

Winning Space Race with Data Science

Juan de Souza Ferreira Out/06/2021

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Data collection methodology
- Perform data wrangling
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification modelsSummary of all results

Introduction

 In this project, it was collected data from SpaceX API to create a dataset. With this dataset, we can extract some insights from graphic plots. We can also analyze and extract insights from Pandas DataFrames

 The focus of this project is create a Machine Learning model to predict whether a landing will be successful or not for future lauches, based on data collected from the Spacex API

Methodology

Executive Summary

- Data collection methodology:
 - The data was collected from SpaceX API, using requests library from Python. The Pandas library was used to convert JSON format (API response) to DataFrame
- Perform data wrangling
 - Describe how data was processed
 - To fill null numeric data, we used the mean of the feature in question. It was used a numpy and pandas library to do that.
- Perform exploratory data analysis (EDA) using visualization and SQL
 - We used a matplotlib library to explory and plot data. With SQL we extract some important information

Methodology

Executive Summary

- Perform interactive visual analytics using Folium and Plotly Dash
 - With Folium, we can extract some information about distance and map visualization. Plotly Dash provide us a interactive way to see plots and charts
- Perform predictive analysis using classification models
 - We used GridSearchCV to find the best parameters for Logistic Regression, SVM, Decision Tree, KNN models.

Data Collection

Requests library was used to get data from SpaceX API.
 The SpaceX API returns a data in JSON format, this data was converted into a DataFrame using a Pandas library.

BeautifulSoup (BS4) library was used to get data from Wikipedia.
 We parsed the HTML provided from the BS4 to Pandas
 DataFrame

Data Collection – SpaceX API

F	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	Launch Site	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Seri
)	1	2006- 03-24	Falcon 1	20.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin1
1	2	2007- 03-21	Falcon 1	NaN	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin2
2	4	2008- 09-28	Falcon 1	165.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin2
3	5	2009- 07-13	Falcon 1	200.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin3
4	6	2010- 06-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B000

- Above we can see how data is stored into Pandas DataFrame. In Data Wrangling step, we'll choose some features that'll help us in the forward steps
- GitHub URL of Data Collection step: Applied Data Science Capstone/Data Collection API.ipynb at main · Juanszf/Applied Data Science Capstone (github.com)

Data Collection - Scraping

[14]:		Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
Ī	0	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	v1.0B0003.1	Failure	4 June 2010	18:45
	1	2	CCAFS	Dragon	0	LEO	NASA (COTS)\nNRO	Success	F9 v1.0B0004.1	Failure	8 December 2010	15:43
	2	3	CCAFS	Dragon	525 kg	LEO	NASA (COTS)	Success	v1.0B0005.1	No attempt\n	22 May 2012	07:44
	3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA (CRS)	Success\n	V1.0B0006.1	No attempt	8 October 2012	00:35
	4	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA (CRS)	Success\n	V1.0B0007.1	No attempt\n	1 March 2013	15:10
		100	55251	222	8720	3049	222	944	2250	0.440		112
	116	117	CCSFS	Starlink	15,600 kg	LEO	SpaceX	Success\n	F9 B5B1051.10	Success	9 May 2021	06:42
	117	118	KSC	Starlink	~14,000 kg	LEO	SpaceX Capella Space and Tyvak	Success\n	F9 B5B1058.8	Success	15 May 2021	22:56
	118	119	CCSFS	Starlink	15,600 kg	LEO	SpaceX	Success\n	F9 B5B1063.2	Success	26 May 2021	18:59
	119	120	KSC	SpaceX CRS-22	3,328 kg	LEO	NASA (CRS)	Success\n	F9 B5B1067.1	Success	3 June 2021	17:29
	120	121	CCSFS	SXM-8	7,000 kg	GTO	Sirius XM	Success\n	F9 B5	Success	6 June 2021	04:26

• Above we can see how data is stored into Pandas DataFrame. In Data Wrangling step, we'll choose some features that'll help us in the forward steps

• GitHub URL of Data Collection step: Applied Data Science Capstone/Web Scrapping.ipynb at main · Juanszf/Applied Data Science Capstone (github.com)

Data Wrangling

```
In [121]: data falcon9.isnull().sum()
Out[121]: FlightNumber
          Date
          BoosterVersion
          PayloadMass
          Orbit
          LaunchSite
          Outcome
          Flights
          GridFins
          Reused
          Legs
          LandingPad
          Block
          ReusedCount
          Serial
          Longitude
          Latitude
          dtype: int64
```

