DATA COLLECTION

```
In [1]: # import libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
```

In [5]: # To Import Dataset sd=pd.read_csv(r"c:\Users\user\Downloads\20_states.csv") sd

Out[5]:

	id	name	country_id	country_code	country_name	state_code	type	latitude
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007
5072	1953	Mashonaland West Province	247	ZW	Zimbabwe	MW	NaN	-17.485103
5073	1960	Masvingo Province	247	ZW	Zimbabwe	MV	NaN	-20.624151
5074	1954	Matabeleland North Province	247	ZW	Zimbabwe	MN	NaN	-18.533157
5075	1952	Matabeleland South Province	247	ZW	Zimbabwe	MS	NaN	-21.052337
5076	1957	Midlands Province	247	ZW	Zimbabwe	MI	NaN	-19.055201
5077 rows × 9 columns								

```
In [6]: # to display top 10 rows
sd.head(10)
```

Out[6]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	lonç
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	70.8
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	63.7
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	68.7 ₁
3	3884	Ba l kh	1	AF	Afghanistan	BAL	NaN	36.755060	66.8
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	67.8
5	3892	Daykundi	1	AF	Afghanistan	DAY	NaN	33.669495	66.0
6	3899	Farah	1	AF	Afghanistan	FRA	NaN	32.495328	62.2
7	3889	Faryab	1	AF	Afghanistan	FYB	NaN	36.079561	64.9
8	3870	Ghazni	1	AF	Afghanistan	GHA	NaN	33.545059	68.4
9	3888	Ghōr	1	AF	Afghanistan	GHO	NaN	34.099578	64.9
4 -									

DATA CLEANING AND PRE_PROCESSING

In [7]: sd.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5077 entries, 0 to 5076
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype			
0	id	5077 non-null	int64			
1	name	5077 non-null	object			
2	country_id	5077 non-null	int64			
3	country_code	5063 non-null	object			
4	country_name	5077 non-null	object			
5	state_code	5072 non-null	object			
6	type	1597 non-null	object			
7	latitude	5008 non-null	float64			
8	longitude	5008 non-null	float64			
<pre>dtypes: float64(2), int64(2), object(5)</pre>						

memory usage: 357.1+ KB

```
In [8]: # to display summary of statistics
         sd.describe()
Out[8]:
                         id
                              country_id
                                             latitude
                                                       Iongitude
          count 5077.000000
                             5077.000000 5008.000000 5008.000000
          mean 2609.765413
                              133.467599
                                           27.576415
                                                       17.178713
            std 1503.376799
                               72.341160
                                           22.208161
                                                       61.269334
                    1.000000
                                1.000000
                                          -54.805400 -178.116500
            min
           25% 1324.000000
                               74.000000
                                           11.399747
                                                       -3.943859
           50%
                2617.000000
                              132.000000
                                           34.226432
                                                       17.501792
           75%
                3905.000000
                              201.000000
                                           45.802822
                                                       41.919647
                                           77.874972
           max 5220.000000
                              248.000000
                                                      179.852222
In [9]: #to display colums heading
         sd.columns
Out[9]: Index(['id', 'name', 'country_id', 'country_code', 'country_name',
                 'state_code', 'type', 'latitude', 'longitude'],
```

EDA and visualization

dtype='object')

In [10]: sns.pairplot(sd)

Out[10]: <seaborn.axisgrid.PairGrid at 0x1bcce9fd700>

In [11]: | sns.distplot(sd['latitude'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='latitude', ylabel='Density'>

In [12]: | sns.heatmap(sd.corr())

Out[12]: <AxesSubplot:>


```
In [18]: ssd=sd.head(20)
ssd
```

Out[18]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	lo
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	70
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	63
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	68
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060	66
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	67
5	3892	Daykundi	1	AF	Afghanistan	DAY	NaN	33.669495	66
6	3899	Farah	1	AF	Afghanistan	FRA	NaN	32.495328	62
7	3889	Faryab	1	AF	Afghanistan	FYB	NaN	36.079561	64
8	3870	Ghazni	1	AF	Afghanistan	GHA	NaN	33.545059	68
9	3888	Ghōr	1	AF	Afghanistan	GHO	NaN	34.099578	64
10	3873	Helmand	1	AF	Afghanistan	HEL	NaN	39.298936	-76
11	3887	Herat	1	AF	Afghanistan	HER	NaN	34.352865	62
12	3886	Jowzjan	1	AF	Afghanistan	JOW	NaN	36.896969	65
13	3902	Kabul	1	AF	Afghanistan	KAB	NaN	34.555349	69
14	3890	Kandahar	1	AF	Afghanistan	KAN	NaN	31.628871	65
15	3879	Kapisa	1	AF	Afghanistan	KAP	NaN	34.981057	69
16	3878	Khost	1	AF	Afghanistan	KHO	NaN	33.333847	69
17	3876	Kunar	1	AF	Afghanistan	KNR	NaN	34.846589	71
18	3900	Kunduz Province	1	AF	Afghanistan	KDZ	NaN	36.728551	68
19	3891	Laghman	1	AF	Afghanistan	LAG	NaN	34.689769	70
4	_								•

```
In [24]: sd1=ssd[['id','country_id','latitude', 'longitude']]
```

TO TRAIN THE MODEL _MODEL BUILDING

we are goint train Liner Regression model; we need to split out the data into two varibles x and y where x is independent on x (output) and y is dependent on x(output) adress coloumn as it is not required our model

```
In [25]: x= sd1[['id','country_id','latitude']]
y=sd1['longitude']
```

```
In [26]: # To split my dataset into training data and test data
         from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[27]: LinearRegression()
In [28]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[28]: LinearRegression()
In [29]: print(lr.intercept_)
          -3534.231972993141
In [30]: |
         coeff= pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
         coeff
Out[30]:
                    Co-efficient
                      1.082073
                 id
          country_id
                      0.000000
             latitude
                     -17.401896
         prediction = lr.predict(x_test)
In [31]:
         plt.scatter(y_test,prediction)
Out[31]: <matplotlib.collections.PathCollection at 0x1bcd1824eb0>
          120
          100
           80
           60
            40
```

66

67

63

62

```
In [32]: |print(lr.score(x_test,y_test))
         -330.0922073527318
In [33]: |lr.score(x_train,y_train)
Out[33]: 0.6284318900939427
In [34]: from sklearn.linear_model import Ridge,Lasso
In [35]: dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[35]: Ridge(alpha=10)
In [36]: |dr.score(x_test,y_test)
Out[36]: -220.44711915756713
In [37]: |dr.score(x_train,y_train)
Out[37]: 0.6008532637538653
In [38]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[38]: Lasso(alpha=10)
In [39]: la.score(x_test,y_test)
Out[39]: -209.94721689900862
In [40]: |la.score(x_train,y_train)
Out[40]: 0.5980504297804835
         ElasticNet
In [41]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[41]: ElasticNet()
In [42]: print(en.coef_)
```

-14.23055535]

1.09438352

Evaluation metric