Лекция 8.

Бесконечно малые функции

Определение. Пусть $a \in \mathbb{R}$, либо $a = \infty, -\infty, +\infty$. Функция $\alpha(x)$ называется бесконечно малой (б.м.) при $x \to a$, если $\lim_{x \to a} \alpha(x) = 0$.

Замечание. В данном определении предел может быть и односторонним.

1)
$$\alpha(x) = x, x \rightarrow 0$$
.

2)
$$\alpha(x) = \sin x, x \rightarrow 0.$$

3)
$$\alpha(x) = \cos x, x \to \pi/2$$
.

4)
$$\alpha(x) = 1/x, x \to \infty$$
.

$$5) \alpha(x) = e^x, x \to -\infty.$$

6)
$$\alpha(x) = \operatorname{arcctg} x, x \to +\infty$$
.

7)
$$\alpha(x) = \sqrt{x}, x \rightarrow +0.$$

Теорема. Равенство $\lim_{x\to a} f(x) = b, b \in \mathbb{R}$, выполняется тогда и только тогда, когда функцию f(x) можно представить в виде $f(x) = b + \alpha(x)$, где $\alpha(x) - \delta$.м. при $x \to a$.

Доказательство. Пусть $a \in \mathbb{R}$. По определению предела

$$\forall \varepsilon > 0 \,\exists \delta > 0 : 0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

Положим $\alpha(x) = f(x) - b$, или $f(x) = b + \alpha(x)$. Тогда $\forall \varepsilon > 0 \,\exists \delta > 0 \,\colon 0 < |x - a| < \delta \Rightarrow |\alpha(x)| < \varepsilon$. Это означает, что $\lim_{x \to a} \alpha(x) = 0$, т.е. функция $\alpha(x)$ является б.м. при $x \to a$ согласно определению, ч.т.д.

Теорема. Сумма (разность) двух бесконечно малых функций является бесконечно малой функцией.

Доказательство. Пусть $a \in \mathbb{R}$. Пусть $\lim_{x \to a} \alpha(x) = 0$, $\lim_{x \to a} \beta(x) = 0$.

Пусть $\varepsilon > 0$ — любое. Тогда

$$\exists \delta_1 > 0: 0 < |x - a| < \delta_1 \Rightarrow |\alpha(x)| < \varepsilon/2, \ \exists \delta_2 > 0: 0 < |x - a| < \delta_2 \Rightarrow |\beta(x)| < \varepsilon/2.$$

Возьмем $\delta = \min\{\delta_1, \delta_2\}$. Тогда, если $0 < |x-a| < \delta$, то $|\alpha(x) + \beta(x)| \le |\alpha(x)| + |\beta(x)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Значит, $\lim_{x \to a} (\alpha(x) + \beta(x)) = 0$ и функция $\alpha(x) + \beta(x)$ – бесконечно малая.

Теорема. Пусть функция $\alpha(x)$ — бесконечно малая при $x \to a$, а функция f(x) ограничена в некоторой (проколотой) окрестности точки a. Тогда функция $\alpha(x) f(x)$ является бесконечно малой при $x \to a$.

Доказательство. Пусть $a \in \mathbb{R}$. Существует число M>0 такое, что $\left|f\left(x\right)\right| \leq M$ $\forall x$ из окрестности точки a. По условию $\lim_{x \to a} \alpha(x) = 0$. Пусть $\varepsilon > 0$ — любое. Тогда $\exists \delta > 0 : 0 < \left|x-a\right| < \delta \Rightarrow \left|\alpha(x)\right| < \varepsilon/M$. Следовательно, если $0 < \left|x-a\right| < \delta$, то $\left|\alpha(x)f\left(x\right)\right| < (\varepsilon/M) \cdot M = \varepsilon$. Значит, $\lim_{x \to a} \alpha(x)f\left(x\right) = 0$.

Следствие. Произведение двух бесконечно малых функций является бесконечно малой функцией.

1)Вычислить
$$\lim_{x\to 0} x \cdot \sin \frac{1}{x}$$
.

$$\lim_{x\to 0} x = 0$$
, $\left| \sin \frac{1}{x} \right| \le 1$, следовательно, по теореме $\lim_{x\to 0} x \cdot \sin \frac{1}{x} = 0$.

2) Вычислить $\lim_{x\to 0} \frac{\sqrt[3]{x^2} \cdot \cos x^2}{x-1}$.

$$\lim_{x \to 0} \frac{\sqrt[3]{x^2}}{x - 1} = 0, \left| \cos x^2 \right| \le 1,$$

следовательно, по теореме

$$\lim_{x \to 0} \frac{\sqrt[3]{x^2} \cdot \cos x^2}{x - 1} = 0.$$

Теоремы о пределе суммы, разности, произведения и частного двух функций

Теорема. Пусть $a \in \mathbb{R}$, либо $a = \infty, -\infty, +\infty$. Пусть существуют $\lim_{x \to a} f(x) = A u$ $\lim_{x \to a} g(x) = B$, $A \in \mathbb{R}$, $B \in \mathbb{R}$. Тогда

1) cywecmeyem
$$\lim_{x\to a} (f(x) + g(x)) = A + B;$$

2) cywecmeyem
$$\lim_{x\to a} (f(x)-g(x)) = A-B$$
;

3) cywecmeyem
$$\lim_{x\to a} f(x)g(x) = A \cdot B$$
;

4) если
$$B \neq 0$$
, то существует $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$.

Следствие.
$$\lim_{x\to a} Cf(x) = C \cdot A$$
, $C = \text{const.}$

Короткая формулировка теоремы: если пределы конечны, то предел суммы двух функций равен сумме пределов, предел разности равен разности пределов, предел произведения равен произведению пределов; если предел делителя отличен от нуля, то предел частного равен частному пределов.

Доказательство пункта 1. По ранее доказанной теореме

$$f(x) = A + \alpha(x), g(x) = B + \beta(x),$$

где $\alpha(x)$ и $\beta(x)$ — б.м. при $x \to a$. Тогда

$$f(x)+g(x)=(A+B)+(\alpha(x)+\beta(x)).$$

Значит, функция $\alpha(x) + \beta(x)$ является бесконечно малой при $x \to a$. Следовательно, $\lim_{x \to a} (f(x) + g(x)) = A + B$.

1)
$$\lim_{x \to 1} \frac{x^2 + 2x + 3}{x^3 + 1} = \frac{\lim_{x \to 1} \left(x^2 + 2x + 3\right)}{\lim_{x \to 1} \left(x^3 + 1\right)} = \frac{\lim_{x \to 1} x^2 + \lim_{x \to 1} 2x + \lim_{x \to 1} 3}{\lim_{x \to 1} x^3 + \lim_{x \to 1} 1} = \frac{1 + 2 + 3}{1 + 1} = \frac{6}{2} = 3.$$

2)
$$\lim_{x \to \infty} \frac{4x^3 - 2x + 1}{3x^3 - 5} = \lim_{x \to \infty} \frac{x^3 \left(4 - 2/x^2 + 1/x^3\right)}{x^3 \left(3 - 5/x^3\right)} = \lim_{x \to \infty} \frac{4 - 2/x^2 + 1/x^3}{3 - 5/x^3} = \lim_{x \to$$

$$= \frac{\lim_{x \to \infty} \left(4 - 2/x^2 + 1/x^3\right)}{\lim_{x \to \infty} \left(3 - 5/x^3\right)} = \frac{\lim_{x \to \infty} 4 - \lim_{x \to \infty} \left(2/x^2\right) + \lim_{x \to \infty} \left(1/x^3\right)}{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \left(5/x^3\right)} = \frac{4}{3}.$$

Сравнение бесконечно малых функций

Определение. Пусть $\alpha(x)$ и $\beta(x)$ – бесконечно малые функции при $x \to a$.

а) Если
$$\lim_{x\to a}\frac{\alpha(x)}{\beta(x)}=A$$
, где $A\neq 0$ и $A\neq \infty$, то $\alpha(x)$ и $\beta(x)$ называют бесконечно

малыми *одного порядка*. В частности, при A=1 бесконечно малые называют эквивалентными и пишут $\alpha(x) \sim \beta(x)$, $x \to a$.

б) Если $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = 0$, то $\alpha(x)$ называют бесконечно малой более высокого

порядка, чем $\beta(x)$ и пишут $\alpha(x) = o(\beta(x))$, $x \to a$ (читается " α есть о малое от β при $x \to a$ ").

Замечание. Введенное отношение обладает всеми свойствами отношения эквивалентности, т.е.

1)
$$\alpha(x) \sim \alpha(x)$$
при $x \to a$;

2)
$$\alpha(x) \sim \beta(x)$$
, $x \to a \Leftrightarrow \beta(x) \sim \alpha(x)$, $x \to a$;

3) Если $\alpha(x) \sim \beta(x)$, $x \to a$ и $\beta(x) \sim \gamma(x)$, $x \to a$, то $\alpha(x) \sim \gamma(x)$, $x \to a$. **Примеры**.

1) $\sin x \sim x$, $x \to 0$, так как $\lim_{x \to 0} \frac{\sin x}{x} = 1$ (первый замечательный предел).

2) tg $x \sim x$, $x \to 0$, так как $\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$.

 $3) x^2 = o(x), x \to 0.$

 $4) x^3 = o(x^2), x \to 0.$

Теорема (о замене бесконечно малых эквивалентными). *Пусть* $\alpha(x), \alpha_1(x), \beta(x), \beta_1(x)$ — *бесконечно малые при* $x \to a$ *и*

 $\alpha(x) \sim \alpha_1(x), \beta(x) \sim \beta_1(x), x \to a.$ Предположим, что существует $\lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)}$

(конечный или бесконечный). Тогда существует и $\lim_{x\to a}\frac{\alpha(x)}{\beta(x)}$, причем

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)}.$$

Доказательство. Поскольку $\alpha(x) \sim \alpha_1(x)$, $\beta(x) \sim \beta_1(x)$, $x \to a$, то

$$\lim_{x \to a} \frac{\alpha(x)}{\alpha_1(x)} = 1, \lim_{x \to a} \frac{\beta(x)}{\beta_1(x)} = 1.$$

По ранее доказанной теореме

$$\frac{\alpha(x)}{\alpha_1(x)} = 1 + \gamma(x), \quad \frac{\beta(x)}{\beta_1(x)} = 1 + \eta(x), \quad \text{где } \gamma(x) \text{ и } \eta(x) - \text{ б.м. при } x \to a.$$

Следовательно.

$$\alpha(x) = (1 + \gamma(x))\alpha_1(x), \quad \beta(x) = (1 + \eta(x))\beta_1(x),$$

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to a} \frac{(1 + \gamma(x))\alpha_1(x)}{(1 + \eta(x))\beta_1(x)} = \lim_{x \to a} \frac{1 + \gamma(x)}{1 + \eta(x)} \lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)}.$$

Таблица эквивалентных бесконечно малых

$\sin x \sim x, x \to 0$	$1 - \cos x \sim x^2/2, x \to 0$
$\arcsin x \sim x, x \to 0$	$\ln(1+x) \sim x, x \to 0;$
	$\log_a (1+x) \sim x/\ln a, x \to 0$
$tg x \sim x, x \rightarrow 0$	$e^{x} - 1 \sim x, x \to 0;$ $a^{x} - 1 \sim x \cdot \ln a, x \to 0$
	$a^x - 1 \sim x \cdot \ln a, x \to 0$
$arctg x \sim x, x \rightarrow 0$	$(1+x)^{\alpha} - 1 \sim \alpha x, x \to 0$

1)Вычислить
$$\lim_{x\to 0} \frac{\arctan x^2}{\arcsin 3x \cdot \sin \left(\frac{x}{2}\right)}$$
.

↑ Так как $\arcsin 3x \sim 3x$; $\arctan x^2 \sim x^2$; $\sin (x/2) \sim x/2$ при $x \to 0$ (см. таблицу эквивалентных бесконечно малых), то

$$\lim_{x \to 0} \frac{\arctan x^2}{\arcsin 3x \cdot \sin \left(\frac{x}{2}\right)} = \lim_{x \to 0} \frac{x^2}{3x \cdot \frac{x}{2}} = \frac{2}{3}.$$

2)Вычислить
$$\lim_{x\to 0} \frac{e^{x^2}-1}{\ln(1+\sin(x/2))(\sqrt{1+2x}-1)}$$
.

 \P Так как $e^{x^2} - 1 \sim x^2$, $\ln(1 + \sin(x/2)) \sim \sin(x/2)$, $\sqrt{1 + 2x} - 1 \sim \frac{1}{2}2x = x$ при $x \to 0$,

$$\lim_{x \to 0} \frac{e^{x^2} - 1}{\ln(1 + \sin(x/2))(\sqrt{1 + 2x} - 1)} = \lim_{x \to 0} \frac{x^2}{\sin(x/2) \cdot x} = \lim_{x \to 0} \frac{x^2}{(x/2) \cdot x} = 2.$$

Бесконечно большие функции

Определение. Пусть функция f(x) определена в проколотой окрестности точки a. Говорят, что функция f(x) имеет *бесконечный предел в точке а* (или f(x) стремится к бесконечности, когда x стремится к a), если для любого числа N>0 существует число $\delta>0$ (зависящее от N) такое, что для всех x, удовлетворяющих неравенству $0<|x-a|<\delta$, выполняется неравенство |f(x)|>N.

Обозначение: $\lim_{x\to a} f(x) = \infty$, или $f(x) \to \infty$ при $x \to a$.

В символической записи:

$$\lim_{x \to a} f(x) = \infty \Leftrightarrow \forall N > 0 \,\exists \, \delta = \delta(N) > 0 \,\colon 0 < |x - a| < \delta \Rightarrow |f(x)| > N.$$

Аналогично определяются пределы $\lim_{x\to a} f(x) = +\infty$ и $\lim_{x\to a} f(x) = -\infty$, а также бесконечные пределы при $x\to\infty$.

1)
$$f(x) = \frac{1}{x}, x \rightarrow 0$$
.

2)
$$f(x) = \ln x, x \rightarrow +0$$
.

3)
$$f(x) = 2^x, x \rightarrow +\infty$$
.

4)
$$f(x) = (1/2)^x$$
, $x \to -\infty$.

5)
$$f(x) = \sqrt[3]{x}, x \to \infty$$
.

Определение. Пусть $a \in \mathbb{R}$ или $a = \infty, -\infty, +\infty$. Функция f(x) называется бесконечно большой при $x \to a$, если $\lim_{x \to a} f(x) = \infty$.

Определение. Если
$$\lim_{x\to a} \frac{f(x)}{g(x)} = A$$
, где $A \neq 0$ и $A \neq \infty$, то функции $f(x)$ и $g(x)$

называют бесконечно большими *одного порядка*. В частности, при A = 1 бесконечно большие функции f(x) и g(x) называют *эквивалентными* и пишут $f(x) \sim g(x)$, $x \rightarrow a$.

Пример: при
$$a_n \neq 0$$

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \sim a_n x^n, \ x \to \infty.$$

Определение. Если $\lim_{x\to a} \frac{g(x)}{h(x)} = \infty$, где g(x) и h(x) — бесконечно большие функции при $x\to a$, то функцию g(x) называют бесконечно большой более высокого порядка, чем функция h(x), при $x\to a$.

Теорема (о связи между б.б. и б.м. функциями). Если f(x) — бесконечно большая функция при $x \to a$, то функция $g(x) = \frac{1}{f(x)}$ будет бесконечно малой при $x \to a$. Обратно, если f(x) является бесконечно малой функцией при $x \to a$ и $f(x) \neq 0$, то функция $g(x) = \frac{1}{f(x)}$ будет бесконечно большой при $x \to a$.