Лекция 11. Поиск кратчайшего пути в графе

Даниил Михайлович Берлизов

Старший преподаватель Кафедры вычислительных систем СибГУТИ **E-mail:** sillyhat34@gmail.com

Курс «Структуры и алгоритмы обработки данных» Весенний семестр, 2021 г.

Понятие графа

• **Граф** (graph) — это совокупность непустого множества V вершин и множества E рёбер

$$G=(V,E)$$
,

$$n=|V|, m=|E|,$$

$$V = \{1, 2, ..., n\}, E = \{(u_1, v_1), (u_2, v_2), ..., (u_m, v_m)\}$$

$$V = \{1, 2, 3, 4, 5\}$$

 $E = \{(1, 5), (2, 5), (2, 3), (2, 4), (3, 4)\}$

Поиск кратчайшего пути в графе

- Имеется взвешенный граф G = (V, E)
- Каждому ребру $(i, j) \in E$ назначен вес w_{ij}
- Заданы начальная вершина $s \in V$ и конечная $d \in V$
- Требуется найти кратчайший путь из вершины s в вершину d (shortest path problem)
- Длина пути (path length, path cost, path weight) это сумма весов рёбер, входящих в него

• Длина пути (5, 4, 6, 7) = $w_{54} + w_{46} + w_{67} = 4 + 6 + 9 = 19$

- Длина пути (5, 4, 6, 7) = $w_{54} + w_{46} + w_{67} = 4 + 6 + 9 = 19$
- Длина пути (5, 3, 8, 7) = 3 + 2 + 16 = 21

- Длина пути (5, 4, 6, 7) = $w_{54} + w_{46} + w_{67} = 4 + 6 + 9 = 19$
- Длина пути (5, 3, 8, 7) = 3 + 2 + 16 = 21
- Длина пути (5, 3, 4, 6, 7) = 3 + 3 + 6 + 9 = 21

- Длина пути (5, 4, 6, 7) = $W_{54} + W_{46} + W_{67} = 4 + 6 + 9 = 19$
- Длина пути (5, 3, 8, 7) = 3 + 2 + 16 = 21
- Длина пути (5, 3, 4, 6, 7) = 3 + 3 + 6 + 9 = 21

• Альтернативные пути:

- **→** (5, 1, 4, 3, 8, 7)
- **→** (5, 2, 3, 8, 7)
- → ...

Постановки задачи о кратчайшем пути

- Задача о кратчайшем пути между парой вершин (single-pair shortest path problem)
 Требуется найти кратчайший путь из заданной вершины s в заданную вершину d
- Задача о кратчайших путях из заданной вершины во все (single-source shortest path problem)
 Требуется найти кратчайшие пути из заданной вершины *s* во все
- Задача о кратчайшем пути в заданный пункт назначения (single-destination shortest path problem)
 Требуется найти кратчайшие пути в заданную вершину d из всех вершин графа
- Задача о кратчайшем пути между всеми парами вершин (all-pairs shortest path problem)
 Требуется найти кратчайший путь из каждой вершины v в каждую вершину u

Алгоритмы поиска кратчайшего пути в графе

Алгоритм	Применение
Алгоритм Дейкстры	Находит кратчайший путь от одной вершины графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса ($w_{ij} \ge 0$)
Алгоритм Беллмана-Форда	Находит кратчайшие пути от одной вершины графа до всех остальных во взвешенном графе. Вес рёбер может быть отрицательным
Алгоритм поиска A* (A star)	Находит путь с наименьшей стоимостью от одной вершины к другой, используя алгоритм поиска по первому наилучшему совпадению на графе
Алгоритм Флойда-Уоршелла	Находит кратчайшие пути между всеми вершинами взвешенного ориентированного графа
Алгоритм Джонсона	Находит кратчайшие пути между всеми парами вершин взвешенного ориентированного графа (должны отсутствовать циклы с отрицательным весом)
Алгоритм Ли (волновой алгоритм)	Находит путь между вершинами <i>s</i> и <i>d</i> графа, содержащий минимальное число промежуточных вершин (трассировка электрических соединений на кристаллах микросхем и печатных платах)
Алгоритмы Витерби, Черкасского,	

- **Алгоритм Дейкстры** (Dijkstra's algorithm, 1959) алгоритм поиска кратчайшего пути в графе из заданной вершины во все остальные (single-source shortest path problem)
- Позволяет найти кратчайшее расстояние от одной из вершин графа до всех остальных
- Применим только для графов без рёбер отрицательного веса и петель ($w_{ij} \ge 0$)
- **Эдсгер Вибе Дейкстра** (Edsger Wybe Dijkstra) нидерландский учёный (структурное программирование, язык Алгол, семафоры, распределённые вычисления)
- Лауреат премии Тьюринга (ACM A. M. Turing Award)

- Дейкстра Э. Дисциплина программирования = A disciple of programming. 1-е изд. М.: Мир, 1978. 275 с.
- Дал У., Дейкстра Э., Хоор К. Структурное программирование = Structured programming. 1-е изд. М.: Мир, 1975. 247 с.

