

Is our QSAR modeling of growth inhibition any good?

Egon Willighagen 2011-05-30

Goal: predict growth inhibition from molecular structures

Data and Goal

Compounds

- 230 drugs → molecular descriptors
 - logP, number of acidic groups, etc

Activities

- log GI₅₀ values (between -7 and -2), where GI₅₀ is in molar
 - GI₅₀ is the dose where the growth is inhibited 50%
- Three cell lines: HL60, PC3, MCF7
- Understand why some molecules have higher GI₅₀ values

Gl₅₀ cannot be predicted from molecular structures

(Non-)linear regression methods cannot predict the GI₅₀ values from the molecular structures using ~290 QSAR descriptors, like logP, number of hydrogen donors, etc.

The "best" descriptors...

Skeletal variation

Number of double bonded carbons

Even the best QSAR descriptors show little correlation (0.38 and 0.4). and they do not complement.

What about published GI₅₀ QSAR models?

ChEMBL database

- → > 50000 GI₅₀ values from literature (GI₅₀, log GI₅₀, ...)
- → Largest studies have < 120 structures
- → 7 largest study of one paper, with highly congeneric kahalalide F compounds (see screenshot)
- → Next study has only 78 structures

structures.sdf 🔀 Units GI50 2D-structure 1160 7160 9700

(No specs on how GI values are counted.)

Jiménez, J.C., et al. J. Med. Chem. 2008. 51(16):4920-4931.

Hierarchical clustering of compounds

Egon Willighagen

Conclusions

- Our data is more complex than QSAR studies for GI50 in literature
 - → Clusters too diverse, too many modes of action(?)
 - → Statistical method cannot find any significant patterns
 - → Correlation found is hard to interpret (at best)
- Bad for our paper? No.
 - → For data sets with high diversity we propose gene expression as alternative