Scilab Textbook Companion for Engineering Physics by K. Rajagopal¹

Created by
Surbhi Suryakant Patel
Engineering Physics
Electronics Engineering
G.H. Patel Engineering College
College Teacher
None
Cross-Checked by
Chaitanya Potti

July 2, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics

Author: K. Rajagopal

 ${\bf Publisher:}\,$ Phi Learning, New Delhi

Edition: 2

Year: 2011

ISBN: 978-81-203-4340-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	Elasticity	8
2	Acoustics Of Buildings	16
3	Ultrasonics	21
4	Crystal Physics	23
5	Wave Optics	29
6	Lasers	33
7	Optical Fiber Communication	35
8	Conducting Materials	39
9	Quantum Physics	42
10	Energy Bands in Solids	50
11	Semiconductors	52
12	Superconductivity	57
1 3	Magnetic Materials	61
14	Dielectrics	64

List of Scilab Codes

Exa 1.1	example 1	8
Exa 1.2	example 2	8
Exa 1.3	example 3	
Exa 1.4	example 4	
Exa 1.5	example 5	10
Exa 1.6	example 6	
Exa 1.7	example 7	10
Exa 1.8	example 8	11
Exa 1.9	example 9	11
Exa 1.10	example 1	11
Exa 1.11	example 11	12
Exa 1.12	example 12	12
Exa 1.13	example 13	13
Exa 1.14	example 14	13
Exa 1.15	example 15	13
Exa 1.16	example 16	14
Exa 1.17	example 17	
Exa 1.18	example 18	15
Exa 2.1	example 1	16
Exa 2.2	example 2	16
Exa 2.3	example 3	17
Exa 2.4	example 4	17
Exa 2.5	example 5	17
Exa 2.6	example 6	18
Exa 2.7	example 7	18
Exa 2.8	example 8	18
Exa 2.9	example 9	19
Eva 2.10	evample 10	19

Exa 3.1	example 1	21
Exa 3.2	example $2 \ldots \ldots \ldots$	21
Exa 3.3	example 3	22
Exa 3.4	example 4	22
Exa 4.1	example 1	23
Exa 4.2	example $2 \ldots \ldots \ldots$	23
Exa 4.3	example 3	24
Exa 4.4	example 4	24
Exa 4.5	example 5	25
Exa 4.6	example 6	25
Exa 4.7	example 7	26
Exa 4.8	example 8	26
Exa 4.9	example 9	26
Exa 4.10	example 10	27
Exa 5.1	example 1	29
Exa 5.2	example 2	29
Exa 5.3	example 3	30
Exa 5.4	example 4	30
Exa 5.5	example 5	30
Exa 5.6	example 6	31
Exa 5.7	example 7	31
Exa 5.8	example 8	31
Exa 6.1	example 1	33
Exa 6.2	example 2	33
Exa 6.3	example 3	34
Exa 7.1	example 1	35
Exa 7.2	example 2	35
Exa 7.3	example 3	36
Exa 7.4	example 4	36
Exa 7.5	example 7	37
Exa 7.6	example 6	37
Exa 7.7	example 7	38
Exa 8.1	example 1	39
Exa 8.2	example 2	39
Exa 8.3	example 3	40
Exa 8.4	example 4	40
Exa 8.5	example 5	41
Exa 9.1	example 1	42

Exa 9.2	example 2 .												42
Exa 9.3	example 3 .												43
Exa 9.4	example 4 .												43
Exa 9.5	example 5 .												44
Exa 9.6	example 6 .												44
Exa 9.7	example 7 .												45
Exa 9.8	example 8 .												45
Exa 9.9	example 9 .												46
Exa 9.10	example 10												46
Exa 9.11	example 11												47
Exa 9.12	example 12												47
Exa 9.13	example 13												47
Exa 9.14	example 14												48
Exa 9.15	example 15												48
Exa 9.16	example 16												49
Exa 10.1	example 1 .												50
Exa 10.2	example 2 .												50
Exa 10.3	example 3 .												51
Exa 10.4	example 4 .												51
Exa 11.1	example 1 .												52
Exa 11.2	example 2 .												52
Exa 11.3	example 3.												53
Exa 11.4	example 4.												53
Exa 11.5	example 5 .												54
Exa 11.6	example 6 .												54
Exa 11.7	example 7.												55
Exa 11.8	example 8 .												55
Exa 11.9	example 9 .												55
Exa 11.10	example 10												56
Exa 12.1	example 1 .												57
Exa 12.2	example 2 .												57
Exa 12.3	example 3 .												58
Exa 12.4	example 4 .												58
Exa 12.5	example 5.												58
Exa 12.6	example 6 .												59
Exa 13.1	example 1 .												61
Exa 13.2	example 2 .	•											61
Exa 13.3	example 3												62

Exa 13.4	example $4 \dots \dots \dots$	62
Exa 13.5	example 5	63
Exa 14.1	example 1	64
Exa 14.2	example 2	64
Exa 14.3	example 3	65
Exa 14.4	example 4	65
Exa 14.5	example 5	65
Exa 14 6	example 6	66

Elasticity

Scilab code Exa 1.1 example 1

Scilab code Exa 1.2 example 2

```
1 clc;
2 clear all;
3 r = 0.15; // Radius of wire in cm
```

Scilab code Exa 1.3 example 3

```
clear all;
lss = 5; // Length of steel wire in m
as = 4e-5; // Cross section area of steel wire in square meters
lc = 6; // Length of copper wire in m
ac = 5e-5; // Cross section area of copper wire in square meters
Ratio = (lss/as)*(ac/lc); // Ratio os youngs modulus of steel to copperAfter eliminating force and delta change
disp(Ratio, 'The ratio of youngs modulus of steel to copper is ');
```

Scilab code Exa 1.4 example 4

```
1 clc;
2 clear all;
3 change = 0.01/100;
4 h = 1e5; // Height
5 rho = 1 // Density of water in gm per cm square
6 g = 980 // Gravity constant in am per square cm
7 deltap = h*g*rho;
8 k = deltap/change;
```

```
9 \operatorname{disp}('\operatorname{dyne} \operatorname{cm}^2-2',k,'\operatorname{Bulk} \operatorname{modulus} \operatorname{of} \operatorname{sphere} \operatorname{is}')
```

Scilab code Exa 1.5 example 5

```
1 clc;
2 clear all;
3 deltav = 0.5; // change in volume
4 v = 200; // initial volume in litres
5 deltap = 100*1.013e5 // change in pressure in Pa
6 k = (deltap/(deltav/v));
7 disp('Pa',k,'Bulk modulus of liquid is ')
```