- As shown above, Payload Mass column has five null values. One way to solve that is replace the null values for the mean of the Payload Mass column
- We used replace method to replace the np.nan values for 6123.54 (mean of Payload Mass)

Data Wrangling

- As shown above, the column "Landing Outcome" bring to us if the landing is successful
 or not
- We associated the false results to "Class O" and the true results to "Class 1"
- The Class column was added to DataFrame, this will help us in the forwards steps
- GitHub URL of Data Collection step: Applied Data Science Capstone/Data Wrangling.ipynb at main · Juanszf/Applied Data Science Capstone (github.com)

EDA with Data Visualization

Summary of charts were plotted in this project:

- Categorical Plot: It was used to visualize the relations of two features
- Bar Plot: It was used to visualize the rate of successfully landing per orbit
- Line Plot: It was used to visualize the increasing of successfully landing over the time

GitHub URL of Data Collection step:
 Applied Data Science Capstone/Data Wrangling.ipynb at main · Juanszf/Applied Data Science Capstone (github.com)

EDA with SQL

Summary of SQL queries we performed

- %%sql SELECT DISTINCT launch_site FROM SPACEXTBL
- %%sql SELECT * FROM SPACEXTBL WHERE (lower(launch_site) LIKE 'cca%') LIMIT 5
- %%sql SELECT sum(payload_mass__kg_) AS Total_Payload_Mass_NASA

FROM SPACEXTBL WHERE (customer LIKE 'NASA (CRS)')

%%sql SELECT avg(payload_mass_kg_) AS avg_payload_mass_f9_v1_1

FROM SPACEXTBL WHERE (booster_version LIKE 'F9 v1.1')

- %%sql SELECT min(date) AS first_success FROM SPACEXTBL WHERE (landing_outcome LIKE 'Success (ground pad)')
- %%sql SELECT booster_version FROM spacextbl WHERE (mission_outcome LIKE 'Success') AND (payload_mass__kg_ BETWEEN 4000 AND 6000)
- %%sql SELECT mission_outcome, COUNT(*) AS total FROM spacextbl GROUP BY mission_outcome
- %%sql SELECT booster_version AS booster_with_max_payload_mass FROM spacextbl WHERE payload_mass__kg_ IN (SELECT max(payload_mass__kg_) FROM SPACEXTBL)
- %%sql SELECT booster_version, launch_site FROM spacextbl WHERE (landing_outcome LIKE 'Failure (drone ship)') AND (year(date) = 2015)
- %%sql SELECT landing_outcome as landing_outcome, COUNT(*) AS total FROM spacextbl WHERE date BETWEEN '2010-06-04' AND '2017-03-20'
 GROUP BY landing_outcome ORDER BY total DESC

Build an Interactive Map with Folium

Summary of map objects we use in Folium:

- Circles: It was used to indicate the launch locations
- Lines: It was used to indicate the distance between the launch locations and nearest airport

• GitHub URL: Applied Data Science Capstone/Interactive Visual Analytics with Folium lab.ipynb at main · Juanszf/Applied Data Science Capstone (github.com)

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

We build four models of machine learning:

- Logistic Regression
- Support Vector Machine (SVM)
- Decision Tree
- K-nearest neighbors
- GridSearchCV was used to find the best parameters for each machine learning model

• GitHub URL: Applied Data Science Capstone/Machine Learning Prediction.ipynb at main · Juanszf/Applied Data Science Capstone (github.com)

Flight Number vs. Launch Site

This plot shows an increasing of successful landing over the flight number

Payload vs. Launch Site

CCAFS SLC40 Analysis

CCAFS SLC 40 has more Launches then VAFB SLC 4E and KSC LC39A Most Flights of CCAFS SLC 40 has the Payload Mass between 0 and 8000 (kg)

- VAFB SLC 4E
 - Is often used for a specific Payload Mass, due a crowding points near 10000 (kg)
- KSC LC 39A

Is the less used Launch Site, but has a interesting rate of flight success

Success Rate vs. Orbit Type

ES-L1, GEO, HEO, SSO have the highest sucess rate

Flight Number vs. Orbit Type

ES-L1, GEO, HEO, SSO have the highest sucess rate, but they have a fewer launches

Payload vs. Orbit Type

Launch Success Yearly Trend

We can observe that the sucess rate since 2013 kept increasing till 2020

All Launch Site Names

- CCAFS LC-40
- CCAFS SLC-40
- KSC LC-39A
- VAFB SLC-4E

%%sql SELECT DISTINCT launch_site FROM SPACEXTBL

With this query we displayed the name of all launch site names

Launch Site Names Begin with 'CCA'

