

MACHINE LEARNING

LINEAR CLASSIFICATION

AGENDA

01 Introduction

Classification problem and linear regression

02 Binary classification

Logistic regression and Newton's method

O3 Generalized Linear Models

Exponential Family, Building GLMs, Softmax

04 Discriminative and generative models

Differences, Gaussian Analysis, Bayes Classifier

O5 Binary evaluation metrics

Sensitivity, Specificity, F1 Score, ROC Curve

INTRODUCTION CLASSIFICATION PROBLEM

The problem is the same as that of **regression**: predicting a set of **output** variables y given a set of **input data** X.

The only **difference** is that the **values** of **y** take on a set of **discrete values**.

x_1 =Glucose [mg/dl]	x_2 =IMC	y = Presence of diabetes
148	33.6	1
85	26.6	0
183	23.3	1
89	28.1	0
137	43.1	1
:	:	:

INTRODUCTION CLASSIFICATION PROBLEM

We plot 752 data points (patients) using Python:

INTRODUCTION LINEAR REGRESSION

WHY NOT APPLY LINEAR REGRESSION TO CLASSIFY?

INTRODUCTION LINEAR REGRESSION

WHY NOT APPLY LINEAR REGRESSION TO CLASSIFY?

The function $w^T X$ does not describe the expected value of $Y \in \{0, 1\}$

LOGISTIC REGRESSION H Y P O T H E S I S

The **hypothesis** that we use for **linear regression** is not adequate to solve our **classification problem**.

A hypothesis that better fits the problem is proposed

$$h_w(x) = g(w^T X) = \frac{1}{1 + e^{-w^T X}}$$

This function is called the **sigmoid** or **logistic function**.

It is guaranteed that $g(z) \in \{0, 1\}$.

LOGISTIC REGRESSION SIGMOID FUNCTION

HOMEWORK

Prove that:

$$g'(z) = g(z)(1 - g(z))$$

LOGISTIC REGRESSION

Now, we define the **same problem** of finding the best combination of **weights** that **fits** the **classification problem**.

The following **assumptions** are applied:

1. We assume that the **hypothesis** defines a **probability measure** (**Bernoulli**):

$$P(y = 1/x; w) = h_w(x)$$

$$P(y = 0/x; w) = 1 - h_w(x)$$

$$P(y/x; w) = h_w(x)^y (1 - h_w(x))^{1-y}$$

$$L(w) = P(y/x; w)$$

LOGISTIC REGRESSION A S S U M P T I O N S

2. Assuming m samples are taken, we have that the **likelihood** can be written as:

$$L(w) = \prod_{i=1}^{m} P(y^{(i)}/x^{(i)}; w)$$

$$L(w) = \prod_{i=1}^{m} h_w(x^{(i)})^{y^{(i)}} (1 - h_w(x^{(i)}))^{1-y^{(i)}}$$

LOGISTIC REGRESSION LOGARITHMIC LOSS

The **logarithmic loss** can be written as:

$$l(w) = log \prod_{i=1}^{m} P(y^{(i)}/x^{(i)}; w)$$

$$l(w) = \sum_{i=1}^{m} y^{(i)} log h_w(x^{(i)}) + (1 - y^{(i)}) log (1 - h_w(x^{(i)}))$$

$$l(w) = \sum_{i=1}^{m} y^{(i)} log \left(\frac{1}{1 + e^{-w^{T}X}} \right) + \left(1 - y^{(i)} \right) log \left(1 - \frac{1}{1 + e^{-w^{T}X}} \right)$$

LOGISTIC REGRESSION COST FUNCTION

The **cost function** can be expressed as:

$$J(w) = -l(w)$$

$$J(w) = -\sum_{i=1}^{m} y^{(i)} log \left(\frac{1}{1 + e^{-w^{T}X}} \right) + \left(1 - y^{(i)} \right) log \left(1 - \frac{1}{1 + e^{-w^{T}X}} \right)$$

LOGISTIC REGRESSION COST FUNCTION

Interpreting the cost function:

$$J(w) = -\sum_{i=1}^{m} y^{(i)} \log h_w(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_w(x^{(i)}))$$

lfy=0	lfy= 1
$J(y=0,\widehat{y})=-log(1-\widehat{y})$	$J(y=1,\widehat{y})=-log(\widehat{y})$
$\lim_{\widehat{y}\to 0} \boldsymbol{log}(1-\widehat{y}) \to 0$	$\lim_{\widehat{y}\to0} \boldsymbol{log}(\widehat{y}) \to \infty$
$\lim_{\widehat{y}\to 1} log(1-\widehat{y}) \to \infty$	$\lim_{\widehat{y}\to 1} log(\widehat{y}) \to 0$

LOGISTIC REGRESSION O P T I M I Z A T I O N

HOW TO FIND THE BEST WEIGHTS W?

LOGISTIC REGRESSION GRADIENT DESCENT

Finding the best combination of weights w by gradient descent fits the classification problem.

$$\mathbf{w} \coloneqq \mathbf{w} - \alpha \, \nabla_{\mathbf{w}} \mathbf{J}(\mathbf{w})$$

LOGISTIC REGRESSION GRADIENT DESCENT

HOMEWORK

Show that the **gradient** with respect to a **single training data** (x, y) and **weight** w_i is given by:

$$\frac{\partial}{\partial w_j}J(w)=(y-h_w(x))x_j$$

Where $x, w_j \in \mathbb{R}^n$ and $y \in \{0, 1\}$

REMEMBER THE GRADIENT DESCENT IN LINEAR REGRESSION→ SAME RESULT

LOGISTIC REGRESSION REAL EXAMPLE

NEWTON'S METHOD OPTIMIZATION

We **recall** from numerical methods, **Newton's method**, where the value of w is found for which f(w) = 0:

$$w \coloneqq w - \frac{f(w)}{f'(w)}$$

NEWTON'S METHOD OPTIMIZATION

If we want to find the **minimum** of the **cost function** J(w), this will **correspond** to finding the **points** where $\nabla_w J(w) = 0$, meaning that we can use **Newton's method** (much faster):

$$w \coloneqq w - H^{-1} \nabla_w J(w)$$

where H^{-1} is the Hessian matrix, and ∇_w is the gradient.

$$H = \begin{bmatrix} \frac{\partial^2 J(w)}{\partial w_1^2} & \dots & \frac{\partial^2 J(w)}{\partial w_1 \partial w_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 J(w)}{\partial w_n \partial w_1} & \dots & \frac{\partial^2 J(w)}{\partial w_n^2} \end{bmatrix}$$

NEWTON'S METHOD OPTIMIZATION

Gradient descent (Linear convergence)

Newton's method (Quadratic convergence)

WHY NOT USE NEWTON'S METHOD INSTEAD OF GRADIENT DESCENT?

