CONCOURS D'ADMISSION 2011

FILIÈRE MP

COMPOSITION DE MATHÉMATIQUES – A – (XLC)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Valeurs singulières d'une matrice et inégalités de traces

Notations et conventions

Dans ce problème l'espace vectoriel \mathbb{C}^n est muni du produit scalaire hermitien usuel noté (.|.); on rappelle qu'il est linéaire à droite, semi-linéaire à gauche et que la base canonique (e_1, \ldots, e_n) de \mathbb{C}^n est orthonormale. On note $\mathcal{M}_n(\mathbb{C})$ l'espace vectoriel sur \mathbb{C} des matrices à n lignes et n colonnes à coefficients complexes qu'on identifie à l'espace vectoriel des endormorphismes de \mathbb{C}^n et I_n la matrice identité de $\mathcal{M}_n(\mathbb{C})$. Le coefficient de la i-ième ligne et j-ième colonne d'une matrice A est noté A_{ij} . On note A^* , appelée adjointe de la matrice A de $\mathcal{M}_n(\mathbb{C})$, la matrice définie pour tous $1 \leq i, j \leq n$ par $A^*_{ij} = \overline{A_{ji}}$.

On définit les sous-ensembles de $\mathcal{M}_n(\mathbf{C})$ suivants :

$$\mathcal{H}_{n} = \{ A \in \mathcal{M}_{n}(\mathbf{C}) | A^{*} = A \}$$

$$\mathcal{H}_{n}^{+} = \{ A \in \mathcal{H}_{n} | (\forall x \in \mathbf{C}^{n}), (x|Ax) \geqslant 0 \}$$

$$\mathcal{U}_{n} = \{ A \in \mathcal{M}_{n}(\mathbf{C}) | (\forall x, y \in \mathbf{C}^{n}), (Ax|Ay) = (x|y) \}$$

$$\mathcal{N}_{n} = \{ A \in \mathcal{M}_{n}(\mathbf{C}) | AA^{*} = A^{*}A \}$$

$$\mathcal{D}_{n} \text{ désigne l'ensemble des matrices diagonales dans } \mathcal{M}_{n}(\mathbf{C})$$

Enfin, pour tout sous-espace vectoriel F de \mathbb{C}^n , F^{\perp} désigne le sous-espace orthogonal pour le produit hermitien usuel.

Ce problème a pour but l'étude de quelques inégalités de traces sur les matrices carrées à coefficients complexes via l'introduction de la décomposition en valeurs singulières et le calcul de la distance minimale pour la norme de Frobenius entre deux matrices de \mathcal{H}_n définies à équivalence près par des changements de bases dans \mathcal{U}_n .

Première partie : étude de \mathcal{N}_n

1. Soit A une matrice de $\mathcal{M}_n(\mathbf{C})$. Montrer pour tout couple (x,y) de vecteurs de $\mathbf{C}^n \times \mathbf{C}^n$:

$$(A^*x|y) = (x|Ay).$$

- **2a**. Montrer que $A \in \mathcal{U}_n$ si et seulement si $A^*A = AA^* = I_n$.
- **2b**. Montrer que $A \in \mathcal{U}_n$ si et seulement si les colonnes de A forment une base orthonormale de \mathbb{C}^n .
- **3a**. Montrer que si $A \in \mathcal{N}_n$, $A((\ker A)^{\perp}) \subset (\ker A)^{\perp}$. En déduire que si λ est une valeur propre de A et si E_{λ} est le sous-espace propre associé, alors $A(E_{\lambda}^{\perp}) \subset E_{\lambda}^{\perp}$.
 - **3b**. En déduire que $\mathcal{N}_n = \{UDU^*, U \in \mathcal{U}_n, D \in \mathcal{D}_n\}.$
- **4**. Soit A une matrice de $\mathcal{M}_n(\mathbf{C})$. On note $\lambda_1, \lambda_2, \dots, \lambda_n$ les racines du polynôme caractéristique (non nécessairement distinctes) de A. Montrer que si $A \in \mathcal{N}_n$, alors $\sum_{i=1}^n |\lambda_i|^2 = \sum_{i,j=1}^n |A_{i,j}|^2$. (On pourra calculer la trace de AA^* .)
 - **5a**. Soit A une matrice de $\mathcal{M}_n(\mathbf{C})$. Montrer que si $A \in \mathcal{N}_n$, alors A et A^* ont même noyau.
 - 5b. Montrer que les deux propositions suivantes sont équivalentes :
 - (i) $A \in \mathcal{N}_n$.
 - (ii) Tout vecteur propre de A est vecteur propre de son adjointe A^* .
- Pour $(ii) \Rightarrow (i)$, on pourra procéder par récurrence sur la dimension n et pour un vecteur propre x de A considérer l'orthogonal de l'espace vectoriel engendré par x.
- **6a**. Prouver que si la matrice $A \in \mathcal{N}_n$, son adjointe A^* peut s'exprimer comme un polynôme en A à coefficients complexes. (On pourra utiliser les polynômes d'interpolation de Lagrange.)
 - **6b.** Prouver que si A et B sont dans \mathcal{N}_n et commutent alors $AB \in \mathcal{N}_n$.
- 7. Prouver que si A est une matrice de $\mathcal{M}_n(\mathbf{C})$ les deux propositions suivantes sont équivalentes :
 - (i) $A \in \mathcal{N}_m$
 - (ii) Il existe une matrice $U \in \mathcal{U}_n$ commutant avec A telle que $A^* = AU$.

On pourra construire U à partir des valeurs propres de A et raisonner dans une base orthonormale bien choisie.

Deuxième partie : valeurs singulières d'une matrice

8. Montrer que $A \in \mathcal{H}_n$ (resp. \mathcal{H}_n^+) si et seulement si A est diagonalisable dans une base orthonormale et ses valeurs propres sont réelles (resp. réelles positives).

- **9**. Montrer que si $A \in \mathcal{H}_n^+$ il existe une unique matrice $S \in \mathcal{H}_n^+$ telle que $S^2 = A$. (Pour l'unicité, on pourra se ramener au cas où A est un multiple de l'identité en considérant les sous-espaces propres de A.)
- Si A est une matrice de $\mathcal{M}_n(\mathbf{C})$ on dit que A = US est une décomposition polaire de A si $S \in \mathcal{H}_n^+$ et $U \in \mathcal{U}_n$. Dans la suite du problème, on admettra l'existence d'une décomposition polaire pour toute matrice A de $\mathcal{M}_n(\mathbf{C})$.
- Si A est une matrice de $\mathcal{M}_n(\mathbf{C})$ on dit que A = UDW est une décomposition en valeurs singulières de A si $U, W \in \mathcal{U}_n$ et $D \in \mathcal{D}_n$ est à coefficients réels positifs ou nuls.
- 10. Prouver que toute matrice A de $\mathcal{M}_n(\mathbf{C})$ admet une décomposition en valeurs singulières. (On pourra commencer par écrire une décomposition polaire de A.)
- 11. Soit $A \in \mathcal{M}_n(\mathbf{C})$. Montrer qu'il existe une décomposition en valeurs singulières de A pour laquelle les coefficients diagonaux $\alpha_i = D_{ii}$ de D vérifient $\alpha_1 \geqslant \cdots \geqslant \alpha_n$ et que ces coefficients sont alors déterminés de façon unique. On les appelera les valeurs singulières de A.

Troisième partie : inégalités de traces

12. Soit $P \in \mathcal{M}_n(\mathbf{C})$ une matrice vérifiant

$$(\mathcal{P}_k)$$
 $P^2 = P = P^*, \operatorname{rang}(P) = k.$

- 12a. Montrer que les coefficients de P vérifient :
- (i) $0 \leqslant P_{ii} \leqslant 1$ pour tout entier i entre 1 et n,
- (ii) $\sum_{i=1}^{n} P_{ii} = k$.
- **12b**. Soit $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$ des réels et D la matrice diagonale telle que $D_{ii} = \lambda_i$ pour tout entier i entre 1 et n. Montrer que $\operatorname{Tr}(PD) \leqslant \sum_{i=1}^k \lambda_i$. Trouver une matrice P vérifiant les conditions (\mathcal{P}_k) telle que $\operatorname{Tr}(PD) = \sum_{i=1}^k \lambda_i$.
- **12c**. Montrer que si P_1 , P_2 sont deux matrices vérifiant les conditions (\mathcal{P}_k) , il existe $U \in \mathcal{U}_n$ telle que $P_2 = UP_1U^*$. En déduire que $\sum_{i=1}^k \lambda_i = \max_{U \in \mathcal{U}_n} \operatorname{Tr}(UPU^*D)$ où P est une matrice vérifiant (\mathcal{P}_k) .

On dit qu'une matrice A de $\mathcal{M}_n(\mathbf{C})$ est doublement stochastique si A est à coefficients réels positifs et vérifie $\sum_{i=1}^n A_{ik} = 1$ et $\sum_{j=1}^n A_{kj} = 1$, pour tout entier k compris entre 1 et n. On note \mathcal{DS}_n l'ensemble des matrices doublement stochastiques dans $\mathcal{M}_n(\mathbf{C})$.

- 13. Montrer que si $U \in \mathcal{U}_n$, la matrice dont les coefficients sont les $|U_{i,j}|^2$ est doublement stochastique.
 - 14. Soit A une matrice doublement stochastique de $\mathcal{M}_n(\mathbf{C})$ et soient

$$\alpha_1 \geqslant \alpha_2 \geqslant \cdots \geqslant \alpha_n, \qquad \beta_1 \geqslant \beta_2 \geqslant \cdots \geqslant \beta_n$$

des réels. On suppose que A n'est pas la matrice identité I_n et on note k le plus petit entier tel que $A_{kk} \neq 1$.

14a. Montrer qu'il existe deux entiers m et ℓ vérifiant $k < m \le n, k < \ell \le n$ et tels que $A_{mk} \ne 0, A_{k\ell} \ne 0, A_{m\ell} \ne 1$.

14b. Construire une matrice doublement stochastique A' de $\mathcal{M}_n(\mathbf{C})$ vérifiant :

- (i) $A'_{ij} = A_{ij}$ si $(i, j) \notin \{(k, k), (m, k), (k, \ell), (m, \ell)\},\$
- (ii) A'_{mk} ou $A'_{k\ell}$ est nul,
- (iii) $\sum_{i,j=1}^{n} A'_{i,j} \alpha_i \beta_j \geqslant \sum_{i,j=1}^{n} A_{i,j} \alpha_i \beta_j$.

En déduire que $\max_{A \in \mathcal{DS}_n} \sum_{i=1,j=1}^n A_{i,j} \alpha_i \beta_j = \sum_{i=1}^n \alpha_i \beta_i$.

15. Soient A et B deux matrices dans $\mathcal{M}_n(\mathbf{C})$.

15a. Soit D la matrice diagonale dont les coefficients diagonaux $\alpha_i = D_{ii}$ sont les valeurs singulières de A et soit T la matrice diagonale dont les coefficients diagonaux $\beta_i = T_{ii}$ sont les valeurs singulières de B telles que

$$\alpha_1 \geqslant \alpha_2 \geqslant \cdots \geqslant \alpha_n, \qquad \beta_1 \geqslant \beta_2 \geqslant \cdots \geqslant \beta_n.$$

Montrer qu'il existe U et V dans \mathcal{U}_n telles que $\operatorname{Tr}(AB) = \operatorname{Tr}(UDVT)$.

15b. Montrer que Tr $(AB) = \sum_{i,j=1}^{n} U_{ij} V_{ji} \alpha_{j} \beta_{i}$ et en déduire que

$$|\operatorname{Tr}(AB)| \leqslant \sum_{i=1}^{n} \alpha_i \beta_i.$$

15c. Soient A et B dans \mathcal{H}_n^+ . Montrer que $|\operatorname{Tr}(AB)| \leq \operatorname{Tr}(A)\operatorname{Tr}(B)$.

16. Soient A et B dans \mathcal{H}_n et soient

$$\alpha_1 \geqslant \alpha_2 \geqslant \cdots \geqslant \alpha_n, \qquad \beta_1 \geqslant \beta_2 \geqslant \cdots \geqslant \beta_n.$$

leurs valeurs propres.

Montrer que

$$\min_{U \in \mathcal{U}_n} \|A - U^*BU\| = \sqrt{\sum_{i=1}^n (\alpha_i - \beta_i)^2},$$

où la norme sur $\mathcal{M}_n(\mathbf{C})$ est donnée par $||A||^2 = \text{Tr}(A^*A)$. On pourra commencer par déterminer $\max_{U \in \mathcal{U}_n} \text{Tr}(AU^*BU)$.

* *