

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Τμ. Ηλεκτρονικών Μηχανικών & Μηχανικών Υπολογιστών

«ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ»

Διδάσκων: Γ. Σταυρακάκης Ασκήσεις: Ι. Κατσίγιαννης

Μελέτη ροών φορτίου σε ένα ΣΗΕ 12 ζυγών με χρήση του λογισμικού PowerWorld (Εαρινό εξάμηνο 2016-17)

Να μοντελοποιηθεί το ΣΗΕ του παραπάνω σχήματος στο λογισμικό PowerWorld. Το ΣΗΕ περιλαμβάνει 12 ζυγούς, 5 γεννήτριες και 9 φορτία. Η βασική ισχύς είναι 100MVA. Ζυγός ταλάντωσης είναι ο ζυγός 1, στον οποίο η τάση είναι 1.0 αμ και η γωνία 0°.

Για κάθε φοιτητή υπολογίζεται η παράμετρος CODE που είναι ίση με:

$$CODE = \mathbf{MOD} \left(\frac{6 \cdot \mathbf{A}\Gamma O + 6 \cdot \mathbf{A}\Gamma E - 2 \cdot \mathbf{AM}}{4} \right)$$

Από την παράμετρο *CODE* εξαρτάται η θέση των γεννητριών και των φορτίων του συστήματος (βλ. Πίνακες 3 και 4).

Η τάση των ζυγών του συστήματος δίνεται στον Πίνακα 1.

Πίνακας 1: Τάση ζυγών συστήματος

Ζυγός	Τάση (kV)
1	150
2	150
3	150
4	150
5	150
6	69
7	69
8	69
9	69
10	69
11	69
12	69

Τα χαρακτηριστικά των γραμμών μεταφοράς και μετασχηματιστών (M/Σ) του συστήματος δίνονται στον Πίνακα 2.

Πίνακας 2: Χαρακτηριστικά γραμμών μεταφοράς – Μ/Σ

Ζυγός αναχώ- ρησης	Ζυγός άφιξης	Αντίσταση <i>R</i> (αμ)	Επαγωγική αντίδραση Χ (αμ)	Χωρητική αγωγιμότητα Β (αμ)	Μέγιστη ισχύς (MVA)
1	2	0.01+0.001* ΑΓΕ	0.05+0.001* ΑΓΕ	0.02+0.001* ΑΓΟ	100+2* ΑΓΕ
1	5	0.05+0.001* ΑΓΟ	0.22+0.001*AM	0.02+0.001*AM	60+ ΑΓΟ
2	3	0.04+0.001* ΑΓΟ	0.19+0.001* ΑΓΕ	0.01+0.001* ΑΓΕ	30+ AM
2	4	0.05+0.001* ΑΓΕ	0.17+0.001* ΑΓΟ	0.02+0.001*AM	60+ ΑΓΕ
2	5	0.05+0.001* ΑΓΟ	0.17+0.001* ΑΓΟ	0.01+0.001* ΑΓΟ	40+2* ΑΓΟ
3	4	$0.06+0.001*A\Gamma E$	0.17+0.001*AM	$0.01+0.001*A\Gamma E$	60+ AM
4	5	0.01+0.001*AM	0.04+0.001* ΑΓΟ	0.001* ΑΓΕ	40+ ΑΓΕ
4	7	0	0.20+0.001* ΑΓΕ	0	50+ AM
4	9	0	$0.55+0.001*A\Gamma E$	0	30+ AM
5	6	0	0.25+0.001*AM	0	40+ ΑΓΟ
6	11	0.06+0.001* ΑΓΟ	0.13+0.001*AM	0	30+ ΑΓΟ
6	12	0.12+0.001*AM	0.25+0.001* ΑΓΟ	0	30+ ΑΓΕ
7	8	0.08+0.001* ΑΓΟ	$0.17+0.001*A\Gamma E$	0	30+ ΑΓΟ
7	9	0.11+0.001* AM	0.11 + 0.001 * AM	0	30+ ΑΓΕ
6	9	0.09+0.001* ΑΓΟ	0.19+0.001* ΑΓΕ	0	30+ ΑΓΟ
9	10	0.12+0.001* ΑΓΕ	0.27+0.001*AM	0	30+ ΑΓΕ
10	11	0.17+0.001* AM	0.34+0.001* ΑΓΟ	0	8+ ΑΓΟ
11	12	0.22+0.001*AM	0.19+0.001* ΑΓΕ	0	8+ AM

Τα χαρακτηριστικά και οι ζυγοί των φορτίων δίνονται στον Πίνακα 3.

Πίνακας 3: Χαρακτηριστικά και θέση γεννητριών

	•				
Langaga	Ζυγοί γεννητριών				D (MW)
Γεννήτρια	CODE=0	CODE=1	CODE=2	CODE=3	$\mathbf{P}_{\Gamma}\left(\mathbf{MW}\right)$
Γ1	1	1	1	1	- ⁽¹⁾
Γ2	2	2	2	3	60+ ΑΓ Ε
Γ3	3	4	5	4	35+ AM
Γ4	6	9	10	7	30+ ΑΓΟ
Γ5	8	12	11	11	30+ ΑΓE

⁽¹⁾ Η γεννήτρια Γ1 βρίσκεται στο ζυγό ταλάντωσης, επομένως η $P_{\Gamma 1}$ θα υπολογιστεί από την επίλυση των ροών φορτίου. Επιπλέον, από την επίλυση των ροών φορτίου θα υπολογιστεί και η άεργος ισχύς κάθε γεννήτριας.

Τα χαρακτηριστικά και οι ζυγοί των φορτίων δίνονται στον Πίνακα 4.

Πίνακας 4: Χαρακτηριστικά και θέση φορτίων

Φορτίο	Ζυγοί φορτίου				D (MW)	O (MVax)
	CODE=0	CODE=1	CODE=2	CODE=3	$\mathbf{P}_{\mathbf{\Phi}}\left(\mathbf{M}\mathbf{W}\right)$	Q _Φ (MVar)
Ф1	2	2	2	3	20+0.2* ΑΓΕ	12+0.2*AM
Ф2	3	4	3	4	95+0.2*AM	18+0.2* ΑΓΟ
Ф3	4	5	4	5	47+0.2* ΑΓΟ	-5+0.2* ΑΓΕ
Ф4	5	6	6	7	7+0.2* ΑΓΕ	1+0.2* ΑΓE
Ф5	6	7	7	8	10+0.2* ΑΓΟ	6+0.2* AM
Ф6	9	8	8	9	29+0.2*AM	15+0.2* ΑΓΟ
Φ7	10	10	9	10	14+0.2*AM	3+0.2*AM
Ф8	11	11	10	11	13+0.2* ΑΓΟ	4+0.2* ΑΓΟ
Ф9	12	12	12	12	5+0.2* ΑΓΕ	0.2* ΑΓΕ

Ζητούμενα:

- 1. Να μοντελοποιηθεί το παραπάνω ΣΗΕ στο λογισμικό PowerWorld.
- 2. Να αναγραφεί η τάση (αμ) και η γωνία σε κάθε ζυγό του συστήματος, μετά την επίλυση του προβλήματος ροών φορτίου.
- 3. Να βρεθεί η ενεργός και η άεργος ισχύς της γεννήτριας του ζυγού ταλάντωσης, όπως προκύπτει από τη μελέτη των ροών φορτίου. Επιπλέον, να αναγραφεί η ενεργός και άεργος ισχύς των υπολοίπων γεννητριών του ΣΗΕ.
- 4. Να αναγραφούν η ενεργός και άεργος ισχύς στα δύο άκρα αναχώρησης κάθε γραμμής μεταφοράς και Μ/Σ. Επιπλέον, να αναγραφούν οι απώλειες ενεργού και αέργου ισχύος σε κάθε γραμμή μεταφοράς και Μ/Σ.

- 5. Να ελεγχθεί η φόρτιση των γραμμών μεταφοράς και των Μ/Σ. Σε περίπτωση που η φόρτιση είναι άνω του 80%, να προτείνετε κατά πόσο πρέπει να αυξηθεί η μέγιστη ισχύς τους έτσι ώστε να ξεπεραστεί το πρόβλημα.
- 6. Να ελεγχθεί εάν υπάρχει πτώση τάσης σε ζυγό φορτίου (κάτω του 0.95 αμ). Σε περίπτωση που υπάρχει, τι θα προτείνατε να γίνει για να επιλυθεί το πρόβλημα;

Παραδοτέα:

Για κάθε φοιτητή χρειάζεται να παραδοθούν τα ακόλουθα αρχεία:

- Γραπτή αναφορά (σε αρχείο doc, docx ή pdf) που να περιλαμβάνει τα δεδομένα εισόδου, τη μορφή του υπό εξέταση ΣΗΕ (όπως προκύπτει από το PowerWorld), καθώς και τα αποτελέσματα που προκύπτουν μαζί με τα αντίστοιχα σχόλια.
- Τα σχετικά αρχεία *pwb* και *pwd* του λογισμικού PowerWorld, όπως προκύπτουν μετά την υλοποίηση του ερωτήματος 5.
- Τα σχετικά αρχεία *pwb* και *pwd* του λογισμικού PowerWorld, όπως προκύπτουν μετά την υλοποίηση του ερωτήματος 6 εφόσον υπάρχει αλλαγή σε σχέση με το ερώτημα 5.

Τα αρχεία αυτά θα εμπεριέχονται σε συμπιεσμένο αρχείο zip ή rar. Στο όνομα του αρχείου αυτού θα περιλαμβάνεται το ονοματεπώνυμο του φοιτητή και ο A.M..

Επεξήγηση συντμήσεων:

ΑΓΟ: Αριθμός Γραμμάτων Ονόματος (σύμφωνα με τον κατάλογο ονοματεπωνύμων του μαθήματος)

ΑΓΕ: Αριθμός Γραμμάτων Επωνύμου (σύμφωνα με τον κατάλογο ονοματεπωνύμων του μαθήματος)

ΑΜ: Τελευταίο Ψηφίο ΑΜ

MOD: Συνάρτηση υπολοίπου διαίρεσης $(\pi.\chi., MOD(39/4) = 3)$

Σημείωση: Σε περίπτωση που κάποιος φοιτητής έχει 2 ονόματα ή/και επώνυμα στον κατάλογο ονοματεπωνύμων του μαθήματος, τότε χρησιμοποιεί το πρώτο από αυτά για τον καθορισμό των ΑΓΟ ή/και ΑΓΕ.