

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁷ : H04L 12/26		A1	(11) Numéro de publication internationale: WO 00/51292 (43) Date de publication internationale: 31 août 2000 (31.08.00)
<p>(21) Numéro de la demande internationale: PCT/FR00/00311 (22) Date de dépôt international: 9 février 2000 (09.02.00)</p> <p>(30) Données relatives à la priorité: 99/02399 26 février 1999 (26.02.99) FR 99/06115 12 mai 1999 (12.05.99) FR</p> <p>(71)(72) Déposant et inventeur: GRENOT, Thierry [FR/FR]; 1, cité Leisnier, F-92140 Clamart (FR).</p> <p>(74) Mandataires: SOMNIER, Jean-Louis etc.; Novamark Technologies, 122, rue Edouard Vaillant, F-92593 Levallois-Perret Cedex (FR).</p>		<p>(81) Etats désignés: AU, BR, CA, JP, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p>Publiée <i>Avec rapport de recherche internationale.</i></p>	
<p>(54) Title: SYSTEM AND METHOD FOR MEASURING THE TRANSFER DURATIONS AND LOSS RATES IN HIGH VOLUME TELECOMMUNICATION NETWORKS</p> <p>(54) Titre: SYSTEME ET PROCEDE DE MESURE DES DUREES DE TRANSFERT ET DES TAUX DE PERTES DANS DES RESEAUX DE TELECOMMUNICATION HAUT-DEBIT</p> <p>(57) Abstract</p> <p>The invention relates to a system and non-intrusive method for measuring loss rates and transfer durations for data flows that are sent by a telecommunication network in packet mode. The inventive method is characterized in that it comprises the following steps: classification of the data packet in a homogeneous flow; calculation of an identification signature for each data packet; counting of the packets in the flow; measurement of unidirectional transfer times per flow or information flow group and measurement of the loss rate for said packets.</p> <p>(57) Abrégé</p> <p>L'invention concerne un système et un procédé non-intrusif de mesure des taux de perte et des durées de transfert des flux de données acheminés via un réseau de télécommunication en mode paquet. Le procédé selon l'invention est caractérisé en ce qu'il comporte les étapes suivantes: classification des paquets de données dans un flux homogène; calcul d'une signature d'identification de chaque paquet de données; comptage des paquets dans le flux; mesure, d'une part, des délais de transfert unidirectionnels par flux ou groupe de flux d'information et, d'autre part, du taux de perte de paquets.</p>			
<p>11. CLASSIFICATION OF PACKETS 12. FILTERING 13. SAMPLING RATE 14. EMISSION RATE 21. INPUT BUFFER 22. MAIN MEMORY 31. ABSOLUTE TIME 32. FILTERING 33. SAMPLING RATE 34. EMISSION RATE 41. DATING 42. SIGNATURE</p> <p>43. BUFFER 44. CLASSIFIER 45. FILTER 46. COMPACTOR 47. MULTIPLEXER 48. SAMPLER 49. PACKET Emitter</p> <p>RÈGLES = RULES EVALUATION DE CHARGE = EVALUATION OF LOAD CALCULS = CALCULATIONS CHEMIN DE DONNÉES = DATA PATH</p>			

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroon	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

SYSTEME ET PROCÉDÉ DE MESURE DES DURÉES DE
TRANSFERT ET DES TAUX DE PERTES DANS DES RÉSEAUX DE
TÉLÉCOMMUNICATION HAUT-DÉBIT

5

La présente invention concerne un procédé non-intrusif de mesure des taux de perte et des durées de transfert de données dans un réseau de télécommunication en mode paquet.

L'invention est particulièrement adaptée à des réseaux haut débit fonctionnant à en mode non connecté. Elle concerne également un système à architecture répartie comportant une pluralité de sonde d'observation de flux disposées à différents points du réseau, des moyens de compression des mesures effectués par lesdites sondes et des moyens de transmission de ces mesures vers un module collecteur relié à des moyens de stockage et à des moyens d'analyse des mesures réalisées.

Les réseaux de télécommunication en mode paquet se caractérisent par le fait que les informations transmises sont véhiculées en groupes appelés paquets, essentiellement constitués d'un en-tête contenant les informations pour l'acheminement du paquet dans le réseau et des données à transmettre. Ces paquets sont véhiculés à travers le réseau, et empruntent au gré de ce réseau des moyens de transmission et de commutation les plus variés.

Un exemple de réseau en mode paquet est le réseau Internet, fonctionnant avec le protocole IP (Internet Protocol). Quelques exemples de moyens de transmission et de commutation associés au protocole IP sont des réseaux RNIS (Réseau Numérique à Intégration de service), FR (Frame Relay), ATM (Asynchronous Transfer Mode), SDH (Synchronous Digital Hierarchy), SONET (Synchronous Optical Network), DWDM (Dense Wavelength Digital Multiplexing), etc.

Les paquets sont typiquement émis par un grand nombre de sources fonctionnant indépendamment les unes des autres, vers un grand nombre de destinations fonctionnant également indépendamment les unes des autres.

5 Du fait que les instants d'émission des paquets et la longueur de chaque paquet ne sont pas déterminés finement par le réseau lui-même, il est difficile pour l'exploitant et les utilisateurs du réseau de garantir, voire même d'estimer la durée du transfert et le taux de perte (probabilité qu'un paquet ne soit pas délivré à son destinataire). Il est donc très utile de pouvoir effectuer 10 des mesures précises des valeurs réelles sur les paquets utiles, pour permettre l'administration, la configuration, la planification du réseau en mode paquet. Une bonne 15 connaissance de ces caractéristiques facilite également la mise en place de services à qualité différenciée et garantie, par opposition au service "au mieux" ou "best effort" en anglais.

Une solution classique pour obtenir ce résultat 20 consiste à employer une ou plusieurs sources qui émettent des paquets de test, souvent appelés "ping" dans le cas de réseau IP. Chaque paquet test est reconnu par son destinataire et renvoyé par celui-ci auprès de la source correspondante. Celle-ci peut alors effectuer des mesures, 25 par exemple le temps aller-retour. Il est aussi possible d'effectuer des traitements statistiques à partir des mesures faites sur un grand nombre de paquets; par exemple estimer les caractéristiques des durées de transfert aller-retour (maximum, minimum, moyenne, médiane, etc.....).

30 Une autre solution utilisée consiste à pourvoir une partie des sources et des destinataires d'une connaissance suffisamment précise d'une référence de temps commune. Les sources génèrent des paquets de test et notent l'heure de départ. Les destinataires notent l'heure de 35 réception de ces paquets de test. Des calculs sont ensuite

effectués pour caractériser par exemple les durées de transfert et les taux de perte.

Néanmoins, ces solutions ne permettent pas d'obtenir une bonne précision dans tous les cas. En effet, le nombre de paquets de test doit rester petit pour ne pas trop charger le réseau ni mobiliser trop d'équipements. Les estimations statistiques peuvent donc être entachées d'une imprécision importante. Par ailleurs, les réseaux en mode paquet n'offrent souvent pas des caractéristiques identiques pour les chemins aller et retour entre deux points d'accès. De plus, les équipements de réseau en mode paquet (par exemple les routeurs et commutateurs) effectuent souvent l'analyse du contenu du paquet (par exemple le protocole de transport de bout en bout, le type de données, le type de fichier contenu dans le paquet, etc...), pour en déduire leur méthode d'acheminement du paquet, la file d'attente, ou la priorité, etc..... Il n'est donc pas certain que les paquets de test empruntent le même chemin que les paquets contenant les données réelles des usagers du réseau. Il en résulte une grande incertitude sur la mesure du temps de transfert des paquets contenant les données réelles des usagers du réseau.

On connaît également par le brevet US 5,521,907 une autre solution permettant d'effectuer une mesure non-intrusive entre deux points d'un réseau connu. Cependant, cette solution est strictement limitée à des réseaux utilisant un mode connecté, par exemple relais de trame (frame relay en anglais), et de ce fait ne peut être utilisée dans des réseaux en mode non connecté, ni dans des réseaux à haut débit. En outre cette méthode ne permet pas l'analyse des pertes des paquets.

Le but de la présente invention est de pallier les inconvénients précités.

A cet effet, l'invention a pour objet un procédé et un système à architecture répartie permettant d'effectuer des mesures précises des durées de transfert et

des taux de perte pour des réseaux de télécommunication en mode paquet.

Le procédé selon l'invention est caractérisé en ce qu'il comporte les étapes suivantes:

5 - classification des paquets de données dans un flux homogène ;

- calcul d'une signature d'identification de chaque paquet de données ;

- comptage des paquets dans le flux;

10 - mesure, d'une part, des délais de transfert unidirectionnels par flux ou groupe de flux d'information et, d'autre part, du taux de perte de paquets.

15 Le procédé selon l'invention présente l'avantage de ne pas nécessiter l'utilisation de paquets de test, ce qui permet d'atteindre une très grande représentativité de chaque mesure. Il a également pour avantage de permettre d'effectuer un très grand nombre de mesures, ce qui permet d'offrir une très grande précision statistique. Enfin, le nombre de mesures effectuées peut être modulé en fonction 20 des types de données véhiculés dans les paquets, ce qui permet une utilisation rationnelle des ressources disponibles du système.

Par ailleurs, la classification des paquets dans un flux homogène permet :

25 - d'affiner la mesure (par destination, par type d'application, ...);

- d'indiquer l'espace de référence pour les signatures, et donc minimiser la probabilité de double signature et faciliter les corrélations flux entrant/flux sortant.

30 Un autre avantage de la classification des paquets de données dans un flux homogène permet de conserver une signature de petite longueur, tout en ayant une faible probabilité d'ambiguité par signatures identiques sur des paquets différents. Ceci facilite grandement le 35 fonctionnement du système sur le grand réseau.

En pratique, le flux est déterminé à partir des adresses réseau (qui déterminent les chemins), des adresses transport et des éventuels éléments qui permettent au réseau de choisir la qualité de service à appliquer. Des variantes sont possibles, par exemple de regrouper les adresses IP en sous-réseau correspondant à une destination unique. Dans le cas d'un réseau Internet, on pourra choisir les adresses IP source et destination, et soit le champ ToS (type of service), soit les ports sources et destinations TCP/UDP. D'autres regroupements peuvent être utilisés sans sortir du cadre de l'invention.

Le comptage du paquet dans le flux est utilisé pour la détermination des pertes de paquets dans le réseau. La taille du compteur dépend de l'implémentation, mais reste raisonnable en utilisant le fait relatif à un flux donné. Des implémentations courantes pourront se satisfaire de compteurs allant de 8 à 32 bits.

Le procédé selon l'invention permet également une mesure fine des pertes de paquets dans le réseau et un fonctionnement en réseau avec de nombreux point d'accès à la zone observée, tout en conservant une réalisation simple. Il peut également être appliqué à des flux point à multipoint.

Avantageusement, la signature qui identifie le paquet possède les trois caractéristiques suivantes :

- elle est conservée dans le réseau, quel que soit le point de mesure. Ceci conduit à ignorer pour sa détermination les champs correspondant aux couches physiques et aux couches réseaux de niveau inférieur à celle où le système fonctionne ;

- sa longueur est petite devant la longueur moyenne des paquets. Ceci permet de limiter la quantité d'information à communiquer au collecteur;

- la probabilité que deux paquets différents aient la même signature pour un flux donné est faible. Ceci permet de limiter le nombre de mesures invalidées.

