

1 COUPLING OF OPTICAL COMPONENTS IN AN
2 OPTICAL SUBASSEMBLY

3
4
5 Cross-Reference to Related Applications

6
7 This application claims the benefit of U.S. Provisional
8 Application Number 60/431,246, filed 5 December 2002.

9
10
11 Field of the Invention

12
13 This invention relates to optical packaging and, more
14 particularly, to apparatus and methods for adjusting the
15 coupled-power in an optical system.

16
17
18 Background of the Invention

19
20 Optoelectronics is a rapidly expanding technology that is
21 an important component in modern communications systems wherein
22 it is desired to transmit vast amounts of data over relatively
23 long distances in a short period of time. With the increasing
24 commercial applications for optoelectronic systems, there is a
25 need to develop cost effective and precise manufacturing

1 techniques for assembling optoelectronic modules (e.g., optical
2 subassemblies, fiber-optic cable repeaters, transmitters,
3 etc.).

4

5 Transmitters used in optical fiber communications systems
6 typically require a package containing a semiconductor laser
7 coupled to an optical fiber that extends from the package. A
8 major challenge in constructing such transmitters is in
9 achieving and maintaining optimal alignment of the laser with
10 the optical fiber such that a desired part of the laser output
11 can be transmitted through the fiber. The laser output
12 transmitted through the fiber has a launched power (hereinafter
13 referred to as " P_{launch} "). A common approach is "active
14 alignment" in which, for example, the laser is bonded to a
15 substrate, and the optical fiber is incrementally moved until a
16 desired part (generally maximum coupling) of the laser output
17 is directed through the fiber, whereupon the optical fiber is
18 permanently bonded. Alternatively, the fiber can be first
19 bonded to the substrate, with the laser being moved into
20 alignment and then bonded.

21

22 Another problem associated with developing cost-effective
23 techniques for assembling optoelectronic modules at the
24 required high level of precision is achieving dimensional
25 stability during bonding of the optoelectronic device and
26 optical fiber to the substrate. Conventional bonding

1 processes, such as laser welding and epoxy bonding, frequently
2 result in residual stresses in the bonds that may cause
3 undesirable creep and misalignment between the components of
4 the optoelectronic module.

5

6 Solder alloys are widely used in the optoelectronics
7 industry for bonding optoelectronic devices to submounts inside
8 optoelectronic package housings. Some of the more common
9 submount materials include aluminum nitride, beryllium oxide,
10 beryllium-copper alloy, copper, copper-tungsten alloy, diamond,
11 molybdenum, silicon, or the like. Because most optoelectronic
12 devices are made from Group III-V (e.g., GaAs, InP, etc.) and
13 their ternary and quaternary alloys (e.g., GalnAs, GalnAsP,
14 GaInAsP, etc.), the submount materials upon which the
15 optoelectronic devices are bonded generally have dissimilar
16 mechanical and thermal properties. In environments where
17 temperature cycling is expected (e.g., commercial aerospace
18 platforms and outdoor fiber-optic cable systems), high thermal
19 stresses and creep strains may build up in the solder joints,
20 potentially leading to premature joint failure and shortened
21 operating life.

22

23 Still another problem that arises in optoelectronic
24 devices is the standardization of components and optical
25 packages. As an example, laser characteristics can vary

1 widely, even in a common manufactured batch. Therefore, in a
2 manufacturing environment P_{launch} can vary greatly from
3 transmitter to the next. Some typical examples of
4 characteristics that may affect P_{launch} are: laser
5 characteristics (e.g. far-field pattern, astigmatism, etc.);
6 various differences introduced during assembly (e.g.
7 misalignments of parts, tolerance differences, etc.);
8 polarization loss through isolators; etc. It is desirable to
9 control P_{launch} , especially for a transmitter (i.e. electrical-
10 to-optical module), for two major reasons: industry standards
11 such as SONET, 10 Gigabit Ethernet, Fibre Channel, etc. specify
12 an allowable range of launched power (P . For example, Telcordia
13 GR-253 specifies the allowable range for SONET OC-192 SR-1 to
14 be from -6 to -1 dBm. In general, manufacturers will want to
15 set P_{launch} approximately to the middle of the allowable range (-
16 3.5dBm in the case of OC-192 SR-1). Furthermore, it is also
17 desirable to minimize the variance of the statistical
18 distribution of P_{launch} over a population of transmitters because
19 this improve transmitter yields and makes design of associated
20 electronics easier.

