

P 64 – Computational modelling and imaging in DBS. E-mail: arash.Golmohammadi@uni-rostock.de

Non-invertibility of basal ganglia network calls for new biomarkers

Arash Golmohammadi¹, Jan Philipp Payonk¹, Timon Merk⁴, Wolf-Julian Neumann⁴, Ursula van Rienen^{1,2,3}, Revathi Appali^{1,3}

¹ Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany | ² Department Life, Light & Matter, University of Rostock, Rostock, Germany | ³ Department Ageing of Individuals and Society, University of Rostock, Rostock, Germany | ⁴ Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany

INTRODUCTION

- Mathematical models of the basal ganglia (BG) partition the parameter space based on the parkinsonian biomarkers into healthy and pathological (P-conformal)
- We show that biomarkers alone, do not constrain the highdimensional parameters space of BG models

MODEL **CORTEX Basal Ganglia** Pyramidal Interneuron **Glutamatergic STRIATUM** D2 D1 **GABAergic** STN Input GPi GPe **Excitatory Population RETicular Inhibitory Population THALAMUS RELay** Brainstem

Mean-field model

Solved for voltage $V_k(t)$ and field $\phi_k({m r},t)$ for each population k

$$\tau_r \tau_d \frac{d^2 V_k}{dt^2} + (\tau_r + \tau_d) \frac{dV_k}{dt} + V_k = \sum_i \nu_{ki} \, \phi_i (t - \delta_{ki}) + I_k^{ext}$$

$$\frac{1}{\gamma_a^2} \frac{\partial^2 \phi_k}{\partial t^2} + \frac{1}{\gamma_a} \frac{\partial \phi_k}{\partial t} + \phi_k - r_a^2 \nabla^2 \phi_k = \frac{Q_k^{\text{max}}}{1 + \exp\left[-\frac{V_k - \theta_k}{r_k}\right]}$$

- Synaptic rise time au_r and somatic decay time au_d
- Axonal pulse attenuation with damping rate γ_a
- Spatially homogeneous neural field $(r_a^2 \nabla^2 \phi_k = 0)$
- Axonal pulse attenuation without delay ($\delta_{ki} = 0$)
- Sigmoidal activation function with threshold θ_k , steepness r_k , and maximum firing rate of Q_k^{\max}
- Noise-free input I_k^{ext} from brainstem to k=thalamus

Parameters

- set according to physiological steady-state firing rates
- Parkinsonian state defined by varying connectivity and thresholds

Study

• Sweep the decay time scale (τ_d) to find *P-conformal* regions using the integral of power spectral density (PSD):

P-conformal =
$$(\frac{P_{\beta}^{parkin}}{P_{\beta}^{healthy}} > 1)$$
 $P_{\beta} = \int_{12 \text{ Hz}}^{30 \text{ Hz}} PSD(f) df$

RESULTS

- Model exhibits dynamically different response types (Fig.1)
 - I. Stationary steady-state \rightarrow [1,2], this work
 - II. Uni-modal oscillation \rightarrow [3], this work
 - III. Multi-modal oscillations → this work
 - V. Chaotic → this work

Figure 2: Multitude of P-conformal parameter regions. Some STN windows are marked in blue, orange and green

Figure 3: STN power spectral density of the windows marked in Fig. 2 in beta frequency range

DISCUSSION

- Several physiologically plausible parameter sets exhibit parkinsonian-like responses
- Computational models provide tests to discern these parameter sets using the response's dynamical type (number of modes, peak frequency, cross-correlations)
- Such tests must be validated against additional biomarkers or monitors in the brain

CONCLUSION

- Network can show varieties of dynamical responses depending on the parameters and the inputs
- Single biomarker is not enough to fully parametrize the computational model of healthy or parkinsonian state
- Model parameters must be systematically estimated using EEG/ECoG/LFP recordings and Bayesian inversion

FUTURE WORK

- Implementing the axonal delays
- Use EEG/ECoG recordings and Bayesian inversion to estimate parameters systematically

This work was fuded by DFG CRC 295 RETUNE (424778381).

References:

[1] van Albada, S. J., Gray, R. T., Drysdale, P. M., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical system. II: Dynamics of parkinsonian oscillations. *Journal of Theoretical Biology*, *257*(4), 664–688. https://doi.org/10.1016/j.jtbi.2008.12.013

[2] van Albada, S. J., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical system. I: Firing rates in healthy and parkinsonian states. *Journal of Theoretical Biology*, *257*(4), 642–663. https://doi.org/10.1016/j.jtbi.2008.12.018

[3] Müller, E. J., & Robinson, P. A. (2018). Quantitative theory of deep brain stimulation of the subthalamic nucleus for the suppression of pathological rhythms in Parkinson's disease. *PLOS Computational Biology*, *14*(5), e1006217. https://doi.org/10.1371/journal.pcbi.1006217

Link to the repository

Link to this poster