Grundbegriffe der Theoretischen Informatik

Sommersemester 2017 - Beate Bollig

Die Folien basieren auf den Materialien von Thomas Schwentick.

Teil B: Kontextfreie Sprachen

9: Kellerautomaten

Inhalt

> 9.1 Kellerautomaten: Definitionen

- 9.2 Leerer Keller vs. akzeptierende Zustände
- 9.3 Grammatiken vs. Kellerautomaten
- 9.4 Kellerautomaten: Korrektheitsbeweise
- 9.5 Anhang: Beweisdetails

Ein Beispiel: Klammerausdrücke

- ullet Sei $L_{\langle 2
 angle}$ die Sprache der korrekt geklammerten "Tag-Ausdrücke" mit zwei Tag-Paaren $\langle b
 angle\langle/b
 angle$ und $\langle a
 angle\langle/a
 angle$
 - Also über dem Alphabet $oldsymbol{\Sigma} = \{\langle oldsymbol{a}
 angle, \langle /oldsymbol{a}
 angle, \langle /oldsymbol{b}
 angle \}$
- ullet $\langle a \rangle \langle a \rangle \langle b \rangle \langle b \rangle \langle a \rangle \langle a \rangle \langle a \rangle \langle b \rangle \langle b \rangle \langle a \rangle$ ist korrekt
- ullet $\langle a \rangle \langle a \rangle \langle b \rangle \langle /b \rangle \langle a \rangle \langle /b \rangle \langle /a \rangle \langle b \rangle \langle /b \rangle \langle /a \rangle$ ist nicht korrekt
- ullet $L_{\langle \mathbf{2}
 angle}$ ist kontextfrei und wird von der folgenden Grammatik erzeugt:

$$K o KK \mid \langle b \rangle K \langle /b \rangle \mid \langle a \rangle K \langle /a \rangle \mid \epsilon$$

- ullet Klar: $L_{\langle \mathbf{2}
 angle}$ ist nicht regulär:
 - die Strings $\langle a
 angle^n$, $n \geqslant 0$, sind paarweise nicht äquivalent bezüglich $\sim_{L_{\langle 2 \rangle}}$
- Wie lässt sich algorithmisch testen, ob ein gegebener Klammerausdruck korrekt ist?
- Idee:
 - Versuche, zusammengehörige Klammern zu finden
 - Geeignete Datenstruktur:
 - * Keller ("Last In First Out")

Erkennen von Klammerausdrücken mit Hilfe eines Kellers

- ullet $\langle oldsymbol{a}
 angle$ und $\langle oldsymbol{b}
 angle$ werden jeweils auf den Keller gelegt
- ullet Wenn ein $\langle a \rangle$ gelesen wird, muss ein $\langle a \rangle$ auf dem Keller sein (und wird gelöscht)
- Wenn ein $\langle b \rangle$ gelesen wird, muss ein $\langle b \rangle$ auf dem Keller sein (und wird gelöscht)
- Am Schluss muss der Keller leer sein

Kellerautomaten: informell

- Die Vorgehensweise dieses Algorithmus ähnelt einem endlichen Automaten:
 - Zeichenweises Lesen der Eingabe von links nach rechts
 - Am Ende Entscheidung, ob die Eingabe akzeptiert wird
- Allerdings verwendet der Algorithmus zusätzlich einen Keller
- Solche Algorithmen modellieren wir im Folgenden durch Kellerautomaten
- Wir werden sehen, dass Kellerautomaten genau die kontextfreien Sprachen entscheiden können

- Das eben betrachtete Beispiel war nur ein sehr einfacher Kellerautomat
- Im Allgemeinen erlauben wir zusätzlich:
 - Zustände (endlich viele)
 - Nichtdeterminismus
 - $-\epsilon$ -Übergänge
 - Zwei mögliche Arten von Akzeptierungsbedingungen:
 - * leerer Keller
 - * akzeptierende Zustände
 - Zusätzliche Symbolmenge für Keller
 - Zusätzliches unterstes Kellersymbol
 - Schreiben mehrerer Kellersymbole in einem Schritt

Kellerautomaten: Definition

Definition

- Ein Kellerautomat \mathcal{A} besteht aus
 - einer Zustandsmenge Q,
 - einem Eingabealphabet Σ ,
 - einem Kelleralphabet Γ (nicht notwendigerweise disjunkt zu Σ),
 - einer endlichen Transitionsrelation $\delta \subseteq$

$$ig(oldsymbol{Q} imes (oldsymbol{\Sigma}\cup\{oldsymbol{\epsilon}\}) imes oldsymbol{\Gamma}ig) imes ig(oldsymbol{Q} imes oldsymbol{\Gamma}^*ig),$$

- einem Startzustand s,
- einem untersten Kellersymbol $au_0 \in \Gamma$ und
- einer Menge $oldsymbol{F}$ akzeptierender Zustände
- ullet Also: $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,s, au_0,F)$
- Englische Bezeichnung:

pushdown automaton

Deshalb Abkürzung: PDA

- Warum ist δ so kompliziert?
- Das Verhalten des Automaten im n\u00e4chsten Schritt darf abhängen von:
 - dem aktuellen Zustand p
 - dem nächsten Eingabesymbol σ
 - dem obersten Kellersymbol au

In einem Schritt:

- kann sich der Zustand ändern
- kann ein Eingabesymbol gelesen werden \bowtie muss aber nicht: ϵ
- kann sich der Kellerinhalt verändern:
 - * τ kann durch (möglicherweise) mehrere Symbole ersetzt werden

String z

- Transitionen sind deshalb von der Form
 - (p,σ, au,q,z) mit $\sigma\in\Sigma$ oder
 - $-(p,\epsilon, au,q,z)$

Kellerautomat für $L_{\langle 2 \rangle}$: formal

Beispiel

ullet Ein PDA ${\cal A}_{\langle {f 2} \rangle}$ für die Sprache $L_{\langle {f 2} \rangle}$, der dem vorgestellten Algorithmus entspricht, lässt sich wie folgt definieren:

$$(\{q,q'\},\{\langle b \rangle,\langle a \rangle,\langle /a \rangle,\langle /b \rangle\},\ \{\langle b \rangle,\langle a \rangle,\#\},\delta,q,\#,\varnothing),$$

wobei δ die folgenden Transitionen enthält:

- $oldsymbol{-} (oldsymbol{q},\langleoldsymbol{a}
 angle,oldsymbol{ au},oldsymbol{q},\langleoldsymbol{a}
 angleoldsymbol{ au},$ für alle $oldsymbol{ au}\in oldsymbol{\Gamma}$
- $-(q,\langle b
 angle, au,q,\langle b
 angle au)$, für alle $oldsymbol{ au} \in \Gamma$
- $-(q,\langle/a
 angle,\langle a
 angle,q,\epsilon)$
- $-(q,\langle/b\rangle,\langle b\rangle,q,\epsilon)$
- $-(q,\epsilon,\#,q',\epsilon)$
- Dabei ist # das unterste Kellersymbol, das zu Beginn der Berechnung schon im Keller liegt und am Ende der Berechnung "anzeigt", ob alle Klammern wieder vom Keller gelöscht wurden
- Im Unterschied zur informellen Darstellung im Beispiel

Beispiel

• $\mathcal{A}_{\langle \mathbf{2} \rangle}$ als Diagramm:

• p $\sigma, \tau: w$ q q steht für $(p, \sigma, \tau, q, w) \in \delta$

• Die abkürzende Schreibweise $\underline{\langle b \rangle}, *: \overline{\langle b \rangle}*$ bedeutet, dass alle Übergänge der Art $\overline{\langle b \rangle}, \tau: \overline{\langle b \rangle}\tau$, mit $\tau \in \Gamma$ möglich sind

Kellerautomaten: 2. Beispiel

Beispiel

- ullet Kellerautomat $oldsymbol{\mathcal{A}}_{\mathsf{rev}}$ für $oldsymbol{L}_{\mathsf{rev}} \stackrel{ ext{ iny def}}{=} \{oldsymbol{w} oldsymbol{w}^R \mid oldsymbol{w} \in \{oldsymbol{0}, oldsymbol{1}\}^*\}$
- Konstruktionsidee:
 - "Rate" die Stelle, an der $oldsymbol{w}$ zu Ende ist
 - Kopiere bis zu dieser Stelle alles auf den Keller
 - Nach dieser Stelle vergleiche immer das nächste Eingabesymbol mit dem obersten Kellersymbol (und lösche dieses)

Kellerautomaten: Konfigurationen

- Das zukünftige Verhalten eines endlichen Automaten hängt jeweils ab von:
 - dem aktuellen Zustand,
 - den noch zu lesenden Eingabezeichen
- Das zukünftige Verhalten eines Kellerautomaten hängt jeweils ab von:
 - dem aktuellen Zustand,
 - den noch zu lesenden Eingabezeichen,
 - dem Kellerinhalt
- → der Kellerinhalt muss für die Definition der Semantik von Kellerautomaten berücksichtigt werden
 - Läufe (Berechnungen) bestehen bei PDAs also nicht nur aus Folgen von Zuständen und gelesenen Zeichen
 - Stattdessen werden wir Folgen von Konfigurationen betrachten, die jeweils die aktuelle "Situation" beschreiben

Definition

- ullet Sei ${\cal A}=(Q,\Sigma,\Gamma,\delta,s, au_0,F)$ ein Kellerautomat
- Eine Konfiguration (q, u, v) von \mathcal{A} besteht aus:
 - einem Zustand $q \in Q$
 - der noch zu lesenden Eingabe $u\in \Sigma^*$
 - dem Kellerinhalt $v\in\Gamma^*$
 - Das erste Zeichen von v ist das oberste Kellerzeichen!
- ullet Startkonfiguration bei Eingabe $oldsymbol{w}$:

 (s,w, au_0)

Konfigurationen: Beispiel


```
(a,01011010,\#) dash (a,1011010,0\#) \ dash (a,0110100,10\#) \ dash (a,11010,010\#) \ dash (a,1010,1010\#) \ dash (b,1010,1010\#) \ dash (b,010,010\#) \ dash (b,0,0\#) \ dash (b,\epsilon,\#) \ dash (c,\epsilon,\epsilon)
```

Kellerautomaten: Konfigurationen und Berechnungen

Definition

- ullet Sei $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,s, au_0,F)$ ein PDA
- Die Nachfolgekonfigurationsrelation $\vdash_{\mathcal{A}}$ ist wie folgt definiert
- ullet Für alle $m{p},m{q}\inm{Q},m{\sigma}\inm{\Sigma}$, $m{ au}\inm{\Gamma}$, $m{u}\inm{\Sigma}^*,m{z},m{v}\inm{\Gamma}^*$ gilt:
- $ullet \ (m p,m \sigma u,m au v) dash_{m \mathcal A} \ (m q,m u,m z v)$, falls $(m p,m \sigma,m au,m q,m z) \in m \delta$
- $ullet \ (m p,m u,m au m v) dash_{m \mathcal A} \ (m q,m u,m z m v)$, falls $(m p,m \epsilon,m au,m q,m z) \in m \delta$
- ullet Gilt $\underline{K \vdash_{\mathcal{A}} K'}$, heißt K' (eine) Nachfolgekonfiguration von K
- Wenn der Automat $\mathcal A$ durch den Kontext klar ist, lassen wir das Subskript $\mathcal A$ meist weg

Definition

- Eine **Berechnung** (oder: ein Lauf) eines PDA $\mathcal A$ ist eine Folge K_1,\ldots,K_n von Konfigurationen mit
 - $K_i dash K_{i+1}$, für alle $i \in \{1, \dots, n{-}1\}$
- ullet Schreibweise: $K_1 \vdash_{\mathcal{A}}^* K_n$

Zu beachten:

- Wenn die Eingabe schon vollständig gelesen wurde, ist es immer noch möglich, ϵ Übergänge auszuführen,
 - * aber: bei leerem Keller gibt es keine Nachfolgekonfiguration!

Kellerautomaten: Akzeptieren

- Wann akzeptiert A die Eingabe?
- Bei den bisherigen Beispielen galten am Ende der Berechnung die beiden folgenden Aussagen:
 - der Keller ist leer
 - der Automat ist in einem "speziellen" Zustand
- Wir definieren zwei Varianten von PDAs, deren Akzeptieren jeweils auf einer dieser beiden Bedingungen basiert
- Denn: mal ist das eine praktischer, mal das andere
- Wir werden sehen:
 - Beide Modelle sind äquivalent

Definition

- ullet Sei ${\cal A}=(Q,\Sigma,\Gamma,\delta,s, au_0,F)$ ein Kellerautomat
- ullet $oldsymbol{\mathcal{A}}$ akzeptiert einen String $oldsymbol{w} \in oldsymbol{\Sigma}^*$, falls

$$egin{aligned} -F=arnothing ext{ und } \ (s,w, au_0) \vdash^* (q,\epsilon,\epsilon) ext{ für ein } q \in Q \end{aligned}$$
 "Akzeptieren mit leerem Keller"

oder

–
$$F \neq arnothing$$
 und $(s,w, au_0) \vdash^* (q,\epsilon,u)$ für ein $u \in \Gamma^*$ und $q \in F$

"Akzeptieren mit akzeptierenden Zuständen"

- $ullet \ oldsymbol{L}(oldsymbol{\mathcal{A}}) \stackrel{ ext{def}}{=} \{oldsymbol{w} \mid oldsymbol{\mathcal{A}} ext{ akzeptiert } oldsymbol{w} \}$
- ullet Wir sagen, dass ${\mathcal A}$ die Sprache $L({\mathcal A})$ entscheidet

Akzeptierende Zustände: Beispielautomat

Beispiel

- ullet $L=\{a^ib^j\mid i\geqslant j\}$
- Idee:
 - 1.Phase: Lege jedes a auf den Keller
 - 2.Phase: Lösche für jedes b ein a vom Keller
 - Falls auf diese Weise der String ganz gelesen wird, akzeptiere (auch wenn noch etwas im Keller steht)

Inhalt

- 9.1 Kellerautomaten: Definitionen
- > 9.2 Leerer Keller vs. akzeptierende Zustände
 - 9.3 Grammatiken vs. Kellerautomaten
 - 9.4 Kellerautomaten: Korrektheitsbeweise
 - 9.5 Anhang: Beweisdetails

Leerer Keller vs. akzeptierende Zustände

Satz 9.1

- (a) Für jeden Kellerautomaten ${\cal A}$, der mit leerem Keller akzeptiert, gibt es es einen Kellerautomaten ${\cal B}$, der mit akzeptierenden Zuständen akzeptiert und $L({\cal A})=L({\cal B})$ erfüllt
- (b) Für jeden Kellerautomaten ${\cal A}$, der mit akzeptierenden Zuständen akzeptiert, gibt es es einen Kellerautomaten ${\cal B}$, der mit leerem Keller akzeptiert und $L({\cal A})=L({\cal B})$ erfüllt
 - Beide Beweise verwenden die Methode der Simulation:
 - Der Automat ${\cal B}$ ahmt jeweils das Verhalten von
 ${\cal A}$ nach
 - Kurz: " ${\cal B}$ simuliert ${\cal A}$ "

