CoSC: Un cadre collaboratif pour la segmentation et la classification d'images de télédétection

... Andrés Troya-Galvis¹ Pierre Gançarski¹ Laure Berti-Équille²

..... ¹Université de Strasbourg, ICube ²Qatar Computing Research Institute FGC 2016

Plan

- 1 Introduction
- 2 CoSC
- 3 Résultats
- 4 Conclusion

Interprétation automatique d'images satellitaires

Objectif

Associer chaque pixel de l'image à un concept sémantique pour obtenir une carte d'occupation du sol.

Applications

- Analyse de l'évolution urbaine
- Suivi d'écosystèmes
- Prévention de désastres

- · Capteurs de plus en plus précis
- Images de grande taille à traiter (10⁸) pixels.
- La complexité des objets d'intérêt augmente

- Moyenne et basse résolution (30m à 10m) → Approches pixel
- Haute et Très haute résolution (2m à 50cm) → Approches objet

- Segmentation floue à partir de classeurs flous [5]
- Segmentation watershed supervisée [1]
- Approche hiérarchique multi-résolution [4]
- Approches multi-agent [6, 3]
- Approches hybrides pixel/objet [7]

CoSC

La segmentation et la classification ont des objectifs différents mais fortement liées dans le cadre de la télédétection.

Intuition

- une amélioration de la segmentation devrait conduire naturellement à une amélioration de la classification
- les résultats de la classification peuvent s'avérer utiles pour guider la segmentation et ainsi améliorer sa qualité

Idée

Faire collaborer les paradigmes de segmentation et de classification afin d'améliorer la qualité des deux processus simultanément. Nous nous inspirons du cadre proposé par Farmer [2].

Définitions

Soit C la classe thématique que nous voulons extraire, alors :

- **Segmenteur spécialisé** S_C est un agent noté capable de modifier les segments et de les évaluer localement [8] les segments par rapport à la classe C.
 - est un agent noté doté d'un modèle de Extracteur de classe $C_{C_{\nu}}$ classement supposé optimal; pour un segment R il donne la probabilité $P_{\mathcal{C}}(R)$ d'appartenance à la classe C.
- Agent de collaboration SC_C est un agent noté, composé d'un couple (S_C, E_C) et gérant la collaboration entre un segmenteur et un extracteur de la classe C.
 - T_{\in} (resp. T_{\neq}) est le seuil minimum d'appartenance (resp. non appartenance) à la classe C.

CoSC Résultats 00000000

Conclusion

Bibliographie

Sélection

Choix du segment le plus ambigu.

$$candidat() = \arg\min_{R_i} |P_{\mathcal{C}}(R_i) - \frac{T_{\in} + T_{\not\in}}{2}|$$
 (1)

Évaluation du segment candidat

$$\phi_{\delta}(R_i) = \begin{cases} \text{sous-} & \text{si } H(R_i) > \delta \\ \text{sur-} & \text{si } H(R_i) \le \delta \text{ et } \exists R_j \in \mathcal{N}(R_i), H(R_i \bigcup R_j) \le \delta \\ \text{bien} & \text{sinon} \end{cases}$$
 (2)

Modifications locales

Opérateur de modification

 $\mathcal{O}: \mathfrak{D}_i \to \mathfrak{D}_i$ où $\mathfrak{D}_i = R_i \cup \mathfrak{N}_{R_i}$ et \mathfrak{N}_{R_i} est l'ensemble de points dans le voisinage de Ri

Listes de modification

Nous définissons 3 listes d'opérateurs de modification

- $O_I \rightarrow$ opérateurs pour réduire la sur-segmentation
- $U_L \rightarrow$ opérateurs pour réduire la sous-segmentation
- W₁ → opérateurs divers

Introduction

```
Data: Segment : R_a, List of \mathcal{O} : L
Result: Segment: Rm
begin
    L.shuffle()
    while L.iterator.has_next() do
         R_m \leftarrow modify(R_a, L.iterator.next())
        if R_m \neq R_a then
         return R<sub>m</sub>
    return Ra
```


Fonction d'évaluation

Intuition

Réduire au maximum le nombre de segments non décidés (i.e. $R_i \mid T_{\mathscr{C}} < P_{\mathcal{C}}(R_i) < T_{\varepsilon}$).

