Вопросы к экзамену по курсу «Математический анализ»

(для студентов ФСУ группы: 422-1, 422-2, 422-3)

1. Понятие функции. Примеры.

Функцией $f: X \to Y$ называется закон или правило, по которому каждому х из X ставится в соответствие единственное у из Y.

<u>Примеры:</u> 1) $f: \mathbb{R} \to [-1; 1], f(x) = \sin(x);$

2. <u>Композиция.</u>

3. Определение предела числовой последовательности.

Функция $f: \mathbb{N} \to \mathbb{R}$ называется числовой последовательностью.

Число $a \in \mathbb{R}$ называется пределом числовой последовательности a_n , если $\forall \varepsilon > 0 \exists N \in \mathbb{N}$, т. ч. $\forall n \geq N \Rightarrow |a_n - a| < \varepsilon$.

4. Доказать по определению, что $\lim_{n\to\infty}\frac{n}{n+1}=1$.

Пусть
$$\varepsilon>0$$
, $N\coloneqq\left[\frac{1}{\varepsilon}\right]+1$. $\forall n\geq N\Rightarrow |a_n-a|=\left|\frac{n}{n+1}-1\right|=\left|\frac{-1}{n+1}\right|<\varepsilon$ $n+1>\frac{1}{\varepsilon}$, $n>\frac{1}{\varepsilon}-1$.

5. Дайте определение того, что $\lim_{n\to\infty} a_n \neq a$.

Если $\varepsilon>0$ $\forall N \in \mathbb{N}$ $\exists n\geq N$ т. ч. $|a_n-a|\geq \varepsilon$

6. Теорема о единственности предела числовой последовательности.

Теорема:

Если предел числовой последовательности существует, то он единственный.

Доказательство:

Пусть $\lim_{n\to\infty}a_n=a, \lim_{n\to\infty}a_n=b, a\neq b$ $\varepsilon=|a-b|>0, \exists\ N_a, N_b \in \mathbb{N}, \mathrm{T.\, 4.\, } \forall n\geq N_a, \forall n\geq N_b\Rightarrow |a_n-a|<\frac{\varepsilon}{2}\ \mathrm{H}\ |a_n-b|<\frac{\varepsilon}{2}.$ Тогда $\varepsilon=|a-b|=|a-a_n+a_n-b|\leq |a-a_n|+|a_n-b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}\Rightarrow \varepsilon<\varepsilon$

7. Теорема об арифметических свойствах предела числовой последовательности.

Пусть $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$, тогда:

1)
$$\lim_{n\to\infty} a_n \pm b_n = a \pm b$$

Доказательство:

Пусть

$$\varepsilon > 0 \; |a_n + b_n - (a+b)| \leq |a_n - a| + |b_n - b| < \begin{cases} \text{ t. k. } \lim_{n \to \infty} a_n = a \text{, to } \exists N_a \in \mathbb{N} \text{ t. y. } \forall n \geq N_a \Rightarrow |a_n - a| < \frac{\varepsilon}{2}; \\ \lim_{n \to \infty} b_n = b \text{, to } \exists N_b \in \mathbb{N} \text{ t. y. } \forall n \geq N_b \Rightarrow |b_n - b| < \frac{\varepsilon}{2}; N \coloneqq \max(N_a, N_b) \end{cases} < \varepsilon$$

$$\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \ \forall n \ge N. \blacksquare$$

2)
$$\lim_{n\to\infty} a_n \times b_n = a \times b$$

Доказательство:

Т. к.
$$\lim_{n\to\infty} a_n = a$$
, то $\exists N_a \in \mathbb{N}$ т. ч. $\forall n \geq N_a \Rightarrow |a_n-a| < \varepsilon$;

$$\lim_{n \to \infty} b_n = b$$
, то $\exists N_b \epsilon \mathbb{N}$ т. ч. $\forall n \geq N_b \Rightarrow |b_n - b| < arepsilon; N \coloneqq \max(N_a, N_b)$, то

$$|a_n\times b_n-a\times b|=|a_n\times b_n-a\times b_n+a\times b_n-a\times b|\leq |b_n|\times |a_n-a|+|a|\times |b_n-b|.$$

Т. к. последовательность b_n имеет конечный предел, то она ограниченна и поэтому существует такое положительное число A, т. ч. $\forall n > N \Rightarrow |b_n| < A$.

Поэтому абсолютная величина разности

$$|a_n \times b_n - a \times b| \leq |b_n| \times |a_n - a| + |a| \times |b_n - b| < A \times \varepsilon + |a| \times \varepsilon = \varepsilon \times (A + |a|) = \varepsilon_1$$

может быть сделана как угодно малой, начиная с некоторого номера N.

Это означает, что
$$\lim_{n\to\infty} a_n \times b_n = a \times b$$

3) Если
$$b_n \neq 0$$
, $b \neq 0$, то $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

Доказательство.

Т. к.
$$\lim_{n \to \infty} a_n = a$$
, то $\exists N_a \in \mathbb{N}$ т. ч. $\forall n \geq N_a \Rightarrow |a_n - a| < \varepsilon$;

$$\lim_{n\to\infty} b_n = b \text{, to } \exists N_b \in \mathbb{N} \text{ т. ч. } \forall n \geq N_b \Rightarrow |b_n - b| < \varepsilon.$$

Т. к.
$$b_n \to b \neq 0$$
 (предположим, что $b > 0$) выберем ε таким, что $\frac{b}{2} < b - \varepsilon$,

тогда $\left(\frac{b}{2} < b - \varepsilon < b_n < b + \varepsilon\right)$, $\forall n > N_b$.

Из неравенства $0 < \frac{b}{2} < b_n \Rightarrow \frac{1}{b_n} < \frac{2}{b}$.

Абсолютная величина разности

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| = \left|\frac{b \times a_n - a \times b_n}{b \times b_n}\right| = \left|\frac{b \times a_n - a \times b + a \times b - a \times b_n}{b \times b_n}\right| \leq \frac{|b| \times |a_n - a| + |a| \times |b_n - b|}{|b \times b_n|} \leq \frac{|b| \times \varepsilon + |a| \times \varepsilon}{\frac{b^2}{2}} = \frac{|b| \times |a_n - a| + |a| \times |b_n - b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b_n - b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b_n - b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b_n - b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b_n - b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b_n - b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b_n - b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a_n - a| + |a| \times |b|}{\frac{b^2}{2}} \leq \frac{|b| \times |a|}{\frac{b^2}{2}} \leq \frac{|b|}{\frac{b^2}{2}} \leq \frac{|b|}{\frac{b^2}{2}}$$

 $=2 imes arepsilon imes rac{|b|+|a|}{b^2}=arepsilon_1$, начиная с $N\coloneqq \max(N_a,N_b)$, есть $arepsilon_1$ — новая, как угодно малая величина.

Это означает, что $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}$

8. Определение: $\lim_{n\to\infty} a_n = \pm \infty$, $\lim_{n\to\infty} a_n = \infty$.

1) $\lim_{n\to\infty} a_n = +\infty$

<u>Определение:</u> $\forall M>0$ $\exists N \in \mathbb{N}$ т. ч. $\forall n\geq N\Rightarrow a_n>M$

2) $\lim_{n\to\infty} a_n = -\infty$

<u>Определение:</u> $\forall M < 0$ $\exists N \in \mathbb{N}$ т. ч. $\forall n \geq N \Rightarrow a_n < M$

3) $\lim_{n\to\infty} a_n = \infty$

Определение: $\forall M > 0$ $\exists N \in \mathbb{N}$ т. ч. $\forall n \geq N \Rightarrow |a_n| > M$

9. Бесконечно малые и бесконечно большие последовательности и их свойства. Примеры.

Бесконечно малая последовательность — это последовательность, предел которой равен нулю. Бесконечно большая последовательность — это последовательность, предел которой равен бесконечности.

Свойства бесконечно малых последовательностей:

- > Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.
- Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.
- Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.
- Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.
- Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.
- Любая бесконечно малая последовательность ограничена.
- Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.
- Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы нули.
- ightharpoonup Если (b_n) бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность $\frac{1}{b_n}$, которая является бесконечно малой. Если же (b_n) всё же содержит нулевые элементы, то последовательность $\frac{1}{b_n}$ всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Доказательство:

Надо доказать, что $\frac{1}{b_n}-$, бесконечно малая, т. е. $\forall \varepsilon>0$ $\exists N \epsilon \mathbb{N}$ т. ч. $\forall n\geq N \Rightarrow \left|\frac{1}{b_n}-0\right|<\varepsilon.$

Пусть
$$\varepsilon > 0$$
 $\left(\text{т. к. } \lim_{n \to \infty} b_n = \infty \text{, то для } M = \frac{1}{\varepsilon} \; \exists N \epsilon \mathbb{N} \; \text{т. ч. } \forall n \geq N \Rightarrow \left| b_n - 0 \right| > M \right) \text{, } \exists N \epsilon \mathbb{N} \; \text{т. ч. } \forall n \geq N \Rightarrow \left| \frac{1}{b_n} \right| < \frac{1}{M} = \varepsilon.$

Если (α_n) — бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность $\frac{1}{\alpha_n}$, которая является бесконечно большой. Если же всё же (α_n) содержит нулевые элементы, то последовательность $\frac{1}{\alpha_n}$ всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

Доказательство:

Надо доказать, что $\frac{1}{\alpha_n}$ – , бесконечно большая, т. е. $\forall M>0$ $\exists N\epsilon\mathbb{N}$ т. ч. $\forall n\geq N\Rightarrow \left|\frac{1}{\alpha_n}\right|>M$. Пусть M>0 (т. к. $\lim_{n\to\infty}\alpha_n=0$, то для $\varepsilon=\frac{1}{M}$ $\exists N\epsilon\mathbb{N}$ т. ч. $\forall n\geq N\Rightarrow |\alpha_n-0|<\varepsilon=\frac{1}{M}$), $\exists N\epsilon\mathbb{N}$ т. ч. $\forall n\geq N\Rightarrow \left|\frac{1}{\alpha_n}\right|>M=\frac{1}{\epsilon}$.

10. Неопределенности. Примеры.

