BERT Question Answering Application

Notebook 2: Preprocessing & Tokenization

 $\begin{array}{c|cccc} \textbf{Tokenizer} & \textbf{Vocab Size} & \textbf{Max Length} \\ \textbf{BERT} & \textbf{30,522} & \textbf{512} \end{array}$

Notebook Objectives:

Load BERT Tokenizer • Create Preprocessing Function Apply Tokenization • Validate Answer Mapping • Prepare for Training

Model: bert-base-uncased (BertTokenizerFast)
Output: 3,074 training features, 520 validation features

Date: October 23, 2025

Contents

1	Intr	Introduction 2					
	1.1	Notebook 2 Overview	2				
	1.2	Objectives	2				
2	Que	estion 2.1: Load BERT Tokenizer	3				
	2.1	Step 1: Dataset Reload	3				
		2.1.1 Code Implementation	3				
		2.1.2 Output Analysis	3				
	2.2	Step 2: Load BERT Tokenizer	4				
	2.2	2.2.1 Code Implementation	4				
		2.2.2 Output Analysis	4				
3	Tok	enization Testing	6				
J	3.1	Understanding Tokenization Before Preprocessing	6				
	0.1	3.1.1 Code Implementation	6				
		3.1.2 Output Analysis	7				
	3.2	Token Structure Visualization	8				
	3.2	Token Structure Visualization	С				
4	_	estion 2.2: Create Preprocessing Function	9				
	4.1	Function Architecture	9				
	4.2	Tokenization Parameters	6				
	4.3	Answer Position Mapping Logic	10				
		4.3.1 Step-by-Step Algorithm	10				
	4.4	Code Flow Diagram	11				
	4.5	Critical Implementation Details	12				
5	Question 2.3: Apply Preprocessing 13						
	5.1	Dataset Mapping	13				
		5.1.1 Code Implementation	13				
		5.1.2 Output Analysis	14				
	5.2		15				
	5.3	Output Feature Structure	15				
6							
	6.1	Why Validation is Critical	16				
	6.2	Validation Function Logic	16				
	6.3	Validation Results	17				
7	Question 2.4: PyTorch Tensor Conversion						
	7.1	Question Statement	19				
	7.2	Answer & Explanation	19				
	7.3	Verification of Readiness	20				
8	Conclusion 21						
_	8.1	Notebook 2 Summary	21				
	8.2	Critical Takeaways	22				
	8.3	Next Steps	22				
	$\circ \cdot \circ$	110210 DUODO	~~				

1 Introduction

1.1 Notebook 2 Overview

This notebook focuses on the critical preprocessing and tokenization pipeline required to transform raw SQuAD data into BERT-compatible input tensors. Proper tokenization and answer position mapping are **essential** for successful model training—errors here lead to training on corrupted labels, resulting in poor model performance.

1.2 Objectives

Question 2.1 (5 marks): Load BERT tokenizer (bert-base-uncased)

Question 2.2 (5 marks): Create preprocessing function with answer position mapping

Question 2.3 (5 marks): Apply preprocessing to train/validation datasets

Question 2.4 (5 marks): Explain PyTorch tensor conversion necessity

Question 2.1: Load BERT Tokenizer 2

2.1 Step 1: Dataset Reload

2.1.1**Code Implementation**

Code Explanation

Purpose: Reload SQuAD dataset and recreate 3,000/500 subsets from Notebook 1 **Key Functions:**

- load_dataset("squad"): Downloads SQuAD v1.1 from HuggingFace Hub
- .select(range(n)): Creates subset by selecting first n examples
- Dataset automatically cached after first download (no re-download needed)

2.1.2**Output Analysis**

Code Output

```
Dataset Loading Output:
```

```
Loading SQuAD dataset...
plain_text/train-00000-of-00001.parquet: 100%
 14.5M/14.5M [00:00<00:00, 18.9MB/s]
plain_text/validation-00000-of-00001.parquet: 100%
 1.82M/1.82M [00:00<00:00, 8.92MB/s]
Generating train split: 100%
87599/87599 [00:00<00:00, 270365.29 examples/s]
Generating validation split: 100%
 10570/10570 [00:00<00:00, 94929.72 examples/s]
Training: 3000 examples
Validation: 500 examples
```

2.2 Step 2: Load BERT Tokenizer

2.2.1 Code Implementation

Code Explanation

Tokenizer Selection: AutoTokenizer.from_pretrained("bert-base-uncased") Why bert-base-uncased?

- Base: 12 layers, 768 hidden size (110M parameters—manageable on single GPU)
- Uncased: All text lowercased (reduces vocabulary size, improves generalization)
- Pretrained: Already trained on BooksCorpus + English Wikipedia (3.3B words)
- SQuAD Compatible: Standard choice for extractive QA tasks

Key Tokenizer Properties Verified:

- tokenizer.__class__._name__: Returns "BertTokenizerFast" (Rust-based, 10× faster)
- tokenizer.vocab_size: 30,522 WordPiece tokens
- tokenizer.model_max_length: 512 tokens (BERT's positional embedding limit)
- tokenizer.cls_token_id: 101 ([CLS])
- tokenizer.sep_token_id: 102 ([SEP])
- tokenizer.pad_token_id: 0 ([PAD])

2.2.2 Output Analysis

Code Output

Tokenizer Loading Output:

```
Loading BERT tokenizer...
```

tokenizer_config.json: 100% 48.0/48.0 [00:00<00:00, 3.69kB/s]

config.json: 100% 570/570 [00:00<00:00, 55.5kB/s]
vocab.txt: 100% 232k/232k [00:00<00:00, 1.70MB/s]
tokenizer.json: 100% 466k/466k [00:00<00:00, 3.31MB/s]</pre>

Tokenizer loaded: BertTokenizerFast

Vocabulary size: 30,522

Max length: 512 Special tokens:

[CLS] token: [CLS] (ID: 101) [SEP] token: [SEP] (ID: 102) [PAD] token: [PAD] (ID: 0)

Key Insights

Special Tokens Explained:

[CLS] (ID: 101): Classification token

- Placed at start of every sequence
- In QA tasks, not used for prediction (only for classification tasks)
- Position 0 in every tokenized example

[SEP] (ID: 102): Separator token

- Separates question from context: [CLS] question [SEP] context [SEP]
- Two [SEP] tokens per QA example
- Helps BERT distinguish between text segments

[PAD] (ID: 0): Padding token

- Fills sequences to max_length for batch consistency
- attention_mask = 0 for [PAD] tokens (ignored by model)
- Essential for GPU-efficient batched processing

3 Tokenization Testing

3.1 Understanding Tokenization Before Preprocessing

3.1.1 Code Implementation

Code Explanation

Test Example:

- Question: "What is the capital of France?"
- Context: "Paris is the capital and largest city of France."

Tokenizer Parameters:

- max_length=50: Limit for this test (actual preprocessing uses 384)
- truncation="only_second": Truncate context only, never question
- padding="max_length": Pad to 50 tokens with [PAD]
- return_offsets_mapping=True: CRITICAL—maps tokens to character positions
- return_tensors="pt": Return PyTorch tensors

3.1.2 Output Analysis

Code Output **Tokenization Test Output:** TOKENIZATION TEST **Original Question:** What is the capital of France? **Original Context:** Paris is the capital and largest city of France. **Tokenized Structure:** Input IDs shape: torch.Size([1, 50]) Attention Mask shape: torch.Size([1, 50]) Offset Mapping shape: torch.Size([1, 50, 2]) **Tokens (first 20):** 0: '[CLS]' 1: 'what' 2: 'is' 3: 'the' 4: 'capital' 5: 'of' 6: 'france' 7: '?' 8: '[SEP]' 9: 'paris' 10: 'is' 11: 'the' 12: 'capital' 13: 'and' 14: 'largest' 15: 'city' 16: 'of' 17: 'france' 18: '.' 19: '[SEP]'

3.2 Token Structure Visualization

Figure 1: Tokenized Sequence Structure: [CLS] Question [SEP] Context [SEP]

Key Insights

Key Observations:

- Input IDs: Shape (1, 50) = 1 batch \times 50 tokens (includes padding to max_length)
- Offset Mapping: Shape (1, 50, 2) where [:,:,0] = start char, [:,:,1] = end char
- Token 0: Always [CLS]
- Token 8: [SEP] separating question and context
- Token 9: "paris" (answer to question starts here)
- Token 19: [SEP] marking end of context
- Tokens 20-49: [PAD] tokens (not shown, but present in full 50-token sequence)

4 Question 2.2: Create Preprocessing Function

4.1 Function Architecture

Code Explanation

Function Signature:

def preprocess_function(examples):

Input: Batch of SQuAD examples (dictionaries with 'question', 'context', 'answers' keys)

Output: Tokenized features with:

• input_ids: Token IDs for BERT input

• token_type_ids: Segment IDs (0=question, 1=context)

• attention_mask: 1 for real tokens, 0 for [PAD]

• start_positions: Token index where answer starts

• end_positions: Token index where answer ends

4.2 Tokenization Parameters

Parameter	Value	Rationale
max_length	384	Covers 95%+ contexts (from Notebook
		1 analysis: avg=130 words)
truncation	"only_second"	Preserves full question, truncates con-
		text if exceeds 384
stride	128	Creates overlapping windows (33%)
		overlap) for long contexts
return_overflowing_tokens	True	Generates multiple features for con-
		texts ¿ 384 tokens
return_offsets_mapping	True	CRITICAL - Maps tokens to charac-
		ter positions for answer mapping
padding	"max_length"	Pads all sequences to 384 for batch con-
		sistency

Table 1: Tokenization Parameters Configuration

4.3 Answer Position Mapping Logic

4.3.1 Step-by-Step Algorithm

Code Explanation

Step 1: Tokenize Inputs

tokenized_examples = tokenizer(questions, contexts, ...)

Returns tokenized features with exertley to gample mapping (maps feature)

Returns tokenized features with $overflow_to_sample_mapping$ (maps features \rightarrow original examples)

Step 2: Extract Mappings

- sample_mapping: Which original example each feature belongs to
- offset_mapping: Character positions (start, end) for each token

Step 3: Initialize Position Lists

```
start_positions = []
end_positions = []
```

Step 4: For Each Tokenized Feature:

4a. Get corresponding original example using sample_mapping[i]

4b. Extract answer character positions:

- start_char = answers['answer_start'][0]
- end_char = start_char + len(answers['text'][0])

4c. Find context boundaries:

- Use sequence_ids(i) to identify token types (0=question, 1=context)
- Find first token where sequence_ids[token] $== 1 \rightarrow context_start$
- Find last token where sequence_ids[token] == $1 \rightarrow context_end$
- 4d. Check if answer is within this feature window:
- If offset[context_start][0] <= start_char AND offset[context_end][1] >= end_char
- Answer is IN bounds \rightarrow find token positions
- Otherwise \rightarrow answer truncated \rightarrow set positions to 0 ([CLS] token)
- **4e.** Find token-level start position:
- Start from context_start, move forward
- Find first token where offset[token][0] <= start_char
- Store token_start 1
- **4f.** Find token-level end position:
- Start from context_end, move backward
- Find first token where offset[token][1] >= end_char
- Store token_end + 1

4.4 Code Flow Diagram

Figure 2: Preprocessing Function Flow - Answer Position Mapping

4.5 Critical Implementation Details

Critical Warning

Common Pitfalls to Avoid:

- 1. Off-by-One Errors:
- Answer end position is inclusive: input_ids[start:end+1]
- Character end position is exclusive: text[start:end]
- Must add/subtract 1 in appropriate places

2. Truncated Answers:

- Long contexts may have answers outside the tokenized window
- MUST check bounds before mapping
- Set start_pos = end_pos = 0 for out-of-bounds answers

3. Offset Mapping Edge Cases:

- Special tokens [CLS], [SEP], [PAD] have offset = (0, 0)
- Must skip these when searching for answer positions
- Use sequence_ids() to identify context tokens only

4. Multiple Features per Example:

- Stride creates overlapping windows
- One example may generate 2-3 features
- Use sample_mapping to track which feature belongs to which example

5 Question 2.3: Apply Preprocessing

5.1 Dataset Mapping

5.1.1 Code Implementation

Code Explanation

HuggingFace .map() Function:

tokenized_train = train_dataset.map(preprocess_function, batched=True,
...)

Key Parameters:

- batched=True: Processes examples in batches (faster, uses batch tokenization)
- remove_columns=train_dataset.column_names: Removes original columns (context, question, answers)
- desc="Tokenizing training set": Progress bar description

Processing Performance:

- Training set: 3,000 examples tokenized at 831.66 examples/second
- Validation set: 500 examples tokenized at 1,099.27 examples/second
- Total time: 3.6 seconds (training) + 0.45 seconds (validation) = 4 seconds

5.1.2 Output Analysis

Code Output **Tokenization Progress:** Starting tokenization (this may take 5-10 minutes)... Tokenizing training set: 100% 3000/3000 [00:03<00:00, 831.66 examples/s] Tokenizing validation set: 100% 500/500 [00:00<00:00, 1099.27 examples/s] Tokenization complete! Tokenized Training Set: Dataset({ features: ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'], num_rows: 3074 }) Tokenized Validation Set: Dataset({ features: ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'], num_rows: 520 }) Dataset Expansion: Original train: 3000 examples Tokenized train: 3074 features Expansion ratio: 1.02x

5.2 Feature Expansion Analysis

Key Insights

Why Feature Count Increased: Original Training: 3,000 examples

Tokenized Training: 3,074 features $(1.02 \times \text{ expansion})$

Explanation:

• Stride Windowing: Long contexts (¿256 tokens after question) split into multiple windows

• Overlap: 128-token stride creates 33% overlap between windows

• Result: 74 examples (2.5%) generated 2 features each

• Benefit: Answers in long contexts not truncated, covered by at least one window

Example: Context with 450 tokens \rightarrow 2 features:

• Feature 1: Tokens 0-384 (question + context_tokens[0:256])

• Feature 2: Tokens 0-384 (question + context_tokens[128:384])

• Overlap: Tokens 128-256 appear in both features

5.3 Output Feature Structure

Feature	Description & Shape
input_ids	Token IDs for BERT. Shape: (3074, 384). Values: 0-30521
token_type_ids	Segment IDs. Shape: (3074, 384). Values: 0 (question), 1 (context)
attention_mask	Attention mask. Shape: (3074, 384). Values: 1 (real token), 0 (padding)
start_positions	Answer start token index. Shape: (3074,). Values: 0-383
end_positions	Answer end token index. Shape: (3074,). Values: 0-383

Table 2: Tokenized Dataset Feature Structure

6 Answer Position Validation

6.1 Why Validation is Critical

Critical Warning

The Danger of Skipping Validation:

If answer position mapping contains errors:

- Silent Failure: Training runs without errors but learns garbage
- Low Performance: Model predicts random spans (F1 score ; 20%)
- Wasted Resources: Hours of GPU time training on corrupted labels
- Debugging Nightmare: Hard to trace back to preprocessing bug

Solution: Validate that token positions decode to correct answers before training

6.2 Validation Function Logic

Code Explanation

Function: validate_answer_mapping(tokenized_dataset, original_dataset, num_samples=15)

Algorithm:

- 1. For each sample (15 random examples):
 - Get input_ids, start_positions, end_positions
 - Skip if answer truncated (positions at [CLS] token 0)
 - Extract predicted answer: tokenizer.decode(input_ids[start:end+1])
 - Get original answer from dataset
 - Compare (case-insensitive, handle WordPiece ##)
- 2. Track pass/fail counts
- 3. Print summary with success rate
- 4. Block training if any failures detected

6.3 Validation Results

```
Code Output
Validation Output (Sample):
VALIDATING ANSWER POSITION MAPPING...
______
Testing 15 random samples...
Example 1: PASS
 Original: 'the Main Building'
 Predicted: 'the main building'
Example 2: PASS
 Original: 'a Marian place of prayer and reflection'
 Predicted: 'a marian place of prayer and reflection'
Example 3: PASS
 Original: 'a golden statue of the Virgin Mary'
 Predicted: 'a golden statue of the virgin mary'
Example 4: PASS
 Original: 'September 1876'
 Predicted: 'september 1876'
[...13 more examples...]
VALIDATION SUMMARY
_____
Passed: 15
Failed: 0
Success Rate: 100.0%
ALL VALIDATIONS PASSED!
Safe to proceed to model training!
```

Key Insights

Validation Success Criteria: 100% Success Rate Required:

- All 15 samples must decode to correct answers
- Case differences ignored (bert-base-uncased lowercases everything)
- WordPiece tokens (e.g., "##ing") automatically handled by decoder

Common Acceptable Variations:

- "September 1876" \rightarrow "september 1876" (case difference)
- "The Observer" \rightarrow "the observer" (case difference)
- Original may have extra whitespace (stripped in comparison)

Failure Indicators:

- Predicted answer completely different from original
- Predicted answer is partial span (missing words)
- Predicted answer includes extra context beyond answer

7 Question 2.4: PyTorch Tensor Conversion

7.1 Question Statement

Question 2.4 (5 marks): Is manual PyTorch tensor conversion necessary before passing datasets to the Trainer?

7.2 Answer & Explanation

Code Explanation

Answer: NO, manual tensor conversion is NOT required.

Explanation:

The HuggingFace Trainer API automatically handles tensor conversion internally. When tokenized datasets are passed to Trainer, the following happens automatically:

1. Dynamic Batching:

- DataCollator handles creating batches on-the-fly
- Selects batch_size examples per iteration
- Stacks them into batch tensors

2. Automatic Conversion:

- HuggingFace Datasets are Arrow-backed (memory-mapped)
- Trainer converts to PyTorch tensors automatically during batch creation
- Conversion happens per-batch, not entire dataset upfront

3. Memory Efficiency:

- Only converts what's needed per batch (16-32 examples)
- Avoids loading entire dataset into GPU memory
- Enables training on datasets larger than available RAM

When Manual Conversion IS Required:

- Using custom PyTorch DataLoader directly (not Trainer)
- Implementing custom training loops
- Working outside HuggingFace ecosystem (raw PyTorch)

Conclusion: For our project using **Trainer**, manual conversion is unnecessary and would add no benefit.

7.3 Verification of Readiness

Code Output

Dataset Ready for Training:

Training features: 3074 Validation features: 520

Feature keys: ['input_ids', 'token_type_ids', 'attention_mask',

'start_positions', 'end_positions']

Key Insights

Training Readiness Checklist:

Tokenizer loaded (bert-base-uncased)

Datasets tokenized (3074 train, 520 validation)

Answer positions mapped (start/end token indices)

Validation passed (100% success rate)

All required features present:

- input_ids (token IDs)
- token_type_ids (segment IDs)
- attention_mask (real vs padding)
- start_positions (answer start)
- end_positions (answer end)

Ready to proceed to Notebook 3: Model Training

8 Conclusion

8.1 Notebook 2 Summary

Key Insights

Key Accomplishments:

Question 2.1 - Tokenizer Loading:

- Successfully loaded BertTokenizerFast (bert-base-uncased)
- Verified vocabulary size (30,522), max length (512), special tokens

Question 2.2 - Preprocessing Function:

- Created robust preprocessing function with answer position mapping
- Implemented stride windowing for long contexts (128-token overlap)
- Handled truncated answers (set positions to 0)
- Used offset_mapping to convert character positions \rightarrow token positions

Question 2.3 - Dataset Application:

- Applied preprocessing to 3,000 training + 500 validation examples
- Generated 3,074 training features (1.02× expansion due to stride)
- Processing time: 4 seconds total (fast on GPU)

Question 2.4 - PyTorch Tensor Explanation:

- Explained that manual tensor conversion is unnecessary with Trainer API
- Described automatic batching and conversion mechanisms

Bonus - Answer Validation:

- Validated 15 samples with 100% success rate
- Confirmed answer positions decode to correct text
- Prevented training on corrupted labels

8.2 Critical Takeaways

Code Explanation

Most Important Lessons:

- 1. Offset Mapping is Essential:
- return_offsets_mapping=True is NOT optional for QA tasks
- Without it, impossible to map character-based answers to token positions
- Always validate mappings before training

2. Stride Prevents Answer Loss:

- Stride creates overlapping windows for long contexts
- Ensures answers don't get truncated at window boundaries
- Small expansion $(1.02\times)$ is acceptable trade-off

3. Validation Catches Silent Bugs:

- Preprocessing bugs don't cause errors—they cause bad training
- Always validate on 10-20 samples before full training
- 100% validation success rate is mandatory

4. HuggingFace Abstractions Save Time:

- Trainer API handles tensor conversion, batching, device placement
- No need to write custom PyTorch DataLoader code
- Focus on model architecture and hyperparameters instead

8.3 Next Steps

Notebook 3 Preview: Model Training & Evaluation

- 1. Load pretrained BERT model for QA (BertForQuestionAnswering)
- 2. Configure training arguments (batch size, learning rate, epochs)
- 3. Initialize Trainer with model and tokenized datasets
- 4. Train model on 3,074 training features
- 5. Evaluate on 520 validation features
- 6. Calculate metrics (Exact Match, F1 score)
- 7. Save fine-tuned model for deployment

End of Notebook 2 Documentation

 $\begin{array}{c} Preprocessing \ \ \ \, \textit{Endy for Model Training} \end{array}$