Lycée Buffon TD 19
MPSI Année 2020-2021

Familles de vecteurs

Dans tous les exercices E et F sont deux \mathbb{K} -espaces vectoriels et r est un entier naturel non nul.

Exercice 1:

Soit $f \in \mathcal{L}(E, F)$ et $(x_1, ..., x_r) \in E^r$.

- Montrer que si $(x_i)_{i \in [\![1,r]\!]}$ est libre et si f est injective, alors $(f(x_i))_{i \in [\![1,r]\!]}$ est libre.
- Montrer que si $(x_i)_{i \in [\![1,r]\!]}$ engendre E et si f est surjective, alors $(f(x_i))_{i \in [\![1,r]\!]}$ engendre F.
- Montrer que si $(x_i)_{i \in [\![1,r]\!]}$ est une base de E et si f est bijective, alors $(f(x_i))_{i \in [\![1,r]\!]}$ est une base de F.

Exercice 2:

Soit $f \in \mathcal{L}(E, F)$ et $(x_i)_{i \in [1, r]}$ une famille de vecteurs de E.

- Montrer que si $(f(x_i))_{i\in [1,r]}^n$ engendre F, alors f est surjective.
- Montrer que si $(f(x_i))_{i \in [\![1,r]\!]}$ est libre, alors la famille $(x_i)_{i \in [\![1,r]\!]}$ est libre.

Exercice 3:

Soit $f \in \mathcal{L}(E, F)$.

- Montrer que f est surjective si, et seulement si, pour toute famille $(x_i)_{i\in I}$ génératrice de E, la famille $(f(x_i))_{i\in I}$ engendre F.
- Montrer que f est injective si, et seulement si, pour toute famille $(x_i)_{i\in I}$ de E libre, la famille $(f(x_i))_{i\in I}$ est libre.
- Montrer que f est bijective si, et seulement si, pour toute base $(x_i)_{i\in I}$ de E, la famille $(f(x_i))_{i\in I}$ est une base de F.

Exercice 4: Soient $f \in \mathcal{L}(E, F)$ et $(x_i)_{i \in I} \in E^I$ une base de E alors

- Montrer que f est surjective si et seulement si la famille $(f(x_i))_{i\in I}$ est génératrice de F,
- Montrer que f est injective si et seulement si la famille $(f(x_i))_{i\in I}$ est libre,
- Montrer que f est bijective si et seulement si la famille $(f(x_i))_{i\in I}$ est une base de F,