Colle 22

Dérivation, Formules de Taylor, Développements limités

- ▶ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mardi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Dérivation

Exercice 22.1

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\left\{ egin{aligned} u_0 &= 1 \ orall n &\in \mathbb{N}, \quad u_{n+1} &= rac{1}{1+u_n}. \end{aligned}
ight.$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 22.2

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+^*$ dérivable. Soit $\ell \in \mathbb{R}$. Montrer que

$$\frac{f'(x)}{f(x)} \xrightarrow[x \to +\infty]{} \ell \implies \frac{f(x+1)}{f(x)} \xrightarrow[x \to +\infty]{} e^{\ell}.$$

Exercice 22.3

Soient $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ dérivables. Soit $x_0 \in \mathbb{R}$. On suppose que

$$\forall x \in [a, b], \quad g'(x) \neq 0.$$

1. Soit $x > x_0$. Montrer que

$$\exists c \in]x, x_0[: \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)}.$$

2. Soit $\ell \in \mathbb{R}$. Montrer que

$$\frac{f'(x)}{g'(x)} \xrightarrow[x \to x_0]{} \ell \quad \Longrightarrow \quad \frac{f(x) - f(x_0)}{g(x) - g(x_0)} \xrightarrow[x \to x_0]{} \ell.$$

Formules de Taylor

Exercice 22.4

Soit $n \in \mathbb{N}$. Soit I un intervalle de \mathbb{R} . Soit $f: I \longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^{n+1} . Soit $a \in I$. Montrer que pour tout $x \in I$, il existe $c_x \in \mathbb{R}$ compris entre a et x tel que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + f^{(n+1)}(c_{x}) \frac{(x-a)^{n+1}}{(n+1)!}.$$

Exercice 22.5

Soit $u \in \mathscr{C}^4 \big([0,1],\mathbb{R}\big)$. Soit f une fonction réelle telle que

$$\forall x \in [0,1], \quad -u''(x) = f(x).$$

Soit $n \in \mathbb{N}$. On pose $h \coloneqq \frac{1}{n+1}$ et, pour $i \in \llbracket 0, n+1 \rrbracket$, $x_i \coloneqq ih$.

- **1.** Soit $i \in [1, n]$. Comment approximer $f(x_i)$ avec $u(x_{i-1})$, $u(x_i)$ et $u(x_{i+1})$?
- **2.** Soit $i \in [1, n]$. Définir l'erreur d'approximation ε_i .
- **3.** Déterminer $C \in \mathbb{R}_+$ ne dépendant que de u tel que

$$\forall i \in [1, n], \quad |\varepsilon_i| \leqslant Ch^2.$$

Développements limités

Exercice 22.6

Soit $n \in \mathbb{N}$. Donner le développement limité en 0 à l'ordre 2n+2 de $x \longmapsto \ln\left(\frac{1+x}{1-x}\right)$.

Exercice 22.7

Donner le développement limité à l'ordre 3 en 1 de cos o ln.

Exercice 22.8

Soit $n \in \mathbb{N}$. Donner le développement limité de $\arcsin(\cdot)$ en 0 à l'ordre 2n + 2.

Exercice 22.9

On considère la fonction

$$f: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left\{ \begin{array}{ccc} \mathrm{e}^{-\frac{1}{x^2}} & \mathrm{si} & x \neq 0 \\ 0 & \mathrm{si} & x = 0. \end{array} \right.$$

- **1.** Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- **2.** Soit $n \in \mathbb{N}$. Déterminer le développement limité à l'ordre n de f en 0.