- ♦ 전체 : 선택형 14문항(70점) 서답형 6문항(30점)
- ♦ 배점 : 문항 옆에 배점 표시
- ♦ 선택형은 답안 카드에 컴퓨터용 사인펜으로 정확히 마킹하 고, 서답형은 반드시 검정볼펜으로 기입하시오.

선택형

1. 다음 중 수렴하지 않는 것은? [4.3점]

① 2,
$$\frac{3}{2}$$
, $\frac{4}{3}$, $\frac{5}{4}$, ..., $\frac{n+1}{n}$, ...

$$(2) 1, -\frac{1}{2} \frac{1}{4}, -\frac{1}{8}, \cdots, \left(-\frac{1}{2}\right)^{n-1}$$

(3)
$$2+1$$
, $2+\frac{1}{2}$, $2+\frac{1}{3}$, $2+\frac{1}{4}$, ..., $2+\frac{1}{n}$, ...

$$4\sqrt{2}-1$$
, $\sqrt{3}-\sqrt{2}$, $2-\sqrt{3}$, $\sqrt{5}-2$, ..., $\sqrt{n+1}-\sqrt{n}$, ...

(5) 7, 4, 1, -2, ..., 10-3n, ...

2. 모든 자연수 n에 대하여 $1 \le k \le n$ 일 때, 다음 부등식 이 성립한다.

$$\sqrt{n^2 + 1} \le \sqrt{n^2 + k} \le \sqrt{n^2 + n}$$

이때,
$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{2\sqrt{n^2+k}}$$
 의 값은? [5점]

- $\bigcirc 0$ $\bigcirc 2 \frac{1}{2}$ $\bigcirc 3 1$ $\bigcirc 2$

3. 모든 자연수 n에 대하여 $a_n > 2$ 인 수열 $\{a_n\}$ 이 $2a_{n+1} < a_n + 2(n = 1, 2, 3, \cdots)$ 를 만족시킬 때, 다음은 $\lim_{n\to\infty} a_n$ 의 값을 구하는 과정이다.

_ <과 정> -

부등식 $2a_{n+1} < a_n + 2$ 의 양변에 (가) 를 더하면 $2a_{n+1} + \boxed{(7)} < a_n + 2 + \boxed{(7)}$ $\stackrel{\sim}{\neg}$, $a_{n+1} - 2 < \frac{1}{2}(a_{n-1} - 2)$

따라서
$$n \ge 2$$
일 때,
$$a_n - 2 < \frac{1}{2}(a_{n-1} - 2)$$
$$< \left(\frac{1}{2}\right)^2 (a_{n-2} - 2)$$
$$< \left(\frac{1}{2}\right)^3 (a_{n-3} - 2) 모든 자연수 n에 대하여 ...$$

위의 과정에서 (7), (나), (Γ) 에 알맞을 수를 각각 a,b,c라 할 때, a+b+c의 값은? [5.6점]

- (1) -2 (2) 0
- (3) 1
- (4)2
- $(5) \infty$

⑤
$$\infty$$
 4. 급수 $\sum_{n=1}^{\infty} \frac{3^n - (-2)^n}{4^n}$ 의 합은? [5점]

- ① $\frac{4}{3}$ ② 2 ③ $\frac{8}{3}$ ④ $\frac{10}{3}$
- (5)4

가? [5.2점]

<보기> $\neg \cdot \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ $\vdash \cdot \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$ $-1 + \frac{3}{5} + \frac{1}{2} + \dots + \frac{n+1}{3n-1} + \dots$ $\exists \cdot \sum_{n=1}^{\infty} \log \frac{n+1}{n}$

 \Box . $1 + (-1) + 1 + (-1) + \cdots$

(1) 17H (2) 27H (3) 37H (4) 47H

6. 아래 그림과 같이 반지름의 길이가 2인 원 C_1 에 내접 하는 정삼각형 S_1 을 그리고 이 정삼각형의 내접원을 C_2 라 하자. 또, 원 C_2 에 내접하는 정삼각형 S_2 를 그리고 이 정삼각형의 내접원을 C_3 이라 하자. 이와 같은 과정을 한

없이 반복할 때, 정삼각형 S_1 , S_2 …의 넓이의 합은? [5점]

(1) $2\sqrt{3}$ (2) $3\sqrt{3}$

 $(3) 4\sqrt{3}$

 $(4) 5\sqrt{3}$

 $(5) 6\sqrt{3}$

(5) 5개

 $\sum_{n=1}^{\infty} \frac{1}{a_{2n}}$ 의 합은?

 $(가) \{a_n\}$ 은 등비수열이다.

(나) 급수 $\sum_{n=1}^{\infty} \left(2 - \frac{a_n}{3^n}\right)$ 은 수렴한다.

① $\frac{1}{16}$ ② $\frac{1}{4}$ ③ 1 ④ 4

(5) 16

8. 다음 중 극한값을 바르게 구하지 못한 것은? [4.5점]

$$(3) \lim_{x \to \infty} \left(1 + \frac{1}{3x} \right)^x = e^3$$

$$4 \lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$$

- - (1) 1
- (2) 4

- ① $\frac{3+4\sqrt{3}}{10}$ ② $\frac{4+3\sqrt{3}}{10}$ ③ $\frac{4-3\sqrt{3}}{10}$ ② $\frac{4-3\sqrt{3}}{10}$ ③ $\frac{4-3\sqrt{3}}{10}$

- **10.** 함수 $f(x) = (x^2 + 3x)e^x$ 에 대하여 f'(1)의 값은? [4.3 점]
- ① 4e
- (2) 5e
- 38e
- (4) 9e
- (5) 10e
- **12.** 함수 f(x)가 다음과 같을 때, f'(0)의 값은? [5점]

$$f(x) = \begin{cases} 2\sin 4x + x^2 \cos \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

- (1)2

- ② 4 ③ 8 ④ 9

13. 아래 그림과 같이 중심이 점 0이고 반지름의 길이가 6인 사분원 OBC 위의 한 점 A에서 선분 OB에 내린 수선 의 발을 H라 하자. $\angle AOB = \theta$, 호 AB의 길이를 $f(\theta)$ 라 할 때, $\lim_{\theta \to 0+} \frac{\overline{BH}}{\{f(\theta)\}^2}$ 의 값은? [5.2점]

① 0

- $2\frac{1}{12}$ $3\frac{1}{6}$
- (4)6
- (5) 12

서답형

단답형 1. 수열 $\{a_n\}$ 에 대하여 $\lim_{n\to\infty}na_n=3$ 일 때, $\lim_{n\to\infty} (2n-1)a_n$ 의 값을 구하시오. [4점]

단답형 2.
$$\sum_{n=1}^{\infty} a_n = 5$$
, $\sum_{n=1}^{\infty} b_n = -2$ 일 때, 급수 $\sum_{n=1}^{\infty} (2a_n - 3b_n)$ 의 합을 구하시오. [3점]

14. 미분가능한 함수 f(x)에 대하여

$$\lim_{x \to e} \frac{f(x)\log_2 x - 3}{x - e} = \frac{4}{e}$$

일 때, $\frac{f(e)}{f'(e)}$ 의 값은? [5.2점] ① $\frac{1}{3e}$ ② 3e ③ $\frac{1}{e}$

- $\textcircled{4} e \qquad \textcircled{5} \frac{3}{e}$

단답형 3. 원점 O와 점 P(-3,4)를 지나는 동경 OP가 나 타내는 각의 크기를 θ 라 할 때, $\sec \theta$ 의 값을 구하시오.[3 점]

서술형 1. 다음은 두 수열 $\{a_n\}$ 과 $\{b_n\}$ 에 대한 명제이다.[6점]

<보 기> __

두 수열 $\{a_n\}$ 과 $\{a_nb_n\}$ 이 수렴하면 수열 $\{b_n\}$ 도 수렴한다.

- (1) 명제의 참 거짓을 판별하시오.[2점]
- (2) 명제가 참이라면 수열의 극한의 기본 성질을 이용하여 증명하고, 명제가 거짓이라면 반례를 찾고 그 이유를 서술하시오. [4점]

서술형 2. 두 곡선 $y = 3^x$, $y = \left(\frac{1}{3}\right)^x$ 가 있다. 양수 t에 대하여 곡선 $y = 3^x$ 가 직선 x = t와 만나는 점을 A, 곡선 $y = \left(\frac{1}{3}\right)^x$ 가 직선 x = t와 만나는 점을 B라 하자. 점 A에 서 $y = 3^x$ 의 기울기를 f(t), 점 B에서 $y = \left(\frac{1}{3}\right)^x$ 의 기울기를 g(t)라 할 때, 다음 물음에 답하시오. [7점]

- (1) f(t), g(t)를 구하시오. [2점]
- (2) $\lim_{t\to 0} \frac{f(t) + g(t)}{t}$ 의 값을 구하는 풀이과정과 답을 서술하시오. [5점]

서술형 3. 도함수의 정의와 삼각함수의 덧셈정리를 이용하여 삼각함수 $y = \cos x$ 의 도함수를 구하는 과정을 서술하시오. [7점]