Lecture 6 - Foundations of Hypothesis Testing

Daniel Sánchez Pazmiño

Laboratorio de Investigación para el Desarrollo del Ecuador

October 2024

Introduction to Hypothesis Testing

- We use a sample to make inferences about the population
- A hypothesis test helps us determine if there's enough evidence in the sample to support a statement about the population
- Null hypothesis: the baseline assumption
- Alternative hypothesis: the opposite of the null
 - Typically what we "want", the phenomenon being studied

Defining the null

- We define the null by setting our baseline scenario: what we believe might be true in "normal circumstances"
- For instance, we may think that typically the sample mean is of a certain historical value:

$$H_0: \mu = \mu_0$$

- $\ \blacksquare \ \mu_0$ is typically called "mu naught" or hypothesized mean
 - The hypothetical baseline value

- We define the alternative as the contrary to the null
- Usually what we want to look out for (i.e. is the treatment effective?)
- For example, that the historical value is no longer the baseline and the population mean changed.

$$H_0: \mu \neq \mu_0$$

Errors

Errors 0 • 0

Decision	${\cal H}_0$ is ${\sf True}$	H_0 is False	
Reject H_0	Type I Error	Correct Decision	
Fail to reject H_0	Correct Decision	Type II Error	

Type I and Type II Errors

- Type I Error (α): Rejecting the null hypothesis when it's true
 - Example: Null: $\mu \ge 3.0$, we conclude $\mu < 3.0$
 - \blacksquare The probability of making this error is the significance level α
- **Type II Error** (β): Failing to reject the null hypothesis when it's false

Hypothesis testing

General idea of a hypothesis test

- We are asking: "if the sampling distribution is truly distributed according to the null, what is the most extreme value of a sampling exercise I can get to not doubt the null?"
- Means computing a number of standard errors that the sample statistic is located relative to the hypothesized mean.
 - The number of standard errors is called the "test statistic"
- \blacksquare If the null is true, this shouldn't be too far from μ_0
 - If it is far, we have to reject the null
 - Otherwise, "fail to reject" H_0 .
- How far will we tolerate? Based on α , our significance level (related to confidence we want).

p-values

- The *p*-value is the probability associated to the test statistic.
- Answers the question: how likely is it to get this test statistic if the null were true?
- The general rejection rule is:

$$p < \alpha$$

because it means that the p-value shows that it is more likely that we have gotten an extreme value, which does not come from the H_0 scenario, than the tolerance we've set to commit a type-I error.

General type of tests

Case 1: Left-tailed Test (One-side)

- Null hypothesis: population parameter $\mu \ge \mu_0$
- Alternative hypothesis: $\mu < \mu_0$
- Example: Average GPA of students is less than 3.0

Case 2: Right-tailed Test (One-side)

- Null hypothesis: population parameter $\mu < \mu_0$
- Alternative hypothesis: $\mu > \mu_0$
- Example: Average GPA of students is greater than 3.0

Case 3: Two-tailed Test (Two side)

- Null hypothesis: population parameter $\mu = \mu_0$
- Alternative hypothesis: $\mu \neq \mu_0$
- Example: Average GPA is different from 3.0

One sample tests about the mean

One Sample Tests?

- This means we're only working with one sample, not several.
- Comparing a mean against a numerical value.
- Later we will work with many samples.

- lacktriangle Tests whether the population mean μ is equal to a given value
- Used when population standard deviation is known
- We can work with a normal distribution for computing probabilities

Introduction to Hypothesis Testing

- Left-tailed test: $H_0: \mu \ge \mu_0$, $H_1: \mu < \mu_0$
- \blacksquare Right-tailed test: $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$
- \blacksquare Two-tailed test: $H_0: \mu = \mu_0, \, H_1: \mu \neq \mu_0$

General procedure to do a hypothesis test

- Compute sample mean to be used or use the given one.
- Compute the test statistic. In the case of a Z-test, the test statistic is Z:

$$Z = \frac{x - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

- f 3 Compute the p-value associated with the test statistic and given lpha
- 4 If the p-value is smaller than α , reject H_0 .

