МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Кафедра «Промышленная электроника»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине «Схемотехника цифровых устройств»

на тему: «Преобразователь индивидуальных данных студента»

Исполнитель: студент гр. 3ПЭ-31с

	А.Г. Вербицкий Руководитель: ст. преподаватель Ю.Е. Котова
Дата проверки: Дата допуска к защите: Дата защиты:	
Оценка работы:	,
Подписи членов комиссии по защите курсовой работы:	

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА5
1.2 Составление таблицы истинности
1.3 Разработка структурной схемы преобразователя 7
1.4 Минимизация булево выражения при помощи карт Карно 8
2 РАЗРАБОТКА ГЕНЕРАТОРА ИМПУЛЬСОВ, РАСЧЕТ ЕГО ЭЛЕМЕНТОВ 10
3 РАЗРАБОТКА МНОГОРАЗРЯДНОГО СЧЕТЧИКА ИМПУЛЬСОВ И РАСЧЕТ
ЕГО ЭЛЕМЕНТОВ14
4 РАЗРАБОТКА ВЫХОДНЫХ РЕГИСТРОВ ПАМЯТИ
5 РАЗРАБОТКА СХЕМЫ ЭЛЕКТРИЧЕСКОЙ ПРИНЦИПИАЛЬНОЙ 20
Список использованных источников
Приложение А Преобразователь индивидуальных данных студента. Схема
электрическая принципиальная
Приложение Б Преобразователь индивидуальных данных студента.
Перечень элементов

					FFTV 4 26 04 02	0.01.21	05.02		
Изм	Лист	№ докум.	Подп.	Дата	ГГТУ 1-36.04.02.01.31с.05 ПЗ				
Pas	зраб.	Вербицкий			Преобразователь	Лит.	Лист	Листов	
Про	O6.				преооразователь индивидуальных данных		3	26	
H. I	контр.				иноивиоуальных оанных студента Пояснительная записка	3	ПЭ-31с	.05	
Ут	в.				Tronditatilonbilan Santaska				

ВВЕДЕНИЕ

Радиолокация, автоматика и телемеханика, спутниковая связь и системы глобального позиционирования, медицина и фотография, аудиовизуальная техника и бытовая радиоэлектроника, системы видеонаблюдения и охранные системы — это области широкого применения разнообразных цифровых устройств и компьютеров.

Это связано с тем, цифровые устройства не требуют индивидуальных настроек, что весьма важно при массовом производстве. Они малогабаритны, надежны, экономичны, многофункциональны. Развитие инфокоммуникационных технологий неразрывно связано с развитием цифровой и микропроцессорной техники.

Увеличение объема выпуска ЭВМ и систем автоматизации регистрации и обработки данных, требует высокой подготовки по базовым инженерным знаниям о принципах работы, построения и применения цифровых устройств.

Это позволяет будущему специалисту привить навыки и умения технически грамотного анализа и синтеза принципиальных схем цифровых трактов радиоэлектронной аппаратуры и ЭВМ, обоснованного выбора структуры и компонентов этих устройств, строящихся на единой элементной базе. Представленная курсовая работа обеспечивает подготовку по затронутым вопросам.

В курсовой работе рассматривается способ преобразования двоичного кода букв улицы из домашнего адреса студента в код Грея в зависимости от расположения буквы и частоты повторения.

Выполнение работы требует составления таблицы истинности, разработки схемы генератора импульсов, разработки схем совпадения кодов и схем сохранения кодов букв в ячейках памяти. Принципиальная схема выполнена на интегральных микросхемах КМОП.

Изм.	Лист	№ докум.	Подпись	Дата

1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА

На основании задания необходимо составить таблицу истинности для пяти входных переменных A, B, C, D, E.

В правой части таблицы должно быть n столбцов F_1 , F_2 , F_3 ,... F_n , rде: n – количество букв в названии улицы, F_n – последняя буква в названии. В каждом из n столбцов правой части 1 будет только в строке соответствующей, коду Грея буквы и порядку следования этой буквы в названии улицы.

Структурная схема должна содержать и выполнять:

- генератор импульсов с частотой повторения $f = (100 + 10 \cdot k)$ к Γ ц и нестабильностью частоты ± 0.5 %, где k количество букв в названии улицы;
- к выходу генератора импульсов необходимо подключить счетчик, формирующий код каждой буквы в названии;
- к выходам счетчика подключить n схем совпадения кодов, обеспечивающих формирование импульсов записи в момент совпадения кода Грея буквы с младшими пятью разрядами кода счетчика в соответствии с порядком следования буквы в названии;
- по каждому из этих n импульсов произвести запись кода Грея буквы в соответствующий регистр памяти.

