10.11.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 6月18日

RECT 0 4 JAN 2005

出 願 番 号 Application Number:

人

特願2004-180899

[JP2004-180899]

WIFO POT

· [ST. 10/C]:

キヤノン株式会社

出 願
Applicant(s):

•

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 11 11

2004年12月17日

【書類名】 特許願 【整理番号】 0004605-01

【提出日】平成16年 6月18日【あて先】特許庁長官殿【国際特許分類】H04N 5/00

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

【特許出願人】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】 100090273

【弁理士】

【氏名又は名称】 國分 孝悦 【電話番号】 03-3590-8901

【先の出願に基づく優先権主張】

【出願番号】 特願2003-389274 【出願日】 平成15年11月19日

【手数料の表示】

【予納台帳番号】 035493 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9705348

【請求項1】

光電変換素子と、

前記光電変換素子にソースが接続され、ドレインにリセット用電源が接続されるリセット用トランジスタと、

前記光電変換素子にゲートが接続され、ドレインに読み出し用電源が接続される読み出 し用トランジスタと、

前記読み出し用トランジスタのソースに接続された信号線と、

前記読み出し用電源又は前記信号線と前記読み出し用トランジスタとの間に接続された選択用トランジスタと、

前記信号線に接続された定電流源と、

を有することを特徴とする光電変換装置。

【請求項2】

前記光電変換素子、前記読み出し用トランジスタ、前記信号線及び前記定電流源は、単 一の絶縁性支持体上に形成されていることを特徴とする請求項1に記載の光電変換装置。

【請求項3】

前記信号線に接続された読み出し手段を有し、

前記定電流源は、前記読み出し用トランジスタよりも前記読み出し手段から離間した前記信号線上の位置に設けられていることを特徴とする請求項1又は2に記載の光電変換装置。

【請求項4】

前記読み出し手段は、前記信号線が接続されたアナログマルチプレクサを有することを 特徴とする請求項3に記載の光電変換装置。

【請求項5】

前記アナログマルチプレクサは前記読み出し用トランジスタと同一の絶縁性支持体上に、アモルファスシリコン又はポリシリコンの薄膜トランジスタを用いて形成されていることを特徴とする請求項4に記載の光電変換装置。

【請求項6】

前記定電流源は、ゲートに定電流源用電源が接続された定電流源用トランジスタを有することを特徴とする請求項1乃至5のいずれか1項に記載の光電変換装置。

【請求項7】

前記定電流源用電源は、前記定電流源用トランジスタのゲートに、ドレインーソース間電圧をVds、ゲートーソース間電圧をVgs、しきい値電圧をVthとしたときに、Vds>Vgs-Vthの関係が成り立つような電圧を供給することを特徴とする請求項6に記載の光電変換装置。

【請求項8】

前記定電流源は、ゲートとソースとが相互に接続された定電流源用トランジスタを有することを特徴とする請求項1乃至5のいずれか1項に記載の光電変換装置。

【請求項9】

前記定電流源は、ゲートとソースとが抵抗を介して接続された定電流源用トランジスタ を有することを特徴とする請求項1乃至5のいずれか1項に記載の光電変換装置。

【請求項10】

前記リセット用トランジスタ、前記読み出し用トランジスタ、前記選択用トランジスタ 及び前記定電流源からなる群から選択された少なくとも1個は、アモルファスシリコン層 又はポリシリコン層を用いて形成されていることを特徴とする請求項1乃至9のいずれか 1項に記載の光電変換装置。

【請求項11】

放射線を吸収し、前記光電変換素子が検知可能な波長帯域の光を放出する蛍光体層を有することを特徴とする請求項1乃至10のいずれか1項に記載の光電変換装置。

【請求項12】

前記光電変換素子は、PIN型フォトダイオード又はMIS型センサであることを特徴とする請求項1乃至11のいずれか1項に記載の光電変換装置。

【請求項13】

前記光電変換素子は放射線を直接電荷に変換する直接型光電変換素子であることを特徴 とする請求項1乃至10のいずれか1項に記載の光電変換装置。

【請求項14】

前記直接型光電変換素子は、アモルファスセレン、ガリウム砒素、ガリウムリン、ヨウ化鉛、ヨウ化水銀、CdTe及びCdZnTeからなる群から選択された1種を材料とすることを特徴とする請求項13に記載の光電変換装置。

【請求項15】

光電変換素子と、

前記光電変換素子にソースが接続され、ドレインにリセット用電源が接続されるリセット用トランジスタと、

前記光電変換素子にゲートが接続され、ドレインに読み出し用電源が接続される読み出 し用トランジスタと、

前記読み出し用電源又は前記信号線と前記読み出し用トランジスタとの間に接続された選択用トランジスタと、

を備えた画素が2次元状に複数配列され、

前記複数の画素に接続された複数の共通信号線と、

前記共通信号線に接続された定電流源と、

を有することを特徴とする光電変換装置。

【請求項16】

請求項1乃至15のいずれか1項に記載の光電変換装置と、X線発生装置と、制御手段とを有し、

前記制御手段は、X線発生装置および光電変換装置の動作を制御することにより、被写体を透過したX線画像を読み取ることを特徴とするX線撮影システム。

【発明の名称】光電変換装置

【技術分野】

[0001]

本発明は、放射線撮影装置等の光電変換装置に関し、特に、寄生容量による感度低下の低減を図った光電変換装置に関する。

【背景技術】

[0002]

従来、アモルファスシリコンやポリシリコンを用いたセンサアレイの光電変換素子で光電変換された電荷を、マトリクス駆動によって容量へ転送して読み出す放射線撮影装置等の光電変換装置が知られている。

[0003]

図9は、従来の光電変換装置(放射線撮像装置)を示す模式的回路図である。図9に示すように、従来の光電変換装置では、図中破線で囲まれた画素に、PIN型フォトダイオードPDと選択用薄膜トランジスタ(TFT)STとが設けられており、このような画素が2次元に配列してセンサアレイ101が構成されている。これらの素子は、ガラス基板102上に形成されたアモルファスシリコン層及びポリシリコン層等を用いて構成されている。各画素のPIN型フォトダイオードPDの共通電極には電源からバイアス電圧Vsが印加されている。

[0004]

また、各画素の選択用TFT STのゲート電極は共通ゲート線Vg1~VgMに接続されている。共通ゲート線Vg1~VgMはシフトレジスタ(図示せず)等を備えたゲートドライバ104に接続されている。各選択用TFT STのソース電極は共通信号線Sig1~SigNに接続されている。共通信号線Sig1~SigNは、アンプAmp1~AmpN、アナログマルチプレクサMUX及びA/Dコンバータ(図示せず)等を備えた読み出し回路103に接続されている。

[0005]

このように構成された従来の光電変換装置では、ゲートドライバ104によるマトリクス駆動が行われ、撮影画像データが読み出し回路103に出力されて読み出される。

[0006]

次に、従来の放射線撮影装置等の光電変換装置に用いられるセンサアレイの画素の断面構造について説明する。図10は、従来の光電変換装置(X線撮像装置)の画素を示す断面図である。

[0007]

各画素において、ガラス基板201上に、ゲート電極層(下電極)202、絶縁層(アモルファスシリコン窒化膜)203、アモルファスシリコン半導体層204、n型アモルファスシリコン層205、ソース・ドレイン電極層(上電極)206が積層されて選択用薄膜トランジスタ(TFT)222が構成されている。また、ガラス基板上に、ソース・ドレイン電極層206の延出した部分(下電極層)、p型アモルファスシリコン層207、アモルファスシリコン半導体層208、n型アモルファスシリコン層207、アモルファスシリコン半導体層208、n型アモルファスシリコン層207と10が積層されてフォトダイオード221が構成されている。更に、ガラス基板201上には、絶縁層203、アモルファスシリコン半導体層204、n型アモルファスシリコン層205、ソース・ドレイン電極層206が積層されて構成された配線部223も存在する。更に、これらを覆うアモルファスシリコン窒化膜等からなる保護層211が形成され、この上に接着層212を用いて蛍光体層213が接着されている。このような構造は、例えば特許文献1(特開平08-116044号公報)に記載されている。

[0008]

なお、蛍光体層 2 1 3 は、放射線(X線)を可視光に変換するために設けられている。 一般的に、アモルファスシリコンを用いて構成されたフォトダイオードは X線に対する感 度が極めて低い。蛍光体層 2 1 3 はガドリニウム系材料又は C s I (ヨウ化セシウム)等

から構成される。

[0009]

このような従来の光電変換装置(X線撮像装置)では、被写体を透過したX線が蛍光体層に入射すると、可視光に変換される。そして、可視光がフォトダイオードに入射する。フォトダイオードでは、半導体層で電荷が発生し、TFTがオンになると、順次読み出し回路に転送され、読み出される。

[0010]

しかしながら、従来の放射線撮影装置等の光電変換装置では、2 次元的に配列した画素の数が多くなるに従って、共通信号線に大きな寄生容量が寄生し、出力電圧が大幅に低下することがある。つまり、図9に示すように、寄生容量Cgsは、選択用TFTSTのゲートとソース電極との間に寄生し、1本の共通信号線に寄生する寄生容量の大きさは、当該共通信号線に接続される画素の数に比例して大きくなる。例えば、X線フィルム相当のエリアセンサを1 画素 2 0 0 μ m \times 2 0 0 μ m \sim 2 0 0 0 個 \times 2 0 0 0 個 配置し、4 0 c m \times 4 0 c m \times 4 0 c m \times 5 p F であるとしても、1 本の共通信号線には 0. 0 5 \times 2 0 0 0 = 1 0 0 p F の寄生容量が生じてしまう。

[0011]

一方、フォトダイオードPDのセンサ容量Cは1pF程度である。このため、可視光の入射によりフォトダイオードで発生した信号電圧をV1とすると、共通信号線上で観察できる出力電圧Voは「Vo= $V1\times C$ s/(Cs+Cgs) \times 2000」となり、出力電圧Voは信号電圧V1の約1/100になってしまう。

[0012]

従って、従来の放射線撮像装置等の光電変換装置では、このような出力電圧の大幅な低下のために、大面積のセンサを構成することができない。また、出力電圧の大幅な低下のために、読み出し回路のアンプで発生するノイズや外来ノイズの影響を受けやすく、高感度の光電変換装置を構成するのが困難な場合もある。定電流源や低ノイズアンプ等を読み出し回路に設ければノイズの影響を低減することが可能な場合もあるが、低ノイズアンプは特殊な回路であるため、コストの上昇等の問題が引き起こされてしまう。更に、低ノイズアンプは一般に消費電力が大きいため、読み出し回路の発熱の問題も無視できない。

[0013]

【特許文献1】特開平8-116044号公報

【発明の開示】

【発明が解決しようとする課題】

[0014]

本発明は、寄生容量によるノイズの影響を低減することが可能であり、また、簡素な構成で低消費電力の読み出し回路で読み出し可能な光電変換装置を提供することを目的とする。

【課題を解決するための手段】

[0015]

本願発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。

[0016]

本発明に係る光電変換装置は、光電変換素子と、前記光電変換素子にソースが接続され、ドレインにリセット用電源が接続されるリセット用トランジスタと、前記光電変換素子にゲートが接続され、ドレインに読み出し用電源が接続される読み出し用トランジスタと、前記読み出し用トランジスタのソースに接続された信号線と、前記読み出し用電源又は前記信号線と前記読み出し用トランジスタとの間に接続された選択用トランジスタと、前記信号線に接続された定電流源と、を有することを特徴とする。

[0017]

本発明に係る X 線撮影システムは、上記の光電変換装置と、 X 線発生装置と、 制御手段 出証特 2 0 0 4 - 3 1 1 5 7 8 5

とを有し、前記制御手段は、X線発生装置および光電変換装置の動作を制御することにより、被写体を透過したX線画像を読み取ることを特徴とする。

【発明の効果】

[0018]

本発明によれば、大面積のセンサを構成しても、寄生容量の増大による出力電圧の低下を抑えることができる。このため、ノイズの影響を受けにくくなり、高い感度が得られる。更に、低ノイズアンプや定電流源等の特殊な回路を用いなくても読み出し手段を構成することができる。また低消費電力で発熱の影響の小さい読み出し手段を構成することができる。更に、本発明に設けられる定電流源はガラス基板上に薄膜トランジスタを用いて形成することが可能である。このため、光電変換素子や他の薄膜トランジスタと同時に成膜形成することができ、コストの面で有利である。また、定電流源はガラス基板上において、読み出し手段から離間した場所に設けることができるため、信号線の抵抗の影響を低減することも可能である。

【発明を実施するための最良の形態】

[0019]

以下、本発明の実施形態について添付の図面を参照して具体的に説明する。

[0020]

(第1の実施形態)

先ず、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。

[0021]

本実施形態においては、ガラス基板2上に2行2列(4個)の画素PE11、PE21、PE21及びPE22が設けられてセンサアレイ1が構成されているが、センサアレイ1を構成する画素の数はこれに限定されるものではない。各画素には、アモルファスシリコンを用いて形成されたPIN型フォトダイオードからなる光電変換素子PD及び光電変換素子PD及び光電変換素子PD及び蓄積容量Csの一端は接地されており、他端は互いに接続されている。光電変換素子PD及び蓄積容量Csの一端は接地されており、他端は互いに接続されている。各画素には、更に、リセット用MOSトランジスタRT、選択用MOSトランジスタST及びソースフォロアMOSトランジスタRT、選択用MOSトランジスタST及びソースフォロアMOSトランジスタFTは、例えばアモルファスシリコン又はポリシリコンを用いて形成された薄膜トランジスタ(TFT)から構成されている。なお、蓄積容量Csは、光電変換素子PD自体に存在する容量の大きさが十分なものであれば設けられていなくてもよい。

[0022]

画素PE11及びPE12のリセット用MOSトランジスタRTのゲートには、共通の 共通リセット線R1が接続され、画素PE21及びPE22のリセット用MOSトランジ スタRTのゲートには、共通の共通リセット線R2が接続されている。また、各リセット 用MOSトランジスタRTの一端はリセット用電源5に接続され、他端は光電変換素子P D及び蓄積容量Csに接続されている。

[0023]

画素PE11及びPE12の選択用MOSトランジスタSTのゲートには、共通の共通選択線S1が接続され、画素PE21及びPE22の選択用MOSトランジスタSTのゲートには、共通の共通選択線S2が接続されている。また、各選択用MOSトランジスタSTの一端はソースフォロア用電源(読み出し用電源)6に接続され、他端は当該画素内でソースフォロアMOSトランジスタFTのドレインに接続されている。

[0024]

画素PE11及びPE21のソースフォロアMOSトランジスタFTのソースには、共通の共通信号線Sig1が接続され、画素PE12及びPE22のソースフォロアMOSトランジスタFTのソースには、共通の共通信号線Sig2が接続されている。また、各ソースフォロアMOSトランジスタFTのゲートは、当該画素内で光電変換素子PD及び

[0025]

共通リセット線R1及びR2並びに共通選択線S1及びS2は、結晶シリコンを用いて形成されたシフトレジスタを備えた走査回路4に接続されている。また、共通信号線Sig1及びSig2は、結晶シリコンを用いて形成された読み出し回路3に接続されている。更に、共通信号線Sig1及びSig2には、ガラス基板2上に形成された定電流源Iが接続されている。読み出し回路3には、共通信号線Sig1及びSig2毎に、増幅器Amp1及びAmp2が設けられており、これらの出力信号を外部に順次出力するアナログマルチプレクサMUXも設けられている。また、センサアレイ1の受光面には、従来のものと同様に蛍光体層が設けられている。

[0026]

次に、第1の実施形態に係る光電変換装置(X線撮像装置)の動作について説明する。図 2 は、第1の実施形態に係る光電変換装置(X線撮像装置)の動作を示すタイミングチャートである。図 2 中の R 1 及び R 2 は、夫々共通リセット線 R 1 、R 2 を介してリセット用MOSトランジスタ R T のゲートに印加されるリセットパルスを示し、S 1 、S 2 は、夫々共通選択線 S 1 、S 2 を介して選択用MOSトランジスタ S T のゲートに印加される選択パルスを示し、M U X C L K はアナログマルチプレクサM U X L に印加されるパルスを示す。

[0027]

放射線(X線)が光電変換装置に連続して照射されている状態で、走査回路4が共通リセット線R1にリセットパルスを印加すると、画素PE11及びPE12の光電変換素子PDの電位がリセットされた後、画素PE11及びPE12の光電変換素子PDが光電変換を開始し、蓄積容量Csに信号電荷が蓄積される。また、走査回路4が共通リセット線R2にリセットパルスを印加すると、画素PE21及びPE22の光電変換素子PDの電位がリセットされた後、画素PE21及びPE22の光電変換素子PDが光電変換を開始し、蓄積容量Csに信号電荷が蓄積される。

[0028]

そして、走査回路4が、共通リセット線R1にリセットパルスを印加した後に共通選択線S1に選択パルスを印加すると、光電変換素子PDのリセット以降、画素PE11及びPE12の蓄積容量Csに蓄積されていた信号電荷が信号線Sig1を介して読み出し回路3に読み出される。同様に、走査回路4が、共通リセット線R2にリセットパルスを印加した後に共通選択線S2に選択パルスを印加すると、光電変換素子PDのリセット以降、画素PE21及びPE22の蓄積容量Csに蓄積されていた信号電荷が信号線Sig2を介して読み出し回路3に読み出される。

[0029]

読み出し回路 3 は、パルス MUX_CLK に同期して、信号線Sig1 及びSig2 を介して出力されてきた信号を外部の処理装置等に出力する。

[0030]

このような第1の実施形態では、全体的な回路の構成がソースフォロア回路となっている。従って、信号線Sigl及びSig2に寄生する寄生容量Pの影響を受けずに光電変換素子PDにより得られた信号を増幅して読み出すことができる。従って、大面積化に伴う出力の低下を回避することができる。このため、読み出し回路3内の増幅器Amp1及びAmp2自体で生じるノイズや外来ノイズの影響を受けにくいという効果も得られる。従って、高い感度を得ることもできる。更に、光電変換素子PDにより得られた信号がソースフォロアで増幅されており、また、読み出し回路3に定電流源が不要なので、読み出し回路3の構成は簡素であり、廉価な汎用の素子を用いて構成することが可能である。即ち、従来技術のように、特殊で消費電力の大きい低ノイズアンプや低電流源を要しない簡単な構成の読み出し回路を実現することができる。

[0031]

なお、上述の動作についての説明では、放射線(X線)を連続的に照射しているものと 出証特2004-3115785

[0032]

(第2の実施形態)

次に、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。第2の実施形態では、第1の実施形態で用いられている定電流源Iの替わりに、アモルファスシリコンを用いて形成された薄膜トランジスタ(TFT)CTが設けられている。薄膜トランジスタCTのゲートには、定電流源用電源7から電圧が供給されている。このような構成では、定電流源を他のトランジスタ(リセット用、選択用、ソースフォロア用)等と同時に成膜して形成することができるため、簡易な製造プロセスで構成することができる。ここで、リモット用、選択用、ソースフォロア用、定電流源用の各薄膜トランジスタは積層する膜等を共通にしても良いし、又は個別の膜厚等にしても良い。また、不純物ドープの条件(ロ型又はp型)を共通にしても良いし、又は個別のドープ条件としても良い。更に、レーザーアニール等を用いて、一部をアモルファスシリコンで構成し、他の一部をポリシリコン化しても良い。

[0033]

なお、図3においては、薄膜トランジスタCT及び定電流源用電源7を備えた定電流源は、図11に示すように構成されている。この場合、定電流源を構成する薄膜トランジスタCTはn型、p型のいずれでも良い。

[0034]

例えば、薄膜トランジスタCTが n型の薄膜トランジスタである場合、薄膜トランジスタCTは、ソースードレイン間電圧V ds、ソースードレイン間電流 I ds、ゲートーソース間電圧V gs及びしきい値電圧V thに関し、図4に示すようなV ds -I ds特性を示す。従って、薄膜トランジスタCTのゲート電圧を制御して「V ds >V gs -V th」が満たされる飽和領域とすることにより、薄膜トランジスタCTを定電流源として用いることができる。

[0035]

更に、上式に従えば、薄膜トランジスタCTが n 型の薄膜トランジスタである場合、図 1 2 に示すように、ゲートとソースとを互いに接続することにより、簡単な構成で定電流源を構成することもできる。また、必要な電流値によっては、図13に示すように、ゲートとソースとの間に抵抗を設けても良い。図12又は図13に示す構成によれば、定電流源用電源が不要となる。

[0036]

更に、定電流源をガラス基板上に形成する場合の別の例を図14に示す。この例では擬似的な定電流源を、薄膜トランジスタなどを用いずに、ガラス基板上にパターニングされた抵抗で形成している。この場合の抵抗値は選択用MOSトランジスタSTのON抵抗値より十分大きいことが望ましい。

[0037]

(第3の実施形態)

次に、本発明の第3の実施形態について説明する。図5は、本発明の第3の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。第2の実施形態では、定電流源を形成する薄膜トランジスタCTが画素と読み出し回路3との間に位置しているのに対し、第3の実施形態では、薄膜トランジスタCTが共通信号線上において、画素よりも読み出し回路3から離間して位置している。つまり、薄膜トランジスタCTと読み出し回路3との間に画素が位置している。

[0038]

定電流源を読み出し回路から離間して設ける利点について、図15、図16、図17を 出証特2004-3115785

用いて詳しく説明する。図15は各信号線に対して、定電流源を読み出し手段から離間して設けた場合の構成であり、図16は低電流源を読み出し手段側に設けた場合の構成である。図16のように定電流源を読み出し手段側に設けた場合、各ソースフォロアMOSトランジスタのソース電位Vsに対して、実際に読み出し手段で読み出される電圧Voutが信号線の抵抗成分R1、R2、R3の影響で低減する。たとえば画素Cを読み出す場合は $\Delta V=IO \times (R1+R2+R3)$ だけFT3のソース電位より低い電圧が読み出される。

[0039]

特に大面積の光電変換装置を形成するなど、信号線の抵抗が大きい場合には、この電圧降下は無視できない。図17に画素による電圧降下の様子を示す。一方、図15のように定電流源を読み出し手段と離間して設ける場合、上述の信号線抵抗による出力電圧降下を防ぐことができる。例えば画素Cを読み出す場合においても、電流はR1、R2、R3にはほとんど流れないため、ソースフォロアMOSトランジスタFT3のソース電圧を降下させることなく、読み出し手段で読み出すことが可能である。図17に、定電流源を読み出し手段から離間して設けた場合、電圧降下がほとんどないことを示す。図5及び図15に示すように、定電流源を読み出し手段から離間して設ける構成にすれば、大面積の光電変換装置のように信号線抵抗が無視できない場合にも、電圧降下などの不具合を生じることがない。

[0040]

本実施形態によれば、第1及び第2の実施形態で得られる効果に加えて、共通信号線に 抵抗成分が存在しても、読み出し回路3が読み出す信号出力に対する抵抗成分による電圧 降下を回避することができるという更なる効果が得られる。

[0041]

(第4の実施形態)

次に、本発明の第4の実施形態について説明する。図6は、本発明の第4の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。第4の実施形態においては、第3の実施形態に対し、共通信号線Sigl及びSiglに、読み出し走査用薄膜トランジスタ(TFT)RDTが設けられている。読み出し走査用薄膜トランジスタRDTは、ガラス基板2上の画素と読み出し回路3との間に形成されている。また、読み出し回路3には、アナログマルチプレクサMUXが設けられておらず、各信号線からの出力信号は単一の増幅器Ampに入力されるようになっている。更に、読み出し回路3には、読み出し走査用薄膜トランジスタRDTのゲート電圧を走査する読み出し走査回路8が設けられている。

[0042]

このように構成された第4の実施形態では、図7に示すように、第1の実施形態と同様にして蓄積容量Csに信号電荷が蓄積された後、信号線Sig1用のクロック信号CLK1及び信号線Sig2用のクロック信号CLK2に同期して読み出し走査用薄膜トランジスタRDTがオンとなり、蓄積されていた電荷が順次読み出し回路3により読み出される

[0043]

このような第4の実施形態によれば、読み出し回路3に必要な増幅器の個数は1個であり、他にはロジック回路等は必要なだけである。即ち、読み出し回路3の構成がより一層簡素になっている。従って、ノイズがより一層低くなり、より簡単な構成でより高い感度を得ることができる。本実施形態において、レーザーアニール技術等を用いて走査用薄膜トランジスタRDTをポリシリコンで形成することは、走査速度の観点から望ましい。

[0044]

(第5の実施形態)

次に、本発明の第5の実施形態について説明する。図8は、本発明の第5の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。第4の実施形態では、選択用MOSトランジスタSTがソースフォロアMOSトランジスタFTのドレイン

に接続されているのに対し、第5の実施形態では、選択用MOSトランジスタSTがソースフォロアMOSトランジスタFTのソースと信号線Sig1又はSig2との間に接続されている。ソースフォロアMOSトランジスタFTのドレインは、ソースフォロア用電源6に直接接続されている。

[0045]

このような第5の実施形態によっても、第4の実施形態と同様の効果が得られる。

[0046]

なお、X線の検出だけでなく、蛍光体層を設けずに可視光をそのまま受光するようにしてもよい。また、光電変換素子としては、PIN型フォトダイオードだけでなく、MIS型センサ等を用いてもよい。MIS型センサを用いる場合は、リセット用トランジスタに接続されたリセット用電源が図示しない制御手段により出力電圧を制御可能な構成としてもよい。

[0047]

さらには光電変換素子としては、アモルファスセレン、ガリウム砒素、ヨウ化鉛、ヨウ化水銀など直接放射線(あるいはX線)を吸収して電荷を発生するいわゆる直接変換型素子を用いてもよい。この場合、アモルファスシリコンやポリシリコンで薄膜トランジスタを形成したガラス基板に、直接変換型素子を成膜あるいは接続して光電変換装置を構成することができる。

[0048]

(第6の実施形態)

次に、本発明の第6の実施形態について説明する。第6の実施形態は、本発明の光電変換装置を用いたX線撮影システムの例である。図18は、本発明の第6の実施形態に係るX線撮影システムを示す図である。

[0049]

X線ルーム(撮影室)内において、X線チューブ(X線発生装置) 6050で発生した X線6060は患者又は被験者6061の胸部6062を透過し、イメージセンサ6040に入射する。この入射したX線には患者6061の体の内部の情報が含まれている。 X線の入射に対応してシンチレータ(蛍光体)は発光し、これをセンサーパネルの光電変換素子が光電変換して、電気的情報を得る。イメージセンサ6040は、この情報を電気信号(デジタル信号)としてイメージプロセッサ6070に出力する。画像処理手段としてイメージプロセッサ6070に出力する。画像処理手段としてルルーム(操作室)の表示手段であるディスプレイ6080に出力する。ユーザは、ディスプレイ6080に表示された画像を観察して、患者6061の体の内部の情報を得るとができる。なお、イメージプロセッサ6070は、制御手段の機能も有しており、カードを切り換えたり、X線チューブ6050の制御を行ったりすることも可能である。

[0050]

また、イメージプロセッサ6070は、イメージセンサ6040から出力された電気信号を電話回線6090等の伝送処理手段を介して遠隔地へ転送し、ドクタールーム等の別の場所にある表示手段(ディスプレイ)6081に表示することもできる。また、イメージセンサ6040から出力された電気信号を光ディスク等の記録手段に保存し、この記録手段を用いて遠隔地の医師が診断することも可能である。また、記録手段となるフィルムプロセッサ6100によりフィルム6110に記録することもできる。

[0051]

本X線撮影システムの特徴は、以下の点である。即ち、

- (1)前述の光電変換装置が図中6040のイメージセンサ内部に設けられており、A/D変換されたデジタル出力はイメージプロセッサ6070で目的に応じた画像処理などが施される。
- (2) イメージプロセッサ6070には図示しない制御手段が設けられており、制御手段はイメージセンサ6040、X線発生装置6050、ディスプレイ6080・6081

