CS 6041 Theory of Computation

Context-free language

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Outline

Context-free language

- Context-free language and grammar
- Parse tree
- Definition of CFG

Design CFG

- Example
- Ambiguity
- Leftmost derivation

Context-free language

Context-free language

• Example, G₁

3 substitution rules (productions)

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Example, G₁

• Example, G₁

Start variable:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Example, G₁

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Terminals: 0, 1, #

• Example, G₁

Variable: A, B

Start variable:

A

3 substitution rules (productions)

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Terminals: 0, 1, #

$$A \Rightarrow 0A1$$

$$\Rightarrow$$
 00A11

$$\Rightarrow$$
 000A111

 The sequence of substitutions to obtain a string is called a *derivation*

Abbreviating the CFGs

Grammar G₁:

$$B \rightarrow \#$$

Abbreviation of G₁:

$$G_1: A \rightarrow 0A1 \mid B$$

$$B \rightarrow \#$$

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation: A
- Parse tree

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation: A \Rightarrow 0A1 \Rightarrow 00A11
 - ⇒ 000A111
- Parse tree

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation: A \Rightarrow 0A1 \Rightarrow 00A11
 - \Rightarrow 000A111 \Rightarrow 000B111
- Parse tree

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation: A \Rightarrow 0A1 \Rightarrow 00A11
 - \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111
- Parse tree

The language of grammar

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

The language of G₁:

$$L(G_1)=\{ 0^n # 1^n \mid n>0 \}$$

- Context-free language
 - Languages generated by contextfree grammars

000#111

Definition of context-free grammar

- Context-free grammar is a 4-tuple $G=(V,\Sigma,R,S)$,
 - 1) V: finite variable set

2) Σ : finite terminal set

3) R: finite rule set $(A \rightarrow w, w \in (V \cup \Sigma)^*)$

4) S∈V: start variable

Definition of context-free grammar

- Yield
 - o If A \rightarrow w is a rule of the grammar, we say that uAv *yields* uwv
- Derive
 - u *derives* v (u \Rightarrow v), if u \Rightarrow u₁ \Rightarrow u₂ \Rightarrow ... \Rightarrow u_k \Rightarrow v
- The language of grammar
 - \circ L(G)={ w $\in \Sigma^*$ | S \Rightarrow^* w }
- Context-free language (CFL)
 - The language of CFG

Example

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• $G_1 = ($

$$\{0,1,\#\},\$$

$$\{A \rightarrow 0A1, A \rightarrow B, B \rightarrow \#\},\$$

A

)

Definition of context-free grammar

- Context-free grammar is a 4-tuple G=(V,Σ,R,S),
 - 1) V: finite variable set
 - 2) Σ: finite terminal set
 - R: finite rule set (A→w, w∈(V∪Σ)*)
 - 4) S∈V: start variable

Example

Grammar G₁:

Definition of context-free grammar

- Context-free grammar is a 4-tuple G=(V,Σ,R,S),
 - 1) V: finite variable set
 - 2) Σ: finite terminal set
 - R: finite rule set (A→w, w∈(V∪Σ)*)
 - S∈V: start variable

•
$$G_1 = ($$

$${a,+,*},$$

$${S -> S+S \mid S*S \mid a},$$

S

1

Question: how to derive it?

•
$$G_3=(\{S\},\{a,b\},R,S), R is$$

 $\{S \rightarrow aSb \mid SS \mid \epsilon\}$

$$S \Rightarrow abab$$
?

$$S \Rightarrow aaabbb ?$$

$$S \Rightarrow aababb$$
?

S

$$\Rightarrow$$
 SS

$$\Rightarrow$$
 aSbS

 \Rightarrow abS

 \Rightarrow abaSb

 \Rightarrow abab

S

 \Rightarrow aSb

 \Rightarrow aaSbb

 \Rightarrow aaaSbbb

 \Rightarrow aaabbb

S

 \Rightarrow aSb

.... //follow by $S \Rightarrow abab$

 \Rightarrow aababb

Example of Parse tree

```
• G_4=(V,\Sigma,R,E),
   V=\{E, T, F\},\
   \Sigma = \{ a, +, \times, (, ) \},
    R={
             E \rightarrow E + T \mid T
             T \rightarrow T \times F \mid F
             F \rightarrow (E) \mid a
```


Parse tree of a+a×a

• $G_4=(V,\Sigma,R,E)$,

 $V=\{E, T, F\},\$

$$\Sigma$$
={ a, +, ×, (,) },

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times F \mid F$$

$$F \rightarrow (E) \mid a$$

}

F

Parse tree of (a+a)×a

• $G_4=(V,\Sigma,R,E)$,

$$V=\{E, T, F\},\$$

$$\Sigma = \{ a, +, \times, (,) \},$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times F \mid F$$

$$F \rightarrow (E) \mid a$$

}

E

Outline

Context-free language

- Context-free language and grammar
- Parse tree
- Definition of CFG

Design CFG

- Example
- Ambiguity
- Leftmost derivation

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - o Design CFG for $\{w \mid w=0^n1^n, n \ge 0\}$
 - ► $G_1 = (\{S\}, \{0,1\}, \{S \to 0S1, S \to \varepsilon\}, S)$
 - Design CFG for $\{w \mid w=1^n0^n, n \ge 0\}$
 - G₂=({S},{0,1}, {S→1S0, S→ε}, S)

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - Design CFG for {w|w=0ⁿ1ⁿ,n≥0}
 - $G_1 = (\{S_1\}, \{0,1\}, \{S_1 \to 0S_11, S_1 \to \epsilon\}, S_1)$
 - Design CFG for $\{w \mid w=1^n0^n, n \ge 0\}$
 - ► $G_2 = (\{S_2\}, \{0,1\}, \{S_2 \rightarrow 1S_2 0, S_2 \rightarrow \epsilon\}, S_2)$

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - o Design CFG for $\{w \mid w=0^n1^n, n \ge 0\}$
 - \vdash $G_1 = (\{S_1\}, \{0,1\}, \{S_1 \rightarrow 0S_11, S_1 \rightarrow \epsilon\}, S_1)$
 - Design CFG for $\{w \mid w=1^n0^n, n \ge 0\}$
 - ► $G_2 = (\{S_2\}, \{0,1\}, \{S_2 \rightarrow 1S_2 0, S_2 \rightarrow \epsilon\}, S_2)$

N

- Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$
 - o Design CFG for $\{w \mid w=0^n1^n, n \ge 0\}$
 - $G_1 = (\{S_1\}, \{0,1\}, \{S_1 \to 0S_11, S_1 \to \epsilon\}, S_1)$
 - Design CFG for $\{w \mid w=1^n0^n, n \ge 0\}$
 - ► $G_2 = (\{S_2\}, \{0,1\}, \{S_2 \rightarrow 1S_2 0, S_2 \rightarrow \epsilon\}, S_2)$

• G=({S,S₁,S₂},{0,1}, {S \rightarrow S₁, S \rightarrow S₂, S₁ \rightarrow 0S₁1, S₁ \rightarrow ϵ , S₂ \rightarrow 1S₂0, S₂ \rightarrow ϵ }, S)

Combine CFG into one

General case:

Add
$$S \rightarrow S_1 \mid S_2 \mid ... \mid S_k$$

- S is the new start variable
- \circ S₁, S₂, ..., S_k are original start variables

CFL is closure on the Union operation

Operation on languages

	RL: DFA/NFA/RE	CFL: CFG/PDA	TM
Union	close	close	?
Concatenation	close	?	?
Star	close	?	?
Complement	close	?	?
Boolean operation	close	?	?

Design CFG for languages

Design CFG is much difficult than designing an automata for language

Basic idea:

- 1. divide CFL into small parts
- 2. design CFG for each small part
- 3. combine them together

Design CFG for languages

Design CFG is much difficult than designing an automata for language

Other ideas:

- 1. Simulate the regular expressions
- 2. Look for a pattern from example strings
- 3. ...

Design CFG for regular languages

Transfer DFA into equivalent CFG

- Transfer DFA into equivalent CFG
- Let DFA M=(Q, Σ , δ ,q₀,F) then CFG G=(V, Σ ,R,R₀)

- Transfer DFA into equivalent CFG
- Let DFA M=(Q, Σ , δ ,q₀,F)
 - $Q = \{q_0, q_1, ..., q_k\},$

then CFG G=(V,Σ,R,R_0)

 \circ V={R₀,R₁,...,R_k},

- Transfer DFA into equivalent CFG
- Let DFA M=(Q, Σ , δ ,q₀,F)
 - $Q = \{q_0, q_1, ..., q_k\},$
 - $\delta(q_i,a)=q_i$

then CFG G=(V,Σ,R,R_0)

- $V=\{R_0,R_1,...,R_k\},$
- \circ R_i \rightarrow aR_j,

- Transfer DFA into equivalent CFG
- Let DFA M= $(Q, \Sigma, \delta, q_0, F)$

• Q={q₀,q₁,...,q_k},
•
$$\delta(q_i,a)=q_j$$
,

$$\delta(q_i,a)=q_i$$

$$\circ$$
 $q_i \in F$

then CFG G=(V,Σ,R,R_{\circ})

$$\circ$$
 V={R₀,R₁,...,R_k},

$$\circ$$
 R_i \rightarrow aR_j,

$$\circ R_i \rightarrow \varepsilon$$

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \varepsilon$$

More languages

- 0ⁿ1ⁿ
 - is not regular language, proved by pumping lemma
 - is a context-free language built by CFG

$$R\rightarrow 0R1, R\rightarrow \epsilon$$

- is not regular language
- Is not context-free language

Ambiguity

- If a grammar generates the same string in several different ways, we say that the string is derived ambiguously in that grammar.
- If a grammar generates some string ambiguously, we say that the grammar is ambiguous.

```
• G_5: E \rightarrow
E+E \mid
E \times E \mid
(E) \mid a
```

Ambiguity

• $G_5: E \rightarrow$ $E+E \mid$ $E\times E \mid$ $(E) \mid a$

Is the grammar ambiguous

Ambiguity in real life

Is the grammar ambiguous

• G₂:

• the_girl_touches_the_boy_with_flower

Leftmost derivation

A derivation of a string w in a grammar G is a
 leftmost derivation if at every step the *leftmost* remaining variable is the one replaced

•
$$E \Rightarrow E + E$$

$$\Rightarrow$$
 a+E

$$\Rightarrow$$
 a+E×E

$$\Rightarrow$$
 a+a \times E

$$\Rightarrow$$
 a+a \times a

•
$$G_5$$
: $E \rightarrow$

$$E+E \mid$$

$$E\times E \mid$$

$$(E) \mid a$$

Two different leftmost derivation

- E
 - \Rightarrow E+E
 - \Rightarrow a+E
 - \Rightarrow a+E×E
 - \Rightarrow a+a×E
 - \Rightarrow a+a \times a
- E
 - $\Rightarrow \mathsf{E} \times \mathsf{E}$
 - \Rightarrow E+E×E
 - \Rightarrow a+E×E
 - \Rightarrow a+a \times E
 - \Rightarrow a+a \times a

- $G_5: E \rightarrow$
 - E+E |
 - $E \times E$
 - (E) | a

Ambiguity

 A string w is derived ambiguously in context-free grammar G if it has two or more different leftmost derivations.

 Grammar G is ambiguous if it generates some string ambiguously.

 Some context-free languages can be generated only by ambiguous grammars. (inherently ambiguous)

Inherently ambiguous example

• { 0ⁱ1^j2^k | i=j or j=k }

to the language definition)

 $0^{n}1^{n}2^{m} \mid n,m \ge 0 \} \cup \{ 0^{m}1^{n}2^{n} \mid n,m \ge 0 \}$

Human languages like
 English/French/Spanish/Chinese/Japanese/Hindi ... are
 inherently ambiguous

Conclusion

Context-free language

- Context-free language and grammar
- Parse tree
- Definition of CFG

Design CFG

- Example
- Ambiguity
- Leftmost derivation