Parametric equations example problems*

Dr Juan H Klopper

Contents

1 Parametric equations 1
1.1 Creating curves
1.2 Parameterization of a curve
1 Parametric equations
1.1 Creating curves
Problem 1.1.1. Graph the plane curve defined by the parametric equations $x=5-t^2$ and $y=\frac{t}{2}$ for $t\in[0,4]$.
Problem 1.1.2. Graph the plane curve defined by the parametric equations $x=3\cos t$ and $y=3\sin t$ for $t\in[0,\pi]$.
Problem 1.1.3. Graph the plane curve defined by the parametric equations $x=-2+3t$ and $y=-3+5t$ for $t\in[0,3]$.
Problem 1.1.4. Graph the plane curve defined by the parametric equations $x=t^2-3$ and $y=t^3-t$ for $t\in[-2,2]$.
Problem 1.1.5. Graph the plane curve defined by the parametric equations $x=t^3-t$ and $y=t^4-2t^2+2$ for $t\in[-2,2]$.
Problem 1.1.6. Graph the plane curve defined by the parametric equations $x = 0$

 $3\cos 2t + \sin 5t$ and $y = 3\sin 2t + \cos 5t$ for $t \in [-4,4]$. **Problem 1.1.7.** Graph the plane curve defined by the parametric equations $x = \cos 2t$ and $y = \sin kt$ for $k = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $t = [0, 2\pi]$ and describe the

Problem 1.1.8. Graph the plane curve defined by the parametric equations $x = \cosh t$ and $y = \sinh t$ and use the identity $\cosh^2 t - \sinh^2 t = 1$ to find and equation for the graph. Explain where the hyperbolic in \sinh and \cosh comes from.

effect that k has.

^{*}Vector Calculus

1.2 Parameterization of a curve

Problem 1.2.1. Parameterize the function $f\left(x\right)=x^2$ from the point (1,1) to the point (3,9).

Problem 1.2.2. Find the parametric equations for the line segment from (4,-2) to (2,-1).

Problem 1.2.3. Find the parametric equations for the parabola $y=2-x^2$ from (2,-2) to (0,2).

Problem 1.2.4. Find the points of intersection for the two curves given by the parametric equations x=t+3, $y=t^2$ and x=1+s, y=2-s.