A study on motor imagery classification methods

Presented by Mehrnaz Motamed

Motor Imagery

Motor imagery is a mental process by which an individual rehearses or simulates a given action.

Motor imagery reflects on alpha and mu rhythms.

Our process is easy

Data & Experiment

Data & Experiment

Calibration
First 2 runs
Visual cues (arrows)
4s cue
2s blank
2s cross (6s)

Evaluation:
4 runs evaluating
Soft acoustic stimuli:
Words left, right, foot
1.5-8s
Stop
1.5-8s
Not equal trials

- Healthy subjects without feedback
- Two class selected out of three(left hand, right hand, foot) by each subject
- 59 eeg channels
- most densely distributed over sensorimotor areas
- Bandpassed 0.05-200 Hz
- 100Hz
- 200 trials

How can we extract mu and beta rhythms?

Wavelet Decomposition

frequency

Now we have mu and beta. Next: features

Commonly used features

- FFT
- Wavelet coefficients
- Average time
- • •

Spatial filter:

 Common spatial pattern (CSP) is a mathematical procedure used in signal processing for separating a multivariate signal into additive subcomponents which have maximum differences in variance between two windows.

 $W \Sigma_1 W^T = D$ and $W \Sigma_2 W^T = I - D$

Common spatial pattern (CSP) is a mathematical procedure used in signal processing for separating a multivariate signal into additive subcomponents which have maximum differences in variance between two windows.

The CSP algorithm determines the component such that the ratio of variance (or second-order moment) is maximized between the two windows:

W is a matrix of projections, where the i-th row has a relative variance of di for trials of class 1 and a relative variance of 1-di for trials of class 2

D is a diagonal matrix with entries $di \in [0, 1]$, with length n, the number of channels:

 $W \Sigma 1 WT = D$ and $W \Sigma 2WT = I - D$

Classification

Best discrimination is provided by filters with very high (emphasizing one class) or very low eigenvalues (emphasizing the other class)

We only include projections with the highest 2 and corresponding lowest 2 eigenvalues for our analysis.

• LDA classifiers:

KNN classifiers

K nearest neighbors

KNN with cosine distance

Cosine KNN classifiers

Cosine distance includes a dot product scaled by norms:

In[1]:= CosineDistance[{a, b, c}, {x, y, z}]

Out[1]=
$$1 - \frac{ax + by + cz}{\sqrt{Abs[a]^2 + Abs[b]^2 + Abs[c]^2}} \sqrt{Abs[x]^2 + Abs[y]^2 + Abs[z]^2}$$

Results

Classification using fft of mu and beta

5 fold cross validation cosine KNN accuracy: 64.5%

fine KNN: 57% Linear SVM: 59%

Logistic Regression : 54%

LDA: 54.5%

Mean and absolute mean time and frequency

5 fold cross validation Ensemble bag trees accuracy: 68%

Cosine KNN: 64.6% Linear SVM: 59.5%

Logistic Regression: 56%

LDA: 54%

Ensemble bag trees accuracy: 68% cosine/cubic KNN: 66% Large number of features: many Methods could not be implemented

Cosine: distance metric

Using Time

Cosine KNN, medium tree: 65.5% Fine KNN: 64%

Discussion and conclusions

Better Accuracy:

Feature selection

- More complex models
- More filters

#.	contributor	mse
	Zhang Haihong	0.382
2.	Dieter Devlaminck	0.383
3.	Kai Keng Ang	0.397
4.	Jun Lv	0.442
5.	Liu Guangquan	0.455
6.	Abdul Satti	0.459
7.	Fabian Bachl	0.466
8.	Jinyi Long	0.475
9.	Yunjun Nam	0.477
10.	Emily Mankin	0.499
11.	Cedric Gouy- Pailler	0.557
	Jing Jin	0.559
13.	Michael Buschbeck (*) Teodoro Solis-Escalante	0.679
14.	(*) Teodoro Solis-Escalante	0.692
15.	Chen Guangming	0.842
	Yu Huang	0.859
17.	Astrid Zeman	0.915
18.	Padma Palash	0.928
19.	Eric Gottschalk	0.930
	Sung Wook	0.972
21.	Manuel Moebius	1.007
22.	Rui Li	1.150
23.	Li Ke	1.156
04	Vana Banahua	4 040

Conclusion

- Some channels seem to have more influence, yet we have to figure it out in practice (e.g. D4,D5)
- Osine KNN seems to work best, while LDA does not perform as well in general. This is because of the nature of our features.
- We also calculated Correlation function, yet machine learning techniques seem to find better responses
- Time domain features seem to maintain as good results as frequency domain features. This is because they inherently have the same information within themselves.

References

- Analysis Of Eeg For Motor Imagery Based Classification Of Hand Activities, A.Sivakami And S.Shenbaga Devi
- Selection Of Valid And Reliable EEG Features For Predicting Auditory And Visual Alertness Levels, Ruey-song Huang, Ling-ling Tsai, Chung J. Kuo
- I1-penalized linear mixed-effects models for high dimensional data with application to BCI , Siamac Fazli a,b,*, Márton Danóczy a, Jürg Schelldorfer c, Klaus-Robert Müller a,b,d
- The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects. Benjamin Blankertz, Guido Dornhege, Matthias Krauledat, Klaus-Robert Müller, and Gabriel Curio, Neurolmage, 37(2):539-550, 2007.
- Discrete Wavelet Transform and ANFIS Classifier for Brain-Machine Interface based on EEG Eduardo Lopez-Arce Vivas, Alejandro Garc´´ıa-Gonzalez, ´Member, IEEE, Ivan Figueroa, and Rita Q. Fuentes, 2013.
- EEG Features Extraction for Motor Imagery, Stefan Cososchi, Rodica Strungaru, Member, IEEE, Alexandru Ungureanu, and Mihaela Ungureanu, Member, IEEE, 2006.
- Comparison of EEG-Features and Classification Methods for Motor Imagery in Patients with Disorders of Consciousness, Yvonne Ho" ller1,2,3*, Ju" rgen Bergmann2,4, Aljoscha Thomschewski1,3,4, Martin Kronbichler2,4, Peter Ho" ller1,3, Julia S. Crone1,2,4, Elisabeth V. Schmid1,2, Kevin Butz1,4, Raffaele Nardone1,3, Eugen Trinka1,3
 - ANALYSIS OF EEG FOR MOTOR IMAGERY BASED CLASSIFICATION OF HAND ACTIVITIES, A.Sivakami1 and S.Shenbaga Devi, 2015
- A Review on Motor Imagery Signal Classification for BCI, Rupal Chaudhari, Hiren J. Galiyawala, CGPIT, Uka Tarsadia University Surat, India, 2017.

Thanks!

You can find me at

memotame@eng.ucsd.edu