```
from google.colab import drive
drive.mount('/content/drive')

import numpy as np
import pandas as pd

path="/content/drive/MyDrive/Churn_Modelling.csv"
df=pd.read_csv(path)
df.describe
```

					RowNumber	CustomerId	Surna	me
0	tScore G		634602	_	61	0 Enanco	Female	42
1			647311	Hargrave Hill	60			42 41
2			619304	Onio	50	•		42
3			701354	Boni	69		Female	39
4			737888		85		Female	43
			, , , , ,	HICCHCII	••	•		• • •
9995			606229	Obijiaku	77		Male	39
9996			569892	•		6 France		35
9997			584532	Liu			Female	36
9998			682355		77		Male	42
9999	100	00 15	628319	Walker	79	-		28
	Tenure	Balan	ce Num	nOfProducts	HasCrCard	IsActiveMem	ber \	
0	2	0.	00	1	1		1	
1	1	83807.	86	1	0		1	
2	8	159660.	80	3	1		0	
3	1	0.	00	2	0		0	
4	2	125510.	82	1	1		1	
• • •	• • •		• •	• • •	• • •		• • •	
9995	5		00	2	1		0	
9996	10	57369.		1	1		1	
9997	7		00	1	0		1	
9998	3			2	1		0	
9999	4	130142.	79	1	1		0	
	Estimat	edSalary	Exite	ed				
0		01348.88		1				
1		12542.58		0				
2		13931.57		1				
3		93826.63		0				
4		79084.10		0				
			• •					
9995		96270.64		0				
9996		01699.77		0				
9997		42085.58 92888.52		1				
9998 9999				0				
צצצצ		38190.78		U				

[10000 rows x 14 columns]>

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

	RowNumber	CustomerId	CreditScore	Age	Tenure
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000

sns.histplot(df.Geography,kde=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f57aa309350>

sns.countplot(df.Gender)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f5797ef58d0>

	RowNumber	CustomerId	CreditScore	Age	Tenure	10+
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495	
CustomerId	0.004202	1.000000	0.005308	0.009497	-0.014883	
CreditScore	0.005840	0.005308	1.000000	-0.003965	0.000842	
Age	0.000783	0.009497	-0.003965	1.000000	-0.009997	
Tenure	-0.006495	-0.014883	0.000842	-0.009997	1.000000	

sns.scatterplot(df.CreditScore,df.Age)
plt.ylim(0,150)

3 Multi - Variate Analysis

Double-click (or enter) to edit

sns.pairplot(data=df[['CustomerId', 'Surname', 'CreditScore', 'Geography','Gender', 'Age',

Double-click (or enter) to edit

4 Descriptive statistics

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Bala
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090

df.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Creditscore	11104
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
dtype: object	

df['Age'].mode()

```
0 37 dtype: int64
```

df["Age"].mean()

38.9218

round(df["Age"].mean(), 3)

38.922

df["Age"].median()

37.0

Double-click (or enter) to edit

5 Handling Missing Values

df.isna().any()

RowNumber False CustomerId False Surname False CreditScore False Geography False Gender False Age False Tenure False Balance False NumOfProducts False HasCrCard False IsActiveMember False EstimatedSalary False Exited False

dtype: bool

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

df.isnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenur
0	False	False	False	False	False	False	False	Fals
1	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	False	Fals
3	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	False	Fals
9995	False	False	False	False	False	False	False	Fals
9996	False	False	False	False	False	False	False	Fals
9997	False	False	False	False	False	False	False	Fals
9998	False	False	False	False	False	False	False	Fals
9999	False	False	False	False	False	False	False	Fals

10000 rows × 14 columns

df.notnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	True	True	True	True	True	True	True	True
1	True	True	True	True	True	True	True	True
2	True	True	True	True	True	True	True	True
3	True	True	True	True	True	True	True	True
4	True	True	True	True	True	True	True	True
				•••				
9995	True	True	True	True	True	True	True	True
9996	True	True	True	True	True	True	True	True
9997	True	True	True	True	True	True	True	True
9998	True	True	True	True	True	True	True	True
9999	True	True	True	True	True	True	True	True

10000 rows × 14 columns

Double-click (or enter) to edit

6 Find the outliers and replace the outliers

sns.boxplot(x=df['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f57978189d0>

sns.boxplot(x=df['Tenure'])

Double-click (or enter) to edit

Double-click (or enter) to edit

7 Check for Categorical columns and perform encoding.

a=df.columns

b=df._get_numeric_data().columns

b

```
list(set(a) - set(b))
['Gender', 'Geography', 'Surname']
```

Double-click (or enter) to edit

8 Split the data into dependent and independent variables.

Double-click (or enter) to edit

```
# x -Independent
# y -Dependent
x =df.drop('Exited',axis=1)
y=df['Exited']
```

x.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	83
2	3	15619304	Onio	502	France	Female	42	8	1590
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125

y.head()

Name: Exited, dtype: int64

Double-click (or enter) to edit

9 Scale the independent variables

from sklearn import linear model

```
from sklearn.preprocessing import StandardScaler

scale = StandardScaler()

x=df[['Age','Tenure']]
```

print(scaledx)

```
[[ 0.29351742 -1.04175968]
 [ 0.19816383 -1.38753759]
 [ 0.29351742 1.03290776]
 ...
 [-0.27860412 0.68712986]
 [ 0.29351742 -0.69598177]
 [-1.04143285 -0.35020386]]
```

scaledx = scale.fit_transform(x)

Double-click (or enter) to edit

10 Split the data into training and testing

from sklearn.model_selection import train_test_split

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
```

```
print('X Train shape:{},Y.Train SHape:{}'.format(x_train.shape,y_train.shape))
    X Train shape:(8000, 2),Y.Train SHape:(8000,)

print('X Test Shape :{},Y Test SHape:{}'.format(x_test.shape,y_test.shape))
    X Test Shape :(2000, 2),Y Test SHape:(2000,)
```

Colab paid products - Cancel contracts here

✓ 0s completed at 10:34 AM

×