HPO	MLS	OLS	GEM	FSR(*)	PCR(AICc)	PLS(AICc)	BST(AICc)	RBST(AIC)	BST(ICM)	RBST(ICM)
	abalone	2.56e+8(9)	47.50(3)	47.50(5)	49.72(8)	47.44(1)	47.50(5)	47.50(5)	47.51(7)	
Ridge	airfoil_self_noise	2.05e+7(9)	48.91(4)	48.90(2)	1.06e+4(8)	50.29(7)	48.90(2)	48.90(2)	48.96(5)	49.01(6)
	auto_mpg	18.73(9)	18.50(6)	18.43(3)	18.57(8)	18.43(1)	18.43(3)	18.43(3)	18.43(5)	18.51(7)
	automobile	2.45e+4(9)	17.71(2)	18.81(6)	413.02(8)	17.90(3)	18.81(6)	18.05(4)	18.35(5)	17.56(1)
	concrete_data	488.31(9)	39.16(8)	39.16(6)	39.07(1)	39.11(2)	39.16(6)	39.16(6)	39.15(3)	39.15(4)
	crime	2.41e+11(9)	34.79(6)		34.54(1)	34.81(8)	34.64(4)	34.64(4)	34.63(2)	34.79(7)
	fertility	4.65e+8(9)	109.12(8)	102.78(3)	107.29(7)	102.93(5)	102.78(3)	102.78(3)	103.02(6)	102.73(1)
	flow	1.37e+3(9)		63.78(3)	289.44(8)	64.68(6)	63.78(3)	63.78(3)	62.10(1)	
	forest	2.93e+9(9)	112.17(8)		101.70(7)	100.38(2)	100.75(5)	100.75(5)		100.73(3)
	qsar	75.01(9)		43.05(2)	43.23(8)	43.05(5)	43.05(2)	43.05(2)	43.05(6)	43.05(4)
	servo	1.9e+11(9)	63.80(8)	60.26(5)	60.53(7)	60.21(3)	60.26(5)	60.26(5)	59.77(1)	60.20(2)
	slump	4.51e+12(9)	90.91(8)	85.69(4)	85.74(6)	85.85(7)	85.69(4)	85.69(4)	85.48(1)	85.69(2)
	traffic	2.89e+10(9)	46.80(8)	45.06(6)	43.77(2)	41.56(1)	45.06(6)	45.06(6)	43.82(3)	44.65(4)
	wine_red	1.27e+3(9)	64.96(6)	64.92(3)	67.16(8)	65.05(7)	64.92(3)	64.92(3)	64.91(1)	64.95(5)
	wine_white	1.59e+3(9)	72.96(2)	72.97(4)	76.79(8)	73.12(7)	72.97(4)	72.97(4)	72.94(1)	72.97(6)
Avg. Rank		(9.00)	(6.07)	(4.10)	(6.33)	(4.33)	(4.10)	(3.93)	(3.20)	(3.93)
	abalone	43.96(8)	43.91(7)	42.99(4)	51.96(9)	43.60(6)	42.99(4)	42.99(4)	42.98(2)	42.69(1)
SVR	airfoil_self_noise	171.19(8)	72.69(3)	73.78(6)	3.28e+4(9)	72.04(2)	73.78(6)	73.78(6)	72.88(4)	71.14(1)
	auto_mpg	9.39e+13(9)	37.11(1)	37.33(3)	76.78(8)	42.44(7)	37.33(3)	37.33(3)	37.79(6)	37.61(5)
	automobile	3.61e+10(9)	110.99(7)		385.00(8)	99.99(1)	100.17(3)	100.17(3)	100.33(6)	100.28(5)
	concrete_data	333.84(8)	59.56(6)	53.86(3)	369.07(9)	60.36(7)	53.86(3)	53.86(3)	53.72(1)	53.93(5)
	crime	41.60(3)	41.45(2)	42.49(6)	46.16(9)	42.62(8)	42.49(6)	42.49(6)	41.67(4)	41.22(1)
	fertility	2.83e+11(9)	100.62(1)	114.09(5)	106.90(2)	116.04(7)	114.09(5)	114.09(5)	116.46(8)	113.30(3)
	flow	6.06e+15(9)	76.52(6)	76.51(3)	677.39(8)	74.12(1)	76.52(5)	76.51(3)	75.44(2)	
	forest	1.66e+7(9)	95.50(1)	100.80(4)	104.71(8)	101.31(7)	100.80(4)	100.80(4)	100.90(6)	100.29(2)
	qsar	2.81e+12(9)	36.65(2)	39.34(6)	41.09(8)	38.04(4)	39.34(6)	38.28(5)	36.89(3)	36.59(1)
	servo	2.21e+4(9)	18.14(6)	17.35(4)	17.16(3)	20.01(8)	16.01(2)	15.89(1)	17.44(5)	18.39(7)
	slump	1.29e+14(9)	75.60(7)	74.17(4)	210.01(8)	74.59(6)	72.51(1)	74.36(5)	72.62(2)	74.01(3)
	traffic	457.72(9)	37.64(1)	39.35(3)	61.08(8)	50.16(7)	39.35(3)	39.35(3)	40.61(6)	39.60(5)
	wine_red	92.52(9)	60.06(5)	65.39(7)	64.17(6)	58.05(4)	57.52(3)	65.39(7)	56.97(2)	56.50(1)
	wine_white	55.89 (1)	60.59(7)	73.37(9)	65.01(8)	59.24(6)	58.83(5)	58.79(4)	58.52(3)	55.92(2)
Avg. Rank		(7.87)	(4.13)	(4.77)	(7.40)	(5.40)	(3.97)	(4.20)	(4.00)	(3.27)
	abalone	44.58(3)	44.30(1)	44.95(6)	60.76(9)	45.68(8)	44.95(6)	44.95(6)	44.89(4)	44.40(2)
RFR	$airfoil_self_noise$	20.40(1)	25.30(8)	23.43(6)	3.29e+4(9)	22.70(2)	23.43(6)	23.43(6)	23.27(4)	22.91(3)
	auto_mpg	15.79(8)	14.02(2)	14.62(5)	612.96(9)	13.71(1)	14.62(5)	14.62(5)	14.63(7)	14.36(3)
	automobile	15.22(7)	17.33(8)	14.93(3)	408.94(9)	15.09(6)	14.93(3)	14.93(3)	14.90(1)	14.99(5)
	concrete_data	16.23(1)	26.26(8)	22.79(6)	471.77(9)	17.07(3)	22.79(6)	17.40(4)	20.46(5)	16.54(2)
	crime	35.56(5)	35.20(2)	36.13(7)	37.11(9)	35.54(4)	36.13(7)	36.13(7)	35.23(3)	35.10(1)
	fertility	163.56(9)	96.63(2)	99.66(4)	100.19(6)	105.33(7)	99.66(4)	99.66(4)	107.90(8)	94.58(1)
	flow	71.44(7)	59.02 (1)	66.93(4)	871.96(9)	76.66(8)	66.93(4)	66.93(4)	67.41(6)	61.24(2)
	forest	115.62(9)	106.05(7)	105.26(5)	105.20(3)	104.74(2)	105.26(5)	105.26(5)	102.88(1)	106.29(8)
	qsar	38.78(5)	37.68(2)	39.17(7)	44.05(9)	38.40(4)	39.17(7)	39.17(7)	38.36(3)	37.51(1)
	servo	24.35(9)	14.52(5)	14.06(3)	21.59(8)	15.48(7)	14.06(3)	13.73(1)	13.82(2)	14.55(6)
	slump	96.41(8)	72.16(1)	73.55(5)	503.21(9)	72.62(3)	73.55(5)	73.55(5)	73.69(7)	72.21(2)
	traffic	117.24(8)	43.67(1)	47.56(4)	235.82(9)	57.48(7)	47.56(4)	47.56(4)	48.48(6)	45.17(2)
	wine_red	56.06(2)	55.97(1)	57.64(6)	73.95(9)	58.51(8)	57.64(6)	57.64(6)	57.30(4)	56.56(3)
	wine_white	57.91(1)	59.25(3)	60.32(6)	73.72(9)	60.62(8)	60.32(6)	60.32(6)	60.02(4)	59.05(2)
Avg. Rank		(5.53)	(3.47)	(5.20)	(8.33)	(5.20)	(5.20)	(4.87)	(4.33)	(2.87)
Mean Rank		(7.47)	(4.56)	(4.69)	(7.36)	(4.98)	(4.42)	(4.33)	(3.84)	(3.36)

Table 3: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when OLS and GEM and the best stop criteria among AIC, AICc, BIC, HQIC, GMDL for FSR, PCR, PLS, BST and RBST and the novel stop criterion ICM for BST and RBST, taking into account some baseline systems (Ridge, SVR and RFR) and the BO sampling strategy.