

IEL – protokol k projektu

Tony, Pham xphamt00

20. prosince 2020

Obsah

1	Příklad 1	2
2	Příklad 2	8
3	Příklad 3	11
4	Příklad 4	14
5	Příklad 5	15
6	Shrnutí výsledků	18

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$	
Н	135	80	680	600	260	310	575	870	355	265	

Obrázek 1: \mathbb{R}_3 a \mathbb{R}_4 jsou zapojeny paralelně a zdroje U_1 a U_2 sériově

$$R_{34} = \frac{R_3 R_4}{R_3 + R_4} = \frac{260 \cdot 310}{260 + 310} \doteq 141.4035\Omega$$

 $U_{12} = U_1 + U_2 = 135 + 80 = 215\text{V}$

Obrázek 2: R_2 a R_{34} jsou zapojeny sériově

$$R_{234} = R_2 + R_{34} = 600 + 140.4035 = 740,4035\Omega$$

Obrázek 3: transfigurace - trojúhelník

$$R_A = \frac{R_1 R_{234}}{R_1 + R_{234} + R_5} = \frac{680 \cdot 740.4035}{680 + 740.4035 + 575} = 252.3171\Omega$$

$$R_B = \frac{R_1 R_5}{R_1 + R_{234} + R_5} = \frac{680 \cdot 575}{680 + 740.4035 + 575} = 195.9503\Omega$$

$$R_C = \frac{R_5 R_{234}}{R_1 + R_{234} + R_5} = \frac{575 \cdot 740.4035}{680 + 740.4035 + 575} = 213.3564\Omega$$

Obrázek 4: R_B a R_7 jsou zapojeny sériově stejně jako R_C a R_6

$$R_{B7} = R_B + R_7 = 195.9503 + 355 = 550.9503\Omega$$

 $R_{C6} = R_C + R_6 = 213.3564 + 870 = 1083.3564\Omega$

Obrázek 5: R_{B7} a R_{C6} jsou zapojeny paralelně

$$R_{BC67} = \frac{R_{B7}R_{C6}}{R_{B7} + R_{C6}} = \frac{550.9503 \cdot 1083.3564}{550.9503 + 1083.3564} = 365.2163\Omega$$

Obrázek 6: R_A a R_{BC67} a R_8 jsou zapojeny sériově - získáváme R_{EKV}

$$R_{EKV} = R_A + R_{BC67} + R_8 = 252.3171 + 365.2163 + 265 = 882.5334\Omega$$

Celkový proud I:

$$I = \frac{U_{12}}{R_{EKV}} = \frac{215}{882.5334} \doteq 0.2436 \text{A}$$

Začneme zpětně počítat napětí a proudy, až dojdeme k U_{R_6} a $I_{R_6}\colon$

Obrázek 7: Spočítáme si napětí na jednotlivých odporech

$$\begin{split} U_{R_A} &= IR_A = 0.2436 \cdot 252.3171 \doteq 61.4644 \mathrm{V} \\ U_{R_{BC67}} &= IR_{BC67} = 0.2436 \cdot 365.2163 \doteq 88.9667 \mathrm{V} \\ U_{R_8} &= IR_8 = 0.2436 \cdot 265 = 64.554 \mathrm{V} \end{split}$$

Provedeme kontrolu pomocí II. Kirchhoffova zákona.

$$U_{R_A} + U_{R_{BC67}} + U_{R_8} - U_{12} = 0$$

Obrázek 8: Spočítáme si proud ve větvích s R_{B7} a R_{C6}

$$I_{R_{B7}} = \frac{U_{R_{BC67}}}{R_{B7}} = \frac{88.9667}{550.9503} \doteq 0.1615 \text{A}$$

$$I_{R_{C6}} = \frac{U_{R_{BC67}}}{R_{C6}} = \frac{88.9667}{1083.3564} \doteq 0.0821 \text{A}$$

