

TARGET: JEE (Advanced) 2015

Course: VIJETA & VIJAY (ADP & ADR) Date: 21-04-2015

TEST INFORMATION

DATE: 22.04.2015 PART TEST-02 (PT-02)

Syllabus: Application of Derivatives, Sequence & Series, Binomial Theorem

REVISION DPP OF STRAIGHT LINE AND CIRCLE

Total Marks: 147 Single choice Objective (-1 negative marking) Q. 1 to 11 Multiple choice objective (-1 negative marking) Q. 12 to 38 Comprehension (-1 negative marking) Q.39 to 40

Max. Time: 113.5 min. (3 marks 2.5 min.) [33, 27.5] [108, 81] (4 marks, 3 min.) (3 marks 2.5 min.) [6, 5]

- From a point 'P' on the line 2x + y + 4 = 0, which is nearest to the circle $x^2 + y^2 12y + 35 = 0$, 1. tangents are drawn to given circle. The area of quadrilateral formed by these pair of tangents and pair of radii, is
 - (A) 8
- (B) $\sqrt{110}$
- (C) $\sqrt{19}$
- (D) 19
- 2. The lines 5x + 12y - 10 = 0 and 5x - 12y - 40 = 0 touch a circle of radius 3 units. If the centre of circle lies in the first quadrant, then the coordinates of centre is
 - (A) (5, 3)
- (B) (5, 1)
- (C)(5, 2)
- (D) (5, 6)
- Let A = (-2, 0) and B = (2, 0), then the number of integral values of a, $a \in [-10, 10]$ for which line 3. segment AB subtends an acute angle at point C(a, a + 1) is
 - (A) 15
- (B) 17
- (D) 21
- If the circles $x^2 + y^2 + (3 + \sin \beta) x + 2 \cos \alpha \cdot y = 0$ and $x^2 + y^2 + 2 \cos \alpha \cdot x + 2 \cos \alpha \cdot x + 2 \cos \alpha$ touch each other, 4. then the maximum value of 'c' is
 - (A) $\frac{1}{2}$

- Two circles C_1 and C_2 of radii $\frac{3}{2}$ and $\frac{1}{2}$ respectively touch each other externally and ' ℓ ' is their 5. common tangent as shown in figure.

Then the perimeter of shaded region is:

- (A) $\frac{5\pi}{6} + \sqrt{3}$
- (B) $\frac{2\pi}{3} + \sqrt{3}$
- (C) $\pi \sqrt{3}$ (D) $\pi + \sqrt{3}$
- 6. Vertices of a variable triangle are (3, 4), $(5\cos\theta, 5\sin\theta)$ and $(5\sin\theta, -5\cos\theta)$. Then locus of its orthocenter is
 - (A) $(x + y 1)^2 + (x y 7)^2 = 100$
- (B) $(x + y 7)^2 + (x y 1)^2 = 100$
- (C) $(x + y 7)^2 + (x + y 1)^2 = 100$
- (D) $(x + y 7)^2 + (x y + 1)^2 = 100$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | cin: U80302RJ2007PTC024029

/\	Resonanc		ower, A-46 & 52, IPIA, Near City N	lall, Jhalawar Road, Kota (Raj.) - 324005	
	P(5, 0), Q(8, 4) and a v triangles, then (A) g(5) = 4	ariable point R such that (B) g(7) = 0	\angle PRQ = ${2}$ and 'n' reproduced (C) g(6.25) = 2	esents the number of such (D) g $(6.25) = 1$	
19.	If g : R \rightarrow N \cup {0} and g(x) = n, where 'x' represents the area of triangle joining the two fixed points P(5, 0), Q(8, 4) and a variable point R such that \angle PRQ = $\frac{\pi}{2}$ and 'n' represents the number of such				
	(D) If C_2 passes through the centre of C_1 , then $\frac{b}{a} = 2 + \sqrt{2}$.				
			mmon chord has maxim	um length, then $\frac{b}{a} = 3$.	
	(B) If C ₁ , C ₂ are orthogo	u		L	
		other then $\frac{b}{a} = 3 + 2\sqrt{2}$	2		
. •.	centres in the first quadrant. Then which of the following is true?				
18.	6x + 10y = 59 as angle bisector and as median respectively drawn from different vertices, are : (A) $6x + 5y - 13 = 0$ (B) $2x + 9y - 65 = 0$ (C) $18x + 13y - 41 = 0$ (D) $6x - 7y - 25 = 0$ C ₁ and C ₂ are two circles of radii a and b (a < b) touching both the coordinate axes and have their				
17.	The equation of the sid	es of the triangle having	(3, -1) as a vertex and x	-4y + 10 = 0 and	
16.	One diagonal of a square is the portion of the line $\sqrt{3}x + y = 2\sqrt{3}$ intercepted by the axes. Then an extremity of the other diagonal is : (A) $(1+\sqrt{3},\sqrt{3}-1)$ (B) $(1+\sqrt{3},\sqrt{3}+1)$ (C) $(1-\sqrt{3},\sqrt{3}-1)$ (D) $(1-\sqrt{3},\sqrt{3}+1)$				
16	(A) 2	(B) -3	(C) -2	(D) 3	
15.	The value(s) of t for wh be	ich the lines $2x + 3y = 5$,		2y - 1 = 0 are concurrent, can	
-	can be : (A) (4, 8)	(B) (5, 8)	(C) (0, 0)	(D) (2, 2)	
14.	(-)			urth vertex of the parallelogran	
	' ' '	(B) (-1, -1)	(C) (-2, -1)	(D) (-1, 2)	
13.	If $4a^2 + b^2 + 2c^2 + 4ab$ point(s)	-6ac - 3bc = 0, then the	ne family of lines ax + b	y + c = 0 may be concurrent a	
	(A) 1	(B) 2	(C) 3	(D) $\frac{1}{3}$	
12.	If a circle passes through the points of intersection of the coordinate axes with the lines $\lambda x - y + 1 = 0$ and $x - 2y + 3 = 0$, then the value of λ is				
11.	mirror $y = x$ and R is the (A) $y^2 = x^2$	rial it is at a constant dist e image of Q in the line n (B) x² + y² = 2c²	tance c from the origin. If nirror $y = -x$ then locus o (C) $xy = c^2$	Q is the image of P in the line f R is (D) $x^2 + y^2 = c^2$	
11	(C) $x^2 + 5y^2 - 4xy - 1 =$		(B) $x^2 + 5y^2 + 4xy + 1 =$ (D) $4x^2 + 5y^2 + 4xy + 1 =$		
	part of the line $x + y = 0$ by (A) $x^2 + 5y^2 + 4xy - 1 = 0$) which lies in the second	d quadrant. The locus of	the mid-point of the line is giver	
10.	(A) (1, 1) A line of fixed length 2	units moves so that its or	ne end is on the positive	(D) (–1, 1) x-axis and other end on that	
9.	through the fixed point			$c + \sqrt{b}y + \sqrt{c} = 0$ always passes	
8.	the lines $y^2 - 8xy - 9x^2$ (A) straight line	= 0. The locus of vertex (B) circle	of triangle is (C) parabola	e bisected at right angles by (D) ellipse	
	(C) Point $\left(\frac{x_1 - x_2}{2}, \frac{y_1 - y_2}{2}\right)$	$\left(\frac{y_2}{2}\right)$	(D) Information provide	d is incomplete	
	(A) Point of intersection	of $L_1 = 0$ and $L_2 = 0$	(B) Point $\left(\frac{x+x_1}{2}, \frac{y+y_1}{2}\right)$	-)	
7.	If $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ be the images of point $P(x, y)$ about lines $L_1 = ax + by + c = 0$ and $L_2 = bx - ay + c' = 0$ respectively then the line joining points P_1 and P_2 always passes through				

