NOME: FELIPE ANCHONDO DA CUNHA MENDES
NA: 2252740
INTEGNOL PON SUBSTITUICÃO
Examo: 8(9x+5)" dx
$M = g_{X} + 5$
du=9dx
$\int 8(8x+5)^{10} dx = \int (8x+5)^{10} (9dx)$
$= \int u'' \cdot du = u'' + C$
= u'' + C = (8x+5)'' + C 11
M67000
)' (g(x)) · g'(x) dx
$\int_{(x)}^{(x)} = x^{10}$ $g(x) = 8x + 5$ $g'(x) = 8dx$
1º PASSO: M= g(x), ONDE g(x) & A FUNCÃO
QUE OSTA "DONTAD" DA COMPOSICÃO DE FUNCOOS
2º PASSO: CAUCULE du= g'indx
3º PASSO : SUBSTITUP M=g(x) & ON = g'(x)dx CONVON-
TONDO A INTEGNOL NO VPAINUEL M

SÃO DOMINGOS S.A.

············d.······
45 PASSO! CALCULG A INTEGRAL NA VONIQUEL M
50 posso: SUBSTITUA M pon ga) pona amten a
SOLUCTO PINOL DA INTEGNOL NO NONIAVEL X.
Exemplo: Deaxity of a to a, e em
$\begin{cases} u = \alpha x + \theta \\ du = \alpha dx & dx = du/\alpha \end{cases}$
$\int_{\alpha}^{m} \frac{du}{du} = \frac{1}{\alpha} \int_{\alpha}^{m} \frac{du}{du} = \frac{1}{\alpha} \left(C^{m} + C \right)$
$= \underbrace{C^{u} + C}_{a} = \underbrace{C^{a \times v}}_{a} + \underbrace{C_{v}}_{l}$
Example: $\frac{\left(\ln(x)\right)^{3}}{5x} dx = \frac{1}{5} \left(\ln(x)\right)^{3} dx$
{u= lnixi
$du = \pm dx$
$\frac{1}{5} \int u^3 du = \frac{1}{5} \left(\frac{u^4}{4} \right)^4 C \right] C_1 = \frac{c}{5}$
$= u^{\frac{1}{4}} \cdot C_{1} = (\ln(x))^{\frac{1}{4}} \cdot C_{1}$ $= 20$
20

EXEMPLO: C2x(C2x+1) dx $\begin{cases} M = C^{2x} + 1 \\ dM = 2C^{2x} dx : dM_2 = C^{2x} dx \end{cases}$ $= \frac{1}{2} \left(\frac{u^4 + c}{4} \right) = \frac{u^4 + c_1}{0} \qquad c_1 = c_2$ = (e2x+1)4+C2 $E_{\times} \in Mn(0)$: $\int 2x + 2^{1} dx = \int (2x + 1)^{1/2} dx$ = 2x + 2 = 2dx : du/2 = dx $\int u'^{2} du = \int u'^{2} du = \int u'^{2} du = \int u'^{2} du + C$ $= \frac{1}{2} \left[\frac{u^{3/2}}{3/2} + C \right] = \frac{1}{2} \left[\frac{2}{3} u^{3/2} + C \right]$ $= \mathcal{U}^{3/2} + C_{\ell} \qquad C_{\ell} = \underline{C}$ $= \frac{(2x+1)^{3/2}}{2} + C_2$

NTEGNOL DEFINIDA Dx = (0-a) $A = \mathcal{L}(x') \Delta x - \mathcal{L}(y^2) \Delta x + ... + \mathcal{L}(x^3) \Delta x$ DEFINICAC: SETA DEFINION EN EQ. Q.I. Lim [l(x)) Ax + ... l(x) Ax] BXISTUM POND +0008 PS ESCOLHOS DE PONTOS REPORTS SURINTONIONS X, ..., X" NOS SUBINTONVOVOS 06 [a, 0] DO 1600L COMPNIMENTO $\Delta x = (0-a)$ ENTRO OSSO LIMITE & CHONOPO INTOGRAL DEFINIDO DE OM ON DIE ST & & DENOTODO DON Per Dixi de

OBSO CX & CHAMODO DE EXTHEMO INVENION
DE É CHOMODO DE EXTREMO SUDONION
(x)70
2/20/20
11110
Q(x') Dx LO
TEONEMA: SE LE CONTINUE EM EO,OJ
SNIDO & INTEGNOVEL OM DO, ON SODA,
LEONEMP FUNDAMENTOU DO CALCULO
SORD / CONTINUO OM CO, ET, GATIO
D(x) = F(W) - F(Q), UNDO F & UND
Prinonivong DB 1, OU SOJE F'(X)= (x)
$\int_{-\infty}^{\infty} f(x) = F(x) - F(0) = F(x)$
a) f(x) - F(b) - F(0) - 1-(x)

PROPRIEDADES

$$(9) \int_{\alpha}^{\alpha} \left[\int_{\alpha}^{\beta} \left[$$

$$= \left[(F(x) - F(\alpha)) \stackrel{?}{=} (G(x) - G(\alpha)) \right] \stackrel{?}{=} \int_{\alpha}^{\alpha} \int_$$

(3)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty$$

$$= \int_{C} \int_$$

$$= \int_{(x)}^{c} \int_{(x)}^{e} \int_$$

$$\begin{cases} M = 2x^{2} & \begin{cases} x = 0 \text{ i. } M = 2.0^{2} = 0 \end{cases} \\ \sqrt{M} = 4x \sqrt{x} \text{ i. } \sqrt{M} = x \sqrt{x} & \begin{cases} x = 2 \text{ i. } M = 2.0^{2} = 9 \end{cases} \end{cases}$$

$$=\frac{1}{4}\left(C^{8}-C^{0}\right)=\frac{C^{8}-1}{4}$$

$$\int_{-1}^{2} \int_{-1}^{2} \int_{0}^{2} \int_$$

$$= \int_{-x}^{0} -x^{2} dx + \int_{0}^{z} (x)^{2} dx$$

$$= \left(-(-1)^{3} - \left(-0^{3}\right)\right) + \left(\frac{2}{3}, 2^{3/2} - \frac{2}{3}\right)^{3/2}$$

$$\frac{1}{3} + \frac{2}{3} \cdot \frac{1}{3} = \frac{1}{3} \left(\frac{1}{2} + \frac{2}{3} \cdot \frac{1}{3} \right) = \frac{1}{3} \left(\frac{1}{2} + \frac{4}{3} \cdot \frac{1}{3} \right)$$