Принципиальная схема выполнена на ИМС КМОП.

1.2 Составление таблицы истинности

Составим таблицу истинности исходя из числа и значения букв в названии улицы. Переменная ABCDE содержит код Грея буквы (см. таблицу 1.2), двоичное число F1...Fn кодирует название улицы (F1 — первая буква, Fn — последняя буква). В столбце Fn значение 1 выставляется в соответствии с порядком следования буквы в названии улицы.

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 1.1 – Таблица соответствия порядкового номера буквы алфавита коду Грея

Буква алфавита	Порядковый номер	Двоичный код	Код Грея
A	1	00001	00001
Б	2	00010	00011
В	3	00011	00010
Γ	4	00100	00110
Д	5	00101	00111
E	6	00110	00101
Ж	7	00111	00100
3	8	01000	01100
И	9	01001	01101
Й	10	01010	01111
К	11	01011	01110
Л	12	01100	01010
M	13	01101	01011
Н	14	01110	01001
0	15	01111	01000
П	16	10000	11000
P	17	10001	11001
C	18	10010	11011
T	19	10011	11010
У	20	10100	11110
Ф	21	10101	11111
X	22	10110	11101
Ц	23	10111	11100
Ч	24	11000	10100
Ш	25	11001	10101
Щ	26	11010	10111
Ы	27	11011	10110
Ь	28	11100	10010
Э	29	11101	10011
Ю	30	11110	10001
R	31	11111	10000

Таблица 1.2 – Таблица истинности преобразователя

Улица	С	О	В	Е	T	С	К	A	Я
ABCDE	F1	F2	F3	F4	F5	F6	F7	F8	F9
11011	1	0	0	0	0	0	0	0	0
01000	0	1	0	0	0	0	0	0	0
00010	0	0	1	0	0	0	0	0	0

Изм.	Лист	№ докум.	Подпись	Дата

Окончание таблицы 1.2

Улица	С	О	В	Е	T	С	К	A	Я
00101	0	0	0	1	0	0	0	0	0
11010	0	0	0	0	1	0	0	0	0
11011	0	0	0	0	0	1	0	0	0
01110	0	0	0	0	0	0	1	0	0
00001	0	0	0	0	0	0	0	1	0
10000	0	0	0	0	0	0	0	0	1

1.3 Разработка структурной схемы преобразователя

Позиционный код буквы состоит из двух составляющих:

- 1 Код Грея буквы младшие разряды ABCDE.
- 2 Позиционный код буквы в названии четыре старших разряда FGHJ. Позиционный код представлен в таблице 1.3.

Таблица 1.3 – Позиционный код

№	Буква	FGHJ	ABCDE
1	С	0000	11011
2	О	0001	01000
3	В	0010	00010
4	Е	0011	00101
5	T	0100	11010
6	С	0101	11011
7	К	0110	01110
8	A	0111	00001
9	R	1000	10000

Назначение блоков структурной схемы:

 $T\Gamma$ – тактовый генератор;

СТ – двоичный счетчик;

ССК – схема совпадения кодов, формирующая управляющий сигнал при совпадении двоичного кода на выходах счетчика с позиционным кодом FGHJABCDE;

РГ – регистр памяти, хранящий код каждой буквы.

Изм.	Лист	№ докум.	Подпись	Дата

Структурная схема преобразователя представлена на рисунке 1.1.

Рисунок 1.1 – Структурная схема преобразователя

1.4 Минимизация булево выражения при помощи карт Карно

Преобразуем первоначальную таблицу истинности, объединив в одном столбце правой части таблицы все единицы всех столбцов правой части таблицы истинности.

