Coming soon: PS7

Class 15: Proof of DFA = Reg-Fun

University of Virginia cs3120: DMT2

Wei-Kai Lin

Photo: Haris Angelidakis

Reg-Fun = DFA-Comp

Recall: Negation of regular expression

Given regular expression e.

• Is there a regular expression e' that matches string x if and only if e does not match x?

Yes! By Reg-Fun = DFA-Comp, and by negating DFA.

How to convert?

Reg-Fun ⊆ **DFA-Comp**

TCS, Section 6.4.2

For each DFA M, there is an equivalent regular expression e

Proof? Generic way to construct such M for all e.

Algorithm: input output

Proof idea 1: Consider only one Accept state (OR later)

Proof idea 2: Induction on subsets of states (see next

Proof idea 1: Consider only one Accept state (OR later)

Proof idea 2: Induction on subsets of states

For any M, let $\{0, 1, 2, ..., C - 1\} = [C]$ be states in M, let \mathbf{v} be the initial and \mathbf{w} be the accept state.

Let t be natural num. $t \in C$ Consider the subset $[t] = \{0,1,...,t-1\}$. Let L_t be the strings go from \underline{v} to \underline{w} only through [t]. Consider the subset $[t] = \{0,1,...,t-1\}.$

Let $L_t(v, w)$ be the strings go from v to w only through nodes in [t].

Induction predicate, P(t): There exists a regular expression e_t matches $L_t(v, w)$

Induction predicate, P(t):

There exists a regular expression e_t such that matches $L_t(v, w)$

Base case, P(0).

If
$$v = w$$
:

- 0 edge
 - $e_0:$
- 1 edge
 - e_0 :
- 2 edges
 - $e_0: (0 | 1)$

Induction predicate, P(t):

There exists a regular expression e_t such that matches $L_t(v, w)$

Base case, P(0).

If $v \neq w$:

- 0 edge
 - e_0 :
- 1 edge

$$e_0$$
:

• 2 edges

$$e_0: (0(1)$$

Induction predicate, P(t): There exists a regular expression e_t such that matches $L_t(v, w)$ Inductive case, P(t) holds. **Want P(t+1):** $L_t(v,t)$

 $L_{C}(v,\omega) \stackrel{=}{=}$ $\frac{2v,v}{L_{c}(w,w)} \Rightarrow e_{w,w}$ $Q = (e_{v,w})^{*}(e_{v,w}(e_{w,w})(e_{v,w}))$ $(e_{v,w})^{*}$ $(e_{v,w})^{*}$

DFA ⇒ Regular Expression

Example?

Next? Regular Expression ⇒ DFA

Through Non-deterministic Finite Automata (NFA)

Recall: Syntax of Regular Expressions

Definition 6.6 (Regular expression)

A regular expression e over an alphabet Σ is a string over $\Sigma \cup \{(,),|,*,\emptyset,""\}$ that has one of the following forms:

- 1. $e = \sigma$ where $\sigma \in \Sigma$
- 2. e = (e'|e'') where e', e'' are regular expressions.
- 3. e=(e')(e'') where e',e'' are regular expressions. (We often drop the parentheses when there is no danger of confusion and so write this as e' e''.)
- 4. $e = (e')^*$ where e' is a regular expression.

Finally we also allow the following "edge cases": $e = \emptyset$ and e = "". These are the regular expressions corresponding to accepting no strings, and accepting only the empty string respectively.

Base Cases are Easy

Recursive Case: OR

 $e=(e_1)|(e_2)$. Suppose we have corresponding DFA M_1 and M_2 for e_1 and e_2 .

How to make M for e?

Idea: the states of M is the product set of M_1 and M_2

Recursive Cases: Kleene Star

Hard: unclear how to splits string x in concat (and *). What's the **next state** (when accepted) in M_1 ? Concat is same.

Big Idea: Non-deterministic

$$e = (e_1)^*$$

Allow transition to multiple states (clearly, not DFA)

Accept if exist a path to accept

How should we change our DFA description to allow for *choices*?

A (deterministic) finite automaton is a

5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- 1. Q a finite set (the *states*)
- 2. Σ a finite set (the *alphabet*)
- 3. $\delta: Q \times \Sigma \to Q$ transition function
- 4. $q_0 \in Q$ the start state
- 5. $F \subseteq Q$ the set of accept states

A nondeterministic finite automaton is

a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- 1. Q a finite set (the *states*)
- 2. Σ a finite set (the *alphabet*)
- 3. $\delta: Q \times \Sigma \rightarrow pow(Q)$
- 4. $q_0 \in Q$ the start state
- 5. $F \subseteq Q$ the set of accept states