Université Laval Professeur: Leslie A. Rusch

GEL10280: Communications numériques **2003 Examen final**

Mercredi le 30 avril 2003; Durée: 10h30 à 12h20 Une feuille de documentation permises; une calculatrice permise

Problème 1 (25 points sur 100)

Voici un graphique d'un PLL linéarisé. Le VCO a un gain *K*. Supposons que le filtre de boucle est un filtre passe-bas avec

$$F(\omega) = \frac{\omega_0}{\omega_0 + j\omega}$$

Trouvez la réponse en fréquence $\hat{\Theta}_{0}(\omega)$ et l'erreur asymptotique pour

1. entrée échelon,
$$\Theta_0(j\omega) = 1/j\omega$$
 et trouvez $\hat{\theta}_0(t)$

2. entrée une rampe,
$$\Theta_0(j\omega) = 1/(j\omega)^2$$
.

f(t)	F(jω)
$u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$	$\frac{1}{j\omega}$
$\frac{1}{\omega_0}u(t)\Big[1-e^{-\omega_0t}\Big]$	$\frac{1}{j\omega}\frac{1}{j\omega+\omega_0}$
$\frac{1}{\omega_0}u(t)\left[t-\frac{1-e^{-\omega_0 t}}{\omega_0}\right]$	$\frac{1}{\left(j\omega\right)^2}\frac{1}{j\omega+\omega_0}$
$1 - \frac{e^{-\varsigma \omega_n t}}{\sqrt{1 - \varsigma^2}} \sin\left(\omega_n t \sqrt{1 - \varsigma^2} + \cos^{-1} \varsigma\right)$	$\frac{1}{j\omega}\frac{\omega_n^2}{\left(j\omega\right)^2+j\omega 2\varsigma\omega_n+\omega_n^2}$

Problème 2 (10 points sur 100)

GEL10280: Communications numériques

Considérez l'amélioration en probabilité d'erreur d'un message par rapport à une transmission sans codage quand nous utilisons une modulation BPSK avec détection cohérente. Nous utilisons un code linéaire en bloc de taux (24,12) qui peut corriger deux erreurs.

A. (10 points) Pour un rapport $\frac{E_b}{N_0}$ = 10 dB, est-ce qu'il y a une amélioration? Si oui, par combien? Si non, pourquoi?

Vous pouvez utiliser l'approximation

$$Q(x) \approx \frac{1}{x\sqrt{2\pi}}e^{-x^2/2}$$

Problème 3 (15 points sur 100)

- A. (5 points) Donnez trois manières de générer une référence de phase pour un PLL.
- B. (5 points) Quels sont les calculs utilisés dans l'algorithme de Viterbi?
- C. (5 points) Comment la modulation avec codage en treillis (TCM) est-elle capable de corriger les erreurs et être efficace en largueur de bande?

Problème 4 (25 points sur 100)

En classe nous avons trouvé le gain en codage pour 8PAM TCM vs. 4PAM sans codage. Cherchez le gain en codage asymptotique pour 8PSK TCM vs. QPSK sans codage. Voici les mots de codes et les symboles 8PSK associé.

Voici le code convolutif et treillis de l'encodeur. N'oubliez pas d'utiliser la distance Euclidienne dans votre calcul.

Problème 5 (25 points sur 100)

Voici la matrice de parité pour un code en block (7,4) :

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- A. (5 points) Compléter le « standard array » dans la feuille ci-jointe.
- B. (5 points) Donner la matrice de vérification de parité (parity check matrix).
- C. (5 points) Compléter le table des syndromes dans la feuille ci-jointe.
- D. (10 points) Quelle est la sortie (4 bits de message) de décodeur pour
 - 1 1 0 1 1 1 0

Nom:	Matricule :

bits de message	000	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1110 1111
•															
0000000	1100001	0110010	1010011	1010100	011	1100110	0000111	1111000	0011001	1001010	0101011	0101 1100110 0000111 1111000 0011001 1001010 0101011 0101100 1001101 111110 1111111	1001101	0011110	111111
10000000	1100000	1100000 0110011	1010010	1010010 1010101	0110100	1100111	0000110	1111001	0011000	1001011	0101010	0100	1001100	0011111	
00000010	1100011	0110000 1010001	1010001	1010110 011	0111	1100100	0000101	1111010	0011011	1001000	0101001	0011100 1111001 01111010 1001010 0001001 1101100 0101111 1010000 0010011	1001111	0011100	
00000100	1100101	1100101 0110110 1010111	1010111	1010000	0110001	1100010	0000011	1111100	0011101	1001110	0101111	0101100 1001001 0001010 11111010 01111001 10111100 0011111 1100000 0100011	1001001	0011010	
0004000	1101001	0111010 1011011 1011100 011	1011011	1011100	0111101	1101 1101110 0001111	0001111		0010001	1000010	0100011	0010001 1000010 0100011 0100100 1000101 0010110	1000101	0010110	
0004000	1110001	0100010 1000011	1000011	1000100 010	0100101	0101 1110110 0010111	0010111		0001001	1011010	0111011	0001001 1011010 0111011 0111100 1011101 0001110	1011101	0001110	
0400000		0010010	11100111	0010010 1110011 1110100 001	0010101		0100111		0111001	1101010	0001011	01111001 11011010 0001011 0001100 110110	1101101	0111110	
10000000		1110010			1110101		1000111		1011001		1101011	1101011 1101100		1011110	

erreur	Syndrôme
0000001	
0000010	
0000100	
0001000	
0010000	
0100000	
1000000	