

越疆 TCP/IP 控制协议文档

文档版本: V3.0 发布日期: 2023-06-16

版权所有 © 深圳市越疆科技股份有限公司2023。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部, 并不得以任何形式传播。

免责申明

在法律允许的最大范围内,本手册所描述的产品(含其硬件、软件、固件等)均"按照现状"提供,可能存在瑕疵、错误或故障,越疆不提供任何形式的明示或默示保证,包括但不限于适销性、质量满意度、适合特定目的、不侵犯第三方权利等保证;亦不对使用本手册或使用本公司产品导致的任何特殊、附带、偶然或间接的损害进行赔偿。

在使用本产品前详细阅读本使用手册及网上发布的相关技术文档并了解相关信息,确保在充分了解机械臂及其相关知识的前提下使用机械臂。越疆建议您在专业人员的指导下使用本手册。该手册所包含的所有安全方面的信息都不得视为Dobot的保证,即便遵循本手册及相关说明,使用过程中造成的危害或损失依然有可能发生。

本产品的使用者有责任确保遵循相关国家的切实可行的法律法规,确保在越疆机械臂的使用中不存在任何重大危险。

深圳市越疆科技股份有限公司

地址:深圳市南山区留仙大道3370号南山智园崇文区2号楼1003

网址: http://www.dobot.cn/

0.Changelog

• V3.2-2023/10/08: 增加SetUser,SetTool,CalcUser,CalcTool指令。

• V3.2-2023/06/16: 针对开会评审意见修改文档格式以及排版。

• V3.1-2023/06/15: 针对设置指令以及运动指令添加命令注释说明。

• V3.0-2023/06/14:基于原有TCP/IP文档进行梳理重构,输出初版。

1. 综述

- 越疆工业机器人现支持三种远程控制方式: **远程I/O模式、远程Modbus模式、TCP/IP模式**; 具体控制方式详见《Dobot-CR-Series-Robot-APP-User-Guide文档中软件使用说明->设置->远程控制章节中;
- 远程I/O模式、远程Modbus模式两种方式主要针对远程运行脚本的控制;由于基于TCP/IP的通讯 具有成本低、可靠性高、实用性强、性能高等特点;许多工业自动化项目对支持TCP/IP协议控制机 器人需求广泛,因此CR/Nova机器人将设计在TCP/IP协议的基础上,提供了丰富的接口用于与外部 设备的交互;
- 关于TCP/IP协议的支持, CR系列机器人的控制器版本需V3.5.1.19及以上, Nova机器人的控制器版本需V3.5.3.0及以上。
- 根据设计, CR/Nova机器人会开启29999、30003、30004、30005以及30006服务器端口;
- 29999服务器端口和30003服务器端口,以下简称控制端口。通过一发一收的方式负责接收一些设置以及运动控制相关的指令,即**控制端口接收到客户端约定消息格式后会将结果反馈客户端**;
- 30004服务器端口(以下简称实时反馈端口)每8ms反馈机器人的信息; 30005服务器端口每200ms 反馈机器人的信息, 30006端口为可配置的反馈机器人信息端口(默认为每50ms反馈);

2.消息格式

- TCPIP远程控制指令**不区分大小写格式**;如ENABLEROBOT()/enablerobot()/eNabLErobOt(),指令控制器都会按照**使能**的命令执行;
- 消息命令与消息应答都是 ASCII 码格式(字符串形式)。

2.1 命令格式

命令名称(Param1, Param2, Param3.....Paramn)

命令格式如上所示,由一个命令息名称,括号内由参数组成,每一个参数之间以英文逗号","相隔,一个完整的命令以右括号结束。

命令区分为队列指令和立即指令。详见指令列表中的指令类型。

2.2 返回格式

2.2.1 返回:

"ErrorID, {value,...,valuen},命令名称(Param1,Param2,Param3.....Paramn);"

命令格式如上所示:

- ErrorID为0时表示命令接收成功;返回非0则代表命令有错误,具体的错误描述见第五章节。
- {value1,value2,value3,...,valuen}表示返回值,没有返回值则返回{}。
- 命令名称(Param1,Param2,Param3......Paramn)指下发的内容。

例:

MovL(-500,100,200,150,0,90)

返回:0,{},MovL(-500,100,200,150,0,90); //0表示接收成功 没有返回值返回{}

Mov(-500,100,200,150,0,90); //下发不存在指令

报警: -10000,{},Mov(-500,100,200,150,0,90); //-10000表示命令错误 没有返回值返回{}

3.控制端口命令

• 上位机可以通过控制端口直接发送设置,运动相关的指令给机器人,这些命令被称为控制指令。如 表是控制指令指令列表。可以通过控制指令的指令实现对机器人使能/下使能、复位等控制;

控制端口设置命令列表如下:

指令	描述	支持产品	指令类型
EnableRobot	使能机器人	CR/Nova	立 即 指 令
DisableRobot	下使能机器人	CR/Nova	立 即 指 令
ClearError	复位,用于清除错误	CR/Nova	立 即 指 令
ResetRobot	机器人停止当前动作,重新接收使能,规划停	CR/Nova	立即指令
SpeedFactor	设置全局速率比	CR/Nova	立 即 指 令
User	选择已标定的用户坐标系(笛卡尔空间显示值 实际生效根据点)	CR/Nova	队 列 指 令
Tool	选择已标定的工具坐标系	CR/Nova	队 列 指 令
RobotMode	机器人模式	CR/Nova	立 即 指 令

指令	描述	支持产品	指令类型
PayLoad	设置负载	CR/Nova	队 列 指 令
DO	设置数字量输出端口状态	CR/Nova	队列指令
DOExecute	设置数字量输出端口状态	CR/Nova	立 即 指 令
ToolDO	设置末端数字量输出端口状态	CR/Nova	队列指令
ToolDOExecute	设置末端数字量输出端口状态	CR/Nova	立 即 指 令
AO	设置模拟量输出端口状态	CR/Nova	队 列 指 令
AOExecute	设置模拟量输出端口状态	CR/Nova	立 即 指 令
AccJ	设置关节加速度比例。 该指令仅对MovJ、MovJIO、MovJR、 JointMovJ指令 有效	CR/Nova	队列指令
AccL	设置笛卡尔加速度比例。 该指令仅对MovL、MovLIO、MovLR、Jump、Arc、 Circle3指令有效。	CR/Nova	队列指令

指令	描述	支持产品	指令类型
SpeedJ	设置关节速度比例。 该指令仅对MovJ、MovJIO、MovJR、 JointMovJ指令 有效。	CR/Nova	队列指令
SpeedL	设置笛卡尔速度比例。 该指令仅对MovL、MovLIO、MovLR、Jump、Arc、 Circle3指令有效。	CR/Nova	队列指令
Arch	设置Jump门型参数索引(起始点抬升高度、最大抬升高度、结束点下降高度)	CR/Nova	队列指令
СР	运动时设置平滑过渡	CR/Nova	队列指令
SetArmOrientation	设置手系	CR/Nova	队列指令
PowerOn	机器人上电	CR/Nova	立即指令
RunScript	运行脚本	CR/Nova	立即指令
StopScript	停止脚本	CR/Nova	立即指令
PauseScript	暂停脚本	CR/Nova	立即指令

指令	描述	支持产品	指令类型
ContinueScript	继续脚本	CR/Nova	立 即 指 令
SetSafeSkin	设置安全皮肤开关状态	CR/Nova	队 列 指 令
GetTraceStartPose	获取轨迹拟合中首个点位	CR/Nova	立即指令
GetPathStartPose	获取轨迹复现中首个点位	CR/Nova	立 即 指 令
PositiveSolution	正解	CR/Nova	立 即 指 令
InverseSolution	逆解	CR/Nova	立即指令
SetCollisionLevel	设置碰撞等级	CR/Nova	队列指令
HandleTrajPoints	轨迹文件预处理	CR/Nova	立即指令
GetSixForceData	获取六维力数据	CR/Nova	立即指令

指令	描述	支持产品	指令类型
GetAngle	获取关节坐标系下机械臂的实时位姿	CR/Nova	立 即 指 令
GetPose	获取笛卡尔坐标系下机械臂的实时位姿	CR/Nova	立 即 指 令
EmergencyStop	急停	CR/Nova	立 即 指 令
ModbusCreate	创建Modbus主站,并和从站建立连接	CR/Nova	立 即 指 令
ModbusClose	和Modbus从站断开连接	CR/Nova	立 即 指 令
GetInBits	读离散输入功能	CR/Nova	立 即 指 令
GetInRegs	读输入寄存器	CR/Nova	立即指令
GetCoils	读线圈功能	CR/Nova	立即指令
SetCoils	写线圈功能	CR/Nova	立即指令

指令	描述	支持产品	指令类型
GetHoldRegs	读保存寄存器	CR/Nova	立即指令
SetHoldRegs	写保存寄存器	CR/Nova	立即指令
GetErrorID	获取错误ID	CR/Nova	立即指令
DI	获取数字量输入端口状态	CR/Nova	立即指令
ToolDI	获取末端数字量输入端口状态	CR/Nova	立即指令
Al	获取模拟量输入端口电压值	CR/Nova	立即指令
ToolAl	获取末端模拟量输入端口电压值	CR/Nova	立即指令
DIGroup	获取输入组端口状态	CR/Nova	立即指令
DOGroup	设置数字输出组端口状态	CR/Nova	立即指令

指令	描述	支持产品	指令类型
BrakeControl	抱闸控制	CR/Nova	立即指令
StartDrag	进入拖拽	CR/Nova	立 即 指 令
StopDrag	退出拖拽	CR/Nova	立 即 指 令
SetCollideDrag	强制进入拖拽	CR/Nova	立 即 指 令
SetTerminalKeys	设置末端按键功能使能状态	CR/Nova	立 即 指 令
SetTerminal485	设置末端485的参数	CR/Nova	立即指令
GetTerminal485	获取末端485的参数	CR/Nova	立即指令
LoadSwitch	控制负载设置状态	CR/Nova	队列指令
TCPSpeed	开启强制速度	CR/Nova	队列指令

指令	描述	支持产品	指令类型
TCPSpeedEnd	关闭强制速度	CR/Nova	队列指令

• 上位机可以通过控制端口直接发送运动相关命令给机器人,这些命令被称为运动指令。如表是控制指令指令列表。可以通过如下指令实现对机器人的运动相关控制;

控制端口运动命令列表如下:

指令	描述	支持产品	指令
MovJ	点到点运动,目标点位为笛卡尔点位	CR\Nova	队列 指令
MovL	直线运动,目标点位为笛卡尔点位	CR\Nova	队列 指令
JointMovJ	点到点运动,目标点位为关节点位	CR\Nova	队列 指令
MovLIO	直线运动过程中并行设置数字输出端口的状态,可设置多组	CR\Nova	队列 指令
MovJIO	点到点运动过程中并行设置数字输出端口的状态,可设 置多组	CR\Nova	队列 指令
Arc	圆弧运动。需结合其他运动指令完成圆弧运动	CR\Nova	队列 指令
ServoJ	基于关节空间的动态跟随命令	CR\Nova	队列 指令
ServoP	基于笛卡尔空间的动态跟随命令	CR\Nova	队列 指令
MoveJog	点动	CR\Nova	队列 指令
StartTrace	轨迹拟合	CR\Nova	队列 指令
StartPath	轨迹复现	CR\Nova	队列 指令
Sync	阻塞程序执行队列指令	CR\Nova	队列 指令

指令	描述	支持产品	指令 类型
RelMovJTool	沿工具坐标系进行相对运动,末端运动方式为关节运动	CR\Nova	队列 指令
RelMovLTool	沿工具坐标系进行相对运动指令,末端运动方式为直线 运动	CR\Nova	队列 指令
RelMovJUser	沿用户坐标系进行相对运动指令,末端运动方式为关节 运动	CR\Nova	队列 指令
RelMovLUser	沿用户坐标系进行相对运动指令,末端运动方式为直线 运动	CR\Nova	队列 指令
RelJointMovJ	沿各轴关节坐标系进行相对运动指令,未端运动方式为 关节运动	CR\Nova	队列 指令
Circle3	整圆运动	CR\Nova	队列 指令
Wait	运动指令等待	CR\Nova	队列 指令

