

UK Patent Application (12) GB 2 286 648 (13) A

(43) Date of A Publication 23.08.1995

(21) Application No 9503282.7

(22) Date of Filing 20.02.1995

(30) Priority Data

(31) 9403216

(32) 19.02.1994

(33) GB

(51) INT CL⁶
F16L 1/225

(52) UK CL (Edition N)
F2P PL2 P37

(56) Documents Cited

GB 2283297 A
GB 1507959 A

GB 2224803 A
US 3860122 A

GB 2214259 A

(71) Applicant(s)

Stena Offshore Limited

(Incorporated in the United Kingdom)

Stena House, Westhill Industrial Estate, Westhill,
ABERDEEN, AB32 6TQ, United Kingdom

(58) Field of Search
UK CL (Edition N) F2P PL2 PL9
INT CL⁶ F16L 1/20 1/225 1/235
Online:w.p.i.

(72) Inventor(s)

Robert George Martin

Philip Vaughn Thomas

(74) Agent and/or Address for Service

Murgitroyd & Company

373 Scotland Street, GLASGOW, G5 8QA,
United Kingdom

(54) Pipelaying vessel

(57) A pipelaying vessel of the type in which pipe is laid from the vessel via a variable angle pipeline launching ramp (128) having pipeline straightening and tensioning means mounted thereon and having: an improved pipeline launching ramp arrangement including rack and pinion elevator means (140, 142, 144); an improved level winding mechanism for translating the pipeline straightening and tensioning means as the pipe is spooled onto or unspooled from the reel; sea fastening means for restraining axial movement of a pipe storage reel while the vessel is in transit, thereby increasing the maximum pipeline load for reel bearings (114, 116) (Fig 2) of a given load capacity; sponsons (108, 110) for providing additional flotation and strengthening the hull; an improved arrangement of auxiliary reels (120); a cantilever structure (200) for guiding auxiliary lines, providing access to the main reel and protecting the bridge 218 of the vessel; improved pipeline abandonment and recovery arrangements; an improved reel structure; and an improved pipeline clamping arrangement. A method of converting an existing vessel to a reel pipelaying vessel is also described.

BEST AVAILABLE COPY
GB 2 286 648 A

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

FIG. 1

1/13

FIG. 2

2/13

FIG. 4

FIG. 3

FIG. 6

FIG. 5

5/13

FIG. 9

Fig. 11

Fig. 10

Fig. 15

Fig. 14

Fig. 12

Fig. 13

Fig. 16

頁 17

Fig. 19

Feb. 18

9/13

FIG. 20

10/13

FIG. 21

12/13

Fig. 24

Fig. 26

Fig. 25(a)

Fig. 25(b)

Fig. 25(c)

1 "Pipelaying Vessel"

2

3 This invention relates to a pipelaying vessel, and more
4 specifically but not exclusively relates to a self-
5 propelled and dynamically-positioned reel pipelaying
6 ship in which a pipe-spooling reel and associated pipe
7 handling equipment are integrated into the structure of
8 the ship. In some embodiments of the pipelaying ship,
9 there is provision for the simultaneous laying of a
10 plurality of pipes, or the simultaneous laying of one
11 or more pipes together with one or more cables.

12

13 In prior-art pipelaying vessels as employed in laying
14 offshore subsea pipelines for such uses as the
15 gathering of oil and/or gas from offshore subsea wells,
16 as, for example, in the Gulf of Mexico, it has been
17 conventional to use one of two main methods to lay the
18 pipe. In the first, or "stovepiping", method, a
19 pipeline is fabricated on the deck of a lay barge by
20 welding together individual lengths of pipe as the pipe
21 is paid out from the barge. Each length of pipe is
22 about 40 feet or 80 feet long. Thus, the pay-out
23 operation must be interrupted periodically to permit
24 new lengths of pipe to be welded to the string. The

1 stovepiping method requires that skilled welders and
2 their relatively bulky equipment accompany the
3 pipelaying barge crew during the entire laying
4 operation; all welding must be carried out on site and
5 often under adverse weather conditions. Further, the
6 stovepiping method is relatively slow, with experienced
7 crews being able to lay only one or two miles of pipe a
8 day. This makes the entire operation subject to
9 weather conditions which can cause substantial delays
10 and make working conditions quite harsh. (A
11 modification of the stovepiping technique known as the
12 "J-lay" technique allows the laying of pre-assembled
13 pipestrings up to 240 feet in length, but pipelaying is
14 still discontinuous).

15

16 The other principal conventional method is the reel
17 pipelaying technique. In this method, a pipeline is
18 wound on the hub of a reel mounted on the deck of a lay
19 barge. Pipe is generally spooled onto the reel at a
20 shore base. There, short lengths of pipe can be welded
21 under protected and controlled conditions to form a
22 continuous pipeline which is spooled onto the reel.
23 The lay barge is then towed to an offshore pipelaying
24 location and the pipeline spooled off the reel between
25 completion points. This method has a number of
26 advantages over the stovepiping method, among them,
27 speed (up to one mile per hour); lower operating costs
28 (eg smaller welding crews and less welding equipment
29 must be carried on the lay barge); and less weather
30 dependency.

31

32 Historically, the technique of laying undersea
33 fluid-carrying pipelines had its rudimentary beginnings
34 in England in the 1940's in a War-time project known as
35 "Operation Pluto". In the summer of 1944, 3-inch

1 nominal bore steel tubes, electrically flash-welded
2 together, were coiled around floating drums. One end
3 of the pipe was fixed to a terminal point; as the
4 floating drums were towed across the English Channel,
5 the pipe was pulled off the drum. In this manner,
6 pipeline connections were made between the fuel supply
7 depots in England and distribution points on the
8 European continent to support the Allied invasion of
9 Europe. (See Blair, J S, "Operation Pluto: The Hamel
10 Steel Pipelines", Transactions of the Institute of
11 Welding, February 1946).

12
13 The broad concept of reel pipelaying was also disclosed
14 in British Patent No. 601,103 wherein it was suggested
15 that lengths of pipe can be joined together at the
16 manufacturing plant and coiled onto a drum, mounted on
17 a barge or ship; the loaded barge would then be moved
18 to the desired marine location and the pipe unwound
19 from the drum by fixing one end of the pipe and towing
20 the barge away from the fixed location.

