Experimento 02 - Pêndulo de Torção

Giovani Garuffi RA: 155559João Baraldi RA: 158044Lauro Cruz RA: 156175Lucas Schanner RA: 156412Pedro Stringhini RA: 156983

23 de setembro de 2014

1 Resumo

O experimento trata do calculo do módulo de cisalhamento a partir estudo de um pêndulo de torção com três pesos cilíndricos de diâmetros diferentes ligados entre si. Foi realizada a cronometragem do período de oscilação do pêndulo a partir de comprimentos variados. Após a obtenção desses dados, foram medidas as alturas e diâmetros de cada cilíndro assim como seus erros e a partir desses, calculou-se o volume de cada seção, a partir da fórmula $V_n = \frac{\pi D_n^2 h_n}{4}$.

Tendo em mãos os valores dos volumes dos cilindros, foi possível calcular suas massas, e então seus movimentos de inércia (I_{0n}) , assim como o valor total do sistema $I_0 = (1.295 \pm 10^3)kg * m^2$.

Então, calculou-se a regressão linear da equação $T = \sqrt{\frac{8\pi I_0 L}{Gr^4}}$ e percebeu-se a relação linear entre T^2 e L e contrui-se o gráfico entre essas grandezas, de onde se extraiu o valor do módulo de cisalhamento $G = 87 \pm 6$ GPa, que se aproxima do valor desejado $(83 \cdot 10^9 Pa)$.

2 Objetivos

Calcular o módulo de Cisalhamento de um fio metálico, a partir do estudo da relação do periodo (T) e comprimento do fio (L) em um pêndulo de torção.

3 Procedimento Experimental e Coleta de Dados

3.1 Materiais utilizados

- Pêndulo de torção com fio metálico
- Trena
- Paquímetro
- Micrômetro
- Photo-gate
- Cronômetro inteligente

3.2 Procedimento

O pêndulo foi montado usando-se um fio metálico tendo um cilindro de latão acoplado em sua ponta. Foram medidos o diâmetro do fio (com o micrômetro) e contabilizada a massa do cilindro (já previamente neles explicitada). Ao lado do da base do pêndulo, foi montado o photo-gate conectado a um cronômetro inteligente configurado no modo *Pendulum*, para ser realizada a medição dos perídos de rotação. Para cada comprimento L do fio foram feitas 7 medições de período para fazer-se assim uma média aritmética. Todas as medições mencionadas foram registradas no relatório. A montagem do experimento pode ser vista nas figuras 1 e 2.

3.3 Dados Obtidos

O valor do diâmetro do fio é:

$$d = (0.56 \pm 0.01)mm$$

Figura 1: Medição dos períodos

Figura 2: Montagem do experimento

sendo 0.01mm o erro intrumental do micrômetro.

A massa do conjunto de cilindros, previamente medida, é:

$$M = (1198.2 \pm 0.1)g$$
,

sendo 0.1g o erro intrumental da balança usada.

Os valores dos períodos medidos (T) para cada comprimento da linha (L) podem ser encontrados na tabela 1.

Tabela 1: Peridos medidos (T), relacionados ao comprimento do fio (L)

L(m)	Medidas de Periodo (s)							Periodo Médio (s)
0.540	5.7902	5.7958	5.7987	5.8002	5.7968	5.8066	5.7940	5.797 ± 0.002
0.503	5.5987	5.6002	5.5993	5.5996	5.5959	5.5928	5.5928	5.597 ± 0.001
0.415	5.1084	5.1099	5.1076	5.1058	5.1000	5.1072	5.1072	5.107 ± 0.001
0.360	4.7782	4.7815	4.7706	4.7755	4.7722	4.7716	4.7689	4.774 ± 0.002
0.298	4.3553	4.3612	4.3617	4.3604	4.3591	4.3578	4.3570	4.359 ± 0.001
0.234	3.8980	3.8927	3.8898	3.8860	3.8833	3.8801	3.8766	3.887 ± 0.003
0.155	3.2135	3.2136	3.2124	3.2184	3.2141	3.2164	3.2151	3.215 ± 0.001
0.142	3.0867	3.0862	3.0898	3.0955	3.0933	3.0945	3.0242	3.081 ± 0.009
0.088	2.5071	2.5077	2.5407	2.5142	2.5117	2.5040	2.4983	2.512 ± 0.005
0.056	2.0772	2.0758	2.0705	2.0706	2.0874	2.0646	2.0736	2.074 ± 0.002

Nota: Erro em no comprimento do fio (L) = 0.001 devido a dificuldade da medição (figura 2) instrumental do cronômetro = 0.0001s.

erro total calculado com base nos erros estatísticos e instrumentais.

3.3.1 Dimensões do cilindro

Para fazer o cálculo do momento de inércia do cilindro utilizado no pêndulo ele foi subdividido em três cilindros (Figure 1), e foram medidos os diâmetros e alturas de cada um, para assim calcular seus volumes e determinar a massa de cada um separadamente.

Diâmetros:

$$D_1 = (20.05 \pm 0.05)mm,$$

 $D_2 = (80.15 \pm 0.05)mm,$
 $D_3 = (99.35 \pm 0.05)mm,$

e Alturas:

$$h_1 = (10.05 \pm 0.05)mm,$$

 $h_2 = (8.05 \pm 0.05)mm,$
 $h_3 = (12.40 \pm 0.05)mm,$

sendo 0.05mm o erro instrumental do paquímetro.

4 Análise dos Resultados e Discussões

4.1 Momento de inércia

A partir de suas dimensões, o volume (V_n) e seu erro (ΔV_n) de cada cilindro foi calculado a partir da fórmula

$$V_n = \frac{\pi D_n^2 h_n}{4}, \quad \Delta V_n = \frac{\pi D_n^2}{4} \sqrt{h_n^2 \Delta r_n^2 + r^2 \Delta h_n^2},$$

resultando em:

$$V_1 = 3.17 \cdot 10^{-6} \ m^3, \quad \Delta V_1 = 2 \cdot 10^{-8} \ m^3,$$

 $V_2 = 4.06 \cdot 10^{-5} \ m^3, \quad \Delta V_2 = 3 \cdot 10^{-7} \ m^3,$
 $V_3 = 9.61 \cdot 10^{-5} \ m^3, \quad \Delta V_3 = 4 \cdot 10^{-7} \ m^3.$

Então, a partir das fórmulas

$$V = V_1 + V_2 + V_3$$
, $\Delta V = \sqrt{\Delta V_1^2 + \Delta V_2^2 + \Delta V_3^2}$,

temos que:

$$V = 1.399 \cdot 10^{-4} \ m^3, \quad \Delta V = 5 \cdot 10^{-7} \ m^3.$$

Com isso, tem-se que:

$$M_1 = 2.72 \cdot 10^{-2} \ kg, \quad \Delta M_1 = 2 \cdot 10^{-4} \ kg,$$

 $M_2 = 3.48 \cdot 10^{-1} \ kg, \quad \Delta M_2 = 3 \cdot 10^{-3} \ kg,$
 $M_3 = 8.23 \cdot 10^{-1} \ kg, \quad \Delta M_3 = 5 \cdot 10^{-3} \ kg.$

Calcula-se, a partir daí, o Momento de inércia I_{0n} de cada cilindro com seu erro ΔI_{0n} , sabendo-se que:

$$I_{0n} = \frac{M_n D_n^2}{8}, \quad \Delta I_{0n} = \frac{1}{2} \sqrt{M_n^2 D_n^2 \Delta D_n^2 + \frac{D_n^2}{4} \Delta M_n^2},$$

