Elliptic Curve Cryptography

Justin Findlay jfindlay@gmail.com

2016 January 6

Elliptic Curves

Weierstrass equation¹:

$$y^2 = x^3 + ax + b$$

where

$$\forall a,b \in \mathbb{R}$$
 and $\Delta = -16(4a^3 + 27b^3) \neq 0$

$$1$$

$$y^2 = x^3 - x$$

$$y^2 = x^3 - x + 1$$

¹https://en.wikipedia.org/wiki/Elliptic_curve ⟨♂ > ⟨ ≧ > ⟨ ≧ > ⟨ ≧ > ⟩ ⟨ ?

Utility of Elliptic Curves

Elliptic curves are related to:

▶ Riemann ζ function²

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-1}$$

$$= \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

$$= \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{x^{s-1}}{e^x - 1} dx$$

²And consequently the Riemann hypothesis: https://en.wikipedia.org/wiki/Riemann_hypothesis#Consequences_of_the_Riemann_hypothesis =

Utility of Elliptic Curves

Elliptic curves are related to:

Fermat's last theorem

$$\forall x, y, z \in \mathbb{Z}, \quad \exists n \in \mathbb{Z} \quad \text{such that} \quad x^n + y^n = z^n$$

- Birch and Swinnerton-Dyer conjecture
- ► Langlands Program: Galois groups ↔ automorphic forms, representation theory, *etc*.
- Galois Theory
- ▶ Lie Theory
- etc.

Groups

A group is a 2-tuple consisting of a set G and an operation * having a list of properties.

Consider the set of integers and the addition operation, $(\mathbb{Z}, +)$. For any $a, b, c \in \mathbb{Z}$:

- ▶ Closure: $a + b \in \mathbb{Z}$
- Associativity: (a + b) + c = a + (b + c)
- ▶ Identity: $\exists \ 0 \in \mathbb{Z}$ such that a + 0 = a
- ▶ Inverse: $\exists -a \in \mathbb{Z}$ such that a + (-a) = 0
- ▶ (Commutativity: a + b = b + a, only for abelian groups)

Fields

A field is a 3-tuple consisting of a set G and two operations $\dagger, *$ having a list of properties.

Consider the set of rational numbers and the addition and multiplication operations, $(\mathbb{Q}, +, \times)$. For any $a, b, c \in \mathbb{Q}$:

- ▶ the 2-tuple $(\mathbb{Q}, +)$ is an abelian group
- ▶ the 2-tuple ($\mathbb{Q} \setminus \{0\}, \times$) is an abelian group
- ▶ Distributivity: $a \times (b + c) = a \times b + a \times c$

Vector Spaces

A vector space is a 3-tuple of a cartesian product of identical sets and two operations.

Consider the three copies of the set of integers $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^3$, vector addition and scalar multiplication, $(\mathbb{Z}^3,+,\cdot)$. For any $u,v,w\in\mathbb{Z}^3$ and $a,b\in\mathbb{Z}$:

- ▶ the 2-tuple $(\mathbb{Z}^3,+)$ is a group
- ► Compatibility: $a \cdot (b \cdot \mathbf{v}) = (ab) \cdot \mathbf{v}$
- ▶ Scalar Identity: $1 \cdot \mathbf{v} = \mathbf{v}$
- ▶ Field Distributivity: $(a + b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$
- ▶ Vector Distributivity: $a \cdot (\mathbf{v} + \mathbf{u}) = a \cdot \mathbf{v} + a \cdot \mathbf{u}$

Modular Arithmetic and Finite Fields

A finite group or a finite field is a group or a field whose set is finite.

Examples:

$$7 + 8 = 15 \equiv 2 \mod 13$$

 $10 \times 10 = 20 \equiv 7 \mod 13$

Projective Plane

The projective plane (the set $\mathbb{R}^2 + \{P\}$, where P is the point at infinity):

- ▶ \forall points $a, b \in \mathbb{P}$, \exists exactly one line $L \subset \mathbb{P}$ such that $a, b \in L$
- ▶ \forall lines $K, L \in \mathbb{P}$, \exists exactly one point $a \in \mathbb{P}$ such that $a \in L$ and $a \in K$
- ▶ $\forall a, b, c, d \in \mathbb{P}$, \exists no line $L \subset \mathbb{P}$ such that more than two points $\in L$

Projective Plane

The projective plane is needed to do algebra over the points on an elliptic curve. The point at infinity serves as the identity element.

Discrete Logarithm

► The discrete logarithm⁵:

$$n^k \mod p$$
 $k, n, p \in \mathbb{Z}$

► The discrete logarithm problem:

$$n^k \mod p = N \equiv m$$

Is there a polynomial time algorithm that can find k by knowing N? Whereas finding N by knowing k is easy.

• (n is known as a generator of the group \mathbb{Z}_p)

⁵Also see:

Hashing

A hash is a function that maps strings of bytes of arbitrary length into a set of strings of bytes that have relatively short and identical lengths.

⁶https://commons.wikimedia.org/wiki/File:

Symmetric Keys

⁷http://fisher.osu.edu/~muhanna.1/pdf/crypto.pdf > () > () > () > ()

Asymmetric Keys

⁸http://fisher.osu.edu/~muhanna.1/pdf/crypto.pdf > < E > < E > < E > < C

Signing

Libraries

- NaCl
 - ► NaCl: http://nacl.cr.yp.to/
 - tweetNaCl: http://tweetnacl.cr.yp.to/
 - ▶ libsodium: https://github.com/jedisct1/libsodium
- libnacl
 - home: https://github.com/saltstack/libnacl
 - docs: https://libnacl.readthedocs.org/en/latest/
- PyNaCl
 - home: https://github.com/pyca/pynacl
 - docs: https://pynacl.readthedocs.org/en/latest/
- pure_pynacl: https://github.com/jfindlay/pure_pynacl