CS 270 Algorithms

Spring 2021

Lecture 10: Compressed sensing, RIP property

Lecturer: Prasad Raghavendra Scribe: Adrian Fan, Paul Shao

10.1 Proof of Oblivious Subspace Embedding

First we will finish the proof of oblivious subspace embedding from last lecture.

Theorem 10.1 (Oblivious Subspace Embedding). Let S be any subspace of \mathbb{R}^n with dimension d, and let $G = \frac{1}{\sqrt{t}}(N(0,1))^{t \times n}$ be a random Gaussian matrix. If $t = \Omega\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, then with probability $1 - \delta$, for all $\vec{u} \in S$, $\|G\vec{u}\| \in ((1 - \epsilon)\|\vec{u}\|, (1 + \epsilon)\|\vec{u}\|)$.

Proof. First recall the following definition:

Definition 10.2 (γ -net). A γ -net \mathcal{N} of the ball(0, 1) in \mathbb{R}^d , i.e. the ball centered at the origin with radius 1, is a set of points such that for all x in the ball, there exists $y \in \mathcal{N}$ such that $||x - y|| \leq \gamma$.

Now recall two observations made from last lecture:

Observation 1: There exists a γ -net \mathcal{N} with $|\mathcal{N}| \leq \left(\frac{1}{\gamma}\right)^d$.

Observation 2: By distributional Johnson–Lindenstrauss. with probability $1 - \delta$, for all $x, y \in \mathcal{N}$, $\langle Gx, Gy \rangle \in (\langle x, y \rangle - \epsilon, \langle x, y \rangle + \epsilon)$.

Lemma 10.3. Consider a γ -net \mathcal{N} with $\gamma \leq \frac{1}{2}$. For all $x \in Ball(0,1)$, x can be written as $x = \sum_{i=1}^{\infty} \alpha_i y_i$ where $y_i \in \mathcal{N}$ and $|\alpha_i| \leq \frac{1}{2^{i-1}}$

Proof. Let $x_1 = x$ and let y_1 be the point in \mathcal{N} closest to x_1 .

Write
$$x_1 = y_1 + (x_1 - y_1) = y_1 + ||x_1 - y_1|| \cdot \frac{x_1 - y_1}{||x_1 - y_1||}$$
.

Note that $y_1 \in \mathcal{N}$ and $||x_1 - y_1|| \le \delta$. Now set $x_2 = \frac{x_1 - y_1}{||x_1 - y_1||}$. Let y_2 the point in \mathcal{N} closest to x_2 . Then

write
$$x_1 = y_1 + ||x_1 - y_1|| \cdot \left(y_2 + ||x_2 - y_2|| \cdot \frac{x_2 - y_2}{||x_2 - y_2||}\right)$$

Then set $x_3 = \frac{x_2 - y_2}{\|x_2 - y_2\|}$, so $x_1 = y_1 + \|x_1 - y_1\| \|x_2 + \|x_1 - y_1\| \|x_2 - y_2\| y_3$. Note that $\|x_1 - y_1\|, \|x_2 - y_2\| \le \gamma$.

Continuing in this fashion, we obtain an infinite series of the form $x = \sum_{i=1}^{\infty} \alpha_i y_i$ where $\alpha_i \leq \gamma^{n-1}$. If we pick $\gamma \leq \frac{1}{2}$, we obtain the desired result.

Now we will prove the Oblivious Subspace Embedding theorem. Consider any $x \in Ball(0,1)$. Then

$$\begin{aligned} \|Gx\|^2 &= \langle Gx, Gx \rangle \\ &= \left\langle G\left(\sum_{i=1}^{\infty} \alpha_i y_i\right), G\left(\sum_{i=1}^{\infty} \alpha_i y_i\right) \right\rangle \\ &= \sum_{i,j} \alpha_i \alpha_j \langle Gy_i, Gy_j \rangle \\ &= \sum_{i,j} \alpha_i \alpha_j (\langle y_i, y_j \rangle \pm \epsilon) \\ &= \left\langle \sum_{i=1}^{\infty} \alpha_i y_i, \sum_{j=1}^{\infty} \alpha_j y_j \right\rangle \pm \epsilon \cdot \left(\sum_{i,j} \alpha_i \alpha_j\right) \\ &= \langle x, x \rangle + \epsilon \cdot \left(\sum_{i=1}^{\infty} \alpha_i\right)^2 \\ &= \|x\|^2 + O(\epsilon) \end{aligned}$$

where the O bound follows from the fact that $\sum_{i=1}^{\infty} \alpha_i$ converges.

10.2 Compressed Sensing

Compressed sensing is an application of dimension reduction for sparse vectors. As a real life application, images and audio are often sparse in some basis. This fact underlies JPEG compression: a typical image is not a random vector, so it is representable by a sparse vector. In our application we have a signal x in n dimensions but in some basis, most of the n coordinates of x are approximately 0.

Definition 10.4 (k-sparse vector). A vector $x \in \mathbb{R}^n$ is k-sparse if $\langle k \rangle$ coordinates of x are nonzero. Similarly, x is ϵ -approximately k-sparse if there exists $S \subseteq [n] = \{1, 2, \dots, n\}$ where |S| = k and $||x_{\bar{S}}|| \leq \epsilon ||x||$, (where x_S denotes the vector formed by taking x and replacing all coordinates not in S with θ).

In this lecture, we will only deal with exactly k-sparse vectors, not approximately k-sparse vectors. The setup of compressed sensing is as follows: we are given a signal $x = (x_1, \ldots, x_n)$ that is k-sparse. We want to use $\ll n$ measurements to recover x. We have a measurement matrix $M \in \mathbb{R}^{t \times n}$, where $t \approx k \log n$, and we measure the coordinates of Mx, namely $\langle M_1, x \rangle, \ldots, \langle M_t, x \rangle$. Then given the system Mx = b, we want to recover a k-sparse solution x to the system. We have $k \log n$ equations in n variables, but we want to be able to uniquely recover x given the extra information that x is k-sparse.

Intuitively, the measurements $\langle M_1, x \rangle, \dots, \langle M_t, x \rangle$ could be the measurements made by a camera. The camera won't measure x; it instead directly observes the coordinates of Mx. This problem is difficult because we don't know which coordinates of x are nonzero. We won't be able to measure all coordinates of x with a few measurements, but we still want to recover a sparse vector. Compressed sensing has applications in MRI, where it is used to reduce the number of images required.

To summarize, our input is a system Mx = b, and we want to return a k-sparse solution to the system. This problem can be rephrased as an optimization problem:

$$\min \|x\|_0$$

subject to $Mx = b$

where $||x||_0$ denotes the number of nonzero entries of x. However, this optimization problem is not so nice because $||x||_0$ is not a convex or smooth function. Often, we can replace $||x||_0$ with $||x||_1$, so our optimization problem becomes

$$\min ||x||_1 = \sum_i |x_i|$$

subject to $Mx = b$

It turns out that minimizing the l_1 norm $||x||_1$ typically gives sparse vectors. For a large fraction of hyperplanes M, minimizing the l_1 norm works.

Here's a geometric illustration on why that is the case:

As we can see, the l_1 ball $\{x : ||x||_1 \le 1\}$ in \mathbb{R}^3 is a regular octahedron containing lower-dimensional facets. A feasible solution to the linear program under l_1 constraint can usually be viewed as the line (or plane) representing the linear constraint touching the l_1 ball at exactly one of its vertices.

It can be proven that minimizing the l_1 norm also works if M is a random matrix, such as a Gaussian matrix or a matrix with random ± 1 entries. Now we introduce some terminology:

Definition 10.5 (Restricted Isometry Property (RIP)). A matrix $M \in \mathbb{R}^{t \times n}$ satisfies (k, ϵ) Restricted Isometry Property (RIP) if for every k-sparse x, $||Mx|| \in ((1 - \epsilon)||x||, (1 + \epsilon)||x||)$.

Note that the set of all k-sparse vectors is
$$\bigcup_{S\subseteq [n], |S|=k} \{x: x_i=0 \text{ for all } i\notin S\}$$

which is a union of $\binom{n}{k}$ subspaces. For any subspace, we want the probability of not preserving distances to be less than $\delta/\binom{n}{k}$ so we can use Union Bound. Then by using Oblivious Subspace Embedding, if we pick

$$t = \frac{k + \log\binom{n}{k} + \log(1/\delta)}{\epsilon^2} = O\left(\frac{k + \log\binom{n}{k}}{\epsilon^2}\right), \text{ with probability } 1 - \delta, M \text{ satisfies } (k, \epsilon) \text{ RIP.}$$

We have shown that random Gaussian matrices usually have the RIP property, but we don't have an explicit construction for a matrix with the RIP property. We can't be sure a specific random Gaussian matrix will work; there is still a probability of error. In addition, for most applications, choosing M to have random ± 1 entries works as well as choosing M to have Gaussian entries. Finally, there is no known efficient algorithm for verifying the RIP property.

Now we will examine why RIP matrices are useful for compressed sensing:

Lemma 10.6. Suppose M satisfies (3k, 0.01) RIP. Then for any k-sparse $x \in \mathbb{R}^n$, basis pursuit or ℓ_1 norm minimization recovers x exactly from Mx.

Proof. Consider the following optimization problem

$$x' = \arg\min_{Mx=b} ||x||_1$$

 x is k-sparse

By contradiction, suppose there exists a different solution x' with smaller or equal l_1 norm. Let $\Delta = x' - x$, we have the following:

$$M\Delta = M(x'-x) = Mx' - Mx = b - b = 0$$

$$||x'||_1 = ||x+\Delta||_1 \le ||x||_1$$
 Assume $||\Delta||_1 = 1$

Let $S = \{i : x_i \neq 0\}, |S| \leq k$, we observe that at least half of the l_1 norm of Δ has to live on S:

$$||\Delta_S||_1 \ge ||\Delta_{\overline{S}}||_1$$

where ΔS denotes the vector consisting of the components of Δ indexed by S, and $\overline{S} = \{1, 2, ..., n\} \setminus S$. Indeed, when Δ is added to x, its components outside S only increase the l_1 norm, and since $||x + \Delta||_1 \leq ||x||_1$, the components in S must at least compensate for this increase.

Since $||\Delta||_1 = 1$, we have $||\Delta S||_1 \ge \frac{1}{2}$.

Let $B_0 \supset \overline{S}$ consist of the indices of the 2r largest components of $\Delta_{\overline{S}}, B_1$ are the indices of the next 2r largest components, and so on (the last block may be smaller).

$$\Delta = \begin{array}{|c|c|c|c|c|c|c|}\hline & \geq & \cdots \\ \hline S & & B_0 & & B_1 & & \cdots \\ \hline \end{array}$$

We have
$$||M_{S \cup B_0}||_2 \ge (1 - \epsilon) |\Delta_{S \cup B_0}|_2 \ge (1 - \epsilon) ||\Delta_S||_2 \ge \frac{1}{\sqrt{2k}} (1 - \epsilon)$$

In addition, since $\|\Delta_S\|_1 \ge \frac{1}{2}$, $\|\Delta_S\|_2 \ge \frac{1}{\sqrt{2k}}$, and therefore $\|\Delta_{\overline{S}}\|_2 \le \frac{1}{2}$.

now, for any index i in the chunk:

$$B_i \le \frac{\|\Delta_{B_i - 1}\|_1}{2k}$$

Bounding with the following lemma about metric norms,

For
$$v \in \mathbb{R}^d$$
, $||v||_2 \ge \frac{||v||_1}{\sqrt{d}}$,

we have:

$$\|\Delta_{B_i}\|_2 \le \left(2k \left(\frac{\|\Delta_{B_i-1}\|_1}{2k}\right)^2\right)^{1/2}$$

$$\le \frac{\|\Delta_{B_i-1}\|_1}{\sqrt{2k}}$$

Summing over all indices, this gives us:

$$\sum_{i=1}^{\infty} \|\Delta_{B_i}\|_2 \le \sum_{i=1}^{\infty} \frac{\|\Delta_{B_i-1}\|_1}{\sqrt{2k}}$$

$$= \frac{\|\Delta_{\overline{S}}\|_1}{\sqrt{2k}}$$

$$= \frac{1}{2\sqrt{2k}}$$

$$\approx \frac{0.4}{\sqrt{k}}$$

Hence, we have proven the following claim:

$$\sum_{j>1} \|\Delta_{B_j}\|_2 \le \frac{0.4}{\sqrt{k}}$$

However, since we assumed the following:

$$M\Delta = \underbrace{M\Delta_{S \cup B_0}}_{\geq \frac{1}{\sqrt{2k(1-\epsilon)}}} + \underbrace{\sum_{j \geq 1} \|\Delta_{B_j}\|_2}_{\leq \frac{0.4}{\sqrt{k}}(1+\epsilon)}$$

The first part of the sum $M\Delta_{S\cup B_0}$ is clearly much larger than the second part $\sum_{j\geq 1}\|\Delta_{B_j}\|_2$, hence, it is impossible for $M\Delta$ to be 0. Therefore, we've reached a contradiction with our original claim that $M\Delta=0$.