Diagnosis

- Introduction
- Logic Diagnosis
 - SSF diagnosis
 - Static Cause-effect diagnosis
 - Dynamic Cause-effect diagnosis
 - Effect-cause diagnosis
 - Unmodeled / multiple fault diagnosis
- Scan Chain Diagnosis
- Failure Analysis
- Conclusions

Dynamic Cause-Effect Diagnosis

- "Dynamic" because fault dictionary changes with TF
- Procedure:
 - 1. Test CUD, then select a few candidate faults
 - 2. Fault simulate to generate partial fault dictionary

Which Faults to be Simulated?

- Need very fast algorithm to select faults
- Idea: [Waicukauski 89]
 - Remove impossible candidate faults based on
 - structural or logic value
- Three steps:
 - 1. Structural backtracing
 - 2. Parity check
 - 3. Excitation condition check
- NOTE: This technique assumes SSF

Remove Impossible Candidate Faults Before Fault Simulation

Example CUD

Given this CUD, test failures are

	pattern1		pattern2		pattern3		pattern4	
	7	8	7	8	7	8	7	8
Test Failures	X	X	X	X			X	X

Step 1. Structural Backtracing

Structural backtrace from failing pins

True candidate fault must be in intersection of fanin cones

Example: 14 faults → 6 faults

1 sa1, 2 sa0, 2 sa1, 4o sa0, 4o sa1, 4i2 sa1 remains

	original
	fault list
1	1 sa1
2	2 sa0
3	2 sa1
4	3 sa1
5	4o sa0
6	4o sa1; 4i2 sa0; 1sa0
	5au, 15au
7	4i2 sa1
8	5o sa1;3 sa0;
	5i1 sa0
9	5i1 sa1
10	6i1 sa1
11	7 sa0
12	7 sa1
13	8 sa0
14	8 sa1; 6i1
	sa0; 5osa0

Step 2. Parity Check

For a true candidate stuck-at v fault, must satisfy

```
V ⊕ p = f
v = stuck-at value
f = CUD output value at a failing pin
p = inversion parity on propagation path (1=odd, 0=even)
```


If a fault fails parity check, we can eliminate It.

Example

- For failing pattern 1
 - ◆ 2 sa0: v=0; p=1; f=0 parity check fails, fault eliminated
 - 4o sa1: v=1; p=1 f=1 parity check fails, fault eliminated
 - ◆ 4o sa0: v=0, p=1 f=1 parity check passes, fault remains
 - 6 faults → 4 faults

Quiz

Q: Consider only three faults: A SA1, J SA0, Q SA1. Apply 3 patterns: $P_1 = \{010\}$, $P_2 = \{001\}$, $P_3 = \{100\}$. Good outputs are $\{110\}$. CUD outputs are $\{010\}$. Use parity check to see which faults should be eliminated.

Step 3. Excitation Condition Check

- For a true candidate n stuck-at v fault
 - v must differ from n's good value in a failing pattern
- Example: 4 faults → 2 faults
 - 2 sa1 and 4i2 sa1 eliminated (failing pattern 1)

Partial Fault Dictionary

- Partial fault dictionary contains only 2 candidate faults
 - Much smaller than complete fault dictionary
- Finally 40 sa0 diagnosed most likely fault

Partial fault dictionary

	faults	pattern1		pattern2		pattern3		pattern4	
		7	8	7	8	7	8	7	8
1	1 sa1	Х	X					Х	
5	4o sa0	X	X	Х	Х			X	1
	Test Failures	X	X	X	X			X	

Quiz

Q: Now we have only two faults: A SA1, Q SA1.

Apply 3 patterns: $P_1 = \{010\}, P_2 = \{001\}, P_3 = \{100\}.$

Good outputs are {110}. CUD outputs are {010}.

Use excitation check to see which faults should be eliminated.

Summary

- Dynamic Cause-effect diagnosis
 - First test CUD, then select few candidate faults to simulate
 - Three steps
 - * 1. Structural backtracing
 - * 2. Parity check
 - * 3. Excitation condition check
 - Generate partial fault dictionary
 - Save storage space
 - Very useful in practice

FFT

- Q: Is step 2 still applicable when fanout branches reconverge?
 - If so, what is inversion parity?

