Grupo 3

Participantes:

David Arias Calderón 20181020149 Luis Miguel Polo 20182020158

Taller 2 Ejercicio 1

Enunciado

Considerando la figura 1 diseñar una red neuronal que permita convertir una señal triangular a seno.

Figura 1

Configuraciones:

- Capas ocultas: 4
- Neuronas en las capas ocultas: 4
- Tipo de las funciones de activación: libre

Requerimientos de diseño:

- Considerando el valor máximo de la señal:
- Error máximo del 5%
- Error cuadrático medio inferior al 2%

Solución

Montaje para el registro de datos en simulink

Gráfica del scope en simulink

Script de matlab

```
%Aplicación red neuronal aproximación de funciones
close all
clear all
warning off
%Realizar la simulación
sim('Datos1R16')
%Cargar datos
load Datos
%Rango de la entrada
R = [-1 \ 1];
%Configuración capas y neuronas
S = [4 4 4 4 1];
%Red neuronal FF
net = newff(R,S,{'tansig','purelin','tansig','purelin','tansig','purelin'})
%Tiempo
t=ScopeData(:,1)';
%Datos entrada
P = ScopeData(:,2)';
%Datos salida
T = ScopeData(:,3)';
%Simulación sin entrenar
Y = sim(net,P);
plot(t,T,t,Y)
%Entrenamiento
net.trainParam.min_grad=0.00001;
net = train(net,P,T)
%Simulación con entrenamiento
Y = sim(net,P);
plot(t,T,t,Y)
%Figura del error
e=T-Y;
figure
plot(t,e)
%Valor del MSE
mse = (1/length(e))*sum(e.^2)
```


Resultados del entrenamiento neuronal

Training Results

Training finished: Reached minimum gradient 🔮

Training Progress

Unit	Initial Value	Stopped Value	Target Value	
Epoch	0	20	1000	<u>^</u>
Elapsed Time	-	00:00:06	-	
Performance	0.704	1.71e-08	0	
Gradient	1.69	8.52e-06	1e-05	
Mu	0.001	1e-06	1e+10	
Validation Checks	0	0	6	Ŧ

Training Algorithms

Data Division: Levenberg-Marquardt trainIm Performance: Mean Squared Error mse

Calculations: MEX

mse =

1.7081e-08

Gráfica obtenida

Gráfica obtenida aumentada

Figura del error

