第六章 微分方程

【考试要求】

- 1. 了解微分方程及其阶、解、诵解、初始条件和特解等概念.
- 2. 掌握变量可分离微分方程、齐次方程及一阶线性微分方程的解法.
- 3. 会解伯努利方程和全微分方程(数学一), 会用简单的变量代换解某些微分方程.
- 4. 会用降阶法解 $y^{(n)} = f(x)$ 、 y'' = f(y, y')、 y'' = f(x, y') (数学—、二).
- 5. 理解线性微分方程解的性质及解的结构.
- 6. 掌握二阶常系数齐次线性微分方程的解法, 并会解某些高于二阶的常系数齐次线性微分方程,
- 7. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性 微分方程.

 - 8. 会解欧拉方程(数学一). 9. 会用微分方程解决一些简单的应用问题.
 - 10. 了解差分与差分方程及其通解与特解等概念(数学三).
 - 11. 了解一阶常系数线性差分方程的求解方法(数学三).
 - 12. 会用微分方程求解简单的经济应用(数学三).

§1.微分方程的概念

1. 微分方程

含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程. 若未知函数是一元函数则称为常微分方程.

2. 微分方程的阶

微分方程中未知函数的最高阶导数的阶数称为微分方程的阶.

3. 微分方程的解、通解和特解

代入微分方程能使方程成为恒等式的函数称为微分方程的解;通解就是含有任意常数的个数与方程的阶数相同的解;不含有任意常数或任意常数确定后的解称为特解.

4. 初始条件

要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件.

5. 线性方程

如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程.

【例 6.1】下列微分方程中()

)是二阶微分方程.

$$(A) \quad y^2 + xy = x$$

$$(B) \quad y^2 + xy' = x$$

(c)
$$(y')^2 + xy = e^x$$

$$(D) \quad y^2 + xy'' = x$$

【例 6. 2】下列选项中()是微分方程 y'' = 6x + 2 的特解, ()是该方程的通解

(A)
$$y = x^3 + x^2 + x + C$$
.

(B)
$$y = x^3 + x^2 + x + 1$$
.

(c)
$$y = x^3 + x^2 + C_1 x + C_2$$
.

(D)
$$y = x^3 + C_1 x^2 + x + C_2$$
.

【例 6.3】下列选项中()是线性微分方程

$$(A) \quad y^2 + xy = x$$

$$(B) \quad y + x(y')^3 = x$$

$$(c) \quad y' + xy = e^x$$

$$(D) \quad y^2 + xy'' = x$$

§2.一阶微分方程

一、可分离变量的微分方程

如果一阶微分方程能写成

$$g(y)dy = f(x)dx$$

的形式,即能把微分方程写成一端只含 y 的函数和 $\mathrm{d}y$,另一端只含 x 的函数和 $\mathrm{d}x$,那么原方程就称为可分离变量的微分方程.

将上式两端积分, $\int g(y)dy = \int f(x)dx$,设 G(y) 及 F(x) 依次为 g(y) 及 f(x) 的原函数,则通解 G(y) = F(x) + C.

【例 6.4】 求微分方程 $(xy^2 + x) dx + (y - x^2 y) dy = 0$ 的通解.

【例 6.5】求微分方程
$$y' = \frac{1+x}{x} y$$
 满足 $y(1) = e$ 的特解.

二、齐次方程

如果一阶微分方程可化成

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi\left(\frac{y}{x}\right)$$
的形式,则称这方程为齐次方程.

两端积分,得 $\int \frac{\mathrm{d}u}{\varphi(u)-u} = \int \frac{\mathrm{d}x}{x}$,求出积分后,再以 $\frac{y}{x}$ 代替u,便得所给齐次方程的通解.

【例 6. 6】解方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\frac{y}{x}} + \frac{y}{x}$$

三、一阶线性微分方程

方程 $\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)$ 叫做一阶线性微分方程. 如果 $Q(x)\equiv 0$,则称方程为齐次的;如果 $Q(x)\neq 0$,则称方程为非齐次的.

通解公式
$$y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right)$$

【例 6.8】已知
$$y' = \frac{1}{1+x^2}y$$
, 求其在 $y(0) = \pi$ 时的特解.

【例 6.9】求方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解.

【例 6. 10】求微分方程的特解 $xy' + 2y = x \ln x$,其中 $y(1) = -\frac{1}{9}$.

§3.高阶微分方程

一、可降阶的高阶微分方程(数一、数二)

1. $y^{(n)} = f(x)$ 型的微分方程

微分方程 $y^{(n)}=f(x)$ 的右端仅含有自变量 x , 对方程两边积分,得到一个 n-1 阶的微分方程 $y^{(n-1)}=\int f(x)\mathrm{d}x+C_1$

同理可得
$$y^{(n-2)} = \int \left[\int f(x) dx + C_1 \right] dx + C_2$$
.

以此类推,接连积分n次,可得方程的含有n个任意常数的通解.

【例 6.11】 求微分方程 $y''' = e^{2x} - \cos x$ 的通解.

