

TFT LCD Preliminary Specification

MODEL NO.: V216B1-LN1

4	LCD TV Head Division
AVP	

OPA Dont	TVHD / PDD						
QRA Dept.	DDIII	DDII	DDI				
Approval	Approval	Approval	Approval				

LCD TV Marketing and Product Management Division					
Product Manager					

1. GENERAL SPECIFICATIONS

1.1 OVERVIEW

The V216B1-LN1 model is a 21.6 inch wide TFT-LCD module with a 4-CCFL Backlight Unit and a 55-pin 1-path RSDS interface. This module supports 1366 x 768 (16:9 wide screen) mode and displays up to 16.7 millions colors. The inverter module for the Backlight Unit is not built in.

1.2 FEATURES

- Excellent Brightness 400nits
- Contrast Ratio 800:1
- Fast Response Time (5ms)
- Color Saturation NTSC 72%
- WXGA (1366 x 768 pixels) Resolution
- DE (Data Enable) Only Mode
- RSDS (Reduced Swing Differential Signaling) Interface
- Viewing Angle: 170(H)/160(V) (CR>10) TN Technology
- Color Reproduction (Nature Color)

1.3 GENERAL

Item	Specification	Unit	Note
Active Area	477.417 (H) x 268.416 (V) (21.6" diagonal)	mm	
Bezel Opening Area	481.5 (H) x 272.5 (V)	mm	
Driver Element	a-si TFT active matrix	-	
Pixel Number	1366 x R.G.B. x 768	pixel	
Pixel Pitch (Sub Pixel)	0.1165 (H) x 0.3495 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7 millions	color	
Display Operation Mode	Transmissive mode / Normally White	-	
Surface Treatment	Hard coating (3H), AG (Haze 25%)	-	

1.4 MECHANICAL

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	500.3	501	501.7	mm	
Module Size	Vertical(V)	296.4	297	297.6	mm	
	Depth(D)	16.8	17.3	17.8	mm	To PCB cover
Weight		Na	2300	Na	g	

Issued Date: April. 22, 2008 Model No.: V216B1 - LN1 **Preliminary**

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Valu	ıe	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	Тѕт	-20	+60	ºC	(1)	
Operating Ambient Temperature	Тор	0	+50	°C	(1), (2)	
Shock (Non-Operating)	SNOP	-	50	G	(3), (5)	
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)	

- Note (1) Temperature and relative humidity range is shown in the figure below.
 - (a) 90% RH Max. (Ta \leq 40 $^{\circ}$ C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half-sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Issued Date: April. 22, 2008 Model No.: V216B1 - LN1

Preliminary

2.2 TFT LCD MODULE

Global LCD Panel Exchange Center

Item	Symbol	Symbol Value			Note
item	Syllibol	Min.	Max.	Unit	Note
	VAA	-0.3	14.0	V	
Power Supply Voltage	VGH	-0.3	30.0	V	
	VGL	-10.0	-0.3	V	
Input Signal Voltage	VIN	-0.3	3.6	V	

2.3 BACKLIGHT UNIT

Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Lamp Voltage	V_{W}	Ta = 25 °C	_		3000	V_{RMS}	

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol		Value	Unit	Note	
	Parameter		Min.	Тур.	Max.	O I II	Note
		V GH	22	23	24	V	
Power Sur	oply Voltage	V _{GL}	-6.0	-5.5	-5.0	٧	
l ower sup	oply voltage	Vaa	12	12.25	12.5	٧	
			3.2	3.3	3.4	٧	
		lgн	-	10	ı	mA	
Power Sur	oply Current	lgL	-	3	ı	mA	
l ower Sup	oply Guiterit	laa	-	190	250	mA	
		Ivdd	1	110	ı	mA	
	Input High Threshold Voltage	V_{IH}	2.7	1	3.3	V	
interface	Input Low Threshold Voltage	V_{IL}	0	-	0.7	V	

Note (1) IAA value is maximum at black pattern

Note (2) The module should be always operated within above ranges.

3.2 RSDS CHARACTERISTICS

Ta = -10~+85 ^oC

Item	Symbol	Condition	,	Unit		
item	Symbol	Condition	Min	Тур	Max	Offic
RSDS high input Voltage	$V_{DIFFRSDS}$	$V_{CMRSDS} = +1.2 V (1)$	100	200	-	mV
RSDS low input Voltage	V_{DIFFRSDS}	$V_{CMRSDS} = +1.2 V (1)$	-	-200	-100	mV
RSDS common mode input voltage range	V _{CMRSDS}	$V_{DIFFRSDS} = 200 \text{mV} (2)$	VSSD+0.1	Note(3)	VDDD-1.2	٧
RSDS Input leakage current	I _{DL}	D _{xx} P, D _{xx} N ,CLKO ,CLPN	-10	-	10	μ A

Note (1) $V_{CMRSDS} = (VCLKP + VCLKN)/2$ or $V_{CMRSDS} = (VD_{XX}P + VD_{XX}N)/2$

Note (2) $V_{DIFFRSDS} = VCLKP - VCLKN$ or $V_{DIFFRSDS} = VD_{XX}P - VD_{XX}N$

Note (3) $V_{CMRSDS} = 1.2V(VDDD = 3.3V)$

3.3 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol	Value			Unit	Note	
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Note	
Lamp Voltage	V_{W}	-	810	-	V_{RMS}	$I_L = 7.0 \text{mA}$	
Lamp Current	ΙL	6.5	7.0	7.5	mA _{RMS}		
Loren Tura On Voltone	\/-			1250	V_{RMS}	(2), Ta = 25 ^o C	
Lamp Turn On Voltage	Vs			1450	V_{RMS}	(2), Ta = 0 ^o C	
Operating Frequency	F_L	40		80	KHz	(3)	
Lamp Life Time	L_BL	50000			Hrs	(4)	

- Note (1) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.
- Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = $25 \pm 2^{\circ}$ C and I_L = 7.0 mArms.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Figure.4-1 TFT LCD module block diagram

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	GND	Ground	29	GM8	Gamma voltage 8
2	B2P	RSDS data signal (Blue 2)	30	GM7	Gamma voltage 7
3	B2N	RSDS data signal (Blue 2)	31	GM6	Gamma voltage 6
4	B1P	RSDS data signal (Blue 1)	32	GM5	Gamma voltage 5
5	B1N	RSDS data signal (Blue 1)	33	GM4	Gamma voltage 4
6	B0P	RSDS data signal (Blue 0)	34	GM3	Gamma voltage 3
7	B0N	RSDS data signal (Blue 0)	35	GM2	Gamma voltage 2
8	G2P	RSDS data signal (Green 2)	36	GM1	Gamma voltage 1 (highest)
9	G2N	RSDS data signal (Green 2)	37	GND	Ground
10	G1P	RSDS data signal (Green 1)	38	VDD	Driver IC logic power supply
11	G1N	RSDS data signal (Green 1)	39	VDD	Driver IC logic power supply
12	G0P	RSDS data signal (Green 0)	40	VAA	Source IC analog power supply
13	G0N	RSDS data signal (Green 0)	41	VAA	Source IC analog power supply
14	CLKP	RSDS clock	42	VAA	Source IC analog power supply
15	CLKN	RSDS clock	43	TP1	Source IC data latch
16	R2P	RSDS data signal (Red 2)	44	POL	Source IC output polarity
17	R2N	RSDS data signal (Red 2)	45	STH	Horizontal start pulse
18	R1P	RSDS data signal (Red 1)	46	NC	No connection
19	R1N	RSDS data signal (Red 1)	47	NC	No connection
20	R0P	RSDS data signal (Red 0)	48	STV	Vertical start pulse
21	R0N	RSDS data signal (Red 0)	49	CKV	Gate IC clock
22	GND	Ground	50	OE	Gate IC output enable
23	GM14	Gamma voltage 14 (lowest)	51	/XAO	Force Gate IC output to Vgh level
24	GM13	Gamma voltage 13	52	VGL	Gate IC power supply
25	GM12	Gamma voltage 12	53	GND	Ground
26	GM11	Gamma voltage 11	54	VGH	Gate IC power supply
27	GM10	Gamma voltage 10	55	GND	Ground
					-

Note (1) Connector part no.: STARCONN 089H55-000000-G2-C (0.5mm FFC) or compatible

Gamma voltage 9

5.2 BACKLIGHT UNIT

Figure 5.-1 Backlight unit

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

color v	ersus data input.	ı																	
		Data Signal																	
Color		Red				Green				Blue									
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	В5	B4	ВЗ	B2	B1	В0
Basic Colors	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Gray	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:		:	:):)	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:				:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	Ŀ		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
areen	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Gray Scale Of Blue	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: April. 22, 2008 Model No.: V216B1 - LN1

