

planetmath.org

Math for the people, by the people.

rotation matrix

Canonical name RotationMatrix
Date of creation 2013-03-22 15:03:57
Last modified on 2013-03-22 15:03:57

Owner matte (1858) Last modified by matte (1858)

Numerical id 17

Author matte (1858) Entry type Definition Classification msc 15-00

Synonym rotational matrix Related topic Orthogonal Matrices

Related topic ExampleOfRotationMatrix

Related topic DecompositionOfOrthogonalOperatorsAsRotationsAndReflections

 $Related\ topic \qquad Derivation Of Rotation Matrix Using Polar Coordinates$

Related topic DerivationOf2DReflectionMatrix
Related topic TransitionToSkewAngledCoordinates

Definition 1. A rotation matrix is a (real) orthogonal matrix whose determinant is +1. All $n \times n$ rotation matrices form a group called the special orthogonal group and it is denoted by SO(n).

Examples

- 1. The identity matrix in \mathbb{R}^n is a rotation matrix.
- 2. The most general rotation matrix in \mathbb{R}^2 can be written as

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

where $\theta \in \mathbb{R}$. Multiplication (from the left) with this matrix rotates a vector (in \mathbb{R}^2) θ radians in the anti-clockwise direction.

Properties

- 1. Suppose $v \in \mathbb{R}^n$ is a unit vector. Then there exists a rotation matrix R such that $R \cdot v = (1, 0, \dots, 0)$.
- 2. In fact, for $v \in \mathbb{R}^n$, $n \geq 3$, there are many rotation matrices $\mathbf{R} \in SO(n)$ such that $R \cdot v = (1, 0, \dots, 0)^T$. To see this, let f be the mapping $f \colon SO(n-1) \to SO(n)$, defined as

$$f(Q) = \begin{pmatrix} 1 & 0_{1 \times n-1} \\ 0_{n-1 \times 1} & Q_{n-1 \times n-1} \end{pmatrix}.$$

Then for each $Q \in SO(n-1)$, f(Q) maps $(1,0,\ldots,0)^T$ onto itself. Thus, if $R_0 \in SO(n)$ satisfies $R \cdot v = (1,0,\ldots,0)^T$, then $f(Q) \cdot R$ satisfies the same property for all $Q \in SO(n-1)$.