```
from google.colab import drive
drive.mount('/content/drive')
→ Mounted at /content/drive
```

Import Required Libraries

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark.sql.functions import regexp_extract, col, isnan, when, count
from pyspark.sql.types import DoubleType
# Start Spark session
spark = SparkSession.builder.appName("LoanDataPrediction").getOrCreate()
df = spark.read.csv("/content/drive/MyDrive/Lending_Data/lending_club_loan_two.csv", header=True, inferSchema=True)
df.printSchema()
→ root
      |-- loan_amnt: string (nullable = true)
      |-- term: string (nullable = true)
      |-- int_rate: double (nullable = true)
      |-- installment: double (nullable = true)
      |-- grade: string (nullable = true)
      -- sub_grade: string (nullable = true)
      |-- emp_title: string (nullable = true)
      |-- emp_length: string (nullable = true)
      -- home_ownership: string (nullable = true)
      -- annual inc: double (nullable = true)
      |-- verification_status: string (nullable = true)
      |-- issue_d: string (nullable = true)
      |-- loan_status: string (nullable = true)
      -- purpose: string (nullable = true)
      -- title: string (nullable = true)
      -- dti: string (nullable = true)
      |-- earliest_cr_line: string (nullable = true)
      |-- open_acc: string (nullable = true)
      |-- pub_rec: double (nullable = true)
      |-- revol_bal: double (nullable = true)
      -- revol_util: double (nullable = true)
      |-- total_acc: double (nullable = true)
      |-- initial_list_status: string (nullable = true)
      |-- application_type: string (nullable = true)
      |-- mort_acc: string (nullable = true)
      -- pub_rec_bankruptcies: double (nullable = true)
      |-- address: string (nullable = true)
df.show(5)
```


only showing top 5 rows

df.describe()

```
🚁 DataFrame[summary: string, loan_amnt: string, term: string, int_rate: string, installment: string, grade: string, sub_grade: string,
                   emp\_title: string, \ emp\_length: string, \ home\_ownership: string, \ annual\_inc: string, \ verification\_status: string, \ issue\_d: string, \ iss
                   loan_status: string, purpose: string, title: string, dti: string, earliest_cr_line: string, open_acc: string, pub_rec: string,
                    revol_bal: string, revol_util: string, total_acc: string, initial_list_status: string, application_type: string, mort_acc: strir
                   pub_rec_bankruptcies: string, address: string]
```

Feature Engineering

```
# 1. Extract zipcode from address
 df = df.withColumn("zip_code", regexp_extract(col("address"), r'([A-Z]{2}\s*\d{5})$', 1)) 
df.printSchema()
→ root
      |-- loan_amnt: string (nullable = true)
      |-- term: string (nullable = true)
      |-- int_rate: double (nullable = true)
      |-- installment: double (nullable = true)
      |-- grade: string (nullable = true)
      |-- sub_grade: string (nullable = true)
      |-- emp_title: string (nullable = true)
      |-- emp_length: string (nullable = true)
      |-- home_ownership: string (nullable = true)
      |-- annual_inc: double (nullable = true)
      |-- verification_status: string (nullable = true)
      -- issue_d: string (nullable = true)
      |-- loan_status: string (nullable = true)
      |-- purpose: string (nullable = true)
      |-- title: string (nullable = true)
      -- dti: string (nullable = true)
      |-- earliest_cr_line: string (nullable = true)
      |-- open_acc: string (nullable = true)
      -- pub_rec: double (nullable = true)
      |-- revol_bal: double (nullable = true)
      |-- revol_util: double (nullable = true)
      -- total_acc: double (nullable = true)
      |-- initial_list_status: string (nullable = true)
      |-- application_type: string (nullable = true)
      |-- mort_acc: string (nullable = true)
      |-- pub_rec_bankruptcies: double (nullable = true)
      -- address: string (nullable = true)
      |-- zip_code: string (nullable = true)
```

Data Cleaning

Plot Outliers

