Project: Predictive Analytics Capstone

Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number?

The optimal number of stores formats is 2 because the median from both indices Rand Adjusted and Calinski-Harabasz (CH) from K-means report show the highest value for 2 clusters against other clustering values

	K-Means I	informe de evaluac	ión de clúster		
Estadísticas de resumen					
Índices Rand ajustados:					
	2	3	4	5	6
Minimum	-0.010301	0.044196	0.144519	0.181317	0.165339
1st Quartile	0.253055	0.253893	0.304532	0.276847	0.287996
Median	0.427941	0.335766	0.347545	0.35514	0.35205
Mean	0.452115	0.368	0.365505	0.377865	0.357587
3rd Quartile	0.693715	0.483006	0.434646	0.448919	0.42309
Maximum	0.952935	0.748912	0.624152	0.679767	0.555673
Índices Calinski-Harabasz:					
	2	3	4	5	6
Minimum	10.39409	7.898186	10.7658	9.986445	9.17216
1st Quartile	17.979	14.714109	13.78606	12.573044	11.76997
Median	20.05112	16.162845	14.51101	13.351895	12.51735
Mean	18.80087	15.87246	14.45394	13.31809	12.41103
3rd Quartile	20.60284	17.437793	15.43122	14.043642	13.16864
Maximum	22.23741	19.013001	16.95309	15.737902	14.54993

Índices Rand ajustados

Índices Calinski-Harabasz

2. How many stores fall into each store format?

Perhaps the answer 1, considering Andre C's post on the discussion board: in order to successfully complete the remaining of the project we need to use 3 clusters for the project here.

I will use 3 store formats or clusters that give: 25 stores to cluster 1, 25 stores to cluster 2, and 35 stores to cluster 3

Informe de resumen de la solución de agrupamiento en clústeres K_cluster K-Means Resumen de la solución $step Flexclust (scale (model. matrix (\sim -1 + Dry_Grocery_.S + Dairy_.S + Frozen_Food_.S + Meat_.S + Produce_.S + Floral_.S + Deli_.S +$ Bakery_.S + General_Merchandise_.S, the.data)), k = 3, nrep = 10, FUN = kcca, family = kccaFamily("kmeans"))Información del clúster: Cluster Size Ave Distance Max Distance Separation 3.585931 2.289004 1.72574 25 25 2.099985 4.823871 2.191566 35 2.475018 4.412367 1.947298

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

For cluster 1 the highest participation by category against cluster 2 and 3 are: Dry Grocery with 49%, and General Merchandise with 11% while for cluster 2 against cluster 1 and 3 the highest participation is from Meat with a 16%, Deli and Bakery with 5% each, for cluster 3 the highest participation against cluster 1 and 2 are: Produce with 15%, Frozen Food with 9% and Floral with 1.63%as show in the following chart

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

https://public.tableau.com/app/profile/criverog/viz/Task1_4PredictiveAnalyticsCapstoneProject/Story1

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

The methodology used to predict the new store format is the Boosted Model because this shows the highest accuracy (0.7647) against the accuracy of the Forest Model (0.7059) and Decision Tree (0.6471).

Model Comparison Report					
Fit and error measures					
Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy_3
DT_Cluster	0.6471	0.6667	0.5000	0.5000	1.000
FM_Cluster	0.7059	0.7917	1.0000	0.3750	1.0000
BM_Cluster	0.7647	0.8333	1.0000	0.5000	1.0000
Model: model names in the current comparison. Accuracy: overall accuracy, number of correct predictions of all classes divided by total sample number. Accuracy_[class name]: accuracy of Class [class name] is defined as the number of cases that are correctly predicted to be Class [class name] divided by the total number of cases that actually belong to Class [class name], this measure is also known as recall. AUC: area under the ROC curve, only available for two-class classification. F1: F1 score, 2 * precision * recall / (precision + recall). The precision measure is the percentage of actual members of a class that were predicted to be in that class divided by the total number of cases predicted to be in that class. In situations where there are three or more classes, average precision and average recall values across classes are used to calculate the F1 score.					

The Boosted Model was chosen as mentioned above because it shows the highest precision against the other two referenced models according to the Analyst's Methodology Map; considering that the business problem is to predict the format of new stores, facing a non-binary classification issue due to the nature of our data

Analyst Methodology Map

What format do each of the 10 new stores fall into? Please fill in the table below.
 According to the Boosted Model and using the scoring tool, the format projected for new stores is indicated in the corresponding Segment field

Store Number	Segment
S0086	2
S0087	3
S0088	1
S0089	3
S0090	2
S0091	1
S0092	3
S0093	1
S0094	2
S0095	2

Task 3: Predicting Produce Sales

- 1. What type of ETS or ARIMA model did you use for each forecast? Use ETS (a, m, n) or ARIMA (ar , i, ma) notation. How did you come to that decision?
- ➤ The type of the ETS used to the forecast is **ETS (M, N, M)**, after the following consideration (based on the analysis of the TS Plot):

- 1. The **seasonal** plot shows seasonality with increasing over time, and that is way the "n" factor was considered as **M**ultiplicative
- 2. The **trend** plot does not show a significative tendency over time (this is showing a flat tendency), and that is way the "m" factor was considered as **N**one.
- 3. The **remainder or error** plot shows an irregular trend, and that is way the "a" factor was considered as **M**ultiplicative.
- ➤ The type of the ARIMA used to the forecast is **ARIMA (0, 1, 2) (0, 1, 0) [12]**, after the following consideration (based on the analysis of the ACF and PACF Plots):
 - The ar (Auto Regressive) term for both the non-seasonal and seasonal component of ARIMA model should be 0 because there is no trace of ar term in both ACF and PACF First Difference plots.
 - The i (Differencing) term for both the non-seasonal and seasonal components of ARIMA model should be 1 because the stationary condition is reached with in the first differentiation.

- The ma (Moving Average) term for the non-seasonal component of the ARIMA model should be 2 because for both the ACF and PACF shown a negative correlation at Lag-1 and PACF plot show two spikes with significative correlations in Lag-1 and lag-2. To the ma (Moving Average) term or the seasonal component of the ARIMA model should be 0 because there is no trace of ma term in the plots.
- The m (number of periods) of ARIMA models should be 12 because is the number of periods considered.

ACF & PACF Original Time Serie

ACF & PACF Seasonal Difference Time Serie

ACF & PACF First Difference Time Serie

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts. First In order to get the forecast for existing and new stores; is needed select the best predictive model. That is way, using the TS Compare tool; the ETS (M, N, M) model shows lowest RMSE and MASE with a best accuracy against the ARIMA (0, 1, 2) (0, 1, 0) [12] model in the forecast process.

Parameter	ETS (M, N, M)	ARIMA (0, 1, 2) (0, 1, 0) [12]	Observation
RMSE	663707.2	846863.9	ETS lower than ARIMA
MAPE	2.5135	2.9927	ETS lower than ARIMA
MASE	0.3257	0.3909	ETS lower than ARIMA

Comparison of Time Series Models

Actual and Forecast Values:

Actual	ETS	ARIMA
26338477.15	26860639.57444	25515002.53492
23130626.6	23468254.49595	22982398.33693
20774415.93	20668464.64495	19509673.05693
		20599981.42693
21936906.81	20752503.51996	20547162.64693
20462899.3	21328386.80965	20342794.22693

Accuracy Measures:

	Model	ME	RMSE	MAE	MPE	MAPE	MASE
ı		-21581.13					
ľ	ARIMA	584382.36	846863.9	664382.6	2.5998	2.9927	0.3909

Finally, the sales forecast for existing stores a new ones for produce are:

	r	
Month-Year	Forecast New Stores	Forecast Actual Stores
Jan-16	\$2,429,600.68	\$21,829,060.03
Feb-16	\$2,356,690.35	\$21,146,329.63
Mar-16	\$2,789,909.08	\$23,735,686.94
Apr-16	\$2,613,119.70	\$22,409,515.28
May-16	\$2,987,310.74	\$25,621,828.73
Jun-16	\$3,036,185.79	\$26,307,858.04
Jul-16	\$3,065,391.10	\$26,705,092.56
Aug-16	\$2,679,384.64	\$23,440,761.33
Sep-16	\$2,365,494.48	\$20,640,047.32
Oct-16	\$2,318,418.48	\$20,086,270.46
Nov-16	\$2,401,695.26	\$20,858,119.96
Dic-16	\$2,418,318.04	\$21,255,190.24

Produce Sales Historical & Forecast (Actual and New)

Predictive Analytics Capstone (Task 1)

Predictive Analytics Capstone (Task 2)

Predictive Analytics Capstone (Task 3.1)

Predictive Analytics Capstone (Task 3.2)

Predictive Analytics Capstone (Task 3.2.1)