21
22 While the concepts described in British Patent No.
23 601,103 and those actually used in Operation Pluto were
24 adequate for wartime purposes, no known further
25 development work or commercial use of the technique of
26 laying pipe offshore from reels was carried out after
27 World War II. After a hiatus of about fifteen years,
28 research into the reel pipelaying technique was renewed
29 and was carried on by Gurtler, Herbert & Co, Inc of New
30 Orleans, Louisiana (USA); by 1961, Gurtler, Herbert had
31 sufficiently advanced the reel pipelaying technique to
32 make it a commercially acceptable and viable method of
33 laying pipe for the offshore petroleum industry, able
34 to compete with the traditional stovepiping technique.
35 The first known commercial pipelaying reel barge,

1 called the U-303, was built by Aquatic Contractors and
2 Engineers, Inc, a subsidiary of Gurtler, Herbert, in
3 1961. The U-303 utilised a large vertical-axis reel,
4 permanently mounted on a barge and having horizontally
5 orientated flanges (generally referred to in the trade
6 as a "horizontal reel"). A combined straightener/level
7 winder was employed for spooling pipe onto the reel and
8 for straightening pipe as it was unspooled. The U-303
9 first laid pipe commercially in September 1961, in the
10 Gulf of Mexico off the coast of Louisiana and was used
11 successfully during the 1960's to lay several million
12 linear feet of pipe of up to 6 inches diameter. The
13 U-303 reel pipelaying barge is described in US Patent
14 No. 3,237,438 (Tesson) and US Patent No. 3,372,461
15 (Tesson).

16

17 The successor to the U-303, currently in use in the
18 Gulf of Mexico and known in the trade as the
19 "Chickasaw", also utilises a large horizontal reel,
20 permanently mounted on the barge such that it is not
21 readily movable from one carrier vessel to another.
22 Various aspects of "Chickasaw" are described in the
23 following US Patents:

24

25 Sugasti, et al - US Patent No. 3,630,461
26 Gibson - US Patent No. 3,641,778
27 Mott et al - US Patent No. 3,680,432
28 Key et al - US Patent No. 3,712,100
29

30 Commercial reel pipelaying techniques require the use
31 of certain pipe handling equipment in addition to the
32 reel. Among such pipe handling equipment essential to
33 any commercial reel pipelaying system is a straightener
34 mechanism. This may take the form of a series of
35 rollers or tracks, or any other arrangement which

1 imparts sufficient reverse bending force to the pipe to
2 remove residual curvature such that after unspooling,
3 the pipe will lay substantially straight on the sea
4 bottom. No such pipe-conditioning apparatus was used
5 in "Operation Pluto" or contemplated in the British
6 Patent No. 601,103.

7

8 US Patents 3,982,402 and RE30486 (Lang et al) describe
9 an apparatus for laying pipe from a vertical reel in
10 which the pipe conditioning apparatus is pivotable to
11 adjust the lift-off angle of the pipe relative to the
12 horizontal (eg the deck of a ship) as a function of the
13 water depth in which the pipe is being laid. This has
14 distinct commercial advantages, especially where the
15 reel pipelaying system is incorporated into a
16 self-propelled ship capable of travelling to different
17 job sites, having different pipe size and/or lay depth
18 requirements.

19

20 An early concept for a reel pipelaying ship is
21 described in Goren, et al, "The Reel Pipelay Ship - A
22 New Concept", Offshore Technology Conference
23 Proceedings, May 1975 (Paper No OTC 2400). This paper
24 (hereinafter the Goren, et al 1975 OTC Paper) described
25 advantages and operating features of a proposed reel
26 pipelaying ship. However, the cost of construction of
27 a ship as described there was estimated to be of the
28 order of \$100,000,000.

29

30 The research and development work for the ship
31 described in the Goren, et al paper was subsequently
32 materially revised in numerous major respects, and
33 substantial changes and improvements were made to
34 achieve the design of a substantially different reel
35 pipelaying ship which is described in the following US

1 Patents:-
2
3

4 Springett, et al - US Patent No. 4,230,421
5 Uyeda, et al - US Patent No. 4,269,540
6 Yenzer, et al - US Patent No. 4,297,054
7 Springett, et al - US Patent No. 4,340,322
8 Uyeda, et al - US Patent No. 4,345,855
9

10 The vessel described in these Patents was constructed
11 and is currently in use in various offshore oil fields,
12 being known in the offshore oil industry as the
13 "Apache" (now re-named the "Stena Apache"). This
14 vessel is a self-propelled dynamically-positioned reel
15 pipelaying ship which has a specially constructed hull
16 comprising a reel support structure for rotatably
17 mounting a vertical reel for unspooling a rigid-walled
18 pipeline. Only a single pipeline was originally
19 handled by this ship, though the "Apache" was
20 subsequently modified by the addition of an auxiliary
21 reel positioned forward of the main reel to enable the
22 laying of "piggyback" lines strapped to the main
23 pipeline. Other pipe handling equipment includes a
24 pipe bending radius controller; pipe straightening
25 equipment; clamping assemblies; a stern pipe guide
26 assembly and a level wind assembly. A tensioning
27 assembly is also arranged on a support ramp assembly.
28 The pipe exit angle or the water entry angle is from
29 18° to about 60° since this is the range of angular
30 movement of the support ramp assembly. The upper part
31 of this range of the pipe water entry angles is
32 sufficient to accommodate laying a single pipeline in
33 approximately 3,000 feet water depth. In order to lay
34 pipe at greater depths it is necessary to increase the
35 pipe water entry angle.

1 The "Stena Apache" vessel is not equipped to lay
2 multiple lines since it has but a single main reel and
3 does not have adequate unused deck space to permit the
4 convenient placement of auxiliary reels. An early
5 suggestion which was made during the vessel's
6 construction phase and mentioned in the above Patents,
7 was that portable reels could be placed on the "Apache"
8 deck to permit stern bundling of smaller lines with the
9 pipeline from the main reel. These smaller lines were
10 not required to be passed through the pipe handling
11 equipment with the main reel pipeline according to the
12 suggestion and there were no operative disclosures as
13 to forming a juxtaposed plurality of operational lines
14 by contact with a laying device which is adapted to
15 move all the lines at a common velocity. This stern
16 bundling suggestion was made in the OTC Paper No. 3069,
17 May 8-11, 1978.