3.1 EnableRobot

• 功能: 使能机器人

• 格式: EnableRobot()

• 支持端口: 29999

• 可选参数详解:

参数名	类型	含义	默认 值	是否必 填
load	double	负载重量kg。	0	否
centerX	double	X方向偏心距离mm,取值范 围: -500mm~500mm;	0	否
centerY	double	Y方向偏心距离mm,取值范 围: -500mm~500mm;	0	否
centerZ	double	Z方向偏心距离mm,取值范 围: -500mm~500mm;	0	否

• 说明:

机型	负载范围
CR3/CR3L/CR3V2	0~3Kg
CR5/CR5V2	0~5Kg

机型	负载范围
CR7/CR7V2	0~7Kg
CR10/CR10V2	0~10Kg
CR12/CR12V2	0~12Kg
CR16/CR16V2	0~16Kg
Nova 2	0~2Kg
Nova 5	0~5Kg

• 返回:

ErrorID,{},EnableRobot();

• 示例:

示例	返回	说明
EnableRobot()	0,{},EnableRobot()	输入参数为0,默认负载为0,X方向偏心距离0,Y方向偏心距离0,Z方向偏心距离0
EnableRobot(2)	0,{},EnableRobot()	输入参数为1,负载设置为2,X方向偏心距离0,Y方向偏心距离0,Z方向偏心距离
EnableRobot(2,10,10,10)	0,{},EnableRobot()	输入参数为4,负载设置为2,X方向偏心距离10,Y方向偏心距离10,Z方向偏心距离10,
EnableRobot(2,600,200,200)	-40002, {},EnableRobot(2,600,200,200)	第二参数输入数值异 常,超出取值范围

• 说明: **可选参数数量: 0/1/4** (不填参数,正常接收ErrorlD返回0;填一个参数默认为负载重量参数,ErrorlD返回0;填四个参数分别表示负载重量、X方向偏心距、Y方向偏心距以及Z方向偏心距,ErrorlD返回0;失败返回错误码,参考第五章;)

3.2 DisableRobot

• 功能: 下使能机器人

• 格式: DisableRobot()

• 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},DisableRobot();

3.3 ClearError

• 功能:清错机器人

• 格式: ClearError()

● 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},ClearError();

• 示例:

ClearError()

• 说明:清除报警后,用户可以根据RobotMode来判断机器人是否还处于报警状态;对于清除不掉的报警需要重启控制柜解决;(详见GetErrorlD说明);清除报警后需要重新发送EnableRobot()指令方可发送运动指令

3.4 ResetRobot

• 功能: 机器人停止

• 格式: ResetRobot()

参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},ResetRobot();

• 示例:

ResetRobot()

说明:该指令用于停止运动指令,用户发送该指令后机器人会立刻停止,不再执行未完成的运动指令。

3.5 SpeedFactor

• 功能:设置全局速度比例。

• 格式: SpeedFactor(ratio)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
ratio	int	运动速度比例,取值范围: 1~100	是

• 返回:

ErrorID,{},SpeedFactor(ratio);

示例	返回	说明
SpeedFactor(80)	0,{},SpeedFactor(80)	立即指令设置全局速度比例为80

3.6 User (队列指令)

• 功能:选择已标定的用户坐标系。

• 格式: User(index)

参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
index	int	选择已标定的用户坐标系,取值范围: 0~9	是

• 返回:

ErrorID,{},User(index);

若ErrorlD返回-1,表示设置的用户坐标索引索引不存在;

• 示例:

示例	返回	说明
User(1)	0,{},User(1)	队列指令设置当前用户坐标系为1

3.7 Tool (队列指令)

• 功能:选择已标定的工具坐标系。

• 格式: Tool(index)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
index	int	选择已标定的工具坐标系,取值范围: 0~9	是

• 返回:

ErrorID,{},Tool(index);

若ErrorlD返回-1,表示设置的工具坐标索引不存在;

• 示例:

示例	返回	说明
Tool(1)	0,{},Tool(1)	队列指令设置当前工具坐标系为1

3.8 RobotMode

功能:机器人状态。格式:RobotMode()

• 参数数量: 0

• 支持端口: 29999

• 返回值:

模式	描述	备注
1	ROBOT_MODE_INIT	初始化
2	ROBOT_MODE_BRAKE_OPEN	抱闸松开
3	ROBOT_MODE_POWER_STATUS	本体掉电
4	ROBOT_MODE_DISABLED	未使能(抱闸未松开)
5	ROBOT_MODE_ENABLE	使能(空闲)
6	ROBOT_MODE_BACKDRIVE	拖拽
7	ROBOT_MODE_RUNNING	运行状态
8	ROBOT_MODE_RECORDING	拖拽录制
9	ROBOT_MODE_ERROR	报警
10	ROBOT_MODE_PAUSE	暂停状态
11	ROBOT_MODE_JOG	点动

• 返回:

ErrorID,{Value},RobotMode(); //Value为返回模式值

• 示例:

示例 返回 说明		说明
RobotMode()	0,{5},RobotMode()	机器人处于使能状态

- 说明:为保持与控制器3.5.1版本兼容性,之前关键机器人状态返回值没有做修改;如:空闲、拖拽、运行、报警状态;新增抱闸松开、轨迹录制、暂停以及点动等;
- 其中运行状态包含: 轨迹复现/拟合中、机器人运行状态以及脚本运行状态;

3.9 PayLoad (队列指令)

• 功能:设置当前的负载

• 格式: PayLoad(weight,inertia)

• 参数数量: 2

• 支持端口: 29999

• 参数详解: 2

参数名 类型	含义	是否必填
------------	----	------

参数名	类型	含义	是否必填
weight	double	负载重量kg	是
inertia	double	负载惯量 kgm²	是

• 说明:

机型	负载范围
CR3/CR3L/CR3V2	0~3Kg
CR5/CR5V2	0~5Kg
CR7/CR7V2	0~7Kg
CR10/CR10V2	0~10Kg
CR12/CR12V2	0~12Kg
CR16/CR16V2	0~16Kg
Nova 2	0~2Kg
Nova 5	0~5Kg

• 返回:

ErrorID,{},PayLoad(weight,inertia);

• 示例:

示例	返回	说明
PayLoad(3,0.4)	0,{},PayLoad(3,0.4); ;	队列指令负载设置3kg,负载动态0.4kg

说明:为了兼容Lua的LoadSet,tcp指令支持LoadSet,使用LoadSet等同于调用PayLoad,另外要和LoadSwitch指令一起使用。

3.10 DO (队列指令)

• 功能:设置数字输出端口状态

• 格式: DO(index,status)

• 参数数量: 2

• 支持端口: 29999

• 参数详解: 2

参数名	类型	含义	是否必填
index	int	数字输出索引,取值范围: 1~16或100~1000	是
status	int	数字输出端口状态,1:高电平;0:低电平	是

• 返回:

ErrorID,{},DO(index,status);

• 示例:

示例	返回	说明
DO(1,1)	0,{},DO(1,1)	队列指令设置数字输出端口1输出高电平

• 说明:使用取值范围100-1000需要有拓展IO模块的硬件支持;由于该指令是队列指令,使用之前需要确保已发送EnableRobot()使机器人使能开启算法队列。

3.11 DOExecute

• 功能:设置数字输出端口状态

• 格式: DOExecute(index,status)

• 参数数量: 2

• 支持端口: 29999

• 参数详解: 2

参数名	类型	含义	是否必填
index	int	数字输出索引,取值范围: 1~16或100~1000	是
status	int	数字输出端口状态, 1: 高电平; 0: 低电平	是

• 返回:

ErrorID,{},DOExecute(index,status);

• 示例:

示例	返回	说明
DOExecute(1,1)	0,{},DOExecute(1,1)	立即指令DO[1]输出高电平

• 说明:使用取值范围100-1000需要有拓展IO模块的硬件支持;

3.12 ToolDO (队列指令)

• 功能:设置末端数字输出端口状态(队列指令)

• 格式: ToolDO(index,status)

• 参数数量: 2

• 支持端口: 29999

• 参数详解: 2

参数名	类型	含义	是否必填
index	int	数字输出索引,取值范围: 1/2	是
status	int	数字输出端口状态,1:高电平;0:低电平	是

• 返回:

ErrorID,{},TooIDO(index,status);

示例	返回	说明
ToolDO(1,1)	0,{},ToolDO(1,1)	队列指令末端DO[1]输出高电平

• 说明:由于该指令是队列指令,使用之前需要确保已发送EnableRobot()使机器人使能开启算法队列。

3.13 ToolDOExecute

• 功能:设置末端数字输出端口状态

• 格式: ToolDOExecute(index,status)

• 参数数量: 2

• 支持端口: 29999

• 参数详解: 2

参数名	类型	含义	是否必填
index	int	数字输出索引,取值范围: 1/2	是
status	int	数字输出端口状态,1: 高电平; 0: 低电平	是

• 返回:

ErrorID,{},ToolDOExecute(index,status);

• 示例:

示例	返回	说明
ToolDOExecute(1,1)	0,{},ToolDOExecute(1,1)	立即指令末端DO[1]输出高电平

3.14 AO (队列指令)

• 功能:设置控制柜模拟输出端口的电压值

• 格式: AO(index,value)

• 参数数量: 2

• 支持端口: 29999

• 参数详解: 2

参数名	类型	含义	是否必填
index	int	模拟输出索引,取值范围: 1/2	是
value	double	对应index的电压值,取值范围0~10V	是

• 返回:

ErrorID,{},AO(index,value);

示例 返		说明
------	--	----

示例	返回	说明
AO(1,2)	0,{},AO(1,2)	队列指令AO[1]输出电压2V

• 说明:暂时不支持电流;由于该指令是队列指令,使用之前需要确保已发送EnableRobot()使机器人使能开启算法队列。

3.15 AOExecute

• 功能:设置控制柜模拟输出端口的电压值

• 格式: AOExecute(index,value)

• 参数数量: 2

• 支持端口: 29999

• 参数详解: 2

参数名	类型	含义	是否必填
index	int	模拟输出索引,取值范围: 1/2	是
value	double	对应index的电压值,取值范围0~10V	是

• 返回:

ErrorID,{},AOExecute(index,value);

• 示例:

示例	返回	说明
AOExecute(1,2)	0,{},AOExecute(1,2)	立即指令AO[1]输出电压2V

• 说明: 暂时不支持电流;

3.16 AccJ (队列指令)

• 功能:设置关节加速度比例。该指令仅对MovJ、MovJIO、MovJR、JointMovJ指令有效

• 格式: AccJ(R)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
R	int	关节加速度百分比,取值范围: 1~100	是

• 返回:

ErrorID,{},AccJ(R);

示例 返回	说明	
----------	----	--

示例	返回	说明
AccJ(50)	0,{},AccJ(50)	队列指令关节加速度比例设置为50

3.17 AccL (队列指令)

• 功能:设置笛卡尔加速度比例。该指令仅对MovL、MovLIO、MovLR、Jump、Arc、Circle3指令有效。

• 格式: AccL(R)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
R	int	笛卡尔加速度比例,取值范围: 1~100	是

• 返回:

ErrorID,{},AccL(R);

• 示例:

示例	返回	说明
AccL(50)	0,{},AccL(50)	队列指令笛卡尔加速度比例设置为50

3.18 SpeedJ (队列指令)

• 功能:设置关节速度比例。该指令仅对MovJ、MovJIO、MovJR、JointMovJ指令有效。

• 格式: SpeedJ(R)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
R	int	关节速度比例,取值范围: 1~100	是

• 返回:

ErrorID,{},SpeedJ(R);

• 示例:

示例	返回	说明
SpeedJ(50)	0,{},SpeedJ(50)	队列指令关节速度比例设置为50

3.19 SpeedL (队列指令)

• 功能:设置笛卡尔速度比例。该指令仅对MovL、MovLIO、MovLR、Jump、Arc、Circle3指令有

效。

• 格式: SpeedL(R)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
R	int	笛卡尔速度比例,取值范围: 1~100	是

• 返回:

ErrorID,{},SpeedL(R);

• 示例:

示例	返回	说明
SpeedL(50)	0,{},SpeedL(50)	队列指令笛卡尔速度比例设置为50

3.20 Arch (队列指令)

• 功能:设置Jump门型参数索引(起始点抬升高度、最大抬升高度、结束点下降高度)。

• 格式: Arch(Index)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
Index	int	门型参数索引,取值范围: 0~9	是

• 返回:

ErrorID,{},Arch(Index);

• 示例:

示例	返回	说明
Arch(1)	0,{},Arch(1)	队列指令设置Jump门型参数索引为1

3.21 CP (队列指令)

• 功能:设置CP比例。CP即平滑过渡,机械臂从起始点经过中间点到达终点时,经过中间点是以直角方式过渡还是以曲线方式过渡。该指令对Jump指令无效。当R等于0时,表示关闭。

• 格式: CP(R)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
R	unsigned int	平滑过渡比例,取值范围: 0~100	是

• 返回:

ErrorID,{},CP(R);

• 示例:

示例	返回	说明
CP(50)	0,{},CP(50)	队列指令设置CP比例为50

3.22 SetArmOrientation (队列指令)

• 功能:设置手系指令。

• 格式: SetArmOrientation(LorR,UorD,ForN,Config6)

可选参数数量: 4支持端口: 29999

• 可选参数详解: 4

参数名	类 型	含义	是否必填
LorR	int	臂方向向前/向后(1/-1) 1: 向前 -1: 向后	是
UorD	int	臂方向肘上/肘下(1/-1) 1: 肘上 -1: 肘下	是
ForN	int	臂方向腕部是否翻转(1/-1) 1: 腕不翻转 -1: 腕翻转	是
Config6	int	第六轴角度标识 -1,-2: 第6轴角度为[0,-90]为-1; [-90,-180]为-2; 以此 类推 1,2: 第6轴角度为[0,90]为1; [90,180]为2; 以此类推	是

• 返回:

ErrorID,{},SetArmOrientation(LorR,UorD,ForN,Config6);

• CR产品手势设置示例:

SetArmOrientation(1,1,-1,1)

3.23 PowerOn

功能:机器人上电。格式: PowerOn()

• 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},PowerOn();

• 示例:

PowerOn()

• 说明: 机器人上电到完成, 需要等待大概10秒钟的时间再进行使能操作;

3.24 RunScript

• 功能:运行脚本。

• 格式: RunScript(projectName)

• 参数数量: 1

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必填
projectName	string	脚本名称	是

• 返回:

ErrorID,{},RunScript(projectName);

• 示例:

示例	返回	说明
RunScript(abcd)	0,{},RunScript(abcd);	运行名称为abcd的脚本

3.25 StopScript

• 功能: 停止脚本。

• 格式: StopScript()

• 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},StopScript();

• 示例:

示例	返回	说明
StopScript()	0,{},StopScript();	停止当前运行脚本

3.26 PauseScript

功能: 暂停脚本。

• 格式: PauseScript()

参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},PauseScript();

• 示例:

示例	返回	说明
PauseScript()	0,{},PauseScript();	暂停当前运行脚本

3.27 ContinueScript

• 功能:继续脚本。

• 格式: ContinueScript()

• 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},ContinueScript();

• 示例:

示例	返回	说明
ContinueScript()	0,{},ContinueScript();	继续运行当前被暂停的脚本

3.28 SetSafeSkin (队列指令)

• 功能:设置安全皮肤开关状态。

• 格式: SetSafeSkin(status)

• 参数数量: 1

• 支持端口: 29999

• 参数详解:

参数名	类型	含义
status	int	status: 电子皮肤开关状态, 0: 关闭电子皮肤; 1: 开启电子皮肤

• 返回:

ErrorID,{},SetSafeSkin(status);

• 示例:

示例	返回	说明
SetSafeSkin (1)	0,{},SetSafeSkin (1);	队列指令开启电子皮肤功能

说明:该指令生效前提为DOBOT+安全皮肤插件开启后。

3.29 GetTraceStartPose

• 功能: 获取轨迹拟合中首个点位。

• 格式: GetTraceStartPose(traceName)

参数数量: 1

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必填
traceName	string	轨迹文件名(含后缀) 轨迹路径存放 在/dobot/userdata/project/process/trajectory/	是

• 返回:

ErrorID,{x,y,z,a,b,c},GetTraceStartPose(traceName); //{x,y,z,a,b,c}指点位坐标值

• 示例:

示例	返回	说明
GetTraceStartPose(test.json)	0, {x,y,z,a,b,c},GetTraceStartPose(test.json);	立即指令 获取轨迹 拟合中首 个点位

• 说明: 本条指令在CR控制器3.5.2版本以及以上支持;

3.30 GetPathStartPose

• 功能: 获取轨迹复现中首个点位。

• 格式: GetPathStartPose(traceName)

参数数量: 1

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必 填
traceName	string	轨迹文件名(含后缀) 轨迹路径存放 在/dobot/userdata/project/process/trajectory/	是

• 返回:

ErrorID,{j1,j2,j3,j4,j5,j6},GetTraceStartPose(traceName); //{j1,j2,j3,j4,j5,j6}关节点位坐标值

示例 说明

示例	返回	说明
GetPathStartPose(test.json)	0, {j1,j2,j3,j4,j5,j6},GetPathStartPose(test.json);	立即指令 获取轨迹 复现中首 个点位

• 说明: 本条指令在CR控制器3.5.2版本以及以上支持;

3.31 Positive Solution

• 功能: 正解。(给定机器人各关节的角度, 计算出机器人末端的空间位置)

• 格式: PositiveSolution(J1,J2,J3,J4,J5,J6,User,Tool)

• 参数数量: 8

• 支持端口: 29999

参数详解: 8

参数名	类型	含义	是否必填
J1	double	J1 轴位置,单位:度	是
J2	double	J2 轴位置,单位:度	是
J3	double	J3 轴位置,单位:度	是
J4	double	J4 轴位置,单位:度	是
J5	double	J5 轴位置,单位:度	是
J6	double	J6 轴位置,单位:度	是
User	int	选择已标定的用户坐标系	是
Tool	int	选择已标定的工具坐标系	是

• 返回:

ErrorID,{x,y,z,a,b,c},PositiveSolution(J1,J2,J3,J4,J5,J6,User,Tool); //{x,y,z,a,b,c}指返回的空间位置

• 示例: 下发关节角度返回当前的机器人末端的空间位置

PositiveSolution(0,0,-90,0,90,0,1,1)

返回:

0,

 $\label{eq:condition} \ensuremath{\{473.000000,-141.000000,469.000000,-180.000000,-0.0000000,-90.000000\},} Positive Solution (0, 0, -90, 0, 90, 0, 0, 0);$

- 说明,需要已知:
 - 。 机器人的臂方向SetArmOrientation

3.32 InverseSolution (队列指令)

- 功能: 逆解。 (已知机器人末端的位置和姿态, 计算机器人各关节的角度值)
- 格式: InverseSolution(X,Y,Z,Rx,Ry,Rz,User,Tool,isJointNear,JointNear)

//其中isJointNear以及JointNear为可选设置参数;

参数数量: 10支持端口: 29999必选参数详解: 8

参数名	含义	类型	是否必填
X	X 轴位置,单位:毫米	double	是
Υ	Y 轴位置,单位:毫米	double	是
Z	Z 轴位置,单位:毫米	double	是
Rx	Rx 轴位置,单位:度	double	是
Ry	Ry轴位置,单位: 度	double	是
Rz	Rz轴位置,单位: 度	double	是
User	选择已标定的用户坐标系	int	是
Tool	选择已标定的工具坐标系	int	是

• 可选参数详解: 2

参数名	含义	类型
isJointNear	是否角度选解(值为1:JointNear数据有效, 值为0:JointNear数据无效,算法根据当前角度进行选解; 不填默认值为0)	int
JointNear	选解六个关节角度值	string

• 返回:

ErrorID,{J1,J2,J3,J4,J5,J6},InverseSolution(X,Y,Z,Rx,Ry,Rz,User,Tool,isJointNear,JointNear);
//{J1,J2,J3,J4,J5,J6}指返回的关节值;isJointNear,JointNear若有下发则返回,没有下发则不返回;

• 示例:

下发不带选解关节角度的笛卡尔坐标值返回机器人关节角度值:

InverseSolution(473.000000,-141.000000,469.000000,-180.000000,0.000,-90.000,0,0)

返回: 0,{0,0,-90,0,90,0},InverseSolution(473.000000,-141.000000,469.000000,

-180.000000,0.000,-90.000,0,0);

下发带选解关节角度的笛卡尔坐标值返回机器人关节角度值:

 $Inverse Solution (473.000000, -141.000000, 469.000000, -180.000000, 0.000, -90.000, 0, 1, \{0,0,-90,0,90,0\})$

返回: 0,{0,0,-90,0,90,0},InverseSolution(0,-247,1050,-90,0,180,0,0,1,{0,0,-90,0,90,0});

3.33 SetCollisionLevel (队列指令)

• 功能:设置碰撞等级。

• 格式: SetCollisionLevel(level)

参数数量: 1

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必填
level	int	level: 碰撞等级 0:关闭碰撞检测 1~5:等级越高越灵敏	是

• 返回:

ErrorID,{},SetCollisionLevel(level);

• 示例:

示例	返回	说明
SetCollisionLevel(1)	0,{},SetCollisionLevel(1);	队列指令设置碰撞等级 1

3.34 HandleTrajPoints

• 功能: 轨迹文件的预处理。

• 格式: HandleTrajPoints(traceName)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必 填
traceName	string	轨迹文件名(含后缀) 轨迹路径存放 在/dobot/userdata/project/process/trajectory/	是

• 返回:

ErrorID,{},HandleTrajPoints(traceName);

- 说明:由于轨迹预处理计算结果会根据文件的大小不同算法处理时间会有差异,**若用户下发不带参数的该指令,代表查询当前指令的结果**;返回:返回为-3表示文件内容错误,返回为-2表示文件不存在,返回为-1表示预处理没有完成;返回为0表示预处理完成,没有错误;返回大于0的结果表示当前返回结果对应的点位有问题;
- 示例: 下发轨迹名为recv_string做预处理, 然后在一定周期查询预处理结果;

HandleTrajPoints(recv_string)

HandleTrajPoints()

• 说明: 本条指令在CR控制器3.5.2版本以及以上支持;

3.35 GetSixForceData

• 功能: 获取六维力数据

• 格式: GetSixForceData()

• 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{Fx,Fy,Fz,Mx,My,Mz},GetSixForceData(); //{Fx,Fy,Fz,Mx,My,Mz}表示当前六维力数据原

始值;

• 示例:

示例	返回	说明
GetSixForceData()	0, {0.0,0.0,0.0,0.0,0.0,0.0},GetSixForceData();	立即指令获取六维 力数据

3.36 GetAngle

• 功能: 获取关节坐标系下机械臂的实时位姿

• 格式: GetAngle()

• 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{J1,J2,J3,J4,J5,J6},GetAngle(); //{J1,J2,J3,J4,J5,J6}表示当前位置的关节坐标值;

• 示例:

示例	返回	说明
GetAngle()	0, {0.0,0.0,90.0,0.0,-90.0,0.0},GetAngle();	立即指令获取关节坐标系下机械 臂的实时位姿

3.37 GetPose

• 功能: 获取笛卡尔坐标系下机械臂的实时位姿

• 格式: GetPose(User=0,Tool=0)

参数数量: 0/2支持端口: 29999

• 返回:

ErrorID,{X,Y,Z,Rx,Ry,Rz},GetPose(); //{X,Y,Z,Rx,Ry,Rz}表示当前位置的笛卡尔坐标值;

• 参数详解:

参数名	类型	含义	是否必填
User	int	用户坐标系索引号	否
Tool	int	工具坐标系索引号	否

• 说明: 如果设置了用户坐标系或工具坐标系,则获取的位姿为当前坐标系下的位姿

示例	返回	说明
GetPose()	0,{-473.0,-141.0,469.0,-180.0,0.0,90.0},GetPose();	立即指令 获取笛卡尔 坐标系下机 械臂的实时 位姿
GetPose(User=1,Tool=0)	0, {0.0,-246.0,847.0,-90.0,0.0,-180.0},GetPose(User=1,Tool=0);	立即指令 获取用户坐标系索引号 1,工索索引号 0下额上标系的之一 位, 位, 位, 位, 位, 位, 位, 位, 位, 位, 位, 位, 位,

