Lukion matematiikkakilpailu 8.2.2002

Ratkaisuehdotelmia

- 1. Kaikilla reaaliluvuilla x on $f(\sin x) = f\left(\cos\left(\frac{\pi}{2} x\right)\right) = \cos\left(17\left(\frac{\pi}{2} x\right)\right) = \cos\left(8\pi + \frac{\pi}{2} 17x\right) = \cos\left(\frac{\pi}{2} 17x\right) = \sin(17x).$
- 2. Yhtälö

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$$

on yhtäpitävä yhtälön

$$(bc + ca + ab)(a + b + c) = abc$$

ja edelleen yhtälöiden

$$a^{2}b + ab^{2} + b^{2}c + bc^{2} + c^{2}a + ca^{2} + 2abc = 0$$

ja

$$(a+b)(b+c)(c+a) = 0$$

kanssa. Kun $(a,\,b,\,c)$ korvataan $(a^n,\,b^n,\,c^n)$:llä, nähdään, että yhtälö

$$\frac{1}{a^n} + \frac{1}{b^n} + \frac{1}{c^n} = \frac{1}{a^n + b^n + c^n}$$

on yhtäpitävä yhtälön

$$(a^{n} + b^{n})(b^{n} + c^{n})(c^{n} + a^{n}) = 0$$
(1)

kanssa. Mutta koska n on pariton kokonaisluku, (1):n vasemman puolen tekijä on (a + b)(b+c)(c+a). Koska tämä tekijä on = 0, yhtälö (1) on tosi.

3. Jos parien joukossa on ainakin yksi tyttöpari, on pareissa välttämättä myös ainakin yksi poikapari (n poikaa ei saa enintään n-2:sta tytöstä paria itselleen). Tapahtuma "ainakin yksi tyttöpari" on siis tapahtuman "pelkkiä tyttö-poika-pareja" komplementti. Numeroidaan parit. Todennäköisyys, että ensimmäinen pari olisi tyttö-poika-pari on

$$\frac{n^2}{\binom{2n}{2}}$$

Toinen pari on tätä tyyppiä todennäköisyydellä

$$\frac{(n-1)^2}{\binom{n-2}{2}}$$

jne. Todennäköisyys, että kaikki parit olisivat tyttö-poika-pareja on siis

$$\frac{n^2 \cdot (n-1)^2 \cdots 1^2}{\frac{(2n)!}{2!(2n-2)!} \cdot \frac{(2n-2)!}{2!(2n-4)!} \cdots \frac{2!}{2!0!}} = \frac{(n!)^2 2^n}{(2n)!} = \frac{2^n}{\binom{2n}{n}}.$$

Kysytty todennäköisyys on siis

$$1 - \frac{2^n}{\binom{2n}{n}}.$$

- 4. Kuvio \mathcal{K} on ympyrän \mathcal{Y} sisäpuolella. Ellei näin olisi, olisi olemassa kaksi suoraa kulmaa, joista toinen olisi kokonaan toisen sisäpuolella ja joista molempien kyljet sivuaisivat \mathcal{K} :ta. Olkoon P jokin \mathcal{K} :n reunapiste ja O \mathcal{Y} :n keskipiste. Leikatkoon OP \mathcal{K} :n reunan myös pisteessä Q. Oletetaan, että OQ < OP. Piirretään Q:n kautta suora, joka leikkaa \mathcal{Y} :n pieteissa A ja B. A:n ja B:n kautta piirretyt AB:tä vastaan kohtisuorat suorat, jotka leikkaavat \mathcal{Y} :n pisteissä D ja C, koskettavat \mathcal{K} :ta. Mutta näin tekee myös CD. Suorakaide ABCD on \mathcal{K} :n ympäri piirretty nelikulmio. Mutta O on ABCD:n keskipiste, joten CD on samalla etäisyydellä O:sta kuin AB. Tästä seuraa, että P on suorakaiteen ulkopuolella. Oletus OQ < OP johtaa siis ristiriitaan, samoin OP < OQ. Siis O on \mathcal{K} :n symmetriakeskus.
- **5.** Määritellään kahden kärjen P ja Q etäisyydeksi d(P, Q) luku $k \equiv 1$, missä k on lyhemmällä kaarella PQ olevien kärkien lukumäärä (päätepisteet mukaan lukien). Osoitetaan, että kärjistä mitkään neljä eivät ole samanväriset. Vastaoletus: $P_l=P_5,\,P_2,\,P_3$ ja P_4 ovat samanväriset. Silloin mikään luvuista $d(P_i, P_j)$, $1 \le i < j \le 4$, ei ole muotoa 2^k . Olkoon $d(P_i, P_{i+1}) = a_i$. Silloin $a_1 + a_2 + a_3 + a_4 = 17$ ja jokainen $a_i \ge 3$. Jokainen luvuista a_i on siis enintään $17 \equiv 3 \cdot 3 = 8$, mutta koska $8 = 2^3$, jokainen $a_i \leq 7$. Mikään a_i ei ole 4; koska lukujen keskiarvo on < 5, ainakin jokin niistä on tasan 3. Oletetaan, että $a_1 = 3$. Silloin a_4 ja a_2 eivät ole 5 (koska $d(P_i, P_3) \neq 8 \neq d(P_2, P_4)$. Jos $a_2 = 3$, on $a_3 = 6$ tai $a_3 = 7$. Edellisessä tapauksessa olisi oltava $a_4 = 5$, jälkimmäisessä $a_4 = 4$, mitkä kumpikin ovat poissuljettuja. Jos $a_2=6$, on $d(P_3,P_1)=8$, mikä ei ole sallittua. Jos $a_2=7$, on $d(P_3, P_1) = 7$, mutta 7 ei ole summa joukkoon $\{3, 5, 6\}$ kuuluvista luvuista. Jokaiset neljä kärkeä ovat siis eriväriset. Olkoon tarvittavien värien määrä v. Koska millään värillä ei voi värittää kuin enintään 3 kärkeä, on $3v \geq 17$ eli $v \geq 6$. Väritys onnistuu kuudella värillä: jos kärjet ovat Q_i , i = 1, ..., 17, niin väritetään kärjet Q_i , Q_{i+6} ja Q_{i+12} värillä V_i , $i=1,\ldots,5$, ja pisteet Q_6 ja Q_{12} värillä V_6 . Samanväristen kärkien etäisyys on tässä värityksessä joko 6 tai 5 eli sellaisella kaarella, jonka päätepisteet ovat samanväriset, on joko 7 tai 6 kärkeä.