Homework 2

Due on: Wednesday, September 11

Problem 1

In order to illuminate the concept of an induced metric, we consider a familiar model: the two-sphere S^2 with radius R and coordinates $\sigma^1 = \theta$ and $\sigma^2 = \varphi$ embedded in 3-dimensional Euclidean space \mathbb{R}^3 with coordinates $X^{\mu}(\sigma^1, \sigma^2) = (x(\sigma^1, \sigma^2), y(\sigma^1, \sigma^2), z(\sigma^1, \sigma^2))$. The metric in \mathbb{R}^3 space is $\delta_{\mu\nu}$. Using $x = R\cos\varphi\sin\theta$, $y = R\sin\varphi\sin\theta$, $z = R\cos\theta$, construct the induced metric $h_{\alpha\beta}^{\text{ind}}(\sigma^{\gamma})$ on the "worldsheet" S^2 . What is the value of the action

$$S = \int d\theta \, d\varphi \sqrt{\det(h_{\alpha\beta}^{\text{ind}})} \quad ? \tag{1.1}$$

Consider next stereographic coordinates ξ^1 and ξ^2 on S^2 where

First show that $X^{\mu}(\xi^1, \xi^2)$ are given by

$$x^{k} = \xi^{k} \frac{4R^{2}}{\xi^{2} + 4R^{2}}; \quad z = \frac{R(\xi^{2} - 4R^{2})}{\xi^{2} + 4R^{2}} \qquad (k = 1, 2) .$$
 (1.2)

Then evaluate again the action S in this choice of coordinates, and check that the value of S is the same.

Comment: you should find that $h_{\alpha\beta}^{\text{ind}}$ is proportional to $\delta_{\alpha\beta}$. Such metrics are called conformal; they preserve the angles between two curves on S^2 and the two corresponding curves in the plane.

Fall 2019 PHY622 Homework 2

Problem 2

In order to check the two minus signs in the Nambu-Goto Lagrangian,

$$L_{NG} = -T \int_0^{\pi \text{ or } 2\pi} d\sigma \sqrt{-\det(\partial_\alpha X^\mu \partial_\beta X_\mu)} , \qquad (2.1)$$

first consider a worldsheet with $X^0 = \ell t$, $X^1 = \ell \sigma$, $X^j = 0$ for $j \neq 1$. The dimension of X^0 and X^j is that of a length, and we prefer to take σ and t as dimensionless, so we need the constant ℓ with the dimensions of a length. (Then dimensionless t and σ will appear in the exponents in the mode expansions.) Show that one needs a minus sign inside the square root.

Next consider a worldsheet with $X^0 = \ell t$, $X^1 = f(\sigma)$. Draw a picture of this worldsheet and the coordinate grid of constant σ and constant t lines. Show that in order that $L_{NG} = T^{\text{kin}} - V$ with positive T^{kin} , one needs the overall minus sign in L_{NG} .

Comment: Some textbooks begin with coordinates t and σ with the dimensions of time and length, respectively. Later they switch to dimensionless parameters t' and σ' . We prefer to use only one set of (dimensionless) σ and t.

Problem 3

In order to identify the constant $T\ell$ in the string action as the tension of the string, we want to show that the potential energy V of an open static stretched relativistic string of length a is equal to $V = T\ell a$.

Choose the static gauge $X^0 = \ell t$ and

$$X^{1}(t,\sigma) = f(\sigma); \quad X^{2} = \dots = X^{d} = 0.$$

$$f(\sigma = 0) = 0; \quad f(\sigma = \pi) = a$$
(3.1)

The function $f(\sigma)$ has the dimension of a length and is strictly increasing and smooth on the interval $0 \le \sigma \le \pi$ but further arbitrary. Einstein invariance (reparametrization invariance) should give an answer for V that is independent of the choice of $f(\sigma)$.

- (a) Evaluate the Nambu-Goto action (not the Lagrangian) for this string. Show that is of the form $S_{NG} = \int K dt$ where K is a constant, and explain why K = -V.
- (b) Show that $K = -T\ell a$.
- (c) Show that this string satisfies the equations of motion which follow from the Nambu-Goto action.