Cálculo 2: Prova substitutiva

Junho de 2019

Nome:
Responda: Qual prova vai ser substituída? O P1 O P2 O P3
Questões relativas à Prova 1
Questão 1
 (a) (5 points) Ache a equação da reta obtida pela interseção de P₁: 2x+5z = -3 e P₂: x+z+2 = 3z (b) (5 points) Considere a equação x² + y² + z² - 4x - 2y - 2z + 2 = 0. Coloque a equação na form padrão, classifique e faça um esboço;
(c) (10 points) Em \mathbb{R}^3 , identifique a superfície cuja equação é dada por $r=2\sin\theta,r\geq0$.
Questão 2 (25) Considere os planos $\mathcal{P}_1: x+y-z=1, \ \mathcal{P}_2: x+y-2z=0$, e os pontos $P_1=(0,0,1)$ $P_2=(1,1,0)$. Denote por Q_1 a projeção de P_1 sobre \mathcal{P}_1 e Q_2 a projeção de P_2 sobre \mathcal{P}_2 . Descrev analiticamente o segmento de reta que une Q_1 e Q_2 .
Questão 3
Questão 4
Questão 5
Questões relativas à Prova 2
Questão 1
(a) (10 points) Encontre o vetor normal ao plano, e um ponto do plano tangente requerido
(b) (10 points) Use a informação anterior para encontrar o plano tangente.
Questão 2
(a) (10 points) $\lim_{(x,y)\to(0,0)} \frac{\tan(x)^2 + \tan(y)^2}{\cos(xy)}$.
(b) (10 points) $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$.
(c) (10 points) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} \cos(\frac{x^2y^2}{x^2+y^2}).$
Questão 3
$f(x,y) = \begin{cases} \frac{3x^2y}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$
·
Mostre que f é contínua em $(0,0)$. Calcule $\partial f(0,0)/\partial x$.

 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$ Questão 5 (15) Em um instante, o comprimento de um cateto é um triângulo retângulo é 10 cm e cresce à razão de 1 cm/min, e o comprimento do outro cateto é 12 cm e descresce à razão de 2 cm/min. Encontre a razão de variação da medida do ângulo agudo oposto ao cateto de 12 cm de comprimento no dado instante. Questões relativas à Prova 3 Questão 1 (20) Considere a equação $e^{2x+y} + \sin(y^2 + x) = 1$. Dê algum motivo teorico para afimar que próximo no ponto (0,0), a variável y pode ser escrito como função de x. Calcule dy/dx no ponto (0,0). (20) Encontre o ângulo que formam as superfícies $S_1: x^2/16 + y^2/25 + z^2/9 = 20$ e $S_2: 2x - z + y = 50$, no ponto (8, 25, -9). (25) Seja $V(x,y) = xy \exp(y^2x)$ e considere os pontos P = (2,0) e Q = (1/2,2). (a) (10 points) Determine a taxa de variação do f ponto P na direção de P a Q. (b) (10 points) Encontre a direção em que V tem a mínima taxa de variação em P_0 . Qual é a mínima taxa de variação de V em P_0 ? (c) (5 points) Na direção do ponto P ao ponto (3,5), a função V aumenta ou diminui? Questão 4 $V(x,y) = e^{-x^2-y^2}(2x^2+3y^2)$. Encontre os valores máximos e mínimos do potencial eletrico V sob o disco. (a) (10 points) Descreva corretamente os sistemas não lineares a resolver; (b) (10 points) Resolva adequadamente os sistemas, e escreva os pontos de máximos e mínimos juntos com seus valores. (25) Encontre os valores máximos, mínimos locais e os pontos de sela de $f(x,y) = x^3 - y^3 + 3y - 3x - 1$. (a) (10 points) Ache todos os pontos críticos de f(x,y);

Questão 5

- (b) (10 points) Use o teste de segunda derivada para encontrar máximos e mínimos locais
- (c) (5 points) Quais são os valores máximos, mínimos locais e os pontos de sela?