Importing Packages

```
In [1]: import pandas as pd
```

Data Loading

```
In [2]: df = pd.read csv("Dataset/cardio data clean.csv")
In [3]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 70000 entries, 0 to 69999
      Data columns (total 17 columns):
           Column
                         Non-Null Count Dtype
           ----
       0
           date
                         70000 non-null object
       1
           country_ID
                         70000 non-null int64
       2
                         70000 non-null int64
           id
       3
           active
                         70000 non-null int64
       4
                         70000 non-null int64
           age
                         70000 non-null int64
       5
           alco
          ap hi
                        70000 non-null int64
       7
                         70000 non-null int64
           ap_lo
           cholesterol 70000 non-null int64
           gender
                         70000 non-null int64
       10 gluc
                         70000 non-null int64
       11 height
                         70000 non-null int64
       12 occupation_ID 70000 non-null int64
       13 smoke
                         70000 non-null int64
       14 weight
                         70000 non-null int64
       15 disease
                         70000 non-null int64
                         70000 non-null float64
       16 BMI
      dtypes: float64(1), int64(15), object(1)
      memory usage: 9.1+ MB
In [4]: df = df.drop(columns=['date', 'country_ID', 'id', 'occupation_ID', 'height', 'weigh
In [5]: X = df.drop('disease', axis=1)
        y = df['disease']
```

Feature Scaling

```
In [6]: cols = ['age', 'ap_hi', 'ap_lo', 'BMI']
In [7]: from sklearn.preprocessing import RobustScaler
    st = RobustScaler()
    X[cols] = st.fit_transform(X[cols])
In [8]: X
```

:		active	age	alco	ap_hi	ap_lo	cholesterol	gender	gluc	smoke	ВМІ
	0	1	-0.357630	0	-0.50	0.0	1	2	1	0	-0.694795
	1	0	-0.608518	0	-1.00	-2.0	1	1	1	0	-0.530757
	2	1	0.657931	0	0.50	0.0	3	1	1	0	1.791009
	3	0	-0.230958	0	0.50	-1.0	3	1	1	0	-0.451893
	4	1	0.786514	0	0.50	1.0	3	2	3	0	0.568612
	•••		•••	•••					•••		•••
	69995	1	-0.126399	0	0.00	0.0	1	2	1	1	0.087539
	69996	1	0.791155	0	1.00	1.0	2	1	2	0	3.800473
	69997	0	-0.173901	1	3.00	1.0	3	2	1	0	0.784700
	69998	0	0.744745	0	0.75	0.0	1	1	2	0	0.114353
	69999	1	0.228501	0	0.00	0.0	2	1	1	0	-0.231073

70000 rows × 10 columns

Out[8]

Model Training using Random Forest Classifier

Random Forest Classifier

Feature Importance

Out[14]:		Importance
	age	0.348925
	ВМІ	0.290123
	ap_hi	0.171346
	ap_lo	0.092445
	cholesterol	0.036363
	gluc	0.016985
	gender	0.015777
	active	0.012216
	smoke	0.008416
	alco	0.007403

Based on the feature importance, we can say that age is the most significant factor with an importance value of 35%. Next is BMI with a value of 29%. Blood Pressure (ap_hi & ap_lo) have moderate importance values of 17% and 9% respectively. Cholesterol has lower importance value of 3%. The remaining factors such as glucose, gender, activity level, smoking, and alcohol consumption have importance values below 0.02, indicating they have a lesser impact on the model's predictions.

```
In [15]: from sklearn.metrics import accuracy_score
    accuracy_score(y_test, y_pred)
```

Out[15]: 0.7104

The model has a low accuracy score of 71%, we'll check with cross validation score at 10 folds.

```
In [16]: from sklearn.model_selection import cross_val_score
    cross_val_score(clf, X_train, y_train, cv=10)
```

```
Out[16]: array([0.716 , 0.70438095, 0.71142857, 0.70590476, 0.70495238, 0.70571429, 0.70685714, 0.70038095, 0.70152381, 0.71409524])
```

Previous accuracy score lies within the mean value.

```
In [ ]:
```