Supplement: Learning Predictive Leading Indicators for Forecasting Time Series Systems with Unknown Clusters of Forecast Tasks

 $\label{eq:magda} \begin{array}{l} \mathbf{Magda} \ \mathbf{Gregorov} \mathbf{\acute{a}}^{1,2} \\ \mathbf{Alexandros} \ \mathbf{Kalousis}^{1,2} \\ \mathbf{St\acute{e}phane} \ \mathbf{Marchand\text{-}Maillet}^2 \end{array}$

MAGDA.GREGOROVA@HESGE.CH ALEXANDROS.KALOUSIS@HESGE.CH STEPHANE.MARCHAND-MAILLET@UNIGE.CH

¹Geneva School of Business Administration, HES-SO University of Applied Sciences of Western Switzerland; ²University of Geneva, Switzerland

Editors: Yung-Kyun Noh and Min-Ling Zhang

Appendix A. Experimental data and transformations

Table 1 lists the measurement sites of the Water Service of the US Geological Survey (http://www.usgs.gov/) whose data we use in the USGS experiments in section 5.2 of the main text. The original data are the daily averages of the physical discharge in cubic feet per second (parameter code 00060) downloaded from the USGS database on 9/9/2016. We have used the data up to 31/12/2014 and before modelling transformed them by taking the year-on-year log-differences.

Table 1: Measurement sites for the river-flow data

Code	Description
06191500	Yellowstone River at Corwin Springs MT
06192500	Yellowstone River near Livingston MT
06214500	Yellowstone River at Billings MT
06295000	Yellowstone River at Forsyth MT
06309000	Yellowstone River at Miles City MT
06327500	Yellowstone River at Glendive MT
06329500	Yellowstone River near Sidney MT
01129200	CONNECTICUT R BELOW INDIAN STREAM NR PITTSBURG, NH
01129500	CONNECTICUT RIVER AT NORTH STRATFORD, NH
01131500	CONNECTICUT RIVER NEAR DALTON, NH
01138500	CONNECTICUT RIVER AT WELLS RIVER, VT
01144500	CONNECTICUT RIVER AT WEST LEBANON, NH
01154500	CONNECTICUT RIVER AT NORTH WALPOLE, NH
01170500	CONNECTICUT RIVER AT MONTAGUE CITY, MA
01184000	CONNECTICUT RIVER AT THOMPSONVILLE, CT

Table 3 lists the macro-economic indicators of Stock and Watson (2012) used in our economic experiment in section 5.2 in the main text. Before using for modelling we have applied the same pre-processing steps as in Stock and Watson (2012).

We have

- transformed the monthly data to quarterly by taking the quarterly averages (column Q in table 3);
- applied the stationarizing transformations described in table 2 (column T in table 3);
- cleaned the data from outliers by replacing observations with absolute deviations from median larger than 6 times the interquartile range by the median of the 5 preceding values.

Т	Transformation
1	$y_t = z_t$
2	$y_t = z_t - z_{t-1}$
3	$y_t = (z_t - z_{t-1}) - (z_{t-1} - z_{t-2})$
4	$y_t = \log(z_t)$
5	$y_t = \ln(z_t/z_{t-1})$
6	$y_t = \ln(z_t/z_{t-1}) - \ln(z_{t-1}/z_{t-2})$

Table 2: Stationarizing transformations

 $\overline{z_t}$ is the original data, y_t is the transformed series

Appendix B. Experimental results

This section provides further details on experimental results not included in the main text due to space limitation.

B.1. Synthetic experiments

Fig. 1 shows the synthesis of the model parameter matrices **W** for the six synthetic experimental designs. The displayed structures correspond to the schema of the **W** matrix presented in Fig. 1 of the main text. For the figure, the matrices were binarised to simply indicate the existence (1) or non-existence (0) of a G-causal link. The white-to-black shading reflects the number of experimental replications in which this binary indicator is active (equal to 1). So, a black element in the matrix means that this G-causal link was learned in all the 20 re-samples of the generating process. White means no G-causality in any of the re-samples. Though none of the sparse method was able to clearly and systematically recover the true structures, VARL1 and VARLG clearly suffer from more numerous and more frequent over-selections than CLVAR which matches the true structures more closely and with higher selection stability (fewer light-shaded elements). The 4th experimental set-up is included in the main text as Fig. 4.

