SE328:Topology

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

Week 07

A space X admits two open subsets A, B such that

$$X = A \cup B$$
,

then the pair A, B is is called the **separation** of X, and X is called *disconnected*. If the space X does not admit any separation, it is called a **connected** space. A subset $U \subset X$ is called **connected** if it is connected as a subspace topology of X, i.e. there is not open subsets A, B of X such that

$$U = (A \cap U) \cup (B \cap U)$$

- 1. Any finite subset S of \mathbf{R} is disconnected.
- 2. The set of all rationals, \mathbf{Q} , is disconnected in \mathbf{R} .

Lemma

If X admits a separation $X = A \cup B$ and $Y \subset X$ is a connected subset, then either $Y \subset A$ or $Y \subset B$.

Let $U_{\alpha} \subset X$ be a connected subspace and suppose that there is a point $x \in X$ such that

$$x \in \bigcap_{\alpha} U_{\alpha}$$

Then the union $\bigcup_{\alpha} U_{\alpha}$ is connected.

If A is connected subset of X and $A \subset B \subset \overline{A}$. Then B is connected.

Let $f: X \to Y$ be a continuous map. If $U \subset X$ is connected, then f(U) is connected.

Let X_1, \dots, X_n be connected spaces. Then $\prod_{i=1} X_i$ is connected space in product topology.

n

The space \mathbf{R}^{ω} with the product topology is connected. To show this, we follow two steps below.

- 1. Define $\tilde{\mathbf{R}}^n = \{(x_1, \cdots, x_n, 0, \cdots) \mid x_i \in \mathbf{R}\}$ and show that $\mathbf{R}^{\infty} = \bigcup_{n=1}^{\infty} \tilde{\mathbf{R}}^n$ is connected.
- 2. Show that $\overline{\mathbf{R}^{\infty}} = \mathbf{R}^{\omega}$.

Theorem

The real line and its intervals (a,b) and rays (a,∞) are connected.

Proof.

Note that the real line \mathbf{R} satisfies the two axioms:

- 1. any subset of \mathbf{R} admits the least upper bound;
- 2. if x < y, then there exists z such that x < z < y.

Let L be a *convex* subset of \mathbf{R} , i.e. for any $a,b\in L$, $[a,b]\subset L$. Suppose that L admits a separation $L=A\cup B$. Let $a\in A$ and $b\in B$. Then by the convexity of L, $[a,b]\subset L$. Let $A_0=[a,b]\cap A$ and $B_0=[a,b]\cap B$. Let $c=\sup A_0$. Since c lies in [a,b], it must be contained in either A_0 or B_0 .

Proof.

Suppose $c \in A_0$. Then $c \neq b$. Thus $a \leq c < b$. Since A_0 is open in [a,b], there is an interval $[c,c+\varepsilon)$ contained in A_0 , which contradicts the assumption that c is the supremum of A_0 . Suppose $c \in B_0$. Then $c \neq a$. Thus $a < c \leq b$. Since B_0 is open, there is an interval $(c - \varepsilon, c]$ contained in B_0 . If c = b, then this contradicts to the assumption. If $c \neq b$, then $(c,b] \cap A_0 = \emptyset$ and

$$(c - \varepsilon, b] = (c - \varepsilon, c] \cap (c, b]$$

is not contained in A_0 . This also contradicts to the assumption.

Theorem (Intermediate value theorem)

Let $f: X \to \mathbf{R}$ be a continuous function. If X is connected, then for any two $a, b \in X$ and $r \in [f(a), f(b)]$, there exists $c \in X$ such that f(c) = r.

Proof.

Let $A = f(X) \cap (-\infty, r)$ and $B = f(X) \cap (r, \infty)$. If there is no $c \in X$ such that f(c) = r, then $f(X) = A \cap B$. Since A, B are open subset in the subspace $f(X) \subset X$, this implies that f(X) admits a separation. This is a contradiction.

A continuous map $f:[a,b] \to X$ is called a **path** from f(a) to f(b). A space X is called **path-connected** if any two points $x, y \in X$ can be joined by a path.

Proposition

A path-connected space is connected.

Proof.

Suppose X is path-connected, but not connected. Let $X = A \cap B$ be a separation. Take $a \in A, b \in B$, and a path $c : [0,1] \to X$ joining c(0) = a to c(1) = b. Since c is continuous, so is c([0,1]). However, $c([0,1]) = (c([0,1]) \cap A) \cup (c([0,1]) \cap B)$ is a separation of c([0,1]), a contradiction.

Not all connected space is path-connected. For example, let

$$S = \{(x, \sin(1/x)) \mid 0 < x \le 1\}$$

Then \overline{S} is connected, but not path-connected. However, the set $\overline{S} = S \cup \{0\} \times [0,1]$ is not path-connected. This set is called **topologist's sine curve**.

Given a topological space X, let us define $x \sim y$ if x, y lies in the same connected subset of X. Under this equivalence relation, each equivalence class of X is called the (connected) **component** of X. Similarly, if we define $x \sim y$ when x, y lies in the same path-connected subset of X, the equivalence classes are called the **path component** of X.

The space X is disjoint union of (path) components of X. Every (path) connected subset of X intersects only one of (path-connected) components.

Here are some examples of components of spaces.

- 1. The set \mathbf{Q} is not connected in \mathbf{R} and every components of \mathbf{Q} is a one-point set.
- 2. The topologist's sine curve \overline{S} has one component, and two path components.

A space X is called **locally connected at** x if for any neighborhood U of x, there is a connected neighborhood U_1 of x such that $U_1 \subset U$. If X is locally connected at every point $x \in X$, we say X is **locally connected**. Similarly, we say X is **locally path-connected** if for any neighborhood U of x, there is a path-connected neighborhood U_1 of x such that $U_1 \subset U$ for any $x \in X$.

Let X be locally path connected. Then every connected open set is path connected.

A space X is locally (path) connected if and only if each (path) component is open.

Proof.

Suppose X is locally connected. Let U be a component of X. For any $x \in C$, we can choose a neighborhood U_1 of x such that $U_1 \subset U$. Thus U is open. Conversely, suppose that every component if open. Then for any $x \in X$, let V be a component containing x. Then for any open neighborhood U of x, $U_1 = U \cap V$ is open and contained in U. Thus X is locally connected.

What are the components and path components of \mathbf{R}_l (the lower limit topology). Which functions $f: \mathbf{R} \to \mathbf{R}_l$ are continuous?

Consider \mathbf{R}^{ω} with the uniform topology. Then $\mathbf{x} = (x_1, \dots)$, $\mathbf{y} = (y_1, \dots)$ are in the same component if and only if the sequence $x_i - y_i$ is bounded. Moreover, if \mathbf{R}^{ω} has box topology, then \mathbf{x} , \mathbf{y} are in the same component if and only if $x_i = y_i$ for all i > N when N is sufficiently large.

A space X is said to be **weakly connected** at x if for every neighborhood U of x admits a connected subset which is contained in U and contains a neighborhood of x.

Proposition

If X is weakly connected at every point, then X is locally connected.

The *infinite bloom* is not locally connected, but weakly locally connected.

