Gradient Boosting (Continued)

David Rosenberg

New York University

April 4, 2016

Boosting Fits an Additive Model

Adaptive Basis Function Model

• AdaBoost produces a classification score function of the form

$$\sum_{m=1}^{M} \alpha_m G_m(x)$$

- each G_m is a base classifier
- The G_m 's are like basis functions, but they are learned from the data.
- Let's move beyond classification models...

Adaptive Basis Function Model

- Base hypothesis space ${\mathcal H}$
- ullet An adaptive basis function expansion over ${\mathcal H}$ is

$$f(x) = \sum_{m=1}^{M} \nu_m h_m(x),$$

- $h_m \in \mathcal{H}$ chosen in a learning process ("adaptive")
- $v_m \in R$ are expansion coefficients.
- **Note**: We are taking linear combination of outputs of $h_m(x)$.
 - Functions in $h_m \in \mathcal{H}$ must produce values in **R** (or a vector space)

How to fit an adaptive basis function model?

- Loss function: $\ell(y, \hat{y})$
- Base hypothesis space: \mathcal{H} of real-valued functions
- The combined hypothesis space is then

$$\mathcal{F}_{M} = \left\{ f(x) = \sum_{m=1}^{M} \nu_{m} h_{m}(x) \right\}.$$

• Find $f \in \mathcal{F}_M$ that minimizes some objective function J(f). e.g. penalized ERM:

$$\hat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}_{M}} \left[\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f(x_{i})\right) + \Omega(f) \right].$$

• To fit this, we'll proceed in stages, adding a new h_m in every stage.

Forward Stagewise Additive Modeling (FSAM)

- Start with $f_0 \equiv 0$.
- After m-1 stages, we have

$$f_{m-1} = \sum_{i=1}^{m-1} v_i h_i,$$

where $h_1, \ldots, h_{m-1} \in \mathcal{H}$.

- Want to find
 - step direction $h_m \in \mathcal{H}$ and
 - step size $v_i > 0$
- so that

$$f_m = f_{m-1} + v_i h_m$$

improves objective function value by as much as possible.

Forward Stagewise Additive Modeling for ERM

- Initialize $f_0(x) = 0$.
- 2 For m=1 to M:
 - Compute:

$$(v_m, h_m) = \underset{v \in \mathbf{R}, h \in \mathcal{H}}{\arg\min} \sum_{i=1}^n \ell \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

- **2** Set $f_m = f_{m-1} + v_m h$.
- **3** Return: f_M .

Exponential Loss and AdaBoost

Take loss function to be

$$\ell(y, f(x)) = \exp(-yf(x)).$$

- Let \mathcal{H} be our base hypothesis space of classifiers $h: \mathcal{X} \to \{-1, 1\}$.
- Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost!
 - Proof on Homework #6 (and see HTF Section 10.4).
- Only difference:
 - AdaBoost gets whichever G_m the base learner returns from \mathcal{H} no guarantees it's best in \mathcal{H} .
 - ullet FSAM explicitly requires getting the best in ${\mathcal H}$

$$G_m = \underset{G \in \mathcal{H}}{\operatorname{arg\,min}} \sum_{i=1}^{N} w_i^{(m)} 1(y_i \neq G(x_i))$$

Gradient Boosting / "Anyboost"

David Rosenberg (New York University)

DS-GA 1003

April 4, 2016 9 / 31

FSAM Looks Like Iterative Optimization

The FSAM step

$$(v_m, h_m) = \underset{v \in \mathbf{R}, h \in \mathcal{H}}{\arg\min} \sum_{i=1}^n \ell \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

- Hard part: finding the **best step direction** *h*.
- What if we looked for the locally best step direction?
 - like in gradient descent

"Functional" Gradient Descent

We want to minimize

$$J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$

- Only depends on f at the n training points.
- Define

$$\mathbf{f} = (f(x_1), \dots, f(x_n))^T$$

and write the objective function as

$$J(\mathbf{f}) = \sum_{i=1}^{n} \ell(y_i, \mathbf{f}_i).$$

Functional Gradient Descent: Unconstrained Step Direction

Consider gradient descent on

$$J(\mathbf{f}) = \sum_{i=1}^{n} \ell(y_i, \mathbf{f}_i).$$

• The negative gradient step direction at f is

$$-\mathbf{g} = -\nabla_{\mathbf{f}} J(\mathbf{f}),$$

which we can easily calculate.

- Eventually we need more than just f, which is just predictions on training.
- We'll need a full function $f: \mathcal{X} \to \mathbf{R}$.

Unconstrained Functional Gradient Stepping

 $R(\mathbf{f})$ is the empirical risk, where $\mathbf{f} = (f(x_1), f(x_2))$ are predictions on training set. Issue: $\hat{\mathbf{f}}_M$ only defined at training points.

From Seni and Elder's Ensemble Methods in Data Mining, Fig B.1.

Functional Gradient Descent: Projection Step

Unconstrained step direction is

$$-\mathbf{g} = -\nabla_{\mathbf{f}} J(\mathbf{f}).$$

- Suppose $\mathcal H$ is our base hypothesis space.
- Find $h \in \mathcal{H}$ that is closest to $-\mathbf{g}$ at the training points, in the ℓ^2 sense:

$$\min_{h\in\mathcal{H}}\sum_{i=1}^n\left(-\mathbf{g}_i-h(x_i)\right)^2.$$

- This is a least squares regression problem.
- H should have real-valued functions.
- So the h that best approximates $-\mathbf{g}$ is our step direction.

