Representing Isabelle in LF

Florian Rabe

Jacobs University Bremen

Slogans

- Type classes are wrong: Type classes should be theories, instances should be morphisms.
- ➤ The Isabelle module system is too complicated: You do not need theories, locales, and type classes.
- ► The LF module system is good:
 - ▶ LF = judgments as types, proofs as terms
 - LF module system = inference systems as signatures, relations as morphisms
 - simple, elegant, expressive

Background

- Long term goal:
 - comprehensive framework to represent, integrate, translate, reason about logics
 - apply to all commonly used logics, generate large content base digital library of logics
 - cover model and proof theory
 - provide tool support: validation, browsing, editing, storage, ...
- State:
 - successful progress based on modular Twelf

twelf-mod branch of Twelf

- ► fast-growing library https://trac.omdoc.org/LATIN/
- besides logics: set theory, λ -cube, Mizar, **Isabelle**/HOL, . . .

Overview

- Designed representation of Isabelle in LF an outsider's account of Isabelle
 - includes type classes, locales, theories, excludes Isar
 - yields concise formal definition of Isabelle
 - complements Isabelle documentation
- Next steps require inside support
 - better statement and proof of adequacy
 - implementation

```
theory T imports T^* begin thycont end
theory
                 ::=
thycont
                        (locale | sublocale | interpretation
                 ::=
                        class | instantiation | thysymbol)*
                        locale L = (i : instance)^* for locsymbol^* + locsymbol^*
locale
sublocale
                        sublocale L < instance proof^*
interpretation
                        interpretation instance proof*
                 ::=
                       L where namedinst*
instance
                 ::=
                 ::= class C = C^* + locsymbol^*
class
instantiation
                        instantiation type :: (C^*)C begin locsymbol^* proof* end
                 ::=
                        consts con | defs def | axioms ax | lemma lem
thysymbol
                 ::=
                        typedecl typedecl | types types
locysymbol
                 ::=
                       fixes con | defines def | assumes ax | lemma lem
con
                 ::= c :: tvpe
def
                 ::= a: c x^* \equiv term
                 ::= a : form
ax
lem
                 ::= a : form proof
typedecl
                 := (\alpha^*)t name
                 ::= (\alpha^*)t = type
tvpes
namedinst
                 ::= c = term
                       \alpha :: C \mid (type^*) t \mid type \Rightarrow type \mid prop
type
                        x \mid c \mid term \ term \mid \lambda(x :: type)^*.term
term
                        form \Longrightarrow form | \bigwedge (x :: type)^*.form | term \equiv term
form
                 ::=
                        a primitive Pure inference as described in the manual
proof
                 ::=
```

Representing the Primitives

```
sig Pure = {
    tp
                      type.
                                                                                                        infix right 0 \Rightarrow.
    \Rightarrow
                : tp \rightarrow tp \rightarrow tp.
    tm
              : tp → type.
                                                                                                             prefix 0 tm.
    λ
                : (tm A \rightarrow tm B) \rightarrow tm (A \Rightarrow B).
                : tm(A \Rightarrow B) \rightarrow tmA \rightarrow tmB.
                                                                                                      infix left 1000 @.
    prop
                     (tm A \rightarrow tm prop) \rightarrow tm prop.
                    tm \text{ prop} \rightarrow tm \text{ prop} \rightarrow tm \text{ prop}.
                                                                                                     infix right 1 \Longrightarrow.
    \Longrightarrow
                : tm A \rightarrow tm A \rightarrow tm prop.
                                                                                                        infix none 2 \equiv.
                : tm prop → type.
                                                                                                              prefix 0 ⊢.
                : (x : tm A \vdash (B \times)) \rightarrow \vdash \land ([x]B \times).
    ΛI
                : \vdash \land ([x]Bx) \rightarrow \{x : tm A\} \vdash (Bx).
    ΛΕ
    \LongrightarrowI : (\vdash A \rightarrow \vdash B) \rightarrow \vdash A \Longrightarrow B.
    \LongrightarrowE : \vdash A \Longrightarrow B \rightarrow \vdash A \rightarrow \vdash B.
    refl : \vdash X \equiv X.
    subs : \{F: tm A \rightarrow tm B\} \vdash X \equiv Y \rightarrow \vdash F X \equiv F Y.
    exten : \{x : tm \ A\} \vdash (F \ x) \equiv (G \ x) \rightarrow \vdash \lambda F \equiv \lambda G.
    beta : \vdash (\lambda[x : tm A]Fx) @ X \equiv FX.
    eta : ⊢ λ ([x : tm A]F @ x) ≡ F.
    sig\ Type = \{this: tp.\}.
```

Representing Simple Expressions

Expression	Isabelle	LF
type operator	$(\alpha_1,\ldots,\alpha_n)$ t	$t: tp \rightarrow \ldots \rightarrow tp \rightarrow tp$
type variable	α	α : tp
constant	c :: τ	$c: tm \lceil au \rceil$
variable	x :: τ	$x: tm \lceil \tau \rceil$
assumption/axiom	a: φ	$a: \vdash \ulcorner \varphi \urcorner$
lemma/theorem	a : φ P	$a: \vdash \ulcorner \varphi \urcorner = \ulcorner P \urcorner$

Polymorphism: τ , φ , P may contain type variables $\alpha_1, \ldots, \alpha_n$ Represented as LF binding, e.g.,

$$a: \{\alpha_1: tp\} \dots \{\alpha_n: tp\} \vdash \lceil \varphi \rceil = [\alpha_1: tp] \dots [\alpha_n: tp] \lceil P \rceil$$

```
theory T imports T^* begin thycont end
theory
                ::=
                      (locale | sublocale | interpretation |
thycont
                ::=
                      class | instantiation | thysymbol)*
locale
                      locale L = (i : instance)^* for locsymbol^* + locsymbol^*
                ::=
sublocale
                ::=
                      sublocale L < instance proof^*
interpretation
                      interpretation instance proof*
                ::=
instance
                     I where namedinst*
                ::=
                      class C = C^* + locsymbol^*
class
instantiation
                      instantiation type :: (C^*)C begin locsymbol^* proof^* end
                ::=
                      consts con | axioms ax | lemma lem | typedecl typedecl
thysymbol
                ::=
locysymbol
                      fixes con | assumes ax | lemma lem
                ::=
con
                     c :: type
                ::= a : form
ax
lem
                ::= a : form proof
                := (\alpha^*)t name
typedecl
namedinst
                ::=
                      c = term
```

```
theory T imports T^* begin thycont end
theory
                ::=
thycont
                      (locale | sublocale | interpretation |
                ::=
                      class | instantiation | thysymbol)*
locale
                      locale L = (i : instance)^* for locsymbol^* + locsymbol^*
                ::=
sublocale
                ::=
                      sublocale L < instance proof^*
interpretation
                      interpretation instance proof*
                ::=
instance
                     I where namedinst*
                ::=
                      class C = C^* + locsymbol^*
class
instantiation
                      instantiation type :: (C^*)C begin locsymbol^* proof* end
                ::=
                      consts con | axioms ax | lemma lem | typedecl typedecl
thysymbol
                ::=
locysymbol
                     fixes con | assumes ax | lemma lem
                ::=
con
                ::= c :: type
                ::= a : form
ax
               ::= a : form proof
lem
             ::= (\alpha^*)t name
typedecl
namedinst
                ::=
                      c = term
```

