Pso.

3.解证明: 对于
$$X_{k+1}$$
 , 有
$$X_{k+1} = \frac{1}{2}(X_{k} + \frac{\alpha}{X_{k}}) \stackrel{?}{\searrow} \frac{1}{2} \cdot 2 \sqrt{X_{k} \cdot \frac{\alpha}{X_{k}}} = \sqrt{\alpha}$$

当显似为 $X_{k}^{2} = {}^{2}\alpha$ 时成立
$$\therefore Z_{k} - U_{k} = 1, 2, \cdots, X_{k} > I_{\alpha}$$

$$\overrightarrow{X}_{k} = \frac{1}{2}(X_{k} + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(X_{k} + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}(1 + \frac{\alpha}{X_{k}}) = \frac{1}{2}(1 + \frac{\alpha}{X_{k}})$$

$$\therefore X_{k} > I_{\alpha} = \frac{1}{2}($$

:
$$e(X_{n+1}) = \frac{f''(\frac{1}{2})}{2f(\frac{1}{2})} e(X_n)^2$$
 证毕

9、解; 17由路,得

$$X_{PH} = X_{P} - \frac{f(X_{P})}{f'(X_{P})} = \frac{2X_{P}^{3}+1}{3X_{P}^{2}-3}$$

将初始值代入公式,得下表

k	0	1	2	3	4
_Xk	2,0000	1.8888.	1.8794	+8793	1.8793
2) 北京和海	> Am	1.888)	1.879	1.879	1.879

∴取X*≈1.879

 $X_{k+1} = X_k - \frac{f(X_k)}{f(X_k) - f(X_{k-1})} (X_k - X_{k-1})$

将 X10=2, X,=1.9代入,得下表

k	1	2	3	4	5
Xk	2	1.88/8	1.879	1.879	1.879
Xx-1	1-9	2	1.8812	1.879	1.879