$$Q_{cs} = \frac{1}{N_R} \sum_{i|P_C(R_i) > T_{\in}}^{N_R} P_C(R_i) + \sum_{i|P_C(R_i) < T_{\not\in}}^{N_R} 1 - P_C(R_i)$$
 (3)

Convergence

Afin d'éviter une convergence prématurée, nous admettons un nombre d'étapes dégradantes D comme suit :

$$D = \frac{U * N_R}{3} \tag{4}$$

où \mathcal{U} est le pourcentage de segments ambigus. Retour au meilleur état rencontré lorsque D modifications sont effectuées sans améliorer le résultat.

Cas d'étude : extraction de la végétation dans la région strasbourgeoise

©CNES2012, Distribution Astrium Services / Spot Image S.A., France, All rights reserved.

- Image Pleiades 9000 × 11000 pixels
- 4 bandes spectrales (R,G,B,NIR)
- Résolution spatiale 0.5m

Données de référence

- Données floues
- 1 pixel → degré d'appartenance à la classe Végétation

Introduction

Résultats (classification)

 $T_{\in} = 0.9 \text{ et } T_{\emptyset} = 0.1$

Image	Acc	Pr	Re	Fm	κ	Am%	Qcs
NDVI	1.00	1.00	0.99	0.99	0.99	0.89	0.10
OBIA	0.93	0.95	0.95	0.95	0.83	0.52	0.48
CoSC	0.93	0.95	0.94	0.95	0.85	0.46	0.53

TABLE - Métriques de qualité standard

Image	Acc	Pr	Re	Fm
NDVI	0.77	0.79	0.72	0.75
OBIA	0.81	0.75	0.92	0.83
CoSC	0.82	0.78	0.85	0.82

TABLE - Métriques de qualité floues

Segmentation initiale

Introduction

Résultats (segmentation)

Segmentation initiale

NDVI

NDVI

OBIA

OBIA

CoSC

CoSC

- Le processus collaboratif entre la segmentation et la classification permet effectivement d'améliorer simultanément les deux résultats
- Une étude de sensibilité approfondie est à faire pour évaluer l'impacte des différents paramètres
- Passage au cas multi-classe par la collaboration de plusieurs agents CoSC

Bibliographie I

- S. Derivaux, G. Forestier, C. Wemmert, and S. Lefèvre. Supervised image segmentation using watershed transform, fuzzy classification and evolutionary computation. Pattern Recogn Lett, 31:2364–2374, 2010.
- [2] Farmer.

Application of the Wrapper Framework for Robust Image Segmentation For Object Detection and Recognition.

INTECH Open Access Publisher, 2009.

[3] Peter Hofmanna, Paul Lettmayerb, Thomas Blaschkea, Mariana Belgiua, Stefan Wegenkittlb, Roland Grafb, Thomas Josef Lampoltshammera, and Vera Andrejchenkoa.

Abia - a conceptional framework for agent based image analysis. South-Eastern European Journal of Earth Observation and Geomatics, 3(25):125–129, 2014.

Bibliographie II

- [4] Camille Kurtz, Nicolas Passat, Pierre Gançarski, and Anne Puissant. Extraction of complex patterns from multiresolution remote sensing images: A hierarchical top-down methodology. Pattern Recognition, 45:685–706, 2012.
- [5] Ivan Lizarazo and Paul Elsner. Segmentation of remotely sensed imagery: moving from sharp objects to fuzzy regions. Image Segmentation, 2011.
- [6] Fatemeh Tabib Mahmoudi, Farhad Samadzadegan, and Peter Reinartz.
 Object oriented image analysis based on multi-agent recognition system.
 Computers & Geosciences, 54:219–230, 2013.

Bibliographie III

- [7] Y. Tarabalka, J.A. Benediktsson, and J. Chanussot. Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. Geoscience and Remote Sensing, IEEE Transactions on, 47(8):2973–2987, Aug 2009.
- [8] A. Troya-Galvis, P. Gancarski, N. Passat, and L. Berti-Equille. Unsupervised quantification of under- and over-segmentation for object-based remote sensing image analysis. *IEEE J STARS*, PP(99):1–10, 2015.

Introduction

