Performance report

Repository: https://github.com/alecarnun/Acme-Toolkits-22.7

Date: 2022/06/03

Name	Corporate e-mail
Carrasco Núñez, Alejandro	<u>alecarnun@alum.us.es</u>

Table of Contents

Executive summary	3
Revision table	4
Introduction	5
Contents	6
Conclusions	8
Bibliography	9

Executive summary

The following document contains the analysis carried out by the student, regarding the 95% confidence interval for the average wall time taken by the requests to the system, as well as a hypothesis contrast that makes it clear the efficiency of the computer is at the 95% confidence level.

Revision table

Revision number	Date	Description
v1	2022/06/03	Final version

Introduction

The contents of the paper focus on the performance of the system by means of an analysis regarding the 95% confidence interval for the average wall time taken by the requests to the system.

Some graphs regarding those requests are shown, as well as some description of them, and a conclusion at the end.

Contents

Firstly, a figure is displayed. It is composed of a list of time averages, regarding the time taken to execute groups of requests, on the left, and all that data displayed as a graph, on the right.

I have used 1 computer. We can see (figure 1) that there are 2 features where times are a higher because of its lack of computing power and weight of the feature.

Figure 1.

In figure 2, we can see below all statistics regarding the data analysis. We have followed the methodologies and we have arrived at those confidence Intervals.

time		
Media	537,3044118	
Error típico	7,377962892	
Mediana	578	
Moda	580	
Desviación estándar	272,0858275	
Varianza de la muestra	74030,69755	
Curtosis	43,8756246	
Coeficiente de asimetría	4,927156989	
Rango	4111	
Mínimo	273	
Máximo	4384	
Suma	730734	
Cuenta	1360	
Nivel de confianza(95,0%)	14,47343181	
Confidence Interval	522,83098	551,777844

Figure 2

Given that this deliverable has been performed by just one member, the methodologies have been followed.

Therefore, we have summed the mean with its 10%, which in this case would be:

537.3044118 + 10% * 537.3044118 = 591.034853

The new confidence interval will be: [576.5614212, 605.5082848]

Test-Z

The Test-z cannot be performed in this deliverable given that it is needed to have 2 computers to generate different data. Therefore, we cannot compute it.

Conclusions

In conclusion, the confidence interval has been calculated according to the methodologies and correct use of Excel.

Bibliography

Intentionally blank.