(19) World Intellectual Property Organization International Bureau

THE TREE TO BE A STATE OF THE PRODUCTION OF THE STATE OF T

(43) International Publication Date 17 April 2003 (17.04.2003)

PCT

(10) International Publication Number WO 03/031588 A2

- (51) International Patent Classification7:
- C12N
- (21) International Application Number: PCT/US02/32512
- (22) International Filing Date: 10 October 2002 (10.10.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/328,655 60/363,774 11 October 2001 (11.10.2001) US 13 March 2002 (13.03.2002) US

(71) Applicants (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). ISTITUTO DI RICERCHE DI BIOLOGIA MOLECOLARE P. ANGELETTI, S.P.A. [IT/IT]; VIA PONTINA KM. 30.600, I-00040 POMEZIA

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): EMINI, Emilio,
 A. [US/US]; 126 East Lincoln Avenue, Rahway, NJ.
 07065-0907 (US). KASLOW, David, C. [US/US]; 126;
 Bast Lincoln Avenue, Rahway, NJ 07065-0907 (US).
 BETT, Andrew, J. [CA/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). SHIVER: John,
 W. [US/US]; 126 East Lincoln Avenue, Rahway, NJ
 07065-0907 (US). NICOSIA, Alfredo [IT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT). LAHM, Armin [DE/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT). LUZZAGO, Alessandra [IT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT).
 COLLOCA, Stefano [IT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT).
- (74) Common Representative: MERCK & CO., INC.; 126
 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

[Continued on next page]

(54) Title: HEPATITIS C VIRUS VACCINE

(57) Abstract: The present invention features Ad6 vectors and a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing an inactive NS5B RNA-dependent RNA polymerase region. The nucleic acid is particularly useful as a component of an adenovector or DNA plasmid vaccine providing a broad range of antigens for generating an HCV specific cell mediated immune (CMI) response against HCV.

MRKA45

NSmut

MRKAd6

Western blot on whole-cell extracts from HeLe cells infected at different multiplicity of infection (m.o.l.; indicated at the top) with Adenoverous capressing the different HCV NS cassenes. Mater NSSB and NSSA products were detected with specific antibodies.

MRKAd6

Ad5 NS

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TITLE OF THE INVENTION HEPATITIS C VIRUS VACCINE

RELATED APPLICATIONS

10 ·

15

20

30

The present application claims priority to provisional applications U.S. Serial No. 60/363,774, filed March 13, 2002, and U.S. Serial No. 60/328,655, filed October 11, 2001, each of which are hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

The references cited in the present application are not admitted to be prior art to the claimed invention.

About 3% of the world's population are infected with the Hepatitis C virus (HCV). (Wasley et al., Semin. Liver Dis. 20, 1-16, 2000.) Exposure to HCV results in an overt acute disease in a small percentage of cases, while in most instances the virus establishes a chronic infection causing liver inflammation and slowly progresses into liver failure and cirrhosis. (Iwarson, FEMS Microbiol. Rev. 14, 201-204, 1994.) In addition, epidemiological surveys indicate an important role of HCV in the pathogenesis of hepatocellular carcinoma. (Kew, FEMS Microbiol. Rev. 14, 211-220, 1994, Alter, Blood 85, 1681-1695, 1995.)

Prior to the implementation of routine blood screening for HCV in 1992, most infections were contracted by inadvertent exposure to contaminated blood, blood products or transplanted organs. In those areas where blood screening of HCV is carried out, HCV is primarily contracted through direct percutaneous exposure to infected blood, i.e., intravenous drug use. Less frequent methods of transmission include perinatal exposure, hemodialysis, and sexual contact with an HCV infected person. (Alter et al., N. Engl. J. Med. 341(8), 556-562, 1999, Alter, J. Hepatol. 31 Suppl. 88-91, 1999. Semin. Liver. Dis. 201, 1-16, 2000.)

The HCV genome consists of a single strand RNA about 9.5 kb encoding a precursor polyprotein of about 3000 amino acids. (Choo et al., Science 244, 362-364, 1989, Choo et al., Science 244, 359-362, 1989, Takamizawa et al., J. Virol. 65, 1105-1113, 1991.) The HCV polyprotein contains the viral proteins in the order: C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B.

Individual viral proteins are produced by proteolysis of the HCV polyprotein. Host cell proteases release the putative structural proteins C, E1, E2, and

p7, and create the N-terminus of NS2 at amino acid 810. (Mizushima et al., J. Virol. 68, 2731-2734, 1994, Hijikata et al., P.N.A.S. USA 90, 10773-10777, 1993.)

The non-structural proteins NS3, NS4A, NS4B, NS5A and NS5B presumably form the virus replication machinery and are released from the polyprotein. A zinc-dependent protease associated with NS2 and the N-terminus of NS3 is responsible for cleavage between NS2 and NS3. (Grakoui et al., J. Virol. 67, 1385-1395, 1993, Hijikata et al., P.N.A.S. USA 90, 10773-10777, 1993.) A distinct serine protease located in the N-terminal domain of NS3 is responsible for proteolytic cleavages at the NS3/NS4A, NS4A/NS4B, NS4B/NS5A and NS5A/NS5B junctions. (Bartenschlager et al., J. Virol. 67, 3835-3844, 1993, Grakoui et al., Proc. Natl. Acad. Sci. USA 90, 10583-10587, 1993, Tomei et al., J. Virol. 67, 4017-4026, 1993.) NS4A provides a cofactor for NS3 activity. (Failla et al., J. Virol. 68, 3753-3760, 1994, De Francesco et al., U.S. Patent No. 5,739,002.)

NS5A is a highly phosphorylated protein conferring interferon resistance. (De Francesco et al., Semin. Liver Dis., 20(1), 69-83, 2000, Pawlotsky, Viral Hepat. Suppl. 1, 47-48, 1999.)

NS5B provides an RNA-dependent RNA polymerase. (De Francesco et al., International Publication Number WO 96/37619, Behrens et al., EMBO 15, 12-22, 1996, Lohmann et al., Virology 249, 108-118, 1998.)

20

25

30

35

SUMMARY OF THE INVENTION

The present invention features Ad6 vectors and a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing an inactive NS5B RNA-dependent RNA polymerase region. The nucleic acid is particularly useful as a component of an adenovector or DNA plasmid vaccine providing a broad range of antigens for generating an HCV specific cell mediated immune (CMI) response against HCV.

A HCV specific CMI response refers to the production of cytotoxic T lymphocytes and T helper cells that recognize an HCV antigen. The CMI response may also include non-HCV specific immune effects.

Preferred nucleic acids encode a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide that is substantially similar to SEQ. ID. NO. 1 and has sufficient protease activity to process itself to produce at least a polypeptide substantially similar to the NS5B region present in SEQ. ID. NO. 1. The produced polypeptide corresponding to NS5B is enzymatically inactive. More preferably, the HCV polypeptide has sufficient

protease activity to produce polypeptides substantially similar to the NS3, NS4A, NS4B, NS5A, and NS5B regions present in SEQ. ID. NO. 1.

Reference to a "substantially similar sequence" indicates an identity of at least about 65% to a reference sequence. Thus, for example, polypeptides having an amino acid sequence substantially similar to SEQ. ID. NO. 1 have an overall amino acid identity of at least about 65% to SEQ. ID. NO. 1.

Polypeptides corresponding to NS3, NS4A, NS4B, NS5A, and NS5B have an amino acid sequence identity of at least about 65% to the corresponding region in SEQ. ID. NO. 1. Such corresponding polypeptides are also referred to herein as NS3, NS4A, NS4B, NS5A, and NS5B polypeptides.

10

15

30

Thus, a first aspect of the present invention describes a nucleic acid comprising a nucleotide sequence encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1. The encoded polypeptide has sufficient protease activity to process itself to produce an NS5B polypeptide that is enzymatically inactive.

In a preferred embodiment, the nucleic acid is an expression vector capable of expressing the Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide in a desired human cell. Expression inside a human cell has therapeutic applications for actively treating an HCV infection and for prophylactically treating against an HCV infection.

An expression vector contains a nucleotide sequence encoding a polypeptide along with regulatory elements for proper transcription and processing. The regulatory elements that may be present include those naturally associated with the nucleotide sequence encoding the polypeptide and exogenous regulatory elements not naturally associated with the nucleotide sequence. Exogenous regulatory elements such as an exogenous promoter can be useful for expression in a particular host, such as in a human cell. Examples of regulatory elements useful for functional expression include a promoter, a terminator, a ribosome binding site, and a polyadenylation signal.

Another aspect of the present invention describes a nucleic acid comprising a gene expression cassette able to express in a human cell a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1. The polypeptide can process itself to produce an enzymatically inactive NS5B protein. The gene expression cassette contains at least the following:

a) a promoter transcriptionally coupled to a nucleotide sequence encoding a polypeptide;

5

20

25

30

35

- b) a 5' ribosome binding site functionally coupled to the nucleotide sequence,
 - c) a terminator joined to the 3' end of the nucleotide sequence, and
- d) a 3' polyadenylation signal functionally coupled to the nucleotide sequence.

Reference to "transcriptionally coupled" indicates that the promoter is positioned such that transcription of the nucleotide sequence can be brought about by RNA polymerase binding at the promoter. Transcriptionally coupled does not require that the sequence being transcribed is adjacent to the promoter.

Reference to "functionally coupled" indicates the ability to mediate an effect on the nucleotide sequence. Functionally coupled does not require that the coupled sequences be adjacent to each other. A 3' polyadenylation signal functionally coupled to the nucleotide sequence facilitates cleavage and polyadenylation of the transcribed RNA. A 5' ribosome binding site functionally coupled to the nucleotide sequence facilitates ribosome binding.

In preferred embodiments the nucleic acid is a DNA plasmid vector or an adenovector suitable for either therapeutic application in treating HCV or as an intermediate in the production of a therapeutic vector. Treating HCV includes actively treating an HCV infection and prophylactically treating against an HCV infection.

Another aspect of the present invention describes an adenovector comprising a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette able to express a polypeptide substantially similar to SEQ. ID. NO. 1 that is produced by a process involving (a) homologous recombination and (b) adenovector rescue. The homologous recombinant step produces an adenovirus genome plasmid. The adenovector rescue step produces the adenovector from the adenogenome plasmid.

Adenovirus genome plasmids described herein contain a recombinant adenovirus genome having a deletion in the E1 region and optionally in the E3 region and a gene expression cassette inserted into one of the deleted regions. The recombinant adenovirus genome is made of regions substantially similar to one or more adenovirus serotypes.

Another aspect of the present invention describes an adenovector consisting of the nucleic acid sequence of SEQ. ID. NO. 4 or a derivative thereof.

wherein said derivative thereof has the HCV polyprotein encoding sequence present in SEQ. ID. NO. 4 replaced with the HCV polyprotein encoding sequence of either SEQ. ID. NO. 3, SEQ. ID. NO. 10 or SEQ. ID. NO. 11.

Another aspect of the present invention describes a cultured recombinant cell comprising a nucleic acid containing a sequence encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1. The recombinant cell has a variety of uses such as being used to replicate nucleic acid encoding the polypeptide in vector construction methods.

Another aspect of the present invention describes a method of making an adenovector comprising a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette able to express a polypeptide substantially similar to SEQ. ID. NO. 1. The method involves the steps of (a) producing an adenovirus genome plasmid containing a recombinant adenovirus genome with deletions in the E1 and E3 regions and a gene expression cassette inserted into one of the deleted regions and (b) rescuing the adenovector from the adenovirus genome plasmid.

10

20

Another aspect of the present invention describes a pharmaceutical composition comprising a vector for expressing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1 and a pharmaceutically acceptable carrier. The vector is suitable for administration and polypeptide expression in a patient.

A "patient" refers to a mammal capable of being infected with HCV. A patient may or may not be infected with HCV. Examples of patients are humans and chimpanzees.

Another aspect of the present invention describes a method of treating a patient comprising the step of administering to the patient an effective amount of a vector expressing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1. The vector is suitable for administration and polypeptide expression in the patient.

The patient undergoing treatment may or may not be infected with HCV. For a patient infected with HCV, an effective amount is sufficient to achieve one or more of the following effects: reduce the ability of HCV to replicate, reduce HCV load, increase viral clearance, and increase one or more HCV specific CMI responses. For a patient not infected with HCV, an effective amount is sufficient to achieve one or more of the following: an increased ability to produce one or more components of a HCV specific CMI response to a HCV infection, a reduced

susceptibility to HCV infection, and a reduced ability of the infecting virus to establish persistent infection for chronic disease.

Another aspect of the present invention features a recombinant nucleic acid comprising an Ad6 region and a region not present in Ad6. Reference to "recombinant" nucleic acid indicates the presence of two or more nucleic acid regions not naturally associated with each other. Preferably, the Ad6 recombinant nucleic acid contains Ad6 regions and a gene expression cassette coding for a polypeptide heterologous to Ad6.

Other features and advantages of the present invention are apparent from the additional descriptions provided herein including the different examples. The provided examples illustrate different components and methodology useful in practicing the present invention. The examples do not limit the claimed invention. Based on the present disclosure the skilled artisan can identify and employ other components and methodology useful for practicing the present invention.

15

10

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B illustrate SEQ. ID. NO. 1.

Figures 2A, 2B, 2C, and 2D illustrate SEQ. ID. NO. 2. SEQ. ID. NO. 2 provides a nucleotide sequence coding for SEQ. ID. NO. 1 along with an optimized internal ribosome entry site and TAAA termination. Nucleotides 1-6 provides an optimized internal ribosome entry site. Nucleotides 7-5961 code for a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide with nucleotides in positions 5137 to 5145 providing a AlaAlaGly sequence in amino acid positions 1711 to 1713 that renders NS5B inactive. Nucleotides 5962-5965 provide a TAAA termination.

25

30

35

20

Figures 3A, 3B, 3C, and 3D illustrate SEQ. ID. NO. 3. SEQ. ID. NO. 3 is a codon optimized version of SEQ. ID. NO. 2. Nucleotides 7-5961 encode a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide.

Figures 4A-4M illustrate MRKAd6-NSmut (SEQ. ID. NO. 4). SEQ. ID. NO. 4 is an adenovector containing an expression cassette where the polypeptide of SEQ. ID. NO. 1 is encoded by SEQ. ID. NO. 2. Base pairs 1-450 correspond to the Ad5 bp 1 to 450; base pairs 462 to 1252 correspond to the human CMV promoter; base pairs 1258 to 1267 correspond to the Kozak sequence; base pairs 1264 to 7222 correspond to the NS genes; base pairs 7231 to 7451 correspond to the BGH polyadenylation signal; base pairs 7469 to 9506 correspond to Ad5 base pairs 3511 to 5548; base pairs 9507 to 32121 correspond to Ad6 base pairs 5542 to 28156; base

pairs 32122 to 35117 correspond to Ad6 base pairs 30789 to 33784; and base pairs 35118 to 37089 correspond to Ad5 base pairs 33967 to 35935.

Figures 5A-5O illustrate SEQ. ID. NOs. 5 and 6. SEQ. ID. NO. 5 encodes a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide with an active RNA dependent RNA polymerase. SEQ. ID. NO. 6 provides the amino acid sequence for the polypeptide.

Figures 6A-6C provide the nucleic acid sequence for pV1JnsA (SEQ. ID. NO. 7).

Figures 7A-7N provide the nucleic acid sequence for the Ad6 genome (SEQ. ID. NO. 8).

15

20

25

30

35

Figures 8A-8K provide the nucleic acid sequence for the Ad5 genome (SEQ. ID. NO. 9).

Figure 9 illustrates different regions of the Ad6 genome. The linear (35759 bp) ds DNA genome is indicated by two parallel lines and is divided into 100 map units. Transcription units are shown relative to their position and orientation in the genome. Early genes (E1A, E1B, E2A/B, E3 and E4 are indicated by gray arrows. Late genes (L1 to L5), indicated by black arrows, are produced by alternative splicing of a transcript produced from the major late promoter (MLP) and all contain the tripartite leader (1, 2, 3) at their 5' ends. The E1 region is located from approximately 1.0 to 11.5 map units, the E2 region from 75.0 to 11.5 map units, E3 from 76.1 to 86.7 map units, and E4 from 99.5 to 91.2 map units. The major late transcription unit is located between 16.0 and 91.2 map units.

Figure 10 illustrates homologous recombination to recover pAdE1-E3-containing Ad6 and Ad5 regions.

Figure 11 illustrates homologous recombinant to recover a pAdE1-E3+ containing Ad6 regions.

Figure 12 illustrates a western blot on whole-cell extracts from 293 cells transfected with plasmid DNA expressing different HCV NS cassettes. Mature NS3 and NS5A products were detected with specific antibodies. "pV1Jns-NS" refers to a pV1JnsA plasmid where a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide is encoded by SEQ. ID. NO. 5, and SEQ. ID. NO. 5 is inserted between bases 1881 and 1912 of SEQ. ID. NO. 7. "pV1Jns-NSmut" refers to a pV1JnsA plasmid where SEQ. ID. NO. 2 is inserted between bases 1882 and 1925 of SEQ. ID. NO. 7. "pV1Jns-NSOPTmut" refers to a pV1JnsA plasmid where SEQ. ID. NO. 3 is inserted between bases 1881 and 1905 of SEQ. ID. NO. 7.

Figures 13A and 13B illustrate T cell responses by IFNγ ELIspot induced in C57black6 mice (A) and BalbC mice (B) by two injections of 25μg and 50μg, respectively, of plasmid DNA encoding the different HCV NS cassettes with Gene Electro-Transfer (GET).

Figure 14 illustrates protein expression from different adenovectors upon infection of HeLa cells. MRKAd5-NSmut is an adenovector based on an Ad5 sequence (SEQ. ID. NO. 9), where the Ad5 genome has an E1 deletion of base pairs 451 to 3510, an E3 deletion of base pairs 28134 to 30817, and has the NS3-NS4A-NS4B-NS5A-NS5B expression cassette as provided in base pairs 451 to 7468 of SEQ. ID. NO. 4 inserted between positions 450 and 3511. Ad5-NS is an adenovector based on an Ad5 backbone with an E1 deletion of base pairs 342 to 3523, and E3 deletion of base pairs 28134 to 30817 and containing an expression cassette encoding a NS3-NS4A-NS4B-NS5A-NS5B from SEQ. ID. NO. 5. "MRKAd6-NSOPTmut" refers to an adenovector having a modified SEQ. ID. NO. 4 sequence, wherein base pairs 1258 to 7222 of SEQ. ID. NO. 4 is replaced with SEQ. ID. NO. 3.

10

25

30

Figure 15 illustrates T cell responses by IFNγ ELIspot induced in C57black6 mice by two injections of 10⁹ vp of adenovectors containing different HCV non-structural gene cassettes.

Figures 16A-16D illustrate T cell responses by IFN γ ELIspot induced in Rhesus monkeys by one or two injections of 10^{10} vp (A) or 10^{11} vp (B) of adenovectors containing different HCV non-structural gene cassettes.

Figures 17A and 17B illustrates CD8+ T cell responses by IFNγ ICS induced in Rhesus monkeys by two injections of 10¹⁰ vp (A) or 10¹¹ vp (B) of adenovectors encoding the different HCV non-structural gene cassettes.

Figures 18A-18F illustrate T cell responses by bulk CTL assay induced in Rhesus monkeys by two injections of 10¹¹ vp of Ad5-NS (A), MRKAd5-NSmut (B), or MRKAd6-NSmut (C).

Figure 19 illustrates the plasmid pE2.

Figures 20A-D illustrates the partial codon optimized sequence NSsuboptmut (SEQ. ID. NO. 10). Coding sequence for the Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide is from base 7 to 5961.

DETAILED DESCRIPTION OF THE INVENTION

10

15

25

30

The present invention features Ad6 vectors and nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide that contains an inactive NS5B region. Providing an inactive NS5B region supplies NS5B antigens while reducing the possibility of adverse side effects due to an active viral RNA polymerase. Uses of the featured nucleic acid include use as a vaccine component to introduce into a cell an HCV polypeptide that provides a broad range of antigens for generating a CMI response against HCV, and as an intermediate for producing such a vaccine component.

The adaptive cellular immune response can function to recognize viral antigens in HCV infected cells throughout the body due to the ubiquitous distribution of major histocompatibility complex (MHC) class I and II expression, to induce immunological memory, and to maintain immunological memory. These functions are attributed to antigen-specific CD4+ T helper (Th) and CD8+ cytotoxic T cells (CTL).

Upon activation via their specific T cell receptors, HCV specific Th cells fulfill a variety of immunoregulatory functions, most of them mediated by Th1 and Th2 cytokines. HCV specific Th cells assist in the activation and differentiation of B cells and induction and stimulation of virus-specific cytotoxic T cells. Together with CTL, Th cells may also secrete IFN-γ and TNF-α that inhibit replication and gene expression of several viruses. Additionally, Th cells and CTL, the main effector cells, can induce apoptosis and lysis of virus infected cells.

HCV specific CTL are generated from antigens processed by professional antigen presenting cells (pAPCs). Antigens can be either synthesized within or introduced into pAPCs. Antigen synthesis in a pAPC can be brought about by introducing into the cell an expression cassette encoding the antigen.

A preferred route of nucleic acid vaccine administration is an intramuscular route. Intramuscular administration appears to result in the introduction and expression of nucleic acid into somatic cells and pAPCs. HCV antigens produced in the somatic cells can be transferred to pAPCs for presentation in the context of MHC class I molecules. (Donnelly et al., Annu. Rev. Immunol. 15:617-648, 1997.)

pAPCs process longer length antigens into smaller peptide antigens in the proteasome complex. The antigen is translocated into the endoplasmic reticulum/Golgi complex secretory pathway for association with MHC class I

proteins. CD8+ T lymphocytes recognize antigen associated with class I MHC via the T cell receptor (TCR) and the CD8 cell surface protein.

Using a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide as a vaccine component allows for production of a broad range of antigens capable of generating CMI responses from a single vector. The polypeptide should be able to process itself sufficiently to produce at least a region corresponding to NS5B. Preferred nucleic acids encode an amino acid sequence substantially similar to SEQ. ID. NO. 1 that has sufficient protease activity to process itself to produce individual HCV polypeptides substantially similar to the NS3, NS4A, NS4B, NS5A, and NS5B regions present in SEQ. ID. NO. 1.

5

10

20

30

35

A polypeptide substantially similar to SEQ. ID. NO. 1 with sufficient protease activity to process itself in a cell provides the cell with T cell epitopes that are present in several different HCV strains. Protease activity is provided by NS3 and NS3/NS4A proteins digesting the Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide at the appropriate cleavage sites to release polypeptides corresponding to NS3, NS4A, NS4B, NS5A, and NS5B. Self- processing of the Met-NS3-NS4A-NS4B-NS5A-NS5B generates polypeptides that approximate naturally occurring HCV polypeptides.

Based on the guidance provided herein a sufficiently strong immune response can be generated to achieve beneficial effects in a patient. The provided guidance includes information concerning HCV sequence selection, vector selection, vector production, combination treatment, and administration.

I. HCV SEQUENCES

A variety of different nucleic acid sequences can be used as a vaccine component to supply a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide to a cell or as an intermediate to produce vaccine components. The starting point for obtaining suitable nucleic acid sequences are preferably naturally occurring NS3-NS4A-NS4B-NS5A-NS5B polypeptide sequences modified to produce an inactive NS5B.

The use of a HCV nucleic acid sequence providing HCV non-structural antigens to generate a CMI response is mentioned by Cho et al., Vaccine 17:1136-1144, 1999, Paliard et al., International Publication Number WO 01/30812 (not admitted to be prior art to the claimed invention), and Coit et al., International Publication Number WO 01/38360 (not admitted to be prior art to the claimed invention). Such references fail to describe, for example, a polypeptide that processes

itself to produce an inactive NS5B, and the particular combinations of HCV sequences and delivery vehicles employed herein.

Modifications to a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide sequence can be produced by altering the encoding nucleic acid. Alterations can be performed to create deletions, insertions and substitutions.

5.

10

20

25

30

35

Small modifications can be made in NS5B to produce an inactive polymerase by targeting motifs essentially for replication. Examples of motifs critical for NS5B activity and modifications that can be made to produce an inactive NS5B are described by Lohmann et al., Journal of Virology 71:8416-8426, 1997, and Kolykhalov et al., Journal of Virology 74:2046-2051, 2000.

Additional factors to take into account when producing modifications to a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide include maintaining the ability to self-process and maintaining T cell antigens. The ability of the HCV polypeptide to process itself is determined to a large extent by a functional NS3 protease. Modifications that maintain NS3 activity protease activity can be obtained by taking into account the NS3 protein, NS4A which serves as a cofactor for NS3, and NS3 protease recognition sites present within the NS3-NS4A-NS4B-NS5A-NS5B polypeptide.

Different modifications can be made to naturally occurring NS3-NS4A-NS4B-NS5A-NS5B polypeptide sequences to produce polypeptides able to elicit a broad range of T cell responses. Factors influencing the ability of a polypeptide to elicit a broad T cell response include the preservation or introduction of HCV specific T cell antigen regions and prevalence of different T cell antigen regions in different HCV isolates.

Numerous examples of naturally occurring HCV isolates are well known in the art. HCV isolates can be classified into the following six major genotypes comprising one or more subtypes: HCV-1/(1a,1b,1c), HCV-2/(2a,2b,2c), HCV-3/(3a,3b,10a), HCV-4/(4a), HCV-5/(5a) and HCV-6/(6a,6b,7b,8b,9a,11a). (Simmonds, J. Gen. Virol., 693-712, 2001.) Examples of particular HCV sequences such as HCV-BK, HCV-J, HCV-N, HCV-H, have been deposited in GenBank and described in various publications. (See, for example, Chamberlain et al.; J. Gen. Virol., 1341-1347, 1997.)

HCV T cell antigens can be identified by, for example, empirical experimentation. One way of identifying T cell antigens involves generating a series of overlapping short peptides from a longer length polypeptide and then screening the

T-cell populations from infected patients for positive clones. Positive clones are activated/primed by a particular peptide. Techniques such as IFNY-ELISPOT, IFNY-Intracellular staining and bulk CTL assays can be used to measure peptide activity. Peptides thus identified can be considered to represent T-cell epitopes of the respective pathogen.

HCV T cell antigen regions from different HCV isolates can be introduced into a single sequence by, for example, producing a hybrid NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing regions from two or more naturally occurring sequences. Such a hybrid can contain additional modifications, which preferably do not reduce the ability of the polypeptide to produce an HCV CMI response.

The ability of a modified Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide to process itself and produce a CMI response can be determined using techniques described herein or well known in the art. Such techniques include the use of IFNγ-ELISPOT, IFNγ-Intracellular staining and bulk CTL assays to measure a HCV specific CMI response.

A. Met-NS3-NS4A-NS4B-NS5A-NS5B Sequences

25

30

SEQ. ID. NO. 1 provides a preferred Met-NS3-NS4A-NS4B-NS5A-NS5B sequence. SEQ. ID. NO. 1 contains a large number of HCV specific T cell antigens that are present in several different HCV isolates. SEQ. ID. NO. 1 is similar to the NS3-NS4A-NS4B-NS5A-NS5B portion of the HCV BK strain nucleotide sequence (GenBank accession number M58335).

In SEQ. ID. NO. 1 anchor positions important for recognition by MHC class I molecules are conserved or represent conservative substitutions for 18 out of 20 known T-cell epitopes in the NS3-NS4A-NS4B-NS5A-NS5B portion of HCV polyproteins. With respect to the remaining two known T-cell epitopes, one has a non-conservative anchor substitution in SEQ. ID. NO. 1 that may still be recognized by a different HLA supertype and one epitope has one anchor residue not conserved. HCV T-cell epitopes are described in Chisari et al., Curr. Top. Microbiol Immunol., 242:299-325, 2000, and Lechner et al. J. Exp. Med. 9:1499-1512, 2000.

Differences between the HCV-BK NS3-NS4A-NS4B-NS5A-NS5B nucleotide sequence and SEQ. ID. NO. 1 include the introduction of a methionine at the 5' end and the presence of modified NS5B active site residues in SEQ. ID. NO. 1.

The modification replaces GlyAspAsp with AlaAlaGly (residues 1711-1713) to inactivate NS5B.

The encoded HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide preferably has an amino acid sequence substantially similar to SEQ. ID. NO. 1. In different embodiments, the encoded HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide has an amino acid identify to SEQ. ID. NO. 1 of at least 65%, at least 75%, at least 85%, at least 95%, at least 99% or 100%; or differs from SEQ. ID. NO. 1 by 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, or 1-20 amino acids.

Amino acid differences between a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide and SEQ. ID. NO. 1 are calculated by determining the minimum number of amino acid modifications in which the two sequences differ. Amino acid modifications can be deletions, additions, substitutions or any combination thereof.

10

15

30

35

Amino acid sequence identity is determined by methods well known in the art that compare the amino acid sequence of one polypeptide to the amino acid sequence of a second polypeptide and generate a sequence alignment. Amino acid identity is calculated from the alignment by counting the number of aligned residue pairs that have identical amino acids.

Methods for determining sequence identity include those described by

Schuler, G.D. in Bioinformatics: A Practical Guide to the Analysis of Genes and
Proteins, Baxevanis, A.D. and Ouelette, B.F.F., eds., John Wiley & Sons, Inc, 2001;
Yona, et al., in Bioinformatics: Sequence, structure and databanks, Higgins, D. and
Taylor, W. eds, Oxford University Press, 2000; and Bioinformatics: Sequence and
Genome Analysis, Mount, D.W., ed., Cold Spring Harbor Laboratory Press, 2001).

Methods to determine amino acid sequence identity are codified in publicly available computer programs such as GAP (Wisconsin Package Version 10.2, Genetics
Computer Group (GCG), Madison, Wisc.), BLAST (Altschul et al., J. Mol. Biol.
215(3):403-10, 1990), and FASTA (Pearson, Methods in Enzymology 183:63-98, 1990, R.F. Doolittle, ed.).

In an embodiment of the present invention sequence identity between two polypeptides is determined using the GAP program (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.). GAP uses the alignment method of Needleman and Wunsch. (Needleman, et al., J. Mol. Biol. 48:443-453, 1970.) GAP considers all possible alignments and gap positions between two sequences and creates a global alignment that maximizes the number of matched

residues and minimizes the number and size of gaps. A scoring matrix is used to assign values for symbol matches. In addition, a gap creation penalty and a gap extension penalty are required to limit the insertion of gaps into the alignment. Default program parameters for polypeptide comparisons using GAP are the BLOSUM62 (Henikoff et al., Proc. Natl. Acad. Sci. USA, 89:10915-10919, 1992) amino acid scoring matrix (MATrix=blosum62.cmp), a gap creation parameter (GAPweight=8) and a gap extension pararameter (LENgthweight=2).

More preferred HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptides in addition to being substantially similar to SEQ. ID. NO. 1 across their entire length produce individual NS3, NS4A, NS4B, NS5A and NS5B regions that are substantially similar to the corresponding regions present in SEQ. ID. NO. 1. The corresponding regions in SEQ. ID. NO. 1 are provided as follows: Met-NS3 amino acids 1-632; NS4A amino acids 633-686; NS4B amino acids 687-947; NS5A amino acids 948-1394; and NS5B amino acids 1395-1985.

In different embodiments a NS3, NS4A, NS4B, NS5A and/or NS5B region has an amino acid identity to the corresponding region in SEQ. ID. NO. 1 of at least 65%, at least 75%, at least 85%, at least 95%, at least 99%, or 100%; or an amino acid difference of 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, or 1-20 amino acids.

15

20

25

30

35

Amino acid modifications to SEQ. ID. NO. 1 preferably maintain all or most of the T-cell antigen regions. Differences in naturally occurring amino acids are due to different amino acid side chains (R groups). An R group affects different properties of the amino acid such as physical size, charge, and hydrophobicity. Amino acids can be divided into different groups as follows: neutral and hydrophobic (alanine, valine, leucine, isoleucine, proline, tyrptophan, phenylalanine, and methionine); neutral and polar (glycine, serine, threonine, tryosine, cysteine, asparagine, and glutamine); basic (lysine, arginine, and histidine); and acidic (aspartic acid and glutamic acid).

Generally, in substituting different amino acids it is preferable to exchange amino acids having similar properties. Substituting different amino acids within a particular group, such as substituting valine for leucine, arginine for lysine, and asparagine for glutamine are good candidates for not causing a change in polypeptide tertiary structure.

Starting with a particular amino acid sequence and the known degeneracy of the genetic code, a large number of different encoding nucleic acid

sequences can be obtained. The degeneracy of the genetic code arises because almost all amino acids are encoded by different combinations of nucleotide triplets or "codons". The translation of a particular codon into a particular amino acid is well known in the art (see, e.g., Lewin GENES IV, p. 119, Oxford University Press, 1990).

5 Amino acids are encoded by codons as follows:

A=Ala=Alanine: codons GCA, GCC, GCG, GCU

C=Cys=Cysteine: codons UGC, UGU

D=Asp=Aspartic acid: codons GAC, GAU

E=Glu=Glutamic acid: codons GAA, GAG

10 F=Phe=Phenylalanine: codons UUC, UUU

G=Gly=Glycine: codons GGA, GGC, GGG, GGU

H=His=Histidine: codons CAC, CAU

I=Ile=Isoleucine: codons AUA, AUC, AUU

K=Lys=Lysine: codons AAA, AAG

15 L=Leu=Leucine: codons UUA, UUG, CUA, CUC, CUG, CUU

M=Met=Methionine: codon AUG

N=Asn=Asparagine: codons AAC, AAU

P=Pro=Proline: codons CCA, CCC, CCG, CCU

O=Gln=Glutamine: codons CAA, CAG

20 R=Arg=Arginine: codons AGA, AGG, CGA, CGC, CGG, CGU

S=Ser=Serine: codons AGC, AGU, UCA, UCC, UCG, UCU

T=Thr=Threonine: codons ACA, ACC, ACG, ACU

V=Val=Valine: codons GUA, GUC, GUG, GUU

W=Trp=Tryptophan: codon UGG

25 Y=Tyr=Tyrosine: codons UAC, UAU.

Nucleic acid sequences can be optimized in an effort to enhance expression in a host. Factors to be considered include C:G content, preferred codons, and the avoidance of inhibitory secondary structure. These factors can be combined in different ways in an attempt to obtain nucleic acid sequences having enhanced expression in a particular host. (See, for example, Donnelly et al., International

Publication Number WO 97/47358.)

The ability of a particular sequence to have enhanced expression in a particular host involves some empirical experimentation. Such experimentation involves measuring expression of a prospective nucleic acid sequence and, if needed altering the sequence.

B. Encoding Nucleotide Sequences

15

20

25

30

35

SEQ. ID. NOs. 2 and 3 provide two examples of nucleotide sequences encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B sequence. The coding sequence of SEQ. ID. NO. 2 is similar (99.4% nucleotide sequence identity) to the NS3-NS4A-NS4B-NS5A-NS5B region of the naturally occurring HCV-BK sequence (GenBank accession number M58335). SEQ. ID. NO. 3 is a codon-optimized version of SEQ. ID. NO. 2. SEQ. ID. NOs. 2 and 3 have a nucleotide sequence identity of 78.3%.

Differences between the HCV-BK NS3-NS4A-NS4B-NS5A-NS5B nucleotide (GenBank accession number M58335) and SEQ. ID. NO. 2, include SEQ. ID. NO. 2 having a ribosome binding site, an ATG methionine codon, a region coding for a modified NS5B catalytic domain, a TAAA stop signal and an additional 30 nucleotide differences. The modified catalytic domain codes for a AlaAlaGly (residues 1711-1713) instead of GlyAspAsp to inactivate NS5B.

A nucleotide sequence encoding a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide is preferably substantially similar to the SEQ. ID. NO. 2 coding region. In different embodiments, the nucleotide sequence encoding a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide has a nucleotide sequence identify to the SEQ. ID. NO. 2 coding region of at least 65%, at least 75%, at least 85%, at least 95%, at least 99%, or 100%; or differs from SEQ. ID. NO. 2 by 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-25, 1-30, 1-35, 1-40, 1-45, or 1-50 nucleotides.

Nucleotide differences between a sequence coding Met-NS3-NS4A-NS4B-NS5A-NS5B and the SEQ. ID. NO. 2 coding region are calculated by determining the minimum number of nucleotide modifications in which the two sequences differ. Nucleotide modifications can be deletions, additions, substitutions or any combination thereof.

Nucleotide sequence identity is determined by methods well known in the art that compare the nucleotide sequence of one sequence to the nucleotide sequence of a second sequence and generate a sequence alignment. Sequence identity is determined from the alignment by counting the number of aligned positions having identical nucleotides.

Methods for determining nucleotide sequence identity between two polynucleotides include those described by Schuler, in *Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins*, Baxevanis, A.D. and Ouelette, B.F.F.,

eds., John Wiley & Sons, Inc, 2001; Yona et al., in Bioinformatics: Sequence, structure and databanks, Higgins, D. and Taylor, W. eds, Oxford University Press, 2000; and Bioinformatics: Sequence and Genome Analysis, Mount, D.W., ed., Cold Spring Harbor Laboratory Press, 2001). Methods to determine nucleotide sequence identity are codified in publicly available computer programs such as GAP (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.), BLAST (Altschul et al., J. Mol. Biol. 215(3):403-10, 1990), and FASTA (Pearson, W.R., Methods in Enzymology 183:63-98, 1990, R.F. Doolittle, ed.).

In an embodiment of the present ivnention, sequence identity between two polynucleotides is determined by application of GAP (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.). GAP uses the alignment method of Needleman and Wunsch. (Needleman et al., J. Mol. Biol. 48:443-453, 1970.) GAP considers all possible alignments and gap positions between two sequences and creates a global alignment that maximizes the number of matched residues and minimizes the number and size of gaps. A scoring matrix is used to assign values for symbol matches. In addition, a gap creation penalty and a gap extension penalty are required to limit the insertion of gaps into the alignment. Default program parameters for polynucleotide comparisons using GAP are the nwsgapdna.cmp scoring matrix (MATrix=nwsgapdna.cmp), a gap creation parameter (GAPweight=50) and a gap extension pararameter (LENgthweight=3).

More preferred HCV Met-NS3-NS4A-NS4B-NS5A-NS5B nucleotide sequences in addition to being substantially similar across its entire length, produce individual NS3, NS4A, NS4B, NS5A and NS5B regions that are substantially similar to the corresponding regions present in SEQ. ID. NO. 2. The corresponding coding regions in SEQ. ID. NO. 2 are provided as follows: Met-NS3, nucleotides 7-1902, NS4A nucleotides 1903-2064; NS4B nucleotides 2065-2847; NS5A nucleotides 2848-4188: NS5B nucleotides 4189-5661.

In different embodiments a NS3, NS4A, NS4B, NS5A and/or NS5B encoding region has a nucleotide sequence identity to the corresponding region in SEQ. ID. NO. 2 of at least 65%, at least 75%, at least 85%, at least 95%, at least 99% or 100%; or a nucleotide difference to SEQ. ID. NO. 2 of 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-25, 1-30, 1-35, 1-40, 1-45, or 1-50 nucleotides.

30′ ·

25

C. Gene Expression Cassettes

10

15

20

25

30

35

A gene expression cassette contains elements needed for polypeptide expression. Reference to "polypeptide" does not provide a size limitation and includes protein. Regulatory elements present in a gene expression cassette generally include: (a) a promoter transcriptionally coupled to a nucleotide sequence encoding the polypeptide, (b) a 5' ribosome binding site functionally coupled to the nucleotide sequence, (c) a terminator joined to the 3' end of the nucleotide sequence, and (d) a 3' polyadenylation signal functionally coupled to the nucleotide sequence. Additional regulatory elements useful for enhancing or regulating gene expression or polypeptide processing may also be present.

Promoters are genetic elements that are recognized by an RNA polymerase and mediate transcription of downstream regions. Preferred promoters are strong promoters that provide for increased levels of transcription. Examples of strong promoters are the immediate early human cytomegalovirus promoter (CMV), and CMV with intron A. (Chapman et al, Nucl. Acids Res. 19:3979-3986, 1991.) Additional examples of promoters include naturally occurring promoters such as the EF1 alpha promoter, the murine CMV promoter, Rous sarcoma virus promoter, and SV40 early/late promoters and the β-actin promoter; and artificial promoters such as a synthetic muscle specific promoter and a chimeric muscle-specific/CMV promoter (Li et al., Nat. Biotechnol. 17:241-245, 1999, Hagstrom et al., Blood 95:2536-2542, 2000).

The ribosome binding site is located at or near the initiation codon. Examples of preferred ribosome binding sites include CCACCAUGG, CCGCCAUGG, and ACCAUGG, where AUG is the initiation codon. (Kozak, Cell 44:283-292, 1986). Another example of a ribosome binding site is GCCACCAUGG (SEQ. ID. NO. 12).

The polyadenylation signal is responsible for cleaving the transcribed RNA and the addition of a poly (A) tail to the RNA. The polyadenylation signal in higher eukaryotes contains an AAUAAA sequence about 11-30 nucleotides from the polyadenylation addition site. The AAUAAA sequence is involved in signaling RNA cleavage. (Lewin, Genes IV, Oxford University Press, NY, 1990.) The poly (A) tail is important for the mRNA processing.

Polyadenylation signals that can be used as part of a gene expression cassette include the minimal rabbit β -globin polyadenylation signal and the bovine growth hormone polyadenylation (BGH). (Xu et al., Gene 272:149-156, 2001, Post et

al., U.S. Patent U. S. 5,122,458.) Additional examples include the Synthetic Polyadenylation Signal (SPA) and SV40 polyadenylation signal. The SPA sequence is as follows: AAUAAAAGAUCUUUAUUUUCAUUAGAUCUGUGUGUUUUUUUGUGUG (SEQ. ID. NO. 13).

Examples of additional regulatory elements useful for enhancing or regulating gene expression or polypeptide processing that may be present include an enhancer, a leader sequence and an operator. An enhancer region increases transcription. Examples of enhancer regions include the CMV enhancer and the SV40 enhancer. (Hitt et al., Methods in Molecular Genetics 7:13-30, 1995, Xu, et al., Gene 272:149-156, 2001.) An enhancer region can be associated with a promoter.

A leader sequence is an amino acid region on a polypeptide that directs the polypeptide into the proteasome. Nucleic acid encoding the leader sequence is 5' of a structural gene and is transcribed along the structural gene. An example of a leader sequences is tPA.

An operator sequence can be used to regulate gene expression. For example, the Tet operator sequence can be used to repress gene expression.

II. THERAPEUTIC VECTORS

Nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide can be introduced into a patient using vectors suitable for therapeutic; administration. Suitable vectors can deliver nucleic acid into a target cell without causing an unacceptable side effect.

Cellular expression is achieved using a gene expression cassette encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide. The gene expression cassette contains regulatory elements for producing and processing a sufficient amount of nucleic acid inside a target cell to achieve a beneficial effect.

Examples of vectors that can be used for therapeutic applications include first and second generation adenovectors, helper dependent adenovectors, adeno-associated viral vectors, retroviral vectors, alpha virus vectors, Venezuelan Equine Encephalitis virus vector, and plasmid vectors. (Hitt, et al., Advances in Pharmacology 40:137-206, 1997, Johnston et al., U.S. Patent No. 6,156,588, and Johnston et al., International Publication Number WO 95/32733.) Preferred vectors for introducing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide into a subject are first generation adenoviral vectors and plasmid DNA vectors.

35

30

5

15

A. First Generation Adenovectors

10

15

20

25

30

35

First generation adenovector for expressing a gene expression cassette contain the expression cassette in an E1 and optionally E3 deleted recombinant adenovirus genome. The deletion in the E1 region is sufficiently large to remove elements needed for adenoviral replication.

First generation adenovectors for expressing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide contain a E1 and E3 deleted recombinant adenovirus genome. The deletion in the E1 region is sufficiently large to remove elements needed for adenoviral replication. The combinations of deletions of the E1 and E3 regions are sufficiently large to accommodate a gene expression cassette encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide.

The adenovirus has a double-stranded linear genome with inverted terminal repeats at both ends. During viral replication, the genome is packaged inside a viral capsid to form a virion. The virus enters its target cell through viral attachment followed by internalization. (Hitt et al., Advances in Pharmacology 40:137-206, 1997.)

Adenovectors can be based on different adenovirus serotypes such as those found in humans or animals. Examples of animal adenoviruses include bovine, porcine, chimp, murine, canine, and avian (CELO). Preferred adenovectors are based on human serotypes, more preferably Group B, C, or D serotypes. Examples of human adenovirus Group B, C, D, or E serotypes include types 2 ("Ad2"), 4 ("Ad4"), 5 ("Ad5"), 6 ("Ad6"), 24 ("Ad24"), 26 ("Ad26"), 34 ("Ad34") and 35 ("Ad35"). Adenovectors can contain regions from a single adenovirus or from two or more adenovirus.

In different embodiments adenovectors are based on Ad5, Ad6, or a combination thereof. Ad5 is described by Chroboczek, et al., J. Virology 186:280-285, 1992. Ad6 is described in Figures 7A-7N. An Ad6 based vector containing Ad5 regions is described in the Example section provided below.

Adenovectors do not need to have their E1 and E3 regions completely removed. Rather, a sufficient amount the E1 region is removed to render the vector replication incompetent in the absence of the E1 proteins being supplied in *trans*; and the E1 deletion or the combination of the E1 and E3 deletions are sufficiently large enough to accommodate a gene expression cassette.

E1 deletions can be obtained starting at about base pair 342 going up to about base pair 3523 of Ad5, or a corresponding region from other adenoviruses.

Preferably, the deleted region involves removing a region from about base pair 450 to about base pair 3511 of Ad5, or a corresponding region from other adenoviruses.

Larger E1 region deletions starting at about base pair 341 removes elements that facilitate virus packaging.

E3 deletions can be obtained starting at about base pair 27865 to about base pair 30995 of Ad5, or the corresponding region of other adenovectors.

Preferably the deletion region involves removing a region from about base pair 28134 up to about base pair 30817 of Ad5, or the corresponding region of other adenovectors.

The combination of deletions to the E1 region and optionally the E3 region should be sufficiently large so that the overall size of the recombinant genome containing the gene expression cassette does not exceed about 105% of the wild type adenovirus genome. For example, as recombinant adenovirus Ad5 genomes increase size above about 105% the genome becomes unstable. (Bett et al., Journal of Virology 67:5911-5921, 1993.)

·10

15

25

35

Preferably, the size of the recombinant adenovirus genome containing the gene expression cassette is about 85% to about 105% the size of the wild type adenovirus genome. In different embodiments, the size of the recombinant adenovirus genome containing the expression cassette is about 100% to about 105.2%, or about 100%, the size of the wild type genome.

Approximately 7,500 kb can be inserted into an adenovirus genome with a E1 and E3 deletion. Without any deletion, the Ad5 genome is 35,935 base pairs and the Ad6 genome is 35,759 base pairs.

Replication of first generation adenovectors can be performed by supplying the E1 gene products in trans. The E1 gene product can be supplied in trans, for example, by using cell lines that have been transformed with the adenovirus E1 region. Examples of cells and cells lines transformed with the adenovirus E1 region are HEK 293 cells, 911 cells, PERC.6TM cells, and transfected primary human aminocytes cells. (Graham et al., Journal of Virology 36:59-72, 1977, Schiedner et al., Human Gene Therapy 11:2105-2116, 2000, Fallaux et al., Human Gene Therapy 9:1909-1917, 1998, Bout et al., U.S. Patent No. 6,033,908.)

A Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette should be inserted into a recombinant adenovirus genome in the region corresponding to the deleted E1 region or the deleted E3 region. The expression cassette can have a parallel or anti-parallel orientation. In a parallel orientation the transcription direction

of the inserted gene is the same direction as the deleted E1 or E3 gene. In an antiparallel orientation transcription the opposite strand serves as a template and the transcription direction is in the opposite direction.

In an embodiment of the present invention the adenovector has a gene expression cassette inserted in the E1 deleted region. The vector contains:

- a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
- b) a gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to the first region;
- c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
- d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;

15

20

25

30

- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the third region; and
- f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6 joined to the fourth region.

In another embodiment of the present invention the adenovector has an expression cassette inserted in the E3 deleted region. The vector contains:

- a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
- b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the first region;
- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
 - d) a gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to the third region;

e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the gene expression cassette; and

f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region.

In preferred different embodiments concerning adenovirus regions that are present: (1) the first, second, third, fourth, and fifth region corresponds to Ad5; (2) the first, second, third, fourth, and fifth region corresponds to Ad6; and (3) the first region corresponds to Ad5, the second region corresponds to Ad5, the third region corresponds to Ad6, the fourth region corresponds to Ad6, and the fifth region corresponds to Ad5.

B. DNA Plasmid Vectors

5

10

20

25

30

DNA vaccine plasmid vectors contain a gene expression cassette along with elements facilitating replication and preferably vector selection. Preferred elements provide for replication in non-mammalian cells and a selectable marker. The vectors should not contain elements providing for replication in human cells or for integration into human nucleic acid.

The selectable marker facilitates selection of nucleic acids containing the marker. Preferred selectable markers are those that confer antibiotic resistance. Examples of antibiotic selection genes include nucleic acid encoding resistance to ampicillin, neomycin, and kanamycin.

Suitable DNA vaccine vectors can be produced starting with a plasmid containing a bacterial origin of replication and a selectable marker. Examples of bacterial origins of replication providing for higher yields include the ColE1 plasmid-derived bacterial origin of replication. (Donnelly et al., Annu. Rev. Immunol. 15:617-648, 1997.)

The presence of the bacterial origin of replication and selectable marker allows for the production of the DNA vector in a bacterial strain such as *E. coli*. The selectable marker is used to eliminate bacteria not containing the DNA vector.

10

15

20

25

30

III. AD6 RECOMBINANT NUCLEIC ACID

Ad6 recombinant nucleic acid comprises an Ad6 region substantially similar to an Ad6 region found in SEQ. ID. NO. 8, and a region not present in Ad6 nucleic acid. Recombinant nucleic acid comprising Ad6 regions have different uses such as in producing different Ad6 regions, as intermediates in the production of Ad6 based vectors, and as a vector for delivering a recombinant gene.

As depicted in Figure 9, the genomic organization of Ad6 is very similar to the genomic organization of Ad5. The homology between Ad5 and Ad6 is approximately 98%.

In different embodiments, the Ad6 recombinant nucleic acid comprises a nucleotide region substantially similar to E1A, E1B, E2B, E2A, E3, E4, L1, L2, L3, or L4, or any combination thereof. A substantially similar nucleic acid region to an Ad6 region has a nucleotide sequence identity of at least 65%, at least 75%, at least 85%, at least 95%, at least 99% or 100%; or a nucleotide difference of 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-25, 1-30, 1-35, 1-40, 1-45, or 1-50 nucleotides. Techniques and embodiments for determining substantially similar nucleic acid sequences are described in Section I.B. supra.

Preferably, the recombinant Ad6 nucleic acid contains an expression cassette coding for a polypeptide not found in Ad6. Examples of expression cassettes include those coding for HCV regions and those coding for other types of polypeptides.

Different types of adenoviral vectors can be produced incorporating different amounts of Ad6, such as first and second generation adenovectors. As noted in Section II.A. *supra*. first generation adenovectors are defective in E1 and can replicate when E1 is supplied *in trans*.

Second generation adenovectors contain less adenoviral genome than first generation vectors and can be used in conjugation with complementing cell lines and/or helper vectors supplying adenoviral proteins. Second generation adenovectors are described in different references such as Russell, *Journal of General Virology* 81:2573-2604, 2000; Hitt et al., 1997, Human Ad vectors for Gene Transfer, Advances in Pharmacology, Vol 40 Academic Press.

In an embodiment of the present invention, the Ad6 recombinant nucleic acid is an adenovirus vector defective in E1 that is able to replicate when E1 is

supplied in trans. Expression cassettes can be inserted into a deleted E1 region and/or a deleted E3 region.

An example of an Ad6 based adenoviral vector with an expression cassette provided in a deleted E1 region comprises or consists of:

- a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
- b) a gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to the first region;
- a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
 - d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
 - e) an optionally present fourth region from about base pair 28134 to about base pair 30817 corresponding to Ad5, or from about base pair 28157 to about base pair 30788 corresponding to Ad6, joined to the third region;

15

20

25

30

- f) a fifth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, wherein the fifth region is joined to the fourth region if the fourth region is present, or the fifth is joined to the third region if the fourth region is not present; and
- g) a sixth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fifth region;

wherein at least one Ad6 region is present.

In different embodiments of the invention, all of the regions are from Ad6; all of the regions expect for the first and second are from Ad6; and 1, 2, 3, or 4 regions selected from the second, third, fourth, and fifth regions are from Ad6.

An example of an Ad6 based adenoviral vector with an expression cassette provided in a deleted E3 region comprises or consists of:

a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the first region;

- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
- d) a gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to the third region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the gene expression cassette; and
- f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region;

wherein at least one Ad6 region is present.

In different embodiment of the invention, all of the regions are from Ad6; all of the regions expect for the first and second are from Ad6; and 1, 2, 3, or 4 regions selected from the second, third, fourth and fifth regions are from Ad6.

.0

25

30

10

IV. VECTOR PRODUCTION

Vectors can be produced using recombinant nucleic acid techniques such as those involving the use of restriction enzymes, nucleic acid ligation, and homologous recombination. Recombinant nucleic acid techniques are well known in the art. (Ausubel, Current Protocols in Molecular Biology, John Wiley, 1987-1998, and Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989.)

Intermediate vectors are used to derive a therapeutic vector or to transfer an expression cassette or portion thereof from one vector to another vector. Examples of intermediate vectors include adenovirus genome plasmids and shuttle vectors.

Useful elements in an intermediate vector include an origin of replication, a selectable marker, homologous recombination regions, and convenient restriction sites. Convenient restriction sites can be used to facilitate cloning or release of a nucleic acid sequence.

Homologous recombination regions provide nucleic acid sequence regions that are homologous to a target region in another nucleic acid molecule. The homologous regions flank the nucleic acid sequence that is being inserted into the target region. In different embodiments homologous regions are preferably about 150 to 600 nucleotides in length, or about 100 to 500 nucleotides in length.

An embodiment of the present invention describes a shuttle vector containing a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette, a selectable marker, a bacterial origin of replication, a first adenovirus homology region and a second adenovirus homologous region that target the expression cassette to insert in or replace an E1 region. The first and second homology regions flank the expression cassette. The first homology region contains at least about 100 base pairs substantially homologous to at least the right end (3' end) of a wild-type adenovirus region from about base pairs 4-450. The second homology contains at least about 100 base pairs substantially homologous to at least the left end (5' end) of Ad5 from about base pairs 3511-5792, or the corresponding region from another adenovirus.

Reference to "substantially homologous" indicates a sufficient degree of homology to specifically recombine with a target region. In different embodiments substantially homologous refers to at least 85%, at least 95%, or 100% sequence identity. Sequence identity can be calculated as described in Section I.B. supra.

One method of producing adenovectors is through the creation of an adenovirus genome plasmid containing an expression cassette. The pre-Adenovirus plasmid contains all the adenovirus sequences needed for replication in the desired complimenting cell line. The pre-Adenovirus plasmid is then digested with a restriction enzyme to release the viral ITR's and transfected into the complementing cell line for virus rescue. The ITR's must be released from plasmid sequences to allow replication to occur. Adenovector rescue results in the production on an adenovector containing the expression cassette.

A. Adenovirus Genome Plasmids

10

15

20

25

30 -

35

Adenovirus genome plasmids contain an adenovector sequence inside a longer-length plasmid (which may be a cosmid). The longer-length plasmid may contain additional elements such as those facilitating growth and selection in eukaryotic or bacterial cells depending upon the procedures employed to produce and maintain the plasmid. Techniques for producing adenovirus genome plasmids include those involving the use of shuttle vectors and homologous recombination, and those

involving the insertion of a gene expression cassette into an adenovirus cosmid. (Hitt et al., Methods in Molecular Genetics 7:13-30, 1995, Danthinne et al., Gene Therapy 7:1707-1714, 2000.)

Adenovirus genome plasmids preferably have a gene expression cassette inserted into a E1 or E3 deleted region. In an embodiment of the present invention, the adenovirus genome plasmid contains a gene expression cassette inserted in the E1 deleted region, an origin of replication, a selectable marker, and the recombinant adenovirus region is made up of:

- a) a first adenovirus region from about base pair 1 to about base 450 corresponding to either Ad5 or Ad6;
- b) a gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to the first region;
- c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
- d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the third region;

20

25

30

- f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region, and
- g) an optionally present E3 region corresponding to all or part of the E3 region present in Ad5 or Ad6, which may be present for smaller inserts taking into account the overall size of the desired adenovector.

In another embodiment of the present invention the recombinant adenovirus genome plasmid has the gene expression cassette inserted in the E3 deleted region. The vector contains an origin of replication, a selectable marker, and the following:

a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;

- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
- d) the gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to the third region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the gene expression cassette; and

10

15

20

30

35

f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region.

In different embodiments concerning adenovirus regions that are present: (1) the first, second, third, fourth, and fifth region corresponds to Ad5; (2) the first, second, third, fourth, and fifth region corresponds to Ad6; and (3) the first region corresponds to Ad5, the second region corresponds to Ad5, the third region corresponds to Ad6, the fourth region corresponds to Ad6, and the fifth region corresponds to Ad5.

An embodiment of the present invention describes a method of making an adenovector involving a homologous recombination step to produce a adenovirus genome plasmid and an adenovirus rescue step. The homologous recombination step involves the use of a shuttle vector containing a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette flanked by adenovirus homology regions. The adenovirus homology regions target the expression cassette into either the E1 or E3 deleted region.

In an embodiment of the present invention concerning the production of an adenovirus genome plasmid, the gene expression cassette is inserted into a vector comprising: a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6; a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the second region; a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6,

joined to the second region; a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the third region; and a fifth adenovirus region from about 33967 to about 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region. The adenovirus genome plasmid should contain an origin of replication and a selectable marker, and may contain all or part of the Ad5 or Ad6 E3 region.

In different embodiments concerning adenovirus regions that are present: (1) the first, second, third, fourth, and fifth region corresponds to Ad5; (2) the first, second, third, fourth, and fifth region corresponds to Ad6; and (3) the first region corresponds to Ad5, the second region corresponds to Ad5, the third region corresponds to Ad6, the fourth region corresponds to Ad6, and the fifth region corresponds to Ad5.

5 B. Adenovector Rescue

5

10

20

30

35

An adenovector can be rescued from a recombinant adenovirus genome plasmid using techniques known in the art or described herein. Examples of techniques for adenovirus rescue well known in the art are provided by Hitt et al., Methods in Molecular Genetics 7:13-30, 1995, and Danthinne et al., Gene Therapy 7:1707-1714, 2000.

A preferred method of rescuing an adenovector described herein involves boosting adenoviral replication. Boosting adenoviral replication can be performed, for example, by supplying adenoviral functions such as E2 proteins (polymerase, pre-terminal protein and DNA binding protein) as well as E4 orf6 on a separate plasmid. Example 10 *infra*. illustrates the boosting of adenoviral replication to rescue an adenovector containing a codon optimized Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette.

V. PARTIAL-OPITIMIZED HCV ENCODING SEQUENCES

Partial optimization of HCV polyprotein encoding nucleic acid provides for a lesser amount of codons optimized for expression in a human than complete optimization. The overall objective is to provide the benefits of increased expression due to codon optimization, while facilitating the production of an adenovector containing HCV polyprotein encoding nucleic acid having optimized codons.

Complete optimization of an HCV polyprotein encoding sequence provides the most frequently observed human codon for each amino acid. Complete optimization can be performed using codon frequency tables well known in the art and using programs such as the BACKTRANSLATE program (Wisconsin Package version 10, Genetics Computer Group, GCG, Madison, Wisc.).

Partial optimization can be preformed on an entire HCV polyprotein encoding sequence that is present (e.g., NS3-NS5B), or one or more local regions that are present. In different embodiments the GC content for the entire HCV encoded polyprotein that is present is no greater than at least about 65%; and the GC content for one or more local regions is no greater than about 70%.

Local regions are regions present in HCV encoding nucleic acid, and can vary in size. For example, local regions can be about 60, about 70, about 80, about 90 or about 100 nucleotides in length.

Partial optimization can be achieved by initially constructing an HCV encoding polyprotein sequence to be partially optimized based on a naturally ocurring sequence. Alternatively, an optimized HCV encoding sequence can be used as basis of comparison to produce a partial optimized sequence.

15

25

30

35

VI. HCV COMBINATION TREATMENT

The HCV Met-NS3-NS4A-NS4B-NS5A-NS5B vaccine can be used by itself to treat a patient, can be used in conjunction with other HCV therapeutics, and can be used with agents targeting other types of diseases. Additional therapeutics include additional therapeutic agents to treat HCV and diseases having a high prevalence in HCV infected persons. Agents targeting other types of disease include vaccines directed against HIV and HBV.

Additional therapeutics for treating HCV include vaccines and non-vaccine agents. (Zein, Expert Opin. Investig. Drugs 10:1457-1469, 2001.) Examples of additional HCV vaccines include vaccines designed to elicit an immune response against an HCV core antigen and the HCV E1, E2 or p7 region. Vaccine components can be naturally occurring HCV polypeptides, HCV mimotope polypeptides or nucleic acid encoding such polypeptides.

HCV mimotope polypeptides contain HCV epitopes, but have a different sequence than a naturally occurring HCV antigen. A HCV mimotope can be fused to a naturally occurring HCV antigen. References describing techniques for producing mimotopes in general and describing different HCV mimotopes are

provided in Felici et al. U.S. Patent No. 5,994,083 and Nicosia et al., International Application Number WO 99/60132.

VII. PHARMACEUTICAL ADMINISTRATION

HCV vaccines can be formulated and administered to a patient using the guidance provided herein along with techniques well known in the art. Guidelines for pharmaceutical administration in general are provided in, for example, *Modern Vaccinology*, Ed. Kurstak, Plenum Med. Co. 1994; *Remington's Pharmaceutical Sciences 18th Edition*, Ed. Gennaro, Mack Publishing, 1990; and *Modern Pharmaceutics 2nd Edition*, Eds. Banker and Rhodes, Marcel Dekker, Inc., 1990, each of which are hereby incorporated by reference herein.

HCV vaccines can be administered by different routes such intravenous, intraperitoneal, subcutaneous, intramuscular, intradermal, impression through the skin, or nasal. A preferred route is intramuscular.

Intramuscular administration can be preformed using different techniques such as by injection with or without one or more electric pulses. Electric mediated transfer can assist genetic immunization by stimulating both humoral and cellular immune responses.

Vaccine injection can be performed using different techniques, such as by employing a needle or a needless injection system. An example of a needless injection system is a jet injection device. (Donnelly et al., International Publication Number WO 99/52463.)

A. Electrically Mediated Transfer

20

35

Electrically mediated transfer or Gene Electro-Transfer (GET) can be performed by delivering suitable electric pulses after nucleic acid injection. (See Mathiesen, International Publication Number WO 98/43702). Plasmid injection and electroporation can be performed using stainless needles. Needles can be used in couples, triplets or more complex patterns. In one configuration the needles are soldered on a printed circuit board that is a mechanical support and connects the needles to the electrical field generator by means of suitable cables.

The electrical stimulus is given in the form of electrical pulses. Pulses can be of different forms (square, sinusoidal, triangular, exponential decay) and different polarity (monopolar of positive or negative polarity, bipolar). Pulses can be delivered either at constant voltage or constant current modality.

Different patterns of electric treatment can be used to introduce nucleic acid vaccines including HCV and other nucleic acid vaccines into a patient. Possible patterns of electric treatment include the following:

Treatment 1: 10 trains of 1000 square bipolar pulses delivered every other second, pulse length 0.2 msec/phase, frequency 1000 Hz, constant voltage mode, 45 Volts/phase, floating current.

Treatment 2: 2 trains of 100 square bipolar pulses delivered every other second, pulse length 2 msec/phase, frequency 100 Hz, constant current mode, 100 mA/phase, floating voltage.

Treatment 3: 2 trains of bipolar pulses at a pulse length of about 2 msec/phase, for a total length of about 3 seconds, where the actual current going through the tissue is fixed at about 50 mA.

Electric pulses are delivered through an electric field generator. A suitable generator can be composed of three independent hardware elements assembled in a common chassis and driven by a portable PC which runs the driving program. The software manages both basic and accessory functions. The elements of the device are: (1) signal generator driven by a microprocessor, (2) power amplifier and (3) digital oscilloscope.

The signal generator delivers signals having arbitrary frequency and shape in a given range under software control. The same software has an interactive editor for the waveform to be delivered. The generator features a digitally controlled current limiting device (a safety feature to control the maximal current output). The power amplifier can amplify the signal generated up to +/- 150 V. The oscilloscope is digital and is able to sample both the voltage and the current being delivered by the amplifier.

B. Pharmaceutical Carriers

5

10

15

20

25

30

35

Pharmaceutically acceptable carriers facilitate storage and administration of a vaccine to a subject. Examples of pharmaceutically acceptable carriers are described herein. Additional pharmaceutical acceptable carriers are well known in the art.

Pharmaceutically acceptable carriers may contain different components such a buffer, normal saline or phosphate buffered saline, sucrose, salts and polysorbate. An example of a pharmaceutically acceptable carrier is follows: 2.5-10 mM TRIS buffer, preferably about 5 mM TRIS buffer; 25-100 mM NaCl, preferably

about 75 mM NaCl; 2.5-10% sucrose, preferably about 5% sucrose; 0.01 -2 mM MgCl₂; and 0.001%-0.01% polysorbate 80 (plant derived). The pH is preferably from about 7.0-9.0, more preferably about 8.0. A specific example of a carrier contains 5 mM TRIS, 75 mM NaCl, 5% sucrose, 1 mM MgCl₂, 0.005% polysorbate 80 at pH 8.0.

C. Dosing Regimes

10

20

25

30

35

Suitable dosing regimens can be determined taking into account the efficacy of a particular vaccine and factors such as age, weight, sex and medical condition of a patient; the route of administration; the desired effect; and the number of doses. The efficacy of a particular vaccine depends on different factors such as the ability of a particular vaccine to produce polypeptide that is expressed and processed in a cell and presented in the context of MHC class I and II complexes.

HCV encoding nucleic acid administered to a patient can be part of different types of vectors including viral vectors such as adenovector, and DNA plasmid vaccines. In different embodiments concerning administration of a DNA plasmid, about 0.1 to 10 mg of plasmid is administered to a patient, and about 1 to 5 mg of plasmid is administered to a patient. In different embodiments concerning administration of a viral vector, preferably an adenoviral vector, about 105 to 1011 viral particles are administered to a patient, and about 107 to 1010 viral particles are administered to a patient.

Viral vector vaccines and DNA plasmid vaccines may be administered alone, or may be part of a prime and boost administration regimen. A mixed modality priming and booster inoculation involves either priming with a DNA vaccine and boosting with viral vector vaccine, or priming with a viral vector vaccine and boosting with a DNA vaccine.

Multiple priming, for example, about to 2-4 or more may be used. The length of time between priming and boost may typically vary from about four months to a year, but other time frames may be used. The use of a priming regimen with a DNA vaccine may be preferred in situations where a person has a pre-existing anti-adenovirus immune response.

In an embodiment of the present invention, 1×10^7 to 1×10^{12} particles and preferably about 1×10^{10} to 1×10^{11} particles of adenovector is administered directly into muscle tissue. Following initial vaccination a boost is performed with an adenovector or DNA vaccine.

PCT/US02/32512 WO 03/031588`

In another embodiment of the present invention initial vaccination is performed with a DNA vaccine directly into muscle tissue. Following initial vaccination a boost is performed with an adenovector or DNA vaccine.

Agents such as interleukin-12, GM-CSF, B7-1, B7-2, IP10, Mig-1 can be coadministered to boost the immune response. The agents can be coadministered 5 as proteins or through use of nucleic acid vectors.

D: Heterologous Prime-Boost

10

15

20

30

Heterologous prime-boost is a mixed modality involving the use of one type of viral vector for priming and another type of viral vector for boosting. The heterologous prime-boost can involve related vectors such as vectors based on different adenovirus serotypes and more distantly related viruses such adenovirus and poxvirus. The use of poxvirus and adenovirus vectors to protect mice against malaria is illustrated by Gilbert et al., Vaccine 20:1039-1045, 2002.

Different embodiments concerning priming and boosting involve the following types of vectors expressing desired antigens such as Met-NS3-NS4A-NS4B-NS5A-NS5B: Ad5 vector followed by Ad6 vector; Ad6 vector followed by Ad5 vector; Ad5 vector followed by poxvirus vector; poxvirus vector followed by Ad5 vector; Ad6 vector followed by poxvirus vector; and poxvirus vector followed by Ad6 vector.

The length of time between priming and boosting typically varies from about four months to a year, but other time frames may be used. The minimum time frame should be sufficient to allow for an immunological rest. In an embodiment, this rest is for a period of at least 6 months. Priming may involve multiple priming with one type of vector, such as 2-4 primings.

Expression cassettes present in a poxvirus vector should contain a promoter either native to, or derived from, the poxvirus of interest or another poxvirus member. Different strategies for constructing and employing different types of poxvirus based vectors including those based on vaccinia virus, modified vaccinia virus, avipoxvirus, raccoon poxvirus, modified vaccinia virus Ankara, canarypoxviruses (such as ALVAC), fowlpoxviruses, cowpoxviruses, and NYVAC are well known in the art. (Moss, Current Topics in Microbiology and Immunology 158:25-38, 1982; Earl et al., In Current Protocols in Molecular Biology, Ausubel et al. eds., New York: Greene Publishing Associates & Wiley Interscience;

1991:16.16.1-16.16.7, Child et al., Virology 174(2):625-9, 1990; Tartaglia et al. 35

Virology 188:217-232, 1992; U.S. Patent Nos., 4,603,112, 4,722,848, 4,769,330, 5,110,587, 5,174,993, 5,185,146, 5,266,313, 5,505,941, 5,863,542, and 5,942,235.

E. Adjuvants

5

10

15

20

25

HCV vaccines can be formulated with an adjuvant. Adjuvants are particularly useful for DNA plasmid vaccines. Examples of adjuvants are alum, AlPO4, alhydrogel, Lipid-A and derivatives or variants thereof, Freund's incomplete adjuvant, neutral liposomes, liposomes containing the vaccine and cytokines, non-ionic block copolymers, and chemokines.

Non-ionic block polymers containing polyoxyethylene (POE) and polyxylpropylene (POP), such as POE-POP-POE block copolymers may be used as an adjuvant. (Newman et al., Critical Reviews in Therapeutic Drug Carrier Systems 15:89-142, 1998.) The immune response of a nucleic acid can be enhanced using a non-ionic block copolymer combined with an anionic surfactant.

A specific example of an adjuvant formulation is one containing CRL-1005 (CytRx Research Laboratories), DNA, and benzylalkonium chloride (BAK). The formulation can be prepared by adding pure polymer to a cold (<5°C) solution of plasmid DNA in PBS using a positive displacement pipette. The solution is then vortexed to solubilize the polymer. After complete solubilization of the polymer a clear solution is obtained at temperatures below the cloud point of the polymer (~6-7°C). Approximately 4 mM BAK is then added to the DNA/CRL-1005 solution in PBS, by slow addition of a dilute solution of BAK dissolved in PBS. The initial DNA concentration is approximately 6 mg/mL before the addition of polymer and BAK, and the final DNA concentration is about 5 mg/mL. After BAK addition the formulation is vortexed extensively, while the temperature is allowed to increase from ~ 2°C to above the cloud point. The formulation is then placed on ice to decrease the temperature below the cloud point. Then, the formulation is vortexed while the temperature is allowed to increase from ~2°C to above the cloud point. Cooling and mixing while the temperature is allowed to increase from ~2°C to above the cloud point is repeated several times, until the particle size of the formulation is about 200-500 nm, as measured by dynamic light scattering. The formulation is then stored on ice until the solution is clear, then placed in storage at -70°C. Before use, the formulation is allowed to thaw at room temperature.

F. Vaccine Storage

Adenovector and DNA vaccines can be stored using different types of buffers. For example, buffer A105 described in Example 9 *infra*. can be used to for vector storage.

Storage of DNA can be enhanced by removal or chelation of trace metal ions. Reagents such as succinic or malic acid, and chelators can be used to enhance DNA vaccine stability. Examples of chelators include multiple phosphate ligands and EDTA. The inclusion of non-reducing free radical scavengers, such as ethanol or glycerol, can also be useful to prevent damage of DNA plasmid from free radical production. Furthermore, the buffer type, pH, salt concentration, light exposure, as well as the type of sterilization process used to prepare the vials, may be controlled in the formulation to optimize the stability of the DNA vaccine.

VII. EXAMPLES

15

10

Examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention. These examples do not limit the claimed invention.

Example 1: Met-NS3-NS4A-NS4B-NS5A-NS5B Expression Cassettes

20

Different gene expression cassettes encoding HCV NS3-NS4A-NS4B-NS5A-NS5B were constructed based on a 1b subtype HCV BK strain. The encoded sequences had either (1) an active NS5B sequence ("NS"), (2) an inactive NS5B sequence ("NSmut"), (3) a codon optimized sequence with an inactive NS5B sequence ("NSOPTmut"). The expression cassettes also contained a CMV promoter/enhancer and the BGH polyadenylation signal.

25

30

35

The NS nucleotide sequence (SEQ. ID. NO. 5) differs from HCV BK strain GenBank accession number M58335 by 30 out of 5952 nucleotides. The NS amino acid sequence (SEQ. ID. NO. 6) differs from the corresponding 1b genotype HCV BK strain by 7 out of 1984 amino acids. To allow for initiation of translation an ATG codon is present at the 5' end of the NS sequence. A TGA termination sequence is present at the 3' end of the NS sequence.

The NSmut nucleotide sequence (SEQ. ID. NO. 2, Figure 2), is similar to the NS sequence. The differences between NSmut and NS include NSmut having an altered NS5B catalytic site; an optimal ribosome binding site at the 5' end; and a TAAA termination sequence at the 3' end. The alterations in NS5B comprise bases

5138 to 5146, which encode amino acids 1711 to 1713. The alterations result in a change of amino acids GlyAspAsp into AlaAlaGly and creates an inactive form of the NS5B RNA-dependent RNA-polymerase NS5B.

The NSOPTmut sequence (SEQ. ID. NO. 3, Figure 3) was designed based on the amino acid sequence encoded by NSmut. The NSmut amino acid sequence was back translated into a nucleotide sequence with the GCG (Wisconsin Package version 10, Genetics Computer Group, GCG, Madison, Wisc.)

BACKTRANSLATE program. To generate a NSOPTmut nucleotide sequence where each amino acid is coded for by the corresponding most frequently observed human codon, the program was run choosing as parameter the generation of the most probable nucleotide sequence and specifying the codon frequency table of highly expressed human genes (human_high.cod) available within the GCG Package as translation scheme.

15 Example 2: Generation pV1Jns plasmid with NS, NSmut or NSOPTmut Sequences
pV1Jns plasmids containing either the NS sequence, NSmut sequence
or NSOPTmut sequences were generated and characterised as follows:

pVIIns Plasmid with the NS Sequence

20

25

30

The coding region Met-NS3-NS4A-NS4B-NS5A and the coding region Met-NS3-NS4A-NS4B-NS5A-NS5B from a HCV BK type strain (Tomei et al., J. Virol. 67:4017-4026, 1993) were cloned into pcDNA3 plasmid (Invitrogen), generating pcD3-5a and pcD3-5b vectors, respectively. PcD3-5A was digested with Hind III, blunt-ended with Klenow fill-in and subsequently digested with Xba I, to generate a fragment corresponding to the coding region of Met-NS3-NS4A-NS4B-NS5A. The fragment was cloned into pV1Jns-poly, digested with Bgl II blunt-ended with Klenow fill-in and subsequently digested with Xba I, generating pV1JnsNS3-5A.

pV1Jns-poly is a derivative of pV1JnsA plasmid (Montgomery et al., DNA and Cell Biol. 12:777-783, 1993), modified by insertion of a polylinker containing recognition sites for XbaI, PmeI, PacI into the unique BglII and NotI restriction sites. The pV1Jns plasmid with the NS sequence (pV1JnsNS3-5B) was obtained by homologous recombination into the bacterial strain BJ5183, cotransforming pV1JNS3-5A linearized with XbaI and NotI digestion and a PCR fragment containing approximately 200 bp of NS5A, NS5B coding sequence and

approximately 60 bp of the BGH polyadenylation signal. The resulting plasmid represents pV1Jns-NS.

pV1Jns-NS can be summarized as follows:

Bases 1 to 1881 of pVIJnsA

5 an additional AGCTT

then the Met-NS3-NS5B sequence (SEQ. ID. NO. 5)

then the wt TGA stop

an additional TCTAGAGCGTTTAAACCCTTAATTAAGG (SEQ. ID.

NO. 14)

10 Bases 1912 to 4909 of pV1JnsA

pVIJns Plasmid with the NSmut Sequence

The V1JnsNS3-5A plasmid was modified at the 5' of the NS3 coding sequence by addition of a full Kozak sequence. The plasmid (V1JNS3-5Akozak) was obtained by homologous recombination into the bacterial strain BI5183, cotransforming V1JNS3-5A linearized by AfIII digestion and a PCR fragment containing the proximal part of Intron A, the restriction site BgIII, a full Kozak translation initiation sequence and part of the NS3 coding sequence.

The resulting plasmid (V1JNS3-5Akozak) was linearized with Xba I

digestion and co-transformed into the bacterial strain BJ5183 with a PCR fragment;
containing approximately 200 bp of NS5A, the NS5B mutated sequence, the strong
translation termination TAAA and approximately 60 bp of the BGH polyadenylation
signal. The PCR fragment was obtained by assembling two 22bp-overlapping
fragments where mutations were introduced by the oligonucleotides used for their
amplification. The resulting plasmid represents pV1Jns-NSmut.

pV1Jns-NSmut can be summarized as follows:

Bases 1 to 1882 of pVIJnsA

then the kozak Met-NS3-NS5B(mut) TAAA sequence (SEQ, ID. NO. 2)

an additional TCTAGA

30 Bases 1925 to 4909 of pV1JnsA

pVIJns Plasmid with the NSOPTmut Sequence

The human codon-optimized synthetic gene (NSOPTmut) with mutated NS5B to abrogate enzymatic activity, full Kozak translation initiation sequence and a strong translation termination was digested with BamHI and SalI restriction sites present at the 5' and 3' end of the gene. The gene was then cloned into the BgIII and SalI restriction sites present in the polylinker of pV1JnsA plasmid, generating pV1Jns-NSOPTmut.

pV1Jns-NSOPTmut can be summarized as follows:

Bases.

1 to 1881 of pV1JnsA

an additional C

then

kozak Met-NS3-NS5B(optmut) TAAA sequence (SEQ. ID. NO. 3)

an additional TTTAAATGTTTAAAC (SEQ. ID. NO. 15)

Bases

1905 to 4909 of pV1JnsA

10

Plasmids Characterization

Expression of HCV NS proteins was tested by transfection of HEK 293 cells, grown in 10% FCS/DMEM supplemented by L-glutamine (final 4 mM). Twenty-four hours before transfection, cells were plated in 6-well 35 mm diameter, to reach 90-95% confluence on the day of transfection. Forty nanograms of plasmid DNA (previously assessed as a non-saturating DNA amount) were co-transfected with 100 ng of pRSV-Luc plasmid containing the luciferase reporter gene under the control of Rous sarcoma virus promoter, using the LIPOFECTAMINE 2000 reagent. Cells were kept in a CO₂ incubator for 48 hours at 37 °C.

20

25

30

35

.15

Cell extracts were prepared in 1% Triton/TEN buffer. The extracts were normalized for Luciferase activity, and run in serial dilution on 10% SDSacrylamide gel. Proteins were transferred on nitrocellulose and assayed with antibodies directed against NS3, NS5A and NS5B to assess strength of expression and correct proteolytic cleavage. Mock-transfected cells were used as a negative control.

Results from representative experiments testing pV1JnsNS, pV1JnsNSmut and pV1JnsNSOPTmut are shown in Figure 12.

Example 3: Mice Immunization with Plasmid DNA Vectors

The DNA plasmids pV1Jns-NS, pV1Jns-NSmut and pV1Jns-NSOPTmut were injected in different mice strains to evaluate their potential to elicit anti-HCV immune responses. Two different strains (Balb/C and C57Black6, N=9-10) were injected intramuscularly with 25 or 50 µg of DNA followed by electrical pluses. Each animal received two doses at three weeks interval.

Humoral immune response elicited in C57Black6 mice against the NS3 protein was measured in post dose two sera by ELISA on bacterially expressed NS3

protease domain. Antibodies specific for the tested antigen were detected in animals immunized with all three vectors with geometric mean titers (GMT) ranging from 94000 to 133000 (Tables 1-3).

5

Table 1: pV1jns-NS

	·		-							GMT
Mice n.	l	2	. 3	4	5	6	. 7	8	9	
Titer	105466	891980	78799	39496	543542	182139	32351	95028	67800	94553

Table 2: pV1jns-NSmut

10

				·					. •		GMT
Mice n.	11	12	13	14	15	16	17	18	19	20	
Titer	202981	55670	130786	49748	17672	174958	44304	37337	78182	193695	75083

Table 3: pV1ins-NSOPTmu

·	· · · · · · · · · · · · · · · · · · ·		•		•	•					GMT
Mice n.	21	22	23	24	25	26	27	28	. 29	30	
Titer	310349	43645	63496	82174	630778	297259	66861	146735	173506	77732	133165

15

20

A T cell response was measured in C57Black6 mice immunized with two intramuscular injections at three weeks interval with 25 µg of plasmid DNA. Quantitative ELIspot assay was performed to determine the number of IFNy secreting. T cells in response to five pools of 20mer peptides overlapping by ten residues encompassing the NS3-NS5B sequence. Specific CD8+ response was analyzed by the same assay using a 20mer peptide encompassing a CD8+ epitope for C57Black6 mice (pep1480).

Cells secreting IFNy in an antigen specific-manner were detected using a standard ELIspot assay. T cell response in C57Black6 mice immunized with two intramuscular injections at three weeks interval with 50 µg of plasmid DNA, was

analyzed by the same ELIspot assay measuring the number of IFN secreting T cells in response to five pools of 20mer peptides overlapping by ten residues encompassing the NS3-NS5B sequence.

Spleen cells were prepared from immunized mice and re-suspended in R10 medium (RPMI 1640 supplemented with 10% FCS, 2 mM L-Glutamine, 50 U/ml-50μg/ml Penicillin/Streptomycin, 10 mM Hepes, 50 μM 2-mercapto-ethanol). Multiscreen 96-well Filtration Plates (Millipore, Cat. No. MAIPS4510, Millipore Corporation, 80 Ashby Road Bedford, MA) were coated with purified rat anti-mouse INFγ antibody (PharMingen, Cat. No. 18181D, PharmiMingen, 10975 Torreyana Road, San Diego, California 92121-1111 USA). After overnight incubation, plates were washed with PBS 1X/0.005% Tween and blocked with 250 μl/well of R10 medium.

Splenocytes from immunized mice were prepared and incubated for twenty-four hours in the presence or absence of 10 μM peptide at a density of 2.5 X 10⁵/well or 5 X 10⁵/well. After extensive washing (PBS 1X/0.005% Tween), biotinylated rat anti-mouse IFNγ antibody (PharMingen, Cat. No. 18112D, PharMingen, 10975 Torreyana Road, San Diego, California 92121-1111 USA) was added and incubated overnight at 4° C. For development, streptavidin-AKP (PharMingen, Cat. No. 13043E, PharMingen, 10975 Torreyana Road, San Diego, California 92121-1111 USA) and 1-StepTM NBT-BCIP development solution (Pierce, Cat. No. 34042, Pierce, P.O. Box 117, Rockford, IL 61105 USA) were added.

Pools of 20mer overlapping peptides encompassing the entire sequence of the HCV BK strain NS3 to NS5B were used to reveal HCV-specific IFNγ-secreting T cells. Similarly a single 20mer peptide encompassing a CD8+ epitope for C57Black6 mice was used to detect CD8 response. Representative data from groups of C57Black6 and Balb/C mice (N=9-10) immunized with two injections of 25 or 50 μg of plasmid vectors pV1Jns-NS, pV1Jns-NSmut and pV1Jns-NSOPTmut are shown in Figures 13A and 13B.

30 Example 4: Immunization of Rhesus Macaques

25

Rhesus macaques (N=3) were immunized by intramuscular injection with 5mg of plasmid pV1Jns-NSOPTmut in 7.5mg/ml CRL1005, Benzalkonium chloride 0.6 mM. Each animal received two doses in the deltoid muscle at 0, and 4 weeks.

CMI was measured at different time points by IFN- γ ELISPOT. This assay measures HCV antigen-specific CD8+ and CD4+ T lymphocyte responses, and can be used for a variety of mammals, such as humans, rhesus monkeys, mice, and rats.

The use of a specific peptide or a pool of peptides can simplify antigen presentation in CTL cytotoxicity assays, interferon-gamma ELISPOT assays and interferon-gamma intracellular staining assays. Peptides based on the amino acid sequence of various HCV proteins (core, E2, NS3, NS4A, NS4B, NS5A, NS5B) were prepared for use in these assays to measure immune responses in HCV DNA and adenovirus vector vaccinated rhesus monkeys, as well as in HCV-infected humans. The individual peptides are overlapping 20-mers, offset by 10 amino acids. Large pools of peptides can be used to detect an overall response to HCV proteins while smaller pools and individual peptides may be used to define the epitope specificity of a response.

15

20

25

30

10

IFNY ELISPOT

The IFNγ-ELISPOT assay provides a quantitative determination of HCV-specific T lymphocyte responses. PBMC are serially diluted and placed in microplate wells coated with anti-rhesus IFN-γ antibody (MD-1 U-Cytech). They are cultured with a HCV peptide pool for 20 hours, resulting in the restimulation of the precursor cells and secretion of IFN-γ. The cells are washed away, leaving the secreted IFN bound to the antibody-coated wells in concentrated areas where the cells were sitting. The captured IFN is detected with biotinylated anti-rhesus IFN antibody (detector Ab U-Cytech) followed by alkaline phosphatase-conjugated streptavidin (Pharmingen 13043E). The addition of insoluble alkaline phosphatase substrate results in dark spots in the wells at the sites where the cells were located, leaving one spot for each T cell that secreted IFN-γ.

The number of spots per well is directly related to the precursor frequency of antigen-specific T cells. Gamma interferon was selected as the cytokine visualized in this assay (using species specific anti-gamma interferon monoclonal antibodies) because it is the most common, and one of the most abundant cytokines synthesized and secreted by activated T lymphocytes. For this assay, the number of spot forming cells (SFC) per million PBMCs is determined for samples in the

presence and absence (media control) of peptide antigens. Data from Rhesus macaques on PBMC from post dose two material are shown in Table 4.

Table 4

·		PV1J-NSOPTmut	
Pep pools	21G	99C161	99C166
F (NS3p)	8	10	170
G (NS3h)	7	592	229
H (NS4)	3	14	16
I (NS5a)	5	71	36
L (NS5b)	14	23	11
M (NS5b)	3	35	8
DMSO	2	4	5 .

INFγELISPOT on PBMC from Rhesus monkeys immunized with two injections of 5 mg DNA/dose in OPTIVAX/BAK of plasmid pV1Jns-NSOPTmut. Data are expressed as SFC7 106 PBMC.

Example 5: Construction of Ad6 Pre-Adenovirus Plasmids

Ad6 pre-adenovirus plasmids were obtained as follows:

10

15

20

Construction of pAd6 E1-E3+ Pre-adenovirus Plasmid

An Ad6 based pre-adenovirus plasmid which can be used to generate first generation Ad6 vectors was constructed either taking advantage of the extensive sequence identity (approx. 98%) between Ad5 and Ad6 or containing only Ad6 regions. Homologous recombination was used to clone wtAd6 sequences into a bacterial plasmid.

A general strategy used to recover pAd6E1-E3+ as a bacterial plasmid containing Ad5 and Ad6 regions is illustrated in Figure 10. Cotransformation of BJ 5183 bacteria with purified wt Ad6 viral DNA and a second DNA fragment termed the Ad5 ITR cassette resulted in the circularization of the viral genome by homologous recombination. The ITR cassette contains sequences from the right (bp 33798 to 35935) and left (bp 1 to 341 and bp 3525 to 5767) end of the Ad5 genome separated by plasmid sequences containing a bacterial origin of replication and an ampicillin resistance gene. The ITR cassette contains a deletion of E1 sequences from

Ad5 342 to 3524. The Ad5 sequences in the ITR cassette provide regions of homology with the purified Ad6 viral DNA in which recombination can occur.

Potential clones were screened by restriction analysis and one clone was selected as pAd6E1-E3+. This clone was then sequenced in it entirety. pAd6E1-E3+ contains Ad5 sequences from bp 1 to 341 and from bp 3525 to 5548, Ad6 bp 5542 to 33784, and Ad5 bp 33967 to 35935 (bp numbers refer to the wt sequence for both Ad5 and Ad6). pAd6E1-E3+ contains the coding sequences for all Ad6 virion structural proteins which constitute its serotype specificity.

A general strategy used to recover pAd6E1-E3+ as a bacterial plasmid

containing Ad6 regions is illustrated in Figure 11. Cotransformation of BJ 5183

bacteria with purified wt Ad6 viral DNA and a second DNA fragment termed the Ad6

ITR cassette resulted in the circularization of the viral genome by homologous

recombination. The ITR cassette contains sequences from the right (bp 35460 to

35759) and left (bp 1 to 450 and bp 3508 to 3807) end of the Ad6 genome separated

by plasmid sequences containing a bacterial origin of replication and an ampicillin

resistance gene. These three segments were generated by PCR and cloned

sequentially into pNEB193, generating pNEBAd6-3 (the ITR cassette). The ITR

cassette contains a deletion of E1 sequences from Ad5 451 to 3507. The Ad6

sequences in the ITR cassette provide regions of homology with the purified Ad6 viral

DNA in which recombination can occur.

Construction of pAd6 E1-E3- pre-adenovirus plasmids

Ad6 based vectors containing A5 regions and deleted in the E3 region were constructed starting with pAd6E1-E3+ containing Ad5 regions. A 5322 bp subfragment of pAd6E1-E3+ containing the E3 region (Ad6 bp 25871 to 31192) was subcloned into pABS.3 generating pABSAd6E3. Three E3 deletions were then made in this plasmid generating three new plasmids pABSAd6E3(1.8Kb) (deleted for Ad6 bp 28602 to 30440), pABSAd6E3(2.3Kb) (deleted for Ad6 bp 28157 to 30437) and pABSAd6E3(2.6Kb) (deleted for Ad6 bp 28157 to 30788). Bacterial recombination was then used to substitute the three E3 deletions back into pAd6E1-E3+ generating the Ad6 genome plasmids pAd6E1-E3-1.8Kb, pAd6E1-E3-2.3Kb and pAd6E1-E3-2.6Kb.

Example 6: Generation of Ad5 Genome Plasmid with the NS Sequence

10

15

20

25

30

A pcDNA3 plasmid (Invitrogen) containing the coding region NS3-NS4A-NS4B-NS5A was digested with *Xmn*I and *Nru*I restriction sites and the DNA fragment containing the CMV promoter, the NS3-NS4A-NS4B-NS5A coding sequence and the Bovine Growth Hormone (BGH) polyadenylation signal was cloned into the unique *Eco*rV restriction site of the shuttle vector pDelE1Spa, generating the Sva3-5A vector.

A pcDNA3 plasmid containing the coding region NS3-NS4A-NS4B-NS5A-NS5B was digested with *Xmn*I and *Ecor*I (partial digestion), and the DNA fragment containing part of NS5A, NS5B gene and the BGH polyadenylation signal was cloned into the Sva3-5A vector, digested *Ecor*I and *BgI*II blunted with Klenow, generating the Sva3-5B vector.

The Sva3-5B vector was finally digested SspI and Bst1107I restriction sites and the DNA fragment containing the expression cassette (CMV promoter, NS3-NS4A-NS4B-NS5A-NS5B coding sequence and the BGH polyadenylation signal) flanked by adenovirus sequences was co-transformed with pAd5HVO (E1-,E3-) ClaI linearized genome plasmid into the bacterial strain BJ5183, to generate pAd5HVONS. pAd5HVO contains Ad5 bp 1 to 341, bp 3525 to 28133 and bp 30818 to 35935.

Example 7: Generation of Adenovirus Genome Plasmids with the NSmut Sequence
Adenovirus genome plasmids containing an NS-mut sequence were
generated in an Ad5 or Ad6 background. The Ad6 background contained Ad5 regions
at bases 1 to 450, 3511 to 5548 and 33967 to 35935.

pV1JNS3-5Akozak was digested with *BgI*II and *Xba*I restriction enzymes and the DNA fragment containing the Kozak sequence and the sequence coding NS3-NS4A-NS4B-NS5A was cloned into a *BgI*II and XbaI digested polypMRKpdelE1 shuttle vector. The resulting vector was designated shNS3-5Akozak.

PolypMRKpdelE1 is a derivative of RKpdelE1(Pac/pIX/pack450) + CMVmin+BGHpA(str.) modified by the insertion of a polylinker containing recognition sites for BglII, PmeI, SwaI, XbaI, SaII, into the unique BglII restriction site present downstream the CMV promoter. MRKpdelE1(Pac/pIX/pack450) + CMVmin + BGHpA(str.) contains Ad5 sequences from bp 1 to 5792 with a deletion of E1 sequences from bp 451 to 3510. The human CMV promoter and BGH polyadenylation signal were inserted into the E1 deletion in an E1 parallel orientation with a unique BglII site separating them.

The NS5B fragment, mutated to abrogate enzymatic activity and with a strong translation termination at the 3' end, was obtained by assembly PCR and inserted into the shNS3-5Akozak vector via homologous recombination, generating polypMRKpdelE1NSmut. In polypMRKpdelE1NSmut the NS-mut coding sequence is under the control of CMV promoter and the BGH polyadenylation signal is present downstream.

The gene expression cassette and the flanking regions which contain adenovirus sequences allowing homologous recombination were excised by digestion with *PacI* and *Bst*1107I restriction enzymes and co-transformed with either pAd5HVO (E1-,E3-) or pAd6E1-E3-2.6Kb *ClaI* linearized genome plasmids into the bacterial strain BJ5183, to generate pAd5HVONSmut and pAd6E1-,E3-NSmut, respectively.

pAd6E1-E3-2.6Kb contains Ad5 bp 1 to 341 and from bp 3525 to 5548, Ad6 bp 5542 to 28157 and from bp 30788 to 33784, and Ad5 bp 33967 to 35935 (bp numbers refer to the wt sequence for both Ad5 and Ad6). In both plasmids the viral ITR's are joined by plasmid sequences that contain the bacterial origin of replication and an ampicillin resistance gene.

Example 8: Generation of Adenovirus Genome Plasmids with the NSOPTmut

The human codon-optimized synthetic gene (NSOPTmut) provided by SEQ. ID. NO. 3 cloned into a pCRBlunt vector (Invitrogen) was digested with BamH1 and SalI restriction enzymes and cloned into BglII and SalI restriction sites present in the shuttle vector polypMRKpdelE1. The resulting clone (polypMRKpdelE1NSOPTmut) was digested with PacI and Bst1107I restriction enzymes and co-transformed with either pAd5HVO (E1-,E3-) or pAd6E1-E3-2.6Kb

ClaI linearized genome plasmids, into the bacterial strain BJ5183, to generate pAd5HVONSOPTmut and pAd6E1-,E3-NSOPTmut, respectively.

Example 9: Rescue and Amplification of Adenovirus Vectors

30

Adenovectors were rescued in Per.6 cells. Per.C6 were grown in 10% FCS / DMEM supplemented by L-glutamine (final 4mM), penicillin/streptomycin (final 100 IU/ml) and 10 mM MgCl₂. After infection, cells were kept in the same medium supplemented by 5% horse serum (HS). For viral rescue, 2.5 X 10⁶ Per.C6 were plated in 6 cm ø Petri dishes.

Twenty-four hours after plating, cells were transfected by calcium phosphate method with 10 µg of the *Pac I* linearized adenoviral DNA. The DNA precipitate was left on the cells for 4 hours. The medium was removed and 5% HS/DMEM was added.

Cells were kept in a CO₂ incubator until a cytopathic effect was visible (1 week). Cells and supernatant were recovered and subjected to 3X freeze/thawing cycles (liquid nitrogen / water bath at 37°C). The lysate was centrifuged at 3000 rpm at - 4°C for 20 minutes and the recovered supernatant (corresponding to a cell lysate containing virus passed on cells only once; P1) was used, in the amount of 1 ml/ dish, to infect 80-90% confluent Per.C6 in 10 cm ø Petri dishes. The infected cells were incubated until a cytopathic effect was visible, cells and supernatant recovered and the lysate prepared as described above (P2).

P2 lysate (4 ml) were used to infect 2 X 15 cm ø Petri dishes. The lysate recovered from this infection (P3) was kept in aliquots at -80°C as a stock of virus to be used as starting point for big viral preparations. In this case, 1 ml of the stock was enough to infect 2 X 15 cm ø Petri dishes and resulting lysate (P4) was used for the infection of the Petri dishes devoted to the large scale infection.

Further amplification was obtained from the P4 lysate which was diluted in medium without FCS and used to infect 30 X 15 cm Ø Petri dishes (with Per.C6 80%-90% confluent) in the amount of 10 ml/dish. Cells were incubated 1 hour in the CO₂ incubator, mixing gently every 20 minutes. 12 ml / dish of 5% HS / DMEM was added and cells were incubated until a cytopathic effect was visible (about 48 hours).

Cells and supernatant were collected and centrifuged at 2K rpm for 20 minutes at 4°C. The pellet was resuspended in 15 ml of 0.1 M Tris pH=8.0. Cells were lysed by 3X freeze/thawing cycles (liquid nitrogen / water bath at 37°C). 150 µl of 2 M MgCl₂ and 75 µl of DNAse (10 mg of bovine pancreatic deoxyribonuclease I in 10 ml of 20 mM Tris-HCl pH= 7.4, 50 mM NaCl, 1 mM dithiothreitol, 0.1 mg/ml bovine serum albumin, 50% glycerol) were added. After a 1 hour incubation at 37°C in a water bath (vortex every 15 minutes) the lysate was centrifuged at 4K rpm for 15 minutes at 4°C. The recovered supernatant was ready to be applied on CsCl gradient.

The CsCl gradients were prepared in SW40 ultra-clear tubes as

follows:

5

10

15

20

25

30

0.5 ml of 1.5d CsCl

35 3 ml of 1.35d CsCl

10

25

35

3 ml of 1.25d CsCl

5-ml/ tube of viral supernatant was applied.

If necessary, the tubes were topped up with 0.1 M tris-Cl pH=8.0. Tubes were centrifuged at 35K rpm for 1 hour at -10°C with rotor SW40. The viral bands (located at the 1.25/1.35 interface) were collected using a syringe.

The virus was transferred into a new SW40 ultraclear tube and 1.35d CsCl was added to top the tube up. After centrifugation at 35K rpm for 24 hours at 10°C in the rotor SW40, the virus was collected in the smallest possible volume and dialyzed extensively against buffer A105 (5 mM Tris, 5% sucrose, 75 mM NaCl, 1 mM MgCl₂, 0.005% polysorbate 80 pH=8.0). After dialysis, glycerol was added to final 10% and the virus was stored in aliquots at – 80°C.

Example 10: Enhanced Adenovector Rescue

First generation Ad5 and Ad6 vectors carrying HCV NSOPTmut

transgene were found to be difficult to rescue. A possible block in the rescue process
might be attributed to an inefficient replication of plasmid DNA that is a sub-optimal
template for the replication machinery of adenovirus. The absence of the terminal
protein linked to the 5'ends of the DNA (normally present in the viral DNA),
associated with the very high G-C content of the transgene inserted in the E1 region of
the vector, may be causing a substantial reduction in replication rate of the plasmidderived adenovirus.

To set up a more efficient and reproducible procedure for rescuing Advectors, an expression vector (pE2; Figure 19) containing all E2 proteins (polymerase, pre-terminal protein and DNA binding protein) as well as E4 orf6 under the control of tet-inducible promoter was employed. The transfection of pE2 in combination with a normal preadeno plasmid in PerC6 and in 293 leads to a strong increase of Ad DNA replication and to a more efficient production of complete infectious adenovirus particles.

30 Plasmid Construction

pE2 is based on the cloning vector pBI (CLONTECH) with the addition of two elements to allow episomal replication and selection in cell culture:

(1) the EBV-OriP (EBV [nt] 7421-8042) region permitting plasmid replication in synchrony with the cell cycle when EBNA-1 is expressed and (2) the hygromycin-B phosphotransferase (HPH)-resistance gene allowing a positive selection of

5

10

15

20

25

30

35

transformed cells. The two transcriptional units for the adenoviral genes E2 a and b and E4-Orf6 were constructed and assembled in pE2 as described below.

The Ad5-Polymerase Clal/SphI fragment and the Ad5-pTP Acc65/EcoRV fragment were obtained from pVac-Pol and pVac-pTP (Stunnemberg et al. NAR 16:2431-2444, 1988). Both fragments were filled with Klenow and cloned into the SalI (filled) and EcoRV sites of pBI, respectively obtaining pBI-Pol/pTP.

EBV-OriP element from pCEP4 (Invitrogen) was first inserted within two chicken β-globin insulator dimers by cloning it into *BamHI* site of pJC13-1 (Chung *et al.*, *Cell 74(3)*:505-14, 1993). HS4-OriP fragment from pJC13-OriP was then cloned inside pSA1mv (a plasmid containing tk-Hygro-B resistance gene expression cassette as well as Ad5 replication origin), the ITR's arranged as head-to-tail junction, obtained by PCR from pFG140 (Graham, *EMBO J. 3*:2917-2922, 1984) using the following primers: 5'-TCGAATCGATACGCGAACCTACGC-3' (SEQ. ID. NO. 16) and 5'-TCGACGTGTCGACTTCGAAGCGCACCCAAAAACGTC-3' (SEQ. ID. NO. 17), thus generating pMVHS4Orip. A DNA fragment from pMVHS4Orip, containing the insulated OriP, Ad5 ITR junction and tk-HygroB cassette, was then inserted into pBI-Pol/pTP vector restricted *Asel/AatII* generating pBI-Pol/pTPHS4.

To construct the second transcriptional unit expressing Ad5-Orf6 as well as Ad5-DBP, E4orf6 (Ad 5 [nt] 33193-34077) obtained by PCR was first inserted into pBI vector, generating pBI-Orf6. Subsequently, DBP coding DNA sequence (Ad 5 [nt] 22443-24032) was inserted into pBI-Orf6 obtaining the second bi-directional Tet-regulated expression vector (pBI-DBP/E4orf6). The original polyA signals present in pBI were substituted with BGH and SV40 polyA.

pBI-DBP/E4orf6 was then modified by inserting a DNA fragment containing the Adeno5-ITRs arranged in head-to-tail junction plus the hygromicin B resistance gene obtained from plasmid pSA-1mv. The new plasmid pBI-DBP/E4orf6shuttle was then used as donor plasmid to insert the second tet-regulated transcriptional unit into pBI-Pol/pTPHS4 by homologous recombination using *E. coli* strain BJ5183 obtaining pE2.

Cell lines, Transfections and Virus Amplification

PerC6 cells were cultured in Dulbecco's modified Eagle's Medium (DMEM) plus 10% fetal bovine serum (FBS), 10 mM MgCl₂, penicillin (100 U/ml), streptomycin (100 µg/ml) and 2 mM glutamine.

All transient transfections were performed using Lipofectamine2000 (Invitrogen) as described by the manufacturer. 90% confluent PERC.6TM planted in 6-cm plates were transfected with 3.5 µg of Ad5/6NSOPTmut pre-adeno plasmids, digested with PacI, alone or in combination with 5 µg pE2 plus 1 µg pUHD52.1. pUHD52.1 is the expression vector for the reverse tet transactivator 2 (rtTA2) (Urlinger et al., Proc. Natl. Acad. Sci. U.S.A. 97(14):7963-7968, 2000). Upon transfection, cells were cultivated in the presence of 1 µg/ml of doxycycline to activate pE2 expression. 7 days post-transfection cells were harvested and cell lysate was obtained by three cycles of freeze-thaw. Two ml of cell lysate were used to infect a second 6-cm dish of PerC6. Infected cells were cultivated until a full CPE was observed then harvested. The virus was serially passaged five times as described above, then purified on CsCl gradient. The DNA structure of the purified virus was controlled by endonuclease digestion and agarose gel electrophoresis analysis and compared to the original pre-adeno plasmid restriction pattern.

15

20

25

35

Example 11: Partial Optimizeation of HCV Polyprotein Encoding Nucleic acid

Partial optimization of HCV polyprotein encoding nucleic acid was performed to facilitate the production of adenovectors containing codons optimized for expression in a human host. The overall objective was to provide for increased expression due to codon optimization, while facilitating the production of an adenovector encoding HCV polyprotein.

Several difficulties were encountered in producing an adenovector encoding HCV polyprotein with codons optimized for expression in a human host. An adenovector containing an optimized sequence (SEQ. ID. NO. 3) was found to be more difficult to synthesize and rescue than an adenovector containing a non-optimized sequence (SEQ. ID. NO. 2).

The difficulties in producing an adenovector containing SEQ. ID. NO. 3 were attributed to a high GC content. A particularly problemetic region was the region at about position 3900 of NSOPTmut (SEQ. ID. NO. 3).

Alternative versions of optimized HCV encoding nucleic acid sequence were designed to facilitate its use in an adenovector. The alternative versions, compared to NSOPTmut, were designed to have a lower overall GC content, to reduce/avoid the presence of potentially problematic motifis of consecutive G's or C's, while maintaining a high level of codon optimization to allow improved expression of the encoded polyprotein and the individual cleavage products.

A starting point for the generation of a suboptimally codon-optimized sequence is the coding region of the NSOPTmut nucleotide sequence (bases 7 to 5961 of SEQ. ID. NO. 3). Values for codon usage frequencies (normalized to a total of 1.0 for each amino acid) were taken from the file human_high.cod available in the Wisconsin Package Version 10.3 (Accelrys Inc., a wholly owned subsidiary of Pharmacopeia, Inc).

5

10

15

20

25

30

35

To reduce the local and overall GC content a table defining preferred codon substitutions for each amino acid was manually generated. For each amino acid the codon having 1) a lower GC content as compared to the most frequent codon and 2) a relativly high observed codon usage frequency (as defined in human_high.cod) was choosen as the replacement codon. For example for Arg the codon with the highest frequency is CGC. Out of the other five alternative codons encoding Arg (CGG, AGG, AGA, CGT, CGA) three (AGG, CGT, CGA) reduce the GC content by 1 base, one (AGA) by two bases and one (CGG) by 0 bases. Since the AGA codon is listed in human_high.cod as having a relatively low usage frequency (0.1), the codon substituting CGC was therefore choosen to be AGG with a relative frequency of 0.18. Similar criteria were applied in order to establish codon replacements for the other amino acids resulting in the list shown in Table 5. Parameters applied in the following optimization procedure were determined empirically such that the resulting sequence maintained a considerably improved codon usage (for each amino acid) and the GC content (overall and in form of local stretches of consecutive G's and/or C's) was decreased.

Two examples of partial optimized HCV encoding sequences are provided by SEQ. ID. NO. 10 and SEQ. ID. NO. 11. SEQ. ID. NO. 10 provides a HCV encoding sequence that is partially optimized throughout. SEQ. ID. NO. 11 provides an HCV encoding sequence fully optimized for codon usage with the exception of a region that was partially optimized.

Codon optimization was performed using the following procedure:
Step 1) The coding region of the input fully optimized NSOPTmut sequence was analyzed using a sliding window of 3 codons (9 bases) shifting the window by one codon after each cycle. Whenever a stretch containing 5 or more consecutive C's and/or G's was detected in the window the following replacement rule was applied: Let N indicate the number of codon replacements previously performed. If N is odd replace the middle codon in the window with the codon specified in Table 5, if N is even replace the third terminal codon in the window with the codon

specified in a codon optimization table such as human_high.cod. If Leu or Val is present at the second or third codon do not apply any replacement in order not to introduce Leu or Val codons with very low relative codon usage frequency (see, for example, human_high.cod). In the following cycle analysis of the shifted window was then applied to a sequence containing the replacements of the previous cycle.

The alternating replacement of the middle and terminal codon in the 3 codon window was found empirically to give a more satisfying overall maintenance of optimized codon usage while also reducing GC content (as judged from the final sequence after the procedure). In general, however, the precise replacement strategy depends on the amino acid sequence encoded by the nucelotide sequence under analysis and will have to be determined empirically.

10

20:

25

30

Step 2) The sequence containing all the codon replacements performed during step 1) was then subjected to an additional analysis using a sliding window of 21 codons (63 bases) in length: according to an adjustable parameter the overall GC content in the window was determined. If the GC content in the window was higher than 70% the following codon replacement strategy was applied: In the window replace the codons for the amino acids Asn, Asp, Cys, Glu, His, Ile, Lys, Phe, Tyr by the codons given in Table 5. Restriction of the replacement to this set of amino acids was motivated by the fact that a) the replacement codon still has an accetably high frequency of usage in human_high.cod and b) the average overall human codon usage in CUTG for the replacement codon is nearly as high as the most frequent codon. In the following cycle analysis of the shifted window is then applied to a sequence containing the replacements of the previous cycle.

The threshold 70% was determined empirically by compromising between an overall reduction in GC content and maintenance of a high codon optimization for the individual amino acids. As in step 1) the precise replacement strategy (choice of amino acids and GC content threshold value) will again depend on the amino acid sequence encoded by the nucleotide sequence under analysis and will have to be determined empirically.

Step 3) The sequence generated by steps 1) and 2) was then manually edited and additional codons were changed according to the following criteria:

Regions still having a GC content higher than 70% over a window of 21 codons were examined manually and a few codons were replaced again following the scheme given in Table 5.

Subsequent steps were performed to provide for useful restriction sites, remove possible open reading frames on the complementary strand, to add homologous recombinant regions, to add a Kozac signal, and to add a terminator. These steps are numbered 4-7

Step 4) The sequence generated in step 3 was examined for the absence of certain restriction sites (BglII, PmeI and XbaI) and presence of only 1 StuI site to allow a subsequent cloning strategy using a subset of restriction enzymes. Two sites (one for BglII and one for StuI) were removed from the sequence by replacing codons that were part of the respective recognition sites.

10

15

20

25

30

35

Step 5) The sequence generated by steps 1) through 4) was then modified according to allow subsequent generation of a modified NSOPTmut sequence (by homologous recombination). In the sequence obtained from steps 1) through 4) the segment comprising base 3556 to 3755 and the segment comprising base 4456 to 4656 were replaced by the corresponding segments from NSOPTmut. The segment comprising bases 3556 to 4656 of SEQ. ID. NO. 10 can be used to replace the problematic region in NSOPTmut (around position 3900) by homologous recombination thus creating the variant of NSOPTmut having the sequence of SEQ. ID. NO. 11.

Step 6) Analysis of the sequence generated through steps 1) to 5) revealed a potential open reading frame spanning nearly the complete fragment on the complementary strand. Removal of all codons CTA and TTA (Leu) and TCA (Ser) from the sense strand effectively removed all stop codons in one of the reading frames on the complementary strand. Although the likelyhood for transcription of this complementary strand open reading frame and subsequent translation into protein is very small, in order to exclude a potential interference with the transcription and subsequent translation of the sequence encoded on the sense strand, TCA codons for Ser were introduced on the sense approximately every 500 bases. No changes were introduced in the segments introduced during step 5) to allow homologous recombination. The TCA codon for Ser was preferred over the CTA and TTA codons for Leu because of the higher relative frequency for TCA (0.05) as compared to CTA (0.02) and TTA (0.03) in human_high.cod. In addition, the average human codon usage from CUTG favored TCA (0.14 against 0.07 for CTA and TTA).

Step 7) In a final step GCCACC was added at the 5' end of the sequence to generate an optimized internal ribosome entry site (Kozak signal) and a TAAA stop sgnal was added at the 3'. To maintain the initiation of translation

properties of NSsuboptmut the first 8 codons of the coding region were kept identical to the NSOPTmut sequence. The resulting sequence was again checked for the absence of BglII, PmeI and XbaI recognition sites and the presence of only 1 StuI site.

The NSsuboptmut sequence (SEQ. ID. NO. 10) has an overall reduced

GC content (63.5%) as compared to NSOPTmut (70.3%) and maintains a well optimized level of codon usage optimization. Nucleotide sequence identity of NSsuboptmut is 77.2% with respect to NSmut.

Table 5: Definition of codon replacements performed during steps 1) and 2).

1	Λ
*	v

	Υ		T		
Amino Acid	Most frequent	Relative	Reduction in	Replacement	Relative
	codon	frequency	GC content	codon	frequency
		·	(bases)		· · ·
Amino	Acids where the re	placement codon	reduces the codo	GC-content by 1	base
Ala	GCC	0.51	1	GCT	0.17
Arg	CGC	0.37	1	AGG	0.18
Asn	AAC	0.78	1.	AAT	0.22
Asp	GAC	0.75	1	GAT ·	0.25
Cys	TGC	0.68	1	TGT	0.32
Glu .	GAG	0.75	1	GAA	0.25
Gin	CAG	0.88	1	CAA	0.12
Gly	GGC	0.50	1 .	GGA	0.14
His	CAC	0.79	1	CAT	0.21
Ile	ATC	0.77	1 .	ATT	0.18
Lys	AAG	0.82	1	AAA	0.18
Phe	TTC	0.80	1	TTT	0.20
Pro	ccc	0.48	1 .	ССТ	0.19
Ser · ·	AGC	0.34	1	TCT	0.13
Thr	ACC	0.51		ACA	0.14
Tyr	TAC	0.74	 	TAT	0.26
		•	a alternátive es de		1 0.20
Met			alternative codor		1
Trp	ATG	1.00	0	ATG	1.00
11P	TGG	1.00	0	TGG	1.00

Amino Acids	where the replacement	nt codon has a very	low relative frequ	ency. These amin	o acids were
Leu		uded from the repla	icement procedure	TTG	0.06
Val	GTG	0.64	1	GTT	0.07

Example 12: Virus Characterization

Adenovectors were characterized by: (a) measuring the physical particles/ml; (b) running a TaqMan PCR assay; and (c) checking protein expression after infection of HeLa cells.

a) Physical Particles Determination

CsCl purified virus was diluted 1/10 and 1/100 in 0.1% SDS PBS. As a control, buffer A105 was used. These dilutions were incubated 10 minutes at 55°C. After spinning the tubes briefly, O.D. at 260 nm was measured. The amount of viral particles was calculated as follows: 1 OD 260 nm = 1.1×10^{12} physical particles/ml. The results were typically between 5×10^{11} and 1×10^{12} physical particles /ml.

b) TaqMan PCR Assay

10

15

20

25

30

TaqMan PCR assay was used for adenovectors genome quantification (Q-PCR particles/ml). TaqMan PCR assay was performed using the ABI Prism 7700sequence detector. The reaction was performed in a final 50 μ l volume in the presence of oligonucleotides (at final 200 nM) and probe (at final 200 μ M) specific for the adenoviral backbone. The virus was diluted 1/10 in 0.1% SDS PBS and incubated 10 minutes at 55°C. After spinning the tube briefly, serial 1/10 dilutions (in water) were prepared. 10 μ l the 10⁻³, 10⁻⁵ and 10⁻⁷ dilutions were used as templates in the PCR assay.

The amount of particles present in each sample was calculated on the basis of a standard curve run in the same experiment. Typically results were between $1~\mathrm{X}~10^{12}$ and $3~\mathrm{X}~10^{12}~$ Q-PCR particles /ml.

c) Expression of HCV Non-Structural Proteins

Expression of HCV NS proteins was tested by infection of HeLa cells. Cells were plated the day before the infection at 1.5 X 106 cells/dish (10 cm Ø Petri dishes). Different amounts of CsCl purified virus corresponding to m.o.i. of 50, 250

and 1250 pp/cell were diluted in medium (FCS free) up to a final volume of 5 ml. The diluted virus was added on the cells and incubated for 1 hour at 37°C in a CO₂ incubator (gently mixing every 20 minutes). 5 ml of 5% HS-DMEM was added and the cells were incubated at 37°C for 48 hours.

Cell extracts were prepared in 1% Triton/TEN buffer. The extracts were run on 10% SDS-acrylamide gel, blotted on nitrocellulose and assayed with antibodies directed against NS3, NS5a and NS5b in order to check the correct polyprotein cleavage. Mock-infected cells were used as a negative control. Results from representative experiments testing the Ad5-NS, MRKAd5-NSmut, MRKAd6-NSmut and MRKAd6-NSOPTmut are shown in Figure 14.

Example 13: Mice Immunization with Adenovectors Encoding Different NS Cassettes

The adenovectors Ad5-NS, MRKAd5-NSmut, MRKAd6-NSmut and MRKAd6-NSOPTmut were injected in C57Black6 mice strains to evaluate their potential to elicit anti-HCV immune responses. Groups of animals (N=9-10) were injected intramuscularly with 10⁹ pp of CsCl purified virus. Each animal received two doses at three weeks interval.

Humoral immune response against the NS3 protein was measured in post dose two sera from C57Black6 immunized mice by ELISA on bacterially expressed NS3 protease domain. Antibodies specific for the tested antigen were detected with geometric mean titers (GMT) ranging from 100 to 46000 (Tables 6, 7, 8 and 9).

Table 6: Ad5-NS

						•		•			GMT
Mice n.	1	2	3	. 4	5	6	7	8	9	10	
Titer	50	253	50	50	50	2257	504	50	50	50	108

30

15

20

25[.]

Table 7: Ad5-NSmut

											GMT	ļ
Mice	11	12	13	14	15	16	17	18	19	20		
n. Titer	3162	78850	87241	6796	12134	3340	18473	13093	76167	49593	23645	

Table 8: MRKAd6-NSmut

5

10

15

20

											GMT
Mice	21	22	23	24	25	26	27	28	29	· 30	
n.	25626	39751	40187	65834	60619	69933	21555	49348	29290	26859	46461

Table 9: MRKAd6-NSOPTmut

<u> </u>								GMT
) (i	31	32	33	34	35	36	37	
Mice n. Titer	25430	3657	893	175	10442	49540	173	2785

T cell response in C57Black6 mice was analyzed by the quantitative ELISPOT assay measuring the number of IFNγ secreting T cells in response to five pools (named from F to L+M) of 20mer peptides overlapping by ten residues encompassing the NS3-NS5B sequence. Specific CD8+ response induced in C57Black6 mice was analyzed by the same assay using a 20mer peptide encompassing a CD8+ epitope for C57Black6 mice (pep1480). Cells secreting IFNγ in an antigen specific-manner were detected using a standard ELIspot assay.

Spleen cells, splenocytes and peptides were produced and treated as described in Example 3, *supra*. Representative data from groups of C57Black6 mice (N=9-10) immunized with two injections of 10⁹ viral particles of vectors Ad5-NS, MRKAd5-NSmut and MRKAd6-NSmut are shown in Figure 15.

Example 14: Immunization of Rhesus macaques with Adenovectors

Rhesus macaques (N=3-4) were immunized by intramuscular injection of CsCl purified Ad5-NS, MRKAd5-NSmut, MRKAd6-NSmut or MRKAd6-

NSOPTmut virus. Each animal received two doses of 10^{11} or 10^{10} vp in the deltoid muscle at 0, and 4 weeks.

CMI was measured at different time points by a) IFN- γ ELISPOT (see Example 3, supra), b) IFN- γ ICS and c) bulk CTL assays. These assays measure HCV antigen-specific CD8+ and CD4+ T lymphocyte responses, and can be used for a variety of mammals, such as humans, rhesus monkeys, mice, and rats.

The use of a specific peptide or a pool of peptides can simplify antigen presentation in CTL cytotoxicity assays, interferon-gamma ELISPOT assays and interferon-gamma intracellular staining assays. Peptides based on the amino acid sequence of various HCV proteins (core, E2, NS3, NS4A, NS4B, NS5a, NS5b) were prepared for use in these assays to measure immune responses in HCV DNA and adenovirus vector vaccinated rhesus monkeys, as well as in HCV-infected humans. The individual peptides are overlapping 20-mers, offset by 10 amino acids. Large pools of peptides can be used to detect an overall response to HCV proteins while smaller pools and individual peptides may be used to define the epitope specificity of a response.

IFN-YICS:

5

10

15

25

30

35

For IFN-γ ICS, 2 x 106 PBMC in 1 ml R10 (RPMI medium, supplemented with 10% FCS) were stimulated with peptide pool antigens. Final concentration of each peptide was 2 µg/ml. Cells were incubated for 1 hour in a CO₂ incubator at 37°C and then Brefeldin A was added to a final concentration of 10 µg /ml to inhibit the secretion of soluble cytokines. Cells were incubated for additional 14-16 hours at 37°C.

Stimulation was done in the presence of co-stimulatory antibodies: CD28 and CD49d (anti-humanCD28 BD340975 and anti-humanCD49d BD340976). After incubation, cells were stained with fluorochrome-conjugated antibodies for surface antigens: anti-CD3, anti-CD4, anti-CD8 (CD3-APC Biosource APS0301, CD4-PE BD345769, CD8-PerCP BD345774).

To detect intracellular cytokines, cells were treated with FACS permeabilization buffer 2 (BD340973), 2x final concentration. Once fixed and permeabilized, cells were incubated with an antibody against human IFN-γ, IFN-γFITC (Biosource AHC4338).

Cells were resuspended in 1% formaldehyde in PBS and analyzed at FACS within 24 hours. Four color FACS analysis was performed on a FACSCalibur

instrument (Becton Dickinson) equipped with two lasers. Acquisition was done gating on the lymphocyte population in the Forward versus Side Scatter plot coupled with the CD3, CD8 positive populations. At least 30,000 events of the gate were taken. The positive cells are expressed as number of IFN- γ expressing cells over 10^6 lymphocytes.

IFN- γ ELISPOT and IFN- γ ICS data from immunized monkeys after one or two injections of 10^{10} or 10^{11} vp of the different adenovectors are reported in Figures 16A-16D, 17A, and 17B.

10 Bulk CTL Assays

15

20

25

30

A distinguishing effector function of T lymphocytes is the ability of subsets of this cell population to directly lyse cells exhibiting appropriate MHC-associated antigenic peptides. This cytotoxic activity is most often associated with CD8+ T lymphocytes.

PBMC samples were infected with recombinant vaccine viruses expressing HCV antigens in vitro for approximately 14 days to provide antigen restimulation and expansion of memory T cells. Cytotoxicity against autologous B cell lines treated with peptide antigen pools was tested.

The lytic function of the culture is measured as a percentage of specific lysis resulted from chromium released from target cells during 4 hours incubation with CTL effector cells. Specific cytotoxicity is measured and compared to irrelevant antigen or excipient-treated B cell lines. This assay is semi-quantitative and is the preferred means for determining whether CTL responses were elicited by the vaccine. Data after two injections from monkeys immunized with 10¹¹ vp/dose with adenovectors Ad5-NS, MRKAd5-NSmut and MRKAd6-NSmut are reported in Figures 18A-18F.

Other embodiments are within the following claims. While several embodiments have been shown and described, various modifications may be made without departing from the spirit and scope of the present invention.

WHAT IS CLAIMED IS:

A nucleic acid comprising a nucleotide sequence encoding a
Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ ID
NO: 1, provided that said polypeptide has sufficient protease activity to process itself to produce an NS5B protein and said NS5B protein is enzymatically inactive.

2. The nucleic acid of claim 1, wherein said nucleotide sequence is substantially similar to the coding sequence of SEQ ID NO: 2.

10

- 3. The nucleic acid of claim 1, wherein said nucleotide sequence encodes for the polypeptide of SEQ ID NO: 1.
- 4. The nucleic acid of claim 3, wherein said nucleotide sequence is the coding sequence of either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
 - 5. The nucleic acid of claim 3, wherein said nucleotide sequence is the coding sequence of either SEQ ID NO: 2 or SEQ ID NO: 3.

20

- 6. The nucleic acid of any one of claims 1-5, wherein said nucleic acid is an expression vector capable of expressing said polypeptide from said nucleotide sequence in a human cell.
- 7. A nucleic acid comprising a gene expression cassette able to express a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ ID NO: 1 in a human cell, provided that said polypeptide can process itself to produce an NS5B protein and said NS5B protein is enzymatically inactive, said expression cassette comprising:
 - a) a promoter transcriptionally coupled to a nucleotide sequence encoding said polypeptide;
 - b) a 5' ribosome binding site functionally coupled to said nucleotide sequence,

- c) a terminator joined to the 3' end of said nucleotide sequence, and
- d) a 3' polyadenylation signal functionally coupled to said nucleotide sequence.
- 8. The nucleic acid of claim 7, wherein said nucleotide sequence is substantially similar to either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
- 9. The nucleic acid of claim 8, wherein said nucleic acid is a shuttle vector further comprising a selectable marker, an origin of replication, a first adenovirus homology region and a second adenovirus homology region flanking said expression cassette, wherein said first homology region has at least about 100 base pairs substantially homologous to at least right end of a wild-type adenovirus region from about base pairs 1-425, and said second homology region has at least about 100 base pairs substantially homologous to at least the left end of a wild-type adenovirus region from about base pairs 3511-5792 of Ad5 or corresponding region of another adenovirus.
- 10. The nucleic acid of claim 9, wherein said nucleotide sequence 20 encodes for a polypeptide of SEQ ID NO: 1.
 - 11. The nucleic acid of claim 9, wherein said nucleotide sequence is SEQ ID NO: 2.
- 25 12. The nucleic acid of claim 9, wherein said nucleotide sequence is either SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
- The nucleic acid of claim 8, wherein said nucleic acid is a
 plasmid suitable for administration into a human and further comprises a prokaryotic
 origin of replication and a gene coding for a selectable marker.
 - 14. The nucleic acid of claim 13, wherein said nucleotide sequence encodes for a polypeptide of SEQ ID NO: 1.

15. The nucleic acid of claim 14, wherein said nucleotide sequence is the coding sequence of either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.

- 5 16. The nucleic acid of claim 14, wherein said nucleotide sequence is the coding sequence of SEQ ID NO: 2 or SEQ ID NO: 3.
 - 17. The nucleic acid of claim 14, wherein said promoter is the human intermediate early cytomegalovirus promoter (intron A), said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the bovine growth hormone (BGH) polyadenylation signal.

10

20

30.

- 18. The nucleic acid of claim 8, wherein said nucleic acid is a adenovirus genome plasmid comprising a selectable marker, an origin of replication, and a recombinant adenovector genome containing an E1 deletion, an E3 deletion, and said expression cassette.
 - 19. The nucleic acid of claim 8, wherein said nucleic acid is a adenovirus genome plasmid comprising a selectable marker, an origin of replication, and
 - a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
 - b) said gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to said first region;
- 25 c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said expression cassette;
 - d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
 - e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and

- f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.
- 5 20. The nucleic acid of claim 19, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
- 10 21. The nucleic acid of claim 20, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
- 15 22. The nucleic acid of claim 21, wherein said expression cassette is in an E1 anti parallel orientation and said nucleotide sequence is either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
- 23. The nucleic acid of claim 19, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 or Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.
- 24. The nucleic acid of claim 23, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
- 25. The nucleic acid of claim 24, wherein said expression cassette
 30 is in an E1 anti parallel orientation and said nucleotide sequence is either SEQ ID NO:
 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
 - 26. The nucleic acid of claim 24, wherein said expression cassette is in an E1 anti parallel orientation and said nucleotide sequence is either SEQ ID NO: 2 or SEQ ID NO: 3.

27. The nucleic acid of claim 8, wherein said nucleic acid is a adenovirus genome plasmid comprising an origin of replication, a selectable marker, and:

- a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
- b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;
- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;

10

20

30

- d) said gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to said third region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said gene expression cassette; and
 - f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.
 - 28. The nucleic acid of claim 27, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
 - 29. The nucleic acid of claim 28, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
 - 30. The nucleic acid of claim 27, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 of Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.

31. The nucleic acid of claim 30, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.

32. The nucleic acid of claim 8, wherein said nucleic acid is a adenovector consisting of a nucleotide sequence substantially similar to of SEQ ID NO. 4 or a derivative thereof, wherein said derivative thereof has the HCV polyprotein encoding sequence present in SEQ ID NO: 4 replaced with the HCV polyprotein encoding sequence of either SEQ ID NO: 3, SEQ ID NO: 10 or SEQ ID NO: 11.

10

20

25

30

- 33. The nucleic acid of claim 8, wherein said nucleic acid is an adenovector having an adenovector genome containing an E1 deletion, an E3 deletion, and said expression cassette
 - 34. The nucleic acid of claim 8, wherein said nucleic acid is an adenovector consisting of:
 - a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
 - b) said gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to said first region;
 - c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said expression cassette;
 - d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
 - e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and
 - f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.

35. The nucleic acid of claim 34, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.

36. The nucleic acid of claim 35, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.

10

15

25

- 37. The nucleic acid of claim 36, wherein said expression cassette is in an E1 anti parallel orientation and said nucleotide sequence is either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
- 38. The nucleic acid of claim 34, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 or Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.
- 39. The nucleic acid of claim 37, where said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
- 40. The nucleic acid of claim 39, wherein said expression cassette is in an E1 anti parallel orientation and said nucleotide sequence is SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
- 41. The nucleic acid of claim 39, wherein said expression cassette is in an E1 anti parallel orientation and said nucleotide sequence is SEQ ID NO: 2 or SEQ ID NO: 3.
 - 42. The nucleic acid of claim 8, wherein said nucleic acid is an adenovector consisting of:

a) a first adenovirus region from about base pair 1 to about base
 pair 450 corresponding to either Ad5 or Ad6;

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;

5

- 10

20

25

- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
- d) said gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to said third region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said gene expression cassette; and
- f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.
 - 43. The nucleic acid of claim 42, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
 - 44. The nucleic acid of claim 42, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 or Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.
 - 45. An adenovector consisting of the nucleic acid sequence of SEQ ID NO. 4 or a derivative thereof, wherein said derivative thereof has the HCV polyprotein encoding sequence present in SEQ ID NO: 4 replaced with the HCV polyprotein encoding sequence of either SEQ ID NO: 3, SEQ ID NO: 10 or SEQ ID NO: 11.
 - 46. An adenovector produced by a process comprising the steps of:

	a)	producing an adenovirus genome plasmid by homologous
recombination	n betwe	en the shuttle vector of claim 9 and a nucleic acid comprising;
		a first adenovirus region from about base pair 1 to about base
pair 450 corre	spondi	ng to either Ad5 or Ad6;

a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;

a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;

10

25

30

a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and

a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region; and

- b) rescuing said adenovector from said adenovirus plasmid.
- 47. A cultured recombinant cell comprising the nucleic acid of 20 claim 6.
 - 48. A cultured recombinant cell comprising the nucleic acid of any one of claims 9-46.
 - 49. A method of making an adenovector comprising the steps of:
 - a) producing an adenovirus genome plasmid comprising a gene expression cassette by homologous recombination between the nucleic acid of claim 9 and a nucleic acid comprising;
 - a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;

5

10

.15

20

a third adenovirus region from about base pair 5549 to about
base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair
28156 corresponding to Ad6, joined to said second region;

- a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and
 - a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region; and
 - b) rescuing said recombinant adenovirus from said recombinant adenovirus plasmid.
 - 50. A pharmaceutical composition comprising the nucleic acid of any one of claims 13-17 and 32-46 and pharmaceutically acceptable carrier.
 - 51. A method of treating a patient comprising the step of administering to said patient an effective amount of the nucleic acid of any one of claims 13-17 and 32-46.
 - 52. The method of claim 51, wherein said patient is a human.
 - 53. The method of claim 52, wherein said patient is not infected with HCV.
- 25 54. The method of claim 52, wherein said patient is infected with HCV.
- 55. A recombinant nucleic acid comprising one or more Ad6 regions and a region not present in Ad6, wherein at least one Ad6 region is selected from the group consisting of: E1A, E1B, E2B, E2A, E4, L1, L2, L4, and L5.
 - 56. The recombinant nucleic acid of claim 55, wherein said region not present in Ad6, is an expression cassette coding for a polypeptide not found in Ad6.

10

20

25

- 57. The recombinant nucleic acid of claim 56, wherein said recombinant nucleic acid is an adenovirus vector defective in at least E1 that is able to replicate when E1 is supplied in trans.
- 58. The recombinant nucleic acid of claim 57, wherein said vector consists of:
 - a) a first adenovirus region from about base pair 1 to about base
 pair 450 corresponding to either Ad5 or Ad6;
- b) said gene expression cassette in an E1 parallel or E1 antiparallel orientation joined to said first region;
- c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said gene expression cassette;
- d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
 - e) an optionally present fourth region from about base pair 28134 to about base pair 30817 corresponding to Ad5, or from about base pair 28157 to about 30789 corresponding to Ad6, joined to said third region;
 - base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, wherein said fifth region is joined to said fourth region if said fourth region is present, or said fifth is joined to said third region if said fourth region is not present; and
 - g) a sixth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region;

provided that at least one of said second, third, and fifth regions is from Ad6.

- 59. The recombinant nucleic acid of claim 57, wherein said vector consists of:
- a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

WO 03/031588 PCT/US02/32512

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;

- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
- d) said gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to said third region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base.

 pair 33784 corresponding to Ad6, joined to said gene expression cassette; and

10

15

- f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region;
- provided that at least one of said second, third, and fourth regions is from Ad6.

1.	MAPITAYSQQ	TRGLLGCIIT	SLTGRDKNQV.	EGEVQVVSTA	TOSFLATCVN
51	GVCWTVYHGA	GSKTLAGPKG	PITQMYTNVD	QDLVGWQAPP	GARSLTPCTC
101	GSSDLYLVTR	HADVIPVRRR	GDSRGSLLSP	RPVSYLKGSS	GGPLLCPSGH
151	AVGIFRAAVC	TRGVAKAVDF	VPVESMETTM.	RSPVFTDNSS	PPAVPQSFQV
201	AHLHAPTGSG	KSTKVPAAYA	AQGYKVLVLN	PSVAATLGFG	AYMSKAHGID
251	PNIRTGVRTI	TTGAPVTYST.	YGKFLADGGC	SGGAYDIIIC	DECHSTDSTT
301	ILGIGTVLDQ	AETAGARLVV	LATATPPGSV	TVPHPNIEEV	ALSNTGEIPF
351	YGKAIPIEAI	RGGRHLIFCH	SKKKCDELAA	KLSGLGINAV	AYYRGLDVSV
401 .	IPTIGDVVVV	ATDALMTGYT	GDFDSVIDCN	TCVTQTVDFS	LDPTFTIETT
451	TVPQDAVSRS	QRRGRTGRGR	RGIYRFVTPG	ERPSGMFDSS	VLCECYDAGC
501	AWYELTPAET	SVRLRAYLNT	PGLPVCQDHL	EFWESVFTGL	THIDAHFLSQ
551	TKQAGDNFPY	LVAYQATVCA	RAQAPPPSWD	QMWKCLIRLK	PTLHGPTPLL
601	YRLGAVQNEV	TLTHPITKYI	MACMSADLEV	VTSTWVLVGG	VLAALAAYCL
651	TTGSVVIVGR	IILSGRPAIV	PDREFLYQEF	DEMEECASHL	PYIEQGMQLA
701	EQFKQKALGL	LQTATKQAEA	AAPVVESKWR	ALETFWAKHM	WNFISGIQYL
751	AGLSTLPGNP	AIASLMAFTA	SITSPLTTQS	TLLFNILGGW	VAAQLAPPSA
801	ASAFVGAGIA	GAAVGSIGLG	KVLVDILAGY	GAGVAGALVA	FKVMSGEMPS
851	TEDLVNLLPA	ILSPGALVVG	VVCAAILRRH	VGPGEGAVQW	MNRLIAFASR
901	GNHVSPTHYV	PESDAAARVT	QILSSLTITQ	LLKRLHQWIN	EDCSTPCSGS
951	WLRDVWDWIC	TVLTDFKTWL	QSKLLPQLPG	VPFFSCQRGY	KGVWRGDGIM
1001	QTTCPCGAQI	TGHVKNGSMR	IVGPKTCSNT	WHGTFPINAY	TTGPCTPSPA
1051	PNYSRALWRV	AAEEYVEVTR	VGDFHYVTGM	TTDNVKCPCQ	VPAPEFFTEV:
1101	DGVRLHRYAP	ACRPLLREEV	TFQVGLNQYL	VGSQLPCEPE	PDVAVLTSML
1151	TDPSHITAET	AKRRLARGSP	PSLASSSASQ	LSAPSLKATC	TTHHVSPDAD
1201	LIEANLLWRQ	EMGGNITRVE	SENKVVVLDS	FDPLRAEEDE	REVSVPAEIL
1251	RKSKKFPAAM	PIWARPDYNĖ	PLLESWKDPD	YVPPVVHGCP	LPPIKAPPIP
1301	PPRRKRTVVL	TESSVSSALA	ELATKTFGSS	ESSAVDSGTA	TALPDQASDD
1351	GDKGSDVESY	SSMPPLEGEP	GDPDLSDGSW	STVSEEASED	VVCCSMSYTW
1401	TGALÍTPCAA	EESKLPINAL	SNSLLRHHNM	VYATTSRSAG	LRQKKVTFDR
1451	LQVLDDHYRD	VLKEMKAKAS	TVKAKLLSVE	EACKLTPPHS	AKSKFGYGAK
1501	DVRNLSSKAV	NHIHSVWKDL	LEDTVTPIDT	TIMAKNEVFC	VQPEKGGRKP
1551	ARLIVFPDLG	VRVCEKMALY	DVVSTĹPQVV	MGSSYGFQYS	PGQRVEFLVN
1,601	TWKSKKNPMG	FSYDTRCFDS	TVTENDIRVE	ESIYQCCDLA	PEARQAIKSL
1651	TERLYIGGPL	TNSKGQNCGY	RRCRASGVLT	TSCGNTLTCY	LKASAACRAA
					••••

FIG. 1A

1701	KLODCTMLVN	AAGLVVICES	AGTQEDAASL	RVFTEAMTRY	SAPPGDPPQP
1751		SSNVSVAHDA			
1801		PTLWARMILM			
1851		HGLSAFSLHS			
1901		RAATCGKYLF			
1951		ARPRWFMLCL			
TAAT	GGDZINDEDIC				

						-	
	1 .	GCCACCATGG	CGCCCATCAC	GGCCTACTCC	CAACAGACGC	GGGCCTACT	:
	51	TGGTTGCATC	ATCACTAGCC	TTACAGGCCG	GGACAAGAAC	CAGGTCGAGG	
,	101	GAGAGGTTCA	GGTGGTTTCC	ACCGCAACAC	AATCCTTCCT	GGCGACCTGC	
•	151	GTCAACGGCG	TGTGTTGGAC	CGTTTACCAT	GGTGCTGGCT	CAAAGACCTT	
	201 [.] ·	AGCCGGCCCA	AAGGGCCAA	TCACCCAGAT	GTACACTAAT	GTGGACCAGG	
	251	ACCTCGTCGG	CTGGCAGGCG	CCCCCGGGG	CGCGTTCCTT	GACACCATGC	٠.
	301	ACCTGTGGCA	GCTCAGACCT	TTACTTGGTC	ACGAGACATG	CTGACGTCAT	
	351	TCCGGTGCGC	ĊGGCGGGCG	ACAGTAGGGG	GAGCCTGCTC	TCCCCCAGGC	
	401	CTGTCTCCTA	CTTGAAGGGC	TCTTCGGGTG	GTCCACTGCT	CTGCCCTTCG	
	4.51	GGGCACGCTG	TGGGCATCTT	CCGGGCTGCC	GTATGCACCC	GGGGGGTTGC	
	501	GAAGGCGGTG	GACTTTGTGC	CCGTAGAGTC	CATGGAAACT	ACTATGCGGT	
	551	CTCCGGTCTT	CACGGACAAC	TCATCCCCC	CGGCCGTACC	GCAGTCATTT	٠;
	601	CAAGTGGCCC	ACCTACACGC	TCCCACTGGC	AGCGGCAAGA	GTACTAAAGT	
	651	GCCGGCTGCA	TATGCAGCCC	AAGGGTACAA	GGTGCTCGTC	CTCAATCCGT	•
	701	CCGTTGCCGC	TACCTTAGGG	TTTGGGGCGT	ATATGTCTAA	GGCACACGGT	
	751	ATTGACCCCA	ACATCAGAAC	TGGGGTAAGG	ACCATTACCA	CAGGCGCCCC	
	801	CGTCACATAC	TCTACCTATG	GCAAGTTTCT	TGCCGATGGT	GGTTGCTCTG	
	851	GGGGCGCTTA	TGACATCATA	ATATGTGATG	AGTGCCATTC	AACTGACTCG	
	901	ACTACAATCT	TGGGCATCGG	CACAGTCCTG	GACCAAGCGG	AGACGGCTGG	
	951	AGCGCGGCTT	GTCGTGCTCG	CCACCGCTAC	GCCTCCGGGA	TCGGTCACCG	٠.
	1001	TGCCACACCC	AAACATCGAG	GAGGTGGCCC	TGTCTAATAC	TGGAGAGATC	
	1051	CCCTTCTATG	GCAAAGCCAT	CCCCATTGAA	GCCATCAGGG	GGGGAAGGCA	٠.
	1101	TCTCATTTTC	TGTCATTCCA	AGAAGAAGTG	CGACGAGCTC	GCCGCAAAGC	
	1151	TGTCAGGCCT	CGGAATCAAC	GCTGTGGCGT	ATTACCGGGG	GCTCGATGTG	•
	1201	TCCGTCATAC	CAACTATCGG	AGACGTCGTT	GTCGTGGCAA	CAGACGCTCT	
	1251	GATGACGGC	TATACGGGCG	ACTTTGACTC	AGTGATCGAC	TGTAACACAT	
	1301	GTGTCACCCA	GACAGTCGAC	TTCAGCTTGG	ATCCCACCTT	CACCATTGAG	
	1351	ACGACGACCG	TGCCTCAAGA	CGCAGTGTCG	CGCTCGCAGC	GGCGGGGTAG	
•	1401	GACTGGCAGG	GGTAGGAGAG	GCATCTACAG	GTTTGTGACT	CCGGGAGAAC	
	1451	. GGCCCTCGGG	CATGTTCGAT	TCCTCGGTCC	TGTGTGAGTG	CTATGACGCG	
	1501	GGCTGTGCTT	GGTACGAGCT	CACCCCCCCC	GAGACCTCGG	TTAGGTTGCG	
	1551	GGCCTÄCCTG	AACACACCAG	GGTTGCCCGT	TTGCCAGGAC	CACCTGGAGT	
	1601	TCTGGGAGAG	TGTCTTCACA	GCCTCACCC	ACATAGATGC	ACACTTCTTG	
	1651	TCCCAGACCA	AGCAGGCAGG	AGACAACTTC	CCCTACCTGG	TAGCATACCA	

FIG. 2A

1701	AGCCACGGTG TGCGCCAGGG CTCAGGCCCC ACCTCCATCA TGGGATCAAA
1751	TGTGGAAGTG TCTCATACGG CTGAAACCTA CGCTGCACGG GCCAACACCC
1801	TTGCTGTACA GGCTGGGAGC CGTCCAAAAT GAGGTCACCC TCACCCACCC
1851	CATAACCAAA TACATCATGG CATGCATGTC GGCTGACCTG GAGGTCGTCA
1901	CTAGCACCTG GGTGCTGGTG GGCGGAGTCC TTGCAGCTCT GGCCGCGTAT
1951	TGCCTGACAA CAGGCAGTGT GGTCATTGTG GGTAGGATTA TCTTGTCCGG
2001	GAGGCCGGCT ATTGTTCCCG ACAGGGAGTT TCTCTACCAG GAGTTCGATG
2051	AAATGGAAGA GTGCGCCTCG CACCTCCCTT ACATCGAGCA GGGAATGCAG
2101	CTCGCCGAGC AATTCAAGCA GAAAGCGCTC GGGTTACTGC AAACAGCCAC
2151	CAAACAAGCG GAGGCTGCTG CTCCCGTGGT GGAGTCCAAG TGGCGAGCCC
2201	TTGAGACATT CTGGGCGAAG CACATGTGGA ATTTCATCAG CGGGATACAG
2251	TACTTAGCAG GCTTATCCAC TCTGCCTGGG AACCCCGCAA TAGCATCATT
2301	GATGGCATTC ACAGCCTCTA TCACCAGCCC GCTCACCACC CAAAGTACCC
2351	TCCTGTTTAA CATCTTGGGG GGGTGGGTGG CTGCCCAACT CGCCCCCCC
2401	AGCGCCGCTT CGGCTTTCGT GGGCGCCGGC ATCGCCGGTG CGGCTGTTGG
2451	CAGCATAGGC CTTGGGAAGG TGCTTGTGGA CATTCTGGCG GGTTATGGAG
2501	CAGGAGTGGC CGGCGCGCTC GTGGCCTTCA AGGTCATGAG CGGCGAGATG
2551	CCCTCCACCG AGGACCTGGT CAATCTACTT CCTGCCATCC TCTCTCCTGG
2601	CGCCCTGGTC GTCGGGGTCG TGTGTGCAGC AATACTGCGT CGACACGTGG
2651	GTCCGGGAGA GGGGGCTGTG CAGTGGATGA ACCGGCTGAT AGCGTTCGCC
2701	TCGCGGGGTA ATCATGTTTC CCCCACGCAC TATGTGCCTG AGAGCGACGC
2751	CGCAGCGCGT GTTACTCAGA TCCTCTCCAG CCTTACCATC ACTCAGCTGC
2801	TGAAAAGGCT CCACCAGTGG ATTAATGAAG ACTGCTCCAC ACCGTGTTCC.
2851	GGCTCGTGGC TAAGGGATGT TTGGGACTGG ATATGCACGG TGTTGACTGA
2901	CTTCAAGACC TGGCTCCAGT CCAAGCTCCT GCCGCAGCTA CCGGGAGTCC
2951	CTTTTTTCTC GTGCCAACGC GGGTACAAGG GAGTCTGGCG GGGAGACGGC
3001	ATCATGCAAA CCACCTGCCC ATGTGGAGCA CAGATCACCG GACATGTCAA
3051	AAACGGTTCC ATGAGGATCG TCGGGCCTAA GACCTGCAGC AACACGTGGC
3101	ATGGAACATT CCCCATCAAC GCATACACCA CGGGCCCCTG CACACCCTCT
3151	CCAGCGCCAA ACTATTCTAG GGCGCTGTGG CGGGTGGCCG CTGAGGAGTA
3201	CGTGGAGGTC ACGCGGGTGG GGGATTTCCA CTACGTGACG GGCATGACCA
3251	CTGACAACGT AAAGTGCCCA TGCCAGGTTC CGGCTCCTGA ATTCTTCACG
3301	GAGGTGGACG GAGTGCGGTT GCACAGGTAC GCTCCGGCGT GCAGGCCTCT
3351	CCTACGGGAG GAGGTTACAT TCCAGGTCGG GCTCAACCAA TACCTGGTTG

					•
3401	GGTCACAGCT AC	CCATGCGAG	CCCGAACCGG	ATGTAGCAGT	GCTCACTTCC
3451	ATGCTCACCG AC	CCCTCCCA	CATCACAGCA	GAAACGGCTA	AGCGTAGGTT
350Í	GGCCAGGGGG TO	CTCCCCCT	CCTTGGCCAG	CTCTTCAGCT	AGCCAGTTGT
3551	CTGCGCCTTC CT	TTGAAGGCG	ACATGCACTA	CCCACCATGT	CTCTCCGGAC
3601	GCTGACCTCA TO	CGAGGCCAA	CCTCCTGTGG	CGGCAGGAGA	TGGGCGGGAA
3651	CATCACCCGC GT	TGGAGTCGG	AGAACAAGGT	GGTAGTCCTG	GACTCTTTCG
3701	ACCCGCTTCG AC	GCGGAGGAG	GATGAGAGGG	AAGTATCCGT	TCCGGCGGAG
3751	ATCCTGCGGA A	ATCCAAGAA	GTTCCCCGCA	GCGATGCCCA	TCTGGGCGCG
3801	CCCGGATTAC A	ACCCTCCAC	TGTTAGAGTC	CTGGAAGGAC	CCGGACTACG
3851	TCCCTCCGGT G	GTGCACGGG	TGCCCGTTGC	CACCTATCAA	GGCCCTCCA
3901 -	ATACCACCTC C	ACGGAGAAA	GAGGACGGTT	GTCCTAACAG	AGTCCTCCGT
3951 ⁻	GTCTTCTGCC T	TAGCGGAGC	TCGCTACTAA	GACCTTCGGC	AGCTCCGAAT
4001	CATCGGCCGT C	GACAGCGGC	ACGGCGACCG	CCCTTCCTGA	CCAGGCCTCC
4051	GACGACGGTG A	CAAAGGATC	CGACGTTGAG	TCGTACTCCT	CCATGCCCCC.
4101	CCTTGAGGGG G	AACCGGGGG	ACCCCGATCT	CAGTGACGGG	TCTTGGTCTA.
4151	CCGTGAGCGA G	GAAGCTAGT	GAGGATGTCG	TCTGCTGCTC	AATGTCCTAC
4201 .	ACATGGACAG G	CGCCTTGAT	CACGCCATGC	GCTGCGGAGG	AAAGCAAGCT
4251	GCCCATCAAC G	CGTTGAGCA	ACTCTTTGCT	GCGCCACCAT	AACATGGTTT
4301	ATGCCACAAC A	TCTCGCAGC	GCAGGCCTGC	GGCAGAAGAA	GGTCACCTTT
4351	GACAGACTGC A	AGTCCTGGA	${\tt CGACCACTAC}_{\cdot}$	CGGGACGTGC	TCAAGGAGAT
4401	GAAGGCGAAG G	CGTCCACAG	TTAAGGCTAA	ACTCCTATCC	GTAGAGGAAG
4451	CCTGCAAGCT G	ACGCCCCCA	CATTCGGCCA	AATCCAAGTT	TGGCTATGGG
4501	GCAAAGGACG T	CCGGAACCT	ATCCAGCAAG	GCCGTTAACC	ACATCCACTC
4551	CGTGTGGAAG G	•			•
4601	TCATGGCAAA A	AATGAGGTT	TTCTGTGTCC	AACCAGAGAA	AGGAGGCCGT
4651··	AAGCCAGCCC G	CCTTATCGT	ATTCCCÁGAT	CTGGGAGTCC	GTGTATGCGA
4701	GAAGATGGCC C	TCTATGATG	TGGTCTCCAC	CCTTCCTCAG	GTCGTGATGG
4751	GCTCCTCATA C				
4801	GTGAATACCT G				
4851	TCGCTGTTTC G				
4901	CAATTTACCA A			•	
4951	TCGCTCACAG A	•			
5001	GCAGAACTGC G			•	
5051	GCTGCGGTAA C	ACCCTCACA	TGTTACTTGA	AGGCCTCTGC	AGCCTGTCGA
					• •

FIG. 2C

	GCTGCGAAGC TCCAGGACTG CACGATGCTC GTGAACGCCG CCGGCCTTGT
5101	CGTTATCTGT GAAAGCGCGG GAACCCAAGA GGACGCGGCG AGCCTACGAG
5151	CGTTATCTGT GAAAGCGCGG GAACCCAAGA GGACCCCCG CGACCCGCCC
5201	TCTTCACGGA GGCTATGACT AGGTACTCTG CCCCCCCGG GGACCCGCCC
5251	CARCAR ACCACTTGGA GCTGATAACA TCATGTTCCT CCAATGTGC
•	GGTCGCCCAC GATGCATCAG GCAAAAGGGT GTACTACCTC ACCCGTGATC
5301	CCACCACCC CCTCGCACGG GCTGCGTGGG AAACAGCTAG ACACACTCCA
5351	CCACCACCC CCTCGCACGG GCTOGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
5401	GTTAACTCCT GGCTAGGCAA CATTATCATG IMCGGTTCTTA GCACAGGAGC
5451	AAGGATGATT CTGATGACTC ACTTCTTCTC CATCCTTCTA GCACAGGAGC
5501	AAGGATGATT CIGATOTIC TGCCAGATCT ACGGGGCCTG TTACTCCATT
	CACCACTEC ACCTACCTCA GATCATTGAA CGACTCCATG GCCTTAGCGC
5551	ATTTTCACTC CATAGTTACT CTCCAGGTGA GATCAATAGG GTGGCTTCAT
5601	GCCTCAGGAA ACTTGGGGTA CCACCCTTGC GAGTCTGGAG ACATCGGGCC
5651	GCCTCAGGAA ACTIGGGGIA CCACCOTTO
5701	AGGAGCGTCC GCGCTAGGCT ACTGTCCCAG GGGGGGAGGG CCGCCACTTG
5751	TGGCAAGTAC CTCTTCAACT GGGCAGTGAA GACCAAACTC AAACTCACTC
5801	CANTECCECC TECETCECAG CTGGACTTGT CCGGCTGGTT CGTTGCTGGT
	TACAGCGGG GAGACATATA TCACAGCCTG TCTCGTGCCC GACCCCGCTG
5851	THE
5901	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
5951	TCCCCAACCG ATAAA

•	1 · · ·	GCCACCATGG CCCCCATCAC CGCCTACAGC CAGCAGACCC GCGGCCTGCT
	51 ·	GGGCTGCATC ATCACCAGCC TGACCGGCCG CGACAAGAAC CAGGTGGAGG
	101	GCGAGGTGCA GGTGGTGAGC ACCGCCACCC AGAGCTTCCT GGCCACCTGC
	151	GTGAACGGCG TGTGCTGGAC CGTGTACCAC GGCGCCGGCA GCAAGACCCT
	201	GGCCGGCCCC AAGGGCCCCA TCACCCAGAT GTACACCAAC GTGGACCAGG
	251	ACCTGGTGGG CTGGCAGGCC CCCCCGGCG CCCGCAGCCT GACCCCCTGC
	301	ACCTGCGGCA GCAGCGACCT GTACCTGGTG ACCCGCCACG CCGACGTGAT
•	351	CCCCGTGCGC CGCCGCGCG ACAGCCGCGG CAGCCTGCTG AGCCCCCGCC
	401	CCGTGAGCTA CCTGAAGGGC AGCAGCGGCG GCCCCCTGCT GTGCCCCAGC
	451	GGCCACGCCG TGGGCATCTT CCGCGCCGCC GTGTGCACCC GCGGCGTGGC
	501	CAAGGCCGTG GACTTCGTGC CCGTGGAGAG CATGGAGACC ACCATGCGCA
	551	GCCCCGTGTT CACCGACAAC AGCAGCCCCC CCGCCGTGCC CCAGAGCTTC
	601	CAGGTGGCCC ACCTGCACGC CCCCACCGGC AGCGGCAAGA GCACCAAGGT
	651	GCCCGCCGCC TACGCCGCCC AGGGCTACAA GGTGCTGGTG CTGAACCCCA
	701	GCGTGGCCGC CACCCTGGGC TTCGGCGCCT ACATGAGCAA GGCCCACGGC
	751	ATCGACCCCA ACATCCGCAC CGGCGTGCGC ACCATCACCA CCGGCGCCCC
	801	CGTGACCTAC AGCACCTACG GCAAGTTCCT GGCCGACGGC GGCTGCAGCG
	851	GCGGCGCCTA CGACATCATC ATCTGCGACG AGTGCCACAG CACCGACAGC
	901	ACCACCATCC TGGGCATCGG CACCGTGCTG GACCAGGCCG AGACCGCCGG
	951	CGCCCGCCTG GTGGTGCTGG CCACCGCCAC CCCCCCGGC AGCGTGACCG
	1001	TGCCCCACCC CAACATCGAG GAGGTGGCCC TGAGCAACAC CGGCGAGATC
	1051	CCCTTCTACG GCAAGGCCAT CCCCATCGAG GCCATCCGCG GCGGCCGCCA
	1101	CCTGATCTTC TGCCACAGCA AGAAGAAGTG CGACGAGCTG GCCGCCAAGC
٠.	1151	TGAGCGGCCT GGGCATCAAC GCCGTGGCCT ACTACCGCGG CCTGGACGTG
	1201	AGCGTGATCC CCACCATCGG CGACGTGGTG GTGGTGGCCA CCGACGCCCT
	1251	GATGACCGGC TACACCGGCG ACTTCGACAG CGTGATCGAC TGCAACACCT
	1301	GCGTGACCCA GACCGTGGAC TTCAGCCTGG ACCCCACCTT CACCATCGAG
	1351	ACCACCACCG TGCCCCAGGA CGCCGTGAGC CGCAGCCAGC GCCGCGGCCG
	1401	CACCGGCCGC GGCCGCCGCG GCATCTACCG CTTCGTGACC CCCGGCGAGC
	1451	GCCCCAGCGG CATGTTCGAC AGCAGCGTGC TGTGCGAGTG CTACGACGCC
	1501	GGCTGCGCCT GGTACGAGCT GACCCCCGCC GAGACCAGCG TGCGCCTGCG
	1551	CGCCTACCTG AACACCCCCG GCCTGCCCGT GTGCCAGGAC CACCTGGAGT
	1601	TCTGGGAGAG CGTGTTCACC GGCCTGACCC ACATCGACGC CCACTTCCTG
	1651	AGCCAGACCA AGCAGGCCGG CGACAACTTC CCCTACCTGG TGGCCTACCA

1701	GGCCACCGTG TGCGCCCGCG CCCAGGCCCC CCCCCCAGC TGGGACCAGA
1751	TOTAL ACTION COTTON TO COTTON TO CONTROL OF COURTOCOLOR
1801	CONCORDED CONTROGRAGE CONTROLLER
1851	CAMERICANG TACATCATEG CCTECATEAG CECCEACCTE GAGGIGGTON
1901	CONCONCOTO GCTGCTGGTG GGCGGCGTGC TGGCCGCCCT GGCCGCCTAC
1951	MCCCTCACCA CCGCCAGCGT GGTGATCGTG GGCCGCATCA TCCTGAGCGG
2001	COCCOCCCC ATCGTGCCCG ACCGCGAGTT CCTGTACCAG GAGTTCGACG
2051	ACATTCCACCA CTGCGCCAGC CACCTGCCCT ACATCGAGCA GGGCATGCAG
2101	CONCORCO ACTICAAGCA GAAGGCCCTG GGCCTGCTGC AGACCGCCAC
2151	CARCOCCC GAGGCCGCCG CCCCCGTGGT GGAGAGCAAG TGGCGCGCCC
2201	TOCAL COURT CTGGGCCAAG CACATGTGGA ACTTCATCAG CGGCATCCAG
2251	TO CONCECCE COUTGAGCAC COTGCCCGGC AACCCCGCCA TOGCCAGCCI
2301	CARROCCUTTO ACCOCCAGOA TOACCAGOOC COTGACCACO CAGAGOACOO
2351	TOCHCOTTON CATCOTGGGC GGCTGGGTGG CCGCCCAGCT GGCCCCCCCC
2401	ACCCCCCCA CCCCCTTCGT GGGCGCCCGGC ATCGCCGGCG CCGCCGIGGG
2451	CACCATCCCC CTCCCCCAAGG TCCTCGTCGA CATCCTCGCC CCCTACGCC
2501	AGGCCTCCC CGCCCCCTG GTGGCCTTCA AGGTGATGAG CGGCGAGATG
2551	CCCACCACCE AGGACCTGGT GAACCTGCTG CCCGCCATCC TGAGCCCCGG.
2601	TO CONTROL CARGOCATOG TOTOCOCCO CATCOTOCOC COCCACGIOG
2651	GGGGGCCCGA GGGCGCCGTG CAGTGGATGA ACCGCCTGAT CGCC11CGCC
2701	TACACCACA ACCACCTGAG CCCCACCCAC TACGTGCCCG AGAGCGACGC
2751	GOOGGCCCC GTGACCCAGA TCCTGAGCAG CCTGACCATC ACCCAGCIGC
2801	TO A COCCUT COACCAGTGG ATCAACGAGG ACTGCAGCAC CCCCIGCAGC
2851	CORRECC TECCECGACGT GTGGGACTGG ATCTGCACCG TGCTGACCGA
2901	CONTROL NO CONTROL TRECOTTECAGA GCAAGCTGCT GCCCCAGCTG CCCGGCGTGC
2951	COMMONTO CACCUAGUGU GGUTACAAGG GCGTGTGGUG CGGUGACGGU
3001	AMERICACA CCACCTGCCC CTGCGGCGCC CAGATCACCG GCCACGIGAA
3051	CARCOLOG ATTCCCCATCG TGGGCCCCAA GACCTGCAGC AACACCTGGC
3101	ACCORCOTT CCCCATCAAC GCCTACACCA CCGGCCCCTG CACCCCCAGC
3151	COCCCCCA ACTACAGCCG CGCCCTGTGG CGCGTGGCCG CCGAGGAGTA
3201	COTTOCACCTG ACCCGCGTGG GCGACTTCCA CTACGTGACC GGCATGACCA
3251	CCCACACCT GAAGTGCCCC TGCCAGGTGC CCGCCCCGA GTTCTTCACC
3301	CACCTCCACG GCGTGCGCCT GCACCGCTAC GCCCCCGCCT GCCGCCCCC
3351	GCTGCGCGAG GAGGTGACCT TCCAGGTGGG CCTGAACCAG TACCTGGTGG
5455	

					• .
3401	GCAGCCAGCT	GCCCTGCGAG	CCCGAGCCCG	ACGTGGCCGT	GCTGACCAGC:
3451	ATGCTGACCG	ACCCCAGCCA	CATCACCGCC	GAGACCGCCA	AGCGCCGCCT
3501	GGCCCGCGGC	AGCCCCCCA	GCCTGGCCAG	CAGCAGCGCC	AGCCAGCTGA
3551 [°]	GCGCCCCAG	CCTGAAGGCC	ACCTGCACCA	CCCACCACGT	GAGCCCCGAC
3601	GCCGACCTGA	TCGAGGCCAA	CCTGCTGTGG	CGCCAGGAGA	TGGGCGGCAA
3651	CATCACCCGC	GTGGAGAGCG	AGAACAAGGT	GGTGGTGCTG	GACAGCTTCG
3701	ACCCCCTGCG	CGCCGAGGAG	GACGAGCGCG	AGGTGAGCGT	GCCCGCCGAG
3751	ATCCTGCGCA	AGAGCAAGAA	GTTCCCCGCC	GCCATGCCCA	TCTGGGCCCG
3801	CCCCGACTAG	AACCCCCCC	TGCTGGAGAG	CTGGAAGGAC	CCCGACTACG
3851	TGCCCCCGT	GGTGCACGGC	TGCCCCCTGC	CCCCCATCAA	GCCCCCCC
3901	ATCCCCCCC	CCCGCCGCAA	GCGCACCGTG	GTGCTGACCG	.AGAGCAGCGT
3951	GAGCAGCGCC	CTGGCCGAGC	TGGCCACCAA	GACCTTCGGC	AGCAGCGAGA
4001	GCAGCGCCGT	GGACAGCGGC	ACCGCCACCG	CCCTGCCCGA	CCAGGCCAGC
4051	. GACGACGGCG	ACAAGGGCAG	CGACGTGGAG	AGCTACAGCA	GCATGCCCCC
4101	CCTGGAGGGC	GAGCCCGGCG	ACCCCGACCT	GAGCGACGGC	AGCTGGAGCA
4151	CCGTGAGCGA	GGAGGCCAGC	GAGGACGTGG	TGTGCTGCAG	CATGAGCTAC
4201	ACCTGGACCG	GCGCCCTGAT	CACCCCTGC	GCCGCCGAGG	AGAGCAAGCT
4251	GCCCATCAAC	GCCCTGAGCA	ACAGCCTGCT	GCGCCACCAC	AACATGGTGT
4301	ACGĆCACCAC	CAGCCGCAGC	GCCGGCCTGC	GCCAGAAGAA	GGTGACCTTC
4351	GACCGCCTGC	AGGTGCTGGA	CGACCACTAC	CGCGACGTGC	TGAAGGAGAT
4401	GAAGGCCAAG	GCCAGCACCG	TGAAGGCCAA	GCTGCTGAGC	GTGGAGGAGG
4451	CCTGCAAGCT	GACCCCCCC	CACAGCGCCA	AGAGCAAGTT	CGGCTACGGC
4501	GCCAAGGACG	TGCGCAACCT	GAGCAGCAAG	GCCGTGAACC	ACATCCACAG
4551	CGTGTGGAAG	GACCTGCTGG	AGGACACCGT	GACCCCCATC	GACACCACCA
4601	TCATGGCCAA	GAACGAGGTG	TTCTGCGTGC	AGCCCGAGAA	GGGCGCCGC
4651	AAGCCCGCCC	GCCTGATCGT	GTTCCCCGAC	CTGGGCGTGC	GCGTGTGCGA
4701	GAAGATGGCC	CTGTACGACG	TGGTGAGCAC	CCTGCCCCAG	GTGGTGATGG
4751	GCAGCAGCTA	CGGCTTCCAG	TACAGCCCCG	GCCAGCGCGT	GGAGTTCCTG
4801	GTGAACACCT	GGAAGAGCAA	GAAGAACCCC	ATGGGCTTCA	GCTACGACAC
4851	CCGCTGCTTC	GACAGCACCG	TGACCGAGAA	CGACATCCGC	GTGGAGGAGA
4901	GCATCTACCA	GTGCTGCGAC	CTGGCCCCCG	AGGCCCGCCA	GGCCATCAAG
4951	AGCCTGACCG	AGCGCCTGTA	CATCGGCGGC	CCCCTGACCA	ACAGCAAGGG
5001	CCAGAACTGC	GGCTACCGCC	GCTGCCGCGC	CAGCGGCGTG	CTGACCACCA
5051	GCTGCGGCAA	CACCCTGACC	TGCTACCTGA	AGGCCAGCGC	CGCCTGCCGC

FIG. 3C

F1.01	GCCGCCAAGC TGCAGGACTG CACCATGCTG GTGAACGCCG CCGGCCTGGT
5101	GGTGATCTGC GAGAGCGCCG GCACCCAGGA GGACGCCGCC AGCCTGCGCG
5151	GGTGATCTGC GAGAGCGCCG GCACCCARON CONTROL CGACCCCCC
5201	TGTTCACCGA GGCCATGACC CGCTACAGCG CCCCCCCGG CGACCCCCCC
5251	CAGCCCGAGT ACGACCTGGA GCTGATCACC AGCTGCAGCA GCAACGTGAG
	CGTGGCCCAC GACGCCAGCG GCAAGCGCGT GTACTACCTG ACCCGCGACC
5301	CCACCACCCC CCTGGCCCGC GCCGCCTGGG AGACCGCCCG CCACACCCCC
5351	CCACCACCCC CCTGGCCGGC GCCGCCTGGG TATACACCCCA CCCTCTCCCCCC
5401	GTGAACAGCT GGCTGGGCAA CATCATCATG TACGCCCCCA CCCTGTGGGC
5451	CCGCATGATC CTGATGACCC ACTTCTTCAG CATCCTGCTG GCCCAGGAGC
0100	AGCTGGAGAA GGCCCTGGAC TGCCAGATCT ACGGCGCCTG CTACAGCATC
5501	GAGCCCCTGG ACCTGCCCCA GATCATCGAG CGCCTGCACG GCCTGAGCGC
5551	GAGCCCCTGG ACCTGCCCCA GATCATCGAG CGCCCCAGCT
5601	CTTCAGCCTG CACAGCTACA GCCCCGGCGA GATCAACCGC GTGGCCAGCT
5651	GCCTGCGCAA GCTGGGCGTG CCCCCCTGC GCGTGTGGCG CCACCGCGCC
	CGCAGCGTGC GCGCCCGCCT GCTGAGCCAG GGCGGCCGCG CCGCCACCTG
5701	CGCAGCGTGC GCGCCCGCCT GCTGAGCTGA CACCTAACCTG AACCTGACCC
5751	CGGCAAGTAC CTGTTCAACT GGGCCGTGAA GACCAAGCTG AAGCTGACCC
5801	CCATCCCCGC CGCCAGCCAG CTGGACCTGA GCGGCTGGTT CGTGGCCGGC
•••	TACAGCGGCG GCGACATCTA CCACAGCCTG AGCCGCGCCC GCCCCCGCTG
585 1	GTTCATGCTG TGCCTGCTGC TGCTGAGCGT GGGCGTGGGC ATCTACCTGC
5901	
5951	TGCCCAACCG CTAAA

WO 03/031588 PCT/US02/32512

FIG. 4A

```
1 catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt
 61 ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt
121 gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg
181 gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag
241 taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga
301 agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg
361 gactttgacc gtttacgtgg agactcgccc aggtgttttt ctcaggtgtt ttccgcgttc
421 cgggtcaaag ttggcgtttt attattatag gcggccgcga tccattgcat acgttgtatc
481 catatcataa tatgtacatt tatattggct catgtccaac attaccgcca tgttgacatt.
541 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
601 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
661 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
721 attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt
781 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt
 841 atgcccagta catgacetta tgggacttte etaettggca gtacatetae gtattagtea
901 tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg
961 actcacgggg atttccaagt ctccaccca ttgacgtcaa tgggagtttg ttttggcacc
1021 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg
1081 gtaggcgtgt acggtgggag gtctatataa gcagagctcg tttagtgaac cgtcagatcg
1141 cctggagacg ccatccacgc tgttttgacc tccatagaag acaccgggac cgatccagcc
1201 tecgeggeeg ggaacggtge attggaacge ggatteceeg tgecaagagt gagatetgee
1261 accatggcgc ccatcacggc ctactcccaa cagacgcggg gcctacttgg ttgcatcatc
1321 actageetta caggeeggga caagaaceag gtegagggag aggtteaggt ggttteeace
1381 gcaacacaat cetteetgge gacetgegte aacggegtgt gttggacegt ttaccatggt
1441 getggeteaa agacettage eggeceaaag gggecaatea eecagatgta cactaatgtg
1501 gaccaggace tegteggetg geaggegeee eeeggggege gtteettgae accatgeace
1561 tgtggcaget cagacettta ettggtcaeg agacatgetg aegteattee ggtgegeegg.
1621 cggggcgaca gtagggggag cctgctctcc cccaggcctg tctcctactt gaagggctct
1681 tegggtggte cactgetetg ceettegggg cacgetgtgg geatetteeg ggetgeegta
1741 tgcacccggg gggttgcgaa ggcggtggac tttgtgcccg tagagtccat ggaaactact
1801 atgcggtctc cggtcttcac ggacaactca tccccccgg ccgtaccgca gtcatttcaa
1861 gtggcccacc tacacgctcc cactggcagc ggcaagagta ctaaagtgcc ggctgcatat
1921 gcagcccaag ggtacaaggt gctcgtcctc aatccgtccg ttgccgctac cttagggttt
1981 ggggcgtata tgtctaaggc acacggtatt gaccccaaca tcagaactgg ggtaaggacc
2041 attaccacag gcgcccccgt cacatactct acctatggca agtttcttgc cgatggtggt
2101 tgctctgggg gcgcttatga catcataata tgtgatgagt gccattcaac tgactcgact
2161 acaatettgg geateggeae agteetggae caageggaga eggetggage geggettgte
2221 gtgctcgcca ccgctacgcc tccgggatcg gtcaccgtgc cacacccaaa catcgaggag
2281 gtggccctgt ctaatactgg agagatcccc ttctatggca aagccatccc cattgaagcc
2341 atcagggggg gaaggcatct cattttctgt cattccaaga agaagtgcga cgagctcgcc
2401 gcaaagctgt caggcctcgg aatcaacgct gtggcgtatt accgggggct cgatgtgtcc
2461 gtcataccaa ctatcggaga cgtcgttgtc gtggcaacag acgctctgat gacgggctat
2521 acgggcgact ttgactcagt gatcgactgt aacacatgtg tcacccagac agtcgacttc
2581 agcttggatc ccaccttcac cattgagacg acgaccgtgc ctcaagacgc agtgtcgcgc
2641 tcgcagcggc ggggtaggac tggcaggggt aggagaggca tctacaggtt tgtgactccg
2701 ggagaacggc cetegggcat gttegattee teggteetgt gtgagtgeta tgaegeggge
2761 tgtgcttggt acgagctcac ccccgccgag acctcggtta ggttgcgggc ctacctgaac
2821 acaccagggt tgcccgtttg ccaggaccac ctggagttct gggagagtgt cttcacaggc
2881 ctcacccaca tagatgcaca cttcttgtcc cagaccaagc aggcaggaga caacttcccc
2941 tacctggtag cataccaagc cacggtgtgc gccagggctc aggccccacc tccatcatgg
3001 gatcaaatgt ggaagtgtct catacggctg aaacctacgc tgcacgggcc aacacccttg
3061 ctgtacaggc tgggagccgt ccaaaatgag gtcaccctca cccaccccat aaccaaatac
3121 atcatggcat gcatgtcggc tgacctggag gtcgtcacta gcacctgggt gctggtgggc.
3181 ggagtccttg cagctctggc cgcgtattgc ctgacaacag gcagtgtggt cattgtgggt
3241 aggattatct tgtccgggag gccggctatt gttcccgaca gggagtttct ctaccaggag
```

```
3361 gccgagcaat tcaagcagaa agcgctcggg ttactgcaaa cagccaccaa acaagcggag
3421 getgetgete eegtggtgga gtecaagtgg egageeettg agacattetg ggcgaageae
3481 atgtggaatt tcatcagcgg gatacagtac ttagcaggct tatccactct gcctgggaac
3541 cccgcaatag catcattgat ggcattcaca gcctctatca ccagcccgct caccacccaa
3601 agtaccetce tgtttaacat cttggggggg tgggtggetg cecaactege cececcage
3661 gccgcttcgg ctttcgtggg cgccggcatc gccggtgcgg ctgttggcag cataggcctt
3721 gggaaggtgc ttgtggacat tctggcgggt tatggagcag gagtggccgg cgcgctcgtg
3781 gccttcaagg tcatgagcgg cgagatgccc tccaccgagg acctggtcaa tctacttcct
3841 gccatcctct ctcctggcgc cctggtcgtc ggggtcgtgt gtgcagcaat actgcgtcga
3901 cacgtgggtc cgggagaggg ggctgtgcag tggatgaacc ggctgatagc gttcgcctcg
3961 cggggtaatc atgtttcccc cacgcactat gtgcctgaga gcgacgccgc agcgcgtgtt
4021 actcagated tetecageet taccateact cagetgetga aaaggeteea ceagtggatt
4081 aatgaagact gctccacacc gtgttccggc tcgtggctaa gggatgtttg ggactggata
4141 tgcacggtgt tgactgactt caagacctgg ctccagtcca agctcctgcc gcagctaccg
4201 ggagtccctt ttttctcgtg ccaacgcggg tacaagggag tctggcgggg agacggcatc
4261 atgcaeacca cctgcccatg tggagcacag atcaccggac atgtcaeaea cggttccatg
4321 aggatcgtcg ggcctaagac ctgcagcaac acgtggcatg gaacattccc catcaacgca
4381 tacaccacgg geceetgeac acceteteca gegecaaact attetaggge getgtggegg
4441 gtggccgctg aggagtacgt ggaggtcacg cgggtggggg atttccacta cgtgacgggc
4501 atgaccactg acaacgtaaa gtgcccatgc caggttccgg ctcctgaatt cttcacggag
4561 gtggacggag tgcggttgca caggtacgct ccggcgtgca ggcctctcct acgggaggag
4621 gttacattcc aggtcgggct caaccaatac ctggttgggt cacagctacc atgcgagccc
4681 gaaccggatg tagcagtget cacttecatg etcacegace ceteceacat cacagcagaa
4741 acggctaagc gtaggttggc cagggggtct ccccctcct tggccagctc ttcagctagc
4801 cagttgtctg cgccttcctt gaaggcgaca tgcactaccc accatgtctc tccggacgct
4861 gacctcatcg aggccaacct cctgtggcgg caggagatgg gcgggaacat cacccgcgtg
4921 gagteggaga acaaggtggt agteetggae tetttegaee egettegage ggaggaggat
4981 gagagggaag tatccgttcc ggcggagatc ctgcggaaat ccaagaagtt ccccgcagcg
5041 atgcccatct gggcgcgccc ggattacaac cctccactgt tagagtcctg gaaggacccg
5101 gactacgtcc ctccggtggt gcacgggtgc ccgttgccac ctatcaaggc ccctccaata
5161 ccacctccac ggagaaagag gacggttgtc ctaacagagt cctccgtgtc ttctgcctta
5221 geggageteg etaetaagae etteggeage teegaateat eggeegtega eageggeaeg
5281 gegacegece tteetgacea ggeeteegae gaeggtgaca aaggateega egitgagteg
5341 tactecteca tgeececet tgagggggaa eegggggaee eegateteag tgaegggtet
5401 tggtctaccg tgagcgagga agctagtgag gatgtcgtct gctgctcaat gtcctacaca
5461 tggacaggeg cettgateac gecatgeget geggaggaaa geaagetgee cateaacgeg
5521 ttgagcaact ctttgctgcg ccaccataac atggtttatg ccacaacatc tcgcagcgca
5581 ggcctgcggc agaagaaggt cacctttgac agactgcaag tcctggacga ccactaccgg
5641 gacgtgctca aggagatgaa ggcgaaggcg tccacagtta aggctaaact cctatccgta
5701 gaggaagect geaagetgae geecceacat teggeeaaat eeaagtttgg etatggggea
5761 aaggacgtcc ggaacctatc cagcaaggcc gttaaccaca tccactccgt gtggaaggac
5821 ttgctggaag acactgtgac accaattgac accaccatca tggcaaaaaa tgaggttttc
5881 tgtgtccaac cagagaaagg aggccgtaag ccagcccgcc ttatcgtatt cccagatctg
5941 ggagtccgtg tatgcgagaa gatggccctc tatgatgtgg tctccaccct tcctcaggtc
6001 gtgatgggct cctcatacgg attccagtac tctcctgggc agcgagtcga gttcctggtg
6061 aatacetgga aateaaagaa aaaceecatg ggetttteat atgacaeteg etgtttegae
6121 tcaacggtca ccgagaacga catccgtgtt gaggagtcaa tttaccaatg ttgtgacttg
6181 gcccccgaag ccagacaggc cataaaatcg ctcacagagc ggctttatat cgggggtcct
6241 ctgactaatt caaaagggca gaactgeggt tategeeggt geegegegag eggegtgetg
6301 acgactaget geggtaacae ceteacatgt taettgaagg cetetgeage etgtegaget
6361 gegaagetee aggaetgeae gatgetegtg aaegeegeeg geettgtegt tatetgtgaa
6421 agcgcgggaa cccaagagga cgcggcgagc ctacgagtct tcacggaggc tatgactagg
6481 tactctgccc cccccgggga cccgcccaa ccagaatacg acttggagct gataacatca
6541 tgttcctcca atgtgtcggt cgcccacgat gcatcaggca aaagggtgta ctacctcacc
6601 cgtgatccca ccaccccct cgcacgggct gcgtgggaaa cagctagaca cactccagtt
```

```
6661 aactectgge taggeaacat tateatgtat gegeeeactt tgtgggeaag gatgattetg
6721 atgacteact tettetecat cettetagea caggageaac ttgaaaaage cetggactge
6781 cagatetacg gggeetgtta etecattgag ceaettgace taceteagat cattgaacga
6841 ctccatggcc ttagcgcatt ttcactccat agttactctc caggtgagat caatagggtg
6901 getteatgee teaggaaact tggggtaeca ceettgegag tetggagaea tegggeeagg
6961 agcgtccgcg ctaggctact gtcccagggg gggagggccg ccacttgtgg caagtacctc
7021 ttcaactggg cagtgaagac caaactcaaa ctcactccaa tcccggctgc gtcccagctg
7081 gacttgtccg gctggttcgt tgctggttac agcgggggag acatatatca cagcctgtct
7141 cgtgcccgac cccgctggtt catgctgtgc ctactcctac tttctgtagg ggtaggcatc
7201 tacctgctcc ccaaccggta aatctagagc tgtgccttct agttgccagc catctgttgt
7261 ttgcccctcc cccgtgcctt ccttgaccct ggaaggtgcc actcccactg tcctttccta
7321 ataaaatgag gaaattgcat cgcattgtct gagtaggtgt cattctattc tggggggtgg 📜
7381 ggtggggcag gacagcaagg gggaggattg ggaagacaat agcaggcatg ctggggatgc
7441 ggtgggctct atggccgatc ggcgcgcgt actgaaatgt gtgggcgtgg cttaagggtg
7501 ggaaagaata tataaggtgg gggtcttatg tagttttgta tctgttttgc agcagccgcc
7561 gccgccatga gcaccaactc gtttgatgga agcattgtga gctcatattt gacaacgcgc
7621 atgcccccat gggccggggt gcgtcagaat gtgatgggct ccagcattga tggtcgcccc
7681 gtcctgcccg caaactctac taccttgacc tacgagaccg tgtctggaac gccgttggag
7741 actgcagcct ccgccgccgc ttcagccgct gcagccaccg cccgcgggat tgtgactgac
7801 tttgctttcc tgagcccgct tgcaagcagt gcagcttccc gttcatccgc ccgcgatgac
7861 aagttgacgg ctcttttggc acaattggat tctttgaccc gggaacttaa tgtcgtttct
7921 cagcagetgt tggatetgeg ceagcaggtt tetgecetga aggetteete eceteceaat
7981 geggtttaaa acataaataa aaaaccagac tetgtttgga tttggatcaa geaagtgtet
8041 tgctgtcttt atttaggggt tttgcgcgcg cggtaggccc gggaccagcg gtctcggtcg
8101 ttgagggtcc tgtgtatttt ttccaggacg tggtaaaggt gactctggat gttcagatac
8161 atgggcataa gcccgtctct ggggtggagg tagcaccact gcagagcttc atgctgcggg
8221 gtggtgttgt agatgatcca gtcgtagcag gagcgctggg cgtggtgcct aaaaatgtct
8281 ttcagtagca agctgattgc caggggcagg cccttggtgt aagtgtttac aaagcggtta
8341 agctgggatg ggtgcatacg tggggatatg agatgcatct tggactgtat ttttaggttg
8401 getatgttee cagecatate ceteegggga tteatgttgt geagaaceae cageacagtg
8461 tatccggtgc acttgggaaa tttgtcatgt agcttagaag gaaatgcgtg gaagaacttg
8521 gagacgccct tgtgacctcc aagattttcc atgcattcgt ccataatgat ggcaatgggc
8581 ccacgggcgg cggcctgggc gaagatattt ctgggatcac taacgtcata gttgtgttcc
8641 aggatgagat cgtcataggc catttttaca aagcgcgggc ggagggtgcc agactgcggt
8701 ataatggtte cateeggeee aggggegtag ttaceeteae agatttgeat tteecaeget
8761 ttgagttcag atggggggat catgtctacc tgcggggcga tgaagaaaac ggtttccggg
8821 gtaggggaga tcagctggga agaaagcagg ttcctgagca gctgcgactt accgcagccg
8881 gtgggcccgt aaatcacacc tattaccggc tgcaactggt agttaagaga gctgcagctg
8941 ccgtcatccc tgagcagggg ggccacttcg ttaagcatgt ccctgactcg catgttttcc
9001 ctgaccaaat ccgccagaag gcgctcgccg cccagcgata gcagttcttg caaggaagca
9061 aagtttttca acggtttgag accgtccgcc gtaggcatgc ttttgagcgt ttgaccaagc
9121 agttccaggc ggtcccacag ctcggtcacc tgctctacgg catctcgatc cagcatatct
9181 cctcgtttcg cgggttgggg cggctttcgc tgtacggcag tagtcggtgc tcgtccagac
9241 gggccagggt catgtctttc cacgggcgca gggtcctcgt cagcgtagtc tgggtcacgg
9301 tgaagggtg cgctccgggc tgcgcgctgg ccagggtgcg cttgaggctg gtcctgctgg
9361 tgctgaagcg ctgccggtct tcgccctgcg cgtcggccag gtagcatttg accatggtgt
9421 catagtocag cocctoogog gogtggcoot tggcgcgcag ottgccottg gaggaggcgc
9481 cgcacgaggg gcagtgcaga cttttgaggg cgtagagctt gggcgcgaga aataccgatt
9541 ccggggagta ggcatccgcg ccgcaggccc cgcagacggt ctcgcattcc acgagccagg
9601 tgagetetgg cegttegggg teaaaaacca ggtttecece atgetttttg atgegtttet
9661 tacctctggt ttccatgage cggtgtccac gctcggtgac gaaaaggctg tccgtgtccc
9721 cgtatacaga cttgagaggc ctgtcctcga gcggtgttcc gcggtcctcc tcgtatagaa
9781 actoggacca ctotgagacg aaggotogog tocaggocag cacgaaggag gotaagtggg
9841 aggggtageg gtegttgtee actagggggt ceaetegete cagggtgtga agacacatgt
9901 cgccctcttc ggcatcaagg aaggtgattg gtttataggt gtaggccacg tgaccgggtg
```

FIG. 4D

								٠.,
	9961	ttcctgaagg	ggggctataa	aagggggtgg	gggcgcgttc	gtcctcactc	tcttccgcat	:
	10021	cactatctac	gagggcagc	tgttggggtg	agtactccct	ctcaaaagcg	ggcatgactt	
٠	10081	ctgcgctaag	attotcagtt	tccaaaaacg	aggaggattt	gatattcacc	rggcccgcgg	
	10141	tgatgccttt	gagggtggcc	gcgtccatct	ggtcagaaaa	gacaatcttt.	ttgttgtcaa	
	10201	acttaataac	aaacgacccg	tagaggggt	tggacagcaa	cttggcgatg	gagcgcaggg	
	10261	tttaatttt	gtcgcgatcg	gcgcgctcct	tggccgcgat	gtttagctgc	acgtattcgc	:.
	10321	gcgcaacgca	ccgccattcg	ggaaagacgg	tggtgcgctc	gtcgggcact	aggtgcacgc	
	10381	gccaaccgcg	attatacaga	gtgacaaggt	caacgctggt	ggctacctct	ccgcgtaggc	
	10441	actcattaat	ccagcagagg	caaccaccct	tgcgcgagca	gaatggcggt	agtgggtcta	•
	10501	actacatete	atccaaaaaa	tctgcgtcca	cggtaaagac	cccgggcagc	aggcgcgcgt	
	10561	cgaagtagtc	tatcttgcat	ccttgcaagt	ctagcgcctg	ctgccatgcg	cgggcggcaa	
•	10621	acacacactc	gtatgggttg	agtgggggac	cccatggcat	ggggtgggtg	agcgcggagg	
	10681	catacatacc	gcaaatgtcg	taaacgtaga	ggggctctct	gagtattcca	agatatgtag	ķ.
	10741	ggtagcatct	tccaccgcgg	atgctggcgc	gcacgtaatc	gtatagttcg	tgcgagggag	`
	10801	cgaggaggtc	gggaccgagg	ttgctacggg	cgggctgctc	tgctcggaag	actatctgcc	
	10861	tgaagatggc	atgtgagttg	gatgatatgg	ttggacgctg	gaagacgttg	aagctggcgt	
	10921	ctgtgagacc	taccgcgtca	cgcacgaagg	aggcgtagga	gtcgcgcagc	ttgttgacca	
	10981	actcaacaat	gacctgcacg	tctagggcgc	agtagtccag	ggtttccttg	atgatgtcat.	
2	11041	acttatcctq	tccctttttt	ttccacagct	cgcggttgag	gacaaactct	tegeggtett	•
	11101	tccagtactc	ttqqatcqqa	aacccgtcgg	cctccgaacg	gtaagagcct	agcatgtaga	
	11161	actoottoac	gacctagtag	gcgcagcatc	ccttttctac	gggtagcgcg	tatgcctgcg	
	11221	caacetteca	gagcgaggtg	tgggtgagcg	caaaggtgtc	cctaaccatg	actttgaggt	
	11281	actogtattt	gaagtcagtg	tegtegeate	cgccctgctc	ccagagcaaa	aagtccgtgc	
	11341	actttttaga	acqcqqqttt	ggcagggcga	aggtgacatc	gttgaagagt	atctttcccg	
	11401	cacaaaacat	aaagttgcgt	gtgatgcgga	agggtcccgg	cacctcggaa	cggttgttaa	
	11461	ttacctgggc	ggcgagcacg	atctcgtcaa	agccgttgat	gttgtggccc	acaatgtaaa	
	11521	gttccaagaa	gcgcgggatg	cccttgatgg	aaggcaattt	tttaagttcc	tcgtaggtga	
	11581	gctcttcagg	ggagctgagc	ccatactcta	aaagggccca	gtctgcaaga	tgagggttgg	•
	11641	aagcgacgaa	tgagetecae	aggtcacggg	ccattagcat	ttgcaggtgg	tcgcgaaagg	
•	11701	tcctaaactg	gcgacctatg	accattttt	ctggggtgat	gcagtagaag	gtaagcgggt	
	11761	cttottccca	gcggtcccat	ccaaggtccg	cggctaggtc	tegegeggeg	gtcactagag	
	11821	geteatetee	gccgaacttc	atgaccagca	tgaagggcac	gagctgcttc	ccaaaggccc	
	11881	ccatccaagt	ataggtetet	acatcgtagg	tgacaaagag	acgctcggtg	cgaggatgcg	•
	11941	accoatcoo	gaagaactgg	atctcccqcc	accagttgga	ggagtggctg	ttgatgtggt	
	12001	gaaagtagaa	gtccctgcga	cadaccasac	actcgtgctg	gcttttgtaa	aaacgtgcgc	
	12061	agtactogca	acaatacaca	ggctgtacat	cctgcacgag	gttgacctga	cgaccgcgca	
	12121	сваддавадся	gagtgggaat	ttgagcccct	cacctaacaa	gtttggctgg	tggtcttcťa	
	12181	cttcggctgc	tratecttaa	ccatctaact	actcgaggg	agttacggtg	gatcggacca	
	12241	ccacaccaca	cgagcccaaa	atccagatat	ccacacacaa	cggtcggagc	ttgatgacaa	
	12301	categegeag	ataggageta	tccatggtct	ggageteeeg	cggcgtcagg	tcaggcggga	
	12361	geteetgeag	atttacctca	catagccggg	tcagggcgcg	ggctaggtcc	aggtgatacc	
	12421	tgatttccag	gaactaatta	ataacaacat	cgatggcttg	caagaggccg	cateceegeg	
	12481	gcgcgactac	ggtaccgcgc	aacaaacaat	aggeegeggg	ggtgtccttg	gatgatgcat	
	12541	ctaaaagcgg	tgacgcgggc	aaaccccaa	aggtagggg	ggctcgggac	ccgccgggag	
	12601	aggggggggg	ggcacgtcgg	caccacacac	gggcaggagc	tggtgctgcg	cgcggaggtt	
	12661	actagegaac	acascascac	gacaattaat	ctcctgaatc	tggcgcctct	gcgtgaagac	
	12721	gacggggccc	gtgaggttga	acctgaaaga	gagttcgaca	gaatcaattt	cagtateatt	
	12781	aycaacaaca	togcacaaaa	tetectacae	gtctcctgag	ttgtcttgat	aggcgatctc	
	12841	duccatuaac	tactcastct	cttcctccta	gagateteeg	cgtccggctc	gctccacqqt	,
	12901	adcaacasaa	tcattagene	tacaaaccat	gagetgegag	aaggcgttga	gacetecete	
	12061	ageggegagg atteraca	coactateae	CCACGCCCCC	ttcaacatea	cgggcgcgca	tgaccacctg	
	13021	coccagacy	anctocacat	accararae	ascancated	tttcgcaggc	gctgaaagag	
	13021	ateattasaa	ayetecatge	tatattata	. gacygegtag	tacataaccc	agcaccacaa	
	131/1	grayrryayy	ycyycyycyy ttgatatooo	ccaaccctc	aaddcactco	atggcctcgt	agaagtccac	
	13201	greggaticg	ccyatatocc	anttacacac	caacacaatt	aactcctcct	ccagaagacg	٠.
	13201	ggcgaagtcg	aaaaactggg	agitycycyc	yacacyytt	adeceeee	coagaagaag	

13261	gatgagctcg	gcgacagtgt	cgcgcacctc	gcgctcaaag	gctacagggg	cctcttcttc
13321	ttcttcaatc	tcctcttcca	taagggcctc	cccttcttct	tettetggeg	gcggtggggg
13381	aggggggaca	cggcggcgac	gacggcgcac	cgggaggcgg	tcgacaaagc	gctcgatcat
13441	ctccccqcqq	cgacggcgca	tggtctcggt	gacggcgcgg	ccgttctcgc	gggggcgcag
13501	ttggaagacg	ccgcccgtca	tgtcccggtt	atgggttggc	ggggggctgc	cgtgcggcag
13561	ggatacggcg	ctaacgatgc	atctcaacaa	ttgttgtgta	ggtactccgc	caccgaggga
13621	cctgagcgag	tccgcatcga	ccggatcgga	aaacctctcg	agaaaggcgt	ctaaccagtc.
13681	acagtcgcaa	ggtaggctga	gcaccgtggc	gggcggcagc	gggcggcggt	cggggttgtt
13741	tctggcggag	gtgctgctga	tgatgtaatt	aaagtaggcg	gtcttgagac	ggcggatggt
13801	cgacagaagc	accatgtcct	tgggtccggc	ctgctgaatg	cgcaggcggt	cggccatgcc
13861	ccaggetteg	ttttgacatc	ggcgcaggtc	tttgtagtag	tcttgcatga	gcctttctac
13921	cggcacttct	tcttctcctt	cctcttgtcc	tgcatctctt	gcatctatcg	ctgcggcggc
13981	ggcggagttt	ggccgtaggt	ggcgccctct	tcctcccatg	cgtgtgaccc	cgaagcccct
14041	catcooctoa	agcagggcca	ggtcggcgac	aacgcgctcg	gctaatatgg	cctgctgcac
14101	ctgcgtgagg	gtagactgga	agtcgtccat	gtccacaaag	cggtggtatg	cgcccgtgtt
14161	gatggtgtaa	gtgcagttgg	ccataacgga	ccagttaacg	gtctggtgac	ccggctgcga
14221	gageteggtg	tacctgagac	gcgagtaagc	ccttgagtca	aagacgtagt	cgttgcaagt
14281	ccgcaccagg	tactggtatc	ccaccaaaaa	gtgcggcggc	ggctggcggt	agaggggcca
14341	gcgtagggtg	gccggggctc	cgggggcgag	gtcttccaac	ataaggcgat	gatatccgta
14401	gatgtacctg	gacatccagg	tgatgccggc	ggcggtggtg	gaggcgcgcg	gaaagtcacg
14461	gacgcggttc	cagatgttgc	gcagcggcaa	aaagtgctcc	atggtcggga	cgctctggcc
14521	ggtcaggcgc	gcgcagtcgt	tgacgctcta	gaccgtgcaa	aaggagagcc	tgtaagcggg
14581	cactcttccg	tggtctggtg	gataaattcg	caagggtatc	atggcggacg	accggggttc
14641	gaaccccgga	teeggeegte	cgccgtgatc	catgcggtta	ccgcccgcgt	gtcgaaccca
14701	ggtgtgcgac	gtcagacaac	gggggagcgc	teettttgge	ttccttccag	gcgcggcgga
14761	tgctgcgcta	gcttttttgg	ccactggccg	cgcgcggcgt	aagcggttag	gctggaaagc
14821	gaaagcatta	agtggctcgc	tccctgtagc	cggagggtta	ttttccaagg	gttgagtcgc
14881	gggacccccg	gttcgagtct	cgggccggcc	ggactgcggc	gaacgggggt	ttgcctccc
14941	gtcatgcaag	accccgcttg	caaattcctc	cggaaacagg	gacgagcccc	ttttttgctt
15001	ttcccagatg	catecggtgc	tgcggcagat	gcgccccct	cctcagcagc	ggcaagagca
15061	agagcagcgg	cagacatgca	gggcaccctc	cccttctcct	accgcgtcag	gaggggcaac
15121	atccgcggct	gacgcggcgg	cagatggtga	ttacgaaccc	ccgcggcgcc	ggacccggca
15181	ctacttggac	ttggaggagg	gcgagggcct	ggcgcggcta	ggagcgccct	ctcctgagcg
15241	acacccaagg	gtgcagctga	agcgtgacac	gcgcgaggcg	tacgtgccgc	ggcagaacct
15301	gtttcgcgac	cgcgagggag	aggagcccga	ggagatgcgg	gatcgaaagt	tccatgcagg
15361	gcgcgagttg	cggcatggcc	tgaaccgcga	gcggttgctg	cgcgaggagg	actitgagee
15421	cgacgcgcgg	accgggatta	gtcccgcgcg	cgcacacgtg	geggeegeeg	acctggtaac
15481	cgcgtacgag	cagacggtga	accaggagat	taactttcaa	aaaagcttta	acaaccacgu
15541	gegeaegett	gtggcgcgcg	aggaggtggc	tataggactg	argearergr	gggaettgt
15601	aagcgcgctg	gagcaaaacc	caaatagcaa	gccgctcatg	gegeagetgt	teettatagt
15661	gcagcacago	agggacaacg	aggcattcag	ggatgcgctg	ctaaacatag	tagageeega
15721	. gggccgctgg	ctgctcgatt	tgataaacat	tetgeagage	atagtggtgt	aggagegeag
15781	. cttgagcctg	gctgacaagg	tggccgccat	taactattcc	algeleagle	tanaget
15841	ttacgcccgc	aagatatacc	atacccctta	cgttcccata	gacaaggagg	taaagattya
15901	. ggggttctac	atgcgcatgg	cgctgaaggt	gcttaccttg	agegaegaee	tagggegeeea
15961	. tcgcaacgag	cgcatccaca	aggccgtgag	cgtgagccgg	cggcgcgagc	ccagcgaccg
16021	. cgagctgatg	cacageetge	aaagggccct	ggctggcacg	ggcagcggcg	atagagaggc
16081	. cgagtcctac	: tttgacgcgg	gcgctgacct	gcgctgggc	ccaagccgac	gcgccctgga
16141	. ggcagctggg	gccggacctg	ggctggcggt	ggcacccgcg	cgcgctggca	acgtcggcgg
16201	. cgtggaggaa	tatgacgagg	acgatgagta	cgagccagag	gacggcgagt	actaagcggt
16261	gatgtttctg	, atcagatgat	gcaagacgca	acggacccgg	cggtgcgggc	ggcgctgcag
16321	agccagccgt	: ccggccttaa	ctccacggac	gactggcgc	aggtcatgga	ccgcatcatg
16381	tegetgactg	g cgcgcaaccc	tgacgcgttc	cggcagcag	cgcaggccaa	ceggetetee
16441	gcaattctgg	g aagcggtggt	cccggcgcgc	gcaaacccca	cgcacgagaa	ggtgctggcg
16501	L atcgtaaacg	g cgctggccga	aaacagggco	acccggccc(, argaggeegg	cctggtctac

								4
	16561	gacgcgctgc	ttcagcgcgt	ggctcgttac	aacagcagca	acgtgcagac	caacctggac	
	16621	cggctggtgg	gggatgtgcg	cgaggccgtg	gcgcagcgtg	agcgcgcgca	gcagcagggc	
	16681	aacctgggct	ccatggttgc	actaaacgcc	ttcctgagta	cacagcccgc	caacgtgccg	
	16741	cggggacagg	aggactacac	caactttgtg	agcgcactgc	ggctaatggt	gactgagaca	
	16801	ccgcaaagtg	aggtgtatca	gtccgggcca	gactatttt	tccagaccag	tagacaaggc	
	16861	ctgcagaccg	taaacctgag	ccaggctttc	aagaacttgc	aggggctgtg	gggggtgcgg	
	16921	gctcccacag	gcgaccgcgc	gaccgtgtct	agcttgctga	cgcccaactc	gcgcctgttg	
	16981	ctgctgctaa	tagcgccctt	cacggacagt	ggcagcgtgt	cccgggacac	atacctaggt	
	17041	cacttgctga	cactgtaccg	cgaggccata	ggtcaggcgc	atgtggacga	gcatactttc	
•	17101	caggagatta	caagtgttag	ccgcgcgctg	gggcaggagg	acacgggcag	cctggaggca	
	17161	accetgaact	acctgctgac	caaccggcgg	caaaaaatcc	cctcgttgca	cagtttaaac	•
	17221	agcgaggagg	agcgcatttt	gcgctatgtg	cagcagagcg	tgagccttaa	cctgatgcgc	٠,
	17281	gacggggtaa	cgcccagcgt	ggcgctggac	atgaccgcgc	gcaacatgga	accgggcatg	
	17341	tatgcctcaa	accggccgtt	tatcaatcgc	ctaatggact	acttgcatcg	cgcggccgcc	
	17401	gtgaaccccg	agtatttcac	caatgccatc	ttgaacccgc	actggctacc	gccccctggt	
	17461	ttctacaccg	ggggattcga	ggtgcccgag	ggtaacgatg	gattcctctg	ggacgacata	•
	17521	gacgacagcg	tgttttcccc	gcaaccgcag	accctgctag	agttgcaaca	acgcgagcag	
	17581	gcagaggcgg	cgctgcgaaa	ggaaagcttc	cgcaggccaa	gcagcttgtc	cgatctaggc	
	17641	gctgcggccc	cgcggtcaga	tgctagtagc	ccatttccaa	gcttgatagg	gtctcttacc	
						agtacctaaa		
						ccaacaacgg		
	17821	ctagtggaca	agatgagtag	atggaagacg	tatgcgcagg	agcacaggga	tgtgcccggc	
						ggggtctggt		
						ggagtggcaa		
	18001	caccttcgcc	ccaggctggg	gagaatgttt	taaaaaaaag	catgatgcaa	aataaaaaac	
						ccccttagta		
						gtggtgagcg		
						ccgccgttcg		
						tctgagttgg		
						gatgtggcat		
	18361	ccagaacgac	cacagcaact	ttctaaccac	ggtcattcaa	aacaatgact	acagcccggg	
	18421	ggaggcaagc	acacagacca	tcaatcttga	cgaccggtcg	cactggggcg	gcgacctgaa	
						atgtttacca		
						caggtggagc		
						accatgacca		
						cagaacgggg		
						gggtttgacc		
						ccagacatca		
						ttgttgggca		
						ctggagggtg		
						gatgacaccg		
						gaagagaact		
						gccattcgcg		
						gcggccgaag		
						aagaaaccgg		
	19261	cctgacagag	gacagcaaga	aacgcagtta	caacctaata	agcaatgaca	gcaccttcac	;
						cctcaggccg		
						gagcaggtat		
						cgccagatca		
						ttctacaacg		
						gtgttcaatc		
						accgtcagtg		
						atcggaggag		
						tacaaggccc		
	19801	ctcgccgcgc	gtcctatcga	gccgcacttt	ttgagcaagc	atgtccatcc	ttatatcgcc	:

19861	cagcaataac	acaggctggg	gcctgcgctt	cccaagcaag	atgtttggcg ·	gggccaagaa /
10001		caacacccad	racacataca	caaacactac	cgcgcgccc	5555-5-5
10001	~~~~~~~~~	CACACEGGGC	CCACCACCUL -	caacacacac	accgaogoga	
20241	~~~~~~~~~	tacacoccca	caccaccacc	agtgtccacc	geggaegegg	
20101	astaatacac	adadecedde.	actacactaa	aatqaaqaya	cggcggaggc	90900909
20161	+ accesscence	CUCCUACCCU	acactaccac	ccaacgcgcg	gcggcggccc	cgcccaacc
20221	ageacateac	acconcodac	gagcagccat	gcgagccgcu	cyaayyccyy	ccgcgggccc
20201	tatesetata	cccccaggt	ccaggcgacg	ageggeegee	gcagcagccg	caaccac
20241	backstasct	cagggtcgca	aaaacaacat	gtactqqquy	cgcgacccgg	ccagagger.
00401		atacacaccc	acccccaca	caactagatt	ycaacaaaaa	accass-
20461		tatatata	cadcadadac	ggcgcgcatt	gaagetatge	000030300
20521		<i>magatactcc</i>	addreatede	accadadace	Latygetee	02002000
20501		tacaaccccc	gaaagctaaa	acadaccass	aayaaaaayu	aaaaaaa
00041		cttgacgacg	aggtggaact	actacacacaca	accycyccca	9909409330
20701	-a-ataass	antenaeded	taagacgtgt	EEEdcaacce	ggcaccaccg	cag course.
20761	acceptage	COCECCACCC	ocacctacaa	qcqcqtgtat	gatgaggege	
20/01	ggacctgctt	caccacaca	acqaqcqcct	cagagagttt	gcctacggaa	agcggcataa .
20821	ggacetgett	acattaccac	tagaggggg	caacccaaca	cctagcctaa	agcccgtgac
20881	actgcagcag	atactacca	cacttacaca	gtccgaagaa	aagcgcggcc	taaagcgcga
20941	actgcagcag gtctggtgac	ttaccaccca	ccatacaact	gatggtaccc	aagcgtcagc	gactggaaga
21001	. geetggtgae . tgtcttggaa	ceggeaccea	tagaacctag	gctggagccc	gaggtccgcg	tgcggccaat
21061	. caagcaggtg	addatgattg	tagagataga	gaccotogac	gttcagatac	ccaccaccag
21121	. caagcaggtg . tagcactagt	geaccyggac	coacadadd	catogagaca	caaacgtccc	cggttgcctc
21181	. tagcactagt . ggcggtggca	actgccactg	tacaaaaaaggg	cactacaacc	gcgtccaaga	cctctacgga
21241	. ggcggtggca . ggtgcaaacg	gatgeegegg	tatttcatat	ttcagccccc	caacatecae	gccgttcaag .
21301	. ggtgcaaacg . gaagtacggc	gacccgtgga	cactactact	cgaatatgcc	ctacatcctt	ccatcgcgcc
21361	l gaagtacggc L tacccccggc	geegeeageg	acacctacco	cccagaaga	cgagcaacta	cccgacgccg
21421	l tacccccggc L aaccaccact	tategtgget	acacccatca	ccatcaccaa	cccatactag	ccccgatttc
2148	l aaccaccact L cgtgcgcagg	ggaacccycc	geegeegeeg	gaccctggtg	ctgccaacag	cgcgctacca
2154	l cgtgcgcagg l ccccagcatc	geggeregeg	aaggaggtag	gattettaca	gatatggccc	tcacctgccg
2160	l ccccagcato L cctccgtttc	gtttaaaagc	cggtcttgt	aagaatggac	cotaggaggg	gcatggccgg
2166	L cctccgtttc	eeggtgeegg	taataataa	acaccaccac	caacaacaca	catcacacca
2172	ccacggcctg	acgggcggca	tgegeege	tattccacto	atroccocoo	cgattggcgc
21783	l tegeatgege	ggcggtatcc	tgeeeettee	cacccaceg	cactgattaa	aaacaaqtta
2184	l cgtgcccgga	attgcatccg	eggeettgea	gycycagaga	cactgatta	totaactatt
2190	l catgtggaaa	aatcaaaata	aaagtetgga	ececcaegee	cgcccggccc	cacacacatt
2196	l ttgtagaatg	, gaagacatca	acttgcgtc	accygececy	cgacacggct	tcagctgggg
2202	l catgggaaac	: tggcaagata	teggeaceag	thoracoatt	ageggegeee	GCAGCABAGC
2208	l ctcgctgtgg	, agcggcatta	aaaatttcgg	tteegeegte	. aayaactaty	atttccaaca
2214	1 ctggaacago	: agcacaggcc	agatgctgag	ggacaaguug	adayaycuuu ataasactaa	CCBBCCBGGC
2220	l aaaggtggta	a gatggcctgg	cctctggcat	tageggggeg	gcggaeeegg	agectecace
2226	l agtgcaaaat	: aagattaaca	gtaagettga	teeeegeee	, coegeagagg	ccacagga
2232	1 ggccgtggag	g acagtgtctc	cagaggggcg	tggcyaaaag	. caccadagae	taaagcaagg
2238	1 agaaactct	g gtgacgcaaa	tagacgagcc	cccccgtac	gaggaggcac	accacacaca
2244	1 cctgcccac	acceptecea	tegegeeeat	ggctaccgga	glyclygycc	taccadaccc
~~~	•	caatacctc	· cccccaccaa	cacccadca	daacccgcgc	. Lyccuggett
2256	1 atacaccati	- attataacco	: atcctaacc	Cacarccori	geegegeeg	ccagaggaaa
つつとつ	1 ~~~>+~~+	~ caacccataa	rccautuutaa	Lityytaaay	, acacegaaa	. 500-05-555
2250	1 betagagati	r ceatroctos	n adcdccdacc	atqcttctga	Lagetaacge	, gregrarges
2274	1 batestate	r acatccatat	: caccaccada	a qqaqctqctq	g ageegeegeg	Cyccogcoco
2200	1 acasestan	r taccccttcc	r atgatgccg	agtggtctt	a catgeacate	, ccgggccagg
2206	1 acacctcas	a dtacctdadd	cccaaaccaa	; tgcagttcg	e eegegeeace	, gagacgcace
2202	1 respectors	a raacaadtti	: agaaacccca	a caataacac	z cacycacyac	, gracerea
2200	1 accordence	a gcgtttgac	r ctacaattc	a teceegtgg	a ccgcyayya	accycycacc
2204	1 catacaadd	c acaattcac	: ctagctgtgg	g gtgataacc	g Egegetaya	acygeneeu
2310	1 cgtactttg	a catccgcgg	c gtgctggac	a ggggcccta	c ttttaagcc	c tactctggca

23161	ctgcctacaa	cgcactggcc	cccaagggtg	ccccaactc	gtgcgagtgg	gaacaaaatg;'
23221	aaactgcaca	agtggatgct	caagaacttg	acgaagagga	gaatgaagcc	aatgaagctc
23281	aggcgcgaga	acaggaacaa	gctaagaaaa	cccatgtata	tgcccaggct	ccactgtccg
23341	gaataaaaat	aactaaagaa	ggtctacaaa	taggaactgc	cgacgccaca	gtagcaggtg :
23401	ccggcaaaga	aattttcgca	gacaaaactt	ttcaacctga	accacaagta	ggagaatctc
23461	aatggaacga	agcggatgcc	acagcagctg	gtggaagggt	tcttaaaaag	acaactccca .
23521	tgaaaccctg	ctatggctca	tacgctagac	ccaccaattc	caacggcgga	cagggcgtta.
23581	tggttgaaca	aaatggtaaa	ttggaaagtc	aagtcgaaat	gcaattttt	tccacatcca
23641	caaatoccac	aaatgaagtt	aacaatatac	aaccaacagt	tgtattgtac	agcgaagatg [
23701	taaacatgga	aactccagat	actcatcttt	cttataaacc	taaaatgggg	gataaaaatg
23761	ccaaagtcat	gcttggacaa	caagcaatgc	caaacagacc	aaattacatt	gcttttagag
23821	acaattttat	tggtctcatg	tattacaaca	gcacaggtaa	catgggtgtc	cttgctggtc
23881	aggcatcgca	gttgaacgct	gttgtagatt	tgcaagacag	aaacacagag	ctgtcctacc.
				caagatactt		
				ttgagaacca		
24061	caaattattg	ctttcctctt	ggtggaattg	ggattactga	cacttttcaa	gctgttaaaa
24121	caactqctqc	taacggggac	caaggcaata	ctacctggca	aaaagattca	acatttgcag'
24181	aacgcaatga	aataggggtg	ggaaataact	ttgccatgga	aattaacctg	aatgccaacc
24241	tatggagaaa	tttcctttac	tccaatattg	cgctgtacct	gccagacaag	ctaaaataca:
				ccaacaccta		
24361	tggtggctcc	tgggcttgta	gactgctaca	ttaaccttgg	ggcgcgctgg	tctctggact
				accgcaatgc		
				ttcacattca		
				catacacata		
				gaaacgacct		
24661	ttaagtttga	cagcatttgt	ctttacgcca	ccttcttccc	catggcccac	aacacggcct
24721	ccacgctgga	agccatgctc	agaaatgaca	ccaacgacca	gtcctttaat	gactaccttt.
24781	ccgccgccaa	catgctatat	cccatacccg	ccaacgccac	caacgtgccc	atctccatcc
				gggccttcac		
24901	ccccttccct	gggatcaggc	tacgaccctt	actacaccta	ctctggctcc	ataccatacc
				ttaagaaggt		
25021	ctgttagctg	gccgggcaac	gaccgcctgc	ttactcccaa	tgagtttgag	attaagcgct ·
25081	cagttgacgg	ggagggctat	aacgtagctc	agtgcaacat	gacaaaggac	tggttcctag
				accagggctt		
25201	aagaccgcat	gtactcgttc	ttcagaaact	tccagcccat	gagccggcaa	gtggtggacg
25261	atactaaata	caaagattat	cagcaggttg	gaattatcca	ccagcataac	aactcaggct
25321	tcgtaggcta	cctcgctccc	accatgcgcg	agggacaagc	ttaccccgct	aatgttccct
25381	acccactaat	aggcaaaacc	gcggttgata	gtattaccca	gaaaaagttt	ctttgcgacc
25441	gcaccctgtg	gcgcatcccc	ttctccagta	actttatgtc	catgggtgcg	ctcacagacc
25501	tgggccaaaa	ccttctctac	gcaaactccg	cccacgcgct	agacatgacc	tttgaggtgg
				ttttgtttga		
25621	tgcaccagec	gcaccgcggc	gtcatcgaga	ccgtgtacct	gcgcacgccc	ttctcggccg
25681	gcaacgccac	aacataaaga	agcaagcaac	atcaacaaca	gctgccgcca	tgggctccag
25741	tgagcaggaa	ctgaaagcca	ttgtcaaaga	tcttggttgt	gggccatatt	ttttgggcac
				cccacacaag		
25861	cacggccggt	cgcgagactg	ggggcgtaca	ctggatggcc	tttgcctgga	accegegete .
						agcaggttta.
						ccgaccgctg
						cctgtggcct
						tggatcacaa
						cccaggtaca
						actcgccctà
						tgaaaaacat
						ttgtacactc
26401	tcgggtgatt	atttaccccc	acccttgccg	tctgcgccgt	ttaaaaatca	aaggggttct
					•	3

•	•					
26461	geogegeate	gctatgcgcc	actggcaggg	acacgttgcg	atactggtgt	ttagtgctcc
26621	acttagactc	accecaacc	atccocooca :	dcccddcdaa	gullicacia .	cacaggeege
26501	aceccatcac	caacgcgttt	agcaggtcgg	gcgccgatat	Cityaagicy '	caaccaaaa
25641	atacacata	CACACACAAA	rtacaataca	cadggilaca	gcactygaac .	accaccagos
26701	coccetacta	cacactaacc	accacactet.	caccagagac	cayacccycy	cccaggccco
26761	coccettact	CARROCCIAAC	ggagtcaact	ttqqtagcty	CCCCCaaa	aagggcgcac
26021	acceparate	taaattacac	tegeaccgta	gtggcatcag	aaygugaccy	egeeeageee
25001	aaaaattaaa	atacarcrc	tacataaaaa	ccttgatcty	Citaaaaycc	accegageee
26041	++acaccttc	288D88D8D8	atoccocaao	acttgccgga	aaactyatty	accaaccas
27001	accontrata	CACGCAGCAC	cttacatcaa	tgttggagat	Cigcaccaca	cccaaccca
27061	acconttett	cacdatetta	accttactaa	actgctcctt	cagegegege	cgcccgccc.
27121	cactcatcac	atccatttca	atcacgtgct	CCCCACCLAL	Cataatyctc	ccgcgcagac
27101	acttaagete	accttcgatc	tcagcgcagc	ggtgcagcca	caacycycay	cccgcgggcc.
27241	cataatactt	graggttacc	tctgcaaacg	actgcaggta	cgcctgcagy	aaccyccca
27201	testeatese	aaaggtettg	ttactaataa	aggtcagctg	caacecycyy	cyclectege
27261	ttagggaggt	cttgcatacg	accaccagag	CCCCCCCCC	gicayycayi	agetegaage
27/21	++acc+ttaa	atcottatco	acataatact	tgtccatcaa	egegegegea	gcccccacgo
27/01	cettetecea	cacagacaca	atcoccagge	tcagcgggtt	tateacegeg	CCCCCCCCC
275/1	concettcact	ngactettee	ttttcctct	gcatccgcat	acceegegee	accygycogo
27601	attasttasa	CCGCCGCACC	atacacttac	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	gractigati	agcaccggcg
27661	aattactass	acccaccatt	tataacacca	Catcttctct	ttetteeteg	Cigicalga
27001	tasactataa	ggatggcggg	cactcaaact	tgggagaggg	gcgcttcttt	ttctttttgg ·
27701	acacaataac	caaatccccc	atcaaaatca	atggccgcgg	gctgggtgtg	cycyycacca
27/01	acycaacygc	tgacgagtct	tetteatect	cagactcgag	acgccgcctc	agccgctttt
27001	tteeeeee	gcggggaggc	aacaacaaca	gcgacgggga	cgagacgtcc	tccatggttg
27901	ctgggggcgc	caccacca	catecacact	cagagatagt	ttcgcgctgc	tcctcttccc
2/301	grygacyccy	ttccttctcc	tatagggaga	aaaagatcat	ggagtcagtc	gagaaggagg
28021	gactggccac	cgcccccttt	cadtagedaa	ccaccacctc	caccgatgcc	gccaacgcgc
28081	acagectaac	ccccgtcgag	acaccccac	ttgaggagga	ggaagtgatt	atcgagcagg
28141	. ctaccacctt	tgtaagcgaa	geacceege	atcoctcagt	accaacagag	gataaaaagc
28201	. acccaggic	cgacgcagag	gacgacgaag	aacaagtcgg	gcggggggac	caaaggcatg
28261	. aagaccagga	: agatgtggga	geadacgegg	tottgaagca	tctgcagcgc	cagtgcgcca
28321	. gegaetacet	. agatytygga . cgcgttgcaa	gacgacgege	atotoccct	cgccatagcg	gatgtcagcc
28381	ttatetgege	acgccacctg	ttctcaccoc	acatacccc	caaacgccaa	gaaaacggca
28441	ttgcctacya	caacccgcgc	ctcaacttct	accccgtatt	tgccgtgcca	gaggtgcttg
28501	catgegaged	catcttttc	casactaca	agatacccct	atcctgccgt	gccaaccgca
28561	ccacctatca	caagcagctg	accttacaac	agacactat	catacctgat	atcgcctcgc
28623	L gccgagcgg	gccaaaaatc	tttaaaaat	ttagagagaga	cgagaagcgc	gcggcaaacg
28681	tcgacgaag	a agaaaacagc	cccyagggcc	atcactatac	agtactaata	gaacttgagg
2874	L ctctgcaaca	a agaaaacagc	gaaaatgaaa	gccaccatcaa	gotcacccac	tttgcctacc
2880	L gtgacaacg	gcgcctagcc	gigotyaaac	gcagcatcg	gagcgagctg	atcatacacc
2886	L cggcactta	cctaccccc	aaggilaiga	tacageede	, gagogagaa	ggcctacccg
2892	L gtgcacgac	cctggagagg	gatgeaaact	transpace	. caaacctaca	gacttggagg
2898	l cagttggcg	a tgagcagctg	gegegetgge	: ctgagacgcs	- cgagcttgac	tocatocaoc
2904	l agcgacgca	a gctaatgatg	geegeagige	contracts	aecattacac	tacacctttc
2910	1 ggttctttg	c tgacccggag	atgcagcgca	agetagagge	- aacyctgtac	aacctggtct
2916	1 gccagggct	a cgtgcgccag	geetgeaaa	- ttcccaacg	. ggagetets	tccacgctca
2922	1 cctaccttg	g aattttgcad	gaaaaccgcc	; ctgggcaaa	cttatttctc	tecacgetea tectacate
2928	1 agggcgagg	c gcgccgcgad	cacgiccgcg	, accycytti	a coccaacct	tgctacacct
2934	1 ggcaaacgg	c catgggcgtg	tggcagcagt	geetggagga	a gegeaacce	aaggagetge
2940	1 agaagctgc	t aaagcaaaa	trgaaggaco	catggacgg	t taganggat	g cgctccgtgg
2016	1 concacace	t ggcggacati	. atcttcccc	aacgcctgc	c caaaacccc	, caacagggcc
2052	1 taccadact	t caccagtcaa	a accatotto	c aaaacttta	g gaactttau	ctagagegee
2050	1 caggaatte	t acccaccaci	- tactataca	c ttcctagcg	a ctttgtgtti	accaagcacc
2064	1 atmastace	c tecaccacti	t tagaatcac	t gctaccttc	t geageraye	. aactaceeg
2970	1 cctaccact	c cgacatcat	g gaagacgtg	a gcggtgacg	g cctactyga	g tgtcactgtc

							٠.
29761	gctgcaacct	atgcaccccg	caccáctccc	tggtctgcaa	ttcacaactg	cttagcgaaa	
29821	gtcaaattat	cggtaccttt	gagctgcagg	gtccctcgcc	tgacgaaaag	teegeggete	
		actcactccg					
29941	aggactacca	cgcccacgag	attaggttct	acgaagacca	atcccgcccg	ccaaatgcgg .	٠.
30001	agcttaccgc	ctgcgtcatt	acccagggcc	acatccttgg	ccaattgcaa	gccattaaca	
30061	aagcccgcca	agagtttctg	ctacgaaagg	gacggggggt	ttacttggac	ccccagtccg	
						cgggcccttg;	
						cacggacgag.	ું
		gggacagtca					÷
		gcctagacga					Ġ
		tcgcattccc					
		ccgctcctca					
		ctggaaccag					:
	_	gccaaggcta					
		gtgggggcaa					٠.
		cccgtaacat					
		gcagcaacag					
						cactgcgtct.	
						ccactctgta	٠.
		caacagagca					
		acccgcagct					
		gaggetetet					
		caaatttaag					
		gtcagcgcca			_		
						gaataaacta	
		ggaccccaca				-	٠.
		gccctggtgt				atccccgtag	. '
		gccgaagttc					
		cggtcgcccg					
		gacgagtcgg					
						ctctgcagac	
		gagccgcgct					•
		tacttcaacc					•
		gacgcggtaa					
		ctgcgcctga					
		gagttttgtt					
		ctcaccaccc					
		ctagtggagc					
		ggattacatc					
32161	attacttact	taaaatcagt	cagcaaatct	ttgtccagct	tattcagcat	cacctccttt	
32221	ccctcctccc	aactctggta	tttcagcagc	cttttagctg	cgaactttct	ccaaagtcta	
32281	aatgggatgt	caaattcctc	atgttcttgt	ccctccgcac	ccactatctt	catattgttg	
32341	cagatgaaac	gcgccagacc	gtctgaagac	accttcaacc	ctgtgtaccc	atatgacacg	
32401	gaaaccggcc	ctccaactgt	gcctttcctt	accectecet	ttgtgtcgcc	aaatgggttc	
32461	caagaaagtc	ccccggagt	gctttctttg	cgtctttcag	aacctttggt	tacctcacac	
32521	ggcatgcttg	cgctaaaaat	gggcagcggc	ctgtccctgg	atcaggcagg	caaccttaca	
32581	tcaaatacaa	tcactgtttc	tcaaccgcta	ааааааасаа	agtccaatat	aactttggaa	
32641	acatccgcgc	cccttacagt	cagctcaggc	gccctaacca	tggccacaac	ttcgcctttg	
32701	gtggtctctg	acaacactct	taccatgcaa	tcacaagcac	cgctaaccgt	gcaagactċa	÷
32761	aaacttagca	ttgctaccaa	agagccactt	acagtgttag	atggaaaact	ggccctgcag	:
32821	acatcagccc	ccctctctgc	cactgataac	aacgccctca	ctatcactgc	ctcacctcct	
32881	cttactactg	caaatggtag	tctggctgtt	accatggaaa	acccacttta	caacaacaat	÷
32941	ggaaaacttg	ggctcaaaat	tggcggtcct	ttgcaagtgg	ccaccgactc	acatgcacta	
33001	acactaggta	ctggtcaggg	ggttgcagtt	cataacaatt	tgctacatac	aaaagttaca	٠.
							٠.

FIG. 4K

```
33061 ggcgcaatag ggtttgatac atctggcaac atggaactta aaactggaga tggcctctat
33121 gtggatagcg ccggtcctaa ccaaaaacta catattaatc taaataccac aaaaggcctt
33181 gcttttgaca acaccgcaat aacaattaac gctggaaaag ggttggaatt tgaaacagac
33241 tcctcaaacg gaaatcccat aaaaacaaaa attggatcag gcatacaata taataccaat
33301 ggagetatgg ttgcaaaact tggaacaggc ctcagttttg acagctccgg agccataaca
33361 atgggcagca taaacaatga cagacttact ctttggacaa caccagaccc atccccaaat
33421 tgcagaattg cttcagataa agactgcaag ctaactctgg cgctaacaaa atgtggcagt.
33481 caaattttgg gcactgtttc agctttggca gtatcaggta atatggcctc catcaatgga
33541 actctaagca gtgtaaactt ggttcttaga tttgatgaca acggagtgct tatgtcaaat
33601 tcatcactgg acaaacagta ttggaacttt agaaacgggg actccactaa cggtcaacca
33661 tacacttatg ctgttgggtt tatgccaaac ctaaaagctt acccaaaaac tcaaagtaaa
33721 actgcaaaaa gtaatattgt tagccaggtg tatcttaatg gtgacaagtc taaaccattg
33781 cattttacta ttacgctaaa tggaacagat gaaaccaacc aagtaagcaa atactcaata
33841 tcattcagtt ggtcctggaa cagtggacaa tacactaatg acaaatttgc caccaattcc
33901 tatacettet cetacattge ccaggaataa agaategtga acetgttgea tgttatgttt
33961 caacgtgttt atttttcaat tgcagaaaat ttcaagtcat ttttcattca gtagtatagc
34021 cccaccacca catagettat actaatcacc gtacettaat caaactcaca gaaccetagt
34081 atteaacetg ceacetecet eccaacacac agagtacaca gteetttete eccggetgge
34141 cttaaacagc atcatatcat gggtaacaga catattctta ggtgttatat tccacacggt
34201 ctcctgtcga gccaaacgct catcagtgat gttaataaac tccccgggca gctcgcttaa
34261 gttcatgtcg ctgtccagct gctgagccac aggctgctgt ccaacttgcg gttgctcaac
34321 gggcggcgaa ggagaagtcc acgcctacat ggggggtagag tcataatcgt gcatcaggat
34381 agggeggtgg tgctgcagca gegegegaat aaactgctge egeegeeget eegteetgea
34441 ggaatacaac atggcagtgg tetecteage gatgattege accgcccgca gcataaggcg
34501 cettgteete egggeacage agegeaceet gateteactt aagteageae agtaactgea
 34561 gcacagtace acaatattgt ttaaaatccc acagtgcaag gcgctgtatc caaagctcat
 34621 ggcggggacc acagaaccca cgtggccatc ataccacaag cgcaggtaga ttaagtggcg
 34681 acccctcata aacacgctgg acataaacat tacctctttt ggcatgttgt aattcaccac
 34741 ctcccggtac catataaacc tctgattaaa catggcgcca tccaccacca tcctaaacca
 34801 gctggccaaa acctgcccgc cggctatgca ctgcagggaa ccgggactgg aacaatgaca
 34861 gtggagagcc caggactcgt aaccatggat catcatgctc gtcatgatat caatgttggc
 34921 acaacacagg cacacgtgca tacacttcct caggattaca agctcctccc gcgtcagaac
 34981 catateccag ggaacaacce attectgaat cagegtaaat cecacactge agggaagace
 35041 tcgcacgtaa ctcacgttgt gcattgtcaa agtgttacat tcgggcagca gcggatgatc
 35101 ctccagtatg gtagcgcggg tttctgtctc aaaaggaggt agacgatccc tactgtacgg
 35161 agtgcgccga gacaaccgag atcgtgttgg tcgtagtgtc atgccaaatg gaacgccgga
 35221 cgtagtcata tttcctgaag caaaaccagg tgcgggcgtg acaaacagat ctgcgtctcc
 35281 ggtctcgccg cttagatcgc tctgtgtagt agttgtagta tatccactct ctcaaagcat
 35341 ccaggegeec cetggetteg ggttetatgt aaacteette atgegeeget geeetgataa
 35401 catecaccae egeagaataa gecacaeeea gecaacetae acattegtte tgegagteae
 35461 acacgggagg agcgggaaga gctggaagaa ccatgttttt ttttttattc caaaagatta
 35521 tccaaaacct caaaatgaag atctattaag tgaacgcgct cccctccggt ggcgtggtca
 35581 aactctacag ccaaagaaca gataatggca titgtaagat gttgcacaat ggcttccaaa
 35641 aggcaaacgg ccctcacgtc caagtggacg taaaggctaa acccttcagg gtgaatctcc
 35701 totataaaca ttocagcaco ttoaaccatg cocaaataat tetoateteg coacettete
 35761 aatatatete taageaaate eegaatatta agteeggeea ttgtaaaaat etgeteeaga
 35821 gcgccctcca ccttcagcct caagcagcga atcatgattg caaaaattca ggttcctcac
  35881 agacctgtat aagattcaaa agcggaacat taacaaaaat accgcgatcc cgtaggtccc
  35941 ttcgcagggc cagctgaaca taatcgtgca ggtctgcacg gaccagcgcg gccacttccc
  36001 cgccaggaac catgacaaaa gaacccacac tgattatgac acgcatactc ggagctatgc
  36061 taaccagcgt agccccgatg taagcttgtt gcatgggcgg cgatataaaa tgcaaggtgc
  36121 tgctcaaaaa atcaggcaaa gcctcgcgca aaaaagaaag cacatcgtag tcatgctcat
  36181 gcagataaag gcaggtaagc tccggaacca ccacagaaaa agacaccatt tttctctcaa
  36241 acatgtetge gggtttetge ataaacacaa aataaaataa caaaaaaaca tttaaacatt
  36301 agaagcetgt cttacaacag gaaaaacaac ccttataagc ataagacgga ctacggccat
```

PCT/IIS02/32512

	36361	gccggcgtga	ccgtaaaaaa	actggtcacc	gtgattaaaa	agcaccaccg	acageteete
	36421	ggtcatgtcc	ggagtcataa.	tgtaagactc	ggtaaacaca	tcaggttgat	tcacatcggt .
	36481	cagtgctaaa	aagcgaccga	aatagcccgg	gggaatacat	acccgcaggc	gtagagacaa,
	36541	cattacagcc	cccataggag	gtataacaaa	attaatagga.	gagaaaaaca	cataaacacc
	36601	tgaaaaaccc	tcctgcctag	gcaaaatagc	accctcccgc	tccagaacaa	catacagcgc:
	36661	ttccacagcg	gcagccataa	cagtcagcct	taccagtaaa	aaagaaaacc	tattaaaaaa
	36721	acaccactcg	acacggcacc	agctcaatca	gtcacagtgt	aaaaaagggc	caagtgcaga
•	36781	gcgagtatat	ataggactaa	aaaatgacgt	aacggttaaa	gtccacaaaa	aacacccaga
	36841	aaaccgcacg	cgaacctacg	cccagaaacg	aaagccaaaa	aacccacaac	ttcctcaaat
							caattcccaa
							cgccccgcgc
	37021	cacgtcacaa	actccacccc	ctcattatca	tattggcttc	aatccaaaat	aaggtatatt.
	37081	attgatgatg			• :	•	

10	30	50	
ATGGCGCCCATCA	.CGGCCTACTCCCAACAGAC	GCGGGGCCTACTTGGTTGCATC	ATCACT
			+
MetAlaProIleT	hrAlaTyrSerGlnGlnTh	rArgGlyLeuLeuGlyCysIle	IleThr
	10		20
	••	110	
70	90	<del>-</del>	ACCGCA
AGCCTTACAGGCC	GGGACAAGAACCAGGICGA	AGGGAGAGGTTCAGGTGGTTTCC	+
	Amaden Tureden Glaval G	luGlyGluValGlnValValSer	ThrAla
SerLeurnigiya	ат унарнувнанот и чес. 30		40
130	150	170	
ACACAATCCTTC	CTGGCGACCTGCGTCAACG	GCGTGTGTTGGACCGTTTACCAT	GGTGCT
	+		+
ThrGlnSerPhe	LeuAlaThrCysValAsnG	lyValCysTrpThrValTyrHis	GlyAla 60
	50		60
	210	230	
190	210	CAATCACCCAGATGTACACTAA	rgtggac
GGCTCAAAGACC	TTAGCCGGCCCAAAGGGGGC		+
	ToublaGlyProLysGlyP	rolleThrGlnMetTyrThrAsı	nValAsp
GIASELDARIU	· 70		80
250	270	290	
CAGGACCTCGTC	GGCTGGCAGGCGCCCCCG	GGGCGCGTTCCTTGACACCATG	CACCTGT
t			
GlnAspLeuVal		SlyAlaArgSerLeuThrProCy	sTnrcys 100
	90		100
	330	350	
310		CATGCTGACGTCATTCCGGTGCG	CCGGCGG
GGCAGCTCAGAG			+
GlySerSerAsi	oLeuTvrLeuValThrArg	HisAlaAspValIleProValAr	gArgArg
GIADCEDOTIO	110		120
. 370	390		
GGCGACAGTAG	GGGGAGCCTGCTCTCCCCC	AGGCCTGTCTCCTACTTGAAGG(	3CTCTTCG
GlyAspSerAr		ArgProValSerTyrLeuLysG	lyserser 140
	130	1	140

FIG. 5A

430	450	470
GTGGTCCACTGCTCTGCC	CTTCGGGGCACGCTGTGGG	CATCTTCCGGGCTGCCGTATGC
	+	yIlePheArgAlaAlaValCys
STAGIALLOFERFERGABLE	roserGiyHisAlavalGiy 150	yiighleafgalaalavaleys 160
•	150	200
490	510	530
ACCCGGGGGGTTGCGAAGG	CGGTGGACTTTGTGCCCGT	AGAGTCCATGGAAACTACTAT(
		-+
PhraigGlyValalaLysA	170	lGluSerMetGluThrThrMet 180
	170	
550	570 ·	590
	ACAACTCATCCCCCCCGGC	CGTACCGCAGTCATTTCAAGT
	+	
\rgSerProValPheThrA	spAsnSerSerProProAl	aValProGlnSerPheGlnVa
	190	200
610	630	650
	- <del>-</del> -	TÁAAGTGĆCGGCTGCATATGC
	210	rLysValProAlaAlaTyrAl 22
670	690	710
GCCCAAGGGTACAAGGTGC	TCGTCCTCAATCCGTCCGT	ŶĠĊĊĠĊŸĸĊĊŶŸĸĠĠĠŢŢŢĠĠ
AlaGinGlyTyrLysVali	euValLeuAsnPröSerVa 230	lAlaAlaThrLeuGlyPheGl
	230	2.3
730	750 ·	770 .
GCGTATATGTCTAAGGCÁÓ	CACGGTATTGACCCCAACAT	CAGAACTGGGGTAAGGACCAT
	.+=====================================	
AlaTyrMetSerLysAlaF	isGlyIleAspProAsnIl	.eArgThrGlyValArgThrIl
•	250	` 26
790 ·	810	830
·		AGTTTCTTGCCGATGGTGGTTG
	-+	
THYTHYC1 và 1 a DyoVá 1 7	ThrTyrSerThrTyrGlyLj	ic Phat au al à à chCluCu
INT INT GYAVIOR TOACT	3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	Stuenedwrawsbarlailcl

FIG. 5B

850	870	890
		CCATTCAACTGACTCGACTACA
SerGlyGlyAlaTyrAspIl		sHisSerThrAspSerThrThr
	290	300
910	930	950
ATCTTGGGCATCGGCACAGT	CCTGGACCAAGCGGAGAC	GGCTGGAGCGCGGCTTGTCGTG
		rAlaGlyAlaArgLeuValVal
Tienerer's Tree-1 there are	310	320
970 .	990	1010
CTCGCCACCGCTACGCCTCC		CACACCCAAACATCGAGGAGGTG
LeualaThrAlaThrProPr	coGlySerValThrValPr	coHisProAsnIleGluGluVal
Demination of the second of th	330	340
1030	1050	1070
GCCCTGTCTAATACTGGAGA	AGATCCCCTTCTATGGCAI	AAGCCATCCCCATTGAAGCCATC
alataucara andheclaci	t lulleprophetyrGlyL	ysAlaIleProIleGluAlaIle
Alabedsetvanimieries	350	360
1090	1110	1130
AGGGGGGAAGGCATCTCA'	rtttctgtcattccaaga	AGAAGTGCGACGAGCTCGCCGCA
AraclyclyAraHisLeuI	+ lepheCvsHisSerLysL	++ ysLysCysAspGluLeuAlaAla
mggijoijing	370	380
1150	1170	1190
AAGCTGTCAGGCCTCGGAA	TCAACGCTGTGGCGTATT	ACCGGGGGCTCGATGTGTCCGTC
TyroLauSarGlyLeuGlyT	leAsnAlaValAlaTyrT	++ YrArgGlyLeuAspValSerVal
DASTERBELGTATER 211	390	400
1210	1230	1250
		SACGCTCTGATGACGGGCTATACG
	-+	AspAlaLeuMetThrGlyTyrThr
	410	420

FIG. 5C

1270	1290	1310
		ACCCAGACAGTCGACTTCAGC
	-+	
31743priiekspaet vai	430	440
1330	1350	1370
	ATTGAGACGACGACCGTGCCT	
LeuAspProThrPheThr	:IleGluThrThrThrValPro 450	GINASPALAVAISERAIGSER 460
	450	
1390	1410	1430
	ĠGCAGĞGGTAGGAGAGGĊATC	TACAGGTTTGTGACTCCGGGA
	+	4+
GlnArgArgGlyArgThr	GlyArgGlyArgArgGlyIle	TyrArgPheValThrProGly
•	470	480
1.450	1470	1400
1450	1470	1490 GAGTGCTATGACGCGGGCTGT
		•
•	·	GluCysTyrAspAlaGlyCys
	490	500
•		••
1510	. 1530	1550
		TTGCGGGCCTACCTGAACACA
	+	
AlaTrpTyrGluLeuThi	ProAlaGluThrSerValArg 510	LëuArgAlaTyrLeuAsnThr 520
	210 .	. 520
<b>1570</b> .	1590	1610
		GAGAGTGTCTTCACAGGCCTC
		++
ProGlyLeuProValCys	GlnAspHisLeuGluPheTrp	GluSerValPheThrGlyLeu
	530	540
•		
1630	1650	1670
		GCAGGAGACAACTTCCCCTAC
		AlaGlyAspÁsnPheProTyr
iminisiteaspaiani:	spnebeuserGinThrLysGin	AlaGiyaspasnPheProlyr 560
	230	500

FIG. 5D

1690 CTGGTAGCATACCAAGCCA	1710 CGGTGTGCGCCAGGGCTC	1730 AGGCCCACCTCCATCATGGGAT
LeuValAlaTyrGlnAlaT	hrValCysAlaArgAlaG 570	++ lnAlaProProProSerTrpAsp 580
1750 CAAATGTGGAAGTGTCTCA	1770 TACGGCTGAAACCTACGC	1790 TGCACGGGCCAACACCCTTGCTG
GlnMetTrpLysCysLeuI	leArgLeuLysProThri 590	euHisGlyProThrProLeuLeu 600
1810 TACAGGCTGGGAGCCGTCC	AAAATGAGGTCACCCTC	1850 ACCCACCCCATAACCAAATACATC
TyrArgLeuGlyAlaValG	inAsnGluValThrLeu'	ThrHisProIleThrLysTyrIle 620
1870 ATGGCATGCATGTCGGCTC	1890 SACCTGGAGGTCGTCACT	1910 AGCACCTGGGTGCTGGTGGGCGGA
MetAlaCýsMetSerAlai	AspLeuGluValValThr 630	SerThrTrpValLeuValGlyGly
1930 GTCCTTGCAGCTCTGGCC	1950 GCGTATTGCCTGACAACA	1970 GGCAGTGTGGTCATTGTGGGTAGG
ValLeuAlaAlaLeuAla	-+AlaTyrCysLeuThrThx 650	GlySerValValIleValGlyArg
1990 ATTATCTTGTCCGGGAGG	2010 CCGGCTATTGTTCCCGAC	2030 CAGGGAGTTTCTCTACCAGGAGTTC
		pArgGluPheLeuTyrGlnGluPhe 680
	+	2090 CATCGAGCAGGGAATGCAGCTCGCC++ rileGluGlnGlyMetGlnLeuAla 700

FIG. 5E

2110	2130	2150
		AGCCACCAAACAAGCGGAGGCT
GluGlnPheLysGlnLys		rAlaThrLysGlnAlaGluAla
•	710	720
2170	2190	2210
		GACATTCTGGGCGAAGCACATG
		-+
		uThrPheTrpAlaLysHisMet
	730	740
2230	2250	2270
TGGAATTTCATCAGCGGC	GATACAGTACTTAGCAGGCTT	ATCCACTCTGCCTGGGAACCCC
	+	-++
TrpAsnPheIleSerGly	·	uSerThrLeuProGlyAsnPro
	. 750	76,0
	224.0	2220
2290	2310	2330 CAGCCCGCTCACCACCAAAGT
AlaIleAlaSerLeuMe	tAlaPheThrAlaSerIleTh 770	rSerProLeuThrThrGlnSer 780
2350	2370	2390
· ·		CCAACTCGCCCCCCCAGCGCC
ThrLeuLeuPheAsnIle	eLeuGlyGlyTrpValAlaAl	aGlnLeuAlaProProSerAla
	790	. 800
	0.40-0	
2410	2430	2450
		TGTTGGCAGCATAGGCCTTGGG
		LaValGlySerIleGlyLeuGly
·	810	820
	010	-
2470	2490	2510
AAGGTGCTTGTGGACAT	rctggcgggttatggagcag(	PAGTGGCCGGCGCGCTCGTGGCC
	· · · · · · · · · · · · · · · · · · ·	
LysValLeuValAspIle	eLeuAlaGlyTyrGlyAlaG	lyValAlaGlyAlaLeuValAla

FIG. 5F

•		
- 2530	2550	2570
	AGATGCCCTCCACCGAGG.	ACCTGGTCAATCTACTTCCTGCC
		+
PheLysValMetSerGlyG	luMetProSerThrGluA	spLeuValAsnLeuLeuProAla
	850	860
2590	2610	2630
ATCCTCTCTCTGGCGCCC	TGGTCGTCGGGGTCGTGT	GTGCAGCAATACTGCGTCGACAC
	+	++
IleLeuSerProGlyAlaL	euValValGlyValValC	ysAlaAlaIleLeuArgArgHis
ı	870	880
2650	2670	2690
		CGGCTGATAGCGTTCGCCTCGCGG
		++
ValGlyProGlyGluGlyP	laValGlnTrpMetAsn/	ArgLeuIleAlaPheAlaSerArg
	890	900
•		
2710	2730	_. 2750
GGTAATCATGTTTCCCCC	ACGCACTATGTGCCTGAG	AGCGACGCCGCAGCGCGTGTTACT
	-+	
GlyAsnHisValSerPro	ThrHisTyrValProGlu	SerAspAlaAlaAlaArgValThr
	910	920
2770	2790	2810
CAGATCCTCTCCAGCCTT	ACCATCACTCAGCTGCTG.	AAAAGGCTCCACCAGTGGATTAAT
	-+	++
GlnIleLeuSerSerLeu	ThrIleThrGlnLeuLeu	LysArgLeuHisGlnTrpIleAsn
	930	940
2830	2850	2870
		AGGGATGTTTGGGACTGGATATGC
		+
GluAspCysSerThrPro		ArgAspValTrpAspTrpIleCys
	950	960
2890	2910	2930
		CAAGCTCCTGCCGCAGCTACCGGGA
ThrValLeuThrAspPhe	LysThrTrpLeuGlnSe	rLysLeuLeuProGlnLeuProGly
	970	980

FIG. 5G

2950	2970	2990
		CTGGCGGGGAGACGGCATCATG
		+ alTrpArgGlyAspGlyIleMet
	990	1000
3010	3030	3050
•	•	ATGTCAAAAACGGTTCCATGAGG
	-+ GlyAlaGlnIleThrGlyHi	isValLysAsnGlySerMetArg
	1010	1020
3070	3090	3110
		GAACATTCCCCATCAACGCATAC
		++ lyThrPheProlleAsnAlaTyr
·	1030	1040
3130	3150	3170
		ATTCTAGGGCGCTGTGGCGGGTG
	,	++ yrSerArgAlaLeuTrpArgVal
Thringlyprocystme	1050	yrserargarabeurrpargvar 1060
2100		2220
3190 GCCGCTGAGGAGTACGTG	3210 GAGGTCACGCGGGTGGGGG	3230 ATTTCCACTACGTGACGGGCATG
AlaAlaGluGluTyrVal	GluvalThrArgvalGlyAs 1070	spPheHisTyrValThrGlyMet 1080
3250	3270	3290 CTCCTGAATTCTTCACGGAGGTG
ACCACIGACAACGIAAAG		+++
ThrThrAspAsnValLys		laProGluPhePheThrGluVal
:	1090	1100
3310	3330	3350
		GGCCTCTCCTACGGGAGGAGGTT
		++ rgProLeuLeuArgGluGluVal
	1110	

FIG. 5H

3370	3390	3410
		ACAGCTACCATGCGAGCCCGAA
	•	-++
ThrPheGinValGlyLevAs	inginiyrLeuvaigiysei 1130	rGlnLeuProCysGluProGlu 1140
	1130	2240
3430	3450	3470
		CTCCCACATCACAGCAGAAACG
7 7		_+
ProAspValAlaValLeuTh	nrSerMetLeuThrAspPr	oSerHisIleThrAlaGluThr
•	1150	1160
•		
3490	3510	3530
GCTAAGCGTAGGTTGGCCAC	GGGGTCTCCCCCCTCCTT	GGCCAGCTCTTCAGCTAGCCAG
•	•	-+
AlaLysArgArgLeuAlaA		uAlaSerSerSerAlaSerGln
	1170	1180
3550	3570	3590
		CCATGTCTCTCCGGACGCTGAC
•		-114-11-1 (
LeuSerAlaProSerLeuL	ysalarnrcystnrinihi 1190	sHisValSerProAspAlaAsp
	1150	1200
3610	3630	3650
	• • •	CGGGAACATCACCCGCGTGGAG
		yGlyAsnIleThrArgValGlu
	1210	1220
3670	3690	3710
TCGGAGAACAAGGTGGTAG	TCCTGGACTCTTTCGACCC	CGCTTCGAGCGGAGGAGGATGAG
	+	-+
SerGluAsnLysValValV	alLeuAspSerPheAspPr	coLeuArgAlaGluGluAspGlu
	1230	1240
3730	3750	3770
		CCAAGAAGTTCCCCGCAGCGATG
ArgGluValSerValProA		erLysLysPheProAlaAlaMet
	1250	1260

FIG. 51

3790	3810	3830
		AGAGTCCTGGAAGGACCCGGAC
•		uGluSerTrpLysAspProAsp
	1270	1280
3850	3870	3890 ·
TACGTCCCTCCGGTGGTG		TATCAAGGCCCCTCCAATACCA'
		atlatualla Dra Dra Il a Dra
TyrvalProProvatvali	HisGiyCysProLeuProPr 1290	olleLysAlaProProllePro
•		
3910	3930	3950
CCTCCACGGAGAAAGAGG	ACGGTTGTCCTAACAGAGTC	CTCCGTGTCTTCTGCCTTAGCG
	-+	-+
ProProArgArgLysArg	ThrValValLeuThrGluSë	rSerVälSerSerAlaLeuAla
	1310	1320
3970	3990	4010
GAGCTCGCTACTAAGACC	TTCGGCAGCTCCGAATCATC	GGCCGTCGACAGCGGCACGGCG
Cluteu AlaThriveThr	PheClySerSerCluSerSe	rAlaValAspSerGlyThrAla
GidbedAlalilbysiid	1330	1340
		77.7
4030	4050	4070
ACCGCCCTTCCTGACCAG	GCCTCCGÁCGACGGTGACAA	AGGATCCGACGTTGAGTCGTAC
	-+	·
ThrAlaLeuProAspGln		sGlySerAspValGluSerTyr
	1350	1360
. 4090	4110	4130
		CGATCTCAGTGACGGGTCTTGG
SerSerMetProProLeu	GluGlýGluProGlyAspPr	oAspLeuSerAspGlySerTrp
	1370	1380
4150	4170	4190
TCTACCGTGAGCGAGGAA	GCTAGTGAGGATGTCGTCTC	CTGCTCAATGTCCTACACATGG
	·	
SerThrValSerGluGlu	-	vsCysSerMetSerTyrThrTrp
	1390	1400

FIG. 5J

4210	4230	4250
		CAAGCTGCCCATCAACGCGTTG
		-++
ThrGlyAlaLeuIleThrPro	oCysAlaAlaGluGluSe	rLysLeuProIleAsnAlaLeu
	1410	1420
		4040
4270	4290	4310
AGCAACTCTTTGCTGCGCCA	CCATAACATGGTTTATGC	CACAACATCTCGCAGCGCAGGC
		aThrThrSerArgSerAlaGly
Serasnserbeubeuargni	1430	1440
•		
4330	4350	4370
		PCCTGGACGACCACTACCGGGAC
		+
LeuArgGlnLysLysValTh		alLeuAspAspHisTyrArgAsp
	1450	1460
. 1000	4410	4430
4390		AGGCTAAACTCCTATCCGTAGAG
GIGCICAAGGAGAIGAAGGC		+
		ysAlaLysLeuLeuSerValGlu
•	1470	1480
4450	4470	4490
		CCAAGTTTGGCTATGGGGCAAAG
		+
GluAlaCysLysLeuThrPi	roprohisseratalyss 1490	erLysPheGlyTyrGlyAlaLys 1500
	1470	2000
4510	4530	4550
- <del>-</del>	GCAAGGCCGTTAACCACA	TCCACTCCGTGTGGAAGGACTTG
		++
AspValArgAsnLeuSerS	erLysAlaValAsnHisI	leHisSerValTrpLysAspLeu
	1510	1520
		4.00.0
4570	4590	4610
		ATGGCAAAAAATGAGGTTTTCTGT
		++ MetAlaLysAsnGluValPheCys
LeuGluAspTnrvalTnrP	rolleaspinimiller 1530	1540
	-JJ	

FIG. 5K

4630	4650 ·	4670
TCCAACCAGAGAAAGGA	GCCGTAAGCCAGCCCGCCT	TATCGTATTCCCAGATCTGGGA
	-+	++
/alGlnProGluLysGly(	GlyArgLysProAlaArgLe	eulleValPheProAspLeuGly
	1550	1560
•		
4690	4710	4730
		CTCCACCCTTCCTCAGGTCGTC
	-+	
JalArgValCysGluLys		alSerThrLeuProGlnValVal
•	1570	1580
	4770 ·	4790
4750		AGCGAGTCGAGTTCCTGGTGAA
ATGGGCTCCTCATACGGA	TICCAGIACICICCIGGGC	
MatCluSarSarTurClu	PheClnTvrSerProGlvG	lnArgValGluPheLeuValAsı
	1590	160
•	1000	
4810	4830	4850
		ATGACACTCGCTGTTTCGACTC
	.1610	yrAspThrArgCysPheAspSe 162
4870	4890	4910
ACGGTCACCGAGAACGAC	ATCCGTGTTGAGGAGTCAA	TTTACCAATGTTGTGACTTGGC
		+
ThrValThrGluAsnAsp	IleArgValGluGluSerI	leTyrGlnCysCysAspLeuAl
•	1630	164
4930	4950	4970
CCCGAAGCCAGACAGGCC	ATAAAATCGCTCACAGAGC	GGCTTTATATCGGGGGTCCTCT
ProgruataargGInata	1650	rgLeuTyrIleGlyGlyProLe 166
•		100
4990	5010	5030
		GCCGCGCGAGCGCGTGCTGAC
ThrasnSerLvsGlvClr	•	ysArgAlaSerGlyValLeuTh
	1670	168
	10/0	

: FIG. 5L

	5070	5090
5050	5070 באר הייניים ארבייים ארביים	CTCTGCAGCCTGTCGAGCTGCG
ACTAGCTGCGGTAACACCCT	CACAIGITACITORICO	-++
ThrserCysGlvAsnThrLe	euThrCysTyrLeuLysAl	aSerAlaAlaCysArgAlaAla
IIII Detey Doty.	1690	1700
5110	5130	5150
AAGCTCCAGGACTGCACGAT	rgctcgtgaacggagacga	CCTTGTCGTTATCTGTGAAAGC
		-++
LysLeuGlnAspCysThrMe	etLeuValAsnGlyAspAs	spLeuValValIleCysGluSer .
	1710	1720
		5210
5170	5190	5210
GCGGGAACCCAAGAGGACG	CGGCGAGCCTACGAGTCT	CACGGAGGCTATGACTAGGTAC
	1-21-50-F 002-70121P	heThrGluAlaMetThrArgTyr
AlaGlyThrGInGluAspA	1730	1740
	1730	
5230	5250	5270
	CCCCCCAACCAGAATACG	ACTTGGAGCTGATAACATCATGT
TCTGCCCCCCCGGGGGCC	.4	++
Cornia Pro Pro GlyASDF	roproGlnProGluTyrA	spLeuGluLeuIleThrSerCys
Selviationiogijuspi	1750	1760
5290	5310	5330
TCCTCCAATGTGTCGGTCG	CCCACGATGCATCAGGCA	AAAGGGTGTACTACCTCACCCGT
	-+	++
SerSerAsnValSerVal	AlaHisAspAlaSerGlyL	ysArgValTyrTyrLeuThrArg
	1770	1780
. 5350	5370	5390
GATCCCACCACCCCCCTC	GCACGGGCTGCGTGGGAA!	ACAGCTAGACACACTCCAGTTAAC
	-+	
AspProThrThrProLeu		ThrAlaArgHisThrProValAsn
	1790	1800
	5.43.0	5450
5410	5430	
TCCTGGCTAGGCAACATT	ATCATGTATGCGCCCACT	TTGTGGGCAAGGATGATTCTGATG
		tt
SerTrpLeuGlyAsnIle		LeuTrpAlaArgMetIleLeuMet 1820
	1810	1020

FIG. 5M

-		5510
5470	5490	
		IGAAAAAGCCCTGGACTGCCAG
		-+
ChrHisPhePheSerIleI		uGluLysAlaLeuAspCysGln 1840
	<b>1830</b> .	1940
•		·
5530	5550	<b>5570</b> .
		ACCTCAGATCATTGAACGACTC
IleTyrGlyAlaCysTyr:		uProGlnIleIleGluArgLeu
	1850	1860
	•	
5590	5610	5630
		AGGTGAGATCAATAGGGTGGCT
HisGlyLeuSerAlaPhe		oGlyGluIleAsnArgValAla
•	1870	1880
	•	
5650	5670	5690
<b>TCATGCCTCAGGAAACTT</b>	GGGGTACCACCCTTGCGAGT	CTGGAGACATCGGGCCAGGAG(
		.trpArgHisArgAlaArgSe
	1890	1900
5710	5730	5750
GTCCGCGCTAGGCTACTG	TCCCAGGGGGGGGGGCCGC	CACTTGTGGCAAGTACCTCTT
		aThrCysGlyLysTyrLeuPh
,	1910	1920
5770	5790	5810
	•	CCCGGCTGCGTCCCAGCTGGA
•		LeProAlaAlaSerGlnLeuAs
uenii hura arnă a lur	1930	194
•	1930	134
5020	5050	5870
5830	5850	•
	GCTGGTTACAGCGGGGGAGI	<b>ACATATATCACAGCCTGTCTCG</b>
		•
•		
•		+spIleTyrHisSerLeuSerArc

FIG. 5N

5890 ·	5910	5930					
GCCCGACCCCGCTGGTT	CATGCTGTGCCTACTCCTAC	TTTCTGTAGGGGTAGGCATCTAC					
	+	+					
AlaArgProArgTrpPh	AlaArgProArgTrpPheMetLeuCysLeuLeuLeuLeuSerValGlyValGlyIleTyr						
	1970	1980					
. •							
5950 5955							
CTGCTCCCCAACCGA	(SEQ. ID. NO. 5)						
LeuLeuProAsnArg	(SEQ. ID. NO. 6)						
1985							

1	TCGCGCGTTT	CGGTGATGAC	GGTGAAAACC	TCTGACACAT	GCAGCTCCCG
51	GAGACGGTCA	CAGCTTGTCT	GTAAGCGGAT	GCCGGGAGCA	GACAAGCCCG
101	TCAGGGCGCG	TCAGCGGGTG	TTGGCGGGTG	TCGGGGCTGG	CTTAACTATG
151	CGGCATCAGA	GCAGATTGTA	CTGAGAGTGC	ACCATATGCG	GTGTGAAATA
201	CCGCACAGAT	GCGTAAGGAG	AAAATACCGC	ATCAGATTGG	CTATTGGCCA
251	TTGCATACGT	TGTATCCATA	TCATAATATG	TACATTTATA	TTGGCTCATG
301	TCCAACATTA	CCGCCATGTT	GACATTGATT	ATTGACTAGT	TATTAATAGT
351	AATCAATTAC	GGGGTCATTA	GTTCATAGCC	CATATATGGA	GTTCCGCGTT
401	ACATAACTTA	CGGTAAATGG	CCCGCCTGGC	TGACCGCCCA	ACGACCCCCG
451	CCCATTGACG	TCAATAATGA	CGTATGTTCC	CATAGTAACG	CCAATAGGGA
501	CTTTCCATTG	ACGTCAATGG	GTGGAGTATT	TACGGTAAAC	TGCCCACTTG
551	GCAGTACATC	AAGTGTATCA	TATGCCAAGT	ACGCCCCTA	TTGACGTCAA
601	TGACGGTAAA	TGGCCCGCCT	GGCATTATGC	CCAGTACATG	ACCTTATGGG
651	ACTTTCCTAC	TTGGCAGTAC	ATCTACGTAT	TAGTCATCGC	TATTACCATG.
701	GTGATGCGGT	TTTGGCAGTA	CATCAATGGG	CGTGGATAGC	GGTTTGACTC
751	ACGGGGATTT	CCAAGTCTCC	ACCCCATTGA	CGTCAATGGG	AGTTTGTTTT
801	GGCACCAAAA	TCAACGGGAC	TTTCCAAAAT	GTCGTAACAA	CTCCGCCCCA
851	TTGACGCAAA	TGGGCGGTAG	GCGTGTACGG	TGGGAGGTCT	ATATAAGCAG
901	AGCTCGTTTA	GTGAACCGTC	AGATCGCCTG	GAGACGCCAT	CCACGCTGTT
951	TTGACCTCCA	TAGAAGACAC	CGGGACCGAT	CCAGCCTCCG	CGGCCGGGAA
1001	CGGTGCATTG	GAACGCGGAT	TCCCCGTGCC	AAGAGTGACG	TAAGTACCGC
1051	CTATAGACTC	TATAGGCACA	CCCCTTTGGC	TCTTATGCAT	GCTATACTGT
1101	TTTTGGCTTG	GGGCCTATAC	ACCCCCCCTT	CCTTATGCTA	TAGGTGATGG
1151	TATAGCTTAG	CCTATAGGTG	TGGGTTATTG	ACCATTATTG	ACCACTCCCC
1201	TATTGGTGAC	GATACTTTCC	ATTACTAATC	CATAACATGG	CTCTTTGCCA
1251	CAACTATCTC	TATTGGCTAT	ATGCCAATAC	TCTGTCCTTC	AGAGACTGAC
1301	ACGGACTCTG	TATTTTTACA	GGATGGGGTC	CCATTTATTA	TTTACAAATT
1351	CACATATÁCA	ACAACGCCGT	CCCCCGTGCC	CGCAGTTTTT	ATTAAACATA
1401	GCGTGGGATC	TCCACGCGAA	TCTCGGGTAC	GTGTTCCGGA	CATGGGCTCT
1451	TCTCCGGTAG	CGGCGGAGCT	TCCACATCCG	AGCCCTGGTC	CCATGCCTCC
1501	AGCGGCTCAT	GGTCGCTCGG	CAGCTCCTTG	CTCCTAACAG	TGGAGGCCAG
1551	ACTTAGGCAC	AGCACAATGC	CCACCACCAC	CAGTGTGCCG	CACAAGGCCG
1601	TGGCGGTAGG	GTATGTGTCT	GAAAATGAGC	GTGGAGATTG	GGCTCGCACG
1651	GCTGACGCAG	ATGGAAGACT	TAAGGCAGCG	GCAGAAGAAG	ATGCAGGCAG
1701	CTGAGTTGTT	GTATTCTGAT	AAGAGTCAGA	GGTAACTCCC	GTTGCGGTGC
1751	TGTTAACGGT	GGAGGGCAGT	GTAGTCTGAG	CAGTACTCGT	TGCTGCCGCG
1801	CGCGCCACCA	GACATAATAG	CTGACAGACT	AACAGACTGT	TCCTTTCCAT
1851	GGGTCTTTTC	TGCAGTCACC	GTCCTTAGAT	CTAGGTACCA	GATATCAGAA
1901	TTCAGTCGAC	AGCGGCCGCG	ATCTGCTGTG	CCTTCTAGTT	GCCAGCCATC
1951	TGTTGTTTGC	CCCTCCCCC	TGCCTTCCTT	GACCCTGGAA	GGTGCCACTC
2001	CCACTGTCCT	TTCCTAATAA	AATGAGGAAA	TTGCATCGCA	TTGTCTGAGT
2051	AGGTGTCATT	CTATTCTGGG	GGGTGGGGTG	GGGCAGGACA	GCAAGGGGGA

FIG. 6A

2101	GGATTGGGAA GACAATAGCA GGCATGCTGG GGATGCGGTG GGCTCTATGG
2151	CCGCTGCGGC CAGGTGCTGA AGAATTGACC CGGTTCCTCC TGGGCCAGAA
2201	AGAAGCAGGC ACATCCCCTT CTCTGTGACA CACCCTGTCC ACGCCCCTGG
2251	TTCTTAGTTC CAGCCCCACT CATAGGACAC TCATAGCTCA GGAGGGCTCC
2301	GCCTTCAATC CCACCCGCTA AAGTACTTGG AGCGGTCTCT CCCTCCCTCA
2351	TCAGCCCACC AAACCAAACC TAGCCTCCAA GAGTGGGAAG AAATTAAAGC
2401	AAGATAGGCT ATTAAGTGCA GAGGGAGAGA AAATGCCTCC AACATGTGAG
2451	CAAGTAATGA GAGAAATCAT AGAATTTCTT CCGCTTCCTC GCTCACTGAC
2501	TOGOTGOGOT COGTOGTTCG GOTGOGGCGA GOGGTATCAG CTCACTCAAA
2551	GGCGGTAATA CGGTTATCCA CAGAATCAGG GGATAACGCA GGAAAGAACA
2601	TCTGAGCAAA AGGCCAGCAA AAGGCCAGGA ACCGTAAAAA GGCCGCGTTG
2651	CTGGCGTTTT TCCATAGGCT CCGCCCCCCT GACGAGCATC ACAAAAATCG
2701	ACCCTCAAGT CAGAGGTGGC GAAACCCGAC AGGACTATAA AGATACCAGG
2751	CGTTTCCCCC TGGAAGCTCC CTCGTGCGCT CTCCTGTTCC GACCCTGCCG
2801	CTTACCGGAT ACCTGTCCGC CTTTCTCCCT TCGGGAAGCG TGGCGCTTTC
2851	TCATAGCTCA CGCTGTAGGT ATCTCAGTTC GGTGTAGGTC GTTCGCTCCA
2901	AGCTGGGCTG TGTGCACGAA CCCCCCGTTC AGCCCGACCG CTGCGCCTTA
2951	TCCGGTAACT ATCGTCTTGA GTCCAACCCG GTAAGACACG ACTTATCGCC
3001	ACTOGOAGOA GOCACTGGTA ACAGGATTAG CAGAGOGAGG TATGTAGGOG
3051	CTCCTACAGA GTTCTTGAAG TGGTGGCCTA ACTACGGCTA CACTAGAAGA
3101	ACAGTATTIG GTATCIGCGC TCTGCTGAAG CCAGTTACCT TCGGAAAAAG
3151	AGTTGGTAGC TCTTGATCCG GCAAACAAAC CACCGCTGGT AGCGGTGGTT
3201	TTTTTGTTTG CAAGCAGCAG ATTACGCGCA GAAAAAAAGG ATCTCAAGAA
3251	CATCCTTTGA TCTTTTCTAC GGGGTCTGAC GCTCAGTGGA ACGAAAACTC
3301	ACGTTANGGG ATTITGGTCA TGAGATTATC AAAAAGGATC TTCACCTAGA
3351	TCCTTTTAAA TTAAAAATGA AGTTTTAAAT CAATCTAAAG TATATATGAG
3401	TAAACTTGGT CTGACAGTTA CCAATGCTTA ATCAGTGAGG CACCTATCTC
3451	AGCGATCTGT CTATTTCGTT CATCCATAGT TGCCTGACTC GGGGGGGGG
3501	CCCCCTGAGG TCTGCCTCGT GAAGAAGGTG TTGCTGACTC ATACCAGGCC
3551	TO THE PROPERTY OF THE PROPERT
3601	ACCORDANGE ACCORDANGE ACCORDANGE TO THE TRANSPORT OF THE
3651	TOTAL TOTAL TRANSPORCE CONNENTS TO TGATCTGATC CTTCAACTCA
3701	ACABACCCC CGTCCCGTCA AGTCAGCGTA
375	TOTAL SCHOOL STATES OF THE STA
380	TATATCA TATATCA AND COLOR COLOR TOTATCA TOTATCA TATATCA TATATC
385	THE THE PARTY AND A CONTROL OF THE PARTY AND A C
390	TOTAL TOTAL AND AND CONTRACT COCTOTOGE A TYCCGACTCG
395	TO THE TAXABLE TO THE
400	AND COMES CARCACCACTC ANTICCGGTGA GAATGGCAAA
405	THE THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE PROPE
	TO CHARGE CANCEND CANCENDACE GTTATTCATT CGTGATTGCG
410	1 CCTGAGCGAG ACGAAATACG CGATCGCTGT TAAAAGGACA ATTACAAACA
415	T CCIGNOCANA WCOLUMNICO COLONIA

FIG. 6B

PCT/US02/32512

4201	GGAATCGAAT	GCAACCGGCG	CAGGAACACT	GCCAGCGCAT	CAACAATATT
4251	TTCACCTGAA	TCAGGATATT	CTTCTAATAC	CTGGAATGCT	GTTTTCCCGG
43Ó1	GGATCGCAGT	GGTGAGTAAC	CATGCATCAT	CAGGAGTACG	GATAAAATGC
4351	TTGATGGTCG	GÁÁGAGGCAT	AAATTCCGTC	AGCCAGTTTA	GTCTGACCAT
4401	CŤCATCŤĠTA	ACATCATTGG	CAACGCTACC	TTTGCCATGT	TTCAGAAACA
4451	ACTCTGGCGC	ATCGGGCTTC	CCATACAATC	GATAGATTGT	CGCACCTGAT
4501	TĠCCCGAĊAT	TÄTCGCGAGC	CCATTTATAC	CCATATAAAT	CAGCATCCAT
4551	GTTGGAATŤŤ	<b>AATCĆĊGGCĊ</b>	TCGAGCAAGA	CGTTTCCCGT	TGAATATGGC
4601	TCATAACACC	CCTTGTATTÄ	CTGTTTATGT	AAGCAGACAG	TTTTATTGTT
4651	CATGATGATA	TÄTTTTTATC	TTGTGCAATG	TAACATCAGA	GATTTTGAGA
4701	CACAACGTGG	CTTTCCCCCC	CCCCCATTA	TTGAAGCATT	TATCAGGGTT
4751	ATTGTCTCAT	GAGCGGATAC	ATATTTGAAT	GTATTTAGAA	AAATAAACAA
4801	ATAGGGGTTC	CGCGCACATT	TCCCCGAAAA	GTGCCACCTG	ACGTCTAAGA
4851	AACCATTATT	ATCATGACAT	TAACCTATAA	AAATAGGCGT	ATCACGAGGC
4901	CCTTTCGTC	.:		•	<del>.</del>

					man	CCCCTCCCACT ·
1	CATCATCAAT	AATATACCTT	ATTTTGGATT	GAAGCCAATA	TGATAATGAG	GGGGTGGAGT
61	TTGTGACGTG	GCGCGGGGCG	TGGGAACGGG	GCGGGTGACG	TAGTAGIGIG	CACCOMMUNIC
121	GATGTTGTAA	GTGTGGCGGA	ACACATGTAA	GCGCCGGATG	TGGTAAAAGT	CARCUITITIG
181	GTGTGCGCCG	GTGTACACGG	GAAGTGACAA	TTTTCGCGCG	GTTTTAGGCG	GAIGIIGIAG
241	TAAATTTGGG	CGTAACCAAG	TAATATTTGG	CCATTTTCGC	GGGAAAACTG	AATAAGAGGA
301	AGTGAAATCT	GAATAATTCT	GTGTTACTCA	TAGCGCGTAA	TATTTGTCTA	GGGCCGCGG
361	GACTTTGACC	GTTTACGTGG	AGACTCGCCC	AGGTGTTTTT	CTCAGGTGTT	TREEGEGITE
421	CGGGTCAAAG	TTGGCGTTTT	ATTATTATAG	TCAGCTGACG	CGCAGTGTAT	TTATACCCGG
481	TGAGTTCCTC	AAGAGGCCAC	TCTTGAGTGC	CAGCGAGTAG	AGTTTTCTCC	TCCGAGCCGC
541	TCCGACACCG	GGACTGAAAA	TGAGACATAT	TATCTGCCAC	GGAGGTGTTA	TTACCGAAGA
601	AATGGCCGCC	AGTCTTTTGG	ACCAGCTGAT	CGAAGAGGTA	CTGGCTGATA	ATCTTCCACC
661	TCCTAGCCAT	TTTGAACCAC	CTACCCTTCA	CGAACTGTAT	GATTTAGACG	TGACGGCCCC
721	CGAAGATCCC	AACGAGGAGG	CGGTTTCGCA	GATTTTTCCC	GAGTCTGTAA	TGTTGGCGGT
781	GCAGGAAGGG	ATTGACTTAT	TCACTTTTCC	GCCGGCGCCC	GGTTCTCCGG	AGCCGCCTCA
841	CCTTTCCCGG	CAGCCCGAGC	AGCCGGAGCA	GAGAGCCTTG	GGTCCGGTTT	CTATGCCAAA
901	CCTTGTGCCG	GAGGTGATCG	ATCTTACCTG	CCACGAGGCT	GGCTTTCCAC	CCAGTGACGA
961	CGAGGATGAA	GAGGGTGAGG	AGTTTGTGTT	AGATTATGTG	GAGCACCCCG	GGCACGGTTG
1021	CAGGTCTTGT	CATTATCACC	GGAGGAATAC	GGGGGACCCA	GATATTATGT	GTTCGCTTTG
1081	CTATATGAGG	ACCTGTGGCA	TGTTTGTCTA	CAGTAAGTGA	AAAATTATGG	GCAGTGGGTG
1141	ATAGAGTGGT	GGGTTTGGTG	TGGTAATTTT	TTTTTTAATI	TTTACAGTTT	TGTGGTTTAA
1201	AGAATTTTGT	ATTGTGATTT	TTTAAAAGGT	CCTGTGTCTC	AACCTGAGCC	TGAGCCCGAG
1261	CCAGAACCGG	AGCCTGCAAG	ACCTACCCG	CGTCCTAAAT	TGGTGCCTGC	TATCCTGAGA
1321	CGCCCGACAT	CACCTGTGTC	TAGAGAATG	AATAGTAGTA	CGGATAGCTG	TGACTCCGGT
138	L CCTTCTAACA	CACCTCCTGA	GATACACCC	GTGGTCCCG	TGTGCCCCAT	TAAACCAGTT
144	L GCCGTGAGAG	TTGGTGGGCG	TCGCCAGGC	r gtggaatgt/	A TCGAGGACTI	GCTTAACGAG
150	L TCTGGGCAAC	CTTTGGACTT	GAGCTGTAA	A CGCCCCAGG	CATAAGGTGT	AAACCTGTGA
156	1 TTGCGTGTGT	GGTTAACGCC	TTTGTTTGC	r gaatgagtty	3 ATGTAAGTTI	AATAAAGGGT
162	1 CAGATAATG	TTAACTTGC	TGGCGTGTT	A AATGGGGCG	G GGCTTAAAGC	GTATATAATG
160	1 CCCCCTGGG	TAATCTTGG	TACATCTGA	C CTCATGGAG	G CTTGGGAGT	TTTGGAAGAT
174	1	TGCGTAACT	GCTGGAACA	G AGCTCTAAC	A GTACCTCTTC	GTTTTGGAGG
100	1	COTOCTCCC	GCAAAGTT	A GTCTGCAGA	A TTAAGGAGG	TTACAAGTGG
100	1 CARTTTGAA	accerera	ATCCTGTGG	T GAGCTGTTT	G ATTCTTTGA	A TCTGGGTCAC
100	1 CACCCCCTT	r TCCAAGAGA	A GGTCATCAA	G ACTTTGGAT	T TTTCCACAC	GGGGCGCGCT
192	1 CAGGCGCII	C 444CC44444	r GAGTTTTAT	A AAGGATAAA	T GGAGCGAAG	A AACCCATCTG
190	1 ACCCCCCCC	T ACCTGCTGG	A TTTTCTGGC	C ATGCATCTG	T GGAGAGCGG	r GGTGAGACAC
204	1 AGCGGGGG	C TOCTOCTOCT	r GTCTTCCGT	C CGCCCGGCA	A TAATACCGA	C GGAGGAGCAA
210	AAGAATUGU	C JACLUACCO	e eceeceece	G CAGGAGCAG	A GCCCATGGA	A CCCGAGAGCC
216	A COCCAGGAG	C CUCCCCBAM	C AATCTTCTA	C AGGTGGCTG	A ACTGTTTCC	A GAACTGAGAC
222	T GGCCTGGAC	C CICGGGWWI	G GATGGGGCAG	G GGCTAAAGG	G GGTAAAGAA	G GAGCGGGGGG
228	OI GUATTITAA	C CHIIANCGA	C CCTACCAAT	C TAACTTT	G CTTAATGAC	C AGACACCGTC
234	L CTTCTGAGG	TACAGAGGA	C CACATTAN	G ATAATTGC	C TAATGAGCT	T GATCTGCTGG
240	OI CTGAGTGTG	TACTITICA	C CYCCACIUM	ב התחשרת הכו	T GCAGCCAGG	G GATGATTTTG
24	51 CGCAGAAGT	A TTCCATAGA	G CAGCIGACI	'u Cliveido		

FIG. 7A

							•••
	2521	AGGAGGCTAT	TAGGGTATAT	GCAAAGGTGG	CACTTAGGCC	AGATTGCAAG	TACAAGATTA
	2581	GCAAACTTGT	AAATATCAGG	AATTGTTGCT	ACATTTCTGG	GAACGGGGCC	GAGGTGGAGA
	2641	TAGATACGGÄ	GGATAGGGTG	GCCTTTAGAT	GTAGCATGAT	AAATATGTGG	CCGGGGGTGC
	2701	TTGGCÁTGGA	CGGGGTGGTT	ATTATGAATG	TGAGGTTTAC	TGGTCCCAAT	TTTAGCGGTA
	2761	CGGTTTTCCT	GGCCAATACC	AATCTTATCC	TACACGGTGT	AAGCTTCTAT	GGGTTTAACA
	2821	ATACCTGTGT	GGAAGCCTGG	ACCGATGTAA	GGGTTCGGGG	CTGTGCCTTT	TACTGCTGCT
	2881	GGAAGGGGGT	GGTGTGTCGC	CCCAAAAGCA	GGGCTTCAAT	TAAGAAATÇC	CTGTTTGAAA
	2941	GGTGTACCTT	GGGTATCCTG	TCTGAGGGTA	ACTCCAGGGT	GCGCCACAAT	GTGGCCTCCG
	3001	ACTGTGGTTG	CTTTATGCTA	GTGAAAAGCG	TGGCTGTGAT	TAAGCATAAC	ATGGTGTGTG
	3061	GCAACTGCGA	GGACAGGGCC	TCTCAGATGC	TGACCTGCTC	GGACGGCAAC	TGTCACTTGC
	3121	TGAAGACCAT	TCACGTAGCC	AGCCACTCTC	GCAAGGCCTG	GCCAGTGTTT.	GAGCACAACA
	3181	TACTGACCCG	CTGTTCCTTG	CATTTGGGTA	ACAGGAGGGG	GGTGTTCCTA	CCTTACCAAT
	3241	GCAATTTGAG	TCACACTAAG	ATATTGCTTG	AGCCCGAGAG	CATGTCCAAG	GTGAACCTGA
	3301	ACGGGGTGTT	TGACATGACC	ATGAAGATCT	GGAAGGTGCT	GAGGTACGAT	GAGACCCGCA.
•	3361	CCAGGTGCAG	ACCCTGCGAG	TGTGGCGGTA	AACATATTAG	GAACCAGCCT	GTGATGCTGG
:	3421	ATGTGACCGA	GGAGCTGAGG	CCCGATCACT	TGGTGCTGGC	CTGCACCCGC	GCTGAGTTTG
	3481	GCTCTAGCGA	TGAAGATACA	GATTGAGGTA	CTGAAATGTG	TGGGCGTGGC	TTAAGGGTGG
	3541	GAAAGAATAT	ATAAGGTGGG	GGTCTCATGT	AGTTTTGTAT	CTGTTTTGCA	GCAGCCGCCG
	3601	CCATGAGCGC.	CAACTCGTTT	GATGGAAGCA	TTGTGAGCTC	ATATTTGACA	ACGCGCATGC
	3661	CCCCATGGGC	CGGGGTGCGT	CAGAATGTGA	TGGGCTCCAG	CATTGATGGT	CGCCCCGTCC :
:	3721	TGCCCGCAAA	CTCTACTACC	TTGACCTACG	AGACCGTGTC	TGGAACGCCG	TTGGAGACTG
	3781	CAGCCTCCGC	CGCCGCTTCA	GCCGCTGCAG	CCACCGCCCG	CGGGATTGTG	ACTGACTTTG
	3841	CTTTCCTGAG	CCCGCTTGCA	AGCAGTGCAG	CTTCCCGTTC	ATCCGCCCCC	GATGACAAGT.
	3901	TGACGGCTCT	TTTGGCACAA	TTGGATTCTT	TGACCCGGGA	ACTTAATGTC	GTTTCTCAGC
	3961	AGCTGTTGGA	TCTGCGCCAG	CAGGTTTCTG	CCCTGAAGGC	TTCCTCCCCT	CCCAATGCGG
	4021	TTTAAAACAT	AAATAAAAAC	CAGACTCTGT	TTGGATTTGG	ATCAAGCAAG	TGTCTTGCTG .
	4081	TCTTTATTTA	GGGGTTTTGC	GCGCGCGGTA	GGCCCGGGAC	CAGCGGTCTC	GGTCGTTGAG
	4141	GGTCCTGTGT	ATTTTTTCCA	GGACGTGGTA	AAGGTGACTC	TGGATGTTCA	GATACATGGG
•	4201	CATAAGCCCG	TCTCTGGGGT	GGAGGTAGCA	CCACTGCAGA	GCTTCATGCT	GCGGGGTGGT
	4261	GTTGTAGATG	ATCCAGTCGT	AGCAGGAGCG	CTGGGCGTGG	TGCCTAAAAA	TGTCTTTCAG
	4321	TAGCAAGCTG	ATTGCCAGGG	GCAGGCCCTT	GGTGTAAGTG	TTTACAAAGC	GGTTAAGCTG
	4381	GGATGGGTGC	ATACGTGGGG	ATATGAGATG	CATCTTGGAC	TGTATTTTA	GGTTGGCTAT
	4441	GTTCCCAGCC	ATATCCCTCC	GGGGATTCAT	GTTGTGCAGA	ACCACCAGCA	CAGTGTATCC
•	4501	GGTGCACTTG	GGAAATTTGT	CATGTAGCTT	AGAAGGAAAT	GCGTGGAAGA	ACTTGGAGAC
	4561	GCCCTTGTGA	CCTCCAAGAT	TTTCCATGCA	TTCGTCCATA	ATGATGGCAA	TGGGCCCACG .
•	4621	GCCGCCGCC	TGGGCGAAGA	TATTTCTGGG	ATCACTAACG	TCATAGTTGT	GTTCCAGGAT
	4681	GAGATCGTCA	TAGGCCATTT	TTACAAAGCG	CGGGCGGAGG	GTGCCAGACT	GCGGTATAAT
	4741	GGTTCCATCC	GGCCCAGGGG	CGTAGTTACC	CTCACAGATT	TGCATTTCCC	ACGCTTTGAG
	4801	TTCAGATGGG	GGGATCATGT	CTACCTGCGG	GGCGATGAAG	AAAACCGTTT	CCGGGGTAGG
	4861	GGAGATCAGC	TGGGAAGAAA	GCAGGTTCCT	AAGCAGCTGC	GACTTACCGC	AGCCGGTGGG.
	4921	CCCGTAAATC	ACACCTATTA	CCGGCTGCAA	CTGGTAGTTA	AGAGAGCTGC	AGCTGCCGTC.
	4981	ATCCCTGAGC	AGGGGGCCA	CTTCGTTAAG	CATGTCCCTG	ACTTGCATGT	TTTCCCTGAC

FIG. 7B

5041	CAAATCCGCC	AGAAGGCGCT	CGCCGCCCAG	CGATAGCAGT	TCTTGCAAGG	AAGCAAAGTT
5101	TTTCAACGGT	TTGAGGCCGT	CCGCCGTAGG	CATGCTTTTG	AGCGTTTGAC	CAAGCAGTTC
5161	CAGGCGGTCC	CACAGCTCGG	TCACGTGCTC	TACGGCATCT	CGATCCAGCA '	PATCTCCTCG
5221	TTTCGCGGGT	TGGGGCGGCT	TTCGCTGTAC	GGCAGTAGTC	GGTGCTCGTC	CAGACGGGCC
5281	AGGGTCATGT	CTTTCCACGG	GCGCAGGGTC	CTCGTCAGCG	TAGTCTGGGT	CACGGTGAAG
5341	GGGTGCGCTC	CGGGTTGCGC	GCTGGCCAGG	GTGCGCTTGA	GGCTGGTCCT	GCTGGTGCTG
5401	AAGCGCTGCC	GGTCTTCGCC	CTGCGCGTCG	GCCAGGTAGC	ATTTGACCAT	GGTGTCATAG
5461	TCCAGCCCCT	CCGCGGCGTG	GCCCTTGGCG	CGCAGCTTGC	CCTTGGAGGA	GGCGCCGCAC
5521	GAGGGGCAGT	GCAGACTTTT	AAGGGCGTAG	AGCTTGGGCG	CGAGAAATAC	CGATTCCGGG
5581	GAGTAGGCAT	CCGCGCCGCA	GGCCCCGCAG	ACGGTCTCGC	ATTCCACGAG	CCAGGTGAGC
5641	TCTGGCCGTT	CGGGGTCAAA	AACCAGGTTT	CCCCCATGCT	TTTTGATGCG	TTTCTTACCT
5701	CTGGTTTCCA	TGAGCCGGTG	TCCACGCTCG	GTGACGAAAA	GGCTGTCCGT	GTCCCCGTAT
5761	ACAGACTTGA	GAGGCCTGTC	CTCGAGCGGT	GTTCCGCGGT	CCTCCTCGTA	TAGAAACTCG
5821	GACCACTCTG	AGACGAAGGC	TCGCGTCCAG	GCCAGCACGA	AGGAGGCTAA	GTGGGAGGGG
5881	TAGCGGTCGT	TGTCCACTAG	GGGGTCCACT	CGCTCCAGGG	TGTGAAGACA	CATGTCGCCC
5941	TCTTCGGCAT	CAAGGAAGGT	GATTGGTTTA	TAGGTGTAGG	CCACGTGACC	GGGTGTTCCT .
6001	GAAGGGGGGC	TATAAAAGGG	GGTGGGGGCG	CGTTCGTCCT	CACTCTCTTC	CGCATCGCTG
6061	TCTGCGAGGG	CCAGCTGTTG	GGGTGAGTAC	TCCCTCTCAA	AAGCGGGCAT	GACTTCTGCG
6121	CTAAGATTGT	CAGTTTCCAA	AAACGAGGAG	GATTTGATAT	TCACCTGGCC	CGCGGTGATG
6181	CCTTTGAGGG	TGGCCGCGTC	CATCTGGTC	GAAAAGACAA	TCTTTTTGTT	GTCAAGCTTG
6241	GTGGCAAACG	ACCCGTAGAG	GGCGTTGGAC	AGCAACTTGG	CGATGGAGCG	CAGGGTTTGG
6301	TTTTTGTCGC	GATCGGCGCG	CTCCTTGGCC	GCGATGTTTA	GCTGCACGTA	TTCGCGCGCA
6361	ACGCACCGCC	ATTCGGGAA	A GACGGTGGT	CGCTCGTCGG	GCACTAGGTG	CACGCGCCAA
642	L CCGCGGTTGT	GCAGGGTGAG	AAGGTCAAC	CTGGTGGCT	CCTCTCCGCG	TAGGCGCTCG
648	L TTGGTCCAGO	AGAGGCGGC	GCCCTTGCG(	GAGCAGAAT	GCGGTAGTGG	GTCTAGCTGC
654	L GTCTCGTCC	GGGGGTCTG	C GTCCACGGT	A AAGACCCCGC	GCAGCAGGCG	CGCGTCGAAG
660	TAGTCTATCT	TGCATCCTT	G CAAGTCTAG	CGCCTGCTGCC	ATGCGCGGGC	GGCAAGCGCG
666	L CGCTCGTAT	GGTTGAGTG	G GGGACCCCA	r ggcatgggg	r GGGTGAGCGC	GGAGGCGTAC
672	1 ATGCCGCAA	A TGTCGTAAA	C GTAGAGGGG	C TCTCTGAGT	A TTCCAAGATA	TGTAGGGTAG
678	1 CATCTTCCA	CGCGGATGC	T GGCGCGCAC	G TAATCGTAT	A GTTCGTGCGA	GGGAGCGAGG
684	1 AGGTCGGGA	C CGAGGTTGC	T ACGGGCGGG	C TGCTCTGCT	C GGAAGACTAT	CTGCCTGAAG
690	1 ATGGCATGT	G AGTTGGATG	A TATGGTTGG	A CGCTGGAAG	A CGTTGAAGCT	GGCGTCTGTG
696	1 AGACCTACC	G CGTCACGCA	C GAAGGAGGC	G TAGGAGTCG	C GCAGCTTGTT	GACCAGCTCG
702	1 GCGGTGACC	T GCACGTCTA	G GGCGCAGTA	G TCCAGGGTT	T CCTTGATGAT	GTCATACTTA
708	1 TCCTGTCCC	T TTTTTTCC	A CAGCTCGCG	G TTGAGGACA	A ACTCTTCGC	GTCTTTCCAG
714	1 TACTCTTGG	A TCGGAAACC	C GTCGGCCTC	C GAACGGTAA	G AGCCTAGCA	r GTAGAACTGG
720	1 TTGACGGCC	T GGTAGGCGC	A GCATCCCTI	T TCTACGGGT	A GCGCGTATG	CTGCGCGGCC
726	1 TTCCGGAGC	G AGGTGTGGG	T GAGCGCAAA	G GTGTCCCTA	A CCATGACTT	r GAGGTACTGG
732	1 TATTTGAAG	T CAGTGTCGT	C GCATCCGCC	C TGCTCCCAG	A GCAAAAAGT	C CGTGCGCTTT
738	1 TTGGAACGC	G GGTTTGGC	AG GGCGAAGG7	G ACATCGTTO	A AGAGTATCT	T TCCCGCGCGA
744	1 GGCATAAAG	T TGCGTGTG	AT GCGGAAGG	T CCCGGCACC	T CGGAACGGT	T GTTAATTACC
750	1 TGGGCGGC	EA GCACGATC	C GTCAAAGC	G TTGATGTT	T GGCCCACAA	T GTAAAGTTCC

FIG. 7C

WO 03/031588 PCT/US02/32512

•	7561	AAGAAGCGCG	GGATGCCCTT	GATGGAAGGC	AATTTTTTAA	GTTCCTCGTA	GGTGAGCTCT.
	7621	TCAGGGGAGC	TGAGCCCGTG	CTCTGAAAGG	GCCCAGTCTG	CAAGATGAGG	GTTGGAAGCG
	7681	ACGAATGAGC	TCCACAGGTC	ACGGGCCATT	AGCATTTGCA	GGTGGTCGCG	AAAGGTCCTA
	7741	AACTGGCGAC	CTATGGCCAT	TTTTTCTGGG	GTGATGCAGT	AGAAGGTAAG	CGGGTCTTGT
	7801	TCCCAGCGGT	CCCATCCAAG	GTCCGCGGCT	AGGTCTCGCG	CGGCGGTCAC	TAGAGGCTCA
•	7861	TCTCCGCCGA	ACTTCATGAC	CAGCATGAAG	GGCACGAGCT.	GCTTCCCAAA	GGCCCCCATC,
	7921	CAAGTATAGG	TCTCTACATC	GTAGGTGACA	AAGAGACGCT	CGGTGCGAGG	ATGCGAGCCG:
	7981	ATCGGGAAGA	ACTGGATCTC	CCGCCACCAG	TTGGAGGAGT	GGCTGTTGAT	GTGGTGAAAG
	8041	TAGAAGTCCC	TGCGACGGGC	CGAACACTCG	TGCTGGCTTT	${\tt TGTAAAAACG}$	TGCGCAGTAC
	8101	TGGCAGCGGT	GCACGGGCTG	TACATCCTGC	ACGAGGTTGA	CCTGACGACC	GCGCACAAGG
	8161	AAGCAGAGTG	GGAATTTGAG	CCCCTCGCCT	GGCGGGTTTG	GCTGGTGGTC	TTCTACTTCG
	8221	GCTGCTTGTC	CTTGACCGTC	TGGCTGCTCG	AGGGGAGTTA	CGGTGGATCG	GACCACCACG
	8281	CCGCGCGAGC	CCAAAGTCCA	GATGTCCGCG	CGCGGCGGTC	GGAGCTTGAT	GACAACATCG
	8341	CGCAGATGGG	AGCTGTCCAT	GGTCTGGAGC	TCCCGCGGCG	TCAGGTCAGG	CGGGAGCTCC
	8401	TGCAGGTTTA	CCTCGCATAG	CCGGGTCAGG	GCGCGGCTA	GGTCCAGGTG	ATACCTGATT
	8461	TCCAGGGGCT	GGTTGGTGGC	GGCGTCGATG	GCTTGCAAGA	GGCCGCATCC	ccccccccc
	8521	ACTACGGTAC	CGCGCGGCGG	GCGGTGGGCC	GCGGGGGTGT	CCTTGGATGA	TGCATCTAAA
	8581	AGCGGTGACG	CGGGCGGCC	CCCGGAGGTA	GGGGGGCTC	GGGACCCGCC	GGGAGAGGGG
	8641	GCAGGGGCAC	GTCGGCGCCG	CGCGCGGCA	GGAGCTGGTG	CLCCCCCCCC	AGGTTGCTGG
	8701	CGAACGCGAC	GACGCGGCGG	TTGATCTCCT	GAATCTGGCG	CCTCTGCGTG	AAGACGACGG
	8761	GCCCGGTGAG	CTTGAACCTG	AAAGAGAGTT	CGACAGAATC	AATTTCGGTG	TCGTTGACGG.
	8821	CGGCCTGGCG	CAAAATCTCC	TGCACGTCTC	CTGAGTTGTC	TTGATAGGCG	ATCTCGGCCA
	8881	TGAACTGCTC	GATCTCTTCC	TCCTGGAGAT	CTCCGCGTCC	GGCTCGCTCC	ACGGTGGCGG
	8941	CGAGGTCGTT	GGAGATGCGG	GCCATGAGCT	GCGAGAAGGC	GTTGAGGCCT	CCCTCGTTCC
	9001	AGACGCGGCT	GTAGACCACG	CCCCCTTCGG	CATCGCGGGC	GCGCATGACC	ACCTGCGCGA
	9061	GATTGAGCTC	CACGTGCCGG	GCGAAGACGG	CGTAGTTTCG	CAGGCGCTGA	AAGAGGTAGT
	9121	TGAGGGTGGT	GGCGGTGTGT	TCTGCCACGA	AGAAGTACAT	AACCCAGCGC	CGCAACGTGG
	9181	ATTCGTTGAT	ATCCCCCAAG	GCCTCAAGGC	GCTCCATGGC	CTCGTAGAAG	TCCACGGCGA
	9241	AGTTGAAAAA	CTGGGAGTTG	CGCGCCGACA	CGGTTAACTC	CTCCTCCAGA	AGACGGATGA
	9301	GCTCGGCGAC	AGTGTCGCGC	ACCTCGCGCT	CAAAGGCTAC	AGGGGCCTCT	TCTTCTTCTT
	9361	CAATCTCCTC	TTCCATAAGG	GCCTCCCCTT	CTTCTTCTTC	TGGCGGCGGT	GGGGGAGGGG
	9421	GGACACGGCG	GCGACGACGG	CGCACCGGGA	GGCGGTCGAC	AAAGCGCTCG	ATCATCTCCC
	9481	CGCGGCGACG	GCGCATGGTC	TCGGTGACGG	CGCGGCCGTT	CTCGCGGGGG	CGCAGTTGGA
	9541	AGACGCCGCC	CGTCATGTCC	CGGTTATGGG	TTGGCGGGGG	GCTGCCGTGC	GGCAGGGATA
	9601	CGGCGCTAAC	GATGCATCTC	AACAATTGTT	GTGTAGGTAC	TCCGCCACCG	AGGGACCTGA
	9661	GCGAGTCCGC	ATCGACCGGA	TCGGAAAACC	TCTCGAGAAA	GGCGTCTAAC	CAGTCACAGT
	9721	CGCAAGGTAG	GCTGAGCACC	GTGGCGGGCG	GCAGCGGGCG	GCGGTCGGG	TTGTTTCTGG
•	9781	CGGAGGTGCT	GCTGATGATG	TAATTAAAGT	AGGCGGTCTT	GAGACGCCGG	ATGGTCGACA
	9841	GAAGCACCAT	GTCCTTGGGT	CCGGCCTGCT	GAATGCGCAG	GCGGTCGGCC	ATGCCCCAGG
	9901	CTTCGTTTTG	ACATCGGCGC	AGGTCTTTGT	AGTAGTCTTG	CATGAGCCTT	TCTACCGGCA
	9961	CTTCTTCTTC	TCCTTCCTCT	TGTCCTGCAT	CTCTTGCATC	TATCGCTGCG	GCGCGGCGG
	10021	AGTTTGGCCG	TAGGTGGCGC	CCTCTTCCTC	CCATGCGTGT	GACCCCGAAG	CCCCTCATCG

FIG. 7D

						maga gamaca
10081	GCTGAAGCAG	GGCCAGGTCG	GCGACAACGC	GCTCGGCTAA	TATGGCCTGC	COCOCOCO
		CMCCAACTCG	TCCATGTCCA	CAAAGCGGTG	GIMIGCGCCC	01011
		CONTROL	ACGGACCAGT	TAACGGTCTG	GIGACCCGGC	1000.0
	accmomaccm	CACACCCGAG	TAAGCCCTTG	AGTCAAAGAC	GIAGICGIIG	CILIDITE
	CONCOUNT COC	CTATCCCACC	AAAAGTGCG	GCGGCGGCTG	GCGGIAGAGG	GGCCFGGGG
	acamerecee	CCCTCCGGGG	GCGAGGTCTT	CCAACATAAG	GCGAIGAIAI	CCG11.0
	- ccmcc>C>C	CCACCTGATG	CCGCCGCGCGG	TGGTGGAGGC	GCGCGGMMAG	ICACGGACGG
	acamaca Cam	CONTCCCCACC	GGCAAAAAGT	GCTCCATGGT	CGGGACGC1C	10000001011
	acceptore A	CTCCTTGACG	CTCTAGACCG	TGCAAAAGGA	GAGCCTGTAA	GCGGGCIICIO
		<b>ምድርጥርር</b> እጥል እ	ATTCGCAAGG	GTATCATGGC	GGACGACCGG	991100:2:00
	~~~~~	CCCTCCCCCCC	TGATCCATGC	GGTTACCGCC	CCCCTCTCC	ACCCAGGIC-
	GOOD COMO NO	ACA ACGGGGG	AGCGCTCCTT	TTGGCTTCCT	. J.C.C.A.G.G.C.G.C.G	, 000011100-1
		MANACCCACT	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GGCGTAAGCG	GITAGGCIG	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	CARRA ACTIC	· CTCCCTCCCT	GTAGCCGGAG	GGTTATTTIC	CAAGGGIIG	Grededamie
	COCCCCTTCC	* ACTOTOGGGG	CGGCCGGAC'I	• GCGGCGAACG	GGGGTTTGC	. 1000010
	CONNCRECCO	· ርርጥጥርሮልልልገ	TCCTCCGGA	A ACAGGGACGA	CCCCTTTT.	1901111000
	maa. maa	CCMCCTCCCC	CAGATGCGC	CCCCTCCTC	A GCAGCGGCA	dydcwydydc
	**********	N TO CACCCC	CCCTCCCCT	r CTCCTACCG(GICAGGAGG	3 GCAACAICCO
	accomos co	· CCCCCCAGA	r ccrgattac(3 AACCCCCGC(i GCGCCGGAC	C COGCACINO-
4400	maca contocc	A CCACCCCAC	GGCCTGGCG	C GGCTAGGAGG	. GCCCTCTCC	1 GAGCGILGITGE
	AT TOCOMOC	A COTTO A A GOOD	r GACACGCGC	G AGGCGTACG	L CCCCCCCCC	G WCCIOITIO
	COCACCCCC	A CCCAGAGGA	CCCGAGGAG.	A TGCGGGATC	G AAAGTICCA	. GCAGGGGGGG
		N TYCCCCTGAA	C CGCGAGCGG	T TGCTGCGCG.	A GGAGGACTI	1 GAGCCCGIICO
	- 0000000000	ር ርልምዋልርፕሮር	c GCGCGCGCA	C ACGTGGCGG	C CGCCGACCI	G GIMICCOCC
	* *********	C CCTCAACCA	G GAGATTAAC	т ттсаааааа	G CTTTAACAA	C CACGIGCGC
	• ~~~~~~~	C CCCCGAGGA	C GTGGCTATA	G GACTGATGC	A TCTGTGGG	C IIIGIAL.COC
	• 00000000000	A ABBCCCAAA	T AGCAAGCCG	C TCATGGCGC	A GCTGTTCCT	'I AIAGIGCAGC
		A CARCGAGG	A TTCAGGGAT	'G CGCTGCTAA	A CATAGIAGE	ie cccarococo
	1 0000000000	TAPTTTGAT	A AACATTCTC	C AGAGCATAG	T GGTGCAGG	ig cochocitor.
	• • • • • • • • • • • • • • • • • • •	A CANCETEE	C GCCATTAAC	T ATTCCATGO	T CAGTUIGG	C MAGIIIIMOO
	- COCCONNCI	ንልጥልግግልጥል ጥ	C CCTTACGTT	C CCATAGACA	A GGAGGTAA	AG Alconocco-
	1 mamacamco	CATGGCGCC	G AAGGTGCT	PA CCTTGAGCO	SA CGACCIGG	GC GITIATEGEN
	***********	AT CCACAAGG	C GTGAGCGT	SA GCCGGCGG	CG CGAGCTCA	GC GACCGCG1100
		A CCTCCAAA	ac concreçõo	rg gcacgggc	AG CGGCGATA	GW GWGGCCGWGT
		CA CCCCCCCCCC	T GACCTGCG	CT GGGCCCCA	AG CCGACGCG	CC CIGGAGGG
404		CC ACCTGGGC	rc ccccTGCC	AC CCGCGCGC	GC TGGCAACG	IC GGCGGCG
400	44 30033030	CA CCAGGACG	AT GAGTACGA	GC CAGAGGAC	GG CGAGTACT	MA GCGGIGHION
403	0.1 MMCMCXMC	AC ATTATTCA	AG ACGCAACG	GA CCCGGCGG	TG CGGGCGG	GC IGCHGAGCC
	** 00000000	CC CTTARCTC	CA CGGACGAC	TG GCGCCAGG	TC ATGGACCO	CA TCATGTCGCT
	01 010mcccc	CC AACCCTGA	CG CGTTCCGG	CA GCAGCCGC	AG GCCAACCC	SGC TCTCCGCM11
	or mamacanac	CC CTCCTCCC	GG CGCGCGCA	AA CCCCACGC	AC GAGAAGG	IGC IGGCGNICGI
125	41 AAACGCGC	TG GCCGAAAA	CA GGGCCATO	CG GCCCGATO	AG GCCGGCC	rgg tctacgacgc
143						

FIG. 7E

							٠
12601	GCTGCTTCAG	CGCGTGGCTC	GTTACAACAG	CAGCAACGTG	CAGACCAACC	TGGACCGGCT	•
12661	GGTGGGGGAT	GTGCGCGAGG	CCGTGGCGCA	GCGTGAGCGC	GCGCAGCAGC	AGGGCAACCT	
12721	GGGCTCCATG	GTTGCACTAA	ACGCCTTCCT	GAGTACACAG	CCCGCCAACG	TGCCGCGGG	•
12781	ACAGGAGGAC	TACACCAACT	TTGTGAGCGC	ACTGCGGCTA	ATGGTGACTG	AGACACCGCA	-
•						AAGGCCTGCA.	
						TECEGECTEC	::
12961	CACAGGCGAC	CGCGCGACCG	TGTCTAGCTT	GCTGACGCCC	AACTCGCGCC	TGTTGCTGCT	
13021	GCTAATAGCG	CCCTTCACGG	ACAGTGGCAG	CGTGTCCCGG	GACACATACC	TAGGTCACTT	
13081	GCTGACACTG	TACCGCGAGG	CCATAGGTCA	GGCGCATGTG	GACGAGCATA	CTTTCCAGGA	
13141	GATTACAAGT	GTTAGCCGCG	CGCTGGGGCA	GGAGGACACG	GGCAGCCTGG	AGGCAACCCT	
13201	GAACTACCTG	CTGACCAACC	GGCGGCAAAA	AATCCCCTCG	TTGCACAGTT	TAAACAGCGA	
						TGCGCGACGG	
						GCATGTATGC	:
13381	CTCAAACCGG	CCGTTTATCA	ATCGCCTAAT	GGACTACTTG	CATCGCGCGG	CCGCCGTGAA	٠
					CTACCGCCCC		
						ACATAGACGA	•
13561	CAGCGTGTTT	TCCCCGCAAC	CGCAGACCCT	GCTAGAGTTG	CAACAACGCG	AGCAGGCAGA	
13621	GCCGCCCTG	CGAAAGGAAA	GCTTCCGCAG	GCCAAGCAGC	TTGTCCGATC	TAGGCGCTGC	
13681	GCCCCCCCG	TCAGATGCTA	GTAGCCCATT	TCCAAGCTTG	ATAGGGTCTC	TTACCAGCAC	
13741	TCGCACCACC	CGCCGCGCC	TGCTGGGCGA	GGAGGAGTAC	CTAAACAACT	CGCTGCTGCA	
13801	GCCGCAGCGC	GAAAAGAACC	TGCCTCCGGC	GTTTCCCAAC	AACGGGATAG	AGAGCCTAGT	
13861	GGACAAGATG	AGTAGATGGA	AGACGTATGC	GCAGGAGCAC	AGGGATGTGC	CCGCCCCCC	
13921	CCCGCCCACC	CGTCGTCAAA	GGCACGACCG	TCAGCGGGGT	CTGGTGTGGG	AGGACGATGA	
13981	CTCGGCAGAC	GACAGCAGCG	TCTTGGATTT	GGGAGGGAGT	GGCAACCCGT	TTGCACACCT	
14041	TCGCCCCAGG	CTGGGGAGAA	TGTTTTAAAA	AAAGCATGAT	GCAAAATAAA	AAACTCACCA	
14101	AGGCCATGGC	ACCGAGCGTT	GGTTTTCTTG	TATTCCCCTT	AGTATGCGGC	GCGCGGCGAT	
14161	GTATGAGGAA	GGTCCTCCTC	CCTCCTACGA	GAGCGTGGTG	AGCGCGGCGC	CAGTGGCGGC	
14221	GGCGCTGGGT	TCACCCTTCG	ATGCTCCCCT	GGACCCGCCG	TTCGTGCCTC	CGCGGTACCT	
14281	GCGGCCTACC	GGGGGGAGAA	ACAGCATCCG	TTACTCTGAG	TTGGCACCCC	TATTCGACAC	
14341	CACCCGTGTG	TACCTTGTGG	ACAACAAGTC	AACGGATGTG	GCATCCCTGA	ACTACCAGAA	
14401	CGACCACAGC	AACTTTCTAA	CCACGGTCAT	TCAAAACAAT	GACTACAGCC	CGGGGGAGGC	
14461	AAGCACACAG	ACCATCAATC	TTGACGACCG	GTCGCACTGG	GGCGGCGACC	TGAAAACCAT	
14521	CCTGCATACC	AACATGCCAA	ATGTGAACGA	GTTCATGTTT	ACCAATAAGT	TTAAGGCGCG	
14581	GGTGATGGTG	TCGCGCTCGC	TTACTAAGGA	CAAACAGGTG	ĢAGCTGAAAT	ACGAGTGGGT	
14641	GGAGTTCACG	CTGCCCGAGG	GCAACTACTC	CGAGACCATG	ACCATAGACC	TTATGAACAA	
14701	CGCGATCGTG	GAGCACTACT	TGAAAGTGGG	CAGGCAGAAC	GGGGTTCTGG	AAAGCGACAT	•
14761	CGGGGTAAAG	TTTGACACCC	GCAACTTCAG	ACTGGGGTTT	GACCCAGTCA	CTGGTCTTGT	
14821	CATGCCTGGG	GTATATACAA	ACGAAGCCTT	CCATCCAGAC	ATCATTTTGC	TGCCAGGATG	
14881	CGGGGTGGAC	TTCACCCACA	GCCGCCTGAG	CAACTTGTTG	GGCATCCGCA	AGCGGCAACĆ	
14941	CTTCCAGGAG	GGCTTTAGGA	TCACCTACGA	TGACCTGGAG	GGTGGTAACA	TTCCCGCACT.	•
15001	·GTTGGATGTG	GACGCCTACC	AGGCAAGCTT	GAAAGATGAC	ACCGAACAGG	GCGGGGGTGG	
15061	CGCAGGCGGC	GGCAACAACA	GTGGCAGCGG	CGCGGAAGAG	AACTCCAACG	CGGCAGCTGC	

FIG. 7F

15121	GGCAATGCAG	CCGGTGGAGG	ACATGAACGA	CATGCCATT	CGCGGCGACA CC	TTTGCCAC ·
	* GCCCCCAC	CACAACCCCC (TGAGGCCGA (GCAGCGGCC	GAAGCTGCCG C	20000100
45041	CCACCCTCCA	CAACCCGAGG '	rcgagaagcc 🤄	ICAGAAGAAA	CCGGTGATTA A	30000
	A CACCACACC	AAGAAACGCA	GTTACAACCT	AATAAGCAAT	GACAGCACCT	-MCCCAGIA .
	COCCACC COCCC	ጥአርርጥጥርር ልጥ	ACAACTACGG (CGACCCTCAG	GCCGGGATCL G	CICAIGGAC
	COMCOMPTCC	ACTCCTGACG	TAACCTGCGG	CTCGGAGCAG	GTATACTGGT C	GTTGCCCGN
	CAMCAMCCAA	CACCCCGTGA	CCTTCCGCTC	CACGCGCCAG	ATCAGCAACT T	100031001
4 = 5 4 3	CCCCCCCGAG	CTGTTGCCCG	TGCACTCCAA	GAGCTTCTAC	AACGACCAGG C	CGICINCIC
15601	CONCOMONTO	CCCCAGTTTA	CCTCTCTGAC	CCACGTGTTC	AATCGCTFIC C	CGNGNACCA
15061	CATOTOCCCC	CGCCCGCCAG	CCCCCACCAT	CACCACCGTC	AGTGAAAACG T	TCCIGCICI.
4 5 7 4 1	CACACACACA	CCCACCCTAC	CGCTGCGCAA	CAGCATCGGA	GGAGTCCAGC G	WG 1 GWCCW1
1 5701	macmeacece	AGACGCCGCA	CCTGCCCCTA	CGTTTACAAG	GCCCTGGGCA 1	AGICICACC
2 50 41	CCCCCTCCTA	TCGAGCCGCA	CTTTTTGAGC	AAGCATGTCC	ATCCTTATAT C	GCCCAGCAA
	man cacacacac	TCCCCCCTCC	GCTTCCCAAG	CAAGATGTTT	GGCGGGGCCA F	TOWARDC IC
3.5061	CCACCAACAC	CCAGTGCGCG	TGCGCGGGCA	CTACCGCGCG	CCCIGGGGCG C	GCACAMACG
1.000	CCCCCCCACT	GGGCGCACCA	CCGTCGATGA	CGCCATCGAC	GCGGTGGTGG Y	100AGGCGCG
3.000	CXXCTACACC	CCCACGCCGC	CGCCAGTGTC	CACCGTGGAC	GCGGCCATTC A	AGACCGIGGI
2 6 4 4 .	- accercace	CCCCCCTACG	CTAAAATGAA	GAGACGGCGG	AGGCGCGTAG ("WCGICGCCV.
1 (2)	occecce:	CCCGGCACTG	CCGCCCAACG	CCCGCCGCG	GCCCTGCTTA	ACCOCOCACO.
1000	mecentecco	CGACGGGCGG	CCATGCGAGC	CGCTCGAAGG	CTGGCCGCGG	GINIIGICAC
1622	1 mcmcccccc	AGGTCCAGGC	GACGAGCGGC	CGCCGCAGCA	GCCGCGGCCA	LINGIGCINI
1620	1 Chemeneec	r CGCAGGGGCA	ACGTGTACTG	GGTGCGCGAC	TCGGTTAGUG	GCC1GCGCG1
1644	1 00000000000	C ACCCGCCCCC	CGCGCAACTA	GATTGCAATA	AAAAACTACT	TAGACICGIA
1650	1 CWCTTTCTAT	G TATCCAGCGG	CGGCGGCGCG	CATCGAAGCT	ATGTCCAAGC	GCHANAICAA
1000	4 NONTONCOM	C CTCCAGGTCA	TCGCGCCGGA	GATCTATGGC	CCCCCGAAGA	AGGAAGAGCA
1.00	1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C CCCGAAAGO	TAAAGCGGGT	CAAAAAGAA	AAGAAAGATG	ATGATGATGA
1.000	1 manacanca	C GACGAGGTGG	AACTGTTGCA	CGCGACCGC	CCCAGGCGAC	GGGIACAGIG
1674	1 CANAGGTCG	A CGCGTAAGAC	GTGTTTTGCG	ACCCGGCAC(ACCGTAGTCT	TTACGCCCGG
1.00	1	C ACCCGCACCT	ACAAGCGCGT	GTATGATGA	G GTGTACGGCG	ACGAGGACC I
1 60 6	1 CCTTGAGCA	G GCCAACGAG	GCCTCGGGGA	GTTTGCCTA	GGAAAGCGGC	ATAAGGACAI
1.00	1 CONGCOGN	CCCCTCGAC	AGGGCAACCC	: AACACCTAG	C CTAAAGCCCG	TGACACTGCA
160	1 CCNGGTGCT	G CCCGCGCTT	G CACCGTCCG	A AGAAAAGCG	C GGCCTAAAGC	GCGWGICIGG
170	4.1 MC NOTTGG	A CCCACCGTG	C AGCTGATGG	r acccaagcg	T CAGCGACIGG	AAGAIGICII
		C ACCGTGGAG	C CTGGGCTGG	A GCCCGAGGT	C CGCGTGCGGC	CAATCAAGCA
	ci composition	TO CONCINGING	G TGCAGACCG	r ggacgttca	G ATACCCACCA	CCAGIAGCAC
170	3.1 መእርመ <u>እ</u> ምጥር/	C ACTGCCACA	G AGGGCATGG	A GACACAAAC	G ACCCCGGIIG	CCICGGCGG
470	OF CCCACAGO	CC GCGGTGCAG	G CGGCCGCTG	C GGCCGCGTC	C AAGACCTCTA	CGGWGGIGCV
4 7 7	44 ************	CC TICCATICTTT	C GTGTTTCAG	C CCCCCGGCG	T CCGCGCCGTT	CAAGGAAGIA
174	A1 CCCCCCCC	CC ACCCCCCTA	C TGCCCGAAT	A TGCCCTACA	AT CCLICCATC	CGCCIACCCC
474	C1 CCCCMATC	CT CCCTACACO	T ACCGCCCCA	G AAGACGAGO	A ACTACCCGAC	GCCGMMCCMC
4	21 01000000	ce ecerceces	C GTCGCCGTC	G CCAGCCCG	rg creeccees	Triccuraca
175	81 CAGGGTGG	CT CGCGAAGG	G GCAGGACCO	T GGTGCTGC	CA ACAGCGCGCT	ACCACCCCAG

FIG. 7G

WO 03/031588 PCT/US02/32512

17641	CATCGTTTAA	AAGCCGGTCT	TTGTGGTTCT	TGCAGATATG	GCCCTCACCT	GCCGCCTCCG
17701	TTTCCCGGTG	CCGGGATTCC	GAGGAAGAAT	GCACCGTAGG	AGGGGCATGG	CCGGCCACGG
17761	CCTGACGGGC	GGCATGCGTC	GTGCGCACCA	CCGGCGGCGG	CGCGCGTCGC	$\mathbf{ACCGTCGCAT}_{\mathbb{C}}$
17821	GCGCGGCGGT	ATCCTGCCCC	TCCTTATTCC	ACTGATCGCC	GCGGCGATTG	CCCCCCTCCC
17881	ĊGGAÄTTGCÄ	TCCGTGGCCT	TGCAGGCGCA	GAGACACTGÁ	TTAAAAACAA	GTTACATGTG
17941	GAAAAATCAA	AATAAAAGTC	TGGACTCTCA	CGCTCGCTTG	GTCCTGTAAC	TATTTTGTAG
18001	AATGGAAGAC	ATCAACTTTG	CGTCACTGGC	CCCGCGACAC	GGCTCGCGCC	CGTTCATGGG
18061	AAACTGGCAA	GATATCGGCA	CCAGCAATAT	GAGCGGTGGC	GCCTTCAGCT	GGGGCTCGCT
18121	GTGGAGCGGC	ATTAAAAATT	TCGGTTCCGC	CGTTAAGAAC	TATGGCAGCA	AAGCCTGGAA;
18181	CAGCAGCACA	GGCCAGATGC	TGAGGGACAA	GTTGAAAGAG	CAAAATTTCC	AACAAAAGGT
18241	GGTAGATGGC	CTGGCCTCTG	GCATTAGCGG	GGTGGTGGAC	CTGGCCAACC	AGGCAGTGCA
18301	AAATAAGATT	AACAGTAAGC	TTGATCCCCG	CCCTCCCGTA	GAGGAGCCTC	$\mathtt{CACCGGCCGT}_{\mathcal{F}}$
18361	GGÄGACAGTG	TCTCCAGAGG	GGCGTGGCGA	AAAGCGTCCG	CGACCCGACA	GGGAAGAAAC.
. 18421	TCTGGTGACG	CAAATAGACG	AGCCTCCCTC	GTACGAGGAG	GCACTAAAGC	AAGGCCTGCC
18481	CACCACCCGT	CCCATCGCGC	CCATGGCTAC	CGGAGTGCTG	GGCCAGCACA	CACCCGTAAC
18541	GCTGGACCTG	CCTCCCCCG	CCGACACCCA	GCAGAAACCT	GTGCTGCCAG	GCCCGTCCGC
18601	CGTTGTTGTA	ACCCGTCCTA	GCCGCGCGTC	CCTGCGCCGC	GCCGCCAGCG	GTCCGCGATC
18661	GTTGCGGCCC	GTAGCCAGTG	GCAACTGGCA	AAGCACACTG	AACAGCATCG	TGGGTTTGGG
18721	GGTGCAATCC	CTGAAGCGCC	GACGATGCTT	CTGATAGCTA	ACGTGTCGTA	TGTGTGTCAT
18781	GTATGCGTCC	ATGTCGCCGC	CAGAGGAGCT	GCTGAGCCGC	CGCGCGCCCG	CTTTCCAAGA
18841	TGGCTACCCC	TTCGATGATG	CCGCAGTGGT	CTTACATGCA	CATCTCGGGC	CAGGACGCCT ·
18901	CGGAGTACCT	GAGCCCCGGG	CTGGTGCAGT	TCGCCCGCGC	CACCGAGACG	TACTTCAGCC
18961	TGAATAACAA	GTTTAGAAAC	CCCACGGTGG	CGCCTACGCA	CGACGTGACC	ACAGACCGGT
19021	CTCAGCGTTT	GACGCTGCGG	TTCATCCCCG	TGGACCGCGA	GGATACTGCG	TACTCGTACA
19081	AGGCGCGGTT	CACCCTAGCT	GTGGGTGATA	ACCGTGTGCT	AGACATGGCT	TCCACGTACT
19141	TTGACATCCG	CGGCGTGCTG	GACAGGGGCC	CTACTTTTAA	GCCCTACTCT	GGCACTGCCT
19201	ACAACGCACT	GGCCCCCAAG	GGTGCCCCA	ACTCGTGCGA	GTGGGAACAA	AATGAAACTG
19261	CACAAGTGGA	TGCTCAAGAA	CTTGACGAAG	AGGAGAATGA	AGCCAATGAA	GCTCAGGCGC
19321	GAGAACAGGA	ACAAGCTAAG	AAAACCCATG	TATATGCCCA	GGCTCCACTG	TCCGGAATAA
19381	AAATAACTAA	AGAAGGTCTA	CAAATAGGAA	CTGCCGACGC	CACAGTAGCA	GGTGCCGGCA
19441	AAGAAATTTT	CGCAGACAAA	ACTTTTCAAC	CTGAACCACA	AGTAGGAGAA	TCTCAATGGA
19501	ACGAAGCGGA	TGCCACAGCA	GCTGGTGGAA	GGGTTCTTAA	AAAGACAACT	CCCATGAAAC
19561	CCTGCTATGG	CTCATACGCT	AGACCCACCA	ATTCCAACGG	CGGACAGGGC	GTTATGGTTG
19621	AACAAAATGG	TAAATTGGAA	AGTCAAGTCG	AAATGCAATT	TTTTTCCACA	TECACAAATG
19681	CCACAAATGA	AGTTAACAAT	ATACAACCAA	CAGTTGTATT	GTACAGCGAA	GATGTAAACA
19741	TGGAAACTCC	AGATACTCAT	CTTTCTTATA	AACCTAAAAT	GGGGGATAAA	AATGCCAAAG
19801	TCATGCTTGG	ACAACAAGCA	ATGCCAAACA	GACCAAATTA	CATTGCTTTT	AGAGACAATT
19861	TTATTGGTCT	CATGTATTAC	AACAGCACAG	GTAACATGGG	TGTCCTTGCT	GGTCAGGCAT
19921	CGCAGTTGAA	CGCTGTTGTA	GATTTGCAAG	ACAGAAACAC	AGAGCTGTCC	TACCAGCTTT
			•			GCTGTTGACA
20041	GCTATGATCC	AGATGTCAGA	ATTATTGAGA	ACCATGGAAC	TGAGGATGAG	TTGCCAAATT
20101	ATTGCTTTCC	TCTTGGTGGA	ATTGGGATTA	CTGACACTTT	TCAAGCTGTT	AAAACAACTG

	CECCENT NCCC	GGACCAAGGC	Τ ጋጋልሞጋልሞል ል	GGCAAAAAGA '	TTCAACATTT	GCAGAACGCA
20161	CIGCIAACGG	GGTGGGAAAT	ልልርጥምፕሮሮሮል	TGGAAATTAA	CCTGAATGCC	AACCTATGGA
20221	ATGAAATAGG	TTACTCCAAT	አመተር ር ር ር ጥር ጥ	ACCTGCCAGA	CAAGCTAAAA	TACAACCCCA
20281	GAAATTCCT	AATATCTGAC	ANCCCCAACA	CCTACGACTA	CATGAACAAG	CGAGTGGTGG
20341	CCAATGTGGA	AATATCTGAC	MACCOCAACA	TTCCCCCCCC	CTGGTCTCTG	GACTACATGG
20401	CTCCTGGGCT	TCCCTTTAAC	CACCACCCCA	ATCCCCCCCT	CCCTTACCGC	TCCATGTTGT
20461	ACAACGTTAA	ACCOUNT COME	CACCACCOCA	THE ACCURECE	CCAAAAGTTT	TTTGCCATTA
20521	TGGGAAACGG	CCGCTACGTG	CCCTTTCACA	CATATCAATG	GAACTTCAGG	AAGGATGTTA
20581	AAAACCTCCT	GCAGAGCTCT	COCCCAACC	ACCUMAGAGT	TGACGGGGCT	AGCATTAAGT
20641	ACATGGTTCT	TTGTCTTTAC	COCACCTTCT	TCCCCATGGC	CCACAACACG	GCCTCCACGC
20701	TTGACAGCAT	GCTCAGAAAT	CACACCTICI	ACCACTCCTT	TAATGACTAC	CTTTCCGCCG
20761	TGGAAGCCAT	ATATCCCATA	CCCCCCAACG	CCACCAACGT	GCCCATCTCC	ATCCCATCGC
20821	CCAACATGCT	AGCATTTCGC	CCTTCCCCCT	TCACACGCTT	GAAGACAAAG	GAAACCCCTT
20881	GCAACTGGGC	AGCATITCGC	CCTTACTACA	CCTACTCTGG	CTCCATACCA	TACCTTGACG
20941	CCCTGGGATC	AGGCTACGAC	ACCUMUDAGA	AGGTGGCCAT	TACTTTTGAC	TCTTCTGTTA
21001	GAACCTICTA	TOTTAATCAC	COCCOUNTACTC	CCAATGAGTT	TGAGATTAAG	CGCTCAGTTG .
21061	GCTGGCCGGG	CAACGACCGC	CTGCTTACTC	ACATGACAAA	GGACTGGTTC	CTAGTGCAGA
21121	ACGGGGAGGG	CTATAACGIA	CCCTACCACA	CCTTCTACAT	TCCAGAAAGC	TACAAAGACC
21181	TGTTGGCCAA	CTACAATATT	A A CTTTC CAGC	CCATGAGCCG	GCAAGTGGTG	GACGATACTA
21241	GCATGTACTC	GTTCTTCAGA	CTTCCA ATTA	TCCACCAGCA	TAACAACTCA	GGCTTCGTAG
21301	. AATACAAAGA	TIATUAGCAG	CCCCACCCAC	AAGCTTACCC	CGCTAATGTT	CCCTACCCAC
21361	. GCTACCTCGC	1 TOCCACCATG	CATACTATT	CCCAGAAAA	GTTTCTTTGC	GACCGCACCC
21421	TAATAGGCAA	AACCGCGGII	ACMA ACMTM	TGTCCATGGG	TGCGCTCACA	AGACCTGGGCC
21481	TGTGGCGCA	CONTROL OF	TCCCCCCAC	CCCTAGACAT	GACCTTTGAG	GTGGATCCCA.
21541	L AAAACCTTC	CYACGCAAAC	TOCGCCCACC	TTGAAGTCTT	TGACGTGGT	CGTGTGCACC
21601	L TGGACGAGC	CACCCTICTI	CACACCCTC	· ACCTGCGCAC	GCCCTTCTC	GCCGGCAACG
21661	AGCCGCACC	GGGGGTCATC	CANCATCAL	AACAGCTGCC	GCCATGGGC	r CCAGTGAGCA
2172	L CCACAACAT	A AAGAAGCAA	A A CAMCATCAM	TTGTGGGCCA	TATTTTTG	G GCACCTATGA
2178:	1 GGAACTGAA	A GCCATIGICA	AAGAICIIG	CAACCTCGCC	TGCGCCATA	G TTAACACGGC
2184	1 CAAGCGCTT	C CCAGGCTTTC	, TITICCCCACA	r cargeresco	TGGAACCCG	C GCTCAAAAAC
2190	1 CGGTCGCGA	G ACTGGGGGCC	, TACACIGGA.	TGACCAACG1	CTCAAGCAG	G TTTACCAGTT
2196	1 ATGCTACCT	C TITGAGCCC	TIGGCIIII	_	TCCCCCGAC	C GCTGTATAAC
2202	1 TGAGTACGA	G TCACTCCIG	CCCTCCACC	GCCCAACTC	GCCGCCTGT	G GCCTATTCTG
2208	1 GCTGGAAAA	m emeganeece	n mucces sem	G CCCCCAAACI	CCCATGGAT	C ACAACCCCAC
2214	1 CTGCATGTT	T CTCCACGCC	T TIGCCAACT	C CATGCTTAA(AGTCCCCAG	G TACAGCCCAC
2220	1 CATGAACCT	T ATTACCGGG	C ACCECMACE	C CTTCCTGGA	CGCCACTCG	C CCTACTTCCG
2226	1 CCTGCGCCG	C AACCAGGAA	AGCICIACA	G CTTCCTGGW	r CACTTGAAA	A ACATGTAAAA
2232	1 CAGCCACAG	T GCGCAAATT	M GGAGLGCCA	C CCAAAMCTT	r TTATTTGTA	C ACTCTCGGGT
2238	1 ATAATGTAC	AGGAGACAC	W CCCCGCGCGC	C CCCTTTALL	A ATCAAAGGG	G TTCTGCCGCG
2244	1 GATTATTTA	C CCCCACCCT	C ACCCACACACA	TOUCH TANK	G GTGTTTAGT	G CTCCACTTAA
2250	1 CATCGCTAT	G CGCCACTGG	C AGGGACACG	C ACTICATION	C ACTCCACAC	GG CTGCGCACCA
2256	1 ACTCAGGC	AC AACCATCCG	C GGCAGCTCG	IC PADALCAACS	A GTCGCAGT	rg gggcctccgc
2262	21 TCACCAACO	C GTTTAGCAG	G TUGGGCGCC	O MINICIION	. Gredendr	rg gggcctccgc

FIG. 71

WO 03/031588 PCT/US02/32512

					•			
	22681	CCTGCGCGCG	CGAGTTGCGA	TACACAGGGT	TACAGCACTG	GAACACTATC	AGCGCCGGGT	:
	22741	GGTGCACGCT	GGCCAGCACG	CTCTTGTCGG	AGATCAGATC	CGCGTCCAGG	TCCTCCGCGT	,
	22801	TGCTCAGGGC	GAACGGAGTC	AACTTTGGTA	GCTGCCTTCC	CAAAAAGGGT	GCATGCCCAG	-
	22861	GCTTTGAGTT	GCACTCGCAC	CGTAGTGGCA	TCAGAAGGTG	ACCGTGCCCA	GTCTGGGCGT	
	22921	TAGGATACAG	CGCCTGCATG	AAAGCCTTGA	TCTGCTTAÀÁ	AGCCACCTGA	GCCTTTGCGC	
	22981	CTTCAGAGAA	GAACATGCCG	CAAGACTTGC	CGGAAAACTG	ATTGGCCGGA	CAGGCCGCGT	
	23041	CATGCACGCA	GCACCTTGCG	TCGGTGTTGG	ÄGATCTGCAC	CACATTTCGG	CCCCACCGGT	•
	23101	TCTTCACGAT	CTTGGCCTTG	CTAGACTGCT	CCTTCAGCGC	GCGCTGCCCG	TTTTCGCTCG:	
٠	23161	TCACATCCAT	TTCAATCACG	TGCTCCTTAT	TTATCATAAT	GCTCCCGTGT	AGACACTTAA	
	23221	GCTCGCCTTC	GATCTCAGCG	CAGCGGTGCA	GCCACAACGC	GCAGCCCGTG	GGCTCGTGGT	
	23281	GCTTGTAGGT	TACCTCTGCA	AACGACTGCA	GGTACGCCTG	CAGGAATCGC	CCCATCATCG	
	23341	TCACAAAGGT	CTTGTTGCTG	GTGAAGGTCA	GCTGCAACCC	GCGGTGCTCC	TCGTTTAGCC	
	23401	AGGTCTTGCA	TACGGCCGCC	AGAGCTTCCA	CTTGGTCAGG	CAGTAGCTTG	AAGTTTGCCT	
	23461	TTAGATCGTT	ATCCACGTGG	TACTTGTCCA	TCAACGCGCG	CGCAGCCTCC	ATGCCCTTCT	
	23521	CCCACGCAGA	CACGATCGGC	AGGCTCAGCG	GGTTTATCAC	CGTGCTTTCA	CTTTCCGCTT	
•	23581	CACTGGACTC	TTCCTTTTCC	TCTTGCATCC	GCATACCCCG	CGCCACTGGG	TCGTCTTCAT	
					TGCCGTGCTT			
	23701	TGAAACCCAC	CATTTGTAGC	GCCACATCTT	CTCTTTCTTC	CTCGCTGTCC	ACGATCACCT	•
	23761	CTGGGGATGG	CGGGCGCTCG	GGCTTGGGAG	AGGGGCGCTT	CTTTTTCTTT	TTGGACGCAA	•
	23821	TGGCCAAATC	CGCCGTCGAG	GTCGATGGCC	GCGGGCTGGG	TGTGCGCGGC	ACCAGCGCAT	•
	23881	CTTGTGACGA	GTCTTCTTCG	TCCTCGGACT	CGAGACGCCG	CCTCAGCCGC	TTTTTTGGGG	
	23941	GCGCGCGGG	AGGCGGCGGC	GACGGCGACG	GGGACGAGAC	GTCCTCCATG	GTTGGTGGAC	
	24001	GTCGCGCCGC	ACCGCGTCCG	CGCTCGGGGG	TGGTTTCGCG	CTGCTCCTCT	TCCCGACTGG	
	24061	CCATTTCCTT	CTCCTATAGG	CAGAAAAAGA	TCATGGAGTC	AGTCGAGAAG	GAGGACAGCC	
	24121	TAACCGCCCC	CTTTGAGTTC	GCCACCACCG	CCTCCACCGA	TGCCGCCAAC	GCGCCTACCA	
	24181.	CCTTCCCCGT	CGAGGCACCC	CCGCTTGAGG	AGGAGGAAGT	GATTATCGAG	CAGGACCCAG	٠.
	24241	GTTTTGTAAG	CGAAGACGAC	GAAGATCGCT	CAGTACCAAC	AGAGGATAAA	AAGCAAGACC	
	24301	AGGACGACGC	AGAGGCAAAC	GAGGAACAAG	TCGGGCGGG	GGACCAAAGG	CATGGCGACT	
					AGCATCTGCA			
					CCCTCGCCAT			
	24481	ACGAACGCCA	CCTGTTCTCA	CCGCGCGTAC	CCCCCAAACG	CCAAGAAAAC	GGCACATGCG	٠
	24541	AGCCCAACCC	GCGCCTCAAC	TTCTACCCCG	TATTTGCCGT	GCCAGAGGTG	CTTGCCACCT	
	24601	ATCACATCTT	TTTCCAAAAC	TGCAAGATAC	CCCTATCCTG	CCGTGCCAAC	CGCAGCCGAG	
	24661	CGGACAAGCA	GCTGGCCTTG	CGGCAGGGCG	CTGTCATACC	TGATATCGCC	TCGCTCGACG	`
	24721	AAGTGCCAAA	AATCTTTGAG	GGTCTTGGAC	GCGACGAGAA	GCGCGCGCA	AACGCTCTGC	٠.
	24781	AACAAGAAAA	CAGCGAAAAT	GAAAGTCACT	GTGGAGTGCT	GGTGGAACTT	GAGGGTGACA	
	24841	ACGCGCGCCT	AGCCGTGCTG	ÄAACGCAGCA	TCGAGGTCAC	CCACTTTGCC	TACCCGGCAC	
	24901	TTAACCTACC	CCCCAAGGTT	ATGAGCACAG	TCATGAGCGA	GCTGATCGTG	CGCCGTGCAC	
	24961	GACCCCTGGA	GAGGGATGCA	AACTTGCAAG	AACAAACCGA	GGAGGGCCTA	CCCGCAGTTG	•
	25021	GCGATGAGCA	GCTGGCGCGC	TGGCTTGAGA	CGCGCGAGCC	TGCCGACTTG	GAGGAGCGAC	÷
	25081	GCAAGCTAAT	GATGGCCGCA	GTGCTTGTTA	CCGTGGAGCT	TGAGTGCATG	CAGCGGTTCT	
	25141	TTGCTGACCC	GGÄGATGCAG	CGCAAGCTAG	AGGAAACGTT	GCACTACACC	TTTCGCCAGG	

FIG. 7J

		CCAGGCCTGC	አ አ አ አመመመንግ አ	እርርጥርርእርርጥ	CTCCAACCTG	GTCTCCTACC
25201	GCTACGTGCG	GCACGAAAAC	CCCCMMCCCC	ANDACCTCCT	TCATTCCACG	CTCAAGGGCG
		CGACTACGTC				
		CGTGTGGCAG				
						GTGGCCGCGC .
		CATTATCTTC				
		TCAAAGCATG				
		CACCTGCTGT				
		GCTTTGGGGT				
		CATGGAAGAC				
		CCCGCACCGC				
		CTTTGAGCTG				
		TCCGGGGCTG				
						GCGGAGCTTA
		CATTACCCAG				
		TCTGCTACGA				
		AATCCCCCCG				
		CCAAAAAGAA				
		GTCAGGCAGA				
		ACGAGGAAGC				
		TCCCCTCGCC				
		CTCAGGCGCC				
26521	ACCACTGGAA	CCAGGGCCGG	TAAGTCTAAG	CAGCCGCCGC	CGTTAGCCCA	AGAGCAACAA
						TTGCTTGCAA
26641	GACTGTGGGG	GCAACATCTC	CTTCGCCCGC	CGCTTTCTTC	TCTACCATCA	CGGCGTGGCC
26701	TTCCCCCGTA	ACATCCTGCA	TTACTACCGT	CATCTCTACA	GCCCCTACTG	CACCGGCGGC
26761	AGCGGCAGCA	ACAGCAGCGG	CCACGCAGAA	GCAAAGGCGA	CCGGATAGCA	AGACTCTGAC
26821	AAAGCCCAAG	AAATCCACAG	CGGCGGCAGC	AGCAGGAGGA	GGAGCACTGC	GTCTGGCGCC
26881	CAACGAACCC	GTATCGACCC	GCGAGCTTAG	AAACAGGATT	TTTCCCACTC	TGTATGCTAT
26941	ATTTCAACAG	AGCAGGGGCC	AAGAACAAGA	GCTGAAAATA	AAAAACAGGT	CTCTGCGCTC
						CGCTGGAAGA
2706	CGCGGAGGCT	CTCTTCAGCA	AATACTGCGC	GCTGACTCTT	AAGGACTAGI	TTCGCGCCCT
						CGCCAGCACC
						GTTACCAGCC
						ACTACATGAG
2730	CGCGGGACC	CACATGATA	CCCGGGTCAA	CGGAATCCG	GCCCACCGAZ	ACCGAATTCT
						GTAGTTGGCC
						CCAGAGACGC
						TTCGTCACAG
						GTATTCAGCT
						r TTCAGATCGG
2700	1 000000000	C CCCTCTTC 1	T TTACGCCCCC	TCAGGCGAT	C CTAACTCTG	C AGACCTCGTC
2/00	T COOCOCIOO	- COCICIION			-	•

FIG. 7K

						ATTGAGGAGT	
							TTATTCCCAA
							GAGAGGCAGA.
							CCCGCGCTC
						GAGGGCCCGG	
						CGGGAGTTTA	
						GTGGTTTGCA	
1	28141	CCCTGGATTA	CATCAAGATC	TTTGTTGTCA	TCTCTGTGCT	GAGTATAATA	AATACAGAAA
2	28201	TTAGAATCTA	CTGGGGCTCC	TGTCGCCATC	CTGTGAACGC	CACCGTTTTT	ACCCACCCAA
. 2	28261	AGCAGACCAA	AGCAAACCTC	ACCTCCGGTT	TGCACAAGCG	GGCCAATAAG	TACCTTACCT
:	28321	GGTACTTTAA	CGGCTCTTCA	TTTGTAATTT	ACAACAGTTT	CCAGCGAGAC	GAAGTAAGTT
						AAACACCACC	
:	28441	TCACCTGCCG	GGAACGTACG.	AGTGCGTCAC	CGGTTGCTGC	GCCCACACCT	ACAGCCTGAG
							CCCGGAACTC
						TTAAGTATAT	
٠,	28621	AGTAACTCTA	CAAGCTTGTC	TAATTTTTCT	GGAATTGGGG	TCGGGGTTAT	CCTTACTCTT
:	28681	GTAATTCTGT	TTATTCTTAT	ACTAGCACTT	CTGTGCCTTA	GGGTTGCCGC	CTGCTGCACG
:	28741	CACGTTTGTA	CCTATTGTCA	GCTTTTTAAA	CGCTGGGGGC	GACATCCAAG	ATGAGGTACA
•	28801	TGATTTTAGG	CTTGCTCGCC	CTTGCGGCAG	TCTGCAGCGC	TGCCAAAAAG	GTTGAGTTTA
:	28861	AGGAACCAGC	TTGCAATGTT	ACATTTAAAT	CAGAAGCTAA	TGAATGCACT	ACTCTTATAA'
	28921	AATGCACCAC	AGAACATGAA	AAGCTTATTA	TTCGCCACAA	AGACAAAATT	GGCAAGTATG
٠ :	28981	CTGTATATGC	TATTTGGCAG	CCAGGTGACA	CTAACGACTA	TAATGTCACA	GTCTTCCAAG
	29041	GTGAAAATCG	TAAAACTTTT	ATGTATAAAT	TTCCATTTTA	TGAAATGTGC	GATATTACCA
	29101	TGTACATGAG	CAAACAGTAC	AAGTTGTGGC	CCCCACAAAA	GTGTTTAGAG	AACACTGGCA
	29161	CCTTTTGTTC	CACCGCTCTG	CTTATTACAG	CGCTTGCTTT	GGTATGTACC	TTACTTTATC
	29221	TCAAATACAA	AAGCAGACGC	AGTTTTATTG	ATGAAAAGAA	AATGCCTTGA	TTTTCCGCTT
•	29281	GCTTGTATTC	CCCTGGACAA	TTTACTCTAT	GTGGGATATG	CGCCAGGCGG	GAAAGATTAT
	29341	ACCCACAACC	TTCAAATCAA	ACTTTCCTGG	ACGTTAGCGC	CTGACTTCTG	CCAGCGCCTG
	29401	CACTGCAAAT	TTGATCAAAC	CCAGCTTCAG	CTTGCCTGCT	CCAGAGATGA	CCGGCTCAAC
	29461	CATCGCGCCC	ACAACGGACT	ATCGCAACAC	CACTGCTACC	GGACTAAAAT	CTGCCCTAAA .
	29521	TTTACCCCAA	GTTCATGCCT	TTGTCAATGA	CTGGGCGAGC	TTGGGCATGT	GGTGGTTTTC
	29581	CATAGCGCTT	ATGTTTGTTT	GCCTTATTAT	TATGTGGCTT	ATTTGTTGCC	TAAAGCGCAG
	29641	ACGCGCCAGA	CCCCCATCT	ATAGGCCTAT	CATTGTGCTC	AACCCACACA	ATGAAAAAAT
	29701	TCATAGATTG	GACGGTCTCA	AACCATGTTC	TCTTCTTTTA	. CÁGTATGATT	AAATGAGACA
	29761	TGATTCCTCG	AGTCCŢTATA	TTATTGACCC	TTGTTGCGCT	TTTCTGTGCG	TGCTCTACAT
	29821	TGGCTGCGGT	CGCTCACATC	ĠAAGTAGATT	GCATCCCACC	TTTCACAGTT	TACCTGCTTT
	29881	ACGGATTTGT	CACCCTTATC	CTCATCTGCA	GCCTCGTCAC	TGTAGTCATC	GCCTTCATTC .
	29941	AGTTCATTGA	CTGGATTTGT	GTGCGCATTG	CGTACCTTAG	GCACCATCCG	CAATACAGAG
							TCACTTTTGT
							CTCCCAAAAG
							ACAAACAGAG
							CCAGTACCAT

FIG. 7L

						> maaa> ma> 3
		GCCATATACC				
		TTCCCAGCGC				
		CCCCCTTCTC				
		ATCTCTAGAT				
		GCCGCCTCC				
		GTGTAAAAGA				
		TACCGGCAAC				
		GGGAGAAAA				
30721	GCCTGCACTT	CCCCTATCAG	GGTCCAGAGG	ACCTCTGCAC	TCTTATTAAA	ACCATGTGTG.
		TCTTATTCCA				
30841	ATCAGTCAGC	AAATCTTTGT	CCAGCTTATT	CAGCATCACC	TCCTTTCCCT	CCTCCCAACT
30901	CTGGTATTTC	AGCAGCCTTT	TAGCTGCGAA	CTTTCTCCAA	AGTCTAAATG	GGATGTCAAA
30961	TTCCTCATGT	TCTTGTCCCT	CCGCACCCAC	TATCTTCATA	TTGTTGCAGA	TGAAACGCGC
31021	CAGACCGTCT	GAAGACACCT	TCAACCCTGT	GTACCCATAT	GACACGGAAA	CCGGCCCTCC
31081	AACTGTGCCT	TTCCTTACCC	CTCCCTTTGT	GTCGCCAAAT	GGGTTCCAAG	AAAGTCCCCC
31141	CGGAGTGCTT	TCTTTGCGTC	TTTCAGAACC	TTTGGTTACC	TCACACGGCA	TGCTTGCGCT
31201	AAAAATGGGC	AGCGGCCTGT	CCCTGGATCA	GGCAGGCAAC	CTTACATCAA	ATACAATCAC
31261	TGTTTCTCAA	CCGCTAAAAA	AAACAAAGTC	CAATATAACT	TTGGAAACAT	CCGCGCCCT
31321	TACAGTCAGC	TCAGGCGCCC	TAACCATGGC	CACAACTTCG	CCTTTGGTGG	TCTCTGACAA
31381	CACTCTTACC	ATGCAATCAC	AAGCACCGCT	AACCGTGCAA	GACTCAAAAC	TTAGCATTGC '
31441	TACCAAAGAG	CCACTTACAG	TGTTAGATGG	AAAACTGGCC	CTGCAGACAT	CAGCCCCCT
31501	CTCTGCCACT	GATAACAACG	CCCTCACTAT	CACTGCCTCA	CCTCCTCTTA	CTACTGCAAA
		GCTGTTACCA				
		GGTCCTTTGC				
		GCAGTTCATA				
		GGCAACATGG				
		AAACTACATA				
						CAAACGGAAA
						CTATGGTTGC
						GCAGCATAAA
		CTTACTCTTT				
						TTTTGGGCAC
						TAAGCAGTGT
						CACTGGACAA
						CTTATGCTGT
						CAAAAAGTAA
						TTACTATTAC
						TCAGTTGGTC
						CCTTCTCCTA
						GTGTTTATTT
						CCACCACATA
						AACCTGCCAC
J 2 7 V						

FIG. 7M

WO 03/031588 PCT/US02/32512

	32761	CTCCCTCCCA	ACACACAGÁG	TACACAGTCC	TTTCTCCCCG	GCTGGCCTTA	AACAGCATCA	:
						CACGGTCTCC		
	32881	AACGCTCATC	AGTGATGTTA	ATAAACTCCC	CGGGCAGCTC	GCTTAAGTTC	ATGTCGCTGT	•
	32941	CCAGCTGCTG	AGCCACAGGC	TGCTGTCCAA	CTTGCGGTTG	CTCAACGGGC	GGCGAAGGAG	•
	33001	AAGTCCACGC	CTACATGGGG	GTAGAGTCAT	AATCGTGCAT	CAGGATAGGG	CGGTGGTGCT	
	33061	GCAGCAGCGC	GCGAATAAAC	TGCTGCCGCC	GCCGCTCCGT	CCTGCAGGAA	TACAACATGG	
	33121·	CAGTGGTCTC	CTCAGCGATG	ATTCGCACCG	CCCGCAGCAT	AAGGCGCCTT	GTCCTCCGGG	
	33181	CACAGCAGCG	CACCCTGATC	TCACTTAAGT	CAGCACAGTA	ACTGCAGCAC	AGTACCACAA	
	33241	TATTGTTTAA	AATCCCACAG	TGCAAGGCGC	TGTATCCAAA	GCTCATGGCG	GGGACCACAG	٠.
	33301	AACCCACGTG	GCCATCATAC	CACAAGCGCA	GGTAGATTAA	GTGGCGACCC	CTCATAAACA	
	33361	CGCTGGACAT	AAACATTACC	TCTTTTGGCA	TGTTGTAATT	CACCACCTCC	CGGTACCATA	
	33421	TAAACCTCTG	ATTAAACATG	GCGCCATCCA	CCACCATCCT	AAACCAGCTG	GCCAAAACCT	
	33481	GCCGCCGGC	TATGCACTGC	AGGGAACCGG	GACTGGAACA	ATGACAGTGG	AGAGCCCAGG	
	33541	ACTCGTAACC	ATGGATCATC	ATGCTCGTCA	TGATATCAAT	GTTGGCACAA	CACAGGCACA	
	33601	CGTGCATACA	CTTCCTCAGG	ATTACAAGCT	CCTCCCGCGT	CAGAACCATA	TCCCAGGGAA	
	33661	CAACCCATTC	CTGAATCAGC	GTAAATCCCA	CACTGCAGGG	AAGACCTCGC	ACGTAACTCA	• •
	33721	CGTTGTGCAT	TGTCAAAGTG	TTACATTCGG	GCAGCAGCGG	ATGATCCTCC	AGTATGGTAG	•.
	33781	CGCGTGTCTC	TGTCTCAAAA	GGAGGTAGGC	GATCCCTACT	GTACGGAGTG	CGCCGAGACA	
	33841	ACCGAGATCG	TGTTGGTĆGT	AGTGTCATGC	CAAATGGAAC	GCCGGACGTA	GTCATATTTC	
•	33901	CTGAAGCAAA	ACCAGGTGCG	GGCGTGACAA	ACAGATCTGC	GTCTCCGGTC	TCGTCGCTTA	•
	33961	GCTCGCTCTG	TGTAGTAGTT	GTAGTATATC	CACTCTCTCA	AAGCATCCAG	GCGCCCCTG	
	34021	GCTTCGGGTT	CTATGTAAAC	TCCTTCATGC	GCCGCTGCCC	TGATAACATC	CACCACCGCA	
	34081	GAATAAGCCA	CACCCAGCCA	ACCTACACAT	TCGTTCTGCG	AGTCACACAC	GGGAGGAGCG	
	34141	GGAAGAGCTG	GAAGAACCAT	GTTTTTTTT	TTTATTCCAA	AAGATTATCC	AAAACCTCAA	
	34201	AATGAAGATC	TATTAAGTGA	ACGCGCTCCC	CTCCGGTGGC	GTGGTCAAAC	TCTACAGCCA	
	34261	AAGAACAGAT	AATGGCATTT	GTAAGATGTT	GCACAATGGC	TTCCAAAAGG	CAAACTGCCC	•
	34321	TCACGTCCAA	GTGGACGTAA	AGGCTAAACC	CTTCAGGGTG	AATCTCCTCT	ATAAACATTC	
	34381	CAGCACCTTC	AACCATGCCC	AAATAATTTT	CATCTCGCCA	CCTTATCAAT	ATGTCTCTAA	
	34441	GCAAATCCCG	AATATTAAGT	CCGGCCATTG	TAAAAATCTG	CTCCAGAGCG	CCCTCCACCT	
	34501	TCAGCCTCAA	GCAGCGAATC	ATGATTGCAA	AAATTCAGGT	TCCTCACAGA	CCTGTATAAG	
	34561	ATTCAAAAGC	GGAACATTAA	CAAAAATACC	GCGATCCCGT	AGGTCCCTTC	GCAGGGCCAG	
	34621	CTGAACATAA	TCGTGCAGGT	CTGCACGGAC	CAGCGCGGCC	ACTTCCCCGC	CAGGAACCAT	
	34681	GACAAAAGAA	CCCACACTGA	TTATGACACG	CATACTCGGA	GCTATGCTAA	CCAGCGTAGC	
	34741	CCCGATGTAA	GCTTGTTGCA	TGGGCGGCGA	TATAAAATGC	AAGGTACTGC	TCAAAAAATC	
	34801	AGGCAAAGCC	TCGCGCAAAA	AAGCAAGCAC	ATCGTAGTCA	TGCTCATGCA	GATAAAGGCA	
	34861	GGTAAGTTCC	GGAACCACCA	CAGAAAAAGA	CACCATTTTT	CTCTCAAACA	TGTCTGCGGG	,
	34921	TTCCTGCATA	AACACAAAAT	AAAATAACAA	ААААААААА	ACATTTAAAC	ATTAGAAGCC	
	34981	TGTNTTACAA	CAGGAAAAAC	AACCCTTATA	AGCATAAGAC	GGACTACGGC	CATGCCGGCG	
	35041	TGACCGTAAA	AAAACTGGTC	ACCGTGATTA	AAAAGCACCA	CCGACAGTTC	CTCGGTCATG	
						GGTTAACATC	_	
	35161	ÄAAAAGCGAC	CGAAATAGCC	CGGGGGAATA	CATACCCGCA	. GGCGTAGAGA	CAACATTACA	
	35221	GĊCCCCATAG	GAGGTATAAC	AAAATTAATA	GGAGAGAAAA	ACACATAAAC	ACCTGAAAAA	٠
								•

FIG. 7N

WO 03/031588 PCT/US02/32512

35281	CCCTCCTGCC	TAGGCAAAAT	AGCACCCTCC	CGCTCCAGAA	CAACATACAG	CGCTTCCACA
35341	GCGGCAGCCA	TAACAGTCAG	CCTTACCAGT	АААААААССТ	ATTAAAAAAC	ACCACTCGAC
35401	ACGGCACCAG	CTCAATCAGT	CACAGTGTAA	AAAGGGCCAA	GTACAGAGCG	AGTATATATA
35461	GGACTAAAAA	ATGACGTAAC	GGTTAAAGTC	CACAAAAACC	ACCCAGAAAA	CCGCACGCGA
35521	ACCTACGCCC	AGAAACGAAA	GCCAAAAAAC	CCACAACTTC	CTCAAATCTT	CACTTCCGTT
35581	TTCCCACGAT	ACGTCACTTC	CCATTTTAAA	ААААААСТАС	AATTCCCAAT	ACATGCAAGT
35641	TACTCCGCCC	TAAAACCTAC	GTCACCCGCC	CCGTTCCCAC	GCCCGCGCC	ACGTCACAAA
35701	CTCCACCCC	TCATTATCAT	ATTGGCTTCA	АТССААААТА	AGGTATATTA	TTGATGATG

					1	
1	CATCATCAAT	AATATACCTT	ATTTTGGATT	GAAGCCAATA	TGATAATGAG	GGGGTGGAGT
61	TTGTGACGTG	GCGCGGGGCG	TGGGAACGGG	GCGGGTGACG	TAGTAGTGTG	GCGGAAGTGT.
121	GATGTTGCAA	GTGTGGCGGA	ACACATGTAA	GCGACGGATG	TGGCAAAAGT	GACGTTTTTG
181	GTGTGCGCCG	GTGTACACAG	GAAGTGACAA	TTTTCGCGCG	GTTTTAGGCG	GATGTTGTAG.
241	TAAATTTGGG	CGTAACCGAG	TAAGATTTGG	CCATTTTCGC	GGGAAAACTG	AATAAGAGGA
301	AGTGAAATCT	GAATAATTTT	GTGTTACTCA	TAGCGCGTAA	TATTTGTCTA	GGGCCGCGGG
361	GACTTTGACC	GTTTACGTGG	AGACTCGCCC	AGGTGTTTTT	CTCAGGTGTT	TTCCGCGTTC
421	CGGGTCAAAG	TTGGCGTTTT	ATTATTATAG	TCAGCTGACG	TGTAGTGTAT	TTATACCCGG
481	TGAGTTCCTC	AAGAGGCCAC	TCTTGAGTGC	CAGCGAGTAG	AGTTTTCTCC	TCCGAGCCGC
541	TCCGACACCG	GGACTGAAAA	TGAGACATAT	TATCTGCCAC	GGAGGTGTTA	TTACCGAAGA
601	AATGGCCGCC	AGTCTTTTGG	ACCAGCTGAT	CGAAGAGGTA	CTGGCTGATA	ATCTTCCACC
661	TCCTAGCCAT	TTTGAACCAC	CTACCCTTCA	CGAACTGTAT	GATTTAGACG	TGACGGCCCC.
. 721	CGAAGATCCC	AACGAGGAGG	CGGTTTCGCA	GATTTTTCCC	GACTCTGTAA	TGTTGGCGGT
781	GCAGGAAGGG	ATTGACTTAC	TCACTTTTCC	GCCGGCGCCC	GGTTCTCCGG	AGCCGCCTCA
841	CCTTTCCCGG	CAGCCCGAGC	AGCCGGAGCA	GAGAGCCTTG	GGTCCGGTTT	CTATGCCAAA
901	CCTTGTACCG	GAGGTGATCG	ATCTTACCTG	CCACGAGGCT	GGCTTTCCAC	CCAGTGACGA
961	CGAGGATGAA	GAGGGTGAGG	AGTTTGTGTT	AGATTATGTG	GAGCACCCCG	GGCACGGTTG
1021	CAGGTCTTGT	CATTATCACC	GGAGGAATAC	GGGGGACCCA	GATATTATGT	GTTCGCTTTG
1081	CTATATGAGG	ACCTGTGGCA	TGTTTGTCTA	CAGTAAGTGA	AAATTATGGG	CAGTGGGTGA
1141	TAGAGTGGTG	GGTTTGGTGT	GGTAATTTTT	TTTTTAATTT	TTACAGTTTT	GTGGTTTAAA
1201	GAATTTTGTA	TTGTGATTTT	TTTAAAAGGT	CCTGTGTCTG	AACCTGAGCC	TGAGCCCGAG
1261	CCAGAACCGG	AGCCTGCAAG	ACCTACCCGC	CGTCCTAAAA	TGGCGCCTGC	TATCCTGAGA
1321	CGCCCGACAT	CACCTGTGTC	TAGAGAATGC	AATAGTAGTA	CGGATAGCTG	TGACTCCGGT
1381	CCTTCTAACA	CACCTCCTGA	GATACACCCG	GTGGTCCCGC	TGTGCCCCAT	TAAACCAGTT
1441	GCCGTGAGAG	TTGGTGGGCG	TCGCCAGGCT	GTGGAATGTA	TCGAGGACTT	GCTTAACGAG
1501	CCTGGGCAAC	CTTTGGACTT	GAGCTGTAAA	CGCCCCAGGC	CATAAGGTGT	AAACCTGTGA
1561	TTGCGTGTGT	GGTTAACGCC	TTTGTTTGCT	GAATGAGTTG	ATGTAAGTTT	AATAAAGGGT
1621	GAGATAATGT	TTAACTTGCA	TGGCGTGTTA	AATGGGGCGG	GGCTTAAAGG	GTATATAATG
1681	CGCCGTGGGC	TAATCTTGGT	TACATCTGAC	CTCATGGAGG	CTTGGGAGTG	TTTGGAAGAT
1741	TTTTCTGCTG	TGCGTAACTT	GCTGGAACAG	AGCTCTAACA	GTACCTCTTG	GTTTTGGAGG.
1801	TTTCTGTGGG	GCTCATCCCA	GGCAAAGTTA	GTCTGCAGAA	TTAAGGAGGA	TTACAAGTGG
1861	GAATTTGAAG	AGCTTTTGAA	ATCCTGTGGT	GAGCTGTTTG	ATTCTTTGAA	TCTGGGTCAC
1921	CAGGCGCTTT	TCCAAGAGAA	GGTCATCAAG	ACTTTGGATT	TTTCCACACC	GGGGCGCGCT
1981	GCGGCTGCTG	TTGCTTTTTT	GAGTTTTATA	AAGGATAAAT	GGAGCGAAGA	AACCCATCTG
2041	AGCGGGGGGT	ACCTGCTGGA	TTTTCTGGCC	ATGCATCTGT	GGAGAGCGGT	TGTGAGACAC
2101	AAGAATCGCC	TGCTACTGTT	GTCTTCCGTC	CGCCCGGCGA	TAATACCGAC	GGAGGAGCAG
2161	CAGCAGCAGC	AGGAGGAAGC	CAGGCGGCGG	CGGCAGGAGC	AGAGCCCATG	GAACCCGAGA
2221	GCCGGCCTGG	ACCCTCGGGA	ATGAATGTTG	TACAGGTGGC	TGAACTGTAT	CCAGAACTGA
2281	GACGCATTTT	GACAATTACA	GAGGATGGGC	AGGGGCTAAA	GGGGGTAAAG	AGGGAGCGGG
2341	GGGCTTGTGA	GGCTACAGAG	GAGGCTAGGA	ATCTAGCTTT	TAGCTTAATG	ACCAGACACC
2401	GTCCTGAGTG	TATTACTTTT	CAACAGATCA	AGGATAATTG	CGCTAATGAG	CTTGATCTGC
2461	TGGCGCAGAA	GTATTCCATA	GAGCAGCTGA	CCACTTACTG	GCTGCAGCCA	GGGGATGATT
2521	TTGAGGAGGC	TATTAGGGTA	TATGCAAAGG	TGGCACTTAG	GCCAGATTGC	AAGTACAAGA
2581	TCAGCAAACT	TGTAAATATC	AGGAATTGTT	GCTACATTTC	TGGGAACGGG	GCCGAGGTGG
2641	AGATAGATAC	GGAGGATAGG	GTGGCCTTTA	GATGTAGCAT	GATAAATATG	TGGCCGGGGG
2701	TGCTTGGCAT	GGACGGGGTG	GTTATTATGA	ATGTAAGGTT	TACTGGCCCC	AATTTTAGCG
2761	GTACGGTTTT	CCTGGCCAAT	ACCAACCTTA	TCCTACACGG	TGTAAGCTTC	TATGGGTTTA
2821	ACAATACCTG	TGTGGAAGCC	TGGACCGATG	TAAGGGTTCG	GGGCTGTGCC	TTTTACTGCT
						TGCCTCTTTG
2941	AAAGGTGTAC	CTTGGGTATC	CTGTCTGAGG	GTAACTCCAG	GGTGCGCCAC	AATGTGGCCT
3001	CCGACTGTGG	TTGCTTCATG	CTAGTGAAAA	GCGTGGCTGT	GATTAAGCAT	AACATGGTAT
3061	GTGGCAACTG	CGAGGACAGG	GCCTCTCAGA	TGCTGACCTG	CTCGGACGGC	AACTGTCACC
3121	TGCTGAAGAC	CATTCACGTA	GCCAGCCACT	CTCGCAAGGC	CTGGCCAGTG	TTTGAGCATA
3181	ACATACTGAC	CCGCTGTTCC	TTGCATTTGC	GTAACAGGAG	GGGGGTGTTC	CTACCTTACC
3241	AATGCAATTT	GAGTCACACT	AAGATATTGO	TTGAGCCCGA	GAGCATGTCC	AAGGTGAACC.
		3 		·	= -	

	•					
3301	TGAACGGGGT	GTTTGACATG	ACCATGAAGA	TCTGGAAGGT	GCTGAGGTAC	GATGAGACCC
2261	CCACCAGGTG	CAGACCCTGC	GAGTGTGGCG	GTAAACATAT	TAGGAACCAG	CCTGTGATGC
2421	ጥርርኔጥርጥርኔሮ	CCACCACCTG	AGGCCCGATC	ACTTGGTGCT	GGCCTGCACC	CCCCTGAGT
2/01	TATCCCTCTDAG	CCATGAAGAT	ACAGATTGAG	GTACTGAAAT	GTGTGGGCGT	GGCTTAAGGG
2541	TOCODANGAA	ጥልጥልጥልልርርጥ	GGGGGTCTTA	TGTAGTTTTG	TATCTGTTTT	GCAGCAGCCG
3601	CCCCCCCCAT	GAGCACCAAC	TCGTTTGATG	GAAGCATTGT	GAGCTCATAT	TTGACAACGC
2661	CCATCCCCCC	ATGGGCCGGG	GTGCGTCAGA	ATGTGATGGG	CTCCAGCATT	GATGGTCGCC
3721	CCGTCCTGCC	CGCAAACTCT	ACTACCTTGA	CCTACGAGAC	CGTGTCTGGA	ACGCCGTTGG
2701	ACACTECAEC	CTCCGCCGCC	GCTTCAGCCG	CTGCAGCCAC	CGCCCGCGGG	ATTGTGACTG
3941	ጀርብላተላተርርርብላተ ብ	CCTGAGCCCG	CTTGCAAGCA	GTGCAGCTTC	CCGTTCATCC	GCCCGCGATG
3001	ACAACTTCAC	GGCTCTTTTG	GCACAATTGG	ATTCTTTGAC	CCGGGAACTT	AATGTCGTTT
3061	CTCACCACCT	GTTGGATCTG	CGCCAGCAGG	TTTCTGCCCT	GAAGGCTTCC	TCCCCTCCCA
4021	ATTCCCCTTTA	AAACATAAAT	AAAAAACCAG	ACTCTGTTTG	GATTTGGATC	AAGCAAGTGT
4081	CTTCCTCTCT	TTATTTAGGG	GTTTTGCGCG	CGCGGTAGGC	CCGGGACCAG	CGGTCTCGGT
4141	CCTTCACCCT	CCTGTGTATT	TTTTCCAGGA	CGTGGTAAAG	GTGACTCTGG	ATGTTCAGAT
4201	እርአጥርርርርር እ	AAGCCCGTCT	CTGGGGTGGA	GGTAGCACCA	CTGCAGAGCT	TCATGCTGCG
1261	CCCTCCTCTT	GTAGATGATC	CAGTCGTAGC	AGGAGCGCTG	GGCGTGGTGC	CTAAAAATGT .
4221	CTOTOCACTAC	CAAGCTGATT	GCCAGGGGCA	GGCCCTTGGT	GTAAGTGTTT	ACAAAGCGGT
4201	TARCCTCCCA	TEGETTECATA	CGTGGGGATA	TGAGATGCAT	CTTGGACTGT	ATTTTTAGGT
4441	ጥርርርጥልጥርጥጥ	CCCAGCCATA	TCCCTCCGGG	GATTCATGTT	GTGCAGAACC	ACCAGCACAG
4501	ጥርጥልጥር ርርርጥ	GCACTTGGGA	AATTTGTCAT	GTAGCTTAGA	AGGAAATGCG	TGGAAGAACT
4561	TOCACACCC	CTTGTGACCT	CCAAGATTTT	CCATGCATTC	GTCCATAATG	ATGGCAATGG
4621	GCCCACGGGC	GGCGGCCTGG	GCGAAGATAT	TTCTGGGATC	ACTAACGTCA	TAGTTGTGTT
4601	CCACCATGAG	ATCCTCATAG	GCCATTTTTA	CAAAGCGCGG	GCGGAGGGTG	CCAGACTGCG
4741	CTATAATGGT	TCCATCCGGC	CCAGGGGGGT	AGTTACCCTC	ACAGATTTGC	ATTTCCCACG
4801	CTTTGAGTTC	AGATGGGGGG	ATCATGTCTA	CCTGCGGGGC	GATGAAGAAA	ACGGTTTCCG
4961	CCCTACCCCA	GATCAGCTGG	GAAGAAAGCA	GGTTCCTGAG	CAGCTGCGAC	TTACCGCAGC
4921	CCCTCCCCCC	GTAAATCACA	CCTATTACCG	GGTGCAACTG	GTAGTTAAGA	GAGCTGCAGC
4981	ጥር ርር ርጥር ልጥር	CCTGAGCAGG	GGGGCCACTT	CGTTAAGCAT	GTCCCTGACT	CGCATGTTTT .
5041	CCCTGACCAA	ATCCGCCAGA	AGGCGCTCGC	CGCCCAGCGA	TAGCAGTTCT	TGCAAGGAAG
5101	CAAACTTTTTT	CAACGGTTTG	AGACCGTCCG	CCGTAGGCAT	GCTTTTGAGC	GTTTGACCAA
5161	CCACTTCCAG	GCGGTCCCAC	AGCTCGGTCA	CCTGCTCTAC	GGCATCTCGA	TCCAGCATAT ·
5221	CTCCTCCTTT	CGCGGGTTGG	GGCGGCTTTC	GCTGTACGGC	AGTAGTCGGT	GCTCGTCCAG
5281	ACCCCCCACC	GTCATGTCTT	TCCACGGGCG	CAGGGTCCTC	GTCAGCGTAG	TCTGGGTCAC
5341	CCTGAAGGGG	TGCGCTCCGG	GCTGCGCGCT	GGCCAGGGTG	CGCTTGAGGC	TGGTCCTGCT
5401	CCTCCTGAAG	CGCTGCCGGT	CTTCGCCCTG	CGCGTCGGCC	AGGTAGCATT	TGACCATGGT
5461	CTCATACTC	AGCCCCTCCG	CGGCGTGGCC	CTTGGCGCGC	AGCTTGCCCT	TGGAGGAGGC
5521	GCCGCACGAG	GGGCAGTGCA	GACTTTTGAG	GGCGTAGAGC	TTGGGCGCGA	GAAATACCGA
5581	TTCCGGGGAG	TAGGCATCCG	CGCCGCAGGC	CCCGCAGACG	GTCTCGCATT	CCACGAGCCA
5641	CCTCACCTCT	GCCCGTTCGG	GGTCAAAAAC	: CAGGTTTCCC	CCATGCTTTT	TGATGCGTTT
5701	CTTACCTCTC	GTTTCCATGA	GCCGGTGTCC	ACGCTCGGTG	ACGAAAAGGC	TGTCCGTGTC
5761	CCCGTATACA	GACTTGAGAG	GCCTGTCCTC	GAGCGGTGTT	CCGCGGTCCT	CCTCGTATAG
5921	AAACTCGGAC	CACTCTGAGA	CAAAGGCTCG	CGTCCAGGCC	AGCACGAAGG	AGGCTAAGTG
5881	CCACCCCTAC	CGGTCGTTGT	CCACTAGGGG	GTCCACTCGC	TCCAGGGTGT	GAAGACACAT
50/1	CTCCCCCTCT	TYCGGCATCAR	GGAAGGTGAT	TGGTTTGTAG	GTGTAGGCCA	CGTGACCGGG
6001	TOTAL TOTAL	CCCCCCCTAT	' AAAAGGGGGT	GGGGGCGCGT	TCGTCCTCAC	TCTCTTCCGC
6061	NTCCCTCTCTCT	r GCGAGGGCCA	GCTGTTGGGG	TGAGTACTCC	CTCTGAAAAG	CGGGCATGAC
6121	ምምርጥር ርርርጥ	AGATTGTCAG	TTTCCAAAAA	A CGAGGAGGAT	TTGATATTCA	CCTGGCCCGC
6181	CCTCATCCCT	r TTGAGGGTGC	CCGCATCCAT	r ctggtcagaa	AAGACAATCT	TTTTGTTGTC
624	AAGCTTGGT(GCAAACGACC	: CGTAGAGGG	C GTTGGACAGC	: AACTTGGCGA	TGGAGCGCAG
630	CCTTTCCTT	r TTGTCGCGAT	CGGCGCGCTC	CTTGGCCGCG	; ATGTTTAGCT	CCACGTATTC
636	1 GCGCGCAAC	G CACCGCCATT	CGGGAAAGA	CGTGGTGCGC	: TCGTCGGGC#	CCAGGTGCAC
642	1 CCCCCAACC	CCCTTCTCC	A GGGTGACAA	G GTCAACGCTC	GTGGCTACCT	CTCCGCGTAG
619	1 CCCCTCCTT	G GTCCAGCAG	A GGCGGCCGC	CTTGCGCGAG	CAGAATGGC	GTAGGGGGTC
040.	1 WYGGWGGGW	C 4000000000000000000000000000000000000	GGTCTGCGTY	CACGGTAAAC	ACCCCGGGC	A GCAGGCGCGC
004	T INGCIRCAL					

6601	GTCGAAGTAG	TCTATCTTGC	ATCCTTGCAA	GTCTAGCGCC	TGCTGCCATG	CCCCCCCCC.
6661	AAGCGCGCGC	TCGTATGGGT	TGAGTGGGGG	ACCCCATGGC	ATGGGGTGGG	TGAGCGCGGA :
6721	GGCGTACATG	CCGCAAATGT	CGTAAACGTA	GAGGGGCTCT	CTGAGTATTC	CAAGATATGT .
6781	AGGGTAGCAT	CTTCCACCGC	GGATGCTGGC	GCGCACGTAA	TCGTATAGTT	CGTGCGAGGG ·
6841	AGCGAGGAGG	TCGGGACCGA	GGTTGCTACG	GGCGGGCTGC	TCTGCTCGGA	AGACTATCTG
6901	CCTGAAGATG	GCATGTGAGT	TGGATGATAT	GGTTGGACGC	TGGAAGACGT	TGAAGCTGGC .
6961	GTCTGTGAGA	CCTACCGCGT	CACGCACGAA	GGAGGCGTAG	GAGTCGCGCA	GCTTGTTGAC
7021	CAGCTCGGCG	GTGACCTGCA	CGTCTAGGGC	GCAGTAGTCC	AGGGTTTCCT	TGATGATGTC
7081	ATACTTATCC	TGTCCCTTTT	TTTTCCACAG	CTCGCGGTTG	AGGACAAACT	CTTCGCGGTC :
7141	TTTCCAGTAC	TCTTGGATCG	GAAACCCGTC	GGCCTCCGAA	CGGTAAGAGC	CTAGCATGTA
7201	GAACTGGTTG	ACGGCCTGGT	AGGCGCAGCA	TCCCTTTTCT	ACGGGTAGCG	CGTATGCCTG
7261	CGCGGCCTTC	CGGAGCGAGG	TGTGGGTGAG	CGCAAAGGTG	TCCCTGACCA	TGACTTTGAG
7321	GTACTGGTAT	TTGAAGTCAG	TGTCGTCGCA	TCCGCCCTGC	TCCCAGAGCA	AAAAGTCCGT
7381	GCGCTTTTTG	GAACGCGGAT	TTGGCAGGGC	GAAGGTGACA	TCGTTGAAGA	GTATCTTTCC
7441	CGCGCGAGGC	ATAAAGTTGC	GTGTGATGCG	GAAGGGTCCC	GGCACCTCGG	AACGGTTGTT
7501	AATTACCTGG	GCGGCGAGCA	CGATCTCGTC	AAAGCCGTTG	ATGTTGTGGC	CCACAATGTA
7561	AAGTTCCAAG	AAGCGCGGGA	TGCCCTTGAT	GGAAGGCAAT	TTTTTAAGTT	CCTCGTAGGT
7621	GAGCTCTTCA	GGGGAGCTGA	GCCCGTGCTC	TGAAAGGGCC	CAGTCTGCAA	GATGAGGGTT
7681	GGAAGCGACG	AATGAGCTCC	ACAGGTCACG	GGCCATTAGC	ATTTGCAGGT	GGTCGCGAAA
7741	GGTCCTAAAC	TGGCGACCTA	TGGCCATTTT	TTCTGGGGTG	ATGCAGTAGA	AGGTAAGCGG
7801	GTCTTGTTCC	CAGCGGTCCC	ATCCAAGGTT	CGCGGCTAGG	TCTCGCGCGG	CAGTCACTAG
7861	AGGCTCATCT	CCGCCGAACT	TCATGACCAG	CATGAAGGGC	ACGAGCTGCT	TCCCAAAGGC
7921	CCCCATCCAA	GTATAGGTCT	CTACATCGTA	GGTGACAAAG	AGACGCTCGG	TGCGAGGATG
7981	CGAGCCGATC	GGGAAGAACT	GGATCTCCCG	CCACCAATTG	GAGGAGTGGC	TATTGATGTG .
8041	GTGAAAGTAG	AAGTCCCTGC	GACGGGCCGA	ACACTCGTGC	TGGCTTTTGT	AAAAACGTGC
8101	GCAGTACTGG	CAGCGGTGCA	CGGGCTGTAC	ATCCTGCACG	AGGTTGACCT	GACGACCGCG ··
8161	CACAAGGAAG	CAGAGTGGGA	ATTTGAGCCC	CTCGCCTGGC	GGGTTTGGCT	GGTGGTCTTC
8221	TACTTCGGCT	GCTTGTCCTT	GACCGTCTGG	CTGCTCGAGG	GGAGTTACGG	TGGATCGGAC
8281	CACCACGCCG	CGCGAGCCCA	AAGTCCAGAT	GTCCGCGCGC	GGCGGTCGGA	GCTTGATGAC
8341	AACATCGCGC	AGATGGGAGC	TGTCCATGGT	CTGGAGCTCC	CGCGGCGTCA	GGTCAGGCGG
8401	GAGCTCCTGC	AGGTTTACCT	CGCATAGACG	GGTCAGGGCG	CGGGCTAGAT	CCAGGIGATA
8461	CCTAATTTCC	AGGGGCTGGT	TGGTGGCGGC	GTCGATGGCT	TGCAAGAGGC	CGCATCCCCG
8521	CGGCGCGACT	ACGGTACCGC	GCGGCGGCG	GTGGGCCGCG	GGGGTGTCCT	TGGATGATGC .
8581	ATCTAAAAGC	GGTGACGCGG	GCGAGCCCCC	GGAGGTAGGG	GGGGCTCCGG	ACCCGCCGGG
8641	AGAGGGGGCA	GGGGCACGTC	GGCGCCGCGC	GCGGGCAGGA	GCTGGTGCTG	CGCGCGTAGG .
8701	TTGCTGGCGA	ACGCGACGAC	GCGGCGGTTG	ATCTCCTGAA	TCTGGCGCCT	CTGCGTGAAG
8761	ACGACGGCC	CGGTGAGCTT	GAGCCTGAAA	GAGAGTTCGA	CAGAATCAAT	TICGGIGICG
8821	TTGACGGCGG	CCTGGCGCAA	AATCTCCTGC	ACGTCTCCTG	AGTIGICTIG	ATAGGCGATC
8881	TCGGCCATGA	ACTGCTCGAT	CTCTTCCTCC	TGGAGATCTC	CGCGTCCGGC	TEGETECACG
8941	GTGGCGGCGA	GGTCGTTGGA	AATGCGGGCC	ATGAGCTGCG	AGAAGGCGTT	GAGGCCTCCC
9001	TCGTTCCAGA	CGCGGCTGTA	GACCACGCCC	CCTTCGGCAT	CGCGGGCGCG	CATGACCACC
9061	TGCGCGAGAT	TGAGCTCCAC	GTGCCGGGCG	AAGACGGCGT	AGTTTCGCAG	GCGCTGAAAG
					AGTACATAAC	
9181	AACGTGGATT	CGTTGATATC	CCCCAAGGCC	TCAAGGCGCT	CCATGGCCTC	GTAGAAGTCC
9241	ACGGCGAAGT	TGAAAAACTG	GGAGTTGCGC	GCCGACACGG	TTAACTCCTC	CTCCAGAAGA
9301	CGGATGAGCT	CGGCGACAGT	GTCGCGCACC	TCGCGCTCAA	AGGCTACAGG	GGCCTCTTCT
9361	TCTTCTTCAA	TCTCCTCTTC	CATAAGGGCC	TCCCCTTCTT	CTTCTTCTGG	CCCCCCTCC
					GGTCGACAAA	
					GGCCGTTCTC	
					GCGGGGGGCT	
						GCCGCCGAGG
					CGAGAAAGGC	
						GTCGGGGTTG:
						ACGGCGGATG
9841	GICGACAGAA	GCACCATGTC	CTTGGGTCCG	GCCTGCTGAA	TGCGCAGGCG	GICGGCCATG
•					-	

9901	CCCCAGGCTT	CGTTTTGACA	TCGGCGCAGG	TCTTTGTAGT	AGTCTTGCAT	GAGCCTTTCT
9961	ACCGGCACTT	CTTCTTCTCC	TTCCTCTTGT	CCTGCATCTC	TTGCATCTAT	CGCTGCGGCG
10021	GCGGCGGAGT	TTGGCCGTAG	GTGGCGCCCT	CTTCCTCCCA	TGCGTGTGAC	CCCGAAGCCC
10081	CTCATCGGCT	GAAGCAGGGC	TAGGTCGGCG	ACAACGCGCT	CGGCTAATAT	GGCCTGCTGC
	ACCTGCGTGA					
10201	TTGATGGTGT	AAGTGCAGTT	GGCCATAACG	GACCAGTTAA	CGGTCTGGTG	ACCCGGCTGC
	GAGAGCTCGG					
10321	GTCCGCACCA	GGTACTGGTA	TCCCACCAAA	AAGTGCGGCG	GCGGCTGGCG	GTAGAGGGGC
	CAGCGTAGGG					
10441	TAGATGTACC	TGGACATCCA	GGTGATGCCG	GCGGCGGTGG	TGGAGGCGCG	CGGAAAGTCG
10501	CGGACGCGGT	TCCAGATGTT	GCGCAGCGGC	AAAAAGTGCT	CCATGGTCGG	GACGCTCTGG
	CCGGTCAGGC					
10621	GGCACTCTTC	CGTGGTCTGG	TGGATAAATT	CGCAAGGGTA	TCATGGCGGA	CGACCGGGGT
10681	TCGAGCCCCG	TATCCGGCCG	TCCGCCGTGA	TCCATGCGGT	TACCGCCCGC	GTGTCGAACC
	CAGGTGTGCG					
10801	GCTGCTGCGC	TAGCTTTTTT	GGCCACTGGC	CGCGCGCAGC	GTAAGCGGTT	AGGCTGGAAA
	GCGAAAGCAT					
10921	GCGGGACCCC	CGGTTCGAGT	CTCGGACCGG	CCGGACTGCG	GCGAACGGGG	GTTTGCCTCC
	CCGTCATGCA					
11041	TTTTCCCAGA	TGCATCCGGT	GCTGCGGCAG	ATGCGCCCCC	CTCCTCAGCA	GCGGCAAGAG
11101	CAAGAGCAGC	GGCAGACATG	CAGGGCACCC	TCCCCTCCTC	CTACCGCGTC	AGGAGGGGGG
11161	ACATCCGCGG	TTGACGCGGC	AGCAGATGGT	GATTACGAAC	CCCCGCGGCG	CCGGGCCCGG
11221	CACTACCTGG	ACTTGGAGGA	GGGCGAGGGC	CTGGCGCGGC	TAGGAGCGCC	CTCTCCTGAG.
11281	CGGTACCCAA	GGGTGCAGCT	GAAGCGTGAT	ACGCGTGAGG	CGTACGTGCC	GCGGCAGAAC
11341	CTGTTTCGCG	ACCGCGAGGG	AGAGGAGCCC	GAGGAGATGC	GGGATCGAAA	GTTCCACGCA
11401	GGGCGCGAGC	TGCGGCATGG	CCTGAATCGC	GAGCGGTTGC	TGCGCGAGGA	GGACTTTGAG
	CCCGACGCGC					
11521	ACCGCATACG	AGCAGACGGT	GAACCAGGAG	ATTAACTTTC	AAAAAAGCTT	TAACAACCAC
	GTGCGTACGC					
11641	GTAAGCGCGC	TGGAGCAAAA	CCCAAATAGC	AAGCCGCTCA	TGGCGCAGCT	GTTCCTTATA
11701	GTGCAGCACA	GCAGGGACAA	CGAGGCATTC	AGGGATGCGC	TGCTAAACAT	AGTAGAGCCC
11761	GAGGGCCGCT	GGCTGCTCGA	TTTGATAAAC	ATCCTGCAGA	GCATAGTGGT	GCAGGAGCGC
11821	AGCTTGAGCC	TGGCTGACAA	GGTGGCCGCC	ATCAACTATT	CCATGCTTAG	CCTGGGCAAG
11881	TTTTACGCCC	GCAAGATATA	CCATACCCCT	TACGTTCCCA	TAGACAAGGA	GGTAAAGATC
11941	GAGGGGTTCT	ACATGCGCAT	GGCGCTGAAG	GTGCTTACCT	TGAGCGACGA	CCTGGGCGTT
12001	TATCGCAACG	AGCGCATCCA	CAAGGCCGTG	AGCGTGAGCC	GGCGCGCGA	GCTCAGCGAC
12061	CGCGAGCTGA	TGCACAGCCT	GCAAAGGGCC	CTGGCTGGCA	CGGGCAGCGG	CGATAGAGAG
12121	GCCGAGTCCT	ACTTTGACGC	GGGCGCTGAC	CTGCGCTGGG	CCCCAAGCCG	ACGCGCCCTG
12181	GAGGCAGCTG	GGGCCGGACC	TGGGCTGGCG	GTGGCACCCG	CCCCCCCCCCC	CAACGTCGGC
12241	GGCGTGGAGG	AATATGACGA	GGACGATGAG	TACGAGCCAG	AGGACGGCGA	GTACTAAGCG
12301	GTGATGTTTC	TGATCAGATG	ATGCAAGACG	CAACGGACCC	GGCGGTGCGG	GCGCCCCTCC
	AGAGCCAGCC					
12421	TGTCGCTGAC	TGCGCGCAAT	CCTGACGCGT	TCCGGCAGCA	CCCCCACCC	AACCGCATCA
12481	CCGCAATTCT	GGAAGCGGTG	GTCCCGCCCC	CCCCAAACCC	CACGCACGAG	AACCUSCICI
12541	CGATCGTAAA	CGCGCTGGCC	CAAAACAGGG	CCATCCGGCC	CCACCACCAC	CCCCTCCTCT
12601	ACGACGCGCT	GCTTCAGCGC	GTGGCTCGTT	ACAACAGCGG	CAACCTCCAC	ACCAACCTCC
12661	ACCGGCTGGT	GGGGGATGTG	CCCCACCCC	TGGCGCAGCG	TCACCCCCCC	CACCACCACC
12721	GCAACCTGGG	CTCCATGGTT	GCACTAAACG	CCTTCCTCAC	TACACACCCC	CCC D DCCTCC
12781	CGCGGGGACA	GGAGGACTAC	ACCAACTOTO	TCTTCTGWG	THCHCHOCCC	GTGACTGAGA .
12841	CACCGCAAAG	TGAGGTGTAC	CACTCTCCCC	CACACOCACT	TOTOCIANIO	ACCONCIONON.
12901	GCCTGCAGAC	CCTDDDCCTC	PCCCFCCCCC	TO A A A A COM	CCACCCCCC	MCCCCCCCCCCC
12961	GGGCTCCCAC	PCCCCACCCC	CCCACCCTCM	CTACCOMOCO	CACCCCCAAAC	1000000000
13021	TGCTGCTGCT	AATACCCCCC	TACACCOIGI	CINCCITCCT	COCCCCCCC	TCGCGCCTGT
13021	GTCACTTGCT	CACACMCMAC	CCCCACCCCA	TACCECAGCGT	COMMOMORES	ACATACCTAG
13141	TCCAGGAGAT	TACACIGIAC	ACCCCCCCC	TUGGICAGGC	CCATGTGGAC	AGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	noononi	**************************************	AGCCGCGCGC	AUUAUUUUA	GGACACGGC	AGCCTGGAGG

						. 2 5
13201	CAACCCTAAA	CTACCTGCTG	ACCAACCGGC	GGCAGAAGAT	CCCCTCGTTG	CACAGTTTAA
13261	ACAGCGAGGA	GGAGCGCATT	TTGCGCTACG	TGCAGCAGAG	CGTGAGCCTT	AACCTGATGC
13321	GCGACGGGGT	AACGCCCAGC	GTGGCGCTGG	ACATGACCGC	GCGCAACATG	GAACCGGGCA
13381	TGTATGCCTC	AAACCGGCCG	TTTATCAACC	GCCTAATGGA	CTACTTGCAT	CGCGCGGCCG -
13441	CCGTGAACCC	CGAGTATTTC	ACCAATGCCA	TCTTGAACCC	GCACTGGCTA	CCGCCCCTG
13501	GTTTCTACAC	CGGGGGATTC	GAGGTGCCCG	AGGGTAACGA	TGGATTCCTC	TGGGACGACA
13561	TAGACGACAG	CGTGTTTTCC	CCGCAACCGC	AGACCCTGCT	AGAGTTGCAA	CAGCGCGAGC '
13621	AGGCAGAGGC	GGCGCTGCGA	AAGGAAAGCT	TCCGCAGGCC	AAGCAGCTTG	TCCGATCTAG ;
13681	GCGCTGCGGC	CCCGCGGTCA	GATGCTAGTA	GCCCATTTCC	AAGCTTGATA	GGGTCTCTTA:
13741	CCAGCACTCG	CACCACCCGC	CCGCGCCTGC	TGGGCGAGGA	GGAGTACCTA	AACAACTCGC"
13801	TGCTGCAGCC	GCAGCGCGAA	AAAAACCTGC	CTCCGGCATT	TCCCAACAAC	GGGATAGAGA
13861	GCCTAGTGGA	CAAGATGAGT	AGATGGAAGA	CGTACGCGCA	GGAGCACAGG	GACGTGCCAG
13921	GCCCGCGCCC	GCCCACCCGT	CGTCAAAGGC	ACGACCGTCA	GCGGGGTCTG	GTGTGGGAGG:
13981	ACGATGACTC	GGCAGACGAC	AGCAGCGTCC	TGGATTTGGG	AGGGAGTGGC	AACCCGTTTG
14041	CGCACCTTCG	CCCCAGGCTG	GGGAGAATGT	TTTAAAAAAAA	AAAAAGCATG	ATGCAAAATA
14101	AAAAACTCAC	CAAGGCCATG	GCACCGAGCG	TTGGTTTTCT	TGTATTCCCC	TTAGTATGCG
14161	GCGCGCGGCG	ATGTATGAGG	AAGGTCCTCC	TCCCTCCTAC	GAGAGTGTGG	TGAGCGCGGC
						CGTTTGTGCC:
14281	TCCGCGGTAC	CTGCGGCCTA	CCGGGGGGAG	AAACAGCATC	CGTTACTCTG	AGTTGGCACC :
14341	CCTATTCGAC	ACCACCCGTG	TGTACCTGGT	GGACAACAAG	TCAACGGATG	TGGCATCCCT:
14401	GAACTACCAG	AACGACCACA	GCAACTTTCT	GACCACGGTC	ATTCAAAACA	ATGACTACAG
14461	CCCGGGGGAG	GCAAGCACAC	AGACCATCAA	TCTTGACGAC	CGGTCGCACT	GGGGCGCGA
					GAGTTCATGT	
						TGGAGCTGAA
						TGACCATAGA
						ACGGGGTTCT
						TTGACCCCGT
					TTCCATCCAG	
14881	GCTGCCAGGA	TGCGGGGTGG	ACTTCACCCA	CAGCCGCCTG	AGCAACTTGT	TGGGCATCCG
						AGGGTGGTAA
						ACACCGAACA
						AGAACTCCAA
						TTCGCGGCGA
					GAAGCAGCGG	
					AAACCĞGTGA	
					AATGACAGCA	
			-		CAGACCGGAA	
					CAGGTCTACT	
					CAGATCAGCA	
					TACAACGACC	
					TTCAATCGCT	
					GTCAGTGAAA	
					GGAGGAGTCC	· .
					AAGGCCCTGG	
					TCCATCCTTA	
					TTTGGCGGGG	
						GCGCGCACAA
					GACGCGGTGG	
						TTCAGACCGT
						TAGCACGTCG
					GCGGCCCTGC	
					AGGCTGGCCG	
					GCAGCCGCGG	
						GCGGCCTGCG
10441	CGTGCCCGTG	CGCACCCGCC	CCCCGCGCAA	CTAGATTGCA	AGAAAAAACT	ACTTAGACTC

16501	GTACTGTTGT	ATGTATCCAG	CGGCGGCGGC	GCGCAACGAA	GCTATGTCCA	AGCGCAAAAT
16561	CAAAGAAGAG	ATGCTCCAGG	TCATCGCGCC	GGAGATCTAT	GGCCCCCGA	AGAAGGAAGA
		AAGCCCCGAA				
16681	TGAACTTGAC	GACGAGGTGG	AACTGCTGCA	CGCTACCGCG	CCCAGGCGAC	GGGTACAGTG
16741	GAAAGGTCGA	CGCGTAAAAC	GTGTTTTGCG	ACCCGGCACC	ACCGTAGTCT	TTACGCCCGG
16801	TGAGCGCTCC	ACCCGCACCT	ACAAGCGCGT	GTATGATGAG	GTGTACGGCG	ACGAGGACCT
16861	GCTTGAGCAG	GCCAACGAGC	GCCTCGGGGA	GTTTGCCTAC	GGAAAGCGGC	ATAAGGACAT
16921	GCTGGCGTTG	CCGCTGGACG	AGGGCAACCC	AACACCTAGC	CTAAAGCCCG	TAACACTGCA
		CCCGCGCTTG				
		CCCACCGTGC				
17101	GGAAAAAATG	ACCGTGGAAC	CTGGGCTGGA	GCCCGAGGTC	CGCGTGCGGC	CAATCAAGCA
17161	GGTGGCGCCG	GGACTGGGCG	TGCAGACCGT	GGACGTTCAG	ATACCCACTA	CCAGTAGCAC
17221	CAGTATTGCC	ACCGCCACAG	AGGGCATGGA	GACACAAACG	TCCCCGGTTG	CCTCAGCGGT
17281	GGCGGATGCC	GCGGTGCAGG	CGGTCGCTGC	GGCCGCGTCC	AAGACCTCTA	CGGAGGTGCA
17341	AACGGACCCG	TGGATGTTTC	GCGTTTCAGC	CCCCCGGCGC	CCGCGCGGTT	CGAGGAAGTA
		AGCGCGCTAC				
17461	CGGCTATCGT	GGCTACACCT	ACCGCCCCAG	AAGACGAGCA	ACTACCCGAC	GCCGAACCAC
17521	CACTGGAACC	CGCCGCCGCC	GTCGCCGTCG	CCAGCCCGTG	CTGGCCCCGA	TTTCCGTGCG
17581	CAGGGTGGCT	CGCGAAGGAG	GCAGGACCCT	GGTGCTGCCA	ACAGCGCGCT	ACCACCCCAG
17641	CATCGTTTAA	AAGCCGGTCT	TTGTGGTTCT	TGCAGATATG	GCCCTCACCT	GCCGCCTCCG
17701	TTTCCCGGTG	CCGGGATTCC	GAGGAAGAAT	GCACCGTAGG	AGGGGCATGG	CCGGCCACGG
17761	CCTGACGGGC	GGCATGCGTC	GTGCGCACCA	CCGGCGGCGG	CGCGCGTCGC	ACCGTCGCAT
		ATCCTGCCCC				
		TCCGTGGCCT				
		AATAAAAAGT				
		CATCAACTTT				
18061	GAAACTGGCA	AGATATCGGC	ACCAGCAATA	TGAGCGGTGG	CGCCTTCAGC	TGGGGCTCGC
18121	TGTGGAGCGG	CATTAAAAAT	TTCGGTTCCA	CCGTTAAGAA	CTATGGCAGC	AAGGCCTGGA
		AGGCCAGATG				
		CCTGGCCTCT				
		TAACAGTAAG				
		GTCTCCAGAG				
		GCAAATAGAC				
		TCCCATCGCG				
		GCCTCCCCC				
		AACCCGTCCT				
		CGTAGCCAGT				
		CCTGAAGCGC				
		CCATGTCGCC				
		CCTTCGATGA				
		CTGAGCCCCG				
18961	CCTGAATAAC	AAGTTTAGAA	ACCCCACGGT	GGCGCCTACG	CACGACGTGA	CCACAGACCG
		TTGACGCTGC				
		TTCACCCTAG				
19141	CTTTGACATC	CGCGGCGTGC	TGGACAGGGG	CCCTACTTTT	AAGCCCCTACT	CTGGCACTGC
19201	CTACAACGCC	CTGGCTCCCA	AGGGTGCCCC	ልልልጥርርጥጥርር	CAATCCCATC	AACCTCCTAC
		ATAAACCTAG				
19321	AGCTGAGCAG	CAAAAAACTC	ACGTATTTCC	GCAGGCGCCCT	TATTCTCCTA	TATE AT A A A T
19381	AAAGGAGGGT	ATTCAAATAG	GTGTCGAAGG	TODOCOCCI	AAATATCTGGTA	TUUUTUTTING
19441	TCAACCTGAA	CCTCAAATAG	CACAATOTO	CTCCTACCAA	PCACT P PACE	VILLUNDACUTA.
19501	TGGGAGAGTC	CTTAAAAAGA	CAPCCCOPY	CIGGIACGAA	UPCCCUAACYW VCTGUWWTTW	PACCUS A VCC
19561	CACAAATGAA	AATGGAGGGC	ANGCCAMI	TCTABACCAS	CANANTCCAN	A C C TRACA A A C
19621	TCAAGTGGAA	ATGCAATTTT	TOUCHILLI	TGIAMAGCAA	CUMMATORM	VOC THOWARD
19681	GACTCCTAAA	GTGGTATTGT	ACACTCA ACA	TCTACAMANA	CANACCCCAC	GIGUIAMCIT
197/1	TACTOCIAN	CCCACTATTA	ACCA ACCAS S	CTCACCACA	CONTRACCOCCA	ACACTCATAT
13/47	TICTIMENTO	CCCACIAITA	HAT DOWN DOWN	CICACGAGAA	CIMMIGGGCC	MACAATCTAT

19801	GCCCAACAGG	CCTAATTACA	TTGCTTTTAG	GGACAATTTT	ATTGGTCTAA	TGTATTACAA
19861	CAGCACGGGT	AATATGGGTG	TTCTGGCGGG	CCAAGCATCG	CAGTTGAATG	CTGTTGTAGA:
				CCAGCTTTTG		
						ATGTTAGAAT
20041	TATTGAAAAT	CATGGAACTG	AAGATGAACT	TCCAAATTAC	TGCTTTCCAC	TGGGAGGTGT
				ACCTAAAACA		
				TGAAATAAGA		
				AAATTTCCTG		
						ACCCAAACAC
				TCCCGGGTTA		
20401	TGGAGCACGC	TGGTCCCTTG	ACTATATGGA	CAACGTCAAC	CCATTTAACC	ACCACCGCAA:
						CCTTCCACAT
20521	CCAGGTGCCT	CAGAAGTTCT	TTGCCATTAA	AAACCTCCTT	CTCCTGCCGG	GCTCATACAC
				CATGGTTCTG		
				TGATAGCATT		
						ACACCAACGA
20761	CCAGTCCTTT	AACGACTATC	TCTCCGCCGC	CAACATGCTC	TACCCTATAC	CCGCCAACGC
20821	TACCAACGTG	CCCATATCCA	TCCCCTCCCG	CAACTGGGCG	GCTTTCCGCG	GCTGGGCCTT
20881	CACGCGCCTT	AAGACTAAGG	AAACCCCATC	ACTGGGCTCG	GGCTACGACC	CTTATTACAC
				AACCTTTTAC		
21001	GGTGGCCATT	ACCTTTGACT	CTTCTGTCAG	CTGGCCTGGC	AATGACCGCC	TGCTTACCCC
						CCCAGTGTAA
21121	CATGACCAAA	GACTGGTTCC	TGGTACAAAT	GCTAGCTAAC	TACAACATTG	GCTACCAGGG
				CATGTACTCC		
				ATACAAGGAC	·	
21301	ACACCAACAC	AACAACTCTG	GATTTGTTGG	CTACCTTGCC	CCCACCATGC	GCGAAGGACA
21361	GGCCTACCCT	GCTAACTTCC	CCTATCCGCT	TATAGGCAAG	ACCGCAGTTG	ACAGCATTAC
21421	CCAGAAAAAG	TTTCTTTGCG	ATCGCACCCT	TTGGCGCATC	CCATTCTCCA	GTAACTTTAT
21481	GTCCATGGGC	GCACTCACAG	ACCTGGGCCA	AAACCTTCTC	TACGCCAACT	CCGCCCACGC
				GGACGAGCCC		
21601	TGAAGTCTTT	GACGTGGTCC	GTGTGCACCG	GCCGCACCGC	GGCGTCATCG	AAACCGTGTA
21661	CCTGCGCACG	CCCTTCTCGG	CCGGCAACGC	CACAACATAA	AGAAGCAAGC	AACATCAACA
21721	ACAGCTGCCG	CCATGGGCTC	CAGTGAGCAG	GAACTGAAAG	CCATTGTCAA	AGATCTTGGT
21781	TGTGGGCCAT	ATTTTTTGGG	CACCTATGAC	AAGCGCTTTC	CAGGCTTTGT	TTCTCCACAC
21841	AAGCTCGCCT	GCGCCATAGT	CAATACGGCC	GGTCGCGAGA	CTGGGGGCGT	ACACTGGATG
21901	GCCTTTGCCT	GGAACCCGCA	CTCAAAAACA	TGCTACCTCT	TTGAGCCCTT	TGGCTTTTCT
21961	GACCAGCGAC	TCAAGCAGGT	TTACCAGTTT	GAGTACGAGT	CACTCCTGCG	CCGTAGCGCC
22021	ATTGCTTCTT	CCCCGACCG	CTGTATAACG	CTGGAAAAGT	CCACCCAAAG	CGTACAGGGG
22081	CCCAACTCGG	CCGCCTGTGG	ACTATTCTGC	TGCATGTTTC	TCCACGCCTT	TGCCAACTGG
22141	CCCCAAACTC	CCATGGATCA	CAACCCCACC	ATGAACCTTA	TTACCGGGGT	ACCCAACTCC
22201	ATGCTCAACA	GTCCCCAGGT	ACAGCCCACC	CTGCGTCGCA	ACCAGGAACA	GCTCTACAGC
22261	TTCCTGGAGC	GCCACTCGCC	CTACTTCCGC	AGCCACAGTG	CGCAGATTAG	GAGCGCCACT
22321	TCTTTTTGTC	ACTTGAAAAA	CATGTAAAAA	TAATGTACTA	GAGACACTTT	CAATAAAGGC
22381	AAATGCTTTT	ATTTGTACAC	TCTCGGGTGA	TTATTTACCC	CCACCCTTGC	CGTCTGCGCC
22441	GTTTAAAAAT	CAAAGGGGTT	CTGCCGCGCA	TCGCTATGCG	CCACTGGCAG	GGACACGTTG
22501	CGATACTGGT	GTTTAGTGCT	CCACTTAAAC	TCAGGCACAA	CCATCCGCGG	CAGCTCGGTG
22561	AAGTTTTCAC	TCCACAGGCT	GCGCACCATC	ACCAACGCGT	TTAGCAGGTC	GGGCGCCGAT
						CACAGGGTTG
						CTTGTCGGAG
						CTTTGGTAGC
						TAGTGGCATC
						AGCCTTGATC
						AGACTTGCCG
						GGTGTTGGAG
						AGACTGCTCC .

22101	TTCAGCGCGC	מכיוימר הרפייים	ጥጥርርርጥርርጥር	ACATCCATTT	CAATCACGTG	CTCCTTATTT
5310T	ATCATAATGC	QC1GCCCG11	ACACTOR ACC	ጥርርርርጥጥርGA	TCTCAGCGCA	GCGGTGCAGC
73101	CACAACGCGC	ACCCCCCCCCC	CACT TARGE	TTCTACCTCA	CCTCTGCAAA	CGACTGCAGG
23221	TACGCCTGCA	AGCCCG1GGG	CICGIGAIGC	ACA A ACCOCT	ጥርጥጥርርጥርርጥ	GAAGGTCAGC
23281	TGCAACCCGC	GGAATCGCCC	CATCATCGIC	CUCUUCCU TO I	CCCCCCCAG	ACCUTCCACT
23341	TGCAACCCGC	GGTGCTCCTC	GTTCAGCCAG	GICTIGCMIM	CCACCTCCTA	COTCOTCO
23401	TGGTCAGGCA	GTAGTTTGAA	GTTCGCCTTT	AGATCGTTAL	CCACGIGGIA	ACTICACCACC
23461	AGCGCGCGCG	CAGCCTCCAT	GCCCTTCTCC	CACGCAGACA	CGAICGGCAC	MUCCCUCCCC
23521	TTCATCACCG	TAATTTCACT	TTCCGCTTCG	CIGGGCTCTT	CCTCTTCCTC	TIGCGICCGC
23581	ATACCACGCG	CCACTGGGTC	GTCTTCATTC	AGCCGCCGCA	CTGTGCGCTT	ACCICCITIG
23641	CCATGCTTGA	TTAGCACCGG	TGGGTTGCTG	AAACCCACCA	TTTGTAGCGC	CACATCTTCT
23701	CTTTCTTCCT	CGCTGTCCAC	GATTACCTCT	GGTGATGGCG	GGCGCTCGGG	CTTGGGAGAA
23761	GGGCGCTTCT	TTTTCTTCTT	GGGCGCAATG	GCCAAATCCG	CCGCCGAGGT	CGATGGCCGC
23821	GGGCTGGGTG	TGCGCGGCAC	CAGCGCGTCT	TGTGATGAGT	CTTCCTCGTC	CTCGGACTCG
23881	ATACGCCGCC	TCATCCGCTT	TTTTGGGGGC	GCCCGGGGAG	GCGGCGGCGA	CGGGGACGGG
23941	GACGACACGT	CCTCCATGGT	TGGGGGACGT	CGCGCCGCAC	CGCGTCCGCG	CTCGGGGGTG
24001	GTTTCGCGCT	GCTCCTCTTC	CCGACTGGCC	ATTTCCTTCT	CCTATAGGCA	GAAAAAGATC
24061	ATGGAGTCAG	TCGAGAAGAA	GGACAGCCTA	ACCGCCCCCT	CTGAGTTCGC	CACCACCGCC
24121	TCCACCGATG	CCGCCAACGC	GCCTACCACC	TTCCCCGTCG	AGGCACCCCC	GCTTGAGGAG
24181	GAGGAAGTGA	TTATCGAGCA	GGACCCAGGT	TTTGTAAGCG	AAGACGACGA	GGACCGCTCA
24241	GTACCAACAG	AGGATAAAAA	GCAAGACCAG	GACAACGCAG	AGGCAAACGA	GGAACAAGTC
24301	GGGCGGGGG	ACGAAAGGCA	TGGCGACTAC	CTAGATGTGG	GAGACGACGT	GCTGTTGAAG
24361	CATCTGCAGC	GCCAGTGCGC	CATTATCTGC	GACGCGTTGC	AAGAGCGCAG	CGATGTGCCC
24421	CTCGCCATAG	CGGATGTCAG	CCTTGCCTAC	GAACGCCACC	TATTCTCACC	GCGCGTACCC
24481	CCCAAACGCC	AAGAAAACGG	CACATGCGAG	CCCAACCCGC	GCCTCAACTT	CTACCCCGTA
24541	TTTGCCGTGC	CAGAGGTGCT	TGCCACCTAT	CACATCTTTT	TCCAAAACTG	CAAGATACCC
24601	CTATCCTGCC	GTGCCAACCG	CAGCCGAGCG	GACAAGCAGC	TGGCCTTGCG	GCAGGGCGCT
24661	GTCATACCTG	ATATCGCCTC	GCTCAACGAA	GTGCCAAAAA	TCTTTGAGGG	TCTTGGACGC
24721	GACGAGAAGC	GCGCGGCAAA	CGCTCTGCAA	CAGGAAAACA	GCGAAAATGA	AAGTCACTCT
24781	GGAGTGTTGG	TGGAACTCGA	GGGTGACAAC	GCGCGCCTAG	CCGTACTAAA	ACGCAGCATC '
24101	GAGGTCACCC	ACTITICCTA	CCCGGCACTT	AACCTACCCC	CCAAGGTCAT	GAGCACAGTC
24041	ATGAGTGAGC	тсатсстесс	CCGTGCGCAG	CCCCTGGAGA	GGGATGCAAA	TTTGCAAGAA
24961	CAAACAGAGG	AGGGCCTACC	CGCAGTTGGC	GACGAGCAGC	TAGCGCGCTG	GCTTCAAACG
25021	CGCGAGCCTG	CCCACTTGGA	GGAGCGACGC	AAACTAATGA	TGGCCGCAGT	GCTCGTTACC
25021	GTGGAGCTTG	ACTCCATCCA	CCCCTTCTTT	GCTGACCCGG	AGATGCAGCG	CAAGCTAGAG
25001	GAAACATTGC	DCTDCMTCTT	TCGACAGGGC	TACGTACGCC	AGGCCTGCAA	GATCTCCAAC
25201	GTGGAGCTCT	CCAACCTCCT	CTCCTACCTT	GGAATTTTGC	ACGAAAACCG	CCTTGGGCAA
25261	AACGTGCTTC	ATTCCACCCT	CAAGGGCGAG	GCGCGCCGCG	ACTACGTCCG	CGACTGCGTT
22201	TACTTATTTC	TATICCACGCI	CTGGCAGACG	CCCATGGGCG	TTTGGCAGCA	GTGCTTGGAG
22321	GAGTGCAACC	TAIGCIACAC	COCACAAACTC	CTAAACCAAA	ACTTGAAGGA	CCTATGGACG
22361	GCCTTCAACG	ACCCCTCCCT	CCCCCCCCAC	CTCCCCGACA	ጥሮልጥጥጥሮርሮ	CGAACGCCTG
25441	GCCTTCAACG	MCCAACCC	TOTOCOGGO	ሚተር ልር ር ልር ጥር	AAAGCATGTT	GCAGAACTTT .
22201	. AGGAACTTTA	DCCMACAGGG	CTCACCAAGAC	TTCCCCCCCC	CCTCCTCTCC	ACTTCCTAGC
22201	. GACTTTGTGC	COMMANGE	CCCCCAATCC	CCTCCCCCC	**************************************	CTGCTACCTT
25621	CTGCAGCTAG	CCATTAAGTA	CCGCGAAIGC	CCICCGCCGC	TOTAL ACACCO	CACCCCTGAC
25681	GGTCTACTGG	CCAACTACCT	TGCCTACCAC	CUMUCCACCC	CCCACCCCCC	CCTCCTTTCC
	GGTCTACTGG	AGIGICACIG	1CGCTGCAAC	DOCCOUNT CO	TOCACCOCIC	CCCTCCCTCC
25801	AATTCGCAGC	TGCTTAACGA	AAGTUAAATT	ATCGGTACCT	TIGNOCIGUM	CACCACCACA
25861	CCTGACGAAA	AGTCCGCGGC	TCCGGGGTTG	AAACTCACTC	CGGGGCTGTG	GACGICGGCI
25921	TACCTTCGCA	AATTTGTACC	TGAGGACTAC	CACGCCCACG	MONOCONCO	CINCANAGAC
25981	L CAATCCCGCC	CGCCAAATGC	GGAGCTTACC	GCCTGCGTCA	TTACCCAGGG	CCACATTCTT
26041	L GGCCAATTGC	AAGCCATCAA	CAAAGCCCGC	CAAGAGTITC	TGCTACGAAA	GGGACGGGG
2610	L GTTTACTTG	ACCCCCAGTC	CGGCGAGGAG	CTCAACCCAA	TUCUCCUGCO	GCCGCAGCCC
2616	L TATCAGCAG(AGCCGCGGGC	CCTTGCTTCC	CAGGATGGCA	CCCAAAAAGA	AGCTGCAGCT
2622	I GCCGCCGCC1	A CCCACGGACG	AGGAGGAATA	CTGGGACAGT	CAGGCAGAGG	AGGTTTTGGA
2628	L CGAGGAGGA	G GAGGACATGA	TGGAAGACTG	GGAGAGCCTA	GACGAGGAAG	CTTCCGAGGT
2634	l cgaagaggt(G TCAGACGAAA	CACCGTCACC	CTCGGTCGC#	A TTCCCCTCGC	CGGCGCCCCA

PCT/US02/32512

							_,
26401	GAAATCGGCA	ACCĠGTTCCA	GCATGGCTAC	AACCTCCGCT	CCTCAGGCGC	CGCCGGCACT	
26461	GCCCGTTCGC	CGACCCAACC	GTAGATGGGA	CACCACTGGA	ACCAGGGCCG	GTAAGTCCAA	
26521	GCAGCCGCCG	CCGTTAGCCC	AAGAGCAACA	ACAGCGCCAA	GGCTACCGCT	CATGGCGCGG	
26581	GCACAAGAAC	GCCATAGTTG	CTTGCTTGCA	AGACTGTGGG	GGCAACATCT	CCTTCGCCCG	٠.
26641	CCGCTTTCTT	CTCTACCATC	ACGGCGTGGC	CTTCCCCCGT	AACATCCTGC	ATTACTACCG	,
26701	TCATCTCTAC	AGCCCATACT	GCACCGGCGG	CAGCGGCAGC	GGCAGCAACA	GCAGCGGCCA	
26761	CACAGAAGCA	AAGGCGACCG	GATAGCAAGA	CTCTGACAAA	GCCCAAGAAA	TCCACAGCGG	٠
26821	CGGCAGCAGC	AGGAGGAGGA	GCGCTGCGTC	TGGCGCCCAA	CGAACCCGTA	TCGACCCGCG	
26881	AGCTTAGAAA	CAGGATTTTT	CCCACTCTGT	ATGCTATATT	TCAACAGAGC	AGGGGCCAAG	
26941	AACAAGAGCT	GAAAATAAAA	AACAGGTCTC	TGCGATCCCT	CACCCGCAGC	TGCCTGTATC	. :
27001	ACAAAAGCGA	AGATCAGCTT	CGGCGCACGC	TGGAAGACGC	GGAGGCTCTC	TTCAGTAAAT	
27061	ACTGCGCGCT	GACTCTTAAG	GACTAGTTTC	GCGCCCTTTC	TCAAATTTAA	GCGCGAAAAC	•
27121	TACGTCATCT	CCAGCGGCCA	CACCCGGCGC	CAGCACCTGT	CGTCAGCGCC	ATTATGAGCA	
27181	AGGAAATTCC	CACGCCCTAC	ATGTGGAGTT	ACCAGCCACA	AATGGGACTT	GCGGCTGGAG	
27241	CTGCCCAAGA	CTACTCAACC	CGAATAAACT	ACATGAGCGC	GGGACCCCAC	ATGATATCCC	
27301	GGGTCAACGG	AATCCGCGCC	CACCGAAACC	GAATTCTCTT	GGAACAGGCG	GCTATTACCA	
27361	CCACACCTCG	TAATAACCTT	AATCCCCGTA	GTTGGCCCGC	TGCCCTGGTG	TACCAGGAAA	٠
27421	GTCCCGCTCC	CACCACTGTG	GTACTTCCCA	GAGACGCCCA	GGCCGAAGTT	CAGATGACTA	
27481	ACTCAGGGGC	GCAGCTTGCG	GGCGGCTTTC	GTCACAGGGT	GCGGTCGCCC	GGGCAGGGTA	٠
27541	TAACTCACCT	GACAATCAGA	GGGCGAGGTA	TTCAGCTCAA	CGACGAGTCG	GTGAGCTCCT	
27601	CGCTTGGTCT	CCGTCCGGAC	GGGACATTTC	AGATCGGCGG	CGCCGGCCGT	CCTTCATTCA	
27661	CGCCTCGTCA	GGCAATCCTA	ACTCTGCAGA	CCTCGTCCTC	TGAGCCGCGC	TCTGGAGGCA	٠.
27721	TTGGAACTCT	GCAATTTATT	GAGGAGTTTG	TGCCATCGGT	CTACTTTAAC	CCCTTCTCGG	
27781	GACCTCCCGG	CCACTATCCG	GATCAATTTA	TTCCTAACTT	TGACGCGGTA	AAGGACTCGG	
27841	CGGACGGCTA	CGACTGAATG	TTAAGTGGAG	AGGCAGAGCA	ACTGCGCCTG	AAACACCTGG	•
27901	TCCACTGTCG	CCGCCACAAG	TGCTTTGCCC	GCGACTCCGG	TGAGTTTTGC	TACTTTGAAT	
27961	TGCCCGAGGA	TCATATCGAG	GGCCCGGCGC	ACGGCGTCCG	GCTTACCGCC	CAGGGAGAGC	
28021	TTGCCCGTAG	CCTGATTCGG	GAGTTTACCC	AGCGCCCCCT	GCTAGTTGAG	CGGGACAGGG	•
28081	GACCCTGTGT	TCTCACTGTG	ATTTGCAACT	GTCCTAACCT	TGGATTACAT	CAAGATCTTT	
28141	GTTGCCATCT	CTGTGCTGAG	TATAATAAAT	ACAGAAATTA	AAATATACTG	GGGCTCCTAT	
28201	CGCCATCCTG	TAAACGCCAC	CGTCTTCACC	CGCCCAAGCA	AACCAAGGCG	AACCTTACCT	
28261	GGTACTTTTA	ACATCTCTCC	CTCTGTGATT	TACAACAGTT	TCAACCCAGA	CGGAGTGAGT	
28321	CTACGAGAGA	ACCTCTCCGA	GCTCAGCTAC	TCCATCAGAA	AAAACACCAC	CCTCCTTACC	
					ACCTACCGCC		
28441	CCAGACTTTT	TCCGGACAGA	CCTCAATAAC	TCTGTTTACC	AGAACAGGAG	GTGAGCTTAG	
28501	AAAACCCTTA	GGGTATTAGG	CCAAAGGCGC	AGCTACTGTG	GGGTTTATGA	ACAATTCAAG	
					GGGGTTGGGG		
28621	TCTTGTGATT	CTCTTTATTC	TTATACTAAC	GCTTCTCTGC	CTAAGGCTCG	CCGCCTGCTG	
					GGTCGCCACC		
					ACGGTACCAC		
					AAGCTAATGA		
28861	CTTATAAAAT	GCACCACAGA	ACATGAAAAG	CTGCTTATTC	GCCACAAAAA	CAAAATTGGC	
					CAGAGTATAA		
					CATTTTATGA		
29041	ATTACCATGT	ACATGAGCAA	ACAGTATAAG	TTGTGGCCCC	CACAAAATTG	TGTGGAAAAC	
						CTGTACCCTA	
29161	CTCTATATTA	AATACAAAAG	CAGACGCAGC	TTTATTGAGG	AAAAGAAAAT	GCCTTAATTT	
						AAAACAAATT	
29281	CAAAAAGTTA	GCATTATAAT	TAGAATAGGA	TTTAAACCCC	CCGGTCATTT	CCTGCTCAAT	
						ACCTTGAAGT	
29401	CAGGCTTCCT	GGATGTCAGC	ATCTGACTTT	GGCCAGCACC	TGTCCCGCGG	ATTTGTTCCA	
29461	GTCCAACTAC	AGCGACCCAC	CCTAACAGAG	ATGACCAACA	CAACCAACGC	GGCCGCCGCT	
29521	ACCGGACTTA	CATCTACCAC	AAATACACCC	CAAGTTTCTG	CCTTTGTCAA	TAACTGGGAT	•
						TATTATGTGG	
29641	CTCATCTGCT	GCCTAAAGCG	CAAACGCGCC	CGACCACCCA	TCTATAGTCC	CATCATTGTG	
	•						

29701	CTACACCCAA	ACAATGATGG	AATCCATAGA	TTGGACGGAC	TGAAACACAT	GTTCTTTTCT	
29761	CTTACAGTAT	GATTAAATGA	GACATGATTC	CTCGAGTTTT '	TATATTACTG	ACCCTTGTTG	
20821	CCAMPAPATALC	TGCGTGCTCC	ACATTGGCTG	CGGTTTCTCA	CATCGAAGTA	GACTGCATTC	
20881	CACCCTTCAC	AGTCTATTTG	CTTTACGGAT	TTGTCACCCT	CACGCTCATC	TGCAGCCTCA	
200/1	ጥሮልሮጥርሞርርጥ	CATCGCCTTT	ATCCAGTGCA	TTGACTGGGT	CTGTGTGCGC	TITIGCATATC	
20001	TCACIGICGI	TCCCCAGTAC	AGGGACAGGA	CTATAGCTGA	GCTTCTTAGA	ATTCTTTAAT	
20061	ጥኮሞልልልንሞልጥ	ACTGTGACTT	TTCTGCTGAT	TATTTGCACC	CTATCTGCGT	THETTCCCC	
20121	CACCACCAG	CCTCAAAGAC	ATATATCATG	CAGATTCACT	CGTATATGGA	ATATTCCAAG	
20101	ጥጥረርጥልሮልልጥ	CAAAAAAGCG	ATCTTTCCGA	AGCCTGGTTA	TATGCAATCA	TCTCTGTTAT	
20241	CCTCTTCTCC	AGTACCATCT	TAGCCCTAGC	TATATATCCC	TACCTTGACA	TIGGCIGGAA	
302 3 1	ACCAATACAT	GCCATGAACC	ACCCAACTTT	CCCCGCGCCC	GCTATGCTTC	CACTGCAACA	
30361	አርጥጥርጥጥርCC	CCCCCCTTTC	TCCCAGCCAA	TCAGCCTCGC	CCCACTTCTC	CCACCCCCAC -	
20201	TO A PATCACC	TACTTTAATC	TAACAGGAGG	AGATGACTGA	CACCCTAGAT	CTAGAAATGG	
20421	ACCCA ATTAT	TACAGAGCAG	CCCCTCCTAG	AAAGACGCAG	GGCAGCGGCC	GAGCAACAGC	
20541	CCAUCA AUCA	AGAGCTCCAA	GACATGGTTA	ACTTGCACCA	GTGCAAAAGG	GGTATCTTTT	
30241	CALCARICA	GCAGGCCAAA	GTCACCTACG	ACAGTAATAC	CACCGGACAC	CGCCTTAGCT	
30001	PCZ Z COLLCCC	AACCAAGCGT	CAGAAATTGG	TGGTCATGGT	GGGAGAAAAG	CCCATTACCA	
30001	MANGET IGCC	CTCGGTAGAA	ACCGAAGGCT	GCATTCACTC	ACCTTGTCAA	GGACCTGAGG	
20721	AMCMCMCCAC	CCTTATTAAG	ACCCTGTGCG	GTCTCAAAGA	TCTTATTCCC	TTTAACTAAT	
30/81	ATCICIGCAC	AATAAAGCAT	CACTTACTTA	AAATCAGTTA	GCAAATTTCT	GTCCAGTTTA	
30041	WHAT WAY CON	CCTCCTTGCC	CTCCTCCCAG	CTCTGGTATT	GCAGCTTCCT	CCTGGCTGCA	
30301	A A COMMONDO	ACAATCTAAA	TGGAATGTCA	GTTTCCTCCT	GTTCCTGTCC	ATCCGCACCC	
30301	AACTITCICC	TGTTGTTGCA	GATGAAGCGC	GCAAGACCGT	CTGAAGATAC	CTTCAACCCC	
31021	ACTAICTICA	ATGACACGGA	AACCGGTCCT	CCAACTGTGC	CTTTTCTTAC	TCCTCCCTTT	
31081	GIGIAICCAI	ATGGGTTTCA	ACACACTCCC	CCTGGGGTAC	TCTCTTTGCG	CCTATCCGAA	
31141	GTATCCCCCA	CCTCCAATGG	CATCCTTCCC	CTCAAAATGG	GCAACGGCCT	CTCTCTGGAC	
31201	CCTCTAGTTA	ACCTTACCTC	CCAAAATCTA	ACCACTGTGA	GCCCACCTCT	CAAAAAAACC	
31261	GAGGCCGGCA	TAAACCTGGA	AAMAMCTCCA	CCCCTCACAG	TTACCTCAGA	AGCCCTAACT	
31321	AAGICAAACA	CCGCACCTCT	AMINICIACE	GGCAACACAC	TCACCATGCA	ATCACAGGCC	
31381	GIGGCIGCCG	TGCACGACTC	CANACOTOCC	ATTICCCACCC	AAGGACCCCT	CACAGTGTCA	•
31441	CCGCTAACCG	TAGCCCTGCA	VARACTIAGE	CCCCTCACCA	CCACCGATAG	CAGTACCCTT	
31201	GAAGGAAAGC	CCTCACCCCC	MCM3 ACM3CM	CCCACTGGTA	CCTTCCCCCAT	TGACTTGAAA	
31561	ACTATCACTG	ATACACAAAA	TCIAACIACI	CCACTAAAGT	ACGGGGCTCC	TTTGCATGTA	
31621	GAGCCCATTT	TAAACACTTT	CACCCOACCA	ACTOCOTO AC	CTCTCACTAT	TAATAATACT	
31681	ACAGACGACC	CTAAACACTTT	GACCGIAGCA	CCTTTTTCATT	CACAACCCAA	TATGCAACTT	
31741	TCCTTGCAAA	GAGGACTAAG GAGGACTAAG	CAMMCAMMCM	CANANCACAC	CCCTTATACT	TGATGTTAGT	
31801	AATGTAGCAG	GAGGACTAAG ATGCTCAAAA	GATIGATICI	ORDDAYARAD	GACAGGGCCC	TCTTTTTATA	-
31861	TATCCGTTTC	ATGCTCAAAA ACAACTTGGA	CCAACTAAA1	CIAAGACIAG	TOTAL	TACAGCTTCA	
31921	AACTCAGCCC	: ACAACTIGGA AAAAGCTTGA	TATTAACTAC	AACAAAGCCA ACCACTCCA	ACCCCTTGAT	CTTTCACCCT	
31981	AACAATTCCA	AAAAGCTTGA	GGTTAACCTA	COUNCE E TOUCH	CTTCACCTA	TGCACCAAAC	
32041	ACAGCCATAG	CCATTAATGC	AGGAGATGGG	CILGUALITIG	THE THE STATE OF T	CAACCCTATG	
32101	ACAAATCCCC	TCAAAACAAA	AATIGGCCAT	GGCCINGAAI	CUCCCVUTAC	ACTACCAAAC	
32161	GTTCCTAAAC	TAGGAACTGG	CCTTAGTTTT	· ACACCACAC	CAMCMCCMIA	CTCTAGACTA	
32221	AAAAATAATO	ATAAGCTAAC	TITGTGGACC	ACACCAGCIC	NAMOMOCOA	CTGTAGACTA	
32281	AATGCAGAGA	A AAGATGCTAA	ACTUACTITIE	GICTIAACAA	CANDAGCAC	TCAAATACTT	
32341	GCTACAGTT	r CAGTTTTGGC	TGTTAAAGGC	AGTTTGGCTC	CARTAICIG	AACAGTTCAA	
32401	AGTGCTCATO	C TTATTATAAG	ATTTGACGAA	AATGGAGTGC	TACTAAACA	TTCCTTCCTG	
32461	GACCCAGAA	r attggaactt	TAGAAATGGA	GATCTTACTC	AAGGCACAG	CTATACAAAC	
32521	GCTGTTGGA	r ttatgccta?	CCTATCAGCT	TATCCAAAAT	CICACGGTAA	AACTGCCAAA	
32581	AGTAACATT	G TCAGTCAAGT	TTACTTAAAC	GGAGACAAA	CTAAACCTG	DOKATOKOKA 1	
32641	. ATTACACTA	A ACGGTACACA	A GGAAACAGG	A GACACAACTO	CAAGTGCATA	A CTCTATGTCA	
32701	. TTTTCATGG	G ACTGGTCTGC	CCACAACTAC	ATTAATGAA	TATTIGCCA	ATCCTCTTAC	
32761	ልርጥምምምንርል	T ACATTGCCCA	A AGAATAAAG	A ATCGTTTGTO	TTATGTTTC	A ACGIGITIAT	
32821	ማጥጥጥ ልልማጥ	G CAGAAAATTI	r caagtcatt?	r ttcattcagi	P AGTATAGCC	CACCACCACA	•
22001	ጥልርርጥጥልጥል	C AGATYCACCGS	r accttaatc	A AACTCACAG	A ACCCTAGTA	r TCAACCTGCC	:
32941	ACCTCCCTC	C CAACACACA	G AGTACACAG	r cctttctcc	C CGGCTGGCC	r taaaaagcat	

33001	CATATCATGG	GTAACAGACA	TATTCTTAGG	TGTTATATTC	CACACGGTTT	CCTGTCGAGC
33061	CAAACGCTCA	TCAGTGATAT	TAATAAACTC	CCCGGGCAGC	TCACTTAAGT	TCATGTCGCT
33121	GTCCAGCTGC	TGAGCCACAG	GCTGCTGTCC	AACTTGCGGT	TGCTTAACGG	GCGGCGAAGG
33181	AGAAGTCCAC	GCCTACATGG	GGGTAGAGTC	ATAATCGTGC	ATCAGGATAG	GGCGGTGGTG
33241	CTGCAGCAGC	GCGCGAATAA	ACTGCTGCCG	CCGCCGCTCC	GTCCTGCAGG	AATACAACAT
33301	GGCAGTGGTC	TCCTCAGCGA	TGATTCGCAC	CGCCCGCAGC	ATAAGGCGCC	TTGTCCTCCG
33361	GGCACAGCAG	CGCACCCTGA	TCTCACTTAA	ATCAGCACAG	TAACTGCAGC	ACAGCACCAC
33421	AATATTGTTC	AAAATCCCAC	AGTGCAAGGC	GCTGTATCCA	AAGCTCATGG	CGGGGACCAC
33481	AGAACCCACG	TGGCCATCAT	ACCACAAGCG	CAGGTAGATT	AAGTGGCGAC	CCCTCATAAA .
33541	CACGCTGGAC	ATAAACATTA	CCTCTTTTGG	CATGTTGTAA	TTCACCACCT	CCCGGTACCA.
33601	TATAAACCTC	TGATTAAACA	TGGCGCCATC	CACCACCATC	CTAAACCAGC	TGGCCAAAAC
33661	CTGCCCGCCG	GCTATACACT	GCAGGGAACC	GGGACTGGAA	CAATGACAGT	GGAGAGCCCA
33721	GGACTCGTAA	CCATGGATCA	TCATGCTCGT	CATGATATCA	ATGTTGGCAC	AACACAGGCA
33781	CACGTGCATA	CACTTCCTCA	GGATTACAAG	CTCCTCCCGC	GTTAGAACCA	TATCCCAGGG
33841	AACAACCCAT	TCCTGAATCA	GCGTAAATCC	CACACTGCAG	GGAAGACCTC	GCACGTAACT
33901	CACGTTGTGC	ATTGTCAAAG	TGTTACATTC	GGGCAGCAGC	GGATGATCCT	CCAGTATGGT -
33961	AGCGCGGGTT	TCTGTCTCAA	AAGGAGGTAG	ACGATCCCTA	CTGTACGGAG	TGCGCCGAGA
34021	CAACCGAGAT	CGTGTTGGTC	GTAGTGTCAT	GCCAAATGGA	ACGCCGGACG	TAGTCATATT
34081	TCCTGAAGCA	AAACCAGGTG	CGGGCGTGAC	AAACAGATCT	GCGTCTCCGG	TCTCGCCGCT
34141	TAGATCGCTC	TGTGTAGTAG	TTGTAGTATA	TCCACTCTCT	CAAAGCATCC	AGGCGCCCCC
34201	TEGETTEGGG	TTCTATGTAA	ACTCCTTCAT	GCGCCGCTGC	CCTGATAACA	TCCACCACCG
34261	CAGAATAAGC	CACACCCAGC	CAACCTACAC	ATTCGTTCTG	CGAGTCACAC	ACGGGAGGAG
34321	CGGGAAGAGC	TGGAAGAACC	ATGTTTTTTT	TTTTATTCCA	AAAGATTATC	CAAAACCTCA
34381	AAATGAAGAT	CTATTAAGTG	AACGCGCTCC	CCTCCGGTGG	CGTGGTCAAA	CTCTACAGCC
34441	AAAGAACAGA	TAATGGCATT	TGTAAGATGT	TGCACAATGG	CTTCCAAAAG	GCAAACGGCC
34501	CTCACGTCCA	AGTGGACGTA	AAGGCTAAAC	CCTTCAGGGT	GAATCTCCTC	TATAAACATT
34561	CCAGCACCTT	CAACCATGCC	CAAATAATTC	TCATCTCGCC	ACCTTCTCAA	TATATCTCTA
34621	AGCAAATCCC	GAATATTAAG	TCCGGCCATT	GTAAAAATCT	GCTCCAGAGC	GCCCTCCACC
34681	TTCAGCCTCA	AGCAGCGAAT	CATGATTGCA	AAAATTCAGG	TTCCTCACAG	ACCTGTATAA
34741	GATTCAAAAG	CGGAACATTA	ACAAAAATAC	CGCGATCCCG	TAGGTCCCTT	CGCAGGGCCA .
34801	GCTGAACATA	ATCGTGCAGG	TCTGCACGGA	CCAGCGCGGC	CACTTCCCCG	CCAGGAACCT
34861	TGACAAAAGA	ACCCACACTG	ATTATGACAC	GCATACTCGG	AGCTATGCTA	ACCAGCGTAG
34921	CCCCGATGTA	AGCTTTGTTG	CATGGGCGGC	GATATAAAAT	GCAAGGTGCT	GCTCAAAAAA
34981	TCAGGCAAAG	CCTCGCGCAA	AAAAGAAAGC	ACATCGTAGT	CATGCTCATG	CAGATAAAGG
35041	CAGGTAAGCT	CCGGAACCAC	CACAGAAAAA	GACACCATTT	TTCTCTCAAA	CATGTCTGCG
35101	GGTTTCTGCA	TAAACACAAA	ATAAAATAAC	AAAAAAACAT	TTAAACATTA	GAAGCCTGTC
35161	TTACAACAGG	AAAAACAACC	CTTATAAGCA	TAAGACGGAC	TACGGCCATG	CCGGCGTGAC
35221	CGTAAAAAA	CTGGTCACCG	TGATTAAAAA	GCACCACCGA	CAGCTCCTCG	GTCATGTCCG
35281	GAGTCATAAT	GTAAGACTCG	GTAAACACAT	CAGGTTGATT	CATCGGTCAG	TGCTAAAAAG
35341	CGACCGAAAT	AGCCCGGGGG	AATACATACC	CGCAGGCGTA	GAGACAACAT	TACAGCCCCC
35401	ATAGGAGGTA	TAACAAAATT	AATAGGAGAG	AAAAACACAT	AAACACCTGA	AAAACCCTCC
35461	TGCCTAGGCA	AAATAGCACC	CTCCCGCTCC	AGAACAACAT	ACAGCGCTTC	ACAGCGGCAG
35521	CCTAACAGTC	AGCCTTACCA	GTAAAAAAGA	AAACCTATTA	AAAAAACACC	ACTCGACACG
35581	GCACCAGCTC	AATCAGTCAC	AGTGTAAAAA	AGGGCCAAGT	GCAGAGCGAG	TATATATAGG
35641	ACTAAAAAA	GACGTAACGG	TTAAAGTCCA	CAAAAAACAC	CCAGAAAACC	GCACGCGAAC
35701	CTACGCCCAG	AAACGAAAGC	CAAAAAACCC	ACAACTTCCT	CAAATCGTCA	CTTCCGTTTT
35761	CCCACGTTAC	GTAACTTCCC	ATTTTAAGAA	AACTACAATT	CCCAACACAT	ACAAGTTACT
35821	CCGCCCTAAA	ACCTACGTCA	CCCGCCCCGT	TCCCACGCCC	CGCGCCACGT	CACAAACTCC
35881	ACCCCCTCAT	TATCATATTG	GCTTCAATCC	AAAATAAGGT	ATATTATTGA	TGATG

Structure of the Ad6 Genome

FIG. 10

FIG. 11

Western blot on whole-cell extracts from 293 cells transfected with plasmid DNA expressing the different HCV NS cassettes. Mature NS3 and NS5A products were detected with specific antibodies.

FIG. 12

pV1jns-NSmut

72/92

			•	Pep pool				
mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(N\$35b)	M(NS5b)	1480(CD8 ep)	DMS
#31	41	135	19	44	25	17	137	8
#32	121	783	77	144	13	22	604	4
#33	8	32	3	11	6	6	43	3
#34	16	139	13	47	31	25	151	2
#35	21	101	40	32	21	20	75	1
#36	18	26	24	25	5	7	29	6
#37	19	73	15	39	8	20	49	2
#38	133	575	74	345	75	63	515	5
#39	40	183	10	85	14	9	148	2
#40	66	465	29	111	15	16	189	0
Geomean	33	146	21	57	15	16	123	па
	#31 #32 #33 #34 #35 #36 #37 #38 #39	#31 41 #32 121 #33 8 #34 16 #35 21 #36 18 #37 19 #38 133 #39 40 #40 66	#31 41 135 #32 121 783 #33 8 32 #34 16 139 #35 21 101 #36 18 26 #37 19 73 #38 133 575 #39 40 183 #40 66 465	#31 41 135 19 #32 121 783 77 #33 8 32 3 #34 16 139 13 #35 21 101 40 #36 18 26 24 #37 19 73 15 #38 133 575 74 #39 40 183 10 #40 66 465 29	mouse F(NS3p) G(NS3h) H(NS4) I(NS5a) #31 41 135 19 44 #32 121 783 77 144 #33 8 32 3 11 #34 16 139 13 47 #35 21 101 40 32 #36 18 26 24 25 #37 19 73 15 39 #38 133 575 74 345 #39 40 183 10 85 #40 66 465 29 111	mouse F(NS3p) G(NS3h) H(NS4) I(NS5a) L(NS35b) #31 41 135 19 44 25 #32 121 783 77 144 13 #33 8 32 3 11 6 #34 16 139 13 47 31 #35 21 101 40 32 21 #36 18 26 24 25 5 #37 19 73 15 39 8 #38 133 575 74 345 75 #39 40 183 10 85 14 #40 66 465 29 111 15	mouse F(NS3p) G(NS3h) H(NS4) I(NS5a) L(NS35b) M(NS5b) #31 41 135 19 44 25 17 #32 121 783 77 144 13 22 #33 8 32 3 11 6 6 #34 16 139 13 47 31 25 #35 21 101 40 32 21 20 #36 18 26 24 25 5 7 #37 19 73 15 39 8 20 #38 133 575 74 345 75 63 #39 40 183 10 85 14 9 #40 66 465 29 111 15 16	mouse F(NS3p) G(NS3h) H(NS4) I(NS5a) L(NS35b) M(NS5b) 1480(CD8 ep) #31 41 135 19 44 25 17 137 #32 121 783 77 144 13 22 604 #33 8 32 3 11 6 6 43 #34 16 139 13 47 31 25 151 #35 21 101 40 32 21 20 75 #36 18 26 24 25 5 7 29 #37 19 73 15 39 8 20 49 #38 133 575 74 345 75 63 515 #39 40 183 10 85 14 9 148 #40 66 465 29 111 15 16 189

•				Pep pool				
mouse	F(NS3p)	G(NS3h)	H(NS4)	1(NS5a)	L(NS35b)	M(NS5b)	1480(CD8 ep)	DMSO
#41	39	293	58	187	5	4	248	1
#42	21	220	46	107	26	10	189	4
#43	76	134	12	78	8	6	144	2
#44	30	45	20	52	· 4	8	40	4
#45	36	100	17	56	4	6	116	3
#46	67	172	16	138	8	9	145	3
#47	34	131	28	38	9	5	118	1
#48	55	316	43	107	9	7	277	5
#49	6	131	5	25	4	1	91	0
#50	13	93	11	11	5	1	76	1
Geomean	30	142	20	61	7	5	126	na

					Pep pool				
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(NS35b)	M(NS5b)	1480(CD8 ep)	рмѕо
	#51	53	409	34	84	11	25	271	4
	#52	140	660	65	276	23	36	377	2
	#53	58	553	48	105	23	18	564	1
	#54	50	105	35	134	10	16	80	2
V1jns-NSOPTmut	#55	14	80	11	35	4	7	91	6
	#56	14	342	30	101	23	14	207	1
	#57	63	325	66	239	17	24	123	1
	#58	75	542	66	168	127	93	191	0
•	#59	65	468	40	124	18	23	344	4
	#60	27	142	48	16	7	8	77	0
	Geomean	45	295	40	99	16	20	188	na

IFNy ELIspot on splenocytes from C57black6 mice immunized with two injections of 25µg DNA/dose with GET of plasmid vectors expressing the different HCV NS cassettes. Data are expressed as SFC/10⁶ PBMC.

FIG. 13A

73/92

							<u>-</u>		
· . . : •			•	Pe	p pool		•		
144 144 144	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(NS35b)	M(NS5b)	DMSO	
•	#51	219	699	634	486	487	264	34	
	#52	67	302	347	167	111	87	9	
•	#53	59	460	400	246	244	136	26	
·.·	#54	139	817	685	236	547	223	24	
•	#55	96	904	542	277	256	337	17	
pV1jns-NS	#56	225	603	686	156 .	350	240	56	
	#57	44	288	211	148	100	141	4	
	#58	37	262	221	53	58	62	3	
: .	#59	131	975	928	159	305	284	14	
	#60	93	475	464	77	206	113	12	
•	geo mean	111	579	512	201	266	189	20	
• •	300	<u> </u>							
		-		Pe	ep pool	•			
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(NS35b)	M(NS5b)	DMSO	
	#61	72	840	515	219	278	249	19	
	#62	294	1881	1266	365	434	_. 411	63	
	#63	73	415	422	103	141	99	41	
pV1jns-NSmut	#64	66	824	486 ·	175	162	, 144	18	
. p v 2jus-145mille	#66	24	313	168	53 '	47	42	. 5 .	
.:	#67	15	230	253	94	25	39	2	
	#68	53	. 354	252	89	101	- 86	15	
* .	#69	271	895	909	. 518	322	285	74	
· ·	. #70	417	1303	1186	468	557	267	34	
	geo mean	143	784	606	232	230	180	30	
•					ep pool	<i>:</i>			
		5/4/00-1	0/11005		I(NS5a) .	L(NS35b)	M(NS5b)	DMSO	
	mouse	F(NS3p)	G(NS3h)	H(NS4) 890	342	207	397 .	47 ·	
	#71 #70	206	944		575	626	401	7! 72	
	#72 #73	393	1655	1151 515	319	223	198	. 21	
•	#73 #74	123	522						
V1jns-NSOPTmut	#74	500	1414	1419.	878	1035	1122 267	137	
	#75 #70	286	812	873	382	543	•	31	
	#76	224	1143	942	218	420	281	22	
•	#77	95	643	630	169	385	218	15	
	#78	401	1302	1068	538	608	623	12 4	
	#79	108	1190	914	199	265	215		
	#80	122	511	546	189	286	190	13	
•••	geo mean	209	941	854	331	406	329	24	

IFNY ELIspot on splenocytes from BalbC mice immunized with two injections of 50µg DNA/dose with GET of plasmid vectors expressing the different HCV NS cassettes. Data are expressed as SFC/106 PBMC.

FIG. 13B

Western blot on whole-cell extracts from HeLa cells infected at different multiplicity of infection (m.o.i.; indicated at the top) with Adenovectors expressing the different HCV NS cassettes. Mature NS5B and NS5A products were detected with specific antibodies.

FIG. 14

75/92

Γ				Pep pool			
mouse -	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L+M(NS35b)	1480(CD8	ep)DMSO
#1	14	492	. 9	27	10	554	7
#2	8 .	· 440 ·	2	26	· 5	438	O
#3	12	92	5	12	7	73	4
#4	16	388	6	40	6	228	. 2
#6	8	210	4	31	. 3	238	3
#7	7	133	13	16	0	128	9.
#8	11	342	25	55	22	267	12
#9	5	345	0	45	5	285	3
#10	22	888	3	65	25	799	1
Geomean	10	305	na	31	na	269	na
ſ			·····	Pep pool			
	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L+M(NS35b)	1480(CD8	ep)DMSO

MRKAd5-NSmut

Ad5-NS

1						•	1
mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L+M(NS35b) 1480(CD8 ep	DMSO
#11	14	1009	13	75	7	751	6
#12	15	695	3 .	39	9	552	1
#13	12	389	4	. 20	7	352	. 3
#14	7	459	6	50	1	274	1
#15	5	549	3	22	6	485	0
#16	10	631	1	6	4	600	3
#17	5	257	3	9	1	245	3
#18	13	659	6	43	7	555	. 1
#19	12	758	1	37	5	669	0
#20	22	1380	5	163	8	1003	. 4
Geomean	10.	615	3	31	4	504	na-

				Pep pool			
mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L+M(NS35b)	1480(CD8	ep)DMSO
#21	6	584	5	27	4	491	2
#22	6	231	3	12	3	[.] 235	0
#23	8	482	1	18	1	511	0
#24	14	1120	6	38	10	1004	5.
#25	1	311	3	9	0	382	· 1
#26	29	903	3	60	5 .	751	5
#27	35	1573	4	40	4	1277	. 4
#28	7	406	5 .	_. 15	1	443	. З
#29	4	461	3	12	3	z 515 ·	3
Geomean	. 8	567	3	21	na	554	· · na

MRKAd6-NSmut

IFNγ ELISPOT on splenocytes from C57black6 mice immunized with two injections of 109 vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/106 PBMC.

76/92

	Ads	5-NS 10 ¹⁰ vp/d	ose
Pep pools	96074	134T	063Q
F (NS3p)	374	11	74
G (NS3h)	359	1070	1455
. H (NS4)	376	30	64
1 (NS5a)	240	40	63
L (NS5b)	226	29	121
M (NS5b)	511	23	35
DMSO .	128	3	31

	MRK Ad6-NSmut 10 ¹⁰ vp/dose					
Pep pools	S207	035Q	057Q			
F (NS3p)	363	382	150			
G (NS3h)	180	316	119			
H (NS4)	126	113	62			
1 (NS5a)	1780	688	114			
L (NS5b)	447	111	81			
M (NS5b)	153	38	16			
DMSO	9	6	9			

IFNy ELISPOT on PBMC from Rhesus monkeys immunized with one injection of 10^{10} vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/ 10^6 PBMC.

FIG. 16A

77/92

·	MRK Ad5-NSmut 10 ¹⁰ vp/dose					
Pep pools	S201	075Q	137Q -			
F (NS3p)	928	69	254			
G (NS3h)	317	436	98			
H (NS4)	56	101	45 .			
I (NS5a)	1530	1100	413			
L (NS5b)	149	23	92			
M (NS5b)	398	32	. 80			
DMSO	29	6	29			

	MRK Ad6-NSOPTmut 10 ¹⁰ vp/dose					
Pep pools	98D209	106Q		113Q		
F (NS3p)	3110	263		. 404		
G(NS3h) .	2115	. 642		1008		
H (NS4)	373	72	,	19		
I (NS5a)	103	37		347		
L (NS5b)	149	22		10		
M (NS5b)	314	428	_	19		
DMSO	0	1		3		

IFNY ELISPOT on PBMC from Rhesus monkeys immunized with one injection of 10¹⁰ vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/10⁶ PBMC.

FIG. 16B

78/92

	Ad5-NS 10 ¹¹ vp/dose						
Pep pools	99C008	97N104	97X008	99C026			
F (NS3p)	28	1026	579	889			
G (NS3h)	1279	188	103	2453			
H (NS4)	18	39	138	109			
1 (NS5a)	131	1068	172	141			
L (NS5b)	78	144	103	32			
M (NS5b)	24	68	47	84			
DMSO	3	16	1	19			

	MR	MRKAd6-NSmut 10 ¹¹ vp/dose				
Pep pools	98C047	97C055	93G	97X014		
F (NS3p)	477	25	93	1022		
G (NS3h)	959	398	81	1513		
H (NS4)	36	14	99	53		
1 (NS5a)	171	45	1237	98		
L (NS5b)	18	32	23	51		
M (NS5b)	88	4	13	40		
DMSO	8	3	1	5		

IFNγ ELISPOT on PBMC from Rhesus monkeys immunized with two injections of 10¹¹ vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/10⁶ PBMC.

FIG. 16C

79/92

	MRI	RKAd5-NSmut 10 ¹¹ vp/dose			
Pep pools	99C059	99C060	97X009	96069	
F (NS3p)	28	81	1308	1618	
G (NS3h)	2600 ⁻	161	1008	123	
H (NS4)	31	74	101	40	
1 (NS5a)	181	99	69	96	
L (NS5b)	24	31	40	20	
M (NS5b)	11	58	. 38	· 164	
DMSO	6	15	1	16	

IFNY ELISPOT on PBMC from Rhesus monkeys immunized with two injections of 10^{11} vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/10⁶ PBMC.

FIG. 16D

ſ	MRK Ad5-NSmut 10 10 vp/dose		
Pep pools	5201	075 <u>Q</u>	137Q
pool F (NS3p)	881	1755	73
pool G (NS3h)	573		•
pool H (NS4)		3541	
pool I (NS5a)	2094		39
pool L (NS5b)			
pool M (NS5b)	756		
DMSO	319	117	44

	MRK Ad6-N	ISOPTmut 10	10 vp/dose
Pep pools	98D209	106Q	113Q
pool F (NS3p)	5073	84	952
pool G (NS3h)	2376	160	3325
pool H (NS4)	700		
pool I (NS5a)			1106
pool L (NSSb)			
pool M (NS5b)	· 530	706	
DMSO	43	47	28

	MRK Ad	6-NSmut 10	10 vp/dose
Pep pools	S207	035Q	057Q
pool F (NS3p)	118	480	
pool G (NS3h)		196	
pool H (NS4)			
pool I (NS5a)	3340	933	
pool L (NSSb)	118		
pool M (NSSb)			
DMSO	145	34	

IFNy ICS on PBMC from Rhesus monkeys immunized with two injections at four weeks interval with 10¹⁰ vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as number of positive IFNy/CD3/CD8 per 10⁶ lymphocytes.

FIG. 17A

•				
	· A	d5-NS 10	11 vp/dos	SO .
Pep pools	99C008	97N104	97X008	<i>99C0</i> 26
F (NS3p)		1703	1136	615
G (NS3h)	3153			2787
H (NS4)				•
I (NS5a)		2233	•	
L (NS5b)				
M (NS5b)				
DMSO	125	98	130	0
	MRKA	Ad6-NSm	ut 10 ¹¹ v	p/dose
Pep pools	98C047	97C055	93G	97X014
F (NS3p)	1024		1	948
G (NS3h)	3246	353		1074
H (NS4)			316	
I(NS5a)			6224	
L(NS5b)				
M (NS5b)				<i>:</i>
DMSO	49	23	37	93
	MRKA	\d5-NSm	ut 10 ¹¹ v	p/dose
Pep pools	99C059	99C060	97X009	96069
F (NS3p)			2266	5053
G (NS3h)	2434	316	1018	
H (NS4)				
I (NS5a)				
L (NS5b)				
M (NS5b)				205
DMSO	.13	, 110	. 119	15

IFNY ICS on PBMC from Rhesus monkeys immunized with two injections at four weeks interval with 10¹¹ vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as number of positive IFNY/CD3/CD8 per 10⁶ lymphocytes.

FIG. 17B

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 10¹¹vp/dose of Ad5-NS.

FIG. 18A

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 1011vp/dose of Ad5-NS.

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 1011 vp/dose of MRKAd5-NSmut.

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 1011 vp/dose of MRKAd5-NSmut

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 1011vp/dose of MRKAd6-NSmut.

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 1011vp/dose of MRKAd6-NSmut.

FIG. 18F

FIG. 19

1	GCCACCATGG	•		•	•
51	GGGCTGCATC	ATCACCAGCC	TGACCGGACG.	CGACAAGAAC	CAGGTGGAGG
101	GAGAGGTGCA	GGTGGTGAGC	ACCGCTACCC	AGAGCTTCCT	GGCCACCTGC
151	GTGAACGGĊG	TĠTGCTGGAC	CGTGTACCAC	GGAGCCGGAA	GCAAGACCCT
201	GGCCGGACCC	AAGGGCCCTA	TCACCCAGAT	GTACACCAAT	GTGGATCAGG
251	ATCTGGTGGG	CTGGCAGGCC	CCTCCCGGAG	CCAGGAGCCT	GACACCCTGT
301	ACCTGTGGAA	GCAGCGACCT	GTACCTGGTG	ACACGCCACG	CCGATGTGAT
351	CCCCGTGAGG	CGCAGGGGCG	ATTCTCGCGG	AAGCCTGCTG	AGCCCTAGGC
401	CCGTGAGCTA	CCTGAAGGGC	AGCAGCGGAG	GACCCCTGCT	GTGTCCTTCT
451	GGCCATGCCG	TGGGCATTŤT	TCGCGCTGCC	GTGTGTACCA	GGGGCGTGGC
501	CAAAGCCGTG	GATTTTGTGC	CCGTGGAAAG	CATGGAGACC	ACCATGCGCA
551	GCCCTGTGTT	CACCGACAAC	AGCTCTCCCC	CTGCCGTGCC	CCAATCATTC
601	CAGGTGGCTC	ACCTGCACGC	CCCTACCGGA	TCTGGCAAGA	GCACCAAGGT
651	GCCCGCTGCC	TACGCCGCTC	AGGGCTACAA	GGTGCTGGTG	CTGAACCCCA
701	GCGTGGCCGC	TACCCTGGGC	TTCGGCGCTT	ACATGAGCAA	GGCCCATGGC
751	ATCGACCCCA	ACATCCGCAC	AGGCGTGCGC	ACCATCACCA	CCGGAGCTCC
801	CGTGACCTAC	AGCACCTACG	GCAAGTTCCT	GGCCGATGGA	GGCTGCAGCG
851	GAGGAGCCTA	CGACATCATC	ATCTGCGACG	AGTGCCACAG	CACCGACAGC
901	ACCACCATCC	TGGGCATTGG	CACCGTGCTG	GATCAGGCCG	AAACAGCTGG
951	AGCCAGGCTG	GTGGTGCTGG	CCACAGCTAC	CCCTCCTGGC	AGCGTGACCG
1001	TGCCCCATCC	CAATATCGAG	GAGGTGGCCC	TGAGCAACAC	AGGCGAGATC
1051	CCCTTCTACG	GCAAGGCCAT	CCCCATCGAG	GCCATCCGCG	GAGGCAGGCA
1101	CCTGATCTTC	TGCCACAGCA	AGAAGAAGTG	CGACGAGCTG	GCTGCCAAGĆ
1151	TGAGCGGACT	GGGCATCAAC	GCCGTGGCCT	ACTACAGGGG	CCTGGACGTG
1201	TCAGTGATCC	CCACCATCGG	CGATGTGGTG	GTGGTGGCCA	CCGACGCCCT
1251	GÄTGACAGGC	TACACCGGAG	ACTTCGACAG	CGTGATCGAC	TGCAACACCT
1301	GCGTGACCCA	GACCGTGGAC	TTCAGCCTGG	ACCCCACCTT	CACCATCGAA
1351	ACCACCACCG	TGCCTÇAGGA	TGCTGTGAGC	AGGAGCCAGA	GGCGCGGACG
1401	CACCGGAAGG	GGCAGGCGCG	GAATTTATCG	CTTTGTGACC	CCTGGCGAAA
1451	GGCCCTCTGG	CATGTTCGAC	AGCAGCGTGC	TGTGCGAGTG	CTACGACGCT
1501	GGCTGCGCTT	GGTACGAGCT	GACACCCGCT	GAAACCAGCG	TCCCCCTCCC
1551	CGCTTATCTG	AATACCCCTG	GCCTGCCCGT	GTGTCAGGAC	CACCTGGAGT

FIG. 20A

1601	TCTGGGAGAG	GTGTTCACA	GGACTGACCC	ACATCGACGC	CCATTTCCTG
1651	AGCCAGACCA A	AGCAGGCTGG	CGACAACTTC	CCCTATCTGG	TGGCCTATCA
1701	GGCCACCGTG T	TGTGCTAGGG	CCCAAGCTCC	ACCTCCTTCA	TGGGACCAGA
1751	TGTGGAAGTG C	CCTGATCCGC	CTGAAGCCCA	CCCTGCACGG	CCCTACCCCT
1801	CTGCTGTACC C	CCTGGGAGC	CGTGCAGAAC	GAGGTGACCC	TGACCCACCC
1851	CATCACCAAG 1	PACATCATGG	CCTGCATGAG	CGCTGATCTG	GAAGTGGTGA
1901	CCAGCACCTG (GGTGCTGGTG	GGAGGCGTGC	TGGCCGCTCT	GGCTGCCTAC
1951	TGCCTGACCA (CCGGAAGCGT	GGTGATCGTG	GGACGCATCA	TCCTGAGCGG
2001	AAGGCCCGCT 2	ATCGTGCCCG	ATCGCGAGTT	CCTGTACCAG	GAGTTCGACG
2051	AGATGGAGGA	GTGTGCCAGC	CACCTGCCCT	ACATCGAGCA	GGGCATGCAG
2101	CTGGCCGAAC	agttcaagca	GAAGGCCCTG	GGCCTGCTGC	AGACAGCCAC
2151	CAAACAGGCC	GAAGCTGCCG	CTCCCGTGGT	GGAAAGCAAG	TGGAGGGCCC
2201	TGGAGACCTT	CTGGGCTAAG	CACATGTGGA	ACTTCATCTC	TGGCATCCAG
2251	TACCTGGCCG	GACTGAGCAC	CCTGCCTGGC	AACCCCGCTA	TCGCCAGCCT
2301	GATGGCCTTC	ACCGCTAGCA	TCACCTCTCC	CCTGACCACC	CAGAGCACCC
2351	TGCTGTTCAA	CATTCTGGGC	GGATGGGTGG	CCGCTCAGCT	GGCCCCTCCT
2401					CCGCTGTGGG
2451	CAGCATTGGC	CTGGGCAAAG	TGCTGGTGGA	TATTCTGGCT	GGCTATGGCG
2501			•		CGGAGAGATG
2551	CCCAGCACCG	AGGACCTGGT	GAACCTGCTG	CCTGCCATTC	TGAGCCCTGG
2601	AGCCCTGGTG	GTGGGCGTGG	TGTGTGCTGC	CATTCTGAGG	CGCCATGTGG
2651	GACCCGGAGA	GGGCGCTGTG	CAGTGGATGA	ACCGCCTGAT	CGCCTTCGCC
2701	TCTCGCGGAA	ACCACGTGAG	CCCTACCCAC	TACGTGCCTG	AGAGCGACGC
2751	CGCTGCCAGG	GTGACCCAGA	TCCTGAGCAG	CCTGACCATC	ACCCAGCTGC
2801	TGAAGCGCCT	GCACCAGTGG	ATCAACGAGG	ACTGCAGCAC	ACCCTGCAGC
2851	GGAAGCTGGC	TGAGGGACGT	GTGGGACTGG	ATCTGCACCO	G TGCTGACCGA
2901	CTTCAAGACC	TGGCTGCAGA	GCAAGCTGCT	GCCCCAACTC	CCTGGCGTGC
2951	CCTTCTTCTC	ATGCCAGCGC	GGATACAAG	GCGTGTGGA	GGGCGATGGC
3001	ATCATGCAGA	CCACCTGTCC	CTGCGGAGC	CAGATCACA	GCCACGTGAA
3051	GAACGGCAGC	ATGCGCATC	TGGGCCCTA	A GACCTGCAG	C AACACCTGGC
3101	ACGGCACCTT	CCCCATCAAC	C GCCTACACC	A CCGGACCCT	G CACACCCAGC
3151	CCTGCTCCCA	ACTACAGCAG	GGCCCTGTG	G AGGGTGGCT	G CCGAGGAGTA

FIG. 20B

3201	CGTGGAGGTG	ACCAGGGTGG	GAGACTTCCA	CTACGTGACC	GGAATGACCA
3251	CCGACAACGT	GAAGTGTCCC	TGTCAGGTGC	CCGCTCCCGA	ATTTTTTACC
.3301	GAAGTGGATG	GCGTGCGCCT	GCATCGCTAT	GCCCCTGCCT	GTAGGCCCCT
3351	GCTGCGCGAA	GAAGTGACCT	TCCAGGTGGG	CCTGAACCAG	TACCTGGTGG
3401	GCAGCCAGCT	GCCCTGCGAG	CCTGAGCCCG	ATGTGGCCGT	GCTGACCAGC
3451	ATGCTGACCG	ACCCCAGCCA	CATCACAGCC	GAAACCGCTA	AAAGGCGCCT
3501 [°]	GGCCAGGGGC	TCTCCTCCAA	GCCTGGCCTC	AAGCAGCGCT	AGCCAGCTGT
3551	CTGCTCCCAG	CCTGAAGGCC	ACCTGCACCA	CCCACCACGT	GAGCCCCGAC
3601	GCCGACCTGA	TCGAGGCCAA	CCTGCTGTGG	CGCCAGGAGA	TGGGCGGCAA
3651	CATCACCCGC	GTGGAGAGCG	AGAACAAGGT	GGTGGTGCTG	GACAGCTTCG
3701	ACCCCCTGCG	CGCCGAGGAG	GACGAGCGCG	AGGTGAGCGT	GCCCGCCGAG
3751	ATCCTGCGCA	AGAGCAAGAA	GTTCCCCGCT	GCCATGCCCA	TCTGGGCTAG
3801	ACCTGATTAC	AACCCTCCCC	TGCTGGAGAG	CTGGAAGGAC	CCTGATTACG
3851	TGCCTCCAGT	GGTGCATGGC	TGTCCTCTGC	CTCCCATTAA	AGCCCCTCCT
3901	ATTCCACCTC	CTAGGCGCAA	AAGGACCGTG	GTGCTGACAG	AAAGCAGCGT
3951	GAGCTCTGCT	CTGGCCGAAC	TGGCCACCAA	GACCTTTGGC	AGCAGCGAGA
4001	GCTCTGCCGT	GGACAGCGGA	ACAGCĈACCG	CTCTGCCTGA	CCAGGCCAGC
4051	GACGACGCCG	ATAAGGGCAG	CGATGTGGAG	AGCTATAGCA	GCATGCCTCC
4101	CCTGGAAGGC	GAACCTGGCG	ATCCCGATCT	GAGCGATGGC	AGCTGGAGCA
4151	CCGTGAGCGA	AGAGGCCAGC	GAGGACGTGG	TGTGTTGCAG	CATGAGCTAC
4201	ACCTGGACAG	GCGCTCTGAT	CACACCCTGC	GCTGCCGAGG	AGAGCAAGCT
4251	GCCCATCAAC	GCCCTGAGCA	ACAGCCTGCT	GAGGCACCAC	AACATGGTGT
43.01	ACGCCACCAC	CAGCAGGTCT	GCCGGACTGA'	GGCAGAAGAA	GGTGACCTTC
4351	GACCGCCTGC	AGGTGCTGGA	CGACCACTÁC	CGCGATGTGC	TGAAGGAGAT
4401	GAAGGCCAAG	GCCAGCACCG	TGAAGGCCAA	GCTGCTGAGC	GTGGAGGAGG
4451	CCTGCAAGCT	GACCCCCCC	CACAGCGCCA	AGAGCAAGTT	CGGCTACGGC
4501	GCCAAGGACG	TGCGCAACCT	GAGCAGCAAG	GCCGTGAACC	ACATCCACAG
4551	CGTGTGGAAG	GACCTGCTGG	AGGACACCGT	GACCCCCATC	GACACCACCA
4601	TCATGGCCAA	GAACGAGGTG	TTCTGCGTGC	AGCCCGAGAA	GGGCGGCCGC
465i	AAGCCCGCTC	GCCTGATCGT	GTTCCCCGAT	CTGGGCGTGC	GCGTGTGCGA
4701	GAAGATGGCC	CTGTACGACG	TGGTGAGCAC	CCTGCCTCAG	GTGGTGATGG
4751	GCTCAAGCTA	CGGCTTCCAG	TACAGCCCTG	GCCAGCGCGT	GGAGTTCCTG

FIG. 20C

4801	GTGAACACCT GGAAGAGCAA GAAGAACCCC ATGGGCTTCA GCTACGACAC
4851	ACGCTGCTTC GACAGCACCG TGACCGAGAA CGACATCCGC GTGGAGGAGA
4901	GCATCTACCA GTGCTGCGAC CTGGCCCCTG AGGCCAGGCA GGCCATCAAG
4951	AGCCTGACCG AGCGCCTGTA CATCGGAGGC CCTCTGACCA ACAGCAAGGG
5001	ACAGAACTGC GGATACAGGC GCTGTAGGGC CTCTGGCGTG CTGACCACCA
5051	GCTGTGGCAA CACCCTGACC TGCTACCTGA AGGCCAGCGC TGCCTGTCGC
5101	GCTGCCAAGC TGCAGGACTG CACCATGCTG GTGAACGCCG CTGGCCTGGT
5151	GGTGATTTGT GAAAGCGCTG GCACCCAGGA AGATGCTGCC AGCCTGCGCG
5201	TGTTCACCGA GGCCATGACC AGGTACTCTG CCCCTCCCGG AGACCCCCCT
5251	CAGCCCGAAT ACGACCTGGA GCTGATCACC AGCTGCTCAA GCAACGTGAG
5301	CGTGGCTCAC GACGCCAGCG GAAAGCGCGT GTACTACCTG ACACGCGATC
5351	CCACCACCCC TCTGGCTCGC GCTGCCTGGG AAACCGCTCG CCATACACCC
5401	GTGAACAGCT GGCTGGGCAA CATCATCATG TACGCCCCTA CCCTGTGGGC
5451	TCGCATGATC CTGATGACCC ACTTCTTCAG CATCCTGCTG GCTCAGGAGC
5501	AGCTGGAGAA GGCCCTGGAC TGCCAGATTT ACGGCGCTTG CTACAGCATC
5551	GAGCCCCTGG ACCTGCCCCA AATCATCGAG CGCCTGCACG GCCTGTCTGC
5601	CTTCAGCCTG CACAGCTACA GCCCTGGCGA AATTAATCGC GTGGCCAGCT
5651	GTCTGCGCAA ACTGGGCGTG CCTCCTCTGC GCGTGTGGAG GCATAGGGCT
5701	AGGAGCGTGA GGGCTAGGCT GCTGAGCCAG GGAGGCAGGG CCGCTACCTG
5751	TGGAAAGTAC CTGTTCAACT GGGCCGTGAA GACCAAGCTG AAGCTGACCC
5801	CTATCCCTGC CGCTAGCCAG CTGGACCTGA GCGGATGGTT CGTGGCTGGC
5851	TACAGCGGAG GCGACATCTA CCACAGCCTG TCTCGCGCTC GCCCTCGCTG
5901	GTTCATGCTG TGCCTGCTGC TGCTGAGCGT GGGCGTGGGC ATCTACCTGC
5951	TGCCCAACCG CTAAA

IN THE PCT RECEIVING OFFICE OF THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s):

Merck & Co., Inc

PCT Serial No.:

To Be Assigned

Case No.: PCT ITR0015Y

US/RO

Filing date:

On Even Date Herewith

_

HEPATITIS C VIRUS VACCINE

Authorized Officer:

To Be Assigned

Assistant Commissioner of Patents BOX PCT Washington, D.C. 20231

NUCLEOTIDE AND/OR AMINO ACID SEQUENCE DISCLOSURE, PCT RULE 5.2

Sir:

As required under PCT Rule 5.2, Applicant respectfully encloses a paper (64 pages) and a computer readable form of the Sequence Listing for the above-identified PCT International Application, filed on even date herewith.

I hereby state that the content of the paper and computer readable forms of the Sequence Listing, submitted in accordance with WIPO and Standard ST.23 and under PCT Rule 13ter.1, respectively, are the same.

Respectfully submitted,

D.

Sheldon O. Heber Reg. No. 38,179

Attorney for Applicants

Merck & Co., Inc. P.O. Box 2000 Rahway, NJ 07065-0907 (732) 594-1958

SEQUENCE LISTING

```
<110> Merck & Co. Inc., and Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A.
```

```
<120> HEPATITIS C VIRUS VACCINE
```

<130> ITR0015Y

<150> 60/363,774

<151> 2002-03-13

<150> 60/328,655

<151> 2001-10-11

<160> 17

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1985

<212> PRT

<213> Artificial Sequence

<220>

<223> Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide

<400> 1

Met Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly 1 5 10 15 Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly

20 25 30
Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys

35 40 45
Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr

50 55 60
Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp

65 70 75 80
Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr

85 90 95
Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala

Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu
115 120 125

115 120 125
Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu
130 140

Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys
145
150
140
Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys
150
160

Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met 165 170 175

Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro 180 185 190

Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly 195 200 205

```
Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr
                                            220
                        215
Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly
                                        235
                    230
225
Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly
                                    250
                245
Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly
                                                    270
                                265
            260
Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile
                                                285
                            280
     . 275
Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile
                                            300
                        295
    290
Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val
                    310
                                        315
Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn
                                    330
                325
Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly
                                                    350
                                345
Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe
                                                365
                            360
        355
Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly
                                            380
                        375
Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val
                                         395
                    390
Ile Pro Thr Ile Gly Asp Val Val Val Ala Thr Asp Ala Leu Met
                405
                                     410
                                                        415 .
Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys
                                425
            420
Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu
                             440
                                                 445
Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly
                                             460
                        455
Arg Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly
                    470 .
                                        475
Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr
                                                         495
                485
                                     490
Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val
                                 505
             500
 Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp
                                                 525
       515
                             520
His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp
                                             540
    530
                         535
 Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr
                                         555
                  · 550
 Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro
                 565
                                     570
 Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr
             580
                                 585
 Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn
                                                 605
         595
                             600
 Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met
                         615
                                             620
 Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly
                                         635
```

```
Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val
Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Ile Val Pro Asp
                             665
Arg Glu Phe Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser
                          680
His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys
                    695
Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala
Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp
735
735
                   710
Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly
                              745
 Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe
                        760
 Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Ser Thr Leu Leu Phe
                    775
 Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala 800 785
 Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser
                                  810
 Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala
 Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Glu Met
                           840
 Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro
                     855
  Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His
                   870
  Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile Ala
                                  890
  Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro Glu
                              905
  Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu Thr Ile
                  920
  Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp Cys Ser
                        935
  Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile Cys
                                       955
                    950
  Thr Val Leu Thr Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu Leu Pro
  Gln Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly Tyr Lys Gly
                 965
                               985
            980
   Val Trp Arg Gly Asp Gly Ile Met Gln Thr Thr Cys Pro Cys Gly Ala
                           1000
   Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly Pro
                                   1020
                         1015
   Lys Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn Ala Tyr
                                                   1040
                                     1035
   Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg Ala
1055
                     1030
   Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val Gly
                                 1065
      1060
```

Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys Cys Pro 1080 1075 Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Val Asp Gly Val Arg 1100 1095 1090 Leu His Arg Tyr Ala Pro Ala Cys Arg Pro Leu Leu Arg Glu Glu Val 1120 1115 1110 Thr Phe Gln Val Gly Leu Asn Gln Tyr Leu Val Gly Ser Gln Leu Pro 1125 1130 Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser Met Leu Thr Asp 1150 1140 1145 Pro Ser His Ile Thr Ala Glu Thr Ala Lys Arg Arg Leu Ala Arg Gly 1155 1160 1165 Ser Pro Pro Ser Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro 1175 1180 1170 Ser Leu Lys Ala Thr Cys Thr Thr His His Val Ser Pro Asp Ala Asp 1190 1195 1200 1185 Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile 1205 1210 1215 · · Thr Arg Val Glu Ser Glu Asn Lys Val Val Leu Asp Ser Phe Asp 1230 . 1225 1220 Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Pro Ala Glu 1240 1245 1235 Ile Leu Arg Lys Ser Lys Lys Phe Pro Ala Ala Met Pro Ile Trp Ala 1260 1255 Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro Asp 1275 1280 1270 Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ile Lys Ala 1295 1290 1285 Pro Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu 1305 1310 1300 Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly 1320 1325 1315 Ser Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Leu Pro 1335 1340 · 1330 Asp Gln Ala Ser Asp Asp Gly Asp Lys Gly Ser Asp Val Glu Ser Tyr 1355 1360 1350 Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser 1370 1375 1365 Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val 1380 1385 1390 -Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys 1395 1400 1405 Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn Ser Leu 1410 1415 1420 Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser Ala Gly 1425 1430 1435 Leu Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp 1450 1455 1445 His Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val 1460 1465 1470 Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro 1480 1485 1475 His Ser Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Asn 1490 1495

```
Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys Asp Leu
                                1515
              1510
Leu Glu Asp Thr Val Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn
                                     1535
                             1530
          1525
Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg
                          1545
                                           1550
         1540
Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala
                                       1565
                      1560
      1555
Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Val Val Met Gly Ser Ser
                  1575
                                    1580
   1570
Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn
                                                 1600
       1590
                                 1595
Thr Trp Lys Ser Lys Lys Asn Pro Met Gly Phe Ser Tyr Asp Thr Arg
                  1610
      1605
Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Val Glu Glu Ser
                                 1630
                          1625
   1620
Ile Tyr Gln Cys Cys Asp Leu Ala Pro Glu Ala Arg Gln Ala Ile Lys
            1640
                                       1645
      1635
Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys
                                    1660
           1655
   1650
Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr
1665 1670 1675
Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala
                             1690
                                       1695
             1685
Cys Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Asn Ala Ala
                          1705
                                           1710
        1700
Gly Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala
                      1720 1725
     1715
Ser Leu Arg Val Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala Pro Pro
                    1735
. 1730
                                     1740
Gly Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser Cys
                                 1755
                                                  1760
                1750
1745
Ser Ser Asn Val Ser Val Ala His Asp Ala Ser Gly Lys Arg Val Tyr
             1765
                              1770
                                               1775
Tyr Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala Trp Glu
                  1785 1790
          1780
Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Met
                                        1805
     1795 1800
Tyr Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe Phe
                   1815
                                     1820
   1810
Ser Ile Leu Leu Ala Gln Glu Gln Leu Glu Lys Ala Leu Asp Cys Gln
                                  1835
                 1830
 Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro Gln Ile
                                              1855
                              1850
              1845
 Ile Glu Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser Tyr Ser
                           1865
                                            1870
           1860
 Pro Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val
                                        1885
       1875
                       1880
 Pro Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Arg
                                    1900
                    1895
    1890
 Leu Leu Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe
                                                   1920
                       1915
                 1910
 Asn Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala Ala
                               1930
              1925
```

```
Ser Gln Leu Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Ser Gly Gly
                                                    1950
                                1945
           1940
Asp Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu
                                                1965
                            1960
        1955
Cys Leu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn
                                            1980
                        1975
   1970
Ara
1985
<210> 2
<211> 5965
<212> DNA
<213> Artificial Sequence
<220>
<223> Non-optimized cDNA sequence encoding SEQ. ID. NO.
<400> 2
gecaccatgg egeceateae ggeetaetee caacagaege ggggeetaet tggttgeate
atcactagcc ttacaggccg ggacaagaac caggtcgagg gagaggttca ggtggtttcc
                                                                       120
                                                                       180
accgcaacac aatccttcct ggcgacctgc gtcaacggcg tgtgttggac cgtttaccat
                                                                       240
ggtgctggct caaagacctt agccggccca aaggggccaa tcacccagat gtacactaat
gtggaccagg acctcgtcgg ctggcaggcg cccccgggg cgcgttcctt gacaccatgc
                                                                       300
acctgtggca gctcagacct ttacttggtc acgagacatg ctgacgtcat tccggtgcgc
                                                                       360
cggcggggcg acagtagggg gagcctgctc tccccaggc ctgtctccta cttgaagggc
                                                                       420
tettegggtg gtecactget etgecetteg gggeaegetg tgggeatett eegggetgee
                                                                       480
gtatgcaccc ggggggttgc gaaggcggtg gactttgtgc ccgtagagtc catggaaact
                                                                       540
actatgeggt eteeggtett caeggacaac teatecece eggeegtace geagteattt
caagtggccc acctacacgc tcccactggc agcggcaaga gtactaaagt gccggctgca
                                                                       660
                                                                       720
tatgcagccc aagggtacaa ggtgctcgtc ctcaatccgt ccgttgccgc taccttaggg
                                                                       780
tttggggcgt atatgtctaa ggcacacggt attgacccca acatcagaac tggggtaagg
accattacca caggogococ ogtoacatac totacctatg gcaagtttot tgccgatggt
                                                                       840
                                                                       900
ggttgctctg ggggcgctta tgacatcata atatgtgatg agtgccattc aactgactcg
                                                                       960
actacaatct tgggcatcgg cacagtcctg gaccaagcgg agacggctgg agcgcggctt
gtcgtgctcg ccaccgctac gcctccggga tcggtcaccg tgccacaccc aaacatcgag
                                                                      1020
gaggtggccc tgtctaatac tggagagatc cccttctatg gcaaagccat ccccattgaa
                                                                      1080
                                                                      1140
gccatcaggg ggggaaggca teteatttte tgteatteea agaagaagtg egacgagete
gccgcaaagc tgtcaggcct cggaatcaac gctgtggcgt attaccgggg gctcgatgtg
                                                                      1200
tccgtcatac caactatcgg agacgtcgtt gtcgtggcaa cagacgctct gatgacgggc
                                                                      1260
                                                                      1320
tatacgggcg actttgactc agtgatcgac tgtaacacat gtgtcaccca gacagtcgac
ttcagcttgg atcccacctt caccattgag acgacgaccg tgcctcaaga cgcagtgtcg
cgctcgcagc ggcggggtag gactggcagg ggtaggagag gcatctacag gtttgtgact
                                                                      1440
                                                                      1500
ccgggagaac ggccctcggg catgttcgat tcctcggtcc tgtgtgagtg ctatgacgcg
                                                                      1560
ggctgtgctt ggtacgagct cacccccgcc gagacctcgg ttaggttgcg ggcctacctg
aacacaccag ggttgcccgt ttgccaggac cacetggagt tetgggagag tgtettcaca
                                                                      1620
ggcctcaccc acatagatgc acacttcttg tcccagacca agcaggcagg agacaacttc
                                                                      1680
                                                                       1740
ccctacctgg tagcatacca agccacggtg tgcgccaggg ctcaggcccc acctccatca
                                                                       1800
tgggatcaaa tgtggaagtg tctcatacgg ctgaaaccta cgctgcacgg gccaacaccc
                                                                      1860
ttgctgtaca ggctgggagc cgtccaaaat gaggtcaccc tcacccaccc cataaccaaa
tacatcatgg catgcatgtc ggctgacctg gaggtcgtca ctagcacctg ggtgctggtg
                                                                      1920
ggcggagtcc ttgcagctct ggccgcgtat tgcctgacaa caggcagtgt ggtcattgtg
                                                                       1980
                                                                       2040
ggtaggatta tettgteegg gaggeegget attgtteeeg acagggagtt tetetaceag
gagttcgatg aaatggaaga gtgcgcctcg cacctccctt acatcgagca gggaatgcag
                                                                      2100
ctcgccgagc aattcaagca gaaagcgctc gggttactgc aaacagccac caaacaagcg
```

```
2220
 gaggetgetg ctcccgtggt ggagtccaag tggcgagccc ttgagacatt ctgggcgaag
                                                                       2280
 cacatgtgga atttcatcag cgggatacag tacttagcag gcttatccac tctgcctggg
                                                                        2340
 aacccegeaa tagcatcatt gatggcatte acagceteta teaccageee geteaccaee
                                                                        2400
 caaagtaccc tcctgtttaa catcttgggg gggtgggtgg ctgcccaact cgccccccc
 agegeegett eggetttegt gggegeegge ategeeggtg eggetgttgg eageatagge
                                                                        2460
 cttgggaagg tgcttgtgga cattctggcg ggttatggag caggagtggc cggcgcgctc
                                                                        2520
                                                                        2580 ·
 gtggccttca aggtcatgag cggcgagatg ccctccaccg aggacctggt caatctactt
 cctgccatcc tctctcctgg cgccctggtc gtcggggtcg tgtgtgcagc aatactgcgt
                                                                        2640
                                                                        2700
 cgacacgtgg gtccgggaga gggggctgtg cagtggatga accggctgat agcgttcgcc
                                                                        2760
 tegeggggta atcatgttte ecceaegeae tatgtgeetg agagegaege egeagegegt
                                                                        2820
 gttactcaga tcctctccag ccttaccatc actcagctgc tgaaaaggct ccaccagtgg
                                                                        2880
 attaatgaag actgctccac accgtgttcc ggctcgtggc taagggatgt ttgggactgg
atatgcacgg tgttgactga cttcaagacc tggctccagt ccaagctcct gccgcagcta
                                                                        2940
                                                                        3000
  ccgggagtcc cttttttctc gtgccaacgc gggtacaagg gagtctggcg gggagacggc
                                                                        3060
 atcatgcaaa ccacctgccc atgtggagca cagatcaccg gacatgtcaa aaacggttcc
 atgaggatcg tcgggcctaa gacctgcagc aacacgtggc atggaacatt ccccatcaac
                                                                        3120
  gcatacacca cgggcccctg cacaccctct ccagcgccaa actattctag ggcgctgtgg
                                                                        3180
 cgggtggccg ctgaggagta cgtggaggtc acgcgggtgg gggatttcca ctacgtgacg
                                                                        3240
                                                                        3300
  ggcatgacca ctgacaacgt aaagtgccca tgccaggttc cggctcctga attcttcacg
                                                                        3360
  gaggtggacg gagtgcggtt gcacaggtac gctccggcgt gcaggcctct cctacgggag
  gaggttacat tccaggtcgg gctcaaccaa tacctggttg ggtcacagct accatgcgag
                                                                        3420
  cccgaaccgg atgtagcagt gctcacttcc atgctcaccg acccctccca catcacagca
                                                                        3480
                                                                        3540
  gaaacggcta agcgtaggtt ggccaggggg tctccccct ccttggccag ctcttcagct
  agccagttgt ctgcgccttc cttgaaggcg acatgcacta cccaccatgt ctctccggac
                                                                        3600
  gctgacetca tcgaggecaa ectectgtgg eggeaggaga tgggegggaa cateaceege
                                                                        3660
  gtggagtcgg agaacaaggt ggtagtcctg gactctttcg acccgcttcg agcggaggag
                                                                        3720
  gatgagaggg aagtatccgt tccggcggag atcctgcgga aatccaagaa gttccccgca
                                                                        3780
  gcgatgccca tctgggcgcg cccggattac aaccctccac tgttagagtc ctggaaggac
                                                                        3840
                                                                        3900
  ccggactacg tccctccggt ggtgcacggg tgcccgttgc cacctatcaa ggcccctcca
                                                                        3960
  ataccacctc cacggagaaa gaggacggtt gtcctaacag agtcctccgt gtcttctgcc
  ttagcggage tcgctactaa gacettcgge agetccgaat catcggccgt cgacagcgge
                                                                        4020
  acggcgaccg cccttcctga ccaggcctcc gacgacggtg acaaaggatc cgacgttgag
                                                                        4080
  tegtactect ecatgeece cettgagggg gaaceggggg acceegatet eagtgaeggg
                                                                        4140
  tcttggtcta ccgtgagcga ggaagctagt gaggatgtcg tctgctgctc aatgtcctac
                                                                        4200
                                                                        4260
  acatggacag gcgccttgat cacgccatgc gctgcggagg aaagcaagct gcccatcaac
  gegttgagca actetttget gegecaccat aacatggttt atgecacaac atetegeage
                                                                        4320
  gcaggcctgc ggcagaagaa ggtcaccttt gacagactgc aagtcctgga cgaccactac
                                                                        4380
                                                                        4440
  cgggacgtgc tcaaggagat gaaggcgaag gcgtccacag ttaaggctaa actcctatcc
  gtagaggaag cctgcaagct gacgccccca cattcggcca aatccaagtt tggctatggg
                                                                        4500
                                                                        4560
  gcaaaggacg tccggaacct atccagcaag gccgttaacc acatccactc cgtgtggaag
  gacttgctgg aagacactgt gacaccaatt gacaccacca tcatggcaaa aaatgaggtt
                                                                        4620
  ttctgtgtcc aaccagagaa aggaggccgt aagccagccc gccttatcgt attcccagat
                                                                        4680
                                                                         4740
  ctgggagtcc gtgtatgcga gaagatggcc ctctatgatg tggtctccac ccttcctcag
  gtcgtgatgg gctcctcata cggattccag tactctcctg ggcagcgagt cgagttcctg
                                                                         4800
                                                                         4860
  gtgaatacct ggaaatcaaa gaaaaacccc atgggctttt catatgacac tcgctgtttc
  gactcaacgg tcaccgagaa cgacatccgt gttgaggagt caatttacca atgttgtgac
                                                                         4920
  ttggccccg aagccagaca ggccataaaa tcgctcacag agcggcttta tatcgggggt
                                                                         4980
  cctctgacta attcaaaagg gcagaactgc ggttatcgcc ggtgccgcgc gagcggcgtg
                                                                         5040
                                                                         5100
  ctgacgacta gctgcggtaa caccctcaca tgttacttga aggcctctgc agcctgtcga
   gctgcgaagc tccaggactg cacgatgctc gtgaacgccg ccggccttgt cgttatctgt
                                                                         5160
                                                                         5220
   gaaagcgcgg gaacccaaga ggacgcggcg agcctacgag tcttcacgga ggctatgact
   aggtactetg ecceceegg ggaccegece caaccagaat acgaettgga getgataaca
                                                                         5280
                                                                         5340
   tcatgttcct ccaatgtgtc ggtcgcccac gatgcatcag gcaaaagggt gtactacctc
                                                                         5400
   accegtgate ccaccacce cetegeacgg getgegtggg aaacagetag acacacteca
   gttaactcct ggctaggcaa cattatcatg tatgcgccca ctttgtgggc aaggatgatt
                                                                         5460
```

```
ctgatgactc acttcttctc catccttcta gcacaggagc aacttgaaaa agccctggac
                                                                      5520
                                                                    .. 5580
tgccagatct acggggcctg ttactccatt gagccacttg acctacctca gatcattgaa
                                                                      5640
cgactccatg gccttagcgc attttcactc catagttact ctccaggtga gatcaatagg.
                                                                      5700
gtggcttcat gcctcaggaa acttggggta ccaccettge gagtetggag acategggee
aggagegtee gegetagget actgteceag ggggggaggg cegecaettg tggcaagtae
                                                                      5760·
ctcttcaact gggcagtgaa gaccaaactc aaactcactc caatcccggc tgcgtcccag
                                                                      5820
                                                                      5880
ctggacttgt ccggctggtt cgttgctggt tacagcgggg gagacatata tcacagcctg
tctcgtgccc gaccccgctg gttcatgctg tgcctactcc tactttctgt aggggtaggc
                                                                      5940
                                                                      5965
atctacctgc tccccaaccg ataaa
<210> 3
<211> 5965
<212> DNA
<213> Artificial Sequence
<220>
<223> Optimized cDNA encoding SEQ ID NO: 1
<400> 3
gccaccatgg cccccatcac cgcctacagc cagcagaccc gcggcctgct gggctgcatc
                                                                       120
atcaccagcc tgaccggccg cgacaagaac caggtggagg gcgaggtgca ggtggtgagc
                                                                       180
accyccaccc agagettect gyccacctyc ytgaacygcy tytyctygac cytytaccac
                                                                       240
ggcgccggca gcaagaccct ggccggcccc aagggcccca tcacccagat gtacaccaac
gtggaccagg acctggtggg ctggcaggcc cccccggcg cccgcagcct gaccccctgc
                                                                       300
                                                                       360
acctgcggca gcagcgacct gtacctggtg acccgccacg ccgacgtgat ccccgtgcgc
                                                                       420
cgccgcggcg acagccgcgg cagcctgctg agcccccgcc ccgtgagcta cctgaagggc
agcageggeg geceetget gtgeeceage ggecaegeeg tgggeatett eegegeegee
                                                                       480
                                                                       540
gtgtgcaccc gcggcgtggc caaggccgtg gacttcgtgc ccgtggagag catggagacc
                                                                       600
accatgcgca gccccgtgtt caccgacaac agcagccccc ccgccgtgcc ccagagcttc
                                                                       660
caggtggccc acctgcacgc ccccaccggc agcggcaaga gcaccaaggt gcccgccgcc
tacgccgccc agggctacaa ggtgctggtg ctgaacccca gcgtggccgc caccctgggc
                                                                       720
                                                                       780
tteggegeet acatgageaa ggeecaegge ategaeecea acateegeae eggegtgege
accatcacca ccggcgcccc cgtgacctac agcacctacg gcaagttcct ggccgacggc
                                                                       840
ggctgcagcg gcggcgccta cgacatcatc atctgcgacg agtgccacag caccgacagc
                                                                       900
                                                                       960
accaccatce tgggcatcgg caccgtgctg gaccaggccg agaccgccgg cgcccgcctg
                                                                      1020
gtggtgctgg ccaccgccac ccccccggc agcgtgaccg tgccccaccc caacatcgag
gaggtggccc tgagcaacac cggcgagatc cccttctacg gcaaggccat ccccatcgag
                                                                      1080
                                                                      1140
gccatccgcg gcggccgcca cctgatcttc tgccacagca agaagaagtg cgacgagctg
                                                                      1200
gccgccaage tgageggeet gggcatcaae gccgtggeet actacegegg cetggaegtg
agcgtgatec ccaccategg cgacgtggtg gtggtggcca ccgacgccct gatgaccggc
                                                                      1260
                                                                      1320
tacaccggcg acttcgacag cgtgatcgac tgcaacacct gcgtgaccca gaccgtggac
                                                                      1380 ,
ttcagcctgg accccacctt caccatcgag accaccaccg tgccccagga cgccgtgagc
                                                                      1440
cgcagccagc gccgcggccg caccggccgc ggccgccgcg gcatctaccg cttcgtgacc
cccggcgagc gccccagcgg catgttcgac agcagcgtgc tgtgcgagtg ctacgacgcc
                                                                      1500
                                                                      1560
ggctgcgcct ggtacgagct gacccccgcc gagaccagcg tgcgcctgcg cgcctacctg
aacaccccg gcctgcccgt gtgccaggac cacctggagt tctgggagag cgtgttcacc
                                                                      1620
                                                                      1680
ggcctgaccc acatcgacgc ccacttcctg agccagacca agcaggccgg cgacaacttc
                                                                      1740
ccctacctgg tggcctacca ggccaccgtg tgcgcccgcg cccaggcccc ccccccagc
tgggaccaga tgtggaagtg cetgateege etgaageeea eeetgeaegg eeeeaeeeee
                                                                      1800
                                                                      1860
ctgctgtacc gcctgggcgc cgtgcagaac gaggtgaccc tgacccaccc catcaccaag
                                                                      1920
tacatcatgg cctgcatgag cgccgacctg gaggtggtga ccagcacctg ggtgctggtg
                                                                      1980
ggcggcgtgc tggccgccct ggccgcctac tgcctgacca ccggcagcgt ggtgatcgtg
                                                                      2040
ggcegcatca teetgagegg cegeceegee ategtgeeeg acegegagtt cetgtaceag
gagttcgacg agatggagga gtgcgccagc cacctgccct acatcgagca gggcatgcag
                                                                      2100
                                                                      2160
ctggccgagc agttcaagca gaaggccctg ggcctgctgc agaccgccac caagcaggcc
```

```
gaggccgccg cccccgtggt ggagagcaag tggcgcgccc tggagacctt ctgggccaag
                                                                      2280
cacatgtgga acttcatcag cggcatccag tacctggccg gcctgagcac cctgcccggc
aacccegeca tegecageet gatggeette acegecagea teaccageee eetgaccace
                                                                      2340
                                                                      2400
cagageacce tgetgttcaa cateetggge ggetgggtgg cegeceaget ggeeeceece
agcgccgcca gcgccttcgt gggcgccggc atcgccggcg ccgccgtggg cagcatcggc
                                                                      2460
                                                                      2520
ctgggcaagg tgctggtgga catcctggcc ggctacggcg ccggcgtggc cggcgccctg
                                                                      2580
gtggccttca aggtgatgag cggcgagatg cccagcaccg aggacctggt gaacctgctg
cccgccatcc tgagccccgg cgccctggtg gtgggcgtgg tgtgcgccgc catcctgcgc
                                                                      2640
                                                                      2700
cgccacgtgg gccccggcga gggcgccgtg cagtggatga accgcctgat cgccttcgcc
agecgeggea accaegtgag ecceaeceae taegtgeeeg agagegaege egeegeeege
                                                                      2760
gtgacccaga tcctgagcag cctgaccatc acccagctgc tgaagcgcct gcaccagtgg
                                                                      2820
                                                                      2880
atcaacgagg actgcagcac cccctgcagc ggcagctggc tgcgcgacgt gtgggactgg
                                                                      2940
atotgcaccg tgctgaccga cttcaagacc tggctgcaga gcaagctgct gccccagctg
                                                                      3000
cccggcgtgc ccttcttcag ctgccagcgc ggctacaagg gcgtgtggcg cggcgacggc
                                                                      3060 -
atcatgcaga ccacctgccc ctgcggcgcc cagatcaccg gccacgtgaa gaacggcagc
atgcgcatcg tgggccccaa gacctgcagc aacacctggc acggcacctt ccccatcaac
                                                                      3120
                                                                      3180
qcctacacca coggecctg caccccage cocgeccca actacagecg egecetgtgg
cgcgtggccg ccgaggagta cgtggaggtg acccgcgtgg gcgacttcca ctacgtgacc
                                                                      3240
ggcatgacca ccgacaacgt gaagtgcccc tgccaggtgc ccgcccccga gttcttcacc
                                                                      3300
                                                                      3360
gaggtggacg gcgtgcgcct gcaccgctac gcccccgcct gccgcccct gctgcgcgag
gaggtgacct tccaggtggg cctgaaccag tacctggtgg gcagccagct gccctgcgag
                                                                      3420
                                                                      3480
cccgagcccg acgtggccgt gctgaccagc atgctgaccg accccagcca catcaccgcc
gagaccgcca agegeegeet ggeeegegge ageeeeeea geetggeeag cageagegee
                                                                      3540
                                                                      3600
agccagctga gcgcccccag cctgaaggcc acctgcacca cccaccacgt gagccccgac
gccgacctga tcgaggccaa cctgctgtgg cgccaggaga tgggcggcaa catcacccgc
                                                                      3660
gtggagagcg agaacaaggt ggtggtgctg gacagcttcg acccctgcg cgccgaggag
                                                                      3720
gacgagcgcg aggtgagcgt gcccgccgag atcctgcgca agagcaagaa gttccccgcc
                                                                       3780
gccatgccca tctgggcccg ccccgactac aacccccccc tgctggagag ctggaaggac
                                                                       3840
cccgactacg tgcccccgt ggtgcacggc tgccccctgc ccccatcaa ggcccccccc
                                                                       3900
atccccccc cccgccgcaa gcgcaccgtg gtgctgaccg agagcagcgt gagcagcgcc
                                                                       3960
                                                                       4020
ctggccgagc tggccaccaa gaccttcggc agcagcgaga gcagcgccgt ggacagcggc
                                                                       4080
 accgccaccg ccctgcccga ccaggccagc gacgacggcg acaagggcag cgacgtggag
 agctacagca gcatgccccc cctggagggc gagcccggcg accccgacct gagcgacggc
                                                                       4140
                                                                       4200
 agctggagca ccgtgagcga ggaggccagc gaggacgtgg tgtgctgcag catgagctac
 acctggaccg gcgccctgat caccccctgc gccgccgagg agagcaagct gcccatcaac
                                                                       4260
 gccctgagca acagcctgct gcgccaccac aacatggtgt acgccaccac cagccgcagc
                                                                       4320
                                                                       4380
 gccggcctgc gccagaagaa ggtgaccttc gaccgcctgc aggtgctgga cgaccactac
                                                                       4440
 cgcgacgtgc tgaaggagat gaaggccaag gccagcaccg tgaaggccaa gctgctgagc
                                                                       4500
 gtggaggagg cctgcaagct gaccccccc cacagcgcca agagcaagtt cggctacggc
 gccaaggacg tgcgcaacct gagcagcaag gccgtgaacc acatccacag cgtgtggaag
                                                                       4560
 gacetgetgg aggacaccgt gacccccatc gacaccacca tcatggccaa gaacgaggtg
                                                                       4620
                                                                       4680
 ttctgcgtgc agcccgagaa gggcggccgc aagcccgccc gcctgatcgt gttccccgac
 ctgggcgtgc gcgtgtgcga gaagatggcc ctgtacgacg tggtgagcac cctgccccag
                                                                       4740
 gtggtgatgg gcagcagcta cggcttccag tacagccccg gccagcgcgt ggagttcctg
                                                                       4800
                                                                       4860
 gtgaacacct ggaagagcaa gaagaacccc atgggcttca gctacgacac ccgctgcttc
                                                                       4920
 gacagcaccg tgaccgagaa cgacatccgc gtggaggaga gcatctacca gtgctgcgac
                                                                       4980
 ctggccccg aggcccgcca ggccatcaag agcctgaccg agcgcctgta catcggcggc
 ccctgacca acagcaaggg ccagaactgc ggctaccgcc gctgccgcgc cagcggcgtg
                                                                       5040
                                                                       5100
 ctgaccacca gctgcggcaa caccctgacc tgctacctga aggccagcgc cgcctgccgc
                                                                       5160
 gccgccaagc tgcaggactg caccatgctg gtgaacgccg ccggcctggt ggtgatctgc
 gagagegeeg geacecagga ggacgeegee ageetgegeg tgttcacega ggecatgace
                                                                       5220
                                                                       5280
 cgctacagcg cccccccgg cgaccccccc cagcccgagt acgacctgga gctgatcacc
                                                                       5340
 agetgeagea geaacgtgag egtggeecac gaegeeageg geaagegegt gtactacetg
 accegegace ceaceacee ectggeeege geegeetggg agacegeeeg ceacaceeee
                                                                       5400
                                                                       5460
 gtgaacagct ggctgggcaa catcatcatg tacgccccca ccctgtgggc ccgcatgatc
```

```
5520
ctgatgaccc acttcttcag catcctgctg gcccaggagc agctggagaa ggccctggac
                                                                      5580
tgccagatct acggcgcctg ctacagcatc gagcccctgg acctgcccca gatcatcgag
cgcctgcacg gcctgagcgc cttcagcctg cacagctaca gccccggcga gatcaaccgc
                                                                      5640
gtggccaget geetgegeaa getgggegtg eeeceetge gegtgtggeg eeacegegee
                                                                      5700
cgcagcgtgc gcgcccgcct gctgagccag ggcggccgcg ccgccacctg cggcaagtac
                                                                      5760
ctgttcaact gggccgtgaa gaccaagctg aagctgaccc ccatccccgc cgccagccag
                                                                      5820.
ctggacctga gcggctggtt cgtggccggc tacagcggcg gcgacatcta ccacagcctg
                                                                      5880
ageogegeee geocegetg gttcatgetg tgeetgetge tgetgagegt gggcgtggge
                                                                      5940
                                                                      5965
atctacctgc tgcccaaccg ctaaa
<210> 4
<211> 37090
<212> DNA
<213> Artificial Sequence
<220>
<223> MRKAd6-NSmut nucleic acid
<400> 4
catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt
                                                                       120
ttgtgacgtg. gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt
gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg
                                                                       180
                                                                       240
gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag
                                                                       300
taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga
agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg
                                                                       360
gactttgacc gtttacgtgg agactcgccc aggtgttttt ctcaggtgtt ttccgcgttc
                                                                       420
                                                                       480
cgggtcaaag ttggcgtttt attattatag gcggccgcga tccattgcat acgttgtatc
catatcataa tatgtacatt tatattggct catgtccaac attaccgcca tgttgacatt
                                                                       540
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
                                                                       600
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
                                                                       660
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
                                                                       720
                                                                       780
attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt
                                                                       840
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca
                                                                       900
                                                                       960
togotattac catggtgatg eggttttggc agtacatcaa tgggegtgga tageggtttg
                                                                      1020
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc
                                                                      1080
aaaatcaacg ggactttcca.aaatgtcgta acaactccgc cccattgacg caaatgggcg
                                                                      1140
gtaggcgtgt acggtgggag gtctatataa gcagagctcg tttagtgaac cgtcagatcg
                                                                      1200
cctggagacg ccatccacgc tgttttgacc tccatagaag acaccgggac cgatccagcc
                                                                      1260
teegeggeeg ggaaeggtge attggaaege ggatteeeeg tgeeaagagt gagatetgee
                                                                      1320
accatggcgc ccatcacggc ctactcccaa cagacgcggg gcctacttgg ttgcatcatc
                                                                      1380
actageetta caggeeggga caagaaceag gtegagggag aggtteaggt ggtttecace
                                                                      1440
gcaacacaat cetteetgge gacetgegte aacggegtgt gttggacegt ttaccatggt
                                                                      1500
gctggctcaa agaccttagc cggcccaaag gggccaatca cccagatgta cactaatgtg
                                                                      1560
gaccaggacc tegteggetg geaggegeee eeeggggege gtteettgae accatgeace
                                                                      1620
tgtggcagct cagacettta cttggtcacg agacatgctg acgtcattcc ggtgcgccgg
cggggcgaca gtagggggag cctgctctcc cccaggcctg tctcctactt gaagggctct
                                                                      1680
tegggtggte cactgetetg ceettegggg cacgetgtgg geatetteeg ggetgeegta
                                                                      1740
                                                                      1800
tgcacceggg gggttgcgaa ggcggtggac tttgtgcccg tagagtccat ggaaactact
                                                                      1860
atgeggtete eggtetteae ggacaactea tecceceegg cegtacegea gteattteaa
                                                                      1920
gtggcccacc tacacgctcc cactggcage ggcaagagta ctaaagtgcc ggctgcatat
gcagcccaag ggtacaaggt gctcgtcctc aatccgtccg ttgccgctac cttagggttt
                                                                      1980
                                                                      2040
ggggcgtata tgtctaaggc acacggtatt gaccccaaca tcagaactgg ggtaaggacc
                                                                      2100
attaccacag gegeeeegt cacatactet acetatggea agtttettge egatggtggt
```

2160

tgctctgggg gcgcttatga catcataata tgtgatgagt gccattcaac tgactcgact

```
2220
acaatcttgg gcatcggcac agtcctggac caagcggaga cggctggagc gcggcttgtc
gtgctcgcca ccgctacgcc tccgggatcg gtcaccgtgc cacacccaaa catcgaggag
                                                                      2280
                                                                      2340
gtggccctgt ctaatactgg agagatcccc ttctatggca aagccatccc cattgaagcc
                                                                      2400
atcagggggg gaaggcatct cattttctgt cattccaaga agaagtgcga cgagctcgcc
gcaaagctgt caggcctcgg aatcaacgct gtggcgtatt accgggggct cgatgtgtcc
                                                                      2460
                                                                      2520
gtcataccaa ctatcggaga cgtcgttgtc gtggcaacag acgctctgat gacgggctat
acgggcgact ttgactcagt gatcgactgt aacacatgtg tcacccagac agtcgacttc
                                                                      2580
                                                                      2640
agettggate ceacetteac cattgagacg acgacegtge etcaagacge agtgtegege
tcgcagcggc ggggtaggac tggcaggggt aggagaggca tctacaggtt tgtgactccg
                                                                      2700
ggagaacggc cctcgggcat gttcgattcc tcggtcctgt gtgagtgcta tgacgcgggc
                                                                      2760
                                                                      2820
tgtgcttggt acgagctcac ccccgccgag acctcggtta ggttgcgggc ctacctgaac
acaccagggt tgcccgtttg ccaggaccac ctggagttct gggagagtgt cttcacaggc
                                                                      2880
                                                                      2940
ctcacccaca tagatgcaca cttcttgtcc cagaccaagc aggcaggaga caacttcccc
tacctggtag cataccaagc cacggtgtgc gccagggctc aggccccacc tccatcatgg
                                                                      3000
gatcaaatgt ggaagtgtct catacggctg aaacctacgc tgcacgggcc aacacccttg
                                                                      3060
                                                                      3120
ctgtacaggc tgggagccgt ccaaaatgag gtcaccctca cccaccccat aaccaaatac
atcatggcat gcatgtcggc tgacctggag gtcgtcacta gcacctgggt gctggtgggc
                                                                      3180
ggagtccttg cagctctggc cgcgtattgc ctgacaacag gcagtgtggt cattgtgggt
                                                                      3240
aggattatct tgtccgggag gccggctatt gttcccgaca gggagtttct ctaccaggag
                                                                      3300
ttcgatgaaa tggaagagtg cgcctcgcac ctcccttaca tcgagcaggg aatgcagctc
                                                                      3360
                                                                      3420
gccgagcaat tcaagcagaa agcgctcggg ttactgcaaa cagccaccaa acaagcggag
gctgctgctc ccgtggtgga gtccaagtgg cgagcccttg agacattctg ggcgaagcac
                                                                      3480
atgtggaatt tcatcagcgg gatacagtac ttagcaggct tatccactct gcctgggaac
                                                                      3540
                                                                      3600
cocgcaatag catcattgat ggcattcaca gcctctatca ccagcccgct caccacccaa
agtaccetce tgtttaacat cttggggggg tgggtggetg cecaactege cececcage
                                                                      3660
                                                                      3720
geogettegg etttegtggg egeoggeate geoggtgegg etgttggeag eataggeett
gggaaggtgc ttgtggacat tctggcgggt tatggagcag gagtggccgg cgcgctcgtg
                                                                      3780
gccttcaagg tcatgagcgg cgagatgccc tccaccgagg acctggtcaa tctacttcct
                                                                      3840
gccatcctct ctcctggcgc cctggtcgtc ggggtcgtgt gtgcagcaat actgcgtcga
                                                                      3900
cacgtgggtc cgggagaggg ggctgtgcag tggatgaacc ggctgatagc gttcgcctcg
                                                                      3960
                                                                      4020
cggggtaatc atgtttcccc cacgcactat gtgcctgaga gcgacgccgc agcgcgtgtt
actcagatce tetecageet taccateact cagetgetga aaaggeteea ccagtggatt
                                                                      4080
                                                                      4140
aatgaagact gctccacacc gtgttccggc tcgtggctaa gggatgtttg ggactggata
                                                                       4200
tgcacggtgt tgactgactt caagacctgg ctccagtcca agctcctgcc gcagctaccg
ggagtccctt ttttctcgtg ccaacgcggg tacaagggag tctggcgggg agacggcatc
                                                                       4260
                                                                       4320
atgcaaacca cctgcccatg tggagcacag atcaccggac atgtcaaaaa cggttccatg
aggatcgtcg ggcctaagac ctgcagcaac acgtggcatg gaacattccc catcaacgca
                                                                       4380
tacaccacgg gcccctgcac accctctcca gcgccaaact attctagggc gctgtggcgg
                                                                       4440
                                                                       4500
gtggccgctg aggagtacgt ggaggtcacg cgggtggggg atttccacta cgtgacgggc
atgaccactg acaacgtaaa gtgcccatgc caggttccgg ctcctgaatt cttcacggag
                                                                       4560
                                                                       4620
gtggacggag tgcggttgca caggtacgct ccggcgtgca ggcctctcct acgggaggag
gttacattcc aggtcgggct caaccaatac ctggttgggt cacagctacc atgcgagccc
                                                                       4680
gaaccggatg tagcagtgct cacttccatg ctcaccgacc cctcccacat cacagcagaa
                                                                       4740
 acggctaagc gtaggttggc cagggggtct ccccctcct tggccagctc ttcagctagc
                                                                       4800
 cagttgtctg cgccttcctt gaaggcgaca tgcactaccc accatgtctc tccggacgct
                                                                       4860
                                                                       4920
 gacctcatcg aggccaacct cctgtggcgg caggagatgg gcgggaacat cacccgcgtg
                                                                       4980
 gagteggaga acaaggtggt agteetggae tetttegace egettegage ggaggaggat
 gagagggaag tatccgttcc ggcggagatc ctgcggaaat ccaagaagtt ccccgcagcg
                                                                       5040
 atgcccatct gggcgcgccc ggattacaac cctccactgt tagagtcctg gaaggacccg
                                                                       5100
 gactacgtcc ctccggtggt gcacgggtgc ccgttgccac ctatcaaggc ccctccaata
                                                                       5160
 ccacctccac ggagaaagag gacggttgtc ctaacagagt cctccgtgtc ttctgcctta
                                                                       5220
                                                                       5280
 geggageteg etactaagae etteggeage teegaateat eggeegtega eageggeaeg
 gcgaccgccc ttcctgacca ggcctccgac gacggtgaca aaggatccga cgttgagtcg
                                                                       5340
                                                                       5400
 tactcctcca tgcccccct tgagggggaa ccgggggacc ccgatctcag tgacgggtct
                                                                       5460
 tggtctaccg tgagcgagga agctagtgag gatgtcgtct gctgctcaat gtcctacaca
```

```
tggacaggcg cettgatcac gccatgcgct gcggaggaaa gcaagctgcc catcaacgcg
                                                                      5520
                                                                      5580
ttgagcaact ctttgctgcg ccaccataac atggtttatg ccacaacatc tcgcagcgca
                                                                      5640
ggcctgcggc agaagaaggt cacctttgac agactgcaag tcctggacga ccactaccgg
                                                                      5700
gacgtgctca aggagatgaa ggcgaaggcg tccacagtta aggctaaact cctatccgta
gaggaageet geaagetgae geecceacat teggeeaaat ceaagtttgg etatggggea
                                                                      5760
aaggacgtcc ggaacctatc cagcaaggcc gttaaccaca tccactccgt gtggaaggac
                                                                      5820
ttgctggaag acactgtgac accaattgac accaccatca tggcaaaaaa tgaggttttc
                                                                      5880
tgtgtccaac cagagaaagg aggccgtaag ccagcccgcc ttatcgtatt cccagatctg
                                                                      5940
ggagtccgtg tatgcgagaa gatggccctc tatgatgtgg tctccaccct tcctcaggtc
                                                                      6000
                                                                      6060
gtgatgggct cctcatacgg attccagtac tctcctgggc agcgagtcga gttcctggtg
                                                                      6120
aatacetgga aatcaaagaa aaaceccatg ggettttcat atgacaeteg etgtttcgae
tcaacggtca ccgagaacga catccgtgtt gaggagtcaa tttaccaatg ttgtgacttg
                                                                      6180
                                                                      6240
gccccgaag ccagacaggc cataaaatcg ctcacagagc ggctttatat cgggggtcct
                                                                      6300
ctgactaatt caaaagggca gaactgcggt tatcgccggt gccgcgcgag cggcgtgctg
acgactaget geggtaacae ceteacatgt taettgaagg cetetgeage etgtegaget
                                                                      6360·
                                                                      6420
gcgaagetee aggaetgeae gatgetegtg aacgeegeeg geettgtegt tatetgtgaa
                                                                      6480
agcgcgggaa cccaagagga cgcggcgagc ctacgagtct tcacggaggc tatgactagg
tactctgccc cccccgggga cccgcccaa ccagaatacg acttggagct gataacatca
                                                                      6540
tgttcctcca atgtgtcggt cgcccacgat gcatcaggca aaagggtgta ctacctcacc
                                                                      6600
                                                                      6660
cgtgatccca ccaccccct cgcacgggct gcgtgggaaa cagctagaca cactccagtt
                                                                      6720
aactectgge taggeaacat tateatgtat gegeecactt tgtgggeaag gatgattetg
atgactcact tettetecat cettetagea caggageaac ttgaaaaage cetggactge
                                                                      6780
cagatetacg gggeetgtta etecattgag ceaettgace taceteagat cattgaacga :-
                                                                      6840
                                                                      6900
ctccatggcc ttagcgcatt ttcactccat agttactctc caggtgagat caatagggtg
getteatgee teaggaaact tggggtacea ceettgegag tetggagaea tegggeeagg
                                                                      6960
agcgtccgcg ctaggctact gtcccagggg gggagggccg ccacttgtgg caagtacctc
                                                                      7020
ttcaactggg cagtgaagac caaactcaaa ctcactccaa tcccggctgc gtcccagctg
                                                                      7080
gacttgtccg gctggttcgt tgctggttac agcgggggag acatatatca cagcctgtct
                                                                      7140
                                                                      7200
cgtgcccgac cccgctggtt catgctgtgc ctactcctac tttctgtagg ggtaggcatc
                                                                      7260
tacctgctcc ccaaccggta aatctagage tgtgccttct agttgccage catctgttgt
ttgcccctcc cccgtgcctt ccttgaccct ggaaggtgcc actcccactg tcctttccta
                                                                      7320
                                                                      7380
ataaaatgag gaaattgcat cgcattgtct gagtaggtgt cattctattc tggggggtgg
                                                                      7440
ggtggggcag gacagcaagg gggaggattg ggaagacaat agcaggcatg ctggggatgc
                                                                      7500
ggtgggctct atggccgatc ggcgcgccgt actgaaatgt gtgggcgtgg cttaagggtg
ggaaagaata tataaggtgg gggtcttatg tagttttgta tctgttttgc agcagccgcc
                                                                      7560 ..
                                                                      7620
gccgccatga gcaccaactc gtttgatgga agcattgtga gctcatattt gacaacgcgc
                                                                      7680
atgcccccat gggccggggt gcgtcagaat gtgatgggct ccagcattga tggtcgcccc
                                                                      7740
gtectgeceg caaactetac tacettgace tacgagaceg tgtetggaac geegttggag
                                                                      7800
actgeagect eegeegeege tteageeget geagecaceg eeegegggat tgtgaetgae
tttgctttcc tgagcccgct tgcaagcagt gcagcttccc gttcatccgc ccgcgatgac
                                                                      7860
aagttgacgg ctcttttggc acaattggat tctttgaccc gggaacttaa tgtcgtttct
                                                                      7920
                                                                      7980
cagcagctgt tggatctgcg ccagcaggtt tctgccctga aggcttcctc ccctcccaat
                                                                      8040
gcggtttaaa acataaataa aaaaccagac tctgtttgga tttggatcaa gcaagtgtct
tgctgtcttt atttaggggt tttgcgcgcg cggtaggccc gggaccagcg gtctcggtcg
                                                                      8100
ttgagggtcc tgtgtatttt ttccaggacg tggtaaaggt gactctggat gttcagatac
                                                                      8160
                                                                      8220
atgggcataa gcccgtctct ggggtggagg tagcaccact gcagagcttc atgctgcggg
                                                                      8280
gtggtgttgt agatgatcca gtcgtagcag gagcgctggg cgtggtgcct aaaaatgtct
ttcagtagca agctgattgc caggggcagg cccttggtgt aagtgtttac aaagcggtta
                                                                      8340
                                                                      8400
agctgggatg ggtgcatacg tggggatatg agatgcatct tggactgtat ttttaggttg
                                                                      8460
gctatgttcc cagccatatc cctccgggga ttcatgttgt gcagaaccac cagcacagtg
                                                                      8520
tatecggtge acttgggaaa tttgteatgt agettagaag gaaatgegtg gaagaacttg
gagacgccct tgtgacctcc aagattttcc atgcattcgt ccataatgat ggcaatgggc
                                                                      8580
                                                                       8640
ccacgggcgg cggcctgggc gaagatattt ctgggatcac taacgtcata gttgtgttcc
                                                                       8700
aggatgagat cgtcataggc catttttaca aagcgcgggc ggagggtgcc agactgcggt
                                                                       8760
ataatggttc catceggecc aggggegtag ttaccetcac agatttgcat tteccaeget
```

```
ttgagttcag atggggggat catgtctacc tgcggggcga tgaagaaaac ggtttccggg
                                                                      8820
gtaggggaga tcagctggga agaaagcagg ttcctgagca gctgcgactt accgcagccg
                                                                      8880
                                                                      8940
gtgggcccgt aaatcacacc tattaccggc tgcaactggt agttaagaga gctgcagctg
cogteatore tgageagggg ggecactteg ttaageatgt coetgacteg catgittice
                                                                      9000
                                                                      9060
ctgaccaaat ccgccagaag gcgctcgccg cccagcgata gcagttcttg caaggaagca
aagtttttca acggtttgag accgtccgcc gtaggcatgc ttttgagcgt ttgaccaagc
                                                                      9120
                                                                      9180
agttccaggc ggtcccacag ctcggtcacc tgctctacgg catctcgatc cagcatatct
                                                                      9240
cetegttteg egggttgggg eggetttege tgtaeggeag tagteggtge tegteeagae
                                                                      9300
gggccagggt catgtettte cacgggcgca gggteetegt cagegtagte tgggtcaegg
                                                                      9360
tgaaggggtg cgctccgggc tgcgcgctgg ccagggtgcg cttgaggctg gtcctgctgg
                                                                      9420
tgctgaagcg ctgccggtct tcgccctgcg cgtcggccag gtagcatttg accatggtgt
                                                                      9480
catagtocag cooctoogog gogtggcoot tggcgcgcag ottgccottg gaggaggcgc
                                                                      9540
cgcacgaggg gcagtgcaga cttttgaggg cgtagagctt gggcgcgaga aataccgatt
ceggggagta ggcatecgeg cegeaggeec egeagaeggt etegeattee acgageeagg
                                                                      9600
tgagetetgg cegttegggg teaaaaacca ggttteecce atgetttttg atgegtttet
                                                                      9660
                                                                      9720
tacctctggt ttccatgagc cggtgtccac gctcggtgac gaaaaggctg tccgtgtccc
cgtatacaga cttgagaggc ctgtcctcga gcggtgttcc gcggtcctcc tcgtatagaa
                                                                      9780
acteggacca ctetgagacg aaggetegeg tecaggeeag caegaaggag getaagtggg
                                                                      9840
aggggtagcg gtcgttgtcc actagggggt ccactcgctc cagggtgtga agacacatgt
                                                                      9900
cgccctcttc ggcatcaagg aaggtgattg gtttataggt gtaggccacg tgaccgggtg
                                                                      9960
                                                                     10020
ttcctgaagg ggggctataa aagggggtgg gggcgcgttc gtcctcactc tcttccgcat
cgctgtctgc gagggccagc tgttggggtg agtactccct ctcaaaagcg ggcatgactt
                                                                     10080
                                                                     10140
ctgcgctaag attgtcagtt tccaaaaacg aggaggattt gatattcacc tggcccgcgg
                                                                     10200.
tgatgccttt gagggtggcc gcgtccatct ggtcagaaaa gacaatcttt ttgttgtcaa
gcttggtggc aaacgacccg tagagggcgt tggacagcaa cttggcgatg gagcgcaggg
                                                                     10260
                                                                     10320
tttggttttt gtcgcgatcg gcgcgctcct tggccgcgat gtttagctgc acgtattcgc
gcgcaacgca ccgccattcg ggaaagacgg tggtgcgctc gtcgggcact aggtgcacgc
                                                                     10380
                                                                     10440
gccaaccgcg gttgtgcagg gtgacaaggt caacgctggt ggctacctct ccgcgtaggc
                                                                     10500
gctcgttggt ccagcagagg cggccgccct tgcgcgagca gaatggcggt agtgggtcta
                                                                     10560
gctgcgtctc gtccgggggg tctgcgtcca cggtaaagac cccgggcagc aggcgcgcgt
cgaagtagtc tatcttgcat ccttgcaagt ctagcgcctg ctgccatgcg cgggcggcaa
                                                                     10620
                                                                     10680
gcgcgcctc gtatgggttg agtgggggac cccatggcat ggggtgggtg agcgcggagg
cgtacatgcc gcaaatgtcg taaacgtaga ggggctctct gagtattcca agatatgtag
                                                                     10740
                                                                      10800
ggtagcatct tccaccgcgg atgctggcgc gcacgtaatc gtatagttcg tgcgagggag
cgaggaggtc gggaccgagg ttgctacggg cgggctgctc tgctcggaag actatctgcc
                                                                     10860
                                                                      10920
tgaagatggc atgtgagttg gatgatatgg ttggacgctg gaagacgttg aagctggcgt
ctgtgagacc taccgcgtca cgcacgaagg aggcgtagga gtcgcgcagc ttgttgacca
                                                                      10980
gctcggcggt gacctgcacg tctagggcgc agtagtccag ggtttccttg atgatgtcat
                                                                      11040
                                                                      11100
acttatcctg tecettttt ttecacaget egeggttgag gacaaactet tegeggtett
 tccagtactc ttggatcgga aacccgtcgg cctccgaacg gtaagagcct agcatgtaga
                                                                      11160
                                                                      11220
 actggttgac ggcctggtag gcgcagcatc ccttttctac gggtagcgcg tatgcctgcg
                                                                      11280
 cggccttccg gagcgaggtg tgggtgagcg caaaggtgtc cctaaccatg actttgaggt
                                                                      11340
 actggtattt gaagtcagtg tcgtcgcatc cgccctgctc ccagagcaaa aagtccgtgc
 gctttttgga acgcgggttt ggcagggcga aggtgacatc gttgaagagt atctttcccg
                                                                      11400
                                                                      11460
 cgcgaggcat aaagttgcgt gtgatgcgga agggtcccgg cacctcggaa cggttgttaa
 ttacctgggc ggcgagcacg atctcgtcaa agccgttgat gttgtggccc acaatgtaaa
                                                                      11520
                                                                      11580
 gttccaagaa gcgcgggatg cccttgatgg aaggcaattt tttaagttcc tcgtaggtga
                                                                      11640
 gctcttcagg ggagctgagc ccgtgctctg aaagggccca gtctgcaaga tgagggttgg
 aagcgacgaa tgagctccac aggtcacggg ccattagcat ttgcaggtgg tcgcgaaagg
                                                                      11700
                                                                      11760
 tcctaaactg gcgacctatg gccatttttt ctggggtgat gcagtagaag gtaagcgggt
                                                                      11820
 cttgttccca gcggtcccat ccaaggtccg cggctaggtc tcgcgcggcg gtcactagag
 gctcatctcc gccgaacttc atgaccagca tgaagggcac gagctgcttc ccaaaggccc
                                                                      11880
                                                                      11940
 ccatccaagt ataggtctct acatcgtagg tgacaaagag acgctcggtg cgaggatgcg
 agccgatcgg gaagaactgg atctcccgcc accagttgga ggagtggctg ttgatgtggt
                                                                      12000
                                                                      12060
 gaaagtagaa gtccctgcga cgggccgaac actcgtgctg gcttttgtaa aaacgtgcgc
```

```
agtactggca gcggtgcacg ggctgtacat cctgcacgag gttgacctga cgaccgcgca
                                                                     12120
                                                                     12180
caaggaagca gagtgggaat ttgagcccct cgcctggcgg gtttggctgg tggtcttcta
cttcggctgc ttgtccttga ccgtctggct gctcgagggg agttacggtg gatcggacca
                                                                      12240
                                                                      12300
ccacgccgcg cgagcccaaa gtccagatgt ccgcgcgcgg cggtcggagc ttgatgacaa
                                                                      12360
catcgcgcag atgggagctg tccatggtct ggagctcccg cggcgtcagg tcaggcggga
gctcctgcag gtttacctcg catagccggg tcagggcgcg ggctaggtcc aggtgatacc
                                                                      12420
 tgatttccag gggctggttg gtggcggcgt cgatggcttg caagaggccg catccccgcg
                                                                      12480
gegegactae ggtacegege ggegggeggt gggeegeggg ggtgteettg gatgatgeat
                                                                      12540 *
ctaaaagcgg tgacgcgggc gggcccccgg aggtaggggg ggctcgggac ccgccgggag
                                                                      12600
 agggggcagg ggcacgtcgg cgccgcgcgc gggcaggagc tggtgctgcg cgcggaggtt
                                                                      12660
gctggcgaac gcgacgacgc ggcggttgat ctcctgaatc tggcgcctct gcgtgaagac
                                                                      12720
gacgggcccg gtgagcttga acctgaaaga gagttcgaca gaatcaattt cggtgtcgtt
                                                                      12780
 gacggcggcc tggcgcaaaa tctcctgcac gtctcctgag ttgtcttgat aggcgatctc
                                                                     12840
                                                                      12900
 ggccatgaac tgctcgatct cttcctcctg gagatctccg cgtccggctc gctccacggt
                                                                      12960
 ggcggcgagg tcgttggaga tgcgggccat gagctgcgag aaggcgttga ggcctccctc
 gttccagacg cggctgtaga ccacgccccc ttcggcatcg cgggcgcgca tgaccacctg
                                                                     ··13020 ·
                                                                      13080
 cgcgagattg agetecacgt geegggegaa gaeggegtag tttegeagge getgaaagag
                                                                      13140
 gtagttgagg gtggtggcgg tgtgttctgc cacgaagaag tacataaccc agcgccgcaa
 cgtggattcg ttgatatccc ccaaggcctc aaggcgctcc atggcctcgt agaagtccac
                                                                      13200
 ggcgaagttg aaaaactggg agttgcgcgc cgacacggtt aactcctcct ccagaagacg
                                                                     13260
                                                                      13320
 gatgageteg gegacagtgt egegeacete gegeteaaag getacagggg cetettette
 ttcttcaatc tcctcttcca taagggcctc cccttcttct tcttctggcg gcggtggggg
                                                                      13380
 aggggggaca cggcggcgac gacggcgcac cgggaggcgg tcgacaaagc gctcgatcat
                                                                      13440
                                                                      13500
 ctccccgcgg cgacggcgca tggtctcggt gacggcgcgg ccgttctcgc gggggcgcag
 ttggaagacg ccgcccgtca tgtcccggtt atgggttggc ggggggctgc cgtgcggcag
                                                                      13560
                                                                      13620
 ggatacggcg ctaacgatgc atctcaacaa ttgttgtgta ggtactccgc caccgaggga
                                                                      13680
 cctgagcgag tccgcatcga ccggatcgga aaacctctcg agaaaggcgt ctaaccagtc
acagtogoaa ggtaggotga gcacogtggo gggoggoago gggoggoggt oggggttgtt
                                                                      13740
 tctggcggag gtgctgctga tgatgtaatt aaagtaggcg gtcttgagac ggcggatggt
                                                                      13800
                                                                      13860
 cgacagaagc accatgtcct tgggtccggc ctgctgaatg cgcaggcggt cggccatgcc
                                                                      13920
 ccaggetteg tittgacate ggegeaggte titgtagtag tettgeatga geetttetae
 cggcacttet tetteteett cetettgtee tgeatetett geatetateg etgeggegge
                                                                      13980
                                                                      14040
 ggcggagttt ggccgtaggt ggcgccctct tcctcccatg cgtgtgaccc cgaagcccct
                                                                      14100
 catcggctga agcagggcca ggtcggcgac aacgcgctcg gctaatatgg cctgctgcac
 ctgcgtgagg gtagactgga agtcgtccat gtccacaaag cggtggtatg cgcccgtgtt
                                                                      14160
                                                                      14220
 gatggtgtaa gtgcagttgg ccataacgga ccagttaacg gtctggtgac ccggctgcga
                                                                      14280
 gageteggtg tacetgagae gegagtaage cettgagtea aagaegtagt egttgeaagt
 ccgcaccagg tactggtatc ccaccaaaaa gtgcggcggc ggctggcggt agaggggcca
                                                                      14340
                                                                      14400
 gcgtagggtg gccggggctc cgggggcgag gtcttccaac ataaggcgat gatatccgta
                                                                      14460
 gatgtacctg gacatccagg tgatgccggc ggcggtggtg gaggcgcgcg gaaagtcacg
 gacgcggttc cagatgttgc gcagcggcaa aaagtgctcc atggtcggga cgctctggcc
                                                                      14520
                                                                      14580
 ggtcaggcgc gcgcagtcgt tgacgctcta gaccgtgcaa aaggagagcc tgtaagcggg
                                                                      14640
 cactettecg tggtetggtg gataaatteg caagggtate atggeggaeg accggggtte
                                                                      14700
 gaaccccgga tccggccgtc cgccgtgatc catgcggtta ccgcccgcgt gtcgaaccca
 ggtgtgcgac gtcagacaac gggggagcgc tccttttggc ttccttccag gcgcggcgga
                                                                      14760
                                                                      14820
 tgctgcgcta gcttttttgg ccactggccg cgcgcggcgt aagcggttag gctggaaagc
                                                                      14880
 gaaagcatta agtggctcgc tccctgtagc cggagggtta ttttccaagg gttgagtcgc
                                                                      14940
 gggacccccg gttcgagtct cgggccggcc ggactgcggc gaacgggggt ttgcctcccc
                                                                      15000
 gtcatgcaag accccgcttg caaattcctc cggaaacagg gacgagcccc ttttttgctt
                                                                      15060
 ttcccagatg catccggtgc tgcggcagat gcgcccccct cctcagcagc ggcaagagca
 agageagegg cagacatgea gggcaccete ecetteteet acegegteag gaggggcaac
                                                                      15120
                                                                      15180
 atccgcggct gacgcggcgg cagatggtga ttacgaaccc ccgcggcgcc ggacccggca
                                                                      15240
 ctacttggac ttggaggagg gcgagggcct ggcgcggcta ggagcgccct ctcctgagcg
 acacccaagg gtgcagctga agcgtgacac gcgcgaggcg tacgtgccgc ggcagaacct
                                                                      15300
 gtttcgcgac cgcgagggag aggagcccga ggagatgcgg gatcgaaagt tccatgcagg
                                                                      15360
```

```
15420
gcgcgagttg cggcatggcc tgaaccgcga gcggttgctg cgcgaggagg actttgagcc
cgacgcgcgg accgggatta gtcccgcgcg cgcacacgtg gcggccgccg acctggtaac
                                                                     15480
cgcgtacgag cagacggtga accaggagat taactttcaa aaaagcttta acaaccacgt
                                                                     15540
gcgcacgctt gtggcgcgcg aggaggtggc tataggactg atgcatctgt gggactttgt
                                                                     15600
aagcgcgctg gagcaaaacc caaatagcaa gccgctcatg gcgcagctgt tccttatagt
                                                                     15660
gcagcacagc agggacaacg aggcattcag ggatgcgctg ctaaacatag tagagcccga
                                                                     15720 ·
gggccgctgg ctgctcgatt tgataaacat tctgcagagc atagtggtgc aggagcgcag
                                                                    . 15780
                                                                     15840
cttgagcctg gctgacaagg tggccgccat taactattcc atgctcagtc tgggcaagtt
                                                                     15900
ttacgcccgc aagatatacc atacccctta cgttcccata gacaaggagg taaagatcga
ggggttctac atgcgcatgg cgctgaaggt gcttaccttg agcgacgacc tgggcgttta
                                                                     15960
                                                                     16020
togcaacgag ogcatocaca aggoogtgag ogtgagoogg oggogogago toagogacog
cgagctgatg cacagcctgc aaagggccct ggctggcacg ggcagcggcg atagagaggc
                                                                     16080
                                                                     16140
cgagtcctac tttgacgcgg gcgctgacct gcgctgggcc ccaagccgac gcgccctgga
                                                                     16200
ggcagctggg gccggacctg ggctggcggt ggcacccgcg cgcgctggca acgtcggcgg
cgtggaggaa tatgacgagg acgatgagta cgagccagag gacggcgagt actaagcggt
                                                                     16260
                                                                     16320
gatgtttctg atcagatgat gcaagacgca acggacccgg cggtgcgggc ggcgctgcag
                                                                     16380
agccagccgt ccggccttaa ctccacggac gactggcgcc aggtcatgga ccgcatcatg
tegetgactg cgcgcaacce tgacgcgtte cggcagcage cgcaggccaa ccggetetee
                                                                     16440
                                                                     16500
gcaattctgg aageggtggt eeeggegege gcaaaeeeca egcaegagaa ggtgetggeg
ategtaaaeg egetggeega aaacagggee ateeggeeeg atgaggeegg eetggtetae
                                                                     16560
                                                                     16620
gacgcgctgc ttcagcgcgt ggctcgttac aacagcagca acgtgcagac caacctggac
cggctggtgg gggatgtgcg cgaggccgtg gcgcagcgtg agcgcgcgca gcagcagggc
                                                                     16680
aacctgggct ccatggttgc actaaacgcc ttcctgagta cacagcccgc caacgtgccg
                                                                     16740
                                                                     16800
cggggacagg aggactacac caactttgtg agcgcactgc ggctaatggt gactgagaca
ccgcaaagtg aggtgtatca gtccgggcca gactattttt tccagaccag tagacaaggc
                                                                     16860
                                                                     16920
ctgcagaccg taaacctgag ccaggctttc aagaacttgc agggggtgtgt gggggtgcgg
gctcccacag gcgaccgcgc gaccgtgtct agcttgctga cgcccaactc gcgcctgttg
                                                                     16980 -
ctgctgctaa tagcgccctt cacggacagt ggcagcgtgt cccgggacac atacctaggt
                                                                     17040
cacttgctga cactgtaccg cgaggccata ggtcaggcgc atgtggacga gcatactttc
                                                                     17100
                                                                     17160
caggagatta caagtgttag ccgcgcgctg gggcaggagg acacgggcag cctggaggca
                                                                      17220
accetgaact acctgetgac caaceggegg caaaaaatce cetegttgca cagtttaaac
agcgaggagg agcgcatttt gcgctatgtg cagcagagcg tgagccttaa cctgatgcgc
                                                                      17280
gacggggtaa cgcccagcgt ggcgctggac atgaccgcgc gcaacatgga accgggcatg
                                                                      17340
                                                                      17400
tatgcctcaa accggccgtt tatcaatcgc ctaatggact acttgcatcg cgcggccgcc
                                                                      17460
gtgaaccccg agtatttcac caatgccatc ttgaacccgc actggctacc gccccctggt
                                                                      17520
ttctacaccg ggggattcga ggtgcccgag ggtaacgatg gattcctctg ggacgacata
gacgacagcg tgttttcccc gcaaccgcag accetgctag agttgcaaca acgcgagcag
                                                                      17580
gcagaggcgg cgctgcgaaa ggaaagcttc cgcaggccaa gcagcttgtc cgatctaggc
                                                                      17640
                                                                      17700 .
gctgcggccc cgcggtcaga tgctagtagc ccatttccaa gcttgatagg gtctcttacc
agcactegea ceaceegece gegeetgetg ggegaggagg agtacetaaa caactegetg
                                                                      17760
                                                                      17820
ctgcagccgc agcgcgaaaa gaacctgcct ccggcgtttc ccaacaacgg gatagagagc
ctagtggaca agatgagtag atggaagacg tatgcgcagg agcacaggga tgtgcccggc
                                                                      17880
                                                                      17940
ccgcgcccgc ccacccgtcg tcaaaggcac gaccgtcagc ggggtctggt gtgggaggac
                                                                      18000
 gatgactcgg cagacgacag cagcgtcttg gatttgggag ggagtggcaa cccgtttgca
 caccttcgcc ccaggctggg gagaatgttt taaaaaaaaag catgatgcaa aataaaaaac
                                                                      18060
                                                                      18120
 tcaccaagge catggeaceg agegttggtt ttettgtatt eccettagta tgeggegege
 ggcgatgtat gaggaaggtc ctcctccctc ctacgagagc gtggtgagcg cggcgccagt
                                                                      18180
 ggcggcggcg ctgggttcac ccttcgatgc tcccctggac ccgccgttcg tgcctccgcg
                                                                      18240
                                                                      18300
 gtacctgcgg cctaccgggg ggagaaacag catccgttac tctgagttgg cacccctatt
 cgacaccacc cgtgtgtacc ttgtggacaa caagtcaacg gatgtggcat ccctgaacta
                                                                      18360
 ccagaacgac cacagcaact ttctaaccac ggtcattcaa aacaatgact acagcccggg
                                                                      18420
                                                                      18480
 ggaggcaagc acacagacca tcaatcttga cgaccggtcg cactggggcg gcgacctgaa
                                                                      18540
 aaccatcctg cataccaaca tgccaaatgt gaacgagttc atgtttacca ataagtttaa
                                                                      18600
 ggcgcgggtg atggtgtcgc gctcgcttac taaggacaaa caggtggagc tgaaatacga
 gtgggtggag ttcacgctgc ccgagggcaa ctactccgag accatgacca tagaccttat
                                                                      18660
```

```
18720
gaacaacgcg atcgtggagc actacttgaa agtgggcagg cagaacgggg ttctggaaag
                                                                     18780
cgacatcggg gtaaagtttg acacccgcaa cttcagactg gggtttgacc cagtcactgg
                                                                     18840
tcttgtcatg cctggggtat atacaaacga agccttccat ccagacatca ttttgctgcc
                                                                     18900
aggatgcggg gtggacttca cccacagccg cctgagcaac ttgttgggca tccgcaagcg
gcaaccette caggaggget ttaggateac etacgatgae etggagggtg gtaacattee
                                                                     18960
cgcactgttg gatgtggacg cctaccaggc aagcttgaaa gatgacaccg aacagggcgg
                                                                     19020
gggtggcgca ggcggcggca acaacagtgg cagcggcgcg gaagagaact ccaacgcggc
                                                                     19080 :
agctgcggca atgcagccgg tggaggacat gaacgatcat gccattcgcg gcgacacctt
                                                                     19140
tgccacacgg gcggaggaga agcgcgctga ggccgaggca gcggccgaag ctgccgccc
                                                                     19200
cgctgcggag gctgcacaac ccgaggtcga gaagcctcag aagaaaccgg tgattaaacc
                                                                     19260
                                                                     19320
cctgacagag gacagcaaga aacgcagtta caacctaata agcaatgaca gcaccttcac
ccagtaccgc agctggtacc ttgcatacaa ctacggcgac cctcaggccg ggatccgctc
                                                                     19380
                                                                     19440
atggaccetg ctttgcactc ctgacgtaac ctgcggctcg gagcaggtat actggtcgtt
gcccgacatg atgcaagacc ccgtgacctt ccgctccacg cgccagatca gcaactttcc
                                                                     19500
ggtggtgggc gccgagctgt tgcccgtgca ctccaagagc ttctacaacg accaggccgt
                                                                     19560
ctactcccag ctcatccgcc agtttacctc tctgacccac gtgttcaatc gctttcccga
                                                                     19620
                                                                     19680
gaaccagatt ttggcgcgcc cgccagcccc caccatcacc accgtcagtg aaaacgttcc
                                                                     19740
tgctctcaca gatcacggga cgctaccgct gcgcaacagc atcggaggag tccagcgagt
gaccattact gacgccagac gccgcacctg cccctacgtt tacaaggccc tgggcatagt
                                                                     19800
ctcgccgcgc gtcctatcga gccgcacttt ttgagcaagc atgtccatcc ttatatcgcc
                                                                     19860
                                                                     19920
cagcaataac acaggotggg gootgogott cocaagcaag atgtttggog gggocaagaa
                                                                     19980
gcgctccgac caacacccag tgcgcgtgcg cgggcactac cgcgcgccct ggggcgcgca
                                                                     20040
caaacgcggc cgcactgggc gcaccaccgt cgatgacgcc atcgacgcgg tggtggagga
                                                                     20100
ggcgcgcaac tacacgccca cgccgccgcc agtgtccacc gtggacgcgg ccattcagac
                                                                     20160
cgtggtgcgc ggagcccggc gctacgctaa aatgaagaga cggcggaggc gcgtagcacg
                                                                     20220
togocacogo ogocgacocg goactgoogo coaacgogog goggoggoco tgottaacog
cgcacgtcgc accggccgac gggcggccat gcgagccgct cgaaggctgg ccgcgggtat
                                                                     20280 ..
tgtcactgtg ccccccaggt ccaggcgacg agcggccgcc gcagcagccg cggccattag
                                                                     20340
                                                                     20400
tgctatgact cagggtcgca ggggcaacgt gtactgggtg cgcgactcgg ttagcggcct
                                                                     20460
gegegtgeee gtgegeacce geeeceegeg caactagatt geaataaaaa actaettaga
ctcgtactgt tgtatgtatc cagcggcggc ggcgcgcatc gaagctatgt ccaagcgcaa
                                                                     20520
                                                                     20580
aatcaaagaa gagatgetee aggteatege geeggagate tatggeeeee egaagaagga
                                                                     20640
agagcaggat tacaagcccc gaaagctaaa gcgggtcaaa aagaaaaaga aagatgatga
tgatgatgaa cttgacgacg aggtggaact gttgcacgcg accgcgccca ggcgacgggt
                                                                     20700
acagtggaaa ggtcgacgcg taagacgtgt tttgcgaccc ggcaccaccg tagtctttac
                                                                     20760
                                                                     20820
gcccggtgag cgctccaccc gcacctacaa gcgcgtgtat gatgaggtgt acggcgacga
                                                                     20880
ggacctgctt gagcaggcca acgagcgcct cggggagttt gcctacggaa agcggcataa
                                                                     20940
ggacatgctg gcgttgccgc tggacgaggg caacccaaca cctagcctaa agcccgtgac
                                                                     21000
actgcagcag gtgctgcccg cgcttgcacc gtccgaagaa aagcgcggcc taaagcgcga
                                                                      21060
gtctggtgac ttggcaccca ccgtgcagct gatggtaccc aagcgtcagc gactggaaga
                                                                     21120
tgtcttggaa aaaatgaccg tggagcctgg gctggagccc gaggtccgcg tgcggccaat
                                                                      21180
caagcaggtg gcaccgggac tgggcgtgca gaccgtggac gttcagatac ccaccaccag
                                                                      21240
tagcactagt attgccactg ccacagaggg catggagaca caaacgtccc cggttgcctc
ggcggtggca gatgccgcgg tgcaggcggc cgctgcggcc gcgtccaaga cctctacgga
                                                                      21300
ggtgcaaacg gacccgtgga tgtttcgtgt ttcagccccc cggcgtccgc gccgttcaag
                                                                      21360
                                                                      21420
gaagtacggc geegeeageg egetactgee egaatatgee etacateett eeategegee
                                                                      21480
tacccccggc tatcgtggct acacctaccg ccccagaaga cgagcaacta cccgacgccg
                                                                      21540
aaccaccact ggaaccogcc geogeogteg cogtegeoag coegtgetgg coecgattte
                                                                      21600
cgtgcgcagg gtggctcgcg aaggaggcag gaccctggtg ctgccaacag cgcgctacca
                                                                      21660
ccccagcatc gtttaaaagc cggtctttgt ggttcttgca gatatggccc tcacctgccg
                                                                      21720
cctccgtttc ccggtgccgg gattccgagg aagaatgcac cgtaggaggg gcatggccgg
                                                                      21780
ccaeggeetg aegggeggea tgegtegtge geaceaeegg eggeggegeg egtegeaeeg
                                                                      21840
tegeatgege ggeggtatee tgeeeeteet tatteeaetg ategeegegg egattggege
                                                                      21900
cgtgcccgga attgcatccg tggccttgca ggcgcagaga cactgattaa aaacaagtta
                                                                      21960
catgtggaaa aatcaaaata aaagtctgga ctctcacgct cgcttggtcc tgtaactatt
```

WO 03/031588 PCT/US02/32512

```
22020
ttgtagaatg gaagacatca actttgcgtc actggccccg cgacacggct cgcgcccgtt
                                                                  22080
catgggaaac tggcaagata tcggcaccag caatatgagc ggtggcgcct tcagctgggg
ctcgctgtgg agcggcatta aaaatttcgg ttccgccgtt aagaactatg gcagcaaagc
                                                                  22140
                                                                   22200
ctggaacagc agcacaggcc agatgctgag ggacaagttg aaagagcaaa atttccaaca
aaaggtggta gatggcctgg cctctggcat tagcggggtg gtggacctgg ccaaccaggc
                                                                   22260
                                                                   22320
agtgcaaaat aagattaaca gtaagcttga tccccgccct cccgtagagg agcctccacc
ggccgtggag acagtgtctc cagaggggcg tggcgaaaag cgtccgcgac ccgacaggga
                                                                   22380
                                                                   22440
agaaactctg gtgacgcaaa tagacgagcc tccctcgtac gaggaggcac taaagcaagg
cctgcccacc acccgtccca tcgcgcccat ggctaccgga gtgctgggcc agcacacacc
                                                                   22500
cgtaacgctg gacctgcctc cccccgccga cacccagcag aaacctgtgc tgccaggccc
                                                                   22560
                                                                   22620
gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg
                                                                   22680
                                                                   22740
tttgggggtg caatccctga agcgccgacg atgcttctga tagctaacgt gtcgtatgtg
tgtcatgtat gcgtccatgt cgccgccaga ggagctgctg agccgccgcg cgcccgcttt
                                                                   22800
ccaagatggc tacccettcg atgatgccgc agtggtctta catgcacatc tcgggccagg
                                                                   22860
                                                                   22920
acgcctcgga gtacctgagc cccgggctgg tgcagttcgc ccgcgccacc gagacgtact
tcagcctgaa taacaagttt agaaacccca cggtggcgcc tacgcacgac gtgaccacag
                                                                   22980
accggtctca gcgtttgacg ctgcggttca tccccgtgga ccgcgaggat actgcgtact
                                                                   23040
cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttcca
                                                                   23100
cgtactttga catccgcgc gtgctggaca ggggccctac ttttaagccc tactctggca
                                                                   23160
                                                                   23220
ctgcctacaa cgcactggcc cccaagggtg cccccaactc gtgcgagtgg gaacaaaatg
                                                                   23280
aaactgcaca agtggatgct caagaacttg acgaagagga gaatgaagcc aatgaagctc
aggcgcgaga acaggaacaa gctaagaaaa cccatgtata tgcccaggct ccactgtccg
                                                                   23340
gaataaaaat aactaaagaa ggtctacaaa taggaactgc cgacgccaca gtagcaggtg
                                                                   23400
ccggcaaaga aattttcgca gacaaaactt ttcaacctga accacaagta ggagaatctc
                                                                   23460
                                                                   23520
aatggaacga agcggatgcc acagcagctg gtggaagggt tcttaaaaaag acaactccca
tgaaaccctg ctatggctca tacgctagac ccaccaattc caacggcgga cagggcgtta
                                                                   23580
tggttgaaca aaatggtaaa ttggaaagtc aagtcgaaat gcaatttttt tccacatcca
                                                                   23640
caaatgccac aaatgaagtt aacaatatac aaccaacagt tgtattgtac agcgaagatg
                                                                   23700
taaacatgga aactccagat actcatcttt cttataaacc taaaatgggg gataaaaatg
                                                                   23760
                                                                   23820
ccaaagtcat gcttggacaa caagcaatgc caaacagacc aaattacatt gcttttagag
acaattttat tggtctcatg tattacaaca gcacaggtaa catgggtgtc cttgctggtc
                                                                   23880
aggcatcgca gttgaacgct gttgtagatt tgcaagacag aaacacagag ctgtcctacc
                                                                   23940
agcttttgct tgattcaatt ggcgacagaa caagatactt ttcaatgtgg aatcaagctg
                                                                   24000
ttgacagcta tgatccagat gtcagaatta ttgagaacca tggaactgag gatgagttgc
                                                                   24060
                                                                   24120
caaattattg ctttcctctt ggtggaattg ggattactga cacttttcaa gctgttaaaa
caactgctgc taacggggac caaggcaata ctacctggca aaaagattca acatttgcag
                                                                   24180
aacgcaatga aataggggtg ggaaataact ttgccatgga aattaacctg aatgccaacc
                                                                   24240
tatggagaaa tttcctttac tccaatattg cgctgtacct gccagacaag ctaaaataca
                                                                   24300
accccaccaa tgtggaaata tctgacaacc ccaacaccta cgactacatg aacaagcgag
                                                                   24360
                                                                   24420
tggtggctcc tgggcttgta gactgctaca ttaaccttgg ggcgctgg tctctggact
acatggacaa cgttaatccc tttaaccacc accgcaatgc gggcctgcgt taccgctcca
                                                                   24480
tgttgttggg aaacggccgc tacgtgccct ttcacattca ggtgccccaa aagttttttg
                                                                   24540
ccattaaaaa cctcctcctc ctgccaggct catacacata tgaatggaac ttcaggaagg
                                                                   24600
atgttaacat ggttctgcag agctctctgg gaaacgacct tagagttgac ggggctagca
                                                                   24660
ttaagtttga cagcatttgt ctttacgcca ccttcttccc catggcccac aacacggcct
                                                                   24720
ccacgctgga agccatgctc agaaatgaca ccaacgacca gtcctttaat gactaccttt
                                                                   24780
                                                                   24840
ccgccgccaa catgctatat cccatacccg ccaacgccac caacgtgccc atctccatcc
categegeaa etgggeagea tttegeggtt gggeetteae aegettgaag acaaaggaaa
                                                                   24900
24960
ttgacggaac cttctatctt aatcacacct ttaagaaggt ggccattact tttgactctt
                                                                   25020
ctgttagctg gccgggcaac gaccgcctgc ttactcccaa tgagtttgag attaagcgct
                                                                   25080
cagttgacgg ggagggctat aacgtagctc agtgcaacat gacaaaggac tggttcctag
                                                                   25140
tgcagatgtt ggccaactac aatattggct accagggctt ctacattcca gaaagctaca
                                                                   25200
aagaccgcat gtactcgttc ttcagaaact tccagcccat gagccggcaa gtggtggacg
                                                                   25260
```

```
25320
atactaaata caaagattat cagcaggttg gaattatcca ccagcataac aactcaggct
tegtaggeta cetegetece accatgegeg agggacaage traceceget aatgtteeet
                                                                     25380
acccactaat aggcaaaacc gcggttgata gtattaccca gaaaaagttt ctttgcgacc
                                                                     25440
                                                                     25500
gcaccetgig gegeatecee ttetecagta aetttatgte catgggtgeg etcacagace
tgggccaaaa ccttctctac gcaaactccg cccacgcgct agacatgacc tttgaggtgg
                                                                     25560
                                                                     25620
atoccatgga cgagoccaco ottotttatg ttttgtttga agtotttgac gtggtccgtg
tgcaccagcc gcaccgcggc gtcatcgaga ccgtgtacct gcgcacgccc ttctcggccg
                                                                     25680
gcaacgccac aacataaaga agcaagcaac atcaacaaca gctgccgcca tgggctccag
                                                                     25740
                                                                     25800
tgagcaggaa ctgaaagcca ttgtcaaaga tcttggttgt gggccatatt ttttgggcac
ctatgacaag cgcttcccag gctttgtttc cccacacaag ctcgcctgcg ccatagttaa
                                                                     25860
cacggccggt cgcgagactg ggggcgtaca ctggatggcc tttgcctgga acccgcgctc
                                                                     25920
                                                                     25980
aaaaacatgc tacctctttg agccctttgg cttttctgac caacgtctca agcaggttta
ccagtttgag tacgagtcac tcctgcgccg tagcgccatt gcctcttccc ccgaccgctg
                                                                     26040
tataacgctg gaaaagtcca cccaaagcgt gcaggggccc aactcggccg cctgtggcct
                                                                     26100
                                                                     26160
attctgctgc atgtttctcc acgcctttgc caactggccc caaactccca tggatcacaa
ccccaccatg aaccttatta ccggggtacc caactccatg cttaacagtc cccaggtaca
                                                                     26220
gcccaccctg cgccgcaacc aggaacagct ctacagcttc ctggagcgcc actcgcccta
                                                                     26280
cttccgcagc cacagtgcgc aaattaggag cgccacttct ttttgtcact tgaaaaacat
                                                                     26340
gtaaaaataa tgtactagga gacactttca ataaaggcaa atgtttttat ttgtacactc
                                                                     26400
togggtgatt atttacccc accettgeeg tetgegeegt ttaaaaatca aaggggttet
                                                                     26460
                                                                     26520
gccgcgcatc gctatgcgcc actggcaggg acacgttgcg atactggtgt ttagtgctcc
                                                                     26580
acttaaactc aggcacaacc atccgcggca gctcggtgaa gttttcactc cacaggctgc
gcaccatcac caacgcgttt agcaggtcgg gcgccgatat cttgaagtcg cagttggggc
                                                                     26640
ctccgccctg cgcgcgag ttgcgataca cagggttaca gcactggaac actatcagcg
                                                                     26700
                                                                     26760
ccgggtggtg cacgctggcc agcacgctct tgtcggagat cagatccgcg tccaggtcct
ccgcgttgct cagggcgaac ggagtcaact ttggtagctg ccttcccaaa aagggtgcat
                                                                     26820
                                                                     26880
qcccaqqctt tgagttgcac tcgcaccgta gtggcatcag aaggtgaccg tgcccagtct
gggcgttagg atacagcgcc tgcatgaaag ccttgatctg cttaaaaagcc acctgagcct
                                                                     26940
ttgcgccttc agagaagaac atgccgcaag acttgccgga aaactgattg gccggacagg
                                                                     27000
                                                                     27060
ccgcgtcatg cacgcagcac cttgcgtcgg tgttggagat ctgcaccaca tttcggcccc
accggttctt cacgatettg geettgetag actgeteett cagegegege tgeeegtttt
                                                                     27120
cgctcgtcac atccatttca atcacgtgct ccttatttat cataatgctc ccgtgtagac
                                                                     27180
acttaagctc gccttcgatc tcagcgcagc ggtgcagcca caacgcgcag cccgtgggct
                                                                     27240
                                                                     27300
cgtggtgctt gtaggttacc tctgcaaacg actgcaggta cgcctgcagg aatcgcccca
tcatcgtcac aaaggtcttg ttgctggtga aggtcagctg caacccgcgg tgctcctcgt
                                                                     27360
ttagccaggt cttgcatacg gccgccagag cttccacttg gtcaggcagt agcttgaagt
                                                                     27420
                                                                     27480
ttgcctttag atcgttatcc acgtggtact tgtccatcaa cgcgcgcgca gcctccatgc
ccttctccca cgcagacacg atcggcaggc tcagcgggtt tatcaccgtg ctttcacttt
                                                                     27540
cogetteact ggaetettee tttteetett geateegeat acceegegee actgggtegt
                                                                     27600
                                                                     27660
cttcattcag ccgccgcacc gtgcgcttac ctcccttgcc gtgcttgatt agcaccggtg
                                                                     27720
ggttgctgaa acccaccatt tgtagcgcca catcttctct ttcttcctcg ctgtccacga
tcacctctgg ggatggcggg cgctcgggct tgggagaggg gcgcttcttt ttctttttgg
                                                                     27780
                                                                     27840
acgcaatggc caaatcegee gtegaggteg atggeegegg getgggtgtg egeggeacea
                                                                     27900
gegeatettg tgaegagtet tettegteet eggaetegag aegeegeete ageegetttt
ttgggggcgc gcggggaggc ggcggcgacg gcgacgggga cgagacgtcc tccatggttg
                                                                      27960
gtggacgteg egeegeaceg egteegeget egggggtggt ttegegetge teetetteee
                                                                     28020
                                                                     28080
gactggccat ttccttctcc tataggcaga aaaagatcat ggagtcagtc gagaaggagg
                                                                      28140
acageetaae egeceeettt gagttegeea eeacegeete caeegatgee gecaaegege
ctaccacctt ccccgtcgag gcacccccgc ttgaggagga ggaagtgatt atcgagcagg
                                                                      28200
                                                                      28260
acccaggttt tgtaagcgaa gacgacgaag atcgctcagt accaacagag gataaaaagc
                                                                      28320
aagaccagga cgacgcagag gcaaacgagg aacaagtcgg gcggggggac caaaggcatg
gcgactacct agatgtggga gacgacgtgc tgttgaagca tctgcagcgc cagtgcgcca
                                                                      28380
ttatctgcga cgcgttgcaa gagcgcagcg atgtgcccct cgccatagcg gatgtcagcc
                                                                      28440 ·
                                                                      28500 .
ttgcctacga acgccacctg ttctcaccgc gcgtaccccc caaacgccaa gaaaacggca
                                                                      28560
catgogagee caaccogoge etcaacttet accoogtatt tgccgtgcca gaggtgcttg
```

							•
			caaaactgca				28620
9	gccgagcgga	caagcagctg	gccttgcggc	agggcgctgt	catacctgat	atcgcctcgc	28680
1	tcgacgaagt	gccaaaaatc	tttgagggtc	ttggacgcga	cgagaagcgc	gcggcaaacg	28740
•	ctctgcaaca	agaaaacagc	gaaaatgaaa	gtcactgtgg	agtgctggtg	gaacttgagg	28800
			gtgctgaaac				28860
			aaggttatga				28920
			gatgcaaact				28980
			gcgcgctggc				29040
			gccgcagtgc				29100
			atgcagcgca				29160
			gcctgcaaaa				29220
			gaaaaccgcc			_	29280
			tacgtccgcg				29340
			tggcagcagt				29400
			ttgaaggacc				29460
			atcttccccg				29520
			agcatgttgc				29580
1	caggaattet	geeegeeaee	tgctgtgcgc	ttcctagcga	ctttgtgccc	attaagtacc	29640
			tggggtcact				29700
			gaagacgtga				29760
	getgeaacet	acgeaceeeg	caccgctccc	tggtctgcaa	ttcacaactg	cttagcgaaa	29820
			gagctgcagg				29880
			gggctgtgga		-		29940
			attaggttct				30000
			acccagggcc				30060
			ctacgaaagg				30120
			cccccgccgc				30180 30240
			aaagaagctg ggcagaggag				30300
			ggaagcttcc				30360
			ctcgccggcg				30420
			gacaccacca				30480
			ggccggtaag				30540
			ccgctcgtgg				30600
			catctccttc				30660
			cctgcattac				30720
			cagcggccac		_		30780
			ccacagcggc				30840
			cgacccgcga				30900
			ggggccaaga				30960
			gcctgtatca				31020
			tcagcaaata				31080
			cgcgaaaact				31140
			ttatgagcaa				31200
	ccagccacaa	atgggacttg	cggctggagc	tgcccaagac	tactcaaccc	gaataaacta	31260
			tgatatcccg				31320
	aattctcctc	gaacaggcgg	ctattaccac	cacacctcgt	aataacctta	atccccgtag	31380
	ttggcccgct	gccctggtgt	accaggaaag	tcccgctccc	accactgtgg	tacttcccag	31440
			agatgactaa				31500
			ggcagggtat				31560
	tcagctcaac	gacgagtcgg	tgagctcctc	tcttggtctc	cgtccggacg	ggacatttca	31620
			cttcatttac				31680
			ccggaggcat				31740
	gccttcggtt	tacttcaacc	ccttttctgg	acctcccggc	cactacccgg	accagtttat	31800
	tcccaacttt	gacgcggtaa	aagactcggc	ggacggctac	gactgaatga	ccagtggaga	31860

```
ggcagagcaa ctgcgcctga cacacctcga ccactgccgc cgccacaagt gctttgcccg
                                                                     31920
                                                                    31980
cggctccggt gagttttgtt actttgaatt gcccgaagag catatcgagg gcccggcgca
cggcgtccgg ctcaccaccc aggtagagct tacacgtagc ctgattcggg agtttaccaa
                                                                    32040
gegeeectg ctagtggage gggagegggg teeetgtgtt etgacegtgg tttgcaactg.
                                                                     32100
toctaaccot ggattacato aagatottat tocattoaac taacaataaa cacacaataa
                                                                    32160
attacttact taaaatcagt cagcaaatct ttgtccagct tattcagcat cacctccttt .
                                                                    32220
ccctcctccc aactctggta tttcagcagc cttttagctg cgaactttct ccaaagtcta
                                                                     32280
aatgggatgt caaattcctc atgttcttgt ccctccgcac ccactatctt catattgttg
                                                                     32340
cagatgaaac gcgccagacc gtctgaagac accttcaacc ctgtgtaccc atatgacacg
                                                                     32400
gaaaccggcc ctccaactgt gcctttcctt acccctccct ttgtgtcgcc aaatgggttc
caagaaagtc cccccggagt gctttctttg cgtctttcag aacctttggt tacctcacac
                                                                     32520
                                                                     32580
ggcatgcttg cgctaaaaat gggcagcggc ctgtccctgg atcaggcagg caaccttaca
tcaaatacaa tcactgtttc tcaaccgcta aaaaaaacaa agtccaatat aactttggaa
                                                                     32640
acatecgege ceettacagt cageteagge geectaacea tggecacaac ttegeetttg
                                                                     32700
                                                                     32760
gtggtctctg acaacactct taccatgcaa tcacaagcac cgctaaccgt gcaagactca
aaacttagca ttgctaccaa agagccactt acagtgttag atggaaaact ggccctgcag
                                                                     32820
acateagece cectetetge caetgataac aacgeeetea etateaetge etcaceteet
                                                                     32880
cttactactg caaatggtag tctggctgtt accatggaaa acccacttta caacaacaat
                                                                     32940
                                                                     33000
ggaaaacttg ggctcaaaat tggcggtcct ttgcaagtgg ccaccgactc acatgcacta
acactaggta ctggtcaggg ggttgcagtt cataacaatt tgctacatac aaaagttaca
                                                                     33060
ggcgcaatag ggtttgatac atctggcaac atggaactta aaactggaga tggcctctat
                                                                     33120
gtggatagcg ccggtcctaa ccaaaaacta catattaatc taaataccac aaaaggcctt
                                                                     33180
gcttttgaca acaccgcaat aacaattaac gctggaaaag ggttggaatt tgaaacagac
                                                                     33240
tcctcaaacg gaaatcccat aaaaacaaaa attggatcag gcatacaata taataccaat
                                                                     33300
                                                                     33360
ggagetatgg ttgeaaaact tggaacagge etcagttttg acageteegg agecataaca
                                                                     33420
atgggcagca taaacaatga cagacttact ctttggacaa caccagaccc atccccaaat
                                                                     33480
tgcagaattg cttcagataa agactgcaag ctaactctgg cgctaacaaa atgtggcagt
caaattttgg gcactgtttc agctttggca gtatcaggta atatggcctc catcaatgga
                                                                     33540
actctaagca gtgtaaactt ggttcttaga tttgatgaca acggagtgct tatgtcaaat
                                                                     33600
                                                                     33660
tcatcactgg acaaacagta ttggaacttt agaaacgggg actccactaa cggtcaacca
                                                                     33720
tacacttatg ctgttgggtt tatgccaaac ctaaaagctt acccaaaaac tcaaagtaaa
                                                                     33780
actgcaaaaa gtaatattgt tagccaggtg tatcttaatg gtgacaagtc taaaccattg
cattttacta ttacgctaaa tggaacagat gaaaccaacc aagtaagcaa atactcaata
                                                                     33840
                                                                     33900
tcattcagtt ggtcctggaa cagtggacaa tacactaatg acaaatttgc caccaattcc
tataccttct cctacattgc ccaggaataa agaatcgtga acctgttgca tgttatgttt
                                                                     33960
                                                                     34020
caacgtgttt atttttcaat tgcagaaaat ttcaagtcat ttttcattca gtagtatagc
                                                                     34080
cccaccacca catagettat actaatcace gtacettaat caaactcaca gaaccetagt
attcaacctg ccacctccct cccaacacac agagtacaca gtcctttctc cccggctggc
                                                                     34140
cttaaacagc atcatatcat gggtaacaga catattctta ggtgttatat tccacacggt
                                                                     34200
ctcctgtcga gccaaacgct catcagtgat gttaataaac tccccgggca gctcgcttaa
                                                                     34260
                                                                     34320
gttcatgtcg ctgtccagct gctgagccac aggctgctgt ccaacttgcg gttgctcaac
                                                                     34380
gggcggcgaa ggagaagtcc acgcctacat gggggtagag tcataatcgt gcatcaggat
agggeggtgg tgetgeagea gegegegaat aaactgetge egeegeeget eegteetgea
                                                                     34440
                                                                     34500
ggaatacaac atggcagtgg tetecteage gatgattege acegeeegea geataaggeg
                                                                     34560
ccttgtcctc cgggcacagc agcgcaccct gatctcactt aagtcagcac agtaactgca
gcacagtacc acaatattgt ttaaaatccc acagtgcaag gcgctgtatc caaagctcat
                                                                     34620
ggcggggacc acagaaccca cgtggccatc ataccacaag cgcaggtaga ttaagtggcg
                                                                     34680
accceteata aacaegetgg acataaacat tacetetttt ggeatgttgt aatteaceae
                                                                     34740
ctcccggtac catataaacc tctgattaaa catggcgcca tccaccacca tcctaaacca
                                                                     34800
                                                                     34860
gctggccaaa acctgcccgc cggctatgca ctgcagggaa ccgggactgg aacaatgaca
                                                                     34920
gtggagagec caggactegt aaccatggat catcatgete gtcatgatat caatgttgge
                                                                     34980
acaacacagg cacacgtgca tacacttcct caggattaca agetectece gegteagaac
catateccag ggaacaacce attectgaat cagegtaaat cecacactge agggaagace
                                                                     35040
tegeaegtaa eteaegttgt geattgteaa agtgttaeat tegggeagea geggatgate
                                                                     35100
                                                                     35160
ctccagtatg gtagcgcggg tttctgtctc aaaaggaggt agacgatccc tactgtacgg
```

PCT/US02/32512 WO 03/031588

agtgcgccga gacaaccgag atcgtgttgg tcgtagtgtc atgccaaatg gaacgccgga

35220

35280

```
cgtagtcata tttcctgaag caaaaccagg tgcgggcgtg acaaacagat ctgcgtctcc
ggtctcgccg cttagatcgc tctgtgtagt agttgtagta tatccactct ctcaaagcat
                                                                   35340
ccaggegece cetggetteg ggttetatgt aaacteette atgegeeget geeetgataa
                                                                   35400
catccaccac cgcagaataa gccacaccca gccaacctac acattcgttc tgcgagtcac
                                                                   35460
acacgggagg agcgggaaga gctggaagaa ccatgttttt ttttttattc caaaagatta
                                                                   35520
tccaaaacct caaaatgaag atctattaag tgaacgcgct cccctccggt ggcgtggtca
                                                                   35580
aactctacag ccaaagaaca gataatggca tttgtaagat gttgcacaat ggcttccaaa
                                                                   35640
                                                                   35700
aggcaaacgg ccctcacgtc caagtggacg taaaggctaa acccttcagg gtgaatctcc
tetataaaca ttecageace tteaaceatg eccaaataat teteateteg ecacettete
                                                                   35760
aatatatctc taagcaaatc ccgaatatta agtccggcca ttgtaaaaat ctgctccaga
                                                                   35820
                                                                   35880
gegeeeteea cetteageet caageagega atcatgattg caaaaattea ggtteeteae
agacctgtat aagattcaaa agcggaacat taacaaaaat accgcgatcc cgtaggtccc
                                                                   35940
                                                                   36000
ttcgcagggc cagctgaaca taatcgtgca ggtctgcacg gaccagcgcg gccacttccc
cgccaggaac catgacaaaa gaacccacac tgattatgac acgcatactc ggagctatgc
                                                                   36060
taaccagcgt agccccgatg taagcttgtt gcatgggcgg cgatataaaa tgcaaggtgc
                                                                   36120
tgctcaaaaa atcaggcaaa gcctcgcgca aaaaagaaag cacatcgtag tcatgctcat
                                                                   36180
gcagataaag gcaggtaagc tccggaacca ccacagaaaa agacaccatt tttctctcaa
                                                                   36240
36300
agaagcctgt cttacaacag gaaaaacaac ccttataagc ataagacgga ctacggccat
                                                                   36360
gccggcgtga ccgtaaaaaa actggtcacc gtgattaaaa agcaccaccg acagctcctc
                                                                   36420
ggtcatgtcc ggagtcataa tgtaagactc ggtaaacaca tcaggttgat tcacatcggt
                                                                   36480
                                                                   36540
cagtgctaaa aagcgaccga aatagcccgg gggaatacat acccgcaggc gtagagacaa
cattacagcc cccataggag gtataacaaa attaatagga gagaaaaaca cataaacacc
                                                                   36600
                                                                   36660
tgaaaaaccc tcctgcctag gcaaaatagc accctcccgc tccagaacaa catacagcgc
ttccacagcg gcagccataa cagtcagcct taccagtaaa aaagaaaacc tattaaaaaa
                                                                   36720
acaccactcg acacggcacc agctcaatca gtcacagtgt aaaaaaagggc caagtgcaga
                                                                   36780
                                                                   36840
gcgagtatat ataggactaa aaaatgacgt aacggttaaa gtccacaaaa aacacccaga
                                                                   36900
aaaccgcacg cgaacctacg cccagaaacg aaagccaaaa aacccacaac ttcctcaaat
cgtcacttcc gttttcccac gttacgtcac ttcccatttt aagaaaacta caattcccaa
                                                                   36960
                                                                   37020
cacatacaag ttactccgcc ctaaaaccta cgtcacccgc cccgttccca cgccccgcgc
cacgtcacaa actccacccc ctcattatca tattggcttc aatccaaaat aaggtatatt
                                                                   37080
                                                                   37090
attgatgatg
<210> 5
<211> 5955
<212> DNA
<213> Artificial Sequence
<220>
<223> NS cDNA sequence
<221> CDS
<222> (1)...(5955)
atg gcg ccc atc acg gcc tac tcc caa cag acg cgg ggc cta ctt ggt
                                                                      48
Met Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly
                                     10
                                                                      96
tgc atc atc act agc ctt aca ggc cgg gac aag aac cag gtc gag gga
Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly
                                 25
gag gtt cag gtg gtt tcc acc gca aca caa tcc ttc ctg gcg acc tgc
                                                                     144
```

	Glu	Val	Gln 35	Val	Val	Ser	Thr	Ala 40		Gln	Ser	Phe	Leu 45	Ala	Thr	Суѕ		• • •
	Val	aac Asn . 50	ggc	gtg Val	tgt Cys	tgg Trp	acċ Thr 55	gtt Val	tac Tyr	cat His	ggt Gly	gct Ala 60	ggc Gly	tca Ser	aag Lys	acc Thr	. 192	2 .
	tta Leu 65	Aļa gcc	Gly ggc	cca Pro	aag Lys	999 Gly 70	cca Pro	atc Ile	acc Thr	cag Gln	atg Met 75	Tyr	act	aat Asn	gtg Val	gac Asp 80		0
	cag Gln	gac Asp	ctc Leu	gtc Val	ggc Gly 85	tgg Trp	cag Gln	gcg Ala	ccc Pro	ccc Pro 90	Gly	gcg Ala	cgt Arg	tcc Ser	ttg Leu 95	aca Thr	28	8
	cca Pro	tgc Cys	acc Thr	tgt Cys 100	ggc Gly	agc Ser	tca Ser	gac Asp	ctt Leu 105	tac Tyr	ttg Leu	gtc Val	acg Thr	aga Arg 110	cat His	gct Ala	33	6
	gac Asp	gtc Val	att Ile 115	ccg Pro	gtg Val	cgc Arg	cgg Arg	cgg Arg 120	Gly	gac Asp	agt Ser	agg Arg	ggg Gly 125	agc Ser	ctg Leu	ctc Leu	38	4 :
	tcc Ser	ccc Pro 130	agg Arg	cct Pro	gtc Val	tcc Ser	tac Tyr 135	ttg Leu	aag Lys	ggc Gly	tct Ser	tcg Ser 140	ggt Gly	ggt Gly	cca Pro	ctg Leu	43	2
	ctc Leu 145	Cys	cct Pro	tcg Ser	GJA	cac His 150	gct Ala	gtg Val	Gly	Ile	ttc Phe 155	Arg	Ala	gcc Ala	gta Val	tgc Cys 160	48	0
	acc Thr	cgg Arg	Gly	gtt Val	gcg Ala 165	aag Lys	gcg Ala	gtg Val	gac Asp	ttt Phe 170	gtg Val	ccc Pro	gta Val	gag Glu	tcc Ser 175	atg Met	52	8
					Arg										Pro	ccg Pro	57	6
									Ala					Pro		ggc Gly	62	4
	agc Ser	ggc Gly 210	Lys	agt Ser	act Thr	aaa Lys	gtg Val 215	Pro	gct Ala	gca Ala	tat Tyr	gca Ala 220	Ala	Caa Gln	Gly	tac Tyr	. 67	. .
•		Val					Pro					Thr				ggg Gly 240	72	0
						Ala					Pro					GJÀ âââ		8

gta Val	agg. Arg	acc Thr	att Ile 260	acc Thr	aca Thr	ggc Gly	gcc Ala	ccc Pro 265	gtc Val	aca Thr	tac Tyr	tct Ser	acc Thr 270	tat Tyr	ggc Gly	816
					ggt Gly											864
ata Ile	tgt Cys 290	gat Asp	gag Glu	tgc Cys	cat His	tca Ser 295	act Thr	gac Asp	tcg Ser	act Thr	aca Thr 300	atc Ile	ttg Leu	ggc	atc Ile	912
					caa Gln 310											960
					cct Pro											1008
					ctg Leu											1056
			Pro		gaa Glu											1104
					aag Lys											1152
					gtg Val 390											1200
					gac Asp	_	_	_		_		_				1248
_			_		gac Asp		_				_	_				1296
			Thr		gac Asp			Leu					Thr			1344
		Thr			caa Gln		Ala					Gln			ggt Gly	1392
	Thr					Arg					Phe				gga Gly 480	1440

٠	•						•				• •				-		
	gaa Glu	cgg Arg	ccc Pro	tcg Ser	ggc Gly 485	atg Met	ttc Phe	gat Asp	tcc Ser	tcg Ser 490	gtc Val	ctg Leu	tgt Cys	gag Glu	tgc Cys 495	tat Tyr	1488
	gac Asp	gcg Ala	ggc Gly	tgt Cys 500	gct Ala	tgg Trp	tac Tyr	gag Glu	ctc Leu 505	acc Thr	ccc Pro	gcc Ala	gag Glu	acc Thr 510	tcg Ser	gtt Val	1536
` .	agg Arg	ttg Leu	cgg Arg 515	gcc Ala	tac Tyr	ctg Leu	aac Asn	aca Thr 520	cca Pro	GJA āāā	ttg Leu	ccc Pro	gtt Val 525	Cys	cag Gln	gac Asp	1584
	cac His	ctg Leu 530	gag Glu	ttc Phe	tgg Trp	gag Glu	agt Ser 535	gtc Val	ttc Phe	aca Thr	ggc	ctc Leu 540	acc Thr	cac His	ata Ilė	gat Asp	1632
	gca Ala 545	cac His	ttc Phe	ttg Leu	tcc Ser	cag Gln 550	acc Thr	aag Lys	cag Gln	gca Ala	gga Gly 555	gac Asp	aac Asn	ttc Phe	ccc Pro	tac Tyr 560	1680
	ctg Leu	gta Val	gca Ala	tac Tyr	caa Gln 565	gcc Alà	acg Thr	gtg Val	tgc Cys	gcc Ala 570	agg Arg	gct Ala	cag Gln	gcc Ala	cca Pro 575	cct Pro	1728
•	cca Pro	tca Ser	tgg Trp	gat Asp 580	caa Gln	atg Met	tgg Trp	aag Lys	tgt Cys 585	ctc Leu	ata Ile	cgg Arg	ctg Leu	aaa Lys 590	cct Pro	acg Thr	1776
	ctg Leu	cac His	ggg Gly 595	cca Pro	aca Thr	ccc Pro	ttg Leu	ctg Leu 600	tac Tyr	agg Arg	ctg Leu	gga Gly	gcc Ala 605	gtc Val	caa Gln	aat Asn	1824
													atg Met			atg Met	1872
	_	-	-	_		_	_		_				ctg Leu				1920
													ggc			Val	. 1968 ·
					Ile					Arg			att Ile		Pro		2016
														Cys		ser	2064
	cac	ctc	cct	tac	atc	gag	cag	gga	atg	cag	ctc	gcc	gag	caa	ttc	aag	2112

 His	Leu 690	Pro	Tyr	Ile	Glu	Gln 695	Gly	Met	G1n	Leu	Ala 700	Glu	Gln	Phe	Lys	
cag Gln 705	aaa Lys	gcg Ala	ctc Leu	GJA Gaa	tta Leu 710	ctg Leu	caa Gln	aca Thr	gcc Ala	acc Thr 715	aaa Lys	caa Gln	gcg Ala	gag Glu	gct Ala 720	2160
gct Ala	gct Ala	ccc Pro	gtg Val	gtg Val 725	gag Glu	tcc Ser	aag Lys	tgg Trp	cga Arg 730	gcc Ala	ctt Leu	gag Glu	aca Thr	ttc Phe 735	tgg Trp	2208
gcg Ala	aag Lys	cac His	atg Met 740	tgg Trp	aat Asn	ttc Phe	atc Ile	agc Ser 745	GJA aaa	ata Ile	cag Gln	tac Tyr	tta Leu 750	gca Ala	Gly ggc	2256
	tcc Ser															2304
aca Thr	gcc Ala 770	tct Ser	atc Ile	acc Thr	agc Ser	ccg Pro 775	ctc Leu	acc Thr	acc Thr	caa Gln	agt Ser 780	acc Thr	ctc Leu	ctg Leu	ttt Phe	2352
	atc Ile															2400
gct Ala	tcg Ser	gct Ala	ttc Phe	gtg Val 805	Gly	gcc Ala	Gly	atc Ile	gcc Ala 810	ggt Gly	gcg Ala	gct Ala	gtt Val	ggc Gly 815	agc Ser	2448
ata Ile	ggc Gly	ctt Leu	ggg 820	aag Lys	gtg Val	ctt Leu	gtg Val	gac Asp 825	att Ile	ctg Leu	gcg Ala	ggt Gly	tat Tyr 830	gga Gly	gca Ala	2496
gga Gly	gtg Val	gcc Ala 835	ggc Gly	gcg Ala	ctc Leu	gtg Val	gcc Ala 840	ttc Phe	aag Lys	gtc Val	atg Met	agc Ser 845	ggc Gly	gag Glu	atg Met	2544
	tcc Ser 850															2592
ggc Gly 865	gcc Ala	ctg Leu	gtc Val	gtc Val	ggg Gly 870	gtc Val	gtg Val	tgt Cys	gca Ala	gca Ala 875	ata Ile	ctg Leu	cgt Arg	cga Arg	cac His 880	2640
gtg Val	ggt Gly	ccg Pro	gga Gly	gag Glu 885	GJÀ aaa	gct Ala	gtg Val	cag Gln	tgg Trp 890	atg Met	aac Asn	cgg Arg	ctg Leu	ata Ile 895	gcg Ala	2688
ttc Phe	gcc Ala	tcg Ser	cgg Arg 900	ggt Gly	aat Asn	cat His	gtt Val	tcc Ser 905	ccc Pro	acg Thr	cac His	tat Tyr	gtg Val 910	cct Pro	gag Glu	2736

age Sei	gac Asp	gcc Ala 915	gca Ala	gcg Ala	cgt Arg	gtt Val	act Thr 920	cag Gln	atc Ile	ctc Leu	tcc Ser	agc Ser 925	ctt Leu	acc Thr	atc Ile	2784
act Th:	cag Gln 930	ctg Leu	ctg Leu	aaa Lys	agg Arg	ctc Leu 935	cac His	cag Gln	tgg Trp	att Ile	aat Asn 940	gaa Glu	gac Asp	tgc Cys	tcc Ser	2832
Th:		tgt Cys	tcc Ser	ggc Gly	tcg Ser 950	tgg Trp	cta Leu	agg Arg	gat Asp	gtt Val 955	tgg Trp	gac Asp	tgg Trp	ata Ile	tgc Cys 960	2880
ac Th	g gtg r Val	ttg Leu	act Thr	gac Asp 965	ttc Phe	aag Lys	acc Thr	tgg Trp	ctc Leu 970	cag Gln	tcc Ser	aag Lys	ctc Leu	ctg Leu [.] 975	ccg Pro	2928
G1	g cta n Leu	Pro	Gly 980	Val	Pro	Phe	Phe	Ser 985	Суз	Gln	Arg	Gly	77r	Lys	Gly	2976
Va	c tgg l Trp	Arg 99	Gly 5	Asp	GJA	Ile	Met 100	Gln 0	Thr	Thr	Cys	Pro 100	Cys 5	Gly	Ala	3024
Ğ1	n Ile 101	Thr 0	Gly	His	Val	Lys 101	Asn 5	Gly	Ser	Met	Arg 102	Ile O	Val	Gly		3072
	g acc s Thr 25					Trp					Pro					3120
	c acg r Thr				Thr					Pro					Ala	3168
	g tgg u Trp	Arg		Ala					Val					Val	GJA aaa	3216
	t ttc p Phe		Tyr					Thr					Lys			3264
	c cag s Gln 109	Val	_	- •	_		Phe					Asp		1		3312
	g cac u His 05					Ala					Leu					3360
	a ttc r Phe	_	_		Leu				_	Val			_		Pro	3408

tgc Cys	gag Glu	ccc Pro	gaa Glu 1140	Pro	gat Asp	gta Val	gca Ala	gtg Val 1145	Leu	act Thr	tcc Ser	atg Met	ctc Leu 1150	Thr	gac Asp	3456
Pro	tcc Ser	cac His 1155	atc Ile	aca Thr	gca Ala	gaa Glu	acg Thr 1160	Ala	aag Lys	cgt Arg	agg Arg	ttg Leu 1165	Ala	agg Arg	GJA aaa	3504
tct Ser	ccc Pro 1170	Pro	tcc Ser	ttg Leu	gcc Ala	agc Ser 1175	Ser	tca Ser	gct Ala	agc Ser	cag Gln 1180	Leu	tct Ser	gcg Ala	cct Pro	3552 ·
tcc Ser 1185	Leu	aag Lys	gcg Ala	aca Thr	tgc Cys 119(Thr	acc Thr	cac His	cat His	gtc Val 1195	Ser	ccg Pro	gac Asp	Ala	gac Asp 1200	3600
ctc Leu	atc Ile	gag Glu	gcc Ala	aac Asn 1205	Leu	ctg Leu	tgg Trp	cgg Arg	cag Gln 121(Glu	atg Met	ggc Gly	GJÀ âââ	aac Asn 1215	Ile	3648
acc Thr	cgc Arg	gtg Val	gag Glu 1220	Ser	gag Glu	aac Asn	aag Lys	gtg Val 1225	Val	gtc Val	ctg Leu	gac Asp	tct Ser 1230	Phe	gac Asp	3696
			gcg Ala					Arg					Pro			3744
		Arg	aaa Lys				Phe					Pro				3792
cgc Arg 1265	Pro	gat Asp	tac Tyr	aac Asn	cct Pro 1270	Pro	ctg Leu	tta Leu	gag Glu	tcc Ser 1275	Trp	aag Lys	gac Asp	ccg Pro	gac Asp 1280	3840
			ccg Pro		Val					Leu					Ala	3888
			cca Pro 1300	Pro					Arg					Thr		3936
tcc Ser	tcc Ser	gtg Val 131	tct Ser	tct Ser	gcc Ala	tta Leu	gcg Ala 1320	Glu	ctc Leu	gct Ala	act Thr	aag Lys 1325	Thr	ttc Phe	ggc Gly	3984
agc Ser	tcc Ser 1330	Glu	tca Ser	tcg Ser	gcç Ala	gtc Val 1335	Asp	agc Ser	ggc Gly	acg Thr	gcg Ala 1340	Thr	gcc Ala	ctt Leu	cct Pro	4032
gac	cag	gcc	tcc	gac	gac	ggt	gac	aaa	gga	tcc	gac	gtt	gag	tcg	tac	4080

	Asp 1345		Ala	Ser.	Asp	Asp 1350		Asp	Lys	Gly	Ser 1355		Val	Gļu	Ser	туr 1360		· :
	tcc Ser	tcc Ser	atg Met	ccc Pro	ccc Pro 1365	Leu	gag Glu	Gly ggg	gaa Glu	ccg Pro 1370	Gly	gac Asp	ccc Pro	gat Asp	ctc Leu 1375	Ser	4121	3 ÷
	gac Asp	GJA aaa	tct Ser	tgg Trp 1380	Ser	acc Thr	gtg Val	Ser	gag Glu 1385		gct Ala	agt Ser	gag Glu	gat Asp 1390	Val	gtc Val	417	5 ·
	tgc Cys	tgc Cys	tca Ser 1399	Met	tcc Ser	tac Tyr	aca Thr	tgg Trp 1400	Thr	ggc Gly	gcc Ala	ttg Lėu	atc Ile 1405	Thr	cca Pro	tgc Cys	422	4
	gct Ala	gcg Ala 1410	Glu	gaa Glu	agc Ser	aag Lys	ctg Leu 1415	Pro	atc Ile	aac Asn	gcg Ala	ttg Leu 1420	Ser	aac Asn	tct Ser	ttg Leu	427 :	2 <u>.</u>
	ctg Leu 1425	Arg	cac His	cat His	aac Asn	atg Met 1430	Val	tat Tyr	gcc Ala	aca Thr	aca Thr 1435	Ser	cgc Arg	agc Ser	gca Ala	ggc Gly 1440	432	0.
	ctg Leu	Yi.a Caa	cag Gln	aag Lys	aag Lys 144	Val	acc Thr	ttt Phe	gac Asp	aga Arg 1450	Leu	caa Gln	gtc Val	ctg Leu	gac Asp 145	Asp	436	В
					Val			Glu							Thr	gtt Val	441	6
•	aag Lys	gct Ala	aaa Lys 147	Leu	cta Leu	tcc Ser	gta Val	gag Glu 148	Glu	gcc Ala	tgc Cys	aag Lys	ctg Leu 148	Thr	ccc Pro	cca Pro	446	4
			Ala					Gly		Gly			Asp			aac Asn	451	2
		Ser					Asn			cac His		Val					456	O :
	ctg Leu	gaa Glu	gac Asp	act Thr	gtg Val 152	Thr	cca Pro	att Ile	gac Asp	acc Thr 153	Thr	atc Ile	atg Met	gca Ala	aaa Lys 153	Asn	460	8
	gag Glu				Val					Gly					Ala	cgc Arg	465	6
				Phe					Val	cgt Arg				Lys		gcc Ala	470	4

ctc tat gat gtg Leu Tyr Asp Val 1570	gtc tcc acc ctt Val Ser Thr Leu 1575	Pro Gln Val V	gtg atg ggc tcc tca Val Met Gly Ser Ser 1580	4752
tac gga ttc cag Tyr Gly Phe Gln 1585	tac tot cot ggg Tyr Ser Pro Gly 1590	cag cga gtc o Gln Arg Val (1595	gag ttc ctg gtg aat Glu Phe Leu Val Asn 1600	4800
acc tgg aaa tca Thr Trp Lys Ser	aag aaa aac ccc Lys Lys Asn Pro 1605	atg ggc ttt to Met Gly Phe S 1610	cca tat gac act cgc Ger Tyr Asp Thr Arg 1615	4848
tgt ttc gac tca Cys Phe Asp Ser 162	Thr Val Thr Glu	aac gac atc o Asn Asp Ile A 1625	egt gtt gag gag tca Arg Val Glu Glu Ser 1630	4896
att tac caa tgt Ile Tyr Gln Cys 1635	tgt gac ttg gcc Cys Asp Leu Ala 164	Pro Glu Ala A	aga cag gcc ata aaa Arg Gln Ala Ile Lys 1645	4944
tcg ctc aca gag Ser Leu Thr Glu 1650	cgg ctt tat atc Arg Leu Tyr Ile 1655	Gly Gly Pro I	etg act aat tca aaa Leu Thr Asn Ser Lys .660	4992
ggg cag aac tgc Gly Gln Asn Cys 1665	ggt tat cgc cgg Gly Tyr Arg Arg 1670	tgc cgc gcg a Cys Arg Ala S 1675	age gge gtg etg acg Ser Gly Val Leu Thr 1680	5040
act agc tgc ggt Thr Ser Cys Gly	aac acc ctc aca Asn Thr Leu Thr 1685	tgt tac ttg a Cys Tyr Leu I 1690	aag gcc tct gca gcc wys Ala Ser Ala Ala 1695	5088
tgt cga gct gcg Cys Arg Ala Ala 170	Lys Leu Gln Asp	tgc acg atg of Cys Thr Met I	etc gtg aac gga gac Leu Val Asn Gly Asp 1710	5136
gac ctt gtc gtt Asp Leu Val Val 1715	atc tgt gaa ago Ile Cys Glu Ser 172	Ala Gly Thr G	aa gag gac gcg gcg Sln Glu Asp Ala Ala 1725	5184
agc cta cga gtc Ser Leu Arg Val 1730	ttc acg gag gct Phe Thr Glu Ala 1735	Met Thr Arg T	ac tct gcc ccc ccc yr Ser Ala Pro Pro .740	5232
ggg gac ccg ccc Gly Asp Pro Pro 1745	Gln Pro Glu Tyr	gac ttg gag c Asp Leu Glu I 1755	tg ata aca tca tgt eu Ile Thr Ser Cys 1760	5280
tcc tcc aat gtg Ser Ser Asn Val	tcg gtc gcc cac Ser Val Ala His 1765	gat gca tca g Asp Ala Ser G 1770	gc aaa agg gtg tac Sly Lys Arg Val Tyr 1775	5328
tac ctc acc cgt Tyr Leu Thr Arg 178	Asp Pro Thr Thr	ccc ctc gca c Pro Leu Ala A 1785	gg gct gcg tgg gaa arg Ala Ala Trp Glu 1790	5376

	•																
	aca Thr	gct Ala	aga Arg 1795	His	act Thr	cca Pro	gtt Val	aac Asn 1800	Ser	tgg Trp	cta Leu	ggc Gly	aac Asn 1805	Ile	atc Ile	atg Met	5424
	tat Tyr	gcg Ala 1810	Pro	act Thr	ttg Leu	tgg Trp	gca Ala 1815	Arg	atg Met	att Ile	ctg Leu	atg Met 1820	act Thr	cac His	ttc Phe	ttc Phe	5472
	tcc Ser 1825	Ile	ctt Leu	cta Leu	gca Ala	cag Gln 1830	Glu	caa Gln	ctt Leu	gaa Glu	aaa Lys 1835	Ala	ctg Leu	gac Asp	tgc Cys	cag Gln 1840	5520
•						Tyr					Leu		cta Leu			Ile	5568
					His					Phe			cat His		Tyr		5616
				Ile					Ser				aaa Lys 1885	Leu			5664
			Leu	-	_		_	His		_		_	gtc Val)				5712
		Leu					Arg					Gly	aag Lys			ttc Phe 1920	5760
						Thr					Thr		atc Ile	Pro			5808
					Leu					Val			tac Tyr		Gly		5856
				His					Ala				tgg Trp 196	Phe		ctg Leu	590 4 :
			Leu					Gly					Leu			aac Asn	5952
	cga Arg 198						•			•	•		`.			• • • •	5955.
)> ·6 l> 19	84				•			٠.		•			٠.		

<212> PRT <213> Artificial Sequence <220> <223> NS sequence

<400> 6 Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys . 5 10 15 Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu 20 25 Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val 45 Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu 50 55 60 Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln -· 70 75 Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro 90 85 Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp 105 110 · 100 Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser 120 125 115 Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu 135 140 130 Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys Thr 150 155 Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu 170 165 Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala 180 185 Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser 205 . 195 200 Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys 210 215 220 Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala 230 235 Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly Val 250 245 Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys 265 260 Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile Ile 285 280 275 Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly 290 295 300 Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu 315 310 Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile
325 330 335 Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly Lys 345 350 340 Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe Cys 360 355 365 His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu 375 380

```
Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val Ile
                  390
                                     395
                                               . .
385
Pro Thr Ile Gly Asp Val Val Val Val Ala Thr Asp Ala Leu Met Thr
                                 410
              405
Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val
          420
                             425
                                                430
Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr
                                            445
                          440
Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg
                      455
                                         460
Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu
                                     475
                  470
Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp
                                                    495
                               490
               485
Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg
                                  · · 510
                          505
Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His
                          520 525
       515
Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala 530 535 540
His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu
                  550
                                     555
Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro
                                 570
                                                    575
              565
Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu
                            585
                                                590
           580
His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu
       595
                         600
Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser
610
                      615
                                        620
Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly Val
                  630
                                    - 635
Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val Ile
              645
                                 650
Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Ile Val Pro Asp Arg
           660
                             665
                                                670
Glu Phe Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser His
                          680
                                           685
Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys Gln
                     695
Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala Ala
                  710
                              715
Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp Ala
                                 730
               725
Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly Leu
           740
                              745
Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe Thr
                          760
                                             765
Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Ser Thr Leu Leu Phe Asn
                      775
                                         780
Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala Ala
                  790
                                     795
Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser Ile
              Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala Gly
```

				.820					825					000		
	Val	Ala			T.011	Val	בות	Pho		170 1	Met	Com	a1	830	W- h	
			835·					840					845			
		850					855				Ala	860				
	865		•			870					Ile 875					880
	Gly	Pro	Gly	Glu	Gly 885	Ala	Val	Gln	Trp	Met 890	Asn	Arg	Leu	Ile	Ala 895	Phe
	Ala	Ser	Arg	Gly 900	Asn	His	Val	Ser	Pro 905	Thr	His	Tyr	Val	Pro 910	Glu	Ser
		Ala	Ala 915	Ala	Arg	Val	Thr	Gln 920		Leu	Ser	Ser	Leu 925		Ile	Thr
•	Gln	Leu 930	Leu	Lys	Arg	Leu	His 935		Trp	Ile	Asn	Glu 940		Cys	Ser	Thr
	Pro 945	Cys _.	Ser	Gly	Ser	Trp 950	Leu	Arg	Asp	Val	Trp 955	Asp	Trp	Ile	Cys	Thr 960
	Val	Leu	Thr	Asp	Phe 965	Lys	Thr	Trp	Leu	Gln 970	Ser	Lys	Leu	Leu	Pro 975	Gln
	Ļeu	Pro ·	Gly	Val 980	Pro	Phe	Phe	Ser	Cys 985		Arg	Gly	Tyr	Lys 990	Gly	Val
	Trp	Arg	Gly 995	Asp	Gly	Ile	Met	Gln 1000		Thr	Cys	Pro	Cys 1005	Gly	Ala	Gln
	Ile	Thr 1010	Gly	His	Va1	Lys	Asn 1015	Gly	Ser	Met	Arg	Ile 1020	Val	Gly	Pro	Lys
	Thr 1025	Сув	Ser	Asn	Thr	Trp 1030	His		Thr	Phe	Pro 1035	Ile	Asn	Ala	Tyr	Thr 1040
	Thr	Gly	Pro	Суѕ	Thr 1045	Pro		Pro	Ala	Pro 1050	Asn	Tyr	Ser	Arg	Ala 1055	Leu
	Trp	Arg	Va1	Ala 1060	Ala	Glu	Glu	Tyr	Val 1065	Glu	Val	Thr	Arg	Val 1070	Gly	Asp
	Phe	His	Tyr 1075	Val	Thr	Gly	Met	Thr 1080	Thr		Asn	Val	Lys 1085	Cys	Pro	Cys
	Gln	Val 1090	Pro	Ala	Pro	Glu	Phe 1095	Phe		Glu	Val	Asp 1100	Gly	Val	Arg	Leu
	His 1105	Arg	Tyr	Ala	Pro	Ala 1110	Cys		Pro	Leu	Leu 1119	Arg	Glu	Glu	Val	
	_		Val	Gly	Leu 1125	Asn		Tyr	Leu	Val	Gly		Gln	Leu		_
	Glu	Pro	Glu	Pro 1140	Asp		Ala	Val	Leu 1149	Thr	Ser	Met	Leu			Pro
	Ser	His	Ile 1155	Thr		Glu	Thr	Ala 1160	Lys		Arg	Leu	Ala 1165		Gly	Ser
	Pro	Pro 1170	Ser		Ala	Ser	Ser 1179	Ser		Ser	Gln		Ser	Ala	Pro	Ser
	Leu	Lys		Thr	Cys		Thr		His	Val	Ser	1180 Pro		Ala	Asp	Leu
	1185					1190					1195					1200
					1205	•				1210	Met				1215	ì
	Arg	Val	Glu	Ser 1220	Glu)	Asn	Lys	Val	Val 1225	Val	Leu	Asp	Ser	Phe 1230	Asp	Pro
	Leu	Arg	Ala 1235	Glu		Asp	Glu	Arg 1240	Glu		Ser	Val	Pro 1245	Ala	Glu	Ile
	Leu	Arg 1250	Lys	Ser	Lys	Lys	Phe 1255	Pro		Ala	Met	Pro 1260	Ile	Trp	Ala	Arg

Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro Asp Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ile Lys Ala Pro . Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly Ser Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Leu Pro Asp Gin Ala Ser Asp Asp Gly Asp Lys Gly Ser Asp Val Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn Ser Leu Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser Ala Gly Leu . Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp His 1445 1450 1455 Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val Lys Ala Lys Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro His Ser Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Asn Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys Asp Leu Leu Glu Asp Thr Val Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala Leu 1555 1560 Tyr Asp Val Val Ser Thr Leu Pro Gln Val Val Met Gly Ser Ser Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn Thr · 1595 Trp Lys Ser Lys Lys Asn Pro Met Gly Phe Ser Tyr Asp Thr Arg Cys 1610 . 1615 Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Ala Pro Glu Ala Arg Gln Ala Ile Lys Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr Thr 1670 . 1675 Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Cys 1695 :

WO 03/031588 PCT/US02/32512

```
Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Asn Gly Asp Asp
          1700
                              1705
                                                1710
Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala Ser
      1715
                         1720
                                            1725
Leu Arg Val Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala Pro Pro Gly
   1730
                     1735
                                         1740
Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser Cys Ser
                  1750
                                    1755
                                                       1760
Ser Asn Val Ser Val Ala His Asp Ala Ser Gly Lys Arg Val Tyr Tyr
              1765
                                 1770
                                                    1775
Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala Trp Glu Thr
    1780
                             1785 ·
                                                 1790
Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Met Tyr
      1795
                         1800
                                            1805
Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe Phe Ser
   1810
                    1815
                                         1820
Ile Leu Leu Ala Gln Glu Gln Leu Glu Lys Ala Leu Asp Cys Gln Ile
                 1830
                                    1835
Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro Gln Ile Ile
               1845
                                 1850
                                                     1855
Glu Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser Tyr Ser Pro
                             1865
           1860
                                                1870
Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val Pro
                          1880
     . 1875
                                            1885
Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Arg Leu
  1890
                1895
                                        1900
Leu Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe Asn
1905
                  1910
                                     1915
                                                        1920
Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala Ala Ser
               1925
                                  1930
                                                     1935
Gln Leu Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Ser Gly Gly Asp
           1940
                              1945
                                                 1950
Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu Cys
      1955
                          1960
                                            1965
Leu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn Arg
   1970
                      1975
                                        1980
<210> 7
<211> 4909
<212> DNA
<213> Artificial Sequence
<220>
<223> pVlJ nucleic acid
tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea
cagettgtet gtaageggat geegggagea gacaageeeg teagegggeg teagegggtg
                                                                  120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc
                                                                  180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg
                                                                  240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg
                                                                  300
tocaacatta cogocatgtt gacattgatt attgactagt tattaatagt aatcaattac
                                                                   360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg
                                                                   420
cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc
                                                                   480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac
                                                                   540
```

```
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa
                                                                     600-
                                                                      660
tgacggtaaa tggcccgcct ggcattatgc ccagtacatg accttatggg actttcctac
                                                                      720
ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga
                                                                      780
cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa
                                                                      840
ctccgcccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag .
                                                                     900
                                                                     960.
agetegttta gtgaacegte agategeetg gagaegeeat ccaegetgtt ttgaeeteea
tagaagacac cgggaccgat ccagcctccg cggccgggaa cggtgcattg gaacgcggat
                                                                     1020
teccegtgee aagagtgaeg taagtaeege etatagaete tataggeaca eccetttgge
                                                                    1080
tottatgoat gotatactgt ttttggottg gggootatac accoccgott cottatgota
                                                                     1140
taggtgatgg tatagettag cetataggtg tgggttattg accattattg accaeteece
                                                                     1200
tattggtgac gatactttcc attactaatc cataacatgg ctctttgcca caactatctc
                                                                     1260
                                                                    1320
tattggctat atgccaatac tetgteette agagactgae acggaetetg tattttaca
ggatggggtc ccatttatta tttacaaatt cacatataca acaacgccgt cccccgtgcc
                                                                     1380
                                                                     1440
cgcagttttt attaaacata gcgtgggatc tccacgcgaa tctcgggtac gtgttccgga
                                                                     1500
catgggetet teteeggtag eggeggaget tecacateeg ageeetggte ceatgeetee
                                                                     1560
ageggeteat ggtegetegg cageteettg etectaacag tggaggeeag aettaggeae
agcacaatgc ccaccaccac cagtgtgccg cacaaggccg tggcggtagg gtatgtgtct
                                                                     1620
                                                                     1680
gaaaatgagc gtggagattg ggctcgcacg gctgacgcag atggaagact taaggcagcg
gcagaagaag atgcaggcag ctgagttgtt gtattctgat aagagtcaga ggtaactccc
                                                                     1740
gttgcggtgc tgttaacggt ggagggcagt gtagtctgag cagtactcgt tgctgccgcg
                                                                     1800
                                                                     1860
cgcgccacca gacataatag ctgacagact aacagactgt tcctttccat gggtcttttc
tgcagtcacc gtccttagat ctaggtacca gatatcagaa ttcagtcgac agcggccgcg
                                                                     1920
atotgotgtg cottotagtt gocagocato tgttgtttgc coctoccog tgccttcctt
                                                                     1980
                                                                     2040
gaceetggaa ggtgeeacte ceaetgteet tteetaataa aatgaggaaa ttgeategea
2100
ggattgggaa gacaatagca ggcatgctgg ggatgcggtg ggctctatgg ccgctgcggc
                                                                     2160
                                                                     2220
caggtgctga agaattgacc cggttcctcc tgggccagaa agaagcaggc acatcccctt
ctctgtgaca caccctgtcc acgcccctgg ttcttagttc cagccccact cataggacac
                                                                     2280
tcatagctca ggagggctcc gccttcaatc ccacccgcta aagtacttgg agcggtctct
                                                                     2340
ccctccctca tcagcccacc aaaccaaacc tagcctccaa gagtgggaag aaattaaagc
                                                                     2400
                                                                     2460
aagatagget attaagtgea gagggagaga aaatgeetee aacatgtgag gaagtaatga
gagaaatcat agaatttett eegetteete geteactgae tegetgeget eggtegtteg
                                                                     2520
                                                                     2580
gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg
                                                                     2640
ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa
ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc acaaaaatcg
                                                                     2700
                                                                     2760
acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgtttccccc
                                                                     2820
tggaagetee etegtgeget eteetgttee gaccetgeeg ettaceggat acetgteege
ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt atctcagttc
                                                                     2880
                                                                     2940
ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg
                                                                     3000
ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc
                                                                     3060
actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga
                                                                     3120
gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg gtatctgcgc
totgotgaag coagttacot toggaaaaag agttggtago tottgatoog goaaacaaac
                                                                     3180
caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg
                                                                     3240
atctcaagaa gatcctttga tctttctac ggggtctgac gctcagtgga acgaaaactc
                                                                     3300
                                                                     3360
acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa
                                                                     3420
ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt ctgacagtta
ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt
                                                                     3480
                                                                     3540
tgcctgactc ggggggggg ggcgctgagg tctgcctcgt gaagaaggtg ttgctgactc
                                                                     3600
ataccaggec tgaatcgece catcatecag ecagaaagtg agggagecae ggttgatgag
                                                                     3660
agetttgttg taggtggace agttggtgat tttgaacttt tgetttgeca eggaaeggte
tgcgttgtcg ggaagatgcg tgatctgatc cttcaactca gcaaaagttc gatttattca
                                                                     3720
acaaageege egteeegtea agteagegta atgetetgee agtgttacaa ecaattaace
                                                                     3780
                                                                     3840
aattotgatt agaaaaacto atogagoato aaatgaaact goaatttatt catatoagga
```

```
ttatcaatac catatttttg aaaaagccgt ttctgtaatg aaggagaaaa ctcaccgagg
                                                                        3900
  cagttccata ggatggcaag atcctggtat cggtctgcga ttccgactcg tccaacatca
                                                                        3960
  atacaaccta ttaatttccc ctcgtcaaaa ataaggttat caagtgagaa atcaccatga
                                                                        4020
  gtgacgactg aatccggtga gaatggcaaa agcttatgca tttctttcca gacttgttca
                                                                        4080
  acaggccagc cattacgctc gtcatcaaaa tcactcgcat caaccaaacc gttattcatt
                                                                        4140
  cgtgattgcg cctgagcgag acgaaatacg cgatcgctgt taaaaggaca attacaaaca
                                                                        4200
  ggaatcgaat gcaaccggcg caggaacact gccagcgcat caacaatatt ttcacctgaa
                                                                        4260
  tcaggatatt cttctaatac ctggaatgct gttttcccgg ggatcgcagt ggtgagtaac
                                                                        4320
  catgcatcat caggagtacg gataaaatgc ttgatggtcg gaagaggcat aaattccgtc
                                                                        4380
  agccagttta gtctgaccat ctcatctgta acatcattgg caacgctacc tttgccatgt
                                                                        4440
  ttcagaaaca actctggcgc atcgggcttc ccatacaatc gatagattgt cgcacctgat
                                                                        4500
  tgcccgacat tatcgcgagc ccatttatac ccatataaat cagcatccat gttggaattt
                                                                        4560
  aatcgcggcc tcgagcaaga cgtttcccgt tgaatatggc tcataacacc ccttgtatta
                                                                        4620
  ctgtttatgt aagcagacag ttttattgtt catgatgata tatttttatc ttgtgcaatg
                                                                        4680
  taacatcaga gattttgaga cacaacgtgg ctttcccccc cccccatta ttgaagcatt
                                                                        4740
  tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa aaataaacaa
                                                                        4800
  ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtctaaga aaccattatt
                                                                        4860
  atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtc
                                                                        4909
  <210> 8
  <211> 35935
  <212> DNA
  <213> Adenovirus serotype 6
  <400> 8
  catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt
                                                                          60
  ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt
                                                                         120
  gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg
                                                                         180
  gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag
                                                                         240
  taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga
                                                                         300
  agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg
                                                                         360
  gactttgacc gtttacgtgg agactcgccc aggtgttttt ctcaggtgtt ttccgcgttc
                                                                         420
  cgggtcaaag ttggcgtttt attattatag tcagctgacg tgtagtgtat ttatacccgg
                                                                         480
  tgagttcctc aagaggccac tcttgagtgc cagcgagtag agttttctcc tccgagccgc
                                                                         540
  tecgacaceg ggactgaaaa tgagacatat tatetgeeac ggaggtgtta ttacegaaga
                                                                         600
aatggccgcc agtcttttgg accagctgat cgaagaggta ctggctgata atcttccacc
                                                                         660
  tcctagccat tttgaaccac ctaccettca cgaactgtat gatttagacg tgacggcccc
                                                                         720
  cgaagatccc aacgaggagg cggtttcgca gatttttccc gactctgtaa tgttggcggt
                                                                         780
  gcaggaaggg attgacttac tcacttttcc gccggcgccc ggttctccgg agccgcctca
                                                                         840
  cctttcccgg cagcccgagc agccggagca gagagccttg ggtccggttt ctatgccaaa
                                                                         900
  ccttgtaccg gaggtgatcg atcttacctg ccacgaggct ggctttccac ccagtgacga
                                                                         960
  cgaggatgaa gagggtgagg agtttgtgtt agattatgtg gagcaccccg ggcacggttg
                                                                        1020
  caggicity cattatcacc ggaggaatac gggggaccca gatattatgt gttcgctttg
                                                                        1080
  ctatatgagg acctgtggca tgtttgtcta cagtaagtga aaattatggg cagtgggtga
                                                                        1140
  tagagtggtg ggtttggtgt ggtaattttt tttttaattt ttacagtttt gtggtttaaa
                                                                        1200
  gaattttgta ttgtgatttt tttaaaaggt cctgtgtctg aacctgagcc tgagcccgag
                                                                        1260
  ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa tggcgcctgc tatcctgaga
                                                                        1320
  cgcccgacat cacctgtgtc tagagaatgc aatagtagta cggatagctg tgactccggt
                                                                        1380
  cettetaaca caceteetga gatacacecg gtggteeege tgtgeeecat taaaceagtt
                                                                        1440
  gccgtgagag ttggtgggcg tcgccaggct gtggaatgta tcgaggactt gcttaacgag
                                                                        1500
  cctgggcaac ctttggactt gagctgtaaa cgccccaggc cataaggtgt aaacctgtga
                                                                        1560
  ttgcgtgtgt ggttaacgcc tttgtttgct gaatgagttg atgtaagttt aataaagggt
                                                                        1620
  gagataatgt ttaacttgca tggcgtgtta aatggggcgg ggcttaaagg gtatataatg
                                                                        1680
  cgccgtgggc taatcttggt tacatctgac ctcatggagg cttgggagtg tttggaagat
                                                                         1740
  ttttctgctg tgcgtaactt gctggaacag agctctaaca gtacctcttg gttttggagg
                                                                        1800
```

```
tttctgtggg gctcatccca ggcaaagtta gtctgcagaa ttaaggagga ttacaagtgg
gaatttgaag agcttttgaa atcctgtggt gagctgtttg attctttgaa tctgggtcac
                                                                      1920 ·
caggcgcttt tccaagagaa ggtcatcaag actttggatt tttccacacc ggggcgcgct
                                                                      1980
                                                                      2040
gcggctgctg ttgctttttt gagttttata aaggataaat ggagcgaaga aacccatctg
                                                                      2100
agcggggggt acctgctgga ttttctggcc atgcatctgt ggagagcggt tgtgagacac
aagaategee tgetaetgtt gtetteegte egeeeggega taatacegae ggaggageag
                                                                      2160
cagcagcagc aggaggaagc caggcggcgg cggcaggagc agagcccatg gaacccgaga
                                                                      2220
gccggcctgg accctcggga atgaatgttg tacaggtggc tgaactgtat ccagaactga
                                                                      2280
gacgcatttt gacaattaca gaggatgggc aggggctaaa ggggggtaaag agggagcggg
                                                                      2340
gggettgtga ggetacagag gaggetagga atctagettt tagettaatg accagacace
                                                                      2400
                                                                      2460.
gtcctgagtg tattactttt caacagatca aggataattg cgctaatgag cttgatctgc
tggcgcagaa gtattccata gagcagctga ccacttactg gctgcagcca ggggatgatt
                                                                      2520
ttgaggaggc tattagggta tatgcaaagg tggcacttag gccagattgc aagtacaaga
                                                                      2580
                                                                      2640
tcagcaaact tgtaaatatc aggaattgtt gctacatttc tgggaacggg gccgaggtgg
agatagatac ggaggatagg gtggccttta gatgtagcat gataaatatg tggccggggg
                                                                      2700
tgcttggcat ggacggggtg gttattatga atgtaaggtt tactggcccc aattttagcg
                                                                      2760
gtacggtttt cctggccaat accaacctta tcctacacgg tgtaagcttc tatgggttta
                                                                      2820
                                                                      2880.
acaatacctg tgtggaagcc tggaccgatg taagggttcg gggctgtgcc ttttactgct
gctggaaggg ggtggtgtgt cgccccaaaa gcagggcttc aattaagaaa tgcctctttg
                                                                      2940
                                                                      3000
aaaggtgtac cttgggtatc ctgtctgagg gtaactccag ggtgcgccac aatgtggcct
                                                                      3060
ccgactgtgg ttgcttcatg ctagtgaaaa gcgtggctgt gattaagcat aacatggtat
gtggcaactg cgaggacagg gcctctcaga tgctgacctg ctcggacggc aactgtcacc
                                                                      3120
                                                                      3180
tgctgaagac cattcacgta gccagccact ctcgcaaggc ctggccagtg tttgagcata
acatactgac cogetgttcc ttgcatttgg gtaacaggag gggggtgttc ctaccttacc
                                                                      3240
aatgcaattt gagtcacact aagatattgc ttgagcccga gagcatgtcc aaggtgaacc
                                                                      3300
                                                                      3360
tgaacggggt gtttgacatg accatgaaga tctggaaggt gctgaggtac gatgagaccc
gcaccaggtg cagaccctgc gagtgtggcg gtaaacatat taggaaccag cctgtgatgc
                                                                      3420
tggatgtgac cgaggagctg aggcccgatc acttggtgct ggcctgcacc cgcgctgagt
                                                                      3480
                                                                      3540
ttggctctag cgatgaagat acagattgag gtactgaaat gtgtgggcgt ggcttaaggg
                                                                      3600
tgggaaagaa tatataaggt gggggtctta tgtagttttg tatctgtttt gcagcagccg
                                                                      3660
ccgccgccat gagcaccaac tcgtttgatg gaagcattgt gagctcatat ttgacaacgc
gcatgccccc atgggccggg gtgcgtcaga atgtgatggg ctccagcatt gatggtcgcc
                                                                      3720
                                                                      3780
ccgtcctgcc cgcaaactct actaccttga cctacgagac cgtgtctgga acgccgttgg
agactgcagc ctccgccgcc gcttcagccg ctgcagccac cgcccgcggg attgtgactg
                                                                      3840 1
                                                                      3900
actitigetit ectgageeeg ettgeaagea gigeagetie eegiteatee geeegegaig
                                                                      3960
acaagttgac ggctcttttg gcacaattgg attctttgac ccgggaactt aatgtcgttt
ctcagcagct gttggatctg cgccagcagg tttctgccct gaaggcttcc tcccctccca
                                                                       4020
atgcggttta aaacataaat aaaaaaccag actctgtttg gatttggatc aagcaagtgt
                                                                      4080
                                                                       4140
cttgctgtct ttatttaggg gttttgcgcg cgcggtaggc ccgggaccag cggtctcggt
                                                                       4200
cgttgagggt cctgtgtatt ttttccagga cgtggtaaag gtgactctgg atgttcagat
acatgggcat aagcccgtct ctggggtgga ggtagcacca ctgcagagct tcatgctgcg
                                                                       4260
                                                                       4320
gggtggtgtt gtagatgatc cagtcgtagc aggagcgctg ggcgtggtgc ctaaaaatgt
                                                                       4380
ctttcagtag caagctgatt gccaggggca ggcccttggt gtaagtgttt acaaagcggt
taagctggga tgggtgcata cgtggggata tgagatgcat cttggactgt atttttaggt
                                                                       4440
tggctatgtt cccagccata tccctccggg gattcatgtt gtgcagaacc accagcacag
                                                                       4500
                                                                       4560
tgtatccggt gcacttggga aatttgtcat gtagcttaga aggaaatgcg tggaagaact
tggagacgcc cttgtgacct ccaagatttt ccatgcattc gtccataatg atggcaatgg
                                                                       4620
gcccacgggc ggcggcctgg gcgaagatat ttctgggatc actaacgtca tagttgtgtt
                                                                       4680
                                                                       4740
ccaggatgag atcgtcatag gccattttta caaagcgcgg gcggagggtg ccagactgcg
                                                                       4800
gtataatggt tccatccggc ccaggggcgt agttaccetc acagatttgc atttcccacg
                                                                       4860
ctttgagttc agatgggggg atcatgtcta cctgcggggc gatgaagaaa acggtttccg
                                                                       4920
gggtagggga gatcagctgg gaagaaagca ggttcctgag cagctgcgac ttaccgcagc
                                                                       4980
cggtgggccc gtaaatcaca cctattaccg ggtgcaactg gtagttaaga gagctgcagc
tgccgtcatc cctgagcagg ggggccactt cgttaagcat gtccctgact cgcatgtttt
                                                                       5040
ccctgaccaa atccgccaga aggegetege egeccagega tageagttet tgcaaggaag
                                                                       5100
```

```
caaagttttt caacggtttg agaccgtccg ccgtaggcat gcttttgagc gtttgaccaa
                                                                      5160
gcagttccag gcggtcccac agctcggtca cctgctctac ggcatctcga tccagcatat
                                                                      5220
etectegitt egegggtigg ggeggettte getgtaegge agtagteggt getegteeag
                                                                       5280
acgggccagg gtcatgtctt tccacgggcg cagggtcctc gtcagcgtag tctgggtcac
                                                                       5340
ggtgaagggg tgcgctccgg gctgcgctc ggccagggtg cgcttgaggc tggtcctgct
                                                                       5400
ggtgctgaag cgctgccggt cttcgccctg cgcgtcggcc aggtagcatt tgaccatggt
                                                                       5460
gtcatagtcc agcccctccg cggcgtggcc cttggcgcgc agcttgccct tggaggaggc
                                                                      5520
gccgcacgag gggcagtgca gacttttgag ggcgtagagc ttgggcgcga gaaataccga
                                                                      5580
ttccggggag taggcatccg cgccgcaggc cccgcagacg gtctcgcatt ccacgagcca
                                                                      5640
ggtgagetet ggeegttegg ggtcaaaaac caggttteec ccatgetttt tgatgegttt
                                                                      5700
ettacetetg gtttecatga geeggtgtee aegeteggtg aegaaaagge tgteegtgte
                                                                      5760
cccgtataca gacttgagag gcctgtcctc gagcggtgtt ccgcggtcct cctcgtatag
                                                                      5820
aaactcggac cactctgaga caaaggctcg cgtccaggcc agcacgaagg aggctaagtg
                                                                      5880
ggaggggtag cggtcgttgt ccactagggg gtccactcgc tccagggtgt gaagacacat
                                                                      5940
gtcgccctct tcggcatcaa ggaaggtgat tggtttgtag gtgtaggcca cgtgaccggg
                                                                      6000
tgttcctgaa ggggggctat aaaagggggt gggggcgcgt tcgtcctcac tctcttccgc
                                                                      6060
ategetgtet gegagggeea getgttgggg tgagtaetee etetgaaaag egggeatgae
                                                                      6120
ttctgcgcta agattgtcag tttccaaaaa cgaggaggat ttgatattca cctggcccgc
                                                                      6180
ggtgatgcct ttgagggtgg ccgcatccat ctggtcagaa aagacaatct ttttgttgtc
                                                                      6240
aagettggtg gcaaacgace cgtagaggge gttggacage aacttggega tggagegeag
                                                                      6300
ggtttggttt ttgtcgcgat cggcgcgctc cttggccgcg atgtttagct gcacgtattc
                                                                      6360
gegegeaacg cacegecatt egggaaagae ggtggtgege tegtegggea ceaggtgeae
                                                                      6420
gcgccaaccg cggttgtgca gggtgacaag gtcaacgctg gtggctacct ctccgcgtag
                                                                      6480
gegetegttg gtecageaga ggeggeegee ettgegegag cagaatggeg gtagggggte
                                                                      6540
tagctgcgtc tcgtccgggg ggtctgcgtc cacggtaaag accccgggca gcaggcgcgc
                                                                      6600
gtcgaagtag tctatcttgc atccttgcaa gtctagcgcc tgctgccatg cgcgggcggc
                                                                      6660
aagcgcgcgc tcgtatgggt tgagtggggg accccatggc atggggtggg tgagcgcgga
                                                                      6720
ggcgtacatg ccgcaaatgt cgtaaacgta gaggggctct ctgagtattc caagatatgt
                                                                      6780
agggtagcat cttccaccgc ggatgctggc gcgcacgtaa tcgtatagtt cgtgcgaggg
                                                                      6840
agcgaggagg tegggacega ggttgetaeg ggegggetge tetgetegga agactatetg
                                                                      6900
cctgaagatg gcatgtgagt tggatgatat ggttggacgc tggaagacgt tgaagctggc
                                                                      6960
gtctgtgaga cctaccgcgt cacgcacgaa ggaggcgtag gagtcgcgca gcttgttgac
                                                                      7020
cageteggeg gtgacetgea egtetaggge geagtagtee agggttteet tgatgatgte
                                                                      7080
atacttatee tgteeetttt tttteeacag etegeggttg aggacaaact ettegeggte
                                                                      7140
tttccagtac tcttggatcg gaaacccgtc ggcctccgaa cggtaagagc ctagcatgta
                                                                      7200
gaactggttg acggcctggt aggcgcagca tecettttet acgggtagcg cgtatgcctg
                                                                      7260
cgcggccttc cggagcgagg tgtgggtgag cgcaaaggtg tccctgacca tgactttgag
                                                                      7320
gtactggtat ttgaagtcag tgtcgtcgca tccgccctgc tcccagagca aaaagtccgt
                                                                      7380
gcgctttttg gaacgcggat ttggcagggc gaaggtgaca tcgttgaaga gtatctttcc
                                                                      7440
cgcgcgaggc ataaagttgc gtgtgatgcg gaagggtccc ggcacctcgg aacggttgtt
                                                                      7500
aattacctgg gcggcgagca cgatctcgtc aaagccgttg atgttgtggc ccacaatgta
                                                                      7560
aagttccaag aagcgcggga tgcccttgat ggaaggcaat tttttaagtt cctcgtaggt
                                                                      7620
gagetettea ggggagetga geeegtigete tgaaagggee cagtetgeaa gatgagggtt
                                                                      7680
ggaagcgacg aatgagctcc acaggtcacg ggccattagc atttgcaggt ggtcgcgaaa
                                                                      7740
ggtcctaaac tggcgaccta tggccatttt ttctggggtg atgcagtaga aggtaagcgg
                                                                      7800
gtcttgttcc cagcggtccc atccaaggtt cgcggctagg tctcgcgcgg cagtcactag
                                                                      7860
aggeteatet cegeegaact teatgaceag catgaaggge aegagetget teecaaagge
                                                                      7920
ccccatccaa gtataggtct ctacatcgta ggtgacaaag agacgctcgg tgcgaggatg
                                                                      7980
cgagccgatc gggaagaact ggatctcccg ccaccaattg gaggagtggc tattgatgtg
                                                                      8040
gtgaaagtag aagtccctgc gacgggccga acactcgtgc tggcttttgt aaaaacgtgc
                                                                      8100
gcagtactgg cagcggtgca cgggctgtac atcctgcacg aggttgacct gacgaccgcg
                                                                      8160
cacaaggaag cagagtggga atttgagccc ctcgcctggc gggtttggct ggtggtcttc
                                                                      8220
tacttegget gettgteett gacegtetgg etgetegagg ggagttacgg tggateggae
                                                                      8280
caccacgccg cgcgagccca aagtccagat gtccgcgcgc ggcggtcgga gcttgatgac
                                                                      8340
aacatcgcgc agatgggagc tgtccatggt ctggagctcc cgcggcgtca ggtcaggcgg
                                                                      8400
```

```
8460
gageteetge aggtttacet egeatagaeg ggteagggeg egggetagat eeaggtgata
cctaatttcc aggggctggt tggtggcggc gtcgatggct tgcaagaggc cgcatccccg
                                                                      8520
cggcgcgact acggtaccgc gcggcgggcg gtgggccgcg ggggtgtcct tggatgatgc
                                                                      8580
atctaaaagc ggtgacgcgg gcgagccccc ggaggtaggg ggggctccgg acccgccggg
                                                                      8640
                                                                      8700
agagggggca ggggcacgtc ggcgccgcgc gcgggcagga gctggtgctg cgcgcgtagg
                                                                      8760
ttgctggcga acgcgacgac gcggcggttg atctcctgaa tctggcgcct ctgcgtgaag
acgacgggcc cggtgagctt gagcctgaaa gagagttcga cagaatcaat ttcggtgtcg
                                                                      8820
ttgacggcgg cctggcgcaa aatctcctgc acgtctcctg agttgtcttg ataggcgatc
                                                                      8880
                                                                      8940
teggecatga actgetegat etetteetee tggagatete egegteegge tegeteeaeg ..
gtggcggcga ggtcgttgga aatgcgggcc atgagctgcg agaaggcgtt gaggcctccc
                                                                      9000
                                                                      9060
togttocaga ogoggotgta gaccaogoco cottoggoat ogogggogog catgaccaco
                                                                      9120
tgcgcgagat tgagctccac gtgccgggcg aagacggcgt agtttcgcag gcgctgaaag
aggtagttga gggtggtggc ggtgtgttct gccacgaaga agtacataac ccagcgtcgc
                                                                      91807
                                                                      9240 "
aacgtggatt cgttgatatc ccccaaggcc tcaaggcgct ccatggcctc gtagaagtcc
                                                                      9300
acggcgaagt tgaaaaactg ggagttgcgc gccgacacgg ttaactcctc ctccagaaga
                                                                      9360
cggatgaget eggegaeagt gtegegeace tegegeteaa aggetaeagg ggeetettet
tottottcaa totoototto cataagggoo toccottott ottottotgg cggcggtggg
                                                                      9420
ggaggggga cacggcggcg acgacggcgc accgggaggc ggtcgacaaa gcgctcgatc
                                                                      9480
                                                                      9540
atctccccgc ggcgacggcg catggtctcg gtgacggcgc ggccgttctc gcgggggcgc
agttggaaga cgccgcccgt catgtcccgg ttatgggttg gcggggggct gccatgcggc
                                                                      9600
                                                                      9660
agggatacgg cgctaacgat gcatctcaac aattgttgtg taggtactcc gccgccgagg
                                                                       9720
gacctgageg agteegeate gaccggateg gaaaacetet egagaaagge gtetaaceag
                                                                      9780
tcacagtcgc aaggtaggct gagcaccgtg gcgggcggca gcgggcggcg gtcggggttg
                                                                      9840
tttctggcgg aggtgctgct gatgatgtaa ttaaagtagg cggtcttgag acggcggatg
                                                                       9900
gtegacagaa gcaccatgte ettgggteeg geetgetgaa tgegeaggeg gteggeeatg
ccccaggctt cgttttgaca tcggcgcagg tctttgtagt agtcttgcat gagcctttct
                                                                       9960
                                                                      10020
accogcactt cttcttctcc ttcctcttgt cctgcatctc ttgcatctat cgctgcggcg
                                                                      10080
gcggcggagt ttggccgtag gtggcgccct cttcctcca tgcgtgtgac cccgaagccc
ctcatcggct gaagcagggc taggtcggcg acaacgcgct cggctaatat ggcctgctgc
                                                                      10140
acctgcgtga gggtagactg gaagtcatcc atgtccacaa agcggtggta tgcgcccgtg
                                                                      10200
                                                                      10260
 ttgatggtgt aagtgcagtt ggccataacg gaccagttaa cggtctggtg acccggctgc
gagagetegg tgtacetgag aegegagtaa geeetegagt caaataegta gtegttgcaa
                                                                      10320
                                                                      10380
gtccgcacca ggtactggta tcccaccaaa aagtgcggcg gcggctggcg gtagaggggc
                                                                      10440
cagcgtaggg tggccggggc tccgggggcg agatcttcca acataaggcg atgatatccg
                                                                      10500
 tagatgtacc tggacatcca ggtgatgccg gcggcggtgg tggaggcgcg cggaaagtcg
                                                                      10560
cggacgcggt tccagatgtt gcgcagcggc aaaaagtgct ccatggtcgg gacgctctgg
                                                                      10620
ccggtcaggc gcgcgcaatc gttgacgctc tagaccgtgc aaaaggagag cctgtaagcg
                                                                      10680
ggcactette egtggtetgg tggataaatt egcaagggta teatggegga egaceggggt
 tegagecceg tateeggeeg teegeegtga tecatgeggt tacegeeege gtgtegaace
                                                                      10740
                                                                      10800
caggtgtgcg acgtcagaca acgggggagt gctccttttg gcttccttcc aggcgcggcg
                                                                      10860
gctgctgcgc tagctttttt ggccactggc cgcgcgcagc gtaagcggtt aggctggaaa
gcgaaagcat taagtggctc gctccctgta gccggagggt tattttccaa gggttgagtc
                                                                      10920
 gcgggacccc cggttcgagt ctcggaccgg ccggactgcg gcgaacgggg gtttgcctcc
                                                                      10980
                                                                      11040
ccgtcatgca agaccccgct tgcaaattcc tccggaaaca gggacgagcc ccttttttgc
 ttttcccaga tgcatccggt gctgcggcag atgcgccccc ctcctcagca gcggcaagag
                                                                      111:00
                                                                      11160
caagagcagc ggcagacatg cagggcaccc tcccctcctc ctaccgcgtc aggaggggcg
                                                                      11220
acatecgegg tigacgegge ageagatggt gattacgaac eccegeggeg cegggeeegg
                                                                      11280
 cactacetgg acttggagga gggcgaggge etggegegge taggagegee eteteetgag
                                                                      11340
 cggtacccaa gggtgcagct gaagcgtgat acgcgtgagg cgtacgtgcc gcggcagaac
                                                                      11400
 ctgtttcgcg accgcgaggg agaggagccc gaggagatgc gggatcgaaa gttccacgca
                                                                      11460
gggcgcgagc tgcggcatgg cctgaatcgc gagcggttgc tgcgcgagga ggactttgag
                                                                      11520
 cccgacgcgc gaaccgggat tagtcccgcg cgcgcacacg tggcggccgc cgacctggta
 accgcatacg agcagacggt gaaccaggag attaactttc aaaaaagctt taacaaccac
                                                                      11580
                                                                      11640
 gtgcgtacgc ttgtggcgcg cgaggaggtg gctataggac tgatgcatct gtgggacttt
                                                                      11700
 gtaagcgcgc tggagcaaaa cccaaatagc aagccgctca tggcgcagct gttccttata
```

WO 03/031588 PCT/US02/32512

```
qtgcagcaca gcagggacaa cgaggcattc agggatgcgc tgctaaacat agtagagccc
                                                                     11760
                                                                     11820
gagggccgct ggctgctcga tttgataaac atcctgcaga gcatagtggt gcaggagcgc
                                                                     11880
agettgagee tggetgacaa ggtggeegee ateaactatt ceatgettag eetgggeaag
                                                                     11940
ttttacgccc gcaagatata ccataccct tacgttccca tagacaagga ggtaaagatc
                                                                     12000
gaggggttct acatgcgcat ggcgctgaag gtgcttacct tgagcgacga cctgggcgtt
tategeaacg agegeateea caaggeegtg agegtgagee ggeggegega geteagegae
                                                                     12060
                                                                     12120
cgcgagctga tgcacagcct gcaaagggcc ctggctggca cgggcagcgg cgatagagag
geogagtect actitgacge gggegetgae etgegetggg ecceaageeg aegegeeetg
                                                                     12180
                                                                     12240
gaggcagctg gggccggacc tgggctggcg gtggcacccg cgcgcgctgg caacgtcggc
                                                                     12300
ggcgtggagg aatatgacga ggacgatgag tacgagccag aggacggcga gtactaagcg
                                                                     12360
qtgatgtttc tgatcagatg atgcaagacg caacggaccc ggcggtgcgg gcggcgctgc
agagecagec gteeggeett aactecaegg aegaetggeg ceaggteatg gacegeatea
                                                                     12420
tgtcgctgac tgcgcgcaat cctgacgcgt tccggcagca gccgcaggcc aaccggctct
                                                                     12480
                                                                     12540
ccgcaattct ggaagcggtg gtcccggcgc gcgcaaaccc cacgcacgag aaggtgctgg
                                                                     12600
cgatcgtaaa cgcgctggcc gaaaacaggg ccatccggcc cgacgaggcc ggcctggtct
acgacgcgct gcttcagcgc gtggctcgtt acaacagcgg caacgtgcag accaacctgg
                                                                     12660
                                                                     12720
accggctggt gggggatgtg cgcgaggccg tggcgcagcg tgagcgcgcg cagcagcagg
                                                                     12780
gcaacctggg ctccatggtt gcactaaacg ccttcctgag tacacagccc gccaacgtgc
                                                                     12840
cgcggggaca ggaggactac accaactttg tgagcgcact gcggctaatg gtgactgaga
caccycaaag tgaggtgtac cagtctgggc cagactattt tttccagacc agtagacaag
                                                                     12900
qcctgcagac cgtaaacctg agccaggctt tcaaaaactt gcaggggctg tgggggtgc
                                                                     12960
                                                                     13020
gggctcccac aggcgaccgc gcgaccgtgt ctagcttgct gacgcccaac tcgcgcctgt
                                                                     13080
tgctgctgct aatagcgccc ttcacggaca gtggcagcgt gtcccgggac acatacctag
                                                                     13140
gtcacttgct gacactgtac cgcgaggcca taggtcaggc gcatgtggac gagcatactt
tccaggagat tacaagtgtc agccgcgcc tggggcagga ggacacgggc agcctggagg
                                                                     13200
caaccctaaa ctacctgctg accaaccggc ggcagaagat cccctcgttg cacagtttaa
                                                                     13260
acagcgagga ggagcgcatt ttgcgctacg tgcagcagag cgtgagcctt aacctgatgc
                                                                     13320
gcgacgggt aacgcccagc gtggcgctgg acatgaccgc gcgcaacatg gaaccgggca
                                                                     13380
                                                                     13440
tgtatgcctc aaaccggccg tttatcaacc gcctaatgga ctacttgcat cgcgcggccg
                                                                     13500
ccgtgaaccc cgagtatttc accaatgcca tcttgaaccc gcactggcta ccgcccctg
gtttctacac cgggggattc gaggtgcccg agggtaacga tggattcctc tgggacgaca
                                                                     13560
tagacgacag cgtgttttcc ccgcaaccgc agacctgct agagttgcaa cagcgcgagc
                                                                     13620
aggcagaggc ggcgctgcga aaggaaagct tccgcaggcc aagcagcttg tccgatctag
                                                                     13680
                                                                     13740
gegetgegge eccegeggtea gatgetagta geceatttee aagettgata gggtetetta
                                                                     13800
ccagcactcg caccacccgc ccgcgcctgc tgggcgagga ggagtaccta aacaactcgc
                                                                     13860
tgctgcagcc gcagcgcgaa aaaaacctgc ctccggcatt tcccaacaac gggatagaga
gcctagtgga caagatgagt agatggaaga cgtacgcgca ggagcacagg gacgtgccag
                                                                      13920
                                                                     13980
gcccgcgccc gcccacccgt cgtcaaaggc acgaccgtca gcggggtctg gtgtgggagg
                                                                      14040
acgatgactc ggcagacgac agcagcgtcc tggatttggg agggagtggc aacccgtttg
 cgcaccttcg ccccaggctg gggagaatgt tttaaaaaaaa aaaaagcatg atgcaaaata
                                                                      14100
 aaaaactcac caaggccatg gcaccgagcg ttggttttct tgtattcccc ttagtatgcg
                                                                      14160
                                                                      14220
 gcgcgcggcg atgtatgagg aaggtcctcc tccctcctac gagagtgtgg tgagcgcggc
                                                                      14280
 gccagtggcg gcggcgctgg gttctccctt cgatgctccc ctggacccgc cgtttgtgcc
                                                                      14340
 teegeggtac etgeggeeta eeggggggag aaacagcate egttactetg agttggcace
 cctattcgac accaccgtg tgtacctggt ggacaacaag tcaacggatg tggcatccct
                                                                      14400
                                                                      14460
 gaactaccag aacgaccaca gcaactttct gaccacggtc attcaaaaca atgactacag
                                                                      14520
 cccgggggag gcaagcacac agaccatcaa tcttgacgac cggtcgcact ggggcggcga
 cctgaaaacc atcctgcata ccaacatgcc aaatgtgaac gagttcatgt ttaccaataa
                                                                      14580
                                                                      14640
 gtttaaggcg cgggtgatgg tgtcgcgctt gcctactaag gacaatcagg tggagctgaa
 atacgagtgg gtggagttca cgctgcccga gggcaactac tccgagacca tgaccataga
                                                                      14700
 ccttatgaac aacgcgatcg tggagcacta cttgaaagtg ggcagacaga acggggttct
                                                                      14760
 ggaaagcgac atcggggtaa agtttgacac ccgcaacttc agactggggt ttgacccgt
                                                                      14820
                                                                      14880
 cactggtctt gtcatgcctg gggtatatac aaacgaagcc ttccatccag acatcatttt
                                                                      14940
 gctgccagga tgcggggtgg acttcaccca cagccgcctg agcaacttgt tgggcatccg
                                                                      15000
 caageggeaa eeetteeagg agggetttag gateacetae gatgatetgg agggtggtaa
```

```
15060
cattcccgca ctgttggatg tggacgccta ccaggcgagc ttgaaagatg acaccgaaca
                                                                     15120
gggcgggggt ggcgcaggcg gcagcaacag cagtggcagc ggcgcggaag agaactccaa
cgcggcagcc gcggcaatgc agccggtgga ggacatgaac gatcatgcca ttcgcggcga
                                                                     15180
cacctttgcc acacgggctg aggagaagcg cgctgaggcc gaagcagcgg ccgaagctgc
                                                                     15240
cgccccgct gcgcaacccg aggtcgagaa gcctcagaag aaaccggtga tcaaacccct
                                                                     15300
gacagaggac agcaagaaac gcagttacaa cctaataagc aatgacagca ccttcaccca
                                                                     15360
                                                                     15420
gtaccgcagc tggtaccttg catacaacta cggcgaccct cagaccggaa tccgctcatg
gaccetgett tgcactectg acgtaacctg eggeteggag caggtetact ggtegttgce
                                                                     15480
                                                                     15540
agacatgatg caagaccccg tgaccttccg ctccacgcgc cagatcagca actttccggt
ggtgggcgcc gagctgttgc ccgtgcactc caagagcttc tacaacgacc aggccgtcta
                                                                     15600
                                                                     15660
ctcccaactc atccgccagt ttacctctct gacccacgtg ttcaatcgct ttcccgagaa
                                                                     15720
ccagattttg gcgcgcccgc cagccccac catcaccacc gtcagtgaaa acgttcctgc
tctcacagat cacgggacgc taccgctgcg caacagcatc ggaggagtcc agcgagtgac
                                                                     15780
                                                                     15840
cattactgac gccagacgcc gcacctgccc ctacgtttac aaggccctgg gcatagtctc
                                                                     15900
gccgcgcgtc ctatcgagcc gcactttttg agcaagcatg tccatcctta tatcgcccag
                                                                      15960
caataacaca ggctggggcc tgcgcttccc aagcaagatg tttggcgggg ccaagaagcg
ctccgaccaa cacccagtgc gcgtgcgcgg gcactaccgc gcgccctggg gcgcgcacaa
                                                                     16020
acgcggccgc actgggcgca ccaccgtcga tgacgccatc gacgcggtgg tggaggaggc
                                                                      16080
gcgcaactac acgcccacgc cgccaccagt gtccacagtg gacgcggcca ttcagaccgt
                                                                      16140
ggtgcgcgga gcccggcgct atgctaaaat gaagagacgg cggaggcgcg tagcacgtcg
                                                                      16200
                                                                     16260
ccacegeege egaceeggea etgeegeeca aegegeggeg geggeeetge ttaaeegege
                                                                      16320
acgtcgcacc ggccgacggg cggccatgcg ggccgctcga aggctggccg cgggtattgt
cactgtgccc cccaggtcca ggcgacgagc ggccgccgca gcagccgcgg ccattagtgc
                                                                      16380
                                                                      16440
tatgactcag ggtcgcaggg gcaacgtgta ttgggtgcgc gactcggtta gcggcctgcg
                                                                      16500
cgtgcccgtg cgcacccgcc ccccgcgcaa ctagattgca agaaaaaact acttagactc
gtactgttgt atgtatccag cggcggcggc gcgcaacgaa gctatgtcca agcgcaaaat
                                                                      16560
                                                                      16620
caaagaagag atgctccagg tcatcgcgcc ggagatctat ggccccccga agaaggaaga
                                                                      16680
gcaggattac aagccccgaa agctaaagcg ggtcaaaaag aaaaagaaag atgatgatga
                                                                      16740
tgaacttgac gacgaggtgg aactgctgca cgctaccgcg cccaggcgac gggtacagtg
gaaaggtega egegtaaaae gtgttttgeg acceggeace accgtagtet ttacgeeegg
                                                                      16800
                                                                      16860
 tgagcgctcc acccgcacct acaagcgcgt gtatgatgag gtgtacggcg acgaggacct
gcttgagcag gccaacgagc gcctcgggga gtttgcctac ggaaagcggc ataaggacat
                                                                      16920
                                                                      16980
gctggcgttg ccgctggacg agggcaaccc aacacctagc ctaaagcccg taacactgca
                                                                      17040
gcaggtgctg cccgcgcttg caccgtccga agaaaagcgc ggcctaaagc gcgagtctgg
 tgacttggca cccaccgtgc agctgatggt acccaagcgc cagcgactgg aagatgtctt
                                                                      17100
                                                                      17160
ggaaaaaatg accgtggaac ctgggctgga gcccgaggtc cgcgtgcggc caatcaagca
                                                                      17220
ggtggcgccg ggactgggcg tgcagaccgt ggacgttcag atacccacta ccagtagcac
                                                                      17280
cagtattgcc accgccacag agggcatgga gacacaaacg tccccggttg cctcagcggt
ggcggatgcc gcggtgcagg cggtcgctgc ggccgcgtcc aagacctcta cggaggtgca
                                                                      17340
                                                                      17400
aacggacccg tggatgtttc gcgtttcagc cccccggcgc ccgcgcggtt cgaggaagta
                                                                      17460
cggcgccgcc agcgcgctac tgcccgaata tgccctacat ccttccattg cgcctacccc
cggctatcgt ggctacacct accgccccag aagacgagca actacccgac gccgaaccac
                                                                      17520
cactggaacc cgccgccgcc gtcgccgtcg ccagcccgtg ctggccccga tttccgtgcg
                                                                      17580
                                                                      17640
 cagggtggct cgcgaaggag gcaggaccct ggtgctgcca acagcgcgct accaccccag
                                                                      17700
 categittaa aageeggtet tigtggttet tgeagatatg geecteacet geegeeteeg
 tttcccggtg ccgggattcc gaggaagaat gcaccgtagg aggggcatgg ccggccacgg
                                                                      17760
                                                                      17820
 cctgacgggc ggcatgcgtc gtgcgcacca ccggcggcgg cgcgcgtcgc accgtcgcat
gcgcggcggt atcctgcccc tccttattcc actgatcgcc gcggcgattg gcgccgtgcc
                                                                      17880
 cggaattgca tccgtggcct tgcaggcgca gagacactga ttaaaaacaa gttgcatgtg
                                                                      17940
 gaaaaatcaa aataaaaagt ctggactctc acgctcgctt ggtcctgtaa ctattttgta
                                                                      18000
                                                                      18060
 gaatggaaga catcaacttt gcgtctctgg ccccgcgaca cggctcgcgc ccgttcatgg
                                                                      18120
 gaaactggca agatatcggc accagcaata tgagcggtgg cgccttcagc tggggctcgc
 tgtggagcgg cattaaaaat ttcggttcca ccgttaagaa ctatggcagc aaggcctgga
                                                                      18180
                                                                      18240
 acagcagcac aggccagatg ctgagggata agttgaaaga gcaaaatttc caacaaaagg
                                                                      18300
 tggtagatgg cetggeetet ggeattageg gggtggtgga cetggeeaae caggeagtge
```

aaaataagat	taacagtaag	cttgatcccc	gccctcccgt	agaggagcct	ccaccggccg	18360
tggagacagt	gtctccagag	gggcgtggcg	aaaagcgtcc	gcgccccgac	agggaagaaa	18420
ctctggtgac	gcaaatagac	gagcctccct	cgtacgagga	ggcactaaag	caaggcctgc	18480
ccaccacccg	teccategeg	cccatggcta	ccggagtgct	gggccagcac	acacccgtaa	18540
cgctggacct	gcctccccc	gccgacaccc	agcagaaacc	tgtgctgcca	ggcccgaccg	18600
ccgttgttgt	aacccgtcct	agccgcgcgt	ccctgcgccg	cgccgccagc	ggtccgcgat	18660
cgttgcggcc	cgtagccagt	ggcaactggc	aaagcacact	gaacagcatc	gtgggtctgg	18720
gggtgcaatc	cctgaagcgc	cgacgatgct	tctgaatagc	taacgtgtcg	tatgtgtgtc	18780
atgtatgcgt	ccatgtcgcc	gccagaggag	ctgctgagcc	gccgcgcgcc	cgctttccaa	18840
gatggctacc	ccttcgatga	tgccgcagtg	gtcttacatg	cacatctcgg	gccaggacgc	18900
ctcggagtac	ctgagccccg	ggctggtgca	gtttgcccgc	gccaccgaga	cgtacttcag	18960
cctgaataac	aagtttagaa	accccacggt	ggcgcctacg	cacgacgtga	ccacagaccg	19020
gtcccagcgt	ttgacgctgc	ggttcatccc	tgtggaccgt	gaggatactg	cqtactcqta	19080
caaggcgcgg	ttcaccctag	ctgtgggtga	taaccgtgtg	ctggacatgg	cttccacgta	19140
ctttgacatc	cgcggcgtgc	tggacagggg	ccctactttt	aagccctact	ctggcactgc	19200
ctacaacgcc	ctggctccca	agggtgcccc	aaatccttgc	gaatgggatg	aagctgctac	19260
tgctcttgaa	ataaacctag	aagaagagga	cgatgacaac	gaagacgaag	tagacgagca	19320
agctgagcag	caaaaaactc	acgtatttgg	gcaggcgcct	tattctggta	taaatattac	19380
aaaggagggt	attcaaatag	gtgtcgaagg	tcaaacacct	aaatatgccg	ataaaacatt	19440
tcaacctgaa	cctcaaatag	gagaatetea	gtggtacgaa	actgaaatta	atcatgcagc	19500
tgggagagtc	cttaaaaaga	ctaccccaat	gaaaccatgt	tacggttcat	atgcaaaacc	19560
cacaaatgaa	aatggagggc	aaggcattct	tgtaaagcaa	caaaatggaa	agctagaaag	19620
tcaagtggaa	atgcaatttt	tctcaactac	tgaggcgacc	gcaggcaatg	gtgataactt	19680
gactcctaaa	gtggtattgt	acagtgaaga	tgtagatata	gaaaccccag	acactcatat	19740
ttcttacatg	cccactatta	aggaaggtaa	ctcacgagaa	ctaatgggcc	aacaatctat	19800
gcccaacagg	cctaattaca	ttgcttttag	ggacaatttt	attggtctaa	tgtattacaa	19860
cagcacgggt	aatatgggtg	ttctggcggg	ccaagcatcg	cagttgaatg	ctgttgtaga	19920
tttgcaagac	agaaacacag	agctttcata	ccagcttttg	cttgattcca	ttggtgatag	19980
aaccaggtac	ttttctatgt	ggaatcaggc	tgttgacagc	tatgatccag	atgttagaat	20040
tattgaaaat	catggaactg	aagatgaact	tccaaattac	tgctttccac	tgggaggtgt	20100
gattaataca	gagactctta	ccaaggtaaa	acctaaaaca	ggtcaggaaa	atggatggga	20160
aaaagatgct	acagaatttt	cagataaaaa	tgaaataaga	gttggaaata	attttqccat	20220
ggaaatcaat	ctaaatgcca	acctgtggag	aaatttcctg	tactccaaca	tagcgctgta	20280
tttgcccgac	aagctaaagt	acagtccttc	caacgtaaaa	atttctgata	acccaaacac	20340
ctacgactac	atgaacaagc	gagtggtggc	tcccgggtta	gtggactgct	acattaacct	20400
tggagcacgc	tggtcccttg	actatatgga	caacgtcaac	ccatttaacc	accaccgcaa	20460
tgctggcctg	cgctaccgct	caatgttgct	gggcaatggt	cgctatgtgc	ccttccacat	20520
ccaggtgcct	cagaagttct	ttgccattaa	aaacctcctt	ctcctgccgg	gctcatacac	20580
ctacgagtgg	aacttcagga	aggatgttaa	catggttctg	cagagetece	taggaaatga	20640
cctaagggtt	gacggagcca	gcattaagtt	tgatagcatt	tgcctttacg	ccaccttctt	20700
ccccatggcc	cacaacaccg	cctccacgct	tgaggccatg	cttagaaacg	acaccaacga	20760
ccagtccttt	aacgactatc	tctccgccgc	caacatgctc	taccctatac	ccqccaacqc	20820
taccaacgtg	cccatatcca	tcccctcccg	caactgggcg	gctttccgcg	gctgggcctt	20880
cacgcgcctt	aagactaagg	aaaccccatc	actgggctcg	ggctacgacc	cttattacac	20940
ctactctggc	tctataccct	acctagatgg	aaccttttac	ctcaaccaca	cctttaagaa	21000
ggtggccatt	acctttgact	cttctgtcag	ctggcctggc	aatgaccgcc	tgcttacccc	21060
caacgagttt	gaaattaagc	gctcagttga	cggggagggt	tacaacgttg	cccagtgtaa	21120
catgaccaaa	gactggttcc	tggtacaaat	gctagctaac	tacaacattg	gctaccaggg	21180
cttctatatc	ccagagagct	acaaggaccg	catgtactcc	ttctttagaa	acttccagcc	21240
catgagccgt	caggtggtgg	atgatactaa	atacaaggac	taccaacagg	tgggcatcct	21300
acaccaacac	aacaactctg	gatttgttgg	ctaccttgcc	cccaccatgc	gcgaaggaca	21360
ggcctaccct	gctaacttcc	cctatccgct	tataggcaag	accgcagttg	acagcattac	21420
ccagaaaaag	tttctttgcg	atcgcaccct	ttggcgcatc	ccattctcca	gtaactttat	21480
gtccatgggc	gcactcacag	acctgggcca	aaaccttctc	tacgccaact	ccacccacac	21540
gctagacatg	acttttgagg	tggatcccat	ggacgagccc	accettett	atgttttgtt	21600

		•					
	tgaagtcttt	gacgtggtcc	gtgtgcaccg	gccgcaccgc	ggcgtcatcg	aaaccgtgta	21660
	cctgcgcacg	cccttctcgg	ccggcaacgc	cacaacataa	agaagcaagc	aacatcaaca	21720
	acagctgccg	ccatgggctc	cagtgagcag	gaactgaaag	ccattgtcaa	agatcttggt	21780
	tgtgggccat	attttttggg	cacctatgac	aagcgctttc	caggctttgt	ttctccacac	21840
•	aagctcgcct	gcgccatagt	caatacggcc	ggtcgcgaga	ctgggggcgt	acactggatg	21900
	gcctttgcct	ggaacccgca	ctcaaaaaca	tgctacctct	ttgagccctt	tggcttttct	21960
	gaccagcgac	tcaagcaggt	ttaccagttt	gagtacgagt	cactcctgcg	ccgtagcgcc	22020
	attgcttctt	ccccgaccg	ctgtataacg	ctggaaaagt	ccacccaaag	cgtacagggg	22080
	cccaactcgg	ccgcctgtgg	actattctgc	tgcatgtttc	tccacgcctt	tgccaactgg	22140
	ccccaaactc	ccatggatca	caaccccacc	atgaacctta	ttaccggggt	acccaactcc	22200
	atgctcaaca	gtccccaggt	acagcccacc	ctgcgtcgca	accaggaaca	gctctacagc	22260
	ttcctggagc	gccactcgcc	ctacttccgc	agccacagtg	cgcagattag	gagcgccact	22320
	tctttttgtc	acttgaaaaa	catgtaaaaa	taatgtacta	gagacacttt	caataaaggc	22380 ,
	aaatgctttt	atttgtacac	tctcgggtga	ttatttaccc	ccacccttgc	cgtctgcgcc	· 22440 .
	gtttaaaaat	caaaggggtt	ctgccgcgca	tcgctatgcg	ccactggcag	ggacacgttg	22500
	cgatactggt	gtttagtgct	ccacttaaac	tcaggcacaa	ccatccgcgg	cagctcggtg	22560
•	aagttttcac	tccacaggct	gcgcaccatc	accaacgcgt	ttagcaggtc	gggcgccgat	22620
	atcttgaagt	cgcagttggg	gcctccgccc	tgcgcgcgcg	agttgcgata	cacagggttg	22680
	cagcactgga	acactatcag	cgccgggtgg	tgcacgctgģ	ccagcacgct	cttgtcggag	22740
	atcagatccg	cgtccaggtc	ctccgcgttg	ctcagggcga	acggagtcaa	ctttggtagc	. 22800
	tgccttccca	aaaagggcgc	gtgcccaggc	tttgagttgc	actegeaceg	tagtggcatc	22860
						agccttgatc	22920
						agacttgccg	22980
						ggtgttggag	23040
						agactgctcc	23100
						ctccttattt	23160
						geggtgeage	23220
						cgactgcagg	23280
						gaaggtcagc	23340
	tgcaacccgc	ggtgctcctc	gttcagccag	gtcttgcata	cggccgccag	agcttccact	23400
						cttgtccatc	23460
	agcgcgcgcg	cagcctccat	gcccttctcc	cacgcagaca	cgatcggcac	actcagcggg	23520
	ttcatcaccg	taatttcact	ttccgcttcg	ctgggctctt	cctcttcctc	ttgcgtccgc	23580
						acctcctttg	23640
	ccatgcttga	ttagcaccgg	tgggttgctg	aaacccacca	tttgtagcgc	cacatcttct	23700
	ctttcttcct	cgctgtccac	gattacctct	ggtgatggcg	ggcgctcggg	cttgggagaa	23760
	gggcgcttct	ttttcttctt	gggcgcaatg	gccaaatccg	ccgccgaggt	cgatggccgc	23820
	gggctgggtg	tgcgcggcac	cagcgcgtct	tgtgatgagt	cttcctcgtc	ctcggactcg	23880
	atacgccgcc	tcatccgctt	ttttgggggc	gcccggggag	gcggcggcga	cggggacggg	23940
						ctcgggggtg	24000
						gaaaaagatc	24060
	atggagtcag	tcgagaagaa	ggacagccta	accgccccct	ctgagttcgc	caccaccgcc	24120
	tccaccgatg	ccgccaacgc	gcctaccacc	ttccccgtcg	aggcaccccc	gcttgaggag	24180
						ggaccgctca	24240
						ggaacaagtc	24300
	adacadadaa	acgaaaggca	tggcgactac	ctagatgtgg	gagacgacgt	gctgttgaag	24360
	catctgcagc	gccagtgcgc	cattatctgc	gacgcgttgc	aagagcgcag	cgatgtgccc	24420
•						gcgcgtaccc	24480
						ctaccccgta	24540
	tttgccgtgc	cagaggtgct	tgccacctat	cacatetttt	tccaaaactg	caagataccc	24600
						gcagggcgct	24660
	gtcatacctg	atatcgcctc	gctcaacgaa	gtgccaaaaa	tctttgaggg	tcttggacgc	24720
	gacgagaagc	gcgcggcaaa	cgctctgcaa	caggaaaaca	gcgaaaatga	aagtcactct	24780
						acgcagcatc	24840
						gagcacagtc	24900
							•

						•
atgagtgag	tgatcgtgcg	ccgtgcgcag	ccctggaga	gggatgcaaa	tttgcaagaa	
- addacagagi	, agggeetace	cycagttggc	gacgagcagc	: tagegegete	acttonance	25
-andrage et	, ccgacttyya	gyaycgacgo	aaactaatoa	Lagocaceat	acteatteen	2508.
acadadecer	, agrycaryca	geggetett	getgaeeego	, adatocaocc	Caanchanan	25140
gauacac cg.	- uccacaccc	Legacadado	Lacotacaca	Baacctacaa	Catotococo	25200
a cadracect	. ycaacciggt	CCCCTacctt	ggaattttgc	2002222000	cottooooo	
~~~~~~~~~~~	. accecacyce	Caagggggaa	acacaccaca	: actacataca		25260
tacttattt	tatgctacac	Ctggcagacg	accatadaca	tttaaceaace	gtgcttggag	25320
202020000	. ccaayyayct	gcagaaacto	CEARAGCARA	acttassaas	- cotstans	25380
gccttcaac	g agcgctccgt	ggccgcgcac	ctagagaaa	tcattttccc	cgaacgcctg	25440
cttaaaacco	tgcaacaggg	tctgccagac	ttcaccagto	assocstott	cgaacgcctg	25500
~35~~~	. ccccagageg	Cicaddaatc	EEGCCCGCCA	cctactatac	aattaataaa	25560
5-00009090	, ccactaagta	ccycgaacgc	CCECCGCCGC	tttaaaacca	Ctcctacet	25620
ctgcagctag	ccaactacct	tgcctaccac	tctgacataa	tagaagacat	Cogciacci	25680
334000000	, ugugucaciy	LUGCUCCAAC	CEREGORACCO	Cacaccacta	Cataatttaa	25740
aattcgcago	tgcttaacga	aagtcaaatt	atcogtacct	ttgagetgea	catacatac	25800
cctgacgaaa	agtccgcggc	teeggaatta	asactcactc	cagagetata	gggtcccttg	25860
taccttcgca	aatttgtacc	tgaggactac	cacacccaca	acattacctt	Gracecage	25920
caatcccgcc	cgccaaatgc	ggagettace	acctacates	ttacccagge	ccacgaagac	25980
ggccaattgo	aagccatcaa	caaagcccgc	Caagagtttc	tactecaygy	CCacattett	26040
gtttacttgg	accccagtc	cggcgaggag	ctcaacccaa	tecceccaa	gggacggggg	26100
tatcagcago	agccgcgggc	ccttacttcc	caggatggca	CCCaaaaaaa	gccgcagccc	26160
gccgccgcca	cccacggacg	aggaggaata	ctaggacagt	Caddadaga	agetgeaget	26220
cgaggaggag	gaggacatga	tggaagactg	ggagagccta	acasaassa	ayyttttgga	26280
-22-26-6	ccayacyaaa	Caccatcacc	CECGGECGCA	ttcccctccc	0000000000	26340
gaaatcggca	accggttcca	gcatggctac	aacctccgct	cctcaaacac	Cagagagaga	26400
gcccgttcgc	cgacccaacc	gtagatggga	caccactgga	accanancen	Gtaagtaga	26460
gcagccgccg	ccgttagccc	aagagcaaca	acagegeeaa	acctacact	catageeea	26520
gcacaagaac	gccatagttg	cttqcttqca	agactgtggg	ggccaccgct	catggegegg	26580
ccgctttctt	ctctaccatc	acggcgtggc	cttcccccat	aacatcctcc	attactace	26640
tcatctctac	agcccatact	gcaccaacaa	Cagcoocage	adcaccetge	actactaccg	26700
cacagaagca	aaggcgaccg	gatagcaaga	ctctgacaaa	ageageaaca	gcageggeca	26760
cggcagcagc	aggaggagga	gcactacate	tagcacccaa	Casccata	tecacagegg	26820
agcttagaaa	caggattttt	cccactctgt	atoctatatt	tcaacecegca	ccgaccegeg	26880
aacaagagct	gaaaataaaa	aacaggtete	tacaatccct	Caccagage	aggggccaag	26940
acaaaagcga	agatcagctt	cggcgcacgc	tagaagacac	ggaggetete	tterstore	27000
actgcgcgct	gactcttaag	gactagtttc	acaccette	tcaaatttaa	cccaycaaat	27060
tacgtcatct	ccagcggcca	cacccaacac	cagcacctgt	catcacccaa	gcgcgaaaac	27120
aggaaattcc	cacgccctac	atgtggagtt	accarccaca	aataaaaatt	accacgagea	27180
ctgcccaaga	ctactcaacc	cgaataaact	acatgagege	acceggacce	geggeeggag	27240
gggtcaacgg	aatccgcgcc	caccgaaacc	gaattetet	gggaccccac	acyatatece	27300
ccacacctcg	taataacctt	aatccccgta	gttggccgc	taccetaata	taggaggag	27360
gtcccgctcc	caccactgtg	gtacttccca	gagacgcca	accassatt	caccaggaaa	27420
actcaggggc	gcagcttgcg	ggcggctttc	gtcacagggt	ggccgaagtt	cagacgacta	27480
	yacaattaya	gggcdaddca	LLCAUCTCAA	CCACCACTAC	~+~~~~+	27540
cgcttggtct	ccgtccggac	gggacatttc	agateggegg	Caccaaccat	grageteet	27600
cgcctcgtca	ggcaatccta	actctgcaga	cctcatcatc	tgaggggg	totaccea	27660
ceggaacee	gcaatttatt	gaggagtttg	Edccatcoot	Ctactttaaa	aaattata.	27720
geoceeegg	ccactacteg	gattaattta	EECCEAactt	tascananta		27780
aggacagacta	cyactyaatg	ttaagtggag	aggcagagca	actorogete		27840
geeg	ccyccacag	Lyctitacce	gcgactccgg	trartttt	taatttaa.	27900
-394994	ccatattyay	ggcccaacac	acggcgtccg	acttaccaca		27960
ttgcccgtag	cctgattcgg	gagtttaccc	aggggggggg	actactect	cagggagagc	28020
gaccetgtgt	tctcactgtg	atttqcaact	atcctaacct	togattana	cgggacaggg	28080
gttgccatct	ctgtgctgag	tataataaar	acadaaatta	esstatest =	caagatettt	28140
			ugudatta	unacatactg	yygctcctat	28200

```
cgccatcctg taaacgccac cgtcttcacc cgcccaagca aaccaaggcg aaccttacct
                                                                     28260
ggtactttta acatetetee etetgtgatt tacaacagtt teaacccaga eggagtgagt
                                                                     28320
                                                                     28380
ctacgagaga accteteega geteagetae tecateagaa aaaacaceae ceteettace
                                                                     28440
tgccgggaac gtacgagtgc gtcaccggcc gctgcaccac acctaccgcc tgaccgtaaa
ccagactttt teeggacaga eeteaataae tetgtttaee agaacaggag gtgagettag
                                                                     28500
aaaaccctta gggtattagg ccaaaggcgc agctactgtg gggtttatga acaattcaag
                                                                     28560
                                                                     28620
caactctacg ggctattcta attcaggttt ctctagaatc ggggttgggg ttattctctg
tettgtgatt etettatte ttatactaac gettetetge etaaggeteg eegeetgetg
                                                                     28680
tgtgcacatt tgcatttatt gtcagctttt taaacgctgg ggtcgccacc caagatgatt
                                                                     28740
aggtacataa toctaggttt actcaccott gogtcagooc acggtaccac ccaaaaggtg
                                                                     28800
gattttaagg agccagcctg taatgttaca ttcgcagctg aagctaatga gtgcaccact
                                                                     28860
cttataaaat gcaccacaga acatgaaaag ctgcttattc gccacaaaaa caaaattggc
                                                                     28920
aagtatgctg tttatgctat ttggcagcca ggtgacacta cagagtataa tgttacagtt
                                                                     28980
ttccagggta aaagtcataa aacttttatg tatacttttc cattttatga aatgtgcgac
                                                                     29040
attaccatgt acatgagcaa acagtataag ttgtggcccc cacaaaattg tgtggaaaac
                                                                     29100
actggcactt tetgetgcac tgctatgcta attacagtgc tegetttggt etgtacecta
                                                                     29160
                                                                     29220
ctctatatta aatacaaaag cagacgcagc tttattgagg aaaagaaaat gccttaattt
actaagttac aaagctaatg tcaccactaa ctgctttact cgctgcttgc aaaacaaatt
                                                                     29280
caaaaagtta gcattataat tagaatagga tttaaacccc ccggtcattt cctgctcaat
                                                                     29340
                                                                     29400
accattecce tgaacaattg actetatgtg ggatatgete cagegetaca acettgaagt
caggetteet ggatgteage atetgaettt ggecageace tgteeegegg atttgtteea
                                                                     29460
gtccaactac agcgacccac cctaacagag atgaccaaca caaccaacgc ggccgccgct
                                                                     29520
                                                                     29580
accggactta catctaccac aaatacaccc caagtttctg cctttgtcaa taactgggat :
aacttgggca tgtggtggtt ctccatagcg cttatgtttg tatgccttat tattatgtgg
                                                                     29640
ctcatctgct gcctaaagcg caaacgcgcc cgaccaccca tctatagtcc catcattgtg
                                                                     29700
ctacacccaa acaatgatgg aatccataga ttggacggac tgaaacacat gttctttct
                                                                     29760
cttacagtat gattaaatga gacatgattc ctcgagtttt tatattactg accettgttg
                                                                     29820
                                                                     29880
cgcttttttg tgcgtgctcc acattggctg cggtttctca catcgaagta gactgcattc
                                                                     29940
carcetteae agtetattty etttaeggat ttgteaccet caegeteate tgeageetea
                                                                     30000
teactytygt categeettt atceagtyca ttgaetygyt etytytycyc tttgeatate
tcagacacca tccccagtac agggacagga ctatagctga gcttcttaga attctttaat
                                                                     30060
tatgaaattt actgtgactt ttctgctgat tatttgcacc ctatctgcgt tttgttcccc
                                                                     30120
gacctccaag cctcaaagac atatatcatg cagattcact cgtatatgga atattccaag
                                                                     30180
                                                                     30240
ttgctacaat gaaaaaagcg atctttccga agcctggtta tatgcaatca tctctgttat
ggtgttctgc agtaccatct tagccctagc tatatatccc taccttgaca ttggctggaa
                                                                     30300
acgaatagat gccatgaacc acccaacttt ccccgcgccc gctatgcttc cactgcaaca
                                                                     30360
agttgttgcc ggcggctttg tcccagccaa tcagcctcgc cccacttctc ccaccccac
                                                                     30420:
                                                                     30480
tgaaatcagc tactttaatc taacaggagg agatgactga caccctagat ctagaaatgg
acggaattat tacagagcag cgcctgctag aaagacgcag ggcagcggcc gagcaacagc
                                                                     30540
                                                                     30600
gcatgaatca agagetecaa gacatggtta acttgcacca gtgcaaaagg ggtatetttt
gtctggtaaa gcaggccaaa gtcacctacg acagtaatac caccggacac cgccttagct
                                                                     30660
                                                                     30720
acaagttgcc aaccaagcgt cagaaattgg tggtcatggt gggagaaaag cccattacca
                                                                     30780
taactcagca ctcggtagaa accgaagget gcattcactc accttgtcaa ggacctgagg
atctctgcac ccttattaag accctgtgcg gtctcaaaga tcttattccc tttaactaat
                                                                     30840
                                                                     30900 🕏
aaaaaaaaat aataaagcat cacttactta aaatcagtta gcaaatttct gtccagttta
                                                                     30960
tteageagea ceteettgee eteeteecag etetggtatt geagetteet eetggetgea
                                                                     31020
aactttctcc acaatctaaa tggaatgtca gtttcctcct gttcctgtcc atccgcaccc
actatettea tgttgttgca gatgaagege geaagacegt etgaagatae etteaacece
                                                                     31080
gtgtatecat atgacaegga aaceggteet ecaaetgtge ettttettae teeteeettt
                                                                     31140
                                                                     31200
gtatececca atgggtttea agagagtece eetggggtae tetetttgeg eetateegaa
cetetagtta cetecaatgg catgettgeg etcaaaatgg geaacggeet etetetggae
                                                                     31260
                                                                     31320
gaggccggca accttacctc ccaaaatgta accactgtga gcccacctct caaaaaaaacc
                                                                     31380
aagtcaaaca taaacctgga aatatctgca ccctcacag ttacctcaga agccctaact
gtggctgccg ccgcacctct aatggtcgcg ggcaacacac tcaccatgca atcacaggcc
                                                                     31440
                                                                     31500
ccgctaaccg tgcacgactc caaacttagc attgccaccc aaggacccct cacagtgtca
```

```
gaaggaaagc tagccctgca aacatcaggc cccctcacca ccaccgatag cagtaccctt
                                                                      31560
 actatcactg cctcaccccc tctaactact gccactggta gcttgggcat tgacttgaaa
                                                                      31620
 gagcccattt atacacaaaa tggaaaacta ggactaaagt acggggctcc tttgcatgta
                                                                      31680
 acagacgacc taaacacttt gaccgtagca actggtccag gtgtgactat taataatact
                                                                     ·31740
 teettgeaaa etaaagttae tggageettg ggttttgatt cacaaggeaa tatgeaactt
                                                                      31800
 aatgtagcag gaggactaag gattgattct caaaacagac gccttatact tgatgttagt
                                                                      31860
 tatccgtttg atgctcaaaa ccaactaaat ctaagactag gacagggccc tcttttata
                                                                      31920
 aactcagccc acaacttgga tattaactac aacaaaggcc tttacttgtt tacagcttca
                                                                      31980
 aacaattcca aaaagcttga ggttaaccta agcactgcca aggggttgat gtttgacgct
                                                                      32040
 acagecatag ccattaatge aggagatggg cttgaatttg gttcacctaa tgcaccaaac
                                                                      32100
 acaaatcccc tcaaaacaaa aattggccat ggcctagaat ttgattcaaa caaggctatg
                                                                      32160
 gttcctaaac taggaactgg ccttagtttt gacagcacag gtgccattac agtaggaaac
                                                                      32220
 aaaaataatg ataagctaac tttgtggacc acaccagctc catctcctaa ctgtagacta
                                                                      32280
 aatgcagaga aagatgctaa actcactttg gtcttaacaa aatgtggcag tcaaatactt
                                                                      32340
 gctacagttt cagttttggc tgttaaaggc agtttggctc caatatctgg aacagttcaa
                                                                      32400
 agtgctcatc ttattataag atttgacgaa aatggagtgc tactaaacaa ttccttcctg
                                                                      32460
 gacccagaat attggaactt tagaaatgga gatcttactg aaggcacagc ctatacaaac
                                                                      32520
 gctgttggat ttatgcctaa cctatcagct tatccaaaat ctcacggtaa aactgccaaa
                                                                      32580
 agtaacattg tcagtcaagt ttacttaaac ggagacaaaa ctaaacctgt aacactaacc
                                                                      32640
 attacactaa acggtacaca ggaaacagga gacacaactc caagtgcata ctctatgtca
                                                                      32700
 ttttcatggg actggtctgg ccacaactac attaatgaaa tatttgccac atcctcttac
                                                                      32760
 actttttcat acattgccca agaataaaga atcgtttgtg ttatgtttca acgtgtttat
                                                                      32820
ttttcaattg cagaaaattt caagtcattt ttcattcagt agtatagccc caccaccaca
                                                                      32880
 tagettatac agateacegt acettaatea aacteacaga acectagtat teaacetgee
                                                                      32940
 acctecetee caacacaga agtacacagt cetttetee eggetggeet taaaaageat
                                                                      33000
 catatcatgg gtaacagaca tattcttagg tgttatattc cacacggttt cctgtcgagc
                                                                      33060
 caaacgctca tcagtgatat taataaactc cccgggcagc tcacttaagt tcatgtcgct
                                                                      33120
 gtccagctgc tgagccacag gctgctgtcc aacttgcggt tgcttaacgg gcggcgaagg
                                                                      33180
 agaagtccac gcctacatgg gggtagagtc ataatcgtgc atcaggatag ggcggtggtg
                                                                      33240
 ctgcagcagc gcgcgaataa actgctgccg ccgccgctcc gtcctgcagg aatacaacat
                                                                      33300
 ggcagtggtc tcctcagcga tgattcgcac cgcccgcagc ataaggcgcc ttgtcctccg
                                                                      33360
 ggcacagcag cgcaccctga tctcacttaa atcagcacag taactgcagc acagcaccac
                                                                      33420
 aatattgttc aaaatcccac agtgcaaggc gctgtatcca aagctcatgg cggggaccac
                                                                      33480
 agaacccacg tggccatcat accacaagcg caggtagatt aagtggcgac ccctcataaa
                                                                      33540
cacgctggac ataaacatta cctcttttgg catgttgtaa ttcaccacct cccggtacca
                                                                      33600
 tataaacctc tgattaaaca tggcgccatc caccaccatc ctaaaccagc tggccaaaac
                                                                      33660 -
ctgcccgccg gctatacact gcagggaacc gggactggaa caatgacagt ggagagccca
                                                                      33720
ggactcgtaa ccatggatca tcatgctcgt catgatatca atgttggcac aacacaggca
                                                                      33780
 cacgtgcata cactteetea ggattacaag eteeteege gttagaacca tateeeaggg
                                                                      33840
 aacaacccat teetgaatca gegtaaatce cacactgcag ggaagacete geacgtaact
                                                                      33900
 cacgttgtgc attgtcaaag tgttacattc gggcagcagc ggatgatcct ccagtatggt
                                                                      33960
 agegegggtt tetgteteaa aaggaggtag acgateeeta etgtaeggag tgegeegaga
                                                                      34020
 caaccgagat cgtgttggtc gtagtgtcat gccaaatgga acgccggacg tagtcatatt
                                                                      34080
 tectgaagea aaaccaggtg egggegtgae aaacagatet gegteteegg tetegeeget
                                                                      34140
 tagategete tgtgtagtag ttgtagtata tecaetetet caaageatee aggegeeece
                                                                      34200
 tggcttcggg ttctatgtaa actccttcat gcgccgctgc cctgataaca tccaccaccg
                                                                      34260
 cagaataagc cacacccagc caacctacac attcgttctg cgagtcacac acgggaggag
                                                                      34320
 cgggaagagc tggaagaacc atgtttttt ttttattcca aaagattatc caaaacctca
                                                                      34380
 aaatgaagat ctattaagtg aacgcgctcc cctccggtgg cgtggtcaaa ctctacagcc
                                                                      34440
 aaagaacaga taatggcatt tgtaagatgt tgcacaatgg cttccaaaag gcaaacggcc
                                                                      34500
 ctcacgtcca agtggacgta aaggctaaac ccttcagggt gaatctcctc tataaacatt
                                                                      34560
 ccagcacctt caaccatgcc caaataattc tcatctcgcc accttctcaa tatatctcta
                                                                      34620
 agcaaateee gaatattaag teeggeeatt gtaaaaatet geteeagage geeeteeace
                                                                      34680
 ttcagcctca agcagcgaat catgattgca aaaattcagg ttcctcacag acctgtataa
                                                                      34740
 gattcaaaag cggaacatta acaaaaatac cgcgatcccg taggtccctt cgcagggcca
                                                                      34800
```

34860 34920

1680

1740

```
tgacaaaaga acccacactg attatgacac gcatactcgg agctatgcta accagcgtag
ccccgatgta agctttgttg catgggcggc gatataaaat gcaaggtgct gctcaaaaaa
                                                                     34980
tcaggcaaag cctcgcgcaa aaaagaaagc acatcgtagt catgctcatg cagataaagg
                                                                     35040
                                                                     35100
caggtaagct ccggaaccac cacagaaaaa gacaccattt ttctctcaaa catgtctgcg
ggtttctgca taaacacaaa ataaaataac aaaaaaacat ttaaacatta gaagcctgtc
                                                                     35160
ttacaacagg aaaaacaacc cttataagca taagacggac tacggccatg ccggcgtgac
                                                                     35220
cgtaaaaaaa ctggtcaccg tgattaaaaa gcaccaccga cagctcctcg gtcatgtccg
                                                                     35280
                                                                     35340
gagtcataat gtaagactcg gtaaacacat caggttgatt catcggtcag tgctaaaaag
                                                                     35400
cgaccgaaat agcccggggg aatacatacc cgcaggcgta gagacaacat tacagccccc
ataggaggta taacaaaatt aataggagag aaaaacacat aaacacctga aaaaccctcc
                                                                     35460
                                                                     35520 :
tgcctaggca aaatagcacc ctcccgctcc agaacaacat acagcgcttc acagcggcag
                                                                     35580
cctaacagtc agccttacca gtaaaaaaga aaacctatta aaaaaacacc actcgacacg
gcaccagctc aatcagtcac agtgtaaaaa agggccaagt gcagagcgag tatatatagg
                                                                     35640
                                                                     35700
actaaaaaat gacgtaacgg ttaaagtcca caaaaaacac ccagaaaacc gcacgcgaac
ctacgcccag aaacgaaagc caaaaaaccc acaacttcct caaatcgtca cttccgtttt
                                                                     35760
cccacgttac gtaacttccc attttaagaa aactacaatt cccaacacat acaagttact
                                                                     35820
cogecetaaa acetaegtea ecegeceegt teccaegeee egegeeaegt cacaaaetee
                                                                     35880
                                                                     35935
acccctcat tatcatatty gcttcaatcc aaaataaggt atattattga tgatg
<210> 9
<211> 35935
<212> DNA
<213> Adenovirus serotype 5
<400> 9
                                                                        60
catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt
                                                                       120
ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt
                                                                       180
gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg
gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag
                                                                       240
                                                                       300
taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga
                                                                       360
agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg
gactitgacc gtttacgtgg agactcgccc aggtgttttt ctcaggtgtt ttccgcgttc
                                                                       420
                                                                       480
cgggtcaaag ttggcgtttt attattatag tcagctgacg tgtagtgtat ttatacccgg
                                                                       540
tgagttcctc aagaggccac tcttgagtgc cagcgagtag agttttctcc tccgagccgc
tccgacaccg ggactgaaaa tgagacatat tatctgccac ggaggtgtta ttaccgaaga
                                                                       600
                                                                       660
aatggccgcc agtcttttgg accagctgat cgaagaggta ctggctgata atcttccacc
                                                                       720
tcctagccat tttgaaccac ctacccttca cgaactgtat gatttagacg tgacggcccc
cgaagatccc aacgaggagg cggtttcgca gatttttccc gactctgtaa tgttggcggt
                                                                       780
                                                                       840
gcaggaaggg attgacttac tcacttttcc gccggcgccc ggttctccgg agccgcctca
                                                                       900
cctttcccgg cagcccgagc agccggagca gagagccttg ggtccggttt ctatgccaaa
                                                                       960
ccttgtaccg gaggtgatcg atcttacctg ccacgaggct ggctttccac ccagtgacga
                                                                      1020
cgaggatgaa gagggtgagg agtttgtgtt agattatgtg gagcaccccg ggcacggttg
caggicity cattatcacc ggaggaatac gggggaccca gatattatgt gttcgctttg
                                                                      1080
                                                                       1140
ctatatgagg acctgtggca tgtttgtcta cagtaagtga aaattatggg cagtgggtga
tagagtggtg ggtttggtgt ggtaattttt tttttaattt ttacagtttt gtggtttaaa
                                                                       1200
gaattttgta ttgtgatttt tttaaaaggt cctgtgtctg aacctgagcc tgagcccgag
                                                                       1260
                                                                       1320
ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa tggcgcctgc tatcctgaga
                                                                       1380
cgcccgacat cacctgtgtc tagagaatgc aatagtagta cggatagctg tgactccggt
                                                                       1440
ccttctaaca cacctcctga gatacacccg gtggtcccgc tgtgccccat taaaccagtt
                                                                       1500
gccgtgagag ttggtgggcg tcgccaggct gtggaatgta tcgaggactt gcttaacgag
                                                                       1560
cctgggcaac ctttggactt gagctgtaaa cgccccaggc cataaggtgt aaacctgtga
                                                                       1620
ttgcgtgtgt ggttaacgcc tttgtttgct gaatgagttg atgtaagttt aataaagggt
```

gctgaacata atcgtgcagg tctgcacgga ccagcgcggc cacttccccg ccaggaacct

qaqataatgt ttaacttgca tggcgtgtta aatggggcgg ggcttaaagg gtatataatg

cgccgtgggc taatcttggt tacatctgac ctcatggagg cttgggagtg tttggaagat

```
ttttctgctg tgcgtaactt gctggaacag agctctaaca gtacctcttg gttttggagg
                                                                      1800
tttctgtggg gctcatccca ggcaaagtta gtctgcagaa ttaaggagga ttacaagtgg
                                                                      1860
gaatttgaag agcttttgaa atcctgtggt gagctgtttg attctttgaa tctgggtcac
                                                                      1920
caggegettt tecaagagaa ggteateaag actttggatt tttecaeace ggggegeget
                                                                      1980
geggetgetg ttgetttttt gagttttata aaggataaat ggagegaaga aacceatetg
                                                                      2040
ageggggggt acctgctgga ttttctggcc atgcatctgt ggagageggt tgtgagacac
                                                                      2100
aagaategee tgetaetgtt gtetteegte egeeeggega taatacegae ggaggageag
                                                                      2160
cagcagcagc aggaggaagc caggcggcgg cggcaggagc agagcccatg gaacccgaga
                                                                      2220
gccggcctgg accctcggga atgaatgttg tacaggtggc tgaactgtat ccagaactga
                                                                      2280
gacgcatttt gacaattaca gaggatgggc aggggctaaa gggggtaaag agggagcggg
                                                                      2340
gggcttgtga ggctacagag gaggctagga atctagcttt tagcttaatg accagacacc
                                                                      2400
gtcctgagtg tattactttt caacagatca aggataattg cgctaatgag cttgatctgc
                                                                      2460
tggcgcagaa gtattccata gagcagctga ccacttactg gctgcagcca ggggatgatt
                                                                      2520
ttgaggaggc tattagggta tatgcaaagg tggcacttag gccagattgc aagtacaaga
                                                                      2580
tcagcaaact tgtaaatatc aggaattgtt gctacatttc tgggaacggg gccgaggtgg
                                                                      2640
agatagatac ggaggatagg gtggccttta gatgtagcat gataaatatg tggccggggg
                                                                      2700
tgcttggcat ggacggggtg gttattatga atgtaaggtt tactggcccc aattttagcg
                                                                      2760
gtacggtttt cctggccaat accaacctta tcctacacgg tgtaagcttc tatgggttta
                                                                      2820
acaatacctg tgtggaagcc tggaccgatg taagggttcg gggctgtgcc ttttactgct
                                                                      2880
gctggaaggg ggtggtgtgt cgccccaaaa gcagggcttc aattaagaaa tgcctctttg
                                                                      2940
aaaggtgtac cttgggtatc ctgtctgagg gtaactccag ggtgcgccac aatgtggcct
                                                                      3000
ccgactgtgg ttgcttcatg ctagtgaaaa gcgtggctgt gattaagcat aacatggtat
                                                                      3060
gtggcaactg cgaggacagg gcctctcaga tgctgacctg ctcggacggc aactgtcacc
                                                                      3120
tgctgaagac cattcacgta gccagccact ctcgcaaggc ctggccagtg tttgagcata
                                                                      3180
acatactgac ccgctgttcc ttgcatttgg gtaacaggag gggggtgttc ctaccttacc
                                                                      3240
aatgcaattt gagtcacact aagatattgc ttgagcccga gagcatgtcc aaggtgaacc
                                                                      3300
tgaacggggt gtttgacatg accatgaaga tctggaaggt gctgaggtac gatgagaccc
                                                                      3360
gcaccaggtg cagaccetge gagtgtggeg gtaaacatat taggaaccag cetgtgatge
                                                                      3420
tggatgtgac cgaggagetg aggeeegate acttggtget ggeetgeace egegetgagt
                                                                      3480
ttggctctag cgatgaagat acagattgag gtactgaaat gtgtgggcgt ggcttaaggg
                                                                      3540
tgggaaagaa tatataaggt gggggtctta tgtagttttg tatctgtttt gcagcagccg
                                                                      3600
ccgccgccat gagcaccaac tcgtttgatg gaagcattgt gagctcatat ttgacaacgc
                                                                      3660
gcatgccccc atgggccggg gtgcgtcaga atgtgatggg ctccagcatt gatggtcgcc
                                                                      3720
ccgtcctgcc cgcaaactct actaccttga cctacgagac cgtgtctgga acgccgttgg
                                                                      3780
agactgcage ctccgccgcc gcttcagccg ctgcagccac cgcccgcggg attgtgactg
                                                                      3840
actttgcttt cctgagcccg cttgcaagca gtgcagcttc ccgttcatcc gcccgcgatg
                                                                      3900
acaagttgac ggctcttttg gcacaattgg attctttgac ccgggaactt aatgtcgttt
                                                                      3960
ctcagcagct gttggatctg cgccagcagg tttctgccct gaaggcttcc tcccctccca
                                                                      4020
atgcggttta aaacataaat aaaaaccag actctgtttg gatttggatc aagcaagtgt
                                                                      4080
cttgctgtct ttatttaggg gttttgcgcg cgcggtaggc ccgggaccag cggtctcggt
                                                                      4140
cgttgagggt cctgtgtatt ttttccagga cgtggtaaag gtgactctgg atgttcagat
                                                                      4200
acatgggcat aagcccgtct ctggggtgga ggtagcacca ctgcagagct tcatgctgcg
                                                                      4260
gggtggtgtt gtagatgatc cagtcgtagc aggagcgctg ggcgtggtgc ctaaaaatgt
                                                                      4320
ctttcagtag caagctgatt gccaggggca ggcccttggt gtaagtgttt acaaagcggt
                                                                      4380
taagctggga tgggtgcata cgtggggata tgagatgcat cttggactgt atttttaggt
                                                                      4440
tggctatgtt cccagccata tccctccggg gattcatgtt gtgcagaacc accagcacag
                                                                      4500
tgtatccggt gcacttggga aatttgtcat gtagcttaga aggaaatgcg tggaagaact
                                                                      4560
tggagacgcc cttgtgacct ccaagatttt ccatgcattc gtccataatg atggcaatgg
                                                                      4620
gcccacgggc ggcggcctgg gcgaagatat ttctgggatc actaacgtca tagttgtgtt
                                                                      4680
ccaggatgag atcgtcatag gccattttta caaagcgcgg gcggagggtg ccagactgcg
                                                                      4740
gtataatggt tccatccggc ccaggggcgt agttaccctc acagatttgc atttcccacg
                                                                      4800
ctttgagttc agatgggggg atcatgtcta cctgcggggc gatgaagaaa acggtttccg
                                                                      4860
gggtagggga gatcagctgg gaagaaagca ggttcctgag cagctgcgac ttaccgcagc
                                                                      4920
cggtgggccc gtaaatcaca cctattaccg ggtgcaactg gtagttaaga gagetgcagc
                                                                      4980
tgccgtcatc cctgagcagg ggggccactt cgttaagcat gtccctgact cgcatgtttt
                                                                      5040
```

```
ccctgaccaa atccgccaga aggcgctcgc cgcccagcga tagcagttct tgcaaggaag
                                                                      5160
caaagtittt caacggittg agaccgiccg ccgtaggcat gcittigagc gittigaccaa
                                                                      5220
gcagttccag gcggtcccac agctcggtca cctgctctac ggcatctcga tccagcatat
                                                                      5280
ctcctcgttt cgcgggttgg ggcggctttc gctgtacggc agtagtcggt gctcgtccag
acgggccagg gtcatgtctt tccacgggcg cagggtcctc gtcagcgtag tctgggtcac
                                                                      5340
                                                                      5400
ggtgaagggg tgcgctccgg gctgcgctctggctgctcctggtg cgcttgaggc tggtcctgct
ggtgctgaag cgctgccggt cttcgccctg cgcgtcggcc aggtagcatt tgaccatggt
                                                                      5460
                                                                      5520
gtcatagtcc agccctccg cggcgtggcc cttggcgcgc agcttgccct tggaggaggc
gccgcacgag gggcagtgca gacttttgag ggcgtagagc ttgggcgcga gaaataccga
                                                                      5580
ttccggggag taggcatccg cgccgcaggc cccgcagacg gtctcgcatt ccacgagcca
                                                                      5640
ggtgagetet ggeegttegg ggtcaaaaac caggtttece ceatgetttt tgatgegttt
                                                                      5700
cttacctctg gtttccatga gccggtgtcc acgctcggtg acgaaaaggc tgtccgtgtc
                                                                      5760
cccgtataca gacttgagag gcctgtcctc gagcggtgtt ccgcggtcct cctcgtatag
                                                                      5820
aaactcggac cactctgaga caaaggctcg cgtccaggcc agcacgaagg aggctaagtg
                                                                      5880
ggagggtag cggtcgttgt ccactagggg gtccactcgc tccagggtgt gaagacacat
                                                                      5940
                                                                      6000
gtcgccctct tcggcatcaa ggaaggtgat tggtttgtag gtgtaggcca cgtgaccggg
                                                                      6060
tgttcctgaa ggggggctat aaaagggggt gggggcgct tcgtcctcac tctctccgc
ategetgtet gegagggeea getgttgggg tgagtactee etetgaaaag egggeatgae
                                                                      6120
ttctgcgcta agattgtcag tttccaaaaa cgaggaggat ttgatattca cctggcccgc
                                                                      6180
                                                                      6240
ggtgatgcct ttgagggtgg ccgcatccat ctggtcagaa aagacaatct ttttgttgtc
                                                                      6300
aagcttggtg gcaaacgacc cgtagagggc gttggacagc aacttggcga tggagcgcag
                                                                      6360
ggtttggttt ttgtcgcgat cggcgcgctc cttggccgcg atgtttagct gcacgtattc
                                                                      6420
gegegeaacg cacegeeatt egggaaagae ggtggtgege tegtegggea ceaggtgeae
gcgccaaccg cggttgtgca gggtgacaag gtcaacgctg gtggctacct ctccgcgtag
                                                                      6480
gegetegttg gtecageaga ggeggeegee ettgegegag eagaatggeg gtagggggte
                                                                      6540
                                                                      6600
tagctgcgtc tcgtccgggg ggtctgcgtc cacggtaaag accccgggca gcaggcgcgc
gtcgaagtag tctatcttgc atccttgcaa gtctagcgcc tgctgccatg cgcgggcggc
                                                                      6660
aagcgcgcgc tcgtatgggt tgagtggggg accccatggc atggggtggg tgagcgcgga
                                                                      6720
                                                                      6780
ggcgtacatg ccgcaaatgt cgtaaacgta gaggggctct ctgagtattc caagatatgt
agggtagcat cttccaccgc ggatgctggc gcgcacgtaa tcgtatagtt cgtgcgaggg
                                                                      6840
agcgaggagg tcgggaccga ggttgctacg ggcgggctgc tctgctcgga agactatctg
                                                                      6900
cctgaagatg gcatgtgagt tggatgatat ggttggacgc tggaagacgt tgaagctggc
                                                                      6960
gtctgtgaga cctaccgcgt cacgcacgaa ggaggcgtag gagtcgcgca gcttgttgac
                                                                      7020
cageteggeg gtgacetgea egtetaggge geagtagtee agggttteet tgatgatgte
                                                                      7080
atacttatec tgtecetttt ttttecaeag etegeggttg aggacaaact ettegeggte
                                                                      7140
tttccagtac tcttggatcg gaaacccgtc ggcctccgaa cggtaagagc ctagcatgta
                                                                      7200
gaactggttg acggcctggt aggcgcagca tcccttttct acgggtagcg cgtatgcctg
                                                                      7260
                                                                      7320
egeggeette eggagegagg tgtgggtgag egeaaaggtg teeetgaeca tgaetttgag
                                                                      7380
gtactggtat ttgaagtcag tgtcgtcgca tccgccctgc tcccagagca aaaagtccgt
                                                                      7440
gcgctttttg gaacgcggat ttggcagggc gaaggtgaca tcgttgaaga gtatctttcc
                                                                      7500
.cgcgcgaggc ataaagttgc gtgtgatgcg gaagggtccc ggcacctcgg aacggttgtt
                                                                      7560
aattacctgg gcggcgagca cgatctcgtc aaagccgttg atgttgtggc ccacaatgta
aagttccaag aagcgcggga tgcccttgat ggaaggcaat tttttaagtt cctcgtaggt
                                                                      7620
gagctettca ggggagetga geeegtgete tgaaagggee eagtetgeaa gatgagggtt
                                                                      7680
                                                                      7740
ggaagcgacg aatgagetee acaggteacg ggecattage atttgcaggt ggtegegaaa
ggtcctaaac tggcgaccta tggccatttt ttctggggtg atgcagtaga aggtaagcgg
                                                                      7800
gtcttgttcc cagcggtccc atccaaggtt cgcggctagg tctcgcgcgg cagtcactag
                                                                      7860
                                                                      7920
aggeteatet eegeegaaet teatgaceag catgaaggge aegagetget teecaaagge
ccccatccaa gtataggtct ctacatcgta ggtgacaaag agacgctcgg tgcgaggatg
                                                                      7980
                                                                      8040
cgagccgatc gggaagaact ggatctcccg ccaccaattg gaggagtggc tattgatgtg
gtgaaagtag aagtccctgc gacgggccga acactcgtgc tggcttttgt aaaaacgtgc
                                                                      8100
                                                                      8160
gcagtactgg cagcggtgca cgggctgtac atcctgcacg aggttgacct gacgaccgcg
                                                                      8220
cacaaggaag cagagtggga atttgagccc ctcgcctggc gggttttggct ggtggtcttc
tacttegget gettgteett gacegtetgg etgetegagg ggagttaegg tggateggae
                                                                      8280
caccacgccg cgcgagccca aagtccagat gtccgcgcgc ggcggtcgga gcttgatgac
```

```
aacatcgcgc agatgggagc tgtccatggt ctggagctcc cgcggcgtca ggtcaggcgg
                                                                       8400
gagctcctgc aggtttacct cgcatagacg ggtcagggcg cgggctagat ccaggtgata
                                                                       8460
cctaatttcc aggggctggt tggtggcggc gtcgatggct tgcaagaggc cgcatcccg
                                                                      8520
cggcgcgact acggtaccgc gcggcgggcg gtgggccgcg ggggtgtcct tggatgatgc
                                                                      8580
atctaaaagc ggtgacgcgg gcgagccccc ggaggtaggg ggggctccgg acccgccggg
                                                                      8640
agagggggca ggggcacgtc ggcgccgcgc gcgggcagga gctggtgctg cgcgcgtagg
                                                                      8700
ttgctggcga acgcgacgac gcggcggttg atctcctgaa tctggcgcct ctgcgtgaag
                                                                      8760
acgacgggcc cggtgagctt gagcctgaaa gagagttcga cagaatcaat ttcggtgtcg
                                                                      8820
ttgacggcgg cctggcgcaa aatctcctgc acgtctcctg agttgtcttg ataggcgatc
                                                                      8880
teggecatga actgetegat etetteetee tggagatete egegteegge tegeteeacg
                                                                      8940
gtggcggcga ggtcgttgga aatgcgggcc atgagctgcg agaaggcgtt gaggcctccc
                                                                      9000
tegttecaga egeggetgta gaccaegece cetteggeat egegggegeg catgaccaec
                                                                      9060
tgcgcgagat tgagctccac gtgccgggcg aagacggcgt agtttcgcag gcgctgaaag
                                                                      9120
aggtagttga gggtggtggc ggtgtgttct gccacgaaga agtacataac ccagcgtcgc
                                                                      9180
aacgtggatt cgttgatatc ccccaaggcc tcaaggcgct ccatggcctc gtagaagtcc
                                                                      9240
acggcgaagt tgaaaaactg ggagttgcgc gccgacacgg ttaactcctc ctccagaaga
                                                                      9300
cggatgaget eggegaeagt gtegegeaee tegegeteaa aggetaeagg ggeetettet
                                                                      9360
tettetteaa teteetette cataagggee teeeettett ettettetgg eggeggtggg
                                                                      9420
ggagggggga cacggcggcg acgacggcgc accgggaggc ggtcgacaaa gcgctcgatc
                                                                      9480
atctccccgc ggcgacggcg catggtctcg gtgacggcgc ggccgttctc gcgggggcgc
                                                                      9540
agttggaaga cgccgcccgt catgtcccgg ttatgggttg gcggggggct gccatgcggc
                                                                      9600
agggatacgg cgctaacgat gcatctcaac aattgttgtg taggtactcc gccgccgagg
                                                                      9660
gacetgageg agteegeate gaceggateg gaaaacetet egagaaagge gtetaaceag
                                                                      9720
tcacagtcgc aaggtaggct gagcaccgtg gcgggcggca gcgggcggcg gtcggggttg
                                                                      9780
tttctggcgg aggtgctgct gatgatgtaa ttaaagtagg cggtcttgag acggcggatg
                                                                      9840
gtcgacagaa gcaccatgtc cttgggtccg gcctgctgaa tgcgcaggcg gtcggccatg
                                                                      9900
ccccaggett cgttttgaca teggcgcagg tetttgtagt agtettgcat gageetttet
                                                                      9960
accygeactt cttcttctcc ttcctcttgt cctgcatctc ttgcatctat cgctgcggcg
                                                                     10020
gcggcggagt ttggccgtag gtggcgccct cttcctccca tgcgtgtgac cccgaagccc
                                                                     10080
ctcatcggct gaagcagggc taggtcggcg acaacgcgct cggctaatat ggcctgctgc
                                                                     10140
acctgcgtga gggtagactg gaagtcatcc atgtccacaa agcggtggta tgcgccgtg
                                                                     10200
ttgatggtgt aagtgcagtt ggccataacg gaccagttaa cggtctggtg acccggctgc
                                                                     10260
gagagetegg tgtacetgag acgegagtaa geeetegagt caaatacgta gtegttgcaa
                                                                     10320
gtccgcacca ggtactggta tcccaccaaa aagtgcggcg gcggctggcg gtagaggggc
                                                                     10380
cagcgtaggg tggccggggc tccgggggcg agatcttcca acataaggcg atgatatccg
                                                                     10440
tagatgtacc tggacatcca ggtgatgccg gcggcggtgg tggaggcgcg cggaaagtcg
                                                                     10500
cggacgcggt tccagatgtt gcgcagcggc aaaaagtgct ccatggtcgg gacgctctgg
                                                                     10560
ceggteagge gegegeaate gttgaegete tagaeegtge aaaaggagag cetgtaageg
                                                                     10620
ggcactette egtggtetgg tggataaatt egcaagggta teatggegga egaceggggt
                                                                     10680
tegageeeeg tateeggeeg teegeegtga teeatgeggt tacegeeege gtgtegaace
                                                                     10740
caggtgtgcg acgtcagaca acgggggagt gctccttttg gcttccttcc aggcgcggcg
                                                                     10800
getgetgege tagetttttt ggeeactgge egegegeage gtaageggtt aggetggaaa
                                                                     10860
gcgaaagcat taagtggctc gctccctgta gccggagggt tattttccaa gggttgagtc
                                                                     10920
gegggaeece eggttegagt eteggaeegg eeggaetgeg gegaaegggg gtttgeetee
                                                                     10980
ccgtcatgca agaccccgct tgcaaattcc tccggaaaca gggacgagcc ccttttttgc
                                                                     11040
ttttcccaga tgcatccggt gctgcggcag atgcgcccc ctcctcagca gcggcaagag
                                                                     11100
caagagcage ggcagacatg cagggcacce teceeteete etacegegte aggagggeg
                                                                     11160
acatecgegg ttgacgegge ageagatggt gattacgaac eccegeggeg eegggeeegg
                                                                     11220
cactacctgg acttggagga gggcgagggc ctggcgcggc taggagcgcc ctctcctgag
                                                                     11280
cggtacccaa gggtgcagct gaagcgtgat acgcgtgagg cgtacgtgcc gcggcagaac
                                                                     11340
ctgtttcgcg accgcgaggg agaggagccc gaggagatgc gggatcgaaa gttccacgca
                                                                     11400
gggcgcgagc tgcggcatgg cctgaatcgc gagcggttgc tgcgcgagga ggactttgag
                                                                     11460
cccgacgcgc gaaccgggat tagtcccgcg cgcgcacacg tggcggccgc cgacctggta
                                                                     11520
accgcatacg agcagacggt gaaccaggag attaactttc aaaaaagctt taacaaccac
                                                                     11580
gtgcgtacgc ttgtggcgcg cgaggaggtg gctataggac tgatgcatct gtgggacttt
                                                                     11640
```

```
gtaagcgcgc tggagcaaaa cccaaatagc aagccgctca tggcgcagct gttccttata
                                                                     11700
gtgcagcaca gcagggacaa cgaggcattc agggatgcgc tgctaaacat agtagagccc
                                                                     11760
                                                                     11820
gagggccgct ggctgctcga tttgataaac atcctgcaga gcatagtggt gcaggagcgc
                                                                     11880
agettgagee tggetgacaa ggtggeegee ateaactatt ceatgettag eetgggeaag
ttttacgccc gcaagatata ccatacccct tacgttccca tagacaagga ggtaaagatc
                                                                     11940
gaggggttct acatgcgcat ggcgctgaag gtgcttacct tgagcgacga cctgggcgtt
                                                                     12000
tatcgcaacg agcgcatcca caaggccgtg agcgtgagcc ggcggcgcga gctcagcgac
                                                                     12060
                                                                     12120
cgcgagctga tgcacagcct gcaaagggcc ctggctggca cgggcagcgg cgatagagag
gccgagtcct actttgacgc gggcgctgac ctgcgctggg ccccaagccg acgcgccctg
                                                                     12180
gaggcagctg gggccggacc tgggctggcg gtggcacccg cgcgcgctgg caacgtcggc
                                                                     12240
                                                                     12300
ggcgtggagg aatatgacga ggacgatgag tacgagccag aggacggcga gtactaagcg
gtgatgtttc tgatcagatg atgcaagacg caacggaccc ggcggtgcgg gcggcgctgc
                                                                     12360
agagccagcc gtccggcctt aactccacgg acgactggcg ccaggtcatg gaccgcatca
                                                                     12420
tgtcgctgac tgcgcgcaat cctgacgcgt tccggcagca gccgcaggcc aaccggctct
                                                                     12480
                                                                     12540
ccgcaattct ggaagcggtg gtcccggcgc gcgcaaaccc cacgcacgag aaggtgctgg
cgatcgtaaa cgcgctggcc gaaaacaggg ccatccggcc cgacgaggcc ggcctggtct
                                                                     12600
acgacgcgct gcttcagcgc gtggctcgtt acaacagcgg caacgtgcag accaacctgg
                                                                     12660
                                                                     12720
accggctggt gggggatgtg cgcgaggccg tggcgcagcg tgagcgcgcg cagcagcagg
gcaacctggg ctccatggtt gcactaaacg ccttcctgag tacacagccc gccaacgtgc
                                                                     12780
cgcggggaca ggaggactac accaactttg tgagcgcact gcggctaatg gtgactgaga
                                                                     12840
caccgcaaag tgaggtgtac cagtctgggc cagactattt tttccagacc agtagacaag
                                                                     12900
gcctgcagac cgtaaacctg agccaggctt tcaaaaactt gcaggggctg tggggggtgc
                                                                     12960
gggctcccac aggcgaccgc gcgaccgtgt ctagcttgct gacgcccaac tcgcgcctgt
                                                                     13020
                                                                     13080
tgctgctgct aatagcgccc ttcacggaca gtggcagcgt gtcccgggac acatacctag
                                                                     13140
gtcacttgct gacactgtac cgcgaggcca taggtcaggc gcatgtggac gagcatactt
                                                                     13200
tccaggagat tacaagtgtc agccgcgcgc tggggcagga ggacacgggc agcctggagg
caaccctaaa ctacctgctg accaaccggc ggcagaagat cccctcgttg cacagtttaa
                                                                     13260
acagcgagga ggagcgcatt ttgcgctacg tgcagcagag cgtgagcctt aacctgatgc
                                                                     13320
                                                                     13380
gcgacggggt aacgcccagc gtggcgctgg acatgaccgc gcgcaacatg gaaccgggca
                                                                     13440
tgtatgcctc aaaccggccg tttatcaacc gcctaatgga ctacttgcat cgcgcggccg
ccgtgaaccc cgagtatttc accaatgcca tcttgaaccc gcactggcta ccgcccctg
                                                                     13500
gtttctacac cgggggattc gaggtgcccg agggtaacga tggattcctc tgggacgaca
                                                                     13560
                                                                     13620
tagacgacag cgtgttttcc ccgcaaccgc agaccctgct agagttgcaa cagcgcgagc
aggeagagge ggegetgega aaggaaaget teegeaggee aageagettg teegatetag
                                                                     13680
                                                                     13740
gcgctgcggc cccgcggtca gatgctagta gcccatttcc aagcttgata gggtctctta
                                                                     13800
ccagcacteg caccaccege cegegeetge tgggegagga ggagtaceta aacaactege
tgctgcagcc gcagcgcgaa aaaaacctgc ctccggcatt tcccaacaac gggatagaga
                                                                     13860
gcctagtgga caagatgagt agatggaaga cgtacgcgca ggagcacagg gacgtgccag
                                                                     13920
gcccgcgccc gcccacccgt cgtcaaaggc acgaccgtca gcggggtctg gtgtgggagg
                                                                     13980
                                                                     14040
acgatgactc ggcagacgac agcagcgtcc tggatttggg agggagtggc aacccgtttg
                                                                     14100
cgcaccttcg ccccaggctg gggagaatgt tttaaaaaaa aaaaagcatg atgcaaaata
aaaaactcac caaggccatg gcaccgagcg ttggttttct tgtattcccc ttagtatgcg
                                                                     14160
                                                                     14220
gegegeggeg atgtatgagg aaggteetee teeeteetae gagagtgtgg tgagegegge
                                                                      14280
gccagtggcg gcggcgctgg gttctccctt cgatgctccc ctggacccgc cgtttgtgcc
tccgcggtac ctgcggccta ccggggggag aaacagcatc cgttactctg agttggcacc
                                                                     14340
                                                                     14400
cetattegae accaecegtg tgtacetggt ggacaacaag teaacggatg tggcatecet
                                                                      14460
gaactaccag aacgaccaca gcaactttct gaccacggtc attcaaaaca atgactacag
cccgggggag gcaagcacac agaccatcaa tcttgacgac cggtcgcact ggggcggcga
                                                                     14520
                                                                     14580
cctgaaaacc atcctgcata ccaacatgcc aaatgtgaac gagttcatgt ttaccaataa
                                                                      14640
gtttaaggcg cgggtgatgg tgtcgcgctt gcctactaag gacaatcagg tggagctgaa
                                                                      14700
atacgagtgg gtggagttca cgctgcccga gggcaactac tccgagacca tgaccataga
ccttatgaac aacgcgatcg tggagcacta cttgaaagtg ggcagacaga acggggttct
                                                                      14760
                                                                      14820
ggaaagcgac atcggggtaa agtttgacac ccgcaacttc agactggggt ttgaccccgt
                                                                      14880
cactggtett gteatgeetg gggtatatac aaacgaagee ttecatecag acateatttt
gctgccagga tgcggggtgg acttcaccca cagccgcctg agcaacttgt tgggcatccg
                                                                      14940
```

caagcggcaa	cccttccagg	agggctttag	gatcacctac	gatgatctgg	agggtggtaa	15000
cattcccgca	ctgttggatg	tggacgccta	ccaggcgagc	ttgaaagatg	acaccgaaca	15060
gggcgggggt	ggcgcaggcg	gcagcaacag	cagtggcagc	ggcgcggaag	agaactccaa	15120
cgcggcagcc	gcggcaatgc	agccggtgga	ggacatgaac	gatcatgcca	ttcgcggcga	15180
cacctttgcc	acacgggctg	aggagaagcg	cgctgaggcc	gaagcagcgg	ccgaagctgc	15240
cgcccccgct	gcgcaacccg	aggtcgagaa	gcctcagaag	aaaccggtga	tcaaacccct	15300
gacagaggac	agcaagaaac	gcagttacaa	cctaataagc	aatgacagca	ccttcaccca	15360
gtaccgcagc	tggtaccttg	catacaacta	cggcgaccct	cagaccggaa	tccgctcatg	15420
gaccctgctt	tgcactcctg	acgtaacctg	cggctcggag	caggtctact	ggtcgttgcc	15480
	caagaccccg					15540
ggtgggcgcc	gagctgttgc	ccgtgcactc	caagagcttc	tacaacgacc	aggccgtcta	15600
ctcccaactc	atccgccagt	ttacctctct	gacccacgtg	ttcaatcgct	ttcccgagaa	15660
	gcgcgcccgc					15720
tctcacagat	cacgggacgc	taccgctgcg	caacagcatc	ggaggagtcc	agcgagtgac	15780
cattactgac	gccagacgcc	gcacctgccc	ctacgtttac	aaggccctgg	gcatagtctc	15840
gccgcgcgtc	ctatcgagcc	gcactttttg	agcaagcatg	tccatcctta	tatcgcccag	15900
caataacaca	ggctggggcc	tgcgcttccc	aagcaagatg	tttggcgggg	ccaagaagcg	15960
	cacccagtgc					16020
	actgggcgca					16080
	acgcccacgc					16140
ggtgcgcgga	gcccggcgct	atgctadaat	gaagagacgg	cggaggcgcg	tagcacgtcg	16200
ccaccgccgc	cgacccggca	ctgccgccca	acgcgcggcg	geggeeetge	ttaaccgcgc	16260
acgtcgcacc	ggccgacggg	cggccatgcg	ggccgctcga	aggctggccg	cgggtattgt	16320
cactgtgccc	cccaggtcca	ggcgacgagc	ggccgccgca	gcagccgcgg	ccattagtgc	16380
	ggtcgcaggg					16440
	cgcacccgcc			_	_	16500
gtactgttgt	atgtatccag	cggcggcggc	gcgcaacgaa	gctatgtcca	agcgcaaaat	16560
	atgctccagg					16620
	aagccccgaa					16680
	gacgaggtgg					16740
	cgcgtaaaac					16800
	acccgcacct					16860
	gccaacgagc					16920
	ccgctggacg					16980
	cccgcgcttg					17040
	cccaccgtgc					17100
	accgtggaac					17160
	ggactgggcg					17220
	accgccacag					17280
	gcggtgcagg					17340
	tggatgtttc					17400
	agcgcgctac					17460
	ggctacacct					17520
	cgccgccgcc					17580
	cgcgaaggag					17640
	aagccggtct					17700
	ccgggattcc					17760
	ggcatgcgtc					17820
	atcctgccc					17880
	teegtggeet					17940
	aataaaaagt					18000
	catcaacttt					18060
	agatatcggc					18120
	cattaaaaat					18180
acagcagcac	aggccagatg	ccyayggata	agttyaaaga	gcaaaatttc	caacaaaagg	18240

```
tggtagatgg cctggcctct ggcattagcg gggtggtgga cctggccaac caggcagtgc
                                                                    18300
 aaaataagat taacagtaag cttgatcccc gccctcccgt agaggagcct ccaccggccg
                                                                    18360
                                                                    18420
 tggagacagt gtctccagag gggcgtggcg aaaagcgtcc gcgccccgac agggaagaaa
                                                                    18480
 ctctggtgac gcaaatagac gagcctccct cgtacgagga ggcactaaag caaggcctgc
 ccaccacccg tcccatcgcg cccatggcta ccggagtgct gggccagcac acacccgtaa
                                                                    18540
 cgctggacct gcctccccc gccgacaccc ageagaaacc tgtgctgcca ggcccgaccg
                                                                    18600
                                                                    18660
 cogttgttgt aaccogtect ageogogot coetgogoog ogcogocago ggtoogogat
 cgttgcggcc cgtagccagt ggcaactggc aaagcacact gaacagcatc gtgggtctgg
                                                                    18720
 gggtgcaatc cctgaagcgc cgacgatgct tctgaatagc taacgtgtcg tatgtgtgtc
                                                                     18780
                                                                     18840
 atgtatgcgt ccatgtcgcc gccagaggag ctgctgagcc gccgcgcgcc cgctttccaa
                                                                    18900
 gatggctacc ccttcgatga tgccgcagtg gtcttacatg cacatctcgg gccaggacgc
ctcggagtac ctgagccccg ggctggtgca gtttgcccgc gccaccgaga cgtacttcag
                                                                   .18960
                                                                     19020
 cctgaataac aagtttagaa accccacggt ggcgcctacg cacgacgtga ccacagaccg
                                                                    19080
gtcccagcgt ttgacgctgc ggttcatccc tgtggaccgt gaggatactg cgtactcgta
 caaggegegg tteacectag etgtgggtga taacegtgtg etggacatgg ettecaegta
                                                                     19140 .
                                                                    19200
 ctttgacatc cgcggcgtgc tggacagggg ccctactttt aagccctact ctggcactgc
                                                                    19260.
 ctacaacgcc ctggctccca agggtgcccc aaatccttgc gaatgggatg aagctgctac
                                                                     19320
 tgctcttgaa ataaacctag aagaagagga cgatgacaac gaagacgaag tagacgagca
 agctgagcag caaaaaactc acgtatttgg gcaggcgcct tattctggta taaatattac
                                                                     19380
                                                                    19440
 aaaggagggt attcaaatag gtgtcgaagg tcaaacacct aaatatgccg ataaaacatt
                                                                     19500
 tcaacctgaa cctcaaatag gagaatctca gtggtacgaa actgaaatta atcatgcagc
 tgggagagte ettaaaaaga etaceecaat gaaaceatgt tacggtteat atgeaaaace
                                                                     19560
                                                                     19620
 cacaaatgaa aatggagggc aaggcattct tgtaaagcaa caaaatggaa agctagaaag
 tcaagtggaa atgcaatttt tetcaactae tgaggegaee geaggeaatg gtgataaett
                                                                     19680
 gactectaaa gtggtattgt acagtgaaga tgtagatata gaaaccccag acactcatat
                                                                     19740
                                                                     19800
 ttottacatg cocactatta aggaaggtaa ctcacgagaa ctaatgggoo aacaatctat
 gcccaacagg cctaattaca ttgcttttag ggacaatttt attggtctaa tgtattacaa
                                                                     19860
                                                                     19920
 cagcacgggt aatatgggtg ttctggcggg ccaagcatcg cagttgaatg ctgttgtaga
                                                                     19980
 tttgcaagac agaaacacag agetttcata ccagettttg ettgatteca ttggtgatag
                                                                     20040
 aaccaggtac ttttctatgt ggaatcaggc tgttgacagc tatgatccag atgttagaat
 tattgaaaat catggaactg aagatgaact tccaaattac tgctttccac tgggaggtgt
                                                                     20100
 gattaataca gagactetta ecaaggtaaa aeetaaaaca ggteaggaaa atggatggga
                                                                     20160
                                                                     20220
 aaaagatget acagaatttt cagataaaaa tgaaataaga gttggaaata attttgecat
 ggaaatcaat ctaaatgcca acctgtggag aaatttcctg tactccaaca tagcgctgta
                                                                     20280
 tttgcccgac aagctaaagt acagtccttc caacgtaaaa atttctgata acccaaacac
                                                                     20340
                                                                     20400
 ctacgactac atgaacaagc gagtggtggc tcccgggtta gtggactgct acattaacct
 tggagcacge tggtecettg actatatgga caacgteaac ceatttaace accacegeaa
                                                                     20460
 tgctggcctg cgctaccgct caatgttgct gggcaatggt cgctatgtgc ccttccacat
                                                                     20520
 ccaggtgcct cagaagttct ttgccattaa aaacctcctt ctcctgccgg gctcatacac
                                                                     20580
 ctacgagtgg aacttcagga aggatgttaa catggttctg cagagctccc taggaaatga
                                                                     20640
 cctaagggtt gacggagcca qcattaagtt tgatagcatt tgcctttacg ccaccttctt
                                                                     20700
 ccccatggcc cacaacaccg cctccacgct tgaggccatg cttagaaacg acaccaacga
                                                                     20760
                                                                     20820
 ccagtccttt aacgactatc tctccgccgc caacatgctc taccctatac ccgccaacgc
 taccaacgtg cccatatcca tcccctcccg caactgggcg gctttccgcg gctgggcctt
                                                                     20880
 cacgcgcctt aagactaagg aaaccccatc actgggctcg ggctacgacc cttattacac
                                                                     20940
                                                                     21000
 ctactctggc tctataccct acctagatgg aaccttttac ctcaaccaca cctttaagaa
 21060
 caacgagttt gaaattaagc gctcagttga cggggagggt tacaacgttg cccagtgtaa
                                                                     21120
                                                                     21180
catgaccaaa gactggttcc tggtacaaat gctagctaac tacaacattg gctaccaggg
                                                                     21240
 cttctatatc ccagagaget acaaggaceg catgtactcc ttctttagaa acttccagec
 catgagccgt caggtggtgg atgatactaa atacaaggac taccaacagg tgggcatcct
                                                                     21300
 acaccaacac aacaactetg gatttgttgg ctacettgce cecaccatge gegaaggaca
                                                                     21360
                                                                     21420
 ggcctaccct gctaacttcc cctatccgct tataggcaag accgcagttg acagcattac
 ccagaaaaag tttctttgcg atcgcaccct ttggcgcatc ccattctcca gtaactttat
                                                                     21480
 gtccatgggc gcactcacag acctgggcca aaaccttctc tacgccaact ccgcccacgc
                                                                     21540
```

```
21600
gctagacatg acttttgagg tggatcccat ggacgagccc accettettt atgttttgtt
tgaagtettt gaegtggtee gtgtgeaeeg geegeaeege ggegteateg aaacegtgta
                                                                     21660
                                                                     21720
cctgcgcacg cccttctcgg ccggcaacgc cacaacataa agaagcaagc aacatcaaca
acagetgeeg ccatgggete cagtgageag gaactgaaag ccattgteaa agatettggt
                                                                     21780
tgtgggccat attitttggg cacctatgac aagcgctttc caggctttgt ttctccacac
                                                                     21840
                                                                     21900
aagetegeet gegecatagt caataeggee ggtegegaga etgggggegt acaetggatg
gcctttgcct ggaacccgca ctcaaaaaca tgctacctct ttgagccctt tggcttttct
                                                                     21960
                                                                     22020
gaccagcgac tcaagcaggt ttaccagttt gagtacgagt cactcctgcg ccgtagcgcc
attgcttctt cccccgaccg ctgtataacg ctggaaaagt ccacccaaag cgtacagggg
                                                                     22080
cccaactegg ccgcctgtgg actattctgc tgcatgtttc tccacgcctt tgccaactgg
                                                                     22140
                                                                     22200
ccccaaactc ccatggatca caaccccacc atgaacctta ttaccggggt acccaactcc
atgeteaaca gtecceaggt acageceace etgegtegea accaggaaca getetacage
                                                                     22260
                                                                     22320
ttcctggagc gccactcgcc ctacttccgc agccacagtg cgcagattag gagcgccact
                                                                     22380
tctttttgtc acttgaaaaa catgtaaaaa taatgtacta gagacacttt caataaaggc
                                                                     22440
aaatgctttt atttgtacac tetegggtga ttatttaccc ccaccettge cgtetgegee
                                                                     22500
gtttaaaaat caaaggggtt ctgccgcgca tcgctatgcg ccactggcag ggacacgttg
cgatactggt gtttagtgct ccacttaaac tcaggcacaa ccatccgcgg cagctcggtg
                                                                     22560
                                                                     22620
aagttttcac tccacaggct gcgcaccatc accaacgcgt ttagcaggtc gggcgccgat
atcttgaagt cgcagttggg gcctccgccc tgcgcgcgcg agttgcgata cacagggttg
                                                                     22680
                                                                     22740
cagcactgga acactatcag cgccgggtgg tgcacgctgg ccagcacgct cttgtcggag
                                                                     22800
atcagatccg cgtccaggtc ctccgcgttg ctcagggcga acggagtcaa ctttggtagc
tgccttccca aaaagggcgc gtgcccaggc tttgagttgc actcgcaccg tagtggcatc
                                                                     22860
                                                                     22920
aaaaggtgac cgtgcccggt ctgggcgtta ggatacagcg cctgcataaa agccttgatc
tgcttaaaag ccacctgagc ctttgcgcct tcagagaaga acatgccgca agacttgccg
                                                                     22980
                                                                     23040
gaaaactgat tggccggaca ggccgcgtcg tgcacgcagc accttgcgtc ggtgttggag
atotgoacca catttoggoo coaccggtto ttoacgatot tggcottgot agactgotco
                                                                     23100
                                                                     23160
ttcagcgcgc gctgcccgtt ttcgctcgtc acatccattt caatcacgtg ctccttattt
atcataatgc ttccgtgtag acacttaagc tcgccttcga tctcagcgca gcggtgcagc
                                                                     23220
cacaacgcgc agcccgtggg ctcgtgatgc ttgtaggtca cctctgcaaa cgactgcagg
                                                                     23280
tacgcctgca ggaatcgccc catcatcgtc acaaaggtct tgttgctggt gaaggtcagc
                                                                     23340
                                                                     23400
tgcaacccgc ggtgctcctc gttcagccag gtcttgcata cggccgccag agcttccact
                                                                     23460
tggtcaggca gtagtttgaa gttcgccttt agatcgttat ccacgtggta cttgtccatc
agegegegeg cageetecat gecettetee caegeagaca egateggeae acteageggg
                                                                     23520
                                                                     23580
ttcatcaccg taatttcact ttccgcttcg ctgggctctt cctcttcctc ttgcgtccgc
ataccacgcg ccactgggtc gtcttcattc agccgccgca ctgtgcgctt acctcctttg
                                                                     23640
                                                                     23700
ccatgcttga ttagcaccgg tgggttgctg aaacccacca tttgtagcgc cacatcttct
                                                                     23760
etttetteet egetgteeae gattacetet ggtgatggeg ggegeteggg ettgggagaa
                                                                     23820
gggcgcttct ttttcttctt gggcgcaatg gccaaatccg ccgccgaggt cgatggccgc
gggctgggtg tgcgcggcac cagcgcgtct tgtgatgagt cttcctcgtc ctcggactcg
                                                                      23880
 atacgccgcc tcatccgctt ttttgggggc gcccggggag gcggcggcga cggggacggg
                                                                      23940
                                                                      24000
 gacgacacgt cctccatggt tgggggacgt cgcgccgcac cgcgtccgcg ctcggggggtg
 gtttcgcgct gctcctcttc ccgactggcc atttccttct cctataggca gaaaaagatc
                                                                      24060
                                                                      24120
 atggagtcag tcgagaagaa ggacagccta accgcccct ctgagttcgc caccaccgcc
                                                                      24180
 tccaccgatg ccgccaacgc gcctaccacc ttccccgtcg aggcaccccc gcttgaggag
 gaggaagtga ttatcgagca ggacccaggt tttgtaagcg aagacgacga ggaccgctca
                                                                      24240
                                                                      24300
 gtaccaacag aggataaaaa gcaagaccag gacaacgcag aggcaaacga ggaacaagtc
 gggcgggggg acgaaaggca tggcgactac ctagatgtgg gagacgacgt gctgttgaag
                                                                      24360
 catctgcagc gccagtgcgc cattatctgc gacgcgttgc aagagcgcag cgatgtgccc
                                                                      24420
 ctcgccatag cggatgtcag ccttgcctac gaacgccacc tattctcacc gcgcgtaccc
                                                                      24480
                                                                      24540
 cccaaacgcc aagaaaacgg cacatgcgag cccaacccgc gcctcaactt ctaccccgta
                                                                      24600
 tttgccgtgc cagaggtgct tgccacctat cacatctttt tccaaaactg caagataccc
                                                                      24660
 ctatectgee gtgecaaceg cageegageg gacaageage tggeettgeg geagggeget
                                                                      24720
 gtcatacctg atatcgcctc gctcaacgaa gtgccaaaaa tctttgaggg tcttggacgc
                                                                      24780
 gacgagaagc gcgcggcaaa cgctctgcaa caggaaaaca gcgaaaatga aagtcactct
 ggagtgttgg tggaactcga gggtgacaac gcgcgcctag ccgtactaaa acgcagcatc
                                                                      24840
```

```
24900
gaggtcaccc actttgccta cccggcactt aacctacccc ccaaggtcat gagcacagtc
                                                                     24960.
atgagtgage tgategtgeg cegtgegeag eccetggaga gggatgeaaa tttgcaagaa
                                                                     25020
caaacagagg agggcctacc cgcagttggc gacgagcagc tagcgcgctg gcttcaaacg.
                                                                     .25080
cgcgagcctg ccgacttgga ggagcgacgc aaactaatga tggccgcagt gctcgttacc
gtggagcttg agtgcatgca gcggttcttt gctgacccgg agatgcagcg caagctagag
                                                                     25140
                                                                     25200
gaaacattgc actacacctt tcgacagggc tacgtacgcc aggcctgcaa gatctccaac
                                                                     25260
grggagetet geaacetggt etectacett ggaattitge acgaaaaceg eettgggeaa
aacgtgcttc attccacgct caagggcgag gcgcgccgcg actacgtccg cgactgcgtt
                                                                     25320
tacttatttc tatgctacac ctggcagacg gccatgggcg tttggcagca gtgcttggag
                                                                     25380
                                                                     25440
gagtgcaacc tcaaggagct gcagaaactg ctaaagcaaa acttgaagga cctatggacg
                                                                     25500
gccttcaacg agcgctccgt ggccgcgcac ctggcggaca tcattttccc cgaacgcctg
cttaaaaccc tgcaacaggg tctgccagac ttcaccagtc aaagcatgtt gcagaacttt
                                                                     25560
aggaacttta teetagageg eteaggaate ttgeeegeea eetgetgtge aetteetage
                                                                     25620
gactttgtgc ccattaagta ccgcgaatgc cctccgccgc tttggggcca ctgctacctt
                                                                     25680
ctgcagctag ccaactacct tgcctaccac tctgacataa tggaagacgt gagcggtgac
                                                                     25740
ggtctactgg agtgtcactg tcgctgcaac ctatgcaccc cgcaccgctc cctggtttgc
                                                                     25800
                                                                     25860
aattcgcagc tgcttaacga aagtcaaatt atcggtacct ttgagctgca gggtccctcg
cctgacgaaa agtccgcggc tccggggttg aaactcactc cggggctgtg gacgtcggct
                                                                     25920
taccttcgca aatttgtacc tgaggactac cacgcccacg agattaggtt ctacgaagac
                                                                     25980
                                                                     26040
caatcccgcc cgccaaatgc ggagcttacc gcctgcgtca ttacccaggg ccacattctt
ggccaattgc aagccatcaa caaagcccgc caagagtttc tgctacgaaa gggacggggg
                                                                     26100
gtttacttgg acceccagte eggegaggag etcaacceaa tececcegee geegeageee
                                                                     26160
tatcagcage ageogogge cettgettee caggatggea cecaaaaaga agetgeaget
                                                                     26220
gccgccgcca cccacggacg aggaggaata ctgggacagt caggcagagg aggttttgga
                                                                     26280
                                                                     26340
cgaggaggag gaggacatga tggaagactg ggagagccta gacgaggaag cttccgaggt
                                                                     26400
cgaagaggtg tcagacgaaa caccgtcacc ctcggtcgca ttcccctcgc cggcgcccca
gaaateggea aceggtteea geatggetae aaceteeget eeteaggege egeeggeaet
                                                                     26460
                                                                     26520
gcccgttcgc cgacccaacc gtagatggga caccactgga accagggccg gtaagtccaa
                                                                     26580
quagecqccq ccgttagccc aagagcaaca acagcgccaa ggctaccgct catggcgcgg
gcacaagaac gccatagttg cttgcttgca agactgtggg ggcaacatct ccttcgcccg
                                                                     26640
                                                                     26700
ccgctttctt ctctaccatc acggcgtggc cttcccccgt aacatcctgc attactaccg
                                                                     26760
tcatctctac agcccatact gcaccggcgg cagcggcagc ggcagcaaca gcagcggcca
cacagaagca aaggcgaccg gatagcaaga ctctgacaaa gcccaagaaa tccacagcgg
                                                                     26820
                                                                     26880
cggcagcagc aggaggagga gcgctgcgtc tggcgcccaa cgaacccgta tcgacccgcg
agcttagaaa caggattttt cccactctgt atgctatatt tcaacagagc aggggccaag
                                                                     26940
aacaagagct gaaaataaaa aacaggtete tgegateeet caccegeage tgeetgtate
                                                                     27000
                                                                     27060
acaaaagcga agatcagctt cggcgcacgc tggaagacgc ggaggctctc ttcagtaaat
                                                                     27120
actgcgcgct gactcttaag gactagtttc gcgccctttc tcaaatttaa gcgcgaaaac
                                                                     27180
tacgtcatct ccagcggcca cacccggcgc cagcacctgt cgtcagcgcc attatgagca
aggaaattcc cacgccctac atgtggagtt accagccaca aatgggactt gcggctggag
                                                                     27240
                                                                     27300
ctgcccaaga ctactcaacc cgaataaact acatgagcgc gggaccccac atgatatccc
                                                                     27360
gggtcaacgg aatccgcgcc caccgaaacc gaattetett ggaacaggcg gctattacca
                                                                     27420
ccacacctcg taataacctt aatccccgta gttggcccgc tgccctggtg taccaggaaa
                                                                     27480
gtcccgctcc caccactgtg gtacttccca gagacgccca ggccgaagtt cagatgacta
                                                                     27540
actcaggggc gcagcttgcg ggcggctttc gtcacagggt gcggtcgccc gggcagggta
                                                                     27600
taactcacct gacaatcaga gggcgaggta ttcagctcaa cgacgagtcg gtgagctcct
cgcttggtct ccgtccggac gggacatttc agatcggcgg cgccggccgt ccttcattca
                                                                     27660
                                                                     27720
cgcctcgtca ggcaatccta actctgcaga cctcgtcctc tgagccgcgc tctggaggca
ttggaactct gcaatttatt gaggagtttg tgccatcggt ctactttaac cccttctcgg
                                                                     27780
                                                                     27840
gacctcccgg ccactatccg gatcaattta ttcctaactt tgacgcggta aaggactcgg
                                                                     27900
cggacggcta cgactgaatg ttaagtggag aggcagagca actgcgcctg aaacacctgg
                                                                     27960
tccactgtcg ccgccacaag tgctttgccc gcgactccgg tgagttttgc tactttgaat
tgcccgagga tcatatcgag ggcccggcgc acggcgtccg gcttaccgcc cagggagagc
                                                                     28020
ttgcccgtag cctgattcgg gagtttaccc agcgccccct gctagttgag cgggacaggg
                                                                     28080
                                                                     28140
gaccetgtgt teteactgtg atttgcaact gteetaacet tggattacat caagatettt
```

```
gttgccatct ctgtgctgag tataataaat acagaaatta aaatatactg gggctcctat
                                                                      28200
cgccatcctg taaacgccac cgtcttcacc cgcccaagca aaccaaggcg aaccttacct
                                                                      28260
                                                                      28320
ggtactttta acatctctcc ctctgtgatt tacaacagtt tcaacccaga cggagtgagt
ctacgagaga acctetecga geteagetae tecateagaa aaaacaceae eeteettace
                                                                      28380
                                                                      28440
tgccgggaac gtacgagtgc gtcaccggcc gctgcaccac acctaccgcc tgaccgtaaa
ccagactttt tccggacaga cctcaataac tctgtttacc agaacaggag gtgagcttag
                                                                      28500
aaaaccctta gggtattagg ccaaaggcgc agctactgtg gggtttatga acaattcaag
                                                                      28560
caactctacg ggctattcta attcaggttt ctctagaatc ggggttgggg ttattctctg
                                                                      28620
tottgtgatt ctctttattc ttatactaac gcttctctgc ctaaggctcg ccgcctgctg
                                                                      28680
 tgtgcacatt tgcatttatt gtcagctttt taaacgctgg ggtcgccacc caagatgatt
                                                                      28740
                                                                      28800
 aggtacataa tootaggttt actoaccott gogtoagoco acggtaccao ccaaaaggtg
gattttaagg agccagcctg taatgttaca ttcgcagctg aagctaatga gtgcaccact
                                                                      28860
 cttataaaat gcaccacaga acatgaaaag ctgcttattc gccacaaaaa caaaattggc
                                                                      28920
 aagtatgctg tttatgctat ttggcagcca ggtgacacta cagagtataa tgttacagtt
                                                                      28980
 ttccagggta aaagtcataa aacttttatg tatacttttc cattttatga aatgtgcgac
                                                                      29040
                                                                      29100
 attaccatgt acatgagcaa acagtataag ttgtggcccc cacaaaattg tgtggaaaac
 actggcactt tctgctgcac tgctatgcta attacagtgc tcgctttggt ctgtacccta
                                                                      29160
 ctctatatta aatacaaaag cagacgcagc tttattgagg aaaagaaaat gccttaattt
                                                                      29220
 actaagttac aaagctaatg tcaccactaa ctgctttact cgctgcttgc aaaacaaatt
                                                                      29280
 caaaaagtta gcattataat tagaatagga tttaaacccc ccggtcattt cctgctcaat
                                                                      29340
                                                                      29400
 accattcccc tgaacaattg actctatgtg ggatatgctc cagcgctaca accttgaagt
                                                                      29460
 caggetteet ggatgteage atetgaettt ggeeageace tgteeegegg atttgtteea
 gtccaactac agcgacccac cctaacagag atgaccaaca caaccaacgc ggccgccgct
                                                                      29520
                                                                      29580
 accggactta catctaccac aaatacaccc caagtttctg cctttgtcaa taactgggat
 aacttgggca tgtggtggtt ctccatagcg cttatgtttg tatgccttat tattatgtgg
                                                                      29640
                                                                      29700
 ctcatctgct gcctaaagcg caaacgcgcc cgaccaccca tctatagtcc catcattgtg
 ctacacccaa acaatgatgg aatccataga ttggacggac tgaaacacat gttctttct
                                                                      29760
 cttacagtat gattaaatga gacatgattc ctcgagtttt tatattactg accettgttg
                                                                      29820
                                                                      29880
 cgcttttttg tgcgtgctcc acattggctg cggtttctca catcgaagta gactgcattc
 cagcetteac agtetatttg etttacggat ttgtcaccet cacgeteate tgcageetca
                                                                      29940
                                                                      30000
 tcactgtggt catcgccttt atccagtgca ttgactgggt ctgtgtgcgc tttgcatatc
 tcagacacca tccccagtac agggacagga ctatagctga gcttcttaga attctttaat
                                                                      30060
 tatgaaattt actgtgactt ttctgctgat tatttgcacc ctatctgcgt tttgttcccc
                                                                      30120
                                                                      30180
 gacctccaag cctcaaagac atatatcatg cagattcact cgtatatgga atattccaag
 ttgctacaat gaaaaaagcg atctttccga agcctggtta tatgcaatca tctctgttat
                                                                      30240
                                                                      30300
 ggtgttctgc agtaccatct tagccctagc tatatatccc taccttgaca ttggctggaa
                                                                      30360
 acgaatagat gccatgaacc acccaacttt ccccgcgccc gctatgcttc cactgcaaca
 agttgttgcc ggcggctttg tcccagccaa tcagcctcgc cccacttctc ccaccccac
                                                                      30420
                                                                       30480
 tgaaatcagc tactttaatc taacaggagg agatgactga caccctagat ctagaaatgg
 acggaattat tacagagcag cgcctgctag aaagacgcag ggcagcggcc gagcaacagc
                                                                       30540
                                                                      30600
 gcatgaatca agagctccaa gacatggtta acttgcacca gtgcaaaagg ggtatctttt
 gtctggtaaa gcaggccaaa gtcacctacg acagtaatac caccggacac cgccttagct
                                                                       30660
 acaagttgcc aaccaagcgt cagaaattgg tggtcatggt gggagaaaag cccattacca
                                                                       30720
                                                                       30780
 taactcagca ctcggtagaa accgaaggct gcattcactc accttgtcaa ggacctgagg
 atctctgcac ccttattaag accctgtgcg gtctcaaaga tcttattccc tttaactaat
                                                                       30840
 aaaaaaaaat aataaagcat cacttactta aaatcagtta gcaaatttct gtccagttta
                                                                       30900
  ttcagcagca cctccttgcc ctcctcccag ctctggtatt gcagcttcct cctggctgca
                                                                       30960
                                                                       31020
  aactttctcc acaatctaaa tggaatgtca gtttcctcct gttcctgtcc atccgcaccc
                                                                       31080
  actatettea tgttgttgca gatgaagege geaagaeegt etgaagatae etteaaeece
  gtgtatecat atgacaegga aaceggteet ecaaetgtge ettttettae teeteeettt
                                                                       31140
  gtatececea atgggtttea agagagtece eetggggtae tetetttgeg eetateegaa
                                                                       31200
                                                                       31260
  cctctagtta cctccaatgg catgcttgcg ctcaaaatgg gcaacggcct ctctctggac
  gaggccggca accttacctc ccaaaatgta accactgtga gcccacctct caaaaaaacc
                                                                       31320
                                                                       31380
  aagtcaaaca taaacctgga aatatctgca cccctcacag ttacctcaga agccctaact
                                                                       31440
  gtggctgccg ccgcacctct aatggtcgcg ggcaacacac tcaccatgca atcacaggcc
```

					•	
ccgctaaccg	tgcacgactc	caaacttagc	attgccaccc	aaggacccct	cacagtgtca	31500
gaaggaaagc	tagccctgca	aacatcaggc	cccctcacca	ccaccgatag	cagtaccctt	31560
actatcactg	cctcacccc	tctaactact	gccactggta	gcttgggcat	tgacttgaaa	31620
gagcccattt	atacacaaaa	tggaaaacta	ggactaaagt	acggggctcc	tttgcatgta	31680
acagacgacc	taaacacttt	gaccgtagca	actggtccag	gtgtgactat	taataatact	31740 .
tccttgcaaa	ctaaagttac	tggagccttg	ggttttgatt	cacaaggcaa	tatgcaactt	31800 .
aatgtagcag	gaggactaag	gattgattct	caaaacagac	gccttatact	tgatgttagt	31860
tatccgtttg	atgctcaaaa	ccaactaaat	ctaagactag	gacagggccc	tcttttata	31920
aactcagccc	acaacttgga	tattaactac	aacaaaggcc	tttacttgtt	tacagettea	31980
aacaattcca	aaaagcttga	ggttaaccta	agcactgcca	aggggttgat	gtttgacgct	32040
acagccatag	ccattaatgc	aggagatggg	cttgaatttg	gttcacctaa	tgcaccaaac	32100
acaaatcccc	tcaaaacaaa	aattggccat	ggcctagaat	ttgattcaaa	caaggctatg	32160
gttcctaaac	taggaactgg	ccttagtttt	gacagcacag	gtgccattac	agtaggaaac	32220
aaaaataatg	ataagctaac	tttgtggacc	acaccagete	catctcctaa	ctgtagacta.	32280
aatgcagaga	aagatgctaa	actcactttg	gtcttaacaa	aatgtggcag	tcaaatactt	32340
gctacagttt	cagttttggc	tgttaaaggc	agtttggctc	caatatctgg	aacagttcaa	32400
agtgctcatc	ttattataag	atttgacgaa	aatggagtgc	tactaaacaa	ttccttcctg	32460
gacccagaat	attggaactt	tagaaatgga	gatettactg	aaggcacage	ctatacaaac	32520
gctgttggat	ttatgcctaa	cctatcagct	tatccaaaat	ccacggtaa	aactgccaaa	32580 32640
agtaacattg	tcagtcaagt	ttacttaaac	ggagacaaaa	ctaaacctgt	aacactaacc	•
					ctctatgtca	32700 32760
					atcctcttac	32700
actttttcat	acattgeeca	agaataaaga	account	retateces	acgtgtttat	32880
					caccaccaca	32940
ragettatae	agatcaccgt	accetaatea	adeteacaga	caactagest	tcaacctgcc	33000
accidented	caacacacag	tattettage	tattatatta	cacacactt	taaaaagcat cctgtcgagc	33060
					tcatgtcgct	33120
					gcggcgaagg	33180
					ggcggtggtg	33240
					aatacaacat	33300
					ttgtcctccg	33360
					acagcaccac	33420
					cggggaccac	33480
agaacccacg	tggccatcat	accacaagcg	caggtagatt	aagtggcgac	ccctcataaa	33540
					cccggtacca	33600
					tggccaaaac	33660
					ggagagccca	33720
					aacacaggca	33780
					tatcccaggg	33840
aacaacccat	tcctgaatca	gcgtaaatcc	cacactgcag	ggaagacctc	gcacgtaact	. 33900
					ccagtatggt	33960
					tgcgccgaga	34020
					tagtcatatt	34080
tcctgaagca	aaaccaggtg	cgggcgtgac	aaacagatct	gcgtctccgg	tctcgccgct	34140
tagatcgctc	tgtgtagtag	ttgtagtata	tccactctct	caaagcatcc	aggcgccccc	34200
tggcttcggg	ttctatgtaa	actccttcat	gcgccgctgc	cctgataaca	tccaccaccg	34260
cagaataagc	cacacccagc	caacctacac	attcgttctg	cgagtcacac	acgggaggag	34320
cgggaagagc	tggaagaacc	atgtttttt	ttttattcca	aaagattatc	caaaacctca	34380
aaatgaagat	ctattaagtg	aacgcgctcc	cctccggtgg	cgtggtcaaa	ctctacagcc	34440
					gcaaacggcc	34500
					tataaacatt	34560
					tatatctcta	34620
					gccctccacc	34680
ttcagcctca	agcagcgaat	catgattgca	aaaattcagg	ttectcacag	acctgtataa	34740
				•		

```
gattcaaaag cggaacatta acaaaaatac cgcgatcccg taggtccctt cgcagggcca
                                                                     34800
gctgaacata atcgtgcagg tctgcacgga ccagcgcggc cacttccccg ccaggaacct
                                                                     34860
tgacaaaaga acccacactg attatgacac gcatactcgg agctatgcta accagcgtag
                                                                     34920
ccccgatgta agctttgttg catgggcggc gatataaaat gcaaggtgct gctcaaaaaa
                                                                     34980
tcaggcaaag cctcgcgcaa aaaagaaagc acatcgtagt catgctcatg cagataaagg
                                                                     35040
caggtaagct ccggaaccac cacagaaaaa gacaccattt ttctctcaaa catgtctgcg
                                                                     35100
ggtttctgca taaacacaaa ataaaataac aaaaaaaacat ttaaacatta gaagcctgtc
                                                                     35160
ttacaacagg aaaaacaacc cttataagca taagacggac tacggccatg ccggcgtgac
                                                                     35220
cgtaaaaaaa ctggtcaccg tgattaaaaa gcaccaccga cagctcctcg gtcatgtccg
                                                                     35280
gagtcataat gtaagactcg gtaaacacat caggttgatt catcggtcag tgctaaaaag
                                                                     35340
cgaccgaaat agcccggggg aatacatacc cgcaggcgta gagacaacat tacagccccc
                                                                     35400
ataggaggta taacaaaatt aataggagag aaaaacacat aaacacctga aaaaccctcc
                                                                     35460
tgcctaggca aaatagcacc ctcccgctcc agaacaacat acagcgcttc acagcggcag
                                                                     35520
cctaacagtc agccttacca gtaaaaaaga aaacctatta aaaaaacacc actcgacacg
                                                                     35580
gcaccagctc aatcagtcac agtgtaaaaa agggccaagt gcagagcgag tatatatagg
                                                                     35640
actaaaaaat gacgtaacgg ttaaagtcca caaaaaacac ccagaaaacc gcacgcgaac
                                                                     35700
ctacgcccag aaacgaaagc caaaaaaccc acaacttcct caaatcgtca cttccgtttt
                                                                     35760
cccacgttac gtaacttccc attttaagaa aactacaatt cccaacacat acaagttact
                                                                     35820
ccgccctaaa acctacgtca cccgcccgt tcccacgccc cgcgccacgt cacaaactcc
                                                                     35880
accccctcat tatcatattg gcttcaatcc aaaataaggt atattattga tgatg
                                                                     35935
<210> 10
<211> 5965
<212> DNA
<213> Artificial Sequence
<220>
<223> NSsuboptmut
<400> 10
gccaccatgg cccccatcac cgcctacagc cagcagacca ggggcctgct gggctgcatc
                                                                        60
atcaccagcc tgaccggacg cgacaagaac caggtggagg gagaggtgca ggtggtgagc
                                                                       120
accyctaccc agagettect ggccacetge gtgaacggeg tgtgetggac cgtgtaccac
                                                                       180
ggagccggaa gcaagaccct ggccggaccc aagggcccta tcacccagat gtacaccaat
                                                                       240
gtggatcagg atctggtggg ctggcaggcc cctcccggag ccaggagcct gacaccctgt
                                                                       300
acctgtggaa gcagcgacct gtacctggtg acacgccacg ccgatgtgat ccccgtgagg
                                                                       360
cgcaggggcg attctcgcgg aagcctgctg agccctaggc ccgtgagcta cctgaaggge
                                                                       420
agcageggag gacecetget gtgteettet ggecatgeeg tgggeatttt tegegetgee
                                                                       480
gtgtgtacca ggggcgtggc caaagccgtg gattttgtgc ccgtggaaag catggagacc
                                                                       540
accatgcgca gccctgtgtt caccgacaac agctctcccc ctgccgtgcc ccaatcattc
                                                                       600
caggtggctc acctgcacgc ccctaccgga tctggcaaga gcaccaaggt gcccgctgcc
                                                                       660
tacgccgctc agggctacaa ggtgctggtg ctgaacccca gcgtggccgc taccctgggc
                                                                       720
ttcggcgctt acatgagcaa ggcccatggc atcgacccca acatccgcac aggcgtgcgc
                                                                       780
accatcacca coggagetee egtgacetae ageacetaeg geaagtteet ggeogatgga
                                                                       840
ggctgcagcg gaggagccta cgacatcatc atctgcgacg agtgccacag caccgacagc
                                                                       900
accaccatcc tgggcattgg caccgtgctg gatcaggccg aaacagctgg agccaggctg
                                                                       960
gtggtgctgg ccacagctac ccctcctggc agcgtgaccg tgccccatcc caatatcgag
                                                                      1020
gaggtggccc tgagcaacac aggcgagatc cccttctacg gcaaggccat ccccatcgag
                                                                      1080
gccatccgcg gaggcaggca cctgatcttc tgccacagca agaagaagtg cgacgagctg
                                                                      1140
gctgccaagc tgagcggact gggcatcaac gccgtggcct actacagggg cctggacgtg
                                                                      1200
tcagtgatcc ccaccatcgg cgatgtggtg gtggtggcca ccgacgccct gatgacaggc
                                                                      1260
tacaccggag acttcgacag cgtgatcgac tgcaacacct gcgtgaccca gaccgtggac
                                                                      1320
ttcagcctgg accccacctt caccatcgaa accaccaccg tgcctcagga tgctgtgagc
                                                                      1380
aggagccaga ggcgcggacg caccggaagg ggcaggcgcg gaatttatcg ctttgtgacc
                                                                      1440
cctggcgaaa ggccctctgg catgttcgac agcagcgtgc tgtgcgagtg ctacgacgct
                                                                      1500
```

```
ggctgcgctt ggtacgagct gacacccgct gaaaccagcg tgcgcctgcg cgcttatctg
                                                                     1560
aatacccctg gcctgcccgt gtgtcaggac cacctggagt tctgggagag cgtgttcaca
                                                                      1620
ggactgaccc acategacgc ccatttcctg agccagacca agcaggetgg cgacaacttc
                                                                      1680
ccctatctgg tggcctatca ggccaccgtg tgtgctaggg cccaagctcc acctccttca
                                                                      1740
                                                                      1800
tgggaccaga tgtggaagtg cctgatccgc ctgaagccca ccctgcacgg ccctacccct
ctgctgtacc gcctgggagc cgtgcagaac gaggtgaccc tgacccaccc catcaccaag
                                                                      1860
tacatcatgg cctgcatgag cgctgatctg gaagtggtga ccagcacctg ggtgctggtg
                                                                      1920
                                                                      1980
ggaggegtge tggeegetet ggetgeetae tgeetgacea eeggaagegt ggtgategtg
                                                                      2040
ggacgcatca tcctgagcgg aaggcccgct atcgtgcccg atcgcgagtt cctgtaccag
gagttcgacg agatggagga gtgtgccagc cacctgccct acatcgagca gggcatgcag
                                                                      2100
ctggccgaac agttcaagca gaaggccctg ggcctgctgc agacagccac caaacaggcc
                                                                      2160
                                                                      2220
gaagctgccg ctcccgtggt ggaaagcaag tggagggccc tggagacctt ctgggctaag
cacatgtgga acttcatctc tggcatccag tacctggccg gactgagcac cctgcctggc
                                                                      2280
                                                                      2340
aaccccgcta tcgccagcct gatggccttc accgctagca tcacctctcc cctgaccacc
cagageacce tgetgtteaa cattetggge ggatgggtgg cegeteaget ggeeceteet
                                                                      2400
                                                                      2460
tcagctgctt ctgcctttgt gggcgctggc attgccggag ccgctgtggg cagcattggc
ctgggcaaag tgctggtgga tattctggct ggctatggcg ctggcgtggc cggagccctg
                                                                      2520
                                                                      2580
gtggccttca aggtgatgag cggagagatg cccagcaccg aggacctggt gaacctgctg
cctgccattc tgagccctgg agccctggtg gtgggcgtgg tgtgtgctgc cattctgagg
                                                                      2640
cgccatgtgg gacccggaga gggcgctgtg cagtggatga accgcctgat cgccttcgcc
                                                                      2700
                                                                      2760
totogoggaa accaegtgag coctacceae tacgtgeetg agagegaege egetgeeagg
gtgacccaga tcctgagcag cctgaccatc acccagctgc tgaagcgcct gcaccagtgg
                                                                      2820
atcaacgagg actgcagcac accctgcagc ggaagctggc tgagggacgt gtgggactgg
                                                                      2880
                                                                      2940
atotgcaccg tgctgaccga cttcaagacc tggctgcaga gcaagctgct gccccaactg
                                                                      3000
cctggcgtgc ccttcttctc atgccagcgc ggatacaagg gcgtgtggag gggcgatggc
                                                                      3060
atcatgcaga ccacctgtcc ctgcggagcc cagatcacag gccacgtgaa gaacggcagc
atgcgcatcg tgggccctaa gacctgcagc aacacctggc acggcacctt ccccatcaac
                                                                      3120
                                                                      3180
gcctacacca ccggaccctg cacacccagc cctgctccca actacagcag ggccctgtgg
agggtggctg ccgaggagta cgtggaggtg accagggtgg gagacttcca ctacgtgacc
                                                                      3240
                                                                      3300
qqaatqacca ccqacaacqt gaagtgtccc tgtcaggtgc ccgctcccga attttttacc
                                                                      3360
gaagtggatg gegtgegeet geategetat geecetgeet gtaggeeeet getgegegaa
gaagtgacct tecaggtggg cetgaaccag tacetggtgg geagecaget geeetgegag
                                                                      3420
cctgageceg atgtggcegt getgaceage atgetgaceg accecageca cateacagee
                                                                      3480
                                                                      3540
gaaaccgcta aaaggcgcct ggccaggggc tctcctccaa gcctggcctc aagcagcgct
agccagetgt etgeteceag cetgaaggee acetgeacea eccaceacgt gageceegae
                                                                      3600
                                                                      3660
gccgacctga tcgaggccaa cctgctgtgg cgccaggaga tgggcggcaa catcacccgc
gtggagagcg agaacaaggt ggtggtgctg gacagcttcg accccctgcg cgccgaggag
                                                                      3720
gacgagegeg aggtgagegt gecegeegag atcetgegea agageaagaa gtteeceget
                                                                      3780
                                                                      3840
gccatgccca tctgggctag acctgattac aaccetecee tgctggagag ctggaaggae
                                                                      3900
cctgattacg tgcctccagt ggtgcatggc tgtcctctgc ctcccattaa agcccctcct
attccacctc ctaggcgcaa aaggaccgtg gtgctgacag aaagcagcgt gagctctgct
                                                                      3960
ctggccgaac tggccaccaa gacctttggc agcagcgaga gctctgccgt ggacagcgga
                                                                      4020
                                                                      4080
acagecaceg etetgeetga ceaggeeage gaegaeggeg ataagggeag egatgtggag
                                                                      4140
agctatagca gcatgcctcc cctggaaggc gaacctggcg atcccgatct gagcgatggc
agctggagca ccgtgagcga agaggccagc gaggacgtgg tgtgttgcag catgagctac
                                                                      4200
acctggacag gcgctctgat cacaccctgc gctgccgagg agagcaagct gcccatcaac
                                                                      4260
gecetgagea acageetget gaggeaceae aacatggtgt acgeeaceae cageaggtet
                                                                      4320
                                                                       4380
gccggactga ggcagaagaa ggtgaccttc gaccgcctgc aggtgctgga cgaccactac
                                                                       4440
cgcgatgtgc tgaaggagat gaaggccaag gccagcaccg tgaaggccaa gctgctgagc
                                                                       4500
gtggaggagg cctgcaagct gaccccccc cacagegeca agageaagtt eggetaegge
                                                                       4560
gccaaggacg tgcgcaacct gagcagcaag gccgtgaacc acatccacag cgtgtggaag
                                                                       4620
gacctgctgg aggacaccgt gacccccatc gacaccacca tcatggccaa gaacgaggtg
                                                                       4680
ttctgcgtgc agcccgagaa gggcggccgc aagcccgctc gcctgatcgt gttccccgat
                                                                       4740
etgggcgtgc gcgtgtgcga gaagatggcc ctgtacgacg tggtgagcac cctgcctcag
giggigateg gcicaagcia cggcticcag tacagcccig gccagcgcgi ggagticcig
```

```
gtgaacacct ggaagagcaa gaagaacccc atgggcttca gctacgacac acgctgcttc
                                                                      4860
gacagcaccg tgaccgagaa cgacatccgc gtggaggaga gcatctacca gtgctgcgac
                                                                      4920
ctggcccctg aggccaggca ggccatcaag agcctgaccg agcgcctgta catcggaggc
                                                                      4980
cctctgacca acagcaaggg acagaactgc ggatacaggc gctgtagggc ctctggcgtq
                                                                      5040
ctgaccacca gctgtggcaa caccctgacc tgctacctga aggccagcgc tgcctgtcgc
                                                                      5100
gctgccaagc tgcaggactg caccatgctg gtgaacgccg ctggcctggt ggtgatttgt
                                                                      5160
gaaagcgctg gcacccagga agatgctgcc agcctgcgcg tgttcaccga ggccatgacc
                                                                      5220
aggtactctg cccctcccgg agacccccct cagcccgaat acgacctgga gctgatcacc
                                                                      5280
agctgctcaa gcaacgtgag cgtggctcac gacgccagcg gaaagcgcgt gtactacctg
                                                                      5340
acacgcgatc ccaccaccc tctggctcgc gctgcctggg aaaccgctcg ccatacaccc
                                                                      5400
gtgaacagct ggctgggcaa catcatcatg tacgccccta ccctgtgggc tcgcatgatc
                                                                      5460
ctgatgaccc acttetteag cateetgetg geteaggage agetggagaa ggeeetggae
                                                                      5520
tgccagattt acggcgcttg ctacagcatc gagcccctgg acctgccca aatcatcgag
                                                                      5580
egectgeacg geetgtetge etteageetg cacagetaca geeetggega aattaatege
                                                                      5640
gtggccagct gtctgcgcaa actgggcgtg cctcctctgc gcgtgtggag gcatagggct
                                                                      5700
aggagcgtga gggctaggct gctgagccag ggaggcaggg ccgctacctg tggaaagtac
                                                                      5760
ctgttcaact gggccgtgaa gaccaagctg aagctgaccc ctatccctgc cgctagccag
                                                                      5820
ctggacctga gcggatggtt cgtggctggc tacagcggag gcgacatcta ccacagcctg
                                                                      5880
tetegegete gecetegetg gtteatgetg tgcctgetge tgctgagegt gggcgtggge
                                                                      5940
atctacctgc tgcccaaccg ctaaa
                                                                      5965
<210> 11
<211> 5965
<212> DNA
<213> Artificial Sequence
<220>
<223> Chimeric NSsuboptmut
<400> 11
gccaccatgg cccccatcac cgcctacagc cagcagaccc gcggcctgct gggctgcatc
                                                                        60
atcaccagec tgaceggeeg egacaagaac caggtggagg gegaggtgea ggtggtgage
                                                                       120
accgccaccc agagetteet ggccacctge gtgaacggeg tgtgctggac cgtgtaccac
                                                                       180
ggcgccggca gcaagaccct ggccggcccc aagggcccca tcacccagat gtacaccaac
                                                                       240
gtggaccagg acctggtggg ctggcaggcc cccccggcg cccgcagcct gaccccctgc
                                                                       300
acctgcggca gcagcgacct gtacctggtg acccgccacg ccgacgtgat ccccgtgcgc
                                                                       360
egecgeggeg acageegegg cageetgetg ageceeegee eegtgageta eetgaaggge
                                                                       420
agcageggeg geceeetget gtgeeceage ggecaegeeg tgggeatett cegegeegee
                                                                       480
gtgtgcaccc gcggcgtggc caaggccgtg gacttcgtgc ccgtggagag catggagacc
                                                                       540
accatgegea geocegtgtt caccgacaac ageageeece cegeegtgee ceagagette
                                                                       600
caggtggccc acctgcacgc ccccaccggc agcggcaaga gcaccaaggt gcccgccgcc
                                                                       660
tacgccgccc agggctacaa ggtgctggtg ctgaacccca gcgtggccgc caccctgggc
                                                                       720
tteggegeet acatgageaa ggeecaegge ategaeecea acateegeae eggegtgege
                                                                       780
accatcacca coggogococ cgtgacctac agcacctacg gcaagttoot ggccgacggc
                                                                       840
ggctgcagcg gcggcgccta cgacatcatc atctgcgacg agtgccacag caccgacagc
                                                                       900
accaccatec tgggcategg caccgtgetg gaccaggeeg agacegeegg egeeegeetg
                                                                       960
gtggtgctgg ccaccgccac ccccccggc agcgtgaccg tgccccaccc caacatcgag
                                                                      1020
gaggtggccc tgagcaacac cggcgagatc cccttctacg gcaaggccat ccccatcgag
                                                                      1080
gccatccgcg gcggccgcca cctgatcttc tgccacagca agaagaagtg cgacgagctg
                                                                      1140
geogecaage tgageggeet gggcatcaac geogtggeet actacegegg cetggacgtg
                                                                      1200
agegtgatee ceaccategg egacgtggtg gtggtggeea eegacgeeet gatgacegge
                                                                      1260
tacaccggcg acttcgacag cgtgatcgac tgcaacacct gcgtgaccca gaccgtggac
                                                                      1320
ttcagcctgg accccacctt caccatcgag accaccaccg tgccccagga cgccgtgagc
                                                                      1380
egeagecage geogeggeeg caceggeege ggeegeegeg geatetaceg ettegtgace
                                                                      1440
cccggcgagc gccccagcgg catgttcgac agcagcgtgc tgtgcgagtg ctacgacgcc
                                                                      1500
```

```
ggctgcgcct ggtacgagct gacccccgcc gagaccagcg tgcgcctgcg cgcctacctg
                                                                      1560
                                                                      1620
aacacccccg gcctgcccgt gtgccaggac cacctggagt tctgggagag cgtgttcacc
                                                                      1680 ·
ggcctgaccc acatcgacgc ccacttcctg agccagacca agcaggccgg cgacaacttc
                                                                      1740
ccctacctgg tggcctacca ggccaccgtg tgcgcccgcg cccaggcccc cccccccagc
                                                                      1800
tgggaccaga tgtggaagtg cctgatccgc ctgaagccca ccctgcacgg ccccacccc
ctgctgtacc gcctgggcgc cgtgcagaac gaggtgaccc tgacccaccc catcaccaag
                                                                      1860
tacatcatgg cctgcatgag cgccgacctg gaggtggtga ccagcacctg ggtgctggtg
                                                                      1920
ggcggcgtgc tggccgccct ggccgcctac tgcctgacca ccggcagcgt ggtgatcgtg
                                                                      1980
                                                                      2040 .
ggccgcatca tcctgagcgg ccgccccgcc atcgtgcccg accgcgagtt cctgtaccag
                                                                      2100
gagttcgacg agatggagga gtgcgccagc cacctgccct acatcgagca gggcatgcag
ctggccgagc agttcaagca gaaggccctg ggcctgctgc agaccgccac caagcaggcc
                                                                      2160
gaggccgccg cccccgtggt ggagagcaag tggcgcgccc tggagacctt ctgggccaag
                                                                      2220
                                                                      2280.
cacatgtgga acttcatcag cggcatccag tacctggccg gcctgagcac cctgcccggc
                                                                      2340
aaccccgcca tcgccagcct gatggccttc accgccagca tcaccagccc cctgaccacc
                                                                      2400
cagageacce tgctgttcaa catcetggge ggctgggtgg cegeceaget ggccceecee
                                                                      2460
agegeegeea gegeettegt gggegeegge ategeeggeg eegeegtggg cageategge
                                                                      2520
ctgggcaagg tgctggtgga catcetggee ggctaeggeg eeggegtgge eggegeeetg
gtggccttca aggtgatgag cggcgagatg cccagcaccg aggacctggt gaacctgctg
                                                                      2580
                                                                      2640
cccgccatcc tgagccccgg cgccctggtg gtgggcgtgg tgtgcgccgc catcctgcgc
cgccacgtgg gccccggcga gggcgccgtg cagtggatga accgcctgat cgccttcgcc
                                                                      2700
                                                                      2760
ageogoggea accaegtgag ecceacecae taegtgeeeg agagegaege egeegeeege
                                                                      2820
gtgacccaga tcctgagcag cctgaccatc acccagctgc tgaagcgcct gcaccagtgg
atcaacgagg actgcagcac cccctgcagc ggcagctggc tgcgcgacgt gtgggactgg
                                                                      2880
                                                                      2940
atctgcaccg tgctgaccga cttcaagacc tggctgcaga gcaagctgct gccccagctg
                                                                      3000
cccggcgtgc ccttcttcag ctgccagcgc ggctacaagg gcgtgtggcg cggcgacggc
                                                                      3060
atcatgcaga ccacctgccc ctgcggcgcc cagatcaccg gccacgtgaa gaacggcagc
atgcgcatcg tgggccccaa gacctgcagc aacacctggc acggcacctt ccccatcaac
                                                                      3120
gcctacacca ccggcccctg cacccccagc cccgccccca actacagccg cgccctgtgg
                                                                      3180
                                                                      3240
cgcgtggccg ccgaggagta cgtggaggtg acccgcgtgg gcgacttcca ctacgtgacc
ggcatgacca ccgacaacgt gaagtgcccc tgccaggtgc ccgcccccga gttcttcacc
                                                                      3300
                                                                      3360
gaggtggaeg gegtgegeet geacegetae geeceegeet geegeeceet getgegegag
                                                                      3420
gaggtgacct tecaggtggg cetgaaccag tacetggtgg geagecaget geeetgegag .
cccgagcccg acgtggccgt gctgaccagc atgctgaccg accccagcca catcaccgcc
                                                                      3480
                                                                      3540
gagaccgcca agcgccgcct ggcccgcggc agcccccca gcctggccag cagcagcgcc
                                                                      3600
agccagetga gegeeeccag cetgaaggee acetgeacca eccaecaegt gageeecgae
gccgacctga tcgaggccaa cctgctgtgg cgccaggaga tgggcggcaa catcaccegc
                                                                      3660
gtggagagcg agaacaaggt ggtggtgctg gacagcttcg accccctgcg cgccgaggag
                                                                      3720
                                                                      3780
gacgagegeg aggtgagegt geeegeegag atcetgegea agageaagaa gtteeeeget
                                                                      3840
gccatgccca tctgggctag acctgattac aaccctcccc tgctggagag ctggaaggac
cctgattacg tgcctccagt ggtgcatggc tgtcctctgc ctcccattaa agcccctcct
                                                                      3900
                                                                      3960
attccacctc ctaggcgcaa aaggaccgtg gtgctgacag aaagcagcgt gagctctgct
                                                                      4020
ctggccgaac tggccaccaa gacctttggc agcagcgaga gctctgccgt ggacagcgga
acagecaceg etetgeetga ecaggecage gaegaeggeg ataagggeag egatgtggag
                                                                      4080
                                                                      4140
agetatagea geatgeetee cetggaagge gaacetggeg atccegatet gagegatgge
                                                                      4200
agetggagca cegtgagega agaggecage gaggaegtgg tgtgttgeag catgagetae
acctggacag gegetetgat cacaccetge getgeegagg agageaaget geccateaac
                                                                      4260
gecetgagea acageetget gaggeaceae aacatggtgt acgeeaceae cageaggtet
                                                                      4320
                                                                      4380
gccggactga ggcagaagaa ggtgaccttc gaccgcctgc aggtgctgga cgaccactac
                                                                      4440
cgcgatgtgc tgaaggagat gaaggccaag gccagcaccg tgaaggccaa gctgctgagc
gtggaggagg cctgcaagct gaccccccc cacagcgcca agagcaagtt cggctacggc
                                                                      4500
                                                                      4560
gccaaggacg tgcgcaacct gagcagcaag gccgtgaacc acatccacag cgtgtggaag
                                                                      4620
gacctgctgg aggacaccgt gacccccatc gacaccacca tcatggccaa gaacgaggtg
                                                                      4680
ttctgcgtgc agcccgagaa gggcggccgc aagcccgccc gcctgatcgt gttccccgac
                                                                      4740
ctgggcgtgc gcgtgtgcga gaagatggcc ctgtacgacg tggtgagcac cctgcccag
                                                                      4800
gtggtgatgg gcagcagcta cggcttccag tacagccccg gccagcgcgt ggagttcctg
```

```
gtgaacacet ggaagagcaa gaagaaceee atgggettea getacgacae eegetgette
                                                                       4860
gacagcaccg tgaccgagaa cgacatccgc gtggaggaga gcatctacca gtgctgcgac
                                                                       4920
ctggcccccg aggcccgcca ggccatcaag agcctgaccg agcgcctgta catcggcggc
                                                                       4980
cccctgacca acagcaaggg ccagaactgc ggctaccgcc gctgccgcgc cagcggcgtg
                                                                       5040
ctgaccacca getgeggeaa caccetgace tgetacetga aggecagege egectgeege
                                                                       5100
geogecaage tgeaggactg caccatgetg gtgaacgeeg ceggeetggt ggtgatetge
                                                                      5160
gagagegeeg geacceagga ggaegeegee ageetgegeg tgtteacega ggeeatgaee
                                                                       5220
egetacageg ecceecegg egacecece cagecegagt acgaeetgga getgateace
                                                                       5280
agetgeagea geaacgtgag egtggeeeae gaegeeageg geaagegegt gtactacetg
                                                                       5340
accegegace ceaceacece cetggecege geegeetggg agacegeeeg ceacaceeee
                                                                       5400
gtgaacaget ggetgggeaa catcatcatg tacgeceeca ecetgtggge eegcatgate
                                                                      5460
ctgatgaccc acttettcag catcetgetg geccaggage agetggagaa ggecetggae
                                                                      5520
tgccagatct acggcgcctg ctacagcatc gagcccctgg acctgcccca gatcatcgag
                                                                      5580
egectgeacg gectgagege cttcagectg cacagetaca geceeggega gatcaacege
                                                                      5640
gtggccagct gcctgcgcaa gctgggcgtg cccccctgc gcgtgtggcg ccaccgcgcc
                                                                      5700
egeagegtge gegeeegeet getgageeag ggeggeegeg eegeeaeetg eggeaagtae
                                                                      5760
ctgttcaact gggccgtgaa gaccaagetg aagetgaeee ccateeeege egecageeag
                                                                      5820
ctggacctga gcggctggtt cgtggccggc tacagcggcg gcgacatcta ccacagcctg
                                                                      5880
ageogegee geocegetg gttcatgetg tgeetgetge tgetgagegt gggegtggge
                                                                      5940
atctacctgc tgcccaaccg ctaaa
                                                                      5965
<210> 12
<211> 10
<212> RNA
<213> Artificial Sequence
<220>
<223> Ribosome binding site
<400> 12
gccaccaugg
                                                                        10
<210> 13
<211> 49
<212> RNA
<213> Artificial Sequence
<220>
<223> Synthetic polyadenylation signal
<400> 13
aauaaaagau cuuuauuuuc auuagaucug uguguugguu uuuugugug
                                                                        49
<210> 14
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Additional nucleotides present in pVIJns-NS
<400> 14
tctagagcgt ttaaaccctt aattaagg
                                                                        28
<210> 15
```

WO 03/031588 PCT/US02/32512

<211> 15	•	
<212> DNA		٠.
<213> Artificial Sequence		
<220>		
<223> Additional nucleotides present in pVlJns-NSOPTmut		
<400> 15		•
tttaaatgtt taaac		15
<210> 16		
<211> 24	•	
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 16		
tcgaatcgat acgcgaacct acgc		24
<210> 17		
<211> .37	· ! .	
<212> DNA	***	
<213> Artificial Sequence	*	
<220>	:	
<223> Oligonucleotide primer		-
<400> 17	-0.	•
tegacgtgtc gacttcgaag cgcacaccaa aaacgtc		37

THIS PAGE BLANK (USPTO)

## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT

#### (19) World Intellectual Property Organization International Bureau



#### (43) International Publication Date 17 April 2003 (17.04.2003)

## (10) International Publication Number WO 03/031588 A3

C12N 15/40, (51) International Patent Classification7: 15/51, 15/85, 15/86, 15/861, A61K 48/00

(21) International Application Number: PCT/US02/32512

(22) International Filing Date: 10 October 2002 (10.10.2002)

(25) Filing Language:

English

(26) Publication Language:

**English** 

(30) Priority Data: 60/328,655 60/363,774

11 October 2001 (11.10.2001) 13 March 2002 (13.03.2002)

- (71) Applicants (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). ISTITUTO DI RICERCHE DI BIOLOGIA MOLECOLARE P. ANGELETTI, S.P.A. [IT/IT]; VIA PONTINA KM. 30.600, I-00040 POMEZIA M).
- (72) Inventors: and
- (75) Inventors/Applicants (for US only): EMINI, Emilio, A. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). KASLOW, David, C. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). BETT, Andrew, J. [CA/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). SHIVER, John, W. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). NICOSIA, Alfredo [IT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT). LAHM, Armin [DE/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (II). LUZZAGO, Alessandra [IT/II]; Via Pontina KM. 30.600, I-00040 Pomezia (IT). CORTESE, Riccardo

[TT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT). COLLOCA, Stefano [IT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT).

- (74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DR, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GB, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DB, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments . .
- (88) Date of publication of the international search report: 30 October 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HEPATITIS C VIRUS VACCINE

(57) Abstract: The present invention features Ad6 vectors and a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing an inactive NS5B RNA-dependent RNA polymerase region. The nucleic acid is particularly useful as a component of an adenovector or DNA plasmid vaccine providing a broad range of antigens for generating an HCV specific cell mediated: immune (CMI) response against HCV.



## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/32512

US CL According to	: C12N 15/40, 15/51, 15/85, 15/86, 15/861; : 514/44; 424/93.2; 435/320.1, 455, 456 o International Patent Classification (IPC) or to bo		
D. FIEA	NO SEARCHED		
Minimum de U.S. : 5	ocumentation searched (classification system follow 514/44; 424/93.2; 435/320.1, 455, 456	ved by classification symbols)	
Documentat	ion searched other than minimum documentation to	the extent that such documents are include	led in the fields searche
Electronic d Please See C	ata base consulted during the international search (sontinuation Sheet	name of data base and, where practicable,	search terms used)
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where	appropriate of the relevant passages	Delement 1 1 1
х	US 6,127,116 A (RICE et al.) 03 October 2000 (	03.10.2000), column 45 lines 12.57	Relevant to claim N
<b>, A</b>	WO 01/30812 A2 (CHIRON CORPORATION) (		1, 2
~ A	WO 97/47358 A1 (MERCK & CO., INC.) 18 De		1-54
	documents are listed in the continuation of Box C.		
'A" document	ectal categories of cited documents: defining the general state of the art which is not considered to be ar relevance	"I" later document published after the inte date and not in conflict with the appli- principle or theory underlying the inve	CELION DEST CHANT to renderate and a
	dication or patent published on or after the international filing date	"X" document of particular relevance; the considered movel or caunot be conside when the document is taken alone	claimed invention cannot be red to involve an inventive ste
specifico)	which may throw doubts on priority claim(s) or which is cited to e publication date of another citation or other special reason (as	"Y"  document of particular relevance; the considered to involve an inventive step combined with one or more other such	
	referring to an oral disclosure, use, exhibition or other means urblished prior to the international Ming date but later than the 20 claimed	being obvious to a person skilled in the  document member of the same patent	o act
ate of the ac	tual completion of the international search	Date of mailing of the international sea	
9 July 2003	09.07.2003) ling address of the ISA/US	0 % SEF 2003	
Mail Com P.O.	uing address of the ISA/US Stop PCT, Attn: ISA/US missioner for Patents Box 1450 mdia, Virginia 22313-1450	Scott D. Friebe D. Robert Telephone No. (703) 308-0196	to for

## INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

International application No.

PCT/US02/32512

Box I Obse	rvations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)	
This internati	ional report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	•
1.	Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
2.	Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	<b>D</b>
3.	Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule	
	servations where unity of invention is lacking (Continuation of Item 2 of first sheet)	
ID H XOA	Perannip where mind it manimum is incring leaguring in views or mes smeet	
	tional Searching Authority found multiple inventions in this international application, as follows: Continuation Sheet	, vî î
1.	As all required additional search fees were timely paid by the applicant, this international search report covers al searchable claims.	1
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invit payment of any additional fee.	te .
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	• :
4; 🗵	No required additional search fees were timely paid by the applicant. Consequently, this international search relia restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-54	port
Remark on	Protest The additional search fees were accompanied by the applicant's protest.	
	No protest accompanied the payment of additional search fees.	
· .		

## INTERNATIONAL SEARCH REPORT

PCT/US02/32512

## BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be

Group I, claim(s) 1-54, drawn to a nucleic acid encoding a HCV polyprotein.

Group II, claim(s) 55-59, drawn to a chimeric adenovirus vector comprising sequence derived from human adenovirus serotypes 5 and

The inventions listed as Groups I and II do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The technical feature of invention I is a mucleic acid encoding a polyprotein derived from an HCV polyprotein, whereas the technical feature of invention II is a chimeric adenoviral vector comprising a heterologous sequence. These two features are not related. Invention I does not require vector of invention II, nor does is the vector of invention II required to contain the polymcleotides of invention I.

Continuation of B. FIELDS SEARCHED Item 3:

MEDLINE, EMBASE, CAPLUS, BIOSIS, SCISEARCH, USPT, PGPB, DERWENT, GENBANK, GENESBQ search terms: HCV, hepatitis C virus, vaccine, NS5B, NS5B near inactiv? or non-functional, SEQ ID NO: 1, SEQ ID NO: 2

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items	checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	· .
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
$\square$ color or black and white photographs	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUAL	ITY
☐ OTHER:	

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)