#### Data Mining Presentation

Taylor Piecukonis, Sophia Saenger, Nicolas Corona



#### **Executive Summary**

#### **Electronic Sales**

- Electronics company's sales transactions over a one year period (September 2023 -September 2024) with 16 fields
- Includes information about each customer's demographics, purchasing behaviors, and product types
- 5 product types: smartphones, laptops, laptops, tablets, smartwatches, and headphones
- The methods of exploratory analysis include answering questions of data distribution using the ggplot2, sqldf, and dplyr package in R



#### Cleaning the N/A From the Data Set

- Only one observations included a N/A value in one of the fields (Gender)
- Allowed for simple cleaning of the data
- Deleted the entire observation as we had 20,000 total observations
- Deleting one observation wouldn't significantly impact our analysis of the data

```
#Cleaning data; filter out one record where gender = N/A
cleaned <- final %>% filter(Gender != "#N/A")
```

| cleaned       | 19999 | obs. | of | 16 | variables |
|---------------|-------|------|----|----|-----------|
| Electronic_sa | 20000 | obs. | of | 16 | variables |

#### Cleaning the Purchase Date column

- Need to convert the purchase date column to be in date format in order to perform date-based analyzations such as creating a line chart to view total sales over time
- Use of lubridate package
- Creates a new column titled 'Month' making the dataset now 17 variables

```
#Cleaning data; transform purchase data column in time format
library(lubridate)

# Ensure the column is of type character
cleaned$Purchase.Date <- as.character(cleaned$Purchase.Date)

# Convert the Purchase Date column to Date format
cleaned$Purchase.Date <- ymd(cleaned$Purchase.Date)

# Extract month and year from Purchase Date
cleaned$Month <- floor_date(cleaned$Purchase.Date, "month")</pre>
```



#### Separating the Dataset Into Two Tables

 From our dataset, we created one table dedicated to customer information and another table dedicated to transaction information

- customer\_table 19999 obs. of 4 variables
- transaction\_ta... 19999 obs. of 13 variables

### Visualization #1 - Who are the customers in terms of demographics?

- We want to understand the age, gender, and loyalty membership distribution of our data set



Geom\_pie





Geom\_boxplot

### Visualization #1 - Who are the customers in terms of demographics?



Facet\_wrap



# Visualization #2 - How does total spending differ by gender?



- Want to see if total spending differs by gender
- Overall, average spending by gender seems to be uniform
- Geom\_violin

# Visualization #3 - Do loyalty members spend more on average than non-loyalty members?

- You would expect loyalty members to spend more as they are often targeted with special promotions, discount, and rewards to incentivize more spending

```
#Calculate average amount spent grouped by loyalty member or not
cleaned %>%
   select(Loyalty.Member, Total.Price) %>%
   filter(Loyalty.Member == "Yes") %>%
   summarize(member_average_purchases = mean(Total.Price))
#3138.011

cleaned %>%
   select(Loyalty.Member, Total.Price) %>%
   filter(Loyalty.Member == "No") %>%
   summarize(nonmember_average_purchases = mean(Total.Price))
#3191.975
```



#### Visualization #4 - Are there monthly trends in sales?

Use of lubridate package when cleaning data





### Visualization #5 - Which payment methods are associated with higher spending?

- First trial of making this bar chart, PayPal was two columns (PayPal and Paypal)
- Had to combine the two PayPal columns together (4th step of cleaning)

```
# Combine the two PayPal columns together
cleaned$Payment.Method <- gsub("Paypal", "PayPal", cleaned$Payment.Method)
# Verify the changes
table(cleaned$Payment.Method)</pre>
```

```
# Calculate the average spending amount by payment method avg_spending_by_payment <- aggregate(Total.Price ~ Payment.Method, cleaned, mean)
```



### Visualization #6 - Which product types are most popular?



- The electronics store's customers has the highest demand for smartphones
- Demand for headphones makes up very little of the electronics store's overall demand (aggregate demand of all 5 products)
  - Is it worth keeping headphones as a product type when considering holding and selling costs associated with it?

Visualization #7 - Which Product Type Generates the Most Revenue?

- Smartphone: SKU1001, SKU1004, SMP234
- Tablet: SKU1002, TBL345
- Smartwatch: SKU1003, SWT567
- Laptop: SKU1005, LTP123

arrange(desc(Total\_Revenue))

- Headphones: HDP456

Same product types have different SKUs

Needed to group product type by SKU

Most revenue derived from Smartphone sales; reflects Smartphones being in highest demand

```
# Merge the dataset with the lookup table
data_with_product_type <- cleaned %>%
  left_join(sku_lookup, by = "SKU")

# Group by Product_Type and sum total revenue
revenue_by_product_type <- data_with_product_type %>%
  group_by(Product_Type) %>%
  summarise(Total_Revenue = sum(Total.Price, na.rm = TRUE)) %>%
```



#### Visualization #8 - What is The Average Rating of Each Product?



- The scale of the x-axis makes the rating for Smartphone look higher than it really is
- In general, rating for all products offered by the electronics store is extremely low
- It would be helpful to understand the customer's reasoning for their ratings to better understand what their customers want in a product

### Visualization #9 - What Add-Ons Were Most Frequently Purchased?

- Some add-on were purchase multiple times in one transaction
- While cleaning, had to properly group the add-on options
  - First bar chart had each add-on option twice on the x-axis
- Seems that each items sells the same amount of times (uniform distribution)
- It is worth it for the company to keep these three add on options as they all sell well



# Visualization #10 - Is There a Correlation Between Different Shipping Types and The Month of Purchase?



- Only shows data for months in 2024
- Most people opt for Standard shipping
- We see expedited shipping peak in the month of June
- Not much relationship can be seen between shipping type options and month of purchase

### Visualization #11 - What is the Distribution of Completed and Cancelled Orders?



- Lots of loss revenue from cancelled orders
- Would be helpful for the store to understand the reasoning for cancellation in order to improve

### Visualization #12 - How Does Total Sales Differentiate Among Age Groups?

- Spending peaks in the age group 30 -39
- Overall, pretty uniform spending across age groups (leaving out 'Under 20' and '80 and Above' - this is not surprising)



#### Visualization #13 - What is the Correlation Between Total Number of Purchases and Total Amount Spent?



- We see a positive correlation between total number of purchases and total amount spent by an individual customer
- We would expected this as the more purchases someone makes, the more they spend

#### Query #1 - What are the Demographics of the Customers?

- 10,164 Males
- 9,835 Females
- 4,342 Loyalty Members
- 15,657 Non-Members
  - \*Know your demographic for possible correlations

```
##Query1##
#Count number of males and females from Gender in the dataset
Query1 <- "SELECT COUNT(*) AS Male_Count
          FROM cleaned
          WHERE Gender = 'Male':"
saldf(Query1)
#Male_Count 10,164
Query1.1 <- "SELECT COUNT(*) AS Female_Count
          FROM cleaned
          WHERE Gender = 'Female':"
sqldf(Query1.1)
#Female_Count 9,835
Query1.2 <- "SELECT COUNT(*) AS Loyalty_Member
            FROM cleaned
            WHERE `Loyalty.Member` = 'Yes';"
sqldf(Query1.2)
#Loyalty_Member 4,342
Query1.3 <- "SELECT COUNT(*) AS Nonloyalty_Member
            FROM cleaned
            WHERE `Loyalty.Member` = 'No';"
saldf(Query1.3)
#Nonloyalty_Member 15,657
```

#### Query #2 - Which Months had the Most Total Sales?

- May 2024 recorded the highest sales for the month
- September 2023 recorded the lowest
- Surprising to see sales so low in Dec 2023

\*What months to have promotions.

|    | N   | onth | Total_Sales |
|----|-----|------|-------------|
|    | May | 2024 | 6709042.9   |
| •  | Aug | 2024 | 6706118.6   |
|    | Jun | 2024 | 6668633.6   |
|    | Jan | 2024 | 6619498.2   |
|    | Jul | 2024 | 6535129.5   |
| ,  | Apr | 2024 | 6418253.6   |
|    | Mar | 2024 | 6324367.8   |
|    | Feb | 2024 | 5733696.1   |
| )  | Sep | 2024 | 5037691.1   |
| 0  | 0ct | 2023 | 2318466.4   |
| .1 | Nov | 2023 | 2068434.1   |
| .2 | Dec | 2023 | 1980700.3   |
| .3 | Sep | 2023 | 481961.8    |
|    |     |      |             |

### Query #3 - What Was the Top 5 Total Spending Amounts Among Loyalty Members?

```
# Find top 5 transactions for loyalty members only
Query3 <- "SELECT c.`Customer.ID`, c.Age, c.Gender, SUM(t.`Total.Price`) AS Total_Spending
FROM customer_table c
JOIN transaction_table t
ON c.`Customer.ID` = t.`Customer.ID`
WHERE c.`Loyalty.Member` = 'Yes'
GROUP BY c.`Customer.ID`, c.Age, c.Gender
ORDER BY Total_Spending DESC
LIMIT 5;"</pre>
```

- We were hoping to find an age pattern
- No age or gender correlation with total spending

|   | Customer.ID | Age | Gender | Total_Spending |
|---|-------------|-----|--------|----------------|
| 1 | 2447        | 40  | Female | 106464.52      |
| 2 | 12276       | 52  | Male   | 92883.54       |
| 3 | 11101       | 25  | Male   | 72068.16       |
| 4 | 13823       | 33  | Male   | 67851.84       |
| 5 | 12616       | 25  | Male   | 65698.74       |

#### Query #4 - What Is The Most Popular Product Among Loyalty Versus Non-Loyalty Members?

```
Query4 <- "SELECT t.`Product.Type`, SUM(t.'Quantity') AS Total_Quantity</pre>
          FROM customer table c
          JOIN transaction table t
          ON c. Customer.ID = t. Customer.ID
          WHERE c. Loyalty. Member = 'Yes'
          GROUP BY t. Product. Type
          ORDER BY Total_Quantity:"
saldf(Query4)
```

#### sqldf(Query4)

Product.Type Total\_Quantity Headphones 5656 Laptop 10029 Smartwatch 10158 Tablet 10704 Smartphone 14227 First 2 items were the same until smartwatch/laptop

\*See what loyalty members want promotions on, sweepstakes.

| sq | Ldf | (Query | <i>(</i> 4.1 <i>)</i> |
|----|-----|--------|-----------------------|
|    |     |        |                       |

Product.Type Total\_Quantity Headphones 18078 Smartwatch 35136 35732 Laptop Tablet 36346 Smartphone 54182

Loyalty Members

Non-Loyalty Members

# Query #5 - What is The Average Rating of Each Product Type?

| Product.Type | Average_Rating |
|--------------|----------------|
| Smartphone   | 3.347612       |
| Smartwatch   | 3.023497       |
| Tablet       | 3.015682       |
| Headphones   | 2.953629       |
| Laptop       | 2.953261       |

- Smartphones were the highest rated item.

\*What products to keep on shelves.

| Product.Type | Average_Rating |
|--------------|----------------|
| Smartphone   | 3.301124       |
| Tablet       | 3.000302       |
| Smartwatch   | 2.985719       |
| Laptop       | 2.978610       |
| Headphones   | 2.978402       |

Non-Loyalty Member

#### Query #6 - How Many Times Was Each Add-On Purchased?

Number of types an 'Add-On' was purchased by a customer

 Had to cleaned our data an additional time as when we first ran the query, the types of add-ons were not grouping together correctly

```
transaction_table <- transaction_table %>%
  separate_rows(Add.ons.Purchased, sep = ",") %>%
  mutate(Add.ons.Purchased = trimws(Add.ons.Purchased)) %>%
  filter(Add.ons.Purchased != "")
```

| Add_on            | Purchase_Count |
|-------------------|----------------|
| Impulse Item      | 10234          |
| Accessory         | 10048          |
| Extended Warranty | 9975           |

# Query #7 - How Many Times Were Each Shipping Type Chosen?

```
Query7 <- "SELECT t.`Shipping.Type`, COUNT(*) AS Shipping_Count
    FROM transaction_table t
    JOIN customer_table c
    ON t.`Customer.ID` = c.`Customer.ID`
    WHERE c.`Loyalty.Member` = 'Yes'
    GROUP BY t.`Shipping.Type`
    ORDER BY Shipping_Count DESC;"</pre>
```

| Shipping.Type | Shipping_Count |
|---------------|----------------|
| Standard      | 3178           |
| Express       | 1527           |
| Expedited     | 1517           |
| Same Day      | 1511           |
| 0vernight     | 1480           |

- Standard was the highest average for both

- Overnight/Same Day was more common with Non-members

\*Determine shipping availability

| Shipping.Type | Shipping_Count |
|---------------|----------------|
| Standard      | 10927          |
| 0vernight     | 5541           |
| Same Day      | 5445           |
| Express       | 5378           |
| Expedited     | 5371           |

Non-Loyalty Member

#### Query #8 - What Product Purchased Was Cancelled the Most?

| Product.Type | Number_of_Cancelled_Orders | Total_Cancelled_Value |
|--------------|----------------------------|-----------------------|
| Smartphone   | 1974                       | 7108919               |
| Smartwatch   | 1298                       | 4637682               |
| Tablet       | 1359                       | 3989368               |
| Laptop       | 1287                       | 3930335               |
| Headphones   | 650                        | 1306749               |

- Smartphone, most cancelled, most purchased (68,409).
- Tablet's (47,050) second most purchased second most cancelled
- Smartwatches (45,294) fourth most purchased, fourth cancelled
- Laptop(45,761) third most purchased, third cancelled
- Headphones(23,734)5th most purchased, least cancelled

\*Important to determine QA issues or unpopular products.

#### Query #9 - How Does Total Spending Differ By Age Group?

- 1. Categorizing Data: Groups people into age groups
- 2. **Summarizing Data**: It adds total sales for each age group
- 3. **Connecting Tables**: It combines two tables
- 4. **Grouping Results**: It organizes the data by age group
- 5. **Sorting Results**: It orders the groups Highest to lowest sales

```
Query9 <- "SELECT CASE WHEN Age < 20 THEN 'Under 20'
WHEN Age BETWEEN 20 AND 29 THEN '20-29'
WHEN Age BETWEEN 30 AND 39 THEN '30-39'
WHEN Age BETWEEN 40 AND 49 THEN '40-49'
WHEN Age BETWEEN 50 AND 59 THEN '50-59'
WHEN Age BETWEEN 60 AND 69 THEN '60-69'
WHEN Age BETWEEN 70 AND 79 THEN '70-79'
ELSE '80 and above'
END AS Age_Group, SUM(t.`Total.Price`) AS Total_Sales
FROM customer_table c
JOIN transaction_table t
ON c.`Customer.ID` = t.`Customer.ID`
GROUP BY Age_Group
ORDER BY Total_Sales DESC;"
```

| Α    | ge_Gro | oup | Total_Sales |
|------|--------|-----|-------------|
|      | 30-    | -39 | 21921256    |
|      | 60-    | -69 | 21785938    |
|      | 50-    | -59 | 21443460    |
|      | 40-    | -49 | 21418777    |
|      | 20-    | -29 | 21315935    |
|      | 70-    | -79 | 20220023    |
|      | Under  | 20  | 4135229     |
| 80 a | nd abo | ove | 1705723     |

<sup>\*</sup>Important to know your age demographic for marketing purposes.

#### Query #10 - How Does Total Spending Differ Between Loyalty and Non-Loyalty Members?

• \$75,562,553 difference

Loyalty.Member Total\_Sales
No 104744447
Yes 29201894

\*This query can be important to incentivise workers to offer Loyalty Memberships.

#### Query #11 - What Are the Top Sales Divided By Gender and Product Type?

| Gender | Product.Type | Total_Sales |
|--------|--------------|-------------|
| Female | Smartphone   | 22701107    |
| Male   | Smartphone   | 22685504    |
| Male   | Smartwatch   | 14761039    |
| Female | Smartwatch   | 14541530    |
| Female | Laptop       | 13175207    |
| Male   | Laptop       | 12998128    |
| Male   | Tablet       | 12555808    |
| Female | Tablet       | 11951124    |
| Male   | Headphones   | 4502423     |
| Female | Headphones   | 4074472     |

#### Males bought more

- Smartwatches (219,509)
- Tablets (604,684)
- Headphones (427,951)

#### Females bought more

- Smartphones (15,603)
- <u>Laptops</u> (177,079)

<sup>\*</sup> This can be important if you want to find out what gender to target in marketing strategy.

#### Query #12 - Who Were the Top 10 Spending Customers Who Made More Than One Purchase?

| Customer.ID | Number_of_Purchases | Total_Spending |
|-------------|---------------------|----------------|
| 16357       | 7                   | 34563.70       |
| 16863       | 5                   | 33035.92       |
| 13813       | 5                   | 31830.16       |
| 11476       | 5                   | 31077.61       |
| 12276       | 6                   | 30961.18       |
| 13635       | 5                   | 30260.36       |
| 12749       | 5                   | 29394.56       |
| 15399       | 3                   | 29084.88       |
| 12319       | 3                   | 27352.32       |
| 19996       | 6                   | 27296.78       |

- VIP customers.
- Expected high purchase totals

\*This query can be important to decide who to offer discounts or rewards to

#### Conclusions

- No correlation found between other variables when attempting other graphs due to data used for project(despite Visualization #13)
- We were expecting for spending to be greater among men over women as its an electronic company
- The store could create more incentives to get customers to join loyalty program; could help with customer retention
- Lessons learned: cleaning data is a lot more complex than just deleting N/As

```
> cor(cleaned$Age, cleaned$Total.Price)
[1] 0.003036134
```