HW # 2 - Solutions

1. Vehicutes in the Free Electron Theory.

a)
$$3d N = 2 \frac{4}{3} \text{ it } k_F^3$$

(2m) ~

$$\frac{N}{V} = \frac{k_F^3}{3\pi^2} \implies k_F = (3\pi^2 n)^{1/3}$$

$$v_F = \frac{\pi}{m} = \frac{\pi}{m} \left(3\pi^2 n\right)^{1/3}$$

$$J = \sigma E \qquad \sigma = \frac{me^2 T}{m}$$

) & at 300 K E = 14/m. n= 8.45 x 10 m = 3. 0 = 5.9 × 10 7 N m - st 300 K $\frac{(5.9 \times 10^{+})(1)}{(8.45 \times 10^{28})(1.6 \times 10^{-19})} = \frac{(5.9)}{(8.45)(1.6)}$ $= (5.9 \times 10^{+})(1)$ = 4/36 x 10 3 m/ Acc. $v_{\rm f} = \frac{K}{K} \left(3\pi^2 v_{\rm f} \right)^{1/3}$ $= 1.05 \times 10^{-34} \quad (3\pi^2 \cdot 8.45 \times 10^{-28})^{1/3}$ $(3\pi^2, 8.45.10^{\frac{1}{2}})$ $10^{\frac{9}{2}}$ $= 1.05 \cdot 10^6 \left\{ 2502 \right\}^{1/3}.$ VF ~ 1.58 × 106 m/s ~ 1

 $\frac{\sqrt{4.36} \times 10^{-3} \text{ m/s}}{\sqrt{58 \times 10^{6} \text{ m/s}}} = 2.8 \times 10^{9} \text{ t}$

We note that vd, the drift redreity, refers to the shift (mvd) of the center of mans of the centire Fermi sphere and is indud very small compared to the redreity of the most encyclic electrons.

 $\lambda = m v_F \sigma$ $\frac{1}{ne^2}$

 $= \frac{(9\times10^{-31})(1.58\times10^{4})}{(8.45\times10^{28})(1.6\times10^{-19})^{2}}$

 $= \frac{(9)(1.58)(5.9)}{(8.45)(1.6)^{2}} \frac{10^{-18}}{10^{-10}}$

 $\lambda = 3.3 \times 10^{-8} \text{ m}$

Mean atom spacing in Eu ~ 1 Å = 10 m

A ~ 400 atomic spacings!

Another Review of the Free Electron Theory.
. Free Epitron Model of a Metal
Here I assume the free electron model refers
to the sommerfuld therey.
A nutal is newed as a gas of minimulating
Jennine with spin 1/2 in an
infinite square well préential.
· Fermi energy Ep = chemical prtential at
Ep = Kiki
2w
Fermi temperature T _F = E _F
kβ.
· Even at temperatures 0 < T << T_F, some
electrons are thermally excited. There electrons
transport both electricity and heat as
evidenced by the Wildemann-Franz ration.

(a) d-dimensimal sample w/ volume Ld

W/ N electrones

$$N = 2 \left(\frac{L}{2\pi}\right)^d c_d k_F^d$$

11

$$k_{T} = \left(\frac{N}{2cd}\right)^{1/d}$$

$$E_{F} = \frac{K^{2}}{2m} \left(\frac{2\pi}{2cd}\right)^{2} \left(\frac{N}{2cd}\right)^{2}$$

$$=\frac{K^2}{2mL^2}\left(\frac{N(2\pi)^d}{2Cd}\right)^{2/d}$$

$$=\frac{K^2}{2mL^2}\left(Na_d\right)^{2/d}$$
 at
$$=\frac{(2\pi)^d}{2cd}$$

d=1.	$C_{\lambda} = \lambda$	
	$a_{\lambda} = \frac{\Pi}{2}$	
d = 2	$C_{\mathcal{A}} = \pi$	
	$a_{d} = (2\pi)^{2} = 2\pi$ 2π	
d=3	$e_{\lambda} = \frac{4}{3} \pi$	
(b). g(e,)		
We've just		
<u> </u>	2ml ² (Na) ² /d density of district	7
	$\frac{\pi}{2m}\left(\frac{N}{2}\right)^{2}=\frac{\pi}{2m}\left(\frac{\pi}{2}\right)^{2}$	

1,25 × 10 + 9 = 1/.8 mm $E_F = \frac{k^2}{2mL^2}$

 $=\frac{k^2}{2m}n^2\left(\frac{\pi}{2}\right)^2$

$$E_{F} = (1.05 \times 10^{-34})^{2} - (1.25 \times 10^{4})^{2} - (\pi)^{2}$$

$$= (1.05)^{2} (1.25)^{2} \pi^{2} - 10^{-19}$$

$$= (2)(9)(8)^{2} - 10^{-34}$$

$$= 2.36 \times 10^{-29} - 10^{-34}$$

$$= 2.4 \times 10^{-29} - 10^{-34}$$

$$= 1.7 \times 10^{3} \times 10^{-29}$$

$$= 1.7 \times 10^{3} \times 10^{-29}$$

(c) E = e[p]

From (a) we have

$$A_{F} = \left(\frac{N}{2cd}\right)^{1/d} \frac{2\pi}{L}$$

Now
$$E_F = C\left(\frac{hk_F}{m}\right) = \frac{hc}{m} = \frac{2H}{2cd}$$

$$E_{p} = 2\pi Kc \cdot \left(\frac{N}{L^{d}} 2cd\right)^{d} \qquad N = \frac{N}{L^{d}}$$

$$E_{F} = \frac{2\pi \hbar c}{m} \left(\frac{n}{2cd}\right)^{1/d}$$

$$ln = \frac{1}{d} ln n + envtant$$

$$\frac{dE_{F}}{dE_{F}} = \frac{1}{d} \frac{dn}{n} \Rightarrow \frac{dn}{dE_{F}} = \frac{g(\xi_{F})}{\xi_{F}} = \frac{nd}{\xi_{F}}$$

$$d=1$$
 $C_d=2$.

$$\frac{E_F - 2\pi h c}{m} \left(\frac{n}{2cd} \right)^{d} = \frac{2\pi h c}{m} \left(\frac{m}{4} \right)^{\frac{1}{2}}$$

$$E_{F} = \pi \hbar c n \qquad d=1$$

$$2m$$

$$g(E_F) = nd \Rightarrow g(E_F) = n d = 1$$
 ε_F

$$d=2$$
 $C_d=4\pi$

$$E_{F} = \frac{2\pi k c}{n} \left(\frac{n}{2cd}\right)^{1/2} = \frac{2\pi k c}{n} \left(\frac{n}{8\pi}\right)^{1/2}$$

$$E_{F} = \frac{kc}{n} \left(\frac{\pi n}{1}\right)^{1/2} = \frac{kc}{n} \left(\frac{\pi n}{1}\right)^{1/2}$$

$g(E_F) = nd \Rightarrow$	JEF = 2r	
$d=3 \qquad c_d = 4 \text{ TT}$ $E_F = 2\pi h c \qquad m \qquad 2 cd$ $E_F = 2\pi h c \qquad 2 cd$	$\frac{1}{3n}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	1/3. 3 m -) 8 m -)
9(2) = nd => Ep	1 9 (E+) = 3 m	

$\Delta KE = m \left(\vec{v} - e \vec{E} t \right)^{2} - \frac{1}{2} \vec{E} t $	$\frac{m}{2} \left(\vec{\tau}'\right)^2$
2	2
thinte energy Tupe peend ettisin	kindu unugg just after sund ellisin
$= m (r^2 - v^{12}) +$	$\frac{m}{2} \left(\frac{EEt}{m} \right) - \frac{1}{m} = \frac{1}{2} \cdot \frac{1}{2}$
(arsumptim of) (Drude model)	it averaged over spherially symmetric distribution => 0.
i. Average energy toss	= (e E t) ²

For each collision => overage # electrons = 2.

Average energy loss =
$$2 \cdot \left(\frac{n}{\tau}\right) \left(\frac{(eE\tau)^2}{2m}\right)$$

pleations # erlisions/sec

$$\frac{P}{LA} = (\sigma E) E = \frac{i^2}{\sigma} = \frac{(E/A)^2 RA}{L}$$

$$j = \frac{I}{A}$$
 $r = \frac{I}{R}$

$\frac{P}{=} \left(\frac{I}{A} \right)^{2} RA$					
	LA		gggatafi.		
	P = T	2 R	Joule he	ating	
, <u>, , , , , , , , , , , , , , , , , , </u>					· · · · · · · · · · · · · · · · · · ·

 ИР	~	M _O	$= 2 \times 10 g$	~ 10 °57
# purtons		Mp	1,7 × 10 24	3
fut us ass	ume th	at there ar	e roughly the s	ani
 number of	230	ind p's	V	
			\2/3	
		(311 ² n		
	one (pagent) an findami bhail dhill (balladh la ba' se torr reson			
where			$V = 4 \pi R_s^3$	
where	Ne.	where	3	
	Ne V	Where	$\frac{4}{3} \text{ TT} \left(2 \times \frac{4}{3}\right)$	109)3.
	V		3 = 4 17 (2x	

$$\frac{1}{2(9 \times 10^{-28})^{2}} \left\{ 3\pi^{2} \left(3 \times 10^{-28} \right) \right\}^{2/3}.$$

$$\frac{1}{2} \left(10^{-27} \right) \left(10^{20} \right) \sim 5 \times 10^{-6} \text{ urgs}.$$

$$\varepsilon_{\rm p} \sim 5 \times 10^{-6} \text{ ergs} \times \frac{4 \text{ eV}}{1.6 \times 10^{-12} \text{ ergs}}$$

2F = 3.6 × 10 4 LV

b) kf is not affected by relationity In 3 d we determine kf

 $N = 2 \frac{4}{3} \pi k_F^3 \implies k_F \sim \left(\frac{N}{V}\right)^{\frac{1}{3}}.$ $(2\pi)^{\frac{3}{2}}/V$

	then in the relativistic limit
	$\varepsilon_p = h k_p c \sim h c \left \frac{N}{V} \right ^{1/3}$
c) No	$w R_s = 10 \text{ Jen} = 10^6 \text{ em}$ $(R_s = 2 \times 10^9 \text{ em})$
	10^{28} em ³ 10^{28} em ³ 10^{18}
	-2.4×10^{36} e/cm ³
	$e_{\rm F} \sim hcm^{1/3} \sim (10^{-27})(3 \times 10^{10})(10^{13})$ $\sim 2 \times 10^{-4} \text{ erg} \cdot 1 \text{ eV}$
	1.6 x 10 12 mg.
	EF~10° eV relationshe
	$(m_0/n^2 \times 51 \times 10^6)$

5 Signid He3.

$$\varepsilon_{F} = \frac{K^{2}}{2m} \left(3\pi^{2} n \right)^{2/3}$$

$$\frac{4 \text{ mrls}}{6000} = \frac{1}{3} 81 \times 10^{-3}$$

$$= 27 \times 10^{-3} = 2.7 \times 10^{-2} \text{ m/ls}$$

$$n_{\rm H} = \frac{2.7 \times 10^{-2} \, \text{m/hs}}{6 \times 10^{23} \, \text{atoms} / \text{m/h}}$$

$$m_{H} = (3) m_{p} = (3) (1.6 \times 10^{-24})$$

Challenges associated w/ observing quantum degeneracy
in Fermi gases of orld atoms and how this was
achieved (from Jin, " A Fermi Jar of Atoms").
. boling and equilibration of gases at Inv temperature
achieved through hands-on "s-wave" whis ins-
not possible for fermins, due to Pauli exclusion
principle, which makes it challenging to achieve
In temperatures in aquilibrium
· Successful evoling of gases of Jermienic atoms
using s-wave erlisms of mintures of atoms that are
in different states
. Tiv's group used atoms in two distinct spin
status
. Hulit's group used mixture of isotopes.
· Evaporative voling used for these mintures to
achière quantum dyneracy via collisions.