Provedeme kontrolu pomocí I. Kirchhoffova zákona.

$$I_{R_{B7}} + I_{R_{C6}} - I = 0$$

Obrázek 9: Spočítáme si napětí a proud u R_6

$$I_{R_{C6}} = I_{R_6} = 0.0821 \mathrm{A}$$

$$U_{R_6} = I_{R_6} R_6 = 0.0821 \cdot 870 = 71.427 \mathrm{V}$$

Stanovte napětí U_{R3} a proud $I_{R3}.$ Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	
Н	220	190	360	580	205	560	180	

Obrázek 10: \mathbb{R}_4 a \mathbb{R}_5 si můžeme zapojit do série

$$R_{45} = R_4 + R_5 = 205 + 560 = 765\Omega$$

Obrázek 11: Uděláme zdroj nahrazený zkratem

$$R_I = \frac{R1 \cdot R45}{R1 + R45} + \frac{R2 \cdot R6}{R2 + R_6} = \frac{190 \cdot 765}{190 + 765} + \frac{360 \cdot 180}{360 + 180} \doteq 272.199\Omega$$

Obrázek 12: Obvod bez \mathbb{R}_3

$$U_{R1} = \frac{R_1}{R_1 + R_{45}} \cdot U_0 = \frac{190}{190 + 765} \cdot 220 \doteq 43.76963V$$

$$U_{R2} = \frac{R_2}{R_2 + R_6} \cdot U_0 = \frac{360}{360 + 180} \cdot 220 \doteq 146.66667V$$

Obrázek 13: Schéma náhradního obvodu

$$U_i = U_{R2} - U_{R1} = 146.66667 - 43.76963 \doteq 102.89704V$$

$$I_{R3} = \frac{U_i}{R_I + R_3} = \frac{102.89704}{272.199 + 580} \doteq 0.1207A$$

$$U_{R3} = R_3 \cdot I_{R3} = 580 \cdot 0.1207 \doteq 70.006V$$

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Α	120	0.9	0.7	53	49	65	39	32

Dle metody uzlových napětí si sestavím rovnice proudů (II. Kirchoffův zákon) a to podle uzlů A, B, C

$$A: I_{R1} + I_B - I_{R2} = 0$$

$$B: I_1 - I_{R3} - I_{R5} = 0$$

$$C: I_2 - I_1 - I_{R4} + I_{R5} = 0$$

Proudy pro jednotlivé rezistory s napětími $U_A,\,U_B,\,U_C$:

$$I_{R1} = \frac{U - U_A}{R_1}$$

$$I_{R2} = \frac{U_A}{R_2}$$

$$I_{R3} = \frac{U_B - U_A}{R_3}$$

$$I_{R4} = \frac{U_C}{R_4}$$

$$I_{R5} = \frac{U_B - U_C}{R_5}$$

Teď mohu dosadit do všech tří rovnic všechny známé hodnoty a vyjádřit si neznámá napětí:

$$A: \frac{120 - U_A}{53} + \frac{U_B - U_A}{65} - \frac{U_A}{49} = 0$$

$$B: 0.9 - \frac{U_B - U_A}{65} - \frac{U_B - U_C}{32} = 0$$

$$C: 0.7 - 0.9 - \frac{U_C}{39} + \frac{U_B - U_C}{32} = 0$$

Nejprve si rovnici mírně upravím - vyjádřím si zlomky:

$$\frac{-U_A}{53} + \frac{U_B}{65} - \frac{U_A}{65} - \frac{U_A}{49} = -\frac{120}{53}$$

$$\frac{U_A}{65} - \frac{U_B}{65} - \frac{U_B}{32} + \frac{U_C}{32} = -0.9$$

$$\frac{U_B}{32} - \frac{U_C}{32} - \frac{U_C}{39} = 0.2$$

$$-U_A \cdot \left(\frac{1}{53} + \frac{1}{65} + \frac{1}{49}\right) + U_B \cdot \frac{1}{65} = -\frac{120}{53}$$

$$U_A \cdot \frac{1}{65} - U_B \cdot \left(\frac{1}{32} + \frac{1}{65}\right) + U_C \cdot \frac{1}{32} = -0.9$$

$$U_B \cdot \frac{1}{32} - U_C \cdot \left(\frac{1}{32} + \frac{1}{39}\right) = 0.2$$

