Using the BeautifulSoup we formed the **csv** file named

Chandana_ListSuperComputers.csv with all the 500 Super Computer Records.

	Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
0	1	DOE/SC/Oak Ridge National LaboratoryUnited States	Summit - IBM Power System AC922, IBM POWER9 22	2414592	148600.0	200794.9	10096.
1	2	DOE/NNSA/LLNLUnited States	Sierra - IBM Power System S922LC, IBM POWER9 2	1572480	94640.0	125712.0	7438.
2	3	National Supercomputing Center in WuxiChina	Sunway TaihuLight - Sunway MPP, Sunway SW26010	10649600	93014.6	125435.9	15371.
3	4	National Super Computer Center in GuangzhouChina	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5	4981760	61444.5	100678.7	18482.
4	5	Texas Advanced Computing Center/Univ. of Texas	Frontera - Dell C6420, Xeon Platinum 8280 28C	448448	23516.4	38745.9	Nal
95	496	Internet Service (B)China	Pdata-1 - Sugon I620, Xeon E5-2650v4 12C 2.2GH	58800	1028.0	2069.8	735.
96	497	Internet CompanyChina	PVideo-A - Sugon I620, Xeon E5-2620v3 6C 2.4GH	54000	1026.0	2073.6	900.
97	498	Network CompanyChina	Internet Company N D2 - Lenovo RD350, Xeon E5	60000	1022.0	2112.0	Na
98	499	ROMEO HPC Center - Champagne- ArdenneFrance	Romeo - Bull Sequana X1125, Xeon Gold 6132 14C	17640	1022.0	1484.0	127.
99	500	Internet Service AChina	Inspur SA5212H5, Xeon E5-2682v4 16C 2.5GHz, NV	27360	1021.0	2014.0	Na

ti	Home		Page Lay	out Fo	rmulas I	Data Re	view Viev	v Add	_	lytic Solver	mputers.csv - I			
	ڪي لا Cur		Calibri	- 11	- A A	==	■ ≫	⊒i Wrap		General	+) I
Da	ste Co	ру		1 - [00 -]						Total O.	- 0 00	Conditio	onal Form	at C
Fa	For	mat Painter	BI	♣ - A -				Merge & Center * 3 %		, 00 .00		Formatting * as Table * Style		
	Clipboa	d 5		Font	15		Alignm	ient	F ₂	Nui	mber 😼		Styles	
	C9	•	. (9	f∞ Al Br	idging Clou	ud Infrastr	ucture (ABC) - PRIME	RGY CX2570	M4, Xeor	Gold 6148 20	OC 2.4GH	z, NVIDIA	Tesla V
⊿	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
1	Rank	Site	System	Cores	Rmax (TFI	Rpeak (TF	Power (kW)						
2	1	DOE/SC/C	Summit - I	2414592	148600	200794.9	10096							
3	2	DOE/NNS	Sierra - IBI	1572480	94640	125712	7438							
4	3	National S	Sunway Ta	10649600	93014.6	125435.9	15371							
5	4	National S	Tianhe-2A	4981760	61444.5	100678.7	18482							
6	5	Texas Adv	Frontera -	448448	23516.4	38745.9								
7	6	Swiss Nat	Piz Daint -	387872	21230	27154.3	2384							
8	7	DOE/NNS	Trinity - C	979072	20158.7	41461.2	7578							
9	8	National I	Al Bridgin	391680	19880	32576.6	1649							
10	9	Leibniz Re	SuperMU(305856	19476.6	26873.9								
11	10	DOE/NNS	Lassen - IE	288288	18200	23047.2								
12	11	Total Expl	PANGEA II	291024	17860	25025.8	1367							
13	12	DOE/SC/C	Titan - Cra	560640	17590	27112.5	8209							
14	13	DOE/NNS	Sequoia -	1572864	17173.2	20132.7	7890							
15	14	DOE/SC/L	Cori - Cray	622336	14014.7	27880.7	3939							
16	15	Korea Inst	Nurion - C	570020	13929.3	25705.9								
17	16	Joint Cent	Oakforest	556104	13554.6	24913.5	2719							
18	17	Eni S.p.A.	HPC4 - Pro	253600	12210	18621.1	1320							
19	18	Commissa	Tera-1000	561408	11965.5	23396.4	3178							
20	19	Texas Adv	Stampede	367024	10680.7	18309.2								
21	20	RIKEN Adv	K compute	705024	10510	11280.4	12660							
22	21	CINECAIta	Marconi Ir	348000	10384.9	18816								
23	22	NVIDIA Co	DGX Supe	127488	9444	11209.1								
24	23	National (Taiwania 2	170352	9000	15208.2	798							
25	24	DOE/SC/A	Mira - Blu	786432	8586.6	10066.3	3945							
	Ch Ch	andana Li	stSuperCor	nputers /	9 3								14	

#Replacing the blank values with NA values using **errors='coerce'** and **to_numeric**() functions

```
In [158]: list_comp['Cores']=pd.to_numeric(list_comp['Cores'],errors='coerce')
             list_comp['Rpeak (TFlop/s)']=pd.to_numeric(list_comp['Rpeak (TFlop/s)'],errors='coerce')
list_comp['Rmax (TFlop/s)']=pd.to_numeric(list_comp['Rmax (TFlop/s)'],errors='coerce')
             list_comp['Power (kW)']=pd.to_numeric(list_comp['Power (kW)'],errors='coerce')
In [161]: list_comp['Power (kW)']
                    10096.0
Out[161]: 0
                     7438.0
             2
                    15371.0
             3
                    18482.0
             4
                         NaN
             95
                      735.0
             96
                      900.0
             97
                         NaN
             98
                      127.0
             Name: Power (kW), Length: 500, dtype: float64
```

Cleaning up of data is done by using filling the **NA** values using the **mean()** values with **fillna()** function.

```
In [163]: list_comp['Cores']=list_comp['Cores'].fillna(list_comp['Cores'].mean())
               list_comp['Rpeak (TFlop/s)']=list_comp['Rpeak (TFlop/s)'].fillna(list_comp['Rpeak (TFlop/s)'].mean())
list_comp['Rmax (TFlop/s)']=list_comp['Rmax (TFlop/s)'].fillna(list_comp['Rmax (TFlop/s)'].mean())
list_comp['Power (kW)']=list_comp['Power (kW)'].fillna(list_comp['Power (kW)'].mean())
In [164]: |list_comp['Power (kW)']
Out[164]: 0
                        10096.000000
                         7438 999999
                        15371.000000
                        18482.000000
               4
                         1756.617225
                           735.000000
               96
                           988.888888
               97
                         1756.617225
               98
                          127.000000
               99
                         1756.617225
               Name: Power (kW), Length: 500, dtype: float64
```

• Summary of Cores

```
In [88]: print(list_comp['Cores'].describe())
         count
                  5.000000e+02
         mean
                  1.182127e+05
         std
                  5.472871e+05
                  1.259200e+04
         25%
                  3.600000e+04
         50%
                  5.760000e+04
         75%
                  7.570000e+04
                  1.064960e+07
         max
         Name: Cores, dtype: float64
```

• Summary of RPeak

```
In [89]: print(list_comp['Rpeak (TFlop/s)'].describe())
                     500.000000
                    4927.748800
         mean
         std
                   13282.606456
                    1164.700000
         min
         25%
                    2119.700000
         50%
                    2404.800000
         75%
                    3779.200000
                  200794.900000
         max
         Name: Rpeak (TFlop/s), dtype: float64
```

Summary of RMax

```
In [92]:
         print(list_comp['Rmax (TFlop/s)'].describe())
                     500.000000
         count
         mean
                    3119.151200
         std
                    9556.759821
         min
                    1021.000000
         25%
                    1179.900000
         50%
                    1646.050000
         75%
                    1986.650000
         max
                  148600.000000
         Name: Rmax (TFlop/s), dtype: float64
```

• Summary of Power

```
In [90]: print(list_comp['Power (kW)'].describe())
         count
                    500.000000
                   1756.617225
         mean
         std
                   1668.810997
         min
                     81.000000
         25%
                   1187.500000
                   1756.617225
         75%
                   1756.617225
         max
                  18482.000000
         Name: Power (kW), dtype: float64
```

• Visualization for Cores

200

0.0

0.2

```
In [140]: plt.hist(list_comp['Cores'],color='red',bins=20)
plt.xlabel('Cores')
plt.title('Visualization for Cores')

Out[140]: Text(0.5, 1.0, 'Visualization for Cores')

Visualization for Cores

300
```

0.6

1.0

• Visualization for RMax

```
In [155]: plt.hist(list_comp['Rmax (TFlop/s)'],color='green')
    plt.xlabel('Rmax (TFlop/s)')
    plt.title('Visualization for Rmax (TFlop/s)')
```

Out[155]: Text(0.5, 1.0, 'Visualization for Rmax (TFlop/s)')

• Visualization for RPeak

```
In [121]: plt.hist(list_comp['Rpeak (TFlop/s)'],color='orange')
    plt.xlabel('Rpeak (TFlop/s)')
    plt.title('Visualization for RPeak (TFlop/s)')
```

Out[121]: Text(0.5, 1.0, 'Visualization for RPeak (TFlop/s)')

• Visualization for Power

```
In [126]: plt.hist(list_comp['Power (kW)'],color='blue',width=2500)
    plt.xlabel('Power (kW)')
    plt.title('Visualization for Power (kW)')
```

Out[126]: Text(0.5, 1.0, 'Visualization for Power (kW)')

Relationship between Cores and RPeak

```
In [84]: plt.scatter(list_comp['Rpeak (TFlop/s)'],list_comp['Cores'],color='Green')
    plt.xlabel('Rpeak (TFlop/s)')
    plt.ylabel('Cores')
    plt.title('Relation between Cores and Rpeak(TFlop/s)')
```

Out[84]: Text(0.5, 1.0, 'Relation between Cores and Rpeak(TFlop/s)')

