https://insideairbnb.com/get-the-data/ -> access dataset

Calendar Dataset

```
In [1]: import pandas as pd
         # Load the dataset to perform EDA
         file path = 'calendar.csv.qz'
         data = pd.read_csv(file_path)
         # Display the first few rows to understand the structure of the dataset
         data.head()
Out[1]:
           listing_id
                           date available
                                          price adjusted_price minimum_nights maximum_nights
         0
               2818 2024-09-06
                                      f $69.00
                                                                                      1125.0
                                                         NaN
                                                                         3.0
               2818 2024-09-07
                                      f $69.00
                                                                         3.0
                                                                                      1125.0
         1
                                                         NaN
         2
               2818 2024-09-08
                                      f $69.00
                                                         NaN
                                                                         3.0
                                                                                      1125.0
         3
               2818 2024-09-09
                                      f $69.00
                                                         NaN
                                                                         3.0
                                                                                      1125.0
         4
               2818 2024-09-10
                                       t $69.00
                                                                         3.0
                                                                                      1125.0
                                                         NaN
In [2]: # Summary of dataset: data types, missing values, and basic info
         data.info()
         # Summary statistics for numerical columns
         summary_statistics = data.describe(include='all')
         # Checking missing values
         missing_values = data.isnull().sum()
         summary_statistics
```

price adjusted price minimum pights maximum pights

4.000000e+00

1.001000e+03

1.125000e+03

2.147484e+09

Ou+[2]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3525174 entries, 0 to 3525173
Data columns (total 7 columns):

Column Dtype
-----0 listing_id int64
1 date object
2 available object
3 price object
4 adjusted_price float64
5 minimum nights float64

dtypes: float64(3), int64(1), object(3)

maximum_nights float64

memory usage: 188.3+ MB

listing id

maximum_mgms	iiiiiiiiiuiii_iiigiits	aujusteu_price	price	avallable	uate	listilig_lu		Uut[Z]:
3.525172e+06	3.525172e+06	0.0	3525174	3525174	3525174	3.525174e+06	count	
NaN	NaN	NaN	518	2	366	NaN	unique	
NaN	NaN	NaN	\$200.00	f	2024-09-06	NaN	top	
NaN	NaN	NaN	202210	2668471	9658	NaN	freq	
4.438999e+05	4.337791e+00	NaN	NaN	NaN	NaN	4.582929e+17	mean	
3.085749e+07	1.977300e+01	NaN	NaN	NaN	NaN	4.837400e+17	std	
1.000000e+00	1.000000e+00	NaN	NaN	NaN	NaN	2.818000e+03	min	
2.100000e+01	2.000000e+00	NaN	NaN	NaN	NaN	2.216885e+07	25%	
1.800000e+02	3.000000e+00	NaN	NaN	NaN	NaN	5.364761e+07	50%	

NaN

NaN

NaN

NaN

NaN

NaN

date available

NaN

NaN

In [3]: missing_values

75% 9.329314e+17

max 1.238450e+18

```
listing id
Out[3]:
        date
        available
                                 0
        price
        adjusted price
                          3525174
        minimum_nights
                                2
        maximum nights
                                 2
        dtype: int64
In [4]: import matplotlib.pyplot as plt
        data['maximum_nights'] = pd.to_numeric(data['maximum_nights'], errors='coerce')
        plt.figure(figsize=(10, 6))
        plt.hist(data['maximum_nights'], bins=50, color='blue', edgecolor='black',log=True)
        plt.title('Distribution of Maximum Nights', fontsize=14)
        plt.xlabel('Maximum Nights', fontsize=12)
        plt.ylabel('Frequency', fontsize=12)
        plt.grid(axis='y', linestyle='--', alpha=0.7)
        plt.show()
```

Distribution of Maximum Nights


```
In [5]: # Removing the dollar sign and commas, then converting 'price' to numeric
data['price'] = data['price'].replace('[\$,]', '', regex=True).astype(float)

# Filtering out outliers in 'maximum_nights' where the value is greater than 10,000
data = data[data['maximum_nights'] <= 10000]

# Converting the 'available' column from 't' and 'f' to 1 and 0
data['available'] = data['available'].map({'t': 1, 'f': 0})</pre>
```

```
In [6]: data.head()
Out[6]:
                           date available price adjusted price minimum nights maximum nights
            listing_id
         0
                2818 2024-09-06
                                       0
                                          69.0
                                                         NaN
                                                                         3.0
                                                                                       1125.0
                                       0 69.0
         1
                2818 2024-09-07
                                                         NaN
                                                                         3.0
                                                                                       1125.0
                2818 2024-09-08
                                          69.0
                                                                         3.0
                                                                                       1125.0
         2
                                                         NaN
                2818 2024-09-09
                                                                                       1125.0
         3
                                       0 69.0
                                                         NaN
                                                                         3.0
                2818 2024-09-10
                                       1 69.0
                                                                         3.0
                                                                                       1125.0
         4
                                                         NaN
In [7]: data.to_csv('calendar_cleaned.csv', index=False)
```

Listings dataset

```
In [8]: import pandas as pd

# Load the Airbnb listings dataset
file_path = 'listings.csv'
airbnb_data = pd.read_csv(file_path)

# Display the first few rows of the dataset for initial inspection
airbnb_data.head()
```

Out[8]:		id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimum_nights	nι
	0	2818	Quiet Garden View Room & Super Fast Wi-Fi	3159	Daniel	NaN	Oostelijk Havengebied - Indische Buurt	52.36435	4.94358	Private room	83.0	3	
	1	27886	Romantic, stylish B&B houseboat in canal district	97647	Flip	NaN	Centrum-West	52.38761	4.89188	Private room	155.0	3	
	2	28871	Comfortable double room	124245	Edwin	NaN	Centrum-West	52.36775	4.89092	Private room	79.0	2	
	3	29051	Comfortable single room	124245	Edwin	NaN	Centrum-Oost	52.36584	4.89111	Private room	59.0	2	
	4	44391	Quiet 2- bedroom Amsterdam city centre apartment	194779	Jan	NaN	Centrum-Oost	52.37168	4.91471	Entire home/apt	NaN	3	

Dataset Explanation

Column Name	Description	Туре
id	A unique identifier for each Airbnb listing.	Integer
name	The name or title of the Airbnb listing.	Text/String
host_id	A unique identifier for each host.	Integer
host_name	The name of the host managing the listing.	Text/String
neighbourhood_group	The broad geographic area or borough of the listing.	Text/String

Column Name	Description	Туре
neighbourhood	A more specific neighborhood or district within the broader group.	Text/String
latitude	The geographic latitude of the listing.	Float/Decimal
longitude	The geographic longitude of the listing.	Float/Decimal
room_type	The type of accommodation offered.	Categorical
price	The nightly price of the listing in the local currency.	Integer/Float
minimum_nights	The minimum number of nights required for a booking.	Integer
number_of_reviews	The total number of reviews the listing has received.	Integer
last_review	The date of the most recent review for the listing.	Date/Datetime
reviews_per_month	The average number of reviews the listing receives per month.	Float/Decimal
calculated_host_listings_count	The total number of active listings managed by the same host.	Integer
availability_365	The number of days the listing is available for booking in a year.	Integer
number_of_reviews_ltm	The number of reviews the listing has received in the last 12 months.	Integer
license	The license or registration number associated with the listing.	Text/String

```
In [9]: # Summary statistics of the dataset
    summary_stats = airbnb_data.describe(include='all')

# Checking for missing values in the dataset
    missing_values = airbnb_data.isnull().sum()

# Displaying the summary statistics and missing values
    summary_stats
```

$A \cap A \cap$	
UULIDI.	

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type
count	9.659000e+03	9659	9.659000e+03	9659	0.0	9659	9659.000000	9659.000000	9659
unique	NaN	9437	NaN	3601	NaN	22	NaN	NaN	4
top	NaN	Appartement in Amsterdam	NaN	David	NaN	De Baarsjes - Oud-West	NaN	NaN	Entire home/apt
freq	NaN	15	NaN	56	NaN	1655	NaN	NaN	7776
mean	4.583572e+17	NaN	1.213571e+08	NaN	NaN	NaN	52.366594	4.889761	NaN
std	4.837813e+17	NaN	1.608260e+08	NaN	NaN	NaN	0.017328	0.035550	NaN
min	2.818000e+03	NaN	3.159000e+03	NaN	NaN	NaN	52.290276	4.755870	NaN
25%	2.217078e+07	NaN	1.165785e+07	NaN	NaN	NaN	52.355610	4.864693	NaN
50%	5.365568e+07	NaN	4.113008e+07	NaN	NaN	NaN	52.365569	4.887649	NaN
75%	9.330041e+17	NaN	1.690638e+08	NaN	NaN	NaN	52.376405	4.909200	NaN
max	1.238450e+18	NaN	5.995651e+08	NaN	NaN	NaN	52.425159	5.026669	NaN

