

RoboCup@Home Practical Course

Rogelio Guadarrama

Technical University of Munich

Department of Electrical and Computer Engineering

Chair for Cognitive Systems

Munich, 31 October 2018

RoboCup@Home Practical course

Tutorials

Dr. Karinne Ramirez-Amaro

Dr. Emmanuel Dean

Dr. Pablo Lanillos

M. Sc. Rogelio Guadarrama

M. Sc. Constantine Uhde

Prof. Dr. Gordon Cheng

Tutorial 2: Gazebo simulation and robot communication

Objectives for this tutorial

- Learn how to read data from the TIAGo robot's sensors.
- Learn how to command actions to the TIAGo robot's actuators.
- Learn how to develop applications for the TIAGo robot.
- Learn how to prepare simulations to test applications before deploying on the real robot.

The Gazebo Simulator

With ROS-Kinetic:

Gazebo multi-robot simulator, version 7.12 Copyright (C) 2012-2014 Open Source Robotics Foundation. Released under the Apache 2 License.

http://gazebosim.org

http://wiki.ros.org/gazebo

More information in:

http://sdformat.org/spec

Further information on Gazebo can be found in:

http://gazebosim.org/tutorials

ROS Control

Preparing the workspace for TIAGo robot

Detailed instructions in http://wiki.ros.org/Robots/TIAGo/Tutorials

Create the folder structure.

\$ mkdir -p ~/ros/worspace/tiago_ws/src

Copy the tiago_public.rosinstall file into the folder

~/ros/worspace/tiago_ws

Preparing the workspace for TIAGo robot

Now install the packages for the new workspace

\$ cd ~/ros/worspace/tiago_ws

\$ rosinstall src tiago_public.rosinstall

Then compile the workspace

\$ cd ~/ros/worspace/roboCupHome_tutorial_YOURNAME/

\$ source devel/setup.bash

Use the -DCATKIN_ENABLE_TESTING=0 flag the first time you compile it !!!

\$ catkin_make -DCATKIN_ENABLE_TESTING=0

Preparing the workspace for TIAGo robot

Once the compiler reaches a 100%, test the installation:

\$ roslaunch tiago_gazebo.launch

public_sim:=true robot:=steel world:=tutorial_office

Exercise 1: Prepare a simulation scenario

Use the steps in sections 3 and 4 of the document to:

- Know the simulation environment.
- Know the tools to handle models.
- Know how to build new models for simulation.

To deliver: The Tutorial_NAME.world file and all the needed models to use it.

Exercise 1: Prepare a simulation scenario

Chose only **one** of these options:

- Manipulation and Object Recognition: The robot must reach a bookcase in which there are 10 objects at different shelves in the bookcase. The robot must then identify and grasp and identity 5 of those objects and put those into a new, easy-to-reach shelve that the team/robot may choose. Optionally, the robot may open a little door or drawer for additional points.
- **Navigation:** The robot must visit a set of way-points while avoiding obstacles on its path and finally follow a person outside the arena. There is a RoboCup@Home arena model on the model server, it consist on a series of rooms made of panels. If you choose this scenario, place a number of objects on it to prepare a navigation test.
- **General Purpose Service Robot:** Some of the tests may be performed in a common-life scenario for humans, a kitchen, a restaurant, a living room or a store. Prepare one of these possible scenarios including furniture and objects to handle.

Exercise 2: TIAGo in rviz

Use the steps in section 5.1 of the document to load the model in rviz.

- Know the ROS Topics used to receive information from the robot.
- Load TIAGo in rviz and save the configuration.

To deliver: The TIAGo.rviz file.

Exercise 3: Default controllers

Use the steps in section 5.2 of the document to command the TIAGo robot using the default controllers.

- Know the ROS Topics used to send commands to the robot.
- Know the controller_manager package.
- Control the robot by publishing to a topic.
- Implement a simple control law for the base.

Exercise 3: Default controllers

Adapt the turtle_viz package from tutorial 1 to control the position of the mobile base of TIAGo robot. (Only modify the turtle class and the control node)

$$\begin{bmatrix} \dot{x}_{\alpha} \\ \dot{y}_{\alpha} \end{bmatrix} = \begin{bmatrix} \cos \theta & -d \sin \theta \\ \sin \theta & d \cos \theta \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$X = \begin{bmatrix} x_{\alpha} \\ y_{\alpha} \end{bmatrix} = \begin{bmatrix} x_r + d \cos \theta \\ y_r + d \sin \theta \end{bmatrix} \qquad T = \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$e = X_d - X \qquad \dot{X}_d = Ke \qquad K \in \mathbb{R}^2$$

$$T = \begin{bmatrix} \cos \theta & -d \sin \theta \\ \sin \theta & d \cos \theta \end{bmatrix}^{-1} \dot{X}_d$$

To deliver: The modified turtle_viz package and instructions to run the code.

Exercise 4: Create a controller plugin

Use the steps in section 5.3 to create a new controller plugin for the torso joint

- Know the controller base class.
- Know all the files needed to create a new controller.
- Know how to create a new controller plugin.

Exercise 4: Create a controller plugin

Adapt the files to on the controllers_tutorials package on the template create a new controller for the torso joint.

To deliver: The modified controllers_tutorials package and instructions to run the code.

What to deliver?

One compressed folder named

"Name_lastName_roboCupHome_tutorial2"

Containing inside 4 folders named T2_E1, T2_E2, T2_E3 and T2_E4

These folders must contain:

T2_E1: A world file for gazebo and model folders if needed.

T2_E2: A rviz configuration file.

T2_E3: The modified turtle_viz package and instructions to run.

T2_E4: The controllers_tutorials package modified.

NOTE: Be clear and precise in your instructions and HowTos to run your programs.

What about other robots?

Other robots work with similar frameworks. Check the documentation of PR2 robot in (Needed for next tutorial):

- http://wiki.ros.org/Robots/PR2
- http://wiki.ros.org/pr2_simulator/Tutorials

Enjoy the week!!