

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP2 – 1º semestre de 2017 – GABARITO

Os números entre parênteses são os identificadores de cada enlace. Considere que, em um dado momento, as tabelas de encaminhamento dos switches sejam as seguintes:

Tabela de S1				
Destino	Interface			
h2	1			
h7	8			
h6	8			
h3	4			

-				
Tabela de S2				
Destino	Interface			
h2	3			
h7	1			
h6	1			
h3	1			

	Tabela de S3					
	Destino	Interface				
ſ	h2	4				
ĺ	h6	4				
ĺ	h7	4				
Ì	h3	5				

Tabela de S4				
Destino	Interface			
h2	8			
h7	10			
h6	9			
h3	8			

(a) Se a estação h3 enviar um quadro para a estação h5, por quais enlaces esse quadro será transmitido?

Resposta:

O quadro será transmitido pelos enlaces 1, 2, 3, 4, 5, 6, 7, 8, 9 e 10.

(b) Durante a transmissão deste quadro, algum dos switches desta rede irá adicionar alguma entrada em sua tabela de encaminhamento? Se sim, quais switches e quais entradas?

Resposta:

Nenhum switch irá adicionar entradas em sua tabela de encaminhamento

Considere um datagrama IP que é enviado de h1 com destino a h2.

(a) Lembrando que o campo TTL (*Time to Live*) do cabeçalho IP é diminuído de uma unidade a cada salto, suponha que o datagrama é enviado com TTL inicial de 32. Para cada um dos 5 enlaces que o datagrama irá atravessar, determine o endereço origem, o endereço destino e o valor de TTL registrados no cabeçalho deste datagrama quando ele atravessa o enlace.

(b) Suponha que todas as tabelas ARP envolvidas estão devidamente preenchidas. Para cada um dos 5 enlaces, determine o endereço origem e o endereço destino dos quadros Ethernet que irão encapsular este datagrama quando ele atravessa o enlace.

Na tabela abaixo, são apresentados, nas colunas, diversos protocolos de acesso a um meio de transmissão compartilhado, e nas linhas, diversas características destes protocolos. Preencha cada célula da tabela indicando se o protocolo possui ou não a característica apresentada. Considere que, exceto em afirmação contrária, a quantidade de estações que possuem acesso ao meio em questão é constante (isto é, estações não entram e saem da rede), mas que nem todas as estações desejam transmitir a todo instante.

	CDMA	CSMA/CD	TDMA	FDMA
permite que uma estação detecte	×	✓	×	×
uma colisão e interrompa sua trans-				
missão				
permite acesso simultâneo sem co-	✓	×	×	✓
lisão ao meio				
a adição de uma estação adicional	✓	√	×	✓
que não transmite não reduz a uti-				
lização do meio				
implementa função de backoff	×	✓	×	×
aleatório				
protocolo de acesso aleatório	×	✓	×	×

Considere um conjunto de estações se comunicando por uma rede sem fio *ad hoc*. Considere que as estações não são terminais móveis e se encontram a uma distância fixa umas das outras conforme a tabela abaixo:

	A	В	С	D	E	F	G	Н
A		3.0 m	7.3 m	8.8 m	8.2 m	6.6 m	5.9 m	2.0 m
В	3.0 m		4.7 m	7.7 m	7.7 m	7.8 m	8.3 m	4.4 m
С	7.3 m	4.7 m		5.0 m	6.1 m	8.9 m	10.9 m	7.8 m
D	8.8 m	7.7 m	5.0 m		1.8 m	6.2 m	9.3 m	8.1 m
E	8.2 m	7.7 m	6.1 m	1.8 m		4.5 m	7.6 m	7.1 m
F	6.6 m	7.8 m	8.9 m	6.2 m	4.5 m		3.3 m	4.7 m
G	5.9 m	8.3 m	10.9 m	9.3 m	7.6 m	3.3 m		4.0 m
Н	2.0 m	4.4 m	7.8 m	8.1 m	7.1 m	4.7 m	4.0 m	

Suponha que duas estações conseguem se comunicar diretamente se, e somente se, elas encontram-se no máximo a uma distância de 6.3 m.

(a) Esta restrição na comunicação é ocasionada por qual fenômeno observado em redes sem fio? Explique como ele ocorre.

Resposta:

É ocasionada pelo desvanecimento do sinal em redes sem fio: ao contrário de redes cabeadas, em que o sinal é propagado por impulsos elétricos, em redes sem fio o meio de propagação das ondas de sinal causa uma grande queda na potência do sinal conforme ele se propaga.

(b) O grafo de conectividade desta rede é um grafo no qual os vértices são as estações, e existe uma aresta entre duas estações se e somente se elas são capazes de ouvir a transmissão uma da outra. Construa o grafo de conectividade desta rede.

(c) Considere o cenário em que ocorrem simultaneamente transmissões de quadros de B para C e de D para E. As estações destino desses quadros irão receber os respectivos quadros com sucesso?

Resposta:

C não recebe a transmissão de B com sucesso pois recebe ambas as transmissões, o que significa que houve colisão. Já E recebe a transmissão de D com sucesso.

(d) Repita o item anterior para o cenário em que ocorrem simultaneamente transmissões de quadros de E para F e de B para H.

Resposta:

F e H recebem suas transmissões com sucesso.

Suponha que o cliente utilize o seguinte mecanismo de bufferização: todos os pacotes são bufferizados assim que chegam e o cliente começa a reproduzir o vídeo somente ao receber o $2^{\rm o}$ pacote, considerando como perdidos todos os pacotes que não chegarem a tempo de serem reproduzidos.

- (a) Determine o instante de recepção de cada um dos pacotes.
- (b) Determine o instante de reprodução escalonado para cada um dos pacotes.


```
Resposta:
PKT1 Recepção em t = 4.0 s, reprodução escalonada para t = 5.5 s
PKT2 Recepção em t = 5.5 s, reprodução escalonada para t = 6.5 s
PKT3 Recepção em t = 6.0 s, reprodução escalonada para t = 7.5 s
PKT4 Recepção em t = 8.0 s, reprodução escalonada para t = 8.5 s
\mathbf{PKT5} Recepção em \mathbf{t} = 9.0 \, \mathrm{s}, reprodução escalonada para \mathbf{t} = 9.5 \, \mathrm{s}
PKT6 Recepção em t = 10.5 s, reprodução escalonada para t = 10.5 s
PKT7 Recepção em t = 12.0 s, reprodução escalonada para t = 11.5 s
PKT8 Recepção em t = 12.5 s, reprodução escalonada para t = 12.5 s
PKT9 Recepção em t = 14.5 s, reprodução escalonada para t = 13.5 s
\mathbf{PKT10} Recepção em \mathbf{t}=16.0~\mathrm{s}, reprodução escalonada para \mathbf{t}=14.5~\mathrm{s}
PKT11 Recepção em t = 17.5 s, reprodução escalonada para t = 15.5 s
PKT12 Recepção em t = 19.0 s, reprodução escalonada para t = 16.5 s
PKT13 Recepção em t = 19.0 s, reprodução escalonada para t = 17.5 s
PKT14 Recepção em t = 20.5 s, reprodução escalonada para t = 18.5 s
PKT15 Recepção em t = 21.0 s, reprodução escalonada para t = 19.5 s
PKT16 Recepção em t = 22.0 s, reprodução escalonada para t = 20.5 s
PKT17 Recepção em t = 23.5 s, reprodução escalonada para t = 21.5 s
PKT18 Recepção em t = 25.0 s, reprodução escalonada para t = 22.5 s
PKT19 Recepção em t = 25.0 s, reprodução escalonada para t = 23.5 s
PKT20 Recepção em t = 26.0 s, reprodução escalonada para t = 24.5 s
```

(c) Algum pacote não será reproduzido com sucesso? Se sim, determine quais.

Resposta:

Sim, os pacotes 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 e 20 não serão reproduzidos com sucesso.

(d) Calcule a fração de pacotes perdidos para esta transmissão.

Resposta:

A fração de pacotes perdidos é dada pela quantidade de pacotes perdidos, dividida pelo total de pacotes transmitidos, resultando em uma perda de 13/20 = 65.0%.