3.38 EmergencyStop

• 功能: 急停

• 格式: EmergencyStop()

• 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},EmergencyStop();

• 示例:

EmergencyStop()

示例	返回	说明
EmergencyStop()	0,{},EmergencyStop();	立即指令V3控制器急停 机器人下电

3.39 ModbusCreate

• 功能: 创建modbus主站。

• 格式: ModbusCreate(ip,port,slave_id,isRTU)

• 参数数量: 4

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必填
ip	string	从站ip地址;	是
port	int	从站端口;	是
slave_id	int	从站ID (取值范围大于0的整数)	是

参数名	类型	含义	是否必填
isRTU	int	可选参数 ,取值范围0/1: 如果为空或者值为0,建立modbusTCP通信; 如果为1,建立modbusRTU通信;	是

• 返回:

ErrorID,{index},ModbusCreate(ip,port,slave_id,isRTU); //ErrorID:0表示创建Modbus主站成功,-1表示创建Modbus主站失败,其他值参考错误码描述; index: 返回的主站索引,最多支持5个设备,取值范围(0~4);

• 示例:

示例	返回	说明
ModbusCreate(127.0.0.1,60000,1,1)	0, {1},ModbusCreate(127.0.0.1,60000,1,1);	立即指令建 立RTU通信主 站,60000末 端透传端口

• 说明:控制器3.5.2版本以及以上版本支持;

3.40 ModbusClose

• 功能:和Modbus从站断开连接,释放主站。

• 格式: ModbusClose(index)

• 参数数量: 1

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必填
index	int	返回的主站索引;	是

• 返回:

ErrorID,{},ModbusClose(index);

• 示例:

示例	返回	说明
ModbusClose(0)	0,{},ModbusClose(0);	立即指令释放索引为0的主站

• 说明: **控制器3.5.2版本以及以上版本支持**;

3.41 GetInBits

• 功能:读离散输入功能。

• 格式: GetInBits(index,addr,count)

• 参数数量: 3

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必填
index	int	返回的主站索引;	是
addr	int	视从站配置而定;	是
count	int	个数,取值范围1~16;	是

• 返回:

ErrorID,{value1,value2,...,valuen},GetInBits(index,addr,count); //table,按位获取结果 {value1,value2...,valuen}

• 示例:

示例	返回	说明
GetInBits(0,3000,5)	0, {1,0,1,1,0},GetInBits(0,3000,5);	立即指令从离散输入地址3000 开始连续读取5个数据成功
GetInBits(0,3000,5)	-1,{},GetInBits(0,3000,5);	立即指令从离散输入地址3000 开始连续读取5个数据失败

• 说明:控制器3.5.2版本以及以上版本支持;

3.42 GetInRegs

• 功能: 读输入寄存器。

• 格式: GetInRegs(index,addr,count,valType)

• 参数数量: 4

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必 填
index	int	返回的主站索引;	是
addr	int	视从站配置而定;	是
count	int	个数,取值范围:1-4	是
valType	string	可选参数, 如果为空,默认读取16位无符号整数(2个字节,占用1个 寄存器) U16:读取16位无符号数(2个字节,占用1个寄存器) U32:读取32位无符号数(4个字节,占用2个寄存器) F32:读取32位浮点数(4个字节,占用2个寄存器) F64:读取64位浮点数(8个字节,占用4个寄存器)	否

• 返回:

ErrorlD,{value1,value2,...,valuen},GetInRegs(index,addr,count,valType); //ErrorlD为0表示正常,为-1表示没有获取成功;table,按变量类型返回{value1,value2...,valuen}

• 示例:

示例	返回	说明
GetInRegs(0,4000,3)	0, {5,18,12},GetInRegs(0,4000,3);	立即指令从地址4000开始连 续读取3个16位无符号整数成功
GetInRegs(0,4000,3)	-1,{},GetInRegs(0,4000,3);	立即指令从地址4000开始连 续读取3个16位无符号整数失 败

• 说明: 控制器3.5.2版本以及以上版本支持;

3.43 GetCoils

• 功能: 读线圈功能。

• 格式: GetCoils(index,addr,count)

• 参数数量: 3

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必填
index	int	返回的主站索引;	是
addr	int	视从站配置而定;	是
count	int	个数,取值范围1~16	是

• 返回:

ErrorID,{value1,value2,...,valuen},GetCoils(index,addr,count); //ErrorID为0表示正常,为-1表示没有获取成功;table,按变量类型返回{value1,value2...,valuen}

• 示例:

示例	返回	说明
GetCoils(0,1000,3)	0, {1,1,0},GetCoils(0,1000,3);	立即指令从地址1000开始连续读取3 个数据成功
GetCoils(0,1000,3)	-1,{},GetCoils(0,1000,3);	立即指令从地址1000开始连续读取3 个数据成功

• 说明:控制器3.5.2版本以及以上版本支持;

3.44 SetCoils

• 功能:写线圈功能。

• 格式: SetCoils(index,addr,count,valTab)

• 参数数量: 4

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必填
index	int	返回的主站索引;	是
addr	int	视从站配置而定;	是
count	int	个数,取值范围1~16	是
valTab	string	写线圈地址值;	是

• 返回:

ErrorID,{},SetCoils(index,addr,count,valTab); //ErrorID为0表示正常,为-1表示没有设置成功;

• 示例:

示例	返回	说明
SetCoils(0,1000,3,	0,{},SetCoils(0,1000,3,	立即指令从地址1000开始连续写3个
{1,0,1})	{1,0,1});	数据成功
SetCoils(0,1000,3,	-1,{},SetCoils(0,1000,3,	立即指令从地址1000开始连续写3个
{1,0,1})	{1,0,1});	数据成功

• 说明:控制器3.5.2版本以及以上版本支持;

3.45 GetHoldRegs

• 功能:读保持寄存器。

• 格式: GetHoldRegs(index,addr, count,valType)

• 参数数量: 4

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必 填
index	int	index,返回的主站索引,最多支持5个设备,取值范围 (0~4);	是
addr	int	保持寄存器的起始地址。视从站配置而定;	是
count	int	读取指定数量type类型的数据。取值范围:1~4	是

参数名	类型	含义	是否必 填
valType	string	数据类型: 如果为空,默认读取16位无符号整数(2个字节,占用1个寄存器) U16:读取16位无符号整数(2个字节,占用1个寄存器) U32:读取32位无符号整数(4个字节,占用2个寄存器) F32:读取32位单精度浮点数(4个字节,占用2个寄存器) F64:读取64位双精度浮点数(8个字节,占用4个寄存器)	否

• 返回:

ErrorID,{value1,value2,...,valuen},GetHoldRegs(index,addr, count,valType); //ErrorID为0表示正常,为-1表示没有获取成功;table,按变量类型返回{value1,value2...,valuen}

• 示例:

示例	返回	说明
GetHoldRegs(0,3095,1)	0, {13},GetHoldRegs(0,3095,1);	立即指令从地址3095开始读 取一个16位无符号整数 成功
GetHoldRegs(0,3095,1)	-1,{},GetHoldRegs(0,3095,1);	立即指令从地址3095开始读 取一个16位无符号整数 失败

• 说明:控制器3.5.2版本以及以上版本支持;

3.46 SetHoldRegs

• 功能: 写保存寄存器。

• 格式: SetHoldRegs(index,addr, count,valTab,valType)

• 参数数量: 5

• 支持端口: 29999

• 参数详解:

参数名	类型	含义	是否必填
index	int	index,返回的主站索引,最多支持5个设备,取值范围(0~4)	是
addr	int	保持寄存器的起始地址。视从站配置而定;	是
count	int	写入指定数量type类型的数据。取值范围:1~4	是
valTab	string	保持寄存器地址的值	是

参数名	类型	含义	是否必 填
valType	string	数据类型 如果为空,默认读取16位无符号整数(2个字节,占用1个寄存器) U16:读取16位无符号整数(2个字节,占用1个寄存器) U32:读取32位无符号整数(4个字节,占用2个寄存器) F32:读取32位单精度浮点数(4个字节,占用2个寄存器) F64:读取64位双精度浮点数(8个字节,占用4个寄存器)	否

ErrorID,{},SetHoldRegs(index,addr, count,valTab,valType); //ErrorID为0表示正常,为-1表示没有设置成功;

• 示例:

示例	返回	说明
SetHoldRegs(0,3095,2, {6000,300}, U16)	0, {},SetHoldRegs(0,3095,2, {6000,300}, U16);	立即指令从地址3095开始连续写 两个16位无符号整数6000,300 成功
SetHoldRegs(0,3095,2, {6000,300}, U16)	-1, {},SetHoldRegs(0,3095,2, {6000,300}, U16);	立即指令从地址3095开始连续写 两个16位无符号整数6000,300 失败

• 说明: 控制器3.5.2版本以及以上版本支持;

3.47 GetErrorID

功能: 获取机器人错误码格式: GetErrorID()

参数数量: 0支持端口: 29999

• 返回:

ErrorID,{[[id,...,id], [id], [id], [id], [id], [id]]},GetErrorID(); //[id, ..., id]为控制器以及算法报警信息,其中碰撞检测值为-2,电子皮肤碰撞检测值-3;后面六个[id]分别表示六个伺服的报警信息;

• 示例:

GetErrorID()

返回:

0,{[[-2],[],[],[],[]]},GetErrorld();

示例	返回	说明
GetErrorID()	0,{}, 0,{[[1000],[],[],[],[], []]},GetErrorld();;	立即指令获取报警id-12288(紧急停止按键按下)

- 说明:对于错误码对应的错误内容请参考控制器错误描述文件alarm_controller.json以及伺服错误描述alarm_servo.json;
- 控制器3.5.2版本以及以上版本支持;

3.48 DI

• 功能: 获取数字量输入端口状态

• 格式: DI(index)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
index	int	数字输入索引 一代控制柜取值范围: 1~32或100~1000 小型控制柜取值范围: 1~8或100~1000	是

• 返回:

ErrorID,{value},DI(index); //value:返回当前index的值状态,取值范围0/1;

• 示例:

示例	返回	说明
DI(1)	0,{0},DI(1)	立即指令数字输入端口1为低电平

• 说明:使用取值范围100-1000需要有拓展IO模块的硬件支持;

3.49 ToolDI

• 功能: 获取末端数字量输入端口状态

• 格式: ToolDI(index)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
index	int	末端数字量输入索引,取值范围: 1/2	是

• 返回:

ErrorID, {value}, ToolDI(index); //value:返回当前index的值状态, 取值范围0/1;

• 示例:

示例	返回	说明
ToolDI(2)	0,{1},ToolDI(2)	立即指令末端数字输入端口2为高电平

3.50 AI

• 功能: 获取模拟量输入端口电压值

• 格式: Al(index)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
index	int	控制柜模拟输入索引,取值范围: 1/2	是

• 返回:

ErrorID,{value},Al(index); //value:返回当前index的电压值;

• 示例:

示例	返回	说明
AI(2)	0,{3.5},AI(2)	立即指令模拟输入端口2的电压值为3.5V

3.51 ToolAl

• 功能: 获取末端模拟量输入端口电压值

• 格式: ToolAl(index)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
index	int	末端模拟输入索引,取值范围: 1/2	是

• 返回:

ErrorID,{value},ToolAl(index); //value:返回当前index的电压值;

• 示例:

示例	返回	说明
ToolAl(1)	0,{1.5},ToolAl(1)	立即指令末端模拟输入端口1的电压值为1.5V

3.52 DIGroup

• 功能: 获取输入组端口状态

• 格式: DIGroup(index1,index2,...,indexn)

• 参数数量:不固定(最大支持64个)

• 支持端口: 29999

• 参数详解:不固定

参数名	类型	含义	是否必填
index1	int	数字输入索引 一代控制柜取值范围: 1-32或100~1000 小型控制柜取值范围: 1-8或100-1000	是
indexn	int	数字输入索引 一代控制柜取值范围: 1-32或100~1000 小型控制柜取值范围: 1-8或100-1000	是

• 返回:

ErrorID,{value1,value2,...,valuen},DIGroup(index1,index2,...,indexn); //value1...valuen:返回当前index1到indexn的电压值;

• 示例:

示例	返回	说明
DIGroup(4,6,2,7)	0, {1,0,1,1},DIGroup(4,6,2,7)	立即指令获取的数字输入4、6、2、7 端口的电平分别为1,0,1,1

• 说明:使用取值范围100-1000需要有拓展IO模块的硬件支持;

3.53 DOGroup

• 功能:设置输出组端口状态

• 格式: DOGroup(index1,value1,index2,value2,...,indexn,valuen)

• 参数数量:不固定(最大支持64个)

支持端口: 29999参数详解: 不固定

参数名	类型	含义	是否必填
index1	int	设置数字输出索引 一代控制柜取值范围: 1-16或100~1000 小型控制柜取值范围: 1-8或100-1000	是
value1	int	设置数字输出端口状态,取值0/1	是
indexn	int	设置数字输出索引 一代控制柜取值范围: 1-16或100~1000 小型控制柜取值范围: 1-8或100-1000	是
valuen	int	设置数字输出端口状态,取值0/1	是

• 返回:

ErrorID,{},DOGroup(index1,value1,index2,value2,...,indexn,valuen);

• 示例:

示例	返回	说明
DOGroup(4,1,6,0,2,1,7,0)	0, {},DOGroup(4,1,6,0,2,1,7,0)	立即指令设置数字输出端口 4、6、2、7端口的电平分别 为1,0,1,0

• 说明:使用取值范围100-1000需要有拓展IO模块的硬件支持;

3.54 BrakeControl

• 功能: 开关抱闸

• 格式: BrakeControl(axisID,value)

• 必填参数数量: 2

• 注意: 抱闸的控制需要机器人在下使能的条件下进行; 否则机器人错误返回-1;

支持端口: 29999必填参数详解: 2

参数名	类型	含义	是否必填
axisID	int	关节轴号	是
value	int	设置抱闸状态; 取值0/1 0:关闭抱闸 1: 打开抱闸	是

• 返回:

ErrorID,{},BrakeControl(axisID,value);

• 示例: 打开关节1抱闸

示例	返回	说明
BrakeControl(1,1)	0,{},BrakeControl(1,1)	立即指令设置关节1打开抱闸

• 说明:控制器3.5.2版本以及以上版本支持此命令;

3.55 StartDrag

• 功能: 进入拖拽(在报错状态下,不可进入拖拽)

• 格式: StartDrag()

• 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},StartDrag();

• 示例:

示例	返回	说明
StartDrag()	0,{},StartDrag()	立即指令机器人进入拖拽

• 说明:控制器3.5.2版本以及以上版本支持此命令;

3.56 StopDrag

• 功能: 退出拖拽

• 格式: StopDrag()

● 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{},StopDrag();

• 示例:

示例	返回	说明
StopDrag()	0,{},StopDrag()	立即指令机器人退出拖拽

• 说明: 控制器3.5.2版本以及以上版本支持此命令;

3.57 SetCollideDrag

• 功能:设置是否强制进入拖拽(报错状态下也能进入拖拽)

• 格式: SetCollideDrag(status)

参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
status	int	status:强制拖拽开关状态,0:关闭;1:开启	是

• 返回:

ErrorID,{},SetCollideDrag(status);

• 示例:强制进入拖拽

示例	返回	说明
SetCollideDrag(0)	0,{},SetCollideDrag(0)	立即指令机器人强制退出拖拽

• 说明: 控制器3.5.2版本以及以上版本支持此命令;

3.58 SetTerminalKeys

• 功能:设置末端按键功能使能状态

• 格式: SetTerminalKeys(status)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
status	int	status:设置末端按键功能使能状态,0:关闭;1:开启	是

ErrorID,{},SetTerminalKeys(status);

• 示例: 禁用末端按键功能

示例	返回	说明
SetTerminalKeys(0)	0,{},SetTerminalKeys(0)	立即指令机器人末端按键功能关闭

• 说明: 只在特定版本支持此命令

3.59 SetTerminal485

• 功能:设置末端485参数

• 格式: SetTerminal485(baudRate, dataLen, parityBit, stopBit)

• 参数数量: 4

• 支持端口: 29999

• 参数详解: 4

参数名	类型	含义	是否必填
baudRate	int	baudRate: 波特率	是
dataLen	int	dataLen:数据位长度,目前固定为8	否
parityBit	string	parityBit:奇偶校验位,目前固定为N,代表无校验	否
stopBit	int	stopBit: 停止位,目前固定为1	否

• 返回:

ErrorID,{},SetTerminal485(status);

• 示例: 设置波特率为115200

示例	返回	说明
SetTerminal485(115200, 8, N, 1)	0, {},SetTerminal485(115200, 8, N, 1)	立即指令设置机器人末端波 特率为115200

3.60 GetTerminal485

功能: 获取末端485的参数格式: GetTerminal485()

• 参数数量: 0

• 支持端口: 29999

• 返回:

ErrorID,{baudRate, dataLen, parityBit, stopBit},GetPose(); //{baudRate, dataLen, parityBit, stopBit}分别表示波特率,数据位,奇偶校验位,停止位

• 示例:

示例	返回	说明
GetTerminal485()	0,{115200, 8, N, 1},GetTerminal485()	立即指令获取机器人末端485 的参数

3.61 LoadSwitch (队列指令)

• 功能:控制负载设置状态

• 格式: LoadSwitch(status)

• 参数数量: 1

• 支持端口: 29999

参数详解: 1

参数名	类型	含义	是否必填
status	int	status:设置负载设置状态,0:关闭;1:开启 开启负载设置会提高碰撞灵敏度	是

• 返回:

ErrorID,{},LoadSwitch(status);

• 示例:

示例	返回	说明
LoadSwitch(1)	0,{},LoadSwitch(1)	队列指令开启负载设置

3.62 TCPSpeed (队列指令)

• 功能: 当进入到TCPSpeed指令时时,笛卡尔运动以绝对速度运行,不影响关节运动;机器人进入缩减模式后,也受缩减模式下最大全局速度的限制;与焊接冲突时,以焊接指令为准。

• 格式: TCPSpeed(vt)

• 参数数量: 1

• 支持端口: 29999

• 参数详解: 1

参数名	类型	含义	是否必填
vt	unsigned int	单位mm/s, 参数区间,[0,100000)	是

• 返回:

ErrorID,{},格式: TCPSpeed(vt);

• 示例:

示例	返回	说明
TCPSpeed(100)	0,{},TCPSpeed(100)	队列指令设置绝对速度100mm/s

3.63 TCPSpeedEnd (队列指令)

• 功能:和TCPSpeed指令搭配使用,该指令表示关闭强制速度

TCPSpeedEnd()

参数数量: 0

• 支持端口: 29999

• 参数详解:无

• 返回:

ErrorID,{},TCPSpeedEnd();

• 示例:

示例	返回	说明
TCPSpeedEnd()	0,{},TCPSpeedEnd()	队列指令关闭绝对速度

3.64 MovJ (队列指令)

• 功能:点到点运动,目标点位为笛卡尔点位。

• 格式: MovJ(X,Y,Z,Rx,Ry,Rz,User=index,Tool=index,SpeedJ=R,AccJ=R)

//其中User=index,Tool=index,SpeedJ=R,AccJ=R为可选设置参数,分别表示设置用户坐标系、工具坐标系、关节速度比例以及加速度比例值;和29999端口设置的SpeedJ、AccJ意义一致;User:用户索引0~9,不填按照上一次设置的值;Tool:工具索引0~9,不填按照上一次设置的值;

必填参数数量:6支持端口:30003必填参数详解:6

参数名	类型	含义	是否必填
X	double	X 轴位置,单位:毫米	是
Υ	double	Y 轴位置,单位:毫米	是
Z	double	Z 轴位置,单位:毫米	是
Rx	double	Rx 轴位置,单位:度	是
Ry	double	Ry 轴位置,单位:度	是
Rz	double	Rz 轴位置,单位:度	是

• 返回:

ErrorID,{},MovJ(X,Y,Z,Rx,Ry,Rz);

• 示例:

示例	返回	说明
MovJ(-500,100,200,150,0,90,AccJ=50)	0, {},MovJ(-500,100,200,150,0,90,AccJ=50)	队列指令点到点运动,目标点位为笛卡尔点位(-500,100,200,150,0,90),设置关节加速度百分比50

3.65 MovL (队列指令)

• 功能: 直线运动, 目标点位为笛卡尔点位。

• 格式: MovL(X,Y,Z,Rx,Ry,Rz,User=index,Tool=index,SpeedL=R,AccL=R)

其中User=index,Tool=index,SpeedL=R,AccL=R为可选设置参数,分别表示设置用户坐标系、工具坐标系、笛卡尔速度比例以及加速度比例值;和29999端口设置的SpeedL、AccL意义一致;User:用户索引0~9,不填按照上一次设置的值;Tool:工具索引0~9,不填按照上一次设置的值;

必填参数数量: 6支持端口: 30003必填参数详解: 6

参数名	类型	含义	是否必填
X	double	X 轴位置,单位:毫米	是
Υ	double	Y 轴位置,单位:毫米	是
Z	double	Z 轴位置,单位:毫米	是
Rx	double	Rx 轴位置,单位:度	是
Ry	double	Ry 轴位置,单位:度	是
Rz	double	Rz 轴位置,单位:度	是

• 返回:

ErrorID,{},MovL(X,Y,Z,Rx,Ry,Rz,SpeedL=R,AccL=R);

• 示例:

示例	返回	说明
MovL(-500,100,200,150,0,90,SpeedL=60)	0, {},MovL(-500,100,200,150,0,90,SpeedL=60)	队列指令点到点运动,目标点位为笛卡尔点位(-500,100,200,150,0,90),设置笛卡尔速度比例60

3.66 JointMovJ (队列指令)

• 功能:点到点运动,目标点位为关节点位。

• 格式: JointMovJ(J1,J2,J3,J4,J5,J6,SpeedJ=R,AccJ=R)

//其中SpeedJ=R,AccJ=R为可选设置参数,分别表示设置关节速度比例以及加速度比例值;和 29999端口设置的SpeedJ、AccJ意义一致;

必填参数数量:6支持端口:30003必填参数详解:6

参数名	类型	含义	是否必填
J1	double	J1 轴位置,单位:度	是
J2	double	J2 轴位置,单位:度	是
J3	double	J3 轴位置,单位:度	是
J4	double	J4 轴位置,单位:度	是
J5	double	J5 轴位置,单位:度	是
J6	double	J6 轴位置,单位:度	是

ErrorID,{},JointMovJ(J1,J2,J3,J4,J5,J6,SpeedJ=R,AccJ=R);

• 示例:

示例	返回	说明
JointMovJ(0,0,-90,0,90,0,SpeedJ=60,AccJ=50)	0, {},JointMovJ(0,0,-90,0,90,0,SpeedJ=60,AccJ=50)	队列指令点到点运动,目标点位为关节点位(0,0,-90,0,90,0),设置关节速度比例60,加速度比例50

3.67 MovLIO (队列指令)

• 功能:在直线运动时并行设置数字输出端口状态,目标点位为笛卡尔点位。

 格式: MovLIO(X,Y,Z,Rx,Ry,Rz,{Mode,Distance,Index,Status},..., {Mode,Distance,Index,Status},User=index,Tool=index,SpeedL=R,AccL=R)

//其中SpeedL=R,AccL=R为可选设置参数,分别表示设置用户坐标系、工具坐标系、笛卡尔速度比例以及加速度比例值;和29999端口设置的SpeedL、AccL意义一致;User:用户索引0~9,不填按照上一次设置的值;Tool:工具索引0~9,不填按照上一次设置的值;

• 参数数量: 10

• 支持端口: 30003

• 参数详解: 10

参数名	类型	含义	是否必填
X	double	X 轴位置,单位:毫米	是
Υ	double	Y 轴位置,单位:毫米	是
Z	double	Z 轴位置,单位:毫米	是
Rx	double	Rx 轴位置,单位:度	是
Ry	double	Ry 轴位置,单位:度	是
Rz	double	Rz 轴位置,单位:度	是

参数名	类型	含义	是否必 填
Mode	int	设置Distance模式 0: Distance为距离百分比 1: Distance为离起始点或目标点的距离	是
Distance	int	运行指定的距离: 若Mode为0,则Distance表示起始点与目标点之间距离 的百分比 取值范围: 0~100 若Distance取值为正,则表示离起始点的距离 若Distance取值为负,则表示离目标点的距离	是
Index	int	数字输出索引,取值范围: 1~24	是
Status	int	数字输出状态,取值范围: 0或1	是