In [10]: missing_values

```
id
Out[10]:
         name
                                               0
         host id
         host name
         neighbourhood group
                                            9659
         neighbourhood
         latitude
         longitude
         room type
         price
                                            3790
         minimum nights
         number_of_reviews
                                               0
         last review
                                            1027
         reviews_per_month
                                           1027
         calculated host listings count
                                               0
         availability 365
         number of reviews ltm
         license
                                              97
         dtype: int64
In [11]: missing_prices_ids = airbnb_data[airbnb_data['price'].isna()]['id'].tolist()
In [12]: # Filter rows in `data` for `listing id` matching the missing prices
         filtered calendar = data[data['listing id'].isin(missing prices ids)]
In [13]: # Extract the earliest available price for each `listing id`
         exact price mapping = filtered calendar.groupby('listing id')['price'].first()
In [14]: # Update the missing prices in airbnb_data
         airbnb_data['price'] = airbnb_data.apply(
             lambda row: exact_price_mapping[row['id']] if pd.isna(row['price']) and row['id'] in exact_price_mapping else row
             axis=1
In [15]: # Display the updated dataframe or save it as needed
         print(airbnb_data.head())
```

```
id
                                                        name host id \
0
    2818
                  Quiet Garden View Room & Super Fast Wi-Fi
                                                                 3159
   27886
          Romantic, stylish B&B houseboat in canal district
                                                                97647
1
2
   28871
                                     Comfortable double room
                                                               124245
  29051
                                     Comfortable single room
                                                               124245
  44391
            Quiet 2-bedroom Amsterdam city centre apartment
                                                               194779
            neighbourhood group
                                                            neighbourhood \
  host name
0
     Daniel
                                   Oostelijk Havengebied - Indische Buurt
                             NaN
1
       Flip
                             NaN
                                                             Centrum-West
2
      Edwin
                             NaN
                                                             Centrum-West
3
                             NaN
                                                             Centrum-Oost
      Edwin
4
        Jan
                             NaN
                                                             Centrum-Oost
             longitude
                              room_type price minimum_nights \
   latitude
               4.94358
                                          83.0
  52.36435
                           Private room
                                                              3
  52.38761
               4.89188
                                                              3
1
                           Private room 155.0
  52.36775
               4.89092
                                          79.0
                                                              2
                           Private room
                                           59.0
  52.36584
               4.89111
                           Private room
                                                              3
               4.91471 Entire home/apt 240.0
4 52.37168
   number_of_reviews last_review reviews_per_month \
0
                 389 2024-08-31
                                                2.07
                                                1.81
1
                      2024-09-03
                 279
2
                 638
                      2024-09-03
                                                3.73
3
                 761 2024-09-04
                                                4.64
4
                  42 2022-08-20
                                                0.25
   calculated_host_listings_count availability_365
                                                      number_of_reviews_ltm \
0
                                                 105
                                                                          35
1
                                 1
                                                 193
                                                                         18
2
                                                  74
                                                                         100
3
                                                  91
                                                                         84
                                                   0
                                                                           0
                    license
   0363 5F3A 5684 6750 D14D
   0363 974D 4986 7411 88D8
   0363 607B EA74 0BD8 2F6F
   0363 607B EA74 0BD8 2F6F
   0363 E76E F06A C1DD 172C
```

In [16]: # Checking for missing values in the dataset
missing_values = airbnb_data.isnull().sum()

```
In [17]: missing values
         id
                                               0
Out[17]:
                                               0
         name
         host id
         host name
         neighbourhood group
                                            9659
         neighbourhood
         latitude
         longitude
         room type
         price
         minimum nights
         number of reviews
         last review
                                            1027
         reviews_per_month
                                            1027
         calculated host listings count
                                               0
         availability 365
         number_of_reviews_ltm
         license
                                              97
         dtype: int64
In [18]: missing_id = airbnb_data[airbnb_data['price'].isna()]['id'].iloc[0]
         print(data[data['listing id'] == missing id])
         Empty DataFrame
         Columns: [listing id, date, available, price, adjusted price, minimum nights, maximum nights]
         Index: []
In [19]: missing_id
         1080404443702621682
Out[19]:
In [20]: # Drop the row with the missing price from `airbnb_data`
         airbnb data cleaned = airbnb data[airbnb data['id'] != missing id]
         # Drop rows with the same `listing_id` from `data`
         data cleaned = data[data['listing id'] != missing id]
In [21]: missing_values = data_cleaned.isnull().sum()
         missing_values2 = airbnb_data.isnull().sum()
```

```
In [22]: missing_values
                                  0
         listing id
Out[22]:
                                  0
         date
                                  0
         available
         price
         adjusted price
                           3524444
         minimum nights
         maximum nights
                                  0
         dtype: int64
In [24]: import matplotlib.pyplot as plt
         import seaborn as sns
         # Identifying outliers in 'price' and 'minimum_nights' using boxplots
         fig, axes = plt.subplots(1, 2, figsize=(15, 5))
         # Boxplot for 'price'
         sns.boxplot(data=airbnb_data, x='price', ax=axes[0])
         axes[0].set title('Boxplot of Price')
         axes[0].set xlabel('Price')
         # Boxplot for 'minimum nights'
         sns.boxplot(data=airbnb_data, x='minimum_nights', ax=axes[1])
         axes[1].set title('Boxplot of Minimum Nights')
         axes[1].set xlabel('Minimum Nights')
         plt.tight_layout()
          plt.show()
         # Quantifying the outliers using interquartile range (IQR)
         def identify outliers(series):
             q1 = series.quantile(0.25)
             q3 = series.quantile(0.75)
             igr = g3 - g1
             lower bound = q1 - 1.5 * igr
             upper bound = q3 + 1.5 * igr
             return series[(series < lower bound) | (series > upper bound)]
         price_outliers = identify_outliers(airbnb_data['price'].dropna())
         min nights outliers = identify outliers(airbnb data['minimum nights'])
```

```
len(price outliers), len(min nights outliers)
```



```
Out[24]:
```

```
In [25]: # # Remove rows where price is greater than 80,000 (we care about 1 observation)
         airbnb data = airbnb data[airbnb data['price'] <= 80000]</pre>
```

```
In [26]: airbnb_data['license'] = airbnb_data['license'].fillna('No license info')
```

Feature Engineering - Distance to Center

```
In [27]: print(airbnb_data.columns)
         Index(['id', 'name', 'host_id', 'host_name', 'neighbourhood_group',
                 'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',
                'minimum_nights', 'number_of_reviews', 'last_review',
                'reviews_per_month', 'calculated_host_listings_count',
                'availability_365', 'number_of_reviews_ltm', 'license'],
               dtype='object')
In [28]: from geopy.distance import geodesic
```

```
# Add a new feature for the distance to Amsterdam center - Dam Square
amsterdam_center = (52.3676, 4.9041)

def calculate_distance_to_center(row):
    listing_coords = (row['latitude'], row['longitude'])
    return geodesic(listing_coords, amsterdam_center).km

airbnb_data['distance_to_center'] = airbnb_data.apply(calculate_distance_to_center, axis=1)
```

In [29]: airbnb_data.head()

III [29].	aı	all blib_data.llead()												
Out[29]:		id	name	host_id	host_name	_name neighbourhood_group neighbourhood latitude longitude room_type pric		price	minimum_nights	nı				
Out[29]: _	0	2818	Quiet Garden View Room & Super Fast Wi-Fi	3159	Daniel	NaN	Oostelijk Havengebied - Indische Buurt	52.36435	4.94358	Private room	83.0	3		
	1	27886	Romantic, stylish B&B houseboat in canal district	97647	Flip	NaN	Centrum-West	52.38761	4.89188	Private room	155.0	3		
	2	28871	Comfortable double room	124245	Edwin	NaN	Centrum-West	52.36775	4.89092	Private room	79.0	2		
	3	29051	Comfortable single room	124245	Edwin	NaN	Centrum-Oost	52.36584	4.89111	Private room	59.0	2		
2	4	44391	Quiet 2- bedroom Amsterdam city centre apartment	194779	Jan	NaN	Centrum-Oost	52.37168	4.91471	Entire home/apt	240.0	3		

```
In [30]: # Check the data type of the 'last review' column before conversion
         print("Before conversion:")
         print(airbnb data['last review'].dtype)
         # Convert 'last review' column to datetime format
         airbnb data['last review'] = pd.to datetime(airbnb data['last review'], errors='coerce')
         # Check the data type after conversion
         print("\nAfter conversion:")
         print(airbnb data['last review'].dtype)
         # Display any rows where conversion failed (NaT indicates failed conversions to check the missing values!)
         failed conversions = airbnb data[airbnb data['last review'].isna()]
         print(f"\nNumber of rows where 'last review' could not be converted: {len(failed conversions)}")
         Before conversion:
         object
         After conversion:
         datetime64[ns]
         Number of rows where 'last_review' could not be converted: 1026
In [31]: airbnb_data.to_csv('listings_cleaned.csv', index=False)
         print("Cleaned dataset has been exported as 'listings_cleaned.csv'.")
```

Neighbourhood Dataset

```
import pandas as pd

# Load the Airbnb neighbourhoods dataset
file_path = 'neighbourhoods.csv'
airbnb_data = pd.read_csv(file_path)

# Display the first few rows of the dataset for initial inspection
airbnb_data.head()
```

```
Out[35]:
              neighbourhood_group
                                        neighbourhood
           0
                                        Bijlmer-Centrum
                              NaN
                                            Bijlmer-Oost
                              NaN
           2
                              NaN
                                          Bos en Lommer
           3
                              NaN Buitenveldert - Zuidas
           4
                                          Centrum-Oost
                              NaN
```

```
In [36]: # Summary statistics of the dataset
    summary_stats = airbnb_data.describe(include='all')

# Checking for missing values in the dataset
    missing_values = airbnb_data.isnull().sum()

# Displaying the summary statistics and missing values
    summary_stats
```

Out[36]:		neighbourhood_group	neighbourhood
	count	0.0	22
	unique	NaN	22
	top	NaN	Bijlmer-Centrum
	freq	NaN	1
	mean	NaN	NaN
	std	NaN	NaN
	min	NaN	NaN
	25%	NaN	NaN
	50%	NaN	NaN
	75%	NaN	NaN
	max	NaN	NaN

```
In [37]: print(missing_values)
```

neighbourhood_group 22
neighbourhood 0
dtype: int64

Reviews dataset

```
In [57]: import pandas as pd
          # Load the dataset
          file path = 'reviews.csv.gz'
          reviews_data = pd.read_csv(file_path)
          # Display the first few rows to understand the structure of the dataset
          reviews_data.head()
Out[57]:
                                   date reviewer_id reviewer_name
             listing_id
                          id
                                                                                                    comments
          0
                  2818
                        1191 2009-03-30
                                              10952
                                                               Lam
                                                                       Daniel is really cool. The place was nice and ...
          1
                       1771 2009-04-24
                                              12798
                                                              Alice
                                                                      Daniel is the most amazing host! His place is ...
          2
                  2818 1989 2009-05-03
                                              11869
                                                                    We had such a great time in Amsterdam. Daniel ...
                                                             Natalja
          3
                  2818 2797 2009-05-18
                                              14064
                                                            Enrique
                                                                      Very professional operation. Room is very clea...
          4
                  2818 3151 2009-05-25
                                              17977
                                                            Sherwin
                                                                     Daniel is highly recommended. He provided all...
In [58]: # Basic dataset information
          eda info = {
               "Dataset Shape": reviews data.shape,
               "Columns": reviews data.columns.tolist(),
               "Missing Values": reviews_data.isnull().sum(),
               "Data Types": reviews data.dtypes
          eda_info
```

```
{'Dataset Shape': (440807, 6),
Out[58]:
          'Columns': ['listing id',
           'id',
           'date',
           'reviewer id',
           'reviewer name',
           'comments'],
          'Missing Values': listing id
          id
          date
          reviewer id
                            0
          reviewer name
                            0
          comments
                           25
          dtype: int64,
          'Data Types': listing id
                                           int64
          id
                            int64
          date
                           object
          reviewer id
                           int64
          reviewer name
                           object
          comments
                           object
          dtype: object}
In [59]: from langdetect import detect
         from langdetect.lang detect exception import LangDetectException
         review_column = 'comments'
         def detect_language_safe(text):
             try:
                 # Ensure the input is a string and detect language
                 if isinstance(text, str) and text.strip(): # Check for non-empty strings
                      return detect(text)
                 else:
                      return "unknown"
             except LangDetectException:
                  return "unknown"
         # Apply the language detection safely
         reviews_data['language'] = reviews_data['comments'].apply(detect_language_safe)
         # Filter non-English reviews into a separate DataFrame
         non_english_reviews = reviews_data[reviews_data['language'] != 'en']
```

In [60]: # Filter English reviews into a separate DataFrame
english_reviews = reviews_data[reviews_data['language'] == 'en']

In [61]: english_reviews

Out[61]: listing id id date reviewer id reviewer name comments language 2009-03-Daniel is really cool. The place was 0 2818 1191 10952 Lam en nice and ... 2009-04-Daniel is the most amazing host! His Alice 1 2818 1771 12798 en place is ... 2009-05-We had such a great time in Natalia 2 2818 1989 11869 en Amsterdam. Daniel ... 2009-05-Very professional operation. Room is 3 2818 2797 14064 Enrique en very clea... 2009-05-Daniel is highly recommended. He 4 2818 3151 17977 Sherwin en provided all... • • • 2024-08-Friendly host and good place if you 594966020 1226006884646540496 Max 440801 1217850937891107605 en 18 are lookin... Had a really nice stay in this 2024-08-**440802** 1220731757489855109 1225961080383327080 280303344 Sam en 18 apartment. It w... 2024-08-Firstly, I would like to mention that 173184452 Safha 440803 1221126358102458113 1232467925705111332 en Sophie w... This stay did not disappoint! 2024-08-1231032436164053035 **440804** 1221572481595092953 135619385 Nicole en 25
br/>We couldn't... 2024-08-Can't say better things about this 499339256 **440805** 1221580344177848903 1233987012912362887 Gregory en home and th...

323539 rows × 7 columns

In [62]: non_english_reviews

language	comments	reviewer_name	reviewer_id	date	id	listing_id		Out[62]:
fr	Daniel est très hospitalier. Il est amical et	Frédéric	8239676	2013- 08-25	6798865	2818	68	
fr	Super séjour à Amsterdam et ce en partie grâce	Raphaël	10075270	2014- 01-03	9600146	2818	70	
de	Sehr saubere und gepflegte Wohnung. Daniel war	Alexa	14368839	2014- 05-18	13041264	2818	75	
it	Tutto perfetto\r \r Grazie mille	Valerio	16246003	2014- 07-07	15331290	2818	79	
fr	Un séjour remarquable ! Daniel est un hôte so	Daniel	15927333	2014- 07-19	15958467	2818	81	
				•••			•••	
de	Einfach toll	Hadi	471709876	2024- 09-01	1236168416108451518	1223872268249175521	440787	
cs	very nice	Gokhan	211498396	2024- 08-25	1231076277685896570	1227519933159014616	440790	
tl	Amazing!!	Jonas	38923213	2024- 08-25	1231103537959405232	1216609263586519358	440793	
it	Perfetta soluzione per vivere Amsterdam in pie	Stefano	5558937	2024- 09-01	1236095293241766691	1216763353109237119	440795	
zh-cn	Niek的公寓位置很好,交通很便利,房间 也很好,我们住得很舒服,我们喜欢小露 台。Niek本人	泽辰	254224551	2024- 09-02	1236912571043722566	1222452846089772090	440806	

117268 rows × 7 columns

```
In [63]: import nltk
    from nltk.sentiment.vader import SentimentIntensityAnalyzer
    from nltk.corpus import stopwords
    from nltk.tokenize import word_tokenize
    import string
    from collections import Counter
    import re

# Download required NLTK resources
    nltk.download('vader_lexicon')
```

```
nltk.download('stopwords')
nltk.download('punkt')
sia = SentimentIntensityAnalyzer()
# Enhanced stopwords (add more custom stopwords as needed)
additional stopwords = {'us','would', 'could'}
# Preprocessing function to remove HTML tags, unwanted tokens, stopwords, punctuation, and lowercasing
def preprocess text(text):
    # Remove HTML tags (e.g., <br/>)
    text = re.sub(r'<.*?>', '', text)
    # Replace unwanted characters like curly quotes, smart quotes, etc.
    text = re.sub(r'[''"]', '', text) # Removing curly apostrophes, quotes
    # Tokenize the text
    tokens = word tokenize(text.lower()) # Convert to lowercase and tokenize
    # Remove stopwords, punctuation, and unwanted tokens (like 'br/')
    stop_words = set(stopwords.words('english')).union(additional stopwords)
    cleaned tokens = [
        word for word in tokens if word not in stop words
        and word not in string punctuation
    # Return the cleaned text
    return ' '.join(cleaned_tokens)
# Filter English reviews
english reviews = reviews data[reviews data['language'] == 'en']
# Preprocess the text (removing HTML tags, unwanted tokens, stopwords, punctuation, etc.)
english reviews['cleaned comments'] = english reviews['comments'].apply(preprocess text)
# Apply VADER sentiment analysis on the preprocessed text
english reviews['sentiment score'] = english reviews['cleaned comments'].apply(lambda x: sia.polarity scores(x)['compo
```

```
[nltk data] Downloading package vader lexicon to
         [nltk data]
                         /Users/georgetsoupras/nltk data...
         [nltk data]
                       Package vader lexicon is already up-to-date!
         [nltk data] Downloading package stopwords to
                        /Users/georgetsoupras/nltk data...
         [nltk data]
         [nltk data]
                       Package stopwords is already up-to-date!
         [nltk data] Downloading package punkt to
                       /Users/georgetsoupras/nltk data...
         [nltk data]
                     Package punkt is already up-to-date!
         [nltk data]
         /var/folders/qv/h 09lf691slq0vdblbxjtywc0000gn/T/ipykernel 32962/1456144291.py:43: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning
         -a-view-versus-a-copy
           english reviews['cleaned comments'] = english reviews['comments'].apply(preprocess text)
         /var/folders/qv/h 09lf691slq0vdblbxjtywc0000qn/T/ipykernel 32962/1456144291.py:46: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning
         -a-view-versus-a-copy
           english reviews['sentiment score'] = english reviews['cleaned comments'].apply(lambda x: sia.polarity scores(x)['co
         mpound'])
In [64]: # Function to classify sentiment as Positive, Neutral, or Negative
         def classify sentiment(score):
             if score > 0.05:
                 return 'Positive'
             elif score < -0.05:</pre>
                 return 'Negative'
             else:
                 return 'Neutral'
```

english reviews['sentiment'] = english_reviews['sentiment_score'].apply(classify_sentiment)

