<u>ניסוי 5:</u>

בניסוי זה מימשנו מעבד piplined MIPS עם יחידת stall עם יחידת piplined MIPS. flush.

לפנינו פירוט של כל בלוק:

לפנינו דוגמת קוד בדיקה שהרצנו, ואחריה תוצאות הmodelsim בmodelsim:

```
xori $t4,$t3,5
.data
       i: .word 1
                                             slti $t4,$t3,1
                                             add $t5,$t3,$t4
       j: .word 2
                                     TWO:
       g: .word 3
                                            jal IF
                                     ONE:
       h: .word 4
                                             j THREE
       f: .word 5
                                             add $t5,$t3,$t4
.text
                                     IF:
                                             move $t5,$t3
       lw $t1,0
                                             jr $ra
       lw $t2,4
                                     THREE: bne $t0,$t1,END
       lw $t3,8
                                     ELSE: sub $t5,$t3,$t4
       lw $t4,12
                                     END: sw $t5,f
       slt $t0,$t1,$t2
       sub $t4, $t3, $t2
       mul $t4, $t3, $t2
       lui $t6, 100
       and $t4,$t3,$t2
       or $t4,$t3,$t2
       xor $t4,$t3,$t2
       sl1 $t4,$t3,3
       srl $t4,$t2,2
       sw $t4,12
      addi $t4,$t3,5
       andi $t4,$t3,5
       ori $t4,$t3,5
```


<pre>/mips_tb/reset</pre>	0						
/mips_tb/clock	1						
+> /mips_tb/Instruction_ID_out	012	000B60C0	000A6082	AC0C000C	216C0005	316C0005	356C0005
	8C0	016A6026	000B60C0	000A6082	AC0C000C	216C0005	316C0005
→ /mips_tb/Instruction_MEM_out	8C0	016A6025	016A6026	000B60C0	000A6082	AC0C000C	216C0005
	8C0	016A6024	016A6025	016A6026	000B60C0	000A6082	AC0C000C
∓ - <pre> /mips_tb/read_data_1_ID_out</pre>	000	00000000			00000003		
+- / /mips_tb/read_data_2_ID_out	000	00000003	00000002	00000	1 (000000	18 (0000000
+- /mips_tb/write_data_ID_out	000	00000002	00000003	00000001	00000018	00000000	(0000000C
/mips_tb/Branch_ID_out	0						
/mips_tb/RegWrite_ID_out	1						
+- /mips_tb/ALU_result_EX_out	000	00000001	00000018	00000000	0000000C	00000008	00000001
+- / /mips_tb/ALU_Ainput_EX_out		00000003	00000000			00000003	
+- / /mips_tb/ALU_Binput_EX_out	000	00000002	00000003	00000002	0000000C	00000005	
/mips_tb/Zero_EX	0					++	
/mips_tb/MemWrite_ID_out	0						
→ /mips_tb/write_data_MEM_out	000	00000002		00000003	00000002	00000001	00000018
→ /mips_tb/read_data_MEM_out	000	00000001		0000000	0000000)1	, c
→ /mips_tb/address_MEM_out	000	00000003	00000001	00000018	00000000	(0000000C	00000008
/mips_tb/MemtoReg_WB_out	1						
→ /mips_tb/CLKCNT_out	0005	000C	000D	000E	000F	0010	0011
→ /mips_tb/STCNT_out	00	00					
<u>-</u> /mips_tb/FHCNT_out	00	00					

וכן הלאה...

כעת צרבנו את הקוד לבקר באמצעות הquartus.

לפנינו תמונה מהSignal-Tap לאותו קוד אסמבלי שהרצנו בmidelsim:

האברכת הוא: של המערכת הוא:

	Fmax	Restricted Fmax	Clock Name	Note
1	37.59 MHz	37.59 MHz	clock	
2	65.17 MHz	65.17 MHz	altera_reserved_tck	

וה-logic usage report הוא:

•	< <filter>></filter>						
	Compilation Hierarchy Node	Combinational ALUTs	Combinational ALUTs Dedicated Logic Registers		1em	² Blo	Virtual Pins
1	▼ MIPS	2707 (58)	8005 (40)	10		2	464
1	▶ Execute:EXE	566 (451)	105 (105)	0	0	2	0
2	Idecode:ID	847 (847)	1032 (1032)	0	0	0	0
3	▶ Ifetch:IFE	51 (51)	8 (8)	0		0	0
4	control:CTL	15 (15)	O (O)	0	0	0	0
5	▶ dmemory:MEM	5 (5)	104 (104)	O		0	0
6	sld_hub:auto_hub	91 (1)	90 (0)	0	0	0	0
7	sld_signaltap:auto_signaltap	_0 1042 (2)	6523 (946)	0		0	0
8	writeback:WB	32 (32)	103 (103)	0	0	0	0

נסתכל על RTL viewer של כל רכיב:

:MIPS

:IFETCH

:IDECODE

:EXECUTE

:WRITEBACK

כעת נבחן את המסלול הקריטי:

כפי שניתן לראות, המסלול הקריטי הוא המסלול המבצע פעולה עם הזיכרון (sw או lw). הדבר הגיוני מכיוון שפעולה זו עוברת בכל שכבות המעבד ונכנסת לזיכרון הRAM ולכן היא הארוכה ביותר.

המסלול הקצר ביותר:

נבחן גם את המסלול הקריטי במעבד הsingle cycle:

:ה-fmax הוא

	Fmax	Restricted Fmax	Clock Name	Note
1	29.19 MHz	29.19 MHz	clock	
2	58.94 MHz	58.94 MHz	alteraed_tck	

והמסלול הקריטי הוא:

גם כאן זהו המסלול הנכנס לזיכרון, וככל הנראה קשור לפקודת sw או לפקודת.