Main model Parameters/Constants			
Parameter Name	Parameter description	Value	Units
κ_{lat}	A constant defining the probability of cell-ECM contacts breakage: $P_{\rm cell-cell}=1-\exp(-l^2/k_{lat}^2)$	∞ (WT); 6000 (CCM1); 300 (CCM3)	μm
κ_{bott}	A constant defining the probability of cell-ECM contacts breakage: $P_{\text{cell-ECM}} = 1 - \exp(-l^2/k_{bott}^2)$	20 (WT); 5 (CCM1); 20 (CCM3)	μm
κ_z	Spring constant representing cytoskeletal resistance to vertical deformations (spreading)	100 · S	N/m
κ_{xy}	Spring constant representing cytoskeletal resistance to in- plane deformations (stretching)	5 · S	N/m
κ_{pull}	Spring constant of cell-cell and cell-ECM contact	0.5 · S	N/m
R_{long}	The maximal extent of long-range protrusions (the range of cell-cell sensing)	120	μm
R_{short}	The maximal extent of short-range protrusions	40	μm
R_{bott}	The attachment range of ventral protrusions	2.6	μm
N _{bott}	The maximal number of bottom protrusions	19	1
N_{long}	The maximal number of long-range protrusions	5	1
N_{lim}	The limit on the number of extending protrusions	15	1
u_{prot} (lateral)	Growth rate of lateral protrusions in the 'extending' mode	0.017	μm /s
u_{prot} (bottom)	Growth rate of ventral protrusions in the 'extending' mode	0.003	μm /s
u_{retr}	Retraction rate of lateral protrusions in the 'pulling' mode	0.003	μm /s
η_{xy}	Viscous drag in response to x and y displacement	0.4 · S	N*s/m
η_{ab}	Viscous drag in response to cell body elongation	20 · S	N*s/m
η_{arphi}	Viscous drag in response to cell rotation (in xy-plane)	0.13 · S	N*s/m
η_{ξ}	Viscous drag in response to the shift of protrusions bases with respect to the semi-principle axes (in xy-plane)	0.6 · S	N*s/m
R_0	Mean radius of individual cells	6.32	μm
R_{box}	Dish radius (simulation domain)	863 (Figs. 2); 1600 (S.Fig. 3)	μm
N	Total number of cells	466 (Figs. 2); 1600 (S.Fig. 3)	1
D	Density of cells per plating area	$0.0002 \\ (N/\pi R_{box}^2)$	1/μm²
S	Arbitrary scaling parameter	-	unitless

Green – main parameters that are changed to control the emerging patterns

Yellow – protrusions velocities

Orange – Main Hamiltonian parameters (Derivative parameters along every dimension)

Blue – Cells density; Model dimensions