ES728 – Exercício – Transformação de Similaridade

Example 1. Show that $T: E^2 \to E^2$ defined by $T(x_1, x_2) = (x_1 + 6x_2, 3x_1 + 4x_2)$ has standard matrix

$$\begin{pmatrix} 1 & 6 \\ 3 & 4 \end{pmatrix}$$

Then show that, with respect to the basis $\mathcal{T} = \{(2,-1),(1,1)\},T$ has a diagonal matrix representation.

Solution For the standard matrix we have

$$T((1,0)) = (1,3) = 1(1,0) + 3(0,1)$$
 so $(T((1,0)))_{\text{std}} = \begin{pmatrix} 1\\3 \end{pmatrix}$
 $T((0,1)) = (6,4) = 6(1,0) + 4(0,1)$ so $(T((0,1)))_{\text{std}} = \begin{pmatrix} 6\\4 \end{pmatrix}$

and

$$M_{
m std} = egin{pmatrix} 1 & 6 \ 3 & 4 \end{pmatrix}$$

But with respect to \mathcal{T} ,

$$T((2,-1)) = (-4,2) = -2(2,-1) + 0(1,1)$$
 so $[T((1,0))]_{\mathcal{T}} = \begin{pmatrix} -2\\0 \end{pmatrix}$
 $T((1,1)) = (7,7) = 0(2,-1) + 7(1,1)$ so $[T((1,1))]_{\mathcal{T}} = \begin{pmatrix} 0\\7 \end{pmatrix}$

and the matrix with respect to \mathcal{T} is

$$M = \left(\begin{array}{cc} -2 & 0\\ 0 & 7 \end{array}\right)$$

Theorem 4.3.1. Let $T: V \to V$ be a linear transformation with matrix $M_{(S)}$ with respect to a basis S and with matrix $M_{(T)}$ with respect to a basis T. If P is the transition matrix from basis T to basis S, then

$$M_{(T)} = P^{-1} M_{(S)} P$$

The relation $M_{(\mathcal{T})} = P^{-1}M_{(\mathcal{S})}P$ is important enough to be given a name.

Definition 4.3.1. Two $n \times n$ matrices A and B are similar if there exists an invertible matrix P such that $B = P^{-1}AP$.

Example 2. In Example 1, denote the standard basis by S. Illustrate Theorem 4.3.1 for T, S, and T, as given in Example 1.

Solution The standard matrix, as before, is

$$M_{(\mathcal{S})} = \begin{pmatrix} 1 & 6 \\ 3 & 4 \end{pmatrix}$$

Now calculate the transition matrix from \mathcal{T} to \mathcal{S} :

$$(2,-1) = 2(1,0) + (-1)(0,1)$$

$$(1,1) = 1(1,0) + 1(0,1)$$

$$P = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \Rightarrow P^{-1} = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

Then

$$P^{-1}M_{(S)}P = P^{-1}\begin{pmatrix} 1 & 6 \\ 3 & 4 \end{pmatrix}P = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1 & 6 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} -4 & 7 \\ 2 & 7 \end{pmatrix}$$
$$= \begin{pmatrix} -2 & 0 \\ 0 & 7 \end{pmatrix} = M_{(T)}$$