試験開始の指示があるまで、この問題冊子の中を見てはいけません。

 (\mathbf{W})

数学

(1)

〔数学 Ⅰ 数学 Ⅰ・数学 Α〕

(100点) 70分)

I 注意事項

- 1 解答用紙に、正しく記入・マークされていない場合は、採点できないことがあります。特に、解答用紙の解答科目欄にマークされていない場合又は複数の科目にマークされている場合は、0点となります。
- 2 出題科目、ページ及び選択方法は、下表のとおりです。

出	題	科	目	ページ	選	択	方	法	
数	当	£	I	4~34	左の2和	目のう	ちから1	科目を選択	さし,
数学	Ι.	数	学 A	35~59	解答しなさ	(1)°			

- 3 試験中に問題冊子の印刷不鮮明,ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を高く挙げて監督者に知らせなさい。
- 4 選択問題については、いずれか2問を選択し、その問題番号の解答欄に解答しなさい。
- 5 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。
- 6 不正行為について
- ① 不正行為に対しては厳正に対処します。
- ② 不正行為に見えるような行為が見受けられた場合は、監督者がカードを用いて注意します。
- ③ 不正行為を行った場合は、その時点で受験を取りやめさせ退室させます。
- 7 試験終了後、問題冊子は持ち帰りなさい。

II 解答上の注意

解答上の注意は、裏表紙に記載してあります。この問題冊子を裏返して必ず読みなさい。

Ⅱ 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。

例 アイウ に - 83 と答えたいとき

ア	
1	000000000000000000000000000000000000000
ゥ	$ \Theta \oplus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $

3 分数形で解答する場合,分数の符号は分子につけ、分母につけてはいけません。

例えば、
$$\frac{x}{5}$$
 に $-\frac{4}{5}$ と答えたいときは、 $\frac{-4}{5}$ として答えなさい。

また、それ以上約分できない形で答えなさい。

例えば、 $\frac{3}{4}$ と答えるところを、 $\frac{6}{8}$ のように答えてはいけません。

4 小数の形で解答する場合,指定された桁数の一つ下の桁を四捨五入して答えな さい。また,必要に応じて,指定された桁まで**②**にマークしなさい。

例えば、 キ . クケ に 2.5 と答えたいときは, 2.50 として答えなさい。

5 根号を含む形で解答する場合,根号の中に現れる自然数が最小となる形で答え なさい。

例えば、 \Box $\sqrt{}$ \forall $\cot 4\sqrt{2}$ と答えるところを、 $2\sqrt{8}$ のように答えてはいけません。

 $\frac{3+2\sqrt{2}}{2}$ と答えるところを, $\frac{6+4\sqrt{2}}{4}$ や $\frac{6+2\sqrt{8}}{4}$ のように答えてはいけません。

- 7 問題の文中の二重四角で表記された **夕** などには、選択肢から一つを選んで、答えなさい。
- 8 同一の問題文中に**チツ**, **テ** などが 2 度以上現れる場合, 原則として, 2 度目以降は, **チツ**, **テ** のように細字で表記します。

			•		
					•
		•			

問題	選択方法					
第1問	必答					
第2問	必 答					
第3問						
第 4 問	いずれか 2 問を選択し, 解答しなさい。					
第5問						

数学 I・数学 A (注)この科目には、選択問題があります。(35ページ参照。)

第1問 (必答問題) (配点 30)

[1] 実数 a, b, c が

および

$$a^2 + b^2 + c^2 = 13$$

を満たしているとする。

(1) $(a+b+c)^2$ を展開した式において、① と② を用いると

$$ab + bc + ca = \boxed{71}$$

であることがわかる。よって

$$(a-b)^2 + (b-c)^2 + (c-a)^2 =$$
 ウエ

である。

(数学 I・数学A第1問は次ページに続く。)

(2) $a-b=2\sqrt{5}$ の場合に, (a-b)(b-c)(c-a)の値を求めてみよう。

$$b-c=x$$
, $c-a=y$ とおくと

である。また、(1)の計算から

$$x^2 + y^2 = \boxed{ + 9}$$

が成り立つ。

これらより

$$(a-b)(b-c)(c-a) = \boxed{7} \sqrt{5}$$

である。

(数学 I・数学 A 第 1 問は次ページに続く。)

〔2〕 以下の問題を解答するにあたっては、必要に応じて41ページの三角比の表を用いてもよい。

太郎さんと花子さんは、キャンプ場のガイドブックにある地図を見なが ら、後のように話している。

太郎:キャンプ場の地点 A から山頂 B を見上げる角度はどれくらいか な。

花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、図1のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした垂線とその水平面との交点のことだよ。

太郎:図1の角度 θ は、AC、BCの長さを定規で測って、三角比の表を用いて調べたら 16° だったよ。

花子:本当に16°なの? 図1の鉛直方向の縮尺と水平方向の縮尺は等 しいのかな?

図1の θ はちょうど16°であったとする。しかし、図1の縮尺は、水平方向が $\frac{1}{100000}$ であるのに対して、鉛直方向は $\frac{1}{25000}$ であった。

実際にキャンプ場の地点 A から山頂 B を見上げる角である $\angle BAC$ を考えると、 $\tan \angle BAC$ は \Box . $\boxed{ サシス }$ となる。したがって、 $\angle BAC$ の大きさは $\boxed{ セ }$ 。ただし、目の高さは無視して考えるものとする。

セーの解答群

- ② 3°より大きく4°より小さい
- ① ちょうど4°である
- ② 4°より大きく5°より小さい
- **③** ちょうど 16° である
- 48°より大きく49°より小さい
- **⑤** ちょうど 49° である
- 6 49°より大きく50°より小さい
- 63°より大きく64°より小さい
- 8 ちょうど 64° である
- 9 64°より大きく65°より小さい

(数学 I・数学 A 第 1 問は 41 ページに続く。)

(下書き用紙)

数学 I・数学Aの試験問題は次に続く。

三角比の表

		二月几の衣					•	
角	正弦(sin)	余弦(cos)	正接(tan)		角	正弦(sin)	余弦(cos)	正接(tan)
0°	0.0000	1.0000	0.0000		45°	0.7071	0.7071	1.0000
1°	0.0175	0. 9998	0.0175		46°	0. 7193	0.6947	1.0355
2°	0.0349	0. 9994	0.0349		47°	0. 7314	0.6820	1.0724
3°	0.0523	0. 9986	0. 0524		48°	0.7431	0.6691	1.1106
4° 5°	0. 0698 0. 0872	0.9976	0.0699		49°	0.7547	0.6561	1.1504
6°	0. 0072	0.9962	0.0875		50°	0.7660	0.6428	1. 1918
7°	0. 1045 0. 1219	0. 9945 0. 9925	0. 1051 0. 1228		51° 52°	0. 7771 0. 7880	0.6293 0.6157	1. 2349 1. 2799
8°	0. 1392	0. 9903	0.1226		53°	0. 7886	0.6018	1. 3270
9°	0.1564	0. 9877	0.1584		54°	0.8090	0.5878	1.3764
10°	0.1736	0.9848	0. 1763		55°	0.8192	0.5736	1.4281
11°	0.1908	0.9816	0.1944		56°	0.8290	0.5592	1.4826
12°	0. 2079	0. 9781	0. 2126		57°	0.8387	0.5446	1.5399
13°	0. 2250	0.9744	0. 2309		58°	0.8480	0. 5299	1.6003
14° 15°	0. 2419 0. 2588	0.9703	0. 2493		59°	0.8572	0.5150	1.6643
16°	0. 2366	0. 9659 0. 9613	0. 2679		60° 61°	0.8660	0.5000	1. 7321
17°	0. 2730	0. 9613 0. 9563	0. 2867 0. 3057		62°	0. 8746 0. 8829	0. 4848 0. 4695	1.8040 1.8807
18°	0.3090	0.9511	0. 3249		63°	0.8829	0. 4540	1. 9626
19°	0.3256	0.9455	0. 3443		64°	0.8988	0. 4384	2. 0503
20°	0.3420	0.9397	0.3640		65°	0.9063	0.4226	2. 1445
21°	0.3584	0. 9336	0.3839		66°	0.9135	0.4067	2. 2460
22°	0.3746	0.9272	0.4040		67°	0. 9205	0.3907	2. 3559
23° 24°	0. 3907 0. 4067	0.9205	0. 4245		68°	0.9272	0.3746	2. 4751
25°	0.4226	0. 9135 0. 9063	0. 4452 0. 4663		69° 70°	0. 9336 0. 9397	0. 3584 0. 3420	2. 6051 2. 7475
26°	0. 4384	0.8988	0. 4877		71°	0. 9455	0.3256	2. 9042
27°	0. 4540	0.8910	0. 5095		72°	0. 9433	0.3230	3. 0777
28°	0.4695	0.8829	0.5317		73°	0.9563	0. 2924	3. 2709
29°	0.4848	0.8746	0. 5543		74°	0.9613	0. 2756	3. 4874
30°	0.5000	0.8660	0. 5774		75°	0. 9659	0. 2588	3. 7321
31°	0.5150	0.8572	0.6009		76°	0. 9703	0. 2419	4.0108
32° 33°	0. 5299 0. 5446	0. 8480 0. 8387	0.6249		77°	0. 9744	0. 2250	4. 3315
34°	0.5440	0. 8290	0. 6494 0. 6745		78° 79°	0. 9781 0. 9816	0. 2079 0. 1908	4. 7046 5. 1446
35°	0.5736	0.8192	0.7002		80°	0.9848	0. 1306	5. 6713
36°	0.5878	0.8090	0. 7265		81°	0.9877	0. 1564	6. 3138
37°	0.6018	0. 7986	0.7536		82°	0.9903	0. 1392	7. 1154
38°	0.6157	0.7880	0.7813		83°	0. 9925	0. 1219	8. 1443
39° 40°	0.6293	0.7771	0.8098		84°	0.9945	0. 1045	9. 5144
40 41°	0.6428	0.7660	0. 8391		85°	0.9962	0.0872	11. 4301
41° 42°	0. 6561 0. 6691	0. 7547 0. 7431	0. 8693 0. 9004		86° 87°	0. 9976 0. 9986	0. 0698 0. 0523	14. 3007
43°	0. 6820	0.7431	0. 9325		88°	0.9986	0.0523	19. 0811 28. 6363
44°	0.6947	0.7193	0.9657	ŀ	89°	0.9998	0.0175	57. 2900
45°	0. 7071	0.7071	1. 0000		90°	1.0000	0.0000	-

(数学 I・数学A第1問は次ページに続く。)

- 〔3〕 外接円の半径が3である △ABC を考える。点Aから直線BCに引いた垂線と直線BCとの交点をDとする。
 - (1) AB = 5, AC = 4 とする。このとき

$$\sin \angle ABC = \frac{\boxed{y}}{\boxed{g}}, \qquad AD = \frac{\boxed{fy}}{\boxed{f}}$$

である。

$$AD = \frac{\boxed{\exists \exists}}{\boxed{\grave{\lambda}}} AB^2 + \frac{\boxed{\cancel{\ }}}{\boxed{\cancel{\ }}} AB$$

と表せるので、ADの長さの最大値は ヒ である。

(下書き用紙)

数学I・数学Aの試験問題は次に続く。

第2問 (必答問題) (配点 30)

[1] p, qを実数とする。 花子さんと太郎さんは、次の二つの2次方程式について考えている。

- ① または② を満たす実数xの個数をnとおく。
- (1) p = 4, q = -4 のとき, n = 7 である。 また, p = 1, q = -2 のとき, n = 7 である。
- (2) p = -6 のとき, n = 3 になる場合を考える。

花子: 例えば、① と② をともに満たす実数x があるときはn=3 になりそうだね。

太郎: それを α としたら, $\alpha^2-6\alpha+q=0$ と $\alpha^2+q\alpha-6=0$ が成り立つよ。

花子: なるほど。それならば、 α^2 を消去すれば、 α の値が求められそうだね。

太郎:確かに α の値が求まるけど、実際にn=3となっているかどうかの確認が必要だね。

花子: これ以外にもn=3となる場合がありそうだね。

n=3となるqの値は

である。ただし、 ウ く エ とする。

(数学 I・数学 A 第2 問は次ページに続く。)

(3) 花子さんと太郎さんは、グラフ表示ソフトを用いて、①、② の左辺を y とおいた 2 次関数 $y=x^2+px+q$ と $y=x^2+qx+p$ のグラフの動き を考えている。

(数学 I・数学A第2問は次ページに続く。)

p = -6 に固定したまま、q の値だけを変化させる。

「オ」,「カ」については,最も適当なものを,次の \bigcirc ~ \bigcirc のうちから一つずつ選べ。ただし,同じものを繰り返し選んでもよい。なお,x 軸とy 軸は省略しているが,x 軸は右方向,y 軸は上方向がそれぞれ正の方向である。

(4) \dot{D} $< q < \Box T$ とする。全体集合 U を実数全体の集合とし、U の部分集合 A, B を

$$A = \{x \mid x^2 - 6x + q < 0\}$$
$$B = \{x \mid x^2 + qx - 6 < 0\}$$

とする。Uの部分集合Xに対し、Xの補集合をXと表す。このとき、次のことが成り立つ。

- • $x \in A$ は、 $x \in B$ であるための $\boxed{ + } \boxed{ }$ 。
- $x \in B$ は、 $x \in \overline{A}$ であるための $\boxed{ 2}$

<u>しま</u>, <u>ク</u>の解答群(同じものを繰り返し選んでもよい。)

- ◎ 必要条件であるが、十分条件ではない
- ① 十分条件であるが、必要条件ではない
- ② 必要十分条件である
- ③ 必要条件でも十分条件でもない

(数学 I・数学A第2問は次ページに続く。)

- [2] 日本国外における日本語教育の状況を調べるために、独立行政法人国際交流基金では「海外日本語教育機関調査」を実施しており、各国における教育機関数、教員数、学習者数が調べられている。2018 年度において学習者数が5000 人以上の国と地域(以下、国)は29 か国であった。これら29 か国について、2009 年度と2018 年度のデータが得られている。
 - (1) 各国において、学習者数を教員数で割ることにより、国ごとの「教員1人あたりの学習者数」を算出することができる。図1と図2は、2009年度および2018年度における「教員1人あたりの学習者数」のヒストグラムである。これら二つのヒストグラムから、9年間の変化に関して、後のことが読み取れる。なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。

図1 2009 年度における教員1人あ たりの学習者数のヒストグラム

図 2 2018 年度における教員 1 人あ たりの学習者数のヒストグラム

(出典:国際交流基金のWebページにより作成)

(数学 I・数学A第2問は次ページに続く。)

- 2009 年度と 2018 年度の中央値が含まれる階級の階級値を比較する と, **ケ**。
- 2009 年度と 2018 年度の第 1 四分位数が含まれる階級の階級値を比較 すると, コ 。
- 2009 年度と 2018 年度の第 3 四分位数が含まれる階級の階級値を比較 すると, サ 。
- 2009 年度と 2018 年度の範囲を比較すると, シ。
- 2009 年度と 2018 年度の四分位範囲を比較すると, ス 、

<u>ケ</u>~ ス の解答群(同じものを繰り返し選んでもよい。)

- ◎ 2018 年度の方が小さい
- ① 2018 年度の方が大きい
- ② 両者は等しい
- ③ これら二つのヒストグラムからだけでは両者の大小を判断できない

(数学 I・数学 A 第 2 問は次ページに続く。)

(2) 各国において、学習者数を教育機関数で割ることにより、「教育機関1機関あたりの学習者数」も算出した。図3は、2009年度における「教育機関1機関あたりの学習者数」の箱ひげ図である。

図3 2009 年度における教育機関1機関あたりの学習者数の箱ひげ図 (出典:国際交流基金の Web ページにより作成)

2009 年度について、「教育機関 1 機関あたりの学習者数」(横軸)と「教員 1 人あたりの学習者数」(縦軸)の散布図は である。ここで、2009 年度における「教員 1 人あたりの学習者数」のヒストグラムである(1)の図 1 を、図 4 として再掲しておく。

図4 2009 年度における教員1人あたりの学習者数のヒストグラム

(出典:国際交流基金のWebページにより作成)

(数学 I・数学A第2問は次ページに続く。)

セ については、最も適当なものを、次の**0**~**3**のうちから一つ選べ。なお、これらの散布図には、完全に重なっている点はない。

(3) 各国における 2018 年度の学習者数を 100 としたときの 2009 年度の学習者数 S, および, 各国における 2018 年度の教員数を 100 としたときの 2009 年度の教員数 T を算出した。

例えば、学習者数について説明すると、ある国において、2009 年度が 44272 人、2018 年度が 174521 人であった場合、2009 年度の学習者数 S は 44272 \times 100 より 25.4 と算出される。

表 1 は S と T について、平均値、標準偏差および共分散を計算したものである。ただし、S と T の共分散は、S の偏差と T の偏差の積の平均値である。

表1 平均値,標準偏差および共分散

S の	T の	Sの	T の	SとTの
平均値	平均値	標準偏差	標準偏差	共分散
81.8	72. 9	39. 3	29. 9	735.3

(数学 I・数学A第2問は次ページに続く。)

(4) 表1と(3)で求めた相関係数を参考にすると、(3)で算出した 2009 年度の S(横軸)と T(縦軸)の散布図は ""

ツ については、最も適当なものを、次の**0**~**3**のうちから一つ選べ。なお、これらの散布図には、完全に重なっている点はない。

数学Ⅰ・数学A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントはすべて異なるとする。プレゼントの交換は次の**手順**で行う。

