

MOSFET

600V CoolMOS™ PFD7 SJ Power Device

CoolMOS[™] is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies.

The latest CoolMOS™ PFD7 is an optimized platform tailored to target cost sensitive applications in consumer markets such as charger, adapter, motor drive, lighting, etc.

The new series provides all the benefits of a fast switching Superjunction MOSFET, combined with an excellent price/performance ratio and state of the art ease-of-use level. The technology meets highest efficiency standards and supports high power density, enabling customers going towards very slim designs.

Features

- Extremely low losses due to very low FOM R_{DS(on)}*Q_q and R_{DS(on)}*E_{oss}
- Low switching losses E_{oss}, excellent thermal behavior
- Fast body diode
- Wide range portfolio of R_{DS(on)} and package variations
- Integrated zener diode

Benefits

- Enables high power density designs and small form factors
- · Enables efficiency gains at higher switching frequencies
- Excellent commutation ruggedness
- Easy to select right parts and optimize the design
- High ESD ruggedness

Potential applications

Recommended for ZVS topologies used in high density chargers, adapters, lighting and motor drives applications, etc.

Qualified according to JEDEC Standard

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

rabio i ray i oriormanoo i aramotoro							
Parameter	Value	Unit					
V _{DS} @ T _{j,max}	650	V					
R _{DS(on),max}	280	mΩ					
$Q_{g,typ}$	15.3	nC					
I _{D,pulse}	31	A					
E _{oss} @ 400V	2.0	μJ					
Body diode di _F /dt	1300	A/µs					
ESD Class (HBM)	2	-					

Type / Ordering Code	Package	Marking	Related Links
IPD60R280PFD7S	PG-TO 252-3	60S280D7	see Appendix A

600V CoolMOS™ PFD7 SJ Power Device IPD60R280PFD7S

Table of Contents

escription1
1aximum ratings
hermal characteristics4
lectrical characteristics 5
lectrical characteristics diagrams
est Circuits
ackage Outlines
ppendix A
evision History
rademarks
nisclaimer

IPD60R280PFD7S

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 **Maximum ratings**

Danamatan	Ol		Values		1124	N	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	-	-	12 7	А	T _C =25°C T _C =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	31	Α	T _C =25°C	
Avalanche energy, single pulse	E _{AS}	-	-	36	mJ	I _D =2.5A; V _{DD} =50V; see table 10	
Avalanche energy, repetitive	E AR	-	-	0.18	mJ	I _D =2.5A; V _{DD} =50V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	2.5	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	120	V/ns	V _{DS} =0400V	
Gate source voltage (static)	V _{GS}	-20	-	20	V	static;	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	51	W	T _C =25°C	
Storage temperature	T _{stg}	-40	-	150	°C	-	
Operating junction temperature	T _j	-40	-	150	°C	-	
Mounting torque	-	-	-	-	Ncm	-	
Continuous diode forward current ¹⁾	Is	-	-	12	Α	T _C =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	31	Α	T _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	70	V/ns	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ <=8.8A, $T_{\rm j}$ =25°C see table 8	
Maximum diode commutation speed	di₅/dt	-	-	1300	A/μs	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ <=8.8A, $T_{\rm j}$ =25°C see table 8	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	V _{rms} , T _C =25°C, <i>t</i> =1min	

 $^{^{1)}}$ Limited by $T_{j,max}.$ Maximum Duty Cycle D = 0.50 $^{2)}$ Pulse width t_p limited by $T_{j,max}$ $^{3)}$ Identical low side and high side switch with identical $R_{\rm G}$

IPD60R280PFD7S

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Values				11	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	2.43	°C/W	-
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	device on PCB, minimal footprint
Thermal resistance, junction - ambient for SMD version	R_{thJA}	-	35	45	°C/W	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area for drain connection and cooling. PCB is vertical without air stream cooling.
Soldering temperature, wave & reflow soldering allowed	T _{sold}	-	-	260	°C	reflow MSL3

600V CoolMOS™ PFD7 SJ Power Device IPD60R280PFD7S

Electrical characteristics

at T_j=25°C, unless otherwise specified

Table 4 **Static characteristics**

Parameter	Ola a l	Values				Nata (Table Operation
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	600	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage	$V_{(GS)th}$	3.5	4	4.5	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 0.18 {\rm mA}$
Zero gate voltage drain current ¹⁾	I _{DSS}	-	- 4	1 37	μА	V _{DS} =600V, V _{GS} =0V, T _j =25°C V _{DS} =600V, V _{GS} =0V, T _j =125°C
Gate-source leakage current	I _{GSS}	-	-	1000	nA	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.233 0.549	0.280	Ω	V _{GS} =10V, I _D =3.6A, T _j =25°C V _{GS} =10V, I _D =3.6A, T _j =150°C
Gate resistance	R _G	-	11.0	-	Ω	f=1MHz, open drain

Table 5 **Dynamic characteristics**

Barrandari	0		Value	s	1124	N
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	Ciss	-	656	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz
Output capacitance	Coss	-	15	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz
Effective output capacitance, energy related ²⁾	C _{o(er)}	-	25	-	pF	V _{GS} =0V, V _{DS} =0400V
Effective output capacitance, time related ³⁾	C _{o(tr)}	-	230	-	pF	I _D =constant, V _{GS} =0V, V _{DS} =0400V
Turn-on delay time	t _{d(on)}	-	18	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =10V, $I_{\rm D}$ =3.6A, $R_{\rm G}$ =10.2 Ω ; see table 9
Rise time	t _r	-	12	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =10V, $I_{\rm D}$ =3.6A, $R_{\rm G}$ =10.2Ω; see table 9
Turn-off delay time	$t_{ m d(off)}$	-	48	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =10V, $I_{\rm D}$ =3.6A, $R_{\rm G}$ =10.2 Ω ; see table 9
Fall time	t _f	-	8	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =10V, $I_{\rm D}$ =3.6A, $R_{\rm G}$ =10.2Ω; see table 9

Table 6 **Gate charge characteristics**

Parameter	Cumbal	Values			Unit	Note / Test Condition
	Symbol	Min.	Тур.	Max.	Offic	Note / Test Condition
Gate to source charge	Q gs	-	3.7	-	nC	V_{DD} =400V, I_{D} =3.6A, V_{GS} =0 to 10V
Gate to drain charge	Q_{gd}	-	5.2	-	nC	V_{DD} =400V, I_{D} =3.6A, V_{GS} =0 to 10V
Gate charge total	Q g	-	15.3	-	nC	V_{DD} =400V, I_{D} =3.6A, V_{GS} =0 to 10V
Gate plateau voltage	V _{plateau}	-	5.6	-	V	V_{DD} =400V, I_{D} =3.6A, V_{GS} =0 to 10V

 $^{^{1)}}$ Maximum specification is defined by calculated six sigma upper confidence bound $^{2)}$ $C_{\rm o(er)}$ is a fixed capacitance that gives the same stored energy as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400V $^{3)}$ $C_{\rm o(tr)}$ is a fixed capacitance that gives the same charging time as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400V

IPD60R280PFD7S

Table 7 Reverse diode characteristics

Parameter	Cymphal	Values			Unit	Nata / Tant Can dition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	1.0	-	V	V _{GS} =0V, I _F =3.6A, T _j =25°C
Reverse recovery time	t _{rr}	-	71	107	ns	V_R =400V, I_F =3.6A, di_F/dt =100A/ μ s; see table 8
Reverse recovery charge	Q _{rr}	-	0.19	0.39	μC	V_R =400V, I_F =3.6A, di_F/dt =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}	-	4.9	-	А	V_R =400V, I_F =3.6A, di_F/dt =100A/ μ s; see table 8

4 Electrical characteristics diagrams

infineon

600V CoolMOS™ PFD7 SJ Power Device IPD60R280PFD7S

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

6 Package Outlines

Figure 1 Outline PG-TO 252-3, dimensions in mm/inches

Appendix A 7

Table 11 **Related Links**

• IFX CoolMOS PFD7 Webpage: www.infineon.com

• IFX CoolMOS PFD7 application note: www.infineon.com

• IFX CoolMOS PFD7 simulation model: www.infineon.com

• IFX Design tools: www.infineon.com

IPD60R280PFD7S

Revision History

IPD60R280PFD7S

Revision: 2019-09-27, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)
2.0	2019-09-27	Release of final version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2019 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 14 Rev. 2.0, 2019-09-27