Statistical Natural Language Processing Mathematical background: a refresher

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2018

Some practical remarks

(recap)

- Course web page: http://sfs.uni-tuebingen.de/~ccoltekin/courses/snlp
- Please complete Assignment 0
- Assignment 1 will be released this week

Some practical remarks

(recap)

- Course web page: http://sfs.uni-tuebingen.de/~ccoltekin/courses/snlp
- Please complete Assignment 0
- Assignment 1 will be released this week
- Reminder: there are Easter eggs (in the version presented in the class)

Today's lecture

- Some concepts from linear algebra
- A (very) short refresher on
 - Derivatives: we are interested in maximizing/minimizing (objective) functions (mainly in machine learning)
 - Integrals: mainly for probability theory

This is only a high-level, informal introduction/refresher.

Linear algebra

Linear algebra is the field of mathematics that studies *vectors* and *matrices*.

A vector is an ordered sequence of numbers

$$\mathbf{v} = (6, 17)$$

• A matrix is a rectangular arrangement of numbers

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$$

 A well-known application of linear algebra is solving a set of linear equations

Consider an application counting words in a document

 the	and	of	to	in	•••
121	106	91	83	43	

Consider an application counting words in a document

	the	and	of	to	in	•••	
(121	106	91	83	43)

Consider an application counting words in multiple documents

	the	and	of	to	in	•••	
document ₁	121	106	91	83	43		
document ₂	142	136	86	91	69		
document ₃	107	94	41	47	33		
•••	•••	•••	• • •	•••	•••		

You should already be seeing vectors and matrices here.

- Insights from linear algebra are helpful in understanding many NLP methods
- In machine learning, we typically represent input, output, parameters as vectors or matrices
- It makes notation concise and manageable
- In programming, many machine learning libraries make use of vectors and matrices explicitly
- In programming, vector-matrix operations correspond to loops
- 'Vectorized' operations may run much faster on GPUs, and on modern CPUs

Vectors

- A vector is an ordered list of numbers $\mathbf{v} = (v_1, v_2, \dots v_n)$,
- The vector of n real numbers is said to be in *vector space* \mathbb{R}^n ($\mathbf{v} \in \mathbb{R}^n$)
- In this course we will only work with vectors in \mathbb{R}^n
- Typical notation for vectors:

$$\mathbf{v} = \vec{\mathbf{v}} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{bmatrix}$$

• Vectors are (geometric) objects with a magnitude and a direction

Geometric interpretation of vectors

- Vectors (in a linear space) are represented with arrows from the origin
- The endpoint of the vector $\mathbf{v} = (v_1, v_2)$ correspond to the Cartesian coordinates defined by v_1, v_2
- The intuitions often (!) generalize to higher dimensional spaces

Vector norms

- The *norm* of a vector is an indication of its size (magnitude)
- The norm of a vector is the distance from its tail to its tip
- Norms are related to distance measures
- Vector norms are particularly important for understanding some machine learning techniques

L2 norm

- Euclidean norm, or L2 (or L₂) norm is the most commonly used norm
- For $v = (v_1, v_2)$,

$$\left\| \nu \right\|_2 = \sqrt{\nu_1^2 + \nu_2^2}$$

$$\|(3,3)\|_2 = \sqrt{3^2 + 3^2} = \sqrt{18}$$

• L2 norm is often written without a subscript: $\|v\|$

L1 norm

 Another norm we will often encounter is the L1 norm

$$\|v\|_1 = |v_1| + |v_2|$$

 $\|(3,3)\|_1 = |3| + |3| = 6$

 L1 norm is related to Manhattan distance

L_P norm

In general, L_P norm, is defined as

$$\|v\|_{p} = \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{\frac{1}{p}}$$

L_P norm

In general, L_P norm, is defined as

$$\left\|\boldsymbol{\nu}\right\|_{p} = \left(\sum_{i=1}^{n} |\nu_{i}|^{p}\right)^{\frac{1}{p}}$$

We will only work with than L1 and L2 norms, but L_0 and L_∞ are also common

Multiplying a vector with a scalar

• For a vector $\mathbf{v} = (v_1, v_2)$ and a scalar \mathbf{a} ,

$$a\mathbf{v} = (a\mathbf{v}_1, a\mathbf{v}_2)$$

 multiplying with a scalar 'scales' the vector

Vector addition and subtraction

For vectors
$$\mathbf{v} = (v_1, v_2)$$
 and $\mathbf{w} = (w_1, w_2)$

•
$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)$$

$$(1,2) + (2,1) = (3,3)$$

•
$$v - w = v + (-w)$$

$$(1,2)-(2,1)=(-1,1)$$

Dot product

• For vectors $w = (w_1, w_2)$ and $v = (v_1, v_2)$,

$$\boldsymbol{wv} = w_1 v_1 + w_2 v_2$$

or,

$$wv = ||w|| ||v|| \cos \alpha$$

- The *dot product* of two orthogonal vectors is 0
- $ww = ||w||^2$
- Dot product may be used as a similarity measure between two vectors

