RKI2016

$a \neq 0$: في كل مما يلي الدرجة الأولى في كل مما يلي

х	-∞	$-\frac{b}{a}$		+∞
ax + b	a عکس إشارة	ф	a نفس إشارة	

$\Delta = b^2 - 4ac$: حيث Δ حيث $\Delta = b^2 - 4ac$ الشكل $\Delta = ax^2 + bx + c$ نقوم بحساب المميز Δ حيث					
$\Delta \succ 0$	$\Delta = 0$	$\Delta \prec 0$	إذا كان		
نقبل جذرین متمایزین هما $x_2 = \frac{-b - \sqrt{\Delta}}{2a} \text{o} x_1 = \frac{-b + \sqrt{\Delta}}{2a}$	تقبل جذرا مضاعفا هو $x = -\frac{b}{2a}$	لا تقبل جذور حقيقية	فإن العبارة		
$-\infty$ x_1 x_2 $+\infty$ a المارة a فس المارة a عكس المارة a عكس المارة a عكس المارة a	$-\infty$ $-\frac{b}{2a}$ $+\infty$ a نفس إشارة a فنس إشارة a	_	وإشارتها		
$a(x-x_1)(x-x_2)$	$a\left(x+\frac{b}{2a}\right)^2$	لا تقبل تحليلا	تحليلها		

 $ax^2 + bx + c = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right]$: هو الشكل النموذجي لعبارة من الدرجة الثانية هو

الجذران مختلفان في الإشارة		$\frac{c}{a}$ \lambda	0	
الجذران موجبان تماما	.1:	$-\frac{b}{a} \succ 0$	$\frac{c}{-} \succ 0$.16 1:1
الجذران سالبان تماما	فإن	$-\frac{b}{a} < 0$	$\frac{a}{a}$	إذا كان
جذر معدوم والأخر موجب تماما		$b \succ 0$	a - 0	
جذر معدوم والآخر سالب تماما		$b \prec 0$	c = 0	

كل عددان حقيقيان x_1 و x_2 هما حلان للمعادلة من الشكل:	x_2 و x_1 تقبل حلين $ax^2 + bx + c = 0$ في حالة المعادلة
$x^{2} - (x_{1} + x_{2})x + (x_{1} \times x_{2}) = 0$	$x_1 \times x_2 = \frac{c}{a}$ و $x_1 + x_2 = -\frac{b}{a}$: فإن

إشارة بعض العبارات : 6 20% الكلام العبارات :

من إشارة كل $A(x)$ و $B(x)$ (نضع جدول الإشارة)	$A(x) \times B(x)$: إشارة
من إشارة كل $A(x)$ و $B(x)$ ماعدا قيم x حيث $B(x)=0$ نضع جدول الإشارة)	$\frac{A(x)}{B(x)}$: إشارة
في حالة n فردي : في حالة n زوجي : $A(x)=0$ نفس إشارة : $A(x)=0$ دائما موجبة و تنعدم من أجل	$[A(x)]^n$: إشارة
A(x) = 0 موجبة و تنعدم من اجل	$\sqrt{A(x)}$: إشارة

انتظروا الجديد... MEBARKI2016

