Ethernet

Netzwerkgrundlagen (NWG2)

Markus Zeilinger¹

 ${}^1{\rm FH}$ Oberösterreich Department Sichere Informationssysteme

Sommersemester 2023

Wichtiger Hinweis

Alle Materialien, die im Rahmen dieser LVA durch den LVA-Leiter zur Verfügung gestellt werden, wie zum Beispiel Foliensätze, Audio-Aufnahmen, Übungszettel, Musterlösungen, ... dürfen ohne explizite Genehmigung durch den LVA-Leiter NICHT weitergegeben werden!

Inhalt

Netzanschlusebene allgemein

Ethernet Basics

Ethernet Header

(Full-)Switched Ethernet

Virtual LANs (VLANs)

Power over Ethernet

Link Aggregation

Netzanschlussebene in der TCP/IP Protokollfamilie

Anwendungsschicht	Hypertext Transfer Protocol (HTTP)	Domain Name System (DNS)	Simple Mail Transfer Protocol (SMTP)	Internet Message Access Protocol (IMAP)	Post Office Protocol (POP3)	DHCP, SSH, SIP, RTP, SNMP, Telnet,	
Transportschicht	Transmission Control Protocol (TCP)			Quick UDP Internet Connections (QUIC)			
Transportsement				User Datagram Protocol (UDP)			
Internetschicht	Internet Protocol (IP) v4 und v6 Internet Control Message Protocol (ICMP) v4 und v6						
		esolution Protoc Discovery Protoc					
Netzanschlussebene	z.B. IEEE 802.x (Ethernet, WLAN,)						

Aufgaben der Netzanschlussebene

Übertragung von Daten an direkt angeschlossene Netzwerke (umfasst OSI Schichten 1 und 2, keine genauer Spezifikation in TCP/IP) frei von unerkannten Übertragungsfehlern.

- ► Kernaufgaben der Netzanschlussebene
 - Kapselung von IP Paketen in Frames,
 - Zuordnung von IP Adressen zu Hardware-Adressen (z. B. MAC Adressen im Ethernet) und
 - Fehlererkennung/-korrektur.
- ► Technologien (sehr umfangreich!): IEEE 802.3 Ethernet, IEEE 802.11 WLAN, IEEE 802.15.4 WPAN (u. a. Basis für Zigbee und Thread), ITU G.9959 (u. a. Basis für Z-Wave), Point-to-Point Protocol (PPP, u.a. Datenübertragung über Wählleitungen bei DSL), ...

Ethernet ("Äthernet")

- ▶ Ursprünglich von Robert Metcalfe (Gewinner Turing Award 2022!) am Xerox Palo Alto Research Center (PARC) entwickelt.
- ► Schicht 1+2 Technologie (Netzzugangstechnologie) für verdrahtete LANs.
- ► Seit 1980 Standardisierung über die IEEE 802 Gruppe.
- Erfolgsfaktoren für Ethernet: einfach, robust, kostengünstiger als vergleichbare Technologien (z. B. IEEE 802.5 Token Ring) (v. a. wegen frühem Fokus auf Twisted Pair Kabel).
- Heute: Im LAN Bereich die alles beherrschende Technologie.
 - Starke Konvergenz in Richtung Ethernet: Metro Ethernet bzw. Carrier Ethernet (MAN, WAN), Ethernet in the first mile (EFM), Industrial Ethernet, Automotive Ethernet, Speichernetze, ...

Features I

- ▶ Old School Ethernet: Zusammenschluss von Systemen an einem gemeinsamen Netzwerk (Bustopologie auf Basis Koaxial Kabel) in Form eines Shared Mediums.
 - ► Shared (geteiltes) Medium + Bustopologie
 - ightharpoonup ightharpoonup Half-Duplex Kommunikation (ightharpoonup NWA Intro)
 - ► → Medienzugriffssteuerung mittels CSMA/CD (Carrier Sense Multiple Access with Collision Detection).
- Modernes Ethernet (Full-Switched Ethernet): Stern-/Baum-Topologien im Full-Duplex Betrieb realisiert durch Switches → keine Medienzugriffssteuerung notwendig.

Ethernet

Features II

- Ethernet ist verbindungslos und unzuverlässig.
- ► Framing = Ethernet teilt den endlosen Bitstrom der Bitübertragungsschicht in Frames bzw. packt die PDUs der Netzwerkschicht in Frames ein.
- ► Fehlererkennung über ein CRC (Cyclic Redundancy Check) Verfahren (keine Fehlerkorrektur).
- ► Weiterführende Features (u. a.):
 - ► Virtual LANs: Logische Netzwerkorganisation unabhängig von der physischen Netzwerkinfrastruktur.
 - Power over Ethernet: Stromversorgung von Endgeräten über Twisted Pair Kabel.
 - ► Spanning Tree Protocol (STP): Ethernets mit physischer Leitungsredundanz (zwecks Ausfallssicherheit).

IEEE 802 Projekt

► IEEE 802 = Standards im LAN/MAN Bereich (http://www.ieee802.org/).

► Aktuelle Fassung: IEEE 802.3-2022

Jahr	Variante	Std/Erweiterung	Datenrate max.	K ¹	TP ¹	F 1
1985	Ethernet	IEEE 802.3	10 Mbps	X	X	
1995	Fast Ethernet	IEEE 802.3u	100 Mbps		X	X
1998	Gigabit Ethernet	IEEE 802.3z/ab/ah	1 Gbps		X	X
2002	10 Gigabit Ethernet	IEEE 802.3ae/ak/an/ap/aq	10 Gbps		X	X
2010	40/100 Gigabit Ethernet	IEEE 802.3ba/bg	40/100 Gbps			X
2016	25/40 Gigabit Ethernet	IEEE 802.3bq	25/40 Gbps		Х	X
2016	2.5/5 Gigabit Ethernet	IEEE 802.3bz	2.5/5 Gbps		X	
2017	200/400 Gigabit Ethernet	IEEE 802.3bs	200/400 Gbps			X

 $^{^1\}text{K}$... Koaxialkabel, TP ... Twisted Pair Kabel, F ... Fiber/Glasfaser (\rightarrow Kabel & Co)

IEEE 802.3 Ethernet

Benennungsschema I

- ► Benennungsschema Ethernet-Varianten: X[G]BASE-Y
- X ... maximal mögliche Datenrate (10, 100, 1000 Mbps, 2.5G, 5G, 10G, 25G, 40G, 100G, 200G, 400G Gbps)
- Y ... nicht einheitlich genutzt
 - ... Medium: -T (Twisted Pair), -S (short, Multi-Mode Fiber, MMF), -L (long, Single-Mode Fiber, SMF), -2/5 Koaxialkabel, ...
 - ... Codierung: X, R (PCS Kodierung)
 - ▶ ... Anzahl virtueller Kanäle oder Distanzen: 1, 2, 4, 10, ...

IEEE 802.3 Ethernet

Benennungsschema II

- ► Beispiel 1: 100BASE-TX
 - ► Fast Ethernet, 100 Mbps Datenrate (100), Twisted Pair Kabel (T), PCS Kodierung (X), 100 m Distanz
- ► Beispiel 2: 100BASE-SX
 - ► Fast Ethernet, 100 Mbps Datenrate (100), Multi-Mode Glasfaser, kurze Wellenlänge 850 nm (S), PCS Codierung (X), 550 m Distanz
- Beispiel 3: 1000BASE-T
 - Gigabit Ethernet, 1 Gbps Datenrate (1000), Twisted Pair Kabel (T) (mind. Cat5e), 100 m Distanz
- Beispiel 4: 10GBASE-T
 - ▶ 10 Gigabit Ethernet, 10 Gbps Datenrate (10G), Twisted Pair Kabel (T) (mind. Cat6a/7), 100 m Distanz

IEEE 802.3 Ethernet

Benennungsschema III

- ► Beispiel 5: 10GBASE-LR
 - ▶ 10 Gigabit Ethernet, 10 Gbps Datenrate (10G), Single-Mode Faser, lange Wellenlänge 1310 nm (L), PCS Kodierung (R), 10 km Distanz
- ► Beispiel 6: 100GBASE-ER4
 - ▶ 100 Gigabit Ethernet, 100 Gbps Datenrate (100G), Single-Mode Faser, 4 Farben/Wellenlängen (E 4), PCS Kodierung (R), 40 km Distanz
- Beispiel 7: 40GBASE-T
 - ▶ 40 Gigabit Ethernet, 40 Gbps Datenrate (40G), Twisted Pair Kabel (T) (mind. Cat8), 30 m Distanz

