Electric Vehicle Project

Clement Cheng

2022-12-08

This is a project related to Electric Vehicle. In this project, I am using the "ElectricCarData_Clean.csv" to solve 5 questions by the author for practicing my skills in R.

```
Data Source: Kaggle "EVs - One Electric Vehicle Dataset - Smaller" by GEOFF839
Last updated: 12/8/2022
Let's install and load packages!
install.packages("tidyverse")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)
install.packages("sqldf")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)
install.packages("ggplot2")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)
library("tidyverse") # Basic package for data analysis
## -- Attaching packages ----- tidyverse 1.3.2 --
## v ggplot2 3.4.0
                      v purrr
                                0.3.5
## v tibble 3.1.8
                      v dplyr 1.0.10
## v tidyr 1.2.1
                     v stringr 1.5.0
          2.1.3
## v readr
                      v forcats 0.5.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library("sqldf") # Find one off answers
## Loading required package: gsubfn
## Loading required package: proto
## Warning in fun(libname, pkgname): couldn't connect to display ":0"
## Loading required package: RSQLite
library("ggplot2") # For visualization
```

Set the data frame and preview the file

df <- read.csv("/cloud/project/ElectricCarData_Clean.csv")
head(df)</pre>

##		Bra	nd					Model A	AccelSec	Top	Speed	d_E	KmH 1	Range_Km
##	1	Tesl	a Mod	el 3	Long	Range	Dual	Motor	4.6			2	233	450
##	2	Volkswage	n				ID.	3 Pure	10.0			:	160	270
##	3	Polesta	r					2	4.7			2	210	400
##	4	BM	W					iX3	6.8				180	360
##	5	Hond	.a					е	9.5			-	145	170
##	6	Luci	d					Air	2.8			2	250	610
##		Efficienc	y_WhKm	Fas	tChar	ge_KmH	Rapi	dCharge	PowerTra	ain	Plı	ıg'	Гуре	${\tt BodyStyle}$
##	1		161			940		Yes	I	AWD	Туре	2	CCS	Sedan
##	2		167			250		Yes	I	RWD	Туре	2	CCS	Hatchback
##	3		181			620		Yes	I	AWD	Туре	2	CCS	Liftback
##	4		206			560		Yes	I	RWD	Туре	2	CCS	SUV
##	5		168			190		Yes	I	RWD	Туре	2	CCS	Hatchback
##	6		180			620		Yes	I	AWD	Туре	2	CCS	Sedan
##		Segment S	eats P	rice	Euro									
##	1	D	5	5	5480									
##	2	C	5	30	0000									
##	3	D	5	5	6440									
##	4	D	5	68	8040									
##	5	В	4	3:	2997									
##	6	F	5	10	5000									

Let's see if the data frame has missing value or duplicates

is.na(df)

##		${\tt Brand}$	${\tt Model}$	AccelSec	${\tt TopSpeed_KmH}$	Range_Km	Efficiency_WhKm
##	[1,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[2,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[3,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[4,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[5,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[6,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[7,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[8,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[9,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[10,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[11,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[12,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[13,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[14,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[15,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[16,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[17,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[18,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[19,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[20,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[21,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[22,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[23,]	FALSE	${\tt FALSE}$	FALSE	FALSE	FALSE	FALSE
##	[24,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[25,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##	[26]	EVICE	FALSE	EVICE	FALSE	FALSE	FALSE
##			FALSE		FALSE	FALSE	FALSE
	-		FALSE				
##					FALSE	FALSE	FALSE
##	-		FALSE		FALSE	FALSE	FALSE
##			FALSE		FALSE	FALSE	FALSE
##			FALSE		FALSE	FALSE	FALSE
##	-		FALSE		FALSE	FALSE	FALSE
##	-		FALSE		FALSE	FALSE	FALSE
##	-		FALSE		FALSE	FALSE	FALSE
##			FALSE		FALSE	FALSE	FALSE
##	[36,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[37,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[38,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[39,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[40,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[41,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[42,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[43,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[44,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[45,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[46,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##	-	FALSE		FALSE	FALSE	FALSE	FALSE
##	-	FALSE		FALSE	FALSE	FALSE	FALSE
##	-	FALSE		FALSE	FALSE	FALSE	FALSE
##	-	FALSE		FALSE	FALSE	FALSE	FALSE
##	-	FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##	-	FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##	-	FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##	-	FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##	-	FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE		FALSE	FALSE
					FALSE		
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##		FALSE		FALSE	FALSE	FALSE	FALSE
##	[19,]	FALSE	r ALSE	FALSE	FALSE	FALSE	FALSE

##	[80,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE		
##	[81,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE		
##	[82,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE		
##	[83,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE		
##	[84,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE		
##	[85,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE		
##	[86,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE		
##	[87,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE		
##	[88,]	FALSE FALSE	FALSE	FALSE	FALSE	FALSE		
##		FALSE FALSE						
##		FALSE FALSE			FALSE	FALSE		
##		FALSE FALSE			FALSE	FALSE		
##		FALSE FALSE			FALSE	FALSE		
##		FALSE FALSE						
##		FALSE FALSE			FALSE	FALSE		
##		FALSE FALSE						
##		FALSE FALSE						
##		FALSE FALSE						
##		FALSE FALSE						
##		FALSE FALSE						
##		FALSE FALSE						
		FALSE FALSE						
		FALSE FALSE		FALSE		FALSE		
		FALSE FALSE		FALSE		FALSE		
##	_ ,_	FastCharge_KmH					gment	Seats
##	[1,]	FALSE			SE FALSE			FALSE
##	[2,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[3,]	FALSE	FALS			FALSE	FALSE	FALSE
##	[4,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[5,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[6,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[7,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[8,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[9,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[10,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[11,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[12,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[13,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[14,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[15,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[16,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[17,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[18,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[19,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[20,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[21,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[22,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[23,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[24,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[25,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[26,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[27,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[28,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE
##	[29,]	FALSE	FALS	E FAL	SE FALSE	FALSE	FALSE	FALSE

##	[30,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[31,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[32,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[33,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[34,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[35,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[36,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[37,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[38,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[39,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[40,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[41,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[42,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[43,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[44,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[45,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[46,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[47,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[48,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[49,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[50,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[51,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[52,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
		FALSE		FALSE				FALSE
##	[53,]	FALSE FALSE	FALSE	FALSE	FALSE FALSE	FALSE		FALSE
##	[54,]		FALSE			FALSE		
##	[55,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[56,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[57,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[58,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[59,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[60,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[61,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[62,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[63,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[64,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[65,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	
##	[66,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[67,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[68,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[69,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[70,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[71,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[72,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[73,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[74,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[75,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[76,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[77,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[78,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[79,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[80,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[81,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[82,]	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE
##	[83,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##	[84,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[85,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[86,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[87,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[88,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[89,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[90,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[91,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[92,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[93,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[94,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[95,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[96,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[97,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[98,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[99,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[100,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[101,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[102,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##	[103,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE FALSE
##		PriceEuro					
##	[1,]	FALSE					
##	[2,]	FALSE					
##	[3,]	FALSE					
##	[4,]	FALSE					
##	[5,]	FALSE					
##	[6,]	FALSE					
##	[7,]	FALSE					
##	[8,]	FALSE					
##	[9,]	FALSE					
##	[10,]	FALSE					
##	[11,]	FALSE					
##	[12,]	FALSE					
##	[13,]	FALSE					
##	[14,]	FALSE					
##	[15,]	FALSE					
##	[16,]	FALSE					
##	[17,]	FALSE					
##	[18,]	FALSE					
##	[19,]	FALSE					
##	[20,]	FALSE					
##	[21,]	FALSE					
##	[22,]	FALSE					
##	[23,]	FALSE					
##	[24,]	FALSE					
##	[25,]	FALSE					
##	[26,]	FALSE					
##	[27,]	FALSE					
##	[28,]	FALSE					
##	[29,]	FALSE					
##	[30,]	FALSE					
##	[31,]	FALSE					
##	[32,]	FALSE					
##	[33,]	FALSE					

```
[34,]
                FALSE
##
                FALSE
##
    [35,]
##
    [36,]
                FALSE
##
    [37,]
                FALSE
                FALSE
##
    [38,]
##
    [39,]
                FALSE
##
    [40,]
                FALSE
    [41,]
                FALSE
##
##
    [42,]
                FALSE
##
    [43,]
                FALSE
##
    [44,]
                FALSE
##
    [45,]
                FALSE
##
    [46,]
                FALSE
##
    [47,]
                FALSE
##
    [48,]
                FALSE
##
    [49,]
                FALSE
##
    [50,]
                FALSE
##
    [51,]
                FALSE
    [52,]
                FALSE
##
    [53,]
                FALSE
##
##
    [54,]
                FALSE
##
    [55,]
                FALSE
##
    [56,]
                FALSE
##
    [57,]
                FALSE
##
    [58,]
                FALSE
##
    [59,]
                FALSE
##
    [60,]
                FALSE
##
    [61,]
                FALSE
##
    [62,]
                FALSE
##
    [63,]
                FALSE
    [64,]
##
                FALSE
##
    [65,]
                FALSE
##
    [66,]
                FALSE
                FALSE
##
    [67,]
    [68,]
                FALSE
##
##
                FALSE
    [69,]
##
    [70,]
                FALSE
##
    [71,]
                FALSE
    [72,]
                FALSE
##
##
    [73,]
                FALSE
##
    [74,]
                FALSE
    [75,]
                FALSE
##
##
    [76,]
                FALSE
##
    [77,]
                FALSE
##
    [78,]
                FALSE
    [79,]
##
                FALSE
##
    [80,]
                FALSE
##
    [81,]
                FALSE
##
    [82,]
                FALSE
##
    [83,]
                FALSE
##
                FALSE
    [84,]
##
    [85,]
                FALSE
##
    [86,]
                FALSE
##
    [87,]
                FALSE
```

```
##
                      [88,]
                                                                          FALSE
                      [89,]
##
                                                                         FALSE
##
                      [90,]
                                                                         FALSE
                     [91,]
                                                                         FALSE
##
##
                      [92,]
                                                                         FALSE
##
                     [93,]
                                                                         FALSE
##
                     [94,]
                                                                         FALSE
                     [95,]
##
                                                                         FALSE
##
                     [96,]
                                                                         FALSE
##
                    [97,]
                                                                         FALSE
                   [98,]
##
                                                                         FALSE
                   [99,]
##
                                                                          FALSE
## [100,]
                                                                         FALSE
## [101,]
                                                                         FALSE
## [102,]
                                                                         FALSE
## [103,]
                                                                         FALSE
duplicated(df)
                          [1] FALSE FA
##
                     [13] FALSE F
##
                      [25] FALSE FALSE
                     [37] FALSE F
                   [49] FALSE FALSE
##
                  [61] FALSE F
                  [73] FALSE FALSE
##
                   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
               [97] FALSE FALSE FALSE FALSE FALSE FALSE
It seems the data is clean for processing
Start the Analysis! Solving Q1: Which car has the fastest 0-100 acceleration? My thoughts: Sort the data by
[AccelSec]
sort(df$AccelSec) # Using sort the find the lowest Accel Sec
                                                                                                        2.8 2.8
                                                                                                                                                           2.8
                                                    2.1
                                                                              2.5
                                                                                                                                                                                       3.0
                                                                                                                                                                                                                  3.2
                                                                                                                                                                                                                                            3.4
                                                                                                                                                                                                                                                                       3.5
                                                                                                                                                                                                                                                                                                3.5
                                                                                                                                                                                                                                                                                                                             3.7
                                                                                                                                                                                                                                                                                                                                                       3.8
                                                                                                                                                                                                                                                                                                                                                                                 4.0
                                                                                                                                                                                                                                                                                                                                                                                                            4.0
                                                                                                                                                                                                                                                                                                                                                                                                                                       4.0
##
                      [16]
                                                    4.5
                                                                              4.5
                                                                                                         4.6
                                                                                                                                   4.6
                                                                                                                                                             4.7
                                                                                                                                                                                        4.8
                                                                                                                                                                                                                  4.9
                                                                                                                                                                                                                                             5.0
                                                                                                                                                                                                                                                                        5.0
                                                                                                                                                                                                                                                                                                  5.1
                                                                                                                                                                                                                                                                                                                             5.1
                                                                                                                                                                                                                                                                                                                                                       5.1
                                                                                                                                                                                                                                                                                                                                                                                  5.5
                                                                                                                                                                                                                                                                                                                                                                                                            5.6
                                                                                                                                                                                                                                                                                                                                                                                                                                       5.7
##
                      [31]
                                                    5.7
                                                                              5.7
                                                                                                         5.9
                                                                                                                                    6.0
                                                                                                                                                              6.0
                                                                                                                                                                                         6.2
                                                                                                                                                                                                                  6.3
                                                                                                                                                                                                                                             6.3
                                                                                                                                                                                                                                                                        6.5
                                                                                                                                                                                                                                                                                                  6.6
                                                                                                                                                                                                                                                                                                                             6.8
                                                                                                                                                                                                                                                                                                                                                       6.8
                                                                                                                                                                                                                                                                                                                                                                                  6.8
                                                                                                                                                                                                                                                                                                                                                                                                            6.9
                                                                                                                                                                                                                                                                                                                                                                                                                                      7.0
                                                                                                                                   7.3
                                                                                                                                                                                                                                             7.3
                                                                                                                                                                                                                                                                        7.5
                                                                                                                                                                                                                                                                                                  7.5
                                                                                                                                                                                                                                                                                                                             7.5
                    [46]
                                                    7.0
                                                                              7.0
                                                                                                        7.3
                                                                                                                                                             7.3
                                                                                                                                                                                        7.3
                                                                                                                                                                                                                  7.3
                                                                                                                                                                                                                                                                                                                                                       7.5
                                                                                                                                                                                                                                                                                                                                                                                  7.5
                                                                                                                                                                                                                                                                                                                                                                                                            7.6
##
                      [61]
                                                   7.9
                                                                              7.9
                                                                                                       7.9
                                                                                                                                   7.9
                                                                                                                                                             7.9
                                                                                                                                                                                        8.1
                                                                                                                                                                                                                  8.1
                                                                                                                                                                                                                                             8.2
                                                                                                                                                                                                                                                                        8.3
                                                                                                                                                                                                                                                                                                  8.5
                                                                                                                                                                                                                                                                                                                             8.5
                                                                                                                                                                                                                                                                                                                                                       8.7
                                                                                                                                                                                                                                                                                                                                                                                  8.8
                    [76]
                                              9.0
                                                                           9.0 9.0 9.0 9.5
                                                                                                                                                                                                              9.5
                                                                                                                                                                                                                                        9.6
                                                                                                                                                                                                                                                                 9.7
                                                                                                                                                                                                                                                                                              9.7
                                                                                                                                                                                                                                                                                                                             9.8
                                                                                                                                                                                                                                                                                                                                                     9.9
                                                                                                                                                                                                                                                                                                                                                                                 9.9 10.0 10.0
                    [91] 10.0 10.0 11.4 11.4 11.6 11.9 11.9 12.3 12.3 12.6 12.7 14.0 22.4
sqldf("SELECT Brand, Model, AccelSec FROM df WHERE AccelSec = 2.1") # Using sqldf to find the details o
##
                               Brand
                                                                                     Model AccelSec
## 1 Tesla Roadster
                                                                                                                                              2.1
A1: Tesla's Roadster has the fastest 0-100 acceleration as 2.1.
Solving Q2: Which has the highest efficiency? My thoughts: Sort the data by [Efficiency_WhKm]
sort(df$Efficiency_WhKm, decreasing = TRUE)
```

[1] 273 270 267 261 258 256 244 238 237 232 232 231 228 223 222 219 217 216

[19] 216 215 211 209 207 206 206 206 200 200 200 198 197 197 195 194 194 194 [37] 193 193 193 193 193 191 188 188 188 184 183 183 181 181 181 180 180 180 [55] 180 179 178 178 177 176 176 176 175 175 175 173 173 172 171 171 171 171

##

```
## [73] 170 168 168 168 168 168 168 167 167 167 167 166 166 166 166 165 165 164
## [91] 164 164 164 161 161 161 160 156 156 154 153 153 104
```

sqldf("SELECT Brand, Model, Efficiency_WhKm From df WHERE Efficiency_WhKm = 273")# Using sqldf to find

```
## Brand Model Efficiency_WhKm
## 1 Mercedes EQV 300 Long 273
```

A2: Mercedes's EQV 300 Long has the highest efficiency as 273 WhKm.

Solving Q3: Does a difference in power train effect the range, top speed, efficiency? My thoughts: Using ggplot to show the distribution between power train and range, power train and speed, and power train and efficiency.

ggplot(df, aes(PowerTrain, Range_Km))+geom_boxplot()+labs(title = "Difference Between Different PowerTrain)

EV's with AWD PowerTrain are the best performer in Range, then FWD, last RWD. It was determined by the minimum range Km the electric vehicle can drove.

ggplot(df, aes(PowerTrain, TopSpeed_KmH))+geom_boxplot()+labs(title = "Difference Between Different Pow

EV's with AWD PowerTrain are the best performer in Top Speed, then RWD, last FWD. It was determined by the minimum top speed Km per hour.

ggplot(df, aes(PowerTrain, Efficiency_WhKm))+geom_boxplot()+labs(title = "Difference Between Different Difference Between Difference Between

EV's with AWD PowerTrain are the best performer in Efficiency, then RWD, last FWD. It was determined by the average efficiency_WhKm.

A3: Overall, EV's with AWD PowerTrain will have better performance in range, speed, and efficiency.

Solving Q4: Which Manufacturer has the most number of vehicles? My thoughts: Using sqldf for counting vehicles in each brand

sqldf("SELECT DISTINCT Brand, COUNT(Brand) as num_vehicels FROM df GROUP BY Brand")

##		Brand	num_vehicels
##	1	Aiways	1
##	2	Audi	9
##	3	BMW	4
##	4	Byton	3
##	5	CUPRA	1
##	6	Citroen	1
##	7	DS	1
##	8	Fiat	2
##	9	Ford	4
##	10	Honda	2
##	11	Hyundai	3
##	12	Jaguar	1
##	13	Kia	5
##	14	Lexus	1
##	15	Lightyear	1
##	16	Lucid	1
##	17	MG	1
##	18	Mazda	1

##	19	Mercedes	3
##	20	Mini	1
##	21	Nissan	8
##	22	Opel	3
##	23	Peugeot	2
##	24	Polestar	1
##	25	Porsche	5
##	26	Renault	5
##	27	SEAT	1
##	28	Skoda	6
##	29	Smart	3
##	30	Sono	1
##	31	Tesla	13
##	32	Volkswagen	8
##	33	Volvo	1

A4: Tesla has the most number of vehicles.

Solving Q5: How does price related to rapid charging My thoughts: Using ggplot to show the distribution between price and rapid charging

ggplot(df, aes(RapidCharge, PriceEuro))+geom_boxplot()+labs(title = "Difference Between Different Power"

A5: EVs that cost less than 50000 euro has low chance of equip with Rapid charge function, therefore, it means price and rapid charge function has a positive correlation.

That's the end of all questions. Thanks you for reading my project in R.