L15MoreStrongInduction

April 5, 2017

1 Lecture 15: More Strong Induction

1.1 Recap of Previous Lectures

• Principle of Mathematical Induction:

1.2 Strong Induction

Question: When to choose weak vs strong induction?

Answer: depends on the problem, i.e., depends on what inductive step we can prove.

1.3 Examples

1.4 Let's try one

Exercise 9 from Rosen 5.2: Show that $\sqrt{2}$ is irrational by strong induction, using the hypothesis:

$$P(n): \forall b \in \mathbb{Z}_{\geq \mathcal{V}}, \ \sqrt{2} \neq \frac{n}{b}$$

1.5 Question

Suppose than P(n) is a predicate. Determine for which non-negative integers n the statement P(n) must be true if

a) P(0) is true; for all $n \ge 0$, $P(n) \implies P(n+2)$;

The Principle of Induction.

Let P(n) be a predicate. If

- P(0) is true, and
- P(n) IMPLIES P(n + 1) for all nonnegative integers, n,

then

• P(m) is true for all nonnegative integers, m.

PMI

Principle of Strong Induction. Let P(n) be a predicate. If

- P(0) is true, and
- for all $n \in \mathbb{N}$, P(0), P(1), ..., P(n) together imply P(n + 1),

then P(n) is true for all $n \in \mathbb{N}$.

Strong PMI

A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, \ldots, a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation. (A recurrence relation is said to recursively define a sequence. We will explain this alternative terminology in Chapter 5.)

recurrence

- b) P(1) is true; for all $n \ge 1$, $P(n) \implies P(2n)$;
- c) $P(0) \wedge P(1)$ is true; for all $n \ge 0$, $(P(n) \wedge P(n+1) \implies P(n+2)$;
- d) P(0) is true; for all $n \ge 0$, $P(n) \implies P(n+2) \land P(n+3)$.

1.6 Recurrence Relations

1.7 Back to Tromino Tiling

A tiling board:

A tromino:

In []:

Question: can you remove a central square from the board and still tile the board with trominoes?