Pflichtenheft Visualisierung von Prozessdaten zum Thema "Erneuerbare Energien und IoT"

Burglechner, Leeb, Steiner

Impressum

Herausgeber

Burglechner, Leeb, Steiner

Version	Stand	Status
1.1	18.09.2017	Erstellung
1.2	20.09.2017	Bearbeitung
1.3	21.09.2017	Bearbeitung
1.4	25.09.2017	Bearbeitung
1.5	30.09.2017	Bearbeitung

Änderungshistorie

Version	Datum	Bearbeiter	Aktivität / Kommentar
1.1	18.09.2017	Leeb, Steiner	Erstellung
1.2	20.09.2017	Steiner	Bearbeitung
1.3	21.09.2017	Steiner	Bearbeitung
1.4	25.09.2017	Burglechner, Leeb, Steir	ner Bearbeitung
1.5	30.09.2017	Burglechner, Steiner	Bearbeitung

Inhaltsverzeichnis

1	Ziell	oestimmungen	. 5
	1.1	Ausgangssituation	. 5
	1.2	Musskriterien	. 5
	1.3	Wunschkriterien	. 5
	1.4	Abgrenzungskriterien	. 5
2	Proc	dukteinsatzdukteinsatz	. 6
	2.1	Anwendungsbereiche	. 6
	2.2	Zielgruppe	. 6
	2.3	Voraussetzungen	. 6
	2.3.	1 Anwendungsvoraussetzungen	. 6
	2.4	Betriebsbedingungen	. 6
3	Prod	duktumgebungduktumgebung	. 7
	3.1	Software	
	3.2	Hardware	. 7
	3.3	Produktschnittstelle	. 7
4	Proc	duktübersicht	. 8
5		orderungen	
	5.1	Funktionale Anforderungen	. 9
	5.1.	1 C# / Windows Forms Anwendung	. 9
	5.1.	2 Webseite	10
	5.1.	3 Android-App	10
	5.2	Nichtfunktionale Anforderungen	10
	5.2.	1 Leistungsanforderungen	10
	5.2.	2 Realisierungsanforderungen	11
	5.2.	3 Qualitätsanforderungen	11
6	Entv	vicklungsumgebung	11
	6.1	Software	
	6.2	Hardware	

7	Produktdaten		
8	GUI-Ent	wurf	13
	8.1 Wir	ndows Forms / C# - Anwendung	
	8.1.1	Startseite	13
	8.1.2	Betriebsarten	16
	8.1.3	I/O Anzeige	21
	8.1.4	Einstellungen	23
	8.2 We	bseite	26
	8.2.1	Startseite	26
	8.2.2	Betriebsarten	27
9	Testfälle	2	30
10) Meile	nsteinplan	30
11	Gloss	ar	31

1 Zielbestimmungen

1.1 Ausgangssituation

In dem Zeitalter der globalen Vernetzung benötigen Mikrocontroller immer öfter eine Verbindung zum Internet oder direkt zu Endgeräten. Als Musteraufbau soll eine frühere Diplomarbeit dienen die als Ziel eine Heizungssteuerung (mit Hilfe eines Arduino) hatte. Nun soll die C#-Anwendung der Heizungssteuerung auf einen Raspberry Pi portiert und über einen Webserver steuerbar sein. Das Ziel ist, dass dieser Aufbau auch von Außenstehenden und im Unterricht am LiTec verwendet werden kann.

1.2 Musskriterien

- Die vorhandene C#-Anwendung der vorhergegangenen Diplomarbeit soll auf einen Raspberry Pi portiert werden und zum Laufen gebracht werden.
- Visualisierung von Prozessdaten auf unterschiedlichen Systemen.
- Die Kommunikation mit dem Mikrocontroller soll mittels USB-Schnittstelle erfolgen.
- Zusätzlich zum Produkt soll eine ausführliche Benutzeranleitung und Übungsanleitung erstellt werden.

1.3 Wunschkriterien

- Es soll ein Algorithmus entwickelt werden der die Heizungsteuerung automatisch betreibt.
- Die Kommunikation mit dem Mikrocontroller soll mittels Bluetooth erfolgen.
- Protokollierung von Kommunikationsaustausch zwischen Mikrocontroller und Visualisierungssysteme

1.4 Abgrenzungskriterien

 Mit der Webseite muss die Heizung nicht gesteuert werden, sondern nur die Prozessdaten müssen dargestellt werden. Mithilfe der App muss die Heizung nicht gesteuert werden, sondern nur die Prozessdaten dargestellt werden.

2 Produkteinsatz

2.1 Anwendungsbereiche

Das Produkt soll dem Benutzer ermöglichen Prozessdaten von einer Maschine (als Beispiel verwenden wir eine Heizung) auf unterschiedlichen Visualisierungssystemen darzustellen und außerdem soll der Benutzer in der Lage sein die Maschine von diesen externen Systemen zu steuern.

Das Produkt und die mitgelieferten Anleitungen sollen im Unterricht am Litec als Muster für "Informationstechnologienfernen Personen" dienen, damit diese ohne großen Aufwand Prozessdaten einer Maschine darstellen können.

2.2 Zielgruppe

Die Zielgruppe dieses Produkts sind Schülerinnen und Schüler die das LiTec besuchen.

2.3 Voraussetzungen

2.3.1 Anwendungsvoraussetzungen

Der Benutzer dieses Produkts sollte das beigelegte Benutzerhandbuch gelesen haben.

2.4 Betriebsbedingungen

Folgende Geräte sollten sie verwenden, um die bestmögliche Leistung aus diesem Produkt zu gewinnen:

- Ein PC mit Windows 7 (Betriebssystem mit der die C#-Anwendung der Vorgänger Diplomarbeit erstellt wurde).
- Ein Raspberry Pi (mit Mono).
- Ein Arduino.
- Die anzusteuernde Hardware.

3 Produktumgebung

3.1 Software

Folgende Softwareprodukte werden benötigt:

- Apache HTTP Server 2.4.27 (läuft am RPI)
- Raspbian (läuft am RPI)
- Windows 10 Home
- Windows 8.1 Home
- Android Version 6.0 (Marshmallow), 7.1.1 (Nougat)

3.2 Hardware

Folgende Hardware wird benötigt:

- Raspberry Pi 3
- Arduino ATmega 2560
- PC
- Mobiles Endgerät (mit Android)
- Anzusteuernde Hardware

3.3 Produktschnittstelle

Folgende Schnittstelle wird benötigt:

• USB-Schnittstelle

4 Produktübersicht

Abbildung 1 Übersicht der einzelnen Komponenten des Produkts

5 Anforderungen

5.1 Funktionale Anforderungen

5.1.1 C# / Windows Forms Anwendung

/F10/ Geschäftsprozess: Verbindungsaufbau mit COM-Port in C#-Anwendung

Akteur: Benutzer der C#-Anwendung auf PC oder RPI

Beschreibung: Bevor die Prozessdaten angezeigt werden oder Befehle an den

Mikrocontroller gesendet werden können muss zuerst eine Verbindung mit Mikrocontroller aufgebaut werden. Dazu muss der Benutzer einen

COM-Port und eine Baudrate auswählen und den Button "start"

drücken.

/F20/ Geschäftsprozess: Verbindung mit Mikrocontroller trennen

Akteur: Benutzer der C#-Anwendung auf PC oder RPI

Beschreibung: Bei bestehender Verbindung mit dem Mikrocontroller, kann der

Benutzer mithilfe des Buttons "stop" die Verbindung trennen.

/F30/ Geschäftsprozess: C#-Anwendung beenden

Akteur: Benutzer der C#-Anwendung auf PC oder RPI

Beschreibung: Durch betätigen des "exit" Buttons in der C#-Anwendung, wird die

komplette Anwendung geschlossen.

/F40/ Geschäftsprozess: Prozessdaten in C#-Anwendung darstellen

Akteur: Benutzer der C#-Anwendung auf PC oder RPI

Beschreibung: Die Messwerte die am Mikrocontroller erfasst werden und auf die

serielle Schnittstelle geschrieben werden in periodischen

Zeitabständen automatisch von der seriellen Schnittstelle gelesen und

grafisch und tabellarisch dargestellt.

/F50/ Geschäftsprozess: Befehle an Mikrocontroller senden

Akteur: Benutzer der C#-Anwendung auf PC oder RPI

Pflichtenheft Visualisierung von Prozessdaten zum Thema IoT Diplomarbeit

Beschreibung: Der Benutzer kann mithilfe geeigneter Buttons und Auswahllisten

automatisch generierte und formatierte Befehle an den Mikrocontroller senden um verschiedene Aktionen auszuführen. (z.B. eine Pumpe

starten oder stoppen)

5.1.2 Webseite

/F60/ Geschäftsprozess: Prozessdaten auf Website darstellen

Akteur: Internetbesucher

Beschreibung: Beim Laden der Webseite werden die Prozessdaten automatisch

mithilfe eines Skriptes geladen. Die Daten werden automatisch in periodischen Abständen mithilfe eines weiteren Skripts aktualisiert.

5.1.3 Android-App

/F70/ Geschäftsprozess: Prozessdaten in Android-App auf mobilen Endgerät darstellen

Akteur: Benutzer eines Android-Smartphones

Beschreibung: Beim Öffnen der App werden die Prozessdaten automatisch geladen

und werden auch automatisch in periodischen Zeitabständen aktualisiert. Wenn keine Verbindung über Bluetooth zum Arduino

besteht erhält der Benutzer eine Meldung.

5.2 Nichtfunktionale Anforderungen

5.2.1 Leistungsanforderungen

Performance: Es wird nicht gewährleistet, dass das ausgearbeitet Projekt in Zukunft auf neueren Versionen wie der in der Doku beschriebenen, reibungslos läuft.

5.2.2 Realisierungsanforderungen

Auf dem Raspberry Pi wird eine grafische Raspbian Version eingerichtet. Auf diesem wird der Apache http Server laufen und die Entwicklungsumgebung "Mono" installiert, mit welcher die bestehende C# Software verwendet werden soll. Die Android App läuft auf einem Android Gerät mit der Android Version 6.0 oder 7.1.1. Der Windows Rechner dient zur grafischen Veranschaulichung der Website.

 Die Realisierung muss so einfach wie möglich gehalten werden, damit diese als Vorlage im Unterricht in "Informationstechnologiefernen Abteilungen" verwendet werden kann

5.2.3 Qualitätsanforderungen

- Die Benutzung des Produkts sollte so einfach wie nur möglich gestaltet sein, d.h. bei der Benutzeranleitung oder der Dokumentation sollen Beispiele für mögliche Eingaben oder Verwendungen vorhanden sein.
- Es sollte eine möglichst einfache und benutzerfreundliche Fehlerbehandlung gewährleistet werden, d.h. sollten Fehler auftreten soll dem Benutzer mitgeteilt werden, wodurch der Fehler hervorgerufen wurde. In der Dokumentation oder Benutzeranleitung wird eine Liste hinzugefügt, die helfen soll häufig auftretende Fehler schnell zu beheben.

6 Entwicklungsumgebung

6.1 Software

- Technologien
 - o Arduino
 - C / C++
 - Windows Form / C# Anwendung
 - C# / .Net Framework
 - C# / Mono Framework
 - Apache http Webserver 2.4.27

- Webseite / HTML
- Skript / PHP
- Betriebssysteme
 - Windows 8.1
 - Windows 10
 - Raspbian
 - Android Version 6.0
 - Android Version 7.0
- IDEs / Editoren
 - o Arduino
 - Atmel Studio / AVR Studio
 - o Windows Form / C# Anwendung
 - Visual Studio 2015 / .NET Framework / Windows
 - Mono Develop / Mono Framework / Linux
 - Webseite
 - Notepad++
 - o Android-App
 - Android Studio
 - Sketch

0

- Browser
 - o Google Chrome 61.0.3163.100

6.2 Hardware

- Arduino ATmega 2560
- Raspberry Pi V3
- Rechner mit Windows 8.1 und Windows 10

7 Produktdaten

Die Kommunikation mit dem Arduino-Board erfolgt über eine USB-Schnittstelle oder optional über Bluetooth. Die Daten die zwischen den Geräten ausgetauscht werden besitzen zwei Formen. Auf der einen Seite sendet der Mikrocontroller die aktuellen Prozessdaten die erfasst werden an die Visualisierungssysteme und auf der anderen Seite senden die Visualisierungssysteme unterschiedliche Befehle an den Mikrocontroller um bestimmte Aktionen auszuführen. Beide Formen werden mithilfe eines simplen Strings realisiert.

8 GUI-Entwurf

8.1 Windows Forms / C# - Anwendung

8.1.1 Startseite

Abbildung 2 Startseite - Pumpen

Abbildung 3 Startseite - Sensoreinstellungen

Abbildung 4 Startseite - Datendiagramm

Abbildung 5 Startseite - COM Überwachung

8.1.2 Betriebsarten

Abbildung 7 Betriebsarten - 2

Abbildung 8 Betriebsarten - Sommerbetrieb

Abbildung 9 Betriebsarten - Winterbetrieb

Abbildung 10 Betriebsarten - Winterbetrieb - Solarbetrieb

Abbildung 11 Betriebsarten - Winterbetrieb - Zeitbetrieb

Abbildung 12 Betriebsarten - Handbetrieb - Seite 1

Abbildung 13 Betriebsarten - Handbetrieb - Seite 2

8.1.3 I/O Anzeige

Abbildung 14 I/O Anzeige - Seite 1

Abbildung 15 I/O Anzeige - Seite 2

8.1.4 Einstellungen

Abbildung 16 Einstellungen

Abbildung 17 Einstellungen – Heizungsregler

Abbildung 18 Einstellungen – Technikeinstellungen

Abbildung 19 Einstellungen - Technikeinstellungen - Zündung Seite 1

Abbildung 20 Einstellungen - Technikeinstellungen - Zündung Seite 2

8.2 Webseite

8.2.1 Startseite

Abbildung 21 Startseite

Abbildung 22 Webseite – Datendiagramme

Abbildung 23 Webseite - I/O Anzeige

8.2.2 Betriebsarten

Abbildung 24 Webseite – Betriebsarten

Abbildung 25 Webseite - Betriebsarten - Winterbetrieb

Abbildung 26 Webseite - Betriebsarten - Sommerbetrieb

Abbildung 27 Webseite - Betriebsarten - Solarbetrieb

Abbildung 28 Webseite - Betriebsarten - Zeitbetrieb

9 Testfälle

Datum	Testfall	Anmerkung
30.10.2017	Testen des	
	Demonstrationssystems	
27.11.2017	Visualisierung der	
	Prozessdaten in C#-	
	Anwendung testen	
22.12.2017	Testen ob Webserver von	
	anderen Rechner im	
	selben Netzwerk	
	erreichbar ist	
22.12.2017	Testen ob Webserver von	
	anderen Rechner in	
	anderen Netzwerken	
	erreichbar ist	
26.02.2017	Testen ob Heizung von	
	Visualisierungssystem	
	steuerbar ist	

10 Meilensteinplan

Datum	Meilenstein	Anmerkungen	
02.10.2017	Fertigstellung Pflichtenheft	Das Pflichtenheft kann	
		zu einem späteren	
		Zeitpunkt noch verändert	
		werden	
30.10.2017	Hardwareaufbau	Die Hard- und	
	(Demonstartionssystem)	Softwarekonfiguration	
	realisiert	der Komponenten des	

	Testsystems kann sich
	später noch verändern
Softwareentwicklung mittels	Es besteht die
C# an den Zielsystemen	Möglichkeit das sich die
abgeschlossen	C#-Anwendung auf dem
	RPI etwas unterscheidet
	von der auf dem
	Windows Rechner
Webserver mit	Nur mithilfe eines
statischer/dynamischer	Skriptes ist es möglich
Website (in HTML)	die Prozessdaten auf
abgeschlossen, Web-	dem neuesten Stand zu
Zugang zu Prozessdaten	haben
über RPI möglich	
Prozessdatenkommunikation	
(Sollwerte und Istwerte) mit	
Heizungssteuerung möglich	
Übungsanleitung und	
Diplomarbeitsdokumentation	
abgeschlossen	
	C# an den Zielsystemen abgeschlossen Webserver mit statischer/dynamischer Website (in HTML) abgeschlossen, Web-Zugang zu Prozessdaten über RPI möglich Prozessdatenkommunikation (Sollwerte und Istwerte) mit Heizungssteuerung möglich Übungsanleitung und Diplomarbeitsdokumentation

11 Glossar

IoT: Internet der Dinge (Internet of Things) bezeichnet die Vision einer durch Informations- und Kommunikationstechniken in globalen Informationsgesellschaften vernetzten Infrastruktur von Alltagsgegenständen.

RPI: Der Raspberry Pi ist ein Einplatinencomputer.