Basic Concepts:

Performance Analysis & Measurement

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Outline

Performance Analysis

Performance Measurement

Outline

Performance Analysis

2 Performance Measurement

Criteria for judging a program:

- Meet the original specification?
- Work correctly?
- The documentation.
- Do functions work effectively?
- Code readability.
- Efficient usage of storage?
- Acceptable running time?

Performance Analysis

machine independent

- Space complexity
 - The amount of memory that it needs to run to completion.
- Time complexity
 - Computing time

Space complexity

$$S(p)=c+S_p(I).$$

- Fixed space requirement: c.
 - Independent of the characteristics of the inputs and outputs.
 - Instruction space.
 - Space for simple variables, fixed-size structured variable and constants.
- Variable Space Requirement $(S_p(I))$.
 - depend on the instance characteristic I.
 - values of inputs and outputs associated with I.

Example

Assume that the integers are stored in an array 'list', such that the
 ith integer is stored in the ith position list[i].

```
float abc(float a, float b, float c) {
   return a + b + b * c + (a + b - c) / (a + b) + 4.00;
}
```

- Fixed space requirement (c): 16.
 - Three float numbers: a, b, c and one return float number.

Example

```
float sum(float list[], int n) {
    float temp = 0;
    int i;
    for (i=0; i<n; i++)
        temp += list[i];
    return temp;
}</pre>
```

- Fixed space requirement (c): 16.
 - In this program, $S_{\text{sum}}(I) = 0$.

Example (recursive)

```
float rsum(float list[], int n) {
   if (n) return rsum(list, n-1);
   return list[0];
}
```

- Total variable space: $S_{\text{rsum}}(I) = 12n$.
 - parameter list[]: array pointer: 4 bytes.
 - parameter n: integer: 4 bytes
 - return address (internally used): 4 bytes.
- The recursive version has a far greater overhead than its iterative counterpart.

Time Complexity: $T(P) = c + T_p(I)$

- Compile time: c
 - Independent of the characteristics of the input and output.
 - Once the correctness of the program is verified, it can run without recompilation.
- Run time: $T_p(I)$ (what we are really concerned about)
 - E.g., $T_P(n) = c_a \cdot \text{ADD}(n) + c_s \cdot \text{SUB}(n) + c_l \cdot \text{LDA}(n) + c_{st} \cdot \text{STA}(n)$.
 - ADD, SUB, LDA, STA: the number of additions, subtractions, loads and stores.
 - c_a , c_s , c_l , c_{st} : the time needed to perform each operation (constants).

Time Complexity - Program Step (1/2)

Program Step

a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.

- Example of ONE program step
 - a = 2;
 - a = 2*b + 3*c/d e + f/g/a/b/c;

Time Complexity - Program Step (1/2)

Methods to compute the number of program steps

- Creating a global variable, say, count.
- Tabular method:
 - Compute the contribution of a statement:

 # program steps per execution × frequency
 - # program steps per execution \times frequency.
 - Add up the contribution of all statements.

Example

```
float sum(float list[], int n) {
    float tempSum = 0; count++; /* for assignment */
    int i:
    for (i = 0; i < n; i++) {
        count++; /* for the "for" loop */
        tempSum += list[i]; count++; /* for assignment */
    }
    count++; /* last execution of "for" */
    count++; /* for return */
    return tempSum;
```

• count = 2n + 3 (steps).

Example (Tabular Method)

Statements	s/e	Frequency	Total Steps
float sum(float list[], int n) {	0	0	0
float tempsum = 0;	1	1	1
int i;	0	0	0
for(i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total	2n + 3		

• Issues: determining the "exact" step count of a program could be diffult or complicated.

- Issues: determining the "exact" step count of a program could be diffult or complicated.
- ightharpoonup Using asymptotic notations: O, Ω, Θ, \dots

- Issues: determining the "exact" step count of a program could be diffult or complicated.
- ightharpoonup Using asymptotic notations: O, Ω, Θ, \dots
- A motivating example:

- Issues: determining the "exact" step count of a program could be diffult or complicated.
- ightharpoonup Using asymptotic notations: O, Ω, Θ, \dots
- A motivating example:
- $c_3 n < c_1 n^2 + c_2 n$ when n is sufficiently large.
 - For $c_1 = 1$, $c_2 = 2$, $c_3 = 100$, $c_1 n^2 + c_2 n \le c_3 n$ for $n \le 98$.
 - For $c_1 = 1$, $c_2 = 2$, $c_3 = 1000$, $c_1 n^2 + c_2 n \le c_3 n$ for $n \le 998$.

Big-O Notation

Definition $(O(\cdot))$

f(n) = O(g(n)) iff there exist positive constants c and $n_0 \in \mathbb{N}$ such that $f(n) \leq g(n)$ for all $n \geq n_0$.

Big-O Notation

Definition $(O(\cdot))$

f(n) = O(g(n)) iff there exist positive constants c and $n_0 \in \mathbb{N}$ such that $f(n) \leq g(n)$ for all $n \geq n_0$.

- g(n) is an upper bound on f(n).
 - The smaller g(n) is, the more informative it would be!

Big- Ω Notation

Definition $(\Omega(\cdot))$

 $f(n) = \Omega(g(n))$ iff there exist positive constants c and $n_0 \in \mathbb{N}$ such that $f(n) \geq g(n)$ for all $n \geq n_0$.

Big- Ω Notation

Definition $(\Omega(\cdot))$

 $f(n) = \Omega(g(n))$ iff there exist positive constants c and $n_0 \in \mathbb{N}$ such that $f(n) \geq g(n)$ for all $n \geq n_0$.

- g(n) is an lower bound on f(n).
 - The larger g(n) is, the more informative it would be!

•
$$3n + 2 = O(n)$$
.

- 3n + 2 = O(n).
 - $3n + 2 \le 4n$ for $n \ge 2$.

- 3n + 2 = O(n).
 - $3n + 2 \le 4n$ for $n \ge 2$.
- $3n + 3 = O(n^2)$.

- 3n + 2 = O(n).
 - $3n + 2 \le 4n$ for $n \ge 2$.
- $3n + 3 = O(n^2)$.
 - $3n + 2 \le 4n^2$ for $n \ge 2$.

- 3n + 2 = O(n).
 - $3n + 2 \le 4n$ for $n \ge 2$.
- $3n + 3 = O(n^2)$.
 - $3n + 2 \le 4n^2$ for $n \ge 2$.
- 100n + 6 = O(n).

- 3n + 2 = O(n).
 - $3n + 2 \le 4n$ for $n \ge 2$.
- $3n + 3 = O(n^2)$.
 - $3n + 2 \le 4n^2$ for $n \ge 2$.
- 100n + 6 = O(n).
 - $100n + 6 \le 101n$ for $n \ge 10$.

- 3n + 2 = O(n).
 - $3n + 2 \le 4n$ for $n \ge 2$.
- $3n + 3 = O(n^2)$.
 - $3n + 2 \le 4n^2$ for $n \ge 2$.
- 100n + 6 = O(n).
 - $100n + 6 \le 101n$ for $n \ge 10$.
- $10n^2 + 4n + 2 = O(n^2)$.

- 3n + 2 = O(n).
 - $3n + 2 \le 4n$ for $n \ge 2$.
- $3n + 3 = O(n^2)$.
 - $3n + 2 \le 4n^2$ for $n \ge 2$.
- 100n + 6 = O(n).
 - $100n + 6 \le 101n$ for $n \ge 10$.
- $10n^2 + 4n + 2 = O(n^2)$.
 - $10n^2 + 4n + 2 \le 11n^2$ for $n \ge 5$.

- 3n + 2 = O(n).
 - $3n + 2 \le 4n$ for $n \ge 2$.
- $3n + 3 = O(n^2)$.
 - $3n + 2 \le 4n^2$ for $n \ge 2$.
- 100n + 6 = O(n).
 - 100n + 6 < 101n for n > 10.
- $10n^2 + 4n + 2 = O(n^2)$.
 - $10n^2 + 4n + 2 \le 11n^2$ for $n \ge 5$.
- $6 \cdot 2^n + n^2 = O(2^n)$.

- 3n + 2 = O(n).
 - $3n + 2 \le 4n$ for $n \ge 2$.
- $3n + 3 = O(n^2)$.
 - $3n + 2 \le 4n^2$ for $n \ge 2$.
- 100n + 6 = O(n).
 - $100n + 6 \le 101n$ for $n \ge 10$.
- $10n^2 + 4n + 2 = O(n^2)$.
 - $10n^2 + 4n + 2 \le 11n^2$ for $n \ge 5$.
- \bullet 6 · 2ⁿ + n² = $O(2^n)$.
 - $6 \cdot 2^n + n^2 \le 7 \cdot 2^n$ for $n \ge 4$.

Examples (Big- Ω)

• $3n + 2 = \Omega(n)$.

Examples (Big- Ω)

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.

Examples (Big- Ω)

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $100n + 6 = \Omega(n)$.

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $100n + 6 = \Omega(n)$.
 - $100n + 6 \ge 100n$ for $n \ge 1$.

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $100n + 6 = \Omega(n)$.
 - $100n + 6 \ge 100n$ for $n \ge 1$.
- $10n^2 + 4n + 2 = \Omega(n^2)$.

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $100n + 6 = \Omega(n)$.
 - 100n + 6 > 100n for n > 1.
- $10n^2 + 4n + 2 = \Omega(n^2)$.
 - $10n^2 + 4n + 2 \ge 10n^2$ for $n \ge 1$.

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $100n + 6 = \Omega(n)$.
 - 100n + 6 > 100n for n > 1.
- $10n^2 + 4n + 2 = \Omega(n^2)$.
 - $10n^2 + 4n + 2 \ge 10n^2$ for $n \ge 1$.
- $\bullet \ 6 \cdot 2^n + n^2 = \Omega(2^n).$

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $100n + 6 = \Omega(n)$.
 - $100n + 6 \ge 100n$ for $n \ge 1$.
- $10n^2 + 4n + 2 = \Omega(n^2)$.
 - $10n^2 + 4n + 2 \ge 10n^2$ for $n \ge 1$.
- $\bullet \ 6 \cdot 2^n + n^2 = \Omega(2^n).$
 - $6 \cdot 2^n + n^2 \ge 2^n$ for $n \ge 1$.

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $100n + 6 = \Omega(n)$.
 - $100n + 6 \ge 100n$ for $n \ge 1$.
- $10n^2 + 4n + 2 = \Omega(n^2)$.
 - $10n^2 + 4n + 2 \ge 10n^2$ for $n \ge 1$.
- $\bullet \ 6 \cdot 2^n + n^2 = \Omega(2^n).$
 - $6 \cdot 2^n + n^2 \ge 2^n$ for $n \ge 1$.
- $10n^2 + 4n + 2 = \Omega(1)$.

- $3n + 2 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $3n + 3 = \Omega(n)$.
 - $3n + 2 \ge 3n$ for $n \ge 1$.
- $100n + 6 = \Omega(n)$.
 - $100n + 6 \ge 100n$ for $n \ge 1$.
- $10n^2 + 4n + 2 = \Omega(n^2)$.
 - $10n^2 + 4n + 2 \ge 10n^2$ for $n \ge 1$.
- $\bullet \ 6 \cdot 2^n + n^2 = \Omega(2^n).$
 - $6 \cdot 2^n + n^2 \ge 2^n$ for $n \ge 1$.
- $10n^2 + 4n + 2 = \Omega(1)$.
- $6 \cdot 2^n + n^2 = \Omega(1)$.

Polynomial

Theorem 1.2

If
$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$$
, then $f(n) = O(n^k)$

Polynomial

Theorem 1.2

If
$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$
, then $f(n) = O(n^k)$

Proof:

$$f(n) \le \sum_{i=0}^k |a_i| n^i = n^k \sum_{i=0}^k |a_i| n^{i-k} \le n^k \sum_{i=0}^k |a_i|, \text{ for } n \ge 1.$$

Polynomial

Theorem 1.2

If
$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$
, then $f(n) = O(n^k)$

Proof:

$$f(n) \le \sum_{i=0}^k |a_i| n^i = n^k \sum_{i=0}^k |a_i| n^{i-k} \le n^k \sum_{i=0}^k |a_i|, \text{ for } n \ge 1.$$

Note that $n^{i-k} \le 1$ if $i \le k$ and $\sum_{i=0}^{k} |a_i|$ is a constant.

Most often seen big-O complexities

- * with respect to the input of size n.
 - O(1): constant.
 - O(n): linear.
 - $O(n^2)$: quadratic.
 - $O(n^3)$: cubic.
 - $O(2^n)$: exponential.
 - $O(\log n)$: logarithmic.
 - $O(n \log n)$: log linear.

Polynomial (Lower Bound)

Theorem 1.3

If
$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$
, then $f(n) = \Omega(n^k)$

Polynomial (Lower Bound)

Theorem 1.3

If
$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$
, then $f(n) = \Omega(n^k)$

Proof:

• Skipped and left as an exercise.

Theta Notation (Θ)

Definition (Θ)

$$f(n) = \Theta(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) = \Theta(g(n))$.

• More precise than simply using big-O or big- Ω notations.

Theta Notation (Θ)

Definition (Θ)

$$f(n) = \Theta(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) = \Theta(g(n))$.

 \bullet More precise than simply using big-O or big- Ω notations.

Theorem 1.4

If
$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$
, then $f(n) = \Theta(n^k)$

Example (Tabular Method)

Statements	s/e	Frequency	Total Steps	Asymptotic Complexity
void add (int a[][MAX_SIZE],) {	0	0	0	0
int i, j; for (i = 0; i < row; i++) for (j=0; j < cols; j++) c[i][j] = a[i][j]+b[i][j]; }	1 1 1 0	rows+1 rows*(cols+1) rows*cols	rows+1 rows*(cols+1) rows*cols	$\begin{array}{c} \Theta(\text{rows}) \\ \Theta(\text{rows} \cdot \text{cols}) \\ \Theta(\text{rows} \cdot \text{cols}) \\ \Theta(\text{rows} \cdot \text{cols}) \end{array}$
Total	$2 \cdot \text{rows} \cdot \text{cols} + 2 \cdot \text{rows} + 1$			$\Theta(\mathrm{rows}\cdot\mathrm{cols})$

Function Values & Plots

Refer to Fig. 1.7 & 1.8 in the textbook.

Instance characteristic n								
Time	Name	1	2	4	8	16	32	
1	Constant	1	1	l	1	1	1	
$\log n$	Logarithmic	0	1	2	3	4	5	
n	Linear	1	2	4	8	16	32	
$n \log n$	Log linear	0	2	8	24	64	160	
n^2	Quadratic	1	4	16	64	256	1024	
n^3	Cubic	1	8	64	512	4096	32768	
2 ⁿ	Exponential	2	4	16	256	65536	4294967296	
n!	Factorial	1	2	24	40326	20922789888000	26313×10^{33}	

Function Values & Plots

Refer to Fig. 1.7 & 1.8 in the textbook.

25/30

Outline

Performance Analysis

2 Performance Measurement

Motivations

- Sometimes we still need to consider how long the algorithm executes on our machine.
- In order to obtain accurate times, we can repeatedly run the programs for several times (and take the average running time).

The Tricks

#include<time.h>

	1st Method	2nd Method		
start timing	start = clock();	<pre>start = time(NULL);</pre>		
stop timing	<pre>end = clock();</pre>	<pre>end = time(NUL);</pre>		
type returned	clock_t	time_t		

Result (in seconds):

- 1st Method: duration = (double)(stop-start))/(CLOCKS_PER_SEC);
- 2nd Method: duration = (double)difftime(stop, start);

The Tricks (Example)

```
... // previous code omitted
   clock_t start, stop;
   double duration:
   printf("n time\n");
   for(i=0; i < ITERATIONS; i++) {</pre>
        for(j=0; j<sizeList[i]; j++)</pre>
            list[j] = sizeList[i]-j; /* worst case */
            start = clock();
            sort(list, sizeList[i]);
            stop = clock();
            /* number of clock ticks per second */
            duration = ((double) (stop-start));
            printf("%6d %f\n", sizeList[i], duration);
```

 \Rightarrow sample code.

Discussions