F - 3 - 2014

# 경질폴리우레탄폼 취급시 화재예방에 관한 기술지침

2013. 06.

한국산업안전보건공단

#### 안전보건기술지침의 개요

o 제정자 : 임 용 순 o 개정자 : 한 우 섭 o 개정자 : 이 근 원

#### o 제·개정 경과

- 2008년 4월 화학안전분야 제정위원회 심의
- 2008년 5월 총괄제정위원회 심의
- 2011년 12월 화학안전분야 제정위원회 심의(개정, 법규개정조항 반영)

#### o 관련규격 및 자료

- Alliance for the polyurethanes industry, "Fire safety guidelines for use of rigid polyurethane and polyisocyanurate foam insulation in building construction", USA, 2014.
- Spray polyurethane foam alliance, "Spray polyurethane foam systems for cold storage facilities operating between  $-40\,^\circ$ C and +  $10\,^\circ$ C", USA, 2014
- American Chemical Council, "Working with Polyurethane Foam Products; During New Construction, Retrofit and Repair", 2011.
- KS M 3809, "경결질 폼 우레탄 단열재", 2006.
- 국토해양부 고시 제2011 39호, "건축물 내부 마감 재료의 난연 성능 기준", 2011

#### o 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2014년 07월 21일

제 정 자 : 한국산업안전보건공단 이사장

## 경질폴리우레탄폼 취급시 화재예방에 관한 기술지침

#### 1. 목 적

이 지침은 다관능 이소시아네이트(이하 "이소시아네이트"라 한다)와 폴리올 등을 발포, 성형한 단열재용 경질폴리우레탄폼(이하 "우레탄폼"이라 한다)을 취급하는 작업 중 발생할 수 있는 화재예방을 위한 기술지침을 정하는 데 그 목적이 있다.

#### 2. 적용범위

이 지침은 냉동창고 또는 일반 건설현장 등에서 이소시아네이트와 폴리올 등을 혼합·발포하여 단열재용 우레탄폼을 제조·취급하는 작업에 적용한다.

#### 3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
  - (가) "우레탄폼"이라 함은 한국산업규격 KS M 3809:2006(경질폴리우레탄폼 단열 재)에서 정한 100 ℃이하의 보온 및 보냉에 사용하는 경질폴리우레탄폼 단열 재 등 미리 성형한 우레탄폼 단열판과 현장에서 시공하는 스프레이 우레 탄폼을 말한다.
  - (나) "시스템폴리올"이라 함은 폴리올에 촉매류, 정포제 및 발포제 등의 첨가제를 일정한 비율로 혼합하여 현장에서 별도의 부재료를 추가하지 않고 이소시아네이트와 바로 혼합시켜 우레탄폼을 발포·성형시킬 수 있도록 만든 폴리올을 말한다.
- (2) 그 밖에 용어의 정의는 이 지침에서 특별한 규정이 있는 경우를 제외하고는

산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건기준에 관한 규칙에서 정하는 바에 따른다.

#### 4. 우레탄폼 특성

#### 4.1 우레탄폼의 원료

(1) 단열재용 우레탄폼의 주원료는 액상의 이소시아네이트와 폴리올이며, 부원료로는 반응속도 조절을 위한 촉매류 및 정포제와 발포제 등을 사용한다. 우레탄폼의 주 원료로 가장 많이 사용되는 이소시아네이트, 폴리올 및 발포제의 일반적인 물성은 <표 1>과 같다.

<표 1> 우레탄폼 원료의 일반적인 물성치

| 물질명                | 화학식         | 분자량      | 폭발범위<br>(연소범위) | 증기밀도<br>(공기=1) | 인화점<br>(°C) | 자연발화점<br>(℃) | 독성<br>(LC <sub>50</sub> )  | NFPA<br>지수            |
|--------------------|-------------|----------|----------------|----------------|-------------|--------------|----------------------------|-----------------------|
| Polymeric<br>MDI   | (주 1) 참조    | 350~400  | -              | -              | 177 이상      | -            | 370~490<br>mg/m³/<br>4시간   | 보건=3<br>화재=1<br>반응성=0 |
| PPG<br>(경질용)       | (주 2) 참조    | 280~1250 | -              | > 1            | 150 이상      | =            | 5,840<br>mg/kg<br>(경구,쥐)   | 보건=1<br>화재=1<br>반응성=0 |
| 발포제<br>(HCFC-141b) | CH3CCl2F    | 117      | (6.4~17.7)     | 4.0            | -           | 325 이상       | > 5,000<br>mg/kg<br>(경구,쥐) | 보건=2<br>화재=1<br>반응성=0 |
| 발포제<br>(C-Pentane) | $C_5H_{10}$ | 70       | 1.1~8.7        | 2.4            | -37         | 361          | 11,400<br>mg/kg<br>(경구,취)  | 보건=2<br>화재=3<br>반응성=0 |

#### (주 1)

(주 2)

$$R - (O - CH - CH_2)_n - OH$$

- (2) 발포제는 HCFC-141b와 같은 탄화플루오르(Fluorocarbon) 계열 발포제를 주로 사용하며 열에 의하여 분해되는 경우 염산, 염소, 이산화탄소 및 일산화탄소와 같은 유독성 가스를 발생시킨다.
- (3) HCFC-141b는 상온에서는 액상으로 존재하지만 비점(b,p 32 ℃)이 낮아 발포시 발생하는 열에 의하여 기화되어 발포체를 형성하고 발포 성형 후 조직내에 남아 단열성능을 유지시킨다.
- (4) 냉장고 등과 같은 냉동기기 제작에 사용되는 단열재 발포시에는 용도에 따라 인화점이 낮은 싸이클로펜탄(Cyclopentane)을 발포제로 사용한다.

#### 4.2 발포 성형 후 우레탄폼

(1) 발포 성형 된 우레탄폼은 1종과 2종으로 구분하며, 발포체 외피에 KS A 1505:2004 (폴리에틸렌 가공지)에서 규정하는 폴리에틸렌 가공지, KS D 9003:1991(접착 알루미늄 박)에서 규정하는 접착 알루미늄 박 또는 이와 동등 이상의 것을 사용한 면재가 부착되어 있는 것은 2종으로 하고 그렇지 않은 것은 1종으로 한다. 1종과 2종은 우레탄폼의 밀도에 따라 1호 내지 3호로 나누어지며 주요 특성은 <표 2>와 같다.

#### <표 2> 우레탄폼의 종류 및 특성

| 구분  | 종류       | 겉보기 밀도<br>(kg/m³) | 열전도율<br>(W/m·K)<br>평균온도<br>20±5 ℃ |       |       |         | 연소성       |
|-----|----------|-------------------|-----------------------------------|-------|-------|---------|-----------|
| I ⊢ | 1호       | 45 이상             | 0.024 이하                          | 35 이상 | 30 이상 |         | 연소시간 120초 |
|     | 2호       | 35 이상             | 0.024 이하                          | 25 이상 | 20 이상 |         | 이내 및 연소길이 |
|     | 3호       | 25 이상             | 0.025 이하                          | 15 이상 | 10 이상 | 3.0 이하  | 60 mm 이하  |
| 2종  | 1호       | 45 이상             | 0.023 이하                          | 35 이상 | 15 이상 | 0.0   9 |           |
|     | 2호       | 35 이상             | 0.023 이하                          | 25 이상 | 10 이상 |         | -         |
|     | 3호 25 이상 |                   | 0.024 이하                          | 15 이상 | 8 이상  |         |           |

- (2) 발포 후 성형된 우레탄폼은 가연성 물질로서, 고온 또는 용접 불티 등의 점화원에 의하여 쉽게 점화되어 화재로 이어질 수 있으므로, 연소장치(예 굴뚝, 소각로 등), 고온의 공정장치나 고온 배관 상부 또는 고온 배관과 인접하여 시공하지 말아야 하며 제조자가 제시하는 최고사용온도를 초과하는 설비에 보온용으로 시공하여서는 안 된다.
- (3) 건축물에 단열재로 사용되는 우레탄폼은 국토해양부 고시 제 2011 39호 (건축물 내부 마감 재료의 난연 성능 기준)에서 정한 난연 성능을 보유하여야 하며 이러한 요건을 충족시키기 위해서는 할로겐화합물이나 인(Phosphate)계 화합물 등의 난연제를 혼합하여야 한다.

#### 5. 우레탄폼 발포시 화재예방 대책

#### 5.1 우레탄폼 원료 원액 관리

- (1) 우레탄폼의 원료 제조자는 시공 매뉴얼을 제공하고, 각 원료의 사용온도를 용기에 표기하여 제품별로 정해진 온도범위 내에서 사용하도록 하여야 한다.
- (2) 이소시아네이트 및 시스템폴리올 등의 원액은 발포 현장과 격리된 곳으로 직사 광선, 불꽃 등에 노출되지 않는 별도의 장소에 보관하고, 발포 현장에는 일일 사용 량을 고려하여 최소량을 보관하여야 한다.

F - 3 - 2014

- (3) 이소시아네이트 및 시스템폴리올 등의 원액은 제조자가 정한 온도조건하에서 저장하여야 하며 특히 동절기에는 예열시 과열되지 않도록 하여야 한다.
- (4) 발포 현장에서 폴리올에 촉매류, 정포제, 난연제 및 발포제 등을 혼합하여 사용하는 경우에는 원료 보관 및 취급에 따른 화재 위험성이 있으므로 저장 및 취급시주의하여야 한다.
- (5) 원료 드럼을 개방할 때에는 내부 증기압 상승에 따른 원료 및 원료증기가 분출되지 않도록 드럼의 마개를 서서히 돌려 개방하여야 한다.
- (6) 발포제로 사용되는 HCFC-141b 또는 싸이클로펜탄은 비점이 낮기 때문에 밀 폐 용기에 저장된 상태에서 외부온도가 상승하면 증기압에 의하여 폭발이 발생할 수 있으므로 저온 보관하여야 한다.
- (7) 우레탄폼의 원료 보관 장소 또는 우레탄폼의 원료 제조시에는 용접 및 흡연 등과 같이 점화원이 될 수 있는 요인 등을 금지하여야 한다. 특히, 싸이클로펜탄은 인화점이 매우 낮은 액체이므로 점화원으로부터 격리하여야 한다.

#### 5.2 발포 전 사전 준비

- (1) 발포 전 용접 등과 같은 화기작업을 중지하고 타 공종의 작업자와 안전회의를 실시한다.
- (2) 필요한 경우 발포 현장과 동일한 장소에서는 배관, 전기 공사 등의 병행작업을 금지하여야 한다.
- (3) 발포 현장 주변에는 "화기취급 주의 또는 경고" 등의 안내표시를 하고 소화기구를 비치하며, 발포 현장이 지하공간 또는 냉동창고 등과 같은 실내인 경우에는 정전 대비 유도등 및 비상 조명기구를 설치하여야 한다.
- (4) 발포작업에 대한 사전 안전교육을 다음과 같이 실시한다.
- (가) 발포작업시의 화재 위험성
- (나) 작업전 비상구 확인 및 비상시 대피 요령

