< Lecture 15>

- · Context free, but not regular
 - $(1) 30^{n} | ^{n} | n \ge 0 +$
 - $(3) 30^{m} | n | m \neq n$
 - (4) 3 w l w has an equal # of Os and 15 }
 - (5) } ww^R | w ∈ ∑* 5 : palindromes of even length
 - (7) $\exists \omega \mid \omega \neq \omega^R, \omega \in \mathbb{Z}^* : \text{nonpalindrones}$ (1.46 c)
 - (6) $\beta \omega \mid \omega = \omega^{R}, \omega \in \Sigma^{*} \beta$: palindromes (2.4 e)
 - (d) I w I w is a balanced string of parentheses \$

write CFG for them.

How to generate regular languages by CFG?

$$Ri \rightarrow aRi$$
 if $\delta(gi, a) = gi$

$$R_i \rightarrow \epsilon$$
 if g_i is an accept state.

$$(Ex)$$
 $R_0 \rightarrow 0R_0$ | $1R_1$
 $R_1 \rightarrow 0R_1$ | $1R_2$
 $R_2 \rightarrow 0R_2$ | $1R_3$
 $R_3 \rightarrow 0R_3$ | $1R_3$ | 2

- o Leftmost derivation
- O ambiguous grammats

 A grammar is ambiguous if there is

 we Zi* for which there are at least

 two different parse trees (i.e, left-most

 derivation)

 Some ambiguous grammars can be transformed into equivalent unambiguous grammars

VS

G4 (p103)

· Some languages are inherently ambiguous.