Hyperparameters tuning

Plan for the lecture

- Hyperparameter tuning in general
 - General pipeline
 - Manual and automatic tuning
 - What should we understand about hyperparameters?
- Models, libraries and hyperparameter optimization
 - Tree-based models
 - Neural networks
 - Linear models

Plan for the lecture: models

- Tree-based models
 - GBDT: XGBoost, LightGBM, CatBoost
 - RandomForest/ExtraTrees
- Neural nets
 - Pytorch, Tensorflow, Keras...
- Linear models
 - SVM, logistic regression
 - Vowpal Wabbit, FTRL
- Factorization Machines (out of scope)
 - libFM, libFFM

How do we tune hyperparameters

1. Select the most influential parameters

a. There are tons of parameters and we can't tune all of them

2. Understand, how exactly they influence the training

3. Tune them!

- a. Manually (change and examine)
- b. Automatically (hyperopt, etc.)

Hyperparameter optimization software

- A lot of libraries to try:
 - Hyperopt
 - Scikit-optimize
 - Spearmint
 - GPyOpt
 - RoBO
 - SMAC3

Automatic hyperparameter optimization

```
def xgb score(param):
   # run XGBoost with parameters `param`
def xgb hyperopt():
    space = {
         'eta' : 0.01,
         'max depth': hp.quniform('max depth', 10, 30,1),
         'min child weight' : hp.quniform('min child weight', 0, 100, 1),
         'subsample': hp.quniform('subsample', 0.1, 1.0, 0.1),
         'qamma' :
                            hp.quniform('gamma', 0.0, 30, 0.5),
         'colsample bytree' : hp.quniform('colsample bytree', 0.1, 1.0, 0.1),
         'objective': 'reg:linear',
         'nthread' : 28,
         'silent' : 1,
         'num round' : 2500,
         'seed' : 2441,
         'early stopping rounds':100
    best = fmin(xgb score, space, algo=tpe.suggest, max evals=1000)
```

Color-coding legend

- 1. Underfitting (bad)
- 2. Good fit and generalization (good)
- 3. Overfitting (bad)

Color-coding legend

- A parameter in red
 - Increasing it impedes fitting
 - Increase it to reduce overfitting
 - Decrease to allow model fit easier
- A parameter in green
 - Increasing it leads to a better fit (overfit) on train set
 - Increase it, if model underfits
 - Decrease if overfits

Conclusion

- Hyperparameter tuning in general
 - General pipeline
 - Manual and automatic tuning
 - What should we understand about hyperparameters?
- Models, libraries and hyperparameter optimization
 - Tree-based models
 - Neural networks
 - Linear models

Plan for the video

- Tree-based models
 - GBDT: XGBoost, LightGBM, CatBoost
 - RandomForest/ExtraTrees
- Neural nets
 - Pytorch, Tensorflow, Keras...
- Linear models
 - SVM, logistic regression
 - Vowpal Wabbit, FTRL
- Factorization Machines (out of scope)
 - libFM, libFFM

Tree-based models

Model	Where
GBDT	XGBoost (dmlc/xgboost) LightGBM (Mictrosoft/LighGBM) CatBoost (catboost/catboost)
RandomForest, ExtraTrees	scikit-learn
Others	RGF (baidu/fast_rgf)

depth.

you need it.

XGBoost LightGBM max_depth/num_leaves max_depth the deeper a tree can be grown the better it can fit a dataset. In LightGBM, it is possible to control the number of So increasing this parameter will lead to faster fitting leaves in the tree rather than the maximum depth. to the train set. Depending on the task, the optimal depth can vary a It is nice since a resulting tree can be very deep, but lot, sometimes it is 2, sometimes it is 27. If you have small number of leaves and not over fit. increase the depth and can not get the model to overfit, that is, the model is becoming better and better on the validation set as you increase the It can be a sign that there are a lot of important interactions to extract from the data. So it's better to stop tuning and try to generate some features. I would recommend to start with a max depth of about seven. Also remember that as you increase the depth, the learning will take a longer time. So do not set depth to a very higher values unless you are 100% sure

not.

LightGBM **XGBoost** max_depth max_depth/num_leaves subsample bagging_fraction Some simple parameter controls a fraction of objects to use when feeding a tree. It's a value between 0 and 1. One might think that it's better always use all the objects, right? But in practice, it turns out that it's Actually, if only a fraction of objects is used at every duration, then the model is less prone to overfitting. So using a fraction of objects, the model will fit slower on the train set, but at the same time it will probably generalize better than this over-fitted model. So, it works kind of as a regularization.

GBDT

LightGBM XGBoost max_depth/num_leaves max_depth bagging_fraction subsample colsample_bytree, feature fraction colsample_bylevel Similarly, if we can consider only a fraction of features split, this is controlled by parameters colsample_bytree and colsample_bylevel. 如果over fitting就lower down

GBDT

XGBoost	LightGBM
max_depth	max_depth/num_leaves
 subsample 	bagging_fraction
colsample_bytree,	feature_fraction
colsample_bylevel	
min_child_weight, lambda, alpha	min_data_in_leaf, lambda_l1, lambda_l2
min_child_weight increse it, model become more conser	vative
	t parameters to tune in XGBoost and LightGBM. be 0, 5, 15, 300, so do not hesitate to try a wide

GBDT

XGBoost	LightGBM
max_depth	max_depth/num_leaves
 subsample 	bagging_fraction
colsample_bytree,	feature_fraction
colsample_bylevel	
 min_child_weight, lambda, alpha 	min_data_in_leaf, lambda_l1, lambda_l2
• eta	learning_rate
num_round Eta is essentially a learning weight, like in gradient descent. And the num_round is the how many learning steps we want to perform or in other words how many tree's we want to build.	

, the higher the learning rate, the faster the model fits to the train set and probably it can lead to over fitting. And more steps model does, the better the model fits.

one could jump 1,000 places up or down on the leaderboard just by training a model with different random seeds

XGBoost	LightGBM
max_depth	 max_depth/num_leaves
 subsample 	 bagging_fraction
colsample_bytree, colsample_bylevel	• feature_fraction
 min_child_weight, lambda, alpha 	 min_data_in_leaf, lambda_l1, lambda_l2
etanum_round	• learning_rate num_iterations
Others:	Others:
• seed	• *_seed

I think it doesn't make too much sense to fix seed in XGBoost, as anyway every changed parameter will lead to completely different model. But I would use this parameter to verify that different random seeds do not change training results much

sklearn.RandomForest/ExtraTrees

N_estimators (the higher the better)

sklearn.RandomForest/ExtraTrees

- N_estimators (the higher the better)
- max_depth
- max_features
- min_samples_leaf

Others:

criterion

sklearn.RandomForest/ExtraTrees

- N_estimators (the higher the better)
- max_depth
- max_features
- min_samples_leaf

Others:

- criterion In my experience Gini is better more often, but sometimes Entropy wins.
- random_state
- n_jobs

Conclusion

- Tree-based models
 - GBDT: XGBoost, LightGBM, CatBoost
 - RandomForest/ExtraTrees
- Neural nets
 - Pytorch, Tensorflow, Keras...
- Linear models
 - SVM, logistic regression
 - Vowpal Wabbit, FTRL
- Factorization Machines (out of scope)
 - libFM, libFFM

Hyperparameter tuning part III

Plan for the lecture: models

- Tree-based models
 - GBDT: XGBoost, LightGBM, CatBoost
 - RandomForest/ExtraTrees
- Neural nets
 - Pytorch, Tensorflow, Keras...
- Linear models
 - SVM, logistic regression
 - Vowpal Wabbit, FTRL
- Factorization Machines (out of scope)
 - libFM, libFFM

Plan for the lecture: models

What framework to use?

- Keras, Lasagne
- TensorFlow
- MxNet
- PyTorch
- sklearn's MLP
- ...

They implement the same functionality! (except sklearn)

I recommend:

- PyTorch
- Keras

Neural Nets

- Number of neurons per layer
- Number of layers
- Optimizers
 - SGD + momentum
 - Adam/Adadelta/Adagrad/...
 - In practice lead to more overfitting
- Batch size
- Learning rate
- Regularization
 - L2/L1 for weights
 - Dropout/Dropconnect
 - Static dropconnect

Static dropconnect

Static dropconnect

Static dropconnect

Scikit-learn

- SVC/SVR
 - Sklearn wraps libLinear and libSVM
 - Compile yourself for multicore support

Scikit-learn

- SVC/SVR
 - Sklearn wraps libLinear and libSVM
 - Compile yourself for multicore support
- LogisticRegression/LinearRegression + regularizers
- SGDClassifier/SGDRegressor

Scikit-learn

- SVC/SVR
 - Sklearn wraps libLinear and libSVM
 - Compile yourself for multicore support
- LogisticRegression/LinearRegression + regularizers
- SGDClassifier/SGDRegressor

Vowpal Wabbit

- FTRL

- Regularization parameter (C, alpha, lambda, ...)
 - Start with very small value and increase it.
 - SVC starts to work slower as C increases
- Regularization type
 - L1/L2/L1+L2 -- try each
 - L1 can be used for feature selection

Tips

Don't spend too much time tuning hyperparameters

 Only if you don't have any more ideas or you have spare computational resources

Be patient

 It can take thousands of rounds for GBDT or neural nets to fit

Average everything

- Over random seed
- Or over small deviations from optimal parameters
 - e.g. average max_depth=4,5,6 for an optimal 5

Conclusion

- Hyperparameter tuning in general
 - General pipeline
 - Manual and automatic tuning
 - What should we understand about hyperparameters?
- Models, libraries and hyperparameter optimization
 - Tree-based models
 - Neural networks
 - Linear models