Objectives - Positive Definite Matrix (Tests) - Test for Minimum (xTAx>0) - Ell, psoids in Rn

Positie définite matrices

Given a sympetric 1/2

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

Cest il possible dehoute?

- 1. Eigenvalue test: $\lambda_1 > 0$, $\lambda_2 > 0$.
- 2. Determinants test: a > 0, $ac b^2 > 0$.
- 3. Pivot test: a > 0, $\frac{ac b^2}{a} > 0$.
- 4. $\mathbf{x}^T A \mathbf{x}$ is positive except when $\mathbf{x} = \mathbf{0}$ (this is usually the definition of positive definiteness).

$$x^{T}Ax = \begin{bmatrix} a_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 18 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$= \left[\begin{array}{cc} x_{\perp} & x_2 \end{array} \right] \left[\begin{array}{cc} 2x_{\perp} + 6x_2 \\ 6x_{\perp} + 18x_2 \end{array} \right]$$

 $= 2x_1^2 + 12x_1x_2 + 18x_2^2$ $= ax_1^2 + 2bx_1x_2 + Cx_2^2$ $= ax_1^2 + 2bx_1x_2 + Cx_2^2$

Test be mornimum

 $\begin{bmatrix} 2 & 6 \\ 6 & 7 \end{bmatrix}$ $\begin{bmatrix} \text{not possible definite.} \end{bmatrix}$

Figure 1: The graph of $f(x, y) = 2x^2 + 12xy + 7y^2$.

Nows

Matrix.

det = 4 3 so eigen rules are
TRACE = 22 positive.

 $f(x,y) = 2x^2 + 12xy + 20y^2$

positie, except oczy=0.

Figure 2: The graph of $f(x, y) = 2x^2 + 12xy + 20y^2$.

& The hist derivatives for Efy of
Mus hunchon are zers, so
its graph is tangent to the
x-y plane at (B,0,0)
* As in calculus: MIN 2 deu >0
(du 20)
Now, in Liver Algebra:
$f(x_1, x_2, \ldots, x_n)$
MIN as MATRIX OF 2nd DERIV. O positive dehoute

Due can prove that

2x2+12xy + 20y2 is always

positive by writing it as

sum of squares.

Congleting pe squere:

2x2+12xy+20y=2(x+3y)2+2y2

Note:

 $2(x+3y)^2 = 2x^2+12xy+18y^3$

"border Line"

between passing & faiting De test for possire dehuitress When complete the square hor $2x^2 + 12xy + 7y^2$ we get $\begin{array}{l}
\text{Lo } 2x^2 + 12xy + 7y^2 = 2(x + 3y)^2 - 11y^2
\end{array}$

Which may be regalie eg!

X=-3 2y=1

The selfheients that appear when coupleting the squere are exactly the entires that appear when performing elemination on the original matrix.

 $\begin{bmatrix} 2 & 6 \\ 6 & 70 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 0 & 2 \end{bmatrix}$

We can see the terms that appear when completing the square in:

 $\begin{bmatrix}
 2 & 6 \\
 6 & 20
 \end{bmatrix}
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &
 &$

Hen pe sum of squares will.

always be fostire!

Hessian Matrix

The matrix of 2^{nd} derivaties of f(x,y) is:

[lxx fxy] [fyx fyy]

The matrix is symnetric because $f \times y = f \cdot y \times$.

· Test her minimum

nyn matrix

A 3 by 3 example:

$$A = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right].$$

$$\det[2] = 2, \quad \det\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = 5, \quad \det\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = 4.$$

The prots of A are 2, 3/2 8 4/3 becare the products of the priob equal the determinants.

· The eigenvalues af A are +ve & product 13 4.

(2-12,2,2+12)

Ellipsoids in R

 $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3.$

Because A & positive definite, we expect f(x) to be positive expect when x=0

Its graph is soft of 4D bowl or paraboloid.

Just as an ellipse has a major and minor axis, an ellipsoid has three axes. If we write $A = Q\Lambda Q^T$, as the principal axis theorem tells us we can, the eigenvectors of A tell us the directions of the principal axes of the ellipsoid. The eigenvalues tell us the lengths of those axes.	