

Lecture 2: Image Enhancement

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Image filtering

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Image filtering

Types of Images

Binary

Types of Images

Binary

Gray Scale

Types of Images

Binary

Gray Scale

Color

Binary image representation

Grayscale image representation

Color Image - one channel

Color image representation

Images are sampled

What happens when we zoom into the images we capture?

Resolution

is a **sampling** parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density, and its standard value for recent screen technologies is 72 dpi

Images are Sampled and Quantized National Al Accidents

- An image contains discrete number of pixels
 - A simple example
 - Pixel value:
 - "grayscale" (or "intensity"): [0,255]

Images are Sampled and Quantized Al Accodemy

- An image contains discrete number of pixels
 - A simple example
 - Pixel value:
 - "grayscale"

(or "intensity"): [0,255]

- "color"
 - RGB: [R, G, B]
 - Lab: [L, a, b]
 - HSV: [H, S, V]

[213, 60, 67]

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Image filtering

Histogram

- Histogram of an image provides the frequency of the brightness (intensity) value in the image.
- Histogram captures the distribution of gray levels in the image.
- How frequently each gray level occurs in the

image

Histogram

Count: 10192 Mean: 133.711 StdDev: 55.391 Min: 9 Max: 255

Mode: 178 (180)

Count: 10192 Mean: 104.637 StdDev: 89.862 Min: 11 Max: 254 Mode: 23 (440)

111000. 25 (110)

Slide credit: Dr. Mubarak Shah

Histogram – Use case

Slide credit: Dr. Mubarak Shah

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Image filtering

Images as discrete functions

- Images are usually digital (discrete):
 - Sample the 2D space on a regular grid
- Represented as a matrix of integer values

							PIAC	•
	j							
	62	79	23	119	120	05	4	0
i	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
Ţ	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

nixel

Images as coordinates

Cartesian coordinates

Images as functions

- An Image as a function f from R^2 to R^M :
 - I(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite range:

range

I: $[a,b] \times [c,d] \rightarrow [0,255]$

Domain

Images as functions

- An Image as a function f from \mathbb{R}^2 to \mathbb{R}^M :
 - I(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite range:

$$I: [a,b] \times [c,d] \rightarrow [0,255]$$
Domain range support

• A color image:
$$I(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Image filtering

Systems and Filters

Filtering:

 Forming a new image whose pixel values are transformed from original pixel values

Goals:

- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
 - Features (edges, corners, blobs...)
 - super-resolution; in-painting; de-noising

Super-resolution

De-noising

Salt and pepper noise

In-painting

Bertamio et al

- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression

- Image filtering:
 - Compute function of local neighborhood at each position

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

- Image filtering:
 - Compute function of local neighborhood at each position

h=output f=filter I=image
$$h[m,n] = \sum_{k,l} f[k,l] \, I[m+k,n+l]$$
 2d coords=k,l 2d coords=m,n

l l

Example: box filter

	$f[\cdot,\cdot]$								
1	1	1	1						
<u> </u>	1	1	1						
9	1	1	1						

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Image filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Image filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

_									
	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

	Ĵ	<i>†</i> [· ,·	·]
1	1	1	1
$\frac{1}{2}$	1	1	1
9	1	1	1

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)
- Why does it sum to one?

	Ĵ	<i>†</i> [· ,·	·]
1	1	1	1
$\frac{1}{2}$	1	1	1
9	1	1	1

Smoothing with box filter

Image filtering

- Image filtering:
 - Compute function of local neighborhood at each position

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Think-Pair-Share time

1

0	0	0
0	1	0
0	0	0

2.

0	0	0
0	0	1
0	0	0

3.

1	0	-1
2	0	-2
1	0	-1

4.

0	0	0
0	2	0
0	0	0

	1	1	1
- - `	1	1	1
)	1	1	1

Original

0	0	0
0	1	0
0	0	0

?

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

?

Original

0	0	0
0	0	1
0	0	0

1

Shifted left By 1 pixel

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

1	2	1
0	0	0
-1	- 2	-1

Sobel

Horizontal Edge (absolute value)

David Lowe

Original

0	0	0	1	1	1	1
0	2	0	<u> </u>	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Source: D. Lowe

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

Accentuates differences with local average

before

after

Correlation and Convolution

2d correlation

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

h=filter2(f,I); or h=imfilter(I,f);

• 2d convolution

$$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$

h=conv2(f,I); or h=imfilter(I,f,'conv');

Correlation and convolution are identical when the filter is symmetric.

We are going to convolve a function f with a filter h.

$$g[n] = \sum_{k} f[k]h[n-k]$$

We are going to convolve a function f with a filter h.

$$g[n] = \sum_{k} f[k]h[n-k]$$

We first need to calculate h[n-k, m-l]

*

We are going to convolve a function f with a filter h.

We are going to convolve a function **f** with a filter **h**.

*

We are going to convolve a function **f** with a filter **h**.

*

We are going to convolve a function **f** with a filter **h**.

*

We are going to convolve a function **f** with a filter **h**.

*

We are going to convolve a function **f** with a filter **h**.

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

1	2	3
4	5	6
7	8	9

m	-1	0	1
-1	-1	-2	-1
0	0	0	0
1	1	2	1

-13	-20	-17
-18	-24	-18
13	20	17

Input

Kernel

Output

$$= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$$

$$+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$$

$$+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

1	2	1
0 1	0 2	0 3
-1 4	<mark>-2</mark> 5	-1 6
7	8	9

$$= x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$$

$$+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$$

$$+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$$

Output

$$= x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1]$$

$$+ x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0]$$

$$+ x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17$$

Output

1	2 1	1 2	3
0	0 4	<mark>0</mark> 5	6
-1	-2 7	-1 8	9

$$= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$$

$$+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$$

$$+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$$

Output

2D convolution example

1	2 2	1 3
<mark>0</mark> 4	0 5	<mark>0</mark> 6
-1 7	<mark>-2</mark> 8	-1 9

$$= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1]$$

$$+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0]$$

$$+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$$

$$= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24$$

Output

Slide credit: Song Ho Ahn

2D convolution example

1	1 2	2 3	1
4	<mark>0</mark> 5	0 6	0
7	-1 8	<mark>-2</mark> 9	-1

$$= x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1] + x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0] + x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1] = 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -18$$

Output

Slide credit: Song Ho Ahn

Convolution in 2D - examples

•0	•0	•0
•0	•1	•0
•0	•0	•0

?

Original

Convolution in 2D - examples

*

•0	•0	•0
•0	•1	•0
•0	•0	•0

Original

Filtered (no change)

Convolution in 2D - examples

Original

Convolution in 2D - examples

.

*

 •0
 •0
 •0

 •0
 •0
 •1

 •0
 •0
 •0

Shifted right By 1 pixel

Original

Convolution in 2D - examples

 $\star \frac{1}{9}$

•1	•1	•1
•1	•1	•1
•1	•1	•1

•

Original

Convolution in 2D - examples

Original

 •1
 •1

 •1
 •1

 •1
 •1

Blur (with a box filter)

Convolution in 2D - examples

"details of the image"

Original

(Note that filter sums to 1)

+

What does blurring take away?

Let's add it back:

Al Academy Vietnam

Convolution in 2D – Sharpening filter

- \frac{1}{9} \big| \big| \big| 1 \big| \big| 1 \big| \big| 1 \big| 1

Original

Sharpening filter: Accentuates differences with local average

Convolution properties

Commutative: a * b = b * a

- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality, e.g., image edges

Associative: a * (b * c) = (a * b) * c

- Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
- This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

Convolution properties

Commutative: a * b = b * a

- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality, e.g., image edges

Associative: a * (b * c) = (a * b) * c

- Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
- This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Correlation is _not_ associative
- Why important?

Convolution properties

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality,
 e.g., image edges
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
 - Correlation is _not_ associative (rotation effect)
 - Why important?
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Gaussian convolved with Gaussian...

...is another Gaussian

- So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
- Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ V2
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter Walkedemy

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

The filter factors into a product of 1D filters:

1	2	1		1	Х	1	2	1
2	4	2	=	2		7		
1	2	1		1	1			

Perform convolution along rows:

Followed by convolution along the remaining column:

Separability

Why is separability useful in practice?

Separability

Why is separability useful in practice?

MxN image, PxQ filter

- 2D convolution: ~MNPQ multiply-adds
- Separable 2D: ~MN(P+Q) multiply-adds

Speed up = PQ/(P+Q)9x9 filter = \sim 4.5x faster

Practical matters

How big should the filter be?

- Values at edges should be near zero
- Gaussians have infinite extent...
- Rule of thumb for Gaussian: set filter half-width to about 3 σ

Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Convolution in Convolutional Neural Networks

- Convolution is the basic operation in CNNs
- Learning convolution kernels allows us to learn which `features' provide useful information in images.

NON-LINEAR FILTERS

Median filters

- Operates over a window by selecting the median intensity in the window.
- 'Rank' filter as based on ordering of gray levels
 - E.G., min, max, range filters

Image filtering - mean

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30			
			?				
-					_	_	

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Credit: S. Seitz

Image filtering - mean

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		
			50			

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Credit: S. Seitz

Median filter?

h[.,.]

Median filters

- Operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?

Noisy Jack - Salt and Pepper

Mean Jack – 3 x 3 filter

Very Mean Jack – 11 x 11 filter

Noisy Jack - Salt and Pepper

Median Jack – 3 x 3

Very Median Jack – 11 x 11

Median filters

- Operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Review: questions

1. Write down a 3x3 filter that both:

- Returns a positive value if the average value of the 4-adjacent neighbors is less than the center,
- Returns a negative value otherwise.

Slide: Hoiem

Review: questions

1. Write down a 3x3 filter that both:

- Returns a positive value if the average value of the 4-adjacent neighbors is less than the center,
- Returns a negative value otherwise. [0 -1/4 0; -1/4 1 -1/4; 0 -1/4 0]

Slide: Hoiem