1

GATE:2021 - EC 48

EE23BTECH11025 - Anantha Krishnan

I. QUESTION

A unity feedback system that uses proportional-integral (PI) control is shown in the figure. The stability

of the overall system is controlled by tuning the PI control parameters K_p and K_i . The maximum value of K_i that can be chosen so as to keep the overall system stable or, in the worst case, marginally stable (rounded off to three decimal places) is? (GATE EC 2021)

Solutions:

Symbols	Description	Values
P(s)	Plant transfer function	$\frac{2}{s^3+4s^2+5s+2}$
C(s)	PI controller transfer function	$K_p + \frac{K_i}{s}$
G(s)	Closed loop transfer function	$\frac{P(s)C(s)}{1+P(s)C(s)}$
$\chi_{(m,n)}$	Element in m^{th} row and n^{th} column in Routh array $(m > 2)$	$\frac{X(m-1,n)X(m-2,n+1)-X(m-1,n+1)X(m-2,n)}{X(m-1,n)}$
(111 4,11)		

TABLE I

PARAMETERS, DESCRIPTIONS, AND VALUES

From table I, the characteristic equation is given as:

$$1 + C(s)P(s) = 0 \tag{1}$$

$$1 + \left(K_p + \frac{K_i}{s}\right) \left(\frac{2}{s^3 + 4s^2 + 5s + 2}\right) = 0 \tag{2}$$

Rearranging the terms

$$s^4 + 4s^3 + 5s^2 + (2 + 2K_p)s + 2K_i = 0$$
(3)

For the system to be stable, there must be no sign changes in the first coloumn of the routh array for the above equation. From I

(5)

$$\frac{18 - 2K_p}{4} > 0 \tag{6}$$

$$\implies K_p < 9 \tag{7}$$

$$\frac{\left(\frac{18-2K_p}{4}\right)\left(2+2K_p\right)-8K_i}{\frac{18-2K_p}{4}} > 0 \tag{8}$$

$$K_i > 0 \tag{9}$$

For marginal stability, one of the above constraints must assume equality, so we assume 3 cases while simultaneously maximising K_i if necessary.

1) $K_p = 9$

Checking if (8) and (9) hold. Limits are introduced to deal with (8)

$$\left(\lim_{K_{p}\to 9^{-}} \frac{\left(\frac{18-2K_{p}}{4}\right)\left(2+2K_{p}\right)-8K_{i}}{\frac{18-2K_{p}}{4}} > 0\right) \cap (K_{i} > 0) \qquad (10)$$

$$\left(\lim_{K_{p}\to 9^{-}} -8K_{i} > 0\right) \cap (K_{i} > 0) \qquad (11)$$

$$\left(\lim_{K_p \to 9^-} -8K_i > 0\right) \cap (K_i > 0) \tag{11}$$

$$\implies K_p = 9 \forall K_i \epsilon(\phi) \tag{12}$$

2) $K_i = 0$

Checking if (7) and (8) hold

$$\left(\left(\frac{18 - 2K_p}{4}\right)\left(2 + 2K_p\right) > 0\right) \cap \left(K_p < 9\right) \tag{13}$$

$$\implies K_i = 0 \forall K_p \epsilon(-1, 9) \tag{14}$$

3)
$$\frac{\left(\frac{18-2K_p}{4}\right)(2+2K_p)-8K_i}{18-2K_p}=0$$

3) $\frac{\left(\frac{18-2K_p}{4}\right)(2+2K_p)-8K_i}{\frac{18-2K_p}{4}} = 0$ Checking if (7) and (9) hold while maximising K_i .

$$\left(\frac{18 - 2K_p}{4}\right)\left(2 + 2K_p\right) = 8K_i \tag{15}$$

$$-K_p^2 + 8K_p + 9 = 8K_i (16)$$

Since the L.H.S is a downward parabola, and it's vertex $(K_p = 4)$ satisfies (7):

$$K_i = 3.125 \forall K_p < 9 \tag{17}$$

Based on the all the three cases, it is concluded that the maximum value of K_1 is 3.125, $\forall K_p < 9$.