3. The λ -Calculus and Implication

- (a) The untyped λ -calculus.
- (b) The typed λ -calculus.
- (c) The λ -Calculus in Agda.
- (d) Logic with Implication
- (e) Implicational Logic in Agda.
- (f) More on the typed λ -calculus.

(a) The Untyped λ -Calculus

Basic idea of the λ-calculus: We want to define functions "on the fly" (so called "anonymous functions").

Example:

- We want to apply a function to all elements of a list.
- For instance, we want to upgrade a list of student numbers to one with one extra digit.

Greek Letters

- λ is the Greek letter lambda.
- On the next slide you find the greek alphabet in upper case and lower case.
 - Some letters have two options for lower case, in which case the second is sometimes (but not always) pronounced by adding "var" in front, e.g. varphi for φ .
 - Some letters are indistinguishable from the Roman alphabet. So one cannot use them as separate mathematical symbols. I put brackets around them.
 - If one wants to transcribe the capital greek letter in Roman alphabet, one writes the lower case transcription and starts it with a capital, e.g. Gamma for Γ , Delta for Δ .

The Greek Alphabet

(A)	α	alpha	(N)	ν	nu
(B)	β	beta	[I]	ξ	xi
Γ	γ	gamma	(O)	(o)	omikron
Δ	δ	delta	П	π	pi
(E)	ϵ	epsilon	(P)	$ ho$, ϱ	(var)rho
(Z)	ζ	zeta	\sum	σ , ς	(var)sigma
(H)	η	eta	(T)	au	tau
Θ	heta, $artheta$	(var)theta	Υ	v	upsilon
(l)	ι	iota	Φ	ϕ , $arphi$	(var)phi
(K)	κ	kappa	(X)	χ	chi
Λ	λ	lambda	Ψ	ψ	psi
(M)	μ	mu	Ω	ω	omega

Example for Use of λ

- Can be done by multiplying each student number by 10.
- Let $f: \mathbb{N} \to \mathbb{N}$, f(x) := x * 10.
- In many languages (e.g. C++, Perl, Python, Haskell) there is a pre-defined operation map, which takes a function f, and a list l, and applies f to each element of the list.

So for the above f we have

```
\max(f, [210345, 345698, 296458])
= [2103450, 3456980, 2964580].
```

Introduction to λ -Terms

- Often the f is only needed once, and introducing first a new name f for it is tedious.
- So one needs a short notation for "the function f, s.t. f(x) = x * 10".
- Notation is $\lambda x.x * 10$.
- So we have

```
\max(\lambda x.x * 10, [210345, 345698, 296458])= [2103450, 3456980, 2964580].
```

- In general $\lambda x.t$ stands for the function f s.t. f(x) = t, where t might depend on x.
 - above t = x * 10.

Notation

- One writes in functional programming usually s t for the application of s to t instead of s(t) as usual.
 - This is used since we have often to apply a function several times, writing something like f(r)(s)(t). Instead we write f(r)(s)(t).
- As indicated by the example, r s t stands for (r s) t, in general r_0 r_1 $r_2 \cdots r_n$ stands for $(\cdots ((r_0 \ r_1) \ r_2) \ \cdots r_n)$.

Abbreviations

- We write $\lambda x, y \cdots$ for $\lambda x. \lambda y \cdots$
- Similarly for $\lambda x, y, z$. etc.
- **■** E.g. $\lambda x, y, z.x$ (y z) stands for $\lambda x.\lambda y.\lambda z.x$ (y z).

Infix Operators

- We use + and * infix. The corresponding operators are written as (+), (*).
 - So x + y stands for (+) x y,
 - x * y stands for (*) x y.
- \bullet + and * will bind less than any non-infix constants. Therefore S x + S y stands for (S x) + (S y).
- * binds more than +. Therefore x + y * z stands for x + (y * z), and S x + S y * z stands for (S x) + ((S y) * z).
- In Agda we can achieve this by using the code

Scope of λx .

- How do we read $\lambda x.x + 5$?
 - As $(\lambda x.x) + 5$?
 - Or as $\lambda x.(x+5)$?
- Convention: The scope of λx . is as long as possible.
 - So $\lambda x.x + 5$ reads as $\lambda x.(x + 5)$.
 - $\lambda x.(\lambda y.y)$ 5 reads as $\lambda x.((\lambda y.y)$ 5).

Scope of λx .

- In $(\lambda x.x)$ 5, the scope λx . cannot be extended beyond the closing bracket.
 - ightharpoonup So it is "x",
 - not "x) 5", which doesn't make sense.
- In $f(\lambda x.x + 5, 3)$, the scope of λx
 - is "x + 5",
 - not "x + 5, 3)", which doesn't make sense.
- In $(\lambda x.x + 5)$ 3, the scope of λx
 - \bullet is x+5
 - not x + 5) 3, which doesn't make sense.

λ without a Dot

- Sometimes, $\lambda x t$ (without a dot) is used, if one wants to have the scope of λx as short as possible.
 - E.g. $\lambda x \ x \ y$ would denote $(\lambda x.x) \ y$.
- In this lecture we don't use this notation.

λ -Terms

- Now we can define the terms of the untyped λ -calculus as follows:
- λ terms are:
 - Variables x,
 - If r and s are λ -terms, so is (r s).
 - If x is a variable and r is a λ -term, so is $(\lambda x.r)$.
- As usual brackets can be omitted, using
 - the above mentioned conventions about the scope of λx ,
 - and that r s t is read as (r s) t.

λ -Terms

Examples:

- $(\lambda x.x \ x \ x) \ (\lambda x.x \ x \ x),$

λ -Terms

- One might need additional constants to the language, then we have additionally:
 - Any constant is a λ -term.
- For instance,
 - if c is a constant, then $\lambda x.c$, $(\lambda x.x)$ c are λ -terms;
 - if (+) is a constant, then $\lambda x.(+) x x$ is a a λ -term.
- For standard operators like +, *, one has
 - **●** constants (+), (*),
 - infix operations +, *,
 - and writes in infix notation
 - x + y instead of (+) x y,
 - x * y instead of (*) x y,
 - etc.

Bound and Free Variables

- There are bound and of free variables in λ -terms:
 - **Bound variables** are variables x, which occur in the scope of a λ -abstraction " λx .".
 - Free variables are the other variables.
 - Example: In $\lambda x.x + y$,
 - x is bound (since in the scope of λx),
 - y is free (since it is not in the scope of λy).

Bound and Free Variables

- In $(\lambda y.y + z) y$,
 - the first occurrence of y, y is bound,
 - the second occurrence of y, y is free,
 - z is free.
- In $(\lambda y.((\lambda z.z) y)) x$, we have
 - ightharpoonup z is bound,
 - y is bound (in the scope of λy),
 - \bullet x is free.

Bound and Free Variables

- Note that being bound and free has something to do with an occurrence of a variable in a term, not with the variable itself.
- So more precisely we should speak of occurrences of bound and free variables.
- ullet By the <u>free variables</u> of a term t we mean the variables x which have free occurrences, respectively, in t.
- ullet Similarly we define the **bound variables** of a term t.

α -Conversion

- We identify λ -terms, which only differ in the choice of the bound variables (variables abstracted by λ):
 - So $\lambda x.x + 5$ and $\lambda y.y + 5$ are identified.
 - Makes sense, since they both denote the same function f s.t. f(x) = x + 5.
 - $(\lambda x.x + 5) 3 + 7$ and $(\lambda y.y + 5) 3 + 7$ are identified.
 - $\lambda x.\lambda y.y$ and $\lambda y.\lambda x.x$ are identified.
- This equality is called α -equality, and the step from one term to another α -equal term is called α -conversion.
- So $\lambda x.\lambda y.y$ and $\lambda y.\lambda x.x$ are α -equal, written as $\lambda x.\lambda y.y =_{\alpha} \lambda y.\lambda x.x$.

α -Conversion

- Note that $\lambda \mathbf{x} . \lambda x . x =_{\alpha} \lambda y . \lambda x . x$.
 - The x refers to the second lambda abstraction λx , not the first one (λx) .
 - Therefore, when changing the variable of the first λ -abstraction, x remains unchanged.

Evaluation of λ -Terms

- **●** How do we evaluate $(\lambda x.x * 10)$ 5?
 - We first replace in x * 10, the variable x by 5.
 - We obtain 5*10.
 - Then we reduce this further, using other reduction rules (not introduced yet). Using suitable rules, we would reduce 5 * 10 to 50.
 - In this Subsection we will look only at the pure λ -calculus without any additional reduction rules. There $(\lambda x.x*10)$ 5 reduces to 5*10, which cannot be reduced any further.

Basics of the λ -Calculus

- In general, the result of applying $\lambda x.t$ to r, is obtained by substituting in t the variable x by r. E.g.
 - $(\lambda x.x + 10)$ 5 evaluates to 5 + 10,
 - If we substitute in x + 10 the variable x by 5, we obtain 5 + 10.
 - $(\lambda x.x)$ "Student" evaluates to "Student".
 - If we substitute in x, the variable x by "Student", we obtain "Student".
 - $(\lambda x.x) (\lambda y.y)$ evaluates to $\lambda y.y$.
 - If we substitute in x the variable x by $\lambda y.y.$ we obtain $\lambda y.y.$

Substitution

- The last example shows that substitution by λ -terms can become more complicated, and we therefore instudy it in the following more carefully.
- If t and s are λ -terms, t[x := s] denotes the result of substituting in t the variable x by s, e.g.
 - $(x+10)[x := 5] \equiv 5+10$,
 - $x[x := "Student"] \equiv "Student",$
 - $x[x := \lambda y.y] \equiv \lambda y.y$.

Substitution and Parentheses

- Substitution might introduce additional parentheses.
 - When we write a term e.g.

$$t \equiv 2 + 2$$
,

what we really mean is that there are brackets around that term, e.g.

$$t = (2+2)$$
.

We omit the outer parentheses usually for convenience.

 When substituting a term, the parentheses might become relevant.

Substitution and Parentheses

E.g.

$$(x*x)[x := 2+2] = (2+2)*(2+2)$$
.

- So we have to reintroduce in that example the brackets around 2+2 before carrying out the substitution.
- If we did it naively (without reintroducing brackets), we would obtain

$$2 + 2 * 2 + 2$$

which is different from

$$(2+2)*(2+2)$$
.

Substitution and Bound Variables

- If we carry out a substitution in a λ -term, we have to be careful.
 - $(\lambda x.x + 7)[x := 3] \equiv \lambda x.x + 7.$
 - It doesn't make sense to substitute the x in $\lambda x.x + 7$, since x is bound by $\lambda x.$.
 - x is a bound variable, which is not changed by the substitution.
- In general, in s[x := t] we only substitute free occurrences of x in s by t.
- All bound occurrences remain unchanged.

Substitution and Bound Variables

More examples:

- $(\lambda x.x)[x := \text{"Student"}] \equiv \lambda x.x.$
 - The x in $\lambda x.x$ is bound by λx , so no substitution is carried out.
- $((\lambda x.x) x)[x := \text{"Student"}] \equiv (\lambda x.x) \text{"Student"}.$
 - The first x is bound, so no substitution is carried out.
 - ullet The second x is free, so substitution is carried out.
- $(\lambda y.x + y)[x := 3] \equiv \lambda y.3 + y.$
 - x in $\lambda y.x + y$ is free, so it will be substituted by 3 in the above example.

- When substituting in λ -terms, we sometimes have to carry out an α -conversion first:
 - If we substitute in $\lambda y.y + x$, the variable x by 3, we obtain correctly $\lambda y.y + 3$, the function f s.t. f(y) = y + 3.
 - If we substitute in $\lambda y.y + x$, the variable x by y, we should obtain a function f s.t. f(z) = z + y.
 - If we did this naively, we would obtain $\lambda y.y + y$.
 - So the free variable y, which we substituted for x, has become, when substituting it in $\lambda y.y + x$, to a bound variable.
 - This is not the correct way of doing it.

- The correct way is as follows:
 - First we α -convert $\lambda y.y + x$, so that the binding variable y is different from the free variable we are substituting x by:
 - Replace for instance $\lambda y.y + x$ by $\lambda z.z + x$.
 - Now we can carry out the substitution:

$$(\lambda y.y + x)[x := y] =_{\alpha} (\lambda z.z + x)[x := y] \equiv \lambda z.z + y .$$

• Similarly, we compute $(\lambda y.y + x)[x := y + y]$ as follows:

$$(\lambda y.y+x)[x:=y+y] =_{\alpha} (\lambda z.z+x)[x:=y+y] \equiv \lambda z.z+(y+y)$$

- In general, the substitution t[x := s] is carried out as follows:
 - α -convert t s.t.
 - if x occurs in t free and is in the scope of some λu ,
 - then u doesn't occur free in s.
 - In other words, α -convert t s.t. one never would substitute for x the s in such a way that one of the free variables of s becomes bound.
 - Then carry out the substitution.
- Intuitively this means: α -convert the bound variables in s in such a way that never a variable, which is free in s becomes bound when replacing in t variable x by s.

Examples

- $(\lambda x.\lambda y.z)[z := x] =_{\alpha} (\lambda u.\lambda y.z)[z := x] \equiv (\lambda u.\lambda y.x) ,$
- $(\lambda x.\lambda y.z)[z := y] =_{\alpha} (\lambda x.\lambda u.z)[z := y] \equiv (\lambda x.\lambda u.y) ,$
- $(\lambda x.(\lambda y.y)\ z)[z:=y] \equiv \lambda x.(\lambda y.y)\ y$. There is no problem in substituting the z by y, since it is not in the scope of λy .
- $(\lambda x.(\lambda y.y) \ y)[y := x] =_{\alpha} (\lambda u.(\lambda y.y) \ y)[y := x] \equiv \lambda u.(\lambda y.y) \ x .$

Examples

- $(\lambda x.z)[z := \lambda x.x] \equiv \lambda x.\lambda x.x.$
 - There is no problem with this substitution, since x does not occur free in $\lambda x.x$.

Note that the x in $\lambda x. \lambda x. x$ refers to the second λ -binding λx .

 $(\lambda x.z)[z := (\lambda x.x) \ x] =_{\alpha} (\lambda u.z)[z := (\lambda x.x) \ x] \equiv \lambda u.((\lambda x.x) \ x).$

Now x occurs free in $(\lambda x.x)$ x (the second occurrence is free), so we need to α -convert it.

- If you have problems understanding this, you can proceed as follows, and are on the safe side:
 - α -convert t so that all bound variable in t are different from all free variables in s.
 - Then carry out the substitution.
- An unnecessary α -conversion doesn't hurt.

$$s[x]$$
, $s[t]$

- Writing s[x := t] is sometimes a bit lengthy.
- Therefore we will introduce the notion s[x], s[t].
 - s[x] stands for a term s possibly depending on a variable x.
 - E.g. $s[x] \equiv x$ or $s[x] \equiv a \ x$ for some constant a or $s[x] \equiv \lambda y.x$.
 - After we have introduced a term s[x], we define s[t] as the result of substituting in s[x] the variable x by t, e.g.

$$s[t] := s[x][x := t]$$

s[x], s[t]

Examples:

- If $s[x] \equiv x$ then $s[t] \equiv t$.
- If $s[x] \equiv a x$, then $s[t] \equiv a t$.
- If $s[x] \equiv \lambda y.x$, then $s[y] \equiv (\lambda y.x)[x := y] = \lambda z.y$.
 - In the last example we had first to carry out α -conversion, before we can carry out the substitution.
- We will usually not say what s[x] actually is. Then it can essentially be treated as a term s with a hole, for which x is substituted (and in the original term with holes, x doesn't occur).

β -Redexes

- The notion of β -reduction is one step in the sense of evaluation of a λ -term to another term.
- We first introduce the notion of a β -redex of a term t:
- A subterm $(\lambda x.r)$ s of a λ -term t is called a β -redex of t.

Examples:

- $(\lambda x.x) y z$ has β -redex $(\lambda x.x) y$.
 - Note that the bracketing is $((\lambda x.x) \ y) \ z$, not $(\lambda x.x) \ (y \ z)$.
- A redex can be the term itself: $(\lambda x.x)$ y has β -redex $(\lambda x.x)$ y.

β -Redexes

- A λ -term might have several β -redexes:
 - E.g. In $(\lambda x.x \ x) \ ((\lambda y.y) \ z)$ we have
 - one redex $(\lambda x.x \ x) \ ((\lambda y.y) \ z)$
 - and one redex $(\lambda y.y)$ z.

β -Reduct

- A β -redex $(\lambda x.s)$ t can be reduced to s[x:=t].
 - s[x:=t] is called the β -reduct of $(\lambda x.s) t$.
 - The β -reduct of $(\lambda x.x + 10)$ 5 is 5 + 10,
 - The β -reduct of $(\lambda x.x)$ "Student" is "Student".
 - The β -reduct of $(\lambda x.x)$ $(\lambda y.y)$ is $\lambda y.y$.
- Using the "s[t]-notation", the above can be more briefly written as

" $(\lambda x.s[x])$ t reduces to s[t]."

β -Reduction

- $r \longrightarrow_{\beta} r'$, " $r \beta$ -reduces to r', or shorter $r \longrightarrow_{\gamma} r'$, if r' is obtained from r by replacing one β -redex by its β -reduct.
- Examples:
 - $((\lambda \mathbf{x}.\mathbf{x} + \mathbf{5}) \ \mathbf{3}) + 7 \longrightarrow (\mathbf{3} + \mathbf{5}) + 7$, since $(\lambda x.x + 5) \ \mathbf{3} \longrightarrow \mathbf{3} + \mathbf{5}$.
 - Assume we add a pairing operation $\langle s, t \rangle$ for the pair s, t (will be introduced later), then

$$\langle (\lambda \mathbf{x}.\mathbf{x} + \mathbf{5}) \ \mathbf{3}, 7 \rangle \longrightarrow \langle \mathbf{3} + \mathbf{5}, 7 \rangle$$
,

Examples

• We can apply β -reduction under a λ term as well:

$$\lambda x.((\lambda y.y + 5) 3) \longrightarrow \lambda x.3 + 5$$
.

Multiple redexes:

Because a λ -term might have several redexes, it might have two different reductions:

For instance

$$(\lambda x.x \ x) \ ((\lambda y.y) \ z) \longrightarrow (\lambda x.x \ x) \ z.$$

Examples of β -Reduction

$$(\lambda x.\lambda y.x) \ y \longrightarrow (\lambda y.x)[x := y] =_{\alpha} (\lambda u.x)[x := y] \equiv \lambda u.y$$
$$(\lambda z.\lambda x.\lambda y.z) \ x \longrightarrow (\lambda x.\lambda y.z)[z := x] =_{\alpha} (\lambda u.\lambda y.z)[z := x]$$
$$\equiv \lambda u.\lambda y.x$$
$$(\lambda z.\lambda x.(\lambda y.y) \ z) \ y \longrightarrow (\lambda x.(\lambda y.y) \ z)[z := y] \equiv \lambda x.(\lambda y.y) \ y$$
$$\lambda x.(\lambda y.y) \ y \longrightarrow \lambda x.y$$

Example (Longer Reduction)

- In the steps marked \equiv on the next slide, essentially the colouring is changed to mark the next β -redex.
- These steps are not very well visible on the printed black-and-white slides (where I use italic/boldface in order to denote the differences).
- $m{\wp}$ This applies to future slides containing more complex β -reductions as well.
- Remember as well that

 $\lambda x, y.t$

abbreviates

 $\lambda x.\lambda y.t$

Example (Longer Reduction)

$$(\lambda x, y.x (x y)) (\lambda u, v.u (u v))$$

$$\equiv (\lambda \mathbf{x}.\lambda y.\mathbf{x} (\mathbf{x} y)) (\lambda u, v.u (u v))$$

$$\longrightarrow \lambda y.(\lambda u, v.u (u v)) ((\lambda u, v.u (u v)) y)$$

$$\equiv \lambda y.(\lambda u, v.u (u v)) ((\lambda u.\lambda v.u (u v)) y)$$

$$\longrightarrow \lambda y.(\lambda u, v.u (u v)) (\lambda v.y (y v))$$

$$\equiv \lambda y.(\lambda u.\lambda v.u (u v)) (\lambda v.y (y v))$$

$$\longrightarrow \lambda y.\lambda v.(\lambda v.y (y v)) ((\lambda v.y (y v)) v)$$

$$\equiv \lambda y.\lambda v.(\lambda v.y (y v)) ((\lambda \mathbf{v}.y (y \mathbf{v})) v)$$

$$\longrightarrow \lambda y.\lambda v.(\lambda v.y (y v)) (y (y v))$$

$$\equiv \lambda y.\lambda v.(\lambda \mathbf{v}.y (y v)) (y (y v))$$

$$\equiv \lambda y.\lambda v.(\lambda \mathbf{v}.y (y v)) (y (y v))$$

$$\equiv \lambda y.\lambda v.y (y (y (y v)))$$

Examples of Non-Termination

Reproduction (Term reduces to itself).

Let
$$\omega := \lambda x.x \ x$$
, $\Omega := \omega \ \omega$. Then

$$\Omega \equiv \omega \ \omega \equiv (\lambda x.x \ x) \ \omega \longrightarrow \omega \ \omega \equiv \Omega .$$

Expansion (Term reduct becomes bigger).

Let
$$\widetilde{\Omega} := \lambda x.x \ (x \ x)$$
. Then

$$\widetilde{\Omega} \ \widetilde{\Omega} \equiv (\lambda x. x \ (x \ x)) \ \widetilde{\Omega}$$

$$\longrightarrow \widetilde{\Omega} \ (\widetilde{\Omega} \ \widetilde{\Omega})$$

$$\longrightarrow \widetilde{\Omega} \ (\widetilde{\Omega} \ (\widetilde{\Omega} \ \widetilde{\Omega}))$$

Remark on Previous Slide

• Note that in the λ -term above

$$\lambda x.x (x x)$$

is to be read as

$$\lambda x.(x (x x))$$

and not as

$$(\lambda x.x) (x x)$$

• The scope of λx . is always as long as possible.

λ -Calc. as a Red. Sys

- **Proof** By the untyped λ-calculus (short λ-calculus) we mean now
 - the set of λ -terms, T where α -equivalent λ -terms are identified,
 - together with β -reduction \longrightarrow_{β} .
- Therefore the λ -calculus forms a reduction system $(T, \longrightarrow_{\beta})$.
- One might have the λ -calculus with additional constants.
 - Without additional constants, the (untyped) λ -calculus is called the **pure** (untyped) λ -calculus.

$\longrightarrow_{\beta}^*$ and $=_{\beta}$

- For reduction systems we introduced notations \longrightarrow^* , $a \longleftrightarrow^* b$.
- These notions can be used for the λ -calculus as well.
- We define $r = \beta s$ ("r and s are β -equivalent") iff $r \longleftrightarrow_{\beta}^* s$.
- Since we identified α -equivalent λ -terms, there can be arbitrary many α -conversions in a chain for showing that $r =_{\beta} s$.
- Therefore we have $r =_{\beta} r'$ iff there exists a sequence $s_0, \ldots, s_n, t'_0, \ldots, t'_n$ (n = 0 is possible) s.t.

$$r \equiv s_0 =_{\alpha} t_0 \longleftrightarrow_{\beta} s_1 =_{\alpha} t_1 \longleftrightarrow_{\beta} s_2 =_{\alpha} t_2 \longleftrightarrow_{\beta} \cdots$$
$$\longleftrightarrow_{\beta} s_n =_{\alpha} t_n \equiv r' .$$

Confluence of the λ -Calculus

- **Fact**: The λ-calculus is confluent (if we identify α-equivalent terms).
- Therefore two λ terms r and s are β -equivalent, iff there exits a term t s.t. $r \longrightarrow_{\beta}^{*} t$ and $s \longrightarrow_{\beta}^{*} t$.
- **Example:** $((\lambda y.y)\ z)\ ((\lambda y.y)\ z)$ and $(\lambda x.x\ x)\ z$ are β -equivalent:
 - $((\lambda y.y) z) ((\lambda y.y) z)$ reduces in two steps to z z
 - and $(\lambda x.x \ x) \ z$ reduces in one step to the same term.

β -equality

- Note that this doesn't give yet an easy way of determining whether $r =_{\beta} s$ holds:
 - One needs to find a t s.t. $s \longrightarrow^* t$ and $r \longrightarrow^* t$.
 - But simply reducing r might never terminate.
- Example:
 - $(\lambda x.y)$ Ω reduces in one step to y.
 - So $(\lambda x.y) \Omega =_{\beta} y$.
 - However, by reducing Ω we obtain Ω, therefore $(λx.y) Ω \longrightarrow (λx.y) Ω$.
 - So if we keep on following the second reduction, we will never find that this term is β -equivalent to y.

Need for Typed λ -Calculus

• Therefore we introduce the typed λ -calculus, which is strongly normalising, and in which therefore equality of λ -terms can be decided by determining α -equality of normal forms.

(b) The Typed λ -Calculus

- Problem of the untyped λ -calculus:
 - Non-Termination, therefore $=_{\beta}$ difficult to check.
 - In fact $=_{\beta}$ is semi-decidable (r.e.), but not decidable (recursive).
 - Caused by the possibility of self-application, which allows to write essentially fully recursive programs.
 - Avoided by the simply typed λ -calculus, which is strongly normalising.

Main Idea of the Typed λ -Calculus

- $\lambda x.x + 5$ is a function,
 - taking an x : Int,
 - and returning x + 5 : Int.
- **●** Therefore, we say that $(\lambda x.x + 5) : \text{Int} \to \text{Int}$.
 - In words, " $\lambda x.x + 5$ is of type Int arrow Int".
- In order to clarify the type of x, we write instead of $\lambda x.x + 5$

$$\lambda x^{\text{Int}}.x + 5$$
.

or

$$\lambda(x: \text{Int}).x + 5$$
.

Basics of the Typed λ -Calculus

- $\lambda x^{\mathrm{Int}}.x + 5$ is
 - only applicable to some s : Int,
 - therefore not applicable to elements of other types,
 e.g. to "Student" (: String).
- So
 - $(\lambda x^{\text{Int}}.x + 5)$ 3 is allowed,
 - $(\lambda x^{\text{Int}}.x + 5)$ "Student" is **not** allowed.

Simple Types

- The simple types used in the simply typed λ -calculus are defined inductively as follows:
 - The ground type o is a type.
 - If σ , τ are types, so is $(\sigma \to \tau)$.
- "Inductively" means that the set of simple types is the least set containing the ground type, and which closed under →.
- One sometimes modifies the set of ground types, especially when adding constants to the λ -terms.
 - E.g. when using arithmetic expressions, one can say for instance that the ground types are Int and Float.
 - Then we talk about the <u>simple types based on</u> ground types Int and Float.

Simple Types

- Usually we denote types by Greek letters,
 - e.g. α ("alpha"), β ("beta"), γ ("gamma"), σ ("sigma"), τ ("tau").
- We omit brackets as usual using the convention that $\alpha \to \beta \to \gamma$ stands for $\alpha \to (\beta \to \gamma)$.
- Examples types:
 - **9** O,
 - lacksquare o \rightarrow o,
 - $\bullet (O \to O) \to O,$
 - $\bullet ((O \to O) \to O \to O) \to (O \to O) \to O \to O,$
 - which stands for

$$(((o \rightarrow o) \rightarrow (o \rightarrow o)) \rightarrow ((o \rightarrow o) \rightarrow (o \rightarrow o))).$$

Abbreviation

In order to make writing down such types easier, one can use sometimes the following abbreviations (these are non-standard abbreviations, and should be defined explicitly when using outside this lecture.

- \bullet o2 := o \rightarrow o,
- $o3 := o2 \rightarrow o2$,
- etc.

So

- an element of type o2 can be applied to an element of type o and one obtains an element of type o.
- an element of type o3 can be applied to an element of type o2 and one obtains an element of type o2.
- etc.

- To determine the type of a term makes only sense, if we know the types of its variables.
 - For instance, in case of the λ -term x y, we could have
 - x : o2, y : o and therefore x y : o,
 - or x : o3, y : o2, and therefore x y : o2.
 - Therefore we will give a type to λ terms in a context, which determines the types of the variables.

A context is an expression of the form

```
x_1:\sigma_1,\ldots,x_n:\sigma_n where
```

- x_i are variables,
- σ_i are simple types, (when considering other type theories, σ_i will be types of that theory).
- n=0 is allowed, and we write \emptyset for the empty context.
- Multiple occurrences of the same variable (even with different types) is allowed.
 - If we have two occurrences of the same variable, only the second occurrence counts.
 - E.g. in $x : \sigma, y : \tau, x : \rho$, " $x : \sigma$ " is overriden by " $x : \rho$ ", so the assumption in this context is $x : \rho$.

• Examples

- x: o, y: o2 is a context.
- x: o2, x: o is a context in which we assume x: o.
- Note that contexts are **lists** of elements of the form $x : \sigma$, so the order matters.
 - In case of the simply typed λ -calculus, it wouldn't make a difference to have as context unordered sets of expressions of the form $x : \sigma$ (as long as all variables in a context are different in order to avoid overriding).
 - However, when moving later to dependent type theory, the order of the expressions $x : \sigma$ will be relevant.

- We write $\Gamma \Rightarrow s : \sigma$ for "in context Γ , s has type σ ".
 - Expressions of this form are called judgements.
- Examples:
 - \bullet $x: o2, y: o \Rightarrow xy: o$,
 - $x : \text{Float} \to \text{Int}, y : \text{Float} \Rightarrow x \ y : \text{Int}$ (assuming ground types Float and Int),
 - \bullet $x: o3, y: o2 \Rightarrow xy: o2.$
- In case Γ is empty, we write $s:\sigma$ instead of $\emptyset \Rightarrow s:\sigma$.

• If Γ , Δ are contexts, Γ , Δ denotes the concatenation of both contexts, e.g. if

- $\Gamma \equiv x : 0, y : 02,$
- $\Delta \equiv z : o$

then

- Γ, Δ denotes x : 0, y : 02, z : 0,
- Δ, Γ denotes z : o, x : o, y : o2,
- $\Gamma, u : o$ denotes x : o, y : o2, u : o.

Simply Typed λ -Calculus

Definition of the simply typed λ -terms, depending on a context, together with their type.

1. Assumption.

Variables, occurring in the context, are terms having the type they have in the context:

$$\Gamma, x : \sigma, \Delta \Rightarrow x : \sigma$$

Condition on x: x must not occur in Δ .

- Otherwise $x : \sigma$ is overriden by the assumption on x in Δ .
- **▶** Note that $\Gamma, x : \sigma, \Delta$ stands for any context, in which $x : \sigma$ occurs.
- **Explanation:** From the assumption $x : \sigma$ we can derive $x \cdot \sigma$

Example (Assumption)

We will illustrate the rules using a derivation of

$$y: o \rightarrow o \rightarrow o \Rightarrow \lambda x^{o}.y \ x: o \rightarrow o \rightarrow o$$

In order to derive it we will need to derive first

$$y: o \rightarrow o \rightarrow o, x: o \Rightarrow y: o \rightarrow o$$

In order to derive that we use twice the assumption rule and obtain

$$y: o \rightarrow o \rightarrow o, x: o \Rightarrow y: o \rightarrow o \rightarrow o$$

and

$$y: o \rightarrow o \rightarrow o, x: o \Rightarrow x: o$$

Example (Overriding of Assum.)

We have

$$x:\sigma,x:\tau\Rightarrow x:\tau$$

but not

$$x:\sigma,x:\tau\Rightarrow x:\sigma$$

Simply Typed λ -Calculus

2. Application.

If s is of type $\sigma \to \tau$ and t of type σ , depending on context Γ , then s t is of type τ under context Γ :

$$\frac{\Gamma \Rightarrow s : \sigma \to \tau \qquad \Gamma \Rightarrow t : \sigma}{\Gamma \Rightarrow s \ t : \tau} \text{(Ap)}$$

Explanation:

- Assume we have s of type $\sigma \to \tau$.
 - · So s is a function, taking an $x : \sigma$ and returning an element of type τ .
- Assume we have t is an element of type σ .
- Then we can apply the function s to this t, written as s t, and obtain an element of type τ .

Example (Application)

We continue with our derivation of

$$y: o \rightarrow o \rightarrow o \Rightarrow \lambda x^{o}.y \ x: o \rightarrow o \rightarrow o$$

We have already derived using the assumption rule

$$y: o \rightarrow o \rightarrow o, x: o \Rightarrow y: o \rightarrow o \rightarrow o$$

 $y: o \rightarrow o \rightarrow o, x: o \Rightarrow x: o$

Using the application rule we conclude:

$$\frac{y: \circ \to \circ \to \circ, x: \circ \Rightarrow y: \circ \to \circ \to \circ}{y: \circ \to \circ \to \circ, x: \circ \Rightarrow x: \circ} (Ap)$$

Note that $o \rightarrow o \rightarrow o \equiv o \rightarrow (o \rightarrow o)$.

Simply Typed λ -Calculus

3. Abstraction.

If t is a term of type τ , depending on context $\Gamma, x : \sigma$, then $\lambda x^{\sigma}.t$ is a term of type $\sigma \to \tau$ depending on context Γ :

$$\frac{\Gamma, x : \sigma \Rightarrow t : \tau}{\Gamma \Rightarrow \lambda x^{\sigma} \cdot t : \sigma \to \tau}$$
(Abs)

Explanation:

- If we have under assumption $x : \sigma$ shown that $t : \tau$, then we can form a new λ -term by binding that x, and form $\lambda x^{\sigma}.t$.
- The result is a function taking as input $x : \sigma$ and returning $t : \tau$, so we obtain an element of $\sigma \to \tau$.

Example (Abstraction)

We finish our derivation of

$$y: o \rightarrow o \rightarrow o \Rightarrow \lambda x^{o}.y \ x: o \rightarrow o \rightarrow o$$

We have already derived

$$\frac{y: \circ \to \circ \to \circ, x: \circ \Rightarrow y: \circ \to \circ \to \circ}{y: \circ \to \circ \to \circ, x: \circ \Rightarrow x: \circ} (Ap)$$

Using abstraction we obtain:

$$\frac{y: \circ \to \circ \to \circ, x: \circ \Rightarrow y: \circ \to \circ \to \circ}{y: \circ \to \circ \to \circ, x: \circ \Rightarrow x: \circ} (Ap)$$

$$\frac{y: \circ \to \circ \to \circ, x: \circ \Rightarrow y: \circ \to \circ}{y: \circ \to \circ \to \circ, x: \circ \Rightarrow x: \circ} (Ap)$$

$$\frac{y: \circ \to \circ \to \circ \to \circ, x: \circ \Rightarrow y: \circ \to \circ}{y: \circ \to \circ \to \circ} (Abs)$$

(Note that
$$o \rightarrow o \rightarrow o \equiv o \rightarrow (o \rightarrow o)$$
.)

Rules

We had three rules:

- 1. $\Gamma, x : \sigma, \Delta \Rightarrow x : \sigma$ (where x must not occur in Δ).
- 2.

$$\frac{\Gamma \Rightarrow s : \sigma \to \tau \qquad \Gamma \Rightarrow t : \sigma}{\Gamma \Rightarrow s \ t : \tau} \text{(Ap)}$$

3.

$$\frac{\Gamma, x : \sigma \Rightarrow t : \tau}{\Gamma \Rightarrow \lambda x^{\sigma}.t : \sigma \to \tau}$$
(Abs)

Rules

- (1) $\Gamma, x : \sigma, \Delta \Rightarrow x : \sigma$ is a special kind of rule, an axiom. Axioms derive typing judgements without having to prove something first (no premises).
- (2) The next rule is a genuine rule:

$$\frac{\Gamma \Rightarrow s : \sigma \to \tau \qquad \Gamma \Rightarrow t : \sigma}{\Gamma \Rightarrow s \ t : \tau} \text{(Ap)}$$

It expresses:

- Whenever we have derived $\Gamma \Rightarrow s : \sigma \rightarrow \tau$
 - (for arbitrary context Γ , types σ , τ , term s)
- and whenever we derived $\Gamma \Rightarrow t : \sigma$
 - (for the same Γ, σ , but arbitrary term t),
- then we can derive $\Gamma \Rightarrow s \ t : \tau$.

Rules

(3) The next rule is similar:

$$\frac{\Gamma, x : \sigma \Rightarrow t : \tau}{\Gamma \Rightarrow \lambda x^{\sigma} \cdot t : \sigma \to \tau}$$
(Abs)

It expresses:

- Whenever we have derived $\Gamma, x : \sigma \Rightarrow t : \tau$
 - (for arbitrary context Γ , types σ , τ , variable x and term t),

then we can derive from this $\Gamma \Rightarrow \lambda x^{\sigma}.t : \sigma \rightarrow \tau$.

Derivations

- Using rules we can derive more complex judgements:
 - We start with axioms, and use rules with premises in order to derive further judgements.
- Example 1:

(Note that $o2 = o \rightarrow o$).

$$x: o \Rightarrow x: o \over \lambda x^{o}.x: o2$$
 (Abs)

$$\frac{x:o2, y:o \Rightarrow x:o2}{x:o2, y:o \Rightarrow x:o2} \quad x:o2, y:o \Rightarrow y:o \\
\frac{x:o2, y:o \Rightarrow x:o2}{x:o2 \Rightarrow \lambda y^o.x:o2} \text{ (Abs)} \\
\frac{x:o2 \Rightarrow \lambda y^o.x:o2}{\lambda x^{o2}.\lambda y^o.x:o3} \text{ (Abs)}$$

Note that we have the following dependencies in the derived λ -term:

$$(\lambda \mathbf{x}^{02}. \lambda y^{0}. \underbrace{\mathbf{x}}_{:02} \underbrace{\mathbf{y}}_{:0}) : o2 \rightarrow o2 = o3$$

$$\underbrace{\mathbf{x}}_{:02} \underbrace{\mathbf{y}}_{:02} : o2 \rightarrow o2 = o3$$

Observe how these dependencies correspond to the derivation above.

β -Reduction

- β -reduction for typed λ -terms is defined as for untyped λ -terms.
 - One has only to carry around the types as well.
 - Formally we have

$$(\lambda x^{\sigma}.t) s \longrightarrow t[x := s]$$

or using the alternative notation for typed λ -terms

$$(\lambda(x:\sigma).t) s \longrightarrow t[x:=s]$$

- And as before β -reduction can be applied to any subterm.
 - A subterm $(\lambda x^{\sigma}.t)$ s of a term s is called a β -redex of s.

(Changes of colour not well visible in black-and-white copies). $(\lambda \mathbf{x}^{\circ 3}.\lambda \mathbf{y}^{\circ 2}.\mathbf{x} (\mathbf{x} \mathbf{y})) (\lambda x^{\circ 2}.\lambda y^{\circ}.x (\mathbf{x} \mathbf{y}))$

ies).
$$(\lambda \mathbf{x}^{\circ 3}.\lambda \mathbf{y}^{\circ 2}.\mathbf{x} (\mathbf{x} \mathbf{y})) (\lambda x^{\circ 2}.\lambda y^{\circ}.x (x y))$$

$$\longrightarrow \lambda \mathbf{y}^{\circ 2}.(\lambda x^{\circ 2}.\lambda y^{\circ}.x (x y)) ((\lambda x^{\circ 2}.\lambda y^{\circ}.x (x y)) \mathbf{y})$$

$$\equiv \lambda \mathbf{y}^{\circ 2}.(\lambda \mathbf{x}^{\circ 2}.\lambda \mathbf{y}^{\circ}.\mathbf{x} (\mathbf{x} \mathbf{y})) ((\lambda \mathbf{x}^{\circ 2}.\lambda \mathbf{y}^{\circ}.\mathbf{x} (\mathbf{x} \mathbf{y})) \mathbf{y})$$

$$=_{\alpha} \lambda \mathbf{y}^{\circ 2}.(\lambda \mathbf{x}^{\circ 2}.\lambda \mathbf{y}^{\circ}.\mathbf{x} (\mathbf{x} \mathbf{y})) ((\lambda \mathbf{x}^{\circ 2}.\lambda \mathbf{z}^{\circ}.\mathbf{x} (\mathbf{x} \mathbf{z})) \mathbf{y})$$

