Politechnika Warszawska WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH

przedmiot Kryptografia stosowana (KRYS)

Szyfr blokowy z kluczem symetrycznym - Camellia

Kamil Chrościcki, Filip Smejda, Jakub Kitka, Andrzej Gawor

Numer albumu 300502, 300503, 300552, 300528

prowadzący dr inż. Adam Komorowski

WARSZAWA 23 stycznia 2023

Spis treści

1.	Wstęp	. 3
	1.1. Camellia	. 3
	1.2. Camellia vs AES	. 4
2.	Specyfikacja kryptosystemu	. 5
	2.1. Wstęp	. 5
	2.2. Terminologia	. 5
	2.3. Faza Planowania Kluczy	. 5
	2.3.1. Derywacja zmiennych KL i KR	. 5
	2.3.2. Wygenerowanie zmiennych KA i KB	. 5
	2.3.3. Wygenerowanie właściwych pod-kluczy	. 6
	2.4. Szyfrowanie i deszyfrowanie	. 7
	2.4.1. Szyfrowanie	. 7
	2.4.2. Deszyfrowanie	. 7
	2.5. Funkcje algorytmu	. 8
	2.5.1. Funkcja-F	
	2.5.2. Funkcja-S	. 10
	2.5.3. Funkcja-P	. 10
	2.5.4. Funkcja-FL	. 11
	2.5.5. Funkcja- FL^{-1}	. 11
3.	Bezpieczeństwo algorytmu	. 12
	3.1. Technika mieszania oraz rozproszenia	. 12
	3.2. Właściwości algebraiczne	. 12
4.	Kryptoanaliza i ataki	. 14
5.	Podsumowanie	. 16
Ril	diografia	17

1. Wstęp

Szyfrowanie symetryczne jest podstawą współczesnej kryptografii. Są to algorytmy, które wykorzystują ten sam klucz zarówno do szyfrowania, jak i odszyfrowywania danych. Celem jest wykorzystanie krótkich tajnych kluczy do bezpiecznego i efektywnego przesyłania długich wiadomości. W dobie Internetu niezwykle ważna jest poufność i integralność danych. Transfer takich informacji musi być nie tylko odpowiednio szybki, ale przede wszystkim prawidłowo zabezpieczony przed niepowołanym dostępem. Szyfrowanie symetryczne jest w stanie to zapewnić i dzięki swojej charakterystyce jest powszechnie wykorzystywane w różnych rozwiązaniach. Przykłady, gdzie kryptografia symetryczna może zostać wykorzystana:

- Sektor bankowy: aplikacje płatnicze, walidacje potwierdzające nadawcę.
- Szyfrowanie wrażliwych danych na dysku pamięci (np. BitLocker).

Mnogość zastosowań szyfrowania symetrycznego sprawia, iż bezpieczeństwo użytkowników w sieci zależy w dużej mierze od wykorzystywanych algorytmów kryptograficznych. Szyfrowanie z kluczem symetrycznym można podzielić na dwa rodzaje:

- blokowy tekst jawny jest dzielony na bloki o stałej długości i przechodzi przez funkcję szyfrującą wraz z sekretnym kluczem.
- strumieniowy pojedynczy bajt tekstu jawnego jest szyfrowany poprzez operację XOR pseudolosowego strumienia klucza z danymi.

W naszej pracy skupimy się i szerzej omówimy szyfr blokowy z kluczem symetrycznym - Camellia.

1.1. Camellia

Camellia została opracowana wspólnie przez Nippon Telegraph[1] and Telephone Corporation i Mitsubishi Electric Corporation w 2000 roku.[2] Camellia określa 128-bitowy rozmiar bloku oraz 128-, 192- i 256-bitowy rozmiar klucza. Charakteryzuje się przydatnością zarówno do implementacji programowych, jak i sprzętowych, a także wysokim poziomem bezpieczeństwa. Z praktycznego punktu widzenia została zaprojektowana tak, aby umożliwić elastyczność w implementacjach programowych i sprzętowych na procesorach 32-bitowych szeroko stosowanych w Internecie i wielu aplikacjach, procesorach 8-bitowych stosowanych w kartach inteligentnych, sprzęcie kryptograficznym, czy w systemach wbudowanych. Jest zatwierdzona jako skuteczny i bezpieczny algorytm szyfrujący przez wiele organizacji na całym świecie m.in. Międzynarodową Organizację Normalizacyjną (ang. *International Organization for Standardization* - ISO), projekt badawczy UE NESSIE oraz japoński CRYPTREC.[3]

1.2. Camellia vs AES

W kryptografii występują różne implementacje blokowych algorytmów szyfrujących z kluczem symetrycznym. Najpopularniejszym i najczęściej stosowanym jest Advanced Encryption Standard (AES). Camellia jest uważana za mniej więcej równoważną AES pod względem bezpieczeństwa. Porównując oba rozwiązania można spostrzec pewne podobieństwa i różnice każdego z nich:

- Należą do grupy szyfrowania symetrycznego w trybie blokowym.
- Określają 128-bitowy rozmiar bloku i 128-, 192- i 256-bitowe rozmiary kluczy.
- Tylko AES jest standardem rządowym w USA. Zarówno NESSIE (UE) jak i CRYPTREC (Japonia) nadały AES i Camellia równy status [4].
- AES został sprawdzony przez kryptoanalityków w szerszym zakresie niż Camellia.
- AES działa na strukturze sieci SP, a Camellia na sieci Feistela.
- AES wypada wydajnościowo nieco lepiej porównując czas wymagany przez te algorytmy w funkcji długości tekstu jawnego.
- Camellia zapewnia doskonały czas konfiguracji klucza, a jego zwinność jest lepsza niż w przypadku AES [2].
- Camellia posiada poziomy bezpieczeństwa porównywalne z szyfrem AES/Rijndael.

