11 questions

- Which of the following is NOT an ensemble method? point
 - Gradient boosted trees
 - AdaBoost
 - Single decision trees

Random forests

- point
- Each binary classifier in an ensemble makes predictions on an input x as listed in the table below. Based on the ensemble coefficients also listed in the table, what is the final ensemble model's prediction for x?

	Classifier coefficient w_t	Prediction for x
Classifier 1	0.61	+1
Classifier 2	0.53	-1
Classifier 3	0.88	-1
Classifier 4	0.34	+1

- point

point

point

- (True/False) Boosted trees tend to be more robust to overfitting than decision trees.
 - True
 - False
- (True/False) For AdaBoost, test error is an appropriate criterion for choosing the optimal number of iterations. point True
 - False
 - Which of the following conditions must be true in order for w_t > 0?
 - weighted_error(f_t) < .25
 - weighted_error(f_t) < .5
 - weighted_error(f_t) > .75 weighted_error(f_t) > .5
- Which of the following classifiers is most accurate as computed on a weighted dataset? A classifier 6. point
 - weighted error = 0.1
 - weighted error = 0.3
 - weighted error = 0.5
 - weighted error = 0.7 weighted error = 0.99
- of the data. The data at this node is:

Weight	x1	x2	у
0.3	0	1	+1
0.35	1	0	-1
0.1	0	1	+1
0.25	1	1	+1

Imagine we are training a decision stump in an iteration of AdaBoost, and we are at a node. Each data point is (x1, x2, y), where x1,x2 are features, and y is the label. Also included are the weights

decimal places.

Suppose we split on feature x2. Calculate the weighted error of this split. Round your answer to 2

After each iteration of AdaBoost, the weights on the data points are typically normalized to sum to

- 1. This is used because point of issues with numerical instability (underflow/overflow)
 - the weak learners can only learn with normalized weights
 - none of the above
- point

Consider the following 2D dataset with binary labels.

classifier produces the decision boundary as follows:

We train a series of weak binary classifiers using AdaBoost. In one iteration, the weak binary

(1)

10. Suppose we are running AdaBoost using decision tree stumps. At a particular iteration, the data points have weights according the figure. (Large points indicate heavy weights.)

- (5)

point

 $X_2 \uparrow$

point

- 11. (True/False) AdaBoost achieves zero training error after a sufficient number of iterations, as long as we can find weak learners that perform better than random chance at each iteration of AdaBoost (i.e., on weighted data).
 - True
 - False