Quotient groups

1. Quotient groups
Cosets

Quotient groups
Non-obvious isomorphisms

Cosets

Definition 1

Let (G, \star) denote a group with subgroup H < G and suppose $g \in G$. The set

$$g \star H := \{g \star h \mid h \in H\}$$

is called a (left) coset of H in G.

When using multiplicative notation we may write $gH = g \star H$; likewise with additive notation we write $g + H = g \star H$.

Question

What is the condition for a coset to be a subgroup? (In general, a coset is NOT a subgroup!)

Example 1

In \mathbb{Z}_{12} , the cosets of $H:=\{0,4,8\}=4\mathbb{Z}_{12}$ are:

$$\begin{split} H &= 0 \oplus_{12} H = 4 \oplus_{12} H = 8 \oplus_{12} H = \{0,4,8\}, \\ &1 \oplus_{12} H = 5 \oplus_{12} H = 9 \oplus_{12} H = \{1,5,9\}, \\ &2 \oplus_{12} H = 6 \oplus_{12} H = 10 \oplus_{12} H = \{2,6,10\}, \\ &3 \oplus_{12} H = 7 \oplus_{12} H = 11 \oplus_{12} H = \{3,7,11\} \end{split}$$

Question

What are some observations you can make?

We use G/H to denote the collection of distinct cosets of H in G, called G modulo H. The cosets of a subgroup partition the group:

Proposition 1

Let G denote a group with subgroup H < G.

- (a) The union of all (left, respectively, right) cosets of H in G is the entire group G.
- (b) For any two cosets $g \star H$, $h \star H \in G/H$, either
 - (i) $g \star H = h \star H$ or
 - (ii) $g \star H \cap h \star H = \emptyset$.

Exercise 1 (cf. Problem 66)

Let $G = \mathbb{Z}_{30}$ and put H = 5G. Using Proposition 1, list the elements of G/H.

Exercise 2 (cf. Problem 67)

Let $G = \mathbb{Z}_2 \times \mathbb{Z}_4$ and let H = (1,1)G < G. List the elements of H, then list the cosets of H.

The following proposition gives a way to prove two cosets are equal.

Proposition 2

Suppose (G,\star) is a group with subgroup H < G and suppose $g,h \in G$. Then:

- (a) $g \star H = H$ if and only if $g \in H$
- (b) $g \star H = h \star H$ if and only if $g^{-1}h \in H$.
- (c) $g \star H = h \star H$ if and only if $h \in g \star H$.

Exercise 3 (cf. Problem 68)

Prove Proposition 2. Hint: Prove (a) first, then use it to prove (b), then use (b) to prove (c).

Quotient groups

Let $G = (G, \star)$ denote an abelian group with subgroup H < G. The notation used thusfar suggest a group structure on G/H with a binary operation $\star_{/H}$ well-defined "up to", or *modulo* elements in H. The natural choice is to define

$$\star_{/H}: G/H \times G/H \to G/H (g \star H, h \star H) \mapsto (g \star h) \star H.$$
 (1.1)

Given $g_1, g_2, h_1, h_2 \in G$, we must verify

$$(g_1 \star H, h_1 \star H) = (g_2 \star H, h_2 \star H)$$

$$\implies (g_1 \star H) \star_{/H} (h_1 \star H) = (g_2 \star H) \star_{/H} (h_2 \star H)$$

$$\implies (g_1 \star h_1) \star H = (g_2 \star h_2) \star H.$$

Component-wise, we have, by hypothesis,

$$g_1 \star H = g_2 \star H$$
 and $h_1 \star H = h_2 \star H$.

Along with associativity,

$$(g_1 \star h_1) \star H = g_1 \star (h_1 \star H)$$

$$= g_1 \star (h_2 \star H) = g_1 \star (H \star h_2)$$

$$= (g_1 \star H) \star h_2$$

$$= (g_2 \star H) \star h_2$$

 $= g_2 \star (H \star h_2) = g_2 \star (h_2 \star H)$

 $= (g_2 \star h_2) \star H.$

Theorem 1

Let $G = (G, \star)$ denote an abelian group with subgroup H < G. The set G/H is a group, called the **quotient group** of G by H, equipped with the operation $\star_{/H}$ definined in Equation (1.1).

Exercise 4 (cf. Problems 69-70)

Write down the addition table for $\ensuremath{G/H}$ in

- (a) Exercise 1.
- (b) Exercise 2.

Non-obvious isomorphisms

Example 2

Let $G = \mathbb{Z} \times \mathbb{Z}$ and define

$$H = (3,0)G + (0,2)G = \{m(3,0) + n(0,2) \mid m,n \in \mathbb{Z}\}\$$

= \{(3m,2n) \cdot m, n \in \mathbb{Z}\}.

Think of the elements in H as movements on a grid indexed by $\mathbb{Z} \times \mathbb{Z}$. The generator (3,0) is right by 3; the generator (0,2) is up by 2.

The cosets of H in G are:

Compare the addition table for G/H to the one for $\mathbb{Z}/6\mathbb{Z}$:

G/H	::	•	•	٠.	• •	••	$\mathbb{Z}/6\mathbb{Z}$	0	1	2	3	4	5
::	::	•		٠.	• •	·:	0	0	1	2	3	4	5
•		•	٠.	• •	••		1	1	2	3	4	5	0
•		••	• •	••		•	2	2	3	4	5	0	1
••	•	• •	:•:	::	•	•	3	3	4	5	0	1	2
• •	• •	••		•	•	•••	4	4	5	0	1	2	3
::	·:		•	•	٠.	• •	5	5	0	1	2	3	4

Conclusion: $G/H\cong \mathbb{Z}/6\mathbb{Z}$ via the correspondence in the addition tables.

Question

What else is G/H isomorphic to?

Exercise 5 (cf. Problem 72)

"Simplify" the following **group presentations** (a term we define in Section ??) by exhibting an isomorphism in each case.

- 1. $\mathbb{Z} \times \mathbb{Z}/\langle (1,1) \rangle$
- 2. $\mathbb{Z} \times \mathbb{Z}/\langle (2,-1),(-1,2)\rangle$