ECE 215 Spring 2025

Objective 3.1:
Amplitude
Modulation

Objective 3.1

I can determine the modulation index, output signal, and output signal bandwidth of an Amplitude Modulation (AM) system and assess whether the system is under-modulated, over-modulated, or fully modulated.

WHAT IS MODULATION?

- Modulation is the variation or modification of one or more properties of a signal
- Pick our transmission frequency
- Communication over long distances
- Transmission of multiple channels over one frequency band
- Smaller antenna size
- Message signal: contains data for transmission, can be any format
- Carrier signal: "carries" the message data
 - Much higher frequency than message signal
 - Always a sinusoidal signal
- What properties of a signal can we modify?

$$V_{carrier} = A_c * \cos(2\pi f_c t + \phi_c)$$

Types of Modulation - AM, FM, PM

Amplitude Modulation

- Cheap, readily available technology
- Long distance transmission
- Uses less bandwidth

Frequency Modulation

- Noise Resistant
- Higer quality

Phase Modulation

- Noise Resistant
- Higer quality
- Used in cell phones

Types of Modulation - Analog vs. Digital

Input changes but same approach!

Modulation Overview

A carrier can be modulated by **ANY** data (analog or digital)

AMPLITUDE MODULATION

- Function multiplier "multiplies" input signals
 - Message signal: modulating the carrier single tone sinusoid, for now
 - Carrier signal: being modulated
- Output (modulated) signal
 - · Exists at the same frequency as the carrier signal
 - Amplitude changes according to the message signal

$$v_{m}(t) \xrightarrow{\int} v_{AM}(t) = v_{m}(t) \times v_{c}(t)$$

$$V_{bias} \qquad v_{c}(t)$$

$$v_{AM}(t) = \frac{A_{c}A_{m}}{2} \cos[2\pi(f_{c} + f_{m})] + \frac{A_{c}A_{m}}{2} \cos[2\pi(f_{c} - f_{m})]$$

$$+ A_{c} * B \cos(2\pi f_{c}t)$$

FUNCTION MULTIPLIER

Modulation Overview

Note: v_{out} is in Volts, **not** V²!

FDM

AMPLITUDE MODULATION EXAMPLE

- Determine and plot v_{out} for $v_{\text{m}} = 3\cos(2\pi * 5 * t)$ and $v_{\rm c} = 4\cos(2\pi * 120 * t)$
- Recall:

$$v_{\text{out}} = \frac{A_c A_m}{2} \cos \left[2\pi * (f_c + f_m) \right] + \frac{A_c A_m}{2} \cos \left[2\pi * (f_c - f_m) \right]$$

DRAWING AM GRAPHS

Modulation Overview

DRAW the message signal

DRAWING AM GRAPHS

Modulation Overview

REFLECT the message signal

DRAWING AM GRAPHS

Modulation Overview

Carrier signal "colors in"

DRAWING AM GRAPHS

CROSSOVER POINT

Modulation Overview

Zooming in on where the sign of the message signal changes...

Is there a way to make the modulated signal better behaved at these inflection points?

 $v_{\rm c}(t) = 4\cos(2\pi * 120 * t)$

Modulation Overview

$$v_{\rm m}(t) = 0$$

$$3\cos(2\pi * 5 * t)$$

$$\downarrow$$

$$\downarrow$$

$$\uparrow$$

$$V_{\rm AM}(t)$$

Modulation index

Bias = 2V

$$\alpha = \frac{A_m}{B} = \frac{3V}{2V} = 1.5$$

Modulation Overview

Modulation index

$$\alpha = \frac{A_m}{B} = \frac{3V}{3V} = 1$$

Undermodulation (α < 1) $v_{\rm m}(t) =$

 $3\cos(2\pi * 5 * t)$

Modulation Overview

 $v_{\rm AM}(t)$ Bias = 6V $v_{\rm c}(t) = 4\cos(2\pi * 120 * t)$

Modulation index

$$\alpha = \frac{A_m}{B} = \frac{3V}{6V} = 0.5$$

AM EXAMPLE 1

- What is the modulation index (α)?
- Will the signal be under-, over-, or fully modulated?
- What is the equation for the output signal?
- What do the time and frequency domain graphs look like?
- What would happen if the bias changed to 6V?

AM EXAMPLE 2 - HANDS ON!

- What is the modulation index?
- Turn on function generator (FG) and oscilloscope (OS). Connect the red mini-grabber from FG to Channel 1 probe of OS.
- FG: Turn on Chan 1 & set Output Load to High Z.
- FG: Waveforms → Sine.

- FG: Parameters → Freq → 5kHz; → Amp → 5Vpp; → Offset/Phase → 0.
- FG: Modulate \rightarrow Modulate \rightarrow On; \rightarrow Type \rightarrow AM; \rightarrow AM Depth \rightarrow 60%; \rightarrow Shape \rightarrow Sine; \rightarrow More \rightarrow AM Freq \rightarrow 200Hz.
- OS: Delete all measurements and math windows
- OS: Set Horizontal scale to 2-4ms/div; set Vertical scale to 1V/div. (Note: the AM signal will be a little jumpy)
- OS: To show the frequency domain, push the Math button (right side near channel buttons); in the Math Type box, select FFT.
 (Touch outside the MATH 1 box anywhere to close it)
- OS: Touch the magnifying glass in the top right corner of the Math 1 FFT window; slide AB box to far left; zoom in using touch screen (pinch, drag) until centered on 5kHz with 2-3kHz on either side.
- FG: adjust AM Freq (message frequency), AM Depth (mod index), and Shape to see what happens in the time and frequency domains.

MULTIPLE MESSAGE FREQUENCIES

• Distributive property applies

- Carrier frequency modulates each message signal separately
- Plot frequency spectrum of:

```
v_{\rm m}(t) = 5\cos(2\pi * 5k * t) + 2\cos(2\pi * 6k * t) + 4\cos(2\pi * 7k * t)
 v_{\rm c}(t) = 2\cos(2\pi * 100k * t)
v_{\text{out}}(t) = 5\cos(2\pi * 95k * t) + 5\cos(2\pi * 105k * t) + 2\cos(2\pi * 94k * t)
          +2\cos(2\pi*106k*t) + 4\cos(2\pi*93k*t) + 4\cos(2\pi*107k*t)
```


BANDWIDTH

Modulation Overview

Bandwidth

Bandwidth =
$$f_{\text{high}} - f_{\text{low}}$$

What is the message bandwidth (BW_m) compared to the output AM signal (BW_{AM})?

Non-sinusoidal Messages

Waterfall plot:

Modulation Overview

- Power is the color, frequency the horizontal axis, and time the vertical axis
- Useful for displaying random signals (e.g., talking or music over the radio)
- Aka, a spectrograph

- Most messages are not purely sinusoidal tones (but decompose into a sum of sinusoids)
- In this class, shapes in the frequency domain represent either: Random signals with an voltage spectral density in
 - units of V/√Hz
 - A single signal sample composed of many sinusoids

ECE 215 (Spring 2025)

18 / 21

Non-sinusoidal Message Example

What is the output of the following system? What is the bandwidth?

Amplitude Modulation

Modulation Overview

Modulation Index

Non-Sinusoidal Signals