Ethernet II Header nach IEEE 802.3 I

- Prämbel und Start Frame Delimiter (SFD) dienen zur Erkennung eines Frames und zur Synchronisation.
- ► Ziel- und Quell-MAC-Adresse
 - ▶ 48-Bit Hardware-Adresse des Senders und des Empfänger im direkt angeschlossenen Netzwerk (direkte Route).
 - Werden vom Hersteller eines Netzwerk Interfaces einprogammiert und sind aufgrund des Vergabeprozesses weltweit eindeutig (eindeutig sein müssen sie innerhalb eines LANs bzw. einer s. g. Broadcast Domain).
 - Schreibweise (hexadezimal): 00-24-D7-73-A3-34 (Windows), 00:24:D7:73:A3:34 (Linux), 0024.D773.A334 (Cisco) oder 0024D773A334

Ethernet II Header nach IEEE 802.3 II

- ► Teilung in zwei Teile:
 - Organisationally Unique Identifier (OUI) = Kennzeichnung des Herstellers.
 - ▶ NIC Specific = fortlaufende Nummer für die NIC, vergeben durch den Hersteller.
- Verwaltung durch IEEE (Produkt z. B. MAC Address Block Large [MA-L], Abfrage Registrierungen).
- Broadcast-MAC-Adresse: ff:ff:ff:ff:ff

Ethernet II Header nach IEEE 802.3 II

EtherType

- Codiert das im Frame enthalteten nächst höhere Protokoll und gibt damit die Interpretation der Nutzdaten im Ethernet Frame vor.
- Verwaltung durch die IEEE, Abfrage Registrierungen.
- ► Beispiele: 0x0800 (IPv4), 0x86DD (IPv6), 0x8100 (VLAN), 0x0806 (ARP, Address Resolution Protocol)

Ethernet II Header nach IEEE 802.3 III

Nutzdaten

- ▶ Pro Ethernet Frame sind mind. 46 und max. 1500 Byte an Nutzdaten zulässig (ggf. Auffüllung durch ein 0-Padding).
- Die Maximum Transmission Unit (MTU, = größtmögliche Dateneinheit, die ein Protokoll in sich transportieren kann) von Ethernet ist daher 1500 Bytes (→ IP -Fragmentierung, TCP - Maximum Segment Size [MSS] Option).
- ▶ Daneben gibt es s.g. Jumbo Frames (MTU 9000 Bytes, Verbesserung des Header-Nutzdaten-Verhältnisses) ab Gigabit Ethernet.

Ethernet II Header nach IEEE 802.3 III

- ► Frame Check Sequence (FCS)
 - ▶ 32-Bit Prüfsumme zur Erkennung von Übertragungsfehlern (keine Fehlerkorrektur).
 - ► Verfahren: 32-Bit Cyclic Redundancy Check (CRC) basierend auf einer polynomialen Division.
 - ► CRC erkennt sehr zuverlässig Übertragungsfehler, ist aber nicht für Schutz vor absichtlicher Veränderung geeignet (→ WEP in IEEE 802.11 WLAN).

Aktive Netzwerkkomponenten

Repeater und Hub (Schicht-1)

- ➤ Zweck: Signalerneuerung zur Überbrückung von max. Distanzen (Signalverlust durch Dämpfung).
- ▶ Repeater hat 2, Hub 4/8/16/.. Interfaces (Hub = Multi-Port Repeater).
- Prinzip: Repeater/Hub leitet Daten an alle außer das eingehende Interface weiter (Flooding).
 - ightharpoonup jedes System sieht die Daten aller anderen.
 - ightharpoonup ightharpoonup physisch Stern aber logisch Bus (ightharpoonup Shared Medium, Medienzugriffssteuerung).
- ▶ Alle Systeme an einem Repeater/Hub befinden sich in der gleichen Kollisiondomäne.
- Hubs praktisch irrelevant, Repeater im WAN Bereich von Bedeutung.

Bridge und Switch (Schicht-2)

- ► Kollisionen beeinträchtigen die Übertragungsleistung im Netzwerk (im Ethernet ab 50 % Auslastung "spürbar").
- ▶ Lösung: Reduktion der Systeme in einer Kollisiondomäne auf (idealerweise) 2 mit Hilfe von Bridges bzw. Switches.
 - Bridge/Switch leitet Daten nur an das Interface, an das das Ziel der Kommunikation (auf Basis Ziel-MAC-Adresse) angeschlossen ist.
- Bridge vs. Switch
 - ▶ Bridge: Nur zwei Anschlüsse, kann versch. Schicht-2-Technologien (z. B. Ethernet und WLAN) verbinden.
 - ➤ Switch: 4/8/16/24/48/... Anschlüsse, verbindet Netze mit gleicher Schicht-2 aber ev. unterschiedlicher Schicht-1-Technologie (10/100/1000 Mbps, ...).

