

Bab 1: Sistem Bilangan Real

Daryono Budi Utomo

1

Bab 1. Sistem Bilangan

✓ 1.4 Grafik Persamaan

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

4

2

1. 1 Bilangan Real

Bilangan Real

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

3

3

Bilangan rasional dan Irasional

- Bilangan rasional adalah bilangan yang dapat dinyatakan dalam bentuk $\frac{p}{q}$ dengan p dan q bilangan bulat, dengan demikian bilangan rasional: dapat ditulis dalam bentuk desimal berulang.
- Bilangan irrasional adalah bilangan yang tidak dapat dinyatakan dalam bentuk $\frac{p}{q}$ dengan p dan q bilangan bulat, sehingga bentuk desimal tidak berulang.

Contoh 1.

Apakah bilangan: 0,234234234 ... bilangan rasional?

Misal
$$x = 0.234234234 \dots$$
 (1)

$$1000x = 234,234234 \dots$$
 (2)

$$(2) - (1)$$
: $999x = 234 \rightarrow x = \frac{234}{999}$; $p = 234 \text{ dan } q = 999 \text{ bilangan bulat}$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

4

Contoh 2

Apakah bilangan: 11,6666 ... bilangan rasional?

Misal
$$x = 11,6666 \dots$$
 (1)

$$10x = 116,6666 \dots$$
 (2)

(2)
$$-(1)$$
: $9x = 105 \rightarrow x = \frac{105}{9} = \frac{35}{3}$; $p = 35$ dan $q = 3$ bilangan bulat

Bilangan irrasional

- 0,0100021300056009 ... desimal tidak pernah berulang
- $\sqrt{2} \approx 1,4142135623731$... desimal tidak pernah berulang
- $\pi \approx 3,14259265358979$ desimal tidak pernah berulang

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

_

5

Bilangan Real dan Garis Real

Setiap bilangan riil dapat disajikan sebagai satu titik pada garis yang disebut garis riil.

simbol \Re dapat digunakan sebagai lambang sistem bilangan real dan juga garis real.

 $a \in \mathfrak{R}$ apat dibaca (diartikan): a suatu bilangan real a suatu titik pada garis real

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

6

6

Sifat-sifat bilangan real

Sifat aljabar

Bilangan real dapat *ditambahkan*, *dikurangkan*, *dikalikan*, dan *dibagi* (kecuali dengan *nol*) dengan aturan aritmetika biasa.

Pembagi 0 (nol) tidak diperbolehkan karena

$$\frac{Bil\ real}{0} = sesuatu$$

sesuatu tidak dapat didefinisikan (tidak tahu) bukan tak tentu

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

7

7

Sifat Keterurutan

Jika $a, b \operatorname{dan} c$ bilangan real, maka :

1.
$$a < b \rightarrow a + c < b + c$$

2.
$$a < b \rightarrow a - c < b - c$$

3.
$$a < b \operatorname{dan} c > 0 \rightarrow ac < bc$$

4.
$$a < b \text{ dan } c < 0 \rightarrow ac > bc$$

$$5. \ a > 0 \rightarrow \frac{1}{a} > 0$$

6. Jika
$$a$$
 dan b bertanda sama, maka $a < b \rightarrow \frac{1}{b} < \frac{1}{a}$

Sifat Lengkap

jika a dan b bilangan real dengan a < b, maka ada bilangan real c sehingga a < c < b.

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

8

8

Interval

Notasi	Himpunan	Grafik	
(a,b)	$\{x \mid a < x < b\}$	← 	
[a,b]	$\{x \mid a \le x \le b\}$	a b	→
(a,b]	$\{x \mid a < x \le b\}$	← C	
[<i>a</i> , <i>b</i>)	$\{x \mid a \le x < b\}$	← a b	
(a, ∞)	$\{x \mid a < x < \infty\}$	← C	
$[a,\infty)$	$\{x \mid a \le x < \infty\}$	←	
$(-\infty,b)$	$\{x \mid -\infty < x < b\}$	-∞ b	→
$(-\infty,b]$	$\{x \mid -\infty < x \le b\}$	-∞ b	
$(-\infty,\infty)$	R himpunan semua bilangan real	- ∞	∞

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

С

9

1.2 Penyelesaian Pertidaksamaan

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi Pertidaksamaan yang diberikan.

Contoh 3.

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(1)
$$2x-1 \le x+3$$

$$2x < x + 4$$
$$x < 4$$

kedua sisi ditambah 1

kedua sisi dikurangi x

Jadi, penyelesaiannya adalah $\{x \mid x < 4\}$ atau $(-\infty, 4)$.

Garis real:

Pada gambar di titik 4 berlubang karena 4 bukan Himpunan Penyelesaian (HP)

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

10

10

(2.)
$$\frac{2}{x+3} \ge \frac{1}{2-x}$$

 $\frac{2}{x+3} \ge \frac{1}{2-x} \leftrightarrow 2(2-x) \ge 1(x+3)$

Perkalian silang → Salah apakah positip atau negatif

$$\frac{2}{x+3} \ge \frac{1}{2-x} \; ; \; x \ne -3 \; ; \; x \ne 2$$

$$\frac{2}{x+3} \ge \frac{1}{2-x} \leftrightarrow \frac{2}{x+3} - \frac{1}{2-x} \ge 0 \leftrightarrow \frac{2(2-x) - 1(x+3)}{(x+3)(2-x)} \ge 0$$
$$\leftrightarrow \frac{4 - 2x - x - 3}{(x+3)(2-x)} \ge 0 \leftrightarrow \frac{-3x+1}{(x+3)(2-x)} \ge 0$$

Garis bilangan dan uji tanda:

Pada gambar di titik -3, -1/3 dan 2 berlubang karena nilai ini pembagi 0

HP:
$$\left\{ x | -3 < x \le \frac{1}{3} \cup x > 2, x \in \Re \right\}$$
 HP: $\left(-3, \frac{1}{3} \right] \cup (2, +\infty)$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

Latihan

11

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

1.
$$-2 \ge 3 - 8x \ge -11$$

2.
$$\frac{x}{x-3} < 4$$

3.
$$2-3x+x^2 \le 0$$

4.
$$\sqrt{x^2 - x - 6}$$

$$5. \quad \sqrt{\frac{2x+1}{x-5}}$$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

1.3 Nilai Mutlak

Definisi

Nilai mutlak dari bilangan x, ditulis dengan |x|, didefinisikan

$$|x| = \begin{cases} x ; x \ge 0 \\ -x ; x < 0 \end{cases}$$

Contoh 4.

$$|-17| = 17$$
; $|-8| = 8$; $|45| = 45$

Catatan:

- $|x| \ge 0$ untuk setiap bilangan real x, dan |x| = 0 jika dan hanya jika x = 0
- |x| menyatakan jarak dari x ke titik asal 0 pada garis real.
- |x y| menyatakan jarak antara x dan y.
- $\sqrt{x^2} = |x|$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

13

13

Sifat Nilai Mutlak

- |-a| = |a| Suatu bilangan dan negatifnya mempunyai nilai mutlak sama
- |ab| = |a| |b| Nilai mutlak dari perkalian sama dengan perkalian nilai mutlak
- $|a+b| \le |a|+|b|$ Ketaksamaan Segitiga.

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

14

MATEMATIKA ITS

Persamaan Nilai Mutlak

Contoh 5.

1. Dapatkan penyelesaian dari persamaan |2x - 3| = 7

$$|2x - 3| = 7 \to \begin{cases} 2x - 3 = 7 \to 2x = 10 \to x = 5 \\ -(2x - 3) = 7 \to -2x = 4 \to x = -2 \end{cases}$$

$$HP = \{5, -2\} \quad \to x = 5 \text{ dan } x = -2$$

2. Dapatkan penyelesaian dari persamaan |3x - 1| = |x + 5|

$$|3x - 1| = |x + 5| \to \begin{cases} 3x - 1 = x + 5 \to 2x = 6 \to x = 3\\ -(3x - 1) = x + 5 \to -4x = 4 \to x = -1 \end{cases}$$

$$HP = \{3, -1\}$$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

15

15

$$|x-3| + |2x-8| = \begin{cases} x-3 \to x-3 \ge 0 \ ; x \ge 3 \\ -(x-3) \to x-3 < 0; x < 3 \end{cases} + \begin{cases} 2x-8 \to 2x-8 \ge 0; \ x \ge 4 \\ -(2x-8) \to 2x-8 < 0; x < 4 \end{cases}$$

Kondisi 1

Daerah penyelesaian: $x \ge 3 \cap x \ge 4 \rightarrow x \ge 4$

$$(x-3) + (2x-8) = 5 \leftrightarrow 3x - 11 = 5 \leftrightarrow 3x = 5 + 11 \rightarrow x = \frac{16}{3}$$
; memenuhi

Kondisi 2

Daerah penyelesaian:
$$x \ge 3 \cap x < 4 \rightarrow 3 \le x < 4$$

$$(x-3) - (2x-8) = 5 \leftrightarrow -x + 5 = 5 \leftrightarrow -x = 5 - 5 \to x = 0$$
; tidak memenuhi

Kondisi 3

Daerah penyelesaian: $x < 3 \cap x \ge 4 \rightarrow x = \emptyset$; tidak ada daerah penyelesaian

Kondisi 4

Daerah penyelesaian: $x < 3 \cap x < 4 \rightarrow x < 3$

$$-(x-3) - (2x-8) = 5 \leftrightarrow -3x + 11 = 5 \leftrightarrow -3x = 5 - 11 \rightarrow x = \frac{6}{3} = 2$$
; memenuhi
HP = $\left\{2, \frac{16}{3}\right\}$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

16

16

Pertidaksamaan Nilai Mutlak

MO

Selang / Interval Nilai Mutlak

$$|x| \le a \to -a \le x \le a$$

$$|x| \ge a \to x \le -a \ atau \ x \ge a$$

Contoh 6.

- 1. Dapatkan penyelesaian dari persamaan $|2x + 5| \le 7$ $|2x + 5| \le 7 \to -7 \le 2x + 5 \le 7 \leftrightarrow -7 5 \le 2x \le 7 5 \leftrightarrow -12 \le 2x \le 2 \leftrightarrow -6 \le x \le 1$ HP= $\{x | -6 \le x \le 1 ; x \in R \}$ atau [-6, 1]
- 2. Dapatkan penyelesaian dari persamaan |5x + 6| > 17

$$|5x + 6| > 17 \rightarrow -17 < 5x + 6 \text{ atau } 5x + 6 > 17 \leftrightarrow -17 - 6 < 5x \text{ atau } 5x > 17 - 6$$

 $\leftrightarrow -23 < 5x \text{ atau } 5x > 11 \leftrightarrow x < \frac{-23}{5} \text{ atau } x > \frac{11}{5}$

 $\mathsf{HP} = \{ \, x | \, x < \frac{-23}{5} \, \cup \, x > \frac{11}{5} \, ; \, x \in R \, \} \, atau \, \left(-\infty, \frac{-23}{5} \right) \, \cup \left(\frac{11}{5}, \infty \right)$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

