AD NUMBER AD509420 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: CONFIDENTIAL LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JAN 1970. Other requests shall be referred to Air Force Rocket Propulsion Laboratory, Edwards AFB, CA 93523. This document contains exportcontrolled technical data.

AUTHORITY

31 Jan 1982, Group 4, DoDD 5200.10; AFRPL ltr dtd 5 Feb 1986

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AD 509 420

AUTHORITY: AFRPL 1+1. 5 Feb 86

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked.

Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Best Available Copy

CONFIDENTIAL (THIS PAGE UNCLASSIFIED)

21

AFRPL-TR-70-7

DEVELOPMENT OF A LOW COST CATALYST FOR HYDRAZINE (U)

DE 68420

FINAL REPORT

JANUARY 15, 1968 - NOVEMBER 15, 1969

by Martin Lieberman

William F. Taylor

Prepared under Contract No. F04611-68-C-0044 for

Air Force Rocket Propulsion Laboratory
Edwards Air Force Base
Edwards, California 93523

JUN 23 1970

Esso Report No. GR-7-DCH-70

This, forument contains information affecting the national februse of the Entited States within the meaning of the Espiroage Laws, Title 18, U.S.C., Sections 793 and 794, the transmission or revenience of which in any manner to any authorized person is prohibited by law.

In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPPR/STINFO) Edwards, California 93523

Group 4

Downgraded at 3 Year Intervals;
Declassified After 12 Years

Esso Research and Engineering Company
Government Research Division
Linden, New Jersey

JUL : 1 LO

CONFIDENTIAL (THIS PAGE UNCLASSIFIED)

AFRPL-TR-/U-/

DEVELOPMENT OF A **LOW-COST CATALYST FOR HYDRAZINE**

Ву

Martin Lieberman William F. Taylor

Final Report

January 15, 1968 - November 15, 1969

Contract No. F04611-68-C-0044

January 1970

For

Air Force Rocket Propulsion Laboratory Edwards Air Force Base Edwards, California 93523

GR-7-DCH-70

In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPPR/STINFO) Edwards, California 93523

UNCLASSIFIED

- i -

FOREWORD

- (U) This technical report was prepared for the Air Force Rocket Propulsion Laboratory, Research and Technology Division, Edwards Air Force Base, California by the Esso Research and Engineering Company, Government Research Laboratory, Linden, New Jersey in completion of Contract F04611-68-C-0044. Under this Contract, Esso Research has developed a thermally stable, non-strategically limited catalyst for the monopropellant decomposition of hydrazine fuel. This final report covers all the work conducted on the contract over the period January 15, 1968-November 15, 1969.
- (U) The Air Force Project Officer was Lt. D. Huxtable USAF/RPCL. The Esso Research Program Manager was Dr. M. S. Cohen from January 1968 to June 1969, with Dr. D. Grafstein assuming management after that date.
 - (U) This report has been assigned Esso Research No. GR-7-DCH-70.
- (U) This report contains classified (CONFIDENTIAL) information generated in the program.
 - (U) This technical report has been reviewed and is approved.

W. H. Ebelke, Colonel, USAF Chief, Propellant Division

AFRPL-TR-70-7

- ii -

TABLE OF CONTENTS

			rage
1.	SUMMA	RY	1
2.	INTROI	DUCTION	2
3.	LITERA	ATURE SURVEY	3
4.	EXPER	IMENTAL EQUIPMENT FOR CATALYST EVALUATION	7
	4.1.	Isothermal Rate Measurement Apparatus and Method	7
	4.2.	Five Pound Hydrazine Monopropellant Thruster	7
	4.3.	Laboratory Adiabatic Spontaneous Decomposition Test	8
5.	COBALT	BASED CATALYST STUDIES	11
	5.1.	Catalyst Preparation	11
	5.2.	Isothermal Rate Studies of Esso 101	11
	5.3.	Effect of Cobalt Concentration	12
	5.4.	Effect of Other Transition Metals	16
	5.5.	Effect of Catalyst Preparation Techniques	17
	5.6.	Screening of Other Non-Noble Metal Catalyst Material	18
6.	HYBRII	CATALYST STUDIES	20
	6.1.	Effect of Low Concentrations of Noble Metals	20
	6.2.	Effect of Higher Noble Metal Concentrations	21
	6.3.	Isothermal Rate Evaluation of Cobalt-Ruthenium Hybrid Catalysts	22
	6.4.	Five Pound Thruster Evaluation of Cobalt- Ruthenium Hybrid Catalysts	25

- iii 🖃

TABLE OF CONTENTS (Cont 'd)

			-
7.	RUTHE	NIUM BASED CATALYST STUDIES	28
	7.1.	Isothermal Rate Studies of Alumina Supported Ruthenium Catalysts	28
	7.2.	Five Pound Thruster Evaluation of Alumina Supported Ruthenium Catalysts	33
	7.3.	Performance of Tungsten Carbide Supported Ruthenium Catalysts	35
	7.4.	Performance of PTN Supported Ruthenium Catalysts	38
	7.5.	Performance of Refractory Oxide Supported Ruthenium Catalysts	44
	7.6.	Preparation and Performance of Magnesia Supported Ruthenium Catalysts	46
	7.7.	High Temperature Stability of Various Hydrazine Decomposition Catalysts and Substrates	49
8.	PROMO'	TED RUTHENIUM CATALYSTS - THE ESSO 500 SERIES	52
	8.1.	Characterization of Esso 500 Series Catalyst Properties	52
	8.2.	Performance of Esso 500 Series Catalysts in a Five Pound Thruster	53
	8.3.	Air Force Engine Firing Evaluation of Esso 500	54
	8.4.	High Stability of the Esso 500 Series Catalysts	54
9.	BIBLI	OGRAPHY	57
10.	APPEN	DIX	58
	A. F:	ive Pound Thrust Motor Firing Data	58
	B. Ca	atalyst Preparation Processes	81

- iv -

LIST OF FIGURES

Figure		Page
1	lsothermal Rate Study Apparatus	9
2	Laboratory Adiabatic Spontaneous Decomposition Test · · · · · · · · · · · · · · · · · · ·	10
3	Effect of Cobalt Concentration on Activity of $\operatorname{Co-Al}_2 \operatorname{O}_3$ Catalysts $\cdots \cdots \cdots$	13
4	Effect of Cobalt Concentration on Isothermal Activity	14
5	Effect of Cobalt Concentration on Surface Area of Catalyst	15
6	Isothermal Hydrazine Decomposition Rate on Hybrid Cobalt-Ruthenium Catalysts	24
7	Performance of Cobalt-Ruthenium-Hybrid Catalysts in 5 Lb. Thrust Engine	27
8	Isothermal Hydrazine Decomposition Rate on Ruthenium Catalysts	29
9	Isothermal Performance of Alumina Supported Ruthenium-Platinum Catalysts	31
10	Performance of Ruthenium Catalysts in 5 Lb. Thrust Engine	34
11	Isothermal Performance of Tungsten Carbide Supported Ruthenium Catalysts	
12	Isothermal Performance of PTN and MgO Supported Ruthenium Catalysts	40
13	Isothermal Performance of Scaled-Up Ruthenium-PTN Catalyst	42
14	Isothermal Performance of Refractory Oxide Supported Ruthenium Catalysts	
15	Surface Area Stability of Esso 500	5 ₀

- v -

LIST OF TABLES

1.1010		1.05
1	Materials Active for Hydrazine Decomposition	3
2	Low-Temperature Activity of Esso 101 Powder	11
3	Effect of Co-Precipitating Nickel and Iron with Cobalt	16
4	The Effect of Precipitation Procedure on the Surface Area of Co-Precipitated Cobalt-Alumina Catalysts	17
5	Screening of Potential Non-Noble Metal Catalyst Materials	19
ь	Isothermal Rate Measurements of Esso 101 Catalyst Powders Containing Small Quantities of Readily Reduced Transition Metals	20
7	Effect of Readily Reduced Transition Metals on the Low Temperature Hydrazine Decomposition Activity of Cobalt-Alumina Catalysts	21
8	Ignition Delay of Palladium Cobalt Hybrid Catalyst	22
9	Isothermal Decomposition Rate of Cobalt-Ruthenium Hybrid Catalysts	23
10	Ignition Delay of Cobalt-Ruthenium Hybrid Catalysts	26
11	Isothermal Hydrazine Decomposition Rate on Ruthenium Catalysts	28
12	Isothermal Performance of Alumina Supported Ruthenium-Platinum Catalysts	32
13	Ignition Delay of Alumina Supported Ruthenium Catalysts in a 5 Lb. Thrust Engine	33
14	Isothermal Activity of Ruthenium-Tungsten Carbide Catalysts	37
15	Thermal Stability of Esso PTN Support	38

=vi -

LIST OF TABLES (Cont'd)

ran re		1.115
16	Isothermal Activity of PTN Supported Ruthenium Catalysts	39
17	Effect of Sinter Strengthening on Crush Strength of Ru-PTN Catalyst Pellets	43
18	Performance of Refractory Oxide Supported Ruthenium Catalysts	44
19	Effect of Process Conditions on the Surface Area of Resulting MgO Substrates	46
20	Performance of Magnesia Supported Ruthenium Catalysts	47
21	Effect of Phosphoric Acid Leaching on Magnesia Substrate Surface Area	48
22	Performance of Acid Leached Magnesia Supported Catalysts	49
13	High Temperature Stability of Hydrazine Decomposition Catalysts	51
24	High Temperature Stability of Hydrazine Decomposition Catalysts	51
25	Properties of Esso 500 Series Catalysts	52
26	Performance of Esso 500 Series Catalysts in a 5 Lb. Thrust Engine	53
27	Stability Characteristics of Esso 500 Series Catalysts	57

- 1 -

1. SUMMARY

- (C) An active, highly stable hydrazine monopropellant decomposition catalyst has been developed. This catalyst labeled Esso 500, utilizes ruthenium for its active component and thus does not contain any costly and strategically limited fridium metal. Laboratory and 5 pound thruster studies conducted at Esso Research and Engineering Company and 5 and 25 pound thruster studies conducted at the Air Force Rocket Propulsion Laboratory indicate that Esso 500 is highly active at low ignition temperatures and shows unusually high resistance to loss of surface area during motor firing. Data obtained at both laboratories actually indicated that Esso 500 showed no loss of surface area after up to 24 minutes of pulse mode firing with hydrazine.
- (U) A cobalt containing catalyst, called Esso 101, was also developed. This catalyst has much lower activity than Esso 500 for hydrazine decomposition at 5° C. Esso 101, however, is active at higher temperatures and can be employed where short ignition delays at low temperature is not required and where extremely low cost is a desired property.
- (U) Results of studies with various cobalt containing catalysts, cobalt-noble metal hybrid catalysts and ruthenium containing catalysts using several different substrate materials are also reported.

2. INTRODUCTION

- (U) The original objective of the work conducted under this contract was to develop a low cost, readily available, active catalyst for the decomposition of hydrazine. At the present time, an active, low temperature spontaneous catalyst does exist for the decomposition of hydrazine--Shell 405. However, Shell 405 derives its activity from the precious metal iridium which is very costly and limited in availability.
- (C) In the early stages of this program, we investigated several alumina supported cobalt and cobalt-noble metal hybrid catalysts as hydrazine decomposition catalysts. Though cobalt appeared to be a very active hydrazine decomposition catalyst at high temperatures, it was not capable of affecting spontaneous hydrazine ignition at 5°C. The use of about 10 wt. % of the metals platinum, palladium and ruthenium in hybrid combinations with cobalt improved the low temperature activity. However, decomposition rates were still not great enough to cause spontaneous ignition.
- (C) A more detailed study with the metal ruthenium indicated that a dramatic increase in hydrazine decomposition rate could be obtained if the ruthenium was deposited on an alumina substrate containing no cobalt. Subsequent work with ruthenium on alumina showed that properly prepared catalysts at the 30 wt. % ruthenium level had activity approaching that of Shell 405. Ruthenium appeared to offer distinct advantages over iridium as the active hydrazine decomposition catalyst. It is much more widely available and is about one third the cost of iridium. Additional studies with ruthenium based catalysts showed that active ruthenium catalysts with unusually high resistance to degradation in pulse mode hydrazine motor firing could be developed.
- (U) This report discusses results of these studies with cobalt catalysts, cobalt-noble metal hybrid catalysts, and finally with supported ruthenium catalysts.

- } -

3. LITERATURE SURVEY

3.1. Active Hydrazine Catalysts

(C) Work conducted by Shell Development Company for the National Aeronautics and Space Administration (Contract No. NAS7-97) indicated that the best possibility for obtaining high activity and stability, without a cost limitation lay in the platinum metals or their near neighbors in the periodic chart(1). Shell workers found that ruthenium, iridium and platinum were more active toward hydrazine decomposition than any other metal with the binary of ruthenium and iridium being the most active of all. Other metals and mixture of metals that were found to be active are listed in Table 1 in descending order of activity.

Table 1

(C) Materials Active for Hydrazine Decomposition (2,3)

Carbon Carrier	Alumina Carrier
Ru-Ir Ru-Pt Ir	Ru-Ir Ir Ru
Ru-Rh Ru-Pd	Ru-Pt
Ru-Pd Ru	Fe-Co-Ni-Rh
Ru-Os Ir-Os	
Pt-Ir	
Fe,Co,Ni	
Pt-Os	

- (C) Table I was compiled by Shell workers using liquid phase tests. Both carbon and alumina were used as supports for the various listed catalytic materials. Carbon is one of the most thermally stable materials known. It has a very high surface area and heat of wetting per gram of material. High surface area is advantageous in that it provides an extended support for catalytic promoters. A high heat of wetting helps to affect low temperature ignition. Untortunately, Shell scientists found that the carbon supports reacted with the hydrogen liberated in hydrazine decomposition to form methane at high temperatures. Alumina was found to be relatively stable at high temperatures and was thus taken to be a more acceptable support. Though alumina has a lower heat of wetting than carbon, it is available in many forms, is substantially inert at high temperatures, and is used as a catalyst support in many industrial processes. After considerable testing. Shell formed two catalyst formulations which were active at 1°C: A 28% wt. metal catalyst with a Ru/Ir ratio of .34 on Harshaw Al-1404 alumina pellets and a 30 wt. % Ir catalyst on Harshaw Al-1404 pellets. The latter formulation was found to be more stable and was later named "Shell 405". This catalyst has been tested by many companies and has compiled an impressive record of stability and long life. However, it is made from extremely costly iridium which is limited in availability.
- (C) Other efforts have been made to develop an active hydrazine monopropellent catalyst using more readily available and less expensive transition metals. P. C. Marx, at perospace Corporation, found that Girdler T-323 (silica gel treated w = 50% pre-reduced cobalt on a Kieselguhr support) was found capable of initiating decomposition of hydrazine at 33°C and restart at $53^{\circ}\text{C}(2)$. However, this catalyst had poor life characteristics, presumably, according to Marx, because of the difficulty in degassing the silica gel at low temperatures.
- (C) Hang and Ward found that the combustion of cobalt and copper on activated alumina showed the same catalytic behavior after a repeated number of tests ($\underline{3}$). Liengme and Tompkins at London Imperial College found that hydrazine could be decomposed on evaporated tungsten films at temperatures from -78 to $0^{\circ}\text{C}^{\left(\frac{4}{2}\right)}$. However, no rates were presented. Their efforts were aimed at examining the NH3/H2 ratio at different temperatures.
- (C) Extensive work by A. F. Grant at the Jet Propulsion Laboratory in the early 1950's produced a series of catalysts using metallic iron, nickel, and cobalt deposited on an alumina carrier $(\underline{5})$. They were active at high temperatures but were not capable of spontaneously decomposing hydrazine at room temperature. Some of these catalysts are readily available from the Harshaw Chemical Co. Cleveland, Ohio, e.g., nickel catalysts Ni-1600S and Ni-1601T.