Então,

$$I_{01} = 1.37 \cdot 10^{-6} \ kg \cdot m^2, \quad \Delta I_{01} = 1 \cdot 10^{-8} \ kg \cdot m^2,$$

$$I_{02} = 2.79 \cdot 10^{-4} \ kg \cdot m^2, \quad \Delta I_{02} = 2 \cdot 10^{-6} \ kg \cdot m^2,$$

$$I_{03} = 1.015 \cdot 10^{-3} \ kg \cdot m^2, \quad \Delta I_{03} = 6 \cdot 10^{-6} \ kg \cdot m^2,$$

e logo, como o momento de inércia total I_0 é a soma dos momentos de inércia dos cilindros,

$$I_0 = 1.295 \cdot 10^{-3} \ kg \cdot m^2, \quad \Delta I_0 = 6 \cdot 10^{-6} \ kg \cdot m^2.$$

4.2 Determinação do módulo de cisalhamento

4.2.1 Regressão linear

A equação

$$T = \sqrt{\frac{8\pi I_0 L}{Gr^4}}$$

Pode ser reescrita como

$$T^2 = \frac{8\pi I_0 L}{Gr^4}$$

Tabela 2: Periodos	(T)) e T^2 ,	relacionados ao	comprimento do	fio ((L))
--------------------	-----	-------------	-----------------	----------------	-------	-----	---

L(m)	T(s)	$T^2 (s^2)$
0.540	5.797 ± 0.002	33.61 ± 0.02
0.503	5.597 ± 0.001	31.32 ± 0.01
0.415	5.107 ± 0.001	26.07 ± 0.01
0.360	4.774 ± 0.002	22.79 ± 0.02
0.298	4.359 ± 0.001	19.000 ± 0.008
0.234	3.887 ± 0.003	15.10 ± 0.02
0.155	3.215 ± 0.001	10.335 ± 0.005
0.142	3.081 ± 0.009	9.49 ± 0.05
0.088	2.512 ± 0.005	6.31 ± 0.02
0.056	2.074 ± 0.002	4.30 ± 0.01

$$T^2 = \frac{8\pi I_0}{Gr^4} \cdot L$$

Vemos então que deve existir uma relação linear entre T^2 e L. A tabela 2 demonstra essa relação.

Fazendo a regressão linear T^2 por L obtem-se os coeficientes

$$a = (60.54 \pm 0.02)s^2/m$$

$$b = (0.951 \pm 0.006)m$$

Nota-se que segundo a linearização da equação original, o coeficiente linear deveria ser nulo, o que não condiz com a regressão linear dos dados experimentais. A sobreposição dessa reta aos pontos da tabela pode ser vista na Figura 3.

4.2.2 Estudo do coeficiente linear

A interpretação física do coeficiente linear a é

$$a = \frac{8\pi I_0}{Gr^4}$$

isolando G, obtemos:

$$G = \frac{8\pi I_0}{ar^4}$$

sendo que r = d/2, $\Delta r = \Delta d/2$. Logo,

$$G = 87 \cdot 10^9 Pa$$

$$\Delta G = \sqrt{\frac{64\pi^2 \Delta {I_0}^2}{a^2 r^8} + \frac{64\pi^2 \Delta a^2 {I_0}^2}{a^4 r^8} + \frac{256\pi^2 \Delta r^2 {I_0}^2}{a^2 r^{10}}}$$

$$\Delta G = \pm 6 \cdot 10^9 Pa$$

Assim, o valor calculado a partir do experimento condiz com o valor conhecido para o Módulo de Cisalhamento do aço, que é de $83 \cdot 10^9 Pa$ [1].

Figura 3: Gráfico da regressão linear de T^2 por L, sobreposta aos pontos obtidos experimentalmente.

5 Conclusões

Nesse experimento, foi possível calcular com acurácia o valor do Módulo de cisalhamento do fio de aço, chegando ao valor de 87 ± 6 GPa. Apesar disso, a margem de erro é fração considerável do resultado. Estudos posteriores precisam estudar maneiras de minimizar o erro em G. Uma maneira conveniente seria aumentar o raio do fio, ou mesmo medir seu diâmetro com instrumentos mais precisos, uma vez que o erro no diâmetro do fio é a maior fonte de erro.

Referências

[1] CALLISTER JR., W. D. Ciência e engenharia de materiais: uma introdução. 5.ed. Rio de Janeiro: LTC, 2002.