- Пример: найти кратчайший путь из вершины 1 в вершину 5
- Введём обозначения:
 - → H множество посещённых вершин
 - ightarrow D[i] текущее известное расстояние от вершины s до вершины i
 - $\rightarrow prev[i]$ номер вершины, предшествующей i в кратчайшем пути

- Пример: найти кратчайший путь из вершины 1 в вершину 5
- 1. Устанавливаем расстояние D[i] от начальной вершины s до всех остальных в ∞
- 2. Полагаем D[s] = 0
- 3. Помещаем все вершины в очередь с приоритетом Q (min-heap): приоритет вершины i это значение D[i]

	1	2	3	4	5
D:	0	∞	∞	∞	∞

- 4. Запускаем цикл из *п* итераций (по числу вершин):
 - а. Извлекаем из очереди Q вершину v с минимальным приоритетом ближайшую к s вершину
 - б. Отмечаем вершину v как посещенную (помещаем во множество H)
 - в. Возможно, пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u, смежной с v и не включённой в H, проверяем и корректируем расстояние D[u]

```
if D[v] + w(v, u) < D[u] then
    // Путь из s до u через (v, u) короче
    D[u] = D[v] + w(v, u)
    PriorityQueueDecreaseKey(Q, u, D[u])
    prev[u] = v
end if</pre>
```


D:

- 4. Запускаем цикл из *п* итераций (по числу вершин):
 - а. Извлекаем из очереди Q вершину v с минимальным приоритетом ближайшую к s вершину
 - б. Отмечаем вершину v как посещенную (помещаем во множество H)
 - в. Возможно, пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u, смежной с v и не включённой в H, проверяем и корректируем расстояние D[u]

D[3] = 60

	1	2	3	4	5
D:	0	10	60	30	100

- 4. Запускаем цикл из *п* итераций (по числу вершин):
 - а. Извлекаем из очереди Q вершину v с минимальным приоритетом ближайшую к s вершину
 - б. Отмечаем вершину v как посещенную (помещаем во множество H)
 - в. Возможно, пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u, смежной с v и не включённой в H, проверяем и корректируем расстояние D[u]

```
if D[v] + w(v, u) < D[u] then
    // Путь из s до u через (v, u) короче
    D[u] = D[v] + w(v, u)
    PriorityQueueDecreaseKey(Q, u, D[u])
    prev[u] = v
end if</pre>
```


$$D[3] = 50$$

 $D[5] = 90$

	1	2	3	4	5
D :	0	10	50	30	90

- 4. Запускаем цикл из *п* итераций (по числу вершин):
 - а. Извлекаем из очереди Q вершину v с минимальным приоритетом ближайшую к s вершину
 - б. Отмечаем вершину v как посещенную (помещаем во множество H)
 - в. Возможно, пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u, смежной с v и не включённой в H, проверяем и корректируем расстояние D[u]

D[5] = 60

	1	2	3	4	5
D:	0	10	50	30	60

- 4. Запускаем цикл из *п* итераций (по числу вершин):
 - а. Извлекаем из очереди Q вершину v с минимальным приоритетом ближайшую к s вершину
 - б. Отмечаем вершину v как посещенную (помещаем во множество H)
 - в. Возможно, пути из s через вершину v стали короче, выполняем проверку: для каждой вершины u, смежной с v и не включённой в H, проверяем и корректируем расстояние D[u]

	1	2	3	4	5
D:	0	10	50	30	60

- В массиве D[1:n] содержатся длины кратчайших путей из начальной вершины s=1
 - → D[1] длина пути из 1 в 1
 - → D[2] длина пути из 1 в 2
 - → D[3] длина пути из 1 в 3
 - → D[4] длина пути из 1 в 4
 - → D[5] длина пути из 1 в 5

	1	2	3	4	5
D:	0	10	50	30	60

- Какие вершины входят в кратчайший путь из s = 1 в d = 5?
- Как восстановить путь?

