Statistical learning

minimisation
Empirical risk
Inductive bias
Finite hypothes

Statistical machine learning | Intro Introduction to machine learning

Francesco Corona

Chemical and Metallurgical Engineering School of Chemical Engineering

Statistical machine learning

Statistical learning

Empirical risk minimisation

Inductive bias

Finite hypothesis

Statistical learning

Empirical risk minimisation
Empirical risk
Inductive bias
Finite hypothesis

The statistical learning framework

Intro

The statistical learning framework

Statistical learning

Empirical risk minimisation Empirical risk Inductive bias Finite hypothesis

Inputs to the learner

Statistical learning

minimisation
Empirical risk
Inductive bias
Finite hypothesi

In the basic statistical learning framework, the learner can access to the following info

Domain set

This is the set of all *objects* that we might wish to label $\mathcal{X} = \{x : x \in \mathbb{R}^{N_x}\}$ Domain points are encoded as vectors of N_x features $\mathcal{X} \subseteq \mathbb{R}^{N_x}$

Label set

This is the set of N_y labels a domain point may take on $\mathcal{Y} \subset \mathbb{N}_0$ (We start with a two-label label set, $N_y = 2$) $\mathcal{Y} = \{0, 1\}$

In practice, the learner has access to a combination of the domain and the label set

Training data

Some subset of pairs in $\mathcal{X} \times \mathcal{Y}$ of labeled domain points The set of $N = |\mathcal{S}|$ training examples, the training set

$$S = \{(x_n, y_n)\}_{n=1}^{N}$$
with
$$\begin{cases} x_n \in \mathcal{X} \\ y_n \in \mathcal{Y} \end{cases}$$

Inputs to the learner (cont.)

Statistical learning

Empirical risk minimisation Empirical risk Inductive bias Finite hypothesis

Domain set

Label set

Empirical risk minimisation Empirical risk Inductive bias Finite hypothesi

Inputs to the learner (cont.)

Training data

Outputs from the learner

Statistical learning

minimisation
Empirical risk
Inductive bias
Finite hypothes

The learner is asked to output a prediction rule, some function h from set \mathcal{X} to set \mathcal{Y}

Often times, the prediction rule is known as the ${\it predictor},$ or ${\it hypothesis},$ or ${\it classifier}$

• This is the function used to predict the label y of any (new) domain point x

Empirical risk
minimisation
Empirical risk
Inductive bias
Finite hypothesis

The learner

 $h_{\mathcal{S}} = A(\mathcal{S})$ is the hypothesis that a learning algorithm A returns, given a training set \mathcal{S}

minimisation
Empirical risk
Inductive bias
Finite hypothesis

It remains to define somehow the $quality\ of\ a\ prediction\ rule\ h$ (how well it performs)

• This will define the strategy used by the learner to select the predictor $h_{\mathcal{S}}$

The quality of a rule should be determined with respect to the data-generating process

• (That is, it does not matter too much if a rule h fails on unlikely instances)

Statistical learning

minimisation
Empirical risk
Inductive bias
Finite hypothes

The success of the learner (cont.)

Assumptions

Training instances $\{x_n\}$ are assumed to be from a probability distribution \mathcal{D}_x over \mathcal{X}

• For our learning tasks, we allow \mathcal{D}_x to be an arbitrary distribution

Importantly, note that the learner has no information regarding the distribution \mathcal{D}_x

As for the labels, we start by assuming that there exists an exact labelling function f

$$f: \mathcal{X} \to \mathcal{Y}$$

That is, we assume that the label $y \in \mathcal{Y}$ of all $x \in \mathcal{X}$ is fully determined as y = f(x)

- Note that also the labelling function f is unknown to the learner
- (This function is precisely what the learner tries to figure out)
- (As we proceed, such a strong assumption will be relaxed)

The success of the learner (cont.)

Statistical learning

minimisation
Empirical risk
Inductive bias
Finite hypothes

Formally, we are given a domain subset $S_x \subset \mathcal{X}$ and a probability distribution \mathcal{D}_x that assigns a number $\mathcal{D}_x(x)$ which determines how likely it is to observe any point $x \in \mathcal{X}$

- The set S_x is an event that can be realised using the function $p: \mathcal{X} \to \{0, 1\}$
- $S_x = \{x_n; x_n \in \mathcal{X}, p(x_n) = 1\}_{n=1}^N$ occurs with probability $\mathbb{P}_{x \sim \mathcal{D}_x}[\{x_n\}_{n=1}^N]$

Statistical learning

minimisation
Empirical risk
Inductive bias
Finite hypothe

The success of the learner (cont.)

The error of a classifier h is defined as the probability that the label y of an instance x, randomly drawn from \mathcal{X} according to \mathcal{D}_x , is predicted wrongly, or $h(x) \neq y = f(x)$

We can use this notion to define the error, or loss, L incurred by the predictor $h: \mathcal{X} \to \mathcal{Y}$

$$L_{\mathcal{D}_x,f}(h) \equiv \underbrace{\mathbb{P}_{x \sim \mathcal{D}_x}[x : x \in \mathcal{X}, h(x) \neq f(x)]}_{\mathcal{D}_x(\{x : x \in \mathcal{X}, h(x) \neq f(x)\})}$$

Thus, the error occurred by h is the probability of sampling a x for which $h(x) \neq f(x)$ • (\mathcal{D}_x, f) indicates that error L of h is evaluated with respect to \mathcal{D}_x and f

 $L_{\mathcal{D}_x,f}(h)$ is often denoted as *generalisation error*, or *risk*, or *true error* of predictor h

Graphically, $L_{\mathcal{D}_x,f}(h)$ is the volume under the portion of \mathcal{D}_x associated to errors of h

minimisation
Empirical risk
Inductive bias
Finite hypothesi

In summary, pairs in S are generated by sampling x from D_x and labelling them by f

• Given S, the goal of the learner is to return a predictor of smallest loss $L_{\mathcal{D}_x,f}$

In principle, a learning algorithm A is requested to return that predictor $h_{\mathcal{S}}$ that, given \mathcal{S} , minimises the loss $L_{\mathcal{D}_x,f}$ (with respect to distribution \mathcal{D}_x and labelling function f)

- However, $L_{\mathcal{D}_x,f}$ cannot be directly calculated
- $(\mathcal{D}_x \text{ and } f \text{ are unknown to the learner})$

minimisation
Empirical risk
Inductive bias
Finite hypothesis

The success of the learner (cont.)

What is a reasonable strategy for the learner to practically overcome such a limitation?

ullet ... knowing that the learner only has access to the sample ${\mathcal S}$

We could think of looking for a predictor h that works well with sample S and that would work well also with other points generated according to \mathcal{D}_x and labelled with f

- A predictor $h_{\mathcal{S}}$ that works well also on other similar sets (say, a test set)
- More precisely, a prediction rule $h_{\mathcal{S}}$ such that $L_{\mathcal{D}_x,f}(h_{\mathcal{S}})$ is smallest

Statistical learning

Empirical risk minimisation

Empirical risk Inductive bias Finite hypothesis

Empirical risk minimisation

Intro

Statistical learning

Empirical risk minimisation

Empirical risk

Finite hypothes

Empirical risk

Empirical risk minimisation

Empirical risk

Statistical learning

Empirical risk minimisation Empirical risk The algorithm A receives as input a training set S (whose x-elements are from some distribution \mathcal{D}_x and labeled by some target function f) and outputs a rule $h: \mathcal{X} \to \mathcal{Y}$

• To be calculable, we need a notion of error of h that depends on sample S

Pragmatically, it is then reasonable to search for that predictor h that works well on $\mathcal S$

The training error or empirical risk $L_{\mathcal{S}}$ is a notion of loss which can be calculated on \mathcal{S}

It is defined as the error that classifier h incurs over sample $\mathcal S$ with N labelled examples

$$L_{\mathcal{S}}(h) \equiv \frac{|\{x_n : h(x_n) \neq y_n\}_{n=1}^N|}{N}$$

That is, $L_{\mathcal{S}}(h)$ is defined as the fraction of training examples mislabeled by the rule h

• As such, $L_{\mathcal{S}}(h)$ can be calculated without knowing anything about \mathcal{D}_x and f

Statistical learning

Empirical risk minimisation Empirical risk Inductive bias

Empirical risk (cont.)

Graphically, $L_{\mathcal{S}}(h)$ is the number of instances $(x_n, y_n = f(x_n))$ mislabelled by a rule h

Statistical learning

Empirical risk minimisation Empirical risk **Empirical risk minimisation**

A learning paradigm that returns a rule h that minimises $L_{\mathcal{S}}$ (that works well on the training data \mathcal{S}) is said to operate according to the Empirical Risk Minimisation (ERM)

$$ERM(S) \in \arg \min_{h: \mathcal{X} \to \mathcal{Y}} \underbrace{\frac{|\{x_n : h(x_n) \neq y_n\}_{n=1}^N|}{N}}_{L_{S}(h)}$$

 $\arg\min_{h:\mathcal{X}\to\mathcal{Y}}$ is that subset $\{h_{\mathcal{S}}\}$ of predictors that minimise the empirical error $L_{\mathcal{S}}$

Empirical risk minimisation

Empirical risk Inductive bias Finite hypoth Empirical risk minimisation | What could possibly go wrong?

$$\text{ERM}(\mathcal{S}) \in \arg\min_{h:\mathcal{X} \to \mathcal{Y}} L_{\mathcal{S}}(h)$$

Given that the learner has access to all possible functions $h \in \mathcal{X}^{\mathcal{Y}}$, why not just pick one that has zero error on the training sample \mathcal{S} (or, equivalently such that $L_{\mathcal{S}}(h) = 0$)?

Since we assumed that labels are deterministically set, y = f(x), we can design such h

$$h_{\mathcal{S}}(x) = \begin{cases} y_n, & \text{if } x \in \{x_n\} \\ 0 \text{ (or 1)}, & \text{otherwise} \end{cases}, \qquad \mathcal{S} = \{(x_n \in \mathcal{X}, y_n \in \{0, 1\})\}$$

Such a predictor will always achieve a perfect empirical error, regardless of sample ${\mathcal S}$

- As such, it can be chosen when using the ERM learning strategy
- Clearly, no rule can achieve a smaller loss on S, as $L_S(h_S) = 0$

Predictor $h_{\mathcal{S}}$ has an excellent performance on \mathcal{S} , yet its true performance is very poor

This phenomenon is the infamous overfitting

Empirical risk minimisation | Overfitting

Example

Consider the problem of labelling a set of points \boldsymbol{x} uniformly distributed inside a circle

Consider some labelling function f

- label $y = (\cdot)$ to points x that are within the inner circle
- label $y = (\cdot)$ to other points

Let the area of the outer circle be 2 and that of the inner circle be 1

We are given sample $S = \{(x_n, y_n)\}$ and now consider the following prediction rule h_S

$$h_{\mathcal{S}}(x) = \begin{cases} y_n, & \text{if } x \in \{x_n\} \\ (\cdot), & \text{otherwise} \end{cases} \longrightarrow L_{\mathcal{S}}(h_{\mathcal{S}}) = 0$$

The true error of any classifier that predicts the label (·) only on finite sample S is 1/2

$$L_{\mathcal{D}_{\tau},f}(h_{\mathcal{S}}) = 1/2$$

Empirical risk minimisation | Overfitting (cont.)

Empirical risk
minimisation
Empirical risk
Inductive bias
Finite hypothesis

How to amend the $\text{ERM}(\mathcal{S})$ in a way that the learner is protected against overfitting?

 \bullet ... considering that all the learner has access to is the sample ${\cal S}$

We will discuss certain conditions under which the ERM is unlikely to overfit the data

- We ask how to find a predictor h with good performance with respect to $\mathcal S$
- and, good performance over the (unknown) distribution \mathcal{D}_x and function f

Statistical learning

Empirical risk minimisation

Empirical r

Inductive bias

Finite hypothesis

Inductive bias

Empirical risk minimisation

minimisation
Empirical risk
Inductive bias
Finite hypothes

One strategy to fix the $\mathrm{ERM}(\mathcal{S})$ would be to apply it over some restricted search space

Before seeing the data S, the learner picks a class of predictors, the hypothesis class H

• Each prediction rule $h \in \mathcal{H}$ must be a function which maps \mathcal{X} to \mathcal{Y}

$$\mathcal{H} \subset \{h : h \in \mathcal{X}^{\mathcal{Y}}\}\$$

• We might also assume that the target function f is in the set \mathcal{H}

By selecting \mathcal{H} , we are including a form of **prior knowledge** into the learning paradigm

- \bullet The choice of ${\mathcal H}$ should be based on some knowledge about the learning task
- (Say, we assume that same-class instances are bounded to certain regions)

We point the learner towards a class of prediction rules (inductive bias) by restricting it to pick only predictors from a hypothesis class \mathcal{H} , chosen before seeing a sample \mathcal{S}

• We have shown that without prior knowledge, ERM learners cannot learn

Statistical

minimisation
Empirical risk
Inductive bias
Finite hypothes

ERM | Inductive bias (cont.)

For the chosen hypothesis class \mathcal{H} and given some training set \mathcal{S} , an $\mathrm{ERM}_{\mathcal{H}}(\mathcal{S})$ learner uses $\mathrm{ERM}(\mathcal{S})$ strategy to pick rules $\{h_{\mathcal{S}}\}$ in \mathcal{H} with smallest loss $L_{\mathcal{S}}$ over that sample

$$\mathrm{ERM}_{\mathcal{H}}(\mathcal{S}) \in \arg\min_{h \in \mathcal{H}} \underbrace{\frac{|\{x_n : h(x_n) \neq y_n\}_{n=1}^{|\mathcal{S}|}}{|\mathcal{S}|}}_{L_{\mathcal{S}}(h)}$$

Again, $\arg\min_{h\in\mathcal{H}}$ is the subset of rules $h_{\mathcal{S}}\in\mathcal{H}$ which minimise the empirical loss $L_{\mathcal{S}}$

In many cases (under certain assumptions), $\mathrm{ERM}_{\mathcal{H}}(\mathcal{S})$ is a successful learning strategy

• That is, it leads to picking hypothesis $h_{\mathcal{S}}$ with small generalisation error $L_{\mathcal{D}_x,f}$

Empirical risk minimisation Empirical risk Inductive bias Finite hypothes

Notice that a fundamental question in statistical learning theory is 'over which class \mathcal{H} of hypothesis functions, the learning paradigm $\mathrm{ERM}_{\mathcal{H}}$ will not lead to overfitting?'

Statistical learning

Empirical risk minimisation

Empirical ris

Finite hypothesis

Finite hypothesis

Empirical risk minimisation | Inductive bias

minimisation
Empirical risk
Inductive bias
Finite hypothesis

ERM | Inductive bias | Finite hypothesis

The simplest restriction on class \mathcal{H} is obtained by imposing an upper bound on its size

$$\mathcal{H} = \{h_{n_h} : h_{n_h} \in \mathcal{X}^{\mathcal{Y}}\}_{n_h=1}^{N_h} \quad \text{(with } N_h < \infty)$$

That is, we select a hypothesis class \mathcal{H} whose number $N_h = |\mathcal{H}|$ of predictors h is finite

Theorem

It can be shown that, if \mathcal{H} is a finite hypothesis class $(|\mathcal{H}| < \infty)$ and a sufficiently large training sample \mathcal{S} $(|\mathcal{S}| > \operatorname{const}(|\mathcal{H}|))$ is available, then $\operatorname{ERM}_{\mathcal{H}}(\mathcal{S})$ is unlikely to overfit

- Assumption: The x-elements of S are independent draws from \mathcal{D}_x
- Assumption: The correct labelling function f is also in class \mathcal{H}

We show that, without limiting \mathcal{H} to be finite, the $\text{ERM}_{\mathcal{H}}(\mathcal{S})$ learner would always have a large probability of error on new data from (\mathcal{D}_x, f) , regardless of how large \mathcal{S} is

Empirical risk
minimisation
Empirical risk
Inductive bias
Finite hypothesis

ERM | Inductive bias | Finite hypothesis (cont.)

This theorem highlights how learning refers to a different notion from hypothesis testing

- In hypothesis testing, we come up with an hypothesis before seeing the data
- Conversely, in machine learning we select an hypothesis based on the data

$$h_{\mathcal{S}} \in \arg\min_{h \in \mathcal{H}} L_{\mathcal{S}}(h)$$
via ERM _{\mathcal{H}}

Learning is about theories developed from data, not about theories chosen before data

• (Though, we still picked a hypothesis class rather than a single hypothesis)

minimisation

Empirical risk

Inductive bias

Finite hypothesis

ERM | Inductive bias | Finite hypothesis | Accuracy

For an algorithm A that has access only to sample S, any guarantee on the error with respect to the underlying distribution must depend on the relation between \mathcal{D}_x and S

The sample S is the window through which the learner gets information about (\mathcal{D}_x, f)

- Intuitively, the larger S is the more representative it is of \mathcal{D}_x and f
- We saw how a non representative sample leads the ERM to overfit

That is, we are interested in (avoiding) those samples that confuse the $ERM_{\mathcal{H}}$ learner

More precisely, for some fixed labelling function $f \in \mathcal{X}^{\mathcal{Y}}$, we want to determine what is the maximum probability to sample N instances that leads to a true failure of $\text{ERM}_{\mathcal{H}}$

We quantify failure by introducing a fixed accuracy parameter $\varepsilon \in [0,1]$ of the prediction

- Parameter ε permits us to interpret the event $\underbrace{L_{\mathcal{D}_x,f}(h_{\mathcal{S}})}_{\text{true risk}} > \varepsilon$ as $\text{ERM}_{\mathcal{H}}$ failure
- Conversely, $L_{\mathcal{D}_x,f}(h_{\mathcal{S}}) \leq \varepsilon$ defines an approximately correct ERM_H predictor

To identify failing samples, let $S_x = \{x_n\}_{n=1}^N$ be the domain points in any training set

• For the collection of all confusing training samples S_x , we have

$$\{S_x: L_{\mathcal{D}_x,f}(h_{\mathcal{S}}) > \varepsilon\}$$

This set of sets cannot be determined because, though we could identify for each a $h_{\mathcal{S}}$ via ERM_{\mathcal{H}}, we are not able to establish what its true risk is (as \mathcal{D}_x and f are unknown)

Inductive bias | Finite hypothesis | Accuracy (cont.)

Statistical learning

Empirical risk minimisation Empirical risk Inductive bias Finite hypothesis

For each possible sample S_x , the ERM_{\mathcal{H}} strategy determines an optimal predictor $h_{\mathcal{S}}$

• Yet, the true risk of these predictors is not accessible to the learner

Inductive bias | Finite hypothesis | Accuracy (cont.)

We want to determine under which conditions, for the assumed mechanism for generating samples S, the probability of observing a non-representative sample is very small

For each possible sample S_x , ERM_{\mathcal{H}} strategy determines the optimal prediction rule h_S

We are interested in upper bounding the probability of drawing a confusing sample

$$\mathcal{D}_x^N(\{\mathcal{S}_x: L_{\mathcal{D}_x, f}(h_{\mathcal{S}}) > \varepsilon\})$$

As \mathcal{D}_x is the probability of drawing a single x, we let \mathcal{D}_x^N be that of N i.i.d. copies of x

$$\mathbb{P}_{\mathcal{S}_x \sim \mathcal{D}_x^N}[\mathcal{S}_x : L_{\mathcal{D}_x, f}(h_{\mathcal{S}}) > \varepsilon]$$

Empirical risk minimisation
Empirical risk
Inductive bias
Finite hypothesis

Inductive bias | Finite hypothesis | Accuracy (cont.)

Now, we let \mathcal{H}_B be the set of all hypothesis rules in \mathcal{H} which are not ε -correct, at least

• \mathcal{H}_B is the set of hypotheses which should be avoided by the learner

$$\mathcal{H}_B = \{h \in \mathcal{H} : \underbrace{L_{\mathcal{D}_x,f}(h)}_{ ext{true risk}} > \varepsilon\}$$

Because $f \in \mathcal{H}$ and $L_{\mathcal{D}_x,f}(f) = 0$, we have that $\mathcal{H}_B \subset \mathcal{H}$ and thus also that $|\mathcal{H}_B| < |\mathcal{H}|$

• Set $\mathcal{H}_{\mathcal{B}}$ is stated regardless of the ERM_{\mathcal{H}} strategy, as it only pertains $\{\mathcal{S}_x\}$

Also notice how also this set of functions cannot be established (unknown \mathcal{D}_x and f)

Inductive bias | Finite hypothesis | Accuracy (cont.)

The state of things, up to this point

• The set of all possible samples that can be generated

$$\{\mathcal{S}_x\}$$

• The set of all truly bad predictors, regardless of the sample

$$\mathcal{H}_B = \{ h \in \mathcal{H} : L_{\mathcal{D}_x, f}(h) > \varepsilon \}$$

• The set of samples that are truly bad, if accessed by the $\mathrm{ERM}_{\mathcal{H}}$

$$\{S_x: L_{\mathcal{D}_x,f}(h_{\mathcal{S}}) > \varepsilon\}$$

How to combine all the info into something that can be practically analysed and used?

What we want to avoid are those samples that, though they lead to a good ERM_{\mathcal{H}} performance (small $L_{\mathcal{S}}(h_{\mathcal{S}})$), would still perform badly in a true sense $(L_{\mathcal{D}_x,f}(h) > \varepsilon)$

Before we can proceed with such a set, we need to introduce an additional assumption

minimisation
Empirical risk
Inductive bias
Finite hypothesis

Assumption

Let us assume (realisability assumption) there exists one $h^* \in \mathcal{H}$ such that $L_{\mathcal{D}_x,f}(h^*) = 0$

$$L_{\mathcal{D}_x,f}(h^*) = \underbrace{\mathbb{P}_{x \sim \mathcal{D}_x}[h^*(x) \neq f(x)]}_{\text{true risk}}$$
$$= 0$$

The assumption implies that with probability 1 over samples \mathcal{S} , chosen according to \mathcal{D}_x^N and then labeled by f, there is at least one rule $h^* \in \mathcal{H}$ such that also $L_{\mathcal{S}}(h^*) = 0$

$$L_{\mathcal{S}}(h^*) = \underbrace{\frac{|\{x_n : h^*(x_n) \neq y_n\}_{n=1}^N|}{N}}_{\text{empirical risk}}$$

$$= 0$$

ERM | Inductive bias | Finite hypothesis | Realisability (cont.)

Statistical learning

Empirical risk
minimisation
Empirical risk
Inductive bias
Finite hypothesis

When we assumed that $f \in \mathcal{H}$, we have implicitly satisfied the realisability assumption

Finite hypothesis

Because of the realisability assumption, we have that the event $L_{\mathcal{D}_x,f}(h_{\mathcal{S}}) > \varepsilon$ can only occur whenever, for some $h \in \mathcal{H}_B$, we draw a misleading sample such that $L_S(h) = 0$

• That is, for a truly bad hypothesis h which empirically performs as well as f

Let \mathcal{M}_x denote the subset of those samples \mathcal{S}_x for which there exists a truly bad rule $(h \in \mathcal{H}_R)$ which would still lead to a good performance, empirically (in ERM_H-sense)

$$\mathcal{M}_{x} = \{S_{x} : \exists h \in \mathcal{H}_{B}, \quad \underbrace{L_{\mathcal{S}}(h)}_{\text{empirical risk}} = 0\}$$

$$= \{S_{x} : \exists h \in \{h \in \mathcal{H} : \underbrace{L_{\mathcal{D}_{x},f}(h)}_{\text{is bad}} > \varepsilon\}, \quad \underbrace{L_{\mathcal{S}}(h)}_{\text{empirical risk}} = 0\}$$

$$\underbrace{\text{empirical risk}}_{\text{looks good}}$$

These samples are misleading, because they make the truly bad hypotheses look good

• Thus \mathcal{M}_x is the set of samples for which there exists a truly bad hypothesis

minimisation
Empirical risk
Inductive bias
Finite hypothesis

Inductive bias | Finite hypothesis | Accuracy (cont.)

One way to construct set \mathcal{M}_x is to consider each truly bad predictor $h \in \mathcal{H}_B$ and then identify all samples \mathcal{S}_x such that, when h is given to $\text{ERM}_{\mathcal{H}}$, its empirical loss is zero

$$\mathcal{M}_x = \{ \mathcal{S}_x : \exists h \in \mathcal{H}_B, L_{\mathcal{S}}(h) = 0 \}$$
$$= \Big\{ \bigcup_{h \in \mathcal{H}_B} \{ \mathcal{S}_x : L_{\mathcal{S}}(h) = 0 \} \Big\}$$

Does \mathcal{M}_x relate to the target set $\{S_x : L_{\mathcal{D}_x,f}(h_{\mathcal{S}}) > \varepsilon\}$?

- \mathcal{M}_x is about the existence of a bad hypothesis
- $\{S_x : L_{\mathcal{D}_x,f}(h_{\mathcal{S}}) > \varepsilon\}$ is about selecting it

Thus, we have

$$\{S_x: L_{\mathcal{D},f}(h_S) > \varepsilon\} \subseteq \mathcal{M}_x$$

Inductive bias | Finite hypothesis | Accuracy (cont.)

Statistical learning

Empirical risk minimisation Empirical risk Inductive bias Finite hypothesis

Remembering that we want to upper bound $\mathbb{P}_{S_x \sim \mathcal{D}_x^N}[S_x : L_{\mathcal{D}_x,f}(h_{\mathcal{S}}) > \varepsilon]$, it suffices to upper bound $\mathbb{P}_{S_x \sim \mathcal{D}_x^N}[S_x : \exists h \in \mathcal{H}_B, L_{\mathcal{S}}(h) = 0]$, because $\{S_x : L_{\mathcal{D},f}(h_{\mathcal{S}}) > \varepsilon\} \subseteq \mathcal{M}_x$

$$\mathbb{P}_{\mathcal{S}_x \sim \mathcal{D}_x^N}[\mathcal{S}_x : L_{\mathcal{D}_x, f}(h_{\mathcal{S}}) > \varepsilon] \leq \mathbb{P}_{\mathcal{S}_x \sim \mathcal{D}_x^N}[\mathcal{S}_x : \exists h \in \mathcal{H}_B, L_{\mathcal{S}}(h) = 0]$$

Statistical learning

Empirical risk minimisation Empirical risk Inductive bias Finite hypothesis

Inductive bias | Finite hypothesis | Accuracy (cont.)

$$\mathbb{P}_{\mathcal{S}_x \sim \mathcal{D}_x^N}[\mathcal{S}_x : L_{\mathcal{D}_x, f}(h_{\mathcal{S}}) > \varepsilon] \leq \mathbb{P}_{\mathcal{S}_x \sim \mathcal{D}_x^N}[\mathcal{S}_x : \exists h \in \mathcal{H}_B, L_{\mathcal{S}}(h) = 0]$$

That is, we have

$$\mathcal{D}_{x}^{N}(\{\mathcal{S}_{x}: L_{(\mathcal{D},f)}(h_{\mathcal{S}}) > \varepsilon\}) \leq \mathcal{D}_{x}^{N}(\mathcal{M}_{x})$$

$$= \mathcal{D}_{x}^{N}(\bigcup_{h \in \mathcal{H}_{B}} \{\mathcal{S}_{x}: L_{\mathcal{S}}(h) = 0\})$$

By using the usual union bound $(\mathcal{D}(A \cup B) \leq \mathcal{D}(A) + \mathcal{D}(B))$, we have the inequality

$$\mathcal{D}_x^N(\{\mathcal{S}_x: L_{\mathcal{D}_x, f}(h_{\mathcal{S}}) > \varepsilon\}) \le \sum_{h \in \mathcal{H}_B} \mathcal{D}_x^N(\{\mathcal{S}_x: L_{\mathcal{S}}(h) = 0\})$$

