UART

UART

Baud rate

Número mínimo de líneas	2		
Velocidad	9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600, 1000000, 1500000		
Método de transmisión	Asíncrono		
Número máximo de maestros	1		
Número máximo de esclavos	1		

Transmisión de datos

Start Bit	Data Frame	Parity Bits	Stop Bits
(1 bit)	(5 to 9 Data Bits)	(0 to 1 bit)	(1 to 2 bits)

Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line must be high.

Start Bit

Start Bit	Data Frame	Parity Bits	Stop Bits
(1 bit)	(5 to 9 Data Bits)	(0 to 1 bit)	(1 to 2 bits)

Data Frame

Start Bit	Data Frame	Parity Bits	Stop Bits
(1 bit)	(5 to 9 Data Bits)	(0 to 1 bit)	(1 to 2 bits)

Parity

Start Bit	Data Frame	Parity Bits	Stop Bits
(1 bit)	(5 to 9 Data Bits)	(0 to 1 bit)	(1 to 2 bits)

Parity

$$\begin{array}{l} P_{even} = d_{n-1} \oplus \ldots \oplus d_3 \oplus d_2 \oplus d_1 \oplus d_0 \oplus 0 \\ P_{odd} = d_{n-1} \oplus \ldots \oplus d_3 \oplus d_2 \oplus d_1 \oplus d_0 \oplus 1 \end{array}$$

Peven Parity bit using even parity.

Podd Parity bit using odd parity.

 d_n Data bit n of the character.

Stop Bits

Start Bit	Data Frame	Parity Bits	Stop Bits
(1 bit)	(5 to 9 Data Bits)	(0 to 1 bit)	(1 to 2 bits)

Transmitting UART

Receiving UART

Seguridad en la información

Header 1 He	eader 2 Command	Data Length	Data n Data n+1	Trailer 1	Trailer 2	Cyclic Redundancy Checking
-------------	-----------------	-------------	-----------------	--------------	--------------	----------------------------------

Ventajas y desventajas

Ventajas:

- Son simples y dependen solo de 2 líneas.
- Si ambas partes están en cómún acuerdo, se pueden intercambiar datos estructurados.
- Es un método muy usado.

• Desventajas:

- El frame de datos está límitado a 9 bits.
- Los baud rates del receptor y transmisor deben estar en el 10%.