Unit 6 → Simple Harmonic Motion

Period of a simple harmonic motion

- Definitions
 - Simple Harmonic Motion
 - A repeated constant motion around a single point
 - Oscillation
 - A type of simple harmonic motion
 - Regular, repeated, variation in a position around a singular point
 - o Equalibrium Position
 - The central point about which an object oscillates
 - Frequency
 - Number of waves, cycles, oscillations, or disturbances per unit of time

$$f = \frac{\text{# of waves, oscillations, or disturbances}}{\text{time}}$$

- Units: cps, Hz, s^{-1}
- o Period
 - Time for one complete wave, cycle, oscillation, or disturbance

$$T = \frac{time}{\#of\ waves, oscillations, or\ disturbances}$$

- Linear restoring force
 - The F_{net} that forces the object back to its equilibrium position
- Reference Table
 - General period

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

- T = period
- $\omega = \text{angular speed/angular frequency } (rad/s)$

$$\circ \quad \omega = 2\pi f$$

- f = frequency(Hz)
- Period of a pendulum

$$T_P = 2\pi \sqrt{\frac{\ell}{g}}$$

- $T_P = period \ of \ the \ pendulum \ (s)$
- $\ell = length \ of \ the \ string \ (m)$
- $g = acceleration due to gravity(\frac{m}{s^2})$
- Period of a spring

$$T_S = 2\pi \sqrt{\frac{m}{k}}$$

- $T_S = period \ of \ the \ spring \ (s)$
- $k = spring \ constant \ (\frac{N}{m})$
- m = mass(kg)

- What's happening, where?
 - At maximum displacement from equilibrium
 - Amplitude = maximum
 - \blacksquare $F_{net} = \text{maximum}$
 - Acceleration = maximum
 - Velocity = zero
 - At equilibrium
 - Amplitude = zero
 - $F_{net} = zero$
 - Acceleration = zero
 - Velocity = maximum
- Reference Table
 - THESE EQUATIONS MUST BE IN **RADIAN MODE**
 - o Position of an object
 - $\mathbf{x} = A\cos(2\pi ft)$
 - x = position(m)
 - A = amplitude(m)
 - f = frequency(Hz)
 - t = time(s)
 - Velocity and acceleration
 - Base
 - $v(x) = 2\pi f x$
 - $\bullet \quad a(x) = (2\pi f)^2 x$

$$\circ$$
 $a(x) = \omega^2 x$

- At maximum
 - $v(max) = 2\pi f A$
 - $a(max) = (2\pi f)^2 A$
 - $\circ \quad a(max) = \omega^2 A$

Energy of a simple harmonic motion

- Energy in a simple harmonic motion
 - Only applies to springs
 - Potential energy is based on position
 - The greater the distance from equilibrium, the greater the stored energy
 - Kinetic energy is based on speed
 - The greater the speed, the greater the kinetic energy
- Reference Table
 - o At base

$$K = \frac{1}{2}mv^2$$

$$U_s = \frac{1}{2}kx^2$$

o At maximum

$$K_{max} = \frac{1}{2} m v_{max}^2$$

$$U_{s_{max}} = \frac{1}{2} k A^2$$

$$U_{s_{max}} = \frac{1}{2}kA^2$$

Scenarios at Equilibrium

Dandulu

Vertical Spring

Horizontal Spring

