Divisione intera

Il codice per il calcolo iterativo della divisione intera

```
class Divisione{
/**
Dati in ingresso: interi X,D
Dati in uscita: interi q,r
Condizione di ingresso: X >= 0, D > 0
Condizione di uscita: X = q * D + r \&\& r < D
*/
public static void main (String [] args) {
int X = 14;
int D = 3;
int q = 0;
int r = X;
while (r >= D) { //invariante: ?
      q = q + 1;
      r = r - D;
System.out.println(q + " " + r);
```

Il codice per il calcolo iterativo della divisione intera

```
class Divisione{
/**
Dati in ingresso: interi X,D
Dati in uscita: interi q,r
Condizione di ingresso: X >= 0, D > 0
Condizione di uscita: X = q * D + r \&\& r < D
*/
public static void main (String [] args) {
int X = 14;
int D = 3;
int q = 0;
int r = X;
while (r \ge D) \{ //invariante: X = q * D + r \}
      q = q + 1;
      r = r - D;
System.out.println(q + " " + r);
```

Invarianti

Dato un ciclo generico, per esempio della forma

dove C è una espressione booleana (la condizione del ciclo) e S una istruzione (il corpo del ciclo), un

invariante del ciclo

è una relazione R tra alcune delle variabili utilizzate nel ciclo (ed eventualmente altri valori) che è vera dopo un numero arbitrario $n \ge 0$ di iterazioni del corpo S del ciclo.

Correttezza

Supponiamo che **prima** di una iterazione generica la relazione X = q * D + r sia vera, e dimostriamo che è vera anche con i valori presi da q e r **dopo** questa iterazione.

Dopo l'iterazione:

$$q' = q + I$$

 $r' = r - D$

Allora:

$$q'*D+r' = (q+I)*D+(r-D)$$

= $q*D+D+r-D$
= $q*D+r$
= X

Inoltre, poiché D > 0 per la condizione di ingresso, ad ogni iterazione r' < r, quindi il ciclo termina.

Ilfattoriale

Il fattoriale è la funzione definita su N come:

$$n! = 1 * 2 * ... * n$$

con 0! = I

Conta il numero delle permutazioni di un insieme di noggetti; per esempio, per n = 3:

prima dopo

2	3
2	3

	2	3
1	3	2

	2	3
2		3

	2	3
2	3	I

I	2	3
3		2

I	2	3
3	2	I

Una funzione $f : \mathbb{N} \to \mathbb{N}$ è descritta da un insieme di coppie ordinate della forma (x,y), dove y = f(x).

Questo insieme si chiama il grafo di f.

Per implementare il fattoriale, si descrive mediante un ciclo while l'esplorazione del suo grafo attraverso transizioni della forma

$$(x,y) \rightarrow (x + 1, (x + 1) * y)$$

Il codice per il calcolo iterativo del fattoriale

```
class Fattoriale {
/**
Dati in ingresso: interi i >= 0
Dati in uscita: interi y >= 0
Condizione di ingresso: true
Condizione di uscita: y = i!
*/
public static void main (String [] args) {
int i = 10;
int x = 0;
int y = 1;
while (x < i) { //invariante: ?</pre>
      x = x + 1;
      y = x * y;
System.out.println("Il fattoriale di " + i + " è: " + y);
```

Il codice per il calcolo iterativo del fattoriale

```
class Fattoriale {
/**
Dati in ingresso: interi i >= 0
Dati in uscita: interi y >= 0
Condizione di ingresso: true
Condizione di uscita: y = i!
*/
public static void main (String [] args) {
int i = 10;
                                           01 = 11
int x = 0;
int y = 1;
                                          n! n+1 = n+1
                //invariante: y = x!
while (x < i) {
      x = x + 1:
      v = x * v;
System.out.println("Il fattoriale di " + i + " è: " + y);
```

Correttezza

Supponiamo che **prima** di una iterazione generica la relazione y = x! sia vera, e dimostriamo che è vera anche con i valori presi da x e y **dopo** questa iterazione.

Dopo l'iterazione:

$$x' = x + I$$

 $y' = x' * y$

Allora:

y' = x' * y
=
$$(x + 1) * y$$

= $(x + 1) * x!$
= $(x + 1)!$

All'uscita dal ciclo, x = i, quindi y = x! = i!

Il ciclo termina perché la quantità i - x decresce strettamente ad ogni iterazione, perciò il programma è totalmente corretto.

Il quadrato

Calcolo del quadrato

Calcolo del quadrato

$$(x + 1)^2 = x^2 + 2x + 1$$

Il codice per il calcolo iterativo del quadrato

```
class Quadrato{
/**
Dati in ingresso: interi x >= 0
Dati in uscita: interi q >= 0
Condizione di ingresso: true
Condizione di uscita: q = x*x
*/
public static void main (String[] args) {
int x = 7;
int n = 0;
int q = 0;
while (n < x) { //invariante: ?</pre>
      q = q + 2 * n + 1;
      n = n + 1;
System.out.println("Il quadrato di " + x + " è: " + q);
```

Il codice per il calcolo iterativo del quadrato

```
class Quadrato{
/**
Dati in ingresso: interi x >= 0
Dati in uscita: interi q >= 0
Condizione di ingresso: true
Condizione di uscita: q = x*x
*/
public static void main (String[] args) {
int x = 7;
int n = 0;
int q = 0;
while (n < x) { //invariante: q = n*n
      q = q + 2 * n + 1;
      n = n + 1;
System.out.println("Il quadrato di " + x + " è: " + q);
```

Correttezza

Assumiamo che $q = n^*n$ prima della n-esima iterazione, dimostriamo che l'equazione

è vera dopo la n-esima iterazione. Durante la n-esima iterazione:

$$n' = n + I$$

 $q' = q + 2n + I$

quindi alla fine della n-esima iterazione abbiamo

q' =
$$q + 2n + I$$

= $(n+1)(n+1)$ (per il disegno di prima)
= $n' * n'$

Quando si esce dal ciclo si ha n = x, che stabilisce la condizione di uscita.

Terminazione: la quantità x - n decresce strettamente ad ogni iterazione.

Dimostrazioni?

Principio di induzione!