、フィルムプロセッサ6100などを制御している。

【図面の簡単な説明】

[0052]

- 【図1】本発明の第1の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。
- 【図2】第1の実施形態に係るX線撮像装置の動作を示すタイミングチャートである
- 【図3】本発明の第2の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。
- 【図4】第2の実施形態における薄膜トランジスタCTのVds-Ids特性を示すグラフである。
- 【図5】本発明の第3の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。
- 【図6】本発明の第4の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。
- 【図7】第4の実施形態に係るX線撮像装置の動作を示すタイミングチャートである。
- 【図8】本発明の第5の実施形態に係る光電変換装置、特にX線撮像装置の回路構成を示す回路図である。
- 【図9】従来の光電変換装置(放射線撮像装置)を示す模式的回路図である。
- 【図10】従来の光電変換装置(X線撮像装置)の画素を示す断面図である。
- 【図11】定電流源の構成の一例を示す回路図である。
- 【図12】定電流源の構成の他の一例を示す回路図である。
- 【図13】定電流源の構成の更に他の一例を示す回路図である。
- 【図14】定電流源の構成の更に他の一例を示す回路図である。
- 【図15】定電流源の配置(離間配置)による出力説明図である。
- 【図16】定電流源の配置(読み出し手段側配置)による出力説明図である。
- 【図17】定電流源の配置による出力差の説明図である。
- 【図18】本発明の光電変換装置を用いたX線撮影システム図である。

【符号の説明】

[0053]

- 1:センサアレイ
- 2:ガラス基板
- 3:読み出し回路
- 4:走査回路
- 5:リセット用電源
- 6:ソースフォロア用電源
- 7:定電流源用電源
- 8:読み出し走査回路
- PE11、PE12、PE21、PE22:画素
- PD:光電変換素子
- C s :蓄積容量
- RT:リセット用MOSトランジスタ
- ST:選択用MOSトランジスタ
- FT:ソースフォロアMOSトランジスタ
- CT:薄膜トランジスタ
- RDT:読み出し走査用薄膜トランジスタ
- Amp、Amp1、Amp2:增幅器
- MUX:アナログマルチプレクサ
- I:定電流源

R 1、R 2:共通リセット線

S1、S2:共通選択線

Sig1、Sig2:共通信号線

【図2】

3/

【図3】

【図4】

9/

【図10】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

定電流源配置による出力差

【図18】

【書類名】要約書

【要約】

【課題】 寄生容量によるノイズの影響を低減することが可能であり、また、簡素な構成で低消費電力の読み出し回路で読み出し可能な光電変換装置を提供する。

【解決手段】 本発明に係る光電変換装置は、光電変換素子と、前記光電変換素子にソースが接続され、ドレインにリセット用電源が接続されるリセット用トランジスタと、前記光電変換素子にゲートが接続され、ドレインに読み出し用電源が接続される読み出し用トランジスタと、前記読み出し用トランジスタのソースに接続された信号線と、前記読み出し用電源又は前記信号線と前記読み出し用トランジスタとの間に接続された選択用トランジスタと、前記信号線に接続された定電流源と、を有することを特徴とする。

【選択図】 図1

ページ: 1/E

認定・付加情報

特許出願の番号 特願2004-180899

受付番号 5 0 4 0 1 0 2 9 7 5 7

書類名 特許願

担当官 第一担当上席 0090

作成日 平成16年 6月23日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000001007

【住所又は居所】 東京都大田区下丸子3丁目30番2号

【氏名又は名称】 キヤノン株式会社

【代理人】 申請人

> 【識別番号】 100090273

【住所又は居所】 東京都豊島区東池袋1丁目17番8号 池袋TG

ホーメストビル5階 國分特許事務所

【氏名又は名称】 國分 孝悦

特願2004-180899

出願人履歴情報

識別番号

[000001007]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月30日 新規登録

東京都大田区下丸子3丁目30番2号

キヤノン株式会社