

What is claimed is:

1. An integrated RF filter for use at microwave frequencies comprising:
an integrated circuit inductor with connected integrated circuit capacitors, arranged as a
tank circuit, and an integrated circuit shunt resistor;
said inductor, capacitors and resistor being interconnected in a bridge-T filter
arrangement.
2. An integrated RF filter for use at microwave frequencies comprising:
first and second capacitors connected in series between an input and an output of said
filter;
an inductor, connected between said input and said output of said filter, in parallel to said
series connected capacitors; and
a shunt resistor connected between ground, and the common side of said first and second
capacitors.
3. The integrated RF filter of claim 2, wherein the value of said shunt resistor is
selected to be equal in magnitude to the impedance of said inductor and capacitor
tank circuit at the centre of its operating frequency band.
4. The integrated RF filter of claim 2, wherein the value of said shunt resistor is
selected to be equal in magnitude to the impedance of said inductor and capacitor
tank circuit at its resonant frequency.
5. The integrated RF filter of claim 3, implemented in a silicon technology.
6. The integrated RF filter of claim 3 wherein said silicon technology comprises
silicon bipolar technology.
7. Two or more integrated RF filters implemented according to claim 1, connected
in a cascode arrangement, thereby enhancing their overall performance in
providing additional rejection of out-of-band signals.

8. The integrated RF filter of claim 5, wherein said capacitors are implemented as variable capacitors, thereby permitting a degree of tuning of the filter frequency of the circuit during use.
9. The integrated RF filter of claim 8 wherein said variable capacitors are implemented using varactor diodes.
10. An integrated RF filter as claimed in claim 5, for use at frequencies exceeding 800 MHz.
11. A computer readable memory medium, storing computer software code in a hardware development language for fabrication of an integrated circuit comprising the filter of claim 2.
12. A computer data signal embodied in a carrier wave, said computer data signal comprising computer software code in a hardware development language for fabrication of an integrated circuit comprising the filter of claim 2.