Scilab code Exa 1.6 example 6

```
1 clc;
2 clear all;
3 l = 0.4 // Length in meter
4 A = 240e-4 // Area of slab in meter square
5 F = 1e5 // Shaering force in newton
6 n = 5.6e9 // Shear modulus in pa
7 deltal = (F*1)/(n*A);
8 disp('m',deltal,'The displacement is ')
```

Scilab code Exa 1.7 example 7

```
1 clc;
2 clear all;
3 l = 7; // Length of rubber cube
4 n = 2e7; // Rigidity modulus in dyne per cm square
5 F = 200*1000*981; // Force in dyne
```

```
6 A = 49; // Area in cm square
7 theta = (F/(A*n));
8 disp('rad',theta,'Shearing stress is ');
9 deltal = l*theta;
10 disp('cm',deltal, 'Change is');
```

Scilab code Exa 1.8 example 8

```
1 clc;
2 clear all;
3 A = 2e-4; // Area of steel wire in meter square
4 Y = 2e11 // Young's modulus in Newton per meter square
5 F = A*Y //l = L in this problem hence eliminating and rearranging equation of Y
6 disp('N',F,'The value of force is')
```

Scilab code Exa 1.9 example 9

```
1 clc;
2 clear all;
3 sigma = 0.2; // Poisson's ratio
4 changel = 2e-3; // longitudinal strain
5 changev = (changel-(2*sigma*changel))*100;
6 disp('%', changev, 'Percentage change in volume is')
```

Scilab code Exa 1.10 example 1

```
1 clc;
2 clear all;
```

Scilab code Exa 1.11 example 11

```
1 clc;
2 clear all;
3 l = 50*1e-2; // length of wire in m
4 a = 2e-3; // radius of wire in m
5 theta = 45; // In degree
6 theta1 = theta*(%pi/180); // In radian
7 n = 8*1e8 // Rigidity modulus in Newton per meter square
8 t = (0.5*%pi*n*a^4*theta1^2)/(2*1);
9 disp('J',t,'Torque is')
```

Scilab code Exa 1.12 example 12

```
1 clc;
2 clear all;
3 l = 1; // Length of wire in m
4 a = 2e-3; // Radius of wire in m
5 theta = %pi/2; // in radians
6 theta1=theta*(180/%pi); // in degrees
7 n = 5e10; // Rigidity modulus of wire in newton per square meter
8 t = (%pi*n*a^4*theta)/(2*1);
```

```
9 disp('Nm',t,'Torsional couple is ');
10 y=a*theta1/(2*1);//angle of shear at surface
11 disp('degree',y,'angle of shear at surface');
12 z=y/2;//angle of shear at midway
13 disp('degree',z,'angle of shear at midway');
```

Scilab code Exa 1.13 example 13

Scilab code Exa 1.14 example 14

```
1 clc;
2 clear all;
3 l = 0.5; // Length of wire in meter
4 a = 2e-3; // Radius pf wire in meter
5 theta = 30; // In degree
6 Ashear = (a*theta)/l;//Angle of shear
7 disp('degree', Ashear, 'Angle of shear is');
```

Scilab code Exa 1.15 example 15

```
1 clc;
2 clear all;
3 e = 1e-2; // Restoring couple per unit twist in
        Newton meter
4 a = 6e-2; // Radius of cyinder in meter
5 a1 = 0.10 // Internel diameter of hollow cylinder in meters
6 a2 = sqrt(a^2 + a1^2); // Externel Diameter in meter
7 disp(a2);
8 c = (e * (a2^2 - a1^2))/(a^4); // Restoring couple per unit twist for hollow cylinder
9 disp('Nm',c,'Restoring couple per unit twist for hollow cylinder is ');
10 // There is slight variation in answer than book's answer.. verified in calculator too
```

Scilab code Exa 1.16 example 16

```
1 clc;
2 clear all;
3 l = 0.80; // Distance between the knife edges in meter
4 r = 0.75e-2; // Radius of rod in meter
5 m = 800e-3; // Mass of load in Kilogram
6 dp = 0.030e-2; // depression on meter
7 g = 9.8; // Gravity constant
8 Y = (m*g*l^3)/(12*dp*%pi*r^4);
9 disp('N/m^2',Y,'Youngs modulus of the material is ');
;
```

Scilab code Exa 1.17 example 17

```
1 clc;
```

```
2 clear all;
3 l = 1; // Length of beam in meter
4 dp = 10e-3; // Depression in meter
5 x = 0.4 // Distance at which depression is to be found in meter
6 dpx = (dp*3*(x-x^2+x^3))/l^3;
7 disp('m',dpx,'Depression at x = 0.4m is ');
```

Scilab code Exa 1.18 example 18

```
1 clc;
2 clear all;
3 dp = 12e-3; // Depression for a cantilever os
          another cantilever of some material of length,
          width of thickness three times the first case
4 //delta=4mgl^3/ybd^3 here replace l=3l b=3b and d=3d
          so..
5 dpd = dp/3;
6 disp('m',dpd,'The depression in second cantilever is
          ');
```

Acoustics Of Buildings

Scilab code Exa 2.1 example 1

Scilab code Exa 2.2 example 2

```
1 clc; 2 //L2-L1=10*log10(I2/I1) 3 //so , we can write that
```

```
4 L2=40 //i dB
5 L1=10 //in dB
6 //where L1 and L2 are intensity level of two waves
         of same frequency
7 L=L2-L1;
8 //let I2/I1=I
9 I=10^(L/10);
10 //let a2/a1=a
11 a=sqrt(I);//Ratio of their amplitudes
12 disp(a, 'Ratio of their amplitudes = ')
```

Scilab code Exa 2.3 example 3

```
1 clc;
2 clear all;
3 I1=25.2 //in Wm^-2
4 I2=0.90 //in Wm^-2
5 B=10*log10(I1/I2) //Relative loudness of sound in dB
6 disp(+'dB',B,'Relative loudness of sound = ')
```

Scilab code Exa 2.4 example 4

```
1 clc;
2 clear all;
3 I=1e4 //in W/(m*m)
4 I0=1e-12 //in W/(m*m)
5 B=10*log10(I/I0);//intensity level
6 disp(+'dB',B,"intensity level = ")
```

Scilab code Exa 2.5 example 5

Scilab code Exa 2.6 example 6

```
1 clc;
2 d=198; //in meter
3 t=1.2; //in second
4 // velocity=distance/time
5 v=2*d/t; // velocity
6 disp(+'m/s',v,'velocity =');
```

Scilab code Exa 2.7 example 7

```
1 clc;
2 //need to find absorption coefficient
3 V=5600 //in m^3
4 T=2 //in second
5 s=700 //in m^2
6 a=0.16*V/(s*T)
7 disp(a,"absorption coefficient =")
```

Scilab code Exa 2.8 example 8

```
1 clc;
2 absorp1=92.90; //in m^2
3 absorp2=92.90; //in m^2
4 V=2265.6; //in m^3
5 T1=0.16*V/(absorp1);
6 T2=0.16*V/(absorp1+absorp2);
7 ans=T2/T1; // effect on Reverberation time
8 disp(+"of its original value", ans, "Reverberation time will reduced to")
```

Scilab code Exa 2.9 example 9

```
1 clc;
2 clear all;
3 v=25.2*20.3*8.04 ;//in m^3
4 T=0.75; //in second
5 absorp1=500*0.3176 ;//in m^2
6 absorp2=(0.16*v)/T;
7 T1=(0.16*v)/(absorp1+absorp2);//reverbaration time
8 disp(+'second',T1,"reverbaration time =");
```

Scilab code Exa 2.10 example 10

```
1 clc;
2 clear all;
3 v=45*100*17.78; //in m^3
4 absorp1=(700*0.03)+(600*0.06)+(400*0.025)+(600*0.3);
5 absorp_p=600*4.3;
6 T1=(0.16*v)/(absorp1); //Reverbaration time (empty hall)
7 T2=(0.16*v)/(absorp_p+absorp1); //Reverbaration time with full capacity
```

```
8 disp(+'second',T1,'Reverbaration time (empty hall) =
    ');
9 disp(+'second',T2,'Reverbaration time with full
    capacity =');
10 //There is slight variation in answer than book's
    answer..verified in calculator too.(mistake in
    textbook)
```

Ultrasonics

Scilab code Exa 3.1 example 1

```
1 clc;
2 clear all;
3 t=1.6*1e-3 //thickness in meter
4 v=5760 //velocity in m/s
5 lemda=2*t//wavelength
6 f=v/lemda//fundamental frequency
7 disp(+'Hz',f,'fundamental frequency =')
```

Scilab code Exa 3.2 example 2

```
8 e1=30;
9 e2=40*2
10 x=e1*t*2/(2*e2);
11 disp(+'m',x,'distanc of the flow from near end =')
```

Scilab code Exa 3.3 example 3

```
1 clc;
2 f_diff=50*1e3 //in Hz
3 v=5000 //in m/s
4 //f1=v/2*t
5 //f2=2v/2t
6 //f2-f1=v/2t
7 t=v/(2*f_diff)
8 disp(+'meter',t,'Thickness of steel plate =')
```

Scilab code Exa 3.4 example 4

```
1 clc;
2 f=1e6 //frequency in Hz
3 L=1 //inductance in henry
4 //f=(1/2*pi)*(sqrt(1/(L*C)))
5 c=1/(4*%pi^2*f^2*L);//capacitance
6 disp(+'F',c,'capacitance=')
```

Crystal Physics

Scilab code Exa 4.1 example 1

```
1 clc;
2 clear all;
3 r=1.278*1e-8;//atomic radius in cm
4 M=63.5; //atomic weight
5 N=6.023*1e23; //avogadro number
6 n=4//for fcc n=4
7 a=4*r/(sqrt(2));
8 density=n*M/(N*a^3);//Density of copper
9 disp(+'g/cc',density,'Density of copper=')
```

Scilab code Exa 4.2 example 2

```
1 clc;
2 M=58.45; //atomic mass
3 N=6.02*1e23; //avogadro number
4 density=2.17*1e3; //in kg/m<sup>3</sup>
5 n=4 //Nacl is FCC
6 a=(n*M/(N*density))<sup>(1/3)</sup>; //lattice constant
```

Scilab code Exa 4.3 example 3

```
1 clc;
2 //let three intercepts are I1, I2, I3
3 I1=3;
4 	ext{ 12=-2};
5 \quad I3=3/2;
6 //let their reciprocals are I1_1, I2_1, I3_1
7 I1_1=1/I1;
8 I2_1=1/I2;
9 I3_1=1/I3;
10 //LCM of I1_1, I2_1, I3_1 are 6.
11 //By multiply LCM with I1_!, I2_1, I3_1 we will get
      miller indices
12 LCM=6;
13 M_1 = LCM * I1_1;
14 M_2 = LCM * I2_1;
15 M_3=LCM*I3_1;
16 disp(M_1, 'Miller indices of plane =');
17 disp(M_2);
18 disp(M_3);
```

Scilab code Exa 4.4 example 4

```
1 clc;
2 r=1.246 //in A
3 a=4*r/sqrt(2)
4 d_200=3.52/sqrt(4+0+0)
5 disp(+'m',d_200*1e-10,'d200 = ')
```

```
6 d_220=3.52/sqrt(4+4)

7 disp(+'m',d_220*1e-10,'d220 = ')

8 d_111=3.52/sqrt(1+1+1)

9 disp(+'m',d_111*1e-10,'d111 = ')
```

Scilab code Exa 4.5 example 5

Scilab code Exa 4.6 example 6

```
1 clc;
2 a=2.9*1e-8; //in cm
3 M=55.85; //atomic mass
4 density=7.87 //in g/cc
5 N=6.023*1e23;
6 n=(a^3*N*density)/M; //Number of atoms per unit cell
7 disp(n, 'Number of atoms per unit cell =');
8 //slight variation in ans than book.. checked in calculator also
```

Scilab code Exa 4.7 example 7

```
1 clc;
2 M=55.85; //atomic mass
3 d=7.86 //density of iron in g/cc
4 N=6.023*1e23
5 n=2//BCC structure
6 a=((n*M)/(N*d))^(1/3);
7 r=(sqrt(3)*a)/4; //radius of iron atom
8 disp(+'cm',r,'radius of iron atom =')
```

Scilab code Exa 4.8 example 8

```
1 clc;
2 M=207.21; //atomic mass
3 d=11.34*1e3 //in kg/m^3
4 N=6.023*1e26 //in kg/m^3
5 n=4; //for FCC
6 a=((n*M)/(N*d))^(1/3); //lattice constant
7 r=(sqrt(2)*a)/4; //Atomic radius
8 disp(+'m',a,'lattice constant =');
9 disp(+'m',r,'Atomic radius =');
```