17

17

3. Dapatkan penyelesaian dari persamaan

$$\frac{3}{|2x-1|} \ge 5$$

$$\frac{3}{|2x-1|} \ge 5 \leftrightarrow 3 \ge 5|2x-1| \leftrightarrow |2x-1| \le \frac{3}{5}$$
 Kalikan silang boleh karena nilai mutlak positif

$$\leftrightarrow -\frac{3}{5} \leq 2x-1 \leq \frac{3}{5} \leftrightarrow 1-\frac{3}{5} \leq 2x \leq \frac{3}{5}+1 \leftrightarrow \frac{2}{5} \leq 2x \leq \frac{8}{5} \leftrightarrow \frac{2}{10} \leq x \leq \frac{8}{10} \; ; \; \; x \neq \frac{1}{2}$$

$$\begin{aligned} & \text{HP = } \{x \, | \, \frac{1}{5} \leq x < \frac{1}{2} \cup \frac{1}{2} < x \leq \frac{4}{5}; x \in R \} \ atau \ \left[\frac{1}{5}, \frac{1}{2} \right) \cup \left(\frac{1}{2}, \frac{4}{5} \right] \\ & \text{HP = } \{x \, | \, \frac{1}{5} \leq x \leq \frac{4}{5}; x \neq \frac{1}{2}; x \in R \} \end{aligned}$$

4. Dapatkan penyelesaian dari persamaan 1 < |x + 4| < 5

$$1 < |x+4| < 5 \leftrightarrow 1 < |x+4| \ dan \ |x+4| < 5 \leftrightarrow |x+4| > 1 \ dan \ |x+4| < 5$$

 $\leftrightarrow (x+4 < -1 \ atau \ x+4 > 1) \ dan \ (-5 < x+4 < 5)$

$$\leftrightarrow (x < -5 \cup x > 3) \ dan \ (-9 < x < 1)$$

$$HP = \{x \mid -9 < x < -5; x \in R\}$$

HP = (-9, -5)

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

18

18

1.4 Grafik Persamaan

Parabola Terbuka keatas dan kebawah

Persamaan Parabola: $y = ax^2 + bx + c$

- Jika a > 0 terbuka keatas
- Jika a < 0 terbuka kebawah
- Titik Puncak $(x, y) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$; $D = b^2 - 4ac$

Garis $x = -\frac{b}{2a}$ membelah parabola menjadi dua (garis simetri)

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

10

19

Grafik Persamaan

Parabola terbuka kekanan dan kekiri

Persamaan Parabola: $x = py^2 + qy + r$

- Jika p > 0 terbuka kekanan
- lacktriangle Jika p < 0 terbuka kekiri
- Titik Puncak $(x, y) = \left(-\frac{D}{4p}, -\frac{q}{2p}\right)$; $D = q^2 - 4pr$

Garis $y = -\frac{q}{2p}$ membelah parabola menjadi dua (garis simetri)

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

2

Contoh 7.

- 1. Sket grafik persamaan: $y = x^2 + 2x 3$
 - Titik potong sumbu x, y = 0 $0 = x^2 + 2x - 3 \leftrightarrow (x+3)(x-1)$ $\leftrightarrow x_1 = -3$; $x_2 = 1$
 - Titik potong sumbu y , x = 0 ; y = -3
 - Titik Puncak Parabola (-1, -4), silahkan dihitung

- 2. Sket grafik persamaan: $x = y^2 + 2y 8$
 - Titik potong sumbu y, x = 0 $0 = -y^2 + 2y - 8 \leftrightarrow (y + 4)(y - 2)$ $\leftrightarrow y_1 = -4$; $y_2 = 2$
 - Titik potong sumbu x , y = 0 ; y = -8
 - Titik Puncak Parabola (-9, -1), silahkan dihitung

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

21

- 3. Sket grafik persamaan: $y = \sqrt{x-3}$
 - Nilai $x \ge 3$, Nilai $y \ge 0$
 - Buat tabel sebagai berikut:

x	3	4	5	6	7	•••
у	0	1	$\sqrt{2}$	$\sqrt{3}$	2	

Persamaan parabola terbuka kekanan

Karena y > 0, maka grafik bagian bawah tidak ada

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

NILAI PENDEKATAN

$$1^- \approx 0,99999 \dots 9 \rightarrow Satu\ kurang\ sedikit$$

 $1^+ \approx 1.00000 \dots 1 \rightarrow Satu\ lebih\ sedikt$

$$-1^{+} \approx -0.99999999$$

$$-1^- \approx -1.00000 \dots 1$$

$$-2^{+} \approx -1,9999999 \dots 99999$$

$$-2^{-} \approx -2,000000 \dots 01$$

$$1^{+}\approx1,\!000000\ldots0001\rightarrow\frac{2}{1^{+}-1}=\frac{2}{sangat\;kecil}\approx+\infty$$

$$1^+ \approx 1,000000 \dots 0001 \rightarrow \frac{2}{1-1^+} = \frac{2}{-sangat\; kecil} \approx -\infty$$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

าว

23

Persamaan dengan asimtot

■ a^- nilai a kurang sedikit, $-1^- \approx -1,000 \dots 1, 2^- \approx 1,999 \dots 9$

- 1. Sket grafik persamaan: $y = \frac{1}{x}$
 - Nilai $x \neq 0$,
 - Buat tabel sebagai berikut:

- Untuk $x \to +\infty$, $y \to 0$; untuk $x \to 0^+$, $y \to +\infty$
- Untuk $x \to -\infty$, $y \to 0$; untuk $x \to 0^-$, $y \to -\infty$
- Sumbu x asimtot datar, sumbu y asimtot tegak

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

24

- 2. Sket grafik persamaan: $y = \frac{1}{x^2}$
 - Nilai $x \neq 0, y > 0$
 - Buat tabel sebagai berikut:

х	-3	-2	-1	1	2	3
y	1	1	1	1	1	1
	9	$\frac{\overline{4}}{4}$			$\overline{4}$	9

- Untuk $x \to +\infty$, $y \to 0$; untuk $x \to 0^+$, $y \to +\infty$
- Untuk $x \to -\infty$, $y \to 0$; untuk $x \to 0^-$, $y \to +\infty$
- Sumbu x asimtot datar, sumbu y asimtot tegak

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

25

25

- 3. Sket grafik persamaan: $y = \frac{1}{x-2}$
 - Nilai $x \neq 2$,
 - Buat tabel sebagai berikut:

x	-1	0	1	3	2	3
у	1	1	-1	1	1	1
·	$-\frac{1}{3}$	$-\frac{1}{2}$			$-\frac{1}{2}$	$-\frac{1}{3}$

- Untuk $x \to +\infty$, $y \to 0$; untuk $x \to 2^+$, $y \to +\infty$
- Untuk $x \to -\infty$, $y \to 0$; untuk $x \to 2^-$, $y \to -\infty$
- Sumbu x asimtot datar, garis x = 2 asimtot tegak

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

26

Uji Simetri

- 1. Suatu kurva bidang simetri terhadap sumbu x jika setiap titik (x, y) diganti dengan (x, -y) maka persamaan grafik tidak berubah
- 2. Suatu kurva bidang simetri terhadap sumbu y jika setiap titik (x, y) diganti dengan (-x, y) maka persamaan grafik tidak berubah
- 3. Suatu kurva bidang simetri terhadap titik pusat jika setiap titik (x, y) diganti dengan (-x, -y) maka persamaan grafik tidak berubah

Contoh 9

1. Lakukan uji simetri y = |x|

 $y = |x| \rightarrow x$ diganti dengan (-x) didapat: y = |-x| = |x|; grafik simetri terhadap sumbu y

$$y = |x|$$

$$= \begin{cases} x ; x \ge 0 \\ -x ; x < 0 \end{cases}$$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

27

27

1. Lakukan uji simetri y = |2x - 1|

 $y = |2x - 1| \rightarrow x$ diganti dengan (-x) didapat: $y = |2(-x) - 1| = |-2x - 1| \neq |2x - 1|$; grafik tidak simetri terhadap sumbu y

$$y = |2x - 1| = \begin{cases} 2x - 1, 2x - 1 \ge 0 \\ -(2x - 1), 2x - 1 < 0 \end{cases} = \begin{cases} 2x - 1, x \ge 1/2 \\ -2x + 1, x < 1/2 \end{cases}$$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

28

28

2. Lakukan uji simetri $y = x^3$

$$y = x^3 \rightarrow x$$
 diganti dengan $(-x)$ dan
y diganti dengan $(-y)$ didapat
 $-y = -x^3 \rightarrow y = x^3$

Berarti grafik simetri terhadap titik pusat

$$x = y^2 - 4 \rightarrow y$$
 diganti dengan $(-y)$ didapat: $x = y^2 - 4$; grafik simetri terhadap sumbu x

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

20

29

 $y = x^2 + 1 \rightarrow y$ diganti dengan (-y); $-y = x^2 + 1$; $y = -x^2 - 1$ (tidak sama) grafik tidak simeti terhadap sb x

 $y = x^2 + 1 \rightarrow x \text{ diganti dengan } (-x); y = (-x)^2 + 1; y = x^2 + 1 \text{ (sama)}$ grafik simeti terhadap sh y

 $y = x^2 + 1 \rightarrow x$ diganti dengan (-x); y diganti dengan (-y) $\rightarrow -y = (-x)^2 + 1$; $y = -x^2 - 1$; (tidak sama) grafik tidak thd titik pusat

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

3

30

1.5 Garis dan Lingkaran

1. Persamaan garis: ax + by + c = 0

$$y = -\frac{a}{b}x - \frac{c}{a}$$

atau

y = mx + n dengan $m = -\frac{a}{b}$ dan $n = -\frac{c}{a}$; m = arah garis

2. Persamaan garis dengan gradien m melalui titik (x_0, y_0) :

$$y - y_0 = m(x - x_0)$$

3. Persamaan garis melalui 2 titik: (x_1, y_1) , (x_2, y_2) :

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

- 4. Dua garis $y = m_1 x + a \operatorname{dan} y = m_2 x + a \operatorname{sejajar}$ jika $m_1 = m_2$
- 5. Dua garis $y = m_1 x + a \operatorname{dan} y = m_2 x + a \operatorname{tegak} \operatorname{lurus}$ jika $m_1 m_2 = -1$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

3:

Contoh 10.

1. Tentukan nilai k sehingga garis 3x + ky = 4 tegak lurus terhadap garis: 4x + 3y = 2

Jawab

Garis k: 3k + ky = 4; gradien: $m_k = -\frac{3}{k}$

Garis l: 4x + 3y = 2; gradien: $m_l = -\frac{4}{3}$

Garis k tegak lurus l, berarti:

$$m_k.m_l = -1 \leftrightarrow \frac{-3}{k}.\frac{-4}{3} = -1 \leftrightarrow \frac{12}{3k} = -1 \leftrightarrow -3k = 12 \leftrightarrow k = -4$$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

3

32

2. Tentukan persamaan garis yang melalui titik (3, 1) dan tegak lurus garis 3x + 2y = 4, selanjutnya sket grafik dua garis tersebut

Jawab

Persamaan garis k:

$$3x + 2y = 4 \rightarrow y = -\frac{3}{2}x + 2$$
; $m_1 = -\frac{3}{2}$

Gradien garis *l* tegak lurus *k*:

$$m_1 \times m_2 = -1 \leftrightarrow -\frac{3}{2} \times m_2 = -1 \rightarrow m_2 = \frac{2}{3}$$

Garis K melalui (3, 1):

$$y-1 = \frac{2}{3}(x-3) \leftrightarrow y-1 = \frac{2}{3}x-2 \leftrightarrow y = \frac{2}{3}x-1$$

