Production of Electricity and/or Fuels from Biomass by Thermochemical Conversion

Eric D. Larson*
Haiming Jin**
Fuat Celik*

RBAEF Meeting Washington, DC 23 February 2004

^{*} Princeton Environmental Institute Princeton University Princeton, NJ

^{**} Thayer School of Engineering Dartmouth College Hanover, NH

Tasks 2 & 3: Conversion Technology

- a. Power generation
- b. Thermochemical fuels (TCFs)
- c. Ethanol
- d. Mobility chain analysis
- e. Environment analysis

- Dartmouth: Lee Lynd,
 Mark Laser, Haiming Jin,
 Kemantha Jayawardhana,
 Charles Wyman
- Princeton: Eric Larson, Fuat Celik
- NREL: John Sheehan
 - Argonne Lab: Michael Wang
 - NRDC: Nathanael Greene, Dan Saccardi

Power, TCFs, and Ethanol: Overview

Objectives

- Design self-consistent set of future, mature-technology processes for producing electricity and/or fuels (and chemicals, animal feed).
- Estimate performance and capital and operating costs.

Approach

- Integrated effort between Dartmouth (biological) and Princeton (thermochemical)
- Design/simulation of heat and mass balances using Aspen⁺, with design parameter values from literature and experts.
 - RBAEF hypothesis: future mature biomass facilities will be relatively large (~ 5000 dry tons per day feed, or ~ 1000 MW_{th})
- Capital and operating cost estimates based on careful review of literature, own prior work, extensive discussion with industry experts, NREL cost database.
- Consistent financial parameters and accounting framework for economic analysis.
- Substantial effort: 20-25 Aspent simulations in all!

Thermochemical Conversion

High temperature (900-1000°C) gasification of biomass to make "synthesis gas" that subsequently is converted into electricity and/or fuels, chemicals, heat.

Pressurized-Gasifier Combined Cycle

Switchgrass input = 983 MW_{hhv}

Net electric output = 443 MW_e

Efficiency (HHV) = 45.1%

witchgrass put, MW _{th}	Higher heating value (HHV)	983.2
	Lower heating value (LHV)	886.8
nternal ower use, IW _e	ASU power ^a	-6.4
	O2 compressor power	5.3
	N2 compressor power	10.8
	N2 boost compressor power	0.33
	Steam cycle pumps, total	3.5
	Fuel handling	0.66
	Lock hopper/Feeder	0.52
	Total on-site use	14.8
ross power utput, MW _e	Gas turbine output	267.5
	Steam turbine gross output	190.3
	Total gross output	457.8
et Power, MW _e		443.0
	Higher heating value (HHV)	45.1%
	Lower heating value (LHV)	50.0%

Key Technical Features Assumed for Mature Electricity Plants

- Reliable biomass feeding to pressurized gasifier.
- · High reliability commercial gasifier operation.
- Acceptable extent of tar cracking.
- Warm-gas cleanup of particulates, alkali, trace contaminants and (for solid-oxide fuel cell) sulfur.
- Commercially reliable air separation unit integrated with gas turbine.
- · Targeted solid-oxide fuel cell performance.

Thermochemical Fuels (TCF)

Fischer-Tropsch Liquids

(straight-chain C_nH_{2n} , C_nH_{2n+2})

- F-T fuels are commercially made from natural gas and (in S. Africa) from coal.
- F-T process dates to 1930s, but technology has improved significantly.
- Commercial fuel interest today is primarily in the middle distillate fraction, a high-cetane, no-sulfur diesel fuel substitute.
- The process also gives a naphtha fraction (chemical feedstock) and heavy waxes (high-value, small market).

Dimethyl Ether

(CH₃OCH₃)

- Ozone-safe aerosol propellant, chemical feedstock.
- Current global production
 150,000 tons/year by drying methanol (CH₃OH).
- Similar to LPG mild pressurization needed to keep as liquid.
- Good diesel-engine fuel: high cetane #, no sulfur, lower NO_x, no C-C bonds
 → no soot.
- Growing interest
 (especially in Japan, China,
 Sweden) for using DME

Hydrogen

 (H_2)

- Intense H₂ interest today.
- Preferred fuel for a fuel cell vehicle.
- Low or no tailpipe emissions of criteria pollutants or CO₂.
- Low volumetric energy density presents challenge for on-board storage.

Methanol

 (CH_3OH)

- Fuel cell vehicle fuel via onboard reforming.
- Health concerns as fuel.
- Chemical feedstock.

7

Biomass Thermochemical Fuels (TCF)

 No commercial TCF production from biomass conversion today, but components are commercial or near commercially-ready.

Status of Process Simulations

GASIFIER DESIGN →	Indirect, Atm- Pressure (BCL)	Pressurized Oxygen (GTI)
Gas turbine/steam turbine combined cycle	•	•
Solid-oxide fuel cell/gas turbine hybrid	×	
Fischer-Tropsch Fuels	×	0
Fischer-Tropsch Fuels / Electricity	×	0
Dimethyl Ether *	×	
Dimethyl ether / Electricity *	×	•
Hydrogen *	×	0
Hydrogen / Electricity *	×	0
Methanol	×	
Methanol / Electricity	×	
Reference Rankine cycle		

^{*} Relatively pure stream of CO_2 is available as a byproduct in these cases, but the possibility of capture/storage of CO_2 as GHG emissions reduction option is not being considered in this project.

Status of Cost Estimates

GASIFIER DESIGN →	Indirect, Atm- Pressure (BCL)	Pressurized Oxygen (GTI)
Gas turbine/steam turbine combined cycle	•	•
Solid-oxide fuel cell/gas turbine hybrid	×	?
Fischer-Tropsch Fuels	×	0
Fischer-Tropsch Fuels / Electricity	×	0
Dimethyl Ether *	×	•
Dimethyl ether / Electricity *	×	•
Hydrogen *	×	0
Hydrogen / Electricity *	×	0
Methanol	×	
Methanol / Electricity	×	
Reference Rankine cycle		

^{*} Relatively pure stream of CO_2 is available as a byproduct in these cases, but the possibility of capture/storage of CO_2 as GHG emissions reduction option is not being considered in this project.