(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-352783

(43)公開日 平成4年(1992)12月7日

(51) Int.Cl. ⁵ C 0 7 D 407/06	識別記号	庁内整理番号 8829-4C	FI	技術表示箇所
A 6 1 K 31/335	ADU	7252-4C		
C12P 17/08		2104-4B		
// (C 0 7 D 407/06				
303: 00		7822-4C		
			審査請求 未請求	対 請求項の数1(全 6 頁) 最終頁に続く
(21)出願番号	特願平3-223760		(71)出願人	000002819
				大正製薬株式会社
(22)出願日	(22)出願日 平成3年(1991)5月27日			東京都豊島区高田3丁目24番1号
			(72)発明者	溝上 一敏
				東京都豊島区高田3丁目24番1号 大正製
				薬株式会社内
			(72)発明者	岡崎 忠靖
				東京都豊島区高田3丁目24番1号 大正製
				薬株式会社内
			(72)発明者	山岸 三千男
				東京都豊島区高田3丁目24番1号 大正製
				薬株式会社内
			(74)代理人	弁理士 北川 富造
				最終頁に続く

(54) 【発明の名称】 12員環マクロライド系化合物

(57)【要約】

【目的】 抗腫瘍作用を有する新規な化合物を提供す

る。

【構成】 式

で表される化合物。

【特許請求の範囲】

*【化1】

で表される化合物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、抗腫瘍作用を有する新 規な12員環マクロライド系化合物に関する。

[0002]

【従来の技術】本発明の化合物と構造類似で同様の作用 を持つ化合物は知られていない。

[0003]

【発明が解決しようとする課題】本発明の目的は、抗腫※

[0004]

【課題を解決するための手段】本発明者らは、制癌活性 を有する新規物質を土壌分離菌の中から得るべく探索研 究を重ねた結果、本発明者らの見出した特定の微生物 が、癌培養細胞に対して増殖抑制作用を有する新規な生 理活性物質を生産することを見出し本発明を完成するに 至った。本発明は、

10※瘍作用を有する新規な化合物を提供することにある。

2

[0005]

【化2】

【0006】で表される化合物(以下、これをFD-8 95と称する。) である。FD-895を生産する菌株 は、本発明者らが、沖縄県西表島で採取した土壌より新 たに分離した菌株であり、微生物の名称「strept 30 omyces·hygroscopicus A-95 61」及び微生物寄託番号「微工研菌寄第12223号 (FERM P-12223)」として、工業技術院微 生物工業技術研究所に寄託されている。この菌学的性状 を以下に示す。

① 形態

本菌株の栄養菌糸は合成寒天培地及び天然寒天培地にお いてよく発達し、不規則に分枝する。また隔壁は認めら れない。胞子はスターチ・無機塩寒天培地およびオート

ミール寒天培地などで栄養菌糸より伸長した気菌糸の先 端に良好に形成される。顕微鏡で観察すると、胞子形成 菌糸の分岐方法は単純分岐で、胞子は通常気菌糸の先端 に螺旋状に形成される。胞子は10個以上連鎖し、表面 は瘤状である。胞子の形成は、短円筒形でその大きさ は、1.0~1.2 μ m×0.8~0.9 μ mである。 菌核、胞子嚢、鞭毛胞子は観察されない。

② 培地上での生育状態

各種培地上で28℃、14日間培養した時の肉眼による 観察結果を表1に示す。

[0007]

【表1】

培地	培地上の			糸	可溶性色素
	生育状態			色調	刊冶在C来
シュウクロー ス・硝酸塩寒 天	良好	クリーム色	形成せず	_	生産せず
グルコース・ アスパラギン 寒天	中程度	クリーム色	形成せず	_	生産せず
グリセリン・ アスパラギン 窓天	良好	淡褐色	中程度	灰白色	生産せず
スターチ・無 機塩寒天米	良好	クリーム色	中程度	灰白色	生産せず
チロシン寒天	良好	褐色	わずかに 形成	灰白色	生産せず
栄養寒天	中程度	クリーム色	形成せず	1	生産せず
イースト・麦 芽エキス寒天	中程度	クリーム色	中程度	灰白色	生産せず
オートミール 寒天桜	艮 好	艮 好	良 好	灰白色	生産せず
ペプトン・イ ースト鉄寒天	良好	クリーム色	形成せず	-	生産せず

※:ハイグロスコピックな性状を示す。

[0008] ③ 生理的性質

1) 生育温度範囲

イースト・麦芽エキス培地で24.5~30℃の範囲で 良好に生育する。15℃以下、38℃以上の温度範囲で は生育しない。

- 2) 生化学的性質
- a) 好気性、嫌気性の区別: 好気性
- b) ゼラチンの液化;陽性
- c) 脱脂乳の凝固;陰性
- d) 脱脂乳のペプトン化; 陽性
- e) スターチの加水分解: 陽性
- f) メラニン様色素の生成;陰性
- g)細胞壁の型; I型
- h) メナキノン組成; MK-9 (H6, H8)
- 3) 炭素源の利用

(プリドハム・ゴドリーブ寒天培地上)

利用する:L-アラピノース、D-グルコース、D-キ シロース、D-フラクトース、シュクロース、イノシト 40 ール、ラムノース、ラフィノース、D-マンニット

【0009】以上の性状から本菌株が放線菌中、ストレ プトミセス属に属することが明らかとなったので、上記 諸性状をI.S.P.「ジ・インターナショナル・スト レプトミセス・プロジェクト」、パージー著「マニュア ル・オブ・シスマテック・パクテリオロジー」第4巻 (1989年) 及びワックスマン著「ジ・アクチノミセ テス」第2巻(1961年)に報告されている多くの既 知菌株と比較した結果、本菌株は、ストレプトミセス・ ハイグロスコピカス (Streptomyceshyg 50 理論値:566.3455 (Cal Hao Oa として計

roscopicus)に最も近い性状を示していた。 以上の結果より本菌株はストレプトミセス・ハイグロス コピカスと種を同じくするものと判断し、本菌株をスト レプトミセス・ハイグロスコピカス A-9561と命 名した。この培養液中に生産されたFD-895を単離 するには、発酵生産物を採取する一般的な方法に準じて 行えば良い。すなわち各種の栄養物質を含む培地でSt

30 reptomyces hygroscopicus A-9561株を好気的条件下で培養し、培養終了後、 培養液をアセトン抽出し、更に酢酸エチルエステルにて 抽出する。抽出されたFD-895の画分を濃縮してシ ロップ状とする。このシロップをシリカゲルカラムクロ マトグラフィー、ゲルろ過カラムクロマトグラフィーに 付すことにより、FD-895を精製単離することがで

【0010】以上の精製法によって得られたFD-89 5の理化学的性質を以下に示す。

- (1)外観:白色粉末
- (2) 融点:72~76℃
- (3) 質量分析值:

EIMSスペクトル m/z 566 (M+)

陽イオンFABMSスペクトル m/z 567 (M+ H) +

陰イオンFABMSスペクトル m/z 565 (M-H) -

(4) E I - 高分解能マススペクトル:

実測値:566.3465

算)

(5) 分子式: C_{3 1} H_{5 0} O₉

(6) 分子量: 566

(7) 比旋光度:

 $[\alpha]_{D^{2.5}} = 2.0.0^{\circ}$ (c=0.1, メタノール溶

(8) 紫外線吸収スペクトル:メタノール溶液で測定し た結果、

> $\lambda max 199nm (\epsilon = 10245)$ $238 \text{ nm} (\epsilon = 24451)$

- (9) 赤外線吸収スペクトル: KBr錠中で測定したス ペクトルを図1に示す。
- (10) 1 H-NMRスペクトル: 重クロロホルム中、 400MHzで測定したスペクトルを図2に示す。
- (11) ¹³ C-NMRスペクトル: 重クロロホルム 中、100MHzで測定したスペクトルを図3に示す。
- (12)溶剤に対する溶解性:メタノール、クロロホル ム、アセトン、酢酸エチルエステルに易溶。n-ヘキサ ンに難溶。水に不溶。

スペクトル、赤外線スペクトル、「H-NMRスペクト ル、13 C-NMRスペクトルの解析によりその構造式 が化2のように決定された。

[0011]

【発明の効果】本発明の化合物は癌培養細胞に対して増 **殖抑制作用を有するので医薬として有用である。**

[0 0 1 2]

【実施例】以下、実施例および試験例を挙げて本発明を 具体的に説明する。

実施例

- (1) 100ml当りオートミール2g、グルコース2 g、塩化ナトリウム0.3g、肉エキス0.3g、硫酸 第二鉄0.04g、塩化マンガン(4水和物)0.04 g、炭酸カルシウムO、3gを含む無菌液体培地にSt reptomyces hygroscopicus A-9561株を接種し、28℃、96時間振とう培養 した。次に内容量5しのミニジャー2基を用いて種培地 と同じ組成の無菌培地3Lに前記培養液100mlを接 種し、28℃、96時間通気攪拌培養した。
- (2) 培養終了後、2基分の培養液6Lをアセトン6L 40 で抽出した。アセトンを除去した後、酢酸エチルエステ ル6 Lで抽出を行い、無水硫酸ナトリウムで脱水後、濃 縮し褐色のシロップ状物質2.2gを得た。
- (3) シロップ状物質をクロロホルムに溶解し、クロロ ホルムで調製したシリカゲルを充填した500mlのカ ラムに吸着させ、メタノールの濃度を徐々にあげながら メタノール/クロロホルム (98:2~96:4) 溶液 で溶出した。活性画分を合わせ、濃縮乾固し、油状物質 415mgを得た。

に溶解し、メタノールで調製したセファデックスLH-20 (商品名、ファルマシア社製) を充填した400m 1のカラムを用いて、クロロホルム:メタノール:n-ヘキサン (5:1:5) でゲルろ過を行った。活性画分 を集め、油状物質67mgを得た。

6

- (5) 前項の薄黄色の油状物質67mgを、メタノール 1m1に溶解し、メタノールで調製したトヨパール(東 洋ソーダ社製)を充填した350mlのカラムに吸着さ せ、同一溶媒にてゲル濾過を行い、活性画分を集め、白 10 色粉末39mgを得た。
 - (6) 前項の白色粉末39mgを70%メタノール2m 1に溶解し、70%メタノールで調製した逆相シリカゲ ルのクロマトレックス(商品名、フジーデビットソン社 製)を充填した100mlのカラムに吸着させ、同一溶 媒にて溶出し、活性画分を集め、白色粉末18mgを得

【0013】試験例(各種培養細胞に対する増殖阻害作 用)

(検体) 実施例で得られた白色粉末10mgをメタノー また、FD-895はその元素分析値、分子量、紫外線 20 ルに溶解し、目的濃度となるように滅菌生理食塩水にて 希釈したものを用いた。

(試験細胞)

- ① P388 マウス白血病
- ② L-1210 マウス白血病
- ③ HL-60 ヒト白血病

(使用した培養液)

① RPMI-1640培地

(試験方法) 前記培養液を用いて各種癌細胞を、2×1 04~1×105/m1とし、直径35mmの6穴シャ 30 ーレに2mlずつ分注した。次いで目的濃度にあらかじ め希釈した検体 5 0 μ 1 を、培養開始と同時に添加し た。試験細胞は、37℃、5%炭酸ガス培養器内で3~ 4日間培養を続けた後、生細胞を測定し、試料濃度と阻 客率から、IC50値(50%阻害のための濃度)を求 めた。

(結果) 結果は表2に示す。

[0014]

【表2】

溶細胞理	I C _{SQ} 値(ng/ml)				
P388	4.0				
L-1210	4.0				
H L - 6 0	2.0				

【図面の簡単な説明】

【図1】 KBr 錠にて測定したFD-895の赤外線吸 収スペクトルを示す。

【図2】 重クロロホルム中、400MHzで測定したF D-895の H-NMRスペクトルを示す。

【図3】第3図は重クロロホルム中、100MHzで測 (4) 前項の油状物質 4 1 5 mg を、メタノール 3 m l 50 定した F D - 8 9 5 の 1 8 C - NMRスペクトルを示

【図1】

【図2】

【図3】

フロントページの続き

C 0 7 D 313:00) (C 1 2 P 17/08 6701-4C

12/11/42/1

C 1 2 1 11/00

C 1 2 R 1:56)

7804-4B

(72)発明者 花田 和紀

東京都豊島区高田3丁目24番1号 大正製

薬株式会社内