CUESTIONARIO SOBRE ROSCAS Y TORNILLOS.

1. Partes de una rosca. Documentarlo con un esquema.

Las partes más importes para definir una rosca son dos: el **DIAMETRO NOMINAL** Y el **PASO.**

DIÁMETRO NOMINAL o exterior (\emptyset_N) : diámetro mayor de la rosca.

PASO (P): distancia entre dos crestas consecutivas, que representa la longitud que avanza un <u>tornillo</u> en un giro de 360º.

Filete o hilo: superficie prismática en forma de hélice que es constitutiva de la rosca.

Flanco: cara lateral del filete.

Cresta: parte más externa de la **rosca**, o bien, unión de los flancos por la parte exterior.

Valle: parte más interna de la **rosca**, o bien, unión de los flancos por la parte interior.

Diámetro interior: diámetro menor de la rosca.

Ángulo de rosca o de flancos: ángulo medido en grados sexagesimales, que forman los flancos de un filete según un plano axial.

Avance (a): distancia que recorre un filete en sentido del eje al dar una vuelta entera. Es también la distancia que recorre el tornillo en la tuerca al dar una vuelta completa.

2. Clasificación de las roscas según la posición y según el sentido de la hélice.

Parámetro	Tipo de rosca	Características	Aplicaciones principales	Figura esquemática
Posición	Rosca exterior (tornillo o macho)	Se talla sobre un cilindro exterior	- Tornillos - Espárragos - Prisioneros - Varillas roscadas - Piezas con rosca exterior	
	Rosca interior (tuerca o hembra)	Se talla sobre un cilindro interior (taladro)	- Tuercas - Tapones - Orificios roscados	

Sentido de la hélice	Rosca a derecha	La tuerca avanza cuando se gira en sentido horario	Es la más común	
	Rosca a izquierda	La tuerca avanza cuando se gira en sentido antihorario.	Ejes que están en movimiento y van fijados con tornillos o tuercas para evitar que su giro afloje la tuerca o tornillo	

3. ROSCA MÉTRICA. Esquema. Características y nomenclatura.

Métrica ISO:

- Perfil de triángulo equilátero con crestas truncadas y fondo redondeado.
- Ángulo de rosca de 60º

Nomenclatura:

Cifra: M + diámetro exterior en mm + paso en centésimas de mm (solo en el caso de que el paso no sea estándar; si lo es, este valor se omite).

Ejemplos: **M16**: Rosca de 16 mm de diámetro nominal y el paso no lo indica porque es estándar, lo consulto en las tablas: 200 (200/100 = 2 mm). Sería lo mismo que indicar M16x200

 $M16 \times 150$: Rosca de diámetro nominal 16 mm y paso 150 (150/100=1,5 mm) La rosca no es estándar, es rosca fina.

4. ROSCA WHITWORTH. Esquema. Características y nomenclatura.

Whitworth:

- Perfil de triángulo isósceles con crestas y fondos redondeados
- Ángulo de rosca de 55º

Nomenclatura:

Cifra: Fracción + W + H \rightarrow La fracción es el diámetro exterior en pulgadas; H es el número de hilos en una pulgada de longitud de rosca (paso por " = H-1)

Ejemplo: 5/8 W 11: Rosca de diámetro nominal 5/8 de pulgada = $5/8 \times 25,4 = 15,875 \text{ mm y } 11 \text{ hilo por pulgada}$

5. Régimen de trabajo del taladro de columna. Ejemplos.

La velocidad de giro en rpm de un taladro de columna se calcula en función del material que se va a taladrar y del diámetro del taladro:

$$N = \frac{V \times 1000}{D \times \pi}$$

Donde:

N = número de revoluciones de la broca por minuto

 $\Pi = 3.14$

D = diámetro de la broca en mm.

V = velocidad de corte en metros por minuto, cuyo valor depende de la naturaleza del material que se va a taladrar. Ejemplo:

Si vamos a realizar un taladro de 16mm de diámetro en una chapa de acero dulce, cuya velocidad de corte es V=20 m/min según las tablas, la velocidad que hay que programar en las poleas del taladro será:

$$N = \frac{20 \times 1000}{16 \times 3,14} = 398,09 \text{ rpm}$$

6. EJECUCIÓN DE ROSCAS. Herramientas, método de ejecución y diámetro necesario de taladro según el diámetro nominal. Ejemplos.

Para la ejecución de roscas se han de utilizar un juego de machos acoplados a un bandeador o giramachos, para poder realizar la fuerza necesaria.

El proceso será el siguiente:

- 1. Realizar el taladrado previo, según:
- Rosca Métrica → d = D P
- Rosca Whitworth \rightarrow d = D (1,28 * P) siendo,
- d: diámetro de la broca
- D: diámetro exterior o nominal
- P: paso de la rosca

- **2.** Introducir los machos de roscar en el giramachos y en su secuencia correcta (1° prerroscado (I), 2° roscado medio (II) y 3° acabado ()).
- **3.** Iniciar el roscado con el giramachos completamente perpendicular, girando 1/2 vuelta en avance y 1/4 vuelta hacia atrás (con cada macho de roscar), para sacar la viruta.
- 4. Lubricar constantemente.
- **5.** Limpiar la rosca.

7. EJECUCIÓN DE TORNILLOS. Herramientas, método de ejecución y diámetro necesario de varilla según el diámetro nominal. Ejemplos.

Se utilizan terrajas y portaterrajas, el diámetro de la varilla que se debe utilizar es el mismo que el diámetro nominal del tornillo a fabricar.

El roscado a mano de un tornillo o espárrago se realizará de la siguiente forma:

- 1. Elección de la terraja o cojinete adecuado.
- 2. Practicar un chaflán en el extremo de la varilla.
- 3. Introducir la terraja en el portaterrajas con el lado de inicio de la rosca hacia fuera.
- **4.** Iniciar el roscado situando la terraja perpendicularmente a la varilla y girando en ciclos de 1/2 vuelta en avance y 1/4 vuelta hacia atrás
- **5.** Lubricar constantemente
- 6. Limpiar la rosca