$$\longrightarrow \lambda \mathbf{y}^{\circ 2}.(\lambda \mathbf{x}^{\circ 2}.\lambda \mathbf{y}^{\circ}.\mathbf{x} (\mathbf{x} \mathbf{y})) (\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{z}))$$

$$\equiv \lambda \mathbf{y}^{\circ 2}.(\lambda \mathbf{x}^{\circ 2}.\lambda \mathbf{y}^{\circ}.\mathbf{x} (\mathbf{x} \mathbf{y})) (\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{z}))$$

$$=_{\alpha} \lambda \mathbf{y}^{\circ 2}.(\lambda \mathbf{x}^{\circ 2}.\lambda \mathbf{u}^{\circ}.\mathbf{x} (\mathbf{x} \mathbf{u})) (\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{z}))$$

$$\longrightarrow \lambda \mathbf{y}^{\circ 2}.\lambda \mathbf{u}^{\circ}.(\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{z})) ((\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{z})) \mathbf{u})$$

$$\equiv \lambda \mathbf{y}^{\circ 2}.\lambda \mathbf{u}^{\circ}.(\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{z})) (\mathbf{y} (\mathbf{y} \mathbf{u}))$$

$$\equiv \lambda \mathbf{y}^{\circ 2}.\lambda \mathbf{u}^{\circ}.(\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{z})) (\mathbf{y} (\mathbf{y} \mathbf{u}))$$

$$\equiv \lambda \mathbf{y}^{\circ 2}.\lambda \mathbf{u}^{\circ}.(\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{z})) (\mathbf{y} (\mathbf{y} \mathbf{u}))$$

$$\equiv \lambda \mathbf{y}^{\circ 2}.\lambda \mathbf{u}^{\circ}.(\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{z})) (\mathbf{y} (\mathbf{y} \mathbf{u}))$$

$$\Longrightarrow \lambda \mathbf{y}^{\circ 2}.\lambda \mathbf{u}^{\circ}.(\lambda \mathbf{z}^{\circ}.\mathbf{y} (\mathbf{y} \mathbf{y} \mathbf{y})) (\mathbf{y} (\mathbf{y} \mathbf{u}))$$

Theorem

- As for the untyped λ -calculus, the simply typed λ -calculus is **confluent**.
- The simply typed λ -calculus is strongly normalising.
- Therefore every typed λ -term has a unique normal form, which can be obtained by β -reducing the term by choosing arbitrary β -redexes.
- **•** Furthermore, two λ-terms are β-equal, if their normal forms are equal (up to α-conversion).

(c) The λ -Calculus in Agda

- Agda is based on dependent type theory.
- This extends the simply typed λ -calculus.

The Function Type in Agda

- In Agda one writes $A \rightarrow C$ for the **nondependent** function type.
 - We write on our slides \rightarrow instead of ->.
- I tend to use capital letters instead of Greek letters for types in Agda.
 - One could of course use as well "alpha", "beta", "gamma", or (using special symbols) α , β , γ instead.

Blanks around ->

- In Agda, there needs to be a blank before and after ->,
- ullet but there should be no blank between and >.
- A-> without a blank in between is understood as an identifier with name A->.
- ->A without a blank in between is understood as an identifier with name ->A.
- Only brackets "(", "{", ")", "}", the symbol "=", blanks (and possibly some other symbols not discovered yet by A. Setzer) break identifiers.

λ -Terms in Agda

- In Agda one writes (x:A) -> r for $\lambda(x:A).r$.
- When presenting Agda code we will write λ (x:A) → r for the above, so λ means \ and → means -> in real Agda code.
- When reasoning in type theory itself (outside Agda), we use standard type theoretic notation $\lambda(x:A).r$.
- We can in Agda often omit the type of x, and write simply

$$\lambda x \rightarrow r$$

instead of

$$\lambda(x:A) \to r$$

Blanks in $\backslash (x:A) -> r$

- In $\backslash (x:A) \rightarrow r$,
 - there needs to be a blank before and after the ":".
 - x: without a blank in between is considered by Agda as an identifier "x:".
 - :A without a blank in between is considered by Agda as an identifier ":A".
 - There needs to be a blank between -> and r.

Notations in Agda

As an abbreviation, one writes

$$\lambda(a \ a' : A) \rightarrow \cdots$$

(note that there is no comma between a and a') instead of

$$\lambda(a:A) \to \lambda(a':A) \to \cdots$$

and

$$\lambda a \ a' \rightarrow \cdots$$

instead of

$$\lambda a \to \lambda a' \to \cdots$$

Application in Agda

Application has the same syntax as in the rules of dependent type theory: Assume we have derived

$$f: A \to B$$

Then we can conclude $f \ a : B$.

- And α and β -equivalent terms are identified.
 - In Agda,

$$(\lambda x \to x) \ a = a$$
.

So if B a is a type depending on a, and we have b:B a then we have as well

$$b: B(\lambda x \to x) a$$
.

Postulate

- In Agda one has no predefined types, all types have to be defined explicitly (e.g. the type of natural numbers, the type of Booleans, etc.).
- In order to obtain ground types with no specific meaning (like ○ above), we have to postulate such types, (or use packages as introduced later).
- In Agda the lowest type level, which corresponds to types in the simply typed λ -calculus, is called for historic reasons Set.
- So in order to introduce a ground type A we write:

postulate A: Set

Postulate

• We can now introduce other constants. For instance, in order to introduce a function from A to B where A and B are ground types, and an element of type A, we write the following:

```
postulate A: Set postulate B: Set. postulate f:A\to B. postulate a:A.
```

See examplePostulate1.agda

Basic λ -Terms

```
postulate A: Set postulate B: Set. postulate f:A\to B. postulate a:A.
```

- Assuming the above postulates, we can now introduce new terms.
- We have to give a name and a type to each new definition.
- Example:

Using the above postulates, we can define $b := f \ a : B$ as follows:

$$b : B$$

$$b = f a$$

Please note that blanks around "=".

Basic λ -Terms

```
postulate A: Set
postulate B: Set.
postulate f: A \rightarrow B.
postulate a: A.
b: B
b = f a
```

• We can as well introduce $g := \lambda x^A . x : A \to A$ as follows:

$$g : A \to A$$
$$g = \lambda x \to x$$

Note that there needs to be blanks around "=".

See examplePostulate2.agda

λ -Terms

```
postulate A: Set postulate B: Set. postulate f:A\to B. postulate a:A.
```

• Instead of defining λ -terms by using λ directly, it is usually more convenient to use a notation of the following kind:

```
g : A \to Ag \ a = a
```

Note that in the above example, the local a overrides the global a.

See examplePostulate3.agda

Equivalence of the two Notations

The two ways of introducing functions are equivalent.
One can check this by defining two versions:

postulate
$$A$$
: Set

 g : $A \rightarrow A$
 g : $a \rightarrow A$
 $a \rightarrow A$

exampleEquivalenceLambdaNotations1.agda

Equivalence of the two Notations

• We postulate now a predicate on $A \rightarrow A$, in order to check whether g and g' are the same:

postulate
$$P: (A \to A) \to \operatorname{Set}$$

If we define now

$$\begin{array}{ll}
f & : P g \to P g' \\
f x & = x
\end{array}$$

then f is (since we don't know anything about P) only type correct, if g = g'.

• The above code type checks, so for Agda we have g and g' are the same.

exampleEquivalenceLambdaNotations1.agda

λ -Notation in Agda

- In most cases, it is easier to use the second way of introducing λ -terms.
- However, λ-notation allows to introduce anonymous functions (i.e. functions without giving them names): A typical example from functional programming is the map function, which applies a function to each element of a list:

```
map S (two :: (three :: []))
```

```
(three :: (four :: []))
```

The **result** is

λ -Notation in Agda

- Here the elements of NatList are
 - [] denoting the empty list,
 - and if $n : \mathbb{N}$, l : NatList, then n :: l : NatList.

See exampleMapAppliedToList.agda.

Refinement

Assume the following Agda code

```
postulate A: Set
postulate B: Set
postulate f: A \rightarrow B
postulate a: A
b: B
b = \{! !\}
```

- Assume that we don't know what to insert. We only guess that it has to be of the form f applied to some arguments.
 - We can see this since the result type of f is B $(f: A \rightarrow B)$.

Refinement

```
postulate A: Set
postulate B: Set
postulate f: A \rightarrow B
postulate a: A
b: B
b = \{! !\}
```

- Then we can insert f into this goal and use menu Refine (C-c C-r)
- The system shows $b = f \{! !\}$.
- We can ask for the type of the new goal {! !}, using goal menu Goal-type C-c C-t, and obtain {! !} : A

Refinement

```
postulate A: Set
postulate B: Set
postulate f: A \rightarrow B
postulate a: A
b: B
b = f\{! !\}
```

• Now we can solve this goal by filling in a and using refine: f a : B.

exampleSimpleDerivation1.agda

Introducing New Types

- In the λ -calculus, we introduced abbreviations for types, like $o2 = o \rightarrow o$
- We can do the same in Agda (exampleTypeAbbreviations.agda):

postulate
$$A$$
: Set
$$A2 : Set$$

$$A2 = A \rightarrow A$$

$$A3 : Set$$

$$A3 = A2 \rightarrow A2$$

$$a2 : A2$$

$$a2 : A2$$

$$a2 : A3$$

 $a3 = \lambda x \rightarrow x$

Introducing New Types

```
postulate A: Set
A2 : Set
A2 = A \rightarrow A
a2 : A2
a2 = \lambda(x : A) \rightarrow x
```

In the above example we have that the type of a2 is as well $A \to A$, since both types are equal: Although a2 is of type A2 instead of $A \to A$, we can define

$$\begin{array}{rcl} a2' & : & A \to A \\ a2' & = & a2 \end{array}$$

Introducing New Types

- We can as well check that $A \to A$ and A2 are the same by applying main menu Compute normal form C-c C-n to A2
 - We obtain $A \rightarrow A$.

Derivations in Agda

- In Agda, rules are implicit.
- The rule

$$\frac{f:A \to B \quad a:A}{f \ a:B} \text{(Ap)}$$

corresponds to the following:

Assume we have introduced:

•
$$f:A \rightarrow B$$
, $a:A$.

and want to solve the goal

$$b : B$$
$$b = \{! !\}$$

exampleSimpleDerivation2.agda

Derivations in Agda (Cont.)

- ullet Then we can fill this goal by typing in f a:
- $b = \{! \ f \ a \ !\}$
- If we then choose goal-menu Refine (C-c C-r), the system shows:
- \bullet b = f a.

Let expressions in Agda

- When introducing elements of more complicated types, let expressions are often useful. They allow to introduce temporary variables.
- Let-expressions have the form

$$\begin{array}{rcl}
\operatorname{let} a_{1} & : A_{1} \\
a_{1} & = s_{1} \\
a_{2} & : A_{2} \\
a_{2} & = s_{2} \\
& \cdots \\
a_{n} & : A_{n} \\
a_{n} & = s_{n} \\
\operatorname{in} t
\end{array}$$

Let expressions in Agda (Cont.)

This means that we introduce new local constants

```
a_1:A_1 s.t. a_1=s_1, a_2:A_2 s.t. a_2=s_2, ..., a_n:A_n s.t. a_n=s_n, which can now be used locally.
```

 \bullet s_i can refer to all a_j defined before, but not to a_i itself, i.e. it can refer to a_0, \ldots, a_{i-1} .

Simple Example

The following function computes (n+n)*(n+n) for $n:\mathbb{N}$:

$$f : \mathbb{N} \to \mathbb{N}$$

$$f n = \text{let } m : \mathbb{N}$$

$$m = n + n$$

$$\text{in } m * m$$

See exampleLetExpression.agda

Note that this version is more efficient than the function computing directly (n + n) * (n + n):

- Using let, n + n is computed only once,
- without let, we have to compute it twice.

• As an example we define, assuming A : Set as a postulate, a function

$$f:((A \to A) \to A) \to A$$

We start with the goal

$$f : ((A \rightarrow A) \rightarrow A) \rightarrow A$$
$$f = \{! !\}$$

```
f : ((A \rightarrow A) \rightarrow A) \rightarrow Af = \{! !\}
```

- We know that the first argument of f is an element of type $(A \rightarrow A) \rightarrow A$.
- We call this argument for better readability of the code a-a-a.
- We obtain

$$f : ((A \rightarrow A) \rightarrow A) \rightarrow A$$

$$f \ a-a-a = \{! \ !\}$$

- We can use a-a-a in order to obtain a provided we have defined some function $a-a:A\to A$.
- **●** Therefore we first define in an auxiliary definition $a-a:A\to A$.
- In this example we could do this as a global definition, but will use here a let expression instead.
- We deactivate Agda (using main menu De-activate Agda (C-c C-x C-d),
- replace the goal by a let expression,
- and then load the buffer again.

$$f : ((A \to A) \to A) \to A$$

$$f \ a-a-a = \text{let } a-a : \{! \ !\}$$

$$a-a = \{! \ !\}$$

$$\text{in } \{! \ !\}$$

▶ We type into the first goal the type $A \rightarrow A$ of the variable a-a and use goal menu Refine or Give and obtain

$$f : ((A \rightarrow A) \rightarrow A) \rightarrow A$$

$$f a-a-a = let a-a : A \rightarrow A$$

$$a-a = \{! !\}$$

$$in \{! !\}$$

- In the first goal, we know that this might be solved by using a λ -expression.
- We type into this goal

$$\lambda a \rightarrow ?$$

and use refine or give and obtain

$$f : ((A \rightarrow A) \rightarrow A) \rightarrow A$$

$$f a-a-a = let a-a : A \rightarrow A$$

$$a-a = \lambda a \rightarrow \{! \ !\}$$

$$in \{! \ !\}$$

We solve the first goal by typing in a and using Refine and have completed the let-expression:

$$f : ((A \to A) \to A) \to A$$

$$f a-a-a = let a-a : A \to A$$

$$a-a = \lambda a \to a$$

$$in \{! !\}$$

• We can solve the remaining (main) goal by applying the variable a-a-a to a-a. We type those values into the remaining goal and use **Give** or **Refine** and obtain:

$$f : ((A \to A) \to A) \to A$$

$$f a-a-a = let a-a : A \to A$$

$$a-a = \lambda a \to a$$

$$in a-a-a = a-a$$

See exampleLetExpression2.agda

(d) Logic with Implication

Propositions as Types

- When considering the example of a sorted list, we have seen already that
 - formulas (e.g. predicates) can be considered as types,
 - where elements of such types are verifications that the formula holds (\approx is true).
 - So elements of this type are proofs that the formula holds.
- The principle to identify propositions (i.e. formulae) with types is called propositions as types.
- So
 - Sorted l will be a type,
 - p : Sorted l will be a witness (proof) that Sorted l holds.

Constructive Logic

- If p : Sorted l holds, then l should be sorted.
- If we have a proof $p : \neg(\text{Sorted } l)$ then l should be not sorted.
 - Negation ¬ will be introduced later.
- If we know neither that $p : Sorted \ l$ nor that $p : \neg (Sorted \ l)$, then we know neither that l is sorted nor that l is not sorted.
 - Happens e.g. if l is a variable.
 - For certain closed quantified formula, like A expressing that for all natural numbers n a certain formula hold, it might be the case that we can neither determine a p:A nor a $p:\neg A$.

Picture

Postulates as Formulae

- If we postulate A : Set, we can consider A as an atomic formula (i.e. formula which cannot be decomposed further).
 - This is similar to a propositional variable (such as A, B, C in $((A \land B) \lor C) \rightarrow A$).
 - Formulae like $((A \land B) \lor C) \to A)$ might be generally true (like $A \to A$), or might be true (like $A \lor C$) if certain of its propositional variables are provably true and others are provably false.
- If we postulate A : Set, we assume nothing about provability of A, since we assume nothing about the elements of A.
- If we postulate additionally a:A, we postulate that A is true.

- We postulate
 - a set of persons
 - a predicate "is student" on the set of persons,
 - that John, Mary as persons,
 - that Mary is a student:

```
postulate Person : Set
```

postulate john : Person

postulate mary : Person

 $postulate \quad IsStudent \qquad : \quad Person \rightarrow Set$

postulate maryIsStudent : IsStudent mary

Constructive Logic

- Proofs in dependent type theory will have always a constructive meaning.
- **●** In case of implication the constructive meaning of a proof of $a-b:A \rightarrow B$ will be:
 - It is a function, which from a proof of A determines a proof of B.
 - ▶ This is what is meant by $A \rightarrow B$: if A holds, i.e. if we have a proof of A, then B holds, i.e. we have a proof of B.
 - So $a-b:A\to B$ is a function mapping proofs of A to proofs of B.
 - This is nothing but the function type $A \rightarrow B$.

Example 1 (Implication)

- $\lambda(x:A).x:A\to A$ is a proof that $A\to A$ holds:
 - it takes a proof x:A and maps it to the proof x:A of A.
- In ordinary logic, this λ -term corresponds to the following proof that $A \to A$ holds:
 - Assume A.
 - Then A holds.
 - Therefore $A \rightarrow A$ holds.

Example 2 (Implication)

- $\lambda(x:A\to B).\lambda(y:A).x\ y \text{ is a proof of} \ (A\to B)\to A\to B$:
 - Assume a proof $x:A\to B$.
 - I.e. assume a function x which maps proofs of A to proofs of B.
 - Assume a proof y:A.
 - Then we obtain a proof x y : B. This proof is obtained by
 - taking the proof $x : A \rightarrow B$, which is a function mapping proofs of A to proofs of B,
 - applying it to the proof y: A,
 - then one obtains the proof x y of B.

Example 2 (Implication)

$$(\lambda(x:A\to B).\lambda(y:A).x\;y):(A\to B)\to A\to B$$

- In ordinary logic, the λ -type just introduced corresponds to the following derivation of $(A \to B) \to A \to B$:
 - Assume $A \rightarrow B$.
 - Assume A.
 - Then from $A \to B$ and A we obtain B.
 - This shows $(A \rightarrow B) \rightarrow A \rightarrow B$ holds.

Shorter Proof

• We could have given the following shorter proof of $(A \rightarrow B) \rightarrow A \rightarrow B$:

$$\lambda(x:A\to B).x:(A\to B)\to(A\to B)$$

- Note that $(A \to B) \to A \to B$ and $(A \to B) \to (A \to B)$ are the same.
- The above given λ-term corresponds to the following proof:
 - Assume $A \rightarrow B$.
 - Then the conclusion, namely $A \rightarrow B$ holds.

Curry Howard Isomorphism

- That one can write proofs as typed λ -terms is often referred to as well as the Curry-Howard Isomorphism.
 - Typed λ-terms are nothing but proofs of the formula given by their type!!

(e) Implicational Logic in Agda

- We have seen, that implication is nothing but the function type.
- ullet Therefore we can represent implication by \to in Agda.
- Elements of formula constructed from → will be proofs that the formula holds.

Take the example of Mary and John as persons and Mary as a student. Assume additionally that if Mary is a student then John is a student as well:

postulate Person : Set

postulate john : Person

postulate mary : Person

postulate IsStudent : $Person \rightarrow Set$

postulate maryIsStudent : IsStudent mary

postulate implication : IsStudent mary \rightarrow IsStudent job

Then we can prove that John is a student:

```
Lemma1 : Set
```

Lemma1 = IsStudent john

```
proof—lemma1 : Lemma1
```

proof—lemma1 = implication maryIsStudent

maryjohn1.agda

Example (Cont.)

- Note that we do not make use of the assumption x in the proof of Lemma1.
- If we added a new person barbara and tried to prove in the above situation the following wrong Lemma 2:

```
postulate barbara : Person
```

Lemma2 : Set

 $Lemma2 = IsStudent john \rightarrow IsStudent barbara$

proof—lemma2 : Lemma2

 $proof-lemma2 : \{! !\}$

we will fail.

Example (Cont.)

• We can use a λ -abstraction

```
proof-lemma2 : Lemma2
proof-lemma2 = \lambda(x : \text{IsStudent john}) \rightarrow \{! !\}
```

- But there is no way of solving this goal (except by using full recursion, i.e. by calling recursively proof—lemma2, which violates the termination checker.)
- See later more on the termination checker.
- So we have shown Lemma1, which is true,
- and failed to prove Lemma2, which is false.
- See maryjohn2.agda

- Assume postulates A : Set, B : Set.
- We can introduce the formula (or set) expressing $A \rightarrow (A \rightarrow B) \rightarrow B$ as follows:

Lemma1 : Set
Lemma1 =
$$A \rightarrow (A \rightarrow B) \rightarrow B$$

In order to prove Lemma1 we make the following goal:

$$\begin{array}{rcl} lemma1 & : & Lemma1 \\ lemma1 & = & \{! & !\} \end{array}$$

```
Lemma1 : Set

Lemma1 = A \rightarrow (A \rightarrow B) \rightarrow B

lemma1 : Lemma1

lemma1 = \{!\ !\}
```

- The type of the goal is $A \rightarrow (A \rightarrow B) \rightarrow B$.
- When the type of goal is an implication, it is usually shown
 - unless one has an assumption which matches the goal directly
 - by λ -abstracting from the premises of the implication.
- Instead of introducing a λ -abstraction, we apply lemma1 to variables a (of type A and a-b (of type $A \to B$).

One obtains:

```
lemma1 : Lemma1 lemma1 a a - b = \{! !\}
```

- Lemma1 was $A \rightarrow (A \rightarrow B) \rightarrow B$,
- we have abstracted from A and $A \rightarrow B$,
- so the type of the goal is the conclusion of the implication, namely B.

```
lemma1 : Lemma1 = \lambda(a:A) \to \lambda(a-b:A \to B) \to \{!\ !\} Type of goal is B
```

- At the position of the goal we have context a:A and $a-b:A\to B$, because we have λ -abstracted those variables.
 - Can be checked by using goal-menu Context (environment).
- We can take $a-b:A\to B$ and apply it to a:A in order to obtain a-b a:B, which solves the goal.

We obtain the following proof:

lemma1 : Lemma1 lemma1
$$a a-b = a-b a$$

- This is exactly the same as introducing a λ -term of type $A \to (A \to B) \to B$.
- See exampleProofPropLogic1.agda

- Note that in this example
 - a-b is an element of the function type $A \to B$.
 - a is an element of A
 - therefore a-b a is an element of B,
 - therefore the typing is correct.

Recursive Definitions

The type checker in Agda allows recursive definitions.
For instance, the following passes the type checker:

$$a : A$$
 $a = a$

Necessary, since for instance the definition of + is necessarily recursive, i.e. will make use of +:

Recursive Definitions and Proofs

Recursive definitions spoil the principle of propositions as types:

$$a : A$$
 $a = a$

would give a proof of any formula A.

- This does not contradict the constructive meaning of proofs, since the a above does not carry any constructive information:
 - If we try to evaluate it, we get the infinite reduction sequence

$$a \longrightarrow a \longrightarrow a \longrightarrow \cdots$$

Need for Termination Checker

- We have only a constructive proof p of A if p can be reduced to a normal form which is a constructive witness of A.
- Therefore we need to restrict Agda to terminating programs.
 - In fact we only need the restriction to terminating proofs.
 - But proofs and programs are so closely tight together that it is difficult to separate them – in Agda we cannot separate termination-checks of programs from termination-checks of proofs.

Termination Checker

- Agda has a builtin termination checker: If one loads the buffer, all variables which are defined by a possibly non-terminating recursive equation are marked in red.
- The above example becomes:

```
a : A
```

$$a = a$$

Termination Checker

- Since this colour coding is easily overlooked, it is recommended to run at the end of a session from a shell the command agda applied to each Agda file created.
 - This will list all problems
 - errors,
 - problems due to failure of the termination checker,
 - still open goals.
 - If there are any remaining problems, solve them, and then recheck the file again, until everything is correct.

Limitations of the Termination Chec

- The termination checker has limitations:
- If the termination check succeeds, all programs checked will terminate.
 - Therefore all proofs will be actual proofs of the corresponding propositions.
- If the termination check fails, it might still be the case that all programs terminate.
 (One cannot write a universal termination checker, since the Turing halting problem is undecidable).
 - So the proofs might be proofs, or might not be proofs.

- $m{a}:A$ a=a will not pass the termination checker.
- lemma : $(A \rightarrow B) \rightarrow A \rightarrow B$ lemma a - b a = lemma a - b awill not pass the termination checker.

lemma : $(A \rightarrow B) \rightarrow A \rightarrow B$ lemma a-b a=a-b apasses the termination checker.

Termination Checker

- In general, the termination checker will check whether there is any definition of a constant or a local variable, which depends on itself.
- When later dealing with natural numbers and algebraic types, we will see that some circularities can be acceptable and are accepted by the termination checker.
 - But until then in general the rule is that recursive definitions, in which the definition of a constant refers directly or indirectly to itself, are not allowed.

(f) More on the Typed λ -Calculus

The η -Rule

- If we have a function $f : \sigma \to \tau$, then this function applied to $a : \sigma$ gives result f a.
- If we apply $\lambda x^{\sigma} \cdot f(x) : \sigma \to \tau$ to $a : \sigma$, we get the same result f(a).
- Therefore f is as a function the same as $\lambda x.f$ x (where x is fresh).
- However, if for instance f is a variable, we don't have $f =_{\beta} \lambda x. f x$.

The η -Rule

- Especially, when working later in dependent type theory we want to identify as many terms as possible, which are equal.
 - This will make it easier to prove certain goals.
- η -expansion expresses that subterms $t: \sigma \to \tau$ can be η -expanded to $\lambda x.t \ x$ (where x does not occur free in t).
- **●** Then any $f : \sigma \to \tau$ is always equal to $\lambda x.f$ x w.r.t. β, η -reduction (where x is fresh).
- One needs to restrict η -expansion slightly in order to obtain a normalising reduction system.
 - Details can be found on the next few slides, but won't be treated in the lecture.
 - We jump directly to the η -rule in Agda.

The η -Rule

- However, we need to impose some restrictions, in order to avoid circularities (i.e. that a term reduces to itself) which destroy normalisation:
 - If t is of the form $\lambda y.s$ and if we then allowed to expand t, we would obtain the following circularly:

$$t \longrightarrow \lambda x.t \ x \equiv \lambda x.(\lambda y.s) \ x \longrightarrow_{\beta} \lambda x.s[y := x] \equiv t$$
,

If t is applied to some other term, e.g. t occurs as t r, and if we allowed to expand t we would get the following circularity:

$$t r \longrightarrow (\lambda x.t \ x) \ r \longrightarrow_{\beta} t \ r$$

All other terms can be expanded without obtaining a new redex.

η -Expansion

- η -expansion (or η -rule) is the rule which expands one subterm of a λ -term
 - of the form $r:\sigma\to\tau$
 - s.t. r is not of the form $\lambda u^{\sigma}.t$
 - and such that r is not applied to some other term to $\lambda x^{\sigma}.r$ x, where x does not occur free in r.
 - We write
 - $r \longrightarrow_{\eta} s$ for s is obtained from r by the η -rule,
 - $r \longrightarrow_{\beta,\eta} s$ for s is obtained from r by using β -reduction or η -expansion.
 - Notions like $\longrightarrow_{\beta,\eta}^*$, $=_{\beta,\eta}$, $=_{\eta}$, β,η -normal form,

etc. are to be understood correspondingly.

• Assume $f : o^3$. Then

$$r := (\lambda f^{o3}.\lambda x^{o2}.f \ x) \ f$$

$$\longrightarrow_{\beta} \lambda x^{o2}.f \ x$$

$$\longrightarrow_{\eta} \lambda x^{o2}.\lambda y^{o}.f \ x \ y$$

$$\longrightarrow_{\eta} \lambda x^{o2}.\lambda y^{o}.f \ (\lambda z^{o}.x \ z) \ y =: s$$
 (by η -expanding $f \ x : o2$ to $\lambda y^{o}.f \ x \ y$)
$$\longrightarrow_{\eta} \lambda x^{o2}.\lambda y^{o}.f \ (\lambda z^{o}.x \ z) \ y =: s$$
 (by η -expanding $x : o^{2}$ to $\lambda z^{o}.x \ z$)

• Note that in the last step, x was not in an applied position, since f x y stands for (f x) y.

$$r := \lambda f^{\text{o3}}.\lambda x^{\text{o2}}.f \ x) \ f \longrightarrow_{\beta} \quad \lambda x^{\text{o2}}.f \ x$$
$$\longrightarrow_{\eta}^{*} \quad \lambda x^{\text{o2}}.\lambda y^{\text{o}}.f \ (\lambda z^{\text{o}}.x \ z) \ y =: s$$

- **•** There are no more η-expansions or β-reductions possible in s:
 - The terms f and x occur in a position where they are applied to another term, so they are not supposed to be η -expanded.
 - z and y are of ground type and therefore not to be η -expanded.

$$r := \lambda f^{\text{o3}}.\lambda x^{\text{o2}}.f \ x) \ f \longrightarrow_{\beta} \quad \lambda x^{\text{o2}}.f \ x$$
$$\longrightarrow_{\eta}^{*} \quad \lambda x^{\text{o2}}.\lambda y^{\text{o}}.f \ (\lambda z^{\text{o}}.x \ z) \ y =: s$$

- **●** Because s cannot be expanded any further, it is the β, η-normal form of r.
- Since $f \longrightarrow_{\eta} \lambda x^{o2}.f \ x$, the term s is as well the β, η -normal form of f : o3.