2. Specyfikacja kryptosystemu

2.1. Wstęp

Camelia oparta jest na strukturze sieci Feistela. W wersji ze 128-bitowym kluczem, algorytm podzielony jest na 3 bloki po 6 rund Feistel'a. W wersjach z 192 i 256-bitowym kluczem występuje dodatkowy blok. Między blokami wywoływane są funkcje FL oraz FL⁻¹. Przed pierwszym oraz za ostatnim blokiem stosowana jest technika "Wybielania Klucza". Całość poprzedza "Faza Planowania Kluczy". Opis algorytmu może zostać podzielony na 3 części:

- Faza Planowania Kluczy,
- Szyfrowanie i deszyfrowanie,
- Funkcje algorytmu.

2.2. Terminologia

Użyte oznaczenia:

X - dowolny wektor bitowy

 $\mathbf{X}_{\mathbf{L}(\mathbf{n})}$ - wektor powstały jako n bitów wektora X znajdujących się najbardziej po lewej stronie np. $0011_{L(2)}=00$

 $X_{R(n)}$ - wektor powstały jako n bitów wektora X znajdujących się najbardziej po prawej stronie np. $0011_{R(2)}=11$

!x - negacja wektora x

|| - operator konkatenacji

x«n - cykliczna rotacja wektora x w lewą stronę o n bitów

 \vee - operator logiczny OR

 \land -operatorlogicznyAND

K-kluczgłówny

2.3. Faza Planowania Kluczy

2.3.1. Derywacja zmiennych KL i KR

Na początku definiowane są 128-bitowe dwie zmienne $K\!L$ oraz $K\!R$ w następujący sposób, w zależności od długości klucza głównego:

- 128: KL = K, KR nie istnieje
- 192: $KL = K_{L(128)}$, $KR = K_{R(64)} || !K_{R(64)}$
- 256: $KL = K_{L(128)}$, $KR = K_{R(128)}$

2.3.2. Wygenerowanie zmiennych KA i KB

Następnym krokiem jest wygenerowanie 128-bitowych zmiennych *KA* oraz *KB* (ta zmienna występuje jedynie w wersji z 192/256-bitowym kluczem głównym). Owa genera-

cja opiera się na trzech blokach po dwie rundy szyfru Feistel'a. Jako klucze do funkcji F podawane są stałe zdefiniowane na rysunku 2.1. Schemat blokowy kroku znajduje się na rysunku 2.2. W postaci równań może zostać zapisany jak pokazano na listingu. D1 i D2 są tymczasowymi zmiennymi pomocniczymi.

```
// sekcja fioletowa
D1 = (KL \oplus KR)_{L(64)}
D1 = (KL \oplus KR)_{R(64)}
D2 = D2 \oplus F(D1, Sigma1)
D1 = D1 \oplus F(D2, Sigma2)
//sekcjaniebieska
D1 = D1 \oplus KL_{L(64)}
D2 = D2 \oplus KL_{R(64)}
D2 = D2 \oplus F(D1, Sigma3)
D1 = D1 \oplus F(D2, Sigma4)
KA = D1||D2
//sekcjażółta
D1 = KA \oplus KR_{L(64)}
D2 = KA \oplus KR_{R(64)}
D2 = D2 \oplus F(D1, Sigma5)
D1 = D1 \oplus F(D2, Sigma6)
KB = D1||D2
                       Sigma1 = 0 \times A09E667F3BCC908B;
                       Sigma2 = 0xB67AE8584CAA73B2;
                       Sigma3 = 0xC6EF372FE94F82BE;
                       Sigma4 = 0x54FF53A5F1D36F1C;
```

Rysunek 2.1. Stałe Sigma

Sigma5 = 0x10E527FADE682D1D; Sigma6 = 0xB05688C2B3E6C1FD;

2.3.3. Wygenerowanie właściwych pod-kluczy

Wszystkie utworzone wcześniej zmienne (KL, KR, KA, KB) są 128-bitowe. Wygenerowanie pod-kluczy polega na ich rotacji oraz braniu lewej lub prawej 64-bitowej połowy.

- 2 klucze do pre-whitening,
- po 6 kluczy wejściowych do funkcji F dla każdego 6-cio rudowego bloku szyfru Feistel'a,
- po 2 klucze wejściowe do funkcji FL oraz FL⁻¹ między każdym blokiem,
- 2 klucze do post-whitening.

Rysunek 2.3 prezentuje cel, nazwę oraz sposób generacji pod-kluczy.

Rysunek 2.2. Schemat blokowy generacji zmiennych KA i KB

2.4. Szyfrowanie i deszyfrowanie

2.4.1. Szyfrowanie

Jako wejście do algorytmu pobierany jest 128-bitowy *plaintext*, który jest rozdzielany na dwie 64-bitowe części. Wyjściem algorytmu jest 128-bitowy *ciphertext*. Specyfikacja przedstawiona jest na rysunku 2.4. Funkcje F oraz FL i FL⁻¹ znajdujące się na rysunku opisane są w następnej sekcji. Rysunek przedstawia wariant z 128-bitowym kluczem głównym. Wariant z kluczem głównym o długość 192 lub 256-bitów zawiera dodatkowy 6-cio rundowy blok szyfru Feistel'a.

2.4.2. Deszyfrowanie

Procedura deszyfrowania jest taka sama jak szyfrowania, jednakże należy podmienić kolejność używanych kluczy zgodnie z rysunkiem 2.5.

Subkeys for 128-bit secret key

Subneys	subkey	value
D 111	-	
Prewhitening	$kw_{1(64)}$	$(K_L \ll_0)_{L(64)}$
	$kw_{2(64)}$	$(K_L \ll_0)_{R(64)}$
F (Round1)	$k_{1(64)}$	$(K_A \ll 0)_{L(64)}$
F (Round2)	$k_{2(64)}$	$(K_A \ll _0)_{R(64)}$
F (Round3)	$k_{3(64)}$	$(K_L \ll_{15})_{L(64)}$
F (Round4)	$k_{4(64)}$	$(K_L \ll_{15})_{R(64)}$
F (Round5)	$k_{5(64)}$	$(K_A \ll_{15})_{L(64)}$
F (Round6)	$k_{6(64)}$	$(K_A \ll_{15})_{R(64)}$
FL	$k l_{1(64)}$	$(K_A \ll 30)_{L(64)}$
FL^{-1}	$kl_{2(64)}$	$(K_A \ll 30)_{R(64)}$
F (Round7)	$k_{7(64)}$	$(K_L \ll_{45})_{L(64)}$
F (Round8)	$k_{8(64)}$	$(K_L \ll_{45})_{R(64)}$
F (Round9)	$k_{9(64)}$	$(K_A \ll 45)_{L(64)}$
F (Round10)	$k_{10(64)}$	$(K_L \ll 60)_{R(64)}$
F (Round11)	$k_{11(64)}$	$(K_A \ll 60)_{L(64)}$
F (Round12)	$k_{12(64)}$	$(K_A \ll 60)_{R(64)}$
FL	$k l_{3(64)}$	$(K_L \ll 77)_{L(64)}$
FL^{-1}	$kl_{4(64)}$	$(K_L \ll_{77})_{R(64)}$
F (Round13)	$k_{13(64)}$	$(K_L \ll_{94})_{L(64)}$
F (Round14)	$k_{14(64)}$	$(K_L \ll 94)_{R(64)}$
F (Round15)	$k_{15(64)}$	$(K_A \ll 94)_{L(64)}$
F (Round16)	$k_{16(64)}$	$(K_A \ll 94)_{R(64)}$
F (Round17)	$k_{17(64)}$	$(K_L \ll_{111})_{L(64)}$
F (Round18)	$k_{18(64)}$	$(K_L \ll_{111})_{R(64)}$
Postwhitening	$kw_{3(64)}$	$(K_A \ll_{111})_{L(64)}$
	$kw_{4(64)}$	$(K_A \ll_{111})_{R(64)}$

Subkeys for 192/256-bit secret key

		-l
	subkey	value
Prewhitening	$kw_{1(64)}$	$(K_L \ll _0)_{L(64)}$
	$kw_{2(64)}$	$(K_L \ll 0)_{R(64)}$
F (Round1)	$k_{1(64)}$	$(K_B \ll 0)_{L(64)}$
F (Round2)	$k_{2(64)}$	$(K_B \ll_0)_{R(64)}$
F (Round3)	$k_{3(64)}$	$(K_R \ll 15)_{L(64)}$
F (Round4)	$k_{4(64)}$	$(K_R \ll 15)_{R(64)}$
F (Round5)	$k_{5(64)}$	$(K_A \ll 15)_{L(64)}$
F (Round6)	$k_{6(64)}$	$(K_A \ll_{15})_{R(64)}$
FL	$kl_{1(64)}$	$(K_R \ll 30)_{L(64)}$
FL^{-1}	$kl_{2(64)}$	$(K_R \ll 30)_{R(64)}$
F (Round7)	$k_{7(64)}$	$(K_B \ll_{30})_{L(64)}$
F (Round8)	$k_{8(64)}$	$(K_B \ll 30)_{R(64)}$
F (Round9)	$k_{9(64)}$	$(K_L \ll 45)_{L(64)}$
F (Round10)	$k_{10(64)}$	$(K_L \ll 45)_{R(64)}$
F (Round11)	$k_{11(64)}$	$(K_A \ll 45)_{L(64)}$
F (Round12)	$k_{12(64)}$	$(K_A \ll 45)_{R(64)}$
FL	$k l_{3(64)}$	$(K_L \ll 60)_{L(64)}$
FL^{-1}	$kl_{4(64)}$	$(K_L \ll 60)_{R(64)}$
F (Round13)	$k_{13(64)}$	$(K_R \ll 60)_{L(64)}$
F (Round14)	$k_{14(64)}$	$(K_R \ll 60)_{R(64)}$
F (Round15)	$k_{15(64)}$	$(K_B \ll _{60})_{L(64)}$
F (Round16)	$k_{16(64)}$	$(K_B \ll _{60})_{R(64)}$
F (Round17)	$k_{17(64)}$	$(K_L \ll 77)_{L(64)}$
F (Round18)	$k_{18(64)}$	$(K_L \ll 77)_{R(64)}$
FL	$k l_{5(64)}$	$(K_A \ll_{77})_{L(64)}$
FL^{-1}	$kl_{6(64)}$	$(K_A \ll 77)_{R(64)}$
F (Round19)	$k_{19(64)}$	$(K_R \ll 94)_{L(64)}$
F (Round20)	$k_{20(64)}$	$(K_R \ll 94)_{R(64)}$
F (Round21)	$k_{21(64)}$	$(K_A \ll 94)_{L(64)}$
F (Round22)	$k_{22(64)}$	$(K_A \ll 94)_{R(64)}$
F (Round23)	$k_{23(64)}$	$(K_L \ll_{111})_{L(64)}$
F (Round24)	$k_{24(64)}$	$(K_L \ll_{111})_{R(64)}$
Postwhitening	$kw_{3(64)}$	$(K_B \ll_{111})_{L(64)}$
	$kw_{4(64)}$	$(K_B \ll_{111})_{R(64)}$

Rysunek 2.3. Generowanie pod-kluczy

2.5. Funkcje algorytmu

2.5.1. Funkcja-F

Funkcja pobiera jako argumenty dwa wektory 64-bitowe, a zwraca jeden wektor 64-bitowy. Najpierw XORuje ona ze sobą wektory wejściowe, a wynikiem tej operacji wywołuje Funkcję-S. Następnie, to co zwróci funkcja S, przekazywane jest jako argument do Funkcji-P. Opis funkcji S oraz P znajduje się w następnych sekcjach.

$$(X,k) \rightarrow Y = P(S(X \oplus k))$$

Rysunek 2.4. Szyfrowanie

128-bit key:	192- or 256-bit key:
Kw1 <-> Kw3	Kw1 <-> Kw3
Kw2 <-> Kw4	Kw2 <-> Kw4
K1 <-> K18	K1 <-> K24
K2 <-> K17	K2 <-> K23
K3 <-> K16	K3 <-> K22
K4 <-> K15	K4 <-> K21
K5 <-> K14	K5 <-> K20
K6 <-> K13	K6 <-> K19
K7 <-> K12	K7 <-> K18
K8 <-> K11	K8 <-> K17
K9 <-> K10	K9 <-> K16
Kl1 <-> Kl4	K10 <-> K15
Kl2 <-> Kl3	K11 <-> K14
	K12 <-> K13
	Kl1 <-> Kl6
	Kl2 <-> Kl5
	Kl3 <-> Kl4

Rysunek 2.5. Odwrócenie pod-kluczy

2.5.2. Funkcja-S

Funkcja pobiera jako argument 64-bitowy wektor, i zwraca również 64-bitowy wektor. Swój argument dzieli na 8 części, które procesuje niezależnie zamieniając je odpowiednio bazując na S-box'ach (tabelach zamian).

```
x1||x2||x3||x4||x5||x6||x7||x8 \rightarrow y1||y2||y3||y4||y5||y6||y7||y8
```

S-box'y mapują wejściowe 8 bitów na inny zestaw 8-śmiu bitów. Camellia definiuje 4 S-boxy, zaprezentowane w na rysunku 2.6 .

						9	S1																	S	2						
	Т	his ta	ble b	elow	reads	$s_1(0)$	= 11	$2, s_1($	1) = :	130, .	, s ₁	(255)	= 15	8.																	
112	130	44	236	179	39	192	229	228	133	87	53	234	12	174	65	224	5	88		103	78	129	203	201		174		213	24	93	130
35	239		147	69	25	165	33	237	14	79	78	29		146	189	70	223	214	39	138	50	75	66	219	28	158	156	58	202	37	123
134	184	175	143	124		31	206	62	48	220	95	94	197	11	26		113	95	31		215	62	157	124	96	185	190	188	139	22	52
166	225	57	202	213	71	93	61	217	1	90	214	81	86	108	77	77				171		186		179	2	180	173	162	172	216	154
139	13		102	251		176	45	116	18	43	32	240	177	132	153	23	26			247		97	90	232	36	86	64	225	99	9	51
223	76		194			118	5	109	183	169	49	209	23	4	215	191				104		236	10		111	83	98	163	46	8	175
20	88	58	97	222	27	17	28	50	15	156	22	83	24	242	34	40	176		194		54	34	56	100	30	57	44	166	48	229	68
254	68	207	178		181	122	145	36	8	232	168	96	252	105	80	253				135	107	244	35	72	16	209	81	192	249	210	160
170	208	160	125	161		98	151	84	91	30	149	224	255	100	210	85	161	65	250	67	19	196	47	168	182	60	43	193	255	200	165
16	196	0	72	163		117	219	138	3	230	218	9	63	221	148	32			144	71	239	234	183	21	6	205	181	18	126	187	41
135		131		205		144	51		103	246	243	157	127	191	226	15		7		155	148	33	102	230		237	231	59		127	197
82	155	216	38	200		198	59		150		75	19	190	99	46	164	55	177	76	145	110	141	118	3	45	222	150	38	125	198	92
233	121	167	140	159		188	142	41	245	249	182	47	253	180	89	211	242	79	25	63	220	121	29	82	235	243	109	94	251	105	178
120	152	6	106	231			186	212	37	171	66	136	162	141	250	240	49	12		207		226	117	169	74	87	132	17	69	27	245
114	7	185	85	248	238	172	10	54	73	42	104	60	56	241	164	228	14		170		221	89	20		146	84	208	120 238	112 143	227	73
64	40	211	123	187	201	67	193	21	227	173	244	119	199	128	158	128	80	167	240	119	147	134	131	42	199	91	233	238	143	1	61
																									S4						
						S	3																		J +						
56	65	22	118	217	147	96	242	114	194	171	154	117	6	87	160	440		470	400	000	07			0.5	4.07		405	007	70	-00	440
145	247	181	201	162	140	210	144	246	7	167	39	142	178	73	222	112		179 124	192 31	62	87 220	234 94	114	35 166	107 57	69 213	165 93	237 217	79 90	29 81	146 108
67	92	215	199	62	245	143	103	31	24	110	175	47	226	133	13	134 139	154		176	116	43		132	223	203	52	118	109	169	209	4
83	240	156	101	234	163	174	158	236	128	45	107	168	43	54	166	20	58	222	17		156		242				122	36	232		105
197	134	77	51	253	102	88	150	58	9	149	16	120	216	66	204	170	160	161	98	84	30			16	0		117	138	230	9	221
239	38	229	97	26	63	59	130	182	219	212	152	232	139	2	235	135	131	205		115		157		82	216	200	198	129	111	19	99
10	44	29	176	111	141	136	14	25	135	78	11	169	12	121	17	233	167	159	188	41	249	47	180	120	6	231	113	212	171	136	141
127	34	231	89	225	218	61	200	18	4	116	84	48	126	180	40	114	185		172	54	42	60	241	64	211	187	67	21	173		128
85	104	80	190	208	196	49	203	42	173	15	202	112	255	50	105	130	236	39	229	133	53	12	65	239	147	25	33	14	78		189
8	98	0	36	209	251	186	237	69	129	115	109	132	159	238	74		143	235	206	48	95	197	26	225	202	71	61	1	214	86	77
195	46	193	1	230	37	72	153	185	179	123	249	206	191	223	113	13	102	204	45	18	32	177	153	76		126	5	183	49	23	215
41	205	108	19	100	155	99	157	192	75	183	165	137	95	177	23	88	97	27	28	15	22	24	34	68	178	181	145	8	168	252	80
244	188	211	70	207	55	94	71	148	250	252	91	151	254	90	172	208	125	137	151	91	149	255	210	196	72	247	219	3	218	63	148
60	76	3	53	243	35	184	93	106	146	213	33	68	81	198	125	92	2	74	51	103		127	226	155	38	55	59	150	75	190	46
57	131	220	170		119	86	5	27	164	21	52	30	28	248	82	121	140	110	142	245		253	89	152		70	186	37	66	162	250
32	20	233	189	221	228	161	224	138	241	214	122	187	227	64	79	7		238	10		104		164	40	123	201	193	227	244	199	158

Rysunek 2.6. S-box'y

Wartość yi wektora wyjściowego tworzone są w następujący sposób:

```
y1 = s1(x1)

y2 = s2(x2)

y3 = s3(x3)

y4 = s4(x4)

y5 = s2(x5)

y6 = s3(x6)

y7 = s4(x7)

y8 = s1(x8)
```

2.5.3. Funkcja-P

Funkcja pobiera jako argument 64-bitowy wektor, i zwraca również 64-bitowy wektor. Swój argument dzieli na 8 części, które procesuje niezależnie.

```
x1||x2||x3||x4||x5||x6||x7||x8 \rightarrow y1||y2||y3||y4||y5||y6||y7||y8
```

Wektor wyjściowy powstaje w następujący sposób:

```
y1 = x1 \oplus x3 \oplus x4 \oplus x6 \oplus x7 \oplus x8
y2 = x1 \oplus x2 \oplus x4 \oplus x5 \oplus x7 \oplus x8
y3 = x1 \oplus x2 \oplus x3 \oplus x5 \oplus x6 \oplus x8
y4 = x2 \oplus x3 \oplus x4 \oplus x5 \oplus x6 \oplus x7
y5 = x1 \oplus x2 \oplus x3 \oplus x5 \oplus x7 \oplus x8
y6 = x2 \oplus x3 \oplus x5 \oplus x7 \oplus x8
y7 = x3 \oplus x4 \oplus x5 \oplus x6 \oplus x8
y8 = x1 \oplus x4 \oplus x5 \oplus x6 \oplus x7
```

2.5.4. Funkcja-FL

Funkcja pobiera jako argument dwa 64-bitowe wektory i zwraca jeden 64-bitowy wektor.

$$(X_{L(32)} || X_{R(32)}, K_{L(32)} || K_{R(32)}) \rightarrow Y_{L(32)} || Y_{R(32)}$$
 Wektor wyjściowy powstaje w następujący sposób: $Y_{R(32)} = ((X_{L(32)} \land K_{L(32)}) << 1) \oplus X_{R(32)},$ $Y_{L(32)} = (Y_{R(32)} \lor K_{R(32)}) \oplus X_{L(32)}$

2.5.5. Funkcja-FL⁻¹

Funkcja pobiera jako argument dwa 64-bitowe wektory, i zwraca jeden 64-bitowy wektor.

```
(Y_{L(32)} || Y_{R(32)}, K_{L(32)} || K_{R(32)}) \rightarrow X_{L(32)} || X_{R(32)} Wektor wyjściowy powstaje w następujący sposób: X_{L(32)} = (Y_{R(32)} \lor K_{R(32)}) \oplus Y_{L(32)}, X_{R(32)} = ((X_{L(32)} \land K_{L(32)}) << 1) \oplus Y_{R(32)}
```

3. Bezpieczeństwo algorytmu

Camellia, oprócz wysokiego poziomu kompatybilności oraz elastyczności w przypadku implementacji programowych oraz sprzętowych, charakteryzuje się również z wysokim poziomem bezpieczeństwa. Została zatwierdzona jako skuteczny i bezpieczny algorytm szyfrujący przez takie organizacje jak ISO (ang. ang. *International Organization for Standardization*), projekt badawczy Unii Europejskiej NESSIE oraz japoński projekt CRYPTREC. Poziom bezpieczeństwa Camelli porównywalny jest do innego, popularnego szyfru z kluczem symetrycznym - AES (ang. ang. *Advanced Encryption Standard*).

3.1. Technika mieszania oraz rozproszenia

W kryptografii, dwoma właściwościami działania bezpiecznego szyfru są: technika mieszania (ang. *confusion*) oraz rozproszenia (ang. *diffusion*). W przypadku szyfrów blokowych, takich jak Camellia, zaimplementowane są obie te techniki, zapewniając:

- Mieszanie zmniejsza związek między szyfrogramem a kluczem, poprzez to, że każdy bit szyfrogramu, powinien zależeć od kilku części klucza, czyli podkluczy. Właściwość ta utrudnia odnalezienie klucza na podstawie szyfrogramu, poprzez stworzenie wysokiej nieliniowości między nimi. W Camelli mieszanie zapewnia funkcja S, wykorzystywana przez funkcję F, czyli proces zamiany 64-bitowych danych wejściowych na inne 8 bajtów (bazując na tablicach S-box) zwracane do dalszego przetwarzania.
- Rozproszenie ukrywa statystyczną zależność pomiędzy tekstem jawnym a szyfrogramem, poprzez to, że każdy bit tekstu jawnego, powinien mieć wpływ na szyfrogram.
 W Camelli rozproszenie zapewnia funkcja P, wykorzystywana przez funkcję F, czyli wykonanie kilku operacji XOR na każdym z 8 bajtów wejściowych z innymi bajtami wejściowymi, w celu otrzymania danych wyjściowych do dalszego przetwarzania.

Mieszanie pozwala stworzyć nieliniowość, jednak bez dyfuzji, ten sam bajt w tej samej pozycji otrzymywałby te same transformacje w każdej iteracji funkcji F. Pozwoliłoby to na atakowanie każdej pozycji bajtu w macierzy osobno. Tak więc, powinno się naprzemiennie stosować mieszanie (funkcja S) z rozproszeniem (funkcja P), tak aby konwersje zastosowane na jednym bajcie wpływały na wszystkie inne bajty w danym stanie. Wtedy, każde wejście do kolejnego S-box'a staje się funkcją wielu bajtów, co oznacza, że z każdą rundą algebraiczna złożoność systemu wzrasta.

3.2. Właściwości algebraiczne

Jako, że Camellia jest uznawana za bezpieczny szyfr, to nawet używając opcji najmniejszego możliwego klucza (128 bitów), uważa się, że złamanie szyfru poprzez atak siłowy (brute-force) jest niemożliwe przy aktualnej technologii. Szyfr ten może być zdefiniowany przez minimalny system wielomianów wielowymiarowych[5]:

- S-box'y Camelli (podobnie jak AES) mogą być opisane przez układ 23 równań kwadratowych przy użyciu 80 wyrażeń.
- Algorytm generowania podkluczy (key schedule) może być opisany przez 1120 równań zawierających 768 zmiennych przy użyciu 3 328 wyrażeń liniowych i kwadratowych.
- Cały szyfr blokowy może być opisany przez 5104 równania zawierających 2816 zmiennych przy użyciu 14592 wyrażeń liniowych i kwadratowych.
- Liczba wolnych wyrażeń (wyrażenia, które mogą zostać zastąpione wartością z S-box podczas wykonywania funkcji S) wynosi 11696, co daje podobną ilość jak dla AES.

W sumie, algorytm generowania podkluczy (ang. *key schedule*) oraz szyfr blokowy, składają się z 6224 równań zawierających 3584 zmiennych, wykorzystując 17920 wyrażeń liniowych i kwadratowych. Takie właściwości, w przyszłości, mogą umożliwić złamanie Camelli (oraz AES) za pomocą ataku algebraicznego, pod warunkiem, że stanie się on wykonalny. Dodatkowo, wymaga to zwiększenia mocy obliczeniowej komputerów, niezbędnej do rozwiązania niezwykle rozbudowanych problemów matematycznych.

4. Kryptoanaliza i ataki

Fakt, mówiący o tym, że Camelia wykorzystywana jest w dziedzinach bazujących na wysokim bezpieczeństwie oraz korzystających z szeroko pojętego pojęcia kryptografii wskazuje na to, iż w tym przypadku przeprowadzono szereg kryptoanaliz oraz potencjalnych ataków. Źródła powstałe na początku XXI wieku [6] dowodzą, że Camelia nie zawiera żadnych istotnych wad, czy też słabości. Dzięki jego relatywnie prostej oraz konserwatywnej budowie wszelkie przeprowadzone kryptoanalizy nie były dość problematyczne. W wyniku tego zauważono odporność tego szyfru na kryptoanalizę różnicową oraz liniową (ang. *differential and linear cryptanalisis*). Dotychczasowo, tak jak już wspomniano, uzyskano wiele wyników pochodzących z przeróżnych kryptoanaliz dla zredukowanej liczby rund Camelli rozróżniając wielostronne podejścia:

- differential and linear cryptanalysis,
- truncated differential cryptanalysis,
- integral attack,
- meet-in-the-middle attack,
- collision attack,
- impossible differential cryptanalysis,
- zero-corelation linear cryptanalysis.

Większość przeprowadzonych ataków przed 2011 r. wykluczała warstwy FL/FL-1 oraz "whitening' w celu ułatwienia kryptoanalizy ("As a matter of fact, most attacks presented before 2011 excluded the FL/FL1and whitening layers to ease theoryptanalysis, whereas recent attacks aimed at reduced-roundCamellia with FL/FL1and/or whitening layers" [7]). Jednakże z czasem zaczęto poznawać interesujące właściwości tego szyfru w dużym stopniu związane z pomijanymi dotychczasowo warstwami. I w ten sposób wprowadzono w przypadku jednej z kryptoanaliz 7-rundowy "impossible differential of Camelia" zawierający warstwy FL/FL-1, dzięki czemu przedstawili ulepszone ataki na 10-rundową Camelie-128, 10-rundową Camelie-192 oraz 11-rundową Camelie-256 [8]. Kolejnym przykładem ataku wykorzystującego podane warstwy było skonstruowanie 7 i 8-rundowych "impossible differentials of Camelia"z warstawmi FL/FL-1, a następnie zaatakowanie 11-rundowej Camelia-128, 12-rundowa Camelia-192 oraz 13-rundowa Camelia-256 [9]. Przełomowym podejściem było wykorzystywanie zerokorelacyjnych liniowych "distingusiherów" z FL/FL-1 oraz techniki opartej na szybkiej transformacie Fouriera (ang. Fast Fourier Trans*form*) - FFT. Atak liniowy z zerową korelacją jest jedną z ostatnich metod kryptoanalizy wprowadzonych przez Bogdanowa oraz Rijmena[10]. Atak ten jest oparty na liniowych przybliżeniach z zerowa korelacją, co w znaczny sposób różni go od klasycznej liniowej kryptoanalizy, w przypadku której wykorzystywane są charakterystyki o wysokich korelacjach. Samą idee ataku liniowego o zerowej korelacji można uznać za projekcję niemożliwej kryptoanalizy różnicowej na kryptoanalizę liniową. Do skonstruowania liniowego "distinguishera" charakteryzującego się zerową korelacją przyjmuje się technikę miss-in-the-middle co jest wykorzystywane w przypadku "impossible differential cryptanalysis", Poprzez wykorzystanie zaprezentowanej powyżej techniki zauważono, iż istnieją pewne interesujące właściwości funkcji FL/FL-1 w przypadku szyfru Camellia. Mianowicie, wówczas wprowadzone zostają tzw. słabe klucze weakkeys, dzięki którym zaprezentowano pierwszy 8-rundowy zero-korelacyjny liniowy "distinguisher"dla Camelli z warstwami FL/FL-1. Otrzymane wyniki pokazują, że rozważane warstwy FL/FL-1 zawarte w analizowanym szyfrze nie są w stanie skutecznie oprzeć się liniowej kryptoanalizie z zerową korelacją w przypadku niektórych słabych kluczy, gdyż obecnie najlepszy liniowy "distinguisher"z zerową korelacją również charakteryzuje się 8-rundami[7].

Table 1 Summary of the attacks on Camellia with FL/FL⁻¹ and whitening layers

Key size	Cryptanalysis	Rounds	Data	Time (EN)	Memory, bytes
192	impossible differential	10	2 ¹²¹ CP	2 ^{175.3}	2 ^{155.2}
	impossible differential	10	2 ^{118.7} CP	2 ^{130.4}	2 ¹³⁵
	impossible differential	11 ^a	2 ^{112.64} CP	2 ^{146.54}	2 ^{141.64}
	impossible differential	11	2 ^{114.64} CP	2 ¹⁸⁴	2 ^{141.64}
	impossible differential	12	2123 CP	2187.2	2 ¹⁶⁰
	multidimensional zero-correlation	12	2125.7 KP	2188.8	2112.0
	zero-correlation	13 ^b	2 ¹²⁸ KP	2 ^{169.83}	2 ^{156.86}
256	higher-order differential	11	293 CP	2 ^{255.6}	2 ⁹⁸
	impossible differential	11	2 ¹²¹ CP	2 ^{206.8}	2 ¹⁶⁶
	impossible differential	11	2 ^{119.6} CP	2 ^{194.5}	2 ¹³⁵
	impossible differential	12ª	2121.12 CP	2 ^{202.55}	2142.12
	impossible differential	12	2 ^{116.17} CP	2 ²⁴⁰	2 ^{150.17}
	impossible differential	13	2123 CP	2 ^{251.1}	2 ²⁰⁸
	zero-correlation	14 ^b	2 ¹²⁸ KP	2233.72	2 ^{156.86}

CP: chosen plaintext; KP: known plaintext; and EN: encryptions aWeak keys under 2 bit conditions

bWeak keys under 15 bit conditions

Rysunek 4.1. Summary of the attacks on Camellia with FL/FL-1 and whitening layers

Pomimo potencjalnych "luk" skala prawdopodobieństwa skutecznego ataku jest mała, a wręcz niewspółmierna względem oferowanego bezpieczeństwa przez szyfr Camellia, w wyniku czego uważa się, iż faktyczne ataki na Camellię nie są praktycznie możliwe. Wymagałoby to przełomu w dziedzinie kryptoanaliz systemów szyfrujących. Jednakże nie jest to finalny, końcowy oraz niepodważalny wniosek. Uważa się, że sprecyzowana oraz odpowiednio długa kryptoanaliza może ujawnić właściwości, które dotychczasowo nie zostały wykryte.

5. Podsumowanie

Zwiększenie liczby połączeń w sieci powoduje rosnącą konieczność zabezpieczenia danych przed niepowołanym dostępem. Zapewnienie wysokiego poziomu bezpieczeństwa przy optymalnym czasie operacji osiągane są dzięki korzystaniu z szyfrowania symetrycznego w trybie blokowym, które jest jednym z fundamentalnych segmentów kryptografii.

Omówiony przez nas krypto-system Camellia, mimo iż został opracowany ponad dwadzieścia lat temu, to jest uważany za nowoczesny i bezpieczny szyfr w pełni przystosowany do współczesnych wymagań. Jako szyfr blokowy o 128-bitowym rozmiarze bloku i trzech możliwych rozmiarach klucza (128, 192, 256 bit) sprawdza się odpowiednio dla różnych zastosowań. Nawet przy użyciu opcji najmniejszego rozmiaru klucza, uważa się, że złamanie go poprzez atak brute-force na klucze przy użyciu obecnej technologii jest niewykonalne.

W tej pracy udało nam się omówić początki i powody powstania systemu Camellia. Przeanalizowany został sposób implementacji i specyfikacja algorytmu. Porównaliśmy wydajność i tryb pracy Camellii do najpopularniejszego systemu jakim jest AES. Na podstawie dostępnej dokumentacji i artykułów naukowych zbadaliśmy bezpieczeństwo algorytmu. Przeprowadzona została także kryptoanaliza wraz z odnotowaniem ataków jakie były przeprowadzone na ten krypto-system. Uważamy, że opisany przez nas algorytm Camellia jest równie dobrym wyborem jak rozpowszechniony i popularny AES. W szczególnych przypadkach może być niezastąpiony, a brak znacznej rozpoznawalności i zrozumienia systemu, może być dodatkowym atutem pod względem bezpieczeństwa.

We współczesnej technologii szyfrowanie symetryczne wciąż pełni niezwykle ważną rolę. Wraz z szyfrowaniem asymetrycznym zapewniania bezpieczeństwo i poufność podczas komunikacji użytkownika w sieci. Szczególnie ważne jest zwrócenie uwagi na tryb blokowy szyfrowania symetrycznego, który jest aktualnie powszechnie stosowany. Dzięki swojej wydajności i optymalizacji zapewnia użytkownikowi możliwość swobodnej i wydajnej wymiany danych. Camellia jest skutecznym i sprawdzonym rozwiązaniem, które w szczególnych przypadkach może stanowić ciekawą alternatywę dla bardziej rozpowszechnionych systemów.

Bibliografia

- [1] NTT Social Informatics Laboratories Information Security Technology Research Project, Dostęp zdalny (18.12.2022): https://info.isl.ntt.co.jp/crypt/eng/camellia/technology/reference.html.
- [2] M. Matsui, S. Moriai i J. Nakajima, *A Description of the Camellia Encryption Algorithm*, RFC 3713, kw. 2004. DOI: 10.17487/RFC3713. adr.: https://www.rfc-editor.org/info/rfc3713.
- [3] Camellia SZYFR BLOKOWY Z KLUCZEM SYMETRYCZNYM, Dostęp zdalny (18.12.2022): http://www.crypto-it.net/pl/symetryczne/camellia.html.
- [4] ., S. Moriai i M. Kanda, *Addition of Camellia Cipher Suites to Transport Layer Security* (TLS), RFC 4132, lip. 2005. DOI: 10.17487/RFC4132. adr.: https://www.rfc-editor.org/info/rfc4132.
- [5] Wikipedia, Camellia (cipher) Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Camellia%20(cipher)&oldid=1117477882, [Online; accessed 18-December-2022], 2022.
- [6] Analysis Of Camelia, Dostęp zdalny (18.12.2022): Zalacznik: Analaysis Of Camelia. pdf.
- [7] Improved zero-correlation linear cryptanalysis of reduced-round Camellia under weak keys. IET Information Security, Dostęp zdalny (18.12.2022): https://www.researchgate.net/publication/282895646_Improved_zero-correlation_linear_cryptanalysis_of_reduced-round_Camellia_under_weak_keys.
- [8] New impossible differential cryptanalysis of reduced-round camellia, Dostęp zdalny (18.12.2022): https://eprint.iacr.org/2011/017.pdf.
- [9] New observations on impossible differential cryptanalysis of reduced-round camellia, Dostęp zdalny (18.12.2022): https://www.iacr.org/archive/fse2012/75490090/75490090.pdf.
- [10] Linear Hulls with Correlation Zero and Linear Cryptanalysis of Block Ciphersa, Dostęp zdalny (18.12.2022): https://eprint.iacr.org/2011/123.pdf.