In [1]: import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model

In [2]: data = pd.read_csv('Healthcare_dataset.csv')

In [3]: data

Out[3]:

	Ptid	Persistency_Flag	Gender	Race	Ethnicity	Region	Age_Bucket	Ntm_Speciality	Ntm_Specialist_Flag	Ntm_Speciality_Bucket	
0	P1	Persistent	Male	Caucasian	Not Hispanic	West	>75	GENERAL PRACTITIONER	Others	OB/GYN/Others/PCP/Unknown	
1	P2	Non-Persistent	Male	Asian	Not Hispanic	West	55-65	GENERAL PRACTITIONER	Others	OB/GYN/Others/PCP/Unknown	
2	P3	Non-Persistent	Female	Other/Unknown	Hispanic	Midwest	65-75	GENERAL PRACTITIONER	Others	OB/GYN/Others/PCP/Unknown	
3	P4	Non-Persistent	Female	Caucasian	Not Hispanic	Midwest	>75	GENERAL PRACTITIONER	Others	OB/GYN/Others/PCP/Unknown	
4	P5	Non-Persistent	Female	Caucasian	Not Hispanic	Midwest	>75	GENERAL PRACTITIONER	Others	OB/GYN/Others/PCP/Unknown	
3419	P3420	Persistent	Female	Caucasian	Not Hispanic	South	>75	GENERAL PRACTITIONER	Others	OB/GYN/Others/PCP/Unknown	
3420	P3421	Persistent	Female	Caucasian	Not Hispanic	South	>75	Unknown	Others	OB/GYN/Others/PCP/Unknown	
3421	P3422	Persistent	Female	Caucasian	Not Hispanic	South	>75	ENDOCRINOLOGY	Specialist	Endo/Onc/Uro	
3422	P3423	Non-Persistent	Female	Caucasian	Not Hispanic	South	55-65	Unknown	Others	OB/GYN/Others/PCP/Unknown	

In [5]: data.plot(kind='scatter',x='Age_Bucket',y='Count_Of_Risks') plt.show()

In [11]: data.corr()

Out[11]:

 Dexa_Freq_During_Rx
 Count_Of_Risks

 1.000000
 0.013964

 2.0000000
 0.013964

 3.000000
 0.013964

In [12]: Dexa_Freq_During_Rx = pd.DataFrame(data['Dexa_Freq_During_Rx'])
Count_Of_Risks = pd.DataFrame(data['Count_Of_Risks'])

In [13]: Dexa_Freq_During_Rx Out[13]: Dexa_Freq_During_Rx 0 2 0 3 0 3419 3420 3421 3422 0 3423 0 3424 rows × 1 columns In [14]: lm=linear_model.LinearRegression() model = lm.fit(Dexa_Freq_During_Rx,Count_Of_Risks) In [15]: model.coef_ Out[15]: array([[0.00187909]]) In [16]: model.intercept_ Out[16]: array([1.23381853]) In [17]: model.score(Dexa_Freq_During_Rx,Count_Of_Risks) Out[17]: 0.00019499107173026609 In [20]: data.plot(kind='scatter',x='Dexa_Freq_During_Rx',y='Count_Of_Risks') plt.show() Count Of Risks

40 60 80 100 Dexa_Freq_During_Rx