

MSc in Artificial Intelligence

"Multimodal machine learning techniques for sign language recognition"

Zidianakis Matthaios - MTN2008

Papadopoulos Georgios - MTN2025

Overview

- Sign language recognition refers to:
 - Classification problem of a sequence of video frames
 - Subcategory of gesture recognition in motion

- Dataset: GSL (Greek Sign Language)
 - Non multilabel (Isolated words)
 - o 7 signers
 - 5 repetitions of each signers

Not used here

- o 5 scenarios
- o 310 individuals words
- o 30 FPS RGB (+Depth) 848×480

Tools

Keypoints extraction

• Classical Machine learning (SVM)

Dataset distribution

- Predefined *train*, *validation*, *test* sets \rightarrow **not mixed** signers
- 4 flavours of the same dataset:
 - .1. Keeping the first **10** unique words.
 - 2. Keeping the first **12** unique words which have more than 500 samples (undersampled **exactly to 500**).
 - 3. Keeping the first 10 unique words containing more than 500 samples for each words...
 - 4. Keeping all the glosses (**310**).

Figure 1: Word distribution plot for dataset 1 of train set.

Figure 2: Word distribution plot for dataset 2 of train set before undersampling.

Data preprocessing

Sampling every 5 face points

Blurring, 400% rescale and interpolation

Magnitude: $M_t^N = \sqrt{(D_{N_{2(p^1)}} - D_{N_{2(0)}})^2 + (D_{N_{2(p^1)}} - D_{N_{2(0)}})^2}$

Preprocessing involves points selection:

Angles:
$$A_t^N = \tanh^{-1} \left(\frac{D_{N_{y(t+1)}} - D_{N_{y(t)}}}{D_{N_{x(t+1)}} - D_{N_{x(t)}}} \right)$$

Upper body Pose points

Pose skeleton in blank image

Methods: Deep learning models

0.469134002923966 0.224635735154152 -0.562862038612366 0.999986886978149 0.47117429971695 0.223386228084564 -0.601264536380768 0.999990105628967 0.482406437397003 0.213595256209373 -0.503555178642273 0.999993920326233 0.49472376704216 0.181977272033691 0.483209490776062 0.212573349475861 -0.444604605436325 0.999990344047546 0.495005279779434 0.183152809739113 0.48098948597908 0.212387979030609 -0.454772680997849 0.9999920129776 0.494408875703812 0.183374226093292 0.477584689855576 0.223546802997589 -0.495360136032105 0.999985575675964 0.493306845426559 0.191896975040436 **LSTM** Input: S X L

2D/ID CNN-GRU

Results – 1D CNN-GRU *dataset 1* (sampling face points)

F1-macro score		
	Validation set	Test set
With class weights	53%	59%
Without class weights	61%	67%

Results - 2D/1D CNN-GRU (sampling face points)

1D CNN-GRU dataset 2

F1-macro score	
Validation set	Test set
91.77%	93.89%

2D CNN-GRU dataset 2 (skeletal)

F1-macro score	
Validation set	Test set
42.1%	43.1%

1D CNN-GRU dataset 4 (all words)

F1-macro score	
Validation set	Test set
56.81%	60.5%

Results - Early experiments

- LSTM architecture
 - full head keypoints → noisy features
 - misclassified two similar words

Results - LSTM

Results - Miscellaneous

SVM F1-macro scores (sampling face points)		
	Validation set	Test set
Dataset 1	78%	88%
Dataset 2	81%	82%
Dataset 4	39%	42%

Ang	Angles - Magnitude F1-macro score (dataset 2)		
		Validation set	Test set
1D (CNN-GRU	70%	65%
	SVM	45%	49%

Filters applied - F1-macro score (dataset 2)		
	Validation set	Test set
1D CNN-GRU	88.25%	91.86

False points recognition!

Conclusions

- Mediapipe → suitable for keypoints feature extraction
 - Especially for different deep learning methods
 - Adequate classical ML (SVM) performance
- Improve with only the representative points
- Applied filters were weaker
- Preprocessing proved to be significant!
- Future work:
 - \circ Keypoints position relative to image \rightarrow independent to captured image angle
 - Division by shoulder points coordinates
 - Video frames data augmentation
 - \circ Examine GANs architecture \rightarrow denoise video frames from motion blur

THANK YOU

