

(1-9周) F207周三8: 00-9: 40

复变函数

朱炬波 13973168169 zhujubo@mail.sysu.edu.cn

复变函数

第四节 几个初等函数所构成的映射

- 一、幂函数
- 一二、指数函数
- 三、儒可夫斯基函数
- ・ 四、小结与思考

一、幂函数 $w = z^n (n \ge 2$ 为自然数)

该函数在2平面内处处可导,导数

$$\frac{\mathrm{d}w}{\mathrm{d}z} = nz^{n-1}$$

(1)当z ≠ 0时:

 $\frac{\mathrm{d}w}{\mathrm{d}z} \neq 0$,则在z平面内除原点外,

由 $w=z^n$ 所构成的映射是处处共形的.

$$(2)$$
当 $z=0$ 时:

则: 1) 圆周
$$|z|=r$$
 — 圆周 $|w|=r^n$

(特殊地:单位圆周映射为单位圆周)

2)射线
$$\theta = \theta_0$$
 — 射线 $\varphi = n\theta_0$

(正实轴 $\theta = 0$ 映射成正实轴 $\varphi = 0$)

即在z=0处角形域的张角经过映射变为原来的n倍.

因此, 当 $n \ge 2$ 时, 映射 $w = z^n$ 在 z = 0处没有保角性.

特殊地:

沿正实轴剪开的w平面

$$\theta = 0$$
映射成正实轴的上岸 $\varphi = 0$

$$\theta = \frac{2\pi}{n}$$
映射成正实轴的下岸 $\varphi = 2\pi$

映射特点: 把以原点为顶点的角形域映射成以原

点为顶点的角形域,但张角变成为原来的n倍.

如果要把角形域映射成角形域,常利用幂级数.

例1 求把角形域 $0 < \arg z < \frac{\pi}{4}$ 映射成单位圆 |w| < 1 的一个映射.

解

$$\zeta = z^4$$

因此所求映射为:

$$w = \frac{z^4 - i}{z^4 + i}$$

例2 求把下图中由圆弧 C_1 与 C_2 所围成的交角为 α 的月牙域映射成角形域 φ_0 < $\arg z < \varphi_0 + \alpha$ 的一个映射.

 C_1 与 C_2 的交点为i,-i

$$z=i \rightarrow \zeta=0, \quad z=-i \rightarrow \zeta=\infty,$$

实现此步的映射是分式线性函数:

$$\zeta = k \left(\frac{z - i}{z + i} \right)$$
 其中 k 为待定的复常数.

复变函数

此映射将
$$z = 1 \rightarrow \zeta = k \left(\frac{1-i}{1+i}\right) = -ik$$
.

取 k = i, 使 $\zeta = 1$, 则 $C_1 \rightarrow \zeta$ 平面上的正实轴.

根据保角性, 月牙域被映射成角形域: $0 < \arg \zeta < \alpha$.

复变函数

复变函数

逆时针旋转 φ_0 $w = e^{i\varphi_0} \zeta$

因此所求映射为:

$$w = ie^{i\varphi_0} \left(\frac{z - i}{z + i}\right)$$
$$= e^{i(\varphi_0 + \frac{\pi}{2})} \left(\frac{z - i}{z + i}\right)$$

例3 求把具有割痕 $Re(z) = a, 0 \le Im(z) \le h$ 的上半平面映射成上半平面的一个映射.

分析: 关键点是将垂直于x轴的割痕的两侧跟x轴

之间的夹角展平. 可利用映射 $w = z^2$

解 如图所示:

解如图所示:

解 如图所示: $w = \sqrt{(z-a)^2 + h^2} + a$

二、指数函数 $w = e^z$

因为
$$w' = (e^z)' = e^z \neq 0$$
,

所以由 $w = e^z$ 所构成的映射是一个全平面上的共形映射.

设
$$z = x + iy$$
, $w = \rho e^{i\varphi}$, 那末 $\rho = e^x$, $\varphi = y$,

$$z$$
平面 $w = e^z$ w 平面 $z = \ln w$

1)

2)

3) 带形域 0 < Im(z) < a

 $(0 < a \le 2\pi)$

→角形域 0 < arg w < a

特殊地:

映射特点: 把水平的带形域 0 < Im(z) < a 映射成角形域 0 < arg w < a.

如果要把带形域映射成角形域,常利用指数函数.

例4 求把带形域 $0 < Im(z) < \pi$ 映射成单位圆

$$|w|=1$$
的一个映射.

解

$$0 < \text{Im}(z) < \pi$$

$$\zeta = e^z$$

上半平面 $Im(\zeta) > 0$

$$w = \frac{e^z - i}{e^z + i}$$

$$|w|=1$$

$$w = \frac{\zeta - i}{\zeta + i}$$

例5 求把带形域 a < Im(z) < b 映射成上半平面 $\text{Im}(\zeta) > 0$ 的一个映射.

三、儒可夫斯基函数

1.定义

函数
$$w = \frac{1}{2} \left(z + \frac{a^2}{z} \right) (a > 0)$$
称为儒可夫斯基函数.

除z = 0外,此函数在z平面内处处解析,

$$z = 0$$
是它的一个极点. 由于 $w' = \frac{1}{2} \left(1 - \frac{a^2}{z^2} \right)$

因此除z = 0和 $z = \pm a$ 外,此映射处处共形.

2. 问题: 儒可夫斯基函数将过z = a, z = -a的圆周 C 映射为什么区域?

因为
$$w-a=\frac{z^2-2az+a^2}{2z}=\frac{(z-a)^2}{2z}$$
,

$$w + a = \frac{z^2 + 2az + a^2}{2z} = \frac{(z+a)^2}{2z},$$

所以
$$\frac{w-a}{w+a} = \left(\frac{z-a}{z+a}\right)^2$$
.

则
$$w = \frac{1}{2} \left(z + \frac{a^2}{z} \right)$$

$$(1) \zeta = \frac{z - a}{z + a}$$

$$(2) t = \zeta^2$$

如果在映射 $\zeta = \frac{z-a}{z+a}$ 下:

$$z = a \rightarrow \zeta = 0, \qquad z = -a \rightarrow \zeta = \infty,$$

则: $C \rightarrow \Box \zeta = 0$ 的直线.

z取实数时,ζ也为实数

$$\frac{\mathrm{d}\zeta}{\mathrm{d}z} = \frac{2a}{(z+a)^2} > 0.$$

则:

1) z沿实轴右移, ζ沿实轴右移

C外部 $\rightarrow \zeta$ 半平面(含正实轴)

2)具有保角性

结论: 映射
$$w = \frac{1}{2} \left(z + \frac{a^2}{z}\right)$$
将一个通过点 $z = a$ 与

z = -a(a > 0)的圆周C的外部一一对应地、共

形地映射成除去连接点w = a = b w = -a 的圆

弧 δ 的扩充平面. 当C为圆周|z|=a时, δ 将退化

成线段 $-a \leq \text{Re}(w) \leq a, \text{Im}(w) = 0.$

说明: 1) 当a = 1时,

|z| > 1被一一对应, 共形地映射为具有割痕[-1,1]的扩充平面.

2)
$$\Rightarrow z = \frac{1}{\zeta}, \quad w = \frac{1}{2}\left(z + \frac{1}{z}\right) \longrightarrow w = \frac{1}{2}\left(\zeta + \frac{1}{\zeta}\right)$$

$$z = \frac{1}{\zeta}$$

$$w = \frac{1}{2} \left(\zeta + \frac{1}{\zeta} \right)$$

|z|<1被一一对应,共形地

地映射为具有割痕[-1,1]的 扩充平面.

3.儒可夫斯基截线 (机翼截线)

闭曲线 C'_1 称为儒可夫斯基截线,也称为机翼截线.

映射将圆周C的外部 \rightarrow 儒可夫斯基截线的外部.

机翼截线名称的由来:

由于C'的形状很象飞机机翼的横断面周线,

且因儒可夫斯基采用它

作为机翼的型线.

假设机翼型线为此

曲线而进行一些流体力学上的理论计算,使对机

翼绕流的研究化为对圆柱绕流的研究.

例7 求把上半个单位圆:|z| < 1,Im(z > 0)映射成

单位圆w < 1的映射.

四、小结与思考

本课我们学习了幂函数、指数函数的映射特点,将分式线性映射与初等函数相结合,求一些边界由圆周、圆弧、直线、直线段所围区域的 共形映射问题是本章的难点.

思考题

映射 $w = \sqrt{z}$ 能否将|z| < 1映为|w| < 1, Im(z) > 0?

思考题答案

不能. z < 1不是角形域.

作业: P246, 19 (1、2、3、4、5、6)

