3. Quotient

Dans le cas où $\lim g = 0$, on suppose que l'on a au voisinage de a, soit g(x) > 0 soit g(x) < 0.

Si lim f en a =	l	l	+ ∞ ou - ∞	+ ∞ ou - ∞	ℓ ≠ 0	0
et lim g en $a =$	$\ell' \neq 0$	+ ∞ ou - ∞	ℓ'	+ ∞ ou - ∞	0	0
alors $\lim \frac{f}{g}$ en $a =$	$\frac{\ell}{\ell'}$	0	∞*	?	∞*	?

4

Propriétés

1. Polynôme et fonction rationnelle

- La limite en $+\infty$ et en $-\infty$ d'une fonction polynôme est celle de son terme de plus haut degré.
- La limite en $+\infty$ et en $-\infty$ d'une fonction rationnelle (quotient de deux fonctions polynômes) est celle du quotient de ses termes de plus haut degré.

2. Fonction composée

• Fonction de la forme $u^n(x)$; n entier naturel non nul.

a désigne soit un réel, soit + ∞ , soit - ∞ ; ℓ désigne un réel.

alors

Si $\lim_{x \to a} u(x) = \ell$,

alors

 $\lim u^n(x) = \ell^n.$

Si $\lim u(x) = + \infty$,

alors

 $\lim u^n(x) = + \infty.$

 $x \rightarrow a$

Si $\lim u(x) = -\infty$,

 $\lim u^n(x) = + \infty \text{ si } n \text{ est pair et}$

 $x \rightarrow$

 $\lim u^n(x) = -\infty \text{ si } n \text{ est impair.}$

lir

• Fonction de la forme ln[u(x)]; u(x) fonction strictement positive. a et c désignent soit un réel, soit $+\infty$, soit $-\infty$; b désigne soit un réel positif ou nul, soit $+\infty$.

Si
$$\lim_{x \to a} u(x) = b$$
 et si $\lim_{X \to b} \ln(X) = c$ alors $\lim_{x \to a} \ln[u(x)] = c$.

• Fonction de la forme $e^{u(x)}$.

a et b désignent soit un réel, soit + ∞ , soit - ∞ ; c désigne soit un réel positif ou nul, soit + ∞ .

Si
$$\lim_{x \to a} u(x) = b$$
 et si $\lim_{x \to b} e^x = c$ alors $\lim_{x \to a} e^{u(x)} = c$.

3. Comparaison des fonctions logarithme népérien, exponentielle et puissance

Pour $\alpha > 0$: $\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0$ et $\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty$; $\lim_{\substack{x \to 0 \\ x > 0}} x^{\alpha} \ln x = 0$.