FAST School of Computing

EE-2003 – Computer Organization and Assembly Language

FALL 2023

Instructor Name: Sana Fatima TA Name (if any): TBD Email address: sana.fatima@nu.edu.pk Email address: -

Office Location/Number: Exam Hall

Office Hours: Mon/Tue/Thurs: 9:00-10:00

Course Information

Program: BS Credit Hours: 3 Type: Core

Pre-requisites (if any): DLD

Class Meeting Time:

Class Venue:

Course Description/Objectives/Goals:

Course Learning Outcomes (CLOs)	BT Level	PLO Mapping
1. Demonstrate the basic concepts of computer organization including CPU, memories, and input/output and explain their purposes and interactions.	2	1
2. Describe the working of important x86 assembly primitives, including arithmetic, branching, bit manipulation, addressing modes and interrupt handling.	2	1
3. Apply the knowledge of Intel x86 architecture to develop	3	3

moderately complex and well-modularized assembly programs.		
4. Analyse the performance enhancement of a processor via cache and pipelining features.	4	2

Course Textbook

- Assembly Language Programming Lecture Notes by Bilal Hashmi.
- Assembly Language for x86 Processors Seventh Edition Kip R. Irvine
- Computer Organization and Architecture Designing for Performance Tenth Edition by William Stallings
- David A. Patterson, John L. Hennessy, Computer Organization and Design: The hardware/software interface, 4th Edition

Tentative Lecture Plan

Week	Topics to be covered			
1	Introduction to Assembly Language			
2	Addressing Modes			
3	Branching			
4	Bit Manipulations			
5	Subroutines			
Midterm 1				
6	Display Memory			
7	String Instructions			
8	Software Interrupts			
9	Real Time Interrupts and Hardware Interfacing (Keyboard, Timer)			
10	Multitasking (Optional)			
Midterm 2				
11-14	Computer Architecture, Pipelining, Cache, Performance			

(Tentative) Grading Criteria

1.	Quizzes	10
2.	Midterms	30
3.	Final	45
4.	Assignments/Project	15

Grading Scheme: Absolute

Course Policies

- 1. Quizzes may be un-announced.
- 2. No makeup for missed quiz or assignment.
- 3. 80% attendance
- 4. 50% passing marks

Academic Integrity

- Plagiarism and Cheating against academic integrity. Both parties involved in such cases will face strict penalty (negative marking, F grade, DC)
- CODE/ ASSIGNMENT SHARING is strictly prohibited.
- Keep in mind that by sharing your code/assignment you are not helping anyone rather hindering the learning process or the other person.
- No excuse will be entertained if your work is stolen or lost. To avoid such incidents
 - Keep back up of your code on safe online storage, such as Google Drive, Drop box or One drive.
 - Do not leave your work on university lab computer, transfer your work to online storage and delete from the university lab computer (empty recycle bin as well)

Course Policies

- 1. Announcements related to different aspects of this course (e.g. lectures, quizzes, exams, etc.) will be posted on google classroom. Students are expected to view the announcements section google classroom regularly.
- 2. All students are expected to attend all lectures from beginning to end. Partial or full absence from a lecture without a valid reason may hamper chances for securing good grades. University's attendance requirements must be met in order to appear in the final exam.
- 3. Quizzes may be announced or unannounced. A quiz will usually be about 5 15 minutes long and it may be given anytime during the lecture. Students missing a quiz will NOT be given a make-up quiz.
- 4. Students can contest their grades on quizzes and assignments ONLY within a week of the release of grades. Exams will be available for review according to university policies.
- 5. Students are expected to demonstrate the highest degree of moral and ethical conduct. Any student caught cheating, copying, plagiarizing, or using any other unfair means will be strictly dealt-with in accordance with university policies.