Demonstration of 50 fs stability of an electron beam at the CLIC Test Facility CTF3

J. Roberts,* R. Corsini, and P. Skowronski CERN, Geneva (CTF3 Collaboration)

P. Burrows, G. Christian, and C. Perry

John Adams Institute

Oxford University

(FONT Group)

(Dated: January 25, 2017)

Here is the abstract.

I. INTRODUCTION

CLIC is a proposal for a future linear electron positron collider that uses a novel two beam acceleration concept to achieve a high accelerating gradient of $100~\mathrm{MV/m}$ and a collision energy of up to 3 TeV. In this concept the 12 GHz RF power used to accelerate the high energy colliding beams is extracted from high intensity drive beams.

CLIC's luminosity quickly drops if the RF phase jitters with respect to the main beam, causing energy errors and subsequent beam size growth at the interaction point. The RF phase stability must be 0.2 degrees at 12 GHz or better to limit the luminosity loss to below 1%. However, the expected phase stability of the drive beams is 2 degrees at 12 GHz. CLIC therefore requires a "phase feedforward" (PFF) system, which will reduce the drive beam phase jitter (rms) by an order of magnitude. XFELs have similar phase stability requirements [!!!???].

The PFF system poses many challenges, particularly in terms of the hardware bandwidth, power and latency requirements. A prototype PFF system has therefore been designed, commissioned and operated at the CLIC test facility CTF3, at CERN to prove its feasibility. The prototype system follows the same concept as the proposed CLIC scheme, and is the focus of this work.

CTF3: 135 MeV electron beam, 1.2 μs beam pulse, 0.8 Hz.

All phases quoted in the paper are given in degrees at $12~\mathrm{GHz}$.

II. SYSTEM DESIGN

A schematic of the PFF system is shown in Fig. 1. The system corrects the phase using two electromagnetic kickers installed before the first and last dipole in a four bend chicane (in the TL2 transfer line). The beam's

path length through the chicane depends on the magnitude and polarity of the voltage applied to the kickers. The phase is measured using a monitor upstream of the chicane (in the CT beam line), and then corrected by setting the kicker voltage to deflect bunches arriving early at the phase monitor on to longer trajectories in the chicane, and bunches arriving late on to shorter trajectories. Downstream of the chicane, in the TBL line, another phase monitor is placed to measure the effects of the correction.

The beam time of flight between the upstream phase monitor and the first kicker in the chicane is 380 ns. By bypassing the combiner ring (CR) and TL1 transfer line, see Fig. 1, the total cable length required to transport signals between the monitor and kickers is shorter, approximately 250 ns. The PFF correction in the chicane can therefore be applied to the same bunch initially measured at the phase monitor, providing the total system hardware latency is less than 130 ns. The system has a bandwidth of around 30 MHz, able to remove phase variations along the 1.2 μ s CTF3 beam pulse, as well as any offsets in the overall mean phase.

A. Hardware

The PFF system uses three phase monitors, two electromagnetic kickers, kicker amplifiers and a digitiser/feedforward controller.

The three phase monitors are designed and built by INFN Frascati, with the associated electronics built by CERN. The monitors are 12 GHz resonating cavities with a dipole and monopole mode present. The output from opposing vertical pairs of feedthroughs are summed in hybrids to create a position independent signal. This signal is split and mixed with a reference 12 GHz signal in eight separate mixers. The output from the eight mixers is combined, allowing a resolution of 0.126 degrees to be achieved whilst maintaining good linearity. This resolution is determined by comparing the measurements of the two monitors installed in the CT line.

The two electromagnetic kickers were also designed and built by INFN Frascati, and are based on the

^{*} Also at JAI, Oxford University.; Jack.Roberts@cern.ch

FIG. 1. Schematic of the PFF prototype at CTF3, showing the approximate location of the phase monitors (ϕ_1 , ϕ_2 and ϕ_3) and the kickers (K1 and K2). The black box PFF represents the calculation and output of the correction, including the phase monitor electronics, feedforward controller and kicker amplifiers. A bunch arriving early at ϕ_1 is directed on to a longer path in the TL2 chicane using the kickers (blue trajectory), whereas a bunch arriving late will be directed on to a shorter path (red trajectory).

DAFNE design. A voltage of $1.26~\mathrm{kV}$ applied to the downstream end of the kicker strips yields a horizontal deflection of 1 mrad for the $135~\mathrm{MeV}$ CTF3 beam.

The kicker amplifiers have been designed and built by the John Adams Institue/Oxford University. For an input voltage of 2 V gives an output of up to 700 V. Response linear within 3% for input voltages up to 1.2 V, then starts to saturate. Bandwidth 47 MHz for small signal variations up to 20% max output...

Finally, the Feedforward digitiser and controller (FONT5a board) was also designed and built by John Adams Institute/Oxford University. This takes the processed phase monitor signals then calculates and outputs the appropriate voltage with which to drive the amplifier. 9 ADCs, FPGA, 4 DACs... Digitises output from phase monitor electronics, calculates amplifier output based on set gain values, deals with correction timing...

The total latency of the phase monitor electronics, FONT5a board and amplifier is approximately 100 ns...

B. Chicane Optics

The PFF system places additional constraints on the optics of the correction chicane, and also on the beam lines between the upstream phase monitor and the chicane. These constraints are needed to ensure a linear dependence of the phase on the kicker voltage, to ensure the PFF system does not degrade the beam orbit stability downstream of the chicane, and to ensure there is high correlation between the initial (uncorrected) up-

stream and downstream phase.

The correction range of the PFF system is defined by the kicker design, the maximum output voltage of the kicker amplifiers, and the optics transfer matrix coefficient R_{52} between the kickers in the chicane. The coefficient R_{52} describes the change in path length through the chicane per unit deflection at the first kicker. The optics at CTF3 have $R_{52}=0.74$ m and at the maximum amplifier output of ± 700 V the kickers deflect the beam through 0.56 mrad. Together these define a correction range of approximately $\pm 400~\mu{\rm m}$, or ± 6 degrees, for the PFF prototype.

Figure of correction range...

PFF system should not degrade transverse stability of beam after chicane. The purpose of the second kicker is to close the orbit bump created by the first kicker, so that the downstream beam orbit is independent of the kicker voltage. This can be achieved by requiring $R_{11} = -1$ and $R_{12} = 0$ between the kickers...

All this must be achieved whilst keeping dispersion low, matching betas etc. within constraints of pre-existing buildings. Achieved R52 0.74m with max dispersion 1.16m...

C. Correlation

The PFF system acts to subtract the measured upstream phase (ϕ_d) from the initial downstream phase (ϕ_d) with a gain factor (g): $\phi_{\text{PFF}} = \phi_d - g\phi_u$, where ϕ_{PFF} is the corrected downstream phase. The optimal

FIG. 2. Orbit closure. Change x scale to metres. Error bars.

system gain is given by: $g = \rho_{ud}\sigma_d/\sigma_u$, where σ_u and σ_d are the initial upstream and downstream phase jitter respectively, and ρ_{ud} is the correlation between the upstream and downstream phase. The theoretical limit on the corrected downstream phase jitter $(\sigma_{\rm PFF})$, with this gain is given by: $\sigma_{\rm PFF} = \sigma_d \sqrt{1 - \rho_{ud}^2}$.

One of the key challenges in operating the PFF prototype at CTF3 has been obtaining high correlation between the initial, uncorrected, upstream and downstream phase. A correlation of 97% is required to reduce a typical initial phase jitter of 0.8 degrees to the target of 0.2 degrees. Early measurements showed only 40% correlation.

The source of low correlation was discovered to be energy dependent phase jitter introduced between the upstream and downstream phase monitors. This is described via the optics transfer matrix coefficient R_{56} : $\phi_d = \phi_u + R_{56}(\Delta p/p)$, where $\Delta p/p$ is the relative beam energy offset.

Correlation vs. R56 equation?...

The PFF system requires R_{56} to be zero between the upstream and downstream phase monitors. All beam lines at CTF3 are nominally $R_{56}=0$, but in the new PFF optics for the TL2 chicane a value of $R_{56}=-0.18$ m had to be tolerated, as it was not possible to meet all constraints for the line...

To compensate for the negative R_{56} in TL2, new sets of optics were created with positive R_{56} in TL1...

Figure R56...

Higher order phase–energy dependencies and beam energy drifts at CTF3 nevertheless mean it is difficult to maintain high correlation between the upstream and downstream phase on long timescales...

FIG. 3. Gain scan - look for better data. And/or convert to real gain from FONT gain.

III. RESULTS

A. Gain Scan

With the optimal gain the PFF correction acts to remove all correlation between the upstream and downstream phase, reducing the downstream phase jitter. If the gain is too small some residual correlation will remain, and if it is too large the correlation will flip sign.

The optimal system gain can be derived empirically by observing the dependence of the downstream phase on the upstream phase with the correction on, as seen in Fig. 3.

B. Pulse-to-pulse Jitter

The mean phase is defined as: mean phase across xxx ns portion of pulse, for each pulse.

Fig. 4 shows a ten minute dataset (xxx pulses), in which an initial mean phase jitter of 0.92 degrees is reduced to 0.20 degrees by the PFF correction. The system is operated in interleaved mode, with the correction applied to alternating pulses, so that a measurement of the initial and corrected downstream phase jitter can be performed at the same time.

All correlation between the upstream and downstream jitter is removed, from 96% to 0%.

Across 20 minutes, 0.30 degrees phase jitter has been achieved.

Best result: 0.20 degrees across 10 minutes, Init jitter 0.92 degrees, Correlation 96%. But this is better than theoretical limit: check correlation, bad pulse removal etc

SIMULATED RESULTS

FIG. 4. Best mean phase jitter. 0.92 degrees to 0.20 degrees.

FIG. 5. Correction of pulse shape.

C. Intra-Pulse Phase Variations

High bandwidth correction - not only correcting the mean but also variations along the pulse...

OLD VALUES: (Peak-to-peak variation of 5.76 degrees in initial phase reduced to 0.65 degrees in corrected phase – OR – standard deviation of phases reduced from 1.68 to 0.26 degrees...). CALCULATE NEW VALUES.

Histogram: improvement in flatness.

D. Point-by-point Jitter

I think this can probably be removed. I don't think it adds any information beyond mean jitter and correction of shape.

Point-by-point jitter of x degrees achieved across a x ns portion of the pulse, agrees with simulated value...

FIG. 6. Point-by-point jitter.

Limited by variations in phase propagation along the pulse (energy differences etc.), plus resolution slightly worse for point by point than for mean.

IV. CONCLUSIONS

CLIC requires a PFF system to reduce the drive beam phase jitter by an order of magnitude, from 2.0 degrees to 0.2 degrees. A prototype of the system has been in operation at the CLIC test facility CTF3.

The prototype has demonstrated 0.20 degree pulse-topulse phase jitter on a time scale of ten minutes.

Intra-pulse phase variations are also greatly reduced by the PFF system...

Drifts, in particular in beam energy, degrade the correlation between the upstream and downstream phase and prevent this level of stability from being demonstrated on longer time scales at CTF3. A key consideration for any future system should be to design beam lines and optics with zero phase-energy dependence, including non-linear dependencies, to solve this issue.

Try to apply to XFELs/something else.