18

19 There are increasing requirements in the offshore
20 petroleum industry for laying single or multiple
21 operational lines in deep water at depths greater than
22 3,000 feet and in remote areas far from supply bases.
23 To be commercially viable a pipelaying vessel should
24 preferably also be capable of laying either single or
25 multiple operational lines in shallow waters of less
26 than 2,000 feet up to 3,000 feet depth. The reel
27 pipelaying vessel of this invention (as defined below)
28 represents a new and different concept for meeting
29 these needs.

30

31 It is also desirable that the stern deck space around
32 the pipelaying equipment be more easily and safely
33 accessible.

34

35 While it is technically feasible to design and build a

1 ship specifically to provide several or all of the
2 abovementioned desirable features, such a ship would be
3 relatively expensive. On the other hand, there are
4 many sea-going vessels that are currently surplus to
5 requirements and hence available at relatively low cost
6 such that the cost of conversion to reel-lay capacity
7 is potentially more economical than new-build.
8 However, selection of a vessel to be modified, and the
9 actual modification procedures, require to be
10 individually and collectively controlled in non-obvious
11 ways to avoid excessive costs and unsatisfactory
12 results.

13

14 Certain aspects of the present invention will also be
15 shown to be applicable to new-build vessels, and/or to
16 retrofitting/upgrading an existing pipelaying vessel.
17

18 According to one aspect of the present invention there
19 is provided a pipe-launching ramp, said ramp comprising
20 a planar frame having bearing means at or towards one
21 end thereof for rotatably mounting the ramp on ramp-
22 mounting bearings of a pipelaying vessel, and coupling
23 means located at or towards the other end of the frame
24 for coupling of the ramp to a ramp elevation control
25 means for controllably varying the elevation of the
26 ramp.
27

28 Preferably, said ramp elevation control means comprises
29 variable-length ramp support means adapted to be
30 anchored at or adjacent one end thereof upon fixed
31 structure of the vessel and at or adjacent the other
32 end of a variable length portion of the support to the
33 ramp at a location thereon not adjacent said rotational
34 mounting of said ramp.
35

1 Preferably also, said variable-length ramp support
2 means comprises a pair of rack and pinion elevators
3 located one on each side of said ramp and conjointly
4 operable to vary the elevation of said ramp with
5 respect to said vessel.

6
7 Preferably also, said pipe-launching ramp comprises a
8 pipe radius control means for imparting a substantially
9 uniform radius of curvature to a length of pipe de-
10 spooled from said reel in pipelaying operation of said
11 vessel.

12
13 Preferably also, said pipe launching ramp further
14 includes pipe gripping means for gripping a pipe being
15 de-spooled over said ramp to apply straightening and/or
16 tensioning forces to said pipe.

17
18 Preferably also, said pipe-launching ramp comprises
19 level-wind means for accommodating variations in the
20 lateral positioning of a length of pipe spooled onto
21 said reel as a plurality of side-by-side turns, during
22 spooling and de-spooling of said length of pipe.

23
24 Preferably also, said ramp includes at least two
25 levelwind-mounting crossbeams; said levelwind means
26 comprising a rectangular lattice mounted for lateral
27 movement on said crossbeams, lateral movement control
28 means for laterally moving said lattice on said
29 crossbeams, radius control means carried on said
30 lattice for imparting a uniform curvature to a pipe
31 being de-spooled over said ramp, and pipe gripping
32 means carried by said lattice for gripping a pipe being
33 de-spooled over said ramp to apply straightening and/or
34 tensioning forces to said pipe.

35

1 As compared to the pipe-launching ramps described in
2 WO93/06401 and WO93/06402 wherein a flexible levelwind
3 is mounted on five transverse rails on a wide stiff
4 truss, in the present invention the levelwind is
5 constructed as a stiff rectangular lattice running on
6 two crossbeams carried by a ramp which is simply a
7 planar frame, this arrangement being lighter than the
8 abovementioned prior art for a given load capacity.
9

10 The levelwind lattice can be boxed in or surrounded to
11 provide full weather protection, and is preferably
12 equipped with a dual bulkhead/platform system to
13 provide a working location which allows personnel to
14 work on the lattice whether the ramp is near horizontal
15 or near vertical. Access to the working location can
16 be by a ladder system on one side of the levelwind
17 and/or by a man-carrying lift on the other side of the
18 levelwind.

19

20 The radius control means and the pipe gripping means
21 can be as described in the abovementioned PCT
22 publications, but a preferred ramp elevator in
23 accordance with part of the present invention, for
24 controllably varying the inclination of the ramp, is
25 very different in that the preferred ramp elevator has
26 its lower end(s) at a fixed location(s) on the vessel
27 rather than travelling along deck rails in the above
28 PCT publications; this arrangement of the present
29 invention concentrates ramp-elevating loads at discrete
30 points, thereby minimizing the required extent of
31 under-deck stiffening and hence cost.
32

33 In accordance with a second aspect of the invention
34 there is provided a pipelaying vessel including a pipe-
35 launching ramp according to the first aspect of the

1 invention.

2
3 Embodiments of the invention will now be described by
4 way of example, with reference to the accompanying
5 drawings wherein:-

6
7 Fig. 1 is a starboard elevation of a reel pipelaying
8 vessel in accordance with the present invention;

9
10 Fig. 2 is a plan view of the vessel of Fig. 1;

11
12 Fig. 3 is a starboard elevation (to an enlarged scale)
13 of the stern area of the vessel of Fig. 1 with a
14 pipe-launching stern ramp to its lowest elevation;

15
16 Fig. 4 is a stern view corresponding to Fig. 3;

17
18 Fig. 5 is a view corresponding to Fig. 3 but with the
19 ramp at its highest elevation;

20
21 Fig. 6 is a stern view corresponding to Fig. 5;

22
23 Fig. 7 is a starboard elevation of another form of reel
24 pipelaying vessel in accordance with the present
25 invention;

26
27 Fig. 8 is a plan view of the main deck of the vessel of
28 Fig. 7, ie, with the vessel bridge and upper decks
29 removed;

