Линейная алгебра - часть I

1 Линейное пространство

- 1.1. Давайте начнем изучение основ линейной алгебры с определения линейного (или векторного) пространства.
- **1.1.1.** Под линейным (векторным) пространством V мы будем понимать некоторое множество элементов, называемых векторами, с введенными на этом множестве операциями сложения векторов и умножения этих векторов на скаляры в простейшем случае, вещественные или комплексные числа. Операция сложения векторов должна удовлетворять следующим четырем аксиомам:
 - 1. коммутативность сложения: v + w = w + v;
 - 2. ассоциативность сложения: (u + v) + w = u + (v + w);
 - 3. существование нейтрального элемента $\mathbf{0} \in V$, такого, что $u + \mathbf{0} = \mathbf{0} + u = u$ для любого вектора u;
 - 4. существование для любого $u \in V$ обратного элемента u^{-1} , такого, что $u+u^{-1}=u^{-1}+u=\mathbf{0}$.

Операция умножения вектора на скаляр (например, на вещественное число) должна подчиняться таким четырем аксиомам:

- 1. умножение любого вектора v на $1 \in \mathbb{R}$ должно давать тот же самый вектор v;
- 2. ассоциативность операции умножения: $\alpha(\beta v) = (\alpha \cdot \beta) v$;
- 3. дистрибутивность относительно сложения векторов: $\alpha(v+w) = \alpha v + \alpha w$;
- 4. дистрибутивность относительно сложения скаляров: $(\alpha + \beta)v = \alpha v + \beta v$.
- **1.1.2.** В качестве простейшего примера линейного пространства можно рассмотреть хорошо нам известное со школы множество векторов (то есть направленных отрезков) на плоскости, исходящих из начала координат (рис.1,2). Сложение двух векторов $\boldsymbol{v}+\boldsymbol{w}$ осуществляется по правилу параллелограмма (рис.1). Умножению вектора \boldsymbol{v} на вещественное число α отвечает вектор $\alpha \boldsymbol{v}$, длина которого увеличена в α раз (рис.2). С физической точки зрения подобные векторы мы можем трактовать как силы, приложенные к расположенному в начале координат телу.

Обобщая этот пример, мы можем в качестве векторов выбрать наборы, состоящие из n вещественных чисел вида $v=(\xi_1,\ldots,\xi_n)$, которые мы можем трактовать как направленные отрезки в n-мерном пространстве. Операция сложения таких векторов осуществляется покомпонентно, а операции умножения на скаляр α отвечает умножение каждой из компонент v_i вектора v на это число:

$$v + w = (\xi_1, \dots, \xi_n) + (\eta_1, \dots, \eta_n) = (\xi_1 + \eta_1, \dots, \xi_n + \eta_n), \qquad \alpha \cdot v = (\alpha \, \xi_1, \dots, \alpha \, \xi_n).$$

В анализе в качестве векторов можно рассматривать вещественные непрерывные функции. Такие функции мы можем складывать между собой, а также умножать их на вещественные числа. Следовательно, по отношению к этим двум операциям множество непрерывных на \mathbb{R} функций образует линейное пространство.

Еще один важный пример — это множество всех многочленов $P_n(x)$ степени не выше n с обычными операциями сложения и умножения на число, также образующее линейное пространство таких многочленов. Заметим сразу, что множество многочленов степени, равной n, линейного пространства не образует (см. упражнение).

- 1.2. Основным понятием всей линейной алгебры является понятие линейной зависимости (независимости) векторов.
- **1.2.1.** Рассмотрим в линейном пространстве V набор, состоящий из k векторов v_1, \ldots, v_k .

Определение 1.1. Говорят, что векторы v_1, \ldots, v_k являются *линейно зависимыми*, если найдутся числа $\alpha_1, \ldots, \alpha_k$, такие, что хотя бы одно из этих чисел отлично от нуля, а сумма

$$\alpha_1 v_1 + \ldots + \alpha_k v_k = 0.$$

В этом случае также говорят, что существует равная нулю $\mathit{nuhe\"uhaa}$ комбинация этих векторов с коэффициентами, хотя бы один из которых отличен от нуля.

Определение 1.2. Набор векторов v_1, \ldots, v_k называется линейно независимым, если линейная

$$\alpha_1 v_1 + \ldots + \alpha_k v_k = 0$$

тогда и только тогда, когда все коэффициенты $\alpha_i = 0$.

1.2.2. Предположим, что векторы v_1, \dots, v_k линейно зависимы, то есть существуют такие α_j , что

$$\alpha_1 v_1 + \ldots + \alpha_k v_k = 0,$$

и при этом существует хотя бы одно $i \in [k] = \{1, \ldots, k\}$, такое, что $\alpha_i \neq 0$. Перенесем тогда все векторы, отличные от v_i , в правую часть и поделим полученное выражение на α_i . В результате получим, что

$$v_i = \lambda_1 v_1 + \ldots + \lambda_{i-1} v_{i-1} + \lambda_{i+1} v_{i+1} + \ldots + \lambda_k v_k, \qquad \lambda_i = -\alpha_i / \alpha_i.$$

Иными словами, это означает, что мы в этом случае обязательно сможем выразить один из векторов через оставшиеся векторы нашего набора векторов.

1.2.3. Рассмотрим теперь в качестве примера векторы на плоскости. В данном случае любые два ненулевых неколлинеарных между собой вектора линейно независимы, а вот уже любые три оказываются линейно зависимыми — один из них мы всегда можем выразить через линейную комбинацию двух других.

Данный пример подводит нас к следующему важному определению.

Определение 1.3. Предположим, что в линейном пространстве V существует n линейно независимых векторов, а любой набор из большего количества векторов оказывается линейно зависимым. Тогда линейное пространство V называется конечномерным (или n-мерным) линейным пространством, а число n— размерностью этого пространства. В противном случае линейное пространство V называется бесконечномерным.

Характерным примером бесконечномерного линейного пространства является пространство непрерывных на \mathbb{R} функций. Такие пространства более подробно изучаются в других курсах, например, в курсе функционального анализа. Мы в данном курсе будем в основном заниматься конечномерными пространствами.

1.2.4. С понятием размерности тесно связано понятие базиса линейного пространства.

Определение 1.4. Базисом линейного n-мерного пространства V называется любой набор, состоящий из n линейно независимых векторов.

В простейшем примере векторов на плоскости базис образуют любые два вектора, не лежащих на одной и той же прямой. Для векторов в трехмерном пространстве базисом являются любые три вектора, не лежащие в одной плоскости.

1.2.5. Основной результат, связанный с понятием базиса, можно сформулировать с помощью следующей теоремы.

Теорема 1.5. Пусть векторы v_1, \ldots, v_n образуют базис в n-мерном линейном пространстве V. Тогда любой вектор v этого пространства можно единственным образом представить в виде линейной комбинации базисных векторов:

$$v = \xi^1 v_1 + \xi^2 v_2 + \ldots + \xi^n v_n.$$

Коэффициенты ξ^i в этом выражении называются координатами вектора v в базисе v_1, \ldots, v_n , а само такое представление вектора v называется разложением этого вектора по базису.

Доказательство. Добавим к набору v_1, \ldots, v_n базисных векторов вектор v. По определению n-мерного пространства, любые (n+1) векторов в таком пространстве являются линейно зависимыми, то есть существуют вещественные числа α_i , такие, что

$$\alpha_0 v + \alpha_1 v_1 + \ldots + \alpha_n v_n = 0,$$

и при этом хотя бы одно из α_i отлично от нуля. Заметим также, что коэффициент α_0 гарантированно отличен от нуля — в противном случае мы из последнего равенства получили бы, что векторы v_1, \ldots, v_n линейно зависимы. Тогда, перенося $\alpha_0 v$ в правую часть и деля полученное равенство на $\alpha_0 \neq 0$, мы получим, что

$$v = -\frac{\alpha_1}{\alpha_0} v_1 - \ldots - \frac{\alpha_n}{\alpha_0} v_n.$$

Обозначив через $\xi_i = -\alpha_i/\alpha_0$, мы получим разложение вектора v по базису v_1, \ldots, v_n .

Осталось доказать единственность данного разложения. Для этого предположим, что существует еще одно разложение v по базису вида

$$v = \eta_1 v_1 + \ldots + \eta_n v_n.$$

Вычитая из первого разложения второе, мы получим, что

$$0 = (\xi_1 - \eta_1)v_1 + \ldots + (\xi_n - \eta_n)v_n.$$

Так как векторы v_1, \ldots, v_n линейно независимы, то из последнего выражения следуют равенства $\xi_i = \eta_i$.

- **1.3.** Последнее, о чем нам обязательно нужно сказать в этом параграфе это о понятии подпространства линейного пространства.
- **1.3.1.** Начнем с примера. Рассмотрим в трехмерном пространстве векторов \mathbb{R}^3 некоторый базис, состоящий из тройки векторов v_1, v_2, v_3 . Выберем какие-то два из них, например, векторы v_1 и v_2 , и рассмотрим всевозможные линейные комбинации этих векторов, то есть векторы вида

$$\alpha_1 v_1 + \alpha_2 v_2.$$

С геометрической точки зрения эти все эти векторы лежат в плоскости, проходящей через начало координат и содержащие два базисных вектора v_1 и v_2 . Если мы отвлечемся от исходного трехмерного пространства \mathbb{R}^3 , то мы получим некоторое двумерное линейное пространство — пространство векторов на этой плоскости. Если же мы вспомним о том, что данная плоскость лежит в трехмерном пространстве, то по отношению к этому пространству наша плоскость, как говорят, является двумерным подпространством исходного трехмерного пространства векторов.

1.3.2. Теперь мы можем дать общее определение подпространства линейного пространства.

Определение 1.6. Подпространством V' линейного пространства V называется подмножество исходного множества векторов, которое образует линейное пространство относительно тех же самых операций сложения векторов и умножения векторов на числа, что и в исходном линейном пространстве V. Иными словами, это такое подмножество множества векторов, которое является замкнутым относительно операций сложения векторов и умножения на числа, введенных в исходном линейном пространстве: для любых $v' \in V'$ и $w' \in V'$ векторы

$$v' + w'$$
 и $\alpha v'$

также принадлежат тому же подмножеству V' векторов.

1.3.3. Возьмем в n-мерном пространстве произвольный конечный набор векторов v_1, \ldots, v_k и рассмотрим всевозможные их линейные комбинации

$$\alpha_1 v_1 + \ldots + \alpha_k v_k$$
.

Ясно, что все такие линейные комбинации образуют некоторое подпространство исходного линейного пространства. Оно называется nodnpocmpancmeom, nopowedenhum набором векторов v_1, \ldots, v_k .

В случае, если векторы v_1, \ldots, v_k являются линейно независимыми, данное подпространство является k-мерным подпространством, а сами эти векторы образуют в нем базис. При этом часто говорят, что это подпространство представляет собой линейную оболочку, натянутую на векторы v_1, \ldots, v_k .