Leerer Keller → akzeptierende Zustände: Idee

Beweisidee zu Satz 9.1 (a)

- "Leerer Keller → akzeptierende Zustände"
- Herausforderung: wenn in A der Keller leer wird, ist keine weitere Transition in einen akzeptierenden Zustand möglich

• Idee:

- \mathcal{B} simuliert \mathcal{A}
- ${\cal B}$ verwendet gegenüber ${\cal A}$ ein neues unterstes Kellersymbol \$, das zu Beginn der Simulation unter das unterste Kellersymbol au_0 von ${\cal A}$ gelegt wird
- Wenn bei der Simulation in ${\mathcal B}$ das Zeichen \$ "sichtbar" wird, wäre in ${\mathcal A}$ der Keller leer und ${\mathcal B}$ geht in den akzeptierenden Zustand über

Leerer Keller → akzeptierende Zustände: Beispiel

01011010

Akzeptierende Zustände → **Leerer Keller: Idee**

Beweisidee zu Satz 9.1 (b)

"Akzeptierende Zustände → leerer Keller"

• Herausforderungen:

- Wenn ${\cal A}$ am Ende in einem akzeptierenden Zustand ist, muss ${\cal B}$ den Keller noch leeren
- Wenn es eine Berechnung von \mathcal{A} gibt, die am Ende einen leeren Keller hat, aber keinen akzeptierenden Zustand, so soll diese Berechnung in \mathcal{B} nicht den Keller leeren

• Idee:

- ${\cal B}$ simuliert ${\cal A}$
- Von jedem Zustand in F aus kann ${\mathcal B}$ in den "Aufräumzustand" q_a übergehen und dann den Keller mit Hilfe von ϵ Übergängen leeren
- Wenn die Eingabe vollständig gelesen war, führt das zum Akzeptieren mit leerem Keller
- Damit keine Berechnung von \mathcal{A} fälschlich zum Akzeptieren von \mathcal{B} führt, indem \mathcal{A} den Keller selbst leert (ohne in einen akzeptierenden Zustand zu gehen), verwendet \mathcal{B} wieder ein neues unterstes Kellersymbol \$

Akzeptierende Zustände → **Leerer Keller: Beispiel**

Inhalt

- 9.1 Kellerautomaten: Definitionen
- 9.2 Leerer Keller vs. akzeptierende Zustände
- > 9.3 Grammatiken vs. Kellerautomaten
 - 9.4 Kellerautomaten: Korrektheitsbeweise
 - 9.5 Anhang: Beweisdetails

Äquivalenz von Grammatiken und Kellerautomaten

 Ziel: Nachweis, dass Kellerautomaten genau die kontextfreien Sprachen entscheiden

Satz 9.2

- ullet Zu jeder kontextfreien Grammatik $oldsymbol{G}$ gibt es einen Kellerautomaten $oldsymbol{\mathcal{A}}$ mit $oldsymbol{L}(oldsymbol{\mathcal{A}}) = oldsymbol{L}(oldsymbol{G})$
- Der Beweis von Satz 9.2 ist nicht sehr schwierig und folgt einer einfachen Idee:
 - Der Kellerautomat versucht, eine Linksableitung zu finden

Satz 9.3

- ullet Zu jedem Kellerautomaten ${\mathcal A}$ gibt es eine kontextfreie Grammatik G mit $L(G)=L({\mathcal A})$
- Der Beweis von Satz 9.3 ist deutlich komplizierter

Grammatik → **Kellerautomat**: **Idee**

Satz 9.2

ullet Zu jeder kontextfreien Grammatik G gibt es einen Kellerautomaten ${\mathcal A}$ mit

$$L(A) = L(G)$$

Beweisidee

- ullet Sei $G=(V,\Sigma,S,P)$
- Idee:
 - Der Kellerautomat ${\cal A}$ erzeugt bei Eingabe w eine Linksableitung für ein Wort v und testet, ob w=v gilt
 - Erzeugen und Testen sind dabei ineinander verschränkt:
 - st Wenn die aktuelle Satzform mit einem Terminalsymbol anfängt, wird dieses gleich mit $oldsymbol{w}$ verglichen

Beweisidee (Forts.)

ullet Ein einzelner Schritt einer Linksableitung ersetzt in einer Satzform der Art uXlpha die Variable X durch einen String eta gemäß einer Regel X o eta

riangle mit $u\in oldsymbol{\Sigma}^*$, $X\in V$,

$$lpha \in (oldsymbol{\Sigma} \cup V)^*$$

- In A soll dies der folgenden Situation entsprechen:
 - u ist schon gelesen, Xlpha ist der Kellerinhalt
- Zur Umsetzung des Ableitungsschrittes geht ${\cal A}$ wie folgt vor:
 - 1. "Rate" Regel $X o eta \in P$
 - 2. Ersetze auf dem Keller X durch $oldsymbol{eta}$
 - 3. Vergleiche die führenden Terminalsymbole von $\beta\alpha$ mit den nächsten Zeichen der Eingabe und reduziere sie (= lösche sie vom Keller)

Grammatik → **Kellerautomat: Beispiel**

$$egin{aligned} A &
ightarrow A + T \mid T \ T &
ightarrow T imes F \mid F \ F &
ightarrow (A) \mid B \ B &
ightarrow a \mid b \mid Ba \mid \ Bb \mid B0 \mid B1 \end{aligned}$$

```
a, a : \epsilon
     b, b : \epsilon
    0,0:\epsilon
    1,1:\epsilon
    \times, \times : \epsilon
    +,+:\epsilon
      (,(:\epsilon
\epsilon,A:A+T
    \epsilon, A:T
\epsilon, T: T 	imes F
    \epsilon, T: F
  \epsilon, F: (A)
   \epsilon, F: B
    \epsilon, B:a
    \epsilon, B:b
  \epsilon, B:Ba
   \epsilon, B:Bb
  \epsilon, B:B0
  \epsilon, B: B1
```


 $\vdash (q, \epsilon, \epsilon)$

Grammatik → **Kellerautomat:** Konstruktion

Beweis von Satz 9.2

- ullet Sei $G=(V,\Sigma,S,P)$
- $egin{aligned} \bullet \ \overline{\mathcal{A}} \stackrel{\mathsf{def}}{=} (\{q\}, \mathbf{\Sigma}, V \cup \mathbf{\Sigma}, \delta, q, S, \varnothing), \\ -\delta \stackrel{\mathsf{def}}{=} \{(q, \sigma, \sigma, q, \epsilon) \mid \sigma \in \mathbf{\Sigma}\} \cup \\ \{(q, \epsilon, X, q, \alpha) \mid X \rightarrow \alpha \in P\} \end{aligned}$
- Eine detaillierte Beweisskizze findet sich im Anhang

