

Linear Regression

Mentor: Pararawendy Indarjo

Linkedin: https://www.linkedin.com/in/pararawendy-indarjo/ Blog: medium.com/@pararawendy19

Hey I'm, **Pararawendy Indarjo**

I am a,

- CURRENTLY | Senior DS at Bukalapak
- 19 20 | Data Analyst at Eureka.ai

BSc Mathematics

MSc Mathematics

Outline

- Introduction to Linear Regression
- Linear Regression with Python
 - Single predictor
 - Multiple predictors
- Model diagnostic
- Model evaluation

RECAP

Types of ML

Based on target availability

1. Supervised learning

- Supervised = ground truth provided
- I.e. target is available in training data
 (x1,y1), (x2,y2), (x3,y3), etc..
- Objective: to correctly predict y from unseen data x
- Based on target variable type, can further be divided:
 - Regression ←
 - Classification

2. Unsupervised learning

- Unsupervised = no ground truth provided
- I.e. target is NOT available in training data
 - o (x1), (x2), (x3), ...
- Objective: to find hidden patterns in unlabeled data
 - Clustering
 - Dimensionality reduction

RECAP

Regression Example

Consider a model to predict sales omzet (GMV) using different advertising channels

- Regression model:
 - Predict GMV (Sales omzet)
 - Predictors are different advertising channels

First: What is a model?

Introduction to Linear Regression

- Linear regression is the oldest statistical model, invented by Legendre in 1805
- On a high-level, linear regression is all about finding a straight line (linear) that fits the data most nicely
- The mathematical form

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

- y is target, $x_1, x_2, ... x_n$ are predictors/features, $b_0, b_1, b_2, ..., b_n$ are parameters/coefficients to learn
- Characteristics
 - Supervised learning (y is provided)
 - Regression model (y is quantitative/numeric)

Residual

- Residual: delta between the real value of target variable y and the predicted value target variable y_{hat}
 - Predicted values = regression line

- red points are our data points
- black line is the regression line (our prediction values)

Residuals construct Loss Function

The magnitude we want to minimize when training the model

- Residual: delta between the real target variable y and the predicted target variable y_{hat}
 - Predicted values = regression line
- Train the model to minimize loss function: Residual sum of squares

total error =
$$\sum_{i} (y_i - \hat{y}_i)^2$$

• **Note:** training == finding coefficients

- red points are our data points
- black line is the regression line (our prediction values)

Assumptions of Linear Regression

 There is a straight-line relationship between the predictors and the target

- How do we check this?
 - One predictor: Scatter plot (like above)
 - Multiple predictors: Residual plot

Assumption 1 (cont'd)

Checking linearity assumption via residual plot:

 Validated if there is NO discerning non-linear pattern in residual plot

Residuals have a constant variance

- Uncorrelated residuals between different observations
- This is equivalent with independent observations

Observation

• Residuals are normally distributed

Can check using QQ-plot

Remark on Assumptions

- On real dataset, it is QUITE RARE all of those 4 assumptions are met
- It is the reason why linear regression is usually underperformed on real world data
- Nevertheless, just carry on! Real benefits of linear regression:
 - As a baseline model
 - Highly interpretable model

Essential rule in ML modelling

- We are NOT allowed to use ALL of our data to train our model
- Instead, we need to dedicate some portion of our data to become test data

All Data Training data Test data

Essential rule in ML modelling

- We are NOT allowed to use ALL of our data to train our model
- Instead, we need to dedicate some portion of our data to become test data

- Because we want our ML model to generalize well on new data
 - I.e. perform well on unseen data
- Test data is meant to mimic the unseen data

Linear Regression with Python

High level steps:

- Split data: training-testing
- Prepare as numpy arrays (X train, y train; X test, y test)
- Define and train the model on the training data:
 - Define model: linreg = LinearRegression()
 - Train model: linreg.fit(X_train, y_train)
- Interpret and pre-evaluate the model (model diagnostic)
- Using the trained model to predict test data
 - linreg.predict(X_test)
- Evaluate the model
 - Using various regression metrics

Example: Simple Linear Regression

Regression with only 1 predictor

- We will use faithful.csv data
 - eruptions: Eruption time (in mins)
 - waiting: Waiting time to next eruption (in mins)
- We regress eruptions using waiting
- faithful.head()

	eruptions	waiting
0	3.600	79
1	1.800	54
2	3.333	74
3	2.283	62
4	4.533	85

Example: Simple Linear Regression

Splitting data

Example: Simple Linear Regression

Model Training and Obtained Coefficients

```
from sklearn.linear_model import LinearRegression

# define the model
simple_reg = LinearRegression()

# train the model
simple_reg.fit(X_train, y_train)
```

feature coefficient

0	intercept	-1.939198
1	waiting	0.076638

eruptions = -1.939 + 0.076 waiting

- -1.939: when waiting is 0, the expected value of eruptions is -1.939
- 0.076: an increase of 1 on waiting time is associated with an increase of 0.076 on eruptions

Residual Plot

To check three assumptions of linear regression

- For model with 1 predictor (feature):
 - x-axis = feature value
 - y-axis = residual value

```
# residual plot
sns.scatterplot(data=df_resid, x="x_axis", y="residual")
plt.axhline(0)
plt.show()
```

- Assumptions to check via residual plot:
 - Linear relationship
 - Constant variance (look at red curves)
 - Independent observations X (look at blue lines)

QQ-Plot

To check normality assumption of the residuals

```
# QQplot
from sklearn.preprocessing import StandardScaler
std resid = StandardScaler().fit transform(residual.reshape(-1,1))
std resid = np.array([value for nested array in std resid for value in nested array])
import statsmodels.api as sm
sm.qqplot(std resid, line='45')
plt.show()
```


- QQ plot for residual
 - To check normality assumption V

- Open today's Jupyter notebook on your Google Colab!
- Make sure you have uploaded the required CSV files to your google drive
 - Remember the file path!

Multiple Linear Regression

The Data Used

For the rest of the lecture, we will use

```
regression_data.csv
```

- The data is about university admit probability, based on several applicant's features
 - GRE score
 - TOEFL score
 - University ranking
 - Motivation letter quality
 - Recommendation letter strength
 - o GPA
 - Research experience

Modeling Flow for >1 predictor

80 : 20 is fine

Multicollinearity check

- Calculate VIF score for each feature
- Correlation analysis to drop redundant feature
- Fit the model on training data
 - **Define and fit** LinearRegression()
 - Only include retained features from step 2
- Model diagnostic
 - Residual plot
 - QQ plot
 - R2 score on training data
- Evaluate the model on test data
 - RMSE

Split the Data

Using train_test_split() function

Recall, we want to predict admit_prob

Multicollinearity (1/2)

Variance Inflation Factor

- Multicollinearity: when two or more features/predictors are highly correlated with each other
- This can cause coefficients of estimates become unreliable
 - o i.e. little change in the training data leads to completely different learned coefficients
- We can detect this by computing Variance Inflation Factor (VIF) for each feature

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2}$$

- On a high level: VIF feature j will be high if j can be predicted using the rest of other features. Vice versa
- VIF == 1 → No multicollinearity
- VIF between 4 and 10 → Moderate multicollinearity
- VIF > 10 → Severe multicollinearity

Multicollinearity (2/2)

Using statsmodels library

Feature Correlation

To prevent multicollinearity

- We can draw a correlation heatmap
 - o Using sns.heatmap()
- We found that gre_score, toefl_score, and gpa are highly correlated each other
 - We decide to include only gpa to represent these three features
 - Because it is the most correlated with the target variable
- Note: Threshold: abs(corr) >= 0.8

Feature Correlation

To prevent multicollinearity

- We can draw a correlation heatmap
 - Using sns.heatmap()
- We found that gre_score, toefl_score, and gpa are highly correlated each other
 - We decide to include only gpa to represent these three features
 - Because it is the most correlated with the target variable
- Note: Threshold: abs(corr) >= 0.8

Training the Model

Excluding gre_score and toefl_score

```
feature_admit_train = feature_admit_train.drop(columns=['gre_score','toefl_score'])
feature_admit_test = feature_admit_test.drop(columns=['gre_score','toefl_score'])
from sklearn.linear_model import LinearRegression

# define the model
multi_reg = LinearRegression()

# train the model
X_admit_train = feature_admit_train.to_numpy()
y_admit_train = target_admit_train.to_numpy()
multi_reg.fit(X_admit_train, y_admit_train)
```


Interpreting the Obtained Model

coef_df				
	feature	coefficient		
0	intercept	-0.766426		
1	univ_ranking	0.006984		
2	motiv_letter_strength	0.004346		
3	recommendation_strength	0.014776		
4	gpa	0.161004		
5	research_exp	0.038274		

Sample coeff interpretation:

An increase of 1 point in GPA, while the other features are kept fixed, is associated with an increase of 0.161 point in admit_prob

Residual Plot

To check three assumptions of linear regression

• For >1 predictor: residual vs predicted target

```
# prepare dataframe
# >1 predictor --> predicted value VS residual

df_resid = pd.DataFrame({
    'x_axis': y_predict_train,
    'residual': residual
})

# residual plot
sns.scatterplot(data=df_resid, x="x_axis", y="residual")
plt.axhline(0)
plt.show()
```


- Linear relationship
- Constant variance X
- Independent observations

QQ-Plot

The same as before

```
# QQplot
from sklearn.preprocessing import StandardScaler

std_resid = StandardScaler().fit_transform(residual.reshape(-1,1))
std_resid = np.array([value for nested_array in std_resid for value in nested_array])
import statsmodels.api as sm
sm.qqplot(std_resid, line='45')
plt.show()
```


- Normality
 - Slightly skewed, though

R2 Score

- R2 score measures portion of variability of the target variable that is successfully explained (modelled) by the features included in the model
- The higher == the better
 - Max value (not possible, though) is 100%

```
# R^2 score
from sklearn.metrics import r2_score
r2_score(y_admit_train,y_predict_train)
```

0.7986824284294713

Interpretation: 79.86% of variability of admit_prob is successfully explained using all the features in the model

- Open today's Jupyter notebook on your Google Colab!
- Make sure you have uploaded the required CSV files to your google drive
 - Remember the file path!

Model Evaluation (1/2)

- After we are satisfied (enough) with the model, we perform model evaluation
- Essentially, we check how is the model performance on test data
- To do so, we will compute evaluation metric
 - Root Mean Squared Error (RMSE):
 - The standard deviation of our prediction errors with respect to the regression line
 - It is a measure of how spread out the residuals are

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Model Evaluation (2/2)

```
from sklearn.metrics import mean_squared_error

print('RMSE for testing data is {}'.format(np.sqrt(mean_squared_error(y_admit_test, y_predict_test))))
```

RMSE for testing data is 0.05880540869550099

- RMSE = 0.058
 - The standard deviation of prediction errors is 0.058
 - i.e. from the regression line, the residuals mostly deviate between +- 0.058

Thank you