GENERALIZED LINEAR MODELS EXPONENTIAL FAMILIY

We **recall** that we made the **following assumptions**:

LEAST SQUARES

 $y \in \mathbb{R} \sim Gaussian$ (Linear regression)

LOGISTIC REGRESSION

 $y \in \{0, 1\} \sim Bernoulli$ (Binary classification)

GENERALIZED LINEAR MODELS EXPONENTIAL FAMILIY

We say that a **probability distribution** belongs to the **exponential family** if it can be written as follows:

$$p(y; \eta) = b(y)e^{(\eta^T T(y) - a(\eta))}$$

Where:

- η is named as the **natural** or **canonical parameter** of the distribution.
- T(y) sufficient statistic (statistic that summarizes the complete information of a sample).
- $a(\eta)$ the partition logistics function.

NOTE: $e^{-a(\eta)}$ works as a normalization constant to ensure that $p(y; \eta)$ integrates 1.

GENERALIZED LINEAR MODELS EXPONENTIAL FAMILIY

$$p(y; \eta) = b(y)e^{(\eta^T T(y) - a(\eta))}$$

If we fix a, b and T, then we can say that we have a **distribution parametrized** only by η , whereby varying η gives us **different distributions**.

GENERALIZED LINEAR MODELS EXPONENTIAL FAMILIY EXAMPLES

We prove that the **Bernoulli distribution** is part of the **exponential family**:

$$p(y; \boldsymbol{\phi}) = \boldsymbol{\phi}^{y} (1 - \boldsymbol{\phi})^{1-y}$$

By varying ϕ we obtain different distributions $p(y; \phi)$.

GENERALIZED LINEAR MODELS EXPONENTIAL FAMILIY EXAMPLES

We find:

$$T(y) = y$$

$$b(y) = 1$$

$$\eta = log\left(\frac{\phi}{1-\phi}\right)$$

$$a(\eta) = -log(1 - \phi)$$

$$p(y; \phi) = e^{\left(log\left(\frac{\phi}{1-\phi}\right)y + log(1-\phi)\right)}$$

GENERALIZED LINEAR MODELS EXPONENTIAL FAMILIY EXAMPLES

We prove that the Gaussian distribution (where σ does not matter) is part of the exponential family (so $\sigma^2 = 1$):

$$p(y;\mu) = \frac{1}{\sqrt{2\pi}}e^{\frac{(y-\mu)^2}{2}}$$

HOMEWORK 1

GENERALIZED LINEAR MODELS CONSTRUCTING THE MODELS

We are going to **make** the **following assumptions**:

- 1. The output variable y / X; $w \sim FamExp(\eta)$
- 2. Objective: given a matrix of characteristics X, calculate $E(T(y); \eta)$ referred to as a canonical response function.

$$h(\eta) = E(T(y); \eta)$$

3. The **relationship** between η , w and X is defined to be **linear** (only if $\eta \in \mathbb{R}$):

$$\eta = w^T X$$

GENERALIZED LINEAR MODELS CONSTRUCTING THE MODELS

EXAMPLE: Bernoulli

For fixed values *X* and *w* the **objective** is to **calculate**:

$$h(w) = E(T(y); \eta)$$

But we know that T(y) = y so the **expected value** of a variable that is **distributed** as **Bernoulli** is:

$$E(y; \eta) = P(y = 1; \eta)$$

Similarly, we know from the exponential family that:

$$\phi = P(y = 1; \eta)$$

GENERALIZED LINEAR MODELS EXPONENTIAL FAMILY EXAMPLES

It follows from the **definition** of the **exponential family** that the **natural parameter** η is expressed as:

$$\eta = log\left(\frac{\phi}{1-\phi}\right)$$

By **clearing** ϕ from the previous equality:

$$\eta = log\left(\frac{\phi}{1-\phi}\right)$$

The **following** is **obtained**:

$$\phi = \frac{1}{1 + e^{-\eta}}$$

GENERALIZED LINEAR MODELS CONSTRUCTING THE MODELS

So the **expected value** is:

$$E(y; \eta) = \phi = \frac{1}{1 + e^{-\eta}}$$

But thanks to the third assumption $oldsymbol{\eta} = w^T X$

$$E(y; w, X) = \phi = \frac{1}{1 + e^{-W^T X}}$$

SIGMOID FUNCTION

GENERALIZED LINEAR MODELS CONSTRUCTING THE MODELS

EXAMPLE: Gaussian

Prove that the canonical response function is equivalent to W^TX assuming that $y \sim Gaussian$ and that $\eta = W^TX$

$$h(w) = E(T(y); \eta) = w^T X$$

HOMEWORK 2

GENERALIZED LINEAR MODELS

SOFTMAX REGRESSION

The following problem is defined, where the **output variable** $y \in \{1,..., k\}$ is distributed as a **multinomial function** $y \sim Multinomial$.

- Parameters: $\phi_1, \phi_2, ..., \phi_{k-1}$
- $P(y=i) = \phi_i$
- $\phi_k = 1 (\phi_1 + \phi_2 + \dots + \phi_{k-1})$

The **sufficient statistic** T(y) is defined as a **vector**:

$$T(1) = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} T(2) = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \dots T(k-1) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} T(k) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^{k-1}$$

Indicator function:

$$1\{True\} = 1$$
 $1\{False\} = 0$
 $T(y)_i = 1\{y = i\}$

The multinomial distribution is expressed in the form of the exponential family:

$$P(y) = \phi_1^{1\{y=1\}} \phi_2^{1\{y=2\}} \dots \phi_k^{1\{y=k\}}$$

$$P(y) = \phi_1^{T(y)_1} \phi_2^{T(y)_2} \dots \phi_k^{T(y)_{k-1}} \phi_k^{1 - \sum_{j=1}^{k-1} T(y)_j}$$

$$P(y) = e^{\left[T(y)_1 \log(\phi_1) + T(y)_2 \log(\phi_2) + \dots + (1 - \sum_{j=1}^{k-1} T(y)_j) \log(\phi_k)\right]}$$

$$P(y) = e^{\left[T(y)_{1} \log\left(\frac{\phi_{1}}{\phi_{k}}\right) + T(y)_{2} \log\left(\frac{\phi_{2}}{\phi_{k}}\right) + \dots + T(y)_{k-1} \log\left(\frac{\phi_{k-1}}{\phi_{k}}\right) + \log(\phi_{k})\right]}$$

It is **compared** to the **exponential family form**:

$$P(y) = e^{\left[T(y)_1 \log\left(\frac{\phi_1}{\phi_k}\right) + T(y)_2 \log\left(\frac{\phi_2}{\phi_k}\right) + \dots + T(y)_{k-1} \log\left(\frac{\phi_{k-1}}{\phi_k}\right) + \log(\phi_k)\right]}$$

$$p(y; \eta) = b(y)e^{(\eta^T T(y) - a(\eta))}$$

Therefore:

$$b(y)=1$$

$$a(\eta) = -\log(\phi_k)$$

$$P(y) = e^{\left[T(y)_{1} \log\left(\frac{\phi_{1}}{\phi_{k}}\right) + T(y)_{2} \log\left(\frac{\phi_{2}}{\phi_{k}}\right) + \dots + T(y)_{k-1} \log\left(\frac{\phi_{k-1}}{\phi_{k}}\right) + \log(\phi_{k})\right]}$$

$$p(y; \eta) = b(y)e^{(\eta^T T(y) - a(\eta))}$$

Finally:

$$oldsymbol{\eta} = egin{bmatrix} log\left(rac{oldsymbol{\phi}_1}{oldsymbol{\phi}_k}
ight) \ log\left(rac{oldsymbol{\phi}_{k-1}}{oldsymbol{\phi}_k}
ight) \end{bmatrix}$$

The **canonical response function** would be:

$$\eta_i = log\left(\frac{\phi_i}{\phi_k}\right)$$

$$\eta_k = log\left(\frac{\phi_k}{\phi_k}\right) = 0$$

$$\phi_k e^{\eta_i} = \phi_i$$

The **sum of probabilities** must be **equal** to **1**:

$$\sum_{i=1}^k \phi_k e^{\eta_i} = \sum_{i=1}^k \phi_i = 1$$

$$\phi_k \sum_{i=1}^k e^{\eta_i} = \sum_{i=1}^k \phi_i = 1$$

$$\phi_k = \frac{1}{\sum_{i=1}^k e^{\eta_i}}$$

Substituting
$$oldsymbol{\phi}_k = rac{1}{\sum_{i=1}^k e^{\eta_i}}$$
 in the canonical response function

$$\phi_k e^{\eta_i} = \phi_i$$

$$\phi_i = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$$

SOFTMAX FUNCTION

Using the **third assumption** that $\eta_i = w_i^T X^*$.

$$\phi_i = \frac{e^{w_i^T X}}{\sum_{j=1}^k e^{w_j^T X}}$$

Knowing that the objective is to calculate $h(w) = E(T(y); \eta)$:

$$E\left(\begin{bmatrix}T(y)_1\\T(y)_2\\\vdots\\T(y)_{k-1}\end{bmatrix}\right) = E\left(\begin{bmatrix}1\{y=1\}\\1\{y=2\}\\\vdots\\1\{y=k-1\}\end{bmatrix}\right) = \begin{bmatrix}\phi_1\\\phi_2\\\vdots\\\phi_{k-1}\end{bmatrix}$$

The hypothesis h(w) is **expressed** as a **vector**:

$$h(w) = \begin{bmatrix} \frac{e^{w_1^T X}}{\sum_{j=1}^k e^{w_j^T X}} \\ \frac{e^{w_2^T X}}{\sum_{j=1}^k e^{w_j^T X}} \\ \vdots \\ \frac{e^{w_{k-1}^T X}}{\sum_{j=1}^k e^{w_j^T X}} \end{bmatrix} = \begin{bmatrix} P(y = 1) \\ P(y = 2) \\ \vdots \\ P(y = k-1) \end{bmatrix}$$

which has as **components** the **probability** of **each class** i: P(y = i)

GENERALIZED LINEAR MODELS

SOFTMAX REGRESSION

We calculate the **logarithmic loss** and **cost function** for a **single training data**:

$$l(w) = \sum_{l=1}^{k} 1(y = l) log(p(y/x)) = \sum_{l=1}^{k} 1(y = l) log\left(\frac{e^{w_l^T X}}{\sum_{j=1}^{k} e^{w_j^T X}}\right)$$

$$J(w) = -l(w)$$

We calculate the **logarithmic loss** and **cost function** for m training data:

$$l(w) = \sum_{i=1}^{m} \sum_{l=1}^{k} 1(y^{(i)} = l) log \left(\frac{e^{w_l^T x^{(i)}}}{\sum_{j=1}^{k} e^{w_j^T x^{(i)}}} \right)$$

$$J(w) = -l(w)$$

THE NEWTON OR GRADIENT DESCENT METHOD MAY BE USED

DISCRIMINATIVE AND GENERATIVE M O D E L S
D I F F E R E N C E S

Discriminative models:

- The models that have been seen so far are called **discriminative models**, where learning about the **probability distribution** p(y/x) is done **directly**.
- **Examples**: logistic regression and least squares.

Generative models:

- Models that try to learn p(x/y) and p(y). For the case of **binary classification** the algorithm would learn **three different distributions** p(x/y=0), p(x/y=1) and p(y).
- Thus, a new data would be classified by comparing it with both distributions p(x / y = 0) and p(x / y = 1).

DISCRIMINATIVE AND GENERATIVE

M O D E L S

DIFFERENCES

Generative

DESCRIPTION

A generative model models the characteristics that are conditioned by the response variable p(x / y).

Using the **Bayes' Theorem**, p(y/x) can be calculated.

$$p(y/x) = \frac{p(x/y)p(y)}{p(x)}$$

We have that the **denominator** can be **calculated** as follows (**binary classification**):

$$p(x) = p(x/y = 1)p(y = 1) + p(x/y = 0)p(y = 0)$$

G E N E R A T I V E M O D E L S GAUSSIAN DISCRIMINATIVE ANALYSIS

In a Gaussian discriminative analysis we assume that:

$$p(x/y) \sim Gaussian$$

GENERATIVE MODELS MULTIVARIATE GAUSSIANS

A Gaussian distribution of d dimensions is parametrized by:

• Mean vector: $\mu \in \mathbb{R}^d$

• Covariance matrix: $\Sigma \in \mathbb{R}^{dxd}$

where Σ is **symmetric** and **positive semi-definite**. Its density can be calculated as:

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)}$$

Properties:

$$E[X] = \int_{\mathcal{X}} x \, p(x; \mu, \Sigma) \, dx = \mu$$

$$Cov(X) = E[(X - E[X])(X - E[X])^{T}] = \Sigma$$

MULTIVARIATE GAUSSIANS

Example: Varying Σ .

MULTIVARIATE GAUSSIANS

Example: Varying μ .

GAUSSIAN DISCRIMINATIVE ANALYSIS

Gaussian discriminative analysis solves the binary classification problem where:

$$x \in \mathbb{R}^n$$
$$y \in \{0, 1\}$$

The **assumptions** of the **model** are:

$$y \sim Bernoulli(\emptyset)$$

$$x / y = 0 \sim N(\mu_0, \Sigma)$$

$$x / y = 1 \sim N(\mu_1, \Sigma)$$

GENERATIVE MODELS GAUSSIAN DISCRIMINATIVE ANALYSIS

The **distributions** are given by:

$$p(y) = \phi^{y} (1 - \phi)^{1 - y}$$

$$p(x|y = 0) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_0)^T \Sigma^{-1} (x - \mu_0)\right)$$

$$p(x|y = 1) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_1)^T \Sigma^{-1} (x - \mu_1)\right)$$

The **parameters** of the **distributions** would be: ϕ , μ_0 , μ_1 , Σ

GAUSSIAN DISCRIMINATIVE ANALYSIS

The **joint likelihood** of the data would be given by:

$$l(\phi, \mu_k, \Sigma) = \prod_{i=1}^m p(x^{(i)}, y^{(i)}; \phi, \mu_k, \Sigma)$$

$$l(\phi, \mu_k, \Sigma) = \prod_{i=1}^{m} p(x^{(i)}/y^{(i)}; \mu_k, \Sigma) p(y^{(i)}; \phi)$$

$$\log l(\phi, \mu_k, \Sigma) = \log \prod_{i=1}^{m} p(x^{(i)}/y^{(i)}; \mu_k, \Sigma) p(y^{(i)}; \phi)$$

$$\log l(\phi, \mu_k, \Sigma) = \sum_{i=1}^{m} \log(p(x^{(i)}/y^{(i)}; \mu_k, \Sigma) + \log p(y^{(i)}; \phi)$$

GAUSSIAN DISCRIMINATIVE ANALYSIS

The **joint likelihood** of the data would be given by:

$$\log l(\phi, \mu_k, \Sigma) = \sum_{i=1}^m \log(p(x^{(i)}/y^{(i)}; \mu_k, \Sigma) + \log p(y^{(i)}; \phi)$$

$$log \ l(\phi, \mu_k, \Sigma) = \sum_{i=1}^{m} log \left(\frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \right) + log \left[e^{\left(-\frac{1}{2} (x^{(i)} - \mu_k)^T \Sigma^{-1} (x^{(i)} - \mu_k) \right)} \right] + log(\Phi^{y^{(i)}} (1 - \Phi)^{1 - y^{(i)}})$$

$$log \ l(\phi, \mu_k, \Sigma) = \sum_{i=1}^{m} log(\frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}}) - \frac{1}{2} (x^{(i)} - \mu_k)^T \Sigma^{-1} (x^{(i)} - \mu_k) + y^{(i)} \ log(\phi) + (1 - y^{(i)}) \log((1 - \Phi))$$

GAUSSIAN DISCRIMINATIVE ANALYSIS

Maximizing with respect to ϕ :

$$\nabla_{\emptyset} \log l(\phi, \mu_k, \Sigma) = \nabla_{\phi} \sum_{i=1}^{m} \mathbf{y}^{(i)} \log \left(\frac{\phi}{1 - \phi} \right) + \log((1 - \Phi)) = 0$$

$$\nabla_{\emptyset} \log l(\phi, \mu_k, \Sigma) = \sum_{i=1}^{m} \left(\frac{\mathbf{y}^{(i)}}{\phi(1-\phi)} - \frac{1}{1-\phi} \right) = 0$$

$$\sum_{i=1}^{m} \frac{y^{(i)}}{\phi(1-\phi)} = \frac{m}{1-\phi}$$

$$\nabla_{\emptyset} \log l(\phi, \mu_k, \Sigma) = \sum_{i=1}^{m} \frac{y^{(i)}}{m} = \sum_{i=1}^{m} \frac{1(y^{(i)} = k)}{m} = \phi = \frac{Number of data in class k}{Total data}$$

GAUSSIAN DISCRIMINATIVE ANALYSIS

Maximizing with respect to μ_k :

$$\nabla_{\mu_k} \log l(\phi, \mu_k, \Sigma) = \nabla_{\mu_k} \sum_{i=1}^m -\frac{1}{2} (x^{(i)} - \mu_k)^T \Sigma^{-1} (x^{(i)} - \mu_k) = 0$$

Applying the property $\nabla_x x^T A x = 2Ax$:

$$\nabla_{\mu_k} \log l(\phi, \mu_k, \Sigma) = \sum_{i=1}^m \Sigma^{-1} (x^{(i)} - \mu_k) = 0$$

$$\nabla_{\mu_k} \log l(\phi, \mu_k, \Sigma) = \Sigma^{-1} \sum_{i=1}^m (x^{(i)} - \mu_k) = 0$$

$$\nabla_{\mu_k} \log l(\phi, \mu_k, \Sigma) = \sum_{i=1}^m \mathbf{x}^{(i)} - \sum_{i=1}^m \mu_k = 0$$

We are **only interested** in the $x^{(i)}$ that belong to **class k**:

$$\nabla_{\mu_k} \log l(\phi, \mu_k, \Sigma) = \sum_{i=1}^m x^{(i)} - \sum_{i=1}^m \mu_k = 0$$

$$\nabla_{\mu_k} \log l(\phi, \mu_k, \Sigma) = \sum_{i=1}^m 1(y^{(i)} = k) x^{(i)} - \sum_{i=1}^m 1(y^{(i)} = k) \mu_k = 0$$

$$\mu_{k} = \frac{\sum_{i=1}^{m} 1(y^{(i)} = k)x^{(i)}}{\sum_{i=1}^{m} 1(y^{(i)} = k)} = \frac{Sum \ of \ x \ that \ belong \ to \ class \ k}{Class \ k \ data \ number}$$

GAUSSIAN DISCRIMINATIVE ANALYSIS

Maximizing with respect to Σ^{-1} :

$$\nabla_{\Sigma^{-1}} \log l(\phi, \mu_k, \Sigma) = \nabla_{\Sigma^{-1}} \sum_{i=1}^{m} log(\frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}}) - \frac{1}{2} (x^{(i)} - \mu_k)^T \Sigma^{-1} (x^{(i)} - \mu_k) = 0$$

$$\nabla_{\Sigma^{-1}} \log l(\phi, \mu_k, \Sigma) = \nabla_{\Sigma^{-1}} \sum_{i=1}^{m} log(\frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}}) - \frac{1}{2} (x^{(i)} - \mu_k)^T (x^{(i)} - \mu_k) \Sigma^{-T} = 0$$

Because Σ is symmetrical to $\Sigma^{-1} = \Sigma^{-T}$:

$$\nabla_{\Sigma^{-1}} \log l(\phi, \mu_k, \Sigma) = \nabla_{\Sigma^{-1}} \sum_{i=1}^{m} -\frac{d}{2} \log(2\pi) + \frac{1}{2} \log(\left|\Sigma^{-1}\right|) - \frac{1}{2} \left(x^{(i)} - \mu_k\right)^T \left(x^{(i)} - \mu_k\right) \Sigma^{-1} = 0$$

$$\nabla_{\boldsymbol{\Sigma}^{-1}} \log l(\boldsymbol{\phi}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) = \sum_{i=1}^{m} \nabla_{\boldsymbol{\Sigma}^{-1}} \frac{1}{2} log(\left|\boldsymbol{\Sigma}^{-1}\right|) - \nabla_{\boldsymbol{\Sigma}^{-1}} \frac{1}{2} \left(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_k\right)^T \left(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_k\right) \boldsymbol{\Sigma}^{-1} = 0$$

GAUSSIAN DISCRIMINATIVE ANALYSIS

Applying the property $\nabla_x b^T x = b$:

$$\nabla_{\boldsymbol{\Sigma}^{-1}} \log l(\boldsymbol{\phi}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) = \frac{1}{2} \sum_{i=1}^{m} \nabla_{\boldsymbol{\Sigma}^{-1}} \left[log(\left|\boldsymbol{\Sigma}^{-1}\right|) \right] - \left(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_k\right) \left(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_k\right)^T = 0$$

Applying the property $\nabla_{x} \log(|X|) = X^{-T}$:

$$\nabla_{\boldsymbol{\Sigma}^{-1}} \log l(\boldsymbol{\phi}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) = \sum_{i=1}^{m} (\boldsymbol{\Sigma}^{-1})^{-T} - (\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_k) (\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_k)^T = 0$$

$$m\boldsymbol{\Sigma}^{T} - \sum_{i=1}^{m} (\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{k}) (\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{k})^{T} = 0$$

$$\Sigma^{T} = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_{k}) (x^{(i)} - \mu_{k})^{T}$$

GAUSSIAN DISCRIMINATIVE ANALYSIS

Because Σ is symmetrical to $\Sigma^T = \Sigma$:

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_k) (x^{(i)} - \mu_k)^T$$

VARIANCE OF K-CLASS DATA

Remembering that it is an outer product: $\Sigma \in \mathbb{R}^{n \times n}$

$$\Sigma = \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}_{1} - \mu_{k})^{2} & \dots & \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}_{1} - \mu_{k}) (x^{(i)}_{n} - \mu_{k}) \\ \vdots & \ddots & \vdots \\ \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}_{n} - \mu_{k}) (x^{(i)}_{1} - \mu_{k}) & \dots & \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}_{n} - \mu_{k})^{2} \end{bmatrix}$$

GENERATIVE MODELS GAUSSIAN DISCRIMINATIVE ANALYSIS

Once we have **found** the **parameters**:

$$\phi = \sum_{i=1}^{m} \frac{1(\mathbf{y}^{(i)} = \mathbf{k})}{m}$$

$$\mu_{k} = \frac{\sum_{i=1}^{m} 1(y^{(i)} = k)x^{(i)}}{\sum_{i=1}^{m} 1(y^{(i)} = k)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_k) (x^{(i)} - \mu_k)^T$$

We can start making predictions.

GAUSSIAN DISCRIMINATIVE ANALYSIS

To make a prediction we calculate the **posterior probability** P(y = 1 / x) **with** the **new data** x:

$$p(y = 1/x) = \frac{p(x/y = 1)p(y = 1)}{p(x)}$$

We assign a threshold: if $P(y = 1 / x) \ge 0.5$ then it belongs to class 1, otherwise it belongs to class 0. That is, we are **maximizing the probability**:

$$argmax_y p(y/x) = argmax_y \frac{p(x/y)p(y)}{p(x)}$$

If
$$p(y = 1) = p(y = 0) = 0.5$$
 we have:

$$argmax_{y}p(y/x) = argmax_{y} p(x/y)$$

GENERATIVE MODELS GAUSSIAN DISCRIMINATIVE ANALYSIS

GAUSSIAN DISCRIMINATIVE ANALYSIS

SUMMARY:

1. Compute the parameters for each Gaussian (in binary classification it would be two curves) from the data.

$$\phi, \mu, \Sigma$$

2. Calculate the probabilities

$$P(x/y = k) P(y) P(x)$$

3. Use Bayes' Theorem to make a new prediction.

$$p(y = k/x) = \frac{p(x/y = k)p(y = k)}{p(x)}$$

COMPARISON DISCRIMINATIVE MODELS

If we analyze the probability p(y = 1 / x), in **Bayes' Theorem**, we can realize that we obtain the **same logistic regression curve**.

$$p(y = 1/x) = \frac{p(x/y = 1)p(y = 1)}{p(x)}$$

$$p(y = 1/x) = \frac{p(x/y = 1)p(y = 1)}{p(x/y = 1)p(y = 1) + p(x/y = 0)p(y = 0)} \left(\frac{\frac{1}{p(x/y = 1)p((y = 1))}}{\frac{1}{p(x/y = 1)p((y = 1))}}\right)$$

$$p(y = 1/x) = \frac{1}{1 + \frac{p(x/y = 0)p(y = 0)}{p(x/y = 1)p((y = 1))}}$$

GENERATIVE MODELS COMPARISON DISCRIMINATIVE MODELS

$$\frac{p(x/y=0)p(y=0)}{p(x/y=1)p((y=1))} = e^{\left(-\frac{1}{2}(x^{(i)}-\mu_0)^T \Sigma^{-1}(x^{(i)}-\mu_0) + \frac{1}{2}(x^{(i)}-\mu_1)^T \Sigma^{-1}(x^{(i)}-\mu_1)\right)} \left(\frac{1-\phi}{\phi}\right)$$

$$\frac{p(x/y=0)p(y=0)}{p(x/y=1)p((y=1))} = e^{\left(-\frac{1}{2}(x^{(i)}-\mu_0)^T \Sigma^{-1}(x^{(i)}-\mu_0) + \frac{1}{2}(x^{(i)}-\mu_1)^T \Sigma^{-1}(x^{(i)}-\mu_1)\right)} \left(e^{\log\left(\frac{1-\phi}{\phi}\right)}\right)$$

$$\frac{p(x/y=0)p(y=0)}{p(x/y=1)p((y=1))} = e^{\left(-\frac{1}{2}\Sigma^{-1}\left[\left(x^{(i)}-\mu_0\right)^T\left(x^{(i)}-\mu_0\right)-\left(x^{(i)}-\mu_1\right)^T\left(x^{(i)}-\mu_1\right)\right] + \log\left(\frac{1-\phi}{\phi}\right)\right)}$$

$$\frac{p(x/y=0)p(y=0)}{p(x/y=1)p((y=1))} = e^{\left(-\frac{1}{2}\Sigma^{-1}\left[\sum_{j=1}^{n}(x^{(i)}_{j}-\mu_{0})^{2}-(x^{(i)}_{j}-\mu_{1})^{2}\right]+\log\left(\frac{1-\phi}{\phi}\right)\right)}$$

COMPARISON DISCRIMINATIVE MODELS

$$\frac{p(x/y=0)p(y=0)}{p(x/y=1)p((y=1))} = e^{\left(-\frac{1}{2}\Sigma^{-1}\left[\sum_{j=1}^{n}-2\mu_0 x^{(i)}_{j}+\mu_0^2+2\mu_1 x^{(i)}_{j}-\mu_1^2\right]+\log\left(\frac{1-\phi}{\phi}\right)\right)}$$

Because $x^{(i)}_0 = 1$

$$\frac{p(x/y=0)p(y=0)}{p(x/y=1)p((y=1))} = e^{\left(-\left[\sum_{j=1}^{n} \frac{1}{2} \Sigma^{-1} (\mu_0 - \mu_1)(x^{(i)}_j)\right] + \left[\frac{1}{2} \Sigma^{-1} (\mu_0^2 - \mu_1^2) + \log\left(\frac{1-\phi}{\phi}\right)\right](x^{(i)}_0)\right)}$$

Comparing $w^T X$:

$$w^{T} = \begin{bmatrix} -\frac{1}{2} \Sigma^{-1} (\mu_{0}^{2} - \mu_{1}^{2}) - \log \left(\frac{1 - \phi}{\phi}\right) \\ \frac{1}{2} \Sigma^{-1} (\mu_{0} - \mu_{1}) \\ \vdots \\ \frac{1}{2} \Sigma^{-1} (\mu_{0} - \mu_{1}) \end{bmatrix}$$

COMPARISON DISCRIMINATIVE MODELS

Therefore:

$$p(y = 1/x) = \frac{1}{1 + e^{-\left(\left[\sum_{j=1}^{n} \frac{1}{2} \Sigma^{-1} (\mu_0 - \mu_1)(x^{(i)}_j)\right] + \left[-\frac{1}{2} \Sigma^{-1} (\mu_0^2 - \mu_1^2) + \log\left(\frac{1-\phi}{\phi}\right)\right](x^{(i)}_0)\right)}} = \frac{1}{1 + e^{-W^T X}}$$

