Klaster analiza

Milan M.Milosavljević

Šta je klaster analiza?

 Pronalaženje grupa objekata takvih da su objekti u grupi međusobno slični (ili povezani), i da su objekti u različitim grupama međusobno različiti (ili nepovezani).

Primena klaster analize

Razumevanje

 Pregledanje dokumenata iz iste grupe, grupisanje gena i proteina koji imaju iste funkcionalnosti, grupisanje akcija sa sličnim promenama cena

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Za dodatnu upotrebu

- Sumarizacija
- Kompresija
- Efikasno nalaženje najbližih suseda

Dvosmislenost pojma klastera

Tipovi klasterovanja

- Klasterovanje nije skup klastera već postupak
- Postoji značajna razlika između hijerarhijskog i particionog skupa klastera
- Particiono klasterovanje
 - Podela skupa podataka u nepreklapajuće podskupove (klastere) takve da je svaki podatak tačno u jednom podskupu
- Hijerarhijsko klasterovanje
 - Skup ugnježdenih klastera organizovan u obliku hijerarhijskog drveta

Particiono klasterovanje

Hijerarhijsko klasterovanje

Tradicionalno hijerarhijsko klasterovanje

Netradicionalno hijerarhijsko klasterovanje

Tradicionalni dendogram

Netradicionalni dendogram

Različiti tipovi klasterovanja

- Eksluzivno/neeksluzivno klasterovanje
 - U neeksluzivnom klasterovanju taćke mogu da se nalaze u više klasera.
 - Can represent multiple classes or 'border' points
- Rasplinuto/nerasplinuto klasterovanje
 - U rasplinutom klasterovanju tačka pripada svakom klasteru sa nekom težinom između 0 i 1
 - Zbor svih težina je jednak 1
 - Slične karakteristike ima verovatnosno klasterovanje
- Delimično/kompletno klasterovanje
 - U nekim slučajevima može se klastervati samo deo podataka
- Heterogeno/homogeno klasterovanje
 - Klasteri različite veličine, oblika i gustine

Tipovi klastera

- Dobro razdvojeni klasteri (eng. well-separated)
- Klasteri zasnovani na centru (eng. center-based)
- Klasteri zasnovani na grafovima
 - klasteri zasnovani na susedstvu (eng. contiguous)
- Klasteri zasnovani na gustini (eng. density-based)
- Konceptualni klasteri/klasterovanje na osnovu zajedničkih osobina (eng. conceptual)
- Opisani ciljnom funkcijom (eng. described by an objective function)

Dobro razdvojeni klasteri

- Dobro razdvojeni klasteri:
 - Klaster je skup tačaka takvih da je bilo koja tačka u klasteru bliže (ili više slična) ostalim tačkama u klaster nego tačkama koje nisu u klasteru

3 dobro razdvojena klastera

Klasteri zasnovani na centru

Klasteri zasnovani na centru

- Klaster je skup objekata takvih da je bilo koji objekat u klasteru bliže (ili više sličan) "centru" klastera u odnosu na centre ostalih klastera
- Centar klastera je često centroid (prosek svuh tačaka u klasteru) ili medoid (najreprezentativnija tačka u klasteru)

4 klastera zasnovana na centru

Klasteri zasnovani na grafovima

- Klasteri zasnovani na susedstvu(najbliži sused ili tranzitivnost)
 - Klaster je skup tačaka takvih da je tačka u klasteru bliža (ili više slična) jednoj ili više tačaka u klasteru nego bilo kojoj tački koja nije u klasteru

8 susednih klastera

Klasteri zasnovani na gustini

- Klasteri zasnovani na gustini
 - Klasteri su oblasti sa velikom gustinom tačaka koje su razdvojene oblastima sa malom gustinom tačaka
 - Koriste se kada su klasteri nepravilni ili isprepletani, i kada je prisutan šum ili elementi van granica

6 klastera zasnovanih na gustin

Konceptualni klasteri

- Konceptualni klasteri/klasterovanje na osnovu zajedničkih osobina
 - Naći klastere koji dele neku zajedničku osobinu ili predstavljaju pojedinačni koncept

2 konceptualna klastera

Klasteri opisani ciljnom funkcijom

- Klasteri opisani ciljnom funkcijom
 - Naći klastere koji minimizuju/maksimizuju ciljnu funkciju
 - Nabrojati sve moguće načine za podelu tačaka u klastere i izračunati valjanost svakog mogućeg skupa klastera upotrebom date ciljne funkcije (NP kompleksan)
 - Mogu da postoje loklani ili globalni ciljevi
 - Algoritmi hijerarhijskog klasterovanja obično imaju lokalne ciljeve
 - Algoritmi particionog klasterovanja obično imaju globalne ciljeve
 - Varijanta pristupa sa globalnom ciljnom funkcijom je upasovati podatke u parametrizovani model
 - Parametri modela su izvedeni iz podataka
 - Mešani modeli pretpostavljaju da su podaci mešavina nekoliko statističkih raspodela

Klasteri opisani ciljnom funkcijom

- Preslikati problem klasterovanja u različit domen i rešiti ga u tom domenu
 - Matrica sličnosti definiše graf sa težinama u kome su čvorovi tačke koje se klasteruju, dok grane sa težinama predstavljaju sličnosti između tačaka
 - Klasterovanje je ekvivalentno podeli grafa na međusobno povezane komponente koje predstavljaju klastere
 - Cilj je minimizovati težine na granama klastera i maksimizovati težine na granama unutar klastera

Važnost karakterstika ulaznih podataka

- Tip sličnosti ili mera gustine
 - Izvedena mera koja je centralna za klasterovanje
- Raštrkanost
 - Diktira tip sličnosti
 - Utiče na efikasnost
- Tip atributa
 - Diktira tip sličnosti
- Tip podatka
 - Diktira tip sličnosti
 - Ostale karakteristike, npr. autokorelacija
- Dimenzionalnost
- Šum i elementi van granica
- Tip raspodele

Algoritmi klasterovanja

- K-sredine i varijante
- Hijerarhijsko klasterovanje
- Klasterovanje zasnovano na gustinama

Klasterovanje pomoću K-sredina

- Pristup particionim klasterovanjem, model sa prototipom
- Svakom klasteru je pridružen centroid (centralna tačka)
- Svaka tačka je dodeljena klasteru sa najbližim centroidom
- K broj klastera koji mora da se navede
- Osnovni algoritam je vrlo jednostavan
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Detalji klasterovanja K-sredinama

- Početni centroid se često bira na slučajan način
 - Dobijeni klasteri mogu da se razlikuju u uzastopnim izvršenjima programa. Rezultati mogu da budu relativno loši
- Uobičajeno je da je centroid srednja vrednost tačaka u klasteru
- 'Najbliže' se meri kao Euklidsko rastojanje, kosinusno rastojanje, korelacija, itd.
- K-sredine konvergiraju ka prethodno pomenutim merama sličnosti
- Najveći deo konvergencije se dešava u prvih nekoliko iteracija
 - Često se uslov zaustavljanja menja na 'sve dok relativno malo tačaka ne promeni klaster'
- Kompleksnost (n = broj tačaka, K = broj klastera, I = broj iteracija, d = broj atributa)
 - Vremenska je reda O(n * K * I * d)
 - Prostorna je reda O((n+K)*d)

Dva različita klasterovanja K-sredinama

Važnost izbora početnog centroida

Važnost izbora početnog centroida

Evaluacija K-sredine klastera

- Za podatke u Euklidskom prostoru se najčešće se kao mera korsti zbir kvadrata grešaka (eng. sum of squared errors)
 - Za svaku tačku, greška je rastojanje do najbližeg klastera
 - Dobijene greške se kvadriraju i sabiraju

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- ullet x je tačka u klasteru $C_{
 m i}$ a m_i je reprezentativna tačka u klasteru $C_{
 m i}$
 - \blacksquare može se pokazati da m_i odgovara centru (srednjoj vrednosti) klastera
- Za dva data klastera bira se onaj sa manjom greškom
- Jedan od načina za smanjenje SSE je povećanje broja klastera K
 - Dobra klasterizacija sa malim K može da ima manju SSE grešku od loše klasterizacije sa velikim K

Evaluacija K-sredine klastera

- Za dokumente se kao mera koristi kosinusno rastojanje
 - Podaci se predstavljaju preko matrice termova
 - Kohezija klastera stepen sličnosti dokumentata u klasteru sa centroidom

Važnost izbora početnog centroida

Važnost izbora početnog centroida

Problem u izboru početnih tačkaka

- Ako postoji K 'realnih' klastera tada je šansa da se izabere po jedan centroid u svakom od njih relativno mala
 - Ako je K veliko šansa za dobar izbor je mala
 - Ako klasteri imaju istu veličinu n, tada važi

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- Na primer, ako je K = 10, tada je verovatnoća = $10!/10^{10}$ = 0.00036
- Ponekad se inicijalni centroidi sami poravnaju na 'pravi' redosled, a ponekad ne
- Posmatrajmo primer pet parova klastera

Za svaki par klastera počinje se sa dva centroida u jednom od klastera tog para

Za svaki par klăstera počinje se sa dva centroida u jednom od klastera tog para

U nekim parovima klastera počinje se sa tri početna centroida a u nekima sa samo jednim

U nekim parovima klastera počinje se sa tri početna centroida a u nekima sa samo jednim

Rešenje problema izbora početnih centroida

- Uzastopna izvršavanja
 - Svaki sa npr. slučajno izabranim centroidima
 - između njih se izabere klaster sa najmanjim SSE
- Nad uzorcima se primeni hijerarhijsko klasterovanje i izaberu početni centroidi
- Izabere se više od K početnih centroida i bira se između njih
 - Treba da obuhvate što je moguće širi prostor
- Postprocesiranje
- Bisekcija K-sredina
 - Nije tako osetljiva na incijalne vrednosti

Rad sa praznim klasterima

- Osnovni K-sredina algoritam može da proizvede prazne klastere
- Strategije za eliminaciju
 - Zamenjuje se centroid
 - Izabrati tačku koja najviše učestvuje u SSE
 - Izabrati tačku koja je najdalje od tekućih centroida
 - Izabrati tačku iz klastera sa najvećim SSE. Obično dovodi do deobe klastera
 - Ako ima više praznih klastera ponoviti postupak

Preprocesiranje i postproceisranje

Preprocesiranje

- Noramlizacija podataka
- Eliminacija elemenata van granica (ne važi za svaku aplikaciju, npr. kompresija)

Postprocesiranje

- Eliminacija malih klastera sa elementima van granica
- Podela 'izgubljenih' klastera, tj. klastera sa visokim SSE
- Integracija klastera koji su 'blizu' i imaju relativno mali SSE
- Ovi koraci se mogu koristiti u procesu klasterizacije

Bisekcija K-sredina

Algoritam bisekcije K-sredina

 Varijanta K-sredine koja može da proizvede particiono ili hijerarhijsko klasterovanje

Osnovna ideja:

Za dobijanje K klastera podeli se skup svih tačaka u dva klastera, izabere se jedan od njih za podelu, uz ponavljanje postupka sve dok se ne dobije K klastera.

Različiti načini podele:

- najveći klaster
- klaster sa najvećim SSE
- kriterijum zasnovan i na veličini klastera i na veličini SSE-a
- Često se dobijeni centroidi koriste za ulaz u osnovni Ksredina algoritam klasterovanja

Bisekcija K-sredina

Algoritam bisekcije K-sredina

- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters
- 4: **for** i = 1 to $number_of_iterations$ **do**
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

Primer bisekcije K-sredina

Ograničenja K-sredina

- Metoda za klasterizaciju K-sredinama ima problem u klasterovanju različitih
 - Veličina
 - Gustina
 - Neglobularnih oblika

 Metoda za klasterizaciju K-sredinama ima problem kada postoje elementi van granica

Ograničenja K-sredina: Različite veličine

Originalne tačke

K-sredine (3 klastera)

Ograničenja K-sredina: Različite gustine

Originalne tačke

K-sredine (3 klastera)

Ograničenja K-sredina: neglobularni oblici

Originalne tačke

K-sredine (2 klastera)

Prevazilaženje ograničenja K-sredina

Originalne tačke

K-sredine klasteri

Jedno od rešenja je upotreba više klastera. Naći delove klastera koje zatim treba smestiti zajedno.

Prevazilaženje ograničenja K-sredina

Originalne tačke

K-sredine klasteri

Prevazilaženje ograničenja K-sredina

Originalne tačke

K-sredine klasteri

Hijerarhijsko klasterovanje

- Formira skup ugneždenih klastera organizovanih u obliku drveta
- Vizualizuje se u obliku dendrograma

Prednosti hijerarhijskog klasterovanja

- Nije potrebno davati pretpostavke o broju klastera
 - Željeni broj klastera se dobija skraćivanjem dendograma na odgovarajuči nivo
- Mogu da imaju značenje u taksnonomijama
 - Na primer, u biologiji (e.g., filogeneza,)

Hijerarhijsko klasterovanje

- Postoje dva glavna tipa
 - Sakupljajuće (eng. agglomerative):
 - U početku je svaka tačka jedan klaster
 - U svakom koraku se sakuplja najbliži par klastera u novi klaster sve dok ne ostane jedan (ili k) klastera
 - Razdvajajuće (eng. divisive):
 - Počinje se sa jednim klasterom koji uključuje sve tačke
 - U svakom koraku se klaster deli sve dok se ne dođe do toga da svaki klaster sadrži samo jednu tačku ili dok se ne javi k klastera
- Tradicionalni hijerarhijski algoritmi koristie matrice sličnosti ili matrice rastojanaj
 - Dele ili spajaju po jedan klaster u jednom koraku

Algoritmi sakupljajućeg klasterovanja

- Osnovni algoritam
 - Izračunati matricu sličnosti
 - Neka je svaka tačka klaster
 - 3. Repeat
 - 4. Sakupi dva najbliža klastera
 - 5. Ažuriraj matricu sličnosti
 - 6. **Until** dok ne ostane samo jedna klaster
- Ključna operacija je izračunavanje sličnosti dva klastera
 - Različiti algoritimi su posledica različitih pristupa u definisanju rastojanja između klastera

Početno stanje

 Početi sa pojedinačnim tačkama kao klasterima i sa matricom sličnosti

Stanje u sredini postupka

Posle nekoliko sakupljanja javllaju se sledeći klasteri

Stanje u sredini postupka

Želimo da skupimo dva najbliža klastera (C2 i C5) i zatim da

ažuriramo matricu sličnosti

Posle sakupljanja

Pitanje: "Kako ažurirati matricu sličnosti?"

C1 C5 C3 C4
C1 ?
C2 U C5 ? ? ? ?
C3 ?
C4 ?

C2

	р1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
p4						
р5						

- MIN
- MAX
- Prosek grupe
- Rastojanje između centroida
- Ostale metode definisane ciljnim funkcijama
 - Ward-ov metod sa kvadratom greške

	p 1	p2	рЗ	p4	p 5	<u> </u>
р1						
p2						
р3						
p 4						
p5						

- MIN
- MAX
- Prosek grupe
- Rastojanje između centroida
- Ostale metode definisane ciljnim funkcijama
 - Ward-ov metod sa kvadratom greške

	p 1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
p 4						
p5						
_						

- MIN
- MAX
- Prosek grupe
- Rastojanje između centroida
- Ostale metode definisane ciljnim funkcijama
 - Ward-ov metod sa kvadratom greške

	р1	p2	р3	p4	p 5	<u>.</u>
p1						
p2						
p2 p3						
p4						
p5						

- MIN
- MAX
- Prosek grupe
- Rastojanje između centroida
- Ostale metode definisane ciljnim funkcijama
 - Ward-ov metod sa kvadratom greške

	p 1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
p5						
						_

- MIN
- MAX
- Prosek grupe
- Rastojanje između centroida
- Ostale metode definisane ciljnim funkcijama
 - Ward-ov metod sa kvadratom greške

Sličnost klastera: MIN ili jedna veza

- Sličnost između dva klastera se određuje na osnovu dve najsličnije (najbliže) tačke u različitim klasterima
 - Određuje se jednim parom tačaka, tj. jednom vezom na grafu sličnosti

_	I 1	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Hijerarhijsko klasterovanje: MIN

Ugneždeni klasteri

Dendrogram

Prednosti MIN

Dva klastera

Može da radi sa neeliptičkim oblicima

Originalne tačke

Nedostaci MIN

Originalne tačke

Dva klastera

Osetljivost na šum i elemente van granica

Sličnost klastera: MAX ili kompletna veza

- Sličnost između dva klastera se određuje na osnovu dve najmanje slične (najdalje) tačke u različitim klasterima
 - Određuju se parovi svih tačaka u različitim klasterima

_	I 1	l 2	I 3	1 4	I 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
I 3	0.10	0.70	1.00	0.40	0.30
I 4	0.65	0.60	0.40	1.00	0.80
I 5	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Hijerarhijsko klasterovanje: MAX

0.4 0.35 0.3-0.25 0.15 0.1 0.05 0 3 6 4 1 2 5

Ugneždeni klasteri

Dendrogram

Prednosti MAX

• Manje je osetljiva na šum i i elemente van granica

Ograničenja MAX

Originalne tačke

Dva klastera

- Tendencija je da se razbijaju veliki klasteri
- Naklonost ka globularnim klasterima

Sličnost klastera: prosek grupe

 Sličnost dva klastera je prosečna vrednost sličnosti parova tačaka u dva klastera

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| * |Cluster_{j}|}$$

Potrebno je koristiti prosečnu povezanost za skalabilnost jer ukupna

sličnost favorizuje veće klastere

	I 1		_		
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.80 1.00

Hijerarhijsko klasterovanje: prosek grupe

Ugneždeni klasteri

Dendrogram

Hijerarhijsko klasterovanje: prosek grupe

 Kompromis između jedne veze i kompletne veze

Prednosti

Manja osetljivost na šum i elemente van granica

Nedostaci

Naklonost ka globularnim klasterima

Sličnost klastera: Ward-ov metod

- Sličnost dva klastera je zasnovana na povećanju kvadrata greške pri sakupljanju dva klastera
 - Slično kao prosek grupe kod koga se rastojanje meri kao kvadrat rastojanja tačaka
- Manja osetljivost na šum i elemente van granica
- Naklonost ka globularnim klasterima
- Hijerarhijski analogon K-sredina
 - Može da se koristi za inicijalizaciju K-sredina

Hijerarhijsko klasterovanje: poređenje

Hijerarhijsko klasterovanje: prostorni i vremenski zahtevi

- Zahteva O(N²) prostora jer koristi matricu sličnosti (N je broj tačaka)
- Zahteva O(N³) vremena u najvećem broju slučajeva
 - Postoji N koraka; u svakom od njih se matrica sličnosti ažurira i pretražuje
 - Koristeći modifikovan pristup kompleksnost vremenskih zahteva može da se redukuje na O(N² log(N))

Hijerarhijsko klasterovanje: problemi i ograničenja

- Jednom spojeni kalsteri ne mogu više da se razdvoje;
 doneta odluka ne može da se opozove
- Nema ciljne funkcije koja zahteva minimizaciju
- Različite sheme imaju jedan ili više problema sa
 - Osetljivošću na šum i elemente van granica
 - Rukovanjem sa klasterima različite veličine
 - Radom sa klasterima koji imaju konkveksan oblik
 - Razbijanjem velikih klastera

MST: razdvajajuće hijerarhijsko klasterovanje

- Izgradnja MST (eng. Minimum Spanning Tree)
 - Početi sa drvetom koje sadrži neku tačku
 - U uzastopnim koracima tražiti parove najbližih tačaka oblika (p, q) tako da je jedna tačka (p) u tekućem drvetu dok druga (q) nije
 - dodati q u drvo i povezati p i q jednom granom

MST: razdvajajuće hijerarhijsko klasterovanje

Opotreba MST za formiranje hijerahije klastera

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

DBSCAN

- DBSCAN (Density-Based Spatial Clustering od Application with Noise)
- DBSCAN je algoritam zasnovan na gustini
 - Gustina = broj tačaka unutar određenog poluprečnika (Eps)
 - Tačka A je tačka u jezgru ako je više od zadatog broja tačaka (MinPts) unutar Eps
 - U pitaju su tačke unutar klastera
 - Tačka A je tačka na granici ako ima manje od MinPts unutar Eps,
 ali je susedna sa tačkom u jezgru
 - Tačka A je šum ako nije ni tačka u jezgru ni tačka na granici

DBSCAN: Tačke u jezgru, na granici i šum

DBSCAN Algoritam

- Eliminisati tačke koje su šum
- Izvršiti klasterovanje na preostalim tačkama

```
current\_cluster\_label \leftarrow 1
for all core points do
  if the core point has no cluster label then
    current\_cluster\_label \leftarrow current\_cluster\_label + 1
    Label the current core point with cluster label current_cluster_label
  end if
  for all points in the Eps-neighborhood, except i^{th} the point itself do
    if the point does not have a cluster label then
       Label the point with cluster label current_cluster_label
    end if
  end for
end for
```

DBSCAN: Tačke u jezgru, na granici i šum

Originalne tačke

Eps = 10, MinPts = 4

Tip tačke: jezgro, granica i šum

Kada DBSCAN ispravno radi

- Otporan na šum
- ·Može da radi sa klasterima različitih oblika i veličina

Kada DBSCAN ne radi ispravno

Originalne tačke

- Različite gustine
- Podaci sa velikim brojem dimenzija

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

DBSCAN: Određivanje EPS i MinPts

- Ideja je da je za tačku u klasteru njenih k najbližih suseda je skoro na istom rastojanju
- Tačke koje su šum imaju k najbližih suseda na većem rastojanju
- Nacrtati sortirana rastoajanj od svake tačke do njenih ka najbližih suseda

Kvalitet klastera

- Za klasifikaciju postoji više mera ua izračunavanje kvaliteta modela
 - Preciznost, punovažnost, odziv (pokrivanje)
- Šta je odgovarajući analogon za klaster analizu?
- Vizuelna ocena
- Zašto onda uopšte želimo da proverimo kvalitet klasterovanja?
 - Radi izbegavanja nađenih obrazaca u šumu
 - Radi poređenja algoritama klasterovanja
 - Radi poređenja dva skupa klastera
 - Radi poređenja dva klastera

Klasteri nađeni u slučajnim podacima

