Università degli studi di Verona

Corsi di laurea in Matematica Applicata, Informatica e Informatica Multimediale Prova scritta di Algebra lineare — 22 gennaio 2007

matricola	nome	cognome
Votazione: T1 T2	E1	
	E2	
	E3	

Compito

E1) Sia α un parametro reale e si consideri la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} -1 & 0 & 1 & -\alpha & 0 \\ \alpha & 2 & 4-\alpha & \alpha^2-2 & 0 \\ 0 & -1 & -2 & \alpha+1 & -\alpha^2 \\ 0 & 0 & 0 & 1 & -\alpha \end{bmatrix}.$$

Se ne trovi una decomposizione LU e, per i valori di α per cui ciò non è possibile, una decomposizione P^TLU . Per $\alpha=0$ e $\alpha=2$, determinare una base dello spazio nullo e una base dello spazio delle colonne di \mathbf{A}_{α} .

Sol) Se $\alpha \neq 0$ possiamo considerare la decomposizione LU di A_{α} senza effettuare scambi di righe:

$$\mathbf{A}_{\alpha} \longrightarrow \mathbf{U}_{\alpha} = \begin{bmatrix} 1 & 0 & -1 & \alpha & 0 \\ 0 & 1 & 2 - \alpha & \alpha^2 - 1 & 0 \\ 0 & 0 & 1 & 1 - \alpha & \alpha \\ 0 & 0 & 0 & 1 & -\alpha \end{bmatrix}$$

in cui $A_{\alpha} = L_{\alpha} U_{\alpha}$ e

$$\mathbf{L}_{\alpha} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ \alpha & 2 & 0 & 0 \\ 0 & -1 & \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Se $\alpha = 0$ calcoliamo la P^TLU di \mathbf{A}_{α} . Scambiamo la terza e la quarta riga:

$$\mathbf{B}_0 = E_{34} \,\mathbf{A}_0 = \begin{bmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 4 & -2 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -2 & 1 & 0 \end{bmatrix}$$

A questo punto calcoliamo la decomposizione LU di \mathbf{B}_0 :

$$\mathbf{B}_0 \longrightarrow \mathbf{U}_0 = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

e quindi $\mathbf{A}_0 = \mathbf{P}^T \mathbf{L}_0 \mathbf{U}_0$, in cui $\mathbf{P}^T = E_{34}^T$ e

$$\mathbf{L}_0 = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Sia ancora $\alpha = 0$ allora una base dello spazio delle colonne di \mathbf{A}_0 ($Col(\mathbf{A}_0)$) è data da tre colonne linearmente indipendenti di \mathbf{A}_0 , dal momento che $rank \mathbf{A}_0 = 3$:

$$Col(\mathbf{A}_0) = <[-1 \quad 0 \quad 0 \quad 0]^T, [0 \quad 2 \quad -1 \quad 0]^T, [0 \quad -2 \quad 1 \quad 1]^T>$$

Una base per lo spazio nullo di \mathbf{A}_0 ($N(\mathbf{A}_0)$), si trova, ad esempio, risolvendo il sistema omogeneo $\mathbf{A}_0\mathbf{v} = 0$, in cui \mathbf{v} è un vettore di \mathbf{R}^5 , quindi:

$$N(\mathbf{A}_0) = <[1 \quad -2 \quad 1 \quad 0 \quad 0]^T, [0 \quad 0 \quad 0 \quad 0 \quad 1]^T >$$

con $\lambda \in \mathbf{R}$. Sia $\alpha = 2$ allora una base dello spazio delle colonne di \mathbf{A}_2 è data da quattro colonne linearmente indipendenti di \mathbf{A}_2 , dal momento che $rank \mathbf{A}_2 = 4$:

$$Col(\mathbf{A}_2) = <[-1 \quad 2 \quad 0 \quad 0]^T, [0 \quad 2 \quad -1 \quad 0]^T, [1 \quad 2 \quad -2 \quad 0]^T, [-2 \quad 2 \quad 3 \quad 1]^T > 0$$

Una base per lo spazio nullo di A₂ è

$$N(\mathbf{A}_2) = < [-4 \quad 6 \quad 0 \quad 2 \quad 1]^T >$$

E2) Si consideri la base $\mathcal{B} = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$ di \mathbb{C}^3 , dove

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}.$$

Dato $\alpha \in \mathbb{C}$, si consideri l'unica applicazione lineare $f_{\alpha} \colon \mathbb{C}^3 \to \mathbb{C}^3$ tale che

$$f_{\alpha}(\mathbf{v}_1) = \mathbf{v}_1 + \alpha \mathbf{v}_2 - \mathbf{v}_3,$$

$$f_{\alpha}(\mathbf{v}_2) = 2\mathbf{v}_1 - \alpha \mathbf{v}_2,$$

$$f_{\alpha}(\mathbf{v}_3) = \alpha \mathbf{v}_3.$$

Si dica per quali $\alpha \in \mathbb{C}$ si ha $[1 \ 1 \ -1]^T \in \text{Im}(f_{\alpha})$.

Si costruisca una base ortonormale di \mathbb{C}^3 contenente \mathbf{v}_1 .

Sol) Chiamiamo $\mathbf{A}_{f_{\alpha}}$ la matrice associata all'applicazione lineare f_{α} , allora il vettore $[1 \quad 1 \quad -1]^T$ di \mathbf{C}^3 è un elemento dell'immagine di f_{α} se il sistema

$$\mathbf{A}_{f_{\alpha}}\mathbf{v} = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$$

ammette soluzione e ciò si ha per $\alpha \neq 0$.

Costruiamo ora una base ortonormale di \mathbb{C}^3 contenente \mathbf{v}_1 . Poniamo $\mathbf{u}_1 = \frac{\mathbf{v}_1}{\sqrt{(\mathbf{v}_1|\mathbf{v}_1)}}$, per cui gli altri elementi di una base ortonormale di \mathbb{C}^3 si ottengono applicando l'algoritmo di G-S a \mathbf{v}_2 e \mathbf{v}_3 .

$$\mathbf{v}'_2 = \mathbf{v}_2 - (\mathbf{u}_1|\mathbf{v}_2)\mathbf{u}_1 = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}^T$$

quindi

$$\mathbf{u}_2 = \frac{\mathbf{v}'_2}{(\mathbf{v}'_2|\mathbf{v}'_2)} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}^T$$

$$\mathbf{v'}_3 = \mathbf{v}_3 - (\mathbf{u}_1|\mathbf{v}_3)\mathbf{u}_1 - (\mathbf{u}_2|\mathbf{v}_3)\mathbf{u}_2$$

e quindi

$$\mathbf{u}_3 = \frac{\mathbf{v}'_3}{(\mathbf{v}'_3|\mathbf{v}'_3)} = \left[\frac{1}{\sqrt{3\left(2 - \frac{2}{\sqrt{3}}\right)}} \quad \frac{1}{2}\sqrt{2 - \frac{2}{\sqrt{3}}} \quad -\frac{1}{\sqrt{3\left(2 - \frac{2}{\sqrt{3}}\right)}}\right]$$

Una base richiesta è $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

E3) Si dica per quali valori del parametro $\beta \in \mathbb{C}$ la matrice

$$\mathbf{B}_{\beta} = \begin{bmatrix} \beta & 0 & 1 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ -2\beta & 0 & -2 & 0 \end{bmatrix}.$$

è diagonalizzabile e per uno di questi valori si calcoli una base di \mathbb{C}^4 formata da autovettori della matrice.

Sol) Il polionomio caratteristico della matrice \mathbf{B}_{β} è

$$p_{\mathbf{B}_{\beta}}(t) = 4t - 2t^2 - 2t^3 + t^4 - 4t\beta + 4t^2\beta - t^3\beta$$

Gli autovalori sono

$$t_1 = 2$$
, $t_2 = 0$, $t_3 = \frac{\beta - \sqrt{\beta^2 - 8\beta + 8}}{2}$, $t_4 = \frac{\beta + \sqrt{\beta^2 - 8\beta + 8}}{2}$

Se $\frac{\beta-\sqrt{\beta^2-8\beta+8}}{2}\neq 0,2$ e $\frac{\beta+\sqrt{\beta^2-8\beta+8}}{2}\neq 0,2$, cioè se $\beta\neq 1$ allora la matrice \mathbf{B}_{β} ammette 4 autovalori distinti e quindi è diagonalizzabile.

Se $\beta = 1$ allora gli autovalori sono $t_1 = 2$, $t_2 = 0$, $t_3 = 0$, $t_4 = 1$, quindi $_1$ è diagonalizzabile se e solo se la molteplicità geometrica relativa all'autovalore 0 è 2. Ora $m_g(0) = 1 = rank V_0$, per cui la matrice \mathbf{B}_1 non è diagonalizzabile.

Per $\beta \neq 1$ calcoliamo una base di \mathbb{C}^4 formata da autovettori. Calcoliamo i generatori degli autospazi nel caso in cui $\beta = 0$, risolvendo i sistemi lineari

$$\mathbf{B}_0\mathbf{v}_i=t_i\mathbf{v}_i, \quad i=1,\ldots,4$$

con $\mathbf{v}_i \in \mathbf{C}^4$, per ogni *i*. Una base di autovettori è quindi data da:

$$\left\{ \mathbf{v}_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T, \mathbf{v}_2 = \begin{bmatrix} -\frac{1}{2} - \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}, & 1 \end{bmatrix}^T, \mathbf{v}_3 = \begin{bmatrix} -\frac{1}{2} + \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}, & 1 \end{bmatrix}^T, \mathbf{v}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T \right\}$$

E4) Si consideri la conica di equazione $13x^2 - 10xy + 13y^2 - 36x + 2\alpha y - 36 = 0$. Si calcoli per quali valori di α essa è degenere e si trovino le rette in cui si spezza.

Posto $\alpha = 18$, si determini la natura della conica e se ne calcolino gli eventuali assi, centro, vertici e asintoti.

Sol) La matrice associata alla conica è

$$\mathbf{D}_{\alpha} = \begin{bmatrix} 13 & -5 & -18 \\ -5 & 13 & -\alpha \\ -18 & -\alpha & -36 \end{bmatrix}$$

La conica si spezza in due rette se il rango della matrice \mathbf{D}_{α} è 2. Il determinante di \mathbf{D}_{α} è $-13\alpha^2 - 180\alpha - 9396$ e, dal momento che il discriminante di tale trinomio di secondo grado in α è negativo, la conica non si spezza in due rette reali.

Sia ora $\alpha = 18$. Il rango di \mathbf{D}_{18} è 3, quindi la conica associata è non-degenere e poiché \mathbf{D}_{33}^{1} ha rango due la conica è a centro. Inoltre, poichè gli autovalori di \mathbf{D}_{33} sono positivi (vedi oltre), la conica è un'ellisse. Il centro della conica è dato dalla soluzione del sistema $\mathbf{D}_{33}[x \ y]^{T} = -[d_{13} \ d_{23}]^{T}$. Cioè il centro della conica è dato dalla soluzione (che è unica poiché $rank \mathbf{D}_{33}$ è due) del sistema

$$\begin{cases} 13x - 5y = 18 \\ -5x + 13y = 18 \end{cases}$$

 $^{{}^{1}\}mathbf{D}_{33}$ è il minore relativo a d_{33} .

Quindi il centro è $C = (\frac{9}{4}, \frac{9}{4})$. Gli autovalori della matrice \mathbf{D}_{33} sono 18 e 8. I rispettivi autovettori $[-1, 1]^T$ e $[1, 1]^T$ sono le direzioni degli assi, ovvero i i punti [-1, 1, 0] e [1, 1, 0] della retta improria. Quindi gli assi dell'ellisse sono

$$h_1: y = x$$

 $h_2: y = -x + \frac{9}{2}$

Le coordinate dei vertici, date dall'intersezione degli assi con l'ellisse, sono rispettivamente

$$\left(\frac{3}{4}(3-\sqrt{13}), \frac{3}{4}(3-\sqrt{13})\right), \quad \left(\frac{9}{4}+\frac{3\sqrt{13}}{4}), \frac{3}{4}(3+\sqrt{13})\right)$$

e

$$\left(\frac{1}{4}(9-2\sqrt{13}),\frac{1}{4}(9+2\sqrt{13})\right),\quad \left(\frac{1}{4}(9+2\sqrt{13}),\frac{1}{4}(9-\sqrt{13})\right)$$