- Восстановление кратчайшего пути:
 - → Maccuв prev[i] содержит номер вершины, предшествующей i в пути

	1	2	3	4	5
prev:	-1	1	4	1	3

- Восстанавливаем путь с конца:
 - Вершина 5
 - Вершина prev[5] = 3
 - Вершина prev[3] = 4
 - Вершина prev[4] = 1
- → Кратчайший путь: (1, 4, 3, 5)

	1	2	3	4	5
D:	0	10	50	30	60

Алгоритм Дейкстры (продолжение)

```
for i = 0 to n - 1 do
       PriorityQueueExtractMin(Q) // Извлекаем узел, ближайший к начальному
       H = H + \{v\}
                        // Отмечаем v как посещённый
       for each u in Adj(v) \ H do // Цикл по смежным непосещённым вершинам узла v
           if D[v] + w(v, u) < D[u] then // \Pi y \tau b через и короче текущего пути?
               D[u] = D[v] + w(v, u)
               PriorityQueueDecreaseKey(Q, u, D[u])
               prev[u] = v
           end if
       end for
   end for
end function
```

Восстановление кратчайшего пути

```
function SearchShortestPath(G, src, dst)
    ShortestPathDijkstra(G, src, D, prev)
   i = dst
    pathlen = 1
   while i != src do
       pathlen = pathlen + 1
        i = prev[i]
   end while
    j = 0
    i = dst
   while i != src do
        path[pathlen - j] = i
       j = j + 1
   end while
                                                                                                    T = T_{Dijkstra} + O(|V|)
    return path[], pathlen
end function
```

- Вычислительная сложность алгоритма Дейкстры определяется следующими факторами:
 - 1. Выбор структуры данных для хранения графа (матрица смежности, список смежности)
 - 2. Способ поиска вершины с минимальным расстоянием D[i]:
 - → Очередь с приоритетом: бинарная куча O(logn), фибоначчиева куча, ...
 - → Сбалансированное дерево поиска: красно-чёрное дерево O(logn), АВЛ-дерево, ...
 - → Линейный поиск O(n)

```
Binary heap
 for i = 0 to n - 1 do
     PriorityQueueExtractMin(Q) // Извлекаем узел, ближайший к начальному
                                                                                       O(logn)
     H = H + \{v\}
                            // Отмечаем v как посещённый
     for each u in Adj(v) \ H do // Цикл по смежным непосещённым вершинам узла v
         if D[v] + w(v, u) < D[u] then // \Pi y \tau b через и короче текущего пути?
             D[u] = D[v] + w(v, u)
                                                                                       O(logn)
             PriorityQueueDecreaseKey(Q, u, D[u])
             prev[u] = v
         end if
В худшем случае функция PriorityQueueExtractMin() вызывается n раз, суммарная сложность — O(nlogn)
В худшем случае функция PriorityQueueDecreaseKey() вызывается для каждого из m рёбер графа,
суммарная сложность — O(mlogn)
```

• Вариант 1. D — это массив или список: поиск за время O(n)

$$T_{Diikstra} = O(n^2 + m) = O(|V|^2 + |E|)$$

• **Вариант 2.** *D* — это бинарная куча

$$T_{Diikstra} = O(n \log n + m \log n) = O(m \log n)$$

• Вариант 3. D — это фибоначчиева куча (Fibonacci heap)

$$T_{Dijkstra} = O(m + nlogn)$$

• Вариант 4. ...

В ориентированных ациклических графах (directed acyclic graph) кратчайший путь можно найти за время O(n)

Разреженные и насыщенные графы

Вариант реализации алгоритма Дейкстры	Насыщенный граф m = O(n²)	Разреженный граф $m = O(n)$
D — массив	$T = O(n^2 + m) = O(n^2)$	$T = O(n^2 + m) = O(n^2)$
D — бинарная куча	$T = O(n\log n + m\log n) = O(n^2\log n)$	$T = O(n\log n + m\log n) = O(n\log n)$
D — фибоначчиева куча	$T = O(m + n\log n) = O(n^2)$	$T = O(m + n\log n) = O(n\log n)$

Алгоритм Дейкстры на основе бинарной кучи

- Необходимые операции очереди с приоритетом:
 - → int heap_insert(struct heap *h, int key, int value)
 - → int heap_extract_min(struct heap *h)
 - → void heap_decrease_key(struct heap *node, int newkey)

Алгоритм Дейкстры на основе бинарной кучи

- void heap_decrease_key(struct heap *node, int newkey)
- Изменяем приоритет узла node на newkey (newkey < node.key)
- Восстанавливаем свойства кучи поднимаем элемент вверх по дереву (min-heap)

Домашнее чтение

- Оцените трудоёмкость по памяти алгоритма Дейкстры в следующих случаях:
 - при использовании матрицы смежности и двоичной кучи
 - при использовании списков смежности и двоичной кучи
- Ознакомьтесь с описанием алгоритма Дейкстры в [CLRS, C. 696]

ご清聴ありがとうございました!

Даниил Михайлович Берлизов

Старший преподаватель Кафедры вычислительных систем СибГУТИ **E-mail:** sillyhat34@gmail.com

Курс «Структуры и алгоритмы обработки данных» Весенний семестр, 2021 г.