Proof book

Updated Oct 26 2018

Lemma 1.1: Equivalent states s_1 and s_2 of machines M_1 and M_2 (machines with same input and output alphabets but different states) go into equivalent states under each input.

Proof:

Suppose for some $s_1'=\delta(s_1,x)$ and $s_2'=\delta(s_2,x)$, we have $\bar{\lambda_1}(s_1',\bar{w})\neq \bar{\lambda_2}(s_2',\bar{w})$ for some \bar{w} . Then, we have found an input sequence $a\bar{w}$ such that $\bar{\lambda_1}(s_1,a\bar{w})\neq \bar{\lambda_2}(s_2,a\bar{w})$ which is a contradiction. \Box

Theorem 1.1: Given a machine M_1 , there is a reduced machine M equivalent to M_1 . Furthermore, if M_2 is any machine equivalent to M_1 , then there exists a state homomorphism which maps M_2 onto M.

Proof:

a. For any unreduced machine M_0 where there exists different but equivalent states s_1 and s_2 , we can group these two states into one new state s such that all inward transitions to s_1 or s_2 now go into s, and all outward transitions from s_1 or s_2 now go out of s. Additionally, s is equivalent to both s_1 and s_2 . This reduces the number of equivalent states (in terms of s_1/s_2) by one and does not introduce new equivalent states. We can repeat this process until every state has no other equivalent states but itself. Hence, by definition of reduced, we have a reduced machine, and it is shown that it must exist for every machine.

b. Since M_2 is equivalent to M, for every state s_2 in S_2 of M_2 , there exists an (and only one as M is reduced) equivalent state s in S of M. Hence, we can define $h:S_2\to S$ if and only if $s_2\equiv s$. This mapping is also onto since equivalence goes both ways. By Lemma 1.1 and $s_2\equiv h(s_2)$ for all s_2 , we have $\delta_2(s_2,a)\equiv \delta(h(s_2),a)$ for all s_2 and s_2 . By the definition of s_2 , which implies homomorphism from s_2 to s_2 . s_3

Corollary 1.1: If two reduced machines are equivalent, then they are isomorphic.

Justification:

Because $rM_1\equiv rM_2$, there is a two-way state homomorphism, which is an isomorphism.

Theorem 1.4: If M' is a realization of M, then $\bar{\lambda}(s,\bar{x})=\xi[\bar{\lambda}'(s',\iota(\bar{x}))]$.

Proof:

Lemma 1.4.a: $ar{\delta}'[lpha(s),\iota(ar{x})]\subseteqlpha[ar{\delta}(s,ar{x})]$

Proof:

We induce on \bar{x} . The base case holds by definition.

Inductively, we have $\bar{\delta}'[\alpha(s),\iota(\bar{x}')]\subseteq \alpha[\bar{\delta}(s,\bar{x}')]$. Assume $v\in \bar{\delta}'[\alpha(s),\iota(\bar{x}')]$, then $v\in \alpha[\bar{\delta}(s,\bar{x}')]$. Hence, $\delta'[v,\iota(x)]\in \delta'[\alpha[\bar{\delta}(s,\bar{x}')],\iota(x)]$. By the property of assginment, $\delta'[\alpha[\bar{\delta}(s,\bar{x}')],\iota(x)]\subseteq \alpha[\delta[\bar{\delta}(s,\bar{x}'),x]]=\alpha[\bar{\delta}(s,\bar{x})]$. That is, $v\in \alpha[\bar{\delta}(s,\bar{x})]$, and that $\bar{\delta}'[\alpha(s),\iota(\bar{x}')]\subseteq \alpha[\bar{\delta}(s,\bar{x})]$. Since in general we have $\bar{\delta}'[\alpha(s),\iota(\bar{x})]\subseteq \bar{\delta}'[\alpha(s),\iota(\bar{x}')]$, thus $\bar{\delta}'[\alpha(s),\iota(\bar{x})]\subseteq \alpha[\bar{\delta}(s,\bar{x})]$. \square