Итоговая лабораторная работа.

1. Напишите функцию, которая переводит градусы из шкалы Фаренгейта в шкалу Цельсия (и обратно, с возможностью выбора направления конвертации). Входными данными могут быть как единичные значения, так и векторы значений градусов. Программа должна возвращать результат в виде таблицы данных, где в левом столбце указано(ы) значение(я) градусов в исходном формате, а в правом столбце - в том формате, в который переводим.

```
#task 1
# Функция для конвертации из шкалы Фаренгейта в шкалу Цельсия и наоборот
convert_temp <- function(temp, direction = "FC") {</pre>
  # Проверка направления конвертации
  if (direction == "FC") {
   converted_temp <- (temp - 32) * 5/9 # Фаренгейт в Цельсий
  } else if (direction == "CF") {
   converted_temp <- temp * 9/5 + 32 # Цельсий в Фаренгейт
  } else {
   stop("Invalid input") # Обработка некорректного направления конвертации
  }
 # Создание таблицы данных с исходными и сконвертированными значениями
  data <- data.frame(Original = temp, Converted = converted_temp)</pre>
  return(data)
# Примеры использования функции
# Конвертация из Фаренгейта в Цельсий
fahrenheit_temperatures <- c(32, 50, 68, 86)</pre>
conversion1 <- convert_temp(fahrenheit_temperatures, "FC")</pre>
print(conversion1)
# Конвертация из Цельсия в Фаренгейт
celsius_temperatures \leftarrow c(0, 10, 20, 30)
conversion2 <- convert_temp(celsius_temperatures, "CF")</pre>
print(conversion2)
> # Примеры использования функции
> # Конвертация из Фаренгейта в Цельсий
> fahrenheit_temperatures <- c(32, 50, 68, 86)</pre>
> conversion1 <- convert_temp(fahrenheit_temperatures, "FC")</pre>
> print(conversion1)
  Original Converted
1
          32
                       0
2
          50
                      10
3
          68
                      20
          86
                      30
> # Конвертация из Цельсия в Фаренгейт
> celsius_temperatures <- c(0, 10, 20, 30)</pre>
> conversion2 <- convert_temp(celsius_temperatures, "CF")</pre>
> print(conversion2)
  Original Converted
1
           0
                      32
2
          10
                      50
3
          20
                      68
4
          30
                      86
```

```
# Функция для конвертации из шкалы Фаренгейта в шкалу Цельсия и
наоборот
convert temp <- function(temp, direction = "FC") {
 # Проверка направления конвертации
 if (direction == "FC") {
  converted_temp <- (temp - 32) * 5/9 # Фаренгейт в Цельсий
 } else if (direction == "CF") {
  converted temp <- temp * 9/5 + 32 # Цельсий в Фаренгейт
 } else {
  stop("Invalid input") # Обработка некорректного направления конвертации
 }
 # Создание таблицы данных с исходными и сконвертированными
значениями
 data <- data.frame(Original = temp, Converted = converted_temp)
 return(data)
}
# Примеры использования функции
# Конвертация из Фаренгейта в Цельсий
fahrenheit_temperatures <- c(32, 50, 68, 86)
conversion1 <- convert_temp(fahrenheit_temperatures, "FC")
print(conversion1)
# Конвертация из Цельсия в Фаренгейт
celsius_temperatures <- c(0, 10, 20, 30)
conversion2 <- convert_temp(celsius_temperatures, "CF")
print(conversion2)
```

2. Вычислите $\sum_{i=1}^{20} \sum_{j=1}^{i} \frac{i^4}{(3+ij)}$ наилучшим способом с точки зрения скорости исполнения кода.

Выполнение задание без циклов с использованием встроенных функций sapply и lapply

```
i <- 1:20
j <- lapply(i, function(x) 1:x)
result <- sum(sapply(seq_along(i), function(x) {
    sum(i[[x]]^4 / (3 + i[[x]] * j[[x]]))
}))
print(result)</pre>
```

```
> i <- 1:20
> j <- lapply(i, function(x) 1:x)
> result <- sum(sapply(seq_along(i), function(x) {
+    sum(i[[x]]^4 / (3 + i[[x]] * j[[x]]))
+ }))
> print(result)
[1] 137295.9
```

- **3.** Загрузите встроенную в R базу данных по автомобилям mtcars. С помощью библиотеки ggplot2 постройте точечную диаграмму, которая:
 - демонстрирует связь между показателями «число лошадиных сил» (hp) и «вес» (wt);
 - учитывает информацию о числе цилиндров у автомобиля (cyl);
 - учитывает информацию о типе коробки передач автомат или механика (am); легенда графика должна быть корректной и информативной. Точки, соответствующие автомобилям с автоматической коробкой передач, должны быть зеленого цвета ("green"), а с ручной красного ("red").

Подпишите оси графика. Добавьте заголовок графика.

```
# Загрузка библиотеки ggplot2 library(ggplot2)
```

```
# Загрузка встроенной базы данных mtcars data(mtcars)
```

Создание нового столбца для цвета в зависимости от типа коробки передач mtcars\$color <- ifelse(mtcars\$am == 0, "green", "red")

Построение графика

```
ggplot(mtcars, aes(x = hp, y = wt, color = color)) +
geom_point(aes(size = cyl)) +
scale_color_identity("Тип коробки передач", labels = c("Автомат",
"Механика"), breaks = c("green", "red")) +
labs(title = "Связь между числом лошадиных сил и весом автомобилей",
x = "Число лошадиных сил",
y = "Вес") +
```

theme_minimal()

Этот код создает точечную диаграмму, которая демонстрирует связь между числом лошадиных сил (hp) и весом (wt) автомобилей. Размер точек соответствует числу цилиндров (cyl), а цвет точек указывает на тип коробки передач (am): зеленый для автоматической и красный для механической. Заголовок графика и подписи осей также добавлены в соответствии с требованиями.

4. Напишите функцию, которая запрашивает у пользователя размерность матрицы (пользователь вводит в строке ввода число строк nrows и столбцов ncols через пробел), и создает единичную матрицу заданной размерности. Если невозможно создать единичную матрицу заданной размерности, на экран выводится соответствующее сообщение и создается нулевая матрица заданной размерности. Затем функция запрашивает у пользователя число элементов матрицы, которые нужно случайным образом выбрать и заменить на NA. Функция должна возвращать в итоге матрицу со случайным набором элементов NA, а также выводить на экран объем памяти, занимаемый данной матрицей.

Эта функция сначала запрашивает у пользователя размерность матрицы. Если невозможно создать единичную матрицу заданной размерности, она создает нулевую матрицу. Затем функция запрашивает у пользователя число элементов матрицы, которые нужно заменить на NA, и выполняет замену. В конце функция выводит объем памяти, занимаемый матрицей, и возвращает матрицу.

```
create_matrix <- function() {</pre>
 # Запрос размерности матрицы у пользователя
 сат("Введите число строк и столбцов через пробел: ")
 dims <- as.integer(strsplit(readline(), " ")[[1]])
 # Проверка корректности ввода
 if (any(is.na(dims)) \parallel length(dims) != 2) {
  сат("Некорректный ввод. Пожалуйста, введите два целых числа через
пробел.\n")
  return(NULL)
 }
 # Проверка, можно ли создать единичную матрицу заданной размерности
 if (dims[1]!= dims[2]) {
  cat("Невозможно создать единичную матрицу заданной размерности.
Создается нулевая матрица.\n")
  mat <- matrix(0, nrow = dims[1], ncol = dims[2])
 } else {
  mat <- diag(dims[1])
 # Запрос числа элементов для замены на NA
 cat("Введите число элементов для замены на NA: ")
 n <- as.integer(readline())
 # Проверка корректности ввода
 if (is.na(n) || n < 0) {
  сат("Некорректный ввод. Пожалуйста, введите неотрицательное целое
число.\n")
  return(NULL)
```

```
}
# Замена случайных элементов на NA
if (n > length(mat)) {
  cat("Число элементов для замены больше общего числа элементов в
матрице. Все элементы будут заменены на NA.\n")
  n <- length(mat)
 }
idx <- sample(length(mat), n)
mat[idx] <- NA
 # Вывод объема памяти, занимаемого матрицей
 cat("Объем памяти, занимаемый матрицей: ", object.size(mat), " байт\n")
 return(mat)
> mat_1 <- create_matrix()</pre>
Введите число строк и столбцов через пробел:
Введите число элементов для замены на NA:
Объем памяти, занимаемый матрицей: 344 байт
```

содержащие значения NA. Для получившейся таблицы данных напишите код, который выводит на экран 2 самых жарких месяца, а затем выводит таблицу данных, состоящую только из наблюдений для этих двух месяцев. # Загрузка встроенной базы данных airquality data(airquality) # Удаление строк с NA airquality <- na.omit(airquality)</pre> # Нахождение двух самых жарких месяцев hot_months <- sort(tapply(airquality\$Temp, airquality\$Month, mean), decreasing = TRUE)[1:2]# Вывод на экран двух самых жарких месяцев cat("Два самых жарких месяца: ", names(hot months), "\n") # Создание таблицы данных только для этих двух месяцев hot_data <- airquality[airquality\$Month %in% as.numeric(names(hot_months)),] # Вывод таблицы данных на экран print(hot_data)

5. Загрузите встроенную в R базу данных airquality. Удалите из таблицы данных все строки,

			٠.	_		
\rightarrow	nrı	$n + \epsilon$	1	not -		lata)
	р, ,		v		.~	ucus

> pi	rint(ho	ot_data)				
	Ozone	Solar.R	Wind	Temp	Month	Day
62	135	269	4.1	84	7	1
63	49	248	9.2	85	7	2
	32	236	9.2		7	3
64				81		
66	64	175	4.6	83	7	5
67	40	314	10.9	83	7	6
68	77	276	5.1	88	7	7
69	97	267	6.3	92	7	8
70	97	272	5.7	92	7	9
71	85	175	7.4	89	7	10
73	10	264	14.3	73	7	12
74	27	175	14.9	81	7	13
76	7	48	14.3	80	7	15
77	48	260	6.9	81	7	16
78	35	274	10.3	82	7	17
79	61	285	6.3	84	7	18
80	79	187	5.1	87	7	19
81	63	220	11.5	85	7	20
82	16	7	6.9	74	7	21
85	80	294	8.6	86	7	24
86	108	223	8.0	85	7	25
					7	
87	20	81	8.6	82		26
88	52	82	12.0	86	7	27
89	82	213	7.4	88	7	28
90	50	275	7.4	86	7	29
91	64	253	7.4	83	7	30
92	59	254	9.2	81	7	31
93	39	83	6.9	81	8	1
94	9	24	13.8	81	8	2
95	16	77	7.4	82	8	3
99	122	255	4.0	89	8	7
100	89	229	10.3	90	8	8
101	110	207	8.0	90	8	9
104	44	192	11.5	86	8	12
105	28	273	11.5	82	8	13
106	65	157	9.7	80	8	14
108	22	71	10.3	77	8	16
109	59	51	6.3	79	8	17
110	23	115	7.4	76	8	18
111	31	244	10.9	78	0	19
					8	
112	44	190	10.3	78	8	20
113	21	259	15.5	77	8	21
114	9	36	14.3	72	8	22
116	45	212	9.7	79	8	24
117	168	238	3.4	81	8	25
118	73	215	8.0	86	8	26
120	76	203	9.7	97	8	28
121	118	225	2.3	94	8	29
122	84	237	6.3	96	8	30
123	85	188	6.3	94	8	31
>						