## EN 300 472 V1.2.2 (1997-08)

European Standard (Telecommunications series)

# Digital Video Broadcasting (DVB); Specification for conveying ITU-R System B Teletext in DVB bitstreams





**European Telecommunications Standards Institute** 

#### Reference

REN/JTC-00DVB-47 (4dc00ipc.PDF)

#### Keywords

DVB, digital, video, broadcasting, TV, Teletext, MPEG

#### ETSI Secretariat

#### Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

#### Office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

#### X.400

c= fr; a=atlas; p=etsi; s=secretariat

#### Internet

secretariat@etsi.fr http://www.etsi.fr

#### **Copyright Notification**

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

## Contents

| Intel | llectual Property Rights                              | 4  |
|-------|-------------------------------------------------------|----|
| Fore  | eword                                                 | 4  |
| 1     | Scope                                                 |    |
| 2     | Normative references                                  |    |
| 3     | Definitions and abbreviations                         | 5  |
| 3.1   | Definitions                                           | 5  |
| 3.2   | Abbreviations                                         | 6  |
| 4     | Insertion of Teletext into MPEG-2 transport multiplex | 6  |
| 4.1   | Transport Stream (TS) packet format                   | 6  |
| 4.2   | PES packet format                                     | 6  |
| 4.3   | Syntax for PES data field                             | 7  |
| 4.4   | Semantics for PES data field                          | 7  |
| 5     | Teletext decoder model                                | 9  |
| Histo | ory                                                   | 10 |

## Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETR 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available **free of charge** from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.fr/ipr).

Pursuant to the ETSI Interim IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETR 314 (or the updates on http://www.etsi.fr/ipr) which are, or may be, or may become, essential to the present document.

## **Foreword**

This version, previously as an ETS now an EN, contains changes of an entirely editorial nature as follows:

- 1) add the DVB logo to the front page of the deliverable;
- 2) change the title from: "Digital broadcasting systems for television, sound and data services; etc." to "Digital Video Broadcast (DVB); etc.";
- 3) add in the foreword the DVB acknowledgement.

This European Standard (Telecommunications series) has been produced by the Joint Technical Committee (JTC) of the European Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC was established in 1990 to co-ordinate the drafting of standards in the specific field of broadcasting and related fields. Since 1995 the JTC became a tripartite body by including in the Memorandum of Understanding also CENELEC, which is responsible for the standardization of radio and television receivers. The EBU is a professional association of broadcasting organizations whose work includes the co-ordination of its members' activities in the technical, legal, programme-making and programme-exchange domains. The EBU has active members in about 60 countries in the European broadcasting area; its headquarters is in Geneva \*.

\* European Broadcasting Union

Case Postale 67

CH-1218 GRAND SACONNEX (Geneva)

Switzerland

Tel: +41 22 717 21 11 Fax: +41 22 717 24 81

#### Digital Video Broadcasting (DVB) Project

Founded in September 1993, the DVB Project is a market-led consortium of public and private sector organizations in the television industry. Its aim is to establish the framework for the introduction of MPEG-2 based digital television services. Now comprising over 200 organizations from more than 25 countries around the world, DVB fosters market-led systems, which meet the real needs, and economic circumstances, of the consumer electronics and the broadcast industry.

| Proposed national transposition dates                                                      |                  |  |
|--------------------------------------------------------------------------------------------|------------------|--|
| Date of adoption of ETS 300 472:                                                           | 18 October 1996  |  |
| Date of latest announcement of ETS 300 472 (doa):                                          | 31 August 1995   |  |
| Date of latest publication of new National Standard or endorsement of ETS 300 472 (dop/e): | 29 February 1996 |  |
| Date of withdrawal of any conflicting National Standard (dow):                             | 29 February 1996 |  |

## 1 Scope

The present document specifies the method by which ITU-R System B Teletext (ITU-R Recommendation 653 [3]), also known as EBU Teletext (see EBU SPB 492 [4]), may be carried in DVB bitstreams. This transport mechanism is intended to satisfy the following requirements:

- to support the transcoding of the Teletext data into the Vertical Blanking Interval (VBI) of analogue video. The transcoded signal should be compatible with existing TV receivers with Teletext decoders;
- the maximum data rate for each Teletext service is equivalent to 16 lines per field so that the service is always suitable for transcoding into the VBI;
- the transmission mechanism should be capable of transmitting subtitles with accurate timing with respect to the video (i.e. to within or near frame accuracy).

A more general data transport mechanism for conveying new types of data services is outside the scope of the present document, but the transport syntax specified here can also be adapted for other data.

## 2 Normative references

References may be made to:

- a) specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply; or
- b) all versions up to and including the identified version (identified by "up to and including" before the version identity); or
- c) all versions subsequent to and including the identified version (identified by "onwards" following the version identity); or
- d) publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

- [1] ISO/IEC 13818-1 (1994): "Information Technology Generic Coding of Moving Pictures and Associated Audio Recommendation H.222.0 (systems)".
- [2] EN 300 468: "Digital Video Broadcasting (DVB); Specification for Service Information (SI) in DVB systems".
- [3] ITU-R Recommendation 653: "System B, 625/50 television systems".
- [4] EBU SPB 492 (1992): "Teletext specification (625-line television systems)".

## 3 Definitions and abbreviations

### 3.1 Definitions

For the purposes of the present document, the following definitions apply.

**MPEG-2:** Refers to the standard ISO/IEC 13818-1 [1]. Systems coding is defined in part 1. Video coding is defined in part 2. Audio coding is defined in part 3 of ISO/IEC 13818.

**section:** A section is a syntactic structure used for mapping all service information defined in EN 300 468 [2] into ISO/IEC 13818-1 [1] Transport Stream (TS) packets.

service: A sequence of programmes under the control of a broadcaster which can be broadcast as part of a schedule.

**Teletext descriptor:** See EN 300 468 [2], it is used in the Program Specific Information (PSI) Program Map Table (PMT) to identify streams which carry EBU data. The descriptor is located in a program map section following the relevant ES\_info\_length field.

#### 3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

DVB Digital Video Broadcasting
MPEG Moving Pictures Expert group
PES Packetized Elementary Stream

PID Packet IDentifier PMT Program Map Table

PSI Program Specific Information
PTS Presentation Time Stamp
SI Service Information
TS Transport Stream
TV TeleVision

VBI Vertical Blanking Interval

## 4 Insertion of Teletext into MPEG-2 transport multiplex

Teletext data are conveyed in Packetized Elementary Stream (PES) packets which are carried by Transport Stream (TS) packets as defined in ISO/IEC 13818-1 [1].

The Packet Identifier (PID) of a Teletext stream associated with a service is identified in the Program Map Table (PMT) of the Program Specific Information (PSI) for that service.

The Teletext data stream is given stream\_type value 0x06 (which indicates a PES stream carrying private data).

The appropriate ES\_info field of the program map section describing Teletext data streams shall contain a Teletext descriptor as defined in EN 300 468 [2].

A service may include more than one Teletext data stream, provided that each stream has a different value of data\_identifier, and that the streams are distinguishable by their respective Teletext descriptors in the PSI.

## 4.1 Transport Stream (TS) packet format

The standard TS packet syntax and semantics are followed, noting the following constraint:

adaptation\_field\_control only the values "01" and "10" are permitted.

## 4.2 PES packet format

The standard PES packet syntax and semantics are followed noting the following constraints:

**stream\_id** set to "1011 1101" meaning "private\_stream\_1".

**PES\_packet\_length** set to the value  $(N \times 184)$ -6, where N is an integer, so that the PES packet finishes at

the end of a Transport packet.

**Data alignment indicator** set to "1" indicating that the Teletext access units are aligned with the PES packets.

**PES\_header\_data\_length** set to "0x24".

stuffing\_byte the PES header is followed by as many stuffing bytes as are required to make up the

header data length, so that the entire PES header is 45 bytes long.

PES\_packet\_data\_byte

these bytes are coded in accordance with the PES\_data\_field syntax specified below.

PTS and other optional fields may be present in the PES header, but the header length is always fixed for streams identified in the Program Specific Information (PSI) by the DVB Teletext descriptor (see EN 300 468 [2]).

## 4.3 Syntax for PES data field

Table 1: Syntax for PES data field

| Syntax                | No. of bits | Identifier |
|-----------------------|-------------|------------|
| PES_data_field(){     |             |            |
| data_identifier       | 8           | uimsbf     |
| $for(i=0;i< N;i++){}$ |             |            |
| data_unit_id          | 8           | uimsbf     |
| data_unit_length      | 8           | uimsbf     |
| data_field()          |             |            |
| }                     |             |            |
| }                     |             |            |

#### Data\_field for EBU Teletext

Table 2: Syntax for Data\_field for EBU Teletext

| Syntax                      | No. of bits | Identifier |
|-----------------------------|-------------|------------|
| data_field(){               |             |            |
| reserved_future_use         | 2           | bslbf      |
| field_parity                | 1           | bslbf      |
| line_offset                 | 5           | uimsbf     |
| framing_code                | 8           | bslbf      |
| magazine_and_packet_address | 16          | bslbf      |
| data_block                  | 320         | bslbf      |
| }                           |             |            |

## 4.4 Semantics for PES data field

data\_identifier: this 8-bit field identifies the type of data carried in the PES packet. It is coded as in table 3:

Table 3: data\_identifier

| data_identifier | value                   |
|-----------------|-------------------------|
| 0x00 to 0x0F    | reserved for future use |
| 0x10 to 0x1F    | EBU data                |
| 0x02 to 0x7F    | reserved for future use |
| 0x80 to 0xFF    | user defined            |

The data\_identifier shall be set to the same value for each PES packet conveying data in the same Teletext data stream.

data\_unit\_id: this 8-bit field identifies the type of data unit. It is coded as in table 4:

Table 4: data\_unit\_id

| data_unit_id | value                          |
|--------------|--------------------------------|
| 0x00to 0x01  | reserved for future use        |
| 0x02         | EBU Teletext non-subtitle data |
| 0x03         | EBU Teletext subtitle data     |
| 0x04 to 0x7F | reserved for future use        |
| 0x80 to 0xFE | user defined                   |
| 0xFF         | data_unit for stuffing         |

For streams identified in the PSI by the DVB Teletext descriptor (see EN 300 468 [2]), only values 0x02, 0x03 and 0xFF are permitted.

**data\_unit\_length:** this 8-bit field indicates the number of bytes in the data unit following the length field. For data units carrying EBU Teletext data, this field shall always be set to 0x2C.

**reserved\_future\_use:** this field may be used in the future for ETSI defined extensions. As a default reserved\_future\_use bits are set to "1".

**field\_parity:** this 1-bit flag specifies the field for which the data is intended; the value "1" indicates the first field of a frame, the value "0" indicates the second field of a frame.

**line\_offset:** this 5-bit field specifies the line number on which the Teletext data packet is intended to be presented if it is transcoded into the VBI.

Within a field, the line\_offset numbering shall follow a progressive incremental order except for the undefined line offset value "0".

The toggling of the field\_parity flag indicates a new field.

The line\_offset is coded as in table 5:

Table 5: line\_offset

| line_offset  | Meaning                 |                         |
|--------------|-------------------------|-------------------------|
|              | field_parity = 1        | field_parity = 0        |
| 0x00         | Line number undefined   | Line number undefined   |
| 0x01 to 0x06 | reserved for future use | reserved for future use |
| 0x07         | Line number = 7         | Line number = 320       |
| 0x08         | Line number = 8         | Line number = 321       |
| :            | :                       | :                       |
| 0x16         | Line number = 22        | Line number = 335       |
| 0x17 to 0x1F | reserved for future use | reserved for future use |

Only values 0x00 and 0x07 to 0x16 are permitted for EBU Teletext data\_units in streams identified in the PSI by the DVB Teletext descriptor, see EN 300 468 [2].

**framing\_code, magazine\_and\_packet\_address, data\_block:** these fields correspond to the 43 bytes following the clock-run-in sequence of a EBU Teletext data packet as defined in ITU-R Recommendation 653 [3], and also in EBU SPB 492 [4]. Data packets are inserted in the same order as they are intended to arrive at the Teletext decoder or to be transcoded into the VBI. Data bits are inserted in the PES packet in the same order as they would appear in the VBI, e.g. the framing code is 11100100.

## 5 Teletext decoder model

The Teletext decoder model is a conceptual model for decoding, which the bitstream is required to satisfy. The decoder model does not specify the operation or behaviour of a real decoder implementation and implementations which do not follow the architecture or timing of this model are not precluded.

A Teletext access unit is defined as a Teletext data packet. The PTS applies to the first access unit following the PTS field. The presentation time is that at which the decoded text is intended to be presented on the screen, or in the case of a transcoding operation, the time at which the access unit is to be inserted in the VBI.

The system target decoder has buffers  $TB_{ttx} = 480$  bytes, and  $B_{ttx} = 1\,504$  bytes. The transfer rate from  $TB_{ttx}$  to  $B_{ttx}$  is 6,75 Mbit/s.

For a transcoding process an access unit is extracted from  $B_{ttx}$  instantaneously whenever a video line of the appropriate number and field-parity is available in the associated video, provided that the system time clock has reached the value of the PTS associated with this or any previous access unit.

For a direct decoding process, access units are extracted from  $B_{ttx}$  instantaneously whenever a complete access unit is available, provided that the system time clock has reached the value of the PTS associated with this or any previous access unit.

NOTE 1: The model for the direct decoding process is always satisfied if the transcoding model is obeyed.

Data remains in the buffer  $B_{ttx}$  for a maximum of 40 milliseconds.

NOTE 2: In a real decoder implementation, there may need to be additional buffering relative to the target decoder model described here to account for the variable synchronization process between the decoded video and the display output.

## History

| Document history |              |                            |  |
|------------------|--------------|----------------------------|--|
| Edition 2        | October 1996 | Publication as ETS 300 472 |  |
| V1.2.2           | August 1997  | Publication                |  |
|                  |              |                            |  |
|                  |              |                            |  |
|                  |              |                            |  |

ISBN 2-7437-1654-1 Dépôt légal : Août 1997