Kellerautomat → **Grammatik**: Idee

- ullet Im ersten Schritt ersetzt ${\cal A}$ das unterste Kellersymbol durch einen String $Z_1\cdots Z_k$ und liest ein Präfix u_0 der Eingabe w $(u_0\in\Sigma\cup\{\epsilon\})$
- ullet Die Zeichen Z_1,\ldots,Z_k werden dann im Rest der Berechnung nach und nach wieder vom Keller gelöscht
- ullet Dabei werden Teilstrings u_1,\ldots,u_k der Eingabe gelesen
- Idee für die Grammatik:
 - Für jede Kombination $p,p'\in Q$, $au\in \Gamma$ enthält G eine Variable $X_{p, au,p'}$, die alle Strings erzeugt, für die $\mathcal A$ eine Teilberechnung von Zustand p in Zustand p' hat, die insgesamt das Zeichen au vom Keller löscht

Kellerautomat → **Grammatik**: Beispiel

Beispiel

ullet Kellerautomat für $oldsymbol{L_{a=b}}=\{oldsymbol{w}\in\{oldsymbol{a},oldsymbol{b}\}^*\mid \#_{oldsymbol{a}}(oldsymbol{w})=\#_{oldsymbol{b}}(oldsymbol{w})\}$:

- Zustand p:
 - st Mindestens so viele a wie b gelesen
 - * Anzahl der Einsen auf dem Keller entspricht Überschuss an a's
- Zustand q: analog umgekehrt
- Die daraus entstehende Grammatik:

$$S o X_{p\#p} \mid X_{p\#q} \ X_{p\#p} o a X_{p1p} X_{p\#p} \mid a X_{p1q} X_{q\#p} \mid \epsilon \mid X_{q\#p} \ X_{p\#q} o a X_{p1p} X_{p\#q} \mid a X_{p1q} X_{q\#q} \mid X_{q\#q} \ X_{p1p} o a X_{p1p} X_{p1p} \mid a X_{p1q} X_{q1p} \mid b \ X_{p1q} o a X_{p1p} X_{p1q} \mid a X_{p1q} X_{q1q} \ X_{q\#q} o b X_{q1q} X_{q\#q} \mid b X_{q1p} X_{p\#q} \mid \epsilon \mid X_{p\#q} \ X_{q\#p} o b X_{q1q} X_{q\#p} \mid b X_{q1p} X_{p\#p} \mid X_{p\#p} \ X_{q1q} o b X_{q1q} X_{q1q} \mid b X_{q1p} X_{p1q} \mid a \ X_{q1p} o b X_{q1q} X_{q1p} \mid b X_{q1p} X_{p1p} \ _{OSe\ 17} \quad \text{B: 9. Kellerautomaten}$$

Kellerautomat → **Grammatik: Beweis (1/2)**

Satz 9.3

ullet Zu jedem Kellerautomaten $oldsymbol{\mathcal{A}}$ gibt es eine kontextfreie Grammatik $oldsymbol{G}$ mit $oldsymbol{L}(oldsymbol{G}) = oldsymbol{L}(oldsymbol{\mathcal{A}})$

Beweisidee

- ullet Sei $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, s, au_0, arnothing)$
 - (oBdA \mathcal{A} akzeptiert mit leerem Keller)
- Weitere Annahme (oBdA): A legt in einem Schritt maximal zwei Zeichen auf den Keller
- ullet Wir konstruieren eine Grammatik $G_{\mathcal A}$ mit Variablen $X_{p, au,p'}$, für alle $p,p'\in Q$ und $au\in \Gamma$ mit der folgenden Intention:
 - $X_{p, au,p'}$ $\Rightarrow^* w$ soll gelten, falls $\mathcal A$ durch Lesen von w vom Zustand p in den Zustand p' kommen und dabei insgesamt au vom Keller löschen kann
 - Formal soll also gelten:

$$egin{array}{ll} oldsymbol{X_{p, au,p'}} \Rightarrow^* w & \Longleftrightarrow \ (oldsymbol{p},oldsymbol{w},oldsymbol{ au}) dash_{oldsymbol{\mathcal{A}}}^* (oldsymbol{p'},oldsymbol{\epsilon},oldsymbol{\epsilon}) \end{array}$$

Kellerautomat → **Grammatik: Beweis (2/2)**

Beweis von Satz 9.3

• P enthält pro Tupel in δ eine oder mehrere Regeln, jeweils für alle möglichen Zustände p_1, p_2 :

δ	P
$(oldsymbol{p}, oldsymbol{lpha}, oldsymbol{ au}, oldsymbol{q}, oldsymbol{\epsilon})$	$X_{p, au,q} o lpha$
$(p, lpha, au, q, au_1)$	$X_{p, au,p_1} o lpha X_{q, au_1,p_1}$
$(p, lpha, au, q, au_1 au_2)$	$X_{p, au,p_2} ightarrow lpha X_{q, au_1,p_1} X_{p_1, au_2,p_2}$

- ullet Dabei ist $lpha \in oldsymbol{\Sigma} \cup \{\epsilon\}$ (also: Zeichen oder Leerstring)
- ullet Zusätzlich hat $G_{\mathcal{A}}$ das Startsymbol S und Regeln $S o X_{s, au_0,q}$, für jedes $q \in Q$
- Behauptung:

$$X_{p, au,p'} \Rightarrow^* w \iff (p,w, au) \vdash_{\mathcal{A}}^* (p',\epsilon,\epsilon)$$

- "
 —": Induktion nach der Anzahl der Berechnungsschritte
- "⇒": Induktion nach der Anzahl der Ableitungsschritte
- Die Details finden sich im Anhang

Kellerautomaten und Grammatiken: Fazit

Satz 9.4

- ullet Für eine Sprache $oldsymbol{L}$ sind äquivalent:
 - -L ist kontextfrei
 - L wird von einem Kellerautomaten mit akzeptierenden Zuständen entschieden
 - $oldsymbol{-} oldsymbol{L}$ wird von einem Kellerautomaten mit leerem Keller entschieden
- Wie groß werden die bei der Umwandlung konstruierten Objekte?
 - Grammatik ightarrow Kellerautomat: $\mathcal{O}(n)$
 - Kellerautomat o Grammatik: $\mathcal{O}(n^4)$
 - Zwischen Kellerautomaten: $\mathcal{O}(n)$
- Aus Satz 9.3 und dem Beweis von Satz 9.2 folgt eine Normalform für Kellerautomaten

Folgerung

 Zu jedem Kellerautomaten gibt es einen äquivalenten Kellerautomaten mit nur einem Zustand

Inhalt

- 9.1 Kellerautomaten: Definitionen
- 9.2 Leerer Keller vs. akzeptierende Zustände
- 9.3 Grammatiken vs. Kellerautomaten
- > 9.4 Kellerautomaten: Korrektheitsbeweise
 - 9.5 Anhang: Beweisdetails

Intervall-Notation für Teilstrings

- Wir verwenden zukünftig die folgende Notation, um über Teilstrings und einzelne Zeichen von Strings zu sprechen
- ullet Sei $w=\sigma_1\cdots\sigma_n$ ein String (der Länge n)
- ullet Dann sei, für alle $i,j\in\{1,\ldots,n\}$ mit $i\leqslant j$:

-
$$w[i] \stackrel{ ext{def}}{=} \sigma_i$$

–
$$w[i,j] \stackrel{ ext{ iny def}}{=} \sigma_i \cdots \sigma_j$$

$$oldsymbol{-} \underline{w}[i,j) \stackrel{ ext{ iny def}}{=} \sigma_i \cdots \sigma_{j-1}$$

$$oldsymbol{-} oldsymbol{w}(oldsymbol{i,j}] \stackrel{ ext{ iny def}}{=} oldsymbol{\sigma_{i+1}} \cdots oldsymbol{\sigma_{j}}$$

$$-\ \underline{w(i,j)}\stackrel{ ext{def}}{=} \sigma_{i+1} \cdots \sigma_{j-1}$$

(nur für i < j)

-
$$w[*,j] \stackrel{ ext{ iny def}}{=} \sigma_1 \cdots \sigma_j$$

$$- \underline{w[i,*]} \stackrel{ ext{def}}{=} \sigma_i \cdots \sigma_n$$

ullet Für i>j sei $w[i,j]\stackrel{ ext{ iny def}}{=}\epsilon$

Beispiel

- ullet Sei w=acbbcabba
- Dann ist

$$-w[3]=b$$

$$-w[4,6] = bca$$

$$-w[4,6) = bc$$

$$- w(4,6] = ca$$

$$-w(4,6)=c$$

$$-w(4,5)=\epsilon$$

$$-w[*,3]=acb$$

$$-w[5,*]=cabba$$

Kellerautomaten: Korrektheitsbeweise (1/2)

Beispiel

Proposition 9.5

$$oldsymbol{L}(oldsymbol{\mathcal{A}}_{\mathsf{rev}}) = oldsymbol{L}_{\mathsf{rev}}$$

• Zur Erinnerung:

$$oldsymbol{L}_{\mathsf{rev}} = \{oldsymbol{w} oldsymbol{w}^{oldsymbol{R}} \mid oldsymbol{w} \in \{oldsymbol{0}, oldsymbol{1}\}^*\}$$
Palindrome gerader Länge

Beweisskizze

- Wir beweisen:
 - $L_{\mathsf{rev}} \subseteq L(\mathcal{A}_{\mathsf{rev}})$

Vollständigkeit

– $oldsymbol{L}(oldsymbol{\mathcal{A}}_{\mathsf{rev}}) \subseteq oldsymbol{L}_{\mathsf{rev}}$

Korrektheit

Beweisskizze für " $L_{\mathsf{rev}} \subseteq L(\mathcal{A}_{\mathsf{rev}})$ "

- ullet Wir zeigen, dass für beliebige $w \in \Sigma^*$ der String ww^R von $\mathcal{A}_{\mathsf{rev}}$ akzeptiert wird
- ullet Dazu lässt sich durch Induktion nach der Länge von $oldsymbol{w}$ beweisen:
 - (a) $(a, ww^R, \#) \vdash^* (a, w^R, w^R \#)$ und
 - (b) $(b, w^R, w^R\#) \vdash^* (b, \epsilon, \#)$
- Dann folgt:

$$egin{aligned} (oldsymbol{a}, oldsymbol{w}^R, oldsymbol{\#}) & dash (oldsymbol{a}, oldsymbol{w}^R, o$$

 $ightharpoonup ww^R \in L(\mathcal{A}_{\mathsf{rev}})$

Kellerautomaten: Korrektheitsbeweise (2/2)

Beispiel

Beweisskizze für " $oldsymbol{L}(oldsymbol{\mathcal{A}}_{\mathsf{rev}}) \subseteq oldsymbol{L}_{\mathsf{rev}}$

- ullet Klar: ein String v ist genau dann in L_{rev} , wenn
 - er gerade Länge n=2k hat und
 - für jedes $i\leqslant k$ gilt: v[i]=v[n-i+1]

Beweisskizze (Forts.)

- ullet Sei v ein von ${\cal A}_{{\sf rev}}$ akzeptierter String mit n Zeichen
- $ightharpoonup (a, v, \#) \vdash^* (b, \epsilon, \#) \vdash (c, \epsilon, \epsilon)$
 - Nach Konstruktion von A verläuft diese Berechnung in drei Phasen
 - 1. \mathcal{A}_{rev} liest ein Präfix v[1,k] der Eingabe (für ein $k\leqslant n$) und schreibt es zeichenweise auf den Keller,
 - 2. dann geht $\mathcal{A}_{\mathsf{rev}}$ in den Zustand b über und
 - 3. schließlich liest $\mathcal{A}_{\sf rev}$ die restliche Eingabe v[k+1,n] und vergleicht sie mit den zuvor auf den Keller geschriebenen Zeichen
- Durch Induktion lässt sich zeigen:
 - Die Konfiguration nach Phase 1 ist

$$(a,v[k+1,n],v[1,k]^R\#)$$

- Damit Phase 3 erfolgreich ist, muss gelten:
 - $* n k = k \Rightarrow n = 2k$
 - st für jedes $i\leqslant k$ ist v[i]=v[n-i+1]
- $ightharpoonup v \in L_{\mathsf{rev}}$

Zusammenfassung

- Kellerautomaten entstehen durch Erweiterung von ϵ -NFAs um einen Keller (LIFO)
- Kellerautomaten, die durch leeren Keller akzeptieren, sind genauso m\u00e4chtig wie Kellerautomaten, die mit akzeptierenden Zust\u00e4nden akzeptieren
- Mit Kellerautomaten und kontextfreien Grammatiken lassen sich genau dieselben Sprachen beschreiben: die kontextfreien Sprachen
- Der Kellerautomat zu einer Grammatik versucht, eine Linksableitung zu finden
- Die Konstruktion der Grammatik zu einem Kellerautomaten ist erheblich komplizierter

Inhalt

- 9.1 Kellerautomaten: Definitionen
- 9.2 Leerer Keller vs. akzeptierende Zustände
- 9.3 Grammatiken vs. Kellerautomaten
- 9.4 Kellerautomaten: Korrektheitsbeweise
- > 9.5 Anhang: Beweisdetails

Leerer Keller vs. akzeptierende Zustände: Beweisideen (1/4)

- Der Beweis der Äquivalenz der beiden Akzeptiermethoden von PDAs verwendet mehrfach die folgende einfache Erkenntnis:
 - Eine Berechnung wird nur von den wirklich gelesenen Zeichen der Eingabe und des Kellers beeinflusst:
 - (a) Deshalb können die Schritte einer Berechnung immer noch ausgeführt werden, wenn hinter der Eingabe und unter dem Keller etwas hinzugefügt wird
 - (b) Andererseits können Zeichen der Eingabe, die während einer (partiellen) Berechnung (noch) nicht gelesen wurden und Zeichen des Kellers, die niemals sichtbar werden, entfernt werden, ohne die Berechnung zu beeinflussen

• Notation: $K \vdash_{(\gamma)}^* K' \stackrel{\mathsf{def}}{\Leftrightarrow}$

es gibt eine Berechnung $K \vdash \cdots \vdash K'$, in der jede Konfiguration $\operatorname{vor} K'$ einen String $u\gamma$ mit $u \neq \epsilon$ im Keller stehen hat

riangle In K' kann γ "alleine" im Keller stehen

Lemma 9.6

- ullet Sei $oldsymbol{\mathcal{A}}=(Q,\Sigma,\Gamma,\delta,s, au_0,F)$ ein Kellerautomat
- Seien
 - $-x,y,w\in \Sigma^*$,
 - $oldsymbol{-} lpha \in \Gamma^+$, $oldsymbol{eta}, oldsymbol{\gamma} \in \Gamma^*$,
 - $-p,q\in Q$
- Dann sind äquivalent:
 - (a) $(p,x,lpha) \vdash^* (q,y,eta)$
 - (b) $(p,xw,\alpha\gamma) \vdash_{(\gamma)}^* (q,yw,\beta\gamma)$
- Der Beweis kann leicht durch Induktion nach der Berechnungslänge geführt werden

Leerer Keller vs. akzeptierende Zustände: Beweisideen (2/4)

