Luzhe Huang

E-mail lzhuang0324@ucla.edu Website porphura.github.io Tel. (1) 424 402 2604

EDUCATION

Sep. 2019 - Now MS/PhD ECE Department, University of California, Los Angeles

Instructor: Aydogan Ozcan, GPA: 3.96/4.00

Sep. 2015 - Jun. 2019 Bachelor of Engineering (BEng) CKC Honors College, Zhejiang Univer-

sity, China

Major: Opto-Electronics Information Science and Engineering, Minor: Statis-

tics, GPA: 3.96/4.00.

EXPERIENCE

Sep. 2021 -Now HHMI REU Mentor UCLA

Sep. 2019 -Now Graduate Student Researcher UCLA
Feb. 2019 -Jun. 2019 Software R&D Engineer Autowise.ai

Jul. 2018 -Aug. 2018 Summer Research Intern Boston University

Jul. 2017 - Jul. 2017 SENG Summer Camp Hong Kong University of Science and Technology

PUBLICATIONS

JOURNALS

- Astratov, Vasily N., Yair Ben Sahel, Yonina C. Eldar, Luzhe Huang, Aydogan Ozcan et al. "Roadmap on Label-Free Super-Resolution Imaging." Laser Photonics Rev. (2023): 2200029;
- 2. Park, J., Bai, B., Ryu, D. et al. Artificial intelligence-enabled quantitative phase imaging methods for life sciences. *Nat. Methods* 20, 1645-1660 (2023);
- 3. L. Huang, H. Chen, et al. Self-supervised learning of hologram reconstruction using physics consistency. *Nat. Mach. Intell.* (2023);
- 4. H. Chen, L. Huang¹, et al. eFIN: Enhanced Fourier Imager Network for Generalizable Autofocusing and Pixel Super-Resolution in Holographic Imaging. *IEEE JSTQE*, vol. 29, no. 4: Biophotonics, pp. 1-10, July-Aug. 2023;
- 5. Y. Zhang, L. Huang¹, et al. Virtual Staining of Defocused Autofluorescence Images of Unlabeled Tissue Using Deep Neural Networks. *Intelligent Computing* 2022, 9818965;
- 6. H. Chen, L. Huang¹, et al. Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization. *Light: Sci. Appl.* 11, 254 (2022);
- 7. L. Huang, X. Yang, et al. Few-shot Transfer Learning for Holographic Image Reconstruction using a Recurrent Neural Network. *APL Photonics* 2022, 7, 070801;
- 8. X. Yang, L. Huang¹, Y. Luo, et al. Deep-learning-based virtual refocusing of images using an engineered point-spread function. *ACS Photonics* 2021, 8, 7, 2174-2182;
- 9. **L. Huang**, T. Liu, et al. Holographic image reconstruction with phase recovery and autofocusing using recurrent neural networks. *ACS Photonics* 2021, 8, 6, 1763-1774;
- 10. L. Huang, H. Chen, Y. Luo, et al. Recurrent neural network-based volumetric fluorescence mi-

¹Co-first author

- croscopy. Light Sci. Appl. 10, 62 (2021);
- 11. Y. Luo, **L. Huang¹**, Y. Rivenson, A. Ozcan, Single-shot autofocusing of microscopy images using deep learning. *ACS Photonics*, 2021, 8, 2, 625-638;
- 12. L. Huang, Y. Fu, R. Chen, et al. SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation based on multi-variate time series model. *IEEE Trans. Med. Imaging*, vol. 38, no. 11, pp. 2695-2704, Nov. 2019;
- 13. L. Huang, X. Wang, Y. Yuan, S. Gu, Y. Shen, An improved algorithm of NLOS imaging based on Bayesian statistics. *JOSA.A* 36(5), 834-838, 2019;
- 14. L. Huang, T. Fang, Q. Shuai, Calibration and imaging of a CT system, *Chinese Journal of Engineering Mathematics*. Vol. 34, Supp. 1, 2017;

CONFERENCES (SELECTED)

- L. Huang, H. Chen, T. Liu, and A. Ozcan, "Self-supervised neural network for holographic microscopy," in CLEO 2023, Technical Digest Series (Optica Publishing Group, 2023), paper ATu3Q.4.
- 2. L. Huang, X. Yang, T. Liu, A. Ozcan, "Few-shot generalizable hologram reconstruction model using a recurrent neural network (RNN) (Conference Presentation)," Proc. SPIE PC12204, Emerging Topics in Artificial Intelligence (ETAI) 2022, PC122040H (4 October 2022);
- 3. L. Huang, T. Liu, X. Yang, Y. Luo, Y. Rivenson, and A. Ozcan, "Phase Recovery and Holographic Imaging using Recurrent Neural Networks (RNNs)," in Conference on Lasers and Electro-Optics, Technical Digest Series (Optica Publishing Group, 2022), paper ATh1D.5;
- 4. L. Huang, T. Liu, X. Yang, Y. Luo, Y. Rivenson, A. Ozcan, "Holographic image reconstruction with phase recovery and autofocusing using recurrent neural networks," Proc. SPIE 11970, Quantitative Phase Imaging VIII, 119700C (2 March 2022);

SERVICES

- Reviewer for IEEE Transactions on Medical Imaging
- Reviewer for IEEE Photonics Journal
- Reviewer for Biomedical Optics Express
- Reviewer for Optics Express
- Reviewer for Journal of Optical Society of America A

AWARDS

Jul. 2023	UCLA Dissertation Year Fellowship
Sep. 2022	Amazon Doctoral Student Fellowship
Sep. 2019	UCLA ECE Department Fellowship
Oct. 2018	Zhejiang University Special Scholarship (Supreme award for Undergraduates)
Nov. 2017	Zhejiang University Chu Kochen College Innovation Scholarship
Oct. 2017	National Scholarship
Sep. 2017	MATLAB Innovation Prize (Special Prize) in China Undergraduate
	Mathematical Contest in Modeling
Oct. 2016	National Scholarship