3.2 Mechanism of Hydrazine Decomposition on Catalytic Surfaces

(C) Almost all of the hydrazine heterogeneous decomposition reaction mechanisms presented postulate an electron donor sequence whereby hydrazine donates electrons to vacancies or holes in the catalyst lattice. For example, Eberstein and Glassman postulate a nitrogen donor route which can account for hydrazine decomposition on platinum black at low temperatures and on silica at intermediate and high temperatures $(\underline{6},7)$. In this mechanism, hydrazine is chemisorbed on the catalyst by donating electrons from the nitrogen atoms to vacancies in the catalyst lattice (d-band for platinum). Hydrogen atoms then migrate to produce ammonia as well as N_2 and \mathbb{H}_2 . This is illustrated by the following schematic equation where M represents metal atoms and 0 metal d-band vacancies.

$$2N_2H_4 + 4M(0) \rightarrow 2HN-NH \rightarrow 2NH_3, 2M(0), 2M - NH$$
 (1)

$$2M - NH \longrightarrow N_2 + H_2$$

The overall reaction is thus

$$2N_2H_4 \longrightarrow 2NH_3 + N_2 + H_2 \tag{2}$$

This has been shown to be the mechanism for catalytic decomposition on platinum black on acid supports (8). But this reaction does not account for some experimental results obtained with Raney Nickel. Eberstein and Glassman found that the volume of gas obtained in the presence of Raney Nickel is always greater than that indicated by the above mechanism and more closely agrees with the following overall stoichiometric reaction;

$$3N_2H_4 \longrightarrow 2NH_3 + 2N_2 + 3H_2$$
 (3)

The additional hydrogen produced by the Raney Nickel at low temperatures is believed to be a result of a surface dehydrogenation of adsorbed hydrazine on the catalyst surface. However, the steps in the mechanism of surface dehydrogenation are presently not clear. Both hydrazine dissociative adsorption (reaction 2) and surface dehydrogenation (reaction 3) occur to some degree in heterogeneous catalyzed decompositions. The nature of the catalyst surface will determine which reaction predominates.

(U) Evidence of changes in the mechanism of the heterogeneous decomposition of hydrazine with very small changes in catalyst composition is found in the work of Voelter and Kuhm⁽⁹⁾. These workers studied the decomposition of gaseous hydrazine on nickel supported by doped MgO. The activation energy for hydrazine decomposition was observed to change from 12 Kcal/mole for Ga+3 to 16 Kcal/mole when Li⁺ was used as the dopant.

(C) Similarly, the Soviet scientist, V. M. Frovloy, found that the rate of decomposition of hydrazine on germanium depended on the concentration of antimony dopant in the germanium single crystals (10). Frovloy attributes ammonia formation in this study to a reaction mechanism analogous to (1), i.e.,

$$Ge + nH_2H_4 \rightarrow Ge \cdot nN_2H_4 \rightarrow nNH_3 \text{ (gas)} + (NH)_n \text{ (ads.)}$$

3.3 Heat, Mass Transfer and Catalyst Bed Design Considerations

(C) A detailed mathematical analysis of the steady-state and transient behavior of hydrazine reactors has been conducted by A. S. Keston at United Aircraft Research Laboratories (11). Keston's mathematical model contains a detailed description of the heat and mass transfer processes in the pores of the catalyst pellet. He considers both thermal and catalytic decomposition of reactants, along with simultaneous heat and mass transfer between the free gas phase and the gas within the pores of the catalyst pellets. The results of his steady-state analysis indicate that the steady-state axial temperature in the catalyst bed rises very sharply in the first inch of the bed after fuel injection to a level of about 2200°F and then slowly drops off down the length of the bed. The practical implication of this result is the possibility that a very thin active catalyst bed is required to ignite and sustain hydrazine decomposition. In fact, a long bed appears undesirable because it permits ammonia decomposition which causes the gradual temperature drop in the bulk of the catalyst bed. Experimental data obtained at Rocket Research Corporation agree closely with Keston's theoretical results on axial temperature and gas concentration profiles $(\underline{12})$.

(C) In accordance with these results, J. O. Drake conducted a study to determine whether a practical catalyst bed consisting of a thin layer of spontaneous catalyst (16.5 volume percent Shell 405) could be used in conjunction with a larger less expensive non-spontaneous catalyst (83.5 percent Harshaw HA-3) to produce a workable lower cost spontaneous catalytic system(13). Tests were run with a fuel containing 63 percent hydrazine, 27 percent water, and 10 percent hydrazine nitrate. The results of Drake's experiments were promising but inconclusive. Spontaneous ignition took place over a wide range of temperatures but not at the very cold -65°F level. Ignition delay times were high; approximately 0.1 sec. Apparently, a higher spontaneous catalyst loading is required for very low (-65°F) ignition. Further work in this area is required to develop the concept. The idea seems even more practical for a pure hydrazine propellant which operates above 3°C.

4. EXPERIMENTAL EQUIPMENT FOR CATALYST EVALUATION

(U) The basic information required to satisfactorily define the performance of a hydrazine decomposition catalyst includes the isothermal low-temperature activity and the apparent activation energy for the decomposition process. The latter is obtained by measurements of the catalytic activity at several temperature levels and the construction of an Arrhenius plot with this data. The slope of a plot of the log of the rate of decomposition vs. the reciprocal absolute temperature is taken as the apparent activation energy for a given catalyst-reactant system.

4.1 Isothermal Rate Measurement Apparatus and Method

(U) The method used to evaluate the isothermal rate of hydrazine decomposition consists of measuring the change in pressure of a calibrated constant volume container over a period of time during the decomposition reaction. This technique was previously used by the Shell Development Company and was shown to produce reliable results. The apparatus used to make the measurements is a replica of the one used by Shell scientists and is depicted in Figure 1. In a typical run, powdered catalyst material is placed in the 5 cm³ glass reactor which contains a Teflon coated magnetic stirrer. The entire apparatus is evacuated, gas collector vessel isolated, and the glass reactor filled several times with helium. A hypodermic needle is used to inject hydrazine into the glass reactor which has been previously chilled with dry ice. The reactor is deliberately kept very cold when the hydrazine is injected to guard against a sudden gas surge with an active catalyst. A temperature for study is chosen, the dry ice bath removed and replaced with a constant temperature bath mounted on a magnetic stirrer. A small charge of catalyst is used in the reactor so that isothermal conditions are approached by active stirring of the catalyst-hydrazine reaction slurry. As gas is formed in the reactor, it passes into the gas riser leg shown in Figure 1 and is discharged into the gas collection chamber. The decomposition is followed by observing the change in gas pressure in the collector vs. time. This technique has been found to yield substantially linear plots of gas formation vs. time for almost all runs. The rate of decomposition of hydrazine at a specific reactor temperature is taken as the slope of this line.

4.2 Five Pound Hydrazine Monopropellant Thruster

(U) Evaluation of a hydrazine decomposition catalyst in an actual monopropellant catalyst engine is required to completely characterize its start-up performance and life. Thus, a 5 lb. thruster was designed

- 8 -

and constructed for our catalyst evaluation. The basic unit consists of a 1°D x 3°L Type 304 S.S. catalyst chamber instrumented with 1/16° inconel sheathed chromel-alumel thermocouples and Teledyne pressure transducers. Ignition delay and fuel pulse duration is measured by a direct writing ocillograph with a frequency response of 5000 cps. Fuel is stored under nitrogen gas pressure and injected through a 80° cone fuel injector. Nitrogen gas automatically covers the catalyst bed when no fuel (hydrazine) is flowing. The test thruster is not designed for flight operation. Its purpose was to provide a system to measure the comparative performance of several catalysts in adiabatic engine operation.

4.3 Laboratory Adiabatic Spontaneous Decomposition Test

(U) A simple test aimed at simulating monopropellant engine ignition and thereby repeatedly subjecting catalyst pills to high temperatures was constructed and used in our laboratories. This test consisted of partially filling a glass tube with catalyst and charging the tube with cold hydrazine. Observations made during the test included the time required to start the reaction, the duration of the reaction, the physical condition of the catalyst pills after firing and the number of times the high temperature reaction could be sustained. The unit, depicted in Figure 2, provided a convenient and rapid means of determining catalyst relative activity and strength.

Figure 1
ISOTHERMAL RATE STUDY APPARATUS

- 9

Figure 2
Laboratory Adiabatic Spontaneous
Decomposition Test

5. COBALT BASED CATALYSTS - ESSO TOO SERTES

5.1 Catalyst Preparation

- (C) The Esso 101 catalyst consists of 60 wt. % cobalt metal and 40 wt. % Al₂O₃, both co-precipitated from aqueous solution. The co-precipitation technique offers a unique way of dispersing active metal cobalt crystallites in a matrix of alumina, thereby providing a means of preventing cobalt sintering and concomitant loss of active catalyst area. Details of the Esso 101 preparation process are given in Appendix B.
- (U) Binary metal compositions used in this study were obtained by introducing the required stoichiometric amount of iron and nickelous nitrate salts, respectively, before precipitation.
- (U) The hybrid catalyst metal variations discussed in the next section of this report are fabricated by means of impregnating the Esso 101 catalyst in the "as calcined" stage with noble metals, drying the impregnated catalyst and reducing the mixture as above.

5.2 <u>Isothermal Rate Studies of Esso 101</u>

(U) Isothermal decomposition rate measurements of hydrazine on the basic Esso 101 catalyst powder were made in our glass reactor. As can be seen in Table 2, these measurements indicated that Esso 101 had a much lower room temperature activity than Shell 405.

Table 2

Low-Temperature Activity of Esso 101 Powder		
Catalyst	Hydrazine Decom- position Rate at 23°C cm ³ (STP)/min-gm	Apparent* Activation Energy Kcals/Mole
Esso 101	75	23-28
Shell 405	2,200	17-22

^{*}The term "apparent activation energy" refers to the activation energy displayed by catalyst particles. It includes any effects due to mass transfer through the catalyst pores. The apparent activation energy is obtained by measuring the slope of a plot of hydrazine decomposition activity vs. the reciprocal of rihe absolute temperature.

- 12 -

(U) The activation energy, on the other hand, appeared to be somewhat higher than that reported by Shell scientists for Shell 405. Shell's scientists found in the course of their work, that a catalyst must have a minimum activity of 75 cm³/min-gm to be spontaneous. Thus, at low temperatures, Esso 101 would have too long an ignition delay time. Ignition delay measurements on Esso 101 in our 5 lb. thruster confirmed this prediction. Work was thus conducted to improve the low temperature activity of Esso 101. One approach tried at improving low-temperature activity was to increase the cobalt loading of the catalyst.

5.3. Effect of Cobalt Concentration

- (C) The basic composition of Esso 101 is 60 wt. 7 Co -46 wt. Al203. To determine whether a change in cobalt concentration would affect the catalytic activity, we prepared catalyst powders with 50 and 70 wt. % cobalt, respectively. These formulations were tested in the isothermal reactor at three different temperatures. The results, depicted in Figures 3 and 4, showed a definite effect of cobalt concentration. The 70 wt. % cobalt formulation was more active than the 60 wt. % formulation; the 50 wt. % formulation had significantly lower activity. Increasing the concentration to 80 and 90% gave further improvement in activity though the relative increase appears to level off at very high cobalt concentrations. Higher cobalt concentrations gave higher catalyst activity, dispite the fact that the total BET surface area was lower.
- (U) The apparent activation energy for catalyst hydrazine decomposition, on the other hand, was not altered. It, thus, appears that increasing the cobalt concentration in the catalyst formulation could result in some reduction in the low-temperature ignition delay but that this reduction would not be sufficient to yield a catalyst that affected spontaneous hydrazine decomposition at 0°C. Thus, other approaches were tried.

- 13 -

FIGURE 4

- 15 -

FIGURE 5

- 16 -

5.4 Effect of Other Transition Metals

(U) Altering the "d band" vacancy of a transition metal catalyst is another means of changing its catalytic activity. In another approach at improving the low-temperature activity of the basic Esso 101 formulation, we attempted to study the effect of introducing the metals, nickel and iron, into the Esso 101 formulation. Modifications containing coprecipitated nickel and iron, respectively, were screened in the laboratory isothermal reactor. The resulting activity of these catalysts are presented in Table 3.

Table 3

(C) Effect of Co-Precipitating Nickel and Iron with Cobalt

Catalyst Composition	Hydrazine Decomposition Rate at 23°C cm ³ (STP)/min-gm
60 wt. % Co-40 wt. % Al ₂ 0 ₃ (Esso 101)	80
40 wt. % Co-20 wt. % Ni	18
40 wt. % A1 ₂ 0 ₃	
40 wt. % Co-20 wt. % Fe	1
40 wt. % A1 ₂ 0 ₃	

(U) Both the nickel-cobalt and iron-cobalt formulations showed much lower isothermal low-temperature activity than the basic Esso 101 formulation. It is difficult to explain this severe loss in activity resulting from binary transition metal formulations. However, the negative results of the preliminary binary transition metal formulation studies did not justify any further effort on this approach with nickel and iron.

- 17 -

5.5 Ettect of Catalyst Preparation Technique

- (U) The basic Esso hydrazine decomposition catalyst consists of cobalt and alumina co-precipitated from aqueous solution. The catalyst was originally prepared by dissolution of the nitrate salts of cobalt and alumina followed by the co-precipitation of the oxides of these metals and subsequent reduction of the cobalt oxide to the metal. In the original preparation procedure, precipitation was affected by means of the slow addition of ammonium bicarbonate to a well stirred solution of the nitrate salts at 150°F. The von Weimarn theory of precipitation predicts that high surface area precipitates result from precipitation under conditions that yield a high degree of local supersaturation—rapid addition of precipitating agent, no stirring of solution, low temperature of solution. We attempted to utilize this theory to increase the surface area of the resulting precipitate and hopefully also improve the low temperature activity of the resulting catalyst.
- (C) Two variations in the precipitation procedure were tried:
 (a) the low temperature (0°C) addition of ammonium bicarbonate to a solution which was not stirred and (b) the addition of the cobalt and aluminum nitrate salts to a cold solution of ammonium bicarbonate, i.e., using a mixture of the nitrate salts as the precipiting agent. The results of this experiment are given in Table 4.

Table 4

Procedure	Surface Area
	m ² /gm
Conventional	61
Low Temperature	100
Low Temperature-Salt Precipitation	129

= 18

(C) Both modifications in the precipitation procedure resulted in increased catalyst surface area. Low temperature precipitation increased the surface area 64% and the low temperature, nitrate salt precipitation more than doubled the surface area when compared with the conventionally prepared catalyst. Unfortunately, the low temperature activity per gram of catalyst was not improved by these modifications in catalyst preparation procedure. This implies that the increase in surface area was mainly due to an increase in the alumina surface area, and not the cobalt. Substantial improvements in the heat of wetting, largely a function of the support surface area, would be expected for the higher surface area catalysts. However, it seemed unlikely that these improvements would substantially improve the low temperature activity of the finished catalysts. Thus, further pursuit of this approach was abandoned.

5.6 Screening of Non-Noble Metal Catalyst Materials

(C) Several non-noble metal and metal oxide catalysts were screened for low temperature hydrazine activity using our laboratory adiabatic screening test, i.e., by observing the presence of any gas evolution when cold hydrazine (2°C) was added to catalyst samples in a test tube reactor. We took advantage of the availability of a wide range of complex inorganic materials which were synthesized in the Esso laboratories for electronic and electrocatalytic applications. These materials included transition-metal phosphides, non-stoichiometric oxides and non-stoichiometric tungstates. The materials tested are presented in Table 5. None showed any sufficient level of activity to warrant further evaluation.

- 19 -

Table 5

(C) Screening of Potential Non-Noble Metal Catalyst Materials

<u>Material</u>	Hydrazine Decomposition Activity 2°C (1),(2)
Nickel Phosphide NiP	No Activity
Cobalt Phosphide Co ₂ P	No Activity
Titanium Phosphide Ti _X P	No Activity
Chromium Phosphide Cr ₂ P	No Activity
Manganese Phosphide Mn ₃ P ₂	No Activity
Niobium Phosphide NbP	No Activity
Rhenium Metal	Slight Activity
CrWO ₃	Slight Activity
$Cr + 1.45 WO_3$	No Activity
Cr ₂ 0 ₃ ·WO ₂	No Activity
CR2W4O4	No Activity
Cr ₂ O ₃ ·WO ₂	No Activity
Co.263 ^{WO} 3	No Activity
Cr _{.145} WO ₃	No Activity
$\operatorname{Cr}_2 \operatorname{O}_3 \operatorname{WO}_3$	No Activity
CrO ₂	Slight Activity
$w + wo_3 + cr_2o_3$	No Activity
$\operatorname{cr}_2^{0}_3 + \operatorname{wo}_2$	Slight Activity

⁽¹⁾ Test consists of the addition of anhydrous hydrazine at 2°C to powdered catalyst samples and observing the gas evolution.

⁽²⁾ No Activity - defined as no noticeable effervescence of hydrazine after 5 minutes.

Slight Activity - defined as some effervescence but less than what would be observed with a similar charge of Esso 101 powder.

- 20 -

6. HYBRID CATALYST STUDIES

(C) Another approach to reducing the low-temperature ignition delay of Esso 101 was to incorporate small quantities of readily reduced transition metals into the catalyst formulation. Small additions of these metals could provide appreciable surface area which would not have any oxide layer resulting from desensitization procedures. Furthermore, low concentrations of readily reduced metals (less than 1 wt. %) such as platinum and palladium have been observed to enhance the activation of nickel catalysts by hydrogen(14). Similar enhancement was expected for cobalt. The cost of incorporating small quantities of these readily reduced transition metals would not be great; e.g., 1 wt. % of a metal costing \$100/troy ounce would add only \$15/1b to the cost of the catalyst. This approach appeared promising and was, thus, studied in the laboratory.

6.1 The Effect of Low Concentrations of Noble Metals

(C) Readily reduced transition metals were added to the basic Esso 101 preparation after the calcining step. Salts of palladium, platinum silver and gold were dissolved and impregnated into different batches of calcined Esso 101, dried, and reduced as described in the standard procedure for fabricating Esso 101 catalyst powder. The various preparations were then individually tested in the isothermal laboratory reactor. The results of these isothermal rate measurements are given in Table 6.

Table 6

(C) Isothermal Rate Measurements of
Esso 101 Catalyst Powders Containing
Small Quantities of Readily Reduced
Transition Metals

Catalyst	Hydrazine Decomposition Rate at 23°C cm ³ (STP)/min-gm
101	80
101 + 1% Pd	100
101 + 1% Pt	55
101 + 1% Ag	42
101 + 1% Au	65

= 21 -

(C) Only the palladium formulation showed any activity improvement over the basic Esso 101 catalyst at 23°C. On the other hand, formulations incorporating platinum, gold, and silver appeared to be somewhat less active. In terms of these results alone, one would not expect a significant improvement in low-temperature ignition delay performance of the modified catalysts. However, we felt that the advantage of having some metal surface which is unaffected by the passivation step, present in the cobalt catalyst formulation, may not have been clearly seen in the isothermal laboratory reactor tests. We thus evaluated the ignition delay of these preparations in our 5 lb thruster. We also continued screening other readily reduced transition metals.

6.2 Effect of Higher Concentrations of Noble Metals

(C) Initial studies indicated that the incorporation of palladium metal into the cobalt-alumina catalyst formulations, at the 1 wt. % level caused an improvement in low temperature activity. Thus, higher palladium metal loadings were studied. In addition, higher loadings of platinum on the cobalt-alumina catalyst were evaluated. The results of the isothermal low temperature decomposition tests using these and other hybrid formulations are presented in Table 7.

Table 7

(C) Effect of Readily Reduced Transition Metals on the Low Temperature Hydrazine Decomposition Activity of Cobalt-Alumina Catalysts	
Catalyst	Hydrazine Decomposition Nate at 23°C cm ³ (STP)/min-em
Esso 101	80 (base)
101 + 1% Pd	105
101 + 10% Pd	128
101 + 1% Pt	56
101 + 10% Pt	160
101 + 1% Rb	80
Raney C o⇔Pt alloy 10% Pt	64
Shell 405	270 (10°C)

- 22 =

(C) Increasing the palladium concentration to 10 wt. 7 resulted in a 60% increase in isothermal activity; Increasing the platinum concentration to 10 wt. % yielded a catalyst with twice the activity of Esso 101 at 25°C. These improvements were very encouraging. However, they still were not nearly large enough to affect spontaneous catalyst ignition at 3°C. Some improvement would be expected in the ignition delay of catalysts fired at room temperature. Such was actually observed when a cobalt-alumina catalyst, containing 10 wt. % Pd was fired in a 5 1b thruster.* Table 8 summarizes the results of this test.

Table 8

(C) Ignition Delay of Palladium Cobalt Hybrid Catalyst				
Catalyst (1)	Ignition (2,3) Delay at 23°C msecs			
Cobalt-Alumina Catalyst Cobalt-Alumina + 10 wt% Pd	1,200 400			
(1) Catalyst consisted of 83% cobalt - 17% Al ₂ O ₃ packed in 1/2" x 1/2"S.S. wire baskets.				
(3) Ignition delay time does n flow dead time which is an	Runs compared on the 3rd firing in 5 to thruster. Ignition delay time does not include valve response and fuel flow dead time which is approximately 60 msecs in our test system.			

- (C) The incorporation of 10 wt. % Pd into the cobalt-alumina catalyst improved the ignition delay of the catalyst after the bed was activated by two initial firings. However, this improvement was insufficient to affect spontaneous ignition of the catalysts in the 5 lb thruster.
 - 6.3 Isothermal Evaluation of Cobalt-Ruthenium Hybrid Catalysts
- (C) The incorporation of readily reduced transition metals into our cobalt catalyst formulation have improved the low temperature activity and ignition delay of the cobalt catalyst system. The experimental data indicated that the incorporation o platinum and palladium into alumina supported cobalt preparations improved the isothermal

^{*}The Esso 5 lb. thruster does not represent a flight type design. Ignition delay data are thus useful only on a comparative basis.

⁺Catalyst performance was evaluated on the third firing to avoid any confounding effects of residual oxide.

activity and ignition delay of Esso 101 type catalysts. This work was extended to ruthenium-cobalt hybrid catalysts. Ruthenium was a particularly attractive transition metal to work with because of its wide availability and reasonable cost. Information made available to Esso Research and Engineering Co., indicated that there is about 150,000 troy ounces of ruthenium/year available, primarily from two sources: the Johnson Matthey and Co. (as a by-product of gold and platinum refining) and the International Nickel Co. (as a by-product of copper and nickel refining). There is also believed to be a substantial backlog of this metal presently available.

(C) Several ruthenium-cobalt-alumina catalysts were prepared by different fabrication techniques. These included 10% ruthenium on oxide sintered cobalt-alumina (prepared by co-precipitation), Esso 201; a structure consisting of 12% ruthenium prepared by co-impregnation of alumina with cobalt ruthenium solution, Esso 202; and a structure consisting of 22% ruthenium prepared by co-impregnating a ruthenium on alumina support with cobalt ruthenium solution, Esso 204. The results of the isothermal hydrazine decomposition tests, using these structures, are presented in Table 9 and Figure 6.

Table 9

(C) ISOTHERMAL DECOMPOSITION RATE OF COBALT-RUTHENIUM HYBRID CATALYSTS

Catalyst	Description	Hydrazine Decomposition Rate at 23°C cm ³ (STP)/min-gm	Apparent Activation Energy Kcals/gm-mole
Esso 201	10% Ru, 75% Co on oxide sintered cobalt-alumina	10	19
Esso 202	12% Ru, 33% Co co-impregnated alumina	25	24
Esso 204	22% Ru, 33% Co co- impregnated Ru-alumina	50	24
Esso 203	12% Ru, 33% Co, 55% Alumina co-precipitated	15	24
Esso 101	70% Co, 30% Alumina co-precipitated	75	26

- 24 -

Figure 6

- 25 -

- (C) Several interesting observations may be made about the data in Table 8 and Figure 7. First, the isothermal hydrazine decomposition rate of the cobalt-ruthenium hybrid catalysts was less than that of the basic Esso 101 catalyst which contained no ruthenium. Surface area differences were believed to be partly responsible for this difference in activity. Surface area data indicated that the impregnated hybrid catalysts had considerably less surface area than the co-precipitated Esso 101 preparation. However, the magnitude of this surface area difference could not possibly account for the entire activity difference observed. For instance, Esso 201 had about one half the surface area of Esso 101 with comparable cobalt loadings. Yet, the isothermal activity of the Esso 101 catalyst was about seven times greater. This implied that a negative synergistic effect exists for the cobalt-ruthenium catalyst system. Further evidence of this is seen in a subsequent section on the evaluation of ruthenium-alumina catalysts. Despite the poor isothermal decomposition rate exhibited by the ruthenium-cobalt hybrid catalyst preparations, it was important to pursue evaluation of these catalysts in motor firing studies. Significant improvements in ignition delay might still be seen with hybrid catalysts having appreciable noble metal area, not affected by desensitization procedures. This hypothesis was confirmed in subsequent motor firing studies.
- (C) The performance of cobalt ruthenium hybrid catalysts appeared to be dependent on the fabrication procedure. Esso 202 and 203 had the same component formulation but different isothermal activity. Surface area differences resulting from different fabrication techniques were held to be a contributing factor. The lower apparent activation energy of Esso 201 compared with other hybrid catalyst preparations was probably also a result of fabrication differences. One possible explanation for this lower activation energy is the increased pore diffusional contribution resulting from the presintering of the substrate used on Esso 201.

6.4 Five Pound Thruster Evaluation of Cobalt-Ruthenium Hybrid Catalysts

(C) The ignition delay of cobalt-ruthenium hybrid catalysts in our 5 lb thruster using hydrazine fuel was measured at several catalyst bed temperature levels. Catalyst pellets 1/8"D x 1/8"L were used in all cases. The results of these studies are presented in Table 10 and Figure 7.

"'ti

TABLE 10

(C) IGNITION DELAY OF COBALT-RUTHENIUM HYBRID CATALYSTS

Catalyst	Description	lgnition Delay at 23°C msec.(1,2)
Esso 101	70% Co, 30% Alumina co- precipitated	>6,000
Esso 202	12% Ru, 33% Co-co-impreg- nated alumina	1,500
Esso 201	10% Ru, 75% Co on oxide sintered cobalt alumina	2,000
Esso 200	12% Ru on cobalt impreg- nated alumina	750

(C) The incorporation of ruthenium into cobalt-alumina catalyst formulations is seen to dramatically reduce the ignition delay. Furthermore, the degree to which the ignition delay is reduced depends on the mode of preparation of the catalyst. Catalysts 202, 201 and 200 all had approximately the same ruthenium content, but differed in fabrication technique. Esso 200 was prepared by first depositing the cobalt on an alumina support and then depositing the ruthenium on top of the cobalt. In this case, maximum availability of the ruthenium surface was probably achieved. Esso 202 utilized a co-impregnation of cobalt and ruthenium salts. This technique probably resulted in less available ruthenium surface. Esso 201 utilized a ruthenium impregnation of a cobalt alumina support and, thus, should also have readily available ruthenium metal surface. However, the cobalt alumina support was presintered yielding a support with about one half the surface area of Esso 200. This support surface area difference is a possible explanation of the longer ignition delay exhibited by Esso 201 in comparison to Esso 200. Despite the significant improvement in ignition delay resulting from the use of ruthenium in cobalt-ruthenium hybrids, performance had not approached that of Shell 405. Emphasis was thus shifted to the more promising ruthenium on alumina catalysts.

⁽¹⁾ The Esso 5 lb. thruster does not represent a flight type design. Ignition delay data are thus useful only on a comparative basis.

⁽²⁾ Ignition delay time does not include valve response and fuel flow dead time which is approximately 60 msecs in our test system.

- 28

7. (C) RUTHENTUM BASED CATALYST STUDIES

- 7.1 Isothermal Rate Studies of Alumina Supported Ruthenium Catalysts
- (C) A series of ruthenium on alumina catalysts were prepared to determine whether performance could be improved by removing the cobalt from the system. The effect of ruthenium concentration, catalyst support type, as well as the addition of platinum, on catalyst isothermal hydrazine decomposition activity were studied. The results are presented in Table 11 and Figure 8 and discussed in the following paragraphs.

TABLE 11

(C) ISOTHERMAL HYDRAZINE DECOMPOSITION RATE
ON RUTHENIUM CATALYSTS

Catalyst	Description	Hydrazine Decomposition Rate at 23°C cm ³ (STP)/min⊸gm	Apparent Activation Energy Kcals/gm-mole
Esso 206	12% Ru on Alumina	170	19
Esso 207	23% Ru on Alumina	210	19
Esso 208	36% Ru on Alumina	360	19
Esso 209	33% Ru on Silica- Alumina (6% SiO ₂)	280	19
Esso 210	5% Pt, 33% Ru on Alumina	359	Not Measured

(C) Catalyst isothermal activity increased with ruthenium metal concentration and was more than 5 times as active as Esso 101 at the 36% ruthenium level. The cobalt free, 12% ruthenium on alumina, catalyst was far more active than any of the cobalt-ruthenium hybrids having the same ruthenium content. This data further supported the fact that there was a negative synergistic effect exhibited by cobalt-ruthenium hybrid catalysts toward hydrazine decomposition and that the performance of a ruthenium

= 29

10

catalyst depended on the nature of the support used in the fabrication. The relative performance of ruthenium-alumina and cobalt-ruthenium-alumina catalysts in the motor firing studies, discussed in the following paragraphs, gave the same conclusion. The isothermal data suggested that higher ruthenium levels would yield more active catalysts. However, measurements made in the 5.15, thrust engine indicated that there was a leveling off in the ignition delay as the 35% ruthenium content was approached. The activation energy of ruthenium alumina catalysts was lower than that of the cobalt-ruthenium-alumina hybrids. The hybrids would thus be expected to be more active above 200°C. However, at the adiabatic firing temperature, the reactivity of the catalyst is undoubtedly diffusion limited. The apparent activation energy of the catalysts would then be primarily controlled by pore diffusion effects. The use of a silica-alumina support (Harshaw 1602) did not appear to offer any great advantage over aluming in terms of isothermal activity. The incorporation of 5% platinum into the formulation by co-impregnation appeared to improve the isothermal activity. This improvement was reflected in a very short ignition delay during the first firing of this catalyst in the 5 lb thruster. However, this activity was lost in subsequent 5 lb thrust motor firings.

(C) The addition of 5 wt. % platinum to a ruthenium-alumina catalyst, by means of the co-impregnation of platinum and ruthenium salts, produced a catalyst that gave a very short hydrazine ignition delay for the first firing. This concept was thus explored further. Rutheniumplatinum-alumina supported catalysts were prepared by co-impregnation of the halide salts and subsequent reduction with hydrogen. Catalysts were prepared with ruthenium/platinum weight ratios of 3.0 and 4.5, at a total metals content of 17 and 30 wt. %. Isothermal rate measurements were made using these catalysts. The results are presented in Figure 9 and Table 11. The data show that the incorporation of platinum into the alumina supported ruthenium catalyst reduces the apparent activation energy for hydrazine decomposition. Both 17 and 30 wt. % binary rutheniumplatinum metals catalysts gave activation energies of 14 kcal/g-mole as opposed to 19 kcals/g-mole for the pure ruthenium catalyst. This lowering of the activation energy also meant that the activity of the 30 wt. %binary catalyst was higher at 5°C than that of the 33% alumina supported ruthenium catalyst; the ruthenium-alumina catalyst was, however, still slightly more active at 25°C.

- 31 -

Figure 9

(C) ISOTHERMAL PERFORMANCE OF ALUMINA SUPPORTED RUTHENIUM-PLATINUM CATALYSTS

= 3.1 =

Table 12

(C) ISOTHERMAL PERFORMANCE OF ALUMINA SUPPORTED RUTHENTUM-PLATINUM GATALYSTS

	Temperature	Hydrazine Decomposition Rate		Apparent Activation inergy
Catalyst Composition	°C	cm ³ (STP)/min-gm	cm ³ (STP) cm ³ -min*	Keal/g-mole
Ruthenium-Platinum-Alumina	5	30	78	14
17 wt Metals Ru/Pt = 3.0	25	170	440	
4.)	25	170	440	
Ruthenium-Platinum-Alumina	5	50	1 30	14
30 wt $\frac{1}{2}$ Metals Ru/Pt = 3.0	25	270	700	
4.5	25	270	700	
33% Ruthenium-Alumina	5	30	78	19
	25	350	910	

*Volume of product gas STP per volume of catalyst per minute.

(C) The isothermal data imply that the binary rutheniumplatinum alumina supported catalysts would provide a shorter hydrazine ignition delay at temperatures in the vicinity of 5°C. This is not counting the instantaneous possible hypergolic effect resulting from the presence of platinum oxide. This effect cannot be defined in the isothermal reactor. It can only be detected in catalyst bed ignition studies. We have not tested the start-up characteristics of these new ruthenium platinum-alumina catalysts at 5°C. Our present test facility would have to be modified to do so in a reliable manner. However, preliminary motor firing tests with the 30 wt % ruthenium-platinum catalysts at 25°C did not show any advantage over pure ruthenium-alumina catalysts. In addition, the first start platinum oxide hypergolic effect was much less pronounced than that observed with the 5 wt % platinum, 33 wt % ruthenium on alumina catalyst (Esso 210). Thus, though this area offered further potential to reduce the low temperature hydrazine ignition delay, we felt that we could best utilize our effort by devoting full time to the study of other thermally stable substrates for ruthenium.

- 33

7.2 Five Pound Thruster Evaluation of Alumina Supported Ruthenium Catalysts

(C) The high low temperature isothermal activity of cobalt free rothenium on alumina catalysts was translated into a significant reduction in ignition delay. Tests on $1/8^{\rm HD}$ x $1/8^{\rm HL}$ pellets fabricated by ruthenium salt impregnation of pre-formed Harshaw 1404 alumina gave engine start-up performance which approached that of Shell 405. The results of these tests are presented in Table 13 and Figure 10 and discussed in the following paragraphs.

