

Who am I?

- Technical Account Manager at AWS
- Expowerment Coach
- Reiki Master Teacher
- Autism Dad
- Inventor
- GTD Enthusiast
- Published Author (Ansible)

https://github.com/jamesfreeman959

linkedin.com/in/jamesfreeman959

twitter.com/jamesfreeman959

A horse walks into a bar...

- ▶ Why the long title?
 - ► It didn't fit on the title slide!
- "Digital Twinning with Ansible and cloud-init to support destructive infrastructure testing"
- ► Let me tell you a story

In a prior role, the CEO says to me...

- Build me OpenStack
- A simple enough request in itself(?)
- All-in-one nodes are easy and quick to build
 - ► Simple
 - ► Effective for learning the basics
 - ▶ Bear no relation to real life
- Oh by the way...
 - ► Here's one single blade to build it on
 - ► With mechanical storage

Digital Twinning

- First used at NASA
 - ► Full scale mock-ups of space capsules
 - ► Paved the way for digital simulations
- Can be used in any context
- My mission:
 - ► To build an OpenStack environment with an architecture and network representative of something you might deploy in the real world

...with Ansible and cloud-init...

- Hypothesis:
 - ▶ I'm not going to get this right first time
 - ▶ Rebuilds are going to be a necessary corrective action
 - ► Think Docker-like behaviour
 - ► I don't want to waste hours performing basic tasks
 - Building/deploying blank operating system images
 - Setting IP addresses and initial passwords
 - Deploying software and configuration

Why Ansible?

- Yes, existing familiarity, but also...
- Ansible overtook Chef and Puppet last year as top cloud configuration management tool¹
- Agentless
 - ► Uses SSH to communicate with nodes
 - ► Works well with switches
- Idempotent
- Self-documenting code
- Vault for securing sensitive data
- See also the openstack-ansible project

1. Source: https://www.techrepublic.com/article/ansible-overtakes-chef-and-puppet-as-the-top-cloud-configuration management-tool/

Why cloud-init?

- Ansible is great if:
 - 1. Your operating system image has an IP address and appropriate network configuration
 - 2. You can authenticate with your operating system image when it boots
 - (Linux nodes): Python is installed
- Simple to achieve, yet tedious if performed at scale and repetitively
- ▶ The solution: Couple publicly available cloud Ubuntu images with cloud-init
 - cloud-init is baked in
 - Each node has its own ISO image
 - Configures bonding, IP addressing, routing, initial password, SSH keys
 - Even installs Python!

I have but one blade to give...

- ► Fairly clear that I'm going to need a hypervisor
- Requirements:
 - ► Free
 - ► Fast
 - ► Flexible
 - ► Support nested virtualization (CPU support is present)
- ▶ Linux KVM seemed like the obvious choice

What about the switch layer?

- Must run on Linux KVM
- Preferably modern, and most importantly, free!
- Cumulus Networks (now NVIDIA)
 - ► Open standards based
 - ► Linux!
 - ► Runs on over 130 hardware platforms
 - including libvirt!
 - ► Capable of building modern web-scale network architectures

My brain is melting

- Imagine a highly available deployment of OpenStack with Ceph for the backend storage
 - ▶ 10 Linux nodes, 5 switches
- Separate management, tunnel and storage networks
 - ► Using two different physical networks
 - ► VLAN tagging
 - ► VxLAN for the tunnel network
 - ► All ports bonded
 - ▶ Leaf and spine switch architecture for redundancy
- Now describe that in XML for libvirt

Heresy in the form of GNS3

- I want a GUI to map out the network
- "I wonder if GNS3 would work...?"
- It turns out that GNS3:
 - ▶ Uses libvirt for to create and run virtual machines
 - ► Is designed to consume cloud images
 - ► Can directly support the use of ISO files for cloud-init
 - ► Supports extensive customization of VM's (e.g. adding nested virtualization)
 - ► Stores VM data in standard QCOW2 images that you can manipulate with qemu-img
- ▶ Oh, and it has a GUI

The end result

The end result

- It works! (after much tweaking)
- A representation of a possible real world OpenStack architecture
- All deployed with Ansible and cloud-init

What does this actually mean?

- ► The playbooks and cloud-init data used to build the environment could be re-used, as is, to produce a real-world OpenStack infrastructure just like this
 - ► A real digital twin!
- The GNS3 network is isolated, so you could test with real world IP addresses and MAC addresses
- This technique can be applied to building just about any technology
 - ► Very little runs on just one server in production any more
- Perfect as a training tool!
 - ► Combines visual appeal with real-world like software deployments

What else can we do...?

Let's break something...

Destructive testing ideas

- Network link failure
- Switch failure
- Node failure
- Denial of service attack
- Brute force attack
- Data corruption
- Backup and recovery techniques
- Business Continuity Planning

Yet...

- You can back up and restore your entire digital twin with just a few commands or clicks
- GNS3 even supports snapshots of the entire environment!
- You get to blow it up more than once!

A worked example

- ▶ In this test setup, we have 3 OSD nodes
 - ► All with a dedicated data disk
- Let's pull the plug on a node does the cluster keep running as expected?
- Ok now whilst that node is shut down, let's corrupt the disk
 - ► Idea let's use dd from copy from /dev/random to the QCOW2 image backing the data
- Now power up the OSD node what happens?
- ► Can we recover the node according to the standard recovery procedures?

Limitations

- ► This is a big step forwards
- Moves us away from test environments not being representative of production
- But...
 - ► It's not fast compared to real hardware
 - Especially nested virtualization
 - ► No hardware specific testing
 - e.g. RAID controller, low level Ethernet setup, FibreChannel
 - ➤ You won't do this on your laptop

Things I learned from this experience

- ► The Linux community is amazing, and those staffing the OpenStack Ansible IRC channel are so helpful
- Do throw hardware at this
 - ▶ I purchased a second hand workstation to run this on
 - ▶ 2 x Xeon (16c/32t), 128GB ECC RAM, 1TB SSD
- Do use virtio for disks and network cards wherever possible
- Don't attempt this setup with GNS3 on anything other than Linux
 - ► Windows = nested virtualization inside a VM

Moving Forwards

- ▶ I now have a whole suite of lab environments built in this manner
- Configurations have evolved and become more streamlined
- Client demos are performed using this
 - ▶ People like the visual nature of the architecture
- ► I use this to train myself on new technologies
- Perhaps we can all learn more using these techniques?

Questions?

Thank you!

► For more information, please reach out to me:

- Code is available here:
 - ▶ https://github.com/jamesfreeman959/gns3-cumulus-openstack-ansible