A Certified Robustness

Although the GraphProt is effective in the empirical evaluation, it is unsure whether it can defense against adaptive attacks. We further propose a certified (provable) defense for our model GraphProt-R so that no further attacks can compromise the certified accuracy.

If the trigger involves injecting new nodes into the graph, we find the worst-case node number of the trigger graph. Let n_{Δ} denote the node numbers in poisoned subgraph \mathcal{G}_{Δ} .

Theorem 1. (Certified robustness for graph injection trigger). Given a testing graph G, a trained backdoored graph classifier f, and the ensemble classifier g defined in Eq. (8) with random subgraph sampling (GraphProt-R). Let G denote the subgraphs with g nodes sampled from g with replacement. Suppose g and g are the classes with the most votes and the second largest votes during the ensemble. We define g and g as the lower and upper bound of probability g as the lower and upper bound of probability g as the model still predicts class g for graphs g inserted with any trigger size smaller than g if:

$$\max_{n_{\Delta} \le n+r} \left(\frac{n_{\Delta}}{n}\right)^{s} - 2\left(\frac{n_{\Delta} - r}{n}\right)^{s} + 1 - \left(p_{A} - \overline{p_{B}} - \delta_{A} - \delta_{B}\right) < 0,$$
(12)

where n and n_{Δ} are the node numbers in \mathcal{G} and \mathcal{G}_{Δ} , respectively, and $\delta_A = \underline{p_A} - (\lfloor \underline{p_A} \cdot n^s \rfloor)/n^s$, $\delta_B = (\lceil \overline{p_B} \cdot n^s \rceil)/n^s - \overline{p_B}$ are the residuals.

Proof. We begin by providing the necessary definitions and notations. We denote the testing graph G with n nodes as (V, E, X), and its structure can also be represented by adjacency matrix $A_{n\times n}$. Assume that the attacker attaches trigger Δ (e.g., specific subgraph) into the testing graph. We note the backdoored graph as $G_{\Delta} := (V_{\Delta}, E_{\Delta}, X_{\Delta}) =$ $G + \Delta$. Assuming that the trigger size (the number of nodes involved in the trigger attachment) is r. If the trigger injection involves node injection, the node number of G_{Δ} might be increased by at most r: $n_{\Delta} := |V_{\Delta}| \leq n + r$. Let $I = V \cap V_{\Delta}$ denote the intersection nodes (with the same node features and one-hop neighbors) of the two graphs. Let $\mathcal{G} := \mathbb{S}(G)$ denote the subgraph induced from randomly selecting s nodes in G with replacement, and $\mathcal{G}_{\Delta} := \mathbb{S}(G_{\Delta})$ denote the subgraph sampled from G_{Δ} . We note that the sample subgraph can be decided on the sampled nodes. As long as the \mathcal{G} and \mathcal{G}_{Δ} have the same nodes among I, they have exactly the same adjacency matrix and node feature matrix. Equivalently, we represent the subgraph by a subset of nodes. Let $V_1 := \mathbb{S}(V)$ and $V_2 := \mathbb{S}(V_{\Delta})$ denote the two node set sampled from V and V_{Δ} .

Next, we define an equivalent smoothed/ensemble model g(G) in Eq. (8) as follows:

$$g(G) = \arg \max_{y \in \mathcal{Y}} p_y := \mathbb{P}(f(\mathcal{G}) = y),$$
 (13)

where $\mathcal{G}=\mathbb{S}(G_{\Delta})$. Given that $\mathbb{P}(f(\mathcal{G})=y_A)\geq \underline{p_A}$ and $\mathbb{P}(f(\mathcal{G})=y_B)\leq \overline{p_B}$, our goal is to show that $\mathbb{P}(f(\mathcal{G}_{\Delta})=y_A)>\max_{y'\neq y}\mathbb{P}(f(\mathcal{G}_{\Delta})=y')$, and equivalently, $\mathbb{P}(f(\mathcal{G}_{\Delta})=y_A)>\mathbb{P}(f(\mathcal{G}_{\Delta})=y_B)$.

We employ the Neyman-Pearson Lemma (Neyman and Pearson 1933) to establish the connection between $\mathbb{P}(f(\mathcal{G}))$ and $\mathbb{P}(f(\mathcal{G}_{\Delta}))$. According to the Variant of Neyman-Pearson Lemma provided in (Jia, Cao, and Gong 2021), we know that:

Let V_1 and V_2 denote two random variables in space Ω with probability densities μ_{V_1} and μ_{V_2} , $h:\Omega\to\{0,1\}$ be any function. Then we have:

- If $S_1 = \{\omega \in \Omega : \frac{\mu_{V_1}(\omega)}{\mu_{V_2}(\omega)} \ge t\}$ for some t > 0, and $\mathbb{P}(h(V_1) = 1) \ge \mathbb{P}(V_1 \in S_1)$, then $\mathbb{P}(h(V_2) = 1) \ge \mathbb{P}(V_2 \in S_1)$.
- If $S_2=\{\omega\in\Omega:\frac{\mu_{V_1}(\omega)}{\mu_{V_2}(\omega)}\leq t\}$ for some t>0, and $\mathbb{P}(h(V_1)=1)\leq\mathbb{P}(V_1\in S_2)$, then $\mathbb{P}(h(V_2)=1)\leq\mathbb{P}(V_2\in S_2)$.

Let $h(\cdot)$ denote $\mathbb{I}(f(\cdot)=y_A)$, where \mathbb{I} is an indication function. We can find a region S_1 such that $\mathbb{P}(f(V_1)=y_A) \geq \mathbb{P}(V_1 \in S_1) = \underline{p_A}$, then we have $\mathbb{P}(f(V_2)=y_A) \geq \mathbb{P}(V_2 \in S_1)$. Similarly, let $h(\cdot)$ denote $\mathbb{I}(f(\cdot)=y_B)$, where \mathbb{I} is an indication function. We can find a region S_2 such that $\mathbb{P}(f(V_1)=y_B) \leq \mathbb{P}(V_1 \in S_2) = \overline{p_B}$, then we have $\mathbb{P}(f(V_2)=y_B) \leq \mathbb{P}(V_2 \in S_2)$. Note that we can conclude that $\mathbb{P}(f(V_2)=y_A) \geq \mathbb{P}(f(V_2)=y_B)$ if $\mathbb{P}(V_2 \in S_1) > \mathbb{P}(V_2 \in S_2)$.

Next, we define the regions S_1 and S_2 specifically. The space Ω can be divided into three subspaces:

$$\mathcal{O} = \{ \omega \in \Omega : \omega \subseteq V, \omega \not\subseteq I \},$$

$$\mathcal{P} = \{ \omega \in \Omega : \omega \subseteq V_{\Delta}, \omega \not\subseteq I \},$$

$$\mathcal{Q} = \{ \omega \in \Omega : \omega \subseteq I \},$$
(14)

Figure 4: Space division

Because $V_1:=\mathbb{S}(V)$ and $V_2:=\mathbb{S}(V_\Delta)$ are the two node set of size s sampled from V and V_Δ with replacement, we have that:

$$\mathbb{P}(V_1 = \omega) = \begin{cases} \frac{1}{(n)^s}, & \text{if } \omega \in \mathcal{O} \cup \mathcal{Q}, \\ 0, & \text{otherwise.} \end{cases}$$
 (15)

$$\mathbb{P}(V_2 = \omega) = \begin{cases} \frac{1}{(n_\Delta)^s}, & \text{if } \omega \in \mathcal{P} \cup \mathcal{Q}, \\ 0, & \text{otherwise.} \end{cases}$$
 (16)

Let m denote the number of overlap nodes |I|, then we have $m = \max(n, n_{\Delta}) - r$. We have the probabilities:

$$\mathbb{P}(V_1 \in \mathcal{O}) = 1 - (\frac{m}{n})^s, \quad \mathbb{P}(V_2 \in \mathcal{O}) = 0, \tag{17}$$

$$\mathbb{P}(V_1 \in \mathcal{P}) = 0, \quad \mathbb{P}(V_2 \in \mathcal{P}) = 1 - (\frac{m}{n_{\Lambda}})^s, \tag{18}$$

$$\mathbb{P}(V_1 \in \mathcal{Q}) = (\frac{m}{n})^s, \quad \mathbb{P}(V_2 \in \mathcal{Q}) = (\frac{m}{n_\Delta})^s, \quad (19)$$

We can find a subset $\mathcal{O}' \subseteq \mathcal{Q}$ such that:

$$\mathbb{P}(V_1 \in \mathcal{O}') = \underline{p_A} - \delta_A - \mathbb{P}(V_1 \in \mathcal{O}),$$

= $\underline{p_A} - \delta_A - (1 - (\frac{m}{n})^s),$ (20)

where δ_A is an residuals such that $\underline{p_A} - \delta_A$ and integer multiple of $\frac{1}{n^s}$. Then, we define the region $S_1 = \mathcal{O} \cup \mathcal{O}'$. In this region, we know that $\frac{\mathbb{P}(V_1 = \omega)}{\mathbb{P}(V_2 = \omega)} \geq t$, where $t = (\frac{n_\Delta}{n})^s$. That is, the S_1 satisfies the requirement $\{\omega \in \Omega : \frac{\mu_{V_1}(\omega)}{\mu_{V_2}(\omega)} \geq t\}$.

Similarly, we can find the region S_2 by finding a subset $\mathcal{O} \subseteq \mathcal{Q}$ such that:

$$\mathbb{P}(V_1 \in \mathcal{P}') = \overline{p_B} + \delta_B, \tag{21}$$

where δ_B is an residuals such that $\overline{p_B}+\delta_B$ and integer multiple of $\frac{1}{n^s}$. Then, we define the region $S_2=\mathcal{P}\cup\mathcal{P}'$. In this region, we know that $\frac{\mathbb{P}(V_1=\omega)}{\mathbb{P}(V_2=\omega)}\leq t$, where $t=(\frac{n_\Delta}{n})^s$. That is, the S_2 satisfies the requirement $\{\omega\in\Omega:\frac{\mu_{V_1}(\omega)}{\mu_{V_2}(\omega)}\leq t\}$.

Then, we calculate the probabilities $\mathbb{P}(V_2 \in S_1)$ and $\mathbb{P}(V_2 \in S_2)$:

$$\mathbb{P}(V_2 \in S_1) = \mathbb{P}(V_2 \in \mathcal{O}) + \mathbb{P}(V_2 \in \mathcal{O}'),$$

$$= \mathbb{P}(V_2 \in \mathcal{O}'),$$

$$= [\underline{p_A} - \delta_A - (1 - (\frac{m}{n})^s)]/t. \quad (22)$$

$$\mathbb{P}(V_2 \in S_2) = \mathbb{P}(V_2 \in \mathcal{P}) + \mathbb{P}(V_2 \in \mathcal{P}'),$$

$$= \mathbb{P}(V_2 \in \mathcal{O}'),$$

$$= 1 - (\frac{m}{n_{\Delta}})^s + (\overline{p_B} + \delta_B)/t.$$
 (23)

We can conclude that $\mathbb{P}(f(V_2)=y_A) \geq \mathbb{P}(f(V_2)=y_B)$ if $\mathbb{P}(V_2 \in S_1) > \mathbb{P}(V_2 \in S_2)$. Finally, subtracting $\mathbb{P}(V_2 \in S_1)$ with $\mathbb{P}(V_2 \in S_2)$, we have the inequity (12). By definitions, we know that $g(G_\Delta)=y_A$ for all graphs G_Δ inserted with any trigger size smaller than r.

If the trigger is attached to the existing nodes (involves node feature modification and edge modification among r nodes), we have the following simplified certifying condition:

Theorem 2. (Certified robustness for in-graph trigger). Given a testing graph G, a trained backdoored graph classifier f, and the ensemble classifier g defined in Eq. (8) with subgraph random subgraph sampling (GraphProt-R). Let \mathcal{G} denote the subgraphs with g nodes sampled from g with replacement. Suppose g and g are the classes with the most votes and the second largest votes during the ensemble. We define g and g as the lower and upper bound of probability $\mathbb{P}(f(\mathcal{G}) = g)$ and $\mathbb{P}(f(\mathcal{G}) = g)$, respectively. We guarantee that the model still predicts class g for graphs g inserted with any trigger size smaller than g if:

$$2(\frac{n-r}{n})^s > 1 - (\underline{p_A} - \overline{p_B} - \delta_A - \delta_B), \qquad (24)$$

where n is the node numbers in G, and $\delta_A = \underline{p_A} - (\lfloor \underline{p_A} \cdot n^s \rfloor)/n^s$, $\delta_B = (\lceil \overline{p_B} \cdot n^s \rceil)/n^s - \overline{p_B}$ are the residuals.

Proof. By setting $n_{\Delta} = n$ in (12) of Theorem 1, we have the simplified inequality (24).

Note: In the main paper, $s = \lfloor p \cdot |V_G| \rfloor$.