33

33

Jarak DuaTitik

Diberikan dua titik: $P(x_1, y_1)$ dan $Q(x_1, y_1)$, jarak titik P dan Q adalah:

$$|PQ| = \sqrt{(x_2 - x_1)^2 + ((y_2 - y_1)^2)}$$

Diberikan dua titik: $P(x_1, y_1)$ dan $Q(x_1, y_1)$, titik tengah P dan Q adalah:

$$\bar{x} = \frac{x_2 - x_1}{2}$$
; $\bar{y} = \frac{y_2 - y_1}{2}$

Jarak Titik ke Garis

Diberikan dua titik: $P(x_0, y_0)$ dan persamaan garis l: ax + by + c = 0Jarak titik P ke garis l adalah:

$$|D| = \left| \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}} \right|$$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

34

34

Persamaan Lingkaran

Bentuk umum Persamaan Lingkaran

$$x^2 + y^2 + Ax + By + C = 0$$

Persamaan Lingkaran dengan pusat P(a, b) dan jari-jari r:

$$(x-a)^2 + (y-b)^2 = r^2$$

Contoh 11.

1. Tentukan titik pusat dan jari-jari lingkaran dari: $x^2 + y^2 - 2x + 6y - 6 = 0$

$$x^2 + y^2 - 2x + 6y - 6 = 0$$

$$\leftrightarrow x^2 - 2x + y^2 + 6y = 6$$

$$\leftrightarrow x^2 - 2x + 1 + y^2 + 6y + 9 - 1 - 9 = 6$$

$$\leftrightarrow (x-1)^2 + (y+3)^2 = 16$$

Lingkaran dengan pusat P(1,-3) dan jari-jari r = 4

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

35

$$y \ge 0$$
, $4 - x^2 \ge 0 \leftrightarrow -2 \le x \le 2$

$$y = \sqrt{4 - x^2} \rightarrow y^2 = 4 - x^2 \leftrightarrow x^2 + y^2 = 4$$

Persamaan lingkaran dengan P(0,0) dan r=2

Karena $y \ge 0$ maka grafik lingkaran bagian atas

$$y \ge 0$$
, $5 + 4x - x^2 \ge 0 \leftrightarrow (x+1)(5-x) \ge 0 \leftrightarrow -1 \le x \le 5$
 $y = \sqrt{5 + 4x - x^2} \rightarrow y^2 = 5 + 4x - x^2 \leftrightarrow x^2 - 4x + y^2 = 5$

 $\Leftrightarrow x^2 - 4x + 4 + y^2 = 5 + 4 \Leftrightarrow (x - 2)^2 + y^2 = 9$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

Contoh 12.

Tentukan persamaan garis singgung lingkaran $x^2 + y^2 + 2x = 9$ di titik A(2, -1), selanjutnya gambar grafik tersebut.

$$x^{2} + y^{2} + 2x = 9 \leftrightarrow x^{2} + 2x + 1 + y^{2} = 9 \leftrightarrow (x+1)^{2} + y^{2} = 8$$

Lingkaran dengan pusat P(-1, 0) dan jari-jari $r = \sqrt{8}$

Titik A(2, -1), gradien garis AP:
$$m_{AP} = \frac{-1-0}{2-(-1)} = -\frac{1}{3}$$

Persamaan garis singgung lingkaran di titik A(2,-1) Tegak lurus terhadap garis AP, gradien persamaan garis Singgung:

 $m_1 m_2 = -1 \leftrightarrow \left(-\frac{1}{3}\right) m_2 = -1 \to m_2 = 3$

Persamaan garis singgung dengan m = 3 melalui A(2, -1):

$$y - (-1) = 3(x - 2) \leftrightarrow y = 3x - 6 - 1 \rightarrow y = 3x - 7$$

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

37

37

Akhir Bab 1

Berikutnya ... Fungsi

Daryono, Kalkulus 1: Bab 1 Sistem Bilangan Riil

38

38