Fyzikální praktikum 1. **pracovní úkol** # 9

FJFI ČVUT V Praze

Rozšířená rozsahu miliampármetru a voltmetru, cejchováná kompenzátorem

Michal Červeňák
dátum merania: 10.10. 2016
skupina: 4
Klasifikace:

1 Pracovní úkol

- 1. DU: V přípravě odvoď ťe vztah $(7)^1$.
- Pomocí kompenzátoru ocejchujte stupnici voltmetru (cejchujte v celém rozsahu stupnice). Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- Pomocí kompenzátoru ocejchujte stupnici miliampérmetru (cejchujte v celém rozsahu stupnice). Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- 4. Pomocí kompenzátoru ocejchujte odporovou dekádu. Měření provedťe pro 10 hodnot v rozsahu $100-1000\,\Omega$. Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- 5. Rozšiřte rozsah miliampérmetru dvakrát a určete jeho vnitřní odpor R_0 . Měření provedťe pro 10 různých nastavení obvodu, t.j. pro 10 různých proudů.
- 6. Rozšiřte rozsah voltmetru dvakrát a určete jeho vnitřní odpor. Měření provedťe pro 10 různých nastavení obvodu, t.j. pro 10 různých napětí.
- 7. Při zpracování výsledků z měření vnitřních odporů vezměte v úvahu výsledky získané cejchováním stupnic voltmetru a miliampérmetru a provedťe korekci naměřených hodnot. Diskutujte rozdíl mezi výsledkem získaným bez korekce a s korekcí.

2 Postup merania

- 1. Pomocou Westnového normálneho članku sa skalibruje kompenzátor.
- 2. Podľa schémy Obr. (6) [1] sa zostavý obvod

¹Wrong reference by definition.

- 3. Pomocou reostatu sa reguluje napätie aby sa nameral celý rozsah ciachovaného voltmetru.
- 4. Podľa schémy Obr. (7) [1] sa zostaví obvod
- 5. Pomocou reostatu sa reguluje prúd aby sa nameral celý rozsah ciachovaného ampérmetru.
- 6. Podľa schémy Obr. (8) [1] sa zostaví obvod
- 7. Na odporovej dekáde sa reguluje mení odpor v rozsahu $R=100-1000\,\Omega$ a pre každú hodnotu sa odmeria hodnota napätia na normálovom rezistore a odporovej dekáde.
- 8. Zostaví sa obvod podľa schémy Obr. (5) [1].
- 9. Pomocou odporovej dekády sa mení rozsah tak aby zväčšil rozsah voltmetru presne 2 krát.
- 10. Zostaví sa obvod podľa schémy Obr. (4) [1].
- 11. Pomocou odporovej dekády sa mení rozsah tak aby zväčšil rozsah ampérmetru presne 2 krát.

3 Pomôcky

Miliampérmetr, voltmetr, zdroj $0-20\,\rm V$, batéria 1,5 V, odporová dekáda, reostaty $115\,\Omega$ a 6000 Ω , dva vypínače, multimetr, odporové normály $100\,\Omega$ a $1000\,\Omega$ a 10000 Ω , technický kompenzátor, Westonův normálná článek, vodiče

4 Teória

Závislosť napätia Westnového normálneho článku na teplote udáva vzťah

$$U_t = U_{20} - 4.06 \cdot 10^{-5} (t - 20) - 0.95 \cdot 10^{-6} (t - 20)^2 + 1 \cdot 10^{-8} (t - 20)^3 \text{ V},$$

pričom t je teplota v °C a napätie pri teplote t=20 °C je $U_{20}=1{,}01865$ °C.

Pre prepočet napäti
aUna rezistore s odporom Rna prú
dI prechádzajúci rezistorom môžeme použiť vzťah

$$I = \frac{U}{R} \,. \tag{1}$$

Pre výpočet odporu rezistrou porovnávaním pomerov napätí na dvoch rezistoroch platí vzťah

$$R_k = \frac{U_x}{U_n} R_n \,, \tag{2}$$

kde R_k je neznámy odpor s úbytkom napätia U_x a R_n rezistor so známym odporom a úbytkom napätia na ňom U_n .

Pre zväčšovanie rozsahu voltmetru platí vzťah

$$R_V = \frac{R_p}{n-1} \,, \tag{3}$$

kde R_v je vnútorný odpor voltmetru, a R_p je odpor predradeného odporu, a n udáva koľkokrát je rozsah zväčšení v našom pripade $n = U_1/U'$.

Pre zväčšenie rozsahu ampérmetru platí vzťah

$$R_0 = (n-1) R_b , \qquad (4)$$

kde n je koľkokrát sa zväčši rozsah ampérmetru, R_b je odpor bočníku², a R_0 je vnútorný odpor ampérmetru.

4.0.1 Spracovanie chýb merania

Označme $\langle t \rangle$ aritmetický priemer nameraných hodnôt t_i , a Δt hodnotu $\langle t \rangle - t$, pričom

$$\langle t \rangle = \frac{1}{n} \sum_{i=1}^{n} t_i \,, \tag{5}$$

a chybu aritmetického priemeru

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^n (t_i - \langle t \rangle)^2}{n (n-1)}},$$
(6)

pričom n je počet meraní.

5 Výsledky merania

5.1 Ciachovanie voltmetru

Odčítané hodnoty na stupnici ciachovaného voltmetru označme U_x a hodnoty odčítané z kompenzátoru ako U_k . Namerané hodnoty boli vynesené do grafu Obr. 1 a Tab. 1.

$U_x[V]$	$U_k[V]$
9 ± 0.1	9.549 ± 0.001
8.6 ± 0.1	9.236 ± 0.001
8.0 ± 0.1	8.613 ± 0.001
7.0 ± 0.1	7.623 ± 0.001
6.6 ± 0.1	7.133 ± 0.001
6.0 ± 0.1	6.594 ± 0.001
5.4 ± 0.1	5.952 ± 0.001
5.0 ± 0.1	5.494 ± 0.001
3 ± 0.1	3.292 ± 0.001
1.5 ± 0.1	1.746 ± 0.001

Tab. 1: Namerané hodnoty ciachovaného voltmetru U_x v závislosti od hodnôt odčítaných z kompenzátoru U_k

Z lineárneho fitu dostávame výsledný vzťah

$$U_k = 1.05 \cdot U_x + 0.21 \,\text{V} \,. \tag{7}$$

 $^{^2 {\}rm Odporu}$ zaradeného paralelne k ampérmetru

Obr. 1: Namerané hodnoty ciachovaného voltmetru U_v v závislosti od hodnôt odčítaných z kompenzátoru U_k , preložené závislosťou $U_k=1,05\cdot U_x+0,21\,\mathrm{V}$

5.2 Ciachovanie ampérmetru

Odčítané hodnoty na stupnici ciachovaného ampérmetru označme I_x a hodnoty odčítané z kompenzátoru ako U_k . Normálový rezistor bol použitý $R_b=1000\,\Omega$, ktoré boli pomocou 1 prepočítané na I_k . Namerané hodnoty boli vynesené do grafu Obr. 2 a Tab. 2.

$I_x[\mathrm{mA}]$	$I_k[\mathrm{mA}]$
0.96 ± 0.1	0.92 ± 0.001
0.90 ± 0.1	0.87 ± 0.001
0.84 ± 0.1	0.81 ± 0.001
0.80 ± 0.1	0.78 ± 0.001
0.7 ± 0.1	0.69 ± 0.001
0.68 ± 0.1	0.67 ± 0.001
0.62 ± 0.1	0.62 ± 0.001
0.40 ± 0.1	0.39 ± 0.001
0.30 ± 0.1	0.30 ± 0.001
0.2 ± 0.1	0.20 ± 0.001

Tab. 2: Namerané hodnoty ciachovaného ampérmetru I_x v závislosti od hodnôt odčítaných z kompenzátoru a prepočítaných na mA ako I_k

Z lineárneho fitu dostávame výsledný vzťah

$$I_k = 0.95 \cdot I_x + 0.017 \,\text{mA} \,.$$
 (8)

Obr. 2: Namerané hodnoty ciachovaného ampérmetru I_x v závislosti od hodnôt odčítaných z kompenzátoru a prepočítaných na prúd I_k , preložené závislosťou $I_k = 0.95 \cdot I_x + 0.017 \, \text{mA}$

5.3 Ciachovanie odporové dekády

Pre hodnoty odporu na odporovej dekáde v rozsahu $R=1000-500\,\Omega$ bol použitý normálový rezistor o hodnote $R_n=1000\,\Omega$ a pre hodnoty nižšie ako $R=500\,\Omega$ bol použitý normálový rezistor $R_n=100\,\Omega$.

Napätie na odporovej dekáde označme ako U_x a na normálovom odpore U_n , pričom R_n je odpor normálového rezistoru a R_x hodnota odporu nevoleného na odporovej dekáde.

Namerané hodnoty boli vynesené do tabuľky 3 a podľa vzťahu 2 boli vypočítané hodnoty ${\cal R}_k.$

Závislosť R_k na R_x bola vynesená do grafu Obr. 3 a z výsledku fitu bol určený vzťah R_k na R_x

$$R_k = 1,00 \cdot R_x + 1,83 \,\Omega.$$

5.4 Rozšírenie rozsahu ampérmetru

Namerané hodnoty prúdu na ampérmetri s bočníkom onačme ako I_2 a prúd pretekajúci častou s nezaradením bočníkom ako T_1 . Odpor bočníka označme R_b . Na meranie prúdu T_2 bol použitý ampérmeter ktorý bol v predchádzajúcej časti ciachovaný. Teda skutočné hodnoty prúdu po prepočet vzťahom 8 boli označené ako I_2' . Tieto hodnoty boli vynesené do Tab. 4

Podľa vzťahu 4 bola vypočítaná hodnota R_0 pre jednotlivé merania. Pričom pri štatistickom spracovaní boli vynechané hodnoty $R_b > 300 \,\Omega$, kde sa meranie

$U_x[V]$	I[mA]	$U_n[V]$	$R_c[\Omega]$	$R_x[\Omega]$	$R_k[\Omega]$
0.6195 ± 0.001	0.6	0.6158 ± 0.001	1000	1000	1006.00
0.5792 ± 0.001	0.64	0.6431 ± 0.001	1000	900	900.64
0.5373 ± 0.001	0.66	0.6709 ± 0.001	1000	800	800.86
0.4915 ± 0.001	0.70	0.7021 ± 0.001	1000	700	700.04
0.4418 ± 0.001	0.72	0.7364 ± 0.001	1000	600	599.95
0.3874 ± 0.001	0.76	0.7745 ± 0.001	1000	500	500.19
0.6450 ± 0.001	1.62	0.163 ± 0.001	100	400	395.71
0.5482 ± 0.001	1.82	0.183 ± 0.001	100	300	299.56
0.4170 ± 0.001	2.06	0.2088 ± 0.001	100	200	199.71
0.2426 ± 0.001	2.4	0.2429 ± 0.001	100	100	99.88
0.2004 ± 0.001	2.48	0.2504 ± 0.001	100	80	80.032

Tab. 3: Namerané hodnoty ciachovania odporovej dekády R_x v závislosti vypočítanej hodnote odporu R_k

$R_b[\Omega]$	$I_2[\mathrm{mA}]$	$I_1[\mathrm{mA}]$	$I_2'[\mathrm{mA}]$	$R_0[\Omega]$
∞	0.22	0.22	0.22	_
200	0.16	0.22	0.17	60.72
100	0.12	0.22	0.13	68.25
70	0.1	0.22	0.11	67.80
90	0.11	0.22	0.12	73.30
300	0.18	0.22	0.19	51.50
400	0.2	0.22	0.21	25.60
20	0.04	0.22	0.055	60.38
50	0.08	0.22	0.093	68.60
500	0.21	0.22	0.21	8.63
800	0.21	0.22	0.21	13.80

Tab. 4: Namerané hodnoty prúdov I_1 a I_2 , hodnota odporu bočníku, prepočítaný prúd kalibračnou rovnicou pre ampérmeter I_2' a vypočítaný vnútorný odpor ampérmetru R_0

ukazuje ako veľmi nepresné z dôvodu malého rozdielu prúdov oproti ich hodnote. Teda bola pomocou vzťahu 5 a vzťahu 6 určená hodnota vnútorného odporu ampérmetru

$$R_0 = (52,5 \pm 24,3) \Omega$$
.

5.5 Rozšírenie rozsahu voltmetru

Namerané hodnoty na voltmetri s preradeným odporom (ďalej len predradník), sú označené U, po prepočte vzťahom 7 označené ako U_1 a napätie na voltmetri spolu predradníkom ako U' a vnútorný odpor voltmetru R_V . Tieto hodnoty boli zanesené do tabuľky 5

Podľa vzťahu 3 bola vypočítaná hodnota R_V a z nej podľa vzťahu 5 a vzťahu 6 bola určená výsledná hodnota odporu

$$R_V = 4505,8 \pm 602,1 \,\Omega$$
 .

Obr. 3: Namerané hodnoty ciachovania odporovej dekády R_x v závislosti vypočítanej hodnote odporu R_k , preložené závislosťou $R_k=1,00\cdot R_x+1,83\,\Omega$

6 Diskusia

Pri kalibrácii voltmetru ale i ampérmetru, sa ukázalo ako najväčší nedostatok veľká veľkosť dielika. Pri voltmetri $\Delta U = 0.2\,\mathrm{V}$ a $\Delta I = 0.2\,\mathrm{mA}$. S tým súvisí aj neskorší problém pri rozširovaní, rozsahov kde pri zmene odporu nedokázal merák dostatočne presne reagovať a ručička sa vychýlila o menej ako pol dielika, čo spôsobovalo veľké nepresnosti. Tieto nepresnosti sa najviac prejavili u merania ampérmetru kde hodnoty pre väčšie hodnoty odporu sa pohybovali ďaleko za hranicou σ_0 .

Samotné vzťahy 8 a 7 sú zaťažené chybou fitu, ktorá sa pohybuje u lineárneho členu v rádoch desatín % a u absolútneho členu v ráde jednotiek %. Bohužiaľ nebola určená hodnota v 0, čo by fit výrazne spresnilo.

Pri meraní ampérmetru, zároveň vidíme, že v oblasti kde sa $n \doteq 2$ sa hodnota $R_0 \doteq 70 \,\Omega$. Čo je podľa môjho subjektívneho názoru správna hodnota, bez zaťažená meraniami v oblasti rádovo rozdielnej od nameranej hodnoty.

7 Záver

Kalibračná rovnica ampérmetru bola určená ako

$$I_k = 0.95 \cdot I_x + 0.017 \,\mathrm{mA}$$
,

pre voltmeter

$$U_k = 1.05 \cdot U_x + 0.21 \,\mathrm{V}$$
,

a pre odporovú dekádu

$$R_k = 1,00 \cdot R_x + 1,83 \,\Omega.$$

U[V]	U'[V]	$R[\Omega]$	$U_1[V]$	$R_V[\Omega]$
5.2	5.93	0	5.672318	0
4.2	5.93	1000	4.621868	3533.181667
3.6	5.93	2000	3.991598	4118.441892
3.2	5.93	3000	3.571418	4542.667586
2.8	5.93	4000	3.151238	4536.175462
2.4	5.93	5000	2.731058	4268.68946
2.2	5.93	6000	2.520968	4436.980351
2	5.93	7000	2.310878	4469.63269
1.6	5.93	10000	1.890698	4680.754249
0.4	5.93	50000	0.630158	5945.064023
2.6	5.93	4600	2.941148	4526.581042

Tab. 5: Namerané hodnoty napätie U a U', hodnota odporu predradníku, prepočítané napätie kalibračnou rovnicou pre voltmeter U_1 a vypočítaný vnútorný odpor ampérmetru R_V

Vnútorný odpor ampérmetru bol určený ako

$$R_0 = (52.5 \pm 24.3) \Omega$$
,

a pre voltmeter

$$R_V = 4505,8 \pm 602,1 \,\Omega$$
.

Reference

[1] Rozšířená rozsahu miliampármetru a voltmetru,cejchováná kompenzátorem [cit. 21.11.2016]Dostupné po prihlásení z Kurz: Fyzikální praktikum I:https://praktikum.fjfi.cvut.cz/pluginfile.php/119/mod_resource/content/12/161010.pdf

8 Prílohy