Progress Quiz 4

1. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$54x^2 + 57x + 10$$

- A. $a \in [0.4, 3.8], b \in [11, 14], c \in [-0.86, 1.37], and <math>d \in [44, 47]$
- B. $a \in [6.4, 12.8], b \in [0, 3], c \in [5.93, 7.07], and <math>d \in [3, 6]$
- C. $a \in [3.4, 5.1], b \in [0, 3], c \in [10.7, 12.92], and <math>d \in [3, 6]$
- D. $a \in [24.8, 27.6], b \in [0, 3], c \in [1.41, 2.32], and <math>d \in [3, 6]$
- E. None of the above.
- 2. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$17x^2 + 12x - 9 = 0$$

- A. $x_1 \in [-28.28, -27.48]$ and $x_2 \in [26.99, 27.36]$
- B. $x_1 \in [-1.54, -0.96]$ and $x_2 \in [-0.63, 1.02]$
- C. $x_1 \in [-1.03, -0.43]$ and $x_2 \in [0.59, 1.5]$
- D. $x_1 \in [-19.92, -19.53]$ and $x_2 \in [7.43, 8.2]$
- E. There are no Real solutions.
- 3. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

6286-1986 Fall 2020

- A. $a \in [-0.3, 1.9], b \in [8, 9], and <math>c \in [8, 13]$
- B. $a \in [-1.6, 0.3], b \in [-10, -6], \text{ and } c \in [-22, -21]$
- C. $a \in [-0.3, 1.9], b \in [-10, -6], \text{ and } c \in [8, 13]$
- D. $a \in [-0.3, 1.9], b \in [8, 9], and <math>c \in [20, 25]$
- E. $a \in [-1.6, 0.3], b \in [8, 9], \text{ and } c \in [-22, -21]$

4. Graph the equation below.

$f(x) = (x+2)^2 + 14$

0-

A.

В.

D.

E. None of the above.

5. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [0, 1.8], b \in [1, 7], and c \in [13, 15]$
- B. $a \in [-1.1, 0.7], b \in [-5, 2], \text{ and } c \in [-15, -12]$
- C. $a \in [-1.1, 0.7], b \in [1, 7], \text{ and } c \in [6, 7]$
- D. $a \in [0, 1.8], b \in [-5, 2], \text{ and } c \in [13, 15]$
- E. $a \in [-1.1, 0.7], b \in [-5, 2], \text{ and } c \in [6, 7]$
- 6. Graph the equation below.

$$f(x) = -(x-2)^2 + 15$$

Α.

В.

6286-1986 Fall 2020

C.

E. None of the above.

7. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$16x^2 - 32x + 15$$

A. $a \in [1.76, 2.51], b \in [-10, -2], c \in [6.8, 9.17], and <math>d \in [-3, 0]$

B. $a \in [6.86, 8.53], b \in [-10, -2], c \in [1.41, 2.13], and <math>d \in [-3, 0]$

C. $a \in [2.39, 4.25], b \in [-10, -2], c \in [2.38, 4.86], and <math>d \in [-3, 0]$

D. $a \in [0.55, 1.39], b \in [-20, -16], c \in [0.19, 1.2], and <math>d \in [-12, -8]$

E. None of the above.

8. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$20x^2 + 21x - 54 = 0$$

A. $x_1 \in [-4.6, -2.77]$ and $x_2 \in [0.47, 0.91]$

B. $x_1 \in [-10.17, -8.65]$ and $x_2 \in [0.21, 0.51]$

C. $x_1 \in [-0.91, -0.74]$ and $x_2 \in [3.41, 3.82]$

D. $x_1 \in [-2.93, -1.14]$ and $x_2 \in [0.7, 1.57]$

E. $x_1 \in [-46.76, -44.28]$ and $x_2 \in [23.04, 24.03]$

9. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$15x^2 - 15x - 9 = 0$$

A.
$$x_1 \in [-29, -26.9]$$
 and $x_2 \in [27.94, 28.59]$

B.
$$x_1 \in [-1.4, 1]$$
 and $x_2 \in [1.06, 1.77]$

C.
$$x_1 \in [-7.6, -6.1]$$
 and $x_2 \in [20.45, 22.18]$

D.
$$x_1 \in [-2.7, -0.9]$$
 and $x_2 \in [0.38, 0.63]$

- E. There are no Real solutions.
- 10. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 + 60x + 36 = 0$$

A.
$$x_1 \in [-2.98, -1.29]$$
 and $x_2 \in [-0.69, -0.42]$

B.
$$x_1 \in [-2.13, -0.94]$$
 and $x_2 \in [-1.28, -0.97]$

C.
$$x_1 \in [-30.73, -28.36]$$
 and $x_2 \in [-30.12, -29.88]$

D.
$$x_1 \in [-7.75, -4.14]$$
 and $x_2 \in [-0.27, -0.11]$

E.
$$x_1 \in [-4.05, -3.34]$$
 and $x_2 \in [-0.45, -0.39]$