1) $\frac{0}{0} \underline{\Pi pumep:} \lim_{x \to 0} \frac{1 - \cos(x)}{x}$ 2) $\frac{\infty}{\infty} \underline{\Pi pumep:} \lim_{x \to \infty} \frac{(x^2 + 4)^2}{(x + 2)^2}$

3) $\infty + \infty \underline{\Pi pumep:} \lim_{x \to \infty} (x^2 + x)$

4) $0 \times \infty \underline{\Pi pumep:} \lim_{n \to \infty} \frac{1}{n} \times 2n$

5) $\infty - \infty$ <u>Пример:</u> $\lim_{x\to\infty} x - 2x^3$

Монотонно возрастающие и монотонно убывающие последовательности.

Последовательность $x_n \in X$ называется:

1) Неубывающей $\Leftrightarrow \forall n \in \mathbb{N} \colon x_n \leq x_{n+1}$

2) Невозрастающей $\Leftrightarrow \forall n \in \mathbb{N} : x_n \geq x_{n+1}$

3) Возрастающей $\Leftrightarrow \forall n \in \mathbb{N}: x_n < x_{n+1}$

4) Убывающей $\Leftrightarrow \forall n \in \mathbb{N}: x_n > x_{n+1}$

12. Теорема о монотонно возрастающей ограниченной последовательности.

Определение:

Последовательность (a_n) называется монотонно возрастающей, если $a_1 < a_2 < a_3 < \dots < a_n$.

Последовательность (a_n) называется ограниченной, если $\exists M>0$ т. ч. $(a_n)< M$, $\forall n\in\mathbb{N}$

Теорема:

Монотонная ограниченная последовательность сходится.

Доказательство для монотонно возрастающей ограниченной последовательности:

Выберем число $S \leq M$ т. ч. :

1) $a_n \leq S, \forall n \in \mathbb{N};$

2) $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \text{т. ч.} \; S - \varepsilon < a_n$

S — супремум последовательности (a_n) — $\sup(a_n)$

 $\lim \, a_n = \mathit{S}, \text{ t. e. } \forall \varepsilon > 0 \; \exists \mathit{N} \epsilon \mathbb{N} \; \text{t. ч. } \forall n \geq \mathit{N} \Rightarrow |a_n - \mathit{S}| < \varepsilon.$

Пусть $\varepsilon > 0$, в качестве N возьмем N из пункта 2, тогда $\forall n \geq N \Rightarrow S - \varepsilon < a_n \Rightarrow |S - a_n| < \varepsilon$

13. <u>Число е.</u>

Замечание:

Бином Ньютона:

$$(a_n) = \left(\left(1 + \frac{1}{n}\right)^n\right) : 2, \frac{9}{4}, \frac{64}{27}, \left(\frac{5}{4}\right)^4 \dots$$

Докажем, что последовательность (a_n) монотонна:

$$(a_n) = \left(\left(1 + \frac{1}{n}\right)^n\right) = \left(1 + \frac{1}{n}\right)^n = C_n^0 + C_n^1 \times \frac{1}{n} + C_n^2 \times \frac{1}{n^2} \dots C_n^n \times \frac{1}{n^n} = \frac{n!}{0! \times (n-0)!} + \frac{n!}{1! \times (n-1)!} \times \frac{1}{n} + \frac{n!}{2! \times (n-2)!} \times \frac{1}{n^2} \dots + \frac{n!}{n! \times (n-n)!} \times \frac{1}{n^n}.$$

$$0! = 1 \Rightarrow 1 + 1 + \frac{1}{2!} \times \frac{n \times (n-1)}{n^2} + \frac{1}{3!} \times \frac{n \times (n-2) \times (n-1)}{n^3} + \frac{1}{4!} \times \frac{n \times (n-3) \times (n-2) \times (n-1)}{n^4} + \dots + \frac{1}{n!} \times \frac{n \times (n-1) \times (n-2) \dots (n-(n-1))}{n^n} = 2 + \frac{\left(1 - \frac{1}{n}\right) \times \left(1 - \frac{2}{n}\right) \times \left(1 - \frac{2}{n}\right) \dots \times \left(1 - \frac{n-1}{n}\right)}{n!} = (a_n)$$

 $a_n + 1$, то

- 1) Добавится еще одно слагаемое больше 0
- 2) А каждое имеющееся слагаемое увеличится

Следовательно
$$a_n < a_n + 1 \Rightarrow (a_n) \nearrow$$

$$a_n \leq 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!} \leq 2 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} < 3$$

Последовательность a_n сходится (по теореме о сходимости монотонной ограниченной последовательности),

Предел этой последовательности равен е.

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e \approx 2.718281828459045 \dots$$

14. Предел функции (по Коши).

Число A называется пределом функции f(x) в точке a, если эта функция определена в некоторой окрестности точки a, за исключением, быть может, самой точки a, и $\forall \varepsilon > 0 \; \exists \; \delta > 0$ т.ч. $\forall x \colon |x - a| < \delta, x \neq a \; \Rightarrow |f(x) - A| < \varepsilon$.

15. Предел функции (по Гейне).

Число A называется пределом функции f(x) в точке a, если эта функция определена в некоторой окрестности точки a, за исключением, быть может, самой точки a, и $\forall (x_n) \to a$, соответствующая последовательность $f(x_n) \to A$.

16. Доказать, что $\lim_{x\to\infty} \sin\frac{1}{x}$ не существует.

17. Односторонние пределы.

