Full Solution: $N \leq 20$

Do dynamic programming on subsets. The DP state for a subset $S = \{c_1, c_2, \ldots, c_n\}$ of the cowphabet is $\min_p (\operatorname{evaluate}(p))$ over all n! permutations p of S. The DP transition for all nonempty S is as follows:

$$\mathtt{dp}[S] = \min_{c_j \in S} \left(\mathtt{dp}[S \setminus \{c_j\}] + \sum_{c_k \in S} (\# ext{ occurrences of } c_j c_k)
ight)$$

0	1	2	3	4	5	6	7	8	9
m	i	1	d	r	e	d	r	e	e

• • •

ans=dp[mildre]