Mesterséges intelligencia

Gregorics Tibor people.inf.elte.hu/gt/mi

Szakirodalom

■ Könyvek

- Fekete István Gregorics Tibor Nagy Sára: Bevezetés a mesterséges intelligenciába, LSI Kiadó, Budapest, 1990, 1999. ELTE-Eötvös Kiadó, Budapest, 2006.
- Russel, J. S., Norvig, P.: MI modern megközelítésben, Panem Kft, 2005.
- Futó Iván (szerk): Mesterséges intelligencia, Aula Kiadó, Budapest,
 1999.

□ Internet

- people.inf.elte.hu/gt/mi
- Neptun / MeetStreet / Virtuális terek / tantárgy / dokumentumok
- http://www.inf.elte.hu/karunkrol/digitkonyv/Jegyzetek/mi.pdf

I. Bevezetés

1. AZ MI FOGALMA

mesterséges intelligencia **ZMI** (artificial intelligence - AI)

Erős MI

Az emberi gondolkodás reprodukálható számítógéppel.

MI szkeptikusok

A számítógép soha nem lesz okosabb az embernél.

Gyenge MI

Az MI kutatja, fejleszti, rendszerezi azokat az elméleteket és megoldási módszereket, amelyek hozzájárulnak az intelligens gondolkodás számítógéppel való reprodukálásához.

MI nem egy speciális részterülete az informatikának, hanem egy törekvés, hogy a számítógéppel olyan érdekes és nehéz problémákat oldjunk meg, amelyek megoldásában ma még az ember jobb.

Miről ismerhető fel egy szoftverben az MI?

- Megoldandó feladat: nehéz
 - A feladat problématere hatalmas,
 - intuícióra, kreativitásra (azaz héurisztikára) van szükségünk ahhoz, hogy elkerüljük a kombinatorikus robbanást.
- □ Szoftver viselkedése: intelligens
 - Turing teszt vs. kínai szoba elmélet
 - "mesterjelölt szintű" mesterséges intelligencia
- □ Felhasznált eszközök: sajátosak
 - átgondolt reprezentáció a feladat modellezéséhez
 - heurisztikával megerősített hatékony algoritmusok

Intelligens szoftver jellemzői

- megszerzett ismeret tárolása
- automatikus következtetés
- tanulás
- term. nyelvű kommunikáció
- gépi látás, gépi cselekvés

2. MODELLEZÉS & KERESÉS

Mire kell a modellezésnek fókuszálni

- □ Problématér elemei: probléma lehetséges válaszai.
- □ *Cél*: egy helyes válasz (megoldás) megtalálása
- □ Keresést segítő ötletek:
 - Problématér hasznos elemeinek elválasztása a haszontalanoktól.
 - Az elemek szomszédsági kapcsolatainak kijelölése, hogy a probléma tér elemeinek szisztematikus bejárását segítsük.
 - Adott pillanatban elérhető elemek rangsorolása.
 - Kiinduló elem kijelölése.

Útkeresési probléma

- Egy probléma modelljét valamilyen modellezési módszer segítségével írjuk le.
- Ezek a módszerek sokszor útkeresési problémává fogalmazzák át a kitűzött problémát: a problématerének elemeit egy speciális élsúlyozott irányított gráf csúcsai vagy útjai szimbolizálják.
- A megoldást ennek megfelelően vagy egy célcsúcs, vagy egy startcsúcsból célcsúcsba vezető (esetleg a legolcsóbb ilyen) út megtalálása szolgáltatja.

Gráf fogalmak 1.

- csúcsok, irányított élek N, $A \subseteq N \times N$ (végtelen számosság)
- él n-ből m-be $(n,m) \in A \ (n,m \in N)$
- n utódai $\Gamma(n) = \{ m \in N \mid (n, m) \in A \}$
- n szülei $\pi(n) \in \Pi(n) = \{m \in N \mid (m,n) \in A\}$
- irányított gráf R=(N,A)
- véges sok kivezető él $|\Gamma(n)| < \infty \quad (\forall n \in N)$
- élköltség $c:A \to \mathbb{R}$
- δ -tulajdonság ($\delta \in \mathbb{R}^+$) $c(n,m) \ge \delta > 0$ ($\forall (n,m) \in A$)
- δ-gráf δ-tulajdonságú, véges sok kivezető élű, élsúlyozott irányított gráf

Gráf fogalmak 2.

