網路概念

第15版

第3篇 鏈結層篇

第五章 廣域網路與用戶迴路

Networking Essentials 本投影片(下稱教用資源)僅授權給採用教用資源相關之旗標書籍為教科書之授課老師(下稱老師)專用,老師為教學使用之目的,得摘錄、編輯、重製教用資源(但使用量不得超過各該教用資源內容之80%)以製作為輔助教學之教學投影片,並於授課時搭配旗標書籍公開播放,但不得為網際網路公開傳輸之遠距教學、網路教學等之使用;除此之外,老師不得再授權予任何第三人使用,並不得將依此授權所製作之教學投影片之相關著作物移作他用。

著作權所有 ① 旗標公司

前言

- ◈ 5-1 廣域網路簡介
- ◈ 5-2 廣域網路的實體層規格
- ◈ 5-3 廣域網路的鏈結層協定
- ◆ 5-4 用戶迴路 (xDSL 與 FTTx)
- ◆ 5-5 虛擬私人網路 (VPN)
- ◈ 實作練習:使用VPN Gate進行VPN連線測試

5-1 廣域網路簡介

◆傳輸距離可延伸至很 大地理範圍的網路稱 做廣域網路。目前全 球最大的廣域網路便 是網際網路(Internet)

爬電線桿架設線路

透過通訊衛星傳送訊號

挖掘路面, 埋設管線

廣域網路簡介

- ◈ 5-1-1 末端用戶與傳輸骨幹
- ◈ 5-1-2 廣域網路的傳輸模式

5-1-1 末端用戶與傳輸骨幹

- 電信公司開放給大眾租賃的線路通稱為『專線』 或『租線』
- ◆ 從連線用戶到電信公司機房之間的廣域網路連線稱為『末端用戶』;電信公司機房之間的連線,則稱為『傳輸骨幹』連線

5-1-1 末端用戶與傳輸骨幹

5-1-2 廣域網路的傳輸模式

廣域網路所採用的傳輸模式有3種:

◈ 電路交換 (Circuit Switching) 傳統的類比式電話系統就是典型的電路交換傳 訊系統

圖 5-3 電路交換網路

廣域網路的傳輸模式

- ◆ 封包交換 (Packet Switching)
 - ◈數位式電腦網路使用的則是封包交換傳輸技術
 - ◆ 其最大優點是可在單一條傳輸通道上提供多工傳輸

廣域網路的傳輸模式

- ◆ 細胞交換 (Cell Switching)
 - ◈ 固定長度的封包就稱為『傳輸細胞』(Cell),可提高 封包的傳輸效能

5-2 廣域網路的實體層規格

- ♦ 5-2-1 T-Carrier

5-2-1 T-Carrier

- ◆ T-Carrier 透過『分時多工』技術同時進行多通 道語音通話,將類比的語音訊號經過取樣程序轉 換成數位資料,再傳遞出去
- ◆ T-Carrier 家族裡第一個成員為 T1, 採用兩對雙 絞線當作傳輸媒介, 一對發送資料, 另一對接收 資料, 達到全雙工傳輸
- ▼ T-Carrier 家族成員的傳輸速率依照『數位訊號』 規格劃分等級,北美與歐洲的分法稍有差異:

T-Carrier

表 5-1 北美版 T-Carrier 傳輸規格表

種類	DS 等級	傳輸速率	傳輸通道	相對傳輸速率	傳輸媒體
FT1 (1)	DS0	64 Kbps	1	1/24 個 T1	
T1	DS1	1.544 Mbps	24	1 個 T1	雙絞線
T1C	DS1C	3.152 Mbps	48	2 個 T1	
T2	DS2	6.312 Mbps	96	4 個 T1	
Т3	DS3	44.736 Mbps	672	28 個 T1	
T3C	DS3C	89.472 Mbps	1344	56 個 T1	同軸纜線、多 模光纖、微波
T4	DS4	274.176 Mbps	4032	168 個 T1	
T5	DS5	400.352 Mbps	5760	240 個 T1	

表 5-2 歐洲版 T-Carrier 傳輸規格表

種類	DS 等級	傳輸速率	傳輸通道	傳輸媒體
E1	DS1	2.048 Mbps	30	雙絞線
E2	DS2	8.448 Mbps	130	雙絞線
E3	DS3	34.368 Mbps	480	同軸纜線、多模光纖、微波
E4	DS4	44.736 Mbps	672	同軸纜線、多模光纖、微波
E5	DS5	565.148 Mbps	7680	同軸纜線、多模光纖、微波

5-2-2 SONET/SDH

- ◆ SONET 用來銜接各種不同的高速光纖連線
- ◆ SDH與 SONET 略有差異,但大致相同,其劃分的連線等級如下表:

表 5-3 SONET 傳輸速率對照表

SONET 等級	SDH 等級	傳輸速率	相對傳輸速率
OC-1	STM-0	51.84 Mbps	1個 OC-1 (1/3個 OC-3)
OC-3	STM-1	155.52 Mbps	3個 OC-1 (1個 OC-3)
OC-12	STM-4	622.08 Mbps	12 個 OC-1 (4個 OC-3)
OC-48	STM-16	2488.32 Mbps	48 個 OC-1 (16 個 OC-3)
OC-192	STM-64	9953.28 Mbps	192 個 OC-1 (64 個 OC-3)
OC-768	STM-256	39813.12 Mbps	768 個 OC-1 (256 個 OC-3)

5-3 廣域網路的鏈結層協定

- ◆ 5-3-1 訊框傳送 (Frame Relay)
- ◆ 5-3-2 非同步傳輸模式 (ATM)

5-3-1 訊框傳送 (Frame Relay)

- ◆ 訊框傳送簡化了早期 X.25 協定,將『偵測錯誤 與修正錯誤』的工作改由傳輸端與接收端的上 層協定執行。因此可以大幅提升傳輸效能
- ◆ 使用 Frame Relay 技術時, 連線 2 端需建立虛擬 連線
 Frame Relay 網路

圖 5-5 虛擬連線的功用有如實際的專線

訊框傳送 (Frame Relay)

- ◈ 虛擬連線有2種:
 - ◈ 永久式虛擬連線 (Permanent Virtual Circuit, PVC)
 - ◈ 交換式虛擬連線 (Switched Virtual Circuit, SVC)

訊框傳送 (Frame Relay) 的優點

- ◈節省遠距傳輸資料的成本
- ◈節省長途通信的成本
- ◈ 容易擴充

圖 5-6 左圖的方式必須租用 3 條長途專線,費用昂貴;右圖則只要租用 3 條連接到當地 Frame Relay 網路的專線,費用比較低廉

以訊框傳送網路連接區域網路

◆ 區域網路要透過訊框傳送的技術相連, 必須使用 FRAD 裝置, 將區域網路中的封包轉換成訊框後送出

圖 5-7 區域網路透過訊框傳送技術串連起來

5-3-2 非同步傳輸模式 (ATM)

◆ 非同步傳輸模式 (ATM) 具有高速傳輸、獨佔頻 寬、可提供保證頻寬、可限制傳輸延遲等等優 點

◆ ATM 網路的基本架構

圖 5-8 ATM 網路架構

5-3-2 非同步傳輸模式 (ATM)

- ◆ ATM 網路的基本架構
 - ◆ ATM 交換器:負責在輸入埠和輸出埠之間建立實體 的電路連線
 - ◈ ATM 端點:可以是個人電腦、交換器、路由器等等 設備

ATM 網路的工作原理

- ◆ ATM 網路使用固定長度的封包,稱為『傳輸細胞』(Cell),每個傳輸細胞為 53 Bytes
 - ◆ 表頭為 5 Bytes
 - ◈ 其餘的 48 Bytes 用來承載資料 (Payloads)

ATM 網路的工作原理

◆ ATM 網路傳輸過程如下:

VC: Virtual Channel, 虛擬通道

♦ 1. 建立連線

VCC: Virtual Channel Connection, 虛擬連接

圖 5-9 ATM 網路傳輸示意圖

- ◆ 在要求連線 (Setup) 訊息中還包含了頻寬要求 與 QoS (Quality of Service) 要求,若網路狀況 無法滿足要求,會拒絕連線
- ◆上圖A電腦到X交換器、X交換器到Y交換器、Y交換器到B電腦這3段連線都稱為虛擬通道(VC,Virtual Channel),每個VC都有獨立的編號,稱為虛擬通道識別碼(VCI,VC Identifier)。
- ◆ 3個 VC 所組成的連線稱為虛擬通道連線 (VCC, VC Connection)。

ATM 網路的工作原理

◈ 2. 傳輸資料

為方便管理,多個 VC 會集合成一個VP (Virtual Path),並以 VPI (VP Identifier) 來識別。VPI 與 VCI 都會記錄在細胞的表頭 (Header) 內,用以辨識傳送的路徑,在傳輸過程中,ATM 交換器也會視需要更改其內容。

圖 5-10 VC 轉換表

ATM 網路的優點

- ◈減少選擇路徑動作
- ◈省略錯誤檢查和流量控制工作
- ◈固定封包長度

圖 5-11 影音資料的傳輸率無法保持固定

ATM 網路的優點

圖 5-12 影音資料能保持穩定的傳輸率

ATM 網路的優點

- ◈每個連線擁有專屬頻寬
- ◈提供多樣化的傳輸速率
 - ◆ 能提供 25 Mbps、51 Mbps、100 Mbps、155 Mbps、622 Mbps、2.4 Gbps 等傳輸速率
- ◆ 支援多種傳輸介質

