ECUACIONES DIFERENCIALES

Segundo del Grado en Matemáticas

Hugo Marquerie

Profesor: Salvador López Martínez
Facultad de Ciencias - Universidad Autónoma de Madrid
Segundo cuatrimestre 2023 - 2024

1 de Febrero, 2024

${\bf \acute{I}ndice}$

1	Intr	roducción	1
	1.1	Conceptos básicos	1
	1.2	Algunos métodos de resolución de EDO	2
		1.2.1 Ecuaciones tipo primitiva	2
		1.2.2 Ecuaciones de variables separadas (o separables)	3
		1.2.3 Ecuaciones exactas	4
		1.2.4 Comodín: cambios de variable	5
	1.3	Modelización	7
		1.3.1 Crecimiento Malthusiano	7
		1.3.2 Decrecimiento radiactivo	7
		1.3.3 Ley de enfriamiento de Newton	7
		1.3.4 Crecimiento logístico	7
		1.3.5 Depredador / presa	8
		1.3.6 Catenaria	8
		1.3.7 Familias de curvas ortogonales	9
	1.4	Análisis cualitativo y campos de pendientes	10
2	Ecu	naciones diferenciales ordinarias autónomas	14
	2.1	Propiedades básicas	14
	2.2	Teorema de existencia de soluciones	14
	2.3	Teorema de unicidad local de soluciones	15
	2.4	Teorema de existencia global/asíntotas de soluciones	18
	2.5	Estabilidad de soluciones	19
	2.6	Bifurcación	20
3	Teo	oremas fundamentales	22
	3.1	Introducción	22
	3.2	Conceptos de análisis	23
		3.2.1 Convergencia puntual y uniforme	23
		3.2.2 Espacios normados y contracciones	25
		3.2.3 Funciones Lipschitz	27
	3.3	Existencia y unicidad de soluciones	28
	3.4	Prolongabilidad	31
	3.5	Dependencia continua	34

4	\mathbf{Sist}	emas lineales de primer orden	36
	4.1	El problema homogéneo	37
	4.2	Sistema no homogéneo	39
	4.3	Sistemas lineales de coeficientes constantes	40
		4.3.1 El caso diagonalizable	40
5	Ejei	rcicios	42
	5.1	Hoja 1	42
		5.1.1 Conceptos básicos	42
		5.1.2 Algunos métodos de resolución de EDOs	42
		5.1.3 Modelización	43
		5.1.4 Análisis cualitativo y campos de pendientes	43
	5.2	Hoja 2	44
	5.3	Ноја 3	46

1 Introducción

1.1 Conceptos básicos

Definición 1.1 (Tipos de ecuaciones diferenciales).

- 1. Según el número de variables
 - (a) E. D. Ordinarias: Una variable $y: I \subset \mathbb{R} \longrightarrow \mathbb{R}$
 - (b) E. D. Parciales: Varias variables $u: \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{R}$
- 2. Según las derivadas de mayor orden.

 $F\left(x,y,y',\ldots,y^{(n)}\right)=0$ es de orden $n\iff F$ es no constante en su variable n+2.

- 3. Según si la derivada de mayor orden se puede despejar o no.
 - (a) En forma normal $y^{(n)} = f(x, y, ..., y^{(n-1)})$.

 \iff por reducción de orden: $\begin{cases} y_j' = y^{(j)}, j = 1, \dots, n-1 \\ y_n' = f(x, y_1, \dots, y_{n-1}) \end{cases}$

Definición 1.2 (Solución de una EDO). Sea $I \subset \mathbb{R}$ un intervalo y $y: I \longrightarrow \mathbb{R}$ una función, y es solución de la EDO $F(x, y, y', \dots, y^{(n)}) = 0$ en I

 \iff \exists las derivadas de y hasta orden $n \land \forall x \in I : F\left(x, y(x), y'(x), \dots, y^{(n)}(x)\right) = 0$

Ejemplo 1.1. La familia de funciones $y(x) = Ce^x$ con $C \in \mathbb{R} \land x \in \mathbb{R} (= I)$ cumple la ecuación y' = y. Si además de la EDO, imponemos un dato incial $y(x_0) = y_0 \in \mathbb{R}$

$$\implies y(x_0) = y_0 = Ce^{x_0} \implies C = e^{-x_0}y_0$$

¿Existe alguna otra solución de $\{y'=y \wedge y(x_0)=y_0\}$? Para comprobarlo, basta con derivar:

$$\frac{\mathrm{d}}{\mathrm{d}x} (y(x)e^{-x}) = (y'(x) - y(x))e^{-x}$$

Si y' = y en $\mathbb{R} \implies \forall x \in \mathbb{R} : \frac{\mathrm{d}}{\mathrm{d}x} (y(x)e^{-x}) = 0 \implies \forall x \in \mathbb{R} : y(x)e^{-x} = C$

 $\implies y(x) = Ce^x \implies y(x) = \left(e^{-x_0}y_0\right)e^x$ es la única solución al sistema.

Ejemplo 1.2. $\left\{ y' = \frac{e^{-y^2}}{1+x^2} \wedge y(0) = 0 \right\}$ Supongamos que $\exists y \colon \mathbb{R} \longrightarrow \mathbb{R}$ derivable solución del problema de valores iniciales (PVI). Veamos que podemos decir de y:

1

- 1. Como sabemos $y(0) = 0 \implies y'(0) = \frac{e^{-(y(0))^2}}{1+0^2} = 1$
- 2. $\forall x \in \mathbb{R} : y'(x) > 0 \implies y$ es estrictamente creciente $\implies y$ es inyectiva.

$$y(0) = 0 \implies \forall x > 0 : y(x) < 0 \land \forall x < 0 : y(x) > 0$$

3.
$$y'' = \frac{(-2yy'2(1+x^2)-2x)e^{-y^2}}{(1+x^2)^2} = \frac{-2e^{-y^2}(ye^{-y^2}+x)}{(1+x^2)^2}$$

Si $x > 0 \implies y''(x) < 0$ y si $x < 0 \implies y''(x) > 0$

 $\implies y$ es convexa en $(-\infty,0)$ y cóncava en $(0,+\infty)$

$$4. \ y' \leq \frac{1}{1+x^2}$$
 Si $x > 0 \implies y(x) = \int_0^x y'(s) \, \mathrm{d}s \leq \int_0^x \frac{1}{1+s^2} \, \mathrm{d}s = \arctan x$ Si $x < 0 \implies -y(x) = \int_x^0 y'(s) \, \mathrm{d}s \leq \int_x^0 \frac{1}{1+s^2} \, \mathrm{d}s = -\arctan x$
$$\implies |y(x)| \leq |\arctan x| \leq \frac{\pi}{2} \implies y \text{ es constante.}$$

Como y es creciente y acotada $\implies \exists \lim_{x \to \infty} y(x) \land \exists \lim_{x \to -\infty} y(x).$

5. Si
$$y(x)$$
 es solución, entonces $z(x) = -y(-x)$ también lo es, porque:
$$z'(x) = y'(-x) = \frac{e^{-(y(-x))^2}}{1+(-x)^2} = \frac{e^{-(z(x))^2}}{1+x^2} \ _{\wedge} \ z(0) = 0$$

6. Si hay solo una solución, entonces $y(x) = z(x) = -y(-x) \iff y(x)$ es impar.

1.2 Algunos métodos de resolución de EDO

Ecuaciones tipo primitiva

Son del tipo y'(x) = f(x) y se resuelven integrando a ambos lados: $\int_{x_0}^x y'(s) ds = \int_{x_0}^x f(s) ds$

$$\iff y(x) - y(x_0) = \int_{x_0}^x f(s) \, ds \iff y(x) = y_0 + \int_{x_0}^x f(s) \, ds$$

1.2.2 Ecuaciones de variables separadas (o separables)

Definición 1.3. Sea una EDO de primer orden, es de variables separadas

$$\iff$$
 es de la forma $h(y)y' = f(x)$

Proposición 1.1. Si H, F son primitivas de h, f respectivamente, entonces la familia de funciones, definida implícitamente por H(y(x)) - F(x) = C, es solución de la EDO.

Demostración.

$$H(y(x)) - F(x) = C \iff (H(y(x)) - F(x))' = 0 \iff h(y(x))y'(x) - f(x) = 0$$

Ejemplo 1.3.
$$y' = \frac{1+x^4}{1+y^2} \implies (1+y^2)y' = 1+x^4$$

$$\left(h(y) = 1+y^2 \implies H(y) = y + \frac{y^3}{3}\right) \land \left(f(x) = 1+x^4 \implies F(x) = x + \frac{x^5}{5}\right)$$

$$H(y(x)) - F(x) = C \iff y + \frac{y^3}{3} - x - \frac{x^5}{5} = C$$

Determinamos unos datos iniciales $\begin{cases} y' = \frac{1+x^4}{1+y^2}, \\ y(x_0) = y_0 \end{cases} \text{ definimos } \Psi(x,y) = y + \frac{y^3}{3} - x - \frac{x^5}{5} - C$

$$\frac{\partial \Psi}{\partial y}(x_0, y_0) = 1 + y_0^2 > 0 \xrightarrow{TFIm} \exists$$
 un entorno I de x_0 tal que $y \colon I \longrightarrow \mathbb{R}$ es solución

Observación 1.1.

- 1. Las ecuaciones autónomas y'=f(y) son un tipo especial de ecuaciones separables donde $h(y)=\frac{1}{f(y)}$
- 2. En las ecuaciones separables, hay una cantidad que se conserva (a lo largo del tiempo).

05/02/2024

En general, si se conserva una cantidad de la forma F(x, y(x)), ¿qué ecuación satisface y?

$$\forall x \in I : g(x) := F(x, y(x)) = c$$

$$\forall x \in I : g'(x) = \frac{\partial F}{\partial x}(x, y(x)) + \frac{\partial F}{\partial y}(x, y(x))y'(x) = 0$$

1.2.3 Ecuaciones exactas

Definición 1.4 (EDO exacta). Sea
$$M(x,y(x)) + N(x,y(x))y' = 0$$
 una EDO, es exacta $\iff \exists F(x,y) : \nabla F = (M,N) \iff \frac{\partial F}{\partial x} = M \wedge \frac{\partial F}{\partial y} = N$

Observación 1.2.

- 1. y solución de EDO exacta $\implies F(x, y(x)) = C$
- 2. Un caso particular de EDO exactas son las de variables separadas.

Proposición 1.2. Sean $\Omega \subset \mathbb{R}^2$ un conjunto abierto y $M, N \in C^1(\Omega)$

$$\exists F \in C^2(\Omega) : \nabla F = (M, N) \iff \forall (x, y) \in \Omega : \frac{\partial M}{\partial y}(x, y) = \frac{\partial N}{\partial x}(x, y)$$

Demostración. $[\Longrightarrow]$ Suponemos que $\exists F \in C^2(\Omega) : \nabla F = (M, N)$

$$\implies \frac{\partial M}{\partial y} = \frac{\partial^2 F}{\partial y \, \partial x} = \frac{\partial^2 F}{\partial x \, \partial y} = \frac{\partial N}{\partial x} \text{ porque } F \in C^2(\Omega)$$

 $[\Leftarrow]$ Supongamos que $\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$. Fijados $x_0, y_0 \in \Omega$, definimos

$$\forall (x,y) \in \Omega : F(x,y) := \int_{x_0}^x M(s,y) \, ds + \int_{y_0}^y N(x_0,s) \, ds$$

Por un lado, $\frac{\partial F}{\partial x}(x,y) = M(x,y)$

Por otro lado,
$$\frac{\partial F}{\partial y}(x,y) = \frac{\partial}{\partial y} \int_{x_0}^x M(s,y) \, ds + N(x_0,y) = \int_{x_0}^x \frac{\partial M}{\partial y}(s,y) \, ds + N(x_0,y)$$

$$= \int_{x_0}^x \frac{\partial N}{\partial x}(s,y) \, ds + N(x_0,y) = N(x,y) - N(x_0,y) + N(x_0,y) = N(x,y)$$

Ejemplo 1.4 (y + 2xy' = 0).

$$\implies M(x,y) = y \land N(x,y) = 2x \implies \frac{\partial M}{\partial y} = 1 \neq 2 = \frac{\partial N}{\partial x} \implies \text{no es exacta.}$$

Multiplicando por xy^3 , obtenemos $xy^4 + 2x^2y^3y' = 0$

$$\implies M(x,y) = xy^4 \wedge N(x,y) = 2x^2y^3 \implies \frac{\partial M}{\partial y} = 4xy^3 = \frac{\partial N}{\partial x} \implies \text{esta si es exacta.}$$

Y resolvemos:

$$F(x,y) := \int_{x_0}^x M(s,y) \, \mathrm{d}s + \int_{y_0}^y N(x_0,s) \, \mathrm{d}s = \int_{x_0}^x sy^4 \, \mathrm{d}s + \int_{y_0}^y 2x_0^2 s^3 \, \mathrm{d}s = \left[\frac{s^2}{2} y^4 \right]_{s=x_0}^{s=x} + \left[2x_0^2 \frac{s^4}{4} \right]_{s=y_0}^{s=y} = \frac{x^2 y^4}{2} - \frac{x_0^2 y^4}{2} + \frac{x_0^2 y^4}{2} - \frac{x_0^2 y_0^4}{2} = \frac{x^2 y^4}{2} - \frac{x_0^2 y_0^4}{2}$$

$$\{ F(x,y) = C \land F(x_0,y_0) = 0 \} \implies x^2 y^2 = x_0^2 y_0^4$$

Por ejemplo, si $x_0 > 0, y_0 > 0$, entonces, como y es continua, existe un entorno I de x_0 tal

que $I \subset (0, \infty), y(x) > 0$ en I. Con lo cual:

$$\forall x \in I : \sqrt{x}y(x) = \sqrt{x_0}y_0 \implies y(x) = \frac{\sqrt{x_0}y_0}{\sqrt{x}}$$

Definición 1.5 (Factor integrante). Sea p(x,y) + q(x,y)y' = 0 una EDO y $\mu(x,y)$ una función, μ es un factor integrante de la EDO

$$\iff \mu(x,y)p(x,y) + \mu(x,y)q(x,y)y' = 0 \text{ es exacta}$$

Definición 1.6 (EDO lineales de primer orden). Una EDO se denomina lineal de primer orden \iff es de la forma y' = a(x)y + f(x).

En realidad, las soluciones de esta EDO formarían un espacio afín, pero se le sigue llamando "lineal".

1.2.4 Comodín: cambios de variable

Definición 1.7 (Ecuaciones homogéneas). Sea una EDO de la forma y' = f(x, y) con $f: \Omega \longrightarrow \mathbb{R}, \Omega \subset \mathbb{R}^2$ abierto, es homogénea

$$\iff \forall (x,y) \in \Omega : \forall \lambda \in \mathbb{R} : (\lambda x, \lambda y) \in \Omega : f(\lambda x, \lambda y) = f(x,y)$$

Proposición 1.3. Sea y' = f(x, y) una EDO homogénea

 \implies el cambio de variable $u(x) = \frac{y(x)}{x}$ la transforma en una de variables separadas.

Demostración.

$$xu(x) = y(x) \implies u(x) + xu'(x) = y'(x) = f(x, y(x)) = f(x, xu(x))$$
$$\implies xu'(x) = f(1, u(x)) - u(x) \implies \frac{u'(x)}{f(1, u(x)) - u(x)} = \frac{1}{x}$$

Ejemplo 1.5 (4x - 3y + y'(2y - 3x) = 0). Hacemos el cambio de variable $u(x) = \frac{y(x)}{x}$ $\implies y' = \frac{3y - 4x}{2y - 3x} = f(x, y) \implies f(1, u) = \frac{3u - 4}{2u - 3}$ $\implies f(\lambda x, \lambda y) = \frac{3\lambda x - 4\lambda y}{2\lambda y - 3\lambda x} = \frac{3y - 4x}{2y - 3x} = f(x, y) \implies \text{es homogénea}$ $\implies \frac{u'}{\frac{3u - 4}{2u - 3} - u} = \frac{1}{x} \implies \frac{2u - 3}{-4 - 2u^2 + 6u}u' = \frac{1}{x}$ $\implies -\frac{1}{2}\log|u^2 - 3u + 2| - \log|x| = C_1 \implies |u^2 - 3u + 2| = \frac{C_2}{x^2}$

$$\Rightarrow \frac{(y(x))^2}{x} - \frac{3y(x)}{x} + 2 = \frac{C_2}{x^2} \Rightarrow \left| (y(x))^2 - 3y(x)x + 2x^2 \right| = C_2$$
$$\Rightarrow \left| y(x) = \frac{3x \pm \sqrt{9x^2 - 8x}}{2} \right|$$

Teorema 1.1 (Ejercicio 2.3). Sea $I \subset \mathbb{R}$ un intervalo abierto y sean $a, f: I \longrightarrow \mathbb{R}$ funciones continuas y $x_0 \in I \land y_0 \in \mathbb{R}$

$$\implies El\ PVI \begin{cases} y' = a(x)y + f(x), x \in I \\ y(x_0) = y_0 \end{cases} admite\ una\ única\ solución:$$
$$y(x) = y(x_0)e^{\int_{x_0}^x a(t)\,\mathrm{d}t} + \int_{x_0}^x f(s)e^{\int_{s_0}^x a(t)\,\mathrm{d}t} \,\mathrm{d}s$$

Demostración. $\forall x : f(x) = 0$, la EDO es lineal porque, si y, z son soluciones, entonces $\alpha y + \beta z$ es solución con $\alpha, \beta \in \mathbb{R}$.

$$(\alpha y + \beta z)' = \alpha y' + \beta z' = \alpha a(x)y + \beta a(x)z = a(x)(\alpha y + \beta z)$$

Además podemos encontrar un factor integrante:

$$y' - a(x)y = f(x) \text{ (que es exacta)} \implies (y' - a(x)y)e^{-\int_{x_0}^x a(s) \, ds} = f(x)e^{-\int_{x_0}^x a(s) \, ds}$$

$$\implies \frac{d}{dx} \left(y(x)e^{-\int_{x_0}^x a(s) \, ds} \right) = f(x)e^{-\int_{x_0}^x a(s) \, ds}$$

$$\implies \int_{x_0}^x \frac{d}{ds} \left(y(s)e^{-\int_{x_0}^s a(t) \, dt} \right) ds = \int_{x_0}^x f(s)e^{-\int_{x_0}^s a(t) \, dt} ds$$

$$\implies y(x)e^{-\int_{x_0}^x a(t) \, dt} - y(x_0) = \int_{x_0}^x f(s)e^{-\int_{x_0}^s a(t) \, dt} ds$$

$$\implies y(x) = y(x_0)e^{\int_{x_0}^x a(t) \, dt} + e^{\int_{x_0}^x a(t) \, dt} \int_{x_0}^x f(s)e^{-\int_{x_0}^s a(t) \, dt} ds$$

$$\implies y(x) = y(x_0)e^{\int_{x_0}^x a(t) \, dt} + \int_{x_0}^x f(s)e^{\int_{x_0}^x a(t) \, dt} - \int_{x_0}^s a(t) \, dt ds$$

$$\implies y(x) = y(x_0)e^{\int_{x_0}^x a(t) \, dt} + \int_{x_0}^x f(s)e^{\int_{x_0}^x a(t) \, dt} ds$$

$$\implies y(x) = y(x_0)e^{\int_{x_0}^x a(t) \, dt} + \int_{x_0}^x f(s)e^{\int_{x_0}^x a(t) \, dt} ds$$

Además, es única porque si y, z son soluciones del PVI, consideremos $\omega = y - z$

$$\Rightarrow \forall x \in I : \omega' = y' - z' = (a(x)y + f(x)) - (a(x)z + f(x)) = a(x)(y - z) = a(x)\omega$$

$$\Rightarrow \omega' = a(x)\omega = 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}s} \left(\omega(x)e^{-\int_{x_0}^x a(s)\,\mathrm{d}s} \right) = (\omega' - \omega(x))e^{-\int_{x_0}^x a(s)\,\mathrm{d}s} = 0$$

$$\forall x \in I : \omega(x)e^{-\int_{x_0}^x a(s)\,\mathrm{d}s} = c \xrightarrow{x=x_0} c = 0 \Rightarrow y = z$$

1.3 Modelización

1.3.1 Crecimiento Malthusiano

$$x(t) := \text{Población a tiempo } t$$

El modelo asume que el espacio y loas recursos son ilimitados, y además, el crecimiento en cada instante es proporcional a la población en ese instante. En términos matemáticos:

$$\frac{x(t+h) - x(t)}{h} = ax(t) + o(1) \text{ donde } o(1) \xrightarrow{h \to 0} 0$$
$$\{x'(t) = ax(t) \land x(0) = x_0\} \implies x(t) = x_0 e^{at}$$

1.3.2 Decrecimiento radiactivo

x(t) := El número de núcleos a tiempo t

$$\{x'(t) = -kx(t) \land x(0) = x_0 \land k > 0\} \implies x(t) = x_0 e^{-kt}$$

1.3.3 Ley de enfriamiento de Newton

$$T(t) := \text{Temperatura del objeto a tiempo } t \wedge \begin{cases} T_{ext} := \text{Temperatura exterior} \\ T_0 := \text{Temperatura inicial} \\ k := \text{Constante de proporcionalidad} > 0 \end{cases}$$

El cambio en la temperatura de un cuerpo en un medio a temperatura constante es proporcional a la diferencia de temperatura entre ambos en cada instante.

$$\{T'(t) = -k(T(t) - T_{ext}) \wedge T(0) = T_0\} \implies T(t) = T_0 e^{\int_0^t (-k) \, ds} + \int_0^t k T_{ext} e^{\int_s^t (-k) \, dx} \, ds$$

$$\implies T(t) = T_0 e^{-kt} + \int_0^t k T_{ext} e^{-k(t-s)} \, ds = T_0 e^{-kt} + T_{ext} e^{-kt} (e^{kt} - 1)$$

$$\implies \boxed{T(t) = T_{ext} + e^{-kt} (T_0 - T_{ext})}$$

1.3.4 Crecimiento logístico

Si los recursos son limitados y hay que competir por ellos, el modelo Malthusiano 1.3.1 no parece razonable. Lo adecuado es suponer que la tasa de crecimiento depende de la población en cada instante.

$$x'(t) = a\left(1 - \frac{x(t)}{b}\right)x(t) \text{ con } a, b > 0$$

Soluciones:

1.
$$\forall t \in \mathbb{R} : x(t) = 0$$

2. $\forall t \in \mathbb{R} : x(t) = b$

3. Si hay solución $\forall t \in I : x(t) \in (0, b)$ $\Rightarrow \forall t \in I : \left(1 - \frac{x(t)}{b}\right) x(t) > 0 \Rightarrow \frac{x'}{\left(1 - \frac{x(t)}{b}\right)} x(t) = a$ $\Rightarrow \frac{x'b}{(b-x)x} = a \Rightarrow \frac{x'}{(b-x)} + \frac{x'}{x} = a \Rightarrow \int_0^t \left(\frac{x'(s)}{(b-x(s))} + \frac{x'(s)}{x(s)}\right) ds = \int_0^t a ds$ $\Rightarrow \int_0^t \frac{d}{ds} \left(-\log(b-x(s)) + \log(x(s))\right) ds = \int_0^t \frac{d}{ds} (as) ds$ $\Rightarrow -\log(b-x(t)) + \log(x(t) - (-\log(b-x_0) + \log(x_0)) = at$ $\Rightarrow \log\left(\frac{x(t)}{b-x(t)}\right) = \log\left(\frac{x_0}{b-x_0}\right) + at$ $\Rightarrow \frac{x(t)}{b-x(t)} = \frac{x_0}{b-x_0} e^{at} \Rightarrow x(t) = \frac{x_0}{b-x_0} b e^{at} - \frac{x_0}{b-x_0} x(t) e^{at}$ $\Rightarrow \left(1 + \frac{x_0}{b-x_0} e^{at}\right) x(t) = \frac{x_0}{b-x_0} b e^{at} \Rightarrow x(t) = \frac{\frac{x_0}{b-x_0} b e^{at}}{1 + \frac{x_0}{b-x_0} e^{at}}$ $\Rightarrow \forall t \in \mathbb{R} : \left[x(t) = \frac{x_0 \cdot b \cdot e^{at}}{b+x_0(e^{at}-1)}\right] \Rightarrow x' = a\left(1 - \frac{x}{b}\right) x$

1.3.5 Depredador / presa

Hay dos especies (por ejemplo, conejos y zorros), en un espacio muy grande donde hay alimento ilimitado para los conejos, mientras que los zorros solo se alimentan de conejos.

- C(t) es la población de conejos en tiempo t.
- Z(t) es la población de zorros en tiempo t.

Si no hubiera zorros $\implies C'(t) = \alpha C(t) \operatorname{con} \alpha > 0$

Si no hubiera conejos $\implies Z'(t) = -\beta Z(t)$ con $\beta < 0$

Si coexisten, los encuentros serían "malos" para los conejos y "buenos" para los zorros:

$$\begin{cases} C'(t) = \alpha C(t) - \gamma C(t) Z(t) \\ Z'(t) = -\beta Z(t) + \delta C(t) Z(t) \end{cases}$$

1.3.6 Catenaria

¿Qué forma toma un cable flexible, de densidad constante (ρ) , fijos sus extremos a la misma altura y sometido a la acción de la gravedad?

Como el cuerpo está en reposo,

$$T$$

$$\lambda \int_0^x \sqrt{1 + (y'(\tau))^2} d\tau = \frac{\rho g}{T_0} s = \tan \theta = y'(x)$$

$$\implies y''(x) = \lambda \sqrt{1 + (y'(x))^2}$$

Reducimos el orden de la EDO mediante el cambio de variable $y'=q \wedge q'=\lambda \sqrt{1+q^2}$ y usando el método de variables separadas obtenemos $q(x)=\sinh{(\lambda x+c)}$.

$$y'(0) = 0 \implies c = 0 \implies y'(x) = \sinh \lambda x$$

 $\implies y(x) = \int_0^x \sinh \lambda s \, ds \implies y(x) = \lambda \left(\cosh (\lambda x) - 1\right)$

Preguntas pertinentes:

- 1. ¿Qué sucede si la tensión inicial es muy grande?
- 2. ¿Es razonable aproximar esta curva como una parábola? (Al menos para cables de longitud pequeña)

1.3.7 Familias de curvas ortogonales

Ya hemos visto que es típico que las soluciones de una EDO de primer orden y' = f(x, y) formen una familia uniparamétrica de curvas dadas en forma explícita casi siempre.

Razonando de forma inversa, muchas veces es posible demostrar que la familia de curvas

$$\mathcal{F} = \{\Gamma_c\}_{c \in \mathbb{R}} \wedge \Gamma_c = \{(x, y) \in \mathbb{R}^2 : F(x, y, c) = 0\}$$

satisface (localmente) una EDO y' = f(x, y) de primer orden.

Definición 1.8 (EDO asociada). Esta EDO se denomina ecuación asociada a \mathcal{F} .

Ejemplo 1.6.
$$\mathcal{F} = \{\Gamma_c\}_{c \in \mathbb{R}} \wedge \Gamma_c = \{(x, y) \in \mathbb{R}^2 : F(x, y, c) = 0\}$$
 y definitions $F(x, y, c) = x^2 + y^2 + 2cx = (x + c)^2 + y^2 - c^2$

Si $y: I \longrightarrow \mathbb{R}$ es derivable, con $I \subset \mathbb{R}$ un intervalo abierto, y su gráfica está contenida en \mathcal{F} , entonces $\forall x \in I: x^2 + (y(x))^2 + 2cx = 0 \implies 2x + 2yy' + 2c = 0 \implies 2x^2 + 2xyy' + 2cx = 0 \implies x^2 + 2xyy' - y^2 = 0 \implies y' = \frac{y^2 - x^2}{2xy}$

Definición 1.9. Sean $\mathcal{F} = \{\Gamma_c\}_{c \in \mathbb{R}}$ y $\mathcal{C} = \{\sim \Gamma_c\}_{c \in \mathbb{R}}$ dos familias de curvas, son ortogonales $\iff \mathcal{F} \perp \mathcal{C} \iff \forall \left(\Gamma_{c_1}, \widetilde{\Gamma}_{c_2}\right) \in \mathcal{F} \times \mathcal{C} : \Gamma_{c_1} \cap \widetilde{\Gamma}_{c_2} \neq \phi : \text{se cortan perpendicularmente.}$

Proposición 1.4. Sea \mathcal{F} una familia de curvas con EDO asociada y' = f(x, y)

 \implies las soluciones de $z' = -\frac{1}{f(x,y)}$ forman una familia (C) de curvas ortogonal a \mathcal{F}

Demostración. Sean $I_1, I_2 \subset \mathbb{R}$ conjuntos abiertos con $I_1 \cap I_2 \neq \phi$ y sean $y \colon I_1 \longrightarrow \mathbb{R}$, $z \colon I_2 \longrightarrow \mathbb{R}$ dos funciones tales que $y(I_1) \in \mathcal{F} \wedge z(I_2) \in \mathcal{C}$.

$$\implies \forall x \in I_1 : y' = f(x, y) \land \forall x \in I_2 : z' = -\frac{1}{f(x, y)}$$

Como se cortan, $\exists x_0 \in I_1 \cap I_2 : y(x_0) = z(x_0)$

$$\implies y'(x_0) = f(x_0, y(x_0)) = f(x_0, z(x_0)) = -\frac{1}{z'(x_0)}$$

⇒ Las rectas tangentes a cada curva se cortan perpendicularmente

Ejemplo 1.7. Siguiendo el Ejemplo 1.6, podemos encontrar una familia de curvas ortogonal a $\mathcal{F}(\mathcal{C})$ tomando las soluciones de la EDO:

$$z' = \frac{2xz}{x^2 - z^2}$$
 que es homogénea.

$$\implies \mathcal{C} = \{\{(x, z) \in \mathbb{R}^2 : (z - c)^2 + x^2 = c^2\} : c \in \mathbb{R}\}$$

1.4 Análisis cualitativo y campos de pendientes

Definición 1.10 (Campo de pendientes). Sea una EDO y' = f(x, y), su campo de pendientes es el diagrama que asigna a cada punto $(x, y) \in \mathbb{R}^2$ un "pequeño" segmento con

pendiente igual a f(x, y). Claramente, si existen soluciones, entonces las curvas solución son tangentes a esos segmentos.

Ejemplo 1.8.

Definición 1.11 (Isoclina). Sea y' = f(x, y) una EDO, sus isoclinas son los conjuntos de la forma f(x, y) = c con $c \in \mathbb{R}$.

Ejemplo 1.9 $(x' = x^2 - t^2)$.

- 1. La función y=-x(-t) también es solución porque $\forall t\in\mathbb{R}:y'=x'(-t)=(-x(-t))^2-(-t)^2=(y(t))^2-t^2$
- 2. Existe $t \in \mathbb{R} : x(t) > -t$ Razonando por contradicción, supongamos que $\forall t \in \mathbb{R} : x(t) \leq -t$. En particular, $\forall t \geq 0 : x(t) \leq -t$. Entonces, $\forall t \geq 0 : x^2(t) \geq t^2$. Por tanto, $\forall t \geq 0 : x'(t) = x(t)^2 - t^2 \geq 0$. Integrando $x(t) - x(0) \geq 0$ Entonces $\forall t \geq 0 : x(0) \leq x(t) \leq -t$, pero tomando $t \geq -x(0)$, llegamos a una contradicción.
- 3. Si $x(t_0) = -t_0$ para algún $t_0 \in \mathbb{R}$, entonces $x(t) \geq -t$ para todo $t \geq t_0$.

Observación 1.3. Se puede pensar que b(t) = -t actúa como una barrera que no se puede atravesar. De hecho, b(t) es una isoclina (porque $b(t)^2 - t^2 = cte$). Estas son candidatas a barreras.

11

Definimos $\forall t \geq t_0 : \varphi(t) := x(t) - (-t) = x(t) + t$.

Por un lado, $\varphi(t_0) = x(t_0) - t_0 = 0$

Por otro lado, $\varphi'(t) = x'(t) + 1 = (x(t)^2 - t^2) + 1 \implies \varphi'(t_0) = 1 > 0$ Entonces, existe $\varepsilon > 0$: $\forall t \in (t_0, t_0 + \varepsilon)\varphi(t) > 0$.

Razonando por contradicción, supongamos que $\exists t_1 > t_0$ tal que $\varphi(t_1) = 0$. Podemos asumir que t_1 es el más pequeño que lo cumple y, por tanto, $\forall t \in (t_0, t_1) : \varphi(t) > 0$

$$\implies \varphi'(t_1) = x(t_1)^2 - t_1^2 + 1 = (-t_1)^2 - t_1^2 + 1 = 1 > 0$$

Ejemplo 1.10 ($x' = x^2 \arctan(x)$).

- 1. La fucknión $y: I \longrightarrow \mathbb{R}$ dada por y(t) = -x(t) es solución, porque $\forall t \in I: y'(t) = -x'(t) = -x^2 \arctan(x(t)) = (-x(t))^2 \arctan(-x(t)) = y(t)^2 \arctan(y(t))$
- 2. Sean $t_0 \in I, x_0 > 0$, con $x(t_0) = x_0$. Entonces, $\forall t \in (t_0, \infty) \cap I : x(t) > x_0$

Demostración. Sea $\varphi(t) = x(t) - x_0, \forall t \in [t_0, \infty) \cap I$.

Por un lado, $\varphi(t_0) = x(t_0) - x_0 = 0$.

Por otro lado, $\varphi'(t) = x'(t) = x(t)^2 \arctan(x(t)) > 0 \implies \varphi'(t_0) > 0.$

Razonando por contradicción, supongamos que $\exists t_1 \in I \cap (t_0, \infty)$ tal que $\varphi(t_1) = 0$. Podemos asumir que t_1 es el más pequeño que lo cumple y, por tanto, $\varphi'(t_1) \leq 0$, pero $\varphi'(t_1) = x'(t_1) = x(t_1)^2 \arctan(x(t_1)) = x_0^2 \arctan(x_0) > 0$

Observación 1.4. La función $b(t) = x_0 > 0$ cumple que $b'(t) < b(t)^2 \arctan(b(t))$. Es decir, es una *subsolución*.

3. Si $\exists t_0 \in I : x(t_0) = x_0 > 0$, entonces $\forall t \in I : x(t) \geq 0$.

Demostración. Supongamos que $\exists t_1 \in I : x(t_1) < 0$, entonces por 2., $t_1 < t_0$. Sea $t_2 \in (t_1, t_0)$ tal que $x(t_2) = 0$ y lo elijo de forma que $\forall t \in (t_1, t_2) : x(t) < 0$. Por el TVM, $\exists s \in (t_1, t_2) : x'(s) = \frac{x(t_2) - x(t_1)}{t_2 - t_1} = \frac{0 - x(t_1)}{t_2 - t_1} > 0$. Sin embargo, $x'(s) = x(s)^2 \arctan(x(s)) < 0$, lo cual es una contradicción.

4. Si $x(t_0) = x_0 > 0$ \wedge inf $(I) = -\infty$, entonces $\exists \lim_{t \to -\infty} x(t) = L \wedge L = 0$.

Demostración. Como x es creciente y acotada inferiormente, $\exists L$. La ecuación dice que también existe $\lim_{t\to-\infty} x'(t)$ con $\lim_{t\to-\infty} x'(t) = L^2 \arctan(L)$. Por otro lado, vamos a ver que $\lim_{t\to-\infty} x'(t) = 0$. En efecto, por el TVM, $\exists s \in (t,t-1): x'(s) = \frac{x(t)-x(t-1)}{t-(t-1)} = x(t) - x(t-1)$. Entonces, $\lim_{t\to-\infty} x'(t) = 0 \implies L^2 \arctan(L) = 0 \implies L = 0$.

5. $\sup(I) < \infty$

Demostración. Si $x(t_0) = x_0 > 0$, entonces $\forall t > t_0 : x(t) > x_0$. Por tanto, $\forall t > t_0 : x'(t) > x(t)^2 \arctan(x_0) = \lambda x(t)^2$ $\implies \forall t > t_0 : \frac{x'(t)}{x^2(t)} > \lambda \implies \int_{t_0}^t \frac{x'(s)}{x(s)^2} \, \mathrm{d}s > \lambda(t - t_0)$ $\implies \int_{x_0}^{x(t)} \frac{1}{r^2} \, \mathrm{d}r > \lambda(t - t_0) \implies -\frac{1}{x(t)} + \frac{1}{x_0} > \lambda(t - t_0)$ $\implies \frac{1}{x_0} > \lambda(t - t_0) \implies t < t_0 + \frac{1}{\lambda x_0}$

2 Ecuaciones diferenciales ordinarias autónomas

2.1 Propiedades básicas

Definición 2.1 (EDO autónoma). Una ecuación diferencial ordinaria (EDO) de primer orden se dice autónoma si no depende explícitamente de la variable independiente. Es decir,

$$\iff$$
 es de la forma $y' = f(y)$

Proposición 2.1 (Propiedades de EDOs autónomas).

1. **Isoclinas:** Todos los puntos de cada recta horizontal y = c pertenecen a la misma isoclina. ¡Cuidado! A veces una isoclina puede contener más de una recta horizontal.

Ejemplo 2.1
$$(y' = y^2)$$
.

$$\{(x,y) \in \mathbb{R} : y^2 = c\} = \{(x,\sqrt{c}) : x \in \mathbb{R}\} \cup \{(x,-\sqrt{c}) : x \in \mathbb{R}\}$$

2. **Traslaciones:** Si y es solución $\implies \forall c \in \mathbb{R} : w(x) := y(x+c)$ es solución.

Demostración.
$$w'(x) = y'(x+c) = f(y(x+c)) = f(w(x))$$

3. Soluciones triviales: $Si \exists a \in Dom(f) : f(a) = 0 \implies y(x) = a$ es solución.

Demostración.
$$y'(x) = 0 = f(a) = f(y(x))$$

2.2 Teorema de existencia de soluciones

Sean
$$a \in [-\infty, \infty) \land b \in (-\infty, \infty] \land f : (a, b) \longrightarrow \mathbb{R}$$
 continua $\land y_0 \in (a, b) : f(y_0) \neq 0$
 $\implies \exists \varepsilon : (y_0 - \varepsilon, y_0 + \varepsilon) \subset (a, b) \land \forall z \in (y_0 - \varepsilon, y_0 + \varepsilon) : f(z) \neq 0$

Sea $y\colon I\longrightarrow (a,b)$ una función derivable con $I\subset\mathbb{R}$ intervalo abierto tal que

$$\forall x \in I : y'(x) = f(y(x))$$
 \land $y(x_0) = y_0$ para algún $x_0 \in I$

Como
$$y$$
 es continua, $\exists \delta > 0 : \forall x \in (x_0 - \delta, x_0 + \delta) : y(x) \in (y_0 - \varepsilon, y_0 + \varepsilon)$
 $\implies \forall x \in (x_0 - \delta, x_0 + \delta) : f(y(x)) \neq 0$

Así,
$$\forall x \in (x_0 - \delta, x_0 + \delta) : \frac{y'(x)}{f(y(x))} = 1 \implies \forall x \in (x_0 - \delta, x_0 + \delta) : \int_{x_0}^x \frac{y'(z)}{f(y(z))} dz = x - x_0$$

$$\implies \boxed{\forall x \in (x_0 - \delta, x_0 + \delta) : \int_{y_0}^{y(x)} \frac{1}{f(z)} dz + x_0 = x}$$

Teorema 2.1 (Existencia de soluciones).

$$Sean \ a \in [-\infty, \infty) \ \land \ b \in (-\infty, \infty] \ \land \ f \colon (a, b) \longrightarrow \mathbb{R} \ continua$$

$$Supongamos \ que \ \forall x \in (a, b) : f(x) \neq 0 \ y \ que \begin{cases} a > -\infty \implies f(a) = 0 \\ b < \infty \implies f(b) = 0 \end{cases}$$

$$Sea \ x_0 \in (a, b) \ definimos \ \forall x \in (a, b) : F(x) := \int_{x_0}^x \frac{1}{f(s)} \, \mathrm{d}s$$

•
$$Si\ f(x) > 0\ en\ (a,b),\ T_{-} := \lim_{x \to a^{+}} F(x) \in [-\infty,0) \ \wedge \ T_{+} := \lim_{x \to b^{-}} F(x) \in (0,\infty].$$

• Si
$$f(x) < 0$$
 en (a, b) , $T_+ := \lim_{x \to a^+} F(x) \in [-\infty, 0) \land T_- := \lim_{x \to b^-} F(x) \in (0, \infty]$.

$$\implies \exists x : (T_-, T_+) \longrightarrow (a, b) \ derivable : \begin{cases} x'(t) = f(x(t)) \\ x(0) = x_0 \end{cases}$$

Demostración. Supongamos sin pérdida de generalidad que $\forall x \in (a,b) : f(x) > 0$

$$\implies \forall x \in (a,b) : F'(x) = \frac{1}{f(x)} > 0 \implies F \text{ es estrictamente creciente en } (a,b)$$

$$\implies F$$
 tiene inversa en $(a,b) \implies \exists x := F^{-1} \colon (T_-,T_+) \longrightarrow (a,b)$

Por un lado,
$$x'(t) = (F^{-1})'(t) = \frac{1}{F'(F^{-1}(t))} = \frac{1}{F'(x(t))} = f(x(t))$$
Por otro lado, $F(x_0) = 0 \implies x_0 = F^{-1}(F(x_0)) = F^{-1}(0) = x(0)$

2.3 Teorema de unicidad local de soluciones

Teorema 2.2 (Unicidad local).

Sean $a \in [-\infty, \infty) \land b \in (-\infty, \infty] \land f : (a, b) \longrightarrow \mathbb{R}$ continua con $\forall x \in (a, b) : f(x) \neq 0$. Sea $x_0 \in (a, b)$ y sean $x : I \longrightarrow (a, b) \land y : I \longrightarrow (a, b)$ dos funciones $(I \subset \mathbb{R} \text{ abierto} : 0 \in I)$ tales que

$$\begin{cases} x'(t) = f(x(t)) \land y'(t) = f(y(t)) \\ x(0) = x_0 = y(0) \end{cases} \implies \forall t \in I : x(t) = y(t)$$

Demostración.

$$\forall s \in (a,b) : F(s) := \int_{x_0}^s \frac{1}{f(r)} dr \implies \forall t \in I : F(x(t)) = t = F(y(t))$$

$$\implies \forall t \in I : F^{-1}(F(x(t))) = F^{-1}(F(y(t))) \implies \forall t \in I : x(t) = y(t)$$

Corolario 2.1. Con las condiciones del teorema de existencia, supongamos $a \in \mathbb{R}$ y $f(a) := \lim_{x \to a^{-}} f(x) = 0$. Supongamos que

$$\forall k \in (a,b) : \lim_{x \to a^+} \int_k^x \frac{1}{f(s)} \, \mathrm{d}s = \begin{cases} -\infty \iff f > 0 \text{ en } (a,b) \\ \infty \iff f < 0 \text{ en } (a,b) \end{cases}$$

$$\implies \forall I \subset \mathbb{R} : \begin{cases} I = [0, t_0) \iff f > 0 \text{ en } (a, b) \\ I = (-t_0, 0] \iff f < 0 \text{ en } (a, b) \end{cases} : x \equiv a \text{ es la única solución.}$$

26/02/2024

Demostración. Sin pérdida de generalidad, suponemos que $\forall z \in (a, b) : f(z) > 0$.

Entonces suponemos que $\lim_{x\to a^+} \int_k^{\bar{x}} \frac{1}{f(s)} ds = -\infty$. Procedemos por contradicción asumiendo que $\exists x \colon [0,\varepsilon) \longrightarrow (a,b)$ solución del PVI con $x_0 = a$ que no es constante.

$$\implies \forall t \in [0,\varepsilon): x'(t) = f(x(t)) \ge 0 \implies x \text{ es creciente en } [0,\varepsilon)$$

Sin pérdida de generalidad, podemos suponer que $\forall t \in (0, \varepsilon) : x(t) > a$ porque, si no fuese así, entonces $\exists t_0 \in (0, \varepsilon) : \forall t \in [0, t_0) : x(t) = a \implies \forall t \in (t_0, \varepsilon) : x(t) > a$. Entonces consideramos $\hat{x}(t) = x(t + t_0)$ que es solución del PVI en $[0, \varepsilon - t_0)$ que además cumple $\forall t \in (0, \varepsilon - t_0) : \hat{x}(t) > a$.

Por tanto,
$$\forall t \in (0, \varepsilon) : f(x(t)) > 0 \implies \forall t \in (0, \varepsilon) : \frac{x'(t)}{f(x(t))} = 1$$

$$\implies \forall t \in (0, \varepsilon) : \int_{\varepsilon/2}^{t} \frac{x'(s)}{f(x(s))} \, \mathrm{d}s = t - \frac{\varepsilon}{2} \implies \int_{x(\varepsilon/2)}^{x(t)} \frac{1}{f(s)} \, \mathrm{d}s = t - \frac{\varepsilon}{2}$$

Entonces, pasando al límite tenemos

$$-\infty = \lim_{t \to 0} \int_{x(\varepsilon/2)}^{x(t)} \frac{1}{f(s)} \, \mathrm{d}s = \lim_{t \to 0} \left(t - \frac{\varepsilon}{2} \right) = -\frac{\varepsilon}{2} \longrightarrow \longleftarrow$$

Corolario 2.2. Con las hipótesis del corolario anterior, si $\lim_{x\to a^+} \int_k^x \frac{1}{f(s)} \, \mathrm{d}s \in \mathbb{R}$ $\implies \exists x \colon [0,\infty) \longrightarrow (a,b)$ solución no trivial del PVI con x(0) = a

Demostración.

27/02/2024

Ejemplo 2.2 $(y' = \sqrt{1 - y^2})$.

$$f \colon [-1,1] \longrightarrow \mathbb{R}_{\wedge} f(y) := \sqrt{1-y^2}_{\wedge} \begin{cases} f(y) > 0 \iff y \in (-1,1) \\ f(-1) = f(1) = 0 \end{cases}$$

Si $y(0) =: y_0 \in (-1, 1)$, entonces existe una única solución del PVI. Esa solución está definida en (T_-, T_+) , donde

$$T_{-} = \lim_{y \to -1^{+}} \int_{y_{0}}^{y} \frac{1}{\sqrt{1 - s^{2}}} ds = \lim_{y \to -1^{+}} \arcsin(y) - \arcsin(y_{0}) = -\frac{\pi}{2} - \arcsin(y_{0})$$
$$T_{+} = \lim_{y \to 1^{-}} \int_{y_{0}}^{y} \frac{1}{\sqrt{1 - s^{2}}} ds = \frac{\pi}{2} - \arcsin(y_{0})$$

Si $y_0 = 1$, $\lim_{y \to 1^-} \int_k^y \frac{1}{\sqrt{1 - s^2}} ds = \frac{\pi}{2} - \arcsin(k) \in \mathbb{R} \implies \exists \text{ un solución } \underline{\text{no trivial}} \text{ del PVI}$

Si
$$y_0 = -1$$
, $\lim_{y \to -1^+} \int_k^y \frac{1}{\sqrt{1-s^2}} \, \mathrm{d}s \in \mathbb{R} \implies \exists \text{ un solución } \underline{\text{no trivial del PVI}}$

Por tanto, la solución general del PVI es

$$y_k(x) = \begin{cases} -1 & \iff x \le -\frac{\pi}{2} - k \\ \sin(x+k) & \iff x \in \left(-\frac{\pi}{2} - k, \frac{\pi}{2} - k\right) \\ 1 & \iff x \ge \frac{\pi}{2} - k \end{cases}$$

- 1. La única y_k que satisface $y_k(0) = 0 \in (-1,1)$ es $y_k(x) = y_0$
- 2. Las funciones y_k con $k > \frac{\pi}{2}$ cumplen $y_k(0) = 1$
- 3. Las funciones y_k con $k < -\frac{\pi}{2}$ cumplen $y_k(0) = -1$

Observación 2.1. Sea $a \in \mathbb{R}$, $b \in (-\infty, \infty]$: b > a y $f : [a, b) \longrightarrow \mathbb{R}$ continua tal que $\forall x \in (a, b) : f(x) \neq 0$ y f(a) = 0.

Supongamos que $\exists C > 0, \delta \in (0, b - a) : \forall s \in [a, a + \delta) : |f(s)| \le C(s - a)$

Vamos a comprobar que se cumplen las condiciones de unicidad para el PVI con $x(0) = x_0 = a$ tanto en el caso f > 0 como en el caso f < 0.

•
$$f > 0$$
 Queremos ver si $\lim_{z \to a^+} \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s = -\infty$

$$\int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s = \int_{a+\delta}^z \frac{1}{|f(s)|} \, \mathrm{d}s = -\int_z^{a+\delta} \frac{1}{|f(s)|} \, \mathrm{d}s \le -\frac{1}{C} \int_z^{a+\delta} \frac{1}{s-a} \, \mathrm{d}s$$

$$\implies \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s \le -\frac{1}{C} \left(\log(\delta) - \log(z-a) \right)$$

$$\implies \lim_{z \to a^+} \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s \le -\infty \implies \text{Hay unicidad de PVI con } x(0) = a \text{ en } [0, \tilde{t})$$

•
$$f < 0$$
 De forma análoga $\lim_{z \to a^+} \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s = \cdots \leq \infty$

Si f derivable con f' acotada

$$\implies \forall s \in [a, a + \delta) : |f(s)| = |f(s) - f(a)| = |f'(r)| |s - a| \le C(s - a)$$

04/03/2024

2.4 Teorema de existencia global/asíntotas de soluciones

Teorema 2.3. Sean $a \in [-\infty, \infty) \land b \in (-\infty, \infty] \land a < b \land y_0 \in (a, b) \land f : (a, b) \longrightarrow \mathbb{R}$ continua tal que $\forall x \in (a, b) : f(x) > 0$. Si $b \in \mathbb{R}$, f(b) = 0, si no, $\lim_{x \to \infty} f(x) = \infty$.

Así tenemos
$$T_{-} = \lim_{x \to a^{+}} F(x) \wedge T_{+} = \lim_{x \to b^{-}} F(x) \text{ con } F(x) := \int_{y_{0}}^{x} \frac{1}{f(s)} ds.$$

- 1. $(T_{+} = \infty) \vee (T_{+} \in \mathbb{R} \wedge b \in \mathbb{R}) \implies la \text{ única sol del PVI se puede definir en } (T_{-}, \infty).$
- 2. $T_+ \in \mathbb{R} \land b = \infty \implies la \text{ única sol del PVI tiene una asíntota en } T_+ \text{ con } \lim_{x \to T_-^-} y(x) = \infty$

Demostración.

1. Si $T_{+} = \infty$ el resultado es inmediato.

Si $T_+ \in \mathbb{R}$ $h_+ \in \mathbb{R}$, es decir, $\lim_{x \to b^-} \int_{y_0}^x \frac{1}{f(s)} \, \mathrm{d}s \in \mathbb{R}$, entonces $y \colon (T_-, T_+) \longrightarrow \mathbb{R}$ se puede extender de forma diferenciable tomando $\forall x \geq T_+ \colon y(x) = b$.

Ahora tenemos que comprobar que cumple las dos condiciones necesarias.

$$y$$
 es continua: $\lim_{x \to T_+^-} y(x) = b = y(T_+)$

$$y$$
 es diferenciable: $\lim_{x\to T_+^-}y'(x)=\lim_{x\to T_+^-}f(y(x))=f(b)=0$

2. Si $T_+ \in \mathbb{R}$ \wedge $b = \infty$, es decir, $\lim_{x \to \infty} F(x) \in \mathbb{R}$, como sabemos que $y : (T_-, T_+) \longrightarrow \mathbb{R}$ se define como $y := F^{-1}$, entonces $\lim_{x \to T_+^-} y(x) = \infty$ dado que F es creciente.

Observación 2.2. Se cumple para los casos análogos con $\begin{cases} f(y)>0 \text{ con asíntota en } T_-\\ f(y)<0 \text{ con asíntota en } T_+\\ f(y)<0 \text{ con asíntota en } T_- \end{cases}$

2.5 Estabilidad de soluciones

Sea $f: (\alpha, \beta) \longrightarrow \mathbb{R}$ continua, con el PVI $\{y' = f(y) \land y(x_0) = y_0\}$.

Definición 2.2 (Equilibrio). Sea y una solución del PVI, y es de equilibrio \iff es de la forma $\forall x \in \mathbb{R} : y(x) = a \in (\alpha, \beta) : f(a) = 0$

Definición 2.3 (Estabilidad). Si $\forall y_0 \in (\alpha, \beta)$ el PVI tiene solución única, la solución $y: [x_0, \infty) \longrightarrow \mathbb{R}$ es estable a futuro

$$\iff \forall \varepsilon > 0 : \exists \delta > 0 : \left(y_0^* \in (\alpha, \beta) : |y_0^* - y_0| < \delta \implies \forall x \ge x_0 : |y(x) - y^*(x)| < \varepsilon \right)$$

donde $y^*: [x_0, \infty) \longrightarrow \mathbb{R}$ es cualquier solución del PVI con $y^*(x_0) = y_0^*$.

Ejemplo 2.3 ($\{y'=0 \land y(x_0)=1\}$). Vemos a ojo que la función y(x)=1 es solución de equilibrio. Además, vamos a ver que es estable.

Sea $\varepsilon > 0$, tomamos $\delta = \varepsilon$ y la única solución de $\{y' = 0 \land y(x_0) = y_0^*\}$ con $|y_0^* - 1| < \delta$ que claramente es $y^*(x) = y_0^*$ y cumple las condiciones pedidas de que

$$\forall x \ge x_0 : |y(x) - y^*(x)| = |y_0^* - 1| = \delta < \varepsilon$$

Definición 2.4 (Estabilidad asintótica). Sea $y: [x_0, \infty) \longrightarrow \mathbb{R}$ una solución del PVI, y es asintóticamente estable (a futuro) $\iff y$ es estable $\bigwedge_{x \to \infty} |y(x) - y^*(x)| = 0$ donde $y^*: [x_0, \infty) \longrightarrow \mathbb{R}$ es cualquier solución del PVI con $y^*(x_0) = y_0^*$.

Ejemplo 2.4.

$$\begin{cases} y' = y(1-y) \\ y(x_0) = y_0 \end{cases} \implies \begin{cases} f(y) := y(1-y) \\ f(y) = 0 \iff y \in \{0,1\} \end{cases} \implies \begin{cases} y \equiv 0 \\ y \equiv 1 \end{cases} \text{ son de equilibrio}$$

$$\xrightarrow{\text{H2: ej. 1}} \left(\forall y < 0 : f(y) < 0 \right)_{\land} \left(\forall y \in (0,1) : f(y) > 0 \right)_{\land} \left(\forall y > 1 : f(y) < 0 \right)$$

Por tanto, cualquier solución estable es asintóticamente estable (para EDOs autónomas). Además, si una solución tiene límite, entonces ese límite es sol estable.

$$y_0 < 0$$
 $\forall y < 0 : F(y) = \int_{y_0}^{y} \frac{1}{s(1-s)} ds \implies \forall y < 0 : F'(y) < 0$

Tomamos
$$y \in (y_0, 0) \implies F(y) < F(y_0) = 0$$

 $\implies s \ge y_0 \implies 0 < 1 - s \le 1 - y_0 \implies \frac{1}{1 - s} \ge \frac{1}{1 - y_0} \implies \frac{1}{(1 - s)s} \le \frac{1}{(1 - y_0)s}$
 $\implies F(y) \le \frac{1}{1 - y_0} \int_{y_0}^{y} \frac{1}{s} ds = \frac{\log(-y) - \log(-y_0)}{1 - y_0} \implies \lim_{y \to 0^{-}} F(y) = -\infty$

- 1. La única solución tal que $y(x_0) = y_0 < 0$ está definida globalmente hacia el pasado.
- 2. El equilibrio y = 0 es único "por abajo".

$$(y \to -\infty)$$

$$y < y_0 < 0 \implies 0 \le F(y) = -\int_y^{y_0} \frac{1}{s(1-s)} \, \mathrm{d}s = \int_y^{y_0} \frac{1}{s^2 - s} \, \mathrm{d}s \le \int_y^{y_0} \frac{1}{s^2} \, \mathrm{d}s = \frac{1}{y} - \frac{1}{y_0}$$

$$\implies 0 \le F(y) < -\frac{1}{y} \implies \left[\lim_{y \to -\infty} F(y) \in \mathbb{R} \right] \implies \text{Hay una asíntota}$$

 $y_0 > 1$ Si y es solución con $y(x_0) = y_0 > 1$, entonces z(x) = -y(-x) + 1 también es solución con $z(x_0) = 1 - y_0 < 0$.

06/03/2024

2.6 Bifurcación

Definición 2.5 (Puntos de bifurcación). Sea $f_{\mu} \colon \mathbb{R} \longrightarrow \mathbb{R}$ una función continua que depende de un parámetro $\mu \in \mathbb{R}$. El comportamiento cualitativo de la EDO $y' = f_{\mu}(y)$ puede cambiar dependiendo de la μ . Los valores de μ que dan lugar a un cambio de este tipo* son los puntos de bifurcación.

*Este tipo: de cortar dos veces al equilibrio a cortarlo una o ninguna vez.

Ejemplo 2.5 (
$$\{y'=y(1-y)-\mu \wedge y(x_0)=y_0\}$$
).
 $f_{\mu}(y)=y(1-y)-\mu=0 \iff y^2-y+\mu=0 \iff y=\frac{1\pm\sqrt{1-4\mu}}{2} \wedge \mu \leq \frac{1}{4}$
Curvas de equilibrios: $\gamma_1(\mu):=\frac{1+\sqrt{1-4\mu}}{2} \wedge \gamma_2(\mu):=\frac{1-\sqrt{1-4\mu}}{2}$

$$\iff \begin{cases} \mu > \frac{1}{4} \text{ no hay equilibrios} \\ \mu < \frac{1}{4} \text{ hay dos equilibrios} \\ \mu = \frac{1}{4} \text{ hay un equilibrio} \end{cases} \implies \mu = \frac{1}{4} \text{ es un punto de bifurcación.}$$

- $\mu > \frac{1}{4} \implies$ la solución y es decreciente porque la derivada nunca toca el eje X.
- $\mu = \frac{1}{4} \implies$ las soluciones son siempre decrecientes con un punto de silla (y' = 0).

• $\mu < \frac{1}{4} \implies y$ es estrictamente creciente para $y_0 \in \left(\frac{1-\sqrt{1-4\mu}}{2}, \frac{1+\sqrt{1-4\mu}}{2}\right)$, constante para $y_0 = \frac{1\pm\sqrt{1-4\mu}}{2}$, y estrictamente decreciente en otro caso.

