Universidade Federal de Alagoas – UFAL Centro de Tecnologia – CTEC

Disciplina: Cálculo Numérico (EAMB018-A)
Professores: Adeildo S. Ramos Jr. e Luciana C. L. M. Vieira
Trabalho 02: Aplicação do Método de Euler
Data de divulgação: 17/05/2021. Data de entrega: 26/05/2021.

Considere uma esfera de raio r e massa m. Inicialmente, no instante t=0, a esfera possui velocidade v_0 e seu centro está posicionado a uma distância y_0 de um obstáculo reto (ver Figura 1a). Considerando a ação da gravidade, a esfera sempre estará sujeita a uma força gravitacional F_a (de cima para baixo) que tende a deslocá-la em direção ao obstáculo (ver Figura 1b),

$$F_g = m g$$

em que g é a aceleração da gravidade (adotar g = 9.81).

Desta forma, ao se movimentar para baixo, idealiza-se que a esfera poderá se sobrepor ao obstáculo, e enquanto isso ocorrer, assume-se a existência de uma penalização elástica artificial por meio de uma força de contato F_c (de baixo para cima) atuante na esfera e proporcional à sua penetração Δ no obstáculo (ver Figura 1c),

$$F_c(t) = \begin{cases} k \, \Delta(t), & y(t) < r \\ 0, & y(t) \ge r \end{cases}$$

em que k é a constante de rigidez da penalização elástica, e a penetração Δ é dada por

$$\Delta(t) = r - \gamma(t).$$

Figura 1 – Definição do problema para os instantes: (a) t=0; (b) $t=t_1$; (c) $t=t_2$.

Em um dado instante de tempo t, a aceleração da esfera pode ser estimada por meio da força resultante F atuante em seu centro.

$$F(t) = -F_a + F_c(t)$$

como sendo

$$a(t) = \frac{F(t)}{m}.$$

Nota-se que a posição y(t), a velocidade v(t) e a aceleração a(t) do centro da esfera podem ser representadas por funções temporais.

Pede-se:

- 1) Considere instantes de tempo discretos dados por t = 0, Δt , $2\Delta t$, ..., t_s . Usando a linguagem de programação de sua escolha, crie uma função que utilize o Método de Euler e calcule a posição, a velocidade e a aceleração do centro da esfera para cada um desses instantes.
 - A função deve receber os seguintes argumentos de entrada:
 - o y_0 : posição inicial do centro de esfera;
 - \circ v_0 : velocidade inicial da esfera (positivo para cima);
 - r: raio da esfera;
 - o m: massa da esfera;
 - k: constante de rigidez;
 - o t_s : tempo de simulação;
 - o Δt : incremento de tempo
 - A função deve retornar os seguintes argumentos de saída:
 - o vetor com os instantes de tempo considerados:

$$[0, \Delta t, 2\Delta t, ..., t_s]$$

o vetor com os valores de posição:

$$[y_0, y(\Delta t), y(2\Delta t), ..., y(t_s)]$$

vetor com os valores de velocidade:

$$[v_0, v(\Delta t), v(2\Delta t), ..., v(t_s)]$$

vetor com os valores de aceleração:

$$[-g, a(\Delta t), a(2\Delta t), ..., a(t_s)]$$

- 2) Considerando um exemplo definido a partir dos dados fornecidos na Tabela 1, avalie a função implementada em 1). Utilize os resultados obtidos para plotar três gráficos: i) posição x tempo; ii) velocidade x tempo; iii) aceleração x tempo. Utilize o tempo no eixo das abcissas.
- 3) Considerando o mesmo exemplo de 2), imprima os valores mínimos e máximos obtidos para: i) posição, ii) velocidade e iii) aceleração. Compare o valor máximo obtido para velocidade com o valor analítico da velocidade máxima da esfera,

$$\bar{v}_{\text{max}} = \sqrt{v_0^2 - 2g(r - y_0)}$$

calculando o erro relativo percentual.

4) Considere agora dois novos exemplos modificando apenas os incrementos de tempo $\Delta t_1'$ e $\Delta t_2'$, em relação ao dado tabelado Δt ,

$$\Delta t_1' = \frac{1}{10} \Delta t$$

$$\Delta t_2' = 10 \, \Delta t$$

Repita os procedimentos 2) e 3). Quais mudanças ocorreram nos gráficos e no erro relativo percentual? Justifique sua resposta.

Além dos códigos e dos exemplos, registre os desenvolvimentos e as discussões dos exemplos em um memorial de cálculo (documento PDF). A apresentação deste trabalho deverá ser baseada nos códigos desenvolvidos na linguagem de programação escolhida e no memorial de cálculo elaborado. Esse material deve ser enviado aos professores e tutores antes da apresentação.

Tabela 1 – Dados de entrada para a turma EAMB018-A.

					_		
Nome do aluno ou dupla	y_0	v_0	r	m	k	t_s	Δt
	[m]	[m/s]	[m]	[kg]	[N/m]	[s]	[s]
Deborah Santos e Elder Santana	4.5	-0.5	0.1	1.0	1x10 ⁴	15	0.0011
David Silva e Gustavo Melo	5.0	+1.0	0.2	1.1	1x10 ⁴	16	0.0021
Júlia Souza e Klessia Lima	5.5	-0.25	0.3	1.2	1x10 ⁴	12	0.0030
Ana L. Lins e Anny K. Gonçalves	6.0	+0.5	0.2	1.3	1x10 ⁴	14	0.0019
Evany Araújo e Jaíne Silva	6.5	0.0	0.1	1.4	1x10 ⁴	15	0.0015
André Costa Filho	7.0	-0.5	0.2	1.5	1x10 ⁴	12	0.0017
Arianne Brandão	7.5	+1.0	0.3	1.6	1x10 ⁴	16	0.0025
Erakethlyn Araújo	8.0	-0.25	0.2	1.7	1x10 ⁴	14	0.0016
Layane Silva	8.5	+0.5	0.1	1.8	1x10 ⁴	15	0.0008
Layne Siqueira	9.0	0.0	0.2	1.9	1x10 ⁴	16	0.0015
Mariana Almeida	9.5	-0.5	0.3	2.0	1x10 ⁴	12	0.0022
Nathalia Magalhães	10.0	+1.0	0.2	2.1	1x10 ⁴	10	0.0014