Université 08 Mai 45 de Guelma Département d'Informatique

Guelma, le 17 Janvier 2013

Durée de l'examen : Deux (2) Heurs

Exercice 1: (5 pts) Micro Interrogation. (Langage et Expression)

Donnez la définition des notions ci-dessous ainsi que les liens qui les régissent :

Langage régulier

(0.5 pts + 0.5 pts)

Expression régulière

(0.5 pts + 0.5 pts)

Langage décidable

(0.5 pts + 0.5 pts)

Langage semi décidable

(0.5 pts + 0.5 pts)

Langage accepté

(0.5 pts + 0.5 pts)

Exercice 2: (5 pts) Micro Interrogation. [Calculabilité et décidabilité]

 Ecrire une machine de Turing qui, prenant en entrée une suite (contigüe) de n'T', donne en sortie une suite de 2º 1' (1' veut dire battons). (2.0 pls)

Exemple:

Etat Initial: # I I I # (l'entrée est le nombre de 3 battons)

Etat Final: # ITTI ITTI # (le résultat est 23 qui est le nombre 8)

2. Réalisez une machine de Turing munic d'un ruban qui calcule la soustraction de deux entiers naturels codés en binaire inversé (c'est-à-dire bit de poids faible d'abord). Et que le résultat final ne soit pas inversé. (3.0 pts)

Exemple:

(l'entrée est 26 «11010 inversé» +11 Etat Initial: # 01011 # 1101#

« 1011 inversé»)

Etat Final: # 1111 #

(le résultat est 21 non inversé) 15

Exercice 3: (5 pts) [Logique propositionnelle]

Soit f une formule définie par sa table de vérité comme suit :

ч	19	1412.5	X	Y
-	-		V	V
X-	-		F	V
4	-		V	F
9	-	1	F	F.
0	+	+	V	V
Φ		1	F	٧
	T	1	V	F
lΨ	1	1	F	F
h.	Donn	e la formule de	f sous la fo	rmė
	2 0 00000	1 - Donn	Donnex la formulade	Y F V F V F V F V F V F V F V F V F V F

X	Y	Z	Q (x,y,z)	
v	V	V	V	
F	V	V	V	
V	F	V	F	
F	F.	V		
V	V	F	F	
F	V	F	V	
V	F	F	F	
F	F	F	V	

Canonique conjonctive Réduisez f en spécifiant les axiomes et les théorèmes

Exercice 4 : (5 pts) (Logique des prédicats)

Soit le langage $L = \{f_1, g_1, h_2, R_1, S_2, T_2, =_2\}$ (explication f_i signifie que la fonction a un seul argument : R2 signifie la relation ou prédicat a 2 arguments ; etc.) où les expressions sont les suivantes:

L.

$$\Phi_{1} = \exists x (\exists y (\exists z (R(x))) \lor (\exists y . ((\neg (\forall z (S(h(x,z),x)))))) \\
\Phi_{2} = (\forall x (T(f(x),y))) \rightarrow (\neg (\exists x (y(x,y))))) \\
\Phi_{3} = (\forall z (T(x,y))) \rightarrow (\exists y ((\forall x (\neg (f(x)=y))) \lor T(y,z))) \rightarrow (\exists x (\forall x (\exists y ((g(y)=x) \lor (\neg T(g,y)))))) \rightarrow (\exists z (\forall x (T(y,g(x))))))$$

1. Quelles sont les formules de L?

Λ

0

6

2. Pour celles qui sont des formules supprimez les parenthèses à l'aide des conventions et propriétés vues en cours ?

3. Déterminer les occurrences liées des variables dans les formules ?

4. Déterminer parmi les formules, les formules atomiques, les clauses et les termes?

Bonne Chance