

ELECTRÓNICA GERAL

Filtro Adaptativo

Afonso Mendes, 75398 David Escudeiro 75479 Élio Pereira, 78535 Pedro Pinto, 75239

Conteúdo

1	Introdução	2
2	Baralhador de Dados 2.1 Implementação	
3	Híbrido	7
	3.1 Implementação	7
	3.2 Teste e Análise	
4	Cancelador de Eco	10
	4.1 Esquematização do sistema de teste	10
	4.2 Implementação	11
	4.3 Teste e Análise	
5	Sistema Total	16
	5.1 Implementação	16
	5.2 Teste e Análise	
	5.2.1 Teste do sistema sem ruído	17
	5.2.2 Teste do sistema com ruído	27
6	Conclusões	30

Introdução

Neste trabalho laboratorial será desenvolvido um esquema de implementação e simulação de um sistema de comunicação em banda de base com o intuito de estudar o comportamento de um filtro adaptativo FIR transversal executado pelo algoritmo LMS a operar como cancelador de eco.

Sequencialmente, serão apresentadas neste relatório as concepções dos diferentes constituintes do sistema a simular acompanhadas dos testes correspondentes que permitem a verificação do seu correcto funcionamento. Numa parte final do trabalho, o sistema será testado na sua totalidade de forma a gerar conclusões relativamente à estabilidade do algoritmo implementado e à velocidade de convergência do mesmo.

Apresenta-se na figura seguinte a arquitectura do sistema a implementar.

Figura 1.1: Arquitectura do sistema de comunicação a simular.

Baralhador de Dados

2.1 Implementação

Para gerar os dados aleatórios, quer do emissor local, quer do emissor remoto, usa-se um gerador de onda quadrada seguido de um baralhador de dados. O baralhador utilizado corresponde ao polinómio $1+x^3+x^5$ no caso do emissor local, e $1+x^5+x^7$ no caso do emissor remoto, a que correspondem, respectivamente, as seguintes operações:

$$y(t) = x(t) \oplus y(t - 3T) \oplus y(t - 5T)$$

$$y(t) = x(t) \oplus y(t - 5T) \oplus y(t - 7T)$$

sendo T o período dos dados e \oplus o operador lógico "ou-exclusivo (XOR)". Para realizar estas operações, foi feito, no Simulink, os diagramas de blocos apresentados na Figura 2.1 para o gerador de dados local, e na Figura 2.2 para o remoto. O bloco " $Pulse\ Generator$ " é o que gera o sinal x(t).

Figura 2.1: Diagrama de blocos do baralhador de dados local.

Figura 2.2: Diagrama de blocos do baralhador de dados remoto.

Em ambos os casos, o bloco Conversor de nível, "Conv. Nível", corresponde ao diagrama apresentado na Figura 2.3:

Figura 2.3: Diagrama de blocos do conversor de nível.

2.2 Teste e Análise

Gerador de dados local

Para testar o baralhador de dados, introduzimos uma onda quadrada de frequência 2T, uma vez que cada período desta onda vai gerar dois sinais, um de nível "High" e outro "Low", cada um de duração T. A amplitude da onda quadrada utilizada foi 1 Volt, e T=1 s. Apresenta-se na Figura 2.4 o sinal de entrada aplicado à entrada do baralhador de dados, e na Figura 2.5 o sinal de saída do mesmo.

Figura 2.4: Sinal de entrada do baralhador de dados local

Figura 2.5: Sinal de saída do baralhador de dados local

Observa-se claramente o efeito do baralhador de dados, sendo o sinal gerado pseudo-aleatório. Também se pode observar o efeito do conversor de nível, uma vez que o sinal passa de [0,1] V para [-1,1] V.

De seguida foi introduzido um sinal de dados de entrada permanentemente a zero, em vez da onda quadrada. Apresenta-se este sinal, bem como o sinal de saída, nas Figuras 2.6 (sinal de entrada) e 2.7 (sinal de saída):

Figura 2.6: Sinal de entrada do baralhador de dados local

Figura 2.7: Sinal de saída do baralhador de dados local

Neste caso o sinal de saída é contínuo e igual a -1 V. Isto acontece uma vez que, sendo o sinal de entrada contínuo a 0 V, e as condições iniciais também nulas, ao passar pelos operadores lógicos "ou-exclusivo (XOR)", dá-se a operação $0 \oplus 0 = 0$. O sinal de saída é -1, devido ao conversor de nível que transforma o 0 em -1.

Gerador de dados remoto

No caso do gerador de dados remoto, foi introduzida a mesma onda quadrada como sinal de entrada, tendo sido obtido um sinal pseudo-aleatório diferente, que se apresenta na Figura 2.9:

Figura 2.8: Sinal de entrada do baralhador de dados remoto

Figura 2.9: Sinal de saída do baralhador de dados remoto

De seguida foi aplicado o sinal de entrada contínuo a 0 V, tendo sido obtido o mesmo sinal que no caso do gerador de dados local com o mesmo sinal de entrada, pelas razões apresentadas anteriormente. Apresenta-se então o sinal de entrada, Figura 2.10, e de saída, Figura 2.11, do baralhador de dados remoto com a entrada a 0 V:

Figura 2.10: Sinal de entrada do baralhador de dados remoto

Figura 2.11: Sinal de saída do baralhador de dados remoto

Híbrido

3.1 Implementação

Uma vez que este sistema de transmissão de dados funciona a 4 fios para os emissores e recetores e a 2 fios na linha de transmissão, é necessário utilizar um circuito chamado hibrido para fazer esta transição. Neste caso, para simular um hibrido, usou-se um filtro FIR (Finite Impulse Response) transversal de 9ª ordem, com uma resposta impulsional do tipo sinc(x) = sen(x)/x, que se apresenta na seguinte Figura 3.1:

Figura 3.1: Diagrama de blocos do híbrido

Os coeficientes e_i , i=0,1,...,9, utilizados no diagrama de blocos do híbrido são os que se encontram na Tabela 3.1:

	e_o	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9
ſ	0	0.2	1	0.3	-0.4	-0.1	0.1	-0.05	-0.02	-0.01

Tabela 3.1: Coeficientes do filtro FIR que representa o híbrido

3.2 Teste e Análise

Para o teste deste bloco híbrido foi colocado um sinal unitário contínuo à sua entrada, tendo sido obtido um sinal de saída que se apresenta na figura 3.2:

Figura 3.2: Sinal de saída do híbrido

Observando esta resposta ao sinal contínuo de nível 1, pode-se constatar logo à partida a estabilidade inerente de um filtro FIR.

Para uma análise mais detalhada vai-se calcular a função de transferência e respetiva representação no plano Z:

$$y(t) = 0.2x(t-1) + x(t-2) + 0.3x(t-3) - 0.4x(t-4) - 0.1x(t-5) + +0.1x(t-6) - 0.05x(t-7) - 0.02x(t-8) - 0.01x(t-9)$$

$$\Rightarrow \frac{y(t)}{x(t)} = \frac{0.2z^8 + z^7 + 0.3z^6 - 0.4z^5 - 0.1z^4 + 0.1z^3 - 0.05z^2 - 0.02z - 0.01}{z^9} +$$

A esta função de transferência correspondem os seguintes zeros, representados no plano Z na Figura 3.3:

Figura 3.3: Representação dos zeros da função de transferência do híbrido no plano Z

Relacionando agora a resposta ao sinal de nível 1 da Figura 3.2 juntamente com o diagrama da Figura 3.3, pode observar-se uma sobre-elevação acentuada, essencialmente devido aos zeros dentro do círculo unitário, do lado esquerdo do plano complexo. Seguidamente nota-se um seguimento ligeiramente oscilatório da referência, que se deve aos zeros dentro do círculo unitário, do lado direito do plano complexo, sendo o amortecimento devido em grande parte ao pólo presente no eixo real positivo. De notar também o facto de o valor da saída nunca ser inferior a 0 logo à partida, o que se deve à não-existência de zeros de fase não mínima.

De realçar também o ganho estático do filtro, que corresponde a fazer z=1 na função de transferência, o que dá um valor de 1.02 V, que se pode observar no gráfico da figura 3.2, uma vez que este corresponde a uma entrada do filtro unitária.

Cancelador de Eco

4.1 Esquematização do sistema de teste

Nos sistemas de comunicação convencionais, existe eco de linha gerado nos filtros híbridos do sistema, onde é feita a conversão do circuito a dois fios para o circuito a quatro fios. Em sistemas de transmissão de voz, o eco remoto assume particular importância pelo facto de que o orador é perturbado pelo eco da sua mensagem. Para comunicações a curta distância, o eco pode ser rápido o suficiente para que o cérebro humano não o detecte. Contudo, em comunicações a longa distância, o atraso pode ser significativo ao ponto de o emissor conseguir ouvir a sua voz repetidamente enquanto transmite a sua mensagem.

Nos sistemas de transmissão de dados, o eco mais relevante é o gerado no híbrido local, por poder ter uma amplitude largamente superior ao do sinal recebido do emissor remoto.

Nesta secção, será estudada e implementada uma solução para um cancelador de eco constituído por um filtro adaptativo a funcionar em modo de identificação recorrendo à estrutura FIR trasnversal adaptativa, representada na figura seguinte por um diagrama de blocos.

Figura 4.1: Diagrama de blocos do cancelador de eco local a implementar.

Neste esquema, x_k representa o sinal de dados de entrada que origina o eco, c_i representa o coeficiente adaptativo da baixada i do cancelador, y_k representa o erro que serve, em retroacção, para adaptar os coeficientes do filtro, e_k e \hat{e}_k representam, respectivamente, o sinal de eco e a sua estimativa dada pelo cancelador e, por último, H(z) representa a função de sistema do caminho do eco a identificar pelo filtro.

Para a adaptação dos coeficientes do filtro será utilizado o algoritmo LMS (Algoritmo do Gradiente Estocástico), segundo o qual a actualização a realizar em cada iteração

(período de dados) se resume a:

$$c_{i,k+1} = c_{i,k} + 2\mu \, y_k \, x_{k-i} \tag{4.1}$$

onde $c_{i,k}$ representa o valor do coeficiente da baixada i na iteração k, μ é o passo de adaptação regulador da rapidez de convergência e da estabilidade, y_k é o erro instantâneo e x_{k-i} é a amostra do sinal originador de eco na baixada i do filtro na iteração k.