Scilab code Exa 4.9 example 9

```
1 clc;
2 n=1;
3 thita=30;//angle in degree
4 lamda=1.75; //in A
```

```
5 h=1;
6 k=1;
7 l=1;
8 //d111=a/sqrt((h*h)+(k*k)+(l*l))
9 //2dsin(thita)=n*lamda
10 d=n*lamda/(2*sind(thita));
11 a=sqrt(3)*d;//lattice constant
12 disp(+'meters',a*1e-10,"lattice constant =")
```

Scilab code Exa 4.10 example 10

```
1 clc;
2 //let three intercepts are I1, I2, I3
3 I1=0.96;
4 I2=0.64;
5 \quad I3=0.48;
6 //as they are ratios we will multiply by some some
      constants so that it will become integers
7 I1=6;
8 I2=4;
9 I3=3;
10 //let their reciprocals are I1_{-1}, I2_{-1}, I3_{-1}
11 I1_1=1/I1;
12 I2_1=1/I2;
13 I3_1=1/I3;
14 //LCM of I1_1, I2_1, I3_1 are 12.
15 //By multiply LCM with I1_!, I2_1, I3_1 we will get
      miller indices
16 LCM=12;
17 M_1 = LCM * I1_1;
18 M_2 = LCM * I2_1 ;
19 M_3 = LCM * I3_1;
20 disp(M_1, 'Miller indices of plane =');
21 disp(M_2);
22 disp(M_3);
```

Wave Optics

Scilab code Exa 5.1 example 1

```
1 clc;
2 refractive_index=1.65 //refractive index
3 lamda=5893*1e-10; //wavelength
4 n=400;
5 t=n*lamda/(2*(refractive_index-1)); //Thickness of film
6 disp(+'meter',t,'Thickness of film = ')
```

Scilab code Exa 5.2 example 2

```
1 clc;
2 clear all;
3 x=0.40*1e-3; //in meter
4 n=900;
5 lamda=2*x/n;//Wavelength of light in meters
6 lamda1=lamda/1e-10;//Wavelength of light in A
7 disp(+'Angstorm',lamda1,'Wavelength of light in A=')
```

Scilab code Exa 5.3 example 3

```
1 clc;
2 lamda=5893*1e-10;//wavelength of monocromatic light
3 n=4000;
4 x=n*lamda/2;//distance moved by mirror M1
5 disp(+'meter',x,'distance moved by mirror M1 =')
```

Scilab code Exa 5.4 example 4

```
1 clc;
2 clear all;
3 lamda=5461*1e-10;//wavelength of light
4 n=8;//no of frings
5 t=6*1e-6;//in meter
6 u=((n*lamda)/(2*t))+1;//refractive index of material
7 disp(u,'refractive index of material =');
```

Scilab code Exa 5.5 example 5

```
1 clc;
2 ue=1.553; // given ue
3 u0=1.544; // given uo
4 lamda=500*1e-9; // in meter
5 t=lamda/(4*(ue-u0)); // The thickness of quarter wave plate
6 disp(+'meter',t,'The thickness of quarter wave plate =')
```

Scilab code Exa 5.6 example 6

```
1 clc;
2 lamda=5893*1e-10; // in meter
3 ue=1.55333; // given ue
4 u0=1.5442; // given u0
5 t=lamda/(2*(ue-u0)); // Thicknesss of half wave plate
6 disp(+'meter',t,'Thicknesss of half wave plate =');
```

Scilab code Exa 5.7 example 7

```
1 clc;
2 u0=1.5442;//given u0
3 ue=1.5533;//given ue
4 lamda=5*1e-5;//wavelrngth in cm
5 t=lamda/(2*(ue-u0));//Thicknesss of half wave plate
6 disp(+'cm',t,'Thicknesss of half wave plate =')
7 //slight variation in ans than book.. checked in calculator also
```

Scilab code Exa 5.8 example 8

Lasers

Scilab code Exa 6.1 example 1

Scilab code Exa 6.2 example 2

```
1 clc;
2 clear all;
3 a1=2*1e-3;//distance from the laser
4 a2=3*1e-3;//distance from the laser
```

```
5 d1=2;//output beam spot diameter
6 d2=4;//output beam spot diameter
7 th=(a2-a1)/(2*(d2-d1));//angle of divergence
8 disp('rad',th,'angle of divergence');
```

Scilab code Exa 6.3 example 3

```
clc;
clear all;
D=0.1;//focal length of lens
lemda=14400*1e-10;//wavelength in meters
p=100*1e-3;//power of laser beam
d=10*1e-3;//aperture in meter
th=lemda/d;//angular speed
disp('rad',th,'angular speed is=');
aos=(D*th)^2;//area of spread
disp('m^2',aos,'area of spread is=');
I=p/aos;//intensity
disp('W*m^-2',I,'intensity is=');
```

Optical Fiber Communication

Scilab code Exa 7.1 example 1

```
1 clc;
2 clear all;
3 NA = 0.24; // Numerical Aperture
4 delta = 0.014;
5 n1 = (NA)/sqrt(2*delta); // Refractive index of first medium
6 disp('',n1,'Refractive index of first medium is ');
7 n2 = n1 - (delta*n1); // Refractive index of secong material
8 disp('',n2,'Refractive index of secong material is ');
```

Scilab code Exa 7.2 example 2

```
1 clc;
2 clear all;
3 n1 = 1.49; // Refractive index of first medium
4 n2 = 1.44; // Refractive index of second medium
```

```
5 delta = (n1-n2)/n1; // Index difference
6 NA = n1* sqrt(2*delta);
7 disp('',NA,'Numerical Aperture of fiber is');
8 thetaa = asind(NA);
9 disp('degree',thetaa,'Acceptance angle is ');
```

Scilab code Exa 7.3 example 3

```
1 clc;
2 clear all;
3 NA = 0.15 ; // Numerical Aperture of fiber
4 n2 = 1.55; // Refractive index of cladding
5 n0w = 1.33; // Refractive index of water
6 n0a = 1; // Refractive index of air
7 n1 = sqrt(NA^2 + n2^2);
8 NAW = (sqrt(n1^2 -n2^2))/n0w;
9 thetaa = asind(NAW); // Acceptance angle in water
10 disp('degree', thetaa, 'Acceptance angle in water is ');
```

Scilab code Exa 7.4 example 4

```
1 clc;
2 clear all;
3 l = 16; // Length of optical fiber in Km
4 Pi = 240e-6; // Mean optical length launched in optical fiber in Watts
5 Po = 6e-6; // Mean optical power at the output in watts
6 alpha = 10*log10(Pi/Po); // Signal attenuation in fiber
7 disp('dB',alpha, 'Signal attenuation in fiber')
```

```
8 alpha1 = alpha/l;//Signal attenuation per km of the
     fiber
9 disp('dB/km',alpha1,'Signal attenuation per km of
     the fiber');
```

