Differential Cohesive Type Theory ¹

Jacob A. Gross ¹ Daniel R. Licata ² Max S. New³ Jennifer Paykin⁴ Mitchell Riley² Michael Shulman⁵ Felix Wellen⁶

¹University of Pittsburgh ²Wesleyan University

³Northeastern University
⁴University of Pennsylvania

⁵University of San Diego ⁶Karlsruhe Institute of Technology

¹This material is based upon work supported by the National Science Foundation under Grant Number DMS 1321794.

✓ □ ➤ ✓ □ ➤

Differential Cohesive Toposes

 \Im , \int and \sharp are reflections. \Re , & and \flat are coreflections. \int and \Re preserve finite products.

There is an embedding:

 \mathcal{C}^{∞} : (smooth manifolds) $^{\mathrm{op}} \hookrightarrow \mathbb{R}$ -algebras

There is an embedding:

```
\mathcal{C}^{\infty}: (smooth manifolds)^{\mathrm{op}} \hookrightarrow \mathbb{R}-algebras
```

We extends the image $\mathcal{C}^{\infty}(\{\mathbb{R}^n\mid\ n\in\mathbb{N}\ \})$

There is an embedding:

$$\mathcal{C}^{\infty}$$
: (smooth manifolds) $^{\mathrm{op}} \hookrightarrow \mathbb{R}$ -algebras

We extends the image $C^{\infty}(\{\mathbb{R}^n \mid n \in \mathbb{N} \})$ to get the site of *formal cartesian spaces*

$$\{\underbrace{\mathcal{C}^{\infty}(\mathbb{R}^n)\otimes_{\mathbb{R}}(\mathbb{R}\oplus V)}_{=:(\mathbb{R}^n\times\mathbb{D}_V)^{\mathrm{op}}}\mid n\in\mathbb{N} \text{ and } V \text{ nilpotent, } \dim_{\mathbb{R}}V<\infty\}^{\mathrm{op}}$$

There is an embedding:

$$\mathcal{C}^{\infty}$$
: (smooth manifolds) $^{\mathrm{op}} \hookrightarrow \mathbb{R}$ -algebras

We extends the image $C^{\infty}(\{\mathbb{R}^n \mid n \in \mathbb{N} \})$ to get the site of *formal cartesian spaces*

$$\{\underbrace{\mathcal{C}^{\infty}(\mathbb{R}^n)\otimes_{\mathbb{R}}(\mathbb{R}\oplus V)}_{=:(\mathbb{R}^n\times\mathbb{D}_V)^{\mathrm{op}}}\mid n\in\mathbb{N} \text{ and } V \text{ nilpotent, } \dim_{\mathbb{R}}V<\infty\}^{\mathrm{op}}$$

with a topology respecting the smooth structure on the \mathbb{R}^n s and ignoring the infinitesimals.

There is an embedding:

$$\mathcal{C}^{\infty}$$
: (smooth manifolds) $^{\mathrm{op}} \hookrightarrow \mathbb{R}$ -algebras

We extends the image $C^{\infty}(\{\mathbb{R}^n \mid n \in \mathbb{N} \})$ to get the site of *formal cartesian spaces*

$$\{\underbrace{\mathcal{C}^{\infty}(\mathbb{R}^n)\otimes_{\mathbb{R}}(\mathbb{R}\oplus V)}_{=:(\mathbb{R}^n\times\mathbb{D}_V)^{\operatorname{op}}}\mid n\in\mathbb{N} \text{ and } V \text{ nilpotent, } \dim_{\mathbb{R}}V<\infty\}^{\operatorname{op}}$$

with a topology respecting the smooth structure on the \mathbb{R}^n s and ignoring the infinitesimals.

The sheaves on this site are called *formal smooth* ∞ -groupoids.

There is an embedding:

$$\mathcal{C}^{\infty}$$
: (smooth manifolds) $^{\mathrm{op}} \hookrightarrow \mathbb{R}$ -algebras

We extends the image $C^{\infty}(\{\mathbb{R}^n \mid n \in \mathbb{N} \})$ to get the site of *formal cartesian spaces*

$$\{\underbrace{\mathcal{C}^{\infty}(\mathbb{R}^n)\otimes_{\mathbb{R}}(\mathbb{R}\oplus V)}_{=:(\mathbb{R}^n\times\mathbb{D}_V)^{\operatorname{op}}}\mid n\in\mathbb{N} \text{ and } V \text{ nilpotent, } \dim_{\mathbb{R}}V<\infty\}^{\operatorname{op}}$$

with a topology respecting the smooth structure on the \mathbb{R}^n s and ignoring the infinitesimals.

The sheaves on this site are called *formal smooth* ∞ -groupoids. On representables \Re is given by reduction of \mathbb{R} -algebras:

$$\Re(\mathbb{R}^n \times \mathbb{D}_V) = \mathbb{R}^n$$