MaLo		Marc Ludevid	405401
SS 2021	Übungsblatt 05	Andrés Montoya	405409
19. Mai 2021	<u> </u>	Til Mohr	405959

Aufgabe 1

E-Test

Aufgabe 2

(a) (i) Damit $\mathfrak{B} := (\mathbb{N}, +, -, \cdot) \subseteq \mathfrak{R}$ gilt, muss $\mathbb{N} \subseteq \mathbb{R}$ und alle Funktionssymbole $+, -, \cdot$ aus \mathfrak{B} eine Restriktion auf \mathbb{N} und abgeschlossen sein. Für $0, 1 \in \mathbb{N}$ ist jedoch $0 - 1 \notin \mathbb{N}$. Daher ist \mathfrak{B} nicht $\{-\}$ -abgeschlossen. Also: $\mathfrak{B} \nsubseteq \mathfrak{R}$.

Die kleinste Substruktur, dessen Universum \mathbb{N} enthält, ist $\mathfrak{B}' \coloneqq (\mathbb{Z},+,-,\cdot)$: Es gilt offensichtlich $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{R}$ und für alle $a,b \in \mathbb{Z}$ gilt nun auch $a+b,a-b,a\cdot b \in \mathbb{Z}$. Also sind die hier vorkommenden Funktionen $+,-,\cdot$ alle Restriktionen auf \mathbb{Z} und abgeschlossen. Damit ist \mathfrak{B}' eine Substruktur von \mathfrak{R} . \mathfrak{B}' ist auch die kleinste Substruktur, dessen Universum \mathbb{N} enthält : Würde man ein Element $c,0 \in \mathbb{Z}, c \notin \mathbb{N}$, also folglich $0-c \in \mathbb{N}$, aus dem Universum entfernen,

ein Element $c, 0 \in \mathbb{Z}, c \notin \mathbb{N}$, also folglich $0-c \in \mathbb{N}$, aus dem Universum entfernen, so wäre 0-(0-c) nicht im Universum, weshalb man auch 0-c entfernen müsste, da die Struktur sonst nicht $\{-\}$ -abgeschlossen ist. Dann würde das Universum dieser Struktur jedoch nicht mehr \mathbb{N} enthalten!

- (ii) $\mathfrak{B} := (2\mathbb{Z}, +, -, \cdot) \subseteq \mathfrak{R}$
 - $2\mathbb{Z} \subseteq \mathbb{R}$ ist offensichtlich
 - Für alle $a, b \in 2\mathbb{Z}$ gilt offensichtlich $a + b, a b, a \cdot b \in 2\mathbb{Z}$. Damit sind $+, -, \cdot$ Restriktionen auf $2\mathbb{Z}$ und \mathfrak{B} ist $\{+, -, \cdot\}$ -abgeschlossen.
- (b) (i) $\mathfrak{B} := (\{1\}, +, -, \cdot, ^{-1}) \nsubseteq \mathfrak{Q}$ \mathfrak{B} ist nicht $\{+\}$ -abgeschlossen, denn für $1 \in \{1\}$ ist $1 + 1 \notin \{1\}$.

Die kleinste Substruktur, dessen Universum $\{1\}$ enthält, ist $\mathfrak{B}' \coloneqq \mathfrak{Q}$: \mathfrak{B}' ist offensichtlich aufgrund Gleichheit eine Substruktur zu sich (\mathfrak{Q}) selber. Damit jede Substruktur, die $\{1\}$ enthält, $\{+,-\}$ -abgeschlossen ist, muss jede solche Substruktur offensichtlich \mathbb{Z} enthalten. Soll eine solche Substruktur nun auch $\{^{-1}\}$ -abgeschlossen sein, so muss sie $\{z^{-1}\mid z\in\mathbb{Z}\}=\{q\mid q\in\mathbb{Q}, 0\leq |q|\leq 1\}$ enthalten. Da eine solche Substruktur zusätzlich $\{\cdot\}$ -abgeschlossen sein soll, müssen nun auch alle Vielfachen davon vorkommen.

Damit muss jede Substruktur, die {1} enthalten soll, mindestens Q enthalten.

- (ii) $\mathfrak{B} \coloneqq (\{0\}, +, -, \cdot, ^{-1}) \subseteq \mathfrak{Q}$
 - Da $0 \in \mathbb{Q}$ ist $\{0\} \subseteq \mathbb{Q}$

- Für $0 \in \{0\}$ gilt offensichtlich $0 + 0 = 0 0 = 0 \cdot 0 = 0^{-1} = 0 \in \{0\}$. Damit sind $+, -, \cdot, -1$ Restriktionen auf $\{0\}$ und \mathfrak{B} ist $\{+, -, \cdot, -1\}$ -abgeschlossen.
- (c) (i) $\mathfrak{C} := (B, \cup, \cap, \overline{}) \nsubseteq \mathfrak{B}$ \mathfrak{C} ist nicht $\{\overline{}\}$ -abgeschlossen, da $\emptyset \in B$, aber $\overline{\emptyset} = \mathbb{N} \not\in A$.

Da jede Substruktur von \mathfrak{B} $\{\cup\}$ -abgeschlossen sein soll und B alle einelementigen Teilmengen von \mathbb{N} enthält, muss in jeder Substruktur von \mathfrak{B} $\{A\subseteq\mathbb{N}\}$ enthalten sein, da man mit jeder einelementigen Teilmenge jede Teilmenge von \mathbb{N} konstruieren kann.

Folglich ist die kleinste Substruktur, die B enthält, $\mathfrak B$ selber.

(ii) $\mathfrak{C} := (B, \cup, \cap, \overline{}) \nsubseteq \mathfrak{B}$ \mathfrak{C} ist nicht $\{\cap\}$ -abgeschlossen, da $2\mathbb{N}, 2\mathbb{N} + 1 \in B$, aber $2\mathbb{N} \cap 2\mathbb{N} + 1 = \emptyset \not\in B$.

Da jede Substruktur von \mathfrak{B} $\{\cap\}$ -abgeschlossen sein soll und B für jedes gerade $n \in \mathbb{N}$ die Menge $2\mathbb{N} + 1_n := 2\mathbb{N} \cup \{n\}$ bzw. für jedes ungerade $m \in \mathbb{N}$ die Menge $2\mathbb{N}_m := 2\mathbb{N} \cup \{m\}$ besitzt, muss jede Substruktur die einelementigen Mengen $\{n\} = 2\mathbb{N} + 1_n \cap 2\mathbb{N} + 1$ bzw. $\{m\} = 2\mathbb{N}_m \cap 2\mathbb{N}$ besitzen.

Rest: analog zu (i)

Folglich ist die kleinste Substruktur, die B enthält, $\mathfrak B$ selber.

Aufgabe 3

(a) (i) Die maximale Höhe des Baums ist 2. bzw. Jeder Pfad von der Wurzel hat eine maximale Tiefe von 2.

Im Beispielbaum gilt dieser Satz, dieser hat eine Höhe von 2. $\mathcal{T} \models \psi_1$

- (ii) Jeder Knoten hat entweder 2 oder keine Kinder/Kanten. Im Beispielbaum gilt dieser Satz nicht, denn der Knoten v_1 hat nur das Kind v_3 . $\mathcal{T} \not\models \psi_2$
- (b) Es gibt einen Pfad von der Wurzel ausgehend der Länge n. Im Beispielbaum gilt dieser Satz nur für $0 \le n \le 2, n \in \mathbb{N}$, also nur für $n \in \{1, 2\}$.

(c) $\varphi(x) := \forall y (\neg Eyx)$

Aufgabe 4

(a) (i) $\psi_1(x) := \forall y (x \circ y = y)$

(ii) $\psi_2(x) := \forall y ((x \simeq y) \to (x = y))$

(b) $\psi_3(x,y) := \exists z (x \circ z = y)$

(c) Hilffunktion $f_1(x) := \exists x_1 \exists x_2 (x_1 \neq x_2 \land x_1 \simeq x \land x_2 \simeq x \land \forall y_1 ((y \simeq x) \rightarrow (y = x_1 \lor y = x_2))$ besagt, dass $x \in \Sigma$.

 $\psi_4(x) := ???$

(d) $\psi_{5n}(x) := \exists x_1 \dots \exists x_n ((x_1 \circ \dots \circ x_n = x) \to (\bigwedge_{i=1}^n (f_1(x_i) \vee \psi_1(x_i))))$

(e) $\psi_6(x) := ????$

Aufgabe 5