Deep Generative Models: Continuous Latent Variables

Philip Schulz and Wilker Aziz

VI Tutorial @ Host Site Deep Generative Models

Variational Autoencoders

Posterior collapse

Deep Generative Models

Variational Autoencoders

Posterior collapse

Generative Model with NN Likelihood

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network.

We fix p(z) for simplicity.

Example: Language Model

A deterministic language model is **one** distribution over observations:

$$p(x|\theta) = \prod_{i=1}^{n} p(x_i|x_{< i}, \theta)$$

Every sentence gets mapped from the same conditioning context, namely, the beginning of sequence symbol.

Example: Language Model (cont.)

With latent variables we can model the data as a draw from a complex marginal, which mixes conditionals from different points in space

$$p(x|\theta) = \int p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta) dz$$

Example: Language Model (cont.)

With latent variables we can model the data as a draw from a complex marginal, which mixes conditionals from different points in space

$$p(x|\theta) = \int p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta) dz$$

Good training can lead to considerable amount of structure in the posterior

$$p(z|x,\theta) = \frac{p(z)p(x|z,\theta)}{p(x|\theta)}$$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i | z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; \theta))$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i|z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; \theta))$

$$\mathit{h}_0 = \mathsf{tanh}\Big(\mathit{W}^{(\mathsf{init})}\mathit{z} + \mathit{b}^{(\mathsf{init})}\Big)$$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i | z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; \theta))$

$$egin{aligned} h_0 &= anh\Big(W^{(ext{init})}z + b^{(ext{init})}\Big) \ h_i &= ext{rnn}ig(h_{i-1}, E_{x_{i-1}}; heta_{ ext{rnn}}ig) \end{aligned}$$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i | z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; \theta))$

$$egin{aligned} h_0 &= anh\Big(W^{(ext{init})}z + b^{(ext{init})}\Big) \ h_i &= ext{rnn}(h_{i-1}, E_{x_{i-1}}; heta_{ ext{rnn}}) \ f(z, x_{< i}) &= ext{softmax}(W^{(ext{out})}h_i + b^{(ext{out})}) \end{aligned}$$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i | z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; heta))$

$$egin{aligned} h_0 &= anh \Big(W^{(ext{init})} z + b^{(ext{init})} \Big) \ h_i &= ext{rnn} ig(h_{i-1}, E_{x_{i-1}}; heta_{ ext{rnn}} ig) \ fig(z, x_{< i} ig) &= ext{softmax} ig(W^{(ext{out})} h_i + b^{(ext{out})} ig) \ heta &= heta_{ ext{rnn}} \cup \{ W^{(ext{init})}, b^{(ext{init})}, W^{(ext{out})}, b^{(ext{out})} \} \end{aligned}$$

Generative Model with NN Likelihood

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

 $p(x|\theta) = \int p(z)p(x|z,\theta)dz$ is intractable!

Deep Generative Models

Variational Autoencoders

Posterior collapse

$$\log p(x|\theta) \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{ELBO}}$$

$$egin{aligned} \log p(x| heta) & \succeq \underbrace{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x,z| heta)
ight] + \mathbb{H}\left(q(z|x,\lambda)
ight)}_{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z, heta) + \log p(z)
ight] + \mathbb{H}\left(q(z|x,\lambda)
ight)} \end{aligned}$$

$$\begin{split} \log p(x|\theta) & \ge \overbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta) \right] + \mathbb{H} \left(q(z|x,\lambda) \right)}^{\mathsf{ELBO}} \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z) \right] + \mathbb{H} \left(q(z|x,\lambda) \right) \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \end{split}$$

$$\log p(x|\theta) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{=\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{=\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)}$$

$$\underset{\theta,\lambda}{\operatorname{arg\,max}} \ \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta) \right] - \operatorname{\mathsf{KL}} \left(q(z|x,\lambda) \mid\mid p(z) \right)$$

$$\log p(x|\theta) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)}$$

$$rg \max_{\theta, \lambda} \ \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)$$

• assume KL $(q(z|x, \lambda) || p(z))$ analytical true for exponential families

$$\begin{split} \log p(x|\theta) & \ge \overbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta) \right] + \mathbb{H} \left(q(z|x,\lambda) \right)}^{\mathsf{ELBO}} \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z) \right] + \mathbb{H} \left(q(z|x,\lambda) \right) \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \end{split}$$

$$\operatorname*{arg\,max}_{\theta,\lambda} \ \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)$$

- assume KL $(q(z|x, \lambda) \mid\mid p(z))$ analytical true for exponential families
- approximate $\mathbb{E}_{q(z|x,\lambda)}[\log p(x|z,\theta)]$ by sampling feasible because $q(z|x,\lambda)$ is simple

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{constant}$$

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right]$$

$$\begin{split} &\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{constant} \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right] \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \theta} \log p(x|z_i,\theta) \\ &\text{where } z_i \sim q(z|x,\lambda) \end{split}$$

$$\begin{split} &\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant} \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right] \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \theta} \log p(x|z_i,\theta) \\ &\text{where } z_i \sim q(z|x,\lambda) \end{split}$$

Note: $q(z|x,\lambda)$ does not depend on θ .

$$\frac{\partial}{\partial \lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right]$$

$$\frac{\partial}{\partial \lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right] \\ = \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

$$\frac{\partial}{\partial \lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right] \\ = \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

The first term again requires approximation by sampling

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right]$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right]$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right]
= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz
= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) dz$$

Not an expected gradient!

Score function estimator?

Can we apply the log-derivative trick?

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) dz$$

Score function estimator?

Can we apply the log-derivative trick?

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) \mathrm{d}z \\ &= \int q(z|x,\lambda) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \log p(x|z,\theta) \mathrm{d}z \end{split}$$

Score function estimator?

Can we apply the log-derivative trick?

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) \mathrm{d}z \\ &= \int q(z|x,\lambda) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \log p(x|z,\theta) \mathrm{d}z \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \end{split}$$

Yes, it's a general result!

What about variance?

The learning signal can only scale the gradient:

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \end{split}$$

What about variance?

The learning signal can only scale the gradient:

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\
= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right]$$

Can we do better?

Problem

We need to re-express the gradient, but the measure of integration depends on λ

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} [\log p(x|z,\theta)]$$

Problem

We need to re-express the gradient, but the measure of integration depends on λ

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right]$$

What if we could re-express $q(z|x,\lambda)$ in terms of some other distribution that does not depend on λ ?

Reparametrisation trick

Find a transformation $h: z \mapsto \epsilon$ such that ϵ does not depend on λ .

- $h(z, \lambda)$ needs to be invertible
- $h(z, \lambda)$ needs to be differentiable

Reparametrisation trick

Find a transformation $h: z \mapsto \epsilon$ such that ϵ does not depend on λ .

- $h(z, \lambda)$ needs to be invertible
- $h(z, \lambda)$ needs to be differentiable
- $h(z,\lambda) = \epsilon$
- $h^{-1}(\epsilon,\lambda)=z$

Affine property

$$Az + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } z \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Affine property

$$Az + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } z \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Special case

$$Az + b \sim \mathcal{N}\left(b, AA^{T}\right) \text{ for } z \sim \mathcal{N}\left(0, \mathsf{I}\right)$$

Let an inference network compute

$$u = \mu(x; \lambda)$$
 $s = \sigma(x; \lambda)$

for a posterior $Z \sim \mathcal{N}(u, s^2)$, then we have:

Let an inference network compute

$$u = \mu(x; \lambda)$$
 $s = \sigma(x; \lambda)$

for a posterior $Z \sim \mathcal{N}(u, s^2)$, then we have:

$$h(z, \lambda; x) = \frac{z - \mu(x; \lambda)}{\sigma(x; \lambda)} = \epsilon \sim \mathcal{N}(0, I)$$

Let an inference network compute

$$u = \mu(x; \lambda)$$
 $s = \sigma(x; \lambda)$

for a posterior $Z \sim \mathcal{N}(u, s^2)$, then we have:

$$h(z, \lambda; x) = \frac{z - \mu(x; \lambda)}{\sigma(x; \lambda)} = \epsilon \sim \mathcal{N}(0, 1)$$

and conversely, for $\epsilon \sim \mathcal{N}(0, I)$, we have:

$$h^{-1}(\epsilon, \lambda; x) = \mu(x; \lambda) + \sigma(x; \lambda) \odot \epsilon = z \sim \mathcal{N}(u, s^2)$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{\partial}{\partial \lambda} \int q(\epsilon) \log \left(p(x|h^{-1}(\epsilon,\lambda),\theta) \right) d\epsilon$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{\partial}{\partial \lambda} \int q(\epsilon) \log \left(p(x|h^{-1}(\epsilon,\lambda),\theta) \right) d\epsilon$$

$$= \int q(\epsilon) \frac{\partial}{\partial \lambda} \left[\log p(x|h^{-1}(\epsilon,\lambda),\theta) \right] d\epsilon$$

$$\mathbb{E}_{q(\epsilon)} \left[\frac{\partial}{\partial \lambda} \log p(x | \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \right]$$

$$\mathbb{E}_{q(\epsilon)} \left[\frac{\partial}{\partial \lambda} \log p(x | \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \right]$$

$$\stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \lambda} \log p(x | \overbrace{h^{-1}(\epsilon_{i}, \lambda)}^{=z}, \theta)$$
where $\epsilon_{i} \sim q(\epsilon)$

$$\mathbb{E}_{q(\epsilon)} \left[\frac{\partial}{\partial \lambda} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \right]$$

$$\stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \lambda} \log p(x| \overbrace{h^{-1}(\epsilon_{i}, \lambda)}^{=z}, \theta)$$
where $\epsilon_{i} \sim q(\epsilon)$

$$\stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial z} \log p(x| \overbrace{h^{-1}(\epsilon_{i}, \lambda)}^{=z}, \theta) \times \frac{\partial}{\partial \lambda} h^{-1}(\epsilon_{i}, \lambda)$$
chain rule

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

We get two gradient paths!

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

We get two gradient paths!

• one is deterministic $\frac{\partial h^{-1}(\epsilon,\lambda)}{\partial \mu(x,\lambda)} = \frac{\partial}{\partial \mu(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = 1$

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

We get two gradient paths!

- one is deterministic $\frac{\partial h^{-1}(\epsilon,\lambda)}{\partial \mu(x,\lambda)} = \frac{\partial}{\partial \mu(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = 1$
- the other is stochastic $\frac{\partial h^{-1}(\epsilon,\lambda)}{\partial \sigma(x,\lambda)} = \frac{\partial}{\partial \sigma(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = \epsilon$

Gaussian KL

ELBO

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

Gaussian KL

ELBO

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

Analytical computation of $- KL(q(z|x, \lambda) || p(z))$:

$$\frac{1}{2} \sum_{i=1}^{N} \left(1 + \log \left(\sigma_i^2 \right) - \mu_i^2 - \sigma_i^2 \right)$$

generation model

generation model

generation model

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

Generative story

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

Generative story

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$h = \operatorname{relu}(W_1 z + b_1)$$

Generative story

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$h = \operatorname{relu}(W_1z + b_1)$$

 $f(z, \theta) = \operatorname{softmax}(W_2h + b_2)$

Generative story

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$h = \operatorname{\mathsf{relu}}(W_1z + b_1)$$
 $f(z, \theta) = \operatorname{\mathsf{softmax}}(W_2h + b_2)$
 $\theta = \{W_1, b_1, W_2, b_2\}$

Likelihood

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

Likelihood

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$p(x|z,\theta) = \prod_{i=1}^{N} p(x_i|z,\theta)$$

Likelihood

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$p(x|z,\theta) = \prod_{i=1}^{N} p(x_i|z,\theta) = \prod_{i=1}^{N} \operatorname{Cat}(x_i|\underbrace{f(z;\theta)}_{=\psi})$$

Likelihood

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$p(x|z,\theta) = \prod_{i=1}^{N} p(x_i|z,\theta) = \prod_{i=1}^{N} Cat(x_i|\underbrace{f(z;\theta)}_{=\psi})$$
$$= \prod_{i=1}^{N} \psi_{x_i}$$

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

Generative story

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$p(x|\theta) = \int p(z) \prod_{i=1}^{N} p(x_i|z,\theta) dz$$

Generative story

- Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$p(x|\theta) = \int p(z) \prod_{i=1}^{N} p(x_i|z,\theta) dz$$
$$= \int \mathcal{N}(z|0,I) \prod_{i=1}^{N} Cat(x_i|f(z;\theta)) dz$$

Inference model

• $Z|x \sim \mathcal{N}(\mu(x; \lambda), \sigma(x; \lambda)^2)$

Inference model

• $Z|x \sim \mathcal{N}(\mu(x; \lambda), \sigma(x; \lambda)^2)$

Inference model

•
$$Z|x \sim \mathcal{N}(\mu(x; \lambda), \sigma(x; \lambda)^2)$$

$$s = \sum_{i=1}^{N} E_{x_i}$$

Inference model

•
$$Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$$

$$s = \sum_{i=1}^{N} E_{x_i}$$

$$b = \text{rolu}(M)$$

$$h = \mathsf{relu}(M_1 s + c_1)$$

Inference model

•
$$Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$$

$$s=\sum_{i=1}^N E_{x_i}$$
 $\mu(x;\lambda)=M_2h+c_2$ $h=\operatorname{relu}(M_1s+c_1)$

Inference model

•
$$Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$$

$$s = \sum_{i=1}^{N} E_{x_i}$$

$$\mu(x; \lambda) = M_2 h + c_2$$

$$\sigma(x; \lambda) = \text{softplus}(M_3 h + c_3)$$

$$h = \mathsf{relu}(M_1 s + c_1)$$

Inference model

•
$$Z|x \sim \mathcal{N}(\mu(x; \lambda), \sigma(x; \lambda)^2)$$

$$s = \sum_{i=1}^{N} E_{x_i}$$
 $\mu(x; \lambda) = M_2 h + c_2$ $\sigma(x; \lambda) = \text{softplus}(M_3 h + c_3)$ $h = \text{relu}(M_1 s + c_1)$ $\lambda = \{E, M_1^3, c_1^3\}$

Generative Model

- Prior: $Z \sim \mathcal{N}(0, I)$
- Likelihood: $X_i|z \sim \text{Cat}(f(z;\theta))$

Inference Model

• $Z|x \sim \mathcal{N}(\mu(x; \lambda), \sigma(x; \lambda)^2)$

Generative Model

- Prior: $Z \sim \mathcal{N}(0, I)$
- Likelihood: $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

Inference Model

• $Z|x \sim \mathcal{N}(\mu(x; \lambda), \sigma(x; \lambda)^2)$

ELBO

$$egin{aligned} \log p(x| heta) &\geq \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)} \left[\sum_{i=1}^N \log \psi_{x_i}
ight] \ &- \mathsf{KL} \left(\mathcal{N}(z|u,s^2) \mid\mid \mathcal{N}(z|0,I)
ight) \end{aligned}$$

where $u = \mu(x; \lambda)$, $s = \sigma(x; \lambda)$, and $\psi = f(z = u + \epsilon \odot s, \theta)$

We are point estimating $p(x, z|\theta)$ along with $q(z|x, \lambda)$

• where $p(x, z|\theta) = p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)$

- where $p(x, z|\theta) = p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)$
- if we pick θ such that $X_i \perp Z \mid X_{< i}$, then

- where $p(x, z|\theta) = p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)$
- if we pick θ such that $X_i \perp Z \mid X_{< i}$, then

$$p(z|x,\theta) = \frac{p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)}{p(x|\theta)}$$

- where $p(x, z|\theta) = p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)$
- if we pick θ such that $X_i \perp Z \mid X_{< i}$, then

$$p(z|x,\theta) = \frac{p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)}{p(x|\theta)}$$
$$= \frac{p(z) \prod_{i=1}^{n} p(x_i|x_{< i}, \theta)}{p(x|\theta)}$$

- where $p(x, z|\theta) = p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)$
- if we pick θ such that $X_i \perp Z \mid X_{< i}$, then

$$p(z|x,\theta) = \frac{p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)}{p(x|\theta)}$$
$$= \frac{p(z) \prod_{i=1}^{n} p(x_i|x_{< i}, \theta)}{p(x|\theta)} = \frac{p(z)p(x|\theta)}{p(x|\theta)}$$

- where $p(x, z|\theta) = p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)$
- if we pick θ such that $X_i \perp Z \mid X_{< i}$, then

$$p(z|x,\theta) = \frac{p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)}{p(x|\theta)}$$

$$= \frac{p(z) \prod_{i=1}^{n} p(x_i|x_{< i}, \theta)}{p(x|\theta)} = \frac{p(z)p(x|\theta)}{p(x|\theta)}$$

$$= p(z)$$

We are point estimating $p(x, z|\theta)$ along with $q(z|x, \lambda)$

- where $p(x, z|\theta) = p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)$
- if we pick θ such that $X_i \perp Z \mid X_{< i}$, then

$$p(z|x,\theta) = \frac{p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta)}{p(x|\theta)}$$

$$= \frac{p(z) \prod_{i=1}^{n} p(x_i|x_{< i}, \theta)}{p(x|\theta)} = \frac{p(z)p(x|\theta)}{p(x|\theta)}$$

$$= p(z)$$

• the true posterior collapses to the prior

Strong generators

If your likelihood model is able to express dependencies between the output variables (e.g. an RNN), the model may simply ignore the latent code.

Note that though
$$X \perp Z$$
 (or $X_i \perp Z \mid X_{< i}$) $\prod_{i=1}^n p(x_i \mid x_{< i}, \theta)$ still is an exact factorisation of $p(x \mid \theta)$.

We call such models strong generators.

Fact: the rate $R = \mathbb{E}_X[\mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)]$ is an upperbound on I(X;Z)

Fact: the rate $R = \mathbb{E}_X[\mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)]$ is an upperbound on I(X;Z)

• if KL $(q(z|x, \lambda) || p(z))$ is close to 0 to most training instances, then I(X; Z) is 0 or negligible;

VI Tutorial @ Host VAEs 33 / 43

Fact: the rate $R = \mathbb{E}_X[\mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)]$ is an upperbound on I(X;Z)

- if KL $(q(z|x, \lambda) || p(z))$ is close to 0 to most training instances, then I(X; Z) is 0 or negligible;
- greedy decoding arg $\max_{x_i} \log p(x_i|z, x_{< i})$ from a prior sample $z \sim p(z)$ is deterministic;

VI Tutorial @ Host VAEs 33 / 43

Fact: the rate $R = \mathbb{E}_X[\mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)]$ is an upperbound on I(X;Z)

- if KL $(q(z|x, \lambda) || p(z))$ is close to 0 to most training instances, then I(X; Z) is 0 or negligible;
- greedy decoding arg $\max_{x_i} \log p(x_i|z, x_{< i})$ from a prior sample $z \sim p(z)$ is deterministic;
- this does not mean ancestral samples from $p(x|z,\theta)$ will be bad

KL scaling

Gradually incorporate the KL term into the objective

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \beta \operatorname{\mathsf{KL}}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

where β starts at 0 and goes to 1 after a number of steps.

KL scaling

Gradually incorporate the KL term into the objective

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \beta \operatorname{\mathsf{KL}}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

where β starts at 0 and goes to 1 after a number of steps.

This sometimes helps reach better local optimum, but there are not guarantees. In fact, oftentimes, soon after we reach 1, the posterior collapses again.

Free bits

Another strategy is to promote the posterior to deviate a bit from the prior by not penalising for the first few nats of information:

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \max(r,\mathsf{KL}\left(q(z|x,\lambda)\mid\mid p(z)
ight))$$

where $r \ge 0$ is known as "free bits"

This is an attempt to promote solutions where $R \ge r$

Attention!

But note that if we scale down the KL term permanently, or allow too many free bits, then the conditional $p(x|z,\theta)$ will over-specialise to samples from the approximate posterior $q(z|x,\lambda)$. This can lead to bad generalisation and/or poor samples when generating from the prior.

Variational Autoencoder

Advantages

- Backprop training
- Easy to implement
- Posterior inference possible
- One objective for both NNs
- Amortised inference

Variational Autoencoder

Advantages

- Backprop training
- Easy to implement
- Posterior inference possible
- One objective for both NNs
- Amortised inference

Drawbacks

- Discrete latent variables are not possible
- Optimisation may be difficult with several latent variables

Summary

- Wake-Sleep: train inference and generation networks with separate objectives
- VAE: train both networks with same objective
- Reparametrisation
 - ullet Transform parameter-free variable ϵ into latent value z
 - Update parameters with stochastic gradient estimates
- If you employ strong generators, watch out for posterior collapse

Implementation

Try one of our notebooks, e.g.

Original VAE: MNIST
 https:
 //github.com/philschulz/VITutorial/blob/
 master/code/vae_notebook_pytorch.ipynb

SentenceVAE
 https://github.com/probabll/dgm4nlp/tree/master/notebooks/sentencevae

Literature I

- Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin Murphy. Fixing a broken elbo. In *International Conference on Machine Learning*, pages 159–168, 2018.
- Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. In *International Conference on Machine Learning*, 2017.

Literature II

- G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm for unsupervised neural networks. *Science*, 268:1158–1161, 1995. URL http://www.gatsby.ucl.ac.uk/~dayan/papers/hdfn95.pdf.
- Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013. URL http://arxiv.org/abs/1312.6114.
- Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic differentiation variational inference. *Journal of Machine Learning Research*, 18(14):1–45, 2017. URL http://jmlr.org/papers/v18/16-107.html.

Literature III

Tom Pelsmaeker and Wilker Aziz. Effective estimation of deep generative language models. *arXiv preprint arXiv:1904.08194*, 2019.

Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In *ICML*, pages 1278–1286, 2014. URL http://jmlr.org/proceedings/papers/v32/rezende14.pdf.

Literature IV

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for non-conjugate inference. In Tony Jebara and Eric P. Xing, editors, *ICML*, pages 1971–1979, 2014. URL http://jmlr.org/proceedings/papers/v32/titsias14.pdf.