30
31 Fig. 9 is a starboard elevation of a modified version
32 of the pipe-launching ramp and associated equipment
33 forming part of the vessel of Fig. 7;

34
35 Fig. 10 is a starboard elevation of ramp-mounting

1 bearings and a ramp elevation controller associated
2 with the ramp of Fig. 9;

3

4 Fig. 11 is a front elevation of the arrangement of
5 Fig. 10;

6

7 Fig. 12 is a view from the starboard side of the
8 reeving arrangement of an abandonment and recovery
9 system (A&R system) associated with the ramp of Fig. 9,
10 shown with the ramp at its minimum elevation;

11

12 Fig. 13 is a view from above of the arrangement of
13 Fig. 12, as seen from the direction of the arrow "P" in
14 Fig. 12;

15

16 Fig. 14 is a cross-section of part of the arrangement
17 of Fig. 12, taken on the line A-A in Fig. 12;

18

19 Fig. 15 is a view corresponding to Fig. 12 but with the
20 ramp at its highest elevation;

21

22 Fig. 16 is a longitudinal section of a reel-clamping
23 chock for use with the present invention;

24

25 Fig. 17 is an outside end view of the arrangement of
26 Fig. 16, as viewed in the direction of the arrow "P" in
27 Fig. 16;

28

29 Fig. 18 is an inside end view of the arrangement of
30 Fig. 16, as viewed in the direction of the arrow "Q" in
31 Fig. 16;

32

33 Fig. 19 is a plan view, to a much-reduced scale, of a
34 reel-clamping chock array applied to a reel;

35

1 Fig. 20 is a side view of a preferred embodiment of a
2 main reel for use with the vessel of Figs. 1 to 19;
3
4 Fig. 21 is a sectional view on line A-A of Fig. 20;
5
6 Fig. 22 is a sectional view on line B-B of Fig. 20;
7
8 Fig. 23 is a sectional view on line C-C of Fig. 20;
9
10 Fig. 24 is a view similar to Fig. 23, showing a
11 modified chocking arrangement;
12
13 Figs. 25 (a),(b) and (c) are schematic illustrations of
14 a preferred arrangement of a main pipeline clamp; and
15
16 Fig. 26 is a schematic illustration of a particularly
17 preferred arrangement of pipeline clamps.
18
19 Referring first to Figs. 1 and 2, these show
20 respectively starboard and plan views of a reel
21 pipelaying vessel 100 which is similar in certain
22 respects to known forms of reel pipelaying vessels, for
23 example as disclosed in WO93/06401 and WO93/06402.
24 However, general and particular aspects of the vessel
25 100 are distinctively different from the prior art, as
26 will be detailed below.
27
28 The vessel 100, to be known as the "Stena Apache Two",
29 is intended to be converted from the diving support
30 vessel (DSV) "Stena Wellservicer" (not separately
31 illustrated) by the method now to be described.
32
33 The method provides that the DSV will be transversely
34 divided immediately astern of the forward bridge and
35 accommodation section 102, and the sternwards section

1 104 separated from the forward section 102. A
2 prefabricated hull section 106 will next be located
3 between the forward and sternwards sections 102 and
4 104, and the three sections then welded together to
5 form the basis of a vessel with an extended hull. Port
6 and starboard sponsons 108 and 110 are subsequently
7 attached to the outside of the vessel hull from the
8 stern to about the middle of the forward section 102 so
9 as to increase the displacement of the resultant vessel
10 100, and hence increase the vessel's load-carrying
11 capacity. The sponsons 108 and 110 are also designed
12 and attached such as to increase the longitudinal
13 bending strength of the vessel 100.

14

15 The hull section 106 is formed with a reel-holding well
16 112. Bearing pedestals 114 and 116 are fabricated on
17 port and starboard sides of the well 112 to form
18 reel-mounting bearings. A main pipe-carrying reel 118
19 is rotatably mounted in the bearings 114 and 116. A
20 main reel driving and braking system (not shown) is
21 installed in the well 112.

22

23 A large auxiliary reel 120 is installed immediately
24 forward of the main reel 118, in the redundant DSV dive
25 system garage in the after end of the forward section
26 102. The large auxiliary reel 120 is intended to carry
27 cable(s) and/or auxiliary pipes.

28

29 A small auxiliary reel 122 is installed immediately aft
30 of the main reel 118, in the redundant DSV gas storage
31 area in the forward end of the sternwards section 104.
32 The small auxiliary reel 122 is intended to carry
33 cable(s) and/or hose(s).

34

35 The stern of the vessel 100 is provided with

1 substantially elevated ramp mountings 124 and 126. A
2 ramp 128 in the form of a rectangular lattice has its
3 rear end 130 rotatably mounted on the upper ends 132
4 and 134 of the ramp mountings 124 and 126 (see Figs. 4
5 and 6).

6

7 The mountings 124 and 126 are not only shaped and
8 dimensioned to support the ramp 128 on their upper ends
9 132 and 134 substantially above the vessel's main deck
10 136 such as to leave walk-through headroom under the
11 ramp 128, but also to locate their upper ends 132 and
12 134 clear of the stern of the vessel 100 such as to
13 enable pipe to be launched aft the ramp 128 at a
14 near-vertical angle (see Fig. 5).

15

16 The forward end 138 of the ramp 128 is supported at a
17 controllably variable height above the deck 136 by
18 means of a ramp elevation controller 140 comprising a
19 pair of rack and pinion elevators 142 and 144.

20

21 Referring to Figs. 9 and 10, each of the ramp elevators
22 142 and 144 comprises an elongate rack 146 with a row
23 of teeth along both edges, the racks 146 each being
24 tiltably mounted on the deck 136 by means of a
25 respective hinge 148. The use of deck-fixed hinges 148
26 allows the necessary reinforcements of the deck 136 to
27 be limited to the two relatively small areas under the
28 hinges 148, in contrast to the widespread deck
29 reinforcement required with prior art ramp elevators
30 (eg, the rail-mounted ramp elevators of WO93/06401 and
31 WO93/06402).

32

33 Each of the ramp elevators 142 and 144 further
34 comprises a power-driven pinion assembly 150 comprising
35 a pinion frame 152 mounting three pairs of pinions 154,

1 with one pinion of each pair engaging one of the rows
2 of teeth on either edge of the rack 146. Each of the
3 pinions 154 is driven by a respective hydraulic motor
4 and reduction gear unit 156. The respective upper ends
5 of the two pinion assemblies 150 are pivotally coupled
6 to the forward end 138 of the ramp 128 by respective
7 pivot couplings 158. The pinion assemblies 150 are
8 also mutually cross-linked by a transverse frame 159.
9

10 Conjoint operation of the hydraulic drive units 156
11 causes the pinion assemblies 150 to crawl up/down the
12 racks 146 hence to raise/lower the forward end 138 of
13 the ramp 128. Control of the drive units 156 is such
14 as to ensure (as far as possible) synchronous movement
15 of the assemblies 150 and hence to avoid
16 movement-induced distortion of the ramp 128 (whose
17 structure is lighter and less rigid than the structures
18 of the ramps described in WO93/06401 and WO93/06402).
19 Positive synchronisation of the movements of the two
20 pinion assemblies 150 can optionally be ensured by
21 cross-linking at least one pinion in one assembly 150
22 with the corresponding pinion in the opposite assembly
23 150 by means of a transverse drive shaft (not
24 illustrated) in addition to or as a substitute for use
25 of the transverse frame 159.
26

27 With the arrangement illustrated in the accompanying
28 drawings, the ramp 128 can be rapidly adjusted to any
29 elevation in the range from 10° above horizontal
30 (Figs. 3 and 4) to 85° above horizontal (Figs. 5 and
31 6). The arrangement can be modified to suit other
32 desired ranges of ramp elevation.
33

34 The ramp 128 does not directly carry pipe being
35 de-spoiled from the main reel 118, but carries the pipe

1 through the intermediary of a levelwind assembly 160
2 comprising an elongated frame 162 of rectangular
3 cross-section (see Fig. 14). The levelwind frame 162
4 is mounted for ramp-traversing movement by means of
5 rollers 164 (Fig. 9) running on the ramp crossbeams
6 forming the ramp ends 130 and 138. The ramp crossbeams
7 130 and 138 are also fitted with transverse racks 166
8 engaged by hydraulically-powered pinion/gearbox motor
9 units 167 for controllably displacing the levelwind
10 assembly 160 across the ramp 128 as necessary to ensure
11 correct spooling/de-spooling of pipe onto/off the main
12 reel 118 (ie, to ensure "level winding").
13

14 The levelwind assembly 160 further includes various
15 items of pipe-conditioning and pipe-handling equipment
16 which are mounted on the frame 162 for controlling
17 position, movement and shape of pipe passing through
18 the levelwind assembly 160. Such equipment includes,
19 by way of non-limiting example, a curved main aligner
20 168 for imparting a controlled radius to pipe being
21 de-spooled from the main reel 118, pipeline
22 straightening and tensioning means comprising first,
23 second, third and fourth caterpillar track assemblies
24 170, 171, 172, 173, the first, second and third of said
25 assemblies 170, 171, 172 together constituting a
26 "three-roll" pipe straightener, and the third and
27 fourth of said assemblies 172, 173 together
28 constituting a pipe tensioner, at least one, and
29 preferably a pair, of pipe clamps 174, and a roller
30 frame 176 for pipe guidance. The items 168-176
31 referred to above are known per se, and are described
32 in detail in the above-mentioned WO93/06401 and
33 WO93/06402. Alternative types of straightener,
34 tensioner etc. may be substituted for those described
35 herein.

1 The levelwind assembly 160 may also include similar
2 equipment for handling auxiliary pipe(s) and/or
3 cable(s), for example an auxiliary aligner 178 and an
4 auxiliary straightener 180.

5

6 To facilitate procedures such as pipe inspection, pipe
7 repairs, pipe jointing, attachment/removal of haulage
8 couplings to/from the pipe, and other tasks that have
9 to be performed on pipe in passage through the
10 levelwind assembly 160, the levelwind frame 162 is
11 fitted with a pair of work platforms 182 and 184 whose
12 inclinations on the frame 162 are selectively
13 adjustable to allow the platforms 182, 184 to be
14 levelled independently of the current inclination of
15 the ramp 128 while continuing to facilitate safe and
16 convenient access of personnel to the pipe in that
17 region of the levelwind assembly 160. Access is
18 conveniently enabled by a ladder system and by a
19 man-riding lift, with a separate system on each side of
20 the levelwind assembly 160. The levelwind frame 162
21 may be shrouded or boxed-in to provide full weather
22 protection.

23

24 Occasions may arise when it is necessary or desirable
25 to allow the end of a pipe to be let overboard in a
26 controlled manner, or to haul the end of pipe on-board
27 in line with the normal path of continuous pipe. To
28 meet these requirements, the vessel 100 is rigged with
29 an "abandonment and recovery" system (A&R system) 186
30 which is essentially a winch system reeved partly
31 inside the vessel 100 and partly on the levelwind
32 assembly 160. (The version of the A&R system 186 shown
33 in Fig. 9 differs slightly from that shown in Figs.
34 1-6, as do certain details of the levelwind system such
35 as the forward end of the frame 162).

1 As part of the A&R system 186, a winch 188 is located
2 inside the hull of the vessel 100, the winch 188 being
3 anchored on the redundant underdeck strongpoint
4 originally employed for mounting the DSV sterndeck
5 crane (removed). The A&R rope 190 runs from the winch
6 188 round a pulley 192 anchored between the ramp
7 mountings 124 and 126 up to a pulley or pulleys 194
8 anchored on the levelwind frame 162 and hence (when
9 deployed) down the centerline of the levelwind assembly
10 160 along the same path as that normally taken by pipe
11 being de-spoiled from the main reel 118. When the A&R
12 system 186 is not required to be operative the pulley
13 or pulleys 194 is/are moved to the side of the
14 levelwind centerline to be clear of the pipe path (see
15 Fig. 14). The tail of the rope 190 on the non-load
16 side of the winch 188 is carried round a pulley 196 and
17 onto a take-up drum 198 for tangle-free storage.

18

19 The location of the pulley 192 between the ramp
20 mountings 124 and 126 has at least two advantages,
21 namely the closer the pulley 192 is to being coaxial
22 with the ramp bearings 132 and 134, the closer the A&R
23 system 186 is to being level luffing (ie, to not
24 pulling in or paying out as the ramp elevation
25 changes), and secondly, obstruction of the area of the
26 deck 136 under the ramp 128 is minimised.

27

28 Between the main reel 118 and the large auxiliary reel
29 120 a combined pipe/cable bridge and personnel access
30 gangway 200 is cantilevered sternwards off the rear
31 wall of the forward vessel section 102 to pass partly
32 over the main reel 118 at an elevation sufficient to
33 clear pipe being de-spoiled from the reel 118 into the
34 levelwind assembly 160, whatever the current elevation
35 of the ramp 128. The upper side of the bridge/gangway

1 200 is fitted with lengthwise array of transverse axis
2 rollers 202 to carry auxiliary pipe(s)/cable(s) being
3 de-spooled from the large auxiliary reel 120 onto the
4 ramp 128. A pedestrian-carrying gangway (not
5 illustrated) is mounted on the bridge/gangway 200
6 alongside the rollers 202 to allow access from the
7 upper deck of the forward section 102 to a location
8 close to and directly over the forward side of the hub
9 of the main reel 118. The bridge/gangway 200 is held
10 at the appropriate elevation by means of a strut 204,
11 which may be of a fixed length to hold the
12 bridge/gangway 200 at a corresponding fixed elevation;
13 alternatively, the strut 204 may be of a controllably
14 variable length to hold the bridge/gangway at a
15 selectively variable elevation.
16

17 Besides functioning as a combined bridge and gangway,
18 the structure 200 gives a measure of protection to the
19 forward section 102 and to the personnel therein, by
20 shielding the forward section 102 from the
21 uncontrollable and violent movement of the broken end
22 of pipe should the pipe fracture between the reel 118
23 and the aligner 168, particularly if under considerable
24 tension (which may be as high as 200 Tonnes even when
25 operating within design limits).
26

27 The dynamic positioning system (DPS) of the original
28 DSV "Stena Wellservicer" is retained in the reel
29 pipelaying vessel "Stena Apache Two" ("100" in the
30 accompanying drawings). The DPS retained in the
31 converted vessel 100 comprises three variable-thrust
32 360°-steerable stern thrusters 206, and three
33 variable-thrust unsteerable transverse-tunnel bow
34 thrusters 208.
35

1 A crane 210 is mounted on the port rail of the vessel
2 100, aft of the main reel 128 and forward of the small
3 auxiliary reel 122. In-hull foundations of the crane
4 210 are partly in the original DSV and partly in the
5 conversion-added portside sponson 108.

6

7 A crane 212 is mounted on starboard rail of the vessel
8 100, at the furthest stern of the main deck 136 (Figs.
9 1-6 and 7-8). As with the portside crane 210, the
10 in-hull foundations of the starboard crane 212 are
11 partly in the original DSV and partly in the
12 conversion-added starboard sponson 110. In order to
13 avoid being unduly baulked by the levelwind assembly
14 160 at the maximum elevation of the ramp 128, it is
15 preferred to move the starboard crane further aft from
16 the position shown in Figs. 1-6 to the position shown
17 in the modified vessel of Figs. 7 and 8, the starboard
18 sponson 110 and the overlying portion of the main deck
19 136 being correspondingly extended sternwards to
20 support the repositioned crane.

21

22 Apart from removal of the redundant dive systems, the
23 forward vessel section 102 retains all the essential
24 features of the forward section of the DSV; in addition
25 to the bow thrusters 208, these retained features
26 include the engine room (not visible), crew
27 accommodation 214, forward bridge 216, stern bridge 218
28 (overlooking the main reel 118 and the pipe-launching
29 ramp 128), and helicopter landing deck 220.

30

31 Referring now to Figs. 16, 17 and 18, these show
32 external and internal details of a reel-clamping chock
33 300.

34

35 The chock 300 comprises a cylindrical outer casing 302

1 which is welded to the main deck 136 through the
2 intermediary of a pair of saddle plates 304 and
3 longitudinal reinforcing webs 306. A longitudinally
4 slidable sleeve 308 is mounted within the outer casing
5 302 by anti-friction bushes 310 and 312. The reel end
6 of the sleeve 308 is fitted with a flanged plug 314
7 having an aluminium bronze pad 316 affixed to its outer
8 face.

9

10 Extension and retraction of the chock 300 is achieved
11 by a hydraulic cylinder 318 and piston 320 mounted
12 within the sleeve 308. (Hydraulic fluid connections are
13 omitted from Figs. 16-18 for clarity). The end of the
14 hydraulic cylinder 318 remote from the reel-contacting
15 end of the chock 300 is anchored to the casing 302 and
16 hence to the deck 136 by a cylinder eye 322 pinned
17 between a pair of U-brackets 324 fixed to the end of
18 the casing 302 by fasteners 326.

19

20 The piston 320 is coupled to the reel-contacting end of
21 the chock by a piston eye 328 being pinned to a clevis
22 fitting 330 secured to one end of a pushrod 332. The
23 other end of the pushrod 332 is secured to the inner
24 face of the plug 314.

25

26 The reel end of the sleeve 308 is externally
27 screw-threaded with an Acme thread 334. An internally
28 threaded ring 336 is fitted on the sleeve thread 334
29 such that the ring 336 can be selectively positioned
30 along the outer end of the sleeve 308 by manually
31 turning the ring 336 around the sleeve 308. The
32 periphery of the ring 336 is drilled with radial holes
33 338 to enable the ring 336 to be turned by a suitable
34 tool (not shown).

35

1 Fig. 16 shows the chock 300 fully extended such that
2 the pad 316 forcibly engages an annular contact surface
3 222 on the outside end face of the main reel 118.
4 Fig. 15 also shows the ring 336 screwed up against the
5 adjacent end of the sleeve 308 such that reel-clamping
6 forces continue to be applied to the reel 118 even if
7 hydraulic pressure is removed from the cylinder and
8 piston 318 and 320, due to the mechanical locking of
9 the chock 300 provided by suitably turning the ring 336
10 on the sleeve thread 334.

11

12 Release of the reel-clamping chock 300 from the
13 fully-applied position shown in Fig. 16 is achieved by
14 unscrewing the ring 336 until it is clear of the sleeve
15 308, then applying reversed hydraulic pressure to the
16 cylinder 318 and piston 320 to pull the movable end of
17 the chock 300 away from the main reel 118.

18

19 Hydraulic pressure is preferably applied in the
20 reel-clamping direction prior to and during unscrewing
21 of the ring 336 in order to relieve the ring 336 of
22 loading which might otherwise hinder or prevent the
23 ring 336 being turned.

24

25 Fig. 19 is a plan view, to a much reduced scale, of a
26 preferred arrangement for sea fastening, ie, for
27 clamping the main reel 118 against axial movement when
28 not spooling or de-spooling (eg, during transit to or
29 from a pipe-laying location, or when pipelaying is
30 suspended due to bad weather). An array of four chocks
31 300 (each as shown in Figs. 16-18) is secured to the
32 main deck 136 around the lip of the reel-holding well
33 112. One pair of the chocks 300 is disposed to engage
34 the port side of the main reel 118, and the other pair
35 of chocks 300 is disposed to engage the starboard side

1 of the main reel 118. Within each of these pairs of
2 chocks 300, one chock is located on one side of the
3 reel axis and the other chock is located on the other
4 side of the reel axis, as shown in Fig. 19. This
5 symmetrical array of reel-clamping chocks ensures
6 inherent equalisation of reel-clamping forces on the
7 reel when the chocks are fed from a common hydraulic
8 supply, thus avoiding any tendency for the chocks to
9 induce skewing of the main reel 118.

10
11 Other arrangements of reel-clamping chocks are possible
12 within the scope of the invention, for example
13 different locations for the chocks and/or different
14 numbers of chocks.
15

16 Reel-clamping chocks may also be provided for the large
17 auxiliary reel 120 and/or for the small auxiliary reel
18 122.
19

20 Figs. 20 to 23 show a preferred embodiment of the main
21 reel 400 of a reel pipelaying vessel such as that
22 described herein. Fig. 20 shows a side view of the reel
23 400, whilst Figs 21 to 23 show sectional views on lines
24 A-A, B-B and C-C of Fig. 20 respectively.
25

26 The reel 400 is of a generally open construction to
27 minimise its weight, and is formed largely from plate
28 steel. A plurality of main spokes 402 extend radially
29 outwards from the centre of the reel 400 and have an I-
30 beam type configuration comprising a main planar member
31 404 and outer and inner planar flanges 406, 408. The
32 outer ends of the spokes 402 are connected by flange
33 plating 410 which form the sides of the pipe-receiving
34 well 412 of the reel 400. The flange plating 410 is
35 strengthened by trapezoidal box-section stiffeners 414.

1 The outer and inner edges of the flange plating 410 are
2 further strengthened by knuckles 415, 416. The floor of
3 the well 412 is formed by hub plating 418, which is
4 braced by internal stiffeners 420. Intermediate partial
5 spokes 422 are located between each pair of main spokes
6 402, extending across the width of the flange plating
7 410.

8

9 As seen in cross section in Fig. 21, the reel has a
10 "portal frame" configuration, without a main shaft
11 connecting the main rotary bearings 423. This
12 configuration improves the fatigue performance of the
13 reel by removing the additional rigidity and associated
14 stresses caused by the presence of a continuous shaft
15 as in the original Apache vessel.

16

17 In this example, the reel 400 is adapted to be engaged
18 by sea-fastening chocks, as previously described above,
19 at portions 424 of two of the main spokes 402' on each
20 side of the reel 400. A bracing flange 426 extends
21 diagonally between a point adjacent the portion 424 of
22 each of the spokes 402' and the adjacent intermediate
23 spoke 422. The portions 424 may be formed as anti-
24 friction pads similar to those of the chocks as
25 previously described. This arrangement allows the
26 chocks to be applied to the reel only when the reel is
27 at a particular angular position. Accordingly, when the
28 chocks are to be applied, it may be necessary firstly
29 to rotate the reel 400 so as to align the portions 424
30 with the chocks.

31

32 Fig. 24 illustrates an alternative arrangement, whereby
33 the chocks may be applied to the reel at any position.
34 In this case a continuous, annular chock bearing
35 surface 428 extends around the reel, mounted on an

1 extension 430 of the hub plating 418. As is also
2 illustrated schematically in Fig. 24, the contact shoe
3 432 of the chock may be enlarged in size, in comparison
4 with the previously described embodiment of the chock,
5 presenting a greater contact surface area such that the
6 bearing surface 428 of the reel can be made generally
7 lightweight in construction.

8

9 Figs. 25(a), (b) and (c) and Fig. 26 illustrate a
10 preferred arrangement of the pipe clamps 174 previously
11 referred to. Figs. 3 and 9 show the use of first and
12 second pipe clamps 174 located on the pipeline path
13 near the aft end of the levelwind frame 162. Firstly,
14 it is preferred that the clamps 174 have a generally
15 cylindrical configuration as shown in Fig. 25, being
16 formed from first and second semi-cylindrical portions
17 450, 452 hinged together along their lengths at 454
18 below the pipeline path. Secondly, it is preferred that
19 the clamps be mounted so as to be retractable out of
20 the pipeline path when not in use (as shown in Fig.
21 25(a)). Thirdly, it is preferred that one of the clamps
22 (most preferably the uppermost clamp closest to the
23 tensioner 172,173) is removable. The maximum clamping
24 force provided by the two clamps is only likely to be
25 required in a minority of cases. Accordingly, it
26 desirable that the second clamp be removable to provide
27 a greater work space when it is not required for a
28 particular operation. If the second clamp is removable,
29 then only a single retractable mounting need be
30 provided for the first clamp. The mounting will be
31 constructed to be capable of taking the total design
32 load of both clamps, and the second clamp may simply be
33 attached to the pipe immediately above the first clamp.
34 This arrangement is schematically illustrated in Fig.
35 26, where the first clamp is designated 174a, the

1 second clamp is designated 174b, the mounting,
2 partially hidden beneath the first clamp, is designated
3 440, and the pipeline 442 is being unspooled in the
4 direction of the arrow A, the load on the clamp
5 mounting 440 being in the direction of the arrows B.