F - 3 - 2014

- (다) 여러 업체가 동시에 작업시 타 작업자와 의사소통
- (5) 지하실, 냉동창고 등과 같이 밀폐된 공간에서 작업하는 때에는 발포시 발생하는 유해가스가 제거되도록 강제 급기 및 배기장치를 설치하여야 하다.
- (6) 싸이클로펜탄 등 인화성이 매우 높은 발포제를 사용하는 경우 발포 현장에서 사용하는 전기기계기구는 방폭형이어야 한다.
- (7) 우레탄폼을 화학공정 장치 및 설비 등의 외부단열용으로 사용할 경우에는 다음과 같은 보호대책을 수립하여야 한다.
  - (가) 햇빛의 자외선과 악천후로부터 보호대책
  - (나) 물리적 충격으로부터 보호대책
  - (다) 점화원으로부터 보호대책

#### 5.3 발포작업 중

- (1) 시공자는 우레탄폼 취급 장소에서의 화재를 예방할 수 있도록 <부록 1>의 6단계 화재예방 안전수칙을 준수하여야 한다.
- (2) 시공자는 설계자가 제시한 시방서, 설계도서 및 건축 코드 등에 따라 우레탄폼을 엄격하게 시공하여야 한다.
- (3) 우레탄폼 발포 시에는 우레탄폼 원료 제조자 및 공급자가 제공하는 안전보건 정보를 준수하여야 하며, 발포 작업이 이루어지는 대상물의 온도가 5 ℃ 이 하인 경우와 32 ℃ 이상인 경우에는 가급적 시공을 피하여야 한다.
- (4) 인화성물질의 증기 또는 가연성가스가 체류할 수 있는 지하공간 또는 냉동창고 등 발포작업이 이루어지는 건축물 내부에는 인화성물질의 증기 또는 가연성 가스농도측정 및 경보장치를 이용하여 다음과 같은 경우 가스농도를 측정하도록 하여야 하며, 가스의 농도가 폭발하한계 값의 25 % 이상인 때에는 즉시근로자를 안전한 장소에 대피시키고 화기 기타 점화원이 될 우려가 있는 기계·기구 등의 사용을 중지하며 통풍·환기 등을 하여야 한다.

#### F - 3 - 2014

- (가) 매일 작업을 시작하기 전
- (나) 인화성물질의 증기 또는 가연성가스에 대한 이상을 발견한 때
- (다) 인화성물질의 증기 또는 가연성가스가 발생하거나 정체할 위험이 있을 때
- (라) 장시간 작업을 계속하는 때
- (5) 발포 시에는 흡연 또는 용접 등과 같은 화기 작업을 금지하고 지속적으로 화재 감시원이 감시하여야 한다.

#### 5.4 발포작업 후

- (1) 시공자는 발포작업 후에도 우레탄폼의 화재를 예방할 수 있도록 <부록 1>의 화재 예방 안전수칙을 준수하여야 한다.
- (2) 우레탄폼 표면의 상부 또는 우레탄 표면 등과 11 m 이내에서 화기작업을 수행하여 야 할 경우에는 방화덮개 또는 방염포로 표면을 차단하고, 화재 감시원을 배치하여야 한다.
- (3) 가연물인 우레탄폼이 적재 또는 시공되어 있는 장소에서 용접 등의 화기작업을 할 경우, 화기작업을 행하는 자는 KOSHA GUIDE (안전작업허가지침)에 따라 화기작업허가서 발행 등 사전 안전조치를 수행한 후 실시한다.
- (4) 발포된 우레탄폼은 용접 또는 용단 중인 고열물 등과 접촉되지 않도록 주의하고, 우레탄폼을 벽체 및 천정 내장재로 마감할 경우에는 폼 표면 위에 12.5 mm 이상의 석고보드 또는 그와 동등한 성능을 갖는 불연재를 사용하여 내부를 점화원으로부터 격리하여야 한다.
- (5) 이소시아네이트 및 폴리올을 혼합 발포한 후 혼합헤더 내부의 경화 방지를 위하여 메틸렌클로라이드(Methylene chloride) 등과 같은 인화성물질을 사용하여 청소하는 경우에는 인화성이 높은 유증기가 발생할 수 있으므로 주변의 점화원을 제거하여야 한다.

