

Go, change the world

Academic year 2023-2024 (Even Sem) DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

22 nd July 2024	Maximum Marks	60 120 Min		
CS241AT	Duration			
Test-II	Staff: HKK/ASP/SMS/SGR/MI	NV		
	CS241AT	CS241AT Duration Test-II Staff: HKK/ASP/SMS/SGR/MI		

DISCRETE MATHEMATICAL STRUCTURES AND COMBINATORICS (Common to CSE, ISE & AIML)

(Common to CSE, ISE & AIMIL)									
	PART-A	Marks	BT	СО					
1.1	Let A={1, 2, 3, 4}. How many relations on A which are antisymmetric? How many relations on A which are neither reflexive nor irreflexive?	2	1	2					
1.2	Let R be the relation on the set $A=\{1, 2, 3, 4, 5\}$ containing the ordered pairs $R=\{(1, 3), (2, 4), (3, 1), (3, 5), (4, 3), (5, 1), (5, 2), (5, 4)\}$. Find R^4 .	2	2	1					
1.3	For the POSET (A,) where A={2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72} find the upper bounds, lower bounds, LUB and GLB of {2, 6, 9, 18}.	2	2	2					
1.4	How many ways can one distribute 4 distinct objects among 3 identical containers?	1	1	1					
1.5	If $A=\{1, 2, 3, 4, 5\}$ and there are 6720 injective functions f: $A \rightarrow B$, what is $ B $?	1	1	<u></u>					
1.6	Let $P(x, y)$ denote the sentence: x divides y. What are the truth values of $\forall x \exists y P(x, y), \forall x \forall y P(x, y)$, where the domain of x, y is the set $\{1, 2, 4, 6, 12\}$?	1	1	1					
1.7	Express the negation of the below statement so that all negation symbols immediately precede predicates. $\forall x \exists y(P(x, y) \rightarrow Q(x, y))$	1	1	1					
	PART-B								
2a.	For the following statement state the <i>converse</i> , <i>inverse</i> , and <i>contrapositive</i> . Also determine the truth value for the given statement, as well as the truth value for its <i>converse</i> , <i>inverse</i> , and <i>contrapositive</i> . "For all real numbers x, if $x^2+4x-21>0$, then $x>3$ or $x<-7$.	05	3	2					

2b.	Test the validity of the following argument: Some rational numbers are powers of 7.	05	4	3
	All integers are rational numbers.			,
•,	Some integers are power of 7.			
3a.	Let $A=\{1, 2, 3, 4\}$ and $R=\{(1, 2), (2, 3), (3, 4), (2, 1)\}$. Write the matrix for R. Find the R^{∞} by computing matrices for R^2 , R^3 ,	04	2	2
3b.	Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A. Prove the following. i. If aRb, then [a]=[b]. ii. [a]=[b] or [a]∩[b] = Ø. iii. Distinct equivalence classes of R form a partition of A.	06	4	1
4a.	Define POSET. Show that the set A={1, 2, 3, 6, 12, 15, 24, 36, 48} under the divisibility () operation forms a POSET. Draw the Hasse diagram for (A,)	05	2	2
4b.	 Let U={1, 2, 3, 4, 5, 6, 7}, with A=P(U) (power set of U), and R be the subset relation on A. For B={{1}, {2}, {2, 3}}⊆ A, determine each of the following. a) The number of upper bounds of B that contains 4 elements. b) The number of upper bounds that exists for B. c) The lub of B d) The number of lower bounds that exists for B. e) The glb of B. 	05	3	2
5a.	 i. Let f(x) =x³ and g(x) =x-1 for all real numbers x. Find g o f and f o g. Verify whether g o f equals f o g. ii. Let f, g: R→R, where g(x) =1-x+x² and f(x) =ax+b. If (g o f)(x)=9x²-9x+3, determine a and b. 		3	2
5b.	If f: $A \rightarrow B$ and g: $B \rightarrow C$ are invertible functions, then g o f: $A \rightarrow C$ is an invertible function and (g o f) ⁻¹ =f ⁻¹ o g ⁻¹ . Prove this.	06	4	3
6a.	Let $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$. Prove the following. i. If f and g are one-to-one, then g o f is one-to-one. ii. If f and g are onto, then g o f is onto. iii. (h o g) o f=h o (g o f).		4	3
6b.	Let $A=\{1, 2, 3, 4, 5\}$ and $B=\{6, 7, 8, 9, 10, 11, 12\}$. i. How many functions f: $A \rightarrow B$ are there? ii. How many functions are one-to-one? iii. How many functions f: $A \rightarrow B$ are such that $f^{-1}(\{6, 7, 8\})=\{1, 2\}$?	04	3	2

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

			31001113		,							
Marks Distribution	Párticulars	CO1	CO2	CO3	CO4	CO5	Ll	L2	L3	L4	L5	L6
	Max Marks	12	31	17	-	-	6	13	, 18:	23	1	-