(C) IGNITION DELAY OF ALUMINA SUPPORTED RUTHENIUM

CATALYSTS IN 5 LB. THRUST ENGINE

Catalyst	Description	Ignition Delay at 23°C msec.(1,2)
Esso 205	33% Ru on Alumina	120
Esso 206	12% Ru on Alumina	620
Esso 207	23% Ru on Alumina	220
Esso 209	33% Ru on Silica-Alumina 6% Silica	100
Esso 210	5% Pt, 33% Ru on Alumina	5 (first firing) 100

(C) The ignition delay was seen to depend on the ruthenium concentration, decreasing as the catalyst ruthenium content increased. The incremental reduction in ignition delay in going from 23 to 33% ruthenium was much less than that in going from 12 to 23%. Data on a higher ruthenium concentration catalyst further indicated a leveling off of the ignition delay. Thus, very high ruthenium loadings (>50%) are not expected to result in any further significant reduction in ignition delay.

⁽¹⁾ The Esso 5 lb. thruster does not represent a flight type design. Ignition delay data are thus useful only on a comparative basis.

⁽²⁾ Ignition delay time does not include valve response and fuel flow dead time which is approximately 60 msecs in our test system.

- 34 -

3 1 =

(C) The incorporation of a platinum, by means of the co-impresnation of platinum and ruthenium salts, produced a catalyst that showed a very short ignition delay for the first firing. However, subsequent firings did not show any advantage over the platinum free catalyst having a comparable ruthenium content. One possible explanation for the very short ignition delay observed during the first firing of the platinum ruthenium catalyst was the relative ease in which platinum oxide was reduced. All catalysts, prepared by hydrogen reduction, are subsequently exposed to air and, hence, have a thin oxide layer on the surface. This oxide, which is easily reduced, reacts with hydrazine in a bipropellant mode for a fraction of a second giving the system an extra "kick". Platinum oxide is easier to reduce than ruthenium exide and hence may have accounted for the rapid start. The ignition delay during the first firing of platinum free ruthenium catalysts was usually lower than the next few subsequent firings. The difference, however, was not nearly as great as that observed with the ruthenium-platinum catalyst. Further evidence of surface oxide effects was obtained by readmitting air into a catalyst bed at room temperature after it had been fired a number of times. A significant reduction in ignition delay, (usua!lv about 50%) and ignition spike pressure was observed in each case in which air was admitted to the reactor bed. However, the shortened ignition delay effect is, again, only present for the initial firing after exposure to air.

7.3 Isothermal Performance of Tungsten Carbide Supported Ruthenium Catalysts

- (C) Tungsten carbide possesses several properties which make it an excellent candidate for a high temperature thermally stable catalyst support. It has a much higher melting point than alumina (2780°C as opposed to 2000°C) and thus should be more resistant to sintering than alumina. It has a much higher density than alumina (15.7 gms/cm³ as opposed to 2.6) and thus has the potential to store more active catalyst in a fixed volume. It should be stable in a reducing atmosphere at high temperature. Most synthetic procedures utilize the reaction of tungsten with a hydrocarbon in a mixture of H2 and N2 at temperatures ranging from 1,000 to 2,200°C. However, the high temperatures required for the synthesis of WC limit the surface areas that can be obtained with this material. This appeared to be its chief disadvantage. Though the maximum surface area of WC available today is about 10 m²/gm, it was felt that the material possessed enough encouraging properties to warrant investigation. It was felt that Company potential unique technology could be used to increase the WC surface area if ruthenium was shown to be active toward hydrazine decomposition when used in conjunction with a WC support.
- (C) Thus, WC supported ruthenium catalysts were prepared at the 10, 23 and 30 wt. % ruthenium level using ruthenium halide impregnation and hydrogen reduction. Samples of catalyst powder were evaluated in the isothermal reactor at several temperature levels. The results are presented in Figure 11 and Table 14.

- 36 -

Figure 11

(C) ISOTHERMAL PERFORMANCE OF TUNGSTEN CARBIDE SUPPORTED RUTHENIUM CATALYSTS

- 37 -

Table 14

(C) ISOTHERMAL ACTIVITY OF RUTHENIUM-TUNGSTEN CARBIDE CATALYSTS

Catalyst Composition	Apparent Activation Energy Keals/g mole		osition Rate at 25°C cm ³ (STP)/cm ³ -min*
WC substrate alone 10% Ru on WC 23% Ru on WC 30% Ru on WC 40% Ru on WC 33% Ru on Alumina	25 13 13 Not Measured 19	0 1 22 38 13 350	0 16 345 596 204 910

^{*} volume of product gas STP per volume of catalyst per minute

(C) The data indicated that tungsten carbide supported ruthenium catalysts had considerable activity toward hydrazine decomposition and the decomposition rate appeared to be very dependent on the ruthenium concentration, increasing markedly between 10 and 30% ruthenium and then apparently decreasing at the 40% ruthenium level. The absolute activity of these catalysts, on a mass basis, is not great--only 38 cm³/gm-min as compared with 350 cm³/gm-min for alumina supported ruthenium at about the same 30% metal loading. However, the much higher density of the tungsten carbide support makes this catalyst look much more attractive on a volume basis. Since most potential applications for the hydrazine monopropellant system are volume limited (their design and size are fixed by other factors) a more meaningful comparison of catalysts can be made on a volume basis. High support density cannot fully be translated into catalyst storage savings because of catalyst pill porosity and the bulk density factor. However, the activity per cm³ does appear to be a more practical figure of merit for hydrazine decomposition catalysts. When compared on a volume basis, the activity of the 30% ruthenium on tungsten carbide catalyst at 25°C is less than one half that of the 33% ruthenium on alumina. This is very encouraging in view of the fact that the tungsten carbide support had only $10 \text{ m}^2/\text{gm}$ of surface area. If tungsten carbide supports can be prepared with surface areas of 20-30 m^2/gm , the activity of the 30% ruthenium loaded catalyst should be equivalent to that of 33% ruthenium on alumina on a volume basis. It is recommended that further work be conducted on the WC substrate.

- 38 -

7.4 Performance of PTN Supported Ruthenium Catalysts

(U) Esso Research developed a unique refractory catalyst support material which has both high surface area and resistance to sintering at high temperatures in a humid environment. The stability of this support to sintering in a 80% H2-20% H $_2$ O at 1100°C environment is shown in Table 45.

	BET Surface Area m ² /gm		2 .		% Decrease
Support	Before	After	in Surface Area		
Esso PTN*	159	121	24		
A1 ₂ O ₃ (H-1404)	152	70	59		
Al ₂ 0 ₃ -Si0 ₂ (H-1602)	211	92	56		

^{*}Esso PTN is a specially prepared form of Boron Nitride which was developed under Company-sponsored research.

(U) The very encouraging results achieved in this sintering test for the PTN material clearly made it a potential candidate support for the non-strategically limited ruthenium metal. However, it remained to be seen whether ruthenium would be active on the PTN support and whether catalyst pellets of sufficient strength could be fabricated. Thus, ruthenium was deposited on the surface of the PTN support by halide salt impregnation and hydrogen reduction. Catalysts were prepared at the 23 and 45% ruthenium metal loading. The results of isothermal rate measurements using these catalysts are presented in Table 16 and Figure 12.

UNCLASSIFIED

- 39 -

Table 16

(C) ISOTHERMAL ACTIVITY OF PTN SUPPORTED RUTHENIUM CATALYSTS

	Apparent Activation Energy	Hydrazine Decomposition Rate at 25°C		BET Surface Areal	
Catalyst Composition	Keals/g-mole	cm ³ (STP)/min=em	em ³ STP/em³-min⊭	m^2/gm	
23 wt % Ru on PTN	18	270	600	77	
45 wt % Ru on PTN	18	270	600	44	
33 wt % Ru on Alumina	19	350	910	73	

* volume of product gas STP per volume of catalyst per minute

40 Figure 13

(C) ISOTHERMAL PERFORMANCE OF PIN AND MIO SUPPORTED RUTHENIUM CATALYSTS

4.1

As can be seen from the data, the PTN supported ruthenium catalyst possesses appreciable activity. Though both the 23 wt. % and 45 wt. % Ru catalysts were less active than the alumina supported 33 wt. % ruthenium catalyst, the high level of activity was still extremely encouraging. Since the surface area of the base PTN support used was low (80 m²/ym), we felt that the activity could be improved. The fact that no noticeable increase in catalyst activity was observed in increasing the ruthenium concentration from 23 to 45 wt. % is partly explained by an apparent loss in surface area. The 43 wt. % ruthenium catalyst had a total BET surface area of 44 m²/gm as opposed to 77 m²/gm for the 23 wt. % ruthenium catalyst. A change in fabrication conditions such as ruthenium halide solution concentration and temperature may offer alternate ways of achieving higher activity at a high metal loading.

- (C) The refractory support, PTN, was prepared in a large quantity (100 gms) and was used to fabricate a scaled-up batch of ruthenium-PTN catalyst. As with the earlier small batches, ruthenium metal was deposited on the refractory PTN support by a series of ruthenium chloride impregnations and calcinations followed by reduction with hydrazine. A large batch of PTN supported ruthenium catalyst was prepared at the 40 wt. % metal level and tested in the isothermal decomposition rig. The results are compared with those obtained using catalysts prepared in small quantities in Figure 13.
- (C) The scaled-up catalyst preparation showed somewhat higher hydrazine decomposition activity than that of the material processed in small batches. Since very little difference in catalyst activity was observed among small batches containing 23 to 45% ruthenium, the apparent improvement in catalyst activity, observed for the scaled-up batch, was not believed to be due to differences in ruthenium average bulk concentration. Neither was it believed to be a result of differences in catalyst surface area which were substantially the same for large and small batch preparations. A more likely explanation was in the improved dispersion of the metal on the surface of the large batch of PTN material. Much higher solution concentration gradients and high localized deposits of ruthenium can be expected when small batches of catalyst material are processed by a multiple impregnation technique.

- 42 -

Figure 13

UNCLASSIFIED

- 43 -

(U) PTN supported ruthenium catalyst pellets (1/8"L x 1/8"D) were prepared by means of a Stokes Pellet Press. Pellets as formed from the press had low crush strength. Thus, the sinter strengthening technique, successfully employed with the cobalt-alumina catalysts, was applied to the Ru-PTN system. Pellets were subjected to sinter treatments at different temperatures for a specified time in a tube furnace. Argon gas was used to protect the pellets against oxidation. The effect of sintering treatment on catalyst pellet crush strength is shown in Table 17.

Table 17

EFFECT OF SINTER STRENGTHENING ON CRUSH STRENGTH OF Ru-PTN CATALYST PELLETS

Sinter Temperature °C	Sinter Time Mins.	Average Pellet Crush Strength Lbs.*
No Sinter Ti	reatment	7.5
1200	30	8.5
1 300	30 120 360	14.0 11.0 5.0

*Average of (10) 1/8" D Pellets

(U) The data in Table 17 indicate that considerable improvement in Ru-PTN pellet crush strength can be achieved through the sinter strengthening technique. Pellets sintered at 1300°F for 30 minutes have almost twice the crush strength as pellets receiving no sinter treatment. Increasing the sinter times, however, produced increasingly weaker pellets. This was contrary to what was expected and observed with cobalt-alumina catalysts.

- 44 -

7.5 Performance of Refractory Oxide Supported Ruthenium Catalysts

(C) Several refractory oxides have properties that make them potential candidate thermally stable supports for ruthenium. These include tangsten oxide, magnesium oxide, and zirconium oxide. These materials have very high melting points, are chemically stable at high temperatures and can be prepared in high surface area. Thus, several of these materials were impregnated with ruthenium halide solution to the 30 wt. % metals level, reduced with hydrogen and tested in the isothermal rig. The results are depicted in Table 18 and Figure 14.

Table 18

(C) PERFORMANCE OF REFRACTORY OXIDE SUPPORTED RUTHENIUM CATALYSTS

Catalyst	Catalyst Surface Area m²/gm	Isothermal N ₂ H ₄ Decomposition Rate cm ³ (STP)/min-gm at 25°C
30% Ru on 2r0 ₂	37	250
30% Ru on WO ₃	23	163
30% Ru on MgO	21	500
30% Ru on MoO ₃	14	Negligible Activity
33% Ru on Al ₂ O ₃	70	350

- 4" -

Figure 14

- 46 =

(C) Differences in catalyst surface area cannot explain this wide range of results in hydrazine decomposition activity. In fact, the most active hydrazine decomposition catalyst, 30% Ru on MgO, had a surface area of only 21 m²/gm. The results are more likely due to the strong chemical interaction of catalyst and substrate which strongly determines the resulting supported catalyst hydrazine decomposition activity. The isothermal hydrazine decomposition activity of the magnesia supported ruthenium catalyst was high enough to affect spontaneous hydrazine ignition at temperatures as low as 5°C. Thus, it was considered a very promising system for this project and was subjected to further evaluation,

7.0 Preparation and Performance of High Surface Area Magnesia

(U) High surface area magnesium oxide was prepared by calcining MgCO3 and Mg(OH) $_2$ under specified conditions. Two temperature levels and two calcination duration periods were evaluated. The BET surface areas resulting from specific process treatments are presented in Table 19.

Table 19

EFFECT OF PROCESS CONDITIONS ON THE SURFACE AREA OF RESULTING MgO SUBSTRATES

Source of	Run	Calcining	Calcining	Magnesia BET
Magnesia	Identification	Temperature, °F	Time, hrs.	Sur. Area m ² /gm
MgCO 3	B	1000	2	114
	A	1000	15	216
	D	615	2	62
	C	615	15	90
Mg (OH) ₂	F E	1000 1000 Vitro Magnesia	2 15	1 35 85 60

(U) The MgO substrates resulting from MgCO $_3$ decomposition showed surface areas ranging from 62 to 216 m 2 /gm, surface areas increasing with the severity of treatment. Substrates resulting from Mg(OH) $_2$ decomposition at 1000°F showed a decrease in surface area with an increase in calcining time. Preliminary tests at 615°F indicated this temperature level was too low to affect significant Mg(OH) $_2$ decomposition. The lower surface area resulting from the longer calcination period, using Mg(OH) $_2$ as the source, implies that the H2O formed during decomposition may have catalyzed sintering. The results of our steam sintering tests discussed later in this section support this theory.

- 41 -

(C) The process conditions yielding the highest surface area MgO (Run A) was used to tabricate an Ru-MgO catalyst at the 30 wt. λ metal level. This catalyst was prepared in a similar manner to the Vitro MgO supported catalyst using multiple ruthenium halide solution impregnation, calcination and hydrogen reduction. Isothermal catalyst activity tests were run on the high surface area MgO-Ru catalyst. The results are compared with the performance of the Vitro MgO supported Ru catalyst in Table 20.

(C) PERFORMANCE OF MAGNESIA SUPPORTED RUTHENIUM CATALYSTS

Catalyst	Substrate Surface Area m ² /gm	Temperature °C	Isothermal N2H4 Decomposition Rate cm ³ (STP)/min-em
30% Ru on Vitro Magnesia	60	1 15 25	25 125 500
30% Ru on Mg0 (MgO from Prep. A above)	216	1 15 25	50 163 500

The high surface area MgO supported Ru catalyst showed considerably higher activity than the Vitro MgO supported Ru catalyst at low temperatures; no difference in activity was noted at 25°C. The high surface area MgO supported Ru catalyst should be active enough to affect spontaneous hydrazine ignition at 5°C. A large batch of high surface area MgO was prepared and was used in pilling studies. The results of sinter strengthening experiments on 1/8"D x 1/8"L Ru-MgO catalyst pellets were discouraging. Cracks were formed in the catalyst pellets during the sinter strengthening process. One possible explanation for the crack formation was a further decomposition of some remaining MgCO3 during the sinter strengthening operation. It was felt that an acid treatment might help remove MgCO3 that has not been completely removed during the calcination step. Acid treatment of the MgO formed from calcination of MgCO3 or Mg(OH)₂ might also provide additional substrate surface area. The results of an acid leaching treatment are discussed in the following paragraphs.

- 48 -

(C) MgO substrate samples produced from both Mg(OH)₂ and MgCO₃ sources were treated with 0.05 M phosphoric acid. Phosphoric acid is a good halide free leachant and this treatment of refractory oxides has also been shown to inhibit sintering in a H₂O environment (2). Treatment consisted of equilibrating calcined substrate materials with 0.05 M phosphoric acid, drying at 250°F, and calcining at 750°F for only 1 hour. This procedure was conducted twice with each substrate sample. The resulting change in substrate surface area is given in Table 21.

