Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)» Факультет инноваций и высоких технологий

Кафедра анализа данных

Магистерская диссертация

Тема: **Название моей работы** (TODO)

Направление: 010400 Прикладные математика и информатика

Выполнил:	
студент 093 группы	 Попов М.В.
Научный руководитель:	
д.физмат.н., проф.(todo)	Ромащенко А.Е.

Содержание

Введе	ние	2
Комму	уникационная сложность	2
1.1	Постановка задачи	2
1.2	Одноцветные комбинаторные прямоугольники	3
1.3	Графовая интерпретация	4
Оцени	вание $bcc(G)$	6
2.1	Метод трудного множества	6
2.2	Метод Куликова-Юкны	7
2.3	Метод энтропийных неравенств	9
Геомет	грические конфигурации	10
3.1	Описание двудольного графа	11
3.2	Оценки для проективных плоскостей	11
3.3	Сравнение методов оценивания	13
Трудн	ое множество vs Куликов-Юкна	15
4.1	Теорема Турановского типа	16
4.2	Конструкция прямоугольного графа	17
4.3	Случайные графы Эрдеша-Реньи	20
4.4	Неравенство Хефдинга	21
4.5	Размер максимального паросочетания	23
4.6	Трудное множество и Куликов-Юкна на случайных графах	24
4.7	Количество трудных множеств размера k	26
Списо	к литературы	27

Введение

(ToDo) Актуальность, новизна, краткая выжимка.

Коммуникационная сложность

1.1 Постановка задачи

Мы будем рассматривать задачи следующего вида: пусть имеется два человека, которые хотят совместно вычислить значение некоторой функции от двух переменных f(x,y). По традиции мы будем называть первого участника игры Алисой, а второго Бобом. Сложность у этой задачи в том, что Алиса знает только значение аргумента x, а Боб значение аргумента y. Алиса и Боб могут обмениваться сообщениями по каналу связи. Требуется вычислить значение f(x,y), переслав по каналу связи минимальное количество информации.

Мы предполагаем, что Алиса и Боб заранее (до того, как им станут известны значения x и y) договариваются о коммуникационном протоколе — о наборе соглашений, какие именно данные и в каком порядке они будут пересылать друг другу при тех или иных значениях x и y.

Опишем теперь всю задачу более формально. Пусть имеются конечные множества X,Y,Z и задана некоторая функция $f:X\times Y\to Z$.

Определение. Коммуникационным протоколом для вычисления некоторой функции $f: X \times Y \to Z$ называется ориентированное двоичное дерево со следующей разметкой на вершинах и ребрах:

- ullet каждая нелистовая вершина помечена буквой A или B;
 - у вершин с пометкой A определена функция $g_i:X \to \{0,1\};$
 - у вершин с пометкой B определена функция $f_j:Y o \{0,1\};$
- ullet каждой листовой вершине сопоставлен элемент множеста Z;
- каждое ребро помечено 0 или 1.

Пусть Алиса и Боб договорились, что будут действовать по некоторому протоколу \mathcal{P} . Затем Алиса получила $x \in X$, а Боб получил $y \in Y$.

Поместим фишку в корневую вершину нашего протокола \mathcal{P} и будем перемещать ее вниз по дереву, последовательно удаляясь от корня, пока она не попадём в один из листьев. Перемещение фишки выполняется следующим образом. Если текущая вершина помечена буквой A это значит, что сейчас очередь Алисы. Она применяет функцию g_i текущей вершины к своему значению x. Алиса отправляет по каналу связи бит равный $g_i(x)$ и перемещает фишку по ребру, помеченному как $g_i(x)$. Боб получает отправленный бит и понимает куда была сдвинута фишка. Для вершин помеченных буквой B поступают аналогично. Когда фишка попадает в лист дерева, записанное там значение $z \in Z$ объявляется результатом выполнения протокола.

Мы говорим, что протокол \mathcal{P} вычисляет функцию $f: X \times Y \to Z$, если для любого $x \in X$ и любого $y \in Y$ при движении из корня по пути, соответствующему заданным x и y, мы попадаем в лист, помеченный z = f(x,y).

Определение. Сложностью коммуникационного протокола называется его глубина. Коммуникационной сложностью функции f называется минимальная сложность протокола, вычисляющего f. Мы будем обозначать её CC(f).

1.2 Одноцветные комбинаторные прямоугольники

Определение. Множество $S \subset X \times Y$ называется комбинаторным прямоугольником (или просто прямоугольным множеством), если существуют такие $A \subset X$ и $B \subset Y$, что $S = A \times B$.

Пусть \mathcal{P} некоторый коммуникационный протокол для вычисления функции $f: X \times Y \to Z$ и l один из листьев протокола. Определим S_l , как множество пар $(x,y) \in X \times Y$ таких, что на входе (x,y) Алиса и Боб, следуя протоколу \mathcal{P} , приходят в лист l.

Утверждение. Для всякого коммуникационного протокола \mathcal{P} и для всякого листа l множество S_l является комбинаторным прямоугольником.

Рис. 1: Пример протокола и разбиения таблицы значений.

Доказательсво этого утверждения можно прочитать например в [1]. В итоге мы получаем, что коммуникационный протокол для вычисления функции f задаёт разбиение $X \times Y$ - таблицы значений f на прямоугольные множества, соответствующие листьям. Поскольку каждому листу протокола приписано одно значение функции f, эти прямоугольные множества являются одноцветными, то есть во всех точках такого прямоугольного множества функция f принимает одно и то же значение. Например, для $X = Y = \{1, 2, 3, 4\}, Z = \{0, 1\}$ и протокола \mathcal{P} (рис 1.) получаем разбиение на 5 одноцветных прямоугольных множества.

Подведем промежуточные итоги: всякий протокол с l листьями (вычисляющий функцию f) задаёт разбиение таблицы значений f на l одноцветных прямоугольных множества. Значит, чтобы доказать, что коммуникационная сложность CC(f) не меньше n, достаточно показать, что таблицу значений невозможно разбить на менее, чем 2^n одноцветных прямоугольных множества.

1.3 Графовая интерпретация

Давайте теперь посмотрим на другое представление множества значений функции f. Рассмотрим полный двудольный граф G=(X,Y,E), ребра которого раскрашены в |Z| цветов. Вершины левой доли соот-

Рис. 2: Графовая интерпретация: синие – 0, красные – 1.

ветствуют элементам множества X, вершины правой доли - элементам множества Y. Ребро $(x,y)\in X\times Y$ имеет цвет $z\in Z$, если f(x,y)=z.

Из определения комбинаторного прямоугольника видно, что в графовой интерпертации он является ничем иным, как полным двудольным подграфом. А разбиение таблицы значений f на одноцветные прямоугольные множества это разбиение нашего полного двудольного графа G на одноцветные непересекающиеся биклики (полные двудольные подграфы). Для нашего примера графовую интерпретацию можно посмотреть на рис.2.

Определение. Бикликовым числом bcc(G) двудольного графа G будем называть наименьшее число биклик, которыми можно покрыть все ребра графа G (Биклики могут пересекаться).

Для каждого $z \in Z$ определим двудольный граф $G_z = (X, Y, E_z)$, как граф, получающийся из G выкидыванием всех ребер цвета отличного от z, иначе говоря $E_z = \{(x,y) \in X \times Y \mid f(x,y) = z\}$.

Величины $bbc(G_z)$ дают некоторую нижнюю оценку на величину минимального покрытия непересекающимися бикликами, поэтому:

$$2^{CC(f)} \ge \sum_{z \in Z} bcc(G_z)$$

Замечание. На самом деле величины $bbc(G_z)$ тесно связаны с недетерминированной коммуникационной сложностью NCC(f). Для произо-

вльного множества Z верно:

$$NCC(f) \le \lceil log_2(\sum_{z \in Z} bcc(G_z)) \rceil + 1$$

а для $Z = \{0, 1\}$:

$$NCC(f) = \lceil log_2(bcc(G_1)) \rceil$$

Подробнее про это можно прочитать, например в [2].

В итоге мы получили мощный иструмент для доказательства нижних оценок коммуникационной сложности. К сожалению задача нахождения величины bcc(G) является PSPACE-полной [3], а точное значение известно только для очень скудного класса графов (например для "Crown graphs"), поэтому напрямую мы не можем использовать эту оценку. В следующей главе я рассмотрю несколько методов, позволяющих для произвольного двудольного графа оценивать снизу величину bcc(G).

Oценивание bcc(G)

В этой главе я опишу три различных метода оценивания бикликового покрытия:

- метод трудного множества ("Fooling Set");
- метод Куликова-Юкны;
- метод энтропийных неравенств.

Первые два метода работают для произвольных графов (необязательно двудольных), а третий применим к большому классу двудольных графов.

2.1 Метод трудного множества

Данный метод тесно связан с одноцветными прямоугольными множествами. Классическое определение трудного множества выглядит следующим образом:

Определение. Для функции $f: X \times Y \to Z$ и элемента $z \in Z$ будем называть множество $S_z \subset X \times Y$ трудным (в англоязычной литературе fooling set), если верно:

- для всякой пары $(x,y) \in S_z$ имеем f(x,y) = z;
- для любых двух несовпадающих пар $(x,y) \in S_z$ и $(x',y') \in S_Z$ имеем $f(x,y') \neq z$ или $f(x',y) \neq z$.

Нас будет интересовать немного более общее определение трудного множества (графовая интерпретация):

Определение. Пусть G = (V, E) произвольный неориентированный граф. Будем называть подмножество ребер $S \subseteq E$ трудным, если для любых двух различных ребер $(x,y) \in S$ и $(x',y') \in S$ имеем $(x,y') \notin E$ или $(x',y) \notin E$. Обозначение fool(G) - размер максимального по мощности трудного множества.

Замечание. Классическое определение получается из графового, применением к двудольному графу $G_z = (X, Y, E_z)$, который строится по функции $f: X \times Y \to Z$.

Теорема. Для произвольного неориентированного графа G = (V, E), если подмножество ребер $S \subseteq E$ является трудным, то $bcc(G) \ge |S|$.

Доказательство. Достаточно доказать, что два ребра, лежащие одновременно в одном трудном множестве, не могут попасть в одну биклику. Пусть не так, значит существуют два ребра $(x,y) \in B \cap S$ и $(x',y') \in B \cap S$, где B - биклика, а S - трудное подмножество ребер. Но тогда ребра (x,y') и (x',y) также принадлежат биклике B, а значит лежат и в нашем множестве ребер E. Противоречие.

Замечание. На практике нахождение максимального по мощности трудного множества применяют редко, потому что эта задача является PSPACE-полной [3].

2.2 Метод Куликова-Юкны

Следующий метод был впервые описан в статье [4] и работает он для произвольного неориентированного графа.

Теорема. Для произвольного неориентированного графа G = (V, E) верно:

 $bcc(G) \ge \left\lceil \frac{v(G)^2}{|E|} \right\rceil$

 $\operatorname{rde} v(G)$ – размер максимального паросочетания графа G.

Доказательство. Пусть $M \subseteq E$ - это максимальное паросочетание, тогда рассмотрим бикликовое покрытие, на котором достигается минимум $E = B_1 \cup B_2 \cup \ldots \cup B_{bcc(G)}$. Определим отображение $g: M \to \{1, \ldots, bcc(G)\}$, как $g(e) = min\{i \mid e \in B_i\}$ и пусть $M_i = \{e \in M \mid g(e) = i\}$. Иначе говоря M_i содержит только те ребра максимального паросочетания M, которые покрываются бикликой B_i впервый раз.

Пусть $F_i \subseteq B_i$ биклика, индуцированная вершинами ребер из M_i . Пусть $F = F_1 \sqcup F_2 \sqcup \ldots \sqcup F_{bcc(G)}$ (биклики F_i не пересекаются по построению).

Очевидно, что F_i - биклика размера $r_i \times r_i$, где $r_i = |M_i|$. Получаем следующие соотношения:

$$r_1 + r_2 + \ldots + r_{bcc(G)} = |M| = v(G)$$

u

$$r_1^2 + r_2^2 + \ldots + r_{bcc(G)}^2 = |F|$$

Из неравенства Коши-Буняковского получаем

$$v(G)^{2} = (r_{1} + r_{2} + \ldots + r_{bcc(G)})^{2} \le bcc(G) \cdot (r_{1}^{2} + r_{2}^{2} + \ldots + r_{bcc(G)}^{2}) = bcc(G) \cdot |F|$$

A max $\kappa a \kappa F \subseteq E$, mo $v(G)^2 \leq bcc(G) \cdot |F| \leq bcc(G) \cdot |E|$.

В этой же статье [4] этот метод сравнивался с классическим: пусть $bcl(G) = \max_{K_{r,r} \subseteq G} \{r\}$, тогда $bcc(G) \ge \left\lceil \frac{v(G)}{bcl(G)} \right\rceil$. Классическая оценка сразу следует из того, что любая биклика $K_{r,s}$ содержит как максимум $min\{r,s\}$ ребер максимального паросочетания.

Приведем примеры графов на которых метод Куликова-Юкны работает намного лучше, чем классическая и наоборот:

• пусть двудольный граф G = (L, R, E) состоит из совершенного паросочетания размера n = |L| = |R| и еще некоторого константного числа непересекающихся биклик $K_{r,r}$. К тому же, пусть $r = \Theta(\sqrt{n})$, тогда

$$\left\lceil \frac{v(G)^2}{|E|} \right\rceil = \left\lceil \frac{n^2}{cr^2 + n} \right\rceil = \Theta(n) \gg \Theta(\sqrt{n}) = \left\lceil \frac{n}{r} \right\rceil = \left\lceil \frac{v(G)}{bcl(G)} \right\rceil$$

• рассмотрим двудольный граф Леви, построенный при помощи конечной проективной плоскости порядка $p \in \mathbb{P}$. В каждой доле этого графа содержится $n = p^2 + p + 1$ вершин, причем степень каждой p + 1. Этот граф не содержит $K_{2,2}$ (любые две прямые пересекаются максимум в одной точке). А так как в регулярных двудольных графах обязательно найдется совершенное паросочетание, то

$$\left\lceil \frac{v(G)^2}{|E|} \right\rceil = \left\lceil \frac{(p^2 + p + 1)^2}{(p^2 + p + 1)(p + 1)} \right\rceil = \Theta(\sqrt{n}) \ll$$

$$\ll \Theta(n) = \left\lceil \frac{p^2 + p + 1}{1} \right\rceil = \left\lceil \frac{v(G)}{bcl(G)} \right\rceil$$

2.3 Метод энтропийных неравенств

Следующий метод оценивания бикликового покрытия был описан в статье [5] как результат применения энтропийного неравенства:

$$H(A|B,X) + H(A|B,Y) \le H(A|B)$$

К сожалению, это неравенство выполняется не для произвольного совместного распределения случайных величин A, B, X, Y и соответственно на двудольный граф будет накладываться дополнительное условие (*).

Теорема. Пусть ребра двудольного графа G = (L, R, E) раскрашены следующим образом:

(*) для произвольной биклики $C \subseteq E$ и для произвольной пары ребер (x,y') и (x',y) из C, покрашеных в цвет a, цвет ребер (x,y) и (x',y') тоже a.

Пусть также на ребрах этого графа задано произвольное вероятностное распределение. Определим случайные величины (X,Y,A) следующим образом:

- X = [левый конец ребра],
- Y = [npaвый конец peбpa],
- $A = [usem \ pebpa].$

Тогда выполняется неравенство:

$$bcc(G) \geq 2^{\frac{1}{2}(H(A|X) + H(A|Y) - H(A))}$$

Пример. Определим двудольный граф $G_{n,k} = (L, R, E)$ следующим образом:

- ullet L u R всевозможные k-элементные подмножества $\{1,\ 2,\ \dots,\ n\},$
- ullet $E\subseteq L imes R$ cocmoum из пар непересекающихся множеств.

Определим цвет ребра $(x,y) \in E$ как $x \sqcup y$ и пусть на ребрах задано равномерное распределение. Условие (*) выполнено, потому что любые два одноцветных ребра не могут лежать в одной биклике. А так как $H(A|X) = H(A|Y) = \log_2 \binom{n-k}{k}$ и $H(A) = \log_2 \binom{n}{2k}$, то

$$bcc(G_{n,k}) \ge \sqrt{\binom{n-k}{k}^2 / \binom{n}{2k}}$$

 $Ecnu\ n \gg k,\ mo\ {n-k\choose k}^2/{n\choose 2k}$ близко к ${2k\choose k} \approx 2^{2k}$ и мы получаем нижнюю оценку $bcc(G_{n,k}) \geq 2^k$.

Геометрические конфигурации

В этой главе мы приведем класс двудольных графов, построенных при помощи некоторой геометрической конфигурации Г. Далее мы увидим, что к этим двудольным графам применимы все наши оценки и поэтому, изменяя Г, мы можем сравнить какие методы работают лучше, а какие хуже.

3.1 Описание двудольного графа

Определение. Геометрической конфигурацией Γ (Partial Linear Space) будем называть конечное множество прямых A и конечное множество точек V на них, что выполняются следующие две аксиомы:

- Любые две точки лежат как максимум на одной прямой.
- На каждой прямой лежит хотя бы две точки.

Определение. Проективной плоскостью с параметрами (p_{γ}, l_{π}) называется геометрическая конфигурация, состоящая из р точек и l прямых, причем через каждую точку проходит ровно γ прямых и на каждой прямой лежит ровно π точек.

Пусть у нас имеется некоторая геометрическая конфигурация $\Gamma = (V, A)$, тогда определим двудольный граф $G_{n,\Gamma} = (L, R, E)$ следующим образом:

- $L = R = V^n$
- $E = \{(x,y) \in L \times R \mid \forall i : x_i \neq y_i$ и лежат на одной прямой из $A\}$

3.2 Оценки для проективных плоскостей

Для произвольной проективной плоскости Γ с параметрами (p_{γ}, l_{π}) найдем какие оценки на $bcc(G_{n,\Gamma})$ дают наши методы:

– Метод трудного множества:

Лемма. Если в Γ имеется цикл нечетный длины, то в $G_{1,\Gamma}$ можно найти трудное множество размера 3.

Доказательство. Рассмотрим нечетный цикл минимальной длины $\{v_1, v_2, \ldots, v_{2k+1}\}$, где $k \geq 1$. Заметим, что прямые могут проходить только через соседние точки этого цикла, иначе бы мы нашли нечетный цикл меньшей длины. Тогда если k > 1, то множество ребер $\{(v_1, v_2), (v_2, v_3), (v_3, v_4)\}$ образует трудное множество, а если k = 1, то $\{(v_1, v_2), (v_2, v_3), (v_3, v_4)\}$ образует трудное множество. \square

Замечание. Если на какой-нибудь прямой лежит по крайне мере три точки, то мы уже имеем цикл длины 3.

Если нечетных циклов в Γ нет, то мы получаем геометрическую конфигурацию аналогичную двудольному графу. Если этот двудольный граф полный, то наибольшее трудное множество имеет размер 2, а если неполный, то мы можем найти трудное множество размера 3.

Лемма. Если в $G_{1,\Gamma}$ существует трудное множество размера k, то в $G_{n,\Gamma}$ существует трудное множество размера k^n

Доказательство. Докажем вначале, что если в графе G_1 имеется трудное множество размера n_1 , а в графе G_2 – трудное множество размера n_2 , тогда в $G_1 \otimes G_2$ можно найти трудное множество размера n_1n_2 . (где \otimes - произведение Кронекера). Пусть $\{v_{i,j}\}$ трудное множество в графе G_1 , тогда в кажедой подматрице $v_{i,j} \cdot G_2$ матрицы графа $G_1 \otimes G_2$ рассмотрим клетки, соответствующие трудному множеству графа G_2 . Всего мы получили n_1n_2 клеток, образующие трудное множество графа $G_1 \otimes G_2$ по построению.

Вернемся к доказательству леммы. Так как матрица графа $G_{n,\Gamma}$, есть не что иное, как Кронекерово произведение п матриц графа $G_{1,\Gamma}$, то мы можем найти трудное множество размера k^n . \square

В итоге мы получили, что если Γ является аналогом полного двудольного графа, то

$$bcc(G_{n,\Gamma}) \ge 2^n$$

иначе

$$bcc(G_{n,\Gamma}) \ge 3^n$$

– Метод Куликова-Юкны:

Так как Γ имеет параметры (p_{γ}, l_{π}) , то каждая вершина графа $G_{1,\Gamma}$ соединена с $\gamma \cdot (\pi - 1)$ другими, а значит всего ребер $\gamma \cdot (\pi - 1) \cdot p$. Тогда в графе $G_{n,\Gamma}$ всего ребер $\gamma^n \cdot (\pi - 1)^n \cdot p^n$. Так как у нас однородный двудольный граф, то у нас имеется совершенное паросочетание, а

значит $v(G_{n,\Gamma}) = p^n$. В итоге получаем оченку:

$$bcc(G_{n,\Gamma}) \ge \frac{p^{2n}}{\gamma^n \cdot (\pi - 1)^n \cdot p^n} = \left(\frac{p}{\gamma \cdot (\pi - 1)}\right)^n$$

– Метод энтропийных неравенств:

Определим раскраску ребер нашего графа $G_{n,\Gamma} = (L,R,E)$: сопоставим каждой прямой конфигурации Γ свой цвет, тогда цвет ребра $(x,y) \in E$ равен n-мерному вектору цветов прямых проходящих через x_i и y_i .

Проверим свойство (*): пусть (x, y') и (x', y) одного цвета и лежат в одной биклике C, значит для любого i точки x_i, y_i', x_i', y_i лежат на одной прямой (некоторые точки могут совпадать), но тогда очевидно, что ребро (x, y) такого же цвета.

Пусть на ребрах графа задано равномерное распределение, тогда $H(A) = \log_2 l^n = n \cdot \log_2 l$ и $H(A|X) = H(A|Y) = \log_2 \gamma^n = n \cdot \log_2 \gamma$. В итоге получаем оценку:

$$bcc(G_{n,\Gamma}) \ge 2^{n \cdot \log_2 \gamma - \frac{n}{2} \cdot \log_2 l} = \left(\frac{\gamma}{\sqrt{l}}\right)^n$$

3.3 Сравнение методов оценивания

Рассмотрим какие оценки получаются на известных геометрических конфигурациях. Симметричные конфигурации $(p=l \ \text{и} \ \gamma=\pi)$ будем обозначать сокращенно (p_{γ}) .

Название	FS	KJ	EI	Результат
T реугольник (3_2)	$\geq 3^n$	$\left(\frac{3}{2}\right)^n$	$\left(\frac{2}{\sqrt{3}}\right)^n$	FS > KJ > EI
Полный четырех- сторонник $(4_3, 6_2)$	$\geq 3^n$	$\left(\frac{4}{3}\right)^n$	$\left(\frac{3}{\sqrt{6}}\right)^n$	FS > KJ > EI
K_m при $m > 4$ $\binom{m}{m-1}, \binom{m}{2}_2$	$\geq 3^n$	$\left(\frac{m}{m-1}\right)^n$	$\left(\sqrt{\frac{2(m-1)}{m}}\right)^n$	FS > EI > KJ
$K_{m,m}$ при $m > 0$ $(2m_m, m_2^2)$	$\geq 2^n$	2^n	1^n	FS = KJ > EI
Плоскость Фано (7_3)	$\geq 3^n$	$\left(\frac{7}{6}\right)^n$	$\left(\frac{3}{\sqrt{7}}\right)^n$	FS > KJ > EI
Конфигурация Мёбиуса-Кантора (8 ₃)	$\geq 3^n$	$\left(\frac{4}{3}\right)^n$	$\left(\frac{3}{\sqrt{8}}\right)^n$	FS > KJ > EI
Конфигурация Дезарга (10 ₃)	$\geq 3^n$	$\left(\frac{5}{3}\right)^n$	$\left(\frac{3}{\sqrt{10}}\right)^n$	FS > KJ > EI
Конфигурация Гессе (9 ₄ , 12 ₃)	$\geq 3^n$	$\left(\frac{9}{8}\right)^n$	$\left(\frac{2}{\sqrt{3}}\right)^n$	FS > EI > KJ
Конфигурация Шлефли (12 ₅ , 30 ₂)	$\geq 3^n$	$\left(\frac{12}{5}\right)^n$	$\left(\frac{5}{\sqrt{30}}\right)^n$	FS > KJ > EI
Проективная плоскость $((m^2 + m + 1)_{m+1})$	$\geq 3^n$	$\left(\frac{m^2+m+1}{m(m+1)}\right)^n$	$\left(\frac{m+1}{\sqrt{m^2+m+1}}\right)^n$	FS > EI > KJ
Конфигурация Кокса $((2^{m-1})_m)$	$\geq 3^n$	$\left(\frac{2^{m-1}}{m(m-1)}\right)^n$	$\left(\frac{m}{\sqrt{2^{m-1}}}\right)^n$	FS > KJ > EI

Из таблицы видно, что метод трудного множества всегда работает лучше, чем остальные. В данном случае точная оценка по методу трудного множества может превосходить величину 3^n на некоторых графах, в результате мы не можем доказать, что метод Куликова-Юкны работает всегда хуже. Но зато величины 3^n достаточно для метода энтропийных неравенств, а значит можно сформулировать следующее утверждение:

Утверждение. Для произвольной геометрической конфигурации (p_{γ}, l_{π}) оценка, получаемая по методу трудного множества, превосходит оценку метода энтропийных неравенств. Иначе говоря

$$3(2) \ge \frac{\gamma}{\sqrt{l}}$$

Доказательство. Условия

$$\begin{cases} p \cdot \gamma = l \cdot \pi, \\ p \ge \gamma \cdot (\pi - 1) + 1. \end{cases}$$

должны обязательно выполняться для того, чтобы геометрическая конфигурация была корректно определена.

Используя эти ограничения получаем

$$\frac{\gamma^2}{l} = \frac{\pi \cdot \gamma}{p} \le \frac{p + \gamma - 1}{p} = 1 + \frac{\gamma - 1}{p} < 4$$

Что и требовалось доказать \square .

Теперь давайте сравним метод Куликова-Юкны и метод энтропийных неравенств. Рассмотрим два случая:

• Пусть выполняется условие $l \geq \gamma^2$, тогда

$$\gamma^2 \cdot (\pi - 1) \le l \cdot (\pi - 1)$$

То есть получаем, что KJ > EI.

ullet Пусть теперь верно $l \leq \gamma^2$, тогда

$$\gamma^2 \cdot (\pi - 1) \ge l \cdot (\pi - 1) = p \cdot \gamma - l \ge p \cdot \sqrt{l} - l$$

Поделив обе части на $\sqrt{l} \cdot \gamma \cdot (\pi-1)$ получаем

$$\frac{\gamma}{\sqrt{l}} \ge \frac{p}{\gamma \cdot (\pi - 1)} - \frac{\sqrt{l}}{\gamma \cdot (\pi - 1)}$$

В итоге получаем, что с некоторой небольшой точностью $EI\gtrsim KJ$

Трудное множество vs Куликов-Юкна

В данном разделе мы докажем, что метод трудного множества всегда дает оценку лучше, чем метод Куликова-Юкны. Также рассмотрим

вопрос о величине разницы в получаемых оценках: всегда ли она невелика; или может быть, что для некоторых графов оценки из этих методов будут отличаться очень сильно.

4.1 Теорема Турановского типа

Как уже видно из названия, для дальнейших изысканий нам потребуется классическая теорема Турана:

Теорема (Туран). Пусть дан неориентированный граф G = (V, E), где |V| = n и число независимости равно α . Тогда в графе выполняется следующая оценка

$$|E| \ge n \cdot \left[\frac{n}{\alpha}\right] - \alpha \cdot \frac{\left[\frac{n}{\alpha}\right] \cdot \left(\left[\frac{n}{\alpha}\right] + 1\right)}{2}$$

Доказательство этой теоремы можно найти в книге [6]. Используя эту теорему мы можем с легкостью доказать следующее:

Теорема. Пусть имеется неориентированный граф G = (V, E), тогда среди ребер максимального паросочетания можно найти трудное множество размера

$$\left\lceil \frac{v(G)^2}{|E|} \right\rceil$$

Доказательство. Давайте вместо графа G=(V,E) рассмотрим граф $\widetilde{G}=(\widetilde{V},\widetilde{E})$, в котором останутся только вершины из максимального паросочетания. Так как $|E|\geq |\widetilde{E}|$, то достаточно найти трудное множество размера

$$\left\lceil \frac{v(G)^2}{|\widetilde{E}|} \right\rceil$$

Пусть $(v_1, v_1'), (v_2, v_2'), \ldots, (v_m, v_m')$ – ребра максимального паросочетания. Построим граф $\widehat{G} = (\widehat{V}, \widehat{E})$ такой, что вершин в нем ровно т. Обозначим вершины $\{\widehat{v}_1, \widehat{v}_2, \ldots, \widehat{v}_m\}$, причем $\widehat{v}_i \leftrightarrow (v_i, v_i')$. Определим множество ребер \widehat{E} следующим образом

$$(\widehat{v}_i, \widehat{v}_j) \in \widehat{E} \ ecnu \ (v_i, v_i') \notin \widetilde{E} \ unu \ (v_j, v_j') \notin \widetilde{E}$$

Очевидно, что трудное множество на ребрах максимального паросочетания соответствует клике в \widehat{G} такого же размера. Пусть число независимости дополнения графа \widehat{G} равно α , тогда мы можем предъявить трудное множество размера α . Используя теорему Турана для дополнения графа \widehat{G} получаем

$$|\overline{\widehat{E}}| \ge m \cdot \left[\frac{m}{\alpha}\right] - \alpha \cdot \frac{\left[\frac{m}{\alpha}\right] \cdot \left(\left[\frac{m}{\alpha}\right] + 1\right)}{2} =$$

Пусть $m = k \cdot \alpha + r$, где $r < \alpha$

$$= (k \cdot \alpha + r) \cdot k - \alpha \cdot \frac{k \cdot (k+1)}{2} = \frac{\alpha \cdot k^2}{2} + r \cdot k - \frac{\alpha \cdot k}{2}$$

Tак как каждое ребро из дополнения графа \widehat{G} порождает два ребра в \widetilde{G} , а также еще имеется т ребер самого паросочетания, то получаем

$$|\widetilde{E}| \ge m + 2 \cdot \left(\frac{\alpha \cdot k^2}{2} + r \cdot k - \frac{\alpha \cdot k}{2}\right) =$$

$$= \alpha \cdot k^2 + 2r \cdot k + r \ge \alpha \cdot k^2 + 2r \cdot k + \left[\frac{r^2}{\alpha}\right] = \left[\frac{m^2}{\alpha}\right]$$

В итоге получили, что

$$|\widetilde{E}| \geq \left\lceil \frac{m^2}{\alpha} \right\rceil \Longleftrightarrow \alpha \geq \left\lceil \frac{m^2}{|\widetilde{E}|} \right\rceil = \left\lceil \frac{v(G)^2}{|\widetilde{E}|} \right\rceil \blacksquare$$

Мы доказали, что на любом неориентированном графе точная оченка по методу трудного множества лучше, чем оценка Куликова-Юкны.

4.2 Конструкция прямоугольного графа

В доказательстве предыдущей теоремы мы использовали некоторый модифицированный граф $\widetilde{G}=(\widetilde{V},\widetilde{E})$. Оказывается можно рассмотреть более общую конструкцию. Такие графы мы будем называть прямоугольными графами.

Определение. Пусть имеется двудольный неориентированный граф G=(L,R,E). Определим прямоугольный граф $\widetilde{G}=(\widetilde{V},\widetilde{E})$ следующим

образом:

- $e_{i,j} \in E \leftrightarrow v_{i,j} \in \widetilde{V}$, значит $|E| = |\widetilde{V}|$.
- $(v_{i,j}, v_{k,l}) \in \widetilde{E}$ тогда и только тогда, когда $v_{i,l} \notin \widetilde{E}$ или $v_{k,j} \notin \widetilde{E}$

Введем также понятия хроматического, кликового и антикликового чисел:

Определение. Хроматическое число графа G – минимальное число k, такое что множество вершин графа можно покрасить в k цветов, причем любое ребро графа соединяет разноцветные вершины. Обозначение $\chi(G)$.

Определение. Кликовое число графа G – максимальное число k, такое что в нашем графе содержится полный граф на k вершинах (k-клика). Обозначение w(G).

Определение. Антикликовое число графа G – максимальное число k, такое что в графе дополнения содержится полный граф на k вершинах (k-антиклика). Обозначение $\alpha(G)$.

Используя конструкцию прямоугольного графа, мы можем сформулировать следующую теорему:

Теорема. Для любого двудольного графа G = (L, R, E) верно:

1)
$$fool(G) = w(\widetilde{G})$$

2)
$$\max_{K_{r,s} \subseteq G} \{r \cdot s\} = \alpha(\widetilde{G})$$

3)
$$bcc(G) = \chi(\widetilde{G})$$

Доказательство. Так как каждому трудному множеству размера k в G соответствует k-клика в \widetilde{G} и наоборот, то $fool(G) = w(\widetilde{G})$.

Очевидно, что биклике $K_{r,s}$ в G, соответствует антиклика размера rs в \widetilde{G} . Обратно, если $(v_{i,j},v_{k,l}) \notin \widetilde{E}$, то вершины $v_{i,l}$ и $v_{k,j}$ определены и между ними нет ребра. И следовательно, если мы рассмотрим какую-нибудь антиклику в \widetilde{G} мы ее можем расширить до "прямоугольной" антиклики, которой будет соответствовать биклика в G.

Последняя часть сразу следует из того, что все вершины антиклики мы можем красить в один цвет. Имея произвольное покрытие bcc(G), мы получаем покрытие вершин графа \widetilde{G} антикликами. Пусть каждой биклике из bcc(G) сопоставлен свой цвет. Красим вершину в тот цвет, который соответствует покрывающей ее биклике (если таких биклик несколько, то в любой йз них). В итоге получаем правильную раскраску графа в bcc(G) цветов. Обратно, правильная покраска графа \widetilde{G} порождает покрытие антикликами, которые мы расширяем до "прямоугольных" антиклик. В итоге этим, антикликам соответствуют биклики в G, следовательно мы получили покрытие бикликами (возможно пересекающимися) размера $\chi(\widetilde{G})$.

Эта теорема позволяет переформулировать извесные оценки хроматического числа:

$$\chi(\widetilde{G}) \geq w(\widetilde{G}) \Longleftrightarrow bcc(G) \geq fool(G)$$

И

$$\chi(\widetilde{G}) \ge \left[\max_{U \subseteq \widetilde{V}} \frac{|U|}{\alpha(\widetilde{G}(U))} \right] \Longleftrightarrow bcc(G) \ge \left[\max_{\mathcal{E} \subseteq E} \frac{|\mathcal{E}|}{\max_{K_{r,s} \subseteq G(\mathcal{E})} |K_{r,s} \cap \mathcal{E}|} \right]$$

где $G(\mathcal{E})$ наименьший подграф G, содержащий все ребра \mathcal{E} .

Если в качестве \mathcal{E} рассмотреть максимальное паросочетание, тогда $\max_{K_{r,s}\subseteq G(\mathcal{E})}|K_{r,s}\cap\mathcal{E}|=\max_{K_{r,r}\subseteq G(\mathcal{E})}|K_{r,r}\cap\mathcal{E}|=\max_{K_{r,r}\subseteq G(\mathcal{E})}\{r\}\leq \max_{K_{r,r}\subseteq G}\{r\}=bcl(G).$ В итоге получаем оценку, которую мы уже раньше встречали:

$$bcc(G) \ge \left[\max_{\mathcal{E} \subseteq E} \frac{|\mathcal{E}|}{\max_{K_{r,s} \subseteq G(\mathcal{E})} |K_{r,s} \cap \mathcal{E}|} \right] \ge \left[\frac{v(G)}{bcl(G)} \right]$$

Если же в качестве ${\mathcal E}$ взять вообще все ребра, то

$$bcc(G) \ge \left[\max_{\mathcal{E} \subseteq E} \frac{|\mathcal{E}|}{\max_{K_{r,s} \subseteq G(\mathcal{E})} |K_{r,s} \cap \mathcal{E}|} \right] \ge \left[\frac{|E|}{\max_{K_{r,s} \subseteq G} \{r \cdot s\}} \right]$$

4.3 Случайные графы Эрдеша-Реньи

В этом разделе мы хотим понять насколько различаются оценки из этих двух методов в применении к "типичным" и "неэкзотичным" графам. В качестве уточнения слова "типичности" мы рассмотрим случайные граф Эрдеша-Реньи, при разумном выборе параметров.

Пусть у нас имеются два n-элементных множества L и R элементы которого будем называть вершинами левой и правой долей графа. Понятно, стало быть, что случайным будет множество ребер графа. Мы не хотим рассматривать графы с кратными ребрами (мультиграфы), графы с петлями (псевдографы) и ориентированные графы. Поэтому мы считаем, что потенциальных ребер у графа не больше, чем n^2 штук. Будем соединять любые две вершины $i \in L$ и $j \in R$ ребром с некоторой вероятностью $p \in [0,1]$ независимо от всех остальных n^2-1 пар вершин. Иными словами, ребра появляются в соответствии со стандартной схемой Бернулли, в которой n^2 испытаний и "вероятность успеха" p. Обозначим через E случайное множество ребер, которое возникает в результате реализации такой схемы. Положим G = (L, R, E). Это и есть случайный двудольный граф в модели Эрдеша – Реньи.

Если записывать приведенное только что определение в формате аксиоматики Колмогорова, то мы имеем вероятностное пространство

$$G(n,p) = (\Omega_n, \mathcal{F}_n, P_{n,p})$$

в котором

$$\Omega_n = \{G = (L, R, E)\}, \ \mathcal{F}_n = 2^{\Omega_n}, \ P_{n,p}(G) = p^{|E|} \cdot (1 - p)^{n^2 - |E|}$$

Если нам хочется найти вероятность, с которой двудольный граф на 2n вершинах обладает данным свойством A, то мы просто берем множество $A \in \mathcal{F}_n$, состоящее из всех графов, для которых выполнено свойство A, и вычисляем

$$P_{n,p}(\mathcal{A}) = \sum_{G \in \mathcal{A}} P_{n,p}(G)$$

Далее будем рассматривать не фиксированное p, а некоторую функ-

цию p(n) заключенную между нулем и единицей. Скажем, наконец, что свойство выполнено почти всегда, если его вероятность стремится к единице при $n \to \infty$.

4.4 Неравенство Хефдинга

Пусть $\xi_1,\ \xi_2,\ \dots,\ \xi_n$ – последовательность независимых случайных величин, таких что для любого $i=1,\ 2,\ \dots,\ n$ верно $\xi_i\in[a_i,b_i]$ с вероятностью 1 для некоторых $a_i,b_i\in\mathbb{R}$. Введем обозначение $S_n=\sum_{i=1}^n\xi_i$. Мы хотим изучать отклонение случайной величины S_n от ее среднего значения $\mathbb{E}[S_n]$. Иначе говоря получить неравенство концентрации для $\xi=S_n-\mathbb{E}[S_n]$. Воспользовавшись для этого неравенством Чернова получим, что для любого $\lambda>0$ верно

$$P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} = P\{e^{\lambda(S_n - \mathbb{E}[S_n])} \ge e^{\lambda\varepsilon}\} \le \frac{\mathbb{E}[e^{\lambda(S_n - \mathbb{E}[S_n])}]}{e^{\lambda\varepsilon}} = \frac{\mathbb{E}[e^{\lambda\sum_{i=1}^{n}(\xi_i - \mathbb{E}[\xi_i])}]}{e^{\lambda\varepsilon}} = \frac{\mathbb{E}[\prod_{i=1}^{n}e^{\lambda(\xi_i - \mathbb{E}[\xi_i])}]}{e^{\lambda\varepsilon}} = \frac{\prod_{i=1}^{n}\mathbb{E}[e^{\lambda(\xi_i - \mathbb{E}[\xi_i])}]}{e^{\lambda\varepsilon}}$$

Нам остается построить верхние оценки для производящих функций $\varphi_{\xi_i}(\lambda)$. Следующий результат дает нам такие оценки в тех случаях, когда случайные величины ξ_i принимают значения из ограниченных интервалов.

Лемма (Хефдинг). Для любой случайной величины ξ , такой что $\mathbb{E}[\xi] = 0$ и $\xi \in [a,b]$ с вероятностью 1, для любого $\lambda > 0$ справедливо

$$\mathbb{E}[e^{\lambda \xi}] \le e^{\frac{\lambda^2 (b-a)^2}{8}}$$

Доказательство основано на выпуклости экспоненты.

Применив эту лемму к нашей цепочке неравенств для случайных величин $\xi_i - \mathbb{E}[\xi_i]$, которые почти наверное лежат в интервалах $[a_i - \mathbb{E}[\xi_i], b_i - \mathbb{E}[\xi_i]]$, мы получаем

$$P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} \le \frac{\prod\limits_{i=1}^n \mathbb{E}[e^{\lambda(\xi_i - \mathbb{E}[\xi_i])}]}{e^{\lambda \varepsilon}} \le \frac{\prod\limits_{i=1}^n e^{\lambda^2(b_i - a_i)^2/8}}{e^{\lambda \varepsilon}} = \frac{e^{\lambda^2 \sum\limits_{i=1}^n (b_i - a_i)^2/8}}{e^{\lambda \varepsilon}}$$

Остается минимизировать правую часть по $\lambda \geq 0$. Выбирая

$$\lambda = \frac{4\varepsilon}{\sum_{i=1}^{n} (b_i - a_i)^2}$$

мы получаем следующий результат

Теорема (Неравенство Хефдинга). Пусть $\xi_1, \xi_2, \ldots, \xi_n$ – последовательность независимых случайных величин, таких что для любого $i=1,\ 2,\ \ldots,\ n$ верно $\xi_i\in[a_i,b_i]$ с вероятностью 1 для некоторых $a_i,b_i\in\mathbb{R}$. Тогда для любого $\varepsilon>0$ верно

$$P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} \le exp\left(\frac{-2\varepsilon^2}{\sum\limits_{i=1}^n (b_i - a_i)^2}\right)$$

Аналогичное неравенство верно для $P\{\mathbb{E}[S_n] - S_n \geq \varepsilon\}$, поскольку условия теоремы инвариантны относительно замены знака слагаемых. Применив дважды неравенство Хефдинга, мы получаем

$$P\{|S_n - \mathbb{E}[S_n]| \ge \varepsilon\} \le P\{S_n - \mathbb{E}[S_n] \ge \varepsilon\} + P\{\mathbb{E}[S_n] - S_n \ge \varepsilon\} \le$$

$$\leq 2 \cdot exp\left(\frac{-2\varepsilon^2}{\sum\limits_{i=1}^n (b_i - a_i)^2}\right)$$

Воспользуемся этим неравенством для того, чтобы изучить отклонение числа ребер в случайном двудольном графе Эрдеша-Реньи. Определим индикаторные случайные величины $X_{i,j} = I\{e_{i,j} \in E\}$. Так как случайная величина $|E| = \sum_{i,j} X_{i,j}$, то получаем

$$\mathbb{E}[|E|] = \sum_{i,j} \mathbb{E}[X_{i,j}] = \sum_{i,j} P\{e_{i,j} \in E\} = n^2 \cdot p$$

Наконец, воспользуемся неравенством Хефдинга для $\varepsilon=1$

$$P\{|E| \neq \mathbb{E}[|E|]\} = P\{||E| - \mathbb{E}[|E|]| \ge 1\} \le 2 \cdot e^{-\frac{2}{n^2}}$$

В итоге мы получили, что почти наверное (при $n \to \infty$) число ребер в графе равно $|E| = n^2 \cdot p$.

4.5 Размер максимального паросочетания

Для изучения отклонения величины максимального паросочетания нам потребуется теорема Холла.

Теорема (Холл). Пусть имеется неориентированный двудольный граф G = (L, R, E). Для произвольного $A \subseteq L$ определим множество соседей

$$N(A) = \{ y \in R \mid (x, y) \in E, \ x \in A \}$$

В двудольном графе существует совершенное паросочетание тогда и только тогда, когда для любого $A \subseteq L$ выполнено $|A| \le |N(A)|$.

Пусть имеется двудольный граф Эрдеша-Реньи G=(L,R,E), где |L|=|R|=n. Множество $S\subseteq L$ не удовлетворяет условию теоремы Холла, если существует множестов $T\subseteq R$ такое, что |S|+|T|=n+1 и $N(S)\cap T=\varnothing$ (нет ребер между множествами S и T).

Очевидно, что

$$P\{N(S) \cap T = \varnothing\} = (1-p)^{|S| \cdot |T|}$$

тогда

$$P\{$$
нет совершенного паросочетания $\} \leq \sum_{S} \sum_{T} (1-p)^{|S|\cdot |T|} =$

$$= \sum_{k=1}^{n} \binom{n}{k} \binom{n}{n-k+1} (1-p)^{k(n-k+1)} \le \sum_{k=1}^{(n+1)/2} \binom{n}{k} \binom{n}{k-1} (1-p)^{kn/2} \le \sum_{k=1}^{(n+1)/2} n^{2k} (1-p)^{kn/2}$$

Если предположить, что $p=p(n)=n^{-\alpha}$ при $\alpha<1$, то получаем

$$P\{$$
нет совершенного паросочетания $\} \leq \sum_{k=1}^{(n+1)/2} n^{2k} (1-p)^{kn/2} =$

$$=\sum_{k=1}^{(n+1)/2}n^{2k}e^{-\frac{kn}{2}\cdot n^{-\alpha}+O(n^{1-2\alpha})\cdot k}=\sum_{k=1}^{(n+1)/2}\left(n^2e^{-\frac{1}{2}n^{1-\alpha}+O(n^{1-2\alpha})}\right)^k\xrightarrow[n\to\infty]{}0$$

Последнее утверждение верно потому, что с некоторого момента величина стоящая под степенью будет меньше 1, а значит первое слагаемое будет больше всех остальных

$$\sum_{k=1}^{(n+1)/2} \left(n^2 e^{-\frac{1}{2}n^{1-\alpha} + O(n^{1-2\alpha})} \right)^k \le \frac{n+1}{2} \left(n^2 e^{-\frac{1}{2}n^{1-\alpha} + O(n^{1-2\alpha})} \right) \xrightarrow[n \to \infty]{} 0$$

В итоге мы получили, что почти наверное (при $n \to \infty$) в нашем графе будет совершенное паросочетание.

4.6 Трудное множество и Куликов-Юкна на случайных графах

Если предположить, что $p=p(n)=n^{-\alpha}\ (\alpha<1)$, то можно сделать вывод, что оценка Куликова-Юкны почти наверное (при $n\to\infty$) равна

$$\left\lceil \frac{v(G)^2}{|E|} \right\rceil = \left\lceil \frac{n^2}{n^2 p} \right\rceil = \left\lceil n^{\alpha} \right\rceil$$

причем

$$P\left\{\left\lceil \frac{v(G)^2}{|E|} \right\rceil \neq \left\lceil n^{\alpha} \right\rceil\right\} \leq P\{|E| \neq \mathbb{E}[|E|]\} + P\{v(G) \neq n\} \leq$$
$$\leq 2 \cdot e^{-\frac{2}{n^2}} + \sum_{k=1}^{(n+1)/2} \left(n^2 e^{-\frac{1}{2}n^{1-\alpha} + O(n^{1-2\alpha})}\right)^k \xrightarrow[n \to \infty]{} 0$$

Теперь посчитаем вероятность того, что в случайном графе найдется трудное множество размера k. Обозначим за $f_k(G)$ - число различных трудных множеств размера k в графе G. Нас интересует вероятность $P\{|f_k(G)|>0\}$, которая превосходит вероятность того, что фиксированные k пар вершин образуют трудное множество. Иначе говоря

$$P\{|f_k(G)| > 0\} \ge p^k (1 - p^2)^{\binom{k}{2}}$$

Предположим теперь, что $p=p(n)=n^{-lpha}$ и $k=k(n)=n^{eta}$, тогда

$$P\{|f_k(G)| > 0\} \ge n^{-\alpha k} e^{\binom{k}{2} \cdot (-n^{-2\alpha} + O(n^{-4\alpha}))} = n^{-\alpha n^{\beta}} e^{-\frac{1}{2}n^{2\beta - 2\alpha} + \frac{1}{2}n^{\beta - 2\alpha} + O(n^{2\beta - 4\alpha})}$$

Заметим, что если мы докажем, что при $n \to \infty$

$$P\{|f_k(G)| > 0\} > P\left\{ \left\lceil \frac{v(G)^2}{|E|} \right\rceil \neq \lceil n^{\alpha} \rceil \right\}$$

то получим, что существует граф, у которого имеется трудное множество размера n^{β} и оценка Куликова-Юкны равна n^{α} . Чтобы это было верно достаточно доказать, что

$$n^{-\alpha n^{\beta}} e^{-\frac{1}{2}n^{2\beta-2\alpha} + \frac{1}{2}n^{\beta-2\alpha} + O(n^{2\beta-4\alpha})} > 2 \cdot e^{-\frac{2}{n^2}} + \sum_{i=1}^{(n+1)/2} \left(n^2 e^{-\frac{1}{2}n^{1-\alpha} + O(n^{1-2\alpha})} \right)^i$$

Сравним левую часть с каждым слагаемым из правой части по отдельности:

1) Если $2 > \beta > \alpha$ и $2 > 2\beta - 2\alpha$, то

$$-\alpha \cdot \ln n \cdot n^{\beta} - \frac{1}{2} \cdot n^{2\beta - 2\alpha} \gg -2\ln 2 \cdot n^{-2}$$

2) Поделим левую часть на n и сравним с первым членом суммы, заранее прологарифмировав. При $1-\alpha>\beta>\alpha$ и $1+\alpha>2\beta$ верно

$$-\alpha \cdot \ln n \cdot n^{\beta} - 1 - \frac{1}{2} \cdot n^{2\beta - 2\alpha} \gg 2 \ln n - \frac{1}{2} n^{1 - \alpha}$$

что верно, так как

$$n^{1-\alpha} \gg \ln n$$
, $n^{1-\alpha} \gg \ln n \cdot n^{\beta}$, $n^{1-\alpha} \gg n^{2\beta-2\alpha}$

В итоге получаем такое утверждение

Утверждение. Если выполняется условие $\min\left\{\frac{1+\alpha}{2}, 1-\alpha\right\} > \beta > \alpha$, тогда существует двудольный граф $G = (L, R, E) \ (|L| = |R| = n)$, в котором метод трудного множества дает оценку n^{β} , а метод Куликова-Юкны – n^{α}

K сожалению, мы смогли показать лишь существование такого графа, но не смогли доказать, что это верно для почти всех графов. Чтобы преодолеть эту трудность нужно исследовать отклонение числа трудных множеств размера k.

4.7 Количество трудных множеств размера k

Вспомним, что за $f_k(G)$ мы обозначили число трудных множеств размера k в графе G. Давайте оценим матожидание этой случайной величины

$$\mathbb{E}[f_k(G)] = \binom{n}{k}^2 \cdot k! \cdot \mathbb{E}[I_k(G)] = \binom{n}{k}^2 \cdot k! \cdot p^k (1 - p^2)^{\binom{k}{2}}$$

Лемма. Если $k = o(\sqrt{n})$, то $\binom{n}{k} \sim \frac{n^k}{k!}$, к тому же если $k \to \infty$ при $n \to \infty$, то $\binom{n}{k} \sim n^k k^{-k-\frac{1}{2}} e^k$.

Доказательство. Применим неравенство $\ln(1-x) < -x$

$$\binom{n}{k} = \frac{n^k}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right) =$$

$$= \frac{n^k}{k!} e^{\ln\left(1 - \frac{1}{n}\right) + \ln\left(1 - \frac{2}{n}\right) + \dots + \ln\left(1 - \frac{k-1}{n}\right)} < \frac{n^k}{k!} e^{-\frac{1}{n} - \frac{2}{n} - \dots - \frac{k-1}{n}} =$$

$$= \frac{n^k}{k!} e^{-\frac{k(k-1)}{2n}} = \frac{n^k}{k!} e^{-O\left(\frac{k^2}{n}\right)}$$

Eсли использовать неравенство $\ln(1-x)>-x-rac{1}{2}x^2$, то получаем

$$\binom{n}{k} > \frac{n^k}{k!} e^{-\frac{1}{n} - \frac{1}{2} \cdot \frac{1^2}{n^2} - \frac{2}{n} - \frac{1}{2} \cdot \frac{2^2}{n^2} - \dots - \frac{1}{n} - \frac{k-1}{2} \cdot \frac{(k-1)^2}{n^2}} =$$

$$= \frac{n^k}{k!} e^{-\frac{k(k-1)}{2n} - \frac{1}{2n} \sum_{i < k} i^2} > \frac{n^k}{k!} e^{-\frac{k^2}{2n} - O\left(\frac{k^3}{n^2}\right)}$$

В итоге мы получили, что

$$\frac{n^k}{k!}e^{-\frac{k^2}{2n}-O\left(\frac{k^3}{n^2}\right)} < \binom{n}{k} < \frac{n^k}{k!}e^{-O\left(\frac{k^2}{n}\right)}$$

 $npu\ k=o(\sqrt{n})$ мы получаем $\binom{n}{k}\sim \frac{n^k}{k!}$ Применяя формулу Стирлинга к

к! получаем второе утверждение леммы 🗆

Эта лемма позволяет найти точный порядок величины $\mathbb{E}[f_k(G)]$ в предположении, что $p=n^{lpha}.$

$$\mathbb{E}[I_k(G)] = p^k (1 - p^2)^{\binom{k}{2}} = n^{-\alpha k} e^{\binom{k}{2} \cdot \ln\left(1 - \frac{1}{n^{2\alpha}}\right)} =$$

$$= n^{-\alpha k} e^{-\binom{k}{2} \cdot \frac{1}{n^{2\alpha}} + \binom{k}{2} \cdot \frac{1}{2n^{4\alpha}} + O\left(\frac{k^2}{n^{6\alpha}}\right)} = n^{-\alpha k} e^{-\frac{k^2}{2n^{2\alpha}} + \frac{k^2}{4n^{4\alpha}} + O\left(\frac{k}{n^{2\alpha}}\right)}$$

Если предположить, что $k=n^{2\alpha+\varepsilon}$, то

$$\mathbb{E}[f_k(G)] \sim n^{2n^{2\alpha+\varepsilon} - (2\alpha+\varepsilon)(n^{2\alpha+\varepsilon} + \frac{1}{2})} \cdot e^{n^{2\alpha+\varepsilon}} \cdot n^{-\alpha n^{2\alpha+\varepsilon}} \cdot e^{-\frac{1}{2}n^{2\alpha+2\varepsilon} + O(n^{2\varepsilon})} =$$

$$= n^{n^{2\alpha+\varepsilon}(2-3\alpha-\varepsilon) - \alpha - \frac{\varepsilon}{2}} \cdot e^{-\frac{1}{2}n^{2\alpha+2\varepsilon} + O(n^{2\alpha+\varepsilon})} \xrightarrow[n \to +\infty]{} 0$$

A если $k=n^{2\alpha-\varepsilon}$, то

$$\mathbb{E}[f_k(G)] \sim n^{2n^{2\alpha-\varepsilon} - (2\alpha-\varepsilon)(n^{2\alpha-\varepsilon} + \frac{1}{2})} \cdot e^{n^{2\alpha-\varepsilon}} \cdot n^{-\alpha n^{2\alpha-\varepsilon}} \cdot e^{-\frac{1}{2}n^{2\alpha-2\varepsilon} + O(n^{-\varepsilon})} =$$

$$= n^{n^{2\alpha-\varepsilon}(2-3\alpha+\varepsilon) - \alpha + \frac{\varepsilon}{2}} \cdot e^{n^{2\alpha-\varepsilon} + O(n^{2\alpha-2\varepsilon})} \xrightarrow[n \to +\infty]{} + \infty$$

В итоге мы доказали следующую теорему:

Теорема. Пусть $p = n^{-\alpha}$, тогда

•
$$k = n^{2\alpha - \varepsilon} \implies \mathbb{E}[f_k(G)] \xrightarrow[n \to +\infty]{} + \infty$$

•
$$k = n^{2\alpha + \varepsilon} \implies \mathbb{E}[f_k(G)] \xrightarrow[n \to +\infty]{} 0$$

Список литературы

- [1] Kushilevitz Eyal, Nisan Noam. Communication Complexity. Cambridge University press, 2006.
- [2] Razborov Alexander. Communication Complexity. In: An Invitation to Mathematics: from Competitions to Research. Springer, 2011.
- [3] Gruber H., Holzer M. Finding lower bounds for nondeterministic state complexity is hard. Springer, 2006.

- [4] Jukna S., Kulikov A. S. On covering graphs by complete bipartite subgraphs. Discrete Math, 2009.
- [5] Kaced Tarik, Romashchenko A. E., Vereshchagin N. K. Conditional Information Inequalities and Combinatorial Applications. CoRR, 2015.
- [6] Оре Ойстин. Теория графов. Наука, 1968.