This page is for final practice for DSE230/CSE255 Spring 2016

Warm-up Questions:

1.) Print the number of elements in the RDD B. Also, print the first five elements of RDD B

```
n=10000;
B=sc.parallelize(range(n))
## Your answer here
print 'Number of elements= %d'%(B.count())
print 'First 5 elements = %d'%(B.take(5))
```

2.) Given an RDD of words, find and output one of the longest words

```
words=['this','is','the','best','mac','ever','jupyter']
wordRDD=sc.parallelize(words)
## Your answer here
wordRDD.reduce(lambda w,v: w if len(w)>len(v) else v)
```

3.) Remove duplicate elements in RDD

```
DuplicateRDD = sc.parallelize([1,1,2,2,3,3])
## Your answer here
print DuplicateRDD.distinct().collect()
```

4.) Given an RDD, create a new RDD where each element appears twice

```
A=sc.parallelize(range(5))
### Your answer here
A.flatMap(lambda a: [a,a]).collect()
```

5.) Count how many positive numbers are there in the RDD?

```
B=sc.parallelize(range(-10,20))
## Your answer here
B.filter(lambda n: n > 0).count()
```

Short answer questions

Q-1 What is lazy evaluation and why is it more efficient?

The transformations are only computed when an action requires a result to be returned to the driver program. This design enables Spark to run more efficiently – for example, we can realize that a dataset created through map will be used in a reduce and return only the result of the reduce to the driver, rather than the larger mapped dataset.

Q-2 Consider the following methods of estimating pi. Which one is more efficient and why?(sc refers to SparkContext object)

Method 1

Method 2

Method 1 is more efficient because it is generating random numbers in parallel at worker nodes while method 2 is generating NUM_SAMPLES numbers at driver and then distributing them to workers.

Pair RDD Questions

6.) Compute and print the largest value for each key in this pair RDD

```
PairRDD = sc.parallelize([(1,2), (2,4), (2,6)])
## Your answer here
print PairRDD.reduceByKey(lambda a,b: max(a,b)).collect()
```

7.) Sort a pair RDD by key and print the result

```
PairRDD = sc.parallelize([(2,2),(1,4),(3,6),(2,1)])
## Your answer here
print PairRDD.rdd.sortByKey().collect()
```

8.) Perform the following transformation:

```
PairRDD = sc.parallelize([(1, 2), (2, 4), (2, 6)])
# After transformation : [(2, [4, 6]), (1, [2])]
```

```
### Your answer here
print PairRDD.groupByKey().mapValues(lambda x:[a for a in x]).collect()
```

9.) Given two pair RDDs A and B, create the following RDD

```
[('adam', ('kalai', None)),
  ('vaclav', (None, 'M')),
  ('john', ('dow', 'M')),
  ('beth', ('simon', 'F'))]
```

```
A=sc.parallelize([('john','dow'),('adam','kalai'),('beth','simon')])
B=sc.parallelize([('beth','F'),('john','M'),('vaclav','M')])
## Your answer here
A.fullOuterJoin(B).collect()
```

Spark for Statistics Questions

10.) Suppose X is an RDD where each element is a floating point value. Write code to **efficiently** compute a good **approximation** of the median value?

```
from numpy.random import rand
X=sc.parallelize(rand(10000000)/2)
## Your answer here
L=X.sample(False,0.001).collect()
L=sorted(L)
L[len(L)/2]
```

11.) For the same RDD in Q-10, compute the mean and the standard deviation in one pass.

```
### Your answer here
from numpy import sqrt
(N,S,S2)=X.map(lambda x: (1,x,x*x)).reduce(lambda a,b:(a[0]+b[0],a[1]+b[1],a[2]+b[2]))
E=S/N
Var=S2/N-E**2
print 'mean=%f, std=%f'%(E,sqrt(Var))
```

12.) Suppose R is an RDD of tuples, each tuple containing two floating point numbers (x,y). Compute the covariance of x and y using a single pass over the RDD.

```
n=10000
a=rand(n); b=rand(n)
R=sc.parallelize(zip(5*a+b,5*a-b))
## Your answer here
(N,X,Y,XY)=R.map(lambda x:np.array([1,x[0],x[1],x[0]*x[1]])).reduce(lambda a,b:a+b)
print 'cov(x,y)=',XY/N-(X/N)*(Y/N)
```

13.) Suppose R is an RDD that contains integer numbers in the range 0 to 3. Write code to efficiently compute and plot an approximate histogram.

```
X=([0]*10000+[1]*23000+[2]*15532+[3]*10000)
keys=rand(len(X))
R=sc.parallelize(zip(keys,X)).cache()
R=R.repartitionAndSortWithinPartitions(2).map(lambda x:x[1])
## Your answer here
H=R.sample(False,0.01).collect()
hist(H);
```

ML / Math questions

12) Suppose xR4 and that F(x)=(x1-3)2+(x2-2)2+(x3+1)2+(x4-3)2What is the gradient of F(x) at the point x=(0,0,0,0)? Ans: F'(x)=(-6,-4,2,-6)

- 13) Suppose x is a random vector in R^{100} and suppose that the PCA analysis yields the mean vector μ ,the eigenvectors (of length one) v_1, \ldots, v_{100} and the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{100}$
 - a. Write an expression the vector \vec{x} shifted so that the mean of the new RV is zero. Call the shifted vector \vec{z}

```
\vec{z} = \vec{x} - E(\vec{x})
```

- b. Suppose z is expressed in terms of the eigenvectors of the PCA. Write an expression for the coefficient in front of the eigenvector v_i call this coefficient $c_i = z \cdot v_i$
- c. What is the variance of ci ? λ_i
- d. What is the covariance of c_5 and c_{10} ? 0

- e. Write the expression for the approximation of x using the first two eigenvectors (you can use z and c1,c2,c3, in the expression) . Call this approximation $\mu_2 = (z.v_1)v_1 + (z.v_2)v_2$
- f. What is the expected residual error? $E[||x \mu_2||^2] = \sum_{i=3}^{100} \lambda_i$
- 14) Suppose that the domain X consists of 4 points: $\{1,2,3,4\}$ whose probabilities are $P(1)=P(2)=P(4)=\frac{1}{2}$, and $P(3)=\frac{1}{2}$

The conditional probabilities are

	Best prediction	Prediction error	P(X=x)
P(Y = +1 X = 1) = 0.9	1	0.1	1/5
P(Y = +1 X = 2) = 0.2	0	0.2	1/5
P(Y = +1 X = 3) = 1.0	1	0	2/5
P(Y = +1 X = 4) = 0.8	1	0.2	1/5

- a. What is the Bayes error? 0.1*% + 0.2*% + 0*%+0.2*% = 0.5/5=0.1
- b. Consider rules of the form $f_{\theta}(x) = +1$ if $x \ge \theta$, -1 otherwise i)What is the maximal absolute value of the correlation achievable by a rule with this form? ii)What is the values of θ that achieves that highest correlation?

NOTE: In this context (boosting a weak learner) I define the correlation of a rule h(x) with the labels to be:

$$Corr(h) = E(h(X)Y) = \sum_{x} P(x)h(x)E(Y|X=x)$$

To compute the contributions due to each X = x we use the equation

$$E(Y|X=x) = P(Y=+1|X=x) - P(Y=-1|X=x) = 2P(Y=+1|X=x) - 1$$

And then multiply them by h(x)

	x=1	x=2	x=3	x=4
P(X=x)	1/5	1/5	2/5	1/5
Contribution if h(x)=1	0.8	-0.6	1.0	0.6
Contribution if h(x)=-1	-0.8	0.6	-1.0	-0.6
Contribution if h(x)=0	0	0	0	0

Using these values we can compute the correlation for each threshold:

	$\theta = 0.5$	$\theta = 1.5$
correlation	1/4*(0.8-0.6+2*1.0+0.6)=2.8/5 = 0.56	½*(-0.8-0.6+2*1.0+0.6)=1.2/5 = 0.24

$\theta = 2.5$	$\theta = 3.5$	$\theta = 4.5$
\(\%^*(-0.8+0.6+2*1.0+0.6) = 2.4/5 = 0.48	/s*(-0.8+0.6-2*1.0+0.6)=-1.6/5 = -0.32	½*(-0.8+0.6-2*1.0-0.6)=-2.8/5 = -0.56

The thresholds 0.5 and 4.5 have a correlation of 0.56 and -0.56 respectively. (This makes sense because the first always predicts +1, and the second always predicts -1)

c. Consider rules of the form $f_{\theta}(x) = +1 \ if \ x \geq \theta$, 0 otherwise i)What is the maximal correlation achievable by a rule with this form? ii)What is the value of θ that achieves this minimum?

We first compute the contribution of each value of X to the correlation

	x=1	x=2	x=3	x=4
Contribution if h(x)=1	0.8	-0.6	1.0	0.6
Contribution if h(x)=0	0	0	0	0

Using these values we can compute the correlation for each threshold:

	$\theta = 0.5$	$\theta = 1.5$
correlation	1/4*(0.8-0.6+2*1.0+0.6) = .56	½*(-0.6+2*1.0+0.6) = 0.4

$\theta = 2.5$	$\theta = 3.5$	$\theta = 4.5$
1/4*(2*1.0+0.6) = 0.52	/ ₅ *(0.6)= 0.12	0

The correlation is maximum i.e. 0.56 when $\theta = 0.5$

Correlation is minimum when $\theta = 4.5$

15) Consider the following AD-tree

What would be value of the score function for x=8,y=3?

Score = -0.1 + 0.3 + 0.5 = 0.7

16) Consider a decision stump:

Suppose that the label is binary $y \in \{-1,+1\}$ and that

$$P(y = +1|B) = 0.7$$
, $P(y = +1|A) = 0.8$, $P(y = +1|C) = 0.9$

Consider a tree learning algorithm that is comparing the performance of the root A with that of the leaves B,C.

Mark all the true statements:

- 1. The conditional entropy of the partition B,C is lower than that of the root A.
- 2. The training error of the leaves B,C is lower than that of the root A.

1 is correct because the conditional entropy always decreases if the conditional probabilities of the children are different from that of the root.

2 is incorrect. Whether using the root or the two children, the prediction is always +1, and so the error rate is the same.