

Лекция 12 Large scale machine learning

Владимир Гулин

8 мая 2020 г.

План лекции

Large scale decision trees ensembles

Large scale neural networks

- ▶ Наблюдение 1: Одного прохода по данным достаточно на каждый уровень дерева
- ▶ Наблюдение 2: Итерироваться можно либо по точкам, либо по фичам

Feature Distributed

Master

- Request workers to expand a set of nodes
- ▶ Wait to receive best per-feature splits from workers
- Select best feature-split for every node
- Request best splits' workers to broadcast per-instance assignments and residuals

Worker

► Pass through all instances for local features, aggregating split histograms for each node

Data Distributed

Master

- ► Send workers current model and set of nodes to expand
- ▶ Wait to receive local split histograms from workers
- Aggregate local split histograms, select best split for every node

Worker

- ▶ Pass through local data, aggregating split histograms
- Send completed local historograms to master

Data Distributed for sparse features

lgorithm 2 FindBestSplit	Algorithm 3 PV-Tree_FindBestSplit
Input: DataSet D	Input: Dataset D
for all X in D.Attribute do	localHistograms = ConstructHistograms(D)
▷ Construct Histogram	Description Description ▶ Local Voting
H = new Histogram()	splits = []
for all x in X do	for all H in localHistograms do
H.binAt(x.bin).Put(x.label)	splits.Push(H.FindBestSplit())
end for	end for
⊳ Find Best Split	localTop = splits.TopKByGain(K)
leftSum = new HistogramSum()	Gather all candidates
for all bin in H do	allCandidates = AllGather(localTop)
leftSum = leftSum + H.binAt(bin)	⊳ Global Voting
rightSum = H.AllSum - leftSum	globalTop = allCandidates.TopKByMajority(2*K)
split.gain = CalSplitGain(leftSum, rightSum)	▶ Merge global histograms
bestSplit = ChoiceBetterOne(split,bestSplit)	globalHistograms = Gather(globalTop, localHis
end for	tograms)
end for	bestSplit = globalHistograms.FindBestSplit()
return bestSplit	return bestSplit

Results

Figure 1: Performances of different algorithms

GBM ON HADOOP

Large scale neural networks

Paradigms

Model and data parallelism

Model and Data Parallelism

Parameter averaging

- 1. Initialize the network parameters randomly based on the model configuration
- 2. Distribute a copy of the current parameters to each worker
- 3. Train each worker on a subset of the data
- 4. Set the global parameters to the average the parameters from each worker
- 5. While there is more data to process, go to step 2

Parameter averaging

Parameter averaging problem

Сумма N локальных минимумов не является глобальным минимумом

Asynchronous Stochastic Gradient Descent

Stale Gradient Problem

Decentralized Asychronous Stochastic Gradient Descent

Which Approach is Best?

Вопросы

