Question 4

There are 2n players who have signed up to a chess tournament. For all $1 \le i \le 2n$, the *i*th player has a known skill level of s_i , which is a non-negative integer. Let $S = \sum_{i=1}^{2n} s_i$, the total skill level of all players.

In the tournament, there will be n matches. Each match is between two players, and each player will play in exactly one match. The *imbalance* of a match is the absolute difference between the skill levels of the two players. That is, if a match is played between the *i*th player and the *j*th player, its imbalance is $|s_i - s_j|$. The *total imbalance* of the tournament is the sum of imbalances of each match.

The organisers have provided you with a value m which they consider to be the ideal total imbalance of the tournament.

Design an algorithm which runs in $O(n^2S)$ time and determines whether or not it is possible to arrange the matches in order to achieve a total imbalance of m, assuming:

4.1 [4 marks] all s_i are either 0 or 1;

Answer:

According to the topic, when s_i only have the possibility 0 and 1, it means that There are S players with level 1 and 2n - S players with level 0 players. The least possibility of total tournament imbalance:

The least probability of total tournament means battle between as many of the same levels as possible.

As 2n is even, If S is even, it means level 0 players can divide to 2 parts and battle with each other, 2n - S will also be even, and it also can divide to 2 parts. Therefore, the least total imbalance of tournament is $T_{min} = 0$.

If S is odd, the 2n-S will also be odd, both of them cannot divide to two parts. There must be 1 pair players with different level. the least total imbalance of tournament is $T_{min} = 1$.

The largest possibility of total tournament imbalance:

The largest probability of total tournament means battle between as many of the different levels as possible and the best situation will be all of smaller number of players between S and 2n-S battle with different level players, the other |2n-2S| players battle with each other. As 2n and 2S are even, therefore, the other players can divide to two part. If $S \geq 2S-n$, it means level 0 have less people. The total imbalance of the tournament is $T_{max} = (2S-n) \times 1 + |2S-2n| \times 0 = 2S-n$. If $S \leq 2S-n$, it means level 0 have less people. The total imbalance of the tournament is $T_{max} = S \times 1 + |2S-2n| \times 0 = S$. According to the topic, the maximum of total tournament imbalance is

According to the topic, the maximum of total tournament imbalance is the less number players between level 1 and 0.

According to the topic, when finish the calculating of S, we can get the result. if m=0, check if S is odd, the ideal total imbalance of tournament cannot reach. if $m>\min\{S,2S-n\}$, according to the above, it means m is larger than the maximum total imbalance of tournament in this situation, the ideal total imbalance of tournament cannot reach.

If else, the ideal total imbalance of tournament can reach.

4.2 [16 marks] the s_i are distinct non-negative integers.

Answer: