Total No	o. of Questions :8]	SEAT No.:	
P1478	3	[Total	No. of Pages :2
	[5460] 154		
	T.E, (E & Tc)		
I	ELECTROMAGNETICS AND TRANS	MISSION	LINES
	(2012 Course) (Semester - I) (End Sei	mester) (304	184)
Time: 2	½ Hours]	1	[Max. Marks :70
Instructi	ons to the candidates:		
1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.	200	
2)	Neat diagrams must be drawn wherever necessary.		
3)	Figures to the right side indicate full marks.		
4)	Use of Calculator is allowed.		
<i>5</i>)	Assume Suitable data if necessary.		
	8. S.		
Q1) a)	Derive the expression of electric field intensity \vec{E} due to charged circular		
2 / 4/	ring.		[8]
b)	A linear homogeneous, isotropic dielectri	c material h	as $\varepsilon_r = 3.6$ and
	covering the space between $z = 0$ and $z = 1$.		2 z volts in the
	material, find		[6]
	i) Ē		
	ii) \vec{P}		
	<u> </u>		20
a)	State any two properties of curl and expla	in physical s	ignificance of
c)	curl.	ili pilysicai s	[6]
	OR	23	
		00,00,	
Q2) a)	Obtain \overrightarrow{D} due to point charge Q placed at origin. Hence obtain relation		
	between \overrightarrow{D} and \overrightarrow{E} .	30	[8]
b)	Derive the boundary conditions between two	perfect diel	ectrics. [6]
c)	Derive \vec{H} due to infinitely long straight cond	ductor.	[6]

P.T.O.

Q3) a) What is poynting vector? What is its significance? Derive the equation for average poynting vector. [8]
 b) In a material for which σ = 5.0 S/m and ε_r=1, the electric field intensity is E = 250 sin 10¹⁰t V/m. Find the conduction and displacement current densities and frequency at which both have equal magnitude. [8]

OR

- **Q4)** a) Write and explain Maxwell's equations for static and time varying field.
 - b) What is uniform plane wave? Derive an expression for Helmholtz wave equation. [8]
- Q5) a) Derive the relationship between primary and secondary constant. [8]
 b) For an open wire overhead line β= 0.04 rad/km. Find the wavelength and velocity at frequency of 1600 Hz. Hence calculate the time taken by the wave to travel 90 km.
 [8]

 $\cap R$

- Q6) a) Derive the expression for characteristics impedance and propagation constant in terms of primary constant of transmission line.[8]
 - b) If attenuation constant is 18×10^{13} N/m. Velocity of propagation is 1.8×10^8 m/s and characteristics impedance is 60Ω . Find out the primary line constant of such distortionless line at frequency of 100 MHz. [8]
- Q7) a) Define standing wave ratio. Derive relation between standing wave ratio and magnitude of reflection coefficient.[8]
 - b) Derive the expression for input impedance for eight wave line and quarter wave line. [10]

OR

- **Q8)** a) What do you mean by single stub matching? Derive the equation of single stub along the line. [8]
 - b) A transmission line of 100 m long is terminated in load of $(100 j\ 200)$ Ω . Determine the line impedance at 25 m from the load end at a frequency of 10 MHz. Assume line impedance $Z_0 = 100\ \Omega$. Determine the input impedance and admittance using smith chart. [10]