Selon une autre caractéristique importante de l'invention, le procédé comporte une étape de filtrage et une étape d'échantillonnage semi-statique des classes obtenues par l'étape de classification.

5 Dans ce cas, seule une partie des combinaisons des paquets appartenant à une classe donnée sera retenue. Le taux d'échantillonnage dépend typiquement de la classe, et ne varie en principe pas de façon dynamique. Par exemple, on peut vouloir conserver toutes les combinaisons pour les 10 paquets véhiculant de la voix, et une fraction de ceux véhiculant des fichiers informatiques.

En outre, chaque classe peut faire l'objet d'un échantillonnage dynamique, dont le taux dépend des conditions de congestion du système.

15 Une multiplicité de critères peut être utilisée pour que le fonctionnement global se situe automatiquement dans la zone la plus satisfaisante pour l'administrateur du dispositif, par exemple, le taux d'échantillonnage le plus fort pour un débit réseau maximum donné, ou encore le débit réseau minimum pour un taux d'échantillonnage donné.

20 Grâce au mécanisme d'échantillonnage, le procédé selon l'invention permet l'observation de réseaux de très grandes capacités et une réduction des flux remontés par les sondes vers le collecteur ainsi qu'une optimisation 25 dynamique des caractéristiques de mesures, permettant une optimisation adaptative aux conditions de fonctionnement du système.

30 Selon une caractéristique importante de l'invention, la mesure des délais de transfert et le comptage du paquet dans un flux sont synchronisés en fonction d'une référence horaire absolue acquise par les sondes de mesure réparties dans le réseau.

35 La référence horaire absolue permet l'obtention des taux de perte et des temps de transfert pour chaque sens de communication. Par exemple, et en fonction de la précision et du coût recherché, elle peut être acquise par

l'intermédiaire de dispositifs GPS, radio diffusion, protocoles réseaux.

Une Prise de l'heure absolue de passage du paquet (horodatage) servira aux calculs de délais de transfert entre deux sondes. Par exemple, dans le cas d'un réseau Internet, on pourra choisir une précision de l'ordre de 100 µs.

Le système de mise en œuvre du procédé selon l'invention est caractérisé en ce qu'il comporte des moyens pour classifier les paquets de données dans un flux homogène, des moyens pour calculer une signature d'identification de chaque paquet, des moyens pour compter les paquets dans le flux, et des moyens pour mesurer les délais de transfert unidirectionnels par flux ou groupe de flux d'information et le taux de perte de paquets.

D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, prise à titre d'exemple non limitatif, en référence aux figures annexées dans lesquelles :

- la figure 1 représente schématiquement un exemple de déploiement de l'invention dans un réseau de télécommunication en mode paquet ;

- la figure 2 représente un schéma fonctionnel d'un système mettant en œuvre un procédé selon l'invention;

- la figure 3 illustre schématiquement un exemple d'organisation fonctionnelle interne d'une système selon l'invention.

- La figure 4 représente un schéma fonctionnel illustrant le fonctionnement d'une sonde d'observation utilisée dans un système selon l'invention ;

- La figure 5 représente un schéma fonctionnel illustrant le fonctionnement d'un module collecteur utilisé dans un système selon l'invention ;

- les figures 6 à 15 illustrent schématiquement le fonctionnement d'un système conforme à l'invention.

Sur la figure 1 est représenté schématiquement un réseau 1 à haut débit fonctionnant en mode non connecté, tel que par exemple un réseau à base du protocole IP (Internet Protocol). Une pluralité de sonde d'observation 5 de flux 2_i sont disposées à différents points du réseau pour effectuer des mesures sur les flux de données échangées à travers ce réseau. Des moyens de compression de ces mesures sont prévus dans les sondes 2_i ainsi que des moyens de transmission vers un module collecteur 4. Ce 10 dernier réalise les fonctions de collecte et de corrélation des mesures élémentaires effectuées par les sondes d'observation 2_i.

Comme on peut le voir à la figure 2, ledit module collecteur 4 est relié à des moyens de stockage 5 qui 15 communiquent avec des moyens d'analyse 6 des mesures réalisées. Les résultats de ces analyses sont ensuite envoyés à un module d'exploitation 7. Ces différents modules peuvent être physiquement dissociés, ou bien partiellement ou totalement localisés dans un ou des 20 équipements physiques communs.

Le procédé selon l'invention se caractérisent essentiellement par :

- une étape de classification des paquets de données dans un flux homogène ;
- une étape de calcul d'une signature d'identification de chaque paquet ;
- une étape de comptage des paquets dans le flux ;
- une étape de mesure des délais de transfert unidirectionnels par flux ou groupe de flux d'information et du taux de perte de paquets.

L'ordre respectif de ces étapes peut varier suivant les différentes contraintes de réalisation.

Comme cela est illustré par la figure 1, des usagers 8₁, 8₂ et 8₃, sont reliés au réseau 1. Les sondes d'observations 2₁ et 2₄ ont accès aux paquets 9₁ émis par 8₁ ; la sonde 2₂ a accès aux paquets émis par 8₂, la sonde 2₃,

a accès aux paquets reçus par 8_i . Le module collecteur 4 est relié au réseau 1 et se comporte comme un usager de ce réseau 1 et il communique via ce réseau 1 avec les sondes 2_1 , 2_2 , 2_3 et 2_4 qui sont aussi des usagers du réseau 1. Ces sondes 2_1 , 2_2 , 2_3 et 2_4 effectuent les opérations de mesure pour chacun des paquets auxquels ils ont accès. Ces mesures consistent à réaliser la datation, la classification et l'identification des paquets, ainsi que les fonctions de compression de ces mesures. Chacune des sondes 2_i communiquent, via le réseau 1, les mesures compressées au module collecteur 4 qui corrèlent l'ensemble de ces mesures.

