

Viva Questions for MIDS ANN

Thanks for uploading your `.ipynb` file. I'll now analyze the notebook to identify the 8 practicals—4 related to **MIDS** (Machine Intelligence and Data Science) and 4 related to **ANN** (Artificial Neural Networks). Based on the code and theory involved, I'll generate a set of **viva questions and answers** for each practical.

Let me first read the notebook and extract the contents.

It looks like the notebook doesn't contain any clearly marked **titles or headings** that indicate individual practicals such as "Practical 1", "Experiment 2", etc. Because of this, the system wasn't able to separate the practicals automatically.

To proceed correctly, I need one of the following from you:

- 1. **Clarification**: Let me know the names or headings of each practical manually (e.g., Practical 1: Data Preprocessing, Practical 2: Linear Regression, etc.), or
- 2. **Fix**: Re-upload the notebook with proper section headings for each practical (e.g., use markdown cells with titles like `## **Practical 1: ANN Basics**`).

Would you prefer to share the titles, or reformat the notebook and re-upload it?

Great! The notebook contains 8 code cells, and each one represents a **practical**. Let's proceed to generate **viva questions and answers** for each of these 8 practicals, based on their code and underlying theory.

I'll analyze each practical one by one and provide a **set of 4–6 professional viva questions and answers** per practical.

Practical 1: Activation Functions in ANN

Code Summary:

Implements and plots various activation functions:

- Step
- Sigmoid
- Tanh
- ReLU
- Leaky ReLU

☑ Viva Questions and Answers:

Q1. What is the purpose of an activation function in a neural network?

A1. Activation functions introduce non-linearity into the neural network, allowing it to learn and represent complex patterns. Without them, the neural network would behave like a linear regression model.

Q2. How does the sigmoid activation function behave and what is its mathematical formula?

A2. The sigmoid function maps input values between 0 and 1 using the formula:

$$\sigma(x) = rac{1}{1+e^{-x}}$$

It's useful for binary classification but suffers from vanishing gradients.

Q3. What is the difference between ReLU and Leaky ReLU?

A3. ReLU outputs 0 for all negative inputs, which may lead to the "dying ReLU" problem. Leaky ReLU addresses this by allowing a small, non-zero gradient when the input is negative:

LeakyReLU(x) = $\max(\alpha x, x)$, where α is a small value like 0.01

Q4. Why is tanh preferred over sigmoid in some cases?

A4. Tanh outputs values between -1 and 1, making it zero-centered. This can lead to faster convergence compared to sigmoid, which outputs between 0 and 1.

Q5. In which situations would you use a step function?

A5. Step functions are mainly used in perceptrons and not in modern deep learning due to their non-differentiability, which makes them unsuitable for gradient-based optimization.

Would you like me to continue with the remaining 7 practicals in a similar format?

Perfect. Here's the breakdown:

Artificial Neural Networks (ANN) Practicals

Practical 2: Feedforward and Backpropagation

🖈 Code Summary:

Implements feedforward neural network and backpropagation using sigmoid activation.

☑ Viva Questions and Answers:

Q1. What is the purpose of the feedforward step in a neural network?

A1. The feedforward step calculates the output of each neuron layer-by-layer using the current weights and activation functions.

Q2. What is backpropagation?

A2. Backpropagation is the process of adjusting weights in a neural network by propagating the error backward using gradient descent.

Q3. How is the derivative of sigmoid used in backpropagation?

A3. The derivative of the sigmoid function is:

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

It's used to compute the gradient during weight updates.

Q4. What are the two main phases of training in neural networks?

A4. The two main phases are **Feedforward** (prediction) and **Backpropagation** (learning through error

✓ Practical 3: Adaptive Resonance Theory (ART1)

★ Code Summary:

Implements ART1 neural network using vigilance parameter for pattern recognition.

✓ Viva Questions and Answers:

Q1. What is Adaptive Resonance Theory (ART)?