[16]:	%%sql SELECT * FROM SPACEXTBL WHERE (lower(launch_site) LIKE 'cca%') LIMIT 5													
	* ibm_ Done.	_db_sa://q	js22631:***@mba	99a9e6-d59e	-4883-8fc0-d6a8c9f7a08	3f.c1ogj3sd0tgtu0l	qde00.	databases.a	appdomain.cloud	:31321/bludb				
ut[16]:	DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome				
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)				
	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)				
	2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt				
	2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt				
	2013-	15:10:00	F9 v1.0 B0007	CCAFS LC-	SpaceX CRS-2	677	LEO	NASA (CRS)	Success	No attempt				

Total Payload Mass

Average Payload Mass by F9 v1.1

```
In [22]: %%sql SELECT avg(payload_mass_kg_) AS avg_payload_mass_f9_v1_1
FROM SPACEXTBL
WHERE (booster_version LIKE 'F9 v1.1')

* ibm_db_sa://qjs22631:***@mba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:31321/bludb
Done.

Out[22]: avg_payload_mass_f9_v1_1

2928
```

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

```
In [28]: %%sql
                   SELECT booster version
                   FROM spacextbl
                   WHERE (mission_outcome LIKE 'Success') AND (payload_mass_kg_ BETWEEN 4000 AND 6000)
            * ibm_db_sa://qjs22631:***@mba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:31321/bludb
          Done.
Out[28]:
           booster_version
                   F9 v1.1
              F9 v1.1 B1011
              F9 v1.1 B1014
              F9 v1.1 B1016
              F9 FT B1020
              F9 FT B1022
              F9 FT B1026
              F9 FT B1030
             F9 FT B1021.2
             F9 FT B1032.1
             F9 B4 B1040.1
             F9 FT B1031.2
             F9 FT B1032.2
             F9 B4 B1040.2
             F9 B5 B1046.2
             F9 B5 B1047.2
             F9 B5 B1046.3
               F9 B5B1054
             F9 B5 B1048.3
             F9 B5 B1051.2
              F9 B5B1060.1
             F9 B5 B1058.2
              F9 B5B1062.1
```

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

```
In [30]: %%sql SELECT booster_version AS booster_with_max_payload_mass
                  FROM spacextbl
                  WHERE payload_mass_kg_ IN (SELECT max(payload_mass_kg_) FROM SPACEXTBL)
           * ibm_db_sa://qjs22631:***@mba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:31321/bludb
          Done.
Out[30]:
          booster_with_max_payload_mass
                          F9 B5 B1048.4
                          F9 B5 B1049.4
                          F9 B5 B1051.3
                          F9 B5 B1056.4
                          F9 B5 B1048.5
                          F9 B5 B1051.4
                          F9 B5 B1049.5
                          F9 B5 B1060.2
                          F9 B5 B1058.3
                          F9 B5 B1051.6
                          F9 B5 B1060.3
                          F9 B5 B1049.7
```

2015 Launch Records

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
In [33]: %%sql
                  SELECT landing outcome as landing outcome, COUNT(*) AS total
                  FROM spacextbl
                  WHERE date BETWEEN '2010-06-04' AND '2017-03-20'
                  GROUP BY landing outcome
                  ORDER BY total DESC
           * ibm db sa://qjs22631:***@mba99a9e6-d59e-4883-8fc0-d6a8c9f7a08f.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:31321/bludb
          Done.
Out[33]:
              landing outcome total
                    No attempt
             Failure (drone ship)
            Success (drone ship)
              Controlled (ocean)
           Success (ground pad)
             Failure (parachute)
            Uncontrolled (ocean)
           Precluded (drone ship)
```


Map view of launch sites

Pins of launch site locations

Map with launch outcomes distribuition

Map with the distance to nearest city airport

Launch Success by Launch Sites

KSC LC-39A have the highest success rate

KSC LC-39A LAUNCHES

Payload Mass and Success correlation

Classification Accuracy

Logistic Regression accuracy: 0,83

SVM accuracy: 0,83Decision Tree: 0,66

KNN accuracy: 0,83

Confusion Matrix

The confusion matrix shows us that the model predicts successful landings well, but We see that the major problem is false positives.

Conclusions

- All machine learning models have high accuracy, we can use any
- We have an improvement in the successful landing rate over time, which shows an upward trend in the success rate
- The launch locations have a safety distance from cities and roads
- We can predict 80% of successful landing, so, we can determine the coast of 80% of launches

