Démystifier les réseaux de neurones

Cédric Beaulac

Simon Fraser University & University of Victoria

5 Mai 2021

Introduction

- Un réseau de neurones est une fonction de prédiction utilisée en intelligence artificielle.
- Une solution aux problèmes d'apprentissage supervisé.
- On peut donc faire de la classification et prédiction en apprenant l'interaction entre certaines variables.

Introduction

- Explication simple du problème d'apprentissage supervisé.
- Discussion sur les combinaisons linéaires.
- Comment les réseaux de neurones résolvent ce problème ?

Plan de la présentation

Introduction

Préliminaires
Apprentissage supervisé

Statistique: régression linéaire Un exemple La régression linéaire Optimisation

Réseaux de neurones Optimisation Applications

Conclusion

Préléminaire

C'est quoi le problème en statistique et intelligence artificielle ?

- On veut mieux comprendre la relation entre diverses variables en utilisant des données préalablement collectées.
- Par exemple: la relation entre un vaccin et l'immunité qu'il procure.

Apprentissage supervisé: un problème d'actualité

- On veut apprendre une fonction f qui prend en entrée des prédicteurs x(pour prédire) et qui retourne une réponse y(ce qu'on veut prédire).
- ▶ Bien que simple en apparence c'est encore le plus gros problème en statistique.
- ▶ Représente des problèmes scientifiques, mais aussi d'entreprise, de jeux, de technologies, de santé, etc...

Apprentissage supervisé

Apprentissage supervisé: un problème d'actualité

- Ce que font les téléphones intelligents:
- Prédire quels restaurants tu vas aimer (réponse) en fonction des restaurants que tu as appréciés (prédicteurs).
- Déterminer quel vaccin est le plus efficace, quelles seront les conséquences sur l'environnement d'une mesure, le contenu d'une image, etc...

Statistique: régression linéaire

Statistique: un exemple plate

- Exemple plate: prédire le prix d'une maison.
- Prix de la maison est la réponse.
- Comme prédicteurs nous avons: la superficie et le nombre de salles de bain.
- ightharpoonup La fonction simple f en statistique est la combinaison linéaire.

Statistique: un exemple plate

- \vec{b} un vecteur de coefficients (dernière définition je le promets... je pense).
- $\vec{b}_{1 \times m} \bullet \vec{x}_{m \times 1} = b_0 x_0 + b_1 x_1 + ... b_m x_m$ est le produit matriciel entre \vec{b} et \vec{x} , une combinaison linéaire des prédicteurs \vec{x} avec des coefficients \vec{b} .

Statistique: produit matriciel

$$(b_0 \quad b_1 \quad b_2 \quad \dots \quad b_m)_{1 \times m} \bullet \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}_{m \times 1} = (b_0 x_0 + b_1 x_1 + b_2 x_2 + \dots + b_m x_m)_{1 \times 1}$$

Figure: Le produit matriciel (scalaire) tel que vous avez appris est une manière compacte et efficace pour calculer et représenter une combinaison linéaire.

Statistique: un exemple plate

Par exemple, on peut dire que:

$$y = 200000 + 100 \cdot \text{nb}$$
 de pied carré $+15000 \cdot \text{nb}$ de salle de bain (1)

▶ Donc: $\vec{b} = [200000, 100, 15000]$ et $\vec{x} = [1, \text{nb de pied carré}, \text{nb de salle de bain}].$

Statistique: régression linéaire

-Un exemple

Statistique: un exemple plate

Statistique: un exemple plate

- Facile a programmer.
- La combinaison linéaire est facile à interpréter.
- Il est aussi facile de prendre la dérivée en fonction des coefficients (à voir plus tard).

La régression linéaire

- Le problème statistique est de déterminer les coefficients \vec{b} qui ont le plus de sens.
- On veut déterminer les coefficients qui mènent à la plus petite erreur de prédiction.
- Cette technique est la régression linéaire.

Régression linéaire: Optimisation

- Supposons que notre prédiction est $\vec{b} \cdot \vec{x}$: pour une maison avec x_1 pied carré et x_2 salle de bain, on prédit que $\hat{y} = b_0 + b_1 x_1 + b_2 x_2$.
- Pour établir les valeurs de $\vec{b} = [b_0, b_1, b_2]$ on utilise des observations et on essaie de réduire la distance entre la réalité et la prédiction.
- ► On veut dont minimiser $(\vec{b} \cdot \vec{x} y)^2$, l'erreur quadratique de prédiction.

Régression linéaire: Optimisation

- Supponsons que nous avons le prix pour n maisons, on veut choisir le vecteur \vec{b} qui minimise $\frac{\sum_{i=1}^{n} (\vec{b} \cdot \vec{x_i} y_i)^2}{n}$.
- Connexion à votre cours de calcul différentiel wow: Quand la dérivé égale 0 on a trouvé un minimum (ou un maximum)
- On calcule donc la dérivée de $\frac{\sum_{i=1}^{n} (\vec{b} \cdot \vec{x_i} y_i)^2}{n}$ en fonction de \vec{b} et on choisit \vec{b} tel que cette dérivée égal 0.
- bingo

Régression linéaire: Optimisation

Figure: La pente de la droite rouge est de 0.

Régression linéaire: Une solution simple pour l'apprentissage supervisé.

- Pour résumé, on veut prédire une variable *y* avec des prédicteurs *x* (disons de dimension *m*).
- La régression linéaire propose de prendre une combinaison linéaire des *m* prédicteurs.
- ▶ À l'aide de données, on choisit les coefficients de la combinaison linéaire qui minimisent l'erreur de prédiction quadratique.
- Pour faire cela, une simple dérivée suffit.

Réseaux de neuronnes

Réseau de neurones:introduction

- ▶ La combinaison linéaire c'est bien... mais parfois c'est un peu trop simple.
- Exemples : génétiques, images, phénomène environnemental, etc...
- ► Le réseau de neurones est une fonction plus complexe, mais qui utilise tout de même la combinaison linéaire pour permettre l'optimisation.

Réseaux de neurones:introduction

- Le principe est d'optimiser plusieurs combinaisons linéaires en parallèle en simultané.
- ► En répétant ce processus de manière séquentielle, on permet une fonction *f* complexe.

Figure: Représentation graphique d'un réseau de neurones. Le premier étage représente nos prédicteurs x. Le deuxième étage z est un étage caché de neurones. Chaque arrête représente un coefficient. Chaque élément z_i est une différente combinaison linéaire.

- La figure précédente est une représentation standard d'un réseau de neurones.
- C'est sexy, impressionnant et intimidant pour rien; tape-à-l'oeil.
- ► Il est plus simple mathématiquement de la représenter le système à l'aide de produits matriciels.

La meilleure manière de représenter et de calculer ces combinaisons linéaires est d'utiliser le produit matriciel.

$$\mathbf{B}_1 \bullet \vec{x} = \vec{z}$$

où \mathbf{B}_1 est une matrice $q \times m$, \vec{x} un vecteur $m \times 1$ et donc \vec{z}

est de taille q imes 1.

▶ **B**₁ est une matrice de coefficients que nous devrons fixer.

$$\begin{pmatrix} b_{00} & b_{01} & b_{02} & \dots & b_{0m} \\ b_{10} & b_{11} & b_{12} & \dots & b_{1m} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ b_{q0} & b_{q1} & b_{q2} & \dots & b_{qm} \end{pmatrix}_{q \times m} \bullet \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}_{m \times 1} = \begin{pmatrix} b_{00}x_0 + b_{01}x_1 + b_{02}x_2 + \dots + b_{0m}x_m \\ b_{10}x_0 + b_{11}x_1 + b_{12}x_2 + \dots + b_{1m}x_m \\ b_{20}x_0 + b_{21}x_1 + b_{22}x_2 + \dots + b_{2m}x_m \\ \vdots \\ b_{q0}x_0 + b_{q1}x_1 + b_{q2}x_2 + \dots + b_{qm}x_m \end{pmatrix}_{q \times 1} = \begin{pmatrix} z_0 \\ z_1 \\ z_2 \\ \vdots \\ z_q \end{pmatrix}_{q \times 1}$$

Figure: Le produit matriciel tel que vous avez appris est une manière compacte et efficace pour calculer et représenter plusieurs combinaisons linéaires à la fois.

- Un réseau de neurones peut avoir plusieurs étages cachés.
- ► Finalement, nous complétons avec une dernière combinaison linéaire (de z) pour obtenir la réponse :

$$\mathbf{B}_2 \bullet \mathbf{B}_1 \bullet \vec{x} = y$$

oú \mathbf{B}_2 est une matrice de taille $1 \times q$

Un fin savant en algèbre linéaire pourrait remarquer un problème:

$$\mathbf{B}_2 \bullet \mathbf{B}_1 = \vec{b}_{1 \times m}$$

où \vec{b} est un vecteur $1 \times m$, une simple combinaison linéaire!

Réseaux de neurones: définition complète

Le truc pour complexifier ces simples combinaisons linéaires est d'appliquer une fonction non linéaire (σ) sur les éléments du vecteur caché \vec{z} :

$$\mathbf{B}_2 \bullet \sigma(\mathbf{B}_1 \bullet \vec{x}) = \mathbf{B}_2 \bullet \sigma(\vec{z}) = y$$
 par exemple $\sigma(j) = \frac{1}{1+e^{-j}}$

Réseaux de neurones: définition complète

- Pour résumé, un réseau de neurones est une fonction qui applique séquentiellement des produits matricielles et des fonctions non linéaires aux variables en entrée.
- ▶ Permets donc de générer des fonctions f extrêmement complexes et flexibles.
- Nous reste plus qu'a déterminé les matrices de coefficients idéales!

Réseaux de neurones: Optimisation

- L'idée reste la même.
- Avec un jeu de données, on choisit les matrices de coefficients **B** qui minimisent une erreur de prédiction.
- Cependant ici, on ne peut pas simplement calculer la dérivée et mettre cette dérivée égal à 0.

Réseaux de neurones: Optimisation

- C'est le moment où la théorie devient compliqué, donc allons-y en surface.
- On utilise l'algorithme du gradient.
 - 1. Fix des valeurs initiales aléatoires pour **B**.
 - On calcule la dérivée partielle en fonction de chaque élément des matrices B.
 - On modifie les valeurs de B dans la direction inverse du gradient pour se diriger vers un point où la dérivée est de 0.

Algorithme du gradient

Algorithme du gradient

Algorithme du gradient

Algorithme du gradient

Algorithme du gradient

Réseaux de neurones: Optimisation

- ▶ On a donc besoin de pouvoir calculer le gradient!
- Nos combinaisons linéaires permettent de le faire facilement.
- \triangleright Suffit de choisir une fonction σ différentiable
- et d'utiliser les règles de dérivée en chaine (que vous avez appris en calcul différentiel ? Peut-être ?).

Une application: l'analyse d'images

- ► En analyse d'image, les réseaux de neurones sont centraux.
- Les prédicteurs sont les pixels et la réponse est le contenu de l'image par exemple.
- Utilisé dans les voitures intelligentes, en reconnaissance faciale, lecture de texte écrit à main.

Une application: l'analyse d'images

Figure: Analyse d'images

Une application: l'analyse d'images

Figure: Donnés CIFAR-10

Une application: la génération d'image

- On parle ici d'un de mes projets de travail.
- On a une base de données de chiffre écrit à main.
- On apprenant a prédire le chiffre et l'auteur, on peut générer des images de chiffres qui imitent les vrais chiffres.

Figure: Example with ID12.

Figure: Example with ID14.

Figure: Example with ID29.

Figure: Example with ID70.

Réseaux de neurones

Applications

Results: controlled image generation

Plus d'applications: l'analyse d'image

- ► Voiture intelligente (*self-driving*).
- ► Reconnaissance faciale. (Pour identification, mais aussi tous les filtres et *fake green screen*)
- Imagerie médicale: gros succès et gros impact.

Filtres

Figure: Les filtres doivent identifier où sont vos yeux, joux, etc...

Imagerie médicale

Figure: Identifier si une tumeur est bénigne ou maligne.

Plus d'applications: les systèmes de recommandations

- Recommandation de contenue: Uber eats, tiktok, youtube, spotify, Netflix, etc..
- Réseaux sociaux: facebook, tinder, twitter, etc..

Plus d'applications: Interpretations de langage

- Interprétation de texte écrit à la main
- Reconnaissance vocale

Conclusion

Discussion

- L'algèbre linéaire c'est fort.
- ▶ Plus sérieusement, de la simple algèbre linéaire et la dérivée sont la fondation des modèles les plus avancés d'intelligence artificielle.

De grands problèmes

- ► Comment décide-t-on du nombre de neurones et d'étages ?
- La surface d'optimisation est chaotique: pour une nouvelle initialisation et algorithme du gradient, on obtient de nouveaux résultats.
- Le data set est très important: peut mener à des problèmes d'éthique et peut faire perdurer certaines iniquités.

Des questions?