Preliminary

②

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

(a) Timing Spec

	Devemeter	Cymphal	Condition		Unit		
	Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	Clock pulse width	tclk	-	12.5	-	-	ns
	Clock pulse low period	tclk(L)	-	5	-	-	ns
	Clock pulse high period	tclk(H)	-	5		-	ns
	Data setup time	tsetup1	-	4	-	-	ns
HD	Data hold time	thold1	-	1.5	-	-	ns
ПО	Start pulse setup time	tsetup2	-	2.3	-	-	ns
	Start pulse hold time	thold2	-	2	-	-	ns
	TP1 high period	tTP1(H)		15	-	-	CLKP
	Last data CLK to TP1 high	t last	-	1	-	-	CLKP
	TP1 high to STH high	t NEXT	-	6	-	-	CLKP
	POL to TP1 setup time	tPOL-TP1	POL toggle to TP1 rising	3	-	-	ns
	TP1 to POL hold time	tTP1-POL	TP1 falling to POL toggle	2	-	-	ns
	CKV period	tckv	-	5	-		μ s
	CKV pulse width	тскун, тскуг	50% duty cycle	2.5	-		μ s
	OE pulse width	twoE	-	1	-		μ s
VD	Data setup time	tsu	-	0.7	-		μ s
	Data hold time	thd	-	0.7	-		μ s
	CKV to output delay time	tPD1	CL=300pF	-	-	1	μ s
	OE to output delay time	tPD3	CL=300pF	-	-	0.8	μ s

(b) Horizontal Timing Chart

Issued Date: April. 22, 2008 Model No.: V216B1 - LN1 **Preliminary**

②

(c) Vertical Timing Chart

Issued Date: April. 22, 2008 Model No.: V216B1 - LN1 **Preliminary**

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Figure.6-1 Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Model No.: V216B1 - LN1 **Preliminary**

7. OPTICAL CHARACTERISTICS

7.1 OPTICAL CHARACTERISTICS

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio)	CR		600	800		-	(2)	
Deemana Tim		T _R			1.3	2.2		(0)	
Response Time		T _F			3.7	5.8	ms	(3)	
Center Lumina	ance of White	L _C		300	400			(4)	
White Variatio	n	δW				1.3	-	(7)	
Cross Talk		CT				4	%	(5)	
	Red	Rx	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		(0.644)	Typ. +0.03	-		
	neu	Ry	Viewing Angle at	Typ. -0.03	(0.331)		-		
	Green	Gx	Normal Direction		(0.273)		-	(6)	
		Gy			(0.588)		-		
Color	Blue	Bx			(0.151)		-		
Chromaticity		Ву			(0.061)		-		
		Wx			(0.285)		-		
	VVIIILE	Wy			(0.293)		-		
	Color Gamut	CG		68	72		%	NTSC Ratio	
Viewing Angle	Horizontal	θ_x +		75	85				
	HUHZUHIAI	θ_{x} -	CR≥10	75	85		Deg.	(1)	
	Vertical	θγ+	Un≥10	70	80		Deg.	(1)	
		θ _V -		70	80				

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Issued Date: April. 22, 2008 Model No.: V216B1 - LN1 **Preliminary**

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5),

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point and 5 points

$$L_C = L(5)$$

L(X) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100$$
(%)

Where:

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Issued Date: April. 22, 2008 Model No.: V216B1 - LN1

Preliminary

7.2 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	οС			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	Vcc	5.0	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Inverter Current	lι	7.0	mA			
Inverter Driving Frequency	FL 50 KHz					
Inverter		Ampower (27-D024817)				

8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V216B1-LN1
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(d) Production Location:XXXX, for example:TAIWAN or CHINA.

Serial ID includes the information as below:

- (a) Manufactured Date: Year: 0~9, for 2000~2009
 - Month: 1~9, A~C, for Jan. ~ Dec.
 - Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.
- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 10 LCD TV modules / 1 Box
- (2) Box dimensions: 563(L) X 408 (W) X 530 (H)
- (3) Weight: approximately25Kg (10 modules per box)

9.2 PACKING METHOD

Figure.8-1 packing method

Sea / Land Transportation (40ft HQ Container) Pallet Stack:L840*W1150*H2530mm Gross:630kg

Sea / Land Transportation (40ft Container) Pallet Stack:L840*W1150*H2155mm Gross:530kg

Air Transportation

Pallet Stack:L840*W1150*H1265m Gross:315kg

Figure.8-2 packing method

20

Issued Date: April. 22, 2008 Model No.: V216B1 - LN1 Preliminary

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.
- (3) UL60065 or updated standard.
- (4) IEC60065 or updated standard.

11. MECHANICAL CHARACTERISTIC

Version 1.0

Issued Date: April. 22, 2008 Model No.: V216B1 - LN1

②

