

Fundação Universidade Federal de Rondônia - UNIR

Curso de Bacharelado e Licenciatura em Ciência da Computação

Disciplina: Álgebra Linear

Professor: Lucas Marques da Cunha SIAPE: 3269899

Aluno (a):

LISTA DE ATIVIDADES 04

1) Considere os vetores $x_1 = (2, 1)^T e x_2 = (6, 3)^T \text{ em } \mathbb{R}^2$.

a) Determine o comprimento (módulo) de cada vetor.

- **b)** Seja $x_3 = x_1 + x_2$. Determine o comprimento de x_3 . Compare este comprimento com a soma dos comprimentos x_1 e x_2 .
- c) Trace o gráfico ilustrando como x_3 poder ser construído geometricamente usando x_1 e x_2 . Use este gráfico para dar uma interpretação geométrica à sua resposta na parte (b).
- 2) Dados os vetores abaixo em \mathbb{R}^2 , identifique os vetores que apresentam mesmo comprimento (módulo), direção e sentido. Para isso, utilize o Geogebra para traçar os vetores no espaço \mathbb{R}^2 .
 - a) O vetor x_1 é representado pelo segmento orientado de (-5, 3) a (-1, 3);
 - **b)** O vetor x_2 é representado pelo segmento orientado de (1, 1) a (5, 4);
 - c) O vetor x_3 é representado pelo segmento orientado de (2, 0) a (6, 3);
 - d) O vetor x_4 é representado pelo segmento orientado da origem a (-4, -3);
- **3)** Dado o vetores $x_1 = (2, 1)^T$ em \mathbb{R}^2 , explique a relação entre o vetor x_1 e os vetores abaixo:

a)
$$x_2 = (-2, -1)^T$$

b)
$$x_3 = (6,3)^T$$

FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA

c)
$$x_3 = (-4, -2)^T$$

- **4)** Mostre que $V = \mathbb{R}^2$ é um espaço vetorial real. Considere as operações usuais, ou seja, (a, b) + (c, d) = (a + c, b + d) e $\lambda(a, b) = (\lambda a, \lambda b)$, com $a, b, c, d, \lambda \in \mathbb{R}$.
- **5)** Mostre que $S = \{(x, 2x); x \in \mathbb{R}\}$ é um subespaço vetorial de \mathbb{R}^2 .
- **6)** Em cada caso, escreva o vetor v como combinação linear dos vetores dados.
 - a) Em \mathbb{R}^2 , v = (1, 3), v1 = (1, 2) e v2 = (-1, 1).
 - **b)** Em \mathbb{R}^2 , v = (1, 3), v1 = (0, 0) e v2 = (3, 9).
 - **c)** Em \mathbb{R}^2 , v = (1, 5), v1 = (1, 3) e v2 = (1, -2).
 - **d)** Em \mathbb{R}^2 , v = (4, 1), v1 = (1, 2) e v2 = (3, -1).
 - **e)** Em \mathbb{R}^3 , v = (2, 1, 4), v1 = (1, 0, 0), v2 = (1, 1, 0) e v3 = (1, 1, 1).
- 7) Determine o subespaço S, do espaço V, gerado pelos vetores de A, em cada caso.
 - a) $V = \mathbb{R}^2 e A = \{(0, 1), (0, -2)\}.$
 - **b)** $V = \mathbb{R}^2 \in A = \{(1, 1), (7, 7)\}.$
 - c) $V = \mathbb{R}^2 e A = \{(1,2), (2, 1)\}.$
 - **d)** $V = \mathbb{R}^3$ e $A = \{(1, 2, 1), (2, 1, -2)\}.$
 - **e)** $V = \mathbb{R}^3$ e $A = \{(1, 2, 0), (3, 0, 1)\}.$