Universidad de San Carlos de Guatemala

Facultad de Ingeniería

Escuela de Ciencias y Sistemas

Organización Computacional Sección C

Ing. Fernando Paz

Práctica 1 Visualizador de 7 Segmentos Lógica Combinacional

Grupo #13

Carné	Nombre
8318054	Hugo Estuardo Rosal Del Cid
202105095	Hamilton Hermelindo Bethancourt Zapeta
202247844	Josué Samuel de la Cruz Medina

Introducción

En esta práctica, nuestro objetivo era armar un visualizador de 7 segmentos que mostrara una palabra de 8 letras/números, pero, también que se pudiera leer normal y al revés (como espejo). Básicamente, se simuló y armó un letrero en el cual dependiendo de las entradas que tuviera, cambiaria de letra.

La idea era aplicar lo que vimos en clase sobre lógica combinacional, simplificar funciones con mapas de Karnaugh y armar circuitos con compuertas transistorizadas y TTL. Además, tuvimos que simular todo en Proteus antes de hacer el montaje físico en protoboard y placas PCB. Al final, esto nos ayudó a entender mejor cómo funcionan los circuitos digitales en la vida real y no solo en teoría.

Objetivos

General

Desarrollar un sistema físico funcional que permita simular un visualizador de 7 segmentos bidireccional (normal y espejo), aplicando los conceptos de lógica combinacional, electrónica digital y diseño de circuitos.

Específicos

- Implementar funciones booleanas simplificadas mediante mapas de Karnaugh para el control de cada segmento del display.
- Diseñar compuertas lógicas transistorizadas para los segmentos seleccionados, integrando además compuertas TTL para el resto del sistema.
- Ensamblar físicamente los circuitos utilizando placas y protoboard, considerando tanto lógica positiva como lógica negativa.
- Validar la funcionalidad del prototipo con simulaciones en Proteus y pruebas reales en laboratorio.

Contenido

Tabla de verdad Mintérminos

Minterminos (Normal)

	x	у	z	Α	В	С	D	E	F	G	Punto
T	0	0	0	0	0	0	0	1	1	1	0
Α	0	0	1	1	1	1	1	1	0	1	0
U	0	1	0	0	1	1	1	1	1	0	0
R	0	1	1	0	0	0	0	1	0	1	0
0	1	0	0	0	0	1	1	1	0	1	0
1	1	0	1	0	1	1	0	0	0	0	1
2	1	1	0	1	1	0	1	1	0	1	1
3	1	1	1	1	1	1	1	0	0	1	1

Maxtérminos (Espejo)

	Х	Υ	Z	Α	В	С	D	E	F	G	Punto
T	0	0	0	<u>0</u>	1	1	0	0	0	1	0
Α	0	0	1	<u>1</u>	0	1	1	1	1	1	0
U	0	1	0	<u>0</u>	1	1	1	1	1	0	0
R	0	1	1	<u>0</u>	0	1	0	0	0	1	0
0	1	0	0	<u>0</u>	0	1	1	1	0	1	0
1	1	0	1	<u>0</u>	0	0	0	1	1	0	1
2	1	1	0	<u>1</u>	0	1	1	0	1	1	1
3	1	1	1	1	0	0	1	1	1	1	1

Funciones Booleanas

Frontal

Segmento A: x'y'z + xy

Segmento B: y'z+xy+yz'

Segmento C: y'z +xy'+xz +x'yz'

Segmento D: yz' + xz' + xy + x'y'z

○ Segmento E: x' + z'

o Segmento F: x'z'

Segmento G: y'z' + x'z + xy

Segmento Punto Decimal: x(z+y)

Espejo

 \circ Segmento A: (y+z)(x+y')(x'+y)

Segmento B: (z')(x')

Segmento C: (x'+z')

 \circ Segmento D: (x+y+z)(x+y'+z')(x'+y+z')

 \circ Segmento E: (x+y+z)(x+y'+z')(x'+y'+z)

Segmento F: (x+y'+z')(y+z)

Segmento G: (x+y'+z)(x'+y+z')

Segmento Punto Decimal: (y+z)(x)

Mapas de Karnaugh

Frontal

Segmento A					
x\yz	00	01	11	10	
0	0	1	0	0	
1	0	0	1	1	
Segmento B					
x\yz	00	01	11	10	
0	0	1	0	1	
1	0	1	1	1	
Segmento C					
x\yz	00	01	11	10	
0	0	1	0	1	
1	1	1	1	0	
Segmento D	00	01	11	10	
x\yz 0	0	_		_	
1	1	0	0	1 1	
Segmento E		01	11	10	
x\yz	00	01	11	10	
0	1	1	1	1	
1	1	0	0	1	
Segmento F					
x\yz	00	01	11	10	
0	1	0	0	1	
1	0	0	0	0	
Segmento G	;				
x\yz	00	01	11	10	
0	1	1	1	0	
1	1	0	1	1	
Punto					
x\yz	00	01	11	10	
0	0	0	0	0	
•	· ·	U	v	v	

