Idealer oder theoretischer offener GT-Kreislauf ohne Wärmetausch, d.h. JOULE-Prozeß mit Luft.

a)
$$\eta_{A,th} = 1 - (1/\pi)^{(\kappa-1)/\kappa}$$
 (Ergänzung 13)
mit $\pi = 8.5$ und $\kappa = 1.4$ wird
 $\eta_{A,th} = 1 - (1/8.5)^{(1.4-1)/1.4} = 0.457$

b) Nach Ergänzung 13 auf der CD (abgekürzt Erg.13)

$$\widehat{w}_{t,s} = \frac{w_{t,s}}{\overline{o}_{p} \cdot T_{1}} = \frac{T_{3}}{T_{1}} \cdot \left[1 - \frac{1}{\pi(x-1)/x} \right] - \left[\pi^{(x-1)/x} - 1 \right]$$

$$\text{Mit } T_{1} = 20 + 273 = 293 \text{ K}$$

$$\text{und } T_{3} = 900 + 273 = 1173 \text{ K} \quad \text{wird}$$

$$\widehat{w}_{t,s} = \frac{1173}{293} \cdot \left[1 - \frac{1}{8,5(1,4-1)/1,4} \right] - \left[8,5(1,4-1)/1,4-1 \right]$$

$$\widehat{w}_{t,s} = 0.988$$

Nach Tafel 14 bei 20 °C $c_p \approx 1,005 \text{ kJ/kgK}$ und aus Tafel 19 bei 900 °C $c_p \approx 1,170 \text{ kJ/kgK}$ Angen. $\overline{c}_p \approx (c_{p,20} + c_{p,900})/2 \approx 1,088 \text{ kJ/kgK}$ (vergleiche auch Tafel 16). Damit aus $\widehat{w}_{t,s}$:

$$w_{t,s} = \hat{w}_{t,s} \cdot \bar{c}_{p} \cdot T_{1} = 0.988 \cdot 1.088 \cdot 293$$
 [(kJ/kgK)·K]
 $w_{t,s} = 314.96 \text{ kJ/kg}$

Oder bei c_p = konst = 1,005 kJ/(kg%) wäre $w_{t,s}$ = 0,988-1,005-293 = 290,93 kJ/kg Abweichung also etwa 8 % bzw.

$$w_{t,s} = w_{t,s,T} - w_{t,s,K}$$
 Hierbei
 $w_{t,s,T} = \frac{x}{x-1} \cdot R \cdot T_3 \cdot \left[1 - (1/\pi)^{(x-1)/x}\right]$

$$w_{t,s,T} = \frac{1.4}{1.4-1} \cdot 287 \cdot 1173 \cdot \left[1 - (1/8,5)^{(1,4-1)/1.4}\right]$$

$$\begin{bmatrix} J/kgK \cdot K \end{bmatrix}$$

 $w_{t,s,T} = 538,99 \cdot 10^3 \text{ J/kg} = 538,99 \text{ kJ/kg}$

$$w_{t,s,K} = \frac{x}{x-1} \cdot R \cdot T_1 \cdot \left[\pi^{(x-1)/x} - 1 \right]$$

$$w_{t,s,K} = \frac{1.4}{1.4-1} \cdot 287 \cdot 293 \cdot \left[8.5^{(1.4-1)/1.4} - 1 \right] \left[\frac{J}{\text{kgK}} \cdot K \right]$$

 $W_{t,s,K} = 248,14 \cdot 10^3 \text{ J/kg} = 248,14 \text{ kJ/kg}$

Mit den Werten ergibt sich:

w_{t,s} = 538,99 - 248,14 = 290,85 kJ/kg (wie zuvor!)
Vergleich:

c) Aus Ab. 17-13: $T_{2,s} = T_1 \cdot \pi^{(x-1)/x} = 293 \cdot 8.5^{(1,4-1)/1,4} [K]$ $T_{2,s} = 540 \text{ K} \longrightarrow t_{2,s} = 267 ^{\circ}\text{C}$

d)
$$T_{4,s} = T_3/\pi^{(\varkappa-1)/\varkappa} = 1173/8,5^{(1,4-1)/1,4} [K]$$

 $T_{4,s} = 636,4 \text{ K} \longrightarrow t_{4,s} = 363,4 \text{ °C}$

e) $P_s = \dot{n} \cdot w_{t,s} = 28 \cdot 314,96 \, \text{[kg/s]} \cdot \text{(kJ/kg)}$ $P_s = 8818,88 \, \text{kW} \approx 8,8 \, \text{MW}$

f)
$$q_s = \bar{c}_p \cdot (t_3 - t_{2,s})$$

Hierbei nach Tafel 19 für Luft $(\lambda = \infty)$
 $t_3 = 900 \, ^{\circ}\text{C}$
 $c_{p,900} = 1.17 \, \text{kJ/kgK}$
 $t_{2,s} = 267 \, ^{\circ}\text{C}$
 $c_{p,267} = 1.034 \, \text{kJ/kgK}$
 $\bar{c}_p \approx (c_{p,900} + c_{p,267})/2 = 1.102 \, \text{kJ/kgK}$
 $q_s = 1.102 \cdot (900 - 267) [(kJ/kgK) \cdot K] = 697.57 \, \text{kJ/kgK}$

Oder genauer entsprechend Gl. $(11-27)$ für trockene Luft, da $q_s = \Delta h_s$ bei $p = \text{konst}$:

 $q_s = 938 \cdot (T_3 - T_{2,s}) + 0.115 \cdot (T_3^2 - T_{2,s}^2) [J/kg]$
 $q_s = 938 \cdot (1173 - 540) + 0.115 \cdot (1173^2 - 540^2)$
 $q_s = 718452 \, \text{J/kg} = 718.5 \, \text{kJ/kg}$

Abweichung gegenüber vorigem Wert ca. 3 %.

Mit q_s wird

 $\ddot{Q}_s = \dot{m} \cdot q_s = 28.697,57 \text{ [kg/s]-(kJ/kg]} = 19532 \text{ kJ/s}$ Andererseits mit $H_u = 42000 \text{ kJ/kg (Tab.11-8)}$ für leichtes Heizöl) aus $\dot{Q}_s = \dot{m}_{Br,s} \cdot H_u$:

$$\dot{m}_{Br,s} = \dot{Q}_s/H_u = 19532/42000 [(kJ/s)/(kJ/kg)]$$
 $\dot{m}_{Br,s} = 0.465 \text{ kg/s} = 465 \text{ gr/s}$