简单的反三角函数常识

微积分I

什么是反三角函数?

- 就是三角函数的反函数
- 好比 $y = \ln x$ 是 $y = \exp(x)$ 的反函数
- 三角函数不是不单调吗, 怎么有反函数?
- 采用限制定义域的办法,只取单调的部分。

三角函数

三角函数

选取一段再其上单调的定义域的 $y = \sin x$

反三角函数

把蓝色曲线沿 y = x 对称,就得到了反函数

蓝色曲线的定义域: $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, 值域: $\left[-1,1\right]$

反正弦函数的定义域: $\left[-1,1\right]$, 值域: $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

刚刚介绍了反正弦函数,现在是反余弦

蓝色曲线的定义域: [0,π], 值域: [-1,1]

反余弦函数的定义域: [-1,1], 值域: $[0,\pi]$

反正切函数——挺重要的

蓝色曲线的定义域: $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, 值域: R (正切函数取了一支)

反正弦函数的定义域: R, 值域: $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ (紫色直线是渐近线)

反三角函数的导函数

- 暂时不用记,以后会教怎么推出来的
- · 教了怎么推出来的再记(doge

$$rac{\mathrm{d}}{\mathrm{d}x} \arcsin x = rac{1}{\sqrt{1-x^2}}; \qquad |x| < 1$$
 $rac{\mathrm{d}}{\mathrm{d}x} \arccos x = rac{-1}{\sqrt{1-x^2}}; \qquad |x| < 1$ $rac{\mathrm{d}}{\mathrm{d}x} \arctan x = rac{1}{1+x^2}$ 非常美丽

• 反三角函数的自变量是三角函数值,因变量是对应的角度(弧度)

$$\tan \theta = \frac{1}{2}$$

$$\arctan \frac{1}{2} = \theta$$

• 反三角函数的自变量是三角函数值,因变量是对应的角度(弧度)

那么
$$\arcsin \frac{2}{\sqrt{5}} = ?$$

• 前面的例子告诉我们,类似 $f(g(\theta))$,其中 f 和 g 分别是 三角函数/反三角函数 或者 反三角函数/三角函数 的式子可以化简。

θ	$\sin heta$	$\cos heta$	an heta	图示
$\arcsin x$	$\sin(rcsin x) = x$	$\cos(rcsin x) = \sqrt{1-x^2}$	$ an(rcsin x) = rac{x}{\sqrt{1-x^2}}$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$\sin(rccos x) = \sqrt{1-x^2}$	$\cos(rccos x) = x$	$ an(rccos x) = rac{\sqrt{1-x^2}}{x}$	$\frac{1}{\theta}$
$\arctan x$	$\sin(\arctan x) = rac{x}{\sqrt{1+x^2}}$	$\cos(\arctan x) = rac{1}{\sqrt{1+x^2}}$	an(rctan x) = x	$\sqrt{1+x^2}$ θ 1

• 前面的例子告诉我们,类似 $f(g(\theta))$,其中 f 和 g 分别是 三角函数/反三角函数 或者 反三角函数/三角函数 的式子可以化简。

• 所以作业中最好也化简

• 不要出现类似 $\arcsin \tan f(x)$ 这种式子哈~