- 1) Число A называется пределом f(x) слева в точке x_0 , если $\forall \varepsilon > 0 \,\exists \, \delta > 0$ такое, что $\forall \, x \in dom \, f(x) \setminus \{x_0\} \colon 0 < x_0 x < \delta \Rightarrow 0$ $|f(x) - A| < \varepsilon$.
- 2) Число А называется пределом f(x) справа в точке x_0 , если $\forall \varepsilon > 0 \; \exists \; \delta > 0$ такое, что $\forall \; x \in dom \; f(x) \setminus \{x_0\} \colon 0 < x x_0 < \delta \; \Rightarrow 0$ $|f(x) - f(x_0)| < \varepsilon$.

18. Свойства предела функции.

- а) Если $\lim_{x\to x_0} f(x)$ ∃, то он единственный.
- б) Если $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, то

$$\lim_{x \to x_0} (f(x) \pm g(x)) = A \pm B$$

$$\lim_{x \to x_0} (f(x) \times g(x)) = A \times B$$

Если $g(x) \neq 0$ в окрестности x_0 , а $B \neq 0$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}$

- в) Если $\phi(x)$ ограниченна в x_0 , а $\alpha(x)$ бесконечно малая функция, то $\lim_{x \to x_0} (\phi(x) \times \alpha(x)) = 0$
- г) Первый замечательный предел $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$

Доказательство:

Рассмотрим площади трех фигур:

$$S_{\Delta OAB} = \frac{1}{2} \times R^2 \times \sin(x)$$

$$S_{OAB} = \frac{1}{2} \times R^2 \times x$$

$$S_{\Delta OAC} = \frac{1}{2} \times R^2 \times tg(x)$$

$$S_{\Delta OAB} < S_{OAB} < S_{\Delta OAC}$$

$$\frac{S_{\Delta OAB} < S_{OAB} < S_{\Delta OAC}}{\frac{\sin(x)}{2}} < \frac{x}{2} < \frac{tg(x)}{2}$$

 $\sin(x) < x < tg(x)$ Разделим все на $\sin(x)$.

$$1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$
 Возведем все в — 1 степень.

Получаем:
$$\cos(x) < \frac{\sin(x)}{x} < 1$$
.

Из свойства (д) следует, что предел $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$

д) Пусть
$$\lim_{x \to x_0} f(x) = A = \lim_{x \to x_0} g(x)$$

$$f(x) \le \varphi(x) \le g(x), \forall x \in (x_0 - \delta; x_0 + \delta) \setminus \{x_0\}$$

тогда $\lim_{x\to x_0} \phi(x) = A$

e) Второй замечательный предел $\lim_{x\to 0}(1+x)^{\frac{1}{x}}=e=1^{\infty}$

ж) Если
$$\lim_{x \to x_0} \alpha(x) = 0$$
, то $\lim_{x \to x_0} (1 + \alpha(x))^{\frac{1}{\alpha(x)}} = e$, $\lim_{x \to x_0} \frac{\sin \alpha(x)}{\alpha(x)} = 1$ Если $\lim_{x \to x_0} \beta(x) = +\infty$, то $\lim_{x \to x_0} (1 + \frac{1}{\beta(x)})^{\beta(x)} = e$

19. Доказать, что $\lim_{x\to 2} x^2 = 4$.

20. Вывести формулу для суммы геометрической прогрессии.

21. Критерий Коши для числовых последовательностей. Пример.

Теорема:

Предел числовой последовательности x_n $\exists \Leftrightarrow \forall \varepsilon > 0$ $\exists N \in \mathbb{N}$ такая, что $\forall n \geq N, \forall p \in \mathbb{N} \Rightarrow |x_{n+p} - x_n| < \varepsilon$ Доказательство:

Необходимость (⇒)

Пусть $\lim_{n \to \infty} x_n = a$. Надо доказать, что $\forall \ \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ \forall p \in \mathbb{N} \ \Rightarrow |x_{n+p} - x_n| < \varepsilon$

Пусть $\varepsilon > 0$ $\exists N \in \mathbb{N}$ т. ч. $\forall n \geq N \Rightarrow |x_n - a| < \frac{\varepsilon}{2}$

$$\forall p \in \mathbb{N} \Rightarrow \left| x_{n+p} - x_n \right| = \left| x_{n+p} - a + a - x_n \right| \le \left| x_{n+p} - a \right| + \left| a - x_n \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

22. Критерий Коши для функций.

Предел функции f(x) при $x \to x_0 \exists \iff \forall \varepsilon > 0 \exists \delta > 0$ т. ч. $\forall x_1, x_2 \in dom f(x) \setminus \{x_0\}$: $0 < |x_1 - x_0| < \delta$ и $0 < |x_2 - x_0| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$

23. Определение бесконечно малой величины и понятие о – символики. Примеры.

Функция $y=\alpha(x)$ называется бесконечно малой при $x \to x_0$ если $\lim_{x \to x_0} \alpha(x) = 0$ $\alpha(x)$ и $\beta(x)$ — бесконечно малые и $x o x_0$

- 1) Если $\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=0$, то $\alpha(x)$ бесконечно малая высшего порядка относительно $\beta(x)$. $\alpha(x)=\circ(\beta(x))$.
- 2) Если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} \neq 0$ и конечен, то $\alpha(x)$ и $\beta(x)$ называются сравнимыми.
- 3) Если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)}$ \nexists , то $\alpha(x)$ и $\beta(x)$ называются несравнимыми.