0

Segmento A	y+z	y+z`	y`+z`	y`+z
x\yz	00	01	11	10
0	0	1	0	0
1	1 0		1	1
Segmento B	y+z	y+z`	y`+z`	y`+z
x\yz	x\yz 00		11	10
0	1	0	0	1
1	0	0	0	0
Segmento C	y+z	y+z`	y`+z`	y`+z
x\yz	00	01	11	10
0	1	1	1	1
1	1	0	0	1
Segmento D	y+z	y+z`	y`+z`	y`+z
x\yz	00	01	11	10
0	0	1	0	1
1	1	0	1	1
Segmento E	v+7	y+z`	y`+z`	y`+z
x\yz	00	01	11	10
0	0	1	0	1
1	1	1	1	0
_	-	-		J
Segmento F	V+Z	y+z`	y`+z`	y`+z
x\yz	00	01	11	10
0	0	1	0	1
1	0	1	1	1
Segmento G	V+Z	v+z`	v`+z`	v`+z
x\yz	00	01	11	10
ó	1	1	1	0
1	1	0	1	1
			-	
Punto	y+z	y+z`	y`+z`	y`+z
x\yz	00	01	11	10
Ó				
0	0	0	0	0
1	0	0 1	1	1

Diagramas

Listado y Descripción del equipo utilizado

No.	Nombre	Descripción
1	Protoboard	Es una base de construcción utilizada para construir
		prototipos semipermanentes de circuitos electrónicos.
2	Jumpers	Conector utilizado para establecer o interrumpir una
		conexión eléctrica en un circuito, generalmente en hardware
		de computadora o electrónica.
3	Resistencias	Es un componente que limita o regula el flujo de corriente
		eléctrica en un circuito.
4	Leds	Componente electrónico semiconductor que emite luz
		cuando una corriente eléctrica lo atraviesa.
5	Compuertas	Dispositivos electrónicos que implementan funciones
	Lógicas	booleanas básicas y son fundamentales en la construcción
		de circuitos digitales.
6	DipSwitch	Conjunto de pequeños interruptores individuales integrados
		en un solo paquete, diseñado para ser montado en placas
		de circuito impreso.
7	Placas de	Son la base de los <u>PCB</u> , donde forman las pistas
	Cobre	conductoras que conectan los componentes electrónicos.
8	Alimentador	Es un módulo que provee una fuente de voltaje estable para
		alimentar circuitos electrónicos construidos sobre una
		protoboard.

9	Cloruro Férrico	Es una solución química utilizada en la fabricación de
		placas de circuito impreso (PCB) para grabar el cobre y crear
		las pistas conductoras.

Presupuesto

	Unidades	Precio	Sub-Total
Transistores	70	1	70
Resistencias	110	0.5	55
Leds	10	1	10
Jumpers	80	0.5	40
Protoboard	3	34	102
Comp. AND	6	5	30
Comp. NOT	6	5	30
Comp. OR	6	5	30
fusibles	0	0	0
Switch 3	1	4	4
Cloruro	1	9.5	9.5
Alimentador	1	20	20
Placas Cu (7x10)	4	9	36
MiniProto	1	9.01	9.01
Placas Cu (15x10)	3	20	60
	505.51		

Aporte Individual de Cada Integrante

Hugo Estuardo Rosal Del Cid

- Tablas de verdad
- Mapas de Karnaugh
- Aporte económico

Hamilton Hermelindo Bethancourt Zapeta

- Placas PCB.
- Mapas de Karnaugh
- Simulación maxtérminos.
- Armazón del circuito
- Aporte económico

Josué Samuel de la Cruz Medina

- Tablas de verdad
- Simulación mintérminos
- Mapas de Karnaugh
- Armazón del circuito
- Aporte económico

Conclusión

Al final del proyecto, logramos que los displays mostraran la palabra correctamente, tanto en modo normal como en espejo. Se aprendió desde como armar compuertas lógicas utilizando transistores y compuertas ttl y armándolos protoboard hasta soldar componentes teniendo cuidado de no quemarse los dedos. También nos dimos cuenta de que la simulación en Proteus es clave para evitar errores antes de armar el circuito físico.

Lo más interesante fue que como es que funcionan las compuertas lógicas, ya sea hechas con transistores o con compuertas ttl.

Anexos

PCB

Segmento F

Segmento G

Segmento A

Circuito en Proteus

