Tarea 1 - Muestreo

A lazo abierto

Obtener la función de transferencia continua G(s)

```
G=zpk(-10,[-3 0],10)

G =

    10 (s+10)
    ------
    s (s+3)

Continuous-time zero/pole/gain model.

Tm=0.19

Tm = 0.1900
```

Hallar la FT discreta de lazo abierto Gd(s) del sistema de la figura con Z0H a la entrada y el tiempo de muestreo asignado Tm

```
Gd=c2d(G,Tm,'zoh')

Gd =

2.9541 (z-0.06852)
-----(z-1) (z-0.5655)

Sample time: 0.19 seconds
Discrete-time zero/pole/gain model.
```

Dibujar el mapa de polos y ceros del sistema continuo y el discreto

```
pzmap(G)
```


pole(G)

ans = 2×1 -3 0

pzmap(Gd)

pole(Gd)

ans = 2×1 1.0000 0.5655

¿Qué ocurre con el mapa si se multiplica por 10 el periodo de muestreo?

Gd1=c2d(G,10*Tm,'zoh'),pzmap(Gd1)

Gd1 =

55.582 (z+0.1357) ------(z-1) (z-0.003346)

Sample time: 1.9 seconds

Discrete-time zero/pole/gain model.

Se puede observar que al multiplicar 10 veces el tiempo de muestreo el segundo polo se acerca a un retardo puro mas integrador. Esto significa que estamos submuestreando la señal.

Obtener la respuesta al escalon del sistema discreto y determinar si es estable

step(G)

step(Gd)

Podemos observar que el sistema es inestable, lo cual es coincidente con el integrador puro en el sistema discreto.

Sistema discreto

Determinar el tipo de sistema

Examinando la función de lazo abierto llegamos a la conclusion de que el sistema Gd es de tipo 1, ya que tenemos un solo integrador puro.

```
Gd =

2.9541 (z-0.06852)
(z-1) (z-0.5655)

Sample time: 0.19 seconds
Discrete-time zero/pole/gain model.
```

Determinar la constante de error de posición Kp y el error ante un escalon y verificar mediante respuesta al escalon de lazo cerrado del sistema discreto como se muestra

El error debido a una entrada escalon es nulo, puesto que se cumple que Kp tiende al infinito (el sistema es tipo 1)

Verificar error ante una rampa de entrada, ¿Converge o diverge? Explicar la causa

```
t=0:Tm:100*Tm; % genera rampa
lsim(F,t,t)
```


El sistema diverge, el error es creciente. Esto es debido al tipo de sistema. Para que exista convergencia ante una rampa de entrada el sistema debe ser tipo 2 o más

A lazo cerrado con realimentación unitaria

Graficar el lugar de raíces del sistema continuo G(s) y del discreto Gd(s) indicando las ganancias criticas de estabilidad (si las hubiera)

rlocus(G)

rlocus(Gd)

¿ Que ocurre con la estabilidad relativa si se aumenta 10 veces el tiempo de muestreo original ?

rlocus(Gd1)

Si el sistema se submuestrea, la ganancia crítica se reduce aún mas a K = 0.0418