SIMULATIONS FOR ENRICHED DIRICHLET PROCESS WITH NON-CONJUGATE KERNELS

HENGRUI LUO

Enriched Dirichlet process [1, 2] is an improvement of the classical Dirichlet process used in Bayesian nonparametric inference [3, 4]. As criticized by [2], Dirichlet process models or its mixture generalizations suffer from high dimensional covariates. The estimation of the joint posterior density $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ will be dominated by the space \mathcal{X} of explanatory covariate X if $\dim \mathcal{X} \gg \dim \mathcal{Y}$. If the marginal density of X is complicated, then such a behavior of posterior density will lead to concentration to many small clusters.

We explained the algorithm implemented in [2] first in this section and pointed out what is to be modified in order to use non-conjugate kernels. And then we proposed an algorithm that implements Efromovich-Pinsker estimator when an explicit ordering of components $X_1, \dots X_p$ of multivariate explanatory covariate X is available.

The algorithm is basically an Markov Chain-Monte Carlo (MCMC) algorithm in nonparametric setting. The major difference is the proposal function of a new partition. The proposal function of new partition is a "partition-valued" probability measure. To be precise, we need to propose a new partition from urn-scheme [2, 3] according to Dirichlet process; In Enriched Dirichlet Process, such a proposal does not only follow urn-scheme but also preserves the nested structure from the partition of data. Suppose that the response covariates $y_1, \dots y_n$ are partitioned into k clusters on the level of space \mathcal{Y} . Correspondingly we can collect those explanatory covariates $x_1, \dots x_n$ on space \mathcal{X} to each cluster on space \mathcal{Y} , each such cluster can be partitioned further by another sub-urn-scheme. Schematically we can represent the hierarchical structure as following diagram.

 $with\ help\ and\ guidance\ of\ Prof. S. Mac Eachern\,.$

$$Dirichlet(\theta_1, \cdots \theta_k) \\ OR\left(\alpha\left(\theta_1\right), \cdots \alpha\left(\theta_k\right)\right) \\ \sim \begin{cases} y_1 \sim f_1(Y \mid X) &, x_i \sim Dirichlet(\psi_{1|1}, \cdots \psi_{k_1|1}) \\ y_2, y_3 \sim f_2 f_1(Y \mid X) &, x_i \sim Dirichlet(\psi_{1|2}, \cdots \psi_{k_2|2}) \\ \vdots & \vdots & \vdots \\ h_{k_2} \quad x_{19}, x_{21} \\ \vdots & \vdots & \vdots \\ h_{k_2} \quad x_{19}, x_{21} \\ \vdots & \vdots & \vdots \\ m_{k_k} \quad x_{9} \end{cases}$$

The parameter θ is associated with the conditional density functions on coarser partition of y clusters on space \mathcal{Y} , as well as the intensity parameter α_{θ} of Dirichlet process priors on $M(\mathcal{Y})$ is also determined by parameters θ .

The parameter ψ is associated with the marginal density functions on finer partition of x clusters on space \mathcal{X} , as well as the intensity parameter $\alpha_{\psi|\theta}$ of Dirichlet process priors on $M(\mathcal{X})$ is also determined by parameters ψ when given θ on a coarser partition.

The partition parameter $\rho, S = ((s_{y,1}, s_{x,1}), \cdots (s_{y,n}, s_{x,n}))$ is also regarded as a parameter to be monitored during the MCMC.

(1) Step 1: Propose a new partition s_i^* from its marginal.

For each observation (x_i, y_i) , $i = 1 \cdots n$, we sample a proposal partition s_i for (x_i, y_i) based on marginal distribution of the removed- $(x, y)_{-i}$ sample $(x_1, y_1), \dots (x_{i-1}, y_{i-1}), (x_{i+1}, y_{i+1}), \dots (x_n, y_n)$ and $\psi_{-i} = (\psi_1, \dots \psi_{i-1}, \psi_{i+1}, \dots \psi_n)$ and θ_{-i} . This is the most tricky part in implementation because un-less (x_i, y_i) is the only observation in that x, y-cell, $\theta_{-i} = \theta$. For each i we can calculate the proposal (unnormalized) probability $\omega_{j,l}$ for the i-th observation (x_i, y_i) falling in the j-th cluster on space \mathcal{Y} ; l-th nested

cluster on space \mathcal{X} determined by an urn-scheme and marginal densities $f(Y \mid X), f(X)$. Due to the conjugacy of Dirichlet process we can obtained unnormalized probabilities of an observation (x_i, y_i) falling into the j-th cluster on space \mathcal{Y} and simultaneously l-th nested cluster on space \mathcal{X} $\omega_{j,l}(y_i, x_i), j = 1, 2 \cdots k^{-i}, k^{-i} + 1(k^{-i})$ is the number of clusters on space \mathcal{Y} after removal of i-th observation) and $l = 1, 2, \cdots k_j^{-i}, k_j^{-i} + 1$ (k_j^{-i}) is the number of clusters on space \mathcal{X} nested in the j-th clusters on space \mathcal{Y} after removal of i-th observation). Its closed form id derived in (16) of [2] and we repeat them below for convenience of discussion.

$$\omega_{j,l}(y_i, x_i) = \begin{cases} \begin{cases} \frac{n_j^{-i} n_{l|j}^{-i}}{\alpha_{\psi}(\theta_j^{*-i}) + n_j^{-i}} \cdot K_{\theta_j^{*-i}}(y_i \mid x_i) K_{\psi_{l|j}^{*-i}}(x_i) & j = 1, 2 \cdots k^{-i} \\ \frac{n_j^{-i} \alpha_{\psi}(\theta_j^{*-i})}{\alpha_{\psi}(\theta_j^{*-i}) + n_j^{-i}} \cdot K_{\theta_j^{*-i}}(y_i \mid x_i) h_x(x_i) & j = k^{-i} + 1 \end{cases}$$

$$\delta_{1j} \cdot \alpha_{\theta} h_y(y_i \mid x_i) h_x(x_i) \qquad l = k_j^{-i} + 1$$

where n_j^{-i} , $n_{l|j}^{-i}$ are the number of observations in the j-th cluster on space $\mathcal Y$ and simultaneously l-th nested cluster on space $\mathcal X$ after removal of observation (x_i,y_i) . The parameters θ_j^{*-i} , $\psi_{l|j}^{*-i}$ are the unique parameters associated with the j-th cluster on space $\mathcal Y$ and simultaneously l-th nested cluster on space $\mathcal X$ after removal of observation (x_i,y_i) . $K_{\theta_j^{*-i}}(y_i\mid x_i)$ is the conditional density of $Y\mid X$; $K_{\psi_{l|j}^{*-i}}(x_i)$ is the marginal density of X; $h_x(x_i)=\int_{\Psi}\prod_{l\in S_j}K_{\psi}\left(x_l\right)dP_{0\psi\mid\theta}(\psi)$ where S_j is the number of observations in the j-th cluster on space $\mathcal Y$, $n_j=|S_j|$; $h_y(y_i\mid x_i)=\int_{\Theta}\prod_{l\in S_j}K_{\theta}\left(y_i\mid x_l\right)dP_{0\theta}(\theta)$. There is a minor typo on p.1046 of [2].

FIGURE 1. Possible proposals for an observation in Step 1. Small squares are clusters on \mathcal{X} ; larger squares are clusters on \mathcal{Y} .

(2) Step 2: Improve mixing Metropolis-Hasting step.

This step only improves mixing, its idea is to permute all the observations in a clusters on space \mathcal{X} to another new cluster (potentially a different cluster or create a new cluster depending on the random proposal) rather than permuting the observations themselves as in Step 1. This step is proposing a new partition on a space \mathcal{X} structure while preserving a coarser structure on space \mathcal{Y} . This step reveals the essence of the hierarchical structure of Enriched Dirichlet process.

This step improves mixing, intuitively it moves clusters instead of a single observation while preserving the coarser structure. As commented by [2], "To improve mixing, we include an additional Metropolis-Hastings step; at each iteration, after performing the n Gibbs updates for each s_i , we propose a shuffle of the nested partition structure obtained by moving a ψ -cluster to be nested within a different or new θ -cluster. This move greatly improves mixing."

This shuffle algorithm is by proposing a new cluster structure on space \mathcal{X} , Are there other $\psi-clusters$ within this $\theta-cluster$?

FIGURE 2. Possible proposals for an observation in Step 2. Small squares are clusters on \mathcal{X} ; larger squares are clusters on \mathcal{Y} .

$$\begin{cases} Yes & \begin{cases} \frac{1}{2}(Move1+Move2) & \text{Move this } \psi-cluster \text{ to a new } \theta-cluster \\ \frac{1}{2}(Move1) & \text{Move this } \psi-cluster \text{ to other existing } \theta-clusters \end{cases} \\ No & \begin{cases} \frac{1}{2} & \text{Nothing happen.} \\ \frac{1}{2}(Move3) & \text{Move this } \psi-cluster \text{ to other existing } \theta-clusters \end{cases} \end{cases}$$

(3) Step 3: Sampling hyper-parameters $\theta = (\theta_1, \dots \theta_k), \psi = (\psi_{1|1}, \dots \psi_{k_1|1}, \dots \psi_{1|k}, \dots \psi_{k_k|k})$ We can sample from known posterior likelihoods if the prior base measures on Θ, Ψ $P_{0\theta}, P_{0\psi|\theta}$ (The priors on $M(\Theta), M(\Psi)$ are always chosen to be Dirichlet process prior as we assumed above) and $K_{\theta}(y_i \mid x_i), K_{\psi}(x_i)$ on \mathcal{Y}, \mathcal{X} are conjugate family because they have closed form posterior probability densities.

As implemented in [2], they proposed Inverse Gamma-Gaussian conjugate family as a reasonable model for simulation as well as Alzheimer disease data; however, if the base measure $P_{0\theta}$, $P_{0\psi|\theta}$ of Dirichlet process prior does not form a conjugate family with K_{θ} ($y_i \mid x_i$), K_{ψ} (x_i) then we need additional MCMC-Metropolis-Hasting steps in Step 3 to sample from posterior likelihood of parameters θ , ψ . This does not cause too serious difficulty in computational aspect, therefore we can actually generalize Enriched Dirichlet process to non-conjugate family. A flexible suggestion is to use mixture of Dirichlet processes prior as [4], however it also suffers from high dimensional phenomena we mentioned above.

REFERENCES

- [1] Wade, Sara, Silvia Mongelluzzo, and Sonia Petrone. "An enriched conjugate prior for Bayesian nonparametric inference." Bayesian Analysis 6.3 (2011): 359-385.
- [2] Wade, Sara, et al. "Improving prediction from dirichlet process mixtures via enrichment." Journal of Machine Learning Research 15.1 (2014): 1041-1071.
- [3] Ghosh, Jayanta K., R. V. Ramamoorthi. Bayesian nonparametrics. Springer, 2003.
- [4] Antoniak, Charles E. "Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems." The annals of statistics (1974): 1152-1174.

- [5] Wu, Yuefeng, and Subhashis Ghosal. "Kullback Leibler property of kernel mixture priors in Bayesian density estimation." Electronic Journal of Statistics 2 (2008): 298-331.
- [6] Muller, Peter, Alaattin Erkanli, and Mike West. "Bayesian curve fitting using multivariate normal mixtures." Biometrika (1996): 67-79.
- [7] Efromovich, Sam. "Conditional density estimation in a regression setting." The Annals of Statistics (2007): 2504-2535.