Scilab code Exa 7.5 example 7

```
1 clc;
2 clear all;
3 Tf = 1400; // Fictive temperature of silicon in
     Kelvin
4 betai = 7e-11; // Isothermal compressibility square
     meter per newton
5 n = 1.46; // Refractive index of silicon
6 p = 0.286; // Photoelastic constant of silicon
7 lambda = 0.63e-6 // Wavelength in micrometer
8 kb = 1.38e-23 // Boltzmann constant in joule per
     kelvin
9 L = 1e3;
10 alphas = (8 * \%pi^3 * n^8 * p^2 * kb * Tf * betai)
     /(3 * lambda^4);//Rayleigh scattering coefficient
11 alphars = \exp(-\text{alphas} * L); //Loss factor
12 disp('meter^-1', alphas, 'Rayleigh scattering
      coefficient is ');
13 disp('', alphars, 'Loss factor is');
```

Scilab code Exa 7.6 example 6

```
1 clc;
2 clear all;
3 alpha = 0.5; // Attenuation of single mode optical
    fibre in dB per km
```

```
4 lambda = 1.4; // Operating wavelength of optical
    fiber in micrometer
5 d = 8 // Diameter of fiber in micrometer
6 y = 0.6; // Laser source frequency width
7 pb = 4.4e-3 * d^2 * lambda^2 * alpha * y; // Threshold
    optical power in SBS
8 prs = 5.9e-2 * d^2 * lambda * alpha; // Threshold
    optical power in SRS
9 disp('W',pb,'Threshold optical power in SBS');
10 disp('W',prs,'Threshold optical power in SRS');
```

Scilab code Exa 7.7 example 7

```
1 clc;
2 clear all;
3 n1 = 1.50; // Refreactive index of forst medium
4 delta = 0.003; // Index difference
5 lambda = 1.6*1e-6; // Operating wavelength of fober
     in meter
6 x=2*delta*n1*n1
7 n2 = sqrt(n1^2-x); //refractive index of cladding
8 disp(n2, 'refractive index of cladding');
9 rc = (3*n1^2*lambda)/(4*\%pi*sqrt(n1^2 - n2^2)^3);//
     The critical radius of curvature for which
     bending losses occur
10 disp('meter',rc,'The critical radius of curvature
     for which bending losses occur is ');
11 //there is variation in answer than book .. book's
     answer is wright but in scilab it is not coming
     .. (scilab mistake)
```

Conducting Materials

Scilab code Exa 8.1 example 1

```
1 clc;
2 clear all;
3 n = 5.8*1e28; // Electrons density in electrons per
     cube meter
4 rho = 1.58*1e-8; //Resistivity of wire in ohm meter
5 m = 9.1*1e-31; // Mass of electron
6 e = 1.6*1e-19; // Charge of electron in coloumb
7 E = 1e2; // Electric field
8 t = m/(rho*n*e^2);
9 u = (e*t)/m;
10 \quad v = u * E;
11 disp('s',t,'The relaxation time is');
12 disp('m^2/volt sec',u,'The mobility of electrons');
13 disp('m/s', v, 'The average drift velocity for an
      electric field of 1V/cm is ');
14 //slight variation in ans than book.. checked in
      calculator also
```

Scilab code Exa 8.2 example 2

```
clc;
clear all;
e = 1.6*1e-19; // Charge on electron in coulumb
m = 9.1*1e-31; // Mass of electron in kg
rho = 1.54*1e-8; // Resistivity of material at room
temperature in ohm . meter
n = 5.8*1e28; // Number of electrons per cubic meter
Ef = 5.5; // The fermi energy of the conductor in eV
vf = sqrt((2*Ef*e)/m);
t = (m/(n*e^2*rho));
MFP = vf*t;
disp('m/s',vf,'Velocity of electron is');
disp('m',MFP,'Mean free path of electron is');
```

Scilab code Exa 8.3 example 3

```
1 clc;
2 clear all;
3 m = 9.1*1e-31; //Mass of electron in kg
4 e = 1.6*1e-19; // Charge on electron in coulumb
5 t = 3*1e-14; // Relaxation time in seconds
6 n = 5.8*1e28; //Number of electrons in cubic meter
7 rho =m/(n*t*e*e); //The resistivity of metal
8 u = 1/(n*e*rho); //The mobility of electron
9 disp('Ohm.meter',rho,'The resistivity of metal is');
10 disp('sqaure meter per volt.second',u,'The mobility of electron is');
11 //slight variation in ans than book.. checked in calculator also(Mistake in textbook)
```

Scilab code Exa 8.4 example 4

```
1 clc;
```

```
2 clear all;
3 e = 1.6*1e-19; // Charge of electrons in coloumbs
4 m = 9.1*1e-31; // Mass of electrons in Kg
5 Ef = 7*e; //Fermi energy in electrons volt
6 t = 3*1e-14; // Relaxation time in seconds
7 vf = sqrt(Ef*2/m);
8 lambda = vf*t; //The mean free path of electrons
9 disp('Meters', lambda, 'The mean free path of electrons is');
```

Scilab code Exa 8.5 example 5

Quantum Physics

Scilab code Exa 9.1 example 1

```
1 clc;
2 clear all;
3 e = 1.6e-19; // Charge of electron in Coloumb
4 lambda = 2e-10; // Wavelength of a photon in meters
5 h = 6.62e-34; // Planc's constant in Joule second
6 c = 3e8; // Velocity og light in air in meter per second
7 E = (h*c)/(lambda*e); // Thermal conductivity of Ni
8 p = h/lambda; // The momentum of photon
9 disp('eV',E,'The energy of photon is ');
10 disp('(kg.m)/s',p,'The momentum of photon is ');
```

Scilab code Exa 9.2 example 2

```
1 clc;
2 clear all;
3 h = 6.62e-34; // Planck's constant J.s
4 v = 440e3; // Operating frequency of radio in Hertz
```

```
5 P = 20e3 ; // Power of radio transmitter in Watts
6 n = P/(h*v); // Let n be the number of photons
        emitted per second
7 disp('',n,'Number of photon emitted per second is ')
   ;
```

Scilab code Exa 9.3 example 3

```
clc;
clear all;
h = 6.62e-34; // Planck's constant in J.s
c = 3e8; // Velocity of ligth in air
t = 18000; // Time of glow - (5*3600) in seconds
P = 30 //Power in watts
lambda = 5893e-10; // Wavelength of emitted ligth in meters
E = (h*c)/lambda; // Energy of a photon
n = (P*t)/E; // let n be the number of photons emitted in 5 hours
disp('',n,'Number of photons emitted in 5 hours is');
;
```

Scilab code Exa 9.4 example 4

```
1 clc;
2 clear all;
3 h = 6.62*1e-34; // Plancl's constant in J.s
4 c = 3*1e8; // Velocity of light in vacccum in m/s
5 m = 9.1*1e-31; // Mass of electron in Kg
6 lambda = 0.7078*1e-10 // Wavelength in meter
7 theta = 90;
8 delta = (h*(1-cosd(theta))/(m*c));
9 Nlambda = lambda + delta;
```

10 disp('meter', Nlambda, 'The wavelength of scattered X-rays is ');

Scilab code Exa 9.5 example 5

Scilab code Exa 9.6 example 6

```
1 clc;
2 clear all;
3 m = 9.1e-31; // Mass of electron in kg
4 h = 6.62e-34; // Planck's constant in Js
5 c = 3e8; // Velocity of light in vaccum
6 lambda = 1.12e-10; // Wavelength of light in meters
7 theta = 90;
8 delta = (h*(1-cosd(theta)))/(m*c);
9 Nlambda = lambda + delta; // The wavelength of scattered X-rays
10 E = (h*c)*((1/lambda)-(1/Nlambda)); // Energy of electron
```

Scilab code Exa 9.7 example 7

```
1 clc;
2 clear all;
3 m = 9.1e-31; // Mass of electron in kg
4 h = 6.62e-34; // Planck's constant in Js
5 c = 3e8; // Velocity of light in vaccum
6 lambda = 0.03e-10; // Wavelength of light in meters
7 theta = 60; // angle in degree
8 delta = (h*(1-cosd(theta)))/(m*c);
9 Nlambda = lambda + delta;
10 E = ((h*c)*((1/lambda)-(1/Nlambda)))/1.6e-19 ;//
Energy of recoiling electron
11 disp('eV',E, 'Energy of recoiling electron is ');
```

Scilab code Exa 9.8 example 8

```
1 clc;
2 clear all;
3 m = 9.1e-31; // Mass of electron in kg
4 h = 6.62e-34; // Planck's constant in Js
5 c = 3e8; // Velocity of light in vaccum
6 lambda = 0.5e-10; // Wavelength of light in meters
7 theta = 90;
8 delta = (h*(1-cosd(theta)))/(m*c);
9 Nlambda = lambda + delta;
10 E = (h*c)*((1/lambda)-(1/Nlambda));
11 disp('J',E,'Energy of electron is ');
```

Scilab code Exa 9.9 example 9

```
1 clc;
2 clear all;
3 m = 9.1e-31; // Mass of electron in kg
4 h = 6.62e-34; // Planck's constant in Js
5 c = 3e8; // Velocity of light in vaccum
6 lambda = 1.5e-10; // Wavelength of light in meters
7 E = 0.5e-16; // Energy of electron in J
8 Nlambda = ((h*c)/lambda)-E;//'Energy of scattered electron
9 disp('J',Nlambda,'Energy of scattered electron is ')
;
```

Scilab code Exa 9.10 example 10

```
1 clc;
2 clear all;
3 lemda=0.022*1e-10; //wavelength in meters
4 th=45; //angle in degree
5 m=9.1*1e-31;
6 c=3*1e8; // velocity of light in free space
7 h=6.62*1e-34; //plank's constant
8 x = \cos(th);
9 \text{ disp}(x);
10 dlemda=h*(1-cos(th))/(m*c);//delta lemda
11 disp('m',dlemda,'delta lemda is=');
12 //lemda-lemda1=dlemda s0.. lemda1=lemda-dlemda
13 lemda1=lemda-dlemda; //wavelength of incident X-rays
14 disp('m',lemda1, 'wavelength of incident X-rays');
15 //there is variation in the answer than book...
     checked in calculator too.. (mistake of book)
```

Scilab code Exa 9.11 example 11

```
1 clc;
2 clear all;
3 a = 1e-10 // Width of box in meter
4 m = 9.1e-31; // Mass of electron in kg
5 h = 6.62e-34; // Planck's constant in Js
6 c = 3e8; // Velocity of light in vaccum
7 n = 1; // Single electron
8 E = (n^2 * h^2)/(8*m*a^2*1.6e-19);
9 disp('eV',E,'Energy of electron n^2*');
```

Scilab code Exa 9.12 example 12

```
1 clc;
2 clear all;
3 a = 1e-10 // Width of box in meter
4 m = 9.1e-31; // Mass of electron in kg
5 h = 6.62e-34; // Planck's constant in Js
6 c = 3e8; // Velocity of light in vaccum
7 n = 1; // Single electron
8 E = (h^2)/(8*m*a^2); // Energy of in lower level
9 p = h/(2*a); // Momentum
10 disp('J',E, 'Energy of in lower level');
11 disp('(kg.m)/s',p,'Momentum is ');
```

Scilab code Exa 9.13 example 13

```
1 clc;
```

Scilab code Exa 9.14 example 14

```
1 clc;
2 clear all;
3 n = 1; // Single particle
4 a = 50e-10; // Width of box in meter
5 deltax = 10e-10; // Intervel between particle
6 p = (2/a)*deltax;//The probability of finding the particle
7 disp('',p,'The probability of finding the particle is ');
```

Scilab code Exa 9.15 example 15

```
7 v = 1e-5; // Velocity of particle in m/s
8 E = (0.5*m*v^2);
9 n = sqrt(8*m*a^2*E/(h^2)); // The quantum state
10 disp('',n,'The quantum state is ');
```

Scilab code Exa 9.16 example 16

```
1 clc;
2 clear all;
3 h = 6.62e-34; // Planck's constant in J.s
4 m = 9.1e-31 // Mass of electron in kg
5 nk =1;
6 nl = 1;
7 nm = 1;
8 a = 0.5e-10 // Width of cubical box in meter
9 E = (h^2*(nk^2+nl^2+nm^2))/(8*m*a^2*1.6e-19);//The lowest energy level will have energy
10 disp('eV',E,'The lowest energy level will have energy ');
```

Energy Bands in Solids

Scilab code Exa 10.1 example 1

Scilab code Exa 10.2 example 2

```
1 clc;
2 sx=0.01 //in ev. where x=E-Ef
3 x1=sx*1.6*1e-19 //converting it in joule
4 T=200 //in kelvin
5 Fe=1/(1+exp(x1/(1.38*1e-23*T)));//The value of F(E)
6 disp(Fe, 'The value of F(E) =')
```

Scilab code Exa 10.3 example 3

```
1 clc;
2 density=7.13*1e3  //in kg/m^3
3 M=65.4
4 N=6.023*1e26  //avogedro number
5 n=(2*density*N)/M
6 n1=n^(2/3);
7 Ef=3.65*1e-19*n1;  //in eV
8 Ef1=(3/5)*Ef  //in eV
9 disp(+'eV',Ef,'fermi energy =');
10 disp(+'eV',Ef1,'Mean energy at T=0K =');
11 //there is slight variation in answer than book's answer.. checked in calculator too..(book's mistake)
```

Scilab code Exa 10.4 example 4

```
1 clc;
2 clear all;
3 Ef=5.51 //in eV
4 E=(3/5)*Ef;//The average energy of a free electron in silver at 0k
5 disp(+'eV',E,'The average energy of a free electron in silver at 0k =')
```

Semiconductors

Scilab code Exa 11.1 example 1

```
1 clc;
2 clear all;
3 Pi=0.47;//given resistivity of intrinsic germanium
4 sigmai=1/Pi;//conductance
5 e=1.6*1e-19;//charge of electron
6 ue=0.38;//electron mobility
7 up=0.18;//hole mobility
8 ni=sigmai/(e*(ue+up));//intrinsic carrier density at 300K
9 disp('m^-3',ni,'intrinsic carrier density at 300K
temp=');
```

Scilab code Exa 11.2 example 2

```
1 clc;
2 clear all;
3 e=1.6*1e-19;//charge of electron
4 ue=0.39;//electron mobility
```

```
5 up=0.19; //hole mobility
6 ni=2.4*1e19; //intrinsic carrier density
7 sigma=ni*e*(up+ue);
8 disp('ohm^-1*m^-1', sigma, 'conductivity of intrinsic semiconductor=');
```

Scilab code Exa 11.3 example 3

```
1 clc;
2 clear all;
3 m0=9.1*1e-31;
4 me=0.12*m0;
5 mp=0.28*m0;
6 Eg=0.67*1.6*1e-19
7 k=1.38*1e-23; // boltzman constant
8 h=6.62*1e-34; // plank's constant
9 T=300;
10 ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg /(2*k*T)); // intrinsic carrier concentration
11 disp('m^-3',ni,'intrinsic carrier concentration is=');
```

Scilab code Exa 11.4 example 4

```
1 clc;
2 clear all;
3 Eg1=0.36*1.6*1e-19;
4 Eg2=0.72*1.6*1e-19
5 k=1.38*1e-23;//boltzman constant
6 T=300;//tempreture in kelvin
7 //in this formula ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T)) ratio of nip/niq is given by:
```

```
8 x=exp((Eg2-Eg1)/(2*k*T));//ratio of nip/niq
9 disp(x, 'ratio of nip/niq is=');
10 //slight variation in ans than book.. checked in calculator also
```

Scilab code Exa 11.5 example 5

```
1 clc;
2 clear all;
3 e=1.6*1e-19;//charge of electron
4 ue=0.39;//electron mobility
5 up=0.19;//hole mobility
6 ni=2.5*1e19;//intrinsic carrier density
7 l=1e-2;//length of Ge rode
8 a=1e-4;//area of Ge rode
9 sigma=ni*e*(up+ue);//conductivity of intrinsic semiconductor
10 disp('ohm^-1*m^-1',sigma,'conductivity of intrinsic semiconductor=');
11 P=1/sigma;
12 R=P*1/a;//resistance of Ge rode
13 disp('ohm',R,'resistance of Ge rode');
```

Scilab code Exa 11.6 example 6

```
1 clc;
2 clear all;
3 ue=3850;//mobility of electron
4 sigma=5;//conductivity of ntype semiconductor
5 e=1.6*1e-19;//charge of electron
6 Nd=sigma/(e*ue);//density of donor atoms
7 disp('cm^-3',Nd,'density of donor atoms is=');
```

Scilab code Exa 11.7 example 7

Scilab code Exa 11.8 example 8

```
1 clc;
2 clear all;
3 //let Ec1-Ef=0.3eV=x and Ec2-Ef=y
4 x=0.3; //Ec-Ef in eV
5 T1=300; //tempreture in kelvin
6 T2=330; //tempreture in kelvin
7 //Ec-Ef=k*T*log(Nc/Nd) so..
8 y=T2*x/T1; //Ec2-Ef in eV
9 disp('eV',y,'Ec2-Ef in eV is=');
```

Scilab code Exa 11.9 example 9

```
1 clc;
2 clear all;
```

```
3 B=0.5; // given flux density
4 d=3*1e-3; // given thickness
5 J=500; // given current density
6 n=1e21; // given donor density
7 e=1.6*1e-19; // charge of electron
8 Vh=(B*J*d/(n*e)); // hall voltage
9 disp('V', Vh, 'hall voltage is=');
```

Scilab code Exa 11.10 example 10

```
1 clc;
2 clear all;
3 P=8.9*1e-3;//resistivity of doped sillicon
4 Rh=3.6*1e-4;//hall coefficient
5 e=1.6*1e-19;//charge of electron
6 ne=3*%pi/(8*Rh*e);//carrier density of electron
7 disp('m^-3',ne,'carrier density of electron is=');
8 ue=1/(P*ne*e);//mobility of electon
9 disp('m^2*V^-1*s^-1',ue,'mobility of electon is=')
```

Superconductivity

Scilab code Exa 12.1 example 1

Scilab code Exa 12.2 example 2

```
1 clc;
2 clear all;
3 Tc=0.3;//given tempareture in kelvin
4 thetad=300;
5 //part a
6 N0g=-1/(log(Tc/thetad));
```

```
7 disp(NOg, 'the value of NOg is');
8 //part b
9 kB=1.38*1e-23; //boltzmann constant
10 Eg=3.5*kB*Tc; //energy
11 disp('J', Eg, 'energy is=');
```

Scilab code Exa 12.3 example 3

Scilab code Exa 12.4 example 4

```
1 clc;
2 clear all;
3 HcT=2*1e5/(4*%pi);//magnetic field intensity at T K
4 Hc0=3*1e5/(4*%pi);//magnetic field intensity at T=0K
5 Tc=3.69;//given temperature in K
6 T=sqrt(1-(HcT/Hc0))*Tc;//tempreture in K
7 disp('K',T,'temperature of superconducture is=');
```

Scilab code Exa 12.5 example 5

```
clc;
clear all;
H0=6.5*1e4;//given constant characteristic of lead
    material
Tc=7.18;//given temprature in kelvin
T=4.2;//given temprature in kelvin
//part a
k=(T/Tc)*(T/Tc);
Hc=H0*(1-x);//value of magnetic field at 4.2K temp
disp('A/M',Hc,'value of magnetic field at 4.2K temp
');
//part b
r=1e-3/2;//given radius
r=1e-3/2;//given radius
lc=2*%pi*r*Hc;//critical current
disp('A',Ic,'critical current is=');
```

Scilab code Exa 12.6 example 6

```
1 clc;
2 clear all;
3 lemdaT=750; // given penetration depth at T=3.5K
4 Tc=4.22; //given critical tempreture
5 T=3.5; ///given tempareture
6 //part a
7 x=(T/Tc)^4;/temporary variable
8 lemda0=lemdaT/sqrt(1-x);//penetration depth at T=0K
9 disp('Angstrome',lemda0,'penetration depth at T=0K
      is=');
10 //part b
11 N=6.02*1e26; //given
12 alpha=13.55*1e3; // given
13 M = 200.6; //given
14 \text{ n0=N*alpha/M};
15 disp('/m^3',n0,'molecular density=');
16 ns=n0*(1-(T/Tc)^4);//superconducting electron
```

```
density
17 disp('/m^3',ns,'superconducting electron density=');
18 //Result printed wrong in book
```

Magnetic Materials

Scilab code Exa 13.1 example 1

```
1 clc;
2 clear all;
3 u0=4*%pi*1e-7;
4 H=1e7;//magnetic field strength
5 X=(-0.9)*1e-6;//magnetic suseptiblity
6 M=X*H;//magnetization of material
7 disp('A/m',M,'magnetization of material is=');
8 B=u0*H;//magnetic flux density
9 disp('Wb/m^2',B,'magnetic flux density is=');
```

Scilab code Exa 13.2 example 2

```
5 u0=4*%pi*1e-7;
6 M=X*H;//magnetization
7 disp('A/m',M,'magnetization is=');
8 ur=X+1;//relative permiability
9 B=u0*ur*H;//magnetic flux density
10 disp('W/m^2',B,'magnetic flux density is=');
```

Scilab code Exa 13.3 example 3

```
1 clc;
2 clear all;
3 M=2.74*1e8;//magnetization per atom in A/m
4 a=2.66*1e-10;//elementry cube edge
5 n=2;//Iron in BCC
6 B=(M*a*a*a)/2;//Am^2 per atom
7 disp('Am^2',B,'Am^2 per atom=');
8 //interms of bohr megneton
9 b=B/(9.27*1e-24);//dipole moment
10 disp('bohr megnaton/atom',b,'dipole moment is=');
11 //slight variation in ans than book.. checked in calculator also
```

Scilab code Exa 13.4 example 4

```
1 clc;
2 clear all;
3 u0=4*%pi*1e-7;
4 b=9.27*1e-24;
5 H=1e3;//homogeneous field
6 k=1.38*1e-23;//boltzmann constant
7 T=303;//temp in kelvin
8 T1 = T - 273; // Temp In Degree
9 x=u0*b*H/(k*T);//avg magnetic moment
```

```
10 disp('bohr magneton/spin',x,'avg magnetic moment is=
    ');
```

Scilab code Exa 13.5 example 5

```
1 clc;
2 clear all;
3 ur=16;//relative permiability
4 I=3300;//intensity of magnetization
5 H=I/(ur-1);//strength of the field
6 disp('A/m',H,'strength of the field');
```

Dielectrics

Scilab code Exa 14.1 example 1

```
1 clc;
2 clear all;
3 er=1.0000684; // dielectric constant of helium
4 N=2.7*1e25; // atoms/m^3
5 r=(er-1)/(4*%pi*N);
6 R=r^(1/3); // radius of electron cloud
7 disp('m',R,'radius of electron cloud is');
8 // slight variation in ans than book.. checked in calculator also
```

Scilab code Exa 14.2 example 2

```
1 clc;
2 clear all;
3 k=1.38*1e-23;//boltzmann constant
4 N=1e27;//HCL molecule per cubic meter
5 E=1e6;//electric field of vapour
6 D=3.33*1e-30;
```

```
7 pHCL=1.04*D;
8 T=300;//tempreture in kelvin
9 alpha=(pHCL)^2/(3*k*T);
10 p0=N*alpha*E;//orientation polarization
11 disp('C/m^2',p0,'orientation polarization is=');
```

Scilab code Exa 14.3 example 3

```
1 clc;
2 clear all;
3 alpha=0.35*1e-40;//polarizability of gas
4 N=2.7*1e25;
5 e0=8.854*1e-12;//permittivity of vacume
6 er=1+(N*alpha/e0);//relative permittivity
7 disp(er, 'relative permittivity is=');
```

Scilab code Exa 14.4 example 4

```
1 clc;
2 clear all;
3 er=12; // relative permittivity
4 N=5*1e28; // atoms/m^3
5 e0=8.854*1e-12; // permittivity of vacume
6 x=(er-1)/(er+2);
7 alpha=(3*e0/N)*x; // electrical polarizability
8 disp('F*m^2', alpha, 'electrical polarizability');
```

Scilab code Exa 14.5 example 5

```
1 clc;
```

```
2 clear all;
3 C=2.4*1e-12; // given capacitance in F
4 e0=8.854*1e-12; // permittivity of vacume
5 a=4*1e-4; // area in m^2
6 d=0.5*1e-2; // thickness
7 tandelta=0.02;
8 er=(C*d)/(e0*a); // relative permittivity
9 disp(er, 'relative permittivity is=');
10 lf=er*tandelta; // loss factor
11 disp(lf, 'electric loss factor is=');
12 delta=atan(0.02);
13 PA=90-delta; // phase angle
14 disp(PA, 'phase angle is=');
15 // slight variation in ans than book.. checked in calculator also
```

Scilab code Exa 14.6 example 6

```
1 clc;
2 clear all;
3 er=8;//relative permittivity
4 a=0.036;//area in m^2
5 e0=8.854*1e-12;//permittivity of vacume
6 C=6*1e-6;//capacitance in F
7 V=15;//potential difference
8 d=e0*er*a/C;
9 E=V/d;//field strength
10 disp('V/m',E,'field strength is=');
11 dpm=e0*(er-1)*E;//dipole moment/unit volume
12 disp('C/m^2',dpm,'dipole moment/unit volume=');
13 //slight variation in ans than book.. checked in calculator also(Mistake in textbook)
```