

Irakaslea: Jon Montalban Sanchez Teknologia Elektronikoko Saila 5I20 – Bilboko Ingeniaritza Eskola (II Eraikina) jon.montalban@ehu.eus

GAIAREN GAI-ZERRENDA

- 1. Bohr-en eredu atomikoa
- 2. Energia bandak
- 3. Material motak
- 4. Erdieroaleak
- 5. PN juntura

1. Bohr-en eredu atomikoa

- Atomoan bi atal nagusi:
 - Nukleoa: protoiak eta neutroiak daude, hau da, karga positiboa eta masa.
 - Karga negatiboa: nukleoaren inguruan orbita eliptikoetan biratzen ari diren elektroien multzoa.
- Indarren arteko oreka elektroiak orbita mantentzeko.
- Elektroiek orbita jakin batean → Energia-maila

- Orbita txikiago batetik handiago batera → Energia potentziala irabazi
- Nukleotik gertuko geruzak oso egonkorrak
 - o Azken geruza → Balentzia geruza

1. Bohr-en eredu atomikoa

- $-H \rightarrow 1s^1$
- He \rightarrow 1 s²
- Li \rightarrow 1 s² 2s¹
- Be $\rightarrow 1 \text{ s}^2 2\text{s}^2$
- B \to 1 s² 2s² 2p¹

 $1s\,{}^\circ_12s\,{}^\circ_22p\,{}^\circ_{10}3s\,{}^\circ_{12}3p\,{}^\circ_{14}4s\,{}^\circ_{26}3d\,{}^\circ_{12}4p\,{}^\circ_{12}5s\,{}^\circ_{24}4d\,{}^\circ_{12}5p\,{}^\circ_{14}6s\,{}^\circ_{12}4f\,{}^\circ_{12}5d\,{}^\circ_{12}6p\,{}^\circ_{12}7s\,{}^\circ_{12}5f\,{}^\circ_{12}6d\,{}^\circ_{12}7p\,{}^\circ_{12}6d\,{}^\circ_{12}6d\,{}^\circ_{12}7p\,{}^\circ_{12}6d\,{}^\circ_{12}7p\,{}^\circ_{12}6d\,{}^\circ_{12}7p\,{}^\circ_{12}6d\,{}^\circ_{12}7p\,{}^\circ_{12}6d\,{}^\circ_{12}7p\,{}^\circ_{12}6d\,{}^\circ_{12}7p\,{}^\circ_{12}6d\,{}^\circ_{1$

2. Energia bandak

- Atomoa isolatuta ez dagoenean
 - Bere atomoaren indarrak +ondoko atomo guztienak
 - Ez daude bi elektroi indar berdinen eragina dutenak

Energiaren balio guztiak ez dira posible → Banda debekatuak
 GAP, eV-tan neurtzen da

5

2. Energia bandak

- Efektu Fotoelektrikoa: erradiazio elektromagnetikoz (X izpiak, argi ikusgaia...) eraso ondoren, materiatik elektroiak erauztearen fenomeno elektroniko-kuantikoa da
 - Maiztasunarekiko proportzionala
 - Igorritako elektroien kopurua argiaren intentsitatearekiko proportzionala
 - Fotoiak transmititzen dira → beraien energia uhin maiztasunarekiko proportzionala

3. Material motak

o Eroaleak

- Azken banda ez dago beteta
- Banda debekaturik ez

o Isolatzaileak

- Balentzia banda guztiz beteta
- Banda debekatua oso zabala
- Eroankortasuna mesprezagarria

o Erdieroaleak

- "4. taldeko elementuak"
- Banda debekatu "txikia"
- Tenperatura baxuetan isolatzaileak
- Tenperatura altuetan eroale

3. MATERIAL MOTAK

- Eroankortasuna: material batek bere baitatik korronte elektrikoa pasatzeko duen gaitasuna eta gaitasun horren neurria.
- o Erresistibitatea: material baten erresistentzia elektriko espezifikoa da. Eroankortasunaren alderantzizkoa.

$$\sigma_{\it isolatzaile} << \sigma_{\it erdieroale} << \sigma_{\it metal}$$
 $ho_{\it isolatzaile} >>
ho_{\it erdieroale} >>
ho_{\it metal}$

• Propietate hauek aldatu ditzakegu

- IV. taldeko elementuak (Si, Ge)
- Konposatuak
 - III-V taldekoak (GaAs, InP)
 - II-VI taldekoak (CdTe)
- Aleazioak (AlGaAs, AlGaInP, InGaN)

- Egitura kristalinoa eta lotura kobalentea
- Atomo bat egonkorra izan dadin 8 elektroi behar ditu balentzia orbitan
- Si atomo bakoitzak 4 elkarbanatu
- Elkarbanatutako elektroiek **lotura kobalentea** sortzen dute.

Tenperatura > 0 K

- Energia termikoak atomoei dar-dar eginarazten die.
- Balentzia-geruzako elektroi bat aska daiteke. Hau gertatzen denean, elektroiak nahikoa energia irabazten
- Elektroia elektroi askea izango da eta tarte bat uzten du baletziabandan.
- Tarte horri hutsune izena ematen zaio (h⁺) eta karga positiboa balitz bezala jokatzen du.
- Inguruan dituen elektroiak erakarriko ditu.

o Erdieroale intrintsekoak

- Purua, gehituriko ez-purutasunik ez
- Hutsune eta elektroi kopuru berdina

o Erdieroale estrintsekoak

- N motakoak
 - o Balentzia orbitan 5e⁻
 - V. taldekoak
 - Eramaileak elektroiak

Electrón libre Si Tipo N

P motakoak

- o Balentzia orbitan 3e⁻
- III. taldekoak
- Eramaileak zuloak

o Orekan - Kanpo polarizazio gabe

- Potentzial-diferentzia bat ezartzen badugu bi korronte mota agertzen dira.
 - 1. Elektroi askeak eremu elektrikoaren kontrako noranzkoan.
 - 2. Balentzia-bandako elektroi bat bere posiziotik mugitzen da hutsune batekir birkonbinatzeko (eremu elektrikoaren kontrako noranzkoan).

o Orekan - Kanpo polarizazio gabe

- Azter dezagun P motako erdieroale-zati bat eta N motako beste bat elkartzean gertatzen dena:
 - P motako eskualdean → balentzia-bandako hutsuneak direla ugarienak
 - N motakoan → eroankortasun-bandako elektroi askeak

o Orekan - Kanpo polarizazio gabe

o Barreiapena:

- N aldean eramaile ugarienak diren elektroi aske batzuk PN juntura (muga) zeharkatuko dute;
- P eskualdean hutsune horietako batean erori eta balentzia-elektroi bihurtuko da (birkonbinaketa)
- Bi ioi sortzen dira:
 - o N aldea utzi duen elektroiak → atomo bat positiboki kargatuta (ioi +)
 - o P aldea hartu duen elektroiak→ atomo bat negatiboki kargatuta (ioi -)
- Eremu elektriko bat sortuko da, karga positibotik negatibora zuzenduta.

o Orekan - Kanpo polarizazio gabe

- o Ioi hazkundeak eremu elektrikoaren handitzea dakar
- Eremu horrek elektroiei barreiapenaren kontrako noranzkoan egiten du indarra
- Une batetik aurrera elektroi askeek ezin izango dute eremuaren indarra gainditu oreka lortuz
- o Deplezio-geruza sortu da (0.3-0.7 V tartean).

o Zuzeneko polarizazioan

- Tentsio-sorgailuak
 - N aldeko elektroi askeak PN junturarantz bultzatzen ditu
 - Elektroi horiek juntura zeharkatzeko adina energia dute
 - **Deplezio-geruza estutu** egiten da edo potentzial langa txikitu
 - $V = V_0$ denean, potentzial-langa desagertu egiten
 - Elektroiek oztoporik gabe zeharkatuko dute PN juntura

o Alderantzizko polarizazioan

• Tentsio-sorgailuak

- Mutur positiboak elektroiak erakartzen ditu eta negatiboak hutsuneak
- Deplezio-geruza zabaldu egiten da edo potentzial langa handitu
- Ez da apenas korronterik egongo
- P eskualdean tenperaturaren kausaz sortutako elektroi aske gutxi batzuk sorgailuaren alde positiboak erakarriak izango dira

Irakaslea: Jon Montalban Sanchez Teknologia Elektronikoko Saila 5I20 – Bilboko Ingeniaritza Eskola (II Eraikina) jon.montalban@ehu.eus