2. y'' = f(x, y') 型的微分方程

方程 y''=f(x,y') 的右端不显含未知函数 y. 令 y'=p,则 $y''=\frac{\mathrm{d}p}{\mathrm{d}x}=p'$,代入原方程有 p'=f(x,p).

这是一个关于变量 X , P 的一阶微分方程. 设其通解为

$$p = \varphi(x, C_1)$$

将 $p = \frac{dy}{dx}$ 回代, 得到一个一阶微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi(x, C_1)$$

对它进行积分,得到原方程的通解为

$$y = \int \varphi(x, C_1) dx + C_2.$$

【例 6. 12】求微分方程 $(1+x^2)y''=2xy'$ 满足初始条件 $y|_{x=0}=1$, $y'|_{x=0}=3$ 的特解.

3. y'' = f(y, y') 型的微分方程

方程 y'' = f(y, y') 中不明显地含自变量 x. 令 y' = p, 则

$$y'' = \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}p}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = p \frac{\mathrm{d}p}{\mathrm{d}y},$$

原方程变为

$$p\frac{\mathrm{d}p}{\mathrm{d}y} = f(y,p),$$

这是一个关于变量 y , p 的一阶微分方程. 设它的通解为

$$y' = p = \varphi(y, C_1)$$

分离变量并积分, 便得原方程的通解为

$$\int \frac{\mathrm{d}y}{\varphi(y,C_1)} = x + C_2.$$

【例 6. 13】求微分方程 $yy'' - y'^2 = 0$ 的通解.

二、 线性微分方程解的结构

1. 一阶线性微分方程解的结构

(1) 若 $y_1(x)$, $y_2(x)$ 为一阶齐次线性方程的两个特解, 则它们的线性组合 $k_1y_1(x)+k_2y_2(x)$ 仍为原方程的解.

(2) 若 $y^*(x)$ 为一阶非齐次方程的一个特解,而 Cy(x) 为对应的一阶齐次线性方程的通解,则 $y = Cy(x) + y^*(x)$ 是此一阶非齐次线性方程的通解.

(3) 设 $y_1^*(x)$ 与 $y_2^*(x)$ 分别是 $y' + P(x)y = f_i(x)$ (i=1,2) 的特解,则 $y_1^*(x) + y_2^*(x)$ 是 $y' + P(x)y = f_1(x) + f_2(x)$ 的特解.

【例 6. 14】设非齐次线性微分方程 y'+P(x)y=Q(x) 有两个不同的解 $y_1(x)$ 与 $y_2(x)$,C 为任意常数,则该方程的通解是()

(A) $C[y_1(x) - y_2(x)]$.

(B) $y_1(x) + C[y_1(x) - y_2(x)]$.

(c) $C[y_1(x) + y_2(x)]$.

(D) $y_1(x) + C[y_1(x) + y_2(x)]$.

2. 高阶线性微分方程解的结构

(1) 若 $y_1(x)$, $y_2(x)$ 为二阶齐次线性方程的两个特解, 则它们的线性组合 $C_1y_1(x)+C_2y_2(x)$ 仍为原方程的解. 特别地, 当 $y_1(x)\neq \lambda y_2(x)$ (λ 为常数), 也即 $y_1(x)$ 与 $y_2(x)$ 线性无关时, 原方程的通解为 $y=C_1y_1(x)+C_2y_2(x)$.

(2) 若 $y^*(x)$ 为二阶非齐次方程的一个特解, 而 $C_1y_1(x) + C_2y_2(x)$ 为对应的二阶齐次线性方程的通解, 则 $y = C_1y_1(x) + C_2y_2(x) + y^*(x)$ 是此二阶非齐次线性方程的通解.

新东方 大学生学习与发展中心

(3) 设 $y_1^*(x)$ 与 $y_2^*(x)$ 分别是 $y'' + P(x)y' + Q(x)y = f_i(x)$ (i = 1, 2) 的特解, 则 $y_1^*(x) + y_2^*(x)$ 是 $y'' + P(x)y' + Q(x)y = f_1(x) + f_2(x)$ 的特解.

【注】以上性质也可推广到n阶齐次和非齐次线性方程.

【例 6. 15】已知 $y_1 = 1$, $y_2 = x$, $y_3 = x^2$ 是某二阶非齐次线性微分方程的三个解, 则该方程的通解为

.

三、 常系数齐次线性微分方程

1. 二阶齐次、非齐次线性微分方程

$$y'' + P(x)y' + Q(x)y = 0$$

$$y'' + P(x)y' + Q(x)y = f(x)$$

2. 二阶常系数齐次线性微分方程

在二阶齐次线性微分方程 y''+P(x)y'+Q(x)y=0中, 如果 y'和 y 的系数 P(x), Q(x) 均为常数,即 y''+py'+qy=0,其中 p, q 是常数,称为二阶常系数齐次线性微分方程.

特征方程 $r^2 + pr + q = 0$, 特征方程根的三种不同情形对应齐次方程通解的三种形式

特征方程 $r^2 + pr + q = 0$ 的两	微分方程 $y'' + py' + qy = 0$
个根 r ₁ , r ₂	的通解
两个不相等的实根 r_1 , r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
两个相等的实根 $r_1 = r_2$	$y = \left(C_1 + C_2 x\right) e^{r_1 x}$
一对共轭复根 $r_{1,2} = \alpha \pm \beta i$	$y = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right)$

【例 6. 16】 求微分方程 y'' - 7y' + 6y = 0 的通解.

【例 6.17】 求微分方程 y'' - 2y' + y = 0 的通解.

【例 6. 18】 求微分方程 y'' - 6y' + 13y = 0 的通解.

3. n 阶常系数齐次线性微分方程

n 阶常系数齐次线性微分方程的一般形式是 $y^{(n)}+p_1y^{(n-1)}+p_2y^{(n-2)}+\cdots+p_{n-1}y'+p_ny=0$, 其中 $p_1,p_2,\cdots,p_{n-1},p_n$ 都是常数.

特征方程 $r^n + p_1 r^{n-1} + p_2 r^{n-2} + \dots + p_{n-1} r + p_n = 0$,根据特征方程的根的形式,写出对应的微分方程的通解如下

特征方程的根	微分方程通解中的对应项
单实根 r	给出一项 <i>C</i> e ^{rx}
一对单复根 $r_{1,2} = \alpha \pm \beta i$	给出两项 $e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$
k 重实根 r	给出 $_k$ 项 $e^{rx} \left(C_1 + C_2 x + \cdots + C_k x^{k-1} \right)$
	给出 2k 项
—对 k 重复根 $r_{1,2} = \alpha \pm \beta i$	$e^{\alpha x}[(C_1 + C_2 x + \dots + C_k x^{k-1})\cos \beta x]$
	$+(D_1+D_2x+\cdots+D_kx^{k-1})\sin\beta x]$

【例 6. 19】 求方程 $y^{(4)} - 2y''' + 5y'' = 0$ 的通解.

四、二阶常系数非齐次线性微分方程

1. 二阶常系数非齐次线性微分方程

二阶常系数非齐次线性微分方程的一般形式是

$$y'' + py' + qy = f(x)$$

其中 p,q 是常数. 其通解为 $y = C_1 y_1(x) + C_2 y_2(x) + y^*(x)$,其中 $C_1 y_1(x) + C_2 y_2(x)$ 为对应的二阶常系数齐次线性方程的通解.

2. 二阶常系数非齐次线性微分方程的特解

根据 f(x) 的形式先确定特解 $y^*(x)$ 的形式, 其中包含一些待定的系数, 然后代入方程确定这些系数 就得到特解 $y^*(x)$, 常见的 f(x) 的形式和相对应的特解 $y^*(x)$ 的形式如下

(1)
$$f(x) = e^{\lambda x} P_m(x)$$
 型

- a. 若 λ 不是特征方程的根,则令 $y^*(x) = R_m(x)e^{\lambda x}$;
- b. 若 λ 是特征方程的单根,则令 $y^*(x) = xR_m(x)e^{\lambda x}$;
- c. 若 λ 是特征方程的重根,则令 $y^*(x) = x^2 R_m(x) e^{\lambda x}$

其中 $R_m(x)$ 是与 $P_m(x)$ 同次(m次)的多项式.

【例 6. 20】 求微分方程 y'' - 2y' - 3y = 3x + 1 的通解.

【例 6. 21】 求微分方程 $y'' - 5y' + 6y = xe^{2x}$ 的通解.

- (2) $f(x) = e^{\lambda x} [P_l(x) \cos \omega x + Q_n(x) \sin \omega x] \underline{\mathbb{Z}}$
 - a. 若 $\lambda + \omega i$ 不是特征方程的根,则令 $y^* = e^{\lambda x} \left[R_m^{(1)} \cos \omega x + R_m^{(2)} \sin \omega x \right]$
 - b. 若 $\lambda + \omega i$ 是特征方程的根,则令 $y^* = x e^{\lambda x} \left[R_m^{(1)} \cos \omega x + R_m^{(2)} \sin \omega x \right]$

其中 $R_m^{(1)}(x)$, $R_m^{(2)}(x)$ 是m次多项式, $m = \max\{l,n\}$.

【例 6. 22】 求微分方程 $y'' + y' - 2y = 2\cos 2x$ 的一个特解.

【例 6. 23】微分方程 $y'' + y = x^2 + 1 + \sin x$ 的特解形式可设为(

(A)
$$y^* = ax^2 + bx + c + x(A\sin x + B\cos x)$$
. (B) $y^* = ax^2 + bx + c + A\sin x$.

(B)
$$y^* = ax^2 + bx + c + A\sin x$$

(c)
$$y^* = x(ax^2 + bx + c + A\sin x + B\cos x)$$
. (D) $y^* = ax^2 + bx + c + A\cos x$.

(D)
$$y^* = ax^2 + bx + c + A\cos x$$