21 A standard prior art way to adjust launched power is to
22 design the optical modules with higher coupling efficiency
23 than required and then defocus the light beam along the optical
24 axis (Z-axis) to reduce coupling by the desired amount. The
25 defocusing is generally accomplished by moving the optical

1 fiber along the optical axis. In some optical module designs,
2 especially where the light beam is collimated or almost
3 collimated at the plane of alignment, the sensitivity to
4 defocusing is not high enough. In such cases, the manufacturer
5 needs to change spacing between the laser and an adjacent lens
6 or fiber to defocus the optics. Such a change may be
7 accomplished, for example, by adding spacers. This solution is
8 not desirable in a high-volume manufacturing environment
9 because it requires that P_{launch} be measured and the transmitter
10 be modified with spacers until the target P_{launch} is reached.
11 This process is time consuming and may require that a selection
12 of spacer components be kept in inventory. Further, the use of
13 spacers leads to variations in the module length, if not taken
14 into account in the original design. Accounting for defocusing
15 in the original design can lead to substantial design
16 complexity.

17

18 It would be highly advantageous, therefore, to remedy the
19 foregoing and other deficiencies inherent in the prior art.

20

21 Accordingly, it is an object the present invention to
22 provide new and improved apparatus and methods for adjusting
23 P_{launch} in optoelectronic modules.

1 Another object of the present invention is to provide new
2 and improved apparatus and methods for adjusting P_{launch} in
3 optoelectronic modules that are relatively inexpensive to
4 manufacture and is easy to assemble and test.

5

6 Another object of the present invention is to provide new
7 and improved apparatus and methods for adjusting P_{launch} in
8 optoelectronic modules that improve the fabrication efficiency
9 and manufacturing capabilities of optoelectronic modules and
10 packages.

11 Still another object of the present invention is to
12 provide new and improved apparatus and methods for adjusting
13 P_{launch} in optoelectronic modules that allow the use of a variety
14 of optical components and component equipment.

15

16 Still another object of the present invention is to
17 provide new and improved apparatus and methods for adjusting
18 P_{launch} in optoelectronic modules that aid in standardizing
19 modules and packages.

1 Summary of the Invention

2

3 Briefly, to achieve the desired objects of the instant
4 invention in accordance with a preferred embodiment thereof,
5 P_launch adjusting apparatus is disclosed in conjunction with
6 optoelectronic modules. The apparatus includes a receptacle
7 assembly with an elongated optical fiber receiving opening
8 having a longitudinal axis and an optoelectronic device.
9 Variable optical power coupling apparatus is mounted in the
10 optical fiber receiving opening and rotateable about the
11 longitudinal axis without moving along the longitudinal axis.
12 Relative rotation of the variable optical power coupling
13 apparatus varies the amount of optical power coupled between
14 the optoelectronic device and an optical fiber positioned in
15 the optical fiber receiving opening. The variable optical
16 power coupling apparatus includes, preferably, either a
17 polarized isolator or a beveled optical fiber stub.

1 Brief Description of the Drawing

2

3 The foregoing and further and more specific objects and
4 advantages of the instant invention will become readily
5 apparent to those skilled in the art from the following
6 detailed description of a preferred embodiment thereof taken in
7 conjunction with the drawings, in which:

8

9 FIG. 1 is a sectional view of an optoelectronic package
10 assembly with an optical isolator in accordance with the
11 present invention;

12

13 FIG. 2 is a graph illustrating the P_{launch} as a function of
14 angle for the optoelectronic package illustrated in FIG. 1;

15

16 FIG. 3 is a sectional view of the optoelectric package
17 assembly with a beveled optical fiber in accordance with the
18 present invention;

19

20 FIG. 4 is an enlarged sectional view of the beveled
21 optical fiber illustrating a high optical power coupling;

22

23 FIG. 5 is an enlarged sectional view of the beveled
24 optical fiber illustrating a low optical power coupling; and

1 FIG. 6 is a graph illustrating the P_{launch} as a function of
2 angle for the optoelectronic package illustrated in FIG. 3.

Detailed Description of the Drawings

Turning now to FIG. 1, a sectional view is illustrated of
her an optical-to-electrical or electrical-to-optical
reinafter referred to as "optoelectric") module 10 in
cordance with the present invention. It will be understood
those skilled in the art that modules of the type discussed
ein generally include a pair of channels, one of which
eives electrical signals, converts the electrical signals to
ical (light) beams by way of a laser or the like and
roduces them into one end of an optical fiber, which then
nsmits the modulated optical beams to external apparatus.
second channel of the module receives modulated optical
ms from an optical fiber connected to the external
aratus, conveys the modulated optical beams to a photodiode
the like, which converts them to electrical signals. In the
lowing description, the apparatus and methods can generally
used in either of the channels, but since the optical
tions of the two channels are substantially similar, only
channel will be discussed with the understanding that the
cription applies equally to both channels.

Module 10 of FIG. 1 includes a receptacle assembly 11 which is designed to receive an optical fiber 14 in communication therewith in a manner that will become clear presently. In the preferred embodiment, optical fiber 14 is a

1 single mode fiber (the use of which is one of the major
2 advantages of the present invention) including a glass core 15
3 surrounding by a cladding layer (not shown) . It will be
4 understood by those skilled in the art that the glass fiber is
5 inserted and bonded to some type of ceramic or glass ferrule 16
6 or other connection device to add mechanical strength.
7 Receptacle assembly 11 includes an elongated cylindrical
8 receptacle 20 defining a fiber receiving opening 21 at one end
9 and a mounting flange 22 at the opposite end.

10

11 Elongated cylindrical receptacle 20 is typically
12 positioned in a mounting housing 30. A sleeve 24 is used to
13 hold ferrule 20 within housing 30 so as to engage receptacle 20
14 within housing 30 and prevent relative longitudinal movement.
15 Thus, to easily and conveniently mount receptacle 20 in housing
16 30, receptacle 20 with sleeve 24 engaged thereover is press-fit
17 into the circular opening in housing 30 and frictionally holds
18 receptacle 20 in place. Preferably, sleeve 24 is formed,
19 completely or partially, of some convenient resilient material
20 and may be electrically conductive or non-conductive as
21 required in the specific application.

22

23 In this embodiment, an optical isolator 35 is positioned
24 adjacent to the end facet of fiber ferrule 16 . Isolator 35
25 acts to prevent light 7 emitted in a z-direction from a laser
26 45 from reflecting back into laser 45. In the preferred

1 embodiment, isolator 35 is polarized in an angular direction,
2 θ_z . A lens assembly 36 is positioned adjacent to receptacle 20
3 and isolator 35. In this embodiment, the isolator garnet is
4 latched by pre-applying a magnetic field; this avoids the need
5 of a permanent magnet to be integrated in the receptacle
6 assembly. Lens assembly 36 includes a lens 39 for focusing
7 light 7 emitted by laser 45. In this preferred embodiment,
8 lens assembly 36 is formed of plastic and may be, for example,
9 molded to simplify manufacturing of module 10.

10

11 It should be understood that the term "plastic" is used
12 herein as a generic term to describe any non-glass optical
13 material that operates to transmit optical beams of interest
14 therethrough and which can be conveniently formed into lenses
15 and the like. For example, in most optical modules used at the
16 present time the optical beams are generated by a laser that
17 operates in the infrared band and any materials that transmit
18 this light, including some oxides and nitrides, come within
19 this definition. It will be understood, however, that lens
20 assembly 36 may be formed, partially or completely, of glass or
21 other materials with desired optical properties.

22

23 Lens assembly 36 defines a central opening for the
24 transmission of light therethrough from an end 37 to an
25 opposite end 38. Lens 39 is integrally formed in the central

1 opening a fixed distance from end 37. Lens assembly 36 is
2 formed with radially outwardly projecting ribs or protrusions
3 in the outer periphery (not shown) so that it can be press-fit
4 into receptacle 20 tightly against isolator 35. Thus, lens
5 assembly 36 is frictionally held in place within receptacle 20
6 and holds isolator 35 fixedly in place within receptacle 20.
7 Also, lens 39 is spaced a fixed and known distance from
8 isolator 35. In this preferred embodiment, fiber ferrule 16 is
9 inserted into receptacle 20 so that glass core 15 physically
10 contacts against isolator 35. Further, by forming isolator 35
11 of glass material with an index of refraction similar to the
12 index of refraction of glass core 15, the return reflections of
13 light travelling back from the fiber towards the laser is
14 substantially reduced or suppressed.

15 Preferably, P_{launch} is adjusted by rotating ferrule 16 in
16 the θ_z direction. The rotation changes the angle of the
17 polarization axis of isolator 35 relative to light 7 emitted by
18 laser 45. The change in P_{launch} is illustrated in FIG. 2 where
19 P_{launch} is at a maximum at approximately $\theta_z = 0^\circ$, $\theta_z = 180^\circ$ and θ_z
20 = 360° (i.e. even integer multiples of 90° , for example 0, 2, 4,
21 etc.) and P_{launch} is at a minimum at approximately $\theta_z = 90^\circ$ and θ_z
22 = 270° (i.e. odd integer multiples of 90° , for example 1, 3,
23 etc.).

