Calculus III Homework on Lecture 16

- 1. Compute the double integral. The integrals are set up to be easy in polar coordinates.
 - (a) $\iint_{\mathcal{S}} (x+y) dx dy$, where \mathcal{S} is the region left of the y-axis and between the circles $x^2+y^2=1$ and $x^2+y^2=4$.
 - (b) $\iint_{\mathcal{S}} (x+y) dx dy$, where \mathcal{S} is the sector region in the first quadrant locked between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, and the lines $-\sqrt{3}x + y = 0$, $x \sqrt{3}y = 0$.
- 2. Compute the triple integral. The integrals are set up to be easy in cylindrical coordinates.
 - (a) $\iiint_{\mathcal{S}} \sqrt{x^2 + y^2} dx dy dz$, where \mathcal{S} is the solid conical body with vertical axis along the z axis, pointing upwards, of height 1 and with circular base of radius 1 lying on the xy-plane.
- 3. (a) Find the centroid of a semi-ball of radius R whose base is a circle in the x, y-plane.
 - (b) Integrate $\iiint_{\mathcal{S}} z dx dy dz$, where \mathcal{S} is the semi-ball from the previous point.