A Biggner's Guide to Probability and Extremes

Seoncheol Park

2025 - 08 - 26

Table of contents

Preface

.

•

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 + 1

[1] 2

Part I

Intro

Part II Probability

1 Measure and Integration

1.1 Limit of sets

 σ -field

Definition 1.1.

- S: a collection of subsets of Ω . We say that S is a
- 1. π -system: if $A, B \in S \Longrightarrow A \cap B \in S$
- 2. λ -system: if
 - $\Omega \in S$
 - $A, B \in S$ and $A \subseteq B \Longrightarrow B \backslash A \in S$
 - $A_n \uparrow A$ and $A_n \in S \Longrightarrow A \in S$
- 3. Algebra (field) if
 - $\emptyset, \Omega \in S$
 - $A \in S \Longrightarrow A^c \in S$
 - $A, B \in S \Longrightarrow A \cup B \in S$
- 4. Monotone class if
 - $A_n \in S$ and $A_n \uparrow A \Longrightarrow A \in S$
 - $A_n \in S$ and $A_n \downarrow A \Longrightarrow A \in S$
 - Recall that $A_n \uparrow A$ means that $A_1 \subseteq A_2 \subseteq \dots$ and $\cup_n A_n = A$ and $A_n \downarrow A$ means that $A_1 \supseteq A_2 \supseteq \dots$ and $\cap_n A_n = A$
- 5. σ -algebra (field) if
 - $\emptyset, \Omega \in S$
 - $A \in S \Longrightarrow A^c \in S$
 - $A_n \in S \Longrightarrow \cup A_n \in S$

Remark

- σ -algebra π -system, λ -system, monotone class algebra .
- Arbitrary intersections of σ -algebra, algebra, π -system, λ -system σ -algebra, algebra, π -system, λ -system .

PROBABILITY THEORY - PART 1 MEASURE THEORETICAL FRAMEWORK

.

		$\mathcal{A}(S)$ (algebra	
Ω	$S(\pi ext{-system})$	generated by S)	$\sigma(S)$
(0,1]	$\{(a,b]: 0 < a \le b \le$	$\{\cup_{k=1}^{N}I_{k}:I_{k}\in$	$\mathcal{B}(0,1]$
	1}	S are pairwise disjoint $\}$	
[0,1]	$\{(a,b] \cap [0,1] : a \le b\}$	$\{\cup_{k=1}^N R_k: R_k \in$	$\mathcal{B}[0,1]$
		S are pairwise disjoint $\}$	
\mathbb{R}^d	$\{\textstyle\prod_{i=1}^d (a_i,b_i]: a_i \leq$	$\{\cup_{k=1}^N R_k: R_k \in$	${\mathcal B}_{{\mathbb R}^d}$
	b_i }	S are pairwise disjoint $\}$	
$\{0,1\}^{\mathbb{N}}$	Collection of all	Finite disjoint unions	$\mathcal{B}(\{0,1\}^{\mathbb{N}})$
	cylinder sets	of cylinders	

, π -system π -system algebra , σ -algebra . Borel set countable number of operations on intervals .

 σ -algebra . .

Lemma 1.1 $(\pi - \lambda \text{ theorem})$.

- Let Ω be a set and \mathcal{F} be a set of subsets of Ω .
- 1. \mathcal{F} is a σ -algebra \iff it is a π -system as well as a λ -system.
- 2. If S is a π -system, then $\lambda(S) = \sigma(S)$. $\lambda(S)$ S λ -system intersection.

Proof

- 1. . \mathcal{F} π -system λ -system . $\Omega \in \mathcal{F}$ $A \in \mathcal{F}$, $A^c = \Omega \backslash A \in \mathcal{F}$. $A_n \in \mathcal{F}$, finite unions $B_n := \cup_{k=1}^n A_k = (\cap_{k=1}^n A_k^c)^c \in \mathcal{F}$. (intersection \mathcal{F} π -system) countable union $\cup A_n$ B_n increasing limit \mathcal{F} λ -property

Lemma 1.2 (Monotone class theorem).

- Let Ω be a set and let S be a collection of Ω . If S is an algebra, then the monotone class generated by S is a σ -algebra. That is, $\mathcal{M}(S) = \sigma(S)$.
- **Q**. (Unique extension of measures) $(\mathbb{R}, \mathcal{B})$,

•

Example 1.1 $(\pi - \lambda \text{ theorem})$.

- $\Omega = \{1, 2, 3, 4\}$ $S = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$. $\sigma(S) = 2^{\Omega}$ (power set)
- Ω μ, ν

$$\begin{array}{ll} -\ \mu_i = \frac{1}{4}, \forall i \\ -\ \nu_1 = \nu_3 = \frac{1}{2}, \ \nu_2 = \nu_4 = 0 \end{array} \quad . \quad \mu(A) = \frac{1}{2} = \nu(A) \text{ for all } A \in S \ , \ \mu \neq \nu \text{ on } \sigma(S) \ . \end{array}$$

.

Lemma 1.3. S Ω π -system $\mathcal{F} = \sigma(S)$. $\mathbb{P} = \mathbb{Q}$ \mathcal{F} $A \in S$ $\mathbb{P}(A) = \mathbb{Q}(A)$.

i Proof

- $\mathcal{G} = \{A \in \mathcal{F} : \mathbb{P}(A) = \mathbb{Q}(A)\}$. $\mathcal{G} \supseteq S$.
- $\begin{array}{lll} \bullet & \mathcal{G} \ \, \lambda\text{-system} & . & \Omega \in \mathcal{G} \; ; . & A,B \in \mathcal{G} \ \, A \supseteq B \; \, , \, \mathbb{P}(A \backslash B) = \mathbb{P}(A) \mathbb{P}(B) = \\ \mathbb{Q}(A) \mathbb{Q}(B) = \mathbb{Q}(A \backslash B) \; . & A \backslash B \in \mathcal{G} \quad . & A_n \in \mathcal{G} \quad A_n \uparrow A \; \, , \, \mathbb{P}(A) = \\ \lim_{n \to \infty} \mathbb{P}(A_n) = \lim_{n \to \infty} \mathbb{Q}(A_n) = \mathbb{Q}(A) \; . \; \big(\; \; \text{measure countable additivity} \; \big) \end{array}$
- $\mathcal{G}\supseteq\lambda(S)$ Lemma ?? $\sigma(S)$. \mathcal{F} $\mathbb{P}=\mathbb{Q}$.

Example ?? , S π -system

Remark

• σ -algebra , Borel interval , σ -algebra , collection , collection σ -algebra . λ -system monotone class (π -system algebra) .

1.2 Measures

Definition 1.2 (σ -additive).

- \mathcal{A} : a collection of subsets of Ω containing the empty set \emptyset
- A set function on \mathcal{A} : $\mu : \mathcal{A} \to [0, \infty]$ with $\mu(\emptyset) = 0$
- We say that μ is **countably additive**, or σ -additive, if for all sequences (A_n) of disjoint sets in \mathcal{A} with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

$$\mu\Big(\bigcup_{n=1}^{\infty}A_n\Big)=\sum_{n=1}^{\infty}\mu(A_n).$$

? Remark

• Recall that a **measurable space** is a pair (Ω, \mathcal{F}) , where \mathcal{F} is a σ -algebra on Ω .

Definition 1.3 (Measure space).

- A measure space is a triple $(\Omega, \mathcal{F}, \mu)$, where
 - $-\Omega$: set
 - \mathcal{F} : σ -algebra on Ω
 - $-\mu: \mathcal{F} \to [0,\infty]$ is a countably additive set function.
 - Then μ is a measure on (Ω, \mathcal{F}) .

power set . Ω subset measure . " " collection of sets . Ω smaller class of subsets σ -algebra generate .

- 1. (Construction) measure whole σ -algebra ? (Caratheodory's Extension Theorem)
- 2. (Uniqueness) σ -algebra ? $(\pi \lambda \text{ systems Lemma})$

1.2.1 Lebesgue measure

Definition 1.4 (Existence and uniqueness of Lebesgue measure).

• There exists a unique Borel measure λ on [0,1] such that $\lambda(I) = |I|$ for any interval I.

i Proof

- $S = \{(a,b] \cap [0,1]\}$ \mathcal{B} $\pi\text{-system}$. Lemma $\ref{lem:system}$ uniqueness .
- 1. Outer measure λ_*

 $\lambda_*(A) = \inf\{\sum |I_k|: \text{ each } I_k \text{ is an open interval and } \{I_k\} \text{ a countable cover for } A\}.$ outer measure

- $\bullet \quad \text{ subset } A \subseteq \Omega \quad \ \, 0 \leq \lambda_*(A) \leq 1$
- $\lambda_*(A \cup B) \leq \lambda_*(A) + \lambda_*(B)$, for any $A, B \subseteq \Omega$
- $\lambda_{\star}(\Omega) = 1$
- 2. λ_* σ -field . λ_* a set Ω outer measure . Caratheodary

$$\mathcal{F}:=\{A\subseteq\Omega:\lambda_*(E)=\lambda_*(A\cap E)+\lambda_*(A^c\cap E)\text{ for any }E\}.$$

 \mathcal{F} σ -algebra λ_* restricted to \mathcal{F}

3. $A = (a, b] \subseteq [0, 1]$ $A \in \mathcal{F}$ \mathcal{F}

1.2.2 Construction of Lebesgue measure

Lebesgue class .

1. algebra \mathcal{A} ((a,b]) \mathcal{A} countably additive probability measure P on \mathcal{A} , outer measure P^* \mathcal{A} countable cover . , E

$$P^*(E) = \inf \{ \sum_{i=1}^{\infty} P(A_i) : E \supseteq \cup_{i=1}^{\infty} A_i, A_i \in \mathcal{A} \}.$$

- 2. \mathcal{F} , $\mathcal{F} \supset \mathcal{A}$ σ -algebra P^* \mathcal{A} .
- 3. $P^* = P$ on \mathcal{A} .

1.2.3 Push-forward (image) measure

- Measure
 - Caratheodory Extension Theorem
 - Transportation between spaces via functions.

Definition 1.5 (Push-forward measure).

• $(\Omega, \mathcal{F}, \mathbb{P})$, X (Ω, \mathcal{F}) (E, \mathcal{E})

$$\mathbb{Q}(A) = \mathbb{P}(X^{-1}(A)), \quad A \in \mathcal{E}$$

- (E,\mathcal{E}) (push-forward measure).
- $\mathbb{Q} = \mathbb{P} \circ X^{-1}$ law of the distribution of X

• Remark

- \bullet E X^{-1} Ω \mathbb{P}
- Push-forward measure change-of-variables formula

1.3 Integration

1.3.1 Integration notations

Remark

notation

- (E, \mathcal{E}, μ) : measure space, $f: E \to \mathbb{R}$: a real-valued transformation
- _

$$-\int_{E} f(x)d\mu(x)$$

$$-\int_{E} fd\mu ($$

$$-\int_{E} f(x)\mu(dx)$$

1.3.2 -

 $E(X) = \int x dF(x).$

x f(x).

 $\int_{a}^{b} f(x)dx.$

x g(x) f(x)

 $\int_{x-a}^{b} f(x)dg(x).$

dg(x) g(x) (differential), g(x) x . **Calculation** - (Riemann-Stieltjes Integral) .

 $\int_{x=a}^b f(x) dg(x) = \lim_{N \to \infty} \sum_{n=0}^{N-1} f(t_n) [g(x_{n+1}) - g(x_n)].$

 $x_n \hspace{1cm} [a,b] \hspace{0.5cm},\hspace{0.5cm} t_n \hspace{1cm} [x_n,x_{n+1}]$

Example 1.2 (-).

• X: random variable with support $R_X = [0, 1]$ and distribution function

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ \frac{1}{2}x, & \text{if } 0 \le x < 1 \\ 1, & \text{if } x \ge 1. \end{cases}$$

$$\begin{split} E[X] &= \int_{-\infty}^{\infty} x dF_X(x) \\ &= \int_{0}^{1} x dF_X(x) + 1 \cdot \left[F_X(1) - \lim_{x \to 1, x < 1} F_X(x) \right] \\ &= \int_{0}^{1} x \frac{d}{dx} \left(\frac{1}{2} x \right) dx + 1 \cdot \left[1 - \frac{1}{2} \right] \\ &= \left[\frac{1}{4} x^2 \right]_{0}^{1} + \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}. \end{split}$$

1.4

Confused when changing from Lebesgue Integral to Riemann Integral

$$(\Omega, \mathcal{F}, P)$$
 X

$$P(X < x) = 1 - e^{-\lambda x}.$$

$$X$$
 .

$$E[X] = \int_{\{\omega \mid X(\omega) \ge 0\}} X(\omega) dP(\omega).$$

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx$$

By definition, given $X: \Omega \to \mathbb{R}$ a random variable, $E[X] = \int_{\Omega} X$. X defines a measure \tilde{m} in \mathbb{R} , called the **push-forward**, by $\tilde{m}(A) = P(X^{-1}(A))$. By definition, this measure is invariant under X, and hence

$$\int_{\mathbb{R}} f d\tilde{m} = \int_{\Omega} f \circ X dP.$$

The equality follows from the usual arguments (prove for characteristics, simple functions, then use convergence. Recall that $1_A \circ X = 1_{X^{-1}(A)}$).

Let h be the density of X. We then have, by definition of density, that $\tilde{m}(A) = P(X^{-1}(A)) = \int_A h dm$ for any $A \in \mathcal{B}(\mathbb{R})$, where m is the Lebesgue measure. By **change of variables**, we have

$$\int_{\mathbb{R}} f d\tilde{m} = \int_{\mathbb{R}} f \cdot h dm.$$

Combining these equations,

$$\int_{\mathbb{R}} f \cdot h dm = \int_{\Omega} f \circ X dP.$$

Taking f = Id yields

$$\int_{\mathbb{R}} x h(x) dx = \int_{\Omega} X dP = E[X].$$

Taking $f = \operatorname{Id} \cdot \mathbf{1}_I$, where I is some interval (for example, $(0, +\infty)$ as in your case), we have

$$\int_{I} x h(x) dx = \int_{X^{-1}} X dP,$$

recalling again that $\mathbf{1}_A \circ X = \mathbf{1}_{X^{-1}(A)}$. Since P(X < 0) in your case is 0, this last integral is actually equal to the integral over the whole space, and hence to E[X], which gives your equality.

2 Probability

2.1 Probability Triples

Q. probability triple ? Single double triple ?

- Sample space Ω (): any non-empty set . uniform distribution $\Omega = [0,1]$
- \mathcal{F} : σ -algebra σ -field: Ω subset collection \emptyset , Ω .
- **Probability** P: a mapping from \mathcal{F} to [0,1] with
 - $-P(\emptyset)=0$
 - $-P(\Omega)=1$
 - P is countably additive, $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$
- Recall that the elements of any field or σ -field (Definition ??) are called **random** events (or simply events).

2.2 Probabilities

Definition 2.1 (Probability).

- Let Ω be any set and \mathcal{A} be a field of its subsets. We say that P is a **probability** on the measurable space (Ω, \mathcal{A}) if P is defined for all events $A \in \mathcal{A}$ and satisfies the following axioms.
- 1. $P(A) \ge 0$ for each $A \in \mathcal{A}$; $P(\Omega) = 1$
- 2. P is **finitely additive**. That is, for any finite number of pairwise disjoint events $A_1,\ldots,A_n\in\mathcal{A}$ we have

$$P\Big(\cup_{i=1}^n A_i\Big) = \sum_{i=1}^n P(A_i).$$

3. P is continuous at \emptyset . That is, for any events $A_1, A_2, \dots, \mathcal{A}$ such that $A_{n+1} \subset A_n$ and $\bigcap_{n=1}^{\infty} A_n = \emptyset$, it is true that

$$\lim_{n\to\infty}P(A_n)=0.$$

Note that conditions 2 and 3 are equivalent to the next one 4.

4. P is σ -additive (countably additive), that is

$$P\Big(\cup_{n=1}^{\infty}A_n\Big)=\sum_{n=1}^{\infty}P(A_n)$$

for any events $A_1, A_2, ... \in \mathcal{A}$ which are pairwise disjoint.

Example 2.1 (A probability measure which is additive but not σ -additive). Let Ω be the set of all rational numbers r of the unit interval [0,1] and \mathcal{F}_1 the class of the subsets of Ω of the form [a,b], (a,b], (a,b) or [a,b) where a and b are rational numbers. Denote by \mathcal{F}_2 the class of all finite sums of disjoint sets of \mathcal{F}_1 . Then \mathcal{F}_2 is a field. Let us define the probability measure P as follows:

$$\begin{split} &P(A)=b-a, \quad \text{if } A\in\mathcal{F}_1, \\ &P(B)=\sum_{i=1}^n P(A_i), \quad \text{if } B\in\mathcal{F}_2, \text{ that is, } B=\sum_{i=1}^n A_i, A_i\in\mathcal{F}_1. \end{split}$$

Consider two disjoint sets of \mathcal{F}_2 say

$$B = \sum_{i=1}^{n} A_i$$
 and $B' = \sum_{j=1}^{m} A'_j$,

where $A_i, A_j' \in \mathcal{F}_1$ and all A_i, A_j' are disjoint. Then $B + B' = \sum_{k=1}^{m+n} C_k$ where either $C_k = A_i$ for some $i = 1, \dots, n$, or $C_k = A_j'$ for some $j = 1, \dots, m$. Moreover,

$$\begin{split} P(B+B') &= P\Big(\sum_k C_k\Big) = \sum_k P(C_k) = \sum_{i,j} (P(A_i) + P(A_j')) \\ &= P(A_i) + \sum_j P(A_j') = P(B) + P(B'). \end{split}$$

and hence P is an additive measure.

Obviously every one-point set $\{r\} \in \mathcal{F}_2$ and $P(\{r\}) = 0$. Since Ω is a countable set and $\Omega = \sum_{i=1}^{\infty} \{r_i\}$, we get

$$P(\Omega)=1\neq 0=\sum_{i=1}^{\infty}P(\{r_i\}).$$

This contradiction shows that P is not σ -additive.

3 Random Variables

3.1 Random Variables

Definition 3.1 (()).

• $: (\Omega,\mathcal{F},P),\, f:\Omega\to\mathbb{R}$ $B\in\mathcal{B}(\mathbb{R})\Longrightarrow f^{-1}(B)\in\mathcal{F}$

f (measurable function)

Example 3.1 ().

- $\Omega = \{1, 2, 3\}, \quad \mathcal{F} = \{\Omega, \emptyset, \{1, 2\}, \{3\}\}$
- $\bullet \qquad f(1)=1, f(2)=2, f(3)=3 \qquad f:(\Omega,\mathcal{F}) \to (\mathbb{R},\mathcal{B}(\mathbb{R}))$
- $\bullet \qquad \{1\} \in \mathcal{B}(\mathbb{R}) \quad f^{-1}(\{1\}) = \{1\} \not \in \mathcal{F} \quad f \qquad \ \, ,$

? Remark

•

Definition 3.2 (Random Variables). Given a probability triple (Ω, \mathcal{F}, P) , a **random variable** is a function X from Ω to \mathbb{R} , such that

$$\{\omega\in\Omega;X(\omega)\leq x\}\in\mathcal{F},\quad x\in\mathbb{R}.$$

 ${f Q}.$ Random variable inverse image ?

Commonly a probability measure P is added to (Ω,\mathcal{F}) . Then sets like $\{X\in A\}:=\{\omega\in\Omega|X(\omega)\in A\}$ can $=X^{-1}(A)$ be **measured** if they belong to $\mathcal{F}.$ $X:\Omega\to\mathbb{R}$ X<1 $X^{-1}(-\infty,1)$.

Example 3.2 (inverse image). Proschan (2016) 4.2.

$$\bullet \ (\Omega, \mathcal{F}, P) = ((0,1), \mathbb{B}_{(0,1)}, \mu_L)$$

$$X(\omega) = \frac{1}{\omega(1-\omega)}$$

.

- Borel set B $\{(6.25, \infty) \cup \{4\}\}$
- $\bullet \quad : \, X^{-1}(B) = \{(0,0.2) \cup (0.8,1) \cup \{0.5\}\} \in \mathcal{B}_{(0,1)}$

Figure 3.1: Figure: X.

3.2 Radon-nikodym derivative

Figure 3.2: Change of measures.

volume element

- $\mu(x)$: probability measure, interval set of points area/volume ()
- $\lambda(x)$: reference measure. We often take $\lambda(x)$ as the Lebesgue measure which is essentially just a uniform function over the sample space.

The reference measure $\lambda(x)$ is essentially just a meter-stick that allows us to express the probability measure as a simple function f(x). That is, we represent the probability measure $\mu(x)$ as f(x) by comparing the probability measure to some specified reference measure $\lambda(x)$. This is essentially the intuition that is given by the Radon-Nikodym derivative

$$f(x) = \frac{d\mu(x)}{d\lambda(x)}$$

or equivalently

height = area / width.

Note that we can also represent the same idea by

$$\mu(A) = \int_{A \in X} f(x) d\lambda(x),$$

where $\mu(A)$ is the sum of the probability of events in the set A which is itself a subset of the entire sample space X. Note that when A = X then the integral must equal 1 by definition of probability.

- .

Definition 3.3 (Integrable Random Variable). Gut (2014) 53 , $E|X| < \infty$ random variable X integrable .

Example 3.3. Given a probability measure P and sample space Ω , it is true that

$$\int_{\Omega} dP = 1.$$

Because

$$\int_{\Omega}dP=P(\Omega)=1.$$

More generally

$$\int_A dP = \int_\Omega 1_A dP = P(A), \quad A \in \mathcal{F}.$$

3.3 Distribution

- \bullet measurable subset of possible outcomes (points, bounded/unbounded intervals) measure ()
- Semi-infinite interval $(-\infty, x]$ measurable subset $\mathbb R$ CDF
- PDF CDF CDF PDF

3.4 Expectation

• Expectation: integral with respect to the probability measure

Definition 3.5 (Expectation).

- $(\Omega, \mathcal{A}, \mathbb{P})$: Probability space
 - $-\Omega$: set (sample space)
 - $-\mathcal{A}$: σ -algebra on Ω
 - $-\mathbb{P}$: Probability measure
- $X: \Omega \to \mathbb{R}$: Random variable (a measurable fct)
- **Expectation**: The concept of integral of X w.r.t. \mathbb{P}

$$E[X] \stackrel{\Delta}{=} \int_{\Omega} X(\omega) d\mathbb{P}[\omega]$$