第一章 线性方程组

1.1 知识体系

1.2 解的判定 2

1.2 解的判定

- 1. (2001, 数三) 设 A 为 n 阶矩阵, α 为 n 维列向量, 且 $\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} = r(A)$,则线性方程组
 - (A) $Ax = \alpha$ 有无穷多解
 - (B) $Ax = \alpha$ 有唯一解

(C)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 只有零解

(D)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 有非零解

Solution

- 2. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = m < n, 则下列结论不正确的是
 - (A) 线性方程组 $A^T x = 0$ 只有零解
 - (B) 线性方程组 $A^T A x = 0$ 有非零解
 - (C) $\forall b$, 线性方程组 $A^T x = b$ 有唯一解
 - (D) $\forall b$, 线性方程组 Ax = b 有无穷多解

1.3 求齐次线性方程组的基础解系与通解

- 1. (2011, 数一, 二) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶矩阵, $(1, 0, 1, 0)^T$ 为线性方程组 Ax = 0 的基础解系,则 $A^*x = 0$ 的基础解系可为
 - (A) α_1, α_2
 - (B) α_1, α_3
 - (C) $\alpha_1, \alpha_2, \alpha_3$
 - (D) $\alpha_2, \alpha_3, \alpha_4$

Solution

2. (2005, 数一、二) 设 3 阶矩阵 A 的第 1 行为 (a,b,c), a,b,c 不全为零, $B=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$ 满足 AB=O,求线性方程组 Ax=0 的通解。

Solution

3. (2002, 数三) 设线性方程组

$$\begin{cases} ax_1 + bx_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + ax_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + bx_2 + ax_3 + \dots + bx_n &= 0 \\ \vdots && \\ bx_1 + bx_2 + bx_3 + \dots + ax_n &= 0 \end{cases}$$

其中 $a \neq 0, b \neq 0, n \geq 2$ 。当 a, b 为何值时,方程组只有零解、有非零解,当方程组有非零解时,求其通解。

1.4 求非齐次线性方程组的通解

求特解的方法

- 1. 对于抽象矩阵, 用定义和性质凑一个特解 $\sum k_i \mu_i (\sum k_i = 1)$
- 2. 对于数字矩阵, $\bar{A} \rightarrow$ 行最简型 让自由变量取 0
- 1. 设 A 为 4 阶矩阵, k 为任意常数, η_1, η_2, η_3 为非齐次线性方程组 Ax = b 的三个解, 满足

$$\eta_1 + \eta_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \eta_2 + 2\eta_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}.$$

若 r(A) = 3 则 Ax = b 的通解为 ()

$$(A)\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2 \end{pmatrix} (B)\begin{pmatrix} 2\\3\\4\\5 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1 \end{pmatrix} (C)\begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2\\3 \end{pmatrix} (D)\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1 \end{pmatrix}$$

Solution

由题设可知 r(A)=3,可知 Ax=0 基础解系里面有 n-r(A)=4-3=1 个线性无关的向量. 根据解的形式可知要凑一个 $\sum k_i=0$

$$3(\mu_1 + \mu_2) - 2(\mu_2 + 2\mu_3) = \begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}$$

为基础解系, 凑一个 $\sum k_i = 1$ 为特解, 考虑选项可知

$$2(\mu_1 + \mu_2) - (\mu_2 + 2\mu_3) = \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix}$$

1.4 求非齐次线性方程组的通解

5

为特解, 故其通解为

$$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} + k \begin{pmatrix} -1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

- 2. (2017, 数一、三、三) 设 3 阶矩阵 $A=(\alpha_1,\alpha_2,\alpha_3)$ 有三个不同的特征值, 其中 $\alpha_3=\alpha_1+2\alpha_2$ 。
 - (I) 证明 r(A) = 2;
 - (II) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,求线性方程组 $Ax = \beta$ 的通解。

Solution

- (2) 由于 r(A) = 2, Ax = 0 的基础解系里有 n r(A) = 3 2 = 1 个线性无关的向量, 又因为

$$\alpha_1 + 2\alpha_2 - \alpha_3 = A \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = 0$$

故基础解系为 ξ $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ 又因为 $\beta = A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = A\mu$ 故通解为 $\mu + k\xi$, 其中 k 为任意常

数

3. 设
$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, b = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
, 线性方程组 $Ax = b$ 有两个不同的解.

- (I) 求 λ , a 的值;
- (II) 求方程组 Ax = b 的通解。

Solution

(1) 有题设可知 Ax = b 有无穷多解, 即 $r(A) = r(\bar{A}) < 3$ 对增广矩阵做初等行变换有

$$\bar{A} \to \begin{pmatrix} 1 & 1 & \lambda & 1 \\ 0 & \lambda - 1 & 0 & 1 \\ 0 & 0 & 1 - \lambda^2 & a + 1 - \lambda \end{pmatrix} \implies \begin{cases} \lambda = -1 \\ a = -2 \end{cases}$$

(2) 将 Ā 经过初等行变换转换为行最简型有

$$\bar{A} \rightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{3}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

可知其基础解系和特解分别为

$$\xi = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \eta = \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix}$$

故该方程组的通解为 $\eta + k\xi$,其中k为任意常数

- 4. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = r, 若 $\xi_1 \xi_2 \dots \xi_{n-r}$ 为齐次方程组 Ax = 0 的基础解系, η 为非其次线性方程组 Ax = b 的特解, 证明:
 - (I) $η, ξ_1, ξ_2, ..., ξ_{n-r}$ 线性无关
 - (II) $\eta, \eta + \xi_1, \eta + \xi_2, \cdots, \eta + \xi_{n-r}$ 线性无关;
 - (III) $\eta, \eta + \xi_1, \eta + \xi_2, \dots, \eta + \xi_{n-r}$ 为 Ax = b 所有解的极大线性无关组。

Solution

(1) 用定义证明, 设 $\exists k_1, \ldots, k_{n-r}$ 使得

$$k_0 \eta + k_1 \xi_1 + \ldots + k_{n-r} \xi_{n-r} = 0$$
 (*)

*式左乘 A, 可知 $k_0b=0$ 又 $b\neq 0$ 故 $k_0=0$ 将其值带回 * 式可知

$$k_1 \xi_1 + \ldots + k_{n-r} \xi_{n-r} = 0$$

又因为 ξ_i 之间线性无关, 可知 $k_1 = \ldots = k_{n-r} = 0$ 故由线性无关的定义可知

 $\eta, \xi_1, \ldots, \xi_{n-r}$ 线性无关.

(2) 方法一: 用定义

设 $\exists l_0, \ldots, l_{n-r}$ 使得

$$l_0\eta + l_1(\eta + \xi_1) + \ldots + l_{n-r}(\eta + \xi_{n-t}) = 0$$

即

$$(l_0 + \ldots + l_{n-r})\eta + l_1\xi_1 + \ldots + l_{n-r}\xi_{n-r} = 0$$

由以可知上面的系数都为0,即 $l_i=0$ 从而原命题成立

方法二: 用秩证明

$$(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r})$$

$$= (\eta, \xi_1, \dots, \xi_{n-r}) \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$= (\eta, \xi_1, \dots, \xi_{n-r}) A_{(n-r+1)\times(n-r+1)}$$

有 (1) 可知 $(\eta, \xi_1, \dots, \xi_{n-r})$ 线性无关, 即列满秩, 故有

$$r(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r}) = r(A) = n - r + 1$$

由线性无关的充要条件可知,该向量组线性无关.

(3) 由 (2) 可知 $(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r})$ 为方程 Ax = b 线性无关的解, 且 $\eta, \xi_1, \dots, \xi_{n-r}$ 可由其线性表示, 并且 $\eta, \xi_1, \dots, \xi_{n-r}$ 可表示所有解. 从而可知 $(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r})$ 亦可以表示所有解, 故而其为所有解的极大线性无关组.

(非) 齐次方程解的个数

齐次方程组 Ax = 0 的基础解系 (解的极大无关组) 中解的个数为 n - r 有上题的 (3) 可知, 方程 Ax = b 解的极大无关组中解的个数为 n - r + 1

1.5 解矩阵方程 8

1.5 解矩阵方程

1. 设
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ -2 & 0 & 2 \end{pmatrix}$$
 矩阵 X 满足 $AX + E = A^{2022} + 2X$,求矩阵 X 。

Solution

2. (例 4.11) (2014, 数一、二、三) 设
$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$

- (a) (I) 求线性方程组 Ax = 0 的一个基础解系;
- (b) (II) 求满足 AB = E 的所有矩阵 B。

Solution

1.6 公共解的判定与计算

12. (2007, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$

与方程

$$(II)x_1 + 2x_2 + x_3 = a - 1$$

有公共解, 求 a 的值及所有公共解。

13. 设齐次线性方程组

(I)
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 - x_4 = 0 \end{cases}$$

齐次线性方程组 (II) 的一个基础解系为 $\alpha_1 = (2, -1, a+2, 1)^T$, $\alpha_2 = (-1, 2, 4, a+8)^T$

- (1) 求方程组(I)的一个基础解系;
- (2) 当 a 为何值时, 方程组 (I) 与 (II) 有非零公共解, 并求所有非零公共解。

Solution

14. (2005, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0 \\ x_1 + x_2 + ax_3 = 0 \end{cases}$$

与 (II)

$$\begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2x_1 + b^2x_2 + (c+1)x_3 = 0 \end{cases}$$

同解, 求 a,b,c 的值。