RAZDJELNE MREŽE I INSTALACIJE

Auditorne vježbe

Primjer predviđanja opterećenja na razini razdjelne transformatorske stanice

U transformatorskoj stanici 1TS330, $S_n = 630 \text{ kVA}$, TS 10/0.4 kV, mjerenjima opterećenja u više uzastopnih godina zabilježeni su iznosi vršne snage dani tablicom 1:

Tablica 1. Mjereno opterećenje 1TS330

Godina	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
S [kVA]	65	69	72	103	131	157	194	270	333	386
s [p.u]	0.103	0.110	0.114	0.163	0.208	0.249	0.308	0.429	0.529	0.613

Za predviđanje opterećenja na raspolaganju su sljedeći modeli razvoja opterećenja:

Gompertz-ov:
$$S(t) = S_z \cdot e^{-b \cdot a^t}$$
 (1)

logistički:
$$S(t) = \frac{S_z}{1 + e^{b - a \cdot t}}$$
 (2)

polinom trećeg stupnja:
$$S(t) = a \cdot t^3 + b \cdot t^2 + c \cdot t + d$$
 (3)

Koristeći sedam (7) posljednjih izmjerenih vrijednosti potrebno je odrediti parametre modela, izračunati faktor korelacije pojedinog modela, te odabrati najbolji model i izvesti predviđanje opterećenja za razdoblje od narednih 5 godina. Godina u kojoj se izvodi predviđanje je 1999. godina, a za snagu u zasićenju (opterećenje u dalekoj budućnosti) pretpostavlja se da je iznosom jednaka instaliranoj snazi razdjelne stanice ($S_z = S_n$).

Rješenje:

Budući da se u obzir uzima samo 7 posljednjih godina, potrebno je prirediti podatke kako je predočeno tablicom 2:

Tablica 2. Priprema podataka

t	1	2	3	4	5	6	7
s(t) [p.u]	0.163	0.208	0.249	0.308	0.429	0.529	0.613

Radi jednostavnosti račun se provodi s jediničnim vrijednostima, gdje je $s(t) = S(t)/S_n$ i $s_z = 1$ p.u.

Parametri modela općenito se pronalaze metodom najmanjih kvadrata, odnosno zadovoljavanjem uvjeta

$$E = \sum_{t=1}^{N} [s(t) - s_m(t)]^2 \to min \qquad \text{za Gompertz-ov i logistički model}$$
 (4)

odnosno zadovoljavanjem uvjeta

$$E = \sum_{t=1}^{N} [s(t) - s_m(t)]^2 + \sum_{t=1}^{N} [s(H) - s_m(H)]^2 \rightarrow min \qquad \text{za polinom tre\'eg stupnja}$$
 (5)

gdje je

s(t) - izmjereno opterećenje u godini t

 $s_m(t)$ - opterećenje u godini t izračunato matematičkim modelom

s(H) - pretpostavljeno opterećenje u zasićenju (opterećenje horizontne godine)

 $s_m(H)$ - opterećenje u zasićenju izračunato modelom.

Horizontna godina H i opterećenje u horizontnoj godini služe stabilizaciji prilagođavanja polinoma trećeg stupnja poznatim podacima. Horizontna se godina odabire dovoljno daleko u budućnosti (obično 15 godina u budućnost od posljednje godine mjerenja) kada se sa sigurnošću može pretpostavljati da je nastupilo zasićenje. Opterećenje u horizontnoj godini najčešće se pretpostavlja na temelju iskustva (u ovom primjeru s(H) = sz = 1 p.u).

Izrazi za izračunavanje parametara matematičkog modela određuju se deriviranjem izraza (4) odnosno izraza (5) po pojedinom parametru, koji se sada tretiraju kao nepoznanice, te izjednačavanjem dobivenih derivacija s nulom:

$$\frac{\partial E}{\partial a} = 0$$

$$\frac{\partial E}{\partial b} = 0$$
(6)

$$\frac{\partial E}{\partial c} = 0$$

$$\frac{\partial E}{\partial d} = 0$$
(7)

Iz izraza (6) slijede izrazi za parametre Gompertz-ovog modela:

$$\boldsymbol{a}_{G} = e^{\frac{\left(\sum_{t=1}^{N}t\right)\left[\sum_{t=1}^{N}ln\left(\ln\frac{1}{s(t)}\right)\right]-N\cdot\left[\sum_{t=1}^{N}t\cdot\ln\left(\ln\frac{1}{s(t)}\right)\right]}{\left(\sum_{t=1}^{N}t\right)^{2}-N\cdot\sum_{t=1}^{N}t^{2}}}$$

$$\boldsymbol{b}_{G} = e^{\frac{\left(\sum_{t=1}^{N}t\right)\left[\sum_{t=1}^{N}t\cdot\ln\left(\ln\frac{1}{s(t)}\right)\right]-\left(\sum_{t=1}^{N}t^{2}\right)\cdot\left[\sum_{t=1}^{N}ln\left(\ln\frac{1}{s(t)}\right)\right]}{\left(\sum_{t=1}^{N}t\right)^{2}-N\cdot\sum_{t=1}^{N}t^{2}}}$$
(8)

i logističkog modela:

$$a_{L} = \frac{\left(\sum_{t=1}^{N} t\right) \cdot \left[\sum_{t=1}^{N} ln\left(\frac{1}{s(t)} - I\right)\right] - N \cdot \left[\sum_{t=1}^{N} t \cdot ln\left(\frac{1}{s(t)} - I\right)\right]}{\left(\sum_{t=1}^{N} t\right)^{2} - N \cdot \sum_{t=1}^{N} t^{2}}$$

$$b_{L} = \frac{\left(\sum_{t=1}^{N} t\right) \cdot \left[\sum_{t=1}^{N} t \cdot ln\left(\frac{1}{s(t)} - I\right)\right] - \left(\sum_{t=1}^{N} t^{2}\right) \cdot \left[\sum_{t=1}^{N} ln\left(\frac{1}{s(t)} - I\right)\right]}{\left(\sum_{t=1}^{N} t\right)^{2} - N \cdot \sum_{t=1}^{N} t^{2}}$$

$$(9),$$

dok iz izraza (6) i (7) zajedno slijedi matrična jednadžba za izračunavanje parametara polinoma trećeg stupnja:

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = (P^{T} \cdot P)^{-1} \cdot P^{T} \cdot \begin{vmatrix} s(1) \\ s(2) \\ \vdots \\ s(N-1) \\ s(N) \\ s(H) \end{vmatrix}$$
(10),

gdje je P matrica potencija za t = 1, 2, ..., N i T oznaka transponiranja matrice:

$$P = \begin{bmatrix} I^{3} & I^{2} & I & I \\ 2^{3} & 2^{2} & 2 & I \\ \vdots & \vdots & \vdots & \vdots \\ (N-1)^{3} & (N-1)^{2} & N-1 & I \\ N^{3} & N^{2} & N & I \\ H^{3} & H^{2} & H & I \end{bmatrix}$$
(11).

Uzimajući u obzir vrijednosti iz tablice 2 (N=7), te sve navedene pretpostavke ($s_z = s(H) = 1 \ p.u$, H = 7+15 = 22) za parametre pojedinih modela dobiju se vrijednosti navedene u tablici 3:

Tablica 3. Parametri matematičkog modela

Gompertz-ov model $a_G = 0.800$	$b_G = 2.509$	-	-	
---------------------------------	---------------	---	---	--

Logistički model	$a_L = 0.358$	$b_L = 2.087$	-	-
Polinom trećeg stupnja	a = -0.0005	b = 0.0140	c = -0.0044	d = 0.1557

Ocjena kvalitete korelacije modela i podataka o opterećenju iz prošlosti, kao i usporedba modelâ obično se izvodi na temelju faktora korelacije:

$$k_{r} = \sqrt{1 - \frac{\sum_{t=1}^{N} [s(t) - s_{m}(t)]^{2}}{\sum_{t=1}^{N} [s(t) - \bar{s}]^{2}}}$$
(12),

gdje se srednja vrijednost opterećenja računa prema izrazu:

$$\bar{s} = \frac{\sum_{t=1}^{N} s(t)}{N} \tag{13}.$$

Faktori korelacije izračunati prema izrazu (12) za ovaj su primjer predočeni tablicom 4:

Tablica 4. Faktor korelacije matematičkog modela

	Gompertz-ov model	Logistički model	Polinom trećeg stupnja	
k_{r}	0.986	0.994	0.996	

Prije nego li se donese zaključak koji će se model odabrati kao najbolji za predviđanje, dobro je pogledati grafički prikaz pronađenih modela i podataka o izmjerenom opterećenju za posljednjih 7 godina (slika 1).

Slika 1. Grafički prikaz matematičkih modelâ i izmjerenog opterećenja

Iz grafičkog je prikaza vidljivo da polinom trećeg stupnja, iako se dobro prilagođava podacima iz prošlosti o čemu svjedoči i najbolji faktor korelacije, ne izvodi dobro i produljenje (ekstrapolaciju) u budućnost. Stoga, polinom trećeg stupnja nije najbolji model za izvođenje predviđanja u ovom primjeru unatoč najboljem faktoru korelacije. Od preostala dva modela za predviđanje se odabire logistički model, ne samo zato što mu je faktor korelacije bolji već i stoga jer daje optimističnije predviđanje budućeg opterećenja.

Konačno, predviđanje se izvodi prema logističkom modelu:

$$s(t) = \frac{1}{1 + e^{2.087 - 0.358 \cdot t}} \quad [\text{p.u}]$$
 (14)

ili

$$S(t) = \frac{630}{1 + e^{2.087 - 0.358 \cdot t}} \quad [kVA]$$
 (15).

Rezultati predviđanja za razdoblje od narednih 5 godina predočeni su tablicom 5:

Tablica 5. Predviđeno opterećenje 1TS330

t	8	9	10	11	12
Godina	1999	2000	2001	2002	2003

s [p.u]	0.684	0.755	0.815	0.863	0.900
S [kVA]	431	476	513	544	567

Pitanja za razmišljanje:

- 1. Kakav je utjecaj broja poznatih podataka iz prošlosti na određivanje parametara modela, tj. da li bi se modeli značajnije promijenili kad bi se u obzir uzelo svih 10 podataka iz prošlosti (izmjereno opterećenje za svih 10 godina) ili primjerice manje od 7 podataka iz prošlosti?
- 2. Kakav je utjecaj podataka iz prošlosti na određivanje modela s obzirom na to iz kojeg se dijela prošlosti podaci uzimaju, npr. uzme li se u obzir najranijih 5 godina, posljednjih 5 godina ili 5 godina "iz sredine"?