第二章 极限与连续

-、单项选择

1.	设 $x_n > 0$, 且	$\lim_{n\to\infty} x_n$ 存在,	则 $\lim_{n\to\infty} x_n$ ().
	(A) > 0	$(B) \ge 0$)	(C)

(C) = 0

(D) < 0

2. 极限 $\lim_{x\to 1} e^{\frac{1}{x-1}} = ($).

 $(A) \infty$

(B) 1

(C) 不存在

(D) 0

3. $\lim_{x\to 0} (1+x)^{-\frac{1}{x}} + \lim_{x\to \infty} x \sin\frac{1}{x} = ($

(A) e

(B) e^{-1}

(C) e+1 (D) $e^{-1}+1$

4. 下列运算过程正确的是(

(A)
$$\lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n+n} \right) = \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n+1} + \dots + \lim_{n \to \infty} \frac{1}{n+n} = 0 + 0 + \dots + 0 = 0$$

(B)
$$\stackrel{.}{=} x \to 0$$
 $\stackrel{.}{=} \lim_{x \to 0} \frac{x - x}{x^3} = \lim_{x \to 0} \frac{x - x}{x^3} = 0$
(C) $\stackrel{.}{=} x \to 0$ $\stackrel{.}{=} \lim_{x \to 0} \frac{x - x}{x^3} = \lim_{x \to 0} \frac{x - x}{x^3} = 0$

(C) 当
$$x \to 0$$
 时, $\tan x \sim x$, $\sin x \sim x$, 故 $\lim_{x \to 0} \frac{\sin 2x}{\sin 5x} = \lim_{x \to 0} \frac{2x}{5x} = \frac{2}{5}$

(D)
$$\stackrel{\text{def}}{=} x \to 0$$
 Im , $\tan x \sim x$, $\text{id} \lim_{x \to 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 - \tan x}}{x} = \lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x} = \lim_{x \to 0} \frac{2x}{(\sqrt{1 + x} + \sqrt{1 - x})x} = 1$

5. 没 0 < a < b, 则 $\lim_{n \to \infty} \sqrt[n]{a^n + b^n} = ($)

(A) 1

(B) 0

(C) a

(D) *b*

6. 设 f(x) 在 $(-1, 0) \cup (0, 1)$ 定义. 如果极限 $\lim_{x\to 0} f(x)$ 存在,则下列结论正确的是 ()

(A) f(x) 在 (-1,1) 有界;

(B) 存在正数 δ , f(x) 在 $(-\delta,0)\cup(0,\delta)$ 有界;

(C) f(x) 在 $(-1,0)\cup(0,1)$ 有界;

(D) 存在正数 δ , f(x) 在 $(-\delta, \delta)$ 有界.

(A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{1}{3}$ (D) $\frac{4}{3}$ 8. 若 $\lim_{x \to x_0} f(x)$ 存在, $\lim_{x \to x_0} g(x)$ 不存在, $\lim_{x \to x_0} f(x)$ 一定都不存在; (A) $\lim_{x \to x_0} [f(x) \cdot g(x)]$ 及 $\lim_{x \to x_0} \frac{g(x)}{f(x)}$ 一定都不存在; (B) $\lim_{x \to x_0} [f(x) \cdot g(x)]$ 及 $\lim_{x \to x_0} \frac{g(x)}{f(x)}$ 恰有一个存在, 而另一个不存在; (C) $\lim_{x \to x_0} [f(x) \cdot g(x)]$ 及 $\lim_{x \to x_0} \frac{g(x)}{f(x)}$ 都不一定存在. 9. 当 $x \to 0$ 时, 下列四个无穷小量中, 哪一个是比另三个更高阶的无穷小量(). (A) x^2 (B) $1 - \cos x$ (C) $\sqrt{1 - x^2} - 1$ (D) $x - \tan x$ 10. 当 $x \to 0$ 时, $1 - \cos 2x$ 与 x^2 相比是(). (A) 高阶无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 (C) 有界量非无穷小量 (D) 无界但非无穷大量 11. 当 $x \to 0$ 时, 下列函数中比 x 高阶的无穷小量是(). (A) $x + \sin x$ (B) $x - \sin x$ (C) $\ln(1 + x)$ (D) $\ln(1 - x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量 (D) (A) $f(x) + g(x)$ (B) $f(x) - g(x)$ (C) $f(x) \cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的 (D) 低阶无穷小。 (C) 等价无穷小。 (D) 低阶无穷小	7.	已知 $\lim_{x\to 0} \frac{f(x)}{x} = 2$,见	$\lim_{x \to 0} \frac{\sin 2x}{f(3x)} = ()$						
(A) $\lim_{x \to x_0} [f(x) \cdot g(x)] \not Q \lim_{x \to x_0} \frac{g(x)}{f(x)} - 定都不存在;$ (B) $\lim_{x \to x_0} [f(x) \cdot g(x)] \not Q \lim_{x \to x_0} \frac{g(x)}{f(x)} - 定都存在;$ (C) $\lim_{x \to x_0} [f(x) \cdot g(x)] \not Q \lim_{x \to x_0} \frac{g(x)}{f(x)} $			<i>3</i> ()	(C) $\frac{1}{3}$	(D) $\frac{4}{3}$				
(B) $\lim_{x \to x_0} [f(x) \cdot g(x)] \not \boxtimes \lim_{x \to x_0} \frac{g(x)}{f(x)}$ 一定都存在; (C) $\lim_{x \to x_0} [f(x) \cdot g(x)] \not \boxtimes \lim_{x \to x_0} \frac{g(x)}{f(x)}$ 恰有一个存在,而另一个不存在; (D) $\lim_{x \to x_0} [f(x) \cdot g(x)] \not \boxtimes \lim_{x \to x_0} \frac{g(x)}{f(x)}$ 都不一定存在. 9. 当 $x \to 0$ 时,下列四个无穷小量中,哪一个是比另三个更高阶的无穷小量(). (A) x^2 (B) $1 - \cos x$ (C) $\sqrt{1 - x^2} - 1$ (D) $x - \tan x$ 10. 当 $x \to 0$ 时, $1 - \cos 2x = x^2$ 相比是(). (A) 高阶无穷小量 (B) 同阶但不等价的无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 11. 当 $x \to 0$ 时, $\frac{1}{x^2} \sin \frac{1}{x}$ 是(). (A) 无穷小量 (B) 无穷大量 (D) 无穷大量 (D) 无界但非无穷大量 12. 当 $x \to 0$ 时,下列函数中比 x 高阶的无穷小量是(). (A) $x + \sin x$ (B) $x - \sin x$ (C) $\ln(1 + x)$ (D) $\ln(1 - x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量 (). (A) $f(x) + g(x)$ (B) $f(x) - g(x)$ (C) $f(x) \cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的 (). (A) 高阶无穷小,但不等价	8.	若 $\lim_{x \to x_0} f(x)$ 存在, $\lim_{x \to x_0} f(x)$	$\underset{\rightarrow x_0}{m} g(x)$ 不存在,则().					
(C) $\lim_{x \to x_0} [f(x) \cdot g(x)] \not \boxtimes \lim_{x \to x_0} \frac{g(x)}{f(x)}$ 恰有一个存在,而另一个不存在; (D) $\lim_{x \to x_0} [f(x) \cdot g(x)] \not \boxtimes \lim_{x \to x_0} \frac{g(x)}{f(x)}$ 都不一定存在. 9. 当 $x \to 0$ 时,下列四个无穷小量中,哪一个是比另三个更高阶的无穷小量(). (A) x^2 (B) $1 - \cos x$ (C) $\sqrt{1 - x^2} - 1$ (D) $x - \tan x$ 10. 当 $x \to 0$ 时, $1 - \cos 2x = x^2$ 相比是(). (A) 高阶无穷小量 (B) 同阶但不等价的无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 (D) 等价无穷小量 (D) 等价无穷小量 (D) 无穷小量 (D) 无穷人量 (D) 无穷人。 (E) $x \to 0$ 时,下列函数中比 x 高阶的无穷小量是(). (A) $x + \sin x$ (B) $x - \sin x$ (C) $x \to 0$ 时,可函数中哪一个也必是无穷大量(). (A) $x \to 0$ 时, $x \to 0$ 日, $x \to 0$ 时, $x \to 0$ 可, $x \to 0$			3 ()						
(D) $\lim_{x \to x_0} [f(x) \cdot g(x)] \not b \lim_{x \to x_0} \frac{g(x)}{f(x)}$ 都不一定存在. 9. 当 $x \to 0$ 时,下列四个无穷小量中,哪一个是比另三个更高阶的无穷小量(). (A) x^2 (B) $1 - \cos x$ (C) $\sqrt{1 - x^2} - 1$ (D) $x - \tan x$ 10. 当 $x \to 0$ 时, $1 - \cos 2x$ 与 x^2 相比是(). (A) 高阶无穷小量 (B) 同阶但不等价的无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 (C) 有界量非无穷小量 (D) 无界但非无穷大量 (C) 有界量非无穷小量 (D) 无界但非无穷大量 12. 当 $x \to 0$ 时,下列函数中比 x 高阶的无穷小量是(). (A) $x + \sin x$ (B) $x - \sin x$ (C) $\ln(1 + x)$ (D) $\ln(1 - x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量(). (A) $f(x) + g(x)$ (B) $f(x) - g(x)$ (C) $f(x) \cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的(). (A) 高阶无穷小,但不等价		(B) $\lim_{x \to x_0} [f(x) \cdot g(x)]$ 及 $\lim_{x \to x_0} \frac{g(x)}{f(x)}$ 一定都存在;							
9. 当 $x \to 0$ 时,下列四个无穷小量中,哪一个是比另三个更高阶的无穷小量(). (A) x^2 (B) $1-\cos x$ (C) $\sqrt{1-x^2}-1$ (D) $x-\tan x$ 10. 当 $x \to 0$ 时, $1-\cos 2x$ 与 x^2 相比是(). (A) 高阶无穷小量 (B) 同阶但不等价的无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 11. 当 $x \to 0$ 时, $\frac{1}{x^2}\sin\frac{1}{x}$ 是() (A) 无穷小量 (D) 无界但非无穷大量 12. 当 $x \to 0$ 时,下列函数中比 x 高阶的无穷小量是(). (A) $x+\sin x$ (B) $x-\sin x$ (C) $\ln(1+x)$ (D) $\ln(1-x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量 (). (A) $f(x)+g(x)$ (B) $f(x)-g(x)$ (C) $f(x)\cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1-\cos 3x$ 是 x^2 的(). (B) 同阶无穷小,但不等价		(C) $\lim_{x \to x_0} [f(x) \cdot g(x)]$ 及 $\lim_{x \to x_0} \frac{g(x)}{f(x)}$ 恰有一个存在,而另一个不存在;							
(A) x^2 (B) $1-\cos x$ (C) $\sqrt{1-x^2}-1$ (D) $x-\tan x$ 10. 当 $x\to 0$ 时, $1-\cos 2x$ 与 x^2 相比是(). (A) 高阶无穷小量 (B) 同阶但不等价的无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 11. 当 $x\to 0$ 时, $\frac{1}{x^2}\sin\frac{1}{x}$ 是() (A) 无穷小量 (B) 无穷大量 (C) 有界量非无穷小量 (D) 无界但非无穷大量 12. 当 $x\to 0$ 时, 下列函数中比 x 高阶的无穷小量是(). (A) $x+\sin x$ (B) $x-\sin x$ (C) $\ln(1+x)$ (D) $\ln(1-x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量(). (A) $f(x)+g(x)$ (B) $f(x)-g(x)$ (C) $f(x)\cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x\to 0$ 时, $1-\cos 3x$ 是 x^2 的(). (A) 高阶无穷小 (B) 同阶无穷小,但不等价									
10. 当 $x \to 0$ 时, $1 - \cos 2x$ 与 x^2 相比是 (). (A) 高阶无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 11. 当 $x \to 0$ 时, $\frac{1}{x^2} \sin \frac{1}{x}$ 是 () (A) 无穷小量 (D) 无穷大量 (D) 无穷大量 (D) 无界但非无穷大量 12. 当 $x \to 0$ 时, 下列函数中比 x 高阶的无穷小量是 (). (A) $x + \sin x$ (B) $x - \sin x$ (C) $\ln(1 + x)$ (D) $\ln(1 - x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量 (). (A) $f(x) + g(x)$ (B) $f(x) - g(x)$ (C) $f(x) \cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的 (). (A) 高阶无穷小	9.	当 $x \rightarrow 0$ 时, 下列四	个无穷小量中,哪一	个是比另三个更高阶	介的无穷小量().				
(A) 高阶无穷小量 (C) 低阶无穷小量 (D) 等价无穷小量 (D) 等价无穷小量 (D) 等价无穷小量 (D) 等价无穷小量 (E) 无穷大量 (C) 有界量非无穷小量 (D) 无界但非无穷大量 (D) 无界但非无穷大量 (E) 加(1+x) (D) 加(1-x) (E) 加(1+x) (D) 加(1-x) (E) 加(1+x) (D) 加(1-x) (E) 加(1+x) (E) 加(1-x) (E) 加(1+x) (E) 加(1-x) (E) 加(1-x)		(A) x^2	(B) $1-\cos x$	(C) $\sqrt{1-x^2}-1$	(D) $x - \tan x$				
(C) 低阶无穷小量 (D) 等价无穷小量 11. 当 $x \to 0$ 时, $\frac{1}{x^2} \sin \frac{1}{x}$ 是() (A) 无穷小量 (B) 无穷大量 (C) 有界量非无穷小量 (D) 无界但非无穷大量 12. 当 $x \to 0$ 时,下列函数中比 x 高阶的无穷小量是(). (A) $x + \sin x$ (B) $x - \sin x$ (C) $\ln(1 + x)$ (D) $\ln(1 - x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量(). (A) $f(x) + g(x)$ (B) $f(x) - g(x)$ (C) $f(x) \cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的(). (A) 高阶无穷小 (B) 同阶无穷小,但不等价	10	. 当 $x \rightarrow 0$ 时, $1-co$	s2x 与 x ² 相比是 ().					
11. 当 $x \to 0$ 时, $\frac{1}{x^2} \sin \frac{1}{x}$ 是() (A) 无穷小量 (B) 无穷大量 (C) 有界量非无穷小量 (D) 无界但非无穷大量 12. 当 $x \to 0$ 时,下列函数中比 x 高阶的无穷小量是(). (A) $x + \sin x$ (B) $x - \sin x$ (C) $\ln(1 + x)$ (D) $\ln(1 - x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量(). (A) $f(x) + g(x)$ (B) $f(x) - g(x)$ (C) $f(x) \cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的(). (A) 高阶无穷小 (B) 同阶无穷小,但不等价					的无穷小量				
(A) 无穷小量 (C) 有界量非无穷小量 (D) 无界但非无穷大量 (D) 无界但非无穷大量 (E) $x \to 0$ 时,下列函数中比 x 高阶的无穷小量是(). (A) $x + \sin x$ (B) $x - \sin x$ (C) $\ln(1 + x)$ (D) $\ln(1 - x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量(). (A) $f(x) + g(x)$ (B) $f(x) - g(x)$ (C) $f(x) \cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的(). (A) 高阶无穷小 (B) 同阶无穷小,但不等价		(C) 低阶无穷小量		(D) 等价无穷小量					
(C) 有界量非无穷小量 (D) 无界但非无穷大量 (D) 无界但非无穷大量 (D) 无界但非无穷大量 (D) 无界但非无穷大量 (D) 加(1- x) (D) $x \to 0$ 时,下列函数中比 x 高阶的无穷小量是 (D) $x \to 0$ 的 $x \to 0$ 的, $x \to 0$	11.	. 当 $x \to 0$ 时, $\frac{1}{x^2}$ sin	$\frac{1}{x}$ 是()						
12. 当 $x \to 0$ 时,下列函数中比 x 高阶的无穷小量是(). (A) $x + \sin x$ (B) $x - \sin x$ (C) $\ln(1 + x)$ (D) $\ln(1 - x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量(). (A) $f(x) + g(x)$ (B) $f(x) - g(x)$ (C) $f(x) \cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的(). (A) 高阶无穷小 (B) 同阶无穷小,但不等价		(A) 无穷小量		(B) 无穷大量					
(A) $x + \sin x$ (B) $x - \sin x$ (C) $\ln(1+x)$ (D) $\ln(1-x)$ 13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量(). (A) $f(x) + g(x)$ (B) $f(x) - g(x)$ (C) $f(x) \cdot g(x)$ (D) $\frac{f(x)}{g(x)}$ 14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的(). (A) 高阶无穷小 (B) 同阶无穷小,但不等价		(C) 有界量非无穷	小量	(D) 无界但非无穷。	大量				
 13. 设在某个极限过程中函数 f(x) 与 g(x) 均是无穷大量,则下列函数中哪一个也必是无穷大量(). (A) f(x)+g(x) (B) f(x)-g(x) (C) f(x)·g(x) (D) f(x)/g(x) 14. x→0时,1-cos3x 是 x²的(). (A) 高阶无穷小 (B) 同阶无穷小,但不等价 	12.	. 当 <i>x</i> → 0 时, 下列 i	函数中比 x 高阶的无	穷小量是().					
必是无穷大量 (). (A) $f(x)+g(x)$		(A) $x + \sin x$	(B) $x - \sin x$	(C) $ln(1+x)$	(D) $ln(1-x)$				
 14. x→0时,1-cos3x 是 x² 的(). (A) 高阶无穷小 (B) 同阶无穷小,但不等价 	13.) 均是无穷大量,则	下列函数中哪一个也				
(A) 高阶无穷小 (B) 同阶无穷小, 但不等价		(A) f(x) + g(x)	(B) $f(x)-g(x)$	(C) $f(x) \cdot g(x)$	(D) $\frac{f(x)}{g(x)}$				
	14	$x \rightarrow 0$ 时, $1 - \cos 3$	<i>x</i> 是 <i>x</i> ² 的 ().						
					不等价				

15.
$$x = 1 \not\equiv f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} e^{\frac{1}{x - 1}} & x \neq 1 \\ 0 & x = 1 \end{cases}$$
 的 ()

- (A) 连续点
- (B) 跳跃间断点 (C) 可去间断点 (D) 无穷间断点

16.
$$y = \frac{\sqrt{x-3}}{(x+1)(x+2)}$$
 的连续区间是 ()

- (A) $(-\infty, -2) \cup (-2, -1) \cup (-1, +\infty)$ (B) $[3, +\infty)$
- $(C)(-\infty,-2)\cup(-2,+\infty)$
- (D) $(-\infty, -1) \cup (-1, +\infty)$

17. 设
$$f(x) = \begin{cases} \frac{\sin x}{x - x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 , 则 $f(x)$ 的间断点个数为 () .

- (A) 0

18. 设
$$f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 为连续函数,则 $k = ($)

- (A) 1

- (D) 3

19. 函数
$$f(x) = \begin{cases} x & x \le 0 \\ e^{\frac{1}{x}} & x > 0 \end{cases}$$
 在点 $x = 0$ 处是否连续?()

(A) 连续

- (B) 不连续, 因为无定义
- (C) 不连续, 因为极限不存在
- (D) 前面都不对

20. 要使
$$f(x) = (1 + x^2)^{-\frac{2}{x^2}}$$
 在 $x = 0$ 处连续, 应补充定义 $f(0)$ 的值为 ().

- (A) 0
- (B) e^{-2}
- (C) e^{-4}
- (D) e^{-1}

二、填空题

1. 设
$$\lim_{x\to\infty} \frac{(x-1)(x-2)(x-3)(x-4)}{(4x-1)^{\alpha}} = \beta$$
,则 α , β 的值是______.

2. 若
$$a > 0$$
, $b > 0$ 均为常数, 则 $\lim_{x \to 0} \left(\frac{a^x + b^x}{2} \right)^{\frac{3}{x}} = \underline{\qquad}$

3.
$$\lim_{x \to 1} (1-x) \tan \frac{\pi x}{2} = \underline{\hspace{1cm}}$$

- **4.** 设 P(x) 是 x 的多项式, 且 $\lim_{x\to\infty} \frac{P(x)-6x^3}{x^2} = 2$, $\lim_{x\to0} \frac{P(x)}{x} = 3$, 则 P(x) =______.
- **5.** $\lim_{x \to \infty} \left(1 \frac{2}{x}\right)^{\frac{x}{3}} = \underline{\qquad}$
- 7. 设 $f(x) = x \sin \frac{2}{x} + \frac{\sin x}{x}$, 则 $\lim_{x \to \infty} f(x) =$ ______.
- 8. $\lim_{x\to 0} \frac{x^2 + \sin^3 x \cdot \sin\frac{1}{x}}{3x^2} = \underline{\hspace{1cm}}$
- 9. $\lim_{n\to\infty} \left(\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)}\right) = \underline{\hspace{1cm}}$
- **10.** $\lim_{x \to +\infty} (\arcsin(\sqrt{x^2 + x} x)) =$ _____.
- 11. $\lim_{x \to \infty} x \sin \frac{2x}{1 + x^2} = \underline{\hspace{1cm}}$
- **12.** 当 $x \to 0$ 时, $2x^2 + 3x^{\frac{5}{2}}$ 是关于 x 的 _______ 阶无穷小.
- **13.** 当 $x \to 0$ 时, $\sqrt{1-3x} = 1 + ax + bx^2 + o(x^2)$, 则 a 和 b 的值分别为______.
- **14.** 当 $x \to 0$ 时, $2\sin x \sin 2x$ 与 x^k 是等价无穷小量, 则 $k = _____.$
- **15.** 函数 $y = \frac{\sqrt{1+x}}{(x-1)(x+2)}$ 的间断点是_____.
- **16.** 设函数 $y = \begin{cases} (1-x)^{\frac{3}{x}} & x \neq 0 \\ K & x = 0 \end{cases}$ 在 x = 0 处连续, 则参数 K =______.
- **17.** 函数 $f(x) = \begin{cases} x+a & x \le 0 \\ e^x+1 & x > 0 \end{cases}$ 在点 x = 0 处连续,则 a =_______

18. 设函数
$$f(x) = \begin{cases} \frac{2\sin 2x}{x} & x < 0 \\ a & x = 0 \text{ 在 } x = 0 \text{ 处间断, 则 } a \\ \frac{\ln(1+4x)}{x} & x > 0 \end{cases}$$

19. 函数
$$f(x) = \frac{\sqrt{x^2 - 4}}{x - 2}$$
 的连续区间是______.

20.
$$x = 1$$
 是函数 $f(x) = \arctan \frac{1}{1-x}$ 的______.

三、计算题

- 1. 求极限 $\lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{\tan x}$.
- 2. $\lim_{x \to \infty} \left(\frac{x-1}{x+3} \right)^{x+2}$
- 3. $\lim_{x\to 0} \frac{\tan x \sin x}{x^3}$
- **4.** $\lim_{x \to +\infty} (\sqrt{x^2 + 2x + 2} \sqrt{x^2 2x + 2})$
- **5.** $\lim_{x \to \infty} \left(\arctan x \cdot \arcsin \frac{1}{x} \right)$
- **6.** $x_n = \frac{1}{3} + \frac{1}{15} + \dots + \frac{1}{4n^2 1}, \ \Re \lim_{n \to \infty} x_n.$
- 7. $\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n}\right)$
- **9.** 已知 $\lim_{x \to \infty} f(x)$ 存在,且 $f(x) = x^2 (e^{-\frac{1}{x^2}} 1) + \frac{2x^2}{\sqrt{1 + x^4}} \cdot \lim_{x \to \infty} f(x)$,求 $\lim_{x \to \infty} f(x)$

- (1) 求 f(x) 在点 x = 0 的左、右极限;
- (2) 当 a 和 k 取何值时, f(x) 在点 x = 0 连续?

四、综合与应用题

- 1. 讨论极限 $\lim_{x\to 0} \frac{|\sin x|}{x}$.
- **2.** 若 $\lim_{x \to x_0} g(x) = 0$, 且在 x_0 的某去心邻域内 $g(x) \neq 0$, $\lim_{x \to x_0} \frac{f(x)}{g(x)} = A$, 则 $\lim_{x \to x_0} f(x)$ 必等于 0, 为什么?
- **3.** 设 $f(x) = \frac{x}{\tan \frac{x}{2}}$, 问: 当 x 趋于何值时, f(x) 为无穷小.
- **4.** 确定 $f(x) = \frac{\sin \pi x}{x(x-1)}$ 的间断点, 并判定其类型.
- **5.** $\bar{x} y = \frac{x^2 1}{x^2 3x + 2}$ 的间断点,并判别间断点的类型.
- **6.** 求函数 $y = 6x + \frac{1}{x}$ 的连续区间, 若有间断点, 试指出间断点的类型.
- 7. 讨论函数 $f(x) = \lim_{t \to x} \left(\frac{x-1}{t-1} \right)^{\frac{t}{x-t}}$ 的连续性.
- 8. 讨论函数 $f(x) = \begin{cases} \cos x & x \ge 0 \\ x+1 & x < 0 \end{cases}$ 在点 x = 0 处的连续性.
- **9.** 设函数 $y = f(x) = \begin{cases} \frac{\sqrt{a} \sqrt{a x}}{x} & x < 0 \\ \frac{\cos x}{x + 2} & x \ge 0 \end{cases}$ (a > 0)
 - (1) 当 a 取何值时, 点 x = 0 是函数 f(x) 的间断点? 是何种间断点?
 - (2) 当 a 取何值时, 函数 f(x) 在 $(-\infty + \infty)$ 上连续? 为什么?
- **10.** 求函数 $f(x) = \lim_{n \to \infty} \frac{x(x^{2n} 1)}{x^{2n} + 1}$ 的解析式, 并判断它的间断点及其类型.

五、分析与证明题

1. 用函数极限的定义证明 $\lim_{x\to -\frac{1}{2}} \frac{1-4x^2}{2x+1} = 2$.

- **2.** 设 $x \to x_0$ 时, $\alpha(x)$ 与 $\beta(x)$ 是等价无穷小,且 $\lim_{x \to x_0} \alpha(x) f(x) = A$. 证明 $\lim_{x \to x_0} \beta(x) f(x) = A$.
- **3.** 设 f(x), g(x) 为连续函数, 试证明 $M(x) = \max\{f(x), g(x)\}$ 也是连续函数.
- **4.** 设函数 f(x) 在 $(-\infty, +\infty)$ 上有定义, 且在点 x = 0 处连续, 又对任意的 x_1 和 x_2 , 有 $f(x_1 + x_2) = f(x_1) + f(x_2)$. 证明: f(x) 在 $(-\infty, +\infty)$ 内连续.
- **5.** 证明方程 $x = a \sin x + 2$ (a > 0) 至少有一个正根, 并且不超过 a + 2.