Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 26 giugno 2008

matricola			nome		cognome
corso di laurea				anno accademico	di immatricolazione
	Votazione:	Т1	E1		
\		T2	E2		
		12	E3		

Domande iniziali

- \square (1) Sia **A** una matrice 3×3 di rango 3. Si dica se 0 è un autovalore di **A**.
- \square (2) Sia $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ una base di V. Esiste un vettore \mathbf{v}_4 tale che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ sia linearmente indipendente?
- \square (3) Esiste un'applicazione lineare $f: \mathbb{C}^4 \to \mathbb{C}^2$ di rango 3?
- T1) Si diano le definizioni di rango, di inversa e di inversa destra e sinistra di una matrice. Si discuta l'esistenza e l'unicità di soluzioni di sistemi lineari la cui matrice dei coefficienti abbia inversa destra o sinistra.
- T2) Dopo aver dato la definizione di autovalore e autovettore, si enuncino e si dimostrino condizioni necessarie e sufficienti affinché una matrice sia diagonalizzabile.
- E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} -1 & \alpha & -\alpha & 1 \\ -\alpha & 1 & -1 & 1 \\ -1 & \alpha & 0 & 1 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha = 2$ si trovi una base ortogonale di $C(\mathbf{A}_2)$. Per $\alpha = 0$ si trovi una base ortogonale di $N(\mathbf{A}_0)$.

Interpretando \mathbf{A}_{α} come la matrice completa di un sistema lineare, per quali valori di α il sistema ha soluzione?

E2) Sia $f: \mathbb{C}^4 \to \mathbb{C}^4$ una trasformazione lineare e si supponga che la matrice associata a f rispetto alla base ordinata $\mathscr{B} = \{\mathbf{e}_3; \mathbf{e}_4; \mathbf{e}_1 + \mathbf{e}_2; \mathbf{e}_1 + \mathbf{e}_3\}$ su dominio e codominio (\mathbf{e}_i sono i vettori della base canonica di \mathbb{C}^4) sia

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix}.$$

- (a) Si determini la matrice $\bf B$ associata a f rispetto alle basi canoniche.
- (b) Si calcoli la dimensione dell'immagine di f.
- (c) Si dica se la matrice \mathbf{B} è diagonalizzabile.
- (d) Si calcoli una base dello spazio nullo dell'applicazione lineare f.
- E3) Si determini per quali valori del parametro $\beta \in \mathbb{C}$ la matrice

$$\mathbf{B}_{\beta} = \begin{bmatrix} 4 & 8 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 0 & 0 & \beta & 1 \\ 0 & 0 & \beta^2 & \beta \end{bmatrix}$$

è diagonalizzabile. Per $\beta = 2$ si trovi una base di \mathbb{C}^4 formata da autovettori di \mathbf{B}_2 .