Дорогие Орлицы и Орлы! Удачи вам на первом празднике по временным рядам! Начните с того, что напишите клятву и подпишитесь под ней:

Я клянусь честью студента, что буду выполнять эту работу самостоятельно.

А теперь — задачки:

1. Известно, что (u_t) — белый шум, а (y_t) равен

$$y_t = \frac{1+3L}{1-0.2L}(5+u_t).$$

- (a) Найдите $E(y_t)$, $Var(y_t)$, $Cov(y_t, y_s)$.
- (b) Стационарен ли процесс (y_t) ?
- (c) Запишите рекуррентное уравнение на y_t, u_t и их лаги, решением которого является данный процесс.
- 2. Рассмотрим уравнение $y_t = 3 + 0.5y_{t-1} 0.06y_{t-2} + u_t 0.2u_{t-1}$, где (u_t) белый шум.
 - (a) Запишите уравнение с помощью лаговых полиномов и разложите полиномы на сомножители.
 - (b) Присмотревшись пристальным взглядом к корням явно выпишите хотя бы одно стационарное решение этого уравнения. Является ли стационарное решение единственным?
 - (c) Найдите $Corr(y_t, y_{t-k})$ для всех стационарных решений.
- 3. Вспомним ETS(AAN) модель, которая описывается системой уравнений

$$\begin{cases} y_t = \ell_{t-1} + b_{t-1} + u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t \\ b_t = b_{t-1} + \beta u_t \\ u_t \sim \mathcal{N}(0; \sigma^2). \end{cases}$$

- (a) Выпишите список параметров данной модели и логарифм функции плотности y_2 через выписанные параметры.
- (b) Для $l_{100}=30,\, b_{100}=1,\, \alpha=0.2,\, \beta=0.3,\, \sigma^2=16$ постройте интервальный прогноз на один и два шага вперёд.
- 4. Приведите пример стационарного процесса, у которого все частные коррелляции равны нулю *кроме* частной коррелляции тринадцатого порядка. Либо докажите, что такой процесс не существует.
- 5. Величины x_t независимы и равновероятно принимают значения 0 или 1 каждая. Рассмотрим процесс $r_t = x_t \cdot x_{t-1} 0.25$.
 - (a) Стационарен ли процесс (r_t) ?
 - (b) Илон Маск утверждает, что это типичный MA(1) процесс, а потому он представим в виде $r_t = u_t + \alpha u_{t-1}$.

Прав ли Илон Маск? Если прав, то явно запишите u_t через (x_t) и константы.

6. Приведите пример стационарного процесса (y_t) такого, что $|\operatorname{Corr}(y_t, y_s)| < 1$, однако $\sup_{s,t} |\operatorname{Corr}(y_t, y_s)| = 1$. Либо докажите, что данный процесс не существует.