20.	The line $y = x$ is tangent at $(0, 0)$ to a circle of radius 1. The centre of circle may be:				
	(A) $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ $\left(B\left(-\frac{1}{2}, \frac{1}{2}\right)\right)$	(C) $\left(\frac{1}{2}, -\frac{1}{2}\right)$ (D) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$			
21.	If $(x-2)^2 + (y-2)^2 = 1$, then which of the following is true?				
		(B) maximum value of $x - y$ is $\sqrt{2}$			
	(C) maximum value of xy is $\frac{9+4\sqrt{2}}{2}$	(D) minimum value of x + y is $4 - \sqrt{2}$			
22.		'A' of triangle ABC is –2. Coordinates of vertices B and C of triangle is 5 square units, then the distance of vertex A			
	(A) 6 (B) 4	(C) $2\sqrt{2}$ (D) $3\sqrt{2}$			
23.	A(1, 2) and B(7, 10) are two fixed points. If P(x, y) is a point such that \angle APB = 60° and the area of triangle APB is maximum, then (A) point P lies on the line $3x + 4y = 36$ (B) point P is on the circle passing through given points and having radius 10				
	(C) point P is on the circle passing through given points and having radius $\frac{10}{\sqrt{3}}$				
	(D) area of $\triangle PAB = \frac{75}{\sqrt{3}}$ sq. units	γ3			
24.	z_1 , z_2 , z_3 are three non collinear complex numbers such that $z = \frac{\ell z_1 + m z_2 + n z_3}{\ell + m + n}$ lies inside				
		equation $x^3 + 3x^2 + px + q = 0$, then which of the following is			
	INCORRECT? (A) $p > 0$, $q > 0$ (B) $p < 0$, $q < 0$	(C) $p > 0$, $q < 0$ (D) $p < 0$, $q > 0$			
25.	Equation of incircle of equilateral triangle ABC where $B = (2, 0), C = (4, 0)$, is				
	(A) $x^2 + y^2 - 6x + \frac{2y}{\sqrt{3}} + 9 = 0$	(B) $x^2 + y^2 + 6x - \frac{2y}{\sqrt{3}} + 9 = 0$			
	(C) $x^2 + y^2 + 6x + \frac{2y}{\sqrt{3}} + 9 = 0$	(D) $x^2 + y^2 - 6x - \frac{2y}{\sqrt{3}} + 9 = 0$			
26.	Equation of circle touching the circle $x^2 + y^2 - 15x + 5y = 0$ at (1, 2) and having radius $\sqrt{\frac{5}{2}}$ is				
	(A) $5x^2 + 5y^2 - 23x + 11y + 20 = 0$ (C) $5x^2 + 5y^2 + 3x - 29y + 30 = 0$	(B) $5x^2 + 5y^2 - 23x - 11y + 20 = 0$ (D) $5x^2 + 5y^2 + 3x + 29y + 30 = 0$			
27.		line $y = x$, has its centre on the x-axis and cuts off a chord of			
	length 2 units along the line $\sqrt{3}y - x = 0$ is (A) $x^2 + y^2 - 4x + 2 = 0$ (B) $x^2 + y^2 - 4x + 6$	$6 = 0$ (C) $x^2 + y^2 - 6x + 2 = 0$ (D) $x^2 + y^2 + 4x + 2 = 0$			
28.		ecting at an angle of 30°. A circle S having radius unity,			
	touches both the diameters and also the cit	rcle C, then the radius of circle 'C' can be			
		(C) $\sqrt{6} + \sqrt{2} - 1$ (D) $\sqrt{6} - \sqrt{2} - 1$			
29.		cle $x^2 + y^2 = 4$ so that slopes of tangents are in the ratio 1 : 2			
	and $f(x) = \alpha^2 x^2 + 12x - \frac{\beta^2}{4}$, then				
	(A) $f(x) > 0 \ \forall x \in \mathbb{R}$	(B) Locus of (α^2, β^2) is a hyperbola			
30.	Equation of the chord of the circle $x^2 + y^2 - 0$ origin divides it in the ratio 4 : 1 is	(D) eccentricity of locus of (α^2, β^2) is $\sqrt{2}$ 3x - 4y - 4 = 0 which passes through origin such that the			
31.	(A) $y = 0$ (B) $24x + 7y = 0$ (C) $7x + 24y = 0$ (D) $7x - 24y = 0$ If the circle $x^2 + y^2 - 2x - 2y + 1 = 0$ is inscribed in a triangle whose two sides are coordinate				
	one side has negative slope cutting interce	pts a and b on x and y axis respectively, then			
	(A) $\frac{1}{a} + \frac{1}{b} - 1 = \sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$	(B) $\frac{1}{a} + \frac{1}{b} - 1 = -\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$			
	(C) $\frac{1}{a} + \frac{1}{b} > 1$	(D) $\frac{1}{a} + \frac{1}{b} < 1$			

(A,B,D) 23.

(A,B,D) 30.

36.

(A)

(B,C)

(B)

(A,B,C) 31.

24.

37.

(A,C)

(C)

(A,B,C,D)

25.

38.

22.

29.

35.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

2

(A,C)

26.

32.

39.

(A,D)

(A,C,D) 33.

27.

40.

(A,B,D) 28.

34.

1

(A,C)

(B,D)

(A,C)

Solution of DPP # 5

TARGET: JEE (ADVANCED) 2015

Course: VIJETA & VIJAY (ADP & ADR)

MATHEMATICS

1. Nearest point will be foot of perpendicular drawn from centre.

$$\frac{x-0}{2} = \frac{y-6}{1} = \frac{-(0+6+4)}{4+1} \Rightarrow (x, y) = (-4, 4).$$

Let coordinates of centre is (h, k) 2_.

$$\left| \frac{5h + 12k - 10}{13} \right| = 3 \quad \text{and} \quad \left| \frac{5h - 12k - 40}{13} \right| = 3$$

$$5h + 12k - 10 = 39 & -(5h - 12k - 40) = 39 \quad \Rightarrow \quad (h, k) = (5, 2)$$

Point C(a, a + 1) must lie outside the circle $x^2 + y^2 = 4$. 3_.

$$\Rightarrow \qquad S_1 > 0 \quad \Rightarrow \qquad a^2 + (a+1)^2 - 4 > 0 \qquad \Rightarrow \qquad a < \frac{-1 - \sqrt{7}}{2} \text{ or } a > \frac{-1 + \sqrt{7}}{2}$$

$$\frac{dy}{dx}\Big|_{(0,0)} = -\frac{(3 + \sin\beta)}{2\cos\alpha} = -\frac{2\cos\alpha}{2c} \implies c = \frac{2\cos^2\alpha}{3 + \sin\beta}$$

c.
$$c_{max} = 1$$
.

5_.

PQ =
$$\sqrt{C_1C_2^2 - (r_1 - r_2)^2} = \sqrt{4 - 1} = \sqrt{3}$$

$$PQ = \sqrt{C_1 C_2^2 - (r_1 - r_2)^2} = \sqrt{4 - 1} = \sqrt{3}$$

$$\frac{RC_1}{RC_2} = \frac{3/2}{1/2} \implies RC_1 = 3RC_2 \implies RC_2 = 1$$

$$\therefore \qquad \cos\alpha = \frac{1/2}{1} \qquad \Rightarrow \qquad \alpha = \frac{\pi}{3} = \beta$$

Required perimeter = $\ell_1 + \ell_2 + \sqrt{3} = \frac{3}{2} \cdot \frac{\pi}{3} + \frac{1}{2} \cdot \frac{2\pi}{3} + \sqrt{3} = \frac{5\pi}{6} + \sqrt{3}$

6. OA = OB = OC
$$\Rightarrow$$
 (0, 0) is circumcentre

as
$$OG : GH = 1 : 2 \Rightarrow H = 3G$$

$$\Rightarrow$$
 x = 3 + 5cos θ + 5sin θ and y = 4 + 5sin θ - 5cos θ

$$\Rightarrow$$
 $x + y = 7 + 10\sin\theta$ and $x - y = -1 + 10\cos\theta$ \Rightarrow $(x + y - 7)^2 + (x - y + 1)^2 = 10^2$

∴ B is circumcentre of triangle PP₁P₂

$$x_1 = \frac{9k - 40h}{41}$$
, $y_1 = \frac{9h + 40k}{41}$

BC का समीकरण

8.

10.

$$y + h = {50h + 40k \over 50k - 40h} (x + k)$$

(f, g) lies on BC
$$\Rightarrow$$
 $g + h = \frac{5h + 4k}{5k - 4h}$ (f + k)

⇒ locus of (h, k) is
$$4x^2 + 4y^2 + x (5f + 4g) + y(4f - 5g) = 0 $\frac{1}{6}$ |$$

$$9. \qquad a = (\sqrt{b} + \sqrt{c})^2 \Rightarrow (\sqrt{a} - \sqrt{b} - \sqrt{c})(\sqrt{a} + \sqrt{b} + \sqrt{c}) = 0 \Rightarrow \sqrt{a} - \sqrt{b} - \sqrt{c} = 0$$

$$\Rightarrow (\sqrt{b} + \sqrt{c})x + \sqrt{b} \quad y + \sqrt{c} = 0 \Rightarrow \sqrt{b}(x+y) + \sqrt{c}(x+1) = 0$$

 $BM = 2\sin\theta$ \Rightarrow $MO = 2\sin\theta$ $MA = 2\cos\theta$

$$\therefore$$
 A(2cos θ – 2sin θ , 0) तथा B(–2sin θ , 2sin θ)

$$\therefore$$
 2h = $2\cos\theta - 4\sin\theta$ तथा 2k = $2\sin\theta$

As
$$\cos^2\theta + \sin^2\theta = 1$$
 \Rightarrow $k^2 + (h + 2k)^2 = 1$ \Rightarrow $h^2 + 5k^2 + 4hk = 1$

11. P lies on circle $x^2 + y^2 = c^2$. As curve is symmetrical about y = x and y = -x. So locus of Q and R will remain same.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Case – I If
$$\frac{-1}{\lambda} \neq -3$$

If
$$\frac{-1}{\lambda} \neq -3$$
 i.e., $\lambda \neq \frac{1}{3}$, then

$$\frac{3}{\lambda} = \frac{3}{2}$$

$$\lambda = 2$$

If $\lambda = \frac{1}{3}$, then a unique circle will always pass through these point.

13_.
$$4a^2 - 2(3c - 2b)a + (b^2 + 2c^2 - 3bc) = 0$$

$$\Rightarrow a = \frac{2(3c - 2b) \pm \sqrt{4(3c - 2b)^2 - 4 \cdot 4 \cdot (b^2 + 2c^2 - 3bc)}}{2 \cdot 4}$$

$$\Rightarrow 2a + b - 2c = 0 & 2a + b - c = 0$$

15_.
$$\begin{vmatrix} t^2 & t & 6 \\ 2 & 3 & 5 \\ 3 & -2 & 1 \end{vmatrix} = 0 \Rightarrow \qquad 13t^2 + 13t - 78 = 0 \qquad \Rightarrow \qquad t^2 + t - 6 = 0 \Rightarrow \qquad t = -3, 2$$

$$\left(1\pm 2\cos\frac{\pi}{6}, \sqrt{3}\pm 2\sin\frac{\pi}{6}\right)$$

Image of A(3, -1) about line BE is

$$\frac{x-3}{1} = \frac{y+1}{-4} = -2(1) \quad \Rightarrow \quad (x, y) \equiv (1, 7) \text{ lies on side BC}.$$

Let vertex B is $(4\alpha - 10, \alpha)$.

Mid point of AB lies on 6x + 10y = 59

$$\alpha = 5 \Rightarrow B(10, 5)$$

Equation of C_1 : $x^2 + y^2 - 2ax - 2ay + a^2 = 0$. Equation of C_2 : $x^2 + y^2 - 2bx - 2by + b^2 = 0$ 18_.

Maximum area of $\triangle PQR = \frac{1}{2} \times 5 \times \frac{5}{2} = 6.25$ sq. units

- Let equation of circle is $x^2 + y^2 + \lambda(x y) = 0$. Radius = $\sqrt{\frac{\lambda^2}{4} + \frac{\lambda^2}{4}} = 1$ \Rightarrow $\lambda = \pm \sqrt{2}$ 20_.
- **21**_. Let $x 2 = \cos\theta \& y 2 = \sin\theta$
- Equation of median through A is y 4 = -2(x 1) \Rightarrow y = -2x + 622_*. Let coordinates of point A is $(\alpha, 6 - 2\alpha)$

Now,
$$\frac{1}{2}\begin{vmatrix} 1 & 1 & 1 \\ \alpha & -1 & 3 \\ 6 - 2\alpha & 3 & 5 \end{vmatrix} 1 = 5$$
 $\Rightarrow \alpha = 0, 2$

OA = 5cosec $60^{\circ} = \frac{10}{\sqrt{3}}$ OM = 5cot $60^{\circ} = \frac{5}{\sqrt{3}}$

$$OM = 5\cot 60^{\circ} = \frac{5}{\sqrt{3}}$$

24^*. If z lies inside triangle then ℓ , m, n are all of same sign

 $PQ = \frac{1}{\sqrt{3}}$

$$\Rightarrow \qquad P\left(3, -\frac{1}{\sqrt{3}}\right) \Rightarrow \qquad (x-3)^2 + \left(y \pm \frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}$$

Equation of tangent at (1, 2) is 13x - 9y + 5 = 026^*.

Required equation is $(x - 1)^2 + (y - 2)^2 + \lambda(13x - 9y + 5) = 0$

$$\Rightarrow x^{2} + y^{2} - (2 - 13\lambda)x - (4 + 9\lambda)y + 5(1 + \lambda) = 0$$

Radius =
$$\sqrt{\frac{\left(2-13\lambda\right)^2}{4} + \frac{\left(4+9\lambda\right)^2}{4} - 5\left(1+\lambda\right)} = \sqrt{\frac{5}{2}}$$
 \Rightarrow $\lambda = \pm \frac{1}{5}$

$$\Rightarrow 5\{(x-1)^2 + (y-2)^2\} \pm 1(13x - 9y + 5) = 0 \Rightarrow 5x^2 + 5y^2 + 3x - 29y + 30 = 0$$
& $5x^2 + 5y^2 - 23x - 11y + 20 = 0$

Radius = CN =
$$\frac{|a|}{\sqrt{2}}$$
 \Rightarrow CP² = CM² + MP² \Rightarrow $\frac{a^2}{2} = \left(\frac{0 - \frac{a}{\sqrt{3}}}{\sqrt{1 + \frac{1}{3}}}\right)^2 + 1^2 \Rightarrow a = 2$

$$cosec15^{\circ} = \frac{C_1C_2}{1}$$
 \Rightarrow $r \pm 1 = cosec15^{\circ}$ \Rightarrow $r = \sqrt{6} + \sqrt{2} \pm 1$

29^*.

$$\Rightarrow \qquad (\beta - m\alpha)^2 = 4 + 4m^2 \qquad \qquad \Rightarrow \qquad (\alpha^2 - 4)m^2 - 2\alpha\beta m + (\beta^2 - 4) = 0$$

Equation of tangent is
$$y = mx \pm 2 \sqrt{1 + m^2}$$

$$\Rightarrow (\beta - m\alpha)^2 = 4 + 4m^2 \Rightarrow (\alpha^2 - 4)$$

$$\Rightarrow m_1 + 2m_1 = \frac{2\alpha\beta}{\alpha^2 - 4} \text{ and } 2m_1^2 = \frac{\beta^2 - 4}{\alpha^2 - 4}$$

$$\Rightarrow 2\left(\frac{2\alpha\beta}{3(\alpha^2-4)}\right)^2 = \frac{\beta^2-4}{\alpha^2-4} \Rightarrow \frac{8\alpha^2\beta^2}{9(\alpha^2-4)} = \beta^2-4$$

$$\Rightarrow 8\alpha^{2}\beta^{2} = 9(\alpha^{2}\beta^{2} - 4\alpha^{2} - 4\beta^{2} + 16) \Rightarrow \alpha^{2}\beta^{2} - 36(\alpha^{2} + \beta^{2}) + 144 = 0$$

Disc of f(x) is 144 + $\alpha^2\beta^2$ = 36(α^2 + β^2) > 0 so (A) is not true

Locus of (α^2, β^2) is xy - 36x - 36y + 144 = 0 which is a hyperbola

As
$$\beta^2 = \frac{36(\alpha^2 - 4)}{(\alpha^2 - 36)}$$
 $\Rightarrow \frac{\alpha^2 - 4}{\alpha^2 - 36} > 0 \Rightarrow \alpha \in (-\infty, -6) \cup (-2, 2) \cup (6, \infty)$

30^*. Let y = mx be the chord.

Points of intersection of chord and circle are given by $(1 + m^2)x^2 - (3 + 4m)x - 4 = 0$

$$\Rightarrow$$
 $x_1 + x_2 = \frac{3 + 4m}{1 + m^2}$ and $x_1 x_2 = \frac{-4}{1 + m^2}$

As
$$x_2 = -4x_1 \implies 9 + 9m^2 = 9 + 16m^2 + 24m \implies 7m^2 + 24m = 0 \implies m = 0, -\frac{24}{7}$$

Equation of AB is $\frac{x}{a} + \frac{y}{b} = 1$ CM = 1

$$\Rightarrow \qquad \left| \begin{array}{c} \frac{1}{a} + \frac{1}{b} - 1 \\ \sqrt{\frac{1}{a^2} + \frac{1}{b^2}} \end{array} \right| = 1 \qquad \Rightarrow \qquad -\left(\frac{1}{a} + \frac{1}{b} - 1\right) = \sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$$

32^*.
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ m-1 & m^2-7 & 5 \\ m-2 & 2m-5 & 0 \end{vmatrix} = m^3 - 4m^2 + 5m - 6 = (m-3)(m^2 - m + 2) \Rightarrow \Delta = 0 \Rightarrow m = 3$$

33*. Area =
$$\begin{vmatrix} \frac{1}{2} & \frac{a}{m_1} & a & 1 \\ \frac{a}{m_2} & a & 1 \\ 0 & 0 & 1 \end{vmatrix} = \frac{a^2(m_1 - m_2)}{2m_1m_2} = \frac{a^2(a+2)}{2(a+1)}$$

34*.
$$3m^2 + am + 2 = 0$$
 and $6m^2 - bm - 4 = 0$

$$\Rightarrow m_1 + m_2 = \frac{-a}{3}, m_1 + m_2 = \frac{2}{3}, m_1 - \frac{1}{m_2} = \frac{b}{6}, \frac{-m_1}{m_2} = \frac{-2}{3}$$

$$\Rightarrow \qquad (m_1 m_2) \left(\frac{m_1}{m_2}\right) = \frac{4}{9} \qquad \Rightarrow \qquad m_1^2 = \frac{4}{9} \qquad \Rightarrow \qquad m_1 = \pm \frac{2}{3}$$
(i) $m_1 = \frac{2}{3} \qquad \Rightarrow \qquad m_2 = 1 \qquad \Rightarrow \qquad a = -5, b = -2$
(ii) $m_1 = -\frac{2}{3} \qquad \Rightarrow \qquad m_2 = -1 \qquad \Rightarrow \qquad a = 5, b = 2$

(i)
$$m_1 = \frac{2}{3}$$
 \Rightarrow $m_2 = 1$ \Rightarrow $a = -5, b = -2$

(ii)
$$m_1 = -\frac{2}{3}$$
 \Rightarrow $m_2 = -1$ \Rightarrow $a = 5, b = 2$

35*. As diagonals are bisectors of angle A so their equations are
$$\frac{x-y+k}{\sqrt{2}} = \pm \frac{7x-y+k}{5\sqrt{2}}$$

As they pass through (1, 2) \Rightarrow k = 0, 5/2

$$N\left(\frac{3}{2}, \frac{5}{2}\right)$$
 and $M\left(\frac{-6}{7}, \frac{1}{7}\right)$ \Rightarrow $\frac{-6}{7} < \alpha < \frac{3}{2}$

37*. Line meets x-axis at
$$A\left(-\frac{c}{a},0\right)$$
 & y-axis at $\left(0,\frac{-c}{b}\right)$

$$\therefore \frac{-c}{a} > 0 \text{ and/or } \frac{-c}{b} > 0$$

38*.

$$AM = \frac{AB}{2} = \frac{\sqrt{10}}{2} \qquad \Rightarrow \qquad AC = \sqrt{5}$$

CM equation of CM is x = 3y

let C(3h, h)
$$\Rightarrow$$
 $(3h-1)^2 + (h-2)^2 = 5$

$$\Rightarrow$$
 h = 0, 1

Sol. (39 & 40)

Equation of line joining points A(3, 7) and B(6, 5) is 2x + 3y - 27 = 0

Equation of family of circles S is $(x - 3)(x - 6) + (y - 5)(y - 7) + \lambda(2x + 3y - 27) = 0$ $x^2 + y^2 - 9x - 12y + 53 + \lambda (2x + 3y - 27) = 0.$

Equation of common chord $-5x - 6y + 56 + \lambda (2x + 3y - 27) = 0$.