• irányított út

δ-gráfokban ez végtelen sok út esetén is értelmes.

Értéke ∞, ha nincs egy út se.

- út hossza
- út költsége
- opt. költség
- opt. költségű út

$$\alpha = (n, n_1), (n_1, n_2), \dots, (n_{k-1}, m)$$

$$= \langle n, n_1, n_2, \dots, n_{k-1}, m \rangle$$

$$n \longrightarrow \alpha m, n \longrightarrow m,$$

$$n \longrightarrow M, \{n \longrightarrow m\}, \{n \longrightarrow M\} \quad (M \subseteq N)$$

az út éleinek száma: α

$$c(\alpha) = c^{\alpha}(n,m) := \sum_{i} c(n_{i-1}, n_i)$$

ha $\alpha = \langle n = n_0, n_1, n_2, ..., n_{k-1}, m = n_k \rangle$

$$c^*(n,m) := \min_{\alpha \in \{n \to m\}} c^{\alpha}(n,m)$$
$$c^*(n,M) := \min_{\alpha \in \{n \to M\}} c^{\alpha}(n,m)$$

$$n \longrightarrow^* m := \min_c \{ \alpha \mid \alpha \in \{n \longrightarrow m\} \}$$
$$n \longrightarrow^* M := \min_c \{ \alpha \mid \alpha \in \{n \longrightarrow M\} \}$$

Gráfreprezentáció fogalma

- Minden útkeresési probléma rendelkezik egy (a probléma modellezéséből származó) gráfreprezentációval, ami egy (*R*, *s*, *T*) hármas, amelyben
 - -R=(N,A,c) δ -gráf az ún. reprezentációs gráf,
 - az s∈N startcsúcs,
 - a *T*⊂*N* halmazbeli célcsúcsok.
- □ és a probléma megoldása:
 - egy t∈T cél megtalálása, vagy
 - egy $s \rightarrow T$, esetleg $s \rightarrow T$ optimális út megtalálása

Keresés

- □ Az útkeresési problémák megoldásához a reprezentációs gráfjaik nagy mérete miatt speciális (nem determinisztikus, heurisztikus) útkereső algoritmusokra van szükség, amelyek
 - a startcsúcsból indulnak, amely az első aktuális csúcs;
 - minden lépésben nem-determinisztikus módon új aktuális csúcsot választanak a korábbi aktuális csúcs(ok) gyerekei közül;
 - tárolják a már feltárt reprezentációs gráf egy részét;
 - megállnak, ha célcsúcsot találnak vagy nyilvánvalóvá válik, hogy erre semmi esélyük.

Kereső rendszer (KR)

Procedure *KR*

1. ADAT := kezdeti érték

globális munkaterület

tárolja a keresés során megszerzett és megőrzött ismeretet (egy részgráfot) (kezdeti érték ~ start csúcs,

terminálási feltétel ~ célcsúcs)

- 2. while ¬terminálási feltétel(ADAT) loop
- 3. SELECT SZ FROM alkalmazható szabályok
- $4. \qquad ADAT := SZ(ADAT)$
- 5. endloop

end

vezérlési stratégia

végrehajtható szabályok közül kiválaszt egy "megfelelőt" (*általános elv + heurisztika*)

keresési szabályok

megváltoztatják a globális munkaterület tartalmát (*előfeltétel, hatás*)

Kereső rendszerek vizsgálata

- □ helyes-e (azaz korrekt választ ad-e)
- □ teljes-e (minden esetben választ ad-e)
- □ optimális-e (optimális megoldást ad-e)
- □ idő bonyolultság
- □ tár bonyolultság