¿Por qué se toma el delta igual al mínimo?

Prueba

En la definición formal del límite, se toma el mínimo entre los valores de δ porque se busca el intervalo más pequeño posible alrededor del punto c en el que la condición del límite se cumpla.

Supongamos que tenemos una función f(x) y queremos demostrar que $\lim_{x\to c} f(x) = L$.

Según la definición formal, para todo $\epsilon > 0$ debe existir un $\delta > 0$ tal que si $0 < |x - c| < \delta$, entonces $|f(x) - L| < \epsilon$.

Supongamos que en el análisis de f(x) cerca de c, encontramos dos condiciones que limitan el valor de δ :

- La primera condición impone una restricción de δ_1 .
- La segunda condición impone una restricción de δ_2 .

Queremos demostrar que para garantizar $|f(x)-L| < \epsilon$, el valor de δ que debemos usar es $\delta = \min\{\delta_1, \delta_2\}$.

Demostraci'on

Queremos demostrar: si elegimos un $\delta = \min\{\delta_1, \delta_2\}$, entonces $0 < |x - c| < \delta \implies |f(x) - L| < \epsilon$.

Sea $\delta = \min\{\delta_1, \delta_2\}$, tomemos x tal que $0 < |x - c| < \delta$. Esto implica que:

$$0<|x-c|<\min\{\delta_1,\delta_2\}.$$

Por definición de mínimo, se cumple que:

$$0 < |x - c| < \delta_1$$
 y $0 < |x - c| < \delta_2$.

Así que:

- $0 < |x c| < \delta_1 \implies |f(x) L| < \epsilon.$
- $0 < |x c| < \delta_2 \implies |f(x) L| < \epsilon.$

Dado que x cumple ambas condiciones simultáneamente al estar en el intervalo $0 < |x-c| < \delta$, se concluye que $|f(x) - L| < \epsilon$ se cumple para todo x en $0 < |x-c| < \delta$.

Contradicción usando el máximo

Supongamos que tomamos $\delta = \max\{\delta_1, \delta_2\}$. Si tomamos un x tal que $\delta_1 < |x - c| < \delta = \delta_2$, entonces:

$$\delta_1 < |x - c|,$$

no tenemos garantía de que $|f(x)-L|<\epsilon$ porque hemos salido del intervalo $0<|x-c|<\delta$. Por lo tanto, en este caso no podemos garantizar que $|f(x)-L|<\epsilon$, lo que lleva a una contradicción de la condición necesaria para que $\lim_{x\to c} f(x)=L$.