D'autres configurations de déploiement sont également possibles au titre de la présente invention, notamment les cas suivants :

- les usagers 8_i ne sont pas forcément les utilisateurs finaux des informations véhiculées dans les paquets ; ils peuvent représenter par exemple des réseaux locaux, ou d'autres réseaux en mode paquet ;
- les sondes 2_i peuvent être reliés au module collecteur 4 par d'autres moyens que le réseau 1; par exemple, au moyen d'un autre réseau de télécommunication, ou au moyen d'un support de stockage local enregistrant des données du module collecteur 4 et les restituant à ce module collecteur 4 ultérieurement ;
- un même module collecteur 4 peut être relié à plusieurs module collecteur 4;
- plusieurs modules collecteurs 4 peuvent communiquer pour élaborer des corrélations entre les éléments de mesure dont ils disposent.

A titre d'exemple, un schéma fonctionnel possible du système selon l'invention est représenté à la figure 3. On y trouve quatre groupes fonctionnels :

- le groupe des règles 10, fixées de façon statique ou semi-statique (par exemple par l'exploitant du système) ;

- le groupe de l'évaluation de la charge 20, mesurant le taux de charge de l'unité centrale de traitement locale, les occupations mémoires, etc.... ;

5 - le groupe de calcul 30, évaluant dynamiquement les valeurs de compactage, d'échantillonnage, etc.... ;

- le groupe chemin de données 40, produisant des enregistrements contenant des combinaisons (classe, date, signature) pour chacun des paquets.

En fonctionnement, les sondes 2_i acquièrent une 10 référence temporelle commune 31. L'imprécision de cette référence entre deux sondes 2_i affecte directement la précision du résultat de l'ensemble du dispositif. Les moyens d'acquisition de cette référence temporelle peuvent être divers et multiples ; citons à titre d'exemples non limitatifs le GPS (Global Positionning System), la diffusion au moyen d'ondes radio, les pilotes à haute 15 stabilité, les protocoles NTP (Network Time Protocol) et SNTP (Simple Network Time Protocol) ;

20 - chaque paquet fait l'objet d'une datation 41 en utilisant la référence temporelle absolue lors de son observation par une sonde 2_i . Celle-ci peut dater soit le début du paquet, soit la fin du paquet, soit tout autre critère ;

25 - chaque paquet fait l'objet d'un calcul de signature 42, destinée à le représenter par la suite. La signature permet de réduire le volume d'information nécessaire pour identifier le paquet. Cette signature est typiquement le résultat d'un calcul polynomial binaire (par exemple un calcul de CRC - Code de Redondance Cyclique - sur 16 ou 32 éléments binaires). Le calcul de signature est effectué sur tout le paquet ou sur une partie de celui-ci, 30 en fonction de considération liée à la structure et à la variabilité du contenu des paquets dans le réseau. La signature doit être petite devant la taille moyenne du paquet, pour faciliter son stockage, sa transmission et sa manipulation ultérieure. Elle doit pouvoir prendre 35

suffisamment de valeurs différentes pour rendre négligeable la probabilité que deux paquets aient une signature identique. A titre d'exemple, on peut considérer qu'une signature sur 16 éléments binaires permet d'identifier de 5 l'ordre de 256 paquets différents avec une faible probabilité d'équivoque ;

- chaque paquet fait l'objet d'une opération de classification 44. Les critères de classification sont typiquement ceux classiquement retenus pour identifier des 10 flux entre réseaux et sous-réseaux (sous-adresses réseau IP, par exemple), des flux entre équipements terminaux (adresses IP, par exemple), des flux entre applications (adresses IP et adresses transport UDP/TCP, par exemple), etc... Chaque paquet est alors identifié par une 15 combinaison de tout ou partie des éléments : classe, date, signature ;

- chaque classe peut faire l'objet de filtrage 45 ; c'est-à-dire que les sondes 2_i ne mémorisent pas les combinaisons (classe, date, signature) des paquets 20 appartenant à une des classes pour lesquelles le filtre est mis en place ;

- chaque classe peut faire l'objet d'une opération de compactage ou échantillonnage semi-statique 46. Dans ce cas, seule une partie des combinaisons (classe, date, 25 signature) des paquets appartenant à une classe donnée sera retenue. Le taux d'échantillonnage dépend typiquement de la classe, et ne varie en principe pas de façon dynamique. Par exemple, on peut vouloir conserver toutes les combinaisons pour les paquets véhiculant de la voix, et une fraction de 30 ceux véhiculant des fichiers informatiques ;

- chaque classe peut faire l'objet d'un échantillonnage dynamique, dont le taux dépend des conditions de congestion du système : mesure de l'occupation des tampons 21 et mémoires 22 des sondes 2_i , 35 débit d'émission vers le module collecteur 4, charge du réseau, charge du module collecteur 4, etc.... Une

5 multiplicité de critères peut être utilisée pour que le fonctionnement global se situe automatiquement dans la zone la plus satisfaisante pour l'administrateur du dispositif. Par exemple le taux d'échantillonnage le plus fort pour un débit de remontée de la sonde vers le collecteur maximum donné, ou encore le débit de remontée vers le collecteur minimum pour un taux d'échantillonnage donné;

10 - à chaque combinaison (classe, date, signature) retenue est associé un compteur indiquant le nombre de paquet observé dans le flux. Le module collecteur 4 peut alors faire une mesure du taux de perte dans le réseau en comparant les compteurs associés aux mêmes paquets aux différents points du réseau.

15 Les opérations de filtrage et d'échantillonnage statique et dynamique permettent de réduire la quantité de combinaisons (classe, date, signature) à mémoriser et à traiter. La mise en place ou le retrait des filtres, les valeurs de taux d'échantillonnage semi-statique, le paramétrage de l'échantillonnage dynamique, etc..., peuvent 20 par exemple être réalisées au moyen d'une opération d'administration effectuée depuis l'un des modules collecteurs 4 ou d'exploitation 7.

25 Les critères d'échantillonnage peuvent être divers. A titre d'exemple, on peut citer l'échantillonnage périodique qui consiste à garder une combinaison toutes les N combinaisons, l'échantillonnage statistique conditionné par le tirage d'une variable aléatoire dont on maîtrise les caractéristiques statistiques et l'échantillonnage sur signature qui consiste à ne garder que les combinaisons 30 dont la signature appartient à un ensemble donné de valeurs.

35 L'ordre dans lequel une sonde 2; effectue les opérations décrites précédemment peut varier. Une sonde 2; peut classifier les paquets avant d'effectuer la datation, si cela n'affecte pas trop la précision de la mesure. De

même, les opérations de filtrage peuvent être effectuées à différents instants du processus.

La figure 5 illustre les étapes de collecte et de corrélation des mesures par un module collecteur 4.

5 Ce dernier reçoit les échantillons des combinaisons (classe, date, signature) non filtrées en provenance de toutes les sondes d'observation 2_i qui lui sont rattachées ;

10 - chaque paquet est en principe vu par deux sondes d'observation 2_i: une première fois à l'entrée dans le réseau et une deuxième à la sortie. Toutefois, d'autres cas sont possibles. Par exemple, un paquet peut n'être vu qu'une fois si le domaine de surveillance des sondes 2_i n'est pas clos, ou plus de deux fois si il y a des sondes 15 d'observation 2_i à l'intérieur du réseau ;

20 - chaque observation du passage du paquet auprès d'une sonde d'observation 2_i donne lieu à la réception par le module collecteur 4 d'une combinaison (classe, date, signature) sauf s'il y a filtrage, échantillonnage ou perte du message de retour, etc... ;

25 - le module collecteur 4 corrèle les combinaisons (classe, date, signature) concernant un même paquet, par exemple en utilisant la comparaison des signatures et en majorant des délais de transit dans le réseau ;

30 - en cas de succès, il en déduit par un calcul arithmétique simple, d'une part, le délai de transfert entre les différentes sondes d'observation 2_i pour le paquet considéré, et d'autre part, le nombre de paquets éventuellement perdus dans le réseau. De plus, un excès de paquets en sortie permet d'indiquer une défaillance d'un 35 des équipements du réseau, ou une tentative d'intrusion. Des calculs plus évolués tels que par exemple des valeurs moyenne, minimale, maximale, médiane, etc.... pour une tranche de temps et un type de flux donné peuvent également être effectués dans le module collecteur 4 avant stockage dans le module de stockage 5.

Le choix d'un ensemble de critères de filtrage et d'échantillonnage statique et dynamique cohérents pour la totalité des sondes d'observation 2_i attachés à un module collecteur 4 facilite les opérations de corrélation effectuées par ce dernier, et améliore la proportion des corrélations réussies.

Selon une variante du procédé selon l'invention, on peut ne pas souhaiter mesurer certains flux. Dans ce cas, les mesures correspondantes sont filtrées, ce qui permet de ne pas générer de charges inutiles dans les sondes 2_i.

Pour chaque paquet, un ticket est édité et comprend typiquement 3 parties : l'heure de passage du paquet, la signature du paquet et la valeur du compteur associé au flux (valeur absolue, ou nombre de paquets depuis le dernier ticket édité). Pour un flux donné, les tickets sont regroupés dans une structure commune avant transmission vers le module collecteur 4. Ce regroupement permet de mettre en facteur les éléments longs (identificateur du flux), et donc de diminuer la quantité globale d'informations à remonter vers le module collecteur 4. La transmission des enregistrements de tickets vers ledit module collecteur 4 a lieu par exemple lorsque la longueur maximale de l'enregistrement est atteinte, ou sur hors-temps, si les sondes 2_i ne voient plus de paquet passer pour un flux donné.

Un avantage important du procédé selon l'invention provient du fait que le flux des enregistrements de tickets entre les sondes et le module collecteur 4 reste petit devant le volume des flux mesurés. Ceci permet notamment de surveiller des réseaux de dimension importante et éventuellement d'utiliser le réseau surveillé lui-même pour acheminer les informations entre les sondes 2_i et les modules collecteurs 4.

Cette réduction est obtenue notamment par le fait que les tickets ont une taille relativement petite par

rappor t à la longueur moyenne des paquets observés comme cela a été dit plus haut et grâce à l'échantillonnage des paquets mesurés qui permet de limiter le nombre de tickets émis vers le module collecteur 4.

5 Cet échantillonnage consiste, au sein d'un flux, donc après classification, à sélectionner les paquets qui donneront lieu à l'émission d'un ticket. Ceux qui ne sont pas sélectionnés sont juste comptés. Les critères d'échantillonnage peuvent varier mais, pour permettre au
10 module collecteur 4 d'effectuer les corrélations entrée/sortie ultérieures, il est important qu'ils soient communs à toutes les sondes 2_i d'un même module collecteur 4. En effet, si ce n'était pas le cas, la probabilité d'avoir un ticket à l'entrée et à la sortie du
15 domaine d'observation pour un même paquet serait très faible, et donc le taux de corrélations réussies aussi très faible. En outre ces critères doivent être relatifs au contenu binaire des paquets, qui constitue la seule information "absolue" dont on dispose par hypothèse.

20 Les critères et paramètres éventuellement associés peuvent être différents pour chacun des flux. Ceci permet un échantillonnage adapté à chaque type de flux. Par exemple, dans le cas d'un réseau Internet, on pourra décider d'un fort taux d'échantillonnage des paquets
25 véhiculant de la voix (compression moyenne, précision forte), et d'un taux plus faible pour les paquets de données (compression forte, précision moyenne).

A titre d'exemple de critère, on peut retenir un critère basé sur l'analyse de la signature des paquets :
30 les paquets dont la signature est multiple d'une certaine valeur seront échantillonés. Bien entendu, tout autre relation arithmétique convenable peut être utilisée sans sortir du cadre de l'invention).

Notons que l'échantillonnage ne diminue pas la
35 précision du comptage. Ceci est également vrai en cas de perte de paquets qui auraient dû donner lieu à l'édition de

5 tickets. En effet le compteur associé à chaque ticket généré donne le nombre total de paquets depuis le dernier ticket échantillonné. Le seul effet est la perte de précision quant à l'instant exact de la perte et de l'identité précise du paquet perdu. Ces deux caractéristiques sont a priori peu utiles, donc rarement recherchées. Toutefois, les caractéristiques d'échantillonnage étant attachées à un flux, il est toujours possible de ne pas échantillonner les flux pour 10 lesquels on désire l'information détaillée. Pour ces flux, tous les paquets donneront lieu à l'édition d'un ticket. En outre, le nombre de mesure étant inférieur au nombre de paquets, on pourra appliquer les lois statistiques bien connues quant à la validité et la précision des mesures 15 appliquées à l'échantillon ainsi capturé.

Ainsi, le procédé selon l'invention permet d'effectuer un contrôle de flux au niveau de la sonde en vue de :

20 - protéger le module collecteur 4 contre une surcharge : (trop de tickets à traiter par rapport à ses ressources propres qui sont la puissance de traitement disponible et taille mémoire, ...);

25 - protéger les sondes 2_i contre une surcharge (trop de tickets à traiter par rapport à ses ressources propres puissance de traitement disponible, taille mémoire, ...);

- protéger le réseau utilisé pour l'émission des enregistrements de tickets de la sonde vers le collecteur ;

30 - s'adapter à des variations de la capacité du réseau utilisé pour l'émission des enregistrements de tickets des sondes 2_i vers le module collecteur 4 ;

- permettre une répartition optimum de la ressource de mesures entre les différents flux en cas de congestion ;

35 - optimiser le couple (précision des mesures/charge réseau) en fonction de critères combinés, en fonctionnement normal.

Pour contrôler le flux, les fonctions suivantes peuvent être utilisées, isolément ou de façon combinée :

- limitation à une valeur maximale du flux global dans le réseau dû à l'émission des enregistrements de tickets des sondes 2_i vers le module collecteur 4. Cette limite peut être soit déterminée par configuration initiale, ou être modulée par le module collecteur 4, ou un dispositif externe d'exploitation du réseau ;

- limitation de la fréquence d'échantillonnage à une valeur maximale. Cette limite peut être soit déterminée par configuration initiale, ou être réalisée par le module collecteur 4, ou un dispositif externe d'exploitation du réseau. Elle peut en outre être différente pour chacun des types de flux ou de groupement de flux ;

- diminution de la fréquence d'échantillonnage. Cette diminution peut être soit déterminée localement par observation de la congestion des sondes 2_i , ou être fixée par le module collecteur 4, ou un dispositif externe d'exploitation du réseau. Cette diminution peut être différente pour chacun des types de flux ou de groupement de flux. La loi de diminution doit permettre au module collecteur 4 de corrélérer des enregistrements effectuées par des sondes 2_i n'ayant pas la même valeur d'échantillonnage pour un flux donné, la diminution n'étant pas forcément synchrone entre les différentes sondes 2_i . Un principe qui peut être retenu est celui de l'inclusion : les tickets des flux "diminués" doivent être également compris dans les tickets des flux "moins diminués". De cette façon, les tickets de la sonde 2_i ayant le plus grand facteur de diminution pourront toujours être corrélés avec les tickets de la sonde 2_i ayant un coefficient de diminution inférieur ;

- modulation de la fréquence d'échantillonnage en fonction de l'état de congestion local à la sonde 2_i , des caractéristiques de remontée des tickets vers le module collecteur 4, de la répartition de la charge entre les

différents types de flux. Cette modulation a pour objectif d'assurer le fonctionnement des sondes 2_i , en s'adaptant aux conditions instantanées de charge des différents composants du système. Elle gère l'évolution entre un état " médiocre " correspondant à une précision faible et à un trafic généré fort et un état " excellent " correspondant à une précision forte et à un trafic généré faible. L'évolution entre les zones " médiocre " et " excellent " peut être variée.

Les principales fonctions du module collecteur 4 sont illustrées par la figure 5. L'ordre respectif des fonctions peut varier suivant les différentes contraintes de réalisation sans sortir du cadre de l'invention.

Les formules ci-après sont mises en œuvre par la fonction de calcul du module collecteur 4, pour un flux F donné.

Les notations utilisées sont :

$D_{es}(p)$ = délai de transfert du point d'entrée (e) au point de sortie (s) du paquet p.

$T_e(p)$ = ticket associé au paquet (p) par la sonde au point d'entrée.

$T_s(p)$ = ticket associé au paquet (p) par la sonde au point de sortie.

$H_e(p)$ = horodatage dans le ticket associé au paquet (p) par la sonde au point d'entrée.

$H_s(p)$ = horodatage dans le ticket associé au paquet (p) par la sonde au point de sortie.

$C_e(p)$ = compteur dans le ticket associé au paquet (p) par la sonde au point d'entrée.

$C_s(p)$ = compteur dans le ticket associé au paquet (p) par la sonde au point de sortie.

$N_e(pq)$ = nombre de paquets entre le passage des paquets p et q au point de sortie.

$N_s(pq)$ = nombre de paquets entre le passage des paquets p et q au point de sortie.

$Pes(pq)$ = nombre de paquets perdus entre le passage du paquet p et du paquet q.

La mesure des délais de transfert est effectuée comme suit:

5 Pour chaque couple de tickets ($Ts(p)$; $Te(p)$) correspondant à la traversée d'un même paquet (p) dans le réseau observé, le délai de transfert $D_{es}(p)$ se déduit simplement par :

10
$$D_{es}(p) = Hs(p) - He(p)$$

Le comptage des paquets est effectué comme suit:

Soient les couples de tickets ($Ts(p)$; $Te(p)$) et ($Ts(q)$; $Te(q)$), correspondant à la traversée des paquets (p) et (q) appartenant au même flux dans le réseau observé, et tels que le ticket $Ts(q)$ soit consécutif du ticket $Ts(p)$ pour la sonde 2_i au point de sortie.

20 Le nombre $Ns(pq)$ de paquets entre le passage des paquets p et q au point de sortie se déduit simplement de la définition du compteur associé au ticket de sortie :

$$Ns(pq) = Cs(q)$$

Le nombre $Ne(pq)$ de paquets entre le passage des paquets p et q au point d'entrée est égal à la somme des compteurs des tickets d'entrée entre celui associé à p (non compris) et celui associé à q (y compris). Ceci permet de prendre en compte par exemple le cas des paquets perdus qui auraient dû donner lieu à l'édition d'un ticket de sortie :

$$i=q$$

$$Ne(pq) = \sum Ce(i)$$

$$i=p+1$$

30 Le comptage des pertes de paquets est effectué comme suit:

Le nombre $Pes(pq)$ de paquets perdus dans le réseau entre le passage des paquets p et q est alors égal 35 à :

$$Pes(pq) = Ne(pq) - Ns(pq)$$

A titre d'exemple de mise en œuvre du procédé selon l'invention, la figure 6 schématise un exemple de réseau dans lequel la sonde d'entrée est S_A , la sonde de sortie est S_B . Ces sondes sont déjà synchronisées et possèdent une référence temporelle commune. Le critère d'échantillonnage retient les paquets dont la signature vaut 0 modulo 16. La signature est sur 2 digits, l'horodatage sur 4. L'unité de temps n'est pas précisée.

Les figures 7 à 15 illustrent différents cas où l'on considère la même séquence de paquets en entrée, donnant lieu à la même séquence de tickets par la sonde S_A .

Selon un mode particulier de réalisation de l'invention illustré par la figure 16, adapté au cas où la fréquence d'échantillonnage est faible, c'est-à-dire quand de nombreux paquets ne donnent pas lieu à l'émission d'un ticket, pour un flux donné, on divise le temps en tranches, depuis l'instant d'observation du paquet ayant donné lieu à l'édition du dernier ticket. La taille de la tranche peut être fixée localement à la sonde, par le collecteur, varier selon différents critères ;

- on associe un compteur à chaque tranche de temps ;

- on incrémente, lors du passage de chaque paquet ne donnant pas lieu à l'édition d'un ticket, le compteur associé à la tranche de temps correspondant à l'instant du passage ;

- et on joint, lors du passage du prochain paquet donnant lieu à l'édition d'un ticket, la liste des compteurs ainsi obtenu.

Ce mécanisme permet au module collecteur 4 d'obtenir, par comparaison des compteurs issus des sondes S_i en entrée et en sortie, une mesure de la variation des délais de transfert des paquets circulant entre les paquets ayant donné lieu à l'édition des tickets et qui ont donc fait l'objet d'une mesure globale. On fait également l'hypothèse que les paquets appartenant à un même flux ne

se doublent pas dans le réseau, ce qui est généralement le cas.

La précision obtenue est de l'ordre de grandeur de la "tranche" de temps retenue (compromis entre le nombre de tranches - et donc de compteurs à remonter - et la précision).

Notons que ce mécanisme ne fonctionne bien que si le taux de perte de paquet est nul ou faible pour la période considérée.

10 Les principaux avantages de ce mode de réalisation sont :

- affinage de la mesure de délai : les paquets n'ayant pas donné lieu à l'émission d'un ticket participent tout de même à la mesure ;

15 - insensibilité à l'augmentation du nombre de paquets observés : une multiplication du nombre de paquets observée ne donnera pratiquement pas lieu à augmentation du trafic de remontée entre les sondes 2_i et le collecteur module 4.

REVENDICATIONS

1. Procédé non-intrusif de mesure des taux de
5 perte et des durées de transfert de données dans un réseau
de télécommunication en mode paquet, caractérisé en ce
qu'il comporte les étapes suivantes:

- classification des paquets de données dans un flux homogène ;
- 10 - calcul d'une signature d'identification de chaque paquet de données ;
- comptage des paquets dans le flux;
- mesure, d'une part, des délais de transfert unidirectionnels par flux ou groupe de flux d'information et, d'autre part, du taux de perte de paquets.

2. Procédé selon la revendication 1, caractérisé en ce que chaque paquet observé fait l'objet d'une datation selon une référence temporelle commune acquise par des 20 sondes d'observation (2_i) réparties dans le réseau.

3. Procédé selon la revendication 2, caractérisé en ce qu'un ticket comprenant l'heure de passage du paquet, la signature du paquet et la valeur d'un compteur associé 25 au flux ou au groupe de flux est édité.

4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte en outre une étape de filtrage et une étape d'échantillonnage semi-statique des 30 classes obtenues par l'étape de classification, l'échantillonnage consistant à sélectionner les paquets qui donneront lieu à l'émission d'un ticket.

35 5. Procédé selon l'une des revendications 1, 2 ou 3, caractérisé en ce qu'il comporte une étape

d'échantillonnage dynamique dont le taux dépend des conditions de congestion du système.

5 6. Procédé selon la revendication 1, caractérisé en ce que chaque paquet est classé selon ses caractéristiques de destination ou selon le type de son contenu.

10 7. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la fréquence d'échantillonnage peut, soit être limitée à une valeur maximale déterminée par configuration initiale, soit être modulée par le module collecteur (4) ou un dispositif externe d'exploitation du réseau (1).

15 8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que pour un flux F donné, la mesure des délais de transfert est effectuée comme suit:

$$D_{es}(p) = H_s(p) - H_e(p)$$

20 où

$D_{es}(p)$ = délai de transfert du point d'entrée (e) au point de sortie (s) du paquet p.

$H_e(p)$ = horodatage dans le ticket associé au paquet (p) par la sonde au point d'entrée.

25 $H_s(p)$ = horodatage dans le ticket associé au paquet (p) par la sonde au point de sortie.

30 9. Procédé selon la revendication 8, caractérisé en ce que le calcul des durées de transfert dans différentes portions du réseau est réalisé par une opération de mise en correspondance des combinaisons (classe, date, signature) appartenant à un même paquet observé par plusieurs sondes (2_i).

35 10. Procédé selon la revendication 8, caractérisé en ce que, pour un flux F donné, le nombre $P_{es}(pq)$ de

paquets perdus dans le réseau entre le passage des paquets p et q est donné par la formule :

$$P_{es}(pq) = N_e(pq) - N_s(pq)$$

où

5 $N_e(pq)$ = nombre de paquets entre le passage des paquets p et q au point de sortie.

$N_s(pq)$ = nombre de paquets entre le passage des paquets p et q au point de sortie.

10 11. Procédé selon la revendication 5, caractérisé en ce que, au cas où la fréquence d'échantillonnage est faible, on divise le temps en tranches depuis l'instant d'observation du paquet ayant donné lieu à l'édition du dernier ticket, la taille de la tranche pouvant être fixée 15 localement à la sonde (2_i) ou par le module collecteur (4), on associe un compteur à chaque tranche de temps, on incrémente, lors du passage de chaque paquet ne donnant pas lieu à l'édition d'un ticket, le compteur associé à la tranche de temps correspondant à l'instant du passage, et 20 on joint, lors du passage du prochain paquet donnant lieu à l'édition d'un ticket, la liste des compteurs ainsi obtenu.

12. Système à architecture répartie destiné à mettre en œuvre le procédé selon l'une des revendications 1 à 11, ledit système comportant une pluralité de sondes d'observation (2_i) de flux disposées à différents points du réseau (1), des moyens de compression des mesures effectuées par lesdites sondes d'observation (2_i) et des moyens de transmission de ces mesures vers un module 25 collecteur (4) des mesures effectuées relié à des moyens de stockage (5) et à des moyens d'analyse (6) desdites mesures, caractérisé en ce qu'il comporte en outre des moyens pour classifier les paquets de données dans un flux homogène, des moyens pour calculer une signature 30 d'identification de chaque paquet, des moyens pour compter les paquets dans un flux, et des moyens pour mesurer, d'une 35

part, les délais de transfert unidirectionnel par flux ou groupe de flux d'information, et d'autre part, le taux de perte de paquets.

FIG1

FIG 2

FIG 3

FIG 4

FIG 5

FIG 6

FIG 7

FIG 8

FIG 9

FIG 10

FIG 11

FIG 12

FIG 13

FIG 14

FIG 16

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR 00/00311

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04L12/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 535 193 A (ZHANG JING ET AL) 9 July 1996 (1996-07-09) abstract column 3, line 54 -column 4, line 63 figure 1 ----- US 5 521 907 A (ENNIS JR JAMES D ET AL) 28 May 1996 (1996-05-28) cited in the application abstract column 2, line 42 -column 3, line 4 column 4, line 20 - line 47 figure 1 -----	1-4, 6, 8, 9, 12 1, 3, 8, 9, 12

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

8 May 2000

Date of mailing of the international search report

18/05/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Masche, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 00/00311

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 5535193	A 09-07-1996	CA 2159301	A 10-08-1996		
		EP 0726664	A 14-08-1996		
		IL 116756	A 09-05-1999		
		JP 8251167	A 27-09-1996		
US 5521907	A 28-05-1996	CA 2218886	A 31-10-1996		
		WO 9634476	A 31-10-1996		

RAPPORT DE RECHERCHE INTERNATIONALE

De: Internationale No
PCT/FR 00/00311

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 H04L12/26

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 H04L

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisée)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	US 5 535 193 A (ZHANG JING ET AL) 9 juillet 1996 (1996-07-09) abrégé colonne 3, ligne 54 - colonne 4, ligne 63 figure 1 ---	1-4, 6, 8, 9, 12
A	US 5 521 907 A (ENNIS JR JAMES D ET AL) 28 mai 1996 (1996-05-28) cité dans la demande abrégé colonne 2, ligne 42 - colonne 3, ligne 4 colonne 4, ligne 20 - ligne 47 figure 1 ---	1, 3, 8, 9, 12

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

8 mai 2000

Date d'expédition du présent rapport de recherche internationale

18/05/2000

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Masche, C

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Doc. de Internationale No

PCT/FR 00/00311

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)			Date de publication
US 5535193 A	09-07-1996	CA	2159301 A		10-08-1996
		EP	0726664 A		14-08-1996
		IL	116756 A		09-05-1999
		JP	8251167 A		27-09-1996
US 5521907 A	28-05-1996	CA	2218886 A		31-10-1996
		WO	9634476 A		31-10-1996

THIS PAGE BLANK (USPTO)