Пусть $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x \to x_0$. $\alpha(x)$ называется бесконечно малой k — того порядка относительно $\beta(x)$, если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta^k(x)} \neq 0$ и конечен.

24. Теорема об эквивалентности бесконечно малых величин.

Определение:

Бесконечно малые величины $\alpha(x)$ и $\beta(x)$ называются эквивалентными при $x \to x_0$, если $\gamma(x) = \alpha(x) - \beta(x)$ является бесконечно малой высшего порядка относительно $\alpha(x)$ и $\beta(x)$.

Теорема:

Пусть $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x \to x_0$. Пусть $\alpha(x) \sim \beta(x) \Leftrightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$.

Доказательство:

Heoбxoдимость (⇒):

Пусть $\alpha(x) \sim \beta(x)$, т.е. по определению: $\gamma(x) = \alpha(x) - \beta(x)$ бесконечно малая высшего порядка, чем $\alpha(x)$ и $\beta(x)$.

Тогда
$$\frac{\gamma(x)}{\beta(x)} = \frac{\alpha(x)}{\beta(x)} - 1 \xrightarrow[x \to x_0]{} 0$$
,

Тогда
$$\frac{\gamma(x)}{\beta(x)} = \frac{\alpha(x)}{\beta(x)} - 1 \underset{x \to x_0}{\longrightarrow} 0,$$
 т.к. $\gamma(x) = \circ \beta(x)$, то $\frac{\alpha(x)}{\beta(x)} \underset{x \to x_0}{\longrightarrow} 1.$

Достаточность (\Leftarrow) :

Пусть
$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$
,

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} - 1 = 0 \text{ , } \delta(x) = \frac{\alpha(x)}{\beta(x)} - 1 \text{, } \delta(x) \times \beta(x) = \alpha(x) - \beta(x) = \gamma(x) \text{ (по определению)}.$$

$$\lim_{x \to x_0} \frac{\gamma(x)}{\delta(x)} = \lim_{x \to x_0} \frac{\beta(x) \times \delta(x)}{\delta(x)} = \lim_{x \to x_0} \delta(x) = 0 \Rightarrow \gamma(x) = 0$$

$$\lim_{x \to x_0} \frac{\gamma(x)}{\delta(x)} = \lim_{x \to x_0} \frac{\beta(x) \times \delta(x)}{\delta(x)} = \lim_{x \to x_0} \delta(x) = 0 \Rightarrow \gamma(x) = 0 \Rightarrow \beta(x)$$

$$\lim_{x \to x_0} \frac{\gamma(x)}{\alpha(x)} = \lim_{x \to x_0} \frac{\beta(x) \times \delta(x)}{\alpha(x)} = \left| \frac{\beta(x)}{\alpha(x)} \right|_{x \to x_0} 0 = 0 \Rightarrow \gamma(x) = 0 \Rightarrow \gamma($$

25. Определение непрерывной функции в точке и в области. Примеры.

- 1) Функция f(x) непрерывна в $x_0 \Leftrightarrow \lim_{x \to x_0 \to 0} f(x) = f(x_0) = \lim_{x \to x_0 \to 0} f(x)$.
- 2) Функция f(x) непрерывна в множестве X, если она непрерывна в каждой точке этого множества.

26. Непрерывность слева и справа. Примеры.

$$f: X \to Y, x_0 \in X$$

- 1) Функция f(x) непрерывна слева в точке x_0 если $\lim_{x \to x_0 = 0} f(x) = f(x_0) = f(x_0 = 0)$.
- 2) Функция f(x) непрерывна справа в точке x_0 если $\lim_{x \to x_0 + 0} f(x) = f(x_0) = f(x_0 + 0)$.

27. Типы точек разрыва.

- 1) Если $f(x_0-0) \neq f(x_0+0)$ и конечны, то x_0 точка разрыва первого рода (скачок).
- 2) Если $f(x_0-0)=f(x_0+0)\neq f(x_0)$ и конечны, то x_0 точка разрыва первого рода (устранимый разрыв).
- 3) Если один из односторонних пределов не существует или равен ∞ , то x_0 точка разрыва второго рода.

28. Пример функции разрывной в каждой точке.

Функция Дирихле $D(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{O} \end{cases}$

29. Теорема о непрерывности композиции.

Теорема:

Пусть $f: X \to Y$, $\varphi: Y \to Z$, $x_0 \in X$, $y_0 = f(x_0)$,

f(x) непрерывна в точке x_0 , $\varphi(y)$ непрерывна в y_0 .

Тогда $\varphi(f(x))$ непрерывна в точке x_0 .

Доказательство:

Надо доказать, что $\varphi(f(x))$ непрерывна в x_0 , то есть $\lim_{x\to x_0} \varphi(f(x)) = \varphi(f(x_0))$, то есть

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{T. q.} \ \forall x \in X : |x - x_0| < \delta \Rightarrow |\varphi(f(x)) - \varphi(f(x_0))|$$

Пусть $\varepsilon>0$, т. к. $\varphi(y)$ непрерывна в y_0 , то $\exists~\delta_{\varphi}>0$ т. ч. $\forall y \in Y: |y-y_0|<\delta_{\varphi}\Rightarrow |\varphi(y)-\varphi(y_0)|<\varepsilon$.

Т.к.
$$f(x)$$
 непрерывна в x_0 , то для $\delta_{\varphi}=\varepsilon_f$ \exists $\delta_f=\delta$ т. ч. $\forall x \in X$: $|x-x_0|<\delta \Rightarrow |f(x)-f(x_0)|<\delta_{\varphi}$.

T.e.
$$|y - y_0| < \delta_{\varphi} \Rightarrow |\varphi(y) - \varphi(y_0)| < \varepsilon$$
, T. e. $|\varphi(f(x)) - \varphi(f(x_0))| < \varepsilon \blacksquare$

30. Теорема о переходе к пределу под знаком непрерывной функции.

Пусть $f: X \to Y$ непрерывна в точке $x_0, g: Y \to Z$ непрерывна в $y_0 = f(x_0)$. Тогда $\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x))$.

31. Теорема Больцано-Коши (первая).

Теорема:

Пусть $f:[a;b] \to \mathbb{R}$ непрерывна на $[a;b], f(a) \times f(b) < 0$ тогда $\exists c \in [a;b]$ т. ч. f(c) = 0.

Доказательство:

Пусть
$$f(a) < 0$$
, $a f(b) > 0$, $\frac{a+b}{2} \epsilon [a;b]$. Если $f\left(\frac{a+b}{2}\right) = 0$, то $c = \frac{a+b}{2}$.

Пусть
$$f\left(\frac{a+b}{2}\right) \neq 0$$
, тогда на концах одного из отрезков $\left[a; \frac{a+b}{2}\right]$, $\left[\frac{a+b}{2}; b\right]$ функция принимает значения в разных знаках.

Для определенности пусть это 2й отрезок, обозначим его $[a_1;b_1]$, затем возьмем середину нового отрезка $\frac{a_1+b_1}{2}$. Если

$$f\left(\frac{a_1+b_1}{2}\right) = 0$$
, to $c = \frac{a_1+b_1}{2}$.

Пусть
$$f\left(\frac{a_1+b_1}{2}\right) \neq 0$$
, тогда на концах одного из отрезков $\left[a_1; \frac{a_1+b_1}{2}\right]$, $\left[\frac{a_1+b_1}{2}; b_1\right]$ функция принимает значения в разных знаках.

Пусть это 1й отрезок $[a_2; b_2]$ и т.д.

В результате мы получим последовательность вложений отрезков.

$$[a;b] \supset [a_1;b_1] \supset [a_2;b_2] \dots$$

$$[a_n; b_n] = a_n - b_n = \frac{b-a}{2^n}.$$

$$\lim_{n\to\infty} (b_n - a_n) = \lim_{n\to\infty} \frac{b-a}{2^n} = 0$$

$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = c\epsilon[a;b]$$

$$f(c) = f\left(\lim_{n \to \infty} a_n\right) = \lim_{n \to \infty} f(a_n) \le 0$$

$$f(c) = f\left(\lim_{n \to \infty} a_n\right) = \lim_{n \to \infty} f(a_n) \le 0$$

$$f(c) = f\left(\lim_{n \to \infty} b_n\right) = \lim_{n \to \infty} f(b_n) \ge 0 \Rightarrow f(c) = 0 \blacksquare$$

32. Теорема Больцано-Коши (вторая).

Теорема:

Пусть $f[a;b] \to [c;d]$ непрерывна на [a;b], f(a)=c, f(b)=d, тогда $\forall y_0 \in [c;d] \exists x_0 \in [a;b]$ т. ч. $f(x_0)=y_0$. Т.е. значения непрерывной функции сплошь заполняют отрезок [c;d].

Доказательство:

Пусть $y \in (a; b)$. Рассмотрим $\varphi(x) = f(x)$.

Тогда
$$\varphi(a) = f(a) - y_0 < 0$$

$$\varphi(b) = f(b) - y_0 > 0$$
 и $f(x)$ непрерывна на $[a;b]$

(Если
$$\varphi(a) = 0$$
, то $f(a) = y_0$ и $x_0 = a. \varphi(b)$ — аналогично)

Значит неравенства выше можно считать строгими.

По 1й теореме Больцано-Коши $\exists c \epsilon [a;b]$ т. ч f(c)=0, т. е. $f(c)=y_0$, $x_0=c$

33. Теорема об обратной функции.

Теорема:

Пусть $f: X \to Y$ непрерывна в X, f(x) — монотонная функция на X,

тогда \exists функция $f^{-1} = g: Y \to X$ монотонная и непрерывная на Y и $g(f(x)) = x \ \forall x \in X$.

Доказательство:

Идея доказательства: $y = f(x) \nearrow$ монотонно возрастает.

Если
$$x_1 < x_2$$
, то $f(x_1) < f(x_2)$.

По 2й теореме Больцано — Коши $\forall y_0 \epsilon Y \ \exists \ x_0 \epsilon X$ т. ч. $f(x_0) = y_0$.

$$g = f^{-1}: Y \to X, g(y_0) = x_0.$$

34. Теорема о непрерывности элементарных функций.

Теорема:

Элементарные функции непрерывны в своей области определения.

35. Тригонометрические функции и обратные к ним. Графики.

4)
$$y = arctg(x)$$

36. Теорема Вейерштрасса (без доказательства).

Теорема:

f(x) непрерывна на [a;b].

Если $f:[a,b] \to Y, Y \in \mathbb{R}$, то $\exists c, d \in [a;b]$ т. ч. $f(c) = \min f(x), \ f(b) = \max f(x). \ (a \le x \le b)$

37. Определение равномерной непрерывности.

Функция $f: X \to Y$ называется равномерно непрерывной на X, если $\forall \varepsilon > 0 \,\exists \, \delta > 0 \,$ т. ч. $\forall x, x_0 \in X$: $|x - x_0| < \delta$ $\Rightarrow |f(x) - f(x_0)| < \varepsilon$

38. Теорема Кантора.

Теорема:

Если $f:[a;b] \to Y, Y \in \mathbb{R}$ непрерывна на отрезке [a;b], то y=f(x) равномерно непрерывна на [a;b].

39. Примеры равномерно непрерывных функций.

- 1) $f(x) = \sin(x);$
- 2) $f(x) = \sin\left(\frac{1}{x}\right)$ равномерна на любом отрезке, не включающем 0;
- 3) $f(x) = \frac{x}{4-x^2}$, $x \in [-1; 1]$;
- 4) $f(x) = arctg(x), x \in \mathbb{R}$.

40. Задача о скорости движущейся точки.

Рассмотрим свободное падение материальной точки.

$$S(t) = \frac{gt^2}{2}$$

$$S(t) + \Delta t = \frac{g(t + \Delta t)^2}{2} = \frac{gt^2}{2} + \frac{g(2t\Delta t + \Delta t^2)}{2}$$

$$\Delta S = \frac{g(2t\Delta t + \Delta t^2)}{2}$$

$$v_{cp} = \frac{\Delta S}{\Delta t}$$

$$v(t) = \lim_{\Delta t \to 0} v_{cp} = \lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t} = \lim_{\Delta t \to 0} \frac{g(2t + \Delta t)}{2} = gt = v(t)$$

41. Определение производной.

Пусть $f:(a;b) \to \mathbb{R}$, $x_0 \in (a;b)$. Если существует конечный $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x)$, то он называется производной функции f(x) в точке x_0 .

42. Вывод табличных производных.

43. Теорема о производной обратной функции.

Теорема:

Пусть $f: X \to Y$, $\exists f'(x_0), \exists g: Y \to X$ обратная к $f(x), \exists g'(f(x_0)),$ тогда $g'(y) = \frac{1}{f'(x)}$.

Доказательство:

$$g'(y_0) = \lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{x - x_0}{f(x) - f(x_0)} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$

(по теореме о переходе к пределу под знаком непрерывной функции).

44. Геометрический смысл производной.

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = tan(\varphi_0), x = x_0 + \Delta x.$$

Рассмотрим график функции y = f(x). Точки М и N имеют следующие координаты $M(x_0; f(x_0))$, N(x; f(x)). Угол между секущей MN и осью Ox обозначим $\varphi(\Delta x)$.

Если $\exists \lim_{\Delta x \to 0} \varphi(\Delta x) = \varphi_0$, то $\tan(\varphi_0)$ наклона касательной, проходящей через точку $M(x_0; f(x_0))$, к положительному направлению оси Ox является производной функции y = f(x) в точке x_0 .

45. Доказать, что функция y = |x| не имеет производной в нуле. Привести другой пример непрерывной функции, не имеющей производной в некоторой точке.

В нуле функция имеет излом (угол). Производные слева и справа не равны друг другу.

46. Определение дифференциала.

Дифференциалом функции f(x) в точке x_0 называется функция от $(x-x_0)$: $df(x_0) = A \times (x-x_0) = A dx$

47. Теорема о связи производной и дифференциала.

Теорема:

Функция y = f(x) дифференцируема в $x_0 \Leftrightarrow \exists y' = f'(x)$.

48. Геометрический смысл дифференциала.

49. Дифференциал как источник приближенных формул.

Приближенная формула получается из равенства $f(x) = f(x_0) + f'(x_0) \times (x - x_0) + \alpha \times (x - x_0)$. $f(x) \approx f(x_0) + f'(x_0) \times (x - x_0)$. Пример:

$$f(x) = (1+x)^{\mu}, x_0 = 0$$

$$f(x) = (1+x)^{\mu} \approx 1 + \mu \times (x-0)$$

 $f'(x) = \mu \times (1+x)$
 $(1+x)^{\mu} \approx 1 + \mu \times x$, x – число, блихкое к 0 .

50. Производные высшего порядка.

Пусть $f: X \to Y, x_0 \in X, f'(x_0)$ — число. Если $\forall x \in X \exists f'(x)$, то на производную можно смотреть как на функцию. $f': X \to f'(x) = g(x)$.

Пусть
$$\forall x \in X \exists g'(x) = (f'(x))' = f''(x).$$

Пусть определена производная попрядка (n-1) т. е. $f^{(n-1)}(x)$.

Тогда производной порядка (n) называется $f^{(n)}(x) = (f^{(n-1)}(x))'$.

51. Теорема Ферма.

Теорема:

Пусть $f:[a;b] \to [c:d]$, $\exists f'(x) \forall x \in (a;b)$, $\exists m \in (a;b)$ т. ч. f(m) — наибольшее значение функции на [a;b]. Тогда f'(m)=0.