Em série com o cancelador de eco será implementado um bloco de avaliação do eco, denominado ERLE (*Echo Return Loss Enhancement*), definido como:

$$ERLE = \frac{\mathrm{E}[e_k^2]}{\mathrm{E}[(e_k - \hat{\mathbf{e}}_k)^2]} \bigg|_{dB}$$
(4.2)

4.2 Implementação

Tendo sido já descritos os blocos de geração de dados local e remoto, bem como o filtro híbrido, resta apenas apresentar a implementação realizada para o bloco de cálculo de ERLE, para o cancelador de eco e, por fim, para o sistema total que servirá de teste ao cancelador de eco.

Cancelador de Eco

Implementado em Simulink o esquema representado na figura 4.1, obtém-se o seguinte diagrama:

Figura 4.2: Diagrama de blocos em Simulink do cancelador de eco implementado.

onde o bloco *Array of delays* é responsável pela criação das baixadas do filtro a partir do sinal de dados e pela sua vectorização.

Figura 4.3: Diagrama de blocos em Simulink das baixadas do filtro FIR transversal.

Este sub-sistema coloca cada baixada dos dados num vector coluna, fazendo corresponder a cada linha o índice da baixada. Como todas as restantes grandezas no segundo termo do membro direito da equação 4.1 são escalares, os coeficientes serão obtidos também num vector coluna. Desta forma, a obtenção de $\hat{\mathbf{e}}_k$ fica reduzida à elegante operação matricial

$$\hat{\mathbf{e}}_{k} = \begin{bmatrix} \mathbf{x}_{k-0} \\ \mathbf{x}_{k-1} \\ \vdots \\ \mathbf{x}_{k-25} \end{bmatrix}^{T} \times \begin{bmatrix} \mathbf{c}_{0,k} \\ \mathbf{c}_{1,k} \\ \vdots \\ \mathbf{c}_{25,k} \end{bmatrix}$$
(4.3)

onde o vector coluna com as baixadas com dados de entrada é transposto de forma a que a multiplicação resulte no escalar pretendido.

ERLE

A implementação da equação 4.2 resultou no seguinte diagrama:

Figura 4.4: Diagrama de blocos em Simulink do bloco de cálculo de ERLE.

Interessa mencionar a função gerada para a obtenção da média instantânea (Mean). Na figura seguinte encontra-se a sua implementação.

Figura 4.5: Diagrama de blocos em Simulink do bloco de cálculo da média instantânea.

A função de transferência deste bloco é dada por:

$$\frac{Out1(z)}{In1(z)} = \frac{z+M}{z} \tag{4.4}$$

Fazendo M=0.95 e para uma frequência de amostra de 1 segundo (frequência dos dados), obteve-se o seguinte diagrama de bode de magnitude:

Figura 4.6: Diagrama de bode de magnitude da função de transferência de Mean.

Ou seja, podemos constatar que a partir de aproximadamente 2 radianos por segundo a entrada já é bastante atenuada, o que nos leva a concluir que este bloco funciona como um filtro passa-baixo com uma frequência de corte extremamente baixa. A utilização deste filtro de primeira ordem como operador "média" é eficaz porque com estas características permite obter apenas à saída a componente contínua do sinal de entrada, ou seja, a média do sinal.

4.3 Teste e Análise

Para o teste do cancelador de eco, implementa-se em paralelo com este um filtro de quarta ordem $\mathrm{H}(z)$ com todas as baixadas com coeficientes nulos à excepção da última que tem coeficiente unitário. Quando o circuito convergir, isto é, quando o erro y_k tender para zero, espera-se que o cancelador de eco identifique correctamente o filtro $\mathrm{H}(z)$, ou seja, os coeficientes dos dois filtros são iguais nas baixadas comuns. Para os coeficientes das baixadas superiores a 4, espera-se que sejam nulos no cancelador de eco.

O diagrama a simular neste teste corresponde então ao esquema da seguinte figura.

Figura 4.7: Circuito de teste do cancelador de eco.

Utilizando na simulação uma frequência de amostragem unitária (igual ao ritmo de transmissão de dados) e um passo de adaptação μ =0.03, obteve-se o seguinte gráfico à saída do bloco ERLE:

Figura 4.8: Parâmetro ERLE em função do tempo no teste do cancelador de eco

O facto de ERLE estabilizar para o passo de adaptação escolhido prova que o cancelador de eco está a funcionar correctamente, ou seja, a estimação do eco iguala eventualmente o eco real do sistema de transmissão, anulando o erro. Adicionalmente, podemos observar a correcta identificação do filtro de quarta ordem analisando a evolução temporal dos coeficientes do cancelador.

Figura 4.9: Coeficientes adaptativos em função do tempo no teste do cancelador de eco

Como é possível observar, os coeficientes estabilizam num tempo muito inferior ao necessário para a estabilização de ERLE para o valor de μ escolhido e em regime estacionário

apresentam os valores que esperávamos obter: todos os coeficientes são nulos à excepção do da baixada 4 que é a unidade. Na tabela seguinte encontram-se os valores exactos e aproximados dos valores dos coeficientes na última iteração da simulação realizada, largos segundos após a estabilização dos mesmos.

Baixada	Valor Estabilizado	Valor Aproximado
0	5,84346620219036e-17	0
1	1,76751392447828e-17	0
2	1,65265133686427e-16	0
3	-7,49553910329146e-17	0
4	1	1
5	-5,96745511362410e-17	0
6	-4,44438335186570e-17	0
7	-1,44060255594206e-16	0
8	-9,13444252608803e-18	0
9	-4,89371590020595e-17	0
10	-3,06580780917038e-17	0
11	1,22820592389783e-18	0
12	-5,55856328768580e -17	0
13	1,41629278738278e-16	0
14	-8,01886251849398e-17	0
15	5,91975627211735e-17	0
16	-2,20505787446950e-17	0
17	1,00464454030339e-16	0
18	1,02684281813918e-16	0
19	$9,\!22976684109320e\text{-}17$	0
20	-1,31873919970781e-16	0
21	3,74441232299027e-17	0
22	$1{,}59308979488315\mathrm{e}\text{-}16$	0
23	5,70847401452762e-17	0
24	4,06539484403783e-17	0
25	-6,56421426138642e-17	0

Tabela 4.1: Valores estacionários dos coeficientes do cancelador de eco

Sistema Total

5.1 Implementação

Construíu-se o circuito total para a simulação do cancelamento de eco num sistema de transmissão de dados, combinando os blocos descritos anteriormente segundo a configuração representada pela figura 5.1.

Figura 5.1: Circuito total de simulação do cancelamento de eco num sistema de transmissão de dados.

O circuito completo pode ser interpretado como a conciliação de 4 diferentes secções:

- Gerador de eco proveniente do emissor local secção constituída pelos blocos *Gerador de Dados (Local)* e *Híbrido*. O primeiro é responsável pelo fornecimento de dados pseudo-aleatórios e o segundo, tem o papel de filtro, simulando o eco originado pela passagem de 4 fios (emissor/receptor) para 2 fios (linha de transmissão).
- Gerador de ruído proveniente do emissor remoto secção constituída pelos blocos Gerador de Dados (Remoto) e Ganho. De forma análoga à secção anterior, o primeiro bloco é responsável pelo fornecimento de dados pseudo-aleatórios, sendo que o segundo, o bloco de ganho, G, permite atenuar o sinal emitido pelo emissor remoto, simulando ruído.
- Cancelamento do eco/ruído no sistema secção constituída pelo bloco Cancelador de Eco. Este corresponde a um filtro adaptativo, que permite estimar a soma

eco+ruído do sistema (soma dos sinais de saída das secções anteriores). Apresenta como sinal de saída a estimativa, $\hat{\mathbf{e}}_k$, do valor real, e_k . O bloco subtracção $e_k - \hat{\mathbf{e}}_k$ implementa o cancelamento do eco.

• Avaliador do cancelamento de eco - secção constituída pelo bloco ERLE, que permite obter o parâmetro de eficiência no cancelamento do eco em dB (um bom cancelamento implica $ERLE \gg 1$).

5.2 Teste e Análise

5.2.1 Teste do sistema sem ruído

Implementação do passo de adaptação $\mu = 0.03$

Pretendeu-se analisar o sistema total para o caso em que G=0, isto é, sem ruído. Começou-se por implementar um passo de adaptação $\mu=0.03$ e tempo de aquisição, T=5000s. Obtiveram-se os gráficos das evoluções no tempo, do ERLE (figura 5.2) e dos valores dos coeficientes do $Cancelador\ de\ Eco,\ c_k$ (figura 5.3).

Figura 5.2: Gráfico parâmetro de eficiência, ERLE~(dB), em função do tempo, t(s), para $\mu=0.03$ e T=5000s.

,

Figura 5.3: Gráfico coeficientes c_k em função do tempo, t(s), para $\mu=0.03$ e T=5000s.

Analisando o gráfico da figura 5.2, podemos verificar, um aumento monótono e uniforme do valor do ERLE até um instante de estagnação (convergência), sendo este:

$$t_0 \approx 2250s$$

Obteve-se o valor do ERLE nesse instante, $ERLE_0 = ERLE(t_0) = 305dB$. Portanto, no regime transitório, $t \in [0, t_0]$, a taxa de variação temporal do ERLE foi:

$$\frac{d}{dt}\left(ERLE\right)\approx\frac{ERLE_{0}}{t_{0}}\approx0.136dB/s$$

Para $t > t_0$ verificaram-se pequenas oscilações em torno do ponto de equilíbrio (média dos valores do ERLE no regime estacionário):

$$\langle ERLE_{st}\rangle = 307.73dB \gg 1$$

o que corresponde a um cancelamento bastante significativo do eco no sistema. O valor médio relativo das oscilações em torno de $\langle ERLE_{st}\rangle$ foi:

$$\langle O(ERLE_{st})\rangle_r = 0.57\%$$

* * *

Nota: Expressão usada para o cálculo do valor médio relativo das oscilações:

$$\langle O(ERLE_{st})\rangle_r = \frac{\langle |ERLE_{st} - \langle ERLE_{st}\rangle|\rangle}{\langle ERLE_{st}\rangle}$$

Relativamente ao gráfico da figura 5.3, podemos constatar um regime oscilatório dos valores dos coeficientes c_k , do instante inicial t=0s até ao instante de convergência $t_{0,c} \approx 250s$, tornando-se estes constantes para $t > t_{0,c}$ (regime de estacionariedade).

Implementação de passo de adaptação 10 vezes menor ($\mu = 0.003$)

De seguida alterou-se o valor do passo adaptação para um valor 10 vezes menor que o anterior, isto é, $\mu = 0.003$, tendo-se obtido os gráficos 5.4 e 5.5.

Figura 5.4: Gráfico parâmetro de eficiência ERLE~(dB) em função do tempo, t(s), para $\mu=0.003$ e T=35000s.

Figura 5.5: Gráfico coeficientes c_k em função do tempo, t(s), para $\mu = 0.003$ e T = 35000s. (Restringíu-se o range no eixo dos x para [0,5000], de forma que a que o regime transitório dos coeficientes c_k fosse mais fácil de visualizar).

Analisando o gráficos 5.4, podemos identificar três regimes de comportamento da eficiência ERLE, com o tempo.

Para $t \in [0,800]s$ (considere-se $t_p = 800s$) tem-se um regime transitório, cuja taxa de variação é maior, sendo $ERLE_p = ERLE(t_p) = 35dB$. Obteve-se:

$$\left(\frac{d}{dt}\left(ERLE\right)\right)_{1} \approx \frac{ERLE_{p}}{t_{p}} \approx 0.044dB/s$$

o que corresponde a um valor 3.09 vezes menor que o obtido para $\mu = 0.03$.

Para $t \in [0, 24200]s$ (considere-se $t_0 = 24200s$) tem-se um regime transitório de taxa de variação menor. O ERLE estagna no instante:

$$t_0 \approx 24200s$$

sendo $ERLE_0 = ERLE(t_0) \approx 293dB$. Obteve-se assim para este regime:

$$\left(\frac{d}{dt}\left(ERLE\right)\right)_2 \approx \frac{ERLE_0 - ERLE_p}{t_0 - t_p} \approx 0.011dB/s$$

Esta taxa de variação é 4 vezes menor que $\left(\frac{d}{dt}\left(ERLE\right)\right)_1$ e 12.36 vezes menor que a taxa de variação para o caso $\mu=0.03$. O tempo necessário para optimizar a estimativa do eco pelo *Cancelador de Eco*, é portanto maior:

$$t_0 \bigg|_{\mu = 0.003} = 10.76 \ t_0 \bigg|_{\mu = 0.03}$$

Isto significa que são necessárias 10.76 vezes mais iterações para $\mu = 0.003$ para se atingir a convergência da estimativa do eco+ruído, que para o caso $\mu = 0.03$.

É importante ainda referir que o tempo de convergência para $\mu=0.03$ foi suficientemente reduzido para não se notarem 2 diferentes regimes de transição do ERLE, tal como se constatou para o caso de $\mu=0.003$.

No regime estacionário, $t \in [24200, 35000]$, obteve-se:

$$\langle ERLE_{st} \rangle = 293.44dB \gg 1$$

portanto, um valor bastante satisfatório e próximo do obtido para $\mu = 0.03$, isto é, com um desvio de 4.64%. O valor médio relativo das oscilações neste regime foi:

$$\langle O(ERLE_{st})_r \rangle = 0.14\%$$

ou seja 4.23 vezes menor que o obtido para $\mu = 0.03$. É portanto correcto afirmar que o processo para $\mu = 0.003$ é mais estável (no sentido das perturbações) que para $\mu = 0.03$.

Relativamente ao gráfico da figura 5.5, pode-se dizer que o instante de convergência das constantes c_k foi na gama $t_{0,c} \in [600, 1000]s$, também superior ao obtido para $\mu = 0.03$.

Determinação de $\mu_{m\acute{a}x}$ para o qual se tem um processo estável

Pretendeu-se de seguida, determinar o valor máximo do passo μ para o qual se continua a obter um processo estável. Um processo estável deverá realizar a função que se pretende, isto é, o cancelamento do eco (ERLE>0dB), e com reduzidas perturbações. Construíu-se a tabela 5.1.

A tabela 5.1 apresenta 4 casos particulares para os valores de $\mu=0.0250,\,0.0275,\,0.03846$ e 0.0390, que devem de ser explicitados.

Análise para os passos de adaptação $\mu = 0.0250$ e $\mu = 0.0275$

Para $\mu=0.0250$ e $\mu=0.0275$ obtiveram-se 4 regimes de comportamento do ERLE com o tempo: 2 regimes transitórios e 2 regimes de estacionariedade, tal como demonstram os gráficos 5.6 e 5.7.

μ	$t_0(s)$	T(s)	$\frac{\Delta ERLE}{\Delta t} (dB/s)$	$\langle ERLE_{st}\rangle(dB)$	$\langle O(ERLE_{st})\rangle_r \ (\%)$
0.0030	0030 24200 35000 0.012		293.437	0.135	
0.0100	6000	8000	0.051	303.908	0.258
0.0150	3500	5000	0.090	314.307	0.520
0.0200	1935	3500	0.160	312.917	0.506
0.0225	1450	5000	0.215	315.665	0.833
0.0250	1500	5000	0.210	313.342	0.750
0.0250	3950		0.086	340.424	0.414
0.0275	1660	5000	0.187	310.546	0.658
0.0210	3900		0.086	335.563	0.511
0.0300	2250	5000	0.136	307.730	0.573
0.0325	3450	5000	0.088	304.040	0.449
0.0350	6300	10000	0.048	301.398	0.367
0.0375	23200	30000	0.013	294.612	1.442
0.0380	50000	100000	0.006	290.345	0.424
0.03846		100000		14.998	4.415
0.0390		100000	-0.019		

Tabela 5.1: Valores obtidos do tempo de convergência, t_0 , declive da reta que une o ponto $(t_0, ERLE_0)$ à origem, $\frac{\Delta ERLE}{\Delta t}$, ERLE médio, $\langle ERLE_{st} \rangle$, e oscilações médias do ERLE, $\langle O(ERLE_{st}) \rangle$, no regime de estacionariedade, para diferentes passos μ .

Figura 5.6: Gráfico parâmetro de eficiência ERLE~(dB) em função do tempo, t(s), para $\mu=0.0250$ e T=5000s.

Figura 5.7: Gráfico parâmetro de eficiência ERLE~(dB) em função do tempo, t(s), para $\mu=0.0275$ e T=5000s.

Devido a estas características dos gráficos decidiu-se considerar na tabela 5.1 o declive da reta que une o ponto $(t_0, ERLE_0)$ à origem O, $\frac{\Delta ERLE}{\Delta t}$, em vez da taxa de variação temporal do ERLE no regime transitório, $\frac{d}{dt}(ERLE)$, já que o primeiro permite estabelecer uma relação imediata $ERLE_{0k}/t_{0k}$, isto é, o rácio entre o valor do ERLE no instante da $k-\acute{e}sima$ convergência, t_{0k} , e o tempo necessário para este valor ser atingido, o próprio t_{0k} . É mais interessante avaliar a transição total do ERLE até aos pontos de convergência, do que avaliar apenas os regimes transitórios deste.

É ainda importante referir que, na tabela 5.1, $\frac{\Delta ERLE}{\Delta t}$ coincide com $\frac{d}{dt}(ERLE)$ para todos os outros valores de μ , à excepção de $\mu=0.0030$, que apresenta duas zonas de transição consecutivas (existe apenas um instante te estagnação t_0).

Análise para o passo de adaptação $\mu = 0.03846$

O passo crítico para a estabilidade do processo, corresponde a $\mu_c = 0.03846$ (= $\mu_{m\acute{a}x}$). Este, foi determinado varrendo os valores de μ numa região de comportamento limite, tal que $\mu < \mu_c$ implicava estabilidade do processo e $\mu > \mu_c$ implicava instabilidade do processo. O gráfico ERLE em função do tempo, t, obtido para $\mu = 0.03846$ encontra-se na figura 5.8.

Figura 5.8: Gráfico parâmetro de eficiência ERLE~(dB) em função do tempo, t(s), para $\mu=0.03846$ e T=100000s.

Para $\mu = 0.03846$, o ERLE oscila em torna de um ponto de equilíbrio sensivelmente constante, $\langle ERLE \rangle = 14.998dB$. As perturbações foram bastante significativas já que $\langle O(ERLE) \rangle_r = 4.415\%$, o valor mais alto apresentado na tabela 5.1.

Para $\mu < \mu_c$ obtiveram-se tempos de convergência, t_0 , muito grandes tal como revela a tabela 5.1, $\left(t_{0_{(\mu=0.0380)}} \approx 50000s\right)$. Para $\mu > \mu_c$, o ERLE assumia valores negativos, diminuindo monotonamente e uniformemente.

Análise para o passo de adaptação $\mu = 0.0390$

Tal como foi registado na tabela 5.1, para $\mu=0.0390$ obteve-se $\frac{d}{dt}\left(ERLE\right)=-0.019dB/s$, sendo que o gráfico ERLE em função do tempo, t, não apresenta nenhum ponto de convergência (figura 5.9).

Figura 5.9: Gráfico parâmetro de eficiência ERLE~(dB) em função do tempo, t(s), para $\mu=0.0390$ e T=100000s.

Análise da variação de t_0 , $\frac{\Delta ERLE}{\Delta t}$, $\langle ERLE_{st} \rangle$ e $\langle O(ERLE_{st}) \rangle_r$ com μ

Com os dados da tabela 5.1 construíram-se os graficos $t_0(s)$, $\frac{\Delta ERLE}{\Delta t}(dB/s)$, $\langle ERLE_{st}\rangle$ (dB) e $\langle O(ERLE_{st})\rangle_r$ (%) em função do passo de adaptação, μ . Estes apresentam-se nas figuras 5.10, 5.11, 5.12 e 5.13.

Figura 5.10: Gráfico tempo de convergência, t_0 , em função do passo de adaptação, μ . Os pontos a azul são relativos à primeira convergência, e os pontos a verde são relativos à segunda convergência (casos $\mu = 0.0250$ e $\mu = 0.0275$).

Figura 5.11: Gráfico declive, $\frac{\Delta ERLE}{\Delta t}$ (dB/s), em função do passo de adaptação, μ . Os pontos a azul são relativos à primeira convergência, e os pontos a verde são relativos à segunda convergência (casos $\mu=0.0250$ e $\mu=0.0275$).

Figura 5.12: Gráfico do valor médio no regime estacionário, $\langle ERLE_{st}\rangle$ (dB), em função do passo de adaptação, μ . Os pontos a azul são relativos à primeira convergência, e os pontos a verde são relativos à segunda convergência (casos $\mu = 0.0250$ e $\mu = 0.0275$).

Figura 5.13: Gráfico valor médio relativo das oscilações no regime estacionário, $\langle O(ERLE_{st})\rangle_r(\%)$, em função do passo de adaptação, μ . Os pontos a azul são relativos à primeira convergência, e os pontos a verde são relativos à segunda convergência (casos $\mu = 0.0250$ e $\mu = 0.0275$).

Analisando o gráfico tempo de convergência, t_0 em função do passo de adaptação μ (figura 5.10) pode-se constatar, que este apresenta uma concavidade virada para cima. Existe portanto, um intervalo de optimização do tempo de convergência, que se considerou ser $u \in [0.02, 0.03]$, sendo t_0 mínimo para $\mu_{(opt.\ t_0)} = 0.0225$. Verifica-se também que o tempo de convergência explode quando $\mu \to u_c^-$.

Relativamente ao gráfico declive $\frac{\Delta ERLE}{\Delta t}$ em função de μ (figura 5.11), pode-se referir que este apresenta concavidade virada para baixo. Existe um intervalo de optimização do declive, que se considerou ser $u \in [0.02, 0.03]$, o mesmo que o de optimização do tempo de convergência. Verifica-se um máximo de $\frac{\Delta ERLE}{\Delta t}$ para $\mu_{(opt. \frac{\Delta ERLE}{\Delta t})} = 0.0225$, o mesmo valor de μ que optimiza t_0 .

Quanto ao gráfico valor médio no regime estacionário, $\langle ERLE_{st}\rangle$, em função do passo de adaptação, μ , (figura 5.12), pode-se dizer que este é aproximadamente constante. Apresenta um máximo de 1ª convergência em $\mu_{\left(opt.\,\langle ERLE\rangle_1\right)}=0.0225$, mesmo valor que os de optimização de t_o e $\frac{\Delta ERLE}{\Delta t}$ e um máximo de 2ª convergência superior à de 1ª, em $\mu_{\left(opt.\,\langle ERLE\rangle_2\right)}=0.025$.

Analisando o gráfico valor médio relativo das oscilações em regime estacionário, $\langle O(ERLE_{st})\rangle_r$, em função do passo de adaptação μ (figura 5.13) conclui-se que este apresenta maiores valores para as zonas de optimização dos outros parâmetros referidos anteriormente, sendo que para $\mu > 0.035$ verifica-se um certo comportamento irregular. No entanto, pode-se afirmar que a estabilidade é tanto maior, quanto menor for μ . Da gama de valores μ que se testou, o que optimiza a estabilidade é $\mu_{(opt.\langle O(ERLE)\rangle)} = 0.003$. O passo $\mu = 0.0225$ que permitia optimizar t_0 , $\frac{\Delta ERLE}{\Delta t}$ e $\frac{\Delta ERLE}{\Delta t}$ está associado ao 3º maior máximo relativo do gráfico, sendo o máximo absoluto correspondente ao passo crítico, μ_c , tal como já foi referido anteriormente.

Sugestões de optimização do sistema

Existem 4 parâmetros do sistema que podem ser optimizados:

- Tempo de convergência, t_0 ;
- Rácio $\frac{\Delta ERLE}{\Delta t}$;
- Valor do ERLE em convergência, $\langle ERLE_{st} \rangle$;
- Instabilidade, $\langle O(ERLE_{st}) \rangle$.

Optimizar o tempo de convergência, ou rácio $\frac{\Delta ERLE}{\Delta t}$, implica optimizar ambos, já que o valor do passo de adaptação associado é o mesmo: $\mu_{(opt.\ t_0)} = \mu_{(opt.\ \Delta ERLE)} = 0.0225$. Implica também quase optimizar o valor médio do ERLE em regime estacionário, $\langle ERLE_{st} \rangle$, existindo apenas uma convergência (valor de $\langle ERLE_{st} \rangle$ para a convergência de $2^{\rm a}$ ordem, nos casos de $\mu = 0.025$ e $\mu = 0.0275$, é superior).

Optimizar $\langle ERLE_{st}\rangle$, seria estabelecer $\mu=0.025$ (convergência de 2ª ordem, que abdica da performance em t_0 e $\frac{\Delta ERLE}{\Delta t}$). Ainda assim, o comportamento do sistema para a convergência de 1ª ordem $(t_{0_1}, \left(\frac{\Delta ERLE}{\Delta t}\right)_1 \langle ERLE_{st}\rangle_1$ e $\langle O(ERLE_{st})\rangle_1$) no caso de $\mu=0.025$ é bastante semelhante ao do caso $\mu=0.0225$.

A estabilidade pode ser optimizada, escolhendo μ , o mais pequeno possível. No entanto, para μ reduzido, nenhum dos outros parâmetro anteriores poderia ser melhorado. Para $\mu=0.0225$, tem-se uma instabilidade elevada - optimizar a performance do sistema em t_0 , $\frac{\Delta ERLE}{\Delta t}$ ERLE, e $\langle ERLE_{st} \rangle$ implica o sacrifício da sua estabilidade. Relativamente a $\mu=0.0250$ tem-se uma maior estabilidade quer para a 1ª convergência, quer para a 2ª.

Tendo em conta toda a discussão realizada nos 4 parágrafos anteriores, conclui-se que o valor do passo de adaptação μ optimizador do sistema é:

$$\mu_{ont} = 0.0250$$

ou mais correctamente:

$$\mu_{opt} \in [0.0225, 0.0250]$$

já que os resultados obtidos foram pontuais (o varrimento de μ não foi contínuo). Esta escolha teve em consideração, o facto de que para este intervalo de μ , tem-se um bom comportamento do sistema em 1ª convergência e a possibilidade de 2ª convergência que permite o melhoramento, a posteriori, de $\frac{\Delta ERLE}{\Delta t}$ e $\langle O(ERLE_{st})\rangle$.

5.2.2 Teste do sistema com ruído

Implementação do passo de adaptação $\mu = 0.03$ e G = 0.1

Pretende-se agora analisar o sistema, mas introduzindo agora ruído ao mesmo para simular condições mais aproximadas do que acontece na vida prática. O ruído vai ser introduzido por meio de um gerador de dados remoto com um ganho G definido previamente.

Começou-se por implementar um passo de adaptação $\mu=0.03,~G=0.1$ e tempo de aquisição, T=1000s. Obtiveram-se os gráficos das evoluções no tempo, do ERLE (figura 5.14) e dos valores dos coeficientes do $Cancelador~de~Eco,~c_k$ (figura 5.15).

Figura 5.14: Gráfico parâmetro de eficiência, ERLE, em função do tempo, t(s), para $\mu=0.03$, G=0.1 e T=1000s.

Figura 5.15: Gráfico coeficientes c_k em função do tempo, t(s), para $\mu=0.03,~G=0.1$ e T=1000s.

Verifica-se que a introdução de ruído perturba imensamente a atenuação de eco reduzindo o seu valor de cerca de 300dB para 14,71dB. Esta redução pode ser explicada pelo fato de que o cancelador de eco não estar preparada para cancelar ruído, cancelando apenas o eco produzido pelo híbrido.

Nesta situação o sinal e_k passa a ser constituído pelo eco e pelo sinal do emissor remoto que, apesar de atenuado, afeta o eco proveniente do emissor local. Posto isto, os coeficientes do filtro adaptativo não vão estabilizar e vão oscilar, periodicamente, em torno de valores médios. Esta oscilação é mais um fator para que o valor do ERLE seja significativamente mais baixo.

Implementação do passo de adaptação $\mu_{m\acute{a}x}$ e G=0.4

A figura seguinte representa a evolução temporal do parâmetro ERLE.

Figura 5.16: Gráfico parâmetro de eficiência, ERLE, em função do tempo, t(s), para μ_{max} , G=0.4 e T=5000s.

Como é possível constatar o filtro não consegue processar sinais ruidosos levando a valores de ERLE sem significado, falhando na sua função de identificação, e à instabilização dos coeficientes, como é possível visualizar na figura seguinte.

Figura 5.17: Gráfico coeficientes c_k em função do tempo, t(s), para μ_{max} , G=0.4 e T=5000s.

Para resolver esta situação, ou torná-la menos desfavorável, poder-se-ia aumentar a ordem do filtro, mas deve-se notar sempre que não existem sistemas perfeitos e o ruído vai sempre existir e, como tal, é necessário encontrar um ponto de equilíbrio. Outra solução plausível é a alteração dos parâmetros μ_{max} e/ou a atenuação do ruído que entra no sistema.

Conclusões

Relativamente à simulação do sistema total sem ruído, pode-se referir que a eficiência no cancelamento do eco está intimamente relacionada com o valor do passo de adaptação μ para o algoritmo LMS. Foi possível determinar um intervalo para a optimização do processo, bem como o valor de μ limite para a sua estabilidade, μ_c . É importante salientar que o sistema, no intervalo de μ de optimização, apresenta a propriedade de 2^a convergência. Isto significa, que para além dos bons resultados obtidos para a 1^a convergência, é esperado o seu melhoramento na ocorrência da 2^a convergência.

Ao testar o sistema com a introdução de ruído, o cancelador de eco vai associar o sinal de erro como proveniente apenas do eco do gerador de dados localquando na realidade ele tem origem também no ruído do emissor remoto. Por outras palavras, vai associar o ruído do gerador remoto ao eco do emissor local e observá-lo como sendo o eco total deste último. Porém, o ruído é independente deste gerador e o filtro apenas vai conseguir identificar correctamente o eco do gerador local sem estabilizar num valor fixo devido ao ruído variável proveniente do emissor remoto. O funcionamento do sistema vai depender ainda do passo de adaptação utilizado. No entanto, para os mesmos valores de μ utilizados no sistema sem ruído, nota-se uma enorme perda de eficiência e redução do ERLE para $\mu=0,03$. E para μ_c o sistema fica instável, não cumprindo a sua função.