JINGYAO ZHANG

💌 jzhan502@ucr.edu | 🞓 Google Scholar | 🔏 Homepage | 🗘 GitHub | 🛅 LinkedIn | 🗣 Riverside, USA

EDUCATION

University of California, Riverside

Riverside, USA

Ph.D. student in Computer Science; GPA: 3.71/4.00

Sep 2021 - Present

Advisor: Prof. Elaheh Sadredini

Xidian University Xi'an, China

M.E. in Electronic and Telecommunications Engineering; Outstanding Thesis Award

Sep 2018 - Jun 2021 Xi'an, China

B.E. in Telecommunications Engineering; Pilot Class (Top 5% of 800+)

Sep 2014 - Jun 2018

Publications

Xidian University

1. Jingyao Zhang, Mohsen Imani, and Elaheh Sadredini. "BP-NTT: Fast and Compact in-SRAM Number Theoretic Transform with Bit-Parallel Modular Multiplication." In Proc. of the 60th Design Automation Conference (DAC). July 2023 (to appear). (acceptance *rate: 23%)* [paper]

- 2. Jingyao Zhang, and Elaheh Sadredini. "Inhale: Enabling High-Performance and Energy-Efficient In-SRAM Cryptographic Hash for IoT." In Proc. of the 41th International Conference on Computer-Aided Design (ICCAD). November 2022. (acceptance rate: 22.5%) [paper] [doi]
- 3. Jingyao Zhang, Hoda Naghibijouybari, and Elaheh Sadredini. "Sealer: In-SRAM AES for High-Performance and Low-Overhead Memory Encryption." In Proc. of the 22th International Symposium on Low Power Electronics and Design (ISLPED). August 2022. (acceptance rate: 25%) [paper] [doi]
- 4. Jingyao Zhang, Huaxi Gu, Li Zhang, Bing Li, and Ulf Schlichtmann. "Hardware-Software Codesign of Weight Reshaping and Systolic Array Multiplexing for Efficient CNNs." In Proc. of the 24th Design, Automation and Test in Europe (DATE). February 2021. (acceptance rate: 24%) [paper] [doi]

RESEARCH EXPERIENCE

AREA Lab, University of California, Riverside

Advisor: Prof. Elaheh Sadredini

Graduate Research Assistant

Sep 2021 - Present

- · Currently developing a framework to seamlessly integrate in-SRAM computing into existing computer systems for efficient and secure on-chip processing of pre- and post-quantum cryptography.
- Developed a bit-parallel modular multiplication algorithm with implicit shifting technology for efficient and secure in-SRAM computing of the NTT, optimizing performance on a low-overhead SRAM array.
- Designed a secure in-SRAM architecture for on-chip acceleration of the SHA-3 algorithm using lane-wise data alignment and in-place read/write strategy, achieving high energy and area efficiency with high throughput.
- Designed a secure in-SRAM architecture for on-chip acceleration of the AES algorithm using row-wise data alignment and SubBytes/ShiftRows stage fusion, achieving high energy and area efficiency.

Advanced Networking Technology Lab, Xidian University

Graduate Research Student

Advisor: Prof. Huaxi Gu Sep 2018 - Jun 2021

- Developed a hardware-software co-design framework for efficient CNNs, leveraging weight reshaping and systolic array multiplexing with genetic algorithms for optimal hardware performance.
- Built a distributed inference system for accelerating CNNs using systolic array on FPGAs, with HLS for low-level hardware description and Aurora/Ethernet protocols for inter-board communication.
- Designed a flexible and compact N × N plasmonic switch topology with a dedicated configuration algorithm that ensures re-arrangeable non-blocking, making it ideal for managing mixed traffic in data centers.
- Designed a low-loss compact plasmonic router for mesh networks in optical Network-on-Chip, exhibiting lower insertion loss and a smaller footprint compared to other structures.

TEACHING EXPERIENCE

CS 213 Multiprocessor Architecture and Programming

Teaching Assistant

Sep 2022 - Dec 2022

- Led two discussion sessions of students' presentations. • Held weekly office hours to answer students' questions.
- Graded homework and programming assignments.

Instructor: Prof. Elaheh Sadredini

gem5 Boot Camp Davis, USA

Participant Jul 2022 – Jul 2022

• Simulated and analyzed the performance of computer architectures, and studied the behavior of different workloads and benchmark suites on various computer architectures.

• Evaluated the impact of different design choices on system performance, such as varying cache sizes or using different interconnect topologies, and explored the effects of different microarchitectural features.

Xilinx Summer Camp

Online

Participand & Team Leader

Jul 2020 - Aug 2020

• Developed an FPGA-based distributed platform for acceleration over Ethernet, with the mother board sending a file to a watched folder on the child board for immediate program execution. [source]

Microsoft Innovation Center

Xi'an, China

Intern

Jul 2017 - Aug 2017

• Explored the advancements and challenges in the evolution of cellular networks across generations, starting from the early analog systems to the 5G technology.

PRESENTATIONS

- 1. **Jingyao Zhang**. "Inhale: Enabling High-Performance and Energy-Efficient In-SRAM Cryptographic Hash for IoT." *In Proc. of the* 41th International Conference on Computer-Aided Design (ICCAD). San Diego, CA. [slides] [video] Nov 2022
- 2. **Jingyao Zhang**. "Sealer: In-SRAM AES for High-Performance and Low-Overhead Memory Encryption." *In Proc. of the 22th International Symposium on Low Power Electronics and Design (ISLPED). Boston, MA.* [slides] [video] Aug 2022
- 4. **Jingyao Zhang**. "Hardware-Software Codesign of Weight Reshaping and Systolic Array Multiplexing for Efficient CNNs." *In Proc. of the 24th Design, Automation and Test in Europe (DATE). Online*. [slides] [video] *Feb 2021*

AWARDS & ACHIEVEMENTS

Dean's Distinguished Fellowship Award, University of California, Riverside	2021
Outstanding Thesis Award, Xidian University	2021
First-class Scholarship, Xidian University (Top 14% of 560+)	2018, 2019
Outstanding Student Award, Xidian University	2018, 2019

SKILLS

Programming: C, C++, Python, Verilog

Technologies: gem5, Sniper, HSpice, PyTorch, Xilinx Vivado, Omnet++ **Languages:** Chinese (Native), English (Professional), Korean (Elementary)