If we replace in the above example o by o2 (and therefore o2 by o3 and o3 by o4) we obtain

$$(\lambda f^{\circ 4}.\lambda x^{\circ 3}.f \ x) f$$

$$\longrightarrow_{\beta} \lambda x^{\circ 3}.f \ x$$

$$\longrightarrow_{\eta} \lambda x^{\circ 3}.\lambda y^{\circ 2}.f \ x \ y$$

$$\longrightarrow_{\eta} \lambda x^{\circ 3}.\lambda y^{\circ 2}.\lambda z^{\circ}.f \ x \ y \ z$$

$$\longrightarrow_{\eta} \lambda x^{\circ 3}.\lambda y^{\circ 2}.\lambda z^{\circ}.f \ (\lambda u^{\circ 2}.x \ u) \ y \ z$$

$$\longrightarrow_{\eta} \lambda x^{\circ 3}.\lambda y^{\circ 2}.\lambda z^{\circ}.f \ (\lambda u^{\circ 2}.\lambda v^{\circ}.x \ u \ v) \ y \ z$$

$$\longrightarrow_{\eta} \lambda x^{\circ 3}.\lambda y^{\circ 2}.\lambda z^{\circ}.f \ (\lambda u^{\circ 2}.\lambda v^{\circ}.x \ (\lambda w^{\circ}.u \ w) \ v) \ y \ z$$

$$\longrightarrow_{\eta} \lambda x^{\circ 3}.\lambda y^{\circ 2}.\lambda z^{\circ}.f \ (\lambda u^{\circ 2}.\lambda v^{\circ}.x \ (\lambda w^{\circ}.u \ w) \ v) \ (\lambda u^{\circ}.y \ u) \ z$$

which is as well the β , η -normal form of f: o4.

Intuitive Application of η -Expansion

- Intuitively, η -expansion for terms in β -normal form is obtained as follows:
 - Consider subterms

$$r:=t_1\ t_2\ \cdots\ t_n$$

of the term to be η -expanded which are longest, i.e. they don't occur as

$$t_1 t_2 \cdots t_n t_{n+1}$$

for some t_{n+1} .

- If $r: \alpha \to \beta$ it is an η -redex.
- Otherwise r is of ground type and not an η -redex.

Intuitive Application of η -Expansion

If

$$r := t_1 \ t_2 \ \cdots \ t_n$$

is an η -redex, expand it to

$$\lambda x^{\alpha}.t_1 t_2 \cdots t_n x$$
.

• Continue until there are no η -redexes left.

Theorem

• The typed λ-calculus with β-reduction and η-expansion is confluent and strongly normalising.

η -Rule

- With the η -rule, we obtain that if $r: \sigma \to \tau$, then $r =_{\beta,\eta} \lambda x^{\sigma}.r \ x$.
 - If $r: \sigma \to \tau$ is of the form $\lambda u^{\sigma}.t$ then we have $r =_{\beta} \lambda x^{\sigma}.r$ x:

$$\lambda x^{\sigma}.r \ x \equiv \lambda x^{\sigma}.(\lambda u^{\sigma}.t) \ x$$

$$\longrightarrow_{\beta} \lambda x^{\sigma}.t[u := x]$$

$$=_{\alpha} \lambda u^{\sigma}.t$$

$$\equiv r$$

- Otherwise $r \longrightarrow_{\eta} \lambda x^{\sigma} . r \ x$.
- Therefore one can say the η rule expresses: every element of a function type is of the form λx .something.

η -Reduction

- In the literature one often uses instead of η -expansion η -reduction, which allows to reduce $\lambda x^{\sigma}.r$ x to r, if x doesn't occur free in r.
 - The computation of η -reduction is more difficult than η -expansion, since one has to check, whether x doesn't occur free in r.

 Therefore in the context of interactive theorem proving, we prefer η -expansion.

η -Rule in Agda

• In Agda syntax, the η -rule states that if

$$f:A\to B$$

then

$$f = \lambda(x : A) \to f x$$
.

• The η -rule is implemented in Agda2.

We will in this lecture omit the remaining parts of this section.

Remark on Weakening

- If we have derived $t:\sigma$ under some context, then the same holds for any other context, which expands the original one.
- Formally, this means: Assume

$$\Gamma, \Delta \Rightarrow t : \sigma$$
.

Then we have as well

$$\Gamma, x : \tau, \Delta \Rightarrow t : \sigma$$
,

provided $\Gamma, x : \tau, \Delta$ is a context (i.e. provided x does not occur in Γ, Δ).

The process of extending the context is called weakening.

Weakening in Logic

- Weakening occurs in many logic calculi as well.
- It occurs in natural language reasoning as well:
 - For instance from "I am living an Swansea" and "In Swansea the sun is shining" follows "Where I am living, the sun is shining".
 - However, we can derive the above as well from the additional (unused) assumption "Assuming that I am a lecturer".
 - So we have as well "Under the assumption that I am a lecturer, where I am living the sun is shining", which is a weaker statement.

Proof of the Remark

- Assume a derivation of $\Gamma, \Delta \Rightarrow t : \sigma$.
- Insert at all corresponding positions in the contexts in the derivation $x : \tau$.
 - One needs to rename variables, in order to avoid conflicts with x.
- The result is a derivation of $\Gamma, x : \tau, \Delta \Rightarrow t : \sigma$.

Example (Weakening)

From the derivation

$$\frac{y:o,x:o\Rightarrow x:o}{y:o\Rightarrow \lambda x^{o}.x:o2} \text{ (Abs)}$$

$$y:o\Rightarrow \lambda x^{o}.x:o2 \qquad y:o\Rightarrow y:o$$

$$y:o\Rightarrow (\lambda x^{o}.x) y:o$$

we obtain a derivation of

$$y: o, x: o \Rightarrow (\lambda x^{o}.x) y: o$$

by inserting in each context in the derivation, after y : o the context x : o.

Example (Weakening)

$$\frac{y:o,x:o\Rightarrow x:o}{y:o\Rightarrow \lambda x^{o}.x:o2} \text{ (Abs)}$$

$$y:o\Rightarrow \lambda x^{o}.x:o2 \qquad y:o\Rightarrow y:o$$

$$y:o\Rightarrow (\lambda x^{o}.x) y:o$$

We obtain the following derivation of

$$y:o, x:o \Rightarrow (\lambda x^{o}.x) y:o$$

$$\frac{y:o, x:o, x:o \Rightarrow x:o}{y:o, x:o \Rightarrow \lambda x^{o}.x:o2} \text{ (Abs)}$$

$$y:o, x:o \Rightarrow (\lambda x^{o}.x) y:o$$

$$y:o, x:o \Rightarrow (\lambda x^{o}.x) y:o$$

Weakening

- Because of the possibility of weakening, we will usually omit unused parts of contexts.
- So a derivation of $x : o2, y : o \Rightarrow x (x y) : o$, which in full reads as follows

$$\frac{x:o2,y:o\Rightarrow x:o2}{x:o2,y:o\Rightarrow x:o2} \frac{x:o2,y:o\Rightarrow y:o}{x:o2,y:o\Rightarrow x:o2} \text{ (Ap)}$$

$$x:o2,y:o\Rightarrow x:o2 \xrightarrow{x:o2,y:o\Rightarrow x:o2} \text{ (Ap)}$$

$$x:o2,y:o\Rightarrow x:o2 \xrightarrow{x:o2,y:o\Rightarrow x:o2} \text{ (Ap)}$$

will usually be presented as follows:

$$\frac{x:02\Rightarrow x:02}{x:02\Rightarrow x:02} \frac{y:0\Rightarrow y:0}{x:02, y:0\Rightarrow x:0} \text{ (Ap)}$$

$$x:02, y:0\Rightarrow x:0 \text{ (Ap)}$$

$$x:02, y:0\Rightarrow x:0 \text{ (Ap)}$$

- We introduced the typed λ -calculus, in order to avoid non-normalising terms, as they occur in the untyped λ -calculus.
- The non-normalising terms we introduced used some form of self application.
- For instance we introduced
 - $\omega := \lambda x.x \ x$, (where x was applied to itself)
 - \bullet $\Omega := \omega \ \omega$

and had

- $\Omega \longrightarrow_{\beta} \Omega$.
- In the following, we will investigate, how self-application is avoided in the typed λ -calculus.

- In the simply typed λ -calculus we cannot assign a type to $\lambda x.x.x.x$, i.e. there are no types σ, τ s.t. $\lambda x^{\sigma}.x.x.x : \tau$.
 - Assume we could derive this. The only way to derive $\lambda x^{\sigma}.x \ x:\tau$ is by the rule of λ -abstraction.
 - Then τ must be equal to $\sigma \to \tau_1$ for some τ_1 , and the derivation reads then

$$\frac{x: \sigma \Rightarrow x \ x: \tau_1}{\lambda x^{\sigma}.x \ x: \sigma \to \tau_1} \text{ (Abs)}$$

$$\frac{x: \sigma \Rightarrow x \ x: \tau_1}{\lambda x^{\sigma}.x \ x: \sigma \to \tau_1}$$
 (Abs)

• $x : \sigma \Rightarrow x \ x : \tau$ must have been derived by the rule of application, so the derivation must look like this:

$$\frac{x : \sigma \Rightarrow x : \tau_2 \to \tau_1 \qquad x : \sigma \Rightarrow x : \tau_2}{x : \sigma \Rightarrow x : \tau_1} \text{ (Ap)}$$

$$\frac{x : \sigma \Rightarrow x : \tau_1}{\lambda x^{\sigma} . x : x : \sigma \to \tau_1} \text{ (Abs)}$$

$$\frac{x : \sigma \Rightarrow x : \tau_2 \to \tau_1 \qquad x : \sigma \Rightarrow x : \tau_2}{x : \sigma \Rightarrow x : \tau_1} \text{ (Ap)}$$

$$\frac{x : \sigma \Rightarrow x : \tau_1}{\lambda x^{\sigma} . x : x : \sigma \to \tau_1} \text{ (Abs)}$$

- The only way to derive $x : \sigma \Rightarrow x : \tau_2 \to \tau_1$ and $x : \sigma \Rightarrow x : \tau_2$ is by using the assumption rule.
- In order for $x: \sigma \Rightarrow x: \tau_2 \to \tau_1$ to be derivable by the assumption rule, we need $\sigma = \tau_2 \to \tau_1$.
- Similarly, in order to derive $x:\sigma\Rightarrow x:\tau_2$, we need $\tau_2=\sigma$.
- So we have $\tau_2 \to \tau_1 = \sigma = \tau_2$.
- But $\tau_2 = \tau_2 \rightarrow \tau_1$ cannot be fulfilled, since $\tau_2 \rightarrow \tau_1$ is longer than τ_2 .
- So we cannot find types σ, τ s.t. $\lambda x^{\sigma}.x \ x : \tau$.