6

7 The clamps may be of the type having a rubber lining
8 and hydraulic packers as is known in the art. Fig.
9 25(c) shows the clamp extended and closed to engage the
10 pipeline, and Fig. 25(b) shows the clamp in an
11 intermediate position between the retracted/open
12 position of Fig. 25(a) and the extended/closed position
13 of Fig. 25(c).

14

15 While preferred embodiments of the invention have been
16 described above, the invention is not restricted to
17 these forms, and modifications and variations of these
18 embodiments can be adopted without departing from the
19 scope of the invention.

20

1 Claims

2

3 1. A pipe-launching ramp, said ramp comprising a
4 planar frame having bearing means at or towards one end
5 thereof for rotatably mounting the ramp on ramp-
6 mounting bearings of a pipelaying vessel, and coupling
7 means located at or towards the other end of the frame
8 for coupling of the ramp to a ramp elevation control
9 means for controllably varying the elevation of the
10 ramp.

11

12 2. A pipe launching ramp as claimed in Claim 1,
13 wherein said ramp elevation control means comprises
14 variable-length ramp support means adapted to be
15 anchored at or adjacent one end thereof upon fixed
16 structure of the vessel and at or adjacent the other
17 end of a variable length portion of the support to the
18 ramp at a location thereon not adjacent said rotational
19 mounting of said ramp.

20

21 3. A pipe launching ramp as claimed in Claim 2,
22 wherein said variable-length ramp support means
23 comprises a pair of rack and pinion elevators located
24 one on each side of said ramp and conjointly operable
25 to vary the elevation of said ramp with respect to said
26 vessel.

27

28 4. A pipe launching ramp as claimed in any preceding
29 Claim, wherein said pipe-launching ramp comprises a
30 pipe radius control means for imparting a substantially
31 uniform radius of curvature to a length of pipe de-
32 spooled from said reel in pipelaying operation of said
33 vessel.

34

35 5. A pipe launching ramp as claimed in any preceding

1 Claim, wherein said pipe-launching ramp further
2 includes pipe gripping means for gripping a pipe being
3 de-spoiled over said ramp to apply straightening and/or
4 tensioning forces to said pipe.

5

6 6. A pipe launching ramp as claimed in any preceding
7 Claim, wherein said pipe-launching ramp comprises
8 level-wind means for accommodating variations in the
9 lateral positioning of a length of pipe spooled onto
10 said reel as a plurality of side-by-side turns, during
11 spooling and de-spooling of said length of pipe.

12

13 7. A pipe launching ramp as claimed in Claim 6 when
14 dependent upon Claim 4, wherein said level-wind means
15 and said pipe radius control means are mounted and
16 controlled for conjoint lateral movement.

17

18 8. A pipe launching ramp as claimed in Claim 7,
19 wherein said pipe radius control means is mounted upon
20 said level-wind means for carriage thereby.

21

22 9. A pipe launching ramp as claimed in any one of
23 Claims 6 to 8, wherein said ramp includes at least two
24 levelwind-mounting crossbeams; said levelwind means
25 comprising a rectangular lattice mounted for lateral
26 movement on said crossbeams, lateral movement control
27 means for laterally moving said lattice on said
28 crossbeams, radius control means carried on said
29 lattice for imparting a uniform curvature to a pipe
30 being de-spoiled over said ramp, and pipe gripping
31 means carried by said lattice for gripping a pipe being
32 de-spoiled over said ramp to apply straightening and/or
33 tensioning forces to said pipe.

34

35 10. A pipe-launching ramp as claimed in Claim 9,

1 wherein the levelwind lattice is boxed in or surrounded
2 to provide full weather protection.
3

4 11. A pipe-launching ramp as claimed in Claim 9 or
5 Claim 10, wherein the levelwind lattice is equipped
6 with a dual bulkhead/platform system to provide a
7 working location which allows personnel to work on the
8 lattice whether the ramp is near horizontal or near
9 vertical.

10
11 12. A pipelaying vessel including a pipe-launching
12 ramp as claimed in any one of Claims 1 to 11.
13

14 13. A pipe-launching ramp substantially as
15 hereinbefore described with reference to the
16 accompanying drawings.
17

18 14. A pipelaying vessel including a pipe-launching
19 ramp substantially as hereinbefore described with
20 reference to the accompanying drawings.
21

Patents Act 1977

Examiner's report to the Comptroller under Section 17
(the Search report)Application number
GB 9503282.7**Relevant Technical Fields**

- (i) UK Cl (Ed.N) F2P (PL2, PL9)
 (ii) Int Cl (Ed.6) F16L 1/225, 1/235, 1/20

Search Examiner
R F PHAROAHDate of completion of Search
18 MAY 1995**Databases (see below)**

(i) UK Patent Office collections of GB, EP, WO and US patent specifications.

Documents considered relevant
following a search in respect of
Claims :-
1-14

(ii) ONLINE: WPI

Categories of documents

- X: Document indicating lack of novelty or of inventive step.
 Y: Document indicating lack of inventive step if combined with one or more other documents of the same category.
 A: Document indicating technological background and/or state of the art.
- P: Document published on or after the declared priority date but before the filing date of the present application.
 E: Patent document published on or after, but with priority date earlier than, the filing date of the present application.
 &: Member of the same patent family; corresponding document.

Category	Identity of document and relevant passages		Relevant to claim(s)
X,E	GB 2283297 A	(STENA) published 3 May 1995. See page 23, lines 23-31, page 10, lines 13-27	1, 4, 5, 6, 7, 12
X	GB 2224803 A	(ADVANCED MECHANICS) see page 11, line 22 - page 12, line 4	1, 2, 12
X	GB 2214259 A	(HEEREMA) see page 3, lines 27-32	1, 2, 12
X	GB 1507959 A	(SANTA FE) page 2, lines 32-47	1, 2, 4-6, 12
X	US 3860122 A	(CERNOSEK) see column 4, lines 31-51	1, 2, 5, 12

Databases: The UK Patent Office database comprises classified collections of GB, EP, WO and US patent specifications as outlined periodically in the Official Journal (Patents). The on-line databases considered for search are also listed periodically in the Official Journal (Patents).

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)