ATM 技術在區域網路的應用

◆ ATM LAN 的最大優勢,就是每條連線都有專屬 頻寬,不會因電腦數量增加而降低網路效益

圖 5-13 ATM LAN 必須使用 ATM 專屬網路設備來架設

ATM 技術在區域網路的應用

◆ 有廠商以 ATM 網路作為橋樑, 連接既有的乙太網路, 使乙太網路之間能擁有高速傳輸, 而且毋需花大錢換掉乙太網路設備

5-4 用戶迴路 (xDSL 與 FTTx)

- ◆ 5-4-1 數位用戶迴路 (xDSL)
- ◆ 5-4-2 光纖迴路 FTTx

5-4-1 數位用戶迴路 (xDSL)

◆ 由於傳統用戶迴路速度實在太慢,但無法短時間內全面更換,所以就出現DSL數位用戶迴路技術

◆ DSL 的種類眾多,其中最普及的是非對稱式數位

用戶線路 - ADSL

個人電腦或頻寬分享器

數位用戶迴路 (xDSL)

- ◆ 由於電話系統只利用低頻 (~4Khz), 所以 ADSL 就利用這項特性, 將數據資料以高頻透過相同線路傳送
- ◆ 典型 ADSL 採用 DMT 調變技術切割子通道,由 於切割後下行的頻寬遠大於上行頻寬,所以稱為 『非對稱式』

圖 5-16 DMT 調變技術

超高速數位用戶迴路 - VDSL

- ◆ VDSL 可提供高達 50Mbps 的傳輸速率, 但傳輸 距離極短
- ◆ VDSL 在台灣的主要應用是配合光纖到府 FTTx 使用, 當光纖無法直接拉到用戶端時, 就 用 VDSL 做為用戶與光纖之間的高速連線

其它的 xDSL 技術

- ◆ ADSL2+: 頻帶擴充一倍達 2.2MHz
- SHDSL:
 - ◈單銅絞線數位用戶迴路
 - ◈ 『對稱式』,最高 2.3Mbps 的速率
 - ◈會用掉傳統電話的語音通道

SDSL

- ◈對稱式數位用戶迴路
- ◈上行及下行的速率相同
- 可提供1.544 Mbps/2.048 Mbps 的傳輸速率
- ◈適合企業用戶
- ◈ 是廠商專屬技術, 非國際標準

5-4-2 光纖迴路 FTTx

- ◈ FTTx 中的 x 是數種不同『光纖到 x』,也就是不同的光纖迴路用戶端設備
 - ◈ FTTC (Curb/街角)
 - ▼FTTCab (Cabinet/光化箱)
 - ◈ FTTB (Building/社區大樓)
 - ◈ FTTH (Home/住家):『真正的』光纖到府服務

5th Edition

光纖迴路 FTTx

圖 5-17 FTTB 及 FTTC 是目前常見的光纖迴路接取方式

5-5 虛擬私人網路 (VPN)

- ◈ 5-5-1 什麼是虛擬私人網路?
- ◆ 5-5-2 Point-to-Network 虛擬私人網路
- ◆ 5-5-3 Network-to-Network 虚擬私人網路

5-5-1 什麼是虛擬私人網路?

- ◆假設要建立台北和美國的公司網路連線,可考慮 方案:
 - ◈ 1. 利用電話撥接
 - ◆ 2. 利用專線
 - ◈ 3. 利用網際網路
- ◇ 以方案 3 為基礎,『將封包封裝在另一個封包內』 的技術,就是通道技術
- ◆ 利用通道技術,透過網際網路建立一個安全的傳輸管道,這種網路便稱為虛擬私人網路

5-5-1 什麼是虛擬私人網路?

5-5-2 Point-to-Network 虛擬私人網路

◆ VPN 用戶端先透過數據機連接網際網路,才能與 VPN 伺服器建立 VPN 連線

圖 5-19 Point-to-Network 架構

5-5-3 Network-to-Network 虛擬私人網路

- ◆ 在此架構下, A網路的電腦要傳資料到 B網路的電腦, 會自動建立 VPN 連線
- ◆ 目前電信業者也有提供 VPN 網路服務

圖 5-20 Network-to-Network 架構

15th Edition

實作練習:使用VPN Gate進行VPN連線測試

◈ 安裝用戶端程式

◆ 建立VPN連線

3 按連接到 VPN 服務器鈕

◆ VPN連線測試

在已建立的連線按右鈕,執行 『斷開』命令,即可中斷連線

