Operációs rendszerek BSc

8. gyakorlat

Készítette:

Nemesi Gergely Tibor Üzemmérnök-informatikus Neptun: ILZGJC

2022.03.28

Contents

Ι	Ütemezési algoritmusok	2
1.	feladat	 2
2.	feladat	5

Part I Ütemezési algoritmusok

1. feladat

Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR:10ms) ütemezési algoritmus alapján határozza meg következő teljesítmény értékeket, metrikákat (külön-külön táblázatba):

FCFS	P1	P2	P3	P4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Indulás	0	14	22	58
Befejezés	14	22	58	68
Várakozás	0	7	11	38
Körülfordulási idő	14	15	47	48

FCFS megoldás

FCFS Gantt

			The second se	
SJF	P1	P2	P3	P4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Indulás	0	14	32	22
Befejezés	14	22	68	32
Várakozás	0	7	21	2
Körülfordulási idő	14	15	57	12

SJF megoldás

SJF Gantt

RR: 10ms	P1	P1 (2)	P2	P3	P3 (2)	P3 (3)	P3 (4)	P4
Érkezés	0	10	7	11	32	52	62	20
CPU idő	14	4	8	36	26	16	6	10
Indulás	0	18	10	22	42	52	62	32
Befejezés	10	22	18	32	52	62	68	42
Várakozás	0	8	3	11	10	0	0	12
Körülfordulási idő	14	12	11	47	36	16	6	22
Várakozási idők szummázva	44							
Körülfordulási idő szummázva	164							

 $\rm RR~10~ms~megold\acute{a}s$

RR 10 ms Gantt

2. feladat

Adott négy processz a rendszerbe, melynek a ready sorban a beérkezési sorrendje: A, B, C és D.

Minden processz USER módban fut és mindegyik processz futásra kész. Kezdetben mindegyik processz p-uspri = 60. Az A, B, C processz p-nice = 0, a D processz p-nice = 5.

Mindegyik processz p-cpu = 0, az óraütés 1 indul, a befejezés legyen 301. óraütés-ig.

	A pro	ocess	B process		C process		D process		Reschedule	
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after
Starting point	60	0	60	0	60	0	60	0	Α	Α
1	60	1	60	0	60	0	60	0	Α	Α
									Α	Α
99	60	99	60	0	60	0	60	0	Α	Α
100	73	50	60	0	60	0	60	0	Α	В
101	73	50	60	1	60	0	60	0	В	В
199	73	50	60	99	60	0	60	0	В	В
200	66	25	73	50	60	0	60	0	В	С
201	66	25	73	50	60	1	60	0	С	С
299	66	25	65	50	60	99	60	0	С	С
300	43	12	55	25	65	50	60	0	С	D
301	43	12	55	25	65	50	60	1	D	D

RR nélkül

	A pro	ocess	B pro	cess	C pro	ocess	D pro	cess	Resche	edule	
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after	
Starting point	60	0	60	0	60	0	60	0	Α	Α	
1	60	1	60	0	60	0	60	0	Α	А	
									٨	٨	
99	60	99	60	0	60	0	60	0	Α	Α	
100	73	50	60	0	60	0	60	0	Α	В	
101	/3	50	60	1	60	O	60	U	R	В	
199	73	50	60	99	60	0	60	0	В	В	
200	66	25	73	50	60	0	60	0	В	С	
201	66	25	73	50	60	1	60	0	С	С	

RR-el

Minden 100-adik óraütésnél van ütemezés, illetve korrekciós faktor. 100. óraütésnél a korr. fakt.

200. óraütésnél a korr. fakt.

$$\begin{array}{l} {\rm KF=\ 2^*\ FK\ /\ 2^*FK+1=(2^*3)\ /\ (2^*3+1)=0.85} \\ {\rm A\ p\text{-}cpu=46\ ^*\ 0.85=39\ ---- \ A\ p\text{-}uspri=60\ +(39/4)=70} \\ {\rm B\ p\text{-}cpu=46\ ^*\ 0.85=39\ ---- \ B\ p\text{-}uspri=60\ +(39/4)=70} \\ {\rm C\ p\text{-}cpu=37\ ^*\ 0.85=31\ ---- \ C\ p\text{-}uspri=60\ +(31/4)=68} \\ {\rm D\ p\text{-}cpu=46\ ^*\ 0.85=40\ ---- \ D\ p\text{-}uspri=60\ +(40/4)\ +\ 10=70} \end{array}$$