SpaceFlight Mechanics and Controls

A Brief Textbook Presented to the Student Body of the University of South Alabama

Last Update: June 10, 2020 Copyright © Carlos José Montalvo

Abstract

A CubeSAT is a small satellite on the order of 10 centimeters along each axis. A 1U satellite is a small cube with 10 cm sides. These satellites are used for a variety of missions and created by a variety of different organizations. When deployed from a rocket, a CubeSAT may obtain a large angular velocity which must be reduced before most science missions or communications can take place. Maximizing solar energy charging also involves better pointing accuracy. To control the attitude of these small satellites, reaction wheels, magnetorquers and even the gravity gradient are used in low earth orbit (LEO) while reaction control thrusters are typically used in deep space. On a standard LEO CubeSAT, 3 reaction wheels are used as well as 3 magnetorquers. In the initial phase of the CubeSAT mission, the magnetorquers are used to reduce the angular velocity of the satellite down to a manageable level. Once the norm of the angular velocity is low enough, the reaction wheels can spin up reducing the angular velocity to zero. At this point a Sun finding algorithm is employed to find the Sun and fully charge the batteries. In LEO two independent vectors are obtained, the Sun vector and the magnetic field vector, to determine the current attitude of the vehicle which is typically called attitude determination. Other sensors such as horizon sensors, star trackers and even lunar sensors can be used to obtain the quaternion of the vehicle. This paper investigates the necessary mathematics to understand the intricacies of guidance, navigation and control specifically discussing the attitude determination and controls subsystem (ADACS).

x, y, z	components of the mass center position vector in the inertial frame (m)
ϕ, θ, ψ	Euler roll, pitch, and yaw angles (rad)
q_0, q_1, q_2, q_3	quaternions
u, v, w	components of the mass center velocity vector in the body frame (m/s)
* *	
p,q,r	components of the mass center angular velocity vector in the body frame (rad/s)
$ec{\omega}_{B/I}$	angular velocity vector of the satellite in the body frame (rad/s)
\mathbf{T}_{IB}	rotation matrix from frame I to frame B
\mathbf{H}	relationship between angular velocity components in body frame and derivative of Euler angles
m	mass (kg)
I	mass moment inertia matrix about the mass center in the body frame $(kg - m^2)$
X, Y, Z	components of the total force applied to CubeSAT in body frame (N)
L, M, N	components of the total moment applied to CubeSAT in body frame (N-m)
$\vec{r}_{A \to B}$	position vector from a generic point A to a generic point B (m)
$ec{r}_{A o B}\ ec{V}_{A/B}$	velocity vector of a generic point A with respect to a generic frame B (m/s)
$\mathbf{S}(ec{r})$	skew symmetric matrix operator on a vector. Multiplying this matrix by a vector is equivalent

to a cross product

Manuscript Changes

1. June 10th, 2020

Contents

1		6
	· ·	6
2	Rigid Bodies	6
	•	7
	2.2 Rotational Dynamics	7
3	Attitude Parameterization of Rigid Bodies	8
		8
	3.1.1 General 3-2-1 Sequence	8
	3.1.2 Derivatives	9
		9
	8	9
	·	9
	· ·	9
	· ·	.0
	· ·	.0
	3.2.4 Quaternion Operations	.0
4	Spaceflight Equations of Motion 1	1
	4.1 Translational Equations of Motion	. 1
	4.2 Reaction Wheel Model	.1
	4.3 Attitude Equations of Motion	2
5	External Models	2
	5.1 Magnetic Field Model	.3
	5.2 Gravitational Models	.5
	5.3 Earth Orbital Elements	6
6	External Forces and Moments	8
	6.1 Propulsion Model	8
	6.2 Magnetorquer Model	9
7	Control Schemes	9
	7.1 B-dot Controller	.9
	7.2 Reaction Wheels	20
	7.3 Reaction Control Thrusters	1
	7.4 Cross Products of Inertia	21
8	Numerical Integration Techniques 2	1
		21
	8.2 Euler's Method	2
		22
	8.4 Discrete Dynamics	22
9	Attitude Determination 2	2
		22
		23
	9.3 Deep Space	23
	• •	23

10	State Estimation	2 4
	10.1 Sensor Measurement	24
	10.2 Linear Least Squares	24
	10.3 Weighted Least Squares	26
	10.4 A Priori Knowledge of the State Vector	26
	10.5 Complimentary Filter	26
	10.6 Sequential Linear Estimator	27
	10.7 The Continuous Time Complimentary Filter	28
	10.8 The Continuous Discrete Kalman Filter	28
	10.9 Kalman Filter for Spacecraft Dynamics	29
	10.10Extended State Kalman Filter	30

1 Particle Dynamics

1.1 Systems of Particles

For this formulation we start with Newton's Second Law with no approximations. Similar dynamic forumlations can be found in [1, 2, 3, 4].

$$\sum_{i=0}^{N} \vec{F}_{ji} = \frac{d\vec{p}_j}{dt} \tag{1}$$

where \vec{p}_j is the momentum of a particle. \vec{F}_{ji} is a force on the particle. The statement above states that sum of all forces on a particle is equal to the time rate of change of momentum. If two particles are then considered the equation can be written for both particles.

$$\sum_{i=0}^{N} \vec{F}_{1i} + \vec{f}_{12} = \frac{d\vec{p}_1}{dt} \quad \sum_{i=0}^{N} \vec{F}_{2i} + \vec{f}_{21} = \frac{d\vec{p}_2}{dt}$$
 (2)

Note that the forces \vec{f}_{12} and \vec{f}_{21} are internal forces experienced by each particle exerted on each other since they are rigidly connected. Newton's Third Law states that for every action there is an equal and opposite reaction. That is, $\vec{f}_{12} = -\vec{f}_{21}$. Thus, if both equations are added the following equation is created

$$\sum_{j=0}^{P} \sum_{i=0}^{N} \vec{F}_{ji} = \sum_{j=0}^{P} \frac{d\vec{p}_{j}}{dt}$$
 (3)

where P is the number of particles. Typically the double summation in F is written just as \vec{F} .

1.2 Rotational Dynamics for Systems of Particles

Note that by construction, a system of particles rigidly connected can now rotate about a center point. The center of mass of a system of particles can be defined using the relationship below

$$\vec{r}_C = \frac{1}{m} \sum_{j=0}^{P} m_j \vec{r}_j \tag{4}$$

where

$$m = \sum_{j=0}^{P} m_j \tag{5}$$

This vector can then be used to create rotational dynamics starting with the linear dynamics.

$$\sum_{j=0}^{P} \sum_{i=0}^{N} \mathbf{S}(\vec{r}_{Cj}) \vec{F}_{ji} = \vec{M}_{C} = \sum_{j=0}^{P} \mathbf{S}(\vec{r}_{Cj}) \frac{d\vec{p}_{j}}{dt}$$
 (6)

where $\mathbf{S}(\vec{r}_{Cj})$ is the skew symmetric matrix of the vector from the center of mass to the jth particle which results in a cross product. The skew symmetric operator is denoted by $\mathbf{S}()$.

$$\mathbf{S}(\vec{r}_{Cj}) = \begin{bmatrix} 0 & -z_{Cj} & y_{Cj} \\ z_{Cj} & 0 & -x_{Cj} \\ -y_{Cj} & x_{Cj} & 0 \end{bmatrix}$$
 (7)

2 Rigid Bodies

At this point, many assumptions are made about the system of particles.

- 1. The mass of each particle or rigid body is constant.
- 2. An inertial frame is placed at the center of the Earth that does not rotate with the Earth. We assume that the Earth is "fixed" to this point but still rotates. The coordinates of our satellite though are expressed in this non-rotating inertial frame. This is explained in more detail later.
- 3. The rigid body is not flexible and does not change shape. That is, the time rate of change of the magnitude of a vector \vec{r}_{PQ} is zero for any arbitrary points P and Q attached to the rigid body.

2.1 Translational Dynamics

Using all of these simplifications, the momentum term on the right can be simplified to

$$\sum_{j=0}^{P} \vec{p}_j = m \vec{v}_{C/I} \tag{8}$$

The derivation of the term above starts by deriving the position of the center of mass as the following equation.

$$\vec{r}_j = \vec{r}_C + \vec{r}_{Cj} \tag{9}$$

Taking one derivative results in the following equation

$$\vec{v}_{j/I} = \vec{v}_{C/I} + \frac{{}^{B}d\vec{r}_{Cj}}{dt} + \mathbf{S}(\vec{\omega}_{B/I})\vec{r}_{Cj}$$
 (10)

where $\mathbf{S}(\vec{\omega}_{B/I})$ is the skew symmetric matrix of the angular velocity vector which results in a cross product. This equation comes from the derivative transport theorem. Since the body is a rigid body the term $\frac{^B d\vec{r}_{Cj}}{dt} = 0$ resulting in the equation below

$$\vec{v}_{j/I} = \vec{v}_{C/I} + \mathbf{S}(\vec{\omega}_{B/I})\vec{r}_{Cj} \tag{11}$$

which any dynamicist knows as the equation for two points fixed on a rigid body. This equation can then be substituted into the equation for momentum such that.

$$\sum_{j=0}^{P} \vec{p}_{j} = \sum_{j=0}^{P} m_{j} \left(\vec{v}_{C/I} + \mathbf{S}(\vec{\omega}_{B/I}) \vec{r}_{Cj} \right)$$
(12)

The first term reduces to

$$\sum_{j=0}^{P} m_j \vec{v}_{C/I} = \vec{v}_{C/I} \sum_{j=0}^{P} m_j = m \vec{v}_{C/I}$$
(13)

the second term reduces to zero since the sum of all particles from the center of mass is by definition the center of mass and thus zero.

$$\sum_{j=0}^{P} \mathbf{S}(\vec{\omega}_{B/I}) m_j \vec{r}_{Cj} = \mathbf{S}(\vec{\omega}_{B/I}) \sum_{j=0}^{P} m_j \vec{r}_{Cj} = 0$$
(14)

Plugging this result for momentum into Newton's equation of motion yields. This is typically called Newton-Euler equations of motion.

$$\vec{F}_C = m \left(\frac{{}^B d\vec{v}_{C/I}}{dt} + \mathbf{S}(\vec{\omega})_{B/I} \vec{v}_{C/I} \right)$$
(15)

2.2 Rotational Dynamics

Plugging in the expression for two points fixed on a rigid body results in a much different expression. First let's expand the rotational dynamic equations of particles using the assumptions made for a rigid body.

$$\vec{M}_C = \frac{d}{dt} \sum_{i=0}^{P} \mathbf{S}(\vec{r}_{Cj}) m_j \vec{v}_{j/I}$$
(16)

Then the equation of two points fixed on a rigid body can be introduced to obtain the following equation

$$\vec{M}_C = \frac{d}{dt} \sum_{j=0}^{P} \mathbf{S}(\vec{r}_{Cj}) m_j \left(\vec{v}_{C/I} + \mathbf{S}(\vec{\omega}_{B/I}) \vec{r}_{Cj} \right)$$

$$\tag{17}$$

expanding this into two terms yields

$$\vec{M}_{C} = \frac{d}{dt} \left(\sum_{j=0}^{P} m_{j} \mathbf{S}(\vec{r}_{Cj}) \mathbf{S}(\vec{\omega}_{B/I}) \vec{r}_{Cj} + \sum_{j=0}^{P} \mathbf{S}(\vec{r}_{Cj}) m_{j} \vec{v}_{C/I} \right)$$
(18)

To simplify this further a useful equality is used for cross products. That is $\mathbf{S}(\vec{a})\vec{b} = -\mathbf{S}(\vec{b})\vec{a}$. The equation above then changes to

$$\vec{M}_C = \frac{d}{dt} \left(\left(-\sum_{j=0}^P m_j \mathbf{S}(\vec{r}_{Cj}) \mathbf{S}(\vec{r}_{Cj}) \right) \vec{\omega}_{B/I} - \mathbf{S}(\vec{v}_{C/I}) \sum_{j=0}^P \vec{r}_{Cj} m_j \right)$$
(19)

Notice, that parentheses were placed around the first term to isolate the angular velocity. This is because the angular velocity is constant across the system of particles. The term on the right has also been altered slightly to isolate the fact that the velocity of the center of mass is independent of the system of particles. With the equation in this form it is easy to see that the term on the right is zero because it is the definition of the center of mass. The equation then reduces to

$$\vec{M}_C = \frac{d}{dt} \left(\sum_{j=0}^P m_j \mathbf{S}(\vec{r}_{Cj}) \mathbf{S}(\vec{r}_{Cj})^T \right) \vec{\omega}_{B/I}$$
(20)

Notice again that minus sign has been removed. The skew symmetric matrix has an interesting property where the transpose is equal to the negative of the original matrix. The term in brackets is a well known value for rigid bodies and is known as the moment of inertia for rigid bodies.

$$\mathbf{I}_C = \sum_{j=0}^{P} m_j \mathbf{S}(\vec{r}_{Cj}) \mathbf{S}(\vec{r}_{Cj})^T$$
(21)

This results in the kinematic equations of motion for rigid bodies to the simple equation below.

$$\vec{M}_C = \frac{d}{dt} \left(\mathbf{I}_C \vec{\omega}_{B/I} \right) \tag{22}$$

With the equation in this form it is finally possible to carry out the derivative

$$\vec{M}_C = \frac{{}^B d(\mathbf{I}_C \vec{\omega}_{B/I})}{dt} + \mathbf{S}(\vec{\omega}_{B/I}) \mathbf{I}_C \vec{\omega}_{B/I}$$
(23)

The first term requires the chain rule to perform the derivative and can thus result in a time varying moment of inertia matrix and the derivative of angular velocity. Therefore the equation can simply be written as

$$\vec{M}_C = \dot{\mathbf{I}}\vec{\omega}_{B/I} + \mathbf{I}_C \frac{{}^B d(\vec{\omega}_{B/I})}{dt} + \mathbf{S}(\vec{\omega}_{B/I})\mathbf{I}_C \vec{\omega}_{B/I}$$
(24)

3 Attitude Parameterization of Rigid Bodies

3.1 Euler Angles

3.1.1 General 3-2-1 Sequence

It is possible to obtain the orientation of a satellite using Euler angles. This is constructed using the standard aircraft flight mechanics rotation sequence (3-2-1) where a yaw ψ rotation is done along the z-axis, a pitch θ rotation is done about the intermediate y-axis and then a final rotation about the x-axis through roll ϕ is done. A Figure of this is shown below.

Figure 1: Six Degree of Freedom Schematic

Putting all of these 2-D rotations together creates a transformation matrix from body to inertial. Standard shorthand notation is used for trigonometric functions: $cos(\alpha) \equiv c_{\alpha}$, $sin(\alpha) \equiv s_{\alpha}$, and $tan(\alpha) \equiv t_{\alpha}$.

$$\mathbf{T}_{IB}(\phi, \theta, \psi) = \begin{bmatrix} c_{\theta}c_{\psi} & s_{\phi}s_{\theta}c_{\psi} - c_{\phi}s_{\psi} & c_{\phi}s_{\theta}c_{\psi} + s_{\phi}s_{\psi} \\ c_{\theta}s_{\psi} & s_{\phi}s_{\theta}s_{\psi} + c_{\phi}c_{\psi} & c_{\phi}s_{\theta}s_{\psi} - s_{\phi}c_{\psi} \\ -s_{\theta} & s_{\phi}c_{\theta} & c_{\phi}c_{\theta} \end{bmatrix}$$
(25)

3.1.2 Derivatives

If Euler angles are used to parameterize the orientation, the derivative of Euler angles is somewhat cumbersome to obtain. The angular velocity of a body is typically written as

$$\vec{\omega}_{B/I} = \begin{cases} p \\ q \\ r \end{cases} = p\hat{I}_B + q\hat{J}_B + r\hat{K}_B \tag{26}$$

There are no inertial components for the angular velocity vector. However, a relationship can be derived relating the derivatives of the Euler angles. The angular velocity can be written in vector form such that

$$\vec{\omega}_{B/I} = \dot{\psi}\hat{K}_I + \dot{\theta}\hat{J}_{NR} + \dot{\phi}\hat{I}_B \tag{27}$$

relating the unit vectors \hat{K}_I and \hat{J}_{NR} to the body frame using the planar rotation matrices results in the equation below. Note that NR is denoted as the "No-Roll" frame.

where

$$\mathbf{H} = \begin{bmatrix} 1 & s_{\phi}t_{\theta} & c_{\phi}t_{\theta} \\ 0 & c_{\phi} & -s_{\phi} \\ 0 & s_{\phi}/c_{\theta} & c_{\phi}/c_{\theta} \end{bmatrix}$$
(29)

3.1.3 Screw Rotation

It is often useful to extract Euler Angles from a unit vector. A unit vector has two degrees of freedom and thus has two rotations ψ and θ which can be determined using the equation below where $\hat{n}(1)$ denotes the first component of the vector in the body frame.

$$\psi = \tan^{-1}\left(\frac{\hat{n}(2)}{\hat{n}(1)}\right); \theta_{Ri} = \tan^{-1}\left(\frac{\hat{n}(3)}{\hat{n}(1)^2 + \hat{n}(2)^2}\right)$$
(30)

3.1.4 Transformation Matrix to Euler Angles

Besides using unit vectors, sometimes it is beneficial to extract Euler angles from a known tranformation matrix. The equations below can be used to accomplish this where $\mathbf{T}_{BI}(i,j)$ is the ith row and jth column of the \mathbf{T}_{BI} matrix where $\mathbf{T}_{BI} = \mathbf{T}_{IB}^T$

$$\theta = -\sin^{-1}(\mathbf{T}_{BI}(1,3)) \quad \phi = \tan^{-1}(\mathbf{T}_{BI}(2,3)/\mathbf{T}_{BI}(3,3)) \quad \psi = \tan^{-1}(\mathbf{T}_{BI}(1,2)/\mathbf{T}_{BI}(1,1)) \tag{31}$$

3.2 Quaternions

3.2.1 The General Quaternion

It is well known that equations of motion produced by using only three orientation parameters results in a singularity [1]. As such, the orientation of the satellite can be parameterized using four parameters known as quaternions. Many supplemental equations and explanations can be found for quaternions in [5, 6, 7, 8, 9, 10, 11, 12]. I also

recommend visiting an interactive visualization tool made by popular YouTube star Ben Eater https://eater.net/quaternions. To begin, The standard quaternion is written below.

$$\vec{q} = \begin{cases} q_0 \\ q_1 \\ q_2 \\ q_3 \end{cases} \tag{32}$$

In this case 4 parameters are used to denote the quaternion. In order to get a physical understanding of what a quaternion is imagine a vector $\vec{\eta}$ in 3-D space. The rotation from the body to the inertial frame is then the rotation of the inertial frame about the unit vector $\vec{\eta}$ through angle γ . The quaternion can then be written as

$$\vec{q} = \begin{cases} \cos(\gamma/2) \\ \vec{\eta} \sin(\gamma/2) \end{cases} \tag{33}$$

In this case it is possible to obtain the individual quaterions as $q_0 = cos(\gamma/2)$ and $\vec{\epsilon} = [q_1, q_2, q_3]^T = \vec{\eta} sin(\gamma/2)$. Furthermore, if given 4 quaternions, the angle γ is simply $cos^{-1}(2q_0)$ and $\vec{\eta} = \vec{\epsilon}/sin(\gamma/2)$. Note that because a quaternion is essentially screw rotation about a known unit vector, there are two identical quaternions for every orientation. That is $\vec{q}(\gamma) = \vec{q}(\gamma - 2\pi)$.

3.2.2 Quaternion Transformations

In order to rotate the inertial frame to the body frame using quaternions, the transformation matrix is shown below. Note that $\mathbf{T}_{BI} = \mathbf{T}_{IB}^T$.

$$\mathbf{T}_{BI}(\vec{q}) = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 + q_0q_3) & 2(q_1q_3 - q_0q_2) \\ 2(q_1q_2 - q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_0q_1 + q_2q_3) \\ 2(q_0q_2 + q_1q_3) & 2(q_2q_3 - q_0q_1) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$
(34)

3.2.3 Euler to Quaternion Transformations

In the event Euler angles are need, converting quaternions to Euler angles is a standard operation and shown below.

$$\phi = tan^{-1} \left(\frac{2(q_0q_1 + q_2q_3)}{1 - 2(q_1^2 + q_2^2)} \right)$$

$$\theta = sin^{-1} \left(2(q_0q_2 - q_3q_1) \right)$$

$$\psi = tan^{-1} \left(\frac{2(q_0q_3 + q_1q_2)}{1 - 2(q_2^2 + q_3^2)} \right)$$
(35)

It is also possible to convert Euler angles to quaternions using the equations below.

$$q_{0} = \cos(\phi/2)\cos(\theta/2)\cos(\psi/2) + \sin(\phi/2)\sin(\theta/2)\sin(\psi/2)$$

$$q_{1} = \sin(\phi/2)\cos(\theta/2)\cos(\psi/2) - \cos(\phi/2)\sin(\theta/2)\sin(\psi/2)$$

$$q_{2} = \cos(\phi/2)\sin(\theta/2)\cos(\psi/2) + \sin(\phi/2)\cos(\theta/2)\sin(\psi/2)$$

$$q_{3} = \cos(\phi/2)\cos(\theta/2)\sin(\psi/2) - \sin(\phi/2)\sin(\theta/2)\cos(\psi/2)$$
(36)

3.2.4 Quaternion Operations

The norm of the quaternions is given by $|\vec{q}| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$. In standard spacecraft applications, the norm of the quaternion is just 1. The conjugate of the quaternion \vec{q} is given below.

$$\bar{q}^* = \begin{cases} q_0 \\ -q_1 \\ -q_2 \\ -q_3 \end{cases}$$
 (37)

The inverse of a quaternion is then just $\vec{q}^{-1} = \vec{q}^*/|\vec{q}|$. Determining the difference between two quaternions is done using the quaternion difference operation as shown below where $|\tilde{q}| = 1.0$ [8].

$$\delta \vec{q} = \vec{q} \oplus \tilde{q}^{-1} = \begin{cases} q_0 \tilde{q}_0 - \vec{\epsilon}^T \tilde{\epsilon} \\ -q_0 \tilde{\epsilon} + \tilde{q}_0 \vec{\epsilon} - \mathbf{S}(\vec{\epsilon}) \tilde{\epsilon} \end{cases}$$
(38)

4 Spaceflight Equations of Motion

The translational equations of motion of the satellite are written using inertial coordinates using the center of the Earth as a fixed point. For cis-lunar orbits this is typically a good approximation for first order analysis. The satellite is assumed to be a rigid body using quaternions to parameterize orientation.

4.1 Translational Equations of Motion

The translational equations of motion of the satellite are fairly simple given that everything is written in the inertial frame. The position vector of the satellite is $\vec{r} = [x, y, z]^T$ and the velocity is $\vec{V}_{B/I} = [\dot{x}, \dot{y}, \dot{z}]^T$. The acceleration of the satellite is found by summing the total forces on the body and dividing by the mass of the satellite. In the equation below N_{\oplus} is the number of planetary bodies acting on the satellite while \vec{F}_P is the force imparted by thrusters.

$$\vec{a}_{B/I} = \frac{1}{m_s} \left(\sum_{i=1}^{N_{\oplus}} F_i + \vec{F}_P \right)$$
 (39)

Note that the magnitude of the gravitational acceleration vector is on the order of $\pm 10~m/s^2$. Sources point to solar radiation pressure being on the order of 4.5 μPa [13]. For a 1U CubeSat (10 cm x 10 cm) the force would be equal to 0.45mN. A 1U CubeSat has a nominal mass of 1 kg which would accelerate the CubeSat on the order of $0.45mm/s^2$, which is considerably less than gravitational acceleration. Furthermore, using the standard aerodynamic drag equation $(0.5\rho V^2SC_D)$, where conservative estimates are used, the aerodynamic force at 600 km above the Earth's surface would be about 3.0 nN [14]. This assumes a density equal to $1.03 \times 10^{-14}~kg/m^3$, a velocity equal to 7.56~km/s, and a drag coefficient equal to 1.0 [15]. A force this small would impart an acceleration of about $3.0~nm/s^2$ which is also considerably less than gravitational acceleration. These forces cannot be neglected for longer missions but can be ignored where appropriate.

4.2 Reaction Wheel Model

The reaction wheel model must be included before the attitude dynamics because they directly affect the inertia of the satellite. There are three reaction wheels on this satellite and each one has it's own angular velocity ω_{Ri} and angular acceleration α_{Ri} . The inertia of each reaction wheel is first written about the center of mass of the reaction wheel and is given by the equation below where the reaction wheel is modeled as a disk with finite radius (r_{RW}) and height (h_{RW}) . The subscript R is used to denote that this inertia matrix is about the center of mass of the reaction wheel while the super script R is used to denote the frame of reference.

$$I_{Ri}^{R} = \begin{bmatrix} m_{R}r^{2}/2 & 0 & 0\\ 0 & (m_{R}/12)(3r_{RW}^{2} + h_{RW}^{2}) & 0\\ 0 & 0 & (m_{R}/12)(3r_{RW}^{2} + h_{RW}^{2}) \end{bmatrix}$$
(40)

In order to rotate the inertia matrix into the satellite body frame of reference an axis of reaction wheel rotation is used. The vector \hat{n}_{Ri} is used to denote the axis about which the reaction wheel rotates. Euler Angles θ_{Ri} and ψ_{Ri} can be extracted from this unit vector as discussed previously in Section 3.1. The rotation matrix $\mathbf{T}_{Ri}(0, \theta_{Ri}, \psi_{Ri})$ can then be generated using equation 25. This matrix can then be used to compute the inertia of the reaction wheel in the satellite body frame.

$$I_{Ri}^B = \mathbf{T}_{Ri}^T I_R^R \mathbf{T}_{Ri} \tag{41}$$

The parallel axis theorem can then be used to shift the inertias to the center of mass of the satellite where the subscript RB denotes the reaction wheel inertia taken about the center of mass of the satellite.

$$I_{RBi}^B = I_{Ri}^B + m_{Ri} \mathbf{S}(\vec{r}_{Ri}) \mathbf{S}(\vec{r}_{Ri})^T \tag{42}$$

The vector \vec{r}_{Ri} is the distance from the center of mass of the satellite to the center of mass of the reaction wheel in the satellite body reference frame. The total inertia of the entire satellite-reaction wheel system is then just a sum of all the reaction wheel inertias.

$$I_S = I_B + \sum_{i=1}^{3} I_{RBi}^B \tag{43}$$

The total angular momentum of the satellite is then equal to the following equation where $\vec{\omega}_{B/I}$ is the angular velocity of the satellite.

$$\vec{H}_S = I_B \vec{\omega}_{B/I} + \sum_{i=1}^3 I_{Ri}^B \omega_{Ri} \hat{n}_{Ri}$$
(44)

In a similar fashion, the total torque placed on the satellite is equal to the following

$$\vec{M}_R = \sum_{i=1}^3 I_{Ri}^B \alpha_{Ri} \hat{n}_{Ri} \tag{45}$$

It is typically assumed that the angular acceleration of each reaction wheel can be directly controlled. However, as the reaction wheel angular velocity increases, the maximum angular acceleration allowed begins to decrease. Once the reaction wheel reaches its angular velocity limits, the angular acceleration possible drops to zero. This is called reaction wheel saturation and must be dealt with using a method called momentum dumping.

4.3 Attitude Equations of Motion

The attitude equations of motion are formulated assuming the satellite can rotate about three axes. It is well known that equations of motion produced by using only three orientation parameters results in a singularity [1]. As such, the orientation of the satellite is parameterized using four parameters known as quaternions. The derivatives of a quaternion are written in shorthand using the equation below.

$$\dot{\vec{q}} = \frac{1}{2} \mathbf{\Omega}(\vec{\omega}_{B/I}) \vec{q} = \frac{1}{2} \chi(\vec{q}) \vec{\omega}_{B/I} \tag{46}$$

The operators $\Omega()$ and $\chi()$ are shown below. Note that $\Omega()$ operates on a 3×1 vector and χ on a 4×1 vector. In this case $\lambda = [\lambda_0, \vec{\kappa}]^T$.

$$\mathbf{\Omega}(\vec{r}) = \begin{bmatrix} 0_{1x1} & -\vec{r}^T \\ \vec{r} & -\mathbf{S}(\vec{r}) \end{bmatrix} \tag{47}$$

$$\chi(\vec{\lambda}) = \begin{bmatrix} -\vec{\kappa} \\ \lambda_0 I_{3x3} + \mathbf{S}(\vec{\kappa}) \end{bmatrix} \tag{48}$$

These vector operators can then be used to expand the kinematic derivatives as shown by equation 49.

$$\begin{pmatrix} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{pmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -p & -q & -r \\ p & 0 & r & -q \\ q & -r & 0 & p \\ r & q & -p & 0 \end{bmatrix} \begin{cases} q_0 \\ q_1 \\ q_2 \\ q_3 \end{cases} \tag{49}$$

where q_i are the four quaternions and p, q, r are the components of the angular velocity vector in the body frame. The derivative of angular velocity is found by equating the derivative of angular momentum to the total moments placed on the satellite while reaction wheel torques from the satellite are added.([1]).

$$\dot{\vec{\omega}}_{B/I} = I_S^{-1} \left(\vec{M}_P + \vec{M}_M + \vec{M}_R - \mathbf{S}(\vec{\omega}_{B/I}) \vec{H}_S - \dot{I}_S \vec{\omega}_{B/I} \right)$$
(50)

The applied moments use subscripts (P) for propulsion, (M) for magnetorquers, and (R) for reaction wheels. The term \dot{I}_S is the change in inertia in the body frame caused by deployment of solar panels and/or antenna. Also, recall that \vec{H}_S is the total angular momentum of the entire satellite including the reaction wheels.

5 External Models

Many external models are used in simulation to accurately depict the environment. The paper here begins with the Earth Magnetic Field and Gravitational Models. The magnetic field model comes from the Geographic Library model which uses the EMM2015 magnetic field model. The gravitational model comes from the EGM2008 model [16].

5.1 Magnetic Field Model

The Magnetic Field model used in this simulation stems from the Enhanced Magnetic Field Model (EMM2015) ([17]). The Earth's magnetic is a complex superposition of multiple sources including the inner core and outer core of the planet. Models have been created that use spherical harmonics to compute the magnetic field at any location around the Earth. The EMM2015 model uses a 720 order model increasing the spatial resolution down to 56 km. This model was compiled from multiple sources including but not limited to satellite and marine data. It also includes data from the European Space Agency's Swarm satellite mission. In order to include this harmonic mesh data into this simulation, the GeographicLib module written in C++ is included in the simulation ([16]). Note that I take no credit for this model. This section only serves to explain the model. The result of utilizing this model is the ability to provide any position coordinate of the satellite to the module and have the model return the magnetic field strength in East, North, Vertical Coordinates. Specifically, the inputs to the model are the position x, y, z of the satellite assuming an inertial frame with the z-axis pointing through the north pole and the x axis pointing through the equator at the prime meridian as seen in Figure 2. This is known as the Earth-Centered Inertial (ECI) coordinate system ([18]).

Figure 2: Earth-Centered Inertial Frame and Spherical Coordinate Frame

In order to connect these inertial coordinates (x, y, z) to be used in the EMM2015 model, the latitude, longitude and height above the surface of the Earth are required. To do this, the coordinates are converted into spherical coordinates using the equations below.

$$\rho = \sqrt{x^2 + y^2 + z^2}
\phi_E = 0
\theta_E = \cos^{-1} \left(\frac{z}{\rho}\right)
\psi_E = \tan^{-1} \left(\frac{y}{x}\right)$$
(51)

Note that $\rho, \phi_E, \theta_E, \psi_E$ are related to latitude and longitude coordinates but not quite the same. In order to obtain the latitude and longitude coordinates the following equations are used. The height is simply the distance from the center of the ECI frame minus the reference height from the approximation of Earth as an ellipsoid

 $(R_{\oplus} = 6,371,393 \ meters)$. Note that the angles from Equation 51 are converted to degrees.

$$\lambda_{LAT} = 90 - \theta_E \frac{180}{\pi}$$

$$\lambda_{LON} = \psi_E \frac{180}{\pi}$$

$$h = \rho - R_{\oplus}$$
(52)

The inputs are then the latitude, longitude and height. The output from the EMM2015 model is in the East, North, Vertical (ENV) reference frame where the x-axis is East pointing in the direction of the rotation on the Earth, the y-axis is North pointing towards the North pole and finally the z-axis is the Vertical component that is always pointing radially away from the center of the Earth. In order to get the coordinates into the ECI frame the coordinates must first me converted to the North, East, Down reference frame (NED). In this case the x-axis is pointing North, the y-axis pointing East and the z-axis is always pointing towards the center of the Earth and called Down. The equation to rotate from the ENV frame to NED frame is shown below.

$$\begin{cases}
\beta_x \\
\beta_y \\
\beta_z
\end{cases}_{NED} = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{bmatrix} \begin{cases}
\beta_x \\
\beta_y \\
\beta_z
\end{cases}_{ENV}$$
(53)

Once the magnetic field is in the NED reference frame it can then be rotated to the inertial frame using the following equation where $\vec{\beta}_{NED}$ is the magnetic field in the NED coordinate system and $\vec{\beta}_I$ is the magnetic field in the inertial frame.

$$\vec{\beta}_I = \mathbf{T}_{IB}(0, \theta_E + \pi, \psi_E) \vec{\beta}_{NED} \tag{54}$$

The matrix $\mathbf{T}_{IB}(\phi, \theta, \psi)$ represents the transformation matrix from the spherical reference frame to the inertial reference frame. Note that there is no rotation about the x-axis through ϕ_E and the pitch rotation is augmented by π because of the switch between North, East, Down (NED) and the z-axis of the ECI pointing through the North pole. The result of these equations, is the ability to obtain the magnetic field across an entire orbit. Figure 3 shows an example 56 degree inclination orbit, 600 km above the Earth's surface. The orbit begins with the satellite above the equator and the prime meridian and assumes the Earth does not rotate.

Figure 3: Example 56 Degree Inclination Orbit at 600 km above Earth's Surface

Figure 4 shows the magnetic field during the orbit in the inertial frame. PCI stands for Planet Centered Inertial which in this case is the same as the ECI frame since the planet is Earth.

Figure 4: Magnetic Field of Earth in Inertial Frame for 56 Degree Orbit at 600 km Above Surface

5.2 Gravitational Models

Two types of gravitational models can be used. The first is the Newtonian gravitational model that assumes all planets are point masses with no volume. The result of the gravitational field vector is then

$$F_{\oplus} = -G \frac{m_{\oplus} m_s}{r^2} \hat{r} \tag{55}$$

where G is the gravitational constant, \oplus denotes the planet applying the gravitational field, m_{\oplus} is the mass of the planet, m_s is the mass of the satellite and \vec{r} is a distance vector from the center of the planet to the satellite. The vector \hat{r} is just the unit vector of \vec{r} while r is the magnitude of \vec{r} .

The second gravitational field model stems from the Earth Gravity Model (EGM2008) [19] which can also be found in the GeographicLib module [16]. This model compute's Earths gravitational field at any point in three dimensional space. The model takes in coordinates in the ECI frame and returns the gravitational acceleration in the ECI frame thus no rotation is required. Just like the EMM2015 model this model uses spherical harmonics and a reference ellipsoid. The reference ellipsoid is then updated with gravity disturbances such as non-uniform geoid heights. This model is an upgrade from EGM84 and EGM96 which only used models of order 180 and 360 respectively. The EGM2008 model as a comparison uses a model of order 2190. Figure 5 shows the gravitational acceleration vector during a 56 degree orbit at 600 km above the Earth's surface. The x-axis has been non-dimensionalized to represent the entire orbit. Thus when the x-axis is equal to 100 the satellite has completed one orbit.

Figure 5: Gravitational Field of Earth in Inertial Frame for 56 Degree Orbit at 600 km Above Surface

5.3 Earth Orbital Elements

Assuming that the Sun is the central inertial reference point, it is possible to obtain the position of Earth at any point in time using well documented orbital elements of the Earth. This formulation follows the derivation by JPL and can be found at [20]. In order to obtain the position of the Earth, the Julian Day must be obtained. The Julian Day of January 1st, 2019 is 2,458,485. The Julian Day of January 1st, 2000 (which is the day of the last inertial frame update) is 2,451,545. In order to obtain the Julian Day of the current day, you simply need to count the number of calendar days from January 1st of 2000. Again I have listed the Julian day of January 1st, 2019 to help with this calculation. To compute the orbital elements of the Earth you must then compute the number of centuries from January 1st, 2000 which is given by the equation below where J is the Julian day and C is the number of centuries since 1/1/2000.

$$C = (J - 2, 451, 545)/36, 525.0 (56)$$

This number is then used in the equations below to obtain the current semi-major axis, eccentricity, inclination, mean longitude, longitude of perihelion and the longitude of the ascending node respectively. The subscript 0 denotes the orbital element in the year 2000.

$$a = (a_0 + \dot{a}C)AU$$

$$e = e_0 + \dot{e}C$$

$$i = i_0 + \dot{i}C$$

$$L = L_0 + \dot{L}C$$

$$\bar{w} = \bar{w}_0 + \dot{\bar{w}}C$$

$$\Omega = \Omega_0 + \dot{\Omega}C$$
(57)

The parameters in the equation above for every planet can be found at [20]. Also, The term AU is an astronomical unit which is equal to 149,597,870,700 meters. For reference though the parameters for Earth are shown below. Just in case you are reading this in the not so distant future, these parameters are only valid until the year 2050. Also, the parameters below are for the Earth-Moon barycenter which is the center of mass of the Earth and Moon. In the table, the first row is the value in the year 2000 and the second row is the rate per century (Cy). Using these parameters, compute the argument of the perihelion $w = \bar{w} - \Omega$ and the mean anomaly $M = L - \bar{w}$. Note that for planets Jupiter, Saturn, Uranus and Neptune, the mean anomaly has a different form. Basically anything past the asteroid belt. With the mean anomaly compute you must modulus this value such that M is between plus or minus 180 degrees. Once that's done you must solve for the eccentric anomaly (E) using the Kepler equation below where e^* is the eccentricity in degrees $e^* = 180e/\pi$.

$$M = E - e^* sin(E) \tag{58}$$

Table 1: Orbital Elements of Earth-Moon Barycenter

\mathbf{a}	e	i	L	long.peri. (\bar{w})	long.node. (Ω)
AU, AU/Cy	rad, rad/Cy	$\deg, \deg/Cy$	$\deg, \deg/Cy$	$\deg, \deg/Cy$	$\deg, \deg/Cy$
1.00000261	0.01671123	-0.00001531	100.46457166	102.93768193	0.0
0.00000562	-0.00004392	-0.01294668	35999.37244981	0.32327364	0.0

Solving this numerically is pretty simple and only requires a few iterations of the loop below using the C++ programming language. This loop can easily be adapted to any language on modern computers. C++ is shown here in the event this is used for embedded processors in future satellite systems.

```
E = M + e*180.0/PI*sin(M*PI/180.0);
dM = 1;
dE = 0;
while (abs(dM) > 1e-6) {
  dM = M - (E - e*180.0/PI*sin(E*PI/180.0));
  dE = dM/(1.0-e*cos(E*PI/180.0));
  E += dE;
}
```

At this point the spatial coordinates can be obtained in the planet's orbital plane where the semi-latus rectum or sometimes simply called the parameter is p = a(1 - e).

$$\begin{cases} x' \\ y' \\ z' \end{cases} = \begin{cases} a(\cos(\pi E/180) - e) \\ a\sqrt{1 - e^2}\sin(\pi E/180) \\ 0 \end{cases}$$
 (59)

Notice that the value z' is zero. This is because orbits are all two dimensional. In order to obtain the coordinates of the planet in the J2000 ecliptic plane, the equation below is used which is similar to the standard Euler angle transformation matrix only the 3-1-3 rotation sequence is used rather than 3-2-1.

$$\begin{cases} x \\ y \\ z \end{cases}_{J2000} = \begin{bmatrix} c_w c_{\Omega} - s_w s_{\Omega} c_i & -s_w c_{\Omega} - c_w s_{\Omega} c_i & 0 \\ c_w s_{\Omega} + s_w c_{\Omega} c_i & -s_w s_{\Omega} + c_w c_{\Omega} c_i & 0 \\ s_w s_i & c_w s_i & 0 \end{bmatrix} \begin{cases} x' \\ y' \\ z' \end{cases}$$
(60)

Running through this formulation for all the planets in the Solar System including Pluto it is possible to plot the position of all planets. The figures below are for January 1st, 2019.

Figure 6: Position of Planets using Orbital Elements

6 External Forces and Moments

In addition to gravity acting on the satellite, other forces also act on the satellite. For a 1U CubeSat, the gravity gradient over 10 cm is about $0.24 \ \mu m/s^2$ using the EGM2008 model. Multiplying this acceleration by a 1 kg mass and applying a 10 cm moment arm yields a moment of about $2.4 \times 10^{-8} \ N-m$. Aerodynamic torques could be as large as $1.5 \times 10^{-10} \ N-m$ assuming the aerodynamic center is 5 cm away from the center of mass. Typical magnetorquers operate in the vicinity of $3.0 \times 10^{-6} \ N-m$, assuming a current of 0.04 A, an area of 0.02 m^2 , 84 turns and a magnetic field of 40,000 nT. Using these calculations, magnetorquers are two orders of magnitude larger than gravity torques and four orders of magnitude larger than aerodynamic torques. It is important to keep these values in mind when neglecting certain parameters [13, 14, 15].

6.1 Propulsion Model

Each satellite is equipped with N_P thrusters that have a fixed I_{sp} . The mass flow rate of each thruster is given by the equation below where p is the force of the thruster.

$$\dot{m}_i = \sigma_i \frac{p}{9.81 I_{sp}} \tag{61}$$

Each thruster is either on or off as given by the variable σ which is either a 1 or a 0. When the thruster is on, the force applied is equal to p and when the thruster is off the thrust applied is equal to zero. Thus in this fashion to total mass flow rate per unit time of the entire satellite is just a sum of all the pulses.

$$\dot{m} = \frac{p}{9.81 \ I_{sp}} \sum_{i=1}^{N_P} \sigma_i \tag{62}$$

It is assumed that the time response of the thrusters is instantaneous during power up and power down. There is a delay between pulses and the thrusters only stay on for a fixed time thus the thrusters are pulsed in a square wave fashion with a certain duty cycle. The force applied is simply equal to the force times a unit vector that is aligned with the axis of the thruster. The total force applied to each satellite is then given by the formula below.

$$\vec{F}_P = p \sum_{i=1}^{N_P} \sigma_i \hat{n}_{Pi} \tag{63}$$

The total moment applied to the satellite is simply the force applied crossed with a vector from the center of mass of the satellite to the center of mass of the thruster.

$$\vec{M}_P = p \sum_{i=1}^{N_P} \sigma_i \mathbf{S}(\vec{r}_{Pi}) \hat{n}_{Pi} \tag{64}$$

6.2 Magnetorquer Model

The magnetorquer model assumes that three magnetorquers are aligned in such a way that the magnetic moment produced by each magnetorquer is aligned with the principal axes of the body frame of the satellite. Each magnetorquer is controlled independently such that $\vec{i}_M = [i_x, i_y, i_z]^T$ which is the applied current in each magnetorquer. The magnetic moment is then given by the equation below

$$\vec{\mu}_M = nA\vec{i}_M \tag{65}$$

where n is the number of turns in the coil of each magnetorquer and A is the area of the magnetorquer. For simplicity it is assumed that all magnetorquers have the same area and same number of turns. The torque produced by all magnetorquers is then simply found by crossing the magnetic moment with the magnetic field of the Earth in the Body reference frame.

$$\vec{M}_M = \mathbf{S}(\vec{\mu}_M) \mathbf{T}_{\mathbf{B}\mathbf{I}}(\vec{q}) \vec{\beta}_I \tag{66}$$

In order to obtain the magnetic field vector in the body frame, the inertial magnetic field vector must be rotated into the body frame of the satellite. In component form, equation (66) reduces to the following equation using the identity that $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$

where $\beta_x, \beta_y, \beta_z$ are the components of the magnetic field in the body frame of the satellite. The moments L, M, N are thus the control torques that rotate the satellite as seen in equation (50).

7 Control Schemes

Many control schemes are needed to orient a satellite and all depend on the application. In LEO magnetorquers can be used to detumble a satellite while thrusters must be used in deep space. In addition reaction wheels can be used to detumble a satellite anywhere in space provided the angular momentum in the satellite does not saturate the reaction wheels. Sections that follow detail the control schemes typically utilized on small sats.

7.1 B-dot Controller

In LEO, the standard B-dot controller reported in many sources ([21],[22],[23],[24]) can be used to de-tumble a satellite. The standard B-dot controller requires the magnetorquers to follow the control law shown below

$$\vec{\mu}_B = k\mathbf{S}(\vec{\omega}_{B/I})\mathbf{T}_{BI}(\vec{q})\vec{\beta}_I \tag{68}$$

where k is the control gain. Using equation (65) it is possible to write the current in component form again using the identity that $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$

This equation can then be substituted into equation (67) to produce the total torque on the satellite assuming that the magnetorquers can provide the necessary current commanded by equation (69).

$$\begin{cases}
L \\
M \\
N
\end{cases} = -k \begin{bmatrix}
\beta_y^2 + \beta_z^2 & -\beta_x \beta_y & -\beta_x \beta_z \\
-\beta_x \beta_y & \beta_x^2 + \beta_z^2 & -\beta_y \beta_z \\
-\beta_x \beta_z & -\beta_y \beta_z & \beta_x^2 + \beta_y^2
\end{bmatrix} \begin{Bmatrix} p \\ q \\ r \end{Bmatrix}$$
(70)

The goal of the controller here is to drive $\vec{\omega}_{B/I} \to 0$. The literature will show that this is not completely achieved [25]. There are multiple explanations for this. For starters, equation (66) assumes that the magnetic moment is not co-linear with the magnetic field of the Earth. If it is, the result is zero torque applied to the satellite. Furthermore, equation (69) results in zero current if the angular velocity vector of the satellite is co-linear with the magnetic field. Thus, if the magnetic field vector, angular velocity vector or the magnetic moment vector are co-linear, the torque applied to the satellite will be zero. If a new operator is defined such that

$$\mathbf{W}(\mathbf{T}_{BI}(\vec{q})\vec{\beta}_I) = \begin{bmatrix} \beta_y^2 + \beta_z^2 & -\beta_x \beta_y & -\beta_x \beta_z \\ -\beta_x \beta_y & \beta_x^2 + \beta_z^2 & -\beta_y \beta_z \\ -\beta_x \beta_z & -\beta_y \beta_z & \beta_x^2 + \beta_y^2 \end{bmatrix}$$
(71)

it is easy to see that the torque applied to a satellite is then simply the angular velocity vector multiplied by this transition matrix. If this transition matrix is put into row-reduced-echelon form it is easy to see that the determinant of this matrix is equal to zero ([26]).

$$rref(\mathbf{W}(\mathbf{T}_{BI}(\vec{q})\vec{\beta}_I)) = \begin{bmatrix} 1 & 0 & -\beta_x/\beta_z \\ 0 & 1 & -\beta_y/\beta_z \\ 0 & 0 & 0 \end{bmatrix}$$

$$(72)$$

A zero determinant means that there exists a vector $\vec{\omega}_{B/I}$ that will result in zero torque for a given value of the magnetic field. This is typically avoided since the magnetic field of the Earth is time and spatially varying which results in a transition matrix that changes over time due to orientation changes in the satellite as well as changes in the satellite's orbit. However, for low inclination orbits, it's possible for the magnetic field to stay relatively constant with $\beta_x \approx \beta_y \approx 0$. If the satellite is tumbling about the yaw axis such that p = q = 0, the yaw torque on the satellite (N) will be zero. Using this simple controller, there is no way to remove the remaining angular velocity from the satellite unless reaction wheels are used.

7.2 Reaction Wheels

Assuming each reaction is aligned with a principal axis of inertia the control scheme is extremely simple. When the wheels are not aligned the derivation will proceed similar to the reaction control thruster section. The derivation here will just be for the aligned case. In this analysis it is assumed that a torque can be applied to the reaction wheel and thus the angular velocity of the reaction wheel α_{Ri} can be directly controlled. Assuming this a simple PD control law can be used to orient the satellite at any desired orientation using Euler angles for this control law since the satellites are aligned with the principal axes of rotation [1].

$$\alpha_{Ri} = -k_p(\epsilon_i - \epsilon_{desired}) - k_d(\omega_i - \omega_{desired}) \tag{73}$$

In the equation above ϵ denotes either roll ϕ , pitch θ or yaw ψ depending on which reaction wheel is being used. The Euler angles in this case would be obtained by converting the quaternions to Euler angles as defined in Section 3.2. In order to design and select reaction wheels the maximum angular momentum of the satellite must be obtained by assuming the worst case angular velocity times the moment of inertia of the satellite.

$$H_{required} = n||I_s\vec{\omega}_{MAX}|| \tag{74}$$

With this reaction wheels can be selected based on this worst case scenario plus a safety factor of n which is typically set to 2 in spacecraft operations. If reaction wheels cannot be used in the event of saturation or other issues reaction control thrusters can be used. Typically a value of $|\vec{\omega}_{MAX}| = 5^o/sec$ is used.

7.3 Reaction Control Thrusters

The control law for the thrusters is a bit complex if the location of thrusters is not know a priori. If the location is known then simple PID control laws can be generated by applying pure couples to the correct thrusters that activate the correct axes. If the location is not known then the following derivation will suffice. There are N_P thrusters and only 3 degrees of freedom that need to be controlled; thus, the system is an overactuated system. Using equation 64, the equation can be written in matrix form as given by the equation below where \vec{M}_p is replaced by $\vec{M}_{desired}$. The equation for $\vec{M}_{desired}$ is generated using a similar PD control law as the reaction wheels.

$$\vec{M}_{desired} = p[\mathbf{S}(\vec{r}_{P1})\hat{n}_{P1} \ \mathbf{S}(\vec{r}_{P2})\hat{n}_{P2} \ \dots \ \mathbf{S}(\vec{r}_{PN_p})\hat{n}_{PN_p}]\vec{\sigma} = \mathbf{M}\vec{\sigma}$$

$$(75)$$

Since **M** is a $3 \times N_P$ matrix its impossible to simply invert the matrix and solve for the vector of pulses $\vec{\sigma}$. Instead, Lagrange's method was used to find the vector of pulses [27].

$$\vec{\sigma} = \mathbf{M}^T \left(\mathbf{M} \mathbf{M}^T \right)^{-1} \vec{M}_{desired} \tag{76}$$

Note that a similar equation can be derived for $\vec{F}_{desired}$. The solution to the equation above results in values of σ that are bigger than 1 and sometimes negative. If a value in this vector is bigger than 0 the value is set to 1 and if the value is negative the value is set to 0. Thus, the solution does not yield an exact solution but it does allow for flexibility in the number of thrusters and their respective orientations. Sizing of the thrusters depends on many independent variables including the thrust T and the I_{sp} . Using the I_{sp} the exit velocity of the thruster can be obtained by using the equation below

$$v_e = I_{sp}g_0 \tag{77}$$

where g_0 is the gravitational acceleration of the Earth at sea-level. Then the mass flow rate of the thruster can be obtained using the equation below.

$$\dot{m}_P = T/v_e \tag{78}$$

Using this mass flow rate total propellant mass required can be computed assuming a certain duty cycle.

7.4 Cross Products of Inertia

An interesting form of control is to take advantage of momentum dumping. Looking at the equation for angular acceleration again (Eqn 50) this equation can be simplified for certain cases. For example, if the roll rate of the satellite is set to be non-zero while the pitch rate and yaw rates are set to zero it is easy to see that if the inertia is diagonal the derivative of angular velocity is zero. However, if the cross products of inertia are given by the matrix below

$$\mathbf{I}_{s} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix}$$

$$(79)$$

the derivative of angular velocity becomes

$$\dot{\vec{\omega}}_{B/I} = I_S^{-1} \left(\begin{cases} 0\\ -I_{xz}p^2\\ I_{xy}p^2 \end{cases} \right) \tag{80}$$

again assuming the roll rate is non zero and the pitch rate is zero. This result shows that momentum can be transferred to different axes provided the cross products of inertia are non-zero.

8 Numerical Integration Techniques

8.1 Linear Dynamics

The nonlinear dynamics formulated above can be placed into standard nonlinear affine form as shown below after much simplification of terms

$$\dot{\vec{x}} = \vec{f}(\vec{x}) + \vec{g}(\vec{x})\vec{u} \tag{81}$$

where \vec{u} is the control input which could be the forces and moments from reaction wheels or thrusters. The equation above can be linearized to give the equation below.

$$\Delta \dot{\vec{x}} = \mathbf{A} \Delta \vec{x} + \mathbf{B} \Delta \vec{u} \tag{82}$$

where $\Delta \vec{x} = \vec{x} - \vec{x}_e$ and \vec{x}_e is an equilibrium point. In this formulation $\mathbf{A} = \partial \vec{f}/\partial \vec{x}$. and $\mathbf{B} = \partial \vec{g}/\partial \vec{x}$

8.2 Euler's Method

The equations of motion above can be integrated using Euler's method which is a crude first order method to approximate the time series solution [28]. Note that this method is prone to a significant amount of instability unless the timestep is very small.

$$\vec{x}_{k+1} = \vec{x}_k + \dot{\vec{x}}(t_k, \vec{x}_k) \Delta t \dot{\vec{x}}(t_k, \vec{x}_k) = \vec{f}(\vec{x}_k) + \vec{g}(\vec{x}_k) \vec{u}_k$$
(83)

8.3 Runge-Kutta-4

The RK4 algorithm is the standard in numerical integration and is given in the equation below [28]. The derivative of the quaternions is the same in RK4 as it is in Euler's method. This method is superior to RK4 in that it will converge faster as a function of timestep.

$$\vec{k}_{1} = \dot{\vec{x}}(t_{k}, \vec{x}_{k})$$

$$\vec{k}_{2} = \dot{\vec{x}}(t_{k} + \Delta t/2, \vec{x}_{k} + \vec{k}_{1}\Delta t/2)$$

$$\vec{k}_{3} = \dot{\vec{x}}(t_{k} + \Delta t/2, \vec{x}_{k} + \vec{k}_{2}\Delta t/2)$$

$$\vec{k}_{4} = \vec{\vec{x}}(t_{k} + \Delta t, \vec{x}_{k} + \vec{k}_{3}\Delta t)$$

$$\vec{k} = \frac{1}{6}(\vec{k}_{1} + 2\vec{k}_{2} + 2\vec{k}_{3} + \vec{k}_{4})$$

$$\vec{x}_{k+1} = \vec{x}_{k} + \vec{k}\Delta t$$
(84)

8.4 Discrete Dynamics

It is often useful for modern computers to write the equations of motion in discrete form....

9 Attitude Determination

Attitude determination is a fundamental portion of the ADACS board and requires the vehicle to determine it's orientation with respect to an inertial frame. The sections that follow detail the sensors and fundamental attitude determination algorithms derived thus far.

9.1 Sensor Overview

There are a multitude of sensors that are typically used on board small sats. Note that most satellites use a combination of these sensors rather than using all of them on one single satellite.

- 1. Magnetometers: Only used in LEO, they measure the magnetic field in the body frame $\vec{\beta}_B = [\beta_x, \beta_y, \beta_z]^T$.
- 2. Rate Gyros: These sensors measure the angular velocity of the spacecraft in the body frame p, q, r.
- 3. Solar Sensors: These sensors can be coarse analog sensors with an accuracy of 45 degrees or can be high precision digital sensors that have accuracy down to 1 degree. Sun senors return an azimuth v and declination δ angle which can be then translated into a vector in the body frame \vec{S}_B .
- 4. Horizon Sensors: Horizon sensors are typically used in LEO as they find the horizon of the Earth and use that for orientation information. These sensors also return an azimuth and declination angle that can be translated into a body frame vector \vec{H}_B .
- 5. **Startrackers:** Startrackers utilize a large aperture digital camera to photograph a starmap within the field of view of the lens. The photographed stars are then cross referenced with a starmap database and return the full quaternion vector.

Some issues arise with all of these sensors. For example, magnetometers must be activated when magnetorquers are turned off otherwise those artificial magnetic fields will pollute the data. Rate gyros are prone to drift while solar sensors can be quite inaccurate. Startrackers also run the risk of being blinded by the Sun and/or the Moon thus it is possible to design an attitude determination algorithm that utilizes the Sun's ephemeris data along with the Moon's ephemeris data in the event that the startracker is obscured by the Sun/Moon.

9.2 Low Earth Orbit

In LEO the main algorithm begins with obtaining the magnetic field in the body frame using magnetometers $\vec{\beta}_B$. A Sun measurement is then taken using a Sun sensor \vec{S}_B . Once those two independent body frame measurements are taken the inertial reference vectors must be obtained from a database. Startrackers have this database built in; however, for the magnetic field and the Sun vector these must be obtained from a separate database as discussed in Section 5.3. The idea is that if the position of the Earth is known then the position of the Sun with respect to the Earth is also known. The magnetic field vector can be obtained from the IGRF model as discussed in Section 5.1. The magnetic field vector in the inertial frame is given as $\vec{\beta}_I$. Note that the IGRF model requires the latitude and longitude to be known. Thus, in LEO a GPS is required to feed into the database. The inertial Sun vector \vec{S}_I only requires the Julian time which can be obtained from GPS as well. The julian time is based on the julian day as explained in Section 5.3.

9.3 Deep Space

As explained earlier, in deep space it is possible to obtain a vector to the Moon to be used in the attitude determination algorithm. The Moon sensor would give a vector to the Moon in the body frame \vec{M}_B while an inertial vector would be needed \vec{M}_I . This inertial Moon vector could be obtained via the Moon's ephemeris data which could be loaded onto the satellite's processor and use the orbital elements of the Moon to determine its position relative to the Earth. However, the Moon's ephemeris data would more than likely give the Moon's position relative to the Earth $(\vec{r}_{\oplus \to \mathcal{K}})$. The vector \vec{M}_I would then be given by

$$\vec{M}_I = \vec{r}_{\oplus \to \mathcal{C}} - \vec{r}_B \tag{85}$$

where \vec{r}_B is the satellite's position relative to the Earth. Note however that the position of the satellite relative to the Earth would need to be obtained via the Deep Space Network (DSN) and a combination of state estimation by integrating the orbital equations. The reference paper [10] is a great paper that details all the different kinds of sensors and their algorithms. This section will eventually be supplemented by the material in that reference paper.

9.4 Algorithm

The initial attitude determination algorithm itself requires two independent vectors. As stated previously, startrackers provided a large enough aperture and enough stars to produce the full quaternion by obtaining multiple unique vectors to unique stars. Multiple solar sensors or multiple magnetometers unfortunately do not obtain non-unique vectors and the algorithm fails. In LEO this is typically done with solar sensors and magnetometers but it can be done with star trackers. In deep space it is typically done with startrackers but it could be possible to obtain a Moon vector that would require a Moon sensor.

The derivation below is done for the LEO case with a Sun and magnetic field measurement. The derivation is identical for the deep space case with a Moon sensor simply by substituting the magnetic field measurement with a Moon measurement. Every vector is first normalized to obtain $\hat{\beta}_B, \hat{\beta}_I, \hat{S}_B, \hat{S}_I$. A triad is then created from body frame vectors using the equations below.

$$\hat{f}_1 = \hat{S}_B \quad \hat{f}_2 = \hat{f}_1 \times \hat{\beta}_B \quad \hat{f}_3 = \hat{f}_1 \times \hat{f}_2$$
 (86)

The matrix **F** is then created using the triad as an orthonormal basis $F = [\hat{f}_1, \hat{f}_2, \hat{f}_3]$. Similar equations are used for the inertial measurements.

$$\hat{g}_1 = \hat{S}_I \quad \hat{g}_2 = \hat{g}_1 \times \hat{\beta}_I \quad \hat{g}_3 = \hat{g}_1 \times \hat{g}_2$$
 (87)

The matrix **G** is then created just as the **F** matrix such that $\mathbf{G} = [\hat{g}_1, \hat{g}_2, \hat{g}_3]$. The transformation from inertial to body frame is then created using the formula below.

$$\mathbf{T}_{BI} = \mathbf{F}\mathbf{G}^T \tag{88}$$

This matrix above is similar to the matrix in equation 25 and thus the Euler angles can be extracted from the matrix itself using the formulation defined in Section 3.1. Euler can then be converted to quaternions if needed. Note that it is relatively easy to extract Euler angles from the \mathbf{T}_{IB} matrix, it is not so simple to extract quaternions. This is due to the fact that for every orientation there exists two quaternions that represent this space. Thus, it is more ideal to obtain Euler angles from the transformation matrix and then convert them to quaternions.

10 State Estimation

10.1 Sensor Measurement

During the standard estimation procedure, it is assumed that measurements are made that relate to the state or the state is directly measured. If the state is directly measured like star trackers no special formulation need to made. However, other sensors such as Sun sensors, magnetometers and horizon sensors measure a vector in 3-D space. In general a measurement \bar{y}_k can be expressed by the nonlinear equation shown below where \vec{x} is the state vector.

$$\bar{y}_k = \vec{h}(\vec{x}_k) + \vec{\nu}_k \tag{89}$$

The vector \vec{v}_k is noise associated with the sensor [10, 9]. If the system is linearized about some equilibrium point the measurement equation can be written as

$$\bar{y}_k = \mathbf{h}_k \vec{x}_k + \vec{\nu}_k \tag{90}$$

where $\mathbf{h}_k = \partial \vec{h}/\partial \vec{x}$. It's easy to see here that in the case of the star tracker the matrix \mathbf{h}_k is just the identity matrix. The noise vector $\vec{\nu}_k$ is assumed to be gaussian white noise while the covariance cov() is given by the equation below using the expectation operator $\mathbf{E}()$.

$$cov(\vec{\nu}_k) = \mathbf{E}(\vec{\nu}_k \vec{\nu}_k^T) = \mathbf{R}_k \tag{91}$$

If a measurement is made by a Sun sensor or similar where a vector in 3-D space can be compared to a known inertial reference vector the measurement update can be given as

$$\bar{r}_k^B = \mathbf{T}_{BI}(\vec{q}_k) \vec{r}_k^I + \vec{\nu}_k \tag{92}$$

where \bar{r}_k^B is a measurement in the body reference frame at time t_k . The angular velocity measurement in particular can be denoted as $\bar{\omega}_k$. Measurements are typically polluted with bias and white noise. For example, the angular velocity measurement can be given as

$$\bar{\omega} = \vec{\omega} + \vec{b} + \vec{\eta}_q \tag{93}$$

where \vec{b} is a bias that has dynamics given by $\dot{\vec{b}} = \vec{\eta}_b$. The vectors $\vec{\eta}_g$ and $\vec{\eta}_b$ are standard Gaussian white noise vectors. Typically white noise can be filtered out using lowpass filters, complimentary filters or even Kalman Filters while bias can just be substracted. Thus, the estimate for the angular velocity can be written as

$$\tilde{\omega} = \bar{\omega} - \tilde{b} \tag{94}$$

where \tilde{b} is the estimate of the bias.

10.2 Linear Least Squares

In order to understand the nature of a Kalman filter, the linear least squares solution is shown below. Assume for the moment that M independent measurements are made such that $\bar{Y} = [\bar{y}_1, ..., \bar{y}_M]^T$.

$$\bar{Y} = \mathbf{H}\vec{x} + \vec{V} \tag{95}$$

In this case $\mathbf{H} = [\mathbf{h}_1, ..., \mathbf{h}_M]^T$ and $\vec{V} = [\nu_1, ..., \nu_M]^T$. The vector \vec{V} is a vector of error values between your measurements and the actual truth signals $Y = \mathbf{H}\vec{x}$. Absent of all measurement and model noise there would be a unique solution to this problem to solve for the vector \vec{x} . The matrices \vec{Y} and \mathbf{H} are known and are the measurements and the output equation relating the measurements to the state values in \vec{x} respectively. Because of measurement and model noise, a unique solution is not possible. That is, the problem is overconstrained since typically the number of measurements is larger than the number of unknowns. Take the linear example as shown in the figure below.

Figure 7: Linear Regression Example

In this case the ordinate axis is the output Y and the abscissa is the independent variable that characterizes the matrix \mathbf{H} . The black dots then are the measurements \bar{Y} while the trend line is the estimate $\tilde{Y} = \mathbf{H}\tilde{x}$. In this case the residuals $\hat{Y} = \tilde{Y} - \bar{Y}$ is the distance between the trend line in red and the black dots (the measurements). For this linear example, the unknowns would be the slope and intercept. It is clear here that there exists no linear solution \vec{x} that goes through all black data points. Thus, the equation below can be constructed.

$$\bar{Y} = \mathbf{H}\tilde{x} + \hat{Y} \tag{96}$$

This implies that the trendline \tilde{Y} would go through all data points if \hat{Y} were zero. Thus the solution to this problem was originally found by Gauss [29] and involved minimizing the residuals between \tilde{Y} and \tilde{Y} (the estimated Y values). To do this, a cost function is generated such that

$$J = \frac{1}{2}\hat{Y}^T\hat{Y} \tag{97}$$

Substituting in the equation $\hat{Y} = \bar{Y} - \mathbf{H}\tilde{x}$ and minimizing the cost function $\partial J/\partial \tilde{x} = 0$ results in the solution below.

$$\tilde{x} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \bar{Y} \tag{98}$$

Note that the equation above only works if the number of measurements M is greater than or equal to the number of unknowns N. If not, the solution will always be rank deficient and no solution will be found. This is called an under constrained problem. In this there are an infinite number of solutions that satisfy $\bar{Y} = \mathbf{H}\vec{x}$ even in the presence of modeling errors. In order to get around this issue Lagrange's method of optimization is used [27]. For problems like this the residuals between the estimate \tilde{Y} and the measured signals \bar{Y} can be easily made to be zero. Thus minimizing the residuals is trivial since the solution will still be an infinite number of solutions. Therefore a constraint can be placed where $\bar{Y} = \tilde{Y} = \mathbf{H}\tilde{x}$. In order to find a unique solution then the requirement is placed to minimize the estimate \tilde{x} . In this case, the cost function to be minimized is given by Lagrange's extension to optimization as shown below

$$L = \frac{1}{2}\tilde{x}^T\tilde{x} + \lambda^T(\bar{Y} - \mathbf{H}\tilde{x}) \tag{99}$$

The cost function above utilizes the method of Lagrange multipliers in order to satisfy the constraint that the solution must pass through all measurements again only if the number of measurements M is less than the number of unknowns N. In the equation above the vector \tilde{x} must be solved and so must the Lagrange multipliers λ . The solution to the problem above requires $\partial L/\partial \tilde{x}=0$ and $\partial L/\partial \lambda=0$. Carrying out the partial derivatives and solving for the estimate yields the following equations.

$$\tilde{x} = \mathbf{H}^T (\mathbf{H} \mathbf{H}^T)^{-1} \bar{Y} \tag{100}$$

Note, it is standard practice in state estimation to have at least as many measurements as unknowns. In this case M = N and Gauss' solution is sufficient.

10.3 Weighted Least Squares

The weighted least squares solution is found by setting the cost function equal to $J = \frac{1}{2}\hat{Y}^T \mathbf{W} \hat{Y}$ where \mathbf{W} is a positive definite and symmetric weighting matrix. The solution then is shown below.

$$\tilde{x} = (\mathbf{H}^T \mathbf{W} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{W} \bar{Y} \tag{101}$$

In the standard Kalman Filter approach, the weighting matrix is given by the inverse covariance of the error $\mathbf{r} = \mathbf{E}[\vec{v}\vec{v}^T]$. Placing this into a matrix yield $\mathbf{W} = \mathbf{R}^{-1}$ where $\mathbf{R} = diag([\mathbf{r}_1, ... \mathbf{r}_M])$. The weighted least squares solution then reduces to

$$\tilde{x} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \bar{Y}$$
(102)

10.4 A Priori Knowledge of the State Vector

If a priori knowledge is obtained via other means or in the case of the standard Kalman Filter from integration of the state, it is possible to obtain an updated estimate of the state based on the previous state estimate and the new sensor measurements. First, the a priori estimate \tilde{x}^- is written as

$$\tilde{x}^- = \vec{x} + \vec{w} \tag{103}$$

where \vec{w} is model noise associated with the error in the state estimate. The covariance of this noise is also denoted as a matrix and defined below.

$$cov(\vec{w}) = \mathbf{E}(\vec{w}\vec{w}^T) = \mathbf{q} \tag{104}$$

In this case it is desired for the updated measurement to be some linear combination of the a priori equation and the measurements such that

$$\tilde{x} = \Lambda \bar{Y} + \Gamma \tilde{x}^- \tag{105}$$

The matrices Λ and Γ have an added constraint which can be shown by assuming the a priori measurement is perfect $\tilde{x}^- = \vec{x}$ and the measurements $\bar{Y} = Y = \mathbf{H}\vec{x}$. In this case, we must have the updated estimate equal the truth signal. $\tilde{x} = \vec{x}$. Rearranging the equation above yields

$$\vec{x} = \mathbf{\Lambda} \mathbf{H} \vec{x} + \mathbf{\Gamma} \vec{x} \tag{106}$$

which means that $(\Lambda H + \Gamma) = I$ Again using the method of lagrange multipliers the cost function to be minimized is given as

$$L = \mathbf{E} \left[\frac{1}{2} \hat{x}^T \hat{x} + \lambda^T (\mathbf{I} - \mathbf{\Lambda} \mathbf{H} - \mathbf{\Gamma}) \right]$$
 (107)

where $\hat{x} = \tilde{x} - \vec{x}$ and again **E** is the expectation operator. Remembering that **q** is the covariance of the model noise and **r** is the covariance of the measurement noise, the solution to the minimization problem is given by the equation below.

$$\tilde{x} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} + \mathbf{q}^{-1})^{-1} (\mathbf{H}^T \mathbf{R}^{-1} \bar{Y} + \mathbf{q}^{-1} \tilde{x}^{-})$$
(108)

Note that this solution assumes that $\mathbf{E}(\vec{w}\vec{v}^T) = 0$. Measurement and model noise are uncorrelated.