07/03/2024

Ejemplo 2.6 ($\{y' = y(\mu - y^2) \land y(x_0) = y_0\}$).

$$\begin{split} f_{\mu}(y) &:= y(\mu - y^2) = 0 \iff y = 0 \ _{\vee} \ y = \pm \sqrt{\mu} \implies \forall \mu \leq 0 : \begin{cases} \gamma_1(\mu) := \sqrt{\mu} \\ \gamma_2(\mu) := -\sqrt{\mu} \end{cases} \\ & \implies \begin{cases} \mu \leq 0 \quad \text{hay un equilibrio } (y = 0) \\ \mu > 0 \quad \text{hay tres equilibrios } (y = 0 \ _{\vee} \ y = \pm \sqrt{\mu}) \end{cases} \end{split}$$

Definimos $F(y) := \int_{y_0}^{y} \frac{1}{s(\mu - s^2)} ds$ y establecemos $\mu < 0$.

- $y_0 < 0 \implies \forall y < 0 : F'(y) = \frac{1}{y(\mu y^2)} > 0 \implies y$ es estrictamente creciente. Como $\lim_{y \to -\infty} F(y) \in \mathbb{R}$, entonces hay una asíntota hacia atrás y para abajo.
- $y_0 > 0 \implies \forall y > 0 : F'(y) = \frac{1}{y(\mu y^2)} < 0 \implies y$ es estrictamente decreciente. Como $\lim_{y \to \infty} F(y) \in \mathbb{R}$, entonces hay una asíntota hacia atrás y para arriba.

Si establecemos $\mu > 0$, entonces

- $y_0 \in (-\sqrt{\mu}, 0) \implies \forall y \in (-\sqrt{\mu}, 0) : F'(y) < 0 \implies y$ es estrictamente decreciente.
- $y_0 \in (0, \sqrt{\mu}) \implies \forall y \in (0, \sqrt{\mu}) : F'(y) > 0 \implies y$ es estrictamente creciente.

Proposición 2.2. Sea $y' = f_{\mu}(y)$ una EDO autónoma con $\mu^* \in \mathbb{R}$ punto de bifurcación $\varepsilon^* := \{ y \in \mathbb{R} : f_{\mu^*}(y) = 0 \} \neq \phi \implies \exists y^* \in \varepsilon^* : f_{\mu^*}(y^*) = 0 \land f'_{\mu^*}(y^*) = 0$

Ejemplo 2.7 $(y' = e^{-y} - \mu = f_{\mu}(y))$.

$$f_{\mu}(y) = 0 \iff y = -\ln \mu \implies \begin{cases} \mu \leq 0 & \text{no hay equilibrios} \\ \mu > 0 & \text{hay un equilibrio} \end{cases} \implies \mu^* = 0 \text{ es de bifurcación}$$
$$\implies \varepsilon^* = \{ y \in \mathbb{R} : e^{-y} - 0 = 0 \} = \phi \implies \text{no se puede aplicar la proposición (vaya ejemplo)}$$

3 Teoremas fundamentales

3.1 Introducción

Sean $I \subset \mathbb{R}$, $\Omega \subset \mathbb{R}$ dos intervalos abiertos y $f \colon I \times \Omega \longrightarrow \mathbb{R}^2$ una función continua. Consideramos el PVI $\begin{cases} x' = f(t, x(t)), & t \in I \\ x(t_0) = \hat{x}, & \hat{x} \in \Omega \end{cases}$. Hasta ahora sabemos trabajar con EDOs autónomas: si f(t, x) = f(x), entonces el PVI tiene siempre solución en un entorno de t_0 .

Vamos a intentar darle condiciones a la f de ahora para poder comprobar si hay existencia y unicidad, igual que en el tema anterior. Vamos a integrar a ver qué pasa:

$$\int_{t_0}^t x'(s) \, ds = \int_{t_0}^t f(s, x(s)) \, ds \implies x(t) - x(t_0) = \int_{t_0}^t f(s, x(s)) \, ds$$

Por tanto, si existe solución, esta es de la forma $x(t) = \hat{x} + \int_{t_0}^t f(s, x(s)) ds$.

Definimos el operador
$$\forall z \in \mathcal{C}(I,\Omega) : T[z] := z + \int_{t_0}^t f(s,z(s)) \, \mathrm{d}s \implies x = T[x].$$

Hemos reducido el problema a encontrar un punto fijo de T, procedemos calculando las iteradas de Picard de T:

$$x_0 = \hat{x} \wedge x_1 = T[x_0] = \hat{x} + \int_{t_0}^t f(s, \hat{x}) \, ds \wedge \cdots \wedge x_{k+1} = T[x_k] = \hat{x} + \int_{t_0}^t f(s, x_k(s)) \, ds$$

El objetivo es encontrar el límite de esta sucesión y demostrar que es una solución del PVI.

Ejemplo 3.1.
$$\{x' = x \land x(0) = 1\} \iff x(t) = 1 + \int_0^t x(s) \, ds$$

 $\implies x_0 = 1 \land x_1 = 1 + t \land \cdots \land x_k = \sum_{i=0}^k \frac{t^i}{i!} \implies x_k(t) \xrightarrow{k \to \infty} e^t$

Como es una EDO autónoma y en el dato inicial el lado derecho no se anula, sabemos que la solución es única y podemos afirmar que es la que acabamos de encontrar. Este es un método de encontrar el límite que en este caso ha funcionado.

Pero necesitamos formalizar todo esto.

- 1. Concepto de límite de series de funciones.
- 2. ¿Toda sucesión de Cauchy es convergente?

3.
$$\lim_{k \to \infty} \int_{t_0}^t f(s, x_k(s)) \, \mathrm{d}s \stackrel{?}{=} \int_{t_0}^t \lim_{k \to \infty} f(s, x_k(s)) \, \mathrm{d}s$$

4.
$$\lim_{k \to \infty} f(s, x_k(s)) \stackrel{?}{=} f\left(s, \lim_{k \to \infty} x_k(s)\right)$$

Los dos últimos puntos son equivalentes a $\lim_{k\to\infty} T[x_k] \stackrel{?}{=} T[\lim_{k\to\infty} x_k]$

3.2 Conceptos de análisis

3.2.1 Convergencia puntual y uniforme

Definición 3.1 (Convergencia puntual). Sea $(f_k)_{k\in\mathbb{N}}$ con $f_k\colon I\longrightarrow \mathbb{R}$ e $I\subset \mathbb{R}$ abierto una sucesión de funciones, (f_k) converge puntualmente a f

$$\iff \forall t \in I : \lim_{k \to \infty} f_k(t) = f(t)$$

$$\iff \forall t \in I : \forall \varepsilon > 0 : \exists \kappa \in \mathbb{N} : \forall k \ge \kappa : |f_k(t) - f(t)| < \varepsilon$$

Ejemplo 3.2. La sucesión de funciones continuas (f_k) definida a continuación converge puntualmente a f que no es continua.

$$\forall t \in \mathbb{R} : f_k(t) := \begin{cases} 0, & t < -\frac{1}{k} \\ k(t + \frac{1}{k}), & -\frac{1}{k} \le t < 0 \\ k(\frac{1}{k} - t), & 0 \le t < \frac{1}{k} \end{cases} \implies f_k(t) \xrightarrow{k \to \infty} \begin{cases} 0, & t \neq 0 \\ 1, & t = 0 \end{cases}$$

12/03/2024

Ejemplo 3.3. La sucesión de funciones (x_k) definida a continuación no intercambia el límite con la integral.

$$x_k(t) := \begin{cases} 2k^2t, & t \in \left[0, \frac{1}{2k}\right) \\ 2k^2\left(\frac{1}{k} - t\right), & t \in \left[\frac{1}{2k}, \frac{1}{k}\right) \\ 0, & t \in \left[\frac{1}{k}, 1\right) \end{cases} \Longrightarrow \begin{cases} x_k(0) = 0 \land x_k(1) = 0 \\ t \in (0, 1] \implies x_k(t) \xrightarrow{k \to \infty} 0 \end{cases}$$

$$\lim_{k \to \infty} \int_0^1 x_k(t) dt \stackrel{?}{=} \int_0^1 \lim_{k \to \infty} x_k(t) dt:$$

$$\int_0^1 \lim_{k \to \infty} x_k(t) dt = \int_0^1 0 dt = 0 \neq \frac{1}{2} = \lim_{k \to \infty} \int_0^1 x_k(t) dt$$

Definición 3.2 (Convergencia uniforme). Sea $(f_k)_{k\in\mathbb{N}}$ con $f_k\colon I\longrightarrow \mathbb{R}$ e $I\subset \mathbb{R}$ abierto

una sucesión de funciones, (f_k) converge uniformemente a f

$$\iff \forall \varepsilon > 0 : \exists \kappa \in \mathbb{N} : \forall k \geq \kappa : \forall t \in I : |f_k(t) - f(t)| < \varepsilon$$

Es decir,
$$\forall \varepsilon > 0 : \exists \kappa \in \mathbb{N} : \forall k \ge \kappa : \sup_{t \in I} |x_k(t) - x(t)| \le \varepsilon$$

Observación 3.1. • Los dos ejemplos anteriores no convergen uniformemente.

• La convergencia uniforme implica convergencia puntual.

Proposición 3.1. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión de funciones uniformemente convergente a x.

$$\implies x \ es \ continua$$

Demostración. Sean $\varepsilon > 0$ \wedge $t_0 \in I$. Buscamos $\delta > 0$ tal que, dado $t \in I$

$$|t - t_0| < \delta \implies |x(t) - x(t)| < \varepsilon$$

Para cada $k \in \mathbb{N}, |x(t) - x_k(t) + x_k(t) - x_k(t_0) + x_k(t_0) - x_k(t_0)| < \infty$

$$\leq |x(t) - x_k(t)| + |x_k(t) - x_k(t_0)| + |x_k(t_0) - x(t_0)|$$

Como (x_k) converge uniformemente a $x, \kappa = \kappa(\varepsilon) \in \mathbb{N}$ tal que

$$\forall \varepsilon > 0 : \exists \kappa \in \mathbb{N} : \forall k \ge \kappa : \forall t \in I : |x_k(t) - x(t)| < \frac{\varepsilon}{3}$$

Entonces, para $k = \kappa$, se tiene

$$|x(t) - x(t_0)| \le |x(t) - x(t_0)| + |x(t) - x_{\kappa}(t_0)| + |x_{\kappa}(t_0) - x(t_0)|$$

$$\le \frac{\varepsilon}{3} + |x_{\kappa}(t) - x_{\kappa}(t_0)| + \frac{\varepsilon}{3}$$

Como x_{κ} es continua, $\exists \delta > 0 : |t - t_0| < \delta \implies |x_{\kappa}(t) - x_{\kappa}(t_0)| < \frac{\varepsilon}{3}$ $\implies |x(t) - x(t_0)| < \varepsilon$

Proposición 3.2. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión de funciones continuas x_i : $(a,b) \longrightarrow \mathbb{R}$ que converge uniformemente a x: $(a,b) \longrightarrow \mathbb{R}$ donde $(a,b) \subset \mathbb{R}$ está acotado.

$$\implies \lim_{k \to \infty} \int_a^b x_k(t) dt = \int_a^b x(t) dt$$

Demostración. Sea $\varepsilon > 0$. La convergencia uniforme nos asegura que

$$\exists \kappa_{\varepsilon} \in \mathbb{N} : \forall k \ge \kappa : \forall t \in (a, b) : |x_k(t) - x(t)| < \frac{\varepsilon}{b - a}$$

$$\implies \forall k \ge \kappa_{\varepsilon} : \left| \int_{a}^{b} x_{k}(t) \, \mathrm{d}t - \int_{a}^{b} x(t) \, \mathrm{d}t \right| = \left| \int_{a}^{b} (x_{k}(t) - x(t)) \, \mathrm{d}t \right|$$

$$\le \int_{a}^{b} |x_{k}(t) - x(t)| \, \mathrm{d}t < \int_{a}^{b} \frac{\varepsilon}{b - a} \, \mathrm{d}t = \varepsilon$$

24

Ejemplo 3.4. Consideramos la sucesión
$$x_k(t) = \begin{cases} \frac{1}{k} & \text{si } t \leq k \\ 0 & \text{si } t > k \end{cases}$$

$$\implies \int_0^\infty x_k(t) \, \mathrm{d}t = \int_0^k \frac{1}{k} \, \mathrm{d}t = 1 \, \lim_{k \to \infty} x_k(t) = 0$$

3.2.2 Espacios normados y contracciones

Sea $\mathcal{C}([a,b],\mathbb{R}) = \mathcal{C}([a,b]) := \{x : [a,b] \longrightarrow \mathbb{R} : x \text{ continua}\}$ el espacio vectorial de funciones continuas.

con la norma $\forall x \in \mathcal{C}([a,b]) : ||x||_{\infty} := \max_{t \in [a,b]} |x(t)|$ es un espacio vectorial normado $\implies \left(\mathcal{C}([a,b]), ||\cdot||_{\infty}\right) \text{ también es métrico con } \mathrm{d}(x,y) := ||x-y||_{\infty}$ $\mathrm{d}(x_k,x) = ||x_k-x||_{\infty} = \max_{t \in [a,b]} |x_k(t)-x(t)| \to 0 \iff x_k \to x \text{ uniformemente}$

Teorema 3.1. Sean $a, b \in \mathbb{R} : a < b \implies \left(\mathcal{C}([a, b]), \|\cdot\|_{\infty} \right)$ es un espacio completo. Es decir, toda sucesión de Cauchy es convergente. El recíproco también es cierto, toda sucesión convergente es de Cauchy.

Demostración. Sea $(x_k)_{k\in\mathbb{N}}\subset([a,b])$ una sucesión de Cauchy. Esto significa que $\forall \varepsilon>0: \exists \kappa\in\mathbb{N}: \left(k,l\geq\kappa\implies \|x_k-x_l\|_\infty<\varepsilon\right)$

Recordemos que $||x_k - x_l||_{\infty} = \max_{t \in [a,b]} |x_k(t) - x_l(t)|$

Fijamos
$$\varepsilon > 0$$
 y $t \in [a, b] \implies \forall k, l \ge \kappa : |x_k(t) - x_l(t)| \le ||x_k - x_l||_{\infty} < \varepsilon$

Esto demuestra que la sucesión de números reales $(x_k(t))_{k\in\mathbb{N}}$ es de Cauchy.

Como \mathbb{R} es completo, $\exists x(t) \in \mathbb{R} : x_k(t) \xrightarrow{k \to \infty} x(t)$.

Veamos que el límite es uniforme: En efecto, sean $k \ge \kappa, l \ge 1, k, l \in \mathbb{N}$.

$$\implies \forall t \in [a, b] : |x_k(t) - x_{k+l}(t)| \le ||x_k - x_{k+l}|| < \varepsilon \text{ porque } (x_k) \text{ es de Cauchy}$$

Haciendo tender $l \to \infty$, tenemos $\forall t \in [a, b] : \forall k \ge \kappa : |x_k(t) - x(t)| \le \varepsilon$

Recordemos que $x \in \mathcal{C}([a,b])$ por ser límite de funciones continuas.

Para el recíproco:

$$||x_k - x_l||_{\infty} \le ||x_k - x + x - x_l||_{\infty} \le ||x_k - x||_{\infty} + ||x_l - x||_{\infty} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Definición 3.3 (Punto fijo). Sea $T: \mathcal{C}([a,b]) \longrightarrow \mathcal{C}([a,b])$ un operador, $x: [a,b] \longrightarrow \mathbb{R}$ es un punto fijo de $T \iff T[x] = x$.

Definición 3.4 (Contracción). Sea $C \subset X \land C \neq \phi$ donde $(X, \|\cdot\|)$ es un espacio vectorial normado y $T: C \longrightarrow C$ una aplicación, T es una contracción en C

$$\iff \exists \alpha \in (0,1) : \forall x, y \in C : ||T[x] - T[y]|| \le \alpha ||x - y||$$

Observación 3.2. Claramente, toda contracción es continua (con respecto a la norma correspondiente). En efecto, si $(x_k)_{k\in\mathbb{N}}\subset C: x_k\xrightarrow{k\to\infty}x\in C$

$$\implies ||T[x_k] - T[x]|| \le \alpha ||x_k - x|| \xrightarrow{k \to \infty} 0$$

Teorema 3.2 (Punto fijo de Banach). Sea $C \subset X \land C \neq \phi$ cerrado donde $(X, \|\cdot\|)$ es un espacio normado completo y sea $T: C \longrightarrow C$ una contracción $\Longrightarrow \exists ! x \in C: T[x] = x$

14/03/2024

Demostración. Sea $x_0 \in C$. Definimos la sucesión $\forall n \in \mathbb{N} : x_n := T[x_{n-1}]$.

$$\implies ||x_{n+1} - x_n|| = ||T[x_n] + T[x_{n-1}]|| \le \alpha ||x_n - x_{n-1}|| \le \dots \le \alpha^n ||x_1 - x_0||$$

Sean $n, m \in \mathbb{N} \wedge n > m$.

$$\Rightarrow \boxed{\|x_{n} - x_{m}\|} = \|(x_{n} - x_{n-1}) + (x_{n-1} - x_{n-2}) + \dots + (x_{m+1} - x_{m})\|$$

$$\leq \|x_{n} - x_{n-1}\| + \|x_{n-1} - x_{n-2}\| + \dots + \|x_{m+1} - x_{m}\|$$

$$\leq (\alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m}) \|x_{1} - x_{0}\|$$

$$\leq \alpha^{n-1} (1 + \alpha + \alpha^{2} + \dots + \alpha^{m-n+1}) \|x_{1} - x_{0}\|$$

$$\leq \alpha^{m} \left(\sum_{i=0}^{\infty} \alpha^{i}\right) \|x_{1} - x_{0}\| = \boxed{\frac{\alpha^{m}}{1 - \alpha} \|x_{1} - x_{0}\|}$$

$$\implies \forall \varepsilon > 0 : \exists \kappa = \kappa(\varepsilon) \in \mathbb{N} : (n > m \ge \kappa(\varepsilon) \implies ||x_n - x_m|| < \varepsilon) \implies \text{es de Cauchy}$$

Por tanto, (x_n) tiene límite, es decir, $\exists x \in X : x = \lim_{n \to \infty} x_n$. Como $x_n \in C \land C$ es cerrado $\implies x \in C$.

Hay que ver que x es punto fijo de T. En efecto, tomando límites en $x_{n+1} = T[x_n]$ y usando que T es continua por ser contractiva, se tiene

$$x = \lim_{n \to \infty} x_n = \lim_{x \to \infty} T[x_n] = T[x]$$

Falta probar la unicidad. Para ello, sean $x, y \in C$ puntos fijos. Se tiene

$$\|x-y\| = \|T[x]-T[y]\| \le \alpha \|x-y\| \implies (1-\alpha)\|x-y\| \le 0 \implies \|x-y\| = 0 \implies x = y$$

26

Para poder aplicar el teorema de punto fijo a nuestra aplicación T[x], hay que ver que ésta es contractiva:

$$||T[x] - T[y]||_{\infty} = \max_{t \in [a,b]} \left| \int_{t_0}^t f(s, x(s)) \, \mathrm{d}s - \int_{t_0}^t f(s, y(s)) \, \mathrm{d}s \right|$$

$$\leq \max_{t \in [a,b]} \left(\int_{t_0}^t |f(s, x(s)) - f(s, y(s))| \, \mathrm{d}s \right)$$

$$\stackrel{(*)}{\leq} \max_{t \in [a,b]} \int_{t_0}^t L |x(s) - y(s)| \, \mathrm{d}s \leq L ||x - y||_{\infty} \left(\max_{t \in [a,b]} \int_{t_0}^t \mathrm{d}s \right) =$$

$$= L ||x - y||_{\infty} \max_{t \in [a,b]} (t - t_0) = L(b - t_0) ||x - y||_{\infty} \leq L(b - a) ||x - y||_{\infty}$$

$$(*) \iff t > t_0 \land |f(s,x) - f(s,y)| \le L|x-y|$$

(f es Lipschitz con respecto a la segunda variable y es uniforme con respecto a la primera)

Así concluimos que $\frac{(b-a)}{L} < 1 \implies$ T es una contracción.

18/03/2024

3.2.3 Funciones Lipschitz

Definición 3.5 (Función Lipschitz). Sea $f: \Omega \longrightarrow \mathbb{R}$ una función con $\Omega \subset \mathbb{R}$ abierto, es Lipschitz en Ω

$$\iff \exists L \in \mathbb{R} : \forall x, \hat{x} \in \Omega : |f(x) - f(\hat{x})| \le L |x - \hat{x}|$$

Interpretación geométrica: Si f es Lipschitz en Ω , suponiendo que $x > \hat{x}$:

$$|f(\hat{x}) - f(x)| \le L(x - \hat{x}) \implies -L(x - \hat{x}) \le f(\hat{x}) - f(x) \le L(x - \hat{x})$$
$$\implies f(\hat{x}) - L(x - \hat{x}) \le f(x) \le f(\hat{x}) + L(x - \hat{x})$$

Es como si en cada punto (x, f(x)) de la gráfica se abriese un "cono" (dos rectas de pendientes L y - L) que contiene el resto de la gráfica para $\hat{x} > x$.

Observación 3.3.

- 1. Si f es Lipschitz en Ω , entonces f es uniformemente continua en Ω . (Sale al tomar $\delta = \frac{\varepsilon}{L}$ en la definición de continuidad uniforme).
- 2. A la constante L se le llama constante Lipschitz de f en Ω .
- 3. Funciones con derivada no acotada no pueden ser Lipschitz.

Ejemplo 3.5.

- 1. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x) = \sin x$ y $x, \hat{x} \in \mathbb{R}$, $x < \hat{x}$. Por el TVM $\exists y \in (x, \hat{x}) : |f(x) f(\hat{x})| = f'(y) |x \hat{x}| \implies |f(x) f(\hat{x})| = \cos(y) |x \hat{x}| \le |x \hat{x}|$ Por tanto $f(x) = \sin x$ es Lipschitz en \mathbb{R} con constante L = 1.
- 2. En realidad, si $f: I \subset \mathbb{R} \longrightarrow \mathbb{R}$ es derivable con $\forall x \in I: |f'(x)| \leq L \implies f$ es Lipschitz en I con constante L.

Proposición 3.3.

- 1. Sean $f, g: \mathbb{R}^m \longrightarrow \mathbb{R}^d$ dos funciones Lipschitz con constantes de Lipschitz L_f, L_g y sean $\alpha, \beta \in \mathbb{R} \implies \alpha f + \beta g$ es Lipschitz.
- 2. Sean $f: \mathbb{R}^m \longrightarrow \mathbb{R}^l$ $y f: \mathbb{R}^l \longrightarrow \mathbb{R}^d$ dos funciones Lipschitz con constantes de Lipschitz $L_f, L_g \implies g \circ f$ es Lipschitz con constante $L_f L_g$.

Demostración.

1. Sean $x, \hat{x} \in \Omega$ y $\alpha, \beta \in \mathbb{R}$:

$$|\alpha f(x) + \beta g(x) - (\alpha f(\hat{x}) - \beta g(\hat{x}))| = |\alpha (f(x) - f(\hat{x})) + \beta (g(x) - g(\hat{x}))|$$

$$\leq |\alpha| |f(x) - f(\hat{x})| + |\beta| |g(x) - g(\hat{x})|$$

$$\leq (|\alpha| L_f + |\beta| L_g) |x - \hat{x}|$$

2. Sean $x, \hat{x} \in \Omega$:

$$|(g \circ f)(x) - (g \circ f)(\hat{x})| = |g(f(x)) - g(f(\hat{x}))| \le L_g |f(x) - f(\hat{x})| \le L_g L_f |x - \hat{x}|$$

Definición 3.6 (Función Lipschitz en la segunda variable).

Sea $f:(a,b)\times\Omega\subset\mathbb{R}^n\longrightarrow\mathbb{R}^d$ una función, f es Lipschitz respecto a su segunda variable, y uniforme con respecto a la primera

$$\iff \exists L \in \mathbb{R} : \forall x, \hat{x} \in \Omega : |f(t, x) - f(t, \hat{x})| \le L|x - \hat{x}|$$

3.3 Existencia y unicidad de soluciones

Teorema 3.3 (Existencia y unicidad global de soluciones). Sea $f: [a,b] \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ con $a,b \in \mathbb{R} \ _{\wedge} \ a < b \ una función continua y Lipschitz en la segunda variable y uniforme en la primera$

$$\implies \forall t_0 \in [a,b] : \forall x \in \mathbb{R} : \exists! \, x \in \mathcal{C}^1([a,b]) : \begin{cases} \forall t \in [a,b] : x'(t) = f(t,x(t)) \\ x(t_0) = \hat{x} \end{cases}$$

Demostración. Estamos buscando un punto fijo de $T[x] = \hat{x} + \int_{t_0}^t f(s, x(s)) ds$.

Sea L la constante Lipschitz de f en la segunda variable. Dividimos $[t_0, b]$ en subintervalos cerrados de longitud < 1/L:

$$[t_0, b] = [t_0, t_1] \cup [t_1, t_2] \cup \cdots \cup [t_{N-1}, t_N = b]$$

Queremos encontrar una solución en $[t_0, t_1]$, para ello definimos $T_1 : \mathcal{C}([t_0, t_1]) \longrightarrow \mathcal{C}([t_0, t_1])$

$$\forall x \in \mathcal{C}([t_0, t_1]) : \forall t \in [t_0, t_1] : T_1[x](t) := \hat{x} + \int_{t_0}^t f(s, x(s)) \, \mathrm{d}s$$

$$\implies |T_1[x](t) - T_1[y](t)| = \left| \int_{t_0}^t f(s, x(s)) - f(s, y(s)) \, \mathrm{d}s \right| \le L \int_{t_0}^t |x(s) - y(s)| \, \mathrm{d}s$$

$$\le L(t - t_0) \|x - y\|_{\infty} \le L(t_1 - t_0) \|x - y\|_{\infty}$$

$$\implies \forall x, y \in \mathcal{C}([a, b]) \|T_1[x] - T_1[y]\|_{\infty} \le L(t_1 - t_0) \|x - y\|_{\infty}$$

Por tanto, T_1 es una contracción con $\alpha = L(t_1 - t_0) < 1$ en $\mathcal{C}([t_0, t_1])$ y por el teorema de punto fijo de Banach, $\exists ! x_1 \in \mathcal{C}([t_0, t_1]) : T_1[x_1] = x_1$. Por tanto, existe una solución única al PVI en $[t_0, t_1]$.

Ahora queremos encontrar una solución en $[t_1, t_2]$ que "empiece donde acaba x_1 ". Definimos $T_2: \mathcal{C}([t_1, t_2]) \longrightarrow \mathcal{C}([t_1, t_2])$ como $T_2[x](t) := x_1(t_1) + \int_{t_1}^t f(s, x(s)) \, \mathrm{d}s$ y procedemos igual que antes para obtener x_2 , la solución única en $[t_1, t_2]$.

Repetimos este proceso (sacando $(x_j)_{j=1}^N$) hasta llegar a b y obtenemos una única función $x \in \mathcal{C}^1([a,b])$ continua y derivable por construcción que es solución del PVI.

$$\forall j \in \mathbb{N}_N : \forall t \in [t_{j-1}, t_j] : x(t) = x_j(t)$$

Corolario 3.1. Sea $f: \mathbb{R} \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$ una función continua y Lipschitz en la segunda variable y uniforme en la primera

implies
$$\forall \hat{x} \in \mathbb{R}^d : \forall t_0 \in \mathbb{R} : \exists ! \, x \in \mathcal{C}^1(\mathbb{R}) : \begin{cases} \forall t \in \mathbb{R} : x'(t) = f(t, x(t)) \\ x(t_0) = \hat{x} \end{cases}$$

Demostración. Podemos dividir \mathbb{R} en intervalos cerrados de longitud < $^{1}/_{L}$ y aplicar el teorema anterior.

Definición 3.7 (Lipschitz local). Sea $f: \Omega \subset \mathbb{R}^m \longrightarrow \mathbb{R}^d$ una función, f es localmente Lipschitz $\iff \forall K \subset \Omega : f|_K$ es Lipschitz.

Definición 3.8. Sea $f: \Omega$ abto $\subset \mathbb{R} \times \mathbb{R}^m \longrightarrow \mathbb{R}^d$ una función, f es localmente Lipschitz en la segunda variable y uniforme en la primera

$$\iff \forall K \subset \Omega : \exists L_K \in \mathbb{R} : \forall (t, x), (\hat{t}, \hat{x}) \in K : |f(t, x) - f(\hat{t}, \hat{x})| \le L_K |x - \hat{x}|$$

Teorema 3.4 (Picard-Lindelöf). Sea $f: \Omega \subset \mathbb{R} \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$ una función continua y localmente Lipschitz en la segunda variable y uniforme en la primera

$$\implies \forall (t_0, \hat{x}) \in \Omega : \exists \varepsilon > 0 : \exists ! \, x \in \mathcal{C}^1([t_0 - \varepsilon, t_0 + \varepsilon]) : \begin{cases} \forall t \in [t_0 - \varepsilon, t_0 + \varepsilon] : x'(t) = f(t, x(t)) \\ x(t_0) = \bar{x} \end{cases}$$

Demostración. Como Ω es abierto, $\exists \rho, \delta > 0 : \mathcal{R}_{\rho,\delta} := (t_0 - \rho, t_0 + \rho) \times B_{\delta}(\bar{x}) \subset \Omega$.

Como
$$f$$
 es continua, $\Longrightarrow |f(t,x)| \leq \max_{(t,x)\in\mathcal{R}_{\rho,\delta}} |f(t,x)| =: C_{\rho,\delta}$.

Como f es localmente Lipschitz en la segunda variable,

$$\implies \exists L_{\rho,\delta} \in \mathbb{R} : \forall (t,x), (\hat{t},\hat{x}) \in \mathcal{R}_{\rho,\delta} : |f(t,x) - f(\hat{t},\hat{x})| \le L_{\rho,\delta} |x - \hat{x}|$$

Para cada $\varepsilon \in (0, \rho]$ consideramos el conjunto

$$\mathcal{X}_{\rho,\delta} := \left\{ x \in \mathcal{C}([t_0 - \varepsilon, t_0 + \varepsilon]) : \forall t \in [t_0 - \varepsilon, t_0 + \varepsilon] : x(t) \in B_{\delta}(\bar{x}) \right\}$$

Definimos $T: \mathcal{X}_{\rho,\delta} \longrightarrow \mathcal{C}([t_0 - \varepsilon, t_0 + \varepsilon])$ como

$$\forall x \in \mathcal{X}_{\rho,\delta} : \forall t \in [t_0 - \varepsilon, t_0 + \varepsilon] : T[x](t) := \bar{x} + \int_{t_0}^t f(s, x(s)) \, \mathrm{d}s$$

Queremos un $\varepsilon > 0$ lo suficientemente pequeño para que T sea una contracción en $\mathcal{X}_{\rho,\delta}$.

- 1. $\mathcal{X}_{\rho,\delta} \neq \phi$ porque $\bar{x} \in \mathcal{X}_{\rho,\delta}$
- 2. Sea $(x_k) \subset \mathcal{X}_{\rho,\delta}$ una sucesión : $x_k \xrightarrow{k \to \infty} x \in \mathcal{C}([t_0 \varepsilon, t_0 + \varepsilon])$ $\implies \forall t \in [t_0 - \varepsilon, t_0 + \varepsilon] : |x_k(t) - \bar{x}| < \delta \implies \forall t \in [t_0 - \varepsilon, t_0 + \varepsilon] : |x(t) - \bar{x}| < \delta$ $\implies \forall t \in [t_0 - \varepsilon, t_0 + \varepsilon] : x(t) \in B_{\delta}(\bar{x}) \implies x \in \mathcal{X}_{0,\delta}$

3. Hay que ver que
$$T[\mathcal{X}_{\rho,\delta}] \subset \mathcal{X}_{\rho,\delta}$$
. Como $\forall x \in \mathcal{X}_{\rho,\delta} : \forall t \in [t_0 - \varepsilon, t_0 + \varepsilon] :$

$$|T[x](t) - \bar{x}| = \left| \int_{t_0}^t f(s, x(s)) \, \mathrm{d}s \right| \leq \int_{\min\{t_0, t_1\}}^{\max\{t_0, t_1\}} |f(s, x(s))| \, \mathrm{d}s$$

$$\leq \int_{t_0}^t C_{\rho,\delta} \, \mathrm{d}s = C_{\rho,\delta} \, |t - t_0| \leq \varepsilon C_{\rho,\delta} \leq \delta \iff \varepsilon \leq \frac{\delta}{C_{\rho,\delta}}$$

4. Veamos que T es una contracción en $\mathcal{X}_{\rho,\delta}$:

$$|T[x](t) - T[\hat{x}](t)| = \left| \int_{t_0}^t f(s, x(s)) - f(s, \hat{x}(s)) \, \mathrm{d}s \right| \le L_{\rho, \delta} |t - t_0| \le \varepsilon L_{\rho, \delta} |x - \hat{x}|$$

$$\le |x - \hat{x}| \iff \varepsilon < \frac{1}{L_{\rho, \delta}}$$

Por tanto, T es contractiva en $\mathcal{X}_{\rho,\delta}$ y por el teorema de punto fijo de Banach, $\exists ! \, x \in \mathcal{X}_{\rho,\delta} : x$ es solución del PVI.

02/04/2024

Corolario 3.2. Bajo las condiciones del teorema Picard-Lindelöf, dos soluciones distintas de la EDO x' = f(t, x) no pueden cruzarse.

Teorema 3.5 (Cauchy-Peano). Sea $(t_0, x) \in \mathbb{R} \times \mathbb{R}^d$ y sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ una función continua en un entorno $\Omega \subset \mathbb{R} \times \mathbb{R}^d$ de (t_0, x)

$$\implies \exists x \colon \mathbb{R} \longrightarrow \mathbb{R} : \forall t \in [t_0 - \varepsilon, t_0 - \varepsilon] : \begin{cases} x' = f(t, x) \\ x(t_0) = x \end{cases}$$

3.4 Prolongabilidad

Bajo las condiciones del teorema Picard-Lindelöf, $\forall (t_0, x) \in \Omega : \exists \varepsilon > 0 : \exists$ una única solución $x \in \mathcal{C}^1([t_0 - \varepsilon, t_0 + \varepsilon])$ del PVI. Entonces, podemos definir

$$T_+(t_0,x) = \sup\{T > t_0 : \text{ el PVI tiene sol única definida en } [t_0,T)\}$$

$$T_{-}(t_0, x) = \inf\{T < t_0 : \text{ el PVI tiene sol única definida en } (T, t_0)\}$$

Teorema 3.6. Bajo las condiciones del teorema Picard-Lindelöf, existe una única solución maximal del PVI definida en el intervalo maximal $I = (T_{-}(t_0, x), T_{+}(t_0, x))$.

04/04/2024

Sea $f \colon \Omega \longrightarrow \mathbb{R}^d$ una función continua localmente Lipstchiz en x uniformemente en t con $\Omega \subset \mathbb{R} \times \mathbb{R}^d$ abierto. Definimos

$$a \leq T_{-}(t_{0}, x_{0}) := \inf\{T < t_{0} : \text{ existe solución definida en } (T, t_{0})\}$$

 $b \geq T_{+}(t_{0}, x_{0}) := \sup\{T > t_{0} : \text{ existe solución definida en } [t_{0}, T]\}$
 $I := (T_{-}(t_{0}, x_{0}), T_{+}(t_{0}, x_{0})) \wedge \Omega = (a, b) \times U \wedge U \subset \mathbb{R}^{d} \text{ abierto}$

Teorema 3.7 (Escape de compactos). Sea $(a,b) \times U =: \Omega$, con $U \subset \mathbb{R}^d$ abierto, sea $f: \Omega \longrightarrow \mathbb{R}^d$ con las hipótesis del teorema de Picard-Lindelöf, sea $(t_0,x) \in \Omega$

$$\Rightarrow \begin{cases} T_{+} < b \implies \forall K \subset U \ compacto : \exists t_{+} \in (t_{0}, T_{+}) : \forall t \in (t_{+}, T_{+}) : x(t) \notin K \\ T_{-} > ab \implies \forall K \subset U \ compacto : \exists t_{-} \in (T_{-}, t_{0}) : \forall t \in (T_{-}, t_{-}) : x(t) \notin K \end{cases}$$

Demostración. Suponemos por contradicción que existe un $K \subset U$ compacto y que

existe $(t_k)_{k\in\mathbb{N}}\subset (t_0,T_+)$ tal que $t_k\xrightarrow{k\to\infty} T_+$ y $\forall k\in\mathbb{N}: x(t_k)\in K$. Entonces, existe una subsucesión (que denoto igual) tal que $x(t_k)\xrightarrow{k\to\infty} \bar{x}\in K$.

Veamos que $\lim_{t\to T_+} x(t) = \bar{x}$. Fijamos $\delta > 0$: $V = [T_+ - \delta, T_+] \times \overline{B_\delta(\bar{x})} \subset \Omega = (a, b) \times U$. Claramente, existe $M := \max_{(t,x)\in V} |f(t,x)|$.

Si no es cierto que $\lim_{t\to T_+} x(t) = \bar{x}$, entonces existen $\gamma \in (0, \delta)$ y $(\tau_k)_{k\in\mathbb{N}} \subset (t_0, T_+)$ tales que $\tau_k \xrightarrow{k\to\infty} T_+$ y $|x(\tau_k) - \bar{x}| \ge \gamma$.

Se puede elegir τ_k de forma que $|x(\tau_k) - \bar{x}| = \gamma \land \forall t \in [\min\{t_k, \tau_k\}, \max t_k, \tau_k] : |x(\tau_k) - \bar{x}| \le \gamma < \delta$

$$0 < \gamma \le |x(\tau_k) - \bar{x}| \le |x(\tau_k) - x(t_k)| + |x(t_k) - \bar{x}|$$

$$\xi_k \in (\min\{\tau_k, t_k\}, \max\{t_k, \tau_k\}) \implies = |x'(\xi_k)| |\tau_k - t_k| + |x(t_k) - \bar{x}|$$

$$= |f(\xi_k, x(\xi_k))| |\tau_k - t_k| + |x(t_k) - \bar{x}| \le M |\tau_k - t_k| + |x(t_k) - \bar{x}| \xrightarrow{k \to \infty} 0$$

Por tanto, concluimos que efectivamente $\lim_{t\to T_{\perp}} x(t) = \bar{x} \in K$.

Paso 3: Hemos probado que x se extiende de manera continua a $(T_-, T_+]$. Ahora consideramos el problema $\{x' = f(t, x) \land x(T_+) = \bar{x}\}$. Por el teorema de Picard-Lindelöf, existe una solución $y: (T_+ - \varepsilon, T_+ + \varepsilon) \longrightarrow U$. Por unicidad local, $\forall t \in (T_+ - \varepsilon, T_+ + \varepsilon) : y(t) = x(t)$.

Como x e y se "pegan" bien, hemos construido una solución de $\{x' = f(t, x) \land x(t_0) = x_0\}$ definida en $(T_-, T_+ + \varepsilon)$. Esto contradice la maximalidad de (T_-, T_+) .

Corolario 3.3. Bajo las condiciones del teorema de escape de compactos, si $\Omega = (a, b) \times \mathbb{R}^d$

$$\implies \begin{cases} T_{+} < b \implies |x(t)| \xrightarrow{t \to T_{+}} \infty \\ T_{-} > a \implies |x(t)| \xrightarrow{t \to T_{+}} \infty \end{cases}$$

08/04/2024

Demostración. Para cada M > 0, definimos $K_M := \{x \in \mathbb{R}^d : |x| \leq M\} = \overline{B_M(0)}$. Si $T_+ < b$, el teorema de escape de compactos dice que

$$\exists t_{+} \in (t_{0}, T_{+}) : \forall t \in (t_{+}, T_{+}) : x(t) \notin K_{M}$$

Esto es lo mismo que decir que $\forall t \in (t_+, T_+) : |x(t)| > M$.

Como M es arbitraria, se concluye el primer apartado (el segundo es análogo).

Ejemplo 3.6. Sea $\Omega = (0, \infty) \times \mathbb{R}$ y sea $f \colon \Omega \longrightarrow \mathbb{R}$ definida por $\forall (t, x) \in \Omega : f(t, x) := \frac{x^2}{t}$.

Comprobamos que f satisface las condiciones del Teorema de Picard-Lindelöf. En efecto, sea $K \subset \Omega$ compacto; entonces:

$$|f(t,x) - f(t,\tilde{x})| = \left| \frac{x^2 - \tilde{x}^2}{t} \right| = \left| \frac{|x + \tilde{x}| \cdot |x - \tilde{x}|}{t} \right|$$

$$\leq \frac{|x| + |\tilde{x}| + |x - \tilde{x}|}{t} \leq \max_{(s,y) \in K} \left\lceil \frac{|y| - |\tilde{y}|}{s} \right\rceil |x - \tilde{x}|$$

Por el Teorema de Picard-Lindelöf

$$\forall (t_0, x_0) \in \Omega : \exists ! \text{ solución local del PVI } \begin{cases} x' = \frac{x^2}{t} \\ x(t_0) = x_0 \end{cases} \text{ para } t \in (T_-, T_+)$$

En realidad, la única solución es explícita: $x(t) = \frac{1}{\frac{1}{x_0} - \log\left(\frac{t}{t_0}\right)}, (t_0, x_0) \in \Omega, t > 0.$

- $T_- = 0 = a$ por lo que el corolario no nos dice nada. En nuestro caso, $\lim_{t \to T_-^+} |x(t)| = 0$.
- $T_+ = t_0 e^{1/x_0} < +\infty = b$, dice que $\lim_{t \to T_-^-} |x(t)| = +\infty$ también en la expresión explícita.

Ejemplo 3.7. Sea $\Omega = \mathbb{R} \times (-1,1)$ y $f \colon \Omega \longrightarrow \mathbb{R}$ definida por $\forall (t,x) \in \Omega : f(t,x) := \sqrt{1-x^2}$.

Veamos de nuevo que se cumplen las condiciones del Teorema de Picard-Lindelöf:

$$\forall (t,x) \in \Omega : \frac{\partial f}{\partial x}(t,x) = \frac{x}{\sqrt{1-x^2}}$$

Sea $K \subset \Omega$. Obviamente, $\left| \frac{\partial f}{\partial x}(t,x) \right| \leq \max_{(x,y) \in K} \left| \frac{\partial f}{\partial x}(t,x) \right|$. Teniendo esto, en cuenta $\implies \forall (t,x), (t,\tilde{x}) \in K : |f(t,x) - f(t,\tilde{x})| = \left| \frac{\partial f}{\partial x}(t,x) \right| |x - \tilde{x}| \leq L_K |x - \tilde{x}|$ $\implies \forall (t_0,x_0) \in \Omega : \exists ! \text{ solución local del PVI } \begin{cases} x' = \sqrt{1-x^2} \\ x(t_0) = x_0 \end{cases} \text{ ara } t \in (T_-,T_+)$

De hecho, en este caso, la única solución es explícita: $x(t) = \sin t, t \in (T_-, T_+) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Aquí, en lugar de explosión cuando $t \to T_-$ ó $t \to T_+$, lo que sucede es que $(t, x(t)) \to \partial \Omega$, y por tanto puede perderse (y de hecho se pierde) la unicidad local.

Ejemplo 3.8. Sea
$$\Omega = \mathbb{R} \times (0, +\infty)$$
 y sea $f(t, x) := -\frac{1}{2x}$.

Claramente se cumplen las condiciones de Picard-Lindelöf. Entonces, hay existencia y unicidad local de solución del PVI $\{x' = f(t, x(t)) \land x(t_0) = x_0\}, t \in (T_-, t_+).$

De hecho, para $(t_0, x_0) \in \Omega$, se tiene que $\forall t \in (-\infty, x_0^2 + t_0) : x(t) = \sqrt{(x_0^2 + t_0) - t}$.

Cuando la $t \to T_+$ no hay ni explosión ni pérdida de unicidad, sino que no puedo extender la solución porque no existe.

09/04/2024

Corolario 3.4. En las condiciones del teorema de escape de compactos, sea $\Omega = (a, b) \times \mathbb{R}^d$ y sean $\alpha, \beta \in \mathbb{R}$ tales que $a \leq \alpha < \beta \leq b$. Sea $v: (\alpha, \beta) \longrightarrow [0, \infty)$ continua, y sea $(t_0, x_0) \in (\alpha, \beta) \times \mathbb{R}^d$ de forma que $|x_0| \leq v(t_0)$.

Supongamos que la solución de $\{x' = f(t,x) \land x(t_0) < x_0\}$ cumple que

$$\forall t \in (\alpha,\beta) \cap (T_-(t_0,x_0),T_+(t_0,x_0)): |x(t)| \leq v(t) \implies (\alpha,\beta) \subset (T_-,T_+)$$

Demostración. Si $\beta \geq T_+$, entonces $(\alpha, \beta) \cap (T_-, T_+) = (\max\{\alpha, T_-\}, T_+)$. Sea $c \in (\max\{\alpha, T_-\}, T_+)$. Claramente, $[c, T_+] \subset (\alpha, \beta)$.

Entonces, v es acotada en $[c, T_+]$ y, en particular, en (x, T_+) .

En consecuencia, x está acotada en (c, T_+) . Sin embargo, $\lim_{t \to T_+} |x(t)| = \infty \longrightarrow \longleftarrow$

3.5 Dependencia continua

Sea x'=f(t,x) una EDO. Supongamos que $f\colon\Omega\longrightarrow\mathbb{R}^d$ con $\Omega\subset\mathbb{R}\times\mathbb{R}^d$ abierto y f Lipschitz con constante L en x uniformemente en t.

Consideramos los PVI $\{x' = f(t,x) \land x(t_0) = x_0\}$ y $\{x' = f(t,x) \land x(t_0) = \hat{x}_0\}$ con $(t_0,x_0),(t_0,\hat{x}_0) \in \Omega$. Supongamos que las soluciones son x y \hat{x} respectivamente.

$$|x(t) - \hat{x}(t)| = \left| x_0 + \int_{t_0}^t f(s, x(s)) \, ds - \hat{x}_0 - \int_{t_0}^t f(s, \hat{x}(s)) \, ds \right|$$

$$\stackrel{t \ge t_0}{\le} |x_0 - \hat{x}_0| + \int_{t_0}^t |f(s, x(s)) - f(s, \hat{x}(s))| \, ds$$

$$\le |x_0 - \hat{x}_0| + L \int_{t_0}^t |x(s) - \hat{x}(s)| \, ds =: y(t)$$

- $\forall (s,y), (s,\hat{y}) \in K \subset \Omega : |f(s,y) f(s,\hat{y})| \le L |y \hat{y}|$
- $\forall t \in [t_0, t_0 + T] : (s, x(s)), (s, \hat{x}(s)) \in K$

$$|x(t) - \hat{x}(t)| \le g(t) \implies g'(t) = L |x(t) - \hat{x}(t)| \implies g(t) \implies e^{-Lt} g'(t) \le e^{-Lt} L g(t)$$

$$\iff \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{-Lt} g(t) \right) \le 0 \implies e^{-Lt} g(t) - e^{-Lt_0} g(t_0) \le 0$$

$$\implies |x(t) - \hat{x}(t)| \le g(t) \le e^{L(t - t_0)} |x_0 - \hat{x}_0|$$

$$t \in [t_0 - T, t_0] \implies |x(t) - \hat{x}(t)| \le e^{L(t_0 - t)} |x_0 - \hat{x}_0|$$

$$\implies \forall t \in [t_0 - T, t_0 + T] : \boxed{|x(t) - \hat{x}(t)| \le e^{L|t - t_0|} |x_0 - \hat{x}_0|}$$

En efecto, en el intervalo $\left[t_{0}-T,t_{0}+T\right]$

$$|x(t) - \hat{x}(t)| \le e^{LT} |x_0 - \hat{x}_0| < e^{LT} \delta = \varepsilon$$

Ejemplo 3.9.
$$\forall (t, x) \in \mathbb{R}^2 : f(t, x) = \frac{2}{1 + t^2} \arctan(x), \ h(x) = \arctan x.$$

$$\implies 0 \le h'(x) = \frac{1}{1+x^2} \le 1 \implies |f(t,x) - f(t,\hat{x})| = \left| \frac{2}{1+t^2} \left(\arctan x - \arctan \hat{x} \right) \right| \le 2|x - \hat{x}|$$

$$\implies \forall t \in \mathbb{R} : |x(t) - \hat{x}(t)| \le e^{2|t-t_0|} |x_0 - \hat{x}_0|$$

Si
$$t \in [t_0 - T, t_0 + T] \implies |x(t) - \hat{x}(t)| \le e^{2T} |x_0 - \hat{x}_0|$$

4 Sistemas lineales de primer orden

Sea $\forall t \in (a,b): X'(t) = A(t)X(t) + g(t)$, con $a_i^i, g_i^i \in C((a,b))$ y $d \in \mathbb{N} \land d > 1$.

$$A(t) = \begin{pmatrix} a_{11}(t) & \cdots & a_{1d}(t) \\ \vdots & \ddots & \vdots \\ a_{d1}(t) & \cdots & a_{dd}(t) \end{pmatrix}, \quad X(t) = \begin{pmatrix} X^1(t) \\ \vdots \\ X^d(t) \end{pmatrix}, \quad g(t) = \begin{pmatrix} g^1(t) \\ \vdots \\ g^d(t) \end{pmatrix}$$

Recordamos que $\begin{cases} x' = a(t)x + g(t) \\ x(t_0) = x_0 \end{cases} \implies x(t) = x_0 e^{\int_{t_0}^t a(s) \, \mathrm{d}s} + \int_{t_0}^t g(s) e^{\int_s^t a(u) \, \mathrm{d}u} \, \mathrm{d}s.$

Teorema 4.1. Sean $t_0 \in (a, b)$ y $X_0 \in \mathbb{R}^d$.

$$\implies$$
 El PVI $\{X'=A(t)X+g(t) \land X(t_0)=X_0\}$ tiene solución única en (a,b)

Demostración. Sean $\alpha, \beta \in \mathbb{R}$: $a < \alpha < \beta < b$ i.e. $[\alpha, \beta] \subset (a, b)$. Vamos a demostrar existencia y unicidad global en $[\alpha, \beta]$. En efecto, denotamos

$$\forall t \in (a,b) : \forall X \in \mathbb{R}^d : f(t,X) := A(t)X + g(t) = \begin{pmatrix} f^1(t,X) \\ \vdots \\ f^d(t,X) \end{pmatrix}$$

Por otra parte, sea $M := \max_{\substack{1 \le i \land j \le d \\ t \in [\alpha,\beta]}} \left| a_j^i(t) \right|.$

$$\implies |f^{i}(t,X) - f^{i}(t,Y)| = |A(t)(X - Y)| = \left| \sum_{j=1}^{d} a_{j}^{i}(t)(X^{j} - Y^{j}) \right|$$

$$\leq \sum_{j=1}^{d} |a_{j}^{i}(t)| |X^{j} - Y^{j}| \leq M \sum_{j=1}^{d} |X^{j} - Y^{j}|$$

$$\leq M\sqrt{d}\sqrt{\sum_{j=1}^{d} |X^{j} - Y^{j}|^{2}} = M\sqrt{d} |X - Y|$$

$$|f(t,X) - f(t,Y)| \le \left(\sum_{i=1}^{d} |f^{i}(t,X) - f^{i}(t,Y)|^{2}\right)^{\frac{1}{2}} \le \left(\sum_{i=1}^{d} M^{2} d |X - Y|^{2}\right)^{\frac{1}{2}} = M d |X - Y|$$

$$\implies \forall X, Y \in \mathbb{R}^{d} : \forall t \in [\alpha, \beta] : |f(t,X) - f(t,Y)| \le M d |X - Y|$$

Por el teorema de existencia y unicidad global, \exists una única solución definida en $[\alpha, \beta]$. Como α, β son arbitrarios, la solución es única en $(a, b) = \bigcup_{\varepsilon \in (0, \varepsilon_0)} [a + \varepsilon, b - \varepsilon]$.

Definimos $X:(a,b)\longrightarrow \mathbb{R}^d$ como: si $t\in (a,b)$, tomamos $\varepsilon>0$ tal que $t\in [a+\varepsilon,b-\varepsilon]$, X(t) es la única solución en $[a+\varepsilon,b-\varepsilon]$.

4.1 El problema homogéneo

Sea X' = A(t)X un sistema lineal homogéneo (SLH). Sean X(t) y Y(t) soluciones del SLH y $\alpha, \beta \in \mathbb{R}$. Vemos que las soluciones forman un espacio vectorial (de funciones).

$$(\alpha X + \beta Y)' = \alpha X' + \beta Y' = \alpha A(t)X + \beta A(t)Y = A(t)(\alpha X + \beta Y)$$

Definición 4.1 (Independencia lineal de funciones). Sean $X_1, X_2, \dots, X_k \colon (a, b) \longrightarrow \mathbb{R}^d$ funciones, son linealmente independientes

$$\iff$$
 $\left(\forall t \in (a,b) : \sum_{j=1}^{k} \alpha_i X_i(t) = 0 \implies \alpha_1 = \dots = \alpha_k = 0 \right)$

Si $X_1(\bar{t}), \ldots, X_k(\bar{t})$ para algún $\bar{t} \in (a, b)$, tenemos que las funciones son linealmente independientes:

$$\forall t \in (a,b): \sum_{i=1}^k \alpha_i X_i(t) = 0 \implies \sum_{i=1}^k \alpha_i X_i(\bar{t}) = 0 \implies \forall i \implies X_i: \forall i: \alpha_i = 0 \text{ linealmente independente}$$

15/04/2024

Proposición 4.1. Sean
$$A(t) = (a_j^i(t))_{\land} a_j^i \in \mathcal{C}((a,b))_{\land} i, j = 1, \dots, d$$

 $\implies \dim \{X \colon (a,b) \longrightarrow \mathbb{R}^d \colon X' = A(t)X\} = d$

Demostración. Para cada $j=1,\ldots,d$, sea $\Pi_j(t;t_0)$ la solución (única) de

$$\forall t \in (a,b) : X' = A(t)X \wedge X(t_0) = e_j$$

donde e_j es el vector j-ésimo de la base canónica de \mathbb{R}^d . Sabemos que $\{\Pi_j(t_0;t_0)\}_{j=1}^d$ (*) es linealmente independiente. Por tanto, $\{\Pi_j\}_{j=1}^d$ es linealmente independiente.

(*) Se denominan soluciones principales del SLH.

Veamos ahora que $\{\Pi_j\}_{j=1}^d$ es un sistema generador de las soluciones del SLH. Sea X(t) una solución del SLH. Denotamos $X_0 = X(t_0) \in \mathbb{R}^d$. Escribimos X_0 como combinación lineal de la base canónica de \mathbb{R}^d : $X_0 = \sum_{j=1}^d X_0^j e_j$.

Definimos la función $\forall t \in (a,b): Y(t) := \sum_{j=1}^d X_0^j \cdot \Pi_j(t;t_0)$. Observamos que

• Y es combinación lineal de soluciones del SLH, luego también es solución del SLH.

•
$$Y(t_0) = \sum_{j=1}^d X_0^j e_j = X_0$$

Por unicidad,
$$X = Y = \sum_{j=1}^{d} X_0^j \Pi_j(t; t_0).$$

Supongamos que tenemos un conjunto $\{\phi_1, \dots, \phi_d\}$ de soluciones del SLH. ¿Cómo sabemos si son linealmente independientes?

$$\exists \bar{(t)} \in (a,b) : \det(\phi_1,\ldots,\phi_d) \neq 0 \iff \{\phi_j(\bar{(t)})\}_{j=1}^d \text{ son vectores l.i.}$$

Definición 4.2 (Wronskiano). Sean X_j : $(a,b) \longrightarrow \mathbb{R}^d$, $j=1,\ldots,d$ funciones $W[X_1,\ldots,X_d]$ es su wronskiano

$$\iff \forall t \in (a,b) : W[X_1,\ldots,X_d](t) = \det(X_1(t),\ldots,X_d(t))$$

Ya sabemos que si $W[X_1, \ldots, X_d]$ $(\bar{t}) \neq 0$ para algún $\bar{t} \in (a, b)$ entonces $\{X_1, \ldots, X_d\}$ son l.i. Sin embargo, si $W[X_1, \ldots, X_d]$ (t) se anula en algún punto (o en todos), no podemos afirmar que sean linealmente dependientes.

Ejemplo 4.1. Sea
$$X_1 = \begin{pmatrix} t^3 \\ 3t^2 \end{pmatrix} \land X_2 = \begin{cases} \begin{pmatrix} -t^3 \\ -3t^2 \end{pmatrix} & t \in (-1,0] \\ t^3 \\ 3t^2 \end{pmatrix} & t \in [0,1) \end{cases}$$

$$\forall t \in (-1,0] : W[X_1, X_2](t) = \det \begin{pmatrix} t^3 & -t^3 \\ 3t^2 & -3t^2 \end{pmatrix} = 0$$

$$\forall t \in [0,1) : W[X_1, X_2](t) = \det \begin{pmatrix} t^3 & t^3 \\ 3t^2 & 3t^2 \end{pmatrix} = 0$$

Sin embargo, veamos que X_1, X_2 son l.i. como funciones.

Sean $\alpha, \beta \in \mathbb{R}$ tales que $\forall t \in (-1,1) : \alpha X_1(t) + \beta X_2(t) = 0$. Si $t \in (-1,0)$, entonces $\alpha X_1(t) + \beta X_2(t) = 0 \implies (\alpha - \beta) X_1(t) = 0 \implies \alpha = \beta$. Si $t \in [0,1)$, entonces $\alpha X_1(t) + \beta X_2(t) = 0 \implies (\alpha + \beta) X_1(t) = 0 \implies \alpha = -\beta$. Por tanto, $\alpha = \beta = 0$.

Lema 4.1. Sean X_j , j = 1, ..., k soluciones del SLH.

$$\exists\, \bar{t}\in(a,b): \{X_j(\bar{t}): j\in\mathbb{N}_k\}\ \textit{l.i.} \implies \{X_j: j\in\mathbb{N}_k\}\ \textit{l.i.}$$

Demostración. Sabemos que $\exists \alpha_1, \dots, \alpha_k \in \mathbb{R}$ no todos nulos : $\sum_{j=1}^k \alpha_j X_j(\bar{t}) = 0$.

Definimos $\forall t \in (a,b): Y(t) := \sum_{j=1}^k \alpha_j X_j(t)$. Esta función es solución del SLH y $Y(\bar{t}) = 0$. Por tanto, Y es solución del PVI $\{X' = A(t)X \land X(\bar{t}) = 0\}$.

Como la solución es única $\forall t \in (a,b) : Y(t) = 0 \implies \forall t \in (a,b) : \sum_{j=1}^{k} \alpha_j X_j(t) = 0.$

Por definición, $\{X_j : j \in \mathbb{N}_k\}$ son l.d.

Proposición 4.2. Sean X_1, \ldots, X_d soluciones del SLH.

$$\implies \left(\forall t \in (a,b) : W\left[X_1,\ldots,X_d\right](t) = 0 \iff \forall t \in (a,b) : W\left[X_1,\ldots,X_d\right](t) \neq 0\right)$$

16/04/2024

Definición 4.3 (Sistema fundamental). Sean X' = A(t)X un SLH, $\{\phi_1, \dots, \phi_d\}$ es un sistema fundamental de soluciones $\iff \phi_1, \dots, \phi_d$ son soluciones del SLH l.i.

Un sistema fundamental define una <u>matriz solución fundamental</u>: $\Phi(t) := (\phi_1(t) \cdots \phi_d(t))$.

A partir de Φ podemos encontrar cualquier solución de $\{X' = A(t)X \land X(t_0) = X_0\}$:

$$X = \Phi c = \left(\phi_1 \quad \cdots \quad \phi_d\right) \begin{pmatrix} c_1 \\ \vdots \\ c_d \end{pmatrix} = \sum_{j=1}^d c_j \phi_j \text{ con } c \in \mathbb{R}^d \land X(t_0) = \Phi(t_0) = c = X_0$$

$$\implies c = (\Phi(t_0))^{-1} X_0 \implies \boxed{X(t) = \Phi(t) (\Phi(t_0))^{-1} X_0}$$

4.2 Sistema no homogéneo

Proposición 4.3. Sea $\forall t \in (a,b) \subset \mathbb{R} : X' = A(t)X + g(t)$ un sistema lineal (SL). Sea X_p una sol. particular del SL y sea $\{X_1, \ldots, X_d\}$ una base del espacio de sol. del SLH.

$$\implies X \text{ sol. del } SL \iff \exists \{\alpha_i\}_{i=1}^d \subset \mathbb{R} : \forall t \in (a,b) : X(t) = X_p(t) + \sum_{i=1}^d \alpha_i X_i(t)$$

Demostración. El cambio de variable $Y = X - X_p$ transforma el SL en un SLH. Es decir, el conjunto de soluciones del SL se caracteriza mediante el del SLH.

¿Cómo encontrar una solución particular X_p del SL?

Si Φ es una matriz solución fundamental del SLH, buscamos X_p de la forma $X_p = \Phi(t)\alpha(t)$, donde $\alpha(t) = (\alpha^1(t), \dots, \alpha^d(t))$

$$\implies X_p' = \Phi'(t)\alpha(t) + \Phi(t)\alpha'(t) = A(t)\Phi(t)\alpha(t) + \Phi(t)\alpha'(t) = A(t)X_p + g(t)$$
$$= A(t)\Phi(t)\alpha(t) + g(t) \implies \Phi(t)\alpha'(t) = g(t) \implies \alpha'(t) = (\Phi(t))^{-1}g(t)$$

Por tanto,
$$\alpha(t) = \int_{t_0}^t (\Phi(s))^{-1} g(s) ds$$
. En definitiva, $X_p(t) = \Phi(t) \int_{t_0}^t (\Phi(s))^{-1} g(s) ds$

Como toda solución del SL es de la forma $X(t) = X_p(t) + \sum_{i=1}^{d} \alpha_i X_i(t)$, podemos escribir

$$X(t) = \Phi(t) \left(c + \int_{t_0}^t (\Phi(s))^{-1} g(s) \, \mathrm{d}s \right) \text{ con } c \in \mathbb{R}^d$$

Para resolver el PVI, basta con calcular c tal que $X(t_0) = X_0$.

$$X_0 = X(t_0) = \Phi(t_0) \left(c + \int_{t_0}^{t_0} (\Phi(s))^{-1} g(s) \, \mathrm{d}s \right) = \Phi(t_0) c \implies c = (\Phi(t_0))^{-1} X_0$$

$$\implies \forall t \in (a, b) : \left[X(t) = \Phi(t) \left((\Phi(t_0))^{-1} X_0 + \int_{t_0}^t (\Phi(s))^{-1} g(s) \, \mathrm{d}s \right) \right]$$

17/04/2024

4.3 Sistemas lineales de coeficientes constantes

Sea $\forall t \in \mathbb{R} : X' = AX + g(t)$, con $A = \left(a_i^j\right)_{i,j=1}^d$ con $a_i^j \in \mathbb{R}$ constantes y $g \in \mathcal{C}(\mathbb{R}, \mathbb{R}^d)$. Nos reducimos al caso $g \equiv 0$.

4.3.1 El caso diagonalizable

Si d=1, entonces $A=a\in\mathbb{R}$ y $X'=aX\implies X(t)=ce^{at},c\in\mathbb{R}$.

Si d > 1, entonces $\xi X(t) = \xi e^{\lambda t}$ con $t \in \mathbb{R}$ y $\xi \neq 0 \in \mathbb{R}^d$?

$$X'(t) = \lambda e^{\lambda t} \xi \implies AX(t) = e^{\lambda t} A \xi$$

Para que X sea solución, $\lambda e^{\lambda t} \xi = e^{\lambda t} A \xi \implies e^{\lambda t} (A \xi - \lambda \xi I) = 0 \implies A \xi = \lambda \xi I$.

Si los autovalores de A λ_i son reales y existe una base de autovectores asociados $\xi_i \in \mathbb{R}^d$, entonces las funciones $\left\{X_i(t) = \xi_i e^{\lambda_i t}\right\}_{i=1}^d$ forman un sistema fundamental de soluciones del SLH (porque $\{X_i(0)\}_{i=1}^d$ son independientes).

Por tanto, la solución general del SLH es $X(t) = \sum_{i=1}^{d} c_i X_i(t) = \sum_{i=1}^{d} c_i \xi_i e^{\lambda_i t}$

Ejemplo 4.2. Sea
$$\begin{cases} (X^1)' = X^1 + 2X^2 \\ (X^2)' = 2X^1 + X^2 \end{cases} \iff X' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} X.$$
$$\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = 0 \implies \lambda^2 - 2\lambda - 3 = 0 \implies \lambda_1 = 3, \lambda_2 = -1 \implies \Lambda = \{-1, 3\}$$

Como $\{X_1(0), X_2(0)\}$ son l.i., $\{X_1, X_2\}$ es un sistema fundamental de soluciones del SLH. Por tanto, la solución general del SLH es

$$X(t) = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} = \begin{pmatrix} c_1 e^{3t} + c_2 e^{-t} \\ c_1 e^{3t} - c_2 e^{-t} \end{pmatrix} = \begin{pmatrix} e^{3t} & e^{-t} \\ e^{3t} & -e^{-t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

Dado el PVI
$$\begin{cases} X' = AX \\ X(0) = (1,0) =: e_1 \end{cases}$$
 queremos calcular c_1, c_2 tal que $X(0) = \Phi(0)c = c$.
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = X(0) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} c_1 + c_2 \\ c_1 - c_2 \end{pmatrix} \implies c_1 = c_2 = \frac{1}{2}$$

Ejemplo 4.3. Sea el SL
$$X' = \begin{pmatrix} 1 & 2 \ 2 & 1 \end{pmatrix} X + \begin{pmatrix} t \ e^t \end{pmatrix}$$
.
$$X(t) = X_p + \Phi(t)c \wedge X_p(t) = \Phi(t) \int_{t_0}^t (\Phi(s))^{-1} g(s) \, \mathrm{d}s$$

$$\implies X_p = \frac{1}{2} \begin{pmatrix} e^{3t} & e^{-t} \ e^{3t} & -e^{-t} \end{pmatrix} \int_0^t \begin{pmatrix} e^{-3s} & e^{3s} \ e^s & -e^s \end{pmatrix} \begin{pmatrix} s \ e^s \end{pmatrix} \, \mathrm{d}s = \frac{1}{2} \begin{pmatrix} e^{3t} & e^{-t} \ e^{3t} & -e^{-t} \end{pmatrix} \int_0^t \begin{pmatrix} se^{-3s} + e^{-2s} \ se^s - e^{2s} \end{pmatrix} \, \mathrm{d}s$$

$$\implies X_p = \frac{1}{2} \begin{pmatrix} e^{3t} & e^{-t} \ e^{3t} & -e^{-t} \end{pmatrix} \begin{pmatrix} \int_0^t se^{-3s} + e^{-2s} \, \mathrm{d}s \ \int_0^t se^s - e^{2s} \, \mathrm{d}s \end{pmatrix} = \dots = c_1 \begin{pmatrix} e^{3t} \ e^{-t} \ e^{3t} \end{pmatrix} + c_2 \begin{pmatrix} e^{-t} \ -e^{-t} \end{pmatrix}$$

5 Ejercicios

5.1 Hoja 1

5.1.1 Conceptos básicos

5.1.2 Algunos métodos de resolución de EDOs

2.18

1.
$$yy'' + (y')^2 = 0$$

Resulta razonable buscar soluciones en forma de polinomios $y(x)=x^{\alpha}$ porque:

$$\implies y' = \alpha x^{(\alpha - 1)} \wedge y'' = \alpha (\alpha - 1) x^{(\alpha - 2)}$$

$$\implies x^{\alpha} \alpha (\alpha - 1) x^{(\alpha - 2)} + \alpha^2 x^{2(\alpha - 1)} = 0 \implies (2\alpha^2 - \alpha) x^{\alpha} = 0$$

$$\implies 2\alpha^2 - \alpha = 0 \implies \alpha (2\alpha - 1) = 0 \implies \alpha = 0 \vee \alpha = \frac{1}{2}$$

Opción 1: Integramos la EDO:

$$\int_{0}^{t} y(s)y''(s) ds + \int_{0}^{t} (y'(s))^{2} ds = 0$$

$$-\int_{0}^{t} (y'(s))^{2} ds + [y(s)y'(s)]_{s=0}^{t} + \int_{0}^{t} (y'(s))^{2} ds$$

$$\implies y(t)y'(t) - y(0)y'(0) = 0 \implies y(t)y'(t) = y(0)y'(0) =: C$$

$$\implies \int_{0}^{t} y(s)y'(s) ds = Ct \implies \frac{(y(t))^{2}}{2} - \frac{(y(0))^{2}}{2} = Ct$$

$$\implies y(t) = \sqrt{2Ct + (y(0))^{2}}$$

2.
$$xy'' = y' + (y')^2$$

No depende de $y \implies$ Hacemos un cambio de variable x=y': $\implies xz'=z+z^3$ que es de variables separadas.

3.
$$x^2y'' = 2xy' + (y')^2$$

Nuevamente hacemos un cambio de variable $z=y' \implies x^2z'=2xz+z^2$ $\forall x \neq 0: z'=2\frac{z}{x}+\left(\frac{z}{x}\right)^2 \implies \text{ mediante el cambio de variables } \omega=\frac{z}{x}$

Obtenemos una EDO de variables separadas en ω .

4.
$$2yy'' - (y')^2 = 1$$

Otra vez resulta razonable buscar soluciones de la forma $y(x) = Ax^2 + Bx + C$

5.1.3 Modelización

3.4 C(t) = "Cantidad de sal" en el tanque en el tiempo t.

$$C'(t) = 10 - \frac{1}{10}C(t) \implies \int_{C(0)}^{C(t)} \frac{1}{100 - y} \, \mathrm{d}y = \int_0^t \frac{1}{10} \, \mathrm{d}t$$

$$\implies \log(100 - C(t)) - \log(100 - C(0)) = -\frac{1}{10} \implies \log\frac{100 - C(t)}{100} = -\frac{t}{10}$$

$$\implies \frac{100 - C(t)}{100} = e^{-\frac{t}{10}} \implies C(t) = 100(1 - e^{-\frac{t}{10}})$$

$$\implies C(1) = 100(1 - e^{-\frac{1}{10}}) \wedge \lim_{t \to \infty} C(t) = 100$$

5.1.4 Análisis cualitativo y campos de pendientes

4.6
$$\forall t > \frac{5}{4} : \forall x \left(\frac{5}{4}\right) \in \left(-\sqrt{\frac{5}{4}}, -\frac{1}{2}\right) : x' = x^2 - t \implies -\sqrt{t} < x(t) < -\sqrt{t-1}$$

$$f_1(t) := -\sqrt{t} \land f_2 := -\sqrt{t-1} \implies f\left(\frac{5}{4}\right) = -\sqrt{\frac{5}{4}} \land f_2\left(\frac{5}{4} - 1\right) = -\frac{1}{2}$$

Sabemos que $\tilde{t} = \frac{5}{4} \implies -\sqrt{\tilde{t}} < x(\tilde{t}) < -\sqrt{\tilde{t}-1}$

⇒ Por contunuidad, al menos en un tiempo, estas cotas se siguen manteniendo.

Atendiendo a las isoclinas de este ejercicio ($\{x^2-t=C:C\in\mathbb{R}\}$), observamos que:

- $C=0 \implies x^2=t \implies x=\pm \sqrt{t}$ que es precisamente la cota inferior que buscábamos.
- $C = -1 \implies x^2 t = -1 \implies x = \pm \sqrt{t 1}$ que es la cota superior.

Inicialmente $x(t) > -\sqrt{t}$ "durante un rato".

- 1. Supongamos que $\exists t^* : x(t^*) = -\sqrt{t^*}$.
- 2. Por un lado, la isoclina nos dice que $x'(t^*) = 0$.

3. Por otro lado,
$$x'(t^*) \le \left[\frac{\mathrm{d}}{\mathrm{d}t}(-\sqrt{t})\right]_{t=t^*} = -\frac{1}{2}\frac{1}{\sqrt{t^*}} < 0.$$

4.7
$$\begin{cases} x' = x^2 + t^2, t > 0 \\ x(0) > 0 \end{cases}$$
 Sea $x : [0, T) \longrightarrow \mathbb{R}$ derivable.

1. Queremos ver si
$$\forall t \in [0,T) : x(t) > \frac{t^3}{3}$$

Como
$$x' \ge t^2 \implies \int_0^t x'(s) \, \mathrm{d}s \ge \int_0^t s^2 \, \mathrm{d}s \implies x(t) - x(0) \ge \frac{t^3}{3}$$

$$\implies \left[\forall t \in [0, T) : x(t) > \frac{t^3}{3} \right]$$

2. Queremos ver si
$$\forall t \in \left(\sqrt{3}, T\right), T > \sqrt{3} : x(t) > \frac{1}{\frac{4}{\sqrt{3}} - t}$$

$$\operatorname{Como} x' \geq x^2 \implies x^{-2}x' \geq 1 \implies \int_{\sqrt{3}}^t \frac{x'(s)}{x(s)^2} \, \mathrm{d}s \geq t - \sqrt{3}$$

$$\implies -\frac{1}{x(t)} + \frac{1}{x(\sqrt{3})} \geq t - \sqrt{3} \implies t \leq \sqrt{3} + \frac{1}{x(\sqrt{3})} - \frac{1}{x(t)}$$

$$\implies t < \sqrt{3} + \frac{3}{\left(\sqrt{3}\right)^3} - \frac{1}{x(t)} = \sqrt{3} + \frac{1}{\sqrt{3}} - \frac{1}{x(t)} = \frac{4}{\sqrt{3}} - \frac{1}{x(t)}$$

$$\implies t < \frac{4}{\sqrt{3}} - \frac{1}{x(t)} \implies \frac{1}{x(t)} < \frac{4}{\sqrt{3}} - t \implies \forall t > \sqrt{3} : x(t) > \frac{1}{\frac{4}{\sqrt{3}} - t}$$

5.2 Hoja 2

1.1
$$\begin{cases} x' = f(x) \\ x(t_0) = x_0 \end{cases}$$
 tiene sol única.

1. Toda solución que no sea constante es estrictamente monótona.

 $\boldsymbol{Demostraci\'on}.$ Por contrarecíproco, veamos que

$$\exists t^* : x'(t^*) = 0 \implies \forall t : x(t) \equiv C := x(t^*)$$
 Definimos $\forall t \in \mathbb{R} : y(t) = x(t^*)$. Por hipótesis, $f(C) = f(x(t^*)) = x'(t) = 0$
$$\implies y'(t) = \frac{\mathrm{d}}{\mathrm{d}t}(C) = 0 = f(C) = f(y(t)) \implies y \text{ es solución}$$

$$\begin{cases} y'(t) = f(y(t)) \\ y(t^*) = C \end{cases} \implies \text{Por unicidad, } x(t) = y(t) \equiv C$$

2. $\lim_{t\to\infty} x(t) = C_0 \implies u(t) \equiv C_0$ es solución.

Demostración. (a)
$$\lim_{t\to\infty} x'(t) = \lim_{t\to\infty} f(x(t)) = f\left(\lim_{t\to\infty} x(t)\right) = f(C_0)$$

(b) Veamos que $f(C_0) = 0$. Por contradicción, supongamos que $f(C_0) = A > 0$ $\implies \lim_{t \to \infty} x'(t) = A \implies \exists \, \tilde{t} : \forall t \geq \tilde{t} : x'(t) > \frac{A}{2}$

$$\implies \int_{\tilde{t}}^{t} x'(\tau) d\tau > \int_{\tilde{t}}^{t} \frac{A}{2} d\tau \implies x(t) - x\left(\tilde{t}\right) > \frac{A}{2}(t - \tilde{t})$$

$$\implies \lim_{t \to \infty} x(t) = \lim_{t \to \infty} \left(x\left(\tilde{t}\right) + \frac{A}{2}\left(t - \tilde{t}\right) \right) = \infty \longrightarrow \longleftarrow$$

(c)
$$u'(t) = \frac{\mathrm{d}}{\mathrm{d}t}(C_0) = 0 = f(C_0) = f(u(t)) \implies u$$
 es solución.

1.2 x' = f(x) La unicidad solo se puede perder cuando f(x) = 0

1.
$$f(x) := x' = \begin{cases} \sqrt{-x} & x < 0 \\ x^2 & x \ge 0 \end{cases}$$

Observación 5.1.

(a) $x \equiv 0$ es solución (f(0) = 0) y solo puede haber problemas de unicidad en x = 0.

(b) x(t) es estrictamente creciente si $x(t) \neq 0$

No habría unicidad en $x=0 \iff \lim_{x\to 0} \int_x^{x_0} \frac{1}{f(\tau)} \,\mathrm{d}\tau \in \mathbb{R} \text{ con } x_0 > x$ En nuestro caso, $\int_x^{x_0} \frac{1}{\tau^2} \,\mathrm{d}\tau = \frac{1}{x_0} - \frac{1}{x} \xrightarrow{x\to 0^+} -\infty \implies \text{ hay unicidad por arriba.}$ Para la unicidad por abajo, $\int_{x_0}^x \frac{1}{\sqrt{-\tau}} \,\mathrm{d}\tau = -2\left(\sqrt{-x} - \sqrt{-x_0}\right) \xrightarrow{x\to 0^-} 2\sqrt{x_0} \in \mathbb{R}$ \implies No hay unicidad por abajo.

Por tanto, podemos encontrar una solución de la siguiente forma:

$$y(t) := \begin{cases} -\frac{t^2}{4} & t < 0 \\ 0 & t \ge 0 \end{cases} \implies y'(t) = \begin{cases} -\frac{t}{2} & t < 0 \\ 0 & t \ge 0 \end{cases}$$

Es solución porque:

$$f(y(t)) = \begin{cases} f(-\frac{t^2}{4}) & t < 0 \\ f(0) & t \ge 0 \end{cases} = \begin{cases} \sqrt{-\left(-\frac{t^2}{4}\right)} & t < 0 \\ 0 & t \ge 0 \end{cases} = \begin{cases} -\frac{t}{2} & t < 0 \\ 0 & t \ge 0 \end{cases} = y'(t)$$

Por un lado, $x(t_0)=0 \implies \lim_{t\to\infty} x(t)=0$ por la unicidad por arriba. Por otro lado, si $x(t_0)<0$ sabemos que

- x(t) no decrece.
- x(t) está acotada por arriba por 0.

$$\implies \exists \lim_{t \to \infty} x(t) \le 0$$

Supongamos que $\exists A > 0 : \lim_{x(t)} = -A$.

Como x(t) no decrece,

$$\implies x(t) \le -A \implies x'(t) = \sqrt{-x(t)} \ge \sqrt{A} \implies x(t) \ge x(c) + \sqrt{A}t \xrightarrow{t \to \infty} \infty \longrightarrow \longleftarrow$$

$$\implies \lim_{t \to \infty} x(t) = 0$$

2.

1.3 $x' = f(t, x) \wedge x$ es solución.

f no depende de $t \iff \forall b \in \mathbb{R} : y(t) := x(t+b)$ es sol.

Demostración. (\Longrightarrow) Supongamos que f no depende de t.

$$\implies x' = f(x) \implies y(t) = x(t+b) \implies y'(t) = \frac{\mathrm{d}}{\mathrm{d}t}(x(t+b)) = x'(t+b)$$
$$\implies y'(t) = f(x(t+b)) = f(y(t))$$

(\iff) Supongamos que $\forall b \in \mathbb{R} : y(t) := x(t+b)$ es sol.

$$x' = f(t, x(t)) \implies y(t) = x(t+b)$$
 también es solución

$$x'(t+b) = f(t, x(t+b)) \implies x'(t) = f(t-b, x(t))$$

$$\implies \forall b \in \mathbb{R} : f(t - b, x(t)) = f(t, x(t))$$

En particular, $x(0) = x_0 \in \mathbb{R} \implies \forall b \in \mathbb{R} : \forall x_0 \in \mathbb{R} : f(-b, x_0) = f(0, x_0)$

 $\implies f$ no depende de su primera variable

5.3 Hoja 3

1.3

$$\begin{cases} x' = t + x \\ x(0) = 1 \end{cases} \iff x(t) = 1 + \frac{t^2}{2} + \int_0^t x(s) \, ds =: T[x](t)$$

Definimos la sucesión de funciones $x_{n+1}(t) = T[x_n](t) \wedge x_1(t) = x(0) = 1$ y tenemos:

$$x_2(t) = T[x_1](t) = 1 + \frac{t^2}{2} + \int_0^t 1 \, ds = 1 + \frac{t^2}{2} + t$$

$$x_3(t) = T[x_2](t) = 1 + \frac{t^2}{2} + \int_0^t \left(1 + \frac{s^2}{2} + s\right) ds = 1 + \frac{t^2}{2} + t + \frac{t^3}{6} + \frac{t^2}{2}$$

:

$$x_n(t) = 1 + t + 2\sum_{j=2}^{n-1} \frac{t^j}{j!} + \frac{t^n}{n!} = -1 - t + 2\sum_{j=0}^n \frac{t^j}{j!} - \frac{t^n}{n!} \xrightarrow{n \to \infty} -1 - t + 2e^t + 0$$

$$\implies \boxed{x(t) = -1 - t + 2e^t}$$

2.1

1.
$$f_n(x) = x^{1/n}$$
 en $x \in [0, 1]$

$$f_n(0) = 0 \implies \lim_{n \to \infty} f_n(0) = 0 \quad \land \quad x_0 \in (0, 1] \implies \lim_{n \to \infty} x_0^{1/n} = 1$$

$$\implies f_n \xrightarrow{n \to \infty} f \text{ puntualmente en } [0, 1] \text{ con } f(x) = \begin{cases} 0 & x = 0 \\ 1 & x \in (0, 1] \end{cases}$$

¿Converge uniformemente? Sabemos $\forall n: f_n \text{ cont. } \land f_n \to f \text{ unif.} \implies f \text{ cont.}$ Como f no es continua $\implies f_n$ no converge uniformemente.

2.
$$f_n(x) = \frac{nx}{1+nx}$$
 en $x \in [0, \infty)$
 $f_n(0) = 0 \implies \lim_{n \to \infty} f_n(0) = 0 \quad \land \quad \forall x_0 > 0 : \lim_{n \to \infty} \frac{nx_0}{1+nx_0} = 0$

Observación 5.2.

1.
$$f_n \xrightarrow{n \to \infty} f$$
 puntualmente en $\Omega \iff \forall x \in \Omega : \lim_{n \to \infty} f_n(x) = f(x)$
 $\iff \forall x \in \Omega : \forall \varepsilon > 0 : \exists n_0(x) \in \mathbb{N} : \forall n > n_0(x) : |f_n(x) - f(x)| < \varepsilon$

2.
$$f_n \xrightarrow{n \to \infty} f$$
 uniformemente en $\Omega \iff \sup_{x \in \Omega} |f_n(x) - f(x)| \xrightarrow{n \to \infty} 0$
 $\iff \forall \varepsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n > n_0 : \forall x \in \Omega : |f_n(x) - f(x)| < \varepsilon$

- ${\bf 2.2}$ Estudiamos la sucesión de funciones en $f_n(x)=n^2xe^{-nx^2}$ en $x\in[0,1]$
 - 1. Convergencia puntual: $\forall n \in \mathbb{N} : f_n(0) \implies \lim_{n \to \infty} f_n(0) = 0$ $x_0 \in (0,1] \implies \lim_{n \to \infty} n^2 x_0 e^{-nx_0^2} = 0 \implies f_n \xrightarrow{n \to \infty} 0 = f$ puntualmente en [0,1]

2. Convergencia uniforme:
$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} |f_n(x) - 0| = \sup_{x \in [0,1]} n^2 x e^{-nx^2}$$
$$f'_n(x) = n^2 e^{-nx^2} - 2n^3 x^2 e^{-nx^2} = n^2 e^{-nx^2} (1 - 2nx^2) \implies f'_n(x) = 0 \iff x = \frac{1}{\sqrt{2n}}$$
$$\frac{1}{\sqrt{2n}} \in [0,1] \implies \sup_{x \in [0,1]} |f_n(x)| = f_n\left(\frac{1}{\sqrt{2n}}\right) = \frac{n^{5/2}}{\sqrt{2}} e^{-\frac{1}{2}} \xrightarrow{n \to \infty} \infty$$

Por tanto, f no converge uniformemente.

3. Nota: Cuando falla la convergencia uniforme, el límite de la integral no es necesariamente igual a la integral del límite.

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \infty \neq 0 = \lim_{n \to \infty} 0 = \int_0^1 0 \, dx = \int_0^1 f(x) \, dx$$

Observación 5.3.

- 1. f es Lipschitz en $\Omega \iff \exists L \geq 0 : \forall x,y \in \Omega : |f(x)-f(y)| \leq L\,|x-y|$
- 2. f es localmente Lipschitz en $\Omega \iff \forall K \subset \Omega$ compacto : f es Lipschitz en K

05/04/2024

Prolongabilidad de soluciones: Si hay existencia y unicidad local para $(x_0, y_0) \in D$, entonces la solución solo puede dejar de existir si "explota" en D. Por ejemplo:

$$\begin{cases} y' = y^2 \\ y(x_0) = y_0 \end{cases} \xrightarrow{\text{P-L}} \forall (x_0, y_0) \in \mathbb{R} \times \mathbb{R} : \exists ! \text{ solución en un entorno de } (x_0, y_0)$$

4.1 a)
$$y' = \frac{xy + y^2}{x^2 + y^2 + 2} =: f(x, y)$$

$$f \in \mathcal{C}^1(\mathbb{R}^2) \implies \forall (x_0, y_0) \in \mathbb{R}^2 : \exists! \text{ solución local}$$

$$y(x) = 0 \text{ es solución de la EDO} \implies \begin{cases} y_0 > 0 \implies \forall x \in \mathbb{R} : y(x) > 0 \\ y_0 = 0 \implies \forall x \in \mathbb{R} : y(x) = 0 \end{cases}$$

Queremos una función $g \colon \mathbb{R} \longrightarrow \mathbb{R} : y(x) \le g(x)$.

• Supongamos por un momento que $|f(x,y)| \le K$.

$$y(x) = y(x_0) + \int_{x_0}^x f(s, y(s)) \, \mathrm{d}s \implies |y(x)| \le |y(x_0)| + \int |f(s, y(s))| \, \mathrm{d}s$$

$$\le |y(x_0)| + K |x - x_0|$$

$$\implies \forall x \in \mathbb{R} : 0 < y(x) \le |y(x_0)| + K |x - x_0| =: g(x)$$

$$\exists K \in \mathbb{R} : |f(x, y)| \le K \implies y(x) \text{ existe para (y desde) siempre}$$

• Por tanto, basta ver que $f(x,y) \leq 2$

$$|f(x,y)| \le \frac{|x||y| + y^2}{x^2 + y^2 + 2} \le \frac{x^2 + y^2 + y^2}{x^2 + y^2 + 2} \le \frac{x^2 + y^2}{x^2 + y^2 + 2} \le 2$$

b)
$$\left\{x' = \frac{x^2 + t^4}{\sqrt{1 + x^2 + t^2}} \land x(t_0) = x_0\right\} f \in \mathcal{C}^1(\mathbb{R}^2) \implies \forall (x_0, t_0) \in \mathbb{R}^2 : \exists ! \text{ solución local}$$
$$\forall (t, x) \in \mathbb{R}^2 : f(t, x) \ge 0 \implies x'(t) \ge 0 \implies \begin{cases} \forall t \ge t_0 : x(t) \ge x_0 \\ \forall t \le t_0 : x(t) \le x_0 \end{cases}$$

$$|f(t,x)| = f(t,x) = \frac{x^2}{\sqrt{1+x^2+t^2}} + \frac{t^4}{\sqrt{1+x^2+t^2}} \le \frac{x^2}{|x|} + \frac{t^4}{|t|} \le |x| + |t^3|$$

Tomamos T > 0 arbitrario y demuestro que la solución existe para todo $t \in [t_0 - T, t_0 + T]$. Usamos la forma integral para acotar:

$$|x(t)| \le |x(t_0)| + \int_{t_0}^t |f(s, x(s))| \, \mathrm{d}s \le |x(t_0)| + \int_{m:=\min\{t,t_0\}}^{M:=\max\{t,t_0\}} |f(s, x(s))| \, \mathrm{d}s$$

$$\le |x(t_0)| + \int_{m}^{M} |x(s)| + |s^3| \, \mathrm{d}s$$

$$= |x(t_0)| + (\max\{|t_0 - T|, |t_0 + T|\})^3 |t - t_0| + \int_{m}^{M} |x(s)| \, \mathrm{d}s$$

$$\le C(x_0, t_0, T) + \int_{m}^{M} |x(s)| \, \mathrm{d}s \xrightarrow{\text{Gronwall}} |x(t)| \le Ce^{t - t_0}$$

Lema 5.1 (Gronwall). Sea $g: [a,b] \longrightarrow \mathbb{R}$ continua $y \in C \ge 0$ tal que $\forall t \in [a,b]: g(t) \le C + \int_a^b g(s) \, \mathrm{d}s \implies \forall t \in (a,b): g(t) \le Ce^{b-a}$

Demostración. Definimos
$$G(t) := C + \int_a^b g(s) \, \mathrm{d}s \implies G(t_0) = C \wedge G'(t) = g(t)$$

$$\implies \begin{cases} G'(t) \le G(t) \\ G(t_0) = C \end{cases} \implies G(t) \le Ce^{t-t_0} \implies g(t) \le Ce^{t-t_0}$$

4.3
$$x' = x^5 + \frac{tx^2}{1+x^2} =: f(t,x)$$

a) $f \in \mathcal{C}^1(\mathbb{R}^2) \implies \forall (t_0,x_0) \in \mathbb{R}^2 : \exists ! \text{ solución local}$
b) $x(0) = x_0 > 0 \implies \forall t \leq 0 : \text{La solución se puede definir}$
 $\forall t \in \mathbb{R} : \underline{x}(t) := 0 \text{ es solución } \implies \forall t \in \mathbb{R} : x(t) > 0 \text{ (mientras exista)}$

Quiero acotar |f(t,x)| por debajo de x.

$$x' = x^5 + \frac{tx^2}{1+x^2} \ge t \frac{x^2}{1+x^2} \ge t \implies \int_t^0 x'(s) \, \mathrm{d}s \ge \int_t^0 s \, \mathrm{d}s \implies x(t) \le x(0) + \frac{t^2}{2}$$

$$c) \quad x(0) = x_0 > 0 \implies \text{La solución no existe despues de un } T_+$$

$$x' = x^5 + \frac{tx^2}{1+x^2} \ge x^5 \implies \cdots \implies 4(x(t))^4 \ge \frac{1}{\frac{1}{4x_0^4} - t} \implies \boxed{T_+ = \frac{1}{4x_0^4}}$$

4.4
$$\lambda > 0$$
 $\lambda \begin{cases} y' = y^4 + \lambda \\ y(0) = y_0 \end{cases}$

a)
$$\begin{cases} y' \ge y^4 \\ y(c) = c \end{cases} \implies T_+ \xrightarrow{3x_0}$$

5.3 (Variado)
$$\left\{ x' = \frac{2}{1+t^2} \cos\left(x + \frac{\pi}{2}\right) \wedge x_1(0) = a \wedge x_2(0) = b \right\}$$
 con $0 < a < b$.

- 1. $x \equiv 0$ es solución de la EDO.
- 2. f es Lipschitz en x, uniformemente en $t \implies \forall (t_0,x_0) \in \mathbb{R}^2 : \exists !$ solución global
- 3. $x_1(0) = a \wedge x_2(0) = b \implies \forall t \in \mathbb{R} : x_1(t), x_2(t) > 0.$
- 4. $0 < a < b < \pi \implies \bar{x}(t) = \pi$ es solución $\implies 0 < x_1(t), x_2(t) < \pi$.
- 5. Como no se pueden cortar porque se perdería unicidad, $\forall t \in \mathbb{R} : x_1(t) < x_2(t)$.

$$i = 1, 2 : x_i(t) = x_i(0) + \int_0^t \frac{2}{1+s^2} \cos\left(x_i(s) + \frac{\pi}{2}\right) ds$$

$$\implies x_2(t) - x_1(t) = x_2(0) - x_1(0) + \int_0^t \frac{2}{1+s^2} \left(\cos\left(x_2(s) + \frac{\pi}{2}\right) - \cos\left(x_1(s) + \frac{\pi}{2}\right)\right) ds$$

$$\implies |x_1(t) - x_2(t)| \le |a - b| + \int_0^t \underbrace{\frac{2}{1+s^2}}_{\le 2} \underbrace{\left|\cos\left(x_2(s) + \frac{\pi}{2}\right) - \cos\left(x_1(s) + \frac{\pi}{2}\right)\right|}_{\le |x_1(s) - x_2(s)|} ds$$

$$z(t) := |x_1(t) - x_2(t)| \implies z(t) \le (b - a) + 2\int_0^t z(s) ds =: G(t)$$

$$\implies G'(t) = 2z(t) \le 2G(t) \implies \begin{cases} G'(t) \le 2G(t) \\ G(0) = b - a \end{cases} \implies G'(t) - 2G(t) \le 0$$

$$(G'(t) - 2G(t)) e^{-2t} = (G(t)e^{-2t})' \le 0 \implies G(t)e^{-2t} - G(0)e^{-2\cdot 0} \le 0$$

$$\implies G(t) \le (b - a)e^{2t} \implies z(t) \le (b - a)e^{2t} \implies \forall t > 0 : |x_1(t) - x_2(t)| \le (b - a)e^{2t}$$

Sea $(a_k): a_k \xrightarrow{k \to \infty} b$ y definimos x_k la solución del PVI cuando $x_k(0) = a_k$. Entonces, la sucesión de funciones (x_k) converge uniformemente a x_2 .

5.2
$$x' = x + \sin(tx) \wedge y' = \sin(ty) \wedge x(0) = y(0) = 1$$
 (Cae siempre en el examen).

- 1. ∃! solución global para ambas
- 2. x(t), y(t) > 0 (0 es solución de ambas EDOs).

3.
$$\forall t > 0 : x(t) > y(t)$$

Demostración. Vemos que
$$x(0) = y(0) = 1 \wedge x'(0) = 1 \wedge y(0) = 0$$
.

Suponemos que
$$\exists t^*: x(t^*) = y(t^*)$$
, sabemos que $x(t) > y(t)$ para $t \in (0, t^*)$ $\implies y'(t^*) \ge x'(t^*)$

Por otro lado,
$$x'(t^*) = x(t^*) + \sin(t^*x(t^*)) > \sin(t^*y(t^*)) = y'(t^*) \longrightarrow \longleftarrow$$

Escribimos las soluciones integrales, las restamos y aplicamos la desigualdad triangular.

$$\Rightarrow x(t) - y(t) = \underbrace{x(0)}_{0} \underbrace{y(0)}_{0} + \int_{0}^{t} \left(\sin(sx(s)) - \sin(sy(s))\right) ds + \int_{0}^{t} x(s) ds$$
$$\Rightarrow |x(t) - y(t)| \le \int_{0}^{t} s |x(s) - y(s)| ds + \int_{0}^{t} |x(s)| ds$$

Queremos encontrar una barrera para x, i.e. una función f tal que $x(t) \leq f(t)$.

$$\forall a \in \mathbb{R} : \sin a \le a \implies x'(t) = x(t) + \sin(tx) \le x(t) + tx = (1+t)x(t)$$

$$\implies x' - (1+t)x \le 0 \implies e^{-t-\frac{t^2}{2}} (x' - (1+t)x) = \left(x(t)e^{-t-\frac{t^2}{2}}\right)' \le 0$$

$$\implies x(t)e^{-t-\frac{t^2}{2}} - 1 \le 0 \implies 0 \le x(t) \le e^{t+\frac{t^2}{2}} =: f(t)$$

$$z(t) := |x(t) - y(t)| \implies z(t) \le \int_0^t sz(s) \, \mathrm{d}s + \int_0^t f(s) \, \mathrm{d}s =: G(t)$$

$$\implies G'(t) = tz(t) + f(t) \le tG(t) + f(t) \implies \begin{cases} G'(t) \le tG(t) + f(t) \\ G(0) = 0 \end{cases}$$

$$\implies e^{-\frac{t^2}{2}} (G'(t) - tG(t)) \le f(t)e^{-\frac{t^2}{2}} \implies \left(G(t)e^{-\frac{t^2}{2}}\right)' \le e^t$$

$$\implies \cdots \implies \forall t > 0 : z(t) \le G(t) \le e^{\frac{t^2}{2}} (e^t - 1)$$

¿Y para tiempos negativos (t < 0)? Definimos $\bar{x}(t) := x(-t) \wedge \bar{y}(t) := y(-t)$.

6.4
$$x' = \left(\sin\left(\frac{\sqrt{x-t^2}}{t}\right)\right)^2 = f(t,x)$$

a) Existencia y unicidad. Sea $\mathcal{A} = \{(t,x) \in \mathbb{R}^2 : x \ge t^2 \land t \ne 0\}$. ¿Es Lipschitz? $t > 0 \implies |f(t,x) - f(t,y)| = \left|\frac{\partial f}{\partial x}(t,\xi)\right| |x - y|$ $\frac{\partial f}{\partial x}(t,x) = 2\sin\left(\frac{\sqrt{x - t^2}}{t}\right)\cos\left(\frac{\sqrt{x - t^2}}{t}\right)\frac{1}{2t\sqrt{x - t^2}}$ $\implies \left|\frac{\partial f}{\partial x}(t,x)\right| \le 2\frac{\sqrt{x - t^2}}{t} \cdot 1 \cdot \frac{1}{2t\sqrt{x - t^2}} = \frac{1}{t^2}$

Por tanto, hay existencia y unicidad local en A.

- b) Definimos el problema de valores iniciales con x(1) = 3.
 - 1. $x(t) \ge 3$ porque $x'(t) \ge 0 \implies x(t) \ge x(1) = 3$.
 - 2. $x(t) \le 2 + t$ porque $|x(t)| \le |x(1)| + \int_1^t \underbrace{|f(s, x(s))|}_{\le 1} ds \le 3 + (t 1) = t + 2.$

3.