Kernel Regression Utilizing External Information as Constraints

Chi-Shian Dai Advisor: Jun Shao

- Motivation
- 2 CKR for Summary Level External Data
- 3 CKR for Individual Level External Data
- 4 Simulation

Motivation

- Internal Data: $\{Y_i, \boldsymbol{U}_i\}_{i=1,...,n}, \ \boldsymbol{U}_i = (\boldsymbol{X}_i, \boldsymbol{Z}_i) \in \mathbb{R}^p, \ \boldsymbol{X} \in \mathbb{R}^q.$
- External Data: Sample size is m >> n. Provide information for $Y \sim X$.
 - Sources: Population-based census, Past studies...
 - ullet Summary Level Information: Least square estimator $\widehat{oldsymbol{eta}}$ via $Y\sim oldsymbol{X}.$
 - Individual Level information: $\{Y_i, X_i\}_{i=n+1,...,n+m}$.
- Goal: Estimate $E[Y|\boldsymbol{U}=\boldsymbol{u}]:=\mu(\boldsymbol{u})$

Inspiration

- Inspiring by ?], they observe that the link between "internal" and "external" can be formulated as constraints. Hence, we consider a constrained kernel regression to estimate μ .
- Example: Let $Y = \boldsymbol{\beta}^{\top} \boldsymbol{X} + \boldsymbol{\gamma}^{\top} \boldsymbol{Z} + \epsilon$, $\boldsymbol{X} \perp \!\!\! \perp \!\!\! \boldsymbol{Z}$, then there is a naive constraints

$$\beta = \widehat{\beta}$$
.

- So, with the help of external data, we only have to focus on estimating γ .
- We generalize this idea to kernel regression. The proposed method call constrained kernel regression (CKR).

- Motivation
- 2 CKR for Summary Level External Data
- 3 CKR for Individual Level External Data
- 4 Simulation

Optimization Form of Kernel Regression

- Given a kernel κ and bandwidths I, and b.
- Kernel Regression estimate for $\mu(\mathbf{u})$:

$$\widehat{\mu}_{K}(\boldsymbol{u}) = \arg\min_{\mu} \sum_{j=1}^{n} \kappa_{l}(\boldsymbol{u} - \boldsymbol{U}_{j})(Y_{j} - \mu)^{2},$$
 (1)

where $\kappa_I(\mathbf{u} - \mathbf{U}_j) = I^{-p}\kappa \left\{ I^{-1}(\mathbf{u} - \mathbf{U}_j) \right\}.$

• Kernel Regression estimate for $\mu := (\mu_1, \dots, \mu_n)$, $\mu_i = \mu(\boldsymbol{U}_i)$:

$$\widehat{\boldsymbol{\mu}}_{K} = \arg\min_{\mu_1, \dots, \mu_n} \sum_{i=1}^n \sum_{j=1}^n \kappa_l (\boldsymbol{U}_i - \boldsymbol{U}_j) (Y_j - \mu_i)^2$$

Optimization Form of Kernel Regression

There is another equivalent form.

$$\widehat{\boldsymbol{\mu}}_{K} = \arg\min_{\mu_{1},...,\mu_{n}} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\kappa_{l}(\boldsymbol{U}_{i} - \boldsymbol{U}_{j})}{\sum_{k=1}^{n} \kappa_{l}(\boldsymbol{U}_{i} - \boldsymbol{U}_{k})} (Y_{j} - \mu_{i})^{2}$$
 (2)

We prefer (2) since

$$\sum_{j=1}^n \frac{\kappa_l(\boldsymbol{U}_i - \boldsymbol{U}_j)}{\sum_{k=1}^n \kappa_l(\boldsymbol{U}_i - \boldsymbol{U}_k)} (Y_j - \mu_i)^2 \approx E[(Y - \mu(\boldsymbol{U}))^2 | \boldsymbol{U} = \boldsymbol{U}_i],$$

and

$$\frac{1}{n}\sum_{i=1}^n\sum_{j=1}^n\frac{\kappa_l(\boldsymbol{U}_i-\boldsymbol{U}_j)}{\sum_{k=1}^n\kappa_l(\boldsymbol{U}_i-\boldsymbol{U}_k)}(Y_j-\mu_i)^2\approx E[(Y-\mu(\boldsymbol{U}))^2]$$

Constraints for Summary Level External Data

ullet \widehat{eta} is a consistent estimate for $eta_0 := E[m{X}m{X}^ op]^{-1}E[m{X}Y]$, which satisfy

$$E\{(Y - \boldsymbol{X}^{\top}\boldsymbol{\beta}_0)\boldsymbol{X}\} = 0.$$

Hence, the constrained optimization can be

$$\widehat{\boldsymbol{\mu}} = \arg\min_{\mu_1, \dots, \mu_n} \sum_{i=1}^n \sum_{j=1}^n \frac{\kappa_l(\boldsymbol{U}_i - \boldsymbol{U}_j)}{\sum_{k=1}^n \kappa_l(\boldsymbol{U}_i - \boldsymbol{U}_k)} (Y_j - \mu_i)^2$$
subject to
$$\sum_{i=1}^n (\mu_i - \boldsymbol{X}_i^{\top} \widehat{\boldsymbol{\beta}}) \boldsymbol{X}_i = 0.$$
(3)

CKR for Summary Level External Data

- (3) is a quadratic programming. Hence, it can be solved by Lagrange multiplier.
- For arbitrary $u \in \mathcal{U}$, we apply additional kernel regression by replacing Y with $\widehat{\mu}$.

$$\widehat{\mu}_{CK}(\boldsymbol{u}) = \sum_{i=1}^{n} \widehat{\mu}_{i} \kappa_{b}(\boldsymbol{u} - \boldsymbol{U}_{i}) / \sum_{i=1}^{n} \kappa_{b}(\boldsymbol{u} - \boldsymbol{U}_{i}).$$
 (4)

Non-Constrained Methods

- Kernel Regression (KR): $\widehat{\mu}_K(\mathbf{u})$
- Double Kernel Regression (DKR): Consider CKR without applying any constriants. Use notation $\widehat{\mu}_{DK}(\boldsymbol{u})$.
 - Step 1: Estimate $(\mu(\boldsymbol{U}_1), \dots, \mu(\boldsymbol{U}_n))$ by Kernel Regression
 - Step 2: Estimate $\mu(\mathbf{u})$ by additional kernel regression replacing Y with the results in first step.

Assumption for Normality

- (A1) The response Y has a finite $E|Y|^s$ with s>2+p/2. The covariate vector \boldsymbol{U} has compact support \mathcal{U} , and has a positive definite covariance matrix. The density of \boldsymbol{U} is bounded away from infinity and zero, and has bounded second-order derivatives.
- (A2) Functions $\mu(\boldsymbol{u}) = E(Y|\boldsymbol{U}=\boldsymbol{u})$ and $\sigma^2(\boldsymbol{u}) = E[\{Y \mu(\boldsymbol{U})\}^2|\boldsymbol{U}=\boldsymbol{u}]$ are Lipschitz continuous. The function $\mu(\boldsymbol{u})$ has bounded third-order derivatives.
- (A3) The kernel κ is a positive bounded density with mean zero and finite sixth moments. Furthermore, κ is Lipschitz continuous.
- (A4) The bandwidths b in (1) and l in (3) are polynomial rate of n, satisfying $b \to 0$, $l \to 0$, $l/b \to \gamma \in (0, \infty)$, and $nb^{4+p} \to c \in [0, \infty)$ as the internal sample size $n \to \infty$.
- (A5) The external sample size m satisfies n = O(m), i.e., n/m is bounded by a fixed constant.

Theorem

Theorem 1

Assume conditions (A1)-(A5). Then, as $n \to \infty$,

$$\sqrt{nb^p}\{\widehat{\mu}_t(\boldsymbol{u}) - \mu(\boldsymbol{u})\} \rightarrow N(B_t(\boldsymbol{u}), V_t(\boldsymbol{u}))$$
 in distribution, (5)

where t = DK or CK,

$$B_{DK}(\boldsymbol{u}) = c^{1/2}(1 + \gamma^2)A(\boldsymbol{u}),$$

$$B_{CK}(\boldsymbol{u}) = c^{1/2}[(1 + \gamma^2)A(\boldsymbol{u}) - \gamma^2\boldsymbol{x}^{\top}\boldsymbol{\Sigma}_{X}^{-1}E\{\boldsymbol{X}A(\boldsymbol{U})\}],$$

$$V_{DK}(\boldsymbol{u}) = \frac{\sigma^2(\boldsymbol{u})}{f_U(\boldsymbol{u})}\int \left\{\int \kappa(\boldsymbol{w} - \boldsymbol{v}\gamma)\kappa(\boldsymbol{v})d\boldsymbol{v}\right\}^2 d\boldsymbol{w},$$

$$V_{CK}(\boldsymbol{u}) = V_{DK}(\boldsymbol{u}),$$

$$A(\boldsymbol{u}) = \int \kappa(\boldsymbol{v})\left\{\frac{1}{2}\boldsymbol{v}^{\top}\nabla^2\mu(\boldsymbol{u})\boldsymbol{v} + \nabla\mu(\boldsymbol{u})^{\top}\boldsymbol{v}\boldsymbol{v}^{\top}\nabla\log f_U(\boldsymbol{u})\right\}d\boldsymbol{v}, \quad (6)$$

and fill is the density of **U**

Asymptotic Mean Integrated Square Error

- AMISE $(\hat{\mu}_t) = E[\{B_t(\boldsymbol{U})\}^2 + V_t(\boldsymbol{U})], \quad t = CK \text{ or } DK,$
- Observe that $\boldsymbol{\xi}:=\boldsymbol{\Sigma}_X^{-1}E\{\boldsymbol{X}A(\boldsymbol{U})\}]$ is a linear coefficient of fitting $A(\boldsymbol{U})$ by \boldsymbol{X} . Hence,

$$E[\{A(\boldsymbol{U}) - \boldsymbol{X}^{\top}\boldsymbol{\xi}\}\boldsymbol{X}] = 0.$$

• From this we can derive

$$E\{B_{CK}(\mathbf{U})\}^{2} = c(1 + \gamma^{2})^{2}E\{A(\mathbf{U}) - \mathbf{X}^{T}\boldsymbol{\xi}\}^{2} + cE\{\mathbf{X}^{T}\boldsymbol{\xi}\}^{2},$$

$$E\{B_{DK}(\mathbf{U})\}^{2} = c(1 + \gamma^{2})^{2}E\{A(\mathbf{U})\}^{2}$$

$$= c(1 + \gamma^{2})^{2}E\{A(\mathbf{U}) - \mathbf{X}^{T}\boldsymbol{\xi}\}^{2} + c(1 + \gamma^{2})^{2}E\{\mathbf{X}^{T}\boldsymbol{\xi}\}^{2}.$$

CKR V.S. KR

- $B_K(\mathbf{u}) = c^{1/2}A(\mathbf{u})$ and $V_K(\mathbf{u}) = \frac{\sigma^2(\mathbf{u})}{f_U(\mathbf{u})} \int \{\kappa(\mathbf{v})\}^2 d\mathbf{v}$.
- $B_{CK}(\mathbf{u}) = c^{1/2}[(1 + \gamma^2)A(\mathbf{u}) \gamma^2 \mathbf{x}^{\top} \Sigma_X^{-1} E\{\mathbf{X}A(\mathbf{U})\}],$
- $V_{CK}(\mathbf{u}) = \frac{\sigma^2(\mathbf{u})}{f_U(\mathbf{u})} \int \left\{ \int \kappa(\mathbf{w} \mathbf{v}\gamma)\kappa(\mathbf{v})d\mathbf{v} \right\}^2 d\mathbf{w},$
- If $\gamma = 0$, $B_{CK} = B_K$ and $V_{CK} = V_K$. So, $\inf_{\gamma} \text{AMISE}(\widehat{\mu}_{CK})(\gamma) \leq \text{AMISE}(\widehat{\mu}_K)$
- If γ increases, V_{CK} decreases and B_{CK}^2 increases.

Theorem 2

Under the conditions in Theorem 1 and an additional condition that $\int \nabla^2 \kappa(\mathbf{u}) \kappa(\mathbf{u}) d\mathbf{u}$ being strictly negative definite, $\mathrm{AMISE}(\widehat{\mu}_{CK}) < \mathrm{AMISE}(\widehat{\mu}_K)$ for c and γ in a neighborhood of 0.

- Motivation
- 2 CKR for Summary Level External Data
- 3 CKR for Individual Level External Data
- 4 Simulation

CKR for Individual Level External Data

- First, estimate h = E[Y|X] via kernel regression.
- Second, observe that for all real function g

$$E\{Y-h(\boldsymbol{X})\}g(\boldsymbol{X})=0.$$

Consider the coresponding constrained optimization.

$$\widehat{\boldsymbol{\mu}} = \arg\min_{\mu_1, \dots, \mu_n} \sum_{i=1}^n \sum_{j=1}^n \frac{\kappa_l(\boldsymbol{U}_i - \boldsymbol{U}_j)}{\sum_{k=1}^n \kappa_l(\boldsymbol{U}_i - \boldsymbol{U}_k)} (Y_j - \mu_i)^2$$
subject to
$$\sum_i^n \{\mu_i - \widehat{h}(\boldsymbol{X}_i)\} g(\boldsymbol{X}_i) = 0.$$
(7)

Question: How to choose g?

Theorem 3

- Assume (A1)-(A5) in Theorem 1 and (A1) The matrix $\Sigma_g = E\{g(\boldsymbol{X})g(\boldsymbol{X})^{\top}\}$ is positive definite. (A2) The functions $h(\boldsymbol{x})$ and $g(\boldsymbol{x})$ are Lipschitz continuous. The function h(x) has bounded third-order derivatives.
- (A3) The kernel function used in the kernel regression based on the external dataset satisfies condition (A3).
- (A4') The bandwidth used in the kernel regression based on the external dataset is of the order $m^{-1/(4+q)}$ as $m \to \infty$.

Then, as $n \to \infty$, CKR with constraints (7) have following properties.

$$\sqrt{nb^p}\{\widehat{\mu}_{CK}(\boldsymbol{u}) - \mu(\boldsymbol{u})\} \rightarrow N(B_{CK}(\boldsymbol{u}), V_{CK}(\boldsymbol{u}))$$
 in distribution,

where

$$B_{CK}(\boldsymbol{u}) = c^{1/2}[(1+\gamma^2)A(\boldsymbol{u}) - \gamma^2 g(\boldsymbol{x})^{\top} \Sigma_g^{-1} E\{g(\boldsymbol{X})A(\boldsymbol{U})\}]$$

and $V_{CK}(\mathbf{u})$ and $A(\mathbf{u})$ are the same as those in Theorem 1.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

Choose of g

- $E\{B_{CK}(\boldsymbol{U})\}^2 = c\{(1+\gamma^2)^2-1\}E\{A(\boldsymbol{U})-g(\boldsymbol{X})^{\top}\boldsymbol{\xi}_g\}^2 + cE\{A(\boldsymbol{U})\}^2$, where $\boldsymbol{\xi}_g = \boldsymbol{\Sigma}_g^{-1}E\{g(\boldsymbol{X})A(\boldsymbol{U})\}$] is a linear coefficient of $A(\boldsymbol{U}) \sim g(\boldsymbol{X})$.
- Find g to minimize $E\{A(\boldsymbol{U}) g(\boldsymbol{X})^{\top}\boldsymbol{\xi}_g\}^2$.
- The best one is $g^* = E[A(\mathbf{U})|\mathbf{X}]$.
- $A(\mathbf{u}) = \int \kappa(\mathbf{v}) \left\{ \frac{1}{2} \mathbf{v}^{\top} \nabla^{2} \mu(\mathbf{u}) \mathbf{v} + \nabla \mu(\mathbf{u})^{T} \mathbf{v} \mathbf{v}^{T} \nabla \log f_{U}(\mathbf{u}) \right\} d\mathbf{v}$, is estimable.
- g* is also estimable.

Theorem 4

Assume the conditions in Theorem 3 and the following additional conditions.

- (C1) The kernel κ in (A3) satisfies $\int u_k^2 \kappa(\mathbf{u}) d\mathbf{u} = 1$ and $\int u_k u_j \kappa(\mathbf{u}) d\mathbf{u} = 0$ when $k \neq j$. The kernel $\widetilde{\kappa}$ in the estimators $\widehat{\nu}_k$ and $\nabla_{kk}^2 \widehat{f}_U$, k = 1, ..., p, has finite second-order moments, bounded $\nabla_{kk}^2 \widetilde{\kappa}$, finite $\int |\nabla_{kk}^2 \widetilde{\kappa}(\mathbf{u})| d\mathbf{u}$, and bounded $\sup_{\mathbf{u}} \lambda^{-2} |\widetilde{\kappa}(\mathbf{u}/\lambda)|$ and $\sup_{\mathbf{u}} \lambda^{-3} |\nabla_k \widetilde{\kappa}(\mathbf{u}/\lambda)|$ as $\lambda \to 0$, k = 1, ..., p.
- (C2) The bandwidth λ_1 for $\hat{\nu}_0$ and \hat{f}_U has order $n^{-1/(p+4)}$, the bandwidth λ_2 for $\hat{\nu}_k$ and $\nabla^2_{kk}\hat{f}_U$ has order $n^{-1/(p+8)}$, and the bandwidth δ in estimating g^* has order $n^{-1/(q+4)}$.

Then, the result in Theorem 3 with $g = g^*$ holds for $\widehat{\mu}_{CK}$ using the estimated constraints \widehat{g}^* .

- Motivation
- CKR for Summary Level External Data
- CKR for Individual Level External Data
- 4 Simulation

Simulation

- Internal sample size: 200
- External sample size : 1000
- X, Z are normal distribution with variance 1, covariance 0.5.

•
$$Y = \mu(X, Z) + \epsilon$$
; $\epsilon \sim N(0, \sigma^2)$

4 Additive Models:

$$\mu = X^3 + Z^2$$

 $\mu = 2^{-1}\cos(2X) + \cos(Z)$
 $\mu = \cos(X) + \cos(Z)$

2 Non-Additive Models:

$$\mu = X^3 + XZ + Z^2$$

Simulation

- Let R = 200 be the number of independently replication.
- Let L = 121 be the sample size of test data.
 - 1. Fixed grid points on $[-1,1] \times [-1,1]$
 - 2. Random sample without replacement from the covariate $\boldsymbol{U}'s$ of the internal data set.
- Use estimated MISE to evaluate performance.

MISE =
$$\frac{1}{R} \sum_{r=1}^{R} \frac{1}{L} \sum_{l=1}^{L} \{ \widehat{\mu}_r(\boldsymbol{T}_{r,l}) - \mu(\boldsymbol{T}_{r,l}) \}^2,$$

Simulation

- Best Bandwidth: Evaluate MISE in a pool of bandwidths and display the one have the best performance.
- 10 folds cross-validation

•

$$\label{eq:lmp} \begin{aligned} \text{Imp}\% &= 1 - \frac{\min\{\mathrm{MISE}(\widehat{\mu}_{\textit{CKR}}) \text{ over all CKR methods}\}}{\min\{\mathrm{MISE}(\widehat{\mu}_{\textit{K}}), \mathrm{MISE}(\widehat{\mu}_{\textit{DK}})\}} \end{aligned}$$

Test Data: Sample

	test				estimator (CKR) with $g =$					estimator		
model	σ	data	b, I	1	(1, X)	$(1,\widehat{h})$	\widehat{g}^*	g^*	(CKR-s)	(KR)	(DKR)	Imp%
1	3	sample	best	1.045	0.924	0.912	1.055	0.843	1.152	1.081	1.056	20.17
			CV	1.165	1.148	1.073	1.19	1.176	1.409	1.239	1.181	9.14
2	3	sample	best	0.220	0.225	0.222	0.259	0.210	0.201	0.266	0.260	22.69
			CV	0.297	0.290	0.323	0.341	0.282	0.274	0.335	0.343	18.20
3	3	sample	best	0.338	0.347	0.333	0.437	0.365	0.298	0.443	0.439	32.13
			CV	0.537	0.512	0.581	0.643	0.539	0.47	0.620	0.640	24.19
4	3	sample	best	1.102	1.066	1.018	1.102	1.020	1.437	1.117	1.099	7.37
			CV	1.276	1.294	1.329	1.262	1.410	1.624	1.208	1.270	-4.47

Test Data: Fixed Grid Points on $[-1,1]^2$

test				estimato	(CKR)	with g =	estimator					
model	σ	data	<i>b</i> , <i>I</i>	1	(1, X)	$(1,\widehat{h})$	\widehat{g}^*	g^*	(CKR-s)	(KR)	(DKR)	Imp%
1	3	grid	best	0.175	0.171	0.181	0.205	0.206	0.243	0.210	0.208	17.78
			CV	0.382	0.365	0.341	0.388	0.355	0.432	0.412	0.384	11.19
2	3	grid	best	0.111	0.108	0.076	0.148	0.132	0.100	0.153	0.153	50.32
			CV	0.141	0.138	0.117	0.164	0.151	0.134	0.160	0.162	26.87
3	3	grid	best	0.102	0.100	0.070	0.129	0.131	0.089	0.135	0.132	46.96
			CV	0.123	0.122	0.099	0.145	0.151	0.121	0.142	0.142	30.28
4	3	grid	best	0.231	0.244	0.229	0.250	0.251	0.338	0.251	0.251	8.76
			CV	0.414	0.426	0.359	0.400	0.369	0.486	0.367	0.397	2.17

Future Works

- We will study more when and why the CKR improves the standard KR, both empirically and theoretically.
- ② With individual-level external data, we only considered kernel estimators of h(x). Different types of estimators of h will be studied—for example, linear models or generalized linear models.
- We mainly considered the AMISE as a criterion in evaluating kernel estimators. We will study some other performance measures.
- We focused on the situation where the underlying distribution of *U* is the same in both internal and external data. We will consider extensions in situations where the distributions of *U* are different in two datasets.

References