Announcement

Midtern 2: Wed. 3/26 7:00-8:30pm, Sidney Lu 1043

Cyclotomic polys. (cont.)

Recall: The cyclotomic polynomial is

E.g. :

$$\Phi_3 = x^2 + x + 1$$
 $\Phi_6 = x^2 - x + 1$

Facts:

a)
$$\pm d(x) | x^n - 1$$
 if $d|n$ (or if $d=n$)

b) Every root 9 of unity is a root of precisely one In c) dea In = 4(n)

Thm: In(x) \ Z[x] and is inred. (over X or Q)

Cor:

$$\sigma / W^{2^{\nu/6}} = \overline{\Phi}^{\nu}(x)$$

Pf of Thm:

Assume that Id(x) = 72[x] for den

Then
$$x^n-1=f(x)\Phi_n(x)$$
 where $f(x)=TT\Phi_d(x)$

din

den

Divide w/ remainder in Q[x] since x"-1, f(x) ∈ Q[x]

Then in C[x], we have

$$\underline{\mathfrak{T}}_{n}(x)f(x) = g(x)f(x)+r(x) \Longrightarrow (\underline{\mathfrak{T}}_{n}(x)-g(x))f(x) = r(x)$$

and by Gauss' Lemma since x"-1, f(x) & 72[x], In & 72[x] too.

Irreducible: Suppose not:

 $I_n(x) = f(x)g(x)$ fig monic in I(x), firred.

Claim: Let g be a root of f. Then gp is a root of f for any prime p coprime to n

Claim \Rightarrow result: Iterating the claim, f^n is a root of f for any m coprime to n, so all prim nth roots of I are roots of $f \Rightarrow f = I_n$.

Pf of claim: Suppose instead that $g(z^p) = 0$.

Then I is a root of g(xp), po

 $g(x^p) = f(x) h(x)$ for some $h(x) \in \mathbb{Z}[x]$

Reduce mod p: 72[x] => IFp[x]

1) x^{n-1} is sep. in Fp[x] as $n x^{n-1} \neq 0$, so $\overline{\pm}_{n}(x)$ has distinct roots.

2) Frob: $\mathbb{F}_p \to \mathbb{F}_p$ is the identity $(\alpha \in \mathbb{F}_p^* \Rightarrow |\alpha||_{P^{-1}} \Rightarrow \alpha^{p-1} = 1 \Rightarrow \alpha^{p} = \alpha)$ "Fermat's Little Theorem"

Hence,

$$(\bar{g}(x))^{p} = \bar{g}(x^{p}) = \bar{f}(x)\bar{h}(x) \in \bar{f}_{p}[x]$$

- 3) This means that $\overline{9}$ and \overline{f} have a common root
- 4) But then In= 9 f has a mult. root, a contradiction

Galois theory

Def: A automorphism is a field isom. o: K -> K

Check: bijection, commutes w/ t,.

Note that this is induced from JZ - JZ
and

$$\mathbb{Q}(\sqrt{2}) \xrightarrow{\sim} \mathbb{Q}(x)/(x^2-2) \xrightarrow{\sim} \mathbb{Q}(-\sqrt{2})$$

Aut (K) = gp. of automs. of K (under function composition)

E.g.: a)
$$Aut(Q) = id$$

b) $Aut(Q(IZ)) = \{id, IZ \mapsto -IZ\}$
c) $Aut(C)$ is uncountable...

Remark:

b) Aut
$$\binom{k / prime}{subfield} = Aut(k)$$

Since every autom. fixes <1>

where

$$Aut(\kappa/\Omega(12)) = \langle \tau \rangle = \{1, \tau\}$$

Aut
$$(K/Q(i)) = \langle \sigma \rangle$$

Aut(
$$K/Q$$
) = {id}

They

$$0 = T(0) = T(32^3 - 2) = T(32)^3 - 2$$

root in K