```
numeric_cols = df.columns[2:]
numeric_cols

['int_rate',
    'installment',
    'grade',
    'sub_grade',
    'emp_title',
    'emp_length',
    'home_ownership',
    'annual_inc',
```

```
'verification_status',
      'issue_d',
      'loan_status',
      'purpose',
      'title',
      'dti',
      'earliest_cr_line',
      'open_acc',
      'pub_rec'
      'revol_bal'
      'revol_util',
      'total acc',
      'initial_list_status',
      'application_type',
      'mort_acc',
      'pub_rec_bankruptcies',
      'address'
      'zip_code']
from pyspark.sql import functions as f
from pyspark.sql.types import IntegerType, DoubleType # Import DoubleType
# List of columns that should be treated as numeric
true_numeric_cols = ['int_rate', 'installment', 'annual_inc', 'revol_bal', 'revol_util', 'pub_rec', 'total_acc', 'pub_rec_bankruptcies']
for column in true_numeric_cols:
   df = df.withColumn(column,f.col(column).cast(DoubleType()))
# Keep other columns as they are (including those incorrectly cast to int previously)
# The find_outliers function will filter for numeric types based on the schema after this casting
df.printSchema()
→ root
      |-- loan_amnt: string (nullable = true)
      |-- term: string (nullable = true)
      |-- int_rate: double (nullable = true)
      |-- installment: double (nullable = true)
      |-- grade: string (nullable = true)
      |-- sub_grade: string (nullable = true)
      -- emp_title: string (nullable = true)
      |-- emp_length: string (nullable = true)
      |-- home_ownership: string (nullable = true)
      -- annual_inc: double (nullable = true)
      |-- verification_status: string (nullable = true)
      |-- issue_d: string (nullable = true)
      |-- loan_status: string (nullable = true)
      |-- purpose: string (nullable = true)
      -- title: string (nullable = true)
      -- dti: string (nullable = true)
      |-- earliest_cr_line: string (nullable = true)
      |-- open_acc: string (nullable = true)
      |-- pub_rec: double (nullable = true)
      |-- revol_bal: double (nullable = true)
      |-- revol_util: double (nullable = true)
      |-- total_acc: double (nullable = true)
      |-- initial_list_status: string (nullable = true)
      |-- application_type: string (nullable = true)
      |-- mort_acc: string (nullable = true)
      |-- pub_rec_bankruptcies: double (nullable = true)
      |-- address: string (nullable = true)
      |-- zip_code: string (nullable = true)
original_numerical_df = df.select(*true_numeric_cols).toPandas()
original_numerical_df.head(10)
```

```
from pyspark.sql.types import IntegerType, DoubleType # Import DoubleType
def find outliers(df):
   from pyspark.sql.functions import col, when, lit, count, isnan # Import specific functions
   # Identifying the numerical columns in a spark dataframe
   # Filter for columns that are actually numeric types after casting
   numeric columns = [column[0] for column in df.dtypes if column[1] in ('int', 'double')]
   # Using the `for` loop to create new columns by identifying the outliers for each feature
   for column in numeric columns:
        print(f"Processing column: {column}") # Add this print statement
        # Check if the column has non-null values before calculating quantiles
        if df.filter(col(column).isNotNull()).count() > 0:
           Q1_list = df.approxQuantile(column, [0.25], relativeError=0)
           Q3 list = df.approxQuantile(column, [0.75], relativeError=0)
           # Check if the quantile lists are not empty
           if Q1 list and Q3 list:
                Q1 = Q1_list[0]
                Q3 = Q3_list[0]
                # IQR : Inter Quantile Range
                IOR = 03 - 01
                \#selecting the data, with -1.5*IQR to +1.5*IQR., where param = 1.5 default value
                less Q1 = Q1 - 1.5*IQR
                more_Q3 = Q3 + 1.5*IQR
                isOutlierCol = 'is_outlier_{}'.format(column)
                 df = df.withColumn(isOutlierCol,when((col(column) > more_Q3) \mid (col(column) < less_Q1), 1).otherwise(0)) 
           else:
                 # If quantiles cannot be calculated, mark all rows as not outliers for this column
                 isOutlierCol = 'is outlier {}'.format(column)
                 df = df.withColumn(isOutlierCol, lit(0))
        else:
           # If column has no non-null values, mark all rows as not outliers for this column
           isOutlierCol = 'is_outlier_{{}}'.format(column)
           df = df.withColumn(isOutlierCol, lit(0))
   # Selecting the specific columns which we have added above, to check if there are any outliers
   selected_columns = [column for column in df.columns if column.startswith("is_outlier")]
   # Adding all the outlier columns into a new colum "total_outliers", to see the total number of outliers
   if selected\_columns: # Check if there are any outlier columns to sum
       # Need to sum the columns using a list comprehension with col
       df = df.withColumn('total_outliers', sum(col(c) for c in selected_columns))
   else:
        df = df.withColumn('total_outliers', lit(0))
   # Dropping the extra columns created above, just to create nice dataframe., without extra columns
   df = df.drop(*[column for column in df.columns if column.startswith("is_outlier")])
```

new_df = find_outliers(df)
new_df.show()

Processing column: int_rate
Processing column: installment
Processing column: annual_inc
Processing column: pub_rec
Processing column: revol_bal
Processing column: revol_util
Processing column: total_acc

Processing column: pub_rec_bankruptcies

loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_l	Length	home_ownership	annual_inc	verification_statu
10000.0	36 months	11.44	329.48	В	B4	Marketing	10+	years	RENT	117000.0	Not Verifie
8000.0	36 months	11.99	265.68	В	B5	Credit analyst	4	years	MORTGAGE	65000.0	Not Verifie
15600.0	36 months	10.49	506.97	В	В3	Statistician	< 1	l year	RENT	43057.0	Source Verifie
7200.0	36 months	6.49	220.65	Α	A2	Client Advocate	6	years	RENT	54000.0	Not Verifie
24375.0	60 months	17.27	609.33	C	C5	Destiny Managemen	9	years	MORTGAGE	55000.0	Verifie
20000.0	36 months	13.33	677.07	C	C3	HR Specialist	10+	years	MORTGAGE	86788.0	Verifie
18000.0	36 months	5.32	542.07	А	A1	Software Developm	2	years	MORTGAGE	125000.0	Source Verifie
13000.0	36 months	11.14	426.47	В	B2	Office Depot	10+	years	RENT	46000.0	Not Verifie
18900.0	60 months	10.99	410.84	В	В3	Application Archi	10+	years	RENT	103000.0	Verifie
26300.0	36 months	16.29	928.4	C	C5	Regado Biosciences	3	years	MORTGAGE	115000.0	Verifie
10000.0	36 months	13.11	337.47	В	B4	Sodexo	2	years	RENT	95000.0	Verifie
35000.0	36 months	14.64	1207.13	C	C3	Director Bureau o	8	years	MORTGAGE	130000.0	Verifie
7500.0	36 months	9.17	239.1	В	B2	Social Work/Care	7	years	OWN	55000.0	Not Verifie
35000.0	60 months	12.29	783.7	C	C1	Regional Counsel	10+	years	MORTGAGE	157000.0	Verifie
25975.0	36 months	6.62	797.53	Α	A2	Pullman Regional	9	years	MORTGAGE	65000.0	Verifie
18000.0	36 months	8.39	567.3	А	A5	firefighter	8	years	MORTGAGE	45000.0	Not Verifie
32350.0	60 months	21.98	893.11	E	E4	Comcast Corporate	10+	years	MORTGAGE	72000.0	Verifie
11200.0	60 months	12.29	250.79	C	C1	principal	10+	years	MORTGAGE	81000.0	Not Verifie
34000.0	36 months	7.9	1063.87	Α	A4	Pilot	10+	years	RENT	130580.0	Verifie
20000.0	36 months	6.97	617.27	А	A3	Registered Nurse	7	years	MORTGAGE	85000.0	Not Verifie

only showing top 20 rows

new_df_with_no_outliers = new_df.filter(new_df['total_Outliers']<=1)
new_df_with_no_outliers = new_df_with_no_outliers.select(*df.columns)</pre>

new_df_with_no_outliers.show()

+	+	+	+	+-		<u> </u>				+	+
loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_:	length	home_ownership	annual_inc	verification_st
 10000.0	36 months	11.44	329.48	+- В	B4	+ Marketing	10+	years	RENT	117000.0	Not Veri
8000.0	36 months	11.99	265.68	В	B5	Credit analyst	4	years	MORTGAGE	65000.0	Not Veri
15600.0	36 months	10.49	506.97	В	В3	Statistician	< :	1 year	RENT	43057.0	Source Veri
7200.0	36 months	6.49	220.65	Α	A2	Client Advocate	6	years	RENT	54000.0	Not Veri
24375.0	60 months	17.27	609.33	C	C5	Destiny Managemen	9	years	MORTGAGE	55000.0	Veri
20000.0	36 months	13.33	677.07	C	C3	HR Specialist	10+	years	MORTGAGE	86788.0	Veri
18000.0	36 months	5.32	542.07	Α	A1	Software Developm	2	years	MORTGAGE	125000.0	Source Veri
13000.0	36 months	11.14	426.47	В	B2	Office Depot	10+	years	RENT	46000.0	Not Veri
18900.0	60 months	10.99	410.84	В	В3	Application Archi	10+	years	RENT	103000.0	Veri
26300.0	36 months	16.29	928.4	C	C5	Regado Biosciences	3	years	MORTGAGE	115000.0	Veri
7500.0	36 months	9.17	239.1	В	B2	Social Work/Care	7	years	OWN	55000.0	Not Veri
25975.0	36 months	6.62	797.53	Α	A2	Pullman Regional	9	years	MORTGAGE	65000.0	Ver:
18000.0	36 months	8.39	567.3	Α	A 5	firefighter	8	years	MORTGAGE	45000.0	Not Ver:
32350.0	60 months	21.98	893.11	E	E4	Comcast Corporate	10+	years	MORTGAGE	72000.0	Ver
34000.0	36 months	7.9	1063.87	Α	A4	Pilot	10+	years	RENT	130580.0	Ver
20000.0	36 months	6.97	617.27	Α	A3	Registered Nurse	7	years	MORTGAGE	85000.0	Not Ver
9200.0	36 months	6.62	282.48	Α	A2	Personal Trainer	< :	1 year	RENT	65000.0	Source Ver
7350.0	36 months	13.11	248.05	В	B4	Francis Howell Sc	10+	years	MORTGAGE	54800.0	Not Ver
20000.0	36 months	8.39	630.34	Α	A5	Office Manager	10+	years	OWN	55000.0	Source Ver:
5000.0	36 months	15.61	174.83	D	D1	Operations Manager	5	years	RENT	75000.0	Veri
+-	+	+	+	+-		+			+	+	+

only showing top 20 rows

```
print(f"Number of rows: {new_df_with_no_outliers.count()}")
print(f"Number of columns: {len(new_df_with_no_outliers.columns)}")
```

Number of rows: 290078
Number of columns: 28

Plotting the box for the dataset after removing the outliers

dataset_after_removing_outliers = new_df_with_no_outliers.toPandas()
dataset_after_removing_outliers.head(10)

₹		loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ownership	annual_inc		pub_rec	revol_l
	0	10000.0	36 months	11.44	329.48	В	В4	Marketing	10+ years	RENT	117000.0		0.0	3636
	1	8000.0	36 months	11.99	265.68	В	В5	Credit analyst	4 years	MORTGAGE	65000.0		0.0	2013
	2	15600.0	36 months	10.49	506.97	В	В3	Statistician	< 1 year	RENT	43057.0		0.0	1198
	3	7200.0	36 months	6.49	220.65	А	A2	Client Advocate	6 years	RENT	54000.0	•••	0.0	547
	4	24375.0	60 months	17.27	609.33	С	C5	Destiny Management Inc.	9 years	MORTGAGE	55000.0		0.0	2458
	5	20000.0	36 months	13.33	677.07	С	C3	HR Specialist	10+ years	MORTGAGE	86788.0		0.0	2575
	6	18000.0	36 months	5.32	542.07	А	A1	Software Development Engineer	2 years	MORTGAGE	125000.0		0.0	417
	7	13000.0	36 months	11.14	426.47	В	B2	Office Depot	10+ years	RENT	46000.0		0.0	1342
	8	18900.0	60 months	10.99	410.84	В	В3	Application Architect	10+ years	RENT	103000.0		0.0	1863
	9	26300.0	36 months	16.29	928.40	С	C5	Regado Biosciences	3 years	MORTGAGE	115000.0		0.0	2217

10 rows × 28 columns

import matplotlib.pyplot as plt
import seaborn as sns

 $fig, ax = plt.subplots(2, len(numeric_columns_for_plotting), figsize=(15,8)) \ \# \ Adjust the number of columns in subplots for i,df in enumerate([original_numerical_df,dataset_after_removing_outliers]):$

for j, col in enumerate(numeric_columns_for_plotting): # Iterate through the correct list of columns sns.boxplot(data = df, y=col,ax=ax[i][j])

 ${\tt plt.tight_layout()} \ \, {\tt \#} \ \, {\tt Add tight_layout to prevent overlapping titles/labels} \\ {\tt plt.show()} \ \, {\tt \#} \ \, {\tt Display the plots} \\$

[#] Use the correct list of numeric columns

[#] true_numeric_cols is defined in cell TBpeMXrtcnr6
numeric_columns_for_plotting = true_numeric_cols

print(f"Number of rows: {dataset_after_removing_outliers.count()}")
print(f"Number of columns: {len(dataset_after_removing_outliers.columns)}")

```
290078
Number of rows: loan_amnt
                          290078
term
int_rate
                          290078
                          290078
installment
                          290078
grade
sub_grade
                          290078
                          287316
emp_title
{\tt emp\_length}
                          290078
home_ownership
                          290078
annual_inc
                          290078
                          290078
verification_status
\texttt{issue\_d}
                          290078
loan_status
                          290078
purpose
                          290078
title
                          288823
dti
                          290078
earliest_cr_line
                          290078
                          290078
open_acc
pub_rec
                          290078
revol bal
                          290078
                          290078
revol_util
total_acc
                          290078
                          290078
initial_list_status
                          290078
application_type
                          290078
mort_acc
pub_rec_bankruptcies
                          290078
address
                          290078
zip_code
                          290078
dtype: int64
Number of columns: 28
```

#Undersampling of data

!pip install -U imbalanced-learn

```
Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.11/dist-packages (0.13.0)

Requirement already satisfied: numpy<3,>=1.24.3 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (2.0.2)

Requirement already satisfied: scipy<2,>=1.10.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.16.0)

Requirement already satisfied: scikit-learn<2,>=1.3.2 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.6.1)

Requirement already satisfied: sklearn-compat<1,>=0.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (0.1.3'

Requirement already satisfied: joblib<2,>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (1.5.1)

Requirement already satisfied: threadpoolctl<4,>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn) (3.6.6,
```

```
# Undersampling of data using PySpark
# The 'new_df_with_no_outliers' is the PySpark DataFrame after outlier removal.
# Undersampling in PySpark requires a different approach than using libraries like imbalanced-learn,
# which are designed for Pandas DataFrames.
# A common approach in PySpark is to sample the majority class to match the minority class size.
# First, let's check the class distribution of the target variable 'loan status'
class_counts = new_df_with_no_outliers.groupBy("loan_status").count()
class_counts.show()
# Assuming 'Fully Paid' is the majority class and 'Charged Off' is the minority class
# (You should verify this from the class_counts output)
majority_class_name = "Fully Paid" # Replace with the actual majority class name if different
minority_class_name = "Charged Off" # Replace with the actual minority class name if different
# Get the count of the minority class
minority\_count = class\_counts.filter(f.col("loan\_status") == minority\_class\_name).select("count").collect()[0][0]
# Filter the DataFrame into majority and minority classes
majority df = new df with no outliers.filter(f.col("loan status") == majority class name)
minority_df = new_df_with_no_outliers.filter(f.col("loan_status") == minority_class_name)
# Undersample the majority class
# The fraction is calculated based on the ratio of minority count to majority count
majority_count_val = class_counts.filter(f.col("loan_status") == majority_class_name).select("count").collect()[0][0]
sampling_fraction = minority_count / majority_count_val
undersampled_majority_df = majority_df.sample(False, sampling_fraction, seed=42)
# Combine the undersampled majority class with the minority class
undersampled df = undersampled majority df.unionAll(minority df)
# Show the class distribution after undersampling
print("Class distribution after undersampling:")
undersampled_df.groupBy("loan_status").count().show()
# Now 'undersampled_df' is your PySpark DataFrame with balanced classes.
# You can proceed with model training using this DataFrame.
    +----+
     |loan_status| count|
     | Fully Paid 232518|
     |Charged Off| 57560|
     Class distribution after undersampling:
     +-----
     |loan_status|count|
     | Fully Paid 57919
     |Charged Off|57560|
     +----+

    Model Training and building

from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.ml.classification import LogisticRegression, RandomForestClassifier
from pyspark.ml import Pipeline
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
# Step : Index target label
label_indexer = StringIndexer(inputCol="loan_status", outputCol="label", handleInvalid="keep")
```

categorical_cols = [field for (field, dtype) in undersampled_df.dtypes if dtype == "string" and field != "loan_status"]

numerical_cols = [field for (field, dtype) in undersampled_df.dtypes if dtype in ["int", "double", "float"]]

Step 2: Identify categorical and numerical columns using the PySpark DataFrame

train_df, test_df = undersampled_df.randomSplit([0.8, 0.2], seed=42)

Step : Split Data using the PySpark DataFrame

→ One Hot Encoding

```
# Step : Index and encode categorical features
# Filter out categorical columns with less than 2 distinct values in the training data
categorical_cols_filtered = [col for col in categorical_cols if train_df.select(col).distinct().count() >= 2]
indexers = [StringIndexer(inputCol=column, outputCol=column + "_indexed", handleInvalid="keep") for column in categorical_cols_filtered]
encoders = [OneHotEncoder(inputCol=col + "_indexed", outputCol=col + "_ohe") for col in categorical_cols_filtered]
# Step 4: Combine all features
assembler_inputs = [col + "_ohe" for col in categorical_cols_filtered] + numerical_cols
assembler = VectorAssembler(inputCols=assembler_inputs, outputCol="features")
```

Logistic Regression Model

```
# Step : Model Definitions

lr = LogisticRegression(featuresCol="features", labelCol="label")

# Step : Build Pipelines

lr_pipeline = Pipeline(stages=[label_indexer] + indexers + encoders + [assembler, lr])

lr_model = lr_pipeline.fit(train_df)

# Step : Predict on Test Data

lr_predictions = lr_model.transform(test_df)

# Step : Evaluate

evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy")

lr_accuracy = evaluator.evaluate(lr_predictions)

print(f"Logistic Regression Accuracy: {lr_accuracy:.4f}")

The Cogistic Regression Accuracy: 0.6367

# Stop the existing Spark session if it's running spark.stop()

# Start Spark session with increased memory allocation
```