

Chương3: Định Thức

1

/46

Nội dung

- 1. Tính định thức .
- 2. Định thức và các phép
- biến đổi sơ cấp trên dòng
- 3. Định thức và ma trận khả nghịch.
- 4. Phương pháp Cramer .

Cho $A = (a_{ij})_{n \times n}$ ma trận vuông cấp n. Định thức của A là một số ký hiệu bởi det $(A) = \left|a_{ij}\right|_{n \times n} = |A|$

Ký hiệu M_{ij} là định thức thu được từ A bằng cách bỏ đi hàng thứ i và cột thứ j của ma trận A;

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \qquad M_{12} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix}$$

Định nghĩa bù đại số của phần tử a_{ii}

Bù đại số của phần tử a_{ij} là đại lượng $A_{ij} = (-1)^{i+j} M_{ij}$

Định nghĩa định thức bằng qui nạp

a)
$$k = 1$$
: $A = [a_{11}] \rightarrow |A| = a_{11}$

b)
$$k = 2$$
: $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \rightarrow |A| = a_{11}a_{22} - a_{12}a_{21} = a_{11}A_{11} + a_{12}A_{12}$

c)
$$k = 3$$
: $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \rightarrow |A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$

.....

d)
$$k = n: A = \begin{bmatrix} a_{11} & a_{12} & L & a_{1n} \\ * & * & \end{bmatrix} \rightarrow |A| = a_{11}A_{11} + a_{12}A_{12} + L + a_{1n}A_{1n}$$

Tính det (A), với
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 3 & 0 \\ 3 & 2 & 4 \end{bmatrix}$$

Giải

$$|A| = 1 \cdot A_{11} + 2 \cdot A_{12} + (-3) \cdot A_{13}$$

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 3 & 0 \\ 2 & 4 \end{vmatrix} = (-1)^{1+1} \begin{vmatrix} 3 & 0 \\ 2 & 4 \end{vmatrix} = 12$$

$$|A| = 1 \cdot (-1)^{1+1} \begin{vmatrix} 3 & 0 \\ 2 & 4 \end{vmatrix} + 2 \cdot (-1)^{1+2} \begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix} + (-3) \cdot (-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix}$$

$$|A| = 12 - 16 + 15 = 11$$

Chú ý. Có thể tính định thức bằng cách khai triển theo bất kỳ hàng hoặc cột tùy ý nào đó

$$|A| = \begin{vmatrix} * & a_{1j} \\ a_{2j} \\ L \\ a_{nj} \end{vmatrix} = a_{1j}A_{1j} + a_{2j}A_{2j} + L + a_{nj}A_{nj}$$

Ví du

Tính định thức det (A), với
$$A = \begin{bmatrix} 3 & -1 & 3 \\ 5 & 2 & 2 \\ 4 & 0 & 0 \end{bmatrix}$$

Giải.

Khai triển theo hàng thứ 3

$$|A| = \begin{vmatrix} 3 & -1 & 3 \\ 5 & 2 & 2 \\ 4 & 0 & 0 \end{vmatrix} = 4 \cdot (-1)^{3+1} \begin{vmatrix} -1 & 3 \\ 2 & 2 \end{vmatrix} = 4 \cdot (-1)^{3+1} \begin{vmatrix} -1 & 3 \\ 2 & 2 \end{vmatrix} = -32$$

Ví du

Tính định thức det (A), với
$$A = \begin{pmatrix} 2 & -3 & 3 & 2 \\ 3 & 0 & 1 & 4 \\ -2 & 0 & 3 & 2 \\ 4 & 0 & -1 & 5 \end{pmatrix}$$

Giải

Khai triển theo cột thứ hai

$$|A| = \begin{vmatrix} 2 & -3 & 3 & 2 \\ 3 & 0 & 1 & 4 \\ -2 & 0 & 3 & 2 \\ 4 & 0 & -1 & 5 \end{vmatrix} = (-3) \cdot A_{12} + 0 \cdot A_{22} + 0 \cdot A_{32} + 0 \cdot A_{42} = -3A_{12}$$

$$|A| = 3 \begin{vmatrix} 3 & 1 & 4 \\ -2 & 3 & 2 \\ 4 & -1 & 5 \end{vmatrix} = L = 171$$

Định thức của ma trận tam giác bằng tích các phần tử nằm trên đường chéo.

Ví dụ

$$|A| = \begin{vmatrix} 2 & -1 & 3 & 0 & 4 \\ 0 & -3 & 6 & 7 & 1 \\ 0 & 0 & 5 & 2 & 8 \\ 0 & 0 & 0 & 4 & 9 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$

Sử dụng biến đổi sơ cấp đối với hàng để tính định thức

1. Nếu
$$A \xrightarrow{h_i \to \alpha h_i} B$$
 thì $|B| = \alpha |A|$

2.Nếu
$$A \xrightarrow{h_i \to h_i + \beta h_j} B$$
 thì $|B| = |A|$

3. Nếu
$$A \xrightarrow{h_i \leftrightarrow h_j} B$$
 thì $|B| = -|A|$

Ví dụ

Sử dụng các phép biến đổi sơ cấp, tính định thức

$$A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 5 & 0 \\ 3 & 2 & 6 & -2 \\ -2 & 1 & 3 & 1 \end{pmatrix}$$

Giải

$$|A| = \begin{vmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 5 & 0 \\ 3 & 2 & 6 & -2 \\ -2 & 1 & 3 & 1 \end{vmatrix} \xrightarrow{h_2 \to h_2 - 2h_1} \begin{bmatrix} 1 & 1 & 2 & -1 \\ h_3 \to h_3 - 3h_1 \\ h_4 \to h_4 + 2h_1 \end{bmatrix} \xrightarrow{h_2 \to h_3 - 3h_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 3 & 7 & -1 \end{vmatrix}$$

$$|A| = \begin{vmatrix} 1 & 1 & 2 \\ -1 & 0 & 1 \\ -4 & 0 & -15 \end{vmatrix} = 1 \cdot (-1)^{1+2} \begin{vmatrix} -1 & 1 \\ -4 & -15 \end{vmatrix} = -19$$

Nguyên tắc tính định thức sử dụng biến đổi sơ cấp

Bước 1. Chọn 1 hàng (hoặc một cột) tùy ý;

Bước 2. Chọn một phần tử khác không tùy ý của hàng (hay cột) ở bước 1. Dùng biến đổi sơ cấp, khử tất cả các phần tử khác.

Bước 3. Khai triển theo hàng (hay cột) đã chọn.

Ví dụ

Sử dụng biến đổi sơ cấp, tính định thức

$$A = \begin{pmatrix} 3 & 2 & -1 & 1 \\ 2 & 3 & -2 & 0 \\ -3 & 1 & 4 & -2 \\ 4 & 1 & 3 & 1 \end{pmatrix}$$

Giải

$$|A| = \begin{vmatrix} 3 & 2 & -1 & 1 \\ 2 & 3 & -2 & 0 \\ -3 & 1 & 4 & -2 \\ 4 & 1 & 3 & 1 \end{vmatrix} \xrightarrow{h_3 \to h_3 + 2h_1} \begin{vmatrix} 3 & 2 & -1 & 1 \\ 2 & 3 & -2 & 0 \\ \hline h_4 \to h_4 - h_1 & 3 & 5 & 2 & 0 \\ 1 & -1 & 4 & 0 \end{vmatrix}$$

|
$$A$$
| Khai triển theo cột số 4 $1 \cdot (-1)^{1+4}$ | $1 \cdot (-1)^{1+4}$ |

$$|A| = -\begin{vmatrix} 2 & 3 & -2 \\ 5 & 8 & 5 & 0 \\ 5 & 5 & 0 & 0 \end{vmatrix} = -(-2) \cdot (-1)^{1+3} \begin{vmatrix} 5 & 8 \\ 5 & 5 \end{vmatrix} = -30$$

$$\det (A^{\mathsf{T}}) = \det (A)$$

$$det(AB) = det(A) det(B)$$

Ma trận có một hàng (cột) bằng không, thì det (A) = 0

Ma trận có hai hàng (cột) tỉ lệ nhau, thì det (A) = 0

Chú ý: $det(A+B) \neq det(A) + det(B)$.