The inequality allows us to bound each summand $\mathcal{D}_x^N(\{\mathcal{S}_x:L_{\mathcal{S}}(h)=0\})$ individually

minimisation
Empirical risk
Inductive bias
Finite hypothesis

$$\mathcal{D}_{x}^{N}(\{\mathcal{S}_{x}: L_{\mathcal{D}_{x},f}(h_{\mathcal{S}}) > \varepsilon\}) \leq \sum_{h \in \mathcal{H}_{B}} \mathcal{D}_{x}^{N}(\{\mathcal{S}_{x}: L_{\mathcal{S}}(h) = 0\})$$

By fixing a $h \in \mathcal{H}_B$, we observe that $L_{\mathcal{S}}(h) = 0$ corresponds to $h(x_n) = f(x_n)$ for all n

$$\mathcal{D}_x^N(\{\mathcal{S}_x : L_{\mathcal{S}}(h) = 0\}) = \mathcal{D}_x^N(\{\mathcal{S}_x : h(x_n) = f(x_n), \text{ for all } n\})$$

As the examples are independently sampled from the same distribution (i.i.d.), we get

$$\mathcal{D}_x^N(\{\mathcal{S}_x : h(x_n) = \underbrace{f(x_n)}_{y_n}, \text{ for all } n\}) = \prod_{n=1}^N \mathcal{D}_x(\{x_n : h(x_n) = \underbrace{f(x_n)}_{y_n}\})$$

For an individual possible draw of a training sample and a tolerable failure ε , we get

$$\mathcal{D}_x(\{x_n : h(x_n) = y_n\}) = 1 - \mathcal{D}_x(\{x_n : h(x_n) \neq y_n\})$$

$$= 1 - L_{\mathcal{D}_x,f}(h)$$

$$\leq 1 - \varepsilon$$

$$\leq \exp(-\varepsilon)$$

Inductive bias | Finite hypothesis | Accuracy (cont.)

Statistica learning

Empirical risk minimisation Empirical risk Inductive bias

Finite hypothesis

$$\mathcal{D}_x(\{x_n : h(x_n) = y_n\}) \le \exp(-\varepsilon)$$

$$\mathcal{D}_x^N(\{S_x : h(x_n) = y_n, \text{ for all } n\}) = \prod_{n=1}^N \mathcal{D}_x(\{x_n : h(x_n) = y_n\})$$

By combining the results relative to one $h \in \mathcal{H}_B$, we get

$$\mathcal{D}_{x}^{N}(\{\mathcal{S}_{x}: L_{\mathcal{S}}(h) = 0\}) \leq (1 - \varepsilon)^{N}$$

$$\leq \exp(-N\varepsilon)$$

Remembering that we have $|\mathcal{H}_B|$ such hypothesis, we have

$$\sum_{h \in \mathcal{H}_B} \mathcal{D}_x^N(\{\mathcal{S}_x : L_{\mathcal{S}}(h) = 0\}) \le |\mathcal{H}_B| \exp(-N\varepsilon)$$

For the probability of drawing a non-representative (ε -wrong) sample of size $N = |\mathcal{S}|$,

$$\begin{split} \mathcal{D}_{x}^{N}(\{\mathcal{S}_{x}:L_{\mathcal{D}_{x},f}(h_{\mathcal{S}})>\varepsilon\}) &\leq \sum_{h\in\mathcal{H}_{B}} \mathcal{D}_{x}^{N}(\{\mathcal{S}_{x}:L_{\mathcal{S}}(h)=0\}) \\ &\leq |\mathcal{H}_{B}|\exp\left(-|\mathcal{S}|\varepsilon\right) \\ &\leq |\mathcal{H}|\exp\left(-|\mathcal{S}|\varepsilon\right) \end{split}$$

Statistical learning

Empirical risk minimisation Empirical risk Inductive bias Finite hypothesis

Inductive bias | Finite hypothesis | Accuracy (cont.)

$$\mathcal{D}_x^N(\{\mathcal{S}_x: L_{\mathcal{D}_x, f}(h_{\mathcal{S}}) > \varepsilon\}) \le |\mathcal{H}| \exp(-|\mathcal{S}|\varepsilon)$$

The bound decays exponentially with the number $|\mathcal{S}|$ of data and tolerable accuracy ε

• (The larger the training set the better)

Still, the bond grows linearly with the number $|\mathcal{H}|$ of hypotheses in the selected class