Contrôle TD 1

Nom: Prénom: Classe:

Question de cours

Soit $(a, b) \in \mathbb{R}^2$; a < b. Énoncer le théorème des valeurs intermédiaires pour une fonction f définie sur l'intervalle [a, b].

Si f est continue sur l'intervalle [a,b] et si $f(a)f(b) \le 0$ alors $\exists c \in [a,b], f(c) = 0$.

Exercice 1

Soient f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{4} (x^2 - x + 6)$ et (u_n) la suite définie par : $\begin{cases} u_0 = x \in \mathbb{R} \\ \forall n \in \mathbb{N} & u_{n+1} = f(u_n) \end{cases}$

a. Déterminer les valeurs de x pour lesquelles la suite (u_n) est constante.

 (u_n) constante $\iff \forall n \in \mathbb{N}, \quad f(u_n) = u_n \iff f(x) = x$

$$f(x) = x \iff x^2 - x + 6 = 4x \iff x^2 - 5x + 6 = 0$$
 $\Delta = 25 - 24 = 1$ $x_1 = \frac{5-1}{2} = 2$ $x_2 = \frac{5+1}{2} = 3$

 (u_n) constante $\iff x \in \{2,3\}$

b. Établir le tableau de variations de f et montrer que l'intervalle]2,3[est stable par f.

$$f'(x) = \frac{1}{4}(2x - 1) = 0 \iff x = \frac{1}{2}$$

On établit le tableau de variation de f.

on evasite to vasitate de variation de j.					
	$\frac{1}{2}$	2	Ę	3	$+\infty$
f'	-	+	+	+	
f	23 16	2		3	+∞

f est strictement croissante sur [2,3], f(2)=2 et f(3)=3 donc f([2,3])=[2,3[.

]2,3[est stable par f.

c. On suppose que (u_n) converge vers $l, l \in \mathbb{R}$. Quelles sont les valeurs possibles de l? Justifiez votre réponse.

D'après le cours, si (u_n) est une suite récurrente vérifiant $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ et si u_n converge, alors sa limite l est un point fixe de f: f(l) = l.

Donc $l \in \{2, 3\}$.

Exercice 2

Déterminer le développement limité à l'ordre 4 en 0 de $f(x) = e^{-x} \sin(x)$.

$$e^{-x} = e^X$$
 où $X = -x$ donc :

$$\begin{split} e^{-x} &= 1 + (-x) + \frac{(-x)^2}{2!} + \frac{(-x)^3}{3!} + \frac{(-x)^4}{4!} + o(x^4) \\ e^{-x} &= 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} + o(x^4) \end{split}$$

$$\sin(x) = x - \frac{x^3}{6} + o(x^4)$$

$$f(x) = \left(1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} + o(x^4)\right)\left(x - \frac{x^3}{6} + o(x^4)\right) = x - \frac{x^3}{6} - x^2 + \frac{x^4}{6} + \frac{x^3}{2} - \frac{x^4}{6} + o(x^4)$$

$$f(x) = x - x^2 + \frac{x^3}{3} + o(x^4)$$

Exercice 3

Déterminer l'ensemble des solutions de l'équation (E): 2(1+t)y'+y=3 sur $]-1,+\infty[$.

Résolution de l'équation homogène : (E_0) : 2(1+t)y'+y=0

$$\frac{b}{a} = \frac{1}{2(1+t)} \quad \text{Sa primitive est}: \quad \int \frac{1}{2(1+t)} \, \mathrm{d}t = \frac{1}{2} \ln(1+t)$$

Les solutions de
$$(E_0)$$
 sont : $S_0 = \left\{ y_0 = ke^{-\frac{1}{2}\ln(1+t)} = \frac{k}{\sqrt{1+t}}, \quad k \in \mathbb{R} \right\}$

Solution particulière :

On remarque que si y = 3, y' = 0 et en remplaçant dans $(E): 2(1+t) \times 0 + 3 = 3$ $y_p = 3$ est une solution particulière de (E).

L'ensemble des solutions de
$$(E)$$
 est : $S = \left\{ y = 3 + \frac{k}{\sqrt{1+t}}, k \in \mathbb{R} \right\}$.