Project Euler #188: The hyperexponentiation of a number

This problem is a programming version of Problem 188 from projecteuler.net

The *hyperexponentiation* or *tetration* of a number a by a positive integer b, denoted by $a \uparrow \uparrow b$ or b o

$$a \uparrow \uparrow 1 = a$$
,
 $a \uparrow \uparrow (k+1) = a^{a \uparrow \uparrow k}$.

Thus we have e.g. $3 \uparrow \uparrow 2 = 3^3 = 27$, hence $3 \uparrow \uparrow 3 = 3^{27} = 7625597484987$ and $3 \uparrow \uparrow 4$ is roughly $10^{3.6383346400240996 \cdot 10^{12}}$.

Find $a \uparrow \uparrow b \pmod{m}$.

Input Format

The first line of each test file contains a single integer T — the number of test cases. T lines follow, each containing three integers separated by single spaces: a, b and m.

Constraints

$$1 \le T \le 10$$

 $1 \le a, b, m \le 10^{18}$

Output Format

Output exactly T lines with the corresponding $a \uparrow \uparrow b \pmod{m}$ on each line.

Sample Input 0

1 3 3 100000000000000000000

Sample Output 0

7625597484987