Таблица 1.4 – Преобразованная таблица истинности

No	Буква	ABCDE	F
1	С	11011	1
2	0	01000	1
3	В	00010	1
4	Е	00101	1
5	T	11010	1
6	С	11011	1
7	К	01110	1
8	A	00001	1
9	Я	10000	1

Изм.	Лист	№ докум.	Подпись	Дата

По полученной таблице истинности запишем булево выражение

Произведем минимизацию булево выражения при помощи карт Карно

Минимизированное выражение имеет вид

$$F = AB\overline{C}D + \overline{A}B\overline{C}\overline{D}\overline{E} + \overline{A}\overline{B}\overline{C}D\overline{E} + \overline{A}\overline{B}\overline{D}E + \overline{A}BCD\overline{E} + A\overline{B}\overline{C}D\overline{E}$$

Изм.	Лист	№ докум.	Подпись	Дата

2 РАЗРАБОТКА ГЕНЕРАТОРА ИМПУЛЬСОВ, РАСЧЕТ ЕГО ЭЛЕМЕНТОВ

Специализированные микросхемы — одновибраторы, таймеры — выпускают в различных сериях ТТЛ и КМОП. Они обладают широкими функциональными возможностями, но самое главное — имеют значительно меньшие погрешности длительности выходных импульсов, а также слабую зависимость длительности от температуры, питающего напряжения, от времени и от замены микросхемы.

Так, для К564АГ1 приводятся данные о погрешности длительности импульса порядка 0.5 %, в то время, как обычные одновибраторы и генераторы, собранные на логических элементах И-НЕ, ИЛИ-НЕ, D-триггерах или триггерах Шмита, имеют погрешность длительности импульса порядка ± 30 %.

По заданию относительная нестабильность частоты генератора ± 0.5 %. Используем микросхему К1564АГ3, которая содержит два ждущих мультивибратора (ЖМВБР) с входами перезапуска и предварительной установки в ноль (сброса). Автогенератор (генератор) строится на двух ЖМВБР по кольцевой схеме. Временная диаграмма работы ИМС приведена на рисунке 2.1.

- 1. Запуск по спаду положительного импульса
- 2. Запуск по фронту отрицательного импульса
- 3. Запуск по спаду положительного импульса
- 4. Перезапуск по спаду положительного импульса
- 5. Очистка
- 6. Запуск

Рисунок 2.1 – Временная диаграмма ИМС

						Лист
					ГГТУ 1-36.04.02.01.31с.05 ПЗ	10
Изм.	Лист	№ докум.	Подпись	Дата		10

Условное графическое обозначение микросхемы K1564AГ3 представлено на рисунке 2.2.

Рисунок 2.2 – Условное графическое обозначение К1564АГ3

Основные технические параметры микросхемы приведены в таблице 2.1.

Таблица 2.1 – Технические параметры К1564АГ3

U _{ИП,} В	$U^0_{BMX,}B$	$U^{1}_{BMX,}B$	$I^0_{BMX,}$	$I^{1}_{BMX,}$	t ^{0,1} _{3Д.Р,} нс	t ^{1,0} _{ЗД.Р,} нс	$I_{\Pi OT,}$ м A
			мкА	мкА			
5	0,1	4,4	0,1	0,1	210	143	3,2

Каждый мультивибратор имеет два выхода Q1 и $\overline{\rm Q2}$, Вход сброса $\overline{\rm CLR}$ (активный уровень — низкий) и два входа запуска D — прямой с активным высоким уровнем, $\overline{\rm D2}$ — инверсный с активным низким уровнем. Для микросхемы К564АГ3 длительность импульса при C >0,001 нФ определяется по формуле

Изм.	Лист	№ докум.	Подпись	Дата

$$T = R \cdot C. \tag{2.1}$$

Так же номиналы R и C можно определить по графику представленному на рисунке 2.3.

Рисунок 2.3 – Диаграмма для определения периода импульса К1564АГ3

На рисунке 2.4 представлена принципиальная схема автогенератор построенная на двух ЖМВБР по кольцевой схеме.

Рисунок 2.4 – Принципиальная схема автогенератора

						Лист
					ГГТУ 1-36.04.02.01.31с.05 ПЗ	12.
Изм.	Лист	№ докум.	Подпись	Дата		

Расчет параметров генератора на частоту

$$f = (100+10 \cdot k) = 100 + 10.9 = 190 \text{ к}\Gamma\text{ц},$$

где k = 9 -количество букв в названии улицы.

Параметры генератора равны:

- полупериод колебаний

$$T = T_1 = T_2 = 1/(2f) = 1/(2 \cdot 190 \cdot 10^3) = 2,632 \cdot 10^{-6} c;$$

- принимаем $C = C_1 = C_2 = 100 \text{ п}\Phi$;
- сопротивление резистора $R = R_1 = R_2$ определим из выражения (2.1)

$$R = \frac{T}{C} = \frac{2,632 \cdot 10^{-6}}{100 \cdot 10^{-12}} = 26320 \,\text{Om}.$$

Сопротивление выбираем из ряда E192 равное 26,4 кОм. Выбираем резисторы и конденсаторы [1]:

$$C_1$$
, $C_2 - K10-17a-50 B-100 \pi \Phi \pm 5 \%$,

$$R_1,\,R_2-C2\text{-}29B\text{-}0,\!125\text{-}26,\!4$$
 кОм $\pm 0,\!5$ %.

	·			
Изм.	Лист	№ докум.	Подпись	Дата

3 РАЗРАБОТКА МНОГОРАЗРЯДНОГО СЧЕТЧИКА ИМПУЛЬСОВ И РАСЧЕТ ЕГО ЭЛЕМЕНТОВ

Счетчик строим на основе микросхемы K1554ИE23 [2]. ИМС ИЕ23 содержит два одинаковых четырехразрядных счетчика с параллельным выходом. Условное графическое обозначение счетчика приведено на рисунке 3.1.

Рисунок 3.1 – Условное графическое обозначение К1554ИЕ23

Подача счетных импульсов может производиться высоким уровнем на вход C, либо в инверсной логике низким уровнем на вход V. В первом случае разрешение счета устанавливается высоким уровнем на входе V, а во втором – низким уровнем на входе C.

Каждый из четырехразрядных счетчиков имеет статический вход сброса R. Если на вход сброса R подать напряжение высокого уровня, то счетчик по всем выходам устанавливается в нулевое состояние (низкий уровень напряжения). Когда на вход R подано напряжение низкого уровня, то с приходом на вход C тактового импульса начнется режим счета. Основные технические параметры счетчика представлены в таблице 3.1.

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 3.1 – Технические параметры К1554ИЕ23

U _{ИП,} В	$I_{\Pi OT,}$ мк A	$U^0_{BMX,}B$	$U^{1}_{BbIX,}B$	$I^0_{BMX, MA}$	$I_{BMX, MA}^{l}$	t ^{0,1} _{ЗД.Р,} нс	t ^{1,0} _{ЗД.Р,} нс
5	8	0,32	4,86	86	-75	20	20

Разрядность счетчика равна

$$5 + \log_2 n = 5 + \log_2 9 = 5 + \ln 9 / \ln 2 = 8,2 \approx 9,$$
 (3.1)

где n -количество букв в названии улицы, n = 9.

Каскадная схема соединения счетчиков при числе разрядов N=9 имеет вид, представленный на рисунке 3.2.

Рисунок 3.2 — Каскадное соединение счетчиков при числе разрядов N=9

						Лист
					ГГТУ 1-36.04.02.01.31с.05 ПЗ	15
Изм.	Лист	№ докум.	Подпись	Дата		10

Цепочка C_3 , R_3 обеспечивает сброс при подаче электропитания. В первый момент времени при включении питания напряжение на емкости равно нулю и на вход инвертора DD4.1 подается логический «0», таким образом, на выходе инвертора установлена логическая «1» и осуществляется сброс счетчиков. Затем происходит заряд емкости через сопротивление R_3 и на входе инвертора DD4.1 устанавливается логическая «1», а на его выходе логический «0» и соответственно для схемы счетчиков разрешен режим счета.

В качестве инвертора используем микросхему К1554ЛН1 [2]. Условное графическое обозначение микросхемы приведено на рисунке 2.3. Основные технические параметры микросхемы К1554ЛН1 представлены в таблице 2.1.

Входная емкость микросхемы составляет 4,5 пФ, а максимальная емкость нагрузки, при которой характеристики микросхемы не выходят из заданных пределов, не превышает 500 пФ.

Для КМОП микросхем сопротивление резистора R_3 выбирают равным от 10 кОм до 10 МОм. Выбираем резисторы и конденсаторы [1]: C_3 – K10-17а-50 В-100 пФ ±5 %, R_3 – C2-29В-0,125-10 кОм ±0,5 %.

			·	
Изм.	Лист	№ докум.	Подпись	Дата

4 РАЗРАБОТКА ВЫХОДНЫХ РЕГИСТРОВ ПАМЯТИ

В качестве элементов памяти используем регистр К1554ИР35 [2]. Условное графическое обозначение регистра представлено на рисунке 4.1.

Рисунок 4.1 – Условное графическое обозначение К1554ИР35

Основные технические параметры счетчика представлена в таблице 4.1.

Таблица 4.1 – Технические параметры К1554ИР35

U _{ИП,} В	Іпот, мкА	U^0_{BMX} , B	U¹ _{вых,} В	$I^0_{BHX, MA}$	$I_{BHX, MA}^{l}$	t ^{0,1} _{ЗД.Р,} нс	t ^{1,0} _{ЗД.Р,} нс
5	8	0,1	4,4	86	-75	10	9

Микросхема ИР35 — это восьмиразрядный регистр с параллельным вводом информации. Логическая структура микросхемы приведена на рисунке 4.2.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 4.2 – Структура регистра ИР35

Микросхема имеет две группы информационных выводов:

- входы для параллельной записи информации D0.0-D0.7;
- выходы для параллельного считывания информации D0-D7;
- вход для подачи тактовых импульсов С;
- вход сброса в состояние логического нуля R.

При логическом «0» на входе R независимо, от состояния других входов на выходах D0-D7 регистру устанавливается логический «0». Запись производится фронтом импульса на входе R должен быть логическая «1».

			·	
Изм.	Лист	№ докум.	Подпись	Дата

Принципиальная схема для одного разряда схемы показана на рисунке 4.3.

Рисунок 4.3 – Схема одного разряда

Цепочка C_4 , R_4 обеспечивает сброс при подаче электропитания. В первый момент времени при включении питания напряжение на емкости равно нулю и на вход R регистра подается логический «0», тогда согласно рисунка 4.2, осуществляется сброс регистра. Затем происходит заряд емкости через сопротивление R_4 и на входе R регистра устанавливается логическая «1», и соответственно для схемы регистра разрешен режим работы.

Входная емкость микросхемы составляет 4,5 п Φ , а максимальная емкость нагрузки, при которой характеристики микросхемы не выходят из заданных пределов, не превышает 500 п Φ .

Для КМОП микросхем сопротивление резистора R_4 выбирают равным от 10 кОм до 10 МОм. Выбираем резисторы и конденсаторы [1]: C_4 – K10-17a-50 B-100 пФ ±5 %, R_4 – C2-29B-0,125-10 кОм ±0,5 %.

Изм.	Лист	№ докум.	Подпись	Дата

5 РАЗРАБОТКА СХЕМЫ ЭЛЕКТРИЧЕСКОЙ ПРИНЦИПИАЛЬНОЙ

Устройство преобразователя основано на схеме совпадения кодов. Схема совпадения кодов построена на основе логического элемента К176ЛИ1[2], выполняющего логическую функцию mИ с добавлением инвертора на выходе и логического элемента К1554ЛН1, выполняющего логическую функцию НЕ.

Условное графическое обозначение микросхем К176ЛИ1 представлено на рисунке 5.1.

Рисунок 5.1 – Условное графическое обозначение К176ЛИ1

Основные технические параметры микросхемы К176ЛИ1 представлены в таблице 5.1.

Таблица 5.1 – Технические параметры К176ЛИ1

$U_{ m M\Pi}, B$	$I_{\Pi OT,}$ мА	$U^0_{ m BMX}, B$	U^{1}_{BMX} , B	$I^0_{BLIX,MA}$	$I_{BHX,MA}^{1}$	t ^{0,1} _{ЗД.Р,} нс	t ^{1,0} _{ЗД.Р,} нс
5	0,7	0,95	3,6	0,4	0,5	200	120

Изм.	Лист	№ докум.	Подпись	Дата

Принципиальная схема для одного разряда схемы совпадения кодов представлена на рисунке 5.2.

Рисунок 5.2 – Схема совпадения кодов одного разряда

Схема совпадения кодов на основе логического элемента К176ЛИ1, выполняющего логическую функцию 9И, формирует управляющий сигнал для записи данных в регистр при совпадении двоичного кода на выходах счетчика с позиционным кодом FGHJABCDE.

Изм.	Лист	№ докум.	Подпись	Дата

Для формирования позиционного кода в соответствии с таблицей 1.3 на входы логического элемента К176ЛИ1 подается сигнал непосредственно со счетчика, что соответствует логической единице в позиционном коде, или инвертированный сигнал, что соответствует логическому нулю в позиционном коде.

Выбираем номинальное напряжение источника питания равным +5 В. Номинальный ток оценим на основании данных таблицы 5.2.

Таблица 5.2 – Ток потребления элементов цепи

Элемент	Кол-во	$I_{\Pi O T}$, м A	Итого
			$I_{\Pi O T}$, м A
		+5 B	+5 B
К1564АГ3	1	3,2	3,2
К1554ИЕ23	2	0,008	0,016
К1554ЛН1	2	0,004	0,008
К1554ИР35	9	0,008	0,072
К176ЛИ1	9	0,7	6,3
Итого			9,596

Принимаем номинальный ток равным $I_{HOM} \approx 10$ мА.

Потребляемая мощность равна

$$P_{\text{HOT}} = U_{\text{HUT}} \cdot I_{\text{HOM}} = 5 \cdot 0,010 = 0,05 \text{ Bt.}$$
 (5.1)

Изм.	Лист	№ докум.	Подпись	Дата

ЗАКЛЮЧЕНИЕ

В результате выполнения курсовой работы была составлена таблица истинности для 5-ти входных переменных A, B, C, D, E и переменных F1...Fn, обозначающих буквы в названии улицы.

Разработана схема генератора импульсов с частотой повторения 190 кГц и нестабильностью частоты $\pm 0,5$ %.

Подсчет импульсов генератора производится счетчиком импульсов с числом разрядов N=9, выполненном по каскадной схеме. Пять младших разряда счетчика сравниваются с кодом Грея буквы, по результату совпадения производится разрешение на запись в ячейку памяти кода буквы. Для этого была разработана схема совпадения кодов.

Выбор буквы осуществляется дешифрацией четыре первых разрядов счетчика в соответствии с таблицей истинности. В качестве ячеек памяти используются однобайтные регистры памяти.

В качестве базовых элементов при построении принципиальной схемы выбраны элементы КМОП логики.

Изм.	Лист	№ докум.	Подпись	Дата

Список использованных источников

- 1. Акимов, Н.Н. Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: справочник / Н. Н. Акимов. Мн. : Беларусь, 1994.
- 2. Петровский, И. И. Логические ИС КР1533, КР1544 : справочник / И. И. Петровский, А. В. Прибыльский, А. А. Троян. М. : ТОО Бином, 1993.
- 3. Зельдин, Е. А. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре / Е. А. Зельдин. М.: Энергоатомиздат, 1986 г.
- 4. Потемкин, И. С. Функциональные узлы цифровой автоматики / И. С. Потемкин. М.: Энергоатомиздат, 1988.
- 5. Пухальский, Г. И. Проектирование дискретных устройств на интегральных микросхемах: справочник / Г. И. Пухальский, Т. Я. Новосельцева. М.: Радио и связь, 1990.
- 6. Шило, В. Л. Популярные цифровые микросхемы: справочник / В. Л. Шило. М. : Радио и связь, 1989.
- 7. Янсен, Й. Курс цифровой электроники. В 4-х т. / Й. Янсен. М. : Мир, 1987.

			·	
Изм.	Лист	№ докум.	Подпись	Дата

ПРИЛОЖЕНИЕ А

Преобразователь индивидуальных данных студента.

Схема электрическая принципиальная

Рисунок А.1 – Схема электрическая принципиальная

Изм.	Лист	№ докум.	Подпись	Дата

приложение б

	103. 103н.	Наименование			Кол.	Примечание	
C1, C2		K10-17a-50 B-100	nΦ ±10%			2	
<i>C3, C</i> 4		K10-17α-50 B-100 nΦ ±10%					
				<u>M</u>	<u>икросхемы</u>		
DD1		К1564АГЗ				1	
DD2, D	DD3	К1554ИЕ23				2	
DD4, D	DD5	К1554ЛН1				2	
DD6D	D14	К1554ИР35				9	
DD15l	D23	К176ЛИ1				9	
				<u>P</u>	Резисторы		
R1, R2		C2-29B-0,125-26,4	кОм ±0,5%			2	
R3, R4		С2-29B-0,125-10 к	Ом ±0,5%			2	
XP1		Разъем ШР16П2ЭШ	U5-К вилка			1	
					ГГТУ 1-36.04.02	.01.31	с.05 ПЭЗ
	Лист	№ докум.	Подпись	Дата			
Разра		Верδицкий			Преобразователь	/lum	
Прове Рецен					индивидуальных данных -		1
Н. Кол					студента		3ПЭ-31с.05
н. контр. Утверд.					Перечень элементов		26