ESERCIZI SULLE FUNZIONI IMPLICITE, INVERSE E FORMULA DI TAYLOR.

1. Per ciascuna delle seguenti funzioni, si determini il polinomio di Taylor di grado k intorno al punto \underline{x}_0 utilizzando il polinomio di Taylor di una funzione di una variabile reale opportuna. Si verifichi anche che il resto $R_k((\underline{x}-\underline{x}_0)) = O(\|\underline{x}-\underline{x}_0\|^{k+1})$.

	$f(\underline{x})$	\underline{x}_0	k
i	$\sqrt{1+x_1^3x_2}$	(0,0)	11
ii	$\arctan(x_1x_2x_3^2)$	(0,0,0)	13
iii	$\sqrt{1+x_1x_2} \ln (1+\sqrt{xy})$	(0,0)	8
iv	$(x_1^3 + x_2^2)\sin(x_1^2x_2)$	(0,0)	10
v	$e^{x^2}\cos y^4$	(0,0)	10

- 2. Per ciascuna delle seguenti funzioni, si determini
 - (a) la matrice Jacobiana nel generico punto \underline{x} ;
 - (b) Il luogo dei punti in cui non è possibile applicare il teorema della funzione inversa;
 - (c) Il differenziale e lo spazio affine tangente a f^{-1} nel punto \underline{x}_0 .
 - (d) verificare anche che $J(f)_{\underline{x_0}}^{-1}=J(f^{-1})_{f(\underline{x_0})}.$

	$f(\underline{x})$	\underline{x}_0
i	$\underline{f}(x,y) = \begin{pmatrix} \sqrt{x^2 + y} \\ \cos xy + x + 3y \end{pmatrix}$	(0,0)
ii	$f(x,y) = \begin{pmatrix} 2x + y^2 e^{xy} \\ \ln(1+xy) \end{pmatrix}$	(0,1)
iii	$\underline{f}(x,y,z) = \begin{pmatrix} e^{x+y+z} \\ 2y^2 + x + \cos(z\pi) \\ \ln(1+xz) \end{pmatrix}$	(1,1,0)
iv	$ \underline{f}(x,y,z,t) = \begin{pmatrix} t^2 \\ x^3 + y \\ y^2 + tz \\ z + \ln x \end{pmatrix} $	(1, 1, 1, 1)

- 3. Per ciascuna delle seguenti funzioni di una variabile reale y = g(x), definite in modo implicito da f(x, y) = 0, dopo aver verficato che è possibile applicare il Teorema della funzione implicita, si calcoli
 - (a) la derivata nel punto x_0 ;

- (b) l'equazione della retta tangente nel punto $(x_0, g(x_0))$;
- (c) il polinomio di Taylor di grado due intorno al punto x_0 .

	f(x,y)	$(x_0,g(x_0))$
	$x^4 + y^4 - 17$	(2,1)
	$\arctan(x^3 + y - 7) + xy^3 + 2$	(2,-1)
iii	$\ln(1 + \cosh(yx^2 + 1)) + y^3 - \ln(2x) + 1$	(1,-1)
iv	$\sqrt{x^2 + y^3} - \sqrt{5}e^{xy-2}$	(2,1)

- 4. Per ciascuna delle seguenti funzioni di due variabili reali z = g(x,y) definite in modo implicito da f(z,y,z)=0, si calcoli (se esiste) nel punto (x_0,y_0) :
 - (a) Il gradiente $\nabla g(x_0, y_0)$;
 - (b) Il differenziale $dg_{(x_0,y_0)}$;
 - (c) La derivata direzionale $\frac{\partial g}{\partial (v_1,v_2)}$ nel generico punto (x,y);
 - (d) L'equazione del piano tangente alla superficie z = f(x,y) nel punto $(x_0,y_0,g(x_0,y_0)).$

	f(x,y,z)	$(x_0, y_0, g(x_0, y_0))$	(v_1, v_2)
i	$x^4 + y^4 + z^4 - 16$	(0,0,2)	(1,1)
ii	$x^2 \cos z + e^{yz}$	(1,0,1)	(1,2)
iii	$\ln(1+x^2z^3\arctan y)$	(2,0,1)	(-1,1)
iv	$\cosh(x^3 - z^2 + y)$	(1,0,-1)	(-1, -1)

- 5. Per ciascuna delle seguenti funzioni da ${f R}^3$ a ${f R}^2$, si verifichi se si può applicare il Teorema della funzione implicita nel punto (x_0, \underline{y}_0) e si calcoli la matrice Jacobiana e l'equazione dello spazio affine tangente nel punto x_0 della funzione $\underline{g}(x)$ definita implicitamente da $\underline{y}_0 = \underline{g}(x_0)$ e $F(x,\underline{g}(x)) = \underline{0}$.

 - (a) $f(x,y_1,y_2) = (xy_1^2 + y_2^3, y_2^2 + x)$ $(x_0,\underline{y}_0) = (1,2,2)$ (b) $f(x,y_1,y_2) = (\ln(x+y_1), y_1 \ln(x+y_2))$ $(x_0,\underline{y}_0) = (1,1,1)$ (c) $f(x,y_1,y_2) = (\cos xy_1 + y_2, \sin(xy_2) + y_1)$ $(x_0,\underline{y}_0) = (1,0,\pi)$
 - (d) $f(x, y_1, y_3) = (\sqrt{x + y_1}, y_1 y_2 + x^2)$ $(x_0, \underline{y}_0) = (1, 1, 1)$