Zero-dimensional defects

Why bother about point defects?

Zero-dimensional defects

Missing atom or different position

Foreign atom or impurity

Thermodynamics of point defects

- Simple case
 - Vacancies of atoms in a metal crystal

- Analysis of this simple case
 - Vacancies are a thermodynamic necessity!!

Which configuration has the lower Helmholtz free energy?

What about free energy of the defective crystal?

Free energy of perfect crystal

$$S_{\text{T,perf}} = 3Nk \left(\ln \left[\frac{kT}{h\nu} \right] + 1 \right)$$

$$\therefore F_{\text{perf}} = U_{\text{perf}} - 3NkT \left(\ln \left| \frac{kT}{h\nu} \right| + 1 \right)$$

Energy of defect formation

$$F_{\text{def}} = U_{\text{def}} - TS_{\text{def}}$$

But, what is $U_{\it def}$

- It will cost some energy
- Assume only NN bonds are affected

$$U_{\text{def}} = (N - \zeta n_{\text{v}}) u_{\text{perf}} + \zeta n_{\text{v}} u_{\text{def}}$$

$$= Nu_{\rm perf} + n_{\rm v} \, \zeta \, \left[u_{\rm def} - u_{\rm perf} \right]$$

$$\therefore U_{\text{def}} = U_{\text{perf}} + n_{\text{v}} u_{\text{d}}$$

Entropy of defect Formation – Vibrational component

$$\frac{S_{\mathrm{T,def}}}{3k} = \left(N - \zeta n_{\mathrm{v}}\right) \left(\ln\left[\frac{kT}{h\nu}\right] + 1\right) + \zeta n_{\mathrm{v}} \left(\ln\left[\frac{kT}{h\tilde{\nu}}\right] + 1\right)$$

$$\implies S_{\text{T,def}} = 3kN \left(\ln \left[\frac{kT}{h\nu} \right] + 1 \right) + 3k\zeta n_{\text{v}} \left(\ln \left[\frac{kT}{h\tilde{\nu}} \right] + 1 - \ln \left[\frac{kT}{h\nu} \right] - 1 \right)$$

$$= S_{\mathrm{T,perf}} + 3k\zeta n_{\mathrm{v}} \ln \frac{\nu}{\tilde{\nu}}$$

Entropy of defect

Formation –

Configurational component

$$S_{\text{def}} = S_{\text{T,def}} + S_{\text{config,def}}$$

$$W = \frac{N!}{n_{\rm v}! \ \left(N - n_{\rm v}\right)!}$$

Stirling Approximation: $\ln p! = p \ln p - p$

$$S_{\text{config,def}} = k \left[N \ln \left(\frac{N}{N - n_{\text{v}}} \right) + n_{\text{v}} \ln \left(\frac{N - n_{\text{v}}}{n_{\text{v}}} \right) \right]$$

Entropy of defect Formation – Configurational component

$$S_{\text{config,def}} = k \left[N \ln \left(\frac{N}{N - n_{\text{v}}} \right) + n_{\text{v}} \ln \left(\frac{N - n_{\text{v}}}{n_{\text{v}}} \right) \right]$$

Rearranging terms and defining,
$$m = \frac{n_{\rm v}}{N}$$

We get,

$$S_{\text{config,def}} = -Nk \left[m \ln m + (1-m) \ln(1-m) \right]$$

Free energy of defect formation

Multiply and divide 1^{st} and 2^{nd} terms by N, and take N = N_A

$$\Delta F_{\text{def}} = m \left[U_{\text{d}} + 3RT\zeta \ln \frac{\tilde{\nu}}{\nu} \right] + RT \left[m \ln m + (1 - m) \ln(1 - m) \right]$$

How does a plot of this function look like?

Equilibrium Vacancy Concentration

The condition for a minimum is: $\frac{\mathrm{d}\Delta F_{\mathrm{def}}}{\mathrm{d}m} = 0$

$$\implies m^{\text{eq}} = \frac{n_{\text{v}}^{\text{eq}}}{N_{\Delta}} = \exp\left(-\frac{U_d - T\Delta S_{\text{vib}}}{RT}\right)$$

Free energy of $\longrightarrow \Delta F_f$ defect formation

Material	Aluminum	Copper	Nickel
ΔF_f (kJ mol ⁻¹)	68	120	168
Melting point (°C)	660	1083	1453

Calculate equilibrium concentration of vacancies at:

- 0 K
- RT (300 K)
- melting point

Similarity to Mass Action Law

Trivial form of Mass action law for the reaction:

$$Nil \rightleftharpoons Defect$$

$$n_v^{eq} = N \times exp - \left(\frac{\Delta H_d}{RT}\right) \times exp\left(\frac{\Delta S_{vib}}{R}\right)$$