Práctica Circuitos Electrónicos 6 Memoria

Prepráctica:

APARTADO A: Los valores máximo y mínimo de la señal de salida Vout obtenidos son -1.55V y -2.45V, respectivamente. El valor promedio es de 2V.

APARTADO B: La diferencia de fase es de 0.5ms (90º)

APARTADO C: Los valores teóricos de la tensión de salida obtenidos oscilan entre los -1.55V y los -2,45V. Para obtenerlos, hallamos la ddp entre V1 y Output, luego la ddp entre V2 y output (teniendo en cuenta los valores máximos y mínimos de V2), y posteriormente los

$$\mathrm{sumamos}.I_1 = \frac{V_1}{R_2}; Output_{V_1} = V_1 - I_1 * R_1$$

$$I_2 = \frac{V_2}{R_3}$$
; $Output_{V_2} = V_2 - I_2 * R_1$

APARTADO D: A partir de los ±4.5V se aprecia que la señal de Voutput empieza a saturarse.

Montaje:

Para el montaje utilizaremos el generador de funciones, el osciloscopio y los componentes necesarios. Será necesario interconectar los terminales del PROMAX como se aprecia en el esquema para proporcionar alimentación al Amplificador Operacional (AO):

Ejercicio 1:

Tras realizar el montaje tomamos las medidas y obtenemos los siguientes resultados:

- a) La diferencia de fase entre ambas señales es de 90º, Vmin = -2.48V, y el Vmax = -1.52V, y Vmedio = -1.99V. Los valores teóricos obtenidos para Vmax y Vmin son de -1.5V y -2.5V, respectivamente.
- b) El Vmedio de V- del AO es de 1.78mV. Como este valor es muy pequeño, asumimos que se está cumpliendo el principio de Cortocircuito Virtual, ya que se aproxima al valor de V+, que es 0.
- c) Los valores máximo y mínimo que podemos añadir a la señal AC sin que sature el AO son de 2.4V y -3.5V, respectivamente.
- d) Las tensiones máxima y mínima de saturación del AO son de 3.3V y -4.5V, respectivamente. Por tanto, se puede estimar que el proceso de saturación se extiende 1V.

Ejercicio 2:

Para este ejercicio montaremos el siguiente circuito:

a) Obtuvimos los siguientes valores al realizar las medidas para todos los códigos binarios entre el 0000 y el 1111:

CÓDIGO BINARIO	VOLTAJE (V)
0000	0V
0001	50mV
0010	95mv
0011	144mv
0100	212 mv
0101	257 mv
0110	314 mv
0111	257 mv
1000	461 mv
1001	504 mv
1010	559 mv
1011	601 mv
1100	666 mv
1101	715 mv
1110	762 mv
1111	809 mv

b) A continuación obtuvimos los valores teóricos que, como se puede apreciar, son muy parecidos.

CÓDIGO BINARIO	VOLTAJE (V)
0000	0V
0001	47mV
0010	100 mV
0011	147 mV
0100	213 mV
0101	260 mV
0110	313 mV
0111	360 mV
1000	470 mV
1001	517 mV
1010	570 mV
1011	617 mV
1100	683 mV
1101	730 mV
1110	783 mV
1111	830 mV

CONCLUSIONES

En el ejercicio 1 obtuvimos unos valores muy similares a los simulados en LTSpice: una diferencia de fase de 90º, unos valores máximo y mínimo de la señal de salida de -1.52V y -2.48V, respectivamente, y un valor medio de -1.99V, valores que también se asemejan a los obtenidos teóricamente. Por otro lado, en el apartado b) obtuvimos una señal prácticamente nula de la entrada inversora del operacional, demostrando así la validez del Principio de Cortocircuito Virtual. Además, llegamos a la conclusión de que el margen de saturación del AO es de 1V, ya que desde que empieza a saturar hasta que la señal es prácticamente plana, la diferencia del voltaje de entrada es de 1V.

En el ejercicio 2, obtuvimos dos tablas de valores (empíricos y teóricos) que se asemejan bastante, por lo que asumimos las medidas como correctas.