MTH 602 Final Project Statement

Physics Informed Neural Networks (PINNs) Approach to Volume Tracking in Multiphase Flows

S. M. Mahfuzul Hasan

October 6, 2025

A very short background

What is multiphase flow? What are the governing equations?

1.00	0.82	0.14	0.00	0.00	0.00	0.00	0.00	0.00
1.00	1.00	0.92	Q.19	0.00	0.00	0.00	0.00	0.00
1.00	1.00	1.00	0.92	Q.14	0.00	0.00	0.00	0.00
1.00	1.00	1.00	1.00	0.83	0.03	0.00	0.00	0.00
1.00	1.00	1.00	1.00	1.00	0.54	0.00	0.00	0.00
1.00	1.00	1.00	1.00	1.00	0.98	Q.14	0.00	0.00
1.00	1.00	1.00	1.00	1.00	1.00	0.01	0.00	0.00

$$f(\vec{x}) = \begin{cases} 1, & \vec{x} \in \text{Fluid } 1, \\ 0, & \vec{x} \in \text{Fluid } 2. \end{cases}$$

$$F = \frac{1}{V} \int_{V} f \, dV$$

Advection equation for scalar transport

$$\frac{\partial f}{\partial t} + \vec{u} \cdot \nabla f = 0$$

Volume advection

Interface reconstruction and flux calculation

Volume advection

Interface reconstruction and flux calculation cont'd...

Flux calculation

- After interface reconstruction, flux calculation is done by splitting the fluxes along each dimensional direction.
- After doing flux calculation in In all the directions, total flux for a cell is computed.

$$F = \frac{Total\ flux}{V}$$

Alternate strategy

Machine Learning

A data-driven method was applied to bypass those two steps to directly predict F^{n+1} from F^n using a **grid search** method to find an optimal NN configuration using MATLAB's Deep Learning Toolbox around 3×3 stencils of the targeted cell.

$$F_{i,j}^{n+1} = g(F_{i-1,j+1}^n, F_{i,j+1}^n, F_{i+1,j+1}^n, F_{i-1,j}^n, F_{i,j}^n, F_{i+1,j}^n, F_{i-1,j-1}^n, F_{i,j-1}^n, F_{i+1,j-1}^n, u_{i,j}^n \frac{\Delta t}{\Delta x}, v_{i,j}^n \frac{\Delta t}{\Delta y})$$

Though this approach provided 4x speedup, it could not give the accuracy of the traditional Volume-of-Fluid (VoF) method.

Alternate strategy

Implementation of PINNs

Aim:

- explore the possibility of attaining the accuracy and robustness of the tradition VoF for test cases like translation and rotation.
- keep the speedup superior to traditional VoF.
- Step-1:
 - Data pre-training by just using ML model to learn geometric behavior (Minimizing MSE_{data}).
- Step-2:
 - Physics incorporation by adding loss functions for PDE, volume conservation and boundedness of the solution.
- Step-3:
 - Dropping the data loss function, and only train on physics losses.