

POLITECNICO DI MILANO

Corso di Laurea Triennale in Ingegneria Matematica Scuola di Ingegneria Industriale e dell'Informazione

Il teorema di Cauchy-Kowalevski e le sue conseguenze

Tesi di Alessandro Pedone

Relatore:	
Prof. Maurizio Grasselli	
Candidato:	
Alessandro Pedone	

All his life – he had difficulty saying this, as he admitted, being always wary of too much enthusiasm – all his life he had been waiting for such a student to come into this room. A student who would challenge him completely, who was not only capable of following the strivings of his own mind but perhaps of flying beyond them.

— Alice Munro, Too Much Happiness

Indice

1	Ese	mpi	2
	1.1	Esempio di Lewy	2
	1.2	Esempio di Kowalevski	10
	1.3	Esempio di Hadamard	11
Bi	bliog	grafia	13

Capitolo 1

Esempi

Dopo aver visto il teorema di Cauchy-Kowalevski in tutte le sue forme più note, si concentra ora lo sguardo su tre esempi importanti che aiutano a inquadrare meglio il ruolo che giocano le ipotesi e che limiti ha questo teorema.

Tale discussione risulta particolarmente di rilievo, poiché per molto tempo si ritenne ragionevole pensare che un'equazione differenziale con coefficienti piuttosto regolari, come ad esempio C^{∞} , dovesse avere almeno una soluzione. Questo, però, oltre al caso di analiticità trattato dal teorema oggetto del capitolo, in generale non accade.

1.1 Esempio di Lewy

Questo primo esempio è decisamente il più importante ed interessante tra quelli qui trattati, proprio perché permette di introdurre in modo più rigoroso il problema appena citato.

Nel 1957 Hans Lewy propose questo semplice controesempio, volto a mostrare come l'ipotesi di **analiticità** nel teorema di Cauchy-Kowalevski fosse cruciale, portando un caso di un operatore differenziale lineare con coefficienti analitici che necessita della presenza di una forzante anch'essa analitica per possedere delle soluzioni almeno C^1 .

Ciò mostra come sia cruciale, non solo una discussione sulle condizioni sufficienti per l'esistenza di soluzioni locali, ma anche una sulle condizioni necessarie. Infatti Hörmander, matematico che contribuì ampiamente alla teoria delle equazioni lineari, rispose all'emersione di questo problema proprio con delle condizioni necessarie per l'esistenza di soluzioni locali (e quindi anche globali!) per equazioni lineari, le quali ispirarono poi a loro volta il lavoro di Treves e Nirenberg volto alla ricerca di condizioni necessarie e sufficienti.

Preliminarmente si riportano qui sotto gli enunciati di due teoremi che torneranno utili nella discussione:

Formula di Green in \mathbb{C} 1.1.1.

$$\begin{array}{c|c} Ipotesi & D \subseteq \mathbb{C} \ dominio \ regolare \\ f: D \to \mathbb{C} \\ f \in H(\mathring{D}) \\ \end{array}$$

$$Tesi & \oint\limits_{\partial^+ D} f(z) \, dz = 2i \iint\limits_{D} \frac{\partial f}{\partial \overline{z}}(x+iy) \, dx dy$$

Osservazione. La definizione di dominio regolare non tornerà particolarmente utile, infatti ai fini di questa trattazione è sufficiente sapere che una qualsiasi palla chiusa è regolare (questo verrà utilizzato nella dimostrazione del teorema 1.1.3). Per una formalizzazione di questo concetto si veda [FMS20, cap.8], dove è presente una trattazione dell'analogo teorema in \mathbb{R}^2 che va sotto il nome di "Formule di Gauss-Green" e "Formula di Stokes", di quale la generalizzazione in \mathbb{C} è immediata.

Principio di riflessione di Schwarz 1.1.2.

$$D \subseteq \mathbb{C} \ dominio \ regolare \ e \ simmetrico \ rispetto \ a \ \mathbb{R}$$

$$D \cap \mathbb{R} \ \grave{e} \ un \ intervallo$$

$$f: D \to \mathbb{C}$$

$$f(\mathbb{R} \cap D) \subseteq \mathbb{R}$$

$$f \in H(\mathring{D})$$

$$Tesi \qquad f(\overline{z}) = \overline{f(z)} \quad \forall z \in \mathring{D}$$

Osservazione. La definizione di insieme simmetrico rispetto a \mathbb{R} è data in modo naturale: esso deve soddisfare la condizione $z \in D \implies \overline{z} \in D$.

Per entrare nel vivo dell'esempio, si definisce il seguente operatore:

$$L = D_x + iD_y - 2i(x+iy)D_t$$

che soddisfa le proprietà precedentemente enunciate e il cui comportamento peculiare emerge dal teorema che si enuncia di seguito.

Teorema 1.1.3.

Dimostrazione: Innanzitutto si fissa un R > 0 tale che $\{(x, y, t) : x^2 + y^2 < R^2, |t| < R\}$ sia contenuto nell'intorno dell'origine delle ipotesi (ovviamente questo R esiste sempre) e si procede seguendo questi passi:

1. Si definisce la funzione:

$$V(t,s) = \int_{\gamma_r} u(x,y,t) dz \quad \text{con} \quad \begin{cases} t \in (-R,R) \\ r^2 = s \in [0,R^2) \\ \gamma_r = \partial^+ B_r(0,0) \\ z = x + iy \end{cases}$$

 $oldsymbol{4}$

2. Si ricerca una relazione tra V_s e V_t :

$$V = i \iint_{B_r(0,0)} (u_x + iu_y)(x, y, t) \, dx \, dy \qquad \text{per formula di Green}$$

$$= i \int_0^r \int_0^{2\pi} (u_x + iu_y)(\rho \cos \theta, \, \rho \sin \theta, \, t) \, \rho \, d\rho \, d\theta \qquad \text{in coordinate polari}$$

$$V_r = i \int_0^{2\pi} (u_x + iu_y)(\rho \cos \theta, \, \rho \sin \theta, \, t) \, r \, d\theta \qquad \text{derivando}$$

$$= \int_{\gamma_r} (u_x + iu_y)(x, y, t) \, r \, \frac{dz}{z}$$

$$V_s = \frac{1}{2r} V_r = \int_{\gamma_r} (u_x + iu_y)(x, y, t) \, \frac{dz}{2z}$$

$$= \int_{\gamma_r} u_t(x, y, t) \, dz + \int_{\gamma_r} f(t) \, \frac{dz}{2z} \qquad \text{usando } Lu = f$$

$$= iV_t + \pi i f(t) \qquad (1.1)$$

3. Si definiscono le funzioni:

$$F(t) = \int_0^t f(\tau) d\tau$$
$$U(t,s) = V(t,s) + \pi F(t) .$$

e si osservano le seguenti proprietà di U vista come funzione di w = t + is:

- si verifica che soddisfa l'equazione di Cauchy-Riemann $U_t + iU_s = 2U_{\overline{z}} = 0$ utilizzando la relazione (1.1),
- olomorfa per $(s,t) \in (0,R^2) \times (-R,R)$ per la proprietà precedente,
- continua per $(s,t) \in [0,R^2) \times (-R,R)$ perché lo è V,
- $U(0,t)=\pi F(t)$ per $t\in (-R,R)$, ovvero assume valori reali sull'asse reale.
- 4. Si prolunga analiticamente U in un intorno dell'origine, infatti, date le proprietà appena osservate, valgono le ipotesi del principio di riflessione di Schwarz che ci permette di definire U per $s \in (-R^2, 0)$ con la seguente formula:

$$U(t,s) = \overline{U(t,-s)}.$$

5. Si conclude il ragionamento notando che, se il prolungamento di U è analitico in un intorno dell'origine, lo deve essere anche $U(t,0)=\pi F(t)$ e anche f=F'.

QED

Generalizzazione. Il teorema appena trattato si presta in realtà anche a una generalizzazione interessante e l'idea è la seguente: si cerca di mostrare che, nonostante la forma caratteristica di L non abbia punti singolari, è possibile scegliere una forzante $F \in C^{\infty}(\mathbb{R}^3, \mathbb{R})$ in modo tale che **ovunque** l'equazione differenziale Lu = F non ammetta soluzioni.

Osservazione. Dati due spazi matrici (X, d_X) e (Y, d_Y) , con la notazione C(X, Y) con $k \in \mathbb{N} \cup \{\infty\}$ si indica l'insieme delle funzioni continue del tipo $h : X \to Y$. Nel caso in cui $X = \mathbb{R}^n$ e $Y = \mathbb{R}^m$ si usa la notazione $C^k(\mathbb{R}^n, \mathbb{R}^m)$ naturalmente per le funzioni C^k .

Prima di scendere nello specifico di questa seconda parte della discussione dell'esempio di Lewy, è utile richiamare tre definizioni:

Definzione 1.1.1. Un sottoinsieme D di uno spazio topologico X è denso se per ogni $A \in X$ aperto $D \cap A \neq \emptyset$.

Definzione 1.1.2. Un sottoinsieme E di uno spazio metrico è senza parte interna se $\mathring{E} = \emptyset$.

Definzione 1.1.3. Uno spazio topologico viene detto "di Baire" se l'unione numerabile di ogni famiglia di insiemi chiusi con interno vuoto ha interno vuoto.

La ragione per cui si citano questi concetti è che si è interessati a un teorema, o per meglio dire a un suo corollario, che permette di sviluppare un argomento per assurdo, nel caso si abbia a che fare con spazi metrici completi. Si riportano di seguito gli enunciati.

Teorema della categoria di Baire 1.1.4.

Osservazione. Con questo teorema si mostra proprio come gli spazi metrici completi siano di Baire nella topologia indotta dalla metrica. Si veda [RF10, cap.10] per la dimostrazione e maggiori dettagli.

Corollario (argomento per assurdo di Baire) 1.1.5.

$$| (X,d) \text{ spazio metrico completo}$$

$$\{E_n\}_{n\in\mathbb{N}} \subseteq 2^X \text{ famiglia di insiemi chiusi}$$

$$X = \bigcup_{n\in\mathbb{N}} E_n$$

$$Tesi | \exists n \in N \text{ tale che } \mathring{E_n} \neq \emptyset$$

Osservazione. Questo enunciato è la proposizione contronominale della Tesi 2 del teorema 1.1.4 e, come è stato anticipato, può essere usato per ottenere un assurdo esibendo un spazio metrico completo uguale all'unione di una famiglia di insiemi chiusi e senza parte interna.

6 1. Esempi

Il secondo importante risultato di analisi funzionale, che giocherà un ruolo importante per raggiungere lo scopo dichiarato, è il teorema di Ascoli-Arzelà: un teorema "di compattezza", il quale sostituisce il teorema di Heine-Borel nel compito di ricerca di una sottosuccessione convergente, nel caso in cui non si abbia a che fare con spazi metrici di cui sia nota la proprietà di compattezza. In particolare verrà utilizzato per dimostrare che un insieme (di cui si capirà la struttura più avanti) è chiuso, sfruttando la proprietà di convergenza uniforme che la tesi garantisce e tenendo in considerazione che è un insieme viene detto "chiuso" se e solo se per ogni successione convergente completamente contenuta in esso, quest'ultima converge proprio a un elemento dell'insieme.

Per comprendere a pieno l'enunciato di tale teorema, si richiamano insieme ad esso due definizioni.

Definzione 1.1.4. Una successione di funzioni $\{f_n : X \to \mathbb{R}\}_{n \in \mathbb{N}_0}$ si dice uniformemente limitata in X se $\exists M \geq 0$ tale che $|f_n| \leq M$ in X.

Definzione 1.1.5. Una successione di funzioni $\{f_n: X \to \mathbb{R}\}_{n \in \mathbb{N}_0}$ si dice equicontinua in X se $\forall \varepsilon > 0 \exists \delta > 0$ tale che $d(x,y) < \delta \implies |f_n(x) - f_n(y)| < \varepsilon \quad \forall x,y \in X, \forall n \in \mathbb{N}_0.$

Teorema di Ascoli-Arzelà 1.1.6.

Dopo aver inquadrato questi strumenti, è arrivato il momento di entrare nel merito discussione e lo si fa con uno schema che presenta per punti e a grandi linee il ragionamento da affrontare:

- 1. traslare il problema del teorema 1.1.3 in modo da ricondursi al caso di un generico punto (x_0, y_0, t_0) , usando come forzante la funzione $g(x, y, t) = f(t 2xy_0 + 2x_0y)$ (lemma 1.1.7);
- 2. costruire una funzione $S_a \in C^{\infty}$ per ogni $a \in l^{\infty}$ (lemma 1.1.8);
- 3. costruire degli insiemi $E_{j,n} \subseteq l^{\infty}$ chiusi e senza parte interna sfruttando S_a e il teorema di Ascoli-Arzelà (lemma 1.1.9);
- 4. concludere la dimostrazione del teorema 1.1.10 utilizzando i lemmi appena citati per ricavare, con un ragionamento per assurdo, l'uguaglianza $l^{\infty} = \bigcup E_{j,n}$, grazie alla quale si può applicare l'argomento di Baire.

Di seguito si dettagliano i passaggi appena elencati con enunciati e dimostrazioni.

Lemma 1.1.7.

$$Ipotesi \qquad | \begin{array}{c} F \in C^{\infty}(\mathbb{R}, \mathbb{R}) \\ (x_0, y_0, t_0) \in \mathbb{R}^3 \\ u \in C^1 : Lu(x, y, t) = F'(t - 2xy_0 + 2x_0y) \ in \ un \ interno \ di \ (x_0, y_0, t_0) \\ Tesi \qquad | \begin{array}{c} F \ e \ F' \ sono \ analitiche \ in \ un \ interno \ di \ t = t_0 \end{array}$$

Dimostrazione: sfruttando l'invarianza dell'operatore L rispetto a

$$T(x, y, t) = (x + x_0, y + y_0, t + t_0 + 2xy_0 - 2x_0y),$$

ovvero la validità dell'identità (facile da verificare) $L(u \circ T) = (Lu) \circ T$, si deduce che, se u è soluzione dell'equazione delle ipotesi, essa rende vera in un intorno dell'origine anche l'espressione:

$$L(u \circ T)(x, y, t) = f(t + t_0) \text{ con } f = F'.$$
 (1.2)

Chiaramente $u \circ T \in C^1$ e $g(t) = f(t + t_0)$ soddisfano le ipotesi del teorema 1.1.3 e quindi applicandolo alla seconda equazione la tesi è dimostrata. QED

Osservazione. L'analiticità di F segue dall'ultimo passaggio della dimostrazione del teorema 1.1.3, tendendo in considerazione del fatto che essa è della forma $F(t) = \int_0^t f(\tau) + c$ con $c \in \mathbb{R}$.

Osservazione. L'equazione (1.2) vale in un intorno dell'origine poiché l'operatore T rende \mathbb{R}^3 un gruppo, noto in generale come gruppo di Heisenberg, e agisce in questo contesto come una traslazione.

Lemma 1.1.8.

$$\{(x_{j}, y_{j}, t_{j})\}_{j=1}^{\infty} \ denso \ in \ \mathbb{R}^{3}$$

$$c_{j} = 2^{-j} e^{-\rho_{j}} \ con \ \rho_{j} = |x_{j}| + |y_{j}| \quad \forall j \in \mathbb{N}_{0}$$

$$a = \{a_{n}\}_{n=1}^{\infty} \in l^{\infty}$$

$$F \in C^{\infty}(\mathbb{R}, \mathbb{R}) \ periodica \ e \ non \ analitica$$

$$f_{j}(x, y, t) = F'(t + 2xy_{j} - 2x_{j}y)$$

$$Tesi \ 1 \qquad S_{a} = \sum_{j=1}^{\infty} a_{j}c_{j}f_{j} \ converge \ uniformemente \ in \ \mathbb{R}^{3}$$

$$Tesi \ 2 \qquad lo \ stesso \ vale \ per \ le \ derivate \ formali \ D^{\alpha}S_{a} = \sum_{j=1}^{\infty} a_{j}c_{j}D^{\alpha}f_{j}$$

Osservazione. Naturalmente S_a è una funzione C^{∞} .

Dimostrazione: Siccome $F \in C^{\infty}$ ed è periodica si definisce $M_k = \sup_t \left| F^{(k)}(t) \right| \in \mathbb{R} \quad \forall k \in \mathbb{N}$. E ciò permette di scrivere, per ogni α multi-indice e $j \in \mathbb{N}_0$, le seguenti disuguaglianze:

$$|a_{j}c_{j}D^{\alpha}f_{j}| \leq ||a||_{\infty} 2^{-j} e^{-\rho_{j}} M_{|\alpha|+1} \rho_{j}^{|\alpha|}$$

$$\leq ||a||_{\infty} 2^{-j} M_{|\alpha|+1} \left(\frac{|\alpha|}{e}\right)^{|\alpha|} \qquad \text{poichè } \max_{x \geq 0} \frac{x^{|\alpha|}}{e^{x}} = \left(\frac{|\alpha|}{e}\right)^{|\alpha|}$$

$$(1.4)$$

 $D^{\alpha}S_{a}$ converge totalmente, e quindi anche uniformemente, essendo che la serie

$$\sum_{j=1}^{\infty} \sup_{\mathbb{R}^3} |a_j c_j D^{\alpha} f_j|$$

ha un termine generale minore o uguale della parte destra della disuguaglianza (1.4), la cui corrispondente serie numerica è ovviamente convergente.

8 1. Esempi

Osservazione. Prima di proseguire è utile soffermarsi brevemente su due questioni:

- l^{∞} è una spazio di Banach se dotato della norma: $||b||_{\infty} = \sup_{n} |b_{n}|$ per ogni $b \in l^{\infty}$;
- \bullet esiste una funzione f con le proprietà delle ipotesi: per esempio, la funzione

$$F(x) = \sum_{n=1}^{\infty} \frac{\cos(n! x)}{(n!)^n}$$

è definita da un serie puntualmente convergente ed è $C^{\infty}(\mathbb{R}, \mathbb{R})$, inoltre è periodica di periodo 2π e si può dimostrare che essa non è analitica in nessun punto $x \in \mathbb{R}$. Sopratutto per quest'ultimo aspetto si veda il problema 4 presente in [Joh82, cap.3] per maggiori dettagli.

Notazione. $A_{j,n} = B_{n^{-1/2}}(x_i, y_i, t_i)$ dove (x_i, y_i, t_i) sono i punti nelle ipotesi del lemma 1.1.8.

Lemma 1.1.9.

$$Stesse ipotesi del lemma 1.1.8$$

$$\{E_{j,n}\}_{j,n\in\mathbb{N}_0} \subseteq l^{\infty} tali che \ a \in E_{j,n} \iff \exists u \in C^1(A_{j,n}) tale che$$

$$- Lu = S_a in A_{j,n}$$

$$- u(x_j, y_j, t_j) = 0$$

$$- |D^{\alpha}u| \le n \ per \ |\alpha| \le 1 \ in A_{j,n}$$

$$- |D^{\alpha}u(v) - D^{\alpha}u(w)| \le n|v - w|^{1/n} \ per \begin{cases} |\alpha| = 1 \\ v, w \in A_{j,n} \end{cases}$$

$$(1.5)$$

Tesi | $\{E_{j,n}\}$ sono insiemi chiusi e senza parte interna

Dimostrazione: si dimostrano separatamente le due proprietà:

1. Per quanto riguarda la proprietà di chiusura, si vuole mostrare che se $\{a^k\}\subseteq E_{j,n}$ è tale che $a^k \xrightarrow{l^{\infty}} a$ allora $a \in E_{j,n}$. Ciò, a sua volta, si riduce a mostrare l'esistenza di una funzione u con le proprietà in (1.5).

Si deduce immediatamente che $S_{a^k} \to S_a$ in modo uniforme, poiché $|S_a - S_{a^k}| \le M_1 ||a - a^k||$ per la (1.4) con $\alpha = 0$. Inoltre, per le ipotesi su a^k esiste una funzione u_k che risolve l'equazione $Lu_k = S_{a^k}$ e che soddisfa le altre proprietà in (1.5). Proprio grazie a queste ultime u_k soddisfa le ipotesi del teorema di Ascoli-Arzelà con $X = A_{j,n}$, quindi per una qualche u vale che $u_{k_h} \to u$ uniformemente.

In particolare, sfruttando il fatto che L è un operatore del primo ordine, si ricava facilmente che $Lu=S_a$ in $A_{j,n}$ poiché

$$Lu_{k_h} \to Lu$$
 uniformemente per le proprietà di u_k
$$\parallel S_{a^{k_h}} \to S_a$$
 uniformemente

e che u eredita tutte le altre proprietà in (1.5) da u_k grazie alla convergenza uniforme.

2. In ultimo si vuole mostrare che $\mathring{E}_{j,n} = \emptyset$ ragionando per assurdo. Si suppone che esista una successione a interna a $\mathring{E}_{j,n}$. Definendo poi

$$\delta_j = \frac{1}{c_j} \mathbb{1}_{\{j\}} \in l^{\infty},$$

si osserva che esiste un $\theta \in \mathbb{R}$ abbastanza piccolo tale che $a' = a + \theta \delta_j \in E_{j,n}$. Siano ora u e u' le soluzioni rispettivamente di $Lu = S_a$ e di $Lu = S_{a'}$ con le proprietà in (1.5) e sia

$$u'' = \frac{u' - u}{\theta}.$$

Chiaramente è vero che $u'' \in C^1$; inoltre si deduce immediatamente usando la linearità di L e la definizione della serie S, che vale la relazione

$$Lu'' = S_{\delta_i} = f_j,$$

ma ciò entra in contraddizione con il lemma 1.1.7 (di cui valgono tutte le ipotesi), non essendo F analitica.

QED

Teorema 1.1.10.

Ipotesi
$$A \subseteq \mathbb{R}^3$$
 aperto
$$\exists F \in C^{\infty}(\mathbb{R}^3, \mathbb{R}) : \nexists u \in C^1(A, \mathbb{R}) \text{ tale che } \begin{cases} Lu = F \text{ in } A \\ u_x, u_y, u_t \text{ soddisfano } la \text{ condizione di H\"older} \end{cases}$$

Osservazione. L'arbitrarietà di A implica che questo valga per tutti gli aperti di \mathbb{R}^3 e quindi che Lu=F non abbia soluzioni C^1 e con derivate prime continue secondo Hölder da nessuna parte.

Osservazione. La tesi implica come conseguenza naturale che non esistano nemmeno soluzioni C^k per ogni $k \geq 1$, in quanto $C^k \subseteq C^1$.

Dimostrazione: Si ragiona per assurdo e si conclude nei seguenti tre passi (di cui il secondo è quello che merita più attenzione).

- 1. $E_{j,n} \subseteq l^{\infty}$ per ogni $j, n \in \mathbb{N}_0$ ovviamente.
- 2. $a \in l^{\infty} \implies a \in E_{j,n}$ per qualche $j, n \in \mathbb{N}_0$ (i quali dipendono da a).

Supponendo la tesi falsa, è possibile affermare che $\forall a \in l^{\infty} \exists A \in \mathbb{R}^3, u^* \in C^1(A, \mathbb{R})$ tali che si ha che $Lu^* = S_a$ e che u^* ha le derivate prime continue secondo Hölder in A

Si sa, inoltre, che per la densità dell'insieme dei punti in (1.3) esiste un $(x_j, y_j, t_j) \in A$ ed essendo A aperto esiste un k (scelto abbastanza grande) tale per cui $A_{j,k} \subseteq A$.

Consideriamo ora la funzione $u = u^* - u^*(x_j, y_j, t_j)$, in modo che u mantenga le proprietà di u^* , ma soddisfi al contempo la condizione $u(x_j, y_j, t_j)$ come richiesto in una della proprietà in (1.5).

In ultimo è chiaro che, essendo le derivate prime di u continue secondo Hölder, esiste un m abbastanza grande per cui valgono le condizioni rimanenti in (1.5) con m al posto del pedice n e prendendo poi $n = \max\{k, m\}$ l'implicazione è dimostrata.

10 1. Esempi

3. Dai primi due passi di conclude che

$$l^{\infty} = \bigcup_{j,n \in \mathbb{N}_0} E_{j,n},$$

ma, quindi, per il fatto che l^{∞} è di Banach e per le proprietà degli insiemi $E_{j,n}$, valgono sia le ipotesi del corollario 1.1.5 che la negazione della tesi. Ciò è assurdo.

QED

1.2 Esempio di Kowalevski

L'esempio su cui ci si concentra è dovuto a Kowalevski stessa ed è stato utile a suo tempo a comprendere più a fondo, in modo quanto più essenziale possibile, l'importanza, o meglio la necessità, di assumere che la superficie scelta per assegnare i dati di Cauchy sia **non-caratteristica** per l'equazione differenziale in osservazione. Inoltre costituisce un controesempio alla congettura proposta da Weierstrass, che suggeriva la possibilità di definire funzioni analitiche attraverso equazioni differenziali. Infatti tutto ciò viene citato all'interno di una lettera rivolta a Fuchs (un matematico tedesco dell'Università di Berlino) scritta da Weierstrass (che supervisionò il lavoro di ricerca di Kowalevski), con cui quest'ultimo faceva richiesta per l'accettazione delle tesi di dottorato di Sofya. La lettera è riportata integralmente in [Ken83, app.C].

Seguendo le orme di Kowaleski, si consideri quindi il seguente problema di Cauchy per l'equazione del calore in una dimensione:

$$u_t - u_{xx} = 0 (1.6)$$

$$u(x,0) = \frac{1}{1+x^2} \quad \forall x \in \mathbb{R}$$
 (1.7)

Osservazione. La condizione per u_x su Γ necessaria per completare il problema di Cauchy è già implicitamente imposta dall'equazione (1.7).

Osservazione. In realtà il dato iniziale realmente scelto da Kowalevski durante la sua ricerca è $\frac{1}{1-x}$, che però si è deciso di non utilizzare qui per semplicità, evitando alcuni problemi legati alla singolarità della funzione e mantenendo invariato il significato del ragionamento.

L'obiettivo che ci si pone è quello di dimostrare che non ammette soluzioni analitiche in un intorno dell'origine.

1. Per cominciare si osserva che in questo caso la superficie su cui sono stati assegnati i dati di Cauchy (1.2) è $\Gamma = \{(x,t) \in \mathbb{R}^2 : t=0\}$. Essa in ogni punto ha come versore normale (0,1) ed è, quindi, caratteristica per l'equazione (1.6), poiché

$$\sum_{|\alpha|=2} a_{\alpha} \boldsymbol{\nu}^{\alpha} = a_{(2,0)} \boldsymbol{\nu}^{(2,0)} = 0.$$

2. Per assurdo si supponga di avere una soluzione del problema u analitica in un intorno dell'origine, ovvero:

$$u(x,t) = \sum_{\alpha = (\alpha_1, \alpha_2)} c(\alpha) x^{\alpha_1} t^{\alpha_2}, \quad c(\alpha) = \frac{D^{\alpha} u(0,0)}{\alpha!}$$

dove |(x,t)| < r per qualche r > 0.

3. Si calcolano i valori dei coefficienti $c(2n,0) \ \forall n \in \mathbb{N}$. Per fare questo si sviluppa in serie di potenze centrata nell'origine la funzione del problema di Cauchy:

$$\frac{1}{1+x^2} = \frac{d}{dx}\arctan(x) = \frac{d}{dx}\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}x^{2n+1} = \sum_{n=0}^{\infty} (-1)^n x^{2n} \quad \forall x \in \mathbb{R}.$$

Da questa serie si ottengono le seguenti relazioni:

$$D_x^{2n}u(0,0) = \frac{d^{2n}}{dx^{2n}} \frac{1}{1+x^2} \Big|_{x=0} = (-1)^n (2n)!$$

$$D_x^{2n+1}u(0,0) = \frac{d^{2n+1}}{dx^{2n+1}} \frac{1}{1+x^2} \Big|_{x=0} = 0$$

dalle quali si ricava: $c(2n,0) = (-1)^n$ e c(2n+1,0) = 0.

4. Si calcolano i valori dei coefficienti c(2n,n) e si dimostra che $c(2n,n) \xrightarrow{n\to\infty} +\infty$. A questo scopo, invece, si sfrutta l'equazione (1.1) per ottenere la seguente relazione tra i coefficienti:

$$c(\alpha_1, \alpha_2 + 1) = \frac{(\alpha_1 + 2)(\alpha_1 + 1)}{(\alpha_2 + 1)} c(\alpha_1 + 2, \alpha_2).$$
(1.8)

E si utilizza, quindi, quest'ultima come segue:

$$c(2n,n) = \frac{(2n+2)(2n+1)}{n} c(2n+2,n-1)$$

$$= \dots = \frac{(2n+2n)\cdots(2n+1)}{n!} c(2n+2n,0)$$

$$= \frac{(4n)!}{(2n)! n!} (-1)^{2n}$$

$$\sim \frac{1}{\sqrt{\pi n}} \left(\frac{64n}{e}\right)^n \xrightarrow{n\to\infty} +\infty$$
(1.8) con
$$\begin{cases} \alpha_1 = 2n \\ \alpha_2 + 1 = n \end{cases}$$
iterando su n

$$= \frac{(4n)!}{(2n)! n!} (-1)^{2n}$$
per la formula di Stirling

5. Si completa il ragionamento in modo immediato osservando che c(2n,n) x^{2n} $t^n \xrightarrow{n\to\infty} +\infty \ \forall (x,t) \neq (0,0)$, infatti ciò implica direttamente che la serie di potenze non converge in ogni punto diverso dall'origine e questo è assurdo.

1.3 Esempio di Hadamard

L'esempio che si propone ora, dovuto ad Hadamard (1932), aiuta a capire un limite importante del teorema di Cauchy-Kowalevski, ovvero il fatto che esso non fornisca alcun controllo sulla **relazione** tra i dati di Cauchy e la forma della soluzione analitica, la quale potrebbe risultare instabile.

1. Esempi

Per osservare ciò si considera il seguente problema di Cauchy per l'equazione di Laplace in due dimensioni al variare di n:

$$u_{xx} + u_{yy} = 0$$

$$u(x,0) = 0$$

$$u_y(x,0) = n\sin(nx)e^{-\sqrt{n}} \quad \text{con} \quad n \in \mathbb{N}$$

$$(1.9)$$

L'obiettivo che ci si pone in questo caso è quello di mostrare come al crescere di n si verifica un blow-up della soluzione u_n del problema di Cauchy (1.9).

- 1. Il problema, come nell'esempio precedente, è assegnato su $\Gamma = \{(x, y) \in \mathbb{R}^2 : y = 0\}$, che è naturalmente una superficie non caratteristica per l'equazione di Laplace (si noti infatti che essa è ellittica).
- 2. E' facile verificare che la funzione $u_n(x,y) = \sin(nx)\sinh(ny)e^{-\sqrt{n}}$ soddisfa il problema di Cauchy e che essa è analitica, per questo è anche l'unica possibile con quest'ultima proprietà.
- 3. Si osserva, infine, come $\sinh(ny)e^{-\sqrt{n}} \xrightarrow{n\to\infty} \infty$.

Come conclusione di questa discussione è interessante osservare anche come la soluzione non dipenda con continuità dai dati. Infatti, considerando il problema di Cauchy per $n = \infty$, ovvero con dati $u(x,0) = u_y(x,0) = 0$, si nota immediatamente che l'unica soluzione analitica è $u \equiv 0$, la quale è profondamente diversa dal comportamento asintotico di u_n .

Bibliografia

- [CE99] Pierre A. Chiappori and Ivar Ekeland. Aggregation and market demand: an exterior differential calculus viewpoint. *Econometrica*, 67:1435–1458, 1999.
- [CE06] Pierre A. Chiappori and Ivar Ekeland. The micro economics of group behavior: General characterization. *Journal of Economic Theory*, 130:1–26, 2006.
- [CE09a] Pierre A. Chiappori and Ivar Ekeland. The economics and mathematics of aggregation: Formal models of efficient group behavior. Foundations and Trends[®] in Microeconomics, 5:1–2, 2009.
- [CE09b] Pierre A. Chiappori and Ivar Ekeland. The Microeconomics of Efficient Group Behavior: Identification. *Econometrica*, 77:763 799, 2009.
- [Eke] Ivar Ekeland. Some applications of the Cartan-Kähler theorem to economic theory.
- [Eva10] Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 2010.
- [FMS20] Nicola Fusco, Paolo Marcellini, and Carlo Sbordone. *Lezioni di analisi matematica 2.* Zanichelli, 2020.
- [Fol95] Gerald B. Folland. *Introdution to Partial Differential Equations*. Princeton University Press, 1995.
- [Hö63] Lars Hörmander. Linear Partial Differential Operators. Spinger-Verlag, 1963.
- [Joh82] Fritz John. Partial Differential Equations. Springer-Verlag, 1982.
- [Ken83] Don H. Kennedy. Little Sparrow: A Portrait of Sophia Kovalevsky. Ohio University Press, 1983.
- [Luc24] Sandra Lucente. Teorema di Cauchy-Kovalevskaja per le equazioni differenziali. Le Scienze, 2024. Collona Rivoluzioni matematiche.
- [Ovs65] L.V. Ovsyannikov. Singular operators in Banach spaces scales (in Russian). Doklady Acad. Nauk., 1965. p. 819–822.
- [RF10] Halsey L. Royden and Patrick M. Fitzpatrick. Real Analysis. Pearson, 2010.

14 BIBLIOGRAFIA

[Rou80] Delfina Roux. *Istituzioni di analisi superiore - PARTE I.* Edizioni la Viscontea, 1980.

- [Tre70] François Treves. On local solvability of partial differential equations. 1970.
- [Tre75] François Treves. Basic Linear Partial Differntial Equations. Amacademic Press, 1975.
- [Tre22] François Treves. Analytic Partial Differential Equations. Springer Nature, 2022.