

YACHAY TECH UNIVERSITY

SYLLABUS

1. 6	1. General Information							
Α.	A I SCHOOL	Physical Sciences and	В.	MAJOR	Physics			
		Nanotechnology			Nanotechnology			
C.	COURSE	Quantum Mechanics I	D.	CODE	ECFN1009			
E.	SEMESTER	6th	F.	ACADEMIC TERM	02SEM2023			
G.	CURRICULAR UNIT	Professional	Н.	MODALITY	Face to face			
l.	HOURS	160	J.	PROFESSORS	Wladimir Eduardo Banda Barragán			
		07:00 – 09:00 Monday		WEEKLY TUTORING	14:00 - 15:00 Monday			
K.	WEEKLY CLASS SCHEDULE	11:00 – 13:00 Wednesday	L.	SCHEDULE	14:00 - 15:00 Tuesday			
		07:00 – 09:00 Friday		SCHEDOLL	14.00 15.00 rucsuay			

2. Prerequisites and Corequisites							
PREREQUISITES	COREQUISITES						
COURSES	Code	COURSES	Code				
Mathematical Physics I	ECFN1004						
Classical Mechanics	ECFN1006						
Modern Physics	ECFN1007						

3. Course Description

This course provides an introduction to the formal mathematical treatment of Quantum Mechanics. The course introduces the Schrödinger Equation and its solutions for different potentials, emphasising on its statistical interpretation and its importance for the description of experiments at quantum scales. Topics range from wave functions, the time-independent Schrödinger's equation, through Hilbert spaces and the mathematical formalism of quantum mechanics, to the description of the hydrogen atom and two-particle systems. The course includes examples of different applications of quantum mechanics, including writing Hamiltonians for different physical systems and extracting information about them.

4. Course Contribution to professional training

The course helps students to develop the mathematical skills needed to create realistic models of quantum systems.

5. Course objectives

- Understand the fundamental ideas and experiments that led to the formulation of quantum mechanics.
- Learn the mathematical skills and formalism needed to solve Schrödinger's equation and interpret its solutions.
- Study the Hamiltonians of quantum systems in 1D and 3D for different potentials and coordinates, and provide a detailed quantum description of the hydrogen atom.
- Use quantum mechanics to analyse real microscopic phenomena and interpret experimental data.

6. Units /	Contents / Hou	rs / Evaluation Instruments				
CURRICULAR UNITS		CONTENTS	TEACHING HOURS	HOURS OF INTERNSHIP AND EXPERIMENTAL LEARNING	HOURS OF INDEPENDENT LEARNING	EVALUATION INSTRUMENTS
UC.1 The equation	Schrödinger	Review of quantum experiments and mathematical tools.	3	2	2	Classwork (quizzes), homework (assignments), and exams.
		The wave function and the Schrödinger equation.	3	2	2	Classwork (quizzes), homework (assignments), and exams.
		Statistical interpretation of the wave function and probability.	3	2	2	Classwork (quizzes), homework (assignments), and exams.

	Normalisation, momentum, and the uncertainty principle.	3	2	2	Classwork homework and exams.	(quizzes), (assignments),
UC.2 Quantum Mechanics in 1D	Stationary states and the time-independent Schrödinger equation.	3	3	3	Classwork homework and exams.	(quizzes), (assignments),
	Free particles and wave packets.	3	3	3	Classwork homework and exams.	(quizzes), (assignments),
	Finite, Infinite potential wells, and the harmonic oscillator. Delta-function potentials, tunnelling and scattering states.		3	3	Classwork homework and exams.	(quizzes), (assignments),
			3	3	Classwork homework and exams.	(quizzes), (assignments),
UC.3 Mathematical formalism of Quantum Mechanics	Linear algebra, Hermitian operators, and Hilbert space	3	2	2	Classwork homework and exams.	(quizzes), (assignments),
	Eigenfunctions, eigenvectors, and eigenvalues for discrete and continuous spectra.	3	2	2	Classwork homework and exams.	(quizzes), (assignments),
	Dirac notation and the Generalised	3	2	3	Classwork	(quizzes),

