

SISTEM ANALIZI VE TASARIMI

Bölüm 5a- Süreç Modelleme

Dr. H. İbrahim CEBECİ

Sistem Modelleri

- ✓ Sistem modelleri, sistem geliştirmede önemli bir rol oynamaktadır.
- ✓ Sistem analistleri veya kullanıcıları sürekli yapılandırılmamış sorunlarla uğraşırlar.
- ✓ Bu gibi problemleri yapılandırmanın bir yolu modelleri çizmektir.
 - ➤ Bir **model** gerçekliğin bir temsilidir.
 - ➤ Bir resim bin kelimeye bedel olduğu gibi, çoğu sistem modeli gerçekliğin resimsel temsilidir.

Dr. H. İbrahim CEBECİ 2/49

Sistem Modelleri

- ✓ Modeller;
 - Mevcut sistemleri daha iyi anlayabilmek için,
 - > Önerilen sistemin gereksinimleri dokümante etmek veya tasarıma yol göstermek adına kullanılabilir.
- ✓ **Mantıksal modeller** uygulamadan bağımsız olarak bir sistemin «ne olduğunun ve ne yaptığının» göstergesidir.
 - Uygulamadan bağımsızdır.
 - > Kavramsal model, temel model veya iş modelleri olarak ta adlandırılabilir.
 - ➤ Sistem Gereksinimleri odaklı (Analiz aşaması)
- ✓ **Fiziksel modeller** ise sadece «sistemin ne olduğunu» değil teknik olarak nasıl uygulanacağını da gösterir.
 - > Uygulama bağımlıdır (Teknoloji seçimleri ve kısıtlarını içerir)
 - > Uygulama modeli veya teknik model adıyla da anılırlar.
 - ➤ Teknik tasarımlar odaklı (Tasarım aşaması)

Dr. H. İbrahim CEBECİ

Sistem Modelleri

- ✓ Sistem analizi etkinlikleri, aşağıdaki nedenlerden dolayı mantıksal sistem modellerine odaklanma eğilimindedir:
 - Mantıksal modeller, mevcut sistemin uygulanma şeklinin veya herhangi birinin, sistemin uygulanabileceğini düşündüğü yolun sonucu olan önyargıları kaldırır.
 - Mantıksal modeller, iş gereksinimlerini kaçırma riskini azaltır.
 - ☐ Teknik detaylardan ziyade alan odaklı
 - Mantıksal modeller, teknik olmayan veya daha az teknik dillerdeki son kullanıcılarla iletişim kurmamıza izin verir.

Dr. H. İbrahim CEBECİ

Süreç Kavramı

- ✓ Her aşamada, girdileri (veri, malzeme, parça, vb.) Çıktılara dönüştürmek için bir veya daha fazla kaynağı (çalışan süresi, enerji, makineler, para) tüketen birbiri ile bağlantılı prosedürlerdir.
- ✓ Çıktılar belli bir amaca ulaşılana dek sonraki süreçler için girdi görevi görür.

Dr. H. İbrahim CEBECİ 5/49

Süreç Modelleme

- ✓ Süreç modelleme, bir sistem ile çevresi ve sistem bileşenleri arasında veriyi yakalayan, işleyen, depolayan ve dağıtan süreçleri grafik olarak temsil eder.
 - Veri Akış Diyagramları (Basit Veri Akışı odaklı)
 - ➤ İş Süreçleri Yönetimi Notasyonu (Karmaşık Süreç odaklı)
- ✓ Süreç modelleme gereksinim analizi kısmında toplanan verileri kullanır.
- ✓ Süreçleri ve veri yapılarını birlikte modeller.

Dr. H. İbrahim CEBECİ

Süreç Modelleme Çıktıları (Teslimatları)

- ✓ Bağlam veri akışı şeması (DFD)
 - ➤ Sistemin kapsamı
- ✓ Mevcut fiziksel sistemin DFD'leri
 - > Kısmen detaylı
- ✓ Mevcut mantıksal sistemin DFD'leri
 - > Analistlerin mevcut sistemi anlamasını sağlar
- ✓ Yeni mantıksal sistemin DFD'leri
 - > Teknoloji bağımsız
 - Yeni sistemin veri akışlarını, yapısını ve fonksiyonel gereksinimlerini göster
- ✓ Her DFD bileşeninin kapsamlı açıklaması
 - > Veri Sözlükleri

Dr. H. İbrahim CEBECİ 7/49

Veri Akış Diyagramı (DFD)

- ✓ Bir veri akış diyagramı (DFD) verilerin bilişim sistemi içerisindeki akışını sunar. Fakat program mantığını ve süreç açıklamalarını sunmaz.
 - > Sistemin ne yaptığı odaklıdır
 - ➤ Sistemin nasıl yaptığı ile ilgilenmez
 - ☐ Kara kutu modeli
- ✓ Veri Akışı Yaklaşımının Avantajları
 - > Teknik uygulamaya çok erken başlayabilme özgürlüğü
 - ➤ Sistemler ve alt sistemlerin karşılıklı ilişkilerinin anlaşılması
 - > Mevcut sistem bilgisini kullanıcılara iletme
 - Önerilen sistemin analizi

Dr. H. İbrahim CEBECİ

DFD Elemanları

✓ DFD Sembolleri

Dr. H. İbrahim CEBECİ 9/49

DFD Elemanları – Süreç

- ✓ Verilerin değişimini veya dönüşümünü belirtir
- ✓ Sistemde gerçekleştirilen çalışmaları temsil eder
- ✓ Adlandırma kuralı:
 - > Üst düzey bir süreç adlandırılırken tüm sistemin adını atayın
 - ➤ Büyük bir alt sistemi adlandırmak için alt sistemi kelimeye adla ekleyin
 - Detaylı süreçler için fiil-sıfat-isim formu kullanın

√ Kurallar

- > Bir sürecin girdileri bu sürecin çıktılarından farklıdır.
- ➤ İşlemlerin amacı, girdileri çıktılara dönüştürmektir.
- ➤ Bir DFD'deki nesnelerin benzersiz isimleri vardır.
- ➤ Her işlemin kendine özgü bir ismi vardır.

Dr. H. İbrahim CEBECİ 10/49

DFD Elemanları – Süreç

- ✓ Kara Delik: Süreç girdisi var fakat çıktısı yok
- ✓ Mucize: Süreç Girdisi var fakat çıktısı yok
- ✓ **Gri Delik**: Süreç girdileri ve çıktıları var. Fakat girdiler çıktıyı üretmek için yetersiz.
 - En sik rastlanılan durum

Dr. H. İbrahim CEBECİ

DFD Elemanları – Süreç

- ✓ Mantıksal süreçler yürütülmesi zorunlu olan (uygulamadan bağımsız) görev aktiviteleridir.
- ✓ Üç tip mantıksal süreç vardır:
 - Fonksiyon: Aralarında mantıksal bir bağ olan aktiviteler veya görevler setidir.
 - ➤ **Olay**: Bir işin bütün olarak tamamlanması gereken mantıksal birimidir. Fonksiyonlar içerisinde olaylara cevap veren süreçler içerir. Fonksiyonların ayrıştırılmış halidir.
 - ➤ Temel Süreç: Ayrıştırma sürecindeki ne küçük birimdir. Fonksiyonlar içerisinde olaylara cevap verirler.

Dr. H. İbrahim CEBECİ 12/49

DFD Elemanları – Veri Akışı

- ✓ Verilerin bir noktadan diğerine hareketini gösterir.
- ✓ Bir «isim» ile açıklanır
- ✓ Ok ucu akış yönünü gösterir
- ✓ Bir kişi, yer veya nesne ilgili verileri temsil eder
- ✓ Bazı veri akışı diyagramı yöntemleri, kontrol akışları olarak adlandırılan veri dışı akışlarını da kullanır.
 - ➤ Bir kontrol akışı, bir süreci tetikleyen bir koşulu veya veri olmayan olayı temsil eder.
 - Kontrol akışı, oklu kesikli çizgi olarak tasvir edilir.

UNIVERSITESI

DFD Elemanları – Veri Akışı

Veri Akışı Kuralları:

- ✓ Veri akışları tek yönlüdür. İki yönlü akış söz konusu ise iki farklı ters yönlü ok kullanılır.
- ✓ Veri akışında çatallaşma tamamen aynı verinin iki veya daha fazla konuma gönderildiğini gösterir.
- ✓ İki veya daha fazla okun birleştirilmesi ortak bir konuma iki veya daha fazla kaynaktan aynı verinin geldiğini gösterir.
- ✓ Veri akışı başladığı sürece direkt olarak dönemez. En azından bir süreç tarafından işlenmesi gerekir.
- ✓ Veri deposuna doğru veri akışı «güncellemeyi» gösterir
- ✓ Veri deposundan çıkan veri akışı ise «bilgi çıkarımını veya kullanımını» simgeler.
- √ «İsim» tabanlı adlandırılır. Bir ok üzerinde birden fazla ifade yer alabilir.

Dr. H. İbrahim CEBECİ 14/49

DFD Elemanları – Veri Akışı

Dr. H. İbrahim CEBECİ 15/49

DFD Elemanları – Veri Deposu

- ✓ Verilerin incelenmesine, eklenmesine ve alınmasına izin veren veriler için bir depodur.
- ✓ Verileri açıklayan bir ad ile adlandırılmıştır.
- ✓ Veri depolarına genellikle D1, D2, D3 gibi benzersiz bir referans numarası verilir.
- ✓ Aşağıdakiler veri deposuna örnek olarak gösterilebilir.:
 - > Veritabanı
 - Bilgisayar dosyası
 - Dosya dolabi
- ✓ DFD çizerken veri akışlarının kesişmemesi için veri depoları kopyalanabilir.

Dr. H. İbrahim CEBECİ 16/49

DFD Elemanları – Veri Deposu

Veri Deposu Kuralları

- ✓ Veri bir depodan diğerine aktarılmaz. Mutlaka bir sürece gereksinim duyulur.
- ✓ Veri dış veri kaynaktan direkt olarak veri deposuna aktarılmaz. Veri alan (gerekirse kontrol eden) ve taşıyan bir sürece ihtiyaç vardır.
- ✓ Veri deposu dış kaynağa veri göndermez. Bu işlem için bir süreç gereklidir.
- ✓ ««İsim» tabanlı adlandırılır.

DFD Elemanları – Dış Varlık

- ✓ Başka bir departmanı, bir işletmeyi, bir kişiyi veya bir makineyi temsil eder
- ✓ Sistem sınırları dışındaki bir veri kaynağını simgeler

Dış Varlık Kuralları

- ✓ Veri doğrudan bir kaynaktan başka bir kaynağa veya veri deposuna taşınmaz.
- √ «İsim» tabanlı adlandırılır.

DFD Geliştirme Adımları

- 1. Aktivitelerin bir listesini oluşturun
 - Gereksinim analizi çıktılarını kullanın
- 2. Bağlam Diyagramı oluşturun
 - > Harici varlıkları ve süreçleri belirleyin
- 3. Seviye 0 (Ebeveyn) DFD oluşturun
 - > Alt süreçleri belirleyin
- 4. Seviye 1 n (Çocuk) DFD oluşturun
 - Fiili veri akışlarını ve veri depolarını belirleyiniz.
- 5. Diyagramı doğrulayın
 - ➤ DFD kurallarına bağlı olarak DFD elemanlarını inceleyin.

Dr. H. İbrahim CEBECİ 19/49

Bağlam Diyagramı

- ✓ Fiili süreç modellerini kurmadan önce, ilk proje kapsamı modellenmelidir.
- ✓ Bir projenin kapsamı, bir sistemin veya uygulamanın desteklemesi gerektiği alanlar ile ilgilidir.
- ✓ Kapsam ayrıca bir sistemin bütün olarak nasıl modelleneceği ve diğer sistemler ile nasıl iletişime geçeceğini de açıklar.
- ✓ Proje kapsamı bağlam diyagramı ile dokumante edilir.
- ✓ **Bağlam Diyagramı** bir sistemin veya projenin kapsamını ve sınırlarını tanımlar. Ortam modeli olarak da adlandırılır.

Dr. H. İbrahim CEBECİ 20/49

Bağlam Diyagramı

- ✓ Bağlam Diyagramı sadece bir süreç (sistem) içerir.
- ✓ Dış etkenler ve veri depoları süreç çevresine yerleştirilir.
- ✓ Veri akışları, sisteminizin sınırlarla ve harici veri depolarıyla etkileşimlerini tanımlar.

Dr. H. İbrahim CEBECİ 21/49

Bağlam Diyagramı

✓ Fastfood mağazası için Bağlam Diyagramı Örneği

Dr. H. İbrahim CEBECİ 22/49

Seviye 0 DFD

- ✓ Seviye-0 diyagramı, bir sistemin ana süreçlerini, veri akışlarını ve veri depolarını yüksek bir ayrıntı seviyesinde temsil eden bir veri akışı şemasıdır.
 - Bağlam şemasının detaylandırılmış halidir.
 - > Her işlem numaralandırılmıştır
 - > Ana veri depoları ve tüm harici varlıklar dahildir
 - ➤ Girdi tarafındaki bir harici varlıktan gelen veri akışı ile başlar.
 - > Veri deposuna veya veri deposundan veri akışını açıklar
 - ▶ İyi tanımlanmış bir süreci analiz eder

Dr. H. İbrahim CEBECİ 23/49

Seviye 0 DFD

✓ Fastfood mağazası için Seviye 0 DFD Örneği

Dr. H. İbrahim CEBECİ 24/49

Süreç Ayrıştırma (Çocuk DFD'leri Oluşturma)

- ✓ Veri akışı diyagramları katmanlı yapıda oluşturulur
- ✓ En üst düzey bağlam seviyesidir
- ✓ Her süreç daha düşük bir seviyeye ayrıştırılabilir
- ✓ Alt seviye diyagramı numarası ana süreç numarası ile aynıdır
- ✓ Çocuk diyagramı oluşturmayan süreçlere ilkel süreç adı verilir

Dr. H. İbrahim CEBECİ 25/49

Dr. H. İbrahim CEBECİ 26/49

- ✓ **Seviye-1 diyagramı**, Seviye-0 diyagramının ayrışmasından kaynaklanır.
- ✓ **Seviye-n diyagramı** ise n-1. diyagramdan ayrıştırılmıştır.
- ✓ Bütün alt seviye diyagramları Seviye-0 diyagramı numaralandırmasına sadıktır.
 - ➤ Alt seviye diyagram, üst seviye süreç için bir girdi üretemez, üst süreçten bir çıktıyı alamaz
 - Alt seviye diyagramı, açıkladığı sürecin adını alır. Örneğin 3 numaralı sürecin alt diyagramının adı Diyagram 3 olmalıdır
 - > Seviye-0 diyagramın altındaki diyagramlarda genellikle harici varlıklar gösterilmez
 - Eğer üst süreç bir veri deposuna veri akışı ile bağlantılı ise, alt seviye diyagram bir veri deposu içerebilir

Dr. H. İbrahim CEBECİ 28/49

Fastfood firmasında yer alan 4. sürecin (Yönetim raporları oluşturma) ayrıştırılmış hali olan Seviye-1 diyagramı

4.3 sürecinin ayrıştırıldığı seviye-2 diyagramı (İlkel Süreçler içerir)

- ✓ Ayrıştırma (çocuk diyagram çizme) işlemi ne zaman sonlandırılır?
 - ➤ Her işlem tek bir karar, hesaplama veya veritabanı işlemine indirildiğinde
 - ➤ Her veri deposu tek bir varlık hakkında verileri temsil ettiğinde
 - Sistem kullanıcısı daha fazla ayrıntı görmeyi umursamadığı zaman
 - Veri akışının daha fazla bölünmesi (detaylandırılması) gerekmediğinde
 - ➤ Her bir iş hareketi veya raporunun tek bir veri akışı ile ifade edilmesi yeterli göründüğünde

Dr. H. İbrahim CEBECİ 30/49

DFD Dengeleme

✓ DFD Dengeleme:

- Düşük seviyedeki bir DFD girdi sayısı bir üst seviye ilgili DFD sürecinin girdi sayısına eşit olmalıdır.
- Düşük seviyedeki bir DFD çıktı sayısı bir üst seviye ilgili DFD sürecinin çıktı sayısına eşit olmalıdır.

Yandaki DFD dengelenmemiştir. Çünkü bağlam diyagramındaki girdi sayısı, Seviye-0 diyagramından farklıdır.

Mantiksal

- ✓ İşe ve işlerin nasıl işlediğine odaklanır.
- ✓ Sistemin nasıl kurulacağı ile ilgilenmez.
- ✓ Gerçekleşen iş olaylarını ve her olayın ihtiyaç duyduğu verileri ve ürettiklerini tanımlar.

Fiziksel

- ✓ Sistemin nasıl uygulanacağını gösterir
- ✓ Sistemi tasvir eder

Dr. H. İbrahim CEBECİ 32/49

Mantıksal Veri Akış Diyagramı Oluşturmanın Avantajları

- ✓ Kullanıcılarla daha iyi iletişim
- ✓ Daha kararlı sistemler
- ✓ Analistler tarafından işletmenin daha iyi anlaşılması
- ✓ Esneklik ve bakım
- ✓ Fazlalıkların ortadan kaldırılması ve fiziksel modelin daha kolay oluşturulması

Dr. H. İbrahim CEBECİ 33/49

Fiziksel Veri Akış Diyagramı Oluşturmanın Avantajları

- ✓ İnsanlar tarafından hangi süreçlerin yürütüldüğünü ve hangi süreçlerin otomatikleştirildiğini belirlemek
- ✓ Süreçleri daha ayrıntılı olarak tanımlamak
- ✓ Süreçleri, özel bir düzen içinde olması gerektiği gibi sıralamak
- ✓ Geçici veri depolarını belirlemek
- ✓ Spesifik ve güncel dosya ve çıktıların adlarını belirlemek
- ✓ Süreçlerin düzgün çalıştığından emin olmak için kontrolleri eklemek

Dr. H. İbrahim CEBECİ 34/49

Fiziksel Veri Akış Diyagramlarında olup Mantıksal Veri Akış Diyagramlarında Olmayan Adımlar

- ✓ Manuel süreçler
- ✓ Ekleme, Silme, Güncelleme süreçleri
- ✓ Veri girişi ve süreç doğrulama
- ✓ Doğru veri girişinden emin olmak için süreç onaylama
- ✓ Kayıt sırasını yeniden düzenlemek için süreçleri sıralama
- ✓ Her eşşiz sistem çıktısını üretmek için süreçler
- ✓ Orta seviye veri depoları
- ✓ Veri depolarında kullanmak için güncel dosya isimleri
- ✓ Hata koşulları veya görevlerin tamamlandığını belirtmek için kontroller

Dr. H. İbrahim CEBECİ 35/49

Tasarım Özelliği	Mantıksal	Fiziksel
Model neyi betimliyor?	İş süreçleri nasıl yütüyülüyor	Yeni sistem nasıl uygulanacak (veya mevcut sistemin işleyişi)
Süreçler neyi temsil ediyor?	İş aktiviteleri	Yazılımlar, moduller, alt işlemler
Veri depoları neyi temsil ediyor?	Nasıl elde edildiklerinin ayrıntısına girilmeden veriler	Fiziksel dosyalar, veri tabanları, manuel dosyalar
Veri Depolarının Tipi	Veri depoları kalıcı veri topluluklarını gösteriyor	Master dosyaları, transition dosyaları vb.
Sistem Kontrolleri	İş kontrollerini gösterir	Bir kayıt oluşturmak için giriş verilerinin geçerlilik kontrollerini, sistem güvenliği, bir sürecin başarılı tamamlanması için emin olmak vb. açılardan bakarak yapar.

Dr. H. İbrahim CEBECİ 36/49

CRUD Matrisi

- ✓ Her master dosyada bulunması gereken Create, Read, Update, Delete olaylarını gösteren kısaltmadır.
- ✓ CRUD matrisi bu işlemlerin her birinin sistemde nerede gerçekleştiğini gösteren bir araçtır.

Dr. H. İbrahim CEBECİ 37/49

CRUD Matrisi

Activity	Customer	Item	Order	Order Detail
Customer Logon	R			
Item Inquiry		R		
Item Selection		R	С	С
Order Checkout	U	U	U	R
Add Account	С			
Add Item		С		
Close Customer Account	D			
Remove Obsolete Item		D		
Change Customer Demographics	RU			
Change Customer Order	RU	RU	RU	CRUD
Order Inquiry	R	R	R	R

Dr. H. İbrahim CEBECİ 38/49

Olay Modelleme ve DFD

- ✓ Harici bir varlıktan gelen bir girdi akışına bazen bir tetikleyici denir çünkü bir sürecin aktivitelerini başlatır
- ✓ Olaylar, sistemin bir şey yapmasına tetikleyici unsur olarak neden olur.
- ✓ Olay Modelleme fiziksel veri akış diyagramları oluşturmaya yönelik bir yaklaşımdır.
 - ➤ Her bir benzersiz sistem olayı için bir veri akışı diyagramı parçası oluşturmaktır.

Olay Yanıt Tabloları

- ✓ Olay tablosu DFD çizmek için kullanılır.
- ✓ Olay tablosunda her bir olayın girdi ve çıktı temelinde analizi verilir.
- ✓ Bir olay tablosundaki her satır bir veri akışı diyagramı parçasını temsil eder ve bir veri akışı şemasında tek bir süreç oluşturmak için kullanılır

Dr. H. İbrahim CEBECİ 39/49

Olay Modelleme ve DFD

Event	Source	Trigger	Activity	Response	Destination
Customer logs on	Customer	Customer number and password	Find customer record and verify password. Send Welcome Web page.	Welcome Web page	Customer
Customer browses items at Web storefront	Customer	Item information	Find item price and quantity available. Send Item Response Web page.	Item Response Web page	Customer
Customer places item into shopping basket at Web storefront	Customer	Item purchase (item number and quantity)	Store data on Order Detail Record. Calculate shipping cost using shipping tables. Update customer total. Update item quantity on hand.	Items Purchased Web page	Customer
Customer checks out	Customer	Clicks "Check Out" button on Web page	Display Customer Order Web page.	Verification Web page	
Obtain customer payment	Customer	Credit card information	Verify credit card amount with credit card company. Send.	Credit card data Customer feedback	Credit card company Customer
Send customer email		Temporal, hourly	Send customer an email confirming shipment.		Customer

Dr. H. İbrahim CEBECİ

DFD Örneği 1 – Kapsam Diyagramı

Dr. H. İbrahim CEBECİ 41/49

DFD Örneği 1 – Level 0 DFD

Dr. H. İbrahim CEBECİ 42/49

DFD Örneği 1 – Level 1 DFD

Dr. H. İbrahim CEBECİ 43/49

DFD Örneği 1 – Level 1 DFD

Dr. H. İbrahim CEBECİ 44/49

DFD Örneği 1 – Level 1 DFD

Dr. H. İbrahim CEBECİ 45/49

DFD Örneği 1 – Level 2 DFD

Dr. H. İbrahim CEBECİ 46/49

DFD Örneği 2 – Kapsam Diyagramı

Dr. H. İbrahim CEBECİ 47/49

DFD Örneği 2 – Level 0 DFD

Dr. H. İbrahim CEBECİ 48/49

DFD Örneği 2 – Level 1 DFD

Dr. H. İbrahim CEBECİ 49/49