Feature Scaling 果設沒有做normalization,則有些input較大所影

對每一個dimension做一次normalization

 如果說沒有做normalization,則有些input較大所影響到的weight具gradient較大 造成loss surface不平均,這樣optimizer很難做optimization,做完normalization後每一個維度所影響的weight才能平均

In general, gradient descent converges much faster with feature scaling than without it.

How about Hidden Layer?

但是如果每一層都算一次normalization似乎不切實際,運算太大

Batch

$$x^1$$
 + W^1 + z^1 + a^1 + a^2 + w^2

 x^2 + w^1 + z^2 + a^2 + a^3 + w^2

Batch 加快運算的速度 z^1 z^2 z^3 = w^1 x^1 x^2 x^3

$$\tilde{z}^i = \frac{z^i - \mu}{\sigma}$$

$$\tilde{z}^i = \frac{z^i - \mu}{\sigma}$$

$$\hat{z}^i = \gamma \odot \tilde{z}^i + \beta$$

At testing stage:

We do not have **batch** at testing stage.

Ideal solution: 將整個training set算mean/variance並對testing data norm,但實作會有問題(mem不夠之類的)

Computing μ and σ using the whole training dataset.

但會造成一開始的mean跟最後幾個epoch的mean差太多,造成noise Practical solution: 可能的做法是去掉前幾個跟最後幾個epoch的mean/variace,取中間的

Computing the moving average of μ and σ of the batches during training.

Batch normalization - Benefit

- BN reduces training times, and make very deep net trainable.
 - Because of less Covariate Shift, we can use larger learning rates.
 - Less exploding/vanishing gradients 如果對activation的input就先做batch norm,可以對抗gradient vanishing
 - Especially effective for sigmoid, tanh, etc.

• Learning is less affected by initialization. network對於weight的initial沒有那麼敏

BN reduces the demand for regularization.

有一些regularization的功能,可以對抗overfitting,但是可以採用drop out即可

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of

training steps. CNN: instance/group normalization

GAN: spectrum normalization