

物理实验数学中心

Physics Expeiment Center

AMPEREMETER MODIFICATION

Li Bin

NJUPT

Purposes:

- (1) Learn to modify a micro-amperemeter to a double-range milli-amperemeter.
- (2) Learn the method of correcting a modified amperemeter.

Instruments:

- Two resistance boxes,
- Digital experimental box,
- 8 Cables.

Principles:

 R_1, R_2 are shunt resistances, $R_{\rm g}$ is the internal resistance of micro-amperemeter

$$R_1 + R_2 = \frac{1}{n_2 - 1} R_g$$

$$R_1 = \frac{1}{n_1 - 1} (R_g + R_2)$$

$$\frac{R_1}{R_2} = \frac{n_2}{n_1 - n_2}$$

$$R_1 = \frac{n_2}{(n_2 - 1)n_1} R_g$$

$$R_2 = \frac{n_1 - n_2}{(n_2 - 1)n_1} R_g$$

Contents and Steps:

- 1. Measure the internal resistance of micro-amperemeter, R_g using 'substitution method'.
- 2. Calculate the ideal value of R1 and R2.
- 3. Modify micro-amperemeter to milli-amperemeter with range of 1 mA, determine the value of R1+R2.
- 4. Modify micro-amperemeter to milli-amperemeter with range of 10 mA, determine the value of R1 and R2, respectively.

TABLE I $R_g=2200\Omega$

Resistance	R_1/Ω	R_2/Ω
Ideal		
Exp.		

TABLE II: Correction for the meter with range of 10 mA

Pointer position of micro-amperemeter	10	20	30	40	50	60	70	80	90	100
Reading of micro- amperemeter: $I_0(mA)$	1	2	3	4	5	6	7	8	9	10
Reading of standard meter: I(mA)	1.0 19	2.0 18	3.0 09	4.0 48	5.0 39	6.0 18	7.0 16	8.0 17	8.9 90	10.0
$\Delta I=I_0-I(mA)$										

Modified meter's level:

$$f = \frac{|\Delta I|_{\text{max}}}{10 \ mA} \times 100$$

Homework

- Please write a 200-word essay to describe this experiment, complete the table, and plot the correction curve of ΔI - I_0 .
- DL: November 29, 2022
- Submit to libin@njupt.edu.cn

with "YourstudentID+YourName+Experiment6.pdf"

- Useful link(s):
- 1. https://github.com/bliseu/phylab

END