Esercitazione 5 - Squadra 1 (Chimica e Materiali) 16/10/2020

5.1 Disporre i seguenti composti ionici in ordine crescente di energia reticolare: LiF, CaS, KCl, MgO, BN.

L'energia reticolare è la quantità di energia rilasciata quando degli ioni passano da uno stato gassoso isolato ad un reticolo ionico. In generale tale energia si può stimare valutando la carica degli ioni coinvolti e la distanza a cui si trovano

$$E_{ret} \sim Q_1 Q_2/d$$

Si deve quindi considerare la carica degli ioni e la loro distanza. Considerando i composti dati, si sa che LiF è formato da cationi Li⁺ e anioni F⁻. Quindi $Q_1Q_2 = |+1|^*|-1| = 1$. Per tutti:

CaS
$$|+2|*|-2| = 4$$

KCI
$$|+1|^*|-3|=1$$

MgO
$$|+2|*|-2|=4$$

BN
$$|+3|*|-3|=9$$

L'altra grandezza da considerare e la distanza tra gli ioni. Questa però è meno influente. Per esempio, la distanza tra gli ioni in LiF è 2,04 Å mentre in KCl è 3,15 Å, un fattore di solo ca. 1,5. Se gli ioni si trovano più in alto nella tavola periodica, i raggi ionici sono più piccoli e quindi anche la distanza d che si può stimare come la somma dei raggi. Se la distanza d è più corta l'energia è più grande seguendo l'equazione sopra riportata. Quindi l'energia per LiF è più alta come per KCl, e più alta per MgO che per CaS. Quindi si può ordinare i sali prima per la carica degli ioni e poi per la distanza:

L'ordine corretto è quindi: CsI < LiF < CaS < MgO < BN.

5.2 Determinare le strutture di Lewis per le seguenti molecole: LiSCN (lineare), P_4 (tetraedro), C_6F_6 (anello simmetrico di carboni), NO_3^- e KrF_2 .

- non è una molecola ma un Sale

per un singolo atomolione

Si può solo serivere il simbolo

-> Possibilità per lineari molecule

Sappiamo che dovrebbe esser almeno un legane

$$\ddot{S} - \dot{C} - \ddot{N}$$

Poi ci sono 5 opzioni per distribuire gli elettroni rimanenti:

La questo non è possibile perché >C/N non avusbero l'othetto

(3)
$$S = C = N$$
, $N = S = C = N$ va bene

(4) $S = C = N$. $N = S = C = N$ non è possibile non è l'ottetto per $N \mid S$

* (5) $S = C - N$. $N = S = C - N$ non è l'ottetto

non è possibile cure elettroni spaiati formerebbero en legarne

> N non autebbe l'ottetto

C seperebbe l'ottetto

Poi per la struttura b:

b)
$$\ddot{N} - \ddot{S} = \dot{C}$$
.
$$\ddot{N} - \ddot{S} = \dot{C}$$

C'è solo questa possibilità per avere un ottetto sul carbonio. Poi mancano però elettroni sull'azoto mentre zolfo ha troppi.

Per la struttura c, c'è solo questa possibilità:

c)
$$\ddot{S} - \ddot{N} = \dot{C}$$

 $\ddot{S} - \ddot{N} = \dot{C}$
 $\ddot{S} = \dot{C} = \dot{N}$
 $\ddot{S} = \dot{C} = \dot{N}$

In fati esistono molecole con un resto organico che sono però meno stabile per la carica formale. Insomma:

. Py

P: [Ne] 353 3p3

sappiamo che dovulbe essere almeno in legame tra gli artomi -s ogni p fa tre legam: Ctetraedro) -s per gli 2 e rimasti → LP

· CoF6

C: [He] 2522p2 -> 4 F: [He] 252p5 -> 7

Sappiano de è un anello

; c ; c;

→ Visto che sono 6x F che formo 1 legame modo più semplice è:

-s gli elettroni The Sono

rimasti formano legami -s radicali molto reattivi

Lo due possibilità:

Strutture di resonanza

-s altra opzione es.

Non va bene, perché N avrebbe più di ottetto. Elementi del secondo periodo non devono mai avere più! Ci

Smithre di resonanza

•
$$KvF_2$$

 $F: [He] 2s^2 2p^5 \rightarrow 7$
 $Kv: [Kv] ? = [Ne] 3s^2 3p^6 \rightarrow 8$
 $Kv: [Kv: .F: \rightarrow]F - Kv - F]$

5.3 Determinare la geometria dell'assetto elettronico e molecolare secondo la VSEPR delle seguenti specie:

PCl₃, SiF₄, BCl₃, PCl₅, O₃.

Ci sono siti per visualizzare le strutture moleculare:

https://www.mn-am.com/online demos/corina demo interactive

È essenziale avere la corretta struttura di Lewis:

In questo caso, basta considerare P, perché gli atomi Cl sono solo collegati ad un altro atomo. P (A) è collegato a tre atomi (X). Inoltre, c'è un doppio singolare (E), quindi AX₃E. Siccome la somma dei legami e 4 (3*X+E), la struttura viene dal tetraedro. C'è una coppia solitaria quindi è priamide trigonale:

oppure

SiF₄:

quindi AX₄, quindi: Tetraedro

BCl₃:

quindi AX₃, quindi: trigonale planare

PCl₃:

quindi AX₅, quindi: trigonale bipiramide

O₃:

$$0 = 0^{\oplus} - \overline{0}^{\circ} \longrightarrow 0 = 0$$

quindi AX₂E, quindi: angolare

