Bryan Hoang Name

1. For $i \in \{1, ..., 6\}$, let

 $X_i = \#$ of times the number i is rolled in ten dice rolls

Then (X_1, \ldots, X_6) have a multinomial distribution with parameters 10 and $(\frac{1}{6}, \ldots, \frac{1}{6})$.

(a) Finding the probability that one 1, two 2's, three 3's, and four 4's are rolled.

Solution:

Note:
$$10 - 1 - 2 - 3 - 4 = 0$$

Using the joint marginal pmf of (X_1, X_2, X_3, X_4) , we can calculate the probability as follows:

$$P(X_1 = 1, X_3 = 3, X_2 = 2, X_4 = 4) = \frac{10!}{1!2!3!4!(0)!} \left(\frac{1}{6}\right)^{10} \left(1 - 2\left(\frac{1}{6}\right)\right)^{0}$$

$$= \frac{10!}{1!2!3!4!(6)^{10}}$$

$$= \frac{175}{839808}$$

$$\approx 0.00021$$

(b) Finding the probability that the number of 1's plus the number of 2's equals three and the number of 3's equals four.

Solution:

Let's calculate the probability of the above event using combinatorics.

$$P(X_1 + X_2 = 3, X_3 = 4) = \overbrace{\begin{pmatrix} 10 \\ 3 \end{pmatrix} \left(\frac{1+1}{6}\right)^3}^{\text{choosing 3's}} + \overbrace{\begin{pmatrix} 7 \\ 4 \end{pmatrix} \left(\frac{1}{6}\right)^4}^{\text{choosing other numbers}} + \underbrace{\begin{pmatrix} 3 \\ 3 \end{pmatrix} \left(\frac{1}{2}\right)^3}^{\text{choosing 1's or 2's}} = \frac{175}{11\,664}$$

$$\approx 0.015$$

(c) Finding the probability that three 5's were rolled, given that exactly four of the ten rolls resulted in an outcome less than 4.

Solution:

Let's calculate the probability of the above event using combinatorics.

P(
$$X_5 = 3$$
 | four dice < 4) = $(10) \left(\frac{1 + 1 + 1}{6}\right)^4$. Choosing three 3's or 4's choosing three 5's $(3) \left(\frac{1}{6}\right)^3$ = $\frac{175}{3888}$ ≈ 0.045