A1. ART is a type of neural network designed for unsupervised learning that balances plasticity (learning new patterns) and stability (preserving old ones).

Q2. What does the vigilance parameter control in ART1?

A2. The vigilance parameter determines how strictly new inputs must match existing categories. Higher vigilance = stricter matching.

Q3. What type of inputs does ART1 accept?

A3. ART1 is specifically designed for binary input patterns.

Q4. How does ART1 deal with new categories?

A4. If an input doesn't match any existing category based on the vigilance threshold, a new category is created.

Practical 4: Perceptron Algorithm

Code Summary:

Implements a perceptron for binary classification using linearly separable data.

☑ Viva Questions and Answers:

Q1. What is a perceptron?

A1. A perceptron is the simplest type of artificial neural network consisting of a single neuron used for binary classification.

Q2. What kind of data can a perceptron classify?

A2. Perceptrons can only classify linearly separable data.

Q3. How does the perceptron learning rule update weights?

A3. Weights are updated as:

$$w = w + \eta(y - \hat{y})x$$

Where η is the learning rate, y is the true label, and \hat{y} is the predicted label.

Q4. Why are perceptrons not used for complex tasks?

A4. They can't solve problems that are not linearly separable, such as XOR.

Machine Intelligence & Data Science (MIDS) Practicals

☑ Practical 5: Data Preprocessing with StandardScaler

Code Summary:

Uses `StandardScaler` to normalize numerical data.

☑ Viva Questions and Answers:

Q1. Why do we need to scale data?

A1. Scaling ensures all features contribute equally to the model and speeds up convergence in optimization algorithms.

Q2. What does `StandardScaler` do?

A2. It standardizes features by removing the mean and scaling to unit variance:

$$z = \frac{x - \mu}{\sigma}$$

Q3. What happens if we don't scale data before training?

A3. Features with larger scales may dominate others, leading to poor model performance.

Practical 6: KNN with TF-IDF on Text Data

Code Summary:

Applies TF-IDF vectorization and KNN classification for text classification.

☑ Viva Questions and Answers:

Q1. What does TF-IDF stand for?

A1. Term Frequency–Inverse Document Frequency. It scores words based on how important they are in a document relative to a collection.

Q2. What type of classifier is KNN?

A2. KNN is a non-parametric, instance-based, lazy learning classifier.

Q3. What is the value of `k` in KNN?

A3. `k` is the number of nearest neighbors considered to classify a test sample. It's typically chosen through experimentation.

☑ Practical 7: Naive Bayes for Text Classification

★ Code Summary:

Uses CountVectorizer and Multinomial Naive Bayes for classifying text.

☑ Viva Questions and Answers:

Q1. Why is Naive Bayes called "naive"?

A1. It assumes all features are conditionally independent given the class label, which is a naive assumption but works well in practice.

- Q2. What is MultinomialNB suitable for?
- **A2.** It's suitable for discrete features such as word counts in text classification.
- Q3. Difference between CountVectorizer and TF-IDF?
- **A3.** CountVectorizer counts occurrences; TF-IDF scales them by importance across documents.
- Practical 8: Abalone Dataset Regression
- **★** Code Summary:

Loads the abalone dataset, visualizes it, and performs regression tasks.

- **✓** Viva Questions and Answers:
- Q1. What is the goal of the Abalone dataset analysis?
- **A1.** To predict the age of abalone based on physical measurements.
- Q2. Which kind of ML task does this fall under?
- **A2.** It's a **regression** problem because the target variable (age) is continuous.
- Q3. Why is visualization important in data analysis?
- **A3.** It helps in understanding feature distribution, spotting outliers, and identifying correlations.

Would you like me to export all this content into a **PDF or Word document** for easy revision or submission?

It seems like I can't do more advanced data analysis right now. Please try again later.

However, I can still provide you with the entire set of professionally written viva questions and answers for all 8 practicals (4 ANN + 4 MIDS) directly here, which you can then copy into a Word document if needed. Would you like me to do that?