<u>Доказательство:</u>

По определению производной: $f'(m) = \lim_{x \to m} \frac{f(x) - f(m)}{x - m}$.

1)
$$x < m$$

$$\frac{f(x) - f(m)}{x - m} > 0 \Rightarrow \lim_{x \to m - 0} \frac{f(x) - f(m)}{x - m} \ge 0$$

2)
$$x > m$$

$$\frac{f(x) - f(m)}{x - m} < 0 \Rightarrow \lim_{x \to m + 0} \frac{f(x) - f(m)}{x - m} \le 0$$

$$\Rightarrow \exists f'(x) \Rightarrow f'(m) = \lim_{x \to m} \frac{f(x) - f(m)}{x - m} = 0 \blacksquare$$

52. Теорема Ролля.

Теорема:

Пусть $f:[a;b] \to [c;d]$ непрерывна, $\exists \ f'(x) \ \forall x \in (a;b), f(a) = f(b)$. Тогда $\exists c \in (a;b)$ т. ч. f'(c) = 0.

Доказательство:

f(x) непрерывна на [a;b]. По теореме Вейерштрасса $\exists c_1, c_2 \in [a;b]$ т. ч. $f(c_1) = m$ — наименьшее значение функции, $f(c_2) = M$ — наибольшее значение функции.

1)
$$m = M$$

 $\forall x \in [a; b] \ m \le f(x) \le M \Rightarrow f(x) - const.$

 $c\epsilon(a;b),f'(c)=0.$

2) m < M

Т. к. f(a) = f(b), то хотя бы одно из значений m или M достигается не на концах отрезка.

(Если $f(a) = m = f(b), f(c) = M, c\epsilon(a; b)$).

Пусть $\exists c \in (a; b)$ т. ч. f(c) = M. Тогда по теореме Ферма f'(c) = 0

53. Теорема Лагранжа.

Теорема:

Пусть $f:[a;b] \to [c;d]$, $\forall x \in [a;b] \exists f'(x)$. Тогда $\exists c \in [a;b]$ т. ч. $\frac{f(b)-f(a)}{b-a} = f'(a) = tg(\varphi)$.

Доказательство:

Рассмотри вспомогательную функцию $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \times (x - a)$.

F(x) — непрерывна на [a;b].

$$F'(x) = f'(x) - 0 - \frac{f(b) - f(a)}{b - a}$$
 . Производна $\exists \forall x \epsilon(a; b)$.

$$F(a) = 0 = F(b) = f(b) - f(a) - (f(b) - f(a))$$

$$F(a) = F(b)$$

По теореме Ролля $\exists c \in (a;b)$ т. ч. F'(c)=0,

$$0 = F'(c) - \frac{f(b) - f(a)}{b - a} \blacksquare$$

54. Теорема Коши.

Теорема:

Пусть $f:[a;b] \to \mathbb{R}$, $g:[a;b] \to \mathbb{R}$ непрерывны на [a;b].

$$\exists \ f'(x), g'(x) \ \forall x \in (a;b)$$
, тогда $\exists \ c \in (a;b)$ т. ч. $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

55. Формула Тейлора. Примеры.

Пусть $f: X \to Y$, $\exists f'(x_0), f''(x_0), ..., f^{(n+1)}(x_0)$.

Тогда
$$f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \times (x-x_0) + \circ ((x-x_0)^n) = \begin{vmatrix} 0! = 1 \\ f^{(0)}(x) = f(x) \end{vmatrix} = f(x_0) + f'(x_0) \times (x-x_0) + \frac{f'(x_0)}{2!} \times (x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \times (x-x_0)^n + \circ (x-x_0)^n.$$

Пример:
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x - x_0)^n$$
. $x_0 = 0, f'(x) = e^x, f'(x_0) = f'(0) = e^0 = 1$.

56. Исследование функции с помощью производной.

- 1) dom f(x)
- 2) Исследование на четность. f(-x) = f(x) четная, f(-x) = -f(x) нечетная, иначе функция общего вида.
- 3) Точки разрыва.
- 4) Асимптоты. Если $\lim_{x\to\pm\infty}f(x)\to\infty$:

$$-\lim_{x\to\pm\infty}(f(x)-kx-b)=0$$

$$-\lim_{x\to\pm\infty}\left(\frac{f(x)}{x}-k-\frac{b}{x}\right)=0$$

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$b=\lim_{x\to\pm\infty}(f(x)-kx)$$
5) $y'=0$ 6) $y''=0,y''>0$ — выпукла вверх, $y''<0$ — выпукла вниз 7) $f(x)=0$

57. Правило Лопиталя для неопределенностей вида $\frac{0}{0}, \frac{\infty}{\infty}$, другие случаи. Пусть $f,g:(a;b] \to \mathbb{R}, \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ (или $= \infty$).

Пусть $\forall x \epsilon(a;b] \ \exists \ f'(x)$ и g'(x), и $\lim_{x \to a} \frac{f'(x)}{g'(x)} = k$ (возможно $k = \infty$).

Тогда
$$\lim_{x\to a} \frac{f'(x)}{g'(x)} = \frac{0}{0}$$
 (или $=\frac{\infty}{\infty}$) $=\lim_{x\to a} \frac{f'(x)}{g'(x)} = k$.