Appl. No.: 10/662,065 Amdt. dated April 18, 2007

Reply to Office Action of October 18, 2006

Page 2 of 9

Amendments to the Specification:

Please amend the paragraph beginning on page 4, line 5 as follows:

Where, the ϕ_i (i=1, . . . ,n) define the poles, and the ϕ_j (j=1, . . . ,m) define the zeros. ϕ_i and ϕ_j are the parameters of the model. a_t is a random variable with mean zero and variance σ^2_a , $a_t \sim \text{NID}(0, \sigma^2_a)$. $\text{NID}(0, \sigma^2_a)$ denotes Normally Independent Distributions with mean value 0 and standard deviation of σ_a . Since AR(p) models are good approximations to the ARMA(n,m) models when $p(i=1,2\dots)$ is properly selected (Reference 2), and building an AR(p) model is much easier than building an ARMA(n,m) model, in practical application, AR(p) models are often used. An AR(p) model can be written as follows: