1

**4**)

# IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant

Wright, J.L.C.

Appln. No.

09/385,834

Filed:

August 30, 1999

Title

A Nutritional Supplement for Lowering

Serum Triglyceride and Cholesterol Level

Grp./A.U.

1616

Examiner

S. N. Qazi

Docket No. :

76891

# **DECLARATION PURSUANT TO 37 CFR § 1.132**

## I. H. STEPHEN EWART Ph.D., hereby declare that:

- I am currently employed by Ocean Nutrition Canada Limited, the assignee of the above-identified application, in the capacity of Principal Research Scientist. I am currently responsible for the ongoing research project from which the above-identified patent application arose. Details of my education, employment in research, and my academic publications are set forth in Exhibit 1 hereto. In view of my education and my involvement with the research project relating to this application, I have extensive background and experience in the area of nutritional supplements for lowering triglyceride and cholesterol levels.
- I have carefully reviewed this patent application, the Office Action mailed April 26, 2002, and the references cited therein.
- Claims 1, 5-11, 34 and 39 of the instant application stand rejected as being obvious over U.S. Patent No. 5,770,749 to Kutney et al. and U.S. Patent No. 4,879,312 to Kamarei et al. The Examiner states that Kutney et al. teach that phytosterols are effective in lowering plasma cholesterol levels and that Kamarei et al. teach that a diet rich in omega-3 fatty acids has beneficial effects in humans, including a reduction in plasma cholesterol and triglyceride levels. The Examiner goes on to state that the present claims differ from the references in claiming a nutritional supplement by employing a combination of phytosterols and an omega-3 fatty acid. The Examiner therefore concludes that it would be obvious to one skilled

09/385.834

2

in the art at the time of the invention to employ phytosterols in combination with omega-3 fatty acids in compositions and methods for lowering cholesterol and triglycerides in the bloodstream of a subject, because these agents are known individually for the treatment of the same disorder.

- It is very important to recognize that the present invention concerns not mere mixtures of sterols and omega-3 fatty acids but rather esters of a sterol and an omega-3 fatty acid. For the purposes of making nutritional supplements, there are very important differences between a mixture of a sterol and a fatty acid, and a composition wherein the sterol has been chemically joined to the fatty acid through ester linkage.
- Mere mixtures of sterols and omega-3 fatty acids are not useful for making nutritional supplements at least in part because the free sterol does not dissolve well into the fatty acid. When mixed together, the sterol remains crystalline, and the particles merely become suspended in the omega-3 fatry acid oil, resulting in a gritty paste-like material. This paste cannot be added to food products without substantially degrading their aesthetic properties. For example, a mere pasty mixture of a sterol and a fatry acid could not be added to margarine, without unacceptably altering the appearance, texture, and flavour of the margarine. Similarly, a pasty mixture is difficult to microencapsulate, the preferred means of delivering the numitional supplement in cake mixes, baked goods, ice cream, etc.
- 6. Such pastes are also very difficult to formulate into pharmaceurical compositions. For instance, the paste cannot be easily packaged in a capsule, which is the preferred single dosage format. Similarly, the pasty composition could not be packaged in a liquid form, which requires a homogenous oil.
- 7. The present invention overcomes the above-identified problems by chemically joining the sterol to the omega-3 fatty acid through an ester linkage. The sterol ester thereby produced is an oily, viscous liquid, suitable for introduction into food products and for packaging in capsules and the like. Three to four grams of this sterol ester can be dissolved in about 20 grams of margarine or other dietary fat source, without altering significantly the texture/taste profile of the product.

09/385,834

3

- As discussed in detail in my Declaration filed on April 12, 2001, the sterol esters of omega-3 farry acids of the invention are effective for lowering both cholesterol and triglyceride levels in the blood of animals. This is, in fact, a very surprising result due to the differing mechanisms of action of sterols and omega-3 fatry acids.
- Phytosterols are not absorbed in the digestive tract to any great extent. This is acknowledged in the Klumey et al. reference at column 2, lines 6-7 where it is stated that phytosterols have no nutritional value to humans, i.e., the phytosterol does not get absorbed into the bloodstream. The mechanism by which phytosterol lowers blood cholesterol appears to involve inhibition of cholesterol absorption in the small intestine by compening with cholesterol at critical points in the uptake process.
- In contrast, in order to effect a reduction in bloodstream triglyceride levels, omega-3 farty acids must be absorbed from the intestinal lumen into the bloodstream. Fish oil omega-3 farty acids must travel in the bloodstream to the liver where they modulate the activity of several enzymes of carbohydrate and lipid. The overall effect is the promotion of hepatic farty acid oxidation and reduction of triacylglycerol synthesis, with a consequent reduction of triacylglyverol release into the circulation (see article cited in current patent application: Connor and Connor, 1997, Are fish oils beneficial in the prevention and treatment of coronary artery disease? Am. J. Clin. Nutr. 66 (suppl.): 1020S-1031S.).
- Therefore, at the time of the invention, it was unknown whether this opposing requirement would be met. In particular, would the sterol component of the ester prevent the fatty acid from being absorbed into the bloodstream? While there are digestive enzymes in the intestinal lumen with esterase activity that could potentially free the fatty acid from its ester linkage with the sterol, the degree to which this would occur was unpredictable, and therefore, it was unclear whether sufficient of the omega-3 fatty acids would be released to have a significant impact on serum nightyeride levels.
- Moreover, contrary to what is stated in Kamarei et al., the preponderance of scientific evidence is that omega-3 fatty acids do not lower

09/385,834

4

cholesterol, and may actually increase it. Harris (1989) J. Lipid, Res. 30:785-807, discussed in the present patent application at page 7, lines 25-27, concluded that fish oil consumption (omega-3 fatty acids) results either in no change in serum cholesterol, or actually leads to an increase in LDL cholesterol. Similarly, a recently reported study found that EPA and DHA, the principal omega-3 fatty acids found in fish oil, increased LDL cholesterol levels (see Stalenhoef et al. (2000) The effect of concentrated N-3 fatty acids versus gemfibrozill on plasma lipoproteins, low density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia. Atherosclerosis 153:129-138, attached hereto as Exhibit 2).

- LDL cholesteral is the form of blood cholesteral lowered by ingestion 13. of sterols. Thus, irrespective of the above-described complications arising from the esterification of sterols with the omega-3 fatty acids, based on the totality of the available scientific literature, it would have been expected that the cholesterolincreasing effect of the omega-3 fatty acid might reduce or counteract the cholesterollowering effect of the sterol. It would not have been expected that the combination of the sterol and the omega-3 fatty acid, particularly in esterified form, would result in a reduction in both cholesterol and triglyceride levels, as disclosed in the present application.
- I hereby declare that all statements made herein of my knowledge are 14. true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

July 10/2002

Jul-19-2002 13:48 From-S&B/F&Co No.241 07/12 '02 13:39 ID:

 T-996 P.012/029 F-528

09/385,834

5

EXHIBIT 1

rho.

H. Stephen Ewart

Ocean Nutrition Canada, Ltd 1721 Lower Water St. Halifax, NS, B3J 1S5

Telephone: (902) 421-5745

E-mail: Sewart@ocean-nutrition.com

# Education

| 09/87 - 09/93 | Ph.D. in Biochemistry, Memorial University of Newfoundland<br>St. John's, Newfoundland<br>Supervisor: Dr. J.T. Brosnan |
|---------------|------------------------------------------------------------------------------------------------------------------------|
| 09/84 - 05/86 | M.Sc. in Biology, Mount Allison University Sackville, New Brunswick Supervisor: Dr. W.R. Driedzic                      |
| 09/79 - 04/83 | B.Sc. (Honours) in Biology, Mount Allison University<br>Sackville, New Brunswick                                       |

# Employment in Research

| 04/01 - present | Principal Research Scientist Ocean Nutrition Canada Ltd. Halifax, NS                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------|
| 04/99 – 04/01   | Senior Research Scientist Ocean Nutrition Canada Ltd. Halifax, NS                                           |
| 04/96 - 03/99   | Postdoctoral fellow, Department of Pharmacology & Therapeutics<br>University of Calgary<br>Calgary, Alberta |
| 10/93 - 03/96   | Postdoctoral fellow, Division of Cell Biology Hospital for Sick Children Toronto, Ontario                   |
| 05/86 - 07/87   | Research assistant, Department of Bi logy  Mount Allison University  Sackville, New Brunswick               |

## Honours and Awards

09/93 - 09/95 Hugh Sellers Postdoctoral Fellowship

Banting and Best Diabetes Centre

1992 Merck Frosst - Canadian Biochemical Society Student Travel Award 01/88 - 01/91 Memorial University Graduate Student Fellowship

Memorial University of Newfoundland

09/80 - 05/83 Wilkinson Scholarship

Mount Allison University

09/79 - 05/80 Entrance Scholarship

Mount Allison University

# Teaching experience

09/87 - 12/92 Laboratory traching assistant for biology and biochemistry courses

at Memorial University

Introductory Biochemistry, 3100 (6 semesters)
Techniques in Biochemistry, 4211 (3 semesters)

Introductory Biology (1 semester)
Pharmacy Tutorial (1 semester)

09/84 - 05/86 Laboratory teaching assistant for biology courses

at Mount Allison University

Animal Physiology, 3210 (2 semesters)

Metabolism, 3501 (1 semester) Cell Biology (1 semester)

09/80 - 04/83 Laboratory teaching assistant for biology and chemistry courses

at Mount Allison University

Analytical Chemistry (1 semester)

Introductory Biology and Ecology (3 semesters)

### **Publications**

Refereed papers

Curtis, I.M., Dennis, D., Waddell, D.S., MacGillivray T., Ewart, H.S. (2002)

Determination of LKPNM content in bonito muscle hydrolysates by LC-MS. J. Agric. F od

## Chem. (in Press).

- Ewart, H.S., Cole, L.K., Kralovec, J., Layton, H., Wright, J.L.C., Curtis, J.M., Murphy, M.G. (2002) Fish oil containing phytosterol esters alters blood lipid profiles and left ventricle generation of thromboxane A2 in adult guinea pigs. J. Nutr. 132: 1149-1152.
- Russell, J.C., Ewart, H.S., Kelly, S.E., Kralovec, J., Wright, J. L. C., Dolphin, P.J. (2002) Improvement of vascular dysfunction and blood lipids of Insulin-Resistant Rats by a marine oil-based phytosterol compound. Lipids 37: 147-152.
- Shimoni, Y., Severson, D., and Ewart, H.S. (2000) Insulin resistance and the modulation of rat cardiac K+ currents. Am J Physiol. (Heart Circ Physiol) 279: H639-H649.
- Ewart H.S., Carroll, R., Severson, D.L. (1999) Lipoprotein lipase activity is stimulated by insulin and dexamethasone in cardiomyocytes from diabetic rats. Can. J. Physiol. Pharmacol. 77: 571-578.
- Ewart H.S., Severson, D.L. (1999) Insulin and dexamethasone stimulation of cardiac lipoprotein lipase activity involves the actin-based cytoskeleton. Biochem J. 340: 485-490.
- Shimoni, Y., Ewart, H.S., Severson, D.L. (1999) Insulin stimulation of rat ventricular K<sup>+</sup> currents requires the integrity of the cytoskeleton. J. Physiol.514: 735-745.
- Ewart, H.S., Somwar, R., Klip, A. (1998) Dexamethasone snimulates the expression of GLUT1 and GLUT4 proteins via different signalling pathways in L6 skeletal muscle cells. PBBS Lett. 425; 179-183.
- Shimoni, Y., Ewart, H.S., Severson, D.L. (1998) Type I and II models of diabetes produce different modifications of K+ currents in rat heart: role of insulin. J. Physiol. 507: 485-496.
- Squires, S.A., Ewart, H.S., McCarthy, C., Brosnan, M.E., Brosnan, J.T. (1997) Regulation of hepatic glutarninase in the streptozotocin-induced diabetic rat. Diabetes 46: 1945-1949.
- Anderson, L.G., Carroll, R., Ewart, H.S., Acharya, A., and Severson, D.L. (1997) Heparin-releasable lipoprotein lipuse activity is increased in cardiomyocytes after culture. Am. J. Physiol, 273: E759-E767.
- Ewart, H.S., Carroll, R., Severson, D.L. (1997) Stimulation of lipoprotein lipase in rat cardiomyocytes by insulin and dexamethasone. Biochem J. 327: 439-442.
- Estrada, D.E., Ewart, H.S., Tsakiridis, T., Volchuk, A., Ramlal, T., Tritschler, H., Klip. A. (1996) Stimulation of glucose uptake by a natural coenzyme, c-lipoic acid: participation of olements of the insulin signaling pathway. Diabetes 45: 1798-1804.

- Ramlal T., Ewart, H.S., Somwar, R., Deems, R.O., Valentin M.A., Young, D.A., Klip, A. (1996) Muscle subcellular localization and recruitment by insulin of glucose transporters and Na\*/K\*-ATPase subunits in transgenic mice overexpressing the GLUT-4 glucose transporter. Diabetes 45: 1516-1523.
- Volchuk, A., Wang, Q., Ewart, H.S., Liu, Z., He, L., Bennett, M.K., Klip, A. (1996) Syntaxin 4 in 3T3-L1 adipocytes; regulation by insulin and participation in insulin-dependent glucose transport. Mol. Biol. Cell 7: 1075-1082.
- Ewart, H.S., Qian, D., Brosnan, J.T. (1995) Activation of heparic glutaminase in the endotoxin-treated rat. J. Surg. Res. 59: 245-249.
- Ewart, H.S., Brosnan, J.T. (1993) Rapid activation of hepatic glutaminase in rats fed on a single high-protein meal. Biochem. J. 293: 339-344.
- Ewart, H.S., Jois, M., Brosnan, J.T. (1992) Rapid stimulation of the hepatic glycine cleavage system in rats fed on a single high-protein meal. Biochem. J. 283: 441-447.
- Jois, M., Ewart, H.S., Brosnan, J.T. (1992) Regulation of glycine catabolism in rat liver mitochondria, Biochem. J. 283: 435-439.
- Ewart, H.S., Driedzic, W.R. (1990) Enzyme activity levels underestimate lactate production rates in cod (Gadus morhua) gas gland. Can. J. Zool. 68: 193-197.
- Ewart, H.S., Canty, A.A., Driedzic, W.R. (1988) Scaling of cardiac oxygen consumption and enzyme activity levels in sea raven (Hemitripterus americanus). Physiol. Zool. 61: 50-56.
- Ewart, H.S., Driedzic, W.R. (1987) Enzymes of energy metabolism in salmonid hearts: spongy versus cortical myocardia. Can. J. Zool. 65: 623-627.

# Chapters in books

- Tsakiridis, T., Ewart, H.S., Ramlal, T., Volchuk, A., Estrada, D.E., Tritschler, H., Klip, A. (1997) α-lipoic acid stimulates glucose transport in muscle and adipose cells in culture: comparison with the actions of insulin and dinitrophenol. In: Thioctic Acid in Health and Disease (J. Fuchs, L. Packer, and G. Zimmer, eds.) Marcel Dekker, Inc., New York. pp. 87-98.
- Brosnan, J.T., Ewart, H.S., Squires, S.A. (1995) Hormonal control of hepatic glutaminase. Advan. Enzyme Regul. 35: 131-146.
- Brosnan, J.T., Ewart, H.S., Squires, S.A., Day, S.H., Kovacevic, Z., Brosnan, M.E. (1994) Hormonal and dietary control of hepatic glutamine metabolism. Contrib. Nephrol. 110: 109-114.

## Invited revi w

Ewart, H.S., Klip, A. (1995) Hormonal regulation of the Na<sup>+</sup>/K<sup>+</sup>-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am. J. Physiol. 269: C295-C311.

## Abstracts

- Ewart, H.S., Cole, L.K., Kralovec, J., Layton, H., Wright, J.L.C., Curtis, J.M., Murphy, M.G. (2001) Effect of fish oil-containing phytosterol esters on blood lipid profiles in adult guinea pigs. 26th Annual Canadian Lipoprotein Conference (Digby, NS).
- Curtis, J. M., Dennis, D., Waddell, D.S., MacGillivray, T., Ewart, H.S. (2001) LC-MS/MS Determination of an Angiotension-Converting Enzyme Inhibitor in Nutraceutical Formulations of a Fish Protein Hydrolysate. 14th Lake Louise Workshop on Tandem Mass Spectrometry.
- Zhang, J., Dennis, D., Samson, P., Ewart, H.S., Barrow, Colin. (2001) Screening for antioxidant from marine microorganisms and scafood byproducts using radical scavenging assays. 42<sup>nd</sup> Annual Meeting of the American Society of Pharmacognosy, O-14: p39.
- Ewart, H.S., Shimoni, Y., Severson, D.L. (1998) K<sup>+</sup> currents in insulin-resistant rat models of diabetes. J. Physiology 511.P: 148P.
- Ewart, H.S., Severson, D.L. (1998) Regulation of cardiac lipoprotein lipase.

  Cardiovascular/Lipid & Lipoprotein Research Group Retreat, University of Alberta, Edmonton.
- Shimoni, Y., Ewart, H.S., Severson, D.L. (1997) Effects of insulin on cardiac K<sup>+</sup> currents. Canadian Diabetes Association Professional Conference and Annual Meetings. Windsor, Ontario. J. Diabetes Care (Suppl): 55A.
- Severson, D.L., Ewart, H.S., Anderson, L. (1997) Metabolic and hormonal regulation of cardiac lipoprotein lipase. Lipoprotein Metabolism, Obesity and Atherosclerosis (Satellite Symposium of the XIth International Symposium on Atherosclerosis. Saint-Malo, France.
- Ewart, H.S., Carroll, R., Severson, D.L. (1997) Lipoprotein lipase activity is stimulated in rat cardiomyocytes by insulin and dexamethasone. J. Mol. Cell. Cardiol. 29: A160
- Ewart, H.S., Severson, D.L. (1997) Stimulation of lipoprotein lipase in rat cardiomyocytes by insulin and dexamethasone. Cardiovascular/Lipid & Lipoprotein Research Group Retreat, University of Alberta, Edmonton.
- Ramlal T., Ewart, H.S., Deems, R.O., Valentin M.A., Young, D.A., Klip, A. (1996) Insulin induced translocation of glucose transporter and Na<sup>†</sup>/K<sup>†</sup>-pump isoforms in skeletal muscle of transgenic mice overexpressing the human GLUT4 glucose transporter. Diabetes 45 (Suppl 2): 246A.
- Brosnan, J. T., Ewart, H.S., Squires, S.A., Day, S.H., Kovacevic, Z., Brosnan, M.E. (1993) Hormonal and dietary control of hepatic glutamine catab lism. 6th International

LHY.

Workshop on Renal Ammoniagenesis and Interorgan Cooperation in Acid-base Homeostasis. Villa Hanbury, Mortola, Italy.

Ewart, H.S., Jois, M., Brosnan, J.T. (1992) Acute regulation of hepatic glutaminase in rats fed a single high protein meal. 35th Annual Meeting CFBS: 262.

Squires, S.A., Ewart, H.S., Hall, B., Brosnan, J.T. (1992) How does glucagon activate a mitochondrial enzyme? - Effects of okadaic acid on glutaminase in intact hepatocytes. 35th Annual Meeting CFBS: 259.

Ewart, H.S., Jois, M., Brosnan, J.T. (1991) Activation of amino acid metabolism following a single high protein meal. FASEB J. 5: A1305.

Ewart, H.S., Jois, M., Brosnan, J.T. (1990) Liver mitochondria from rats fed a high protein diet or meal show enhanced glycine catabolism. FASEB J. 4: A3124.

Ewart, H.S., Jois, M., Brosnan, J.T. (1990) Liver mitochondria from rats fed a high protein diet or meal show enhanced glycine catabolism. 33rd Annual Meeting CFBS: 280a.

# Professional Memberships

Canadian Institute of Food Science and Technology

American Diabetes Association

American Heart Association

Nova Scotia Institute of Science (Councillor)

THA.

No.241 07/12 '02 13:40 ID.

Exhibit 2





**ATHEROSCLEROSIS** 

Atheroscierosis 153 (2000) 129-138

www.clacvier.com/localc/atheroackcrosis

The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low density lipoprotein heterogeneity and oxidizability in patients with hypertrygliceridemia

Anton F.H. Stalenhoef \*\*, Jacqueline de Graaf \*, Marianne E. Wittekoek \*, Sebastian J.H. Bredie a, Pierre N.M. Demacker a, John J.P. Kastelein b

\* 541 Department of Internal Medicine, University Huspital Nipnegen, PO Box 9101, 6500 HB Nipregen, The Netherlands Centre for Venezier Medicine, Academic Medical Contro, University of Amsterdam, Amsterdam, The Netherlands

Received 23 April 1999; received in revised form 6 December 1999; accepted 7 January 2000

#### Abstract

We evaluated in a double-blind randomized trial with a double-dummy design in 28 patients with primary hypertriglyceridemia, the effect of gerufibrozil (1200 mg/day) versus Omacor (4 g/day), a drug containing the n-3 fatty acids cicosapentaenoic (EPA) and decosabstacooic acid (DHA), on lipid and lipoprotein levels, low density lipoprotein (LDL) subfraction profile and LDL oxidizability. Both Omacor and genefibrozil therapy resulted in a similar significant decrease in scrum triglyceride (TG), very low density lipoprotein (VLDL) triglycsride and VLDL cholesterol concentrations and an increase in high density lipoprotein (HDL) and LDL cholesterol concentrations. The increase in LDL cholesterol was due to a significant increase in cholesterol content of the relatively buoyant LDL subfractions LDL1, LD12 and LDL3, whereas the relative contribution of the dense LDL subfractions LDL4 and LDL5 to total LDL tended to decrease. So, both therapies resulted in a more broyant LDL subfraction profile, reflected by a significant increase of the value of parameter K (+ 10.3% on Omacor vs + 26.5% on gentibrosil therapy, gentibrozil vs Omeson P > 0.05). Out - induced oxidation of LDL was measured by continuous monitoring of conjugated disness. After 12 weeks of Omacor treatment LDL appeared more prone to oxidative modification in vitro than LDL after genefibroril presument, as measured by the significantly decreased lag time, preceding the onset of the lipid peroxidation. In both groups the rate of oxidation did not change with therapy. The amount of dienes formed during oxidation increased significantly on Omacor ireatment, but not on gentibrozil treatment. Plasma thiobarbituric acid reactive substances were higher after Omacor and lower after gemfibrozil treatment, although not significantly. We conclude that both Omacor and gemfibrozil have favorable effects on lipid and lipoprotein concentrations and the LDL subfraction profile. However, Omneor increased the susceptibility of LDL to oxidation, whereas gentibrozil did not affect the resistance of LDL to oxidative modification in vitro. The clinical relevance of these changes remains to be established in the light of other postulated favorable effects of n-3 fatty acids on the course of cardiovascular disease. © 2000 Elsevier Science Ireland Ltd. All rights reserved.

Keywords: Fish oil; Gemübrozil; Omega-3 fasty acids; Hypertrighyerridemia; Low density lipoprotein subfractions; Low density lipoprotein oxidation

Abbrevisions: CHD. coronary heart disease; DHA, describes-BROKE REIS; EPA. SICOSSPONIENDIE BEIG; FA, FARTY BEIGS; FCH. SEMILIAL operational bypertipiderain; HDL, high density lipoprotein; LDL, low Sensity lipoprotein: PUPA polyupusaturated fatty acids: TG, triglyte-index: VLDI, very low density lipoprotein; IDL, intermediate density ipoprowii.

\*Corresponding author. Tel.: +31-24-3614703; fax: +31-24-9541794

E-mail address: a\_stalenhoof@nig.azz.ul (A.F.H. Stalenhoof).

# 1. Introduction

Subjects with moderate hypertriglyceridemia are considered to be at increased risk for coronary heart discase (CHD), especially men over age 50 with low high density lipoprotoin (HDL) cholesterol levels [1]. Several potential mechanisms have been suggested to contribute to this phenomenon, including an enhanced atherogenic potential of I w density lipoprotein (LDL) in the hypertrigly caridemic subjects [2-4]. LDL isolated from hypertriglyceridemic subjects is polydisperse

2000 Election Science Ireland Ltd. All rights reserved. 1021-9150/00/\$ - see front matter

defined by the presence of multiple LDL subfractions over a broad density range, with the mean LDL subfractions being abnormally small and dense [4,5]. This dense LDL subfraction profile has been associated with an increased risk of CHD [6-8]. In addition, LDL isolated from hypertriglyceridemic subjects is more prone to in vitro oxidative modification than LDL from normotriglyceridemic subjects [4]. The oxidative modification of LDL has been implicated in the initiation and progression of atherosclerosis [9]. So, LDL in hypertriglyceridemic subjects is characterized by a dense LDL subfraction profile and an enhanced susceptibility to oxidation, both contributing to an enhanced atherosclerosis.

Because of the reported increased risk for premature atherosclerosis, treatment with lipid-lowering drugs is frequently indicated. Both marine n-3 fatty acids (FA) and fibrates are very potent hypotriglyceridemic agents; however, both can also raise LDL cholesterol concentrations, especially in hypertriglyceridemic subjects [10–13]. Only a few studies are available that address the effect of n-3 FA [14–16] and fibrates [4,17] on LDL heterogeneity. Furthermore, dictary n-3 FA are incorporated into lipoproteins, thereby potentially affecting the susceptibility of LDL to oxidative modification. There are conflicting results, however, between studies on the effects of n-3 fatty acid supplementation on LDL oxidizability [16,18–23], whereas only few studies report the effect of fibrates on this parameter [4,17,24].

The present study was undertaken to compare directly the effects of concentrated n-3 FA (Omncor<sup>26</sup>) vs gentibrozil on LDL beterogeneity and LDL oxidizability in hyperriglyceridenic patients.

## 2. Methods

## 2.1. Patients

A total of 30 patients with primary hypertriglyceridemia (triglyceride (TG) levels between 4.0 and 28.0 mmol/l), confirmed by repeated measurements, were recruited from the outpatient lipid clinic of Nijmegen University Hospital (18 patients) and Amsterdam Academic Medical Centre (12 patients). Exclusion criteria were secondary causes for dyslipidemia, including a history of diabetes mellitus, or apolipoprotein phenotype E2/E2. The participants continued their standard lipid-lowering diet throughout the trial (American Heart Association Step I diet: < 30% of wial calories/day from fat (maximum 10% saturated fat) and cholester 1 < 300 mg/day). Other concominant medication was maintained unchanged during the study. None of the subjects used vitamin supplements, antioxidants or oral blood glucose low ring agents. The protocol was approved by the ethical committee of our institution and written informed consent was obtained from all subjects.

### 2.2. Study design

This study was a double-blind trial with a doubledummy design. At the start of the study lipid-lowering medication was stopped (week -6), followed by a wash-out period of 4 weeks (week - 6 to - 2). Baseline plasma lipid values were measured twice at the end of this wash-out period (week - 2 and day 0). Thereafter, the subjects were randomly assigned to receive either gemfibrozil (1200 mg/day) together with placebo matching Omacor acapsules (n = 16) or Omacor acapsules (4 g/day) together with placebo matching genfibrozil for 12 weeks (n = 14) (day 0 to week 12). Blood samples were obtained at weeks 6, 10 and 12. The Omacor capsules (Pronova Biocare, Oslo, Norway) contained 1 g of concentrated n-3 FA (92%): 44.4% eicosupentuenoic (EPA) and 36.2% docosahexaenoic acid (DHA). D-alpha-tocopherol was added as an antioxidant to a concentration of 4 IU/g = 3.3 mg/g. The placebo capsule contained corn oil (56.3% linoleic acid), mono-unsaturated FA (26.8% oleic acid) and saturated FA (2.3% stearic scid), and 2.4 mg vitamin E.

For the evaluation of adverse events, serum enzyme activities (ALAT and ASAT), glucose and HbA<sub>10</sub> were determined according to the clinical routine at the hospital. Compliance was monitored by counting the returned capsules and was 98%.

#### 2.3. Plasma

Venous blood samples were collected after an overnight fast into vacutainer tubes containing 1 mg/ml of ethylenediaminetetrascetic acid (K<sub>3</sub>-EDTA). Plasma was isolated immediately and saccharose solution (final concentration 600 mg/ml H<sub>2</sub>O) was added to prevent denaturation of lipoproteins during freezing; samples were stored at -80°C. All determinations were performed at the lipid research laboratory of the University Hospital Nijmegen.

# 2.4. Lipid and lipoprotein analysis

Very low density lipoprotein (VLDL) + intermediate density lipoprotein (IDL) (d < 1.019 g/ml) were isolated by ultracentrifugation for 16 h at 36 000 rpm (153 000 × g) in a fixed-angle TFT 45.6 rotor (Kontron, Zurich). Plasma and lipoprotein cholesterol and triglyceride concentrations were determined with the Hitachi 744 analyser (cholesterol no 237574; triglyceride no 1361155; Boehringer-Mannheim, FRG). HDL cholesterol was determined in whole plasma using the phosphotungstate/Mg<sub>2+</sub> method [25]. Apo E phenotypes were determined after iso-electric focusing of

A.F.H. Stalenhouf et al. / Atherosclerosis 153 (2000) 129-138

131

VLDL lipoproteins, as described previously [26]. The apoE phenotypes were E4/3 (n = 10), E3/3 (n = 6), E3/2 (n = 12), and E4/2 (n = 2).

# 25. Analysis of low density lipoprotein subfraction profiles

LDL subfractions before and after treatment were separated by single spin density gradient ultracearifugation [27]. Each individual LDL subfraction profile was defined by a continuous variable K, as described in detail previously [28,29]. Briefly, after ultracentrifugagon the LDL subfractions were visible as distinct bands in the middle of the tube. Up to five LDL subfractions could be distinguished, i.e. LDL1 (d = 1.030-1.033 g/ml), LDL2 (d = 1.033-1.040 g/ml), LDL3 (d = 1.040-1.045 g/ml), LDLA (d=1.045-1.049 g/ml) and LDLS (d = 1.049 - 1.054 g/ml). The subfractions were carefully aspirated by means of a pasteur pipetts. The volumes were calculated by weighing after correction for the densities. Subsequently, cholesterol was determined in each fraction; the concentrations were corrected for dilution and incomplete recoveries. The relative cholesterol concentrations (%chol) in the LDL subfractions were used to calculate parameter K as a continuous variable, which best describes each individual LDL subfraction profile. The relative contribution of each LDL subfraction, expressed by its cholesterol concentration (%chol LDL1-LDL5) relative to the total LDL subfraction profile (total LDL (100%) = %chol LIDL3 + %chal LDL2+%chol LDLI + %chol LDL4+%choi LDL5) was calculated. The relative cholesterol concentration of LDL3 and the less frequently occurring LDIA and/or LDIS were added to give %chol LDL3' = (%chol LDL3 + %chol LDL4 + %chol LDLS), where LDL [100%] = LDL1 (%chol LDL1)+LDL2 (%chol LDL2)+LDL3 LDL3). When a subfraction pattern was characterized by a predominance of buoyant LDL particles, K was calculated by K = (%chol LDL1 - %chol LDL3)/ (%chol LDL2 - %chol LDL3') + 1). In the case of a predominancy of heavy, dense LDL particles, K was calculated by K = (% chol LDL) - % chol LDL3)/(%chol LDL2 - %chol LDL1) + 1). A negative value (K < 0) reflects a more dense LDL subfraction profile, and a positive K-value (K > 0) a more buoyant profile.

# 2.6. Oxidation of low density lipoproteins

Plasma isolation was immediately followed by LDL polation by density gradient ultracentrifugation (40 000 open for 18 h at 4°C) using a SW40 rotor (Beckman, Palo Alt , CA, USA). After isolation of total LDL, the grotein content of LDL was measured by the method of Lowry et al. [30], with chloroform extraction to prove turbidity, using bovine serum albumin as a

standard. LDL cholesterol was calculated by subtracting VLDL + IDL cholesterol and HDL cholesterol from total cholesterol. The oxidation experiments were performed as described by Esterbauer et al. [31], as modified by Kleinveld of al. [32]. Briefly, the oxidation of LDL (60 µg apolipoprotein/ml) was initiated by the addition of CuSO4 to a final concentration of 18 µM at 37°C. The kinetics of the oxidation of LDL was determined by monitoring the change of the 234-nm diene absorption in a thermostated UV spectrophotometer. The oxidation characteristics of LDL were determined as described previously by the lag time (unin), the oxidation rate (nmol dienes/mg protein per min) and the maximal amount of dienes formed during LDL oxidacion (nmol/mg LDL protein) [33].

Thiobarbituric acid reactive substances (TBARS) in plasma were determined as described [34].

# 2.7. Determination of fatty acids and vitamin E in low density lipoprotein

Analysis of fatty acids, extracted from LDL by vortex mixing with 3 ml n-hexane, was performed by gas chromatography (Varian 3400 GC, Houten, The Netherlands) [33]. Vitamin E concentrations were determined by high-performance liquid chromatography (HPLC Spectra Physics Model 8800), with fluorescence detection. For extraction of vitamin E, 0.2 ml LDL was vortex mixed with 2 ml acetone and 2 ml petroleum ether [35].

#### 2.8. Statistics

The values of the variables measured at week () and 12 are presented as the value 'before' and 'after' treatment, respectively. Results are expressed as mean ± S.D. and median with interquartile ranges. The mean of the individual percentage change after therapy was calculated and presented as delta (%).

The effect of either gentlibrozil or Omacor on absolute values of plasma lipoproteins, fatty acid composition, vitamin E concentration, TBARS and LDL oxidizability parameters were tested by non-parametric tests for dependent variables by the Wilcoxon signed rank test. Differences between the effects of genuitorozil and Omacor on plasma lipoproteins, farry acid composition, vitamin E concentration, TBARS and LDL oxidisability parameters were tested by the non-parametric Mann-Whitney U-tests for independent variables. A two-tailed probability value of less than 0.05 was considered to be significant. Pearson's correlation coefficients were computed to determine the correlation between the variables fatty acids and oxidazibility of LDL. The statistical analyses were performed with procedures available in the SPSS PC + (Statistical Package for the Social Sciences) software package Version 9.0 (SPSS, Chicago, IL, USA).

A.F.H. Stalenhoef at al. / Atheroseleraris 153 (2006) 129-138

132

#### 3. Results

## 3.1. Patients

Analysis was based on intention-to-treat, but two subjects were not included in the final analysis. One subject (Omacor group) developed excessive hyperinglyceridenia (TG = 56.5 mmol/i) after he stopped his regular medication. One subject (gemfibrozil group) was not willing to continue the trial after randomization.

At baseline, the gemfibrozil group (n = 13) and the Omacor group (n = 15) were similar in mean age and body mass index (BMI) (mean age 52.7 ± 6.9 vs 48.3 ± 8.3 years, respectively; BMI  $26.6 \pm 3.8$  vs  $27.5 \pm 2.4$ kg/m3, respectively). After treatment, in the Omacor group eight patients showed an increase in body weight whereas in seven patients body weight remained stable or decreased Similarly, in the gemfibrozil group six patients showed an increase in body weight whereas seven patients showed a stable or decreased body weight

After inclusion, in both the gentfibrozil and Omacor group one patient with glucose levels above 6.9 mmol/l was present (genulibrozil group, n = 1, glucose 10.0 and 10.1 mmol/l at week 0 and 12, respectively: Omacor group, n=1, glucose 12.1 and 10.5 mmol/l at week 0 and 12, respectively). All other patients had glucose levels below 7.0 mmol/L. These two patients did not have a history of diabetes mellitus and were not treated with oral blood glucose lowering agents either before or during the trial. The fasting glucose concentrations as well as the hemoglobin A14 concentration were similar at baseline levels for both drugs (gemfibrozil glucose  $6.15 \pm 2.04$  mmol/l and HbA<sub>1c</sub>  $5.66 \pm 0.67\%$  vs Omacor glucose  $5.88 \pm 1.24$  mmol/l and HbA<sub>16</sub>  $5.54 \pm 0.55\%$ ) and did not change during treatment with Omacor or gemfibrozil (data not shown). Omacor and gemfibrozil were tolerated well by all patients and no significant side-effects were observed.

# 3.2. The effect of treatment on plasma lipids und lipoprotein levels

The results for lipid and lipoprotein concentrations at baseline and after 12 weeks of treatment with gemfibrozil or Omecor are summarized in Table 1. Although baseline values of triglyceride and cholesterol levels of patients in the Omacor group are higher than in the genfibrozil group this is not significant (P-value for triglyceride 0.44 and for cholester 1 0.25 (Mann-Whitney U-tost)). There were no significant differences between the two groups at baseline. Both gemabroall and Omacor significantly reduced total triglyceride levels in plasma as well as in the VLDL fraction. In addition, the VLDL cholesterol significantly decreased in both

treatment groups. However, only a slight reduction in total cholesterol was found, reaching statistical significance in the Omacor group only, due to significant increase in HDL cholesterol and LDL cholesterol levels in both groups after treatment. There were no significant differences between the effects of genfibrozil or Omacor on plasma lipoproteins.

# 3.3. The effect of treatment on LDL subfraction profile and K-value

The hypertriglycerideonic LDL before therapy tended to be polydisperse, consisting of multiple subfractions (LDL1 LDL5) over a broad density range (d = 1.030-1.054 g/ml), with the dense LDL subfractions (LDL3-LDLA) contributing most to total LDL (Fig. 1). This dense LDL subfraction profile is reflected by a negative value for parameter K, which did not differ significantly between the groups at baseline (Table 1). Both gemfibrozil and Omacor increased total LDL cholesterol (Table 1) by increasing the cholesterol content of LDL1, LDL2 and LDL3, whereas the relative contribution of LDLA and LDL5 to total LDL decreased (Fig. 1), thus resulting in a more buoyant LDL subfraction profile. This is reflected by the increase in the value of parameter K after either gemfibrozil or Omacor therapy (Table 1). The value of parameter K increased more after gemfibrozil (+26.5%, P < 0.01) than after Omacor ( + 10.3%, P = 0.05) but the difference in change of parameter K between gemfibrozil and Omacor did not reach statistical significance (P = 0.088).

# 3.4. The effect of treatment on fatty acid composition and vitamin E content of LDL

In the genufibrozil group the relative contribution of palmitic acid (16:0), and oleic acid (18:1) decreased significantly, whereas that of stearic acid (18:0), linelic acid (18:2), arachidonic acid (20:4), EPA (20:5) and DHA (22:6) did not change significantly (Table 2). In the Omacor group the relative contribution of EPA and DHA increased significantly, with a significant decrease of stearic acid and oleic acid, whereas the relative contribution of linoleic acid and arachidonic acid did not change (Table 2). Vitamin E in LDL increased significantly in both treatment groups. The total amount of polyunsaturated fatty acids (PUFA) in LDL tended to increase in both groups, just reaching statistical significance only in the genufibrozil group. The ratio PUFA/vitamin E in LDL decreased significantly in both groups (Table 2). No significant difference between the effect of genfibrozil and Omacor on fatty acid composition and vitamin is content of total LDL was found, except for palmitic acid and DHA and with borderline significance for EPA (Table 2).

Karalkanasa i makkadanasa kada sa

## 3.5. The effect of treatment on oxidation of LDL

The lag time decreased significantly among the subicets treated with Omacor, whereas treatment with gentibrozil did not affect the lag time (Table 3). A significant difference between the effect of genfibrozil and Omacor on lag time was found (P < 0.001). Although the rate of oxidation tended to increase, the differences were not significant in any treatment group. Total amount of dienes produced per milligram of LDL protein increased in both groups after treatment, reaching statistical significance in the Omacor group and borderline significance in the gemfibrozil group (Table 3). No difference between the effect of genfibrozil and Omagor on the rate of oxidation and amount of dienes was found (Table 3). TBARS concentrations in plasma increased after treatment with Omacor (+39%) and decreased after treatment with gentlibrozil (-6%); however, both changes failed to reach statistical significance. No significant difference in change in TBARS between both treatment groups was found (Table 3).

#### 4. Discossion

The underlying cause of the increased tendency toward cardiovascular diseases in patients with hypertriglyceridemia is probably related to the enhanced atherogenic potential of their lipoproteins. Possible mechanisms contributing to this increased atherogenicity include the presence of small, dense LDL and the enhanced susceptibility to oxidative modification. In this report we described the baseline lipoprotein concentrations, the LDL subfraction profile and LDL oxidizability of patients with hypertriglyceridemia, and compared the effectiveness of treatment with either genfibroal or Omacor on these parameters in a doubleblind, double-dummy design.

### 4.1. Lipids, lipoproteins and LDL heterogeneity

The observed reduction in plasma triglyceride, VLDL cholesterol and VLDL triglyceride concentrations and increase in HDL cholesterol concentrations

Table ! Changes in lipid and lipoprotein concentration and the LDL subfraction profile (i.e. K-values) in subjects with hypertriglyceridemia after

|                            | Drug | Before                        | After                                       | Deita (%)        | Ph      | P     |
|----------------------------|------|-------------------------------|---------------------------------------------|------------------|---------|-------|
| Total cholesterol          | 0    | B.R5 ± 3.04                   | 7.85 ± 2.32                                 | -8.9 ± 14.8      | <0.05   | D.65  |
| **                         |      | 7.69 (6.15-11.87)             | 7.16 (6.03 <del>-9</del> .14)               |                  |         |       |
|                            | G    | 7.15 ± 1.60                   | 6.47 ± 1.16                                 | $-7.4 \pm 15.3$  | 0.06    |       |
|                            |      | 7.04 (5.76-8.95)              | 6.26 (5.37–7.45)                            |                  |         |       |
| Triglycendes               | 0    | 9,79 ± 6,51                   | 5.24 ± 2.80                                 | $-37.1 \pm 25.5$ | < 0.001 | 0.68  |
|                            |      | 6.93 (6.00-11.26)             | 4 <i>.5</i> 3 (3 <i>.4</i> 7–6 <i>.</i> 50) |                  |         |       |
|                            | G    | 6.99 ± 2.93                   | 3.58 ± 2.27                                 | $-40.4 \pm 52.6$ | 0,01    |       |
| •                          |      | 7.09 (4.63-8.02)              | 2,92 (1.9 <del>9_4</del> .70)               |                  |         |       |
| HDL cholesterol            | 0    | 0.71 ± 0.17                   | 0.77 ± 0.18                                 | +11.0 ± 18.5     | < 0.05  | 0,29  |
|                            |      | 0.70 (0.5 <del>6</del> -0.84) | 0.73 (0.63-0.88)                            |                  |         |       |
|                            | G    | $0.79 \pm 0.16$               | $0.91 \pm 0.19$                             | $+17.1 \pm 21.4$ | <0.05   |       |
|                            |      | 0.84 (D.65-0.93)              | 0.81 (0.77-1.07)                            |                  |         |       |
| VLDL cholesterol           | 0    | 5.17 ± 3.17                   | 3.38 ± 2.37                                 | $-33.2 \pm 22.3$ | < 0.001 | 0.41  |
|                            |      | 4.33 (2.72-9.13)              | 2.53 (1.8 <del>2-4</del> .11)               |                  |         |       |
| •                          | Ġ    | 3.23 ± 1.38                   | 1.58 ± 0.78                                 | $-39.7 \pm 55.2$ | < 0.01  |       |
| <i>i</i><br>i.             |      | 2.88 (2.3 <del>6-4</del> ,33) | 1.45 (0.85-2.90)                            |                  |         |       |
| VLDL uiglyourdes           | 4    | 8.76 ± 5.98                   | 4.46 ± 2.31                                 | $-39.2 \pm 26.7$ | < 0.001 | 0.75  |
|                            |      | 6.06 (5.38-10.54)             | 4.01 (2.90-5.40)                            |                  |         |       |
| •;                         | G    | 6.22 ± 2.71                   | 2.99 ± 2.19                                 | $-42.2 \pm 60.1$ | 10.0    |       |
| €e<br>Hou<br>Mari          |      | 6.52 (3.80-7.52)              | 2.27 (1.46-4.23)                            |                  |         |       |
| LDL cholesteral            | 0    | 2.97 ± 1.03                   | 3.70 ± 1.00                                 | $+29.7 \pm 31.2$ | 0.005   | 1,00  |
| 7,                         |      | 2.73 (2.31-3.06)              | 3.65 (2.92 <del>-3.99</del> )               |                  |         |       |
| 1<br>3<br>3<br>3<br>3<br>3 | Ģ    | 9.13 ± 0.87                   | 3.98 ± 1.12                                 | + 33.6 ± 45.8    | < 0.05  |       |
| 86.<br>                    |      | 3.65 (2.33-3.86)              | 4.25 (3.28-4.93)                            |                  |         |       |
| K-value                    | 0    | $-0.61 \pm 0.13$              | <b>-0.55 ± 0.16</b>                         | +10.3 ± 22.4     | 20.0    | 0.088 |
|                            |      | -0.62(-0.71/-0.55)            | - 0.57 (-0.64/-0.52)                        |                  |         |       |
|                            | G    | -0.61 ± 0.11                  | - 0.45 ± 0.20                               | +26.5 ± 33.4     | <0.01   |       |
| <u> </u>                   |      | -0.61 (-0.71/-0.52)           | -0.41 (-0.60/-0.37)                         |                  |         |       |

Spires at week 0. After are values at work 12 Delut (%) is mean of the individual perceptuge thange.

P-value for the within treatment group Wilcoxon signed ranks test (before vs after) on absolute values.

\* P-value for the between treatment groups Mann-Whitney U-test (genfibrazi vs Omscor).



Fig. 1. Effect of treatment with either Opmeor (n = 15) or Gentificael (n = 13) on the cholestered content of five LDL subfractions (LDL1-LDL5) of patients with hypertriglycaridemia: 'before' denotes values at week 0: 'after' denotes values at week 12. \* P-value < 0.05 for the within treatment group, Wilcoson algaed ranks test (before vs after). No algorithms difference between the effect of Omacor and gentificael treatment on the cholestered concentration of the LDL subfractions was found.

with gemfibrozil and Omacor after 12 weeks of treatment (Table 1) are in accordance with previous reports [10-12,36]. Our knowledge of the possible mechanisms by which fibrates and eicosanoids induce these changes in lipid and lipoprotein concentrations has evolved greatly since the identification of the peroxisome proliferator-activated receptors (PPARs) [37]. Both eicosannids and fibrates activate PPARs resulting in an enhanced catabolism of triglyceride-rich particles by decreased production of apoCIII and induction of LPL gene expression [38]. In addition, PPAR activation results in reduced secretion of VLDL particles by increased beta oxidation of fatty acids and inhibition of de-novo fatty acid synthesis [39]. The increase in LDL cholesterol by ~30% on both therapies is slightly larger than previously reported [10-12,36]. The depletion of triglycerides in the VLDL + IDL fraction induced by gemfibrozil and Omacor, leading to small, more dense VLDL+IDL particles which are more likely to be converted into LDL particles, has been suggested to be a cause of the observed increase in LDL cholesterol. So, in this study the high triglyceride levels at baseline may have contributed to the rather marked increase in LDL cholesteral concentrations [40].

The main LDL subfractions before therapy were abnormally small and dense (LDL3 and LDL4), resulting in a dense LDL subfraction profile, reflected by a negative value of parameter K. A dense LDL subfraction profile has been associated with an increased risk for CHD [6-8]. The predominance of small dense LDL in hypertriglyceridemia can be explained by exchange of LDL cholesteryl exter for VLDL triglyceride, mediated by cholesteryl exter transfer protein, followed by subsequent action of lipoprotein lipase or hepatic lipase, resulting in bydrolysis of LDL triglycerides and

thereby decreasing LDL particle size [41]. Both gerufibrozil and Omacor treatment resulted in a more buoyant LDL subfraction profile, reflected by the increase in the value of parameter K (Fig. 1 and Table 1). So, Omacor and gemfibrozil adversely raise LDL cholesterol concentration but the increase in LDL cholesterol concentration reflects a less atherogenic light LDL subfraction profile that may be favorable. Similar results have been reported in hypertensive subjects [14] and in patients with familial combined hyperlipidemia (FCH) [15] after Omacor treatment and in hypertriglyceridemic subjects [4] and in patients with FCH [17] after clofibrate and genifibrazil treatment, respectively. However, Omacor treatment in normalipidemic healthy subjects decreased LDL lipids and increased LDL apoB, thus decreasing the cholesterol/apoB ratio, reflecting more dense LDL, whereas no detectable differences in LDL size was found [16]. A possible explanation for this contrasting result is that the change in LDL composition depends on the extent of triglyconide transfer and lipolysis, determined by the degree of hypertriglyceridemia, which differed between the different reports.

Reportedly, alterations in composition of LDL particles were associated with changes in LDL metabolism in cultured cells, which may render them more athergenic [2,3]. Another potential mechanism that increases the atherogenicity of LDL includes the oxidative modification [9].

# 4.2. LDL oxidizability

Oxidative modification of LDL involves the peroxidation of unsaturated fatty acids found within the LDL phospholipid monolay r. Several studies have about that various types of fatty acids can alter LDL particle susceptibility to oxidative modification [42–44].

殿の歌いる117人

The results of studies on the effects f 11-3 FA on LDL oxidizability are contradictory. In some of the studies enhanced peroxidation of LDL was observed [18-20], whereas other studies showed no effect of dictary n-3 FA on LDL oxidation [16,21,22]. Different experimental conditions among studies, e.g. in duration of supplementation period, type of patients included. amount of n-3 FA provided, may explain some of the apparently conflicting results obtained regarding the effects of n-3 FA on LDL oxidation.

We show that the lag time of LDL oxidation was

significantly shortened by Omacor, which indicates an increase in the susceptibility to exidation of LDL, as reported previously [18-20]. The trend of increase in TBARS concentration in plasma after treatment with Omacor corresponds with the increased susceptibility to oxidation of LDL in vitro. Several studies have demonstrated that small, dense LDL is more prone to oxidative modification in vitro than the large, light LDL, as measured by the decreased lag time, preceding the onset of the lipid peroxidation, suggesting an enhanced atherogenic potential of the small dense LDL subfrac-

Table 2 Change in fatty acid composition and vitamin E content of total LDL after treatment with Omnacor or genefibrozal in subjects with hypertriglycaridonise

|                                       | Drug | Before                        | After                      | Delu (%)          | P       | Pa    |
|---------------------------------------|------|-------------------------------|----------------------------|-------------------|---------|-------|
| Palmitis add (CI 6:0)                 | 0    | 23.3 ± 2.0                    | 23.6 ± 2,2                 | +1.6±66           | 0.39    | 0,022 |
|                                       |      | 23.6 (20.8-25.0)              | 23.8 (21.6~25.4)           |                   |         |       |
|                                       | G    | $24.1 \pm 2.0$                | $23.1 \pm 3.0$             | $-4.0 \pm 5.7$    | ۵.05    |       |
|                                       |      | 23.6 (23,0-25.5)              | 23.0 (22.0–23.6)           |                   |         |       |
| icaric soid (CIB:0)                   | 0    | $7.9 \pm 0.7$                 | $7.5 \pm 0.6$              | <b>−5.1 ★ 7,8</b> | 0.015   | 0.65  |
|                                       |      | 7.9 (7.7–8.5)                 | 7.3 (6. <del>8-8</del> .2) |                   |         |       |
|                                       | G    | 7.\$ ± 9.5                    | 7.1 ± 0.7                  | $-4.8 \pm 11.0$   | 0.14    |       |
|                                       |      | 7,3 (7.2–7.7)                 | 7.0 (6.5-7.6)              |                   |         |       |
| ticis add (C18:1 a-9)                 | Q    | 19.5 ± 2.2                    | 17.6 ± 1.6                 | -9.2 ± 8.4        | 0,003   | 0.47  |
|                                       | _    | 20.1 (17.6-21.0)              | 17,3 (16.4-18.9)           |                   |         |       |
|                                       | G    | 18.6 ± 2.8                    | 17.7 ± 4.2                 | $-5.0 \pm 14.8$   | 0.02    |       |
|                                       | _    | 19.6 (16.1-20.6)              | 18.5 (14.3-19.3)           |                   |         |       |
| inplic seid (C18:2 n-6)               | 0    | 40.8 ± 9.5                    | 39.8 ± 5.3                 | $-2.2 \pm 10.7$   | 0.31    | 0.16  |
|                                       | _    | 41.1 (37.9-41.5)              | 39.5 (36.0-45.2)           |                   |         |       |
|                                       | G    | 40.8 ± 5.3                    | 42.1 ± 5.3                 | $+3.3 \pm 11.1$   | 0.15    |       |
|                                       | •    | 41.3 (36.7-45.6)              | 43.1 (36.7-47.8)           | 104106            | 0.73    | 0.93  |
| rachidonic ecid (C20:4 z-6)           | Ω    | 5.9 ± 1.2                     | 5.8 ± 1.4                  | -1,0 ± 14.5       | 0.73    | 0.92  |
|                                       |      | 5.9 (4.9-6.6)                 | 5,2 (5.0-6.5)<br>7.0 ± 1.6 | +0.1 ± 15.3       | 0.92    |       |
|                                       | Ø    | 7.9 ± 1.4                     | 7.4 (S.3-7.6)              | AR-1 II 147       | 4.72    |       |
|                                       | _    | 6.7 (6.0-8.2)<br>. 1.0 ± 0.5  | 3.1 ± 1.9                  | +231.0 ± 236.3    | 0.005   | 0.06  |
| PA (C20;5 n-3)                        | ٥    |                               | 3.6 (0.8-4.9)              | 4 min T mon       | 4       |       |
|                                       | _    | 1,1 (0.6-1.3)                 | 1.5 ± 1.4                  | +82.6 ± 183.6     | 0.22    |       |
| •                                     | G    | 0.9 ± 0.7                     | 0.8 (0.6-2.7)              | 1 0000 4 (45.0    |         |       |
|                                       | _    | 0.7 (0.5-1.5)<br>1.7 ± 0.5    | 2.6±0.8                    | +68.7 ± 66.2      | 0.006   | 0.040 |
| DHA (C22:6 11-3)                      | Q    | 1.7 (1.2-2-9)                 | 2.9 ([.8-3.1)              | ,                 |         | -     |
| ·                                     | _    | 1.7 (1.3 ± 0.6                | 8.0 ± 6.1                  | +20.2 ± 58.4      | 0.42    |       |
|                                       | G    | 1.2 (0.8-1.7)                 | 1.5 (0.8-2.4)              | , , , , ,         |         |       |
| 1.                                    | ٥    | $6.53 \pm 1.71$               | 8.41 ± 1.97                | +36.5 ± 50.0      | <0.05   | 9,89  |
| fizamin E (µmal/g LDL provin)         | u    | 7.10 (4.60-7.90)              | 8.30 (7.10-10.1)           |                   |         |       |
| •                                     | ~    | 6.95 ± 2.39                   | 8.87 ± 3.11                | +37.6 ± 59.4      | <0.05   |       |
| 1,                                    | G    | 7.10 (5.03-8.50)              | 8.40 (6.75-10.05)          |                   |         |       |
|                                       | _    | 3596 ± 326                    | 3779 ± 535                 | + 5.0 ± 19.8      | 0.09    | 0.92  |
| Total agroupt of PUFA in LDL (princt) | . 0  | 3513 (3323-3963)              | 3752 (3341-4251)           |                   |         |       |
|                                       | c.   | 3839 ± 271                    | 4008 ± 338                 | +4.5 ± 7.0        | < 0.05  |       |
| l,                                    | G    | 3872 (3702 <del>-4048</del> ) | 4000 (3758-4241)           |                   |         | . =-  |
|                                       | ٥    | 592 ± 183                     | 468 ± 103                  | $-17.4 \pm 18.5$  | <0,001  | 0.79  |
| PUPA/vitamia B in LDL (umol/mg)       | u    | 523 (461-738)                 | 443 (372-SSO)              |                   |         |       |
|                                       | G    | 628 ± 261                     | 499 ± 161                  | $-14.8 \pm 26.5$  | < 0.001 |       |
| •                                     | J    | 529 (446-764)                 | 467 (407-652)              |                   |         |       |

Values of fatty acids are presented in percentage of total fatty acids as menn ± 5.D. and median with interquartile ranges. DHA. incombination soid; EPA, sicosapuntanois scid; G. semilorodi (n = 13); LDL low density lipoprotein; O, Omasor (n = 15); PUFA, polyunsaltrated fatty acids. Before' are values at week 0. 'After' are values at week 12. Delto (%) is a \$. b b-value for the mithin measureur stond Mileorou signed cause rest (petote as after) on appoints aspiror

<sup>2°</sup> P-value for the between treatment groups Mann-Whitney U-test (gentilered vs Omscor).

Table 3

Change in LDL oxidizability after treatment with Onescor or gentilarozil\*

|                | Drug | Before                       | After                      | Delta (%)                                 | Pp      | Þ÷    |
|----------------|------|------------------------------|----------------------------|-------------------------------------------|---------|-------|
| Log time       | O    | 85.7 ± 8.28                  | 69.7 ± 8.2                 | -18.6 ± 7.6                               | < 0.001 | 100,0 |
|                | _    | 85.6 (80.5-92.0)             | 68.0 (66.2-74.5)           |                                           |         |       |
|                | G    | 74.6 ± 8.8                   | 75.3 ± 10.0                | $+2.3 \pm 13.8$                           | D.70    |       |
|                |      | 72.9 ( <b>&amp;</b> .5 81.2) | 72.7. (67.3-85. <b>6</b> ) |                                           |         |       |
| Ozidation rate | 0    | $11.0 \pm 1.83$              | 112±265                    | $+2.0 \pm 20.7$                           | 0.84    | 0.34  |
|                |      | 10.6 (9.9-11.9)              | 10.9 (8.1 13.2)            |                                           |         |       |
|                | G    | $11.9 \pm 1.60$              | 129 ± 263                  | $+10.4 \pm 23.4$                          | 0.14    |       |
|                |      | (2.0 (11.1–12.9)             | 12.8 (11.3-15.0)           |                                           | • •     |       |
| Dienes         | ٥    | 468 ± 51                     | \$22 ± 90                  | $+14.0 \pm 17.0$                          | 0.01    | 0.62  |
|                | _    | 443 (431-494)                | 521 (438-592)              |                                           | 4.0.    |       |
|                | G    | 499 ± 46                     | 541 ± 81                   | +9.9 ± 13.3                               | 0.055   |       |
|                |      | 498 (468-534)                | 532 (507-603)              | ,                                         | 4       |       |
| TBARS          | 0    | $1.48 \pm 0.74$              | 38.0 ± 88.1                | $+38.7 \pm 65.7$                          | 0.14    | 9.16  |
|                |      | 1.19 (0.97-1.85)             | 1.73 (1.17-2.54)           | 1 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 | 4       | 41.0  |
|                | G    | $1.34 \pm 0.19$              | 1.04 ± 0.19                | $-5.8 \pm 36.2$                           | 0.34    |       |
|                | _    | 1.05 (0.93-1.58)             | 1.06 (0.90-1.20)           | - 5.0 T 34m                               | Ma .J.A |       |

<sup>&</sup>quot;Values are presented as mean  $\pm$  S.D. and median with interquartile rangest lag sime in minutes; exidation rate in smool discuss/mg protein per min; dienes in amol/mg LDL protein. G, genfibrazil (n = 13): O, Orancor (n = 15); TBARS, thiobarbituric solid reactive substances (O; n = 10; G; n = 9). "Before' are values at week 0. 'After' are values at week 12. Data (%) is mean of the individual percentage change.

tions within each LDL subfraction profile [4,32]. In contrast, we now report that Omacor treatment is associated with a more buoyant LDL subfraction profile and an enhanced susceptibility to oxidation of total LDL. Since the ratio total PUPA per vitamin E in LDL decreased after Omacor, we may assume that the increased u-3 FA content most likely caused the increased susceptibility to oxidation, as the degree of unsaturation of fatty acids is one of the main determinants of the susceptibility of the lipoproteins to oxidation.

After genfibrozil treatment the lag time and THARS concentration did not change significantly. To our knowledge only three reports have previously published the effect of fibrates on LDL exidizability in humans [4,17,24]. In primary hypermiglyceridentic subjects, clofibrate treatment reduced the susceptibility of LDL to oxidation, as measured by a significant increase in lagtime in isolated LDL subfractions after therapy [4]. In subjects with familial combined hyperlipidemia gemfibrozil also tended to increase the resistence of total LDL to oxidation, as the lag time increased after therapy, although not reaching statistical significance [17]. In patients with hyperlipidemia type IIA and IIB, bezafibrate reduced the propensity of LDL to undergo lipid peroxidation in vitro [24]. The mechanism by which fibrates exhibit untioxidant potential is still unknown. One study reports that the p-hydroxy-metabolite I is involved through free radical scavenger activity [45]. Our present data show only little effect on LDL oxidizability after gernfibrozil treatment, less than expected on the basis of the more buoyant LDL subfraction profile induced by gemfibrozil. A possible explanation is that LDL oxidizability is determined in total LDL, which is the addition of maximal five LDL subfractions, so small changes might remain undercored.

The rate of LDL oxidation did not change in either group. The maximal amount of dienes formed per milligram of LDL protein during oxidation of LDL was significantly increased after Omacor therapy. This could be attributed to the increased number of oxidizable groups (= double bands) in LDL due to Omacor supplementation. Indeed, a significant correlation between the PUFA content and diene production was found in the Omacor group (r=0.61. P<0.01).

# 5. Conclusion

Gemfibrozil and Omacor have anti-atherogenic properties, as both therapies reduce the atherogenic potential of the lipoproteins by decreasing the concentration of cholesterol-enriched VLDL and increasing HDL concentration. Although total plasma LDL cholesterol concentration increases, the atherogenic potential of LDL seems to be less, as judged by the presence of a more buoyant LDL subfraction profile. In contrast to genfibrozil. Omacor increased the susceptibility of LDL to oxidation in vitro. Although this could be unfavorable, it does not necessarily mean that n-3 FA are atherogenic in vivo. In animal studies, the incorporation of n-3 FA into LDL particles tend ted them more susceptible to oxidation in vitro, but no increase

P-value for the within treatment group Wilcoton signed marks use (before we after) on absolute values.

<sup>&</sup>quot;P-value for the between meanment groups Mann-Whitney U-met (gentlibrozil vs Omacor).

in atherosclerotic lesion development [46] or even an anti-atherogenic effect [47] in vivo was found. These findings might be explained by the presence in vivo of antioxidant mechanisms that can attenuate the increased potential of n-3 FA in LDL to undergo oxidedve modification. Furthermore, n-3 PAs an: reported to have a wide range of biological effects that may be related to protection against atherogenesis, i.e. reduction of platelet aggregation and vasoconstriction [48-52] and antiarrhythmic effects [53]. These mechanisms can to some degree offset the potential unfavorable effect of n-3 FA incorporation into LDL. Alternatively, supplementation of n-3 FA with anti-oxidants may help prevent the susceptibility of LDL to peroxidative modification.

# Acknowledgements

This work was supported by a grant from Propova Biocare AS, Oslo, Norway. The authors suiknowledge Dr K. Osmundsen (Pronova Biocare) for providing the Omacor and corn oil capsules. The authors also wish to thank Janine M. Vogelaar and Magda Hectors of the Lipid Research Laboratory, University Hospital Nijmegen, for expert technical assistance.

## References

- [1] Castelli WP. The triglyocride issue: A view from Framingham. Am Heart J 1986;112:432-7.
- Kleinman Y, Eisenberg S, Oschry Y, Gavish D. Stein O. Stein Y. Defective metabolism of hypermigly-endemic low density lipoprotein in cultured human skin fibroblests. I Clin lavest 1985:75:1796- 803.
- [3] Kleinman Y. Oschry Y. Einenberg S. Abnormal regulation of LDL receptor activity and abnormal cellular metabolism of hyperinglyceridaemic low density lipoprotein: normalization with bezafibrate. Eur J Clin Invest 1987,17:538-43.
- [4] de Greaf J. Hendriks JCM, Demacker PNM, Stalenboef AFH. Identification of multiple dense LDL subfractions with enhanced succeptibility to in vitro oxidation among hypertrigly-ridentic subjects. Nonnelization after clofibrate treatmost Artesioseter Thromb 1993;13:712-9.
- [5] Eisenberg S. Gavish D. Oschry Y. Fainaru M., Deckelbaum RJ. Abnormalities in very low, low and high density lipoproteins in hyperinglycenidenia. Reversal toward normal with bezafibrate treatment, J Clin Tovest 1984;74:470-82.
- 6 Swinkels DW, Demacker PNM, Hendriks JCM, van't Laar A. Low density lipoprotein subfractions and relationship to other risk factors for coronary artery disease in healthy individuals. Artemosterosis 1989;9:604-13.
- Austin MA, Breslow JL, Hennekens CH, Buring JE, Willest WC, Krauss R.M. Low density lipoprotein subclass patterns and risk of myocardial infarction. J Am Med Assoc 1988;260:1917-21.
- [15] Compos H. Genest II, Ir. Billiovens E. McNamera JR, Jenner IL, Ordaves IM, et al. Low density lipoprotein particle size and company heart disease. Arterioscler Through 1992;12:187-95. [9] Steinberg D. Parthauarathy S. Canew TE, Khon IC, Wiezum IL.

  Beyond obolesteral. Modifications of low-density lipoprotein Boyand shaloraral Modifications of low-dentity lipoprotein

- that increase its atherogenicity. Now Engl J Med 1989;120:915-24.
- [10] Harris WS. N-3 fatty acids and acrum lipoproteins; burnan studies. Am J Clin Nur 1997;65(suppl):1645-54.
- [11] Herris WS. Dictary fish oil and blood lipids. Curr Opin Lipidal 1996:7:3-7.
- [12] Grundy SM, Vega GL Fibric acids: effects on lipids and lipoprocess metabolism. Am J Med 1987:83:9~20.
  - Shepherd J. Mechanism of action of fibraics. Pestgrad Med J 1993;69(mippi 1):34-41.
  - [14] Suzukawa M. Abbey M. Howe PRC, Neucl PJ. Effects of fish oil farty scids on low density lipoprotein size, oxidizability and uptaka by macrophages. I Lipid Res 1995;36:473-84.
  - [15] Compaces C. Barter PJ. Sullivan DR. Effect of pravents in and w-3 fatty seids on plasma lipids and lipoproteins in patients with combined hyperlipidemia Americacler Thromb 1993;13:1755-
  - [16] Nenteter MS, Russon AC, Lund-Katz S, Soyland E, Maslandsmo G, Philips MC, et al. Effect of dietary supplementation with a-3 polymenturered ferry saids on physical properties and untabolism of low density lipoprotein in humans. Arterioscler Thromb 1992;12:369-79.
  - [17] Bredie SJFL de Bruin TWA, Demacker FNM, Kastelein JJP, Smichoof AFH. Computing of gentileraril versus simussiatin in familial combined byportipidemia and effects on apolipioprotein-B-containing lipoproteins, low-density lipoprotein subfraction profile and low density tipoprotein oxidizability. Am J Cardiol 1995:75:348-53.
  - [18] Hau M.F. Smelt AHM, Bindols AIGH, Sijbrands EIC, van der Learne A. Onlembout W. et al. Effects of find oil on exidation resistance of VLDL in hypertrighyceridentic patients. Arterioscler Thromb Vasc Biol 1996;16:1197-202.
  - [19] Lussier-Cacan S. Dubrauil-Quidoz S, Roaderer G, Lebocu! N. Boulet L, de Langavant GC, et al. Influence of probuso) on enhanced LDL oxidation after fish oil treatment of hypertriglyscridenic patients. Arterioscier Thromb 1993;134:1790-7.
  - [20] Harsts D. Dubech Y. Hollander G. Rep-Nahn M. Schwartz R. Berry EM, et al. Fish oil ingestion in amokers and non-smokers cubsoms peroxidation of plasma lipoproteins. Atheroscierosis 1991:90:127-39.
  - [21] Brude IR, Drevon CA, Hjermann I, Schiefer I, Lund-Katz S, Search K et al Peroxidation of LDL from combined-hyperlipidemis male amokers supplied with omoge-3 fatty acids and antioxidasis. Arterioscior Thromb Vaic Biol 1997;17:2576-88.
  - [22] Frankel EN, Purks EJ, Schnosman BO, Davis PA, German JS. Effect of n-3 fatty acid-rich fish oil supplementation on the oxidation of low density lipoproteins. Lipids 1994:29:233--6.
  - [23] Nensclet MS. Drevon CA. Distary polyunsaturates and peroxidation of low density lipoprotein. Curt Opin Lipidol 1996;7:8-
  - 13. [24] Hollman R. Brook GJ, Aviram M. Hypolipidemic drugs reduce lipoprotein susceptibility to undergo lipid permidation: in vitro and at vivo studies. Atheroselerosis 1992:93:105-13.
  - [25] Demacker PNM, Hessels M. Tocahaake Dijkstra H., Baadenbuys H. Precipitation methods for high-density lipoprotein cholesterol pressurement compared, and final evaluation under routine operating conditions of a method with a low sample-toreagent ratio. Clin Chem 1997:43:663-8,
  - [26] Weidman SW, Suarez B, Falko IM, Witzum II., Kalar J, Ruben M, et al. Type III hyperlipoproteinemia: development of a VLDL and gel isoclectric focusing technique and application in family studies. J Lab Clin Med 1979:93:549-69.
  - 27] Swinkels DW, Hak-Lemmers HLM, Domacker PNM, Single spin density gradient whracountrygation routhed for the descetion and isolation of light and heavy low density lipoprotein subfractions. J Lipid Res 1987;28:1293-9.

### A.P.H. Stalenhoef et al. / Atheroscierosis 183 (2000) 129-138

- 251 Bredie S.H. Klemeney LA. de Flam AFI. Demacker PNM. Statenhoof AFH. Inherited assesptibility determines the distribution of dense low density lipoproprin suppression profiles in familial combined byperlipidemia. Am J Hum Genet 1996;58:812-22.
- 1291 de Graaf I, Swinkels DW, de Haan AFI, Demander FNM. Stalenhoof AFH. Both inherited susceptibility and caviroustal exposure determine the low density lipoprotoin subfraction pattern distribution in healthy Durch families. Are J Hum Genet 1992-51:1295-310.
- [30] Lowry OH, Roschrough NJ, Farr AL, Randall RJ. Protein measurement with the Folia phenol reagent. I Biol Chem 1951:193:265-75.
- [31] Esterbauer H. Striegl G. Publ H. Rotheneder M. Continuous monitoring of in vitro exidation of aurust law density tipoprotein. Free Rad Res Commun 1989:6:67--75.
- [32] Kleinveld HA, Hak-Lemmers HL, Stalenhoof APH, Demacker PNM. Improved measurement of low-density-hipoprotein suscepsibility to copper-induced azidazion; application of a thore procedure for isolating low-density lipoprotein. Clin Chem 1992-38:2066-72
- [33] do Graaf J. Hak-Lemmers HLM, Hesture MPC, Demarker PNM, Hendriks ICM, Stalenhoof AFII. Enhanced susceptibility to in vitro aridation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb 1991;11:298-305
- [34] Conti M. Morand PC, Levilleia P. Longunier A. Improved Succionage determination of malonalichyde. Clin Chem 1991;37:1273~5.
- [35] Lehmann J. Martin HL. Improved direct determination of alpha- and garoura-tocopherols in plasma and platelets by liquid chrometography, with fluorescence detection. Clin Chem. 1982;28:1784 .. 7.
- [36] Harris WS. Windoor SL, Coopernature II. Madification of lipidrelated atherotelerosis risk factors by emega-3 fatty unid stbyl esters in hypertriglyceridensic patients. J Nutr Blochem 1993/4/706-14.
- [37] Schoozium K. Martin G, Stacis B. Auwerz J. Perozitome prolifcrator-activated receptors: orphans with ligands and functions. Our Opin Lipidal 1997:8:150-66.
- [38] Auwerz J. Schoonjans K. Pruchart JC, Stants B. Transcriptional coatrol of triglyceride metabolism: fibrates change the expression of the LPI- and spocial gross by scrivating the nuclear receptor PPAR. Atheroscicrosis 1996;124(suppl):29-37.
- [39] Schoonjans K. Staels B. Aurers J. Role of the peroxisome proliferator activated receptor (PPAR) in mediating effect of

- fibrates and fatty acids on some expression. J Lipid Res 1996;37:907-25.
- [40] Griffin BA. Packard CJ. Micraballism of VLDL and LDL subclasses. Curr Opin Lipidal 1994:5:200-6.
- [41] Duckelbaum RJ, Granot E, Oschry Y, Rose L, Eisenberg & Plasma triglycation dominings arrivation-composition in low and high density lipographies. Arterioscierosis 1984:4:225-31.
- [42] Parthasarathy S, Khoo JC, Miller E. Burnett J, Witzum JL Sichberg D. Low density lipoprotein rich in oldic acid is protermi against oridative modification: implications for distant prevention of atherosclerosis. Proc Natl Acad Sci USA 1990;87:3894-8.
- [41] Reseas PD. Green RJ. Tribble DL. Effects of linearistic corrected and okato-cariched diets in combination with alpha-tecopherel on the succeptibility of LDL and LDL subtractions to oxidative modification in humans. Arterioscler Thromb 1994:14:557-66.
- [44] Reaven P. Parthasarathy S. Grasse BJ, Miller E. Steinberg D. Within IL. Effects of elements and Unobstation diets on the susceptibility of low density lipoprotein to exidative modification in talkiy hypercholesterolemic subjects. J Clin Invest 1993;91:668-76.
- [45] Aviram M. Roscoblat M. Bisgoler CL. Newton RS. Alorvastatio and gentilbroad metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosciorosis 1998:138:271~80.
- [46] Whitman SC, Fish JR, Rand ML, Rogers KA. N-3 fany acid incorporation into LDL particles residers them more susceptible to estidation in vitro but not nomedify more atherogenic in vivo. Arterioscler Thromb 1994;14:1170-6.
- [47] Barbeau ML, Klomp KF, Guyton JR, Rogers KA. Dictary 163 all-influence on lexicu regression in the parcine model of atheresclerosis. Arterioscler Thromb Vasc Biol 1997;17:688-94.
- [48] Leaf A, Weber PC. Cardiovascular officers of b-3 farry acids. New Engl J Med 1988;318:549-57.
- [49] Goodnight SG, Jr. Effects of dietary fish oil and onega-3 fatty acids on placelets and blood vessels. Stocks Thromb Hemon 1988:14:295\_0.
- [50] Harmakerk JWM, Vossen RCRM, van Dam-Micras MCR. Polyunsaturated fatty scids and function of plateiers and co-Sorbelial cells, Our Opin Lipidal 1996;7:24-9.
- [SI] Mutanon M. From R. Polymenturated fatty acids and platele aggregation. Curt Opin Lipidal 1996;7:14-9.
- [52] Stone NJ. Fish consumption, fish oil, lipids and commany bean disease. Circulation 1996;94:2337-40.
- (53) Kang JX, Loaf A. Antismbythmic offices of polymenturated letty saids. Circulation 1096;94:1774-80,