

如图,在 $\triangle ABC$ 中,将 $\triangle ABC$ 沿FE折叠使得点B与点D重合。可以得到: $\angle CED+\angle AFD=2\angle B$

折叠模型

连接BD

- : 折叠
- ∴∠FBE=∠FDE
- : ∠DEC, ∠DFA分别是▲DBE, ▲DBF外角
- ∴ ∠DEC=∠BDE+∠DBE, ∠AFD=∠FBD+∠FDB
- ∴ ∠DEC+∠AFD=∠BDE+∠DBE+∠FBD+∠FDB =∠FBE+∠FDE
- ∵∠FBE=∠FDE ∴∠DEC+∠AFD=2∠FBE=2∠FDE

解决问题 如图 1,在 $\triangle ABC$ 中, $\angle ABC=36^{\circ}$.延长 BA 至 G, 任务一 延长 $AC \cong H$, 已知 $\angle BAC$ 、 $\angle CAG$ 的角平分线与 $\angle BCH$ 的角平分线及其反向延长线交于 E、F, 求 $\angle F$ 的度数: 图 1 任务二 如图 2, 在 $\triangle ABC$ 中, $\angle ABC$ 、 $\angle ACB$ 的角平分线交于 点 P, 将 $\triangle ABC$ 沿 DE 折叠使得点 A 与点 P 重合, 若∠1+∠2=82°, 求∠BPC的度数;

任务三 如图 3,在四边形 BCDE 中,EB/CD,点 F 在射线 DE 上运动(点 F 不与 E, D 两点重合),连接 BF, CF, $\angle EBF$ 、 $\angle DCF$ 的角平分线交于点 Q, 若 $\angle EBF$ = α , $\angle DCF$ = β ,直接写出 $\angle Q$ 和 α , β 之间的数量关系.