Examenul național de bacalaureat 2023

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z(z-2i) = (3+i)(3-i) = 3^2 - i^2 =$	3р
		_
	=9+1=10	2p
2.	f(2x) = 10x + 1, pentru orice număr real x	2p
	f(2x)-2f(x)=10x+1-2(5x+1)=10x+1-10x-2=-1, pentru orice număr real x	3p
3.	$x^3 - 2x + 2 = x^3$, deci $-2x + 2 = 0$	3p
	x=1	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea A sunt 9 numere n pentru care $n+5$ este multiplu de 10, deci sunt 9 cazuri	
	favorabile, de unde obținem $p = \frac{9}{90} = \frac{1}{10}$	3 p
5.	$m_{AB} = 4$ şi, cum $d \parallel AB$, obținem $m_d = 4$	3p
	Ecuația dreptei este $y-0=4(x-0)$, adică $y=4x$	2p
6.	$AD = \frac{BC}{2}$, unde AD este înălțime în triunghiul ABC	3p
	$\mathcal{A}_{\Delta ABC} = \frac{AD \cdot BC}{2} = 4$, de unde obținem $BC = 4$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 2 & 1 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 1 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & -2 \end{vmatrix} =$	2p
	=4+2+0-0-0+2=8	3 p
b)	$\det(A(a)) = \begin{vmatrix} 2 & 1 & 2 \\ 1 & -1 & a \\ a & a+1 & -2 \end{vmatrix} = -a^2 + 2a + 8, \text{ pentru orice număr real } a$ $\det(A(a)) = 0 \Leftrightarrow a = -2 \text{ sau } a = 4, \text{ deci matricea } A(a) \text{ este inversabilă dacă și numai dacă}$ $a \in \mathbb{R} \setminus \{-2, 4\}$	2p 3p
c)	Pentru $a = -2$, soluțiile sistemului de ecuații sunt de forma $(2, -2 - 2\alpha, \alpha)$, cu $\alpha \in \mathbb{C}$	3p
	$x_0z_0+y_0=2\alpha-2-2\alpha=-2$, pentru orice soluție (x_0,y_0,z_0) a sistemului de ecuații	2p
2.a)	$2 \circ 3 = 2 \cdot 3 + (2^2 - 2)(2^3 - 2) =$	3 p
	=6+12=18	2p

Control Prayional do Pontol și Draidale în Eddedije			
b)	$x \circ 1 = x \cdot 1 + (2^x - 2)(2^1 - 2) = x + 0 = x$, pentru orice număr real x	2p	
	$1 \circ x = 1 \cdot x + (2^1 - 2)(2^x - 2) = x + 0 = x$, pentru orice număr real x , deci $e = 1$ este elementul neutru al legii de compoziție " \circ "	3 p	
c)	$x \circ (-x) = -x^2 + 1 - 2 \cdot 2^x - 2 \cdot 2^{-x} + 4 =$	2p	
	$= -x^2 + 1 - 2 \cdot \left(2^x - 2 + \frac{1}{2^x}\right) = 1 - x^2 - 2 \cdot \left(\sqrt{2^x} - \frac{1}{\sqrt{2^x}}\right)^2 \le 1, \text{ pentru orice număr real } x$	3 p	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 1 + 3(\ln(x+3) - \ln(x-1))' = 1 + \frac{3}{x+3} - \frac{3}{x-1} =$	3 p
	$= \frac{x^2 + 2x - 3 + 3x - 3 - 3x - 9}{(x+3)(x-1)} = \frac{x^2 + 2x - 15}{(x+3)(x-1)}, \ x \in (1, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{3}{x} \ln \frac{x+3}{x-1} \right) = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(3 \ln \frac{x+3}{x-1} \right) = 0, \text{ deci dreapta de ecuație } y = x \text{ este asimptota oblică}$ $\text{spre } +\infty \text{ la graficul funcției } f$	3 p
c)	$f'(x)=0 \Rightarrow x=3$; $f'(x) \leq 0$, pentru orice $x \in (1,3] \Rightarrow f$ este descrescătoare pe $(1,3]$ și $f'(x) \geq 0$, pentru orice $x \in [3,+\infty) \Rightarrow f$ este crescătoare pe $[3,+\infty)$, deci $f(x) \geq f(3)$, pentru orice $x \in (1,+\infty)$	3p
	$f(3)=3+3\ln 3$, deci $x+3\ln\frac{x+3}{x-1} \ge 3+3\ln 3$, pentru orice $x \in (1,+\infty)$, de unde obținem $\ln\frac{x+3}{3(x-1)} \ge 1-\frac{x}{3}$, pentru orice $x \in (1,+\infty)$	2p
2.a)	$\int_{0}^{3} f(x)e^{x}dx = \int_{0}^{3} (x^{2} + 2x)dx = \left(\frac{x^{3}}{3} + x^{2}\right)\Big _{0}^{3} =$	3p
	$=\frac{27}{3}+9=18$	2p
b)	$\int_{0}^{1} \frac{f(x)}{x+2} dx = \int_{0}^{1} x \left(-e^{-x}\right)' dx = x \left(-e^{-x}\right) \Big _{0}^{1} - e^{-x} \Big _{0}^{1} =$	3p
	$=-\frac{1}{e}-\frac{1}{e}+1=\frac{e-2}{e}$	2p
c)	$\lim_{x \to 0} \left(\frac{1}{x^2} \int_0^x f(t) dt \right) = \lim_{x \to 0} \frac{\left(\int_0^x f(t) dt \right)'}{\left(x^2 \right)'} =$	2p
	$= \lim_{x \to 0} \frac{f(x)}{2x} = \lim_{x \to 0} \frac{(x+2)e^{-x}}{2} = 1$	3 p