EFFECT OF PHOSPHORIC ACID LEACHING ON MAGNESIA SUBSTRATE SURFACE AREA

		BET Surface Area m ² /gm	
Substrate	Identification	Before Leaching	After Leaching
MgO (From MgCO ₃)	Α	216	252
MgO (From Mg(OH) ₂)	Е	85	252

(C) The data presented in Table 21 show that the leaching treatment produced a significant increase in substrate surface area for both samples. The increase is much greater for the substrate initially produced from Mg(OH)2 decomposition indicating that this substrate had a greater fraction of the source which was not decomposed by calcination. As in our calcination studies, we wanted to see if the higher surface area produced by the acid treatment could be translated into higher supported ruthenium hydrazine decomposition activity. Thus, a portion of a phosphoric acid treated substrate was used to fabricate a Ru loaded catalyst. A catalyst containing about 30.0 wt % Ru on phosphoric acid treated, MgCO3 calcined substrate (Run A) was fabricated by the standard multiple ruthenium chloride solution impregnation technique followed by calcination and reduction. The hydrazine decomposition activity of this catalyst was measured in the isothermal test rig. The results are compared with the activity of a catalyst prepared from calcined MgCO3 which had not been acid treated in Table 22. The acid treated catalysts were found to be less active than catalysts prepared from the calcined substrate.

- 49 -

Table 22

(C) PERFORMANCE OF ACID LEACHED MAGNESIA SUPPORTED CATALYSTS

Catalyst	Substrate BET Surface Area m ² /gm	Temperature °C	Isothermal N ₂ H ₄ Decomposition Rate cm ³ (STP)/min-gm
30% Ru on Acid	252	1	25
Treated MgO		15	125
30% Ru on as	216	1	50
Calcined MgO		15	163

(C) Magnesium oxide appears to show considerable promise as a support for ruthenium. The activity of the MgO-supported ruthenium toward hydrazine decomposition is quite high and the substrate can be prepared in high surface area. However, several questions exist pertinent to the physical strength of MgO granules and pellets. Further work in this area is required to define the magnitude of this problem.

7.7 High Temperature Stability of Various Hydrazine Decomposition Catalysts and Substrates

(C) Several catalysts and substrates were subjected to high temperature sintering tests in N2-H2-NH3 and H2-H2O atmospheres respectively. The results of these tests are presented in Tables 23 and 24. Of the abstrates tested, the tungsten carbide appeared to show the highest resistance to sintering in both the water free and water containing environment, decreasing less than 10% in surface area during both test periods. The PTN material was the second most stable support tested, though a considerably greater loss in surface area was observed in comparison to our first sinter stability test run on PTN reported earlier in this program. This difference in stability is most likely a result of slight variations in PTN composition from batch to batch and not a result of the difference in the gaseous ambient used in the tests. This is borne out by the fact that the PTN desurfaced about the same amount in both current stability tests in a H2-N2-NH3 environment and in the H2-H2O environment. The fact that the PTN and WC support were as stable in a gaseous environment containing 20 vol. % H₂O as they were in a H₂O free ambient implies that these substrates may be used with fuels containing hydrazine nitrate.

(C) The PTN supported ruthenium catalyst at the 23 wt. % metal loading was almost as stable as the metal free substrate itself and also showed little difference in surface area loss in both a water free and water rich gaseous environment. The tungsten carbide supported ruthenium catalyst, on the other hand, decreased in surface area considerably in

-50 -

both tests with a more drastic loss taking place in the $\rm H_2\text{-}H_2O$ gas test. This loss is believed to be a result of the fact that the high loading of ruthenium deposited on the low surface area WC substrate was probably not well dispersed, allowing ruthenium crystallites to sinter together easily. This is further supported by the fact that the 30 wt. % ruthenium on tungsten carbide catalyst showed much higher initial total BET surface area than the substrate itself, indicating that a good portion of the ruthenium produced was "unsupported" and actually physically mixed with the tungsten carbide.

(C) The refractory oxide substrates and supported ruthenium catalysts showed very poor stability characteristics with the exception of the Harshaw 1602 alumina-silica substrate which was reasonably stable. The very active magnesia supported ruthenium catalysts and the magnesia substrates themselves were notably unstable, desurfacing sharply in both tests, though to a greater extent in the $\rm H_2\text{-}H_2\text{O}$ atmosphere. The standard Harshaw 1404 alumina substrate desurfaced considerably in the water free NH₃-N₂-H₂ environment and almost completely in the H₂-H₂O ambient. Catalysts fabricated with Harshaw 1404 alumina will have an extremely short life when hydrazine nitrate is used in the fuel blend. Zirconium oxide and tungsten oxide substrates were also unstable in the H₂O containing environment though considerably more stable than the Harshaw 1404 alumina.

CONFIDENTIAL -151 -

Table 23

(C) HIGH TEMPERATURE STABILITY OF HYDRAZINE DECOMPOSITION CATALYSTS

Test Temperature - 1100°C

Time - 1/2 hour

Gas Environment - 25 vol % $\mathrm{N_2}$, 25 vol % $\mathrm{H_2}$, 50 vol % $\mathrm{NH_3}$

	Total BET Surface Area m ² /gm		
Catalyst or Substrate	Before	After	
wc	2.3	2.1	
30% Ru on WC	11.2	1.5	
PTN	73.4	38.4	
23% Ru on PTN	77.0	24.7	
MgO from Calcined MgCO3	216	9.3	
MgO from Calcined Mg(OH) ₂	85.1	0.1	
30% Ru on MgO from MgCO3	21.0	1.2	
Vitro MgO	60.0	3.2	
40% Ru on MgO	11.8	2.6	
Vitro ZrO2	25	6.2	
30% Ru on Vitro ZrO2	12	2.0	
Vitro WO3	38	5.4	
30% Ru on WO ₃	12.0	<1. 0	
Harshav Sintered Al ₂ O ₃ (1404)	95	12.6	
Harshaw Sintered Al ₂ 0 ₃ -Si0 ₂ (1602)	145	46	

Table 24

(C) HIGH TEMPERATURE STABILITY OF HYDRAZINE DECOMPOSITION CATALYSTS

Test Temperature - 1100°C

Time - 1/2 hour

Gas Environment - 80 vol % $\rm H_2$, 20 vol % $\rm H_2O$

	Total BET Surface Area m ² /gm		
Catalyst or Substrate	Before	After	
WC 30% Ru on WC 23% Ru on PTN Vitro MgO 30% Ru on Vitro MgO Vitro WO ₃ 30% Ru on WO ₃ Harshaw Sintered Al ₂ O ₃ (1404) Harshaw Sintered Al ₂ O ₃ -SiO ₂ (1602)	3.0 11.2 77.0 60.0 18.7 38.0 12 95	2.7 .3 21.8 7.5 6.0 1.6 1.9 .6 45	

- 52 --

8. PROMOTED RUTHENIUM CATALYSTS - THE ESSO 506 SERIES

(C) Considerable evidence is present in the literature to indicate that the incorporation of foreign ions into γ-alumina can substantially improve the thermal stability of this refractory oxide. For example, Krischner, et al. have found that the incorporation of alkaline earth ions into γ-alumina markedly enhanced its thermal stability (15). Similar observations have been made in our Company high temperature petroleum processing catalyst studies. On the basis of this information, and the fact that hydrazine decomposition appears to increase with increased substrate basicity, we prepared a number of "doped" substrate catalysts which we called the Esso 500 series. These catalysts have been extensively tested in our 5 lb. thruster and isothermal reactor and characterized in our laboratories. One of them was evaluated by Air Force personnel in 25 lb. and 5 lb. thrust engines. The results of these tests are discussed in the following paragraphs.

8.1. Characterization of the Esso 500 Series Catalysts

(C) The Esso 500 series catalysts have been characterized in our laboratories. Their approximate compositions are as follows*:

```
Esso 500 - 5% SrO,
                                           5% SiO<sub>2</sub>,
                                                                60% Al<sub>2</sub>0<sub>3</sub>,
         501 - 5% CaO,
                                                                60% Al<sub>2</sub>0<sub>3</sub>,
                                           5% SiO<sub>2</sub>,
                                                                                        30% Ru
         502 - 5% La<sub>2</sub>O<sub>3</sub>,
                                                                60% Al<sub>2</sub>0<sub>3</sub>,
                                           5% SiO<sub>2</sub>,
                                                                                        30% Ru
                                           5% SiO<sub>2</sub>,
         503 - 5% BaO,
                                                                60% Al<sub>2</sub>0<sub>3</sub>,
                                                                                        30% Ru
                                           5% SiO2,
         504 - 10% BaO,
                                                                55% Al<sub>2</sub>O<sub>3</sub>,
                                                                                        30% Ru
         505 - 10% CaO,
                                           5% SiO<sub>2</sub>,
                                                                55% Al<sub>2</sub>0<sub>3</sub>,
         506 - 10% La<sub>2</sub>O<sub>3</sub>, 5% SiO<sub>2</sub>,
                                                                55% A1<sub>2</sub>0<sub>3</sub>,
                                                                                       30% Ru
         507 - 10% SrO,
                                          5% SiO<sub>2</sub>,
                                                                55% A1<sub>2</sub>0<sub>3</sub>,
                                                                                       30% Ru
```

Data have been obtained on catalyst surface area, substrate surface area, ruthenium crystallite size and catalyst isothermal activity. These data are presented in Table 25.

^{*}See Appendix for detailed procedure for preparing the Esso 500 series catalysts.

- 1, 3 -

Table 25

(C) PROPERTIES OF ESSO 500 STRIES CATALYSTS

Cat a lyst	BET Surface Substrate	Area m²/gm Catalyst	Igothermal Activity em ³ (STP)/min-gm at 25°C	As Fabri cated Crush Strength lbs.	Metal Crys- tallite Size
Esso 500 Esso 501 Esso 502 Esso 503 Esso 504 Esso 505 Esso 506 Esso 507 Conventional Supported Ruthenium Catalyst	182.4	128.0	490	40	135
	178.0	131.5	420	41	124
	185.6	128.5	455	41	124
	184.7	123.1	385	36	111
	175.8	116.8	630	41	126
	181.8	118.0	420	41	165
	166.2	117.0	530	46	145
	173.4	117.5	420	43	140

^{*}Based on 1/8" x 1/8"D Pellets

(U) The properties of the Esso 500 series catalysts, given in Table 25, are seen to be superior to those of the conventional alumina supported ruthenium catalysts. Both substrate and final catalyst surface area are considerably higher than those of the conventional supported ruthenium catalyst. Isothermal hydrazine decomposition activity of the Esso 500 series catalysts is seen to range from 10 to 80% higher than the conventional alumina supported ruthenium catalyst. Additional data on metal crystallite size and on surface areas and activity after motor firing are presented in the following paragraphs.

8.2. Performance of Esso 500 Series Catalysts In Esso's 5 lb. Thruster

(U) Eight different Esso 500 Series catalysts were fabricated in 1/8" x 1/8" pellets and tested in our instrumented static 5 lb. thrust engine. Propellant grade hydrazine was supplied to the engine at 25°C using pulse mode propellant injection cycles of 1 second on 5 seconds off. Reactor chamber pressure and degree of catalyst attrition during engine firing were recorded. The results are presented in Table 26.

- 54 -

Table 26

(C) PERFORMANCE OF ESSO 500 SERIES CATALYSTS IN A 5 LB. THRUST ENGINE(1)

Catalyst	% Change in Bed Pressure Drop	Catalyst Loss Wt %/Sec.
Esso 500 Esso 501 Esso 502 Esso 503 Esso 504 Esso 505 Esso 506 Esso 507	None None None None None None None	0.15 0.17 0.13 0.12 0.052 0.078 0.038 0.083

(1) Ignition program - 1 sec. on-5 secs. off - 40 total pulses.

(C) As can be seen from the data in Table 26, the Esso 500 series catalysts all performed very well in the pulse mode operation of our 5 lb. thruster. All catalysts showed excellent mechanical strength and resistance to attrition during engine firing as indicated by the low level of catalyst lost and bed pressure drop stability. These very encouraging results using the Esso 500 series catalysts prompted us to request that the Air Force evaluate one of them in actual flight type hardware. We believed that such a test was essential before studies in this area were pursued further.

8.3. Air Force Engine Firing Evaluation of Esso 500

(C) About 50 gms of Esso 500 1/8" x 1/8" pellets and 25 gms of Esso 500 20-40 mesh granules were sent to Edwards Air Force Base for motor firing evaluation in a 25 lb. thrust flight type monopropellant engine. The Air Force test results using a bed composed of about 10 vol. % granules, the remainder pills, were extremely encouraging. Esso 500 was found to give ignition delays comparable to Shell 405 with propellant grade hydrazine at 30°F and 100°F. Furthermore, no steady-state performance degradation in engine chamber pressure was observed during 350 secs. of hydrazine fuel burn using 2000 pulses of fuel injection. Low catalyst attrition was observed during this firing program and the catalyst was observed to have very good strength properties.

8.4. High Stability of the Esso 500 Series Catalysts

(C) The promoted substrate and final catalysts for the Esso 500 series have extremely high stability. Catalyst surface area, isothermal activity and pellet crush strength all showed little or no change after four

- 55 -

minutes of firing; the catalyst evaluated by the Air Force, and which received 24 minutes of total firing, also showed no loss in surface area. This data is presented in Table 27 and in Figure 16 which depicts the remarkable surface stability of Esso 500 in contrast to Shell 405. Esso 500 is seen to maintain its original "as fabricated" surface area during 24 minutes of total firing time. Shell 405, on the other hand, drastically desurfaces during the first 5 minutes of firing. This unique surface area stability of Esso 500 is a property associated with its unusually stable promoted substrate. It is suggested that surface area stabilization may be affected by the alkaline earth ion retardation of the transformation of γ -alumina to α -alumina.

Figure 15

CONFIDENTIAL - 57 -

STABILITY CHARACTERISTICS OF ESSO 500 SERIES CATALYSTS(1) 9

1		- 57 -							
*	Estore After First of	35	(1) (1)	98	(1	(n)	35	70	17
1000	Eefore Firing	67	77	71	99 E 1	7.7	7.7	97	7. 0.
	at 25°C (2) After Firing	490	455	490	420	995	420	630	420
Teothermal Activities	cm ³ (STP)/min-gm at 25°C (2) Before Firing After Fir	490	420	455	385	630	420	630	420
	Catalyst After Firing	123.3 131.0 ⁽²⁾	132.7	135.6	129.4	123.2	122.4	118.9	105.0
BET Surface Area N ² /gm	Catalyst Before Firing	128.0	131.5	126.5	123.1	116.8	118.0	117.0	117.5
	Substrate	182.4	178.0	185.6	184.7	175.8	181.8	166.2	173.4
	Catalvst	Essc 500	Esso 501	Esso 502	Esso 503	Esso 504	Esso 505	Esso 506	Esso 507

(1) All "After Firing" data apply to catalysts run for 4 minutes in hydrazine pulse mode fuel burn.

(2) After 24 minutes of firing.

*Based on 1/8" x 1/8" L pellets

UNCLASSIFIED

- 58 -

9. BIBLIOGRAPHY

- 1. Armstrong, W. E., Morgan, C. Z., and Ryland, L. B., "Development of Catalysts for Monopropellent Decomposition of Hydrazine" (U), Shell Development Company Report S-13947 (Confidential), 1964.
- 2. Marx, P. C., Aerospace Corporation Report No. TDR62162, AD-285083 (Unclassified report), August, 1962.
- 3. Hang, P. A. and Ward, S. R., Army Ballistic Missile Agency, Test Laboratory Report No. ABMA 8 (Unclassified), August, 1957.
- 4. Liengme, B. V. and Tompkins, F. C., Bull. Acad. Polon. Sci., Ser. Chim. 14(2) 111-18 (1966) Eng.
- 5. Grant, A. F., Jr., "Catalysts for the Thermal Decomposition of Hydrazine When Used as a Monopropellent", Publication 15, (February, 1953) and Report 20-27 (December, 1954), Jet Propulsion Laboratory Pasadena, California.
- 6. Eberstein, I. J. and Glassman, I., Air Force Office of Scientific Research, Contract No. AF 18(600)-1527 (Unclassified Report) Report No. TW60-352, AD-235951.
- 7. Eberstein, I. J. and Glassman, I., "Considerations of Hydrazine Decomposition", ARS Preprint 1247-60 (1960).
- 8. Leiber and Monrite, "The Use of Raney Nickel", Vol. J, Advances in Catalysis, 1953.
- 9. Voelter, J. and Kuhn, W., Z. Anorg. Allgem. Chem. 340(3-4), 216-24 (1965) (Ger.).
- 10. Frovlov, V. M., Kinitika i Kataliz 6(1) 149-54 (1965) (Russ.).
- 11. Keston, A. S., "Analytica? Study of Catalytic Reactors for Hydrazine Decomposition", Part I: Steady-State Behavior of Hydrazine Reactors. Part II: Transient Behavior of Hydrazine Reactors. Chapters on "Hydrazine Monopropellent Technology Symposium" (U), (Confidential), CPIA Publication No. 160, December, 1967.
- 12. Rocket Research Corporation Report RRC-66-R-76, January, 1967, "Development of Design and Scaling Criteria for Monopropellent Hydrazine Reactors Employing Shell 405 Spontaneous Catalyst.
- 13. Drake, J. O., Jr., "Minimization of Spontaneous Catalyst in a Catalyst Reactor", Chapter in "Hydrazine Monopropellent Technology Symposium" (U), (Confidential), CPIA Publication No. 160, December, 1967.
- 14. Koros, R. M. and Nowak, E. J., Journal of Catalysis 7, 50-56 (1967).
- 15. Krischner, H., Torkar, K., and Hornisch, P., Monatschefte für Chemie 99, 220-229 (1968).

UNCLASSIFIED

- 59 -

APPENDIX A

(C) CATALYST FIRING DATA - 5 LB. THRUST ENGINE

Catalyst No. 428-73 (Esso 200)

Description: 12% Ruthenium on 33% Cobalt Impregnated Preformed 1404 1/8" Alumina

	1	2	Run No.	4	. 5	6
Fuel Temp., °C Bed Start-up Temp. °C Bed Inlet Steady Temp. °C Bed Center Steady Temp. °C Bed Inlet Steady Pressure, psig Bed Outlet Steady Pressure, psig Bed Pressure Drop, psi	24 158 158 0 0	24 310 300 spike spike	760 180 115	70 235 915 162 115 47	60 245 915 150 115 35	60 230 915 145 122 23
Ignition Spike Pressure, psi Ignition Delay msec.*	4,000	7,800	1,000 3.2	500	400	700
Wt. % Catalyst Loss and Fines/Cold Start Pulse Duration, sec. Remarks	2	2	15	15	15	15

^{*}Ignition Delay time does not include valve response and fuel flow "dead" time which is approximately 60 msecs in our test system.

- 60 -

(C) APPENDIX A

Catalyst No. 428-74 (Esso 201)

Description: 10% Ruthenium on CO-

Precipitated Oxide Sintered Cobalt Alumina (75% Cobalt)

				Run N	ο.			
	1	2	_3	4	5	_6_	_7	8
Fuel Temp., °C				25				
Bed Start-up Temp. °C	25	60	65	65	65	116	240	25
Bed Inlet Steady Temp. *C	375	510	220	850	900	235	240	205
Bed Center Steady Temp. °C	385	635	845	850	860	830	830	830
Bed Inlet Steady Pressure, psig	25	27	120	105	105	95	110	105
Bed Outlet Steady Pressure, psig	20	25	80	100	100	90	95	90
Bed Pressure Drop, psi	5	2	40	5	5	5	15	15
Ignition Spike Pressure, psi			r	ot reco	rded			
Ignition Delay msec.	4,500	1,100	900	1,000	1,100	550	120	2,100
Wt. % Catalyst Loss and Fines/Cold Start				0.5				
Pulse Duration, sec.	2	2	15	15	15	5	5	2
Remarks								

Catalyst No. 428-80 (Esso 202)

(C) APPENDIX A

Description: 12% Ruthenium, 33% Cobalt CO-impregnated on 1404-1/8" Alumina

					Z unz	•					
	1		3	7	5 6	9	7	 ∞	6	10	
Fuel Temp., °C					25			1			
Bed Start-up Temp. °C	25	57	100	25		190		130	166	25	
Bed Inlet Steady Temp. °C	155	20	240	180		190		240	212	ł	
Bed Center Steady Temp. °C	155	445	240	815	845	845	915	880	915	1	
Bed Inlet Steady Pressure, psig	10	25	26	65		86		114	120	;	
Bed Outlet Steady Pressure, psig	10	25	92	65		80		100	100	1	
Bed Pressure Drop, psi	}	}	2	0		18		14	20	;	
Ignition Spike Pressure, psi				not	recol	recorded	1				
Ignition Delay msec.	4,700	009	250	1,500	200	100	150	150	100	1,500	
Wt. % Catalyst Loss and Fines/Cold Start			1			•	1	1			
Pulse Duration, sec.	4.5	4.8	4.8	6.4	6.4	6.4	15	15	15	1	
Remarks											

- 62 -

(C) APPENDIX A

Catalyst No. 428-78 (Esso 205)

Description: 32% Ruthenium on Preformed 1404-1/8" Alumina

				Run No			
	1	_2	3	_4	5	6	7
Fuel Temp., °C				25 -			- -
Bed Start-up Temp. °C	?5	25	25	40	60	80	100
Bed Inlet Steady Temp. °C	220	210	210	210	215	215	215
Bed Center Steady Temp. °C	900	845	845	845	845	845	840
Bed Inlet Steady Pressure, psig	112	110	110	110	122	117	113
Bed Outlet Steady Pressure, psig	110	110	107	107	112	100	110
Bed Pressure Drop, psi	2	0	3	3	10	17	3
Ignition Spike Pressure, psi			not	record	ed		
Ignition Delay msec.	200	100	160	60	20	15	10
Wt. % Catalyst Loss and Fines/Cold Start				- 1.7 -			
Pulse Duration, sec.				5			
Remarks	1	Half Be	d Used	with 14	04-1/8"	Filler	

(C) APPENDIX A

Catalyst No. 428-83-A (Esso 206)

				C	1C	٧F	ID	E١	1 T	ΙA	L		-	- (, }	
	14		07	910	830	145	118	27	1	150	-	5				
	13		09	775	815	145	117	27		.5		Ŋ				
	12		80	076	835	145	120	25		t,		ν.				
		1	100	280	845	145	120	25	1	25		2				
	10	!	120	240	790	136	113	23		20		-				
	6		25	240	190	1	138	1	pa	340		щ				
ın No.	8	25	25	230	860	135	115	70	recorded	260	0.62	5				
RL	~	-	120	230	860	123	107	16	not 1)	2				
	9		100	230	860	123	100	23	1	7.5		5				
	2		100	+	ŀ	;	100	ł		1		5				
	4		80	225	845	123	107	16		85		5				
	m		09	225	880	115	100	15	1	80		2				
	7		40	225	880	86	1	ŀ		80		5				
	-		25	230	880	ļ	1	1		70		2				
		Fuel Temp., °C	Bed Start-up Temp. °C	Bed Inlet Steady Temp. °C	Bed Center Steady Temp. °C	Z Bed Inlet Steady Pressure, psig	H Bed Outlet Steady Pressure, psig	Bed Pressure Drop, psi	Z Ignition Spike Pressure, psi	Ignition Delay msec.	Wt. % Catalyst Loss and Fines/Cold Start	Pulse Duration, sec.	Remarks			

(C) APPENDIX A

Catalyst No. 428-83-A (Esso 206)

							Kun	NO.						
	15	16	17	18	19	50	21	22	23	24	25	26	27	28
Fuel Temp., °C							25					1 1 1	1	:
Bed Start-up Temp. °C	09	80	100	120	09	80	100	120	40	09	09	80	07	100
Bed Inlet Steady Temp. °C	915	220	205	205	185	185	180	205	180	;	220	265	205	205
Bed Center Steady Temp. °C	790	770	780	775	760	190	190	710	680	;	845	845	0,7	845
Bed Inlet Steady Pressure, psig	132	132	132	135	125	139	139	123	26	1	118	118	117	125 Z
Bed Outlet Steady Pressure, psig	110	110	110	130	106	113	113	117	06	;	112	112	112	FIC
D Bed Pressure Drop, psi	22	22	22	2	19	26	56	15	7	-	9	9	Ŋ	DE
T Ignition Spike Pressure, psi					not	recorded	led		1	1		93	215	7 -
Ignition Delay msec.	85	09	55	< 5	35	< 2	< 5	< 5	100	35	25	20	130	TI
▼ Wt. % Catalyst Loss and Fines/Cold Start			1				0.62	52						AL
Pulse Duration, sec.	5	Ŋ	2	5	2	5	4.3	4.3	2.5	2.5	2.5	ر: ت	٠, د.	2.5
0 cm2 cm2														-

Catalyst No. 428-83-B (Esso 207)

Description: 23% Ruthenium on Preformed 1404-1/8" Alumina

	-	2	[8]	4	5	9	Kun 7	0 00	5	10	17	(1) (m)	 * 3 * 4	1
Fuel Temp., °C	1						25							
Bed Start-up Temp. °C	25	80	88	100	25	120	80	127	260	166	ω ω	(1	1	C
O Bed Inlet Steady Temp. °C	250	250	240	245	250	240	240	245	320	c1 -1 nJ	0	0	202	O 552
4 Bed Center Steady Temp. °C	940	076	046	1000	910	076	1050	930	076	915	850	10 10 00	1/) - 1 (1)	
Bed Inlet Steady Pressure, psig	128	130	130	130	130	130	130	130	130	130	5	(1) (1)	6-4 (-1	
Bed Outlet Steady Pressure, psig	118	125	125	128	120	120	123	120	120	120	320	- 1 1 1	. 1 . 1	E
Bed Pressure Drop, psi	10	2	5	2	10	10	7	10	0.1	0	t*)	3.	(2)	
V Ignition Spike Pressure, psi	335	335	335	335	335	335	335	335	335	3	350	000	W.	[]A
Ignition Delay msec.	100	45	20	10	22	,	70	٠.	^	50	20	001	5	L
Wt. % Catalyst Loss and Fines/Cold Start														
Pulse Duration, sec.	2.5	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	% %	90 (1)	o.	J)	- %
Remarks														64

Catalyst No. 428-83-B (Esso 207)

Description: 23% Ruthenium on Preformed 1404-1/8" Alumina

			C	•	•	_	EN	ITI	A	L	-	
28		25	180	760	110	110	0	93	7.5		1.5	
27	1	25	180	730	108	100	œ	09	45		1.5	
26		25	190	760	114	114	0	180	100		1.5	
25		25	195	260	104	104	0	350	180		1.5	
24		80	205	845	112	112	0	325	< 5		3.8	
23		09	205	845	120	114	9	325	< 5		3.8	
22	25	70	200	845	120	114	9	325	09		3.8	
21		25	205	845	125	120	5	325	200		3.8	
20		80	190	835	118	118	0	117	< 5		3.8	
19		09	200	835	115	115	0	117	2		3.8	
18		40	200	835	115	115	0	117	65		3.8	
17		25	205	845	122	118	7	350	220		3.8	
16		100	205	845	125	120	2	350	<5		3.8	
15	ļ	80	205	845	125	120	5	350	< 2		3.8	
	Fuel Temp., °C	Bed Start-up Temp. °C	Bed Inlet Steady Temp. °C	Bed Center Steady Temp. °C	Bed Inlet Steady Pressure, psig	Bed Outlet Steady Pressure, psig	Z Bed Pressure Drop, psi	Ignition Spike Pressure, psi	Y Ignition Delay msec.	Wt. % Catalyst Loss and Fines/Cold Start	Pulse Duration, sec.	Remarks

Description: 23% Ruthenium on Preformed 1404-1/8" Alumina

			CC	10	۱F۱	D	EN	TI	Αl		-	- 6
43			170	880	114	107	7	320	150		2.0	
42			170	880	114	100	14	300	150		2.0	
41		 	145	275	106	95	11	300	170		2.0	
07			170	810	115	107	∞	310	180		2.0	
39			145	160	112	107	5	306	160		2.0	
38			155	815	119	112	7	310	180		2.0	
37		į	155	770	106	100	9	240	160		2.0	
Run No. 36 37	- 25	- 25	170	160	106	100	9	80	80		2.0	
 			170	770	106	100	9	165	110		2.0	
34			180	160	106	100	9	75	70		2.0	
33	į		180	760	109	100	6	270	150		2.0	
32	į		180	850	113	107	9	270	170		2.0	
31			180	770	110	105	2	255	150		2.0	
30			180	790	110	106	4	150	105		1.5	
29			180	700	106	106	0	240	140		1.5	
	Fuel Temp., °C	Bed Start-up Temp. °C	O Bed Inlet Steady Temp. °C	O Bed Center Steady Temp. °C	Bed Inlet Steady Pressure, psig	Bed Outlet Steady Pressure, psig	Bed Pressure Drop, psi	Ignition Spike Pressure, psi	Fignition Delay msec.	Wt. % Catalyst Loss and Fines/Cold Start	Pulse Duration, sec.	Remarks

Catalyst No. 428-83-B (Esso 207)

Description: 23% Ruthenium on Preformed 1404-1/8" Alumina

							24	Run No.							
	44	45	949	47	48	67	20	51	52	53	54	55	56	57	28
Fuel Temp., °C			1					25 -			1		!	!	!
Bed Start-up Temp. °C								25					1		
Bed Inlet Steady Temp. °C	135	170	170	170	170	170	170	145	145	170	170	170	170	170	170
D Bed Center Steady Temp. °C	205	205	989	500	205	240	240	425	280	355	205	205	200	200	200
Bed Inlet Steady Pressure, psig	107	110	115	115	115	115	110	100	115	112	130	103	165	165	165
Bed Outlet Steady Pressure, psig	100	105	107	107	107	107	105	95	100	95	95	88	88	88	88
Bed Pressure Drop, psi	7	5	8	8	8	80	2	2	15	17	35	7.5	7.7	77	7.7
Ignition Spike Pressure, psi	180	75	250	325	163	73	119	257	335	120	350	108	0	0	0
▼ Ignition Delay msec.	110	09	110	130	90	09	95	150	190	140	255	70	85	125	140
Wt. % Catalyst Loss and Fines/Cold Start															
Pulse Duration, sec.					‡ 1 1			2.0			-				1
Remarks															

Catalyst No. 428-82-C (Esso 208)

Description: 36% Ruthenium on Alumina

Run No.

		7	m	4	2	9	7	ω	6	10	11	12	13	14	15
Fuel Temp., °C													1		
Bed Start-up Temp. °C	25	40	09	80	100		40	09	80	100	25	0 1	09	100	08
Bed Inlet Steady Temp. °C	200	195	195	195	195	195		195	184	220	205	205	205	195	205
Bed Center Steady Temp. °C	815	815	815	845	815	815		815	815	190	815	815	815	815	815
Bed Inlet Steady Pressure, psig	118	110	110	110	110	120		110	110	110	115	115	115	115	115
Bed Outlet Steady Pressure, psig	103	100	26	26	100	107	102	100	100	100	107	100	100	701	10-
Bed Pressure Drop, psi	15	10	13	13	10	13		10	10	10	00	15	15	11	.⊣ .⊣
Ignition Spike Pressure, psi	58	25	18	0	0	150		0	0	0	192	0,1	0	0	0
Ignition Delay msec.	96	20	40	30	< 5	150		20	20	5	185	75	20	10	20
Wt. % Catalyst Loss and Fines/Cold Start	1				1		0	- 78%		1	1		!	1	
Remarks															

CONFIDENTIAL

Catalyst No. 428-82 (Esso 209)

Description: 33% Ruthenium on Silica Alumina

						Run No.	No.					
	-	2	m	7	2	9	7	8	6	10	77	12
Fuel Temp., °C	1					23			1			-
Bed Start-up Temp. °C	25	40	09	80	100	25	07	09	80	100	25	C
Bed Inlet Steady Temp. °C	200	195	195	195	195	195	220	195	185	220	205	202 O
Bed Center Steady Temp. °C	815	815	815	845	815	815	800	815	815	190	815	NF 518
Bed Inlet Steady Pressure, psig	118	110	110	110	110	120	115	110	110	110	115	115 D
Bed Outlet Steady Pressure psig	103	100	26	26	100	107	102	100	100	100	107	
Bed Pressure Drop psi	15	10	13	13	10	13	13	10	10	10	ω] [[
Ignition Spike Pressure psi	58	25	18	0	0	150	45	0	0	0	192	ΊΑ ₀
Y Ignition Delay msec	06	20	70	30	<5	150	70	20	20	<5	185	75 7
Wt. % Catalyst Loss and Fines/Cold Start			1			0.67						-
Remarks				eacl	each pulse	duration - 2		secs	1			70

CONFIDENTIAL - 71 -

(C) APPENDIX A

Catalyst No. 428-82 (Esso 209)

Description: 33% Ruthenium on Silica Alumina

						Run No.	.0				
	13	14	15	16	17	138	19	20	21	22	23
Fuel Temp., °C	1	1			-	23		1	1	1	
D Bed Start-up Temp. °C	09	100	80	25	40	09	80	100	25	25	25
Bed Inlet Steady Temp. °C	205	195	205	205	205	205	205	205	190	195	205
Bed Center Steady Temp. °C	815	815	815	790	190	790	815	815	190	815	815
Bed Inlet Steady Pressure, psig	115	115	115	115	107	115	107	115	110	110	117
Bed Outlet Steady Pressure psig	100	104	104	76	95	46	26	6	100	95	105
Bed Pressure Drop psi	15	11	11	18	12	18	10	18	1,	15	12
F Ignition Spike Pressure psi	0	0	0	350	0	0	0	0	107	7.2	350
Ignition Delay msec	20	5	20	175	25	20	7	7	135	110	235
√t. % Catalyst Loss and Fines/Cold Start				1		0.67 -					!
Remarks				ea	each pulse duration	e durat	- 1	2 secs.	1		-

- 72 -

(C) APPENDIX A

PERFORMANCE OF ESSO 500 SERIES CATALYSTS IN THE 5 LB. THRUSTER

Data Code

P₁ = Hydrazine Tank Pressure, psig

P₂ = Upstream Reactor Chamber Pressure, psig

P₃ = Downstream Reactor Chamber Pressure, psig

 ΔP = Bed Steady State pressure drop, psi

T (Bed) = Bed ignition temperature, °C

T₁ = Upstream Reactor Chamber Temperature, °C

T₂ = Downstream Reactor Chamber Temperature, °C

Spike - Ignition spike pressure - Reactor Chamber pressure, psi

DUR = Hydrazine pulse duration, $\epsilon > 15$.

DT = Ignition Delay, msecs.

^{*}Ignition Delay time does not include valve response and fuel flow dead time which is approximately 60 msecs in our test system.

					.0	14	F 11.	<i>,</i> _	1 1	117	7.			, ,	00	83	10		ir)	(1 3)	681	10	000	<u>ت</u>
		26	700											ı										
		25	700	26	100		583	927	882	0	000	v		<u></u> σς	007		103		86)96	068	C	006.	< >
		24	400											38	700									
		23	700											37	007									
		15	4											36	007									
		22	400	95	100		204	890	848	0	.910	<5		ı									5	
		21	400	88	90		25	204	669	70	.885	70		33	707	105	103	2	861	913	890		.905	<5
V	1/69	20	400	75	72	3	25	193	632	100	_			34	400									
(C) APPENDIX A	Catalyst - Esso 500 Date Run - 8/1/69	19	400	_					8	0	.940	-		33	400									
(C)	atalys Date F	<u>" </u>	40	87	85	2	1	i	78	0	٠.	20		32	400									
	5	15	400	93	95		1	1	815	0	.940	20		31	400									
		10	700	85	85	0	1	;	815	0	.940	20											0	
	5 400 70 70 0 815 0 .940 50													30	400	90	95		882	913	890		.91	<5
			700	70	70	0	-	!	81.	0	6.	20		29	400									
		2	400	65	62	3	1	1	788	0	046.	20		28	400									
		4	007	09	09	0	25	;	649	10	.920	20		27	400									
		Run	P	$^{P}_{2}$	P ₃	ΔP	T(Bed)	$^{\mathrm{T}_{1}}$	$^{\mathrm{T}_3}$	Spike	DUR	DT		Run	1	2	3	Д	(Bed)	1	3	pike	UR	H
						C	10	۱F	ID	E١	1 T I	AL		ļ	Ω.	Д.	Д	Q	T	Η	H	S	Q	Ū

۷)	
APPENDIX	
(C)	

Catalyst - Esso 501 Date Run - 7/30/69

			_			~	61		390		38)O [†]	49	68	H	25	180	629	70	96.	100
									1.290		37	007	87	06		816	878	882	0	.970	< >
11	4 00	95	95	0	815	913	882	0	1.290	\$			06								
10	400	100	100	0	751	776	882	0	1.290	\$											
6	400	93	92	-	267	927	848	0	1.285	< >			85								
_	_					~	2.1		580		25	400	87	85	2	829	976	848	0	.95	< >
									3 1.280		20	400	80	80	0	899	858	816	0	076.	<5
7	400	29	65	2	25	182	290	47	.868	06	19	400	09	09	0	25	180	679	09	076.	90
9	400	80	80	0	290	274	708	0	368 .	\$			70								
5	400	80	80	0	218	263	669	0	.890	\$			06								
4	400	80	80	0	142	237	681	0	.885	\$			86								
3	400	9/	78	2	127	204	681	0	006.	\$	15	400	95	95	0	816	913	882	0	1.280	<5
2	400	75	73	2	74	182	649	0	006.	<50	14	400	100	100	0	843	913	882	0	1.280	<5
1	400	62	09	2	25	182	679	0	. 880	20	13	400	100	100	0	815	882	882	0	1.275	<5
Run	$^{P}_{1}$	\mathbb{P}_2	. 64 3								Run	$_{ m l}^{ m P}$	P ₂	P ₃	$\Delta \mathbf{P}$	T(Bed)	$^{\mathrm{T}_{1}}$	T_3	Spike	DUR	DT
	CONFIDENTIAL																				

Catalyst - Esso 502 Date Run - 8/20/69

(C) APPENDIX A

21	1,€ .	1 -	1 -		117	1.	7 · (1.			1	1	<u></u>	(1	Ng.	if :	() ()) ir	В	() ()	o o
2	100	1	0	i i	(1 (,)	う か ま)	1	C)	 	U.		ئن	001	l l	001	;	25.8	0	30 1 30		○[°.	۱۲ •
Q FT	400											;) n	000									
	100											m	001									
16	005											36	700									
15	400	;	100	!	816	976	ω • † • ω	0	.910	12		35	0		c 1		œ	c 1	c1		006.	
7	700													i	102	1	878	88	83	0	<u>5.</u>	\$
13	700											34										
17	400												400									
11												32	400									
1	7 005		100		32	913	848		.935			31	400									
		i	1(i	30	6	œ	0	•	5		30	400	!	85		832	882	816	0	.910	<5
	0 400											29	400									
∞	400											28										
7	400												7 005									
9	400											26 2										
5	00		0	1	16	13	84		915													
7		Ì	6	i	∞	6	00	0	•	2		25	400	85	85	0	848	882	816	0	.920	< 5
	7											24	400									
3	400	06	06	0	598	890	816	0	.915	5		23	400									
5	005	80	80	0	25	193	618	04	.900	20		22	400	80	80	0	154	182	388	0	006.	<50
1	700	80	80	0	25	193	681	0	.880	20							25					
Run					(beg			ike	o⁄.													
	Ч	<u>Б</u>	٠ ښ							日 TIA	A L	Rui	$_{1}^{P}$	P ₂	P 3	a	T(Bed)	T_1	r_2	Spik	DUR	DT

Catalyst - Esso 503 Date Run - 8/14/69

CONFIDENTIAL	- 76 -
20 400 85 85 25 193 654 60 60 65 65	
196 100 105 105 913 890 0 0 .900	90 00 1 8 05 1 5 8 0 5 V
4000	86 00
400	1 37 37 37 37 37 37 37 37 37 37 37 37 37
400	400 4
15 400 97 100 830 882 863 0 .900 <5	35 3 400 4 95 95 97 98 882 882 0 0
400	34 400 400 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
400	33 37 400 40
400	·
400	0 400
10 400 103 107 107 816 927 882 0 .905	400
9 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 400 97 100 848 882 848 0
8 400 4	400
400 46	400
6 6 400 44	400
'	400
5 400 100 103 816 913 848 0 .910	25 400 92 92 0 848 913 865 0 .890
4004	
3 400 92 93 671 913 816 0	23 24 400 400
2 400 80 82 0 25 193 618 0	22 400 87 85 2 316 913 755 0
400 82 82 0 25 25 204 708 0	21* 400 25 121 262 0
Run P 1 P 2 P 3 AP T (Bed) T 1 T 2 Spike DUR	Run P1 P2 P3 LP T(Bed) T1 T2 Spike

<5

50

*Faulty Fuel Valve;

atalyst - Esso 504 Date Run - 9/12/69
at

(C) APPENDIX A

5,0	700	70	51	1		7.5) J:	560	5	005.	J) \	C			()	(7)		v.)	(1) (5)	065	(°)	000.	L)
567	005	103	000) :		28	372	C1 (20 (30)	0	015.	11)	2	7.0	000	100	100	0	& &	832	(C)	C	015	۸ ۱۲.
3	400												ě	25	00,1									
17	400												1	3/	000									
16	400													36	700									
15	400	105	301	100		802	848	882	0	.905	L,	Q		35	700	100	100	0	788	832	832	0	.915	<5
14	400													34	400									
13	400													33	400									
12	400													32	400									
11	400													31	400									
10	400	98	0	86	0	788	848	865	0	.920		~		30	400	95	95	0	788	832	832	0	.910	\$
6	400													29	400									
∞	400													28	400									
7														27	400									
9	400													26	400									
7	400	06		95		730	865	848									06	2	816	848	802		915	<5
4	400													24	400									
3	400	70	2	73		783	832	816		010	076.	\$		23	400									
61	400	04	3	09	0	75	182	590	,	010	016.	20		22	400	2,5) o	3 6	454	816	787		910	<5
	700		00	09	0) u	204	299	i > <		. 000	100		21	400	702	7 2		75	193	601	100	000	70
Run	Д		F 2	P ₃	رة ر	i e	*(Bed)	T F	52	Saring C	O DUK	IG NF	IC	Sun Sun	N	∵ . TI	، ₋	• •	i F	(Bed)	, <u>, , , , , , , , , , , , , , , , , , </u>	12	Spire	DT

- 78 -

	,
	14 400
	13
	12
505	400
Catalyst - Esso 505 Date Run - 8/22/69	10 400 105 105
alyst ite Ru	6 400
Cat	400
	400
	9
	25 600

(C) APPENDIX A

20 400										07												
19 400	110		788	882	882	0	006.℃	< 5		39	005	95	2) ()	802	882	865	0	010	910	Ç
18										38	007											
17										37	007											
16										36												
400	100		816	882	848	0	∿.900	\$		35	400	63		4.5	0	816	882	848	0		.910	<5
14										34	400											
13										33	700											
400										32	700))										
117										31	700	2										
10	105	0	788	890	848	0	006.√		7	30	00,	200	7	95	0	832	068	863	c)	.920	<5
6										29	0,	5										
8 400										28	007	5										
400										27	000	9										
9											3											
5	98	9	788	913	848		000	506.	Ŷ	25	90	400	95	93	2	816	890	878	5	0	.915	<5
400										77		400										
3	100	707	7 7 7	913	878	2	2	006.	\$	23		400	95	95	0	282	316	878	5	0	.910	<50
2 400	87	ري ، وي	ر م	20%	107	35		. 690	80	22	77	400	82	85	0	25	193	581	100	35	.910	09
1 400	75	، /ع	ر ع د	20%	£04 £65	700		. 890	20	21	177	400	95	95	0	25	507	107	00/	09	. 895	80
Run P 1	P 2	ь С 4	7 ∇ €	(Bed)	1, 1	2 5	Spine	N DUK	ក IFID	E١	11	1 	ا ا	P ₃	Ç ∆P	F	(Bed)	, ₁	12	Spike	DUR	DT

Caralyst - Esso 506 Date Run - 9/15/69

CONFID	ENTIAL - 7	79 -	23.18.2 0.98.2 0.98.3 8.90.5
20 400 90 90 0	865 816 0 .915	01 00 01 01 0	88 83 2 2 8 8 3 2 2 0 2 0 2 5 >
400		36	
400		100	
400		400	
400		36	
15 400 90 90 0 816	882 848 0 .920	35 400 92 95	848 882 8£2 0 .925
400		400	
400		400	
400		400	
400		400	
10 400 95 100 788	882 848 0 .915	30 400 98 98	816 890 846 0 .920
6 6		400	
400		400	
400		400	
9 400		400	
5 400 98 102 751	882 832 0 .920	25 400 100 100	890 846 0 .920
4 400		24 400	-
3 400 87 87 0 0	343 816 0 .915	23 400 98 100	454 882 816 0 .915
2 400 70 70 0 25	193 649 13 .900 35	22 400 70 70 0	25 193 708 20 .905 65
1 400 70 0 5	193 662 0 .890 200	21 400 75 75 0	25 182 618 25 .910
Run P_1 P_2 P_3 ΔP $T (Bed)$		$\begin{array}{c c} & & & Run \\ \hline \textbf{IDENLIP} & & & \\ & P_2 & & \\ & P_3 & & \\ & \triangle P & & \\ & \triangle P & & \\ & \triangle P & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	$\Gamma_{1}^{(\mathrm{Bed})}$ Γ_{2}^{1} Spike DUR

CONFIDENTIAL

Catalyst - Esso 507 Date Run - 8/29/69

16 600			
3 7 7 00 7		1 2 5 5 5	
17		36	
400		35 400 100 100	8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
15 400 95 95	816 865 848 0 .930	400	
400		23	
400		400	
400		31 400	
400		30 400 100 0	832 882 882 0 .910
10 400 105 0	816 865 848 0 .925	400	
6 700		400	
8 8		400	
400		400	
9		25 400 100 0	816 890 882 0 .915
5 400 97 98	788 882 848 0 .915	400	,
7 7 700		23	
3 400 88 85 3	601 882 832 0 .910 <5	22 400 98 100	704 890 848 0 .900 <5
		21 400 75 72 3	
1 400 72 72 0	+5°C 193 681 15 .900 200	20 400 88 90	25 182 618 35 .915
		Run P 1 P 2 P 3 L P 3	

- 81 -

(C) APPENDIX B

CATALYST PREPARATION PROCESSES

Process for Preparing Esso 101 Hydrazine Decomposition Catalysts

Basis 100 gms of Final Catalyst

- Add 443 gms of Co(NO₃)₂.6 H₂O and 229 gms of A1(NO₃).9 H₂O to 1000 cm³ of distilled H₂O.
- To this solution add 120 gms of NH4HCO3.
- Allow to stand overnight.
- Heat solution to 150°F.
- Add an additional 175 gms of NH4HCO3.
- Filter solution in a Buchner Funnel.
- Dry filtrate for 18 hours at 120°C.
- Calcine for 4 hours at 750°C in air.
- Press into 1/8" D cylindrical pills.
- Reduce at 950°F for 6 hours in hydrogen.
- Passivate by slow, careful drying in methyl alcohol.

- 82 -

(C) APPENDIX B (Cont'd)

Process for Preparing Esso 500 Spontaneous Hydrazine Decomposition Catalysts

- High purity silica-alumina is heated to 1800°F for 5 hours in air to stabilize the substrate lattice.
- A solution of "dopant" salt is prepared by dissolving 50 gms of an alkaline earth nitrate salt in 1 liter of deionized $\rm H_2O$.
- The stabilized silica-alumina is saturated with the dopant solution, dried in air at 250°F for 2 hours and calcined at 750°F in air for 5 hours. This procedure is repeated until the desired dopant level is reached.
- A ruthenium trichloride solution is prepared by dissolving 25 gms of RuCl₃ in an isopropyl alcohol-H₂O mixture (90 vol. % isopropyl alcohol).
- The doped substrate is saturated with the ruthenium trichloride solution, dried at 250°F for 2 hours and calcined at 750°F in air for an hour. This procedure is repeated several times until the desired metal level is reached. 30 wt % Ru in the Esso 500 series.
- The calcined catalyst is reduced in flowing hydrogen for 5 hours at 1000°F.

- 83 -

CPIA DISTRIBUTION LIST

SEPTEMBER 1969

Major Recipients

NOTE: This is a general distribution list primarily for use in whole or in part for In-House Laboratory Technical Documentary Reports. For contractor reports, it is necessary to consult the latest CPIA distribution list (the individual report producer) in order to determine the quantity of reports. The CPIA list will run about 20 copies more for a popular producer. This list can also be used for contractor reports, in cases where the contractor is not listed as a producer on the CPIA distribution list.

NUMBER OF REPORTS - (MAJOR RECIPIENTS) -

All Categories (Basic) - 124

SPECIAL CATEGORIES (Note special categories are not included in basic list)

1.	Propellant Ingredient Synthesis Programs -	11 Total - 135
2.	Solid Propellant and Rocket Motor Programs -	17 Total - 141
3.	Liquid Propellant and Rocket Engine Programs -	10 Total - 134
4.	Structural Materials for Rocket Motors and Engines	8 Total - 132

Changes through NO 84, SEP 1969 Incorporated

NOTICE

THIS DISTRIBUTION LIST HAS BEEN VERIFIED FOR SECURITY CLEARANCE UP TO AND INCLUDING CONFIDENTIAL LEVEL ONLY. REFERENCE CPIA MAILING LIST DATED MAY 1967, CPIA PUBLICATION NO. 147.

- 84 -

DISTRIBUTION

ALL CATEGORIES:

Bureau of Mines Attn: ERC Library 4800 Forbes Avenue	1	NASA Langley Research Center Attn: Librarian
Pittsburgh, Pa 15213		Langley Station Hampton, VA 23565
Central Intelligence Agency Attn: CRS/ADD-Standard Dist. Washington, D.C. 20505	1	NASA 1 Manned Spacecraft Center
Chemical Propulsion Infor Agency Applied Phyiscs Lab-JHU	2	Attn: Library/Code BM6 Houston, Texas 77058
8621 Georgia Avenue Silver Spring, Md. 20910		NASA 1 Kennedy Space Center Attn: Library-ATS-132C
Defense Documentation Center Attn: TSR	20	Kennedy Space Center, Fla 32899
Cameron Station, Bldg 5 Alexandria, Virginia 22314		NASA 1 Attn: Code RPS, R. W. Ziem Washington, DC 20546
Defense Rsch. & Engr. Pentagon, 3D1065 Attn: Propulsion Technology Washington, D.C. 20301	1	Air Force Systems Command 1 Director of Laboratories Attn: SCTSP
Institute for Defense Analyses Attn: Classified Library 400 Army-Navy Drive Arlington, Virginia 22202	1	Andrews AFB, Wash DC 02331 AF Office of Scientific Res. 1 Attn: SREP 1400 Wilson Blvd
NASA	1	Arlington, VA 22209
Lewis Research Center Attn: Librarian 21000 Brookpark Road Cleveland, Ohio 44135		Air Force Rocket Propulsion Lab 1 Attn: RPC Edwards, Calif 93523
NASA Scientific & Tech Infor Facility Attn: SAF/DL, ACQ Div	2	Air Force Rocket Propulsion Lab 1 Attn: RPR Edwards, Calif 93523
P. O. Box 33 College Park, Md. 20740		Air Force Rocket Propulsion Lab 1 Attn: RPM
NASA Goddard Space Flight Center Attn: Library, Code 252 Greenbelt, Maryland 20771	1	Edwards, Calif 93523

- 8b -

ALL CATEGORIES: (Continued)			
AFRPL Attn: Technical Library Edwards, California 93523	1	Naval Air Systems Cmd Attn: AIR-330 Washington, DC 20360	2
Foreign Technology Div Attn: TDBTL Wright-Patterson AFB, Ohio 45433	1	Naval Ordnance Sys Cmd Attn: ORD-0331 Washington, DC 20360	2
Army Ballistic Res. Labs Attn: AMXBR-1 Aberdeen Proving Ground, Md. 21005	1	Naval Missile Center Attn: Code 5632.2, Tech Library	l
Army Missile Command Redstone Scientific Info Center Attn: Chief, Document Section Redstone Arsenal, Alabama 35809	4	Point Mugu, Calif 93041 Naval Ordnance Laboratory Attn: Library White Oak	2
Army Research Office Attn: CRD-AA-IP Box CM, Duke Station Durham, North Carolina 27706	1	Silver Spring, Maryland 20910 Naval Weapons Center Attn: Code 753-Tech Library China Lake, Calif 93555	2
Frankford Arsenal Attn: (C2500-Library-B51-2 (for Propellant & Expl. Section) Philadelphia, Pa. 19137	1	Naval Postgraduate School Attn: Library, Tech Rpts Section-2124 Monerey, California 93940	1
Picatinny Arsenal Scientific & Tech Info. Br. Attn: SMUPA-VA6, Librarian Dover, New Jersey 07801	2	Naval Ordnance Station Attn: Technical Library Indian Head, Maryland 20640	1
White Sands Missile Range Attn: Technical Library White Sands MR, New Mexico 88002	1	Naval Research Branch Office Attn: Librarian 1030 East Green Street Pasadena, Calif 91101	1
Naval Air Systems Cmd. Attn: AIR-6042, Tech Library Washington, DC 20360	1	Naval Research Attn: Code 429, Power Branch Washington, DC 20360	1
Naval Air Systems Cmd AIR-53671 Washington, D.C. 20360	2	Naval Ordnance Sys Cmd Attn: ORD-9132 Tech Library	2
Naval Air Systems Cmd. Attn: AIR-5366 Washington, DC 20360	1	Washington, DC 20360 Naval Special Projects Attn: Technical Library Washington, DC 20360	1

- 86 -

ALL CATEGORIES: (Continued)		
Naval Underwater Weapons Res Eng Sta Attn: Tech Library (CS12) Newport, R.1. 02840	1	Dow Chemical Co. 1 Scientific Projects Lab. Attn: R.S. Karpiuk, Bldg 1710 Midland, Michigan 48641
Aerojet-General Corp Attn: Tech Library P. O. Box 296 Azusa, Calif 91702	1	DuPont Co. 1 Eastern Division Attn: Report Clerk, A. R. Steward Gibbstown, N.J. 08027
Aerojet-General Corp. Attn: Librarv 11711 South Woodruff Ave Downey, Calif 90241	1	Garrett Corp. 1 Airesearch Mfg. Div. Attn: Tech Library 2525 W. 190th St.
Aerojet-General Corp Attn: Tech Library-2432-2015A	3	Torrance, CA 90509
P.O. Box 15847 Sacramento, Calif 95813 Aerospace Corp	2	Esso Research & Eng. Co. 1 Govt. Rsch. Lab. Attn: Defense Security Officer P.O. Box 8
Attn: Tech Info Ctr. Doc. Group P.O. Box 95085	2	Linden, N.J. 07036
Los Angeles, Calif 90045 Aerotherm Corp. Attn: Library 485 Clyde Ave. Mountain View, CA 94040	1	General Dynamics Corp. 1 Pomona Division Attn: Div. Library, Mail Zone 6-20 P.O. Box 2507 Pomona, CA 91766
Allied Chemical Corp Attn: Security Officer P. O. Box 70 Morristown, New Jersey 07960	1	General Dynamics/Convair 1 Library & Info Services P.O. Box 12009 San Diego, Calif 92112
ARO, Inc. Attn: Technical Documents Library Arnold AF Station, Tenn 37389	**	General Electric Co. 1 Attn: Acquisitions Bldg 4, Room 109 Daytona Beach, Florida 32015
Bell Aerosystems Co. Attn: Technical Library P. O. Box 1 Buffalo, New York 14240	1	Hercules, Inc. 1 Allegany Ballistics Lab Attn: Tech Library P.O. Box 210
Boeing Co. Attn: Aerospace Library-8K-38 P.O. Box 3999	1	Cumberland, Md 21502 Hercules, Inc. 1
Seattle, Washington 98124 California Inst of Technology Jet Propulsion Laboratory Attn: Library, TDS 4800 Oak Grove Drive Pasadena, California 91103	1	Research Center Attn: Tech Info Center Wilmington, Delaware 19899

- 87 -

ALL CATEGORIES: (Continued)			
IIT Research Institute Attn: Document Library	1	North American Rockwell Space & Info Sys Div	1
10 West 35th Street		Attn: Tech Info Ctr -0 9 6-722	
Chicago, Illinois 60616		12214 Lakewood Blvd	
chicago, fiffhers doord		Downey, Calif 90241	
Lockheed Missiles & Space Co.	1	bowney, carri 70241	
Attn: Tech Info Ctr. 50-14	•	Philco-Ford Corp	1
3251 Hanover St.		Aeronutronic Div	•
Palto Alto, Calif 94304		Attn: Tech Info Svcs-	
raito arto, carri 94304		Acquisitions	
Laskhaad Propulation Co	2	Ford Road	
Lockheed Propulsion Co.	-	Newport Beach, Calif 92663	
Attn: Library P.O. Box 111		Newport Beach, Carri 92003	
		Defendan Heisemoits	1
Redlands, Calif 92373		Princeton University	1
War and Garage	1	Forrestal Campus Library Attn: Librarian	
Marquardt Corp	1		
Attn: Library		P. O. Box 710	
P. O. Box 2013, So. Annex		Princeton, N.J. 08540	
Van Nuys, Calif 91409		B 1 . B 1 . C	٠,
W W	3	Rocket Research Corp	1
Martin Marietta Corp.	1	Attn: Technical Library	
Attn: Library - Mail No. 6366		York Center	
Denver Division		Willow Road at NE 116th St.	
P. O. Box 179		Redmond, Washington 98052	
Denver, Colorado 80201			_
		Rohm & Haas Co.	1
McDonnell Douglas Corp.	1	Redstone Research Labs	
Douglas Missile & Space Sys Div.		Attn: Tech Library	
Attn: Library A2-260		Huntsville, Alabama 35807	
3000 Ocean Park Blvd			
Santa Monica, Calif 90406		Stanford Research Inst	1
		Document Center	
North American Rockwell	3	For Propulsion Sciences	
Rocketdyne Division		333 Ravenswood Avenue	
Attn: Library Dept 086-306		Menlo Park, California 94025	
6633 Canoga Avenue			
Canoga Park, Calif 91304		Susquehanna Corp.	1
		Atlantic Research Group	
		Attn: Library	
		Shirley Highway at Edsall Rd.	
		Alexandria, VA 22314	
		Texaco Experiment, Inc.	1
		Attn: Librarian	
		P. O. Box 2407	
		Richmond, VA 23202	

- 88 -

ALL CATEGORIES: (Continued)

East Hartford, Conn 06108

Thiokol Chemical Corp	2	United Aircraft Corp	3
Wasatch Division	-	Pratt & Whitney Aircraft Div	•
		Attn: Head Librarian	
Attn: Technical Library			
Brigham City, Utah 84302		P. O. Box 2691	
		West Palm Beach, Florida 33402	2
Thiokol Chemical Corp	1		
Elkton Division		United Technology Center	1
Attn: Tech Info Center		Attn: Technical Library	
Elkton, Md. 21921		P. O. Box 358	
		Sunnyvale, Calif 94088	
Thiokol Chemical Corp	1	•	
Huntsville Division		University of Denver	1
Attn: Technical Library		Denver Research Institute	
Huntsville, Alabama 35807		Attn: Security Officer	
		P. O. Box 10127	
TRW Systems, Inc.	2	Denver, Colorado 80210	
Attn: Technical Info Center	2	benver, colorado cozio	
		CAMCO (CNOVAD)	,
One Space Park		SAMSO (SMMAP)	4
Redondo Beach, Calif 90278		Attn: Mercury	
		AF Unit Post Office	
United Aircraft Corp	1	Los Angeles, CA 90045	
Attn: Acquisitions Librarian			
400 Main Street			

PROPELLANT INGREDIENT SYNTHESIS PROGRAMS (Category 1)

Los Alamos Scientific Laboratory Attn: Report Library P. O. Box 1683 Los Alamos, New Mexico 87544	1	Martin-Marietta Corp Res Inst for Adv Studies Attn: Security Officer 1450 South Rolling Road Baltimore Md. 21227		
Hq USAF	l			
Attn: AFRDDG, A. Eaffy		Midwest Research Institute	1	
Washington, D.C. 20330		Attn: Library-Documents 425 Volker Blvd		
AF Rocket Propulsion Lab	1	Kansas City, Missouri 64110		
Attn: RPCE				
Edwards California 93523		Northrop Carolina, Inc.	1	
Ethni Campanation	1	Attn: Library P. O. Box 3049		
Ethyl Corporation Attn: Program Mgr	1	Asheville, N.C. 28802		
P. O. Box 53091		Asheville, N.C. 20002		
Baton Rouge, Louisiana 70805		Olin Mathieson Chemical Corp.	1	
baton Rouge, Louisiana 70003		Main Control Room, Attn: Asst	•	
Hercules, Inc.	1	Librar	ian	
Bacchus Works	-	275 Winchester Avenue	1411	
Attn: Library 100-H-2		New Haven, Connecticut 06504		
P. O. Box 98				
Magna, Utah 84044		Shell Oil Co.	1	
ingina, com con		Shell Development Co. Div		
		Attn: Technical Files		
		1400 53rd Street		
		Emeryville, Calif 94608		
SOLID PROPELLANT AND RO	CKET MOTO	OR PROGRAMS (Category 2)		
Foreign Technology Div	1	McDonnell Douglas Corp	1	
Attn: TDPMP	1	Attn: Library	1	
Wright-Patterson AFB, Ohio 45433		P. O. Box 516		
wright racterson arb, onto 45455		St. Louis, Missouri 63166		
Army Amno. Procurement			_	
& Supply Agency		North American Rockwell	1	
Attn: RDL, Quality Assurance		Rocketdyne Division		
Tech Library		Attn: Library		
Joliet, Illinois 60431		McGregor, Texas 76657		
Naval Air Systems Command	1	Olin Mathieson Chemical Corp	1	
Attn: AIR-53672	1	Attn: Research Library		
Washington, D.C. 20360		P. O. Drawer G		
		Marion, Illinois 62959		
Aerospace Corp	1	Purdue University	1	
Attn: Library		School of Mechanical Engineering	_	
P. O. Box 1308		Attn: B. A. Reese		
San Bernardino, Calif 92402		Lafayette, Indiana 47907		
LIQUID PROPELLANT AND	ROCKET E	ENGINE PROGRAMS (Category 3)		
FMC Corporation	1	Northrop Corp	1	
Chemical R&D Center	-	Norair Division	-	
Attn: Library		Attn: Technical Information		
P.O. Box 8		3901 West Broadway		
Princeton, New Jersey 08540		Hawthorne, Calif. 90250		
— i ——		CIEIED		

Security Classification						
DOCUMENT CONT	TROL DATA - R	& D				
(Security classification of title, body of abstract and indexing	annotation must be					
ORIGINATING ACTIVITY (Corporate author)		26. REPORT SECURITY CLASSIFICATION				
Esso Research & Engineering Company		Confidential				
Linden, New Jersey		28. GROUP				
		4				
3 REPORT TITLE						
Dayslanmant of a Law Cout Catalyst fo	or Hudrauina	(11)				
Development of a Low Cost Catalyst f	or nyurazine	(0)				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)						
Final Report, January 15, 1968 - Nov	ember 15, 19	69				
S. AUTHOR(S) (First name, middle initial, last name)						
Martin Lieberman						
William F. Taylor						
6. REPORT DATE	78. TOTAL NO. O	F PAGES	7b. NO. OF REFS			
January, 1970	91		15			
M. CONTRACT OF GRANT NO.	Se. ORIGINATOR	S REPORT NUMB	<u> </u>			
Contract No. F04611-68-C-0044	GR-7-D	CH-70				
à. PROJECT NO.	J. 7 2	, 0				
c.	SD. OTHER REPO	RT NO(8) (Any of	her numbers that may be essigned			
	this report)					
1 4.	AFRPL-	rp _ 70_ 7				
10. DISTRIBUTION STATEMENT	AFREL-	IK-70-7				
In addition to security requirements which	h muct he me	t this dos	umant is subject to			
special export controls and each transmit						
tionals may be made only with prior appro	12. SPONSORING					
	127 57 51135 11175					
1	Air Fo	rce Rocket	Propulsion Laboratory			
	Edward	Air Force	Base, California			
13. ABSTRACT			, , , , , , , , , , , , , , , , , , , ,			
(C) A low cost, active, highly stab	le hydrazine	monoprope 1	llant decomposition			
catalyst has been developed. This cataly						
for its active component and thus does no	t contain an	y costly ar	nd strategically			
limited iridium metal. Laboratory and 5	pound thrust	er studies	conducted at Esso			
Research and Engineering Company and 5 an						
the Air Force Rocket Propulsion Laborator	v indicate t	hat Esso 50	00 is highly active			
at low ignition temperatures and shows un	menally high	resistance	e to loss of			
surface area during motor firing. Data						
actually indicated that Esso 500 showed n		riace area	arter up			
to 24 minutes of pulse mode firing with $\overline{\mathbf{h}}$	yurazine.					
/// A = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	11.1 5 10	11	daniel mide			
(U) A cobalt containing catalyst ca	lied Esso IV	I was also	developed. This			
catalyst has much lower activity than Ess	o 500 for hy	drazine dec	composition at 5 C.			
Esso 101, however, is active at higher te	mperatures a	nd can be e	employed where short			
ignition delays at low temperature is not	required an	d where ext	tremely low cost			
is a desired property.						
(U) Results of studies with various	cobalt cont	aining cata	llysts, cobalt-noble			
metal hybrid catalysts and ruthenium cont	aining catal	ysts using	several different			
substrate materials are also reported.						

Confidential
Security Classification

Unclassified
Security Classification

	KEY WORDS	LIN	LINK A		LINK A LINK D		K D	LINK C	
	net words	ROLE	WY	ROLE	WT	ROLE	WY		
		,							
1.	Hydrazine	i i							
2.	Monoprope Hant					Ì	İ		
₹.	Catalyst								
4.	Ammonia Decomposition			<u>.</u>	I				
5.	Hydrazine Decomposition					ĺ			
b.	Refractory Oxides								
7.	Thermally Stable Supports								
8.	Doped substrate								
							1		
]		a 1			ŀ		
		i i							
			Ĭ						
				İ					
		į į		Ì					
]	}					
		-	1			Ì			
			į			i			
		1				I			
				İ					
		1 1	1	1		j			
			3	1					
					į	-1	5.1		
						,			
			ł	1	A 36	3 8 8 1			

UNCLASSIFIED

Unclassified

Security Classification