《常微分方程》期末速通

2. 一阶微分方程的解法

2.1 变量分离方程

[**类型2.1.1**] 变量分离方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x) \cdot \varphi(y)$ 的方程的解法:

(1) 若 $\exists y_0 \ s.t. \ \varphi(y_0) = 0$, 则验证 $y = y_0$ 是否为原方程的一个解.

(2)
$$arphi(y)
eq 0$$
 时,方程等价于 $\dfrac{\mathrm{d} y}{arphi(y)} = f(x) \mathrm{d} x$.

两边积分得:
$$\int rac{\mathrm{d}y}{arphi(y)} = \int f(x) \mathrm{d}x + C$$
 , 解得: 通解 $arPhi(y,x,c) = 0$ 或 $y = y(x,c)$.

(3) 若 $y = y_0$ 是解,则检查其与(2)求得的解能否合并.

[**例2.1.1**] 求方程
$$\dfrac{\mathrm{d}y}{\mathrm{d}x} = P(x) \cdot y$$
 的通解.

(1) 经检验, y = 0 是方程的一个解.

(2)
$$y \neq 0$$
 时,分离变量得: $\dfrac{\mathrm{d}y}{y} = P(x)\mathrm{d}x$,两边积分得: $\ln|y| = \int P(x)\mathrm{d}x + C_1$,

则通解
$$|y|=\mathrm{e}^{\int P(x)\mathrm{d}x+C_1}$$
 , 即 $y=\pm\mathrm{e}^{C_1}\cdot\mathrm{e}^{\int P(x)\mathrm{d}x}=C_2\cdot\mathrm{e}^{\int P(x)\mathrm{d}x}$ $(C_2
eq 0)$.

综上, 通解为 $y = C \cdot e^{\int P(x) dx}$.

[**例2.1.2**] 求方程
$$\dfrac{\mathrm{d}y}{\mathrm{d}x}=y^2\cos x$$
 满足初值条件 $x=0$ 时 $y=1$ 的特解.

(1) 虽 y=0 是原方程的解, 但它不满足初值条件.

(2)
$$y \neq 0$$
 时,分离变量得: $\dfrac{\mathrm{d}y}{y^2} = \cos x \mathrm{d}x$,两边积分得: $-\dfrac{1}{y} = \sin x + C$,则通解 $y = -\dfrac{1}{\sin x + C}$.

代入
$$y(0)=1$$
 , 解得: $C=-1$, 即特解为 $y=-rac{1}{\sin x-1}$.

综上, 特解为
$$y = -\frac{1}{\sin x - 1}$$
 .

[**例2.1.3**] 解方程
$$rac{\mathrm{d} y}{\mathrm{d} x} = rac{1 + y^2}{xy + x^3 y}$$
 .

[解] 由原方程知:
$$x \neq 0$$
 . 分离变量得: $\dfrac{y}{1+y^2}\mathrm{d}y = \dfrac{\mathrm{d}x}{x(1+x^2)}$, 即 $\dfrac{2y}{1+y^2}\mathrm{d}y = \dfrac{\dfrac{2}{x^3}}{\dfrac{1}{x^2}+1}\mathrm{d}x$.

两边积分得:
$$\int rac{\mathrm{d}y^2}{1+y^2} = \int rac{-\mathrm{d}rac{1}{x^2}}{rac{1}{x^2}+1}$$
 , 则 $\ln|1+y^2| = -\ln\left|rac{1}{x^2}+1
ight| + C_1 = \ln\left[\mathrm{e}^{C_1}\cdot\left(rac{1}{x^2}+1
ight)
ight]^{-1}$,

进而
$$(1+y^2)\left(\mathrm{e}^{C_1}rac{1+x^2}{x^2}
ight)=1$$
 , 即 $(1+y^2)(1+x)^2=C_2x^2$ $\ (C_2>0)$.

2.2 齐次方程

[**类型2.2.1**] 齐次方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = g\left(\frac{y}{x}\right)$ 的方程的解法:

(1) 令
$$u=rac{y}{x}$$
 , 则 $y=ux$. 两边对 x 求全微分得: $rac{\mathrm{d}y}{\mathrm{d}x}=xrac{\mathrm{d}u}{\mathrm{d}x}+u$.

(2) 化为变量分离方程
$$rac{\mathrm{d}u}{\mathrm{d}x}=rac{g(u)-u}{x}$$
 , 解得: 通解 $arPhi(u,x,c)=0$ 或 $u=arphi(x,c)$.

(3) 回代
$$u=rac{y}{x}$$
 解出 y .

[**注**] 函数 f(x,y) 齐次 \Leftrightarrow 对 \forall 常数 t , 有 f(x,y)=f(tx,ty)

$$\Leftrightarrow$$
 \exists 函数 g 或 h $s.t.$ $f(x,y)=g\left(rac{y}{x}
ight)$ 或 $f(x,y)=h\left(rac{x}{y}
ight)$.

[**例2.2.1**] 解方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \tan\frac{y}{x}$$
 .

[**解**] 显然原方程齐次. 令 $u=\dfrac{y}{x}$, 原方程化为 $x\dfrac{\mathrm{d}u}{\mathrm{d}x}=\tan u$.

(1) an u = 0 时, u = 0 . 经检验: u = 0 是原方程的解, 此时 y = 0 .

(2)
$$\tan u \neq 0$$
 时,分离变量得: $\dfrac{\mathrm{d} u}{\tan u} = \dfrac{\mathrm{d} x}{x}$,两边积分得: $\int \dfrac{\mathrm{d} (\sin u)}{\sin u} = \int \dfrac{\mathrm{d} x}{x}$,

解得: $\ln |\sin u| = \ln |x| + C_1$,即 $\sin u = \pm \mathrm{e}^{C_1} \cdot x$,亦即 $\sin u = C_2 x \ \ (C_2 \neq 0)$.

故原方程解为 $\sin \frac{y}{x} = C_2 x \ (C_2
eq 0)$.

综上, 通解为 $\sin \frac{y}{x} = Cx$.

[**例2.2.2**] 解方程
$$x \frac{\mathrm{d}y}{\mathrm{d}x} - 2\sqrt{xy} = y \ (x < 0)$$
 .

[解] 原方程化为
$$rac{\mathrm{d}y}{\mathrm{d}x}=2\sqrt{rac{y}{x}}+rac{y}{x}$$
 , 显然齐次. 令 $u=rac{y}{x}$, 原方程化为 $rac{\mathrm{d}u}{\mathrm{d}x}=rac{2\sqrt{u}}{x}$.

(1) 经检验, u=0 是方程的解, 此时 y=0.

(2)
$$u \neq 0$$
 时, 分离变量得: $\dfrac{\mathrm{d}u}{2\sqrt{u}} = \dfrac{\mathrm{d}x}{x}$, 两边积分得: $\sqrt{u} = \ln{(-x)} + C$.

$$\ln{(-x)} + C \geq 0$$
 时, $u = [\ln{(-x)} + C]^2$, 则 $y = x \cdot [\ln{(-x)} + C]^2$.

综上, 通解为
$$y=egin{cases} 0 \ x\cdot[\ln{(-x)}+C]^2,\ln{(-x)}+C\geq0 \ . \ \mathcal{E}$$
解, $\ln{(-x)}+C<0$

[**例2.2.3**] 解方程 $\tan y dx - \cot x dy = 0$.

「解

(1) $\tan y = 0$, 即 $y = k\pi$ $(k \in \mathbb{Z})$ 时, 经检验, $y = k\pi$ $(k \in \mathbb{Z})$ 是该方程的解.

(2)
$$an y
eq 0$$
 , 即 $y
eq k\pi$ $(k \in \mathbb{Z})$ 时, 原方程化为 $\dfrac{\mathrm{d} y}{\tan x} = \dfrac{\mathrm{d} x}{\cot y}$,

即
$$\tan x dx = \cot y dy$$
,亦即 $\frac{\sin x}{\cos x} dx = \frac{\cos y}{\sin y} dy$.

两边积分得:
$$-\ln|\cos x| = \ln|\sin y| + C_1 = \ln\left(\mathrm{e}^{C_1}\cdot|\sin y|\right)$$
 ,

即
$$\mathrm{e}^{C_1} \cdot |\sin y| \cdot |\cos x| = 1$$
 , 亦即 $\sin y \cos x = C_2 \ (C_2
eq 0)$.

2.3 可化为齐次方程的类型I

[**类型2.3.1**] 形如 $\frac{\mathrm{d}y}{\mathrm{d}x}=f(ax+by+c)\;(a,b\neq0)$ 的方程的解法:

(1) 令
$$u=ax+by+c$$
 , 两边对 x 求全微分得: $\dfrac{\mathrm{d}u}{\mathrm{d}x}=a+b\dfrac{\mathrm{d}y}{\mathrm{d}x}$.

(2) 化为变量分离方程
$$\dfrac{\mathrm{d} u}{\mathrm{d} x} = a + b \cdot f(u)$$
 , 解得: 通解 $arPhi(u,x,c) = 0$ 或 $u = arphi(x,c)$.

