CS412 Office Hours

April 8, 2019

Covered Materials

- 1. Gini index calculation
- 2. Rainforest details
- 3. Bayesian network reasoning

Gini Index

- ☐ Gini index: Used in CART, and also in IBM IntelligentMiner
- \square If a data set D contains examples from n classes, gini index, gini(D) is defined as

$$\square gini(D) = 1 - \sum_{j=1}^{n} p_j^2$$

- \square p_i is the relative frequency of class j in D
- \square If a data set D is split on A into two subsets D_1 and D_2 , the gini index gini(D) is defined as

□ Reduction in Impurity:

□ The attribute which provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Computation of Gini Index: Binary Split

■ Example: D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

- □ Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂

$$= \frac{10}{14} \left(1 - \left(\frac{7}{10} \right)^2 - \left(\frac{3}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right) = 0.443$$

$$= Gini_{income \in \{high\}}(D)$$

- ☐ Gini_{low. high} is 0.458; Gini_{medium, high} is 0.450
- □ Thus, split on $income \in \{low, medium\}$ (i.e., also $\{high\}$) has the lowest Gini index

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Computation of Gini Index: Full Split

In the quiz questions, full split is used instead of binary split. If an attribute has K categories, we split the dataset into K partitions. In practice, binary split is used more often as it generally performs better.

Following the previous example, if we choose to split on income, we will have 3 partitions: D1 Low (4), D2 Medium (6) and D3 High (4).

The original gini index:
$$gini(D) = 1 - (\frac{9}{14})^2 - (\frac{5}{14})^2 = 0.459$$

<=30 hiah no no hiah excellent no no 31...40 high no fair ves medium fair yes >40 ves >40 excellent 31...40 low excellent <=30 medium fair no no <=30 ves fair ves fair medium ves yes medium excellent yes medium excellent yes yes

student credit rating

buys computer

Gini index after splitting:

$$\begin{aligned} gini_{income}(D) &= \frac{4}{14}gini_{income=low} + \frac{6}{14}gini_{income=med} + \frac{4}{14}gini_{income=high} \end{aligned} \\ &= \frac{4}{14}(1-(\frac{3}{4})^2-(\frac{1}{4})^2) + \frac{6}{14}(1-(\frac{4}{6})^2-(\frac{2}{6})^2) + \frac{4}{14}(1-(\frac{2}{4})^2-(\frac{2}{4})^2) \end{aligned}$$

Comments on the Programming Assignment

- 1. You can use either binary split or full split, both will pass the test. Full split is simplier to implement.
- 2. If your decision tree is overfitting, try to prune your tree using a validation set
 - a. Some simple ways to prune the tree include stop splitting when the number of datapoints at the node is smaller than k or stop growing the tree when the number of levels exceeds L.
- 3. If your decision tree is running too slow
 - a. Are you copying the dataset around?
 - b. Are you iterating through the entire dataset when you only need a partition?
 - c. Are you using libraries that are slow? (For example pandas)
 - d. It's ok if your code is not optimal. We will grade for output, not efficiency.

Using Decision Trees for Large Datasets: RainForest

- Our goal is to reduce the number of times we read/write from the disk where the database resides.
- RainForest decouples the "counting" process and the split criteria computation process.
- Database access only happens during the construction of the AVC-groups
- After we get the AVC-groups, we do not need to refer to the original data points anymore
- Any split criteria that can be computed with the AVC-groups alone can be used
 - a. For example, the MDL (minimum description length) cannot be directly applied as it can only be computed once the tree is built.

RainForest: A Scalable Classification Framework

- The criteria that determine the quality of the tree can be computed separately
- Builds an AVC-list: AVC (Attribute, Value, Class_label)
- **AVC-set** (of an attribute X)
 - Projection of training dataset onto the attribute X and class label where counts

of individual class label are aggregated

- **AVC-group** (of a node *n*)
 - Set of AVC-sets of all predictor attributes at node *n*
- Then read the data again & do it similarly to generate the next level of the tree

_		D O - 1			
	age	income	student	redit rating	com
	<=30	high	no	fair	no
	<=30	high	no	excellent	no
	3140	high	no	fair	yes
	>40	medium	no	fair	yes
	>40	low	yes	fair	yes
	>40	low	yes	excellent	no
	3140	low	yes	excellent	yes
	<=30	medium	no	fair	no
	<=30	low	yes	fair	yes
	>40	medium	yes	fair	yes
	<=30	medium	yes	excellent	yes
	3140	medium	no	excellent	yes
	3140	high	yes	fair	yes
	>40	medium	no	excellent	no

AVC-	set on A	lge		AVC-set	on <i>Inc</i>	come
Age	Buy_Computer		er	income	Buy_	Comp
	yes	no	_]		yes	no
<=30	2	3	_][high	2	2
3140	4	0	╝	medium	4	2
>40	3	2		low	3	1

Ave-set on student			AVC-SELC		Nutilig
student	Buy_	Computer	Credit	Buy_Computer	
	yes	no	rating	yes	no
yes	6	1	fair	6	2
no	3	4	excellent	3	3

Buy Computer

no

AVC-set on Credit Rating

Bayesian Network

- Bayesian network (or Bayesian belief network, probabilistic network):
 - Allows class conditional independencies between subsets of variables
 - Represents the joint distribution compactly in a factorized way
- Two components:
 - A directed acyclic graph (called a structure)
 - ☐ The **nodes** represent random variables, obser Nodes: random variables Links: dependency
 - ☐ The **edges** represent direct dependency between variables
 - A set of conditional probability tables (CPTs)
 - CPTs are attached to the nodes

Representing Joint Distribution with Bayesian Network

From the Bayesian network we can read the factorization of the joint distribution:

$$p(F, S, A, T) = p(F) \cdot p(T) \cdot p(S|F) \cdot p(A|F, T)$$

In general, we have the chain rule for Bayesian networks:

$$p(X) = \prod_{k} p(x_k | Parents(x_k))$$

Bayesian Network: An Example

Smoke=1	Smoke=0
0.9	0.1
0.01	0.99
	0.9

- ☐ The value of variable Fire influences variable Smoke
 - □ If $F=1 \rightarrow p(S=1|F=1) = 0.9$; if $F=0 \rightarrow p(S=1|F=0) = 0.01$

Bayesian Network: An Example

Fire=1	Fire=0
0.02	0.98

	Smoke=1	Smoke=0
Fire=1	0.9	0.1
Fire=0	0.01	0.99

- Evidential Reasoning:
 - ☐ The value of variable Smoke also influences Fire

If
$$S=1 \rightarrow p(F=1|S=1) = \frac{p(S=1|F=1)*p(F=1)}{p(S=1)} = 0.647$$
; if $S=0$, $p(F=1|S=0)=0.002$

$$\begin{split} s(F=1|S=1) &= \frac{p(S=1,F=1)}{p(S=1)} \\ &= \frac{p(S=1|F=1) \times p(F=1)}{\sum_f p(S=1,F)} \\ &= \frac{p(S=1|F=1) \times p(F=1)}{p(S=1|F=1) p(F=1) + p(S=1|F=0) p(F=0)} \\ &= \frac{0.9 \times 0.02}{0.9 \times 0.02 + 0.01 \times 0.98} \\ &= 0.647 \end{split}$$

$$P(A/B) = P(B/A) * P(A)/\sum_{a} P(B,a)$$

Bayesian Network: An Example

- Intercausal Reasoning:
 - The value of variable Fire does not influence Tampering
 - \Box p(T|F) = p(T), F and T are independent
 - However, observing Alarm makes Fire and Tampering coupled

P(A/B) = P(A,B)/P(B) $P(A/B) = P(B/A) * P(A)/\sum_{a} P(B,a)$

Fire

(F)

Tamper ing (T)

Alarm

Calculation

	Alarm=1	Alarm=0
F=1,T=1	0.5	0.5
F=1,T=0	0.99	0.01
F=0,T=1	0.85	0.15
F=0,T=0	0.0001	0.9999

Tampering=1	Tampering=0
0.1	0.9

$$p(T = 1|F = 1, A = 1) = \frac{p(T = 1, F = 1, A = 1)}{p(A = 1|F = 1)p(F = 1)}$$

$$= \frac{p(A = 1|F = 1, T = 1)p(F = 1)p(T = 1)}{p(A = 1|F = 1)p(F = 1)}$$

$$= \frac{p(A = 1|F = 1, T = 1)p(T = 1)}{\sum_{T} p(A = 1, T|F = 1)}$$

$$= \frac{0.5 \times 0.1}{0.5 \times 0.1 + 0.99 \times 0.9}$$

$$= 0.053$$

$$p(T = 1|F = 0, A = 1) = \frac{p(A = 1|T = 1, F = 0)p(T = 1)}{\sum_{T} p(A = 1, T|F = 0)}$$

$$= \frac{0.85 \times 0.1}{0.85 \times 0.1 + 0.001 \times 0.9}$$

$$= 0.9989 \sim 1.000$$

Fire

(F)

Tamper

ing (T

$$s(F = 1|S = 1) = \frac{p(S = 1, F = 1)}{p(S = 1)}$$

$$= \frac{p(S = 1|F = 1) \times p(F = 1)}{\sum_{f} p(S = 1, F)}$$

$$= \frac{p(S = 1|F = 1) \times p(F = 1)}{p(S = 1|F = 1) + p(S = 1|F = 0)p(F = 0)}$$

$$= \frac{0.9 \times 0.02}{0.9 \times 0.02 + 0.01 \times 0.98}$$

$$= 0.647$$

$$p(T = 1|F = 1, A = 1) = \frac{p(T = 1, F = 1, A = 1)}{p(A = 1|F = 1)p(F = 1)}$$

$$= \frac{p(A = 1|F = 1, T = 1)p(F = 1)}{p(A = 1|F = 1, T = 1)p(T = 1)}$$

$$= \frac{p(A = 1|F = 1, T = 1)p(T = 1)}{\sum_{T} p(A = 1, T|F = 1)}$$

$$= \frac{0.5 \times 0.1}{0.5 \times 0.1 + 0.99 \times 0.9}$$

$$= 0.053$$

$$p(T = 1|F = 0, A = 1) = \frac{p(A = 1|T = 1, F = 0)p(T = 1)}{\sum_{C = 1} p(A = 1, T|F = 0)}$$

$$= \frac{0.85 \times 0.1}{0.85 \times 0.1 + 0.001 \times 0.9}$$

$$= 0.9989 \sim 1.000$$