Dote: 30 Sep 2024 How to Improve a neural Network I. Fine tuning neural network hyperporameters example number of shidden layers, neurons per layer, barning rote, optimizer, Batch size, autivation function, number of epochs 2. By Solving problems: -> Vanishing / Exploding gradient - Not enough data -> slaw training -> Overfitting. tire turing neural naturark hyper parameter: 1. Number of hidden Layer: - three hidden layer with 32 neurons each is better than the. I hidden layer earth 6 512 newtons. - Because initial layer capture the information of lines and shapes. example transfer tearning in CNN - we can incrosse the hidden layer till 2. Neurons per layer: - Number of neuron in input larger is number - Number of neurons in output layor is based one problem that we solve example one problem. 4 - Number of neuron hidden layer is in. sufficient number to corpture the all premitive features.

3. Booten size:

-

-

-

-

- select smaller botch size (& to 32) become. get better results on new dota but it is slower execution.
- Select larger botch size (8\$02) because # here the execution is fast or on grother may me com use learning rate schedular. if no use the larger batch size. (learning sate increase form smaller to larger)
 - are call it as warming up the learning.

rote.

4. Epochs size:

- Here we use. the mechanism early stopping. in Kenas.
 - It is outoroatically detect in which phase of. epoch epochs. we stop the execution.

Solving Problem with Neural Network:

1. Vanishing/exploding gradients:

- mitosiloitini tígren -
- Action Activation function selection
- Botch. Normalisation
- Gradient clipping

2. Mot enough Data: - use transfer learning - un supervised pre-training
3. Slaw tourning: - use morning type of optimizer example - use learning rate schedular.
4. Overfitting: - use 21 and 22 regularisation - Drappart:
Improve Neural Network Renformance: 1. Vanishing Gradients. - Activation functions - weight initialization.
2. Overfitting. - Reduce. Complexity/Immease Data - Proposit layer. - Regularization (L1 and L2) - Early Stopping
3. Normalization - Normalizing inputs - Botch Normalization - Normalizing Activations
4. Gradient Checking and clipping 5. Optimizers 5. Mannentum Adags ad

- RMSSprap - Adam
- Schoduling Learning Rate

Batch Size

Hyperparameter tenning - Nomber of hidden Layers - Noder/layer