COMP 4200: Assignment 4

Due on February 26, 2024

Professor Kwon 001

Matthew Rogers

Problem 1

Convert the following regular expressions into equivalent NFAs.

- 1. $a^*(b \cup c)^*c$
- 2. $((b \cup a)^* \cup (c \cup a))^*(cb)^*$

Solution

Part One

Part Two

Problem 2

Convert the 2 NFA's to equivalent regular expressions.

Solution

Part One

1. Convert NFA to GNFA

2. Fix 3,4,5 and 7,8,9. These are trivial and can be summarized by 2 \xrightarrow{ab} 6 and 2 \xrightarrow{ba} 10

3. Fix 6,10. 6 yields 2 \xrightarrow{ab} 2 and 2 \xrightarrow{ab} 11. 10 yields 2 \xrightarrow{ba} 2 and 2 \xrightarrow{ba} 11. Finally, 2 $\xrightarrow{ab \cup ba}$ 2 and 2 $\xrightarrow{ab \cup ba}$ 11 $ab \cup ba$

4. Fix 2. 1
$$\xrightarrow{((ab \cup ba)^*ab \cup ba) \cup \epsilon} 11$$

start \longrightarrow 1 $\xrightarrow{((ab \cup ba)^*ab \cup ba) \cup \epsilon} 11$

RE: $((ab \cup ba)^*ab \cup ba) \cup \epsilon$

Part Two

1. Convert NFA to GNFA

2. Fix $q_0: q_3 \xrightarrow{\epsilon} q_1, q_2 \xrightarrow{1} q_1$

3. Fix $q_2: q_1 \xrightarrow{0 \cup 1} q_1, q_1 \xrightarrow{\epsilon} q_4$

RE: $(0 \cup 1)^*$

Problem 3

Prove the regularity of the languages. If regular, construct a DFA, NFA, or RE.

1.
$$X = \{0^m 1^n \mid m > n \ge 0\}$$

2.
$$Y = \{0^n \mid n \text{ is a prime}\}\$$

Part One

Assume X is regular.

Let
$$s = 0^{P+1}1^P$$
. $P + 1 > P$. So for all $P \ge 0$, $s \in X$.

$$|s| = 2P + 1$$
, which is $\geq P$.

Let $xy = 0^P$. So |xy| = P. And we can represent s as $xy01^P$.

y will be some amount of 0's. For any $y = 0^n$ where n > 2, when you pump down, the number of leading zeros will be less than P. Then $m \ge n$. Then s is not in X, and we arrive at a contradiction. Therefore, X is non-regular.

Part Two

Assume Y is regular.

Let $s = 0^P$, where P is a prime number.

$$|s| = P$$
, which is $\geq P$.

Let
$$xy = 0^P$$
. So $|xy| = P$.

y will be some amount of 0's. After 2, there are no even prime numbers. Therefore for approximately half of all y-pumps, |xy| is not a prime number. Y is not pumpable and we arrive at a contradiction. Therefore, Y is non-regular.