Digital Image Processing (CSE/ECE 478)

Lecture 4: Histogram Processing & Intro. to Spatial Filters

Recap ...

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

Point to Point

Neighborhood to Point

Global Attribute to Point

Histogram

$$h_r(i) = n_i$$

 $i \rightarrow intensity value, range [0 L-1]$

 $\boldsymbol{n}_i \rightarrow \text{number of pixels with intensity i}$

Histograms

Histograms and brightness

Under exposure

Histograms

Histograms and brightness

Over exposure

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

Point to Point

Neighborhood to Point

Global Attribute to Point

Spatial Domain Processing

Global Attribute to Point

Histogram Processing

Histogram Stretching/ Contrast Stretching

Histogram Equalization

Histogram Specification

Local Histogram Equalization

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min}$$
 = 0 and a_{max} = 255
$$f_{ac}(a) = (a-a_{low}) \cdot \frac{255}{a_{high}-a_{low}}$$

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min}$$
 = 0 and a_{max} = 255
$$f_{ac}(a) = (a-a_{low}) \cdot \frac{255}{a_{high}-a_{low}}$$

Single pixel with intensity 0 or 255. What happens?

Contrast Stretching ver. 2

$$\hat{a}_{\text{low}} = \min\{i \mid \mathsf{H}(i) \ge M \cdot N \cdot s_{\text{low}}\}$$

$$\hat{a}_{\mathrm{high}} = \max \big\{ \, i \mid \mathsf{H}(i) \leq M \cdot N \cdot (1 - s_{\mathrm{high}}) \big\}$$

$$f_{\text{mac}}(a) = \begin{cases} a_{\text{min}} & \text{for } a \leq \hat{a}_{\text{low}} \\ a_{\text{min}} + \left(a - \hat{a}_{\text{low}}\right) \cdot \frac{a_{\text{max}} - a_{\text{min}}}{\hat{a}_{\text{high}} - \hat{a}_{\text{low}}} & \text{for } \hat{a}_{\text{low}} < a < \hat{a}_{\text{high}} \\ a_{\text{max}} & \text{for } a \geq \hat{a}_{\text{high}} \end{cases}$$

Ver. 2

Contrast Stretching – Enough?

Do all intensities have equal distribution?

Assumptions

ightharpoonup S = T(r) is a monotonically increasing function in $0 \le r \le L - I$

Histogram as PDF

r and s as continuous random variables

 \rightarrow p_r (r) and p_s (s) as probability distribution functions of r and s

 $p_r(r) . dr = p_s(s) . ds$

Derivation (on blackboard) [Section 3.3.1 in GW]

Histogram Equalization

Image Courtesy: Gonzalez and Woods

Histogram Equalization - Example

64 x 64 image

3-bits / pixel

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Histogram Equalization - Example

abc

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Histogram Specification / Matching [Section 3.3.2]

contrast enhancement. What's the difference?

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

Point to Point

Neighborhood to Point

Global Attribute to Point

Neighborhood

Local Histogram Processing

References

▶ GW Chapter – 3.3.1 to 3.3.3

- Transformations of Random Variables
 - http://www.randomservices.org/random/dist/Transformations.html
 - Section 1 of http://www.cs.cmu.edu/~minx/transform.pdf
 - Leibnitz Integration Rule : https://en.wikipedia.org/wiki/Leibniz_integral_rule#Alternative_derivation