F - 3 - 2014

#### 5.5 우레탄 원액 여분처리

- (1) 사용하고 남은 이소시아네이트와 시스템폴리올을 밀폐용기에 넣고 서로 혼합할 경우 반응에 의한 압력이 발생하여 용기가 파열 또는 폭발할 수 있으므로, 분리 하여 잔여분을 처리하여야 한다.
- (2) 폐액이 담겨있는 폐액 밀폐용기는 파열 또는 폭발의 위험이 있으므로 반드시 압력이 상승하지 않도록 조치하여야 한다.
- (3) 발포후의 우레탄폼은 가연물이므로 우레탄폼 조각 또는 쓰레기가 다량 적재되어 방치되지 않도록 청소하여야 한다.

#### 6. 비상조치

- (1) 우레탄폼을 취급하는 작업장에는 환풍기 및 소화기를 비치하여 만약의 사태에 대비토록 한다.
- (2) 우레탄폼을 취급하는 작업장 및 당해 작업장이 있는 건축물에는 출입구외에 근로자가 안전한 장소로 대피할 수 있도록 1개 이상의 비상구를 다음과 같이설치하여야 하며, 비상구에 문을 설치하는 경우에는 항상 사용 가능한 상태로 유지하여야 한다.
  - (가) 출입구와 같은 방향에 있지 아니하고, 출입구로부터 3 m 이상 떨어져 있을 것
  - (나) 작업장의 각 부분으로부터 하나의 비상구 또는 출입구까지의 수평거리가 50 m 이하가 되도록 할 것
  - (다) 비상구의 폭은 0.75 m 이상으로 하고, 높이는 1.5 m 이상으로 할 것
  - (라) 비상구의 문은 피난방향으로 열리도록 하고, 실내에서 항상 열 수 있는 구조로 하며, 내부 및 외부에는 비상구의 표시를 할 것
- (3) 비상구·비상통로 또는 비상용 기구에 대하여는 비상용이라는 표시를 하고 근로자가 쉽게 이용할 수 있도록 관리하여야 한다.

- (4) 우레탄폼을 취급하는 작업장으로 통하는 장소 또는 작업장내에는 근로자의 통행을 위한 통로를 설치하고 통로에는 75럭스 이상의 채광 또는 조명시설 을 설치하고, 통로의 주요한 부분에는 통로표시를 하여야 한다.
- (5) 우레탄폼을 취급하는 연면적이 400 m² 이상이거나 상시 50인 이상의 근로자 가 상주하는 실내작업장에는 비상시 근로자에게 신속하게 알리기 위한 경보용 설비 또는 기구를 설치하여야 한다.
- (6) 화재발생시 즉시 화재경보를 발하고, 초기소화에 실패하는 경우 신속하게 안 전한 장소로 대피할 수 있도록 근로자에게 주기적으로 소방교육 및 비상훈련 을 실시하여 화재예방 및 대응활동에 대한 체제를 확립하여야 한다.

〈부록〉

### 6단계 화재예방 안전수칙

안전회의



다른 협력업체(근로자)와 안전회의를 실시한다.

**2** 경고주의

# 주 의

모든 화기작업은 우레탄품 시공전에 완료하여야 한다. **불연재를 사용하여** 우레탄폼 표면을 차단하지 않을 경우에는 화기작업을 금지하여 화재를 예방하여야 한다

작업장 주변에 "경고·주의" 표지판을 부착한다.

**3** 가연성물질 이전



가연성물질을 화기작업장에서 다른 안전한곳으로 옮긴다.

가연성물질 보호



가연성물질을 방화덮개 또는 용접방화포로 보호한다.

**5** *화재감시* 



화재감시원을 배치하고 적절한 장소에 소화기와 비상전화를 비치한다. 만약 화재를 초기 진화할 수 없다면 즉시 대피한다.



발포후 가능한 빨리 발포면을 12.5 mm 이상의 석고보드와 같은 불연재로 보호한다.