אלגוריתמים בביולוגיה חישובית – תרגיל 1

.n באורך T,S באורד שרשראות לעימוד אופציות מח 3^n נראה כי ישנם לנו נראה אופציות ד,S אזי, לעימוד שרשראות (1 גדיר אופציות לעימוד אזי, לכדי לבחור ל $T=t_1t_2\dots t_n$, $S=s_1s_2\dots s_n$ נגדיר נגדיר האופציות הבאות:

s_1		
_		
_		
t_1		
s_1		
t_1		

כאשר אופציה של לעמד גאפ מול גאפ היא טריוויאלית ולא נתחשב בה.

כעת, ראינו שיש לנו 3 אופציות לעימוד הראשון, נמשיך את ההוכחה באינדוקציה, שאת הצעד הראשון הצגנו כרגע.

.n אינדוקציה: נניח נכונות עבור רצפים באורך n-1, שלהם לפחות 3^{n-1} עימודים, ונראה עבור רצפים באורך

צעד האינדוקציה:

עבור S',T' שני רצפים באורך n ש- n-n הנקלאוטידים הראשונים מועמדים בהם, נגיע לשתי האותיות האחרונות, כאשר הן יכולות S',T' להיות כמו בצעד הבסיס, או שתיהן אות, או שאחד הרצפים ביניהם נגמר ויש להציב גאפ מול האות הנותרת, כלומר יש S' להיות כמו בצעד הבסיס, או שתיהן לכל עימוד באורך S' לכן ישנן S' אופציות לעימוד.

2) כאשר אנו משתמשים בשיטת affine gap penalty על-מנת להפיק את העימוד האופטימאלי בין שני רצפים, (2 gap טלינו "לזכור" את התוצאה הטובה ביותר אם אנו לא משתמשים ב-gap וכן את התוצאה הטובה ביותר אם אנו לא משתמשים ב-gap את התוצאה הטובה ביותר אילו השתמשנו ב-gap.

 y_1, \dots, y_j אל מול x_1, \dots, x_i אל-מנת לעשות אל-מנת בכמה מונים שונים בכמה מונים שונים עבור העמדת

 y_i עומד מול – F(i,j)

 y_i אחרי הופעת gap אומד אל מול x_i עומד אם – G(i , j)

 x_i אחרי gap אחרי אל מול y_i אחרי – H(i , j)

 $.y_1, \dots, y_j$ אל מול א x_1, \dots, x_i העמדת עבור הטובה הטובה התוצאה אל וגדיר את (i , j) נגדיר את

 $y_1, ..., y_i$ אל מול Ptr(i , j) אל גדיר את פטימאלי עבור האופטימאלי אל אל פול און

פסואודו-קוד עבור אלגוריתם Needleman-Wunsch בשיטת Needleman אנוריתם אלגוריתם אתחול:

$$V(0,0) = 0$$

$$V(i, 0) = d + (i-1)*e$$

$$V(0, j) = d + (j-1)*e$$

:איטרציה

For each i = 1, ..., M:

For each
$$j = 1, ..., N$$
:

$$V(i, j) = max{F(i, j), G(i, j), H(i, j)}$$

$$F(i, j) = V(i-1, j-1) + s(x_i, y_j)$$

G(i, j) = max
$$\begin{cases} V(i-1,j) + d \\ G(i-1,j) + e \end{cases}$$

H(i, j) = max
$$\begin{cases} V(i, j - 1) + d \\ H(i, j - 1) + e \end{cases}$$

$$Ptr(i,j) = \begin{cases} (x_i, y_j), & F(i,j) > G(i,j) \text{ AND } H(i,j) \\ (x_i, gap), & G(i,j) > F(i,j) \text{ AND } H(i,j) \\ (gap, y_j), & H(i,j) > F(i,j) \text{ AND } G(i,j) \end{cases}$$

סיום ואופן החזרת העימוד האופטימאלי:

. אינה התוצאה הטובה ביותר של העימוד האופטימאלי. V(M,N)

. הינו העימוד האופטימאלי Ptr(i , j)