Kunen Excercise III.1.13

Zero Sharp

2022年1月10日

概要

Set Theory (Kunen) Excercise III.1.13 の解答を与えます. 記法は本文参照.

定理 1. \mathfrak{b} is regular and $\mathrm{cf}(\mathfrak{d}) \geq \mathfrak{b}$.

 $Proof.\ \mathcal{B} \subset \omega^{\omega}$ が unbounded family となる最も小さいサイズのものとする. $\kappa = \mathrm{cf}(\mathfrak{b})$ とし、各 $\alpha < \kappa$ に対して $|B_{\alpha}| < \mathfrak{b}$ となる B_{α} を用いて $\mathcal{B} = \bigcup_{\alpha < \kappa} B_{\alpha}$ と表せられているとする. $|B_{\alpha}| < \mathfrak{b}$ であることと \mathfrak{b} の最小性から、各 α に対してある $g \in \omega^{\omega}$ が存在して任意の $f \in B_{\alpha}$ に対して $f \not\leq g$ となる. そのような g の中から g_{α} を一つ選ぶ. すると, $G = \{g_{\alpha} \mid \alpha < \kappa\}$ は unbounded family となる. (\mathcal{B} は unbounded family なので,任意の $g \in \omega^{\omega}$ に対して,ある $f \in \mathcal{B}$ が存在して $f \leq g$ となる.ここで,そのような $f \in \mathcal{B}$ は,ある $\alpha < \kappa$ に対して $f \in B_{\alpha}$ となる.このとき, $f \leq g_{\alpha}$ なので, $g_{\alpha} \not\leq g_{\alpha}$ となる.)ここで, $g_{\alpha} \not\leq g_{\alpha}$ となる.)ここで, $g_{\alpha} \not\leq g_{\alpha}$ となる.)

 $\operatorname{cf}(\mathfrak{d}) \geq \mathfrak{b}$ も同様である. $\kappa = \operatorname{cf}(\mathfrak{d})$ として同じように G を取れば, G は dominating family となる.