UNIVERSITY NAME

DOCTORAL THESIS

Thesis Title

Author:
John SMITH

Supervisor: Dr. James SMITH

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

in the

Research Group Name Department or School Name

August 25, 2017

Contents

I	Cor	ntext a	nd State of the Art	1
1	Intr	oductio	on	3
	1.1	Introd	luction to Cryptography	3
		1.1.1	Secret-Key Cryptography	3
		1.1.2	Public-Key Cryptography	3
	1.2	Secure	e Hardware and Embedded Cryptography	3
		1.2.1	The Example of the Smart Card	3
		1.2.2	Certification of a Secure Hardware	3
		1.2.3	Modern More Complex Devices to Certify	3
		1.2.4	Embedded Cryptography Vulnerabilities	3
2	Intr	oductio	on to Side-Channel Attacks	5
	2.1	Introd	luction to Side-Channel Attacks	6
		2.1.1	Historical Overview	6
		2.1.2	Terminology and Generalities	6
			Target and Leakage Model	6
			Points of Interest	6
			Simple vs Advanced SCAs	6
			Vertical vs Horizontal SCAs	6
			Profiled vs Non-Profiled SCAs	6
			Side-Channel Algebraic Attacks	6
			Distinguishers	6
			SCA Metrics	6
	2.2	Main	Side-Channel Countermeasures	6
		2.2.1	Random Delays and Jitter	6
		2.2.2	Shuffling	6
		2.2.3	Masking	6
	2.3	Highe	er-Order Attacks	6
		2.3.1	Higher-Order Moments Analysis and Combining Functions	6
		2.3.2	Profiling Higher-Order Attacks	6
			Profiling with Masks Knowledge	6
			Profiling without Masks Knowledge	6
	2.4	Thesis	S Contribution and Organization	6
		2.4.1	Foreword of this Thesis: Research of Points of Interest	6
		2.4.2	Dimensionality Reduction Approach	6
			Linear Methods for First-Order Attacks	6
			Kernel Methods for Higher-Order Attacks	6
		2.4.3	Neural Network Approach	6
			Toward Getting Rid of Information-Loosing Preprocessing	

3	Intr	oduction to Machine Learning 7
	3.1	Basic Concepts of Machine Learning
		3.1.1 The Task, the Experience and the Performance
		3.1.2 Supervised, Semi-Supervised, Unsupervised Learning 7
		3.1.3 Training, Validation and Test Sets
		3.1.4 Underfitting, Overfitting and Regularization
		3.1.5 Data Augmentation
		3.1.6 No Free Lunch Theorem
	3.2	Machine Learning Applications in Side-Channel Context
	J. <u>_</u>	3.2.1 Profiled Attack as a Classification Problem
		Support Vector Machine
		Random Forest
		Neural Networks
		Neural Networks
II	Co	ntributions 9
4		nts of Interest 11
	4.1	Motivations
		4.1.1 The Curse of Dimensionality
	4.2	Selection on Points of Interest: Classical Statistics
	4.3	Related Issues: Leakage Detection and Leakage Assessment 11
	4.4	Generalized SNR for Multi-Variate Attacks
	4.5	Observations Leading to Take a Dimensionality Reduction Approach . 11
_	Т 2	ear Dimensionality Reduction 13
5		
	5.1	Introduction
		5.1.1 Principal Component Analysis
		5.1.2 Linear Discriminant Analysis
		5.1.3 Projection Pursuits
	5.2	Principal Component Analysis
		5.2.1 Statistical Point of View
		5.2.2 Geometrical Point of View
	5.3	Application of PCA in SCAs
		5.3.1 Original vs Class-Oriented PCA
		5.3.2 The Choice of the Principal Components
	5.4	Linear Discriminant Analysis
		5.4.1 Statistical Point of View
		5.4.2 Geometrical Point of View
	5.5	Application of LDA in SCAs
		5.5.1 The Small Sample Size problem
6	Kor	nel Dimensionality Reduction 15
U	6.1	Motivation
	0.1	6.1.1 Higher-Order Attacks
	6.2)
	6.2	Kernel Function and Kernel Trick
	()	6.2.1 Local Kernel Functions as Similarity Metrics
	6.3	Kernel Discriminant Analysis
	6.4	Experiments over Atmega328P
		6.4.1 The Regularization Problem

Two-Phases Approach: Preprocessing-Templates 7 Convolutional Neural Networks against Jitter-Based Countermeasur. 7.1 Moving from Kernel Machines to Neural Networks 7.2 Misalignment of Side-Channel Traces 7.2.1 The Necessity and the Risks of Applying Realignment Traces 7.2.2 Analogy with Image Recognition Issues 7.3 Convolutional Layers to Impose Shift-Invariance 7.4 Data Augmentation for Misaligned Side-Channel Traces 7.5 Experiments against Software Countermeasures 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs 9.3.1 Experimental Results	es 	17 17
7.1 Moving from Kernel Machines to Neural Networks 7.2 Misalignment of Side-Channel Traces 7.2.1 The Necessity and the Risks of Applying Realignment Traiques 7.2.2 Analogy with Image Recognition Issues 7.3 Convolutional Layers to Impose Shift-Invariance 7.4 Data Augmentation for Misaligned Side-Channel Traces 7.5 Experiments against Software Countermeasures 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs		
7.2 Misalignment of Side-Channel Traces 7.2.1 The Necessity and the Risks of Applying Realignment Traiques 7.2.2 Analogy with Image Recognition Issues 7.3 Convolutional Layers to Impose Shift-Invariance 7.4 Data Augmentation for Misaligned Side-Channel Traces 7.5 Experiments against Software Countermeasures 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs		
7.2.1 The Necessity and the Risks of Applying Realignment Taiques 7.2.2 Analogy with Image Recognition Issues 7.3 Convolutional Layers to Impose Shift-Invariance 7.4 Data Augmentation for Misaligned Side-Channel Traces 7.5 Experiments against Software Countermeasures 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs		17
niques 7.2.2 Analogy with Image Recognition Issues 7.3 Convolutional Layers to Impose Shift-Invariance 7.4 Data Augmentation for Misaligned Side-Channel Traces 7.5 Experiments against Software Countermeasures 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs	ech-	1,
7.2.2 Analogy with Image Recognition Issues 7.3 Convolutional Layers to Impose Shift-Invariance 7.4 Data Augmentation for Misaligned Side-Channel Traces 7.5 Experiments against Software Countermeasures 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs		17
 7.3 Convolutional Layers to Impose Shift-Invariance 7.4 Data Augmentation for Misaligned Side-Channel Traces 7.5 Experiments against Software Countermeasures 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs 		17
 7.4 Data Augmentation for Misaligned Side-Channel Traces 7.5 Experiments against Software Countermeasures 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs 		17
 7.5 Experiments against Software Countermeasures 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs 		17
 7.6 Experiments against Artificial Hardware Countermeasures 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs 		17
 7.7 Experiments against Real-Case Hardware Countermeasures 8 KDA vs Neural Networks Approach for HO-Attacks 8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs 		17
8.1 Simulated Experiment for Profiled HO-Attacks 8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs		17
8.1.1 The Simulations 8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs		19
8.1.2 Comparison between KDA and MLP 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs		19
 8.2 Real-Case Experiments over ARM Cortex-M4 9 Siamese Neural Networks for Collision Attacks 9.1 Introduction 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs 		19
9 Siamese Neural Networks for Collision Attacks 9.1 Introduction		19
9.1 Introduction		19
 9.2 Siamese Neural Networks 9.2.1 Distances and Loss Functions 9.2.2 Relation with Kernel Machines 9.3 Collision Attacks with Siamese NNs 		21
9.2.1 Distances and Loss Functions		21
9.2.2 Relation with Kernel Machines		21
9.3 Collision Attacks with Siamese NNs		21
9.3.1 Experimental Results	 	21
		21 21
10 Conclusions and Perspectives		21
10.1 Summary		21 21
10.2 Strengthen Embedded Security: the Main Challenge for Machine		21 21 21
ing Applications		21 21 21 23

List of Figures

List of Tables

List of Abbreviations

SCA Side Channel Attack

List of Symbols

Part I Context and State of the Art

Introduction

- 1.1 Introduction to Cryptography
- 1.1.1 Secret-Key Cryptography
- 1.1.2 Public-Key Cryptography
- 1.2 Secure Hardware and Embedded Cryptography
- 1.2.1 The Example of the Smart Card
- 1.2.2 Certification of a Secure Hardware
- 1.2.3 Modern More Complex Devices to Certify
- 1.2.4 Embedded Cryptography Vulnerabilities

Introduction to Side-Channel Attacks

2	1	Introdu	ction to	Sida	Channal	Attacks
Z .		- 1111110011	(() ()	.71CIE-1	l name	AHACKS

- 2.1.1 Historical Overview
- 2.1.2 Terminology and Generalities

Target and Leakage Model

Points of Interest

Simple vs Advanced SCAs

Vertical vs Horizontal SCAs

Profiled vs Non-Profiled SCAs

Side-Channel Algebraic Attacks

Distinguishers

SCA Metrics

2.2 Main Side-Channel Countermeasures

- 2.2.1 Random Delays and Jitter
- 2.2.2 Shuffling
- 2.2.3 Masking

2.3 Higher-Order Attacks

- 2.3.1 Higher-Order Moments Analysis and Combining Functions
- 2.3.2 Profiling Higher-Order Attacks

Profiling with Masks Knowledge

Profiling without Masks Knowledge

2.4 Thesis Contribution and Organization

- 2.4.1 Foreword of this Thesis: Research of Points of Interest
- 2.4.2 Dimensionality Reduction Approach

Linear Methods for First-Order Attacks

Kernel Methods for Higher-Order Attacks

2.4.3 Neural Network Approach

Introduction to Machine Learning

- 3.1 Basic Concepts of Machine Learning
- 3.1.1 The Task, the Experience and the Performance
- 3.1.2 Supervised, Semi-Supervised, Unsupervised Learning
- 3.1.3 Training, Validation and Test Sets
- 3.1.4 Underfitting, Overfitting and Regularization
- 3.1.5 Data Augmentation
- 3.1.6 No Free Lunch Theorem
- 3.2 Machine Learning Applications in Side-Channel Context
- 3.2.1 Profiled Attack as a Classification Problem

Support Vector Machine

Random Forest

Neural Networks

Part II Contributions

Points of Interest

- 4.1 Motivations
- 4.1.1 The Curse of Dimensionality
- 4.2 Selection on Points of Interest: Classical Statistics
- 4.3 Related Issues: Leakage Detection and Leakage Assessment
- 4.4 Generalized SNR for Multi-Variate Attacks
- 4.5 Observations Leading to Take a Dimensionality Reduction Approach

Linear Dimensionality Reduction

- 4	т .	1	. •
5.1	Intr	'nd11	ction

- 5.1.1 Principal Component Analysis
- 5.1.2 Linear Discriminant Analysis
- **5.1.3** Projection Pursuits
- 5.2 Principal Component Analysis
- 5.2.1 Statistical Point of View
- 5.2.2 Geometrical Point of View
- 5.3 Application of PCA in SCAs
- 5.3.1 Original vs Class-Oriented PCA

Remark. Stacked Auto-Encoders...

- 5.3.2 The Choice of the Principal Components
- 5.4 Linear Discriminant Analysis
- 5.4.1 Statistical Point of View
- 5.4.2 Geometrical Point of View
- 5.5 Application of LDA in SCAs
- 5.5.1 The Small Sample Size problem

Kernel Dimensionality Reduction

_	-	- 18	-	. •		
6.			/ (1 †17	vati	nn

6.1.1	Higher-	Order	Attacks
-------	---------	-------	----------------

Higher-Order Version of Projection Pursuits

- 6.2 Kernel Function and Kernel Trick
- 6.2.1 Local Kernel Functions as Similarity Metrics
- 6.3 Kernel Discriminant Analysis
- 6.4 Experiments over Atmega328P
- 6.4.1 The Regularization Problem
- 6.4.2 The Multi-Class Trade-Off
- 6.4.3 Multi-Class vs 2-class Approach
- 6.4.4 Asymmetric Preprocessing/Attack Approach

Comparison with Projection Pursuits

6.5 Drawbacks of Kernel Methods

Misalignment Effects

Memory Complexity and Actual Number of Parameters

Two-Phases Approach: Preprocessing-Templates

Convolutional Neural Networks against Jitter-Based Countermeasures

- 7.1 Moving from Kernel Machines to Neural Networks
- 7.2 Misalignment of Side-Channel Traces
- 7.2.1 The Necessity and the Risks of Applying Realignment Techniques
- 7.2.2 Analogy with Image Recognition Issues
- 7.3 Convolutional Layers to Impose Shift-Invariance
- 7.4 Data Augmentation for Misaligned Side-Channel Traces
- 7.5 Experiments against Software Countermeasures
- 7.6 Experiments against Artificial Hardware Countermeasures
- 7.7 Experiments against Real-Case Hardware Countermeasures

KDA vs Neural Networks Approach for HO-Attacks

- 8.1 Simulated Experiment for Profiled HO-Attacks
- 8.1.1 The Simulations
- 8.1.2 Comparison between KDA and MLP
- 8.2 Real-Case Experiments over ARM Cortex-M4

Siamese Neural Networks for Collision Attacks

- 9.1 Introduction
- 9.2 Siamese Neural Networks
- 9.2.1 Distances and Loss Functions
- 9.2.2 Relation with Kernel Machines
- 9.3 Collision Attacks with Siamese NNs
- 9.3.1 Experimental Results

Conclusions and Perspectives

- 10.1 Summary
- 10.2 Strengthen Embedded Security: the Main Challenge for Machine Learning Applications