Sampling and Aliasing

Rkka

July 30, 2024

Abstract

This article is about sampling and aliasing problems that I have encountered while studying numerical simulation of wave optics with computer to implement computer generated holography (CGH).

1 The Nyquist-Shannon sampling theorem

1.1 Statement of the theorem

If a function x(t) contains no frequencied higher than B hertz, then it can be completely determined from its ordinates at a sequence of points spaced lass than 1/(2B) seconds apart.

We can rewrite the above theorem with the following expressions: $f_s \geq 2B$. In other words, when we denote a sampling interval as Δx and a period of an original signal as λ , the theorem is: $\Delta x < (\lambda/2)$. Intuitively, it says that we need to sample the original signal sufficiently densely in order to represent the signal without loss of information.

1.2 Motivation

The sampling theorem is required to avoid a type of distortion called *aliasing*.

2 Sampling theory

2.1 Dirac comb

The $Dirac\ comb$ function is defined as:

$$comb_T(t) \equiv \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

where $\delta(t)$ is the Dirac delta function. In the above definition the comb function has a period T. This function is important in sampling theory because every periodically sampled function $f_s(x)$ can be expressed as: $f_s(x) = f(x)comb_T(x)$ where T is a sampling period.

To understand a useful fourier transform property of the comb function, we need the following lemma :

Lemma.
$$\delta(u) = \int_{-\infty}^{\infty} dx \cdot e^{-i2\pi ux}$$

Proof.
$$\mathcal{F}^{-1}[\delta(u)] = \int_{-\infty}^{\infty} du \cdot \delta(u) e^{i2\pi ux} = 1$$

$$\to \mathcal{F}[\mathcal{F}^{-1}[\delta(u)]] = \delta(u) = \int_{-\infty}^{\infty} dx \cdot 1 \cdot e^{-i2\pi ux} = \int_{-\infty}^{\infty} dx \cdot e^{-i2\pi ux}$$
Hence, $\delta(u) = \int_{-\infty}^{\infty} dx \cdot e^{-i2\pi ux}$
(QED)

Now, we can prove the following useful theorem:

Theorem.
$$\mathcal{F}[comb_T(t)] = \frac{1}{T}comb_{\frac{1}{T}}(u)$$

Proof. First, consider a Fourier series of $comb_T(t)$:

$$comb_T(t) = \sum_{n=-\infty}^{\infty} c_n e^{i2\pi \frac{n}{T}t} \text{ with } c_n = \frac{1}{T} \int_{-T/2}^{T/2} dt \cdot comb_T(t) e^{-i2\pi \frac{n}{T}t}$$
$$\to comb_T(t) = \frac{1}{T} \sum_{n=-\infty}^{\infty} e^{i2\pi \frac{n}{T}t}$$

Then, with a Fourier transform :

$$\mathcal{F}[comb_{T}(t)] = \int_{-\infty}^{\infty} dt \cdot comb_{T}(t)e^{-i2\pi ut} = \int_{-\infty}^{\infty} dt \cdot \frac{1}{T} \sum_{n=-\infty}^{\infty} e^{i2\pi \frac{n}{T}t} e^{-i2\pi ut}$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} dt \cdot e^{-i2\pi(u-\frac{n}{T})t} = \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta(u-\frac{n}{T})$$

$$= \frac{1}{T} comb_{\frac{1}{T}}(u)$$
(QED)

3 Aliasing

3.1 Definition

In signal processing, aliasing is the overlapping of frequency components[1]. For example, suppose we sample a high frequency (f_1) signal $x_1(t)$ with a sampling frequency f_s lower then the Nyquist frequency $(f_s < f_{Nyquist} = 2f_1)$. And denote the resulting sampled signal $x_1[n]$. The problem is, there is a lower frequency (f_2) signal $x_2(t)$ such that when we sample $x_2(t)$ with the same sampling frequency f_s , the sampled signal $x_2[n]$ becomes identical to $x_1[n]$: $x_1[n] = x_2[n]$.

In other words, when we sample a signal sparsely, then high-frequency information is lost and thus appears as a lower-frequency signal.

Figure 1: Aliasing. Red line represents original signal and dotted line represents sampled signal. You can see the original signal is sampled as a lower frequency signal.

3.2 Mathematical description

References

[1] Nyquist–Shannon sampling theorem. In Wikipedia, The Free Encyclopedia.