Where w^T :

$$w^{T} = \begin{bmatrix} -\frac{1}{2} \Sigma^{-1} (\mu_{0}^{2} - \mu_{1}^{2}) - \log \left(\frac{1 - \phi}{\phi}\right) \\ \frac{1}{2} \Sigma^{-1} (\mu_{0} - \mu_{1}) \\ \vdots \\ \frac{1}{2} \Sigma^{-1} (\mu_{0} - \mu_{1}) \end{bmatrix}$$

COMPARISON DISCRIMINATIVE MODELS

In a general fashion:

Likelihood function $x/y \sim Exponential Family(\eta)$

Posterior Distribution P(y/x)=sigmoid function

THAT'S WHY LOGISTIC REGRESSION IS USED→ WORKS FOR MANY TYPES OF ASSUMPTIONS

COMPARISON DISCRIMINATIVE MODELS

A **generative mode**l will have **better performance** than a discriminative one, if the assumption that we made of the shape of the distribution $P(x \mid y)$ holds for the real data (more information is provided to the algorithm).

Otherwise, if the data does not behave as we assumed, the **discriminative model** will have **better results**, because even though our assumptions were not as accurate, **logistic regression** works for many different assumptions.

GENERATIVE	DISCRIMINATIVE
Better performance when the P (x / y) distribution is known	Better performance when P (x / y) is unknown (robust to incorrect assumptions)
Asymptotic efficiency	There may be a better model
Needs little data	Needs a lot of data

BERNOULLI MULTIVARIATE EVENT MODEL:

For the case of the Gaussian discriminative analysis, it was the case that $x^{(i)}_{j} \in \mathbb{R}$, that is, they were **continuous values**.

For cases, such as **text classification** ("desired mail" and "spam mail") the **x vectors** can have a very **high dimensionality** (the number of words is immense).

$$x \in \{0, 1\}^{5000}$$

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \text{buy} \end{bmatrix}$$
a ardvark aardwolf
$$\vdots \\ 1 \\ \vdots \\ 0 \\ \text{zygmurgy}$$

2⁵⁰⁰⁰ parameters would be needed.

SOLUTION: naive Bayes assumption (very strong)

We suppose that $x^{(i)}_{j}$ are conditionally independent given y.

That is, if a text is known to be "**spam**" y = 1, the fact that the word x_{2087} = "buy" appears in the text does not affect beliefs about the appearance of any other word, such as x_{39831} = "price".

$$p(x_1, \dots x_j, \dots, x_n/y) = p(x_1)p(x_2/x_1, y)p(x_3/x_1, x_2, y) \dots = p(x_1/y)p(x_2/y) \dots = \prod_{j=1}^{n} p(x_j/y)$$

EVEN WHEN THE ASSUMPTION IS NOT TRUE, THE ALGORITHM PERFORMS GOOD IN MANY APPLICATIONS

NAIVE BAYES CLASSIFIER

As the **Bayes classifier** is a **generative model**, it is of interest to model the distributions $p(x_i/y)$ and p(y). In particular, we want to **maximize the joint likelihood**:

$$l(\phi_y, \phi_{j/y=0}\phi_{j/y=1}) = \prod_{i=1}^m p(x^{(i)}, y^{(i)})$$

Where the **assumptions** are:

$$p(x/y) = p(x_1, ... x_j, ..., x_n/y) = \prod_{j=1}^n p(x_j/y)$$
 $x_j / y = 0 \sim Bernoulli(\phi_{j/y=0})$
 $x_j / y = 1 \sim Bernoulli(\phi_{j/y=1})$
 $y \sim Bernoulli(\phi_j)$

NAIVE BAYES CLASSIFIER

The **result** of the **maximum likelihood** estimation gives:

$$\phi_{j/y=1} = \frac{\sum_{i=1}^{m} 1\{x_{j}^{(i)}, y^{(i)} = 1\}}{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}} = \frac{\#times\ the\ word\ j\ is\ repeated\ in\ "spam"}{total\ "spam"\ mail}$$

$$\phi_{j/y=0} = \frac{\sum_{i=1}^{m} 1\{x_{j}^{(i)}, y^{(i)} = 0\}}{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}} = \frac{\#times\ the\ word\ j\ is\ repeated\ in\ "desired"}{total\ "desired"\ mail}$$

$$\phi_{y} = \frac{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}}{m} = \frac{total\ spam\ mail}{total\ mail}$$

If the characteristics $x_j^{(i)}$ take more values, they can be modeled as multinomials.

If the characteristics $x_j^{(i)}$ take continuous values, they are discretized in intervals.

NAIVE BAYES CLASSIFIER

To make a **new prediction** we use **Bayes' theorem**:

$$p(y = 1/x) = \frac{p(x/y = 1)p(y = 1)}{p(x)}$$

Where:

$$p(x/y = 1) = \prod_{j=1}^{n} p(x_j/y = 1) = \prod_{j=1}^{n} (\phi_j/y = 1)$$

$$p(y) = \phi_y = \frac{\sum_{i=1}^m 1\{y^{(i)} = 1\}}{m}$$

$$p(x) = \prod_{j=1}^{n} p(x_j/y = 1) p(y = 1) + \prod_{j=1}^{n} p(x_j/y = 0) p(y = 0)$$

What happens if a word appears in an email that the algorithm has never seen in another email?

NAIVE BAYES CLASSIFIER

The **probability** that it will assign, of seeing the word in **either of the two emails** will be **0**.

$$\phi_{j/y=1} = \frac{\sum_{i=1}^{m} 1\{x_{j}^{(i)}, y^{(i)} = 1\}}{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}} = \frac{\#times\ the\ word\ j\ is\ repeated\ in\ "spam"}{total\ "spam"\ mail} = \frac{0}{m_{neg}}$$

$$\phi_{j/y=0} = \frac{\sum_{i=1}^{m} 1\{x_{j}^{(i)}, y^{(i)} = 0\}}{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}} = \frac{\#times\ the\ word\ j\ is\ repeated\ in\ "desired"}{total\ "desired"\ mail} = \frac{0}{m_{pos}}$$

When making the **prediction** we will have an **incongruity**:

$$p(y = 1/x) = \frac{p(x/y = 1)p(y = 1)}{p(x)} = \frac{0}{0}$$

STATISTICALLY IT IS NOT ADEQUATE TO SAY THAT THE PROBABILITY OF AN EVENT IS ZERO JUST BECAUSE YOU HAVE NOT SEEN IT IN YOUR DATA

NOTE: LAPLACE AND THE SUN

L S

NAIVE BAYES CLASSIFIER

LAPLACE SMOOTHING:

The **solution** is to **change our estimate** (**general multinomial case** where $y = \{1, 2, ..., k\}$):

$$p(y = 1) = \frac{(\# "1"s + 1)}{(\#"0"s + 1) + (\# "1"s + 1)}$$

$$p(y = j) = \phi_y = \frac{1 + \sum_{i=1}^m 1\{y^{(i)} = j\}}{m + k}$$

When calculating the **other estimators** we have:

$$\phi_{j/y=1} = \frac{1 + \sum_{i=1}^{m} 1\{x_j^{(i)}, y^{(i)} = 1\}}{2 + \sum_{i=1}^{m} 1\{y^{(i)} = 1\}}$$

$$\phi_{j/y=0} = \frac{1 + \sum_{i=1}^{m} 1\{x_j^{(i)}, y^{(i)} = 0\}}{2 + \sum_{i=1}^{m} 1\{y^{(i)} = 0\}}$$

MULTINOMIAL EVENT MODEL:

Let's see the case when $x_i = \{1, 2, ..., k\}$.

For example, now the value of x_j represents the **position** of the **word in** the **dictionary**, and the index j indicates the **position** of the **word in** the **mail**.

So n now represents the **length of the email** (and varies according to each email).

The **assumptions** would be:

$$p(x/y) = p(x_1, ... x_j, ..., x_n/y) = \prod_{j=1}^{n} p(x_j/y)$$

$$x_j / y = 0 \sim Multinomial(\phi_{j/y=0})$$

$$x_j / y = 1 \sim Multinomial(\phi_{j/y=1})$$

$$y \sim Bernoulli(\phi_j)$$

NAIVE BAYES CLASSIFIER

The parameters, when calculating the maximum likelihood would be (with Laplace smoothing):

$$\phi_{k/y=1} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n_i} \mathbf{1}\{x_j^{(i)} = k, y^{(i)} = 1\} + 1}{\sum_{i=1}^{m} \mathbf{1}\{y^{(i)} = 1\} d_i + n_i + k} = \frac{\# \ of \ times \ that \ the \ word \ k \ appears \ in \ mails \ ND}{total \ words \ in \ mails \ ND}$$

$$\phi_{k/y=0} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n_i} \mathbf{1} \left\{ x_j^{(i)} = k, y^{(i)} = 0 \right\} + 1}{\sum_{i=1}^{m} \mathbf{1} \left\{ y^{(i)} = 0 \right\} d_i + n_i + k} = \frac{\# \ of \ times \ that \ the \ word \ k \ appears \ in \ mails \ D}{total \ words \ in \ mails \ D}$$

$$\phi_y = \frac{\sum_{i=1}^m \mathbf{1}\{y^{(i)} = \mathbf{1}\} + \mathbf{1}}{m}$$

False positive (error type I):

- Statistics: A true null hypothesis is incorrectly rejected.
- Machine learning: the model predicts that the class of a training data $p(y \mid x) = 1$ is positive, when the reality is that the data belonged to the negative class y = 0.

False negative (error type II):

- Statistics: The false null hypothesis is incorrectly accepted.
- Machine learning: the model predicts that the class of a training data $p(y \mid x) = 0$ is negative, when the reality is that the data belonged to the positive class y = 1.

True positive:

- Statistics: The false null hypothesis is correctly accepted.
- Machine learning: the model predicts that the class of a training data $p(y \mid x) = 1$ is positive, when the reality is that the data belonged to the positive class y = 1.

True negative:

- Statistics: The true null hypothesis is correctly accepted.
- Machine learning: the model predicts that the class of a training data $p(y \mid x) = 0$ is negative, when the reality is that the data belonged to the negative class y = 0.

CONFUSION MATRIX

PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

TUAL VALUES

POSITIVE (1)

NEGATIVE (0)

TP	FN
FP	TN

BINARY EVALUATION METRICS S E N S I T I V I T Y

Sensitivity ("true positive rate", "recall"): measures the performance of the model to predict the positive class y = 1.

It is difficult for a sensitive algorithm to make a mistake in predicting the positive class.

Still, high sensitivity can be accompanied by many false positives.

$$Sens = \frac{TP}{TP + FN}$$

BINARY EVALUATION METRICS S P E C I F I C I T Y

Specificity ("true negative rate"): measures the performance of the model to predict the negative class y = 0.

It is difficult for a specitive algorithm to make a mistake in predicting the negative class.

Still, high specitivity can be accompanied by many false negatives.

$$Spec = rac{TN}{TN + FP}$$

BINARY EVALUATION METRICS A C C U R A C Y

Accuracy (not to be confused with "positive predictive value" or "precision") measures the performance of the model in a general way. How much the predictions deviate from the actual values.

$$Acc = \frac{TP + TN}{TP + TN + FN + FP}$$

BINARY EVALUATION METRICS POSITIVE PREDICTIVE VALUE

The "positive predictive value" or "precision" measures the fraction of positives that were correctly predicted.

$$PPV = rac{TP}{TP + FP}$$

F :

S

C

0

R

Ε

The **F1 score** is the **harmonic mean** (average for rates) **between** the **recall** and the **PPV**:

$$Sens = \frac{TP}{TP + FN}$$

$$PPV = \frac{TP}{TP + FP}$$

$$F1 = \frac{2}{Sens^{-1} + PPV^{-1}}$$

R O C

V

Ε

FPR vs TPR

The threshhold is varied

Diagonal segments are produced by ties.

R O C

? V

' E

