FAULT DETECTION OF ROLLING ELEMENT BEARING USING MACHINE LEARNING

Presentation

Amol Mathur ME: 801984003

Department of Mechanical Engineering
Thapar Institute of Engineering & Technology, Patiala

Supervisors:

Dr. Jaskaran Singh (Assistant Professor)

Dr. Prashant Singh Rana (Associate Professor)

Table of Contents

S.No	
1	Introduction
2	Literature Review
3	Research Gap
4	Objective of Research
5	Proposed Methodology
6	Illustration of Data Set
7	Results and Discussion

Effect of wear on machinery

Fig 1: (A) Damaged Bearing outer race; (B) Damaged bearing inner race (C) Damaged gear; (D) Damaged shaft [1-3]

Condition Monitoring - Flow

Different types of Condition Monitoring

Fig 2: Representation of types Condition Monitoring

Different types of maintenance

Fig 3: Types of Maintenance

Brief Overview of our work

Literature Review

Author's	Observations
Eren et al (2019) [4]	 ➤ 1D Convolutional Neural Network (CNN) classifier is used ➤ To make it more independent with respect to F.F.T or D.W.T transformations
Barbieri et al (2019) [5]	➤ Auto Regressive modeling used for selecting features ➤ machine learning based on the logistic regression algorithm
Xenakisa et al (2019) [6]	➤ IoT and Cloud based decentralised framework for real time machine condition monitoring (MCM) and fault prediction ➤ Fog nodes perform feature extraction and health condition classification ➤ For solving it in a distributed manner by applying asynchronous altering direction method of multipliers (ADMM) algorithm was used
Laith et al (2020) [7]	Features were chosen by using a genetic algorithm, emphasis given for using the raw data Artifical Neural Network with optimized structure using genetic algorithm has been used.

Literature Review

Author's	Observations
Singh et al (2020) [8]	➤ Provides a comprehensive overview of recent efforts and developments in applying machine learning (ML) approaches to rolling element bearing diagnostics and prognostics ➤ The advantages and disadvantages of the described ML algorithms have been thoroughly examined and analyzed.
Neupane et al (2020) [9]	➤ Deep learning methods to detect and diagnose machinery faults
Moshrefzadeh et al (2021) [10]	➤ This study can distinguish between different machine health states regardless of load or speed ➤ SVM and subspace k-nearest neighbours are the two data classification methods used
Mehta et al (2021) [11]	➤Infrared thermography is used, 2D-DWT has been applied for the decomposition of the thermal image ➤PCA used for extracting features ➤SVM, LDA, K-NN were used, SVM outperforms all

Research Gap

- ➤ Difficult to implement in the real world situations.
- ➤ Computationally expensive transformations were used.
- ➤ Limitations to classifying when ever the number of fault types increased.

Objective of research

- To have a real time indication of fault detection.
- To be able to work without undergoing any predetermined transformations or signal processing transformations.
- To reduce computational expense during detection and diagnosis.

Experimental Setup

- ➤ Data set from C.W.R.U bearing data center.
- Data taken from drive end bearing.
- \rightarrow H.P = 0 hp to 3 hp
- ightharpoonup Rpm = 1797 to 1720
- Secondary Data Set

Fig:4 Illustration of the Experimental Setup[12]

Research Methodology

> WORK FLOW

Illustration of Data Set

Fig 5: Illustration of Healthy Bearing and Inner Race

Illustration of Data Set

Fig 6: Illustration of Ball Fault and Outer Race Fault

Extracted Feature Importance

- Maximum: The place where a function reaches its highest point or vortex on a graph is called as maximum value of the function.
- ☐ Minimum: The smallest mathematical value in the data set is called as minimum value in a data set.
- Note: The minimum and maximum value can also be called as outlines. Outliners is a value that is much larger or smaller than the other values in a data set or values lies outside the data set.
- Mean: It is found by adding all numbers in the data set and then dividing by the number of values in the set.
- Standard Deviation (s.d): It is a statistic which measures the dispersion of a data set with respect to its mean and is calculated as a square root of the variance.
- **R.M.S:** It is the square root of the mean square (the arithmetic mean of the squares of a set of numbers)..

Extracted Feature Importance

- Skewness: It means a distortion or symmetry that deviates from the symmetrical bell curve or normal distribution in a data set. If curve is tilted to the left or right side it is called skewed.
- **□ Kurtosis:** It is a measure of whether the data are heavy tailed or light tailed with respect to normal distribution. Kurtosis greater than 3 then data set has heavier tail than normal distribution, if less than 3 then data set has lighter tail than normal distribution. It is the forth statistical moment and indicates major peaks in the samples, which are related to an increased vibration level.
- ☐ Crest Factor: The crest factor focuses on impulsive vibration source, such as bearing damage. It is basically the ratio of the peak (max) level to R.M.S

Data Visualizations

Healthy v/s Ball Fault

Fig 7: (A) Maxima values; (B) Minima values; (C) Mean values; (D) SD values

Healthy v/s Ball Fault

Fig 7: (E) RMS values; (F) Skewness values; (G) Kurtosis values; (H) Crest Factor values

Healthy v/s Inner Race Fault

Fig 8: (A) Maxima values; (B) Minima values; (C) Mean values; (D) SD values

Healthy v/s Inner Race Fault Comparsion between Healthy And Inner Race Fault Comparsion between Healthy And Inner Race Fault Inner_007 Inner 014 Inner_021 0.2 Inner 028 ess Values RMS Values
o
o
o
+ Inner_007 0.2 Inner 014 Inner_021 Inner_028 100 150 200 250 50 100 150 200 250 Data Points Data Points Comparsion between Healthy And Inner Race Fault Comparsion between Healthy And Inner Race Fault 35 Inner 007 Normal Inner_014 Inner 007 30 Inner 014 Inner 021 Inner_028 Inner_021 25 Inner 028 Kurtosis Values Crest Factor Values 10 5

Fig 8: (E) RMS values; (F) Skewness values; (G) Kurtosis values; (H) Crest Factor values

250

100

150

Data Points

200

Healthy v/s Outer Race Fault

Fig 9: (A) Maxima values; (B) Minima values; (C) Mean values; (D) SD values

Healthy v/s Outer Race Fault

Fig 9: (E) RMS values; (F) Skewness values; (G) Kurtosis values; (H) Crest Factor values

Sample Dataset

max	min	mean	sd	rms	skewness	kurtosis	crest	form	fault
0.35986	-0.4189	0.01784	0.122746	0.124006	-0.11857118	-0.042219	2.901946	6.950855	Ball_007_1
0.46772	-0.36111	0.022255	0.132488	0.134312	0.174698897	-0.081548	3.482334	6.035202	Ball_007_1
0.35903	-0.32523	0.011007	0.10132	0.101891	-0.12557618	0.6391284	3.523651	9.257353	Ball_014_1
0.54532	-0.48545	0.01018	0.120743	0.121142	0.126083478	2.553367	4.501499	11.90015	Ball_014_1
0.72577	-0.73036	0.009639	0.202982	0.203161	0.047942123	0.1842567	3.572382	21.07694	Ball_021_1
0.50151	-0.47105	0.008832	0.153959	0.154174	-0.00079198	-0.23693	3.252875	17.45655	Ball_021_1
1.3458	-1.2283	0.022641	0.300779	0.301557	0.146702053	3.64727	4.462839	13.31935	IR_007_1
1.569	-1.4338	0.021687	0.265542	0.266361	-0.10401904	5.0606219	5.890501	12.28231	IR_007_1
0.75936	-0.74997	0.03125	0.201683	0.204041	-0.0317438	0.5473288	3.721611	6.529254	IR_014_1
0.91186	-0.60352	0.0306	0.17517	0.177781	0.059971278	1.49562	5.129128	5.809906	IR_014_1
1.6088	-2.0634	0.003246	0.528455	0.528336	-0.04758171	0.2216871	3.045031	162.789	IR_021_1
2.4619	-2.2568	0.010738	0.628748	0.628686	0.113583289	0.8544196	3.915947	58.54961	IR_021_1
4.2547	-4.1884	0.009404	1.029835	1.029627	0.081579377	3.3790519	4.132273	109.4864	OR_007_6_1
4.8594	-5.0869	0.010526	1.042177	1.041976	0.074873001	4.4782646	4.663639	98.99042	OR_007_6_1
0.49317	-0.47105	0.011703	0.144158	0.144597	-0.0291305	0.1495524	3.41064	12.35534	OR_014_6_1
0.51904	-0.43371	0.011712	0.130228	0.130722	0.023732985	0.4060898	3.970566	11.16152	OR_014_6_1
5.7584	-5.2509	0.01457	0.787581	0.787524	0.279032853	16.896728	7.312035	54.05178	OR_021_6_1
2.0458	-2.0358	0.014712	0.30929	0.309565	-0.1441385	10.124046	6.608634	21.04195	OR_021_6_1
0.19026	-0.17983	0.00935	0.065445	0.066094	-0.13616855	-0.369161	2.878627	7.069191	Normal_1
0.20194	-0.19067	0.010006	0.063999	0.064761	-0.17415557	-0.18361	3.118245	6.472259	Normal_1

Case Study 1: Effect of Load

		Fault	RPM/Load(HP)									
	Fault	Size	<u> </u>	1797/0			1772/1	,		1730/3		
	Type		Data Cat	Number of	G	D-4- C-4		G	Data Cat		G	
		(inches)	ŀ	l .	_		Number of	_	Data Set	1	-	
			ID	Classes	considered	ID	Classes	considered	ID	Classes	considered	
		0.007			40			40			40	
	Inner	0.014	D-4-	5	40	Data Set 5	5	40	Data Set 9	5	40	
	Race	0.021	Data Set 2		40			40			40	
	Fault	0.028			40			40			40	
Case	1	Normal			40			40			40	
Study 1		0.007			40			40			40	
	Ball	0.014	Data	5	40	Data Set 4	5	40	Data Set 8	5	40	
	Fault	0.021	Set 1		40			40			40	
	Taure	0.028	Set 1		40			40			40	
		Normal	1		40			40			40	
I												
I	0	0.007			40			40			40	
	Outer	0.014	Data	4	40	Data	4	40	Data	4	40	
	Fault	0.021	Set 3	Set 3	40	Set 6	- 1	40	Set 10		40	
	rauit	Normal			40			40			40	

CASE STUDY 2

>Effect of different sample size under different frequencies

		Fault		RPM/Load(HP)							
1	Sampleing	Size				- 10	1797/1	11-)			
	Frequencies	(inches)	Data Set	Number of	Samples	Data Set	Number of	Samples	Data Set	Number of	Samples
		(ID	Classes	considered	ID	Classes	considered	ID	Classes	considered
1		I.R_0.007			20			30			40
		I.R_0.014			20			30	1		40
1	i i	I.R_0.021		1 1	20			30	1		40
		I.R.,0.028			20			30	1		40
		Ball_0.007]	20			30		1 [40
	12 kHz	Ball_0.014	Data	12	20	Data	12	30	Data	12	40
	12	Ball_0.021	Set 12		20	Set 14	1.2	30	Set 16	12	40
	[Ball_0.028			20			30			40
	[O.R_0.007_6			20			30			40
		O.R_0.014_6			20			30			40
		O.R_0.021_6			20			30			40
		Normal			20			30			40
Case		I.R_0.007			20		10	30		10	40
Study		I.R_0.014			20	Data Set 11		30	Data Set 13		40
2		I.R_0.021			20			30			40
		Ball_0.007			20			30			40
		Ball_0.014		10	20			30			40
		Ball_0.021		10	20			30			40
		O.R_0.007_6			20			30			40
		O.R_0.014_6			20			30			40
		O.R.0.021.6			20			30			40
		Normal			20			30			40
	48 kHz										
		I.R_0.007			50						60
		I.R_0.014			50						60
		I.R_0.021			50						60
		Ball_0.007			50						60
		Ball_0.014	Data	10	50				Data	10	60
		Ball_0.021	Set 15		50				Set 17		60
		O.R.0.007.6			50						60
		O.R_0.014_6			50						60
		O.R_0.021_6			50						29 🚳
1	I I	Normal			50	l				1 1	60

Comparative Table Data Set 5

In the Table below Naïve Bayes is the most accurate predicting model; with an accuracy of 91.98%

Model	Accuracy	AUC	Recall	Prec.	F1	Kappa
Naive Bayes	0.9198	0.9085	0.9102	0.9072	0.9133	0.9145
Decision Tree Classifier	0.9042	0.8611	0.9182	0.9189	0.9007	0.9109
Random Forest Classifier	0.872	0.8573	0.879	0.9001	0.9087	0.9051
Quadratic Discriminant Analysis	0.8562	0.8457	0.8591	0.8983	0.8991	0.8728
Extra Trees Classifier	0.8329	0.8398	0.8561	0.8756	0.8976	0.8452
Light Gradient Boosting Machine	0.7996	0.8298	0.8494	0.8496	0.8796	0.8394
Logistic Regression	0.7692	0.8186	0.7987	0.8292	0.8592	0.8289
K Neighbors Classifier	0.7288	0.7896	0.7881	0.7988	0.8288	0.7693
Gradient Boosting Classifier	0.6988	0.759	0.7381	0.7588	0.7988	0.7383
Linear Discriminant Analysis	0.6872	0.7499	0.7256	0.7273	0.7472	0.7296
SVM - Linear Kernel	0.6756	0.6984	0.7049	0.6956	0.7256	0.6937
Ridge Classifier	0.6594	0.6723	0.6702	0.6725	0.6906	0.6666
Ada Boost Classifier	0.6344	0.6404	0.6503	0.6543	0.6775	0.6371

Data Set 13 for 40 samples

Light Gradient Boosting Machine is the most accurate predicting model; shown the Table below

with an accuracy of 96.21%

M.L Model's	Acc.	A.U.C	Sensitivity	Prec.	F-1	Kappa	M.C.C
Light Gradient Boosting Machine	0.9621	0.9967	0.9625	0.9649	0.9622	0.9579	0.9582
R.F Classifier	0.9609	0.9966	0.9611	0.9633	0.9609	0.9565	0.9568
G.B Classifier	0.9565	0.9963	0.9567	0.9595	0.9569	0.9517	0.9519
E.T Classifier	0.9565	0.9977	0.9568	0.9593	0.9565	0.9517	0.952
D.T Classifier	0.936	0.9644	0.9362	0.9403	0.9361	0.9289	0.9294
Q.D.A	0.9298	0.9933	0.9306	0.9372	0.9294	0.922	0.9229
L.R	0.9124	0.9912	0.9134	0.9168	0.9119	0.9026	0.9032
Naive Bayes	0.8987	0.9904	0.9004	0.9282	0.8982	0.8874	0.8913
L.D.A	0.8968	0.9892	0.8979	0.9161	0.8962	0.8854	0.8878
K.N.N Classifier	0.8676	0.9718	0.8688	0.8681	0.8632	0.8529	0.8539
Ridge Classifier	0.6824	0	0.6852	0.7243	0.6602	0.6471	0.6605
SVM - Linear Kernel	0.6551	0	0.6583	0.6524	0.6066	0.6168	0.6418
Ada Boost Classifier	0.3219	0.7028	0.31	0.2309	0.2419	0.243	0.379

