Quad versus Tibialis

Adam Struck

February 25, 2015

Contents

```
2
  All events dyes regulated in either quad or tibialis (DM vs Control) . . . . . . . . . . . . . . . .
     Events dyes regulated in either quad or tibialis (DM vs Control) that are also differentially
          3
     Linear model residuals [DM Tibialis deltapsi ~ DM Quad deltapsi] plotted against healthy
          5
  Gene ontology term enrichment for dysregulated events in quad OR tibialis (DM vs Control) AND
     6
  7
library(knitr)
library(ggplot2)
library(topGO)
library(org.Hs.eg.db)
library(dplyr)
library(tidyr)
library(data.table)
library(foreach)
library(stringr)
library(Rgraphviz)
opts_chunk$set(background='gray80', echo = TRUE, tidy=TRUE,
           warning = FALSE, cache=FALSE, comment='', dpi=72)
find.dm.events <- function(DT) {</pre>
   if ("gene_symbol" %in% colnames(DT)) {
     DT %>% filter(abs(delta_psi_mean) >= 0.05, Control_n/max(Control_n,
         na.rm = TRUE) >= 0.75, DM1_n/max(DM1_n, na.rm = TRUE) >= 0.75, DM1_n.sig/DM1_n >=
         0.25) %>% select(gene_symbol, event_name, isoforms, Control_psi_mean,
         Control_psi_sd, Control_n, DM1_psi_mean, DM1_psi_sd, DM1_n, delta_psi_mean,
        DM1 n sig) %>% arrange(desc(abs(delta_psi_mean)))
  } else {
     DT %>% filter(abs(delta_psi_mean) >= 0.05, Control_n/max(Control_n,
         na.rm = TRUE) >= 0.75, DM1_n/max(DM1_n, na.rm = TRUE) >= 0.75, DM1_n_sig/DM1_n >=
         0.25) %>% select(event_name, isoforms, Control_psi_mean, Control_psi_sd,
         Control_n, DM1_psi_mean, DM1_psi_sd, DM1_n, delta_psi_mean, DM1_n_sig) %>%
         arrange(desc(abs(delta psi mean)))
  }
```

Identify mis-regulated nonUTRevents

```
event_type <- "nonUTRevents.multi"</pre>
## Load healthy quadricep versus tibialis results
allControls res <- tbl dt(fread(paste("~/Projects/DMseq/results/allControls/allControls",
    event_type, "results.txt", sep = "_")))
allControls res <- allControls res %>% mutate(delta psi = Quad psi mean - Tibialis psi mean)
## filter to identify events with differnet splicing patterns between the
## tissues
quad_vs_tibialis <- allControls_res %>% select(gene_symbol, event_name, Quad_psi_mean,
   Quad_n, Tibialis_psi_mean, Tibialis_n, Quad_vs_Tibialis_n_sig, isoforms,
    delta_psi) %>% filter(Quad_n/max(Quad_n, na.rm = TRUE) >= 0.75, Tibialis_n/max(Tibialis_n,
   na.rm = TRUE) >= 0.75, abs(delta_psi) >= 0.05, Quad_vs_Tibialis_n_sig/Quad_n >=
    0.25) %>% arrange(desc(Quad_vs_Tibialis_n_sig))
## Load tibialis & quadricep DM_vs_Control results
tibialis_pdata <- tbl_dt(fread("~/Projects/DMseq/data/DM_tibialis_pdata.txt"))</pre>
tibialis_res <- tbl_dt(fread(paste("~/Projects/DMseq/results/tibialis/tibialis",
    event_type, "results.txt", sep = "_")))
tibialis_res <- tibialis_res %>% mutate(frac_sig = DM1_n_sig/DM1_n)
quadricep_pdata <- tbl_dt(fread("~/Projects/DMseq/data/DM_quadricep_pdata.txt"))</pre>
quadricep res <- tbl dt(fread(paste("~/Projects/DMseq/results/quadricep/quadricep",
    event_type, "results.txt", sep = "_")))
quadricep_res <- quadricep_res %>% mutate(frac_sig = DM1_n_sig/DM1_n)
## Filter to identify events mis-regulated in DM1
dm tibialis <- find.dm.events(tibialis res)</pre>
dm_quadricep <- find.dm.events(quadricep_res)</pre>
```