(3) 回代
$$u = ax + by + c$$
 解出 y .

[**例2.3.1**] 解方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = (x+y)^2$$
.

[**解**] 令
$$u=x+y$$
 , 两边对 x 求全微分得: $\dfrac{\mathrm{d} u}{\mathrm{d} x}=1+\dfrac{\mathrm{d} y}{\mathrm{d} x}$.

原方程化为
$$\frac{\mathrm{d}u}{\mathrm{d}x}=1+u^2$$
 , 分离变量并两边积分得: $\arctan u=x+C$.

故通解为 $\arctan(x+y) = x + C$.

[**注**]
$$(\arctan u)' = \frac{1}{1+u^2}$$
.

[**例2.3.2**] 解方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{(x+y)^2}$$
.

[**解**] 令
$$u=x+y$$
 , 两边对 x 求全微分得: $\dfrac{\mathrm{d} u}{\mathrm{d} x}=1+\dfrac{\mathrm{d} y}{\mathrm{d} x}$.

原方程化为
$$rac{\mathrm{d}u}{\mathrm{d}x}=rac{u^2+1}{u^2}$$
 , 分离变量得: $rac{u^2}{1+u^2}\mathrm{d}u=\mathrm{d}x$,

两边积分得: $u - \arctan u = x + C$, 即 $x + y - \arctan (x + y) = x + C$.

故通解为 $y - \arctan(x + y) = C$.

[
$$!] $(u - \arctan u)' = \frac{u^2}{1 + u^2}.$$$

[例2.3.3] 求一平面曲线, 使得其切线介于坐标轴间的部分被切点等分.

[解] 设曲线 y=f(x) , 则它在点 (x,y) 处的切线方程为 Y-y=y'(X-x) , 其中 (X,Y) 是切线上的点.

切线与 x 轴和 y 轴的交点分别为 $\left(x-\frac{y}{y'},0\right)$ 和 $\left(0,y-xy'\right)$.

依题意得:
$$\left\{rac{1}{2}ig(x-rac{y}{y'}ig)=x
ight.$$
,即 $xy'+y=0$,亦即 $x\mathrm{d}y+y\mathrm{d}x=0$.

分离变量并两边积分得: xy = C.

2.4 可化为齐次方程的类型II

[**类型2.4.1**] 形如
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$$
的方程的解法:

(1)
$$c_1=c_2=0$$
 且 $x
eq 0$ 时,化为齐次方程 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{a_1+b_1\dfrac{y}{x}}{a_2+b_2\dfrac{y}{x}}$.

(2)
$$\begin{vmatrix} a_1 & b_1 \ a_2 & b_2 \end{vmatrix} = 0$$
 时, 有如下三种情况:

①
$$a_1=b_1=0$$
 时,原方程化为 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{c_1}{a_2x+b_2y+c_2}$,是可化为齐次方程的类型I.

$$a_2=b_2=0$$
 时, 原方程化为 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{a_1x+b_1y+c_1}{c_2}$, 是可化为齐次方程的类型I.

②
$$b_1=b_2=0$$
 时, 原方程化为 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{a_1x+c_1}{a_2x+c_2}$, 是变量分离方程.

$$a_1=a_2=0$$
 时,原方程化为 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{b_1y+c_1}{b_2y+c_2}$,是变量分离方程.

③
$$\displaystyle rac{a_1}{a_2} = rac{b_1}{b_2} = k$$
时, $a_1 = ka_2, b_1 = kb_2$,

原方程化为
$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{k(a_2x+b_2y)+c_1}{a_2x+b_2y+c_2} = f(a_2x+b_2y)$$
 .

令
$$u=a_2x+b_2y$$
 , 两边对 x 求全微分得: $\dfrac{\mathrm{d} u}{\mathrm{d} x}=a_2+b_2\dfrac{\mathrm{d} y}{\mathrm{d} x}$.

原方程化为 $\frac{\mathrm{d}u}{\mathrm{d}x}=a_2+b_2\cdot f(u)$, 是变量分离方程.

(3)
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}
eq 0$$
 时,线性方程组 $\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$ 有唯一解 (α,β) .

令
$$\begin{cases} X = x - \alpha \\ Y = y - \beta \end{cases}$$
 或 $\begin{cases} x = X + \alpha \\ y = Y + \beta \end{cases}$

原方程化为
$$\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{a_1X + b_1Y + (a_1\alpha + b_1\beta + c_1)}{a_2X + b_2Y + (a_2\alpha + b_2\beta + c_2)} = \frac{a_1X + b_1Y}{a_2X + b_2Y} = f\left(\frac{Y}{X}\right)$$
, 是齐次方程.

[**例2.4.1**] 解方程
$$\dfrac{\mathrm{d}y}{\mathrm{d}x} = \dfrac{x-y+1}{x+y-3}$$

[**解**] 因
$$\dfrac{1}{1}
eq \dfrac{-1}{1}$$
 , 解方程组 $\displaystyle \begin{cases} x-y+1=0 \\ x+y-3=0 \end{cases}$ 得: $(x,y)=(1,2)$.

令
$$\left\{egin{aligned} x = X+1 \\ y = Y+2 \end{aligned}
ight.$$
,则 $rac{\mathrm{d}Y}{\mathrm{d}X} = rac{X-Y}{X+Y}$. 令 $u = rac{Y}{X}$, 则 $Y = uX$, 两边对 X 求全微分得: $rac{\mathrm{d}Y}{\mathrm{d}X} = Xrac{\mathrm{d}u}{\mathrm{d}X} + u$.

原方程化为
$$Xrac{\mathrm{d}u}{\mathrm{d}X}=rac{1-2u-u^2}{1+u}$$
 .

(1)
$$1 - 2u - u^2 = 0$$
时, 经检验, $Y^2 + 2XY - X^2 = 0$ 是解,

即
$$(y-2)^2 + 2(x-1)(y-2) - (x-1)^2 = 0$$
 是原方程的解

(2)
$$1-2u-u^2 \neq 0$$
 时, 分离变量得: $\dfrac{\mathrm{d} X}{X} = \dfrac{1+u}{1-2u-u^2} \mathrm{d} u = -\dfrac{1}{2} \cdot \dfrac{\mathrm{d} (1-2u-u^2)}{1-2u-u^2}$,

两边积分得: $\ln X^2 = -\ln |u^2 + 2u - 1| + C$, 则 $X^2(u^2 + 2u - 1) = C_1 \ \ (C_1
eq 0)$.

代入
$$u=rac{Y}{X}$$
 得: $Y^2+2XY-X^2=C_1$.

代入
$$egin{cases} x = X+1 \ y = Y+2 \end{cases}$$
 得: $(y-2)^2 + 2(x-1)(y-2) - (x-1)^2 = C_1 \ (C_1
eq 0)$.

综上, 通解为
$$-x^2 - 2x + 2xy + y^2 - 6y = C$$
.

[**例2.4.2**] 解方程
$$rac{\mathrm{d} y}{\mathrm{d} x} = rac{x-y+1}{2x-2y-3}$$

[解] 因
$$\dfrac{1}{2}=\dfrac{-1}{-2}$$
 , 令 $u=x-y$, 原方程化为 $\dfrac{\mathrm{d} u}{\mathrm{d} x}=1-\dfrac{\mathrm{d} y}{\mathrm{d} x}=\dfrac{u-4}{2u-3}$

(1) u = 4 时, 经检验, x - y = 4 是原方程的解.

(2)
$$u-4 \neq 0$$
 时, 分离变量, 解得: $2u+5\ln|u-4| = x+C_1$, 即 $(u-4)^5 = C_2 \cdot \mathrm{e}^{x-2u} \ \ (C_2 \neq 0)$.

综上, 通解为
$$(x-y-4)^5=C\mathrm{e}^{2y-x}$$
 .

2.5 一阶线性ODE的通解公式

[**类型2.5.1**] 一阶线性微分方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = P(x) \cdot y + Q(x)$$
 的解法:

(1)
$$Q(x)\equiv 0$$
 时为一阶齐次线性微分方程 $rac{\mathrm{d}y}{\mathrm{d}x}=P(x)\cdot y$, 通解为 $y=C\cdot\mathrm{e}^{\int P(x)\mathrm{d}x}$.

(2)
$$Q(x)\not\equiv 0$$
 时为一阶非齐次线性方程 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=P(x)y+Q(x)$, 通解为 $y=\mathrm{e}^{\int P(x)\mathrm{d}x}\left(\int Q(x)\cdot\mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}x+C\right)$.

[证] [常数变易法] 若将(2)按(1)形式求解, 则通解为 $y=C(x)\cdot \mathrm{e}^{\int P(x)\mathrm{d}x}$.

两边对
$$x$$
 求全微分得: $rac{\mathrm{d} y}{\mathrm{d} x} = rac{\mathrm{d} C(x)}{\mathrm{d} x} \cdot \mathrm{e}^{\int P(x) \mathrm{d} x} + C(x) P(x) \cdot \mathrm{e}^{\int P(x) \mathrm{d} x}$,

则
$$rac{\mathrm{d}C(x)}{\mathrm{d}x}\cdot\mathrm{e}^{\int P(x)\mathrm{d}x}+C(x)P(x)\cdot\mathrm{e}^{\int P(x)\mathrm{d}x}=rac{\mathrm{d}y}{\mathrm{d}x}$$
 $=P(x)y+Q(x)=C(x)P(x)\cdot\mathrm{e}^{\int P(x)\mathrm{d}x}+Q(x)$,

解得:
$$rac{\mathrm{d}C(x)}{\mathrm{d}x}=Q(x)\cdot\mathrm{e}^{-\int P(x)\mathrm{d}x}$$
 , 两边积分得: $C(x)=\int Q(x)\cdot\mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}x+C$.

故通解为
$$y = \mathrm{e}^{\int P(x)\mathrm{d}x} \left(\int Q(x) \cdot \mathrm{e}^{-\int P(x)\mathrm{d}x} \mathrm{d}x + C \right).$$

[**注1**] 注意(2)的通解中第一个 e 之前无 C, 第二个 e 的指数有负号.

[**注2**] 通解 $y = C \cdot \mathrm{e}^{\int P(x)\mathrm{d}x} + \mathrm{e}^{\int P(x)\mathrm{d}x} \cdot \int Q(x) \cdot \mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}x$, 其中第一项是齐次线性微分方程的通解,第二项是非齐次线性微分方程一个特解,则非齐次线性微分方程的通解的结构: 通解等于其对应的齐次方程的通解与自身的一个特解之和.

[**类型2.5.2**] 一阶线性微分方程
$$\frac{\mathrm{d}x}{\mathrm{d}y} = P(y) \cdot x + Q(y)$$
 的解法:

(1)
$$Q(y)\equiv 0$$
 时为一阶齐次线性微分方程 $rac{\mathrm{d}x}{\mathrm{d}y}=P(y)\cdot x$, 通解为 $x=C\cdot\mathrm{e}^{\int Q(y)\mathrm{d}y}$.

(2)
$$Q(y)\not\equiv 0$$
 时为一阶非齐次线性微分方程 $\dfrac{\mathrm{d}x}{\mathrm{d}y}=P(y)\cdot x+Q(y)$, 通解为 $x=\mathrm{e}^{\int P(y)\mathrm{d}y}\left(\int Q(y)\cdot\mathrm{e}^{-\int P(y)\mathrm{d}y}\mathrm{d}y+C\right)$.

[注] 注意(2)的通解中第一个 e 之前无 C, 第二个 e 的指数有负号.

[**例2.5.1**] 解方程
$$y'+y\sin x=0$$
 , 并求满足条件 $y\left(\frac{\pi}{2}\right)=2$ 的特解.

[解]
$$P(x) = -\sin x$$
,则通解为 $y = C \cdot \mathrm{e}^{\int (-\sin x) \mathrm{d}x} = C \cdot \mathrm{e}^{\cos x}$.

代入
$$y\left(\frac{\pi}{2}\right)=2$$
得: 特解 $y=2\mathrm{e}^{\cos x}$.

[**例2.5.2**] 解方程
$$(x+1)\frac{\mathrm{d}y}{\mathrm{d}x} - ny = \mathrm{e}^x(x+1)^{n+1} \ (n \in \mathrm{Const.})$$
.

[解]
$$x \neq -1$$
 时, 原方程化为 $\dfrac{\mathrm{d}y}{\mathrm{d}x} = \dfrac{n}{x+1}y + \mathrm{e}^x(x+1)^n$.

$$P(x)=rac{n}{x+1},Q(x)=\mathrm{e}^x(x+1)^n, \mathrm{e}^{\int P(x)\mathrm{d}x}=(x+1)^n$$
 ,

故通解为
$$y=(x+1)^n\left(\int \mathrm{e}^x\mathrm{d}x+C\right)=(x+1)^n(\mathrm{e}^x+C)$$
 .

[**例2.5.3**] 解方程
$$\dfrac{\mathrm{d}y}{\mathrm{d}x} = \dfrac{y}{2x-y^2}$$
 .

[解] 显然 y=0 是方程的一个解, 下面讨论 $y\neq 0$ 的情况. 以 y 为未知函数时原方程非线性.

以
$$x$$
 为未知函数时,原方程化为 $\dfrac{\mathrm{d}x}{\mathrm{d}y}=\dfrac{2x-y^2}{y}=\dfrac{2}{y}x-y$,是一阶非齐次线性微分方程.

$$P(y)=rac{2}{y},Q(y)=-y,\mathrm{e}^{\int P(y)\mathrm{d}y}=y^2$$
 ,

故通解为
$$x=y^2\left(\int -rac{\mathrm{d}y}{y}+C
ight)=-y^2\ln|y|+Cy^2$$
 .

[**例2.5.4**] 解方程
$$\dfrac{\mathrm{d}y}{\mathrm{d}x} = y + \sin x$$
 .

[引理]
$$\int \sin x \cdot \mathrm{e}^{-x} \mathrm{d}x = -\frac{1}{2} (\sin x + \cos x) \mathrm{e}^{-x} + C$$
.

[引证]
$$I = \int \sin x \cdot e^{-x} dx = -\int \sin x de^{-x} = -\sin x \cdot e^{-x} + \int e^{-x} \cos x dx$$
 $= -\sin x \cdot e^{-x} - \int \cos x de^{-x} = -\sin x \cdot e^{-x} - \cos x \cdot e^{-x} - \int \sin x \cdot e^{-x} dx$ $= -(\sin x + \cos x)e^{-x} - I$, 解得: $I = -\frac{1}{2}(\sin x + \cos x)e^{-x} + C$.

[解]
$$P(x)=1, Q(x)=\sin x, \mathrm{e}^{\int P(x)\mathrm{d}x}=e^x$$
 ,

故通解为
$$y=\mathrm{e}^x\left(\int\sin x\cdot\mathrm{e}^{-x}\mathrm{d}x+C
ight)=C\cdot\mathrm{e}^x-rac{1}{2}(\sin x+\cos x)$$
 .

[例2.5.5] 解方程
$$rac{\mathrm{d}s}{\mathrm{d}t} = -s\cos t + rac{1}{2}\sin 2t$$
 .

[引理]
$$\int rac{\sin 2t}{2} \cdot \mathrm{e}^{\sin t} \mathrm{d}t = (\sin t - 1) \mathrm{e}^{\sin t} + C$$
 .

[3]. IE]
$$\int \frac{\sin 2t}{2} \cdot e^{\sin t} = \int \sin t \cdot e^{\sin t} d(\sin t) \stackrel{u=\sin t}{====} \int u \cdot e^{u} du = \int u de^{u}$$

$$= (u-1)e^{u} + C = (\sin t - 1)e^{\sin t} + C.$$

[解]
$$P(t)=-\cos t, Q(t)=rac{\sin 2t}{2}, \mathrm{e}^{\int P(t)\mathrm{d}t}=\mathrm{e}^{-\sin t}$$
 ,

故通解为
$$s = \mathrm{e}^{\int -\cos t \mathrm{d}t} \left(\int \frac{\sin 2t}{2} \cdot \mathrm{e}^{-\int -\cos t \mathrm{d}t} \mathrm{d}t + C \right) = \sin t - 1 + C \mathrm{e}^{-\sin t}$$
 .

[例2.5.6]
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{ay}{x} + \frac{x+1}{x}$$
 $(a \in \mathrm{Const.})$.

[解]

(1)
$$a=0$$
 时, $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{x+1}{x}$,两边积分得: $y=x+\ln|x|+C_1$.

(2)
$$a=1$$
 时, $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{y}{x}+\dfrac{x+1}{x}$. $P(x)=\dfrac{1}{x},Q(x)=\dfrac{x+1}{x},\mathrm{e}^{\int P(x)\mathrm{d}x}=|x|$,

故通解为
$$y=\mathrm{e}^{\int rac{1}{x}\mathrm{d}x}\left(\int rac{x+1}{x}\cdot\mathrm{e}^{-\int rac{1}{x}\mathrm{d}x}\mathrm{d}x+C_2
ight)=x\ln|x|-1+C_2\cdot x$$
 .

(3)
$$a
eq 0,1$$
 时, $P(x) = rac{a}{x}, Q(x) = rac{x+1}{x}, \mathrm{e}^{\int P(x) \mathrm{d}x} = \mathrm{e}^a \cdot \ln|x|$,

故通解为
$$y=\mathrm{e}^{\int rac{a}{x}\mathrm{d}x}\left(\int rac{x+1}{x}\cdot\mathrm{e}^{-\int rac{a}{x}\mathrm{d}x}\mathrm{d}x+C_{3}
ight)=rac{x}{1-a}-rac{1}{a}+C_{3}\cdot x^{a}$$
 .

综上, 通解为
$$y = egin{cases} x + \ln|x| + C_1 &, a = 0 \ x \ln|x| - 1 + C_2 \cdot x &, a = 1 \ \dfrac{x}{1-a} - \dfrac{1}{a} + C_3 \cdot x^a &, a
eq 0, 1 \end{cases}.$$

[**习题2.5.7**] 求一平面曲线 s.t. 曲线上任一点的切线的纵截距等于切点横坐标的平方.

[**解**] 设曲线 y=f(x) , 则在点 (x_0,y_0) 处的切线方程 $y-y_0=y'(x-x_0)$.

由题意:
$$y_0-y'x_0=x_0^2$$
 , 则 $xy'=y-x^2$, 即 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{y}{x}-x$.

$$P(x)=rac{1}{x},Q(x)=-x,\mathrm{e}^{\int P(x)\mathrm{d}x}=\ln|x|$$
 ,

故通解为
$$y = \mathrm{e}^{\int \frac{\mathrm{d}x}{x}} \left(\int -x \cdot \mathrm{e}^{-\int \frac{\mathrm{d}x}{x}} \mathrm{d}x + C \right) = x(C-x)$$
 .

2.6 Bernoulli方程

[**类型2.6.1**] Bernoulli方程 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=P(x)\cdot y+Q(x)\cdot y^n$ $(n\in\mathbb{R},n
eq0,1)$ 的解法:

(1)
$$y \neq 0$$
 时,原方程化为 $y^{-n} \cdot rac{\mathrm{d} y}{\mathrm{d} x} = P(x) \cdot y^{1-n} + Q(x)$.

(2)
$$\Leftrightarrow z=y^{1-n}$$
 , $\mathbb{N} \frac{\mathrm{d}z}{\mathrm{d}x}=(1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}+Q(x)$.

(3) 原方程化为
$$\dfrac{\mathrm{d}z}{\mathrm{d}x}=(1-n)\cdot P(x)\cdot z+(1-n)\cdot Q(x)$$
 , 是一阶线性微分方程.

$$(4) n > 0$$
 时, 原方程有解 $y = 0$.

[**例2.6.1**] 解方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\frac{y}{x} - xy^2$$
 .

[**解**] 该方程是
$$n=2$$
 的Bernoulli方程, $P(x)=rac{6}{x}, Q(x)=-x$.

令
$$z=y^{-1}$$
 , 原方程化为 $rac{\mathrm{d}z}{\mathrm{d}x}=-rac{6}{x}z+x$. $p(x)=-rac{6}{x},q(x)=x,\mathrm{e}^{\int p(x)\mathrm{d}x}=rac{1}{x^6}$,

故通解为
$$z=rac{1}{x^6}igg(\int x\cdot x^6\mathrm{d}x+Cigg)=rac{x^2}{8}+rac{C}{x^6}$$
 , 即 $rac{1}{y}=rac{x^2}{8}+rac{C}{x^6}.$

2.7 恰当方程

[定义2.7.1] 设 M(x,y), N(x,y) 在某矩形域内是 x,y 的连续函数, 且有一阶连续偏导数. 若方程 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 的 LHS 是某二元函数 u(x,y) 的全微分,即 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=\mathrm{d}u(x,y)=\dfrac{\partial u}{\partial x}\mathrm{d}x+\dfrac{\partial u}{\partial y}\mathrm{d}y$,则称该方程为**恰当微分方程**或**全微分方程**,其通解为 u(x,y)=C .

[**定理2.7.1**] 设 M(x,y), N(x,y) 在某矩形域内是 x,y 的连续函数, 且有一阶连续偏导数, 则方程 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 恰当的充要条件为: $\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}$.

[证]

(必) 若
$$M(x,y)dx + N(x,y)dy = 0$$
 恰当,

则
$$\exists$$
 二元函数 $u(x,y)$ $s.t.$ $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=\mathrm{d}u(x,y)=rac{\partial u}{\partial x}\mathrm{d}x+rac{\partial u}{\partial y}\mathrm{d}y$,

进而
$$M(x,y)=rac{\partial u}{\partial x}, N(x,y)=rac{\partial u}{\partial y}$$
 . 两边分别对 y,x 求偏导得: $rac{\partial M}{\partial y}=rac{\partial^2 u}{\partial x\partial y}, rac{\partial N}{\partial x}=rac{\partial^2 u}{\partial y\partial x}$.

因
$$\frac{\partial M}{\partial y}$$
, $\frac{\partial N}{\partial x}$ 都连续, 则 $\frac{\partial^2 u}{\partial x \partial y}$, $\frac{\partial^2 u}{\partial y \partial x}$ 都连续, 进而 $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$, 即 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

(充) 设
$$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$$
 . 下面构造二元函数 $u(x,y)\ s.\ t.\ M(x,y)=\frac{\partial u}{\partial x}, N(x,y)=\frac{\partial u}{\partial y}$.

$$M(x,y)=rac{\partial u}{\partial x}$$
 两边对 x 积分得: $\int M(x,y)\mathrm{d}x+arphi(y)=u(x,y)$ (*) ,

其中 $\varphi(y)$ 是关于 y 的任意可导函数.

下面求
$$arphi(y)\ s.\ t.\ u(x,y)$$
 同时满足 $N(x,y)=rac{\partial u}{\partial x}$.

$$(*)$$
 式两边对 y 求偏导得: $rac{\partial u}{\partial y}=rac{\partial}{\partial y}\int M(x,y)\mathrm{d}x+rac{\mathrm{d}arphi(y)}{\mathrm{d}y}=N(x,y)$,

则
$$rac{\partial arphi(y)}{\mathrm{d} y} = N(x,y) - rac{\partial}{\partial y} \int M(x,y) \mathrm{d} x$$
 .

注意到
$$\frac{\partial}{\partial x} \left[N(x,y) - \frac{\partial}{\partial y} \int M(x,y) dx \right] = \frac{\partial N(x,y)}{\partial x} - \frac{\partial}{\partial x} \left[\frac{\partial}{\partial y} \int M(x,y) dx \right]$$
$$= \frac{\partial N(x,y)}{\partial x} - \frac{\partial}{\partial y} \left[\frac{\partial}{\partial x} \int M(x,y) dx \right] = \frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} = 0,$$

则
$$\varphi(y)$$
 是关于 y 的一元函数,进而两边积分得: $\varphi(y)=\int \left[N(x,y)-\frac{\partial}{\partial y}\int M(x,y)\mathrm{d}x\right]\mathrm{d}y$.

故
$$u(x,y) = \int M(x,y) \mathrm{d}x + \int \left[N(x,y) - rac{\partial}{\partial y} \int M(x,y) \mathrm{d}x \right] \mathrm{d}y$$
 .

[注] 方程 M(x,y)dx + N(x,y)dy = 0 恰当

$$\Leftrightarrow$$
 日元函数 $u(x,y)$ $s.t.$ $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=\mathrm{d}u(x,y)=rac{\partial u}{\partial x}\mathrm{d}x+rac{\partial u}{\partial y}\mathrm{d}y$

$$\Leftrightarrow egin{cases} rac{\partial u}{\partial x} = M(x,y) \ rac{\partial u}{\partial y} = N(x,y) \end{cases} \Leftrightarrow rac{\partial M}{\partial y} = rac{\partial N}{\partial x} \ .$$

[**类型2.7.1**] 恰当微分方程 M(x,y)dx + N(x,y)dy = 0 的解法:

(1) 用恰当微分方程的判定求 u(x,y).

$$\bigcirc \left\{ egin{aligned} rac{\partial u}{\partial x} &= M(x,y) \ (i) \ rac{\partial u}{\partial y} &= N(x,y) \ (ii) \end{aligned}
ight. .$$

- ② (i) 式对 x 积分得 u(x,y) 的表达式 (iii) 式
- ③ (iii) 式对 y 求偏导, 求得 $\varphi'(y)$.
- ③ 对 $\varphi'(y)$ 积分, 求得 $\varphi(y)$, 代入 (iii) 式求得 u(x,y) , 写出原方程的通解.

$$u(x,y)$$
 也可直接用公式求解,即: $u(x,y)=\int M(x,y)\mathrm{d}x+\int \left[N(x,y)-rac{\partial}{\partial y}\int M(x,y)\mathrm{d}x
ight]\mathrm{d}y$.

(2) 用曲线积分求 u(x,y).

设 M(x,y),N(x,y) 都在某单连通区域 D 上连续, 且有一阶连续偏导数.

因
$$\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}$$
 , 则对 D 内任一按段光滑的曲线 L , 曲线积分 $\int_L M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y$ 与路径无关.

取 L 为从点 (x_0, y_0) 到 (x, y) 的折线路径, 则 u(x, y) 有如下两种求法:

$$\textcircled{1} \ u(x,y) = \int_{x_0}^x M(x,y_0) \mathrm{d}x + \int_{y_0}^y N(x,y) \mathrm{d}y \,.$$

$$\textcircled{2} \ u(x,y) = \int_{y_0}^y N(x_0,y) \mathrm{d}y + \int_{x_0}^x M(x,y) \mathrm{d}x \,.$$

(3) 用常用的二元函数的全微分配凑

$y\mathrm{d}x+x\mathrm{d}y=\mathrm{d}(xy)$	
$\frac{y\mathrm{d}x-x\mathrm{d}y}{y^2}=\mathrm{d}\frac{x}{y}$	$\frac{-y\mathrm{d}x+x\mathrm{d}y}{x^2}=\mathrm{d}\frac{y}{x}$
$rac{y \mathrm{d} x - x \mathrm{d} y}{xy} = \mathrm{d} \left(\ln \left rac{x}{y} ight ight)$	$rac{y \mathrm{d} x - x \mathrm{d} y}{x^2 - y^2} = \mathrm{d} \left(\ln \left rac{x - y}{x + y} ight ight)$
$rac{-y\mathrm{d}x+x\mathrm{d}y}{x^2+y^2}=\mathrm{d}\left(rctanrac{y}{x} ight)$	$rac{y \mathrm{d} x - x \mathrm{d} y}{x^2 + y^2} = \mathrm{d} \left(\mathrm{arccot} \ rac{y}{x} ight)$

实际运用中,将只含x, $\mathrm{d}x$ 的项、只含y, $\mathrm{d}y$ 的项、交叉项分开配凑

[**例2.7.1**] 解方程
$$(3x^2 + 6xy^2)dx + (6x^2y + 4y^3)dy = 0$$
.

[解1]
$$M(x,y)=3x^2+6xy^2, N(x,y)=6x^2y+4y^3$$
 . 因 $\dfrac{\partial M}{\partial y}=12xy=\dfrac{\partial N}{\partial x}$, 则该方程恰当.

下面求二元函数
$$u(x,y)$$
 $s.t.$ $\left\{ egin{aligned} rac{\partial u}{\partial x} &= M(x,y) = 3x^2 + 6xy^2 \ (i) \ rac{\partial u}{\partial y} &= N(x,y) = 6x^2y + 4y^3 \ (ii) \end{aligned}
ight.$

$$(i)$$
 式对 x 积分得: $u(x,y)=x^3+3x^2y^2+arphi(y)$ (iii) .

$$(iii)$$
 式对 y 求偏导得: $rac{\partial u(x,y)}{\partial y}=6x^2y+rac{\mathrm{d}arphi(y)}{\mathrm{d}y}=6x^2y+4y^3$,

则
$$\dfrac{\mathrm{d} arphi(y)}{\mathrm{d} y}=4y^3$$
 ,对 y 积分得: $arphi(y)=y^4$.

则
$$u(x,y)=x^3+3x^2y^2+y^4$$
 , 故通解为 $x^3+3x^2y^2+y^4=C$,

u(x,y) 也可直接用公式求解:

$$egin{align} u(x,y)&=\int M(x,y)\mathrm{d}x+\int \left[N(x,y)-rac{\partial}{\partial y}\int M(x,y)\mathrm{d}x
ight]\mathrm{d}y\ &=(x^3+3x^2y^2)+\int (6x^2y+4y^3-6x^2y)\mathrm{d}y=x^3+3x^2y^2+y^4\,. \end{split}$$

[解2] 因
$$M(x,y)=3x^2+6xy^2, N(x,y)=6x^2y+4y^3, rac{\partial M}{\partial y}=12xy, rac{\partial N}{\partial x}=12xy$$
都在 \mathbb{R}^2 上连续,

则对
$$\mathbb{R}^2$$
 上任一按段光滑的曲线 L , 曲线积分 $\int_L M(x,y) \mathrm{d}x + N(x,y) \mathrm{d}y$ 与路径无关.

取 L 为从点 (0,0) 到点 (x,y) 的折线路径

则
$$u(x,y)=\int_0^x 3x^2\mathrm{d}x+\int_0^y (4x^2y+4y^3)\mathrm{d}y=x^3+3x^2y^2+y^4$$
 , 故通解为 $x^3+3x^2y^2+y^4=C$.

[**解3**] 注意到
$$(3x^2 + 6xy^2)$$
d $x + (6x^2y + 4y^3)$ d y

$$= (3x^2 \mathrm{d}x) + (4y^3 \mathrm{d}y) + (6xy^2 \mathrm{d}x + 6x^2y \mathrm{d}y) = \mathrm{d}x^3 + \mathrm{d}y^4 + (3y^2 \mathrm{d}x^2 + 3x^2 \mathrm{d}y^2)$$

$$=\mathrm{d} x^3+\mathrm{d} y^4+3\mathrm{d} (x^2y^2)=\mathrm{d} (x^3+3x^2y^2+y^4)=0$$
 ,

故通解为 $x^3 + 3x^2y^2 + y^4 = C$.

[**例2.7.2**] 验证下列方程
$$\left(\frac{y^2}{(x-y)^2} - \frac{1}{x}\right) \mathrm{d}x + \left(\frac{1}{y} - \frac{x^2}{(x-y)^2}\right) \mathrm{d}y = 0$$
 是恰当微分方程, 并求解.

[解]
$$M(x,y) = \frac{y^2}{(x-y)^2} - \frac{1}{x}, N(x,y) = \frac{1}{y} - \frac{x^2}{(x-y)^2}$$
.

因
$$rac{\partial M(x,y)}{\partial y}=rac{2xy}{(x-y)^3}=rac{\partial N(x,y)}{\partial x}$$
 , 则恰当.

因
$$R(x,y)=\int M(x,y)\mathrm{d}x=-rac{y^2}{x-y}-\ln|x|$$
 ,

则
$$u(x,y) = R(x,y) + \int \left[N(x,y) - \frac{\partial R(x,y)}{\partial y} \right] \mathrm{d}y = -\frac{y^2}{x-y} - \ln|x| + \int \left(\frac{1}{y} - 1 \right) \mathrm{d}y$$
 $= \frac{y^2}{x-y} - \ln\left| \frac{y}{x} \right| - y$,故通解为 $\frac{y^2}{x-y} - \ln\left| \frac{y}{x} \right| - y = C$.

[**例2.7.3**] 解方程
$$2x\left(y\mathrm{e}^{x^2}-1
ight)\mathrm{d}x+\mathrm{e}^{x^2}\mathrm{d}y=0$$
 .

[解]
$$M(x,y)=2x\left(y\mathrm{e}^{x^2}-1
ight), N(x,y)=\mathrm{e}^{x^2}$$
. 因 $\frac{\partial M(x,y)}{\partial y}=2x\mathrm{e}^{x^2}=\frac{\partial N(x,y)}{\partial x}$, 则恰当.

原方程化为
$$\left(2xy\mathrm{e}^{x^2}\mathrm{d}x+\mathrm{e}^{x^2}\mathrm{d}y\right)-2x\mathrm{d}x=0$$
 , 即 $\mathrm{d}\left(y\mathrm{e}^{x^2}-x^2\right)=0$, 故通解为 $y\mathrm{e}^{x^2}-x^2=C$.

2.8 非恰当方程与积分因子

[定义2.8.1] 设 M(x,y), N(x,y) 在某矩形域内是 x,y 的连续函数, 且有一阶连续偏导数. 对方程 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ (*),若 \exists 连续可微的函数 $\mu(x,y)\neq 0$ s.t. $\mu(x,y)\cdot M(x,y)\mathrm{d}x+\mu(x,y)\cdot N(x,y)\mathrm{d}y=0$ 恰当,即 \exists 函数 u(x,y) s.t. $u(x,y)\neq 0$ s.t. $\mu(x,y)\cdot M(x,y)\mathrm{d}x+\mu(x,y)\cdot N(x,y)\mathrm{d}y=\mathrm{d}u(x,y)$,则称 $\mu(x,y)$ 为方程 (*) 的积分因子,此时该方程的通解为 u(x,y)=C .

[注] 可以证明: 若方程 (*) 有解,则存在积分因子,且积分因子不唯一,但该方程的通解唯一.

[**例2.8.1**] 方程
$$y dx - x dy = 0$$
 有如下的积分因子: $\frac{1}{x^2}$, $\frac{1}{y^2}$, $\frac{1}{xy}$, $\frac{1}{x^2 + y^2}$, $\frac{1}{x^2 - y^2}$ 等,因为 $d\left(-\frac{y}{x}\right) = \frac{y dx - x dy}{x^2}$, $d\left(\ln\frac{x}{y}\right) = \frac{y dx - x dy}{xy}$, $d\left(\arctan\frac{x}{y}\right) = \frac{y dx - x dy}{x^2 + y^2}$, $d\left(\frac{1}{2}\ln\frac{x - y}{x + y}\right) = \frac{y dx - x dy}{x^2 - y^2}$.

[**定理2.8.1**] 设 M(x,y), N(x,y) 在某矩形域内是 x,y 的连续函数, 且有一阶连续偏导数, 则函数 $\mu(x,y)=0$ 是方程 $M(x,y)\mathrm{d} x+N(x,y)\mathrm{d} y=0$ 的积分因子 iff $\frac{\partial (\mu M)}{\partial y}=\frac{\partial (\mu N)}{\partial x}$, 即 $N\frac{\partial \mu}{\partial x}-M\frac{\partial \mu}{\partial y}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)\mu$.

