S_03 Normality Test and Sample Size

Statistical Analysis

Normal Distribution (정규분포)

- Probability density function (pdf)
 - o Bell 모양의 대칭형 곡선

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
 μ : mean σ : standard deviation

- Central Limit Theorem (CLT, 중심극한정리)
 - o Sample이 커지면 Sample 내 data의 합과 평균은 normal distribution에 근접해 간다.

Standard Normal Distribution (표준정규분포)

- Special case of Normal Distribution mean: $\mu = 0$, standard deviation: $\sigma = 1$
- pdf $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$
- Normal to Standard Normal:
 - Z-score conversion:

$$Z = \frac{x - \mu}{\sigma}$$

- \circ x와 μ 의 차이를 σ 단위로 나타낸 것
- o 서로 다른 dataset 들에서의 stat 값을 비교 할 때 사용 가능
- Standard Normal Distribution을 "Z-Distribution" 이라고도 부름

Standard Normal Table (Unit Normal Table, Z-Table) (1/2)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7 90	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8 06	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8 <mark>5</mark> 99	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	-0.8849 -	0.8869	- 0.6888	-0.8907	0.8925	0.8944	0.8962	- 0.6980 -	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

- Z가 특정구간에 있을 확률
 - o $Pr(\infty < Z < 0.00) = 0.50$
 - o $Pr(\infty < Z < 0.53) = 0.7019$
 - o $Pr(\infty < Z < 1.28) = 0.8997$

Standard Normal Table (Unit Normal Table, Z-Table) (2/2)

- 확률이 0.975 가 되는 Z 값은?
 - o Table에서 Z≈1.96
 - 그림을 참고하면 이것은 Significance Level 0.05 일 때의 Z 값을 말함

- 확률이 0.995 가 되는 Z 값은?
 - o 앞 슬라이드의 Table에서는 확인이 불가능하지만 Z ≈ 2.576 (Significance Level 0.01)

t-Distribution (Student's t-dist.) (1/2)

pdf:

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\,\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

ν: 자유도 (df), 일반적으로 Sample size - 1

 Γ : Gamma 함수, factorial의 일반화, 양의 정수 n에 대해 $\Gamma(n)=(n-1)!$

- t-score $t=rac{ar{X}-\mu}{rac{s}{\sqrt{n}}}$ $ar{x}$: Sample mean, μ : Population mean (가설로부터의 기대값) s: Sample 표준편차, n: Sample size
- Why t-distribution?
 - Sample size가 작을 때 (일반적으로 n < 30), Population의 표준편차를 정확하게 알 수 없음
 - o t-dist는 Sample size가 작은 상황에서 Sample mean이 Population mean을 얼마나 잘 추정하는지 를 더 정확하게 반영
 - o t-dist는 양옆 꼬리가 더 두꺼워 극단값의 발생 가능성을 더 높게 평가

t-Distribution (Student's t-dist.) (2/2)

- Population의 표준편차를 모를 때
 - o 대신 Sample 표준편차를 사용해야 함
 - Sample 표준편차는 Sample size가 작을 때 더 변동성이 심하므로 이를 보완하기 위해 t-분포를 사용
- - o mean의 차이를 testing할 때 t-분포를 사용하여 보다 정확한 p-value를 계산
- t-dist 는 자유도 (df) 에 따라 모양이 달라짐
 - o df가 커질수록 normal dist.에 가까와짐
 - o df가 무한대로 간다는 것은 sample size가 충분 히 커 진다는 것임. 그 때는 t-dist.가 normal dist. 와 거의 동일하다는 것을 의미

CODE: 02_normalDistribution.py

- https://github.com/iklee99/StatCode
 - ㅇ Data에 Fitting되는 최적의 Normal distribution 계산
 - o Data의 z-score 계산
 - o Standard normal table 계산 (주어진 Z-score에 대한 확률계산)
 - o 주어진 확률을 가지는 Z-score 계산
 - o Data에 대한 t-score 계산
 - o Plotting normal, z-dist., and t-dist. curves

Normality Test

- 데이터가 정규분포(normal distribution)를 따르는지 여부를 확인하는 통계적 방법
- 중요성
 - o Normality Test에 통과할 경우에는 Parametric test를 사용
 - o 통과하지 못할 경우에는 Nonparametric test를 사용

Normality Test in Linear Regression

• Dataset의 normality보다 model이 만들어내는 error가 normal distribution임을 확인해야 함

Normality Test Methods

- Analytical Test Methods
 - Kolmogorov-Smirnov Test
 - Shapiro-Wilk Test
 - Anderson-Darling Test
- Procedure
 - O HO: "Data가 normally distributed 되어 있다"
 - o 선택한 method로 p-value를 계산
 - o p-value ≤ 0.05 이면 HO를 reject, 즉, data는 normal distribution이 아님
- Analytical Test의 단점
 - Sample 크기가 작을 수록 p-value가 더 커짐
 - Normality 판정의 정확성이 떨어짐

Graphical Test

- Using Histogram
 - o Histogram과 normal distribution curve를 겹쳐 그려서 차이를 관찰
- Q-Q Plot
 - o Normality를 만족하는 이상적인 분포의 data curve들이 그려져 있음
 - o Data를 plotting하여 normality curve들과 비교

CODE: 03_NormalityTest.py

- https://github.com/iklee99/StatCode
- 02_normalityTest.py
 - Analytical Test Methods
 - Kolmogorov-Smirnov Test
 - Shapiro-Wilk Test
 - Anderson-Darling Test
 - Graphical Test Q-Q Plot

Significance vs Effect Size

- Effect Size
 - o Significance 이외에 실제로 관찰된 data의 effect의 크기나 강도를 측정
 - ㅇ 연구 결과의 실질적 중요성 (경제성 등 다른 면에서) 을 평가하는데 중요한 지표
 - 두 Sample 간의 mean 차이가 있지만, 한쪽 Sample의 경우 방법에 비용이 많이 드는 경우라면?
 - o ex) 두 sample S1, S2 에 대해
 - S1에게는 접종 1회당 1,000원이 드는 백신을 투여
 - S2에게는 접종 1회당 10,000원이 드는 백신을 투여
 - S1과 S2의 발병확률에는 차이가 있는가?
- Effect Size의 중요성
 - o 연구에서는 significance와 effect size를 모두 고려해야 함
 - 통계적으로 유의미한 결과 (p-value가 significance level 보다 작다) 라 하더라도 effect size가 작다면 실질적인
 의미가 없을 수 있음
 - o 반대로, effect size가 크더라도 p-value가 significance level보다 크다면 (즉, 유의미하지 않다면) 해당 결과가 우 연일 가능성을 배제할 수 없음

Effect Size: t-Test (Cohen's d)

- 두 집단 간 **평균 차이**를 표준화 한 값
- 각 group의 크기: n_1, n_2
- 각 group의 평균: *μ*₁, *μ*₂
- 각 group의 표준편차: σ_1, σ_2
- 각 group의 df (자유도): $(n_1 1), (n_2 1)$
- 결합 표준 편차(pooled standard deviation):

$$\sigma_p = \sqrt{\frac{(n_1 - 1)\sigma_1^2 + (n_2 - 1)\sigma_2^2}{n_1 + n_2 - 2}}$$

• Cohen's d:

$$d = \frac{\mu_1 - \mu_2}{\sigma_p}$$

d	해석
0.2	작은 effect size
0.5	중간 effect size
0.8	큰 effect size

Effect Size: Ratio

- Odds Ratio (OR): 두 그룹 간의 odds를 비교하는 비율
 - o A: 사건이 일어난 수, B: 사건이 일어나지 않은 수
 - o C: 대조군에서 사건이 일어난 수, D: 대조군에서 사건이 일어나지 않은 수

$$OR = \frac{\left(\frac{A}{B}\right)}{\left(\frac{C}{D}\right)}$$

• Risk Ration (RR): 두 그룹 간의 사건 발생 확률의 비율

$$RR = \frac{\left(\frac{A}{A+B}\right)}{\left(\frac{C}{C+D}\right)}$$

Effect Size: Pearson's r

- 두 변수 간의 상관 관계를 나타낼 때
- $r \in [-1, 1]$
- 1에 가까울 수록 강한 양의 상관관계, -1에 가까울수록 강한 음의 상관관계)

$$r = \frac{\sum (X - M_X)(Y - M_Y)}{\sqrt{\sum (X - M_X)^2 \sum (Y - M_Y)^2}}$$

X,Y: 두 변수

 M_X, M_Y : 변수 각각의 평균

r	해석		
0.1	작은 상관관계		
0.3	중간 상관관계		
0.5	큰 상관관계		

Effect Size: One-way ANOVA (1/3)

- SS_{effect}
 - 각 그룹의 평균이 전체 평균과 얼마나 차이가 나는지를 나타내며, 이를 통해 독립변수에 의해 설명된 총 변동의 크기를 알 수 있다.

$$SS_{effect} = \sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X}_{total})^2$$

k: 그룹의 수

 n_i : i 번째 그룹의 sample size

 $ar{X}_i$: i 번째 그룹의 평균

 $ar{X}_{total}$: 전체 sample의 평균 (모든 데이터를 합한 후 평균)

 $\left(ar{X}_i - ar{X}_{total}
ight)^2$: 각 그룹의 평균과 전체 평균 간 차이의 제곱

Effect Size: One-way ANOVA (2/3)

- SS_{total}
 - o ANOVA에서 전체 데이터의 변동을 나타내는 값. 각 관측값이 전체 평균으로부터 얼마나 떨어져 있는지를 나타내며, 전체 변동성을 측정하는 지표.

$$SS_{total} = \sum_{i=1}^{N} (X_i - \bar{X}_{total})^2$$

N: 전체 Sample size

 X_i : 각 관측값

 $ar{X}_{total}$: 모든 데이터의 평균

Effect Size: One-way ANOVA (3/3)

- η^2 (에타 제곱)
 - ㅇ 독립변수가 전체 변동성에서 영향을 미치는 비율

$$\eta^2 = \frac{SS_{effect}}{SS_{total}}$$

Sample Size (Power Analysis)

- 최소 표본 크기 계산은 각 Statistical Test 마다 다름
- Sample Size 계산의 Parameter들:
 - o Significant Level (SL, 유의수준): α
 - Type 1 error를 범할 최대 확률 (HO가 true인데 기각할 최대 확률)
 - \circ Power: 1β
 - β: Type 2 error의 확률, 즉 HO가 false인데 기각하지 않을 확률
 - Type 2 error를 피할 확률 (1 − β) 일반적으로 0.8 또는 0.9로 설정되며, 0.8보다 작게 설정하지 않음
 - Effect Size
 - 연구자가 검출하고자 하는 최소한의 effect size
 - Cohen's d, Odds Ratio, Pearson's r 등으로 표시
 - 보통 Cohen's d 를 사용할 때 0.2 ~ 0.5 로 사용

Sample Size for t-Test

One-Sample and Paired t-Test

$$n = \left(\frac{\left(Z_{\alpha/2} + Z_{\beta}\right) \cdot \sigma}{\mu_1 - \mu_0}\right)^2$$

- $\circ Z_{\alpha/2}$: α 에 대응하는 Z-score (1.96 for $\alpha = 0.05$, 2.5758 for $\alpha = 0.01$)
- \circ Z_{β} : Power $1-\beta$ 에 대응하는 Z-값 (보통 0.84 for 80% power)
- \circ σ : 표준편차
- \circ $\mu_1 \mu_0$: 기대되는 효과 크기, effect size
- Independent Samples t-Test

$$n = \frac{2 \cdot \left(Z_{\alpha/2} + Z_{\beta}\right)^2 \cdot \sigma^2}{(\mu_1 - \mu_0)^2}$$

Sample Size for Other Tests

ANOVA (One-way)

$$n = \frac{\left(Z_{\alpha/2} + Z_{\beta}\right)^{2} \cdot 2 \cdot \sigma^{2}}{(\mu_{\text{max}} - \mu_{\text{min}})^{2}}$$

- \circ μ_{\max} : 여러 sample mean 중 최대값
- \circ μ_{\min} : 여러 sample mean 중 최소값
- Chi-Square Test

$$n = \frac{\left(\sum_{i} \left(E_{i} \cdot Z_{\alpha/2} + \sqrt{E_{i}} \cdot Z_{\beta}\right)\right)^{2}}{\left(\sum_{i} \left(O_{i} - E_{i}\right)\right)^{2}}$$

- o E_i: Expected Frequency (기대빈도)
- \circ O_i : Observed Frequency (관찰빈도)

CODE: 04_SampleSize.py

- https://github.com/iklee99/StatCode
- 다음 Hypothesis Test 를 위한 최소 Sample size 계산
 - o One-Sample t-Test
 - o Independent Samples t-Test
 - Pared t-Test
 - Binomial Test
 - o Chi-Square Test
 - o One-Way ANOVA
 - *Two-Way ANOVA
 - *Two-Way ANOVA with Repeated Measures
 - *Mann-Whitney U Test
 - *Wilcoxon Test
 - *Friedman Test
 - Kruskal-Wallis Test
 - Pearson Correlation
 - o Spearman Correlation
 - o Point-Biserial Correlation
 - Linear Regression
 - Logistic Regression
 - * 표시된 것은 불완전하게 계산됨.

G*Power (Downloadable Link)

• https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower

• 발음: "지 파워"

G*Power (Test family and Stat. Test) (1/3)

- t-tests: 두 group간의 평균 (mean) 차이 비교 때 사용
 - Means: Difference between two dependent groups
 - Means: Difference between two independent groups
 - Means: Difference from constant (one sample case)
 - Means: Wilcoxon signed-rank test (matched pairs)
 - Means: Wilcoxon signed-rank test (one sample case)
 - Means: Wilcoxon-Mann-Whitney test (two groups)
 - ㅇ Correlation: point biserial model 이분형 변수 (예: 남, 여) 와 연속형 변수 (예: 키) 간의 상관관계 측정
 - o Linear bivariate regression: one group, size of slope 상수 기울기와 one group 기울기 간 차이
 - o Linear bivariate regression: Two groups, diff. between intercepts 두 group간 y절편 차이
 - o Linear bivariate regression: Two groups, diff. slopes 두 group간 기울기 차이
 - o Generic t-test: 그 외 t-test의 포괄적 개념

G*Power (Test family and Stat. Test) (2/3)

- z-tests: 큰 sample을 다루거나, population의 variance가 알려져 있을 때, 평균간 차이 분석
 - o Correlation: Tetrachoric model
 - 두개의 변수가 잠재적 연속 변수들의 특정 임계값에 의해 각각 0.1 값을 가지는 2분형 변수로 나타내 질 때 그 상관관계의 분석
 - ex) 점수는 연속형이지만 특정 임계값을 기준으로 합격/불합격으로 이분화될 때
 - Correlation: Two dependent Pearson r's (common index)
 - 두 상관 계수가 공유하는 공통 변수가 있는 경우, 이 상관 계수들 간의 차이 분석
 - ex) 개인의 성적 (A) 과 운동 능력 (B) 간의 상관 계수와 성적 (A) 와 집중력 (C) 와의 상관 계수
 - Correlation: Two dependent Pearson r's (no common index)
 - 두 상관 계수가 dependent는 아니지만 여전히 연관되어 있을 때, r(AB)와 r(CD)
 - ex) 두 상관 계수가 동일한 데이터셋이나 동일한 연구 참여자에 의해 산출된 경우
 - Correlation: Two independent Pearson r's
 - o Logistic Regression: 종속변수가 이분형 일때 독립변수들이 종속변수에 미치는 영향 분석
 - ex) X: 환자 나이, 체질량지수(BMI), Y: 질병 발병 여부 (발병/미발병: 2분형)
 - o Poisson Regression: 종속변수가 count data. ex) 하루동안 병원 방문 환자 수, 1시간동안 웹사이트 방문 수
 - 종속변수는 Poisson 분포로 가정, 평균과 분산이 같다는 특징
 - Proportions: Difference between two independent proportions
 - o Generic z-tests

G*Power (Test family and Stat. Test) (3/3)

- F-test: 분산을 기반으로 한 분석에 사용, 주로 ANOVA 및 회귀분석에 사용
 - o one-way, two-way ANOVA
 - one-way, two-way ANOVA with repeated measure
 - MANOVA
 - o Linear Multiple Regression (단일 종속변수, 다중 독립변수): Y = a0 + a1 X1 + a2 X2 + ...
 - Variance: Test of equality (two sample case)
 - ANCOVA: ANOVA + regression
- χ^2 test family
- Exact family

G*Power (Type of Power Analysis) (1/2)

- A priori: Compute required sample size given α , power, and effect size
 - o User test의 참가자 수 결정
 - \circ test 전이므로 significance level α 만 정할 수 있다.
 - \circ 보통 Effect size는 0.5로, Power (1β) 는 0.8 이상으로 setting
 - o Tail: "차이가 있다" 만을 검증하려면 Two tails로, "..가 ..보다 크다 (작다)" 만을 검증하려면 One tail로

G*Power (Type of Power Analysis) (2/2)

- Post hoc: Compute achieved power given α , sample size, and effect size
 - o ANOVA, MANOVA 등에 이어, 두 변수 간의 차이 분석

G*Power (Calculate Sample Size)

Output parameters					
Noncentrality parameter δ	2.9154759				
Critical t	2.0345153				
Df	33				
Total sample size	34				
Actual power	0.8077775				

Sample size는 클수록 좋을까? (1/2)

- 많은 연구자들은 피험자가 많을수록 더 좋다고 잘못 생각합니다.
- 그러나 이는 사실이 아닙니다.
- User test의 피험자 수는 Power Analysis에서 구해진 수와 같아야 하며, 그 이상도 이하도 아니어야 합니다. 그 이유는 다음과 같습니다.
- ex) 문제가 되는 User Test의 예
 - ㅇ 20명의 참가자를 대상으로 실험을 실행하고 그 결과 데이터를 분석
 - 통계 분석 결과, 연구자의 가설이 유의미(significant하지) 않으면 5명 더 추가 실험하고 분석
 - ㅇ 그래도 여전히 유의미하지 않으면 유의미해 질 때까지 5명을 더 추가 실험하고 분석
 - o 이 과정을 반복하여 예를 들면 30명에서 가설이 significant한 결과가 나오면 거기에서 중단
 - o Question: 그러면 35명은? 40명은? ...
 - 35명, 40명, 그 이상일 경우 다시 significant 하지 않을 수 있음
 - 이 경우, 30명이라는 특정 표본 수는 뭔가 특이한 것이었음
 - 즉, 이 가설은 전체적으로는 유의미하지 않은 것으로 보아야 하는 것이다.
 - ㅇ 문제는 30명을 대상으로 한 잘못된 '유의미한' 결과가 논문으로 발표될 수 있음

Sample size는 클수록 좋을까? (2/2)

- 이 때문에 대부분의 심리학 저널에서는 Power analysis를 포함하지 않거나 피험자 수가 Power analysis에 명시된 것과 다른 경우 원고를 데스크에서 거부
- 즉, 너무 많은 피험자를 대상으로 하는 것은 연구자의 조작을 나타낼 수 있으므로 부적절
- 이 요건은 공학 분야에서는 덜 일반적이지만, power analysis가 부족하거나 따르지 않은 경우 검토자가 직접 나서서 거부를 권고하기 시작했음
- 실제로 가상 현실 연구에서는 장비 고장 등으로 인해 피험자 몇 명의 데이터를 사용하지 못하는 경우가 흔하고, 따라서 연구가 약간 부족하거나 약간 초과된 상태로 끝나더라도 양해를 해 줄 수 있음
- 즉, 연구자가 데이터 손실에 대비하여 몇 번의 실험을 더 실행하는 것은 받아들여질 수 있음
- 즉, Power analysis에 표시된 정확한 숫자를 기대하는 것은 너무 엄격할 수 있지만 그 숫자는 비슷 해야 함