Input & Output

CS2053 Computer Architecture

Computer Science & Engineering University of Moratuwa

Dr. Sulochana Sooriyaarachchi

Dr. Chathuranga Hettiarachchi

Acknowledgement: Dr. Dilum Bandara

Input & Output

- Wide variety of peripherals
 - Different volumes of data, in different formats, & different speeds
- All slower than CPU & RAM
- Controlled via I/O modules/controllers
 - Interface to CPU & Memory
 - Interface to 1 or more peripherals

External Devices

- Interact with humans
 - Monitor, printer, keyboard, mouse
- Machine readable
 - Monitoring & control
 - e.g., process scheduling, CPU/casing temperature monitoring, fan speed control
- Communication
 - Network Interface Card (NIC)
 - Modems
 - Dongles Bluetooth, Wi-Fi, 3G, 4G

Generic Model of I/O Module

I/O Module Functions

- Control & Timing
- CPU communication
- Device communication
- Data buffering
- Error detection

I/O Module Functions – Example

SweRVolfX

SweRVolfX IO at low level

Input Output Techniques

- Programmed I/O
 - Polling
- Interrupt driven I/O
- Direct Memory Access (DMA)

Programmed I/O

- CPU has direct control over I/O
 - Continuously sense status Poll
 - Read/write commands
 - Transferring data
- CPU waits for I/O module to complete operation
- Wastes CPU time

Addressing I/O Devices

- Under programmed I/O data transfer is like memory access
 - is like memory access
 - Use LOAD/STORE instructions
- Each device is given a unique identifier
 - Address[15:6]
- CPU commands contain identifier (address)
- Registers within I/O controller are identified by
 - Address[5:2]

I/O Mapping

Memory Mapped I/O

I/O Mapped I/O (Port I/O)

Source: http://me-lrt.de/memory-map-port-isolated-input

I/O Mapping (Cont.)

Memory Mapped I/O

- Devices & memory share same address space
- I/O looks just like memory read/write
- No special commands for I/O
 - Large selection of memory access commands

Isolated I/O

- Separate address spaces
- Need I/O or memory select lines
- Special commands for I/O
 - Limited set

E.g. Memory mapped - GPIO

Three memory-mapped registers:

- Read Register: value read from pin
- Write Register: value to write to pin
- Enable Register: 1 = output, 0 = input GPIO

Register	Memory-Mapped Address
Read Register	0x80001400
Write Register	0x80001404
Enable Register	0x80001408

Interrupt Driven I/O

- No repeated CPU checking of device
 - No waiting
 - CPU does its own work
- I/O module interrupts CPU when ready
- Steps
 - CPU issues read command
 - I/O module gets data from peripheral whilst CPU does other work
 - I/O module interrupts CPU
 - CPU requests data
 - I/O module transfers data

Interrupt Processing (Cont.)

Figure 7.7 Changes in Memory and Registers for an Interrupt

at location N

Direct Memory Access (DMA)

- Programmed & interrupt driven I/O require active
 CPU intervention
 - Transfer rate is limited
 - CPU is tied up in data transfer
- DMA is the answer
 - Additional module (hardware) on bus
 - DMA controller takes over from CPU for I/O
 - Provide a way of bypassing CPU when transferring data between memory & IO

DMA (Cont.)

Example bus configuration

DACK = DMA acknowledge

DREQ = DMA request

HLDA = HOLD acknowledge

HRQ = HOLD request

Figure 7.14 8237 DMA Usage of System Bus

3 Techniques for Input of a Block of Data

Blocks of a Computer

Further Reading

Chapter 7: Computer Organization and Architecture: Designing for Performance (8th Edition), by William Stallings

THANK YOU