手順

外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中のプレゼントを受け取る。

交換の結果, 1人でも自分の持参したプレゼントを受け取った場合は, 交換を やり直す。そして, 全員が自分以外の人の持参したプレゼントを受け取ったとこ ろで交換会を終了する。

- (1) 2人または3人で交換会を開く場合を考える。

 - (ii) 3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
 エ 通りある。したがって、1回目の交換で交換会が終了する確率は
 オ である。
 - (iii) 3人で交換会を開く場合, 4回以下の交換で交換会が終了する確率は

(数学 I・数学 A 第 3 問は次ページに続く。)

(2) 4人で交換会を開く場合、1回目の交換で交換会が終了する確率を次の構想に基づいて求めてみよう。

構想

1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。

1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は サ 通りあり、ちょうど2人が自分のプレゼントを受け取る場合は シ 通りある。このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が終了しない受け取り方の総数は スセ である。

したがって、1回目の交換で交換会が終了する確率は ソ である。

- (3) 5人で交換会を開く場合、1回目の交換で交換会が終了する確率は「チツ」である。「テト」である。

数学 I・数学 A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第4問 (選択問題) (配点 20)

(1) 5⁴ = 625 を 2⁴ で割ったときの余りは 1 に等しい。このことを用いると、 不定方程式

$$5^4x - 2^4y = 1$$

の整数解のうち、xが正の整数で最小になるのは

$$x = \boxed{7}, y = \boxed{10}$$

であることがわかる。

また、①の整数解のうち、xが2桁の正の整数で最小になるのは

である。

(2) 次に, 625² を 5⁵ で割ったときの余りと, 2⁵ で割ったときの余りについて 考えてみよう。

まず

$$625^2 = 5$$
 \checkmark

であり、また、 $m = \boxed{1}$ とすると

$$625^2 = 2$$
 $m^2 + 2$ $m + 1$

である。これらより、625² を 5⁵ で割ったときの余りと、2⁵ で割ったときの 余りがわかる。

(数学 I・数学A第4問は次ページに続く。)

(3) (2) の考察は、不定方程式

$$5^5 x - 2^5 y = 1$$

の整数解を調べるために利用できる。

x, y を②の整数解とする。 5^5x は 5^5 の倍数であり、 2^5 で割ったときの余りは 1 となる。よって、(2) により、 5^5x-625^2 は 5^5 でも 2^5 でも割り切れる。 5^5 と 2^5 は互いに素なので、 5^5x-625^2 は $5^5\cdot 2^5$ の倍数である。

このことから、②の整数解のうち、xが3桁の正の整数で最小になるのは

であることがわかる。

(4) 114を24で割ったときの余りは1に等しい。不定方程式

$$11^5 x - 2^5 v = 1$$

の整数解のうち、 x が正の整数で最小になるのは

である。

数学 I ・数学 A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第5問 (選択問題) (配点 20)

 \triangle ABC の重心を G とし、線分 AG 上で点 A とは異なる位置に点 D をとる。直線 AG と辺 BC の交点を E とする。また、直線 BC 上で辺 BC 上にはない位置に点 F をとる。直線 DF と辺 AB の交点を P, 直線 DF と辺 AC の交点を Q とする。

(1) 点 D は線分 AG の中点であるとする。このとき、△ABC の形状に関係なく

$$\frac{AD}{DE} = \frac{7}{1}$$

である。また、点 F の位置に関係なく

であるので, つねに

$$\frac{BP}{AP} + \frac{CQ}{AQ} = \boxed{\tau}$$

となる。

I], [才],		丰 ,	ク	の角	解答群(同)	じものを繰	ぬり返し選ん
でもよ	<u> </u>							
0	ВС	1	BF		2	CF	3	EF
4	FP	⑤	FQ		6	PQ		

(数学 I・数学 A 第 5 問は次ページに続く。)

(2) AB = 9, BC = 8, AC = 6 とし、(1) と同様に、点 D は線分 AG の中点であるとする。ここで、4 点 B、C、Q、P が同一円周上にあるように点 F をとる。

$$AP = \frac{\boxed{y}}{\boxed{t}}, \qquad AQ = \frac{\boxed{y}}{\boxed{f}}$$

であり

である。

(3) \triangle ABC の形状や点 F の位置に関係なく、つねに $\frac{BP}{AP} + \frac{CQ}{AQ} = 10$ となるの

は、
$$\frac{AD}{DG} = \frac{\square}{\square}$$
 のときである。