10.5 Complimentary Filter

Looking at the equation for the A priori knowledge it is possible to formulate the complimentary filter. First, the measurements are assumed to be identical to the state vector such that $\mathbf{h}_k = \mathbf{I}$. From here a few extremes are shown below. First, assume that the measurement error is very low such that the $cov(\vec{v}) << 1$ while the model noise \vec{w} is very large approaching infinity. In this case, $\mathbf{q}^{-1} = 0$. Substituting this into the weighted apriori equation yields

$$\tilde{x} = average(\bar{Y}) \tag{109}$$

which essentially states that the estimate completely believes the sensor measurement. If instead we assume that the model noise is perfect such that $cov(\vec{w}) << 1$ and the sensor noise is approaching infinity, then $\mathbf{R}^{-1} = 0$. This yields the following equation.

$$\tilde{x} = \tilde{x}^- \tag{110}$$

Thus it can be seen that there is a sliding bar between believing the apriori estimate or the sensor measurement. As such it is possible to develop a much simpler filter. First a constraint is placed on \mathbf{q} and \mathbf{R} such that

$$(\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} + \mathbf{q}^{-1}) = \mathbf{I} \tag{111}$$

This causes the update law to reduce to the following

$$\tilde{x} = \mathbf{H}^T \mathbf{R}^{-1} \bar{Y} + \mathbf{q}^{-1} \tilde{x}^- \tag{112}$$

If only one measurement is investigated the equation collapses to the following.

$$\tilde{x} = \mathbf{r}^{-1}\bar{y} + \mathbf{q}^{-1}\tilde{x}^{-} \tag{113}$$

The constraint also collapses to

$$\mathbf{r}^{-1} + \mathbf{q}^{-1} = \mathbf{1} \tag{114}$$

If $\mathbf{q}^{-1} = \mathbf{s}$ and $\mathbf{r}^{-1} = \mathbf{1} - \mathbf{s}$ the update law simplifies to

$$\tilde{x} = (\mathbf{1} - \mathbf{s})\bar{y} + \mathbf{s}\tilde{x}^{-} \tag{115}$$

Here it is clear that if s = 1 the new estimate will be equal to the old estimate meaning that the sensor noise is approaching infinite. If s = 0 it means that the new estimate is equal to the sensor measurement meaning the model noise is approaching infinity. This is a simple crude first order filter that can be used when only a simple understanding of covariance is known.

10.6Sequential Linear Estimator

In the above two scenarios, it is assumed that all measurements from 1 to M are known at the same time instant t and thus the least squares estimate can be done "all at once". For discrete time sensors on board a spacecraft this is not possible. For example, if we take the weighted least squares solution assuming we have a 0th batch of measurements, the estimate of \tilde{x} would be

$$\tilde{x}_0 = (\mathbf{h}_0^T \mathbf{w}_0 \mathbf{h}_0)^{-1} \mathbf{h}_0^T \mathbf{w}_0 \bar{y}_0 \tag{116}$$

If we then waited Δt seconds for a new set of measurements we would have to obtain a new estimate of \tilde{x} which could be done using the equation below

$$\tilde{x}_1 = (\mathbf{h}_1^T \mathbf{w}_1 \mathbf{h}_1)^{-1} \mathbf{h}_1^T \mathbf{w}_1 \bar{y}_1 \tag{117}$$

This solution however would only take into account the new measurements. Thus, if larger matrices were constructed like $\mathbf{H} = [\mathbf{h}_0, \mathbf{h}_1]$ the solution for \tilde{x} becomes the same as it was in Equation 101. This process would be tedious if these matrices were computed over and over again. This is because the matrices would continue to grow larger and larger over time and eventually overflow the memory management system on the computer. Thus, a method for updating the state vector every time a new measurement is obtained must be derived. To do this the two equations are substituted into equation 101. Then a covariance matrix is used such that $\mathbf{p} = (\mathbf{h}^T \mathbf{w} \mathbf{h})^{-1}$ which never grows in size. Using that simplification and making use of a estimation gain matrix k, the estimation algorithm is as follows:

- 1. The first measurement is obtained \bar{y}_0
- 2. Compute the matrix $\mathbf{p_0} = (\mathbf{h_0^T w_0 h_0})^{-1}$ 3. Obtain the estimate for $\tilde{x}_0 = \mathbf{p_0 h_0^T w_0 \bar{y}_0}$ (Notice that if you use the equation above this is the same solution as the weighted least squares estimate)
- 4. Every time a new measurement, \bar{y}_k , is obtained use the recursive least squares update law shown in the equation below.

$$\mathbf{k}_{k+1} = \mathbf{p}_{k} \mathbf{h}_{k+1}^{T} [\mathbf{h}_{k+1} \mathbf{p}_{k} \mathbf{h}_{k+1}^{T} + \mathbf{w}_{k}^{-1}]^{-1}$$

$$\mathbf{p}_{k+1} = [\mathbf{1} - \mathbf{k}_{k+1} \mathbf{h}_{k+1}] \mathbf{p}_{k}$$

$$\tilde{x}_{k+1} = \tilde{x}_{k} + \mathbf{k}_{k+1} (\bar{y}_{k+1} - \mathbf{h}_{k+1} \tilde{x}_{k})$$
(118)

In the special case where the weighting matrix \mathbf{w}_k is equal to a constant \mathbf{w} and the state vector is directly measured such that \mathbf{h}_k is also identity, the sequential linear estimator gives the following simplified steps.

- 1. The first measurement is obtained \bar{y}_0 2. Compute $\mathbf{p}_0 = \mathbf{w}^{-1}$
- 3. Obtain the estimate for $\tilde{x}_0 = \bar{y}_0$ (this is a fault of \mathbf{h}_k being identity)
- 4. Every time a new measurement, \bar{y}_k , is obtained use the recursive least squares update law shown in the equation below.

$$\mathbf{k}_{k+1} = \mathbf{p}_{k} [\mathbf{p}_{k} + \mathbf{w}^{-1}]^{-1}$$

$$\mathbf{p}_{k+1} = [\mathbf{1} - \mathbf{k}_{k+1}] \mathbf{p}_{k}$$

$$\tilde{x}_{k+1} = \tilde{x}_{k} + \mathbf{k}_{k+1} (\bar{y}_{k+1} - \tilde{x}_{k})$$
(119)

10.7 The Continuous Time Complimentary Filter

In the above section a discrete sequential least squares update law was formulated. In that derivation it is assumed that the state estimate is held constant in between state measurements. It is possible however to integrate a model of the state dynamics and use that estimate in between state measurements. The is the start of a Kalman Filter. To formulate the Continuous Time Complimentary Filter the dynamics of the system are written such that

$$\dot{\vec{x}} = \mathbf{f}\vec{x} + \mathbf{g}u + \mathbf{m}\vec{w}$$

$$\vec{y} = \mathbf{h}\vec{x}$$
(120)

where the initial conditions are \vec{x}_0 and \vec{w} is a modeling noise term where $\mathbf{E}[\vec{w}\vec{w}^T] = \mathbf{q}$ just as was defined in the a priori estimation section. The model dynamics are set up such that

$$\dot{\tilde{x}} = \tilde{\mathbf{f}}\tilde{x} + \tilde{\mathbf{g}}u + \vec{\gamma}
\tilde{y} = \mathbf{h}\tilde{x}
\bar{y} = \mathbf{h}\vec{x} + \vec{v}$$
(121)

where again \bar{y} is the state measurement and \vec{v} is noise associated with the sensor where $\mathbf{E}[\vec{v}\vec{v}^T] = \mathbf{r}$. The term $\vec{\gamma}$ is added as a psuedo control which can be whatever we want. The idea is for u to be the control input to drive $\vec{x} \to \vec{x}_c$ while the psuedo control is for the observer dynamics to drive $\tilde{y} \to \bar{y}$. The model dynamics are going to deviate in between sensor measurements so if the observer dynamics are designed properly the estimate can converge to the measurement. Of course, this means your estimate is only as good as your measurement noise but it is a start. To design the psuedo control law, measurement feedback is used in the same form as standard unity feedback control laws such that $\vec{\gamma} = bfk\hat{y}$ where \hat{y} is the difference between the estimate and the measurement. The closed loop dynamics can then be written as

$$\dot{\tilde{x}} = (\tilde{\mathbf{f}} - \mathbf{kh})\tilde{x} + \tilde{\mathbf{g}}u + \mathbf{k}\bar{y} \tag{122}$$

Looking at this equation it's hard to see the effect of the observer. Thus the error dynamics must be investigated where $\hat{x} = \tilde{x} - \vec{x}$. For the simple case it is assumed that $\mathbf{f} = \tilde{\mathbf{f}}$ and $\mathbf{g} = \tilde{\mathbf{g}}$. The closed loop error dynamics can then be written as

$$\dot{\hat{x}} = (\mathbf{f} - \mathbf{kh})\hat{x} + \mathbf{k}\vec{v} \tag{123}$$

in this case the solution to this equation is

$$\hat{x}(t) = \hat{x}_0 e^{(\mathbf{f} - \mathbf{kh})t} + \vec{\eta} \tag{124}$$

where the term $\vec{\eta}$ is a function of the noise term $\mathbf{k}\vec{v}$. In this case, if \mathbf{k} is chosen to be large, the error dynamics will be very fast but the noise term will be very large. If \mathbf{k} is chosen to be very small the error dynamics will be slow but the error term will not be a prevalent. The issue with this filter of course comes with how to tune the gain matrix \mathbf{k} which is what the Kalman filter seeks to address.

10.8 The Continuous Discrete Kalman Filter

In the case of the continuous discrete Kalman Filter, the model dynamics are integrated just as in the complimentary filter. The only difference is instead of using a continuous observer the state estimate is updated every time a new measurement is obtained much like the sequential least squares technique. First, let's write the model dynamics as before without the observer and the measurement equations are written such that the measurement is taken at timestep t_k and thereafter every Δt .

$$\dot{\tilde{x}} = \tilde{\mathbf{f}}\tilde{x} + \tilde{\mathbf{g}}u
\tilde{y} = \mathbf{h}\tilde{x}
\bar{y}_k = \mathbf{h}_k \vec{x}(t_k) + \vec{v}_k$$
(125)

The update equation is written using the continuous observer dynamics used for the complimentary filter only in this case the update is discrete.

$$\tilde{x}_k^+ = \tilde{x}_k^- + \mathbf{k}_k (\bar{y}_k - \mathbf{h}_k \tilde{x}_k^-) \tag{126}$$

In this case \tilde{x}_k^+ is the estimated state after the update while \tilde{x}_k^- is the estimate before the update. The equation for the covariance update and the Kalman Gain matrix are identical in that the derivation is formulated just as it was before. The equations are shown below again only + and - is used to denote the matrices before and after update.

$$\mathbf{k}_{k} = \mathbf{p}_{k} \mathbf{h}_{k}^{T} [\mathbf{h}_{k} \mathbf{p}_{k}^{-} \mathbf{h}_{k}^{T} + \mathbf{r}]^{-1}$$

$$\mathbf{p}_{k}^{+} = [\mathbf{1} - \mathbf{k}_{k} \mathbf{h}_{k}] \mathbf{p}_{k}^{-}$$
(127)

In the sequential linear estimator however, the covariance matrix was set using a weighted least squares approach. In this case the covariance matrix is set such that $\mathbf{p} = \mathbf{E}[\hat{x}\hat{x}^T]$. Taking a derivative of this equation and substituting in the closed loop error dynamics yields the covariance propagation equation shown below.

$$\dot{\mathbf{p}} = \tilde{\mathbf{f}}\mathbf{p} + \mathbf{p}\tilde{\mathbf{f}}^T + \mathbf{m}\mathbf{q}\mathbf{m}^T \tag{128}$$

The final Continuous Discrete Kalman Filter then goes like this.

