Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Partial MN

Student:			Grupa:		
Descriere curs:	MN, An I, Semestrul II	Rezultate Examen			
Titlu curs:	Metode Numerice	Subject Punctaj			
Profesor:	Florin POP, George POPESCU	1			
				/3	
Durata examenului:	90 minute	2		/3	
Tip Examen:	"Closed Book"	3		/0	
Materiale Aditionale:	Nu! (!Fara telefoane mobile!)	<u> </u>		/2	
7.	,	4		/2	
Numar pagini:		5		/0	
				/2	
		\sum		/12	

Subjecte (Numarul β)

3 puncte

1. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 3 & 13 \end{pmatrix}$. Calculati factorizarea LU-Crout $(u_{ii} = 1)$ pentru matricea A. Scrieti o functie MATLAB, function [L U] = Crout(A), pentru $A \in \mathbb{R}^{n \times n}$.

3 puncte

2. Se considera un vector $x \in \mathbb{R}^n$, $||x||_2 = 1$ si se formeaza vectorul $u = \frac{x+e_1}{\sqrt{1+x_1}}$ si matricea $H = I_n - uu^T$. a) Sa se calculeze $||u||_2$. b) Sa se arata ca H este ortogonala si ca $Hx = -e_1$.

2 puncte

3. Pornind de la relatia de recurenta care defineste diferentele divizate $F_0[x_0] = f(x_0)$, $F_p[x_0, x_1, \cdots, x_p] = \frac{F_{p-1}[x_0, x_1, \cdots, x_{p-1}] - F_{p-1}[x_1, x_2, \cdots, x_p]}{x_0 - x_p}$, sa se arate ca avem formula de calcul: $F_p[x_0, x_1, \cdots, x_p] = \sum_{i=0}^p \frac{f(x_i)}{\prod_{j=0, j\neq i}^p (x_i - x_j)}$. Scrieti o functie MATLAB care calculeaza difetentele divizate: function d = DifDiv(x, y).

2 puncte

4. Pentru functia f(x) cunoscuta prin tabelul urmator, calculati functiile spline polinomiale de ordin 2, $s_0(x)$ si $s_1(x)$, unde $s_0''(1) = 2$, $s_1''(3) = -1$ si $x = [1 \ 3 \ 3]$, $f = [3 \ 4 \ 1]$.

2 puncte

5. Rezolvati, eficient din punct de vedere al implementarii, prin eliminare gaussiana, urmatorul sistem de ecuatii lineare A=[3 2 102; 2 -3 101; 1 1 2], b=[101;96;2]. (Hint: scalare)