Results and discussion: Confusion Matrix

Results and discussion: Learning Curve

Results and discussion: Decision Boundary

Results and discussion: R.O.C Curve

Results and discussion: Feature Importance

Results and discussion: K-Fold Cross Validation

K-Fold Cross Validation for Random Forest Classifier

100.00
95.00
90.00
85.00
1 2 3 4 5 6 7 8 9 10
No. of Folds

Case study 1

Case Study 2

Comparison of K-Fold Cross Validation for Bearing Inner Race

Comparison of K-Fold Cross validation of Accuracies for Bearing Inner Race

➤ Comparison of K-Fold Cross Validation for Ball Bearing

Comparison of K-Fold Cross validation for Accuracies

Comparison of K-Fold Cross Validation for Bearing Outer Race

Comparison of Outer Race of Bearings

Comparison of K-Fold Cross validation for Accuracies

Comparison of K-Fold Cross Validation for different sample sizes at 48 k

Comparison of K-Fold Cross validation for Accuracies

Comparison of K-Fold Cross Validation for different sample sizes at 12 k

Comparison of K-Fold Cross validation for Accuracies

Concluding Remarks for case study 1

- Machine learning algorithm performed with respect to the load.
- The best performance seemed to be with the Ohp curve but this ambiguity leads to a dual check in the studies done with respect to the effect of frequency and location.
- Overall the results show that there is a proportional effect on the classification accuracy due to load variation.

Concluding Remarks for case study 2

- The performance of 12Khz curve was better than the 48khz when the sample size was small.
- ➤ But as the sample size increases performance of 48khz curve becomes better.
- ➤ 60 samples can be accurately be used to measure the sample size.
- ➤ A large sample size is always recommended.
- The results show that the sample size has a proportional effect on classification accuracy.

References

causes-and-methods-to-protect-against-it/
[2] A.M. Lancha*, M. Serrano, J. LapenÄ a, D. Go mezBricenÄ o, "Failure analysis of a river water circulating pump shaft," Engineering Failure

[1] https://www.cbmconnect.com/electrical-discharge-machining-identifying-root-

[3] https://tribology.co.uk/articles-papers/gearbox-gear-problems/

[4] Levent Eren, Turker Ince, and Serkan Kiranyaz. A generic intelligent bearing

Analysis, vol. 8, pp. 271-291, 2001.

fault diagnosis system using compact adaptive 1d cnn classifier. Journal of Signal Processing Systems, 91(2):179–189, 2019.

[5]Matteo Barbieri, Roberto Diversi, and Andrea Tilli. Condition monitoring of ball bearings using estimated ar models as logistic regression features. In 2019 18th European Control Conference (ECC), pages 3904–3909. IEEE,

2019.
[6] Apostolos Xenakis, Anthony Karageorgos, Efthimios Lallas, Adriana E Chis, and Horacio Gonz'alez-V'elez. Towards distributed iot/cloud based fault detection and maintenance in industrial automation. Procedia Computer Science, 151:683–690,2019.

References

- [7] Laith S Sawaqed and Ayman M Alrayes. Bearing fault diagnostic using machine learning algorithms. Progress in Artificial Intelligence, 9(4):341–350, 2020.
- [8] Jaskaran Singh, Moslem Azamfar, Fei Li, and Jay Lee. A systematic review of machine learning algorithms for prognostics and health management of rolling element bearings: fundamentals, concepts and applications. Measurement Science and Technology, 32(1):012001, 2020.
- [9]Dhiraj Neupane and Jongwon Seok. Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review. IEEE Access, 8:93155–93178, 2020.
- [10] Ali Moshrefzadeh. Condition monitoring and intelligent diagnosis of rolling element bearings under constant/variable load and speed conditions. Mechanical Systems and Signal Processing, 149:107153, 2021.
- [11]https://www.analyticsvidhya.com/blog/2022/02/k-fold-cross-validation-technique-and-its-essentials/
- [12]www.engineering.case.edu/bearingdatacenter/apparatus-and procedures.

Thank You