РК1 Кузнецов ИУ5-21М (Вариант 9)

Условия задач

Импорт библиотек

```
In [ ]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Загрузка данных

```
In [32]:
```

```
from google.colab import drive
drive.mount('/content/drive')

drive_path = '/content/drive/My Drive/'
data = pd.read_csv('/content/drive/My Drive/auto.csv')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount ("/content/drive", force_remount=True).

Первичный анализ данных

Выведем первые 5 строк датасета:

```
In [33]:
```

```
data.head()
```

Out[33]:

	name	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
0	chevrolet chevelle malibu	18.0	8	307.0	130.0	3504	12.0	70	usa
1	buick skylark 320	15.0	8	350.0	165.0	3693	11.5	70	usa
2	plymouth satellite	18.0	8	318.0	150.0	3436	11.0	70	usa
3	amc rebel sst	16.0	8	304.0	150.0	3433	12.0	70	usa
4	ford torino	17.0	8	302.0	140.0	3449	10.5	70	usa

Определим размер датасета:

```
In [34]:
```

```
data.shape
Out[34]:
```

(398, 9)

In [35]:

```
data.dtypes
Out[35]:
                 0
       name
            object
       mpg float64
              int64
    cylinders
displacement float64
  horsepower float64
      weight
              int64
 acceleration float64
  model_year
              int64
       origin
            object
dtype: object
Проверим наличие пропусков:
In [36]:
data.isnull().sum()
Out[36]:
            0
       name 0
       mpg 0
    cylinders 0
displacement 0
  horsepower 6
      weight 0
 acceleration 0
  model_year 0
       origin 0
dtype: int64
Задача № 9
Удалим колонки, содержащие пустые значения:
In [37]:
data new 1 = data.dropna(axis=1, how='any')
(data.shape, data new 1.shape)
Out[37]:
((398, 9), (398, 8))
Выведем первые строки датасета на экран:
```

In [38]:

```
data_new_1
```

Out[38]:

	name	mpg	cylinders	displacement	weight	acceleration	model_year	origin
0	chevrolet chevelle malibu	18.0	8	307.0	3504	12.0	70	usa
1	buick skylark 320	15.0	8	350.0	3693	11.5	70	usa
2	plymouth satellite	18.0	8	318.0	3436	11.0	70	usa
3	amc rebel sst	16.0	8	304.0	3433	12.0	70	usa
4	ford torino	17.0	8	302.0	3449	10.5	70	usa
393	ford mustang gl	27.0	4	140.0	2790	15.6	82	usa
394	vw pickup	44.0	4	97.0	2130	24.6	82	europe
395	dodge rampage	32.0	4	135.0	2295	11.6	82	usa
396	ford ranger	28.0	4	120.0	2625	18.6	82	usa
397	chevy s-10	31.0	4	119.0	2720	19.4	82	usa

398 rows × 8 columns

Удалим строки, содержащие пустые значения:

```
In [39]:
```

```
data new 2 = data.dropna(axis=0, how='any')
(data.shape, data_new_2.shape)
Out[39]:
```

```
((398, 9), (392, 9))
```

In [40]:

```
data_new_2.head()
```

Out[40]:

	name	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
0	chevrolet chevelle malibu	18.0	8	307.0	130.0	3504	12.0	70	usa
1	buick skylark 320	15.0	8	350.0	165.0	3693	11.5	70	usa
2	plymouth satellite	18.0	8	318.0	150.0	3436	11.0	70	usa
3	amc rebel sst	16.0	8	304.0	150.0	3433	12.0	70	usa
4	ford torino	17.0	8	302.0	140.0	3449	10.5	70	usa

Найдем значение квантиля для заполнения пропущенных значений:

```
In [45]:
```

```
# quantile value = data new 3['horsepower'].quantile(0.95)
data new 3 = data
quantile_value = data_new_3['horsepower'].quantile(0.95)
```

Замена пропущенных значений на значение из хвоста распределения:

```
In [46]:
```

```
data_new_3['horsepower'] = data_new_3['horsepower'].fillna(quantile_value)
```

Выведем на экран:

```
In [47]:
```

data_new_3.head()

Out[47]:

	name	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
0	chevrolet chevelle malibu	18.0	8	307.0	130.0	3504	12.0	70	usa
1	buick skylark 320	15.0	8	350.0	165.0	3693	11.5	70	usa
2	plymouth satellite	18.0	8	318.0	150.0	3436	11.0	70	usa
3	amc rebel sst	16.0	8	304.0	150.0	3433	12.0	70	usa
4	ford torino	17.0	8	302.0	140.0	3449	10.5	70	usa

In [48]:

data_new_3.isnull().sum()

Out[48]:

name 0	
mpg 0	
cylinders 0	
displacement 0	
horsepower 0	
weight 0	
acceleration 0	
model_year 0	
origin 0	

dtype: int64

Задача № **29**

Выведем первые 20 строк:

In [49]:

data.head(20)

Out[49]:

	name	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
0	chevrolet chevelle malibu	18.0	8	307.0	130.0	3504	12.0	70	usa
1	buick skylark 320	15.0	8	350.0	165.0	3693	11.5	70	usa
2	plymouth satellite	18.0	8	318.0	150.0	3436	11.0	70	usa
3	amc rebel sst	16.0	8	304.0	150.0	3433	12.0	70	usa
4	ford torino	17.0	8	302.0	140.0	3449	10.5	70	usa
5	ford galaxie 500	15.0	8	429.0	198.0	4341	10.0	70	usa
6	chevrolet impala	14.0	8	454.0	220.0	4354	9.0	70	usa
7	plymouth fury iii	14.0	8	440.0	215.0	4312	8.5	70	usa
8	pontiac catalina	14.0	8	455.0	225.0	4425	10.0	70	usa

9	amc ambassador dpl	mpg 15.0	cylinders	displacement	horsepower	weight 3850	acceleration 8.5	model_year	origin usa
10	dodge challenger se	15.0	8	383.0	170.0	3563	10.0	70	usa
11	plymouth 'cuda 340	14.0	8	340.0	160.0	3609	8.0	70	usa
12	chevrolet monte carlo	15.0	8	400.0	150.0	3761	9.5	70	usa
13	buick estate wagon (sw)	14.0	8	455.0	225.0	3086	10.0	70	usa
14	toyota corona mark ii	24.0	4	113.0	95.0	2372	15.0	70	japan
15	plymouth duster	22.0	6	198.0	95.0	2833	15.5	70	usa
16	amc hornet	18.0	6	199.0	97.0	2774	15.5	70	usa
17	ford maverick	21.0	6	200.0	85.0	2587	16.0	70	usa
18	datsun pl510	27.0	4	97.0	88.0	2130	14.5	70	japan
19	volkswagen 1131 deluxe sedan	26.0	4	97.0	46.0	1835	20.5	70	europe

Анализ константных и псевдоконстантных признаков:

In [50]:

```
constant_features = [feat for feat in data.columns if data[feat].nunique() == 1]
pseudo_constant_features = [feat for feat in data.columns if data[feat].value_counts(nor malize=True).values[0] > 0.99]
```

Удаление константных и псевдоконстантных признаков:

In [51]:

```
data.drop(columns=constant_features + pseudo_constant_features, inplace=True)
```

Выведем полученный результат:

In [52]:

```
data.head()
```

Out[52]:

	name	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
0	chevrolet chevelle malibu	18.0	8	307.0	130.0	3504	12.0	70	usa
1	buick skylark 320	15.0	8	350.0	165.0	3693	11.5	70	usa
2	plymouth satellite	18.0	8	318.0	150.0	3436	11.0	70	usa
3	amc rebel sst	16.0	8	304.0	150.0	3433	12.0	70	usa
4	ford torino	17.0	8	302.0	140.0	3449	10.5	70	usa

Диаграмма рассеяния:

In [58]:

```
sns.scatterplot(
    data=data,
    y="weight",
    x="displacement",
    hue="acceleration"
)
```

Out[58]:

<Axes: xlabel='displacement', ylabel='weight'>

acceleration

