

REPÚBLICA DE MOÇAMBIQUE GOVERNO DA PROVÍNCIA DE TETE DIRECÇÃO PROVINCIAL DA CIÊNCIA E TECNOLOGIA, ENSINO SUPERIOR E TÉCNICO PROFISSIONAL

INSTITUTO INDUSTRIAL DE MATUNDO

ACTIVIDADE (2)

Código do módulo: UCEPI05406171

Título do modulo - Testar convertedores de potência aplicados à electrónica industrial.

Sumário: Actividade (3)

Qualificação: Electricidade de Manutenção Industrial / CV4

Nome do formando: Idrissa Ibraimo John Said.

Nome do formador: Ferrão.

FICHA No. Cinco (5)

ACTIVIDADE (3)

- 1. Os rectificadores classe D são assim chamados, pois a forma de onda de corrente nos diodos são sinusoides rectificadas em meia onda e as tensões são ondas quadradas.
- a) Represente o esquema do modelo para *ir>0*.

b) De que consiste a topologia para o rectificador classe D meia onda?

R: A topologia para o rectificador classe D meia onda consiste de dois diodos e um capacitor para filtragem.

c) Em que consiste o circuito quando ir>0?

R: Consiste na topologia não-isolada.

d) Represente as formas de onda de tensão e corrente no rectificador classe D meia onda alimentado por corrente.

R:

e) Quais são as recomendações necessárias para que o conversor seja projectado?

R: Para que o conversor seja projectado, é necessário definir as suas especificações de funcionamento, entrada e saída.

- Tensão de entrada do inversor. (V_I)
- Tensão de saída do rectificador. (V_O)
- Carga do circuito e/ou máxima corrente de saída. (R_L,I_{Omax})
- Frequência de operação. (f)
- Frequência de ressonância. (f₀).

Além destas especificações, também são necessárias algumas outras informações:

- Eficiência do transformador, caso haja um (n_{tr})
- Eficiência esperada/estimada do inversor. (n_I)
- Resistências internas dos elementos do circuito ressonante. (r_L, r_C)
- Tensão e resistência de condução direita dos diodos do rectificador. (V_F,R_F)
- Resistência dreno-fonte do MOSFET a ser utilizada. (r_{DS})

f) Utilizando as informações sobre perdas e eficiência do inversor, indique as formulas de calculo de:

R: Eficiência do rectificador:

$$R_i = \frac{2R_L}{\pi^2 \eta_{tr}} \left[1 + \frac{2V_F}{V_O} + \frac{\pi^2 R_F}{2R_L} + \frac{r_C}{R_L} (\frac{\pi^2}{4} - 1) \right]$$

Modulo de função de transferência do rectificador:

$$|M_{VR}| = \frac{\pi \eta_{tr}}{\sqrt{2} \left[1 + \frac{2V_F}{V_O} + \frac{\pi^2 R_F}{2R_L} + \frac{r_C}{R_L} (\frac{\pi^2}{4} - 1)\right]}$$

Factor de qualidade.

$$|M_{Vr}| = \frac{M_V}{M_{Vs}|M_{VR}|}$$

Indutância a capacitância do circuito.

$$L = \frac{Q_L R}{\omega_o}$$

$$C = \frac{1}{\omega_o Q_L R}$$

2. Modulo termoeléctrico.

a) Explique o Efeito Peltier.

R: O efeito peltier é capaz de bombear calor de um lado para outro do modulo através da passagem de corrente elétrica. O sentido de condução da corrente controla o sentido de condução do calor.

b) Em que consiste a sua diferença com outros sistemas térmicos?

R: A diferença com outros sistemas térmicos consiste na mudança de funcionamento, pois este pode aquecer e resfriar, permitindo-o controlar afinadamente a temperatura com precisão.

c) O que apresenta a figura abaixo:

R: A figura abaixo representa um Módulo peltier comercial.

3. Conversor Classe E.

a) Represente os esquemas de topologia de inversor Classe EZVs e Classe E de baixa dv/dt.

R:

- 4. A simulação de circuitos em software permite o ensaio do esquema no computador.
- a) Represente o circuito projectado e pronto para simulação no PSIM.

R:

b) Represente o sinal da tensão de saída, resultante da simulação, sinal da tensão de saída.

R:

