

import pandas as pd
import numpy as np

df = pd.read_csv("/content/drive/MyDrive/Datasets-20220805T064950Z-001.zip (Unzipped Files)/Datasets/AirPassengers - AirPassengers.csv")
df

	Month	#Passengers	
0	1949-01	112	
1	1949-02	118	
2	1949-03	132	
3	1949-04	129	
4	1949-05	121	
139	1960-08	606	
140	1960-09	508	
141	1960-10	461	
142	1960-11	390	
143	1960-12	432	
144 ro	ws × 2 col	umns	

df['#Passengers'].plot()

 $\label{eq:dfshift_1'} $$ df['diff_shift_1'] = df['\#Passengers'] - df['\#Passengers'].shift(1) $$$

df

	Month	#Passengers	diff_shift_1
0	1949-01	112	NaN
1	1949-02	118	6.0
2	1949-03	132	14.0
3	1949-04	129	-3.0
4	1949-05	121	-8.0
139	1960-08	606	-16.0
140	1960-09	508	-98.0
141	1960-10	461	-47.0
142	1960-11	390	-71.0
143	1960-12	432	42.0

144 rows × 3 columns

from statsmodels.tsa.stattools import adfuller

```
adfuller(df['diff shift 1'].dropna())
     (-2.8292668241700047,
     0.05421329028382478,
     12,
     130,
      {'1%': -3.4816817173418295,
       '5%': -2.8840418343195267,
       '10%': -2.578770059171598},
      988.5069317854085)
def adf_test(series):
 result = adfuller(series)
 print('p - values : {}'.format(result[1]))
 if result[1]<=0.05:
   print('Strong evidence againts the null hypothesis, reject null hypothesis, indicating that data is Stationary')
 else:
   print('weak evidence against null hypothesis, indicating that the data is non-stationary')
adf_test(df['diff_shift_1'].dropna())
    p - values : 0.05421329028382478
    weak evidence against null hypothesis, indicating that the data is non-stationary
df['diff_shift_2'] = df['#Passengers'] - df['#Passengers'].shift(2)
```

	Month	#Passengers	diff_shift_1	diff_shift_2
0	1949-01	112	NaN	NaN
1	1949-02	118	6.0	NaN
2	1949-03	132	14.0	20.0
3	1949-04	129	-3.0	11.0
4	1949-05	121	-8.0	-11.0
139	1960-08	606	-16.0	71.0
140	1960-09	508	-98.0	-114.0
141	1960-10	461	-47.0	-145.0
142	1960-11	390	-71.0	-118.0
143	1960-12	432	42.0	-29.0
144 rc	ws × 4 col	umns		

df['diff_shift_2'].plot()

df

```
<Axes: >
       150
       100
        50
       -50
      -100
adf test(df['diff shift 2'].dropna())
     p - values : 0.03862975767698902
     Strong evidence againts the null hypothesis, reject null hypothesis, indicating that data is Stationary
from statsmodels.tsa.ar_model import AutoReg
dff = df['diff_shift_2'].dropna()
dff.shape
     (142,)
train = dff[:len(dff)-7]
train.shape
     (135,)
test = dff[len(dff)-7:]
test.shape
     (7,)
test
     137
             74.0
            150.0
     138
     139
             71.0
     140
           -114.0
     141
           -145.0
     142
           -118.0
     143
            -29.0
     Name: diff_shift_2, dtype: float64
model = AutoReg(df['diff_shift_2'].dropna(),lags=1).fit()
     /usr/local/lib/python3.9/dist-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: An unsupported index was provided and will
       self._init_dates(dates, freq)
pred = model.predict(start = 136, end = 142)
     /usr/local/lib/python3.9/dist-packages/statsmodels/tsa/base/tsa_model.py:834: ValueWarning: No supported index is available. Prediction
       \verb"return get_prediction_index"(
len(dff)-1
     141
import matplotlib.pyplot as plt
plt.plot(test,label="Test data",color='g')
plt.plot(pred,label="Prediction data",color='r')
plt.legend()
```

<matplotlib.legend.Legend at 0x7f0346b69520>

 ${\tt from \ sklearn.metrics \ import \ mean_squared_error}$

pred.shape

(7,)

test.shape

(7,)

rmse = np.sqrt(mean_squared_error(test,pred))

rmse

45.234376431761135