso de entrenamiento que les permita aprender de los datos. A continuación, se explican los conceptos clave:

Arquitectura de una red neuronal densa

Una **red neuronal densa** (o totalmente conectada) es un tipo de red en la que cada neurona de una capa está conectada a todas las neuronas de la capa siguiente. Su estructura básica incluye:

- 1. Capa de entrada: recibe los datos iniciales y los transmite sin modificaciones.
- 2. Capas ocultas: procesan los datos aplicando pesos, sesgos y funciones de activación.
- 3. Capa de salida: genera el resultado final del modelo.

Cada neurona en una capa toma las salidas de la capa anterior, les aplica pesos y sesgos, y las pasa por una función de activación.

Ejemplo de una red neuronal densa con tres capas:

- Entrada: 3 neuronas (por ejemplo, características de una imagen: altura, ancho, color).
- Oculta: 4 neuronas con activación ReLU.
- Salida: 2 neuronas con activación Softmax (por ejemplo, clasificación en dos clases).

Representación matemática de una capa densa:

$$h = f(W \cdot X + b)$$

Ilustración 7 Representación matemática capa densa

donde:

- · W son los pesos,
- X son las entradas,
- b es el sesgo,
- f es la función de activación.

Entrenamiento de una red neuronal

El entrenamiento de una red neuronal es el proceso mediante el cual el modelo ajusta sus pesos y sesgos para minimizar el error en sus predicciones. Se lleva a cabo en tres fases principales:

- 1. Loss Function (Función de Pérdida)
- 2. Forward Pass (Propagación hacia adelante)
- 3. Backpropagation (Retropropagación del error)

Loss-function (Función de Pérdida)

La **función de pérdida** es una medida del error entre la salida predicha por la red \hat{y} y el valor real y. Su objetivo es proporcionar una métrica que se pueda minimizar durante el entrenamiento.

Tipos de funciones de pérdida

- > Para problemas de regresión:
 - Error cuadrático medio (MSE)

$$L = rac{1}{n} \sum (y_{
m real} - y_{
m predicho})^2$$

Ilustración 8 Error cuadrático medio

• Error absoluto medio (MAE)

$$L = rac{1}{n} \sum |y_{
m real} - y_{
m predicho}|$$

Ilustración 9 Error absoluto medio

- > Para problemas de clasificación:
 - Entropía cruzada binaria (para dos clases)

$$L = -rac{1}{n}\sum (y\log(\hat{y}) + (1-y)\log(1-\hat{y}))$$

Ilustración 10 Entropía cruzada binaria

• Entropía cruzada categórica (para múltiples clases)

$$L = -\sum y_i \log(\hat{y_i})$$

Ilustración 11 Entropía cruzada categórica

El objetivo del entregamiento es minimizar esta función de pérdida, ajustando los pesos de la red neuronal.

Forward pass (Propagación hacia adelante)

El forward pass es la fase en la que los datos de entrada pasan a través de la red hasta producir una salida.

Pasos del forward pass:

- Se toma una muestra de datos de entrada X.
- 2. Se multiplica por los pesos W y se suma el sesgo b.
- 3. Se aplica una función de activación f.
- 4. Se obtiene la salida \hat{y} de la red.

Ejemplo matemático de una sola capa:

$$\hat{y} = f(WX + b)$$

Ilustración 12 Ejemplo 1 sola capa

Cada capa de la red transforma los datos hasta llegar a la predicción final.

Backpropagation (Retropropagación del error)

Después del forward pass, la red compara su salida \hat{y} con la salida real y y calcula el error utilizando la función de pérdida. **Backpropagation** es el proceso que permite ajustar los pesos para minimizar este error.

Pasos de backpropagation:

- 1. Se calcula la **derivada del error** respecto a cada peso (gradientes).
- 2. Se propaga este error de la capa de salida a la capa de entrada.
- 3. Se ajustan los pesos con el descenso de gradiente:

$$W_{ ext{nuevo}} = W - \eta \cdot rac{\partial L}{\partial W}$$

Ilustración 13 Descenso de gradiante

donde $\boldsymbol{\eta}$ es la tasa de aprendizaje.

Este proceso de forward pass + backpropagation se repite durante muchas **épocas** hasta que la red aprende correctamente.