Fig. 2 summarises the scaling properties of the CLVAR method with increasing increasing sample size T and the number of time series K. In each experiment, we selected a single hyper-parameter combination (near the optimal) and measured the time in seconds (on a

TD 11 0	3 F	. 1 .	1 /	c ·
Table 30	Macro-econor	mic data	and trar	netarmatione
Table 9.	Macro-cconor	mic data	and trai	ionormanono

Code	Q	Т	Description
GDP251	Q	5	real gross domestic product, quantity index (2000=100), saar
CPIAUCSL	M	6	cpi all items (sa) fred
FYFF	M	2	interest rate: federal funds (effective) (% per annum,nsa)
PSCCOMR	M	5	real spot mrkt price idx:bls & crb: all commod(1967=100)
FMRNBA	M	3	depository inst reserves:nonborrowed,adj res req chgs(mil\$,sa)
FMRRA	M	6	depository inst reserves:total,adj for reserve req chgs(mil\$,sa)
FM2	M	6	money stock:m2 (bil\$,sa)
GDP252	Q	5	real personal consumpt expend, quantity idx (2000=100), saar
IPS10	M	5	industrial production index - total index
UTL11	M	1	capacity utilization - manufacturing (sic)
LHUR	M	2	unemployment rate: all workers, 16 years & over (%,sa)
HSFR	M	4	housing starts:nonfarm(1947-58),total farm& nonfarm(1959-)
PWFSA	M	6	producer price index: finished goods (82=100,sa)
GDP273	Q	6	personal consumption expenditures, price idx (2000=100), saar
CES275R	M	5	real avg hrly earnings, prod wrkrs, nonfarm - goods-producing
FM1	M	6	money stock: m1(bil\$,sa)
FSPIN	M	5	s& p's common stock price index: industrials (1941-43=10)
FYGT10	M	2	interest rate: u.s.treasury const matur,10-yr.(% per ann,nsa)
EXRUS	M	5	united states, effective exchange rate(merm)(index no.)
CES002	M	5	employees, nonfarm - total private

Figure 1: Synthesis of model parameters W

single Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz) and the number of iterations needed till the convergence of the objective (with 10^{-5} tolerance) for the 20 data re-samples. We used the ℓ_2 regularised solution as a warm start. The empirical results correspond to the theoretical complexity analysis of section 3.2 in the main text. For an experimental set-up with fixed number of series K (and G-causal structure), the run-time typically grows fairly slowly with the sample sizes T. However, the increases are much more important when moving to larger experiments, with higher K and more complicated structures. Here the growth in run-time is accompanied by higher number of iterations. From our experimental set-up it is difficult to separate the effect of enlarging the time-series systems in terms of higher K from the effect of more complicated structures in terms of higher number of clusters and leading indicators. In reality, we expect these to go hand-in-hand so in this sense our empirical analysis complements the theoretical asymptotic complexity analysis of section 3.2 of the main text

Figure 2: Runtime and number of iterations

Table 4 provides the numerical data behind the plots of Fig. 3(a) in the main text. The predictive accuracy is measured by mean squared error (MSE) of 1-step-ahead forecasts relative to the forecasts produced by the VAR with the true generative coefficients (the irreducible error). The relative MSE is averaged over the 500 hold-out points (the models are fixed and the forecasts are produced by sliding forward over the dataset). The *avg* and *std* are the average and standard deviation calculated over the 20 re-samples of the data for each experimental design.

Table 4: Synthetic experiments: Relative MSE over true model

trainSize	stat	AR	VARL2	VARL1	VARLG	CLVAR			
	Ts=10, Clusters=1, Leading=0								
50	avg	1.225	3.113	1.974	2.513	1.772			
	std	0.102	0.637	0.310	0.515	0.643			
70	avg	1.143	2.570	1.503	1.868	1.395			
	std	0.063	0.474	0.162	0.304	0.328			
90	avg	1.098	2.186	1.324	1.545	1.219			
	std	0.043	0.353	0.125	0.203	0.082			
110	avg	1.071	1.926	1.232	1.368	1.160			
	std	0.030	0.268	0.086	0.133	0.055			
130	avg	1.052	1.745	1.172	1.267	1.121			
	std	0.020	0.230	0.062	0.096	0.038			
150	avg	1.043	1.617	1.143	1.214	1.102			
	std	0.017	0.178	0.050	0.076	0.034			
		Ts=10, C	Clusters=1	, Leading	=10				
50	avg	12.564	23.449	42.347	42.055	22.319			
	std	5.258	18.273	32.893	32.115	15.458			
70	avg	12.649	12.712	9.610	9.634	11.692			
	std	4.507	4.565	3.681	3.472	4.769			
90	avg	12.281	4.905	4.943	4.897	4.934			
	std	4.697	1.545	1.513	1.547	1.584			
110	avg	12.583	3.569	3.565	3.562	3.509			
	std	4.316	0.940	0.939	0.940	0.917			
130	avg	12.028	2.527	2.523	2.519	2.477			
	std	3.762	0.480	0.479	0.477	0.486			
150	avg	11.637	2.195	2.194	2.189	2.158			
	std	3.157	0.417	0.417	0.414	0.433			
		Ts=10, 0	Clusters=2	2, Leading	=2				
50	avg	1.429	2.730	1.743	2.124	1.674			
	std	0.167	0.565	0.246	0.357	0.308			
70	avg	1.336	2.296	1.522	1.689	1.405			
	std	0.096	0.346	0.206	0.199	0.139			
90	avg	1.295	1.998	1.398	1.499	1.289			
	std	0.100	0.253	0.139	0.146	0.116			
110	avg	1.258	1.824	1.320	1.396	1.199			
	std	0.064	0.214	0.082	0.103	0.062			
130	avg	1.237	1.686	1.283	1.347	1.156			
	std	0.057	0.181	0.078	0.085	0.050			
150	avg	1.229	1.566	1.255	1.300	1.133			
	std	0.054	0.171	0.076	0.081	0.043			

continues in next page ...

	c	•	
 continues	from	previous	page

trainSize	stat	AR	VARL2	VARL1	VARLG	CLVAR
		Ts=30,	Clusters=3	3, Leading	=6	<u>'</u>
130	avg	1.532	2.424	1.355	1.490	1.261
	std	0.142	0.361	0.091	0.131	0.081
150	avg	1.512	2.245	1.319	1.414	1.225
	std	0.129	0.308	0.081	0.111	0.062
200	avg	1.471	1.861	1.257	1.289	1.172
	std	0.113	0.205	0.062	0.069	0.048
300	avg	1.451	1.586	1.164	1.224	1.100
	std	0.103	0.135	0.039	0.051	0.031
400	avg	1.438	1.375	1.119	1.151	1.073
	std	0.100	0.086	0.028	0.036	0.024
500	avg	1.434	1.298	1.097	1.116	1.059
	std	0.099	0.068	0.023	0.027	0.018
	ı	Ts=50, (Clusters=5	, Leading	=10	
130	avg	3.327	4.376	2.024	2.160	1.746
	std	0.557	0.792	0.306	0.277	0.223
150	avg	3.254	3.920	1.801	1.915	1.577
	std	0.544	0.685	0.205	0.215	0.196
200	avg	3.200	3.203	1.583	1.620	1.324
	std	0.506	0.523	0.146	0.145	0.109
300	avg	3.161	2.280	1.347	1.392	1.128
	std	0.491	0.301	0.083	0.092	0.034
400	avg	3.123	1.844	1.228	1.299	1.091
	std	0.478	0.192	0.053	0.070	0.025
500	avg	3.097	1.622	1.172	1.214	1.081
	std	0.468	0.144	0.039	0.050	0.025
	Γ		clusters=1			
130	avg	1.890	3.362	1.518	1.807	1.734
	std	0.202	0.536	0.118	0.184	0.178
200	avg	1.845	2.855	1.350	1.478	1.415
	std	0.189	0.420	0.078	0.106	0.109
400	avg	1.801	2.196	1.225	1.268	1.180
	std	0.177	0.264	0.050	0.059	0.049
600	avg	1.783	1.820	1.137	1.191	1.108
	std	0.172	0.182	0.031	0.043	0.026
800	avg	1.777	1.644	1.104	1.129	1.084
	std	0.170	0.142	0.023	0.029	0.021
1000	avg	1.774	1.501	1.090	1.100	1.065
	std	0.170	0.115	0.020	0.022	0.019

Table 5 provides the numerical data behind the plots of Fig. 3(b) in the main text. The selection accuracy of the true G-causal links is measured by the average between the false negative and false positive rates. The avg and std are the average and standard deviation calculated over the 20 re-samples of the data for each experimental design.

Table 5: Synthetic experiments: Selection errors of true G-causal links

trainSize	stat	AR	VARL2	VARL1	VARLG	CLVAR		
Ts=10, Clusters=1, Leading=0								
50	avg	0.000	0.500	0.268	0.316	0.151		
	std	0.000	0.000	0.062	0.072	0.153		
70	avg	0.000	0.500	0.245	0.318	0.119		
	std	0.000	0.000	0.027	0.056	0.094		
90	avg	0.000	0.500	0.207	0.301	0.118		
	std	0.000	0.000	0.027	0.026	0.043		
110	avg	0.000	0.500	0.172	0.285	0.122		
	std	0.000	0.000	0.026	0.027	0.034		
130	avg	0.000	0.500	0.141	0.268	0.138		
	std	0.000	0.000	0.017	0.029	0.036		
150	avg	0.000	0.500	0.120	0.245	0.143		
	std	0.000	0.000	0.019	0.027	0.041		
		Γ s=10, \bullet	Clusters=1	I, Leading	=10			
50	avg	0.450	0.000	0.027	0.031	0.043		
	std	0.000	0.000	0.084	0.095	0.112		
70	avg	0.450	0.000	0.013	0.013	0.010		
	std	0.000	0.000	0.054	0.058	0.026		
90	avg	0.450	0.000	0.001	0.000	0.017		
	std	0.000	0.000	0.005	0.000	0.042		
110	avg	0.450	0.000	0.000	0.000	0.000		
	std	0.000	0.000	0.000	0.000	0.000		
130	avg	0.450	0.000	0.000	0.000	0.000		
	std	0.000	0.000	0.000	0.000	0.000		
150	avg	0.450	0.000	0.000	0.000	0.000		
	std	0.000	0.000	0.000	0.000	0.000		
		Ts=10,	Clusters=	2, Leading	g=2			
50	avg	0.222	0.500	0.190	0.268	0.168		
	std	0.000	0.000	0.041	0.041	0.103		
70	avg	0.222	0.500	0.179	0.248	0.096		
	std	0.000	0.000	0.072	0.039	0.061		
90	avg	0.222	0.500	0.159	0.222	0.094		
	std	0.000	0.000	0.067	0.030	0.051		
110	avg	0.222	0.500	0.155	0.200	0.058		
	std	0.000	0.000	0.086	0.031	0.044		
			•	1.	•	i .		

continues in next page \dots

. •	c	•	
 continues	from	previous	page

continues from previous page						
trainSize	stat	AR	VARL2	VARL1	VARLG	CLVAR
130	avg	0.222	0.500	0.192	0.205	0.067
	std	0.000	0.000	0.107	0.076	0.054
150	avg	0.222	0.500	0.210	0.196	0.054
	std	0.000	0.000	0.118	0.064	0.034
		Ts=30,	Clusters=	3, Leading	g=6	
130	avg	0.321	0.500	0.175	0.204	0.173
	std	0.000	0.000	0.015	0.017	0.037
150	avg	0.321	0.500	0.165	0.192	0.176
	std	0.000	0.000	0.016	0.018	0.027
200	avg	0.321	0.500	0.178	0.183	0.165
	std	0.000	0.000	0.046	0.014	0.029
300	avg	0.321	0.500	0.225	0.166	0.107
	std	0.000	0.000	0.012	0.027	0.034
400	avg	0.321	0.500	0.202	0.242	0.098
	std	0.000	0.000	0.013	0.012	0.029
500	avg	0.321	0.500	0.184	0.220	0.095
	std	0.000	0.000	0.009	0.013	0.022
	٦	$\Gamma s=50, \ \Theta$	Clusters=	5, Leading	=10	
130	avg	0.321	0.500	0.226	0.226	0.123
	std	0.000	0.000	0.040	0.010	0.032
150	avg	0.321	0.500	0.211	0.217	0.110
	std	0.000	0.000	0.039	0.011	0.035
200	avg	0.321	0.500	0.212	0.196	0.077
	std	0.000	0.000	0.047	0.009	0.027
300	avg	0.321	0.500	0.257	0.169	0.038
	std	0.000	0.000	0.011	0.021	0.008
400	avg	0.321	0.500	0.236	0.183	0.034
	std	0.000	0.000	0.012	0.047	0.011
500	avg	0.321	0.500	0.224	0.218	0.033
	std	0.000	0.000	0.011	0.033	0.011
	T	s=100, 0	Clusters=	10, Leadin	g=20	
130	avg	0.321	0.500	0.120	0.164	0.260
	std	0.000	0.000	0.006	0.009	0.054
200	avg	0.321	0.500	0.098	0.132	0.159
	std	0.000	0.000	0.006	0.006	0.028
400	avg	0.321	0.500	0.158	0.094	0.121
	std	0.000	0.000	0.006	0.006	0.016
600	avg	0.321	0.500	0.129	0.175	0.104
	std	0.000	0.000	0.004	0.005	0.011
800	avg	0.321	0.500	0.110	0.154	0.100
	std	0.000	0.000	0.004	0.005	0.011
1000	avg	0.321	0.500	0.096	0.137	0.090
	•	•		contir	nues in nev	t nage

continues in next page ...

... continues from previous page

trainSize	stat	AR	VARL2	VARL1	VARLG	CLVAR
	std	0.000	0.000	0.004	0.004	0.013

B.2. Real-data experiments

Table 6 provides the numerical data behind the plots of Fig. 5(a) in the main text. The predictive accuracy is measured by mean squared error (MSE) of 1-step-ahead forecasts relative to the forecasts produced random walk model (= uses the last observed value as the 1-step-ahead forecast). The relative MSE is averaged over the 30 and 300 hold-out points for the Economic and the USGS dataset respectively (the models are fixed and the forecasts are produced by sliding forward over the dataset). The *avg* and *std* are the average and standard deviation calculated over the 20 re-samples of the data for each experimental dataset.

Table 6: Real-data experiments: Relative MSE over random walk

trainSize	stat	AR	VARL2	VARL1	VARLG	CLVAR			
Economic Ts=20									
50	avg	0.413	0.573	0.498	0.498	0.436			
	std	0.035	0.026	0.016	0.018	0.036			
70	avg	0.419	0.489	0.456	0.470	0.409			
	std	0.028	0.025	0.041	0.027	0.025			
90	avg	0.400	0.455	0.420	0.442	0.392			
	std	0.025	0.024	0.023	0.021	0.025			
110	avg	0.384	0.424	0.379	0.395	0.370			
	std	0.022	0.024	0.022	0.029	0.025			
130	avg	0.380	0.406	0.368	0.368	0.367			
	std	0.023	0.026	0.022	0.026	0.024			
			USGS T	s=17					
200	avg	0.912	1.857	1.222	1.222	0.980			
	std	0.013	0.098	0.058	0.046	0.069			
300	avg	0.881	1.320	0.876	0.922	0.746			
	std	0.003	0.040	0.012	0.019	0.035			
400	avg	0.858	0.934	0.760	0.756	0.708			
	std	0.001	0.030	0.026	0.012	0.019			
500	avg	0.855	0.855	0.754	0.714	0.675			
	std	0.003	0.021	0.011	0.007	0.015			
600	avg	0.862	0.858	0.747	0.729	0.679			
	std	0.002	0.004	0.004	0.020	0.024			

Table 7 provides the numerical data behind the plots of Fig. 5(b) in the main text. The sparsity of the learned models is measured by the proportion of active edges in the learned G-causality graph. The *avg* and *std* are the average and standard deviation calculated over the 20 re-samples of the data for each experimental dataset.

Table 7: Real-data experiments: proportion of G-causal graph edges

trainSize	stat	AR	VARL2	VARL1	VARLG	CLVAR
Economic Ts=20						
50	avg	0.050	1.000	0.127	0.207	0.115
	std	0.000	0.000	0.092	0.012	0.024
70	avg	0.050	1.000	0.394	0.172	0.110
	std	0.000	0.000	0.177	0.012	0.026
90	avg	0.050	1.000	0.505	0.166	0.138
	std	0.000	0.000	0.100	0.011	0.053
110	avg	0.050	1.000	0.502	0.412	0.182
	std	0.000	0.000	0.009	0.204	0.040
130	avg	0.050	1.000	0.507	0.570	0.199
	std	0.000	0.000	0.007	0.096	0.042
USGS Ts=17						
200	avg	0.059	1.000	0.618	0.465	0.363
	std	0.000	0.000	0.117	0.061	0.057
300	avg	0.059	1.000	0.581	0.641	0.369
	std	0.000	0.000	0.018	0.010	0.081
400	avg	0.059	1.000	0.629	0.625	0.412
	std	0.000	0.000	0.143	0.005	0.060
500	avg	0.059	1.000	0.823	0.640	0.431
	std	0.000	0.000	0.061	0.009	0.057
600	avg	0.059	1.000	0.801	0.632	0.450
	std	0.000	0.000	0.014	0.090	0.020

References

James H. Stock and Mark W. Watson. Generalized Shrinkage Methods for Forecasting Using Many Predictors. *Journal of Business & Economic Statistics*, 2012.