Compare delta psi values

```
event_set <- intersect(union(dm_tibialis$isoforms, dm_quadricep$isoforms), quad_vs_tibialis$isoforms)

deltapsi_data <- Reduce(function(...) merge(..., by = "isoforms", all = TRUE),
    list(select(allControls_res, gene_symbol, event_name, isoforms, delta_psi) %>%
        filter(isoforms %in% event_set), select(tibialis_res, isoforms, delta_psi_mean) %>%
        filter(isoforms %in% event_set), select(quadricep_res, isoforms, delta_psi_mean) %>%
        filter(isoforms %in% event_set)))
setnames(deltapsi_data, c("isoforms", "gene_symbol", "event_name", "Quad_vs_Tibialis_deltapsi",
        "Tibialis", "Quad"))
```

Scatterplots of delta psi values

All events dyesregulated in either quad or tibialis (DM vs Control)

```
event_set <- union(dm_tibialis$isoforms, dm_quadricep$isoforms)
deltapsi_data <- Reduce(function(...) merge(..., by = "isoforms", all = TRUE),
    list(select(allControls_res, gene_symbol, event_name, isoforms, delta_psi) %>%
        filter(isoforms %in% event_set), select(tibialis_res, isoforms, delta_psi_mean) %>%
        filter(isoforms %in% event_set), select(quadricep_res, isoforms, delta_psi_mean) %>%
        filter(isoforms %in% event_set)))
setnames(deltapsi_data, c("isoforms", "gene_symbol", "event_name", "Quad_vs_Tibialis_deltapsi",
        "Tibialis", "Quad"))

ggplot(deltapsi_data, aes(x = Tibialis, y = Quad, colour = cut(deltapsi_data$Quad_vs_Tibialis_deltapsi,
        seq(-1, 1, 0.1))) + geom_point() + geom_abline(yintercept = 0, slope = 1,
        linetype = "longdash") + labs(y = "Quad_Delta_PSI \n DM_versus_Control",
        x = "Tibialis_Delta_PSI \n DM_versus_Control") + scale_color_discrete(name = "Quad_vs_Tibialis_deltapsi.")
```


Events dyesregulated in either quad or tibialis (DM vs Control) that are also differentially spliced between healthy quad and healthy tibialis

```
event_set <- intersect(union(dm_tibialis$isoforms, dm_quadricep$isoforms), quad_vs_tibialis$isoforms)
deltapsi_data <- Reduce(function(...) merge(..., by = "isoforms", all = TRUE),
    list(select(allControls_res, gene_symbol, event_name, isoforms, delta_psi) %>%
        filter(isoforms %in% event_set), select(tibialis_res, isoforms, delta_psi_mean) %>%
        filter(isoforms %in% event_set), select(quadricep_res, isoforms, delta_psi_mean) %>%
        filter(isoforms %in% event_set)))
setnames(deltapsi_data, c("isoforms", "gene_symbol", "event_name", "Quad_vs_Tibialis_deltapsi",
        "Tibialis", "Quad"))
```


 $\label{linear model residuals [DM_Tibialis_deltapsi $$\sim$ DM_Quad_deltapsi] plotted against healthy quad_vs_tibialis deltapsi$

```
fit <- lm(Tibialis ~ Quad, data = deltapsi_data)
cor.test(fit$residuals, deltapsi_data$Quad_vs_Tibialis_deltapsi)</pre>
```

Pearson's product-moment correlation

```
data: fit$residuals and deltapsi_data$Quad_vs_Tibialis_deltapsi
t = 9.4909, df = 284, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.3973429    0.5740249
sample estimates:
        cor
0.4907118</pre>
```

```
ggplot() + geom_point(aes(y = deltapsi_data$Quad_vs_Tibialis_deltapsi, x = fit$residuals)) +
labs(x = "Residuals \n lm(DM_Tibialis_deltapsi ~ DM_Quad_deltapsi)", y = "Delta PSI \n Quad versus"
```


Gene ontology term enrichment for dysregulated events in quad OR tibialis (DM vs Control) AND between controls (Quad vs Tib)

```
all_muscle_genes <- filter(allControls_res, Quad_n/max(Quad_n, na.rm = TRUE) >=
    0.75, Tibialis_n/max(Tibialis_n, na.rm = TRUE) >= 0.75)$gene_symbol %>%
    unique()
## different in quad OR tibialis (DM vs Control) AND between controls (Quad
## vs Tib)
sig_genes <- intersect(union(dm_tibialis$gene_symbol, dm_quadricep$gene_symbol),</pre>
    quad_vs_tibialis$gene_symbol)
ontology class <- "BP"
myGO2genes <- AnnotationDbi::select(org.Hs.eg.db, keys = all_muscle_genes, columns = c("ENSEMBL",
    "GO"), keytype = "SYMBOL")
myGO2genes <- myGO2genes %>% filter(!is.na(ENSEMBL)) %>% tbl_df
myGO2genesList <- tapply(filter(myGO2genes, ONTOLOGY == ontology_class)$ENSEMBL,</pre>
    filter(myGO2genes, ONTOLOGY == ontology_class)$GO, FUN = c)
ensemblIDs <- myGO2genes$ENSEMBL[match(all_muscle_genes, myGO2genes$SYMBOL)]</pre>
geneList <- factor(as.integer(all_muscle_genes %in% sig_genes))</pre>
names(geneList) <- ensemblIDs</pre>
GOdata <- new("topGOdata", description = "GO analysis of genes with differential splicing",
```

```
ontology = ontology_class, allGenes = geneList, nodeSize = 5, annot = annFUN.GO2genes,
    GO2genes = myGO2genesList)

resultFisher <- runTest(GOdata, algorithm = "classic", statistic = "fisher")
resultFisher.elim <- runTest(GOdata, algorithm = "elim", statistic = "fisher")

allRes <- GenTable(GOdata, classicFisher = resultFisher, elimFisher = resultFisher.elim,
    orderBy = "elimFisher", ranksOf = "elimFisher", topNodes = 20)</pre>
```

head(sig_genes, n = 50)

[1]	"PDLIM3"	"ABLIM1"	"ARHGEF10L"
[4]	"MBNL1"	"MYBPC1"	"TACC2"
[7]	"NFIX"	"BEST3"	"MEF2C"
[10]	"SEMA6C"	"NUMA1"	"GOLGA4"
[13]	"PHKA1"	"BIN1"	"SORBS1"
[16]	"KIAA1191"	"TTN"	"UBE2D3"
[19]	"NDUFV3"	"RYR1"	"PPP1R12B"
[22]	"DTNA"	"HP1BP3"	"HDAC9"
[25]	"KIF1B"	"EI24"	"PREPL"
[28]	"WNK1"	"CALU"	"NEB"
[31]	"ITGA7"	"HFE2"	"YBX3"
[34]	"SCARB1"	"ATP6V1G2-DDX39B"	"PQBP1"
[37]	"CORO6"	"SPEG"	"TOR1AIP1"
[40]	"PI4KB"	"IMMT"	"UGP2"
[43]	"DCAF6"	"ANKRD10"	"RPS3"
[46]	"CELF1"	"EIF4A1"	"TMEM159"
[49]	"RPS3A"	"IDH3A"	

Ontology term enrichment results

kable(allRes)

GO.ID	Term	Annotated	Significant	Expected	${\it classic} Fisher$	elimFish
GO:0030049	muscle filament sliding	17	6	1.05	0.00036	0.00036
GO:0045927	positive regulation of growth	43	9	2.65	0.00100	0.00097
GO:0045214	sarcomere organization	14	5	0.86	0.00110	0.00107
GO:0007519	skeletal muscle tissue development	48	12	2.96	2.2e-05	0.00133
GO:0090257	regulation of muscle system process	54	10	3.33	0.00144	0.00139
GO:0045725	positive regulation of glycogen biosynth	5	3	0.31	0.00213	0.00210
GO:0043462	regulation of ATPase activity	16	5	0.99	0.00216	0.00211
GO:0048747	muscle fiber development	22	8	1.36	2.8e-05	0.00309
GO:0009409	response to cold	11	4	0.68	0.00334	0.00328
GO:0014888	striated muscle adaptation	11	4	0.68	0.00334	0.00328
GO:0048742	regulation of skeletal muscle fiber deve	11	4	0.68	0.00334	0.00328
GO:0006107	oxaloacetate metabolic process	6	3	0.37	0.00407	0.00402
GO:0010524	positive regulation of calcium ion trans	6	3	0.37	0.00407	0.00402
GO:2000114	regulation of establishment of cell pola	6	3	0.37	0.00407	0.00402
GO:0070296	sarcoplasmic reticulum calcium ion trans	19	5	1.17	0.00494	0.00483
GO:0043624	cellular protein complex disassembly	85	12	5.24	0.00546	0.00526

GO.ID	Term	Annotated	Significant	Expected	${\it classicFisher}$	elimFish
GO:0043484	regulation of RNA splicing	36	7	2.22	0.00564	0.00549
GO:0002181	cytoplasmic translation	7	3	0.43	0.00680	0.00671
GO:0003208	cardiac ventricle morphogenesis	7	3	0.43	0.00680	0.00671
GO:0043536	positive regulation of blood vessel endo	7	3	0.43	0.00680	0.00671

showSigOfNodes(GOdata, score(resultFisher.elim), firstSigNodes = 10, useInfo = "all")

\$dag

A graphNEL graph with directed edges

Number of Nodes = 226

Number of Edges = 488

\$complete.dag

[1] "A graph with 226 nodes."