Beweisidee zu Satz 9.1 (a)

- "Leerer Keller → akzeptierende Zustände"
- Idee:
 - \mathcal{B} simuliert \mathcal{A}
 - ${\cal B}$ verwendet gegenüber ${\cal A}$ ein neues unterstes Kellersymbol \$, das zu Beginn der Simulation unter das unterste Kellersymbol ${ au}_0$ von ${\cal A}$ gelegt wird
 - Wenn bei der Simulation in ${\mathcal B}$ das Zeichen \$ "sichtbar" wird, wäre in ${\mathcal A}$ der Keller leer
 - Falls bei der Simulation von \mathcal{A} das Symbol \$ auf dem Keller zum Vorschein kommt, kann \mathcal{B} deshalb in den akzeptierenden Zustand übergehen

Beweisansatz zu Satz 9.1 (a)

- ullet Sei $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, s, au_0, arnothing)$
- ullet Sei $\mathcal{B}\stackrel{ ext{ iny def}}{=}(oldsymbol{Q}\cup\{oldsymbol{q_0},oldsymbol{q_a}\},oldsymbol{\Sigma},\ \Gamma\cup\{\$\},oldsymbol{\delta'},oldsymbol{q_0},\$,\{oldsymbol{q_a}\})$
- Dabei sind:
 - $-q_0,q_a\notin Q$ neue Zustände, und
 - $-\$\notin\Gamma$ ein neues Kellersymbol
- δ' enthält:
 - alle Transitionen von δ
 - $(q_0,\epsilon,\$,s, au_0\$)$ lacksquare Initialisierung
 - $(q,\epsilon,\$,q_a,\$)$, für alle $q\in Q$ entspricht leerem Keller in ${\mathcal A}$

Leerer Keller vs. akzeptierende Zustände: Beweisideen (3/4)

Beweisdetails zu Satz 9.1 (a)

- Zur Erinnerung:
 - $-\mathcal{A}=(Q,\Sigma,\Gamma,\delta,s, au_0,arnothing)$
 - $oldsymbol{-} oldsymbol{\mathcal{B}} \stackrel{ ext{ iny def}}{=} (oldsymbol{Q} \cup \{oldsymbol{q_0}, oldsymbol{q_a}\}, oldsymbol{\Sigma}, \ \Gamma \cup \{\$\}, oldsymbol{\delta'}, oldsymbol{q_0}, \$, \{oldsymbol{q_a}\})$
 - $-\delta'$ enthält:
 - st alle Transitionen von δ
 - $* (q_0, \epsilon, \$, s, au_0\$)$
 - $* (q, \epsilon, \$, q_a, \$),$

für alle $q \in Q$

- ullet Behauptung: $L(\mathcal{B}) = L(\mathcal{A})$
- ullet Ausnahmsweise zeigen wir nicht zwei Inklusionen sondern direkt, dass für alle Strings $oldsymbol{w} \in oldsymbol{\Sigma}^*$ gilt: $oldsymbol{w} \in oldsymbol{L}(oldsymbol{\mathcal{B}}) \Longleftrightarrow oldsymbol{w} \in oldsymbol{L}(oldsymbol{\mathcal{A}})$
- ullet Für den Beweis sei $w\in \Sigma^*$ beliebig

Beweisdetails zu Satz 9.1 (a) (Forts.)

- ullet Der erste Schritt von ${\cal B}$ bei Eingabe w ist auf jeden Fall $(q_0,w,\$) \vdash_{\cal B} (s,w, au_0\$)$
- ullet Da ${\mathcal B}$ genau dann in q_a übergeht, wenn \$ oberstes Kellersymbol ist, gilt für alle $u\in \Gamma^*$:

$$\begin{array}{c} (s,w,\tau_0\$) \vdash_{\mathcal{B}}^* (q_a,\epsilon,u) \Rightarrow u = \$ \\ \text{Und: } (s,w,\tau_0\$) \vdash_{\mathcal{B}}^* (q_a,\epsilon,\$) \Rightarrow \\ \text{es gibt ein } q : (s,w,\tau_0\$) \vdash_{\mathcal{B},(\$)}^* (q,\epsilon,\$) \end{array}$$

• Wegen Lemma 9.6 gilt, für alle q:

$$egin{aligned} (s,w, au_0\$) \vdash_{\mathcal{B},(\$)}^* (q,\epsilon,\$) &\Longleftrightarrow \ (s,w, au_0) \vdash_{\mathcal{B}}^* (q,\epsilon,\epsilon) \end{aligned}$$

• Da ${\cal A}$ und ${\cal B}$ identisch arbeiten, solange \$ nicht zu sehen ist, gilt, für alle q:

$$(s,w, au_0) dash_{\mathcal{B}}^* (q,\epsilon,\epsilon) \Longleftrightarrow \ (s,w, au_0) dash_{\mathcal{A}}^* (q,\epsilon,\epsilon)$$

Insgesamt haben wir also:

$$(s,w, au_0\$) \vdash_{\mathcal{B}}^* (q_a,\epsilon,u) \Longleftrightarrow \ ext{es gibt ein } q \colon (s,w, au_0) \vdash_{\mathcal{A}}^* (q,\epsilon,\epsilon)$$

$$ightharpoonup w \in L(\mathcal{B}) \iff w \in L(\mathcal{A})$$

Leerer Keller vs. akzeptierende Zustände: Beweisideen (4/4)

Beweisidee zu Satz 9.1 (b)

- "Akzeptierende Zustände → leerer Keller"
- Idee:
 - ${\cal B}$ simuliert ${\cal A}$
 - Von jedem Zustand in F aus kann $\mathcal B$ in den "Aufräumzustand" q_a übergehen und dann den Keller mit Hilfe von ϵ Übergängen leeren
 - Wenn die Eingabe vollständig gelesen war, führt das zum Akzeptieren mit leerem Keller
 - Damit keine Berechnung von \mathcal{A} fälschlich zum Akzeptieren von \mathcal{B} führt, indem \mathcal{A} den Keller selbst leert (ohne in einen akzeptierenden Zustand zu gehen), verwendet \mathcal{B} wieder ein neues unterstes Kellersymbol \$

Beweisansatz zu Satz 9.1 (b) (Forts.)

- ullet Sei $\mathcal{A}=(Q,\Sigma,\Gamma,\delta,s, au_0,F)$
- ullet Sei $\mathcal{B}\stackrel{ ext{ iny def}}{=}(oldsymbol{Q}\cup\{oldsymbol{q_0},oldsymbol{q_a}\},oldsymbol{\Sigma},\ \Gamma\cup\{\$\},oldsymbol{\delta'},oldsymbol{q_0},\$,oldsymbol{\varnothing})$
 - $-\ q_0,q_a
 otin Q$, $\$
 otin\Gamma$ (wie zuvor)
- δ' enthält:
 - alle Transitionen aus δ
 - $(q_0,\epsilon,\$,s, au_0\$)$ lappa Initialisierung
 - $(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{ au}, oldsymbol{q}_{oldsymbol{a}}, oldsymbol{ au})$, für alle $oldsymbol{q} \in oldsymbol{F}$
 - st Aus akzeptierenden Zuständen ist ein Übergang nach q_a möglich
 - $-\left(q_{oldsymbol{a}},\epsilon, au,q_{oldsymbol{a}},\epsilon
 ight)$

zum Leeren des Kellers

ullet Behauptung: $oldsymbol{L}(\mathcal{B}) = oldsymbol{L}(\mathcal{A})$ (ohne Beweis)