"Projected" Functional Gradient Stepping

 $T(x; p) \in \mathcal{H}$ is our actual step direction – like the projection of -g=- $\nabla R(\mathbf{f})$ onto \mathcal{H} .

From Seni and Elder's Ensemble Methods in Data Mining, Fig B.2.

Functional Gradient Descent: Step Size

- Finally, we choose a stepsize.
- Option 1 (Line search not sure this is actually used in practice):

$$v_m = \underset{v>0}{\arg\min} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + v h_m(x_i)\}.$$

- Option 2: (Shrinkage parameter)
 - We consider v = 1 to be the full gradient step.
 - Choose a fixed $v \in (0,1)$ called a shrinkage parameter.
 - A value of v = 0.1 is typical optimize as a hyperparameter .

The Gradient Boosting Machine Ingredients (Recap)

- Take any [sub]differentiable loss function.
- Choose a base hypothesis space for regression.
- Choose number of steps (or a stopping criterion).
- Choose step size methodology.
- Then you're good to go!

Gradient Tree Boosting

Gradient Tree Boosting

Common form of gradient boosting machine takes

$$\mathcal{H} = \{\text{regression trees of size } J\},$$

where J is the number of terminal nodes.

- J = 2 gives decision stumps
- HTF recommends $4 \le J \le 8$ (but some recent results use much larger trees)
- Software packages:
 - Gradient tree boosting is implemented by the gbm package for R
 - as GradientBoostingClassifier and GradientBoostingRegressor in **sklearn**
 - xgboost and lightGBM are state of the art for speed and performance

GBM Regression with Stumps

Sinc Function: Our Dataset

From Natekin and Knoll's "Gradient boosting machines, a tutorial"

Minimizing Square Loss with Ensemble of Decision Stumps

Decision stumps with 1, 10, 50, and 100 steps, step size $\lambda = 1$.

Figure 3 from Natekin and Knoll's "Gradient boosting machines, a tutorial"

Step Size as Regularization

Performance vs rounds of boosting and step size. (Left is training set, right is validation set)

Figure 5 from Natekin and Knoll's "Gradient boosting machines, a tutorial"

Rule of Thumb

- The smaller the step size, the more steps you'll need.
- But never seems to make results worse, and often better.
- So make your step size as small as you have patience for.

Variations on Gradient Boosting

Stochastic Gradient Boosting

- For each stage,
 - choose random subset of data for computing projected gradient step.
 - "Typically, about 50% of the dataset size, can be much smaller for large training set."
 - Fraction is called the bag fraction.
- Why do this?
 - Subsample percentage is additional regularization parameter may help overfitting.
 - Faster.
- We can view this is a minibatch method.
 - we're estimating the "true" step direction (the projected gradient) using a subset of data

Some Comments on Bag Size

- Justification for 50% of dataset size:
 - In bagging, sampling 50% without replacement gives very similar results to full bootstrap sample
 - See Buja and Stuetzle's Observations on Bagging.
 - So if we're subsampling because we're inspired by bagging, this makes sense.
- But if we think of stochastic gradient boosting as a minibatch method,
 - then makes little sense to choose batch size as a fixed percent of dataset size,
 - especially for large datasets.

Bag as Minibatch

- Just as we argued for minibatch SGD,
 - sample size needed for a good estimate of step direction is independent of training set size
- Minibatch size should depend on
 - the complexity of base hypothesis space
 - the complexity of the target function (Bayes decision function)
- Seems like an interesting area for both practical and theoretical pursuit.

Column / Feature Subsampling for Regularization

- Similar to random forest, randomly choose a subset of features for each round.
- XGBoost paper says: "According to user feedback, using column sub-sampling prevents overfitting even more so than the traditional row sub-sampling."
- Zhao Xing (top Kaggle competitor) finds optimal percentage to be 20%-100%

Newton Step Direction

• For GBM, we find the closest $h \in \mathcal{F}$ to the negative gradient

$$-\mathbf{g} = -\nabla_{\mathbf{f}} J(\mathbf{f}).$$

- This is a "first order" method.
- Newton's method is a "second order method":
 - Find 2nd order (quadratic) approximation to J at f.
 - Requires computing gradient and Hessian of J.
 - Newton step direction points towards minimizer of the quadratic.
 - Minimizer of quadratic is easy to find in closed form
- Boosting methods with projected Newton step direction:
 - LogitBoost (logistic loss function)
 - XGBoost (any loss uses regression trees for base classifier)

XGBoost

Adds explicit penalty term on tree complexity to the empirical risk:

$$\Omega(h) = \gamma T + \frac{1}{2} \lambda \sum_{i=1}^{T} w_j^2,$$

where $h \in \mathcal{H}$ is a regression tree from our base hypothesis space and

- T is the number of leaf nodes and
- w_i is the prediction in the j'th node
- Objective function at step *m*:

$$J(h) = 2$$
nd Order Approximation to empirical risk $(h) + \Omega(h)$

- In XGBoost, they also use this objective to decide on tree splits
- See XGBoost Introduction for a nice introduction.