

```
Data Reading 👇
```

pyplot.rcParams["figure.figsize"] = (15, 12)

In [2]: %matplotlib inline

```
In [3]: data=pandas.read_csv('./Crop_recommendation.csv')
```

cheking the columns, data, data type information, correlation between attributes

```
In [4]: data.columns
Out[4]: Index(['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall', 'label'], dtype='object')
In [5]: data
```

Out[5]:

	N	Р	K	temperature	humidity	ph	rainfall	label
0	90	42	43	20.879744	82.002744	6.502985	202.935536	rice
1	85	58	41	21.770462	80.319644	7.038096	226.655537	rice
2	60	55	44	23.004459	82.320763	7.840207	263.964248	rice
3	74	35	40	26.491096	80.158363	6.980401	242.864034	rice
4	78	42	42	20.130175	81.604873	7.628473	262.717340	rice
2195	107	34	32	26.774637	66.413269	6.780064	177.774507	coffee
2196	99	15	27	27.417112	56.636362	6.086922	127.924610	coffee
2197	118	33	30	24.131797	67.225123	6.362608	173.322839	coffee
2198	117	32	34	26.272418	52.127394	6.758793	127.175293	coffee
2199	104	18	30	23.603016	60.396475	6.779833	140.937041	coffee

2200 rows × 8 columns

```
In [6]: data.info()
```

```
RangeIndex: 2200 entries, 0 to 2199
Data columns (total 8 columns):
 # Column
             Non-Null Count Dtype
                 2200 non-null int64
    Ν
    Ρ
                 2200 non-null int64
1
    K
                 2200 non-null int64
    temperature 2200 non-null
    humidity
                 2200 non-null
                                float64
                 2200 non-null
                                float64
 5
    ph
    rainfall
                 2200 non-null
                                float64
    label
                 2200 non-null
                                object
dtypes: float64(4), int64(3), object(1)
```

<class 'pandas.core.frame.DataFrame'>

memory usage: 137.6+ KB

In [7]: data.describe()

Out[7]:

	N	Р	K	temperature	humidity	ph	rainfall
count	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000
mean	50.551818	53.362727	48.149091	25.616244	71.481779	6.469480	103.463655
std	36.917334	32.985883	50.647931	5.063749	22.263812	0.773938	54.958389
min	0.000000	5.000000	5.000000	8.825675	14.258040	3.504752	20.211267
25%	21.000000	28.000000	20.000000	22.769375	60.261953	5.971693	64.551686
50%	37.000000	51.000000	32.000000	25.598693	80.473146	6.425045	94.867624
75%	84.250000	68.000000	49.000000	28.561654	89.948771	6.923643	124.267508
max	140.000000	145.000000	205.000000	43.675493	99.981876	9.935091	298.560117

In [8]: data.corr()

Out[8]:

	N	Р	K	temperature	humidity	ph	rainfall
N	1.000000	-0.231460	-0.140512	0.026504	0.190688	0.096683	0.059020
Р	-0.231460	1.000000	0.736232	-0.127541	-0.118734	-0.138019	-0.063839
K	-0.140512	0.736232	1.000000	-0.160387	0.190859	-0.169503	-0.053461
temperature	0.026504	-0.127541	-0.160387	1.000000	0.205320	-0.017795	-0.030084
humidity	0.190688	-0.118734	0.190859	0.205320	1.000000	-0.008483	0.094423
ph	0.096683	-0.138019	-0.169503	-0.017795	-0.008483	1.000000	-0.109069
rainfall	0.059020	-0.063839	-0.053461	-0.030084	0.094423	-0.109069	1.000000

In [9]: pyplot.plot(data['label'],data[['N','P','K','temperature','humidity','rainfall','ph']])

rice maizechick phiataney beigreson preasth be amung beblanck gram len biomegran behan a mango grapena termenos kmelo apple orange papayaco con ut cotton jute coffee

• checking the available number of classes

```
In [10]: data['label'].value_counts()
Out[10]: rice
                         100
         maize
                        100
                        100
         jute
         cotton
                        100
         coconut
                        100
                        100
         papaya
                        100
         orange
         apple
                        100
         muskmelon
                        100
         watermelon
                        100
                        100
         grapes
         mango
                         100
         banana
                        100
         pomegranate
                        100
         lentil
                        100
         blackgram
                        100
         mungbean
                        100
         mothbeans
                        100
         pigeonpeas
                        100
         kidneybeans
                         100
         chickpea
                         100
         coffee
                        100
         Name: label, dtype: int64
```

Data Reduction

Column level and row level both are used here

1. Column Level Reduction (Dimention reduction)

here we are reducing the number of columns (features)

```
In [11]: data=data.drop(['N','P','K','ph'],axis=1)
In [12]: data.columns
Out[12]: Index(['temperature', 'humidity', 'rainfall', 'label'], dtype='object')
In [13]: data
```

	temperature	humidity	rainfall	label
0	20.879744	82.002744	202.935536	rice
1	21.770462	80.319644	226.655537	rice
2	23.004459	82.320763	263.964248	rice
3	26.491096	80.158363	242.864034	rice
4	20.130175	81.604873	262.717340	rice
2195	26.774637	66.413269	177.774507	coffee
2196	27.417112	56.636362	127.924610	coffee
2197	24.131797	67.225123	173.322839	coffee
2198	26.272418	52.127394	127.175293	coffee
2199	23.603016	60.396475	140.937041	coffee

2200 rows × 4 columns

Out[13]:

2. Row lavel Reduction (Data reduction)

here we are reducing number of rows

```
In [14]: | classes_list=["rice", "maize", "cotton", "coconut", "orange", "apple", "watermelon", "jute", "mango", "coffee"]
         def get_class_number(class_name):
             if class_name=='rice':
                 return 0
             if class_name=='maize':
                 return 1
             if class_name=='cotton':
                 return 2
             if class_name=='coconut':
                 return 3
             if class_name=='orange':
                 return 4
             if class_name=='apple':
                 return 5
             if class_name=='jute':
                 return 6
             if class_name=='mango':
                 return 7
             if class_name=='watermelon':
                 return 8
             if class_name=='coffee':
                 return 9
In [15]: Analysis_data=data[data['label']=='rice']
         for i in range(1,len(classes_list)):
             Analysis_data=pandas.concat([Analysis_data,data[data['label']==classes_list[i]]])
         data=Analysis_data
         Tranformed Data
In [16]: data
Out[16]:
```

	temperature	humidity	rainfall	label
0	20.879744	82.002744	202.935536	rice
1	21.770462	80.319644	226.655537	rice
2	23.004459	82.320763	263.964248	rice
3	26.491096	80.158363	242.864034	rice
4	20.130175	81.604873	262.717340	rice
2195	26.774637	66.413269	177.774507	coffee
2196	27.417112	56.636362	127.924610	coffee
2197	24.131797	67.225123	173.322839	coffee
2198	26.272418	52.127394	127.175293	coffee
2199	23.603016	60.396475	140.937041	coffee

1000 rows × 4 columns

```
In [17]: data['label'].value_counts()
Out[17]: rice
                       100
                       100
         maize
         cotton
                       100
                       100
         coconut
                       100
         orange
         apple
                       100
         watermelon
                       100
         jute
                       100
         mango
         coffee
                       100
         Name: label, dtype: int64
```

Data Visualization 🡇

```
In [18]: data['class_number']=data['label'].apply(get_class_number)
```

In [19]: data

Out[19]:

	temperature	humidity	rainfall	label	class_number
0	20.879744	82.002744	202.935536	rice	0
1	21.770462	80.319644	226.655537	rice	0
2	23.004459	82.320763	263.964248	rice	0
3	26.491096	80.158363	242.864034	rice	0
4	20.130175	81.604873	262.717340	rice	0
2195	26.774637	66.413269	177.774507	coffee	9
2196	27.417112	56.636362	127.924610	coffee	9
2197	24.131797	67.225123	173.322839	coffee	9
2198	26.272418	52.127394	127.175293	coffee	9
2199	23.603016	60.396475	140.937041	coffee	9

1000 rows × 5 columns

Attribute comparison paring graph

here each graph is drawn by one to one manner

In [20]: seaborn.pairplot(data.iloc[:,:4], hue="label",palette="bright")

Out[20]: <seaborn.axisgrid.PairGrid at 0x29807bfed60>

Plot of data point values


```
In [22]: plotter = pyplot.subplot(projection='3d')
         plotter.scatter3D(data.to_numpy()[:,0], data.to_numpy()[:, 1] ,data.to_numpy()[:, 2],c=data['class_number'], cmap='autum
         plotter.set_xlabel('temperature')
         plotter.set_ylabel('humidity')
         plotter.set_zlabel('rainfall')
Out[22]: Text(0.5, 0, 'rainfall')
```


Data Preparation

Suffling the data set \$\frac{1}{2}\$

this is to get splitted data, that have all type of the classes in training and testing

In [23]: shuffled_Data=data.sample(frac=1)

Splitting the dataset into training and testing -

For Training 85% data is being used and for testing 15% data is used from the given data

means 850 rows will be used for training and 150 rows will be used for testing

```
In [24]: Training_Data = shuffled_Data[:850]
         Testing_Data = shuffled_Data[850:]
In [25]: Training_Data['label'].value_counts()
Out[25]: maize
                        90
          coffee
                        89
         watermelon
                        88
                        86
         coconut
         orange
                        84
         {\tt cotton}
                        84
                        84
         apple
                        83
         jute
                        82
         rice
         mango
                        80
         Name: label, dtype: int64
```

In [26]: Training_Data

Out[26]:

	temperature	humidity	rainfall	label	class_number
139	18.980273	74.526008	94.262494	maize	1
121	18.147101	71.094453	88.077537	maize	1
103	19.972160	57.682729	60.651715	maize	1
81	25.429775	82.946826	195.357454	rice	0
2035	25.124177	85.725306	159.571809	jute	6
1572	21.198522	92.155951	105.855435	apple	5
1583	23.761218	93.661643	100.825956	apple	5
1803	25.028872	91.537209	179.824894	coconut	3
1699	11.698946	93.256389	103.200599	orange	4
44	26.313555	82.366990	265.535594	rice	0

850 rows × 5 columns

♦ Visualizing Training Data

In [27]: | seaborn.pairplot(Training_Data.iloc[:,:4], hue="label",palette="bright")

Out[27]: <seaborn.axisgrid.PairGrid at 0x2980a291f70>


```
In [28]: plotter = pyplot.subplot(projection='3d')
    plotter.scatter3D(Training_Data.to_numpy()[:,0], Training_Data.to_numpy()[:, 1] ,Training_Data.to_numpy()[:, 2],c=Training_Data.to_numpy()[:, 2],c=Training_Data.to_numpy()
```

Out[28]: Text(0.5, 0, 'rainfall')

♦ Visualizing Testing Data

Out[29]: <seaborn.axisgrid.PairGrid at 0x2980c01faf0>


```
In [30]: plotter = pyplot.subplot(projection='3d')
    plotter.scatter3D(Testing_Data.to_numpy()[:,0], Testing_Data.to_numpy()[:, 1] ,Testing_Data.to_numpy()[:, 2],c=Testing_Data.to_numpy()[:, 2],c=Testing_Data.to_num
```


35

Dividing the training data features and labels -

this will be used for training of SVM model

```
In [31]: training_Labels=Training_Data['label']
    training_class_numbers=Training_Data['class_number']
    training_Features=Training_Data.drop(['label','class_number'],axis=1)
```

```
In [32]: |training_Features.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 850 entries, 139 to 44
         Data columns (total 3 columns):
             Column
                          Non-Null Count Dtype
                           -----
                                          float64
              temperature 850 non-null
                                          float64
          1
             humidity
                          850 non-null
             rainfall
          2
                          850 non-null
                                          float64
         dtypes: float64(3)
         memory usage: 26.6 KB
In [33]: |training_Labels.value_counts()
Out[33]: maize
         coffee
                       89
                       88
         watermelon
         coconut
         orange
                       84
                       84
         cotton
                       84
         apple
         jute
                       83
                       82
         rice
                       80
         mango
         Name: label, dtype: int64
         dividing the testing data features and labels 👇
         this will be used for testing the SVM model
In [34]: | testing_Labels=Testing_Data['label']
         testing_class_numbers=Testing_Data['class_number']
         testing_Features=Testing_Data.drop(['label','class_number'],axis=1)
In [35]: |testing_Features.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 150 entries, 1570 to 1863
         Data columns (total 3 columns):
          # Column
                        Non-Null Count Dtype
```

```
temperature 150 non-null
                                           float64
          1
             humidity
                           150 non-null
                                           float64
             rainfall
                           150 non-null
                                           float64
         dtypes: float64(3)
         memory usage: 4.7 KB
In [36]: |testing_Labels.value_counts()
Out[36]: mango
                       20
         rice
                       18
         jute
                       17
         apple
                       16
                       16
         orange
```

apple 16
orange 16
cotton 16
coconut 14
watermelon 12
coffee 11
maize 10
Name: label, dtype: int64

Creating the SVM model instance(object)

fitting the model -

```
In [38]: model.fit(training_Features,training_Labels)
Out[38]: SVC(kernel='linear')
```

```
In [39]: |model.support_vectors_
Out[39]: array([[ 23.80593812, 92.48879468, 119.6335548 ],
                [ 21.22503442, 90.09877774, 113.9760462 ],
                [ 21.11478672, 90.31528693, 104.5086618 ],
                [ 22.71271308, 90.45261746, 109.8852597 ],
                [ 22.13450646, 94.67695747, 112.9203223 ],
                [ 21.91191314, 91.68748063, 117.0761277 ],
                [ 21.41363812, 92.99124545, 118.3979065 ],
                [ 22.49095104, 91.70292746, 124.3915101 ],
                [ 22.45696744, 94.76285385, 114.8407725 ],
                [ 21.19909519, 90.80819418, 103.6838922 ],
                [ 22.76643029, 92.12438519, 120.4359949 ],
                [ 22.43324518, 92.48667725, 119.1025189 ],
                [ 21.18667419, 91.13435689, 122.233323 ],
                [ 21.17089176, 90.23730166, 123.6495149 ],
                [ 23.71475278, 91.53331177, 121.8961665 ],
                [ 23.64142354, 93.74461474, 116.6912176 ],
                [ 22.69780133, 92.82223419, 105.0508234 ],
                [ 23.8812458 , 93.45067555, 104.9116663 ],
                [ 22.35628673, 91.92360477, 107.7697413 ],
```

htis is the number of the support vectors generated for respective class

```
In [40]: model.n_support_
Out[40]: array([80, 5, 5, 7, 24, 11, 6, 82, 18, 3])
In [41]: len(model.support_vectors_)
Out[41]: 241
```

Visualization of Support Vectors -

2D plot

In [42]: pyplot.scatter(training_Features.to_numpy()[:, 0],training_Features.to_numpy()[:, 1],training_Features.to_numpy()[:, 2],opplot.scatter(model.support_vectors_[:,0],model.support_vectors_[:,1],model.support_vectors_[:,2])

Out[42]: <matplotlib.collections.PathCollection at 0x2980c9b8790>

→ 3D plot

♦ Blue colored lines are Support Vectors

others are Datapoints

Now model is Trained 👆

Optional Part 🦣

checking model on training data to check training accuracy (not needed)

	precision	recall	f1-score	support
	0.53	0.50	0.51	0.4
rice	0.53	0.50	0.51	84
maize	0.99	1.00	0.99	86
cotton	1.00	1.00	1.00	89
coconut	1.00	1.00	1.00	84
orange	0.91	0.94	0.92	83
apple	1.00	1.00	1.00	90
watermelon	1.00	1.00	1.00	80
jute	0.52	0.55	0.53	84
mango	0.95	0.90	0.92	82
coffee	1.00	1.00	1.00	88
accuracy			0.89	850
macro avg	0.89	0.89	0.89	850
weighted avg	0.89	0.89	0.89	850

Now Testing the model •

```
In [45]: predicted_values=model.predict(testing_Features)
In [46]: predicted_values
Out[46]: array(['apple', 'jute', 'rice', 'orange', 'rice', 'maize', 'mango',
                   'jute', 'cotton', 'mango', 'cotton', 'mango', 'coconut', 'apple',
                  'orange', 'cotton', 'orange', 'mango', 'mango', 'coconut',
                  'orange', 'apple', 'mango', 'coffee', 'mango', 'orange', 'cotton',
                  'apple', 'orange', 'maize', 'cotton', 'rice', 'orange', 'orange',
                  'rice', 'watermelon', 'rice', 'coconut', 'watermelon', 'coffee',
                  'watermelon', 'maize', 'watermelon', 'jute', 'apple', 'coffee',
                  'orange', 'mango', 'cotton', 'coffee', 'coconut', 'rice', 'mango',
                  'jute', 'cotton', 'jute', 'jute', 'apple', 'rice', 'apple',
                  'mango', 'coconut', 'rice', 'orange', 'cotton', 'jute', 'coconut',
                  'rice', 'apple', 'jute', 'rice', 'mango', 'jute', 'apple',
                  'cotton', 'cotton', 'watermelon', 'coconut', 'coconut',
                  'maize', 'orange', 'orange', 'apple', 'mango', 'watermelon',
                  'watermelon', 'coconut', 'jute', 'jute', 'maize', 'mango', 'mango', 'cotton', 'apple', 'watermelon', 'coffee', 'coffee', 'rice',
                  'watermelon', 'coffee', 'cotton', 'orange', 'cotton', 'coconut', 'cotton', 'watermelon', 'coffee', 'maize', 'jute', 'jute', 'mango',
                  'orange', 'cotton', 'jute', 'apple', 'rice', 'rice', 'maize',
                  'coconut', 'coconut', 'jute', 'mango', 'cotton', 'maize', 'orange',
```

Following will show that what is actual value and what is predicted by model -

```
In [47]: predicted_values=list(predicted_values)
         testing_Labels=list(testing_Labels)
         print("Actual Values --> Predicted values")
         for i in range(len(predicted_values)):
                        ",testing_Labels[i]," --> ",predicted_values[i])
              watermelon --> watermelon
              coffee --> coffee
              jute --> rice
              maize --> maize
              apple --> apple
              jute --> jute
              rice --> rice
              cotton --> cotton
              rice --> rice
              orange --> apple
              apple --> orange
              mango --> mango
              coffee --> coffee
              coffee --> coffee
              watermelon --> watermelon
              mango --> mango
              mango --> mango
              orange --> orange
              orange --> orange
```

plotting the confusion matrix for model of tested data -

Out[50]: <AxesSubplot:>

This is the calculation of accuracy of the model and precision of the respective classes

In [51]: print(classification_report(testing_Labels,predicted_values,target_names=classes_list))

	precision	recall	f1-score	support
rice	0.71	0.62	0.67	16
maize	0.88	1.00	0.93	14
cotton	1.00	1.00	1.00	11
coconut	0.94	1.00	0.97	16
orange	0.88	0.82	0.85	17
apple	1.00	0.90	0.95	10
watermelon	1.00	1.00	1.00	20
jute	0.67	0.75	0.71	16
mango	0.94	0.89	0.91	18
coffee	1.00	1.00	1.00	12
accuracy			0.89	150
macro avg	0.90	0.90	0.90	150
weighted avg	0.89	0.89	0.89	150

- 1) temperature= 30
- 2) humidity=49
- 3) rainfall= 95

(Correct Output Should be Mango)

In [52]: new_data=[30,49,95]
 print(model.predict([new_data])[0])

mango