2 Существование и единственность решений систем линейных алгебраических уравнений

- 2.1. Покажем теперь, как введенные ранее понятия помогают решать вопросы, связанные с существованием и единственностью решений систем линейных алгебраических уравнений.
- **2.1.1.** Рассмотрим вначале наиболее простой и в то же время наиболее важный с практической точки зрения вид систем линейных алгебраических уравнений, а именно, системы, в которых количество n неизвестных совпадает с количеством уравнений:

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\
 & \dots \\
 a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n
\end{cases}$$
(1)

Здесь x_1, \ldots, x_n — неизвестные, которые мы должны из системы (1) определить, a_{ij} — известные коэффициенты этой системы, b_1, \ldots, b_n — известные числа, стоящие в правой части (1) (свободные члены системы).

Решением системы линейных алгебраических уравнений (1) называется набор чисел c_1, \ldots, c_n , подстановка которых вместо переменных x_i обращает все n уравнений (1) в тождества. Нам хочется понять, при каких условиях решение такой системы существует, а если существует, то является ли это решение единственным.

2.1.2. Прежде чем разбираться с общим случаем, давайте посмотрим на достаточно простой пример такого рода систем:

$$\begin{cases} 2x_1 + 3x_2 = 6\\ 4x_1 + 9x_2 = 15 \end{cases} \tag{2}$$

Несложно убедиться, что такая система уравнений имеет решение вида $x_1 = 3/2$, $x_2 = 1$, причем это решение является единственным.

Для того, чтобы понять, почему это так, давайте перепишем систему (2) в следующем виде:

$$x_1 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \end{bmatrix} \qquad \Longleftrightarrow \qquad x_1 \mathbf{a_1} + x_2 \mathbf{a_2} = \mathbf{b}, \qquad \mathbf{a_1} := \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \ \mathbf{a_2} := \begin{bmatrix} 3 \\ 9 \end{bmatrix}, \ \mathbf{b} := \begin{bmatrix} 6 \\ 15 \end{bmatrix}.$$
 (3)

В такой форме записи мы свободные члены $b_1=6$ и $b_2=15$, стоящие в правой части системы (2), объединили в один вектор-столбец **b**. Аналогичным образом мы поступили с коэффициентами, стоящими при переменных x_1 и x_2 . В результате мы получили три столбца чисел, которые можно трактовать как некоторые элементы двумерного линейного пространства \mathbb{R}_2 векторов на плоскости. Осталось понять, чем удобна такая форма записи системы (2).

С точки зрения теории, изложенной в предыдущем параграфе, на запись вида

$$x_1\mathbf{a_1} + x_2\mathbf{a_2} = \mathbf{b}$$

мы можем смотреть как на попытку представить вектор \mathbf{b} в виде линейной комбинации векторов $\mathbf{a_1}$ и $\mathbf{a_2}$. При этом переменные x_1 и x_2 системы (2) играют роль коэффициентов в разложении вектора \mathbf{b} по столбцам $\mathbf{a_1}$ и $\mathbf{a_2}$ коэффициентов системы линейных алгебраических уравнений (2). Такая точка зрения на предмет позволяет нам переформулировать понятие решения системы линейных алгебраических уравнений. Именно, решить систему (2) — это означает найти коэффициенты x_1 и x_2 в разложении вектора \mathbf{b} правых частей по столбцам $\mathbf{a_1}$ и $\mathbf{a_2}$ коэффициентов этой системы.

На рис.3 представлена геометрическая интерпретация данной задачи. На этом рисунке изображены три вектора — вектор $\mathbf b$ правых частей, а также векторы $\mathbf a_1$ и $\mathbf a_2$ коэффициентов системы. Нам нужно представить вектор $\mathbf b$ в виде суммы векторов $\mathbf a_1$ и $\mathbf a_2$ с некоторыми коэффициентами x_1 и x_2 . Из рисунка видно, что сделать это достаточно легко — для этого нужно удлинить вектор $\mathbf a_1$ в полтора раза. При этом, согласно правилу сложения векторов, вектор $\mathbf b$ как раз и будет представлять собой сумму векторов $\mathbf a_2$ и $1, 5 \cdot \mathbf a_1$.

Используя данную выше интерпретацию, легко ответить на вопрос, почему же наша система (2) имеет единственное решение. Действительно, векторы $\mathbf{a_1}$ и $\mathbf{a_2}$ коэффициентов системы (2) неколлинеарны. Но мы с вами знаем, что любые два неколлинеарных вектора на плоскости образуют в линейном пространстве \mathbb{R}_2 базис. По этому базису мы единственным образом можем разложить любой вектор пространства \mathbb{R}_2 , в том числе и вектор \mathbf{b} правых частей системы линейных уравнений (2). А это и означает, что решение $x_1 = 3/2, x_2 = 1$ системы (2) единственно.

2.1.3. Аналогичные рассуждения легко переносятся на общий случай системы (1). А именно, представим эту систему в следующем виде:

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{n1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{n2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{nn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix} \iff x_1 \mathbf{a_1} + x_2 \mathbf{a_2} + \dots + x_n \mathbf{a_n} = \mathbf{b}.$$

Как и в частном случае, решения такой системы мы можем трактовать как разложение вектора \mathbf{b} n-мерного линейного пространства \mathbb{R}^n по n векторам $\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_n}$. В случае, если эти векторы линейно независимы, они, как и любые n линейно независимых векторов, образуют в пространстве \mathbb{R}^n базис. Но это означает, что мы любой элемент пространства \mathbb{R}^n , в частности, вектор \mathbf{b} , можем разложить по этому базису, причем коэффициенты x_1, x_2, \ldots, x_n в разложении вектора \mathbf{b} по базису определяются единственным образом.

С точки зрения решения системы линейных алгебраических уравнений (1) последнее утверждение можно переформулировать следующим образом. В случае, если векторы $\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_n}$ столбцов коэффициентов этой системы линейно независимы, то решение системы (1) существует и единственно при любом векторе \mathbf{b} правых частей.

2.1.4. Давайте теперь разберемся со случаем, когда столбцы $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ коэффициентов системы (1) оказываются линейно зависимыми. Начнем, как всегда, с примера.

Именно, рассмотрим следующую систему из двух линейных алгебраических уравнений:

$$\begin{cases} 2x_1 + 3x_2 = b_1 \\ 4x_1 + 6x_2 = b_2 \end{cases} \iff x_1 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}. \tag{4}$$

У такой системы векторы $\mathbf{a_1}$ и $\mathbf{a_2}$ коэффициентов линейно зависимы. С геометрической точки зрения такая линейная зависимость означает, что эти два вектора лежат на одной прямой, то есть принадлежат некоторому линейному одномерному подпространству исходного двумерного пространства \mathbb{R}^2 векторов на плоскости.

Как следствие, у нас в данном примере имеются два частных случая. В первом случае вектор \mathbf{b} правых частей этому линейному подпространству не принадлежит (рис. 4). Но тогда этот вектор мы по векторам $\mathbf{a_1}$ и $\mathbf{a_2}$ разложить не сможем. С точки зрения анализа системы (4) это означает, что эта система в данном случае решений не имеет.

Второй частный случай — это случай, когда вектор \mathbf{b} правых частей принадлежит одномерному подпространству, натянутому на векторы $\mathbf{a_1}$ и $\mathbf{a_2}$ (рис. 5). В этом случае мы его можем по этим двум векторам разложить. Однако в данном случае такое разложение единственным уже не будет.

Действительно, любой ненулевой вектор, например, вектор $\mathbf{a_1}$, образует в одномерном подпространстве базис. Как следствие, вектор $\mathbf{b} - x_2 \mathbf{a_2}$ мы можем однозначно разложить по этому вектору при любом фиксированном значении параметра x_2 . Но этот параметр мы можем вы-

Рис. 5

брать бесконечным числом способов. Следовательно, в данном случае мы получаем бесконечное количество решений системы (4).

- **2.1.5.** Обобщим полученные результаты на случай произвольной системы вида (1). Предположим, что n столбцов коэффициентов данной системы оказались линейно зависимыми. Это означает, что они принадлежат какому-то линейному подпространству размерности меньшей, чем размерность n исходного пространства векторов. Тогда в случае, когда вектор \mathbf{b} правых частей этому подпространству не принадлежит, решений система (1) не имеет. В случае же, когда вектор \mathbf{b} принадлежит подпространству, натянутому на векторы $\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_n}$, система (1) имеет бесконечное количество решений.
- 2.2. Перейдем теперь анализу систем вида

в которых количество m переменных не равно числу n уравнений.

2.2.1. Начнем с систем уравнений, в которых количество уравнений n меньше количества m переменных, то есть к так называемым недоопределенным системам. Рассмотрим следующий простейший пример такого рода системы:

$$\begin{cases} 2x_1 + 3x_2 + 4x_3 = 6 \\ 4x_1 + 9x_2 + 7x_3 = 15 \end{cases} \iff x_1 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} 4 \\ 7 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \end{bmatrix}. \tag{6}$$

Из векторного представления этой системы

$$x_1\mathbf{a_1} + x_2\mathbf{a_2} + x_3\mathbf{a_3} = \mathbf{b}, \quad \mathbf{a_1} := \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \ \mathbf{a_2} := \begin{bmatrix} 3 \\ 9 \end{bmatrix}, \ \mathbf{a_3} := \begin{bmatrix} 4 \\ 7 \end{bmatrix}, \ \mathbf{b} := \begin{bmatrix} 6 \\ 15 \end{bmatrix}$$

мы можем сразу заключить, что у системы (6) имеется бесконечное количество решений. Действительно, любая пара векторов $\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}$ столбцов коэффициентов этой системы является линейно независимой, то есть образует базис линейного пространства \mathbb{R}^2 . Перенося, в частности, вектор $x_3\mathbf{a_3}$ в правую часть этого уравнения, мы при любом фиксированном значении x_3

разложим вектор $\mathbf{b} - x_2 \mathbf{a_3}$ по базису, состоящему из двух линейно независимых векторов $\mathbf{a_1}$ и $\mathbf{a_2}$. Но так как x_3 мы можем выбирать бесконечным количеством способов, то и решений этой системы мы имеем бесконечно много. Аналогичная ситуация у нас будет и в том случае, когда из трех векторов $\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}$ хотя бы два будут являться линейно независимыми.

2.2.2. Теперь рассмотрим чуть более экзотический случай, а именно, систему

$$\begin{cases} 2x_1 + 3x_2 + 4x_3 = b_1 \\ 4x_1 + 6x_2 + 8x_3 = b_2 \end{cases} \iff x_1 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 6 \end{bmatrix} + x_3 \begin{bmatrix} 4 \\ 8 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \tag{7}$$

в которой все три вектора $\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}$ принадлежат одному и тому же одномерному линейному подпространству, то есть лежат на одной и той же прямой, проходящей через начало координат. Если при этом вектор \mathbf{b} правых частей не принадлежит данному подпространству, то решений системы (7) не существует. В противном случае у этой системы имеется бесконечное количество решений.

2.2.3. Теперь перейдем к системам, в которых количество n уравнений больше количества m неизвестных — так называемым переопределенным системам.

Начнем, как обычно, с примеров. В качестве первого примера рассмотрим систему уравнений вида

$$\begin{cases} 2x_1 + 3x_2 = b_1 \\ 4x_1 + 9x_2 = b_2 \\ 6x_1 + 27x_3 = b_3 \end{cases} \iff x_1 \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 9 \\ 12 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}. \tag{8}$$

Как видно из векторного представления данной системы, мы пытаемся трехмерный вектор \mathbf{b} правых частей разложить по двум векторам $\mathbf{a_1}$ и $\mathbf{a_2}$. В данном примере два этих вектора линейно независимы. Тогда, если вектор \mathbf{b} принадлежит подпространству, натянутому на эти два вектора, то у системы существует единственное решение. Действительно, в этом случае векторы $\mathbf{a_1}$ и $\mathbf{a_2}$ образуют в этом подпространстве базис, и мы любой вектор, принадлежащий этому подпространству, можем по нему разложить. Если же вектор \mathbf{b} не принадлежит подпространству, натянутому на векторы $\mathbf{a_1}$ и $\mathbf{a_2}$, то решений у системы (8) не существует.

Теперь рассмотрим систему вида

$$\begin{cases} 2x_1 + 3x_2 = b_1 \\ 4x_1 + 6x_2 = b_2 \\ 6x_1 + 9x_3 = b_3 \end{cases} \iff x_1 \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \tag{9}$$

в которой векторы $\mathbf{a_1}$ и $\mathbf{a_2}$ коэффициентов системы линейно зависимы, то есть лежат на одной и той же прямой. Понятно, что в случае, когда вектор \mathbf{b} правых частей на этой прямой не лежит, решений у системы (9) не существует. Если же он лежит на такой прямой, то решения системы (9) существуют, однако их бесконечно много.

2.2.4. Подведем теперь некоторые итоги проведенным выше рассуждениям. Вернемся к общему виду системы (5) и перепишем ее в векторном виде:

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{n1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{n2} \end{bmatrix} + \dots + x_m \begin{bmatrix} a_{1m} \\ a_{2m} \\ \dots \\ a_{nm} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix} \iff x_1 \mathbf{a_1} + x_2 \mathbf{a_2} + \dots + x_m \mathbf{a_m} = \mathbf{b}.$$

Заметим, что и векторы $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_m}$ коэффициентов системы (5), и вектор \mathbf{b} правых частей принадлежат линейному пространству \mathbb{R}^n n-мерных векторов.

Рассмотрим линейное подпространство, натянутое на векторы $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_m}$. Если вектор \mathbf{b} этому подпространству не принадлежит, то решения у системы (5) отсутствуют.

Предположим теперь, что **b** принадлежит рассматриваемому нами линейному подпространству. В этом случае решения у системы (5) точно имеются. Однако эта система будет иметь единственное решение лишь в том случае, когда размерность линейного подпространства, натянутого на векторы $\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_m}$, совпадает с количеством m этих векторов. В этом случае эти векторы образуют базис данного подпространства, и любой вектор **b** мы можем однозначно по этому базису разложить. В противном случае система будет иметь бесконечное число решений.

3 Решение систем линейных алгебраических уравнений

- **3.1.** Итак, в предыдущем параграфе мы разобрались с вопросами существования и единственности решений систем линейных алгебраических уравнений. Осталось понять, как же нам, собственно, эти системы решать. Мы начнем с описания самого известного и наиболее важного с практической точки зрения метода решения таких систем с метода Гаусса.
- **3.1.1.** Как обычно, рассмотрим вначале достаточно простой пример системы линейных алгебраических уравнений вида

$$\begin{cases} 4x_1 + 5x_2 = 6 \\ x_1 + 2x_2 = 3 \end{cases}$$

Основная сложность построения решения такого рода систем состоит в том, что у нас в каждом уравнении содержится несколько (в данном случае — две) неизвестных. Достаточно очевидный способ борьбы с этой неприятностью — исключить одну из этих двух переменных, например, переменную x_1 , из одного из уравнений, например, из второго, и подставить затем полученное для x_1 выражение в первое уравнение:

$$x_1 = 3 - 2x_2 \implies 4(3 - 2x_2) + 5x_2 = 6.$$

В результате мы получаем единственное уравнение относительно единственной же неизвестной x_2 , которое уже легко решается:

$$-3x_2 = -6 \qquad \Longrightarrow \qquad x_2 = 2 \Longrightarrow \qquad x_1 = -1.$$

3.1.2. Метод Гаусса слегка модифицирует описанную идею так, чтобы с ее помощью было удобно решать системы более сложного вида. Именно, известно, что мы можем домножать любое из уравнений системы на вещественное число, а также складывать любое из уравнений с любым другим уравнением этой системы — от этих манипуляций решение системы не изменится. Воспользуемся данными возможностями для исключения переменной x_1 из второго уравнения. Для этого домножим вначале второе уравнение исходной системы на четверку:

$$\begin{cases} 4x_1 + 5x_2 = 6\\ 4x_1 + 8x_2 = 12 \end{cases}$$

В такой системе при x_1 и в первом, и во втором уравнении стоят одинаковые коэффициенты. Если мы теперь из второго уравнения вычтем первое, то мы, тем самым, исключим из второго уравнения переменную x_1 :

$$\begin{cases} 4x_1 + 5x_2 = 6 \\ 3x_2 = 6 \end{cases}$$

Теперь мы легко определим из второго уравнения переменную x_2 , а затем, подставив найденное значение x_2 в первое уравнение, найдем нужное нам значение переменной x_1 .

