# ETC3250: Flexible Regression

Semester 1, 2020

Professor Di Cook

Econometrics and Business Statistics Monash University

Week 2 (b)

# Moving beyond linearity

Sometimes the relationships we discover are not linear...

Image source: XKCD



# Moving beyond linearity

League Baseball data from the 1986 and 1987 seasons.

Mul Would a linear model be appropriate for modelling the relationship between Salary and Career hits, captured in the variables logSalary and logCHits?



# Moving beyond linearity

Perhaps a more flexible regression model is needed!



### Flexible regression fits

The truth is rarely linear, but often the linearity assumption is good enough.

When it's not ...

```
polynomials,
step functions,
splines,
lill local regression, and
```

generalized additive models

offer a lot of flexibility, without losing the ease and interpretability of linear models.

### Polynomial basis functions

Instead of fitting a linear model (in X), we fit the model

$$y_i=eta_0+eta_1b_1(x_i)+eta_2b_2(x_i)+\cdots+eta_Kb_K(x_i)+e_i,$$

where  $b_1(X), b_2(X), \ldots, b_K(X)$  are a family of functions or transformations that can be applied to a variable X, and  $i=1,\ldots,n$ .

Polynomial regression:  $b_k(x_i)=x_i^k$ Piecewise constant functions:  $b_k(x_i)=I(c_k\leq x_i\leq c_{k+1})$ 

## Polynomial basis functions



$$x1 = x, x2 = x^2, x3 = x^3, x4 = x^4, x5 = x^5$$

## **Splines**

Knots:  $\kappa_1, \ldots, \kappa_K$ .

A spline is a continuous function f(x) consisting of polynomials between each consecutive pair of "knots"  $x = \kappa_j$  and  $x = \kappa_{j+1}$ .

- lacktriangledown Parameters constrained so that f(x) is continuous.
- Further constraints imposed to give continuous derivatives.

### Piecewise Cubic Poly Spline

Piecewise cubic polynomial with a single knot at a point *c*:

$$\hat{y}_i = \left\{ egin{aligned} eta_{01} + eta_{11} x_i + eta_{21} x_i^2 + eta_{31} x_i^3 & if \ x_i < c \ eta_{02} + eta_{12} x_i + eta_{22} x_i^2 + eta_{32} x_i^3 & if \ x_i \geq c \end{aligned} 
ight\}$$

9/24

## Piecewise Poly



(Chapter 7/7.3)

#### **Basis Functions**

- **IIII** Truncated power basis
- Predictors:  $x,...,x^p,(x-\kappa_1)_+^p,...,(x-\kappa_K)_+^p$

Then the regression is piecewise order- p polynomials.

- p-1 continuous derivatives.
- Lill Usually choose p=1 or p=3.
- p+K+1 degrees of freedom

#### \_\_\_\_

#### **Basis functions**



$$ext{x1} = x, ext{x2} = x^2, ext{x3} = x^3, ext{x4} = (x+0.5)_+^3, ext{x5} = (x-0.5)_+^3$$

## Natural splines

Splines based on truncated power bases have high variance at the outer range of the predictors.

Natural splines are similar, but have additional boundary constraints: the function is linear at the boundaries. This reduces the variance.

Degrees of freedom  $\mathbf{df} = K$ .

Create predictors using **ns** function in R (automatically chooses knots given **df**).

# Comparison with Cubic splines

We can fit a cubic spline in R using splines::bs(), and fit a natural cubic spline using splines::ns().

Notice the difference between the fits towards the end of the curves.



# Comparison with Polynomial Regression

Notice the difference between the fits towards the end of the curves.



# Natural cubic splines



#### Knot placement

Lill Strategy 1: specify df (which creates df-1 internal knots and 2 boundary knots, so that df = K+1) and let ns () place them at appropriate quantiles of the observed X.

 $\blacksquare$  Strategy 2: choose K and their locations.

17/24

#### Natural cubic splines with differing knots



#### Generalised additive models (GAMs)

Why is it hard to fit models of the form

$$y=f(x_1,x_2,\ldots,x_p)+e?$$

- Data is very sparse in high-dimensional space.
- **Model** assumes p-way interactions which are hard to estimate.

#### Additive functions

$$y_i = eta_0 + f_1(x_{i,1}) + f_2(x_{i,2}) + \ldots + f_p(x_{p,1}) + e_i$$

where each f is a smooth univariate function.

Allows for flexible nonlinearities in several variables, but retains the additive structure of linear models.

#### Additive functions

```
egin{aligned} \log(	ext{Salary}) &= eta_0 + f_1(\log(	ext{CHits})) \ &+ f_2(	ext{Years}) + f_3(	ext{Errors}) \ &+ f_4(	ext{Assists}) + arepsilon \end{aligned}
```



#### Generalisations

- Can fit a GAM simply using, e.g. natural splines:
- Coefficients not that interesting; fitted functions are.
- Use draw from gratia package to plot GAMs fitted in mgcv package.
- Can mix terms --- some linear, some nonlinear --- and use anova() to compare models.
- GAMs are additive, although low-order interactions can be included in a natural way using, e.g. bivariate smoothers or interactions of the form ns (age, df=5):ns (year, df=5).

#### Can we include interaction effects?

- Additive models assume no interactions.
- Add bivariate smooths for two-way interactions.
- Graphically check for interactions using faceting.



#### Made by a human with a computer

Slides at https://iml.numbat.space.

Code and data at https://github.com/numbats/iml.

Created using R Markdown with flair by xaringan, and kunoichi (female ninja) style.



This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.