Grandeurs physiques et chimiques et leurs unités

Grandeur et son symbole	Unité et son symbole						
longueur (ℓ)	mètre (m)						
temps (t)	seconde (s)						
vitesse (v)	mètre par seconde (m·s ⁻¹)						
fréquence (f)	hertz (Hz)						
force (<i>F</i>)	newton (N)						
pression (P)	pascal (Pa)						
charge électrique (<i>q</i>)	coulomb (C)						
température (θ ou T)	degré Celsius (°C) ou kelvin (K)						

Grandeur et son symbole	· Unité et son symbole					
masse (<i>m</i>)	kilogramme (kg) ou gramme (g)					
volume (V)	mètre cube (m³) ou litre (L)					
masse volumique (ρ)	kilogramme par mètre cube (kg·m ⁻³) ou gramme par millilitre (g·mL ⁻¹)					
quantité de matière (n)	mole (mol)					
masse molaire (M)	kilogramme par mole (kg·mol ⁻¹) ou gramme par mole (g·mol ⁻¹)					
densité (<i>d</i>)	Pas d'unité					
concentration ou teneur massique de A (t(A))	kilogramme par mètre cube (kg·m ⁻ ou gramme par litre (g·L ⁻¹)					
concentration molaire de A (C(A))	mole par mètre cube (mol·m ⁻³) ou mole par litre (mol·L ⁻¹)					

En rouge, les unités du système international (unités S.I.). En bleu, les unités généralement utilisées au laboratoire.

Constantes fondamentales

Grandeur	Symbole	Valeur approchée				
Vitesse de la lumière dans le vide et dans l'air	С	$3,00 \times 10^8 \mathrm{m} \cdot \mathrm{s}^{-1}$				
Constante universelle de gravitation	G	$6,67 \times 10^{-11} \mathrm{N \cdot m^2 \cdot kg^{-2}}$				
Constante d'Avogadro	N _A	6,02 × 10 ²³ mol ⁻¹				
Charge élémentaire	е	1,60 × 10 ⁻¹⁹ C				
Masse de l'électron	$m_{ m e}$	9,11 × 10 ⁻³¹ kg				
Masse du proton	$m_{\rm p}$	1,67 × 10 ⁻²⁷ kg				
Masse du neutron	$m_{\rm n}$	1,67 × 10 ⁻²⁷ kg				

Puissances de dix et conversions d'unités

10 ⁿ	10 ⁻¹⁵	10-12	10 ⁻⁹	10-6	10 ⁻³	10-2	10 ⁻¹	10	10 ²	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵
Abréviation	f	р	n	μ	m	С	d	da	h	k	М	G	Т	Р
Préfixe	femto	pico	nano	micro	milli	centi	déci	déca	hecto	kilo	méga	giga	téra	péta

$$89,5 \mu L = 89,5 \times 10^{-6} L = 89,5 \times 10^{-3} mL$$

$$3,47 L = 3,47 \times 10^3 \text{ mL} = 3,47 \times 10^6 \mu L$$

15,2 pm =
$$15,2 \times 10^{-12}$$
 m = $15,2 \times 10^{-9}$ mm 6,3 MHz = $6,3 \times 10^{6}$ Hz = $6,3 \times 10^{3}$ kHz.

$$6,3 \text{ MHz} = 6,3 \times 10^6 \text{ Hz} = 6,3 \times 10^3 \text{ kHz}.$$