Simple methods for the top generalized eigenvector Thomas P. Minka October 29, 2003

1 Introduction

This paper is concerned with finding the vector \mathbf{x} which maximizes the Rayleigh quotient

$$f(\mathbf{x}) = \frac{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{x}} \tag{1}$$

The matrices \mathbf{A} , \mathbf{B} are assumed to be real, symmetric, and positive definite (denoted \mathbf{A} , $\mathbf{B} > 0$).

2 Power method

The power method repeatedly maximizes a lower bound on the Rayleigh quotient.

Lemma If $\mathbf{A}, y > 0$, the function $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} / y$ is convex in (\mathbf{x}, y) .

Proof sketch It is straightforward to show that x^2/y is convex in (x, y) by inspecting the second derivative matrix. From this we can conclude that $\sum_i x_i^2/y = \mathbf{x}^T \mathbf{x}/y$ is convex, therefore so is $(\mathbf{U}\mathbf{x})^T(\mathbf{U}\mathbf{x})/y = \mathbf{x}^T(\mathbf{U}^T\mathbf{U})\mathbf{x}/y$. Finally $\mathbf{A} > 0$ implies $\mathbf{A} = \mathbf{U}^T\mathbf{U}$ for some \mathbf{U} .

Convexity implies that the tangent plane at any point (\mathbf{x}_0, y_0) is a lower bound:

$$\frac{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{y} \geq \frac{2 \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}_{0}}{y_{0}} - \frac{\mathbf{x}_{0}^{\mathrm{T}} \mathbf{A} \mathbf{x}_{0}}{y_{0}^{2}} y \quad \text{if } \mathbf{A}, y > 0$$
 (2)

Applying this bound to the Rayleigh quotient gives a quadratic function in \mathbf{x} :

$$\frac{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{x}} \geq \frac{2 \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}_{0} - f(\mathbf{x}_{0}) \mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{x}}{\mathbf{x}_{0}^{\mathrm{T}} \mathbf{B} \mathbf{x}_{0}}$$
(3)

This bound is maximum when

$$\mathbf{B}\mathbf{x} = \mathbf{A}\mathbf{x}_0 / f(\mathbf{x}_0) \tag{4}$$

Thus, repeatedly solving (4), where \mathbf{x}_0 is the old guess for \mathbf{x} , will converge to a (local) maximum of f. When $\mathbf{B} = \mathbf{I}$, this is the usual power method for finding the top eigenvector of a matrix. When $\mathbf{B} \neq \mathbf{I}$, the most efficient way to solve (4) is to precompute the Cholesky decomposition of \mathbf{B} . However, decomposing \mathbf{B} can be expensive. The next sections consider alternatives to solving (4).

3 Relaxed power method

We don't need to precisely maximize the lower bound at each step for the power method to converge. We only need to take a step uphill on the quadratic surface. In particular, we can go to the maximum of the bound along some direction **u**. This maximum is

$$\mathbf{x} = \mathbf{x}_0 - \mathbf{u} \frac{\mathbf{g}^{\mathrm{T}} \mathbf{u}}{\mathbf{u}^{\mathrm{T}} \mathbf{H} \mathbf{u}} \tag{5}$$

$$\mathbf{g} = \mathbf{A}\mathbf{x}_0 - f(\mathbf{x}_0)\mathbf{B}\mathbf{x}_0 \tag{6}$$

$$\mathbf{H} = -f(\mathbf{x}_0)\mathbf{B} \tag{7}$$

One iteration of this algorithm costs $O(n^2)$, compared to $O(n^3)$ for (4). Note that when $\mathbf{B} = \mathbf{I}$, the gradient leads to the true maximum and (5) is equivalent to (4).

The direction for the line search can simply be the gradient \mathbf{g} , but a better approach is to use a conjugated gradient based on the last search direction.

4 Analytic line search

Instead of doing a line search on a lower bound, we can do a line search directly on the Rayleigh quotient. It turns out that this line search can be performed analytically.

$$\mathbf{x} = \mathbf{x}_0 + a\mathbf{u} \tag{8}$$

$$f(\mathbf{x}) = \frac{\mathbf{x}_0^{\mathrm{T}} \mathbf{A} \mathbf{x}_0 + 2a \mathbf{x}_0^{\mathrm{T}} \mathbf{A} \mathbf{u} + a^2 \mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{u}}{\mathbf{x}_0^{\mathrm{T}} \mathbf{B} \mathbf{x}_0 + 2a \mathbf{x}_0^{\mathrm{T}} \mathbf{B} \mathbf{u} + a^2 \mathbf{u}^{\mathrm{T}} \mathbf{B} \mathbf{u}}$$
(9)

$$= f(\mathbf{u}) + \frac{(\mathbf{x}_0^{\mathrm{T}} \mathbf{A} \mathbf{x}_0 - \mathbf{x}_0^{\mathrm{T}} \mathbf{B} \mathbf{x}_0 f(\mathbf{u})) + 2a(\mathbf{x}_0^{\mathrm{T}} \mathbf{A} \mathbf{u} - \mathbf{x}_0^{\mathrm{T}} \mathbf{B} \mathbf{u} f(\mathbf{u}))}{\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{x}}$$
(10)

$$\frac{df(\mathbf{x})}{da} = \frac{c_0 + ac_1 + a^2c_2}{\mathbf{x}^T\mathbf{B}\mathbf{x}}$$
 (11)

$$c_0 = (\mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{x}_0) (\mathbf{x}_0^{\mathrm{T}} \mathbf{B} \mathbf{x}_0) - (\mathbf{u}^{\mathrm{T}} \mathbf{B} \mathbf{x}_0) (\mathbf{x}_0^{\mathrm{T}} \mathbf{A} \mathbf{x}_0)$$
(12)

$$c_1 = (\mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{u}) (\mathbf{x}_0^{\mathrm{T}} \mathbf{B} \mathbf{x}_0) - (\mathbf{u}^{\mathrm{T}} \mathbf{B} \mathbf{u}) (\mathbf{x}_0^{\mathrm{T}} \mathbf{A} \mathbf{x}_0)$$
(13)

$$c_2 = (\mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{u}) (\mathbf{u}^{\mathrm{T}} \mathbf{B} \mathbf{x}_0) - (\mathbf{u}^{\mathrm{T}} \mathbf{B} \mathbf{u}) (\mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{x}_0)$$
(14)

Setting the gradient to zero gives a quadratic equation for a, which is easily solved. The root producing the maximum is

$$a = \frac{-c_1 - \sqrt{c_1^2 - 4c_0c_2}}{2c_2} \tag{15}$$

As before, the search direction should be a conjugated gradient.

5 Results

Finding the top eigenvector of a random 100×100 matrix:

Finding the top generalized eigenvector, A and B both random 100×100 matrices:

CG does very well when $\mathbf{B} = \mathbf{I}$, but falls flat in the generalized case. I would be interested if anyone can explain why.