ErrorID,{},MovLIO(X,Y,Z,Rx,Ry,Rz,{Mode,Distance,Index,Status},..., {Mode,Distance,Index,Status},SpeedL=R,AccL=R);

• 示例:

示例	返回	说明
MovLIO(-500,100,200,150,0,90, {0,50,1,0})	0, {},MovLIO(-500,100,200,150,0,90, {0,50,1,0}};	队列指令在直线运动时并行设置数字 输出端口状态,目标点位为笛卡尔点位 (-500,100,200,150,0,90) ,离起始点 距离50,DO[1]设置为低电平

3.68 MovJIO (队列指令)

• 功能:点到点运动时并行设置数字输出端口状态,目标点位为笛卡尔点位。

 格式: MovJIO(X,Y,Z,Rx,Ry,Rz,{Mode,Distance,Index,Status},..., {Mode,Distance,Index,Status},User=index,Tool=index,SpeedJ=R,AccJ=R)

//其中SpeedJ=R,AccJ=R为可选设置参数,分别表示设置用户坐标系、工具坐标系、关节速度比例以及加速度比例值;和29999端口设置的SpeedJ、AccJ意义一致;User:用户索引0~9,不填按照上一次设置的值;Tool:工具索引0~9,不填按照上一次设置的值;

参数数量:不固定支持端口:30003参数详解:10

参数名	类型	含义	是否必 填
X	double	X 轴位置,单位:毫米	是
Υ	double	Y 轴位置,单位:毫米	是
Z	double	Z 轴位置,单位:毫米	是
Rx	double	Rx轴位置,单位:度	是

参数名	类型	含义	是否必 填
Ry	double	Ry 轴位置,单位:度	是
Rz	double	Rz轴位置,单位: 度	是
Mode	int	设置Distance模式 0: Distance为距离百分比 1: Distance为离起始点或目标点的距离	是
Distance	int	运行指定的距离: 若Mode为0,则Distance表示起始点与目标点之间距离 的百分比 取值范围: 0~100 若Distance取值为正,则表示离起始点的距离 若Distance取值为负,则表示离目标点的距离	是
Index	int	数字输出索引,取值范围: 1~24	是
Status	int	数字输出状态,取值范围: 0或1	是

ErrorID,{},MovJIO(X,Y,Z,Rx,Ry,Rz,{Mode,Distance,Index,Status},..., {Mode,Distance,Index,Status},SpeedJ=R,AccJ=R);

• 示例:

示例	返回	说明
MovJIO(-500,100,200,150,0,90, {0,50,1,0})	0, {},MovLIO(-500,100,200,150,0,90, {0,50,1,0});	队列指令点到点运动时并行设置数字 输出端口状态,目标点位为笛卡尔点位 (-500,100,200,150,0,90) ,离起始点 距离50,DO[1]设置为低电平

3.69 Arc (队列指令)

• 功能: : 从当前位置以圆弧插补方式移动至笛卡尔坐标系下的目标位置。 该指令需结合其他运动指令确定圆弧起始点。

• 格式:

Arc(X1,Y1,Z1,Rx1,Ry1,Rz1,X2,Y2,Z2,Rx2,Ry2,Rz2,User=index,Tool=index,SpeedL=R,AccL=R)
//其中SpeedL=R,AccL=R为可选设置参数,分别表示设置用户坐标系、工具坐标系、笛卡尔速度比例以及加速度比例值;和29999端口设置的SpeedL、AccL意义一致;User:用户索引0~9,不填按照上一次设置的值;Tool:工具索引0~9,不填按照上一次设置的值;

必填参数数量: 12支持端口: 30003必填参数详解: 12

参数名	类型	含义	是否必填
X1	double	表示圆弧中间点X1 轴位置,单位:毫米	是

参数名	类型	含义	是否必填
Y1	double	表示圆弧中间点Y1 轴位置,单位:毫米	是
Z1	double	表示圆弧中间点Z1 轴位置,单位:毫米	是
Rx1	double	表示圆弧中间点Rx1轴位置,单位: 度	是
Ry1	double	表示圆弧中间点Ry1轴位置,单位: 度	是
Rz1	double	表示圆弧中间点Rz1轴位置,单位: 度	是
X2	double	表示圆弧结束点X2 轴位置,单位:毫米	是
Y2	double	表示圆弧结束点Y2 轴位置,单位:毫米	是
Z2	double	表示圆弧结束点Z2 轴位置,单位:毫米	是
Rx2	double	表示圆弧结束点Rx2轴位置,单位: 度	是
Ry2	double	表示圆弧结束点Ry2轴位置,单位: 度	是
Rz2	double	表示圆弧结束点Rz2 轴位置,单位:度	是

ErrorID,{},Arc(X1,Y1,Z1,Rx1,Ry1,Rz1,X2,Y2,Z2,Rx2,Ry2,Rz2,SpeedL=R,AccL=R);

• 示例:

示例	返回	说明
MovL(-300,-150,200,150,0,90) Arc(-350,-200,200,150,0,90,-300,-250,200,150,0,90)	0,{},MovL(-300,-150,200,150,0,90); 0, {},Arc(-350,-200,200,150,0,90,-300,-250,200,150,0,90)	队列指令确 定圆弧起始点. 从当前位置以 圆弧插补方式 移动至笛卡尔 坐标系下的目 标位置

3.70 ServoJ (队列指令)

功能:基于关节空间的动态跟随命令。格式: ServoJ(J11,J12,J13,J14,J15,J16)

• 必填参数数量: 6

• 可选参数: t、lookahead_time、gain

支持端口: 30003必填参数详解: 6

参数名	类型	含义	是否 必填
J11	double	P1点 11轴位置,单位:度	是
J12	double	P1点12轴位置,单位:度	是
J13	double	P1点J13 轴位置,单位:度	是

参数名	类型	含义	是否 必填
J14	double	P1点 14 轴位置,单位:度	是
J15	double	P1点 15 轴位置,单位:度	是
J16	double	P1点 16 轴位置,单位:度	是
t	float	该点位的运行时间,默认0.1,单位: s 取值范围: [0.02,3600.0]	否
lookahead_time	float	作用类似于PID的D项,默认50,标量,无单位 取值范围:[20.0,100.0]	否
gain	float	目标位置的比例放大器,作用类似于PID的P项, 默认500,标量,无单位 取值范围: [200.0,1000.0]	否

无

• 说明:

客户二次开发使用频率建议设置为33Hz (30ms) , 即循环间隔至少设置30ms

• 示例:

示例	返回	说明
ServoJ(0,0,-90,0,90,0, t=0.1, lookahead_time=50, gain=500)	0,{},ServoJ(0,0,-90,0,90,0, t=0.1, lookahead_time=50, gain=500);	队列指令目标关节点位 (0,0,-90,0,90,0) 运行时 间 0.1s lookahead_time 为 50 gain 目标位置的比例放 大器为 500

3.71 ServoP (队列指令)

• 功能:基于笛卡尔空间的动态跟随命令。

• 格式: ServoP(X1,Y1,Z1,Rx1,Ry1,Rz1)

• 参数数量: 6

• 支持端口: 30003

• 参数详解: 6

参数名	类型	含义	是否必填
X1	double	X 1轴位置,单位:毫米	是
Y1	double	Y 1轴位置,单位:毫米	是
Z1	double	Z1 轴位置,单位:毫米	是
Rx1	double	Rx 1轴位置,单位:度	是

参数名	类型	含义	是否必填
Ry1	double	Ry1 轴位置,单位:度	是
Rz1	double	Rz1轴位置,单位:度	是

无

• 说明:

客户二次开发使用频率建议设置为33Hz (30ms) , 即循环间隔至少设置30ms

• 示例:

ServoP(-500,100,200,150,0,90)

示例	返回	说明
ServoP(-500,100,200,150,0,90)	0, {},ServoP(-500,100,200,150,0,90);	队列指令目标笛卡尔点位 (-500,100,200,150,0,90)

3.72 MoveJog (队列指令)

• 功能: 点动运动, 不固定距离运动

格式: MoveJog(axisID,CoordType=typeValue,User=index,Tool=index)
 //其中CoordType、User以及Tool为可选设置参数,不填按照默认值; CoordType: 0:用户坐标系
 1:关节点动 2:工具坐标系,默认值为1; User:用户索引0~9,默认值为0; Tool:工具索引0~9,默认值为0;

必填参数数量: 1支持端口: 30003

• 注意:命令下发后,须另外下发MoveJog()停止命令控制机器人停止运动;另下发非指定string内容的参数都会导致机器人停止;完全停止需要大概消耗100ms时间;

• 必填参数详解: 1

参数名	类型	含义		是否必填
axisID	string	点动运动轴 J1+表示关节1正方向运动 J2+表示关节2正方向运动 J3+表示关节3正方向运动 J3+表示关节4正方向运动 J4+表示关节5正方向运动 J5+表示关节5正方向运动 X+表示X轴正方向运动 X+表示X轴正方向运动 X+表示X轴正方向运动 Rx+表示Rx轴正方向运动 Rx+表示Rx轴正方向运动 Rx+表示Rx轴正方向运动 Rx+表示Rx轴正方向运动	J1- 表示关节1负方向运动 J2- 表示关节2负方向运动 J3- 表示关节3负方向运动 J3- 表示关节4负方向运动 J5- 表示关节5负方向运动 J6- 表示关节6负方向运动 X- 表示X轴负方向运动 Y- 表示Y轴负方向运动 Z- 表示Z轴负方向运动 Rx- 表示Rx轴负方向运动 Rx- 表示Rx轴负方向运动 Rx- 表示Rx轴负方向运动 Ry- 表示Ry轴负方向运动 Rz- 表示Ry轴负方向运动	否

• 返回:

 $ErrorID, \{\}, MoveJog(axisID, CoordType=typeValue, User=index, Tool=index);\\$

若ErrorlD返回-1,表示设置的用户坐标索引或工具坐标索引不存在;

• 示例:

示例	返回	说明
MoveJog(j2-); MoveJog()	0,{},MoveJog(j2-); 0,{},MoveJog();	队列指令J2负方向运动,再停止点动

说明:**控制器3.5.2版本及以上版本支持此命令**;其中用户若是再发关节点动运行则会忽略CoordType、User以及Tool这三个可选设置参数;

3.73 StartTrace (队列指令)

• 功能: 轨迹拟合。(轨迹文件笛卡尔点)

• 格式: StartTrace(traceName)

• 参数数量: 1

• 支持端口: 30003

 备注:用户可以通过获取RobotMode查询机器人运行状态,若在ROBOT_MODE_RUNNING表示机器人在轨迹拟合运行中,达到ROBOT_MODE_IDLE表示轨迹拟合运行完成, ROBOT MODE ERROR表示报警;

• 参数详解: 1

参数名	类型	含义	是否必填
traceName	string	轨迹文件名(含后缀) 轨迹路径存放 在/dobot/userdata/project/process/trajectory/	是

• 返回:

ErrorID,{},StartTrace(traceName);

• 示例:

示例	返回	说明
GetTraceStartPose(recv_string.json); MovJ(x,y,z,rx,ry,rz) StartTrace(recv_string)	0, {x,y,z,rx,ry,rz},GetTraceStartPose(recv_string.json); 0,{},MovJ(x,y,z,rx,ry,rz); 0,{},StartTrace(recv_string);	队列指令先获取名字 recv_string的轨迹的首个 关节点{x,y,z,rx,ry,rz},在 点到点运动{x,y,z,rx,ry,rz} 后,在下发名字 recv_string做轨迹拟合

• 说明: 控制器3.5.2版本及以上版本支持此命令;

3.74 StartPath (队列指令)

• 功能: 轨迹复现。(轨迹文件关节点)

• 格式: StartPath(traceName,const,cart)

• 参数数量: 3

• 支持端口: 30003

 备注:用户可以通过获取RobotMode查询机器人运行状态,若在ROBOT_MODE_RUNNING表示机器人在轨迹复现运行中,达到ROBOT_MODE_IDLE表示轨迹复现运行完成, ROBOT_MODE_ERROR表示报警;

• 参数详解: 3

参数名	类型	含义	是否必 填
traceName	string	轨迹文件名(含后缀) 轨迹路径存放 在/dobot/userdata/project/process/trajectory/	是
const	int	const=1时,匀速复现,轨迹中的停顿及死区会被移除; const=0时,按照原速复现;	是
cart	int	cart=1时,按笛卡尔路径复现; cart=0时,按关节路径复现;	是

• 返回:

ErrorID,{},StartPath(traceName,const,cart);

• 示例:

示例	返回	说明
GetPathStartPose(recv_string.json); JointMovJ(j1,j2,j3,j4,j5,j6) StartPath(recv_string,0,1)	0, {j1,j2,j3,j4,j5,j6},GetPathStartPose(recv_string); 0,{},JointMovJ(j1,j2,j3,j4,j5,j6); 0,{},StartPath(recv_string,0,1);	队列指令先获取名字 recv_string的轨迹的首个点 {j1,j2,j3,j4,j5,j6}, 在点到点 运动{j1,j2,j3,j4,j5,j6}后, 在 下发名字recv_string按照原 速复现,按笛卡尔路径匀速 复现;

• 说明:控制器3.5.2版本及以上版本支持此命令;

3.75 Sync (队列指令)

• 功能: 阻塞程序执行队列指令, 待所有队列指令执行完才返回。

格式: Sync()参数数量: 0

• 支持端口: 30003

• 返回:

ErrorID,{},Sync();

• 示例:

示例	返回	说明
Sync()	0,{},Sync();	队列指令阻塞执行队列指令;

3.76 RelMovJTool (队列指令)

• 功能:沿工具坐标系进行相对运动指令,末端运动方式为关节运动。

• 格式:

RelMovJTool(offsetX, offsetY,offsetZ, offsetRx,offsetRy,offsetRz, Tool,SpeedJ=R, AccJ=R,User=Index)

//其中SpeedJ=R,AccJ=R、User=Index为可选设置参数,分别表示设置用关节速度比例以及加速度比例值以及用户坐标系索引;和29999端口设置的SpeedJ、AccJ意义一致;User:用户索引0~9,不填按照上一次设置的值;Tool为必选参数:工具索引0~9;

必填参数数量: 7支持端口: 30003必填参数详解: 7

参数名	类型	含义	是否必填
OffsetX	double	X轴方向偏移,单位:mm	是
OffsetY	double	Y轴方向偏移,单位:mm	是
OffsetZ	double	Z轴方向偏移,单位:mm	是
OffsetRx	double	Rx 轴位置,单位:度	是
OffsetRy	double	Ry 轴位置,单位:度	是
OffsetRz	double	Rz 轴位置,单位:度	是
Tool	int	选择已标定的工具坐标系,取值范围: 0~9	是

• 返回:

ErrorID,{},RelMovJTool(OffsetX,OffsetY,OffsetZ,OffsetRx,OffsetRy,OffsetRz,Tool,SpeedJ=R, AccJ=R,User=Index);

• 示例:

示例	返回	说明
RelMovJTool(10,10,10,0,0,0,0)	0, {},RelMovJTool(10,10,10,0,0,0,0);	队列指令沿工具 坐标系进行相对运 动指令,末端运动 方式为关节运动 X轴方向偏移10mm Y轴方向偏移10mm Y轴方向偏移10mm Rx 轴,Ry 轴,Rz 轴无变化 工具坐标系为0;

• 说明: 控制器3.5.2版本及以上版本支持此命令;

3.77 RelMovLTool (队列指令)

• 功能:沿工具坐标系进行相对运动指令,末端运动方式为直线运动。

• 格式:

RelMovLTool(OffsetX,OffsetY,OffsetZ,OffsetRx,OffsetRy,OffsetRz, Tool,SpeedL=R, AccL=R,User=Index)

//其中SpeedL=R,AccL=R、User=Index为可选设置参数,分别表示设置用笛卡尔速度比例以及加速度比例值以及用户坐标系索引;和29999端口设置的SpeedL、AccL意义一致;User:用户索引0~9,不填按照上一次设置的值;Tool为必选参数:工具索引0~9;

必填参数数量: 7支持端口: 30003必填参数详解: 7

参数名	类型	含义	是否必填
OffsetX	double	X轴方向偏移,单位:mm	是
OffsetY	double	Y轴方向偏移,单位:mm	是
OffsetZ	double	Z轴方向偏移,单位:mm	是
OffsetRx	double	Rx 轴位置,单位:度	是
OffsetRy	double	Ry 轴位置,单位:度	是
OffsetRz	double	Rz 轴位置,单位:度	是
Tool	int	选择已标定的工具坐标系,取值范围: 0~9	是

• 返回:

ErrorID,{},RelMovLTool(OffsetX,OffsetY,OffsetZ,OffsetRx,OffsetRy,OffsetRz,Tool,SpeedL=R, AccL=R,User=Index);

• 示例:

示例	返回	说明
RelMovJTool(10,10,10,0,0,0,0)	0, {},RelMovJTool(10,10,10,0,0,0,0);	队列指令沿工具 坐标系进行相对运 动指令,末端运动 方式为直线运动 X轴方向偏移10mm Y轴方向偏移10mm Y轴方向偏移10mm Rx 轴,Ry 轴,Rz 轴无变化 工具坐标系为0;

• 说明:控制器3.5.2版本及以上版本支持此命令;

3.78 RelMovJUser (队列指令)

- 功能:沿用户坐标系进行相对运动指令,末端运动方式为关节运动。
- 格式:

RelMovJUser(OffsetX,OffsetY,OffsetZ,OffsetRx,OffsetRy,OffsetRz, User,SpeedJ=R, AccJ=R,Tool=Index)

//其中SpeedJ=R,AccJ=R,Tool=Index为可选设置参数,分别表示设置用关节速度比例以及加速度比例值以及工具坐标系索引;和29999端口设置的SpeedJ、AccJ意义一致;Tool:工具索引0~9,不填按照上一次设置的值;User为必选参数:用户索引0~9;

必填参数数量: 7支持端口: 30003必填参数详解: 7

参数名	类型	含义	是否必填
OffsetX	double	X轴方向偏移,单位:mm	是
OffsetY	double	Y轴方向偏移,单位:mm	是
OffsetZ	double	Z轴方向偏移,单位:mm	是
OffsetRx	double	Rx 轴位置,单位:度	是
OffsetRy	double	Ry 轴位置,单位:度	是
OffsetRz	double	Rz 轴位置,单位:度	是
User	int	选择已标定的用户坐标系,取值范围: 0~9	是

• 返回:

ErrorID,{},RelMovJUser(OffsetX,OffsetY,OffsetZ,OffsetRx,OffsetRx,OffsetRz,User,SpeedJ=R,AccJ=R,Tool=Index);

• 示例:

示例	返回	说明
RelMovJUser(10,10,10,0,0,0,0)	0, {},RelMovJUser(10,10,10,0,0,0,0);	队列指令沿用户 坐标系进行相对运 动指令,末端运动 方式为关节运动 X轴方向偏移 10mm Y轴方向偏移 10mm Y轴方向偏移 10mm Rx 轴,Ry 轴,Rz 轴无变化 用户坐标系为0;

• 说明: 控制器3.5.2版本及以上版本支持此命令;

3.79 RelMovLUser (队列指令)

- 功能:沿用户坐标系进行相对运动指令,末端运动方式为直线运动。
- 格式:

RelMovLUser(OffsetX,OffsetY,OffsetZ,OffsetRx,OffsetRy,OffsetRz, User,SpeedL=R, AccL=R,Tool=Index)

//其中SpeedL=R,AccL=R,Tool=Index为可选设置参数,分别表示设置用笛卡尔速度比例以及加速度比例值以及工具坐标系索引;和29999端口设置的SpeedL、AccL意义一致;Tool:工具索引0~9,不填按照上一次设置的值;User为必选参数:用户索引0~9;

必填参数数量: 7支持端口: 30003必填参数详解: 7

参数名	类型	含义	是否必填
OffsetX	double	X轴方向偏移,单位:mm	是
OffsetY	double	Y轴方向偏移,单位:mm	是
OffsetZ	double	Z轴方向偏移,单位:mm	是
OffsetRx	double	Rx 轴位置,单位:度	是
OffsetRy	double	Ry 轴位置,单位:度	是
OffsetRz	double	Rz 轴位置,单位:度	是
User	int	选择已标定的用户坐标系,取值范围: 0~9	是

• 返回:

ErrorID,{},RelMovLUser(OffsetX,OffsetY,OffsetZ,OffsetRx,OffsetRy,OffsetRz,User,SpeedL=R, AccL=R,Tool=Index);

• 示例:

示例	返回	说明
RelMovLUser(10,10,10,0,0,0,0)	0, {},RelMovLUser(10,10,10,0,0,0,0);	队列指令沿用户 坐标系进行相对 运动指令,末端 运动方式为直线 运动 X轴方向偏移 10mm Y轴方向偏移 10mm Y轴方向偏移 10mm Rx 轴,Ry 轴, Rz 轴无变化 用户坐标系为0;

• 说明: 控制器3.5.2版本及以上版本支持此命令;

3.80 RelJointMovJ (队列指令)

• 功能: 沿各轴关节坐标系进行相对运动指令, 末端运动方式为关节运动。

• 格式:

RelJointMovJ(Offset1,Offset2,Offset3,Offset4,Offset5,Offset6,SpeedJ=R, AccJ=R)

//其中SpeedJ=R,AccJ=R为可选设置参数,分别表示设置用关节速度比例以及加速度比例值;和 29999端口设置的SpeedJ、AccJ意义一致;

必填参数数量: 6支持端口: 30003必填参数详解: 6

参数名	类型	含义	是否必填
Offset1	double	关节1的偏移值,单位:度	是
Offset2	double	关节2的偏移值,单位: 度	是
Offset3	double	关节3的偏移值,单位: 度	是
Offset4	double	关节4的偏移值,单位: 度	是
Offset5	double	关节5的偏移值,单位: 度	是
Offset6	double	关节6的偏移值,单位:度	是

• 返回:

ErrorID,{},RelJointMovJ(Offset1,Offset2,Offset3,Offset4,Offset5,Offset6,SpeedJ=R, AccJ=R);

• 示例:

示例	返回	说明
RelJointMovJ(10,10,10,0,0,0)	0, {},RelJointMovJ(10,10,10,0,0,0);	队列指令沿各轴关节 坐标系进行相对运动指 令,末端运动方式为关 节运动 关节1的偏移值10度 关节2的偏移值10度 关节3的偏移值10度 Rx 轴,Ry 轴,Rz 轴无 变化;

• 说明:控制器3.5.2版本及以上版本支持此命令;

3.81 Circle3 (队列指令)

• 功能:整圆运动,仅对笛卡尔点位生效。

格式: circle3({p1.x,p1.y,p1.z,p1.a,p1.b,p1.c}, {p2.x,p2.y,p2.z,p2.a,p2.b,p2.c},count,User=0,Tool=0,SpeedL=R,AccL=R)

参数数量:必选3支持端口:30003

• 参数详解:

参数名	类型	含义	是否必填
P1	table	第一个点	是
P2	table	第二个点	是
count	int	进行整圆运动的圈数	是
User	int	用户坐标系索引号	否
Tool	int	工具坐标系索引号	否

ErrorID,{},circle3(输入);

• 示例:

示例	circle3({322.3267,-379.0799,545.6118,-171.5755,-20.8092,62.254}, {-153.785,-473.2296,545.6118,-171.5755,-20.8092,3.8774},1)
返回	0,{},circle3({322.3267,-379.0799,545.6118,-171.5755,-20.8092,62.254}, {-153.785,-473.2296,545.6118,-171.5755,-20.8092,3.8774},1);
说 明	队列指令整圆运动,进行整圆运动一圈。

3.82 Wait (队列指令)

• 功能:运动指令等待。

格式: Wait()参数数量: 1

• 支持端口: 30003

• 参数详解:

参数名	类型	含义	是否必填
time	int	延时时间,单位:毫秒	是

• 返回:

ErrorID,{},Wait(time);

• 示例:

示例	返回	说明
MovJ(-500,100,200,150,0,90)	MovJ(-500,100,200,150,0,90);	队列指令机械臂MovJ
Wait(1000)	0,{},Wait(1000);	到位后,延时1000毫秒

4.反馈端口

30005服务器端口**每200ms反馈机器人的信息**,

30006端口为**可配置**的反馈机器人信息端口(默认为每**50ms**反馈);30006端口的实时数据的配置更新可以在线修改后,实时生效;

通过实时反馈端口每次收到的数据包有1440个字节,这些字节以标准的格式排列。

意义/Meaning	数据类 型/Type	值的数 目/Number of values	字节大 小/Size in bytes	字节位置 值/Byte position value	描述/Notes	支持产品
MessageSize	unsigned short	1	2	0000 ~ 0001	消息字节总长度/Total message length in bytes	CR/Nova
	unsigned short	3	6	0002 ~ 0007	保留位	CR/Nova
DigitalInputs	uint64	1	8	0008 ~ 0015	数字输入/Current state of the digital inputs.	CR/Nova
DigitalOutputs	uint64	1	8	0016 ~ 0023	数字输出	CR/Nova
RobotMode	uint64	1	8	0024 ~ 0031	机器人模式/Robot mode	CR/Nova
TimeStamp	uint64	1	8	0032 ~ 0039	时间戳(单位ms)	CR/Nova
	uint64	1	8	0040 ~ 0047	保留位	CR/Nova
TestValue	uint64	1	8	0048 ~ 0055	内存结构测试标准值 0x0123 4567 89AB CDEF	CR/Nova
	double	1	8	0056 ~ 0063	保留位	CR/Nova
SpeedScaling	double	1	8	0064 ~ 0071	速度比例/Speed scaling of the trajectory limiter	CR/Nova
LinearMomentumNorm	double	1	8	0072 ~ 0079	机器人当前动量/Norm of Cartesian linear momentum(需要特定硬 件版本)	CR/Nova
VMain	double	1	8	0080 ~ 0087	控制板电 压/Masterboard: Main voltage	CR/Nova
VRobot	double	1	8	0088 ~ 0095	机器人电 压/Masterboard: Robot voltage (48V)	CR/Nova
IRobot	double	1	8	0096 ~ 0103	机器人电 流/Masterboard: Robot current	CR/Nova
	double	1	8	0104 ~ 0111	保留位	CR/Nova
	double	1	8	0112 ~ 0119	保留位	CR/Nova

意义/Meaning	数据类 型/Type	值的数 目/Number of values	字节大 小/Size in bytes	字节位置 值/Byte position value	描述/Notes	支持产品
ToolAcceleroMeter	double	3	24	0120 ~ 0143	TCP加速度/Tool x,y and z accelerometer values(需要特定硬件版 本)	CR/Nova
ElbowPosition	double	3	24	0144 ~ 0167	肘位置/Elbow position(需要特定硬件 版本)	CR/Nova
ElbowVelocity	double	3	24	0168 ~ 0191	肘速度/Elbow velocity(需要特定硬件版 本)	CR/Nova
QTarget	double	6	48	0192 ~ 0239	目标关节位置/Target joint positions	CR/Nova
QDTarget	double	6	48	0240 ~ 0287	目标关节速度/Target joint velocities	CR/Nova
QDDTarget	double	6	48	0288 ~ 0335	目标关节加速度/Target joint accelerations	CR/Nova
lTarget	double	6	48	0336 ~ 0383	目标关节电流/Target joint currents	CR/Nova
MTarget	double	6	48	0384 ~ 0431	目标关节扭矩/Target joint moments (torques)	CR/Nova
QActual	double	6	48	0432 ~ 0479	实际关节位置/Actual joint positions	CR/Nova
QDActual	double	6	48	0480 ~ 0527	实际关节速度/Actual joint velocities	CR/Nova
lActual	double	6	48	0528 ~ 0575	实际关节电流/Actual joint currents	CR/Nova
ActualTCPForce	double	6	48	0576 ~ 0623	TCP传感器力值(通过六 维力计算)	CR/Nova
ToolVectorActual	double	6	48	0624 ~ 0671	TCP笛卡尔实际坐标 值/Actual Cartesian coordinates of the tool: (x,y,z,rx,ry,rz), where rx, ry and rz is a rotation vector representation of the tool orientation	CR/Nova
TCPSpeedActual	double	6	48	0672 ~ 0719	TCP笛卡尔实际速度 值/Actual speed of the tool given in Cartesian coordinates	CR/Nova
TCPForce	double	6	48	0720 ~ 0767	TCP力值(通过关节电流 计算)	CR/Nova
ToolVectorTarget	double	6	48	0768 ~ 0815	TCP笛卡尔目标坐标 值/Target Cartesian coordinates of the tool: (x,y,z,rx,ry,rz), where rx, ry and rz is a rotation vector representation of the tool orientation	CR/Nova

意义/Meaning	数据类 型/Type	值的数 目/Number of values	字节大 小/Size in bytes	字节位置 值/Byte position value	描述/Notes	支持产品
TCPSpeedTarget	double	6	48	0816 ~ 0863	TCP笛卡尔目标速度 值/Target speed of the tool given in Cartesian coordinates	CR/Nova
MotorTemperatures	double	6	48	0864 ~ 0911	关节温度/Temperature of each joint in degrees celsius	CR/Nova
JointModes	double	6	48	0912 ~ 0959	关节控制模式/Joint control modes	CR/Nova
VActual	double	6	48	960 ~ 1007	关节电压/Actual joint voltages	CR/Nova
HandType	char	4	4	1008 ~ 1011	手系	CR/Nova
User	char	1	1	1012	用户坐标	CR/Nova
Tool	char	1	1	1013	工具坐标	CR/Nova
RunQueuedCmd	char	1	1	1014	算法队列运行标志	CR/Nova
PauseCmdFlag	char	1	1	1015	算法队列暂停标志	CR/Nova
VelocityRatio	char	1	1	1016	关节速度比例(0~100)	CR/Nova
AccelerationRatio	char	1	1	1017	关节加速度比例(0~100)	CR/Nova
JerkRatio	char	1	1	1018	关节加加速度比例 (0~100)	CR/Nova
XYZVelocityRatio	char	1	1	1019	笛卡尔位置速度比例 (0~100)	CR/Nova
RVelocityRatio	char	1	1	1020	笛卡尔姿态速度比例 (0~100)	CR/Nova
XYZAccelerationRatio	char	1	1	1021	笛卡尔位置加速度比例 (0~100)	CR/Nova
RAccelerationRatio	char	1	1	1022	笛卡尔姿态加速度比例 (0~100)	CR/Nova
XYZJerkRatio	char	1	1	1023	笛卡尔位置加加速度比 例(0~100)	CR/Nova
RJerkRatio	char	1	1	1024	笛卡尔姿态加加速度比 例(0~100)	CR/Nova
BrakeStatus	char	1	1	1025	机器人抱闸状态	CR/Nova
EnableStatus	char	1	1	1026	机器人使能状态	CR/Nova
DragStatus	char	1	1	1027	机器人拖拽状态	CR/Nova
RunningStatus	char	1	1	1028	机器人运行状态	CR/Nova
ErrorStatus	char	1	1	1029	机器人报警状态	CR/Nova
JogStatusCR	char	1	1	1030	机器人点动状态	CR/Nova
CRRobotType	char	1	1	1031	机器类型	CR/Nova
DragButtonSignal	char	1	1	1032	按钮板拖拽信号	CR/Nova
EnableButtonSignal	char	1	1	1033	按钮板使能信号	CR/Nova
RecordButtonSignal	char	1	1	1034	按钮板录制信号	CR/Nova

意义/Meaning	数据类 型/Type	值的数 目/Number of values	字节大 小/Size in bytes	字节位置 值/Byte position value	描述/Notes	支持产品
ReappearButtonSignal	char	1	1	1035	按钮板复现信号	CR/Nova
JawButtonSignal	char	1	1	1036	按钮板夹爪控制信号	CR/Nova
SixForceOnline	char	1	1	1037	六维力在线状态	CR/Nova
Reserve2[82]	char	1	82	1038- 1119	保留位	CR/Nova
MActual[6]	double	6	48	1120 ~ 1167	实际扭矩	CR/Nova
Load	double	1	8	1168- 1175	负载重量kg	CR/Nova
CenterX	double	1	8	1176- 1183	X方向偏心距离mm	CR/Nova
CenterY	double	1	8	1184- 1191	Y方向偏心距离mm	CR/Nova
CenterZ	double	1	8	1192- 1199	Z方向偏心距离mm	CR/Nova
User[6]	double	6	48	1200- 1247	用户坐标值	CR/Nova
Tool[6]	double	6	48	1248- 1295	工具坐标值	CR/Nova
TraceIndex	double	1	8	1296- 1303	轨迹复现运行索引	CR/Nova
SixForceValue[6]	double	6	48	1304- 1351	当前六维力数据原始值	CR/Nova
TargetQuaternion[4]	double	4	32	1352- 1383	[qw,qx,qy,qz] 目标四元 数	CR/Nova
ActualQuaternion[4]	double	4	32	1384- 1415	[qw,qx,qy,qz] 实际四元 数	CR/Nova
Reserve3[24]	char	1	24	1416 ~ 1440	保留位	CR/Nova
TOTAL			1440		1440byte package	

其中Robot Mode返回机器人模式:

模式	描述	备注
1	ROBOT_MODE_INIT	初始化
2	ROBOT_MODE_BRAKE_OPEN	抱闸松开
3	ROBOT_MODE_POWER_STATUS	本体掉电
4	ROBOT_MODE_DISABLED	未使能(抱闸未松开)
5	ROBOT_MODE_ENABLE	使能(空闲)
6	ROBOT_MODE_BACKDRIVE	拖拽
7	ROBOT_MODE_RUNNING	运行状态

模式	描述	备注
8	ROBOT_MODE_RECORDING	拖拽录制
9	ROBOT_MODE_ERROR	报警
10	ROBOT_MODE_PAUSE	暂停状态
11	ROBOT_MODE_JOG	点动

• 说明:

□ 开启抱闸,状态为2;
□ 本体掉电,状态为3;
□ 本体下使能,状态为4;
□ 使能成功后,则状态为5;
□ 机器人运行,状态为7;
□ 机器人暂停,状态为10;
□ 机器人进入拖拽模式(使能状态),状态为6;
□ 机器人在拖拽录制,状态为8;
□ 机器人在点动,状态为11;
□ 其中报警优先级最高,其他状态同时存在时,若有报警,先将状态置9;
其中BrakeStatus抱闸状态:
0x01表示第六个轴抱闸打开;
0x02表示第五个轴抱闸打开;
0x03表示五六轴抱闸打开;

如下位表示抱闸状态:

0x04表示第四个轴抱闸打开;

7	6	5	4	3	2	1	0
保留位	保留位	关节一	关节二	关节三	关节四	关节五	关节六

• 其中JointModes关节控制模式:

当前值为8表示位置模式;

当前值为10表示力矩模式;

• 其中RobotType表示机器类型:

RobotType值	代表机型
3	CR3
31	CR3L
5	CR5

RobotType值	代表机型
7	CR7
10	CR10
12	CR12
16	CR16
101	Nova 2
102	NC02L
103	Nova 5
113	CR3V2
115	CR5V2
120	CR10V2
117	CR7V2
122	CR12V2
126	CR16V2
160	CR10V2YD

5.错误码描述

错误码	描述	备注
0	无错误	下发成功
-1	没有获取成功	命令接收失败/建立失败
0 0 0	0 0 0	o o o
-10000	命令错误	不存在下发的命令
-20000	参数数量错误	下发命令中的参数数量错误
-30001	第一个参数的参数类型错误	-30000表示参数类型错误 最后一位1表示下发第1个参数的参数类型错误
-30002	第二个参数的参数类型错误	-30000表示参数类型错误 最后一位2表示下发第2个参数的参数类型错误
0 0 0	0 0 0	0 0 0
-40001	第一个参数的参数范围错误	-40000表示参数范围错误 最后一位1表示下发第1个参数的参数范围错误
-40002	第二个参数的参数范围错误	-40000表示参数范围错误 最后一位1表示下发第1个参数的参数范围错误

错误码	描述	备注
0 0 0	0 0 0	0 0 0