

D 1.	D	~ 1	C . 1 T	
Disciplina:	Programa	cao de l	Computadores I	
Discipilia	I I OSI allia	çuo uc	dompataaores	

Período: 2020.1

Avalição: LI - 2

Valor do Instrumento: 100

Data Final: 08/12/2020 12:00

Instruções:

- **1.** A lista de exercícios é individual. Em caso de plágio, a questão será desconsiderada.
- **2.** As soluções devem ser anexadas no Classroom até o prazo limite. Após o prazo limite a atividade não será mais aceita.
- **3.** Incluir como comentário no início de cada questão: Nome do aluno e o número da questão
- **4.** Escreva a sua resposta e anexe ao Classroom. Copie sua resposta e anexe como um novo documento no Classroom (um para cada questão) <u>ou</u> anexe o arquivo .c (outras extensões como cpp, zip ou rar não serão aceitas).
- **5.** Ao resolver as questões, tenha em mente as boas práticas de programação. Confira a indentação do código antes de enviar.

Ouestão 1:

Desenvolva um programa em C que leia dois vetores de inteiros A e B (sem repetições ou ordenação), ambos com 50 posições, gere e imprima um terceiro vetor C, contendo a interseção dos vetores A e B, isto é, os elementos que estão em ambos os vetores.

Exemplo da interseção de dois conjuntos com 10 elementos.

Exemplo com vetores de tamanho 10

Α	5	8	3	6	10	2	33	12	46	23
В	12	5	45	23	48	15	34	67	3	75
С	5	3	12	23						

Restrições:

- Sua função main deve conter apenas a definição dos vetores e chamadas de funções e procedimentos. Não use variáveis globais.
- Seu procedimento de impressão do vetor resultante deve imprimir apenas as posições ocupadas (somente os valores da interseção).

Questão 2:

Descreva os tipos de passagem de parâmetros, as diferenças, aplicações e como elas funcionam internamente. Apresente exemplos de uma função (ou procedimento) com cada tipo de passagem de parâmetro e os resultados da execução (nos parâmetros e no retorno do método, se houver).

Questão 3:

Desenvolva um algoritmo para "dobrar" um vetor de 100 posições de modo a convertê-lo em uma matriz de dimensões 10 × 10. Observe o exemplo abaixo, identifique a regra desta "dobra" e aplique-a em um vetor de 100 posições.

Exemplo:

Vetor com 16 posições é dobrado em uma matriz de 4x4

					-											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
_		_														

	1	2	3	4	
	8	7	6	5	4
7	9	10	11	12	
	16	15	14	13	1

Restrições:

- Não é permitido utilizar endereços calculados "manualmente" (Ex.: M[0][0] = V[0]; M[0][1] = V[1]; etc...).
- Sua função main deve conter apenas a definição da matriz e chamadas de funções e procedimentos.
- Não use variáveis globais.

Dica: Tente descobrir a regra que guia a "dobra". Quais linhas devem ser copiadas e quais devem ser modificadas?

Questão 4:

Escreva um programa em C que manipule um vetor de vinte números inteiros. Implemente funções para:

• Inserir elementos no vetor, mantendo sua ordenação. Não se esqueça de verificar se o vetor está cheio (desconsidere valores duplicados).

• Remover elementos no vetor, mantendo sua ordenação. Não se esqueça de verificar se o vetor está vazio e se o elemento a ser removido está contido no vetor (desconsidere valores duplicados).

	1	2	3	4	5				
,	5	0							
	Remove	er Z							
	1	2	3	4					
-		1	Valor loc	alizado.	Efetuar	remoçã	йo		
_			1	1					
	1		3	4	5				
	1	3	4	5					

• Imprimir o vetor (somente as posições ocupadas).

Regras e restrições:

- Seu programa deve inserir 15 números (lidos do teclado e sem nenhuma ordenação) e remover 15 números (os mesmos lidos, mas em qualquer ordem). A cada inserção e remoção, seu programa deve imprimir o vetor.
- A inserção, remoção e impressão devem ser implementados como funções ou procedimentos.
- Não use variáveis globais.

Questão 5:

O Diabetes é caracterizado pela deficiência total ou parcial na produção de insulina (hormônio produzido pelo pâncreas). A glicose é produto da digestão dos alimentos e é transformada em energia para o corpo trabalhar adequadamente. Sem insulina, a glicose não consegue entrar nas células, permanecendo no sangue. Esta permanência acarreta o aumento da concentração de glicose no sangue (hiperglicemia). Nesta fase, o corpo começa a manifestar sinais de que algo não vai bem.

O diagnóstico do diabetes é baseado principalmente em exames de sangue. Os exames mais comuns dosam o nível de glicose no sangue em jejum e duas horas após uma grande refeição (pós-prandial). A tabela abaixo apresenta valores de referência para estes exames:

Diagnóstico	Glicemia em Jejum	Glicemia Pós-prandial
Normal	Até 100 mg/dl	Até 140 mg/dl
Alterado	Acima de 101 mg/dl	Acima de 141mg/dl

Para confirmação do diagnóstico é necessário que uma das seguintes condições seja satisfeita:

- 1) Se em cinco medições **consecutivas** ambos os exames estão alterados;
- 2) Se em dez medições consecutivas um dos exames está alterado;
- 3) Se em quinze medições **quaisquer** um dos exames está alterado.

Escreva um programa em C, que leia os resultados de ambos os exames realizados em um intervalo de 30 dias consecutivos e imprima o diagnóstico seguido das médias da glicose em jejum e pós-prandial.

Exemplos:

Entrada	Saída
90 130	Normal
80 120	Jejum: 87,5
70 100	Pós-Prandial: 118,8
110 125	

Entrada	Saída
125 150	Alterado
103 188	Jejum: 141,3
137 200	Pós-Prandial: 182,5
200 192	

Restrições:

- Use funções ou procedimentos para avaliar cada uma das três condições.
- Use funções ou procedimentos para calcular as médias.
- Não use variáveis globais.