Viterbi
School of Engineering
Ming Hilch Department
of Electrical and
Compater Engineering

Acoustic-to-Articulatory Inversion for Dysarthric Speech: Are Pre-Trained Self-Supervised Representations Favorable?

Sarthak Kumar Maharana, Krishna Kamal Adidam, Shoumik Nandi, Aiitesh Srivastava

Introduction

- ➤ Dysarthria: Speech disorder causing a decline in speech clarity that affects the articulators like the lips, jaw. tongue, velum, etc.
- Estimating articulatory movements from acoustic embeddings, called acoustic-to-articulatory inversion (AAI), has a one-to-many mapping and is non-linear.
- ➤ Challenge: The collection of acoustic- articulatory data is very tedious due to sensor fall-off.
- ➤ Objective: Perform AAI on dysarthric speech by studying the effectiveness of pre-trained SSL
- features, over the standard MFFCs.

 Findings: Pre-trained SSL models like wav2vec, APC, and DeCoAR, tend to capture the complex dysarthric articulatory trajectories well

Dataset

- ➤TORGO Dataset: 4 speakers 2 healthy controls (MC01, MC04) and 2 patients (F03, F04) with complete parallel acoustic-articulatory data.
- ➤ Electromagnetic Articulography (EMA): Articulatory movements of 6 articulators, at 100 Hz,
- in the X and Y directions.

 Sensor coils were attached to the tip, middle, and
- back of the tongue, as well as the jaw and lips.

 Features: 12-dim articulatory features + 6-dim
- velocity + 6-dim acceleration = 24-dim features.

 ➤ Data: An average of 7535 and 3066 utterances from
 - healthy controls and patients, respectively.

Modeling

- ➤Inputs: Concatenation of pre-trained SSL acoustic features + x-vectors.
- ➤ Model: BLSTM + Linear regression layers.

maharana@usc.edu

Experimental Setup

- ➤ Sampling rate: 100 Hz for articulatory features.

 ➤ Pre-trained SSL models: wav2vec, APC, NPC, DeCoAR, TERA, Mockingjay, vq_wav2vec.
- ➤ Baseline feature: 39-dim MFCCs (25 ms window, 10 ms shift).

 ➤ Training schemes: Seen subject conditions-
- Subject-specific Pooled and Fine-tuned. Unseen subject conditions Leave-one-person-out method.

 Evaluation metric: Pearson Correlation Coefficient
 - (CC) between the ground-truth and predicted articulatory trajectories.

Results

Seen evaluation (averaged CC (std) across all articulators, sentences and folds)

Features	Subject-specific		Pooled		Fine-tuned	
	Healthy Controls	Patients	Healthy Controls	Patients	Healthy Controls	Patients
MFCCs	0.7627	0.5534	0.7493	0.5436	0.7629	0.5808
	(0.0578)	(0.1374)	(0.048)	(0.1194)	(0.0572)	(0.1200)
way2vec	0.7648	0.5591	0.756	0.5808	0.7649	0.593
	(0.0561)	(0.1283)	(0:0437)	(0.1106)	(0.0554)	(0.1216)
APC	0.7544	0.5438	0.7481	0.5717	0.7642	0.5867
	(0.0596)	(0.1265)	(0.0458)	(0.1159)	(0.0551)	(0.1224)
NPC	0.7561	0.5441	0.7501	0.5421	0.7592	0.5563
	(0.059)	(0.1443)	(0.0468)	(0.1116)	(0.0594)	(0.1357)
DeCoAR	0.7699	0.5832	0.7628	0.5928	0.7767	0,6073
	(0.0540)	(0.1344)	(0.0445)	(0.1187)	(0.0562)	(0.1312)
TERA	0.7481	0.5451	0.7515	0.5562	0.7657	0.5702
	(0.0613)	(0.1322)	(0.0492)	(0.1242)	(0.0587)	(0.1348)
Mockingjay	0.7291	0.5121	0.7289	0.5287	0.7428	0.547
	(0.0624)	(0.1437)	(0.0499)	(0.118)	(0.0595)	(0.1326)
vq.wav2vec	0.7192	0.5299	0.7209	0.5631	0.7361	0.5824
	(0.0683)	(0.1337)	(0.0559)	(0.1066)	(0.0631)	(0.1154)

Unseen evaluation (averaged CC (std) across all articul sentences and folds)

	sente	nces and					
Fretures	Unseen subjects						
remares	FIG	F04	MC01	MC04			
MECCs	0.4201	0.4505	0.4439	0,568			
MPCCS	(0.1342)	(0.187)	(0.0861)	(0.1059)			
way2sec	0.4422	0.5126	0.5134	0.5781			
milk Test	(0.1362)	(0.2003)	(0.0879)	(0.1179)			
APC	0.4284	0.4502	0.4879	0.5608			
ARC	(0.1489)	(0.1826)	(0.0875)	(0.1111)			
NPC	0.4255	0.4257	0.4852	0.5458			
NH	(0.1427)	(0.2106)	(0.0659)	(0.1237)			
DeCoAR	0.4659	0.4953	0.5102	0.5938			
Dectivate	(0.1414)	(0.1931)	(0.0863)	(0.1022			
TERA	0.4437	0,4471	0.4901	0.5504			
IEKA	(0.1418)	(0.191)	(0.0937)	(0.1358)			
Mockingiay	0.4182	0.4139	0.4503	0.5031			
SOCKERRY	(0.1329)	(0.1807)	(0.0923)	(0.1407			
	0.4341	0.4823	0.4836	0.5874			
rq.war2wc	(0.1432)	(0.193)	(0.0994)	(0.1149)			

Conclusion

- ➤ Pre-trained SSL features, as acoustic features, are effective for dysarthric AAI.
- ➤ With minimal training data for dysarthric AAI, DeCoAR outperforms MFCCs.
- ➤ Future work: Study effects of SSL models on low-resourced language-mismatched

dysarthric corpus.

