Rad226a - Lecture #17 Research topics in ¹³C MRS

- Neurotransmission
- 13C MRS
- Hyperpolarized ¹³C MRS
- References
 - Rothman, et al., "¹³C MRS studies of neuroenergetics and neurotransmitter cycling in humans", NMR Biomedicine, 2011 Oct;24(8):943-57.
 - Hurd et al., "Hyperpolarized ¹³C Metabolic Imaging Using Dissolution Dynamic Nuclear Polarization", JMR 36:1314–1328 (2012).

Neurons and Neurotransmission

- Neurons carry action potentials, but are not directly connected.
- Axon-dendrite connections rely on chemicals (neurotransmitters).
- Neurotransmitters can be excitatory or inhibitory.

Glutamate is the major excitatory neurotransmitter in the human brain with >80% of synapses utilizing glutamate. Thomas C. Südhof

Stanford University

The brain in more than just neurons..

Complex metabolic interactions exist between glia and neurons.

Energy metabolism is coupled with neurotransmission.

Neurotransmitter Cycling

Glutamate-Glutamine cycle

Probing Brain Function with Carbon

Probing Brain Function with ¹³C MRS

 V_{TCAn} = neuron TCA flux

 V_{TCAg} = glial TCA flux

 $V_{NT} = Glu/Gln$ neurotransmitter flux

Metabolic Modeling

 $^{N}V_{TCA}$, rate of neuronal TCA cycle $^{A}V_{TCA}$, rat of astroglial TCA cycle $^{V}_{cycle}$, rate of Glu-Gln cycle;

Probing Brain Function with ¹³C MRS

¹³C and ¹H spectra from human visual cortex during an infusion of [1-¹³C]glucose.

Hardware

Multinuclear Pulse Sequences

Direct Detection

For in vivo ¹³C-infusion brain studies (e.g. labeled glucose or acetate) ...

- ¹³C spectrum: low sensitivity, excellent peak discrimination.
- Simple ¹³C excitation and detection is rarely used do to poor sensitivity
- Polarization transfer is commonly used: INEPT, DEPT

Almost all methods use decoupling.

4T ¹³C spectrum obtained from a 45 ml volume in the human visual cortex during an infusion of 67%-enriched [1-¹³C]glucose. (DEPT sequence).

Gruetter, et al., NMR Biomed 2003.

Polarization Transfer

• MRI sensitivity given by magnetic moment polarization $\frac{\left(\frac{\gamma\hbar B_0}{2kT}\right)\left(\frac{\gamma\hbar}{2}\right)\left(\gamma B_0\right)}{SNR} \propto \frac{\left(\frac{\gamma\hbar B_0}{2kT}\right)\left(\frac{\gamma\hbar}{2}\right)\left(\gamma B_0\right)}{\gamma B_0} = \frac{\gamma^2\hbar^2 B_0}{4kT}$

• In polarization transfer, we seek to exploit ¹H-¹³C J coupling to find a pulse sequence with sensitivity given by...

"arrhan" detector

"proton" polarization
$$\frac{\left(\frac{\gamma_{H}\hbar B_{0}}{2kT}\right)\left(\frac{\gamma_{C}\hbar}{2}\right)\left(\gamma_{C}B_{0}\right)}{\gamma_{C}B_{0}} = \frac{\gamma_{H}\gamma_{C}\hbar^{2}B_{0}}{4kT}$$

• Given $\gamma_H \approx 4\gamma_C$, this will yield a 4x sensitivity increase!

Methods: INEPT

Human studies, occipital lobe, 4T

A Key Result...

- Direct linkage between neuroenergetics and neurotransmitter flux
- 1:1 relationship between neuronal TCA and Glu/Gln cycling rates

Applications

- ¹³C MRS provides the only nonivasive measurements of neurotransmitter cycling and cell-specific neuroenergetics.
- Major contributions to understanding...
 - Metabolic coupling between neurons and glia.
 - High neuronal activity of resting brain.
 - Alternations in neurological and psychiatric disease.
- Pathologies include: depression, drug addiction, epilepsy. metabolic disorders, hepatic encephalopathy, and

neurodegenerative disorders.

Example: Aging

Boumezbeur, et al, Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy JCBFM, (2010) 30, 211–21

Hyperpolarized ¹³C MR

A Complementary Method to PET for Imaging In Vivo Metabolism

Daniel M. Spielman, Ph.D.
Dept. of Radiology
Stanford University
Email: spielman@stanford.edu

PET/MR/¹³C Center for Metabolic Imaging

Cancer and the Warburg Effect

Energy production while preserving biomass

Metabolic Therapy Challenges

- Metabolic reprogramming represents a shifted balance towards glycolysis (GLY) from oxidative phosphorylation (OXPHOS)
- Malignant glioma are ideal candidates
 - Highly resistant to conventional treatments
 - Robustly manifest metabolic reprogramming
- Critical clinical obstacle: robust measurement of response

Proposed metric: Metabolic therapy index = $\frac{[Glycolysis]}{[OXPHOS]}$

How can we measure GLY/OXPHOS in vivo?

Hyperpolarized ¹³C MRS

Hypothesis: Imaging of hyperpolarized [1-¹³C]pyruvate can provide one such metabolic therapy index.

PET vs Hyperpolarized ¹³C MRS

 <u>Key idea</u>: inject a "magnetically" enhanced biological substrate and image both the substrate and its downstream metabolic products.

Key technology: A polarizer that magnetically prepares the substrate to boost its MR visibility by >10,000 fold.

MR Sensitivity

Thermal equilibrium magnetization:

$$M_0 = \rho \frac{\gamma^2 \hbar^2 B_0}{4kT} = \rho \left(\frac{\gamma \hbar}{2}\right) \left(\frac{\gamma \hbar B_0}{2kT}\right)$$
Spins/unit Magnetic Polarization $P = \frac{N^+ - N^-}{N^+ + N^-}$

- Increasing sensitivity
 - Increase ρ (e.g. isotopically enriched ¹³C substrates vs natural abundance)
 - Increase polarization:
 - \rightarrow Higher B_0
 - \rightarrow Lower T
 - → Change "effective" γ ?!?

In vivo hyperpolarized ¹³C via DNP exploits all of these effects!

Hyperpolarization

 Hyperpolarization: creating nuclear spin polarization much greater than that achieved at normal thermal equilibrium.

MR signal proportional to population difference!

Hyperpolarization

- Increases net nuclear magnetization
- Does NOT change chemical properties.

MR signal proportional to the net magnetization!

Brute Force

Boltzmann distribution at 3T

Dissolution DNP

Step 1: Polarization (~2 hrs)

- ¹³C-labeled substrate + free radical
- 5T magnet, 1K temperature, 20 mM microwave

Step 2: Dissolution (~30 s)

- Water is heated and pressurized
- Melts the sample and fills the syringe
- Quality control checks before syringe is released

Inject and image before signal disappears (~ 3 min)!

40% polarization \sim 50,000 fold signal gain! In vivo $T_1 = 40$ s

In Vivo Imaging Requirements

- Low toxicity (mM conc.)
- Long NMR relaxation times

Signal decays by relaxation and dilution

- Chemical shift separation
- Rapid cellular uptake
- Rapid metabolism

Focus on low molecular weight endogenous compounds.

Example: [1-13C]pyruvate

25% polarization \sim 30,000 fold signal gain! In vivo $T_1 = 30$ s

Hyperpolarized [1-13C]Pyruvate

OXPHOS

C6 rat glioma model

Hyperpolarized [1-13C]Pyr imaging

Proposed metric: Metabolic therapy index = $\frac{[^{13}\text{C-Lactate}]}{[^{13}\text{C-Bic}]}$

Hyperpolarized ¹³C Lactate, Pyruvate, and Alanine: Noninvasive Biomarkers for Prostate Cancer Detection and Grading

Mark J. Albers, ^{1,2} Robert Bok, ² Albert P. Chen, ² Charles H. Cunningham, ³ Matt L. Zierhut, ^{1,2} Vickie Yi Zhang, ² Susan J. Kohler, ⁴ James Tropp, ⁵ Ralph E. Hurd, ⁵ Yi-Fen Yen, ⁵ Sarah J. Nelson, ^{1,2} Daniel B. Vigneron, ^{1,2} and John Kurhanewicz ^{1,2}

Department of Bioengineering, University of California San Francisco and University of California Berkeley; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California; Sunny Brook Health Sciences Centre, Toronto, Ontario, Canada; Union College, Schenectady, New York; and GE Healthcare, Menlo Park, California

Cardiac Metabolism Measured Noninvasively by Hyperpolarized ¹³C MRI

Klaes Golman,¹ J. Stefan Petersson,^{1*} Peter Magnusson,¹ Edvin Johansson,¹ Per Åkeson,² Chun-Ming Chai,³ Georg Hansson,¹ and Sven Månsson³

Proton

Pig Coronary Occlusion Model
Perfusion Delayed enhancement Alanine

Bicarb

15 min occlusion (stunned) + 2 hrs reperfusion

45 min occlusion (infarcted) + 2 hrs reperfusion

PET + Hyperpolarized ¹³C

- Opportunity: currently only two Spinlab systems installed adjacent to PET/MR scanners.
- ¹⁸F-FDG and ¹³C-pyruvate
 - Measures glucose metabolic pathway at multiple points: uptake vs. glycolysis/oxidative phosphorylation balance
 - Tumors hot on FDG: initial studies (animals) show elevated ¹³C Lac labeling
 - Tumors cold on FDG: hyp ¹³C-pyr?
 - Inflammation: FDG vs. hyp ¹³C-pyr ?

Other tracers/substrates

PET + Hyperpolarized ¹³C

Are there synergies to exploit with simultaneous PET/HP¹³C?

Cancer and the Warburg Effect

Will reversing the Warburg Effect slow tumor growth?

Rat C6 Glioma Bevacizumab Study

Note: no correlations found with respect to tumor size.

Clinical Hyperpolarized ¹³C Studies

- FDA IND ##135767–"Hyperpolarized [1-13C]Pyruvate Injection",
- Stanford IRB, protocol #39845—"A Pilot Study to Assess Lactate and Bicarbonate Detection within Malignant Brain Tumors Using [1-13C]-pyruvate DNP Magnetic Resonance Spectroscopy (MRS)".

Step 1:
Pharmacy kit preparation 24 hrs prior to injection

Lucas Center Radiochemistry Cleanroom

Step 2:
Polarization
2.5-3 hrs prior
to injection

Polarizer ~ 3 hrs

MEDRAD power injector Step 4:
Pyr injection
and MRI scan
2-3 min

Fast filter test

Step 3:
Dissolution and quality control checks
~90s prior to injection

Recruitment - volunteers

Volunteers wanted for a pyruvate tracer Research Study

Looking for healthy volunteers

We are conducting a research study to assess the safety of infusing 13C-labeled hyperpolarized pyruvate (HP-pyruvate) prior to performing magnetic resonance imaging (MRI)

The study requires 3 visits:

Visit 1: Review and sign consent form, medical history review, vital signs, ECG, and blood draw (Approximately 2 hrs)

Visit 2: MRI using HP-pyruvate and observation (Approximately 2 hrs)

3-5 hours later: Vital signs and ECG (Approximately 30 mins)

Visit 3: Follow up visit or telephone call (Approximately 30 mins)

Participants will receive financial compensation for their time spent in this research study. There will be no direct benefits to you from participating in this study, but the knowledge gained from this study may help future cancer patients.

Key eligibility requirements:

- Must be 18 years old or older
- Must not be undergoing active treatment for malignancy
- No history of allergic reactions to MRI contrast (gadolinium)
- · Must be able to undergo an MRI
- Volunteers cannot be pregnant or nursing.
- Please note that this is an abbreviated list of study requirements.

If you are interested, please contact the research nurse below for more information

Stephanie Lewis, RN, MSN

Email: lewisste@stanford.edu
Tel: (650) 723-0381

First Stanford Human Hyperpolarized ¹³C Results

BPM31510 Phase II GBM Trial

Trial as planned

Proposed modification with HP ¹³C-pyruvate

Next lecture: Brain metabolic changes during heart/lung bypass surgery