

NAME DES DOZENTEN: BJÖRN-HELGE BUSCH

KLAUSUR 1140 AUTOMATENTHEORIE UND FORMALE SPRACHEN

QUARTAL: Q2/2015

Name des Prüflings:		Matrikelnummer	Zenturie:			
Dauer: 90 Min.	Seiten	ohne Deckblatt und Infol	Datum: 20.04.2015			
Hilfsmittel: Bemerkungen:	 Bitte kontrol Vollständigk Es sind 90 Punkte e 	 Infoblatt zur Klausur (siehe letzte Seite) Bitte kontrollieren Sie Ihr Klausurheft zu Beginn der Prüfung auf Vollständigkeit. Es sind 90 Punkte erreichbar. Zum Bestehen der Klausur sind 45 Punkte ausreichend. 				
	Aufgabe 1 Aufgabe 2 Aufgabe 3	Aufgaben	von 20 von 26			
Datum:	Note:	Ergá	inzungsprüfung:			
Unterschrift:		_				
Termin für Klausureinsicht:		Ort:				

Aufgabe 1: Wortmengen und Wortfunktionen

	3
a)	Was versteht man unter einer formalen Sprache? Erläutern Sie die Eigenschaften und Abgrenzungskriterien zu natürlichen Sprachen. (2 Punkte)
b)	Gegeben sei ein Alphabet Σ . Geben Sie die Definition der Plushülle über Σ ar und erläutern Sie diese. Handelt es sich bei der Plushülle über Σ über um eine abzählbar oder überabzählbar unendliche große Menge (mit Begründung). (2 Punkte)
c)	Geben Sie zwei Wortfunktionen mit Angabe des Definitions- und Werte- bereichs mit üblicher (mengentheoretischer) Funktionsvorschrift an. Erläutern Sie die jeweiligen Zuordnungen von Definitions- und Wertebereich (2 Punkte).

d) Handelt es sich bei der Sprache $L = \{w \in \Sigma^* | w = a^i b^j c^j a^i, i, j \ge 0\}$ um eine <u>präfixfreie</u> oder eine <u>nicht-präfixfreie</u> Sprache? Begründen Sie Ihre Antwort und erläutern Sie den Begriff der <u>Präfixfreiheit</u>. (2 Punkte)

e) In welche drei Bestandteile lassen sich Wörter $w \in L$ in der Regel zerlegen. Welche Bedingung muss erfüllt sein, damit eine echte Zerlegung möglich ist? Geben Sie ein Beispiel für eine "unechte" Zerlegung an. (2 Punkte)

Aufgabe 2: Deterministische Endliche Automaten – DEA

a) Durch welche Eigenschaften zeichnet sich ein <u>deterministischer endlicher</u> Automat aus? (2 Punkte)

b) Gegeben sind die Sprachen

$$L_1 = \{ w \in \Sigma^* | w = uvk, u \in \{ee, ff\}^+, v \in \{c, d\}^*, k = \{aa\}^+ \}$$
 und $L_2 = \{ w \in \Sigma^* | w = uv, u \in \{2,3\}^+, v = 4^i 5^j, i > 0, j \ge 0 \}.$

Konstruieren Sie einen <u>nicht verallgemeinerten</u> DEA A_3 , der ausschließlich die Sprache $L_3 = L_1 {}^{\circ} L_2$ akzeptiert. Geben Sie die graphische Repräsentation mit markierten akzeptierenden Zuständen und die formale Beschreibung von A_3 inklusive der Aufschlüsselung der enthaltenen Mengen an. Auf eine Darstellung von δ_3 kann verzichtet werden. (8 Punkte)

<Verwenden Sie die nächste Seite für Ihre Lösung.>

c)			ktor und erläu (mindestens	

d) Gegeben sei der graphisch dargestellte Automat A_4 (4 Punkte)

Aufgabe 3: Nichtdeterministische Endliche Automaten – NEA

a) Erläutern Sie den Begriff <u>nichtdeterministischer Automat</u>. (2 Punkte)

b) Was versteht man unter der <u>Konfiguration</u> eines Automaten? Erläutern Sie den Ausdruck <u>Konfigurationssequenz</u>. (2 Punkte)

c) Gegeben sei die Sprache
$$L_5 = \left\{ \begin{aligned} w \in \Sigma^* | w = uvkl, u \in \{a,b,c,d\}^+, v \in \{aa,bb\}^*, k \in \{e,f\}^+, l = c^i d^j \\ i > 2, j \ mod \ 2 = 0 \end{aligned} \right\}$$

