Теория чисел (теория)

Владимир Латыпов donrumata03@gmail.com

Vladimir Latypov donrumata03@gmail.com

Содержание

1 Базовые определения	. :
2 Идеалы	. 4
3 Евклиловы кольца	. 6

1 Базовые определения

Some red text

https://1

Определение 1.1 (definition 1: группа) $\langle G, \star \rangle$ — группа, если

- 1. $\forall a, b, c \in G$ $a \star (b \star c) = (a \star b) \star c$ (ассоциативность)
- 2. $\exists e \in G \quad \forall x \in G \quad x \star e = e \star x = x$ (существование нейтрального элемента)
- 3. $\forall x \exists y \quad x \star y = y \star x = e$ (существование обратного элемента)

аксиома 1 даёт полугруппу, при добавлении аксиомы 4 — получается абелева группа

Пример 1.2

• S_n — группа, но не абелева

Определение 1.3 (definition 3: кольцо)

- 1. $\langle R, + \rangle$ абелева группа
- 2. $\langle R \setminus \{0\}, \cdot \rangle$ полугруппа
- 3. $a \cdot (b+c) = a \cdot b + a \cdot c = (b+c) \cdot a$ (дистрибутивность умножения относительно сло-

Замечание 1.4 Будем работать с коммутативными кольцами (умножение коммутативно), преимущественно — с областями целостности

Пример 1.5

- \mathbb{Z} кольцо
- R[x] кольцо многочленов над R от переменной x.

Определение 1.6 (definition 6: Гомофморфизм колец) $f:R_1 o R_2$

- 1. f(x+y) = f(x) + f(y) («дистрибутивность» относительно сложения)
- 2. f(ab) = f(a)f(b) («дистрибутивность» относительно умножения) 3. $f\left(1_{R_1}\right) = 1_{R_2}$ (сохранение единицы)

Пример 1.7 (example 7: Независимость третей аксиомы)

$$f: \begin{pmatrix} R \to R \times R \\ r \mapsto (r,0) \end{pmatrix}$$

-1, 2 выполнены, но не 3

Определение 1.8 (definition 8: поле)

- Коммутативное кольцо с единицей
- $\forall x \neq 0 \exists y \quad x \cdot y = y \cdot x = e$ (существование обратного элемента по умножению) (пишут $y = x^{-1}$)

Замечание 1.9 То есть ещё и $R \setminus \{0\}$ — абелева группа.

Пример 1.10

- ℝ
- C
- F₂

Определение 1.11 (definition 11: область целостности)

- 1. $1 \neq 0$
- 2. $\forall a,b \in R \quad ab=0 \Rightarrow a=0 \lor b=0$ (отсутствие делителей нуля)
- 2'. $\forall a \neq 0 \quad ab = ac \Rightarrow b = c$ (можно сокращать на всё, кроме нуля)

(2 и 2′ эквивалентны)

Пример 1.12 Z, любое поле (действительно, сократим через деление на обратный)

2 Идеалы

Определение 2.13 (definition 13: идеал) $I \leq R$

- $\forall a,b\in I \quad a-b\in I$ (замкнутость относительно разности) $\forall r\in R, a\in I \quad r\cdot a\in I$ (замкнутость относительно умножения на элемент кольца)

Замечание 2.14

- У любого кольца есть идеалы 0, R.
- R поле \Rightarrow есть только эти идеалы

Замечание 2.15 Идеалы в кольцах и нормальные подгруппы обозначают «меньше или равно с треугольничком»: ≤, остальные подструктуры — обычно просто ≤

Определение 2.16 (definition 16: Операции над идеалами)

- Сложение
- Пересечение
- определяются поэлементно
- Умножение: натягиваем на произведение множеств по Минковскому

Определение 2.17 Идеал, порождённый подмножеством $S \subset R$:

$$(S) = \bigcap_{S \subset I \unlhd R} I$$

Он же —

$$\left\{\sum r_i s_i \mid r_i \in R, s_i \in S\right\}$$

Замечание 2.18

$$(a_1,...,a_n) = \left\{ \sum_{i=1}^n = r_i s_i \mid r_i \in R \right\}$$

(линейная комбинация)

$$(a) = aR = Ra = \{ra \mid r \in R\}$$

Определение 2.19 Идеалы, которые можно породить одним элементом — главные.

Определение 2.20 (definition 20: PID/OГИ) Когда все идеалы — главные.

Определение 2.21 (definition 21: Факторкольцо по идеалу) Введём отношение эквивалентности $a-b\in I$ и факторизуем по нему. Получим R/I — кольцо с элементами $x+I, \quad x\in R.$

Замечание 2.22 Понятие идеала пошло из обобщения концепции делимости, «идеальные делители». Простой идеал — обобщение простого числа.

Определение 2.23 (definition 23: Простой идеал) $p \le R$ — простой $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ $ab \in p \Rightarrow a \in p \lor b \in p$.

Эквивалентно: $ab \equiv 0 \Rightarrow a \equiv 0 \lor b \equiv 0$

Определение 2.24 (definition 24: Нётерово кольцо) Конечно порождённое кольцо

Теорема 2.25 (theorem 25: Эквивалентные определения нётеровости)

- 1. Все идеалы конечно порождены
- 2. Вложенная расширяющаяся последовательность идеалов стабилизируется
- 3. У множества идеалов существует максимальный по включению (но не обязательно наибольший)

Доказательство

- $(1) \to (2)$: Пусть $I = \bigcup I_k = (a_1, ... a_n)$. Каждое a_i лежит в каком-то I_{k_i} . Тогда стабилизция происходит уже при $I_{\max\{k_i\}}$.
- $(2) \to (3)$: Итеративно будем выбирать идеал, содержащий предыдцщий, пока таковой имеется.
- Если кончились, мы нашли максимальный
- Если нет, построили последовательность вложенных идеалов. Так как она стабилизирутеся, стабильное значение — наш ответ.

$$(3) o (1)$$
: $I = \max\{J \mid J \subset I, J$ — конечно порождён $\}$.

Теорема 2.26 (theorem 26: Гильберта о нётеровости кольца многочленов над нётеровым кольцом) Пусть для $I \le R[x]$ $a(i) = \{r \in R \mid rx^i + *\cdot x^{< i-1} \in I\}$, то есть коэфициенты при x^{i} , когда это старшая степень.

Тогда $a(1) \subset a(2) \subset ...$ — вложенная цепочка идеалов $\leq R$. Пусть стабилизируется на a(k).

! TODO !

3 Евклидовы кольца

Определение 3.27 (definition 27: Евклидово кольцо) $d: R \setminus \{0\} \to \mathbb{N}_0$, тч

- 1. $d(ab) \ge d(a)$ 2. $\forall a,b,b \ne 0 \exists q,r: a=bq+r, r=0 \lor d(r) < d(b)$

Пример 3.28 $\mathbb{Z}, F[x]$

Теорема 3.29 Евклидово → ОГИ

Доказательство Находим a — минимальный по d, если нашёлся не кратный, делим с остатком на a, получаем меньший, противоречие **Определение 3.30** (definition 30: Факториальное кольцо (UFD — Unique factorization domain)) Область целостности

- Существует разложение на неприводимые множители
- Единственно с точностью до R^* : если $x=u\cdot a_1\cdot\ldots\cdot a_n=u\cdot b_1\cdot\ldots\cdot b_m\Rightarrow m=n\wedge a_i=b_{\sigma_i}\cdot w_i, w_i\in R^*$

Определение 3.31 (definition 31: Неприводимый элемент) $a \neq 0, a \notin R^*$ $a = bc \Rightarrow b \in R^* \lor c \in R^*$

! TODO! use propertym not remark

Замечание 3.32 Неприводимость сохраняется при домножении на обратимые ($r \in R^*$)

Определение 3.33 (definition 33: Простой элемент) $a \mid bc \Rightarrow a \mid b \lor a \mid c \Leftrightarrow aR -$ простой идеал)

Теорема 3.34 Простой ⇒ неприводимый

Доказательство

! TODO!

Теорема 3.35 В факториальном кольце: Неприводимый ⇒ простой

Доказательство

! TODO!

Следствие 3.36 В факториальном кольце простые идеалы высоты 1 (то есть $0 \le q \le p \Rightarrow q = 0 \lor q = p$) являются главными

Доказательство Элемент идеала раскладывается на множители, а по простоте какойто — $\in p$, тогда $0 \le \underbrace{(a_i)}_{\text{прост.}} \le p \to (a_i) = p$

! TODO!

Помечать разделение не лекции красивыми заголовками (как ornament header в latex)

Теорема 3.37 Евклидово \Rightarrow ОГИ \Rightarrow Факториальное

! TODO! Перейти на lemmify

 \Box

Доказательство (proof 38: $Евклидово \rightarrow ОГИ$) ...

Определение 3.38 R^* — мультипликативная группа кольца (все, для которых есть обратный, с умножением)

Доказательство (proof 39: $O\Gamma U \to \phi$ акториальное) Схема: следует из двух свойств, докажем оба для $O\Gamma U$.

Лемма 3.39 В ОГИ: неприводимый → простой

Обобщение ОТА на произвольную ОГА с целых чисел.

Переформулируем: ...

Пусть есть такие элементы, возьмём цепочку максимальной длины, последний — приводим, представим как необратимые, тогда они сами представляются как ..., тогда и он тоже.

! TODO !

Определение 3.40 нснм — начиная с некоторого места

Замечание 3.41 Нётеровость: не можем бесконечно делить, так как при переходе к множителям идеалы расширяются, но в какой-то момент стабилизируются.

Теорема 3.42 R факториально $\Rightarrow R[x]$ — тоже

Пример 3.43 F — поле.

$$f \in F[x]$$
 — неприводим.

 $\frac{F[x]}{(f)}$ — область целостности, но докажем, что поле.

•
$$\overline{g} \quad \deg g < \deg f$$

•
$$(f,g)=1$$
, то есть $1=fp_1+gp_2$, $\overline{1}=\overline{f}\overline{p_1}+\overline{gp_2}$

$$\dim_F K = \deg f$$

Можем построить все конечные поля.

$$\mathbb{F}_{p[x]}\ni f, \deg f=m$$

$$\mathbb{F}_{p^m}[x] \ll = \infty \ \frac{\mathbb{F}_{p[m]}}{(f)}$$

Теорема 3.44 Над конечным полем существуют неприводимые многочлены любой степени

Пример 3.45
$$\mathbb{F}_{2\frac{[x]}{(x^2+x+1)}}$$

Таблица сложения:

	0	1	α	β
0	0	1	3	4

Теорема 3.46 Группа простого порядка — циклическая

Тестовое изменение

sdzf

asdf