Ch. 4, Sec. 7: Newton's Method

1. Quote.

"Tact is the knack of making a point without making an enemy."

— Sir Isaac Newton.

2. Learning Objectives.

MATH 1171 Chapter 4

3. Motivating problem. Solve $5x + \cos x = 5$.

4. **Definition.** Suppose we want to find the roots of f(x). Most methods fall into one of two categories:

(a) **Direct method:** Solve directly.

(b) **Iterative method:** Begin with a guess, and step-by-step get better approximations.

5. **Motivation.** Suppose we want to find the roots of f(x) and are given an estimate x_1 . Use a linear approximation to estimate another root.

6. Procedure. Newton's Method or Newton-Raphson Method.

- 0. Suppose you're after a number r. Choose f(x) so that f(r) = 0.
- i. Find a "good" **initial guess** x_1 .
- ii. Find the simplify the update formula,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- iii. **Iterate** by successively applying the update formula.
- iv. **Terminate:** If x_n and $x_n + 1$ agree to k decimal places then x_n approximates the root r up to k decimal places and $f(x_n) \approx 0$.

7. **Example.** Graphically illustrate Newton's Method on the following function's graph.

8. Example. Set up Newton's method to solve

$$5x + \cos x = 5$$

for $x \in [0, 1]$. State a reasonable x_0 , and write x_1 in calculator-ready form, and write x_2 in terms of x_1 .

9. Example. Use Newton's method to find $\sqrt{2}$ accurate to two decimal places.

MATH 1171 Chapter 4

10. **Example.** Use Newton's method to solve $x^{1/3} = 0$ by taking $x_0 = 1$.

11. **Example.** Use Newton's method to approximate π .

- **12. Example.** Let $f(x) = x^3 + 3x + 1$.
 - (a) Show that f has at least one root in the interval (-1/2,0). Explain.
 - (b) Use Newton's method to approximate the root that lies in the interval (-1/2,0). Stop when the next iteration agrees with the previous one at two decimal places.