Introduction to Machine Learning

Regularization Bias-variance Tradeoff

Learning goals

- Understand the bias-variance trade-off
- Know the definition of model bias, estimation bias, and estimation variance

In this slide set, we will visualize the bias-variance trade-off.

First, we start with a DGP \mathbb{P}_{xy} and a suitable loss function $L: \mathbb{R}^g \times \mathbb{R}^g \to \mathbb{R}$ where \mathbb{R}^g is numerical encoding of \mathcal{Y} . We measure the distance between models $f: \mathcal{X} \to \mathbb{R}^g$ via

$$d(f, f') = \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\mathbf{x}}} \left[L(f(\mathbf{x}), f'(\mathbf{x})) \right].$$

We restrict our attention to losses for which *d* becomes a metric, e.g., L1-loss, L2-loss, etc.

We define f_{true} as the risk minimizer such that

$$f_{\mathsf{true}} \in \operatorname*{arg\,min}_{f \in \mathcal{H}_0} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{P}_{xy}} \left[L(y, f(\mathbf{x})) \right]$$

where
$$\mathcal{H}_0 = \{f: \mathcal{X} \to \mathbb{R}^g | \ d(\underline{0}, f) < \infty \} \text{ and } \underline{0}: \mathcal{X} \to \{0\}.$$

In practice, our model space $\mathcal H$ usually is a proper subset of $\mathcal H_0$ and in general $f_{true} \notin \mathcal H.$

We define f^* as the risk minimizer in \mathcal{H} , i.e.,

$$f^* \in \operatorname*{arg\,min}_{f \in \mathcal{H}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{P}_{xy}} \left[L(f(\mathbf{x}, y)) \right].$$

It is the function in \mathcal{H} closest to f_{true} , and we call $d(f_{\text{true}}, f^*)$ the model bias.

We can further restrict the model space such that \mathcal{H}_R is a proper subset of \mathcal{H} . We define f_R^* as the risk minimizer in \mathcal{H}_R , i.e.,

$$f_R^* \in \operatorname*{arg\,min}_{f \in \mathcal{H}_R} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{P}_{xy}} \left[L(f(\mathbf{x}, y)) \right].$$

It is the function in \mathcal{H}_R closest to f_{true} , and we call $d(f_R^*, f^*)$ the estimation bias.

We sample a finite dataset $\mathcal{D} = (\mathbf{x}^{(i)}, y^{(i)})^n \in (\mathbb{P}_{xy})^n$ and find via ERM

$$\hat{f} \in \underset{f \in \mathcal{H}}{\operatorname{arg \, min}} \sum_{i=1}^{n} L\left(y^{(i)}, \hat{f}(\mathbf{x}^{(i)})\right).$$

- $L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}$ is overloaded.
- The samples are only shown in the visualization for didactic purposes but are not an element of H.

Let's assume that \hat{f} is an unbiased estimate of f^* (e.g., valid for linear regression), and we repeat the sampling process of \hat{f} .

- We can measure the spread of sampled \hat{f} around f^* via $\delta = \operatorname{Var}_{\mathcal{D}}\left[d(f^*,\hat{f})\right]$ which we call the estimation variance.
- We visualize this as a circle around f^* with radius δ .

We repeat the previous construction in the restricted model space \mathcal{H}_R and sample \hat{f}_R such that

$$\hat{f}_R \in \operatorname*{arg\,min}_{f \in \mathcal{H}_R} \sum_{i=1}^n L\left(y^{(i)}, \hat{f}(\mathbf{x}^{(i)})\right).$$

- We can measure the spread of sampled \hat{f}_R around f_R^* via $\delta = \operatorname{Var}_{\mathcal{D}}\left[d(f^*,\hat{f}_R)\right]$ which we also call estimation variance.
- We observe that the increased bias results in a smaller estimation variance in H_R compared to H.