- 1. Integrate the model dynamics in Equation 125 and the covariance dynamics in equation 128
- 2. When a measurement is received, the Kalman Gain matrix is computed using equation 127.
- 3. Equation 127 is also used to update the covariance matrix
- 4. Finally, equation 126 is used to update the state vector estimate and then the process repeats.

An example figure is shown below for a first order system. In this figure the blue stars represent discrete sensor measurements with some noise. Everytime the sensor is updated the model performs and update and instantaneously changes to a new value. The model then integrates (incorrectly due to model mismatch) until a new sensor measurement is obtained. In this case the model is so inaccurate it makes more sense to update the sensor more frequently or perform some sort of adaptive control algorithm to estimate the plant dynamics.

Figure 8: First Order Kalman Filter Example

10.9 Kalman Filter for Spacecraft Dynamics

Attitude estimation involves a combination of attitude determination and state estimation. Assuming at time $t=t_0$ the attitude estimation algorithm is performed and an estimate of the quaternion is obtained as \tilde{q}_0 . If discrete regular angular velocity $(\bar{\omega}_k)$ measurements are made every Δt seconds, the quaternion can be estimated by simply integrating the attitude equations of motion. Even if perfect sensor measurements are made, it is possible to integrate these equations of motion over time and the quaternion \vec{q} will be much different than the estimated quaternion \tilde{q} . Thus, the attitude estimation algorithm can run again to obtain a new absolute quaternion measurement. The equations of motion are integrated and when a new sensor measurement is obtained the estimated state is updated based on the estimated covariance combined with and estimate of model errors and sensor errors. Finally, it is possible to create an Extended State Kalman Filter (EKF) which can estimate sensor inaccuracies simply by finding the least squares solution between the sensor measurements and state estimates. The sections that follow details the Kalman Filter for Spacecraft Dynamics as well as the extended state version which estimate bias values in the rate gyro.

First, the 4-dimensionality of the quaternion renders the above Kalman filter formulation to be impossible mostly because the quaternion derivative is a 4 by 1 matrix while the angular velocity vector is a 3 by 1. Furthermore, the quaternion derivative is not linear and cannot be expressed as the linear matrices in the previous section. As such the Kalman Filter must be updated somewhat. The derivative of the state \dot{q} is cumbersome and follows the reference in [12]. First the angular velocity measurement is substituted into the derivative of quaternions where the Ω () and χ () identity is used to separate out the white noise parameter.

$$\dot{\vec{q}} = \frac{1}{2}\mathbf{\Omega}(\vec{\omega})\vec{q} = \frac{1}{2}\mathbf{\Omega}(\bar{\omega} - \vec{b} - \vec{\eta}_g)\vec{q} = \frac{1}{2}\mathbf{\Omega}(\bar{\omega} - \vec{b})\vec{q} - \frac{1}{2}\chi(\vec{q})\vec{\eta}_g$$
(129)

At this point an error quaternion is created using the difference between \vec{q} and \tilde{q} . Recall that the error quaternion is given by the equation below. The full equation is shown in 38.

$$\delta \vec{q} = \vec{q} \oplus \tilde{q}^{-1} \tag{130}$$

The derivative of this difference quaternion is beyond the scope of this report but can be found in [30].

$$\delta \vec{q} = \begin{cases} 0 \\ -\mathbf{S}(\tilde{\omega})\delta\vec{\epsilon} \end{cases} + \frac{1}{2}\mathbf{\Omega}(\delta\vec{\omega})\delta\vec{q} \tag{131}$$

where $\delta \vec{\omega} = \vec{\omega} - \tilde{\omega}$ and $\delta \vec{\epsilon} = \vec{\epsilon} - \tilde{\epsilon}$. Recall that $\tilde{\omega} = \bar{\omega} - \tilde{b}$. The second term in the equation above can be expanded using the equations in Section 10.1. Note that $\delta \vec{\omega}$ simplifies to $-\delta \vec{b} - \vec{\eta}_g$ and $\delta \vec{q} = [\delta \dot{q}_0, \delta \vec{\epsilon}]^T$.

$$\delta \vec{q} = \begin{cases} 0 \\ -\mathbf{S}(\tilde{\omega})\delta\vec{\epsilon} \end{cases} - \frac{1}{2} \begin{cases} -\delta \vec{\epsilon}^T \delta \vec{b} \\ \delta q_0 \delta \vec{b} + \mathbf{S}(\delta \vec{\epsilon})\delta \vec{b} \end{cases} - \frac{1}{2} \begin{cases} -\delta \vec{\epsilon} \vec{\eta}_g \\ \delta q_0 \vec{\eta}_g + \mathbf{S}(\delta \vec{\epsilon})\vec{\eta}_g \end{cases}$$
(132)

In order to proceed further, small angle approximations are made such that $|\delta \vec{q}| << 1$. The latter 3 variables in the quaternion are further approximated as $\delta \vec{\rho} = \delta \vec{\epsilon}$. In order to fit in with the standard Kalman filter, the state vector $\vec{x} = \vec{\rho}$ and thus the state dynamics $\delta \vec{x}$ can then be written as

$$\delta \vec{x} = \delta \dot{\vec{\rho}} = -\mathbf{S}(\tilde{\omega})\delta \vec{d} - \frac{1}{2}\delta \vec{b} - \frac{1}{2}\vec{\eta}_g$$
(133)

In order to extract the attitude quaternion from the approximated state the following equations are used.

$$\delta \vec{\epsilon} = \frac{\delta \vec{\rho}}{\sqrt{1 + \delta \vec{\rho}^T \delta \vec{\rho}}} \quad q_0 = \frac{1}{\sqrt{1 + \delta \vec{\rho}^T \delta \vec{\rho}}} \tag{134}$$

10.10 Extended State Kalman Filter

As shown in the previous section, a Kalman filter can be used to estimate the state. The standard Kalman filter however can be extended to include the bias of the angular velocity measurement. Thus the state vector is augmented to be $\vec{x} = [\vec{q}, \vec{b}]^T$. Since the derivative of the bias is the white noise vector, the difference state vector after much simplification is shown below.

$$\dot{\delta \vec{x}} = \begin{cases} \delta \vec{\rho} \\ \delta \vec{b} \end{cases} = \begin{bmatrix} -\mathbf{S}(\tilde{\omega}) & -\frac{1}{2}\mathbf{I}_{3x3} \\ \mathbf{0}_{3x3} & \mathbf{0}_{3x3} \end{bmatrix} \begin{cases} \delta \vec{\rho} \\ \delta \vec{b} \end{cases} + \begin{cases} -\frac{1}{2}\vec{\eta}_g \\ \vec{\eta}_b \end{cases}$$
(135)

In this formulation $\delta \vec{b} = \vec{b} - \tilde{b}$. The derivative is then $\delta \vec{b} = \vec{\eta}_b - 0$. It is assumed that the derivative of the estimate is zero and thus is only updated when sensor measurements are made. The states equation above can be reduced to the state space form shown below.

$$\dot{\delta \vec{x}} = \mathbf{A}\delta \vec{x} + \vec{\eta} \tag{136}$$

References

- [1] B. Etkins. Dynamics of Atmospheric Flight. Dover, Mineola, New York, 2000. pages 9-13,134-151,196-318.
- [2] Warren F. Phillips. Mechanics of flight. pages Preface, 10–13, 260–270, 715–753, 2010.
- [3] R.C. Nelson. Flight Stability and Automatic Control. McGraw-Hill, 2nd edition, 1998.

- [4] Jerry E. White Roger R. Bate, Donald D. Mueller. Fundamentals of Astrodynamics. Dover, 1971.
- [5] Arthur KL Lin and Regina Lee. Attitude control for small spacecraft with sensor errors. In AIAA SPACE Conferences and Exposition, Pasadena, California, page 4423, August 2015.
- [6] Nuno Filipe and Panagiotis Tsiotras. Adaptive position and attitude-tracking controller for satellite proximity operations using dual quaternions. *Journal of Guidance, Control, and Dynamics*, 38(4):566–577, 2015. doi:10.2514/1.G000054.
- [7] O. A. Bachau. Flexible Multibody Dynamics. Springer, 2008.
- [8] Karsten Grosekathofer and Zizung Yoon. Introduction into quaternions for spacecraft attitude representation. Technical University of Berlin Department of Astronautice and Aeronautics, 2012.
- [9] John L. Cassidis and John L. Junkins. *Optimal Estimation of Dynamic Systems*. Chapman and Hall/CRC, 2004.
- [10] Sebastian Munoz and E. Glenn Lightsey. A sensor driven trade study for autonomous navigation capabilities. AIAA.
- [11] John L. Cassidis, F. Landis Markley, and Yang Chen. Survey of nonlinear attitude estimation methods. *Journal of Guidance, Control, and Dynamics*, 30(1), 2007.
- [12] Bing Liu, Zhen Chen, Xiangdong Liu, and Fan Yang. An efficient nonlinear filter for spacecraft attitude estimation. *International Journal of Aerospace Engineering*, 2014(540235), 2014.
- [13] R. M. Georgevic. The solar radiation pressure forces and torques model. *The Journal of the Astronautical Sciences*, 27(1), 1973.
- [14] Anderson D. Fundamentals of Aerodynamics 4th Edition. McGraw Hill Series, 2007.
- [15] Graham Gyatt. The standard atmosphere. A mathematical model of the 1976 U.S. Standard Atmosphere, Jan 2006.
- [16] Geographic library c++. https://geographiclib.sourceforge.io/. cited Jul 11, 2017.
- [17] Enhanced magnetic field model. https://www.ngdc.noaa.gov/geomag/EMM/. cited Jul 11, 2017.
- [18] Neil Ashby. The sagnac effect in the global positioning system. Relativity in rotating frames: relativistic physics in rotating reference frames, page 11, 2004. doi:1-4020-1805-3.
- [19] Earth gravity model. https://www.ngdc.noaa.gov/geomag/EMM/. cited Jul 31, 2017.
- [20] Jet Propulsion Laboratory. Solar system dynamics. https://ssd.jpl.nasa.gov/Accessed October 4th, 2019.
- [21] Mirko Leomanni. Comparison of control laws for magnetic detumbling. Research Gate, 10 2012. accessed: 2/9/2018.
- [22] M. Lovera. Magnetic satellite detumbling: The b-dot algorithm revisited. In 2015 American Control Conference (ACC), pages 1867–1872, July 2015. doi:10.1109/ACC.2015.7171005.
- [23] Farhat Assaad. Attitude Determination and Control System for a CubeSat. PhD thesis, Worcester Polytechnic Institute, March 1st 2013.
- [24] Amit Sanyal and Zachary Lee-Ho. Attitude tracking control of a small satellite in low earth orbit. Aug 2009. doi:10.2514/6.2009-5902.
- [25] Fabio Celani. Robust three-axis attitude stabilization for inertial pointing spacecraft using magnetorquers. ScienceDirect: Acta Astronautica, 107:87–96, FebruaryMarch 2015. doi:10.1016/j.actaastro.2014.11.027.
- [26] E. Carlen and M.C. Carvalho. Linear Algebra: From the Beginning. W. H. Freeman, 2006.
- [27] 1736-1813; Binet Jacques Philippe Marie 1786-1856; Garnier Jean Guillaume 1766-1840 Lagrange, J. L. (Joseph Louis). Mcanique analytique. *Paris, Ve Courcier*, 1, 1811.

- [28] Steven C. Chapra and Raymond P. Canale. *Numerical Methods for Engineers*. McGraw-Hill Education, 7th edition, 2012.
- [29] Stephen M. Stigler. Gauss and the invention of least squares. Ann. Statist., 9(3):465-474, 05 1981. doi:10.1214/aos/1176345451.
- [30] A. B. Younes, D. Mortari, J. D. Turner, and J. L. Junkins. Attitude error kinematics. *Journal of Guidance, Control and Dynamics*, 37(1), 2014.