## Surfaces Learning Objectives

- Sketch simple surfaces in 3D.
- Determine when a point lines on a specified surface.

## Surfaces Examples

1.

(a) Determine if the point (1,4) is on the line x-4y=1.

Solution: False;  $1 - 4(4) \neq 1$ 

(b) Determine if the point (1,4,2) is on the plane x-4y+8z=1.

**Solution:** True; 1 - 4(4) + 8(2) = 1

(c) Determine if the point (1, -3, 0) is on the surface  $xyz + x^2 = y$ .

Solution: False

2. (a) Graph the equation  $x^2 + y^2 = 4$  in the xy-plane. Describe it in words.

Solution:



A circle of radius 2 centered at the origin

(b) Graph the equation  $x^2 + y^2 = 4$  in  $\mathbb{R}^3$  (i.e. in space). Describe it in words. *Hint:* Which values of z satisfy this equation? **Solution:** In  $\mathbb{R}^2$  the equation  $x^2 + y^2 = 4$  is a circle of radius 2 in the xy-plane, in other words all points (x,y) that are 2 units away from the origin (the point (0,0)). For instance, the point  $(\sqrt{2},\sqrt{2})$ .

In  $\mathbb{R}^3$ , for any value of z the point  $(\sqrt{2}, \sqrt{2}, 0)$  also satisfies the equation  $x^2 + y^2 = 4$ . Thinking of it like this, you can imagine a circle of radius 2 at every value of z.



The cylinder above should extend infinitely in both z-axis directions.

(c) Graph the equation  $z = y^2$  in  $\mathbb{R}^3$ . Describe it in words.

#### Solution:



The equation represents a parabola in the yz-plane extended infinitely along the x-axis.

# Spheres Leaning Objectives

- Extend the usual distance equation to three variables.
- Draw spheres.
- Describe a sphere given its equation

## Spheres Examples

**Definition.** The distance between points  $P_1(x_1, y_1, z_1)$  and  $P_2(x_2, y_2, z_2)$ , written  $|P_1P_2|$ , is given by

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

1. Calculate the distance between (1,2,3) and (3,-1,0).

**Solution:** 

$$d((1,2,3),(3,-1,0)) = \sqrt{(1-3)^2 + (2-(-1))^2 + (3-0)^2}$$
$$= \sqrt{4+9+9} = \sqrt{22}$$

**Definition.** The set of all points in  $\mathbb{R}^3$  equidistant from a center point is called a sphere. An equation of a sphere with center C(h, k, l) and radius r is

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2.$$

2. Find an equation of the sphere centered at (1, -2, 3) with radius 2.

**Solution:** Using the above with h = 1, k = -2, l = 3, and r = 2 gives us

$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 4$$

3. Describe in words and draw the surface  $x^2 + y^2 + z^2 = 1$ .

**Solution:** A sphere centered at the origin (the point (0,0,0)) with radius 1.



4. Describe the surface  $x^2 - 2x + y^2 + z^2 + 4z = 4$  in words.

**Solution:** We need to complete the square to rewrite this in the form above.

$$x^{2} - 2x + y^{2} + z^{2} + 4z = 4$$

$$+ \left(-\frac{2}{2}\right)^{2} + \left(\frac{4}{2}\right)^{2} + \left(-\frac{2}{2}\right)^{2} + \left(\frac{4}{2}\right)^{2}$$

$$x^{2} - 2x + 1 + y^{2} + z^{2} + 4z + 4 = 4 + 1 + 4$$

$$(x - 1)^{2} + y^{2} + (z + 2)^{2} = 9$$

This means the surface is a sphere centered at (1,0,-2) with radius 3.