

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

DR 1314 Aug 83

ADA132340

METEOROLOGICAL DATA REPORT
19316A MLRS
Missile Number FV3-30, FV3-12, FV3-05
Round Number 497/AT2-49, 498/AT2-50, 499/AT2-51
3 August 1983

by

DONALD C. KELLER
Program Support Coordinator
Phone Number (505) 679-9568
AVN Number 349-9568

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

THE FILE COPY

ECOM.

UNITED STATES ARMY ELECTRONICS COMMAND

83 09 02 020

DISPOSITION INSTRUCTIONS

Cent

Destroy this report when it is no longer needed. Do not return to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Acces	sion For	
NTIS	GRA&I	X
DTIC :	CAB	
Unsam	ounced	
Justi:	Pication_	
Ву		
Diacr	ibution/	
Ave1	lability	Eefo#
	Aveil and	l/or
Dist	Special	
Λ		
4		
1		

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER DR 1314	2. GOVT ACCESSION NO.	
	AD. A132 340	
4. TITLE (and Subtitle) 19316A MLRS		S. TYPE OF REPORT & PERIOD COVERED
Missile Number FV3-30, FV3-12, FV3-	-05	
Round Number 497/AT2-49,498/AT2-50		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		
		8. CONTRACT OR GRANT NUMBER(e)
White Sands Meteorological Team		DA Task 1F665702D127-02
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Electronics Research & Deve	alonment Cmd	12. REPORT DATE
Atmospheric Sciences Laboratory	eropineric cina	Aug 83
White Sands Missile Range, New Mexi	ico 88002	33
14. MONITORING AGENCY NAME & ADDRESS(II different US Army Electronics Research and De		15. SECURITY CLASS. (of thie report)
Adelphi, MD 20783	everopment cind	UNCLASSIFIED
		150. DECLASSIFICATION/DOWNGRADING
II. CONTROLLED STATEMENT (of this Brook)		
16. DISTRIBUTION STATEMENT (of this Report)		
		_
17. DISTRIBUTION STATEMENT (of the ebetrect entered	in Block 20, If different from	n Report)
Approved for public release; distri	ibution unlimited	•
18. SUPPLEMENTARY NOTES		
)
19. KEY WORDS (Continue on reverse elde if necessary an	d identify by block number)	
1		
28. ABSTRACT (Continue on reverse olds If recovery and	I identify by block number)	
Meteorological data gathered for th	ne launching of t	he 19316A MLRS, Missile
Number FV3-30, FV3-12, FV3-05, Rour	nd Number 497/AT2	-49, 498/AT-2-50, 499/AT2-51
are presented in tabular form.		
The state of the s		

The second secon

CONTENTS

F	PAGE
INTRODUCTION	1
DISCUSSION	1
GENERAL AREA MAP	2
LAUNCH AREA DIAGRAM	3
TABLES	
1. Surface Observations Taken at T-O mins at Brilo	4
2. Anemometer Measured Wind Data at 30 Ft. AGL	5
3. Anemometer Measured Wind Data at 60 Ft. AGL	5
4. Anemometer Measured Wind Data at 90 Ft. AGL	7
5. Launch and Impact Area pilot-balloon Measured Wind Data	8
6. Aiming and T-Time Computer Met Messages	9
7. E-28 Signaificant Level Data at 0655 MDT	10
8. E-28 Upper Air Data at 0655 MDT	11
9. E-28 Mandatory Levels at 0655 MDT	15
10. JALLEN Significant Level Data at 0655 MDT	16
11. JALLEN Upper Air Data at 0655 MDT	18
12. JALLEN Mandatory Levels at 0655 MDT	23
13. E-28 Significant Level Data at 1004 MDT	24
14. E-28 Upper Air Data at 1004 MDT	26
15. E-28 Mandatory Levels at 1004 MDT	30

INTRODUCTION

19316A MLRS, Missile Numbers FV3-30, FV3-12 and FV3-05, Round Numbers 497/AT2-49, 498/AT2-50 and 499/AT2-51, were launched from Brillo, White Sands Missile Range (WSMR), New Mexico, at 0947:38, 1002:16 and 1015:54 MDT, 3 Aug 83. The scheduled launch times were 0930, 0940 and 0950 MDT.

DISCUSSION

Meteorological data were recorded and reduced by the White Sands Meteorological Team, Atmospheric Sciences Laboratory (ASL), White Sands Missile Range, New Mexico. The data were obtained by the following methods:

- 1. Observations
 - a. Surface
- (1) Standard surface observations to include pressure, temperature (°C), relative humidity, dew point (°C), density (gm/m 3), wind direction and speed, and cloud cover were made at the Brillo Met Site at T-0 Minutes.
- (2) Anemometer data were provided from existing tower-mounted anemometers at Brillo. Monitor of wind speed and direction from one anemometer was also provided in the launch control room.
 - b. Upper Air
- (1) Low level wind data were obtained from Pilot-balloon observations at:

SITE AND ALTITUDE

D $3\frac{1}{2}$ 2000 meters MAL 1550 meters

(2) Air structure data (rawinsonde) were collected at the following Met Sites.

SITE AND TIME

E-28 0655 MDT JALLEN 0655 MDT E-28 1004 MDT

WSMR METEOROLOGICAL SITES

PROJECT SURFACE OBSERVATION

TABLE 1							STATION Brille	illo		
DATE 03	Aug	83					x= 443,093.12	1	Y= 386,316.94 H= 3962.25	3962:25
TIPE	PRESSURE mbs	20 30 30:31 25:35:37:35:37:35:37:35:37:37:37:37:37:37:37:37:37:37:37:37:37:	DEN POINT)r	PELATIVE HUNIDITY %	88.88.13Y 92.78	1	WIND SPEED kts	MIND DINECTION SPEED CHARACTER degs In kts kts	VISIBIL- ITY
0948	884.1	26.2		16.7	. 99			CALM		40
1003	883.9	27.2		16.6	53			CALM		40
1016	883.7	28.3		16.4	49		040	04		40

			-																		
	REMARKS		HALQDS BINOVC S	HALQDS BINOVC ALQDS	MALQOS BINOVC ALQDS																
	61	HGT																			
	rd LAYE	ANT TYPE HGT																			
	1 3	A::1																			
	2n	YER	/ER		YER	YER	HGT			10 AS 10000											
CI DUDS		TYPE			AS																
		AIT			10																
		ca	cu	ca	CLI	cu	ca	ca							ca			HGT	10000	10000	6500
		TYPE			no o																
	15	AMT	10 AS	10 AS	0																
	OUSTRUCTIONS	TO VISIBILITY AMI TYPE NGT																			

PSYCHROPETRIC COMPUTATION

DRY BULB TEMP. 26.2 27.2 28.3 WET BULB TEMP. 19.6 19.8 20.0 WET BULB DEPP. 6.6 7.4 8.3 DEW FOIRT 16.7 16.6 16.4 RELATIVE HUMID. 56 53 49	T11'E: MDT	0948	1002	1016
19.6 19.8 6.6 7.4 16.7 16.6 56 53	DRY GULB TEPP.	26.2	27.2	28.3
6.6 7.4 16.7 16.6 1 56 53	WET BULB TEMP.	19.6	19.8	20.02
16.7 16.6 16 56 53	MET BULB DEPR.	9.9	7.4	8.3
56 53	DEW POINT	16.7	16.6	16.4
	RELATIVE HUMID.	99	53	49

Anemometer Data - 30 FT. Level of 30 Meter Tower

X= 441,018.71 Y= 386,849.19 H= 4,004.80 (EASE) 360 270 MILES PER HOUR 1016MAT 1004 mpT 0947 MOT 0900 360 MILES PER HOUR

MPH X . 87 = KTS

Anemometer Data = 60 FT. Level of 30 Meter Tower X= 441,018.71 Y= 386,849.19 H= 4,004.80 (BASE)

Anemometer Data - 90 FT Level of 30 Meter Tower X= 441,018.71 Y= 336,849.19 H= 4,004.80 (BASE)

T-TIME PILOT-BALLOON MEASURED WIND DATA

DATE 3 Aug 83

SITE: D 31/2

TIME: 1011 MDT

WSTM COORDINATES:

X = 443,093.12

Y = 386,316.94

H= 3,962.25

SITE: MAL

TIME 0950 MDT

WSTM COORDINATES:

X = 509,421.05

Y = 495,563.18

H= 4,126.81

LAYER MIDPOINT	DIRECTION	SPEED	LAYER MIDPOINT	DIRECTION	SPEED
METERS AGL _	DEGREES	KNOTS	METERS AGL	DEGREES	KNOTS
SURFACE		CALM	SURFACE		CALM
150	146	03	150	289	03
210	148	93	210	296	04
270	150	03	270	300	03
330	145	03	330	307	03
390	143	04	390	317	02
500	143	04	500	002	01
650	159	04	650	065	02
800	169	07	800	227	03
950	172	09	950	181	04
1150	191	07	1150	180	Ûΰ
1350	224	06	1350	182	09
1550	235	06	1 5 50	210	08
1750	267	04	1750	MISC	3
2000	305	04	2000	MISO	à

All data obtained from double Theodolite Tracked pilot-balloon observations.

AIMING AND T-TIME COMPUTER MET MESSAGES 3 August 1983

E-28 0655	MDT		JALLEN 06	55 MDT	E-28 1004	MDT
METCM1329	065		METCM1332	065	METCM1329	065
031290119	887		031290124	882	031610119	
00604002	29900887		00000000	29640882	00111111	30610888
01629005	29930877		01319006	29760872	01092003	30160878
02597004	29780852		02635004	29680847	02153003	29900853
03301003	29490814		03155002	29400809	03286003	29610815
04338005	29130768		04493010	29050763	04333005	29250769
05374003	28740724		05442004	28670719	05402005	28840725
06640004	28370682		06538004	28270677	06581003	28450683
07640004	28020642		07630010	27810637	07021006	28100643
08638009	27670604		08608012	27570599	08061001	27730605
09619008	27360568		09620009	27330563	09000000	27380569
10530002	27080533		10630007	27060529	10568002	27040534
11622004	26720501'		11593004	26700496	11552006	26780502
12027009	26320454		12626005	26250451	12596007	26330456
13044012	25670399		13030012	25690395	13059014	25700400
14070011	24990349		14031013	24970345	14091014	25000349
15073012	24230304	-	15046014	24130301	15086014	24480305
16080016	23410263		16072013	23300260	16100021	23460264
17109021	22550227		17108022	22440224	17101024	22570228
18111025	21680195		13102027	21600192	18105027	21720196
19108024	20970166		19116026	20980164	19122021	21210167
20179006	20650141		20234008	20550139	20167010	20670142
21094010	20180119		21:142006	20090118	21126016	20200120
22129021	20380101		22122023	20370099	22156023	20380102
23190020	20600086		23176024	20690084	23210013	20650086
24179016	20830073		24179014	20910072	24158022	21080073
25145023	21220062		25145021	21210061	25187025	21350062
26149021	21530053		26128015	21410052	26181018	21550053

STATION ALTITUDE 5-12-75 FEET MSE 3 AUG. 63 0655 MDT ASCENSION NO. 43

51GMIFTCANT LEVEL BATA 215029U043 FAST-28/CHERRY TABLE 7

GEODETIC COOKDINATES 32-89927 LAT DEG 136-40591 LON DEG

PRESSURE	GEOMETRIC	TEMPI	ERATURE	REL - HUM
	ALT LTUDE	AIR	DEWPOINT	PERCENT
MILLINARS	HIL FLET	DEGREES	CENTIGRADE	
887.1	3912+7	23.8	14.2	55.0
881 • 1	4108.2	24.4	15.3	57.0
850.0	5140.5	22.4	12.9	55.0
762.1	8230 • 1	16 • 4	6.0	50.0
700.0	10505.9	10.7	4.4	65.0
612.9	14105.1	3.3	∠.0	91.0
592.3	15095+3	1 • 1	. 7	97.0
5.51.7	17933.9	-3.2	-3.6	97.0
516.2	18702.5	-5.3	~5.0	98.0
500.0	19525.3	-6.6	-9.3	81.0
487.0	20201.7	-7.9	-6.4	96 • 0
463.4	21469.7	-9.7	-10.0	98•0
432.6	23209.2	-12.6	-10.4	73.0
417.8	24082.1	-14.0	-17.6	74.0
407.2	24722.2	-16.0	-19.7	73.0
400.0	25164 • 2	-16+8	-21.0	70.0
386.1	26030+1	-18.3	-29.6	30.0
357.9	27487.2	-21 ·B	-36.8	24.0
347.2	28620.3	-23.5	-31.5	20.0
318.2	3n699•7	-28.4	-37.5	41.0
300.0	32081.4	-31.5	-30.6	48.0
263.3	35075.5	-39.1	-46.7	44.0
250.0	36238 • 7	-42.0		
240.0	37144.2	-44.5		
200.0	41070.6	-54 • 0		
176.7	43646+0	-61.6		
167.7	44700.8	-63.9		
154.3	46388.7	-64.6		
150.0	46958•6	-64.1		
120.7	49853.3	-70.0		
119.7	51416.8	-72.9		
111.3	52834.8	-70.0		
100.0	54939+3	-69.5		
70.0	62053.5	-64 • 2		
66.7	63029.0	-64 • 1		
60.1	05160+4	-59.4		
50.0	68905+4	-57.2		
37.7	74918.5	-55 • 0		

STATION ALTITUDE 3-12-75 FEET MSE 3 AUG. 83 0655 MDT ASCENSION NO. 45 UPPER AIN DAIA 2150290043 EAST-28/CHERRY TABLE 8

GEODETIC COORDINATES 32-89927 LAT DEG 136-40591 LON DEG

GEOMETRIC	PRESSURE	TEM	FRATHRE	REL . HIM.	DENSITY	SPECO OF	WIND DA	14	INDFX
ALTITOUL		AIR	DEWPOINT	PERCENT	GM/CURIC	いっこころ	DIRECTION	SPEED	0 F
MSL FLET	MILLIUARS	DEGREES	CENTIGRADE		METER	KNOTS	UEGRLES (TN1	KNOTS	REFRACTION
5912.7	807+1	23.8	14.2	55.0	1033+5		340.0	1.9	1.000300
4000.0	884.4	24.1	10 • 7	55.9	1029.2	674.1	340.0	2.1	1.000301
4500.0	869.2	23.6	14 • 4	56.2	1012.9	073.6	340.2	2.7	1.000297
5000.0	85++2	22.7	13.2	55.3	999.1	672.3	540.3	3.4	1.000289
5500.0	839.3	21.7	12 • 1	54.4	985.	5 071.1	335.2	2.2	1.000281
0.000.0	H24.6	20.7	11.0	53.6	971	669.9	181.8	1.0	1.000274
0500.0	810.1	19.0	7.9	52.8	956 • (J 668 . 7	174.2	4.9	1.000267
7000.0	79v•n	18.0	8.7	52.0	944.	7 667.4	175.1	6 • 1	1.000261
7500.0	182.0	17.8	7.0	51.2	931 • 9	666.2	180.7	5 • 1	1.000254
8000.0	760.3	16.8	6.5	50.4	918.0	665.0	189.1	4.6	1.000248
8500.0	754.7	15.7	5 • 8	51.7	905.4	5 163.7	190.8	4.5	1.000244
91100.0	741.2	14.5	5.6	54.9	093.0	662+3	200.6	5.0	1.000241
9500.0	720.0	13.3	5.3	58.1	801.1		207.0	3.6	1.000237
10000.0	710.0	12.1	4.9	61.3	869.	059.5	228.3	1.8	1.000234
10500.0	102.2	10.9	4 • 5	64.5	857.2	658 • 1	312.6	1.4	1.000231
11000.0	689.4	9.0	0.2	68.0	044.6	056 9	350.6	2.8	1.000227
11500.0	670 · B	8 • 8	4 • 0	71.6	832.	655 . 7	12.2	4.3	1.000224
12000.0	664.4	7.8	3.7	75.2	820.	654.5	21.2	4.6	1.000221
12500.0	652.2	6 • 0	3.4	78.0	808.		15.0	4.5	1.000210
15000.0	640.3	5.7	3 • 0	82.4	7900.		357.0	4.4	1.000214
13500.0	620.6	4.7	2.0	06.1	784 • (350.3	5.8	1.000211
14000.0	617.1	3 • 7	2 • 1	89.7	773.2		349.1	7.4	1.000208
14500.0	605.7	2.5	1.5	93.1	762.1		357.0	8.5	1.000204
15000.0	594 • 4	1.3	• 8	96.4	751 . 3		359.6	9.1	1.000200
15500.0	503.3	• 5	• 1	97.0	739 • 6		359.1	9.5	1.000196
16000.0	572.5	3	-•7	97.0	727.8		350.6	0.2	1.000192
10500.0	561 • 5	-1.0	-1.4	97.0	716.1		340.3	6.5	1.000160
17000.0	550.9	-1.8	-2.5	97.0	704.7		322.8	4.1	1.000164
17500.0	540.5	-2.5	-3.0	97.0	693.5		30u 4	2.6	1.000180
18000.0	530 - 5	-3.4	-3.8	97.1	602.6		292.6	1 • 4	1.00n176
18500.0	250.5	-4.7	-5.0	97.7	673.		327.4	2.0	1.000172
19000.0	510.3	-5.0	-6.9	91.9	663.0		343.1	3.1	1.000167
19500.0	500.5	-6+6	-11.5	81.5	652.		350.1	4.4	1.000102
50000.0	490.8	-7.5	-8.6	91.5	642.		353.0	5.2	1.000160
20500.0	481.5	-0 • 3	-0+8	96.5	631.		355.0	5.9	1.000158
571100.0	472.0	-9•0	-0.4	97.3	621.		2.6	6.3	1.000155
21500.0	462.8	-9.0	-10.1	97.6	610.		10.1	7.1	1.000152
22000.0	453.8	-10.6	-11.8	90 • 4	600.		17.2	8.7	1.000147
24500.0	444.9	-11.4	-13.7	83.2	591.1		20.9	10.0	1.000143
25000.0	430.2	-12.3	-15+6	76.0	501.9	629.8	23.1	11.0	1.000140

STATION ALTITUDE 3912-75 FLET MSL 3 AUG. 83 0655 MDT ASCENSION NO. 93 UPPER AIR DAIA 2150290043 EAST-28/CHLRRY TABLE 8 Cont'd

GEORETIC COORDINATES 32-89927 LAT DEG 136-40591 LON DEG

GE UNETRIC	PPLSSURE	1Em	ERATUPE	KEE . HUM .	DENSITY	SPLED OF	WIND DA	171	1 NUE X
ALTITUDE.		AIR	DEWPOINT	PERCENT	GM/CLIPIC	SOUND	LIRLC I TON	SPEED	OF
HSL FEET	MILLIDARS	DEGREES	CENTIGRADE		METER	KHOTS	DEGREESCINI	KNOTS	REFRACTION
							•		
23500.0	421.6	-13.1	-16.8	73.3	571.9	628.7	25.9	11.5	1.non137
24000.0	419.2	-15.9	-17.5	73.9	562.4	627.7	27.1	12.5	1.000134
24500.0	410.8	-15.3	-19.0	73.5	554.0	626.0	25.8	13.5	1.000131
25000.0	402.7	-16.5	-2n·5	71.1	545.9	624.5	23.2	13.2	1.000128
25500.0	394.6	-17.4	-23.8	56.9	537•(20.6	12.4	1.000125
20000.0	პიც • 7	-18.2	-20.2	37.4	528 • 1	622 • 2	25.1	10.9	1.000121
26500.0	374. A	-19.2	-31.3	33.0	519.4		27.7	10.1	1.000118
27000.0	371 • 1	-20.1	-33.2	29.8	510 - 0	619.8	33.9	10.0	1.000116
27500·0	363.6	-21.1	-35.2	26.5	502.4		36.5	10.1	1.000114
28000.0	350.2	-22.1	-36.9	24.3	494.1		50.2	10.5	1.non112
28500.0	340.9	-23.2	-37.4	25.7	406.2	610.0	39.0	10.6	1.000110
29000.0	341.7	-24.4	-37.3	28.7	478.4	614.5	40.3	11.0	1.000108
29500.0	334.6	-25.6	-57.2	32.3	470.7		42.2	11.3	1.900106
300ng.n	321.7	-26.8	-37.3	36.0	463.1		47.5	11.9	1.000105
30500.0	320.0	-27.9	-37.4	39.6	455.7	610-1	55.8	12.8	1.0001#3
31000.6	314.2	-29.1	-37.7	42.5	448.	000.7	55.0	12.7	1.000101
31500.0	307.5	-30.2	-38.2	45.1	440.6	607.3	50.2	12.4	1.000100
32nnn•0	301.n	-31.3	-39.7	47.6	433.5		37.3	11.3	1.000098
32500.0	294.6	-32.6	-39.9	47.4	426.4		26.9	11.0	1.000096
33000.0	280.2	-33.8	-41.2	46.A	419.5	υ 02∙7	24.7	11.0	1.000095
335nn.n	282+0	-35-1	-42.5	46.1	412.6	601+1	30.5	11.8	1.000093
34000.0	275.9	-36.4	-43.9	45.4	405.4		40.1	13.5	1.000091
34500.9	27u•n	-37.6	-45.2	44.8	399.3	597.9	43.4	14.6	1.000090
35000.0	264 • 2	-38.9	-46.5	44.1	392.8		45.4	15.6	1.000088
35500.0	250.4	-40.2	-51.6	27.9**	306.3	594.7	46.2	16.5	1.000086
36000.0	252.7	-91.4	-61.6	9.0**	379.8		49.3	17.6	1.000085
35500.0	247.1	-42.7			373.5		52.8	18.8	1.n0n083
3/000•0	241.6	-44 • 1			367.4		56.8	19.2	1 • 000082
375ng•n	230.1	-45.4			361 • 1		59.9	19.7	1.000060
38nnn.0	230.7	-46.7			354.9		61.4	2n.3	1.000079
3850 0. 0	225+4	-48 • 1			348.6		62.5	21.2	1.000078
3900 0. 0	220.2	-49.4			342.6		63.4	22.2	1.000076
33200.0	215.2	-50.7			336.9		63.7	23.0	1.000075
40000.0	210.2	-52.0			531 -1		63.7	23.6	1.000074
40500.0	205.4	-53.3			325 • 5		03.4	23.9	1.000072
41000.0	20u.7	-54 - 6			319.0		62.9	24.0	1.000071
41500.0	190 • 0	-55.0			314.		62.5	24.3	1.000070
42000.0	191.3	-57.2			300.		62.4	24.8	1.000069
42500.0	180.7	-58 • 6			303.2		61.1	25.8	1.000068
4.5000.0	182.5	-59.9			297.1	8 568.9	59.0	27.2	1.000066

^{..} AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 3912-75 FLET MSE 3 AUG. 83 0655 MDT ASCENSION NO. 43 UPPER AIR DATA 2150290043 FAST-28/CHERRY TABLE 8 Cont'd

SEODETIC COORDINATES 1 32-89927 LAT DEG 136-40591 LON DEG

GEONETRIC	PRESSURE	TEMPERATURE	REL.HUM.	DENSITY	SPEED OF	WIND DA	TA	INUEX
ALTITUDE		AIR DEWPOINT	PERCENT	GM/CUB1C	SOUND	LIRLCTION	SPEED	OF
MSL FLET	MILLIDARS	DEGREFS CENTIGRADE		METER	KNOTS	LEGREES (TN)	KN015	REFRACTION
43500+0	170.9	-61. 2		292.5		57.3	28.5	1 • 000065
44010.0	173.7	-62.4		207.0		55.9	29.8	1 • 000064
44500.0	169.4	-63.4		201.5	564.2	57.4	28.0	1 • 000063
45000.0	165.5	-64 • 0		275.5	563 - 4	60.3	25.3	1.000061
45500.0	161.2	-64.2		268.9		65.0	21.3	1.000060
46000.0	157.3	-64.4		262.6	562.8	72.3	17.2	1.000058
46500.0	150.5	-64.5		256 • 2	562 • 7	79.2	13.7	1.000057
471)00.0	149.7	-64.2		249.5	563.2	89.3	10.5	1.000056
47500.0	140.0	-65.2		244.5	561.8	98.6	7.8	1.000054
48000•0	142.4	-66+2		239.7	560 • 4	114.4	5.5	1.000053
43500.0	130.8	-67.2		234.9		114.2	4.6	1.000052
491100.0	135.4	-68.3		230 - 2	557.6	109.9	3.8	1.000051
49500.0	132.0	-69+5		225.6	556 . 3	102.7	3.8	1.000050
50000.0	120.7	-70·3		221.0	554 . 9	95.6	3.9	1.000049
50500.0	125.5	-71.2		216.4	553.6	69.0	4.0	1.000048
51000.0	122.5	-7 2•1		211.9	552 . 4	53.0	6.5	1.000047
51500.0	114.2	-72.7		207.2		47.8	10.6	1.000046
52000•0	110.2	-71.7		200.9		46.4	14.6	1.000045
52500+0	113.2	-70.7		104.8		51.9	16.6	1.000043
53800.0	110.4	-70.0		189.2		50.3	18.6	1.000042
53500•0	107.6	-69.0		104.4		61.1	19.3	1 • 000041
54000.0	104.9	-69.7		179.6		65.6	20.1	1.000040
54500.0	102.3	-69.6		175.0		69.2	20.7	1.000039
55000.0	99.7	-69.5		170.5		72.5	21.4	1.000038
55500+0	91.2	-69.1		166.0		79.0	21.5	1.000037
561100.0	94.0	-68.7		161.0		85.4	21.8	1 • 000036
56500.0	92.5	-68.3		157.5		90.1	21.2	1.000035
57000.0	90.2	-68 • 0		153.1		94.7	20.6	1.000034
57500.0	00.0	-67.6		149.1		98.7	20.8	1.000053
20000.0	A5.0	-67.2		145.1	559 • 1	102.2	21.4	1.000032
58500.0	03.7	-66.8		101.3		107.6	21.2	1.000031
59000 • n	81.6	-66.5		137.5		110.1	20.2	1.000031
59500.0	79.6	-66 • 1		133.9		122.9	18.9	1.000030
011000.0	7/.6	-65.7		130.3		124.4	16.0	1.000029
60500.0	77	-65.4		126.9		155.8	13.6	1.000028
61000.0	73.8	-65.0		123.5		108.1	14.0	1.000028
61500.0	72.0	-64 • 6		120.2		95.6	15.3	1.000027
65000.6	70.2	-64.2		117.0		69.9	17.9	1.000026
6250A+6	60.5	-64.2		114-1		სხ.5	20.6	1.000025
63000+0	6u • B	-64 • 1		111.3	563.3	79.5	21.4	1.000025

GTAFION ALTITUDE 3-12-75 F. FT MSE 3 AUG. 83 0655 MDT ASCENSION NO. 43

UPPER AIR DATA 2150290043 FAST-28/CHERRY TABLE 8 Con't

GEODETIC COORDINATES 32-89927 LAT DEG 136-40591 LON DEG

GEONETRIC	PRESSURE	TEMPERATURE	REL. HUM.	DENSITY	SPEED OF	WIND DA	TA	INUEX
ALTITUDE		ATR DEWPOTHT	PERCENT	GM/CUBIC	SOUND	DIRECTION	SPEED	OF
MSL FEEF	MILLIDARS	DEGRLES CENTIORADE		METER	KNOTS	DEGREES (TN)	KNOTS	REFRACTION
635nn•n	62.5	-63-1		108-1	564 • 7	74.1	22.5	1.000024
64800.0	63.6	-62+0		104.9		73.0	22.8	1.000023
04200.0	62.1	~60•a		101.9	507.6	72.8	22.8	1.000023
0.0000	60.6	~59•0		98.9	569+1	74.8	22.6	1.000022
o5500.0	59 • 1	~59•2		96+3	569+8	79.9	22.0	1.000021
0.000.0	5/.7	- 50•9		93.9	570 • 2	85.3	21.6	1.000021
66500.0	50.3	-58+6		91.5	570.6	8.08	21.6	1.000020
67000.0	55.0	~58+3		89.2	571.0	68.3	21.7	1.000020
67500.0	53.7	~58 • 1		87.0	571 • 4	89.0	22.2	1.000019
68H00.0	52.4	-57.8		84 . 8	571 - 7	89.2	23.0	1.000019
68500.0	51.2	-57.5		82.7		89.8	23.7	1.000018
69000.0	50 · P	-57.2		80 · t	572.5	93.6	23.7	1.000018
69500.0	40.8	~57.0		78.0	572 • 7	97.4	23.8	1.000018
76000.0	4/.6	-56.8		70.7	573.0	101.9	23.6	1.000617
70500.0	40.5	~56+6		74.9	573.2	106.9	23.3	1.000017
71000.0	45.4	~56+5		73.0	573.5	111.8	23.1	1.000016
71500.0	44.11	-56 • 3		71 • 3	573.7	115.3	21.9	1.000016
72000.0	43.3	~56 • 1		69.5	574 • 0	119.2	20.9	1.000015
72500.0	42.5	~55.9		67.8	574.2	118.8	20.1	1.000015
73000.0	41.3	~55.7		60.2	574.5	115.0	19.6	1.000015
73500.0	40.3	~55.5		64.6	574 . 7			1.000014
74000.0	34.4	-55.3		63.0				1.000014
74500.0	30.5	-55.2		61.5				1.000014

STAF10N ALTITUDE 3912-75 FFET MSE 3 AUG. 83 0655 MDT ASCENSION NO. 43 MANDATORY LEVELS 215029UU43 EAST-28/CHLKRY TABLE 9

32-89927 LAT DEG 136-40591 LON DEG

PRESSURE	GE OPUTENTIAL	TEM	PERATURE	REE. HUM.	WINU L	AIA
MILLIBARS	FEFT	A1R DEGREFS	DEWPOINT CENTIGRADE	PERCENT	DIRECTION LEGREES (TM)	
850.0	5137.	22.4	12.0		200 1	
			12.9	55.	340.3	3.6
890.0		19-1	9.1	52.	173.9	0.3
750+0		15.3	5+8	53.	198 • 2	4.7
701)•0		10.7	4 • 4	65.	322.5	1.7
650 • 0	12592.	6 • 6	3.3	80.	11.5	4.4
600.0	14735.	1.9	1.2	95.	359.8	8.8
550 • 0	17027.	-1.9	-2.3	97.	3241.5	3.9
500 • 0	19998.	-6.6	-9.3	81.	350 • 3	4.4
450 · n	22181.	-10.9	-12.0	87.	19.4	9.4
400.0	25122.	-16.8	-21.0	70.	22.2	13.0
350•0	28375.	-23.1	-37.3	25	36.9	10.6
3011.0	32018.	-31.5	-38.8	48.	35.4	11.2
250 • 0	36159.	-42.0			50.9	18.2
200.0	40977.	-54.8			62.8	24.0
175•0	43732.	-62.0			50 • 4	29.3
150.0	46832.	-64 - 1			87 • 7	10.9
125•0	50430.	-71.3			66.9	4.9
100.0	54770.	-69.5			72.0	21.3
80.0	59173.	-66.2			122.3	19.8
70.0	61841.	-64.2			89.7	18.0
₩ 0•n	64962.	-59.4			76.5	22.4
50.0	68727.	-57.2			93.3	25.7
40 • n	73376.	-55.5				

** AT LEAST ONE ASSUMED RELATIVE HIMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITULE 4751. IN THE TOSE 5 AUG. 83 0655 MDT ASCENSION NO. 10c

SIGNIFICANT LEVEL DATA _ 1500 SUTUA JALLEN TABLE 10

GEODETIC COORDINATES 35.10717 LAT DEG 106.49511 LON DEG

PRESSURE	GEDMETRIC	TEMP	EKATURE	REL.HUM
	ALTITUDE	AIR	DEMPOINT	PERCENT
"ILLIBAR"	MSL FEFT		CENTIGRADE	
1.1.3	4651.0	21.0	17.3	92.0
677.8	4190.7	72.1	14.7	63.0
807.0	4535.4	22.8	14.0	60.6
8.0.0	5102.2	21.7	15.0	57.0
776.7	7546.3	15.9	6.0	57.0
720.0	10539.7	16.5	6	51.0
673.1	10011.3	10.4	4.1	55.0
604.9	11942.5	6.7	3.5	79.0
050.2	12544.9	4.5	2.0	84.0
564.R	16287.5	8	-1.2	97.0
537.3	17855.8	-3.0	-3.5	76.0
500.0	19464.4	-6.5	-6.9	97.0
400.8	21549.7	-10.3	~11.1	94.0
453.1	21970.6	-13.R	~11.č	97.0
435.9	22959.5	-12.4	-13.d	8 . 0
400.0	25102.0	~15.9	->1.1	64.0
334.3	26066.4	-17.5	-25.2	51.0
377.7	26505.4	-18.9	-75.0	55.0
371.7	26910.0	-19.4	-28.8	43.0
334.9	29376.1	-24.3	-37.2	29.U
314.1	30753.7	-29.3	-30.4	50.0
1.0.3	32027.6	-32.2	-19.5	44.0
217.5	33623.5	-36.5	-43.7	47.6
704.5	54/03.3	-39.3	-44.2	54.0
250.0	35175.0	-42.7		
247.7	41622.6	-55.2		
1:4.7	42430.4	-58.5		
1.5.4	45047.7	-65.3		
150.0	45688.4	-64.		
149.1	50019.5	-71.2		
119.1	51473.7	-73.2		
111.5	57711.8	~71.9		
104.5	53776.7	-71.9		
1.00.0	548 15.4	-55.5		
20.0	61973.5	-43.5		
64.5	63612.6	-63.9		
59.8	0518 c.7	-54.9		
55.3	66770.3	-66.1		
511.0	C 288J.4	-58.5		
35.5	16671.3	-54 -1		

STATION ALTITUDE 4051.00 FEET MSL 3 AUG. 83 0655 MDT ASCENSION NO. 105 SIGNIFICANT LEVEL DATA 2150030105 JALLEN TABLE 10 Cont'd

GEODETIC CUORDINATES 33.10712 LAT DEG 106.49511 LON DEG

PRESSURE GEOMETRIC TEMPFHATURE REL.HUM.
ALTITUDE AIR DEWPOINT PERCENT

MILLIUMS MSL FEET DEGREES LENTIGNADE

50.0 72690.7 -45.2
27.4 01081.4 -44.8
20.0 8M586.2 -48.8
17.7 91252.6 -47.7

STATION ALTITUDE 4051.13 FEET MSL 3 AUG. 83 0655 MDT ASCENSION NO. 130 UPPER AIR DATA 2150030106 JALLEN TABLE 11

GEODETIC COORDINATES 33.16717 LAT DEG 106.49511 LON DEG

GLOMETRIC	FPESSURE	TLME	ERATURE	REL .HUM .	DENSITY	SPEED OF	AIND DA	TA	INDEX
ALTITUDE		AIR	DIMPUINT	PERCENT	SM/CUBIC	SOUND	DIRFCTION	SPEED	0 €
MISE FLET	MILLIUARS	LECKELS	CENTIGRADE		METER	KNOTS	DEGREES (TN)	KNOTS	REFRACTION
4051.0	531.0	11 • U	17.6	22.0	1035.2	671 •1	.0	• 0	1.000320
4500.0	666.1	72.1	14.6	56.3	1014.5	672.6	27.0	• ć	1.300298
30.00	653.6	22.1	13.3	57.5	242.8	671.6	47.7	1.3	1.000289
.500.0	873.1	11.1	14.3	57.0	955.9	670.5	27.9	1.0	1.000282
0.000	821.5	"J.1	11.4	57.0	972.1	5.490	36.ª	2.1	1.000476
0.00.0	80y.1	7706	10.4	57.0	954.5	658.0	04.1	1.9	1.000270
/(G0.C	744.5	13.6	4.5	57.6	945.2	666.8	317.4	1.3	1.000254
7500.0	781.3	17	3 . €	57.U	952.0	665.6	207.3	6.4	1.000258
3500.0	747.1	16.1	7.9	56.6	910.0	664.3	277.4	9.9	1.000253
650C.B	753.4	15.0	7.3	59.9	904.1	663.0	765.8	9.9	1.030247
1.000.0	740.0	13.7	5.7	61.7	P43.5	661.7	254.6	8.6	1.000244
7500.0	1.6.7	12.8	0.0	53.4	8 . 1 . 3	650.4	242.1	6.4	1.000240
1,700.0	715.8	11 . 7	5.4	55.1	858.5	659.1	227.5	4.0	1.330232
1.500.0	701.0	10.0	4.7	60.4	856.7	057.7	291.9	4.8	1.000231
11630.3	680.3	8.8	4.6	67.5	R43.7	656.3	318.7	5.1	1.330227
11530.3	475.3	3.1	3.7	73.5	837.3	654.9	*49.2	6.0	1.000224
12600.0	663.5	0.5	3.2	79.5	822.9	652.4	347.7	6.4	1.000221
1,500.0	651.3	4.1	6.1	83.0	813.3	653.7	751.7	6.5	1.330216
13906.0	619.2	3.4	. 1.7	R5.6	800.5	649.7	351.5	7.0	1.030212
13500.0	627.5	١.1	1.2	87.3	787.7	648.9	352.7	7.9	1.000209
14000.0	015.6	2.4	• 4	99.1	775.0	648.3	350.1	9.3	1.000205
14530.0	064.1	1./	. 4	90.8	762.6	647.2	145.1	11.3	1.0002.01
15000.0	542.8	1.5	0	92.5	759.3	646.3	34 ? . 11	12.3	1.000195
1,530.0	381.0	• 5	5	94.5	739.3	645.5	334.6	11.3	1.330174
1,000.0	272.9	4	-1.U	90.0	726.5	644.6	339.9	9.7	1.000191
1.100.0	560.2	-1.1	-1.5	95.9	714.7	643.8	145.2	F . 1	1.000187
17000.0	547.7	-1.5	5	96.5	761.1	642.9	350.4	7.2	1.000183
17500.0	534.3	-2.5	-3.6	70.6	691.7	042.0	353.4	7.1	1.000179
1.006.9	2.4.1	-3.5	-3.8	25.1	650.9	561.0	333.9	6.7	1.000176
1.500.6	510.7	-4.4	-4.9	90.4	6711.4	677.5	.49.7	5.8	1.300172
15000.0	519.6	-3.3	-5.9	90.7	Ac11.6	6.8.3	.44.7	5.0	1.000166
1,500.0	444.5	-6.6	-7.1.	97.6	650.7	075.9	338. T	4.3	1.000144
0.000.5	44 1.0	-7.0	-3.6	97.3	640.7	635.7	*34.7	4.1	1.030151
26500.0	46 U. 1	· · · · ·	-7.6	77.5	650.8	234.4	736.7	4.5	1.000157
11000.0	470.c	-9.7	-16.0	27.7	621.1	673.1	734.5	4.7	1.000154
01 000.0	+61.7	- 1.1.1	-11.0	72.0	411.5	511.8	535.5	4.5	1.330151
22/100.0	452.7	-19.0	-11.4	70.0	5,7.5		344.4	4.4	1.000148
2.501.5	443.0	1.7	-12.0	74.7	5/3.1	L.J.5	*59.4	4.7	1.330144
12000.0	475.1	-1)	-14.4	90.5	550.4	679.6	9.0	5.2	1.000141
2.506.0	470.5	- 13.5	-15.0	94 . 7	577.4	020.5	14.7	8.5	1.000137

STATION ALTITUDE 40010-0 FEET PSE 3 AUG. PD 0655 MDT ASCENSION NO. 100

UPPER AIR JATA 4150370106 JAELEN TABLE 11 Cont'd

GEODETIC CUORDINATES 53.16712 LAT DEG 106.49511 LON DEG

GLOBETRIC	FRESSURE	TEM	PER ATURE	REL.HUM.	DETISTIA	SPEED OF	WIND DA	TA	INDEX
ALTITULE		1 R	DEMPUINT		GA/CUBIC		DIRECTION	SPLED	OF
	MILLIHARS		CENTTURADE		METER	KNOTS	DE GREES (TN)	KNOTS	REFRACTION
7-(30.0	412.0	- 14 - 1	-17.5	75.9	\$61.4	627.5	16.8	10.5	1.000134
24500.9	4114.8	- 14.4	-19.0	71.6	552.1	626.4	17.1	11.5	1.000131
25000.0	461.0	- 15 . 7	-20.7	55.2	542.9	525.4	17.3	12.0	1.000128
2.500.0	395.5	-10.0	-22.7	55.0	533.3	624.3	18.0	12.5	1.000125
cc:00.0	315.7	-17.4	-24.9	51.8	545.5	573.3	19.0	12.1	1.000122
25500.0	\$73.6	-13.4	-25.6	55.0	517.5	621.4	19.0	11.9	1.000126
0.00075	574.3	- 17.5	-29.1	42.4	508 • 5	620.5	17.1	11.7	1.000116
3.000.0	302.8	- ?3 - 7	-30.4	59.2	500.4	619.1	17.5	12.1	1.030114
2:(39.0	3 - 5 - 4	-21.7	-34.5	30.0	497.4	617.7	17.7	12.7	1.000112
1:500.0	348.1	~ ~3.J	-34.5	32.7	454.5	616.3	17.9	13.3	1.006110
0.000.0	341.6	- 74.1	-30.9	29.5	476.5	514.9	16.4	13.4	1.330118
2,500.0	7 5 2 . 8	- 25.4	-36.7	33.7	409.4	613.3	15.0	13.6	1.000106
31.000.0	327.0	- 0.5	- 36 . 4	39.3	462.1	611.5	15.5	13.9	1.330135
30533.0	320.2	- 8.1	-30.3	44.4	455.0	610.0	16.6	14.4	1.000103
31000.0	J13.5	- "Y . 4	-36.5	49.9	447.5	608.3	18.9	14.7	1.006101
31500.0	3116.6	- 40.5	- 57 . 9	44.0	440.5	0.000	62.8	15.1	1.000103
0.000.0	300.4	~ '2.1	-39.4	46.1	434.		24.7	15.5	1.000096
1.500.0	293.9	- "5. 5	-40.0	47.7	421 .	603.4	29.3	14.6	1.0000096
33005.0	4.7.6	- 14.5	-41.7	47.5	419.5		52.7	13.6	1.000095
13500.0	. 51.4	- 15.7	-42.4	47.2	412.5		33.8	12.7	1.000093
T-000.0	c75.5	- *7.0	-43.7	49.0	464.		33.3	11.7	1.000091
1.500.0	214.4	- 4.5	-44.0	54.5	3,7.4		57.8	10.7	1.000090
3,000.0	263.5	- 19.6	-45.6	54.5 **	397.9	395.5	55.F	11.4	1.000054
35530.0	257.6	-1.6.7	-51.2	31.5**	386.4		38.R	12.4	1.030396
: unan.a	456.5	-4	-63.1	8.1 **	*c() . 1		44.2	14.3	1.000085
. 0.00.0	240.3	-63.5			373.6		40.6	17.0	1.000083
4.000.0	640.6	-1.4 . 5			367.3		54.1	19.1	1.000082
375JU.D	c 15 • 1	- 16.1			360.5		58.*	20.3	1.000080
0.0003	553.0	-47.4			354.6		0.0	21.6	1.000079
12500.0	224.5	-43.1			344.5		62.D	55.0	1.330378
30000.0	214.6	- 13.0			342.5		0.50	22.4	1.030076
7.500.0	414.4	-11.3			336.		60.9	25.9	1.900075
41000.3	667.5	-12.6			350.3		52.7	23.5	1.030374
46300.3	. 1 4 . 7	- " 3 . Y			345.8		27.3	24.2	1.000074
41636.0	١١ ١٠ ١	- 15 . 2			319.7		55.7	9.4.	1.000371
41:00.0	175.3	-10.4			215.3		50.n	25.4	1.000070
4_000.0	176.7	7 . 7			01.		59-1	26.4	1.000069
425 30.0	156.1	8 . 4			102.7		59.1	27.5	1.000067
4:000.0	111.0	-49.5			796.6		57.7	53.6	1.130066
43500.0	177	-10.1			3411.6	507.8	57.7	35.5	1.000045

^{..} AT LEAST UME ASSIMED RELATIVE HUMINITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 4051.00 FEET MSL 3 AUG. 83 0655 MDT ASCENSION NO. 106 UPPER AIR DATA 2150330136 JALLEN TABLE 11 Cont'd

GEODETIC CUORDINATES 33.16712 LAT DEG 1U6.47511 LON DEG

GLORUTRI	LERESSURE	TEM	PERATURE	DENSITY			TA	INDEX
ALTITUTE		*1R	DIMPOINT	GM/CU3IC	SOUND	DIRECTION	SPEED	OF
MSL FEET	MILLIHARS	DEGREES	CENTIGRADE	MFTER	KHOTS	DEGREES(TN)	KNOTS	REFRACTION
44000.	172.9	-(1.0		284.9		60.1	30.7	1.000063
44500.	168.7	-15		279.1	565.4	04.5	28.4	1.000062
45000.		-63.4		273.5		67.5	25.3	1.000061
45500 .	160.7	-64.0		268.6	563.0	70.5	21.8	1.000050
46636.		- 45 . 2		207.0		74.4	18.7	1.00055
46500.	152.9	-14.6		255.6		40.3	15.1	1.000057
47000.	144.2	-14.5		249.1		39.2	12.1	1.000055
47530.		-65.0		244.2	561.2	104.9	9.3	1.000054
4clJu.		- 40 . 7		239.4		150.9	7.7	1.000053
45500.		-47.9		234.7		155.5	7.3	1.000052
4-100.		- ^9.)		230.1		105.2	5.4	1.000051
45500.		- 70 • 1		265.6		154.4	3.H	1.000350
:0000.		- 11.2		221.1		176.4	3.5	1.000049
50500.		-71.9		216.1		167.3	3.4	1.000048
51000.	0 171.8	-72.6		211.5		137.5	3.8	1.000047
51500.	115.7	-73.1		204.7		109.1	5.6	1.000046
5.000.	115.7	-72.6		500.6	551.7	84.9	8.2	1.000045
5.500.		- 72 - 1		195.3		69.6	12.1	1.000043
53000.		-71.9		190.2		63.7	15.5	1.000042
5:500.		- 11.7		165.3		60.9	18.4	1.000041
5-100.	7 174.4	-71.3		160.5	552.8	00.6	21.2	1.000040
5-500.		- 70.0		174.4		67.0	23.5	1.000039
5500C.		- 1007		169.0		65.5	25.1	1.000048
55550.		-48.3		164.5		71.8	25.1	1.000037
500000		-67.9		160.2		78.7	24.7	1.000036
Setill.		-17.6		155.9		67.2	23.5	1.000033
5/500.		-67.2		151.3		94.0	23.2	1.000034
17500 ·		-10.0		147.5		73.7	24.0	1.000033
50000		-40.5		143.9		94.0	24.8	1.00003c
505000		-10-1		1 40 .1		78.0	24.8	1.000031
.000.		-15.7		135.4		101.2	25.0	1.00000
* 95Un.		-15.5		132.5		107.2	22.5	1.000030
6.000.		-15.0		149.1		113.9	20.2	1.000029
to:30.		0		125.9		111.	17.0	1.000020
61000.		-14.2		122.5		105.3	13.8	1.000027
A1500.		-13.9		119.3		36.0	13.0	1.000027
5. (40)		3 - 5		114.7		97.0	13.1	1.000026
5.500.		-15.7		113.4		49.0	14.4	1.000025
6.50ពិម័ត		-13.9		115.8		37.1	16.6	1.000025
4350D.	04.9	-43.0		107.6	564.8	o 5 • O	18.5	1.000024

STATION ALTITUDE 4051.CG FEET MSL 3 AUG. 85 0655 MDT ASCENSION NO. 106

UFFER AIR DATA _1500301u6 JALLEN TABLE 11 Cont'd

GEUDETIC CUORDINATES 33.10712 LAT DEG 106.49311 LON DEG

CLOMETRIC	PRESSURE	T L M	PEHATUHE	REL . HU4 .	DENSITY	SPLED OF	alub Da	A T A	INDEX
ALTITUDE		AIR	DEWPOINT	PERCINT	GM/CUBIC	SOUND	DIRECTION	SPEED	OF
MSL FEET	MILLIBARS	DECKEES	CENTIURADE		METER	KNOTS	DEGREES(TY)	KNOTS	REFRACTION
4.000.0	65.4	-12.1			134.5	566.0	81.5	19.9	1.000023
6-500.0	t1.8	-61.4			101.6	567.2	78.4	21.3	1.000023
6:000.0	60.3	- 60 . 2			98.7	558.5	a0.3	21.6	1.000022
65590.0	50.7	- 4.9			90.2	565.9	01.9	55.0	1.330021
44100.0	57.5	-60.0			93.9	568.8	61.6	20.7	1.0000421
65501.3	56.1	-/3.1			y1.7	568.7	80.5	18.5	1.000020
57C0C.C	54.0	- 59. 4			89.5	568.0	78.0	17.2	1.000073
67500.0	53.5	-59.5			67.2	569.4	73. ?	15.6	1.000019
0.000333	54.2	- 49. ¿			64.9	569.9	67.7	14.3	1.000019
68500.0	56.9	-58.0			62.4	570.4	68.1	14.0	1.000010
0.000+0	49.7	- "B . 4			50.7	570.9	68.4	13.8	1.000018
67500.0	40.5	- 48 - 1			78.7		56.4	15.0	1.000018
76000.0	47.4	-31.0			76.7		6. T. D	12.1	1.000017
7.500.0	45.3	-57.5			74.8		67.3	11.8	1.000017
71900.0	45.2	-47.2			72.9		dh.7	14.0	1.000016
71500.0	44.1	- "0.7			71.1		₹3.6	17.4	1.000016
7,000.0	43.1	- 40.0			69.		105.1	27.4	1.000015
7.500.0	42.1	-10.5			67.6		107.2	34.5	1.000015
71006.0	41.1	- 40.6			65.9		107.7	47.1	1.000015
2,500.0	40.1	- "5.7			54.		107.5	46.7	1.300014
74330.0	34.6	- 5.4			53.7		99.7	46.7	1.330314
7-530.3	10.3	-55.1			61.1		47.2	42.5	1.000014
7:000.0	37.4	- 4.3			54.5		44.5	55.1	1.000015
7:500.0	36.5	- "4			59.1		91.5	27.9	1.330313
7-000-0	75.0	1			56.7		₽C •1	56.5	1.000013
70539.0	*4.5	-13.4			55.2		04.9	24.5	1.000012
77000.0	54.0	-10			53.		47.6	53.5	1.000012
77566.0		-11.0			:5.		86.7	30.€	1.000012
75000.0	32.3	-11.5			5 C • 7		8 . 0	35.0	1.000011
72500.0	11.7	- cu - 1			43.5		85.7	31.8	1.000011
7,06.0	1.0	-41.5			4		of • 1	30.7	1.000011
77500.0	70.3	-69.5			46.5		¥ C . 4	₹3.7	1.000010
9:0000.0		-17.7			45.7		¥1.8	27.3	1.000010
81 500.0	70.7	- 40.0			44.5		4.4.5	24.7	1.000010
71000.0	20.3	- 40 . 0			6 2 . 3		44.9	22.6	1.000010
*1 *60.0	:7.0	-45.1			42.2		44.4	22.0	1.000009
3.000.0		- 6: . 0			41.2		¥8.3	41.7	1.0000004
3,500.0	20.4	>->			47.4		166.3	21.1	1.000009
8 5000 .0	25.5	- 45 . 4			37.5		107.0	20.4	1.330039
€ :500.0	75.2	-25.7			34.7	587.5	104.7	19.5	1.000007

STATION ALTITUDE 4001. 7 FEET "SL 3 AUG. 63 0655 MDT ASCENSION NO. 106 UPPIK AIR DATA 2150030106 JALLEN TABLE 11 Cont'd

GEODETIC CUORDINATES 33.16712 LAT DEG 106.49511 LON DEG

GEOMETRIC	FRESSURE	TEM	PERATURE	REL.HUM.	DERSITY	SPEED OF	wIND DA	TA	INDEX
ALTITUDE		-10	DFMPUINT	PERCENT	GM/CUBIC	SOUND	DIRECTION	SPEED	OF
MST LEEL	MILLIDARS	DECREES	CENTIGRADE		METER	KNOTS	DEGREESCINE	KNOTS	REFRACTIUN
**100.0	24.7	- 46. 1			37.8	587.0	106.5	18.7	1.000006
2.500.0	24.1	-45.4			37.0	580.0	109.1	17.9	1.000008
6.0000.7	23.6	-46.7			36 •?	585.2	111.9	17.1	1.000003
35500.0	73.0	- 47.0			35.5	385.8	110.4	16.5	1.000000
85105.0	:2.5	-17.3			34.7	5 5 5 . 5	164.9	16 . 1	1.000008
8050C.0	22.0	-47.0			34.0	585.1	98.8	15.3	1.000003
8,000.0	21.5	-47.9			37.3	584.7	¥7.3	16.2	1.000007
47500.3	21.0	-10.2			32.5	594.3	19. 2	15.9	1.000007
0.00333	20.3	-10.5			31.9	594.0	100.5	17.6	1.300007
38500.0	20.1	-40.7			31.2	583.6	94.9	24.4	1.000007
0.00043	19.6	-48.c			30.5	593.7	89.4	32.6	1.000007
0.101.0	19.2	- 48 . 4			29.7	594.0	56.7	41.0	1.000067
29000.0	10.7	-43.2			67.0	584.3			1.000006
21500.0	15.3	-43.0			28.3	584.5			1.330005
01030.0	17.9	-47.8			27.7	584.8			1.330336

STATION AUTITUDE 4051.43 FEET MSL 3 AUG. 82 0655 MDT ASCENSION NO. 100 MANUATORY LEVELS 2150030106 JALLEN TABLE 12

GEODETIC CUORDINATES 33.10712 LAT DEG 106.49511 LON DEG

PRESSURE	GEOPOTENTIA		PERATUPE	REL.HUM.		
		AIR	DEMBOTHL	PERCENT	DIRECTION	SPEED
MILLIPARS	FLET	DEGREES	CFNTIGHADE		DEGREES (TN)	KNOTS
150.0	5099.	21.9	17.0	57.	27.9	1.4
~U).1	6317.	18.5	9.9	57.	57.0	1.2
7,1,0	1 6626.	14.7	7.2	60.	263.2	10.2
?on •f	10530.	10.5	4.6	67.	294.2	4.9
650.0	12540.	4.5	2.0	84.	352.1	6.5
100.0	14675.	1.5	.2	91.	343.7	12.1
150.0	16764.	-1.8	-2.2	97.	350.3	7.2
500.0	19433.	-e . 5	-6.9	97.	339.0	4.4
/50.0	72117.	-11.1	-11.6	96.	34P. R	4 . 4
10.00	25061.	-15.9	-21.1	64 .	17.3	12.7
'50 .C	1 36322.	-22.7	-34.3	34.	17.8	13.1
'd0.0	71965.	-32.2	-39.5	48.	25.8	15.5
50.9	26027.	-42.7			46.2	15.1
~U(! • °	1 40904.	-55.2			5R.7	24.8
175.0	43667.	-61.2			58 . 2	31.9
150.0	45763.	-64.3			bc.4	12.5
125.0	60353.	-71.9			167.8	3 . 4
100.9	54558.	-55.8			63.1	25.2
60.0	54096 ·	-55.5			104.5	23.7
70.0	61763.	-63.5			93.6	13.1
0.00	1 44803.	-60.0			o 0 . 5	21.7
50.0	1.6624.	-58.5			68.3	15.9
40.5	73258.	-55.6			103.4	46.7
30.0	79351.	-48.2			90.9	29.1
25.0	95354.	-46.0			135.0	19.3
20.0	89175.	-48.8			93.3	25.2

.. AT LEAST UNE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 3912-75 FEET MSI 3 AUG. 83 1004 MDT ASCENSION NO. 44 SIGNIFICANT LEVEL DATA 2150290044 FAST-20/CHERRY TABLE 13

UEODETIC COORDINATES 32-89927 LAT DEG 136-48591 LON DEG

PRESSURE	GEOMETRIC		RATURL	REL . HUM .
	ALTITUDE	AIR	DEMBOTH	PERCENT
MILLIBARS	MSL FLET	DEGREES	CENTIGRALE	
687.8	3912.7	31 • 0	15.0	36.0
BB4 . 7	4014.9	26.0	13.5	46.0
880.0	4169.2	25.6	14.7	51.0
850.0	5169.4	23.7	12.0	48.0
759.2	8377.6	17.1	6.3	49.0
70n.n	10633.0	11.3	4.5	63.0
691.8	10056.7	10.6	5.6	71.0
655.0	12448.9	7.6	4 • 0	78.0
608.1	14449.9	3 • 1	1.9	92.0
564.4	16427.5	-+8	-1.2	97.0
521.4	18497.4	-4 · B	*6.6	87.0
580.0	19581.2	-5.8	-10.9	67.0
	21336.6	-9.5	-11.2	87.0
	22175.4	-11.7	-12.7	92.0
	22457.7	-9.2	-10.7	89.0
443.5	22651.7	-11.2	-12.8	88.0
400.0	25224.2	-16.4	-21.9	62+0
	26327.7	-18.5	-25.1	56.0
370.3	27121.6	-20.0	-20.3	57.8
356.5	24044.6	-22.4	-30.0	47.0
	29432.5	-25.4	-30.0	54.0
300.8	32140.0	-31.9	-40.8	21.0
267.3	34789.6	-38.4	-48.8	35.0
250.0	36292.7	-42.2		
	41129.1	-54.9		
192.3	41952.6	~56+8		
	44870.1	-61.9		
162.8	45380.0	-60 • 1		
15n.n 134.9	47051 • 3	-63.5 -69.3		
119.7	49170.1 51504.7	-72.7		
116.1	52097.6	-71.7		
114.9	52380.8	-69.9		
100.0	55030.2	-69.7		
92.2	56634.7	-67.8		
79.6	59569 • 1	-65.4		
70.8	62181.6	-60.5		
65.2	63645.8	-59.6		
59.8	65430.9	-59.8		
50.0	69154.6	-56.5		
	0713440	.,0 • /		

STATION ALTITUDE 3912-75 FELT MSL 3 AUG. A3 1004 MDT ASCENSION NO. 44 SIGNIFICANT LLVEL DATA 2150290044 EAST-28/CHERRY TABLE 13 Cont'd

GEODETIC COURDINATES 32-89927 LAT DEG 136-40591 LON DEG

PRESSURE GEOMETRIC ALTITUDE MILLIBARS MSL FEET

TEMPERATURE AIR DEWPOINT DEGREES CENTIGRADE

HEL HUM. PERCENT DE

39.2 74275.9

-55.0

STATION ALTITUDL 3912-75 FEET MSL 3 AUG. 83 1004 MDT ASCENSION NO. 44 UPPER AIR DAIA 2150290044 EAST-28/CHERRY TABLE 14

GEODETIC COORDINATES 32-89927 LAT DEG 136-40591 LON DEG

	FUHETRIC	PRESSURE		PERATURE	REL. HUM.		SPLEU OF	WIND DA		INDEX
- 1	LITTUDE		AIR	DEWPOINT	PERCENT	GM/CUR1C	SOUND	UIRLCT10H	SPEED	OF
ŀ	ISL FEET	MILLIUAPS	DEGRLES	CENT LGRADE		METER	KN015	DEGREES (TN)	KNOTS	REFRACTION
	3912.7	887.8	31.0	15.0	38.0	1009.5		• 0	.0	1.000295
	4000.0	805.2	26.7	13.8	44.0	1021.3	676.9	105.A	- 1	1.000294
	4500.0	870.0	25.0	13.8	50.0	1009.6	675 • 0	105.8	•6	1.000293
	5000.0	855+0	24.0	12.5	48.5	995.9	673.7	105.8	1.1	1.000284
	5500.0	840.2	23.0	11.5	40.1	982.2		105.8	1.6	1.000277
	0000.0	825.5	22.0	10.6	40.3	a68.7		137.6	2.0	1.000271
	6500.0	811.1	21.0	9.7	48.4	955.3	670.0	160.0	2.7	1.000266
	7000.0	796.9	19.9	0.8	40.6	942.2		175.8	3.1	1.000200
	7500 • 0	783.0	18.9	7.9	48.7	929.2	667.5	184.5	3.9	1.000254
	8000.6	769.4	17.9	7.0	48.9	916.4		168.1	4.8	1.000249
	0500.0	755+9	16 · A	6.2	49.0	903.9		195.6	5.6	1.000244
	3000.0	742.4	15.5	5.9	52.9	891.7		203.1	6 - 1	1.000241
	9500.0	124.1	14.2	5.6	56.0	879.8	662 • 0	217.9	5.1	1.000238
	10000.0	710.1	12.9	5 • 1	59.1	868.0	660.5	235.0	4 - 1	1.000234
	10500.0	703.4	11.6	4 • 7	62.2	050.4	659 • 0	260.3	3.0	1.000231
	11000.6	690.7	10.5	5.5	71.2	844.0	657.0	300.2	2.8	1.000231
	11500.0	678.2	9.5	5.0	73.5	831.7		331.4	3.9	1.000227
	12000.0	665.9	0.5	4.5	75.9	819.6		350.3	4.0	1.000223
	12500.0	653.8	7.5	4.0	78.4	007.7		1.3	5.5	1.000219
	13000.0	641.7	6.4	3.5	01.9	796 - 1		4.6	3.7	1.000216
	13500.0	624.9	5.2	3.0	85.4	784.7		6.0	1.8	1.000212
	14000.0	610.3	4 • 1	2.4	88.9	773.5		236.5	• 2	1.000208
	14500.0	607.0	3.0	1.9	92.1	762.3		209.7	.5	1.000205
	15000.0	595+6	2.0	1 • 1	93.4	750.9		213.1	. 2	1.000200
	15500.0	584.5	1.0	• 3	94.7	739.6		20.5	1.9	1.000196
	10000.0	573.6	• 0	5	95.9	728.6		26.8	3.2	1.000192
	16500+0	562.8	9	-1 • 4	96.6	717.6		27.0	3.3	1.000188
	17000.0	552.2	-1.9	-2.7	94.2	706.7		19.3	2.6	1.000183
	17500.0	541.7	-2.4	-4 • 0	91.8	696.0		43.7	1.5	1.000179
	18000.0	531.4	-3.0	-5.3	00.4	6A5.4		322.0	2.5	1.000174
	18500.0	521.3	-4.8	-6.6	87.0	675.0		324.0	4.3	1.000170
	19000.0	511.4	-5.3	-8.5	77.7	663.4		317.3	5.2	1.000165
	19500.0	501.6	-5.7	-10.6	60.5	652.0		311.0	5.9	1.000160
	20000.0	491.9	-6.7	-10.9	71 • 8	641.8		307.2	5.5	1.000157
	20500.0	482.4	-7.7	-11.0	77.5	631.6		309.6	5.4	1.000155
	21000.0	473-1	-0.8	-11-1	03.2	622.1		320.7	6.0	1.000153
	21500.0	463.9	-9.9	~11.5	91.0	612.7		327.0 330.8	7.0	1.000150
	55,000.0	446.6	-11·2 -9·6	-12.4	88.8	603.8			A • 0	1.000148
	25500.0			-11-1	84.5	5A8 - 2		341.0	8.6	1.000145
	23000.0	437.2	-11.9	-14.0	84+5	501.9	630.2	350.4	9.4	1.000141

STATION AETITUDE 3912-75 F. LT MSL 3 AUG. 83 1004 MDT ASCENSION NO. 44

UPPER AIR DATA 2150290044 EAST-28/CHERRY TABLE 14 Cont'd

GEODETIC COOKDINATES 32-89927 LAT DEG 136-40591 LON DEG

GEOMETRIC	PRESSURE		PERATURE	REL . HUM.		SPEED OF	WIND DA		1 _{NUE} x
ALTITUDE		AIR	DEWPOINT	PERCENT	GM/CURIC	SOUND	UTRECTION	SPEED	oF
MSL FEET	MILLIUARS	DEGREES	CENTIORADE.		METER	KNOTS	DEGREES (TI)	KNOTS	REFRACT10N
23500.0	420.5	-12.9	-15.7	79.4	572.7		359.4	10.4	1.000138
24000.0	420-1	-13.9	-17.5	74.4	563.7		14.1	11.5	1.000134
24500.0	411.7	-14.9	-19.3	69.3	554 • 8	626 • 4	30.2	13.5	1.000131
25000.0	403.6	-15.9	-21.1	64.5	546.1	625 - 1	37.2	15.1	1.000128
25508•0	6•ر59	-10.9	-22.7	60.5	537.3		41.8	16.3	1.000125
26000.0	387.6	-17.9	-24 • 1	57.8	520.5	622.7	41.9	14.9	1.000123
20500.0	579.8	-18-8	-25.5	56.2	519.9		44.3	13.9	1.000120
27000.0	572.1	-19.8	-26 • 1	56.8	511.3	620.4	50.2	13.8	1.000118
27500.0	364.6	-21.0	-50.0	52.9	503.3	618.8	52.4	13.9	1.000116
28400.0	35/+2	-22.5	-50.4	47.5	495.7		52.2	14.0	1.000115
28500.0	549.8	-23.4	-32.5	42.7	487.7		51.5	13.9	1.000111
29000.0	342.6	-24.5	-34.6	38.1	479.8		50.2	13.8	1.000109
29500.0	335+5	-25.6	-36.8	31.7	472.0		48.1	13.6	1.000107
50000.0	320.5	-26.8	-38.6	31.5	464.3	611.6	46.3	13.4	1.000105
30500.0	321.6	-58.0	-40.5	28.9	456.8		45.4	13.6	1.000103
31000.0	514+9	-29.2	-42.3	26.5	449.5		46.1	13.9	1.000101
31500.0	306.3	-30-4	-44.5	24.1	442.2	607 • 1	48.1	14.4	1 • 000099
25000.0	301 - 8	-31 • 6	-46.2	21.7	435 - 1		48.7	14.8	1.000098
52500.0	295.5	-32.0	-46.8	22.9	428.0		49.1	15.2	1.000096
33000.0	289.0	-34+0	-44.9	25.5	420.9		50.1	16.0	1.000094
33500.0	282.7	-35.2	-47 • 1	28.2	414.0	6000	50.9	17.0	1.000093
34000.0	270.7	-30+5	-47.4	30.8	407.1	599 • 4	51.6	18.2	1.000091
34500.0	270 • 7	-37.7	-47.8	33.5	400.4	597•8	23.0	19.1	1 • 00 00 90
22800 • 0	264 • 8	-38.9	-40.R	30.1**	593.8		54.5	20.0	1.000088
35500.0	259.0	-40.2	-55.0	18.5**	307.3		58.5	20.9	1.000086
36000•0	253.5	-41.5	-63.7	6.8**	580 · u	593.8	62.2	21.9	1.000085
Ju500.0	24/.6	-42.7			374.4		63.4	22.7	1.000063
37000.0	242.0	-44-1			368.0		62.8	23.2	1.000065
37500.0	230.5	-45.4			361.6		58.9	23.1	1.000081
38000.0	231.1	-46.7			355.4		56.0	23.7	1.000079
38500.0	223.8	-48.0			349.4		54.0	24.7	1.000078
23000 • 6	220.6	-49.3			343.4		54.4	25.4	1.000076
39500.0	215.6	-50.6			337.5		55.4	25.9	1.000075
40000.0	210.7	-51.9			331.8		57.9	25.8	1 • 000074
40500.0	805.9	-53.2			326.2		60.8	25.5	1.000073
41000.0	201.2	-54.6			320.0		61.8	25.9	1.000071
41500.0	190.5	-55 • 8			314.9		62.6	26.4	1.000070
42000.0	191.9	-56.9			309.1		59.3	27.9	1 • 000069
42500.0	18/-3	-58 • 1			303.4		56.3	29.5	1.000068
45000.0	182.8	-59.5			297.8	569.7	56.2	30.7	1 • 000066

^{..} AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 3912-75 F E1 MSE 3 AUG. 83 1004 MDT ASCENSION NO. 44

UPPER AIR DATA 2150290044 EAST-28/CHLRRY TABLE 14 Cont'd

GEODLIIC COORDINATES 32-89927 LAT DEG 136-40591 LON DEG

GEUMETRIC	PRESSURE	TEMPERATURE	REL.HUM.	DFNS1TY	SPEED OF	WIND DA	TA	INLEX
ALTITUDE		AIR DEWPOINT	PERCENT	GM/CUB1(SOUND	LIRECTION	SPEED	40
MSL FEET	MILLIDARS	DEGREES CENTIGRADE		METER	KHOTS	DEGRLES (TN)	MNOTS	HEFRACTION
43500.0	170.4	* 60.5		292.5		50.3	31.8	1 • 00 00 05
44000.0	174.1	-61.7		206.9	566+5	58.9	28.6	1.000064
44500.0	169.4	-61.3		279.5	507.0	62.8	24.7	1.000062
45000 • O	163.11	-60 • 6		271.9	567.9	69.8	20.0	1.000061
45500.0	161.8	-60.3		264.9	560.3	81.3	15.5	1.000059
46000.0	157.9	-61.4		259.0	567.0	90.9	14.9	1.000058
46500.0	154 • 1	-62.4		254.7	565.6	99.4	15.1	1.000057
47000.0	150.9	-63.4		249.7	564 . 2	101.6	13.7	1.000050
47500.0	140.7	-64 • 7		245.1	562 • 4	103.1	12.2	1.000055
48000.0	145.0	-60 • 1		240.7		99.7	9.9	1.000054
48500.0	139.5	-67.5		236.3		91.1	7.5	1.000053
49000.0	130 - 1	-68.8		232.0		83.5	7.2	1.000052
49500.0	132.6	-69.8		227.		82.4	8.8	1.000051
50000.0	129.3	-70.5		222.		80.7	10.4	1.000050
50500.0	120.0	-71.2		217.4		77.0	12.2	1.000048
51000.0	122.8	-72.0		212.7		72.8	14.0	1.000047
51500.0	119.7	- 72•7		208.1	551.0	64.7	16.1	1.000046
52000.0	110.7	-71.9		201.9	552.7	65.7	18.2	1.000045
52500.0	113.7	-69.9		194.9	555 4	69.7	20.0	1.000043
53000.0	110.9	-69·n		100.0	555.5	74.7	21.7	1.000042
53500.0	100.1	-69.8		185.2		79.2	23.3	1.000041
54000.0	105+4	-69·8		180.5		82.8	24.6	1.000040
54500.0	102.7	-6.9 • 7		175.9		65.N	24.5	1.000039
55000.0	100.2	-69.7		171.5		87.3	24.5	1.000030
55500.0	97.7	-69.1		166.7		95.6	21.5	1.000037
56000.0	95.2	-68.6		162.1		100.2	19.1	1.000036
56500.0	92.8	- 68•0		157.€		115.1	16.6	1.000035
57000.0	90.5	-67.5		153.4		120.0	14.1	1.000054
57500.0	80.3	-67 · 1		149.3		123.1	12.5	1.000033
58000.0	80 · 1	-6b·7		145.3		116.6	12.1	1.000032
50500.0	84.0	-66·3		141.4		109.8	11.9	1.000051
59000.0	81.0	-65.9		137.0	560.9	101.1	13.7	1.000031
59500.0	79.9	-65.5		134.0		94.5	15.7	1.000030
6000 . 0		-64.6		130.2		90.2	17.5	1.000029
011500.0	70.0	-63.7		126.4		87.2	19.3	1.000028
01000.0		-62.7		122.8		85.1	21.1	1.000027
61500.0		-61.8		119.3		89.1	22.7	1.000027
62900.0		-60.8		115.9		92.6	24.5	1.000026
62500+0		-60+3		112.0		95.5	25.2	1.000025
0.5(()n.1	61.5	-60.0		109.9	568 · H	98.3	25.2	1.000024

STATION ALTITUDE 3912-75 F [T M5L 3 AUG. 83 1004 MDT ASCLISION NO. 44

UPPER AIR DAIA 2150290044 FAST-28/CHERRY TABLE 14 Cont'd

GEODETIC COORDINATES 32-89927 LAT DEG 136-40591 LON DEG

GE ONE TRIC	PRESSURE	TEMPERATUPE		REL.HUM. DENSITY		SPECD OF	WIND DATA		INDEX	
ALTITUDE	330	AIR	DEWPOINT	PERCENT	GM/CUB1C	50UND	LIRLCT10H	SPEED	OF	
MSL FEET	MILLIUARS		CENTIGRADE	7 2 - 0	METER	KNOTS	DEGRLES (1H)	KNOTS	REFRACTION	
6.3500.0	65+7	-59.7			107.2	569•2	101.2	25.2	1.000024	
64000.0	64 • 1	-59.6			104.0	569.3	101.4	24.8	1.000023	
64500.0	62.6	-59.7			102.1	569.2	101.5	24.4	1.000023	
65000.0	61 • 1	- 59•8			99.	569 • 1	101.6	24.1	1.000022	
65500.0	5+16	-59.7			97.3	569 - 1	101.8	23.7	1.000022	
66000.0	54.2	-59.3			94.6	569.7	101.9	23.4	1.000021	
Un500.0	50.0	-58.9			92.	570.3	102.6	22.7	1.000021	
6/000.0	55.5	-58 - 4			90.0	570.9	103.3	22.1	1.000020	
o/500.0	54 • 1	-58 • 0			87.0	571.5	105.1	20.6	1.000020	
68000.0	52.9	-57.5			A5.L	572.1	107.6	18.9	1.000019	
68500.P	51.6	-57.1			83.2	572.7	110.7	17.6	1.000019	
64800.0	50.4	-56+6			81.0	573.2	114.1	17.5	1.000018	
69500.0	49.2	-56 • 4			79.1	573.6	117.5	17.5	1.000018	
70000.0	40.11	-50.3			77.1	573.8	118.2	18.0	1.000017	
70500.0	46.9	-56 • 1			75.		117.1	18.8	1.000017	
71000.0	45.8	-56 • 0			73.5	574 - 1	116.0	19.7	1.000016	
71500.0		-55.B			71.	574.5	112.8	19.1	1.000016	
72000.0		-55.7			70.0	574.5	109.1	18.4	1.000016	
72500.0		-55.5			68.				1.000015	
73000.0		-55.4			66.6				1.000015	
73500.0		-55.2			65.0				1.000014	
74000.0		-55-1			63.0				1.000014	

STATION ALTITUDE 3-12-75 F. FT MSE 3 AUG- 83 1004 MDT ASCENSION NO. 44

MANDATORY LEVELS 2150290044 EAST-28/CHERRY TABLE 15

GEODETIC COORDINATES 52-89927 LAT DEG 136-40591 LON DEG

PRESSURE GEOPOTENTIAL			TEM	PERATURE	REL.HUM.	WIND DATA		
			AIR	DEWPO1H1	PERCENT	DIRECTION		
	MILLIBARS	FLET	DEGREES	CENTIGRADE		UFGREES (TN)	KNOTS	
	850.	5166.	23.7	12.0	48.	105.8	1.3	
	800 -	0 6895.	20.2	9.0	49.	173.0	3.0	
	750 • 0	8712.	16.2	6 • 1	51 •	198.6	5.9	
	700 • 0	10623.	11.3	4.5	63.	269.3	2.9	
	650 •		7 - 1	3.8	79.	2.1	4.9	
	600 • 6	14790.	2.4	1.4	93.	209 • 7	• 5	
	550 -		-2.1	-3.0	94 •	15.2	2.3	
	500.		-5.8	-10.9	67.	310.5	5.9	
	450.		-10.9	-12.0	91.	330.2	0.3	
	400.		-16.4	-21.9	62.	39.5	15.7	
	350 -		-23.4	-52.4	43.	51.4	15.9	
	300 -		-31.9	-46.8	21.	46.6	14.9	
	250 • 1		-42.2	-		62.9	22.4	
	200.0		-54.9			62.0	20.0	
	175 - 6		-61.5			50 + 1	29.5	
	150.		-63.5			101.6	13.7	
	125.		-71.5			71.2	12.7	
	100 • 0		-69.7			87.4	24.5	
	80.0		-65.5			95.2	15.4	
	70.0		-60.5			93.5	25.0	
	60.0		-59.8				23.9	
	50 • (-56.5			114.9	17.5	
	40.1		-55.1			• • •		

** AT LEAST ONE ASSUMED RELATIVE HIMIDITY VALUE WAS USED IN THE INTERPOLATION.

END

DATE FILMED

0-83

