GMA08

Genova, Facoltà di Architettura 29 febbraio e 1 marzo 2008

COSSERAT MATERIALS? No thanks

Giovanni Romano - Raffaele Barretta

Dipartimento di Ingegneria Strutturale (DIST) Università di Napoli Federico II

COSSERAT (POLAR)

$$\left\{ egin{aligned} \mathbf{Q}^T d\mathbf{Q} \,, & ext{curvature change} \ \mathbf{Q}^T doldsymbol{arphi} - \mathbf{I} \,, & ext{gap} \end{aligned}
ight.$$

$$\begin{cases} d(axial \mathbf{W}) \\ d\mathbf{v} - \mathbf{W} \end{cases} \longrightarrow \textbf{tangent strain measure}$$

Cosserat E. and F.: Théorie des Corps déformables. Hermann, Paris, (1909).

MICROSTRETCH

MICROMORPHIC

Eringen A.C.: Mechanics of Micromorphic Continua, in Mechanics of Generalized Continua, Ed. Kröner, Springer-Verlag, Berlin, pp. 18-35, (1968).

$$\mathbf{A} \in \mathrm{C}^2(\mathbb{M}\;;\mathrm{C}^0(\mathbb{B}_s\;;D))$$
 \longrightarrow Finite strain measure

Essential requirements

$$\mathbf{u}_{t,s} \in \mathcal{R} \quad \Longleftrightarrow \quad \mathbf{A}(\mathbf{u}_{t,s}) = 0 \in \mathbf{C}^0(\mathbb{B}_s; D)$$

$$\mathbf{A}(\mathbf{u}_{ au,s}) = \mathbf{A}(\mathbf{u}_{t,s}) + \mathbf{S}(\mathbf{A}(\mathbf{u}_{ au,t}), \mathbf{u}_{t,s})$$
 \longrightarrow consistency

nonredundancy

A deformation measure $\mathbf{A} \in \mathrm{C}^2(\mathbb{M}\;;\mathrm{C}^0(\mathbb{B}_s\;;D))$ is said to be redundant if there exists a nontrivial decomposition $D=D_1\oplus D_2$ such that

$$(\boldsymbol{\varPi}_1 \circ \mathbf{A})(\mathbf{u}_{t,s}) = 0 \quad \Longrightarrow \quad \mathbf{A}(\mathbf{u}_{t,s}) = 0 \,.$$

$$\varphi \downarrow \mathbf{g} = cost$$
 in $\mathbb{B}_s \implies d\varphi = cost$ in \mathbb{B}_s

$$\mathcal{L}_{\mathbf{v}}\mathbf{g} = cost$$
 in $\mathbb{B}_s \implies d\mathbf{v} = cost$ in \mathbb{B}_s

Kinematic theorems

The strain measure in Cosserat materials is REDUNDANT!

$$\begin{cases} \mathbf{Q}^T d\mathbf{Q} = \mathbf{O} \\ \mathbf{Q}^T d\boldsymbol{\varphi} - \mathbf{I} = \mathbf{O} \end{cases} \iff \begin{cases} d\mathbf{Q} = \mathbf{O} \\ d\boldsymbol{\varphi} = \mathbf{Q} \end{cases} \implies d\mathbf{Q} = \mathbf{O}$$

Future Developments

The strain measure for Cosserat materials is redundant. Moreover any attempt to eliminate this unsound feature causes the model to collapse into the standard Cauchy material.

Applications of Cosserat-type materials:

- Cholesteric liquid cristals (inextensible directed rodlike molecules);
- Nematic liquid cristals (inextensible undirected rodlike molecules);
- Void elasticity: change of volume fraction as homothetic strain (Cowin 1983). The change of volume fraction can be interpreted as a dilatation of the points in the continuum;
- Shell models with drilling rotations;
- etc...