Konstruieren Sie einen <u>nicht verallgemeinerten</u> NEA A_5 , der ausschließlich diese Sprache akzeptiert und geben Sie die Mächtigkeit der Sprache L_5 an. Die graphische Repräsentation des Automaten A_5 genügt; auf eine formale Beschreibung kann verzichtet werden. (8 Punkte)

d) Gegeben ist folgender graphisch dargestellter NEA A_6 .

Transformieren Sie A_6 in einen äquivalenten DEA DEA_6 . Benutzen Sie für die Transformation den <u>tabellarischen Ansatz</u> (Hinweis: Auf eine mengenwertige Darstellung kann in der Tabelle verzichtet werden). Geben Sie die formale Beschreibung von DEA_6 inklusive der Aufschlüsselung der enthaltenen Mengen an. Auf eine Darstellung von δ_6 und eine grafische Darstellung des konstruierten DEA kann verzichtet werden. (9 Punkte)

e)	Veranschaulichen Sie die Wortverarbeitung eines NEA anhar Schemas. Verwenden Sie für Ihre Erläuterungen das Wort $w=$ das von dem NEA A_6 aus Aufgabe 3 d) verarbeitet werden soll.	AAARRR	200R,
f)	Erläutern Sie die Funktionsweise eines <u>Epsilon-Automaten</u> Skizze und einer beispielhaften Wortverarbeitung. (2 Punkte)	anhand	einer

Aufgabe 4: Grammatiken

a) Skizzieren Sie die <u>Chomsky-Hierarchie</u> und erläutern Sie die Unterschiede anhand der Ausdrucksmächtigkeit der klassifizierten Grammatiken (Hinweis: *P* enthält Regeln unterschiedlichen Typs zur Worterzeugung). (10 Punkte)

- b) Kreuzen Sie an, welche Beschreibungskonzepte <u>ausschließlich</u> für <u>reguläre</u> Sprachen verwendet werden können. (2 Punkte)
 - o Reguläre Ausdrücke
 - o Push-Down-Automaten (PDA)
 - Rechtskongruenzen
 - Typ-0-Grammatiken
 - Linkslineare Grammatiken
 - o Deterministische Turing-Maschinen
 - Epsilon-Automaten
 - Kontextsensitive Grammatiken
- c) Erläutern Sie die Begriffe <u>mehrdeutige Grammatik</u> und <u>Syntaxbaum</u> anhand einer Skizze. (2 Punkte)

d)	Erläutern Sie die Funktionsweise eines <u>Kellerautomaten</u> (Push-Down Automat) anhand einer Skizze und geben Sie beispielhaft eine Sprache a die durch einen Kellerautomaten akzeptiert wird. (4 Punkte)	
e)	Kreuzen Sie an, welche Entscheidungsprobleme für <u>Typ 2-Sprachen</u> lösbasind. (2 Punkte)	ar
	 Wortproblem Leerheitsproblem Äquivalenzproblem Endlichkeitsproblem 	
f)	Kreuzen Sie an, welche Entscheidungsprobleme für <u>Typ 1-Sprachen</u> lösbasind. (2 Punkte)	ar
	 Wortproblem Leerheitsproblem Äquivalenzproblem Endlichkeitsproblem 	
		13

- g) Gegeben sind die Sprachen
 - a. $L_6 = \{ w \in \Sigma^* | w = \{a, b\}^+ \circ c^i \circ b^j \circ \{0, 1\}^* \}, i, j \ge 1$
 - b. $L_7 = \{ w \in \Sigma^* | w = a^i b^i c^i d^i \}, i \ge 1$
 - c. $L_8 = \{ w \in \Sigma^* | w = \{1,0\}^* \{bd\}^i \{cd\}^i \{1,0\}^+ \}, i \ge 1$
 - d. $L_9 = \Sigma^*$

Ordnen Sie die Sprachen gemäß der <u>Chomsky-Hierarchie</u>. Benutzen Sie für die Zuordnung das Pumping-Lemma, Automatenskizzen oder beispielhafte Regelmengen P (12 Punkte).