		statistical interpretation				homework and exams.	(assignments),
		Operators of position and momentum and the uncertainty principle	3	2	2	Classwork homework and exams.	(quizzes), (assignments),
UC.4 Quantum Mechanics in 3D		Schrodinger Equations in Spherical Coordinates	4	3	3	Classwork homework and exams.	(quizzes), (assignments),
		Coulomb potential and quantum description of the Hydrogen atom	4	3	3	Classwork homework and exams.	(quizzes), (assignments),
	Z	Angular momentum and spin	4	3	3	Classwork homework and exams.	(quizzes), (assignments),
		Larmor precession and the Stern- Gerlach experiment	4	3	3	Classwork homework and exams.	(quizzes), (assignments),
and qu	ystems uantum	Identical particles and introduction to two-particle systems.	3	2	2	Classwork homework and exams.	(quizzes), (assignments),
applications		Exchange interactions, spin, and the generalised symmetrisation principle	3	2	2	Classwork homework	(quizzes), (assignments),

				and exams.
Atoms, the periodic table, and introduction to solids	3	2	2	Classwork (quizzes), homework (assignments), and exams.
Applications of quantum mechanics	3	2	2	Classwork (quizzes), homework (assignments), and exams.
TOTAL	64	48	48	160

7. L	earning outcomes of the course					
	LEARNING OUTCOMES	STUDENT IS REQUIRED TO: (EVIDENCE OF LEARNING)				
Α.	Understand the fundamental ideas and experiments that led to the formulation of quantum mechanics.	Submit quizzes based on reading material and laboratory ap (classwork). Hand in the solutions to problem sets and submit group pro (homework). Solve problems in exams (mid-term and final exams).				
В.	Learn the mathematical skills and formalism needed to solve Schrödinger's equation and interpret its solutions.	Submit quizzes based on reading material and laboratory ap (classwork). Hand in the solutions to problem sets and submit group pro (homework). Solve problems in exams (mid-term and final exams).				

C.	Study the Hamiltonians of quantum systems in 1D and 3D for different potentials and coordinates, and provide a detailed quantum description of the hydrogen atom.	Submit quizzes based on reading material and laboratory applets (classwork). Hand in the solutions to problem sets and submit group projects (homework). Solve problems in exams (mid-term and final exams).
D.	Use quantum mechanics to analyse real microscopic phenomena and interpret experimental data.	Submit quizzes based on reading material and laboratory applets (classwork). Hand in the solutions to problem sets and submit group projects (homework). Solve problems in exams (mid-term and final exams).

8. Methodology

- Interactive lectures including theory and exercises.
- Classwork including exercises and quizzes based on reading material and online laboratory applets.
- Individual and group projects including problem sets and bibliographic research.

9. Information Sources (Bibliography)

9.1 Main

Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH Library
Griffiths, David	Introduction to Quantum Mechanics	2nd	2017	Cambridge University Press – United States	530.12 G8553i 2017

9.2 Complementary							
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH Library		
Townsend, John	A Modern Approach to Quantum Mechanics	2nd	2012	University Science Books – United States	530.12 T748m 2012		
Tong, David	Lectures on Quantum Mechanics		2021	http://www.damtp.cam.a c.uk/user/tong/quantum. html	Online		

10.1. Evaluation during the course*								
Midterm Exam (MT)		Formative Evaluation (FO)		Laboratory (LAB) **		Final Exam (FI)		Total
1 Midterm Exam	30 %	Homework average (problem sets and project reports)	20 %	Classwork average (reading and online laboratory quizzes/applets)	20 %	1 Final Exam	30 %	100 %
Su <mark>btotal</mark>	30 %	Subtotal	20 <mark>%</mark>	Subtotal	20 %	Subtotal	30 %	
.0.2. Makeup Exam								
N/A								

11. General considerations

- Students are responsible for ensuring the academic integrity of their submitted assignments and exams.
- Cheating in exams, plagiarising, and copying solutions from other students or from previous years' solutions are all breaches of academic integrity.
- Academic misconduct will be penalised according to the University's regulations.
- Assignment deadlines and exam dates will be discussed and agreed upon in class.

Based on the Academic Regime Regulation issued by the Higher Education Council (CES in Spanish) and the Academic Regime Regulation of Yachay Tech.

- (*) The percentages of each item are established in Art. 35 of Academic Regime Regulation of Yachay Tech.
- (**) In courses in which there is no laboratory item, place: N/A

Prepared by:	Reviewed by:	Approved by:	
PROFESSOR - PROFESSORS	MAJOR COORDINATOR - MAJOR DIRECTOR	DEAN – DIRECTOR	
SIGNATURE AND DATE:	SIGNATURE AND DATE:	SIGNATURE AND DATE:	