3 scoping constructs

```
theory T imports T^* begin thycont end
theory
                ::=
thycont
                      (locale | sublocale | interpretation |
                ::=
                      class | instantiation | thysymbol)*
locale
                      locale L = (i : instance)^* for locsymbol^* + locsymbol^*
                ::=
sublocale
                      sublocale L < instance proof^*
interpretation
                      interpretation instance proof*
                ::=
instance
                     I where namedinst*
                ::=
                      class C = C^* + locsymbol^*
class
instantiation
                      instantiation type :: (C^*)C begin locsymbol^* proof* end
                ::=
                      consts con | axioms ax | lemma lem | typedecl typedecl
thysymbol
                ::=
locvsvmbol
                     fixes con | assumes ax | lemma lem
                ::=
con
                ::= c :: type
                ::= a : form
ax
               ::= a : form proof
lem
             ::= (\alpha^*)t name
typedecl
namedinst
                ::=
                      c = term
```

3 scoping constructs with one import declaration each

```
theory T imports T^* begin thycont end
theory
                ::=
thycont
                      (locale | sublocale | interpretation |
                ::=
                      class | instantiation | thysymbol)*
locale
                      locale L = (i : instance)^* for locsymbol^* + locsymbol^*
                ::=
                      sublocale L < instance proof^*
sublocale
interpretation
                      interpretation instance proof*
                ::=
instance
                     I where namedinst*
                ::=
                     class C = C^* + locsymbol^*
class
instantiation
                      instantiation type :: (C^*)C begin locsymbol^* proof* end
               ::=
                      consts con | axioms ax | lemma lem | typedecl typedecl
thysymbol
               ::=
locvsvmbol
                     fixes con | assumes ax | lemma lem
                ::=
con
               ::= c :: type
               ::= a : form
ax
               ::= a : form proof
lem
             ::= (\alpha^*)t name
typedecl
namedinst
               ::=
                      c = term
```

- 3 scoping constructs with one import declaration each
- 3 constructs to relate scopes

LF

```
Signatures \Sigma \quad ::= \quad \cdot \mid \Sigma, \ \operatorname{sig} \ T \ = \ \left\{ \Sigma \right\} \mid \Sigma, \ \operatorname{view} \ v : S \ \to \ T \ = \ \mu \mid \Sigma, \ \operatorname{include} \ S \\ \mid \Sigma, \ \operatorname{struct} \ s : S \ = \ \left\{ \sigma \right\} \mid \Sigma, \ c : A \mid \Sigma, \ a : K \\ \text{Morphisms} \quad \sigma \quad ::= \quad \cdot \mid \sigma, \ \operatorname{struct} \ s := \mu \qquad \mid \sigma, \ c := t \qquad \mid \sigma, \ a := A \\ \mu \quad ::= \quad \left\{ \sigma \right\} \mid v \mid \operatorname{incl} \mid s \mid \operatorname{id} \mid \mu \mu \\ \text{Kinds} \quad K \quad ::= \quad \operatorname{type} \mid \left\{ x : A \right\} K \\ \text{Type families} \quad A \quad ::= \quad a \mid \quad [x : A] \ A \mid A \ t \mid \left\{ x : A \right\} A \\ \text{Terms} \quad t \quad ::= \quad c \mid x \mid \qquad [x : A] \ t \mid t \ t
```

- Signatures scope declarations: signatures, morphisms, constants, type families
- Morphisms relate signatures:
 - view: explicit morphism
 - include: inclusion into current signature
 - struct: named import into current signature

Morphisms

- A morphisms relates two signatures
- ► Morphism from *S* to *T*
 - ▶ maps *S* constants to *T*-terms
 - maps S type family symbols to T-type families
 - extends homomorphically to all S-expressions
 - preserves typing, kinding, definitional equality
- ▶ view $v: S \rightarrow T = \{\sigma\}$: maps given explicitly by σ
- ▶ include *S*: inclusion from *S* into current signature
- ▶ struct $s: S = \{\sigma\}$: named import from S into current signature, maps c to s.c

Representing Theories

Isabelle:

theory T imports T_1, \ldots, T_n begin Σ end

LF representation:

sig $T = \{ \text{include } Pure, \text{include } T_1, \dots, \text{include } T_n, \lceil \Sigma \rceil \}.$

Representing Modular Declarations

Scopes as signatures, relations as morphisms

Isabelle	LF
theory	signature
locale	signature
type class	signature
theory import	morphism (inclusion)
locale import from L	morphism (structure from S)
type class import from C	morphism (structure from C)
sublocale L' of L	morphism (view from L to L')
interpretation of L in T	morphism (view from L to T)
instance of type class C	morphism out of C
type class functor	morphism (view)
type class functor application	morphism composition

Type Classes

Isabelle: types universal for each declaration

```
class semlat = 

leq :: \alpha \Rightarrow \alpha \Rightarrow prop

inf :: \beta \Rightarrow \beta \Rightarrow \beta

ax : \bigwedge x : \gamma \bigwedge y : \gamma . leq (inf x y) x
```

LF representation: types existential for all declarations

```
\begin{array}{lll} \text{sig semlat} &=& \{\\ & \textit{this} &:& \textit{tp}\\ & \textit{leq} &:& \textit{tm} \ (\textit{this} \Rightarrow \textit{this} \Rightarrow \textit{prop})\\ & \textit{inf} &:& \textit{tm} \ (\textit{this} \Rightarrow \textit{this} \Rightarrow \textit{this})\\ & \textit{ax} &:& \vdash \left(\bigwedge[x:\textit{this}] \bigwedge[y:\textit{this}] \textit{leq} \ (\textit{inf} \ x \ y) \ x\right) \\ \} \end{array}
```

Type Classes

Isabelle: types universal for each declaration

```
class semlat = instantiation nat :: semlat begin leq :: \alpha \Rightarrow \alpha \Rightarrow prop leq :: \beta \Rightarrow \beta \Rightarrow \beta leq = \leq inf = min p p end
```

LF representation: types existential for all declarations

```
\begin{array}{lll} \text{sig semlat} &=& \{ & \text{this} &:& \text{tp} \\ & \text{leq} &:& \text{tm} \text{ (this} \Rightarrow \text{this} \Rightarrow \text{prop}) \\ & \text{inf} &:& \text{tm} \text{ (this} \Rightarrow \text{this}) \\ & \text{ax} &:& \vdash \left( \bigwedge[x:\text{this}] \bigwedge[y:\text{this}] \text{leq} \left( \text{inf} \times y \right) \times \right) \\ \} \\ & & \text{view } v : \text{semlat} \rightarrow \text{Nat} &=& \{ \\ & \text{this} &:=& \text{nat} \\ & \text{leq} &:=& \leq \\ & \text{inf} &:=& \text{min} \\ & \text{ax} &:=& \vdash P \\ & & \} \end{array}
```

Type Class Instances as Morphism

- Isabelle intuition:
 - Type: class of all types
 - type classes: subclasses of Type, predicates on Type
- Problem: type classes boring unless associated with operations, say leq
- Isabelle solution:
 - leq exists at each type
 - each type may define leq separately
 - types without definition for leq presumably not in the type class
- LF intuition:
 - ► *Type*: signature { this : tp}
 - type classes C: signatures extending Type
 - type class instances τ :: C relative to theory/locale L: morphisms

$$\lceil \tau :: C \rceil : C \rightarrow L \text{ such that } \lceil \tau :: C \rceil \text{ (this)} = \lceil \tau \rceil : tp$$

Inheritance between Type Classes

```
\begin{array}{lll} {\bf class} \ {\it order} = & {\bf class} \ {\it semlat} = {\it order} + \\ {\it leq} & :: & \alpha \Rightarrow \alpha \Rightarrow {\it prop} & {\it inf} & :: & \alpha \Rightarrow \alpha \Rightarrow \alpha \end{array}
```

Inheritance between Type Classes

```
class order =
                                                       class semlat = order +
                                                       inf :: \alpha \Rightarrow \alpha \Rightarrow \alpha
      leq :: \alpha \Rightarrow \alpha \Rightarrow prop
                locale lattice =
                 inf : semlat
                 sup: semlat where leg = \lambda x \lambda y. inf.leg y x
sig\ order = \{
                                                sig\ semlat = \{
  this : tp
                                                  this : tp
  leg : tm (this \Rightarrow this \Rightarrow prop)
                                                  struct ord : order = {this := this}
                                                  inf : tm(this \Rightarrow this \Rightarrow this)
    sig lattice = {
      this : tp
       struct inf : semlat = \{this := this\}
      struct sup : semlat = {this := this, leq := \lambda[x] \lambda[y] inf.leq y x}
```

Functors between Type Classes

Assume

- ▶ a type class C with constant names c_1, \ldots, c_m and axiom names a_1, \ldots, a_n
- ▶ type classes $C_1, ..., C_k$
- n-ary type operator t

Then:

```
instantiation (\alpha_1, \ldots, \alpha_k)t :: (C_1, \ldots, C_k)C begin c_1 = E_1 \ldots c_m = E_m \ P_1 \ldots P_n end
```

```
\begin{array}{lll} \operatorname{sig} \nu &= \{ & & \operatorname{view} \nu' : C \to \nu = \{ \\ \operatorname{struct} \alpha_1 : C_1 & & \operatorname{this} := & \operatorname{t} \alpha_1.\operatorname{this} \dots \alpha_k.\operatorname{this} \\ \vdots & & & \ddots \\ \operatorname{struct} \alpha_k : C_k & & & \ddots \\ \} & & & \alpha_j & := & \lceil P_j \rceil \\ & & & \dots \\ \} & & & & \vdots \end{array}
```

Functor Applications

```
instantiation (\alpha_1,\ldots,\alpha_k)t::(C_1,\ldots,C_k)C begin c_1=E_1\;\ldots\;c_m=E_m\;P_1\;\ldots\;P_n end
```

```
\begin{array}{lll} \operatorname{sig}\,\nu &=& \{ & & \operatorname{view}\,\nu' : C \,\rightarrow \nu &= \{ \\ \operatorname{struct}\,\alpha_1 \,:\, C_1 & & \operatorname{this} \,:= \, t \,\alpha_1. \operatorname{this} \,\dots \,\alpha_k. \operatorname{this} \\ \vdots & & & \ddots & \\ \operatorname{struct}\,\alpha_k \,:\, C_k & & \ddots & \\ \} & & & a_j & := \, \ulcorner P_j \urcorner \\ & & & \ddots & \\ \} & & & & \vdots & & \\ \end{array}
```

- ▶ Isabelle: if $t_i :: C_i$, then $(t_1, ..., t_k)t :: C$
- ▶ LF: if $\lceil t_i :: C_i \rceil : C_i \rightarrow L$, then

$$\nu' \quad \{\alpha_1 := \lceil t_1 :: C_1 \rceil, \ldots, \alpha_k := \lceil t_k :: C_k \rceil \} \qquad : \qquad C \to L$$

Adequacy

- ▶ t :: C fully defined type class instance iff $\lceil \tau :: C \rceil$ valid morphism out of $\lceil C \rceil$ with $\lceil \tau :: C \rceil$ (this) = $\lceil t \rceil$
- ▶ Subclass relation $C \subseteq D$ iff there is a morphism $\lceil D \rceil \to \lceil C \rceil$ in LF
- Accordingly for locales
- ▶ Isabelle theory T in restricted syntax valid iff LF signature
 T valid
- Extension to full Isabelle difficult
 - adequacy for elaboration of module system undesirable
 - fully formal definition of implemented system hard to get by

Conclusion

- Represented Isabelle in LF, module system covered good way to understand the primitives of Isabelle
- Presented alternative way to understand type classes also applicable to Haskell etc.
- Future work:
 - extend covered syntax
 - implement

both very difficult