# DEVELOPMENT OF A TELEOPERATED VEHIL

by
BHAGIRATHSINH N GOHIL

MARTINE MENTERS

Soll Soll

DEV



DEPARTMENT OF MECHANICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
JULY, 1987

# DEVELOPMENT OF A TELEOPERATEL VEHICLE

A Thesis Sumbitted
In Partial Fulfilment of the Requirements
for the Degree of
MASTER OF TECHNOLOGY

*by*BHAGIRATHSINH N GOHIL

to the

DEPARTMENT OF MECHANICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
JULY, 1987

CETTO PROMINENTALLIES

ME - 1937 - M - GOI DIN

Dedicated to

My Parents and all the people in manufacturing Science Lab.

## CERTIFICATE

This is to certify that the thesis entitled, "DEVELOPMENT OF A TELEOPERATED VEHICLE" by Mr. Bhagirathsinh N. Gohil has been carried out under our supervision and has not been submitted elsewhere for a degree.

(Dr. A. Ghosh)
Professor

(Dr. A.K. Mallik)
Professor

Department of Mechanical Engineering Indian Institute of Technology Kanpur

## ACKNOWL EDGEMENTS

I wish to express profound gratitude and indebtedness to Professor A. Ghosh and Professor A.K. Mallik for suggesting this topic and supervising the work. They had given me enough independence to carryout the work and at the same time were always willing to help with any kind of difficulty whenever faced, with their invaluable suggestions, constant encouragement and constructive criticism.

I wish to express my sincere appreciation of the help I obtained from Mr. R.M. Jha, Mr. O.P. Bajaj, Mr. V. Raghura Mr. B.P. Bhartiya, Mr. H.P. Sharma, and Mr. Panna Lal, through out the phase of work. They had always been willing to provide all kinds of help, not only during the office hours but even after the office hours, through out the duratj of work. I am also grateful to Mr. B.P. Vishwakarma, Mr. B.L. Sharma, Mr. M.M. Singh and Mr. U. Majumdar for their cooperation.

I am also extremely thankful to Mr. A.C. Joshi of Electrical Engineering Department for providing his invaluable help for design development, debugging and implementation of electronics circuits, inspite of his busy schedulc. I am also thankful to Mr. Devi Charan for his help.

I am also extremelythankful to Mr. Shrikant Shah for his consistent help through out the work. I am also thankful to Mr. Aleshu, Mr. Mandal, Anupam and Venkatraman for their cooperation, help and encouragement.

lhanks are also due to Mr. U.S. Mishra for neat typing of this manuscript.

# CONTENTS

|           |    |                                                                                                | Page     |  |  |
|-----------|----|------------------------------------------------------------------------------------------------|----------|--|--|
|           |    | LIST OF FIGURES ABSTRACT                                                                       |          |  |  |
| CHAPTER 1 |    | INTRODUCTION                                                                                   |          |  |  |
|           |    | <ul><li>1.1 Introduction</li><li>1.2 Mobile Robots and Teleoperated</li><li>Vehicles</li></ul> | 1        |  |  |
|           |    | 1.3 Objective and Scope of the Present Work                                                    | 3        |  |  |
| CHAPTER   | 2  | KINEMATICS, MECHANICAL DESIGN AND FABRICATION                                                  |          |  |  |
|           |    | 2.1 Introduction 2.2 Kinematics of a Three Wheeled Vehicle                                     | 5<br>5   |  |  |
|           |    | 2.3 Mechanical Design of the Vehicle<br>2.4 Mechanical Fabrication                             | 10<br>14 |  |  |
| CHAPT ER  | 3  | DRIVE AND CONTROL CIRCUITS FOR VEHICLE MOTION                                                  |          |  |  |
|           |    | 3.1 Introduction 3.2 Design of Control Circuit and Power Supply                                | 21<br>22 |  |  |
|           |    | 3.3 Design of Drive Circuit                                                                    | 28       |  |  |
| CHAPTER   | 4  | RESULTS AND DISCUSSIONS                                                                        | 33       |  |  |
| REFERENCE | ΞS |                                                                                                | 35       |  |  |
| APPENDIX  | 1  | Calculations for Belt and Gear Drives 3                                                        |          |  |  |
| APPENDIX  | 2  | Listing of the Programs                                                                        |          |  |  |

## NOMENCLATURE

 $\omega_1$  = Angular velocity of driving motor

 $\omega_2$  = Angular velocity of steering motor

r = Wheel radius

R = Radius of circular path of wheel centres

 $R_{\rm p}$  = Radius of circular path of the vehicle

 $V_{\rm p}$  = Linear velocity of the vehicle

C = Centre to centre distance between the motor shaft

and the driving shaft

 $d_1$  = Pitch cone diameter of the gear

 $d_2$  = Pitch cone diameter of the pinion

m = Module of the gear

 $\delta_{4}$  = Pitch cone angle of gear

 $\delta_{2}$  = Pitch cone angle of pinion

R<sub>1</sub> = Cons distance.

# LIST OF FIGURES

| Figure | Title                                           | Page |
|--------|-------------------------------------------------|------|
| 2.1    | Schemotic diagram of the vehicle                | 6    |
| 2.2    | Path of the vehicle when both the motors rotate | 9    |
| 2.3    | Assembly dra Jing for one wheel                 | 13   |
| 2.4(a) | Dearing housing for steering shaft              | 16   |
| 2.4(b) | Vehicle base                                    | 17   |
| 2,5    | Bearing housing of wheel shaft                  | 18   |
| 2.6    | Spacer between two motors                       | 19   |
| 3.1    | Circuit diagram for power supply                | 23   |
| 3.2    | Diagram for output sockets of power supply      | 23   |
| 3.3    | Block diagram of control scheme                 | 25   |
| 3.4    | Manual controller and translator                | 27   |
| 3.5    | Flow chart for the motion of the vehicle        | 29   |
| 3.6    | Drive circuit for the motor                     | 31   |
| 3.7    | PCB layout for the drive circuit                | 32   |

## ABSTRACT

The objective of the present work is to design and fabricate a teleoperated vehicle which can act as the base of a mobile Robot. Accordingly, a three wheeled vehicle is designed and constructed. All the wheels are driven and steered simultaneously. Separate motors and controls are provided for driving and steering. The control system can be operated either manually or through a programmed microprocessor. The vehicle is designed to take any radius of path-curvature. The fabricated vehicle is demonstrated to move along various prescribed paths through programmed control.

#### CHAPTER 1

#### INTRODUCTION

#### 1.1 Introduction

The use of the robots in various sectors is increasing day by day as they can replace humanbeings in hazardous and monotonous jobs, as well as, higher precision, accuracy, repeatability and speed can be achieved.

At present most of the robots in use are of stationary type, i.e. their base remain fixed to the ground. Such robots are capable of working within a fixed work space which depends on the size and configuration of the robots. Such robots can work satisfactorily so long as the situation does not demand continuous change in the position of working. However, there are certain areas of application where the work-space of the robot is not known in advance, in such cases it is imperative that robot changes its position in order to perform the job. The application of robots in nuclear establishments, underwater, deep mines etc. often demands that the robot moves bodily to cover a much wider workspace. Such robots where the base of the robot moves are called mobile robots [1,2].

# 1.2 Mobile Robots and Teleoperated Vehicles

Mobility or locomotion required in a mobile robot can be achieved in two ways namely legged locomotion and wheeled locomotion [3]. Design and construction of legged locomotion which are essential for uneven terrain are quite involved and expensive [4,9]. For applications on even terrain, like factory floors, wheeled locomotion, which is simpler, is sufficient. In wheeled locomotion, as the name suggests, wheels are used to achieve the desired motion of the robot, when wheeled locomotion is used and when the robot has to change level, at that time slope can be provided instead of staircase [5].

For wheeled robots the motion of the robot can be controlled in three possible ways. For a decided path one possible method is to use underground wires or floor paints along the given path. Corresponding sensors are mounted on the robot which pick up signals and guide the robot along that path [6,7] . This method involves more hardware and so is not very flexible as it required change of network of wires or repainting the floor for changing the path. The second method consists of writing a program to control the motion of the wheels in order that the robot moves along a certain path and reaches the destination. Both open loop and closed loop control systems can be used depending on the situation. Here processors get the signals from the program and actuate the actuators accordingly so that the desired path is executed. In this mode, with the help of sensors, obstacles can be sensed and avoided, by altering the path of vehicle, through an appropriate algorithm [8].

In this approach, for generating a new path no change in the hardware is necessary, the only requirement is to write a new program. The third way to control the motion of a robot is by teleoperation. In this mode a human operator controls the motion of the robot from a distance. The operator can view the robot either directly or on a screen and can guide the robot to the destination by avoiding obstacle, if any, on the way. In this case no additional hardware or software is required for changing the path as the operator is controlling the motion directly through the interface.

## 1.3 Objective and Scope of the Present Work

The objective of the present work is to develop a vehicle which can act as the platform of a mobile robot. The motion of this platform is to be controlled in two ways namely, manual teleoperation and programmed modes. A controller using digital circuit is developed for manual operation mode and an 8085 microprocessor kit is used for programming the motion. For taking various paths it is often required to divide the total length into a number of segments. Accuracy of tracking various segments is better with smaller radius of turning. In the present model the minimum radius of curvature is kept at zero. The entire operation is carried out in an open loop control scheme.

The scope of the work is limited to simple paths only. No sensors for sensing the obstacles are mounted and so there can not be any dynamic generation of path. The vehicle is not controlled by the radio signals and so the zone is limited by the length and the entangling of the wires. The model is demonstrated for 3 different paths in the programmed mode.

#### CHAPTER 2

## KINEMATICS, MECHANICAL DESIGN AND FABRICATION

#### 2.1 Introduction

The proposed design is for a three-wheeled vehicle with wheels placed symmetrically at 120° on a circle.

All the three wheels are driven simultaneously by a motor placed at the centre of the platform to give uniform drive. While turning all the wheels are steered simultaneously by a second motor. Because of simultaneous steering the minimum radius of turning is zero.

In the present chapter first the kinematics of the vehicle is described. This explains how the change in the path of the vehicle results when either or both of the driving and the steering motors rotate. This is followed by the details of mechanical design of the vehicle. Some typical arrangements of the components which are important at the fabrication stage are also noted.

## 2.2 Kinematics of a Three Wheeled Vehicle

As already mentioned, the three wheels of the vehicle are placed on a circle at 120° with each other. Figure 2.1 shows one such wheel and also explains how it is connected to the driving motor. The other two wheels are connected to the same motor in identical fashion. Thus, all the three wheels get the same driving (either forward or reverse)



Fig. 2.1 Schematic diagram of the vehicle.

motion simultaneously. The steering motor is also shown in the same figure. It should be noted that the steering shaft acts as the housing for both the driving and the wheel shafts. Again the same steering motor is connected to all the three wheels in an identical fashion.

The driving snafts are connected to the driving motor by a direct belt-pulley drive with unity angular velocity ratio. The wheel shafts are connected to the driving shafts again with unity angular velocity ratio through bevel gearing. Hence if the angular velocity of the driving motor is  $\omega_1$ , the linear velocity of the centre of the wheels and that of the platform is given by  $\omega_1$ r where r is the radius of the wheels.

As indicated in Figure 2.1, the wheels are offset from the driving shaft axis by a distance r equal to the wheel radius [5]. With this eccentricity, it is obvious that if only the steering motor is given one rotation while the driving motor is kept stationary then all the wheels come back to their original position without any movement of the platform. Of course each wheels rolls one full circle around its corresponding driving shaft axis and at the same time completes one revolution about its own axis. Thus the wheels come back to their original location and the orientation.

For any arbitrary amount of rotation of the steering motor with the driving motor stationary, all the wheels change

their position and orientation in identical manner while the vehicle base neither changes its position nor its orientation.

Let us now consider the movement of the vehicle when both the driving and the steering motors are rotated simultaneously at different speeds. For this we consider only one of the wheels as all the wheels have identical motion.

Let the angular velocity of the driving motor be  $\omega_1$  and that of the steering motor be  $\omega_2$ . Then the velocity of the centre of the wheel due to the driving motor is  $\omega_1$ r while that due to the steering motor is  $\omega_2$ r. As both these velocities at any instant are in the same direction, the magnitude of the resultant linear velocity of the wheel centris  $(\omega_1 + \omega_2)$ r. The direction of this velocity is given by the direction of the vector  $\vec{\omega}_2 \times \vec{r}$  where vector  $\vec{r}$  represents the eccentricity of the wheel. For constant value of  $\omega_2$  the path traversed by all the wheel centres will be circles of radius R(say), when

$$\omega_2^R = (\omega_1 + \omega_2)r$$

or

$$R = \frac{\omega_1}{\omega_2} r + r$$

As explained in Figures 2.2(a) and 2.2(b), for circulpaths of the wheel centres of radius R, the vehicle base moves



Fig. 2.2(b) Path of the vehicle when both the motors rotate.

in a circle of radius

$$R-r = \frac{\omega}{\omega_2} r .$$

So finally the linear velocity of the platform is obtained as

$$V_{p} = (\omega_{1} + \omega_{2})r \qquad (2.1)$$

along a circle of radius

$$R_{p} = \frac{\omega}{\omega_{p}} r . \qquad (2.2)$$

By choosing different values of  $\omega_1$  and  $\omega_2$  the platfor can be moved at different velocities along circles of varying radii. It is obvious that with the steering motor stationary i.e.  $\omega_2 = 0$ , the platform moves along a straight line  $(R \to \infty)$ . In either case the orientation of the vehicle remains unchanged.

## 2.3 Mechanical Design of the Vehicle

To determine the torque required to drive and steer the vehicle, all the calculations are carried out by assuming the mass of the vehicle to be 30 Kg. Few simplifications are made by considering the worst case and so the actual torque requirement is less than that determined from this calculation. In order to determine the torque, traction required to drive the vehicle is to be found. Traction in turn depends on the

condition of surface on which the vehicle is supposed to be driven. Empirical data are available in the hand book which are used for car driving. These data are assumed for the present case.

Data given in the hand book [10] .

|     | Kind of Surface                                                                                                | Traction in 1b/10001b                                                                                    | Traction in N/kg                                                                                          |
|-----|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|     | జ్యుల్లుకు పెద్దింగాలోని అయ్దించిన ఉండి మహిరు మహిరు మహిరు పెద్దించిన పెద్దించిన పెద్దించిన పెద్దించిన అధికుండి | kaggi effectivi de filoso a Majaraya ilian az etta, appila a est effectivi di bananggihan si glassa de f | ระบบสนับนะ หารที่ขณะเหลือกระบบริเภา เป็นของเหลือกระบบริเภทสนาที่สื่อสุดสุดให้ของ คาศักระบบสนาที่ของค่อได้ |
| (1) | Hard smooth asphalt                                                                                            | 11                                                                                                       | .10791                                                                                                    |
| (2) | Wood paving                                                                                                    | 13                                                                                                       | .12753                                                                                                    |
| (3) | Good macadem                                                                                                   | 17                                                                                                       | .16677                                                                                                    |
| (4) | Bad macadem                                                                                                    | 22-45                                                                                                    | .21644                                                                                                    |
| (5) | Cobbles                                                                                                        | 26                                                                                                       | <b>2</b> 55                                                                                               |
| (6) | Bad cobbles                                                                                                    | upto 110                                                                                                 | upto 1.0791.                                                                                              |

From the above data the condition of good macadem is used for the present case. The actual surface will be better and hence the torque required will be less than that computed.

For present case the total traction required

$$= 0.16677x30 = 5.0 Nt.$$

So total torque required for driving

$$= 5 \times \frac{3.25}{100} = 0.1626 \text{ Nt-m}.$$

The torque required for steering is equal to that for driving, as in both cases the wheels are rolling.

In addition to this there will be inertia torque acting which is very difficult to determine. However, depending on the desired acceleration this inertia tolque can be much more than the torque required for traction. Moreover, friction torques at various places like belts, bearings etc. also add to the requirement. From the list of stepper motors available, motor with 1.96 Nt-m torque rating is chosen to suffice for any future addition on the vehicle.

## Details of Components:

Each wheel assembly has three shafts namely, the wheel shaft, the driving shaft and the steering shaft enclosing the driving shaft (Figure 2.3). The driving shaft is taken of 10 mm diameter and corresponding bearing available is of size 10 mm-26 mm internal-external diameter [11]. The steering shaft encloses the driving shaft and will support it at ends with bearings. This shaft is supported on the vehicle base with two bearings and so according to the bearing size the outer diameter of the steering shaft is kept at 35 mm. The wheel shaft is kept of 12 mm diameter and is supported at bearing housing by corresponding bearings for the shaft size.

From the driving motor to the driving shaft the motion is transferred by using V belt of 450 mm length and 9 mm



thickness. Pulleys used are of 30 mm diameter at both motor end and driving shaft and to keep the velocity ratio as unity. From the driving shaft, the motion is transferred to the wheel shaft through a pair of bevel gears. Gears are made of aluminium. The velocity ratio is kept one and gear PCD is taken as 46 mm and module 2 mm.

Initially it was decided to use V belts for transmitting motion from the steering motor to the steering
shaft. However, belts were not transmitting the motion
effectively and so it was decided to use bevel gears for
transmitting this motion as well. Two sets of gears are
used to transmit the motion with overall velocity ratio
unity [12]. From the steering shaft, the motion is directly
conveyed to the bearing housing. The bearing housing is of
circular shape (Figure 2.5) and the wheel and the bevel gears
are enclosed in the space between supporting bearings in
the housing.

Calculations are presented in Appendix 1 for detailed design of gears and belts.

#### 2.4 Mechanical Fabrication

The vehicle base is made of Aluminium sheets. Two 50 cm x 50 cm aluminium sheets of  $\frac{1}{8}$ " ( $\gtrsim 3.2$  mm) thickness are used for this purpose. Both the sheets are separated by 12.5 mm thick spacers. The spacers give additional strength to the base and use of the sheets makes cutting of slots in the

base easier.

The steering motor is mounted at the centre of the base. Bearing housings supporting steering shafts are mounted 120° apart. Oval shaped slots are cut for adjusting tension of the belts. The entire assembly of steering bearing housing to the wheel is made adjustable so as to slide inward or outward. Bolt and nut are used for this adjustment which in turn adjust the tension in the belt. Once the tension is adjusted then the steering bearing housing is tightened with the base by four, sets of nuts and bolts (Figures 2.4(a) and 2.4(b)).

The bearing housings of wheel bearings are made of Aluminium castings and holes for the wheel shaft bearings and steering shafts are bored at 90° with each other (Figure 2.5).

The driving motor is also placed at the centre of the base and on the top of the steering motor (Figure 2.6). Care is taken to align the shafts of the steering and the driving motors. The driving motor is supported on the steering motor by means of a hollow cylindrical piece having flat surfaces on either sides to fix with both the motors as well as the vehicle base. Three slots at 120°, are cut in the cylindrical piece to let the belts and shafts of the gears pass through them. This cylindrical piece together with the steering motor is connected to the base by





Fig. 2.4(a) Bearing housing for steering shaft



Fig. 2.4(b) Vehicle base.



Fig. 2.5 Bearing housing of wheel shaft.



Fig. 2.6 Spacer between two motors

four bolts and is connected with the driving motor by four screws.

#### CHAPIER 3

#### DRIVE AND COMTROL CIRCUITS FOR VEHICLE MOTION

#### 3.1 Introduction

In the vehicle stepper motors are used for giving both the driving and the steering motions. By controlling the speed and number of rotations of each motor, the effective motion of the vehicle can be easily controlled. As already mentioned, the vehicle motion is controlled in two modes, namely, manual and programmed modes. The present chapter describes the principle and method adopted for above modes and various circuits used to achieve this purpose. An algorithm for controlling the motion of both the motors simultaneously using a microprocessor is also included.

A stepper motor is an electromagnetic incremental actuator which converts digital pulse inputs to analog output shaft motion. The shaft of the motor rotates by 1.8%/pulse and thus has 200 steps/revolution. It has four windings which have to be energised, in correct sequence, in pairs. By reversing the sequence the motor rotates in the opposite direction. Following table gives the sequence for both rotations. The same sequence is repeated after every four steps [13,14,15].

TABLE 3.1

| Step No. | State of Phase |    |     |    | State of phase fo reverse direction |    |     |   |
|----------|----------------|----|-----|----|-------------------------------------|----|-----|---|
|          | I              | II | III | IV | I                                   | II | III | Ī |
| 1        | 1              | 0  | 0   | 4  | 1                                   | 0  | 0   |   |
| 2        | 1              | 0  | q.  | 0  | 0                                   | 1  | 0   |   |
| 3        | 0              | 1  | 1   | 0  | 0                                   | 1  | 1   | ( |
| 4        | 0              | 1  | 0   | 1  | 1                                   | 0  | 1   | ( |

### 3.2 Design of Control Circuit and Power Supply

In the present work initially stepper motors of 0.687 Nt-m torque capacity and rating of 12V. and .67 amp/phase were used. However, the torque supplied was found to be inadequate. So stepper motors of 1.96 Nt-m torque capacity and rating of 12V. and 1.25 amp/phase are used.

## Power Supply:

Two 12V supplies for two motors and one 5V supply for the control circuit are used. All three supplies are housed in a single unit. Figure 3.1 shows the circuits used for these supplies. The 5V supply is also made variable for giving different voltages in the range 2-12 V. To get uniform voltage level\_the regulators 7805 and 7812 are used for 5V. and 12V supplies respectively. Since each motor requires high current, power transistors 3055 are used in 12V. supplies. For 12V supplies capacitors of high values are used



FIG. 3.2

to minimize the ripple. Figure 3.2 shows the front view of power supply giving details of layout of output sockets.

#### Control Circuit

Figure 3.3 is a block diagram of the control system used to control the motion of each stepper motor and hence of the vehicle. As seen from Figure 3.3, the control system has four distinct parts. First two parts, namely the manual controller and the microprocessor are supplying identical signals to the translator and the select switch position decides the input to the translator. The translator takes in these signals and gives four pulses in correct sequence to the stepper motor drive circuit which in turn provides the pulses in correct sequence to the motor. First let us explain the manual controller along with the translator. Thereafter, we take up the microprocessor part followed by the drive circuit.

## Manual Controller and Translator

Two identical circuits for two motors are used and so only one is explained here. The speed of the stepper motor given depends on the step rate or pulse frequency/by the manual controller while the direction is controlled by the direction signal given by the controller.

For generating clock pulses, hex schmitter is used [16] .
This schmitter when connected with capacitor and resistance



BLOCK DIAGRAM OF CONTROL SCHEME FG. 3.3

gives the oscillating signal (pulse) at the output. A notentiometer controls the frequency of this pulse and hence the speed of the motor. A D.P.D.T. switch along with a start latch and mand gate acts as ON-OFF switch for the motor motion by either allowing this pulse to go to the translator or by giving no pulse at the nand gate output. This pulse along with direction control bit now goes to the translator through the select switch. The translator converts this one pulse into four pulses of equal frequencies but with phase difference so that the correct sequence is maintained. It uses two exclusive or gates and two D flip-flops. Figure 3.4 is the circuit diagram of manual controller and translator. Two similar circuits are used to control motions of both the motors simultaneously. Using this controller the speed of the stepper motors can be varied from 3 RPM to 66 RPM.

## Microprocessor Based Controller

In programming mode the signals to the translators of both the driving and steering motors come from the microprocessor. When the motion required demands rotation of both the motors the microprocessor provides two clock pulses and two direction signals. Thus the microprocessor gives four bit output to the translators. An 8085 microprocessor kit is used for this purpose. The algorithm used to generate the signals is shown in the form of a flow chart in Figure 3.5.



F16.3.4

MANUAL CONTROLLER & TRANSLATOR

A display routine is written which displays on-off status of both the notors and twice the steps of forward motor remained to be completed. This display routine acts as a delay routine. This routine is called N times where N is the delay value loaded. After every N times the count values of both the motors are reduced by one and when any of the count value becomes zero the clock bit of that motor is changed and the step value is reduced by one. This procedure is repeated until the step value reduces to zero. Thus the microprocessor controls the motion of both the motors simulta reously. The listing of this routine is given in Appendix 2. along with the listing of the program for different paths [17,18]. Count value of the motors are stored in one byte memory for each motor, this limits the ratio of speed of two motors to 256. This ratio can be increased by keeping more bytes for the count value.

## 3.3 Design of Drive Circuit

The sequence of pulse train output of the translator are of low level signals and can not drive the motor and so a drive circuit is used to drive the motor. The function of the drive circuit is to accept low level input logic signals in the form of a digital pulse train from the translator and control the sequence of the high current to the motor phases in order to produce the discrete angular motion. To turn a motor phase ON, a voltage signal is applied to BC 147



Figure 3.5 : Flew Chart for the Motion of the Vehicle

Consider the continual of the content builds up through the motor phase. When the motor phase is turned OFF by changing the signal at TC-147 transistor base, all three transistors are turned OFF. At this time the current in the motor phase decays through the flyback diode and thus discharges the motor phase. By repeating this process we can get discrete angular motion of the motor shaft. Figure 3.6 shows this circuit. Figure 3.7 shows layout of PCB for this circuit.



DRIVE CIRCUIT FOR THE MOTOR



DRIVE CIRCUIT PCB LAYOUT FOR FIG. 3.7

#### CIMPTER 4

#### TRILIS A D DISCUSSIONS

ner completing the fabrication, the vehicle was neared in took the manual and the programmed

The the rangel mode operation, in order to reach the lestination by avoiding the obstacles, the path taken was mixtured into a number of segments of straight lines and circular arcs. Thus both the path traced and the position of the verified closely monitored and verified.

In the cogrammed mode, the microprocessor kit was represented to take different paths. Program was written for taking three different paths, namely, a straight line, a circular path and a figure of 8 path. The program listing for the above changes is given in the Appendix 2. For moving along a figure of 8 path, the motion was carried out in eighteen steps. The vehicle motion was observed while tracing these paths.

While carrying out the experiments, it was found that the torque ratings of the motors specified by the maker are not correct. Torque of the motors fall rapidly with increasing the rotational speed. So all the experiments were carried out at low speed. In the manual mode, due to limitations put by the hardware, the speed ratio of the two motors was limited to 6.

The form that the vehicle deviates a little to the form the operation. The driving shafts the received the time with same angular velocity due to literate in the effective radii of the pulley and some climate or translats. There was some relative motion to we translate and deviation from the desired path. In the rangal rode, the vehicle can reach a destination by controlling the path. However, since the operation was calmied out in the open loop in the programmed mode, error could not be entirely eliminated.

This problem can be solved to a large extent by usin, all gar drive. In order to momitor the motion in program damone, feed back control scheme can be much more effect vear the error can be compensated by the appropriate notion given by the software.

## REFERENCES

- 11. 11 2 1 co, thand Book of Industrial Robotics'.
  - '. I I ..., '. in amentals of Robot Technology'.
  - 3. The ut Jean, Doiffet Phillipp, 'Teleoperation and note: 12. In luation and Development'.
  - i. .' in: ...'., 'io' ois and Telachirs'.
  - A . . 1985, pp. 26-30.
  - o. 'all r In' Thomas, 'Automated Guided Vehicles'.
  - /. '. il and Mark J., 'Advanced Robot Systems'.
  - o. D'atternil. 'Some Heuristics For the Navigation of a Ful I', International Journal of Robotics Research, J. Sing 1983, 198, 59-66.
  - ". 'a 'm. con V. 'Agile Autonomous Vehicles in the Just are fire Environment', Robotics Age, Dec. 1985, pp. 4-8.
- 10. ' ' I.J., 'Mechanical Engineers Handbook'.
- 11. " tion ! In invering Industries Ltd. Jaipur 'CATALOGUE'
- 16. ..... 'Handbook of Gear Design'.
- 13. Kun Panjamin, 'Theory and Application of Stepmotors'.
- 14. Fillingsley John, 'DIY Robotics and Sensors with the BBC Computer'.
- 15. Patil, V.L., 'Interface Lets Microprocessor Control Stepper Motor'.
- 16. Semi conductors Limited 'CMOS Data Book'.
- 17. Leventhal Lance A, '8080A-8085 Assembly Language Programmin
- 18. User's Manual for VMC-85 Microprocessor Kit;

#### APPENDIX 1

Calculations for Belt and Gear Drives

Calculat ons are presented here for belt and gear drives. Since load and torque acting is very less, emphasis is not given on strength aspect.

#### Belt Transmission:

From the motor to the driving shaft.

Diameter of pulleys  $D_1 = D_2 = 30$ mm

 $\theta_1 = \theta_2 = \pi \text{ radian.}$ 

Length of belt at outer surface, L = 45 mm

Centre lo centre distance between the pulleys

$$C = \frac{L - D}{2} = \frac{45 - x3}{2} = 177.78 \text{ mm}.$$

### Gear Transmission

(a) From the driving shaft to the wheel shaft

Pitch cone diameter  $d_1 = 46 \text{ mm}$ 

dodule m = 2 mm

Number of teeth = 23

Pitch cone angle = 45°

Face width = 8 mm

Tip circle diameter =  $d + 2m \cos \theta$ 

= 46 + 2x2 x Cos 45

= 48.3 mm

Cone distance 
$$R_1 = \frac{d}{2\sin \theta}$$

$$= 32.52$$

Addendum Angle = 
$$tan^{-1} \frac{m}{R}$$

Dedendum Angle = 
$$tan^{-1} \frac{1.2m}{R}$$

$$= 40.78^{\circ}$$

## (b) Between the steering motor and the steering shaft.

In order to keep velocity ratio unity, the gears on the motor and the steering shaft are identical. Gears placed at the end of the connecting shaft are also made identical. Calculation for one such pair is shown here.

Pitch cone diameter of gear  $d_1 = 57.5 \text{ mm}$ Pitch cone diameter of pinion  $d_2 = 27.5 \text{ mm}$ 

Module m = 1.25 mm

Face width= 8 mm

Number of teeth on gear  $T_1 = 46$ 

Number of teeth on pinion  $T_2 = 22$ 

Pitch cone angle of pinion  $\delta_2 = \tan^{-1} \frac{27.5}{57.5}$ 

Piuch cone angle of the gcar  $\delta_1 = 90 - \delta_2$ =  $64.4^{\circ}$ 

Tip circle diameter of the gear =  $d_1 + 2m \cos t$ 

 $= 57.5 + 2x1.25 \times Cos 64.4$ 

= 58.58 mm

Cone distance  $R_1 = \frac{d_1}{2 \sin \theta} = 31.87 \text{ mm}$ 

Addendum Angle =  $tan^{-1} \frac{m}{R}$ 

= 2.246

Dedendum Angle =  $tan^{-1} \frac{1.2m}{R}$ 

= 2,695

Blank cone angle for the gear = 64.4 + 2.246

= 64,65°

Root angle for the gear = 64.4 - 2.7

= 61.7°

Blank cone angle for the pinion = 25.6 + 2.246

= 27.85°

Root angle for the pinion = 25.6 - 2.695

= 22.9°

APPENDIX 2
LISTING OF PROGRAMME

| ADDRESS | CODE     | MNEMONIC          | REMARKS _                      |
|---------|----------|-------------------|--------------------------------|
| FE90    | 3E/80    | RUN8 MVI A,80     | Initialise 8255 in             |
| FE92    | D3 03    | OUT 03            | mode O with B as output port   |
| FE94    | 2A 02 FF | LHLD FF02         | COPY COUNT VALUES              |
| FE97    | 22 OA FF | SILD FFDA         |                                |
| FE9A    | AF       | XRA A             | Initialising 8279              |
| FF9b    | D3 19    | OUT 19            |                                |
| FE9d    | 21 04 FF | LXI H,FF04        | Steps for F/W motor            |
| ГЕАО    | 5E       | MOV E,M           | in D-E pair                    |
| FEA1    | 23       | INX H             |                                |
| FEA2    | 56       | MOVE D,M          |                                |
| ΓEA3    | 23       | INX H             | Steps for CR motor in B-C Pair |
| 1 (A4   | 42       | MOVE C,M          |                                |
| FEA5    | 23       | INX H             |                                |
| FEA6    | 46       | MOVE B,M          |                                |
| FEA7    | 13       | INX D             |                                |
| FEA8    | 03       | INX B             |                                |
| FEA9    | C3 00 FE | JMP START         | JUMP TO MAIN<br>ROUTINE        |
|         | M        | AIN ROUTINE       |                                |
| FE00    | CD OO FC | START: CALL DELAY |                                |
| FE03    | 21 09 FF | LXI H,FF09        |                                |
| FE06    | 7E       | MOV A, M          | Get ON OFF Status              |

| m or cop<br>as hard \$                          | E6 03                                                         | ANI 03                                                                        |                                                                                                          |
|-------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| - 1                                             | 7E 03                                                         | CPI 03                                                                        | If both motors to be off then return                                                                     |
| FROF                                            | 23                                                            | TNX H                                                                         | If count of F/W                                                                                          |
| , F CF                                          | 35                                                            | DCR M                                                                         | exhausted then call<br>service routine                                                                   |
| 27.10                                           | CC 30 FE                                                      | CZ F/W SRVC                                                                   |                                                                                                          |
| == 13                                           | 23                                                            | INX H                                                                         | If count of CR                                                                                           |
| FC 14                                           | 35                                                            | DCR M                                                                         | exhausted then call service routine                                                                      |
| F3 15                                           | CC 60 FE                                                      | CZ RIV SRVC                                                                   |                                                                                                          |
| LE 10                                           | C3 00 FE                                                      | JMP START                                                                     |                                                                                                          |
| FE 20                                           | C9                                                            | STOP : RET                                                                    | Return to main program                                                                                   |
|                                                 | SERVICE ROUT                                                  | INE FOR FORWARD MOTO                                                          | )R                                                                                                       |
|                                                 |                                                               | T /112 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                    |                                                                                                          |
| FE 30                                           | 1 <i>F</i>                                                    | F/W SRVC: RAR                                                                 | Check if ON OFF                                                                                          |
| FE 30                                           | 1F<br>DA 48 FE                                                | JC F/W OFF                                                                    | Check if ON OFF<br>FLAG BIT IS 1                                                                         |
|                                                 |                                                               |                                                                               |                                                                                                          |
| PB 31                                           | DA 48 FE                                                      | JC F/W OFF                                                                    |                                                                                                          |
| FE 34                                           | DA 48 FE<br>3Λ 0Ω FF                                          | JC F/W OFF<br>LDA FF02                                                        |                                                                                                          |
| FE 34<br>FE 37                                  | DA 48 FE<br>3Λ 0Ω FF<br>77                                    | JC F/W OFF LDA FF02 MOV M,A                                                   | FLAG BIT IS 1  Check if number of                                                                        |
| FE 34<br>FE 37<br>FF 38                         | DA 48 FE<br>3Λ 0Ω FF<br>77<br>1B                              | JC F/W OFF LDA FF02 MOV M,A DCX D                                             | FLAG BIT IS 1                                                                                            |
| FE 34<br>FE 37<br>FF 38<br>FE 39                | DA 48 FE 3Λ 0Ω FF 77 1B 7A                                    | JC F/W OFF LDA FF02 MOV M,A DCX D MOV A,D                                     | FLAG BIT IS 1  Check if number of steps for F/W                                                          |
| FE 34<br>FE 37<br>FF 38<br>FE 39<br>FE 3A       | DA 48 FE 3A 02 FF 77 1B 7A B3                                 | JC F/W OFF LDA FF02 MOV M,A DCX D MOV A,D ORA E                               | Check if number of steps for F/W motor exhausted  JUMP F/W FINISH  Flip the bit for                      |
| FE 34 FE 37 FF 38 FE 39 FE 3A FE 3B             | DA 48 FE 3Λ 0Ω FF 77 1B 7A B3 CΛ 50 FE                        | JC F/W OFF LDA FF02 MOV M,A DCX D MOV A,D ORA E JZ F/E FINISH                 | Check if number of steps for F/W motor exhausted  JUMP F/W FINISH                                        |
| FE 34 FE 37 FF 38 FE 39 FE 3A FE 3B FE 3E       | DA 48 FE 3Λ 0Ω FF 77 1B 7A B3 CΛ 50 FE 3A 08 FF               | JC F/W OFF LDA FF02 MOV M,A DCX D MOV A,D ORA E JZ F/E FINISH LDA FF08        | Check if number of steps for F/W motor exhausted  JUMP F/W FINISH  Flip the bit for F/W Clock and output |
| FE 34 FE 37 FF 38 FE 39 FE 3A FE 3B FE 3E FE 41 | DA 48 FE  3Λ 0Ω FF  77  1B  7A  B3  CΛ 50 FE  3A 08 FF  EE 80 | JC F/W OFF LDA FF02 MOV M,A DCX D MOV A,D ORA E JZ F/E FINISH LDA FF08 XRI 80 | Check if number of steps for F/W motor exhausted  JUMP F/W FINISH  Flip the bit for F/W Clock and output |

# r/N FINISH:

| ΓF | .0 | ЗА | 09 | FF | LDA, | FF O | 9  | Change ON-OFF |
|----|----|----|----|----|------|------|----|---------------|
| ΙE | 53 | F6 | 01 |    | ORI  | 01   |    | flag bit      |
| ιĒ | 55 | 32 | 09 | FF | STA  | FF   | 09 |               |
| FE | 58 | C9 |    |    | RET. |      |    |               |

# SERVICE ROUTINL FOR STEERING MOTOR

| FE | 30 | зА | 09 | FF | LDA FF09      | Check ON-OFF flag                   |
|----|----|----|----|----|---------------|-------------------------------------|
| FΞ | 63 | 1F |    |    | RAR           | bit                                 |
| FE | 64 | 1F |    |    | PAR           |                                     |
| FE | 63 | DΛ | 7C | FE | JC:CR OFF     |                                     |
| FΕ | 68 | ЗА | 03 | FF | LDA FF03      | Reload count                        |
| ΓE | 63 | 77 |    |    | MOV M, A      |                                     |
| FI | 6C | 0B |    |    | DCX B         | Sing                                |
| ΙΞ | 6D | 78 |    |    | MOV A, B      | Check if number of                  |
| FI | 6E | B1 |    |    | ORA C         | steps for cir mor<br>exhausted      |
| ΓĒ | 6F | CV | 80 | ΓE | JZ: CR FINISH | JUMP CR FINISH                      |
| FE | 72 | ЗΛ | 80 | FF | LDA FF08      | FLIP the bit for                    |
| FE | 75 | EE | 02 |    | XRI 02        | CR clock and out-<br>put the result |
| FE | 77 | 32 | 08 | FF | STA FF03      |                                     |
| FE | 7/ | D3 | 01 |    | OUT 01        |                                     |
| FE | 7C | C9 |    |    | CR OFF: RET   |                                     |
|    |    |    |    | CR | FINISH:       |                                     |
| FE | 80 | E5 |    |    | PUSH H        | Change ON-OFF                       |
| FE | 81 | 3/ | 09 | FF | LDA FF09      | Flag bit                            |
| FE | 84 | 21 | CO | FF | LX1 H , FFOD  |                                     |
| FE | 87 | B6 |    |    | ORA M         | ica No las 9793                     |

| īī               | 88  | 32  | 09 | FF  | STA   | FFO  | )    |                    |
|------------------|-----|-----|----|-----|-------|------|------|--------------------|
| host<br>inc. had | 88  | E1  |    |     | POP   | Н    |      |                    |
| [ [              | 8C  | C9  |    |     | RET   |      |      |                    |
|                  |     |     |    |     |       |      |      |                    |
|                  |     |     |    | DIS | SPLAY | ROU  | INE  |                    |
| FC               | 00  | C5  |    |     | PUSH  | BC   |      |                    |
| FC               | 01  | 2A  | 00 | FF  | LHLD  | FF(  | 00   |                    |
| FC               | 04  | 44  |    |     | MOV   | В,Н  |      |                    |
| FC               | 05  | 4D  |    |     | VOM   | C,L  |      |                    |
| ГС               | 06  | 26  | FC |     | MV1   | Н, І | FC   |                    |
| FC               | ⊕8  | 3E  | 90 |     | RPT:  | MVI  | A,90 |                    |
| FC               | OA  | D3  | 19 |     | OUT   | 19   |      | Initialise 8279    |
| FC               | CC  | 7A  |    |     | VOIM  | A,D  |      |                    |
| FC               | OD  | E6, | FO |     | AM    | FO   |      |                    |
| FC               | OF  | 1F  |    |     | RAR   |      |      |                    |
| lC               | 10  | 1 F |    |     | RAR   |      |      | Display first bit  |
| 10               | 11  | 1F  |    |     | RAR   |      |      | of steps           |
| ГС               | 12  | 1F  |    |     | RAR   |      |      |                    |
| FC               | 13  | 2E  | 60 |     | MVI   | L,6  | )    |                    |
| FC               | 15  | 85  |    |     | ADD 1 | L    |      |                    |
| FC               | 16  | 6F  |    |     | VOV   | L,A  |      |                    |
| FC               | 17  | 7E  |    |     | MOV   | A,M  |      |                    |
| FC               | 18  | D3  | 18 |     | OUT   | 18   |      | -                  |
| FC               | 1A  | 7A  |    |     | MOV   | A,D  |      | Display second bit |
| FC               | 1 B | E6  | OF |     | ΛN1   | OF   |      | of steps           |
| FC               | 10  | 2E  | 60 |     | MV1   | L    | 60   |                    |
| FÇ               | 1F  | 85  |    |     | ADD   | L    |      |                    |
|                  |     |     |    |     |       |      |      |                    |

| LC 50 | 6F |             |    | VOM | L,A  |                       |
|-------|----|-------------|----|-----|------|-----------------------|
| FC 21 | 7E |             |    | VOM | A,M  |                       |
| .C 22 | D3 | 18          |    | OUT | 18   |                       |
| FC 24 | 7B |             |    | MOV | A,E  | DISPLAY Third bit     |
| FC 25 | E6 | FO          |    | AN1 | FO   |                       |
| FC 27 | 1F |             |    | RAR |      |                       |
| FC 28 | 1F |             |    | RAR |      |                       |
| FC 29 | 1F |             |    | RAR |      |                       |
| FC 2A | 1F |             |    | RAR |      |                       |
| FC 2B | 2E | 60          |    | MVI | L,60 |                       |
| FC 2D | 85 |             |    | ADD | L    |                       |
| FC 2E | 6F |             |    | MOV | L,A  |                       |
| IC 2F | 7E |             |    | VOM | A,M  |                       |
| FC 30 | DЗ | 18          |    | OUT | 18   |                       |
| FC 32 | 7B |             |    | MOV | A, C | Display forth bit     |
| FC 33 | E6 | OF          |    | ANI | OF   |                       |
| FC 35 | 2E | <u>ن</u> ٥٥ |    | MV1 | L,60 |                       |
| FC 37 | 85 |             |    | ADD | L    |                       |
| FC 38 | 6F |             |    | VOM | L,A  |                       |
| FC 39 | 7E |             |    | VOM | A,M  |                       |
| FC 3A | D3 | 18          |    | OUT | 18   |                       |
| FC 3C | ЗА | 09          | FF | LDA | FF09 |                       |
| FC 3F | 6F |             |    | MOV | L,A  |                       |
| FC 40 | 1F |             |    | RAR |      |                       |
| FC 41 | 1F |             |    | RAR |      |                       |
| FC 42 | 3E | 03          |    | MV1 | A,03 | Display for direction |
| FC 44 | D2 | 49          | FC | JNC | zero |                       |

| FC 47  | 3E ,       | 4F    | MV1 A,9F     |                       |
|--------|------------|-------|--------------|-----------------------|
| FC 49  | D^         | 18    | Zero: OUT 18 |                       |
| FC 4R  | 7D         |       | MOV A,L      |                       |
| ΓC 4C  | 1 F        |       | RAR          |                       |
| FC 4D  | 3E         | 03    | MV1 A, 03    | Display for direction |
| TC 4F  | D2         | 54 FC | JNL ZR       |                       |
| FC 52  | 3E '       | 9F    | MV1 A,9F     |                       |
| IC 54  | D3         | 18    | ZR: OUT 18   |                       |
| FC 56  | QB         |       | DCX B        |                       |
| FC 57  | 78         |       | MOV A, B     |                       |
| FC 58  | B <b>1</b> |       | ORA C        |                       |
| I'C 59 | C2         | 08 FC | JNZ RPT      |                       |
| FC 5C  | C1         |       | POP BC       |                       |
| rc 5D  | C9         |       | RET          |                       |

### TABLE FOR DISPLAY

|       |    | Display code for |
|-------|----|------------------|
| FC 30 | 03 | 0                |
| FC 61 | 9F | d d              |
| FC 62 | 25 | 2                |
| LC 93 | OD | 3                |
| FC 64 | 99 | 4                |
| FC 65 | 49 | 5                |
| FC 66 | 41 | 6                |
| FC 67 | 1F | 7                |
| TC 68 | 01 | 8                |

| IC 69 | 09 | _ |
|-------|----|---|
| FC 6A |    | 9 |
|       | 11 | Α |
| FC 60 | C1 | В |
| FC 6C | 63 | C |
| FC 6D |    | C |
|       | 85 | D |
| FC 6F | 61 | Ξ |
| FC SF | 71 | F |

# PROGRAM

| [D 00         | 31 60 FF PRC | G: LXI SP FF60 |                        |
|---------------|--------------|----------------|------------------------|
| FD 03         | 21 70 00     | LX1 H 0070     | LOAD DELAY             |
| F <b>D</b> 06 | 22 00 FF     | SHLD FFOO      | DOID DELAI             |
| TD 09         | CD 70 FC     | CALL STR       | CALL STR               |
| FD OC         | CD 8A FC     | CALL CRC       | CALL CRC               |
| LD OL         | 21 02 08     | LX1 H 0802     | LOAD COUNT             |
| - 10          | 2′_ U2 FF    | SHLD FF02      | VALUE                  |
| ΓD 15         | 21 90 01     | LX1H 01 90     | IOAD CTEDS - #         |
| FD 13         | 22 04 FF     | SHLD FF04      | LOAD STEPS F/W         |
| FD 1D         | 21 64 00     | LX1 H 0064     | IOAD CTEDS on          |
| FD 15         | 22 06 FF     | SHI.D FF06     | LOAD STEPS CR          |
| FD 21         | CD 61 FD     | CALL R1        |                        |
| FD 24         | 00 00        | NO OP          |                        |
| FD 26         | 21 00 02     | LXI H 0200     | TOAR OFFICE            |
| FD 29         | 22 08 FF     | SHLD FF 08     | LOAd OUTPUT<br>CONTROL |
| FD 2C         | CD 90 FE     | CALI. RUN      |                        |

| 1D 2F  | 21 00 01 |             |                        |
|--------|----------|-------------|------------------------|
| ID 32  |          | LX1 01 00   | LOAD OUTPUT            |
|        | 32 08 FT | SHLDF F 08  | CONTROL                |
| "D 35  | 30 SO FD | CALL R3     |                        |
| ID 38  | 3E 08    | √V1 A,08    | LOAD COUNT             |
| AS C.1 | 32 03 FF | STA FF 03   | VALUE                  |
| FD 3D  | CD 90 FD | CALL R4     |                        |
| FD 40  | CD 90 FD | CALL R4     |                        |
| ΓD 43  | CD 90 FD | CALL R4     |                        |
| FD 46  | CD 90 FD | CALL R4     |                        |
| FD 49  | 21 FF 01 | LX¶ H O1 FF | * 042                  |
| FD 4C  | 22 08 FF | SHLD FF 08  | LOAD OUTPUT<br>CONTROL |
| FD 4F  | CD 80 FD |             |                        |
| FD 52  |          | CALL R3     |                        |
|        | -        | MV1 A 08    | LOAD COUNT             |
| FD 54  | 32 03 FF | STA FF 03   | VALUE                  |
| ΓD 57  | CD 70 FD | CALL R2     |                        |
| FD 5A  | CD o1 FD | CALL R1     |                        |
| FD 5D  | CD 61 FD | CALL R1     |                        |
|        | 76       | ·           |                        |
|        |          |             |                        |
|        |          | ROUTINE     |                        |
| FD 61  | 21 64 00 | LX1 H 0064  | LOAD STEPS CR          |
| FD 64  | 22 06 FF | SHLD FF06   | TOWN SIERS ON          |
| 50 (5  |          | 1100        |                        |

|       | 1  | 0-1 | 00 | LX1 H 0064 | LOAD STEPS CR |
|-------|----|-----|----|------------|---------------|
| FD 64 | 22 | 06  | FF | SHLD FF06  |               |
| FD 67 | 21 | 00  | 02 | LX1 H 0200 | LOAD OUTPUT   |
| FD 6A | 22 | 80  | FF | SHLD FF08  | CONTROL       |
| FD 6D | CD | 90  | EE | CALL: RUN  |               |
| FD 70 | 21 | 64  | 00 | LX1 H 0064 |               |
| FD 73 | 22 | 06  | FF | SHLD FF 06 |               |
|       |    |     |    |            |               |

| TD 70  | 21 | 00 | 00 | LX1 00 00    |
|--------|----|----|----|--------------|
| 70 קד  | 22 | 89 | LE | SHLD FF 08   |
| FD 7C  | CD | 90 | FE | CALL RUN     |
| FD 7F  |    | C9 |    | RET          |
| FD 80  | 21 | C8 | 00 | LX1 H,00C8   |
| FD 83  | 22 | 06 | FF | SHLD FF 06   |
| FD 86  | 3E | 01 |    | MV1 A 01     |
| FD 88  | 32 | 03 | FF | STA FF 03    |
| FD 83  | CD | 90 | FE | CALL RUN     |
| CD 8E  |    | C9 |    | RET          |
| ΓD 90  | 21 | 64 | 00 | LX1 H, 00 64 |
| FD 93  | 22 | 06 | FF | SHLD FF06    |
| ID 96  | 21 | FF | 00 | LX1 H, 00 FF |
| ID 99  | 22 | 80 | FF | SHLD FF 08   |
| . D 9C | CD | 90 | FE | CALL RUN     |
| 10 DE  | 21 | FF | 02 | LX1 H, 02 FF |
| rD A2  | 22 | 80 | FF | SHLD FF 08   |
| FD A5  | CD | 90 | FE | CALL RUN     |
| FD A8  |    | C9 |    | RET          |
| FC 70  | 21 | 02 | 08 | LX1 H,08 02  |
| FC 73  | 22 | 02 | FF | SHLD FF 02   |
| FC 76  | 21 | во | 04 | LX1 H, 04 BO |
| FC 79  | 22 | 04 | FF | SHLD FF 04   |
| FC 7C  | 21 | C8 | 00 | LX1 H,00 C8  |
| FC 7F  | 22 | 06 | FF | SHLD FF 06   |
| FC 82  | 21 | ΓF | 02 | LX1 H, 02 FF |

| ₽°C | 93 | 22 | 08 | FF | SHLD FF 08   |
|-----|----|----|----|----|--------------|
| TC  | 86 | CD | 90 | FE | CALL RUN     |
| '.C | 39 |    | C9 |    | RET          |
| FC  | 8A | 21 | 02 | 10 | LXI II, 1002 |
| r-C | 8D | 22 | 02 | FF | SHLD FF 02   |
| FC  | 90 | 21 | БО | 04 | LX1 H, 04 BO |
| FC  | 93 | 22 | 04 | FF | SHLD FF 04   |
| FC  | 96 | 21 | 00 | 01 | LX1 H, 01 00 |
| ı~C | 99 | 22 | 66 | FF | SHLD FF 06   |
| FC  | 9C | 21 | FF | 00 | LX1 H, 00 FF |
| FC  | 9F | 22 | 08 | FF | SHLD FF 08   |
| FC  | А3 | CD | 90 | FE | CALL RUN     |
| EC  | A6 |    | C9 |    | RET.         |

Action of the sold of the

mare tity

This book is to be refunded on the date lost stamped

ME WAR TO THE THE