

Introduction to JuMP Modeling Optimization Problems

Jordan Jalving

Department of Chemical and Biological Engineering University of Wisconsin-Madison

UW-Madison March 2018

Jalving (UW-Madison) Introduction to JuMP March 2018 1 / 10

Getting Started

- All code and slides are in GIT repo
 https://github.com/jalving/JuMPTutorial_2018.git
- We will use Julia notebooks that will be executed on JuliaBox
- Access http://juliabox.com
- Click on the git tab and clone GIT repo
 https://github.com/jalving/JuMPTutorial_2018.git
- Click on Jupyter tab and access notebooks under JuMPTutorial_2018

Why Optimize?

- Model real world physical systems
 - Thermodynamics
 - Micro-organism behavior
 - Parameter estimation
- Economics
 - Supply chain design
 - Production scheduling
 - Portfolio optimization
- Resiliency
 - Disaster recovery
 - Identify critical system failures
- Model Predictive Control
 - Robotics (e.g. Autonomous vehicles)
 - Market participation

Optimization Overview - Linear Programming (LP)

Standard Linear Programming Problem

minimize	$c^T x$	Objective function
subject to	Ax = b	Equality constraints
	$x \succeq 0$	Inequality constraints
	$x \in \mathbb{R}^n$	Continuous Variables

Example Linear Program

minimize x+y subject to $x+y \le 1$ $x \ge 0, y \ge 0$ $x, y \in \mathbb{R}$

Algorithms:

- Simplex, Dual Simplex
- Interior Point methods
- LPs with millions of variables can be solved efficiently

Optimization Overview - Mixed Integer Linear Programming (MILP)

Standard Linear Programming Problem

$$c^{T}x + d^{T}y$$

$$Ax + By = f$$

$$x \succeq 0, y \succeq 0$$

$$x \in \mathbb{R}^{n}, y \in \mathbb{Z}^{p}$$

Example MILP

minimize
$$x + y$$

subject to $x + y \le 1$
 $x \ge 0$
 $x \in \mathbb{R}, y \in \{0, 1\}$

Algorithms:

- Branch and Bound
- Branch and Cut
- Hueristic Methods

Optimization Overview - Nonlinear Programming (NLP)

Standard Nonlinear Programming (NLP) Problem

 $\min_{x} f(x)$ Objective function (e.g., economics)

s.t. c(x) = 0 Equality constraints (e.g. physical equations) $g(x) \ge 0$ Inequality constraints (e.g. physical limits)

Example NLP

$$\min_{x_1, x_2} x_1^2 + x_2^2
s.t. x_1 + x_2 = 5
e^{x_1} < 4$$

Ipopt - Interior Point OPTimizer

7/10

- To solve NLPs we will use the interior-point NLP solver Ipopt.
- Ipopt uses a logarithmic barrier to transform the NLP into an equality-constrained subproblem:

$$\min_{x} \phi^{\mu}(x) := f(x) - \mu \sum_{j=1}^{m} \ln(g_j(x))$$

$$s.t. c(x) = 0$$

ullet The barrier subproblem is solved for decreasing values of μ to reach a solution of the original NLP. This is done by solving:

$$\nabla_{x}\mathcal{L}(x,\lambda) = \nabla_{x}\phi^{\mu}(x) + \nabla_{x}c(x)\lambda = 0 \implies \begin{bmatrix} H(x,\lambda) & \nabla_{x}c(x) \\ \nabla_{x}c(x)^{T} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \end{bmatrix} = -\begin{bmatrix} \nabla_{x}\mathcal{L}(x,\lambda) \\ c(x) \end{bmatrix}$$

- Highly efficient sparse linear algebra and globalization strategies enable solution of complex NLPs.
- Ipopt can solve NLPs with millions of variables and constraints.

Julia and JuMP

Julia

- Language for high-performance scientific computing
- Extensive library of tools for optimization, statistics, plotting, graphs,...
- Performance comparable to C
- Designed to enable parallelism

JuMP

- Algebraic modeling language for optimization written in Julia
- Syntax close to natural mathematical expressions
- Processes problems at speeds comparable to GAMS and AMPL
- Automatic computation of derivatives (NLPs)

Key:

- JuMP is solver independent (supports all problem types).
- Compatible with open-source (e.g. Ipopt) and commercial (e.g. Gurobi) solvers.

Solving Optimization Problems with JuMP

Consider our previous NLP example:

$$\begin{array}{ll} \min\limits_{x_1,x_2} x_1^2 + x_2^2 & \underset{\text{using JuMP}}{\text{using Ipopt}} \\ s.t. \ x_1 + x_2 = 5 \\ e^{x_1} \leq 4 & \underset{\text{objective }(m, x_1)}{\text{ovariable }(m, x_1)} \\ e^{x_1} \leq 4 & \underset{\text{objective }(m, x_1 + x_2 = 5)}{\text{onstraint }(m, x_1 + x_2 = 5)} \\ e^{x_1} \leq 4 & \underset{\text{solve }(m)}{\text{ovariable }(m, x_1)} \\ \end{array}$$

- Ipopt internally solves a sequence of barrier problems of the form:

$$\min_{x_1, x_2} x_1^2 + x_2^2 - \mu \log(4 - e^{x_1})$$

s.t. $x_1 + x_2 = 5$

- Example implemented in Julia notebook

simple_nonlinear_model.ipynb

Solving Optimization Problems with JuMP

Jump also enables compact syntax expressions:

$$\min_{x_1, x_2} \sum_{j \in \{1, 2\}} x_j^2$$
s.t.
$$\sum_{j \in \{1, 2\}} x_j = 5$$

$$e^{x_1} < 4$$

```
using JuMP
using lpopt
m = Model()
S = collect(1:2)
@objective(m, Min, sum(x[j]^2 for j in S))
@variable(m, x[S])
@constraint(m, sum(x[j] for j in S) == 5)
@NLconstraint(m, exp(x[1]) <= 4)
solve(m)</pre>
```

Example implemented in Julia notebook

```
simple_nonlinearmodel_set.ipynb
```