COMP20007 Design of Algorithms

Sorting - Part 1

Daniel Beck

Lecture 11

Semester 1, 2020

Insertion Sort

```
function InsertionSort(A[0..n-1])
for i \leftarrow 1 to n-1 do
j \leftarrow i-1
while j \geq 0 and A[j+1] < A[j] do
SWAP(A[j+1], A[j])
j \leftarrow j-1
```

Insertion Sort

```
function InsertionSort(A[0..n-1])
   for i \leftarrow 1 to n-1 do
       i \leftarrow i - 1
       while j \ge 0 and A[j+1] < A[j] do
          \mathsf{SWAP}(A[j+1],A[j])
          i \leftarrow i - 1
• Decrease-And-Conquer algorithm.
```

Insertion Sort

```
function InsertionSort(A[0..n-1])

for i \leftarrow 1 to n-1 do
j \leftarrow i-1

while j \geq 0 and A[j+1] < A[j] do
SWAP(A[j+1], A[j])
j \leftarrow j-1
```

- Decrease-And-Conquer algorithm.
- The idea behind Insertion Sort is recursive, but the code given here, using iteration, is preferable to the recursive version.

Questions!

Questions!

• In-place? (does it require extra memory?)

Questions!

- 44)
- In-place? (does it require extra memory?)
- Stable? (preserves original order of inputs?)

Questions!

- In-place? (does it require extra memory?)
- Stable? (preserves original order of inputs?)

```
function InsertionSort(A[0..n-1])

for i \leftarrow 1 to n-1 do
j \leftarrow i-1

while j \geq 0 and A[j+1] < A[j] do
SWAP(A[j+1], A[j])
j \leftarrow j-1
```

```
function InsertionSort(A[0..n-1])

for i \leftarrow 1 to n-1 do

j \leftarrow i-1

while j \geq 0 and A[j+1] < A[j] do

SWAP(A[j+1],A[j])

j \leftarrow j-1
```

```
function InsertionSort(A[0..n-1])
for i \leftarrow 1 to n-1 do
j \leftarrow i-1
while j \geq 0 and A[j+1] < A[j] do
SWAP(A[j+1], A[j])
j \leftarrow j-1
```

• In-place?

```
function InsertionSort(A[0..n-1])

for i \leftarrow 1 to n-1 do
j \leftarrow i-1

while j \geq 0 and A[j+1] < A[j] do
SWAP(A[j+1], A[j])
j \leftarrow j-1

• In-place? Yes! (may need additional O(1) memory)
```

4

```
function InsertionSort(A[0..n-1])
for i \leftarrow 1 to n-1 do
j \leftarrow i-1
while j \geq 0 and A[j+1] < A[j] do
SWAP(A[j+1], A[j])
j \leftarrow j-1
```

- In-place? Yes! (may need additional O(1) memory)
- Stable?

```
function INSERTIONSORT(A[0..n-1])

for i \leftarrow 1 to n-1 do

j \leftarrow i-1

while j \geq 0 and A[j+1] < A[j] do

SWAP(A[j+1], A[j])

i \leftarrow i-1
```

- In-place? Yes! (may need additional O(1) memory)
- Stable? Yes! (local, adjacent swaps ensure stability)

```
function InsertionSort(A[0..n-1])

for i \leftarrow 1 to n-1 do
j \leftarrow i-1

while j \geq 0 and A[j+1] < A[j] do
SWAP(A[j+1], A[j])
j \leftarrow j-1
```

- In-place? Yes! (may need additional O(1) memory)
- Stable? Yes! (local, adjacent swaps ensure stability)

Compare with Selection Sort:

- Also in-place.
- Not stable. (swaps are not local)

```
function InsertionSort(A[0..n-1])

for i \leftarrow 1 to n-1 do
j \leftarrow i-1

while j \geq 0 and A[j+1] < A[j] do
SWAP(A[j+1], A[j])
j \leftarrow j-1
```

```
function InsertionSort(A[0..n-1])

for i \leftarrow 1 to n-1 do
j \leftarrow i-1

while j \geq 0 and A[j+1] < A[j] do
SWAP(A[j+1], A[j])
j \leftarrow j-1
```

- Worst case?
- Best case?

Insertion Sort - Worst case

function InsertionSort(
$$A[0..n-1]$$
)

for $i \leftarrow 1$ to $n-1$ do

 $j \leftarrow i-1$

(while $j \ge 0$ and $A[j+1] < A[j]$ to

SWAP($A[j+1], A[j]$)

 $j \leftarrow j-1$

Insertion Sort - Best case

function INSERTIONSORT(
$$A[0..n-1]$$
)

for $i \leftarrow 1$ to $n-1$ do

 $j \leftarrow i-1$

while $j \geq 0$ and $A[j+1] < A[j]$ do

SWAP($A[j+1], A[j]$)

 $j \leftarrow j-1$

Insertion Sort - Average case

- Worst case: $\Theta(n^2)$
- Best case: $\Theta(n)$
- Average case: $\Theta(n^2)$

- Worst case: $\Theta(n^2)$
- Best case: $\Theta(n)$
- Average case: $\Theta(n^2)$

Compare with Selection Sort, which is input-insensitve: best, average and worst case complexity is $\Theta(n^2)$

- Worst case: $\Theta(n^2)$
- Best case: $\Theta(n)$
- Average case: $\Theta(n^2)$

Compare with Selection Sort, which is input-insensitve: best, average and worst case complexity is $\Theta(n^2)$

Insight

In many cases, real-world data is **already partially sorted.**This makes Insertion Sort a powerful sorting algorithm in practice, particularly useful for small arrays (up to hundreds of elements).

Insertion Sort - A faster version

```
function InsertionSort(A[0..n-1])
for i \leftarrow 1 to n-1 do
v \leftarrow A[i]
j \leftarrow i-1
while j \geq 0 and v < A[j] do
A[j+1] \leftarrow A[j]
j \leftarrow j-1
A[j+1] \leftarrow v
```

Insertion Sort - A faster version

function InsertionSort(
$$A[0..n-1]$$
)

for $i \leftarrow 1$ to $n-1$ do

 $v \leftarrow A[i]$
 $j \leftarrow i-1$

while $j \geq 0$ and $v < A[j]$ do

 $A[j+1] \leftarrow A[j]$
 $j \leftarrow j-1$

This is the version presented in the Levitin book.

• Assume the domain is bounded from below.

- Assume the domain is bounded from below.
- There is a **minimal** element *min*.

- Assume the domain is bounded from below.
- There is a **minimal** element *min*.
- Assume a **free cell** to the left of A[0]

- Assume the domain is bounded from below.
- There is a **minimal** element *min*.
- Assume a **free cell** to the left of A[0]

Insertion Sort can be made faster by using a min sentinel in that cell (A[-1]) and change the test from

$$j \ge 0$$
 and $v < A[j]$

to just

- Assume the domain is bounded from below.
- There is a **minimal** element *min*.
- Assume a **free cell** to the left of A[0]

Insertion Sort can be made faster by using a min sentinel in that cell (A[-1]) and change the test from

$$j > 0$$
 and $v < A[j]$

to just

For this reason, extreme array cells (such as A[0] in C, and/or A[n+1]) are sometimes left free deliberately, so that they can be used to hold sentinels; only A[1] to A[n] hold proper data.

Sorting - Practical Implementations

- C Quicksort (fastest)
- C++ Introsort (a variant of Quicksort)
- Javascript/Mozilla: Mergesort (stable)
- Python: Timsort (very roughly, a mix of Mergesort and Insertion Sort, stable)
- Linux Kernel: Heapsort (low memory consumption, guaranteed $\Theta(nlogn)$ worst case performance: important for security reasons)