1 Turn now to FIG. 3 which illustrates another method and
2 apparatus for adjusting P_{launch} . In this embodiment, module 10,
3 as described in conjunction with FIG. 1 including receptacle
4 assembly 11, is designed to receive an optical fiber 14 in
5 communication therewith. However, in this embodiment, isolator
6 35 is omitted and fiber 14 is beveled at an end 12 adjacent to
7 lens assembly 36. To achieve maximum coupling efficiency, the
8 optical axis of light 7 emitted by laser 45 should be offset
9 laterally relative to the fiber core (See FIG. 4). It will be
10 understood by those skilled in the art that P_{launch} depends on
11 the numerical aperture, NA, of fiber 14 and the bevel can be
12 rotated in θ_z to adjust the amount of light 7 coupled into
13 fiber 14. Preferably the rotation is accomplished by rotating
14 ferrule 15 inside receptacle 20 but ferrule 15 but assembly 11
15 may also be rotated relative to laser 45 if desired.

16

17 Turn now to FIG. 4 which illustrates an enlarged view of
18 optical fiber 14 and, more particularly, end 12. It will be
19 understood by those skilled in the art that fiber 14 accepts
20 only light rays incident within the numerical aperture. The
21 numerical aperture, as seen in FIG. 4, is defined by a cone 3
22 having a half-angle, θ , wherein θ is related to the numerical
23 aperture through an equation given as $NA = \sin(\theta)$. As shown in
24 FIG. 4, in a first rotational orientation of fiber 14, light
25 ray 7 is illustrated to propagate through the center of cone 3

1 (i.e. most of light 7 impinges within cone 3) so that P_{launch} is
2 maximized. Referring additionally to FIG. 5, in a second
3 rotational orientation of fiber 14, light ray 7 is illustrated
4 to propagate furthest away from the center axis of cone 3 (i.e.
5 most of light 7 impinges outside cone 3) so that P_{launch} is
6 minimized. This result is illustrated graphically in FIG. 6
7 where P_{launch} is at a maximum at $\theta_z = 0^\circ$ (FIG. 4) and $\theta_z = 360^\circ$
8 (FIG. 4) and P_{launch} is at a minimum at $\theta_z = 180^\circ$ (FIG. 5).
9

10 It will be understood by those skilled in the art that
11 optical fiber 15, illustrated in FIGS. 4 and 5, preferably is
12 an optical fiber stub that is included as a permanent part of a
13 receptacle assembly 11 and adjusted during manufacture to
14 provide the desired coupling power. Generally, opening 21 in
15 receptacle 20 is sufficiently long to include the optical fiber
16 stub and still receive the end of an optical fiber connected to
17 communicate with external apparatus. A communicating optical
18 fiber is generally cut to but against the end of the optical
19 fiber stub to provide good light communication. It will also
20 be understood that the end of an optical fiber connected to
21 communicate with external apparatus could be sliced at the
22 desired angle and used directly if desired.

23

24 Thus, in one embodiment, P_{launch} can be varied by rotating
25 ferrule 16 and polarized isolator 35 at an angle in a direction

1 θ_z relative to light 7. In another embodiment, P_{launch} can be
2 varied by forming a bevel in fiber 14 at end 12 such that the
3 P_{launch} of fiber 14 can be varied with θ_z . It will be understood
4 that optical module 10 is illustrated for simplicity and ease
5 of discussion and that there are other possible configurations
6 to optically couple an optical fiber to a laser using the
7 described coupled-power apparatus and methods.

8

9 Thus, a new and improved apparatus and methods for
10 adjusting P_{launch} in optoelectronic modules have been disclosed.
11 The new and improved apparatus and methods for adjusting P_{launch}
12 in optoelectronic modules are relatively inexpensive to
13 manufacture and is easy to assemble and test. Also, the new
14 and improved apparatus and methods for adjusting P_{launch} in
15 optoelectronic modules improve the fabrication efficiency and
16 manufacturing capabilities of optoelectronic modules and
17 packages since they aid in standardization of components by
18 greatly simplifying standardization of modules and packages.
19 Further, the new and improved apparatus and methods for
20 adjusting P_{launch} in optoelectronic modules allow the use of a
21 variety of optical components and component equipment. The
22 variable optical power coupling apparatus has several
23 advantages over prior art apparatus for varying power. The
24 apparatus can be used for any optical configuration, even those
25 employing collimated light. The variable optical power

1 coupling apparatus of the present invention does not vary the
2 length of the optoelectronic modules, since the rotation does
3 not change the length of the light path. Also, spacers are not
4 needed and, in fact even an isolator is not needed in one
5 embodiment.

6

7 Various changes and modifications to the embodiments
8 herein chosen for purposes of illustration will readily occur
9 to those skilled in the art. To the extent that such
10 modifications and variations do not depart from the spirit of
11 the invention, they are intended to be included within the
12 scope thereof which is assessed only by a fair interpretation
13 of the following claims.

14

15 Having fully described the invention in such clear and
16 concise terms as to enable those skilled in the art to
17 understand and practice the same, the invention claimed is: