Homework 3 - PHYS 5391

Elizabeth Vandegriff October 13, 2020

Contents

1	Bastille Day Event	3
2	Exploring DST Correlations	3
3	Plot Style	7

1 Bastille Day Event

On July 15, 2000, a solar storm hit Earth and its effects rocked our magnetic field. We use Disturbance Storm Time (D_{ST}) to quantify the level of magnetospheric disturbance, with a more negative D_{ST} signifying a stronger disturbance. During the storm, D_{ST} drops to around -300 as shown in Figure 1, showing significant magnetospheric activity.

Figure 1: Plotting D_{ST} over the Bastille Day storm.

 D_{ST} is known to be tied to Interplanetary Magnetic Field (IMF) data and solar wind speed, and the current task is to explore which variables related to IMF and solar wind are have clear relationships.

2 Exploring DST Correlations

Relevant variables that we can compare alongside D_{ST} are the x, y, and z components of both magnetic field B and solar wind velocity V, as well as the Number Density and Temperature.

Figure 2: Comparing V_x and D_{ST} over the Bastille Day storm.

Figure 3: Comparing V_y and D_{ST} over the Bastille Day storm.

Figure 4: Comparing V_z and D_{ST} over the Bastille Day storm.

Figures 2, 3, and 4 show the various components of velocity plotted with D_{ST} . Looking at these V_x and V_y , there is no clear correlation, but V_z seems to increase as D_{ST} decreases, suggesting that an increase in the velocity of the solar wind in the z direction could cause a drop in D_{ST} .

Figure 5: Comparing B_x and D_{ST} over the Bastille Day storm.

Figure 6: Comparing B_y and D_{ST} over the Bastille Day storm.

Figure 7: Comparing B_z and D_{ST} over the Bastille Day storm.

Figures 5, 6, and 7 show the various components of magnetic field plotted with D_{ST} . Similarly, B_x and B_y do not seem to correlate, but for B_z , the data clearly follows the drop in D_{ST} . That is to say, from these plots we can surmise that a drop in D_{ST} and a drop in B_z go hand in hand.

Figure 8 shows that Number Density has no clear correlation to D_{ST} .

Figure 8: Comparing Number Density and D_{ST} over the Bastille Day storm.

Figure 9: Comparing Temperature and D_{ST} over the Bastille Day storm.

Figure 9 shows a very clear connection between Temperature and D_{ST} , as both decrease in the same time range at the same rate.

Overall conclusions from analysis of these plots would suggest that the z-component of solar wind velocity, the z-component of magnetic field strength, and the temperature are directly correlated with D_{ST} , with an increase in velocity causing a decrease in D_{ST} , and a decrease in magnetic field or temperature causing a decrease in D_{ST} . In each plot there are parts of B_z , V_z , and Temp that show an increase or decrease when there is little significant change in D_{ST} . This suggests that only very large changes will have an effect on D_{ST} , which makes sense because it is a metric to look at storms, and thus, extreme activity.

3 Plot Style

These plots effectively show the various correlations between D_{ST} , solar wind velocity, temperature, and magnetic field using color, spacing, labels, units, and clear titles.

I used a straightforward and simple plot style with a red-blue color scheme and separate, color-coded y-axes for the two data series, to clearly show both D_{ST} and the variable being plotted without cluttering the plot with a legend. I used separate y-axes so that the scale of each one could be clearly seen, and neither is distorted by trying to share a scale. For example, without these separated y-axes, temperature would not have been clearly correlated with D_{ST} , because the scales are so different the D_{ST} curve would appear flat.

To better see the details and observe correlations between D_{ST} and different variables, the plots are zoomed in to show just the time surrounding the event rather than the full range of time in the files, and the figure size is horizontally extended. The sparse time ticks on the x-axis are enough to give an idea of the scale along the x-axis, while leaving plenty of space in between ticks so they are readable and do not make the plot look cluttered.