Optimization Theory and Algorithms

Instructor: Prof. LIAO, Guocheng (廖国成)

Email: liaogch6@mail.sysu.edu.cn

School of Software Engineering Sun Yat-sen University

Outline

- Syllabus
- Background information
- Mathematical optimization
- Optimization problems
- Examples

Syllabus

- Reference textbook: Convex Optimization by Stephen Boyd and Lieven Vandenberghe Available at https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
- Grading scheme: 40% homework (4 times) + 60% exam

Course Information

- Application driven: manufacturing; transportation; scheduling; investment...
- Decision problem
- Mathematical modeling
- Topics: introduction to optimization; convex optimization; duality theory;
 convex optimization algorithms.

Mathematical Optimization

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., l$
 $x \in X$

- $x = (x_1, ..., x_n)$: optimization/decision variables
- $f(\cdot): \mathbb{R}^n \to \mathbb{R}$: objective function
- $g_i(x)$, i = 1, ..., m: inequality constrain functions
- $h_i(x)$, i = 1, ..., l: equality constrain functions
- $X \subseteq \mathbb{R}^n$: feasible region

Global minimizer x^* : has the smallest value of f for all $x \in X$, i.e., $f(x^*) \le f(x)$.

Local minimizer x': there exist an ε such that $f(x') \leq f(x)$ for all $x \in X \cap B(x', \varepsilon)$.

$$\{x \in \mathbb{R}^n : ||x - x'||_2 \le \varepsilon\}$$

Euclidean ball of radius $\varepsilon > 0$ centered at x'

Linear Programming

minimize
$$c^T x$$

subject to $Ax = b$
 $Gx \leq h$

Component-wise inequality

- $x \in \mathbb{R}^n$, $c \in \mathbb{R}^n$
- $A \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^p$, $G \in \mathbb{R}^{m \times n}$, $h \in \mathbb{R}^m$
- Linear objective function, linear equality constraint, and linear inequality constraint.

Example of Linear Programming

Diet problem: To find the cheapest combination of foods that satisfies some nutritional requirements.

minimize
$$c^T x$$

subject to $Gx \ge h$
 $x \ge 0$

- $x \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, $G \in \mathbb{R}^{m \times n}$, $h \in \mathbb{R}^m$
- x_j : units of food j; c_j : per-unit price of food j
- G_{ij} : content of nutrient i in per unit of food j
- h_i : minimum required intake of nutrient i

Example of Linear Programming

Air traffic control problem

- There are n airplanes: airplane i arrival interval $[a_i, b_i]$.
- Assume airplane arrive in the order 1,2,...,n.
- Control objective: maximize the minimum over all inter-arrival times between two consecutive planes.

```
\begin{array}{ll} \textit{maximize} \;\; \underset{1 \leq j \leq n-1}{\min_{1 \leq j \leq n-1}} (t_{j+1} - t_j) \\ \textit{subject to} \quad \; a_i \leq t_i \leq b_i, \qquad \qquad i = 1, \dots, n \\ \quad \; t_i \leq t_{i+1}, \qquad \qquad i = 1, \dots, n-1 \end{array}
```


Introduce a new decision variable

```
maximize z subject\ to \quad t_{j+1}-t_{j}\geq z, \qquad \qquad i=1,\dots,n-1 a_{i}\leq t_{i}\leq b_{i}, \qquad \qquad i=1,\dots,n t_{i}\leq t_{i+1}, \qquad \qquad i=1,\dots,n-1 decision variables: z, t_{i}, i=1,\dots,n,
```

Quadratic Programming

minimize
$$\frac{1}{2}x^TQx + q^Tx$$

subject to $Ax = b$
 $Gx \le h$

- $Q = [Q_{ij}] \in \mathbb{R}^{n \times n}, x^T Q x \equiv \sum_{i=1}^n \sum_{i=1}^n Q_{ij} x_i x_j$
- Assume Q is symmetric.

$$x^T Q x = x^T \left(\frac{Q + Q^T}{2} \right) x$$

Example of Quadratic Programming

Data fitting problem

$$minimize ||Ax - b||_2^2 = (Ax - b)^T (Ax - b) = x^T A^T Ax - 2b^T Ax + b^T b$$

- $A \in \mathbb{R}^{m \times n}$: each row i represents a data point with n features.
- $b \in \mathbb{R}^m$: each component i represents a prediction.
- To find the parameter x that minimized the squared L2-norm of the error.

p-norm of a vector x ($p \ge 1$):

$$\|x\|_p \triangleq \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Example of Quadratic Programming

Portfolio optimization:

- There n assets or stocks. Let x_i denote the amount of asset i invested.
- Constraint: a minimum return, budget feasibility, and non-negative investment.
- Objective: minimizing overall risk.

minimize
$$x^T \Sigma x$$

subject to $R^T x \ge r_{min}$
 $\mathbf{1}^T x = B$
 $x \ge 0$

- $R \in \mathbb{R}^n$: expected return for each invested asset; $r_{min} \in \mathbb{R}$: minimum return.
- $\mathbf{1} \in \mathbb{R}^n$: every component is 1; B: budget.
- $\Sigma \in \mathbb{R}^{n \times n}$: covariance matrix for the prices of all assets; indicates investment risk.

Semidefinite Programming

Positive semidefinite matrix $(Q \ge \mathbf{0} \text{ or } Q \in \mathbf{S}^n_+)$: An $n \times n$ symmetric matrix Q is positive semidefinite if $x^TQx \ge 0$ for all $x \in \mathbb{R}^n$.

positive definite
$$(Q > 0 \text{ or } Q \in \mathbf{S}_{++}^n) \Rightarrow x^T Q x > 0 \text{ for all } x \neq \mathbf{0}$$

minimize
$$C \cdot X$$

subject to $A_i \cdot X = b_i$, for $i = 1, ..., m$
 $X \ge \mathbf{0}$

- $C \in \mathbf{S}^n_+$: $n \times n$ symmetric matrix.
- $C \cdot X \triangleq \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} Z_{ij}$.

 $\operatorname{tr}(Z)$: sum of matrix Z diagonal elements $\operatorname{tr}(CX) = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} Z_{ij}$

Example of Semidefinite Programming

Minimize the largest eigenvalue:

- Consider $k \ n \times n$ symmetric matrix A_1, \dots, A_k .
- Consider a function $A: R^k \to R^{n \times n}$

Proposition

Let Z be an arbitrary $n \times n$ symmetric matrix, and let $\lambda_{max}(Z)$ be the largest eigenvalue of Z. Then, we have $t \geq \lambda_{max}(Z)$ if and only if $tI - Z \geq 0$.

What's Next

- Basic concepts of convexity
- Convex optimization
- Optimality condition and duality theory
- Optimization algorithms
- Applications