124. L'équation de la droite passant par l'intersection des droites
$$2y+x-3=0$$

et $y-3x+1=0$ et dont l'abscisse à l'origine vaut $-\frac{1}{3}$ est :
1. $11y-12x-4=0$ 3. $3y-16x+8=0$ 5. $3y-2x-2=0$ (B.-2004)

1. Try
$$-12x = 4$$

2. $y + 4x - 4 = 0$
1. Try $-12x = 4$
4. $y - 4x - 4 = 0$
1. Try $-12x = 4$
4. $y - 4x - 4 = 0$
1. Try $-12x = 4$
2. $y + 4x - 4 = 0$
1. Try $-12x = 4$
3. Try $-12x = 4$
4. $y - 4x - 4 = 0$
1. Try $-12x = 4$
1.

d'amplitude $\alpha = \text{arc tg } \frac{3}{4}$ (α se termine dans le premier quadrant). Les anciennes coordonnées du point P étaient (2, 1). Dans le nouveau système, ses coordonnées sont : $1.\left(\frac{8}{5}, -\frac{9}{5}\right) \quad 2.(3, 4) \quad 3.(2, 1) \quad 4.\left(\frac{4}{3}, \frac{4}{5}\right) \quad 5.\left(\frac{11}{5}, -\frac{2}{5}\right) \quad (M.-2004)$

126. La droite d'équation
$$(16 - k)y + 5(5 - k)x + k^2 - 2k + 1 = 0$$

(k un paramètre réel) est parallèle à l'axe Oy si k = 1. 5 2. $\frac{9}{4}$ 3. 1 4. 16 5. $\frac{41}{6}$ (B.-2004)

- 1. le triangle ABC est équilatère
- la surface du triangle ABC vaut 29 unités d'aire
- 3. les points A, B, C ne sont pas alignés 4. Le centre de gravité du triangle ABC a pour coordonnées $\left(5, \frac{1}{3}\right)$
- 5. les mesures algébriques des côtés AB et AC sont inégales (M.-2005)128. Les équations des droites passant par le point (2, 3) et situées à une

distance égale à
$$\frac{\sqrt{5}}{5}$$
 unités de l'origine sont de la forme ax + by + c = 0 et a'x + b'y + c' = 0. La valeur numérique de l'expression abc + a'b'c'

et
$$a'x + b'y + c' = 0$$
. La valeur numérique de l'expression auc l'a s'est égale à :
1 4 434 2. 5 432 3. 5 532 4. 4 432 5. 5 434 (M.-2005)

2. 5 432 1. 4 434 129. On considère les points $P_1(-2,0)$, $P_2(1,0)$, $P_3(5,0)$ et $P_4(a,0)$. La valeur de a pour que les points P1, P2, P3 et P4 forment un quaterne harmonique est:

harmonique est :
1.
$$\frac{6}{11}$$
 2. 2 3. $\frac{34}{11}$ 4. $\frac{41}{11}$ 5. $\frac{12}{11}$ (M.-2005)