PrSAT: Some Examples

February 2, 2011

■ First, load in the Prsat package

See my PrSAT website for instructions on downloading and installing PrSAT (assuming you have Mathematica installed).

<< Prsat `

■ Example #1

The first example of a probability model that we saw was the following:

$$\begin{aligned} & \text{MODEL1 = PrSAT} \Big[\Big\{ \text{Pr} \big[\textbf{X} \wedge \textbf{Y} \big] = \frac{1}{6} \text{, } \text{Pr} \big[\textbf{X} \wedge \textbf{Y} \big] = \frac{1}{4} \text{, } \text{Pr} \big[\textbf{Y} \wedge \textbf{Y} \big] = \frac{1}{8} \text{, } \text{Pr} \big[\textbf{Y} \wedge \textbf{Y} \wedge \textbf{Y} \big] = \frac{11}{24} \Big\} \Big] \\ & \Big\{ \{ \textbf{X} \rightarrow \{ \textbf{a}_2 \text{, } \textbf{a}_4 \} \text{, } \textbf{Y} \rightarrow \{ \textbf{a}_3 \text{, } \textbf{a}_4 \} \text{, } \Omega \rightarrow \{ \textbf{a}_1 \text{, } \textbf{a}_2 \text{, } \textbf{a}_3 \text{, } \textbf{a}_4 \} \} \text{, } \Big\{ \textbf{a}_1 \rightarrow \frac{11}{24} \text{, } \textbf{a}_2 \rightarrow \frac{1}{4} \text{, } \textbf{a}_3 \rightarrow \frac{1}{8} \text{, } \textbf{a}_4 \rightarrow \frac{1}{6} \Big\} \Big\} \end{aligned}$$

Prsat will show us an STT representation of MODEL1:

TruthTable[MODEL1]

Χ	Y	var	Pr
Т	Т	a ₄	1 6
Т	F	a ₂	1 4
F	Т	a ₃	1 8
F	F	a_1	$\frac{11}{24}$

We can use PrSAT to calculate probability, using MODEL1:

EvaluateProbability[{Pr[X V Y], Pr[X], Pr[Y]}, MODEL1]

$$\left\{\frac{13}{24}, \frac{5}{12}, \frac{7}{24}\right\}$$

We can also check arbitrary claims to see if they are true on MODEL1:

True

■ Example #2

The second example we saw was an algebraic proof of the following theorem:

$$Pr(X \lor Y) = Pr(X) + Pr(Y) - Pr(X \land Y)$$

```
PrSAT[{Pr[X V Y] # Pr[X] + Pr[Y] - Pr[X \ Y]}]
PrSAT::srchfail: Search phase failed; attempting FindInstance
{}
```

This output means there are no probability models on which $Pr[X \ V \ Y] \neq Pr[X] + Pr[Y] - Pr[X \ A \ Y]$. That "proves" that the above statement is a theorem of probability calculus.

■ Example #3

The second example we saw was an algebraic proof of the following theorem:

$$Pr(X) = Pr(X \land Y) + Pr(X \land \neg Y)$$

Prsat easily verifies this theorem (note: it does not present a readable proof).

```
Prsat[{Pr[X] # Pr[X \ Y] + Pr[X \ ¬ Y]}]
Prsat::srchfail: Search phase failed; attempting FindInstance
{}
```

This output means there are no probability models on which $Pr[X] \neq Pr[X \land Y] + Pr[X \land \neg Y]$. That "proves" that the above statement is a theorem of probability calculus.

■ Example #4

The next example involves the following theorem:

$$Pr(X \to Y) \ge Pr(Y \mid X)$$

PrSAT easily verifies this theorem (note: it does not present a readable proof). First, we need to define the conditional operator.

```
X_ → Y_ := ¬ X ∨ Y;

PrSAT[{Pr[X → Y] < Pr[Y | X]}]

PrSAT::srchfail: Search phase failed; attempting FindInstance</pre>
```

This output means there are no probability models on which $Pr[X \rightarrow Y] \ge Pr[Y \mid X]$. That "proves" that the above statement is a theorem of probability calculus.

Example #5

The next example involves the fact that the following is NOT a theorem:

$$Pr(X \mid Y \lor Z) = Pr(X \mid Y \land Z)$$

Prsat easily finds a counter-model to this claim.

$PrSAT[{Pr[X | Y \lor Z] \neq Pr[X | Y \land Z]}]$

$$\begin{split} \Big\{ \{ X \to \{ a_2, \, a_5, \, a_6, \, a_8 \} \,, \, Y \to \{ a_3, \, a_5, \, a_7, \, a_8 \} \,, \\ Z \to \{ a_4, \, a_6, \, a_7, \, a_8 \} \,, \, \Omega \to \{ a_1, \, a_2, \, a_3, \, a_4, \, a_5, \, a_6, \, a_7, \, a_8 \} \} \,, \\ \Big\{ a_1 \to 0 \,, \, a_2 \to 0 \,, \, a_3 \to \frac{1}{28} \,, \, a_4 \to \frac{13}{28} \,, \, a_5 \to 0 \,, \, a_6 \to 0 \,, \, a_7 \to 0 \,, \, a_8 \to \frac{1}{2} \Big\} \Big\} \end{split}$$

The model PrsaT finds by defualt is non-regular. We can force it to find a regular counter-model, as follows:

$MODEL2 = PrSAT[{Pr[X | Y \lor Z] \neq Pr[X | Y \land Z]}, Probabilities \rightarrow Regular]$

$$\begin{split} \Big\{ \{X \to \{a_2, \, a_5, \, a_6, \, a_8\} \,, \, Y \to \{a_3, \, a_5, \, a_7, \, a_8\} \,, \\ Z \to \{a_4, \, a_6, \, a_7, \, a_8\} \,, \, \Omega \to \{a_1, \, a_2, \, a_3, \, a_4, \, a_5, \, a_6, \, a_7, \, a_8\} \big\} \,, \\ \Big\{ a_1 \to \frac{2959}{5 \, 227 \, 434} \,, \, a_2 \to \frac{1}{999} \,, \, a_3 \to \frac{1}{999} \,, \, a_4 \to \frac{1}{999} \,, \, a_5 \to \frac{8}{27} \,, \, a_6 \to \frac{19}{94} \,, \, a_7 \to \frac{83}{167} \,, \, a_8 \to \frac{1}{999} \Big\} \Big\} \end{split}$$

Here is an STT representation of MODEL2:

TruthTable[MODEL2]

X	Y	Z	var	Pr
Т	Т	Т	a ₈	<u>1</u> 999
Т	Т	F	a ₅	<u>8</u> 27
Т	F	Т	a ₆	19 94
Т	F	F	a ₂	<u>1</u> 999
F	Т	Т	a ₇	83 167
F	Т	F	a ₃	<u>1</u> 999
F	F	Т	a ₄	<u>1</u> 999
F	F	F	a ₁	2959 5 227 434

We can calculate the values of $Pr[X \mid Y \land Z]$, $Pr[X \mid Y \lor Z]$ on this model as follows:

EvaluateProbability[$\{Pr[X \mid Y \land Z], Pr[X \mid Y \lor Z]\}$, MODEL2]

$$\left\{\frac{167}{83084}, \frac{7832133}{15657727}\right\}$$

We can look at decimal representations of these exact real numbers, as follows:

We gave a different model in the lecture notes. We can enter that model in by hand, and then verify it has the desired properties, as follows:

$$\begin{aligned} \text{MODEL3} &= \text{PrSAT} \left[\left\{ \text{Pr} \left[X \wedge Y \wedge Z \right] \right. \right. = \frac{1}{6}, \, \text{Pr} \left[X \wedge Y \wedge \neg Z \right] \right. = \frac{1}{6}, \\ \text{Pr} \left[X \wedge \neg Y \wedge Z \right] &= \frac{1}{4}, \, \text{Pr} \left[X \wedge \neg Y \wedge \neg Z \right] \right. = \frac{1}{16}, \, \text{Pr} \left[\neg X \wedge Y \wedge Z \right] = \frac{1}{6}, \\ \text{Pr} \left[\neg X \wedge Y \wedge \neg Z \right] &= \frac{1}{12}, \, \text{Pr} \left[\neg X \wedge \neg Y \wedge Z \right] = \frac{1}{24}, \, \text{Pr} \left[\neg X \wedge \neg Y \wedge \neg Z \right] = \frac{1}{16} \right\} \right] \\ \left\{ \left\{ X \rightarrow \left\{ a_{2}, \, a_{5}, \, a_{6}, \, a_{8} \right\}, \, Y \rightarrow \left\{ a_{3}, \, a_{5}, \, a_{7}, \, a_{8} \right\}, \right. \\ \left\{ Z \rightarrow \left\{ a_{4}, \, a_{6}, \, a_{7}, \, a_{8} \right\}, \, \Omega \rightarrow \left\{ a_{1}, \, a_{2}, \, a_{3}, \, a_{4}, \, a_{5}, \, a_{6}, \, a_{7}, \, a_{8} \right\}, \right. \\ \left\{ a_{1} \rightarrow \frac{1}{16}, \, a_{2} \rightarrow \frac{1}{16}, \, a_{3} \rightarrow \frac{1}{12}, \, a_{4} \rightarrow \frac{1}{24}, \, a_{5} \rightarrow \frac{1}{6}, \, a_{6} \rightarrow \frac{1}{4}, \, a_{7} \rightarrow \frac{1}{6}, \, a_{8} \rightarrow \frac{1}{6} \right\} \right\} \end{aligned}$$

TruthTable[MODEL3]

Х	Y	Z	var	Pr
Т	Т	Т	a ₈	1 6
Т	Т	F	a ₅	1 6
Т	F	Т	a ₆	1/4
Т	F	F	a ₂	$\frac{1}{16}$
F	Т	Т	a ₇	1 6
F	Т	F	a ₃	$\frac{1}{12}$
F	F	Т	a ₄	$\frac{1}{24}$
F	F	F	a_1	$\frac{1}{16}$

 ${\tt EvaluateProbability[\{Pr[X \mid Y \land Z], Pr[X \mid Y \lor Z]\}, MODEL3]}$

$$\left\{\frac{1}{2}, \frac{2}{3}\right\}$$

We can also see the algebraic form of an expression, as follows:

$$AlgebraicForm[Pr[X | Y \land Z] == Pr[X | Y \lor Z], \{X, Y, Z\}]$$

$$\frac{a_8}{a_7 + a_8} = \frac{a_5 + a_6 + a_8}{a_3 + a_4 + a_5 + a_6 + a_7 + a_8}$$

Note that **PrSAT** uses different conventions (i.e., a different ordering in the truth-table) for the a_i than I use in the lecture notes.