STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 10: Variable Selection

Variable Selection

- also known as model selection
- goal: given a set of predictor variables X_1, \ldots, X_p , we want to identify the correct model that describes the behaviour of the response Y
- that is, we will ask questions like:
 - how many predictors should be included?
 - any interaction terms (e.g., X_iX_j)?
 - do we need higher order terms (e.g. X_i^2)?
- in real life there is never a "correct" model
- all we could do is to find the "best" model for the problem that we are trying to solve

Collinearity

- issue caused by redundant terms
- or known as multi-collinearity
- two terms are exactly collinear, if $c_1 \neq 0, c_2 \neq 0$,

$$c_1 X_1 + c_2 X_2 = c_0$$

for some constants c_0 , c_1 and c_2 (this holds for for all observations in the data)

• in other words, given c_0 , c_1 , c_2 and X_1 , we can determine X_2 , and vice versa

Collinearity - Multi-terms etc

- this concept can be generalized to more than 2 terms
- and also to "approximately collinear"

$$c_1 X_1 + c_2 X_2 + \dots + c_p X_p \approx c_0$$

(at least two c_i 's are not 0)

- collinearity is measured by the square of sample correlation (r_{12}^2 for two terms, max of all r_{ij}^2 for multiple terms)
- $r_{ij}^2 = 1 \Rightarrow$ collinearity
- r_{ij}^2 close to 1 \Rightarrow approximate collinearity

Collinearity - What is the Harm?

- what will happen if collinearity exists?
- inverse of X'X does not exist
- so no fitting can be done
- one way to solve it is to drop some terms
- what will happen if approximate collinearity exists?
- variance of $\hat{\beta}$ will be undesirably large

Approximate Collinearity & Variance

to see this, consider a 2-term model:

$$E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

it can be shown that

$$\operatorname{Var}(\hat{\beta}_j) = \frac{\sigma^2}{1 - r_{12}^2} \frac{1}{SX_j X_j}$$

where
$$SX_jX_j = \sum (x_{ij} - \bar{x}_j)^2$$

so we do not want collinearity, which can be achieved by dropping terms or by doing transformation

Fixing Collinearity

- ullet mathematically: try to make $\mathbf{X}'\mathbf{X}$ as diagonal as possible
- statistically: want to minimize $Var(\hat{\beta})$
- practically: try to remove terms that do not provide additional information
- automatic methods for doing model selection
- first notice that least squares is a method for parameter estimation, but not for model selection
- it is because it always favors models with larger number of parameters

Selection Criteria: Basic Idea

 instead of minimizing just the RSS, most model selection methods choose the best model as the one that minimizes

$$f_1(RSS) + f_2(p)$$

where f_1 and f_2 are increasing functions and p is the number of parameters in the model

- **●** large models: $RSS \downarrow$ and $p \uparrow$
- small models: $RSS \uparrow$ and $p \downarrow$
- goal: find a good balance between these two aspects

Four Common Criteria

Akaike Information Criteria (AIC)

$$n\log\left(\frac{RSS}{n}\right) + 2p$$

Bayesian Information Criteria (BIC)

$$n\log\left(\frac{RSS}{n}\right) + p\log(n)$$

• Mallows' C_p

$$\frac{RSS}{\hat{\sigma}^2} + 2p - n$$

where $\hat{\sigma}^2$ is estimated with all terms

Four Common Criteria -con't

cross-validation (CV)

$$\sum_{i=1}^{n} (y_i - \hat{y}_{i(i)})^2 = \sum_{i=1}^{n} \frac{\hat{e}_i^2}{(1 - h_{ii})^2}$$

called "predictive residual sum of squares" (PRESS)

- easy to compute for linear models, no need to refit with leave-one-observation-out
- in practice: if the number of terms is not that large, we could fit all possible models (2^p of them), compute the criterion value using one of these four methods, and pick the one with the smallest value

Four Common Criteria -con't

- ullet if k is large, we can do
 - 1. forward selection (FS)
 - 2. backward elimination (BE)
 - 3. mixture of both (FS and BE at each step)
- two new phrases:
 - underfitting: model too small, has bias and missing important predictors
 - 2. overfitting: model too big, has high variance and possibly wrong conclusions
- highway data example

Practical Model Building

- parsimony strive for simplicity
- scope: under what conditions your model "works"?
- of course, parsimony and scope are related
- a famous quote (McCullagh & Nelder):
 - "modeling in science remains, partly at least, an art"
- three principles from the same book:
 - (i) all models are wrong, but some are useful
 - (ii) do not fall in love with one particular model
 - (iii) do diagnostic checking: it can tell you if anything went

wrong

Other Principles and/or Hints

- the first step is not to look at the data, instead
 - 1. think about the process that generated the data
 - 2. think about the background behind
 - 3. bring "known" background knowledge into the model whenever possible
- main effects should not be excluded if interactions are to be included
- do not fully rely on automatic methods for finding a "correct model": useful for initial screening
- final model may depend on other ground than purely statistical considerations, e.g., costs etc

A Quick Summary of STA302

- goal of modeling: "to find a good approximation of life"
- what you have learnt can be loosely grouped into 3 parts:
 - 1. tools when you know which model you want to fit
 - 2. diagnostic checking
 - 3. correct/improve your fitted model

When you know which model you want to fit

- 3 assumptions of linear regression
- OLS, WLS
- ullet confidence intervals, tests, based on t, F distributions
- standard error calculations (include delta method)
- prediction (attach uncertainty)
- interpretation of your fitted model

Diagnostic Checking

- lack of fit test
- residual plots
- leverage h_{ii}
- outlier tests
- Cook's distance
- Q-Q plots

Correcting/Improving your fitted model

- transformation (how many types?)
- adding/dropping terms, i.e., model selection
- ridge regression
- if you want to learn more...
 - 1. nonlinear regression
 - 2. generalized linear models
 - 3. nonparametric regression
 - 4. high-dimensional variable selection
 - 5. and many more...