Série TD1 Techniques de transmission

(manipulation de signaux aléatoires pour la transmission)

Filière RT2 – INSAT

Responsable Cours/TD: R. Amara

ullet Si X et Y sont deux VA indépendantes alors toute transformation de la VA X est indépendante de toute transformation de la VA Y

Exercice 1

- Si $X = X_r + jX_i$ VA complexe alors $E(X^*) = (E(X))^*$
- Deux signaux réels x(t) et y(t) sont décorrélés si $E\{x(t)y(t')\} = E\{x(t)\}E\{y(t')\}\ \forall t,t'$
- 1. Rappeler comment écrire un signal FM en fonction de son enveloppe complexe x(t).

On considère un signal modulé selon la FM s(t) correspondant au modulant $m(t) = \alpha_1 m_1(t) + \alpha_2 m_2(t)$ combinaison linéaire des modulants $m_1(t)$ et $m_2(t)$: deux signaux **aléatoires statistiquement indépendants**. A_0 et f_0 étant les paramètres de la porteuse et k_{FM} la constante de modulation. On désigne par $x_1(t) = e^{j\alpha_1\varphi_1(t)}$ et $x_2(t) = e^{j\alpha_2\varphi_2(t)}$ les enveloppes complexes correspondant à respectivement $\alpha_1 m_1(t)$ et $\alpha_2 m_2(t)$.

- **2.** Exprimer s(t) en fonction de $x_1(t)$ et $x_2(t)$ et f_0 .
- 3. En supposant que $\int_0^t m_i(u)du$ est assimilée à une variable aléatoire uniforme sur l'intervalle $\left[0,\frac{1}{\alpha_i k_{FM}}\right]$ pour i=1,2, montrer que la moyenne statistique (ou encore espérance) de chacune des enveloppes complexes $x_1(t)$ et $x_2(t)$ est nulle.
- **4.** Y-a-t-il une dépendance statistique entre les enveloppes $x_1(t)$ et $x_2(t)$? Justifier votre réponse.
- **5.** En déduire la moyenne du signal FM s(t).
- 6. Déterminer l'expression de l'autocorrélation du signal FM s(t) en fonction des autocorrélations de $x_1(t)$ $x_2(t)$.

 Indication: On utilisera l'hypothèse suivante $E\left\{x_1(t)x_1\left(t'\right)x_2(t)x_2\left(t'\right)\right\} = 0 \quad \forall t,t'.$ s(t) est-il stationnaire au sens large?
- 7. Sachant que $\int_{t-\tau}^t m_2(u)du$ suit la loi uniforme sur $[0,\tau]$, identifier la fonction d'autocorrélation de $x_2(t)$. Indication : On pourra écrire $e^{j\theta}-1=e^{j\theta/2}\left(e^{j\theta/2}-e^{-j\theta/2}\right)$ et faire apparaître un sinc.
- 8. Sachant que $R_{x_1}(\tau)$ est constante et vaut A_1 , déterminer l'expression de la DSP de s(t) et tracer son allure (f_0 très grand). Quelle est la puissance du signal FM.

Exercice 2 (part. A et B)

Soit un signal x(t) déterministe, périodique, de période T_m .

A.1 Ecrire le développement en série de Fourier de x(t) en fonction des fréquences harmoniques $e^{j2\pi nf_mt}$. On notera X_n , $n \in \mathbb{Z}$, les coefficients de Fourier correspondant et $f_m = 1/T_m$ la fréquence fondamentale de x(t).

A.2 En déduire l'expression du spectre de x(t) en fonction des X_n et tracer l'allure du spectre d'amplitude correspondant (on rappelle que $\lim_{|n| \to +\infty} |X_n| = 0$).

A.3 x(t) est-il à bande limitée, théoriquement?

A.4 Soit un signal x(t) périodique de période $T_m=5.10^{-3}$ de coefficients de Fourier correspondant

$$X_n = \frac{\alpha}{1+n^2}, \ n \in \mathbb{Z} \ \text{avec } \alpha = 100$$

Dans la représentation spectrale de x(t), on décide de négliger les coefficients de Fourier X_n tels que $|X_n| \le 10^{-4}$. Identifier alors la bande fréquentielle [-B, B] de x(t) (on fera l'approximation $10^6 \gg 1$).

A.5 Tracer l'allure du spectre d'amplitude du signal modulé DBSP, noté y(t), correspondant à x(t), les paramètres de la porteuse sont $A_0 = 4$ et $f_0 = 1MHz$. quel est son occupation spectrale?

B. Soit x(t) un signal aléatoire issu du mélange de N harmoniques de fréquences nf_m tel que

$$x(t) = \sum_{n=1}^{N} A_n e^{j2\pi n f_m t}$$

où A_n , n = 1, ..., N sont les amplitudes des harmoniques assimilées à des **variables** aléatoires, réelles, centrées et indépendantes 2 à 2 (autrement dit A_n et A_k sont des v.a indépendantes pour $n \neq k$). On suppose que les amplitudes aléatoires A_n ont la même

variance σ_A^2 .

B.1 Rappeler ce que sont deux v.a X et Y indépendantes.

Quelle est la valeur de $E\{A_nA_k\}$ pour $n \neq k$.

- B.2 Trouver la moyenne de x(t).
- B.3 Déterminer l'autocorrélation de x(t). Est-il stationnaire au sens large?

N.B:
$$\sum_{i} a_i \sum_{i} b_i = \sum_{i} \sum_{j} a_i b_j$$

- B.4 Déterminer ainsi la dsp (densité spectrale de puissance) de x(t) et tracer son allure.
- B.5 Trouver la puissance du signal x(t).
- B.6 x(t) est modulé en DBSP avec une porteuse de paramètres A_0 et f_0 fixés, le signal modulé est noté y(t). Sachant que la dsp de y(t) s'écrit en fonction de celle de x(t) comme suit

$$S_y(f) = \frac{A_0^2}{2} (S_x(f - f_0) + S_x(f + f_0))$$

déterminer l'expression de la puissance de y(t) en fonction de A_0 , σ_A^2 et N.

Exercice 3

Dans cet exercice, toutes les réponses fréquentielles des filtres à utiliser sont supposées réelles et de pente à la coupure infinie (autrement dit, les RF ont des allures rectangulaires de gain unité).

- on considère la modulation DBSP d'un signal modulant aléatoire m(t) réel, centré et stationnaire au sens large (SSL) de dsp (densité spectrale de puissance) $S_m(f) = TF\{R_m(\tau)\}$, représenté ci-contre, où $R_m(\tau)$ est la fonction d'autocorrélation de m(t). On note x(t) le signal modulé selon la DBSP correspondant à m(t).
- **1.** Donner l'expression de x(t); A_0 et f_0 sont les paramètres de la porteuse de phase nulle puis montrer que $E\{x(t)\}=0$.
- **2.** Déterminer la fonction d'autocorrélation de x(t), qu'on notera $R_x(t, t \tau)$. S'agit-il d'un signal SSL?
- **3.** En effet, on montre que la fonction d'autocorrélation $R_x(t, t \tau)$ est périodique,

de période $T_0/2$, ainsi, on définit la Fonction d'Autocorélation Moyennée (FAM) de x(t)

$$\operatorname{par} \overline{R_x}(\tau) = \frac{2}{T_0} \int_0^{T_0/2} R_x(t, t - \tau) dt, \text{ la dsp de } x(t) \text{ sera alors donnée par } S_x(t) = TF\{\overline{R_x}(\tau)\}.$$

Donner l'expression de la FAM de x(t) ainsi que sa dsp, puis tracer son allure.

- **4.** Le démodulateur de la DBSP préconisé dans le cas de modulant aléatoire a en fait la même structure que dans le cas déterministe. Rappeler cette structure.
- **5.** Déterminer la moyenne et l'autocorrélation de r(t), la sortie du multiplieur dans le démodulateur. r(t) est-il SSL?
- **6.** Déterminer de suite la FAM de r(t) (la FAM étant définie comme ci-dessus) puis tracer l'allure de sa dsp.
- 7. Dans un cas général, si x(t) est un signal de dsp $S_x(f)$ comment doit s'écrire la dsp de $\alpha.x(t)$?
- **8.** Sachant que la sortie d'un filtre de réponse Impulsionnelle (RI) g(t) correspondant à une entrée SSL x(t) de dsp $S_x(f)$ est un signal aléatoire, noté y(t), de dsp $S_y(f) = S_x(f) \cdot |G(f)|^2$ ($G(f) = TF\{g(t)\}$), identifier le signal de sortie du filtre passe-bas du démodulateur DBSP.
- **9.** En effet, l'entrée du démodulateur correspond au signal modulé transmis dans l'air libre et subissant ainsi une opération de filtrage à la suite de la superposition de plusieurs répliques du signal. Ainsi, on suppose dans cette partie que l'entrée du démodulateur s'écrit plutôt

$$z(t) = \underbrace{\alpha_1 x(t - T_1)}_{z_1(t)} + \underbrace{\alpha_2 x(t - T_2)}_{z_2(t)}$$

 T_1 et T_2 sont deux temps de retard de l'onde transmise sur deux trajets différents et α_1 et α_2 sont des coefficients d'atténuation de parcours affectant l'onde sur ses deux trajets. Ces deux coefficients sont supposés réels et connus. Déterminer la moyenne et la FAM de $z_1(t)$ en fonction de celle de x(t) (on pourra faire le changement de variable adéquat dans l'intégrale exprimant la FAM). En déduire la dsp de $z_1(t)$.

10. En supposant les signaux retardés $x(t-T_1)$ et $x(t-T_2)$ décorrélés (ceci est effectivement vrai si les retards T_1 et T_2 sont distants), déterminer la FAM du signal reçu z(t) ainsi que sa dsp puis tracer son allure.

On rappelle que deux signaux réels x(t) et y(t) sont décorrélés si $E\{x(t)y(t')\}=E\{x(t)\}E\{y(t')\}\ \ \forall t,t'.$

11. le signal reçu z(t) attaque le démodulateur cohérent de la DBSP. En identifiant le type les signaux mis en jeu (type BF ou HF), identifier le signal démodulé, $s_1(t)$, obtenu à la sortie du filtre passe-bas. L'opération de démodulation est-elle assurée.