Practice Questions (week 5)

Semester 2, 2021

1. Let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & -4 \end{bmatrix}$$
, $B = \begin{bmatrix} 8 & 4 & 2 \\ 2 & 4 & 6 \end{bmatrix}$, $C = \begin{bmatrix} 5 & -4 \\ 0 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 3 & 5 & 7 \end{bmatrix}$ and $E = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$.

Evaluate each of the following matrices if they exist:

- (i) AB (ii) BAC (iii) A+C (iv) ED (v) AED (vi) C^3
- 2. Let A, B, C and D be matrices which satisfy the following conditions: ABC^2D is defined and is a 3×3 matrix, A has 7 columns, and B has 5 columns. Find the size of each of the matrices A, B, C and D.
- 3. Let A be an $m \times n$ matrix and suppose there exist $n \times m$ matrices C and D such that $CA = I_n$ and $AD = I_m$. Prove that C = D.
- 4. * Two square matrices A and B are said to *commute* if AB = BA. Find all 2×2 matrices A with commute with every 2×2 matrix.

Hint: let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$; choose some very simple matrices B, for instance matrices with most entries equal to 0, and investigate what conditions must be satisfied by a, b, c and d in order to have AB = BA.

- 5. Let A, B and C be invertible $n \times n$ matrices. Find expressions in terms of A, B, C and their inverses for the inverses of the following matrices. (i) ABC (ii) $AB^{-1}A$ (iii) $3ABC^2$ (iv) $-BA^{-1}CA$
- 6. Suppose that A is an invertible $n \times n$ matrix satisfying $A^3 3A + 2I = 0$. Find an expression for A^{-1} in terms of A and I.