■ We need to know how to calculate *p*-values based on each type of test, to accurately reject based on available information.

	Null Hy-	Alternative		_
Test	pothesis	Hypothesis	Formula for	R Code
Type	(H_0)	(H_1)	p-value	Example
Two-	$H_0: \mu =$	$H_1: \mu \neq$	$2 \times P(Z \ge z_{score})$	2 * (1 -
tailed	μ_0	μ_0		pnorm(abs(z_so
Left-	$H_0: \mu \geq$	$H_1: \mu <$	$P(Z \leq z_{score})$	pnorm(z_score)
tailed	μ_0	μ_0		
Right-	$H_0: \mu \leq$	$H_1: \mu >$	$P(Z \geq z_{score})$	1 -
tailed	μ_0	μ_0		pnorm(z_score)

Example of Left-Tailed Z-Test

- Test whether population mean is **greater than or equal** to 3.0
 - $H_0: \mu \ge 3.0$
 - $\quad \blacksquare \ H_1: \mu < 3.0$
 - \blacksquare Sample size = 100, sample mean = 2.8, $\sigma=0.3$
 - $z = \frac{2.8 3.0}{0.03} = -6.67$
- lacktriangle Use p-value approach or critical value approach for rejecting

R implementation

- Base R does not offer a built-in package for this test, however, we may easily calculate probabilities using pnorm()
- For this, we should know how to calculate the *p*-value as per the table above.

R Implementation for the Example

```
# Given values
mu 0 <- 3.0 # Hypothesized population mean
x bar <- 2.8 # Sample mean
sigma <- 0.3 # Population standard deviation</pre>
n <- 100
        # Sample size
# Calculate the standard error
se <- sigma / sqrt(n)
# Calculate the Z-score
z score <- (x bar - mu 0) / se
# Calculate the p-value for a left-tailed test
p value <- pnorm(z score)</pre>
```

Proportions

- Proportions work just like means.
- \blacksquare Need only to redefine the Z test statistic to follow the modified standard error for \hat{p}

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

where p_0 is the hypothesized population proportion.

lacksquare Apply the same rules you would for Z-tests.

R Implementation for Proportion Z-tests

```
# Given values
p hat <- 0.55 # Sample proportion
p_0 <- 0.50 # Hypothesized population proportion (null hypoth
n <- 100 # Sample size
# Calculate the Z-score
z_{score} \leftarrow (p_{hat} - p_{0}) / sqrt((p_{0} * (1 - p_{0})) / n)
# P-value
p_value \leftarrow 2 * (1 - pnorm(abs(z_score)))
```

Errors and Significance Levels, different rejection rules

- **Significance level (** α **)**: Probability of making a Type I error
 - **Example:** $\alpha = 0.05$ means 95% confidence level
- Compare p-value to α or use critical value
- $lue{\alpha}$ Critical values are the number of standard errors associated with the lpha probability under a specific type of test.
 - Rejection rules with these vary by type of test

α	Left-Tailed	Right-Tailed	Two-Tailed
0.05	-1.645	1.645	$\pm~1.96$
0.01	-2.33	2.33	$\pm~2.58$
0.10	-1.28	1.28	$\pm~1.64$

Test		Critical Value	
Type	Hypothesis (H_0,H_1)	(Z)	Rejection Rule
Left-	$H_0: \mu \geq \mu_0$ vs	z_{lpha} (negative)	Reject H_0 if
tailed	$H_1 : \mu < \mu_0$		$z < z_{\alpha}$
Right-	$H_0: \mu \leq \mu_0$ vs	z_{lpha} (positive)	Reject H_0 if
tailed	$H_1: \mu > \mu_0$		$z > z_{\alpha}$
Two-	$H_0: \mu=\mu_0$ vs	$z_{lpha/2}$ (positive	Reject H_0 if
tailed	$H_1: \mu \neq \mu_0$	and negative)	$z<-z_{lpha/2}$ or
			$z>z_{lpha/2}$

The t-test