直流电桥测电阻实验报告

双二下 A 组 16 号 力 9 班 倪彦硕 2009011640

2010年10月19日

一. 实验目的

- 1. 了解单电桥测电阻的原理,初步掌握直流单电桥的使用方法:
- 2. 单电桥测量铜丝的电阻温度系数,学习用作图法和直线拟合法处理数据:
- 3. 了解数字电表的原理和线性化设计的方法

二. 实验原理

2.1 惠斯通电桥测电阻

惠斯通电桥是最常用的直流电桥。其中 R_1 , R_2 和R是已知阻值的标准电阻,他们和被测电阻 R_x 构成四个"臂",对角 B和 D之间接有检流计 G,它像桥一样。若调节 R 使测流计中电流为 0,则桥两端 B和 D点的电位相等,电桥达到平衡,这时可得:

$$I_1R = I_2R_x$$
, $I_1R_1 = I_2R_2$

两式相除可得: $R_x = \frac{R_2}{R_1}R$

只要检流计足够灵敏,上式就能相当好地成立, R_x 就能用三个标准电阻的值来求得,而与电源电压无关。从而测量的准确度较高。

单电桥的实际电路如右图所示。将 R_2 和 R_1 做成比值为C的比率臂,则被测电阻为

$$R_{r} = CR$$

其中 $C = R_2/R_1$, 共分 7 个档: 0.001 \sim 1000, R为测量臂,由 4 个十进位的电阻盘组成。图中电阻单位为 Ω 。

图1 电桥原理简图

图 2 单电桥电路图

2.2 铜丝的电阻温度系数

任何物体的电阻都与温度有关。多数金属的电阻随温度升高而增大,有如下关系式

$$R_t = R_0(1 + \alpha_R t)$$

式中 R_t , R_0 分别是t、0°C时金属的电阻值; α_R 是电阻温度系数,单位是(°C⁻¹)。严格地说, α_R 一般与温度有关,但对本实验所用的纯铜材料来说,在-50°C~100°C的范围内 α_R 的

变化很小,可当作常数,即 R_t 与 t 呈线性关系。于是

$$\alpha_R = \frac{R_t - R_0}{R_0 t}$$

利用金属电阻随温度变化的性质,可制成电阻温度计来测温。例如铂电阻温度计不仅准确度高、稳定性好,而且从-263°C~1100°C都能使用。铜电阻温度计在-50°C~100°C 范围内因其线性性好,应用也较广泛。

2.3 组装数字温度计

2.3.1 非平衡桥

非平衡桥是指把单电桥中的检流计 G 去掉,通过测量其两端电压 U_t 来测量电阻,与平衡桥相比,非平衡桥的优点是,可以在直接观测量与间接观测量之间建立函数关系,(而不是惠斯通电桥法里面,检流计仅仅作为"检验工具"),于是可以很方便快速地测得连续变化的电阻值。输出电压 U_t 的公式为:

$$U_t = U_t(R_t) = E\left(\frac{R_1}{R_1 + R_2} - \frac{R}{R + R_t}\right)$$

由 2.2 节知,铜丝电阻 R_t 与其温度t满足 $R_t = R_0(1 + \alpha_R t)$,则 $t = t(R_t) =$

 $\frac{1}{\alpha_R} \left(\frac{R_t}{R_0} - 1 \right)$ 即可以通过测量铜丝电阻从而知道铜丝的温度;如用非平衡桥连续测得铜

丝电阻的变化,那么就可以通过测量毫伏表实数 U_t 从而测得温度。这就是数字温度计的原理。

一般来说, U_t 与t的关系不是线性的,为了组装数字温度计,适当地选择电桥参数 (R_1 、 R_2 、R和E),使其非线性项误差很小,在一定温度范围内近似呈线性关系。这就是线性化设计。

2.3.2 互易桥

把惠斯通电桥中电源和检流计位置互换,则 R_1 与R同数量级, R_2 与 R_t 同数量级,则这样的设计下 U_t 误差较小。

2.3.3 线性化设计

欲组装一个温度范围在 $0\sim100^\circ$ C的铜电阻数字温度计,必须将 $U_t\sim t$ 的关系线性化,当采用量程为19.000mV的 $4\frac{1}{2}$ 数字电压表来显示温度值时,要求显示值:

$$U_t = \frac{1}{10}t \text{ (mV)}$$

当温度t=0°C时, $U_0=0$ mV,此时互易桥为平衡桥有:

$$\frac{R_2}{R_1} = C, \quad \frac{R_0}{R} = C \vec{\boxtimes} R = \frac{R_0}{C}$$

式中 R_0 是 0°C时铜丝电阻值,R为测量臂电阻,对铜电阻来说,在0~100°C范围内 R_t 和t是线性关系: $R_t=R_0(1+\alpha_R t)$,那么, $U_t=E\left(\frac{R_1}{R_1+R_2}-\frac{R}{R+R_1}\right)$ 可以改写为:

$$U_t = E\left(\frac{1}{1+C} - \frac{1}{1+C(1+\alpha_P t)}\right)$$

考虑到本实验中选 $C = 0.01 \ll 1$,铜丝电阻温度系数 $\alpha \sim 10^{-3}/^{\circ}C$,则上式可以进一步简化为:

$$U_t = \frac{EC\alpha_R}{(1+C)^2}t + \Delta U$$

其中 ΔU 为非线性误差项,忽略 ΔU 后,把上式与 $U_t = \frac{1}{10} t$ 比较得: $E = \frac{(1+C)^2}{10C\alpha_R}$ 即:

选择电桥参数C=0.01, $R=\frac{R_0}{C}$, $E=\frac{(1+C)^2}{10C\alpha_R}$,就可以使得数字电压表的示数与铜丝

温度满足线性关系: $U_t = \frac{1}{10}t + \Delta U$ (mV)。

三. 实验任务及步骤

1. 惠斯通电桥测电阻

- (1) 熟悉电桥结构,预调检流计零位。
- (2) 测不同量级的待测电阻值(其中有一个感生电阻),根据被测电阻的标称值(即大约值), 首先选定比率C并预置测量盘;接着调节电桥平衡而得到读数C和R的值,并注意总结操 作规律:然后测出偏离平衡Δd分格所需的测量盘示值变化ΔR,以便计算灵敏阈。
- (3) 根据记录的数据计算测量值CR,分析误差,最后给出各电阻的测量结果。

2. 单电桥测铜丝的电阻温度系数

- (1) 测量加热前的水温及铜丝的电阻值
- (2) 从起始温度升温,每隔5°C \sim 6°C左右测一次温度t及相应的阻值 R_t 。
- (3) 注意摸索控制待测铜丝温度的方法。要求在<u>大致热平衡</u>(温度计示值基本不变)时进行测量。
- (4) 测量后用计算机进行直线拟合来检验数据。如果每次都在大致热平衡时测量,则 $\{t\}$ 和 $\{R\}$ 直线拟合的相关系数应该在r=0.999以上。

3. 组装数字温度计

- (1) 将 QJ-23 型惠斯通电桥改装成互易桥(必须关掉电源后再操作)。电源 E 接到原电桥 G 的外接端(此时金属片必须将"内接"两端短路并拧紧),将数字电压表接到元电桥的 B 端。
- (2) 按所选的电桥参数组装数字温度计,即C=0.01, $R=\frac{R_0}{C}$, $E=\frac{(1+C)^2}{10C\alpha_R}$,其中 α_R 和 R_0 在前面的实验中已测得。分析 α_R 、 R_0 不准确对实验结果的影响。
- (3) 用实验检验组装的数字温度计

在前面测铜丝电阻温度系数的实验的水桶中继续进行,在余温度上每增加 $4\sim5^{\circ}$ C测 $5\sim6^{\circ}$ 实验点,记录温度计示数t和毫伏表读数 U_t 。测温范围大于 20° C,注意热平衡, $t<80^{\circ}$ C。

四. 误差计算原理

QJ-23 型单电桥不确定度计算

使用 QJ-23 型单电桥在一定参考条件下(20° C附近、电源电压偏离额定值不大于10%、绝缘电阻符合一定要求、相对湿度 $40\%\sim60\%$ 等),电桥的基本误差极限 E_{lim} 可表示为

$$E_{\lim} = \pm (\alpha\%) \left(\frac{CR_N}{10}\right)$$

在上式中C是比率值,R是测量盘示值。第一项正比于被测电阻值;第二项是常数项, R_N 是基准值,暂取 R_N 为 5000 Ω 。等级指数 α 主要反映了电桥中各标准电阻(比率臂C和测量臂R)的准确度。

若测量范围或电源、检流计条件不符合登记指数对应的要求时,我们会发现电桥测量不够"灵敏",即平衡后再改变 R_x (实际上等效地改变R),而检流计却未见偏转。我们可将检流计灵敏阈(0.2 分格)所对应的被测电阻的变化量 Δ_s 叫做电桥的灵敏阈。 R_x 的变化量可以这样测得:平衡后,将测量盘电阻R人为地调偏 ΔR 分格,使检流计偏转 Δd 分格(如 2 或者 1 分格),则按比例关系再求出 0.2 分格对应的 Δ_s ,即:

$$\Delta_s = 0.2C \cdot \frac{\Delta R}{\Delta d}$$

电桥的灵敏阈 Δ_s 反映了平衡判断中可能包含的误差,其值既和电源及检流计的参量有关,也和比率臂 C以及 R_x 的大小有关。 Δ_s 越大,电桥越不灵敏。要减小 Δ_s ,可适当提高电源电压或外界更灵敏的检流计。当测量范围及条件符合仪表说明书所规定的要求时, Δ_s 不大于 E_{lim} 的几分之一,可不计 Δ_s 的影响,否则应该从下式得出测量结果的不确定度:

$$\Delta_{R_{\mathcal{X}}} = \sqrt{E_{\lim}^2 + \Delta_{\mathcal{S}}^2}$$

五. 实验数据及误差分析

1. 惠斯通电桥测电阻

仪器组号__16__; 电桥型号__QJ-23__; 编号_16_。

电阻标称值/Ω	120	1k	11k	360k	200
比率臂读数C	医臂读数 <i>C</i> 0.1		10	100	0.1
准确度等级指数α	角度等级指数α 0.2		0.5	0.5	0.2
平衡时测量盘读数 R/Ω	1290		1095	3603	1989
平衡后将检流计调偏 Δd/分格	2	6	4	3	4
与 Δd 对应的测量盘的 示值变化 $\Delta R/\Omega$	1	1	2	380	1
测量值CR/Ω	129.0	1001	10.95k	360.3k	198.9
$[E_{\text{lim}} = (\alpha\%)(CR + 500C)]/\Omega$	0.358	3.002	79.75	2051.5	0.4978
$(\Delta_s = 0.2C \cdot \Delta R/\Delta d)/$ Ω	0.010	0.033	1.000	2533.3	0.005
$\left(\Delta_{R_x} = \sqrt{E_{\lim}^2 + \Delta_s^2}\right) /$ Ω	0.358	3.002	79.76	3259.8	0.498
$(R_x = CR \pm \Delta_{R_x})/\Omega$	129.0 ± 0.4	1001 ± 3	(10.95 ± 0.08) k	(360.3 ± 3.3)k	198.9±0.5

(注 1: 最后一个(198.9 ± 0.5)Ω是感生电阻)

(注2: 加阴影的数据不是原始测量量,是实验后计算得出的,下同。)

2. 单电桥测铜丝的电阻温度系数 α_R

起始温度t = 19.0 ℃; 比率臂C = 0.01 ; 测量盘读数R = 1344 Ω; 起始电阻为 13.44 Ω。

	温度t/℃	比率臂C	测量盘读数 R/Ω	$R_t = CR/\Omega$
1	25.1	0.01	1388	13.88
2	29.4	0.01	1410	14.10
3	34.0	0.01	1436	14.36
4	39.2	0.01	1463	14.63
5	44.5	0.01	1491	14.91
6	48.5	0.01	1507	15.07
7	53.8	0.01	1536	15.36
8	57.9	0.01	1553	15.53
9	63.2	0.01	1584	15.84

计算机直线拟合结果: a = 12.61937; b = 0.05082; r = 0.99956。 $\alpha_R = 4.02714 \times 10^{-3}$ °C⁻¹。

(注:图中的细实直线即为拟合线,阴影的背景粗线各个数据连成的折线,下同)

3. 非平衡桥及组装数字温度计

$C = 0.01, R = \frac{R_0}{C} = 1262\Omega, E =$	$=\frac{(1+C)^2}{10C\alpha} = 2533$ mV
---	--

温度t/℃	63.0	66.0	70.0	73.0	77.0
毫伏表示 数 <i>U</i> /mV	6.16	6.48	6.90	7.20	7.62

用计算机绘图如下

六. 实验总结

1. 惠斯通电桥的相对误差

单电桥法虽然从原理上说,只要检流计足够灵敏那么就能做到足够精确,但 由于测量盘不是连续可调的,所以在测高电阻的时候会有较大的相对误差。见下 表:

电阻标称值 /Ω	120	1000	11000	360000	200
测量值 CR / Ω	129	1001	10950	360300	119.8
不确定度 Δ_{R_X}/Ω	0.358	3.002	79.76	3259.8	0.498
相对误差 $\frac{CR}{\Delta_{R_x}}$	0.28%	0.30%	0.73%	0.90%	0.42%

可以看出,被测电阻值越大,相对误差越大。这是因为当待测电阻大的时候,应该把比率臂放在大比率(如1000)上,则测量盘改变的最小电阻就是1000Ω。有时经常找不到能"真正"电桥平衡的点,在测量盘某个示数时,检流计在0的左边几格,而改变最小的电阻值就发现指针在0的右方几格,只能选择偏差较小的数来作为结果。

2. 两次直线拟合

第一次直线拟合的相关系数r=0.99956,第二次是r=0.99996。第一次比较低。可能原因是:第一次拟合的时候,不知道怎么判断热平衡,往往出现错过预先期望的温度,导致读完电阻时,再看温度计结果已经不是刚才所对应的了,所以误差比较大。到后来采取估计温度升高 $3\sim4$ 度后的阻值,先把阻值调到位,然后再等待平衡,然后立刻读数的办法,增强了准确率和线性相关度。从第一个图表也可以看出来,如果去掉 2 个线性相关度不好的点,r还能够更高。

另外由于在实际测量过程中,两次测量的温差往往不是一个固定数,而表格处理时无法把横轴间距调的不同,导致看上去的图表线性没有 r 所翻译的那么好。

3. 总结由平衡桥——非平衡桥——数字温度计演变的物理思想

平衡桥是一种精确测电阻的方法,理论意义很重要,但是实际操作中,还是需要调整电源电压等以得到更大精度。非平衡桥与平衡桥测电阻的本质原理一致,都可用基尔霍夫方程推出,但是非平衡桥的读数方便,可以快速、连

续测量。有了这一电阻值"监控"工具后,就可以"实时"地把该值转化为其他间接测量的物理量。

(原始数据表格见附页)