Методы математического анализа, теоретические вопросы и задания к экзамену (лектор Шатина А.В.) 3 семестр

20 января 2017 г.

- 1. Числовой ряд, его сходимость. Доказать, что ряды а) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$,
- б) $\sum_{n=1}^{\infty}q^{n-1}, |q|<1$ сходятся и найти их суммы. Доказать, что гармонический ряд $\sum_{n=1}^{\infty}\frac{1}{n}$ расходится.
- 2. Определение n-го остатка числового ряда. Доказать, что, если ряд сходится, то любой его остаток сходится, а если какой-либо остаток ряда расходится, то и сам ряд расходится.
- 3. Необходимый признак сходимости числового ряда. Доказать расходимость рядов а) $\sum_{n=1}^{\infty} (-1)^{n-1}$, б) $\sum_{n=1}^{\infty} \sqrt{\frac{3n+4}{5n+1}}$, в) $\sum_{n=1}^{\infty} (\frac{2n+1}{2n-1})^n$.
- 4. Критерий Коши сходимости числового ряда. Отрицание критерия Коши. Используя критерий Коши, доказать сходимость ряда $\sum_{n=1}^{\infty} \frac{cosn}{n^2}$. Доказать расходимость гармонического ряда, используя отрицания критерия Коши.
- 5. Критерий сходимости рядов с неотрицательными членами.
- 6. Признак сравнения рядов с неотрицательными членами. Исследовать на сходимость ряды: $\sum_{n=1}^{\infty} \frac{\sin^2(n\alpha)}{2^n}$, $\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$.
- 7. Признак сравнения в предельной форме рядов с положительными членами. Исследовать на сходимость ряды: $\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$, $\sum_{n=1}^{\infty} \ln(1+\frac{2}{n\sqrt{n}})$, $\sum_{n=1}^{\infty} (1-\cos\frac{\pi}{n})$.
- 8. Признак Д'Аламбера сходимости рядов с положительными членами. Исследовать на сходимость ряды: $\sum_{n=1}^{\infty} \frac{(2n-1)^2}{n!}$, $\sum_{n=1}^{\infty} \frac{3^n \, n!}{n^n}$.
- 9. Признак Коши сходимости рядов с положительными членами. Исследовать на сходимость ряды: $\sum_{n=1}^{\infty} 2^n (1 \frac{1}{n})^{n^2}$, $\sum_{n=1}^{\infty} (\frac{n^2+1}{3n^2+1})^n$.
- 10. Интегральный признак Коши сходимости рядов с положительными членами. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$.

- 11. Признак Раабе (б/д). Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!}$.
- 12. Признак Лейбница сходимости знакочередующегося ряда. Оценка его остатка.
- 13. Преобразование Абеля. Признак Дирихле. Доказать сходимость ряда $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$.
- 14. Преобразование Абеля. Признак Абеля. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{\sin n\alpha \cos(\frac{\pi}{n})}{\ln \ln n}, \alpha \neq \pi k, k \in Z.$
- 15. Абсолютная и условная сходимость числового ряда. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{n}, x \in (0;\pi)$ не сходится абсолютно.
- 16. Теорема о перестановке членов абсолютно сходящегося ряда.
- 17. Теорема о сумме и произведении абсолютно сходящегося ряда.
- 18. Теорема Римана о перестановке членов условно сходящегося ряда.
- 19. Функциональный ряд, область его сходимости. Найти области сходимости и абсолютной сходимости рядов: $\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$, $\sum_{n=1}^{\infty} \frac{\ln^n x}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n} (\frac{|x|}{x})^n$.
- 20. Равномерная сходимость функционального ряда. Доказать, что ряд $\sum_{n=1}^{\infty} (x^{n-1} x^n)$ сходится равномерно на отрезке [-r; r], 0 < r < 1, и сходится неравномерно на промежутке (-1; 1].

Доказать, что ряд $\sum_{n=1}^{\infty} \frac{1}{(1+nx)^2}$ сходится неравномерно на промежутке $(0;\infty)$.

Доказать, что ряд $\sum_{n=1}^{\infty} (x+4)^{4n}$ сходится неравномерно на интервале (-5;3).

21. Признак Вейрештрасса равномерной сходимости функциональ-

ного ряда. Пользуясь признаком Вейерштрасса, доказать равномерную сходимость рядов на указанных множествах: а) $\sum_{n=1}^{\infty} \frac{2nx}{1+n^5x^2}$, $E = (-\infty; +\infty)$, б) $\sum_{n=1}^{\infty} x^2 e^{-nx}$, $E = [0; +\infty)$.

- 22. Непрерывность суммы функционального ряда. Доказать, что сумма ряда $\sum_{n=1}^{\infty} x^2 e^{-nx}$ непрерывна на промежутке $E=[0;+\infty)$ и найти эту сумму.
- 23. Теорема о почленном интегрировании функциональных рядов. Найти сумму ряда $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, x \in (-1;1).$
- 24. Теорема о почленном дифференцировании функциональных рядов. Найти сумму ряда $\sum_{n=1}^{\infty} \frac{x^n}{n}, x \in (-1;1)$.
- 25. Степенной ряд. Теорема Абеля. Радиус сходимости, интервал сходимости степенного ряда. Поведение ряда на концах интервала сходимости.
- 26. Равномерная сходимость степенного ряда. Непрерывность суммы степенного ряда.
- 27. Теорема о почленном интегрировании и дифференцировании степенных рядов. Бесконечная гладкость суммы степенного ряда в интервале сходимости.
- 28. Необходимое условие разложимости функции в степенной ряд. Ряд Тейлора.
- 29. Критерий разложимости функции в степенной ряд.
- 30. Достаточные условие разложимости функции в степенной ряд.
- 31. Ряды Тейлора для основных элементарных функций: e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^{\alpha}$, $\arctan x$.

- 32. Тригонометрический ряд. Ортогональность тригонометрической системы функций $1,\cos x,\sin x,\cos 2x,\sin 2x,...,\cos nx,\sin nx,...$ на отрезке $[-\pi;\pi]$.
- 33. Теорема о коэффициентах равномерно сходящегося тригонометрического ряда. Тригонометрический ряд Фурье.
- 34. Достаточные условия разложимости функции в ряд Фурье. Разложение в ряд Фурье четных и нечетных функций.
- 35. Ряд Фурье для функции с произвольным периодом.
- 36. Минимальное свойство коэффициентов Фурье. Неравенство Бесселя. Равенство Парсеваля.
- 37. Метод Фурье решения краевых задач для уравнения свободных колебаний струны.