[**定理2.8.2**] 设 M(x,y), N(x,y) 在某矩形域内是 x,y 的连续函数, 且有一阶连续偏导数. 对方程 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ (*),有:

(1) 方程(*)存在只与
$$y$$
 有关的积分因子 iff $\dfrac{1}{-M} \left(\dfrac{\partial M}{\partial y} - \dfrac{\partial N}{\partial x} \right) = \varphi(y)$, 此时 $\mu(y) = \mathrm{e}^{\int \varphi(y) \mathrm{d}y}$.

(2) 方程(*)存在只与
$$x$$
 有关的积分因子 iff $\frac{1}{N}\bigg(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\bigg)=\psi(x)$, 此时 $\mu(x)=\mathrm{e}^{\int \psi(x)\mathrm{d}x}$.

[证] 以证明(2)为例, (1)同理.

若方程 (*) 存在只与 x 有关的积分因子 $\mu=\mu(x)$, 则 $\dfrac{\partial\mu}{\partial y}=0$.

由定理2.8.1:
$$N \frac{\mathrm{d}\mu}{\mathrm{d}x} = \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)\mu$$
 , 则 $\frac{\mathrm{d}\mu}{\mu} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}\mathrm{d}x$.

若能从上式解出 $\mu=\mu(x)$, 则上式的RHS应与 y 无关, 即 $\frac{1}{N}\bigg(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\bigg)=\psi(x)$ 只是 x 的函数.

[**注1**] 注意(1)中系数 $\frac{1}{-M}$ 的负号.

[**注2**] 注意积分因子不是 $\varphi(y)$ 或 $\psi(x)$, 而是 $\mu(y)=\mathrm{e}^{\int \varphi(y)\mathrm{d}y}$ 或 $\mu(x)=\mathrm{e}^{\int \psi(x)\mathrm{d}x}$.

[**例2.8.2**] 解方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = P(x)y + Q(x)$$
 .

[解] 原方程化为 [P(x)y + Q(x)]dx - dy = 0 (*).

因
$$M(x,y)=P(x)y+Q(x), N(x,y)=-1$$
 , 则 $\dfrac{1}{N}igg(\dfrac{\partial M}{\partial y}-\dfrac{\partial N}{\partial x}igg)=-P(x)$,

进而方程 (*) 有关于 x 的积分因子 $\mu(x) = \mathrm{e}^{-\int P(x)\mathrm{d}x}$.

(*) 两边同乘 $\mu(x)$ 得: $P(x)\cdot\mathrm{e}^{\int -P(x)\mathrm{d}x}y\mathrm{d}x - \mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}y + Q(x)\cdot\mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}x = 0$,

関
$$-y\mathrm{d}\mathrm{e}^{-\int P(x)\mathrm{d}x}-\mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}y+Q(x)\cdot\mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}x=0$$
 ,

亦即
$$-\mathrm{d}\left(y\mathrm{e}^{-\int P(x)\mathrm{d}x}\right)+Q(x)\cdot\mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}x=0$$
 .

故通解为
$$y \cdot \mathrm{e}^{-\int P(x)\mathrm{d}x} - \int Q(x) \cdot \mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}x = C$$
 , 即 $y = \mathrm{e}^{\int P(x)\mathrm{d}x}\left[\int Q(x) \cdot \mathrm{e}^{-\int P(x)\mathrm{d}x}\mathrm{d}x + C\right]$.

[例2.8.3] 解方程
$$rac{\mathrm{d}y}{\mathrm{d}x} = -rac{x}{y} + \sqrt{1+\left(rac{x}{y}
ight)^2} \ \left(y>0
ight).$$

[解] 原方程化为 $x\mathrm{d}x+y\mathrm{d}y=\sqrt{x^2+y^2}\mathrm{d}x$, 即 $\frac{1}{2}\mathrm{d}(x^2+y^2)=\sqrt{x^2+y^2}\mathrm{d}x$ (*) .

显然该方程有积分因子 $\mu(x,y)=rac{1}{\sqrt{x^2+y^2}}$.

方程
$$(*)$$
 两边同乘 μ 得: $\dfrac{\mathrm{d}(x^2+y^2)}{2\sqrt{x^2+y^2}}=\mathrm{d}x$, 则通解为 $\sqrt{x^2+y^2}=x+C$.

[**例2.8.4**] 解方程 y dx + (y-x) dy = 0.

[**解1**] 因
$$M(x,y)=y, N(x,y)=y-x, rac{\partial M}{\partial y}=1, rac{\partial N}{\partial x}=-1$$
 , 则原方程非恰当.

因
$$rac{1}{-M}igg(rac{\partial M}{\partial y}-rac{\partial N}{\partial x}igg)=-rac{2}{y}=arphi(y)$$
 , 则该方程有只与 y 有关的积分因子 $\mu(y)=\mathrm{e}^{\int arphi(y)\mathrm{d}y}=rac{1}{y^2}$.

原方程两边同乘
$$\mu(y)$$
 得: $\dfrac{\mathrm{d}x}{y} + \dfrac{\mathrm{d}y}{y} - \dfrac{x\mathrm{d}y}{y^2} = \dfrac{y\mathrm{d}x - x\mathrm{d}y}{y^2} + \dfrac{\mathrm{d}y}{y} = \mathrm{d}\left(\dfrac{x}{y} + \ln|y|\right) = 0$,

故通解为 $rac{x}{y} + \ln |y| = C$.

[**解2**] 原方程化为
$$y\mathrm{d}x-x\mathrm{d}y=-y\mathrm{d}y$$
 (*). 显然该方程有积分因子 $\mu(y)=\frac{1}{y^2}$ 或 $\mu(x)=\frac{1}{x^2}$.

因方程 (*) 的 RHS 只含 y , 则取积分因子 $\mu(y)=rac{1}{y^2}$.

方程(*)两边同乘
$$\mu(y)$$
 得: $\dfrac{y\mathrm{d}x-x\mathrm{d}y}{y^2}+\dfrac{\mathrm{d}y}{y}=\mathrm{d}\left(\dfrac{x}{y}+\ln|y|\right)=0$, 故通解为 $\dfrac{x}{y}+\ln|y|=C$.

[**解3**] 原方程化为 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{y}{x-y}$, 是齐次微分方程.

$$\diamondsuit u = rac{x}{y}$$
 , 则 $xrac{\mathrm{d}u}{\mathrm{d}x} + u = rac{u}{1-u}$, 即 $rac{1-u}{u^2}\mathrm{d}u = rac{\mathrm{d}x}{x}$. 解得: $-rac{1}{u} - \ln|u| = \ln|x| + C$,

故通解为 $\frac{x}{y} + \ln |y| = C$.

[**解4**] 原方程化为 $\dfrac{\mathrm{d}x}{\mathrm{d}y}=\dfrac{1}{y}x-1$, 这是以 x 为未知函数的非齐次线性微分方程,

故通解为
$$x=\mathrm{e}^{\int rac{\mathrm{d} y}{y}}\left[\int \left(-\mathrm{e}^{-rac{\mathrm{d} y}{y}}
ight)\!\mathrm{d} y+C
ight]=y(-\ln|y|+C)$$
 .

[**例2.8.5**] 解方程 $y dx - x dy = (x^2 + y^2) dx$.

[**解**] 显然该方程有积分因子 $\mu(x,y)=rac{1}{x^2+y^2}$.

方程两边同乘
$$\mu(x,y)$$
 得: $\dfrac{y\mathrm{d}x-x\mathrm{d}y}{x^2+y^2}-\mathrm{d}x=0$, 即 $\mathrm{d}\left(\arctan\dfrac{x}{y}-x\right)=0$,

故通解为 $\arctan \frac{x}{y} - x = C$.

[**例2.8.6**] 求方程 M(x,y)dx + N(x,y)dy = 0 分别有形如 $\mu(x+y)$ 和 $\mu(xy)$ 的积分因子的充要条件.

[解]
$$\mu$$
 是方程 $M\mathrm{d}x+N\mathrm{d}y=0$ 的积分因子的充要条件是: $\dfrac{\partial(\mu M)}{\partial y}=\dfrac{\partial(\mu N)}{\partial x}$,

即
$$M rac{\partial \mu}{\partial y} + \mu rac{\partial M}{\partial y} = N rac{\partial \mu}{\partial x} + \mu rac{\partial N}{\partial x}$$
,亦即 $N rac{\partial \mu}{\partial x} - M rac{\partial \mu}{\partial y} = \left(rac{\partial M}{\partial y} - rac{\partial N}{\partial x}
ight) \mu$ (*).

(1)
$$\diamondsuit$$
 $z=x+y$, 则 $\mu(x+y)=\mu(z)$, 此时 $\dfrac{\partial \mu}{\partial x}=\dfrac{\partial \mu}{\partial y}=\dfrac{\mathrm{d}\mu}{\mathrm{d}z}$.

代入
$$(*)$$
 式得: $(N-M)\frac{\mathrm{d}\mu}{\mathrm{d}z} = \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)\mu$, 即 $\frac{\mathrm{d}\mu}{\mu} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N-M}\mathrm{d}z$.

故方程
$$M\mathrm{d}x+N\mathrm{d}y=0$$
 有形如 $\mu(x+y)$ 积分因子的充要条件是: $\dfrac{\dfrac{\partial M}{\partial y}-\dfrac{\partial N}{\partial x}}{N-M}=f(z)=f(x+y)$.

(2)
$$\diamondsuit$$
 $z=xy$, 则 $\mu(xy)=\mu(z)$, 此时 $\dfrac{\partial \mu}{\partial x}=\dfrac{\mathrm{d}\mu}{\mathrm{d}z}\dfrac{\partial z}{\partial x}=y\dfrac{\mathrm{d}\mu}{\mathrm{d}z}, \dfrac{\partial \mu}{\partial y}=\dfrac{\mathrm{d}\mu}{\mathrm{d}z}\dfrac{\partial z}{\partial y}=x\dfrac{\mathrm{d}\mu}{\mathrm{d}z}$.

代入
$$(*)$$
 式得: $(yN-xM)\frac{\mathrm{d}\mu}{\mathrm{d}z}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)\mu$, 即 $\frac{\mathrm{d}\mu}{\mu}=\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{yN-xM}$.

故方程
$$M\mathrm{d}x+N\mathrm{d}y=0$$
 有形如 $\mu(xy)$ 积分因子的充要条件是:
$$\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{yN-xM}=g(z)=g(xy)\,.$$

2.9 一阶隐式微分方程I

[**类型2.9.1**] 考察一阶隐式微分方程 F(x,y,y')=0 .

(1) 若 y 有显示表示,即原方程可化为 y=f(x,y') (*),其中 f(x,y') 有连续偏导数.

令
$$p=y'=rac{\mathrm{d}y}{\mathrm{d}x}$$
 , 则方程 $(*)$ 化为 $y=f(x,p)$.

两边对
$$x$$
 求微分得: $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}x}$, 即 $p = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}x}$ (i) , 这是关于 x 和 p 的一阶微分方程.

① 若方程 (i) 的通解为 p=arphi(x,C) , 则方程 (*) 的通解为 f(x,arphi(x,C)) .

② 若方程
$$(i)$$
 的通解为 $x=\psi(p,C)$, 则方程 $(*)$ 的通解为 $\begin{cases} x=\psi(p,C) \\ y=f(\psi(p,C),p) \end{cases}$.

③ 若方程
$$(i)$$
 的通解为 $arPhi(x,p,C)=0$, 则方程 $(*)$ 的通解为 $egin{cases} arPhi(x,p,C)=0 \\ y=f(x,p) \end{cases}$.

(2) 若 x 有显式表示,则原方程可化为 x=f(y,y') (**),其中 f(y,y') 有连续偏导数.

令
$$p=y'=rac{\mathrm{d}y}{\mathrm{d}x}$$
 , 则方程 $(**)$ 化为 $x=f(y,p)$.

两边对y求微分得: $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}y}$,即 $\frac{1}{p} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}y}$ (ii),这是关于 y 和 p 的一阶微分方程.

- ① 若方程 (ii) 的通解为 $p=\psi(y,C)$, 则方程 (**) 的通解为 $f(\psi(y,C),y)$.
- ② 若方程 (ii) 的通解为 y=arphi(p,C) , 则方程 (**) 的通解为 $\begin{cases} x=f(arphi(p,C),p) \ y=arphi(p,C) \end{cases}$.
- ③ 若方程 (ii) 的通解为 $\varPsi(x,p,C)=0$, 则方程 (**) 的通解为 $egin{cases} \varPsi(x,p,C)=0 \ x=f(y,p) \end{cases}$.

[**例2.9.1**] 解方程
$$\left(rac{\mathrm{d}y}{\mathrm{d}x}
ight)^3 + 2x \cdot rac{\mathrm{d}y}{\mathrm{d}x} - y = 0$$
 .

[解1] 令
$$p=rac{\mathrm{d}y}{\mathrm{d}x}$$
 , 则 $y=p^3+2px$ ① .

两边对 x 求微分得: $p=3p^2\cdot rac{\mathrm{d}p}{\mathrm{d}x}+2x\cdot rac{\mathrm{d}p}{\mathrm{d}x}+2p$, 即 $3p^2\mathrm{d}p+2x\mathrm{d}p+p\mathrm{d}x=0$ ② .

- (1) p=0时, 经检验, y=0 是一个解
- (2) p
 eq 0 时,上式两边同乘 p 得: $3p^3\mathrm{d}p + 2px\mathrm{d}p + p^2\mathrm{d}x = 0$,即 $\mathrm{d}p^4 + \mathrm{d}(p^2x) = 0$.

则方程②的通解为 $rac{3}{4}p^4+p^2x=C$, 解得: $x=rac{C-3p^4}{4p^2}$.

代入①式,解得:
$$y=rac{2C}{p}-rac{p^3}{2}$$
 . 故通解为 $egin{cases} x=rac{C-3p^4}{4p^2} \ y=rac{2C}{p}-rac{p^3}{2} \end{cases}$ $(p
eq 0)$.

[解2] 令
$$p=rac{\mathrm{d}y}{\mathrm{d}x}$$
 , 则 $y=p^3+2px$ ③ .

- (1) p=0时, 经检验, y=0 是一个解.
- (2) p
 eq 0 时,由③式解得: $x = rac{y-p^3}{2p}$.

两边对
$$y$$
 求微分得: $\dfrac{1}{p}=\dfrac{p\left(1-3p^2\cdot\dfrac{\mathrm{d}p}{\mathrm{d}y}\right)-(y-p^3)\cdot\dfrac{\mathrm{d}p}{\mathrm{d}y}}{2p^2}$,

即 $p\mathrm{d}y+y\mathrm{d}p+2p^3\mathrm{d}p=0$, 其通解为 $2py+p^4=C$, 解得: $y=rac{C-p^4}{2p}$.

代入③式, 解得:
$$x=rac{C-3p^4}{4p^2}$$
 . 故通解为 $egin{cases} x=rac{C-3p^4}{4p^2} \ y=rac{C}{2p}-rac{p^3}{2} \end{cases}$ $(p
eq 0)$.

[**例2.9.2**] 解方程 $y = (y')^2 e^{y'}$.

[**解**] 令 y'=p,则原方程化为 $y=p^2\mathrm{e}^p$.

(1) p = 0 时, y = C. 经检验, y = 0 是解

(2)
$$p \neq 0$$
 时, 两边对 x 求微分得: $\dfrac{\mathrm{d}y}{\mathrm{d}x} = \dfrac{\mathrm{d}}{\mathrm{d}p}(p^2\mathrm{e}^p)\dfrac{\mathrm{d}p}{\mathrm{d}x}$, 即 $p = \mathrm{e}^p(2p+p^2)\cdot\dfrac{\mathrm{d}p}{\mathrm{d}x}$, 即 $\mathrm{d}x = \mathrm{e}^p(p+2)\mathrm{d}p$.

两边积分得:
$$x=\mathrm{e}^p(p+1)+C$$
 . 故通解为 $egin{cases} x=\mathrm{e}^p(p+1)+C\ y=p^2\mathrm{e}^p \end{cases}$.

2.10 一阶隐式微分方程II

[**类型2.10.1**] 考察一阶隐式微分方程 F(x, y, y') = 0.

(1) 若方程形如 F(x,y')=0 , 令 p=y' , 则原方程化为 F(x,p)=0 , 它表示平面 xOp上的一条曲线.

设该曲线的参数表示为
$$\left\{ egin{aligned} x = arphi(t) \\ p = \psi(t) \end{aligned}
ight.$$
 其中 t 为参数,

则
$$\mathrm{d} y = \psi(t) \cdot \varphi'(t) \mathrm{d} t$$
 , 两边积分得: $y = \int \psi(t) \cdot \varphi'(t) \mathrm{d} t + C$.

故通解为
$$egin{cases} x = arphi(t) \ y = \int \psi(t) \cdot arphi'(t) \mathrm{d}t + C \end{cases}$$

(2) 若方程形如 F(y,y')=0 , 令 p=y' , 则原方程化为 F(y,p)=0 , 它表示平面 yOp 上的一条曲线.

①
$$p=y'=0$$
 时, 原方程有解 $y=C$.

②
$$p=y'
eq 0$$
 时,设该曲线的参数表示为 $egin{cases} y=arphi(t) \\ p=\psi(t) \end{cases}$,其中 t 为参数.

因
$$\mathrm{d}y=p\mathrm{d}x$$
 , 则 $\mathrm{d}x=rac{arphi'(t)}{\psi(t)}\mathrm{d}t$, 两边积分得: $x=\intrac{arphi'(t)}{\psi(t)}\mathrm{d}t+C$.

故通解为
$$egin{cases} x = \int rac{arphi'(t)}{\psi(t)} \mathrm{d}t + C \ y = arphi(t) \end{cases}$$
 .

[**例2.10.1**] 解方程
$$x^3 + (y')^3 - 3xy' = 0$$
 , 其中 $y' = \frac{\mathrm{d}y}{\mathrm{d}x}$.

[**解**] 令
$$y'=p=tx$$
 , 代入原方程, 解得: $x=\dfrac{3t}{1+t^3}$, 则 $p=\dfrac{3t^2}{1+t^3}$.

$$\mathrm{d}y = p\mathrm{d}x = rac{9(1-2t^3)t^2}{(1+t^3)^3}\mathrm{d}t$$
 , 两边积分得: $y = rac{3}{2} \cdot rac{1+4t^3}{(1+t^3)^2} + C$.

故通解为
$$egin{cases} x=rac{3t}{1+t^3} \ y=rac{3}{2}\cdotrac{1+4t^3}{(1+t^3)^2}+C \end{cases}$$

[**例2.10.2**] 解方程
$$y^2(1-y')=(2-y')^2$$
 , 其中 $y'=rac{\mathrm{d} y}{\mathrm{d} x}$.

[**解**] 显然 y=0 非方程的解, 下面讨论 $y\neq 0$ 的情况.

令
$$2-y'=ty$$
 , 则 $y'=2-ty$, 代入原方程得: $y^2(ty-1)=t^2y^2$,

解得:
$$y=rac{1}{t}+t$$
,则 $y'=2-ty=1-t^2$.

(1) y'=0 时, 原方程化为 $y^2=4$. 经检验, $y=\pm 2$ 是解.

(2)
$$y' \neq 0$$
 时, $\mathrm{d}x = \dfrac{\mathrm{d}y}{y'} = -\dfrac{\mathrm{d}t}{t^2}$, 两边积分得: $x = \dfrac{1}{t} + C$. 故通解为 $\begin{cases} x = \dfrac{1}{t} + C \\ y = \dfrac{1}{t} + t \end{cases}$.

[**例2.10.3**] 解方程 $x(y')^3 = 1 + y'$.

[**解1**] $\Rightarrow y' = p$.

(1)
$$p=0$$
 时, $y=C$. 原方程化为 $Cx^3=1$, 无解.

(2)
$$p
eq 0$$
 时, $x = rac{1 + y'}{(y')^3} = rac{1}{p^3} + rac{1}{p^2}$.

两边对
$$y$$
 求微分得: $\dfrac{1}{p}=\left(-\dfrac{3}{p^4}-\dfrac{2}{p^3}\right)\cdot\dfrac{\mathrm{d}p}{\mathrm{d}y}$, 即 $\dfrac{2p+3}{p^3}\mathrm{d}p=-\mathrm{d}y$.

两边积分得:
$$y=rac{3}{2p^2}+rac{2}{p}+C$$
 . 故通解为 $egin{dcases} x=rac{1}{p^3}+rac{1}{p^2} \ y=rac{3}{2p^2}+rac{2}{p}+C \ \ (p
eq0) \end{cases}$.

[**解2**] y'=0 时, y=C . 原方程化为 $Cx^3=1$, 无解. 下面讨论 $y'\neq 0$ 的情况.

令
$$\frac{\mathrm{d}y}{\mathrm{d}x}=y'=rac{1}{t}$$
 , 则 $x=rac{1+y'}{(y')^3}=t^3+t^2$.

$$\mathrm{d}y=rac{\mathrm{d}x}{t}=(3t+2)\mathrm{d}t$$
 , 两边积分得: $y=rac{3}{2}t^2+2t+C$. 故通解为 $egin{cases} x=t^3+t^2\ y=rac{3}{2}t^2+2t+C \end{cases}$.

[**例2.10.4**] 解方程 $(y')^3 - x^3(1-y') = 0$.

[解1] 令 y' = tx, 原方程化为 $[t^3 - (1 - tx)]x^3 = 0$.

① $x^3=0$, 即 x=0 时, 经检验: y'=0 是解, 此时 y=C .

② $t^3-(1-tx)=0$, 即 $t^3=1-tx$ 时, 若 t=0 , 则①中已求得解 y'=0 .

t
eq 0 时, 解得: $x = rac{1}{t} - t^2$.

两边对 y 求微分得: $\dfrac{1}{1-t^3}=\left(-\dfrac{1}{t^2}-2t\right)\cdot\dfrac{\mathrm{d}t}{\mathrm{d}y}$, 即 $\mathrm{d}y=\left[(1-t^3)\left(-\dfrac{1}{t^2}-2t\right)\right]\mathrm{d}t$,

两边积分得: $y=-rac{t^2}{2}+rac{2}{5}t^5+rac{1}{t}+C$. 故通解为 $egin{dcases} x=rac{1}{t}-t^2 \ y=-rac{t^2}{2}+rac{2}{5}t^5+rac{1}{t}+C \end{cases}$ (t
eq 0) .

[**解2**] 令 x=ty', 原方程化为 $(y')^3+t^3(y')^3(1-y')=0$.

① y'=0 时, 经检验: y'=0 是原方程的解, 此时 y=C .

② $y' \neq 0$ 时, 原方程化为 $1-t^3(1-y')=0$, 解得: $y'=1-rac{1}{t^3}$, 则 $x=t-rac{1}{t^2}$.

 $\mathrm{d}y=y'\mathrm{d}x=\left(1-rac{1}{t^3}
ight)\mathrm{d}\left(t-rac{1}{t^2}
ight)$, 两边积分得: $y=-rac{1}{2t^2}+rac{2}{5t^5}+t+C$.

故通解为
$$egin{cases} x=t-rac{1}{t^2} \ y=-rac{1}{2t^2}+rac{2}{5t^5}+t+C \end{cases}$$
 .

[**例2.10.5**] 解方程 $y[1+(y')^2]=2a\ (a\in {
m Const.})$.

[**解1**] 令 $\dfrac{\mathrm{d}y}{\mathrm{d}x}=y'=p$, 则 $y=\dfrac{2a}{1+p^2}$. 两边对 x 求微分得: $p=-2a\cdot\dfrac{2p}{(p+1)^2}\dfrac{\mathrm{d}p}{\mathrm{d}x}$.

① p=0 时, y=C, 代入原方程解得: y=2a .

② $p \neq 0$ 时, $-4a \cdot \dfrac{\mathrm{d}p}{(p+1)^2} = \mathrm{d}x$, 两边积分得: $x = \dfrac{4a}{p+1} + C$. 故通解为 $\begin{cases} x = \dfrac{4a}{p+1} + C \\ y = \dfrac{2a}{p^2+1} \end{cases}$.

[**解2**] 令 y' = an t , 原方程化为 $y = 2a\cos^2 t$.

两边对 x 求微分得: $an t = -2a \cdot \sin 2t \cdot rac{\mathrm{d}t}{\mathrm{d}x}$, 即 $-4a \cos^2 t \mathrm{d}t = \mathrm{d}x$,

两边积分得: $x=-2at-a\sin 2t+C$, 故通解为 $egin{cases} x=-2at-a\sin 2t+C \ y=2a\cos^2 t \end{cases}$.

[**例2.10.6**] 解方程 $x^2 + (y')^2 = 1$.

[**解1**] 令 $y' = \cos t$, 原方程化为 $x = \sin t$. 两边对 y 求导得: $\mathrm{d}y = \cos^2 t \mathrm{d}t$,

两边积分得:
$$y=rac{t}{2}+rac{\sin 2t}{4}+C$$
 . 故通解为 $egin{cases} x=\sin t \ y=rac{t}{2}+rac{\sin 2t}{4}+C \end{cases}$

[解2] 令 $x = \cos t$, 则 $y' = \sin t$.

$$y=\int \mathrm{d}y=\int y'\mathrm{d}x=\int \sin t\mathrm{d}(\cos t)=-\int \sin^2 t\mathrm{d}t=-rac{t}{2}+rac{\sin 2t}{4}+C$$
 ,

故通解为
$$\begin{cases} x = \cos t \\ y = -\frac{t}{2} + \frac{\sin 2t}{4} + C \end{cases}$$

[**例2.10.7**] 解方程 $y^2(y'-1) = (2-y')^2$

[解] 令
$$2-y'=ty$$
 , 原方程化为 $y^2(1-ty)=t^2y^2$.

(1)
$$t=0$$
 , 即 $2-y'=0$ 时, 经检验, $y'=2$ 是解, 此时 $y=2C$, 代入原方程, 解得: $y=0$.

(2)
$$t
eq 0$$
 时, 解得: $y = rac{1}{t} - t$, 则 $y' = 1 + t^2$.

$$\mathrm{d}x = rac{\mathrm{d}y}{y'} = -rac{\mathrm{d}t}{t^2}$$
 , 两边积分得: $x = rac{1}{t} + C$. 故通解为 $egin{dcases} x = rac{1}{t} + C \ y = rac{1}{t} - t \end{cases}$.