自動駕駛實務 Autonomous-Driving

姓名 / 學號: 何宇浩 VK6112026

辨識德國交通號誌。

使用資料集: Kaggle- GTSRB - German Traffic Sign Recognition Benchmark 原資料集分為兩個資料夾 Test 及 Train,其中 Test 有 12630 張照片,而 Train 有 39209 張照片,共 43 個類別。

資料前處理:

資料前處理主要分為資料讀取及資料分類兩大部分。

1. 資料讀取:

同時讀取影像及所屬類別,並調整影像大小,使得所有影像尺寸一致。

2. 資料分類:

總共分為訓練集、驗證集及測試集三類,其中訓練集及驗證集的資料為原 Train 資料夾中的照片隨機分配,訓練集的照片量佔80% 而驗證集的照片佔 20%,最終三類之數據量如下所示:

Training data : (31367, 32, 32, 3) Validation data : (7842, 32, 32, 3)

Testing data: (12630, 32, 32, 3)

影像大小皆為 32*32, 且皆為彩色圖像, 因此有 RGB 共 3 層。 而此三個資料集的資料分布如下圖所示:

由上圖可知,各類別的數據量並不平均,但三個資料集數據的分布情形大致相 同。

模型建立:

參考課堂簡報中 LeNet 5 模型,建立了兩種模型,以相同的數據對其進行訓練,探討各層的作用,並進行模型比較。

首先,介紹模型中各層的作用如下:

Convolution Layer (卷積層):

將原始圖片的與特定的 Feature Detector(filter)做卷積運算,以提取圖像中的各種特徵,如形狀、顏色、輪廓、對比等特徵。

Max Pooling Layer (最大池化層):

只提取矩陣當中的最大值,減少卷積特徵的空間大小,利用降維來降低處 理數據所需的計算能力,有助於提取旋轉、位置不變等特徵,使模型有好的抗 雜訊功能。

Batch Normalization:

對輸入數據進行正規化,用於規範輸入數據的分佈,有助於提高模型的穩定性和訓練速度。

Dropout:

隨機丟棄部分比例的輸入單元,用於減少過擬合。

Fully Connected Layer (全連接層):

將之前的結果平坦化後,接到最基本的神經網絡。

Model Structure:

Model 1.


```
# defining model structure
model = models.Sequential()
model.add(layers.Conv2D(filters = 32, kernel_size = (5,5), activation ='relu', input_shape = (32,32,3)))
model.add(layers.Conv2D(filters = 32, kernel_size = (5,5), activation = 'relu'))
\verb|model.add(layers.MaxPool2D(pool_size = (2,2))||
model.add(layers.Dropout(rate = 0.25))
model.add(layers.Conv2D(filters = 64, kernel_size = (3,3), activation ='relu'))
model.add(layers.Conv2D(filters = 64, kernel_size = (3,3), activation ='relu'))
model.add(layers.MaxPool2D(pool_size = (2,2)))
model.add(layers.Dropout(rate = 0.25))
model.add(layers.Flatten())
model.add(layers.Dense(256, activation = 'relu'))
model.add(layers.Dropout(rate = 0.25))
model.add(layers.Dense(128, activation = 'relu'))
model.add(layers.Dropout(rate = 0.25))
model.add(layers.Dense(43, activation= 'softmax'))
# model compilation
model.compile(loss = 'categorical_crossentropy', optimizer ='adam', metrics =['accuracy'])
model.summary()
```

Model 2.


```
model = models.Sequential() #Sequential Model
#ConvLayer(64 filters) + MaxPooling + BatchNormalization + Dropout
model.add(layers.Conv2D(filters=32,kernel_size=3,activation='relu',padding='same',input_shape=X.shape[1:]))
model.add(layers.MaxPool2D(strides=2))
model.add(layers.BatchNormalization())
model.add(layers.Dropout(0.3))
#ConvLayer(128 filters) + MaxPooling + BatchNormalization + Dropout
model.add(layers.Conv2D(filters=128,kernel_size=3,activation='relu',padding='same'))
model.add(layers.MaxPool2D(strides=2))
model.add(layers.BatchNormalization())
\verb|model.add(layers.Dropout(0,3))|
#ConvLayer(512 filters) + Dropout + ConvLayer(512 filters) + MaxPooling + BatchNormalization
model.add(layers.Conv2D(filters=512,kernel_size=3,activation='relu',padding='same'))
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(filters=512,kernel_size=3,activation='relu',padding='same'))
model.add(layers.MaxPool2D(strides=2))
model.add(layers.BatchNormalization())
#Flatten
model.add(layers.Flatten())
#2 Dense layers with 4000 hidden units
model.add(layers.Dense(4000, activation='relu'))
model.add(layers.Dense(4000, activation='relu'))
#Dense layer with 1000 hidden units
model.add(layers.Dense(1000, activation='relu'))
#Softmax layer for output
model.add(layers.Dense(43, activation='softmax'))
model.summary()
```

Model Summary					
Model 1			Model 2		
conv2d_4 (Conv2D)	(None, 28, 28, 32)	2432	conv2d (Conv2D)	(None, 32, 32, 32)	896
conv2d_5 (Conv2D)	(None, 24, 24, 32)	25632	max_pooling2d (MaxPooling2D	(None, 16, 16, 32)	0
max_pooling2d_2 (MaxPool 2D)	ling (None, 12, 12, 32)	0	batch_normalization (BatchNormalization)	None, 16, 16, 32)	128
dropout_3 (Dropout)	(None, 12, 12, 32)	0	dropout (Dropout)	(None, 16, 16, 32)	0
conv2d_6 (Conv2D)	(None, 10, 10, 64)	18496	conv2d_1 (Conv2D)	(None, 16, 16, 128)	36992
conv2d_7 (Conv2D)	(None, 8, 8, 64)	36928	max_pooling2d_1 (MaxPooling	(None, 8, 8, 128)	0
max_pooling2d_3 (MaxPool 2D)	ling (None, 4, 4, 64)	0	2D) batch_normalization_1 (Batc	: (None. 8, 8, 128)	512
dropout_4 (Dropout)	(None, 4, 4, 64)	0	hNormalization)	, , , , , , , , , , , , , , , , , , , ,	
flatten_1 (Flatten)	(None, 1024)	0	dropout_1 (Dropout)	(None, 8, 8, 128)	0
dense_2 (Dense)	(None, 256)	262400	conv2d_2 (Conv2D)	(None, 8, 8, 512)	590336
dropout_5 (Dropout)	(None, 256)	0	dropout_2 (Dropout)	(None, 8, 8, 512)	0
dense_3 (Dense)	(None, 128)	32896	conv2d_3 (Conv2D)	(None, 8, 8, 512)	2359808
dropout_6 (Dropout)	(None, 128)	0	max_pooling2d_2 (MaxPooling 2D)	(None, 4, 4, 512)	0
dense_4 (Dense)	(None, 43)	5547	batch_normalization_2 (Batch_normalization)	(None, 4, 4, 512)	2048
Fotal params: 384,331 Frainable params: 384,331 Non-trainable params: 0			flatten (Flatten)	(None, 8192)	0
			dense (Dense)	(None, 4000)	32772000
			dense_1 (Dense)	(None, 4000)	16004000
			dense_2 (Dense)	(None, 1000)	4001000
			dense_3 (Dense)	(None, 43)	43043
			Total params: 55,810,763 Trainable params: 55,809,419 Non-trainable params: 1,344		

模型訓練:

```
model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=['accuracy'])

history= model.fit(%_train, Y_train,

epochs=15,|

batch_size=64,

validation_data=(%_val, Y_val))
```

使用 compile 函式來編譯模型,並設定模型的優化器(optimizer)為 Adam, 損失函數(loss function)為 categorical_crossentropy,並指定度量指標(metrics)為 準確率(accuracy)。編譯模型是為了準備模型進行訓練前的配置。

訓練過程中,模型將根據訓練數據進行反向傳播和權重更新,同時計算訓練損失和準確率。驗證數據用於在每個訓練迭代(epoch)結束後評估模型的性能。訓練的過程將返回一個 history 物件,其中包含了每個迭代的損失和準確率的記錄。

Training results:

Model 1.

Model 2.

模型測試結果討論:

將 testing data 丟入訓練好的模型中進行辨識並獲得準確率。

```
pred = np.argmax(model.predict(X_test),axis =1)
print("Test accuracy: ", accuracy_score(labels_test, pred) * 100 )
```

Model 1:

Test accuracy: 95.37608867775138

Model 2:

Test accuracy: 96.22327790973871

結果討論:

model 2 較 model 1 增加了更多層數,提取較多特徵,使得 model 2 模型所需訓練的參數量遠大於 model 1,但增添了 Batch Normalization 以提高模型的穩定性和訓練速度,因此在訓練模型時的收斂速度較 model 1 快。

以 testing data 的測試結果來看, $model\ 2$ 的準確率略大於 $model\ 1$,但其差異並不大。

隨機列印圖像及辨識結果:

