

# SRM Institute of Science and Technology

College of Engineering and Technology

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Date:

24/05/2022

SLOT-A1

ODD

Duration:

100 min

Max. Marks: 50

Test: CLAT-2 Course Code & Title: 18MAB204T / Probability ang Queueing Theory Year & Sem: II & IV

Course Articulation Matrix:

| At the | end of this course, learners will be a ble to:                                                                           |                              |   |   |   |   | Pro | gram | Outo | comes | (PO) |    |    |    |
|--------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|---|---|---|---|-----|------|------|-------|------|----|----|----|
| Course | e Outcomes (CO)                                                                                                          | Learning<br>Bloom's<br>Level | 1 | 2 | 3 | 4 | 5   | 6    | 7    | 8     | 9    | 10 | 11 | 12 |
| COI    | Apply the concepts of probability and random variables in engineering problems.                                          | 4                            | 3 | 3 |   |   |     |      |      |       |      |    |    | _  |
| CO2    | Identify random variables and model them using various distributions.                                                    | 4                            | 3 | 3 |   |   |     |      |      |       |      |    |    | _  |
| CO3    | Infer results by using hypothesis testing on<br>large and small samples                                                  | 4                            | 3 | 3 |   |   |     |      |      |       |      |    |    |    |
| CO4    | Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.           | 4                            | 3 | 3 | - |   |     |      |      |       |      | •  |    |    |
| CO5    | Determine the transition probabilities and classify the states of Markov chain.                                          | 4                            | 3 | 3 |   |   |     |      |      |       |      |    |    | _  |
| CO6    | Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain | 4                            | 3 | 3 |   |   |     |      |      | ,     |      | 4) |    |    |

|           |                                   |                                              |                              | 1                        | Part - A (5                              | x 4 = 20 N If the quest     |                                            |       |     |      |    | 3.4<br>((† |
|-----------|-----------------------------------|----------------------------------------------|------------------------------|--------------------------|------------------------------------------|-----------------------------|--------------------------------------------|-------|-----|------|----|------------|
| Q.<br>No. |                                   |                                              |                              | Question                 |                                          |                             |                                            | Marks | BIL | СО   | РО | PI Code    |
| 1         | The probe<br>If 6 bomb<br>target. | ability that a<br>os are drop                | ped, find t                  | pped from<br>he probabi  | a plane will<br>lity that at             | strike the t<br>least I wil | arget is 1/8.                              | 4     | 1   | 2    | 1. | 1.2.2      |
| 2         | an expon                          | hat the famo<br>ential distr<br>y that a cus | ribution wi                  | th a mean                | n value of                               | 6 minutes                   | staurant has<br>s. Find the<br>restaurant. | 4     | 2   | 2    | 1  | 1.2.2      |
| 3         | sample of                         | e 'products<br>600 product<br>at difference  | icts contain                 | by a manu<br>ned 36 defe | facturer are<br>ectives. Tes             | defective.                  | A random<br>here is any                    | 4     | 2   | 3    | 2  | 2.8.1      |
| 4 .       | A samiple                         | of 400 mer<br>le drawn fro                   | nbers gave<br>om a norma     | a mean of<br>I populatio | 6.75. Ca it<br>n of mean 6               | be reasonab<br>i.8 and S.D  | of 1.5?                                    | 4     | 2   | 3    | 2  | 2.8.1      |
| 5 (i)     | In the bus                        | sy time the possibability of o               | probability<br>one getting o | of getting t             | elephone co<br>in the 5 <sup>th</sup> at | onnection is<br>tempt?      | 0.05. What                                 | 2     | 1   | 2    | 1  | 1.2.2      |
| (ii)      | A bag co                          | ntains defec                                 | tive article                 | s, the exact             | number of                                | which is no                 | ot known. A                                | 2     | 1   | 3    | 1  | 1.2.2      |
|           | sample o                          | f 100 from                                   | or the propo                 | gives 10<br>ortion of de | fective artic                            | eles.                       | d the 95%                                  |       | -   |      | 4- |            |
|           | ,                                 |                                              |                              |                          | Part-B (3 )<br>nswer Any                 |                             |                                            |       | 3   | · yx |    |            |
| 6         |                                   | on distributi<br>frequencies                 |                              | ollowing d               | istribution t                            | and hence f                 | ind the                                    | 10    | 31. | 2    | 1  | 1.2.2      |
|           | X                                 | 0                                            | 1                            | 2 .                      | 3                                        | 4                           | 5                                          |       |     | VA.  |    |            |
| į.        | f                                 | 142                                          | 156                          | 69                       | 27                                       | 58                          | 1                                          |       |     |      | -  |            |

| 7 | In a normal di<br>Find the mean                | stributio<br>and S.D | of the d   | of the ite             | ms are tu | nder 30  | and 9%                 | are over 60.               | 10 | 3 | 2   | 1 | 1,2,2 |
|---|------------------------------------------------|----------------------|------------|------------------------|-----------|----------|------------------------|----------------------------|----|---|-----|---|-------|
| S | A machine promachine is over<br>Has the machin | erhauled             | , it prod  | tive bolt<br>uces 3 de | s in a ba | oolts in | 500 bolts<br>a batch o | s. After the of 100 bolts. | 10 | 4 | 3   | 2 | 2.8.1 |
| 9 | Two independe                                  | ent samp             | les of siz | ces 5 and              | 6 contair | the foll | owing va               | lues                       |    |   |     |   |       |
|   | Sample 1                                       | 01                   | 13         | 15                     | 13        | 17       | <b>-</b>               |                            | 10 | 4 | 3   | 2 | 2,8,1 |
|   | Sample 2                                       | 12                   | 14         | 12                     | 16        | 11       | 40                     |                            |    | - | (1) |   |       |

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions





**Evaluation Sheet** 

Name of the Student:

Register No.

| R. | A |     | - 6 |  |  |  |  |  |
|----|---|-----|-----|--|--|--|--|--|
|    |   | - 6 |     |  |  |  |  |  |

| (S)   | Part - A (5x4=20 Mar  | 73 |        |
|-------|-----------------------|----|--------|
| Total | Marks Obtained        | со | Q. No  |
|       | 9 6                   | 2  | 1      |
|       |                       | 2  | 2      |
|       | 1                     | 3  | 3      |
|       | 1 47 4                | 3  | 4      |
|       |                       | 2  | 5 (i)  |
|       | 1 1                   | 3  | 5 (ii) |
| ks)   | Part- B (3x 10= 30 Ma | F  |        |
| • 1   |                       | 2  | 6      |
|       | <u> </u>              | 2  | 7      |
|       |                       | 3  | 8      |
|       |                       | 3  | 9      |

Consolidated Marks:

| CO    | Marks Scored |
|-------|--------------|
| CO2   |              |
| CO3   | 1            |
| Total |              |

Signature of the Course Teacher



#### SRM Institute of Science and Technology College of Engineering and Technology

### DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

SLOT A2 ODD

Academic Year: 2021-2022

Test: CLAT-2

Course Code & Title: 18MAB204T / Probability and Queueing Theory

Year & Sem: II & IV Course Articulation Matrix: Date:

24/05/2022

100 min Duration: Max. Marks: 50

| At the | end of this course, learners will be able to:                                                                            |                              |   |   |   |   | Pro | gram | Out | omes | (PO) |    |    |    |
|--------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|---|---|---|---|-----|------|-----|------|------|----|----|----|
| Course | Outcomes (CO)                                                                                                            | Learning<br>Bloom's<br>Level | 1 | 2 | 3 | 4 | 5   | 6    | 7   | 8    | 9    | 10 | 11 | 12 |
| COI    | Apply the concepts of probability and random variables in engineering problems.                                          | 4                            | 3 | 3 |   |   |     | -    |     |      |      |    |    |    |
| CO2    | Identify random variables and model them using various distributions.                                                    | 4                            | 3 | 3 |   |   |     |      |     |      |      |    |    |    |
| CO3    | Infer results by using hypothesis testing on large and small samples                                                     | 4                            | 3 | 3 |   |   |     |      |     |      |      |    |    |    |
| CO4    | Examine F test, Chi Square test in sampling techniques and analyse the performance measures of queuing models.           | 4                            | 3 | 3 |   |   |     |      |     |      |      |    |    |    |
| CO5    | Determine the transition probabilities and classify the states of Markov chain,                                          | 4                            | 3 | 3 |   |   |     |      |     |      |      |    |    |    |
| CO6    | Apply probability techniques and implement them in the study on sampling distributions, queueing models and Markov chain | 4                            | 3 | 3 |   |   |     |      |     |      |      |    |    |    |

|           |                              |                               |                                   |               |                         | $5 \times 4 = 20$ fall the ques |                                 |       |     |    |    |        |
|-----------|------------------------------|-------------------------------|-----------------------------------|---------------|-------------------------|---------------------------------|---------------------------------|-------|-----|----|----|--------|
| Q.<br>No. |                              |                               |                                   | Question      |                         | an the ques                     | ions                            | Marks | BL  | СО | PO | Pl Cod |
| 1         | The mean $P(X=2)$            | and varian                    | ce of a Bino                      | mial distribu | ution are 2             | and $\frac{2}{3}$ resp          | ectively. Find                  | 4     | 1   | 2  | 1  | 1.2.2  |
| 2         | distribution                 | n with para                   |                                   | e measured    | in minutes)             | . If a show                     | n exponential<br>er has already | . 4   | 2   | 2  | 1  | 1.2.2  |
| 3         | A coin is t<br>coin is a fa  |                               | limes and is                      | found to resu | II în head 2            | 45 times. Te                    | st whether the                  | 4     | 2   | 3  | 2  | 2.8.1  |
| 4         |                              |                               | ole have the<br>values differ     |               |                         |                                 | and S. D 2.58.                  | 4     | 2   | 3  | 2  | 2.8.1  |
| 5 (i)     |                              |                               | obability of p                    |               |                         | tion is 0.05                    | What is the                     | 2     | 1   | 2  | 1  | 1.2.2  |
| (ii)      |                              |                               | ndom sample<br>ce limits of $\mu$ |               | was found               | to be 165 w                     | th S.D. of 7.6.                 | 2     | 1   | 3  | 1  | 1.2.2  |
|           |                              |                               |                                   |               | Part-B (3<br>Answer Any | x 10 = 30 M<br>THREE Q          |                                 |       | V., |    |    |        |
| 6         | Fit a Poissor<br>frequencies | distribution                  | for the follo                     | wing distrib  | ution and he            | nce find the                    | theoretical                     | 10    | 3   | 2  | 1  | 1.2.2  |
| A         | x                            | 0                             | 1                                 | 2             | 3                       | 4                               | 1                               |       |     |    |    | 1      |
|           | f                            | 123                           | 59                                | 14            | 3                       | 7.1                             |                                 |       |     |    |    |        |
| 7         | In a normal<br>mean and S.   | distribution<br>D of the dist | 25% of the ribution.              | items are ur  | nder 40 and             | 6% are ove                      | r 70. Find the                  | 10    | 3   | 2  | 1  | 1.2.2  |

| 8 | A random samp<br>another sample of<br>data indicate that | of 900 ms | en chosen  | from ano  | ther city.  | there wer | ained 400 smokers. In<br>e 450 smokers. Do the<br>ond? | 10 | 4 | 3    | 2   | 2.8.1 |
|---|----------------------------------------------------------|-----------|------------|-----------|-------------|-----------|--------------------------------------------------------|----|---|------|-----|-------|
| o | Two independen                                           | samples   | of sizes 5 | and 6 cor | tain the fo | llowing v | alues.                                                 | 10 | 4 | 3    | . 2 | 2.8.1 |
|   | Sample 1                                                 | 9         | 11         | 13        | 11          | 15        | [ · ].                                                 | 10 |   | - 5, |     |       |
|   |                                                          | 10        | 12         | 10        | 14          | 0         | 8                                                      |    |   |      |     |       |

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions





**Evaluation Sheet** 

Name of the Student:

Register No.

|   |   |   | <br> | <br>- | _ |  | $\overline{}$ | _ |  |  |
|---|---|---|------|-------|---|--|---------------|---|--|--|
| R | A |   |      |       |   |  | 111           |   |  |  |
|   |   | 1 |      |       |   |  |               | M |  |  |

| (s)   | Part - A (5x4=20 Mar  |    |        |
|-------|-----------------------|----|--------|
| Total | Marks Obtained        | со | Q. No  |
|       |                       | 2  | 1      |
|       |                       | 2  | 2      |
|       |                       | 3  | 3      |
|       |                       | 3  | 4      |
| -     |                       | 2  | 5 (i)  |
| B v   | 1                     | 3  | 5 (ii) |
| rks)  | Part- B (3x 10= 30 Ma | I  |        |
|       |                       | 2  | 6      |
|       |                       | 2  | 7      |
|       | The same              | 3  | 8      |
| -     | 2001-1                | 3  | 9      |

Consolidated Marks:

| co    | Marks Scored |
|-------|--------------|
| CO2   |              |
| C03   |              |
| Total |              |

Signature of the Course Teacher



## SRM Institute of Science and Technology College of Engineering and Technology

## DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

SLOT-A2 EVEN

Academic Year: 2021-2022

Test: CLAT-2

Course Code & Title: 18MAB204T & Probability and Queueing Theory

27

34

27

Year & Sem: II & IV / (CSE)

Date: 24/05/22 Duration: 100 min Max. Marks: 50

Course Articulation Matrix:

| At the    | end of this co                              | ourse, learn                 | ers will be a                              | ble to:                 |                              |              |                    |                  |                   | Pr.o         | gram O | teon | nes (P | PO) |    |          |                 |
|-----------|---------------------------------------------|------------------------------|--------------------------------------------|-------------------------|------------------------------|--------------|--------------------|------------------|-------------------|--------------|--------|------|--------|-----|----|----------|-----------------|
| Course    | e Outcomes (C                               | CO)                          |                                            |                         | Learning<br>Bloom's<br>Level | 1            | 2                  | 3                | 4                 | 5            | 6      | 7    | 8      | 9   | 10 | 11       | 12              |
| C01       | Apply the co                                | oncepts of p                 | probability and                            | d<br>olems.             | 4                            | 3            | 3                  |                  |                   |              |        |      |        |     |    |          |                 |
| CO2       |                                             | dom variabl                  | les and model                              |                         | 4                            | 3            | 3                  |                  |                   |              |        |      |        |     |    |          |                 |
| CO3       | Infer results<br>large and sn               | by using hy                  | ypothesis test<br>s                        | ing on                  | 4                            | 3            | 3                  |                  |                   |              |        |      |        |     |    |          |                 |
| C04       | measures of                                 | and analyse<br>f queuing m   | uare test in sa<br>the performa-<br>odels. | nce                     | 4                            | 3            | 3                  |                  |                   |              |        |      |        |     |    |          |                 |
| CO5       | Determine t                                 | he transition                | n probabilitie:<br>arkov chain.            | sand                    | 4                            | 3            | 3                  |                  |                   |              |        |      |        |     |    |          |                 |
| CO6       |                                             | them in the                  | niques and<br>study on sam<br>models and N |                         | 4                            | 3            | 3                  |                  |                   |              |        |      |        |     |    |          |                 |
|           |                                             |                              |                                            | F                       | art – A (5<br>Answer a       |              |                    |                  |                   |              |        |      |        |     |    |          |                 |
| Q.<br>No. |                                             |                              |                                            | Questi                  |                              |              | e que              | Stion            |                   |              | Marks  | Ė    | 3L     | CO  | P  | O        | PI<br>Code      |
| 1         | If X is a Po                                | isson variate                | e such that P(                             | X = 1) =                | P(X=2)  f                    | nd P         | (X = 4             | <b>+)</b> .      |                   |              | 4      |      | 1      | 2   |    | 1        | 1.2.2           |
| 2         |                                             |                              | person hits a te<br>et before the          |                         | ny given trial               | is 0.        | 6, Find            | the p            | robabi            | lity         | 4      |      | 2      | 2   |    | 1        | 1.2.2           |
| 3         |                                             |                              | Mathematics of been a rando                |                         |                              |              |                    |                  |                   |              | 4      |      | 2      | 3   |    | 2        | 2.8.            |
| 4         |                                             |                              | students gav<br>mean weight                |                         |                              |              | ith a S            | .D of            | 4 kg. 7           | Cest         | 4      |      | 2      | 3   | Ī  | 2        | 2.8.1           |
| 5 (i)     | The mileage<br>exponential<br>tyres will la | distribution                 | owners get w<br>with mean 4<br>000 km.     | tith a cert<br>4,000 km | ain kind of r                | dial tobabil | yre is<br>lities t | a RV<br>hat on   | having<br>e of th | g an<br>nese | 2      |      | 1      | 2   |    | 1        | 1.2.2           |
| (ii)      | A random s                                  | ample of 50<br>ive. Find the | 00 toys was ta<br>95% confide              | ken from                | a large cons                 | ignme        | ent an             | d 65 w<br>he con | vere fo<br>isignm | und<br>ent.  | 2      |      | 1      | 3   |    | 1        | 1.2.2           |
|           |                                             |                              |                                            |                         | Part-B (3<br>swer any        |              |                    |                  |                   |              |        |      |        |     |    | L        |                 |
| 6         | Fit a Binom                                 | ial distribut                | ion for the fo                             | llowing d               | listribution ar              | d her        | nce fin            | d the t          | theoret           | ical         |        | T    |        |     | 1  | <u> </u> | AND THE RESERVE |
|           | x                                           | 0                            | 1                                          | 2                       | 3                            |              | 4                  |                  |                   |              | 10     |      | 3      | 2   |    | 1        | 1.2.            |

| 7 | If $X$ is now (ii) $P(X \le 3)$                          | nnally (<br>25) and | distribu<br>l (iii) P | ted with $(X \ge 42)$ | mean .    | 30 and S               | D 5.                | find (i)           | P(26              | ≤ X ≤ 40)     | 10   | 3 | 2 | 1 | 1.2.2 |
|---|----------------------------------------------------------|---------------------|-----------------------|-----------------------|-----------|------------------------|---------------------|--------------------|-------------------|---------------|------|---|---|---|-------|
| 8 | A simple sa<br>6.4 cm, whi<br>an S.D of 6<br>the English | le a sim            | nla com               | mle of he             | to stelpe | 1600 Am                | ericans             | nas a r            | rean or           | 1/2 Citi and  | 1 10 | 4 | 3 | 2 | 2.8.  |
| 9 | Memory ca<br>month. Stat                                 | pacity o            | f9 stud<br>er the c   | lents was             | tested b  | efore and<br>ve or not | lafter a<br>from th | course<br>e data l | of med<br>be low. | itation for a | 10   | 4 | 3 | 2 | 2.8.  |
|   | Before                                                   | 10                  | 15                    | 9                     | 3         | 7                      | 12                  | 16                 | 17                | 4             |      |   |   |   |       |
|   | After                                                    | 33                  | 35                    | 35                    | 11        | 34                     | 29                  | 21                 | 28                | 32            |      |   |   |   | 1     |

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions





**Evaluation Sheet** 

Name of the Student:

Register No.

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1   | 1 1 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 | 3 1 | 1   |
| RAII | The state of the s | 1     |     |     |

| -Total   | A (5x 4= 20 Marks)  |       |       |
|----------|---------------------|-------|-------|
| - I otal | Marks Obtained      | CO    | Q. No |
|          |                     | 2     | 1     |
|          |                     | . 2   | 2     |
|          |                     | 3     | 3     |
| 1        |                     | 3     | 4     |
|          |                     | 2     | 5 (i) |
|          |                     | 3     | (ii)  |
|          | B (3x 10= 30 Marks) | Part- |       |
|          |                     | 2     | 6     |
| 1        | Section 1           | 2     | 7     |
|          |                     | 3     | 8     |
|          | The second          | 3     | 9     |

# Consolidated Marks:

| CO    | Marks Scored |
|-------|--------------|
| CO2   |              |
| CO3   |              |
| Total |              |

Signature of the course teacher