3.1.3. Покажем теперь, как работает данный подход на несколько более сложном примере системы трех уравнений вида

$$\begin{cases} 2x_1 + x_2 + x_3 = 5 \\ 4x_1 - 6x_2 = -2 \\ -2x_1 + 7x_2 + 2x_3 = 9 \end{cases}$$

Наша задача по-прежнему состоит в том, чтобы исключить все переменные, кроме одной, хотя бы из одного из уравнений системы. Кроме того, нам бы хотелось сделать это так, чтобы и остальные переменные при этом находились затем предельно просто. Собственно, метод Гаусса и позволяет нам эти пожелания реализовать.

На первом шаге метод Гаусса исключает переменную x_1 из всех уравнений, кроме первого. Будем делать это так же, как и ранее, а именно, домножая эти уравнения на числа и вычитая одно из другого. Именно, для исключения x_1 из второго уравнения домножим первое уравнение на 2 и вычтем получившееся уравнение из второго. В результате получим систему вида

$$\begin{cases} 2x_1 + x_2 + x_3 = 5 \\ -8x_2 - 2x_3 = -12 \\ -2x_1 + 7x_2 + 2x_3 = 9 \end{cases}$$

Теперь исключим x_1 из третьего уравнения. Для этого просто прибавим к третьему уравнению первое:

$$\begin{cases} 2x_1 + x_2 + x_3 = 5 \\ -8x_2 - 2x_3 = -12 \\ 8x_2 + 3x_3 = 14 \end{cases}$$

На втором шаге метод Гаусса работает с подсистемой, состоящей из второго и последующих уравнений. И состоит этот шаг в исключении переменной x_2 из третьего и последующих уравнений. В данном примере нам достаточно исключить ее из третьего уравнения, прибавив к третьему уравнению второе. В результате получим систему

$$\begin{cases} 2x_1 + x_2 + x_3 = 5 \\ -8x_2 - 2x_3 = -12 \\ x_3 = 2 \end{cases}$$

последнее уравнение в которой содержит единственную переменную — переменную x_3 .

Заметим, что в результате описанного выше процесса (который называется прямым ходом метода Гаусса) мы, как говорят, привели систему к ступенчатому (или треугольному) виду. Все, что нам теперь осталось — это последовательно, идя снизу вверх, определить значения оставшихся переменных. Именно, из второго уравнения мы, зная x_3 , легко определим $x_2 = 1$. Затем

из первого уравнения по известным x_2 и x_3 мы восстановим значение переменной $x_1=2$. Тем самым мы окончательно решим нашу систему уравнений. Этап последовательного определения переменных из треугольной системы называют иногда обратным ходом метода Гаусса.

3.1.4. Теперь подведем итоги вышесказанному. Как мы поняли, при решении системы линейных алгебраических уравнений методом Гаусса у нас имеются два прохода — прямой и обратный. На первом мы последовательно, шаг за шагом, исключаем переменные с меньшими индексами. Именно, вначале мы из всех уравнений, кроме первого, исключаем переменную x_1 , затем в подсистеме, состоящей из последних (n-1) уравнений, мы во всех уравнениях, кроме второго, исключаем переменную x_2 и так далее. В результате этого процесса мы в простейшем случае получаем единственное уравнение относительно единственной неизвестной x_n , которое уже легко решается. На втором этапе мы, зная переменные $x_n, x_{n-1}, \ldots, x_{k+1}$, находим из k-го уравнения переменную x_k .

На этом месте стоит заметить, что описанная выше схема метода Гаусса описывает только лишь простейший случай. В этом простейшем случае мы, во-первых, предполагаем, что система состоит из n уравнений с n неизвестными, и что эта система имеет единственное решение. Кроме того, мы считаем, что при прямом проходе метода Гаусса коэффициенты при x_i в i-м уравнении отличны от нуля. В случае, когда последнее предположение не выполняется, мы вынуждены добавлять в метод Гаусса перестановку столбцов системы уравнений. Проблема существования и единственности решения является несколько более серьезной. Однако можно показать, что и с этой проблемой метод Гаусса справляется. Более того, чаще всего именно метод Гаусса и используют на практике для того, чтобы понять, существует ли у данной системы решение, а если существует, то единственно ли оно.

- **3.2.** Перейдем теперь к изучению достаточно полезной на практике модификации метода Гаусса так называемом методе LU-разложения. Эта модификация была придумана в 1948 году Аланом Тьюрингом.
- **3.2.1.** Иногда удобно систему линейных алгебраических уравнений (1) записывать в так называемом матричном виде

$$A\mathbf{x} = \mathbf{b}$$
.

Здесь

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix} \qquad \mathbf{u} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

есть векторы-столбцы правых частей системы (1) и неизвестных этой системы, а

$$\mathcal{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

есть матрица коэффициентов системы (1). Напомним, что в результате умножения матрицы \mathcal{A} размерами $n \times n$ на вектор-столбец \mathbf{x} у нас получается вектор-столбец \mathbf{b} , а само умножение матрицы на вектор-столбец происходит по следующему правилу: мы поэлементно умножаем i-ю строку матрицы \mathcal{A} на столбец \mathbf{x} , получая в результате i-ю компоненту вектора-столбца \mathbf{b} :

$$a_{i1} \cdot x_1 + a_{i2} \cdot x_2 + \ldots + a_{in} \cdot x_n = b_i.$$

3.2.2. В результате прямого хода метода Гаусса мы переходим от исходной системы уравнений (1) к системе с, как говорят, верхнетреугольной матрицей. Именно, мы в результате такого прохода приводим систему (1) к виду

$$\begin{cases} u_{11}x_1 + u_{12}x_2 + \ldots + u_{1n}x_n &= \widetilde{b}_1 \\ u_{22}x_2 + \ldots + u_{2n}x_n &= \widetilde{b}_2 \\ &\ddots & \\ u_{nn}x_n &= \widetilde{b}_n \end{cases}$$

которую в матричном виде мы можем переписать так:

$$\mathcal{U}\mathbf{x} = \widetilde{\mathbf{b}},$$

$$\mathcal{U} = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{pmatrix}.$$

Имея такую систему, мы вначале из последнего уравнения находим неизвестную x_n , затем из предпоследнего — переменную x_{n-1} и так далее.

3.2.3. Однако оказывается, что в процессе прямого хода метода Гаусса мы получаем несколько больше, чем коэффициенты u_{ij} и b_i матрицы \mathcal{U} и вектора **b**. На самом деле, мы в результате этого хода получаем разложение матрицы \mathcal{A} в виде произведения $\mathcal{L} \cdot \mathcal{U}$ двух матриц — верхнетреугольной матрицы \mathcal{U} , а также нижнетреугольной матрицы \mathcal{L} вида

$$\mathcal{U} = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix}.$$

Предположим, вначале, что это действительно так, то есть что мы умеем, несколько модифицируя метод Гаусса, строить, как говорят, LU-разложение матрицы $\mathcal A$ коэффициентов системы (1). Давайте посмотрим, зачем нам это может понадобиться.

Так как матрица \mathcal{A} представлена у нас в виде произведения пары матриц \mathcal{L} и \mathcal{U} , то мы систему уравнений (1), записанную в матричном виде, можем переписать так:

$$\mathcal{A}\mathbf{x} = \mathbf{b}$$
 \iff $(\mathcal{L} \cdot \mathcal{U})\mathbf{x} = \mathbf{b}$ \iff $\mathcal{L} \cdot (\mathcal{U}\mathbf{x}) = \mathbf{b}$ \iff $\mathcal{L} \cdot \mathbf{y} = \mathbf{b}$,

где $\mathbf{y} = \mathcal{U}\mathbf{x}$. Так как матрица \mathcal{L} нижнетреугольная, то мы из уравнения $\mathcal{L} \cdot \mathbf{y} = \mathbf{b}$ легко по вектору \mathbf{b} правых частей сможем восстановить вектор-столбец \mathbf{y} . Действительно, данная система уравнений имеет следующий вид:

$$\begin{cases} l_{11}y_1 & = b_1 \\ l_{21}y_1 + l_{22}y_2 & = b_2 \end{cases}$$

$$\vdots$$

$$l_{11}y_1 + l_{12}y_2 + \ldots + l_{nn}y_n & = b_n \end{cases}$$

Из первого уравнения мы легко определим y_1 , затем из второго уравнения, зная y_1 , мы вычислим y_2 и так далее. Но теперь, зная \mathbf{y} , мы из решения системы $\mathcal{U} \cdot \mathbf{x} = \mathbf{y}$, используя обратный ход

метода Гаусса, сможем восстановить и вектор \mathbf{x} . Иными словами, мы, построив LU-разложение матрицы \mathcal{A} , достаточно просто сможем вычислить как вектор \mathbf{y} , так и искомый вектор \mathbf{x} .

В этом месте возникает законный вопрос — зачем же нам все эти сложности? В случае однократного решения системы (1) мы, чаще всего, сможем прекрасно обойтись и классическим методом Гаусса. Предположим, однако, что у нас имеется какая-то динамическая задача, в которой матрица \mathcal{A} коэффициентов системы (1) фиксирована, а вектор \mathbf{b} правых частей этой системы достаточно часто меняется. Это встречается, например, в задачах, в которых матрица \mathcal{A} описывает какое-то механическое устройство, а вектор \mathbf{b} описывает постоянно меняющиеся внешние воздействия на это устройство. В этом случае нам для целого набора векторов \mathbf{b} правых частей приходится решать систему (1), получая, как говорят, реакцию \mathbf{x} рассматриваемого механического устройства на эти внешние воздействия. И вот в таких задачах метод LU-разложения оказывается чрезвычайно полезен.

Действительно, если мы раз и навсегда построили на первом шаге LU-разложение матрицы \mathcal{A} , то затем нам останется только лишь многократно (для разных **b**) решать системы вида

$$\mathcal{L} \cdot \mathbf{y} = \mathbf{b}, \qquad \mathbf{y} = \mathcal{U}\mathbf{x}.$$

А такого рода системы мы можем решать с помощью обратного хода метода Гаусса достаточно быстро — количество операций, которое нам на это требуется, пропорционально n^2 . Прямой же ход метода Гаусса, на котором мы и строим LU-разложение матрицы \mathcal{A} , достаточно трудоемок — он требует количество операций, пропорциональное n^3 . Иными словами, для такого рода динамических задач метод LU-разложения существенно экономит количество операций, которое нам нужно совершить в процессе построения решения.

3.2.4. Осталось разобраться с тем, как же нам в процессе прямого хода метода Гаусса построить LU-разложение матрицы \mathcal{A} . Давайте, опять-таки, разберем алгоритм построения такого разложения на конкретном, достаточно простом примере уже знакомой нам системы уравнений

$$\begin{cases} x_1 + 2x_2 = 3\\ 4x_1 + 5x_2 = 6 \end{cases}$$

Матрицу

$$\mathcal{A} = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$$

этой системы нам нужно представить в виде произведения нижнетреугольной матрицы \mathcal{L} и верхнетреугольной матрицы \mathcal{U} :

$$\mathcal{A} = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} = \mathcal{L} \cdot \mathcal{U} = \begin{pmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{pmatrix} \cdot \begin{pmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{pmatrix} = \begin{pmatrix} l_{11}u_{11} & l_{11}u_{12} \\ l_{21}u_{11} & l_{21}u_{12} + l_{22}u_{22} \end{pmatrix}.$$

Заметим, прежде всего, что для определения шести неизвестных коэффициентов матриц $\mathcal U$ и $\mathcal L$ у мы из последнего равенства получаем лишь четыре уравнения:

$$\begin{cases} l_{11}u_{11} = 1\\ l_{11}u_{12} = 2\\ l_{21}u_{11} = 4\\ l_{21}u_{12} + l_{22}u_{22} = 5 \end{cases}$$

Иными словами, мы получаем недоопределенную систему уравнений на неизвестные коэффициенты u_{ij} и l_{ij} . Для того, чтобы от этой неопределенности избавиться, давайте положим все

диагональные элементы l_{ii} матрицы \mathcal{L} равными единице. Тогда оставшиеся коэффициенты из системы уравнений

$$\begin{cases} u_{11} = 1 \\ u_{12} = 2 \\ l_{21}u_{11} = 4 \\ l_{21}u_{12} + u_{22} = 5 \end{cases}$$

определятся уже однозначно: $u_{11}=1, u_{12}=2, l_{21}=4$ и $u_{22}=-3$. Таким образом, мы для заданной матрицы \mathcal{A} построили следующее LU-разложение этой матрицы:

$$\mathcal{A} = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} = \mathcal{L} \cdot \mathcal{U} = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}.$$

Вспомним теперь, как мы решали такую систему методом Гаусса. На первом шаге мы исключали из второго уравнения системы

$$\begin{cases} x_1 + 2x_2 = 3\\ 4x_1 + 5x_2 = 6 \end{cases}$$

переменную x_2 , домножая первую строку этого уравнения на четверку и вычитая из второго уравнения первое. В результате мы получали систему вида

$$\begin{cases} x_1 + 2x_2 = 3 \\ -3x_2 = -6 \end{cases}$$

коэффициенты которой в точности совпадают с коэффициентами матрицы \mathcal{U} . Посмотрим теперь на коэффициенты матрицы \mathcal{L} . Заметим, что четверка, стоящая на месте коэффициента l_{21} этой матрицы, в точности совпадает с тем множителем, на который нам нужно было домножить первое уравнение исходной системы для исключения переменной x_2 из второго уравнения этой системы. Данный факт, конечно же, случайным не является. Оказывается, что если мы возьмем нижнетреугольную матрицу с единицами на главной диагонали, и будем на место коэффициента l_{ij} записывать множитель, на который нам нужно домножить i-ю строку для того, чтобы исключить переменную x_j в j-й строке в прямом ходе метода Гаусса, мы и получим искомую матрицу \mathcal{L} .

3.2.5. Мы не будем давать строгого доказательства описанного выше алгоритма построения матрицы \mathcal{L} . Вместо этого мы еще раз продемонстрируем алгоритм LU-разложения на примере чуть более сложной системы линейных алгебраических уравнений вида

$$\begin{cases} 2x_1 + x_2 + x_3 = 5 \\ 4x_1 - 6x_2 = -2 \\ -2x_1 + 7x_2 + 2x_3 = 9 \end{cases}$$

Матрица \mathcal{A} этой системы имеет вид

$$\mathcal{A} = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}.$$

Нам хотелось бы определить неизвестные коэффициенты l_{ij} в матрице

$$\mathcal{L} = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix}.$$

Для этого проведем прямой ход метода Гаусса для этой системы. На первом шаге нам нужно исключить переменную x_1 из второго и третьего уравнения системы. Для этого нам вначале нужно первое уравнение домножить на 2 и вычесть из второго уравнения первое. Это означает, что в матрицу \mathcal{L} нам нужно записать коэффициент $l_{21}=2$. Затем нам нужно первое уравнение домножить на (-1) и вычесть его из третьего уравнения. Иными словами, нам в качестве коэффициента l_{31} матрицы \mathcal{L} нужно взять (-1).

В результате первого шага метода Гаусса мы пришли к системе уравнений вида

$$\begin{cases} 2x_1 + x_2 + x_3 = 5 \\ -8x_2 - 2x_3 = -12 \\ 8x_2 + 3x_3 = 14 \end{cases}$$

В этой системе нам из третьего уравнения нужно исключить x_2 . Для этого мы домножаем второе уравнение на (-1) и вычитаем из третьего уравнения второе. С точки зрения построения матрицы \mathcal{L} это означает, что коэффициент l_{32} нам нужно положить равным минус единице.

Итак, в результате прямого хода метода Гаусса мы получили следующий вид матрицы \mathcal{L} :

$$\mathcal{L} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}.$$

Кроме того, после прямого прохода метода Гаусса мы получили систему линейных уравнений вида

$$\begin{cases} 2x_1 + x_2 + x_3 = 5 \\ -8x_2 - 2x_3 = -12 \\ x_3 = 2 \end{cases}$$

Тем самым мы построили и верхнетреугольную матрицу

$$\mathcal{U} = \begin{pmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Иными словами, мы в процессе прямого хода метода Гаусса построили LU-разложение матрицы \mathcal{A} .