

Tutorial #7 - Solution

1- The gear train shown below (figure 7-1) consists of two stages. The first stage is a helical gear set while the second stage is a bevel gear set. The pressure angle (ϕ for spur bevel gears and ϕ_n for helical gears) is 20° .

Determine and show the magnitude and directions of the forces acting on the gears at the mesh points. The helical pinion 2 transmits 3 kW of power and rotates in the direction shown at 1500 rpm. Determine the reactions at bearings E an F.

1/4

Tutorial #7 - Solution

Solution:

Helical Gears:

$$\begin{aligned} &\mathrm{d}_2 = \frac{m_n}{\cos \psi} \, N_2 = \frac{3}{\cos 23} 12 = 39.109 \quad \mathrm{mm} \\ &\mathrm{v}_{23} = \omega_2 r_2 = \frac{2 \pi r_2}{60} \, \frac{d_2}{2} = \frac{2 \pi \times 1500}{60} \, \frac{39.109}{2} = 3071.61 \quad \mathrm{mm/s} = 3.0716 \quad \mathrm{m/s} \\ &\mathrm{W}_{t_{23}} = \frac{H}{v_{23}} = \frac{3 \times 1000}{3.0716} = 976.686 \quad \mathrm{N} \\ &W_{r_{23}} = W_{t_{23}} \, \tan \varphi_t = W_{t_{23}} \, \frac{\tan \varphi_n}{\cos \psi} = 976.686 \times \frac{\tan 20}{\cos 23} = 386.2 \quad \mathrm{N} \\ &W_{a_{23}} = W_{t_{23}} \, \tan \psi = 976.686 \times \tan 23 = 414.58 \quad \mathrm{N} \end{aligned}$$

Bevel Gears:

$$\begin{split} \mathbf{r_{4_{av}}} &= \frac{mN}{2} - \frac{b}{2}\sin\gamma = \frac{6\times32}{2} - \frac{38}{2}\sin45 = 82.565 \text{ mm} \\ \mathbf{v_{45_{av}}} &= \omega_4 r_{4_{av}} = \frac{2\pi n_2}{60} \frac{1}{i_{23}} r_{4_{av}} = \frac{2\pi\times1500}{60} \frac{12}{48} \times 82.565 = 3242.32 \text{ mm/s} = 3.242 \text{ m/s} \\ \mathbf{W_{t_{45}}^*} &= \frac{H}{v_{45_{av}}} = \frac{3\times1000}{3.242} = 925.26 \text{ N} \\ \mathbf{W_{r_p}^*} &= W_{a_g}^* = W_{t_{45}}^* \tan\varphi\cos\gamma = 925.26 \times \tan20\cos45 = 238.1 \text{ N} \\ \mathbf{W_{a_p}^*} &= W_{r_g}^* = W_{t_{45}}^* \tan\varphi\sin\gamma = 925.26 \times \tan20\sin45 = 238.1 \text{ N} \end{split}$$

Forces on gear 5

Forces and moments on Shaft c

Tutorial #7 - Solution

$$R_E^y = \frac{-238.1 \times 82.565 - 238.1 \times 177.565}{230} = -269.29 \text{ N}$$

$$R_F^y = \frac{238.1 \times 82.565 - 238.1 \times 52.435}{230} = 31.19 \text{ N}$$

$$R_E^z = \frac{925.26 \times 177.565}{230} = 714.32 \text{ N}$$

$$R_F^z = 210.94 \text{ N}$$

$$R_E = 238.1 \text{ i} - 269.29 \text{ j} + 714.32 \text{ k}$$

$$R_F = 31.19 \text{ j} + 210.94 \text{ k}$$

2- An uncrowned straight-bevel pinion has 22 teeth, a module of 4 mm, and a quality number 5. The pinion and the gear are made of through-hardened steel, both having core and case hardness of 180 HB. The pinion speed is 1800 rpm and drives the 24-tooth bevel gear with a shaft angle of 90°. The face width is 25 mm, and the pressure angle is 20°. Both gears are outboard mounting.

Find the power rating of this gear set based on AGMA bending and pitting resistances if the expected service life is 10^9 revolutions of the pinion at a reliability of 0.999

Solution:

Bending

Factor	Pinion	Gear
ь	25mm	25mm
m	4mm	4mm
J	0.218	0.20
Kv	B = 0.915	1.663
	A = 54.769	
	V = 8.289 m/sec	
	Kv=1.663	
Ko	1	1
Ks	1.075	1.075
KH	1.3	1.3
Bending stress	0.1066 Wt	0.121 Wt
Temp.factor	1	1
Yz	1.253	1.253
YN	0.8618	0.8642
OFP	68,48 MPa	68,48 MPa
	. 	
Bending strength	47.0998 M Pa	47.233 M Pa
Wt	441.837 N	390.353 N

Tutorial #7 - Solution

Contact		
Factor	Pinion	Gear
Ср	191	191
Cxc	2	2
I	0.067	0.067
Kv	1.667	1.667
Ko	1	1
Ks	1.075	1.075
KH	1.3	1.3
Contact stress Temp.factor	33.96 √ <i>Wt</i>	33.96 √ <i>wt</i>
Yz	1.253	1.253
Zn	1.000	1.00538
OHP	585,85 MPa	585,85 MPA
Contact strength	467.557 M Pa	470 M Pa
Wt	189.58 N	191.6 N

Power rating = T.
$$\omega$$
 |_{least}= W_{tp} |_{contact}. r_p . ω_p = 189.58 (2 π (1800)/60).((4 . 22 . 10³)/2) = 1.57 kW