Apply the sentiment classification

```
/var/folders/qv/h 09lf691slq0vdblbxjtywc0000qn/T/ipykernel 32962/981183861.py:11: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning
         -a-view-versus-a-copy
           english reviews['sentiment'] = english reviews['sentiment score'].apply(classify sentiment)
In [65]: from collections import Counter
         # 1. Count how many Positive, Neutral, and Negative sentiments
         sentiment counts = english reviews['sentiment'].value counts()
         # 2. Count the most frequent words (excluding stopwords and punctuation)
         all words = ' '.join(english reviews['cleaned comments']).split()
         word counts = Counter(all words)
         # Get the most common words (top 10)
         most common words = word counts.most common(10)
         # Results
         sentiment counts, most common words
         (sentiment
Out[65]:
          Positive
                      318768
          Neutral
                        2764
                        2007
          Negative
          Name: count, dtype: int64,
          [('great', 181586),
           ('stay', 158891),
           ('place', 147511),
           ('location', 120705),
           ('amsterdam', 117568),
           ('apartment', 103145),
           ('nice', 89424),
           ('host', 81305),
           ('clean', 77218),
           ('recommend', 70720)])
In [66]: # Separate positive and negative reviews
         positive reviews = english_reviews[english_reviews['sentiment'] == 'Positive']
         negative reviews = english reviews[english reviews['sentiment'] == 'Negative']
         # Function to get the most frequent words from a given DataFrame of reviews
         def get most frequent words(reviews df):
```

```
all words = ' '.join(reviews df['cleaned comments']).split()
             word counts = Counter(all words)
             return word counts.most_common(10) # Get top 10 most frequent words
         # Get most frequent words for positive and negative reviews
         most frequent positive words = get most frequent words(positive reviews)
         most frequent negative words = get most frequent words(negative reviews)
         # Results
         sentiment counts = english reviews['sentiment'].value counts()
         sentiment_counts
         sentiment
Out[66]:
         Positive
                     318768
         Neutral
                       2764
         Negative
                       2007
         Name: count, dtype: int64
In [67]: most_frequent_positive_words
         [('great', 181372),
Out[67]:
          ('stay', 157802),
          ('place', 146296),
          ('location', 119905),
          ('amsterdam', 116892),
          ('apartment', 102222),
          ('nice', 89125),
          ('host', 80595),
          ('clean', 77007),
          ('recommend', 70548)]
In [68]: most_frequent_negative_words
         [('room', 740),
Out[68]:
          ('place', 705),
          ('stay', 665),
          ('apartment', 658),
          ('host', 559),
          ('location', 461),
          ('one', 370),
          ('night', 348),
          ('airbnb', 344),
          ('amsterdam', 342)]
```

```
In [69]: from wordcloud import WordCloud
import matplotlib.pyplot as plt

# Combine all the cleaned comments into one large text
all_comments = ' '.join(english_reviews['cleaned_comments'])

# Generate a word cloud
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_comments)

# Plot the word cloud using matplotlib
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off') # Hide axes
plt.show()
```


In [70]: ##### from wordcloud import WordCloud
import matplotlib.pyplot as plt

```
# Filter reviews based on sentiment scores
positive reviews = english reviews[english reviews['sentiment score'] > 0.05]
negative_reviews = english_reviews[english_reviews['sentiment score'] < -0.05]</pre>
# Combine the cleaned comments into one string for each category
positive text = " ".join(positive reviews['cleaned comments'])
negative text = " ".join(negative reviews['cleaned comments'])
# Generate word clouds for positive and negative reviews
positive wordcloud = WordCloud(width=800, height=400, background color='white').generate(positive text)
negative wordcloud = WordCloud(width=800, height=400, background color='black').generate(negative text)
# Plotting the word clouds
plt.figure(figsize=(10, 5))
# Plot positive word cloud
plt.subplot(1, 2, 1)
plt.imshow(positive wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Positive Reviews')
# Plot negative word cloud
plt.subplot(1, 2, 2)
plt.imshow(negative wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Negative Reviews')
# Display the plots
plt.tight_layout()
plt.show()
```

Positive Reviews

Negative Reviews

In [71]: english_reviews

Out[71]:		listing_id	id	date	reviewer_id	reviewer_name	comments	language	cleaned_comments	senti
	0	2818	1191	2009- 03- 30	10952	Lam	Daniel is really cool. The place was nice and	en	daniel really cool place nice clean quiet neig	
	1	2818	1771	2009- 04- 24	12798	Alice	Daniel is the most amazing host! His place is	en	daniel amazing host place extremely clean prov	
	2	2818	1989	2009- 05- 03	11869	Natalja	We had such a great time in Amsterdam. Daniel	en	great time amsterdam daniel excellent host fri	
	3	2818	2797	2009- 05-18	14064	Enrique	Very professional operation. Room is very clea	en	professional operation room clean comfortable	
	4	2818	3151	2009- 05-25	17977	Sherwin	Daniel is highly recommended. He provided all	en	daniel highly recommended provided necessities	
	•••			•••						
	440801	1217850937891107605	1226006884646540496	2024- 08-18	594966020	Max	Friendly host and good place if you are lookin	en	friendly host good place looking little quiet	
	440802	1220731757489855109	1225961080383327080	2024- 08-18	280303344	Sam	Had a really nice stay in this apartment. It w	en	really nice stay apartment modern really nice	
	440803	1221126358102458113	1232467925705111332	2024- 08-27	173184452	Safha	Firstly, I would like to mention that Sophie w	en	firstly like mention sophie went way make feel	
	440804	1221572481595092953	1231032436164053035	2024- 08-25	135619385	Nicole	This stay did not disappoint!	en	stay disappoint couldnt asked better	

```
listing id
                                                         id
                                                             date reviewer id reviewer name
                                                                                               comments language cleaned comments senti
                                                                                                 <br/>br/>We
                                                                                                                           location ...
                                                                                                couldn't...
                                                                                                Can't say
                                                            2024-
                                                                                                                       cant say better
                                                                                              better things
          440805 1221580344177848903
                                                              -80
                                                                  499339256
                                                                                                               en things home host gi
                                       1233987012912362887
                                                                                    Gregory
                                                                                                about this
                                                               29
                                                                                                                        welcoming ...
                                                                                            home and th...
         323539 rows x 10 columns
          # Check for null values in each column
In [72]:
          null_values = english_reviews.isnull().sum()
          # Display the result
          print(null values)
          listing id
          id
          date
          reviewer_id
          reviewer name
          comments
          language
          cleaned_comments
          sentiment_score
          sentiment
          dtype: int64
In [74]: # Filter the DataFrame for positive sentiment
          positive_reviews = english_reviews[english_reviews['sentiment'] == 'Positive']
          # Save the filtered DataFrames to separate CSV files
          positive_reviews.to_csv('positive_reviews.csv', index=False)
          print("CSV file created successfully!")
         CSV files created successfully!
In [55]: output_path = 'english_reviews.csv'
          english_reviews.to_csv(output_path, index=False)
```

```
print(f"Sentiment summary saved to: {output_path}")
```

Sentiment summary saved to: english_reviews.csv

External Dataset

```
In [1]: import pandas as pd
        # Load the Excel file
        file path = 'statistic id1480646 monthly-domestic-tourist-overnight-stays-in-hotels-in-amsterdam-2019-2024.xlsx'
        excel data = pd.ExcelFile(file path)
        # Load the second sheet, which contains the data
        data sheet = excel data.parse(sheet name='Data')
        # Skip unnecessary rows at the top to get to the actual data
        data = data sheet.iloc[4:] # Start processing from row 5 (index 4)
        # Reset the index for further processing
        data.reset index(drop=True, inplace=True)
        # Drop unnecessary columns and rename the columns
        data = data.iloc[:, 1:8] # Use columns for Month and Years (2019-2024)
        data.columns = ['Month', '2019', '2020', '2021', '2022', '2023', '2024']
        # Drop empty rows or columns, if any
        data.dropna(how='all', inplace=True)
        # Melt the data into long format (Month, Year, Value)
        data_melted = data.melt(id_vars=['Month'], var_name='Year', value_name='Value')
        # Drop rows with problematic or missing values in the 'Value' column
        data melted = data melted[data melted['Value'] != '-'] # Remove rows with '-' in Value
        data_melted.dropna(subset=['Value'], inplace=True)
        # Convert Year and Value to numeric
        data melted['Year'] = data melted['Year'].astype(int)
        data melted['Value'] = data melted['Value'].astype(int)
        # Remove rows where Year is 2024
        data cleaned = data melted[data melted['Year'] != 2024]
```

```
# Sort by Year and Month
data_cleaned = data_cleaned.sort_values(by=['Year', 'Month'])

# Save the cleaned data as a CSV file
cleaned_file_path = 'cleaned_tourist_data.csv'
data_cleaned.to_csv(cleaned_file_path, index=False)

print(f"Cleaned data saved to {cleaned_file_path}")

Cleaned data saved to cleaned_tourist_data.csv
```

In []: