Restricted Boltzmann Machine (RBM)

- Recurrent Neural Network with stochastic units
- A particular case of undirected graphical model.
- Belongs to what are often called energy-based models.
- ► A generative model (representing a probability distribution).
- Suitable for unsupervised learning.
- Can be used as a discriminative model too.

Hopfield Network

- ► A fully connected recurrent neural network
- ► Binary units/neurons

Hopfield Network

- ▶ Output (state) of i^{th} neuron: $s_i \in \{0, 1\}$
- ▶ w_{ij} weight between i and jWe assume: $w_{ij} = w_{ji}$, $w_{ii} = 0$

Hopfield Network – Dynamics

- Consider n neurons with outputs (states) $s_1(k), \dots, s_n(k)$ at time k.
- ▶ At each *k*, only one randomly chosen neuron changes output.

$$s_i(k+1) = 1$$
 iff $\sum_j w_{ij} s_j(k) + b_i > 0$

- ▶ State of network: $\mathbf{s}(k) = (s_1(k) \cdots s_n(k))$
- $\mathbf{s}(k)$ evolves over $\{0, 1\}^n$.

▶ Define energy, $E: \{0, 1\}^n \to \Re$

$$E(\mathbf{s}) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j - \sum_{i} b_i s_i$$

▶ The dynamics of Hopfield network ensures that

$$E(\mathbf{s}(k+1)) - E(\mathbf{s}(k)) \le 0, \ \forall k$$

- Dynamics converges to a minimum of energy.
- From current point we move to a 'neighbour' point in $\{0, 1\}^n$, seeking to minimize energy.

Hopfield Network seeks minimum of energy

$$E(\mathbf{s}) = -\frac{1}{2} \sum_{q,l} w_{ql} s_q s_l - \sum_q b_q s_q$$

$$= -\frac{1}{2} \sum_{q,l \neq i} w_{ql} s_q s_l - s_i \sum_{q \neq i} w_{iq} s_q - \sum_{q \neq i} b_q s_q - b_i s_i$$

- ▶ Suppose: $s_i(k+1) = s_i(k), \forall j \neq i$.
- ► Now we can write

$$E(\mathbf{s}(k+1)-E(\mathbf{s}(k))) = (s_i(k) - s_i(k+1)) \left(\sum_{q \neq i} w_{iq} s_q(k) + b_i\right)$$

- ▶ The dynamics: $s_i(k+1) = 1$, iff $\sum_{q \neq i} w_{iq} s_q(k) + b_i \geq 0$.
 - Hence $E(\mathbf{s}(k+1) = 1, \text{ Iff } \sum_{q \neq i} w_{iq} s_q(k) + b_i \geq 0.$

- ► Hopfield network is one of the very influential early recurrent network models.
- ▶ Its dynamics seeks minima in an energy landscape
- Can be used as an optimizer.
- ► Can be used as associative memory (or for pattern completion) a 'generative' model

Boltzmann Machine

 Suppose we make the dynamics stochastic: at each instant, only one randomly selected neuron changes state; but the change is stochastic

$$Prob[s_i(k+1) = 1] = \frac{1}{1 + \exp(-\{\sum_j w_{ij} s_j(k) + b_i\})}$$

- Now, $\mathbf{s}(k) = (s_1(k) \cdots s_n(k))$ would be a Markov chain over the state space $\{0, 1\}^n$.
- ► The transition structure is such that two states communicate iff they differ in only one coordinate.

► As before define energy by

$$E(\mathbf{s}) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j - \sum_{i} b_i s_i$$

• If s, s' differ only in i^{th} component, then

$$E(\mathbf{s}) - E(\mathbf{s}') = \left(\sum_{i,j} w_{ij} s_j + b_i\right) (s_i' - s_i)$$

- ▶ Let $\mathbf{s}^1, \mathbf{s}^0 \in \{0, 1\}^n$ with $s_j^1 = s_j^0, \forall j \neq i$ and $s_i^1 = 1, s_i^0 = 0$.
- ▶ Going from s^0 to s^1 involves choosing i^{th} neuron and setting it to 1. Hence this transition probability is

$$P(\mathbf{s}^{0}, \mathbf{s}^{1}) = \frac{1}{n} \frac{1}{(1 + \exp(-\{\sum_{j} w_{ij} s_{j}^{0}(k) + b_{i}\}))}$$

$$= \frac{1}{n} \frac{1}{(1 + \exp((s_{i}^{0} - s_{i}^{1}) \left(\{\sum_{j} w_{ij} s_{j}^{0}(k) + b_{i}\}\right)))}$$

$$= \frac{1}{n} \frac{1}{(1 + \exp(E(\mathbf{s}^{1}) - E(\mathbf{s}^{0})))}$$

- Going from s^1 to s^0 involves choosing i^{th} neuron and setting it to 0.

$$P(\mathbf{s}^{1}, \mathbf{s}^{0}) = \frac{1}{n} \frac{1}{(1 + \exp(\{\sum_{j} w_{ij} s_{j}^{0}(k) + b_{i}\}))}$$
$$= \frac{1}{n} \frac{1}{(1 + \exp((s_{i}^{1} - s_{i}^{0})) (\{\sum_{i} w_{ij} s_{i}^{0}\})}$$

$$= \frac{1}{n} \frac{1}{(1 + \exp((s_i^1 - s_i^0))) (\{\sum_j w_{ij} s_j^0\})}$$

 $= \frac{1}{n} \frac{1}{(1 + \exp(E(\mathbf{s}^0) - E(\mathbf{s}^1)))}$

- Transitions are only to states differing in exactly one coordinate
- ▶ The transition structure is

$$P(\mathbf{s}, \mathbf{s}') = \frac{1}{n} \frac{1}{(1 + \exp(E(\mathbf{s}') - E(\mathbf{s})))}$$

- The chain prefers going to lower energy states.
- ► This Markov chain is finite, irreducible, aperiodic and hence ergodic.
- ▶ The stationary distribution is given by

$$p(\mathbf{s}) = \frac{1}{Z} \exp(-E(\mathbf{s}))$$

The stationary distribution of this chain

▶ if p satisfies

$$p(s')P(s',s) = p(s)P(s,s')$$
, for all states s,s'

then it is the stationary distribution

▶ We can easily see that

$$\frac{\exp(-E(\mathbf{s}'))}{1 + \exp(E(\mathbf{s}) - E(\mathbf{s}'))} = \frac{\exp(-E(\mathbf{s}))}{1 + \exp(E(\mathbf{s}') - E(\mathbf{s}))}, \forall \mathbf{s}, \mathbf{s}'$$

▶ Hence, the stationary distribution is

$$p(\mathbf{s}) = \frac{1}{Z} \exp(-E(\mathbf{s}))$$

where $Z = \sum_{\mathbf{s}} \exp(-E(\mathbf{s}))$ is the normalizing constant.

Energy based Model

- ▶ The boltzman machine is a generative model.
- ▶ It represents a distribution over $\{0, 1\}^n$ given by

$$p(\mathbf{s}) = \frac{1}{Z} \exp(-E(\mathbf{s}))$$

where Z is the normalizing constant and

$$E(\mathbf{s}) = -\frac{1}{2} \sum_{ij} w_{ij} s_i s_j - \sum_i b_i s_i$$

▶ Each configuration (point in $\{0, 1\}^n$) has an energy which determines its probability.

- Boltzmann machine can also be used as a discriminative model.
- ▶ If we hold some neurons at some values, then at steady state what we see at the other neurons is the conditional distribution.
- ▶ This is how we can use it as classifier.

- We have a generative model: p(s).
- ▶ We learn this probability distribution from given data.
- ► We can use it as a discriminative model by designating some components of s as 'input' and some as 'output'
- ► However, we learn the probability distribution through Unsupervised learning 'treat all variables uniformly'

Need for hidden units

• We learn a generative model: p(s):

$$p(\mathbf{s}) = \frac{1}{Z} \exp(-E(\mathbf{s}))$$

where Z is the normalizing constant and

$$E(\mathbf{s}) = -\frac{1}{2} \sum_{ij} w_{ij} s_i s_j - \sum_i b_i s_i$$

- ▶ The probability depends on energy which is quadratic
- We can essentially model only upto second-order statistics.
- Hence we need hidden nodes to learn 'proper representation'

Need for hidden units

- ▶ Let n = 3.
- ▶ Let distribution p_1 : uniform over $\{0, 1\}^3$.
- Let distribution p_2 : uniform only over the four tuples: (0,0,0),(0,1,1),(1,0,1),(1,1,0). (The other four tuples have zero probability)
- ▶ But p_1 and p_2 have identical statistics upto second order. $(P[s_is_j=1], P[s_i=1]$ are same under both)
- We can not distinguish between p_1 and p_2 with our current formulation
- ▶ Note that p_2 models (or represents) the XOR function

Boltzmann Machine

- We would have (m+n) units: $v_1, \dots, v_m, h_1, \dots, h_n$.
- ▶ The v_i are called visible and the h_i are called hidden.
- ▶ The formulation is still the same. The network is fully connected. (Simply some of the s_i are visible while others are hidden).
- ► The Energy is defined the same way and the machine represents a distribution

$$p(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{v}, \mathbf{h}))$$

▶ But we are only interested in the distribution on visible units which is given by

$$p(\mathbf{v}) = \sum_{\mathbf{h}} \frac{1}{Z} \exp(-E(\mathbf{v}, \mathbf{h}))$$

- Training data would be samples of visible units only
- ► The hidden units are there to help us realize the needed distribution on the visible units.
- ▶ This is the original Boltzmann machine proposed.

- ► The weights in Boltzmann machine are learnt (or estimated) through maximum likelihood estimation.
- ▶ But training is slow and computationally intensive
- ► A conditional independence assumption makes the model more tractable.
- ▶ That is the Restricted Boltzmann Machine

Restricted Boltmann Machine

- As earlier we have m visible and n hidden units: $v_1, \dots, v_m, h_1, \dots, h_n$.
- ▶ But connections are only between visible and hidden units; no connections from visible to visible or hidden to hidden.
- Notation: w_{ij} is weight of connection between v_j and h_i b_i is bias for v_i c_i is bias for h_i

RBM

23/72

► Now the energy is given by

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j - \sum_{j=1}^{m} b_j v_j - \sum_{i=1}^{n} c_i h_i$$
$$= -\mathbf{h}^T W \mathbf{v} - \mathbf{b}^T \mathbf{v} - \mathbf{c}^T \mathbf{h}$$

► The probability distribution, over $\{0, 1\}^{(m+n)}$, represented by the RBM is

$$p(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{v}, \mathbf{h}))$$

Conditional Independence

► Consistent with the interconnections, we get the following conditional independence:

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i} p(h_i|\mathbf{v}); \quad p(\mathbf{v}|\mathbf{h}) = \prod_{i} p(v_i|\mathbf{h})$$

▶ The conditional probabilities are given by

$$\begin{aligned} &\operatorname{Prob}[h_i = 1 | \mathbf{v}] &= \operatorname{sig}\left(\sum_{j=1}^m w_{ij} v_j + c_i\right) \\ &\operatorname{Prob}[v_i = 1 | \mathbf{h}] &= \operatorname{sig}\left(\sum_{j=1}^n w_{ji} h_j + b_i\right) \end{aligned}$$

where sig(x) = 1/(1 + exp(-x)).

▶ We have

$$\sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})} = \sum_{\mathbf{h}} e^{\mathbf{b}^T \mathbf{v}} e^{\sum_{i=1}^n h_i (c_i + \sum_{j=1}^m w_{ij} v_j)}$$

$$= e^{\mathbf{b}^T \mathbf{v}} \sum_{\mathbf{h}} \prod_{i=1}^n e^{h_i (c_i + \sum_{j=1}^m w_{ij} v_j)}$$

$$= e^{\mathbf{b}^T \mathbf{v}} \sum_{h_1} e^{h_1 (c_i + \sum_{j=1}^m w_{ij} v_j)} \cdots \sum_{h_n} e^{h_n (c_i + \sum_{j=1}^m w_{ij} v_j)}$$

$$= e^{\mathbf{b}^T \mathbf{v}} \prod_{i=1}^n (1 + e^{c_i + \sum_{j=1}^m w_{ij} v_j})$$

► This gives us an expression for the marginal distribution on the visible units

$$p(\mathbf{v}) = \frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}$$
$$= \frac{1}{Z} e^{\mathbf{b}^T \mathbf{v}} \prod_{i=1}^{n} (1 + e^{c_i + \sum_{j=1}^{m} w_{ij} v_j})$$

▶ This also gives us the conditional distribution

$$p(\mathbf{h}|\mathbf{v}) = \frac{e^{-E(\mathbf{v},\mathbf{h})}}{\sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})}}$$

$$= \frac{e^{\mathbf{b}^T \mathbf{v}} e^{\sum_{i=1}^n h_i (c_i + \sum_{j=1}^m w_{ij} v_j)}}{e^{\mathbf{b}^T \mathbf{v}} \prod_{i=1}^n (1 + e^{c_i + \sum_{j=1}^m w_{ij} v_j})}$$

$$= \prod_{i=1}^n \frac{e^{h_i (c_i + \sum_{j=1}^m w_{ij} v_j)}}{(1 + e^{c_i + \sum_{j=1}^m w_{ij} v_j})}$$

ightharpoonup Shows that h_i are conditinally independent given ${f v}$

▶ Now we get

$$p(h_i|\mathbf{v}) = \sum_{h_j, j \neq i} \prod_{j=1}^n \frac{e^{h_j(c_j + \sum_{q=1}^m w_{jq} v_q)}}{(1 + e^{c_j + \sum_{q=1}^m w_{jq} v_q})}$$
$$= \frac{e^{h_i(c_i + \sum_{q=1}^m w_{iq} v_q)}}{(1 + e^{c_i + \sum_{q=1}^m w_{iq} v_q})}$$

► This gives us

$$\mathsf{Prob}[h_i = 1 | \mathbf{v}] = \mathsf{sig}\left(c_i + \sum_{i=1}^m w_{ij}v_j\right)$$

• A similar expression holds for $Prob[v_i = 1|\mathbf{h}]$

Summary of RBM model

► The RBM is a generative model with *m* visible and *n* hidden nodes:

$$p(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{v}, \mathbf{h}))$$

where the energy is given by

$$E(\mathbf{v}, \mathbf{h}) = -\mathbf{h}^T W \mathbf{v} - \mathbf{b}^T \mathbf{v} - \mathbf{c}^T \mathbf{h}$$

and the normalizing constant, Z, is given by

$$Z = \sum_{\mathbf{v}, \mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}))$$

Summary · · ·

▶ The following conditional independences hold:

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i} p(h_i|\mathbf{v}); \quad p(\mathbf{v}|\mathbf{h}) = \prod_{j} p(v_j|\mathbf{h})$$

▶ The conditional probabilities are

$$Prob[h_i = 1 | \mathbf{v}] = sig\left(\sum_{j=1}^{m} w_{ij}v_j + c_i\right)$$

$$Prob[v_i = 1 | \mathbf{h}] = sig\left(\sum_{j=1}^{n} w_{ji}h_j + b_i\right)$$

RBM as graphical model

▶ RBM can be specified as an undirected graphical model.

► Any two hidden nodes are conditionally independent given all visible nodes and vice versa

Recall: Undirected graphical models

- ▶ Suppose a generative model for $\mathbf{X} = (X_1, \dots, X_n)$ is an undirected graphical model. Let \mathcal{C} be the set of maximal cliques.
- Then the joint distribution should be of the form

$$p(\mathbf{x}) = \frac{1}{Z} e^{\sum_{c} \psi_{c}(\mathbf{x})}$$

where the ψ_c are called clique potentials.

• $\psi_c(\mathbf{x})$ depends only on those components of \mathbf{x} that are in c.

(Hammersley-Clifford Theorem)

Case of RBM

 Thus every MRF is an energy-based model with energy function given by

$$E(\mathbf{x}) = -\sum_{c \in \mathcal{C}} \psi_c(\mathbf{x})$$

- ▶ In an RBM, the cliques are $\{v_i, h_j\}$. Since these are binary, a general energy function would have terms involving v_i , h_j and v_ih_j
- ► The graphical model comes from conditional independence we imposed
- ► For the given graphical model, our choice of energy function is very general.

Representational Power of RBMs

- ► As said earlier, we are only interested in modelling the distribution over visible units.
- ▶ The hidden units are there only so that we can represent the desired distribution.
- ▶ Question: What distributions over $\{0, 1\}^m$ are representable by an RBM with m visible nodes (given sufficient number of hidden nodes)
- ▶ Given $n = 2^m + 1$ hidden nodes, RBM can represent any distrubution over $\{0, 1\}^m$.
- ▶ If the target distribution is supported on fewer terms, then we can do with lesser number of hidden nodes.

RBM as a discriminative model

- We can use RBM as a classifier also.
- ▶ We can take $\mathbf{v} \in \{0, 1\}^m$ as 'feature vector' and take $\mathbf{y} \in \{0, 1\}^K$ as class label. (Note \mathbf{y} takes only K distinct values in a K-class problem)
- ► For RBM, (\mathbf{v}, \mathbf{y}) together make all the visible units and we can have n hidden units.

- ▶ Now the training data would be labelled samples.
- lacktriangle We would learn the distribution of (\mathbf{v}, \mathbf{y})

▶ Let

 w_{ij} be weight between h_i and v_j \tilde{w}_{ij} be weight between y_j and h_i . b_i be bias for v_i , \tilde{b}_i for y_i and c_i for h_i

Now we can write the probability model of RBM as

$$p(\mathbf{v}, \mathbf{y}, \mathbf{h}) = \frac{1}{Z} e^{-E(\mathbf{v}, \mathbf{y}, \mathbf{h})}$$

where the energy is given by

$$E(\mathbf{v}, \mathbf{y}, \mathbf{h}) = -\mathbf{h}^T W \mathbf{v} - \mathbf{b}^T \mathbf{v} - \mathbf{c}^T \mathbf{h} - \mathbf{h}^T \tilde{W} \mathbf{y} - \tilde{b}^T \mathbf{y}$$

- ► As mentioned earlier y takes only the K unit vectors as values.
- After learning all the weights we need to predict y given v.
- ▶ We calculate

$$p(\mathbf{y}|\mathbf{v}) = \frac{\sum_{\mathbf{h}} p(\mathbf{v}, \mathbf{y}, \mathbf{h})}{\sum_{\mathbf{h}, \mathbf{v}} p(\mathbf{v}, \mathbf{y}, \mathbf{h})}$$

for all the unit vectors and take the one with highest probability.

Learning RBM

Need to learn parameters from training data.

- ▶ Given some value for parameters, θ , RBM represents a probability density $p_{\theta}(\mathbf{v})$.
- ► Given *iid* training data from some distribution, we want to learn a parametric model of the distribution.
- ▶ Hence we can use ML estimation of θ .

- ▶ The training data: $\mathcal{D} = \{\mathbf{v}^1, \mathbf{v}^2, \cdots \mathbf{v}^M\}$
- ▶ The data likelihood is

$$\mathcal{L}(\theta|\mathcal{D}) = \prod_{k=1}^{M} p_{\theta}(\mathbf{v}^k)$$

The log-likelihood is given by

$$\ell(\theta) = \ln(\mathcal{L}(\theta)) = \sum_{k=1}^{M} \ln(p_{\theta}(\mathbf{v}^k))$$

- We can minimize the negative log-likelihood (NLL) to get the ML estimate.
- (Recall that) Minimizing NLL is same as minimizing KL divergence between $p_{\rm data}$ and p_{θ}

- For simplicity of notation, assume we have only one training sample, \mathbf{v}^1 .
- ► The log-likelihood is

$$\ell(\theta) = \ln(p_{\theta}(\mathbf{v}^1)) = \ln\left(\frac{1}{Z}\sum_{\mathbf{h}}e^{-E(\mathbf{v}^1,\mathbf{h})}\right)$$

► We want to do gradient descent on negative log-likelihood.

$$\frac{\partial \ell(\theta)}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\ln \left(\sum_{\mathbf{h}} e^{-E(\mathbf{v}^1, \mathbf{h})} \right) - \ln(Z) \right)$$

we have

$$\frac{\partial \ell(\theta)}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\ln \left(\sum_{\mathbf{h}} e^{-E(\mathbf{v}^1, \mathbf{h})} \right) - \ln(Z) \right)$$

- ▶ The parameter vector, θ , consists of all weights, w_{ij} and the biases b_i and c_i .
- ► The above is a vector equation with one derivative for each component of parameter vector.
- Let us write $\frac{\partial}{\partial w}$ for any one component. (w may be w_{ij} , b_i or c_i).

▶ Noting that $Z = \sum_{\mathbf{v},\mathbf{h}} e^{-E(\mathbf{v},\mathbf{h})}$, we have

$$\begin{split} \frac{\partial \ell(\theta)}{\partial w} &= \frac{\partial}{\partial w} \ln \left(\sum_{\mathbf{h}} e^{-E(\mathbf{v}^1, \mathbf{h})} \right) - \frac{\partial}{\partial w} \ln(Z) \\ &= \frac{\sum_{\mathbf{h}} \frac{\partial e^{-E(\mathbf{v}^1, \mathbf{h})}}{\partial w}}{\sum_{\mathbf{h}} e^{-E(\mathbf{v}^1, \mathbf{h})}} - \frac{\sum_{\mathbf{v}, \mathbf{h}} \frac{\partial e^{-E(\mathbf{v}, \mathbf{h})}}{\partial w}}{Z} \\ &= f(\theta) - g(\theta), \text{ (say)} \end{split}$$

▶ The first term can be simplified as follows

$$f(\theta) = \sum_{\mathbf{h}} \frac{\frac{\partial e^{-E(\mathbf{v}^{1}, \mathbf{h})}}{\partial w}}{\sum_{\mathbf{h}} e^{-E(\mathbf{v}^{1}, \mathbf{h})}}$$

$$= \sum_{\mathbf{h}} \left(\frac{e^{-E(\mathbf{v}^{1}, \mathbf{h})}}{\sum_{\mathbf{h}} e^{-E(\mathbf{v}^{1}, \mathbf{h})}} \frac{\partial (-E(\mathbf{v}^{1}, \mathbf{h}))}{\partial w} \right)$$

$$= \sum_{\mathbf{h}} p(\mathbf{h} | \mathbf{v}^{1}) \frac{\partial (-E(\mathbf{v}^{1}, \mathbf{h}))}{\partial w}$$

$$= \mathcal{E}_{\mathbf{h} | \mathbf{v}^{1}} \left[\frac{\partial (-E(\mathbf{v}^{1}, \mathbf{h}))}{\partial w} \right]$$

where $\mathcal{E}_{\mathbf{h}|\mathbf{v}^1}$ denotes expectation with respect to the conditional distribution of \mathbf{h} given \mathbf{v} at $\mathbf{v} = \mathbf{v}^1$ (and at the current values of parameters).

Now let us look at the second term in gradient of log-likelihood

$$g(\theta) = \frac{\sum_{\mathbf{v}, \mathbf{h}} \frac{\partial e^{-E(\mathbf{v}, \mathbf{h})}}{\partial w}}{Z}$$

$$= \sum_{\mathbf{v}, \mathbf{h}} \frac{e^{-E(\mathbf{v}, \mathbf{h})}}{Z} \frac{\partial (-E(\mathbf{v}, \mathbf{h}))}{\partial w}$$

$$= \sum_{\mathbf{v}, \mathbf{h}} p(\mathbf{v}, \mathbf{h}) \frac{\partial (-E(\mathbf{v}, \mathbf{h}))}{\partial w}$$

$$= \mathcal{E}_{\mathbf{v}, \mathbf{h}} \left[\frac{\partial (-E(\mathbf{v}, \mathbf{h}))}{\partial w} \right]$$

where $\mathcal{E}_{\mathbf{v},\mathbf{h}}$ denotes expectation with respect to the joint distribution of (\mathbf{v},\mathbf{h}) (at the current parameter values, θ).

- ▶ In the above we have taken only one example and set $\ell(\theta) = \ln(p(\mathbf{v}^1))$.
- lacktriangleright But we have M samples and hence have to take sum over them for log-likelihood.
- We need to maximize

$$\ell(\theta) = \frac{1}{M} \sum_{k=1}^{M} \ln(p(\mathbf{v}^k))$$

We have taken average log-likelihood above which does not affect the optimization but results in interesting interpretation for the final algorithm. Now, the earlier function $f(\theta)$ becomes

$$\begin{split} f(\theta) &= \frac{1}{M} \sum_{k=1}^{M} \mathcal{E}_{\mathbf{h}|\mathbf{v}^{k}} \left[\frac{\partial (-E(\mathbf{v}^{k}, \mathbf{h}))}{\partial w} \right] \\ &= \sum_{k=1}^{M} p_{\mathsf{data}}(\mathbf{v}^{k}) \mathcal{E}_{\mathbf{h}|\mathbf{v}^{k}} \left[\frac{\partial (-E(\mathbf{v}^{k}, \mathbf{h}))}{\partial w} \right] \\ &= \mathcal{E}_{\mathsf{data}} \left[\frac{\partial (-E(\mathbf{v}, \mathbf{h}))}{\partial w} \right] \end{split}$$

where $\mathcal{E}_{\mbox{data}}$ denotes expectation w.r.t. 'distribution given by data'.

▶ The second term $q(\theta)$ now becomes

$$g(\theta) = \frac{1}{M} \sum_{k=1}^{M} \mathcal{E}_{\mathbf{v},\mathbf{h}} \left[\frac{\partial (-E(\mathbf{v}, \mathbf{h}))}{\partial w} \right]$$
$$= \mathcal{E}_{\mathbf{v},\mathbf{h}} \left[\frac{\partial (-E(\mathbf{v}, \mathbf{h}))}{\partial w} \right]$$
$$= \mathcal{E}_{\theta} \left[\frac{\partial (-E(\mathbf{v}, \mathbf{h}))}{\partial w} \right]$$

where \mathcal{E}_{θ} represents expectation with respect to the distribution 'represented by the parameter vector θ '.

▶ Thus, finally we get the gradient of log-likelihood is

$$\frac{\partial \ell(\theta)}{\partial w} = \mathcal{E}_{\mathsf{data}} \left[\frac{\partial (-E(\mathbf{v}, \mathbf{h}))}{\partial w} \right] \ - \ \mathcal{E}_{\theta} \left[\frac{\partial (-E(\mathbf{v}, \mathbf{h}))}{\partial w} \right]$$

Or, the gradient of negative log-likelihood is

$$\frac{\partial (-\ell(\theta))}{\partial w} = \mathcal{E}_{\mathsf{data}} \left[\frac{\partial (E(\mathbf{v}, \mathbf{h}))}{\partial w} \right] - \mathcal{E}_{\theta} \left[\frac{\partial (E(\mathbf{v}, \mathbf{h}))}{\partial w} \right]$$

▶ Note that the above is true for general Boltzmann machine as well because we have not used the conditional independences anywhere.

▶ By definition of energy, we have

$$\frac{\partial E(\mathbf{v}, \mathbf{h})}{\partial w_{ij}} = -h_i v_j; \quad \frac{\partial E(\mathbf{v}, \mathbf{h})}{\partial b_i} = -v_i; \quad \frac{\partial E(\mathbf{v}, \mathbf{h})}{\partial c_i} = -h_i$$

 Hence we get, for gradient descent on negative log-likelihood

$$\Delta w_{ij} = -\frac{\partial(-\ell(\theta))}{\partial w_{ij}} = \left(\mathcal{E}_{\mathsf{data}}\left[h_i v_j\right] - \mathcal{E}_{\theta}\left[h_i v_j\right]\right)$$

- ▶ Similar updating is done for b_i and c_i .
- ► This is the learning algorithm for the original Boltzmann machine too.

Let us look at how we can calculate the first term

$$\mathcal{E}_{\mathsf{data}} [h_i v_j] = \sum_{k=1}^{M} (1/M) \ v_j^k \ \mathsf{Prob}[h_i = 1 | \mathbf{v}^k]$$
$$= \sum_{k=1}^{M} (1/M) \ v_j^k \ \mathsf{sig} \left(\sum_{s=1}^{m} w_{si} v_s^k + c_i \right)$$

- ▶ Note that we have used the RBM conditional distribution here.
- ► The (1/M) factor is not important. For each training sample, w_{ij} is updated by $v_j^k \text{Prob}[h_i = 1 | \mathbf{v}^k]$

Now let us look at the second term in the update equation.

$$\mathcal{E}_{\theta}[h_i v_j] = \sum_{\mathbf{v}, \mathbf{h}} p(\mathbf{v}, \mathbf{h}) h_i v_j$$

- ▶ Computationally hard to summation is over 2^{m+n} terms.
- ► We can try the same decomposition of the expectation as in the first term

$$\mathcal{E}_{\theta} [h_i v_j] = \mathcal{E}_{p(\mathbf{v})} \mathcal{E}_{p(\mathbf{h}|\mathbf{v})} [h_i v_j]$$
$$= \sum_{i} p(\mathbf{v}) v_j \mathsf{Prob}[h_i = 1|\mathbf{v}]$$

- \triangleright Still hard to compute summation is over 2^m terms.
- ▶ Hence we approximate the expectation by sample mean.

- ► The gradient of the log-likelihood contains two terms both are expectations.
- One of them is easy to compute for the RBM because of the conditional independence.
- ▶ But the second term is intractable and hence expectation is approximated by sample mean.
- ► For the general Boltzmann machine, both terms are intractable and both terms need approximation through sample mean.

- Let us consider an algorithm where we use a single sample.
- ▶ Let \mathbf{v}' a training sample. Let \mathbf{v} be a sample from the distribution determined by current θ . Then

$$\Delta w_{ij} = v'_j \mathsf{Prob}[h_i = 1|\mathbf{v}'] - v_j \mathsf{Prob}[h_i = 1|\mathbf{v}]$$

All we need is a method to sample from the distribution $p(\mathbf{v})$ (at the current parameter values).

CD(k) Algorithm

- ► The distribution we are interested in is the stationary distribution of the Markov chain.
- ▶ So, we essentially run the chain for *k* steps and take the state as the sample.
- Gradient descent on NLL with this approximate gradient is called the Contrastive Divergence algorithm.
- To obtain the sample, we run the chain through what is called Gibbs sampling.
- We first look at Hastings-Metropolis algorithm and explain Gibbs sampling through that.

Hastings-Metropolis Sampling

▶ Let X be a random vector with mass function

$$p(\mathbf{x}) = b(\mathbf{x})/Z$$

We want samples from this without knowing Z.

- Let $q(\mathbf{x}, \mathbf{x}')$ (called the proposal distribution) be the transition probabilities of some ergodic chain on the same state space.
- Define a Markov chain with transition probabilities

$$P(\mathbf{x}, \mathbf{x}') = q(\mathbf{x}, \mathbf{x}')\alpha(\mathbf{x}, \mathbf{x}'), \ \mathbf{x} \neq \mathbf{x}'$$

At x, generate x' using q and accept it with probability $\alpha(x, x')$ (stay at x with remaining prob)

• Given a q, we choose α as

$$\alpha(\mathbf{x}, \mathbf{x}') = \min\left(\frac{p(\mathbf{x}')q(\mathbf{x}', \mathbf{x})}{p(\mathbf{x})q(\mathbf{x}, \mathbf{x}')}, 1\right) = \min\left(\frac{b(\mathbf{x}')q(\mathbf{x}', \mathbf{x})}{b(\mathbf{x})q(\mathbf{x}, \mathbf{x}')}, 1\right)$$

- Note that one of $\alpha(\mathbf{x}, \mathbf{x}')$, $\alpha(\mathbf{x}', \mathbf{x})$ has to be 1.
- ▶ Then one can show that the Markov chain (corresponding to P) has $p(\cdot)$ as the stationary distribution.

Suppose

$$\alpha(\mathbf{x}, \mathbf{x}') = \frac{p(\mathbf{x}')q(\mathbf{x}', \mathbf{x})}{p(\mathbf{x})q(\mathbf{x}, \mathbf{x}')} < 1$$
 (and hence $\alpha(\mathbf{x}', \mathbf{x}) = 1$)

► Then we have

$$p(\mathbf{x})P(\mathbf{x}, \mathbf{x}') = p(\mathbf{x})q(\mathbf{x}, \mathbf{x}')\alpha(\mathbf{x}, \mathbf{x}')$$

$$= p(\mathbf{x}')q(\mathbf{x}', \mathbf{x})$$

$$= p(\mathbf{x}')q(\mathbf{x}', \mathbf{x})\alpha(\mathbf{x}', \mathbf{x})$$

$$= p(\mathbf{x}')P(\mathbf{x}', \mathbf{x})$$

thus showing $p(\mathbf{x})$ is the stationary distribution.

Gibbs Sampling

- ▶ Gibbs sampling corresponds to a special case of *q*.
- ▶ Let $\mathbf{x} = (x_1, \dots x_m)$. Let \mathbf{x}_{-i} denote a vector containing all components of \mathbf{x} except the i^{th} one.
- ▶ In Gibbs sampling, we generate successive states as

$$(x_1, x_2, \dots, x_m) \to (x'_1, x_2, \dots, x_m) \to (x'_1, x'_2, \dots, x_m) \dots$$

where x_i' is generated from the distribution $p(x_i|\mathbf{x}_{-i})$

▶ This corresponds to a q with $q(\mathbf{x}, \mathbf{x}') = 0$ if \mathbf{x}, \mathbf{x}' differ in more that one component and is given by the above conditional distribution otherwise.

• If we use this q in Hastings-Metropolis, then α would always be 1.

$$\alpha(\mathbf{x}, \mathbf{x}') = \frac{p(\mathbf{x}')q(\mathbf{x}', \mathbf{x})}{p(\mathbf{x})q(\mathbf{x}, \mathbf{x}')} (\mathbf{x}, \mathbf{x}' \text{ differ in } i^{th})$$

$$= \frac{p(x_i'|\mathbf{x}_{-i}')p(\mathbf{x}_{-i}')p(x_i|\mathbf{x}_{-i}')}{p(x_i|\mathbf{x}_{-i})p(\mathbf{x}_{-i})p(x_i'|\mathbf{x}_{-i})}$$

$$= \frac{p(x_i'|\mathbf{x}_{-i})p(\mathbf{x}_{-i})p(x_i|\mathbf{x}_{-i})}{p(x_i|\mathbf{x}_{-i})p(\mathbf{x}_{-i})p(x_i'|\mathbf{x}_{-i})} = 1$$

because $\mathbf{x}_{-i} = \mathbf{x}'_{-i}$.

Gibbs Chain for RBM

- ▶ Due to the conditional independences in the RBM graph, Gibbs sampling is efficient here.
- For any h_i the conditional distribution given all the other nodes is same as that given only the visible nodes.
- Hence, given current v we can choose the next values for all h_i together using the corresponding conditional distributions.
- ▶ Similarly, given current h we can choose the next values for all v_i together.
- This is how the Gibbs chain for the RBM is run.

CD(k) Algorithm

- We can now summarize the CD(k) algorithm.
- Let $\mathbf{v}^{(0)}$ denote a training sample.
- We initialize the chain with this and run it for k steps. The state of visible units be $\mathbf{v}^{(k)}$
- ightharpoonup We update w_{ij} as

$$\Delta w_{ij} = v_j^{(0)} \mathsf{Prob}[h_i = 1 | \mathbf{v}^{(0)}] - v_j^{(k)} \mathsf{Prob}[h_i = 1 | \mathbf{v}^{(k)}]$$

(Similar updates are done for b_i and c_i)

▶ We need to do this with each training sample.

- In CD(k) we are approximating the expectation with a single sample.
- ▶ Only as *k* tends to infinity, the sample would be from the needed distribution. For finite *k* it is a biased estimate.
- ▶ CD(k) is quite effective in practice.

A Variation – PCD

- A variation is Persistent CD or PCD.
- Here, instead of initializing the Gibbs chain with the training sample each time, we let the Gibbs chain run independently.
- ▶ After each parameter update, the Gibbs chain is started in the last state of the previous Gibbs chain.
- ▶ The idea is that this results in a better 'mixing'
- ▶ PCD results in better learning in terms of smoother and better increase in log-likelihood.
- ► There is also a variation that maintains multiple Gibbs chains called Parallel Tempering.

- ▶ There are many generalizations possible on RBMs
- RBMs are good for unsupervised learning of representations.
- ► The representation on the hidden layer can be a good feature representation.
- ▶ Hence one variation is the so called convolutional RBMs.
- ► Here, we can have local connectivity (and also weight sharing with multiple feature planes)
- ▶ Found useful for feature detection in, e.g., speech

- ▶ So far we considered both v_i and h_j to be binary.
- Training data is for visible units.
- So, this RBM can learn distribution for binary data only
- We may want to learn distributions over \Re^n .
- We want RBMs where output of visible unit is a real number.
- Such an extension is possible.

Gaussian-Binary RBM

- We take hidden units to be still binary.
- But we take visible units to be real-valued.
- We make the same conditional independence assumptions. (Same graphical model)
- We retain the same conditional distribution of h_i given \mathbf{v} .
- ▶ We can get a model where the conditional distribution on visible units given **h** is Gaussian.

Gaussian-Binary RBM

- We take $\mathbf{v} \in \Re^m$ and $\mathbf{h} \in \{0, 1\}^n$.
- ▶ We can prescribe the conditional distributions as below:

$$p(\mathbf{v}|\mathbf{h}) \sim \mathcal{N}(\mathbf{v}; \mathbf{b} + W\mathbf{h}, \sigma^2 I)$$

$$\mathsf{Prob}[h_i = 1 | \mathbf{v}] = \mathsf{sig}\left(c_i + \frac{1}{\sigma^2} \sum_{j=1}^m w_{ij} v_j\right)$$

 We can define energy as below to realize the above distributions

$$E(\mathbf{v}, \mathbf{h}) = -\frac{1}{\sigma^2} \mathbf{v}^T W \mathbf{h} + \frac{1}{2\sigma^2} ||\mathbf{v} - \mathbf{b}||^2 - \mathbf{c}^T \mathbf{h}$$

▶ The only extra parameter here is σ^2 which is the variance of the Gaussian.