

Prior Authorization Auto-Approval Model

Data Science Case Study Joel Skaria

Executive Summary

- Project Overview
- **Objective**: Develop ML model to automate prior authorization approvals
- Scope: Analysis of historical authorizations and claims data
- **Timeline**: 48-hour analysis and development
- + Key Findings
- Random Forest model achieved best performance
- Service type is strongest predictor of approval
- High model confidence across all metrics

Executive Summary Continued

- Performance Highlights
- 94.6% Accuracy
- **0.981** ROC AUC
- **0.911** F1 Score
- + Expected Impact
- ↓ Processing Time
- ↓ Operational Costs
- † Veterinarian Satisfaction

Business Problem

Problem: Manual review of veterinary prior authorizations creates delays

Current Process: Rule-based auto-approval system

Human review for complex cases

Goal: Develop ML model to increase auto-approval rate while maintaining accuracy

Data Overview

Two Primary Datasets:

- Prior Authorization Data
- Claims History Data

Key Metrics:

- Current auto-approval rate
- Average processing time
- Decision distribution

Exploratory Analysis

Authorization Status Distribution

Service Type Analysis

Claims History Patterns Key Finding:
Service type
strongly
correlates with
approval
decisions

Feature Engineering

- Created Features:
 - Prior claims count
 - •Total claims amount
 - Service type encoding
 - Days since last claim
 - Provider history metrics

Models Compared

LOGISTIC REGRESSION

DECISION TREE

Model Development

Approach:

- Tested multiple algorithms
- Cross-validation
- Hyperparameter tuning

Best Model: Random Forest

- 94.6% Accuracy
- 0.981 ROC AUC
- 0.911 F1 Score

Feature Importance

Model Performance

Metrics:

•Accuracy: 94.6%

•ROC AUC: 0.981

•F1 Score: 0.911

•Average Precision: 0.961

Implementation Plan

Phased Rollout:

Start with highest-confidence services Gradual expansion to other categories

Monitoring System:

Real-time performance tracking Regular model retraining

Business Impact

- + Expected Benefits:
 - •Reduced processing time
 - Lower operational costs
 - •Improved veterinarian satisfaction
 - •Maintained decision quality

Next Steps

- + Recommendations:
- 1. Begin phased implementation
- 2. Set up monitoring dashboard
- 3. Plan regular model updates
- 4. Collect feedback from stakeholders

Questions?

+ Contact: Joel Skaria, joel.skaria.js@gmail.com