Teď si všechno převedu do matice (sloupce = neznámé, poslední sloupec je číslo za rovnítkem), řádky vynásobím tak, abych se zbavil zlomků a vypočítám UA, UB, UC převedením na jednotkovou matici:

$$\begin{pmatrix}
-9227 & 2597 & 0 & | & -382200 \\
32 & -97 & 65 & | & -1872 \\
0 & 39 & -71 & | & 249.6
\end{pmatrix}$$

Po úpravách na jednotkovou matici dostanu tento tvar matice:

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 57.4031 \\
0 & 1 & 0 & 56.7803 \\
0 & 0 & 1 & 27.6737
\end{array}\right)$$

Výsledné hodnoty napětí jsou následovné:

$$U_A = 57.4031 \text{V}$$

$$U_B = 56.7803 \mathrm{V}$$

$$U_C = 27.6737V$$

Vypočítám si U_{R2} , a potom dopočítám proud I_{R2} - vše dle vzorce, který jsem si vyjádřil hned nazačátku příkladu:

$$I = \frac{U}{R} = I_{R2} = \frac{U_{R2}}{R_2} = \frac{U_A}{R_2} = I_{R2} = U_A$$

$$U_{R2} = 57.4031 \text{V}$$

$$I_{R2} = \frac{57.4031}{49} = 1,1715 \mathrm{A}$$

Pro napájecí napětí platí: $u_1=U_1\cdot\sin(2\pi ft),\,u_2=U_2\cdot\sin(2\pi ft).$ Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	C_1 [μ F]	C_2 [µF]	f [Hz]
Н	65	60	10	10	160	75	155	70	95

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U[V]	L [H]	$R\left[\Omega\right]$	$i_L(0)$ [A]
Н	18	50	40	5

Vyjádříme si všechny vztahy v obvodu:

$$i_L = \frac{u_R}{R} \qquad i = i_L = i_R$$

$$u_R + u_L - U = 0$$

$$u'_L = \frac{u_L}{L}$$

Zavedeme si počáteční podmínku:

$$i_L'(0) = 5A$$

Nyní využijeme vyjádřené vztahy:

$$Ri_L + Li'_L = U$$
$$i'_L = \frac{1}{L} \cdot (U - Ri_L)$$

Očekávané řešení:

$$i_L(t) = K(t) \cdot e^{\lambda t}$$

Řešíme charakteristické rovnice ($i_L'=\lambda$, $i_L=1)$:

$$R + L\lambda = 0$$

$$\lambda = -\frac{R}{L} = -\frac{4}{5}$$

Dosadíme λ do očekávaného řešení:

$$i_L(t) = K(t) \cdot e^{\lambda t}$$
$$i_L(t) = K(t) \cdot e^{-\frac{R}{L}t}$$

Provedeme derivace získané rovnice:

$$i'_L(t) = K'(t) \cdot e^{-\frac{R}{L}t} + K(t) \cdot \left(-\frac{R}{L}\right) \cdot e^{-\frac{R}{L}t}$$

Dosadíme rovnice do námi sestavené diferenciální rovnice:

$$Ri_L + Li'_L = U$$

$$R \cdot K(t) \cdot e^{-\frac{R}{L}t} + L \cdot \left(K'(t) \cdot e^{-\frac{R}{L}t} + K(t) \cdot K(t) \cdot \left(-\frac{R}{L}\right) \cdot e^{-\frac{R}{L}t}\right) = U$$

$$R \cdot K(t) \cdot e^{-\frac{R}{L}t} + L \cdot K'(t) \cdot e^{-\frac{R}{L}t} + L \cdot K(t) \cdot \left(-\frac{R}{L}\right) \cdot e^{-\frac{R}{L}t} = U$$

$$R \cdot K(t) \cdot e^{-\frac{R}{L}t} + L \cdot K'(t) \cdot e^{-\frac{R}{L}t} - R \cdot K(t) \cdot e^{-\frac{R}{L}t} = U$$

$$L \cdot K'(t) \cdot e^{-\frac{R}{L}t} = U$$

$$K'(t) \cdot e^{-\frac{R}{L}t} = \frac{U}{L}$$

$$K'(t) = \frac{U}{L} \cdot e^{-\frac{R}{L}t}$$

Rovnici K'(t) z integrujeme abychom zjistili K(t):

$$K(t) = \int \frac{U}{L} \cdot e^{\frac{R}{L}t} dt$$

$$K(t) = \frac{U \cdot e^{-\frac{R}{L}t}}{R} + k$$

Dosadíme K(t) do očekávaného řešení:

$$i_L(t) = \left(\frac{U \cdot e^{\frac{R}{L}t}}{R} + k\right) \cdot e^{\lambda t}$$

$$i_L(t) = \frac{U}{R} + k \cdot e^{-\frac{R}{L}t} \qquad (1)$$

Dále dosadíme počáteční podmínku i_L (0) = 5A:

$$11 = \frac{U}{R} + k \cdot e^{-\frac{R}{L}t}$$

$$11 = \frac{U}{R} + k$$

$$k = 5 - \frac{U}{R}$$

Dosadíme k do rovnice (1):

$$i_L(t) = \frac{U}{R} + k \cdot e^{-\frac{R}{L}t} i_L(t) = \frac{U}{R} + \left(5 - \frac{U}{R}\right) e^{-\frac{R}{L}t}$$

Dosadíme hodnoty:

$$i_L(t) = \frac{18}{40} + \left(5 - \frac{18}{40}\right)e^{-\frac{40}{50}t}$$

Hledaná rovnice tedy je:

$$i_L(t) = \frac{9}{20} + \frac{91}{20}e^{-\frac{4}{5}t}$$

a)

$$t = 0s$$
: $i_L(0) = \frac{U}{R} + 5 - \frac{U}{R} = 5$

b) Dosadíme i_L a i_L^\prime do diferenciální rovnice prvního řádu a upravíme:

$$Ri_L + Li'_L = Ui_L(t) = \frac{U}{R} + \left(5 - \frac{U}{R}\right) \cdot e^{-\frac{R}{L}t}$$
$$i'_L(t) = -\left(5 - \frac{U}{R}\right) \cdot \frac{R}{L} \cdot e^{-\frac{R}{L}t}$$

$$R \cdot \left[\frac{U}{R} + \left(5 - \frac{U}{R} \right) \cdot e^{-\frac{R}{L}t} \right] + L \cdot \left[-\left(5 - \frac{U}{R} \right) \cdot \frac{R}{L} \cdot e^{-\frac{R}{L}t} \right] = U$$

$$U + R \cdot \left(5 - \frac{U}{R} \right) \cdot e^{-\frac{R}{L}t} - R \cdot \left(5 - \frac{U}{R} \right) e^{-\frac{R}{L}t} = U$$

$$U = U$$

$$0 = 0$$

Shrnutí výsledků

Příklad	Skupina	Výsledky			
1	Н	$U_{R6} = 71.427V$	$I_{R6} = 0.0821A$		
2	Н	$U_{R3} = 70.006V$	$I_{R3} = 0.1207A$		
3	A	$U_{R2} = 55.8656V$	$I_{R2} = 1.1401A$		
4	Н	$ U_{L_2} =$	$\varphi_{L_2} =$		
5	Н	$i_L = \frac{9}{20} +$	$-\frac{91}{20}e^{-\frac{4}{5}t}$		