DTIC® has determined on 05/04/2010 that this Technical Document has the Distribution Statement checked below. The current distribution for this document can be found in the DTIC® Technical Report Database. **DISTRIBUTION STATEMENT A.** Approved for public release: distribution is unlimited. © COPYRIGHTED; U.S. Government or Federal Rights License. All other rights and uses except those permitted by copyright law are reserved by the copyright owner. ☐ DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies only (fill in reason) (date of determination). Other requests for this document shall be referred to (insert controlling DoD office) ☐ **DISTRIBUTION STATEMENT C.** Distribution authorized to U.S. Government Agencies and their contractors (fill in reason) (date of determination). Other requests for this document shall be referred to (insert controlling DoD office) DISTRIBUTION STATEMENT D. Distribution authorized to the Department of Defense and U.S. DoD contractors only (fill in reason) (date of determination). Other requests shall be referred to (insert controlling DoD office). ☐ **DISTRIBUTION STATEMENT E.** Distribution authorized to DoD Components only (fill in reason) (date of determination). Other requests shall be referred to (insert controlling DoD office). ☐ **DISTRIBUTION STATEMENT F.** Further dissemination only as directed by (inserting controlling DoD office) (date of determination) or higher DoD authority. Distribution Statement F is also used when a document does not contain a distribution statement and no distribution statement can be determined. ☐ DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government Agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoDD 5230.25; (date of determination). DoD Controlling Office is (insert controlling DoD office).

MILITARY GEOLOGY OF GUAM, MARIANA ISLANDS

WATER RESOURCES SUPPLEMENT

by

Porter E. Ward and Joseph W. Brookhart

Prepared under the direction of the
Chief of Engineers, U. S. Army
by the
Intelligence and Mapping Division, Office of the Engineer
Headquarters United States Army Pacific
with personnel of
The United States Geological Survey
1962

Distribution List

(For ZI distribution and reserve)			250
Commander-in Chief, Pacific			5
Commander-in-Chief, United States Army, Pacific			1
Commander-in-Chief, United States Pacific Fleet			1
Commander-in-Chief, United States Pacific Air Forces			1
Commanding General, United States Army, Hawaii		•	1
Commanding General, Eighth United States Army			1
Commanding General, United States Army, Ryukyu Islands .			1
Commanding General, Fleet Marine Force, Pacific		•	1
Commander, Naval Forces, Marianas			1
Commander, Fifth Air Force			1
Commanding Officer, 500th Intelligence Corps Group, APO 67		•	1
High Commissioner, Trust Territory of the Pacific Islands	•		1
Engineer, United States Army, Pacific (Staff distribution and theater reserve)			50

Requisitions for additional copies of this publication should be submitted to Hq., United States Army Pacific, APO 958, ATTN: The Engineer.

Foreword

Engineer Intelligence Study -- Guam, Mariana Islands
Water Resources Supplement

This study of the water resources of Guam supplements the report,
Military Geology of Guam, Mariana Islands, and has been prepared as a
part of the Pacific Geological Mapping Program of the Corps of Engineers,
U. S. Army.

The program is designed to collect and compile information on the military geology of areas of the Pacific, by field mapping and analyses of selected islands, and to publish the information in a form usable by the Armed Forces and the island civil administrations.

This report deals with the occurrence and availability of water and the development of water supplies in Guam. It describes briefly the streams and includes basic data on the flow of streams. The study outlines the water-bearing properties of the rocks, the occurrence of ground water, and methods of developing ground water, and presents records of wells and springs.

The report was prepared in cooperation with the U. S. Geological Survey, Department of the Interior.

November 1961

CONTENTS

		Page
Distribution list		ii
Foreward		iii
Poleward		
Summary		1
Introduction		3
Location and extent		
Purpose and scope		3 3 3 5 5
Previous investigations	•	3
Present work	•	3
Topography and drainage		5
Climate	•	5
Geology	•	6
		77
Water resources	•	11
Surface water	•	11
Records of stream discharge	•	11
Major streams	•	13
La Sa Fua River	•	13
Umatac River	•	13
Geus River	•	13
Inarajan River	•	13
Pauliluc River	•	14 14
Talofofo River system	•	
Ugum River		15
		15
Pago River system	•	15 16
Ground water	•	18
Area 1		18
Area 2		21
Area 3		21
Subarea 3a		21
Subarea 3b	4.	22
Subarea 3c		22
Subarea 3d		22
Area 4	100	23
Subarea 4a		23
Subarea 4b		23
Area 5		23
Subarea 5a		23
Subarea 5b		24
Subarea 5c		24
Area 6		24
Subarea 6a		24
Subarea 6b		26
Area 7	•	26
Methods of development of ground water		27
Basal ground water in limestone	•	27
Ground water in volcanic rock	•	27
Chemical analyses of water	•	28
Closephy of tomms		20
Glossary of terms		32
References		34

		1	age
Appendix A: Records of flow of streams on Guam			35
Appendix B: Records of wells, tunnels, and springs on Guam			133
Tables			
1. Rocks of Guam			7
2. Chemical analyses of water	•	•	29
Figures			
			1
1. Map showing location of Guam	•	•	4
2. Graph of monthly discharge in the Pago River	•	•	12
3. Schematic section showing occurrence of basal ground			7 (7
water in northern Guam	•	•	17
4. Map showing ground-water areas on Guam	•	•	19
5. Geologic sections in the ground-water areas of Guam .	•	•	20

Map 1:50,000 scale (in pocket)

Plate 1 Water Resources, Guam

MILITARY GEOLOGY OF GUAM, MARIANA ISLANDS

WATER RESOURCES SUPPLEMENT

SUMMARY

All streams in Guam are in the southern half of the island, which is composed largely of volcanic rock having low permeability. No streams exist in the northern half because of the highly permeable limestone terrane, which quickly absorbs the rainfall, and here the flow of water to the sea is underground. Most of the streams in southern Guam are small; the largest is the Talofofo River system, which drains an area of about 21 square miles. A large part of the streamflow is direct runoff from rainfall; consequently, the flow has wide seasonal fluctuations and the greatest flow is during the rainy season from July through November. The dry-season flow in many years is only a small fraction of the average flow.

Because of the wide seasonal fluctuations in flow, the streams are poor sources of dependable large supplies of water, except where the flow can be regulated by dams and reservoirs. In the upper part of the Talofofo River system a dam forms the Fena Valley Reservoir, which has a capacity of about 2,000 million gallons and is capable of supplying about 8 mgd (million gallons a day) to the island water system. Several villages in southern Guam divert small supplies from streams.

The flow of all large streams and several small ones has been gaged since 1951. Records of these measurements to 1958 are shown in Appendix A, which gives a description of each gaging station and tabulations of daily flow and the maximum, minimum, and mean flow at each gage.

The major ground-water supply in Guam is in the basal ground-water body that lies near sea level over a wide area in the highly permeable limestone in northern Guam. The upper part of the basal water body is a lens of fresh to brackish water that floats in and displaces the slightly heavier sea water saturating the rock below sea level. Depths to the water table, which is near sea level, range from a few feet in lowlands near the shore to nearly 600 feet in the high part of the limestone plateau of northern Guam.

The basal water discharges into the sea continuously at springs and seeps at the shore, but most of the water near the shore is brackish or saline. Concentrated flows of fresh water occur at Janum Spring, which discharges 1 to 2 mgd, and at Agana Spring, which has a flow of 2 to 3 mgd.

Numerous wells drilled in the limestone to about sea level and a few horizontal tunnels driven at the water table develop the fresh basal water in northern Guam, but in some areas pumping causes sea-water encroachment and an increase in the salinity of the water. The total supply of fresh basal water in northern Guam, including spring flow, probably is about 15 mgd.

The volcanic rock and associated noncalcareous sediments that make up the most of southern Guam have low permeability and are poor water-bearing materials. The rocks yield water slowly to wells, and in most of the area the yield of drilled wells is less than I gallon per minute per foot of drawdown. Because of the low permeability, the water table commonly stands high above sea level, and numerous small springs and seeps flow into streams and contribute to their base flow.

Limestone caps on hills of volcanic rock in southern Guam contain ground water that discharges at springs at the edge of the limestone. Most of the springs are small and have daily flows of only a few thousand gallons during dry seasons. The largest is Almagosa Springs, which occasionally has a dry-season flow of less than 0.5 mgd. The largest springs are diverted into village or military water systems.

Ground water in limestone along the coastal part of southern Guam is mostly brackish. Beach deposits generally yield water readily to wells, but most of the water is brackish.

INTRODUCTION

Location and Extent

Guam lies between latitudes 13°15'N. and 13°39'N. and between longitudes 144°37'E. and 144°57'E. (fig. 1). The largest and southernmost of the Mariana Islands, it has an area of about 212 square miles. The island is 30 miles long, and from a width of $8\frac{1}{2}$ miles in the northern part it tapers to 4 miles at the central waist and widens again to $11\frac{1}{2}$ miles in the southern part.

Purpose and Scope

The purpose of this report is to present information on the water resources of the island that will be useful in the location and development of water supplies and in the planning and management of water-supply installations. The report describes briefly the rocks of the island and their water-bearing properties. It outlines the occurrence of ground water, and the methods of development of ground water. It presents records of wells and a map showing the locations of wells and the sources of ground water in the island. It gives summary descriptions of the streams and drainage basins, and tabular data on the flow of streams.

Previous Investigations

The first documented study of the water resources of Guam was by H. T. Stearns, who, in 1937, spent 3 months in the island making a study for the U. S. Navy. An unpublished report submitted by Stearns to Navy authorities in Guam describes the general geology of the island and gives information on wells, springs, and streams. In 1945, P. H. Peterman, Frederick Ohrt, and C. K. Wentworth visited the island briefly and made recommendations to the U. S. Navy regarding the development of ground-water supplies. In an investigation for the U. S. Commercial Company, A. M. Piper (1946-47, p. 20-68) described the ground-water supplies of Guam and compiled records of all known wells. In 1947, R. W. Sundstrom made a study of the ground-water supplies of north Guam for the U. S. Army.

Present Work

Compilation of the information in this report was started in 1951 by J. W. Brookhart, who was a member of the Guam Field Party of the Military Geology Branch, U. S. Geological Survey. In 1954 and 1955, E. W. Bishop and K. J. Takasaki continued the work of observation and compilation begun by Brookhart. From 1955 to 1958, P. E. Ward made field studies in the island. Information on surface water is based on records of streamflow collected by the Surface Water Branch, U. S. Geological Survey, under the supervision of M. H. Carson and H. S. Leak. Stream gaging was done by Raymond Chun, H. H. Hudson, Santos Valenciano, and J. S. Quinata.

Topography and Drainage

The northern half of Guam is a gently undulating limestone plateau bordered on its seaward edges by steep cliffs. The plateau slopes generally southwestward from elevations of approximately 600 feet in the north to less than 100 feet at the narrow midsection of the island. The generally uniform surface is interrupted by three hills--Barrigada Hill (665 feet), which is a broad limestone dome, and Mt. Santa Rosa (858 feet) and Mataguac Hill (630 feet), both of which are underlain by volcanic rocks.

Because of the high permeability of the limestone, no perennial streams exist on the plateau. During heavy rains, water may flow in short channels in the limestone, but the water soon disappears into numerous sinkholes and fissures. The only runoff of consequence in the area is on the steep slopes of the two small volcanic hills, but even here water flows only during rains and disappears rapidly in the limestone that surrounds the hills.

The southern half of Guam is a rugged, deeply dissected upland underlain chiefly by volcanic rocks. The surface has been eroded into peaks, knobs, ridges, and basinlike areas and is deeply channeled by numerous streams. A nearly continuous mountain ridge, running from the highland south of Piti to the southern tip of the island, lies parallel with and 1 to 2 miles inland from the west coast. Eight peaks in the ridge stand at about 1,000 feet above sea level, the highest of which is Mt. Iamlam, 1,334 feet above sea level. Along the west coast an emerged limestone plain 200 to 300 feet high and a little less than a mile wide lies between the ridge and the shore. Two limestone masses projecting westward from the plain at Apra Harbor form Cabras Island and Orote Point. The east slope of the mountain ridge is relatively gentle, and near the east coast it merges with a narrow limestone plateau that stands 100 to 350 feet above sea level and extends from Pago Bay southward to Inarajan.

More than 40 streams flow into the sea in the southern half of Guam. The streams are closely spaced, deeply incised, and have dendritic patterns. The largest streams empty into small bays.

Climate

The following discussion of the climate of Guam is based largely on a report by D. I. Blumenstock (1959). Climatological records for most stations on the island are for short periods. Reliable records of rainfall are available for a few stations, but records for most are for periods of less than 10 years.

Guam is warm and humid and has mean monthly temperatures that vary only slightly through the year. In the Apra Harbor area, for example, the average temperature is 79.2° F. in the coolest month and 82.5° F. in the warmest. In all areas except on the high peaks the daytime temperatures are usually in the middle to high eighties, and the temperatures at night are about 10 degrees lower. The humidity generally ranges between 65 and 80 percent in the late afternoon and 85 and 100 percent at night. The average annual rainfall ranges from about 85 inches in the Apra Harbor area to about 115 inches in the high mountain areas in southern Guam. Rainfall on the northern plateau is about 100 inches. Annual evaporation from a standard Weather Bureau evaporation pan near Fena Reservoir averaged 89.5 inches during the years 1955-1956.

Despite the uniformity of temperature and humidity, Guam has two distinct seasons: a dry season from January through May and a rainy season from July through November. December and June are transitional months. During the dry season, the tradewinds blow from the northeast, commonly in excess of 15 miles per hour, and calms are rare. During the wet season, although tradewinds still are generally dominant, winds commonly blow from any direction, windspeeds seldom are greater than 15 miles per hour, and calms are frequent. Storms may occur at any time of the year, but they are most frequent during the rainy season.

Rainfall during the dry season is mostly from scattered light showers. During the wet season, about one-third of the rainy days have more prolonged and steady rain. About 15 to 20 percent of the annual rainfall occurs during the dry season, 68 to 73 percent during the wet season, and the remainder during the transitional months.

Because Guam is subjected to repeated invasions of very moist, unstable air during the rainy season, and especially because the island is occasionally within the zone of influence of passing typhoons and tropical storms, extreme rainfall intensities are not uncommon. At Sumay, which is in the zone of relatively low rainfall intensity, rainfall of 9 inches or more in a single day may be expected every 10 years on the average. During the early part of July 1956, 2.35 inches of rain were recorded during a 35-minute period at Tamuning.

Drought is common in Guam, and severe drought is not unusual. A drought of several weeks duration may occur any time between the first of December and the end of May, but the period of most frequent drought is February through April.

Geology

The summary of the geology of Guam given here is based on detailed descriptions in the report, Military Geology of Guam, Mariana Islands, by Tracey and others (1959) and is concerned mainly with elements that are important in the hydrology of the island. Brief descriptions of the rocks of the island, their distribution, and water-bearing properties are given in table 1. The geologic names in the table and elsewhere in this report agree with those used in the basic report.

The plateau in the northern half of the island is composed principally of limestone, which lies unconformably on an irregular surface eroded in volcanic rock. The contact between the limestone and the volcanic rocks is below sea level in much of northern Guam, but the top of the volcanic rocks stands above sea level in an area of several square miles in the north-central part and projects through the limestone at Mt. Santa Rosa and Mataguac Hill. Most of the limestone in the plateau is cut by numerous caverns, fissures, and other solution openings, and it therefore has high overall permeability. The volcanic rock under the limestone has low permeability.

The rocks of the southern half of Guam consist mainly of a complex of pyroclastic rocks and lava flows, noncalcareous sediments derived from the volcanic rocks, and minor amounts of interbedded limestone. Overlying parts of this complex are limestone beds that form caps on peaks and ridges, and aprons along the coast of south Guam. The volcanic rocks and associated sediments have low permeability; the limestones lying on them have high permeability.

Surficial deposits consist of calcareous sand and gravel in beach deposits, alluvium in the bottoms of valleys, thin clayey soil on limestone terranes, and an earthy mantle of volcanic terranes.

Table 1. -- Rocks of Guam

Geologic age	Formation	General character and distribution	Water-bearing characteristics
Recent and	Beach deposits	Unconsolidated calcareous sand and gravel; consolidated beachrock in intertidal zone. Occurs irregularly along the shore, parti- cularly in beaches in embayments.	Sand and gravel have moderate to high permeability and, below sea level, are saturated, mostly with brackish water but locally with small quantities of fresh water.
Pleistocene	Alluvium	Poorly sorted clay, silt, sand, and small amounts of gravel chiefly in the bottoms of valleys, and muck and clay in marshy estuarine deposits along west coast. Maximum thickness about 100 feet.	Most of the material is saturated with water a few feet below the ground surface, but because of low permeability it does not release water readily. Water is fresh except at shore.
Pleistocene and Pliocene	Mariana limestone	A complex of reef and lagoonal limestone consisting of a fore-reef facies, a reef facies, a detrital facies, a molluscan facies, and the Agana argillaceous member. Underlies most of the north half of Guam; forms a broad marginal apron along the east coast between Pago Bay and Inarajan; and forms Orote Peninsula. Agana argillaceous member underlies narrow waist of island and is dominant in the apron along east coast. Maximum thickness greater than 500 feet.	Permeability of nonargillaceous limestone is generally very high but irregular. Where the rock extends below sea level, it commonly contains relatively fresh basal ground water, but numerous solution channels and fissures may promote sea-water intrusion in some places, especially in coastal areas. Permeability of argillaceous limestone is moderate to high.

Table 1.-- Rocks of Guam (continued)

ation General character and distribution Water-bearing characteristics	Generally massive, poorly to well-consolidated detrital limestone, recrystallized in some places. Forms caps on Barrigada Hill, Nimitz places in southern Guam where it lies on the high ridge between Mt. Alifan and Mt. Lamlam, and crops out in small patches along the coast in the Apra Harbor area. Maximum thickness about 200 feet.	Well bedded, tuffaceous limestone. Small len- ticular deposits crop out in several local- ities along the northeast coast between Lujuna Point and Anao Point. Maximum thick- ness about 70 feet.	Pure detrital limestone, relatively fine- grained and homogeneous, massive, and well lithified to friable. Underlies most of north half of Guam and crops out over a broad ring-shaped area in north-central part. Width of the outcrop averages about 1 mile. A southern extension of the outcrop encircles all but the west side of Barrigada Hill. Thickness probably greater than 540 feet.
Formation	Alifan Gelimestone	Janum We formation	Barrigada Palimestone
Geologic age		Miocene	

Table 1.--Rocks of Guam (continued)

Formation General character and distribution	Talisay Clay, lenticular clayey gravel, volcanic tain formation conglomerate, and interbedded limestone lenses. Crops out in south-central Guam in the Fena valley west of Fena Reservoir and on the east slope of Mt. Alifan. Crops out small also in small patches near Santa Rita and along part of the Gantali River near Apra Harbor. Thickness ranges from 2 to 30 feet.	Bonya Friable to compact, clayey, medium- to thick- limestone bedded, jointed and fractured, detrital limestone. Exposed principally in small outliers in the Fena-Talofofo valley and in small patches on southeast side of Ugum River, in the Togcha River valley, and near Mt. Santa Rosa. Maximum thickness about 120 feet.	Umatac Cormation The following members: Dandan basalt (basalt lava flows), Bolanos conglomerate (breccia, conglomerate, sandstone, and shale), Maemong limestone (limestone and calcareous tuff), and Facpi basalt (basalt lava flows, shale, sandstone). Underlies most of Guam lying south of a line between Talofofo Bay and Agat Bay. Total stratigraphic thickness greater than 2,000 feet. Extends below sea level throughout area.
Water-bearing characteristics	The clay, gravel, and conglomerate contain water in places but are very poor aquifers because of low permeability. Some limestone lenses yield water to small and mostly intermittent springs.	Generally high permeability, but because of its small extent it contains very little ground water.	largely saturated with water below depths of a few tens of feet to a few hundred feet beneath the surface, but because of low permeability the rocks are very poor water-bearing materials. A surficial mantle of granular weathered material commonly contains thin bodies of perched water that discharge in seeps.

Table 1.--Rocks of Guam (continued)

Water-bearing characteristics	Permeability is moderate in a few places but mostly is low. Saturated with water at variable depths below the surface, but yields water slowly to wells. Surficial mantle of weathered material contains small perched supplies in many places.
General character and distribution	Fine-to coarse-grained, well-bedded, tuffaceous shale and sandstone, lenses of tuffaceous limestone, and interbedded lava flows. Includes the Mahlac member consisting of thinbedded to laminated, friable, calcareous shale. The rocks cover a large area in central Guam from the vicinity of Asan and Piti villages to Mt. Jumullong Manglo and the northern environs of the Fena basin. Underlies younger rocks in north half of Guam and crops out at Mt. Santa Rosa and Mataguac Hill. Stratigraphic thickness greater than 2,000 feet. Extends below sea level throughout area.
Formation	Alutom
Geologic age	Eocene and Oligocene

WATER RESOURCES

In an average year, the rainfall on Guam amounts to nearly half a billion gallons a day, but most of the water runs off rapidly to the sea or escapes to the atmosphere, and only a small fraction is available for development and use by man.

The streams of the island, which are all in the southern half, have wide seasonal fluctuations in flow and are poor sources of dependable large supplies of water, except where the flow can be regulated by dams and reservoirs. In southern Guam the discontinuous limestone deposits contain only small bodies of high-level ground water or they contain brackish water, and the widespread volcanic rock has low permeability that precludes development of large quantities of ground water. In northern Guam much of the limestone contains great quantities of ground water at sea level, but most of the fresh water is subject to sea-water encroachment, which occurs under natural conditions or is induced by pumping from wells.

Surface Water

Perennial streams in Guam appear only south of the narrow waist of the island (pl. 1). North of the waist, where the highly permeable limestone quickly absorbs the rainfall, the flow of water to the sea is largely underground, and no streams have developed.

The streams in southern Guam are small, the largest being the Talofofo River system, which drains an area of about 21 square miles. The streams generally have steep gradients in their upper reaches, where they flow mostly in steep-walled narrow valleys. In coastal areas most of the valleys are steep-walled, but the stream gradients are relatively gentle, and the streams flow in valley flats.

A large part of the streamflow is direct runoff from rainfall; consequently, the flow fluctuates widely in response to the seasonal rains. The graph in figure 2 shows the monthly discharge of the Pago River during the 6-year period from 1952 through 1957. The average discharge of the river during the period was about 22 cfs (cubic feet per second), and the daily discharge ranged from 0.10 to 2,540 cfs. The high discharge shown in the graph from July through November of each year results from the quick runoff of heavy and frequent wet-season rainfall. During the dry seasons, the flow is maintained largely by the discharge of ground water at many small springs and seeps, and the lowest discharge occurs toward the end of each dry season when the flow from the springs and seeps declines as the ground water stored in the rocks is depleted. The discharge pattern of the Pago River is representative of the streams in southern Guam.

Records of Stream Discharge

All large streams and several small streams in Guam have been gaged since 1951 by the Surface Water Branch of the U. S. Geological Survey. The stream-gaging program began as a part of the program of compilation of information on military geology in the island and has continued since 1953 in cooperation with the Government of Guam. Records of discharge of the streams up to 1958 and information on the stream-gaging stations

Figure 2. -- Graph of monthly discharge in the Pago River, 1952-1957

are compiled in Appendix A. The records are from an open file report by the U. S. Geological Survey (1959).

Major Streams

The following discussion describes briefly the principal stream basins of Guam and gives summary information on the flow of the streams. Figures in parenthesis after references to stream-gaging stations and springs indicate the identifying symbols that show locations of gages and springs on plate 1.

La Sa Fua River: The La Sa Fua River flows in a narrow gorge eroded in volcanic rock consisting mainly of lava flows. The gradients of the river and its tributaries are steep, and the basin is generally rugged. Numerous small springs and seeps flow into the stream. The largest spring is Alatgue Spring (140) which has a discharge of about 40,000 gpd (gallons per day).

The flow of the river is measured at a gaging station (10-12) at an altitude of 130 feet. The average discharge from 1953 to 1958 was 4.43 cfs, and the range in daily discharge was from 0.35 to 403 cfs.

The stream once was used as a source of water for Umatac village.

Umatac River: The basin of the Umatac River includes about 2 square miles and is underlain largely by lava flows containing a few beds of limestone. The basin is in mountainous land, and the gradients of the river and its tributaries are steep, except for the lower part of the main stream, which flows on a gentle gradient in a valley flat underlain by alluvium.

Small springs and seeps issuing from the lava flows maintain the base flow of the stream. Piga Spring (94), which is the largest in the basin with a flow of 80,000 to 100,000 gpd, supplies about 16,000 gpd to the village of Umatac.

The Umatac River is gaged at a point 12 feet above sea level and 0.2 mile upstream from the mouth. The drainage area above the gaging station (10-11) is 2.0 square miles. During the 5-year period from 1953 to 1958, the average discharge was 7.34 cfs, and the daily discharge ranged from 0.50 to 500 cfs.

Geus River: The Geus River drains about 1.5 square miles of mountainous land underlain by lava flows, breccia and conglomerate. The upper half of the stream has a steep gradient and flows in a narrow, steepwalled valley. The lower half flows on a relatively gentle gradient in a narrow valley flat underlain by alluvium. Numerous springs maintain the flow of the stream during dry seasons. The largest, Siligan Spring (141), which is in limestone interbedded in lava flows, discharges at rates of 30,000 to 70,000 gpd. The discharge of the Geus River is measured at a gaging station (10-13) 85 feet above sea level and about a mile upstream from the mouth. The average discharge from 1953 to 1958 was 2.95 cfs, and the range in daily discharge was from .07 to 550 cfs.

About 16,000 gpd is diverted from the river into the domestic water system of Merizo village.

Inarajan River: The basin of the Inarajan River is about $3\frac{1}{2}$ miles long and 2 miles wide at the widest part and includes about 5 square miles of

rolling to mountainous land that is underlain by breccia, conglomerate, sandstone, and shale derived from volcanic rock. The main stream of the river is formed by the confluence of two branches about 0.8 mile upstream from the mouth. Through much of their length, the branches flow in small gorges. The valley flat of the main stream is half a mile wide and is underlain by alluvium. Numerous small springs and seeps at the heads of gullies in the mountainous part of the basin contribute substantially to the base flow of the stream.

The Inarajan River is gaged at a point about half a mile upstream from the mouth (10-10). The average discharge at the gaging station from 1953 to 1958 was 16.1 cfs, and the range in daily discharge was from 1.43 to 1,580 cfs.

The water supply for the village of Inarajan is obtained from the east fork of the north branch of the river. The average daily use is about 32,000 gallons.

Pauliluc River: The basin of the Pauliluc River includes about 2 square miles of rolling terrain, which is underlain mostly by deposits of breccia, conglomerate, sandstone, and shale derived from volcanic rock. The upper part of the basin is an area of relatively gentle slopes in which the main stream and its tributaries have gentle gradients. A mile upstream from the mouth the gradients steepen, and the stream flows in a steep-walled narrow valley in which there are a few small waterfalls. Near the mouth, the stream flows in a flat-bottomed valley cut through the narrow limestone plateau.

During dry weather, water discharging from marshy areas in the upper part of the basin makes up a large part of the base flow of the stream. The marsh water commonly has a red color caused by suspended material.

The flow of the Pauliluc River is gaged at a point about 20 feet above sea level and a third of a mile upstream from the mouth. The drainage area above the gaging station (10-9) is about 1.9 square miles. The average discharge of the stream during the 5-year period ending in 1958 was 5.4 cfs, and the range in daily discharge was from 0.23 to 1,080 cfs.

Talofofo River System: The Talofofo River system in the largest in Guam and drains an area of about 21 square miles in the central part of the southern half of the island. The name "Talofofo River" applies to that part of the main stem downstream from the confluence of the Mahlac and Maagas Rivers. A large tributary, the Ugum River, which enters the Talofofo River about a mile from the mouth, is described separately.

The area drained by the system is underlain largely by volcanic rocks and noncalcareous sediments, which are deeply weathered. On the north side of the basin, Talisay, Maemong, Bonya, and Tolaeyuus Rivers flow across limestone terranes, and short sections of the Maemong and Tolaeyuus Rivers flow underground in caverns in the limestone. Limestone occurs as caps on hills on the west side of the basin and forms steep valley walls in the lower reach of the Talofofo River. Alluvium occupies long stretches of the valley floors of the main stem and the larger tributaries.

The alluvial valley floors and the limestone terranes are covered by dense jungle vegetation. Grasses and scattered shrubs cover the areas underlain by volcanic rocks and associated noncalcareous sediments.

The flow of the Talofofo River is gaged just below the confluence of the Maagas and Mahlac Rivers (10-1). Stream-gaging stations on tributaries to the Talofofo River are located as follows: on the small stream below Almagosa Springs (10-2); on the Tolaeyuus River just below the confluence of the Bonya and Maemong Rivers (10-3); and at the spillway of the Fena Valley Reservoir (10-4). The average discharge of the Talofofo River at station 10-1 was 50.2 cfs during the 6-year period between 1952 and 1958. The daily discharge ranged from 0.85 to 4,360 cfs during that period. The measured flow at station 10-1 does not include water diverted into water-supply systems at points upstream.

A dam across the main valley a short distance above the confluence of the Tolaeyuus and Maagas Rivers forms the Fena Valley Reservoir with a capacity of about 2,000 million gallons. The reservoir is capable of supplying about 8 mgd to the Navy water system in south Guam. The flow from Almagosa Springs (1), on the west side of the basin above the reservoir, is diverted into the Navy water system and supplies about 1.5 mgd. The flow from Bona Spring (114), at the head of Talisay River, supplies about 0.5 mgd to the Navy system.

Ugum River: The Ugum River, which joins the Talofofo River near the east shore of the island, drains an area of about 7 square miles. The basin is underlain generally with deeply weathered, consolidated, non-calcareous sediments derived from volcanic rocks, except along the lower reach of the stream where valley flats are underlain by alluvium. Garden crops, coconut trees, and jungle growth cover the alluvial flats; grass is the principal cover over the rest of the basin.

The flow of the Ugum River is gaged at a station (10-5) near its confluence with the Talofofo River. During the 6-year period from 1952 to 1958, the average discharge of the Ugum River was 28.0 cfs, and the daily discharge ranged from 3.85 to 1,380 cfs.

Ylig River: The Ylig River basin is about 5 miles long and, at the broadest part, 3 miles wide, and includes an area of about 9.6 square miles. In the upper part of the basin, the stream and its tributaries flow on steep gradients across deeply weathered volcanic rock. In the lower part, the stream has cut a steep-walled valley across the narrow limestone plateau that lies along the east coast of the island. Here the stream has a gentle gradient and flows in a narrow valley flat underlain by alluvium.

The discharge of the stream is measured at a point about 2 miles upstream from the mouth and about 20 feet above sea level. The drainage area above the gaging station (10-6) is about 6.6 square miles. The average discharge during the 6-year period ending in 1958 was 23 cfs, and the daily discharge during the period ranged from 0.28 to 2,050 cfs.

In the lower part of the valley near the mouth, small basal springs flow from the limestone into the stream. Much of this spring water is brackish because of mixing with the sea water.

The river is a source of domestic water for the villages of Talofofo, Yona, and Camp Witek. Water is pumped from the stream at a point about 1.5 miles upstream from the mouth at rates of 100,000 to 120,000 gpd.

Pago River System: The Pago River system is made up of the main stem of the Pago River and two principal branches, the Lonfit and Sigua Rivers, which join to form the Pago about 2.5 miles upstream from the mouth at

Pago Bay. The area drained by the system is about 8.8 square miles. The Lonfit and Sigua Rivers flow in mountainous to rolling terrain that is underlain mostly by deeply weathered volcanic rock. The north slope of the Pago River valley is in limestone; the south slope is in volcanic rock, except at the coast where the river has cut through the narrow limestone plateau. Below the confluence of the Lonfit and Sigua Rivers, the stream channel is in a valley flat underlain by alluvium. Near the mouth, some brackish water flows into the stream from small springs in limestone.

Streamflow is gaged on the Lonfit River (10-8) just upstream from the confluence with the Sigua River and on the Pago River (10-7) just below the confluence. The average discharge past the Lonfit River gage, which measures the runoff from 3.1 square miles, was 10.6 cfs during the 6-year period from 1952 to 1958. The daily discharge ranged from 0.03 to 1,200 cfs. The drainage area above the Pago River gaging station, which is made up of the basins of the Lonfit and Sigua Rivers, is 6.2 square miles. The average discharge at the Pago River gage during the 6-year period was 22.6 cfs; the range in daily discharge was from 0.10 to 2,540 cfs.

Ground Water

In northern Guam, the major water supply is in the basal ground-water body, which lies near sea level over a wide area in the highly permeable limestone. The upper part of the basal water body is a lens of fresh to brackish water that floats in and displaces the slightly heavier sea water saturating the rock below sea level. This lens is maintained by recharge from rainfall, which moves downward through openings in the limestone to the water table. The water table forms a low dome that stands 5 to 7 feet above sea level in the central part of the area and slopes gradually to sea level at the shore.

Because of the difference between the specific gravities of fresh and salt water, the fresh-water lens has a theoretical depth below sea level equal to about 40 times the height of the fresh water table above sea level. However, the actual thickness of the fresh water is always less than the theoretical thickness of the lens because of a transition zone between fresh and salt water at the bottom of the lens. This transition zone is produced by mixing of fresh and sea water, which occurs largely as the result of tidal movement in the ground water. In the highly permeable limestone of northern Guam, the transition zone occupies a considerable part of the theoretical thickness of the fresh lens, and in large areas near the shore, where tidal fluctuations are greatest, it extends up to the water table and makes the whole lens brackish.

The recharge of fresh water occurs intermittently over the whole lens, mainly during the wet seasons. Natural discharge of the water takes place continuously into the sea in a narrow zone along the shore. Because of mixing with sea water, most of the water discharging at the shore is brackish (fig. 3).

Ground water may be developed readily in the limestone of northern Guam in wells drilled to about sea level. In many areas, however, the water is brackish to saline, and in others, where the water is fresh, pumping commonly causes the encroachment of sea water.

In southern Guam the volcanic rock and noncalcareous sediments contain large amounts of ground water, but the permeability of these

Figure 3.---Schematic section showing occurrence of basal ground water in northern Guam

materials is low and they yield water slowly to wells. The water table is an irregular surface that commonly stands several hundred feet above sea level under upland areas and slopes steeply toward lowlands in valleys and along the shore. Because of the low permeability of the rock, recharge of the ground water is low, and most of the rainfall on southern Guam runs off quickly to the sea in streams. Natural discharge of the ground water occurs at many small springs and seeps that flow into streams or into the sea along the shore.

In the interior part of southern Guam, beds of limestone that overlie or are interbedded with the volcanic rock contain small amounts of ground water that discharge at springs. Limestone in coastal areas contain basal ground water, but most of it is brackish.

Ground-Water Areas

On the basis of known or inferred geologic and ground-water conditions, Guam may be divided into several ground-water areas, which are outlined in figure 4 and plate 1. Descriptions of the areas that follow give estimates of the availability and the quantity and quality of ground water and outline briefly the development of ground water. The locations of the boundaries of most of the areas are approximate. In some areas a lack of information precludes precise definition, and in some parts of the island the transition from one area to another is gradual.

Descriptions of the ground-water areas are based largely on information that is available on wells and springs. Records of wells and springs in Guam, which show data on locations, altitudes, depths, casing, logs, pumpage and flow and quality of water, are given in Appendix B.

Area 1: Area 1 forms a sharply curved band in north-central Guam, which almost encloses area 7 (pl. 1). Except for a small area of the Mariana limestone, the Barrigada limestone underlies area 1 and probably extends to and below sea level throughout the area. Relatively impermeable rocks of the Alutom formation underlie the limestone. The contact between the limestone and the volcanic rocks probably is an irregular surface that slopes generally outward from the roughly circular boundary between area 1 and area 7 (fig. 5).

The limestone in the area has high permeability, and a large part of the rainfall moves downward rapidly to the basal water table, which stands 5 to 7 feet above sea level. The limestone yields water readily to wells drilled below the water table.

The comparative remoteness of the area from the shore and the presence of relatively impermeable volcanic rocks beneath the limestone apparently prevent the easy intrusion of sea water into the basal water. The ground water is, therefore, relatively fresh, containing less than 100 ppm (parts per million) of chloride. The freshness is maintained also by augmented recharge resulting from subsurface runoff of ground water from a mass of volcanic rock that lies above sea level in area 7. Wells pumped at rates as high as about 200 gpm (gallons per minute) yield water having a chloride content of 30 to 80 ppm.

Ten wells have been drilled in area 1. In 1957 the pumpage from the 5 wells that were in service was about 1 mgd. An estimated 3 to 4 mgd is available in the area.

Figure 4.--Map showing ground-water areas in Guam and the locations of geologic sections shown in figure 5.

Figure 5.--Geologic sections in the ground-water areas in Guam. Locations of the sections are shown in figure 4.

Area 2: Area 2 is a crescent-shaped strip lying on the west and north-west side of area 1. The rocks at the surface are the Mariana and Barrigada limestones, but at and below sea level the rock probably is the Barrigada limestone. Volcanic rocks of the Alutom formation underlie the limestone at unknown depths below sea level. Basal ground water standing 3 to 7 feet above sea level is present throughout the area. The permeability of the water-bearing limestone is high.

Sea-water intrusion apparently can occur throughout the area, but the salinity of the basal water generally is low. Most wells will yield as much as 200 gpm of water having a chloride content less than about 250 ppm. Higher pumping rates probably would cause the chloride content to rise above 250 ppm in many wells.

Nine wells have been drilled in the area. In 1957 pumpage from 7 wells in use totaled about half a million gallons a day. It is estimated that 2.5 to 3.5 mgd of water having a chloride content less than 250 ppm can be pumped in the area.

Area 3: That part of Guam lying north of a line across the island between Pago Bay and Adelup Point, except for the smaller parts occupied by areas 1, 2, and 7, makes up area 3. The area is underlain by the Mariana and Barrigada limestones, which extend below sea level and contain basal ground water. Area 3 is divided into four subareas.

Subarea 3a.--This subarea forms a coastal band around the northern part of the island and occupies a broad segment in the part north of the narrow waist of the island. The rock at the surface is largely the Mariana limestone, but at and below sea level the rock is mostly the Barrigada limestone. On the eastern side of the island in a part of the subarea between Pagat and Mati Points, the contact between the limestone and underlying volcanic rocks probably is only a few feet below sea level and may be above sea level in places. The limestone at sea level has high permeability and contains basal ground water standing 1 to 5 feet above sea level.

The chloride content of basal water from wells in subarea 3a ranges from about 30 to 1,400 ppm. The most saline ground water commonly is near the shore, where the chloride content of water in wells usually increases during pumping. An exceptional condition exists in a small area on the eastern side of the island, where the low salinity of the water flowing at the shore from Janum Spring (96) indicates that local geologic conditions prevent the intrusion of sea water into and mixing with the fresh basal water. The chloride content of the water is about 30 ppm, and the flow ranges between approximately 1 and 2 mgd. The limestone aquifer at Janum Spring probably is underlain at a shallow depth below sea level by relatively impermeable volcanic rocks.

One basal tunnel and about 25 wells have been constructed in subarea 3a; in 1957 the tunnel and 5 of the wells were in use. The tunnel (80), which is on the west coast near Tumon Bay, is about 1,000 feet long and has supplied about 1 mgd to the Air Force water system in the north end of the island. The chloride content of water from the tunnel ranges from 80 to 140 ppm. The 5 drilled wells have supplied about 1.4 million gallons of water a day having a chloride content ranging from 130 to 500 ppm. Several near-shore caverns in the limestone, which extend below the water table, have been used as sources of water. The water in most of the caverns has high salinity and has been used only for emergency supplies. Tarague Spring 4 (109) at the northern end of the island yields water containing 350 to 830 ppm of chloride at pumping

rates of about 1.5 mgd and has been a source of water in the Air Force system since about 1947.

The total pumpage of ground water in subarea 3a in 1957 was about 4 mgd. Probably an additional 2 mgd can be obtained in drilled wells in the southern part of the subarea near the boundaries of areas 1 and 2. Because of its low salinity and large flow, the Janum Spring (96) appears to be a good source of water, but an expensive installation would be required to lift the water 500 feet up the cliff that stands above the spring. Wells drilled inland from the spring might intercept the ground-water supply, but considerable exploratory drilling might be needed to find the best locations for wells.

Subarea 3b:--This subarea, which lies on the southeast side of the waist of the island, is underlain by Mariana limestone containing basal ground water that stands 1 to 5 feet above sea level. The ground water undisturbed by pumping has a chloride content ranging from 30 to 400 ppm, but in most wells the chloride content rises sharply when the pumping rate is greater than about 50 gpm. Two to fivefold increases in chloride content are common when wells are pumped at rates as high as 100 gpm.

Seventeen wells have been drilled in subarea 3b. In 1957 the total pumpage from 5 wells in service was about 1.5 mgd, containing 400 to 1,200 ppm of chloride. It is estimated that an additional 1 mgd of water having a similar range in quality can be obtained if the pumpage is spread among new wells or unused wells.

Subarea 3c.--A strip across the waist of the island between Pago Bay and Agana forms subarea 3c. It is underlain by the Mariana limestone, which abuts against the volcanic rocks of the Alutom formation along much of the southwest boundary. The basal water table in the limestone ranges from about 1 foot above sea level near the shore to more than 20 feet in the interior part of the subarea. The high water table probably is caused by low permeability resulting from clayey material in the limestone. The chloride content of the water is low, generally less than about 40 ppm.

One well and several test holes have been drilled in the subarea, but none have been pumped as a source of water Agana Spring (2) near the west coast has been an important source of water in central Guam for many years. The flow of the spring has not been measured, but pumpage into the island water system between 1951 and 1957 ranged from 0.5 to 2.5 mgd and averaged about 1.5 mgd.

Subarea 3d.--This subarea, on the west side of the waist of the island, is underlain by the Mariana limestone, which contains basal ground water standing 1 to 4 feet above sea level. The chloride content of water undisturbed by pumping ranges from about 30 to 1,300 ppm. A few wells yield water containing less than 200 ppm of chloride, but most wells yield water containing 400 to 700 ppm, and in some the chloride content is more than 1,000 ppm.

At least 37 drilled and dug wells are in the area, most of which were constructed in 1944 and 1945 by military forces. Pumpage from the wells in 1944 was about 0.3 mgd, in 1945 about 1.1 mgd, and in 1946 about 1.3 mgd. Most of the water had a chloride content of more than 500 ppm, and the wells were largely abandoned after 1946, when the demand for troop use declined and sources of fresher water became adequate.

The ACEORP basal tunnel (79) at Tamuning was constructed in 1947 by the U. S. Navy as a source of water in central Guam. In 1947 and 1948, the tunnel was pumped at rates ranging from 0.3 to 1.1 mgd and produced water containing 400 to 600 ppm of chloride. In 1957 the tunnel was not in use but was maintained as a standby source of water.

It is estimated that 1 mgd, having a chloride content of about 500 ppm, is available in subarea 3d.

Area 4: Water-bearing limestone that forms caps on hills of volcanic rock in the south half of Guam constitutes area 4. The limestone has high permeability, and a large part of the precipitation on the area moves quickly downward to the contact with the less permeable volcanic rock and along it to high-level seeps and springs that discharge at the edges of the limestone caps. The flow from the seeps and springs fluctuates through a wide range, being large during rainy seasons and small during dry seasons.

Subarea 4a.--A limestone cap covering half a square mile in the Nimitz Hill area makes up subarea 4a. Seeps along the south and southwest edges of the cap contribute to the flow of the Fonte and Asan Rivers. Asan Spring (3), on the northwest side, which supplies water to Asan village, has a recorded flow ranging from 0.1 to 0.8 mgd. Maina Spring (27), on the northeast side, supplies .007 to .03 mgd to Maina village. The average discharge of ground water from the subarea probably is about 0.25 mgd, but most of the flow is during the rainy seasons, and the flow in dry seasons probably is frequently less than .05 mgd.

Subarea 4b.--The limestone cap covering about $2\frac{1}{2}$ square miles on the ridge between Mt. Alifan and Mt. Lamlam forms subarea 4b. High-level ground water in the limestone discharges at numerous seeps and several springs around the periphery of the cap and contributes to the flow of small streams on the flanks of the ridge.

Almagosa Springs (1), on the east side of subarea 4b, has an average discharge of more than 2 mgd, but during dry seasons the flow drops occasionally to less than 0.5 mgd. Water from these springs has been pumped into the Navy system at rates ranging from 0.3 to 2.5 mgd. Bona Spring (114), also on the east side of the subarea, has an average flow of 1 to 2 mgd and has occasionally supplied 0.5 to 1.2 mgd to the Navy water system. Faata (20), Auau (151), and Mao (152) Springs, discharging from the limestone on the west side of the subarea, have a combined flow of about 0.3 mgd.

Area 5: Area 5 is made up of narrow bands along the west and east shores of the south half of the island, which are underlain by the Mariana limestone, alluvium, beach deposits, and artificial fill containing basal ground water. The water in the limestone is mostly brackish. Locally the alluvium, beach deposits, and fill contain meager amounts of fresh water.

Subarea 5a.--Orote Peninsula forms subarea 5a. It is underlain by limestone, which on the low northwest side is covered by a veneer of alluvium and artificial fill. Basal ground water having high salinity occurs in the limestone. In places the less permeable alluvium and fill contain meager supplies of basal water having a chloride content less than 250 ppm. The water from a few wells in the limestone has been used for cooling or for other purposes that did not require fresh water.

Subarea 5b.--A narrow strip underlain by limestone, alluvium, and beach deposits along the west coast of the island between Asan and Agat villages forms subarea 5b. Wells in the limestone and beach deposits have been reported as yielding supplies ranging from .0l to 0.1 mgd, but the chloride content of the water was 500 to more than 1,000 ppm. The alluvium contains water having a chloride content commonly less than 100 ppm, but wells in the alluvium generally yield only meager amounts of water.

Subarea 5c.--This subarea is a narrow band along the east side of the island between Pago Bay and Inarajan, which is underlain by limestone and discontinuous beach deposits containing basal ground water. Meager supplies of water having a chloride content less than 500 ppm may be available in wells dug near the inland edge of beach deposits. Most of the water in the limestone has a chloride content greater than 500 ppm.

Area 6: Area 6 occupies most of southern Guam. It is underlain by volcanic rock, and noncalcareous sediments derived from the volcanic rock, that have low permeability and are poor aquifers, and by permeable limestone containing only meager to small quantities of ground water. The area is divided into two subareas.

Subarea 6a.--The rocks of subarea 6a are mostly lava flows, pyroclastic materials, and noncalcareous sedimentary deposits. The northern part of the subarea is underlain by tuffaceous shale and sandstone, conglomerate, and lava flows of the Alutom formation, and clayey gravel and conglomerate of the Talisay formation. In the southern part the rocks are lava flows, tuffaceous shale and sandstone, conglomerate, and scattered lenticular limestone beds that constitute the Umatac formation. Small patches of the Bonya limestone overlie the noncalcareous rock in the central part of the subarea. Thin deposits of unconsolidated alluvium underlie valley flats, and discontinuous beach deposits of calcareous sand and gravel lie along the shore.

The volcanic rock and noncalcareous sedimentary deposits are thoroughly weathered to depths of 50 feet or more in much of the area. All the rock, both fresh and weathered, has low permeability.

Because of the low permeability of the rock, the water table has high relief, standing high under the uplands and sloping steeply toward lowlands in valleys and along the shore. Water levels that have been measured in test holes and wells range from about a foot to more than 400 feet above sea level. Locally, ground water under artesian pressure is found in rock that is confined by less permeable beds.

Although thick sections of the volcanic rock and noncalcareous sediments are saturated with ground water, the low permeability of these materials causes wells in subarea 6a to draw down excessively during pumping. The following tabulation shows pumping rates and drawdown that are representative of the wells in the subarea. Locations of wells are shown on plate 1.

Well No.	Pumping rate (gpm)	Drawdown (ft)	Specific capacity (gpm per ft)	Water-bearing rock (from driller's logs)
208 210 212 213 216	133 90 145 86 15	131 260 180 91	1.0 .3 .8 .9 1.4	Tuff, basalt Basalt Tuff, basalt Agglomerate

The figures shown above are based on the results of short pumping tests, and they do not show the decline of water levels that would result as ground water stored in the rock is depleted during prolonged pumping.

Locally, the weathered rock is slightly more permeable than the underlying fresh rock. In upland flats and in poorly drained areas, the weathered rock commonly contains ground water that discharges at seeps and flows into streams or marshes. Shallow wells dug into weathered rock containing water will produce a few hundred to a few thousand gallons of water a day, but no large supplies are available.

Limestone lying on and interbedded with the volcanic rock and non-calcareous sediments generally has relatively high permeability, but the areas of limestone are small and scattered, and the amount of water available in this rock at any locality is small. Ground water is contained in some of the small areas of the Bonya limestone, which overlies the volcanic rock in the central part of subarea 6a. Test wells 204 and 214 in the valley of the Talofofo River found water in limestone in which the water table is about 18 feet above sea level. The limestone penetrated by these wells extends below sea level, and in well 204 the water contains nearly 800 ppm of chloride. Springs and seeps discharge from some limestone lenses that are interbedded in the volcanic rock. The measured flow of the largest of these springs ranges from 25 to 65 gpm, and probably all the springs have wide seasonal fluctuations in flow.

The water table commonly stands a few feet below the surface of the ground in alluvial fill under the bottoms of valleys, but the alluvium has low permeability and it yields water slowly to wells. Alluvial deposits at the coast may contain only saline water.

Most of the calcareous beach deposits have high permeability, but the ground water is mostly saline.

No large supplies of ground water have been developed in subarea 6a. The greatest recorded pumping rate was from well 209, which reportedly yielded 90 gpm during the dry seasons of 1948, 1949, and 1950. All other drilled wells apparently were abandoned because of large drawdown at pumping rates that ranged from 15 to 145 gpm. A few shallow wells dug in weathered rock have been used for local domestic supply, and one dug well (93) has supplied small amounts of water for the dry-season irrigation of garden crops. A few springs provide domestic supplies for villages. The flow of Piga Spring (94) is piped to Umatac, where it supplies about 16,000 gpd, and Siligin Spring (141) supplements the water supply at Merizo at the rate of about 10,000 gpd.

Ground water can be found in deep wells drilled in all parts of subarea 6a, but, because of the low permeability of the rock, a large number of wells probably would be required to obtain a moderate to large supply of water. The specific capacities of wells drilled in the volcanic rock and noncalcareous sediments range from 0.3 to 1.4 gpm per foot of drawdown (p. 24). Based on these figures, and if the maximum initial drawdown in each well during pumping were held at 100 feet, the production of 1 mgd (about 700 gpm) would require the drilling and continuous pumping of between 5 and 23 wells.

Ground water above sea level in the rocks of subarea 6a is fresh, but in some places wells extending below sea level may enter saline water. Well 204, which extended about 70 feet below sea level in

limestone, yielded water having 500 to 780 ppm of chloride, and well 215, which penetrated volcanic rock, yielded water having 1,100 to 1,500 ppm of chloride at 90 to 115 feet below sea level. These wells are nearly 3 miles from the shore, and water levels in them are 11 to 19 feet above sea level. It is possible, therefore, that the high salinity is due to ancient sea water or connate water that has not yet been flushed out by the slow circulation of fresh ground water in the poorly permeable rock. Saline water may occur at similar depths below sea level in other interior parts of the subarea.

Subarea 6b.--Subarea 6b forms a long, narrow band, which lies a short distance inland from the east shore of the island between Pago Bay and Inarajan. It is underlain by the permeable Mariana limestone, which rests upon an eastward-dipping eroded surface of volcanic rock and non-calcareous sediments. Precipitation on the limestone moves quickly downward to the surface of the relatively impermeable volcanic rock and then down the slope of the surface into the basal ground-water body of subarea 5c. Ground water in the limestone probably is in only meager quantities in small bodies perched on the volcanic rock.

At least two wells, 21 and 134, have been drilled in the subarea. Well 21 entered weathered volcanic rock at 47 feet above sea level and was reported to be dry. No records are available for well 134, and it is presumed to be dry. The water table in the volcanic rock and non-calcareous sediments beneath the limestone probably stands high, but the permeability of these materials is low.

Area 7: Area 7 covers a crudely circular area of about 13 square miles in northern Guam. The rocks at the surface are mainly the Mariana and Barrigada limestones, which are cut by numerous openings formed by solution. Beneath the limestone lie the volcanic rock and noncalcareous sediments of the Alutom formation, which project through the limestone at Mt. Santa Rosa and Mataguac Hill. The top of the Alutom formation under the limestone is an irregular eroded surface that slopes generally away from high points at Mataguac Hill and Mt. Santa Rosa. Throughout the area, the surface of the Alutom formation probably is above sea level and about the basal water table of the surrounding areas. The slope of the buried surface is variable and in places probably is as steep as 1,000 feet per mile.

Rainfall on the limestone of area 7 moves rapidly downward to the surface of the relatively impermeable volcanic rock. Some water may be impounded in depressions in the impermeable rock, but most of it moves down the slopes to basal water bodies in the adjacent areas 1 and 3a. The flow of Janum Spring (96) in subarea 3a possibly is supplied largely by underground runoff from the impermeable slopes under the limestone of area 7.

Four wells have been drilled completely through the limestone in area 7. Three were dry and one (well 55) yielded so little water that it was abandoned. No place in the area appears favorable for the development of ground water in limestone, but test drilling on a closely spaced pattern of holes would be needed to determine the availability of water.

A few small springs flow from the volcanic rock on the slopes of Mt. Santa Rosa and Mataguac Hill. Santa Rosa Spring (76), which issues from tuffaceous sandstone, reported fluctuates in discharge between 1,000 and 85,000 gpd, depending on the rainfall. In 1945 and 1946 the spring supplied 1,800 to 4,500 gpd to military units. Chunge Spring (127), also on Mt. Santa Rosa, is much smaller and probably has a

maximum flow of about 10,000 gpd and a minimum of less than 1,000 gpd. Mataguac Spring (58) flows from fragmental volcanic rock on the east slope of Mataguac Hill. In 1945 and 1946 this spring reported supplied water at rates ranging from 1,000 to 18,000 gpd.

The volcanic rock and noncalcareous sediments under area 7 have low permeability, and wells drilled in them would have large drawdown.

Methods of Development of Ground Water

Basal ground water in limestone: The drilled well is the most common method of developing ground water in Guam, and more than 100 wells have been drilled on the island, mainly in basal ground-water areas in the limestone of northern Guam. Most of the wells were drilled with percussion (cable-tool) drilling machines. Casing in the wells ranges in diameter from 6 to 14 inches. In most wells the casing extends to the bottom of the hole and is perforated below the water table with slots an eighth of an inch or more in width. In consolidated limestone, the perforated casing generally is satisfactory, but locally the limestone contains lenses of calcareous sand that is fine enough to pass through the slots and enter the well.

Advantages of the drilled well are speed and economy of installation and relative simplicity of design and operation. In some basal ground-water areas, the drilled well has the disadvantage of penetrating so deep into the fresh-water lens that it causes rapid encroachment of sea water during pumping. Saline-water encroachment is inevitable whenever a well is pumped, but in some wells it can be kept at a reasonable level by control of the pattern and rate of pumping. In yielding a given amount of water, intermittent pumping at a high rate causes greater saline encroachment than continuous pumping at a low rate. Experimentation, during which the salinity of the water is observed at various pumping rates, is the best method of determining the optimum rate.

Two basal tunnels have been constructed in Guam, the ACEORP tunnel (79) and the Tumon tunnel (80), which tap basal ground water in northern Guam. This type of development in basal water is superior to the drilled well in having only shallow penetration into the fresh-water lens and the ability to yield a maximum amount of water with a minimum of sea-water encroachment. Its great disadvantage is the high cost of construction.

A basal-tunnel installation consists of a shaft excavated from the ground surface to the water table and one or more horizontal tunnels at about sea level extending from the bottom of the shaft. Pumps are installed at the bottom of the shaft in a sump into which water flows over a weir from each tunnel. The pump sump should have a watertight lining, and weirs should be adjustable so that the drawdown in the tunnels can be controlled. In Guam the floor of a tunnel should not be below the level of mean lower low water.

Basal ground-water supplies in some lowland areas have been developed in shallow wells dug in limestone, beach deposits, or alluvium. The advantage of the dug well in the lowlands is the ease with which it can be constructed. However, most areas in which the digging of shallow wells is practicable lie near the shore, where the basal water is brackish or where pumping even at low rates causes saline-water encroachment.

Ground water in volcanic rock: Because of the generally low permeability of the volcanic rock and noncalcareous sediments, ground water in them

has not been developed on a large scale. Drilled wells probably are the quickest and cheapest means of developing the water, but their yields are low, and the low permeability requires that a well have considerable depth below the water table to accommodate large drawdown during pumping.

In some volcanic islands horizontal tunnels are used successfully to tap ground water that is impounded in moderately to highly permeable rocks by dikes or other structures. In Guam, however, it appears unlikely that this method could be used to develop large amounts of water at a reasonable cost in the volcanic rock and associated sediments. Because of the uniformly low permeability of these materials, long tunnels or complex systems of tunnels and vertical wells probably would be needed to develop daily flows of a million gallons or more. Properly designed short tunnels at some springs and seepage zones might be useful in channeling and recovering the total daily flow for beneficial use, but such structures would not regulate or increase the discharge.

Chemical Analyses of Water

Chemical analyses of water from 24 sources in Guam are given in table 2. The analyses data include: 7 samples of surface water from 6 streams and 1 reservoir in southern Guam; 6 samples of ground water from 2 high-level springs and 3 basal springs; and 12 of ground water from wells in northern Guam.

The samples from streams were collected at times of low to moderate flow, and the dissolved-solids contents shown in the table probably are representative of low-flow water in the streams. The Almagosa and Mataguac Springs discharge from high-level aquifers, and the quality of the water that flows from them probably does not vary greatly from that shown by the analyses. The Agana and Janum Springs discharge from basal aquifers, but the water apparently does not have large fluctuations in dissolved-solids content. The basal aquifers that supply water to Tarague Spring 4 and the 12 wells listed in table 2 in northern Guam are subject to the intrusion of sea water. At times, therefore, the quality of the water from these sources may depart considerably from that shown in the analyses, owing to sea-water intrusion that results from heavy pumping and seasonal changes in recharge.

The dates shown in table 2 are the dates that the water samples were collected. After the term "analyst" the initials indicate the government agency that performed the chemical analyses. The analyses labeled "USGS" were made by the Quality of Water Branch of the U. S. Geological Survey, and those labeled "USN" were made by the U. S. Navy in Guam.

Table 2. -- Chemical analyses of water, Guam (Results in parts per million)

Source	(1)	(2)	(3)	(†)	(5)	(9)	(7)	(8)
Date Analyst Silica (SiO ₂) Aluminum (Al) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na)	12-30-52 USGS 40 04 04 11 24	7-11-57 USN 25 .0 .40 17 51,52	6-16-57 USN 54 00 .35 18 2.4 2.4 2.4	12-29-52 USGS 15 01 27 5.5 9.4	12-30-52 USGS 30 - 99 7.2 6.6	6-11-57 USN 25 .0 .0 62 333	12-29-52 4 USGS 33 33 40 10 14	12-29-52 \USGS 7.1 - 19 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Forassium (n) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Phosphate (PO ₄) Dissolved solids (Residue on evaporation at 180°C)	243 2.6 14.1 262 263	95 4.1 22 .2 .2	80 3.0 160	122 1.1 10 -	60 13 13 105	237 .0 .42	176 1.6 1.6 199	158 2.0 12 -
Hardness as CaCO ₃ (Calcium, magnesium) pH	165	64 7.6	7.2	90	45 7.4	172	132	133
1. Umatac River near gaging station (10-11 2. Inarajan River near gaging station (10-3. Pauliluc River near gaging station (10-4. Fena Reservoir near gaging station (10-10-10-10-10-10-10-10-10-10-10-10-10-1	g station (10 ing station (ing	0-11). (10-10). (10-9). (10-4).	8,70%	Ugum River near Ylig River 1½ mi Pago River near Almagosa Springs	Ugum River near gaging station (10-5). Ylig River $1\frac{1}{2}$ mile upstream from Ylig Bay Pago River near gaging station (10-7). Almagosa Springs(1).	gaging station (10-5). le upstream from Ylig gaging station (10-7).	(10-5). n Ylig Bay. (10-7).	

Calculated as sodium plus potassium and expressed as sodium.

Table 2.--Chemical analyses of water, Guam (continued) (Results in parts per million)

Source	(6)	(10)	(11)	(टा)	(13)	(17)	(15)	(16)
Date Analyst Silica (SiO ₂) Aluminum (Al) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (Cl) Phosphate (PO ₄) Dissolved solids (Residue on evaporation at 180°C)	1-16-51 USN 8.2 .0 .02 101 6.6 26 26 26 26 26 26 27 388 11 388	12-12-56 USN 71 .05 36 281/ 171 171 19 19 226	5-12-52 0.2 6.2 6.3 63 17 12 12 14.8 20 20 20	6-13-56 USN 6.1 .2 .60 21 .191/ .284 .5.2 .88	5-2-52 USGS 1.5 .08 92 48 380 13 238 98 680 .1	2-19-53 6.8 6.8 .1 .12 90 6.4 4.5 281 13.4 76	1-31-56 USN 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	5-14-52 USGS 0.6 - 03 77 4.9 19 6.1 6.1 35
Hardness as CaCO ₃ (Calcium, magnesium) pH	279	112	227 7.3	235	427 7.5	251 7.3	240 7.9	212 7.5
9. Agana Spring (2). 10. Mataguac Spring (58). 11. Janum Spring (96). 12. Janum Spring (96).				13. Tarage 14. NAS 15. MarBd 16. North	Tarague Spring 4 NAS Agana well 3 MarBo well 3 (31) Northwest well 2	(109). (24). (24).		

Northwest well 2 (33) Tarague Spring 4 (1)
NAS Agana well 3 (2)
MarBo well 3 (31).

Table 2.--Chemical analyses of water, Guam (continued) (Results in parts per million)

			•						
Source	(11)	(18)	(16)	(20)	(21)	(22)	(23)	(54)	(25)
Date Analyst Silica (S102) Aluminum (A1) Iron (Fe) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO ₂) Sulfate (SO ₄) Chloride (C1) Phosphate (PO ₄) Dissolved solids (Residue on evaporation at 180°C) Hardness as CaCO ₃ (Calcium, magnesium) pH	12-7-56 USN 1.7 1.04 83 166 892 19 143 143 1490	1-16-51 USN 3.0 3.0 135 40 257 11,343 502 502	1-31-56 USN 1.4 .05 .02 80 .27 772 118 .1 414	1-31-56 USN 1.5 .07 .01 70 102 271 271 25 25 204 218 218	1-31-56 USN 1.2 13.7 13.3 298 6.1 43.2 200 200	5-14-52 USGS 1.4 04 86 34 238 9.2 240 60 431 1,040	1-31-56 USN 1.2 .1 .02 74 14 60 <u>1</u> / 8.6 90 8.6 90 .6 364 240	1-31-56 USN 1.6 .03 82 11 138 <u>1</u> / 192 25 192 25 192 27 7.7	1-31-56 USN 1.5 .01 80 360 52 360 360 .2 998 350

North Field well 4 (75). ACEORP tunnel (79)

Tumon tunnel (80).
MarBo well 5 (83).
MarBo well 1 (84). 17.

NCS well 1 (90). Northwest 4 (110).

Harmon new well 3 (113).
North Field well 5 (126).

0025

GLOSSARY OF TERMS

- agglomerate Pyroclastic rock containing a predominance of rounded or angular fragments greater than 32 mm in diameter.
- aquifer A geologic formation, group of formations, or part of a formation that is water bearing.
- argillaceous An adjective meaning clayey; applied to all rocks or substances composed of clay, or having a notable proportion of clay in their composition.
- artesian water Ground water that is under sufficient pressure to rise above the level at which it is encountered by a well, but which does not necessarily rise to or above the ground surface.
- basal ground water In islands, ground water occurring near sea level in aquifers that extend below sea level. Basal ground water may range from fresh to nearly as saline as sea water. Fresh basal water, because of its slightly lower density, forms a lenslike body floating on sea water in the aquifer.
- basal tunnel A horizontal tunnel excavated near sea level for the development of fresh basal ground water. Also called a Maui-type well.
- base flow The discharge entering stream channels from ground water or other delayed sources.
- calcareous Composed of or containing calcium carbonate.
- drawdown The lowering of the ground-water level by pumping or artesian flow.
- facies A lithologic or biologic variation of rocks within a geologic formation.
- ground water That part of subsurface water that is in the zone of saturation.
- permeability The capacity of a rock or soil to allow the passage of water under the pressure ordinarily found in subsurface water.
- pyroclastic A general term applied to detrital volcanic materials that have been explosively or aerially ejected from a volcanic vent; also a general term for the class of rocks made up of these materials.
- recharge The processes by which water is absorbed and is added to the zone of saturation. Used also to designate the quantity of water added to the zone of saturation.
- regulation The artificial manipulation of the runoff of a stream or the discharge of a spring.
- runoff The discharge of water through streams.
- salinity The amount of solid material dissolved in water. The saltiness of water.

- seep A spot where water oozes slowly from the earth.
- specific capacity The discharge of a well expressed as rate of yield per unit of drawdown, generally gallons per minute per foot of drawdown.
- spring A place where, without the agency of man, water flows from a rock or soil onto the land or into a body of surface water.
- tuff An indurated rock of fine-grained fragmental material explosively ejected from a volcano.
- tuffaceous Characteristic of, containing, or resembling tuff.
- water table The upper surface of a zone of saturation except where that surface is formed by an impermeable rock.
- zone of saturation The zone in which permeable rocks are saturated with ground water under hydrostatic pressure.

REFERENCES

- Blumenstock, D. I., 1959, Climate, in Military geology of Guam, Mariana Islands: Intelligence Division, Office of the Engineer, Headquarters, U. S. Army Forces Pacific.
- Corbett, Don M., 1943, Stream-gaging procedure: A manual describing methods and practices of the Geological Survey: U. S. Geol. Survey Water Supply Paper 888, 245 p.
- Piper, A. M., 1946-47, Water resources of Guam and the ex-Japanese mandated islands in the western Pacific: in Economic Survey of Micronesia, v. 4, part 3, U. S. Commercial Company, U. S. Navy, Honolulu, T. H. (manuscript report; microfilm on file in Library of Congress, Washington, D. C.).
- Tracey, J. I., Jr., Stensland, C. H., Doan, D. B., May, H. G., Schlanger, S. O., and Stark, J. T., 1959, Military geology of Guam, Mariana Islands: Intelligence Division, Office of the Engineer, Head-quarters, U. S. Army Forces Pacific, 282 p., 19 fig., 49 pls., 21 tables.
- U. S. Dept. of the Interior, Geological Survey, 1959, Surface water supply of Guam, Mariana Islands, 1951-58: U. S. Geol. Survey openfile report, 98 p.

APPENDIX A

RECORDS OF FLOW OF STREAMS ON GUAM

This appendix contains records of daily flow of streams at 13 gaging stations on Guam during the period 1951 to 1958. Collection of the records was started by the Surface Water Branch, U. S. Geological Survey, as a part of the program of compilation of information on the military geology of the island, and since 1953 has continued under cooperative agreements between the Geological Survey and the Government of Guam.

Records are given for stations shown in the following list.

Numbers in parenthesis after the station names refer to the symbols on plate 1 showing the locations of the gaging stations.

La Sa Fua River near Umatac (10-12)
Umatac River at Umatac (10-11)
Geus River near Merizo (10-13)
Inarajan River near Inarajan (10-10)
Pauliluc River near Inarajan (10-9)
Tolaeyuus River near Agat (10-3)
Almagosa Springs near Agat (10-2)
Fena Dam spillway near Agat (10-4)
Talofofo River near Talofofo (10-1)
Ugum River near Talofofo (10-5)
Ylig River near Yona (10-6)
Lonfit River near Ordot (10-8)
Pago River near Ordot (10-7)

Definition of Terms and Abbreviations

The terms of streamflow and other hydrologic data, as used in this appendix, are defined as follows:

Cubic foot per second (cfs) is the rate of discharge of a stream whose channel is 1 square foot in cross-sectional area and whose average velocity is 1 foot per second.

Acre-foot is the quantity of water required to cover an acre to the depth of 1 foot and is equivalent to 43,560 cubic feet. The term is commonly used in relation to storage for irrigation.

Cfs-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.983471 acre-feet, or 646,317 gallons, and represents a runoff of 0.0372 inch from 1 square mile.

Stage-discharge relation is the relation between gage height and the amount of water flowing in a channel, expressed as volume per unit of time.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, a long reach of the channel, or an artificial structure.

The <u>drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, which is so enclosed by a topographic divide, that direct surface runoff from precipitation normally would drain by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

Explanation of Data

The base data collected at gaging stations consist of records of stage and measurements of discharge. In addition, observations of factors affecting the stage-discharge relation, weather records, and other information were used to supplement base data in determining the daily flow. The records of stage were obtained from a water-stage recorder that gives a continuous record of fluctuations. Measurements of discharge were made with a current meter by the methods adopted by the Geological Survey on the basis of experience in stream gaging since 1888. These methods are described in U. S. Geological Survey Water-Supply Paper 888 (Corbett, 1943) and also are outlined in standard text-books on the measurement of stream discharge.

Rating tables giving the discharge for any stage were prepared from stage-discharge relation curves defined by discharge measurements. extensions to the rating curves were necessary to define the extremes of discharge, they were made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs, and by other methods), velocityarea studies, and logarithmic plotting. The application of the daily mean gage heights to the appropriate rating tables gave the daily mean discharges, from which the monthly and the yearly mean discharges were computed. If the stage-discharge relation was subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge was determined by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers were used in applying the gage heights to the rating tables. If the stage-discharge relation for a station was temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge was computed by what is essentially the shifting-control method.

The data presented generally comprise a description of the station, a skeleton rating table, and a table showing the daily discharge and monthly and yearly discharge and runoff of the stream. Records are published for the fiscal year, which begins on July 1 and ends on June 30.

The description of the station gives the location, drainage area, records available, type and history of gages, average discharge, extremes of discharge, and general remarks. The location of the gaging station and the size of the drainage area were obtained from the most accurate maps available. Under "Records available", are given the periods for which there are published records. Under "Gage", are given the type of gage in use and the datum of the gage above mean sea level. Under "Average discharge", is given the average discharge for the number of years indicated. Under "Extremes", are given the maximum discharge and gage height; the minimum discharge if there is little or no regulation; the minimum daily discharge if there is extensive regulation (also the minumum discharge if useful). Unless otherwise qualified, the maximum discharge corresponds to the crest stage obtained by use of a water-

stage recorder. If the maximum gage height did not occur at the same time as the maximum discharge, it is given separately. Information pertaining to the accuracy of the records and conditions which affect the natural flow at the gaging station is given under "Remarks".

Skeleton rating tables are published for all stations except for spring stations.

The daily discharge table gives, in general, the discharge corresponding to the daily mean gage height. For stations subject to sudden fluctuations, the daily mean gage height may not indicate the true daily mean discharge, which must be obtained by averaging the discharge for parts of the day.

In the table of daily discharge, the figures for the maximum and the minimum day in each month are underlined. If the figure is repeated, it is underlined only on the first day of its occurrence.

In the monthly summary below the daily table, the line headed "Total" gives the sum of the daily figures; it is the total cfs-days for the month. The line headed "Mean" gives the average flow in cubic feet per second during the month. The line headed "Ac-ft" gives the runoff for the month in acre-feet.

In the yearly summary below the monthly summary, the values of maximum are the maximum daily discharges, not the momentary discharges when the water was at crest stage. Likewise, the minimums in this summary are the minimum daily discharges.

Peak discharges and the times of their occurrence and corresponding gage heights for most stations are listed below the table of daily and monthly discharge. All independent peaks above the selected base are given. The base discharge, which is given in parentheses, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for springs, or for any stream for which the peaks are subject to substantial control by man.

Footnotes to the tables of daily discharge indicate periods when discharge was computed or estimated by unusual or special methods because of no gage-height record or because other effects were present that reduce the degree of accuracy of the records. Days on which discharge measurements were made are indicated by asterisk and footnote.

Discharge measurements made at sites other than gaging stations are listed at the end of the appendix.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of observations of stage, measurements of discharge, and interpretation of records.

The station description states the degree of accuracy of the records. "Excellent" indicates that, in general, the error in the daily records probably is less than 5 percent; "good", less than 10 percent; "fair", less than 15 percent; and "poor", more than 15 percent. The records of monthly and yearly mean discharge and runoff are, in general, more accurate than the daily records.

Computations are carried to not more than three significant figures, except that monthly and yearly total runoff (cfs-days and acre-feet) above 10,000 are carried to four significant figures.

SURFACE WATER SUPPLY OF GUAM, 1951-58

GAGING-STATION RECORDS

La Sa Fua River near Umatac

Location. -- Lat 13°18'25" N., long 144°39'45" E., on left bank 0.6 mile northeast of Umatac, 3.1 miles north of Merizo, and 5.5 miles south of Agat.

Drainage area .-- 1.93 sq mi.

Records available .-- April 1953 to June 1958.

Gage .-- Water-stage recorder and concrete control. Altitude of gage is 130 ft (by barometer).

Average discharge .-- 5 years, 4.43 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1954-58 are contained in the following table:

		Maximum			Minimum	
Fiscal year	Date	Discharge (cfs)	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1953†	June 23, 1953	1.45	0.74	June 14, 1953	0.37	0.42
1954	Oct. 15, 1953	\$1,050	5.47	(††)	.37	.42
1955	Sept. 6, 1954	\$610	4.62	May 6, 1955	.45	.46
1956	Sept. 10, 1955	\$505	4.31	May 23,24,1956	.35	.41
1957	Aug. 28, 1956	650	4.72	June 15,16,17, 18, 1957	.39	.43
1958	Sept. 2, 1957	730	4.93	May 16,19,1958	.29	.38

† Period April to June. ‡ From rating curve extended above 13 cfs by test on model of station site. †† July 9, Aug. 1, 1953, June 2-4, 20, 21, 1954.

1953-58: Maximum discharge, 1,050 cfs Oct. 15, 1953 (gage height, 5.47 ft), from rating curve extended above 13 cfs by test on model of station site; minimum, 0.29 cfs May 16, 19, 1958 (gage height, 0.38 ft).

Remarks. -- Records good except those for periods of no gage-height record, which are poor.

Rating table, Apr. 11, 1953, to June 30, 1958 (gage height, in feet, and discharge, in cubic feet per second)

0.4	0.33	1.3	5.6
.5	.55	1.5	13.0
. 6	. 85	2.0	55
.7	1.25	3.0	193
. 8	1.75	4.0	405
1.0	2.95		

Discharge, in cubic feet per second, 1953

Day	Apr.	May	June	Day	Apr.	May	June	Day	Apr.	May	June	Day	Apr.	May	June
1 2 3 4 5 6 7 8		0.64 .61 .61 *.61 .58 .61 .58	0.47 .49 .47 .45 *.54 .58 .47	9 10 11 12 13 14 15 16	(*) 0.79 .79 .79 .76 .76	0.58 .61 .55 .55 .55 .52 .55 .70	0.45 .43 .45 .43 .43 .41 .47	17 18 19 20 21 22 23 24	0.76 .76 .73 .70 .70 .67 .67	0.55 .67 .52 .52 .49 .49	0.43 .45 .49 .47 .49 .52 .79	25 26 27 28 29 30 31	0.73 .67 .64 .64 .64	0.58 .47 .47 .47 .47 .49 .58	0.49 .43 .47 .85 .76 .52
Mean														17.24 0.556 34	15.15 0.505 30

Peak discharge (base, 500 cfs) .-- No peak above base.

^{*} Discharge measurement made on this day.

Ia Sa Fua River near Umatac -- Continued

Discharge,	in cubic	feet per	second,	fiscal	year	July	1953	to June	1954
------------	----------	----------	---------	--------	------	------	------	---------	------

100		Dischar	ge, in c	cubic fee	t per se	cond, fi	scal yea	ir July 1	.953 to J	une 1954		
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	June
1 2 3 4 5	0.45 .43 .45 .58 .49	0.43 .43 .85 .49	9.0 17 11 7.5 5.5	4.1 3.4 2.8 2.5 2.45	3.5 3.1 2.8 2.75 2.55	5.6 5.5 6.6 8.7 5.8	2.2 2.25 2.15 2.15 1.97	1.45 1.40 1.45 1.40 1.40	1.09 1.05 1.05 .97 1.01	0.70 1.25 .85 .93 .76	0.76 .64 .62 .58 .54	0.43 .43 .39 .41 .47
6 7 8 9 10	.52 .49 .45 <u>.41</u> .43	.55 .45 .91 .79	4.5 4.0 3.5 3.0 2.8	2.25 8.6 4.4 3.0 2.5	2.5 2.35 2.55 2.25 7.9	4.6 *4.1 3.55 3.4 3.2	2.15 1.86 1.97 57 6.6	1.40 1.40 1.35 1.30 1.25	.93 .97 1.01 .93 .93	.79 .73 .70 .64	.54 .56 .54 .54	.61 .55 .82 .76
11 12 13 14 15	.43 .49 .92 .55	104 47 19.9 5.6 17.9	2.4 2.1 1.9 1.8 1.7	2.5 2.9 2.5 2.45 403	108 137 28.5 10.3	3.1 3.25 2.8 8.1 7.0	4.4 3.55 3.2 2.8 3.1	1.21 1.21 1.21 1.17 1.13	1.05 .93 .89 .85	.68 .68 .64 .64	.58 .66 *.54 .52 .52	.52 .73 .52 .47
16 17 18 19 20	.52 .64 5.0 .67 *.72	42 29.5 60 16 9.0	*1.6 1.50 2.45 2.75 2.5	174 63 22 11.9 *7.6	7.0 5.3 4.5 3.95 3.55	8.4 9.2 4.9 3.95 3.5	2.6 2.45 *2.2 2.2 2.1	1.13 1.13 1.13 1.09 1.50	.89 1.05 .89 .93 .82	.60 .60 .70	.49 .49 .52 .52	.43 .41 .45 .52 .43
21 22 23 24 25	.55 .55 .47 .61	7.0 5.5 4.3 13 8.0	5.0 3.95 2.5 2.2 4.4	6.0 4.8 4.2 3.7 3.5	3.4 3.1 2.95 19.8 6.2	3.2 3.6 3.6 3.2 3.2	2.15 1.97 1.92 1.86 1.75	1.13 1.35 1.09 1.05	.79 .89 *.79 .76	.70 .70 .70 .70	.49 .47 .67 .85	.39 6.1 1.40 *.64 2.55
26 27 28 29 30 31	.73 .70 .61 .52 .49	5.0 4.0 60 36 3.0	16.3 4.6 36 9.2 5.5	3.1 2.8 8.6 7.0 4.9 3.95	4.3 3.6 3.2 2.95 5.6	2.8 3.55 2.95 2.6 2.5 2.3	1.70 1.65 1.60 1.60 1.55	1.17 1.65 1.40	.73 .73 .73 .73 .70 .76	.58 .58 .50 .64	.49 .47 .47 .49 .47	.89 .70 .73 .64
Total Mean Ac-ft	21.82 0.704 43	531.15 17.1 1,050	178.15 5.94 353	780.40 25.2 1,550	399.85 13.3 793	138.75 4.48 275	128.35 4.14 255	35.60 1.27 71	27.58 0.890 55	20.61 0.687 41	17.08 0.551 34	25.03 0.834 50
	ndar vear 1 year 19				Min 0,39	Mea Mea		Ac-1	ft - ft 4,570			

Peak discharge (base, 500 cfs).--Oct. 15 (10 a.m.) 1,050 cfs (5.47 ft); Nov. 13 (3 p.m.) 610 cfs (4.60 ft).

^{*} Discharge measurement made on this day.
Note. --No gage-height record Aug. 18 to Sept. 16, Apr. 8 to May 13; discharge estimated on basis of records for Umatac River at Umatac.

La Sa Fua River near Umatac -- Continued

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.86 4.8 1.18 1.09 1.08	1.01 1.86 1.36 1.05 .93	10.5 #5.9 27.5 22 28	8.4 5.2 5.1 4.2 8.5	30 10 6.5 6.5 4.8	3.55 3.2 2.8 2.6 2.5	1.35 1.40 1.61 1.64 *1.69	*1.55 1.45 1.60 1.62 1.35	1.01 .93 .89 .97	0.86 .73 .73 .73 .67	0.58 .52 .58 .73 .55	1.01 .79 .70 .76
6 7 8 9 10	.85 .76 .70 .67	1.19 2.2 1.22 1.67 1.21	53 18.0 18.2 20 13	4.3 3.5 4.0 3.3 3.0	4.0 3.6 3.4 3.0 2.8	2.55 2.7 2.25 2.25 2.2	1.35 1.30 1.85 1.40 3.05	1.30 1.25 1.25 1.17 1.17	.85 .82 .82 .82	.64 .88 .73 1.17 .73	.52 .64 .87 2.15	.82 .79 .73 <u>1.76</u>
11 12 13 14 15	.61 .58 .70 .86	1.09 7.4 3.5 2.8 2.0	6.0 4.5 4.7 44 32	3.8 4.4 3.4 3.0 2.8	17 5.7 3.6 3.2 2.95	2.2 1.97 1.86 1.86 1.80	2.5 2.0 1.75 3.85 4.5	1.26 1.22 1.05 1.17 1.25	1.04 .93 .85 .76 .79	.67 .67 .64 .64	.64 .58 .82 9.3	.79 .82 1.00 .76
16 17 18 19 20	2.25 4.9 2.95 1.25	1.86 3.95 3.0 7.7 26	12.1 6.6 4.9 4.2 28.5	2.7 3.1 2.7 *2.2 2.1	2.7 9.2 37 6.6 8.3	1.80 1.75 2.7 1.75 1.65	2.35 6.1 2.75 2.4 2.1	1.17 1.17 1.05 1.01	*.73 .79 .79 .76	.70 .64 *.64 .81 .91	1.42 .93 .79 .76	.67 .84 .70 .64
21 22 23 24 25	1.05 1.22 .89 .97 .89	9.0 4.0 2.85 8.7 25	29 19.9 10.8 8.2 5.7	2.8 4.3 6.7 4.4 6.2	4.5 5.3 8.0 12.0 11.0	1.65 1.77 1.60 1.55 1.50	1.86 1.75 1.65 1.60 2.0	3.25 1.88 1.25 1.13 1.05	.89 .79 .76 .90	.64 .61 .58 .58	.70 .67 .64 .64	.73 .61 .56 .61
26 27 28 29 30	.79 .73 .73 .83 *.68 1.56	11.5 6.4 4.1 3.1 2.55 2.75	5.1 4.2 12.3 5.2 11.9	7.6 6.4 4.9 3.9 3.4 65	6.8 23.5 6.8 5.1 *4.3	1.50 1.40 1.40 1.55 1.40 1.40	9.4 2.25 1.92 1.80 1.65 1.60	1.01 1.37 1.09	.92 1.01 .76 .76 .76	.55 .52 .58 .52 .52	.65 *1.89 1.09 .79 .73	.61 .83 .56 .79 1.14
Total Mean Ac-ft	38.38 1.24 76	152.95 4.93 303	475.9 15.9 944	195.3 6.30 387	258.15 8.60 512	62.66 2.02 124	74.42 2.40 148	37.06 1.32 74	26.22 0.846 52	20.57 0.686 41	33.56 1.08 67	23.96 0.799 46

Peak discharge (base, 500 cfs). -- Sept. 6 (5:30 p.m.) 610 cfs (4.62 ft).

^{*} Discharge measurement made on this day.
Note. --No gage-height record Sept. 9-12, Oct. 5-18, Nov. 1-11; discharge estimated on basis of records for Umatac River at Umatac.

La Sa Fua River near Umatac--Continued

		Dischar	rge, in o	ubic fee	t per se	cond, f	iscal yea	ar July	1955 to	June 1950	5	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.85 .70 .64 .81	3.75 2.3 2.05 1.86 1.60	54 4.2 3.4 2.35 2.45	6.6 6.7 9.7 4.4 3.55	3.4 3.1 2.6 4.3 2.55	2.8 *2.15 1.92 1.70 1.65	2.0 1.55 5.0 1.70 1.40	0.97 .85 1.25 .97 .89	0.67 .70 .76 .64	0.85 .79 .73 .73 *.73	0.55 .58 .52 .93 .55	0.64 .67 .64 .67
6 7 8 9	20.5 #7.9 11.8 8.5 2.9	1.50 1.35 1.25 1.21 1.25	2.5 2.15 1.80 3.9 21.5	3.1 3.0 2.55 2.25 2.1	2.5 2.4 2.3 2.2 3.65	1.70 1.55 1.65 1.45	2.45 1.55 1.35 1.30 1.21	.82 1.05 1.30 1.52 1.09	.64 .61 .61 .61 2.2	.73 .70 .64 .70	.49 .49 .55 .49	.52 .52 1.23 .61 .52
11 12 13 14 15	6.9 9.6 5.2 3.2 2.35	*1.39 1.17 1.01 .97 .97	11.8 6.1 4.2 4.1 2.8	2.2 1.92 2.95 1.92 1.70	2.2 1.92 1.86 1.75 2.35	1.45 6.5 2.7 2.4 1.97	#1.30 1.21 1.21 1.13 1.13	.97 .89 .85 .89	.97 .73 .67 .64	.64 .64 .76 .67	.47 .47 .52 .45	.61 .52 .49 .67
16 17 18 19 20	14.5 3.45 2.45 2.0 1.80	1.27 1.09 2.1 1.93 1.82	16.6 8.5 18.8 5.8 4.1	1.70 1.60 1.55 3.55 9.5	1.65 1.65 1.75 1.50 1.40	33 4.3 2.75 2.25 2.2	1.17 1.21 1.09 1.05 1.01	1.76 .93 .85 .82 *.76	.97 .70 .76 .67	.61 .79 .64 .61	.49 .49 .45 .47	52 6.1 4.4 1.80 1.13
21 22 23 24 25	1.60 1.78 1.86 1.40 2.1	1.44 1.38 1.44 1.64 1.88	#6.9 19.1 7.3 5.9 12.2	1.92 52 9.5 14.9 11.2	1.50 1.96 2.9 1.55 1.40	1.97 1.80 1.80 1.65 1.55	1.01 1.01 1.09 1.01	.76 .76 .76 .76	.82 .67 .70 .61	.64 .55 .61 .52	.45 .43 .41 .45	.89 .79 .76 1.38 1.67
26 27 28 29 30 31	4.1 2.3 1.86 1.55 2.5 3.6	1.21 1.13 1.01 1.09 .97 1.38	7.8 33.5 70 47 10.9	7.4 17.4 *13.6 9.2 5.0 3.9	1.60 1.45 16.3 7.2 6.7	1.50 1.40 1.40 1.30 1.25 1.21	1.13 1.01 .93 .93 .89	.73 .70 .67 .67	.61 .89 <u>8.1</u> 1.60 1.01 1.12	.52 .61 .58 .82 .67	.89 .70 *.49 .70 1.15	2.25 1.58 1.17 .97
Total Mean Ac-ft	131.31 4.24 260	46.41 1.50 92	401.65 13.4 797	218.56 7.05 434	89.59 2.99 178	94.37 3.04 187	41.93 1.35 83	27.02 0.932 54	32.30 1.04 64	19.98 0.666 40	17.40 0.561 35	35.88 1.20 71
	ndar year 1 year 19				fin 0.52 fin 0.41	Mea Mea		Ac-i				

^{*} Discharge measurement made on this day.

Peak discharge (base, 500 cfs).--Sept. 10 (6:30 p.m.) 505 cfs (4.31 ft).

La Sa Fua River near Umatac -- Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.01 .97 .93 .82 .82	3.7 3.55 2.7 2.35 1.97	14.5 13.3 10.4 *10.7 10.5	5.5 3.55 2.9 3.6 3.45	2.4 2.15 2.2 1.92 1.80	3.45 18.5 9.3 5.0 6.5	2.45 2.2 2.3 1.97 1.92	1.60 1.45 1.65 2.3 2.4	1.01 1.01 1.01 2.75 1.40	1.29 2.65 1.41 .97 .97	0.87 .64 .61 .64 .61	0.55 .52 .49 .49
6 7 8 9	.79 .82 1.32 3.2 1.86	1.75 3.3 14.9 8.6 3.45	4.9 5.9 7.2 5.3 6.5	2.45 2.25 2.3 1.97 2.3	1.75 2.15 1.65 1.80 12.2	8.2 3.55 2.95 2.7 2.45	1.80 1.65 1.60 1.65 19.2	1.65 1.55 3.3 1.60 1.50	1.17 1.05 1.01 1.17 1.01	.89 .82 .82 .85 .82	.58 2.25 1.02 .73 .64	.52 .49 .61 .49
11 12 13 14 15	1.21 1.78 6.4 13.4 3.4	3.05 2.8 2.25 1.72 3.05	8.9 7.8 4.4 3.5 33	13.3 25 5.7 5.4 21	6.4 21 20.5 5.7 3.5	*2.2 2.15 2.1 70 69	4.8 3.4 2.35 2.1 2.15	1.40 *1.40 1.30 1.25 1.17	1.01 1.01 1.01 .93 .93	.82 .79 .76 1.07 .76	.61 .61 .61 .58	.49 .49 .91 .52
16 17 18 19	2.1 1.80 1.50 *1.55 1.30	1.75 5.9 3.65 2.15 1.75	5.8 8.7 8.2 6.4 11.0	27 5.4 6.0 7.8 4.3	19.8 13.6 33.5 8.9 5.5	8.2 5.5 3.8 3.4 2.95	2.0 5.5 2.15 1.97 4.7	1.17 1.13 1.17 2.05 1.30	.89 .89 .89 .93	.70 .73 .70 .70	.58 .55 1.08 .55	.45 .45 .55
21 22 23 24 25	1.17 1.42 1.22 5.4 2.4	1.70 1.70 1.70 1.85 1.55	8.0 4.7 19.6 9.4 4.7	3.3 2.8 2.6 2.3 6.3	4.4 4.3 7.7 4.1 3.2	2.95 2.5 2.35 2.2 2.65	1.92 1.70 1.65 1.65	1.17 1.17 1.81 1.65 1.25	.85 .79 .79 .79	.82 .70 .73 .70	*9.6 .89 .90 .73	.90 .64 .61 .55
26 27 28 29 30	23.5 7.9 5.3 5.0 23.5 5.7	4.7 21 44 43 9.8 4.8	4.0 5.0 11.5 4.5 33.5	2.7 2.55 16.6 *4.4 3.85 2.6	3.25 2.8 2.45 2.8 2.6	7.2 5.1 2.55 2.2 2.15 2.65	1.50 1.40 1.45 5.6 1.65 2.45	1.17 1.13 1.09	.76 2.6 *1.22 .89 .85 .79	.67 .64 .74 .73 .64	.70 .61 .61 .73 .64	.67 .58 .61 .52
Total Mean Ac-ft	129.49 4.18 257	210.14 6.78 417	291.8 9.73 579	201.17 6.49 399	206.02 6.87 409	266.40 8.59 528	90.43 2.92 179	42.78 1.53 85	33.12 1.07 66	26.26 0.875 52	31.34 1.01 62	21.46 0.715 43

Peak discharge (base, 500 cfs).--Aug. 28 (1 p.m.) 650 cfs (4.72 ft); Dec. 15 (1 a.m.) 540 cfs (4.42 ft).

^{*} Discharge measurement made on this day.

La Sa Fua River near Umatac -- Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

		DIBONA	80, 111	Judio 10	co per o	scond, I	rocar jo	ur 0 ur			9	
Da.y	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.52 .56 .49 .58	0.55 .49 .49 <u>.47</u> .67	14.9 36.5 7.0 *6.8 4.4	2.15 1.86 1.65 1.67 23	18 6.0 4.0 3.4 3.0	1.80 2.0 1.70 1.65 1.55	1.05 .97 <u>.93</u> .93	1.31 1.30 1.17 1.05 1.01	0.82 .73 .73 .76 .79	0.49 .49 .49 .47	0.47 .41 .39 .68 .45	2.0 .58 .49 .45 .41
6 7 8 9	.58 .52 .47 .45 .88	.52 .52 .52 .56 1.01	4.7 6.3 4.8 3.5 2.95	100 51 12 8.0 6.0	2.8 2.8 160 25 13	1.45 1.50 1.40 1.48 1.35	.93 1.05 3.0 1.05 1.01	1.01 1.01 .97 .97	.73 *.84 .74 .67	.49 .47 .47 .43 .52	.39 *.39 .41 .41	.43 .59 .49 .47 22.5
11 12 13 14 15	1.22 *14.7 3.5 1.21 .93	.52 .70 2.4 2.7 .97	4.1 2.75 2.7 2.3 2.0	4.5 5.4 4.8 4.4 4.0	10 92 13.9 7.5 147	1.30 1.35 1.25 1.30 3.25	1.25 1.21 2.9 64 *6.5	.93 .89 .89 .85 .82	.70 .73 .61 .67	.47 .47 1.01 .58 .47	.39 .39 .39 .37	3.25 *1.52 14.9 56 7.1
16 17 18 19 20	.89 .85 .82 .76 1.03	3.6 3.25 3.0 16.1 5.1	2.5 2.15 1.86 6.8 2.7	3.2 2.8 2.5 2.4 2.3	67 15 10 7.0 5.0	2.5 1.40 1.25 1.21 1.17	3.0 2.3 2.0 2.0 2.8	.82 .79 1.39 .92 .82	.61 .58 .55 .55	.45 .89 .49 .66	.35 .35 .37 .37	3.55 2.45 1.92 1.65 1.50
21 22 23 24 25	.76 .82 .67 .58	4.7 3.2 6.6 13.5 8.8	2.1 13.2 3.8 3.1 4.4	2.7 10 6.3 3.0 3.5	3.8 #2.9 2.6 2.45 2.75	1.30 1.13 1.09 1.09	1.92 1.65 1.50 1.45 1.40	.79 .76 .89 1.91 .89	.52 .49 .52 .49 .58	.49 .49 .43 .45 .41	.39 .86 .53 .45	1.35 1.25 1.34 1.29 1.24
26 27 28 29 30 31	.55 .52 .73 .76 .58	5.6 3.4 35.5 10.3 5.6 3.9	2.55 3.2 2.35 2.0 2.85	3.7 5.6 *15 2.45 23.5 3.8	2.4 3.55 2.35 2.2 1.97	1.01 .97 1.13 1.35 1.01 1.01	1.25 1.95 1.40 1.45 1.40 1.21	.82 .79 .82	.52 .52 .49 .52 1.04	.43 .43 .45 .76 .45	.37 .37 .48 1.52 .49	1.02 1.27 1.05 .97 .82
Total Mean Ac-ft	38.73 1.25 77	145.24 4.69 288	161.26 5.38 320	323.18 10.4 641	639.37 21.3 1,270	43.96 1.42 87	116.43 3.76 231	27.56 0.984 55	19.82 0.639 39	15.54 0.518 31	14.47 0.467 29	133.85 4.46 265
		1957: N 057-58: N			Min 0.45			Ac-1				

Peak discharge (base, 500 cfs).--Sept. 2 (2 p.m.) 730 cfs (4.93 ft); Oct. 6 (7:30 a.m.) 505 cfs (4.29 ft); Nov. 15 (8 p.m.) 575 cfs (4.48 ft).

^{*} Discharge measurement made on this day.

Note. --No gage-height record Oct. 8-28, Nov. 1-12, 17-21; discharge estimated on basis of records for Umatac and Geus Rivers.

Umatac River at Umatac

Location. -- Lat 13°17'45" N., long 144°39'50" E., on left bank 0.2 mile upstream from mouth, 0.3 mile southeast of Umatac, 5.7 miles northwest of Inarajan, and 6.0 miles south of Agat.

Drainage area. -- 2.0 sq mi.

Records available. -- September 1952 to June 1958.

<u>Gage.</u>—Water-stage recorder and concrete control. Altitude of gage is 12 ft (from topographic map).
Prior to Oct. 16, 1953, at same site at datum 0.62 ft higher.

Average discharge. -- 5 years (1953-58), 7.34 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1953-58 are contained in the following table:

Fiscal		Maximum			Minimum	
year	Date	Discharge (cfs)	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1953†	Feb. 22, 1953	11800	3.42	June 11, 13, 14, 1953	0.41	0.27
1954	Oct. 15, 1953	112,370	\$5.08	June 3,21,1954	.43	.19
1955	Oct. 31, 1954	‡ ‡750	2.68	June 25,26,1955	.50	.20
1956	Sept. 27, 1955	1.360	3.39	May 24,25,1956	.32	.19
1957	Aug. 29, 1956	##2,200	4.09	June 17, 18, 1957	.49	.19
1958	Nov. 15, 1957	**1 ,680	3.66	Aug. 3, 1957	.49	.19

† Period September to June.

‡ From floodmarks.

† From rating curve extended above 15 cfs by test on model of station site.

‡ From rating curve extended above 230 cfs on basis of slope-area measurement at gage height 3.51 ft.

1952-58: Maximum discharge, 2,370 cfs Oct. 15, 1953 (gage height, 5.08 ft, from floodmarks), from rating curve extended above 15 cfs by test on model of station site; minimum, 0.32 cfs May 24, 25, 1956.

Remarks .- - Records good except those for period of no gage-height record, which are poor.

Umatac River at Umatac -- Continued

Rating tables, Sept. 10, 1952, to June 30, 1958 (gage height, in feet, and discharge, in cubic feet per second)

		10, 1952 15, 1953				4, 1954 28, 195			Oct. 29 to June		3
0.3 .4 .5 .6 .7 .9 1.1 1.3	0.52 1.10 1.95 3.1 4.7 9.2 16.5 27.5	1.5 1.7 1.9 2.1 2.4 2.7 3.0	44 74 113 172 280 400 550	0.2 .3 .4 .5 .6 .7	0.50 1.57 3.7 7.0 12.1 19.5	0.8 .9 1.0 1.1 1.3 1.5	28.5 39.0 51 66 108 159	0.2 .3 .4 .5 .6	0.56 1.80 4.0 7.6 12.5 19.6	0.9 1.1 1.3 1.5 1.7	39 66 108 159 220 295

Discharge, in cubic feet per second, September 1952 to June 1953

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5			-	10.2 7.8 7.8 6.6 8.4	8.0 6.8 *6.2 5.5 21.5	10.2 15.4 12.1 8.7 7.3	6.2 5.1 4.4 3.9 4.1	1.95 1.86 1.86 2.05 1.77	4.4 4.2 3.9 5.5 4.2	1.68 1.51 1.51 1.59 1.51	0.91 .85 .91 *.91 .79	0.67 .67 *.63
6 7 8 9 10			-	5.8 16.0 8.9 18.2 12.7	9.3 12.5 27 23 80	6.8 12.7 6.8 6.2 6.4	3.75 4.4 4.2 3.1 2.85	2.05 2.6 2.15 1.77 1.77	#3.6 3.4 4.9 4.2 3.6	1.51 1.68 1.43 1.34 1.51	.85 .85 .85 .79	.67 .62 .62
11 12 13 14 15			8.5 8.0 40 45 12.2	8.0 7.3 *7.6 10.5 9.5	16.1 11.5 9.2 8.2 7.5	6.5 5.8 4.9 5.3 5.0	2.85 *2.75 2.75 2.75 2.75	1.86 2.15 1.95 1.68 1.59	3.25 3.25 2.85 2.75 2.75	1.34 1.43 1.34 1.26 1.18	.73 .73 .73 .67	.52 .62 .57 .57
16 17 18 19 20			8.7 7.0 6.3 5.1 4.4	7.3 12.3 33 18.4 10.8	29 10.8 8.5 11.5 12.9	4.4 *4.4 4.2 3.9 3.6	2.75 2.6 2.4 2.3 2.3	1.68 1.68 1.59 1.51 1.68	2.5 2.5 2.4 2.3 2.3	1.26 1.18 1.18 1.10 1.10	.91 .79 .91 .79	.62 .62 .63
21 22 23 24 25			3.9 3.75 19.3 7.3 5.1	8.7 7.5 6.8 15.9 8.0	9.9 8.7 12.8 8.0 16.2	3.6 3.6 11.1 4.5 5.4	2.3 2.15 2.75 2.3 2.15	#1.51 138 27.5 11.8 8.0	2.15 2.05 2.15 1.95 1.95	.97 .97 .97 .97	.73 .79 .79 .79	. 62 . 93 . 67 . 62
26 27 28 29 30 31			4.4 4.4 14.7 31 19.6	15.2 6.8 6.0 5.3 18.0 14.1	8.7 7.5 8.3 13.4 14.9	4.2 4.1 3.6 6.0 3.9 25.5	1.95 2.15 2.05 2.05 2.6 2.15	6.4 5.8 4.7	1.86 1.77 1.77 1.77 1.68 1.68	.91 .91 .97 .91	.73 .79 .67 .67 .67	.62 .97 1.03 .97
rotal Mesn Nc-ft			-	339.4 10.9 673	433.4 14.4 860	216.1 6.97 429	92.80 2.99 184	240.91 8.60 478	89.53 2.89 178	37.10 1.24 74	24.49 0.790 49	20.27 0.676

Peak discharge (base, 850 cfs) .-- No peak above base.

^{*} Discharge measurement made on this day.

Umatac River at Umatac -- Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.73 .73 .91 .79 .73	0.62 .79 1.18 .79 .85	14.4 28.5 19.5 13.3 10.2	9.9 8.2 7.3 6.4 6.2	6.2 5.8 5.4 5.4 5.2	8.0 7.8 9.0 11 8.0	3.7 4.0 3.6 3.5 3.1	2.4 2.3 2.4 2.3 2.3	1.4 1.3 1.3 1.3 1.4	1.04 1.73 1.42 1.57 1.16	1,16 .93 .93 .83 .74	0.7 .6 .7 .7
6 7 8 9 10	.85 .67 .67 .57	.85 .85 1.10 1.03 15.5	9.0 7.8 7.0 6.2 6.0	5.5 9.7 6.6 5.5 4.9	4.9 4.7 5.0 4.5	7.2 *6.4 5.8 5.4 5.0	3.5 2.9 3.0 90	2.2 2.1 2.0 1.9 1.9	1.3 1.3 1.4 1.3 1.3	1.16 1.16 1.04 .93	.74 .74 .74 .74 .83	.8 1.0 1.1 1.0
11 12 13 14 15	.57 .67 .91 .73	147 52 27 13.3 21	5.3 4.9 4.5 4.4	4.9 5.1 5.1 5.1 500	7.0 150 200 50 16	5.0 5.6 5.0 10 9.0	7.0 5.4 4.6 4.2 4.5	1.9 1.9 1.9 1.8	1.4 1.3 1.2 1.2 1.3	. 93 . 93 . 93 . 93 . 83	.83 1.04 *.77 .74	.9 .9 .7
16 17 18 19 20	.79 4.2 1.77 1.03 *1.03	48 30 108 27 16.1	4.1 3.9 5.8 6.0 5.1	250 90 32 15 11	9.0 8.0 7.2 7.0	10 12 9.0 7.4 6.6	4.0 3.7 3.5 3.5 3.5	1.8 1.8 1.7 2.1	1.2 1.4 1.2 1.3 1.1	.83 .83 .83 .93	.65 .74 .74 .74	.7 .6 .6
21 22 23 24 25	.97 .97 .85 .91	12.6 10.5 8.2 23 *13.4	8.0 6.6 5.1 4.5 7.2	9.4 8.0 7.4 7.0 6.6	6.6 6.4 6.2 28 10	6.0 6.6 6.0 6.0	3.3 3.1 3.1 3.0 2.9	1.8 2.0 1.7 1.6 1.6	1.1 1.2 *1.1 1.04 1.04	.93 .93 .93 .93	.83 .83 .93 1.04 .83	*,5 4,2 1.9 1.1 3.4
26 27 28 29 30 31	.85 .85 .73 .73 .67	9.0 7.5 103 66 56 21.5	17.6 8.0 58 18.5 12.9	6.2 5.8 12 8.8 7.4 6.6	8.0 7.2 6.6 6.2 9.0	5.6 6.6 5.4 4.8 4.3 4.0	2.9 2.9 2.8 2.7 2.7 2.5	1.7 2.2 1.8	1.04 1.04 1.04 1.04 1.04	.83 .83 .83 .74	.74 .83 .83 .74 .74	1.4 1.1 1.0 1.0
otal lean	28.83 0.930 57	843.66 27.2 1,670	316.7 10.6 628	1,073.6 34.6 2,130	616.5 20.6 1,220	215.1 6.94 427	207.9 6.71 412	54.7 1.95 108	37.62 1.21 75	29.65 0.988 59	25.19 0.812 50	32.9 1.1 6

Peak discharge (base, 850 cfs).--Oct. 15 (2:30 a.m.) 2,370 cfs (5.08 ft).

^{*} Discharge measurement made on this day.

Note. --No gage-height record Oct. 15 to Mar. 23; discharge estimated on basis of records for nearby stations.

Umatac River at Umatac -- Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

			0.,									
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.16 4.2 1.57 1.57 2.3	0.93 1.42 1.57 1.57 1.16	*13.8 6.6 14.9 39 38.5	16.8 9.9 15.3 9.4 17.8	60 18.6 12.1 11.8 8.9	7.4 6.2 5.8 5.1 4.8	2.5 2.9 3.2 3.2 2.9	*2.2 1.90 2.1 1.90 1.73	1.73 1.57 1.42 1.42 1.28	1,28 1.04 1.04 1.16 .93	0.93 .93 1.04 1.42 1.16	1.16 1.16 .93 .93
6 7 8 9	1.42 1.28 1.16 1.04 1.16	1.28 1.42 1.25 2.5 1.57	87 28.5 30 36.5 23.5	9.4 7.0 8.8 6.6 5.8	7.4 6.6 6.2 5.4 5.1	5.1 5.1 4.5 4.5	2.3 *1,90 2.3 2.1 2.9	1.57 1.57 1.73 1.73 1.57	1.28 1.16 1.16 1.16 1.28	.93 1.28 1.16 1.90 1.16	.93 .83 1.16 4.6 1.28	1.04 *1.16 .93 1.71 1.28
11 12 13 14 15	1.16 1.04 1.16 1.28 1.16	1.57 2.2 2.1 1.90 1.90	11.5 8.4 8.6 57 65	7.9 9.3 6.8 #5.8 5.4	30.5 10.2 7.0 6.2 6.1	4.2 3.7 3.4 3.4 3.4	2.5 2.3 2.3 4.9 5.2	1.73 1.73 1.57 1.73 1.90	1.42 1.28 1.28 1.04 1.16	1.04 .93 1.04 .93 .83	1.04 .93 .83 1.16 10.1	1.04 1.04 1.04 .93
16 17 18 19 20	1.16 1.77 2.75 1.73 1.28	1.42 2.65 5.3 21 39.5	26.5 15.1 10.4 8.4 52	5.1 6.0 5.1 *4.2 3.95	5.4 4.8 63 10.9 13.7	3.4 3.2 3.4 3.2 2.9	2.7 11.6 3.7 3.2 2.7	1.73 1.73 1.57 1.42 1.42	1.16 1.04 *1.04 1.04 1.04	.93 .83 *.83 1.28 1.73	2.3 1.57 1.28 1.42 1.73	.83 1.04 .83 .83
21 22 23 24 25	1.28 1.42 1.28 1.16 1.16	11.9 4.8 3.4 7.4 32	48 36 21.5 15.1 11.5	5.9 6.9 8.9 5.8 9.8	8.4 14.9 11.7 19.3 16.6	2.7 2.9 2.7 2.5 2.5	2.5 2.3 2.1 1.90 3.6	2.7 2.1 1.73 1.57 1.42	1.57 1.28 1.16 1.94 1.28	1.28 1.04 .93 .83	2.1 1.28 1.04 1.04	.83 .74 .74 .74
26 27 28 29 30 31	1.16 1.04 1.04 1.16 * <u>.83</u> 1.35	10.9 7.0 4.8 3.7 3.4 3.7	14.4 9.4 29.5 10.4 18.5	11.8 9.9 10.1 7.0 5.8	11.8 39 12.8 *9.9 8.4	2.5 2.5 2.5 2.9 2.9	11.5 3.2 2.7 2.5 2.1 2.3	1.42 2.1 1.90	1.16 1.57 1.16 1.04 1.04	.83 <u>.74</u> .83 .74 .93	.83 1.92 1.42 1.04 .93 .83	.65 .74 1.28 1.28 1.04
Total Mean Ac-ft	44.23 1.43 88	187.21 6.04 371	795.5 26.5 1,580	369.25 11.9 732	452.7 15.1 898	116.0 3.74 230	104.00 3.35 206	49.47 1.77 98	39.20 1.26 78	31.33 1.04 62	50.00 1.61 99	29.35 0.978 58
	dar year l year 19			Min Min	0.57	Mean Mean	5.45 5.21	Ac-i				

Peak discharge (base, 850 cfs).--No peak above base.

^{*} Discharge measurement made on this day.

Umatac River at Umatac -- Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.04 .93 .83 1.16 .83	4.9 3.2 3.2 2.6 2.1	81 6.5 6.1 3.7 4.1	12.8 13.3 16.5 8.4 6.6	7.0 6.2 5.4 5.9 4.8	4.2 *3.2 2.9 2.7 2.5	3.7 2.5 7.6 2.9 2.3	1.42 1.16 1.90 1.73 1.28	0.83 .93 1.04 .83 .83	1,16 1,04 .93 *.93 .83	0.74 .74 .65 1.35	1.0 .9: .9:
6 7 8 9 10	26 8.3 13.5 9.0 3.4	1.90 1.73 1.57 1.42 1.57	5.5 3.95 2.7 3.0 32.5	6.2 5.8 4.5 4.2 3.95	4.8 4.7 4.2 4.2 9.7	2.7 2.3 2.7 2.3 2.3	5.6 2.7 2.3 2.1 1.90	1.16 1.57 2.3 2.7 1.90	.83 .83 .83 .83 2.05	.83 .83 .74 .74	.65 .57 .74 .57	.74 .73 1.8 .86
11 12 13 14 15	7.6 12.7 6.2 3.95 2.9	#1.73 1.57 1.28 1.28 1.16	19.6 16.2 9.2 6.5 4.5	3.95 3.4 7.4 3.95 3.4	4.5 3.7 3.4 3.4 3.2	2.3 9.6 5.8 4.2 3.2	*2.1 1.90 1.73 1.57 1.57	1.42 1.28 1.28 1.42 1.16	1.28 1.16 1.04 1.04 1.16	.74 .74 .74 .74	.57 .65 .65 .57	.85 .72 .67
16 17 18 19 20	17.9 4.2 2.9 2.5 2.3	1.42 1.28 3.2 2.75 3.0	24.5 11.7 18.3 7.9 8.4	3.2 2.9 2.9 9.2 16.3	2.9 3.2 3.3 2.7 2.7	47 6.9 4.5 3.7 3.95	1.73 1.90 1.90 1.57 1.57	1.73 1.16 1.16 1.04 *1.04	1.57 1.16 1.16 1.16 1.04	.74 .83 .74 .74	.65 .57 .57 .57	8.5 6.0 2.5 1.6
21 22 23 24 25	1.90 1.90 2.1 1.73 1.73	1.90 1.73 1.96 1.57	*12.6 20 15.8 13.1 24.5	3.7 89 15.5 17.9 15.2	2.7 3.3 4.3 2.7 2.3	3.2 2.7 2.7 2.5 2.5	1.42 1.42 1.73 1.42 1.28	1.04 1.04 1.04 1.04 1.42	1.16 1.04 1.04 .93 .83	.74 .65 .65 .65	.57 .57 .50 .50	1.2 1.1 1.0 1.6 *1.9
26 27 28 29 30 31	2.65 2.1 1.90 1.73 1.90 11.7	1.42 1.28 1.28 1.70 1.28	14.8 57 119 71 19.8	10.9 *37.5 25 19.9 10.4 8.4	2.5 2.7 13.8 5.5 13.5	2.3 2.3 2.3 2.1 1.90 1.90	1.42 1.42 1.28 1.28 1.28	1.16 1.04 1.04 .93	.83 1.21 9.6 2.1 1.28 1.42	.65 .74 .74 .83 .83	1.16 1.04 *.74 1.16 1.28 1.28	2.3 1.73 1.57 1.28 1.18
rotal Mean Ac-ft	159.48 5.14 316	60.46 1.95 120	643.45 21.4 1,280	392.25 12.7 778	143.2 4.77 284	145.35 4.69 288	66.37 2.14 132	39.56 1.36 78	43.04 1.39 85	23.48 0.783 47	22.64 0.730 45	47.69 1.59 95

Peak discharge (base, 850 cfs)--Sept. 27 (11 p.m.) 1,360 cfs (3.39 ft); Oct. 22 (6 a.m.) 1,020 cfs (3.07 ft).

^{*} Discharge measurement made on this day.

Note. -No gage-height record June 4-25; discharge estimated on basis of records for La Sa Fua River near Umatac.

Umatac River at Umatac -- Continued

in cubic feet per second fiscal year July 1956 to June 1957

		Discha	rge, in	cubic fee	et per se	econd, f	iscal yea	ar July	1956 to	June 195	1	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.42 1.42 1.42 1.16 1.16	5.8 5.3 3.7 3.8 3.2	18.5 23 12.4 16.4 *16.3	9.4 6.6 5.8 10.6 9.6	6.0 5.3 6.8 5.0 4.3	15.4 34.5 20.5 15.2 10.5	6.9 5.0 5.3 4.3 4.0	3.0 2.75 3.25 5.2 6.7	1.97 1.97 1.97 2.75 3.0	1.97 3.6 2.35 1.63 1.63	1.63 1.18 1.06 1.18 1.06	0.84 .84 .84 .74
6 7 8 9 10	1.04 1.28 1.40 5.6 4.0	2.7 4.7 27 13.1 6.2	8.4 14.3 13.5 a15.3 a21	5.8 4.8 6.2 4.5 5.9	4.0 5.9 4.0 4.3 21.5	21.5 8.5 6.8 6.4 #5.6	3.75 3.5 3.5 3.8 40	3.5 3.2 8.1 3.25 3.0	2.35 1.97 1.97 2.15 1.80	1.63 1.47 1.47 1.47	.94 1.76 1.80 1.32 1.32	.74 .84 .94 .84
11 12 13 14 15	2.9 3.25 9.6 24.5 4.8	4.5 3.4 3.2 2.9 5.9	a30 a23 7.4 6.2 *48	21.5 38 9.0 10.1	7.7 55 26 10.0 6.8	5.0 5.0 4.6 160 *127	7.6 5.3 4.3 3.75 3.75	3.0 *2.75 2.55 2.35 2.35	1.63 1.80 1.63 1.63 *1.63	1.32 1.32 1.32 1.63 1.32	1.06 .94 1.06 1.06	.84 1.18 1.32 .84 .74
16 17 18 19 20	3.2 2.5 2.3 *2.1 1.90	3.2 11.4 5.6 3.4 2.9	9.9 10.3 16.7 11.7	22.5 8.9 10.3 16.8 7.9	67 41 54 16.5 13.7	19.0 12.5 9.5 8.5 7.2	5.2 13.4 4.6 3.75 5.7	2.15 2.15 2.15 3.5 2.55	1.47 1.47 1.63 1.63 1.47	1.18 1.18 1.06 1.18 1.18	.94 .84 1.76 .94 .94	1.06 .64 .84 4.2
21 22 23 24 25	1.57 1.57 1.42 4.5 5.0	2.9 2.9 5.1 4.9 3.2	14.3 8.4 42 46 11.5	6.2 5.4 5.1 4.5 11.1	9.0 11.9 18.0 9.0 7.2	7.6 6.0 5.3 5.3	3.75 3.5 3.25 3.25 3.25	2.35 2.15 2.75 3.0 2.55	1.47 1.47 1.47 1.47 1.63	1.47 1.18 1.32 1.18 1.18	*13.6 1.32 1.18 1.06	1.32 .94 .84 .84
26 27 28 29 30 31	44 9.7 11.3 14.0 40 9.4	11.2 44 48 141 21 10.8	9.4 12.6 17.6 8.4 28	4.8 4.4 *65 14.1 9.7 6.4	7.2 6.4 5.6 6.5 11.5	9.9 8.4 5.0 4.6 4.3 5.5	3.0 3.0 3.0 11.8 3.25 3.5	2.15 2.15 1.97	1.47 3.85 *2.35 1.63 1.47 1.32	1.18 1.06 1.18 1.18 1.18	1.18 1.06 .94 .94 .94	.94 .94 1.06 .94 1.06
Total Mean Ac-ft	219.41 7.08 435	416.9 13.4 827	541.5 18.0 1,070	391.9 12.6 777	457.1 15.2 907	570.4 18.4 1,130	181.95 5.87 361	86.52 3.09 172	57.49 1.85 114	43.49 1.45 86	47.63 1.54 94	30.86 1.03 61
		1956: N 956-57: N		Min Min	1.04		7.76 3.34	Ac-	ft 5,630 ft 6,030		1	

Peak discharge (base, 850 cfs).--Aug. 29 (2 p.m.) 2,200 cfs (4.09 ft); Sept. 24 (8:30 a.m.) 860 cfs (2.85 ft); Oct. 15 (6:30 p.m.) 1,120 cfs (3.13 ft); Oct. 28 (1 p.m.) 1,460 cfs (3.51 ft); Nov. 16 (7 p.m.) 1,800 cfs (3.75 ft); Dec. 14 (8 a.m.) 1,210 cfs (3.23 ft).

^{*} Discharge measurement made on this day. a No gage-height record; discharge estimated on basis of records for La Sa Fua River near Umatac.

Umatac River at Umatac -- Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

2	7									June 1958		
Day 1 2	July 1.06 1.32	Aug. 0.74 .74	Sept. 37	0ct. 3.2 2.8	Nov. 21 7.2	Dec. 5.0 5.3	Jan. 2.6 2.3	3.25 3.0	Mar. 1.97 1.97	Apr. 1.47 1.32	1.06 .94	June 5.0 1.47
3 4 5	.94 1.18 1.32	.74 .74 .84	14.6 *16 10	2.6 2.5 37	7.1 6.0 5.6	5.0 4.6 4.3	2.2 2.2 2.4	3.0 2.75 2.55	1.80 1.80 1.80	1.32 1.47 1.80	.84 1.47 1.18	1.06 .94 .94
6 7 8 9	1.18 1.06 .94 .94 1.32	.94 .64 .74 .74 1.18	8.0 11 8.4 7.6 5.4	200 70 20 12 9.0	5.0 5.0 209 35 19.7	4.0 4.0 3.75 4.0 3.75	2.2 2.6 4.0 2.5 2.3	2.55 2.35 2.35 2.35 2.35 2.35	1.80 *1.77 1.80 1.47 1.47	1.32 1.06 1.06 1.06 1.32	.94 *.84 .84 .94	1.06 1.06 1.18 23
11 12 13 14 15	*15.2 5.0 1.97 1.47	.74 .74 1.85 2.75 1.18	7.0 4.5 3.7 3.2 3.0	7.0 8.0 7.4 6.8 5.8	13.7 120 31.5 20.5 295	3.5 3.75 3.4 3.5 6.0	2.8 2.8 6.0 *80 13.7	2.35 2.35 2.35 2.35 2.15	1.47 1.80 1.47 1.47	1.47 1.32 1.63 1.47 1.47	.84 .84 .74 .74	5.8 3.5 27.5 94 13.2
16 17 18 19 20	1.32 1.06 .94 .94 1.32	3.4 4.1 9.8 13.1 6.3	4.0 3.3 2.9 9.0 4.5	5.0 4.8 4.4 4.2 4.0	123 29.5 18.1 14.3 12.0	5.0 3.7 3.4 3.1 2.9	8.0 6.4 5.3 5.0 7.2	2.15 2.15 2.75 2.35 2.15	1.47 1.47 1.47 1.32 1.32	1.18 1.47 1.47 1.80 1.32	.64 .64 .84 .94	7.2 5.0 3.75 3.25 3.0
21 22 23 24 25	.94 .94 .94 .84	5.6 5.4 7.4 18.6 12.0	3.5 17 6.0 4.5 6.0	4.5 13 8.2 5.0 5.4	10.0 9.0 *7.6 7.2 7.6	3.8 2.8 2.7 2.7 2.5	5.0 4.3 3.75 3.5 3.5	2.15 2.15 2.15 3.05 2.15	1.47 1.32 1.32 1.47 1.63	1.18 1.18 .94 1.06	1.18 1.80 1.18 .84	2.55 2.55 2.55 2.55 2.55
26 27 28 29 30 31	.74 .84 1.06 .94 .74	7.8 4.6 56 19.1 9.0 5.6	3.5 4.0 3.2 2.7 4.0	5.8 8.0 *18 8.5 9.2 7.6	6.4 6.8 6.0 5.6 5.3	2.5 2.4 2.7 3.2 2.4 2.4	3.25 3.75 3.25 3.0 3.0 3.0	1,97 1,97 1,97	1.47 1.32 1.32 1.32 1.80 1.47	.94 .94 .94 1.32 .94	.84 .74 .84 2,35 1.18 1.18	2.15 2.7 2.35 2.15 1.80
Total Mean Ac-ft	50.98 1.64 101	203.10 6.55 403	263.5 8.78 523	509.7 16.4 1,010	1,069.7 35.7 2,120	112.05 3.61 222	201.80 6.51 400	67.16 2.40 133	48.29 1.56 96	38.18 1.27 76	30.56 0.986 61	226.45 7.55 449
	dar year 1 year 19			Min	0.64		7.28	Ac-f				

Peak discharge (base, 850 cfs).--Sept. 2 (1:30 p.m.) 1,070 cfs (3.11 ft); Nov. 8 (3 p.m.) 1,360 cfs (3.45 ft); Nov. 15 (8 p.m.) 1,680 cfs (3.66 ft).

^{*} Discharge measurement made on this day.
Note. --No gage-height record Sept. 4 to Oct. 28, Dec. 13 to Jan. 14; discharge estimated on basis of records for La Sa Fua River near Umatac and Geus River near Merizo.

Geus River near Merizo

Location. -- Lat 13°16'15" N., long 144°40'40" E., on left bank 0.7 mile northeast of Merizo, 2.2 miles southeast of Umatac, and 4.7 miles west of Inarajan.

Drainage area .-- 0.95 sq mi.

Records available .-- April 1953 to June 1958.

Gage .-- Water-stage recorder and broad-crested concrete weir. Altitude of gage is 85 ft (by harometer).

Average discharge. -- 5 years (1953-58), 2.95 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1954-58 are contained in the following table:

Fiscal		Maximum			Minimum	
year	Date	Discharge (cfs)	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1954† 1955 1956 1957 1958	Oct. 15, 1953 Oct. 31, 1954 Oct. 27, 1955 Aug. 29, 1956 Nov. 8, 1957	\$2,260 \$302 \$430 \$1,520 \$1,240	3.62 2.42 2.60 3.33 3.20	July 17, 1953 June 23-26,1955 June 16, 1956 June 15, 1957 July 26, 1957	(a) 0.04 .04 .06	0.10 .10 .12 .12

† Period April 1953 to June 1954. ‡ From rating curve extended above 55 cfs by test on model of station site. a No flow part of day.

1953-58: Maximum discharge, 2,260 cfs Oct. 15, 1953 (gage height, 3.62 ft), from rating curve extended above 55 cfs by test on model of station site; no flow part of day July 17, 1953.

Remarks. -- Records good except those for periods of fragmentary or no gage-height record and those above 55 cfs, which are poor. Water is diverted half a mile upstream for domestic use and at station for irrigation and municipal use.

Rating table, Apr. 17, 1953, to June 30, 1958 (gage height, in feet, and discharge, in cubic feet per second)
(Shifting-control method used Sept. 7 to Oct. 14, 1955)

0.1	0.04	1.0	10.0
.2	.18	1.2	20
. 3	.47	1.4	34
. 4	. 93	1.7	70
.5	1.57	2.0	118
. 6	2.4	2.3	230
. 7	3.5	2.6	430
.8	5.0	3.0	900

				Γ	ischar	ge, in	cubic fe	et pe	r seco	nd, 195	53				
Day	Apr.	May	June	Day	Apr.	May	June	Day	Apr.	May	June	Day	Apr.	May	June
1 2 3 4 5 6 7 8		0.16 .16 .16 *.18 .12 .12 .12	0.16 .14 .10 .12 *.17 .24 .16	9 10 11 12 13 14 15 16	-	0.10 .10 .20 .23 .06 .12 .14	0.12 .08 .10 .10 .12 .10 .16	17 18 19 20 21 22 23 24	†0.31 .25 .28 .28 .31 .28 .28	0.23 *.25 *.18 .18 .23 .23 .23	0.23 .26 .31 .31 .34 .37 .47 .20	25 26 27 28 29 30 31	0.25 .25 .25 .23 .20 .18	0.23 .20 .20 .25 .17 .18 .27	0.14 .13 .29 .44 .43 .25
Mean	Total														

Peak discharge (base, 350 cfs) .-- No peak above base.

^{*} Discharge measurement made on this day.
† Result of discharge measurement.

Geus River near Merizo--Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.25 .18 .20 .20 .25	0.62 1.35 2.2 1.24 1.02	3.5 8.0 4.5 3.2 2.5	3.0 2.4 2.0 1.7 1.6	1.98 1.82 1.74 1.50 1.48	2.5 2.5 3.1 *4.0 2.95	0.98 .93 .98 .87	0.59 .55 .47 .51 .47	0.55 .47 .43 .47 .43	0.25 .51 .37 .40 .37	0.38 .25 .30 .23	0.1 .1 .1
6 7 8 9	.23 .23 .23 .14	.87 .40 .63 .82	2.1 1.9 1.7 1.5	1.4 3.0 1.8 1.4 1.3	1.38 1.32 1.76 1.36 2.2	1.82 1.48 1.29 1.22 1.20	.82 .77 .82 24 5.0	.47 .40 .40 .37	.40 .40 .62 .47	.34 .31 .31 .36 .28	*.18 .14 .18 .23 .23	.2
11 12 13 14 15	.16 .25 .28 .31	84 6.6 2.6 2.05 5.4	1.3 1.2 1.1 1.1	1.3 1.6 1.4 1.4 550	1.74 60 80 15 5.5	1.12 1.96 1.36 5.4 4.4	2.2 1.5 1.3 1.2 1.3	.31 .34 .28 .28	.43 .40 .34 .34	.28 .44 .28 .28	.16 .25 .25 .14 .18	.2
16 17 18 19 20	.28 .30 <u>3.4</u> .57	5.4 6.8 30 8.0 4.0	*1.0 .98 1.84 2.3 2.15	100 30 12 6.5 *4.3	3.7 2.8 2.3 2.0 1.8	5.6 5.4 2.6 1.74 1.36	1.1 1.0 *.93 .93	.23 .23 .23 .18	.31 .40 .34 .34 .25	.34 .28 .25 .34 .25	.18 .18 .18 .23	.1 .1 .2
21 22 23 24 25	*.69 .23 .63 .62	2.8 2.3 1.8 7.0 3.8	4.3 2.95 2.3 2.1 3.4	3.3 2.85 2.6 2.25 2.15	1.7 1.6 1.5 8.0 2.8	1.10 5.8 2.3 1.57 1.64	.93 .82 .72 .72	.23 .51 .55 .51	.25 .34 *.40 .37 .37	.28 .28 .31 .25	.25 .18 .33 .47	*.1 1.7
26 27 28 29 30 31	.30 .43 .63 .54 .49 .63	2.2 1.7 29 15 1.3 6.0	12.0 3.4 14.0 5.8 4.0	1.90 1.82 2.6 3.05 2.75 2.05	2.1 1.8 1.6 1.5 2.5	1.36 1.36 1.16 1.04 1.04	.68 .68 .63 .59	.59 .68 .81	.37 .28 .31 .34 .31	.23 .25 .25 .23 .18	.23 .23 .20 .25 .20	.4
otal lean	14.36 0.463 28	247.30 7.98 491	98.62 3.29 196	755.42 24.4 1,500	216.48 7.22 429	72.35 2.33 144	56.07 1.81 111	11.76 0.420 23	11.72 0.378 23	9.03 0.301 18	7.14 0.230 14	11.0

Peak discharge (base, 350 cfs).--Aug. 11 (2 p.m.) 350 cfs (2.50 ft); Oct. 15 (1 a.m.) 2,260 cfs (3.62 ft).

^{*} Discharge measurement made on this day.
Note.-No gage-height record Aug. 18 to Sept. 16, Sept. 30 to Oct. 20, Nov. 12 to Dec. 4, Jan. 10-18; discharge estimated on basis of records for nearby stations.

Geus River near Merizo--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

		Discha	rge, In	subic re	er ber s	econd, 1	Iscal yes	ir buly .	1934 10	June 195	3	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.28 2.6 .64 .61 1.63	0.12 .28 .43 .46 .28	*10 3.0 2.2 10 17	6.6 4.2 10.0 6.6 3.9	29.5 6.2 3.75 2.95 2.5	2.4 2.15 1.82 1.74 1.65	0.83 .85 .90 .90 .90	0.59 .59 .68 .68	0.43 .40 .40 .34 .31	0.51 .40 .37 .31	0.31 .23 .20 .18	0.14 .20 .12 .10 .12
6 7 8 9 10	.63 .37 .28 .25	1.23 2.85 1.64	20 6.4 5.6 6.0	2.95 2.25 3.15 2.6 2.05	2.15 1.82 1.74 1.57 1.50	1.57 1.7 1.4 1.4	.77 .77 .93 .77	.55 .55 .55 .51	.34 .34 .28 .31 .37	.23 .28 .25 .52 .34	.12 .14 .24 1.93 .42	.18 .16 .16 .73
11 12 13 14 15	.20 .24 .70 .50 .28	.72 .72 .91 1.45 1.22	2.05 1.65 1.90 9.5 14.0	2.05 1.90 1.65 *1.48 1.36	10.4 4.4 2.5 2.4 2.2	1.4 1.2 1.2 1.2 1.2	.82 .72 .90 1.31 1.87	.51 .43 .55 .55	.40 .37 .37 .31 .28	.25 .25 .25 .25 .23	.23 .18 .18 .23 2.6	.18 .14 .20 .16 .16
16 17 18 19 20	.25 .32 1.13 .68 .37	.68 .55 1.82 18 25	4.8 2.05 1.74 1.74 16.7	1.22 2.05 1.43 1.22 1.16	2.15 1.65 29.5 5.8 5.2	1.1 1.6 1.1	.98 3.5 1.49 1.04	.43 .51 .47 .40 .37	.40 .34 *.37 .31 .34	.16 .18 *.23 .37 .40	.78 f.40 f.25 f.77 f.93	.14 .12 .12 .09 .12
21 22 23 24 25	.31 .23 .28 .25	5.0 2.0 1.4 4.0	14.0 9.1 4.2 2.95 2.25	2.2 2.3 1.94 1.57 1.98	3.15 3.7 5.5 8.0 7.5	1.1 1.2 1.0 1.0	.77 .68 .68 .63	.68 .55 .37 .40 .43	.43 .40 .31 1.03 .37	.31 .23 .23 .18 .23	f.51 f.25 f.25 f.14 f.25	.14 .12 .07 .07
26 27 28 29 30 31	.23 .20 .20 .18 *.18 <u>.14</u>	5.0 2.8 2.0 1.5 1.2	2.85 2.4 10.0 3.9 3.9	3.65 4.6 6.0 3.3 2.05 63	4.5 15 4.5 3.2 *2.6	.95 .90 .90 1.0 .90	3.9 1.29 .93 .77 .68 *.68	.37 .55 .47	.40 .47 .40 .37 .34	.23 .20 .20 .14 .16	f.25 *f3.9 .21 .14 .12 .12	.07 .09 .10 .20
Total Mean Ac-ft	14.70 0.474 29	105.45 3.40 209	197.48 6.58 392	152.41 4.92 302	177.53 5.92 352	40.23 1.30 80	34.05 1.10 68	14.23 0.508 28	11.93 0.385 24	8.14 0.271 16	16.60 0.535 33	4.68 0.156 9.2
		r 1954: N		Min Min	0.12	Mean 2	.18 2.13	Ac-i	t 1,580 t 1,540			

Peak discharge (base 350 cfs). -- No peak above base.

^{*} Discharge measurement made on this day.

f Fragmentary gage-height record; discharge computed from partly estimated gage heights.

Note. -- No gage-height record Aug. 19 to Sept. 6, Nov. 22-30, Dec. 7 to Jan. 5; discharge estimated on basis of records for nearby stations.

Geus River near Merizo--Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

						Day 11						
Day 1	July 0,16	Aug. 2.35	Sept.	0ct. 6.2	Nov.	Dec.	Jan. 0.88	Feb.	Mar. 0.28	Apr. 0.34	May 0.16	June 0,28
2	.14	1.34	3.0	7.6	1.74	1.10	.63	.34	.31	.28	.23	.18
3	.10	1.29	2.4	6.6	1.50	. 82	1.94	.47	.34	.23	.16	.14
5	10	.93	1.5	3.8 3.75	1.50	.63	.77	.40	.28	*.28	.29	. 23
3	.10		1.0	0.70			.00	.51		.20	. 14	. 2 -
6	*5.3	.43	2.0	4.0	1.16	.72	. 92	.34	.25	.26	.14	.16
7	2.35	.34	1.5	3.65 2.3	1.26	.63	.63	.52	.23	.24	.12	.12
8	3.9	.25	$\frac{1.1}{1.3}$	1.84	1.04	.63	.51	.59	.25	.20	.18	.12
10	1.04	.25	12	1.50	2.45	.59	*.43	.93 .59	.43	.16	.12	.08
11	2.75	*.28	7.0	1,43	1.29	.59	.66	.43	.37	.19	.12	. 12
12	6.6	.25	4.5	1.29	1.10	3.0	.51	.40	.31	.14	.10	. 12
13	2.9	.16	3.2	3.5	.98	2.15	.51	.40	.23	.20	.08	.08
14 15	1.30	.14	3.0 2.2	1.81	.87	1.82	.40	.40	.23	.20	.08	.08
16	$\frac{7.0}{1.73}$.20	9.0	1.3	.87	20 3.75	.51	.47	.43	.18	.08	.08
17 18	.87	.16 1.67	10	1.2 1.1	.82 1.48	1.82	.51 .55	*.37	.28	.25	.08	6.8
19	.59	.48	4.7	2.5	.82	1.16	.47	.37	.34	.16	.07	.69
20	.43	. 44	3.5	7.0	.77	1.10	.43	.34	.23	.25	.21	.37
21	. 37	.31	*5.0	1.5	.77	.87	.44	*.37	.37	.23	.13	.25
22	.37	.40	10	* <u>40</u> 5.0	.87	.77	.40	.37	. 25	.16	.09	.20
23	.28	.51	5.8 5.0	*9.0	1.24	.72	.51 .47	.40	.23	.25	80. 80.*	.22
25	.25	.37	15.1	4.6	.72	.63	.43	.51	.18	.25	.12	1.14
26	. 23	.25	9.2	3.8	.68	.59	.37	.40	.20	.17	.28	1.06
27	.20	.18	27.5	21.5	.68	.55	.40	.37	.41	.16	.18	. 63
28	.20	.18	46	11.8	2.75 1.84	.51	.34	.34	3.6 .73	.16	.14	.40
29 30	.16	.16	25 6.0	5.6 4.7	4.2	.55	.40	.28	.73	.23	.26	.43
31	4.6	.20		2.8		.47	.40		.43		.41	
Total	52.03	15,24	269.1	174.17	39,49	51.92	17.43	12.22	12.92	6.56	4.79	15.46
Mean	1.68	0.492	8.97	5.62	1.32	1.67	0.562	0.421	0.417	0.219	0.155	0.515
Ac-ft	103	30	534	345	78	103	35	24	26	13	9.5	31
	dar year			Min			89	Ac-				
Fisca	l year 19	55-56: 1	Max 46	Min	0.07	Mean]	83	Ac-	rt 1,330)		

Peak discharge (base, 350 cfs).--Oct. 27 (2:30 a.m.) 430 cfs (2.60 ft).

^{*} Discharge measurement made on this day.

Note. --No gage-height record Sept. 1-21, Oct. 15-24; discharge estimated on basis of records for nearby stations.

Geus River near Merizo--Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

		D1001141	. 50, 1		o por bo			0		Julio 100.		
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.43 .37 .40 .31	1.62 1.59 1.10 .82 .72	2.7 5.7 4.2 *6.8 6.5	4.0 2.5 2.0 2.6 2.4	1.9 1.7 1.8 1.6 1.5	5.6 11.3 11.7 9.8 4.3	2.25 1.82 2.0 1.57 1.50	1.04 .93 1.33 1.65 2.2	0.68 .55 .59 .72 .82	0.47 1.12 .68 .51 .47	0.62 .40 .37 .31 .43	0.20 .20 .16 .16
6 7 8 9 10	.56 .59 .52 3.5 1.35	1.22 12.9 10.0 2.6	2.75 4.6 6.2 14.0 5.5	1.7 1.5 1.6 1.4 1.6	1.4 *1.6 1.36 1.50 3.85	7.7 3.05 2.25 1.90 *1.65	1.36 1.22 1.22 1.25 9.8	1.16 1.26 2.55 1.16 1.04	.72 .59 .55 .63	.43 .47 .43 .55	.34 .63 .55 .34	.14 .16 .16 .18
11 12 13 14 15	1.10 1.10 3.25 6.3 2.05	1.70 1.16 .93 .68	4.9 *4.9 2.6 2.05 17.1	10 17 4.5 4.0	2.15 18.4 14.8 3.75 2.25	1.50 1.50 <u>1.43</u> 67 47	3.5 2.15 1.65 1.36 1.29	.93 *.85 .82 .77 .77	.59 .59 .55 .55	.43 .40 .40 .51	.28 .28 .28 .28 .28	.18 .20 .34 .18
16 17 18 19 20	.87 .55 .40 *.40	.63 2.05 2.7 1.10 .72	5.3 3.35 3.4 3.05 9.8	15 4.5 5.0 9.2 3.3	16.5 14.5 22.5 8.3 6.0	7.4 4.3 2.95 2.5 2.25	1.54 3.4 1.57 1.36 2.4	.72 .72 .72 1.59 1.02	.51 .51 .51 .47	.37 .37 .37 .37 .34	.23 .26 .18 .20 .23	.12 .10 .12 .28 .85
21 22 23 24 25	.28 .23 .18 .34	.73 .73 1.06 8.0 3.65	4.6 2.85 9.1 14.7 4.6	2.15 1.92 1.67 1.36 1.70	3.45 3.4 8.3 3.4 2.5	2.3 1.98 1.82 1.65 1.65	1.50 1.16 1.04 .98	.82 .82 .98 .98	.43 .43 <u>.37</u> .37 .43	.47 .37 .31 .28	.23 * <u>.72</u> .28 .25 .23	.31 .20 .25 .20
26 27 28 29 30 31	17.5 3.9 5.2 5.9 16.2 4.0	3.25 20.5 9.3 111 10.7 4.7	3.65 4.4 6.2 3.4 14	1.36 1.37 42 10.2 3.45 2.1	2.7 1.98 1.82 1.78 9.6	2.7 2.3 1.74 1.57 1.50	.93 .93 .93 3.6 1.22 1.43	.72 .68 .68	.37 .96 *.61 .43 .40	.28 .25 .28 .40 .34	.20 .20 .20 .20 .20	.20 .18 .18 .16 .20
Total Mean Ac-ft	78.93 2.55 157	219.25 7.07 435	182.90 6.10 363	182.08 5.87 361	166.29 5.54 330	217.86 7.03 432	58.89 1.90 117	29.68 1.06 59	16.90 0.545 34	13.03 0.434 26	9.69 0.313 19	6.42 0.214 13
		1956 : 1 56-57 : 1		Min Min	0.07	Mean 3	3.05 3.24	Ac-i	rt 2,220 rt 2,350			

Peak discharge (base, 350 cfs).--Aug. 29 (1 p.m.) 1,520 cfs (3.33 ft); Oct. 28 (12:30 p.m.) 886 cfs (2.99 ft); Dec. 14 (9 a.m.) 676 cfs (2.83 ft).

^{*} Discharge measurement made on this day.
Note.--No gage-height record Sept. 30 to Oct. 18, Oct. 31 to Nov. 7; discharge estimated on basis of records ic. nearby stations.

Geus River near Merizo--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

	Discharge, in cubic feet per second, fiscal year July 1957 to June 1958											
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.23 .23 .16 .14 .18	0.12 .10 .12 .14 .18	23.5 10.8 4.5 *11.0 5.1	0.77 .72 .63 .59	12.7 2.45 1.65 1.36 1.29	1.50 1.57 1.43 1.36 1.29	0.72 .72 .68 .79 .77	0.98 .93 .98 .77 .77	0.59 .55 .51 .51	0.31 .31 .31 .34 .31	0.31 .28 .23 .46 .34	1.79 .51 .34 .31
6 7 8 9	.18 .14 .09 .10 .22	.16 .18 .14 .14	4.5 6.3 4.5 3.3 4.4	121 23 7.1 4.9 3.7	1.10 1.10 129 16.0 5.5	1.22 1.16 1.16 1.16 1.10	.72 .72 1.86 .82 .77	.72 .72 .72 .72	.47 .58 .55 .47	.34 .28 .28 .28	.31 *.25 .25 .20 .20	.27 .42 .34 .31
11 12 13 14 15	.25 *3.7 1.71 .43 .28	.12 .14 .49 .83	2.65 1.74 1.57 1.22 1.04	2.4 3.4 3.15 2.9 2.15	3.3 72 11.9 6.7 172	1.10 1.16 1.04 1.04 1.39	1.08 1.16 2.25 *45 *6.3	.72 .68 .68 .63	*.40 .40 .37 .40	.34 .34 .62 .40 .34	.20 .20 .20 .16	2.75 2.0 16.9 57
16 17 18 19 20	.23 .18 .18 .16	.23 .48 1.96 1.54 1.02	1.55 1.65 1.29 3.55 2.05	1.57 1.36 1.16 1.10 1.04	49 8.4 4.9 3.65 2.9	1.29 1.16 .98 .93	2.6 1.74 1.43 1.36 3.2	.59 .59 .77 .72 .63	.37 .31 .34 .34	.31 .43 .31 .34	.18 .14 .16 .20 .20	2.3 1.29 .98 .77
21 22 23 24 25	.18 .18 .12 .12	1.19 1.27 2.4 10.3 4.7	1.16 8.0 2.95 3.65 4.7	1.38 6.8 4.3 1.08 1.65	2.45 2.25 *2.05 1.90 1.98	.93 .87 .82 .82 .77	1.98 1.43 1.16 1.04 .98	.59 .55 .63 1.13	.37 .32 .34 .34	.34 .28 .25 .31 .28	.25 .50 .43 .38	.59 .59 .68 .61
26 27 28 29 30 31	.12 .10 .18 .18 .12	2.35 1.04 27.5 9.0 2.4 1.22	2.1 1.43 1.16 1.24 	1.66 2.65 *10.5 2.7 1.65 1.75	1.77 2.25 1.98 1.82 1.57	.77 .72 .82 .87 .77	.93 1.10 .98 .87 .87	.59 .55 .59	.31 .37 .34 .31 .55	.25 .25 .25 .34 .28	.25 .25 .34 .93 .47	.51 .59 .59 .51
Total Mesn Ac-ft	10.57 0.341 21	71.89 2.32 143	123.47 4.12 245	232.16 7.49 460	526.92 17.6 1,050	32.79 1.06 65	86.96 2.81 172	19.98 0.714 40	12.75 0.411 25	9.81 0.327 19	9.28 0.299 18	112.45 3.75 223
	Calendar year 1957: Max 172 Min 0.09 Mean 3.10 Ac-ft 2,250 Fiscal year 1957-58: Max 172 Min 0.09 Mean 3.42 Ac-ft 2.480											

Ac-ft 2,480

Peak discharge (base, 350 cfs).--Oct. 6 (6 a.m.) 1,100 cfs (3.12 ft); Nov. 8 (1:30 p.m.) 1,240 cfs (3.20 ft); Nov. 12 (12 m.) 500 cfs (2.67 ft); Nov. 15 (7 a.m.) 1,100 cfs (3.12 ft).

^{*} Discharge measurement made on this day.

Inarajan River near Inarajan

Location. -- Lat 13°16'40" N., long 144°44'15" E., on right bank 0.6 mile northwest of Inarajan and 4.9 miles east of Merizo.

Drainage area. -- 4.5 sq m1.

Records available .-- September 1952 to June 1958.

Gage .-- Water-stage recorder and concrete control. Altitude of gage is 25 ft (by barometer).

Average discharge. -- 5 years (1953-58), 16.1 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1953-58 are contained in the following table:

Fiscal		Maximum			Minimum	
year	Date	Discharge (cfs)‡	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1953† 1954 1955 1956 1957 1958	Feb. 22, 1953 Oct. 15, 1953 Sept. 6, 1954 Sept. 10, 1955 Oct. 28, 1956 Oct. 6, 1957	(##) 2,110 1,640 2,080 2,060 2,110	(##) 12.31 10.21 12.25 12.13 12.27	June 14, 1953 July 11, 1953 June 23,28,1955 June 7-9,1956 June 27, 1957 Aug. 6, 1957	††1.51 1.25 1.34 1.34 1.43 1.25	0.39 .38 .38 .39

† Period September to June. ‡ From rating curve extended above 620 cfs on basis of velocity-area studies. †† Minimum daily. ‡‡ Unknown.

1952-58: Maximum discharge, 2,110 cfs Oct. 15, 1953, Oct. 6, 1957, from rating curve extended above 620 cfs on basis of velocity-area studies; maximum gage height, 12.31 ft Oct. 15, 1953; minimum discharge, 1.25 cfs July 11, 1953, Aug. 6, 1957.

Remarks.--Records good except those for periods of fragmentary or no gage-height record and those for period of indefinite stage-discharge relation, which are poor.

Inarajan River near Inarajan -- Continued

Rating tables, Sept. 12, 1952, to June 30, 1958, except period of indefinite stage-discharge relation (gage height, in feet, and discharge, in cubic feet per second)

Sept.	13, 1952,	to Sept. 6	1954	Sept.	7, 1954, to	June 30,	1958
0.4	1.32	1.6	72	0.3	0.72	1.0	19.0
.5	2.45	2.0	148	.4	1.53	1.2	32.5
.6	4.05	3.0	295	.5	2.8	1.4	51
.8	9.1	4.0	460	. 6	4.5	1.6	75
1.0	17.0	6.0	820	. 7	6.9	2.0	148
1.2	28	8.0	1.200	. 8	9.9	3.0	295
3.4	47	10.0	1 600	9	13.6		

Discharge, in cubic feet per second, September 1952 to June 1953

	Desirated for the second of the second secon											
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5				20 13.5 11.9 11.6 9.8	12.6 11.2 9.8 13.5 f73	23.5 44 21.5 17 14	12.2 10.2 8.5 7.9 10.5	4.3 4.2 4.1 4.2 4.1	7.1 6.2 5.7 13.3 6.5	e <u>3.4</u> e3.4 e3.4 e3.2 e3.2	e2.3 e2.3 e2.2 e2.2 e2.2	2.05 2.05 1.95 1.83 2.05
6 7 8 9 10			-	9.1 22.5 *12.6 42 18.0	18.5 23 f44 f43 f35	13 35 14 12 25	8.5 7.6 8.8 7.1 6.5	4.2 4.5 4.3 4.1 4.1	5.9 6.8 8.2 6.2 6.0	e3.2 e3.2 e3.1 e3.1 e3.1	e2.1 e2.1 e2.1 e2.0 e2.0	2.45 1.83 1.72 1.61 *1.67
11 12 13 14 15			68 54 15.2	12.6 10.5 10.5 15.2 11.2	31 18.5 13.9 12.7 13.0	13 14 11 12 10	6.2 *6.2 6.2 5.8 5.8	4.1 4.3 4.1 4.0 3.9	e5.6 e5.4 e5.2 e5.0 e5.0	e2.9 e2.9 e2.9 e2.9 e2.8	#e2.0 2.2 2.05 2.05 2.05	1.95 2.05 1.61 1.51 2.6
16 17 18 19 20			10.8 9.8 8.5 7.1 6.2	8.8 32.5 82 58 16.6	f41 17 13.5 19.3	10 *9.3 9.1 8.2 7.6	5.6 5.4 5.2 5.2	3.9 3.8 3.7 3.8 *3.7	e4.9 e4.9 e4.9 e4.7 e4.6	e2.8 e2.8 e2.6 e2.6	2.45 2.2 2.7 2.3 2.3	4.0 2.7 2.6 2.6 2.45
21 22 23 24 25			5.7 5.7 56 12.2 9.1	20 13.2 10.8 33.5 12.2	18.0 15.2 23 13.5 37.5	7.6 9.7 26.5 10.2 18.7	5.0 5.0 6.4 5.2 4.5	3.7 f <u>338</u> 60 14.8 10.5	e4.4 e4.3 e4.3 e4.1 e4.0	e2.6 e2.6 e2.5 e2.4 e2.4	2.2 2.05 2.05 2.05 2.2	2.6 2.45 2.85 2.05 1.83
26 27 28 29 30 31		ļ	8.5 9.1 18.4 68 64	21.5 17.3 11.6 10.2 44 20	16.6 13.9 12.7 42 23.5	9.4 9.1 8.8 10.2 7.6 49	4.4 4.3 4.3 4.3 4.5 4.4	8.8 8.5 6.8	e3.8 e3.8 e3.6 e3.6	e2.4 e2.4 e2.3 e2.3	1.95 1.83 1.95 1.95 2.05	1.61 1.83 2.7 2.85 2.05
Total Mean Ac-ft			-	643.2 20.7 1,280	709.4 23.6 1,410	490.0 15.8 972	197.3 6.36 391	532.5 19.0 1,060	165.4 5.34 328	84.6 2.82 168	66.53 2.15 132	66.10 2.20 131
	ndar year 1 year		Max Max	Min Min		Mean Mean		Ac-1				

59

^{*} Discharge measurement made on this day.
e Stage-discharge relation indefinite; discharge estimated on basis of records for nearby stations.
f Fragmentary gage-height record; discharge computed from partly estimated gage heights.
Note.--No gage-height record Nov. 17, Dec. 4-17, Jan. 13 to Feb. 19; discharge estimated on basis of records for nearby stations.

Inarajan River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

						, ,						
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.72 1.51 1.83 1.95 2.05	1.83 1.95 2.7 2.05 1.83	28 28 180 30 24	16 15 14 16 14	19 18 18 17 16	21.5 26 20.5 22 17.5	10.5 10.5 10.5 9.8 9.1	7.1 6.5 6.2 6.5 6.2	4.8 4.6 4.8 4.4	2.6 4.6 3.5 3.35 2.85	3.2 2.2 2.2 2.05 2.05	1.72 1.72 1.72 1.61 1.72
6 7 8 9 10	1.95 1.95 1.51 1.61 2.2	2.7 2.85 2.45 2.85 28	20 19 18 17 16	13 13 20 15 13	15 15 17 15 26	16.1 15.7 13.9 13.5 13.5	9.8 9.1 8.8 275 22	6.5 6.2 6.0 5.7 5.5	4.0 4.0 5.1 4.6 3.85	2.85 2.85 2.85 2.6 2.45	1.95 1.83 1.72 1.95 *1.95	1.95 1.95 2.6 2.6 2.05
11 12 13 14 15	1.72 4.8 2.3 2.2 2.2	470 191 53 21.5 36	15 14 13 12 13	12 17 13 17 1,580	18 400 600 50 36	13.9 20.5 14.4 154 27	14.4 13.5 12.6 10.5 *32.5	5.5 5.5 5.1 5.1 5.1	4.8 4.2 4.4 3.85 3.85	2.3 2.45 3.2 2.6 2.45	1.95 2.45 1.95 1.95 2.05	2.05 1.83 1.72 1.83 1.72
16 17 18 19 20	2.2 2.2 21 2.45 1.83	80 38 180 34 22	15 12 17 16 18	917 234 60 75 50	34 28 26 24 22	42 29 19.0 15.7 14.4	11.9 10.5 9.8 9.1 9.1	4.8 4.8 4.6 8.6	3.7 4.8 *3.85 3.7 3.5	2.3 2.3 2.45 2.3 2.2	2.05 2.05 2.05 2.2 2.05	1.72 *1.72 1.61 1.72 1.61
21 22 23 24 25	*1.77 2.7 1.95 2.2 2.3	20 18 15 44 24	22 *20 14 14 20	#40 32 30 26 24	22 20 20 *50 21	13.5 67 16.1 13.9 14.8	9.8 8.8 8.5 8.2 7.9	5.3 6.5 4.8 4.6 4.6	3.2 3.35 3.5 3.0 3.0	2.3 2.3 2.6 2.2 2.2	2.2 1.95 2.3 3.5 2.45	1.61 11.5 4.3 2.6 8.0
26 27 28 29 30 31	2.85 2.6 2.05 2.05 1.83 1.72	18 15 369 150 100 40	44 20 90 36 24	22 22 40 28 22 20	18.0 18.0 17.0 15.7 32	13.0 13.5 11.9 11.6 11.2 10.5	7.6 8.2 7.6 7.4 7.1 7.4	4.6 6.8 6.8	2.85 2.7 2.7 2.85 2.7 2.7	2.05 2.05 2.05 2.05 2.05 2.2	2.3 1.95 1.95 1.95 1.83 1.72	2.7 2.45 2.45 2.05 2.2
Total Mean Ac-ft	85.20 2.75 169	1,987.71 64.1 3,940	829 27.6 1,640	3,430 111 6,800	1,647.7 54.9 3,270	727.1 23.5 1,440	597.5 19.3 1,190	160.3 5.72 318	117.75 3.80 234	77.05 2.57 153	65.95 2.13 131	77.03 2.57 153
			Max 1,58 Max 1,58		1.51 1.51	Mean Mean	26.9 26.9	Ac-	ft 19,47 ft 19,44			

Peak discharge (base, 1,500 cfs).--Aug. 11 (3 p.m.) 1,730 cfs (10.60 ft); Aug. 18 (1 a.m.) 1,750 cfs (10.63 ft); Aug. 28 (10 a.m.) 1,780 cfs (10.81 ft); Oct. 15 (3:30 a.m.) 2,110 cfs (12.31 ft); Nov. 13 (time and discharge unknown); Jan. 9 (11 a.m.) 1,560 cfs (9.76 ft).

^{*} Discharge measurement made on this day.

Note. --No gage-height record Aug. 15 to Oct. 14, Oct. 18 to Nov. 24; discharge estimated on basis of records for nearby stations.

Inarajan River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	2.3 11.0 2.85 3.6 4.5	1.95 5.1 2.85 2.3 2.2	39.5 15.0 9.1 123 138	18 15 28 16 26	138 22 19.1 17.4 14.1	12.5 12.1 11.0 10.3 9.9	6.4 5.9 6.6 7.2 7.8	4.7 4.5 4.7 4.9 4.1	3.25 3.1 2.95 *3.1 3.1	3.25 2.8 2.65 2.5 2.35	2.65 1.95 1.84 1.95 1.84	3.05 3.35 1.95 1.84 1.95
6 7 8 9 10	2.45 2.2 2.05 2.05 1.95	7.4 4.4 9.6 11.1 4.4	147 41 42 49 44	16 15 17 16 15	12.9 12.1 11.8 11.0 10.6	10.6 10.6 10.3 9.3 9.3	6.2 5.9 7.9 5.9 6.4	4.1 4.1 3.95 3.75 3.75	2.95 2.95 2.8 2.95 3.1	2.2 2.8 2.5 <u>4.4</u> 2.65	1.84 1.84 2.95 10.1 2.65	2.1 *2.3 2.2 3.6 2.5
11 12 13 14 15	1.83 1.95 3.35 3.5 2.2	3.2 7.7 9.4 29.5 5.3	18.5 14.8 16.9 142 175	28 *17 14.0 13.2 12.1	58 17.2 13.2 12.5 13.0	9.6 8.7 8.4 8.4 8.1	6.2 5.6 6.2 8.2 8.3	3.95 3.95 3.75 3.95 4.1	3.4 3.25 3.1 2.8 2.65	2.35 2.2 2.5 *2.35 2.2	2.2 2.05 1.95 2.5 9.8	1.84 1.84 1.95 1.84
16 17 18 19 20	2.05 1.95 3.55 9.3 3.65	3.85 3.85 4.0 115 78	42 28 20 17 169	11.8 11.8 11.0 10.3 9.9	12.8 10.3 126 21.5 25	8.4 8.4 9.8 7.8 7.5	5.6 16.2 6.9 6.2 5.9	3.75 3.95 3.75 3.4 3.4	3.5 3.1 2.95 2.8 2.65	2.2 2.05 2.05 3.1 3.25	3.1 2.35 2.05 1.95 2.2	1.63 1.95 2.05 1.74
21 22 23 24 25	2.6 2.85 2.2 3.0 2.3	25 11 7.6 32 71	60 90 36 24 20	10.3 12.0 12.9 9.9 16.4	13.6 16.9 61 15.8 21	7.2 7.2 7.2 6.6 6.6	5.4 5.2 4.9 5.2 8.5	5.4 4.9 3.75 3.25 3.25	3.1 3.3 2.5 4.2 2.95	2.5 2.2 2.05 2.05 2.2	1.84 1.84 1.84 1.74	1.84 1.63 1.53 1.63
26 27 28 29 30 31	2.2 1.95 1.95 *2.2 2.05 1.95	14.8 10.1 7.9 7.4 9.2 #6.5	22 18 55 90 28	15.6 16.5 12.1 10.3 9.3 140	13.6 68 17.9 *14.7 15.2	6.6 6.4 6.2 6.6 *6.6	13.5 6.2 5.6 5.4 4.9	2.95 4.7 3.75	3.4 2.95 2.65 2.5 2.5 2.5	1.95 1.84 2.05 1.95 1.95	1.74 6.2 3.2 2.2 1.95 1.84	1.53 1.84 1.63 2.8 1.95
Total Mesn Ac-ft	93.53 3.02 186	513.60 16.6 1,020	1,733.8 57.8 3,440	586.4 18.9 1,160	836.2 27.9 1,660	264.4 8.53 524	211.5 6.82 420	112.45 4.02 223	93.00 3.00 184	73.09 2.44 145	85.89 2.77 170	61.27 2.04 122
		1954 : 1		Min Min	1.61	Mean]	4.0	Ac-:	ft 10,17 ft 9,25	0		

Peak discharge (base, 1,500 cfs).--Sept. 4 (9:30 p.m.) 1,600 cfs (9.99 ft); Sept. 6 (7 p.m.) 1,640 cfs (10.21 ft).

^{*} Discharge measurement made on this day.

Note. --No gage-height record Aug. 21-24, Sept. 15 to Oct. 12, June 6, 7; discharge estimated on basis of records for nearby stations.

Inarajan River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

Da	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.84	8.1 4.5 3.75 7.2 3.55	188 7.9 9.5 18.7 36.5	52 30.5 51 16.5 24	11.8 12.5 11.4 11.0 9.6	*8.7 7.2 6.6 6.4 6.2	10.7	3.75 3.4 4.3 3.95 3.25	2.2 2.35 2.65 2.2 2.2	2.35 2.05 1.95 *2.35 2.2	1.95 2.05 1.84 3.0 1.95	*2.5 1.84 1.84 1.95 2,2
6 7 8 9 10	*32.5 9.1 27.5 11.6 4.1	3.25 2.95 2.8 2.8 *2.8	5.1 11.3 <u>5.4</u> 5.9 196	16.4 12.6 11.0 10.6 9.3	9.9 10.1 10.4 9.8 16.7	6.9 5.9 6.4 5.4 5.2	5.9 5.2	3.1 4.1 4.7 6.1 4.3	2.05 2.05 1.95 1.95 6.2	2.65 2.35 2.2 2.2 1.95	1.95 1.84 1.84 1.84 2.05	1.84 1.63 1.84 1.43
11 12 13 14 15	29	3.25 2.95 2.5 2.35 2.35	66 14.7 9.0 7.9 6.6	11.0 9.3 9.5 8.7 8.1	9.3 8.4 8.4 7.8 7.8	5.9 30 10.8 9.1 6.6	4.7 4.5 4.3	3.55 3.25 3.1 3.4 3.1	3.1 2.65 2.35 1.95 2.2	1.95 2.2 2.35 2.8 2.5	1.74 1.74 1.74 1.99 2.2	2.2 1.74 1.63 1.63 1.74
16 17 18 19 20	4.1 3.4	2.5 2.35 5.8 3.0 3.9	29 17.1 22 9.5 29	7.8 8.7 7.5 14.0 89	7.5 7.5 11.3 6.9 6.6	132 13.4 9.3 7.8 9.8	4.1	3.85 *2.95 2.95 2.8 2.65	3.05 2.35 2.75 2.8 1.95	2.05 2.65 2.35 1.95 2.35	2.2 2.2 1.88 1.84 2.6	1.63 44 39.5 5.2 3.75
21 22 23 24 25	3.1 2.95	2.5 3.25 2.8 3.1 *2.5	14.2 23 24.5 11.9	10.0 191 42 *32.5 33	6.6 7.5 9.8 6.4 6.2	6.9 6.4 6.2 5.6 5.4	3.95 4.7 4.1	2.5 2.5 2.35 2.2 2.95	2.9 1.95 1.95 1.84 1.95	2.35 1.95 1.84 1.84	1.95 1.84 1.84 *1.74 1.95	3.4 3.25 3.1 8.2 6.3
26 27 28 29 30 31	3.25 2.8 3.25 10.8	2.35 2.2 2.05 2.2 2.25 6.7	25 162 218 76 24	30 105 52 28.5 17.1 13.2	6.2 7.5 30 10.3 26	5.2 5.2 4.9 4.9 4.7	3.75 3.55 3.55 3.55	2.5 2.35 2.2 2.2	1.95 2.45 14.8 3.2 2.35 2.95	1.84 2.35 2.35 2.8 2.8	3.1 2.5 1.84 4.6 3.65 2.65	6.6 3.95 3.1 2.65 2.5
Tota Mea: Ac-1	9.04	104.55 3.37 207	1,338.7 44.6 2,660	961.8 31.0 1,910	311.2 10.4 617	359.9 11.6 714	4.99	94.30 3.25 187	89.24 2.88 177	67.36 2.25 134	68.10 2.20 135	164.77 5.49 327
	endar yea eal year l			Min Min	1.53 1.43	Mean Mean	10.9 10.9	Ac-	ft 7,930 ft 7,930			

Peak discharge (base, 1,500 cfs).--Sept. 10 (7:30 p.m.) 2,080 cfs (12.25 ft).

^{*} Discharge measurement made on this day.

Inarajan River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	3.7 3.1 3.25 2.8 2.8	7.8 6.4 5.4 4.9 4.7	55 36 18.0 18.8 18.7	11.8 14.6 11.0 28 22.5	7.8 7.2 25 7.8 6.6	32.5 89 43 28 17.5	13.6 10.6 10.1 8.4 7.8	5.4 5.2 6.9 7.5 7.4	3.95 3.55 3.55 4.7 5.4	*3.25 6.6 4.4 3.25 3.25	4.8 2.8 2.65 2.35 2.5	1.95 1.95 1.84 1.74
6 7 8 9	2.5 2.35 3.15 8.0 3.7	4.1 6.4 79 27.5 12.0	9,6 23 29 86 21	9.3 8.4 15.3 8.4 10.6	*15.8 6.9 7.5 58	32 11.0 9.3 8.4 7.8	7.2 6.9 6.6 6.8 61	5.4 5.3 13.9 5.9 5.4	4.3 3.95 3.55 3.95 3.55	3.1 3.1 2.95 3.1 2.95	2.2 3.95 4.2 2.35 2.2	1.74 1.74 1.95 1.84
11 12 13 14 15	5.2 5.3 17.7 70 8.0	14.2 16.5 7.7 6.2 8.2	85 22.5 12.5 11.4 129	27 91 21 15.2 14.9	9.0 120 60 17.4 9.0	7.5 7.2 7.2 402 195	12.0 9.3 7.8 7.2 7.8	5.2 5.2 4.7 4.5 4.3	3.4 3.95 3.55 3.4 3.25	2.8 2.8 2.65 3.4 2.8	2.05 2.2 2.35 2.5 2.2	1.74 1.95 3.0 1.84
16 17 18 19 20	5.4 4.3 *5.7 3.95 3.4	6.0 15.5 17.6 5.9 4.7	26 13.6 13.1 16.1 127	10.5 8.8 13.2 24 9.6	151 46 124 19.4 17.3	a24 a16 *11.8 11.4 10.6	7.2 20 7.5 6.6 12.2	4.1 4.1 *4.0 9.9 5.4	3.25 3.25 3.25 3.25 3.4	2.65 2.65 2.5 2.65 2.65 2.5	1.95 1.95 2.05 1.95 1.95	1.74 1.74 1.74 2.35 7.3
21 22 23 24 25	3.1 2.8 2.65 2.8 3.25	5.4 6.2 16.4 66 10.8	14.2 11.0 92 90 13.6	8.1 7.6 10.7 7.2 10.5	12.5 17.3 27.5 11.8 9.3	11.7 9.3 9.0 8.7 8.3	7.5 6.2 5.9 5.9	4.3 5.9 5.6 4.7	3.1 2.95 2.95 3.25	3.1 2.5 2.35 2.5 2.5	1.95 5.1 2.2 1.95 2.05	3.4 2.35 2.35 2.35 2.65
26 27 28 29 30 31	29 11.2 12.8 37.5 49 10.7	15.9 126 63 *207 *51 16.6	14.7 20.5 23 13.1 32	7.9 7.5 204 36 10.7 8.1	10.8 8.4 7.8 8.4 33.5	14.0 13.3 8.7 8.8 8.1 8.4	5.4 5.2 5.4 11.9 5.6 5.9	4.1 4.1 3.95	3.25 8.6 4.1 3.25 2.95 2.95	2.35 2.2 2.5 2.95 2.65	1.84 *1.84 1.84 1.95 1.95	1.95 1.74 1.95 1.74 1.84
otal lean c-ft	329.10 10.6 653	845.0 27.3 1,680	1,095.4 36.5 2,170	693.4 22.4 1,380	869.4 29.0 1,720	1,079.5 34.8 2,140	307.4 9.92 610	156.65 5.59 311	114.85 3.70 228	88.95 2.96 176	75.77 2.44 150	65.99 2.20 131

Fiscal year 1956-57: Max 402 Mean 15.7

Peak discharge (base, 1,500 cfs).--Aug. 27 (12:30 p.m.) 1,600 cfs (10.02 ft); Aug. 29 (4 p.m.) 2,040 cfs (12.03 ft); Oct. 28 (1 p.m.) 2,060 cfs (12.13 ft); Nov. 16 (8 p.m.) 1,860 cfs (11.24 ft); Dec. 14 (8:30 a.m.) 2,000 cfs (11.78 ft).

^{*} Discharge measurement made on this day. a No gage-height record; discharge estimated on basis of records for nearby stations.

Inarajan River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

		DIBCHA	rge, III	cubic re	co per a	scond, 1	iboai je	ur oury	1337 00	amie 1996	3	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.74 1.74 1.74 1.95 2.35	1.43 1.43 1.43 1.63 1.95	30 23 66 17.1 11.6	5.2 4.9 4.5 <u>4.3</u> 73	73 10.6 9.3 8.7 9.4	11.0 13.9 11.0 10.6 9.6	5.6 5.4 5.2 6.4 7.0	6.6 6.2 6.2 5.4 5.2	4.3 3.95 3.95 3.95 4.1	2.35 2.35 2.2 2.5 2.35	2.35 2.05 1.95 2.9 2.05	5.8 2.2 1.84 1.84 1.74
6 7 8 9 10	2.35 1.84 1.74 1.74 2.75	1.53 1.74 1.63 1.43 1.77	12.1 12.9 9.2 12.5 9.5	393 *77 27.5 34.5 17.6	7.5 8.1 *316 a35 a22	9.6 9.3 9.0 9.0	5.2 5.9 17.4 5.9 5.6	5.2 5.2 5.2 5.2 5.2	3.55 4.7 4.8 3.75 *3.55	2.35 2.2 2.2 2.35 3.05	1.95 1.84 1.84 1.84 1.84	1.74 2.7 1.95 1.84 54
11 12 13 14 15	*2.85 10.1 5.5 2.2 1.84	1.43 1.43 2.3 4.2 1.84	8.6 6.2 7.8 5.6 4.7	12.9 14.8 13.5 11.4 10.3	a18 310 a30 a20 <u>544</u>	8.4 9.3 8.4 8.1 12.0	6.4 6.9 83 149 19.2	4.9 4.7 4.9 4.9 4.5	3.25 3.4 3.1 3.25 3.1	2.5 2.35 4.5 2.8 2.35	1.84 *1.74 1.74 1.63 1.63	8.3 6.2 59 197 16.5
16 17 18 19 20	1.74 1.63 1.63 1.63 2.75	1.63 2.85 6.5 5.4 2.8	#6.3 6.4 5.2 13.3 6.4	9.3 8.4 7.8 9.0 7.8	239 a40 a30 *a25 21	9.7 8.1 7.5 7.2 6.9	11.0 9.3 8.1 8.1 *24	4.3 4.3 5.6 5.2 4.3	2.95 2.8 2.8 2.8 2.65	2.35 2.8 2.35 3.35 2.5	1.63 1.63 1.63 1.63 1.63	9.1 6.6 5.4 4.9 4.5
21 22 23 24 25	1.84 1.84 1.74 1.63 1.63	3.55 5.6 5.4 17.4 8.3	5.9 31.5 11.8 17.1 51	10.1 42 17.1 12.3 9.3	18.5 16.8 15.2 14.1 15.7	7.5 6.9 6.6 6.4 6.2	9.3 7.8 7.2 6.6 6.4	4.1 4.7 7.5 4.5	2.65 2.65 2.65 2.65 2.65	2.5 2.35 2.2 2.2 2.05	1.74 3.55 2.8 1.95 1.84	4.3 4.6 4.7 4.9
26 27 28 29 30 31	1.74 1.53 1.84 1.84 1.63 1.53	6.4 3.4 63 24.5 8.8 4.9	9.4 7.2 6.4 6.7 5.6	9.6 37 22.5 *10.8 9.0 11.1	13.2 *16.5 13.2 12.5 11.4	5.9 5.6 6.4 6.9 5.6 5.4	6.2 7.5 6.4 5.9 5.6 5.9	4.1 3.95 4.1	2.5 2.8 2.5 2.5 4.1 2.5	2.2 2.2 2.2 2.65 2.05	1.63 1.63 2.25 11.3 3.15 2.95	4.3 5.6 4.8 3.95 3.75
Total Mean Ac-ft	70.60 2.28 140	197.60 6.37 392	427.0 14.2 847	937.5 30.2 1,860	1,923.7 64.1 3,820	257.0 8.29 510	469.4 15.1 931	140.25 5.01 278	100.85 3.25 200	74.35 2.48 147	72.13 2.33 143	438.95 14.6 871
		1957: N 957-58: N		Min Min	1.43	Mean]	12.7	Ac- Ac-				

Peak discharge (base, 1,500 cfs).--Oct. 6 (7 a.m.) 2,110 cfs (12.27 ft); Nov. 15 (9 p.m.) 2,080 cfs (12.23 ft).

^{*} Discharge measurement made on this day. a No gage-height record; discharge estimated on basis of records for nearby stations.

Pauliluc River near Inarajan

Location. -- Lat 13°17'05" N., long 144°45'00" E., on right bank 0.3 mile upstream from mouth, 0.9 mile northeast of Inarajan, and 3.8 miles south of Talofofo.

Drainage area .-- 1.9 sq mi.

Records available .-- October 1952 to June 1958.

Gage .-- Water-stage recorder and concrete control. Altitude of gage is 20 ft (by barometer).

Average discharge. -- 5 years (1953-58), 5.40 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1953-58 are contained in the following table:

Fiscal		Maximum			Minimum	
year	Date	Discharge (cfs)#	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1953†	Feb. 22, 1953	325	4.04	May 11, 1953	0.20	0.27
1954	Oct. 15, 1953	2,980	13.11	June 2, 1954	.16	.25
1955	Sept. 20, 1954	385	4.36	Apr. 27, May 1, 1955	.16	.25
1956	Sept.10, 1955	630	5.66	May 18, 1956	.16	.25
1957	Dec. 14, 1956	734	6.21	June 18, 1957	.23	.28
1958	Nov. 15, 1957	1,130	7.80	Aug. 11, 1957	.18	.26

† Period October to June. ‡ From rating curve extended from 50 cfs to 300 cfs by test on model of station site, and extended above 300 cfs by logarithmic plotting.

1952-58: Maximum discharge, 2,980 cfs Oct. 15, 1953 (gage height, 13.11 ft), from rating curve extended from 50 cfs to 300 cfs by test on model of station site, and extended above 300 cfs by logarithmic plotting; minimum, 0.16 cfs June 2, 1954, Apr. 27, May 1, 1955, May 18, 1956.

Remarks. -- Records fair except those for periods of fragmentary or no gage-height record and those above 50 cfs, which are poor.

Pauliluc River near Inarajan -- Continued

Rating tables, Oct. 4, 1953, to June 30, 1958 (gage height, in feet, and discharge, in cubic feet per second)

Oct. 4, 1953, to June 30, 1955					July 1 to Dec.	, 1955, 15, 195	56	Dec. 16, 1956, to June 30, 1958					
0.3	0.29 .66 1.26	1.5 2.0 3.0	50 90 187	0.2	0.08 .29 .68	0.6 .7 .8	2.25 4.4 7.7	0.2	0.08 .29 .68	0.7 .8 1.0	4.6 8.0 17.7		
.6	2.25	4.0	325 490	.5	1.33	1.0	17.1	.5	1.33	1.2	29		
.8 1.0 1.2	7.4 17.1 29	7.0 8.0	910 1,190		teSame above		eceding		teSame				

Discharge, in cubic feet per second, October 1952 to June 1953

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5				- - 5.5 4.9	5.2 3.8 3.3 2.9 30	7.0 15.1 8.4 4.1 3.6	5.8 2.85 2.7 2.4 2.7	1.57 1.49 1.33 1.19 1.19	1.86 1.75 1.65 3.85 2.25	0.76 .66 .66 .61	0.38 .38 .38 <u>.45</u> .38	0.3 .3 .3 .3
6 7 8 9				3.6 *3.85 3.6 10.6 8.4	*8.0 18.9 19.2 26 13.3	3.2 7.0 3.85 3.2 3.85	4.6 2.7 2.55 2.25 2.1	1.41 1.65 1.75 1.65 1.49	1.86 1.75 2.25 2.4 1.99	.57 .57 .57 .57	.38 .38 .38 .38	.3 .3 .3 *.3
11 12 13 14 15				4.5 3.8 3.8 5.0 3.8	18.3 7.9 5.2 4.1 4.1	3.85 4.6 2.85 3.4 3.0	1.86 1.57 *1.53 1.41 1.49	1.41 1.41 1.26 1.12 1.12	1.99 1.69 1.65 1.41 1.12	.61 .57 .57 .57	.38 .38 .38 .38	.3: .3: .3: .3:
16 17 18 19 20				3.5 10 35 17 6.4	20 6.2 4.4 8.8 13.4	2.7 *2.55 2.55 2.55 2.25	1.49 1.49 1.65 1.49	1.12 .91 .91 .81 *.81	1.05 1.12 1.05 .86 .98	.53 .53 .53 .53	.38 .38 .45 .38	.4
21 22 23 24 25				7.5 6.0 5.2 20 6.1	7.4 6.6 10.8 5.2 13.7	2.1 2.1 11.3 3.2 5.2	1.12 1.12 3.0 2.25 1.86	.81 <u>98</u> 25 4.9 2.55	.91 .86 .81 .86	.49 .49 .53 .53	*.38 .38 .38 .38	.3.3.3.3
26 27 28 29 30 31				8.0 6.0 5.0 4.2 16 8.0	6.6 4.6 4.4 13.0 8.7	3.6 2.85 2.7 3.0 2.55	1.57 1.41 1.05 1.33 1.86 1.57	2.25 2.4 1.99	.91 .81 .76 .71 .66	.45 .41 .41 .38 .38	.35 .35 .35 .35 .38	.3 .4 .5 .4
fotal Mesn Ac-ft				-	304.0 10.1 603	150.20 4.85 298	64.18 2.07 127	163.50 5.84 324	43.56 1.41 86	16.13 0.538 32	11.80 0.381 23	11.5 0.38

* Discharge measurement made on this day.
Note.--No gage-height record Oct. 11-22, Oct. 24 to Nov. 6, Dec. 31; discharge estimated on basis of records for nearby stations.

Pauliluc River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954													
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	
1 2 3 4 5	0.38 .35 .38 .38	0.41 .45 .53 .41	9.8 7.9 50 17.7 12.2	6.6 5.8 4.9 5.8 4.9	6.6 4.9 4.9 4.6 4.6	8.4 6.6 6.6 6.6	2.85 2.85 2.85 2.85 2.55	1.99 1.86 1.75 1.65 1.57	1.75 1.65 1.57 1.41 1.26	0.52 .95 .80 .74 .56	0.60 .41 .40 .39	0.38 .38 .38 .38	
6 7 8 9 10	.38 .38 .41 .38	.49 .68 1.65 1.05 7.1	8.4 7.0 7.9 5.2 5.2	4.4 4.6 9.8 4.9 3.85	4.4 4.1 7.9 4.6 10.8	4.4 5.2 4.6 3.85 4.1	2.7 2.55 2.4 91 7.9	1.65 1.57 1.57 1.65 1.57	1.05 1.12 1.05 .98	.56 .56 .56 .52	.36 .32 <u>.30</u> .39 *.40	.41 .45 .41	
11 12 13 14 15	.35 1.05 .61 .71	113 66 17.6 7.0 28.5	4.4 4.1 4.1 3.6 3.6	3.6 5.5 4.4 5.5 1080	6.2 209 241 17.6 13.2	4.1 5.5 4.4 28.5 9.3	4.9 4.6 4.9 3.85 *12.3	1.49 1.57 1.41 1.41 1.33	.98 .98 1.12 1.12	.45 .50 .60 .55	.41 .45 .41 .41	.38 .45 .41 .41	
16 17 18 19 20	.57 .49 2,7 1.65	16.8 *10.9 49 12.2 7.4	6.6 3.85 8.7 8.8 f9.5	327 72 26.5 51 19.8	15.0 9.3 7.9 7.0 6.2	12.7 10.8 5.8 4.9 4.4	3.85 3.0 2.85 2.7 2.7	1.33 1.26 1.12 1.05 2.25	1.12 1.19 *.86 .81	.45 .45 .48 .46	.41 .57 .66	.38 *.32 .32 .35 .29	
21 22 23 24 25	.61 .66 .53 .61	5.2 4.1 3.2 21 8.4	*f12 8.4 4.6 4.9 12.8	*f16 13.7 11.7 10.3 9.3	5.8 7.4 *6.2 33.5 8.4	4.1 15.1 5.5 4.9 4.6	2.55 2.7 2.7 2.55 2.4	2.1 1.86 1.86 1.65 1.49	.86 .86 .76 .71	.45 .45 .50 .45	.41 .41 .53 .53	.29 1.4 .80 .48 1.0	
26 27 28 29 30 31	.45 .41 .45 .41 .49	4.1 3.0 90 52 49 14.2	22.5 5.8 55 15.1 9.8	7.9 7.4 17.6 10.3 8.4 5.8	5.5 5.5 4.9 4.4 8.8	3.85 4.6 3.6 3.4 3.0 3.0	2.25 2.1 1.99 2.1 2.1 1.99	1.33 1.86 1.99	.61 .57 .57 .57 .57	.40 .40 .40 .40	.41 .49 .41 .41 .38	.52 .52 .47 .42 .45	
Total Mesn Ac-ft	18.89 0.609 37	595.78 19.2 1,180	339.45 11.3 673	1,769.25 57.1 3,510	680.2 22.7 1,350	201.30 6.49 399	191.58 6.18 380	45.19 1.61 90	30.25 0.976 60	15.41 0.514 31	13.33 0.430 26	14.03 0.468 28	
	Calendar year 1953: Max 1,080 Min 0.32 Mean 10.7 Ac-ft 7,760 Fiscal year 1953-54: Max 1,080 Min 0.29 Mean 10.7 Ac-ft 7,760												

Peak discharge (base, 320 cfs).--Aug. 11 (6:30 p.m.) 510 cfs (5.06 ft); Aug. 28 (12 m.) 370 cfs (4.33 ft); Sept. 3 (3:30 p.m.) 325 cfs (3.97 ft); Oct. 15 (3:30 a.m.) 2,980 cfs (13.11 ft); Nov. 13 (5 p.m.) 1,790 cfs (10.00 ft); Jan. 9 (12 m.) 430 cfs (4.70 ft).

^{*} Discharge measurement made on this day.

f Fragmentary gage-height record; discharge computed from partly estimated gage heights.

Note.--No gage-height record Apr. 1 to May 10, June 21-30; discharge estimated on basis of records for nearby stations.

Pauliluc River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

Dау	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	
1 2 3 4 5	0.50 2.5 .70 .64 1.2	0.41 .49 .41 <u>.38</u> .38	16.3 4.8 3.0 23.5 82	14.7 10.3 7.0 6.4 15.2	22.5 5.8 5.2 5.2 4.4	3.6 3.2 2.85 2.55 2.4	1.33 1.49 1.57 1.86 2.1	1.26 1.26 1.19 1.12 1.12	0.91 .98 .86 .81	0.66 .66 .57 .57	0.35 .32 .32 .32 .29	0.45 *.49 .41 .38 .38	
6 7 8 9 10	.53 .49 .46 .44	.72 1.26 1.39 6.1 1.32	48 16.1 12.1 8.7 18.6	7.7 7.5 16.4 13.4 5.8	3.6 3.4 3.2 3.0 2.85	2.55 2.85 3.0 2.7 2.55	1.99 1.75 1.86 1.75 1.65	1.12 1.19 1.05 .91 .86	.71 .66 .57 .71	.57 .66 .53 .71	.29 .32 .46 1.22 1.41	.38 .41 .41 1.27 1.41	
11 12 13 14 15	.41 .45 .80 .90	.81 1.69 2.4 10.8 3.15	5.8 4.1 5.4 65 64	11.3 *13.3 5.5 12.9 5.8	13.6 6.3 4.4 3.0 3.2	2.55 2.7 2.25 2.1 1.99	1.99 1.99 1.86 2.25 3.0	.86 .76 .81 .76	.76 .76 .61 .61	.66 .61 .61 *.57	.81 .57 .45 .49 2.0	.81 .57 .49 .45	
16 17 18 19 20	.47 .45 .82 2.2 .95	1.99 1.75 1.86 10.6 25	20.5 10.3 7.4 7.0 67	4.4 3.85 3.4 3.2 3.0	3.6 2.85 58 11.8 7.2	2.1 1.99 <u>4.0</u> 2.4 2.1	1.99 6.2 2.5 1.86 1.65	.86 .91 .91 1.05	*.65 .61 .66 .66	.59 .49 .45 .53	2.6 .98 .61 .49 .45	.41 .49 .49 .45	
21 22 23 24 25	.56 .60 .52 .72 .54	7.6 2.1 1.49 9.1 34	25 37.5 17.6 12.6 8.4	2.85 3.6 4.9 3.2 5.2	3.6 3.2 24.5 4.9 7.7	1.99 1.86 1.75 1.75	1.57 1.49 1.33 1.19 1.41	1.19 1.65 1.41 1.26 1.12	.57 .53 .53 .57 .53	.45 .41 .46 .38	.35 .32 .32 .29 .29	.38 .38 .42 .38 .38	
26 27 28 29 30 31	.47 .43 .41 *.44 .41 <u>.38</u>	5.1 4.3 2.4 2.1 2.1 *1.86	10.7 10.3 20 20.5 8.8	7.0 4.9 3.85 3.0 2.7 46	4.6 22.5 5.8 *4.4 4.6	1.57 1.57 1.57 1.41 *1.26 1.33	12.0 1.99 1.65 1.65 1.49	1.05 1.05 .86	.61 .57 .57 .57 .57	.38 .35 .38 .35	.32 .73 .71 .71 .49	.32 .35 .32 .38 .41	
Total Mean Ac-ft	21.41 0.691 42	145.06 4.68 288	661.0 22.0 1,310	258.25 8.33 512	258.90 8.63 514	70.14 2.26 139	69.82 2.25 138	29.26 1.04 58	20.52 0.662 41	15.72 0.524 31	19.73 0.636 39	14.73 0.491 29	
	Calendar year 1954: Max 91 Min 0.29 Mean 4.72 Ac-ft 3,420 Fiscal year 1954-55: Max 82 Min 0.29 Mean 4.34 Ac-ft 3,140												

Peak discharge (base, 320 cfs).--Sept. 20 (8:30 p.m.) 385 cfs (4.36 ft).

^{*} Discharge measurement made on this day.
Note.--No gage-height record July 1-29; discharge estimated on basis of records for nearby stations.

Pauliluc River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956													
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	
1 2 3 4 5	0.42 .42 .46 .50 .46	3.8 1.49 1.41 1.86 1.77	55 2.9 3.0 6.3 4.5	14.3 6.8 44 8.7 9.1	2.8 3.55 3.8 3.8 3.5	*3.35 2.05 1.85 1.85 1.85	1.74 2.05 3.4 1.95 1.57	0.85 .85 .85 .79	0.58 .58 .63 .63	0.54 .50 *.46 .46 .42	0.29 .29 .29 .46 .42	0.58 .54 .54 .46 .42	
6 7 8 9	*8.5 6.9 10.8 9.9 1.77	1.33 1.18 1.04 .91 *.79	2.35 5.3 2.85 1.77 54	3.8 4.8 3.5 2.8 2.6	3.35 2.8 4.0 2.8 3.25	1.95 1.77 1.66 1.66	3.25 2.5 1.57 1.49 *1.33	.97 1.04 1.11 1.72 1.77	.68 .63 .50 .50	.46 .42 .38 .38	.38 .32 .29 .29	.42 .35 .38 .32	
11 12 13 14 15	8.4 22 6.0 2.45 1.57	.85 .85 .85 .85	25.5 9.7 3.6 2.6 2.35	2.45 2.45 2.35 2.25 2.15	2.25 2.15 2.05 2.05 2.05	1.57 6.8 4.7 4.3 2.15	1.63 1.41 1.41 1.25 1.18	1.49 1.33 1.18 1.04 .97	1.52 .85 .63 .58	.38 .35 .35 .38	.26 .26 .26 .26 .23	.35 .32 .26 .29	
16 17 18 19 20	21 2.7 1.49 1.25 1.63	.68 .73 .85 .67	9.7 8.8 7.5 4.4 *26	1.95 2.45 2.05 2.05 6.9	1.95 2.05 2.85 1.85 1.85	50 4.6 2.8 2.25 3.1	1.11 1.11 1.04 .97 .97	1.04 *.87 .79 .85	.68 .58 .68 .58	.35 .38 .32 .29	.26 .26 .26 .26	.26 .84 6.8 2.8 .85	
21 22 23 24 25	1.41 1.04 1.18 1.25 1.04	1.04 1.11 1.04 1.04	5.5 7.7 10.7 4.1 5.6	2.6 16.1 6.0 *5.9 13.9	1.77 1.95 2.6 1.85 1.66	2.15 1.95 1.77 1.66 1.66	1.04 1.04 1.18 1.11 1.18	.85 .73 .73 .73 .63	.73 .58 .54 .50	.35 .29 .29 .29	.26 .23 .23 *.24 .26	.58 .42 .35 .82 .58	
26 27 28 29 30 31	1.04 1.11 1.04 1.70 8.2 5.9	1.04 .85 .73 .73 .58	4.6 34 66 23.5 7.7	11.1 19.4 24.5 7.0 5.0 3.8	1.66 1.77 f23.5 3.8 f16.6	1.57 1.49 1.49 1.41 1.33 1.25	1.18 1.18 1.18 .97 .97 .91	.73 .68 .63 .63	.50 .52 2.1 1.92 .91 .73	.29 .29 .32 .35	.35 .35 .32 .56 .68	.85 .63 .50 .38 .35	
Total Mean Ac-ft	133.53 4.31 265	33.68 1.09 67	407.52 13.6 808	242.75 7.83 481	111.91 3.73 222	119.65 3.86 237	44.87 1.45 89	27.73 0.956 55	23.39 0.755 46	10.95 0.365 22	10.10 0.326 20	22.82 0.761 45	
	Calendar year 1955: Max 66 Min 0.29 Mean 3.34 Ac-ft 2,420 Fiscal year 1955-56: Max 66 Min 0.23 Mean 3.25 Ac-ft 2,360												

Peak discharge (base, 320 cfs).--Sept. 10 (8:30 p.m.) 630 cfs (5.66 ft); Oct. 3 (6:30 p.m.) 325 cfs (3.95 ft).

^{*} Discharge measurement made on this day.
f Fragmentary gage-height record; discharge computed from partly estimated gage heights.

Pauliluc River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.46 .42 .46 .42 .38	1.66 2.65 1.57 1.18 1.25	3.8 10.1 9.1 6.1 *5.3	4.0 2.35 2.35 6.6 9.7	2.45 1.85 8.5 2.5 *1.66	6.1 36.5 7.4 4.3 3.8	3.3 3.7 2.7 2.7 2.4	1.63 1.52 1.63 1.87 2.4	0.91 .85 .73 .90	*0.71 1.03 1.87 1.11 .85	0.75 .73 .73 .58	0.32 .32 .29 .32 .26
6 7 8 9	.35 .35 .58 1.96 1.58	1.11 .97 7.0 19.8 2.45	2.45 11.9 10.9 21.5 4.6	2.45 2.25 2.15 2.05 3.55	1.57 5.9 2.15 1.77 18.3	4.1 2.45 2.15 1.95 1.95	2.25 2.1 1.87 1.63 19.5	1.75 1.52 3.2 1.99 1.52	1.11 1.04 1.04 1.11 1.04	.79 .68 .68 .68	.42 .63 1.25 1.11	.26 .26 .35 .32
11 12 13 14 15	1.48 1.89 2.25 60 2.6	2.05 1.57 1.25 1.11 1.38	13.3 *9.9 4.4 5.0 84	16.0 31 4.6 3.5 11.2	3.1 16.2 46 3.05 2.25	*1.82 1.57 1.57 124 75	3.7 2.4 2.1 1.99 1.99	1.42 1.42 1.25 1.18 1.11	.91 .91 .85 .73	.63 .54 .54 .54	.54 .46 .50 .46	.29 .32 .35 .29
16 17 18 19 20	1.18 .73 *.66 .63	2.05 2.55 10.5 1.77 1.41	7.3 4.1 3.25 3.1 47	7.8 2.7 3.05 4.4 2.6	26.5 17.0 45 5.9 3.25	9.2 4.4 3.3 3.3 3.1	1.87 8.0 2.4 1.87 1.99	1.04 .91 *.79 1.41 2.2	.68 .63 .68 .68	.42 .42 .42 .38	.42 .42 .38 .38	.29 .29 .26 .35
21 22 23 24 25	.58 .58 .58 .58	1.45 2.1 4.8 11.2 2.8	5.0 3.5 21.5 32 5.4	2.15 2.05 2.45 1.95 2.25	2.8 2.8 7.0 3.8 2.25	3.7 2.9 2.4 2.25 2.25	2.25 1.99 1.75 1.63 1.52	1.18 1.11 1.25 1.63 1.52	.58 .58 .54 .54	.50 .42 .38 .38	.35 .76 1.87 .79	.58 .91 .63 .50
26 27 28 29 30 31	2.15 1.46 2.25 4.5 33.5 3.5	2.8 *18.9 5.8 15.3 8.0 6.8	3.05 7.0 6.7 4.2 14.5	2.05 2.05 17.4 10.1 2.45 2.05	2.15 2.05 2.05 2.45 2.8	4.2 6.0 2.9 3.5 2.55 2.7	1.42 1.42 1.42 2.1 1.87 1.63	1.33 1.25 1.11	.50 1.34 1.63 .97 .79	.38 .35 .42 .42 .42	.42 *.38 .38 .35 .32	.46 .38 .35 .32 .32
Total Mean Ac-ft	129.27 4.17 256	145.23 4.68 288	369.95 12.3 734	171.25 5.52 340	245.05 8.17 486	333.31 10.8 661	89.46 2.89 177	42.14 1.50 84	25.86 0.834 51	17.82 0.594 35	18.29 0.590 36	11.44 0.381 23
	Calendar year 1956: Max 124 Min 0.23 Mean 4.19 Ac-ft 3,040 Fiscal year 1956-57: Max 124 Min 0.26 Mean 4.38 Ac-ft 3,170											

Peak discharge (base, 320 cfs).--July 14 (7:30 a.m.) 590 cfs (5.53 ft); Sept. 15 (10 a.m.) 355 cfs (4.22 ft); Sept. 20 (9 a.m.) 325 cfs (3.96 ft); Dec. 14 (9 a.m.) 734 cfs (6.21 ft).

^{*} Discharge measurement made on this day.

Pauliluc River near Inarajan--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

		Discha	rge, in	cubic re	et per s	econd, f	iscal ye	ar July	1957 to	June 195	8	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.29 .29 .26 .35	0.26 .26 .26 .23	5.3 5.1 26.5 5.9 2.9	1.99 1.52 1.33 1.25 19.2	9.6 2.9 2.7 2.4 2.7	3.1 3.9 3.3 3.3 3.1	1.63 1.42 1.52 1.75 2.7	1.42 1.42 1.63 1.52 1.42	0.85 .68 .54 .68 .63	0.42 .42 .42 .38 .38	0.38 .35 .35 .42 .38	1.58 1.50 .68 .48
6 7 8 9	.32 .29 .29 *.29	.26 .29 .26 .32	3.65 2.9 3.15 1.87 1.99	130 27.5 9.0 11.1 6.5	2.4 2.4 66 13.1 4.9	2.9 2.7 2.7 2.55 2.4	1.75 1.75 7.3 2.25 1.87	1.18 .91 .85 <u>.73</u> .85	.58 .73 .85 .68 *.63	.38 .35 .35 .35 .38	.38 .35 .32 .32	.36 .50 .36 .36
11 12 13 14 15	.41 .63 1.49 1.25	.23 .26 .35 .46	2.2 2.1 2.1 1.52 1.25	3.7 3.5 3.3 2.9 3.3	5.2 108 12.7 7.8 330	2.25 2.4 2.7 2.7 3.3	2.1 2.4 2.9 38 5.8	.85 .85 .91 .91	.63 .63 .63 .54	.35 .35 .53 .46 .54	.32 *.32 .29 .29	4.7 1.52 7.9 a40 5.8
16 17 18 19 20	.50 .42 .32 .29	.50 .42 .42 .92 2.35	*1.33 1.99 1.63 3.25 2.25	2.9 2.7 2.4 2.25 1.99	104 11.8 8.9 *6.8 5.5	3.5 2.9 2.4 1.99 1.75	3.3 2.7 2.55 2.55 *7.7	.85 .85 .97 1.04	.50 .42 .42 .42 .42	.46 .46 .38 .50	.26 .29 .29 .26	3.1 2.1 1.52 1.18 1.04
21 22 23 24 25	.32 .32 .32 .29	1.12 1.01 3.4 2.35 2.85	1.75 10.4 3.7 9.1 14.9	2.25 13.0 6.7 3.7 3.1	4.9 4.4 4.4 4.2 4.2	1.63 1.52 1.75 1.75 1.63	2.7 2.1 1.99 1.87 1.75	.91 .85 .97 1.33 1.42	.42 .42 .42 .42 .38	.42 .38 .35 .35	.26 .47 .35 .32 .29	.97 1.11 1.33 1.52 *1.63
26 27 28 29 30 31	.32 .26 .32 .32 .29	1.18 .79 9.2 10.1 3.0 1.56	2.7 2.1 2.25 2.4 2.1	3.9 8.3 4.9 *2.9 2.4 3.1	4.2 4.9 3.7 3.5 3.3	1.33 1.18 1.23 1.52 1.52	1.52 1.63 1.52 1.52 1.52 1.42	1.04 .97 .91	.38 .38 .38 .38 .51	.38 .35 .35 .38 .35	.26 .26 .32 1.91 1.84 .85	1.18 2.15 1.63 1.25 1.04
Total Mean Ac-ft	12.91 0.416 26	45.61 1.47 90	130.28 4.34 258	292.58 9.44 580	751.5 25.0 1,490	72.53 2.34 144	113.48 3.66 225	29.32 1.05 58	16.56 0.534 33	11.98 0.399 24	13.57 0.438 27	98.51 3.28 195
	dar year year 19			Min Min	0.23	Mean 4	1.14	Ac-i	t 2,990 t 3,150)		

Peak discharge (base, 320 cfs).--Oct. 6 (8 a.m.) 910 cfs (7.00 ft); Nov. 12 (1 p.m.) 370 cfs (4.27 ft); Nov. 15 (9:30 p.m.) 1,130 cfs (7.80 ft).

^{*} Discharge measurement made on this day. a No gage-height record; discharge estimated on basis of records for nearby stations.

Tolaeyuus River near Agat

Location. -- Lat 13°21'55" N., long 144°42'40" E., on right bank 3.7 miles southeast of Agat and
4.8 miles southwest of Yona.

Drainage area. -- 6.5 sq mi.

Records available. -- September 1951 to June 1958.

Gage. -- Water-stage recorder and concrete control. Altitude of gage is 90 ft (by barometer).

Average discharge. -- 6 years (1952-58), 22.0 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1952-58 are contained in the following table:

		Max1mum			Minimum_	
Fiscal year	Date	Discharge (cfs)	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1952† 1953 1954 1955	Oct. 13, 1951 Sept. 8, 1952 Oct. 15, 1953 Sept. 1, 1954	(*) (*) (*) (*)	10.58 8.13 (a) 12.25	May 2, 3, 1952 June 26,27,1953 June 21,22,1954 July 1, 8-10, 12-17, 1954	0.39 ††.68 .27 .50	0.22 - .19 .24
1956 1957 1958	Sept.29, 1955 Nov. 13, 1956 Nov. 16, 1957	(‡) (‡) (‡)	18.30 10.28 19.24	May 15-17, 1956 June 19, 1957 July 26,27,1957	.35 .76 .50	.21 .28 .24

† Period September to June.

Unknown.

tt Minimum daily.

a About 22.5 ft.

1951-58: Maximum discharge not determined, occurred Oct. 15, 1953 (gage height, about 22.5 ft); minimum, 0.27 cfs June 21, 22, 1954.

Remarks.--Records good except those for period of faulty or no gage-height record or indefinite stage-discharge relation, which are poor. Occasional backwater caused when capacity of underground channel outlet is exceeded.

Discharge, in cubic feet per second, September 1951 to June 1952

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5				*a4.6 a <u>4.3</u> a4.6 4.8 5.4	82 28.5 38 e270 56	7.5 8.8 5.2 4.3 3.95	6.8 6.2 6.2 6.2	3.25 4.3 4.3 3.9 3.45	2.8 3.0 1.87 1.74 1.62	1,09 1.00 1.00 .92 .84	0.50 .44 .44 .56 1.01	1.62 1.19 1.00 1.86 1.50
6 7 8 9 10			-	5.9 6.0 67 112 51	43 35.5 23.5 19.5 17.5	109 21 14.3 11.7 9.7	5.9 5.4 *5.2 5.2 5.4	*3.25 4.6 4.1 3.65 3.65	1.50 1.39 1.39 1.29	.76 .76 *.76 .69	6.1 10.3 2.45 1.50 1.29	1.29 1.29 1.29 1.19 1.00
11 12 13 14 15			-	43 e250 e <u>359</u> 96 62	17.2 30 15.7 15.2 13.4	8.2 5.9 4.8 4.3 4.1	5.0 4.8 4.8 4.6 5.0	3.45 3.25 3.1 3.1 2.9	1.19 1.19 1.19 1.19 1.09	.62 .62 .69 .62	1.09 1.00 .84 .69	1.00 1.00 .84 .84 1.00
16 17 18 19 20			-	45 27.5 21.5 18.9 25	12.9 15.2 16.4 41 10.3	4.1 28.5 13.8 12.1 9.0	5.7 4.8 7.7 5.2 4.8	2.75 2.6 2.6 2.6 2.6 2.6	1.09 1.09 1.00 1.00	.56 .56 .56 .62 .76	.69 .56 .56 6.4 2.0	1.33 1.62 1.19 1.00
21 22 23 24 25			-	18.9 28 17.0 23.5 18.9	7.1 5.4 5.2 4.3 4.3	8.1 7.4 6.8 6.8 6.8	4.3 4.1 5.2 4.6 4.1	2.6 2.75 2.6 2.4 2.15	1.09 1.09 1.00 1.00	.62 .56 .56 .62	1.19 *1.00 .76 .69	.84 .76 .92 1.39 1.19
26 27 28 29 30 31			a5.2 a5.0 a5.8 a5.2	31 42 23.5 19.5 18.2 15.7	4.1 8.0 16.3 6.8 5.4	6.8 6.8 7.4 7.1 7.1	3.9 3.9 3.65 4.1 3.65 3.45	2.15 2.25 2.25 1.87	3.05 1.50 1.62 1.50 1.29 1.19	.56 .62 .76 .62	.76 .69 .76 1.65 3.15 1.87	1.19 1.09 1.00 .92 .69
Total Mean Ac-ft			-	1,469.7 47.4 2,920	867.7 28.9 1,720	368.45 11.9 731	156.65 5.05 311	88.42 3.05 175	44.58 1.44 88	20.78 0.693 41	52.39 1.69 104	33.96 1.13 67
	Calendar year : Max Min Mean Ac-ft Fiscal year : Max Min Mean Ac-ft											

* Discharge measurement made on this day.
a No gage-height record; discharge estimated on basis of records for nearby stations.
e Stage-discharge relation indefinite; discharge estimated on basis of records for nearby stations.

Discharge, in cubic feet per second, fiscal year July 1952 to June 1953

Discharge, in cubic feet per second, fiscal year July 1952 to June 1953												
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	9.4 3.45 4.0 <u>42</u> 9.5	120 30 50 39 32	12.9 20.5 17.5 12.9 11.3	39.5 31 30 32 26	29 27 26 24 26	95 60 33.5 31.5 23.5	28.5 17.5 16.1 14.3 22.5	5.7 5.7 5.7 5.7 *5.2	15.2 14.3 12.9 13.4 11.7	4.1 3.9 3.9 3.9 3.65	2.25 2.15 2.15 2.0 2.0	1.29 1.09 *1.00 1.19 1.19
6 7 8 9	7.1 7.1 4.3 3.1 6.2	25 20 *30 116 54	11.0 11.7 e <u>187</u> 88 52	31.5 59 28.5 34 42	24 28 65 166	21 98 27.5 23 26.5	16.6 13.4 *12.1 11.3 10.6	5.0 13.8 9.8 6.5 5.7	10.6 10.2 9.8 9.4 9.0	3.45 3.9 3.65 3.45 3.45	*2.0 1.87 1.87 1.87 1.74	1.19 1.1 1.1 1.0
11 12 13 14 15	4.6 2.4 2.0 1.87 2.9	e227 e145 44 29 52	26 77 170 81 48	37 28.5 23 22.5 21.5	48 37 36 36 35	21 17.5 16.6 22.5 16.6	10.2 9.8 9.4 9.0 8.7	5.4 10.2 6.8 5.4 5.2	8.4 8.1 7.4 7.1 6.8	3.45 4.1 4.1 3.45 3.25	1.74 1.74 1.62 1.62	.85 .80 .80 .78
16 17 18 19 20	2.25 1.87 7.7 4.3 3.45	38.5 28.5 19.5 17.5 18.9	35 27 28.5 21 16.6	20 18.9 20 19.5 18.9	79 41 35 34 31	14.7 14.7 *14.7 13.4 12.5	8.4 8.1 7.8 7.4 7.1	5.2 5.7 5.0 5.0 5.0	6.5 6.5 8.1 6.5 6.2	3.1 2.9 2.9 2.75 2.75	2,15 2,15 2,25 2,15 1,87	.76 .74 .72 .76
21 22 23 24 25	4.0 4.8 4.0 3.0 2.5	14.3 12.5 28 19.6 12.5	15.2 14.3 103 42 25	18.2 66 59 44 40	29 28 28 *27.5	11.7 11.3 33 13.8 20	7.4 7.1 7.1 6.8 6.5	e349 e109 46 31.5	5.9 5.7 5.4 5.2 5.2	2.75 2.75 2.6 2.6 2.75	1.87 2.75 1.87 2.0 2.15	.73 .70 .74 .74
26 27 28 29 30 31	2.3 2.1 5.0 10 8.0 25	12.1 12.1 14.7 17.0 16.6 13.4	20 19.5 47 e176 66	40 38 36 34 69 36	31.5 22.5 34 111 50	14.7 16.1 13.6 35 14.3	6.5 6.2 6.2 5.9 8.1 6.2	24.5 22.5 17.0	5.0 4.8 4.8 4.6 4.3 4.1	2.75 2.6 2.4 2.25 2.25 2.25	2.0 1.87 1.74 1.62 1.50	.68 .68 .80 1.0
Total Mean Ac-ft	6.46	42.2	1,482.9 49.4 2,940	1,063.5 34.3 2,110	1,285.5 42.8 2,550	894.2 28.8 1,770	322.8 10.4 640	732.0 26.1 1,450	243.1 7.84 482	95.80 3.19 190	59.68 1.93 118	26.57 0.886 53
	Calendar year 1952: Max 227 Min 0.44 Mean 18.1 Ac-ft 13,150 Fiscal year 1952-53: Max 349 Min 0.68 Mean 21.1 Ac-ft 15,300											

Fiscal year 1952-53: Max 349 Min 0.68 Mean 21.1 Ac-ft 15,300

* Discharge measurement made on this day.
e Stage-discharge relation indefinite; discharge estimated on basis of records for nearby stations.
Note.--Faulty or no gage-height record July 21 to Aug. 8, Sept. 13-16, Oct. 24 to Nov. 23,
June 7-30; discharge estimated on basis of recorded graph and records for nearby stations.

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.90 .70 .60 .60	3.65 3.25 3.25 2.9 2.4	52 72 47 39.5 34	20 17.0 14.7 14.3 13.8	27 24 23 22 21	40 33 29 26 24	11 11 11 11 10	5.7 5.2 5.0 5.0 4.8	3.45 3.1 2.9 2.75 2.75	1.29 1.74 1.74 1.74 1.50	1.09 .84 .76 .76 *.69	0.50 .44 .44 .39 .39
6 7 8 9 10	.60 .80 .70 .60	6.5 6.8	27.5 23 21 18.2 16.6	12.9 13.4 12.1 51 16.1	19 18 18 18 29	22 20 18 17 18	10 9 9 190 45	4.6 4.6 4.3 4.3	2.6 2.4 2.4 2.4 2.25	1.39 1.29 1.62 1.29 1.19	.62 .56 .56 .56	.56 .69 .69 .84
11 12 13 14 15	.50 .50 .80 8.0		16.1 17.5 14.7 *13.4 13.8	14.3 23 14.7 14.7 1,000	53 280 <u>400</u> 160 65	16 16 15 38 30	20 15 13 *12 12.5	3.9 3.9 3.9 3.65 3.45	2.4 2.4 2.15 2.0 2.0	1.19 1.09 1.09 1.09	.62 1.09 .84 .62 .56	.56 .50 .50 .50
16 17 18 19 20	3.6 5.9 18.9 5.0 4.3	137 81 369 96 53	16.1 12.5 23 39.5 56	800 400 210 180 280	47 40 35 30 27	45 40 23 21 20	11.0 9.8 9.0 8.7 8.1	3.45 3.25 3.25 3.1 3.65	2.0 2.0 2.0 1.87 1.87	1.00 .92 .92 1.00 1.00	.56 .56 .62 .62	.39 .35 <u>.31</u> .35
21 22 23 24 25	4.8 2.75 2.15 7.9 30.5	47 35 31.5 343 74	102 47 31 24.5 23	170 78 66 56 47	27 25 24 62 43	18 23 19 17 17	8.4 8.1 7.1 7.1 6.8	3.45 3.25 3.1 2.9 2.75	1.74 *1.74 1.74 1.62 1.50	.92 .92 .92 .92	.56 .50 .62 1.19 .76	.31 1.80 1.95 .92
26 27 28 29 30 31	38.5 33 15.2 8.7 5.7 4.6	43 33.5 250 200 100 80	46 21 77 33.5 23.5	40 36 37 36 35 28.5	28 25 23 21 *65	16 15 14 13 13 12	6.5 5.9 5.7 5.4 5.9	2.75 5.2 4.3 -	1.39 1.29 1.29 1.29 1.29 1.29	.84 .84 .84 .76 .69	.62 .56 .56 .56	.76 .69 .56 .50
Total Mesn Ac-ft	212.60 6.86 4 22	3,217.35 104 6,380	1,001.9 33.4 1,990	3,751.5 121 7,440	56.6	22.2	508.9 16.4 1,010	110.80 3.96 220	63.87 2.06 127	33.75 1.12 67	20.76 0.670 41	18.74 0.625 37
		r 1953: N 953-54: N					33.0 31.0	Ac- Ac-	ft 23,90 ft 22,46		*	

^{*} Discharge measurement made on this day.
e Stage-discharge relation indefinite; discharge estimated on basis of records for nearby stations.

Note. -- No gage-height record July 1-14, Aug. 17-19, 24, 25, 28-31, Oct. 15-20, Nov. 1 to Jan. 14;
discharge estimated on basis of records for nearby stations.

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

		DISCHA	180, 111	0 40 10	o per b		roour jo	ar oury r	.001 00 1	oute 255		
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.56 1.42 .92 .62 .62	0.92 1.14 .92 .92 1.00	e259 110 67 e182 119	38 31 32 25 37	59 36.5 29.5 27.5 21	25 21 17.5 15.7 14.7	5.2 5.0 5.4 7.8 10.2	3.9 3.6 3.9 <u>4.5</u> 4.0	2.6 2.4 2.25 2.15 2.25	1.50 1.39 1.39 1.39 1.29	1.50 1.19 1.09 1.09	4.9 5.3 2.75 2.1 4.3
6 7 8 9	.56 .56 .50 .76	1.00 3.2 3.7 30 5.9	73 57 126 68 61	*28 31.5 76 91 35	18.2 18.2 22 21.5 21.5	14.7 15.6 20 13.4 13.4	6.8 5.9 11.4 8.4 14.0	3.5 3.3 3.1 3.1 3.1	2.15 2.0 2.0 1.87 1.87	1.29 1.50 1.62 1.50	1.00 1.00 1.62 5.5 2.6	2.8 13 5.0 40 9.0
11 12 13 14 15	.76 .56 .50 .62	3.65 15.3 8.0 15.7 6.6	34 25 25.5 e273 e294	49 53 34.5 28.5 24.5	el54 41 28.5 22.5 17.0	12.5 11.3 10.6 9.8 9.4	9.8 8.1 7.0 16.6 19.6	3.1 2.9 2.75 2.75 2.75	2.15 2.0 2.0 *1.74 1.62	1.39 1.29 *1.19 1.19 1.19	1.74 1.39 1.39 1.29 8.1	4.5 3.5 2.8 2.4 2.1
16 17 18 19 20	.50 1.83 9.2 13.8 4.1	4.3 13.2 8.5 48 60	78 48 38.5 33.5 167	21 17.0 15.7 14.3 12.9	16.6 14.7 120 27.5 46	10.6 12.6 10.6 9.4 9.0	9.4 8.4 7.4 6.5 6.2	2.75 4.0 4.1 2.9 2.75	1.19 1.19 1.09 1.09 1.09	1.19 1.09 1.09 1.19 5.4	4.0 2.4 1.87 1.50 1.29	1.9 2.0 1.8 1.6 1.7
21 22 23 24 25	2.0 1.62 1.39 1.50 1.39	24.5 11.6 *7.4 53 165	151 151 66 53 42	34.5 22.5 16.1 13.4 12.5	22.5 18.2 e <u>189</u> 52 34	8.4 8.1 9.3 7.4 7.1	5.7 5.2 5.0 4.6 5.0	4.0 3.9 3.25 2.9 2.75	1.09 1.19 1.09 1.29 5.0	1.87 1.87 1.74 1.50 1.74	1.19 1.00 .92 .84 .84	1.7 1.5 1.4 1.3
26 27 28 29 30 31	*1.09 .92 .92 .92 1.00	28.5 18.4 12.9 36 25 26.5	61 37.5 174 82 47	45 44 *25.5 18.9 50 247	27.5 74 32.5 28.5 36.5	6.8 6.5 5.9 *6.2 5.9 <u>5.4</u>	16.0 #6.4 5.2 5.0 4.5 4.0	2.6 2.6 2.75	1.74 1.74 1.74 1.50 1.50	1.62 1.39 1.19 1.09 1.19	*,76 2.4 1.39 1.19 1.00	1.3 1.4 1.3 1.4 2.0
Total Mesn Ac-ft	53.18 1.72 105	640.75 20.7 1,270	3,003.0 100 5,960	1,224.3 39.5 2,430	1,277.4 42.6 2,530	353.8 11.4 702	245.7 7.93 487	91.50 3.27 181	55.97 1.81 111	45.78 1.53 91	55.01 1.77 109	127.95 4.26 254
	Calendar year 1954: Max 294 Min 0.31 Mean 20.0 Ac-ft 14,500 Fiscal year 1954-55: Max 294 Min 0.50 Mean 19.7 Ac-ft 14,230											

^{*} Discharge measurement made on this day.
e Stage-discharge relation indefinite; discharge estimated on basis of records for nearby stations.
Note.--No gage-height record Jan. 29 to Feb. 10, June 4-30; discharge estimated on basis of records for nearby stations.

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

					P	, ,						
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	a3.0 a3.5 a2.2 a2.0 a <u>1.9</u>	20 15.2 12.1 13.3 11.0	e188 28.5 64 23.5 18.9	e138 57 e133 46 36	29.5 32.5 23 21.5 19.5	15.9 12.1 10.2 9.0 8.4	6.8 7.1 7.2 *5.7 5.2	2.75 2.6 2.75 3.1 2.6	1.87 1.87 2.0 1.87 1.87	1.39 1.29 1.29 1.29 1.19	0.84 .76 .76 .76	1.50 1.29 1.19 1.29 1.29
6 7 3 9	a62 a85 a180 a58 a20	10.3 9.8 8.1 7.4 6.8	18.4 16.8 <u>13.8</u> 17.3 e159	30 25 21.5 20 17.5	16.6 15.2 18.9 15.2 37	7.8 7.4 12.7 8.1 7.8	5.2 5.0 4.6 4.3	2.4 3.45 5.2 7.8 5.4	1.87 1.74 1.74 1.62 1.74	.92 .92 1.00 .92 1.34	.69 .62 .56 .99	*1.09 1.00 2.05 1.62 1.29
11 12 13 14 15	a37 a85 *a40 21.5 16.6	7.1 7.8 6.5 5.9	76 57 27 22 18.5	20.5 16.6 32.5 17.3 13.8	16.6 14.7 13.4 12.1 11.3	8.7 15.7 17.9 19.9 11.6	4.3 4.1 3.9 3.65 3.45	4.3 3.45 3.1 *2.9 2.75	1.74 1.74 1.62 1.50 1.39	.92 .84 .84 .76	.50 .39 .39 .39	1.48 2.2 1.29 1.19 1.00
16 17 18 19 20	50 18.4 14.3 11.7 9.0	5.2 5.2 17.0 7.8 10.1	22 29.5 48 19.3 14.7	12.1 27 15.5 *19.6 77	11.0 11.0 14.7 10.6 9.8	e <u>147</u> 31 17.6 14.7 12.5	3.45 3.45 3.45 3.25 3.1	3.65 2.9 2.9 2.6 2.4	1.50 1.50 1.39 1.50 1.39	.69 .76 .76 .69	.35 .68 .44 .44 1.08	7.2 5.1 2.3 1.50
21 22 23 24 25	7.1 5.4 5.0 4.6 26.5	28.5 18.8 9.4 52 26	13.9 e146 41 27.5 72	16.6 e <u>365</u> 48 52 82	9.0 9.4 12.1 10.2 <u>7.8</u>	15.2 11.3 9.8 9.0 8.4	3.1 2.9 3.1 3.1 2.9	2.4 2.15 2.15 2.15 2.25	2.15 1.74 1.62 1.50 1.62	.62 .62 .62 .76	*.70 .50 .44 .44	1.19 1.00 1.00 2.9 1.74
26 27 28 29 30 31	28 12.9 4 e98 e103 27.5		49 114 e483 e1,000 94	e138 e165 121 69 43 33.5	9.0 13.8 100 *20.5 38	8.1 7.8 7.1 7.1 6.5 6.5	2.9 3.1 2.9 2.75 2.6 2.6	2.25 2.15 2.0 2.0 -	1.62 1.87 *2.6 1.87 1.50 1.39	.62 .69 .76 .84	.76 1.19 .76 .62 1.29 1.39	1.62 1.50 1.29 1.19 1.09
Total Mean Ac-ft	1,046.5 33.8 2,080	478.3 15.4 949	2,922.6 97.4 5,800	1,909.0 61.6 3,790	583.9 19.5 1,160	492.8 15.9 977	124.35 4.01 247	88.50 3.05 176	52.94 1.71 105	26.53 0.884 53	20.90 0.674 41	52.23 1.74 104
Calendar year 1955. Max 1,000 Min 0.76 Mean 22.1 Ac-ft 15,990 Fiscal year 1955-56: Max 1,000 Min 0.35 Mean 21.3 Ac-ft 15,480												

* Discharge measurement made on this day.

a No gage-height record; discharge estimated on basis of records for nearby stations.

e Stage-discharge relation indefinite; discharge estimated on basis of records for nearby stations.

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

	Discharge, in court feet per second, fixed year out, 1500 to dule 1501												
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	
1 2 3 4 5	3.3 2.0 1.87 2.75 2.25	14.3 10.2 8.1 6.5 5.4	24 54 45 45 67	42 28.5 23 37 26.5	16.1 15.2 25.5 16.1 13.8	16.1 56 32 18.7 18.9	13.4 *12.1 11.7	12.1 9.8 9.8 11.7 12.1	5.4 5.2 5.2 5.4 6.8	5.0 7.7 7.6 4.8 4.3	3.1 3.1 2.9 2.75 2.75	1.62 1.62 1.50 1.39	
6 7 8 9 10	1.87 1.50 1.74 21.5 5.9	4.6 3.9 25 56 12.1	37.5 41 46 78 34	19.5 17.0 16.6 16.6 17.1	13.4 13.8 12.5 12.1 25.5	23 17.5 14.7 13.8 12.5	9.4	9.8 9.4 16.0 10.2 8.7	6.5 5.4 4.6 5.2 5.2	3.9 3.65 3.45 3.9 3.65	2.9 3.1 4.6 3.9 3.1	1.29 1.19 1.39 1.50 1.29	
11 12 13 14 15	3.45 *3.45 5.3 5.4 4.3	11.4 9.4 8.7 6.8 30	40 44 31 25 118	17.8 160 32 46 43	43 61 *218 42 25.5	12.1 *11.2 10.6 270 310	19.3 16.1 13.8 12.1 11.7	*8.4 8.4 8.4 8.1 7.8	5.0 5.4 5.0 4.6 4.6	3.65 3.25 2.9 3.45 3.65	2.75 2.6 2.4 2.4 2.25	1.09 1.00 1.00 1.00	
16 17 18 19 20	3.65 2.75 2.25 2.15 1.87	12.0 103 40 15.7 12.1	43 60 29 31.5 105	36 e100 62 68 34.5	50 44 216 49 40	46 31.5 24.5 21.5 19.5	13.4	7.1 7.1 6.8 8.5 7.8	4.3 4.3 4.3 4.3 4.6	3.1 2.9 2.75 2.9 2.6	2.25 2.25 2.4 2.4 2.6	.84 .84 .84 1.29 2.45	
21 22 23 24 25	1.74 1.74 1.62 *16.5 *23.5	9.4 15.1 25 16.6 12.9	42 34 102 133 46	27 36.5 47 27 39	43 31.5 34.5 24.5 21.5	18.9 16.1 14.7 13.8 16.7	12.5 11.3 11.0	6.8 6.2 6.8 6.2	4.3 4.1 3.9 3.45 4.1	3.25 3.45 3.25 3.1 2.75	*1.79 4.7 2.4 2.15 2.15	2.4 1.74 1.39 1.29	
26 27 28 29 30 31	74 35.5 28 26.5 85 25.5	10.2 60 *102 43 33 26	34 97 63 36 106	21.5 19.5 20 18.2 15.7 26	18.9 18.2 17.0 17.5	35.5 29.5 16.6 14.3 12.9 13.8	8.1 7.8 23 11.3		#3.9 17.1 6.2 5.0 4.3 4.1	2.75 2.75 3.45 3.45 3.25	2.0 1.74 1.62 1.62 1.62 1.62	1.87 2.0 1.87 1.19 1.09	
Total Mean Ac-ft	398.85 12.9 791	748.4 24.1 1,480	1,691.0 56.4 3,350	36.8	1,196.1 39.9 2,370	38.2	18.8	237.3 8.48 471	161.75 5.22 321	110.55 3.68 219	79.91 2.58 158	41.48 1.38 82	
	Calendar year 1956: Max 310 Min 0.35 Mean 18.4 Ac-ft 13,330 Piscal year 1956-57: Max 310 Min 0.84 Mean 20.7 Ac-ft 15,020												

^{*} Discharge measurement made on this day.
e Stage-discharge relation indefinite; discharge estimated on basis of records for nearby stations.

Tolaeyuus River near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

		DIDOMA	1 80, 111	04220 20	co per s		ibcai je	ar ours	1001 00 1	ounc 155	0	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.00 1.00 .84 .76 .92	0.62 .56 .56 .62 .76	46 70 25 14.3 18.4	*10.6 8.7 7.8 7.1 24	21.5	18.9 22.5 18.2 19.5 18.9	8.1 8.4 8.1 7.4 7.4	7.8 7.4 6.8 7.1 6.8	4.1 4.1 3.85 3.65 4.3	1.87 1.50 1.39 1.39 1.74	1.87 1.62 1.50 1.50	2.6 2.0 1.74 1.62
6 7 8 9 10	.92 .84 .84 .69	.76 .84 3.15 1.19 1.00	31 40 21 30.5 14.3	e230 e260 70 44 33.5	16.7 14.3 188 106 114	15.2 18.9 15.2 14.3 14.3	7.1 8.1 12.3 10.7 7.8	6.5 6.2 6.2 5.9	3.85 3.85 4.8 3.85 3.65	1.74 1.74 1.87 2.0 2.4	1.50 1.39 1.39 1.39	1.50 1.62 1.74 1.87
11 12 13 14 15	1.29 1.62 2.0 1.09	1.00 1.00 1.93 4.3 2.75	12.6 11.3 9.8 8.7 7.8		52 207 119 72 e420	13.4 12.5 12.1 11.7 12.1	8.7 8.7 9.8 239 35	5.9 5.7 5.2 5.2 5.0	4.1 *4.3 4.3 4.1 3.9	2.85 2.15 3.7 2.75 2.4	1.39 1.29 1.29 *1.24 1.19	12.3 5.4 34 243 37
16 17 18 19 20	.84 .76 .69 .69	2.25 2.25 5.7 5.2 5.1	17.9 42 14.3 14.3 13.3	30 21 17.5 18.9 14.7	e <u>460</u> 99 60 48 41	14.7 11.7 10.2 9.8 9.4	21 16.6 14.7 14.7 16.0	4.8 4.6 5.4 6.2 5.0	3.9 3.65 3.45 3.1	2.25 2.75 2.75 2.25 2.25	1.09 1.09 1.09 1.09	16.5 11.3 8.4 6.8 6.2
21 22 23 24 25	.62 .69 .62 .62	3.9 3.4 4.8 19.5 18.0	9.8 39 49 22.5 16.6	15.2 *34 48 23 31.5	#35.5 31 27.5 24.5 23	9.4 9.0 8.4 7.8 7.1	*12.9 11.0 9.8 9.0 8.7	4.6 4.3 4.6 9.1	2.75 2.6 2.6 2.6 2.6	2.25 2.15 2.0 2.0 1.87	1.19 1.29 2.15 1.87 1.50	5.7 8.3 6.2 5.4 8.9
26 27 28 29 30 31	.56 .56 1.84 1.09 .84 .76	14.5 5.9 *101 61 18.8 10.6	15.2 12.5 11.7 10.6 11.3	24.5 21.5 e150 32 29 33.5	#25.5 66 25 22.5 20	6.8 6.2 6.2 20.5 9.4 8.1	8.1 9.8 8.7 7.8 7.4	4.8 4.6 4.1	2.6 2.4 2.4 2.25 2.25 2.0	1.62 1.87 1.74 2.0 2.0	1.39 1.29 1.50 6.0 2.4 2.15	*7.4 6.2 5.4 5.2 4.6
Total Mean Ac-ft	27.78 0.896 55	302.94 9.77 601	660.7 22.0 1,310	1,475.5 47.6 2,930	2,429.3 81.0 4,820	392.4 12.7 778	570.2 18.4 1,130	161.1 5.75 320	105.75 3.41 210	63.24 2.11 125	49.87 1.61 99	508.51 17.0 1,010
		1957: N		Min Min	0.56 0.56		.7.8 .8.5	Ac-i				

^{*} Discharge measurement made on this day.
e Stage-discharge relation indefinite; discharge estimated on basis of records for nearby stations.

Almagosa Springs near Agat

Location. -- Lat 13°20'45" N., long 144°40'45" E., on left bank 3.5 miles southeast of Agat and 3.5 miles northeast of Umatac.

Records available. -- September 1951 to June 1958.

Gage. -- Water-stage recorder and concrete control. Altitude of gage is 620 ft (by barometer). Average discharge. -- 6 years (1952-58), 3.51 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1952-58 are contained in the following table:

Fiscal		Maximum			Minimum	
year.	Date	Discharge (cfs)‡	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1952†	Oct. 12, 1951	162	3.24	Sept. 28 to Oct. 2, 1951	110.02	-
1953	Feb. 22, 1953	173	3.33	(a)	0	-
1954	Oct. 15, 1953	760	5.02	(a)	0	-
1955	Nov. 23, 1954	79	2.13	(a)	tt.01	-
1956	Sept.29, 1955	240	3.81	Apr. 27 to May 3, 1956	††.01	-
1957	Aug. 28, 1956	103	2.51	Mar. 26, 1957	.04	0.13
1958	Nov. 16, 1957	198	3.53	(a)	††.01	-

† Period September to June.

‡ From rating curve extended above 20 cfs on basis of tests on model of station site.

†† Minimum daily.

1951-58: Maximum discharge, 760 cfs Oct. 15, 1953 (gage height, 5.02 ft), from rating curve extended above 20 cfs on basis of tests on model of station site; no flow at times.

Remarks.--Records good except those for periods of fragmentary or faulty or no gage-height record, which are poor. Several pipelines above station divert water for domestic use.

Discharge, in cubic feet per second, September 1951 to June 1952

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5			1.151.51	*0.02 .02 1.62 .03 .03	0.59 .87 3.25 <u>30</u> 13.6	1.52 1.42 1.16 .88 .70	C.26 .22 .24 .18	0.03 .04 .05 .03 .04	0.04 .04 .04 .04	0.06 .05 .05 .05	0.07 .07 .12 .14	0.07 .06 .06 .06
6 7 8 9 10				.93 1.07 9.5 20.5 19.9	6.5 4.1 2.95 2.05 1.52	35.5 17.5 7.9 4.7 3.4	.18 *.16 .09 .07	.03 .76 *.05 .04	.05 .05 .06 .06	.05 .06 .06 .06	.15 .12 .08 .10	.07 .07 .07 .07
11 12 13 14 15			-	14.6 58 56 32 14.6	1.24 1.62 .88 .64	2.8 1.93 1.42 1.08 .82	.04 .18 .04 .04 .54	.04 .04 .04 .05	.06 .06 .06 .07	.06 .07 .07 .08	.08 .10 .08 .10	.10 .06 .06 .06
16 17 18 19 20		12	-	8.9 5.6 4.1 3.1 2.4	.10 .75 .10 3.1 1.18	.64 5.1 2.1 1.01 .76	.04 .04 .08 .05	.06 .05 .05 .06	.05 .05 .06	.07 .08 .07 .07	.06 .07 .07 .07	.06 .06 .06
21 22 23 24 25			-	1.82 1.42 1.16 1.08	.64 .33 .10 .07	.49 .27 .08 .07	.04 .04 .05 .05	.04 .04 .05 .05	.07 .06 .06 .06	.06 .07 .07 .08	.07 .07 .06 .06	.06 .07 .07 .06
26 27 28 29 30 31			0.02 .02 .02	fl.6 2.5 1.72 1.24 .94 .64	.06 .94 4.2 2.05 1.33	.08 .09 .22 .42 .29	.04 .03 .03 .03 .03	.05 .05 .05 .04	.05 .05 .06 .05 .05	.08 .08 .07 .07	.06 .06 .07 .08 .08	.06 .06 .06
Total Mesn Ac-ft			- - -	267.86 8.64 531	85.17 2.84 169	94.67 3.05 188	3.31 0.107 6.6	2.01 0.069 4.0	1.83 0.059 3.6	2.01 0.067 4.0	2.58 0.083 5.1	1.94 0.065 3.8
	dar year l year		Max Max	Min Min		Mean Mean		Ac-1 Ac-1				

^{*} Discharge measurement made on this day.
f Fragmentary gage-height record; discharge computed from partly estimated gage heights.

Almagosa Springs near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1952 to June 1953

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.15 .07 .08 .11	11.5 6.0 14.2 11.9 10.4	0.30 1.40 1.37 .94 2.35	3.0 2.4 2.1 1.8 1.5	7.0 6.0 5.0 4.0 12	4.0 3.5 3.0 2.5 2.5	4.7 3.1 2.3 1.62 1.69	0.10 .10 .12 *.12 .12	1.52 1.08 .76 .54 .33	0.14 .12 .12 .12 .12	0.12 .14 .14 .14 .12	00000
6 7 8 9 10	.08 .08 .08 .07	5.3 3.55 *2.45 9.3 17.4	2.05 1.15 9.5 * <u>19.9</u> 8.6	1.3 9.0 5.0 8.0 6.0	8.0 5.0 11 18 6.0	2.0 4.0 1.5 1.5	1.24 .88 *.62 .37 .21	.14 .18 .30 .30	.18 .55 .21 .21	.12 .12 .12 .12 .12	*.12 .14 .14 .14 .12	0 0 0
11 12 13 14 15	.07 .08 .07 .07	17.7 24 16.2 7.1 4.9	4.7 4.7 13.1 13.4 8.5	7.0 6.5 6.0 7.5 7.0	15 *10 7.0 5.1 4.7	1.5 1.5 1.5 2.0 1.5	.10 .08 .10 .17	.33 .33 .21 .16 .16	.33 .70 .33 .30 .27	.12 .16 .14 .14	.12 .10 .10 .10	0 0 0
16 17 18 19 20	.09 .08 .08 .08	3.7 2.3 1.42 .95 1.25	8.5 4.1 3.4 2.5 2.0	6.5 6.0 <u>15</u> 11 8.0	19.8 11.0 7.0 10 20	1.1 1.1 *1.1 1.06 .64	.41 .35 .33 .24 .18	.16 .16 .16 .18	.18 .16 .16	.14 .14 .14 .14	.01 .01 .01 <u>0</u>	0 0 0
21 22 23 24 25	.06 .08 .08 .10	.78 .73 4.9 1.72 1.16	1.5 .8 2.0 1.5	9.0 8.0 7.0 14 8.5	8.0 5.0 4.0 4.5 4.0	.45 .33 4.8 1.24 2.55	.14 .12 .12 .10 .10	.18 <u>84</u> 30 14 7.8	.16 .16 .54 .16	.79 .14 .14 .14	0000	0 0
26 27 28 29 30 31	.07 .06 .10 .10 .99	.59 .21 .10 1.47 .82	.8 .7 1.5 5.0 3.0	9.0 8.0 7.0 6.0 11 9.0	3.5 3.2 3.0 15 3.5	1.24 1.34 1.00 3.55 1.16 9.6	.10 .12 .10 .10 .10	4.5 3.1 2.05	.16 .16 .16 .15 .14	.14 .12 .12 .12 .12	0 0 0 0	0 0 .04 .02 0
Total Mean Ac-ft	3.78 0.122 7.5	184.54 5.95 366	130.36 4.35 259	217.1 7.00 431	245.3 8.18 487	66.26 2.14 131	20.30 0.655 40	149.42 5.34 296	10.56 0.341 21	4.89 0.163 9.7	1.91 0.062 3.8	0.06 0.002 0.1
	nd ar yea n 1 year 19			Min Min	0.03		2.35 2.83	Ac-f Ac-f				

* Discharge measurement made on this day.
Note.--Faulty or no gage-height record Sept. 19 to Nov. 12, Nov. 19 to Dec. 18, June 4-30; discharge estimated on basis of records for nearby stations.

Almagosa Springs near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

		Dischar	rge, in	cubic le	et per s	econd, I	iscal yea	ir July	1955 to	June 195	4	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	a <u>O</u> aO aO aO	0.01 .01 .01 0	14.2 13.6 14.6 10.4 7.3	4.1 2.95 2.3 1.72 1.33	4.7 4.3 3.95 3.4 3.1	5.6 #5.8 5.8 6.1 5.1	0.76 .64 .49 .45 .33	0.27 .21 .16 .16 .14	0.01 .01 .01 .01	1.42 1.52 1.62 1.52 1.52	1.33 1.33 1.24 1.24 *1.16	0.01 .01 0 0
6 7 8 9 10	a0 a0 a0 a0 a0	.01 .06 .01 7.3	5.6 4.3 3.6 2.95 2.4	1.08 .88 .76 .54 .37	2.8 2.55 2.3 2.15 3.75	4.5 3.75 2.95 2.65 2.4	.33 .21 .12 13.5 17.8	.12 .08 .07 .06	.01 .01 .03 .01	1.52 1.52 1.52 1.42 1.42	1.24 1.16 1.16 1.16 1.08	0 0 0 .01 .02
11 12 13 14 15	a0 a0 a0 a0	86 71 25.5 15.0 15.1	2.05 1.82 1.42 *1.08 .82	.30 .33 .33 .33 .243	3.1 48 74 41 19.2	2.05 2.15 1.82 2.4 3.25	6.8 3.6 2.4 *1.72 1.52	.04 .04 .03 .03	.01 .01 .01 .01	1.42 1.42 1.42 1.42 1.33	1.16 1.24 1.24 1.16 1.16	.02 .03 .02 .02
16 17 18 19 20	0 0 1.27 .02 .02	33.5 31 41 24.5 13.4	1.08 .70 .88 1.62 2.05	212 90 38 28.5 24.5	13.0 10.7 8.8 7.3 5.8	4.7 10.1 6.8 4.9 3.6	1.08 .88 .70 .54	.02 .01 .01 .01	1.62 1.62 1.62 1.62 1.62	1.33 1.33 1.33 1.33 1.33	1.08 1.08 1.16 1.16 1.08	.01 .39 .39 .01
21 22 23 24 25	.02 .01 .01 .01	9.1 5.8 6.2 25 20	2.55 3.1 2.15 1.62 1.72	20 16.4 14.2 12.6 11.5	5.3 4.5 4.3 7.3 8.1	2.8 2.95 2.4 2.15 1.93	.54 .45 .27 .18 .33	.02 .02 .01 .01	1.62 1.62 1.62 1.62 1.52	1.33 1.42 1.42 1.42 1.42	1.08 1.01 .43 .18 .45	.01 .04 .02 .02
26 27 28 29 30 31	.14 1.55 1.19 .10 .02	11.5 7.5 43 52 38 23	12.2 6.5 7.3 8.5 5.8	*10.7 10.4 11.1 10.4 9.4 5.3	7.0 6.5 4.7 3.95 4.5	1.72 1.62 1.42 1.24 1.08	.41 .33 .30 .27 .27	.02 .07 .01	1.52 1.52 1.52 1.52 1.52 1.52	1.42 1.42 1.42 1.42 1.42	.02 .02 .01 .01 .01	.01 .02 .01 .01
Total Mean Ac-ft	4.38 0.141 8.7	584.52 18.9 1,160	143.91 4.80 285	785.32 25.3 1,560	320.05 10.7 635	106.61 3.44 211	58.08 1.87 115	1.72 0.061 3.4	26.12 0.843 52	42.77 1.43 85	26.85 0.866 53	1.30 0.043 2.6
		1953: N 53-54: N		Min Min	0	Mean E	.84 5.76	Ac-f Ac-f				

^{*} Discharge measurement made on this day. a No gage-height record; discharge estimated on basis of records for nearby stations.

Almagosa Springs near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

							-					
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.01 .09 .01 .01	0.03 .03 .02 .08 .07	9.0 6.4 4.4 10.5 28.5	5.9 4.1 4.4 2.8 *3.8	21.5 11.2 6.3 4.5 2.8	2.8 2.05 1.42 1.01 .76	0.30 .30 .30 .30	0.27 .83 .24 .24 .21	0.04 .04 .05 .07	0.07 .02 .02 .07 .07	0.14 .14 .14 .12 .07	0.07 .02 .02 .03 .06
6 7 8 9	.01 .01 .01	.13 .54 .26 1.70	21 21.5 17.7 4.6 11.2	2.95 3.25 5.1 4.1 3.25	1.93 1.52 1.46 .24 .47	.59 .64 .41 .33	.30 .27 .56 .33 .33	.18 .18 .21 .21 .10	.06 .05 .05	.07 .07 .07 .08	.07 .08 .05 .04	.02 .14 .07 <u>5.2</u> *.41
11 12 13 14 15	.01 .01 .01 .03	.33 5.5 6.1 1.62 .64	6.7 4.1 3.15 18.7 43	4.3 4.5 5.6 7.0 6.1	5.7 3.0 1.52 3.8 5.1	.54 .82 .64 .54	.37 .37 .37 .74 1.64	.06 .06 .06 .06	.05 .05 .06 .05	.05 .05 .05 .06	.03 .04 .03 .02 .32	.17 .08 .08 .07
16 17 18 19 20	.01 .01 .04 .06	.49 .33 .30 .83 8.1	18.3 10.7 6.8 4.7 12.3	3.9 1.16 .88 .59	3.3 .64 9.4 7.5 5.6	.45 .45 .45 .37	.64 .79 .59 .59	.08 .08 .09 .08	.07 .10 .10 .10	.06 .06 .06 .06	.03 .02 .03 .04 .02	.06 .06 .04 .04
21 22 23 24 25	.01 .01 .01 .01	9.1 2.75 *.92 1.94 18.8	24 26 15.1 10.4 7.3	1.04 1.96 1.29 .76	3.75 *2.8 20 12.3 7.3	.30 .27 .27 .27 .30	.49 .33 .27 .24 .27	1.29 .15 .06 .05	.10 .10 .10 .12 .10	.06 .06 .07 .05	.02 .02 .02 .04 .01	.05 .06 .04 .03
26 27 28 29 30 31	.01 .01 .02 .02	8.4 3.8 1.93 1.01 .73	6.4 4.9 9.9 6.5 10.7	.76 .76 .70 <u>.54</u> 1.65 <u>32</u>	4.9 11.0 8.1 5.3 3.75	.30 .27 *.30 .30	2.2 *.41 .33 .30 .24 .27	.05 .05 .05	.08 .10 .10 .12 .12	.04 .06 .08 .10	.01 .02 .03 .01 .01	.03 .03 .03 .03
Total Mean Ac-ft	0.53 0.017 1.1	77.83 2.51 154	394.45 13.1 782	116.68 3.76 231	176.68 5.89 350	18.62 0.601 37	15.36 0.495 30	5.16 0.184 10	2.46 0.079 4.9	1.96 0.065 3.9	1.65 0.053 3.3	7.11 0.237 14
	dar year l year 19			Min Min	0		.58	Ac-f Ac-f				

* Discharge measurement made on this day.

Almagosa Springs near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

		Discha	rge, in	dbic lee	t per se	econa, 1	ISCAI yea	ar July	1955 00	June 195	ь	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.04 .03 .04 .05 .04	4.3 2.55 1.52 .94 .41	20.5 5.0 1.70 .76 .49	a20 a10 a18 6.3 4.5	5.0 4.6 3.25 2.9 2.5	1.42 .88 .64 .59	0.51 .44 .52 *.36 .33	0.27 .24 .27 .24 .21	0.12 .12 .12 .10	0.10 .10 .10 .10	0.01 .01 .01 .03 .02	1.08 1.01 1.01 1.08 1.08
6 7 8 9	11.1 9.9 *16.8 18.9 5.6	.36 .54 .70 .54 .33	.41 .74 .45 1.12 9.5	3.6 2.95 2.15 1.72 1.33	1.82 3.35 3.45 1.08 1.71	.54 .59 .59 .50	.33 .30 .30 .27 .27	.21 .24 .27 .35	.12 .12 .12 .12	.10 .12 .12 .12 .12	.02 .03 .04 .04	1.01 .94 1.08 .94 .88
11 12 13 14 15	2.7 5.1 6.4 4.1 2.05	.27 .18 .12 .10 *.10	9.0 7.0 3.75 2.3 1.42	1.16 .82 9.1 4.9 2.55	.82 .59 .41 .30 .27	.60 1.73 1.01 .67 .57	.33 .33 .33 .30	.18 .18 .18 * <u>1.05</u> .83	.16 .14 .14 .14	.12 .12 .12 .12 .12	.06 .06 .07 .07	.82 .29 .02 .05
16 17 18 19 20	7.6 2.8 1.42 .60 .33	.10 .08 .21 .27 .21	2.95 1.95 8.2 3.75 2.55	1.72 2.15 1.24 3.8 13.9	.38 .63 1.00 .76	8.1 3.75 2.3 1.33	.33 .33 .30 .30	.16 .14 .14 .14	.16 .16 .16 .16	.12 .12 .12 .12 .12	.05 .05 .04 .04	.07 .19 .17 .10
21 22 23 24 25	.76 .70 .76 .41 3.35	.76. .38 .14 1.22 .41	1.62 9.3 *5.4 3.1 7.2	3.6 44 16.9 17.0 *17.2	.70 .59 .64 .56	.88 .49 .27 .37	.27 .27 .30 .30 .27	.14 .14 .14 .14	.18 .16 .16 .16	.10 .12 .10 .10	*.07 .07 .07 .50	.12 .14 .14 .18
26 27 28 29 30 31	2.5 1.01 .47 .22 12.8 9.1	.21 .12 .12 .10 .10	5.5 11.3 60 <u>83</u> a15	15.6 19.5 21 12.6 9.1 6.3	.52 .60 <u>11.4</u> 1.77 3.35	.45 .60 .61 *.52 .41	.30 .30 .30 .27 .27	.14 .12 .12 .12	*.14 *.16 .38 .16 .57 .69	.04 .01 .01 .01	.94 1.08 .94 1.02 1.42 1.33	.21 .21 .18 .18
Total Mean Ac-ft	127.68 4.12 253	17.93 0.578 36	284.96 9.50 565	294.69 9.51 585	56.29 1.88 112	52.32 1.69 104	9.90 0.319 20	6.87 0.237 14	5.62 0.181 11	2.88 0.096 5.7	9.09 0.293 18	13.69 0.456 27
	ndar year 1 year 19			Min Min	0.01	Mean 2	.38	Ac-i				

^{*} Discharge measurement made on this day.
a Faulty or no gage-height record; discharge estimated on basis of records for nearby stations.

Almagosa Springs near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.18 .16 .16 .16	7.5 6.1 5.1 4.3 3.6	12.4 15.0 15.1 16.4 17.4	13.0 9.4 7.3 7.0 5.8	0.94 .64 .64 .41	1.16 5.2 4.8 3.4 3.1	1.08 .88 .82 .76		1.72 1.62 1.52 1.72 2.15	0.12 .18 .17 .08 .10	0.76 .70 .70 .70	1.42 1.33 1.33 1.33
6 7 8 9	.18 .16 .18 .51	3.25 3.1 6.3 9.5 6.1	12.3 10.1 9.4 9.3 8.1	5.1 4.7 4.1 3.75 3.1	.27 .27 .28 .29 3.4	4.9 3.9 1.52 1.57	.49 .41 .37 .33	2.8 2.7 3.5 2.9 2.5	1.21 .08 .07 .08	.14 .14 .18 .21	.64 .82 1.08 .76	1.33 1.33 1.33 1.33
11 12 13 14 15	*.16 *.10 .94 1.47	5.8 13.4 12.8 8.1 7.0	8.8 9.8 8.5 7.0 24.5	7.0 19.9 10.1 11.2 8.8	1.79 10.0 23 11.4 5.5	.64 *.44 .33 33 43	8.0 4.1 3.6 3.2 2.9	*2.4 2.4 2.3 2.15 2.15	.07 .07 .07 .06	.77 1.62 1.62 1.82 1.72	.59 .59 .54 .54	1.24 1.24 1.24 1.24 1.24
16 17 18 19 20	.24 .18 .18 .37	5.6 14.7 15.8 7.0 3.3	13.8 11.6 9.2 9.7 15.9	17.8 14.0 8.2 9.6 6.3	10.2 10.2 30 18.6 12.7	19.1 11.1 7.0 4.5 3.4	2.7 6.0 4.5 3.5 5.5	2.05 1.82 1.82 2.3 2.05	.06 .07 .07 .07	1.62 1.52 .59 .05	.49 .45 .54 .45	1.16 1.16 .95 .83 1.62
21 22 23 24 25	.59 .41 .30 7.5 5.9	1.82 1.49 2.4 3.3 4.1	13.4 10.1 14.5 12.6 9.7	4.5 3.2 3.3 3.1 8.2	8.5 5.6 6.1 4.3 3.4	2.95 2.3 1.72 1.33 1.08	4.0 3.3 3.0 2.8 2.6	1.82 1.82 1.93 2.4 2.05	.07 .07 .07 .07	.07 .52 .88 .88	*1.16 4.5 2.15 1.82 1.62	1.62 1.33 1.24 1.24 1.01
26 27 28 29 30 31	21 16.5 11.9 8.8 19.4 15.6	4.3 13.2 25 *16.7 10.1 8.8	8.1 9.1 10.2 7.8 18.2	3.25 2.55 3.4 2.45 * <u>1.60</u> 1.78	2.65 2.15 1.72 1.42 1.33	1.33 2.05 1.93 1.72 1.52 1.24	2.5 2.4 2.3 4.8 3.3 6.0	1.82 1.82 1.72	*,04 .57 .16 .12 .12	.82 .76 .76 .76	1.52 1.42 1.42 1.42 1.42 1.42	.49 .41 .64 1.01 1.01
Total Mesn Ac-ft	114.65 3.70 227	239.56 7.73 475	358.0 11.9 710	213.48 6.89 423	178.03 5.93 353	172.17 5.55 341	102.78 3.32 204	66.52 2.38 132	12.39 0.400 .25	19.92 0.664 40	32.57 1.05 65	35.22 1.17 70
		1956 : N 56-57 : N		Min Min	0.01	Mean 3 Mean 4	3.62 1.23	Ac-	ft 2,620 ft 3,060)		

* Discharge measurement made on this day.
Note.--Faulty or no gage-height record Jan. 10 to Feb. 10; discharge estimated on basis of records for nearby stations.

Almagosa Springs near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

		DISCHA	. 50, 1	CUDIC TO	er ber a		10041 50			0 0000		
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.01 1.01 1.16 1.08 1.08	0.76 .76 .76 .76 .82	12.6 34.5 25 13.0 8.8	0.79 .70 .50 <u>.37</u> 3.75	7.3 5.8 4.1 2.8 2.15	1.42 1.42 1.24 1.01 .82	0.28 .26 .20 .15 .12	0.27 .18 .18 .14	0.02 .02 .02 .02 .02	0.42 1.24 1.24 .48 .01	0.05 .05 .05 .04 .02	0.01 .01 .01 .01
6 7 8 9 10	1.01 1.01 1.01 1.01 *1.01	.82 .82 .88 .82	8.1 8.8 9.7 9.7 8.1	50 44 25.5 16.3 14.0	2.3 1.42 34.5 28 17.6	.64 .49 .33 .27	.08 .10 .41 .23	.07 .04 .04 .04	.02 .02 .02 .01	.01 .01 .01 .01	.03 .02 .03 .04 .02	.01 .01 .01 .01 2.8
11 12 13 14 15	1.16 1.33 1.52 1.16 1.08	.82 .76 .88 1.08	6.8 6.5 6.3 5.8 5.1	8.5 6.3 18.4 15.3 10.6	13.8 31.5 25 15.1 67	.21 .18 .16 .14 .21	.21 .23 .33 <u>29</u> 15.3	.04 .03 .03 .03	*76 .76 .48 .02 .02	.02 .01 .02 .02	.02 .02 .01 .01	.61 .08 1.79 <u>42</u> 12.9
16 17 18 19 20	1.01 .94 .94 .94	.88 1.01 1.85 8.5 5.0	5.8 5.3 4.9 6.0 5.1	7.8 5.1 3.6 2.55 1.93	91 29 18.9 13.4 9.4	.30 .27 .18 .27	6.3 3.6 2.15 1.33 1.01	.03 .03 .04 .03 .02	.02 .01 .01 .01	.01 .01 .01 .01	.01 .01 .01 .01	4.6 1.66 .42 .08 .75
21 22 23 24 25	.94 .88 .88 .82	2.8 2.15 2.4 4.8 5.0	4.9 5.6 5.1 4.9 2.0	1.95 #5.5 11.5 6.8 5.7	7.3 6.8 5.1 4.1 3.4	.33 .32 .30 .22 .20	*.59 .33 .16 .14 .13	.02 .02 .02 .04 .02	.01 .01 .01 .01	.01 .01 .01 .02	.01 .02 .01 .02	.12 .09 .07 2.5
26 27 28 29 30 31	.76 .76 .82 .82 .82	5.9 3.75 *15.7 26 13.8 8.8	.60 .65 .80 .85	5.5 3.95 16.4 9.6 6.5 6.5	2.95 4.1 2.55 2.15 1.82	.22 .15 .15 1.21 .33 .17	.21 .17 .28 .37 .30	.02 .02 .02	.01 .01 .01 .01	.01 .01 .02 .04 .04	.02 .01 .01 .04 .01	*3.6 1.80 .02 .08 .04
Total Mean Ac-ft	30.49 0.984 60	120.84 3.90 240	222.15 7.40 441	315.89 10.2 627	460.34 15.3 913	13.64 0.440 27	64.39 2.08 128	1.59 0.057 3.2	2.68 0.086 5.3	3.96 0.132 7.9	0.65 0.021 1.3	76.22 2.54 151
	dar year 1 year 19			Min Min	0.04 0.01	Mean 3	.93	Ac-1 Ac-1				

* Discharge measurement made on this day.

Fena Dam spillway near Agat

 $\frac{\text{Location.} --\text{Lat } 13\,^{\circ}\text{21'}30" \text{ N., long } 144\,^{\circ}\text{42'}10" \text{ E., on left bank 4.0 miles southeast of Agat and } 5.5 \text{ miles southwest of Yona.}$

Drainage area. -- 5.8 sq mi.

Records available. -- September 1951 to July 1952, November 1952 to June 1958.

Gage.--Water-stage recorder and concrete dam control. Datum of gage is 111.35 ft above mean sea level (from U. S. Navy construction plans).

Average discharge. -- 5 years (1953-58), 16.7 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1952-58 are contained in the following table:

		Maximum		Mi	nimum
Fiscal year	Date	Discharge (cfs)	Gage height (feet)	Date	Discharge (cfs)
1952† 1953†† 1954 1955 1956 1957 1958	Feb. 8, 1952 Nov. 16, 1952 Oct. 15, 1953 Nov. 23, 1954 Sept.29, 1955 Dec. 14, 1956 Nov. 15, 1957	#261 #626 (##) #634 #1,100 #964 #1,420	0.62 1.11 - 1.12 1.62 1.48 1.92	(a) (a) (a) (a) (a) (a)	0 0 0 0 0 0 0

† Period September to June.

‡ From rating curve extending above 53 cfs on basis of broad-crested weir formula.

†† Period July, November to June.

‡‡ Unknown.

a Many periods.

1951-58: Maximum discharge, not determined, occurred Oct. 15, 1953; no flow many times.

 $\frac{\text{Remarks.--Records poor.}}{\text{only flow over spillway.}} \text{ Fena Valley Reservoir impounds low flow for domestic use.} \quad \text{Records include only flow over spillway.}$

Fena Dam spillway near Agat--Continued

Rating table, Sept. 28, 1951, to June 30, 1958 (gage height, in feet, and discharge, in cubic feet per second)

0	0	0.8	383
.1	16.9	.9	457
.2	48	1.0	535
.3	89	1.2	703
. 4	136	1.4	886
.5	189	1.6	1,080
.6	248	1.8	1,290
7	313		,

Discharge, in cubic feet per second, September 1951 to June 1952

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5			1				0000	108 112 141 141 136				
6 7 8 9			-				0 0 0	136 236 254 248 248				
11 12 13 14 15			-				0 0 0	236 213 189 157 127				
16 17 18 19 20			-				0 .54 9.9 34 48	103 75 55 52 41				
21 22 23 24 25			-				55 63 79 89 98	34 25 22 25 9.9				
26 27 28 29 30 31			0000				98 103 108 122 112 112	2.8 1.50 0 0				
Total Mean Ac-ft			- - -	0	0 0 0	0	1,131.44 36.5 2,240	3,128.20 108 6,200	0	0 0 0	0	0
	dar year	r : !	Max	Min		Mean		Ac-				

Min Fiscal year : Max Mean Ac-ft

Fena Dam spillway near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1952 to June 1953

			80,	cable let	7					Ture 133.		
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5					-	52 59 31 28 14.4	76 19.5 7.9 6.0 7.9	00000				
6 7 8 9 10					-	9.9 125 37.5 14.4 12.1	9.9 4.3 1.50 1.50	0 0 0 0				
11 12 13 14 15					48 28 14.4 14.4	16.9 16.9 9.9 14.4 9.9	00000	0 0 0 0				
16 17 18 19 20					279 94 28 28 31	9.9 7.9 9.9 14.4 7.9	00000	0 0 0 0				
21 22 23 24 25					34 22 22 14.4 14.4	6.0 4.3 44 16.9 16.9	00000	0 400 90 40 28				
26 27 28 29 30 31					12.1 7.9 7.9 52 63	14.4 7.9 6.0 30.5 7.9 122	0 0 0 0	12.1 6.0 .54				
Total Mean Ac-ft	0	-	-	-	-	778.1 25.1 1,540	135.04 4.36 268	576.64 20.6 1,140	0 0	0 0	000	000
	ndar yean 1 year		Max Max	Min Min		Mean Mean		Åc-1 Ac-1				

Note. -- No gage-height record Jan. 20 to Feb. 24; discharge estimated on basis of records for nearby stations.

Fena Dam spillway near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5		00000	122 113 122 75 55	28 24 21 20 20	37.5 37.5 34 34 31	60 50 45 40 37.5	19.5 19.5 19.5 22 16.9	9.9 6.0 4.3 6.0 6.0				
6 7 8 9		0 0 0	41 37.5 31 28 25	19 20 <u>18</u> 65 23	28 28 28 28 48	31 31 31 28 25	19.5 19.5 14.4 205 74	6.0 6.0 4.3 2.8 1.50			794	
11 12 13 14 15		0 0 0 98 98	25 25 22 <u>19.5</u> 19.5	21 31 21 21 1,200	75 350 480 220 90	22 25 25 49 37.5	41 31 25 25 28	1.50 .54 .54 0				
16 17 18 19 20		188 223 458 222 110	28 22 31 48 55	1,000 500 250 210 320	65 55 46 40 37	58 65 37.5 31 28	25 22 22 *18.4 14.4	0 0 0 0				
21 22 23 24 25		63 44 37.5 275 197	67 67 38 28 28	200 95 80 59 55	37 35 34 80 55	25 31 28 25 28	19.5 19.5 14.4 12.1 12.1	00000				
26 27 28 29 30 31		78 41 529 811 489 228	28 28 60 40 28	52 44 67 55 44 41	40 35 33 30 85	25 25 22 22 22 19.5	9.9 12.1 12.1 9.9 9.9 7.9	0.20				
rotal Mean Ac-ft	0 0 0	4,189.5 135 8,310	1,356.5 45.2 2,690	4,624 149 9,170	2,256.0 75.2 4,470	1,029.0 33.2 2,040	821.0 26.5 1,630	55.58 1.98 110	000	000	0	. (

Fiscal year 1953-54: Max 1,200 Min 0 Mean 39.3 Ac-ft 28,420

* Discharge measurement made on this day.

Fena Dam spillway near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

Paul	July			Oct.	Wass							
Day 1 2 3 4 5	July	Aug.	0,54 25 37.5 88 165	44 25 47 31 35.5	Nov. 84 34 25 19.5 16.9	16.9 14.4 12.1 9.9 7.9	Jan. 0 0 2.8 6.0 6.0	Feb.	Mar.	Apr.	May	June
6 7 8 9 10		0000	103 92 96 77 66	*28 19.5 41 31 ?2	14.4 12.1 12.1 6.0 6.0	7.9 14.4 12.1 12.1	4.3 .54 12.1 9.9 9.9		:	12		
11 12 13 14 15		0000	34 22 19.5 133 240	32.5 41 25 14.4 12.1	59 30.5 12.1 14.4 12.1	9.9 7.9 6.0 4.3 4.3	9.9 9.9 2.8 9.9 16.9					
16 17 18 19 20		0 0 0 0	74 41 31 25 90	7.9 7.9 7.9 6.0 6.0	9.9 7.9 120 41 31	6.0 6.0 9.9 7.9 4.3	7.9 12.1 7.9 2.8					
21 22 23 24 25		0 0 .20 0 <u>.54</u>	125 130 59 44 28	12.1 14.4 16.9 12.1 9.9	19.5 14.4 178 47 31	2.8 2.8 2.8 .54	0000					
26 27 28 29 30 31		00000	31 25 87 37.5 46	19.5 14.4 12.1 7.9 16.6 218	25 77 34 22 19.5	00000	19.7 2.8 .75 0					
Total Mesn Ac-ft	000	0.74 0.024 1.5	2,072.04 69.1 4,110	838.6 27.1 1,660	1,035.3 34.5 2,050	195.24 6.30 387	155.43 5.01 308	0 0	0	0	0 0	
		r 1954: 1 9 54- 55: 1		Min Min	0	Mean Mean	13.7 11.8	Ac-f Ac-f				

* Discharge measurement made on this day.

Fena Dam spillway near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5			18.6 14.4 6.0 .54 .54	80 41 62 25 16.9	16.9 25 14.4 12.1 14.4	14.4 4.3 1.50 .54 0						
6 7 8 9 10			0.75 0 4.8 60	9.9 4.3 4.3 4.3 2.8	9.9 7.9 6.0 6.0 22	0 0 .88 .32						
11 12 13 14 15			73 22 6.0 0	2.8 1.50 19.0 12.1 4.3	9.9 2.8 2.8 1.50	0 4.0 10.8 12.1 2.8						
16 17 18 19 20			7.4 16.9 54 12.1 1.50	1.50 .54 1.50 13.7 101	0 2.8 1.50	173 31.5 14.4 6.0 2.8						
21 22 23 24 25			0 70 31 7.9	9.9 295 48 49 80	0 0 4.3 1.50	1.50 .54 0 0						
26 27 28 29 30 31			20.5 71 396 385 70	92 94 99 41 25 19.5	0 .54 <u>93</u> 22.5 38	0 0 0 0 0						
otal lean c-ft	0 0 0	0	1,396.93 46.6 2,770	1,260.84 40.7 2,500	317.03 10.6 629	281.38 9.08 558	000	0 0 0	0	0 0 0	0 0 0	(

Fena Dam spillway near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5		00000	24.5 36 28 25 36.5	42 12.1 6.0 21 22	7.9 4.3 6.0 2.8 .54	14.4 54 44 25 22	12.1 14.4 14.4 12.1 9.9	6.0 4.3 4.3 6.0 7.9				
6 7 8 9 10		0 0 0	16.9 12.1 19.5 22 9.9	7.9 2.8 2.8 2.8 7.9	1.50 1.50 1.50 .54 27.5	22 12.1 9.9 12.1 12.1	7.9 7.9 4.3 4.3	4.3 2.8 14.4 4.3 6.0				27
11 12 13 14 15		0 0 0	12.1 22 9.9 4.3 152	30.5 159 28 39 19.5	28 70 171 59 22	4.3 2.8 2.8 321 314	37.5 22 14.4 12.1 12.1	2.8 2.8 .54 0				
16 17 18 19 20		0 0 0 0	31 28 12.1 14.4 50	38 34 37.5 37.5 22	52 56 194 73 44	66 34 22 19.5 16.9	7.9 51 19.5 9.9 16.9	0 0 0 0 0				1 3
21 22 23 24 25		0 0 0 0	28 16.9 66 49 22	12.1 7.3 19 14.6 68	34	19.5 14.4 12.1 12.1 12.1	14.4 6.0 2.8 2.8 1.50	0 0 0 1.50 2.8				14
26 27 28 29 30 31		0 0 0 43 44 16.9	9.9 23 36 16.9 115	14.4 14.4 34.5 25 *15.8 12.1	14.4 12.1 9.9 7.9 12.1	34 44 19.5 16.9 14.4 14.4	1.50 2.8 2.8 21.5 7.9 14.4	0 0 0 -				+ 12 - 0
Total Mean Ac-ft	0 0	103.9 3.35 206	948.9 31.6 1,880	810.0 26.1 1,610	1,011.38 33.7 2,010	40.1	483.00 15.6 958	70.74 2.53 140	0 0	0 0	0 0	

* Discharge measurement made on this day.

Fena Dam spillway near Agat--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

			0 0 0 0 0 0 51 205 71 37.5 28 16.9 12.1 127 52	31 14.4 9.9 7.9 6.0 9.9 4.3 216 116 75 52 205 96	9.9 14.4 16.9 14.4 12.1 9.9 9.9 12.1 12.1 12.1 9.9 7.9 9.9	2.8 .54 0 0 0 0 4.3 6.0 4.3 1.50 2.8					
			205 71 37.5 28 16.9 12.1 127 52	4.3 216 116 75 52 205 96	9.9 12.1 12.1 12.1 9.9 7.9	0 4.3 6.0 4.3 1.50 2.8					
			12.1 127 52	205 96	7.9	2.8		200		1	
	Marie Marie		*4	52 408	12.1	7.9 181 49					
			28 12.1 6.0 2.8 2.8	548 98 55 37.5	25 14.4 6.0 7.9 7.9	14.4 6.0 2.8 6.0 7.9					
			1.50 31 *37.5 22 25	22 22 22 19.5 22	7.9 9.9 9.9 4.3 4.3	4.3 2.8 0 0					
			22 12.1 83 25 16.9 25	19.5 22 19.5 16.9 16.9	4.3 4.3 4.3 32.5 14.4 9.9	00000		41.			
0 0 0	0 0 0	0 0 0	997.20 32.2 1,980	2,275.2 75.8 4,510	347.7 11.2 690	304.34 9.82 604	0 0	0 0	0 0	0 0	
	0 0 r yea	0 0 0 0 0 r year 1957:	0 0 0	2.8 2.8 1.50 31 *37.5 22 25 22 12.1 83 25 16.9 25 0 0 0 0 997.20 0 0 0 32.2 1,980 r year 1957: Max 548 Min	2.8 37.5 2.8 31 1.50 22 31 22 *37.5 22 25 22 22 19.5 25 25 22 22 19.5 25 12.1 22 83 19.5 25 16.9 25 16.9 25 0 0 0 0 997.20 2,275.2 0 0 0 0 997.20 2,275.2 0 0 0 0 32.2 75.8 0 0 0 0 997.20 2,275.2 75.8 1,980 4,510	2.8 37.5 7.9 2.8 31 7.9 1.50 22 7.9 31 22 9.9 *37.5 22 9.9 *37.5 22 19.5 4.3 25 22 19.5 4.3 26 19.5 4.3 27 19.5 4.3 28 19.5 4.3 28 19.5 4.3 29 16.9 32.5 16.9 16.9 32.5 16.9 16.9 34.4 25 9.9 0 0 0 0 997.20 2,275.2 347.7 0 0 0 0 997.20 75.8 11.2 0 0 0 1,980 4,510 690	2.8 37.5 7.9 6.0 7.9 1.50 22 7.9 4.3 31 22 9.9 2.8 37.5 22 9.9 0 2.8 37.5 22 4.3 0 22 19.5 4.3 0 22 4.3 0 22 4.3 0 22 4.3 0 22 4.3 0 22 4.3 0 22 4.3 0 22 4.3 0 22 4.3 0 22 4.3 0 22 4.3 0 22 6.9 32.5 0 0 22 6.9 16.9 16.9 32.5 0 0 0 0 0 997.20 2,275.2 347.7 304.34 0 0 0 0 0 0 997.20 2,275.2 347.7 304.34 0 0 0 0 0 0 0 0 997.20 2,275.2 347.7 304.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.8 37.5 7.9 6.0 7.9 7.9 1.50 22 7.9 4.3 31 22 9.9 2.8 37.5 22 9.9 0 2.8 31 22 31 3.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.8 37.5 7.9 6.0 7.9 7.9 1.50 22 7.9 4.5 31 22 9.9 2.8 37.5 22 9.9 0 2.8 37.5 22 9.9 0 2.8 37.5 22 9.9 0 2.8 37.5 22 9.9 0 2.8 37.5 22 9.9 0 2.8 37.5 22 9.9 0 2.8 37.5 25 16.9 32.5 0 16.9 32.5 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9	2.8 37.5 7.9 6.0 7.9 7.9 1.50 22 7.9 4.3 31 22 9.9 2.8 9.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.8 37.5 7.9 6.0 7.9 7.9 1.50 22 7.9 4.3 31 22 9.9 2.8 37.5 22 9.9 0 2.8 37.5 22 9.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

^{*} Discharge measurement made on this day.

Talofofo River near Talofofo

Location. -- Lat 13°21'05" N., long 144°43'50" E., on left bank 1.5 miles southwest of Talofofo and 5.3 miles north of Inarajan.

Drainage area. -- 16.2 sq mi.

Records available .-- November 1951 to June 1958.

Gage .-- Water-stage recorder and steel weir. Altitude of gage is 40 ft (by barometer).

Average discharge .-- 6 years (1952-58), 50.2 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1952-58 are contained in the following table:

Fiscal		Maximum			Minimum	
year	Date	Discharge (cfs)‡	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1952† 1953 1954 1955 1956	Dec. 6, 1951 Feb. 22, 1953 Oct. 15, 1953 Sept.15, 1954 Sept.29, 1955	2,300 2,550 8,560 2,300 2,550	118.60 8.83 12.69 8.62 8.78	Feb. 25,26,1952 June 18, 1953 June 21, 1954 July 1, 1954 May 24,25, 1956	1.06 1.17 1.51 1.14	0.59 .65 .54 .63 .53
					1.14 1.32	12

† Period November to June. ‡ From rating curve extended above 80 cfs by test on model of station site. †† From floodmark.

1951-58: Maximum discharge, 8,560 cfs Oct. 15, 1953 (gage height, 12.69 ft), from rating curve extended above 80 cfs by test on model of station site; minimum, 0.82 cfs Feb. 25, 26, 1952.

Remarks. -- Records good except those for Dec. 6, 1951, and Oct. 17-20, 1954, which are fair, and for periods of faulty or no gage-height record in 1952-53, which are poor. Water for domestic use is diverted from Fena Valley Reservoir.

Talofofo River near Talofofo--Continued

Rating tables, Nov. 15, 1951, to June 30, 1958 (gage height, in feet, and discharge, in cubic feet per second)

(Shifting-control method used Apr. 30 to May 23, 1956)

		4, 1951, 15, 1953			Oct. 16 to Aug.		3		Aug. 1 to June	30, 1956	
0.6 .7 .8 .9 1.0	0.85 1.27 1.77 2.4 4.1 6.1	2.0 2.5 3.0 4.0 5.0 7.4	65 129 195 365 565	0.5 .6 .7 .8 .9	1.03 1.39 1.78 2.2 3.1 5.0	1.1 1.2 1.3 1.5	7.1 9.8 13.8 23 35	0.6 .7 .8 .9 1.0	1.39 1.85 2.4 3.8 5.9 8.3	1.2 1.3 1.5 1.7 2.0 2.5	11.2 15.0 25.5 40 69 123
1.2 1.3 1.4 1.7	8.8 12.5 17.0 35	7.7 8.3 9.0	1,400 1,950 2,800 5,800		table ab			ing	teSam table ab	e as pre	ft.

Discharge, in cubic feet per second, November 1951 to June 1952

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5						22 28 18.6 15.2 15.2	6.1 6.1 5.9 4.9 3.95	1.67 2.75 3.6 2.9 1.96	1,23 5.3 3.4 3.1 2.9	30 30 30 30 30 30	29 29 30 30 32	3.4 2.55 2.15 3.6 3.25
6 7 8 9						f280 54 33 28 28	4.3 3.95 4.5 *6.3 7.7	1.77 5.2 3.75 2.4 1.96	2.75 2.55 2.55 2.4 2.25	30 30,5 30,5 30,5	37.5 <u>47</u> 9.0 4.1 2.9	2.75 2.75 2.75 2.35 2.2
11 12 13 14 15					19.1	25 22 16.6 18.6 15.6	6.6 5.9 5.7 6.1 5.7	4.1 *3.75 3.6 4.7 5.1	2.25 2.35 2.25 2.2 2.2	30.5 30.5 30.5 30.5 30.5	2.25 2.0 1.90 1.72 1.67	2.15 2.2 *1.77 1.42 1.57
16 17 18 19 20					15.2 19.1 21 74 39	14.8 52 20 16.1 14.3	6.1 2.9 5.5 5.5 4.7	4.5 2.4 2.1 1.23 1.06	2.1 2.0 1.96 1.96 9.0	30.5 30 30 30 30	1.62 1.47 1.42 8.2 5.1	1.72 2.4 2.1 1.83 1.62
21 22 23 24 25					23.5 19.6 19.6 17.0 16.6	12.1 10.6 9.5 8.3 6.6	3.75 3.25 6.9 4.1 2.55	1.02 1.02 1.02 .98 .89	30.5 30.5 30 30 30.5	30 30 30 30 30 30	2.75 2.25 1.90 1.67 1.77	1.57 1.47 1.67 2.35 2.2
26 27 28 29 30 31					16.1 22.5 38.5 23 19.1	7.2 4.9 5.9 5.3 4.1 4.7	2.2 2.0 1.72 2.4 4.5 1.77	.85 .93 .98 .98	33 30.5 30.5 31.5 30.5 30.5	30 30 30 30 30 30	1.67 1.57 1.62 2.9 5.9 3.95	2.0 1.96 1.77 1.77 1.62
Total Mean Ac-ft					-	816.2 26.3 1,620	143.54 4.63 285	69.17 2.39 137	394.20 12.7 782	904.5 30.2 1,790	305.80 9.86 607	64.91 2.16 129

^{*} Discharge measurement made on this day.

f Fragmentary gage-height record; discharge computed from partly estimated gage heights.

Talofofo River near Talofofo -- Continued

Discharge, in cubic feet per second, fiscal year July 1952 to June 1953

17.1 8.5 6.9 120 24 11 11 7.0 5.6 4.7	80 60 140 180 85 80 40 38 100 75	28 32 28 24 22 20 19 360	0ct. 80 200 80 120 85 75 120	Nov. 60 55 50 160	Dec. 170 110 76 73 52	Jan. 104 49 37 29 35.5	10.6 10.3 10.6 11.0 9.9	Mar. 29 26.5 26 28.5 26.5	9.4 9.2 8.8 8.6 8.0	May 4.5 4.1 3.95 3.75 3.75	June 3.1 2.6 2.4 2.4 2.0
8.5 6.9 120 24 11 11 7.0 5.6 4.7	60 140 180 85 80 40 38 100	32 28 24 22 20 19 360	200 80 120 85 75 120	55 50 50 160	110 76 73 52	49 37 29	10.3 10.6 11.0	26 28.5	8.8	4.1 3.95 3.75	2.6 2.4 2.4
7.0 5.6 4.7	40 38 100	19 360	120		47				11.6	0.10	2.0
		460 120	70 90 140	80 220 300 180	47 227 74 52 58	*35 26.5 23.5 22 22	9.9 22 18.1 13.4 11.4	26 23 20.5 22.5 21	8.0 8.0 7.6 7.4 6.8	3.75 3.6 3.6 3.4 3.25	2.0 2.0 1.7 1.5 1.3
4.5 3.8 3.5 3.3 6.0	140 223 76 41 71	50 110 440 110 70	80 65 60 90 75	140 95 75 65 60	51 46 36 46 37	20 20 20 20 20 19	10.6 *15.9 13.0 10.6 9.9	19.6 18.6 18 17 16	6.8 8.0 8.0 6.9 6.4	3.1 3.1 3.0 3.0 3.0	*1.19 1.10 1.10 1.10 1.10
10 5.0 10 8.6 5.2	73 37.5 30.5 26 26	130 50 44 38 34	65 120 85 70 60	170 90 60 55 140	33 30 32 33.5 28	18 17 16 16	9.9 10.6 9.5 9.2 8.8	16 15 16 14 14	6.1 5.9 5.9 5.7 5.7	3.4 4.1 3.6 *3.6 3.2	1.1 1.1 1.2 1.2
5.4 9.0 6.6 5.4 6.0	22 20 60 26 22	30 28 170 75 48	130 340 101 167 71	65 75 160 70 65	25.5 24 73 41 44	16 15 16 15	1,510 436 142 80	13 13 12 12 12	5.5 5.7 5.3 5.3	3.2 3.2 2.9 2.7 2.7	1.1. 1.1. 1.2. 1.1.
4.5 4.3 5.5 20 10 12	20 20 24 30 26 30	40 36 50 220 120	65 55 48 46 240 100	55 50 75 150 70	38.5 41 27 77 33.5 215	13 13 13 12 16 11.4	54 46 34.5	11 10 10 9.6 9.6	5.5 4.9 4.7 4.5 4.5	2.6 2.5 2.4 2.4 2.6 3.3	1.4 1.2 2.3 3.4 3.6
364.4 11.8 723	1,902.0 61.4 3,770	3,006 100 5,960	3,193 103 6,330	2,995 99.8 5,940	1,951.0 62.9 3,870	719.9 23.2 1,430	2,546.2 90.9 5,050	536.9 17.3 1,060	198.4 6.61 394	101.25 3.27 201	50.5 1.6 10
3	5.4 6.0 4.5 4.3 5.5 20 10 12 64.4 11.8 723	5.4 26 22 4.5 20 4.3 20 24 20 30 26 12 30 61.4 723 3,770	5.4 26 75 48 48 4.5 20 40 36 5.5 24 50 220 10 26 120 30 64.4 1,902.0 3,770 5,960 5,960 5,960	5.4 26 75 167 6.0 22 48 71 4.5 20 40 65 4.3 20 36 55 5.5 24 20 46 20 30 220 46 10 26 120 240 12 30 100 64.4 1,902.0 3,006 3,193 103 103 5,960 6,330	5.4 26 75 167 70 6.0 22 48 71 65 4.5 20 40 65 55 4.3 20 36 55 50 5.5 24 50 75 75 20 30 220 46 150 10 26 120 240 70 12 30 100 64.4 1,902.0 3,006 3,193 2,995 11.8 61.4 100 103 99.8 723 3,770 5,960 6,330 5,940	5.4 26 75 167 70 41 6.0 22 48 71 65 44 4.5 20 40 65 55 38.5 4.3 20 36 55 50 41 5.5 24 50 48 75 27 20 30 220 46 150 77 10 26 120 240 70 33.5 12 30 100 215 64.4 1,902.0 3,006 3,193 2,995 1,951.0 61.4 723 3,770 5,960 6,330 5,940 3,870	5.4 26 75 167 70 41 15 6.0 22 48 71 65 44 14 4.5 20 40 65 55 38.5 13 4.3 20 36 55 50 41 13 5.5 24 50 48 75 27 13 20 30 220 46 150 77 12 10 26 120 240 70 33.5 16 12 30 215 11.4 64.4 1,902.0 3,006 3,193 2,995 1,951.0 719.9 64.4 1,902.0 3,006 103 99.8 62.9 23.2 723 3,770 5,960 6,330 5,940 3,870 1,430	5.4 26 75 167 70 41 15 142 6.0 22 48 71 65 44 14 80 4.5 20 40 65 55 38.5 13 54 4.3 20 36 55 50 41 13 46 5.5 24 50 48 75 27 12	5.4 26 75 167 70 41 15 142 12 4.5 20 40 65 55 38.5 13 54 11 4.3 20 36 55 50 41 13 46 11 5.5 24 50 48 75 27 12 10 20 30 220 46 150 77 12 10 10 26 120 240 70 33.5 16 9.6 12 30 100 215 11.4 9.6 64.4 1,902.0 3,006 103 99.8 62.9 23.2 90.9 17.3 723 3,770 5,960 6,330 5,940 3,870 1,430 5,050 1,060	5.4 26 75 167 70 41 15 142 12 5.3 4.5 20 40 65 55 38.5 13 54 11 5.5 4.3 20 36 55 50 41 13 46 11 4.9 5.5 24 50 48 75 27 13 4.5 10 4.7 20 30 220 46 150 77 12 10 4.5 10 26 120 240 70 33.5 16 9.6 4.5 12 30 100 215 11.4 9.6 64.4 1,902.0 3,006 3,193 2,995 1,951.0 719.9 2,546.2 536.9 198.4 723 3,770 5,960 6,330 5,940 3,870 1,430 5,050 <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Peak discharge (base, 2,300 cfs).--Feb. 22 (1 p.m.) 2,550 cfs (8.83 ft).

^{*} Discharge measurement made on this day.

Note.--Faulty or no gage-height record July 4 to Aug. 11, Aug. 21 to Oct. 22, Oct. 26 to Dec. 2,
Jan. 10-30, Mar. 13 to Apr. 11, May 11-15, and May 20 to June 10; discharge estimated on basis of
records for nearby stations.

Talofofo River near Talofofo--Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	2.0 1.57 1.42 1.42	5.7 5.1 5.3 4.5 3.95	142 151 181 117 89	58 47 40 37 35	73 67 62 61 54	122 88 *79 80 69	29.5 32 31 32 27	17.8 16.0 13.8 13.8 12.6	9.3 7.9 7.4 6.9 6.5	3.0 4.8 4.8 4.6 4.0	2.4 2.2 2.05 1.99 1.95	1.4 1.3 1.3 1.3 1.3
6 7 8 9 10	1.47 1.62 1.47 1.32 1.27	6.6 6.6 12.1 8.0 80	70 60 62 46 #43	33 36 42 82 42	52 49 48 49 91	60 57 52 47 51	28 27.5 26.5 714 131	13.4 13.4 12.6 11.4 10.2	6.3 6.0 5.8 5.6 5.4	3.85 3.65 4.0 3.85 3.1	1.91 1.82 1.78 1.74 1.78	1.4: 1.6: 1.7: 1.8: 1.7:
11 12 13 14 15	1.23 1.32 1.90 15.6 11.1	756 1,200 226 146 168	42 46 37.5 33 33	34.5 48 39.5 37 4,360	109 1,040 1,770 536 181	42 42 41 110 80	58 *43 37 33 37	9.8 9.5 9.3 9.0 9.0	5.6 5.4 5.2 5.0 5.0	2.9 2.85 2.75 2.85 2.65	1.91 *2.15 2.2 1.86 1.78	1.58 1.58 1.51 1.41
16 17 18 19 20	6.1 7.7 22.5 8.8 5.3	267 210 696 236 137	41 33.5 52 87 110	2,800 1,670 468 310 991	136 116 110 90 77	146 136 71 57 56	30 27.5 26.5 25 24	8.7 8.4 8.4 8.2 9.3	4.8 5.0 5.0 5.0 4.8	2.45 2.3 2.3 2.2 2.4	1.74 1.70 1.70 1.74 1.74	*1.39 1.20 1.20 1.20 1.21
21 22 23 24 25	7.7 5.1 3.75 9.4 34.5	96 73 63 565 209	192 127 71 56 55	403 195 162 136 116	75 67 70 241 103	47 74 51 46 47	26.5 26.5 22.5 21.5 21	10.6 9.8 9.0 7.9 7.1	4.2 4.6 4.8 4.2 3.85	2.4 2.4 2.2 2.2 2.15	1.66 1.58 1.62 2.3 2.05	1.2 2.1 5.3 2.4 2.3
26 27 28 29 30 31	47 40 24 12.5 8.5 6.6	110 76 910 957 545 224	133 77 194 134 77	103 96 122 110 96 82	77 69 62 58 147	42 41 37 33 34.5 30	19.6 19.6 20.5 18.2 17.3 16.9	7.4 15.8 13.0	3.65 3.3 3.1 3.5 3.1 3.1	2.1 2.15 2.2 2.05 1.99	1.78 1.66 1.58 1.55 1.55	1.99 1.80 1.61 1.51
Total Mean Ac-ft	9.53	8,007.85 258 15,880	2,582.0 86.1 5,120	414	5,740 191 11,390	1,968.5 63.5 3,900	1,649.6 53.2 3,270	305.2 10.9 605	159.30 5.14 316	87.14 2.90 173	56.98 1.84 113	51.05 1.70 101

Calendar year 1953. Max 4,360 Min 1.10 Mean 97.5 Ac-ft 70,560
Fiscal year 1953-54: Max 4,360 Min 1.21 Mean 92.4 Ac-ft 66,900

Peak discharge (base, 2,300 cfs).--Aug. 12 (3 a.m.) 2,420 cfs (8.67 ft); Aug. 28 (4:30 a.m.) 2,420 cfs (8.73 ft); Oct. 15 (11 a.m.) 8,560 cfs (12.69 ft); Oct. 20 (5:30 p.m.) 2,300 cfs (8.60 ft); Nov. 13 (5 p.m.) 3,250 cfs (9.32 ft).

^{*} Discharge measurement made on this day.

Talofofo River near Talofofo--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

	Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
	1 2 3 4 5	1.66 3.4 2.75 1.95 1.86	1.62 2.05 *1.96 1.91 1.99	275 162 115 194 509	115 75 114 77 96	187 90 63 55 44	*36.5 31 27.5 25.5	11.0 10.2 12.1 17.3 20	8.4 *7.9 8.7 9.8 8.2	5.4 5.2 4.8 5.0 5.0	2.9 2.85 2.75 2.65 2.55	2.15 1.99 1.82 1.78 1.78	6.6 6.7 4.8 3.25 8.3
	6 7 8 9	1.70 1.66 1.62 1.55 1.66	2.3 7.0 3.85 29.5 8.4	193 184 245 173 182	76 64 150 179 76	36 35 35 32 32	25.5 32 33 27.5 27	*15.1 11.4 21.5 21 24	7.6 7.1 6.9 6.9 6.9	4.6 4.4 4.2 4.0 3.85	2.55 3.1 3.1 3.1 2.9	1.74 1.74 2.15 6.9 4.2	4.6 23.5 7.0 69 15.8
	11 12 13 14 15	1.82 1.62 1.62 1.70 1.74	5.6 14.2 11.7 18.5 9.9	71 49 50 441 888	107 122 78 58 48	274 97 48 41 33.5	24.5 22 19.6 17.8 17.8	22 19.2 15.6 23.5 37	6.5 6.5 6.3 6.3	4.8 4.2 4.0 3.85 3.85	2.85 2.55 2.45 2.65 *2.45	2.85 2.45 2.45 2.2 8.6	8.3 6.3 5.6 4.8 4.2
	16 17 18 19 20	1.66 1.80 8.5 15.6 8.3	6.7 13.4 11.4 38.5 81	199 103 77 65 333	41 a38 a32 a32 a30	30 26,5 310 85 100	20.5 23 22.5 20 17.3	20 21 17.6 13.4 11.8	6.3 8.5 7.9 6.3 6.0	*3.2 4.5 2.9 2.85 2.65	2.4 2.15 2.05 2.2 7.0	6.6 4.0 3.0 2.65 2.45	3.65 3.85 3.5 3.1 3.5
	21 22 23 24 25	3.65 2.85 2.45 2.55 2.65	30.5 16.0 11.0 29 186	307 348 155 120 84	58 44 39.5 31 28.5	49 37.5 521 121 84	16.0 15.6 16.5 13.4 12.6	10.6 9.3 8.7 <u>8.4</u> 9.0	7.6 7.6 6.5 5.8	2.75 2.85 2.55 2.85 6.6	3.4 2.85 2.55 2.3 2.55	2.1 2.05 1.95 1.86 *1.74	3.5 3.3 2.75 2.4 2.2
	26 27 28 29 30 31	2.15 1.91 1.78 1.82 1.70 1.66	33.5 24.5 18.2 28.5 *38.5 26.5	123 83 342 209 138	84 80 47 35 46 714	60 183 74 53 59	12.2 11.4 10.6 12.9 12.6 11.0	36 16.6 11.4 10.6 9.0 8.4	5.4 6.0 6.0	3.3 3.1 2.9 2.9 2.75	2.45 2.1 1.99 1.91 1.91	1.66 3.45 2.6 2.05 1.91 1.78	2.55 2.85 2.4 2.45 4.3
M	rotal Mean Ac-ft	89.34 2.88 177	713.68 23.0 1,420	6,417 214 12,730	2,815.0 90.8 5,580	2,895.5 96.5 5,740	656.3 21.2 1,300	502.7 16.2 997	196.0 7.00 389	119.10 3.84 236	81.21 2.71 161	86.65 2.80 172	225.05 7.50 446
F	aler isca	dar year 1 year 19	r 1954 : 1 54-55 : 1	Max 888 Max 888	Min Min	1.21 1.55	Mean 4		Ac-1	ft 31,52 ft 29,35	20	i sedy	

Peak discharge (base, 2,300 cfs).--Sept. 15 (2 a.m.) 2,300 cfs (8.62 ft).

^{*} Discharge measurement made on this day.
a No gage-height record; discharge estimated on basis of recorded range in stage and records for Ylig River.

Talofofo River near Talofofo -- Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	4.0 4.3 2.9 2.45 2.2	29.5 21.5 18.2 18.7 16.9	309 58 107 35 28	262 128 235 95 61	44 62 41 32 35	35 21 17.3 16.0 *13.4	10.6 10.6 10.2 8.7 8.4	5.0 4.8 5.6 5.8 5.0	2.9 3.0 3.1 3.0 2.9	2.75 2.55 *2.45 2.3 2.2	2.3 2.2 2.15 2.2 2.2	2.05 1.95 1.76 1.86 1.95
6 7 8 9 10	89 103 249 95 27	16.0 16.9 13.0 11.4 10.6	25.5 23.5 21.5 25 198	45 37 33.5 30 28	27.5 25 26 24.5 68	12.2 11.0 17.7 14.2 11.4	9.0 8.7 8.4 *7.4 6.9	6.4 5.4 7.9 12.0 9.3	2.85 2.75 2.65 2.55 2.75	2.1 2.05 2.05 2.05 2.05 2.3	2.1 2.1 2.1 2.15 2.15	1.78 1.62 2.35 2.45 1.86
11 12 13 14 15	39.5 113 55 *28 21.5	11.0 11.8 9.5 8.7 8.4	230 108 48 31.5 27	30 26.5 55 36 24	27 22 20 18.2 17.3	11.8 19.1 31 36 20.5	7.4 6.9 6.7 6.5 6.0	7.4 5.8 5.2 5.0 4.8	3.0 2.85 2.65 2.55 2.45	2.1 2.05 2.05 2.05 2.05 2.05	2.05 1.99 1.99 1.91 1.91	2.05 2.85 2.05 1.91 1.66
16 17 18 19 20	49 24 18.2 15.1 14.2	*7.9 7.1 19.7 11.4 13.0	33.5 66 127 46 28	21 31 *22.5 38.5 202	17.3 17.3 23 16.9 15.1	495 72 32 24.5 20	6.3 6.5 5.8 5.6	*5.6 4.6 4.2 3.85 3.65	2.65 2.55 2.45 2.4 2.3	2.05 2.15 2.3 2.1 2.1	1.91 1.99 1.91 1.91 2.05	1.51 11.2 9.1 4.6 2.75
21 22 23 24 25	12.6 12.2 12.6 11.0 25.5	29 37 16.9 47 34.5	24.5 319 106 49 147	32 801 119 109 217	14.2 15.6 19.2 14.7 12.2	19.9 16.0 14.2 12.6 11.4	5.4 5.2 5.6 5.6	3.5 3.3 3.3 3.1 3.65	3.05 2.85 2.55 2.4 2.3	2.15 2.05 2.05 2.05 2.1 2.1	2.05 1.86 *1.95 1.21 1.14	2.1 1.91 1.82 4.7 3.3
26 27 28 29 30 31	33 20.5 16.0 92 118 43	17.3 13.8 13.4 11.0 73 41	80 241 1,330 1,230 196	322 270 305 125 75 52	13.0 15.4 216 44 79	11.0 10.2 9.5 9.3 9.0 8.7	5.6 5.6 5.2 5.0 4.8 4.8	3.5 3.1 3.0 3.0	2.4 2.65 4.2 3.85 2.9 2.75	2.05 2.2 2.2 2.3 2.55	1.30 1.86 1.58 1.51 1.84 2.1	2.9 2.55 2.1 1.99
rotal Mean Ac-ft	1,352.75 43.6 2,680	615.1 19.8 1,220	5,298.0 177 10,510	3,868.0 125 7,670	1,022.4 34.1 2,030	1,062.9 34.3 2,110	210.9 6.80 418	146.75 5.06 291	86.20 2.78 171	65.55 2.18 130	59.62 1.92 118	84.69 2.82 168

Peak discharge (base, 2,300 cfs).--Sept. 29 (4 a.m.) 2,550 cfs (8.78 ft); Oct. 22 (11 a.m.) 2,300 cfs (8.57 ft).

^{*} Discharge measurement made on this day.

Talofofo River near Talofofo -- Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
3.65 2.9 2.65 3.05 3.3	17.2 12.2 9.5 8.4 7.6	76 121 89 90 112	101 45 35 61 59	26 23 30.5 22 17.5	30.5 115 76 48 40.5	22 25 23 22 20.5	49 19.0 16.0 16.5 21	8.1 7.6 7.6 8.1 9.8	6.6 8.3 11.9 7.3 6.4	*4.0 3.8 3.8 3.65 3.5	2.4 2.4 2.25 2.2 *2.25
2.55 2.2 2.2 2.2 2.2 8.7	7.9 6.7 27.5 82 17.3	*61 58 74 146 51	34 27.5 25.5 25.5 29.5	17.5 18.0 17.5 16.0 49	43 34 26 26 24.5	18.0 17.0 16.0 14.2 282	20 16.0 16.2 31 17.0	8.9 7.8 6.9 7.6 7.3	5.9 5.5 5.7 5.5	3.65 4.6 6.9 5.3 4.2	2.05 1.90 2.0 2.1 1.80
5.0 4.8 7.4 9.1 6.8	15.6 12.2 10.6 8.7 28	68 90 50 38 415	57 444 70 97 60	71 135 631 106 49	21 18.5 18.5 905 966	62 41 29 24.5 22	15.5 a14 a12 10.6 10.0	6.9 7.6 7.1 6.6 6.4	5.3 4.8 4.4 4.8 5.5	3.8 3.8 3.5 3.4 3.25	1.71 1.67 1.67 1.57
5.4 *3.85 3.3 2.9 2.7	15.8 157 81 23 17.5	97 108 52 62 204	73 139 120 111 56	108 94 553 130 89	121 68 *47 42 37	20.5 99 52 26 24	9.5 9.2 8.9 *11.9 10.9	6.4 6.1 6.1 6.1	4.6 4.4 4.2 4.0 3.8	3.1 3.1 3.5 3.4 3.25	1.44 1.39 1.39 1.57 2.85
2.55 2.45 2.2 12.1 20	15.5 20.5 32 24.5 18.0	86 60 200 225 78	40 38 83 45 113	82 56 66 49 38	38 31 28.5 25.5 23.5	56 24.5 19.0 17.0 16.5	9.5 9.2 9.2 12.0 11.6	6.1 5.7 5.5 5.3 5.7	4.4 4.6 4.4 4.2 3.8	2.8 6.5 4.6 *4.0 3.5	3,65 2,25 1,96 1,80
62 33 26 29 104 31	16.5 71 131 118 93 56	50 129 126 62 210	40 47 74 45 33 *38.5	35 32.5 29.5 28.5 31	65 71 33 27 25 26	14.6 13.1 13.5 19.0 40 22	9.2 8.9 8.3	5.7 21.5 10.0 *7.3 6.4 6.1	3.65 3.8 4.2 4.6 4.0	3.1 2.8 2.7 2.55 2.55 2.4	1.85 2.05 2.0 1.90 1.67
13.8	1,161.7 37.5 2,300	3,287 110 6,520	2,266.5 73.1 4,500	2,650.5 88.4 5,260	3,101.0 100 6,150	1,114.9 36.0 2,210	412.1 14.7 817	230.4 7.43 457	155.85 5.20 309	115.00 3.71 228	59.07 1.97
	3.65 2.9 2.65 3.05 3.3 2.55 2.2 2.2 8.7 5.0 4.8 7.4 9.1 6.8 5.4 *3.85 3.3 2.7 2.55 2.45 2.2 12.1 20 62 33 26 29 104 31	3.65 17.2 12.2 2.65 3.05 8.4 3.3 7.6 6.7 7.2 2.2 6.7 2.2 2.7 2.2 2.1 2.0 2.3 2.7 2.55 2.2 2.1 2.0 2.3 2.1 2.0 6.5 3.3 2.9 2.3 2.7 2.55 2.45 2.0 2.2 2.1 2.0 6.5 3.3 2.9 2.3 2.7 2.55 2.45 2.0 2.3 2.1 2.0 2.3 2.1 2.0 2.3 2.1 2.0 2.3 2.1 2.0 2.3 2.1 2.0 2.3 2.1 2.0 2.3 2.1 2.0 2.3 2.1 2.0 2.3 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	3.65 17.2 76 2.9 12.2 121 2.65 9.5 89 3.05 8.4 90 3.3 7.6 112 2.55 7.9 *61 2.2 6.7 58 2.2 2.7.5 74 2.2 82 146 8.7 17.3 51 5.0 15.6 68 4.8 10.6 50 9.1 8.7 38 4.15 8.7 108 3.3 2.9 23 2.9 23 62 2.7 17.5 204 2.55 15.5 86 2.45 20.5 60 2.2 32 200 2.2 32 200 12.1 24.5 225 2.2 32 200 18.0 78 62 16.5 50	3.65 17.2 76 101 2.9 12.2 121 45 2.65 9.5 89 35 3.05 8.4 90 61 3.3 7.6 112 59 2.55 7.9 *61 34 2.2 6.7 58 27.5 2.2 82 146 25.5 2.2 82 146 25.5 2.2 82 146 25.5 5.0 15.6 68 57 7.4 10.6 50 70 9.1 8.7 38 97 6.8 28 415 60 8.1 15.8 97 73 3.3 157 30 120 2.9 23 120 120 2.9 23 62 111 2.9 23 62 111 2.0 83 2.2 20 <td< td=""><td>3.65 17.2 76 101 26 2.9 12.2 121 45 23 2.65 9.5 89 35 30.5 3.05 8.4 90 61 22 3.3 7.6 112 59 17.5 2.55 7.9 *61 34 17.5 2.2 6.7 58 27.5 18.0 2.2 2.7.5 74 25.5 17.5 22 82 146 25.5 16.0 8.7 17.3 51 29.5 49 5.0 15.6 68 57 71 15.5 4.8 12.2 90 444 135 7.4 10.6 50 70 631 195 9.1 8.7 38 97 106 49 5.4 15.8 97 73 108 139 94 3.3 28 15.5</td><td>3.65 17.2 76 101 26 30.5 2.9 12.2 121 45 23 115 2.65 9.5 89 35 30.5 76 3.05 8.4 90 61 22 48 3.3 7.6 112 59 17.5 40.5 2.55 7.9 *61 34 17.5 43 2.2 6.7 58 27.5 17.5 26 2.2 82 146 25.5 16.0 26 8.7 17.3 51 29.5 49 24.5 5.0 15.6 68 57 71 21 4.8 12.2 90 444 135 18.5 7.4 10.6 50 70 631 18.5 9.1 8.7 38 97 106 905 4.8 15.8 97 73 108 121 83.3 157 81 52 120 555 *47 2.9 23 62 111 130 42 2.7 17.5 204 56 89 37 2.55 15.5</td><td> 3.65</td><td>3.65 17.2 76 101 26 30.5 22 49 2.9 12.2 121 45 23 115 25 19.0 2.65 9.5 83 35 30.5 76 23 16.0 3.05 8.4 90 61 22 48 22 16.5 3.3 7.6 112 59 17.5 40.5 20.5 21 2.55 7.9 *61 34 17.5 43 18.0 20 2.2 6.7 58 27.5 18.0 34 17.0 16.0 2.2 6.7 58 27.5 18.0 34 17.0 16.0 2.2 82 146 25.5 17.5 26 16.0 16.2 2.2 82 146 25.5 16.0 26 14.2 31 8.7 17.3 51 29.5 49 24.5 282 17.0 5.0 15.6 68 57 71 21 62 15.5 4.8 12.2 90 444 135 18.5 29 17.0 6.8 28 415 60 <td< td=""><td>3.65 17.2 76 101 26 30.5 22 49 8.1 2.9 12.2 121 45 23 115 25 19.0 7.6 3.05 8.4 90 61 22 48 22 16.5 8.1 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 2.55 7.9 *61 34 17.5 43 18.0 20 8.9 2.2 6.7 58 22.5 18.0 34 17.0 16.0 7.8 2.2 2.7 58 25.5 17.5 26 16.0 16.2 6.9 2.2 2.7 58 25.5 17.5 26 16.0 16.2 6.9 2.2 82 146 25.5 17.5 26 14.2 31 7.6 8.7 17.3 51 29.5 49 24.5 282 1</td><td>3.65 17.2 76 101 26 30.5 22 49 8.1 6.6 2.9 12.2 121 45 23 115 25 19.0 7.6 8.3 2.65 9.5 88 35 30.5 76 23 16.0 7.6 11.9 3.05 8.4 90 61 22 48 22 16.5 8.1 7.3 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 6.4 2.55 7.9 661 34 17.5 43 18.0 20 8.9 5.9 2.2 8.7 7.9 58 27.5 18.0 34 17.0 16.0 7.8 5.5 2.2 82 146 25.5 17.5 26 16.0 16.0 7.8 5.5 5.0 15.6 68 57 71 21 62 15.5 6.9<!--</td--><td>3.65 17.2 76 101 26 30.5 22 49 6.1 6.6 *4.0 2.9 12.2 12.1 45 25 115 25 19.0 7.6 8.3 5.8 2.65 9.5 9.5 89 35 30.5 76 23 16.0 7.6 8.7 5.8 5.8 3.05 8.4 90 61 22 48 22 16.5 8.1 7.3 3.65 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 6.4 3.5 2.55 7.9 *61 34 17.5 43 18.0 20 8.9 5.9 3.65 2.2 6.7 58 27.5 17.5 26 16.0 7.8 5.5 4.6 2.2 82 146 225.5 17.5 26 16.0 7.8 5.5 4.6 2.2</td></td></td<></td></td<>	3.65 17.2 76 101 26 2.9 12.2 121 45 23 2.65 9.5 89 35 30.5 3.05 8.4 90 61 22 3.3 7.6 112 59 17.5 2.55 7.9 *61 34 17.5 2.2 6.7 58 27.5 18.0 2.2 2.7.5 74 25.5 17.5 22 82 146 25.5 16.0 8.7 17.3 51 29.5 49 5.0 15.6 68 57 71 15.5 4.8 12.2 90 444 135 7.4 10.6 50 70 631 195 9.1 8.7 38 97 106 49 5.4 15.8 97 73 108 139 94 3.3 28 15.5	3.65 17.2 76 101 26 30.5 2.9 12.2 121 45 23 115 2.65 9.5 89 35 30.5 76 3.05 8.4 90 61 22 48 3.3 7.6 112 59 17.5 40.5 2.55 7.9 *61 34 17.5 43 2.2 6.7 58 27.5 17.5 26 2.2 82 146 25.5 16.0 26 8.7 17.3 51 29.5 49 24.5 5.0 15.6 68 57 71 21 4.8 12.2 90 444 135 18.5 7.4 10.6 50 70 631 18.5 9.1 8.7 38 97 106 905 4.8 15.8 97 73 108 121 83.3 157 81 52 120 555 *47 2.9 23 62 111 130 42 2.7 17.5 204 56 89 37 2.55 15.5	3.65	3.65 17.2 76 101 26 30.5 22 49 2.9 12.2 121 45 23 115 25 19.0 2.65 9.5 83 35 30.5 76 23 16.0 3.05 8.4 90 61 22 48 22 16.5 3.3 7.6 112 59 17.5 40.5 20.5 21 2.55 7.9 *61 34 17.5 43 18.0 20 2.2 6.7 58 27.5 18.0 34 17.0 16.0 2.2 6.7 58 27.5 18.0 34 17.0 16.0 2.2 82 146 25.5 17.5 26 16.0 16.2 2.2 82 146 25.5 16.0 26 14.2 31 8.7 17.3 51 29.5 49 24.5 282 17.0 5.0 15.6 68 57 71 21 62 15.5 4.8 12.2 90 444 135 18.5 29 17.0 6.8 28 415 60 <td< td=""><td>3.65 17.2 76 101 26 30.5 22 49 8.1 2.9 12.2 121 45 23 115 25 19.0 7.6 3.05 8.4 90 61 22 48 22 16.5 8.1 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 2.55 7.9 *61 34 17.5 43 18.0 20 8.9 2.2 6.7 58 22.5 18.0 34 17.0 16.0 7.8 2.2 2.7 58 25.5 17.5 26 16.0 16.2 6.9 2.2 2.7 58 25.5 17.5 26 16.0 16.2 6.9 2.2 82 146 25.5 17.5 26 14.2 31 7.6 8.7 17.3 51 29.5 49 24.5 282 1</td><td>3.65 17.2 76 101 26 30.5 22 49 8.1 6.6 2.9 12.2 121 45 23 115 25 19.0 7.6 8.3 2.65 9.5 88 35 30.5 76 23 16.0 7.6 11.9 3.05 8.4 90 61 22 48 22 16.5 8.1 7.3 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 6.4 2.55 7.9 661 34 17.5 43 18.0 20 8.9 5.9 2.2 8.7 7.9 58 27.5 18.0 34 17.0 16.0 7.8 5.5 2.2 82 146 25.5 17.5 26 16.0 16.0 7.8 5.5 5.0 15.6 68 57 71 21 62 15.5 6.9<!--</td--><td>3.65 17.2 76 101 26 30.5 22 49 6.1 6.6 *4.0 2.9 12.2 12.1 45 25 115 25 19.0 7.6 8.3 5.8 2.65 9.5 9.5 89 35 30.5 76 23 16.0 7.6 8.7 5.8 5.8 3.05 8.4 90 61 22 48 22 16.5 8.1 7.3 3.65 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 6.4 3.5 2.55 7.9 *61 34 17.5 43 18.0 20 8.9 5.9 3.65 2.2 6.7 58 27.5 17.5 26 16.0 7.8 5.5 4.6 2.2 82 146 225.5 17.5 26 16.0 7.8 5.5 4.6 2.2</td></td></td<>	3.65 17.2 76 101 26 30.5 22 49 8.1 2.9 12.2 121 45 23 115 25 19.0 7.6 3.05 8.4 90 61 22 48 22 16.5 8.1 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 2.55 7.9 *61 34 17.5 43 18.0 20 8.9 2.2 6.7 58 22.5 18.0 34 17.0 16.0 7.8 2.2 2.7 58 25.5 17.5 26 16.0 16.2 6.9 2.2 2.7 58 25.5 17.5 26 16.0 16.2 6.9 2.2 82 146 25.5 17.5 26 14.2 31 7.6 8.7 17.3 51 29.5 49 24.5 282 1	3.65 17.2 76 101 26 30.5 22 49 8.1 6.6 2.9 12.2 121 45 23 115 25 19.0 7.6 8.3 2.65 9.5 88 35 30.5 76 23 16.0 7.6 11.9 3.05 8.4 90 61 22 48 22 16.5 8.1 7.3 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 6.4 2.55 7.9 661 34 17.5 43 18.0 20 8.9 5.9 2.2 8.7 7.9 58 27.5 18.0 34 17.0 16.0 7.8 5.5 2.2 82 146 25.5 17.5 26 16.0 16.0 7.8 5.5 5.0 15.6 68 57 71 21 62 15.5 6.9 </td <td>3.65 17.2 76 101 26 30.5 22 49 6.1 6.6 *4.0 2.9 12.2 12.1 45 25 115 25 19.0 7.6 8.3 5.8 2.65 9.5 9.5 89 35 30.5 76 23 16.0 7.6 8.7 5.8 5.8 3.05 8.4 90 61 22 48 22 16.5 8.1 7.3 3.65 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 6.4 3.5 2.55 7.9 *61 34 17.5 43 18.0 20 8.9 5.9 3.65 2.2 6.7 58 27.5 17.5 26 16.0 7.8 5.5 4.6 2.2 82 146 225.5 17.5 26 16.0 7.8 5.5 4.6 2.2</td>	3.65 17.2 76 101 26 30.5 22 49 6.1 6.6 *4.0 2.9 12.2 12.1 45 25 115 25 19.0 7.6 8.3 5.8 2.65 9.5 9.5 89 35 30.5 76 23 16.0 7.6 8.7 5.8 5.8 3.05 8.4 90 61 22 48 22 16.5 8.1 7.3 3.65 3.3 7.6 112 59 17.5 40.5 20.5 21 9.8 6.4 3.5 2.55 7.9 *61 34 17.5 43 18.0 20 8.9 5.9 3.65 2.2 6.7 58 27.5 17.5 26 16.0 7.8 5.5 4.6 2.2 82 146 225.5 17.5 26 16.0 7.8 5.5 4.6 2.2

Peak discharge (base, 2,300 cfs).--Nov. 13 (1:30 a.m.) 2,300 cfs (8.64 ft); Dec. 14 (11 a.m.) 2,550 cfs (8.77 ft).

^{*} Discharge measurement made on this day. a No gage-height record; discharge estimated on basis of records for nearby stations.

Talofofo River near Talofofo--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.57 1.57 *1.48 1.53 1.57	2.1 2.05 2.0 2.05 2.05 2.25	43 69 53 28 19.7	13.9 12.0 10.9 10.0 30.5	87 42 35.5 *29 25.5	28.5 32.5 31 28.5 25	11.6 12.4 10.3 9.5 9.5	9.5 8.6 10.0 8.9 8.3	9.2 8.9 8.3 8.3 9.2	4.2 3.1 2.25 2.2 2.25	2.35 2.1 2.0 2.25 2.25	3.4 2.3 1.9 1.7 1.6
6 7 8 9 10	1.67 1.67 1.67 1.53 1.53	2.35 2.55 5.7 3.65 2.95	35 49 29.5 46 21	774 728 185 91 74	29 <u>24</u> 522 360 233	22 25 22 21 21	8,9 9.8 18.8 17.5 12.7	8.1 7.8 8.1 7.8 7.8	8.9 8.6 8.9 8.9	2.3 7.8 2.55 2.7 3.1	2.05 1.90 1.80 1.85 1.80	1.5 1.6 1.8 2.0 45
11 12 13 14 15	1.87 2.45 3.25 2.3 1.90	2.8 2.95 3.65 6.6 6.1	17.5 16.5 14.2 12.7 10.9	51 43 180 147 95	132 696 234 179 1,410	19.5 17.0 18.0 18.0 21.5	12.3 12.7 14.6 676 105	7.6 7.6 7.8 7.8 7.8	8.9 9.2 *9.2 8.9 8.6	3.8 3.25 5.1 4.2 3.4	1.76 1.71 *1.67 1.62 1.53	17.4 6.9 27.5 301 38
16 17 18 19 20	1.71 1.67 1.67 1.62 1.67	5.3 5.3 7.3 9.8 9.5	19.5 *48 20 18.0 17.5	75 42 34 27.5 24.5	2,040 236 129 91 74	27 20 14.6 13.9 13.5	27.5 21.5 23.5 26	7.8 7.8 8.9 9.5 7.6	8.3 8.3 8.1 8.1 7.3	3.1 3.5 3.65 3.4 3.1	1.48 1.44 1.44 1.48 1.44	18.0 11.6 8.9 7.3 6.6
21 22 23 24 25	1.71 1.71 1.71 1.67 1.67	7.6 6.9 8.3 19.1 28.5	12.7 42 84 35.5 22	24.5 70 95 52 54	61 *54 47 42 42	12.7 12.7 12.3 10.9 9.5	21 *17.2 13.9 12.0 10.9	7.3 7.8 9.2 13.6 10.3	7.1 7.3 7.3 7.6 7.6	3.1 3.1 2.8 2.55 2.4	1.48 1.71 2.25 2.1 1.71	6.1 7.9 6.9 5.9 10.4
26 27 28 29 30 31	1.67 1.71 3.2 3.5 2.55 2.25	19.3 8.9 89 98 28 15.0	20.5 17.0 15.5 13.5 13.9	59 38.5 274 66 51 58	38.5 106 43 38.5 34	9.2 8.6 8.6 41 19.5 13.9	10.6 11.6 10.6 10.0 9.8 9.8	8.9 9.2 8.9	7.6 7.6 7.6 7.3 6.9 5.5	2.3 2.35 2.3 2.4 5.5	1.53 1.44 1.57 5.9 3.5 2.55	8.8 6.9 5.9 5.5 4.6
rotal Mean Ac-ft	59.25 1.91 118	415.55 13.4 824	864.6 28.8 1,710	3,490.3 113 6,920	7,114.0 237 14,110	598.4 19.3 1,190	1,218.5 39.3 2,420	240.3 8.58 477	251.8 8.12 499	97.75 3.26 194	61.66 1.99 122	575.1 19. 1,14

Calendar year 1957: Max 2,040 Min 1.39 Mean 40.1 Ac-ft 29,010 Fiscal year 1957-58: Max 2,040 Min 1.44 Mean 41.1 Ac-ft 29,720 Peak discharge (base, 2,300 cfs).--Nov. 16 (about 2 a.m.) 3,700 cfs (9.56 ft).

^{*} Discharge measurement made on this day.

Ugum River near Talofofo

Location. -- Lat 13°20'00" N., long 144°44'55" E., on left bank 0.3 mile upstream from mouth, 1.3 miles south of Talofofo, and 4.2 miles north of Inarajan.

Drainage area. -- 7.20 sq mi.

Records available .-- June 1952 to June 1958.

Gage. -- Water-stage recorder and concrete control. Altitude of gage is 30 ft (by barometer).

Average discharge .-- 6 years, 28.0 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1953-58 are contained in the following table:

Fiscal year		Maximum		Minimum				
	Date	Discharge (cfs)†	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)		
1953 1954 1955 1956 1957 1958	Feb. 22, 1953 Oct. 15, 1953 Sept. 4, 1954 Sept.10, 1955 Dec. 14, 1956 Oct. 6, 1957	1,400 1,620 1,450 1,580 1,570 1,610	10.04 11.72 10.41 11.42 11.30 11.63	July 26,27,1952 June 21, 1954 June 25-29,1955 July 5, 1955 June 16,17,1957 Aug. 6, 1957	3.85	0.44 .46 .46 .46 .47		

[†] From rating curve extended above 200 cfs on basis of slope-area measurement at gage height 11.3 ft.

1952-58: Maximum discharge, 1,620 cfs Oct. 15, 1953 (gage height, 11.72 ft), from rating curve extended above 200 cfs on basis of slope-area measurement at gage height 11.3 ft; minimum, 3.4 cfs July 26, 27, 1952.

Remarks. -- Records good except those for periods of fragmentary, doubtful or no gage-height record, and those above 200 cfs, which are poor.

Rating table, June 18, 1952, to June 30, 1958 (gage height, in feet, and discharge, in cubic feet per second)

0.4	2.6	2.0	200
.5	4.8	2.5	290
. 6	8.0	3.0	375
. 8	17.5	4.0	530
1.0	32	6.0	830
1.3	66	8.0	1,120
1.6	115	10.0	1.400

Discharge, in cubic feet per second, 1952

June	18	†3.7	June 25 4.5
	19		26
	20		27 4.3
	21		28 4.3
	22		29 4.1
	23	5.3	30
	24	4 5	

^{*} Discharge measurement made on this day.
† Result of discharge measurement.

Ugum River near Talofofo--Continued

Discharge, in cubic feet per second, fiscal year July 1952 to June 1953

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	18.3 7.3 6.2 13.7 10.0	112 26.5 54 40 25	12.7 33.5 18.8 13.8 29.5	*39.5 49 30.5 28 23.5	29 26.5 24 22.5 119	37 59 37 32 27	31 24 22.5 21 24	12.7 12.2 12.2 12.7 12.2	17.5 17.0 15.9 23 18.2	10.4 10.4 10.4 10.0 10.0	7,6 7.6 7.3 7.3 7.3	5.6 5.6 5.6 5.3
6 7 8 9	6.6 7.0 6.2 5.6 4.8	14.3 10.0 12.2 62 44	15.4 13.3 119 137 38.5	22.5 67 29 45 34	33 50 95 88 91	26.5 50 28 25.5 38	22 20 19.4 18.8 17.5	12.7 15.4 13.8 12.2 12.2	15.4 15.4 17.5 18.2 16.4	10.0 10.0 10.0 10.0 10.0	7.0 7.0 7.0 6.6 6.6	5.3 5.3 5.1 4.5
11 12 13 14 15	4.5 4.3 4.1 4.1 4.5	29.5 24 20 13.7 27	24 32.5 111 109 38	35 23.5 23.5 38 31	49 37 a31 a28 a28	26.5 29 24 25.5 23.5	17.0 17.0 17.0 16.4 16.4	12.2 13.8 12.2 11.7 11.2	15.4 15.4 14.3 13.3 13.3	9.6 9.6 9.6 9.6 9.2	6.6 6.2 6.2 6.2	4.8 4.8 4.8 5.1
16 17 18 19 20	4.3 4.1 3.85 4.1 4.5	25 13.8 12.2 10.8 13.3	29 22 20 18.2 17.0	29 28 143 59 36	a70 a40 a30 a45 a55	22 22 22.5 22 21	15.9 15.9 15.4 14.8 14.8	11.2 *10.8 10.0 9.6 10.4	12.8 13.3 13.3 12.7 12.2	9.2 9.2 9.2 8.8 8.8	6.2 6.2 6.2 6.2	5.3 4.8 5.1 5.3 5.3
21 22 23 24 25	5.1 5.3 4.3 4.1 3.85	11.2 11.7 16.4 10.0 9.6	15.9 14.8 48 33.5 21	43 31 28 82 32	a42 a38 a50 a33 a55	20 20 41 23.5 30	14.8 14.8 17.5 15.9 14.8	10.0 <u>528</u> 94 37 25.5	11.7 11.7 11.7 11.2 11.2	8.8 8.8 8.4 8.0 8.0	*5.9 5.6 5.6 5.6	5.1 5.1 5.9 5.9
26 27 28 29 30 31	3.85 3.6 5.1 10.8 7.4 17.5	10.4 11.7 10.8 14.8 21.5 14.8	18.8 18.8 25 124 105	35.5 28 24 24 62 46	835 29.5 29 41 48	23.5 22 20 25.5 21 162	*13.7 13.3 13.8 13.3 14.8 13.3	22 20 18.2	11.2 10.8 10.8 10.8 10.8	8.0 8.0 8.0 7.6 7.6	5.6 5.6 5.6 5.6 5.6	4.6 5.1 6.6 7.6 6.2
Total Mesn Ac-ft	198.95 6.42 395	732.2 23.6 1,450	1,277.0 42.6 2,530	1,249.5 40.3 2,480	1,391.5 46.4 2,760	1,006.5 32.5 2,000	540.8 17.4 1,070	996.1 35.6 1,980	433.2 14.0 859	275.2 9.17 546	196.6 6.34 390	159.6 5.32 317

Fiscal year 1952-53: Max 528 Min 3.6 Mean 23.2 Ac-ft 16,780

Peak discharge (base, 1,400 cfs).--Feb. 22 (10 a.m.) 1,400 cfs (10.04 ft).

^{*} Discharge measurement made on this day. a No gage-height record; discharge estimated on basis of records for Talofofo and Inarajan Rivers.

Ugum River near Talofofo -- Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	5.1 4.8 5.1 5.6 5.3	4.3 4.8 6.2 5.1 4.5	63 64 114 69 54	43 39 35 34 32	54 50 49 48 46	50 48 46 45 45	33 33 32 31 30	15.9 15.9 15.4 15.4 15.4	11.7 11.7 11.7 11.2 10.8	7.3 11.2 10.0 10.0 8.4	8.4 5.9 6.2 7.3 5.3	4.5 4.5 4.3 4.3
6 7 8 9	5.3 5.1 4.5 4.5	5.6 6.2 6.2 5.3 16.9	48 44 42 39 37	31 38 59 40 33	46 46 51 46 68	44 43 42 41 40	31 30 30 300 100	15.4 15.4 14.8 14.8	10.8 10.4 10.4 10.0 10.0	8.8 8.0 8.0 7.3 7.3	5.3 5.3 5.1 5.1 5.3	5.1 5.3 5.9 6.2 5.6
11 12 13 14 15	4.3 9.4 8.0 6.6 5.9	430 440 66 42 64	35 33 30.5 29 29.5	30.5 30.5 30.5 30.5 1,380	50 555 624 174 92	40 45 40 150 60	50 35 *30 25 60	13.8 13.8 13.3 13.3 12.7	10.0 9.6 9.6 9.6 9.2	7.0 7.0 7.0 7.0 6.6	*5.3 8.4 6.2 5.3 5.3	5.1 5.3 5.1 4.8 4.5
16 17 18 19 20	5.3 5.3 19.5 7.6 5.9	142 62 290 62 45	34 27 *38 36 39	1,220 540 266 253 231	80 69 63 *58 56	80 60 50 47 45	25 22.5 22 21 20	12.7 12.7 12.7 12.7 12.7	9.2 9.2 8.8 8.8	6.6 6.6 6.2 6.5 5.9	5.3 5.6 5.3 5.3	4.3 4.3 4.5 5.1 4.5
21 22 23 24 25	5.3 5.6 5.1 6.2 5.3	40 36 29.5 96 49	50 42 31 30.5 42	138 101 89 81 75	56 52 51 121 65	42 140 60 47 50	21 20 19.4 18.8 18.8	12.7 12.7 12.7 12.7 12.7	8.8 8.4 8.4 *8.2 7.6	6.6 6.6 7.0 6.6 5.9	5.1 5.1 5.6 7.3 5.6	4.3 14.5 12.2 *6.6 9.6
26 27 28 29 30 31	9.7 9.2 6.2 5.3 4.8	35 29.5 436 328 242 83	99 43 278 70 50	69 63 122 72 63 57	52 50 50 50 56	45 41 38 36 35 34	18.2 17.5 17.5 16.4 16.4	12.2 11.7 11.7	7.6 7.3 7.6 7.6 7.3 7.6	5,6 5.9 5.9 5.9	5.3 5.1 4.8 5.1 4.8 4.5	6.2 5.1 5.3 4.8 4.8
Total Mean Ac-ft	195.9 6.32 389	3,112.1 100 6,170		5,326.0 172 10,560		1,629 52.5 3,230	1,160.9 37.4 2,300	380.7 13.6 755	287.9 9.29 571	214.4 7.15 425	174.8 5.64 347	171.1 5.70 339
Caler	dar year 1 year 19	r 1953; N 953-54: N	Max 1,38		·4.3 4.3	Mean 4	7.8 7.2	Ac-f				

Peak discharge (base, 1,400 cfs).--Oct. 15 (11 a.m.) 1,620 cfs (11.72 ft); Nov. 13 (5 p.m.) 1,580 cfs (11.39 ft).

^{*} Discharge measurement made on this day.
Note.--No gage-height record Dec. 1 to Jan. 13; discharge estimated on basis of records for Inarajan and Talofofo Rivers.

Ugum River near Talofofo--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	5.6 14.8 7.6 6.2 7.6	4.3 7.6 6.4 5.3 4.8	58 34 33 170 242	58 50 78 51 76	*164 45 39 35 32	*28 28 26.5 25.5 25	17.0 16.4 18.2 18.8 20	13 12 *12 12.7 10.8	9.2 8.8 8.4 8.8 8.8	7.0 7.0 7.0 6.6 6.2	4.8 4.3 4.3 5.1 4.5	5. #5. 4. 5.
6 7 8 9 10	5.6 5.1 4.8 4.8 5.1	8.0 7.3 9.5 20.5 8.8	219 91 112 104 80	50 48 52 51 40	29.5 28 27 26.5 25.5	25.5 27 25 25 25,5	*17 15 20 15 17	10.4 10.4 10.4 10.4 9.6	8.4 8.0 8.0 8.0 8.0	6.2 6.2 6.6 7.0 7.3	4.3 4.5 5.9 13.2 6.2	5. 5. 8. 7.
11 12 13 14 15	4.5 4.5 4.8 6.2 4.8	7.0 10.5 13.2 22 10.8	46 40 35.5 270 374	80 57 *38 35 32	109 40 30.5 28 27	24 24 24 23.5 23.5	16 15 17 22 23	10.0 10.4 9.6 9.6 10.0	8.4 8.8 8.4 8.0 7.6	7.0 6.6 6.2 6.2 *5.9	5.1 4.8 4.5 5.3 19.2	5. 5. 5.
16 17 18 19 20	4.8 5.4 11.7 14.3 9.0	8.0 10.6 11.7 184 167	91 57 45 40 247	31 29.5 29.5 29 28	26.5 25 257 48 43	22.5 22.5 27.5 21 21	15 38 20 17 16	9.6 10.4 9.6 9.2 9.2	7.6 7.6 *7.3 7.3 7.3	5.9 5.3 5.3 6.2 7.0	9.1 5.9 5.1 4.8 4.5	4. 5. 4. 4.
21 22 23 24 25	6.2 6.2 5.6 5.9 5.6	49 27 22.5 47 174	149 177 82 63 52	28 31 31 26.5	35 30.5 166 40 42	20 21 20 18.2 18.2	15 14 14 14 16	13.0 13.8 10.4 9.6 9.2	7.3 8.0 7.6 7.6 8.0	5.6 5.3 5.1 5.1 5.1	4.3 4.3 4.1 4.1 4.1	4. 4. 4. 4.
26 27 28 29 30 31	5.3 4.8 *4.5 4.8 4.5 4.3	40 27 19.4 17.5 20 *13.3	57 50 133 213 77	39.5 33 30.5 28 29 291	35 103 39 35 30.5	17.5 17.5 17.0 17.5 17.5 17.0	45 17 15 14 13 14	9.2 9.6 10.4	7.6 8.0 8.0 7.3 7.3	4.8 4.8 4.8 4.8	4.1 10.4 6.2 5.1 4.5 4.3	4. 4. 5. 5.
Total Mesn Ac-ft	194.9 6.29 387	984.0 31.7 1,950	3,441.5 115 6,830	1,547.5 49.9 3,070	1,641.5 54.7 3,260	695.9 22.4 1,380	564.4 18.2 1,120	294.5 10.5 584	246.7 7.96 489	178.9 5.96 355	180.9 5.84 359	152. 5.0 30

Peak discharge (base, 1,400 cfs).--Sept. 4 (10 p.m.) 1,450 cfs (10.41 ft).

^{*} Discharge measurement made on this day.
Note.--Doubtful or no gage-height record Aug. 21-30, Sept. 4, 18-20, Sept. 30 to Oct. 12, Nov. 12-30, Jan. 5 to Feb. 3; discharge estimated on basis of records for Inarajan and other nearby stations.

Ugum River near Talofofo--Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	5.3 5.1 4.3 4.5 4.1	18 12 11 13 9.0	334 36 29 21.5 29	116 67 108 41 60	36 32 30 29 28	22.5 19.4 17.5 17.0 15.9	18 15 30 16 14	9.6 8.8 9.6 10.4 9.2	7.0 7.3 7.3 7.0 7.0	6.6 *5.9 5.9 5.6 5.9	5.3 5.1 5.1 6.8 5.1	6.6 5.3 5.3 5.6
6 7 8 9 10	84 29.5 34.5 34.5 12.2	8.5 8.0 7.5 7.5 7.7	22 23 19.4 14.3 179	39 32 30 27 25	25 22.5 24.5 22 28.5	*16.2 15.4 17.0 15.4 14.3	20 15 13 *13 11.7	8.8 10.0 12.7 14.3 10.8	7.0 6.6 6.2 6.2 11.4	5.9 5.3 5.1 5.1	4.8 4.8 5.1 4.8 4.5	5.2 7.6 5.2 4.5
11 12 13 14 15	17.7 38.5 23 *13.4 10.0	8.5 7.9 7.3 7.0 7.0	87 43 28 22 19.4	28 24 25 23 21	21.5 20 20 19.4 18.8	14.3 34.5 24 23 18.2	13.3 11.7 11.7 11.2 10.8	9.6 9.2 8.8 9.6 8.8	8.0 7.6 7.0 6.2 6.6	5.1 5.1 4.8 5.1 5.6	4.5 4.5 5.1 4.5 4.3	5.3 4.8 4.5 5.3 4.5
16 17 18 19 20	65 20 14 11 10	8.5 *7.5 10.0 8.4 10.9	60 43 59 28 24	20 22 19 25 75	18.8 19.4 19.4 17.0 17.0	211 40 28 22 22	11.2 10.8 11.2 10.8 10.4	*11.0 9.6 9.2 9.2 8.8	7.3 7.0 6.6 6.6 5.9	4.5 5.6 5.1 4.5 4.8	4.3 4.3 4.3 4.3	17.5 35 12.2 7.0
21 22 23 24 25	9.0 9.5 10 8.5	8.0 8.4 8.0 11.5 8.8	22.5 *91 44 28.5 75	27 210 57 51 89	17.0 18.2 21 17.0 15.9	19 18 18 16 15	10.4 10.0 10.8 10.4 9.6	8.8 8.4 8.4 9.6	7.0 5.9 5.9 5.3 5.3	5.1 4.5 4.8 4.5 4.5	4.3 4.3 4.3 4.5	6.6 5.3 5.1 7.6 8.2
26 27 28 29 30 31	13 11 9.0 11 20 40	7.6 7.3 7.0 7.0 9.1 22	33.5 127 * <u>427</u> 236 53	58 *108 98 75 45 38	17.0 17.5 112 28 52	14 14 13 12 12 12	10.4 10.4 9.6 9.6 9.6 9.6	8.4 7.6 7.3 7.0	5.3 6.6 20.5 9.2 7.0 6.6	4.5 5.1 5.1 6.6 7.0	6.2 6.2 5.1 6.2 7.0 7.3	8.4 7.0 6.6 5.3
Total Mean Ac-ft	592.6 19.1 1,180	289.9 9.35 575	2,258.1 75.3 4,480	1,683 54.3 3,340	784.4 26.1 1,560	770.6 24.9 1,530	389.2 12.6 772	272.3 9.39 540	226.4 7.30 449	158.3 5.28 314	156.0 5.03 309	222.6 7.42

Peak discharge (base, 1,400 cfs).--Sept. 1 (4:30 a.m.) 1,450 cfs (10.37 ft); Sept. 10 (9 p.m.) 1,580 cfs (11.42 ft).

^{*} Discharge measurement made on this day.

Note. --Doubtful or no gage-height record July 16 to Aug. 17, Oct. 4-21, 23, 24, 26, Oct. 29 to
Nov. 4, Dec. 17 to Jan. 9; discharge estimated on basis of recorder graph and records for Talofofo and Inarajan Rivers.

Ugum River near Talofofo--Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	5.9 5.6 5.9 5.3 5.1	15.4 11.2 9.6 8.4 8.8	f72 f48 f60 a35 f37.5	35 27 25 30 39.5	25 22.5 48 24 21.5	31 102 42 34 29.5	23 26 23.5 22 20	15.4 14.3 15.4 18.8 22	10.4 10.0 9.6 11.6 *14.5	9.6 12.2 12.7 9.2 8.8	8.0 6.2 6.2 6.2 7.0	5. 5. 4. 5.
6 7 8 9	5.1 5.1 6.5 14.4 11.1	7.3 7.3 44 54 19.3	a24 f42 a33 a90 a28	25 22.5 24 22.5 25.5	21 26.5 21 22 74	43 26.5 23.5 22.5 22	20 19.4 18.8 18.8	15.4 14.3 20.5 14.8 13.8	11.7 10.4 10.0 10.8 10.0	8.4 8.0 7.6 8.0 7.6	5.9 8.1 9.6 7.0 5.9	4. 5. 5.
11 12 13 14 15	11.9 10.5 16.2 f50 15.5	17.5 11.2 10.4 9.2 12.7	a80 f45 a28 f23 240	62 171 34 36 55	34 148 f135 f45 *f26.5	20 20 19.5 *402 351	29 23.5 20 18.8 18.8	13.3 13.3 12.7 12.2 11.7	9.6 10.4 9.6 9.2 9.2	7.6 7.3 7.3 8.0 7.6	5.6 5.6 5.6 5.6	5. 6. *4.
16 17 18 19 20	9.6 7.6 *7.3 5.9 5.6	10.0 25 21 11.2 9.6	38 35.5 30.5 32.5 143	39.5 29 41 46 29.5	123 65 183 *46 37	55 *37 32 30.5 29	*18.8 37.5 19.4 18.8 21	11.2 11.2 11.2 14.3 14.8	8.8 8.8 8.8 8.8	7.0 7.0 7.0 7.0 6.6	5.6 5.3 9.2 5.9 5.3	4. 4. 4. 13.
21 22 23 24 25	5.3 5.3 5.1 4.8 5.6	8.8 10.0 13.0 10.4 9.2	39 30.5 115 121 39	25.5 25 26.5 25.5 41	31 30.5 43 29.5 25.5	29.5 26.5 25.5 25 24	18.8 17.0 16.4 16.4 15.9	11.7 11.7 13.8 14.3 12.7	8.4 8.4 8.0 8.0 8.0	7.3 7.0 7.0 7.0 6.6	5.1 18.2 8.0 7.0 6.2	8. 5. 4. 7.
26 27 28 29 30 31	33.5 18.3 22.5 28.5 107	16.5 132 75 *226 f55 f33.5	30.5 35.5 61 33 84	26.5 25.5 160 46 33.5 30	26.5 25 23.5 25 25.5	35.5 35 25.5 24 22.5 23.5	15.9 15.4 14.8 24.5 15.9 16.4	11.7 11.2 10.8	8.0 16.6 10.8 8.8 8.4 8.4	6.6 6.2 7.0 6.6 *6.2	5.9 5.6 5.3 5.3 5.3	5. 4. 4. 4.
otal lean ic-ft	471.0 15.2 934	912.5 29.4 1,810	1,753.5 58.4 3,480	1,284.0 41.4 2,550	1,433.0 47.8 2,840	1,668.5 53.8 3,310	692.5 22.3 1,370	388.5 13.9 771	303.2 9.78 601	232.0 7.73 460	206.4 6.66 409	163. 5.4 32

Peak discharge (base, 1,400 cfs).--Aug. 29 (5:30 p.m.) 1,460 cfs (10.52 ft); Sept. 15 (9 a.m.) 1,400 cfs (10.02 ft); Dec. 14 (9 a.m.) 1,570 cfs (11.30 ft).

^{*} Discharge measurement made on this day.

a No gage-height record; discharge estimated on basis of records for Inarajan River.

f Fragmentary gage-height record; discharge computed from partly estimated gage heights.

Ugum River near Talofofo--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	4.5 4.8 4.3 4.5 5.1	4.1 3.85 3.85 3.85 4.5	55 76 58 33 26	11.7 10.4 9.6 9.6 9.6	35.5 20 19.2 17.0 16.4	29 30,5 28 27 25,5	15.4 14.3 14.3 14.3 14.8	13.3 12.2 12.2 11.2 11.2	9.2 8.8 8.4 8.4	6.6 6.6 6.2 6.2 5.9	5.6 5.6 5.3 6.2 6.2	20.5 7.6 5.6 5.1 4.8
6 7 8 9	5.1 4.8 4.5 4.5	4.1 4.3 4.3 4.1 5.1	22 19.9 19.4 15.9 18.1	404 126 51 *51 34	15.4 15.4 276 65 55	25 25 23.5 23.5 22.5	13.8 14.8 24.5 14.8 13.8	10.8 10.8 11.2 10.8 10.8	8.0 8.8 9.6 8.0 8.0	5.9 5.9 5.6 6.2	5.6 5.3 5.3 5.0 5.0	4.5 5.3 5.1 5.3
11 12 13 14 15	7.0 12.7 17.4 7.0 5.3	4.1 4.1 5.1 9.0 5.1	17.2 15.4 14.8 12.7 10.8	26.5 25 40 32.5 29.5	43 372 66 48 578	22 22.5 21.5 21.5 26.5	14.8 14.8 16.4 177 37.5	10.8 10.8 10.4 10.4	*8.0 8.4 7.6 7.6 7.6	5.9 5.6 9.4 7.0 5.9	5.0 4.8 *4.5 4.3 4.3	24 10.8 32 249 29.5
16 17 18 19 20	4.8 4.5 4.3 4.3	4.5 6.3 16.2 23 13.7	11.7 11.7 10.4 20.5 15.4	26.5 21.5 20 20 18.8	479 81 62 54 51	25.5 21.5 20 18.8 18.8	22.5 *19.4 17.5 17.5	10.0 9.6 10.8 11.7 9.6	7.3 7.3 7.3 7.0 7.0	5.9 7.9 7.0 7.0 5.9	4.3 4.1 4.3 4.3	16.7 12.3 10.4 9.2 8.8
21 22 23 24 25	4.3 4.5 5.1 4.3 4.3	9.2 9.6 13.7 21 21	11.2 40 24.5 29.5 34.5	21 62 33.5 26 *23	45 41 39 38 40	19.4 18.2 17.5 17.0 16.4	19.4 16.4 15.4 14.3 13.8	9.2 9.2 9.6 12.2 10.8	7.0 7.0 6.6 6.6 7.0	6.2 5.9 5.6 5.3	4.3 5.3 6.7 4.8 4.3	9.2 8.8 8.8 9.2 8.8
26 27 28 29 30 31	4.1 4.3 4.5 5.1 4.3 4.1	19.3 *10.0 80 48 19.6 12.2	17.5 15.4 14.3 12.2 13.3	25 23 29.5 21 31.5 22	35 37 34 32 30.5	15.9 15.4 15.9 18.8 15.9 15.4	13.3 14.8 13.8 12.7 12.2 12.2	9.2 9.2 <u>8.8</u>	6.6 6.2 6.6 9.5 7.3	5.3 5.6 5.6 7.3 5.6	4.3 4.1 5.1 14.5 8.0 7.5	7.6 9.6 8.4 8.0 7.0
Total Mean Ac-ft	167.9 5.42 333	396.75 12.8 787	696.3 23.2 1,380	1,372.1 44.3 2,720	91.3	663.9 21.4 1,320	677.5 21.9 1,340	296.8 10.6 589	237.7 7.67 471	186.5 6.22 370	168.2 5.43 334	604.9 20.2 1,200

Fiscal year 1957-58: Max 578 Min 3.85 Mean 22.5 Ac-ft 16,280

Peak discharge (base, 1,400 cfs).--Oct. 6 (8:30 a.m.) 1,610 cfs (11.63 ft); Nov. 15 (10:30 p.m.) 1,600 cfs (11.52 ft).

^{*} Discharge measurement made on this day.

Ylig River near Yona

Location. -- Lat 13°23'20" N., long 144°45'00" E., on right bank 2 miles upstream from mouth, 2.1 miles southwest of Yona, and 5.8 miles south of Agana.

Drainage area. -- 6.58 sq mi.

Records available .-- June 1952 to June 1958.

Gage .-- Water-stage recorder and concrete control. Altitude of gage is 20 ft (by barometer).

Average discharge .-- 6 years, 23.0 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1953-58 are contained in the following table:

Fiscal		Maximum			Minimum	
year	Date	Discharge (cfs)†	Gage height (feet)	Date	Discharge (cfs)	Gage height
1953	Sept. 8, 1952	2,520	14.47	June 14, 1953	0.51	0.23
1954	Oct. 15, 1953	4,040	19.36	June 21,22,1954	.36	.20
1955	Sept. 1, 1954	2,400	14.01	July 31, Aug. 1, 1954	.56	.24
1956	July 6, 1955	2,020	11.87	May 12-16, 1956	.56	.24
1957	Oct. 17, 1956	2,150	12.45	June 28,29,1957	.36	.20
1958	Nov. 15, 1957	2,810	14.70	July 27, 28, Aug. 3-5,1957	.28	.18

[†] From rating curve extended above 260 cfs on basis of slope-area measurement at gage height 14.01 ft.

1952-58: Maximum discharge, 4,040 cfs Oct. 15, 1953 (gage height, 19.36 ft), from rating curve extended above 260 cfs on basis of slope-area measurement at gage height 14.0 ft; minimum, 0.28 cfs July 27, 28, Aug. 3-5, 1957.

Remarks. -- Records good except those for periods of no gage-height record, which are fair for 1953-55, and poor for 1956.

Rating tables, June 17, 1952, to June 30, 1958 (gage height, in feet, and discharge, in cubic feet per second)

			17, 1952, 30, 195			July 1, 1955, to June 30, 1958
0.2 .3 .4 .5	0.36 .96 1.93 3.3 5.1	0.7 .9 1.1 1.4 1.8	7.4 13.5 21.5 42 95	3.0 5.0 7.0 10.0 13.0	233 500 830 1,420 2,150	3.0 233 4.0 363 NoteSame as preceding table below 3.0 ft.

Discharge, in cubic feet per second, 1952

74	17	.51 .41 .36 .36	June 24	82 75 75 61
----	----	--------------------------	---------	----------------------

[†] Result of discharge measurement.

Ylig River near Yona--Continued

Discharge, in cubic feet per second, fiscal year July 1952 to June 1953

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	4.8 2.05 1.71 68 8.3	30 28.5 57 71 39	18.8 23.5 19.0 16.6 14.3	38 116 35.5 59 39	30.5 26.5 24 23.5 107	90 38 27 24 22	21 17.8 15.4 13.5 25	6.0 5.8 5.8 6.0 5.3	15.4 14.3 13.2 16.2 12.9	4.7 4.5 4.1 4.1 3.9	2.3 2.3 2.05 1.93 1.93	1.51 1.23 1.14 *1.14 .96
6 7 8 9 10	4.1 4.3 2.85 2.3 1.93	37 19.0 17.4 42 33	12.9 11.6 323 78 99	33.5 57 30.5 47 65	33.5 51 134 187 98	21 74 24 22.5 21	15.4 13.5 12.5 11.9	5.8 18.2 8.6 6.7 6.0	11.6 10.9 10.9 10.6 10.0	3.9 3.9 3.75 3.6 3.45	1.81 1.81 *1.71 1.71 1.61	.96 .96 .89 .82
11 12 13 14 15	1.81 1.51 1.32 1.23 2.55	51 76 27 20.5	29 75 <u>353</u> 78 44	33.5 28.5 26.5 40 32.5	72 48 36.5 31 28.5	20.5 19.0 17.8 19.0 17.4	10.9 10.6 10.3 10.3 9.7	5.8 8.6 6.2 5.6 5.1	9.7 8.8 8.3 7.7	3.45 5.1 4.7 3.3 3.3	1.51 1.51 1.41 1.41 1.41	.68 .61 .61 .56
16 17 18 19 20	4.6 2.05 4.6 3.75 2.15	27 23 17.8 15.4 15.4	74 30.5 26.5 22.5 19.9	27.5 58 43 31 25.5	87 43 30 26.5 71	15.4 14.7 14.7 13.5 13.2	9.1 8.8 8.3 8.3 8.0	*5.8 5.3 4.7 4.5 4.7	7.2 6.9 8.6 7.0 6.7	3.15 3.0 3.0 2.85 2.7	1.71 1.93 1.71 1.93 1.61	.56 .61 .56 .75
21 22 23 24 25	2.3 4.3 2.7 2.3 2.55	12.9 11.9 38.5 13.5 11.9	17.8 16.2 102 33.5 #24.5	74 233 50 86 36.5	31 33.5 82 32 *29	12.5 *12.2 52 14.3 43	8.0 7.4 7.7 7.4 6.9	4.7 431 122 40 26.5	6.2 6.2 6.2 5.8 5.8	2.7 2.55 2.55 2.55 2.55	1.61 1.61 1.51 1.41 1.41	.68 .68 .82 .96
26 27 28 29 30 31	1.93 1.81 2.3 10.1 4.7 5.6	11.6 10.9 16.6 20.5 16.4 19.6	21 19.4 35 161 73	33.5 27 23.5 21.5 166 48	26.5 23 34 77 31	16.2 13.5 13.5 25 13.2 90	#6.7 6.5 6.5 6.2 8.6 6.2	21.5 19.9 17.0	5.3 5.3 5.1 4.9 4.7 4.7	2.55 2.4 2.15 2.05 2.05	1.32 1.23 1.14 1.14 1.23 1.61	.89 .61 1.81 3.0 1.81
Total Mean Ac-ft	166.50 5.37 330	872.3 28.1 1,730	1,872.5 62.4 3,710	53.7	52.9	834.1 26.9 1,650	329.7 10.6 654	813.1 29.0 1,610	264.8 8.54 525	98.55 3.28 195	50.52 1.63 100	28.76 0.959 57
Caler	dar year	1952: 1	Max -	Min		Mean -	7 E	Ac-i		0		

Fiscal year 1952: Max 431 Min 0.56 Mean 23.5 Ac-ft 17,010

Peak discharge (base, 2,000 cfs).--Sept. 8 (9 p.m.) 2,520 cfs (14.47 ft); Sept. 13 (1 p.m.) 2,020 cfs (12.52 ft).

^{*} Discharge measurement made on this day.

Ylig River near Yona -- Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.05 .82 <u>.75</u> .82 .82	3.15 3.6 3.75 3.0 2.55	47 41 95 45 35.5	20.5 18.6 17.0 16.6 15.8	20.5 18.6 18.2 17.8 16.2	35 28 25 25 25 23	12 15 13 15 11	6.9 6.7 6.5 6.2 6.0	4.5 3.9 3.75 3.45 3.3	1.61 2.4 2.55 2.3 1.93	1.32 1.23 .96 .82 .82	0.56 .56 .51 .46
6 7 8 9	2.05 1.71 1.05 .82 .82	4.9 4.5 3.75 5.8 96	28.5 25.5 23 20.5 20.5	14.7 16.4 15.4 14.3 12.9	16.2 14.7 13.9 13.5 49	20 19 18 17 19	13 12 11 540 90	6.0 5.8 5.6 5.6 5.1	3.0 3.0 3.0 2.85 3.0	1.71 1.61 1.71 1.61 1.51	.82 .75 .75 .68	1.93 1.93 1.23 1.41 1.23
11 12 13 14 15	.75 .96 .89 7.8 10.1	588 464 86 63 71	18.6 19.4 16.6 15.4 15.4	13.2 19.6 14.7 15.4 2.050	36 261 988 129 61	17 15 15 39 30	*25 17.4 15.8 14.7 14.7	4.9 4.9 4.7 4.7	3.45 3.15 3.0 2.85 2.4	1.32 1.23 1.41 1.61 1.32	*.82 1.61 1.61 .96	.89 .82 .75 .68
16 17 18 19 20	*6.3 17.0 10.0 4.7 3.0	154 82 308 86 47	20 15.1 *26 46 55	1,120 379 182 114 208	41 34 *30.5 26 23.5	66 56 30 23 21	12.9 12.5 11.6 11.3 10.9	4.5 4.5 4.5 4.1 5.3	2.55 2.55 2.55 2.7 2.55	1.23 1.14 1.14 1.23 1.23	.75 .75 .75 1.05	*.56 .51 .46 .46
21 22 23 24 25	2.85 2.3 2.15 2.85 2.15	36.5 28.5 25 114 63	110 50 32 26 32	80 *52 44 38 32.5	22 21 18 300 100	19 27 20 18 19	10.9 10.3 9.4 9.1 8.6	4.5 3.9 3.75 3.6 3.6	2.3 2.3 2.3 *2.05 1.81	1.14 1.14 1.14 1.14	.82 .75 .82 1.61 1.32	1.33 4.1 1.61
26 27 28 29 30 31	20 21 10.3 5.8 4.5 3.75	36.5 28.5 307 207 171 72	28.5 26 41 25 23	28.5 26 26 26.5 26 21	40 25 22 21 63	18 17 15 14 17 14	8.3 8.0 8.0 7.4 7.4 6.9	3.75 8.4 6.0	1.71 1.61 1.61 1.61 1.61	1.14 1.05 .96 .82 .82	.89 .75 .61 .61 .68	1.51 1.14 .82 .75 .68
Total Mean Nc-ft	4.83	3,169.00 102 6,290	1,022.5 34.1 2,030	4,676.6 151 9,280	2,460.6 82.0 4,880	739 23.8 1,470	973.1 31.4 1,930	144.50 5.16 287	82.02 2.65 163	42.29 1.41 84	28.31 0.913 56	30.46 1.02 60

Peak discharge (base, 2,000 cfs).--Aug. 11 (8:30 p.m.) 2,050 cfs (12.57 ft); Oct. 15 (9 a.m.) 4,040 cfs (19.36 ft); Nov. 13 (4 p.m.) 3,660 cfs (18.34 ft).

^{*} Discharge measurement made on this day.
Note.--No gage-height record Nov. 21 to Jan. 11; discharge estimated on basis of records for stations on nearby streams and rainfall records.

Ylig River near Yona--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.75 1.86 1.68 1.05 1.05	0,61 .68 .68 .68	*329 81 69 134 85	56 36.5 58 30.5 51	53 34 29 27.5 23	36 *21 18.6 17.4 16.6	7.2 6.9 8.0 *13.5 14.6	6.0 *5.3 5.6 6.0 4.9	3.45 3.15 2.85 2.85 3.15	1.93 1.93 1.81 1.71 1.71	3.3 1.61 1.32 1.32 1.23	2.75 2.55 1.61 2.55 2.8
6 7 8 9 10	1.05 2.5 1.32 .96 .86	1.38 2.7 2.1 10.8 3.0	78 53 102 89 69	31 29 75 *97 34	22 20.5 19.9 18.2 17.8	16.6 17.7 16.6 15.1 18.2	8.3 7.2 14.4 8.8 14.4	4.7 4.7 4.5 4.5 4.3	2.85 2.7 2.55 2.55 2.55	1.61 1.81 2.15 2.55 2.3	1.05 1.05 1.84 6.7 2.7	1.71 *12.6 3.5 65 10.4
11 12 13 14 15	.76 .68 .68 .74	1.93 4.4 4.8 18.8 5.5	35.5 28.5 35.5 327 321	57 45 30 25 22	140 30.5 22.5 20.5 18.6	17.5 13.5 12.5 12.2 11.9	11.3 9.2 8.6 14.8 14.7	4.3 4.1 3.9 3.9 4.5	3.0 2.85 2.7 2.55 *2.3	1.71 1.51 1.41 *1.41 1.71	1.71 1.41 1.41 1.41 7.5	5.8 4.5 4.3 3.6 3.0
16 17 18 19 20	.75 .90 1.7 2.0 1.6	3.15 2.7 16.5 31 39	98 52 39.5 33.5 213	20.5 19.0 17.8 16.2 15.4	18.2 16.6 92 25 34	12.5 12.2 12.2 10.9 10.3	10.6 10.3 8.8 8.0 8.3	4.3 8.1 6.2 4.1 3.75	2.3 2.3 2.15 2.15 2.05	1.61 1.41 1.32 1.61 2.15	3.9 2.15 1.61 1.41 1.41	2.55 2.85 2.55 2.3 2.4
21 22 23 24 25	1.2 1.0 .90 .95	17.3 8.3 5.8 *47 153	100 150 71 49 38.5	31.5 22 19.9 17.0 16.1	21.5 20.5 118 42 28.5	10.3 9.7 9.4 8.6 8.6	7.7 6.9 6.7 6.5 11.7	4.9 4.9 4.1 3.75 4.1	2.15 2.4 2.15 2.05 2.05	1.71 1.41 1.23 1.14 1.51	1.32 1.23 1.05 .96	2.3 2.15 1.93 1.81 1.81
26 27 28 29 30 31	.84 .74 *.68 .68	28.5 26 17.0 162 52 27.5	85 39.5 112 138 68	39 36.5 22.5 31.5 90 190	23 58 26.5 23.5 22.5	8.3 8.0 7.7 8.3 7.7 7.2	13.6 7.7 6.7 6.7 6.2 6.0	3.6 3.6 3.9	2.15 2.4 2.55 2.05 1.93 1.81	1.61 1.14 1.05 1.05 1.40	.96 2.1 1.93 1.41 1.05 .89	2.75 2.15 1.93 2.3 7.7
Total Mean Ac-ft	33.02 1.07 65	695.56 22.4 1,380	3,123.5 104 6,200	1,281.9 41.4 2,540	1,066.8 35.6 2,120	413.3 13.3 820	294.3 9.49 584	130.50 4.66 259	76.69 2.47 152	48.61 1.62 96	59.90 1.93 119	166.15 5.54 330
		r 1954 : 1 054-55 : 1		Min Min	0.36	Mean 2	21.7	Ac-		00 50		

Peak discharge (base, 2,000 cfs).--Sept. 1 (11:30 a.m.) 2,400 cfs (14.01 ft).

^{*.}Discharge measurement made on this day.
Note.--No gage-height record July 10-27; discharge estimated on basis of recorded range in stage and records for nearby stations.

Ylig River near Yona--Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	8.8 5.7 3.15 2.4 2.15	28.5 21 18.6 16.6 14.7	130 23 46 19.4 17.8	a75 a50 a75 47 34	25 25 22.5 21.5 21	14.3 12.5 11.6 10.6 10.0	9.2 8.3 8.0 6.7 *6.4	3.75 3.45 4.1 4.5 3.3	2.15 2.15 2.15 2.05 2.05	1.41 *1.23 1.23 1.14 1.05	1.14 .89 1.05 1.05 1.14	2.: 1.: 1.: 1.:
6 7 8 9	291 *62 177 74 26	13.9 13.5 11.9 11.3 10.9	16.6 21.5 13.9 13.2 31.5	50 .31 25.5 23.5 21	18.2 16.6 16.2 14.7	9.4 9.4 11.6 9.4 10.4	6.9 6.7 6.0 6.0 5.8	3.15 4.5 7.0 13.8 6.3	1.93 1.81 1.71 1.61 1.93	1.05 1.05 1.23 1.14 1.14	.96 .75 .75 .75	1.
11 12 13 14 15	73 98 46 28.5 21.5	11.3 10.0 9.1 8.6 8.3	38.5 40 19.4 18.2 17.4	22.5 19.4 91 26.5 21.5	15.4 13.5 13.5 12.2 11.6	10.0 20 16.2 13.3 10.0	6.0 5.6 5.3 4.9	4.5 3.6 3.45 3.3 *3.1	2.05 1.81 1.71 1.61 1.61	1.05 .89 .89 .89	.61 .56 .56 .56	4.9 1.1 1.2
16 17 18 19 20	67 24 20.5 17.0 16.2	*8.0 7.7 14.3 9.1 13.9	17.6 22.5 20.5 *15.1 14.3	18.2 17.0 19.6 16.3	12.8 12.8 13.5 10.0 9.4	102 18.3 14.7 14.8 11.9	5.3 4.9 4.9 4.7 4.5	3.75 3.15 3.0 2.85 2.7	1.81 1.71 1.81 1.71	.82 1.14 1.32 1.14	.56 .68 1.05 .96 54.2	6. 15.
21 22 23 24 25	14.3 13.9 12.9 11.6 11.8	12.0 12.2 9.4 32.5 46	20 132 36.5 26 33	15,4 189 45 35 66	9.7 13.1 16.3 9.4 8.7	11.9 10.3 10.0 9.4 8.8	4.3 4.1 4.3 4.1 3.75	2.7 2.55 2.55 2.4 3.15	2.05 2.15 1.81 1.61 1.41	.89 .89 .89 .89	2.45 *1.23 1.23 .82 .75	2. 1. 1. 2.
26 27 28 29 30 31	21.5 14.6 11.9 124 69 37.5	15.4 17.0 10.9 9.4 39.5 37.5	40 59 330 a300 a60	*35.5 133 100 53 37.5 28.5	9.8 30.5 89 20 *21.5	8.6 8.0 7.7 7.4 7.2 6.9	4.3 4.1 3.75 3.6 3.45 3.45	2.85 2.4 2.3 2.15	1.41 1.61 2.4 2.7 1.71 1.41	.68 .75 .89 1.05 1.32	3.0 2.7 1.71 1.51 8.5 3.0	3. 2. 1. 1.
Total Mesn	1,406.90 45.4 2,790	503.0 16.2 998	1,592.9 53.1 3,160	1,443.9 46.6 2,860	562.4 18.7 1,120	436.6 14.1 866	164.20 5.30 326	110.30 3.80 219	57.45 1.85 114	30.59 1.02 61	47.43 1.53 94	70. 2.

Peak discharge (base, 2,000 cfs).--July 6 (5 p.m.) 2,020 cfs (11.87 ft).

^{*} Discharge measurement made on this day.
a.No gage-height record; discharge estimated on basis of records for nearby stations.

Ylig River near Yona--Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

			60, 411	Cubic I	cco pcr		I LOUGE J	our oury	1500 00	ourse 15) (
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	5.4 3.6 2.4 3.0 3.25	15.8 12.5 11.3 10.0 9.4	61 68 40 40 46	25.5 21 19 22.5 19.9	15.4 16.9 38.5 16.2 13.9	18.8 49 44 19.0 17.4	11.6 11.6 10.9 10.3 10.0	8.0 7.2 7.2 8.0 8.0	3.75 3.6 3.75 3.9 5.1	2.85 7.3 8.0 3.45 3.0	1.51 1.51 1.41 1.32 1.41	1.14 1.14 1.05 .89 .89
6 7 8 9	2.4 2.15 2.9 42 11.9	8.6 8.0 27.5 48 14.3	27.5 *52 29 43 23	22 16.2 19.6 23 17.8	12.9 13.2 12.2 11.6 20	17.0 15.1 13.9 12.9 12.2	9.7 9.1 8.6 11.5 126	6.7 6.5 9.5 6.5 6.0	4.3 3.6 3.6 3.75 3.6	2.7 2.55 2.3 2.7 2.55	1.61 2.35 4.9 2.85 1.81	.89 1.14 1.23 1.05
11 12 13 14 15	5.8 5.7 5.3 6.3 5.3	15.6 29 13.8 11.2	73 40 37 25 140	28 *265 34 37.5 22.5	21.5 99 231 43 24.5	11.6 11.6 *10.9 262 336	14.7 13.2 11.3 10.0 9.7	5.8 5.6 *5.1 4.9	3.45 4.1 3.6 3.15 3.0	2.4 2.15 2.05 2.55 2.85	1.61 1.51 1.51 1.51 1.41	.89 .82 .82 .82 .68
16 17 18 19 20	#5.1 3.9 4.3 3.45 3.0	14.4 22.5 21.5 33.5 17.0	44 48 26.5 30.5 68	21 196 71 71 29	54 38.5 211 43 31	35 25.5 21.5 20.5 18.6	9.4 39.5 11.6 10.0	4.7 4.7 4.7 6.2 5.6	3.0 2.85 2.85 2.85 3.0	2.15 2.05 1.93 1.81 1.71	1.41 1.32 1.61 1.61 1.23	.61 .56 .56 .61
21 22 23 24 25	2.85 2.7 2.4 7.3 28	12.5 14.7 31 16.6 13.2	38 28.5 84 81 33.5	38.5 *34.5 30 22.5 22	36.5 30 34.5 22 19.9	17.8 16.2 15.1 14.3 14.6	12.5 10.0 9.1 8.8 8.6	4.5 4.5 5,3 6.7 5.6	3.15 2.85 2.4 2.4 2.55	2.05 1.93 1.71 1.88 1.81	1.14 1.82 1.23 1.14 1.14	1.61 1.51 1.05 *.75 .46
26 27 28 29 30 31	17.2 15.4 27 63 57 22	11.9 37.5 63 22.5 19.5 19.9	26.5 149 40 27 49	22.5 18.6 23.5 18.2 16.2 35	19 17.8 16.6 16.6 17.4	35.5 20.5 14.7 13.2 12.5 12.5	8.3 7.7 7.7 15.6 8.3 13.8	4.5 4.1 3.9	2.4 *9.0 3.9 3.15 2.85 2.7	1.61 1.51 1.93 2.05 1.61	1.14 1.14 1.05 1.05 1.14 1.14	.41 .36 .36
Total Mean Ac-ft	372.00 12.0 738	640.2 20.7 1,270	1,518.0 50.6 3,010	1,263.0 40.7 2,510	1,197.6 39.9 2,380	37.4	490.1 15.8 972	165.8 5.92 329	108.15 3.49 215	77.14 2.57 153	48.54 1.57 96	25.71 0.857 51
		r 1956: 1 956-57: 1			0.56 0.36	Mean Mean	18.1 19.4	Ac-				

Peak discharge (base, 2,000 cfs).--Oct. 17 (5 p.m.) 2,150 cfs (12.45 ft); Nov. 13 (12:30 a.m.) 2,080 cfs (12.13 ft); Dec. 15 (8 a.m.) 2,050 cfs (12.04 ft).

^{*} Discharge measurement made on this day.

Ylig River near Yona--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.51 .56 .51 .51	0.51 .36 .28 .28	46 109 42 19.4 17.0	13.9 12.2 11.6 10.3 22	27 22.5 21 19.0 17.8	15.8 21 16.2 15.1 13.9	6.5 6.2 6.0 6.6 6.5	8.0 7.4 8.0 6.7 6.2	3.75 3.6 3.45 3.3 3.9	1.71 1.61 1.61 1.71 1.61	1.05 .96 .96 .96	2.3 1.71 1.23 1.23 1.14
6 7 8 9 10	.75 .68 .51 .51	.56 .68 .68 .56	29 60 26 61 20.5	320 242 72 48 34	*17.0 16.2 93 138 78	13.5 20.5 12.9 12.2 12.2	*5.5 6.6 10.4 6.7 6.9	6.0 6.0 6.0 5.8 6.5	*3.45 3.55 4.9 3.45 3.15	1.51 1.41 1.41 1.32 1.51	.96 .82 .82 *.79	1.32 1.73 3.7
11 12 13 14 15	2.05 2.8 2.55 1.14 .82	.61 .51 .61 1.41 1.14	20.5 16.2 21 15.4 12.9	31 47 34 44 68	45 186 92 59 658	11.3 10.9 10.3 10.3	6.5 6.7 7.7 257 28.5	6.0 5.3 5.1 5.1 4.7	3.3 3.45 3.15 3.0 3.15	1.81 1.51 3.25 2.3 1.71	.75 .82 .96 .82 .75	14.4 6.0 45 244 33
16 17 18 19 20	.56 .56 .51 .41	.75 .61 f18.0 5.6 2.15	33 35 18.6 17.0 14.3	64 29 23.5 21 19.9	731 101 61 45 37.5	10.6 9.4 8.6 8.3 8.0	17.0 *13.9 12.9 12.9 16.8	4.5 4.5 5.8 7.0 4.7	2.85 2.7 2.55 2.4 2.3	1.61 2.05 2.15 1.71 1.41	.68 .61 .56 .56	18.6 13.2 10.6 8.8 8.0
21 22 23 24 25	.51 .51 .46 .41	5.2 2.85 6.8 25 24	12.5 34.5 48 *28.5 22.5	19.9 50 37 23.5	32.5 27.5 25.5 22.5 21	8.3 7.7 7.4 6.9 6.9	12.2 10.6 9.7 8.8 8.6	4.3 4.1 4.5 13.5 5.8	2.3 2.15 2.05 2.05 2.15	1.61 1.51 1.23 1.14 1.05	.61 .82 1.51 1.32 1.05	7.4 8.1 6.9 6.9 8.2
26 27 28 29 30 31	.32 .28 .41 .56 .61	8.4 4.5 123 60 20 12.5	18.6 16.2 14.7 13.5 19.4	27.5 25.5 219 35 34 30	22 33 19.0 *20 16.6	6.5 6.2 6.9 28.5 8.6 7.2	8.0 10.0 8.6 7.7 7.2 7.2	4.5 3.9 3.75	2.05 2.05 1.81 1.71 2.05 1.93	1.05 1.23 1.14 1.23 1.14	.89 .75 .82 11.9 3.15 2.05	7.7 6.9 6.0 5.3 4.7
fotal fean	22.66 0.731 45	328.57 10.6 652	862.2 28.7 1,710	54.8		353.4 11.4 701	546.4 17.6 1,080	163.65 5.84 325	87.65 2.83 174	47.25 1.58 94	41.20 1.33 82	531.93 17.7 1,060

Fiscal year 1957-58: Max 731 Min 0.28 Mean 20.2 Ac-ft 14,650

Peak discharge (base, 2,000 cfs).--Nov. 15 (11 p.m.) 2,810 cfs (14.70 ft).

^{*} Discharge measurement made on this day.

f Fragmentary gage-height record; discharge computed on basis of partly estimated gage heights.

Lonfit River near Ordot

Location. -- Lat 13°26'05" N., long 144°45'10" E., on left bank at confluence of Lonfit and Sigua Rivers, 0.9 mile south of Ordot, 2.6 miles south of Agana, and 3.5 miles southeast of Asan.

Drainage area .-- 3.1 sq mi.

Records available .-- September 1951 to June 1958.

Gage .-- Water-stage recorder and concrete control. Altitude of gage is 30 ft (by barometer).

Average discharge. -- 6 years (1952-58), 10.6 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1952-58 are contained in the following table:

Fiscal		Maximum		Mark III	Minimum	
year	Date	Discharge (cfs)	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1952†	Nov. 4, 1951	\$1,520	12.09	June 13,14,30, 1952	0.11	0.09
1953	Feb. 22, 1953	\$1,200	9.79	June 26,27,1953	.17	.11
1954	Oct. 15, 1953	(##)	††17.46	June 21,22,1954	.07	.07
1955	Sept. 1, 1954	#1,520	12.09	July 28, 1954	.17	.11
1956	Sept.29, 1955	#1,540	12.27	May 16, 1956	.11	.09
1957	Dec. 15, 1956	#1,460	11.74	June 17,18,1957	.09	.08
1958	Oct. 28, 1957	\$2,070	††15.79	July 28, 1957	(a)	_

† Period September to June.

‡ From rating curve extended above 90 cfs on basis of slope-area measurement st gage height 12.27 ft.

†† From floodmark.

‡ Not determined.

a No flow part of day.

1951-58: Maximum discharge not determined, occurred Oct. 15, 1953 (gage height, 17.46 ft, from floodmark); no flow July 28, 1957.

Remarks. -- Records fair for 1951-54 and good thereafter except those for periods of doubtful or no gage-height record and those above 100 cfs, which are poor.

Lonfit River near Ordot--Continued

Rating table, Sept. 26, 1951, to June 30, 1958 (gage height, in feet, and discharge, in cubic feet per second)

0	0	0.9	27
.1	.14	1.1	48
.2	.69	1.4	90
. 3	1.80	2.0	187
.4	3.55	3.0	335
.5	6.0	5.0	580
.6	9.4	10.0	1,230
.7	14.0		450

July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
		-	*2.3 2.1 1.80 6.3 18.6	113 11.2 38 262 18.8	18.0 8.0 5.0 4.2 4.0	2.3 2.45 2.1 2.1 2.3	1.05 1.17 1.29 1.05 1.05	0.69 .77 .69 .61	0.61 .61 .61 .87	0.30 .30 .35 .61	0.30
			4.0 3.35 106 83 37	12.2 12.6 8.4 7.4 6.3	63 9.2 6.0 8.1 9.3	2.1 1.96 *1.90 1.96 1.96	.96 .96 .96 .96	.96 .69 .69 .54	.87 .77 .96 1.17	1.00 2.3 .77 .47 .41	.4' .30 .30
			13.5 79 120 20.5 12.6	6.6 10.6 5.5 4.7 4.5	11.2 5.5 4.7 4.2 4.0	1.65 1.80 1.96 1.80 2.3	.96 .96 .87 .87	.47 .61 .54 .54	.47 .61 .41 .41	.47 .47 .47 .41	.2: .2: .1: .2: 1.5:
			10.8 8.7 7.4 6.3 7.6	4.2 7.3 19.3 17.9 6.3	4.5 70 6.3 5.0 4.2	2.1 1.65 7.0 1.96 1.65	.77 .77 .77 .77	.77 .77 .69 .61	.41 .35 .35 .41	.47 .47 .47 .61	.54 .35 .30 .25
			6.3 5.0 11.7 15.6 5.7	5.2 4.5 4.0 4.0 5.0	3.8 3.35 3.15 3.0 2.8	1.53 1.53 1.41 1.29 1.29	.96 .96 .87 .77	.77 .69 .61 .61	.41 .30 .30 .35	.30 .30 .25 .25	.2: .2: .3(
		3.0 2.45 2.45 2.45 3.0	5.2 7.0 4.7 4.2 3.8 4.0	4.0 6.5 17.2 5.2 3.8	2.6 2.45 3.0 2.6 2.1 2.1	1.29 1.17 1.29 1.53 1.17 1.05	.69 .69 .96 .96	.96 .69 .77 1.41 .77 .61	.30 .47 .61 .41 .30	.25 .25 .25 .40 .61	.30 .35 .30 .25
		-	624.05 20.1 1,240	636.2 21.2 1,260	285.35 9.20 566	59.55 1.92 118	26.51 0.914 53	22.25 0.718 44	16.15 0.538 32	15.54 0.501 31	10.00
	July	July Aug.	3.0 2.45 2.45 2.45	- #2.3 2.1 1.80 6.3 - 18.6 - 4.0 3.35 - 106 - 83 - 10,8 - 120 - 20,5 - 12,6 - 10,8 - 8.7 - 7.4 - 6.3 - 7.6 - 6.3 - 7.6 - 6.5 - 5.7 3.0 2.45 4.7 2.45 4.2 3.0 3.8 4.0	- *2.3	- #2.3	- *2.3	- *2.3	- *2.3	- *2.3	- #2.3 113 18.0 2.3 1.05 0.69 0.61 0.30 - 2.1 11.2 8.0 2.45 1.17 .77 .61 .30 - 1.80 38 5.0 2.1 1.29 .69 .61 .35 - 6.3 262 4.2 2.1 1.05 .61 .87 .61 - 18.6 18.8 4.0 2.3 1.05 .96 .87 .77 - 4.0 12.2 63 2.1 .96 .96 .69 .77 - 3.35 12.6 9.2 1.96 .96 .69 .77 2.3 - 106 8.4 6.0 *1.90 .96 .69 .96 .77 - 83 7.4 8.1 1.96 .96 .69 1.17 .47 - 37 6.5 9.3 1.96 1.05 .54 .69 - 13.5 6.6 11.2 1.65 .96 .61 .61 .47 - 120 5.5 4.7 1.96 .87 .54 .41 .47 - 120 5.5 4.7 1.96 .87 .54 .41 .47 - 20.5 4.7 4.2 1.80 .87 .54 .41 .47 - 10.8 4.2 4.5 2.1 .77 .77 .41 .47 - 10.8 4.2 4.5 2.1 .77 .77 .41 .47 - 6.3 17.9 5.0 1.96 .77 .69 .35 .47 - 6.3 17.9 5.0 1.96 .77 .61 .41 .61 - 7.6 6.3 4.2 1.65 .87 .69 .30 .30 - 11.7 4.0 3.15 1.41 .87 .61 .35 .25 - 5.7 5.0 2.8 1.29 .77 .61 .35 .25 - 5.7 5.0 2.8 1.29 .96 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .96 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .96 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .96 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .96 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .96 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .96 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .96 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .96 .77 .61 .35 .25 - 2.45 4.7 17.2 3.0 1.29 .96 .77 .61 .35 .25 - 2.45 4.7

* Discharge measurement made on this day.

Lonfit River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1952 to June 1953

			0 .							F 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.89 .69 .41 24 2.1	5.6 13.3 23 41 18.6	9.0 9.0 7.0 6.5 6.0	18 66 19.1 63 26	17 15 13 12 80	7.5 7.0 7.0 6.5	10.5 15.0 6.7 6.0 15.6	2.3 2.1 2.1 2.3 1.96	5.5 5.0 4.5 5.5 4.5	1.53 1.41 1.41 1.41 1.41	0.77 .77 .77 .69 .69	0.47 .49 .41 .41
6 7 8 9 10	1.65 3.5 1.29 .87 .69	20 7.4 4.7 10.6 8.0	5.2 4.5 130 35 50	17.5 29 13.5 24 22	20 35 120 60 40	7.5 22 7.5 7.4 7.0	7.4 5.7 5.0 4.7 4.5	2.1 6.4 2.8 2.3 2.1	4.0 3.7 3.6 3.5 3.2	1.41 1.41 1.29 1.29 1.29	.69 .59 .47 .41	.41 .41 .35 .35
11 12 13 14 15	.61 .47 .41 .47 .54	10.9 21 7.4 5.7 4.5	14 30 150 40 15	21.5 13.5 14.9 27.5 15.9	21 16 13 12 11	6.6 6.4 6.2 7.0 5.7	4.2 4.0 3.8 3.8 3.35	1.96 2.3 2.1 1.80 1.80	3.0 2.8 2.6 2.5 2.5	1.29 1.29 1.29 1.29 1.29	.41 .41 .41 .41	.35 .30 .30 .25 .25
16 17 18 19 20	1.35 .54 .47 .54 .47	4.7 4.0 3.55 3.15 3.15	45 16 14.0 12 9.0	13.1 88 110 20 14	30 17 11 10 30	5.0 4.7 4.5 4.2 4.0	3.35 3.15 3.0 3.0 2.8	1.80 1.80 1.65 1.53	2.3 2.2 2.6 2.2 1.96	1.29 1.29 1.29 1.29 1.29	.54 .54 1.05 .54	.25 .30 .30 .54
21 22 23 24 25	.47 .69 .69 .61	3.15 3.0 17.4 4.5 3.35	7.5 6.5 17.8 18.8 8.7	45 140 22 35 20	13 14 70 20 15	3.8 3.55 29 4.5 17.2	2.8 2.6 2.8 3.15 2.8	1.96 303 57 15 10	1.96 1.80 1.65 1.65	1.17 1.17 1.05 .96	.47 .41 .41 .41	.41 .35 .41 .41
26 27 28 29 30 31	.54 .54 .69 1.61 .77	3.35 3.0 5.0 8.0 8.5	7.4 7.0 15.6 84 38.5	18 14 12 11 100 25	10 8.6 8.5 21 8.0	5.2 7.4 4.2 4.9 3.55 60	2.45 2.45 2.45 2.45 2.45 2.45	8.0 7.0 6.0	1.53 1.53 1.53 1.53 1.53 *1.53	.96 .87 .87 .77	.35 .35 .30 .25 .47	.25 .25 .61 1.17 .47
Total Mean Ac-ft	51.22 1.65 102	294.50 9.50 584	819.0 27.3 1,620		771.1 25.7 1,530	288.00 9.29 571	144.75 4.67 287	453.26 16.2 899	85.70 2.76 170	36.31 1.21 72	16.02 0.517 32	11.95 0.398 24
	dar year 1 year 19			Min Min	0.17 0.25	Mean Mean	9.43	Ac-1	t 6,840 t 8,030			

* Discharge measurement made on this day.

Note. --Doubtful or no gage-height record Aug. 27 to Sept. 17, Sept. 19-22, Oct. 1, Oct. 18 to Dec. 14, Feb. 23 to Mar. 19; discharge estimated on basis of records for Ylig River.

Peak discharge (base, 1,200 cfs).--Feb. 22 (4 a.m.) 1,200 cfs (9.79 ft).

Lonfit River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.30 .25 .30 .41 .69	.96	18.0 24 15.1 12.2 10.3	*11.2 10.2 8.4 7.4 6.3	5.0 4.2 4.2 4.2 3.8	20 12 8.0 8.0 7.0	3.7 3.6 3.5 3.4 #3.3	2.45 2.45 2.3 2.3 2.1	1.53 1.41 1.41 1.29 1.17	0.54 .87 .87 .69	1.05 .47 .30 .35 .30	e0.1 e.1 e.1 e.0 e.1
6 7 8 9 10	.47 .35 .30 .21	3.05 1.41 24 5.5 74	8.7 8.0 7.0 6.7 6.0	5.7 16.2 6.7 16.0 6.7	3.8 3.35 3.15 3.15 13.9	6.6 6.0 5.5 5.2 6.0	3.3 3.2 3.2 250 40	2.1 2.1 2.1 2.1 2.1	1.05 1.05 1.05 1.05 96	.54 .54 .54 .54	.30 .25 .25 .25 .25	e.60 e.60 e.40 e.45
11 12 13 14 15	.35 .41 *.69 2.95 4.1	400 216 30 17.6 28.5	6.7 5.5 5.2 4.7 #5.7	5.7 5.5 5.2 6.0 1,200	7.4 120 315 40 18	5.2 4.8 4.8 12.0 9.0	8.5 7.5 7.0 6.3	1.96 1.96 1.96 1.80 1.65	.96 .96 .96 .96	.47 .41 .41 .41	.35 .54 .54 .30 .25	e.18
16 17 18 19 20	8.0 7.5 4.2 1.96 1.41	83 41 196 35 18.6	5.2 4.2 8.6 30 27	650 120 60 35 70	12 *9.9 8.7 8.4 7.0	21 18 9.0 7.0 6.0	5.5 5.0 4.5 4.2 4.0	1.65 1.53 1.53 1.53 1.53	.87 .87 .87 .87	.41 .41 .41 .54	e.35 e.26 e.26 e.28 e.26	.09 .14 .17 .17 .25
21 22 23 24 25	1.29 1.17 1.05 .96 1.30	13.1 10.8 8.7 41 17.4	70 33 15.7 12.6 47	26 16 13 11 9.0	6.7 6.7 5.7 143 40	5.5 7.5 6.0 5.5 5.0	4.0 4.0 3.55 3.35 3.15	1.65 1.53 1.53 1.41 1.29	.77 .69 .69 .69	.54 .47 .41 .41	e.23 e.19 e.19 e.54 e.43	.09 2,45 1.17 .33 .54
26 27 28 29 30 31	3.3 2.45 2.1 1.41 1.05	12.2 9.9 184 100 78 28	32 15.1 19.7 35 14.6	7.8 7.0 7.0 7.0 6.7 5.2	15 9.0 8.0 7.2 9.7	4.7 4.5 4.3 4.1 4.0 3.8	3.15 3.0 3.0 2.8 2.6 2.6	1.29 1.29 1.41	.61 .61 .54 .54	.41 .35 .35 .35 .35	e.28 e.24 e.19 e.19 e.21 e.19	.41 .30 .21 .17
Total Mean Ac-ft	52.14 1.68 103	1,681.59 54.2 3,340	513.5 17.1 1,020	2,367.9 76.4 4,700	846.15 28.2 1,680	236.0 7.61 468	416.90 13.4 827	50.60 1.81 100	28.01 0.904 56	14.61 0.487 29	10.00 0.323 20	10.58 0.353 21

Peak discharge (base, 1,200 cfs).--Aug. 11 (about 6 p.m.) 1,390 cfs (about 11.25 ft); Aug. 18 (2:30 a.m.) 1,420 cfs (11.38 ft); Oct. 15 (probably 5 a.m.) discharge unknown (17.46 ft); Nov. 13 (4 p.m.) 1,310 cfs (10.65 ft); Nov. 24 (6 a.m.) 1,680 cfs (13.15 ft); Jan. 9 (12:30 p.m.) 1,330 cfs (10.81 ft).

^{*} Discharge measurement made on this day.

e Stage-discharge relation indefinite; discharge estimated on basis of records for Pago River.

Note. --No gage-height record Aug. 11, 12, Oct. 15-26, Nov. 12-16, Nov. 25 to Jan. 13; discharge estimated on basis of records for Pago River and other nearby stations.

Lonfit River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.46 .96 .54 .30 .69	0.54 .35 .25 .25 .70	150 25 19 33 23	25 15 14 10 15	*15.1 9.4 7.7 7.0 6.7	18 9.5 10 8.5 7.5	2.1 1.96 3.65 5.8 4.6	2.3 2.1 2.3 2.45 2.3	1.29 1.17 1.05 1.05 1.17	0.69 .69 .77 .96	1.17 .54 .41 .47	0.30 .69 .54 .30
6 7 8 9 10	.41 1.17 .47 .30 .47	6.7 5.7 1.96 9.5 2.1	40 24 45 47 30	10 #8.4 13.7 11.5 8.7	7.8 6.0 5.0 4.7 5.0	6.8 6.6 6.5 6.5 7.5	2.6 2.3 5.8 2.8 3.2	1.96 1.96 1.80 1.96 1.80	1.05 .96 .96 .96	.69 .69 .77 .77 .69	.35 .35 .69 2.1	.54 .69 9.6
11 12 13 14 15	.35 .21 .30 .30	3.1 3.55 2.2 11.6 3.0	17 13 28 250 200	9.5 10.7 8.0 6.7 6.3	85 14 10 8.5 7.5	7.0 5.5 5.0 4.7 4.3	3.0 2.6 2.45 3.55 3.8	1.65 1.65 1.65 1.65 1.80	.96 1.05 .96 .96	.61 .54 .54 .54	.54 .41 .41 .54 2.6	.87 .69 .61 .54
16 17 18 19 20	.21 .65 .87	1.80 1.53 1.53 17.2 25	41 22 17 14 100	5.5 5.0 4.7 4.2 4.0	7.0 6.5 60 14 15	5.0 4.1 4.1 3.6 3.5	2.8 2.6 2.45 2.3 3.8	1.65 5.0 2.5 1.65 1.53	.87 .87 .77 .77	.54 .47 .41 .47	1.26 .54 .41 .41	.35 .47 .47 .35
21 22 23 24 25	.35 .30 .25 .25	9.0 4.5 2.6 28 70	45 85 30 20 15	4.0 4.2 3.55 3.55	9.5 25 80 *35 17	3.5 3.5 3.1 2.8 2.8	2.3 1.96 1.80 1.80 12.1	1.53 1.65 1.53 1.41 1.53	1.05 1.29 .87 .77	.77 .54 .54 .41	.41 .35 .35 .35 .35	.35 .35 .35
26 27 28 29 30 31	.21 .25 .17 .21 .35 .25	20 11 7.0 40 12 6.7	27 19 80 60 25	9.5 6.7 5.0 4.5 23 76	16 45 16 12 11	2.6 2.4 2.3 2.3 2.3 2.1	10.3 3.35 3.0 4.7 2.6 2.45	1.41 1.53 1.53	.77 .87 .87 .69 .69	.61 .54 .54 .54	.30 .69 .69 .47 .35	.35 .47 .47 .47
Total Mesn Ac-ft	12.51 0.404 25	309.36 9.98 614	1,544 51.5 3,060	339.90 11.0 674	568.4 18.9 1,130	163.9 5.29 325	110.52 3.57 219	53.78 1.92 107	28.63 0.924 57	18.63 0.621 37	19.46 0.628 39	24.99 0.833 50

Fiscal year 1954-55: Max 250 Min 0.17 Mean 8.75 Ac-ft 6,340
Peak discharge (base, 1,200 cfs).—Sept. 1 (ll a.m.) 1,520 cfs (12.09 ft).

^{*} Discharge measurement made on this day.

Note.--Doubtful or no gage-height record Aug. 20-30, Sept 1 to Oct. 6, Nov. 12 to Dec. 26; discharge estimated on basis of records for Ylig River.

Lonfit River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

						,			2000 00	oune 15.	36	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.96 .69 .41 .35 .30	13.8 8.7 6.3 5.5 4.7	57 9.4 10.4 6.3 7.6	17.4 32 53 13.5 12.5	10.3 8.7 8.4 8.0 7.1	5.5 al0 5.2 4.0 3.55	a3.5 a3.1 a3.0 a2.4 2.3	1.41 1.29 1.65 1.65 1.41	0.69 .77 .69 .69	0.47 .47 .41 .41	0.35 .35 .41 .47	0.87 .61 .61 2.5 1.17
6 7 8 9 10	105 15.1 109 25 7.7	4.5 4.2 3.55 3.35 3.35	5.2 5.7 4.5 4.0 13.8	45 21.5 17.0 12.2 8.4	5.7 5.5 5.2 5.5 11.5	3.35 3.35 4.8 3.35 3.15	2.45 2.3 2.1 1.96 1.96	1.29 1.70 1.80 13.4 2.3	.69 .69 .54	.47 .61 .61 .87	.41 .30 .30 .35 .21	.77 .54 .47 .47
11 12 13 14 15	93 33.5 24 12.5 9.9	3.55 3.15 2.8 2.6 2.6	13.3 34.5 8.2 6.1 29	10.0 7.0 6.3 10.9 6.0	6.1 4.5 4.2 4.0 3.8	3.0 a8.0 4.3 7.7 4.0	1.96 2.1 2.8 3.0 2.1	1.53 1.29 1.17 1.17 1.05	.69 .61 .47 .47	.41 .35 .35 .35	.21 .17 .17 .14	.59 2.05 .54 .47 .35
16 17 18 19 20	12.9 8.7 6.7 5.5 4.7	2.45 2.3 6.9 5.3 17.8	7.0 7.5 9.8 6.7 6.8	8.1 5.2 5.2 15.4 14.2	4.9 5.0 3.35 3.15 3.0	71 9.6 6.7 5.2 4.5	1.65 1.53 1.53 1.41 1.41	1.05 1.05 1.05 .96	.61 .47 .54	.35 .54 .61 .35	.14 .21 .25 .17 1.72	.41 1.88 1.33
21 22 23 24 25	4.0 3.8 3.35 3.15 2.8	4.9 11.9 4.7 4.2 59	9.3 46 20.5 11.2 11.5	5.5 121 20 17.2 23.5	3.0 3.15 3.35 2.8 2.6	4.2 a3.5 a3.3 a3.2 a3.0	1.29 1.29 1.41 1.41 1.41	.96 .77 .87 .87 1.05	.47 .54 .54 .47	.41 .41 .41 .47	.61 .35 .41 .41	.41 .35 .35 .41 1.20
26 27 28 29 30 31	21 4.3 3.0 88 14.6 47	10.6 6.7 5.2 4.2 35 6.4	28.5 25.5 236 *223 26.5	#9.9 98 46 33 15.7	2.6 8.8 48 21 9.3	a2.9 a2.8 a2.7 a2.7 a2.6 a2.5	1.65 1.41 1.29 1.29 1.17	.87 .77 <u>.69</u> .69	.47 1.17 1.65 1.06 .54 .47	.47 .69 .54 .69	1.79 .96 .54 .74 5.0 1.53	4,9 1.17 .69 .54 .54
Total Mesn Ac-ft	670.91 21.5 1,330	260.20 8.39 516	890.8 29.7 1,770	723.9 23.4 1,440	222.50 7.42 441	203.65 6.57 404	59.59 1.92 118	46.72 1.61 93	20.01 0.645 40	14.32 0.477 28	19.70 0.635 39	27.55 0.918 55
Caler Fisca	dar year 1 year 19	1955 : N 55-56 : N	Max 236 Max 236	Min Min	0.30 0.14	Mean 8		Ac-1	t 6,410 t 6,270			

Calendar year 1955: Max 236 Min 0.30 Mean 8.84 Ac-ft 6,410 Fiscal year 1955-56: Max 236 Min 0.14 Mean 8.63 Ac-ft 6,270 Peak discharge (base, 1,200 cfs)-Sept. 29 (1:30 a.m.) 1,540 cfs (12.27 ft).

^{*} Discharge measurement made on this day.
a Doubtful or no gage-height record; discharge estimated on basis of range in stage and records for Ylig River.

Lonfit River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

		DIOCIA	mge, m	Cubic ic	sec per	second,	listal y	car oury	1350 00	vanc 15		
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.77 .77 .93 .87	a5.5 4.0 3.15 2.8 2.9	5.2 46 14.7 14.6 17.0	7.0 5.5 5.2 5.2 4.7	5.0 4.7 21 5.2 4.5	12.1 20 10.8 8.7 7.0	4.0 3.8 4.0 3.55 3.35	1.80 1.65 1.65 1.96 2.3	0.96 .96 .87 .96	0.54 .87 1.50 .69 .54	0.47 .41 .35 .41	0.25 .30 .17 .17 .14
6 7 8 9 10	.47 .41 .35 21 2.55	3.4 4.3 20.5 16.3 5.7	8.7 12.6 14.5 11.8 11.0	31 6.0 25.5 10.4 15.2	4.0 5.8 4.0 3.8 4.0	7.9 6.0 5.5 5.0 5.0	3.35 3.15 3.0 2.8 20.5	1.80 1.80 2.3 1.80 1.65	1.05 .96 .96 .96	.47 .47 .47 .87 .54	.41 .54 .61 .41	.17 .17 .30 .47
11 12 13 14 15	1.29 1.05 .87 1.05 1.17	4.5 4.6 3.55 3.0 5.6	66 22 17.5 11.2 a <u>95</u>	53 46 14.3 14.5 9.4	3.8 136 88 *32.5 9.1	4.7 4.5 4.2 148 172	3.55 3.15 3.0 2.8 2.6	1.65 1.53 1.53 1.29 1.17	.96 1.53 1.05 .96 .87	.47 .41 .41 .47	.30 .25 .25 .25 .25	.21 .25 .21 .17
16 17 18 19 20	1.04 .77 .77 .77 .69	3.35 3.3 3.15 4.6 3.5	a15 a20 a10 a12 *a22	15.4 100 39 48 13.1	41 34 152 27.5 19.4	13.7 9.4 8.0 7.0 6.3	2.45 4.1 2.6 2.45 4.8	1.05 1.05 1.05 1.41 1.29	.87 .87 .87 .87	.54 .47 .47 .41	.25 .21 .69 .47 .30	.11 .09 .09 .21
21 22 23 24 25	.77 .96 .87 1.87 28.5	2,45 2.6 *14.6 4.5 3.35	13.6 9.4 11.9 23 9.9	77 14.0 12.1 9.4 8.4	24 23 17.6 12.2 10.3	5.7 5.2 5.0 4.5 7.0	3.0 2.45 2.3 2.1 1.96	1.05 1.05 1.29 2.2 1.53	1.05 .96 .77 .69	.54 .47 .41 .54	.25 .25 .20 .17	1.05 .41 .25 .25 .30
26 27 28 29 30 31	*12.5 6.9 16.7 31 a28 a9.0	3.0 6.0 9.6 5.0 6.7 5.0	8.0 65 16.1 9.1 8.4	9.8 7.0 15.6 6.3 6.0	9.9 8.0 7.4 9.0 7.0	14.9 10.2 5.5 4.7 4.7 4.5	1.96 1.80 1.80 3.55 2.1 1.96	1.05 1.05 .96	.77 .77 .69 .61 .54	.41 .54 .54 .47	.30 .25 .21 .21 .17 .21	.30 .17 .14 .11
Total Mean Ac-ft	175.27 5.65 348	170.50 5.50 338	621.2 20.7 1,230	641.7 20.7 1,270	733.7 24.5 1,460	537.7 17.3 1,070	107.98 3.48 214	41.91 1.50 83	28.11 0.907 56	16.49 0.550 33	10.08 0.325 20	0.255
Caler	ndar year 1 year 19	1956: I	Max 172 Max 172	Min Min		Mean Mean	8.38 8.47	Ac- Ac-				

Peak discharge (base, 1,200 cfs).--Nov. 12 (11:30 p.m.) 1,200 cfs (9.85 ft); Nov. 18 (1 a.m.) 1,240 cfs (10.06 ft); Dec. 15 (8 a.m.) 1,460 cfs (11.74 ft).

^{*} Discharge measurement made on this day. a No gage-height record; discharge estimated on basis of records for Pago River.

Lonfit River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.17 .17 .14 .17 .30	0.11 *.09 .09 .11	31 29.5 11.6 6.7 4.5	#4.5 4.0 3.8 3.35 10.3	14.6 12.6 10.8 9.9 9.1	5.0 5.2 4.7 4.2 4.0	1.96 1.96 1.65 1.53 1.65	2.45 2.3 2.3 1.96 1.80	1.17 1.17 1.05 1.05 *1.29	0.47 .54 .54 .47 .47	0.30 .30 .25 .25 .35	1.7 .5 .4 .3
6 7 8 9	.25 .21 .14 .09	.35 .14 .21 .30 .21	17.7 24.5 11.0 11.6 6.7	169 167 *37.5 35.5 16.8	8.4 8.0 53 88 45	3.8 3.35 3.35 3.15	1.53 1.65 1.65 1.96 1.53	1.65 1.65 1.80 1.65 1.80	1.17 1.17 1.41 1.17 1.05	.47 .54 .47 .47	.25 .21 .21 .21	.5 .5 1.4 10.6
11 12 13 14 15	.54 .87 1.01 .30 .21	.14 .14 .52 .87	6.3 *5.6 6.8 6.0 5.0	32 a66 a23 a21 a40	23 100 *26 15.1 346	3.15 3.0 3.0 3.0 3.0	1.65 1.65 *2.6 al40 al2	1.80 1.65 1.53 1.65 1.65	1.05 1.05 .96 .96	.61 .54 .87 .69	.17 .17 .17 .17	#6.8 2.4 19.6 123 20
16 17 18 19 20	.17 .14 .14 .11	*.25 .21 10.3 *1.87 .77	6.0 5.0 4.0 *4.0 3.35	a36 a22 a13 a12 a9.0	283 a35 a21 16.3 13.1	3.0 2.6 2.45 2.45 2.3	86.0 4.0 3.35 4.2 6.2	1.53 1.53 1.96 2.1 1.41	.77 .69 .77 .77	.54 .99 .87 .54 .47	.21 .17 .14 .14 .21	9.6 5.7 4.2 3.3
21 22 23 24 25	.35 .17 .14 .11	1.46 1.80 3.05 9.9 7.9	3,15 9,2 *15.6 13.1 7.9	a9.5 a76 a21 *a13 16.0	11.2 9.9 8.7 8.0 7.4	2.7 2.45 2.3 2.1 1.96	3.8 3.15 2.8 2.6 2.45	1.17 1.17 1.17 3.35 1.53	.69 .69 .87	.61 .46 .30 .30	.30 *.35 .87 .41	2.8 5.6 3.3 3.3
26 27 28 29 30 31	.05 .03 .43 .41 .21	4.8 2.1 89 34.5 10.5 5.5	5.5 5.2 4.7 4.2 5.7	15.2 33 230 22.5 16.3 18.8	6.7 8.4 6.9 7.8 5.5	1.80 1.65 1.96 9.2 2.6 2.1	2.3 2.6 2.3 2.1 2.1	1.17 1.17 1.05	.67 .61 .61 .69	.30 .35 .30 .30	.21 .17 .35 3.95 .96 .69	3.5 3.5 2.4 2.4
otal ean c-ft	7.59 0.245 15	188.01 6.06 373	281.10 9.37 558	1,197.05 38.6 2,370	1,218.4 40.6 2,420	99.32 3.20 197	227.02 7.32 450	47.95 1.71 95	27.87 0.899 55	15.38 0.513 31	12.77 0.412 25	247.7 8.2 49

Peak discharge (base, 1,200 cfs).--Oct. 28 (6 a.m.) 2,070 cfs (15.79 ft); Nov. 15 (10:30 p.m.) 1,430 cfs (11.49 ft).

^{*} Discharge measurement made on this day.
a No gage-height record; discharge estimated on basis of records for Pago River.

Pago River near Ordot

 $\frac{\text{Location.}\text{--Lat }13^{\circ}26^{\circ}10^{\circ}\text{ N., long }144^{\circ}45^{\circ}15^{\circ}\text{ E., on left bank three-quarters of a mile south of Ordot, 2.5 miles south of Agana, and 3.6 miles southeast of Asan.$

Drainage area .-- 6.2 sq mi.

Records available. -- September 1951 to June 1958.

Gage .-- Water-stage recorder and concrete control. Altitude of gage is 25 ft (by barometer).

Average discharge .-- 6 years (1952-58), 22.6 cfs.

Extremes. -- Maximum and minimum discharges for the fiscal years 1952-58 are contained in the following table:

Fiscal		Maximum		м	inimum	
year	Date	Discharge (cfs)*	Gage height (feet)	Date	Discharge (cfs)	Gage height (feet)
1952†	Oct. 12, 1951	2,390	9.62	June 13, 30, 1952	110.35	-
1953	Sept. 8, 1952	2,530	**10.0	May 29, June 14-16, 26, 27, 1953	††.45	-
1954	Oct. 15, 1953	5,310	16.76	June 4, 1954	.16	0.09
1955	Sept. 1, 1954	3,790	13.37	May 25-27, 30, 31, June 1,4,5,1955	.41	.13
1956	Sept.29, 1955	3,710	13.22	May 15-17, 1956	.34	.12
1957	Oct. 17, 1956	4,500	15.01	June 29, 30, 1957	.12	.08
1958	Oct. 28, 1957	5,000	16.13	July 26, 27, 1957	††.10	-

† Period September to June.

‡ From rating curve extended above 190 cfs on basis of slope-area measurements at gage heights 13.22 and 15.01 ft.

†† Minimum daily.

‡‡ From floodmark.

1951-58: Maximum discharge, 5,310 cfs Oct. 15, 1953 (gage height, 16.76 ft), from rating curve extended above 190 cfs on basis of slope-area measurements at gage heights 13.22 and 15.01 ft; minimum daily, 0.10 cfs July 26, 27, 1957.

Remarks. --Records poor for 1951-52; fair for 1952-53, except those for periods of doubtful or no gage-height record, which are poor; good for 1953-54, except those for periods of shifting control and no gage-height record, which are poor; good for 1954-56, except those for periods of doubtful or no gage-height record, which are fair; good for 1956-58 except those for periods of indefinite stage-discharge relation, fragmentary, doubtful, or no gage-height record, which are poor.

Pago River near Ordot--Continued

Rating tables, Sept. 27, 1951, to June 30, 1958, except periods of shifting control and indefinite stage-discharge relation (gage height, in feet, and discharge, in cubic feet per second)

		27, 1951, 15, 1954			Mar. 16, to June 30		
0.1	0.32	1.1	53	0.1	0.21	1.0	60
.2	1.32	1.3	100	.2	1.17	1.2	110
.3	3.05	1.5	145	.3	3.2	1.4	160
.4	5.6	2.5	333	.4	6.4	1.7	205
.5	9.0	4.0	671	.5	11.0	2.0	256
6	13.2	6.0	1,210	.6	17.3	3.0	455
	18.2	8.0	1,830	.8	35	4.0	681
.7	31 2	11 0	2 880	-			

Discharge, in cubic feet per second, September 1951 to June 1952

-	6.2 5.9 5.0 13.5 35.5 10.1 9.5 240 160 74	f220 25 40 f440 39.5 29 29 21.5 18.8 17.2	39.5 16.0 12.4 10.3 10.3	5.3 5.3 5.0 5.0 5.0	2.1 2.65 2.85 2.45 *2.1	1.2 1.3 1.2 1.1 *1.8	1.2 1.2 1.2 1.7 1.7	0.60 .60 .70 1.3 1.5	0.70 .50 .40 .50 .70
-	9.5 240 160 74	29 21.5 18.8	19.4	4.2	2.1			2.2	
1	[11.2	16.9	*4.1 4.2 4.2	2.1 1.94 2.25	1.2 1.2 1.1	1.9 2.3 *1.3	5.0 1.6 .90 .80	.60
-	29 242 f <u>277</u> 48 31	16.7 26.5 14.7 13.2 12.8	19.6 11.9 10.7 9.8 9.8	3.7 3.7 3.5 3.25 4.1	1.94 1.78 1.6 1.6	1.0 1.2 1.1 1.1 1.5	.90 1.1 .80 .80	.90 .90 .90 .80	.50 .40 .35 .40 3.0
-	27 22.5 18.8 16.7 17.5	11.9 15.4 48 45 14.2	14.1 82 14.7 11.9 10.7	4.5 3.5 12.4 4.2 3.7	1.5 1.5 1.5 1.5	1.5 1.5 1.3 1.2 1.3	.80 .70 .70 .90	.90 .90 .90	1.1 .70 .60 .50
-	15.7 13.2 19.9 31 13.7	11.3 9.8 8.6 9.0 10.2	9.8 9.4 8.6 7.6 6.9	3.25 3.25 3.2 2.85 2.85	1.9 1.9 1.6 1.3	1.5 1.3 1.2 1.2 1.2	.80 .60 .70 .60	.62 .50 .50	.50 .50 .60
†8.5 6.2 5.9 5.9 8.6	13.2 14.2 11.5 10.7 9.8 9.8	9.0 17.2 55 12.9 9.8	6.5 6.2 7.2 5.9 5.6 5.3	2.65 2.65 2.65 3.5 2.65 2.1	1.2 1.2 1.9 1.9	2.0 1.3 1.5 2.6 1.6 1.2	.60 .90 1.1 .80 .60	.50 .50 .60 .80 1.3	.60 .70 .60 .50
=	1,451.9 46.8 2,880	1,251.2 41.7 2,480	530.7 17.1 1,050	125.15 4.04 248	52.80 1.82 105	42.4 1.37 84	31.60 1.05 63	31.72 1.02 63	20.00
	†8.5 6.2 5.9 8.6	- 27 - 22.5 - 18.8 - 16.7 - 17.5 - 15.7 - 13.2 - 19.9 - 31 - 13.7 - 18.5 13.2 - 6.2 14.2 - 5.9 11.5 - 5.9 10.7 - 8.6 - 9.8 - 1,451.9 - 46.8 - 2,880 - Max Min	- 27 11.9 - 22.5 48.8 - 18.8 48 - 16.7 45 - 17.5 14.2 - 15.7 11.3 - 13.2 9.8 - 19.9 8.6 - 31 9.0 - 13.7 10.2 - 18.5 13.2 9.0 - 13.7 10.2 - 18.5 13.2 9.0 - 13.7 10.2 - 18.5 9.8 9.8	- 27 11.9 14.1 - 22.5 15.4 82 - 18.8 48 14.7 - 16.7 45 11.9 - 17.5 14.2 10.7 - 15.7 11.3 9.8 - 13.2 9.8 9.4 - 19.9 8.6 8.6 - 31 9.0 7.6 - 13.7 10.2 6.9 †8.5 13.2 9.0 6.5 6.2 14.2 17.2 6.2 5.9 10.7 12.9 5.9 8.6 9.8 9.8 9.8 9.8 5.3 - 1,451.9 1,251.2 530.7 - 46.8 41.7 - 2,880 2,480 1,050	- 27 11.9 14.1 4.5 - 22.5 15.4 82 3.5 - 18.8 48 14.7 12.4 - 16.7 45 11.9 4.2 - 17.5 14.2 10.7 3.7 - 15.7 11.3 9.8 3.25 - 13.2 9.8 9.4 3.25 - 19.9 8.6 8.6 3.2 - 31 9.0 7.6 2.65 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.7 10.2 6.9 2.85 - 13.8 13.2 11.5 12.9 5.9 3.5 - 13.9 10.7 12.9 5.9 3.5 - 10.7 12.9 5.9 3.5	- 27 11.9 14.1 4.5 1.5 - 22.5 15.4 82 3.5 1.5 - 18.8 48 14.7 12.4 1.5 - 16.7 45 11.9 4.2 1.5 - 17.5 14.2 10.7 3.7 1.7 - 15.7 11.3 9.8 3.25 1.9 - 13.2 9.8 9.4 3.25 1.9 - 19.9 8.6 8.6 3.2 1.6 - 31 9.0 7.6 2.85 1.3 - 13.7 10.2 6.9 2.85 1.3 †8.5 13.2 9.0 6.5 2.65 1.3 - 13.7 10.2 6.9 2.85 1.3 †8.5 13.2 9.0 6.5 2.65 1.2 5.9 11.5 55 7.2 2.65 1.9 5.9 10.7 12.9 5.9 3.5 5.9 10.7 12.9 5.9 3.5 9.8 5.3 2.1 - 1,451.9 1,251.2 530.7 125.15 52.80 - 46.8 41.7 17.1 4.04 1.82 - 2,880 2,480 1,050 248 105	- 27	- 27 11.9 14.1 4.5 1.5 1.5 .80 - 22.5 15.4 82 3.5 1.5 1.5 .70 - 18.8 48 14.7 12.4 1.5 1.3 .70 - 16.7 45 11.9 4.2 1.5 1.2 .90 - 17.5 14.2 10.7 3.7 1.7 1.3 1.1 - 15.7 11.3 9.8 3.25 1.9 1.5 .80 - 13.2 9.8 9.4 3.25 1.9 1.5 .60 - 19.9 8.6 8.6 3.2 1.6 1.2 .60 - 31 9.0 7.6 2.85 1.3 1.2 .70 - 13.7 10.2 6.9 2.85 1.3 1.2 .60 18.5 13.2 9.0 6.5 2.65 1.3 1.2 .60 18.5 13.2 9.0 6.5 2.65 1.3 1.2 .60 18.5 13.2 9.0 6.5 2.65 1.3 1.2 .60 18.5 13.2 9.0 6.5 2.65 1.3 1.2 .60 18.6 9.8 9.8 5.6 2.65 1.9 1.5 1.1 5.9 10.7 12.9 5.9 3.5 1.9 1.5 1.1 5.9 10.7 12.9 5.9 3.5 1.9 1.5 1.1 - 1,451.9 1,251.2 530.7 125.15 52.80 42.4 31.60 - 46.8 41.7 17.1 4.04 1.82 1.37 1.05 - 2,880 2,480 1,050 248 105 84 63	- 27 11.9 14.1 4.5 1.5 1.5 .80 .90 - 22.5 15.4 82 3.5 1.5 1.5 1.5 .70 .90 - 18.8 48 14.7 12.4 1.5 1.5 1.3 .70 .90 - 16.7 45 11.9 4.2 1.5 1.2 .90 1.2 - 17.5 14.2 10.7 3.7 1.7 1.3 1.1 1.1 - 15.7 11.3 9.8 3.25 1.9 1.5 .80 .60 - 19.9 8.6 8.6 3.2 1.6 1.2 .60 .60 - 19.9 8.6 8.6 3.2 1.6 1.2 .60 .50 - 31 9.0 7.6 2.85 1.3 1.2 .70 .50 - 13.7 10.2 6.9 2.85 1.3 1.2 .70 .50 - 13.7 10.2 6.9 2.85 1.3 1.2 .60 .50 †8.5 13.2 9.0 6.5 2.65 1.3 1.2 .70 .50 - 13.7 10.2 6.9 2.85 1.3 1.2 .60 .50 †8.5 13.2 9.0 6.5 2.65 1.5 1.2 1.3 .90 .50 - 5.9 11.5 55 7.2 2.65 1.9 1.5 1.1 .60 - 5.9 10.7 12.9 5.9 3.5 1.9 1.5 1.1 .60 - 5.9 10.7 12.9 5.9 3.5 1.9 2.6 .80 .80 - 8.6 9.8 9.8 9.8 5.6 2.65 1.9 1.5 1.1 .60 - 1,451.9 1,251.2 530.7 125.15 52.80 42.4 31.60 31.72 - 46.8 41.7 17.1 4.04 1.82 1.57 1.05 1.02 - 2,880 2,480 1,050 248 105 84 63 63

^{*} Discharge measurement made on this day.
† Result of discharge measurement.
f Fragmentary gage-height record; discharge computed from partly estimated gage heights.
Note.--Stage-discharge relation indefinite Feb. 13 to June 30; discharge estimated on basis of records for Lonfit River.

Pago River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1952 to June 1953

		220011	4160, 111	Cubic I	eer ber	second,	TIRCAL 3	year July	1952 60	June 19	55	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	4.0 2.15 1.07 34.5 6.7	13.7 24 55 <u>81</u> 38	18.2 17.7 14.7 13.2 11.9	35.5 150 38.5 130 50	33 27 25 24 160	22 14.2 13.2 13.2 12.4	17 21 10 9.0 22	3.5 3.25 3.05 3.5 3.05	11 10 9.0 11 9.0	2.6 2.2 2.2 2.2 2.2	1.2 1.2 1.2 1.0	0.72 *.76 .64 .64
6 7 8 9 10	4.5 7.5 3.05 1.94 1.62	32 16.2 11.5 19.2 17.7	10.3 9.0 180 70 109	35 55 28 47 45	40 70 240 110 80	13.9 44 14.2 14.2 13.2	9.5 8.2 7.6 7.2	3.5 13.2 5.3 3.7 3.5	7.0 6.2 6.1 5.8 5.5	2.2 2.2 1.9 1.9	1.0 *.90 .80 .68	.64 .55 .55
11 12 13 14 15	1.47 1.07 .74 d.85 d.95	20.5 39 16.7 13.2 15.1	29 57 300 85 30	42 28 30 55 32	40 30 25 *24 21.5	13.2 11.9 11.1 11.9 9.8	7.0 6.6 6.4 6.4 5.8	*3.25 4.5 3.7 3.25 3.05	5.2 4.8 4.5 4.2 4.0	1.9 1.9 1.9 1.9	.68 .68 .68	.55 .50 .50 .45
16 17 18 19 20	2.7 .95 .88 1.40 d.87	13.4 9.8 8.3 7.2 8.3	94 *32.5 30 24 20	28 150 200 40 30	63 d35 d22 d20 61	9.4 8.6 8.6 *8.3 7.9	5.6 5.4 5.2 4.9 4.7	3.0 3.0 2.8 2.6 3.4	4.0 3.5 4.0 3.6 3.2	1.9 1.9 1.9 1.9	.86 .86 1.8 .85	.45 .50 .50 .80
21 22 23 24 25	d.87 1.07 dl.0 d.90 dl.0	6.5 5.6 39.5 9.8 8.3	17.2 15.2 43 42 19.4	90 300 45 70 40	d24 d27 d120 29 26	7.9 <u>7.6</u> 50 8.6 40	*4.7 4.5 4.7 5.3 4.5	2.6 600 110 30 20	3.2 3.0 3.0 2.8 2.8	1.7 1.7 1.6 1.5	.74 .65 .65 .65	.62 .55 .64 .64
26 27 28 29 30 31	d.85 d.85 dl.0 3.5 1.62 2.25	8.3 6.9 10.4 16.2 16.9 32.5	15.7 15.2 41 165 73	35 28 24 22 200 50	19.4 16.7 16.7 42 15.7	11.5 12.4 9.0 11.5 8.6 82	3.95 3.95 3.95 3.7 4.5 3.95	16 14 12	2.6 2.6 2.6 2.6 2.6 2.6	1.5 1.3 1.2 1.2	.55 .55 .50 .45 .72 .95	.45 .45 1.0 1.9
Total Mean Ac-ft	93.82 3.03 186	620.7 20.0 1,230	1,602.2 53.4 3,180	2,153.0 69.5 4,270	1,487.0 49.6 2,950	524.3 16.9 1,040	229.20 7.39 4 55	882.70 31.5 1,750	152.0 4.90 301	54.9 1.83 109	25.41 0.820 50	19.22 0.641 38
	dar year 1 year 19				0.35 0.45	Mean Mean	18.5 21.5	Ac-1 Ac-1	t 13,46 t 15,56	0		

Peak discharge (base, 2,400 cfs).--Sept. 8 (8:30 p.m.) 2,530 cfs (10.0 ft).

^{*} Discharge measurement made on this day.
d Doubtful gage-height record; discharge estimated on basis of Ylig and Lonfit Rivers.
Note --No gage-height record Sept. 8, 13, Oct. 4 to Nov. 13, Jan. 1-21, Feb. 16 to June 30; discharge estimated on basis of Ylig and Lonfit Rivers.

Pago River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1953 to June 1954

		DIBCIL	arge, III	Cubic i	cco per	,	ilbour y	ear July	1905 00	2 omie 13	04	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.60 .50 .60 .80	1.7 1.9 2.3 1.7 2.0	44 51 33 28 24.5	*25 22 18.8 17.2 15.2	9.2 9.2 9.2 9.2 8.5	30 23 20 20 17	8.0 7.7 7.3 7.0 #6.7	4.9 4.6 4.6 4.2	3.1 2.8 2.8 2.6 2.3	1.84 1.50 1.67 1.67	2.0 1.0 .62 .72 .62	0.49 .41 .27 .21
6 7 8 9	1.0 .70 .60 .40	5.0 *2.2 36 7.4 148	21.5 18.8 17.2 15.7 14.7	14.2 28.5 15.7 27.5 13.7	8.5 7.5 7.0 7.0 30	16 15 14 13 15	6.5 6.4 6.2 600 80	4.2 4.2 4.2 4.2 4.2	2.1 2.1 2.1 2.1	1.67 2.7 2.05 2.05 1.67	*.62 .49 .49 .49	.79 .91 *1.04 1.50
11 12 13 14 15	.62 *.74 1.3 6.0 8.0	890 438 60 34.5 48	15.2 14.2 12.8 11.9 *12.0	12.8 13.2 12.4 13.7 2,540	18 250 700 95 45	13 12 12 30 24	25 19 17 15 13	3.9 3.9 3.9 3.6 3.4	1.9 1.9 1.9 1.9	1.33 1.33 1.33 1.50 1.50	.58 .91 .91 .68	.68 .58 .68 .68
16 17 18 19 20	14 14 8.0 4.0 2.8	150 75 400 70 35	10.3 8.6 15.9 62 54	1,350 230 120 70 150	30 *25 21 20 16	54 45 23 18 15	12 10 9.5 8.5 8.0	3.4 3.1 3.1 3.1 3.1	1.84 1.84 2.05 1.84 1.84	1.17 1.17 1.17 1.33 1.33	1.01 .58 .58 .58	.58 .58 .49 .49
21 22 23 24 25	2.6 2.4 2.1 2.0 2.5	25 24.5 21.5 96 38.5	140 70 30 25 100	55 35 28 24 21	16 16 14 300 90	14 19 15 14 12	8.0 8.0 7.0 6.5 6.5	3.3 3.1 3.1 2.8 2.6	2.25 1.84 1.67 1.84 1.84	1.33 1.04 1.04 .91	.49 .41 .41 1.04	.41 3.4 3.25 1.33 1.84
26 27 28 29 30 31	5.1 5.0 4.2 2.9 2.1 1.9	28 22.5 378 199 175 71	70 35 40 75 30	18 15 15 15 14 11	35 23 20 18 50	11 10 10 9.5 9.0 8.5	6.5 6.0 6.0 5.5 5.0	2.6 2.6 2.8	1.84 1.67 1.50 1.33 1.33	.91 1.04 1.04 1.04 1.04	.68 .49 .41 .41 .41	1.50 1.04 .79 .79 .68
Total Mesn Ac-ft	3.20	3,487.7 113 6,920	1,100.3 36.7 2,180	960.9 160 9,340	1,909.1 63.6 3,790	561.0 18.1 1,110	942.8 30.4 1,870	101.6 3.63 202	61.25 1.98 121	41.78 1.39 83	20.89 0.674 41	28.11 0.937 56
Caler Fisca	dar year	r 1953: N 953-54: N	Max 2,54	lo Min	0.40	ean 3	36.9 36.5	Ac-i				

Peak discharge (base, 2,400 cfs).--Aug. 11 (6 p.m.) 3,120 cfs (11.69 ft); Oct. 15 (4:30 a.m.) 5,310 cfs (16.76 ft); Nov. 24 (5:30 a.m.) 4,460 cfs (14.92 ft); Jan. 9 (1 p.m.) 3,120 cfs (11.67 ft).

^{*} Discharge measurement made on this day.
Note.--Shifting-control method used Aug. 8-15, Aug. 22 to Sept. 20, Oct. 2-16, 1953. No gage-height record July 1 to Aug. 7, Aug. 16-21, Sept. 21 to Oct. 1, Oct. 17 to Mar. 15, Apr. 30 to May 6; discharge estimated on basis of records for nearby stations.

Pago River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1954 to June 1955

Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.04 2.7 1.67 1.17 1.67	1.84 1.50 1.33 1.33 2.25	367 58 43 73 50	58 34 33 24.5 33.5	#37 21.5 17.3 15.8 14.6	40 17.1 17.5 14.0 12.8	4.6 4.6 7.3 11.8 11.6	4.9 4.6 4.9 5.3 4.3	2.7 2.45 2.25 2.25 2.45	1.33 1.50 1.50 1.50 1.17	1.67 .91 .68 .68	0.49 1.04 .79 .49
6 7 8 9	1.33 2.4 1.33 1.78 2.25	8.2 8.5 3.7 18.0 4.0	89 54 99 104 63	24 *19.2 29.5 22.5 17.3	18.5 12.8 11.0 10.5 10.5	12.2 12.2 12.2 12.0 14.7	6.0 5.3 11.3 6.0 8.1	4.0 4.0 3.7 3.7 3.45	2.05 2.05 2.05 2.05 2.05	1.04 1.17 1.17 1.33 1.17	.58 1.04 3.55 1.50	.91 1.33 1.04 18.3 4.1
11 12 13 14 15	1.17 .91 1.50 1.17	4.4 7.9 4.7 34.5 5.6	32.5 <u>24</u> 61 504 403	23.5 25.5 15.8 14.6 14.0	273 34 24 19.8 16.5	13.4 10.0 9.0 8.5 8.0	6.8 6.0 5.6 8.4 8.5	3.2 3.2 3.2 3.45 3.45	2.25 2.25 2.25 2.05 *1.84	1.04 *1.04 1.04 1.33 1.17	.79 .68 .68 .79	2.05 1.50 *1.33 1.17 1.04
16 17 18 19 20	.68 1.98 2.7 1.84	3.7 3.2 5.6 37.5 58	91 46 34 27.5 214	11.6 10.0 10.0 9.5 *8.5	15.2 14.0 154 28.5 32	9.5 7.6 7.6 6.8 6.4	6.4 6.4 5.6 5.3 6.9	3.7 9.6 5.0 3.45 3.2	1.84 1.67 1.67 1.67	1.17 1.04 .91 1.04 1.33	2.2 1.04 .79 .68	.91 1.17 1.04 .91 1.04
21 22 23 24 25	1.17 1.04 .91 1.04 1.17	18.1 8.5 6.0 66 184	90 177 62 42 32	8.5 9.5 9.7 9.0 7.8	18.9 48 264 *110 37	6.4 6.4 6.0 5.6	4.9 4.6 4.6 4.3 22	3.2 3.45 3.2 2.95 2.95	2.25 2.45 1.67 1.50 1.50	1.33 1.04 .79 .79	.68 .58 .58 .58	1.04 .91 .79 .68
26 27 28 29 30 31	.91 *.68 .68 .91	45 26 15.8 87 *26.5 15.8	68 39 165 124 54	17.8 13.3 10.0 9.3 100 174	32 113 33.5 25.5 21.5	5.3 4.9 *4.9 4.9 4.6	15.8 6.8 *5.6 7.2 5.3 4.9	2.7 2.95 3.2	1.67 2.05 2.05 1.50 1.50 1.33	.91 .79 .68 .79 .79	.49 .79 .91 .68 .58	.79 .79 .68 .79
Total Mean Ac-ft	41.61 1.34 83	714.45 23.0 1,420	3,290.0 110 6,530	807.4 26.0 1,600	1,483.9 49.5 2,940	311.0 10.0 617	228.5 7.37 453	108.90 3.89 216	60.98 1.97 121	32.81 1.09 65	31.45 1.01 62	49.99 1.67 99
		1954: ! 954-55: !		Min Min	0.21 0.49		21.5 19.6	Ac-				

Peak discharge (base, 2,400 cfs).--Sept. 1 (11 a.m.) 3,790 cfs (13.37 ft); Nov. 11 (3:30 p.m.) 3,090 cfs (11.58 ft); Nov. 23 (1 p.m.) 3,200 cfs (11.90 ft).

^{*} Discharge measurement made on this day.

Pago River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1955 to June 1956

		D10012	arge, III	cubic i	eco per	Decoma,	I I DOGI J	car oury	1900 00	oune 13	20	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	2.0 1.4 .9 .8 *.7	30.5 19.8 15.2 12.8 10.5	133 16.9 13.9 10.0 11.4	42 70 113 33 29	22 20.5 18 17 15	11 18 11 9.2 8.2	8.0 7.2 6.8 5.2	2.7 2.45 2.95 2.95 2.25	1.33 1.50 1.50 1.33 1.33	0.91 .91 .91 .79	0.7 .7 .8 1.0	1.50 1.17 1.04 2.5 1.67
6 7 8 9	240 32 260 60 16	10.0 10.0 7.6 #7.2 7.2	8.0 12.7 7.2 6.0 17.1	103 43 31 25 18.1	13 12 12 13 25	7.6 7.6 11 8.0 7.3	5.3 4.9 4.6 4.6 4.3	2.05 2.7 3.45 18.8 4.3	1.17 1.33 1.17 1.04 1.17	.79 .91 .91 .79	.8 .7 .6 .7	1.04 .79 .79 .68
11 12 13 14 15	210 80 56 25.5 19.9	7.2 6.8 6.0 5.6 5.6	20 79 17.3 13.3	20 15.2 18.3 25.5 16.0	13 10 9.5 9.0 8.5	7.0 18 8.0 13 7.5	4.3 4.0 4.0 4.0 5.7	2.95 2.45 2.25 2.25 *2.25	1.33 1.33 1.04 1.04 1.17	.68 .68 .68	.45 .40 .37 .35	1.28 3.7 1.04 .79 .68
16 17 18 19 20	37 18.9 14.0 11.0 9.5	6.0 5.3 12.0 8.2 30.5	15.4 19.2 *21 13.4 13.2	16.7 11.6 11.6 22 26.5	10 11 8.0 7.0 6.5	191 19.8 13 11 10	3.7 3.7 4.0 3.45 3.45	2.45 2.25 2.25 2.05 2.05	1.33 1.33 1.04 1.04	.68 1.04 1.17 .79	.34 .49 .49 .41 3.3	.68 .68 3.95 2.8 1.04
21 22 23 24 25	8.5 8.5 7.2 6.8 6.4	8.7 17.5 8.5 10.2 132	14.1 112 38.5 23 24	12.2 241 47 31 62	6.7 7.0 7.2 6.5 5.8	9.2 8.2 7.7 7.3 7.0	2.95 2.95 3.2 2.95 2.7	1.84 1.84 1.84 1.84 2.45	1.04 1.04 1.04 .91 .79	.8 .8 .9	1.33 .68 .68 .79	.79 .68 .68 .79
26 27 28 29 30 31	26 8.6 6.4 178 44 94	21 10 7.2 5.6 82 14.2	65 45 502 * <u>533</u> 62	#23.5 214 94 63 35.5 30.5	5.8 17 101 34 *18.3	6.6 6.4 6.2 5.9 5.7 5.6	3.2 2.95 2.7 2.7 2.45 2.7	1.84 1.67 1.50 1.50	.79 1.33 2.25 *1.67 1.04 1.04	1.2 1.0 1.2 1.0	3.4 1.84 1.04 1.08 8.8 2.45	9.7 2.7 1.67 1.33 1.04
Total Mean Ac-ft	1,490.0 48.1 2,960	540.9 17.4 1,070	1,908.6 63.6 3,790	1,544.2 49.8 3,060	469.3 15.6 931	473.0 15.3 938	125.65 4.05 249	84.12 2.90 167	37.50 1.21 74	25.68 0.856 51	37.31 1.20 74	51.29 1.71 102
	ndar year 1 year 19			Min Min	0.49 0.34		19.0 18.5	Ac-1 Ac-1				

Peak discharge (base, 2,400 cfs).--July 11 (3 p.m.) 2,640 cfs (10.30 ft); Sept. 29 (2 a.m.) 3,710 cfs (13.22 ft).

^{*} Discharge measurement made on this day.
Note.--Doubtful or no gage-height record July 1-13, Nov. 3-27, Dec. 1-15, Dec. 18 to Jan. 5,
Apr. 20 to May 16; discharge estimated on basis of records for Lonfit and Ylig Rivers.

Pago River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1956 to June 1957

											-	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	1.67 1.50 1.67 1.84 1.33	11.6 8.5 7.2 6.8 6.8	10.5 102 32.5 30.5 37.5	13.4 11.6 10.0 10.0	11.0 10.0 45 11.6 9.5	25.5 58 32.5 20.5 17.3	9.5 #9.0 9.5 8.5 8.5	4.0 3.7 3.7 4.0 4.3	2.05 1.84 1.84 1.84 2.7	1.67 2.7 3.95 1.67 1.33	1.04 .91 .79 .91	e0.58 e.66 e.47 e.47
6 7 8 9	1.04 .91 .79 55 6.0	6.4 6.9 29.5 27.5 10.0	20.5 42 39 28 15.8	65 10.5 40 19.6 19.2	8.5 10.1 8.0 7.6 10.3	17.3 14.0 12.8 11.6 11.0	8.0 7.6 7.2 7.9 <u>49</u>	3.45 3.45 4.8 3.45 3.2	2.25 1.84 1.84 2.05 1.84	1.33 1.17 1.17 1.84 1.50	.79 1.33 1.67 1.33 1.04	e.47 e.47 e.70 e.90 e.60
11 12 13 14 15	3.45 3.2 2.7 2.95 2.7	8.0 10.1 7.2 6.8 15.7	123 38 30 22 197	112 118 32 28 18.1	8.0 244 135 59 18.9	10.5 10.5 *10.0 363 406	7.6 6.4 6.0 5.6 5.3	2.95 2.95 2.95 *2.7 2.7	2.45 3.2 2.25 1.67 1.67	1.33 1.17 1.04 1.35 1.50	.91 .79 .79 .79	e.43 e.50 e.43 e.34
16 17 18 19 20	#2.25 2.05 1.84 2.05 1.67	7.6 7.2 6.4 23.5 9.1	28.5 39.5 19.8 23.5	28.5 * <u>365</u> 82 118 31	77 58 286 52 #36	34.5 24 18.9 17.3 15.8	5.3 9.9 5.3 5.3	2.45 2.45 2.45 3.2 2.7	1.67 1.67 1.50 1.67 1.84	1.04 1.04 .91 .91 1.04	.79 .68 1.50 1.04 .79	e.23 e.17 e.17 e.45 e1.00
21 22 23 24 25	1.50 1.33 1.33 4.8 61	7.2 7.6 39.5 12.2 8.5	26.5 19.8 29.5 52 20.5	168 33 29 21.5 18.9	49 40 *42 26.5 22	14.6 12.8 11.6 11.0 10.2	6.4 4.9 4.6 4.3	2.45 2.45 2.95 4.0 3.7	1.84 1.50 1.33 1.33 1.67	1.17 1.04 .91 1.17 1.04	.68 .79 #.58 .49 .58	1.33 .58 .41 .34
26 27 28 29 30 31	#30.5 14.0 31 64 61 18.3	7.6 16.2 23 *13.4 16.0 12.8	15.8 *159 28 17.3 18.0	24 15.8 33.5 14.0 15.0		35.5 21 12.2 11.0 10.5 10.5	4.3 4.0 4.0 8.2 4.3 4.3	2.7 2.25 2.25	1.84 #2.25 1.84 1.50 1.33	.91 1.17 1.17 1.04	.58 e.49 e.49 e.45 e.50	.41 .27 .16 .12
Total Mesn Ac-i°t	385.37 12.4 764	386.8 12.5 767	1,310.0 43.7 2,600	49.5	1,375.5 45.8 2,730	41.7	7.94	88.30 3.15 175	57.44 1.85 114	40.17 1.34 80	25.90 0.835 51	13.94 0.465 28
	dar y ear 1 year 19						18.2 18.5	Ac- Ac-			1	

Peak discharge (base, 2,400 cfs).--Oct. 17 (4:30 p.m.) 4,500 cfs (15.01 ft); Nov. 12 (12 p.m.) 2,840 cfs (10.90 ft); Nov. 18 (1 a.m.) 2,920 cfs (11.10 ft); Dec. 15 (8 a.m.) 3,510 cfs (12.69 ft).

^{*} Discharge measurement made on this day.
e Stage-discharge relation indefinite; discharge estimated on basis of records for Lonfit River.

Pago River near Ordot--Continued

Discharge, in cubic feet per second, fiscal year July 1957 to June 1958

		DISCIN	arge, in	cubic i	eet per	secona,	iiscai y	ear July	1957 to	June 19	58	
Day	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1 2 3 4 5	0.34 .34 .28 .34 .40	0.21 .16 .16 .16	56 67 23.5 13.4 10.0	9.0 7.6 7.2 <u>6.4</u> 16.9	29.5 24 20.5 18.1 15.8	9.5 12.0 9.0 8.3 7.6	4.3 4.0 3.7 3.7 3.7	4.9 4.9 4.9 4.0 3.7	2.45 2.25 2.25 2.45 #2.45	0.79 .91 .91 .79	0.58 .58 .58 .68	3.25 1.33 .91 .79 .68
6 7 8 9	.38 .35 .25 *.18	.68 .41 .68 .79 .68	28 47 21 22.5 13.4	391 333 78 92 41	14.6 13.4 107 170 103	7.6 7.6 6.8 6.8	3.45 3.7 3.7 4.3 3.45	3.7 3.7 3.7 3.7 3.7	2.05 2.05 2.7 1.84 1.84	.79 .91 .79 .68	.68 .49 .49 .49	1.17 1.17 3.15 22
11 12 13 14 15	1.04 1.33 1.84 .79 .49	.34 .27 .68 1.17	17.7 *13.4 14.4 12.2 10.0	63 150 44 40 79	46 191 *53 36 821	6.0 6.4 6.0 6.0	4.0 3.7 *5.4 302 25.5	3.45 3.2 3.2 3.2 2.95	1.84 1.84 1.67 1.67	1.04 .91 1.67 1.33 1.04	.49 .41 .41 .41	15.4 4.9 42 257 38.5
16 17 18 19 20	.41 .27 .27 .21 .40	.49 .41 fl7 3.8 1.50	13.5 10.5 9.0 9.0 8.0		680 81 47 36 28.5	6.0 5.3 4.9 4.9	12.8 9.5 8.0 9.5 13.3	2.7 2.95 4.1 4.6 2.95	1.50 1.50 1.50 1.33 1.17	1.04 2,05 1.50 1.04 .91	.34 .34 .27 .27 .34	*18.8 11.6 8.5 7.2 6.0
21 22 23 24 25	.55 .40 .32 .21	2.8 4.0 5.5 19.7 16.2	6.8 15.1 *32 22.5 15.5	18.9 156 41 *26.5 28	24 19.8 17.3 15.2 14.6	5.3 4.6 4.3 4.0 4.0	9.0 7.6 6.8 6.4 6.0	2.95 2.7 2.95 <u>8.7</u> 3.7	1.17 1.17 1.17 1.33 1.17	1.17 .91 .79 .68	.49 .58 1.84 1.04	6.0 9.1 6.0 6.0 6.4
26 27 28 29 30 31	.10 .10 .92 .91 .49	7.9 4.0 193 62 18.8 10.0	11.6 10.0 9.0 8.0 13.1	28 48 557 48 36 39.5	14.0 19.5 13.3 15.8 10.5	3.7 3.45 4.0 20 5.6 4.3	5.6 6.4 5.6 5.3 4.9	2.95 2.7 2.45	1.17 1.04 .91 .91 1.04	.68 .68 .79 .68	.49 .41 .79 <u>9.6</u> 2.45 1.67	6.8 6.0 5.8 4.3 4.0
Total Mean Ac-ft	14.71 0.475 29	374.38 12.1 743	18.8	82.6			500.20 16.1 992	103.30 3.69 205	50.01 1.61 99	28.80 0.960 57	29.43 0.949 58	503.13 16.8 998
	dar year			Min Min	0.10		18.9	Ac-i				

Peak discharge (base, 2,400 cfs).--Oct. 6 (8:30 a.m.) 2,640 cfs (10.27 ft); Oct. 28 (5:30 a.m.) 5,000 cfs (16.13 ft); Nov. 15 (11 p.m.) 3,550 cfs (12.75 ft).

^{*} Discharge measurement made on this day.

f Fragmentary gage-height record; discharge computed on basis of partly estimated gage heights.

Note.--Doubtful or no gage-height record July 1-9, 18-28; discharge estimated on basis of records for Ionfit River.

DISCHARGE MEASUREMENTS AT POINTS OTHER THAN GAGING STATIONS

Discharge measurements made at points other than gaging stations on the Island of Guam during the period February 1951 to June 1958

Stream	Tributary to	Location	Date	Discharge (cfs)
Agat River	Pacific Ocean	Above falls, about 2 miles east of Agat.	1952 Jan. 12 Feb. 13 Mar. 26	0.43 .181 .280
Do	do	At altitude 150 ft, at Agat.	1953 May 15 June 12	.341
Springs	Unnamed stream	l mile south of Agat, above proposed FHA housing project.	1952 Sept.24	.153
Do	do	1.25 miles south of Agat, above proposed FHA housing project.	1952 Sept.24	.747
Umatac River	Pacific Ocean	50 ft above highway bridge, at Umatac.	1951 Oct. 2	2.21
Toguan River	do	100 ft below highway bridge, near Umatac.	1951 Oct. 2	.309
Geus River	do	At headwaters, above upper Merizo Dam, near Merizo.	1951 Oct. 2 1952 Oct. 27	.372
Inarajan River	do	500 ft above highway bridge, at Inarajan.	1951 Oct. 2	3.88
Pauliluc River	do	200 ft above highway bridge, near Inarajan.	1951 Oct. 2	1.00
Asalonso River	do	100 ft below highway bridge, near Talofofo.	1951 Oct. 2	.481
Maemong River	Tolaeyuus River	At cavern outlet, 100 ft above site of gaging station on Tolaeyuus River, near Agat.	1951 May 27	2.89
Tolaeyuus River	Maagas River	At entrance to last cavern, the mile below site of gaging station on Tolaeyuus River, near Agat.	1951 May 27	2.51
Maagas River	Talofofo River	At final cavern outlet at Lost River Pumping Station No. 1, near Agat.	1951 May 27 June 10	2.41
Talofofo River	Pacific Ocean	At site of gaging station, near Talofofo.	1951 Feb. 1	32.2
Ugum River	Talofofo River	At site of gaging station, 0.7 mile above confluence with Talofofo River, near Talofofo.	1952 Feb. 12 Mar. 12	9.12 8.53
Sigua River	Pago River	500 ft above confluence with Pago River.	1952 Dec. 3	4.70
Pago River	Pacific Ocean	At site of gaging station, near Yona.	1951 Feb. 2	8.87
Janum Springs	do	At outlet of cave, near Yigo.	1952 Mar. 27 Apr. 11 May 12 June 10 July 9 Aug. 6 Sept. 4 1953 Apr. 14 May 14 June 12	1.93 1.80 2.27 2.07 2.04 2.34 1.89 1.93 2.03 2.12

APPENDIX B

RECORDS OF WELLS, TUNNELS, AND SPRINGS

This appendix contains information on the sources of ground water in Guam that are shown on plate 1. The records were obtained from unpublished material compiled by H. T. Stearns in 1937 and A. M. Piper in 1946, from the files of military and civil agencies in Guam, and from field investigations.

The numbering system is based on one that was started by military forces during World War II and used by Piper in his compilation in 1946. Numbers 1 through 154 are assigned to wells, springs, and tunnels, and 201 to 216 are assigned to test holes. The unassigned block from 154 to 200 is left for new installations.

The figures in parenthesis immediately after each number indicate the location in the 1,000-meter Universal Transverse Mercator Grid on plate 1. Altitudes are approximate and indicate the height above the mean lower low water datum plane. The figure after the term "water level" gives the approximate height of the water level above the same datum. The diameter of a well is the diameter of the casing in the well at the surface of the ground. In tabulated figures, a dash indicates that no record is available.

1 (BQ482765) Almagosa (Chepak or Dobo) Springs. Water issues from three small caves in limestone at contact with underlying volcanic rock. Altitude, 700 ft. Chloride (ppm), Oct. 10, Nov. 8, Dec. 10, 1946, Jan. 16, 1947, 35. Water in excess of that diverted for military use is included in that measured at gaging station 10-2.

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1952 1953	42.13 58.58	31.29 41.48	35.81 50.09	24.91 27.83	28.38 24.87	- 19.96 12.43	- 31.51	72.15 41.92	65.61	68.21 44.44	66.30 68.74	66.03 77.50

2 (BQ573893) Agana Spring. Water issues from argillaceous limestone. Altitude, 5 ft. Water flows into a small concrete reservoir. Use, municipal. Pumps first installed, 1914. Pumpage (mgd), 1937, 0.8; 1945, 1.5. Chloride, 20 to 35 ppm.

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1954 1955 1956	74.96 59.40	59.66 56.84 61.30 46.07 19.62	57.20 24.32 23.78	49.31 52.34 53.37 23.34 27.82	48.61 45.82 60.31 17.43 25.44	38.73 29.02 19.46 24.21	44.19 59.05 20.31 19.21	54.09 61.67 55.41 38.41 19.77	53.55 22.16	66.66 68.32 40.52 18.68	79.84 27.58 18.67	75.64 80.42 27.00 19.41

- 3 (BQ529902) Asan Spring. Water issues from the limestone at contact with underlying volcanic rock. Altitude, 140 ft. Use, municipal supply for Asan. Pumps first installed, 1915. Pumpage (mgd), 1937, 0.80; Jan. 1946, 0.14; Nov. 1955, 0.56; Dec. 1955, 0.78; Jan. 1956, 0.49. Chloride, 16 to 35 ppm.
- 4 (BQ479808) Santa Rita Spring. Water issues from limestone at contact with underlying volcanic rock. Altitude, 284 ft. Reported minimum flow, 100,000 gpd. Water flows into a 100,000-gallon reservoir. Use, municipal supply for lower Santa Rita and old Agat.
- 5 (BQ468843) Orote well (5th Field Depot, Orote well 5). Aquifer, coral and sand. Drilled, 1944 by 5th N.C.B. Altitude, 40 ft. Depth, 63 ft. Diameter, 6 in. Casing, 57 ft. Pumping rate in 1945, 65 gpm. Pumpage, Sept. 1945 to Oct. 1946, 18,000-20,000 gpd. Reported abandoned because of high salinity.

Driller's log

		Depth (ft)
Coral, quartzlike		15-45 45-50 50-53

6 (BQ633902) Barrigada School well. Aquifer, limestone and sand. Drilled, May 1937 by U. S. Navy. Altitude, 294 ft. Depth, 350 ft. Diameter, 6 in. Water level, +4 ft. Chloride (ppm), May 15, 1937, 32; Jan. 16, 1947, 35.

Driller's log

	Depth (ft)
Soil, and colored loose reef limestone	0-6
Limestone, hard but not dense	6-10
Limestone, white, dense	10-36
Limestone, porous, loose	36-46
Limestone, alternating hard and soft	46-101
Limestone, soft	101-138
Limestone, soft, with marine sand	138-240
Limestone, soft, sandy	240-270
Sand (marine), small rocks and reef limestone	270-350
Encountered water at 291 feet.	

7 (BQ612900) 72nd N.C.B. well 1. Aquifer, limestone. Drilled, 1944 by 72nd N.C.B. Altitude, 220 ft. Depth, 238 ft. Diameter, 8 in. Casing, 226 ft.; bottom 10 ft. perforated. Water level, +6 ft. Pumping rate, 33 gpm. Pumpage, Sept. 1944, 23,000 gpd. Chloride (ppm), Sept. 7, 1944, 218; Oct. 2, 1946, 360; Nov. 8, 1946, 530; Jan. 16, 1947, 708.

Driller's log

																				Depth (ft)
Clay, yellow		-	_	_	_	_	-	_	_	_	_	_	_	_	-	_	-	_	_	0-28
Coral, firm																				
Coral, broken		_	_	-	-	_	_	-	-	-	-	-	-	-	-	-	_	-	-	120-130
Coral, firm, h	ırd	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	130-238

- 8 (BQ601908) Tiyan well. Aquifer, limestone. Drilled, 1944(?). Depth, 230 ft. Pumpage, Sept. 8, 1944, 25,000 gals. at a rate of 25 gpm; Nov. 25, 1944, 12,000 gals. at a rate of 8.5 gpm. Chloride, Sept. 8 and Nov. 25, 1944, 26 ppm.
- 9 (BQ634952) Dededo (Harmon) well. Aquifer, limestone. Drilled, June 1937 by U. S. Navy. Altitude, 202 ft. Depth, 222 ft. Diameter, 6 in. Casing, 247 ft.; bottom few feet perforated. Water level, +2 ft. Pumpage, Aug. 1944, 35,000 gpd at a rate of 25 gpm; July 1, 1945 to Mar. 17, 1946, 82,800 gpd at a rate of 60 gpm. Chloride (ppm), June 8, 1937, 57; July 1, 1945 to Mar. 17, 1946, 71.

Driller's log

	(ft)
Limestone (reef), finely divided	0-54
Limestone, soft, with hard layers Limestone, soft, with very hard layers of dense	54-103
	103-222

Denth

10 (BQ619943) Tumon School well. Aquifer, coralline limestone and sand. Dug, Dec. 1937 by U. S. Navy. Altitude, 13 ft. Depth, 33 ft. Casing, 33 ft. Water level, +1 ft. Driller's log; beach sand, 0-14 ft.; coral and sand, 14-33 ft.

Observations

Date	Pumping rate (gpm)	Pumpage (thousand gallons)	Drawdown (ft)	Chloride (ppm)
Sept. 4, 1944	30	10	6	52
14	14	15	9	52
22	25	28	9	52
Nov. 24	25	28	14	47

- 11 (BQ622943) Army well 1. Aquifer, loose coral. Dug, 1944 by U. S. Army. Altitude, 14 ft. Depth, 19 ft. Diameter, 8 ft. by 14 ft. Water level, +2 ft. Drawdown, Sept. 14, 1944, 3 ft. while pumping at 25 gpm. Pumpage (gpd), Sept. 14, 1944, 20,000; 1946, 30,000. Chloride (ppm), Aug. 1945, 230; Jan. 1946, 175.
- 12 (BQ606921) N.A.S. Agana well 1 (N.A.B. Agana well 1). Aquifer, limestone. Drilled, 1944(?) by 72nd N.C.B. Altitude, 25 ft. Depth, 70 ft. Water level, +2 ft. Pumping rate, 30 gpm. Drawdown, 0.4 to 0.5 ft. at pumping rate of 30 gpm. Pumpage, Jan. 1946, 40,000 gpd. Chloride, Jan. 1946, 245 ppm.
- 13 (BQ594919) 56th N.C.B. well. Aquifer in coral and sand. Drilled, 1944 by 56th N.C.B. Altitude, 30 ft. Two 8-in. wells 17 ft. deep in bottom of a 15-ft. pit. Water level, +2 ft. Drawdown, 0.4 ft. while pumping 85 gpm. Pumpage, Mar. 1946, 86,000-100,000 gpd. Chloride (ppm), 1945, 484; Jan. 1946, 490; Mar. 1946, 500. Driller's log; dirt, 0-1 ft.; coral, 1-28 ft.; sand, 28-32 ft.
- 14 (BQ591915) Torres well 1. Aquifer, limestone. Dug many years ago. Depth, 10-15 ft. Diameter, 10 ft. Cased to bottom with masonry. Altitude, 11 ft. Water level, +3 ft. Pumpage, Sept. 1944, 30,000 gals. Chloride, Jan. 1946, 210 ppm.
- 15 (BQ590914) Air Strip well. Aquifer, limestone. Dug, 1944 by 72nd N.C.B. Altitude, 5-10 ft. Depth, probably less than 20 ft. Diameter, 4 ft. Pumpage, Jan. 1946, 50,000 gpd. Drawdown, 2.6 ft. Chloride (ppm), 1944, (before pumping) 32; Jan. 1946, 740; Oct. 9, 1946, 510.
- 16 (BQ597858) Pago Spring well 1. Aquifer, limestone. Drilled 1944(?) by 72nd N.C.B. Reported yield, 25 gpm. Chloride, 430 ppm. Reported abandoned because of low yield and high salinity.
- 17 (BQ478832) 53rd N.C.B. well 1. Aquifer, volcanic shale. Drilled, Aug. 1944. Altitude, 60 ft. Depth, 346 ft. Diameter, 8 in. Reported yield, about 3 gpm. Abandoned because of low yield. A well drilled nearby in shale reportedly had a water level of 7 ft. below sea level and a yield of 5 gpm.

Driller's log

					•															Depth (ft)
Clay, red and	a .	ve.	116	~w	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0-88
Shale, sandy		<i>-</i>	`	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	88-96
Shale, blue	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	96-148
Shale, sandy	-	_	_	-	_	-	_	-	_	-	_	-	-	-	-	_	_	_	_	148-155
Shale, black	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	155-198
Shale, sandy	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	198-206
Shale, black	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	206-247
Shale, sandy	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	247-254
Shale, blue	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	254-325
Shale, black	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	325-346

- 18 (BQ494884) 76th N.C.B. well. Aquifer, limestone. Drilled, 1938 by U. S. Navy. Altitude, 17 ft. Depth, 28 ft. Diameter, 6 in. Water level, +2 ft. Drawdown, 1 ft. while pumping at 55 gpm. Pumpage, Aug. 1944, 11,000 gpd. Chloride (ppm), July 13, 1944, 495; Aug. 1945, 510; Jan. 1946, 480.
- 19 (BQ594863) Price well 1. Aquifer, limestone. Drilled, July 1937 by U. S. Navy. Altitude, 126 ft. Depth, 170 ft. Diameter, 6 in. Casing, 150 ft. Water level, July 1937, +5 ft. Pumping rate, 1944, 3 gpm. Chloride, July 1937, 28 ppm.

Driller's log

		Depth (ft)
Cascajo (rubbly limestone), dirty Formation (limestone), hard Mud Limestone, dirty Cascajo, dirty	11 	15-140 40-160

20 (BQ472800) Faata Springs. Water issues from three orifices in limestone at contact with underlying volcanic rock. Altitude, about 450 ft.

Discharge (gpd)

	May 20, 1937	Feb. 26, 1957
Orifice 1 Orifice 2 Orifice 3	7,000 14,000 144,000 165,000	15,000 50,400 151,200 216,600

21 (BQ592837) Yona well. Aquifer, limestone. Drilled, Sept. 1937 by U.S. Navy. Altitude, 305 ft. Depth, originally 264 ft.; plugged back to 258 ft. Diameter, probably 6 in. Driller's log; limestone, white, hard, 0-258 ft.; clay, blue, green, and brown, 258-264 ft. Dry hole.

22 (BQ597918) N.A.S. Agana well 2, (N.A.B. Agana well 2). Aquifer, limestone. Dug, 1944 by 48th N.C.B. Altitude, 27 ft. Depth, 28 ft. Diameter, 10 ft. Water level, Dec. 1945, 44 ft. Drawdown, Oct. 6, 1944, 0.25 ft.; Oct. 22, 1945, 0.75 ft.; Dec. 2, 1945, 0.5 ft. Reported pumped dry, Jan. 21, 1946. Driller's log; soil, 0-1 ft.; coral, 1-28 ft.

Observations

Date	Chloride (ppm)	Pumpage (gallons)
Oct. 24, 1944 Nov. 18 Dec. 23 Aug. 18, 1945 Sept. 17 Oct. 22 Nov. 17 Dec. 17 Jan. 14, 1946	141 194 318 426 426 426 389 354	7,500 48,000 160,000 - 376,000 353,000 353,000 353,000

23 (BQ593915) C.B.M.U. 515 well. Aquifer, limestone. Drilled, 1944. Altitude, 20 ft. Depth, 25 ft. Water level, +1 to +3 ft. Pumping rate, 40-50 gpm. Drawdown, 4 ft.

Observations

Date	Chloride (ppm)	Pumpage (gallons)
Sept. 13, 1944	-	3,000
Dec. 6, 1945	-	25,500
21	-	25,500
Jan. 3, 1946	510	24,000
10	510	24,000
17	510	24,000
24	510	24,000
Feb. l	510	24,000
7	-	24,400
14	600	24,400
21	-	24,400
28	530	24,400
Mar. 1	-	24,400
7	530	30,000
14	530	26,800
21	530	29,200
28	530	39,000
Apr. 1	530	39,000

24 (BQ624918) N.A.S. Agana well 3 (N.A.B. Agana well 3). Aquifer, limestone! Drilled, Mar. 1945 by 5th N.C.B. Altitude, 323 ft. Depth, 350 ft. Diameter, 12 in. Casing, 348 ft.; lower 24 ft. perforated. Pumping rate, 200 gpm. Drawdown, 18-20 ft.

Driller's log

	Depth (ft)
Coral, white, soft	- 0-130
Coral, hard	- 130-290
Coral, broken, and yellow clay	- 290-320
Coral, hard	- 320-322
Water strata	- 322-350

Observations

Date	Chloride (ppm)	Pumpage (gallons)
Aug. 21, 1945	_	153,000
28	-	158,000
Sept. 1	-	158,000
7	-	152,000
16	-	60,000
21	-	158,000
Oct. 8	-	158,000
22	354	288,000
28	-	288,000
29	408	-
30	-	222,000
Nov. 1	-	252,000
4	500	-
7	- _	242,000
ij	354	-
14	-	252,000
19	336	-
51	- ,	252,000
26	374	-
28	-	252,000
Dec. 3	230	-
23	194	-
Sept. 24, 1946	212	-
Oct. 9	177	-
Nov. 11	177	-
Dec. 10	212	-
Jan. 16, 1947	212	-
June 18, 1949	185	-
Oct. 18, 1950	142	-
Feb. 19, 1953	76	-

^{25 (}BQ594849) Andersen dug well. Depth, about 10 ft. Diameter, 6 ft. by 7 ft. Reported pumpage, 1944, 6,000 gpd.

^{26 (}BQ604937) Tumon Farm well. Aquifer, limestone. Drilled, Dec. 1937 by U. S. Navy. Altitude, 17 ft. Depth, 26 ft. Diameter, 6 in. Casing, 26 ft. Water level, +2 ft. Chloride, Dec. 16, 1937, 155 ppm; Aug. 1945, 385 ppm; Jan. 1946, 455 ppm.

Pumpage

Date	Rate (gpm)	Gallons
Sept. 22, 1944	20	20,000
July 1, 1945	60	47,000
7	90	101,000
14	60	71,000
21	60	75,000
28	60	71,000
Aug. 1	60	70,000
7	60	71,000
ıi	60	70,000
Dec. 21	45	23,000
28	45	24,000
Jan. 1, 1946	45	22,000
7	45	12,000
14	45	18,000
19	45	24,000

- 27 (BQ545896) Maina Spring. Water issues from limestone at contact with underlying volcanic rock. Altitude, 264 ft. Concrete reservoir with capacity of 58,000 gal. installed in 1937 by U. S. Navy. Use, municipal supply fcr Maina. Pumping rate, Apr. 1946, 40 gpm. Pumpage, Apr. 1946, 26,800 gpd; 1957, 6,650 gpd.
- 28 (BQ617943) 48th N.C.B. well. Aquifer, limestone. Dug, 1944 by 48th N.C.B. Altitude, 11 ft. Depth, 21 ft. Diameter, 8 ft. Casing, 9 ft. Water level, Oct. 1944, +3 ft. Driller's log; sand, 0-8.5 ft.; coral, 8.5-21 ft.

Observations

Date	Pumping rate (gpm)	Pumpage (gallons)	Chloride (ppm)
July 2, 1945 7 14 21 28 Aug. 1 7 14 21 26 Sept. 2 7 14	66 61 59 63 63 57 53 56 61 43 42 45 45	92,000 80,000 71,000 80,000 72,000 71,000 71,000 74,000 56,000 52,000 45,000 54,000	390 406 406 424 424 424 406 424 424 410 410 407

(BQ635944) Harmon Field old well 1 (Army Depot Field well 1).

Aquifer, limestone. Drilled, Oct. 1944 by 72nd N.C.B. Altitude,
196 ft. Depth, 194 ft.; deepened to 216 ft., July 1945. Diameter,
6 in. Casing, 188 ft.; 5 in. perforated liner from 188 to 216 ft.
Pump setting, 197 ft. Water level, Oct. 1944, +12 (?) ft.
Drawdown, 15.5 ft. while pumping at 50-60 gpm. Pumpage, JulyDec. 1945, 82,000 gpd. Chloride (ppm), Oct. 29, 1944, 36; July 1,
1945, 71; Aug.-Dec. 1945, 88; Dec.-Feb. 1945, 61.

Driller's log

																			Depth (ft)
Clay, red		_	_	_	-	_	-	_	-	-	-	-	-	-	-	-	-	-	0-2
Limestone,	hard	_	-	_	-	-	-	_	_	-	-	-	_	-	-	_	-	_	2-95
Coral, por		_	_				-												95 - 185
Coral, sof	t (wate	r	Ъе	ear	ci	ng)	-	-	-	-	-	-	-	-	-	-	-	185-216

30 (BQ636959) Harmon well 2 (Army Depot Field, well 2). Aquifer, limestone. Drilled, Nov. 1944. Altitude, 264 ft. Depth, 306 ft. Diameter, 12 in. Casing, 281 ft.; 10 in. liner from 281 to 306 ft.; bottom 30 ft. perforated. Pump setting, 300 ft. Well was originally 281 ft. deep, and was equipped with a 45-gpm pump; in May 1945 it was deepened to 306 ft. and equipped with a 250-gpm pump.

Driller's log

																		Depth (ft)
Clay, red	_	_	_	_	_	_	-	-	-	_	_	-	_	_	_	_	-	0-6
Coral limestone								-										6-35
Coral, hard																		35-155
Coral limestone	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	155-220
Coral, porous -																		220-260
Coral, soft	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	260-306

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1954	_	11.60	12.90	12.32	10.39	10.93	6.56 14.88 12.23	15.23	17.33	17.76	16.80	-

Chloride (ppm)

 			
July 7, 1945	173	Feb. 23, 1954	400
Aug. 4	173	Mar. 10	386
Sept. 8	225	18	370
Oct. 6	225	Feb. 1955	245
Nov. 10	225	Mar.	250
Dec. 8	225	Apr.	138
Jan. 6, 1946	179	May	270
Feb. 17	179	June	270
Mar. 17	179	July	160
July 16, 1953	430	Aug.	170
Dec. 23	460	Sept.	165
Jan. 2, 1954	400	Oct.	163
18	410	Nov.	166
19	420	Dec.	165
21	415	Jan. 1956	163
26	415	Feb.	163
29	415	Mar.	162
	415	Apr.	165
Feb. 3	405	May	163
17	386	June	165

31 (BQ677955) MarBo well 3 (A.G.F. well 1). Aquifer, limestone. Drilled, Nov. 1944 by 72nd N.C.B. Altitude, 410 ft. Depth, 428 ft. Diameter, 12 in. Casing, 428 ft.; lower 20 ft. perforated. Pump setting, 420 ft. Water level, Nov. 1944, +5 ft.

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1954		-	_	1.16 6.90	2.58	2.43	3.43	4.27	5.05	5.47	4.11	-

July 7, 1945 Aug. 5 Jan. 1946 Apr. 23, 1947 Mar. 1, 1953 7 14 21 28 Apr. 1 May 19 Dec. 10, 1953 14	39 39 40 24 30 30 40 50 50 30 35 30	Dec. 21, 1953 28 Jan. 3, 1954 Feb. Mar. Apr. May June July Aug. Jan. 31, 1956 Aug. 1	30 40 30 38 34 34 38 41 42 30 26
--	--	---	--

32 (BQ564709) Malajlo Spring. Altitude, about 220 ft. Water issues from limestone at contact with underlying tuff. Water collects in a small tank and is used occasionally by local farmers.

Discharge (gpm)

June 29, 1955	0.9	July 20, 1955	11.1
30	0.9	27	7.9
July 1	1.3	Aug. 5	8.3
5	1.7	24	6.8
13	13.0	Aug. 10, 1956	8.0
15	13.0	June 15, 1957	Trickle

33 (BR694065) Northwest well 2 (NWAAB well 2). Aquifer, limestone. Drilled, 1945 by 56th N.C.B. Altitude, 486 ft. Depth, 520 ft. Diameter, 12 in. Casing, 520 ft.; lower few feet perforated. Water level, 1945 +6 ft. Drawdown, Aug. 12-Sept. 22, 1945, 14.5 ft. while pumping at 150 gpm. Pumpage (gpd), Aug. 1945, 159,000; Sept. 1945, 146,000; Feb. 1946, 24,000.

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1953 1954 1955	_	1.75 10.08	2.00	1.85	4.37	8.99	8.50	7.86	7.37	4.64 6.78 1.51	2.32 6.91 6.69	- 7.15

				-
Jan. May	1946 14, 1952	35 35	May 1955 June	110 60
June '	30, 1953	35	July	64
July	7	35	Aug.	100
	16	35	Sept.	67
Jan.	1954	88	Oct.	65
Feb.	8	39	Nov.	67
Mar.	11	27	Dec.	67
Mar.	1955	116	Jan. 31, 1956	106
Apr.		56		

- 34 (BR735008) Army North Field well 1. Drilled, Jan. 1945 by 854th E.A.B. (U. S. Army). Altitude, 550 ft. Depth, 546 ft. Reported dry hole. Driller's log; red clay, 0-1 ft.; limestone and coral, 1-304 ft.; shale, blue 304-546 ft.
- 35 (BQ656987) J.C.A. well 1. Aquifer, limestone. Drilled, 1945.
 Altitude, 377 ft. Depth, 410 ft. Diameter, 12 in. Casing, 410 ft.;
 lower few feet perforated. Water level, 1945, +5 ft. Drawdown,
 10.8 ft. while pumping at 165 gpm. Chloride, Oct. 1945-May 1947,
 about 106 ppm.

Pumpage

Date	Rate (gpm)	Gallons
Oct. 1945	50	52,000
	200	247,000
Nov.	200	
Dec.		285,000
Jan. 1946	200	284,000
Feb.	130	176,000
Mar.	110	140,000
June	-	37,000
July	110	31,000
Aug.	112	36,000
Sept.	110	44,000
Oct.	102	31,000
Nov.	80	22,000
Dec.	80	25,000
Jan. 1947	85	37,000
Mar.	85	56,000
May	80	29,000

- 36 (BQ638905) Radio Barrigada well. Aquifer, limestone. Drilled, Nov. 1944. Altitude, 299 ft. Depth, 308 ft. Diameter, 8 in. Water level, Nov. 1944, +5 ft. Drawdown, about 2 ft. while pumping at 25 gpm. Pumpage (gpd), July 1945, 15,000; March 1946, 17,200; Apr. 1946, 19,400; May 1946, 27,300; June 1946, 26,500. Chloride (ppm), July 8, 1945, 35; Jan. 1946, 70.
- 37 (BQ626874) B.P.M. well 5 (115th Fleet Hospital well 1). Aquifer, limestone. Drilled, Jan. 1945 by 72nd N.C.B. Altitude, 210 ft. Depth, 232 ft. Diameter, 12 in. Casing, 232 ft.; lower 20 ft. perforated. Pump setting, 230 ft. Water level, 1944, +5 ft.; Aug. 29, 1945, +3 ft. Chloride (ppm), March 1954, 198; Dec. 14, 1954, 192; Apr. 26, 1955, 204.

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1954	6.84	6.20	6.66	6.66	7.22	6.87	6.76	6.99	10.33 6.62 6.06	6.94	6.84	6.92

38 (BQ597928) lllth Fleet Hospital well 1. Aquifer, limestone. Drilled, Nov. 1944 by 56th N.C.B. Altitude, 77 ft. Depth, 81 ft. Diameter, 14 in. Casing, 81 ft. Pump setting, 79 ft. Water level, Nov. 1944, +3 ft. Drawdown, July 1, 1945, 1.5 ft. while pumping at 250 gpm. Pumpage (gal.), Dec. 29, 1944, 72,000; Jan. 26, 1945, 200,000; July 1, 1945, 360,000; Jan. 20, 1946, 200,000; Feb. 1, 1946, 243,000; Mar. 8, 1946, 360,000.

Chloride (ppm)

Dec. 19, 1944	88	Jan. 1, 1946	455
	109	Sept. 24	424
Jan. 15, 1945	125	Oct. 2	389
26	125	Nov. 8	445
July 1	510	Dec. 10	457
4	495	Jan. 16, 1947	449
12	510		

^{39 (}BQ599858) Pago Spring well 2. Aquifer, limestone. Drilled, 1944, by 72nd N.C.B. Reported never used because of inaccessability. No other records available.

Pumpage

Date	Rate (gpm)	Gallons		
July 2, 1945	70	71,000		
7	70	76,000		
14	60	72,400		
21	60	70,600		
28	60	72,500		
Aug. 1	60	63,200		
7	60	67,300		
14	60	65,800		
19	60	1,500		
Sept. 4	999	70,500		
7	606	69,500		
14	150	57,200		
21	150	73,400		
28	150	55,900		
Oct. 1	150	61,300		
8	150	59,600		
15	150	73,100		
22	150	64,800		
29	150	69,100		
Nov. 1	150	67,400		
7	150	72,000		
19	150	69,900		
24	150	40,300		
Jan. 1, 1946	-,	55,000		

^{40 (}BQ602938) lilth Fleet Hospital well 2. Aquifer, limestone. Drilled, 1944 by 56th N.C.B. Altitude, 15-20 ft. Depth, probably less than 30 ft. Water level, Jan. 1946, 13.6 ft. below ground surface. Chloride (ppm), Oct. 1, 1945, 1,400; Jan. 1, 1946, 705.

41 (BQ612885) Price well 2. Aquifer, limestone. Drilled, Aug. 1937 by U. S. Navy. Altitude, 130 ft. Depth, 138 ft. Diameter, 6 in. Casing, 138 ft. Water level, July 23, 1937, +7 ft.; Aug. 4, 1937, +6 ft. Chloride, July 23, 1937, 28 ppm.

Driller's log

	Depth (ft)
Mud, clay, grading downward into dirty	
cascajo (limestone)	0-20
Cascajo (limestone), dirty	20-77
Limestone, white, solid ledge	77-106
Limestone, white, and marine sand	106-138

- 42 (BQ598892) Canada well 1. Aquifer, weathered limestone and sand. Dug, June 1937 by U. S. Navy. Altitude, 37 ft. Depth, 37 ft. Diameter, about 5 ft. Water level, June 28, 1937, +5 ft. Chloride, Aug. 8, 1937, 14 ppm. Driller's log; soil and marine sand, no hard rocks or ledges (sample showed weathered fragments of hard limestone mixed with brown dirt), 0-37 ft.
- 43 (BQ596891) Canada well 2. Aquifer, limestone. Dug, July 1937 by U. S. Navy. Altitude, ll ft. Depth, 30 ft. Diameter, about 5 ft. Water level, July 1, 1937, +6 ft. Driller's log; mud and clay, 0-10 ft.; muddy cascajo (limestone), 10-20 ft.
- 44 (BQ579911) 136th N.C.B. well. Aquifer, limestone. Dug, Nov. 1944 by 136th N.C.B. Altitude, 19 ft. Depth, 16 ft. Diameter, 7 ft. from surface to 11 ft.; 3 ft. from 11 to 16 ft. Water level, Nov. 1944, +7 ft. Drawdown, Dec. 29, 1944, 1 ft. while pumping at 50 gpm. Pumpage (gal.), Dec. 29, 1944, 30,000; July 1, 1945, 78,000; Jan. 7, 1946, 70,000; Apr. 6, 1946, 51,000. Chloride (ppm), Nov. 18, 1944, 83; Dec. 29, 1944, 94; July 1945, 460; Aug. 4, 1945, 450; Jan. 1946, 350; Oct. 9, 1946, 530; Nov. 8, 1946, 425.
- 45 (BQ598892) Canada well 3. Aquifer, limestone. Dug, July 1937 by U. S. Navy. Altitude, 12 ft. Depth, 25 ft. Water level, July 9, 1937, +6 ft. Driller's log; earth, reddish brown, 0-4 ft.; casacajo (limestone), dirty, 4-25 ft.
- 46 (BQ585804) 9th Marines well 3. Aquifer, sand. Drilled, 1944 by 56th N.C.B. Altitude, 25 ft. Depth, 30 ft. Reported dry hole.
- 47 (BQ586808) 9th Marines well 4. Aquifer, sand. Drilled, 1944 by 56th N.C.B. Altitude, 26 ft. Depth, 32 ft. Driller's log; top soil and clay, 0-10 ft.; coral, soft, 10-28 ft.; sand, water bearing, 28-32 ft. Reported never used.

- 48 (BQ585799) 9th Marines well 2. Aquifer, sand. Drilled and dug, 1944 by 56th N.C.B. Altitude, 25 ft. Depth, 30 ft. Drilled well in bottom of 10-ft. pit. Driller's log; coral, 0-28 ft.; sand, water bearing, 28-30 ft.
- 49 (BQ584796) 9th Marines well 1. Aquifer, sand. Drilled, 1944 by 56th N.C.B. Altitude, 15 ft. Depth, 16 ft. Water level, 1944, above sea level. Pumpage, 1944, 40,000 gpd, at 40 gpm. Chloride, 1944, 550 ppm. Driller's log; top soil, 0-4 ft.; coral, broken, 4-11 ft.; coral, 11-15 ft.; sand, water bearing, 15-16 ft.
- 50 (BQ594905) 5th Field Depot Agana well 1. Aquifer, limestone. Drilled, 1944 by U.S.M.C. Altitude, 208 ft. Depth, 214 ft. Diameter, 12 in. Casing, 214 ft. Water level, 1944, 44 ft. Chloride, reported to have increased from about 150 ppm in 1944 to 700 ppm in 1946.

Pumpage

Date	Rate (gpm)	Gallons
Dec. 20, 1944 Jan. 3, 1945 June 28	35 35 40	10,500 23,100 43,200
July 1 Aug. 1 Sept. 1	40 40 35 40	28,800 43,400 33,600
Oct. 11 Nov. 1 Dec. 1 Jan. 1, 1946	32 50 50	19,200 72,000 48,000 30,000
Feb. 1 Mar. 1 Apr. 1	45 45 40	22,000 22,000 39,000

51 (BQ588905) 5th Field Depot Agana well 2. Aquifer, limestone. Drilled, 1944 by U.S.M.C. Altitude, 180 ft. Depth, 187 ft. Diameter, 12 in. Water level, 1944, +3 ft. Pumping rate, 1945-1947, 40-50 gpm.

Observations

Date	Pumpage (gallons)	Chloride (ppm)
June 28, 1945 Aug. 1 Sept. 1 Oct. 4 Nov. 1 Dec. 1 Jan. 1, 1946 Feb. 7 Mar. 7 Apr. 4 Jan. 2, 1947 Feb. 6 Mar. 1	51,000 51,000 69,000 50,000 34,000 41,000 31,000 29,000 39,000 43,000 43,000 43,000	398 398 424 355 355 459 - 500 500 490 460 460

52 (BQ582905) 5th Field Depot Agana well 3. Aquifer, limestone. Drilled, about 1945. Altitude, 152 ft. Depth, 153 ft. Diameter, 12 in. Water level, 1945, +4 ft. Pumping rate, 1945-1947, 40-50 gpm.

Observations

Date	Pumpage (gallons)	Chloride (ppm)
June 28, 1945	51,000	362
July 1	54,000	362
Aug. 1	43,000	389
Sept. 1	72,000	442
Oct. 16	72,000	354
Nov. 1	72,000	354
Dec. 1	48,000	354
Jan. 4, 1946	49,000	424
Feb. 14	49,000	495
Mar. 28	39,000	460
Apr. 4	39,000	480
Jan. 2, 1947	-	495

53 (BQ596895) 5th Field Depot Agana well 4 (Toto well). Aquifer, limestone. Drilled, 1945. Altitude, 171 ft. Depth, about 175 ft. Diameter, 8 in. from surface to 166 ft.; 3 in. from 166 to 175 ft. Water level, 1945, +10 ft. Drawdown, reported 7-9 ft. Pumping rate, 1945-1946, 40-50 gpm. Chloride (ppm), Jan. 1, 1946, 222; Feb. 7, 1946, 247; Feb. 21, 1946, 159; Apr. 1946, 187.

Pumpage (gallons)

June 28, 1945 July 1	26,000 48,000	Dec. 1, 1945 Jan. 1, 1946	58,000 58,000
Aug. 1	58,000	Feb. 1	58,000
Sept. 1	58,000	Mar. 1	59,000
Oct. 1	58,000	Apr. 1	59,000
Nov. 1	58,000		

^{54 (}BQ622943) Army well 2. Aquifer, limestone. Altitude, 10-15 ft. Depth, probably less than 20 ft. Diameter, 22 in. Cased to bottom with oil drums. Pumpage (gpd), Mar. 1946, 9,300; Apr., May, June 1946, 18,600. Chloride, Jan. 1946, 220 ppm.

55 (BR704023) 373rd Army Station Hospital well 1. Aquifer, limestone. Drilled, 1945, by 72nd N.C.B. Altitude, 545 ft. Depth, 560 ft. Diameter, 10 in. Casing, 560 ft.; perforated from 510-550 ft. Well would not produce sufficient water, so it was deepened to 575 ft. and shot with dynamite but with no increase in yield.

Driller's log

														(ft)
Limestone	_	_	_	-	_	_	_	-	-	_	-	-	_	0-505
Sand, water bearing	-	-	-	-	-	-	-	-	-	-	-	-	-	505-522
Sand, and shale streaks	-	-	-	-	-	-	_	-	-	-	-	-	-	522-530
Sand, and coral (mixed)	-	-	-	-	-	-	-	-	-	-	-	-	-	530-545
Shale, blue	-	-	-	-	-	-	-	-	-	-	-	-	-	545-560
Shale	-	-	-	-	-	-	-	-	-	-	-	-	-	560-575

- 56 (BR677051) Northwest well 1 (NWAAB well 1). Aquifer, limestone. Drilled, 1945 by 56th N.C.B. Altitude, 491 ft. Depth, 1945, 515 ft.; 1956, 511 ft. Diameter, 10 in. Casing, 515 ft.; lower 30 ft. perforated. Water level, 1945, +3 ft.; May 3, 1956, +6 ft. Pumping rate, 37-45 gpm. Pumpage (gpd), Aug. 1945, 38,000; Feb. 1946, 4,400; Apr. 1946, 6,900. Chloride (ppm), 1945, 53; Jan. 1946, 70.
- 57 (BQ592934) Fleet Hospital 103 well. Aquifer, limestone. Drilled, 1945 by 56th N.C.B. Altitude, about 80 ft. Depth, 86 ft. Diameter, 13 in. Water level, 1945, +2 ft. Chloride (ppm), July 6, 1945, 1,476; July 14, 1945, 1,325; Aug. 3, 1945, 1,320; Oct. 7, 1945, 1,300.

Pumpage

Date	Rate (gpm)	Gallons
July 1, 1945	225	257,000
Aug. 1	200	189,000
Sept. 1	200	189,000
Oct. 1	200	162,000
Nov. 1	200	153,000
Dec. 1	200	129,000
Jan. 1, 1946	300	333,000
Feb. 10	300	148,000
Mar. 3	300	178,000
Apr. 1	250	165,000

^{58 (}BQ708982) Mataguac Spring. Water issues from volcanic rock on the east side of Mataguac Hill. Altitude, 460 ft. Water collects in two 4-ft.-sq. concrete reservoirs. Flow, Aug. 9, 1946, 6.6 gpm (9,500 gpd).

Pumpage (gallons)

July	2	17,300	Nov. 1, 1945	18,500
Aug.		18,000	Dec. 1	5,500
Sept.		15,500	Jan. 1, 1946	1,000
Oct.		17,600	Feb. 1	1,200

(BQ601866) Father Duenas Memorial School well (103rd N.C.B. well). Aquifer, limestone. Drilled, 1945 by 72nd N.C.B. Altitude, 121 ft. Depth, 132 ft. Diameter, 8 in. Casing, 132 ft.; lower 16 ft. perforated. Water level, Jan. 1945, +4 ft.; Nov. 1953, +5 ft. Drawdown, Jan. 1945, 0.7 ft. Chloride (ppm), Oct. 9, 1946 and Jan. 16, 1947, 35; June 25 and July 18, 1956, 14. Pumpage 1956, less than 35,000 gpd.

Pumpage

Date	Rate (gpm)	Gallons		
July 3, 1945	62	75,000		
Aug. 1	62	75,000		
Sept. 1	60	55,000		
Oct. 1	60	57,000		
Nov. 6	75	74,000		
Dec. 1	75	62,000		
Jan. 1, 1946	60	68,000		
Feb. 1	90	117,000		
Mar. 1		79,000		
Apr. 1	85	97,000		
May 1	_	98,000		

- 60 (BQ603878) F.E.A. Dairy well (U. S. Commercial Co. dairy well). Aquifer, limestone. Drilled, 1945 by 72nd N.C.B. Altitude, 185 ft. Depth, Feb. 1945, 210 ft.; Nov. 1953, 190 ft. Diameter, 6 in. Casing, 208 ft.; lower 20 ft. perforated. Water level, Feb. 13, 1945, 42 ft. Drawdown, 0.4 ft. while pumping at 60 gpm. Chloride (ppm), Oct. 9 and Nov. 8, 1946 and Jan. 16, 1947, 35. Driller's log; dirt, red, 0-60 ft.; coral, broken, 60-183 ft.; coral, water bearing, 183-210 ft.
- 61 (BR766015) Army North Field well 2 (Andersen well 2). Aquifer, limestone. Drilled, 1945 by 854th E.A.B. (U. S. Army). Altitude, 547 ft. Depth, 586 ft. Diameter, 10 in. Bottom of hole shot with dynamite. Casing, 570 ft.; lower 40 ft. perforated. Water level, 1945, +1 ft. Drawdown, 3.7 ft. while pumping at 125 gpm. Pumpage, July 1945, 40,000 gpd, at a rate of 150 gpm. Chloride (ppm), July 1, 1945, 880; July 2, 1945, 915; July 3, 1945, 1,060; July 4, 1945, 1,100; July 5, 1945, 1,220; July 6, 1945, 1,270; Jam. 1946, 1,400.

Driller's log

-																			Depth (ft)
Coral	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	0-65
Coral, hard -	-	_	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	_	65-133
Coral, soft -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	133-225
Coral, hard -	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	225-269
Coral, soft -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	269-357
Coral, sandy -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	357-522
Coral, very ha	rd	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	522 - 533
(Record missing	ıg)	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	_	-	533-555
Sand, water-be	ari	ine	3	-	*	-	-	-	-	-	-	-	-	-	-	-	_	-	555-570
Coral, hard -	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	570-573
Coral, sandy -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	573-577
(Record missing	ıg)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	577-586

62 (BQ614900) 72nd N.C.B. well 2. Aquifer, limestone. Drilled, 1945 by 72nd N.C.B. Altitude, 214 ft. Depth, 226 ft. Diameter, 8 in. Water level, 1945, +4 ft. Drawdown, 1945, 0.75 ft. while pumping 50 gpm.

Pumpage (gallons)

June 25, 1945	40,500	Nov. 1, 1946	15,000
July 1	42,800	Dec. 10	16,500
Aug. 6	45,800	Jan. 1, 1947	18,000
Sept. 1	21,800	Feb. 1	25,500
Jan. 1, 1946	26,300	Mar. 1	34,500
Feb. 1	13,500	Apr. 1	39,000
Mar. 1	31,500	May 1	36,000
Apr. 1	22,500	June 1	33,000
May 1	10,500	July 1	18,000
June 2	25,500	Aug. 1	7,000
July 11	9,000	Sept. 1	15,000
Aug. 1	10,500	Oct. 1	11,500
Sept. 1	13,500	Nov. 3	12,000
Oct. 1	13,500	Dec. 17	27,000

June 25, 1945	600	Aug. 21, 1945	630
July 2	565	28	445
15 25 Aug. 8 14	565 530 600 636 668	Sept. 3 10 June 6, 1946 Nov. 8 Dec. 10	535 566 620 700 750

63 (BQ586908) 41st N.C.B. well. Aquifer, limestone. Drilled, 1945, by U.S.M.C. Altitude, 179 ft. Depth, more than 179 ft. Water level, 1945, +3 ft. Drawdown, Jan. 19, 1946, 6.2 ft. while pumping at 20 gpm; Feb. 14, 1946, 8.4 ft. while pumping at 40 gpm. Chloride (ppm), Dec. 6, 1945, 700; Jan. 3, 1946, 670; Feb. 7, 1946, 700; Mar. 20, 1946, 770; Mar. 21, 1946, 760.

Pumpage (gallons)

July 1, 1945 Aug. 1 Sept. 1	53,600 46,100 51,000	Dec. 6, 1945 Jan. 1, 1946 Feb. 1	¥	28,800 24,000 57,600
Oct. 22	20,300	Mar. 1		53,700
Nov. 1	41,100	Apr. 1		9,700

- 64 (BQ596891) Canada well 4. Aquifer, limestone. Dug, 1937, by U. S. Navy. Altitude, 13 ft. Depth, 30 ft. Casing, 30 ft. Water level, July 6, 1937, +7 ft. Chloride, July 6, 1937, 92 ppm. Driller's log; earth, reddish brown, 0-6 ft.; cascajo (limestone), 6-30 ft.
- 65 (BQ673949) MarBo well 2 (204th General Hospital well 1). Aquifer, limestone. Drilled, March 1945, by 72nd N.C.B. Altitude, 351 ft. Depth, 379 ft. Diameter, 10 in. Casing, 379 ft.; lower 30 ft. perforated. Water level, March 1945, +2 ft. Drawdown, July 1, 1945, 0.5 ft. while pumping at 164 gpm.

Driller's log

	Depth (ft)
Coral, sandy	0-29
Coral, hard	29-42
Coral, firm	42-55
Coral, hard	55 - 80
Lime, and hard coral	80-120
Coral, coarse	120-248
Cavity (lost water and mud)	248 - 251
Lime	251 - 280
Coral, soft	280-325
Coral, hard	325-349
Water strata	349-379

Pumpage

Date	Rate (gpm)	Gallons
July 1, 1945	164	228,000
Aug. 1	160	211,000
Sept. 2	154	205,000
Dec. 20	333	20,000
Jan. 1, 1946	333	320,000
Feb. 1	333	260,000
Mar. 1	333	280,000
Apr. 1	300	252,000
May 1	300	252,000
June 1	300	252,000
July 1	300	432,000
Aug. 1	300	396,000
Sept. 1	180	173,000

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
1953 1954	-	13.42	14.16	13.66	11.41	13.55 13.75	15.39 13.63	13.78 14.69	12.05 15.37	15.10 14.48	14.19	-

66 (BQ703956) MarBo well 4 (Marine Transit Center well 1). Aquifer, limestone. Drilled, 1945 by U.S.M.C. Altitude, 407 ft. Depth, 1945, 421 ft.; May 4, 1955, 378.6 ft. Diameter, 13 in. Water level, 1945, +4 ft. Drawdown, 20.5 ft. while pumping at 170 gpm. Chloride (ppm), Sept. 10, 1945, and Jan. 1, 1946, 35.

Pumpage (gallons)

Sept. 1, 1945	166,000	Nov. 21, 1945	194,000
.7	165,000	28	194,000
14	137,000	Dec. 1	145,000
21	235,000	7	78,000
28	235,000	14	115,000
Oct. 1	145,000	21	122,000
7	179,000	28	138,000
14	148,000	Jan. 1, 1946	102,000
20	179,000	7	224,000
28	87,000	14	224,000
Nov. l	179,000	21	122,000
7	148,000	28	71,000
14	189,000		, ,
1			

67 (BQ703949) Marine Transit Center well 2. Aquifer, limestone. Drilled, 1945 by U.S.M.C. Altitude, 402 ft. Depth, 409 ft. Diameter, 10 in. Casing, 409 ft. Water level, 1945, +13 ft. Drawdown, 0.4 ft. while pumping at 55 gpm. Chloride (ppm), 1945, 35; Jan. 1, 1946, 40.

Sept. 2, 1945	79,000	Nov. 21, 1945	48,000
7	76,000	29	20,000
- 1 ¹ 4	40,000	Dec. 1	50,000
21	76,000	7	26,000
28	76,000	14	35,000
Oct. 1	46,000	21	41,000
7	56,000	28	65,000
14	49,000	Jan. 1, 1946	47,000
21	49,000	7	86,000
28	51,000	14	43,000
Nov. 2	33,000	21	14,000
7	53,000	26	40,000
3.4	63,000		,

^{68 (}BR747032) Army North Field well 3 (Andersen well 3). Aquifer, limestone. Drilled, March 1945 by 72nd N.C.B. Altitude, 512 ft. Depth, 520 ft. Reported never used because four sections of pipe were stuck in the well during construction.

Driller's log

	Depth (ft)
Soil, red	 0-2
Coral, loose	 2-20
	 20-100
Coral, soft	 100-110
	 110-205
Lime, hard	 205-300
	 300-328
Lime, hard	 328-330
Cavity	 330-340
Lime, hard	 340-348
	 348-370
Lime, hard	 370-378
	 378-380
Lime, hard	 380-384
	 384-390
	 390-394
Cavity	 394-400
	 400-435
	 435-488
	 488-510
Sand, fine	 510-520

69 (BQ605868) 6th Marine Division well 1. Drilled, Apr. 1945.
Altitude, 124 ft. Depth, 150 ft. Diameter, 13 in. Water level,
Apr. 1945, +2 ft. Reported yield, 10 gpm.

Driller's log

	Depth (ft)
Shale, red	0-25
Clay, yellow, and broken coral	
Coral, coarse	90-102
Mud, yellow, and broken coral	
Water strata	122-150

70 (BQ612865) B.P.M. well 3 (6th Marine Division well 2). Aquifer, limestone. Drilled, 1945 by 103rd N.C.B. Altitude, 203 ft. Depth, 234 ft. Diameter, 12 in. Pumping rate, July, Aug. 1945, 60 gpm. Pumpage (gal.), July 13, 1945, 81,000; Aug. 1, 1945 and Aug. 15, 1945, 86,400; Sept. 1 and 15, 1945, 56,000. Chloride (ppm), Aug. 8, 1945, 247; Sept. 8, 1945, 240; March 1954, 410; Dec. 14, 1954, 416; Apr. 26, 1955, 400.

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1954	7.48	6.91	7.45	7.30	7.02	6.86	7.03	6.82	2.28	6.67	6.73	6.67
1955	6.38	6.01	6.66	6.45	3.86	3.29	3.38		3.88	3.89	3.42	2.82

71 (BQ616869) B.P.M. well 2 (6th Marine Division well 3). Aquifer, limestone. Drilled, July 1945 by 103rd N.C.B. Altitude, 222 ft. Depth, 253 ft. Diameter, 12 in. Water level, Jan. 1954, +1 ft. Pumping rate, July 1, 1955, 310 gpm.

Pumpage

Date	Rate (gpm)	Gallons
T-1 20 10h E	60	86,000
July 30, 1945		
Aug. 1	60	83,000
15	60	86,000
Sept. 1	60	57,000
15	60	57,000
Dec. 15	60	54,000
Jan. 5, 1946	60	54,000
Feb. 7	50	72,000
19	50	15,000
Mar. 1	50	15,000
15	50	72,000
	50	72,000
-	· · · · · · · · · · · · · · · · · · ·	48,000
July 15	125	
Aug. 4	125	49,000
26	125	38,000
Sept. 1	125	53,000
15	125	53,000

Pumpage (million gallons)

		_
1954 10.84 8.36 14.33 13.88 13.03 12.51 14.05 14.93 1955 13.83 11.37 10.70 10.83 9.17 13.17 5.80 7.54	11.96 15.50 14.30 14.5 7.91 7.52 6.13 6.2	4

July 17, 1945 22 28	629 707 619	Jan. 22, 1946 28 Feb. 14	194 212 212
Sept. 1 Dec. 14 21 28 Jan. 7, 1946 14	707 416 520 520 530 213	Mar. 13 Mar. 1954 Dec. 14, 1954 Apr. 26, 1955 Sept. 5, 1956	191 872 864 728 1,164

^{72 (}BQ620875) B.P.M. well 1 (6th Marine Division well 4). Aquifer, limestone. Drilled, Aug. 1945. Altitude, 209 ft. Depth, Aug. 1945, 302 ft.; July 1, 1955, 210 ft. Diameter, 12 in. Pumping rate, July 1955, 290 gpm. Chloride (ppm), Aug. 17, 1945, 177; Aug. 22, 1945, 135; Aug. 25, 1945, 141; March 1954, 211; Dec. 14, 1954, 197; Apr. 26, 1955, 176; Sept. 5, 1956, 282.

Pumpage

Date	Rate (gpm)	Gallons
Aug. 8, 1945	60	43,000
15	60	86,000
Sept. 1	60	57,000
15	60	57,000
Dec. 2	60	54,000
15	60	54,000
Feb. 1, 1946	50	45,000
15	50	45,000
Mar. 1	50	15,000
15	50	72,000
Apr. 3	50	72,000
May 1	175	68,000
June 3	175	44,000
15	175	45,000
July 1	175	37,000
14	175	29,000
Aug. 26	200	72,000
Sept. 1	200	18,000
15	200	33,000
July 1955	290	

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
195 ¹ 4 1955	10.98	10.90	11.91 13.18	13.22 12.62	13.47 12.80	12.67 12.47	11.87 12.45	11.57 12.83	12.57 12.79	12.91 13.57	11.72 12.04	13.07

73 (BQ645954) Harmon Field, old well 3 (Army Depot Field well 3).
Aquifer, limestone. Drilled, Apr. 1945. Altitude, 276 ft. Depth,
300 ft. Diameter, 10 in. Casing, 300 ft.; lower 30 ft. perforated.
Water level, Apr. 1945, +2 ft. Reported never used because of sand clogging.

Driller's log

																				Depth (ft)
Fill -			-	-	-	-	-	_	_	_	_	-	-	_	-	_	_	-	-	0-5
Coral,			-	-	-	-	-	-	_	_	_	-	_	-	-	-	-	-	-	5-30
Coral,	hard		-	-	-	_	_	_	_	_	_	-	-	-	_	-	-	_	_	30-43
Cavity			-	-	-	-	-	-	-	-	-	-	-	_	-	_	_	-	-	43-45
Coral,	mediu	n ha	rd	_	_	-	_	_	_	_	_	-	_	-	-	-	_	_	-	45-75
Lime -																	-	-	-	75-100
Coral			-	-	-	-	_	-	_	-	-	-	_	-	_	_	_	-	-	100-188
Coral,	hard		-	-	_	-	_	-	_	_	-	-	_	-	-	-	-	-	-	188-229
Coral,	mediu	n ha	ırd	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	229-276
Coral,	water	str	ata	Э.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	276-300

- 74 (BQ612930) Ilipog well. Aquifer, limestone. Drilled, June 1937 by U. S. Navy. Altitude, 82 ft. Depth, 89 ft. Diameter, probably 6 in. Casing, 89 ft. Water level, June 16, 1937, 42 ft. Chloride, June 16, 1937, 185 ppm.
- 75 (BR751029) Army North Field well 4 (Andersen well 4). Aquifer, limestone. Drilled, May 1945. Altitude, 527 ft. Depth, 563 ft. Diameter, 10 in. Casing, 300 ft.; lower 40 ft. perforated. Water level, Apr. 1945, +2 ft. Chloride (ppm), July 8, 1945, 140; July 15, 1945, 150; July 22, 1945, 159; Sept. 16, 1945, 170; Dec. 17, 1945, 165; June 22, 1951, 148; Apr. 30, 1953, 130.

Driller's log

	Depth (ft)
Coral	0-100
Lime	100-120
Coral, soft	120-155
Coral, hard	155-205
Lime, hard	205-221
Lime, broken, and coral	221-273
Dolomite lime (?)	273-305
Lime, hard	305-312
Coral, hard	312-370
Lime, hard	370-394
Coral, broken	394-425
Lime	425-450
Coral	450-467
Coral and lime	467-480
Lime	480-518
Lime, hard	518-525
Sand, tight	525-535
Sand, fine, hard	535-545
Sand and coral	545-563

Pumpage

Date	Rate (gpm)	Gallons
July 4, 1945	200	24,000
15	200	165,000
Aug. 1	175	141,000
15	125	157,000
Sept. 2	125	160,000
16	125	163,000
Dec. 17	110	198,000
Jan. 1, 1946	110	63,000
Feb. 15	110	46,000
Apr. 1	175	74,000
15	175	85,000
May 6	175	37,000
15	175	74,000
June 1	175	60,000
July 15	175	58,000
Aug. 4	175	55,000
19	200	54,000
Sept. 2	200	24,000

(BQ742969) Santa Rosa Spring (Memie Aguila Spring). Water issues from tuffaceous sandstone on the southeast side of Mt. Santa Rosa. Altitude, 720 ft. Reported flow, 1,000 to 25,000 gpd. Measured flow, Aug. 9, 1956, 86,000 gpd (after a rain on the previous day). Water was pumped for military supply during parts of 1945 and 1946.

Pumpage (gallons)

1,800 4,500	Oct. 14, 1945	2,700 2,700
2,700	28	2,700 1,800
2,700	14	1,800 1,800
2,700	28	2,700
4,500	28	2,700 2,700
3,600	13	1,800 2,700
3,600 2,700	22	2,700
	4,500 2,700 1,800 2,700 2,700 4,500 4,500 2,900 3,600 3,600	4,500 21 2,700 28 1,800 Nov. 7 2,700 14 2,700 21 2,700 28 4,500 Jan. 21, 1946 4,500 28 2,900 Feb. 7 3,600 13 3,600 22

(BQ609865) B.P.M. well 4 (6th Marines well 1-A). Aquifer, limestone. Drilled, Apr. 1945. Altitude, 196 ft. Depth, 225 ft. Diameter, 12 in. Casing, 225 ft.; lower 30 ft. perforated. Water level, Jan. 1954, +3 ft. Pumpage, July-Sept. 1945, 70,000 gpd at a rate of 60 gpm. Chloride (ppm), Aug.-Sept. 1945, 159; Mar.-Apr. 1954, 570; Dec. 1954, 564; Apr. 1955, 500. Driller's log; soil, red, 0-4 ft.; coral, medium hard, 4-195 ft.; coral, water strata, 195-225 ft.

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1954	5.25	4.45	4.53	4.29	4.25	3.86	4.00	3.85	4.05	4.05	4.20	4.45
1955	4.54	3.66	4.03	3.29	3.30	3.68	3.85	3.68	3.50	3.49	3.22	3.01

78 (BQ596916) N.A.S. Agana well 4 (N.A.B. Agana well 4). Aquifer, limestone. Dug, 1945. Altitude, 24 ft. Depth, probably less than 30 ft. Water level, Jan. 1946, +2 ft. Drawdown, 1 ft. while pumping at 150 gpm. Chloride, Jan. 1946, reported 195-350 ppm.

Pumpage (gallons)

July 9, 1945	203,000	Oct. 14, 1945	90,000
14	212,000	21	207,000
30	72,000	28	212,000
Aug. 2	72,000	Nov. 7	171,000
7	144,000	14	176,000
14	154,000	21	212,000
21	212,000	28	176,000
28	212,000	Dec. 7	189,000
Sept. 7	212,000	14	194,000
14	207,000	21	212,000
21	216,000	28	212,000
28	158,000	Jan. 7, 1946	212,000
Oct. 8	216,000		

79 (BQ595915) ACEORP Tunnel (Tamuning Maui). Basal tunnel in limestone. Excavated, 1947, by 136th N.C.B. Altitude of land surface at entrance, 38 ft. Construction, three tunnels: tunnel 1, 150 ft.; tunnel 2, 150 ft.; tunnel 3, 700 ft. in length. Water level, 1954, +3.86 ft.

Pumpage (million gallons)

Feb. 1952	0.27	Mar. 1953	2.11
Mar.	7.97	Apr.	5.72
Apr.	9.01	May	6.59
May	20.62	June	6.02
Aug.	11.88	July	8.17
Sept.	7.38	Aug.	0.28
Oct.	2.64	Oct.	4.36
Nov.	0.29	Dec.	0.32
Dec.	0.43	Jan. 1954	1.91
Jan. 1953	10.60	Feb.	0.00
Feb.	1.39		

Pumpage and chloride

Date	Pumpage (million gallons)	Tunnel 1	Chloride (ppm) Tunnel 2	Tunnel 3
Sept. 8, 1947 19 Oct. 1 Jan. 23, 1948 Feb. 1 15 Mar. 1 15 Apr. 1 15	0.952 0.964 1.008 0.934 0.798 0.777 0.798 0.786 0.882 0.838	460 420 440 380 360 360 400 360 340	440 460 440 440 540 540 480 500 560 440	600 580 680 680 700 666 700 660

Pumpage and chloride (continued)

Date	Pumpage (million gallons)	Tunnel l	Chloride (ppm) Tunnel 2	Tunnel 3
May 1, 1948 15 June 1 15 July 1 15 Aug. 1 15 Sept. 1 15 Oct. 1 15 Nov. 1	0.743 1.008 0.988 1.008 1.128 0.682 0.594 0.756 0.893 0.336 0.649 0.630 0.473	360 360 340 320 360 330 320 330 390 390 300 320 500	500 480 480 420 430 450 480 450 460 400 600 350	660 660 680 660 620 530 680 530 620 600 600 800

80 (BQ625945) Tumon Tunnel (Tumon Maui). Basal tunnel in limestone. Excavation completed, May 1947, Corps of Engineers, U. S. Army. Tunnel extends 1,000 ft. eastward from the pump sump. Water level, +1-2 ft. Drawdown, May 1947, 0.7 ft. while pumping at 1,100 gpm.

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1954	31.00	25.24	28.43	25.74	28.77	30.03 30.58 31.36	30.35	32.67	34.06	35.97	36.27	30.72

Apr. 23, 1947 May 12 Apr. 16, 1951 Mar. 1, 1953	89 114 112 80 130 120 140 140 120 130 125 80	May 1955 Aug. Sept. Oct. Nov. Dec. Jan. 1956 Feb. Mar. Apr. May June	128 120 120 118 128 120 118 128 129 130 128
Mar. 1955 Apr.	115 144	July 9 Aug. 1	116

81 (BQ654983) NCS well 2 (JCA well 2). Aquifer, limestone. Drilled, 1945. Altitude, 360 ft. Depth, about 390 ft. Diameter, 6 in. Pumping rate, 1955-1956, 200 gpm. Pumpage, 1956, about 75,000 gpd. Chloride (ppm), Nov. 28, 1945, 88; Mar. 7, 1946, 106; Jan. 16, 1947, 141.

Pumpage

Date	Rate (gpm)	Gallons
Oct. 19, 1945	50	26,000
Nov. 28	200	288,000
Dec. 1	200	288,000
Jan. 1, 1946	200	288,000
Feb. 2	200	288,000
Mar. 1	100	100,000
May 28	115	41,000
June 1	115	41,000
July 1	-	38,000
Aug. 1	110	40,000
Sept. 1	110	33,000
Oct. 1	110	26,000
Nov. 7	80	29,000
Dec. 1	80	19,000
Jan. 7, 1947	90	27,000
Feb. 1	90	16,000
Mar. 1	90	86,000
Apr. 28	80	34,000
May 7	80	34,000

82 (BQ605927) ABCD well. Aquifer, limestone. Drilled, 1945. Altitude, 116 ft. Depth, Nov. 22, 1955, 125.3 ft. Diameter, 8 in. Water level, Sept. 12, 1957, +2 ft. Pumping rate, 1945-1946, 100-200 gpm. Chloride (ppm), Aug. 24, 1945, 246; Sept. 24, 1946, 272; Nov. 8, 1946, 283; Dec. 10, 1946, 212; Jan. 16, 1947, 283; Mar. 30, 1953, 244; Apr. 6, 1953, 238.

Pumpage (gallons)

July 1, 1945	288,000	Mar. 15, 1946	319,000
15	216,000	Apr. 21	108,000
Aug. 1	234,000	May 5	108,000
15	290,000	19	108,000
Sept. 1	305,000	June 2	108,000
15	319,000	15	108,000
Oct. 1	312,000	July 1	108,000
15	327,000	16	108,000
Nov. 1	312,000	Aug. 1	8,000
15	312,000	15	4,000
Dec. 1	312,000	Sept. 14	3,000
15	319,000	Oct. 1	4,000
Jan. 1, 1946	319,000	15	4,000
15	319,000	Nov. 2	5,000
Feb. 1	319,000	16	3,000
15	319,000	Dec. 2	6,000
Mar. 1	319,000	16	8,000
	/		•

83 (BR699029) MarBo well 5, Agafo Guamas (373rd Hospital well 2).
Aquifer, limestone. Drilled, July 1945. Altitude, 468 ft. Depth,
495 ft. Diameter, 12 in. Pump setting, 490 ft. Water level,
1945, 42 ft. Pumping rate, 1945-1946, 100-150 gpm. Driller's log;
coral, soft to medium, 0-420 ft.; coral, yellow, 420-435 ft.; coral,
soft to medium, 435-495 ft.

Pumpage (gallons)

July 29, 1945	123,000	Apr. 1, 1946	65,000
Aug. 1	104,000	15	59,000
15	94,000	May 29	72,000
Sept. 2	215,000	June 1	50,000
15	65,000	July 1	81,000
Feb. 18, 1946	41,000	15	68,000
Mar. 1	29,000		

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1954	1.30	1.63	1.92	2.23	2.19	2.16	1.73	1.52	1.53	1.74	1.55	-
1955	1.52	1.75	-	1.77	1.64	1.42	1.50	1.34	1.32	1.55	1.59	1

July 1945	53	Jan. 1954	34
Aug.	35	Mar. 1955	
Sept.	44	May	38
Jan. 1946	45	June	34 38 38
May 1953	30	Nov.	45
June	35	Jan. 1956	25
July	30	Aug.	24

^{84 (}BQ669949) MarBo well 1 (204th Hospital well 2). Aquifer, limestone. Drilled, July 1945 by 72nd N.C.B. Altitude, 344 ft. Depth, 385 ft. Diameter, 12 in. Casing, 385 ft.; lower 40 ft. perforated. Pumping rate, 1945-1946, 80-330 gpm; 1953-1956, 300 gpm. Driller's log; clay, red, 0-1 ft.; coral, medium, 1-250 ft.; coral, medium, with hard streaks, 250-342 ft.; coral, porous, 342-385 ft.

Pumpage (gallons)

Aug. 15, 1945	102,000	Mar. 4, 1946	180,000
Sept. 2	24,000	18	240,000
15	90,000	Apr. 1	234,000
Dec. 24	210,000	15	216,000
Jan. 1, 1946	200,000	May 1	234,000
21	380,000	15	198,000
Feb. 1	240,000	June l	252,000
15	180,000	27	180,000

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1954	14.00	- 13.57 9.84	14.68	15.64	12.32	14.96	15.96	14.39	13.64	9.71	9.24	-

July 13, 1945	35	July 1955	66
Jan. 1, 1946	70	Aug.	95
Mar. 1, 1953	65	Sept.	70
Apr. 1	75	Oct.	68
May 19	60	Nov.	74
Dec. 10	65	Dec.	70
Jan. 3, 1954	70	Jan. 31, 1956	43
18	80	Feb.	43 68
Feb. 5	82	Mar.	68
Mar. 18	84	Apr.	68
Feb. 1955	66	May	68
Apr.	66	June	68
May	60	July	60
June	70	Aug. 1	78

^{85 (}BQ703943) Marine Transit Center well 3. Aquifer, limestone. No other records available.

^{86 (}BQ658953) Dededo Village well. Aquifer, limestone. Drilled, July 1945. Altitude, 337 ft. Depth, 371 ft. Diameter, 6 in. Casing, 365 ft.; lower 35 ft. perforated. Water level, 1945, +8 ft. Drawdown, 7 ft. while pumping at 30 gpm. Chloride, reported to have averaged about 35 ppm during period of operation. Driller's log; coral, medium hard, 0-329 ft.; coral, soft, porous, 329-371 ft.

Pumpage (gallons)

Feb. 17, 1946	27,000	Apr. 21, 1946	20,000
21	35,000	28	27,000
28	29,000	May 7	25,000
Mar. 7	29,000	14	25,000
14	29,000	21	30,000
21	29,000	25	22,000
28	29,000	June 7	29,000
Apr. 7	21,000	July 7	25,000
14	27,000	14	25,000
	·		

87 (BQ615925) Harmon Field Oxygen Plant well 1. Aquifer, limestone. Drilled, June 1945 by 72nd N.C.B. Altitude, 140 ft. Depth, 154 ft. Diameter, 8 in. Casing, 154 ft.; lower 40 ft. perforated. Pumping rate, 1945-1946, 30 gpm. Chloride, July 10, 1945, 110 ppm. Driller's log; coral, medium, 0-138 ft.; coral, porous, 138-154 ft.

Pumpage (gallons)

Q	7). 70). 5	19 000	D 5 701.5	06 000
Sept.	14, 1945	18,000	Dec. 7, 1945	36,000
	21	27,000	21	14,000
	29	14,000	28	27,000
Oct.	9	18,000	Jan. 7, 1946	36,000
	16	18,000	15	18,000
	21	72,000	22	41,000
	29	41,000	28	18,000
Nov.	6	41,000	Feb. 1	18,000
	14	14,000	21	23,000
	21	36,000	27	9,000
	28	50,000	Mar. 9	9,000

88 (BQ579873) Ordot well. Aquifer, limestone. Drilled, Aug. 1937 by U. S. Navy. Altitude, 100 ft. Depth, 99 ft. Diameter, probably 6 in. Water level, Aug. 23, 1937, +8 ft. Chloride, Aug. 23, 1937, 18 ppm (before pumping).

Driller's log

													Depth (ft)
Soil	-	-	-	_	_	-	_	_	_	-	-	-	0-10
Cascajo (limestone), dirty	-	-	-	-	-	-	-	-	-	-	-	-	10-30
Clay							-	-	-	-	-	-	30-40
Cascajo (limestone), dirty	-	-	-	-	-	-	-	-	-	-	-	-	40-81
Limestone ledge, white	-	-	-	-	-	-	-	-	-	-	-	-	81-100

- 89 (BQ496892) Piti Navy Yard well. Aquifer, sand. Drilled, about 1945 by U. S. Navy. Altitude, 6 ft. Depth, 36 ft. Diameter, 10 in. Casing, 36 ft.; lower 20 ft. perforated. Pumping rate, 1946, 80-130 gpm. Pumpage, Jan.-May 1946, 55,000-136,000 gpd. Chloride, Apr.-May 1946, 1,130 ppm.
- 90 (BR665016) NCS well 1. Aquifer, limestone. Drilled, Nov. 1948 by U. S. Navy. Altitude, 413 ft. Depth, 443 ft. Diameter, 10 in. Casing, 443 ft.; lower 35 ft. perforated. Water level, July 7, 1952, +3 ft. Pumping rate, 1952-1956, 400 gpm. Chloride (ppm), Sept. 14, 1950, 112; July 15, 1952, 150.
- 91 (BR667011) NCS well 1-A. Aquifer, limestone. Drilled, 1954 by U. S. Navy. Altitude, 429 ft. Depth, 463 ft. Diameter, 10 in. Casing, 463 ft.; lower 30 ft. perforated. Water level, Sept. 20, 1955, +4 ft. Pumping rate, 1955-1956, 200 gpm. Pumpage, 1955, 158,000 gpd. Chloride (ppm), July 23, 1954, 292; Dec. 15, 1955, 214; Apr. 12, 1957, 300.
- 92 (BQ567717) Malojlo well. Aquifer, tuffaceous sand. Dug, 1937 (?) by U. S. Navy. Altitude, about 550 ft. Depth, 6 ft. Diameter, 5 ft. Yield, Mar. 1956, 0.3 gpm (430 gpd).
- 93 (BQ599775) Talofofo dug well. Aquifer, tuffaceous sand. Altitude, about 600 ft. Depth, 8 ft. Diameter, 5 ft. Yield, Mar. 1956, 3-5 gpm (4,300-7,200 gpd).
- 94 (BQ486713) Piga Spring (Umatac Spring). Water flows from limestone bed in pyroclastic rock. Altitude, about 330 ft. Water collects in a small concrete reservoir and flows by gravity to Umatac. Discharge, Feb. 23, 1955, 62 gpm. Estimated daily use, 16,100 gals.
- 95 (BQ617909) V.D. 5 well 1. Aquifer, limestone. Drilled, about 1943 by Japanese Army. Altitude, about 270 ft. Depth, 288 ft. Diameter, 8 in. Pumping rate, 1945-1946, 30 gpm. Chloride (ppm), Jan. 17, 1946, 70; Jan. 28, 1946, 78; Feb. 24, 1946, 70.

Sept.	15,	1945	43,000	Mar.	1, 1946	29,000
Oct.			43,000		15	27,000
	15		32,000	Apr.	1	27,000
Nov.	1		29,000	_	15	27,000
	15		22,000	May	1	22,000
Dec.	1		18,000		15	18,000
	15		31,000	June	ı	20,000
Jan.	1,	1946	29,000		15	16,000
	15		29,000	July	1	18,000
Feb.	1		13,000	•	14	18,000
	15		29,000			

96 (BQ741951) Janum Spring. Water flows from a cave in limestone, near sea level.

Discharge (million gallons)

Mar.	27,	1952	1.23	July	2,	1953	1.55
Apr.	11		1.16	Sept.	21		2.24
June	10		1.34	June	1,	1954	2.20
July	9		1.30		18		2.31
Aug.	6		1.51		30		1.50
Sept.	4		1.34	Oct.	11		2.74
Apr.	14,	1953	1.25	June	4,	1955	1.50
May	14		1.37	Nov.	22		1.66
June	12		1.43	May	25,	1956	1.32

97 (BR728048) Tarague Spring (Tarague cave 1). Sinkhole in limestone, extending to basal water table. Altitude, about 20 ft.

Pumpage and chloride

Date	Rate (gpm)	Gallons	Chloride (ppm)
July 1, 1945	80	77,000	318
22	100	34,000	250
Aug. 1	85	58,000	250
15	100	83,000	318
Sept. 2	100	68,000	318
16	100	89,000	318 314
Jan. 1, 1946	110	190,000	354
15	110	177,000	354 354
Feb. 1	110	129,000	354
15	110	99,000	354

98 (BQ619911) V.D. 5 well 2. Aquifer, limestone. Drilled, 1945.
Depth, 278 ft. Diameter, 8 in. Pumping rate, 1945-1946, 45 gpm.
Chloride, Jan. 1, 1946, 70 ppm. Reported pumped dry, June 26, 1946.

30,000	Feb. 1, 1946	19,000
	15	43,000
58,000	Mar. 1	43,000
58,000	15	41,000
43,000	Apr. 1	41,000
	15	41,000
	May 1	32,000
	15	27,000
	June 1	30,000
	15	24,000
43,000		
	58,000 43,000 43,000 32,000 27,000 46,000 43,000	30,000 15 58,000 Mar. 1 58,000 15 43,000 Apr. 1 43,000 15 32,000 May 1 27,000 15 46,000 June 1 43,000 15

- 99 (BR680082) Northwest well 3 (NWAAB well 3). Aquifer, limestone. Drilled, Aug. 1945. Altitude, 558 ft. Depth, 590 ft.; measured depth, July 1956, 575 ft. Diameter, 10 in. Water level, May 2, 1956, +2 ft. Drawdown, 5.5 ft. while pumping at 250 gpm; 3.4 ft. while pumping at 150 gpm. Pumping rate, 1945-1946, 150 gpm. Pumpage (gpd), Aug. 1945, 132,000; Sept. 1945, 99,000. Chloride, Jan. 1, 1946, 70 ppm. The well was cleaned and put on a standby basis in Jan. 1957. Tested at 175 gpm, July 6, 1956.
- 100 (BQ497894) FRUU well. Drilled, 1945. Altitude, less than 20 ft. Depth, probably less than 25 ft. Pumping rate, 1945-1946, 15-20 gpm. Chloride, Jan. 1946, 60 ppm.

Pumpage (gallons)

July 22, 1945	32,000	Dec. 21, 1945	12,000
28	32,000	28	12,000
Aug. 7	20,000	Jan. 7, 1946	10,000
14	22,000	14	17,000
21	22,000	21	17,000
Sept. 7	21,000	27	17,000

- 101 (BQ608927) 56th N.C.B. Asphalt Plant well. Aquifer, limestone. Shallow drilled well. Reported capacity, 36,000 gpd. Water reported brackish.
- 102 (BQ592931) LVT Repair Camp well. Aquifer, limestone. Drilled, July 1945. Altitude, 46 ft. Depth, 60 ft. Diameter, 8 in. Casing, 60 ft.; lower 15 ft. perforated. Water level, 1945, 42 ft. Pumping rate, 60 gpm. Chloride (ppm), 1945, 73; Jan. 1, 1946, 280. Driller's log; coral, hard, 0-15 ft.; coral, medium, 15-44 ft.; coral, porous, 44-60 ft.
- 103 (BQ598901) 5th Field Depot well 5. Aquifer, limestone. Altitude, 110 ft. Drilled, 1945. Depth, 134 ft. Diameter, 12 in. Pumping rate, 1945-1947, 30-50 gpm. Chloride (ppm), Jan. 1, 1946, 175; Mar. 14, 1946, 353; Jan. 2, 1947, 500.

Oct. 2, 1945 15 Jan. 1, 1946 17 Feb. 1 15 Mar. 1	18,000 24,000 48,000 25,000 29,000 29,000 39,000	Mar. 15, 1946 Jan. 2, 1947 21 Feb. 1 15 Mar. 1	39,000 43,000 43,000 43,000 43,000
--	--	--	--

- 104 (BQ581785) Pilot Rehabilitation Camp well 1. Dug, 1945. Altitude, less than 30 ft. Depth, probably less than 30 ft. Pumping rate, Jan.-Feb. 1946, 40-50 gpm. Pumpage, Jan. 1946, 15,000 gpd. Chloride, Jan. 1946, 320-780 ppm.
- 105 (BQ581786) Pilot Rehabilitation Camp well 2. Dug, 1945. Altitude, less than 30 ft. Depth, probably less than 30 ft. Pumping rate, Jan.-Feb. 1946, 30 gpm. Pumpage, Jan. 1946, 12,000 gpd. Chloride, Jan. 1946, 320-560 ppm.
- 106 (BQ499894) FRUU well 2. Depth, 115 ft. Reported capacity, 24,000 gpd. Chloride, Jan. 1, 1946, 90 ppm. Reported pumped dry, Jan. 1946.
- 107 (BQ633958) Harmon new well 1 (20th AAF well 1). No records available.
- 108 (BQ602863) 6th Marines well 5. Aquifer, limestone. Drilled, 1945. Depth, reported 180 190 ft. Diameter, 12 in. Pumping rate, 60 gpm. Drawdown, 5.6 ft. Pumpage, Aug.-Sept. 1945, 64,000 gpd. Chloride (ppm), Aug. 1945, 53; Jan. 1946, 35.
- 109 (BR730047) Tarague Spring 4 (Tarague cave 4). Sinkhole in the limestone extending to basal water table. Developed, about 1947, by U.S.A.F. for military use. Altitude, 20 ft. Depth, 20 ft. Diameter, 30 ft. Pumping rate, 1953-1956, 1,100 gpm.

Pumpage (million gallons)

June

July

Aug

Sept

Oct

Nov

Dec

May

Apr

Feb

Year

Jan

Mar

1953 1954 1955	- 49.10	42.57 44.35	46.19	46.13 47.53		41.14 47.39 43.75	41.44 48.10 48.84	48.71	42.47 46.60 47.19	36.87 49.10 48.38	41.68 47.52 47.19	48.84
					C:	hlorid (ppm)						
July Apr. May Nov. Dec.	28 1 14	1951 1952			363 715 654 680 525 720 715 750		Jan. Apr. May June July Aug. Sept. Oct.	1955				640 400 320 380 370 480 372 368
Jan. Mar. May June July Jan. Feb. Mar.	13 1 14 19 30 16 8, 1	1953			720 800 725 730 630 700 830 600 700 654	34	Nov. Dec. Jan. Feb. Mar. Apr. May June Aug.	31, 19	56			372 378 368 360 357 363 362 482

110 (BR687055) Northwest well 4 (NWAAB well 4). Aquifer, limestone.
Drilled, 1945. Altitude, 491 ft. Depth, 552 ft. Diameter, 12 in.
Water level, 1946, +2 ft.

Pumpage (million gallons)

June 1953 July Aug. Sept. Oct. Nov. Feb. 1954 Mar. Apr.	0.89 0.11 0.27 0.29 2.31 2.45 2.53 3.18 1.81	May 1954 May 1955 June July Sept. Oct. Nov. Dec.	1.46 0.91 3.45 6.80 6.81 5.15 0.48 1.64

Chloride (ppm)

Jan. 1946	35 Nov. 1955	155
Apr. 30, 1953	130 Dec.	69
May 19	150 Jan. 31, 1956	90
July 7	120 Feb.	
16	115 Mar.	75 78
Dec. 23	310 Apr.	65
Mar. 10, 1954	240 May	160
Jan. 1955	180 June	80
June 20	140 Aug. 1	186
	•	

111 (BQ586900) 5th Field Depot well 6. Aquifer, limestone. Drilled, 1945. Altitude, 90 ft. Pumping rate, 1945-1947, 40 gpm. Chloride, 1946, 35-70 ppm.

Pumpage (gallons)

22, 1945	19,000	Mar. 15		39,000
1	19,000	Apr. 1		59,000
15	19,000	10		39,000
1, 1946	19,000	Jan. 2, 1947		19,000
15	19,000	15	•	19,000
1	19,000	Feb. 1		19,000
15	38,000	15		19,000
1	39,000	Mar. 1		19,000
	1 15 1, 1946 15	1 19,000 15 19,000 1, 1946 19,000 15 19,000 1 19,000 15 38,000	1 19,000 Apr. 1 15 19,000 10 1, 1946 19,000 Jan. 2, 1947 15 19,000 15 1 19,000 Feb. 1 15 38,000 15	1 19,000 Apr. 1 15 19,000 10 1,1946 19,000 Jan. 2,1947 15 19,000 15 1 19,000 Feb. 1 15 38,000 15

112 (BQ634935) Harmon Field well 4. Aquifer, limestone. Drilled, 1944 by U. S. Army. Altitude, 205 ft. Depth, Aug. 1956, 216 ft. Diameter, 10 in. Water level, Aug. 6, 1956, 44 ft. Drawdown, Jan. 1946, 0.1 ft. while pumping at 140 gpm. Pumping rate (gpm), 1946, 100-140; 1950, 250. Pumpage, Jan., Mar. 1946, 60,000 gpd. Chloride, Jan. 1946, 212 ppm.

113 (BQ629974) Harmon new well 3 (USASTAF well). Aquifer, limestone. Drilled, 1945 by 927th Army Engineers. Altitude, 290 ft. Depth, 312 ft. Diameter, 12 in. from surface to 284 ft.; 10 in. from 284 to 312 ft. Casing, 312 ft.; lower 28 ft. perforated. Pumping rate, 300 gpm. Pumpage, Feb.-Mar. 1946, 300,000 gpd.

Driller's log

																				Depth (ft)
Clay, red	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	-	0-2
Coral, soft -	-	_	•	_	_	-	_	_	-	_	_	-	-	-	_	-	-	-	-	2-80
Coral, medium	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	80-140
Coral, hard -	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	
Rock coral -																				
Coral, medium																				
Sand																				
																				297-304
Sand	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	304-312

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1953	_						8.73					_
1954 1955	9.94						11.01					13.88

Jan. 1946	105	Feb. 1955	245
May 19, 1953	210	Mar.	230
June 30	200	Apr.	200
July 16	220	May	140
Jan. 18, 1954	267	June	196
21	240	July	158
29	240	Aug.	140
Peb. 8	245	Sept.	160
15	240	Oct.	158
23	237	Nov.	160
Mar. 16	242	Dec.	160
Sept.	130	Jan. 31, 1956	192
Oct.	142		

^{114 (}BQ487802) Bona Spring. Water issues from the limestone near contact with underlying volcanic rock. Altitude, about 295 ft. Flow, Aug. 14, 1956, 238 gpm (342,000 gpd).

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1953 1954	37.24	32.13	21.93	18.08	15.35	15.49 12.38	27.56 13.08	20.43	6.57	31.72	43.60 29.30	45.24 27.59

- 115 (BR737047) Tarague Spring 2 (Tarague Cave 2). Sinkhole in limestone extending to basal water table. Formerly used for military water supply. Altitude, 20 ft.
- 116 (BQ619923) NAS Agana well 5 (NAB Agana well 5). Aquifer, limestone. Drilled by 25th N.C.B. Water level, Jan. 1, 1953, 263 ft. below ground surface. Drawdown, 16 ft. while pumping at 200 gpm.
- 117 (BQ455865) NSC Reefer well (NSD Reefer well). Dug well. Altitude, 10 ft. Depth, probably less than 20 ft. Capacity, reported about 140,000 gpd. Chloride, Jan. 1946, 190 ppm.
- 118 (BQ477848) AdComPhibsPac well 1. No records available.
- 119 (BQ477848) AdComPhibsPac well 2. No records available.
- 120 (BQ572884) Chaot well (Test hole 133-2). Test hole ending in volcanic rock. Drilled by U. S. Navy. Altitude, 45 ft. Original depth, 297 ft.; measured depth, Sept. 1956, 258 ft. Used as observation well.
- 121 (BQ547906) Naval Hospital well. Aquifer, limestone. Drilled, 1953 by U. S. Navy. Altitude, 170 ft. Depth, 180 ft. Diameter, 4 in. Water level, May 20, 1953, +7 ft.
- 122 (BQ+83833) Camp Knox well. No records available.
- 123 (BQ617900) Barrigada Village well. Aquifer, limestone. No other records available.
- 124 (BQ651950) Harmon Field well 5. Aquifer, limestone. Altitude, 290 ft. Depth, 298 ft. Diameter, 10 in. Water level, Sept. 8, 1955, +4 ft. Chloride (ppm), Apr. 23, 1954, 74; Sept. 8, 1955, 56. Reported never used.
- 125 (BQ712972) Yigo well. Aquifer, limestone. Altitude, 418 ft. Depth, 435 ft. Diameter, 6 in. Water level, Sept. 16, 1952, +6 ft. Yield, reported 200,000 gpd. Chloride (ppm), 1953, 60; July 18, 1957, 12 (before pumping).

126 (BR754011) Army North Field well 5 (Andersen well 5). Aquifer, limestone.

Pumpage (million gallons)

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
1953 1954 1955	7.00	7.04	9.45	6.32	2.17 10.97	2.92	3.73 8.32	4.88 8.37	7.64	6.07	10.93	-

Chloride (ppm)

May 28, 1951	348	Mar. 11, 1954	500
June 22	378	Sept.	306
Apr. 29, 1953	320	Mar. 1955	390
June 30	430	May	300
July 7	175	June	432
16	170	July	432
Jan. 7, 1954	470	Sept.	430
21	500	Oct.	405
Feb. 5	493	Nov.	400
17	426	Jan. 31, 1956	360

- 127 (BQ743974) Chunge Spring. Aquifer, sandy tuff. Altitude, 830 ft. Water collects in one 8 ft. x 10 ft., and one 4 ft. x 8 ft. concrete reservoir. Discharge, Aug. 27, 1955, 0.65 gpm (930 gpd); Aug. 9, 1956, 8.5 gpm (12,200 gpd), measured after a rain. Water formerly piped to Yigo.
- 128 (BR757001) B.P.M. Andersen well. Aquifer, limestone. Drilled, 1954 by B.P.M. Construction Co. Altitude, 496 ft. Depth, 528 ft. Diameter, 12 in. Casing, 523 ft.; lower 35 ft. perforated with 3/4-in. holes. Pumping rate, 1955, 200 gpm. Drawdown, 26 ft. Estimated pumpage, 1955, 96,000 gals. per month. Chloride (ppm), June 13, 1956, 36; Aug. 1, 1956, 30.
- 129 (BQ682985) Navy test well 1. Drilled, 1954 by U. S. Navy with rotary drilling equipment. Altitude, 450 ft. Depth, 452 ft. Diameter, 8 in. Dry hole (impermeable rock encountered above sea level).

Log

		19.			Depth (ft)
Limestone,	light tan,	stalline, po	porous -	 	- 300-365
Limestone,	white to ta	an, crystall	line	 	365-395

Log (continued)

	Depth (ft)
Limestone, white to tan, crystalline,	
weathered, secondary calcite Limestone, white to light tan, crystalline Limestone, light gray, crystalline Limestone, gray-green, earthy, soft	405-415 415-430
Clay, gray-green, some limestone Tuff and clay, gray and green Tuff, gray-green	430-435 435-445

130 (BR694001) Navy test well 2. Drilled, 1955 by U. S. Navy with rotary drilling equipment. Altitude, 511 ft. Depth, 305 ft. Diameter, 8 in. Dry hole (impermeable rock encountered above sea level).

Log

	Depth (ft)
Limestone, dull white, poorly crystalline, porous - Limestone, light pink to white, medium	0-200
crystalline, hard, contains gray clay-shale Limestone, light tan to white, crystalline,	200-235
porous, hard	235-245
Limestone, dark tan to white Limestone, tan, light gray, white	245-250
Limestone, dirty white to amber-brown, fine	2)0-2))
	255-265
Limestone, similar to above but appears weathered contains green clay at 270 ft Tuff or shale, similar to above but harder Tuff, light gray green, fine grain, conchoidal	
	280-305

- 131 (BQ575777) Ypan well. Aquifer, limestone. Altitude, 130 ft. Reported abandoned because of high salinity.
- 132 (BQ625867) B.P.M. well 6. Aquifer, limestone. Drilled, 1954 by U. S. Navy. Altitude, about 330 ft. Chloride, Apr. 26, 1955, 880 ppm. Reported abandoned because of high salinity, contamination by gasoline and a crooked hole.
- 133 (BQ647993) NCS well 3. Aquifer, limestone. Drilled, 1948, by U. S. Navy. Altitude, 340 ft. Depth, 350 ft. Diameter, 10 in. Casing, 350 ft.; lower 30 ft. perforated. Water level March 12, 1958, +5 ft. Estimated pumping rate, 1955, 200 gpm. Driller's log; soil, and coral, 0-120 ft.; coral, hard, 120-310 ft.; coral sand, 310-350 ft.

- 134 (BQ566777) Talofofo well. Drilled, about 1946 by U. S. Navy. Altitude, 295 ft. Bottom of well may be in volcanic rock.
- 135 (BQ598918) Island Public Works Yard well 1. Aquifer, limestone. Drilled, 1948 by U. S. Navy. Altitude, 54 ft. Depth, 65 ft. Diameter, 10 in. Casing, 65 ft.; lower 20 ft. perforated. Water level, 1948, +2 ft. Reported never used because the water had a bad odor.
- 136 (BQ589927) Camp Watkins well 1. Aquifer, limestone and sand.
 Drilled, 1948 by U. S. Navy. Altitude, 50 ft. Depth, 62 ft. Diameter, 8 in. Casing, 62 ft.; lower 15 ft. perforated. Water level, 1948, 42 ft. Pumping rate, 1948, 60 gpm. Reported low salinity.
- 137 (BQ593931) Camp Watkins well 2. Aquifer, limestone and sand. Drilled, 1948 by U. S. Navy. Altitude, 36 ft. Depth, 42 ft. Diameter, 10 in. Casing, 42 ft.; lower 15 ft. perforated. Water level, 1948, +4 ft. Pumping rate, 1948, 60 gpm.
- 138 (BQ645913) NCS Golf Course well. Aquifer, limestone. Drilled, 1948 by U. S. Navy. Depth, 485 ft. Diameter, 8 in. Casing, 485 ft.; lower 30 ft. perforated. Reported low salinity. Well never used. Driller's log; coral, soft, 0-150 ft.; coral, medium, 150-465 ft.; coral, porous, 465-485 ft.
- 139 (BQ454848) Boston Exchange well 1. Aquifer, limestone. Drilled, 1948 by U. S. Navy. Depth, 36 ft. Diameter, 6 in. Casing, 36 ft.; lower 15 ft. perforated. Reported never used because of high salinity.
- 140 (BQ478726) Alatgue Spring. Water issues from limestone interbedded with tuff. Altitude, 330 ft. Discharge, Feb. 23, 1955, 30 gpm.
- 141 (BQ487690) Siligin Spring. Water issues from limestone. Altitude, 300 ft. Water collects in a small concrete reservoir and flows by gravity to Merizo to supplement river supply.

Discharge (gpm)

13 45 June 10 25	Apr. 26, 1954	48	June 2, 1954	52
	27	54	21	49
	May 6	48	Apr. 17, 1957	32
	13	45	June 10	25

142 (BQ636904) NCS well 4 (Barrigada well 4). Aquifer, limestone. Drilled, 1949 by U. S. Navy. Depth, 443 ft. Diameter, 10 in. Casing, 443 ft.; lower 35 ft. perforated. Chemical analysis, Oct. 10, 1950, chloride, 142 ppm; dissolved solids, 530 ppm; total hardness, 280 ppm. Driller's log; coral, 0-395 ft.; crevice, 395-400 ft.; coral lime, very hard, 400-407 ft.; coral sand, 407-443 ft.

- 143 (BQ465833) NSC Oxygen Plant well 1. Aquifer, limestone and sand. Drilled, 1949 by U. S. Navy. Altitude, 7 ft. Depth, 53 ft. Diameter, 10 in. Casing, 53 ft.; lower 20 ft. perforated. Brackish water, used for cooling. Driller's log; mud, black and yellow clay, 0-30 ft.; coral sand, 30-53 ft.
- 144 (BQ605920) Agana Power Plant well 1. Aquifer, limestone. Drilled, 1949 by U. S. Navy. Altitude, 95 ft. Depth, 104 ft. Diameter, 12 in. Casing, 104 ft.; lower 20 ft. perforated. Water level, 1949, +4 ft. Reported never used. Driller's log; clay, red, and boulders, 0-90 ft.; coral, soft, 90-104 ft.
- 145 (BQ573893) Base Development test hole 133-1. Drilled, 1954 by U. S. Navy. Altitude, 10 ft. Depth, 468 ft. No other records available.
- 146 (BQ583764) Camp Dealey well 1. Aquifer, sand. Drilled, 1948 by U. S. Navy. Altitude, ll ft. Depth, 35 ft. Water level, 1948, 44 ft. Driller's log; boulders, 0-15 ft.; coral, very hard, 15-30 ft.; coral sand, 30-35 ft.
- 147 (BQ566898) Base Development test hole 133-3. Drilled by U. S. Navy. Altitude, 33 ft. Depth, 186 ft.

	Depth (ft)
Clay, bluish-green, fine-grained :	0-37 37-81 81-86 86-96 96-121 121-139 139-181 181-186
-	

- 148 (BQ563887) U.S.G.S. Soil Hole A. Test hole in argillaceous limestone. Drilled 1953 by U.S. Geological Survey with a power auger. Altitude, 63 ft. Depth, June 1957, 48 ft. Diameter, 2 in. Water level, Jan. 3, 1956, +26 ft.
- 149 (BQ632881) U.S.A.F. radio well. Aquifer, limestone. Drilled, 1955 by U. S. Navy. Altitude, 244 ft. Depth, 284 ft. Diameter, 8 in. Water level, 1955, +2 ft.
- 150 (BR772017) Andersen quarry well. Aquifer, limestone. Drilled, Jan. 1955 by U. S. Navy. Altitude, 458 ft. Depth, 490 ft. Diameter, 12 in. Water level, Jan. 21, 1957, +4 ft.

- 151 (BQ467791) Auau Spring. Water issues from limestone at contact with underlying volcanic rock. Altitude, 270 ft. Discharge (gpd), May 20, 1937, 35,000 (est.); Feb. 26, 1957, 31,680.
- 152 (BQ468788) Mao Spring. Water issues from limestone at contact with underlying volcanic rock. Altitude, 550 ft. Discharge, Feb. 26, 1957, 126,700 gpd.
- 153 (BQ583759) Asanite Spring (Asanite Cave). Sinkhole in limestone extending to basal water table. Altitude, 20 ft. Depth, about 25 ft. Chloride, Jan. 18, 1956, 646 ppm.
- (BQ690919) Campanaya Spring (Campanaya Cave). Sinkhole in limestone extending to basal water table. Used by the Japanese Military forces from about 1942 to 1944, and by the U. S. Army from 1947 to 1950 to supply nonpotable water. Altitude, 20 ft. Chloride, reported more than 1,000 ppm while pumping at 400 gpm. Chloride, Jan. 1957, 600 ppm.
- 201 (BQ554793) P.I.E. WD-503. Test hole in volcanic agglomerate. Drilled, 1947 by Pacific Island Engineers. Altitude, 325 ft. Depth, 265 ft. Diameter, 3 in. Casing, 265 ft. Water level, 1947, +321 ft.

	Depth (ft)
Clay, reddish brown, and buff, mottled Tuff, buff to light gray, soft, weathered,	0-17
fractured	17 - 82 82 - 150
Tuff, similar to above, with limestone Talc, greenish gray, and fault gouge	150-187
Agglomerate, white and gray, medium-grained, tuffaceous	187-213
Agglomerate, gray, very coarse-grained, tuffaceous	213-265

202 (BQ555791) P.I.E. WD-504. Test hole in volcanic rock. Drilled, Sept. 1947 by Pacific Island Engineers. Altitude, 312 ft. Depth, 245 ft. Diameter, 3 in. Casing, 245 ft. Water level, 1947, +304 ft.

Driller's log (condensed)

	Depth (ft)
Clay, red and tan	0-8
Agglomerate, reddish to buff, soft, weathered, fractured	8-65

	Depth (ft)
Limestone, coralline, white, coarse-grained,	
fractured	65-108
Talc (fault zone in limestone)	108-138
Agglomerate, greenish-gray, coarse, weathered,	
fractured, some talc	138-163
Talc (fault zone in green tuff)	163-245

- 203 (BQ543775) P.I.E. WR-509. Test hole in tuffaceous agglomerate. Drilled, July 1948 by Pacific Island Engineers. Altitude, 106 ft. Depth, 116 ft. Diameter, 10 in. Water level, July 14, 1948, +18 ft.
- 204 (BQ542772) P.I.E. WR-505. Test well in limestone. Drilled, April 1948 by Pacific Island Engineers. Altitude, 26 ft. Depth, 100 ft. Diameter, 16 in. from 0-68 ft.; 12 in. from 68-100 ft. Casing, 12 in.; slotted from 0-68 ft.; 8 in. liner from 68-100 ft. Water level, April 24, 1948, +19 ft. Yield, 35 gpm with 32-ft. drawdown (chloride, 505 ppm); 54 gpm with 36-ft. drawdown (chloride, 769 ppm); 70 gpm with 39-ft. drawdown (chloride, 779 ppm).
- 205 (BQ541769) P.I.E. WR-507. Test hole in volcanic agglomerate. Drilled, May 1948 by Pacific Island Engineers. Altitude, 22 ft. Depth, 45 ft. Diameter, 15 in. Casing, none. Water level, May 1948, 420 ft. Driller's log; clay loam, black, silty, 0-21 ft.; agglomerate, buff, medium and coarse, tuffaceous, fractured, 21-45 ft.
- 206 (BQ489790) P.I.E. WD-855. Test hole in volcanic rock. Drilled, April 1948 by Pacific Island Engineers. Altitude, 314 ft. Depth, 280 ft. Diameter, 3 in. Water level, Apr. 1948, +308 ft.

Driller's log (condensed)

	Depth (ft)
Clay loam, yellowish brown	0-20
Siltstone, tuffaceous, buff, fine-grained, brown, weathered	20-50
Tuff, calcareous, white, fine-grained and	_ , ,
interbedded basaltic conglomerate	50-70
Agglomerate, basaltic, coarse, fractured	70-110
Tuff, calcareous, white, fine-grained, with	
coral limestone and basaltic agglomerate	110-202
Tuff, calcareous, interbedded gray and dark	
gray, fine-grained	202-210
Tuff, calcareous, interbedded gray and light,	
fine-grained, fractured	210-220
Basalt, dark greenish gray to black, fine-	
grained, fractured	220 - 280

207 (BQ491795) P.I.E. WD-857. Test hole in volcanic rock. Drilled, Mar. 1948 by Pacific Island Engineers. Altitude, 284 ft. Depth, 150 ft. Diameter, 3 in. Water level, Mar. 1948, +282 ft.

Driller's log (condensed)

	(ft)
Tuff, white, bedded, fine- and medium-grained,	
weathered, broken	0-60
Conglomerate, basaltic, dark gray, medium- to	(0.93
coarse-grained, with some limestone Conglomerate, basaltic, dark gray, very coarse-	60-81
grained, fractured, and coral limestone	81-89
Tuff, calcareous, white, fine- and medium-	89-114
Tuff, calcareous, white, and basaltic agglomerate	114-150

208 (BQ507862) P.I.E. WR-526. Test well in volcanic rock. Drilled, 1948 by Pacific Island Engineers. Altitude, 514 ft. Depth, 300 ft. Diameter, 15 in. Casing, 300 ft. Water level, October 8, 1948, +214 ft. Yield, 133 gpm with 131 ft. drawdown.

Driller's log (condensed)

	Depth (ft)
Clay, green-brown, semiplastic to sandy, heavy -	0-39
Clay, green-brown, sandy, with tuff fragments	39-59
Tuff, light-gray to blue-gray, medium-grained,	
weathered	59 - 98
Agglomerate, tuffaceous, gray, medium-grained,	
hard, massive	98-140
Tuff, gray to blue-gray, medium-grained	140-263
Tuff, gray, fine- to medium-grained	263-300

- 209 (BQ506866) P.I.E. WR-520. Aquifer, volcanic rock. Drilled, Dec. 1947 by Pacific Island Engineers. Altitude, 364 ft. Depth, 247 ft. Diameter, 15 in. Water level, Dec. 1947, +322 ft. Drawdown, Jan. 16, 1948, 66 ft. while pumping at 44 gpm. Well was pumped at 90 gpm during dry seasons of 1948, 1949, and 1950.
- 210 (BQ510868) P.I.E. WD-525. Test well in volcanic rock. Drilled, 1948 by Brown-Pacific-Maxon Const. Co. Altitude, 283 ft. Depth, 300 ft. Diameter, 15 in. Water level, 1948, 4246 ft. Yield, May 20, 1948, 90 gpm, with about 260 ft. drawdown.

	Depth (ft)
Clay loam, reddish-brown, sandy	0-40
Tuff, reddish-green, fine-grained, weathered	40-70
Basalt, gray, fine- and medium-grained, solid,	
slightly weathered	70-100
Basalt, gray, fine-grained	100-130
Tuff, greenish-gray, medium-grained, hard, and	
interbedded layers of soft fine-grained gray tuff	130-200
No sample	200-300

- 211 (BQ507866) P.I.E. WR-524. Test well in volcanic rock. Drilled, 1948 by Brown-Pacific-Maxon Const. Co. Altitude, 347 ft. Depth, 280 ft. Diameter, 15 in. Casing, 106 ft. of 10-in. pipe. Yield, Oct. 1948, 60 gpm, with 196 ft. drawdown.
- 212 (BQ506877) P.I.E. WR-527. Test well in basalt. Drilled, 1948 by Pacific Island Engineers. Altitude, 287 ft. Depth, 300 ft. Diameter, 15 in. Yield, Aug. 1948, 145 gpm, with 180 ft. drawdown.

Driller's log

	Depth (ft)
Clay, reddish-brown, plastic Clay, gray to blue, semiplastic to sandy Basalt, dark-gray to black, solid, massive	0-40 40-60 60-300

213 (BQ542770) P.I.E. WR-506. Test well in basalt. Drilled, May 1948 by Pacific Island Engineers. Altitude, 21 ft. Depth, 145 ft. Diameter, 15 in. and 8 in. Water level, May 1948, +1 ft. Yield, May 29, 1948, 86 gpm with 91 ft. drawdown. Chloride, May 29, 1948, 76 ppm.

Driller's log

	Depth (ft)
Clay, yellow-brown	 0-15
Clay, black, sandy	 15-68
Clay, green-gray, sandy	 68-83
Sand, green-black, and silt	 83-88
Tuff, white to gray, coarse- to fine-grained	 88-95
Basalt, green to gray, medium-grained, fresh	 95-145

214 (BQ542773) P.I.E. WR-508. Test well in limestone and volcanic rock. Drilled, June 1948 by Pacific Island Engineers. Altitude, 108 ft. Depth, 168 ft. Diameter, 15 in. and 10 in. Water level, July 1949, +18 ft. Yield, July 1949, 150 gpm. Water-bearing zone between 97 and 112 ft. Chloride, June 1948, 31 ppm.

	Depth (ft)
Clay, tan to dark gray	0-33
Limestone, faintly pink to white, fine- to coarse-grained, tuffaceous	33-76
Limestone, gray, buff, white, medium-grained, tuffaceous	76-103
Limestone, buff to white, medium-grained, tuffaceous, fresh	103-144
Agglomerate, gray to buff, tuffaceous, weathered	144-150
Agglomerate, gray to buff, coarse-grained, some limestone and tuff	150-168

215 (BQ546768) P.I.E. D-494. Test hole in volcanic rock. Drilled, July 1947, by Pacific Island Engineers. Altitude, 20 ft. Depth, 135 ft. Diameter, 3 in. Water level, July 11, 1947, +10 ft.

Driller's log

	Depth (ft)
Clay, dark-gray to black, interbedded with clay	
loam, silt loam, sandy loam, and silty gravel -	0-118
Agglomerate, buff to gray, coarse, weathered, with blocks and fragments of limestone	118-130
Tuff, gray, fine- to medium-grained, fractured,	110-130
weathered	130-135

Observations

Depth tested (ft)	Discharge	Drawdown	Chloride
	(gpm)	(ft)	(ppm)
120-135	6	15.8	1,085
	6	16.0	1,228
	6	16.1	1,310
	14	16.1	1,369
	14	8.2	1,375
	14	8.2	1,472

216 (BQ545768) P.I.E. D-495. Test hole in volcanic rock. Drilled, July 1947, by Pacific Island Engineers. Altitude, 175 ft. Depth, 151 ft. Diameter, 3 in. Water level, July 12, 1947, +176 ft. above land surface. Drawdown, 11.5 ft. while pumping at 15 gpm.

Driller's log

	Depth (ft)
Clay loam, brown and gray mottled Clay, dark-gray to black, with alternating	0-19
layers of clay loam, silt loam, sandy loam, and silty gravel	19-101
Agglomerate, buff, coarse, with blocks and fragments of limestone, and white, fine-grained fractured tuff	101-151

Observations

Discharge (gpm)	Chloride (ppm)
7	217 245
13 15	262 269
15	296
15	290

MARIANA ISLANDS 1:50,000

										WAP SEE			
19	250	251	252	25	53 25	54 25	55 2	256 45'	257	258 2	59	2	260
				4	10							100	
											39	0	
				_11							39	U	-
					470								
		*								400	The second		
				-10-								380	-
												300	
				00	400								
				-09	460								
9	50	51	52	5	3 5	4 5	5 5	6 420 5	7	398	9	380	50
							113						
				-08-									-
					440								3
				-07							270		
								P. S.	400		370		
				000									
				-06-	450		425					330	
					430					385			
				-05-								1	-
												330	
							465						
				-04	490			420					_
											360		
				0.0					410				
				03						380			3
					480								
							435						
				-02-					401		200		-
							P				360		
							6	410				320	
			1	-01	480		E						-
			14		400	5			385	5	340		
			1	-00-	A		30	398		294			-

EDITION 1-AMS (AFFE) 262 263 264 265 50° 266 267 268 269 315 290 265 250 340 Ritidian Point 205 265 -10-153 Rajon Point 295 205 Achae Point -09-6619 61 62 280 63 64 65 -08-275 Uruno Point -07-280 06-225 05-225 04-21 215 Haputo Point -O2 ₂₂₀ 55 Coral reef 235 01 163 38 Hilaan Point

-00-

SERIES W743 GUAM EDITION 1-AMS (AFFE)

tent less than 100 ppm, but heavy pumping of wells may cause intrusion of sea water and an increase in salinity.

Area underlain by limestone containing basal ground water that stands 3 to 7 feet above sea level. Limestone has high permeability and will yield water readily to drilled wells and tunnels. Most of the water has a chloride content less than 250 ppm, but heavy pumping of wells probably will cause sea-water intrusion and an increase in salinity.

Area underlain by limestone containing basal ground water.

In subarea 3a the limestone has high permeability, and the water table stands 1 to 5 feet above sea level. Chloride content of the water ranges from 30 ppm in interior parts of the subarea to more than 1,000 ppm in coastal parts. Heavy pumping of most wells will cause sea-water intrusion and an increase in the salinity of the water. Janum Spring (96), which is at sea level on the eastern shore, has a discharge ranging from 1 to 3 mgd and a chloride content of about 30 ppm.

In subarea 3b the water table stands 1 to 5 feet above sea level, and, when undisturbed by pumping, the water contains 30 to 400 ppm of chloride. Sea-water intrusion and large increases in salinity occur when wells are pumped at rates greater than 50 to 100 gpm.

In subarea 3c the limestone has lower permeability than the rock in other parts of area 3, and the height of the water table ranges from about 1 foot above sea level in coastal parts to about 20 feet in interior parts. The water generally contains less than about 40 ppm of chloride, but the salinity may rise in heavily pumped wells. Agana Spring (2) yields water having a chloride content of 30 to 40 ppm and has an average flow greater than 1 mgd.

In subarea 3d the water table stands 1 to 4 feet above sea level, and, when undisturbed by pumping, the water has a chloride content ranging from 30 to more than 1,000 ppm. The limestone yields water readily to wells and tunnels, but pumping causes intrusion of sea water, and most wells yield water having more than 500 ppm of chloride.

Area consisting of limestone caps on hills of volcanic rock. The limestone contains thin bodies of high-level ground water that are perched on the relatively impermeable volcanic rocks. The water discharges at springs at the edges of the limestone caps. Flow of the springs varies greatly with seasonal rainfall.

Area in coastal parts of southern Guam underlain by limestone, alluvium, and beach deposits cantaining basal ground water. Most of the water is brackish. Locally, deposits of alluvium may contain water having less than 500 ppm of chloride, but the yields are low. The limestone and beach deposits have generally high permeability.

25' 1484

1485

1483

1482

1481

1480

1479

1478

1477

1476

1475

1474

1473

1472

Ground-water resources by Porter E. Ward.

W743

Edition 1-AMS (AFFE)

Prepared under the direction of the Engineer, HQ, AFFE, by the 64th Engineer Battalion (Base Topographic). Compiled in 1954 by photogrammetric (multiplex) methods. Coastal hydrography compiled from USC&GS Chart 4196, 1948; USHO Chart 1850, 1950; USHO Field Charts 2024-2030, 1945. Horizontal and vertical control established by Butler Survey, 1911-1913; recovered and extended by US Navy, Bowditch, 1945; Pacific Island Engineers, 1946-1948; 71st Engineer Survey Liaison Detachment, 1948-1949. Planimetry and names revised from annotations by US Geological Survey, OE, Intelligence Division, 1953. Map field checked, 1953.

Hard surface, all wea Hard surface, all weather Loose surface, graded, at Loose surface, dry weath Track; Trail_ Standard gauge railroad, Standard gauge railroad, Narrow gauge railroad, si Narrow gauge railroad, do Spot elevation in meters Wall; Levee; Cliff Church; School; Cemetery Waterwheel or mill; Locate Principal navigation light

SERIES W743 **GUAM** EDITION 1-AMS (AFFE)

LEGEND her road, ALANESS her road, 1 24' wide Limit of danger line; Submerged reef Wieck: Sunken: Exposed wealher road Sunken rocks; Foreshore flats er, or dirt road Depth Curves and Soundings in Fathoms. single track Reservoir: Dam: Ditch double track Salt evaporators Rice Paddy; Marsh Nipa; Mangrove : Cesm Woods; Scrub ☆ • Toweer * or lighthouse; Anchorage _ Tropicat grass; Coconut grove

CONTOUR INTERVAL 20 METERS W
CONTOURS AT 10 METER
VERTICAL DATUM IS BASED ON THE MEAN

TRANSVERSE MERCATOR I

HORIZONTAL DATUM IS BASED ON STATION LEE 144°45'S1.56" EAST OF GREENWICH, 13

CAUTION SHOULD BE USED WHEN N UNDETECTED CORAL HEADS M HYDROGRAPHIC DATUM: APPROXIMATE LEVEL

BLACK NUMBERED LINES INDICATE THE 1.0DD MI MERCATOR GRID, ZONE 55, INTERNATI THE LAST THREE DIGITS OF THE GRID NUM

USERS NOTING ERRORS OR OMISSIONS ON THIS MAP ARE URGED TO MARK HEREC OFFICER, ARMY MAP SERVICE, WASHINGTON, D. C. MAPS SO FORWARDED WIL

Water resources map by Porter E. Ward, U.S. Geological Survey, 1962

GRID ZONE DESIGNATION:	TO GIVE A STANDARD REFERENCE ON THIS SHEET TO NEAREST 100 METERS					
100,000 M SQUARE IDENTIFICATION	SAMPLE POINT = BRIDGE					
BR 1500	Locate first VERTICAL grid time to LEFT of point and read LARGE figures labeling the fine either in the lop or bottom margin or on the line riself. Estimate lenths from grid line to point: Locate first HORIZONTAL grid line BELOW point and read LARGE figures labeling the fine either in the letter or right margin, or on the line riself. Estimate tenths from grid line to point:	57	75 5			
IGNORE The SMALLER figures of any grid	SAMPLE REFERENCE					
number; these are for finding the full coordinates. Use ONLY the LARGER figures of the grid number, example.	If reporting beyond 100,000 Meters or it sheet bears an overlapping grid, prefix 100,000 Meter Square Identification as					
1463000	If reporting beyond 18 in any direction, prefix Grid Zone Designation as	55 PBQ5737				

APPROXIMATE FOR © ANNUAL MAGN

Use diagram only
To determine mag
pivot point "P" o
with the value o
NORTH and MAG
the degree scale of

Area underlain by volcanic rock and noncalcareous sediments, which contain large amounts of ground water but have very low permeability, and by limestone, which contains only meager amounts of ground water.

The water-bearing materials of subarea 6a are largely volcanic rock and associated sediments. Height of the water table ranges from a few feet above sea level in coastal lowlands to several hundred feet in interior highlands. Wells have low vield and high drawdown. Average specific capacity of wells is about 1 apm per foot of drawdown. Numerous small springs and seeps occur in valleys.

Subarea 6b is underlain by limestone that rests on a steeply dipping surface eroded in volcanic rock and noncalcraeous sediments. Meager amounts of ground water may occur locally perched on the volcanic rock, but most of the limestone is dry.

Area underlain by permeable limestone that lies above sea level on relatively impermeable volcanic rock and noncalcareous sediments. The limestone contains little or no ground water. Wells drilled into volcanic rock would have very low yields.

> Drilled well Drilled well, plugged or abandoned Basal tunnel Dug well

> > 276

Dug well, filled or abandoned Spring

Stream-gaging station

275

272 273 274 55'

ENTER OF SHEET

to obtain numerical values. netic north line, connect the the south edge of the mop the ongle between GRID SNETIC NORTH, as plotted on it the north edge of the map.

277

278

U.S. ARMY MAP SERVICE, FAR EAST - 62-028 - 6/62 - 3.5C

- E. USHO Field Chart 2029, 1945 (reliability F. USHO Field Chart 2027, 1945 (relia
- billty fair). G. USHO Field Chart 2026, 1945 (relia-
- bility fair). H. USHO Field Chart 2030, 1945 (ratio
- bility fair). J. USHO Chart 2024, 1945 (raliability

Aerial photography: 1-May 1945; 2-Jan 1948; 3-Mar., May 1949;

GUAM MARIANA ISLANDS

Photo-stereo Map

A. USC&GS Chart 4196, 1948 (reliability

- USHO Chart 1850. 1950 (reliability fair). USHO Field Chart 2025, 1945 (reliability
- O. USHO Field Chart 2028, 1945 (reliability

1470

1471

1469

1468

1467

1466

15

1465

1464

1463

13°13'

144°58

279