# 4 Velocity of the Center of Mass of a System

### **Apparatus**

Tracker video analysis software

Video: collision-pucks.mov from http://physics.highpoint.edu/~atitus/videos/

#### Goal

The purpose of this experiment is to measure the velocity of the center of mass of two pucks that make a collision on an air hockey table. You will measure the center-of-mass velocity before the collision and after the collision, and you will compare the results.

#### Introduction

The location of the center of mass of a system of two particles is

$$\vec{r}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$$

This is a vector equation that must be true for both the x and y directions (for two dimensions).

$$x_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

$$y_{cm} = \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2}$$

Likewise, the center-of-mass velocity is

$$\vec{v}_{cm} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2}$$

Again, this equation must hold true for both the x and y components of the center-of-mass velocity.

$$v_{cm,x} = \frac{m_1 v_{1x} + m_2 v_{2x}}{m_1 + m_2}$$

$$v_{cm,y} = \frac{m_1 v_{1y} + m_2 v_{2y}}{m_1 + m_2}$$

### **Procedure**

It is expected that you have completed the other video analysis experiments, so these instructions do not include details about how to use the *Tracker* software.

- 1. Download the video collision-pucks.mov.
- 2. Open Tracker and insert the video.
- 3. Record the mass of each puck.

```
m_{blue} = \ m_{red} =
```

- 4. Set the origin of your coordinate system.
- 5. Set the calibration using the meterstick on the left side of the video. You will have greater accuracy if you use 5 of the 10-cm segments for your calibration. In other words, stretch the calibration tool across 5 segments for a total length of 0.5 m.
- 6. Mark the blue puck for each frame of the video.
- 7. Mark the red puck for each frame of the video.
- 8. Using the graphs of x vs. t and y vs. t for each puck, measure the following quantities:

Table 4.1: default

|      | $v_{xi}$ | $v_{yi}$ | $v_{xf}$ | $v_{yf}$ |
|------|----------|----------|----------|----------|
| blue |          |          |          |          |
| red  |          |          |          |          |

## **Analysis**

| Calculate the x-component of the center-of-mass velocity $after$ the collision, $v_{cm,fx}$ . |
|-----------------------------------------------------------------------------------------------|
| Calculate the y-component of the center-of-mass velocity $after$ the collision, $v_{cm,fy}$ . |
| What is $\vec{v}_{cm,i}$ ? Write and sketch the vector.                                       |
| What is $\vec{v}_{cm,f}$ ? Write and sketch the vector.                                       |

Tracker can track the center of mass for you. In the following steps, you will learn how to calculate the track the center of mass of the system.

- 1. We need to define the masses of the pucks. Click the tab for **mass A** in the Track Control toolbar. In the drop-down menu, select **Define...** . In the resulting pop-up window, enter the mass of the puck for the parameter **m** as shown in Figure 4.1.
- 2. Repeat the previous step for **mass B** and enter its mass.
- 3. Click the | Create | button and select Center of Mass, as shown in Figure 4.2.
- 4. You will see a new tab in the Track Control toolbar named **cm**. Click **cm** to get the menu for the cm object shown in Figure 4.3. Click the **Select Masses...** menu item.
- 5. An additional window will pop up. Select both masses "mass A" and "mass B" in this window and click  $\boxed{\text{OK}}$  as shown in Figure 4.4.
- 6. You will see a track for the center of mass and you will see a graph of x vs. t.



Figure 4.1: Enter of the mass of the puck.



Figure 4.2: Select **Center of Mass** from the menu.



Figure 4.3: Click on **Select Masses...** from the menu.

By observing the cm track and by analyzing the graphs of x(t) and y(t), what can you say about the center-of-mass velocity? Is it constant or non-constant?



Figure 4.4: Check both masses (i.e. pucks) in this window.

Using the graphs of x(t) and y(t), measure  $v_{cm,x}$  and  $v_{cm,y}$ .

# **Further Investigation**

- 1. Is the center-of-mass velocity constant or non-constant?
- 2. What is the net force on the system of pucks?
- 3. The collision occurs in approximately 1/30 of a second. What is the force by the red puck on the blue puck during the collision?
- 4. What is the force by the blue puck on the red puck during the collision?