How do you design an intelligent agent?

- Definition: An intelligent agent perceives its environment via sensors and acts rationally upon that environment with its effectors.
- A discrete agent receives percepts one at a time, and maps this percept sequence to a sequence of discrete actions.
- Properties

sensors

- -Autonomous
- -Reactive to the environment
- -Pro-active (goal-directed)
- -Interacts with other agents

via the environment

sensors/percepts and effectors/actions? What do you mean,

• Humans

- Sensors: Eyes (vision), ears (hearing), skin (touch), tongue (gustation), nose (olfaction), neuromuscular system (proprioception)
- Percepts:
- At the lowest level electrical signals from these sensors
- After preprocessing objects in the visual field (location, textures, colors, ...), auditory streams (pitch, loudness, direction), ...
- Effectors: limbs, digits, eyes, tongue, ...
- Actions: lift a finger, turn left, walk, run, carry an object, ...
- The Point: percepts and actions need to be carefully defined, possibly at different levels of abstraction

Automated taxi driving system A more specific example:

- Percepts:
- Actions:
- Goals:
- Environment:

Automated taxi driving system A more specific example:

- Percepts: Video, sonar, speedometer, odometer, engine sensors, keyboard input, microphone, GPS, ...
 - Actions: Steer, accelerate, brake, horn, speak/display, ...
- Goals: Maintain safety, reach destination, maximize profits (fuel, tire wear), obey laws, provide passenger comfort, ...
- Environment: U.S. urban streets, freeways, traffic, pedestrians, weather, customers, ...
- Different aspects of driving may require different types of agent programs!

Rationality

- sequence, do whatever actions will maximize its expected An ideal rational agent should, for each possible percept performance measure based on
- (1) the percept sequence, and
- (2) its built-in and acquired knowledge.
- · Rationality includes information gathering, not "rational ignorance." (If you don't know something, find out!)
- Rationality → Need a performance measure to say how well a task has been achieved.
- Types of performance measures: false alarm (false positive) and false dismissal (false negative) rates, speed, resources required, effect on environment, etc.

Autonomy

- A system is autonomous to the extent that its own behavior is determined by its own experience.
- Therefore, a system is not autonomous if it is guided by its designer according to a priori decisions.
- To survive, agents must have:
- -Enough built-in knowledge to survive.
- -The ability to learn.

Some agent types

• (0) Table-driven agents

use a percept sequence/action table in memory to find the next action. They are implemented by a (large) lookup table.

• (1) Simple reflex agents

production system. They are stateless devices which do not have memory of are based on condition-action rules, implemented with an appropriate past world states.

(2) Agents with memory

have internal state, which is used to keep track of past states of the world.

• (3) Agents with goals

are agents that, in addition to state information, have goal information that describes desirable situations. Agents of this kind take future events into consideration.

• (4) Utility-based agents

base their decisions on classic axiomatic utility theory in order to act rationally.

(0/1) Table-driven/reflex agent architecture

(0) Table-driven agents

Table lookup of percept-action pairs mapping from every possible perceived state to the optimal action for that state

Problems

- Too big to generate and to store (Chess has about 10¹²⁰ states, for example)
- No knowledge of non-perceptual parts of the current
- Not adaptive to changes in the environment; requires entire table to be updated if changes occur
- Looping: Can't make actions conditional on previous actions/states

(1) Simple reflex agents

action; each rule handles a collection of perceived states Rule-based reasoning to map from percepts to optimal

• Problems

- Still usually too big to generate and to store
- Still no knowledge of non-perceptual parts of state
- Still not adaptive to changes in the environment; requires collection of rules to be updated if changes occur
- Still can't make actions conditional on previous state

(2) Architecture for an agent with memory

(2) Agents with memory

- Encode "internal state" of the world to remember the past as contained in earlier percepts.
- of the world at each input, so perception of the environment • Needed because sensors do not usually give the entire state is captured over time. "State" is used to encode different "world states" that generate the same immediate percept.
- possibility is to represent just the latest state, but then can't Requires ability to represent change in the world; one reason about hypothetical courses of action.
- Example: Rodney Brooks's Subsumption Architecture.

Brooks's Subsumption Architecture (2) An example:

- completely defining a complete percept-action cycle for one decomposing behaviors into a hierarchy of skills, each • Main idea: build complex, intelligent robots by very specific task.
- Examples: avoiding contact, wandering, exploring, recognizing doorways, etc.
- few states (though each state may correspond to a complex • Each behavior is modeled by a finite-state machine with a function or module).
- Behaviors are loosely coupled, asynchronous interactions.

(3) Architecture for goal-based agent

(3) Goal-based agents

- Choose actions so as to achieve a (given or computed) goal.
- A goal is a description of a desirable situation.
- Keeping track of the current state is often not enough need to add goals to decide which situations are good
- Deliberative instead of reactive.
- before deciding if goal is achieved involves consideration • May have to consider long sequences of possible actions of the future, "what will happen if I do...?"

Environment (4) Architecture for a complete How happy I will be What it will be like if I do action A utility-based agent What the world wou op plnous in such a state What action Effectors Sensors is like now How the world evolves What my actions do Utility State Agent

(4) Utility-based agents

- When there are multiple possible alternatives, how to decide which one is best?
- unhappy state, but often need a more general performance A goal specifies a crude distinction between a happy and measure that describes "degree of happiness.
- Utility function U: State → Reals indicating a measure of success or happiness when at a given state.
- Allows decisions comparing choice between conflicting goals, and choice between likelihood of success and importance of goal (if achievement is uncertain).

Properties of Environments

Fully observable/Partially observable.

- environment needed to choose an action, the environment is fully - If an agent's sensors give it access to the complete state of the
- Such environments are convenient, since the agent is freed from the task of keeping track of the changes in the environment.

• Deterministic/Stochastic.

- An environment is **deterministic** if the next state of the environment is completely determined by the current state of the environment and the action of the agent; in a stochastic environment, there are multiple, unpredictable outcomes
- In a fully observable, deterministic environment, the agent need not deal with uncertainty.

Properties of Environments II

Episodic/Sequential

- An episodic environment means that subsequent episodes do not depend on what actions occurred in previous episodes.
- In a sequential environment, the agent engages in a series of connected episodes.
- Such environments do not require the agent to plan ahead.

• Static/Dynamic.

- A **static** environment does not change while the agent is thinking.
- The passage of time as an agent deliberates is irrelevant.
- The agent doesn't need to observe the world during deliberation.

Properties of Environments III

• Discrete/Continuous.

- If the number of distinct percepts and actions is limited, the environment is discrete, otherwise it is continuous.

Single agent/Multi-agent.

- If the environment contains other intelligent agents, the agent needs to be concerned about strategic, game-theoretic aspects of the environment (for either cooperative or competitive agents)
- Most engineering environments don't have multi-agent properties, whereas most social and economic systems get their complexity from the interactions of (more or less) rational agents.

	Fully observable?	Deterministic Episodic Static Discrete? Single agent?	Episodic	Static	Discrete?	Single agent?
Solitaire						
Backgammon						
Driving						
Internet shopping						
Medical diagnosis						

(1)	Fully observable?	Deterministic Episodic Static Discrete? Single agent?	Episodic	Static	Discrete?	Single agent?
Solitaire No		Yes	Yes	Yes	Yes	Yes
Backgammon						
Driving					72	
Internet shopping		00-	0			
Medical diagnosis	79		8) -			

	Fully observable?	Deterministic? Episodic? Static? Discrete? Single agent?	Episodic?	Static?	Discrete?	Single agent?
Solitaire	No	Yes	Yes	Yes	Yes	Yes
Backgammon Yes	Yes	No	No	Yes	Yes	No
Driving	v				7	
Internet shopping		2000 -00	0			
Medical diagnosis	79		* =			

L	1
0	8)
000000	00000
=0	*
	79

	Fully observable?	Deterministic? Episodic? Static? Discrete? Single agent?	Episodic?	Static?	Discrete?	Single agent?
Solitaire	No	Yes	Yes	Yes	Yes	Yes
Backgammon Yes	Yes	No	No	Yes	Yes	No
Driving	No	N_0	No	No	No	No
Internet shopping						
Medical diagnosis						

	Fully observable?	Deterministic?	Episodic? Static? Discrete? Single agent?	Static?	Discrete?	Single agent?
Solitaire	No	Yes	Yes	Yes	Yes	Yes
Backgammon Yes	Yes	No	No	Yes	Yes	No
Driving	No	No	No	No	No	No
Internet shopping	No	No	No	No	Yes	No
Medical diagnosis						

	Fully	Deterministic?	Episodic?	Static?	Static? Discrete?	Single
	observable?					agent?
Solitaire	No	Yes	Yes	Yes	Yes	Yes
Backgammon	Yes	No	No	Yes	Yes	No
Driving	No	No	No	No	No	No
Internet shopping	No	No	No	No	Yes	No
Medical diagnosis	No	N_0	No	No	No	Yes

→ Lots of real-world domains fall into the hardest case!

Summary

- An agent perceives and acts in an environment, has an architecture, and is implemented by an agent program.
- An ideal agent always chooses the action which maximizes its expected performance, given its percept sequence so far.
- An autonomous agent uses its own experience rather than built-in knowledge of the environment by the designer.
- An agent program maps from percept to action and updates its internal state.
- Reflex agents respond immediately to percepts.
- Goal-based agents act in order to achieve their goal(s).
- Utility-based agents maximize their own utility function.
- Representing knowledge is important for successful agent design. The most challenging environments are partially observable,
 - stochastic, sequential, dynamic, and continuous, and contain multiple intelligent agents.