Cosine similarity

The cosine of the angle between two vectors

$$\cos \alpha = \frac{vw}{\|v\| \|w\|}$$

is often used as another similarity metric, called *cosine similarity*

- The cosine similarity is related to the dot product, but ignores the magnitudes of the vectors
- For unit vectors (vectors of length 1) cosine similarity is equal to the dot product
- The cosine similarity is bounded in range [-1, +1]

Matrices

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,m} \end{bmatrix}$$

- We can think of matrices as collection of row or column vectors
- A matrix with n rows and m columns is in $\mathbb{R}^{n \times m}$
- Most operations in linear algebra also generalize to more than 2-D objects
- A *tensor* can be thought of a generalization of matrices to multiple dimensions.

Matrices

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,m} \end{bmatrix}$$

- We can think of matrices as collection of row or column vectors
- A matrix with n rows and m columns is in $\mathbb{R}^{n \times m}$
- Most operations in linear algebra also generalize to more than 2-D objects
- A *tensor* can be thought of a generalization of matrices to multiple dimensions.

Transpose of a matrix

Transpose of a $n \times m$ matrix is an $m \times n$ matrix whose rows are the columns of the original matrix.

Transpose of a matrix \mathbf{A} is denoted with \mathbf{A}^{T} .

If
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$
, $\mathbf{A}^{\mathsf{T}} = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix}$.

Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

$$2\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 2 \times 2 & 2 \times 1 \\ 2 \times 1 & 2 \times 4 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 8 \end{bmatrix}$$

Matrix addition and subtraction

Each element is added to (or subtracted from) the corresponding element

$$\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix}$$

Note:

 Matrix addition and subtraction are defined on matrices of the same dimension

- if **A** is a $n \times k$ matrix, and **B** is a $k \times m$ matrix, their product **C** is a $n \times m$ matrix
- Elements of C, $c_{i,j}$, are defined as

$$c_{ij} = \sum_{\ell=0}^{k} a_{i\ell} b_{\ell j}$$

• Note: $c_{i,j}$ is the dot product of the i^{th} row of A and the j^{th} column of B

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} + \dots + a_{1k}b_{k2}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{1m} = a_{11}b_{1m} + a_{12}b_{2m} + \dots + a_{1k}b_{km}$$

$$\begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \end{pmatrix}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22} + \dots + a_{2k}b_{k2}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{2m} = a_{21}b_{1m} + a_{22}b_{2m} + \dots + a_{2k}b_{km}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{n2} = a_{n1}b_{12} + a_{n2}b_{22} + \dots + a_{nk}b_{k2}$$

$$\begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \end{pmatrix}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{nm} = a_{n1}b_{1m} + a_{n2}b_{2m} + \dots + a_{nk}b_{km}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

Dot product as matrix multiplication

In machine learning literature, the *dot product* of two vectors is often written as

$$w^{\mathsf{T}}v$$

For example, w = (2, 2) and v = (2, -2),

$$\begin{bmatrix} 2 & 2 \end{bmatrix} \times \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Dot product as matrix multiplication

In machine learning literature, the *dot product* of two vectors is often written as

$$w^{\mathsf{T}}v$$

For example, w = (2, 2) and v = (2, -2),

$$\begin{bmatrix} 2 & 2 \end{bmatrix} \times \begin{bmatrix} 2 \\ -2 \end{bmatrix} = 2 \times 2 + 2 \times -2 = 4 - 4 = 0$$

^{*} This notation is somewhat sloppy, since the result of matrix multiplication is not a scalar.

Outer product

The outer product of two column vectors is defined as

 vw^T

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} =$$

Outer product

The *outer product* of two column vectors is defined as

$$vw^T$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$

Note:

- The result is a matrix
- The vectors do not have to be the same length

Identity matrix

 A square matrix in which all the elements of the principal diagonal are ones and all other elements are zeros, is called identity matrix and often denoted I

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 Multiplying a matrix with the identity matrix does not change the original matrix

$$IA = A$$

Matrix multiplication as transformation

- Multiplying a vector with a matrix transforms the vector
- Result is another vector (possibly in a different vector space)
- Many operations on vectors can be expressed with multiplying with a matrix (linear transformations)

identity

- Identity transformation maps a vector to itself
- In two dimensions:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

stretch along the x axis

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Matrix-vector representation of a set of linear equations

Our earlier example set of linear equations

$$2x_1 + x_2 = 6$$

 $x_1 + 4x_2 = 17$

can be written as:

$$\underbrace{\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}}_{W} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 6 \\ 17 \end{bmatrix}}_{h}$$

One can solve the above equation using *Gaussian elimination* (we will not cover it today).

Inverse of a matrix

Inverse of a square matrix W is defined denoted W^{-1} , and defined as

$$WW^{-1} = W^{-1}W = I$$

The inverse can be used to solve equation in our previous example:

$$Wx = b$$

$$W^{-1}Wx = W^{-1}b$$

$$Ix = W^{-1}b$$

$$x = W^{-1}b$$

Determinant of a matrix

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

The above formula generalizes to higher dimensional matrices through a recursive definition, but you are unlikely to calculate it by hand. Some properties:

- A matrix is invertible if it has a non-zero determinant
- A system of linear equations has a unique solution if the coefficient matrix has a non-zero determinant
- Geometric interpretation of determinant is the (signed) changed in the volume of a unit (hyper)cube caused by the transformation defined by the matrix

Eigenvalues and eigenvectors of a matrix

An *eigenvector*, v and corresponding *eigenvalue*, λ , of a matrix A are defined as

$$Av = \lambda v$$

- Eigenvalues an eigenvectors have many applications from communication theory to quantum mechanics
- A better known example (and close to home) is Google's PageRank algorithm
- We will return to them while discussing PCA and SVD (and maybe more topics/concepts)

Derivatives

- Derivative of a function f(x) is another function f'(x) indicating the rate of change in f(x)
- Alternatively: $\frac{df}{dx}(x)$, $\frac{df(x)}{dx}$
- Example from physics: velocity is the derivative of the position
- Our main interest:
 - the points where the derivative is 0 are the stationary points (maxima / minima / saddle points)
 - the derivative evaluated at other points indicate the direction and steepness of the curve

Finding minima and maxima of a function

- Many machine learning problems are set up as optimization problems:
 - Define an error function
 - Learning involves finding the minimum error
- We search for f'(x) = 0
- The value of f'(x) on other points tell us which direction to go (and how fast)

Partial derivatives and gradient

- In ML, we are often interested in (error) functions of many variables
- A partial derivative is derivative of a multi-variate function with respect to a single variable, noted $\frac{\partial f}{\partial x}$
- A very useful quantity, called *gradient*, is the vector of partial derivatives with respect to each variable

$$\nabla f(x_1, \dots, x_n) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

- Gradient points to the direction of the steepest change
- Example: if $f(x, y) = x^3 + yx$

$$\nabla f(x, y) = (3x^2 + y, x)$$

Integrals

- Integral is the reverse of the derivative (anti-derivative)
- The indefinite integral of f(x) is noted $F(x) = \int f(x)dx$
- We are often interested in definite integrals

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

 Integral gives the area under the curve

Numeric integrals & infinite sums

- When integration is not possible with analytic methods, we resort to numeric integration
- This also shows that integration is 'infinite summation'

Summary & next week

- Some understanding of linear algebra and calculus is important for understanding many methods in NLP (and ML)
- See bibliography at the end of the slides if you need a 'more complete' refresher/introduction

Wed Python tutorial (continued)

Fri We will do a similar excursion to probability theory

Further reading

- A classic reference book in the field is Strang (2009)
- Shifrin and Adams (2011) and Farin and Hansford (2014) are textbooks with a more practical/graphical orientation.
- Cherney, Denton, and Waldron (2013) and Beezer (2014) are two textbooks that are freely available.
- A well-known (also available online) textbook for calculus is Strang (1991)
- Form more alternatives, see http://www.openculture.com/free-math-textbooks

Beezer, Robert A. (2014). A First Course in Linear Algebra. version 3.40. Congruent Press. ISBN: 9780984417551. URL: http://linear.ups.edu/.

Cherney, David, Tom Denton, and Andrew Waldron (2013). Linear algebra. math.ucdavis.edu. url: https://www.math.ucdavis.edu/~linear/.

Farin, Gerald E. and Dianne Hansford (2014). Practical linear algebra: a geometry toolbox. Third edition. CRC Press. ISBN: 978-1-4665-7958-3.

Further reading (cont.)

Shifrin, Theodore and Malcolm R Adams (2011). *Linear Algebra. A Geometric Approach*. 2nd. W. H. Freeman. ISBN: 978-1-4292-1521-3.

Strang, Gilbert (1991). "Calculus". In: Wellesley-Cambridge press. url:

https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/textbook/

Strang, Gilbert (2009). Introduction to Linear Algebra, Fourth Edition. 4th ed. Wellesley Cambridge Press. ISBN: 9780980232714.