Math 4000/6000 - Homework #6

posted October 30, 2018; due November 6, 2018

Examiner: What is a root of multiplicity m?

Examinee: Well, this is when we plug a number to a function, and obtain zero; then we plug it again, and obtain zero again... and this happens m times. But on the (m+1)-st time we do not obtain zero.

- math joke of the day

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

Throughout this assignment, "ring" always means "commutative ring."

- 1. Exercise 3.3.2(b,c,e,h).
- 2. Exercise 3.3.4.
- 3. Exercise 4.1.1. When answering part (b), assume neither of R and S is the zero ring.
- 4. (a) Let R be a ring. Recall that if x_1, \ldots, x_n are elements of R, then (by definition)

$$\langle x_1, \ldots, x_n \rangle = \{r_1 x_1 + \cdots + r_n x_n : \text{all } r_i \in R\}.$$

That is, $\langle x_1, \ldots, x_n \rangle$ is the set of all R-linear combinations of x_1, \ldots, x_n . Prove that $\langle x_1, \ldots, x_n \rangle$ is an ideal of R by directly verifying the three definining properties.

(b) Let $R = \mathbb{Z}$, and let a_1, \ldots, a_n be positive integers. From part (a), $\langle a_1, \ldots, a_n \rangle$ is an ideal of \mathbb{Z} . From class, we know there is an integer d with

$$\langle a_1, \ldots, a_n \rangle = \langle d \rangle.$$

Show that $d \mid a_i$ and that if d' is any integer dividing every a_i , then $d' \mid d$.

- 5. Exercise 4.1.3. (In part (c), assume R is not the zero ring.)
- 6. (a) Let R be an integral domain. Show that if $a, b \in R$, then $\langle a \rangle = \langle b \rangle$ if and only if $a = u \cdot b$ for some unit $u \in R$. Hint: First show that $\langle a \rangle = \langle b \rangle$ if and only if $a \mid b$ and $b \mid a$.
 - (b) Now let R = F[x]. Show that $\langle a(x) \rangle = \langle b(x) \rangle$, where $a(x), b(x) \in F[x]$, if and only if $a(x) = c \cdot b(x)$ for some nonzero $c \in F$.
- 7. (a) Let F be a field. Use the division algorithm in F[x] to prove that every ideal in F[x] has the form $\langle m(x) \rangle$ for some $m(x) \in F[x]$.
 - (b) Use the division algorithm in $\mathbb{Z}[i]$ (from earlier homework) to prove that every ideal in $\mathbb{Z}[i]$ has the form $\langle \mu \rangle$ for some $\mu \in \mathbb{Z}[i]$.
- 8. Prove that if F is a field and $f(x) \in F[\underline{x}]$ has degree $n \ge 1$, then the elements of $F[x]/\langle f(x)\rangle$ admit a unique expression in the form $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, where $a_0, \ldots, a_{n-1} \in F$.

 Hint: We (will have) proved existence in class. Your task is to show uniqueness.
- 9. Exercise 4.1.14(c). Make sure to answer the two questions at the end.
- 10. Let F be a field, and let f(x) be a nonconstant polynomial in F[x]. Prove that if f(x) is reducible, then $F[x]/\langle f(x)\rangle$ is not an integral domain. When f(x) is irreducible, show that $F[x]/\langle f(x)\rangle$ is a field.
- 11. Let $R = \mathbb{Z}[x]$. Let I be the collection of elements of R with even constant term. Show that $I = \langle 2, x \rangle$, and that I cannot be expressed as $\langle f(x) \rangle$ for any $f(x) \in \mathbb{Z}[x]$.

- 12. (*) Exercise 3.3.7.
- 13. (*) Let R be the subring of $\mathbb{Q}[x]$ consisting of those polynomials in $\mathbb{Q}[x]$ with integer constant term. Let I be the subset of R containing those elements with zero constant term. Show that I is an ideal of R, but that there is no finite list of elements $r_1, \ldots, r_k \in R$ with $I = \langle r_1, \ldots, r_k \rangle$.