

Prof. FELIX ORLANDO MARIA JOSEPH

DEPARMENT OF ELECTRICAL ENGINEERING

Smart Needles for Percutaneous Interventions-I

Outline

- 1. Introduction
- 2. Design 1
- 3. Design 2

Introduction

Contemporary Medical Practices

- Use of rigid needle for all procedures
- Pre-curved needles recently used for percutaneous medical procedures
- Risk of puncturing nearby organs
- Hence, a shift is required from conventional surgical procedures to MIS

Introduction (cont'd)

Rigid and curved needles used for surgical purposes

Source: https://www.amdnext.com

Introduction (cont'd)

Minimal Invasive Surgery

- Less risk of perturbing nearby organs and tissues
- Smaller surface incision
- Less exposure of organs during procedure
- Less chance of infection
- Less blood loss during insertion
- Faster recovery

Introduction (cont'd)

Why Self-actuating (Smart) Flexible Needles?

• *Incredibly* conforms to shape of the target organ

• Significantly improve drug dose delivery

• Reduce toxicity - avoiding normal anatomical tissues

Concept of Needle Steering

Needle Steering in Prostate Gland

It is challenging to place a needle in the peripheral zone of the prostate

Ref: Podder et al, "A novel curvilinear approach for prostate seed implantation," MedPhys 2012, pp.(1887-1892)

Needle Steering in Prostate Gland

Prostate Brachytherapy

Ref: Podder et al,"A novel curvilinear approach for prostate seed implantation," MedPhys 2012, pp.(1887-1892)

Needle Steering in Prostate Gland

Table I. Comparison of proposed curvilinear approach and conventional rectilinear approach.

Parameter $(n = 20)$	Rectilinear method Average ± SD (range)	Curvilinear method Average ± SD (range)	Difference	<i>p</i> -value (two-tailed)
Total needle	19.2 ± 2.6 (14–23)	13.2 ± 1.4 (10–15)	-6.0 (-30.5%)	< 0.001
Total seed	$62.5 \pm 11.2 (43-85)$	$55.1 \pm 10.4 (38-74)$	-7.4(-11.8%)	< 0.49
Total activity (mCi)	$38.3 \pm 6.3 \ (28.3 - 47.3)$	$33.8 \pm 4.9 (25.3 - 40.3)$	-4.5 (-11.8%)	< 0.37
Prostate (average = 41.3 cr	m^3 , range = 26.6–53.2 cm ³):			
D ₉₀ (Gy)	$198.7 \pm 9.9 (182.9 - 215.2)$	$183.3 \pm 6.8 (176.3 - 194.5)$	-15.4 (-7.8%)	< 0.04
$V_{100} (cm^3)$	$99.98 \pm 0.06 (99.8 - 100)$	$99.97 \pm 0.06 (99.83 - 100)$	$-0.01 \; (-0.01\%)$	< 0.85
$V_{150} (cm^3)$	$80.9 \pm 6.8 (68.5 - 89.8)$	$65.7 \pm 5.3 (57.8 - 75.9)$	-15.2 (-18.8%)	< 0.01
$V_{200} (cm^3)$	$43.7 \pm 6.0 (32.7 - 53.4)$	$28.9 \pm 3.3 (26.0 – 35.5)$	-14.8 (-33.9%)	< 0.001
Urethra:				
D ₁₀ (Gy)	$209.9 \pm 12.2 (186.2 - 228.7)$	$189.2 \pm 8.1 (178.3 - 208.8)$	-20.7 (-9.9%)	< 0.02
D ₃₀ (Gy)	$205.1 \pm 10.4 (184.3 - 219.9)$	$184.3 \pm 7.4 (172.5 - 200.2)$	-20.8 (-10.1%)	< 0.01
Rectum:				
D_5 (Gy)	$160.2 \pm 15.9 (137.9 - 196.8)$	$130.5 \pm 12.3 (111.0 - 151.1)$	-29.7 (-18.5%)	< 0.03
$V_{100} (cm^3)$	$0.93 \pm 0.51 \; (0.19 - 2.0)$	$0.21 \pm 0.17 (0.03 - 0.61)$	-0.72 (-77.8%)	< 0.001

Ref: Podder et al,"A novel curvilinear approach for prostate seed implantation," MedPhys 2012, pp.(1887-1892)

Merits of Curvilinear Approach

- Small puncture area
- Accurate needle placement
- Improved dose distribution
- Better sparing of OARs
- Less needles, seeds
- Expected less traumas
- Expected reduction of toxicities

Pre-curved Needle Continuum

The figures (from top to bottom) show-

- (1) a CAD drawing of a new active cannula or steerable needle actuation unit.
- (2) a simulation showing that controller can stabilize bevel-steered needles to a 3D reference trajectory from various initial poses.
- (3) an active cannula prototype with inset line drawing indicating DOF.

Webster et al., Vanderbilt University, MICCAI 2008

Optically Actuated MR-compatible Active Needle

Ryu et al., Stanford University, IEEE IROS, 2011

Motion Planning for Steerable Medical Needles

(a) Human Prostate, Tumor Target, and Obstacles

(b) Bevel-left Needle Trajectory Plan

(c) Bevel-right Needle Trajectory Plan

Example: MRI of the prostate, a biopsy needle attached to a rigid rectal probe (black half-circle) is inserted into the prostate (outlined in yellow) using simulation.

- (a). The target is not accessible from the rigid probe by a straight line path without intersecting obstacles.
- (b). Using different initial conditions, the planner generates a plan for a bevel-right needle
- (c). Due to tissue deformation needle paths do not have constant curvature. Alterovitz et al., UC Berkeley, MICCAI 2008

Percutaneous Cancer Intervention Concept Using Smart Needle with Three Control Loops

SMA Actuated Smart Needle

Design Concept

Ref: Felix Orlando et al., ASME, Journal of Medical Devices, June, 2015

Shape Memory Alloy wire as Actuator

- These alloys have a 'Shape Memory Effect' because of which they can be deformed when in normal temperature conditions and they return to original remembered shape when heated.
- Shape memory effect is a temperature and stress dependent shift that occurs in crystalline structure of the material.
- It transfers between two phases Martensite (low temperature phase) and Austenite (High temperature phase).

SMA Actuated Smart Needle Experimentation

SMA actuator parameters

✓ Length: 70 mm

✓ Diameter: 0.25 mm

✓ Heating Pulling Force: 891 g

✓ Cooling Deformation Force: 356 g

✓ Resistance: 1.3 ohm

Needle parameters

✓ Material: Aluminium

✓ Mass: 20 g

✓ Length: 200 mm

✓ Diameter: 1.7 mm

SMA Actuated Smart Needle Control

Multimodal Feedback Control Strategy:

- 1) Imaging (ultrasound)
- 2) Electromagnetic (EM)
- 3) Vision/ optical

Ultra sound

Experimental setup

Control block diagram

Controller performance
Felix Orlando et al., "Control of Shape Memory Alloy Actuated Flexible Needle using Multimodal Sensory Feedbacks," JOACE, 2015

EM Sensory Feedback

RMSE = 0.1128 mm

1.4
1.2
1.2
0.8
0.8
0.2
0.2
0.5
10
15
20
25
30

Error

Controller performance
Felix Orlando et al., "Control of Shape Memory Alloy Actuated Flexible Needle using Multimodal Sensory Feedbacks,"

JOACE, 2015

Control block diagram

Controller performance
Felix Orlando et al., "Control of Shape Memory Alloy Actuated Flexible Needle using Multimodal Sensory Feedbacks,"

JOACE, 2015

Smart Needle – Design 1

(a)

TABLE I. D-H PARAMETERS.

Frames	a_i	α_i	d_i	$\boldsymbol{\theta_i}$
$\{Base\} - \{0\}$	L_0	90°	0	90°
{0} - {1}	L_1	-90°	0	$ heta_1$
{1} - {2}	L_2	0°	0	θ_2

(b)

(c)

Inverse kinematic control of a smart needle

$$\dot{\boldsymbol{q}} = \boldsymbol{J}_A^{-1}(\boldsymbol{q})(\dot{\boldsymbol{x}}_d + \boldsymbol{K}\boldsymbol{e})$$

$$\dot{e} + Ke = 0.$$

$$egin{aligned} oldsymbol{e} &= oldsymbol{x}_d - oldsymbol{x} &= \dot{oldsymbol{x}}_d - \dot{oldsymbol{x}} \ \dot{oldsymbol{e}} &= \dot{oldsymbol{x}}_d - \dot{oldsymbol{x}} \end{aligned}$$

$$\dot{\boldsymbol{e}} = \dot{\boldsymbol{x}}_d - \boldsymbol{J}_A(\boldsymbol{q})\dot{\boldsymbol{q}}.$$

Inverse kinematic control of a smart needle

Design 2

Kinematic Modeling

Shape Setting of SMAs

Actuation in SMAs

- Two ends of an SMA wire are connected across every joint.
- Revolute joint is realized as shown.
- SMA wire is heated by passing current and bends the joint as shown.

Vision Based Angle Feedback

Joint Angle Detection using Image

Control Strategy

PD Implementation

$$I_i = k_p(\alpha^i_{desired} - \alpha^i_{current}) + k_d \left\{ \frac{d(\alpha^i_{desired} - \alpha^i_{current})}{dt} \right\}$$

Fabricated Needle

Simulation

Working Demo

Thank You!

