Analysis of Manufacturing Process of a Semiconductor

Technical Exercise - Phase 1

Lívia Parente

Agenda

- Problem Context
- Objectives
- **♦** EDA
- Preprocessing Steps
- Model choice
- **♦** First Results

- Undersampling Strategy
- Hyperparameters Optimization
- Most important attributes
- **♦** Features selection
- Conclusion

Problem Context

Data collected from sensors of a manufacturing semiconductor process

Row count: 1567

Column count: 591

- Target variable values: Pass (1) or Fail (-1)
 - Binary classification problem

Objectives

Build a Machine Learning model to predict the target variable.

2. Sort the attributes in terms of importance that produce a positive test.

3. Rebuild the model using the key attributes identified in the previous step and compare the performance with the initial model.

EDA

Exploratory Data Analysis

EDA - Simple eye analysis

>>> data.head()

```
Time
                            0
                                                          587
                                                                 588
                                                                         589
                                                                              Pass/Fail
  2008-07-19 11:55:00
                      3030.93 2564.00 2187.7333
                                                         NaN
                                                                NaN
                                                                        NaN
                                                                                  -1
 2008-07-19 12:32:00
                      3095.78 2465.14 2230.4222
                                                        0.0201 0.0060
                                                                      208.2045
2 2008-07-19 13:17:00
                      2932.61 2559.94 2186.4111
                                                        0.0484 0.0148
                                                                      82.8602
3 2008-07-19 14:43:00
                      2988.72 2479.90 2199.0333
                                                        0.0149 0.0044
                                                                       73.8432
4 2008-07-19 15:22:00
                      3032.24 2502.87 2233.3667
                                                        0.0149 0.0044
                                                                       73.8432
```

```
>>> secom.shape (1567, 592)
```

First conclusions

- First row has the name of features
- First column has time and data
- Last column has the labels
- Some NaN values
- Large Dataset 1567x592

EDA - More immediate investigation

>>> 5	>>> secom.describe()						
	0	1	2		588	589	Pass/Fail
count	1561.000000	1560.000000	1553.000000		1566.000000	1566.000000	1567.000000
mear	3014.452896	2495.850231	2200.547318		0.005283	99.670066	-0.867262
std	73.621787	80.407705	29.513152		0.002867	93.891919	0.498010
min	2743.240000	2158.750000	2060.660000	•••	0.001000	0.000000	-1.000000
25%	2966.260000	2452.247500	2181.044400		0.003300	44.368600	-1.000000
50%	3011.490000	2499.405000	2201.066700		0.004600	71.900500	-1.000000
75%	3056.650000	2538.822500	2218.055500		0.006400	114.749700	-1.000000
max	3356.350000	2846.440000	2315.266700		0.028600	737.304800	1.000000

Other conclusions

- A big number of NaN or null values
- Features with completely different magnitudes

PCA for data visualization

Feature reduction from 591 to 2

→ Classes not easily separable

Preprocessing

First preprocessing steps

- Separate Data and labels
- Remove first column with dates
- Substitute Nan for mean values
- Eliminate possible erroneous values, e.g. 0.0

Result:

→ Number of features columns reduced from 590 to 478

Other preprocessing steps

- Split the data by 20% to training test sets
- Standardize features to deal with different features magnitudes

Model choice

Model choice

Must take into account:

- → Classification problem
- → Large Dataset

K-means and Naive Bayes do not perform well on large dataset.

It leaves us with:

- → Support Vector Machines: Computationally cheap, only handles binary classification
- → Decision Trees: Computationally cheap, can deal with irrelevant features, but tends to overfit
- → Random Forests: Can also deal with irrelevant features but has lower tendency to overfit

Random Forests

Additionally gives us importance of variables

First results

By simply trying the standard parameters with the chosen model and preprocessing steps described

	Precision	Recall	F1-Score
-1	0.93	1.00	0.97
1	0.00	0.00	0.00

Confusion Matrix

TP = 0	FN = 21
FP = 0	TN = 293

Conclusion

- → Cannot predict positive values
- → Resulting label is always "Fail", regardless of the entries

Idea

→ Investigate problems on the Dataset

Highly imbalanced classes

Undersampling strategy

Since we have a large dataset

Simply make an equal distribution of data according to the class labels

Undersampling first try

Same number of "Pass" and "Fail" examples in the dataset

	Precision	Recall	F1-Score
-1	0.59	0.50	0.54
1	0.60	0.68	0.64

Confusion Matrix

TP = 15	FN = 7
FP = 10	TN = 10

PCA for data visualization

→ After undersampling

 Classes more balanced but still not easily separable

Change the undersampling strategy

→ Too few data

Manually exhausting optimization classes size

Undersampling optimal sizes

"Fail" class 10x bigger than "Pass" class

	Precision	Recall	F1-Score
-1	0.94	1.00	0.97
1	1.00	0.65	0.79

Confusion Matrix

TP = 22	FN = 12
FP = 0	TN = 195

Other undersampling strategy

Also tried "Tomek undersampling" technique, without any improvement

Hyperparameters Optimization

Hyperparameters to optimize

- Number of trees
- Function to measure the quality of split
- Maximum depth of the tree
- Minimum number of samples required to split a node
- Minimum number of samples at a leaf node
- The number of features to consider when looking for the best split

Grid Search optimization strategy

- Exhaustive search
- 3-fold cross validation

Hyperparameters chosen

- Number of trees = 50
- Default values

	Precision	Recall	F1-Score
-1	0.94	1.00	0.97
1	1.00	0.65	0.79

→ Same results as before

Confusion Matrix

TP = 22	FN = 12
FP = 0	TN = 195

Most important attributes

Classifying attributes

The Random Forests model in the Scikit Learn framework provides an attribute that classifies features in terms of its importance to predict a positive value.

10 most important attributes

feature	importance
59	0.016341
103	0.015929
341	0.011465
130	0.010547
129	0.009546
205	0.009080
477	0.008975
455	0.008767
519	0.008629
33	0.007735

→ Remark:

Even the most important feature has very low importance, supporting the difficulty to predict the positive result.

Features selection

Features selection

Some feature selection strategies were tested:

- Selecting the best half of features
- Selecting the best 100 features
- Selecting the best 20 features
- Selecting features with importance bigger than 0.004, 0.002...
 - → But they all produced the same result as before, with no improvement

Features selection result

→ Same results as before

	Precision	Recall	F1-Score
-1	0.94	1.00	0.97
1	1.00	0.65	0.79

Confusion Matrix

TP = 22	FN = 12
FP = 0	TN = 195

Conclusion

→ The models or the hyperparameters optimization did not provide us big changes

→ Even after applying some techniques the classes were not easily separable

- → The biggest problems in that case were the dataset itself
 - ♦ Unbalanced
 - ◆ Large

Other ideas to try

- → Different resampling strategies
 - Oversampling after undersampling

→ Other feature selection strategie