

CATCH-U-DNA General Meeting 3rd December 2017, Tel Aviv, Israel

WP1. Acoustic wave devices and measurement control unit

Objectives and current results

Outline

- 1. Objectives
- 2. Results
- 3. Next steps

Chip containing an array of TSBAR sensors

Requirements

- Size < 6 cm2
- Cost < 2€ (mass production)
- Op. frequency between
 150 MHz and 2GHz

Measurement system

Requirements

- High resolution
- Stability in the ppt range
- Real time

- Operating frequencies (100- 700 MHz)
- AT-cut quartz
- Integration capability (0.5 mm)
- High Q factor
- Low complexity
- Low cost

- Operating frequencies (1- 2 GHz)
- ZnO or AIN
- Integration capability (0.1 mm)
- CMOS standard
- Medium/High Complexity
- Low cost

CATCH-U-DNA General Meeting 3rd December 2017, Tel Aviv, Israel

3D FEM MODELING

CATCH-U-DNA General Meeting 3rd December 2017, Tel Aviv, Israel

3D FEM MODELING

SENSOR DESIGN AND MODELING Task 1.1 (M1-M15)

FBAR SENSOR MODELING

FBAR SENSOR MODELING

AlN substrate – Pt electrodes FBAR

AWSensors

Scientific Technology

SENSOR
DESIGN AND
MODELING
Task 1.1
(M1-M15)

FBAR SENSOR MODELING

AlN substrate - Pt electrodes S-FBAR

FBAR SENSOR MODELING

ZnO substrate – Pt electrodes S-FBAR

HFFQCM SENSOR MODELING

HFFQCM SENSOR MODELING

Array parametric study: Spacing

	DP0	DP1	DP2	DP3	DP4
Spacing (mm)	1.408	1.584	1.76	1.936	2.112

HFFQCM SENSOR MODELING

Modal Analysis

AWSensors Scientific Technology

HFFQCM SENSOR MODELING

Modal Analysis

CATCH-U-DNA General Meeting 3rd December 2017, Tel Aviv, Israel

HFFQCM SENSOR MODELING

Harmonic Analysis

HFFQCM SENSOR MODELING

Harmonic Analysis

HFFQCM SENSOR MODELING

Harmonic Analysis

SENSOR FABRICATION PROCEDURE

Microfabrication process definition

Packaging process definition

Implementation

Characterization

Validation as a biosensor

SENSOR FABRICATION PROCEDURE

Microfabrication process definition

Packaging process definition

Implementation

Characterization

Validation as a biosensor

- Photomask tooling draft design
- Electrode Plating Mask tooling draft design

SENSOR FABRICATION PROCEDURE

Microfabrication process definition

Packaging process definition

Implementation

Characterization

Validation as a biosensor

Electric interface design

FIRST PROTOTYPE

- Numerical Model Calibration (Damping)
- Manufacturing process validation
- uFluidic cell proof of concept
- Preliminary testing with biosamples

3. Next Steps

ONGOING WORK

- Multiphysics postprocessing to estimate insertion losses
 (S21) in sensor arrays
- Development of a more detailed S-FBAR model
- S-FBAR array design and model
- HFF-QCM array design optimization using parametric design techniques
- S-FBAR array design optimization using parametric design techniques
- S-FBAR vs. HFF-QCM Comparative analysis in terms of S and Q and interference

3. Next Steps

ONGOING WORK

- Implementation of the 4-sensor HFF-QCM array first prototype
- Development of the prototype packaging
- HFF-QCM prototype characterization

3. Next Steps

ONGOING WORK

- Development of the electrical/mechanical interface for HFF-QCM prototype
- Increasing frequency range (image frequency)
- Mixed (Tracking- Fixed frequency) characterization algorithm