Full-Switched Ethernet

- ► Full Switched Ethernet: pro Switch Interface ist ein Systeme angeschlossen (1:1).
 - ightharpoonup ightharpoonup gleichzeitiges Senden und Empfangen möglich (Full-Duplex).
 - $lackbox{}{}$ ightarrow keine Kollisionen ightarrow keine Medienzugriffssteuerung notwendig.
- ▶ Vorgehen eines Switches beim Empfang eines Frames
 - Learning: Prüfung, ob es zur Quell-MAC-Adresse einen Eintrag in der Source Address Table (SAT, auch: MAC [Address] Table) gibt. Wenn nicht, wird ein Eintrag angelegt (<VLAN (opt.)>, <Switch-IF>, <Quell-MAC-Adresse>).
 - 2. Forwarding: Prüfung, ob es zur Ziel-MAC-Adresse und zum VLAN (opt.) einen Eintrag in der SAT gibt. JA → Weiterleitung über das damit assoziierte Interface (<Switch-IF>), NEIN → Flooding.
- ▶ Die SAT ist speicher-begrenzt (typisch: 8k Einträge = Anzahl der möglichen Geräte im Ethernet), Einträge haben eine begrenzte Lebenszeit (typisch: 300 s).

Source Address Table (SAT) Beispiel

SW01#show mac address-table Mac Address Table

Vlan	Mac Address	Type	Ports
[]			
All	0180.c200.0010	STATIC	CPU
All	ffff.ffff.ffff	STATIC	CPU
100	009b.2fd4.3492	DYNAMIC	Gi0/1
100	005c.3f3c.c8b4	DYNAMIC	Gi0/12
100	00a1.be05.5c65	DYNAMIC	Gi0/5
100	001e.2bcf.832d	DYNAMIC	Gi0/4
100	0012.10df.ddd5	DYNAMIC	Gi0/22
120	0017.c9b7.3de9	DYNAMIC	Gi0/1
120	0012.4ed8.d008	DYNAMIC	Gi0/1
120	0014.96c4.efde	DYNAMIC	Gi0/8
300	0015.289a.bee0	DYNAMIC	Gi0/2
300	001c.b9c0.91cb	DYNAMIC	Gi0/27
430	0017.ce17.c579	DYNAMIC	Gi0/1
430	001c.4871.dbb9	DYNAMIC	Gi0/21
430	0019.8e0e.8560	DYNAMIC	Gi0/9

Switch Learning & Forwarding Beispiel I

Switch Learning & Forwarding Beispiel II

Switch Learning & Forwarding Beispiel III

Switch Learning & Forwarding Beispiel IV

Switch Learning & Forwarding Beispiel V

Switch Learning & Forwarding Beispiel VI

Switch Learning & Forwarding Beispiel VII

Switches Leistungskriterien

- ► Art der Interfaces (fix vs. modular², Twisted Pair vs. Fiber, ...).
- Anzahl der Interfaces (Anschlussdichte).
- ► Geschwindigkeit der Interfaces (10, 100, 1000 Mbps, 2.5, 5, 10, 25, 40, ... Gbps).
- Geschwindigkeit Switch Backplane/Fabric (ideal > Anzahl Interfaces · max. Geschwindigkeit der Interfaces · 2 (Full-Duplex)).
- Modularität, Stackable.
- Konfigurierbarkeit (manageable, unmanageable).
- ► Features über L2 Switching hinaus (z. B. Port Security, IEEE 802.1X, Link Aggregation, VLANs, Layer 3 Routing [→ Layer 3 Switches], ...).

²Small Form-Factor Pluggable: SFP, SFP+, QSFP, SFP28, QSFP+, QSFP28, QSFP28-DD

Beispiel Cisco WS-C6503

Beispiel Cisco WS-C2960X-48TS-L

Switching Hierarchie

Virtual LANs (VLANs)

- ► VLAN = Virtual LAN = Menge von Ports an einem oder mehreren Switches.
- ► Kennzeichnung über eine ID (VLAN-ID, 12 Bit, theoretisch $2^{12} = 4096$ VLANs).
- Zweck: Aufteilung eines physischen Netzes (ein physischer Switch) in mehrere logische Netze (mehrere logische Switche).
- Vorteile:
 - Trennung der physischen Realisierung von der logischen Organisation (z. B. nach organisatorischen Gesichtspunkten) des Netzwerks.
 - ► Effizientere und flexiblere Nutzung von Switch-Ressourcen.
 - Verbesserung der Sicherheit durch Segmentierung von unterschiedlichen Netzbereichen (z.B. Trennung von Verwaltungsnetz und Labornetzen an der FH).
 - ▶ Bessere Performance durch Segmentierung in unterschiedliche Broadcast Domains.
- ► Static/Port-based VLANs und Tagged VLANs (IEEE 802.1Q).

Static/Port-based VLANs I

- ► Fixe (Statische) Zuordnung von Switch Interfaces in VLANs (nur ein VLAN pro Interface möglich).
 - Innerhalb von VLANs wird Datenverkehr geswitched (Schicht 2).
 - ▶ Zwischen VLANs muss der Datenverkehr geroutet werden (Schicht 3).
- ► Praktisch wird damit die gleiche Wirkung erzielt, wie wenn für jedes VLAN ein eigener, physischer Switch verwendet werden würde.

Static/Port-based VLANs II

Tagged VLANs I

- ▶ Problem: Was tun, wenn ein Switch Interface zu mehreren VLANs gehören müsste?
 - ▶ z. B. Distribution Switch, der mehrere VLANs über mehrerer Access Switches verbinden soll.
- Lösung: Klassifizierung des Inter-Switch Datenverkehrs mittels eines Tags (Tagged VLAN).
 - ► Frames werden mit einem Tag (VLAN ID) entsprechend ihrer Zugehörigkeit zu einem VLAN versehen.
 - ► Getaggte Frames dürfen nur innerhalbt ihres VLANs weitergeleitet werden.
- ► Standard: IEEE 802.1Q (Begriffe Cisco: Trunking, VLAN Trunk)

Tagged VLANs II

Tagged VLANs III

► Ethernet Frame Format mit IEEE 802.1Q Tagging:

- ► Tag Protocol Identifier (TPI): 0x8100 für IEEE 802.1Q
- ▶ Priority Code Point (PCP): Priorisierungsmöglichkeit auf Basis IEEE 802.1p Class of Service
- ightharpoonup VLAN-ID: 12 Bit (0 und FFF reserviert ightarrow 1 4094)

Tagged VLANs IV

Tagged VLANs V (Virtualisierungsserver)

Tagged VLANs VI

- ▶ Die Zuordnung eines Ports zu einem VLAN kann nicht nur statisch (konfiguriert durch den Administrator) sondern auch dynamisch erfolgen.
- ► Anwendung: Shared Office/Desk Szenarien
- Mögliche Kriterien:
 - MAC Adresse
 - Entity Authentication (Nutzer, System) (IEEE 802.1X)
 - ► Policy Compliance (Network Access Control [NAC] Systeme)

Power over Ethernet (PoE)

- Stromversorgung von leichtgewichtigen (= geringe Leistungsaufnahme) Endgeräten (z.B. Telefone, WLAN Access Points, Webcams, ...) über das Netzwerkkabel (Twisted Pair).
- Vorteil: Keine eigene Stromversorgung bei den Endgeräten notwendig (nur Datenkabel); einfachere Realisierung einer unterbrechungsfreien Stromversorgung (USV).
- ▶ IEEE 802.3af PoE: für (Fast) Ethernet, max. 175 mA Strom pro Ader, 15,4 W Leistungsaufnahme pro Switch Port (\approx 13 W kommen wirklich an, tw. 30 W herstellerspezifisch erlaubt)
- ▶ IEEE 802.3at PoE+: für Gigabit Ethernet, max. 360 mA Strom pro Ader, 60 W Leistungsaufnahme pro Switch Port (\approx 50 W kommen wirklich an).

Link Aggregation

- ► Standard: IEEE 802.1AX
- ► Bündelung mehrer physischer Interfaces zu einem logischen.
- Zweck: Erhöhung Datenraten, Ausfallssicherheit
- Auch für Endsysteme (z. B. Server) möglich.
- ► Herstellertechnologien (tw. ≠ IEEE 802.1AX), z. B.
 - Cisco: EtherchannelHuawei: EtherTrunk
 - Linux: Bonding

