GATE 2022 EE 39

EE23BTECH11032 - Kaustubh Parag Khachane *

Question GATE 22 EE 39:

The damping ratio and undamped natural frequency of a closed loop system as shown in the figure, are denoted as ζ and ω_n , respectively. The values of ζ and ω_n are

- 1) $\zeta = 0.5$ and $\omega_n = 10$ rad/s
- 2) $\zeta = 0.1$ and $\omega_n = 10$ rad/s
- 3) $\zeta = 0.707$ and $\omega_n = 10$ rad/s
- 4) $\zeta = 0.707$ and $\omega_n = 100$ rad/s

(GATE EE 2022)

Solution:

We will use Mason's Gain Formula to

Parameter	Description	Values
m	load of system	
k	stiffness of system	
ω_n	Natural frequency	$\sqrt{\frac{k}{m}}$
ζ	Damping ratio	$\frac{c}{2m\omega_n}$
y(t)	Output of system	
$\mathbf{x}(t)$	Input to the system	
c	Damping coefficient	
T(s)	Transfer function of system	$\frac{Y(s)}{R(s)}$

TABLE 4
PARAMETER TABLE

First converting the given diagram to a signal flow graph: Mason's Gain Formula is given

Fig. 4. Signal Flow Diagram

by:

$$H(s) = \sum_{i=1}^{N} \left(\frac{P_i \Delta_i}{\Delta} \right) \tag{1}$$

This signal flow graph has only one

Parameter	Description
N	Number of forward paths
L	Number of loops
P_k	Forward path gain of k^{th} path
Δ_k	Associated path factor
Δ	Determinant of the graph

TABLE 4
Parameter Table - Mason's Gain Law

Parameter	Formula
Δ	$1 + \sum_{k=1}^{L} ((-1)^k)$ Product of gain of groups of k isolated loops
Δ_k	Δ part of graph that is not touching k^{th} forward path

TABLE 4 Formula Table - Mason's Gain Law

forward path whose gain is given by:

$$P_{1} = \frac{10}{s} \frac{10}{s}$$
 (2)
= $\frac{100}{s^{2}}$ (3)

calculate the transfer function of this system.

The loop gain for loop between Node-2 and Comparing equations (12) and (15), Node-3 is:

$$L_1 = \frac{10}{s} (-1) \tag{4}$$

$$= -\frac{10}{s} \tag{5}$$

The loop gain for loop between Node-1 and Node-4 is:

$$L_1 = \frac{1010}{s}(-1) \tag{6}$$

$$=-\frac{100}{s^2}\tag{7}$$

Using Table 4, Δ is :

$$\Delta = 1 - \left(-\frac{10}{s} - \frac{100}{s^2} \right) \tag{8}$$

$$=1+\frac{10}{s}+\frac{100}{s^2}\tag{9}$$

There are no two isolated loops available. Hence all further terms will b zero.

As both the loops are in contact with the only forward path,

$$\Delta_1 = 1 \tag{10}$$

Using equation (1):

$$H(s) = \frac{\frac{100}{s^2}}{1 + \frac{10}{s} + \frac{100}{s^2}}$$
(11)

$$=\frac{{100}^{s}}{s^2+10s+100}$$
 (12)

Referring to Table 4, the general equation of the damping system is second order and can be written as:

$$m\ddot{y}(t) + c\dot{y}(t) + ky(t) = x(t)$$
 (13)

Take the Laplace transform and solve for $\frac{Y(s)}{Y(s)}$

$$\frac{Y(s)}{X(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{14}$$

$$\frac{Y(s)}{X(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\Longrightarrow H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
(14)

$$\omega_n^2 = 100 \tag{16}$$

$$\implies \omega_n = 10 \text{ rad/s}$$
 (17)

$$2\zeta\omega_n = 10\tag{18}$$

$$\implies \zeta = 0.5 \tag{19}$$

Fig. 4. Magnitude plot

Fig. 4. Phase plot