PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-226539

(43) Date of publication of application: 12.08.2004

(51)Int.CI.

G02B 6/20 C03B 37/012 G02B 6/10

(21)Application number: 2003-012328

(71)Applicant: NAKAZAWA MASATAKA

HITACHI CABLE LTD

(22)Date of filing:

21.01.2003

(72)Inventor: NAKAZAWA MASATAKA

OSONO KAZUMASA

YO HEI

OSUGA KAZUSHI

(54) OPTICAL FIBER AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an optical fiber having an improved bending characteristic and its manufacturing method. SOLUTION: In forming the optical fiber 10-1 having a wholly fiber structure, a preform 100 is formed in such a manner that the inner diameter of a vacancy 10h attains the inner diameter within a range from \geq 3 to \leq 10 μ m. The effect of confining the light of a core 10cr is thereby improved and the bending characteristic of the optical fiber 10-1 is improved.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

FROM:

0298 68 6440

JP 2004-226539 A 2004, B. 12

(19)日本国特許庁 (JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特別2004-226539

(P2004-226539A)

最終頁に続く

(43)公阴日 平成16年8月12日(2004.8.12)

(51) Int. Cl.,	F (テーマコード (独岑)
G02B 6/20	" C Ú S B 6/30	Z	2H05Q
C03B 37/012	C 0 3 B · 37/012	Ż	46021
G02B 6/10	G 0 2 B '6/10	, А	

本院交布	未請求 請求項の数 3	OL		(全9頁)
(21) 出願番号	特 厦2003-12328 (P2003-12328)	į	(71) 出概人	502011339
(22) 出願 (22) 出願 (22)	平成15年1月21日 (2003. 1.21)	:		中沢 正陸
		į		官城県仙台市脊萊区片平2丁目1番1号
				東北大学並 気通信研究所内
			(71) 出願人	000005120
		i		日立铝原株式会社
	•	· .i		東京都千代田区大手町一丁月6番1分
			(74) 代现人	100066021
		• •		弁理士 網谷 促体
			(72) 発明者	中沢 正隆
		•	•	宮城県仙台市青遊区片平2丁目1番1号
			•	東北大学的 気通信研究所内
		••	(72) 発明者	大茴 和正
		i		東京都千代田区火手町一丁自6番1号
		!	•	立讴森株式会社内

(54) 【発明の名称】光ファイバ及びその製造方法

(57)【驱約】

【課題】曲げ特性を改善した光ファイバ及びその製造方. 法を提供する。

【解決手段】ホーリーファイバ構造を有する光ファイバ 10-1を形成する際に空孔10hの内径が3μm以上 10μm以下の範囲内になるようにプリフォーム100 を線引きすることで、コア10crの光の閉じ込め効果 が向上し、光ファイバ10-1の曲げ特性が改造される

【遊択図】

図 1

(2)

JP 2004-226539 A 2004.8.12

【特許請求の範囲】

【節求項1】

コアと、該コアより屈折率が低く該コアを綴うクラッドと、上記クラッドの上記コアの近傍に上記コアの中心軸を対称軸として線対称、かつ等間隔となるように形成された4つ以上の偶数本の空孔とを備えた光ファイバにおいて、上記空孔の内径が3μm以上10μm以下の範囲内になるようにしたことを特徴とする光ファイバ。

【請求項2】

上記空孔が形成する包絡面の上記コア側の面と上記コアの中心との距離が光ファイバ自体のモードフィールド径より小さい説求項1に記載の光ファイバ。

【請求項3】

光ファイバ用母材のクラッドとなる部分のうちのコアとなる部分の近傍に上記コアとなる部分の中心軸を対称軸として練対称、かつ等間隔となるように4つ以上の偶数本の空孔を形成した後、その光ファイバ用母材を各空孔の内径が3μm以上10μm以下の範囲内になるように練引きファイバ化することを特徴とする光ファイバの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、光ファイバ及びその製造方法に関する。

[0002]

【従来の技術】

近年、インターネット等の急速な普及に伴い惰報容量が増大し、情報の伝送媒体に対する大容量化の要求が高まってきた。大容量化に対応する技術の中で最も有望視されているのが波長多重(以下、WDMという)伝送方式である。WDM伝送方式は、1本の光ファイバで複数の信号光を伝送できるので、伝送容量を一気に100倍程度増大させることが可能である。そこで、大陸間を結ぶ光海底ケーブルシステムのような長距離大容量伝送路へ導入が進められており、実用化段階を迎えている。

[0003]

WDM伝送技術が急速に立ち上がってきた技術的背景の一つに光増幅技術の向上が挙げられる。光増幅技術の一つであるエルビウムドープ光ファイバ増幅器(EDFA)は、減衰した波長1.55μm帯の光を1000倍程度まで増幅することができるので、中継器などに組み込まれ、光ファイバ伝送路での損失を補償する働きをする。EDFAを用いた太平洋横断光極底ケーブルシステム(TPC-5CN, China-US等)は、既に実用化されており、WDM技術を用いて100Gbit/sという大容量伝送を実現している。WDM伝送の大容量化のためには波長多重数を増加させる必要があるが、光ファイバに入る信号光パワーが大きくなるため、非線形現象が発生する可能性が高くなる。例えば、四光波混合によるノイズの増大や信号光の減少を引き起こすことが報告されている。そのため、光ファイバの変効断面積を大きくし、光ファイバ内の信号光パワー密度を低下させた光ファイバを長距離伝送路に用いることが有効である。

[0004]

このように、近年、光増幅技術やWDM伝送技術の発展により、光ファイバへ入射させる 光信号のパワーが大きくなってきているために、種々の非線形効果現象が生じやすくなっ ており、例えば、非線形効果現象の一つである自己位相変調現象が生じると、光ファイバ 中のパルス信号波形が歪み、伝送容量が制限される。また、同じく非線形効果現象の一つ であるブリュリアン散乱現象も生じやすく、ブリュリアン散乱現象が起きると、光ファイ バの入射パワーが飽和する。このように、非線形効果現象が生じると、光ファイバ中を伝 搬する信号光の伝送特性の劣化を招く。

[0005]

また、従来のシングルモード光ファイバのゼロ分散波長は1.3μmよりも長波長側になってしまうので、1.3μmで大きな異常分散。(正分散) を持つ光ファイバは存在しなかった。

10

20

40

50

5/ 15

10

20

nm: 0298 68 5440

IP 2004-226539 A 2004.8.12

(3)

[0006]

上記した非線形現象という問題点を解決する新規な光ファイバとして、フォトニッククリスタル光ファイバ(Photonic Crystal Fiber; PCF、フォトニックファイバとも言う)が最近注目を築めている。PCFとは、フォトニック結晶構造がクラッド部に設けてある光ファイバである。フォトニック結晶構造とは屈折率の周期構造のことであり、具体的にはハニカム(蜂の巣)構造の空間をクラッドに設けることで、光の禁制帯であるフォトニックバンドギャップ(Photonic Band Gap: PBC)が発生する。例えば、非特許文献1には、PBCを導波原理とするPCFが開示されている。また、非特許文献2には、PBG構造を導波原理とする中空コアのPCFが開示されている。

[0007]

また、最近、完全なPBG構造を有している光ファイバではないが、ガラス組成の違いにより比屈折零差を持たせた光ファイバのコア近傍のクラッドに空孔を存在させることにより、クラッドの実質的な屈折零を下げてコアノクラッド間の比屈折率差を拡大させることで、従来得られなかった特性を有するホーリーファイバ(HF)が報告されている。例えば、非特許文献3には、通常のシングルモード光ファイバの構造を有する光ファイバのコア近傍のクラッドに4つの空孔を設けた空孔付加型ホーリーファイバで、コアノクラッド間の比屈折率空を拡大させることにより、1.2 μ m帯でシングルモード動作がある光ファイバが開示されている。

[8000]

フォトニック光ファイバに関する特許文献として特許文献1がある。

[0009]

【特許文献1】

特開2000-296440号公報

【非特許文献1】

「Photonic band gap guidance in optical fiber, Knightら、Science282, 1476、1998年

【非特許文献 2】

「Single-Mode Photonic band gap guidance of Light in Air」 Creganb. Science 285, 1537、1999年

【非特許文献3】

「Novel hole—assisted lightguidefiber exhibiting large anomalous dispersion and low loss below 1dB/km」 長谷川ら、OFC2001PD5-1、2001年

[0010]

【発明が解決しようとする課題】

しかしながら、前述した従来の光ファイバにおいて、例えばより小さい径で成端箱内に収納したり、より小さい径で配線したりする場合、従来の光ファイバの曲げ損失特性、波長1.55μmで2~10dB/mでは、損失の増加が無視できないレベルになり、システム設計ができなくなるという問題があった。

[0011]

また、曲げ特性を改善するためには、一般に光ファイバの構造を改良すれば可能であるが、そのために、例えばコアの屈折率を高くすると、レーリー散乱損失や構造不整損失(構造不完全による損失)が増加しやすくなり、モードフィールド径が小さくなり低損失核統が困難になるという問題があった。

[0012]

さらに、コア径を太くしてカットオフ波長が長波長側になるように光ファイバを設計する ことも可能であるが、カットオフ波長を長波長側に設計すると、信号光のシングルモード

JP 2004-226539 A 2004.8.12

動作が維持できなくなり、伝送容盘の劣化を招くという問題があった。

[0013]

そこで、本発明の目的は、上記課題を解決し、曲げ特性を改善した光ファイバ及びその製' 造方法を提供することにある。

[0014]

[課題を解決するための手段]

上記目的を運成するために、諧求項1の発明は、コアと、コアより屈折率が低くコアを殺し うクラッドと、クラッドのコアの近傍にコアの中心軸を対称軸として線対称、かつ等間隙 となるように形成された4つ以上の偶数本の空孔とを備えた光ファイバにおいて、空孔の 内径が3μm以上10μm以下の錏囲内になるようにしたものである。

[0015]

請求項2の発明は、請求項1に記載の構成に加え、空孔が形成する包絡面のコア側の面と コアの中心との距離が光ファイバ自体のモードフィールド径より小さいのが好ましい。

[0016]

請求項3の発明は、光ファイバ用母材のクラッドとなる部分のうちのコアとなる部分の近 傍にコアとなる部分の中心軸を対称軸として繰対称、かつ等間隔となるように4つ以上の 偶数本の空孔を形成した後、その光ファイバ用母材を各空孔の内径が3μm以上10μm 以下の範囲内になるように線引きファイバ化する光ファイバの製造方法である。

[0017]

本発明はホーリーファイバ構造を通常の1. 3μπ帯シングルモード光ファイバに適用し たものであるが、前述したPCFや従来のHFではいずれも曲げ特性が不十分であった。

[0018]

そこで、本発明者らは、ホーリーファイバ構造を有する光ファイバを形成する際に空孔の 内径が3μm以上10μm以下の範囲内になるようにプリフォームを線引きすることで、 コアの光の閉じ込め効果が向上し、光ファイバの曲げ特性が改善されることを見出した。

[0019]

【発明の実施の形態】

以下、本発明の実施の形態について図面を参照して詳述する。

[0020]

図1は本発明の光ファイバの一実施の形態を示す断面図である。

[0021]

この光ファイバ(裸ファイバ)10ー1のコア10crには屈折率を高くするためにゲル マニウムが添加されている。ゲルマニウムの添加蛩は3~6モル%程度である。クラッド 10cdのコア10crの近傍には、コア10crの中心軸を対称軸として繰対称、かつ 等間隔となるように4本の変孔10点が形成されている。

[0022]

空孔10hの内径は例えば1μmである(3μm以上10μm以下の施囲内が好ましい。)。各空孔10hの中心は、例えばコア10crの中心から半径12μmの円周上に位置 している(空孔10hの包絡線(破線)が形成する包絡面のコア10cr側の面とコア1 〇cェの中心との距離が光ファイバ10-1自体のモードフィールド径より小さいのが好 ましい。)。空孔10hの中には空気または不活性ガスが充填されており、その空孔10 h内の屈折率は「1」となっている。

[0023]

ここで、空孔10hの内径の上限を10μmとする理由について述べる。

[0024]

想定する光ファイバ10-1のMFD (モードフィールド径) は、波長1.55μmにお いて10μm程度であり、今、コア10cmの周りに6本の空孔10hを配置すると、6 本の空孔10hの包絡面のコア側の面とコア中心との距離が光ファイバのMFDより小さ くなる条件を満たすためには、10μm以下でなければならないためである。

[0025]

10

10

50

. . (5)

JP 2004-226539 A 2004.8, 12

次に本発明の光ファイバの製造方法について説明する。

[0026]

図2 (a) は本発明の光ファイバの材料としての光ファイバ用プリフォームの側面透視図であり、図2 (b) は図2 (a) の2b-2b線断面図である。

[0027]

図1に示した光ファイバ10-1を製造するにあたり、まず、石英製の光ファイバ用プリフォームを例えばVAD法(Vapor-phaso Axial Deposition: 気相軸付法)により作製する。具体的には、通常のシングルモード用光ファイバプリフォームを製造する要領で、例えば直径φ120mm、長さ1mのスートプリフォーム(図示せず。)を作製する。ここでは、通常のシングルモード光ファイバと同様にコア10crとなるスート領域に石英の屈折率を高めるためのゲルマニウムを添加する。

[0028]

ゲルマニウムが添加されたスートプリフォームを塩素等の脱水効果のある雰囲気中で機結し、例えば外径 ϕ aが60mmで、長さしが40cmの高純度透明ガラス化母材(図示せず。)を作製する。

[0029]

次に、研削法により、この外径 ø a が 6 0 mmの高純度透明ガラス化母材 1 0 0 のクラッド 1 0 c d となる部分 1 0 0 c d のコア 1 0 c r となる部分 1 0 0 c r の近傍に、コア 1 0 c r となる部分 1 0 0 c r の中心軸を対称軸として線対称、かつ等間隔になるように 4 本の内径 ø b が 2.5 mmの質通孔(研削加工孔) 1 0 0 h を形成する(図 2 (a)、(b))。

[0030]

次に、研削後の母材100の一端を封止加工し、他端に外径φ60mm、内径φ50mm の石英製のダミー管を接続し、線引き用プリフォームとした。この線引用プリフォームの 端面に塩素を含むガスを研削加工孔内に光填させるためのガス投入部を接続する。

[0031]

続いて本プリフォームの練引工程について説明する。

[0032]

図3は本発明の光ファイバの製造方法を適用した製造装置の概念図である。

[0033]

この製造装置は、主にプリフォーム100を溶融する電気炉23と、線引き後の光ファイバ(裸ファイバ)10-1に樹脂を被覆して光ファイバ(一次被覆された光ファイバ)とするファイバ被覆部24と、光ファイバを引取る引取部25とで構成されている。

[0034]

プリフォーム100の一端(図では上端)100aに石英ダミー管11の一端(図では下端)11aが固定されている。ダミー管11の他端(図では上端)11bには、線引き時に内圧調整用のガスを投入するためのガス投入器12が取り付けられている。調整用ガスとしては線引時にOH基の拡散が生じないようにするため、不活性ガス、例えば窒素ガス(アルゴンガス、ヘリウムガスでもよい。)が用いられる。プリフォーム100及び石英ダミー管(若しくはガス投入器12)11は図示しないチャックにより鉛度に保持されると共に矢印13方向に降下若しくは矢印14方向に上昇できるようになっている。

[0035]

ガス投入器12にはフレキシブルな配管15の一端(図では左端)が接続されている。配管15は3方向に分岐されており、分岐された配管16-1~16-3は開閉バルブ17、18、19を介して排ガス処理装置20、ガス流盤制御器21及び真空ポンプ22にそれぞれ接続されている。ガス流量制御器21によりプリフォーム100~投入するガス流 盤を制御するようになっている。

[0036]

プリフォーム100の下端100bには略簡状の電気炉23が配置され、プリフォーム1 00が通過できるようになっている。

10

20

40

0298 68 6440

12)

JP 2004-226539 A 2004.8.12

[0037]

電気炉23の下側には樹脂被覆部24が配置され、樹脂被覆部24の出口側にはファイパ 引き取り機25が配置されている。

[0038]

ガス供給系は、バルブ17を介して真空ポンブ22にも接続され、プリフォーム100の 級引きに先立ち、まず、バルプ17を開き、バルブ18、19を閉じてプリフォーム10 0の空孔100h内に残留している空気を真空ポンプ22で真空引きして除去する。残留 空気の除去後、バルブ17を閉じ、バルブ18、19を開いて窒素ガスをガス流盤制御器 21により流量を制御してプリフォーム100の空孔100h内を塩素ガス雰囲気とする

[0039]

プリフォーム100の線引きの際、プリフォーム100内の内圧が低すぎると、線引き時に空孔100hが潰れ、ファイバ化後に空孔10hが無い光ファイバになってしまう。また、プリフォーム100内の内圧が高すざると、光ファイバ10-1内の空孔10hの占める割合が大きくなり、線引き張力及び線引き速度から決まる内圧の限界点を超えると、線引中にプリフォーム100の空孔100hが破裂し、光ファイバ10-1の形成が不可能となる。

[0040]

本発明者らの実験による空孔10hの内径と線引き時内圧との関係から、光ファイバ10 -1に所望の内径の空孔10hを形成しようとする場合、最適な内圧は1.5kPa程度 であるので、その圧力に設定して繰引を行った。その結果、ファイバ化時に内径 67 μ m の空孔10hが得られた。

[0041]

以上の作業により、長さ10 kmの高耐応力光ファイバが得られた。作製した高耐応力光ファイバの損失は波長1.31 μ mで0.51 dB/kmであり、波長1.55 μ mで0.35 dB/kmであった。損失要因を分析したところ、構造不整損失が0.015 dB/kmであり、その他の損失を押し上げた結果であった。

[0042]

この構造不整損失は、プリフォームの加工精度によるものであり、加工法の改良により改善が可能である。本光ファイバの曲げ損失特性を測定したところ、波長1.55 μ mで直径 α 20 α 00 mmの曲げ損失増加量は0.1 α 00 mと通常の1.3 α 00 mmの一下光ファイバに比べて1/20以下と非常に小さい値であった。さらに、カットオフ波長及び波長1.31 α 00 mmのモードフィールド径を測定したが、それぞれ1.25 α 00 mmの分析基の吸収損失は1.5 α 00 mmの分析を引力が表示のシングルモード光ファイバレベルであった。また、ワイブル強度(引っ張り試験強度)は60~70Nであり、環境常数 α 1 を同等のレベルの結果が得られた。

[0.043]

図4は本発明の光ファイバの他の表施の形態を示す断面図である。

[0044]

図1に示した光ファイバ10-1との相逢点は、空孔10hの本数が6本である点である

. ., . ;

[0045]

図4に示した光ファイバ10-2は、コア10crの屈折率を高くするため、ゲルマニウムが添加されている。そのゲルマニウムの添加量は3-6モル%程度である。クラッド10cdのコア10crの近傍に、コア10crの中心軸を対称軸として6本の空孔10hが線対称、かつ等間隔となるように形成されている。空孔10hの内径は7μmであり、空孔10hの中心はコア10crの中心から半径12μmの円周上に位置している。

[0046]

ここで、空孔10hの本数を4本以上の偶数とし、かつコア10crの中心軸を対称軸と

HKUM:

·(7<u>)</u>.

JP 2004-226539 A 2004. 8, 12

して線対称、かつ等間隔になるように位置させている理由は、まず空孔 10hの数が2本では光ファイバ10-1、10-2の断面上において中心軸を選る1本の軸上にのみ空孔10hが存在するため、その軸と90°の位置関係にある軸との間で、空孔10hによる実効的なクラッド10cdの居折率の低下効果に整が生じるため、擬似的な偏波面保存光ファイバの特性になってしまい、高速伝送時に問題となる偏波分散特性が劣化してしまうためである。

[0047]

同様に空孔10hの本数が奇数本になると、空孔10hをどのように配置しても光ファイバ10-1、10-2断面上の中心軸を通る2本の直交する軸に対して、空孔10hによる実効的なクラッド10cdの屈折率分布が非対称となり、偏波分散特性が劣化してしまうためである。

[0048]

次に、空孔10hの内径が3μm以上必要な理由を述べる。

[0049]

図5は空孔の本数が4本の場合の空孔の内径φbと曲げ根失との関係を示す特性図であり、横軸(普通目盤)が空孔の内径φbを示し、縦軸(対数目盤)が曲げ損失を示している

[0050]

同図より、空孔の内径φもが3μm以上の領域において、曲げ損失特性が1dB/m以下となる。この1dB/mは従来の光ファイバでは達成し得ない特性であり、また、ケーブル化や光ファイバの敷設を考慮したときに、1dB/m以下の曲げ特性を達成すると実用上の利点が出てくる数値である。

[0051]

さらに、空孔が形成する包絡面のコア側の面とコアの中心との距離を光ファイバ自体のモードフィールド径より小さくするのは、空孔の存在によるクラッドの実効的な屈折率の低減効果が有効に曲げ特性の改艶に機能するためには、その存在位置は、できるだけコアに近い方がよく、実用的に曲げ特性を改善するために空孔の存在限界がモードフィールド径と同学な距離であるからである。

[0052]

【発明の効果】

以上要するに本発明によれば、曲げ特性を改善した光ファイバ及びその製造方法の提供を実現することができる。

【図面の簡単な説明】

- 【図1】本発明の光ファイバの一実施の形態を示す断面図である。
- 【図2】(a)は本発明の光ファイバの材料としての光ファイバ用プリフォームの側面透視図であり、(b)は(a)の2bー2b線断面図である。
- 【図3】本発明の光ファイバの製造方法を適用した製造装置の概念図である。
- 【図4】本発明の光ファイバの他の実施の形態を示す断面図である。
- 【図 5 】空孔の本数が 4 本の場合の空孔の内径 d と曲げ損失との関係を示す特性図である

【符号の説明】

10-1、10-2 光ファイバ

10cd クラッド

10 cr = 7

10h 空孔

30

20

(8)

JP 2004-226539 A 2004.8.12

(Ø1)

[図2]

[図3]

[図4]

[図5]

;0422 59 5575 # 11/ 15 2004/11/18 11:51 No.142 P11/11

0298 68 6440

FROM:

(9)

JP 2004-226539 A 2004.8.12

フロントページの続き

(72) 癸明智 姚 兵

東京都千代田区大手町—丁目 6 番 1 号 日立電線株式会社内 (72) 発明者 大須賀 一志

東京都千代田区大手町一丁目6番1号 日立電線株式会社内

ドクーム(砂考) 2HOSO ABOSX AC09 AC62 AC71 4G021 BA00