Data visualization intermdiates

Jae Yeon Kim 05 January, 2019

Motivation

• The following material is adapted from Kieran Healy's wonderful book (2018) on data visualization.

${\tt ggplot2} \ intermediates$

Grouping and facetting

• Can you guess what's wrong?

```
p <- ggplot(gapminder, aes(x = year, y = gdpPercap))
p + geom_point()</pre>
```


p + geom_line()

gapminder

```
## # A tibble: 1,704 x 6
                  continent year lifeExp
                                                pop gdpPercap
##
      country
##
      <fct>
                                                         <dbl>
                  <fct>
                             <int>
                                     <dbl>
                                              <int>
   1 Afghanistan Asia
                             1952
                                      28.8 8425333
                                                          779.
    2 Afghanistan Asia
                             1957
                                      30.3 9240934
                                                          821.
##
    3 Afghanistan Asia
                             1962
                                      32.0 10267083
                                                          853.
                                                          836.
##
  4 Afghanistan Asia
                             1967
                                      34.0 11537966
  5 Afghanistan Asia
                             1972
                                      36.1 13079460
                                                          740.
   6 Afghanistan Asia
                                      38.4 14880372
                                                          786.
##
                              1977
##
  7 Afghanistan Asia
                              1982
                                      39.9 12881816
                                                          978.
   8 Afghanistan Asia
                              1987
                                      40.8 13867957
                                                          852.
    9 Afghanistan Asia
                              1992
                                      41.7 16317921
                                                          649.
                              1997
                                      41.8 22227415
## 10 Afghanistan Asia
                                                          635.
## # ... with 1,694 more rows
```

• Use grouping and facetting to clarify

```
p <- ggplot(gapminder, aes(x = year, y = gdpPercap))
p + geom_line(aes(group = country)) # group by</pre>
```


p + geom_line(aes(group = country)) + facet_wrap(~continent) # facetting

GDP per capita on Five continents

Use pipes to summarize data

Life expectancy on Five continents

Plotting text

Ploting models

In plotting models, we use David Robinson's broom package in R extensively. The idea is to transform model outputs (i.e., predictions and estimations) into tidy objects so that we can combine, separate, and visualize these elements easily.

Tidy is a method in broom package. It "constructs a dataframe that summarizes the model's statistical findings". As the description states, tidy is a function that can be used generally for various models. For instance, a tidy can extract following information from a regression model.

- Term: a term being estimated
- p.value
- statistic: a test statistic used to compute p-value
- estimate
- conf.low: the low end of a confidence interval
- conf.high: the high end of a confidence interval
- df: degrees of freedom

Challege

Try glance(out), what did you get from these commands? If you're curious, you can try ?glance.

```
# estimates
out_comp <- tidy(out)</pre>
```

```
p <- out_comp %>%
    ggplot(aes(x = term, y = estimate))

p + geom_point() +
    coord_flip() +
    theme_bw()
```



```
# plus confidence intervals
out_conf <- tidy(out, conf.int = TRUE)

# plotting coefficients using ggplot2 (pointrange)
out_conf %>%
    ggplot(aes(x = reorder(term, estimate), y = estimate, ymin = conf.low, ymax = conf.high)) +
    geom_pointrange() + coord_flip() + labs(x = "", y = "OLS Estimate") +
    theme_bw()
```



```
# another way to do it (errorbar)
out_conf %>%
    ggplot(aes(x = estimate, y = reorder(term, estimate))) +
    geom_point() +
    geom_errorbarh(aes(xmin = conf.low, xmax = conf.high)) +
    labs(y = "", x = "OLS Estimate") +
    theme_bw()
```


Challenge

- 1. If we only want to visualize a certain subset of variables, let's say gdpPercap and pop, how can you do that? Also, gdpPercap might be not very informative. What's the best way to change the value name?
- 2. broom is a great package for running split-and-combine regressions. See the following example and write down your workflow for visualize it.

```
gapminder %>%
  group_by(continent) %>%
    do(tidy(lm(gdpPercap ~ lifeExp, data = .), conf.int = TRUE))
## # A tibble: 10 x 8
  # Groups:
                continent [5]
##
      continent term
                       estimate std.error statistic
                                                       p.value conf.low conf.high
                                                                    <dbl>
##
      <fct>
                 <chr>
                           <dbl>
                                     <dbl>
                                                <dbl>
                                                          <dbl>
                                                                              <dbl>
                                                -7.59 1.14e-13
    1 Africa
                 (Int~
                          -4234.
                                     557.
                                                                  -5329.
                                                                             -3139.
##
##
    2 Africa
                 life~
                            132.
                                      11.2
                                                11.7 7.60e-29
                                                                    110.
                                                                               154.
                                                -8.18 8.35e-15
##
    3 Americas
                 (Int~
                        -17577.
                                    2149.
                                                                 -21806.
                                                                            -13348.
##
    4 Americas
                life~
                            382.
                                      32.9
                                                11.6 5.45e-26
                                                                    317.
                                                                               447.
##
    5 Asia
                 (Int~
                        -19264.
                                    3374.
                                                -5.71 2.24e- 8
                                                                 -25897.
                                                                            -12630.
##
    6 Asia
                 life~
                            452.
                                      55.1
                                                 8.21 3.29e-15
                                                                    344.
                                                                               561.
##
    7 Europe
                 (Int~
                        -82198.
                                    4100.
                                               -20.0
                                                      1.77e-60
                                                                 -90261.
                                                                            -74135.
##
    8 Europe
                 life~
                          1344.
                                      56.9
                                                23.6
                                                      4.05e-75
                                                                    1233.
                                                                              1456.
    9 Oceania
                 (Int~ -100481.
                                    7757.
                                               -13.0
                                                      9.03e-12 -116568.
                                                                            -84394.
## 10 Oceania
                 life~
                          1602.
                                     104.
                                                15.4
                                                      2.99e-13
                                                                    1386.
                                                                              1819.
```