[CTT451] - [Nhập môn Thị giác Máy tính] Tháng 4/2013

SPLIT AND MERGE ALGORITHM

MỤC LỤC

ΜŲ	C LUC	. 1
1	Các thuật toán Split và Merge	. 3
	Thuật toán WaterShed	
	Bài tập	
	liêu tham khảo	

1 Các thuật toán Split và Merge

Cho R biểu diễn toàn bộ vùng của ảnh, và một logic vị từ P.

- **Split** (chia nhỏ): với mỗi vùng R_i , mà $P(R_i) = FALSE$ thì chia nhỏ R_i . Chia nhỏ các vùng cho đến khi các vùng Ri mà $P(R_i) = TRUE$.
- **Merge** (nhóm lại): nhóm các vùng lân cận R_i và R_k nếu $P(R_i \cup R_k) = TRUE$.

Một số thuật toán thể hiện tư tưởng Slit và Merge này như:

- Watershed
- Region splitting
- Region merging
- Graph-based segmentation
- Probabilistic aggregation

2 Thuật toán WaterShed

Hàm cho thuật toán Watershed như sau:

void cvWatershed(const CvArr image, CvArr* markers);*

Với:

image là ảnh màu 8 bit

maker là ảnh kênh đơn (IPL DEPTH 32S) có cùng kích thước với image. Maker có thể có được từ mặt nạ nhị phân sử dụng cvFindContours() và cvDrawContours(). Tham khảo đoạn chương trình FindContours và DrawContours sau:

```
#include "cv.h"
#include "highgui.h"
int main( int argc, char** argv )
      IplImage* src;
       // the first command line parameter must be file name of binary
       // (black-n-white) image
       if( argc == 2 && (src=cvLoadImage(argv[1], 0))!= 0)
              IplImage* dst = cvCreateImage( cvGetSize(src), 8, 3 );
              CvMemStorage* storage = cvCreateMemStorage(0);
              CvSeq* contour = 0;
              cvThreshold( src, src, 1, 255, CV_THRESH_BINARY );
              cvNamedWindow( "Source", 1 );
```

```
cvShowImage( "Source", src );
             cvFindContours( src, storage, &contour, sizeof(CvContour),
                    CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
             cvZero( dst );
             for( ; contour != 0; contour = contour->h_next )
                    CvScalar color = CV_RGB( rand()&255, rand()&255, rand()&255 );
                    /* replace CV_FILLED with 1 to see the outlines */
                    cvDrawContours( dst, contour, color, color, -1, CV_FILLED, 8
);
             }
             cvNamedWindow( "Components", 1 );
             cvShowImage( "Components", dst );
             cvWaitKey(0);
      }
}
```

3 Bài tập

- Cài đặt một số thuật toán Split và Merge:
 - o Watershed
 - o Region splitting
 - o Region merging
 - o Graph-based segmentation
 - o Probabilistic aggregation

Tài liệu tham khảo

[1] Computer Vision: Algorithms and Applications, book draft by Richard Szeliski.