Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks	
1. (a)	List of patients registered with the practice. Require 'list' or 'register' or database or similar	B1	(1)
(b)	The patient(s)	B 1	(1)
(c)	Adv: Quicker, cheaper, easier, used when testing results in destruction of item, quality of info about each sampling unit is often better. Any one Disadv: Uncertainty due to natural variation, uncertainty due to bias, possible	B1	
	bias as sampling frame incomplete, bias due to subjective choice of sample, bias due to non-response. Any one	B1	(2)
(d)	Non-response due to patients registered with the practice but who have left the area	B1	(2)
		Total 5 Mai	(1) rks)
2(a)	$P(R \ge 4) = 1 - P(R \le 3) = 0.6533$ Require 1 minus and correct inequality	M1A1	
(b)	$P(S \le 1) = P(S = 0) + P(S = 1), = e^{-2.71} + 2.71e^{-2.71}, = 0.2469$ awrt 0.247	M1,A1,A1	(2)
(c)	$P(T \le 18) = P(Z \le \frac{18 - 25}{5}), = P(Z \le -1.4) = 0.0808$ 4 dp, cc no marks	M1,A1	(3)
		Total 7 Mai	(2) rks)
3(a)	$p = \frac{1}{2}$	B1	
(b)	Binomial distribution is symmetrical	B 1	(1)(1)
(c)	Since <i>n</i> is large and $p \approx 0.5$ then use normal approximation, Can be implied below $np = 96$ and $npq = 49.92$	M1 A1A1	(1)
	$P(90 \le X < 105) \approx P(89.5 \le Y \le 104.5)$ where $Y \square N(96,49.92) \pm 0.5$ cc on both	M1,	
	$\approx P\left(\frac{89.5 - 96}{\sqrt{49.92}} \le Z \le \frac{104.5 - 96}{\sqrt{49.92}}\right)$ Standardisation of both	M1	
	$\approx P(-0.92 \le Z \le 1.20)$ awrt -0.92 & 1.20	A1	
	$\approx 0.7055 - 0.7070$ 4dp in range	A1	
		Total 9 Mar	(7) rks)

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks	
4 (a)	n large, p small	B1,B1 (2)	
(b)	Let <i>X</i> represent the number of people catching the virus, $X \square B\left(12, \frac{1}{150}\right)$ Implied	B1	
	$P(X = 2) = C_2^{12} \left(\frac{1}{150}\right)^2 \left(\frac{149}{150}\right)^{10}$, = 0.0027 Use of Bin including C_2^{12} , 0.0027(4) only	M1A1,A1	
(c)	$X \square \operatorname{Po}(np) = \operatorname{Po}(8)$ Poisson, 8 $\operatorname{P}(X < 7) = \operatorname{P}(X \le 6) = 0.3134$ $X \le 6$ for method, 0.3134	(4) B1,B1 M1A1	
5(a)		(4) otal 10 Marks)	
(b)	Vehicles pass at random / one at a time / independently / at a constant rate Any 2&context B1B1 dep (2) X is the number of vehicles passing in a 10 minute interval,		
	$X \square \operatorname{Po}\left(\frac{51}{60} \times 10\right) = \operatorname{Po}(8.5)$ Implied Po(8.5)) B 1	
	$P(X=6) = \frac{8.5^6 e^{-8.5}}{6!}$, = 0.1066 (or 0.2562-0.1496=0.1066) Clear attempt using 6, 4dp	M1A1	
(c)	$P(X \ge 9) = 1 - P(X \le 8) = 0.4769$ Require 1 minus and correct inequality	(3) M1A1 (2)	
(d)	$H_0: \lambda = 8.5, \ H_1: \lambda < 8.5$ One tailed test only for all hyp	B1∫,B1∫	
	$P(X \le 4 \lambda = 8.5) = 0.0744, > 0.05$ $X \le 4 \text{ for method, } 0.0744$	M1,A1	
	(Or P($X \le 3 \lambda = 8.5$) = 0.0301, < 0.05 so CR $X \le 3$ correct CR	M1,A1)	
	Insufficient evidence to reject H_0 , 'Accept	' M1	
	so no evidence to suggest number of vehicles has decreased. Context	A1J	
	(To	(6) otal 13 Marks)	

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Let X represent the number of plant pots with defects, $X \square B(25,0.20)$ Implied $P(X \le 1) = 0.0274, P(X \ge 10) = 0.0173$ Clear attempt at both tails required, 4dp Critical region is $X \le 1, X \ge 10$	B1 M1A1A1 A1	
	111	(5)
Significance level = 0.0274+0.0173=0.0447	B1 cao	
$H_0: \lambda = 10, H_1: \lambda > 10 \text{ (or } H_0: \lambda = 60, H_1: \lambda > 60)$ Let Y represent the number sold in 6 weeks, under $H_0: Y \square Po(60)$	B1B1	(1)
	M1A1	
$\approx P(Z \ge \frac{73.5 - 60}{\sqrt{60}}) = P(Z > 1.74) = 0.0407 - 0.0409 < 0.05$ Standardise using $60\sqrt{60}$	M1,A1	
Evidence that rate of sales per week has increased. A1 A1		
Γ)	Total 13 Ma	7) arks
	Let Y represent the number sold in 6 weeks, under H_0 , $Y \square Po(60)$ $P(Y \ge 74) \approx P(W > 73.5) \text{ where } W \square N(60,60) \qquad \pm 0.5 \text{ for cc },73.5$ $\approx P(Z \ge \frac{73.5 - 60}{\sqrt{60}}) = P(Z > 1.74) = 0.0407 - 0.0409 < 0.05 \text{ Standardise using } 60\sqrt{60}$ Evidence that rate of sales per week has increased. A1 \int	Let <i>Y</i> represent the number sold in 6 weeks, under H_0 , $Y \square Po(60)$ $P(Y \ge 74) \approx P(W > 73.5)$ where $W \square N(60,60)$ ± 0.5 for cc ,73.5 M1A1 $\approx P(Z \ge \frac{73.5 - 60}{\sqrt{60}}) = P(Z > 1.74) = 0.0407 - 0.0409 < 0.05$ Standardise using $60\sqrt{60}$ M1,A1

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks	
7 (a)	$\int_{0}^{4} kx(5-x)dx = 1$ Limits required	M1	
	$k \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^4 = 1$ $\left[\frac{5x^2}{2} - \frac{x^3}{3} \right]$	A1	
	Sub in limits and solve to give **** $k = \frac{3}{56}$ **** Correct solution	A1	
(b)	$F(x) = \int_0^{x_0} f(x) dx = \int_0^{x_0} \frac{3}{56} x (5 - x) dx = \frac{3}{56} \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]^{x_0}$ Variable upper limit reconstruction.	guired M1	(3)
	$F(x) = \int_0^1 f(x) dx = \int_0^1 \frac{1}{56} x (3-x) dx = \frac{1}{56} \left[\frac{1}{2} - \frac{1}{3} \right]_0^{-1} $ variable upper limit rec $ = \frac{x_0^2}{112} (15 - 2x_0) $		
	0 x < 0	A1	
	$F(x) = \frac{x^2}{112}(15 - 2x) \qquad 0 \le x \le 4$ Ends, mide	dle. B1,B1∫	
(c)	$E(x) = \int_0^4 \frac{3}{56} x^2 (5 - x) dx = \frac{3}{56} \left[\frac{5x^3}{3} - \frac{x^4}{4} \right]_0^4 = 2.29 \int x f(x) dx, \left[\frac{5x^3}{3} - \frac{x^4}{4} \right], 3sf$	$(2\frac{2}{7})$ M1A1A1	(4)
(d)	$f'(x) = \frac{3}{56}(5-2x) = 0 \implies \text{Mode}=2.5$ Attempt $f'(x)$, $(5-2x) = 0$	0, 2.5 M1A1A1	(3)
(e)	(Or Sketch M1, x=0&5 A1,	,	(3)
	F(2.3)=0.491, F(2.5)=0.558 Their F, awrt 0.491 & 0.558 or 0.984 & -6 F(m)=0.5 \Rightarrow m lies between 2.3 and 2.5 cso A	,	(3)
(f)	Mean (2.29) <median (2.3-2.5)<mode="" (2.5)<br="">Negative skew</median>	B1 B1 dep	
		(Total 18 Ma	(2) arks)