Grammatik → **Kellerautomat: Beweisdetails (1/3)**

Beweis von Satz 9.2

- ullet Sei $G=(V,\Sigma,S,P)$
- ullet $oldsymbol{\mathcal{A}} \stackrel{ ext{def}}{=} (\{oldsymbol{q}\}, oldsymbol{\Sigma}, oldsymbol{V} \cup oldsymbol{\Sigma}, oldsymbol{\delta}, oldsymbol{q}, oldsymbol{S}, oldsymbol{\omega}),$
 - $egin{aligned} oldsymbol{-} oldsymbol{\delta} &\stackrel{ ext{def}}{=} \{(oldsymbol{q}, oldsymbol{\sigma}, oldsymbol{\sigma}, oldsymbol{q}, oldsymbol{e}, oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{\sigma}, oldsymbol{\epsilon}, oldsymbol{\Sigma} \} oldsymbol{\cup} \\ \{(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{X}, oldsymbol{q}, oldsymbol{\alpha}, oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{\Sigma} \} oldsymbol{\cup} \\ \{(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{X}, oldsymbol{q}, oldsymbol{\alpha}, oldsymbol{\epsilon}, oldsymbol{\Sigma} \} oldsymbol{\cup} \\ \{(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{X}, oldsymbol{q}, oldsymbol{\alpha}, oldsymbol{\epsilon}, oldsymbol{\epsilon}, oldsymbol{\Sigma} \} oldsymbol{\cup} \\ \{(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{X}, oldsymbol{q}, oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{\epsilon},$
- ullet Behauptung: $oldsymbol{L}(oldsymbol{\mathcal{A}}) = oldsymbol{L}(oldsymbol{G})$
 - Wir führen den Beweis nur für Grammatiken in Chomsky-Normalform
- ullet Wir zeigen zuerst: $L(G)\subseteq L(\mathcal{A})$
 - Sei $m{w} \in m{L}(m{G})$ und sei $m{S} \Rightarrow m{\gamma_1} \Rightarrow m{\gamma_2} \Rightarrow \cdots \Rightarrow m{\gamma_n} = m{w}$ eine Linksableitung für $m{w}$ mit:
 - $st oldsymbol{\gamma_i} st oldsymbol{\gamma_i} = oldsymbol{u_i} oldsymbol{X_i} oldsymbol{lpha_i} = oldsymbol{Suffix} ext{von } oldsymbol{w} ext{ mit } oldsymbol{w} = oldsymbol{u_i} oldsymbol{z_i}$
 - Dabei sind:
 - $* \ u_i, z_i \in \Sigma^*, X_i \in V, lpha_i \in V^*,$ für i < n

$$* u_n = w, X_n \alpha_n = \epsilon, z_n = \epsilon$$

Beweis (Forts.)

- ullet X_i ist also die am weitesten links stehende Variable der i-ten Satzform
- $ullet u_i$ ist der String aus Terminalzeichen links davon
- ullet $lpha_i$ ist der String rechts davon, der nur aus Variablen besteht, da dies eine Linksableitung zu einer CNF-Grammatik ist
- ullet Die im (i+1)-ten Schritt angewendete Regel sei
 - $X_i o Y_i Z_i$ oder
 - $X_i
 ightarrow \sigma_i$
- Dabei sind:
 - $\sigma_i \in \Sigma$
 - $\texttt{-} \ Y_i, Z_i \in V$
- ullet Wir zeigen durch Induktion nach i, dass für alle $i\geqslant 0$ gilt:

$$(q, w, S) \vdash^*_{\mathcal{A}} (q, z_i, X_i \alpha_i)$$

Grammatik → Kellerautomat: Beweisdetails (2/3)

Beweisdetails für $oldsymbol{L}(oldsymbol{G}) \subseteq oldsymbol{L}(oldsymbol{\mathcal{A}})$

- ullet Ind.-Beh.: $(q,w,S) \vdash_{\mathcal{A}}^* (q,z_i,X_ilpha_i)$
- i = 0: $\langle z_0 = w, \alpha_0 = \epsilon \rangle$
- ullet Von i zu i+1:
 - Nach Induktion gilt:

$$(q, w, S) \vdash^*_{\mathcal{A}} (q, z_i, X_i \alpha_i)$$

- Wir unterscheiden nach der Art der im (i+1)-ten Schritt verwendeten Regel
- 1. Fall: $X_i
 ightarrow Y_i Z_i$
 - * Dann gelten:

$$\cdot |z_{i+1}| = z_i$$

$$\cdot \; X_{i+1} = Y_i$$
 und

$$\cdot \ \alpha_{i+1} = Z_i \alpha_i$$

* Nach Definition von \mathcal{A} gilt dann:

$$(q, z_i, X_i\alpha_i) \vdash (q, z_i, Y_iZ_i\alpha_i) = (q, z_{i+1}, X_{i+1}\alpha_{i+1})$$

Induktionsbehauptung

Beweisdetails (Forts.)

- ullet 2. Fall: $X_i
 ightarrow \sigma_i$
 - Da wir eine Linksableitung einer CNF-Grammatik haben, ist das erste Symbol von $lpha_i$ eine Variable, also X_{i+1} in der von uns gewählten Notation
 - Es gilt: $lpha_i=X_{i+1}lpha_{i+1}$
 - Es folgt: $(m{q},m{z_i},m{X_i}m{lpha_i}) dash (m{q},m{z_i},m{\sigma_i}m{X_{i+1}}m{lpha_{i+1}})$
 - Da die Ableitung insgesamt w erzeugt, ist σ_i das erste Zeichen von z_i und es gilt $z_i=\sigma_i z_{i+1}$
 - Dann folgt: $(q, z_i, \sigma_i X_{i+1} lpha_{i+1}) \vdash (q, z_{i+1}, X_{i+1} lpha_{i+1})$
 - Induktionsbehauptung
- ullet Der 2. Fall findet insbesondere im letzten Ableitungsschritt Anwendung und führt damit zur Konfiguration (q,ϵ,ϵ)
- $ightharpoonup w \in L(\mathcal{A})$

Grammatik → Kellerautomat: Beweisdetails (3/3)

Beweis (Forts.)

- ullet Zu zeigen: $oldsymbol{L}(oldsymbol{\mathcal{A}})\subseteq oldsymbol{L}(oldsymbol{G})$
- Wir beweisen durch Induktion nach der Berechnungslänge n:
 - Für alle $X \in V$ und $w \in \Sigma^*$: wenn $(q, w, X) \vdash^{n} (q, \epsilon, \epsilon)$, dann $X \Rightarrow^* w$
- n = 1:
 - $oldsymbol{-} (oldsymbol{q}, oldsymbol{w}, oldsymbol{X}) \vdash (oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{\epsilon})$
 - $igspace{}{igspace{}{}} X = S$ und $w = \epsilon$ und es gibt die Regel $S
 ightarrow \epsilon$ in G

wegen CNF

- $ightharpoonup X \Rightarrow^* w$
- n = 2:

$$\begin{array}{c} \textbf{-} \; (\boldsymbol{q}, \boldsymbol{w}, \boldsymbol{X}) \vdash (\boldsymbol{q}, \boldsymbol{w}, \boldsymbol{\sigma}) \\ \quad \vdash (\boldsymbol{q}, \boldsymbol{\epsilon}, \boldsymbol{\epsilon}) \end{array}$$

- $lackbox{lackbox{$\Rightarrow$}} w = \sigma$ und es gibt die Regel $X o \sigma$ in G
- $ightharpoonup X \Rightarrow^* w$

Beweis (Forts.)

- ullet n+1: $(oldsymbol{q},oldsymbol{w},oldsymbol{X}) dash^{oldsymbol{n+1}} (oldsymbol{q},oldsymbol{\epsilon},oldsymbol{\epsilon})$
 - Sei $(q,w,X) \vdash (q,w,Z_1Z_2)$ der erste Schritt der Berechnung, für gewisse $Z_1,Z_2 \in V$
 - $lacktriangledown(q,w,Z_1Z_2)\vdash^n(q,\epsilon,\epsilon)$ und in dieser Berechnung werden Z_1 und Z_2 nach und nach vom Keller entfernt
 - lack lack lack Es gibt eine Zerlegung $m w = m u_1 m u_2$, so dass $(m q, m u_1 m u_2, m Z_1 m Z_2) dash_{(m Z_2)}^{m m_1} (m q, m u_2, m Z_2) \ dash^{m m_2} (m q, m \epsilon, m \epsilon)$
 - Backstage-Lemma: $*(q, u_1, Z_1) \vdash^{m_1} (q, \epsilon, \epsilon)$
 - Induktion: $Z_1 \Rightarrow^* u_1$ und $Z_2 \Rightarrow^* u_2$

 $m_1, m_2 \leqslant n$

- $lacktriangledown X \Rightarrow Z_1Z_2 \Rightarrow^* u_1u_2 = w$
- ullet Die Anwendung auf $oldsymbol{X} = oldsymbol{S}$ liefert dann $oldsymbol{L}(oldsymbol{\mathcal{A}}) \subseteq oldsymbol{L}(oldsymbol{G})$

Kellerautomat → **Grammatik: Beweisdetails (1/2)**

Beweis von Satz 9.3 (Forts.)

- ullet Wir zeigen zuerst durch Induktion nach n:
 - falls $(oldsymbol{p}, oldsymbol{w}, oldsymbol{ au}) dash_{oldsymbol{\mathcal{A}}}^{oldsymbol{n}} (oldsymbol{p}', oldsymbol{\epsilon}, oldsymbol{\epsilon})$
 - so gilt: $X_{p, au,p'} \Rightarrow^* w$
- n = 1:
 - Dann gilt:
 - $* \ w = \epsilon \ \mathsf{und} \ (p,\epsilon, au,p',\epsilon) \in \pmb{\delta}$ oder
 - $* \ oldsymbol{w} = oldsymbol{\sigma} \ ext{und} \ (oldsymbol{p}, oldsymbol{\sigma}, oldsymbol{ au}, oldsymbol{p}', oldsymbol{\epsilon}) \in oldsymbol{\delta}$
 - Im ersten Fall enthält P die Regel $X_{p, au,p'} o \epsilon$, im zweiten Fall $X_{p, au,p'} o \sigma$
- n>1: Wir betrachten zuerst den Fall, dass der erste Schritt der Berechnung ein Zeichen σ liest, also:

$$(p,w, au) \vdash (q,u, au_1 au_2)$$

mit $oldsymbol{w} = oldsymbol{\sigma} oldsymbol{u}$

- ullet Dann gilt: $(oldsymbol{p}, oldsymbol{\sigma}, oldsymbol{ au}, oldsymbol{q}, oldsymbol{ au_1 au_2}) \in oldsymbol{\delta}$
- ullet Nach Konstruktion von G gibt es also für alle p_1 und p' eine Regel

$$X_{p, au,p'}
ightarrow \sigma X_{q, au_1,p_1} X_{p_1, au_2,p'}$$

Beweis (Forts.)

- ullet Sei p_1 der Zustand nach dem Entfernen von au_1 vom Keller in der Berechnung $(q,u, au_1 au_2) \vdash^{n-1} (p',\epsilon,\epsilon)$
- ullet Seien $u=u_1u_2$, so dass u_1 bis zum Entfernen von $oldsymbol{ au_1}$ gelesen wird
- Es gibt i,j mit i+j=n-1, so dass: $(p,w, au) \vdash (q,u_1u_2, au_1 au_2) \vdash_{(au_2)}^i (p',\epsilon,\epsilon) \ (p_1,u_2, au_2) \vdash^j (p',\epsilon,\epsilon)$
 - Mit Lemma 10.3 gelten also:
 - $(q,u_1, au_1) dash^i (p_1,\epsilon,\epsilon)$ und - $(p_1,u_2, au_2) dash^j (p',\epsilon,\epsilon)$
 - Nach Induktion folgt:

$$egin{array}{ll} extstyle - X_{q, au_1,p_1} \Rightarrow^* u_1 \ extstyle - X_{p_1, au_2,p'} \Rightarrow^* u_2 \end{array}$$

- $lackbox{lackbox{}} X_{p, au,p'} \Rightarrow \sigma X_{q, au_1,p_1} X_{p_1, au_2,p'} \ \Rightarrow^* \sigma u_1 u_2 = w$
 - ullet Der Fall, dass der erste Schritt ein ϵ Übergang ist, lässt sich analog beweisen

Kellerautomat → **Grammatik: Beweisdetails (2/2)**

Beweis von Satz 9.3 (Forts.)

- Wir zeigen jetzt durch Induktion nach der Ableitungslänge n:
 - falls $X_{p, au,p'} \Rightarrow^n w$
 - so gilt: $(oldsymbol{p}, oldsymbol{w}, oldsymbol{ au}) dash_{oldsymbol{\mathcal{A}}}^* (oldsymbol{p}', oldsymbol{\epsilon}, oldsymbol{\epsilon})$
- ullet n=1: Die einzigen Regeln von G, die keine Variablen erzeugen, sind von der Form
 - $X_{p, au,p'} olpha$, mit $(p,lpha, au,p',\epsilon)\in\delta$ mit $lpha\in\Sigma\cup\{\epsilon\}$
- Die Behauptung folgt direkt
- ullet n>1: In diesem Fall gibt es zwei verschiedene Typen des ersten Ableitungsschrittes

Beweis (Forts.)

Wir betrachten den ersten Fall:

$$X_{p, au,p'} \Rightarrow lpha X_{q, au_1,p_1} X_{p_1, au_2,p'}$$

• Es gilt dann:

$$lpha X_{q, au_1,p_1} X_{p_1, au_2,p'} \Rightarrow^{n-1} w$$

- ullet Also gibt es u_1,u_2 mit $w=lpha u_1u_2$ und i,j mit i+j=n-1, so dass gilt:
 - $egin{array}{ll} oldsymbol{-} X_{q, au_1,p_1} \Rightarrow^i u_1 \ oldsymbol{-} X_{p_1, au_2,p'} \Rightarrow^j u_2 \end{array}$
- Nach Induktion folgt:
 - $-\;(q,u_1,\tau_1)\vdash^*(p_1,\epsilon,\epsilon)$
 - $-(p_1,u_2, au_2) \vdash^* (p',\epsilon,\epsilon)$
- Mit Lemma 10.3 gelten dann auch:
 - $-(q, u_1u_2, au_1 au_2) \vdash^* (p_1, u_2, au_2)$
 - $\texttt{-} \; (p_1, u_2, \tau_2) \vdash^* (p', \epsilon, \epsilon)$
- Zusammen ergibt sich

$$(p,w, au) \vdash (q,u_1u_2, au_1 au_2) \vdash_{(au_2)}^* \ (p',\epsilon,\epsilon)$$

Die anderen Fäll sind analog