Dir

3. Định thức - ma trận khả nghịch

Định lý

Ma trận vuông A khả nghịch khi và chỉ khi $det(A) \neq 0$.

<u>Chứng minh</u>

Giả sử A là ma trận khả nghịch nxn. Khi đó tồn tại ma trận khả nghịch A^{-1} , sao cho AA^{-1} = I. Suy ra

$$det(AA^{-1}) = det(I) \implies det(A).det(A^{-1}) = 1$$
$$\implies det(A) \neq 0$$

Giả sử
$$det(A) \neq 0$$
. Khi đó

$$A^{-1} = \frac{1}{|A|} P_A \text{ , v\'oi} \qquad P_A = \begin{bmatrix} A_{11} & A_{12} & \mathbf{L} & A_{1n} \\ A_{21} & A_{22} & \mathbf{L} & A_{2n} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} \end{bmatrix}^T$$

$$A = \begin{pmatrix} * & * & \\ a_{j1} & a_{j1} & \cdots & a_{j1} \\ * & * & \\ a_{i1} & a_{i1} & \cdots & a_{i1} \\ * & * & \\ a_{i1}A_{j1} + a_{i2}A_{j2} + \cdots + a_{in}A_{jn} = \begin{cases} |A|, & i = j \\ 0, & i \neq j \end{cases}$$

$$B = \begin{pmatrix} * & * & \\ a_{j1} & a_{j1} & \cdots & a_{j1} \\ * & * & \\ a_{j1} & a_{j1} & \cdots & a_{j1} \\ * & * & \end{pmatrix}$$

Công thức tính ma trận nghịch đảo A⁻¹

Cho A là ma trận khả nghịch. Khi đó

$$A^{-1} = \frac{1}{|A|} P_A \text{ , v\'oi} \qquad P_A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}^T$$

Ví dụ. Tìm ma trận nghịch đảo của
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 0 \end{bmatrix}$$

Giải.

$$det(A) = -2 \neq 0 \longrightarrow A$$
 khả nghịch

Tính phần bù đại số của các phần tử

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 3 & 1 \\ 4 & 0 \end{vmatrix} = -4; A_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} = 3; A_{13} = (-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = -1$$

$$A_{21} = 4; A_{22} = -3; A_{23} = -1; A_{31} = -2; A_{32} = 1; A_{33} = 1$$

$$A^{-1} = \frac{1}{-2} \begin{bmatrix} -4 & 4 & -2 \\ 3 & -3 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

Tính chất của ma trận nghịch đảo

1.
$$\det(A^{-1}) = \frac{1}{\det(A)}$$

2. Nếu A khả nghịch, thì $\det(P_A) = (\det(A))^{n-1}$

Ví dụ 1

Tính det(A), nếu

$$A = \begin{pmatrix} 2 & 1 & -1 & 3 \\ 3 & 2 & 1 & -2 \\ 4 & 1 & 0 & 1 \\ -3 & 3 & 2 & 2 \end{pmatrix}$$

Ví dụ 2

Tính det(A), với

$$A = \begin{pmatrix} 4 & 1 & 1 & 0 \\ 3 & -2 & 4 & 1 \\ -2 & 1 & 3 & 1 \\ 5 & 1 & 2 & 3 \end{pmatrix}$$

Ví du 3

Tìm ma trận nghịch đảo bằng cách tính định thức

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 3 & 5 & 2 \end{pmatrix}$$

Ví du 4

Tìm ma trận nghịch đảo của ma trận sau

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 5 & 4 & 1 & 0 \\ 1 & 2 & 3 & 2 \end{pmatrix}$$

Ví dụ 5

Tìm tất cả các giá trị của m để ma trận sau khả nghịch

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 1 & 5 & 3 \\ 5 & 0 & 7 & m \\ -1 & 2 & 3 & -3 \end{pmatrix}$$

Ví dụ 6

Tìm tất cả các giá trị thực của m để ma trận sau khả nghịch.

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & m \\ 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 5 & 7 & 5 \end{pmatrix}$$

Ví dụ 7

Cho
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 3 & 5 \end{pmatrix}$$

- 1) Tính det (A⁻¹).
- 2) Tính det (5A)⁻¹.
- 3) Tính det (P_A) .

Ví dụ 8

Cho $A \in M_3[R]; B \in M_3[R]; \det(A) = 2; \det(B) = -3.$

- 1) Tính det (4AB)⁻¹.
- 2) Tính det (P_{AB}) .

Xét hệ phương trình tuyến tính

$$\left\{egin{array}{lll} a_{11}x_1 & +a_{12}x_2+ & \ldots + & a_{1n}x_n = & b_1 \ a_{21}x_1 & +a_{22}x_2+ & \ldots + & a_{2n}x_n = & b_2 \ dots & dots & dots & dots & dots \ a_{n1}x_1 & +a_{n2}x_2+ & \cdots + & a_{nn}x_n = & b_n \end{array}
ight.$$

Đặt: D là định thức của ma trận hệ số, |A|

D_j là định thức của ma trận A_j được xác định bằng cách thay cột j bằng cột B.

$$extstyle extstyle ext$$

Hệ phương trình Cramer:

$$\left\{egin{array}{lll} a_{11}x_1 & +a_{12}x_2+ & \ldots + & a_{1n}x_n = & b_1 \ a_{21}x_1 & +a_{22}x_2+ & \ldots + & a_{2n}x_n = & b_2 \ dots & dots & dots & dots & dots \ a_{n1}x_1 & +a_{n2}x_2+ & \cdots + & a_{nn}x_n = & b_n \end{array}
ight.$$

a) Nếu D \neq 0 hệ có nghiệm duy nhất (x_1, x_2, \dots, x_n) được xác định như sau:

$$x_j = rac{D_j}{D}$$

b) Nếu D = 0 và tồn tại j để D_j ≠ 0 thì hệ vô nghiệm.

Ví du:

Giải hệ phương trình:

$$\begin{cases} x & + z = 2 \\ -x + 2y + z = 2 \\ 2x - y + 2z = 3. \end{cases}$$

$$D = egin{bmatrix} 1 & 0 & 1 \ -1 & 2 & 1 \ 2 & -1 & 2 \end{bmatrix} = 2
eq 0$$

$$D_1 = egin{array}{c|cccc} 2 & 0 & 1 \ 2 & 2 & 1 \ 3 & -1 & 2 \ \end{array} = egin{array}{c|cccc} 1 & 2 & 1 \ -1 & 2 & 1 \ 2 & 3 & 2 \ \end{array} = 2$$

$$D_3 = egin{array}{c|ccc} 1 & 0 & 2 \ -1 & 2 & 2 \ 2 & -1 & 3 \ \end{array} = 2$$

Áp dụng công thức nghiệm cho hệ Cramer ta có:

$$\left\{ egin{array}{lll} x &=& D_1/D &= 1, \ y &=& D_2/D &= 1, \ z &=& D_3/D &= 1. \end{array}
ight.$$

Giải hệ phương trình

$$\left\{egin{array}{llll} x_1 & + & 2x_2 & - & 3x_3 & - & 4x_4 & = & 1 \ 2x_1 & + & 3x_2 & + & x_3 & - & x_4 & = & 2 \ x_1 & + & 3x_2 & - & x_3 & + & 2x_4 & = & 1 \ 4x_1 & - & 4x_2 & - & 3x_3 & - & 3x_4 & = & -7 \end{array}
ight.$$

Giải hệ phương trình

$$\left\{egin{array}{llll} x_1 & + & x_2 & - & x_3 & + & x_4 & = & 0 \ 2x_1 & + & 2x_2 & + & 5x_3 & - & 3x_4 & = & 0 \ & & & 7x_3 & - & 5x_4 & = & -1 \ 3x_1 & + & 3x_2 & + & 4x_3 & - & 2x_4 & = & 3 \end{array}
ight.$$

Giải hệ phương trình

Tìm điều kiện để hệ sau có nghiệm

$$a. egin{cases} ax_1+x_2+x_3=1 \ x_1+ax_2+x_3=1 \ x_1+x_2+ax_3=1 \end{cases}$$

$$b. egin{cases} x_1 + ax_2 + a^2x_3 &= a^3 \ x_1 + bx_2 + b^2x_3 &= b^3 \ x_1 + cx_2 + c^2x_3 &= c^3 \end{cases}$$