Equivariant Derived Categories of Coherent Sheaves

Songyu Ye

September 27, 2025

Abstract

Notes for a talk I'm giving on equivariant derived categories of coherent sheaves.

Contents

1	Prelimi	Preliminaries on GIT		
	1.1 G	eneralities on GIT quotients	1	
	1.2 Re	elevant example	5	
	1.3 Q	uotient stack	6	
2	Introdu	ection	9	
3	Referen	aces	12	

1 Preliminaries on GIT

1.1 Generalities on GIT quotients

Let $X \subset \mathbb{P}^n$ be a projective variety, and let $\widetilde{X} \subset \mathbb{C}^{n+1}$ be the corresponding affine cone. Since X is the space of lines in \widetilde{X} , it has a tautological line bundle

$$\mathcal{O}_X(-1) = \mathcal{O}_{\mathbb{P}^n}(-1)\big|_X$$

over it whose fibre over a point in X is the corresponding line in $\widetilde{X} \subset \mathbb{C}^{n+1}$. The total space of $\mathcal{O}_X(-1)$ therefore has a tautological map to \widetilde{X} which is an isomorphism away from the zero section $X \subset \mathcal{O}_X(-1)$, which is all contracted down to the origin in \widetilde{X} . In fact the total space of $\mathcal{O}_X(-1)$ is the **blow up** of \widetilde{X} in the origin.

Linear functions on \mathbb{C}^{n+1} like x_i , restricted to \widetilde{X} and pulled back to the total space of $\mathcal{O}_X(-1)$, give functions which are linear on the fibres, so correspond to sections of the **dual** line bundle

 $\mathcal{O}_X(1)$. Similarly degree k homogeneous polynomials on \widetilde{X} define functions on the total space of $\mathcal{O}_X(-1)$ which are of degree k on the fibres, and so give sections of the kth tensor power $\mathcal{O}_X(k)$ of the dual of the line bundle $\mathcal{O}_X(-1)$.

So the grading that splits the functions on \widetilde{X} into homogeneous degree (or \mathbb{C}^* -weight spaces) corresponds to sections of different line bundles $\mathcal{O}_X(k)$ on X. So

$$\bigoplus_{k\geq 0} H^0(\mathcal{O}_X(k))$$

considered a graded ring by tensoring sections $\mathcal{O}(k)\otimes\mathcal{O}(l)\cong\mathcal{O}(k+l)$. For the line bundle $\mathcal{O}_X(1)$ sufficiently positive, this ring will be generated in degree one. It is often called the (homogeneous) coordinate ring of the **polarised** (i.e. endowed with an ample line bundle) variety $(X, \mathcal{O}_X(1))$.

The degree one restriction is for convenience and can be dropped (by working with varieties in weighted projective spaces), or bypassed by replacing $\mathcal{O}_X(1)$ by $\mathcal{O}_X(p)$, i.e. using the ring

$$R^{(p)} = \bigoplus_{k>0} R_{kp};$$
 for $p \gg 0$ this will be generated by its degree one piece R_p .

The choice of generators of the ring is what gives the embedding in projective space. In fact the sections of any line bundle L over X define a (rational) map

$$X \longrightarrow \mathbb{P}(H^0(X, L)^*), \qquad x \mapsto ev_x, \quad ev_x(s) := s(x), \tag{1}$$

which in coordinates maps x to $(s_0(x): \dots : s_n(x)) \in \mathbb{P}^n$, where s_i form a basis for $H^0(L)$. This map is only defined for those x with $ev_x \neq 0$, i.e. for which s(x) is not zero for every s.

Now suppose we are in the following situation, of G acting on a projective variety X through SL transformations of the projective space.

$$\begin{array}{cccc} G & & \curvearrowright & & X \\ \downarrow & & & \downarrow & & \downarrow \\ SL(n+1,\mathbb{C}) & & \curvearrowright & & \mathbb{P}^n \end{array}$$

Since we have assumed that G acts through $SL(n+1,\mathbb{C})$, the action lifts from X to one covering it on $\mathcal{O}_X(-1)$. In other words we don't just act on the projective space (and X therein) but on the vector space overlying it (and the cone \widetilde{X} on X therein). This is called a **linearisation** of the action. Thus G acts on each $H^0(\mathcal{O}_X(r))$.

Then, just as $(X, \mathcal{O}_X(1))$ is determined by its graded ring of sections of $\mathcal{O}(r)$ (i.e. the ring of functions on \widetilde{X}),

$$(X, \mathcal{O}(1)) \longleftrightarrow \bigoplus_r H^0(X, \mathcal{O}(r))$$

we simply **construct** X/G (with a line bundle on it) from the ring of **invariant** sections:

$$X/G \longleftrightarrow \bigoplus_r H^0(X, \mathcal{O}(r))^G$$

This is sensible, since if there is a good quotient then functions on it pullback to give G-invariant functions on X, i.e. functions constant on the orbits, the fibres of $X \to X/G$. For it to work we need:

Lemma 1.1. $\bigoplus_r H^0(X, \mathcal{O}(r))^G$ is finitely generated.

Proof. Since $R:=\bigoplus_r H^0(X,\mathcal{O}(r))$ is Noetherian, Hilbert's basis theorem tells us that the ideal $R\cdot \left(\bigoplus_{r>0} H^0(X,\mathcal{O}(r))^G\right)$ generated by $R_+^G:=\bigoplus_{r>0} H^0(X,\mathcal{O}(r))^G$ is generated by a finite number of elements $s_0,\ldots,s_k\in R_+^G$.

Thus any element $s \in H^0(X, \mathcal{O}(r))^G$, r > 0, may be written $s = \sum_{i=0}^k f_i s_i$ for some $f_i \in R$ of degree < r. To show that the s_i generate R_+^G as an algebra we must show that the f_i can be taken to lie in R_-^G .

We now use the fact that G is the complexification of the compact group K. Since K has an invariant metric, we can average over it and use the facts that s and s_i are invariant to give

$$s = \sum_{i=0}^{k} \operatorname{Av}(f_i) \, s_i,$$

where $\operatorname{Av}(f_i)$ is the (K-invariant) K-average of f_i . By complex linearity $\operatorname{Av}(f_i)$ is also G-invariant (for instance, since G has a polar decomposition $G = K \exp(i\mathfrak{t})$). The $\operatorname{Av}(f_i)$ are also of degree < r, and so we may assume, by an induction on r, that we have already shown that they are generated by the s_i in R_+^G . Thus s is also. \square

Definition 1.2 (Projective GIT quotient). Let X be a projective variety with an action of a reductive group G linearised by a line bundle $\mathcal{O}_X(1)$. We define X/G to be

Proj
$$\bigoplus_r H^0(X, \mathcal{O}(r))^G$$
.

If X is a variety (rather than a scheme) then so is X/G, as its graded ring sits inside that of X and so has no zero divisors.

Definition 1.3 (Affine GIT quotient). Let $X = \operatorname{Spec} R$ be an affine variety with an action of a reductive group G. We define the affine GIT quotient X/G to be $\operatorname{Spec}(R^G)$, where R^G is the ring of G-invariant regular functions on X.

In some cases, this does not work so well. For instance, under the scalar action of \mathbb{C}^* on \mathbb{C}^{n+1} the only invariant polynomials in $\mathbb{C}[x_0,\ldots,x_n]$ are the constants and this recipe for the quotient gives a single point. In the language of the next section, this is because there are no stable points in this example, and all semistable orbits' closures intersect (or equivalently, there is a unique polystable point, the origin). More generally in any affine case all points are always at least semistable (as the constants are always G-invariant functions) and so no orbits gets thrown away in making the quotient (though many may get identified with each other — those whose closures intersect which therefore cannot be separated by invariant functions). But for the scalar action of \mathbb{C}^* on \mathbb{C}^{n+1} we clearly need to remove at least the origin to get a sensible quotient.

So we should change the linearisation, from the trivial linearisation to a nontrivial one, to get a bigger quotient. This is demonstrarted in the following example.

Example 1.4 (Projective space as a GIT quotient). Consider the trivial line bundle on \mathbb{C}^{n+1} but with a nontrivial linearisation, by composing the \mathbb{C}^* -action on \mathbb{C}^{n+1} by a character $\lambda \mapsto \lambda^p$ of \mathbb{C}^* acting on the fibres of the trivial line bundle over \mathbb{C}^{n+1} . The invariant sections of this no longer form a ring; we have to take the direct sum of spaces of sections of **all powers** of this linearisation, just as in the projective case, and take Proj of the invariants of the resulting graded ring.

We calculate the invariant sections for general p. Look at the k-th tensor power of the linearised line bundle. Sections are homogeneous polynomials $f(x_0, \ldots, x_n)$ of some degree. Under λ , such an f transforms as

$$f(x_0, \ldots, x_n) \mapsto f(\lambda x_0, \ldots, \lambda x_n) = \lambda^d f(x_0, \ldots, x_n),$$

where $d = \deg f$.

But the linearisation introduces an extra factor λ^{-pk} when we act on the fibre of the k-th tensor power. By definition, the G-action on a section s is

$$(g \cdot s)(x) = g \cdot (s(g^{-1} \cdot x)).$$

Take a polynomial f homogeneous of degree d. View the section as

$$s(x) = f(x) \cdot e$$

where e is a trivialising section of the fibre. When we apply the group action:

$$(g \cdot s)(x) = g \cdot (f(g^{-1} \cdot x) \cdot e) = (\lambda^{-d} f(x)) \cdot \lambda^{pk} e = \lambda^{-d+pk} f(x) \cdot e.$$

For invariance, we need the weight to vanish, i.e.

$$d = pk$$
.

So only polynomials of degree exactly pk survive as invariants in the degree k graded piece.

If p < 0 then there are no invariant sections and the quotient is empty. We have seen that for p = 0 the quotient is a single point. For p > 0 the invariant sections of the kth power of the linearisation are the homogeneous polynomials on \mathbb{C}^n of degree kp. So for p = 1 we get the quotient

$$\mathbb{C}^{n+1}/\mathbb{C}^* = \operatorname{Proj} \bigoplus_{k \ge 0} \left(\mathbb{C}[x_0, \dots, x_n]_k \right) = \operatorname{Proj} \mathbb{C}[x_0, \dots, x_n] = \mathbb{P}^n.$$
 (2)

For $p \ge 1$ we get the same geometric quotient but with the line bundle $\mathcal{O}(p)$ on it instead of $\mathcal{O}(1)$.

Another way to derive this is to embed \mathbb{C}^{n+1} in \mathbb{P}^{n+1} as $x_{n+1} = 1$, act by \mathbb{C}^* on the latter by $\operatorname{diag}(\lambda,\ldots,\lambda,\lambda^{-(n+1)}) \in SL(n+2,\mathbb{C})$, and do projective GIT. This gives, on restriction to $\mathbb{C}^{n+1} \subset \mathbb{P}^{n+1}$, the p=n+1 linearisation above. The invariant sections of $\mathcal{O}((n+2)k)$ are of the form $x_{n+1}^k f$, where f is a homogeneous polynomial of degree (n+1)k in x_1,\ldots,x_n . Therefore the quotient is

$$\operatorname{Proj} \bigoplus_{k \geq 0} \left(\mathbb{C}[x_1, \dots, x_n]_{(n+1)k} \right) = \operatorname{Proj} \left(\mathbb{C}[x_1, \dots, x_n], \mathcal{O}(n+1) \right).$$

Definition 1.5 (Semistable points). A point $x \in X$ is semistable iff there exists $s \in H^0(X, \mathcal{O}(r))^G$ with r > 0 such that $s(x) \neq 0$. Points which are not semistable are unstable.

So semistable points are those that the G-invariant functions "see." The map

$$X^{ss} \to \mathbb{P}(H^0(X, \mathcal{O}(r))^G)^*$$

 $x \mapsto ev_x$

is well defined on the (Zariski open, though possibly empty) locus $X^{ss} \subseteq X$ of semistable points, and it is clearly constant on G-orbits, i.e. it factors through the set-theoretic quotient X^{ss}/G . But it may contract more than just G-orbits, so we need another definition.

Definition 1.6 (Stable points). A semistable point x is **stable** if and only if $\bigoplus_r H^0(X, \mathcal{O}(r))^G$ separates orbits near x and the stabiliser of x is finite.

1.2 Relevant example

We recall the basic set-up of Geometric Invariant Theory (GIT) quotients relevant to our situation.

Let $V = \mathbb{C}^4$ with coordinates x_1, x_2, y_1, y_2 and consider the \mathbb{C}^* -action given by

$$t \cdot (x_1, x_2, y_1, y_2) = (tx_1, tx_2, t^{-1}y_1, t^{-1}y_2)$$

We linearize this action by a character $\chi_m: t \mapsto t^m$ with $m \in \mathbb{Z} \setminus \{0\}$. Since V is affine, the GIT quotient for χ_m is $\operatorname{Proj} R^{(m)}$, where

$$R^{(m)} = \bigoplus_{d \ge 0} \Gamma(V, \mathcal{O}_V)^{\mathbb{C}^*, \chi_m^{\otimes d}} = \bigoplus_{d \ge 0} \{ f \in \mathbb{C}[x_1, x_2, y_1, y_2] \mid t \cdot f = t^{md} f \}$$

In other words, $R_d^{(m)}$ is spanned by monomials whose total \mathbb{C}^* -weight is md, where the weight of a monomial $x_1^{a_1}x_2^{a_2}y_1^{b_1}y_2^{b_2}$ is $w=a_1+a_2-(b_1+b_2)$.

A point $v \in V$ is χ_m -semistable iff there exists d > 0 and $f \in R_d^{(m)}$ with $f(v) \neq 0$.

Here $R_d^{(m)}$ consists of polynomials whose monomials have positive weight w=md>0. Such a monomial must contain at least one x (indeed, more x's than y's), so it vanishes at any point with $x_1=x_2=0$. Therefore no section in $R_d^{(m)}$ can be nonzero at a point with $x_1=x_2=0 \Rightarrow$ those points are unstable.

Conversely, if $(x_1, x_2) \neq (0, 0)$, then pick d and the monomial $f = x_i^{md}$ with $x_i \neq 0$. It has weight md and $f(v) \neq 0$, so v is semistable.

Therefore, for m > 0,

$$V^{ss}(\chi_m) = V \setminus \{x_1 = x_2 = 0\}.$$

The quotient is $(V \setminus \{x_1 = x_2 = 0\})/\mathbb{C}^*$, i.e. the total space of $\mathcal{O}(-1)^{\oplus 2} \to \mathbb{P}^1_{[x_1:x_2]}$. Similarly, for m < 0, we have

$$V^{ss}(\chi_m) = V \setminus \{y_1 = y_2 = 0\}.$$

The quotient is $(V \setminus \{y_1 = y_2 = 0\})/\mathbb{C}^*$, i.e. the total space of $\mathcal{O}(-1)^{\oplus 2} \to \mathbb{P}^1_{[y_1:y_2]}$.

1.3 Quotient stack

Let S be a category and $p: \mathcal{X} \to \mathcal{S}$ be a functor of categories. We visualize this data as

$$\begin{array}{ccc}
\mathcal{X} & & a & \xrightarrow{\alpha} & b \\
\downarrow p & & \downarrow & \downarrow \\
\mathcal{S} & & S & \xrightarrow{f} & T
\end{array}$$

where the lower case letters a, b are objects of \mathcal{X} and the upper case letters S, T are objects of \mathcal{S} . We say that a is over S and that a morphism $\alpha : a \to b$ is over $f : S \to T$.

Definition 1.7 (Prestacks). A functor $p: \mathcal{X} \to \mathcal{S}$ is a prestack over a category \mathcal{S} if

(1) (pullbacks exist) for every diagram

$$\begin{array}{ccc}
a & ---- & b \\
\downarrow & & \downarrow \\
S & \longrightarrow T
\end{array}$$

of solid arrows, there exists a morphism $a \to b$ over $S \to T$; and

(2) (universal property for pullbacks) for every diagram

$$\begin{array}{ccc}
a & \xrightarrow{c} & b & \xrightarrow{c} & c \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
R & \longrightarrow S & \longrightarrow T
\end{array}$$

of solid arrows, there exists a unique arrow $a \to b$ over $R \to S$ filling in the diagram.

Prestacks are also referred to as categories fibered in groupoids.

Definition 1.8 (Fiber categories). If \mathcal{X} is a prestack over \mathcal{S} , the **fiber category** $\mathcal{X}(S)$ over $S \in \mathcal{S}$ is the category of objects in \mathcal{X} over S with morphisms over $\mathrm{id}_{\mathcal{S}}$.

Given an action of an algebraic group G on a scheme X, the **quotient prestack** $[X/G]^{\operatorname{pre}}$ is the prestack whose fiber category $[X/G]^{\operatorname{pre}}(S)$ over a scheme S is the quotient groupoid (or the moduli groupoid of orbits) [X(S)/G(S)] This will not satisfy the gluing axioms of a stack; even when the action is free, the quotient functor $\operatorname{Sch} \to \operatorname{Sets}$ defined by $S \mapsto X(S)/G(S)$ is not a sheaf in general. Put another way, we define:

Definition 1.9 (Quotient prestacks). Let $G \to S$ be a smooth affine group scheme acting on a scheme U over S. The **quotient prestack** $[U/G]^{\operatorname{pre}}$ of an action of a smooth affine group scheme $G \to S$ on an S-scheme U is the category over Sch/S consisting of pairs (T,u) where T is an S-scheme and $u \in U(T)$. An element $g \in G(T')$ acts by $(T',u') \to (T,u)$ via the data of a map $f:T' \to T$ of S-schemes and an element $g \in G(T')$ such that $f^*u = g \cdot u'$. Note that the fiber category [U(T)/G(T)] is identified with the quotient groupoid.

It turns out that the stackification of $[U/G]^{\text{pre}}$ is the quotient stack [U/G], hence the name is justified.

Definition 1.10 (Quotient stacks). The quotient stack [U/G] is the prestack over Sch/S consisting of diagrams

$$P \longrightarrow U$$

$$\downarrow$$

$$T$$

where $P \to T$ is a principal G-bundle and $P \to U$ is a G-equivariant morphism of S-schemes.

A morphism

$$(T' \ \longleftarrow \ P' \ \longrightarrow \ U) \ \longrightarrow \ (T \ \longleftarrow \ P \ \longrightarrow \ U)$$

consists of a morphism $T' \to T$ and a G-equivariant morphism $P' \to P$ of schemes such that the diagram

$$P' \xrightarrow{P} D \longrightarrow U$$

$$\downarrow \qquad \qquad \downarrow$$

$$T' \longrightarrow T$$

is commutative and the left square is cartesian.

A stack over a site S is a prestack X where the objects and morphisms glue uniquely in the Grothendieck topology of S.

Definition 1.11 (Stack). A stack X over a site C is a prestack over C satisfying the following descent conditions:

• (Descent for morphisms) For any $U \in C$, any covering $\{f_i : U_i \to U\}$, and any $x, y \in \mathcal{X}(U)$, the presheaf

$$\underline{\mathrm{Hom}}(x,y):(V\to U)\mapsto \mathrm{Hom}_{\mathcal{X}(V)}(f^*x,f^*y)$$

is a sheaf on C/U.

• (Descent for objects) For any $U \in \mathcal{C}$, any covering $\{f_i : U_i \to U\}$, and any descent datum (x_i, ϕ_{ij}) relative to $\{f_i : U_i \to U\}$, there exists an object $x \in \mathcal{X}(U)$ and isomorphisms $\psi_i : f_i^* x \xrightarrow{\sim} x_i$ such that $\phi_{ij} \circ f_j^* \psi_j = f_i^* \psi_i$.

Definition 1.12 (Substack). A substack $\mathcal{Y} \subseteq \mathcal{X}$ is given by:

- For each $U \in C$, a full subcategory $\mathcal{Y}(U) \subseteq \mathcal{X}(U)$.
- Stability under restriction: If $y \in \mathcal{Y}(U)$ and $f: V \to U$ is a morphism in the site, then the pullback $f^*y \in \mathcal{X}(V)$ must lie in $\mathcal{Y}(V)$.
- Stack condition: The collection \mathcal{Y} is itself a stack (i.e. satisfies descent for objects and morphisms).

Definition 1.13 (Open and closed substacks). A substack $\mathcal{T} \subseteq \mathcal{X}$ of a stack over $Sch_{\acute{e}t}$ is called an **open substack** (resp. closed substack) if the inclusion $\mathcal{T} \to \mathcal{X}$ is representable by schemes and an open immersion (resp. closed immersion).

2 Introduction

Let $V=\mathbb{C}^4$ with co-ordinates x_1,x_2,y_1,y_2 , and let \mathbb{C}^* act on V with weight 1 on each x_i and weight -1 on each y_i . There are two possible GIT quotients X_+ and X_- , depending on whether we choose a positive or negative character of \mathbb{C}^* . Both are isomorphic to the total space of the bundle $\mathcal{O}(-1)^{\oplus 2}$ over \mathbb{P}^1 .

Both are open substacks of the Artin quotient stack

$$\mathcal{X} = [V/\mathbb{C}^*]$$

given by the semi-stable locus for either character. Let

$$\iota_+:X_+\hookrightarrow\mathcal{X}$$

denote the inclusions.

Remark 2.1 (The quotient stack and its open substacks). Recall that via the functor of points perspective, its objects are pairs (P, ϕ) , where P is a principal \mathbb{C}^* -bundle and $\phi : P \to V$ is \mathbb{C}^* -equivariant.

For a given choice of character χ_m , the semistable locus $V^{ss}(\chi_m)$ is an open subset of V. It is open because it is defined by the nonvanishing of some semi-invariant sections. The corresponding GIT quotient is $[V^{ss}(\chi_m)/\mathbb{C}^*]$ as a substack. Thus:

$$X_{\pm} = [V^{ss}(\pm 1)/\mathbb{C}^*] \subset [V/\mathbb{C}^*] = \mathcal{X}$$

It turns out that open substacks of quotient stacks [V/G] are exactly those substacks which are of the form [U/G] where $U \subseteq V$ is a G-invariant open subscheme. Here $V^{ss}(\chi_m) \subset V$ is G-invariant and open, so $[V^{ss}(\chi_m)/\mathbb{C}^*] \hookrightarrow [V/\mathbb{C}^*]$ is exactly an open immersion of stacks.

This stacky point of view makes it clear that there are (exact) restriction functors

$$\iota_+^*: D^b(\mathcal{X}) \to D^b(X_\pm).$$

By $D^b(\mathcal{X})$ we mean the derived category of the category of \mathbb{C}^* -equivariant sheaves on V. This contains the obvious equivariant line bundles $\mathcal{O}(i)$ associated to the characters of \mathbb{C}^* .

Remark 2.2 (General fact about open immersions). If $j:U\hookrightarrow X$ is an open immersion of schemes, then there is an exact restriction functor $j^*: \operatorname{QCoh}(X) \to \operatorname{QCoh}(U)$. This is because $j^*\mathcal{F}$ has the same stalk as \mathcal{F} at points of U.

Althernatively, exactness comes from the fact that restricting a quasi-coherent sheaf to an open set is just tensoring with \mathcal{O}_U , which is flat (in general localisation is flat).

Passing to derived categories, you still have $j^*: D^b(\operatorname{QCoh}(X)) \to D^b(\operatorname{QCoh}(U))$ which has no higher derived functors since j^* is exact. The exact same holds in the stack setting: if $\iota: \mathcal{U} \to \mathcal{X}$ is an open immersion of stacks, you get $\iota^*: D^b(\mathcal{X}) \to D^b(\mathcal{U})$.

Remark 2.3 (General dictionary for quotient stacks and equivariant geometry). There is a general dictionary relating the stack-theoretic concepts and the equivariant geometry of X. Here G is a reductive algebraic group acting on a scheme X and [X/G] is the quotient stack.

Geometry of $[X/G]$	G-equivariant geometry of X
\mathbb{C} -point $\bar{x} \in [X/G]$	orbit Gx of \mathbb{C} -point $x \in X$
	(with \bar{x} the image of x under $X \to [X/G]$)
automorphism group $\operatorname{Aut}(\bar{x})$	stabilizer G_x
function $f \in \Gamma([X/G], \mathcal{O}_{[X/G]})$	G -equivariant function $f \in \Gamma(X, \mathcal{O}_X)^G$
$map [X/G] \rightarrow Y \text{ to a scheme } Y$	G -equivariant map $X \to Y$
line bundle	G-equivariant line bundle (or G-linearization)
quasi-coherent sheaf	G-equivariant quasi-coherent sheaf
tangent space $T_{[X/G],\bar{x}}$	normal space $T_{X,x}/T_{Gx,x}$ to the orbit
coarse moduli space $[X/G] \to Y$	geometric quotient $X \to Y$
$good\ moduli\ space\ [X/G] o Y$	good GIT quotient $X \to Y$

The unstable locus for the negative character is the set $\{y_1 = y_2 = 0\} \subset V$. Consider the Koszul resolution of the associated sky-scraper sheaf:

$$K_{-} = \mathcal{O}(2) \xrightarrow{(y_2,-y_1)} \mathcal{O}(1)^{\oplus 2} \xrightarrow{(y_1,y_2)} \mathcal{O}.$$

Then ι_-K_- is exact, it is the pull-up of the Euler sequence from $\mathbb{P}^1_{y_1:y_2}$. On the other hand ι_+K_- is a resolution of the sky-scraper sheaf $\mathcal{O}_{\mathbb{P}^1_{x_1:x_2}}$ along the zero section. Similar comments apply for the Koszul resolution K_+ of the set $\{x_1=x_2=0\}$.

Let

$$\mathcal{G}_t \subset D^b(\mathcal{X})$$

be the triangulated subcategory generated by the line bundles O(t) and O(t+1). This is the **grade** restriction rule of [?], we are restricting to characters lying in the "window" [t, t+1].

Claim 2.4. For any $t \in \mathbb{Z}$, both ι_+^* and ι_-^* restrict to give equivalences

$$D^b(X_+) \stackrel{\sim}{\leftarrow} \mathcal{G}_t \stackrel{\sim}{\to} D^b(X_-).$$

To see that these functors are fully-faithful it suffices to check what they do to the maps between the generating line-bundles, so we just need to check that

$$\operatorname{Ext}_{\mathcal{X}}^{\bullet}(\mathcal{O}(t+k),\mathcal{O}(t+l)) = \operatorname{Ext}_{X_{\pm}}^{\bullet}(\mathcal{O}(t+k),\mathcal{O}(t+l))$$

for $k, l \in [0, 1]$, i.e.

$$H_{\mathcal{X}}^{\bullet}(\mathcal{O}(i)) = H_{X_{\pm}}^{\bullet}(\mathcal{O}(i))$$

for $i \in [-1, 1]$, and this is easily verified. To see that they are essentially surjective we need to know that the two given line bundles generate $D^b(X_\pm)$. This is essentially a corollary of Beilinson's theorem [?]. One way to see it is to first observe that the set $\{\mathcal{O}(i), i \in \mathbb{Z}\}$ generates $D^b(X_\pm)$ because X_\pm is quasi-projective, then use twists of the exact sequence $\iota_\pm K_\mp$ repeatedly to resolve any $\mathcal{O}(i)$ by a complex involving only $\mathcal{O}(t)$ and $\mathcal{O}(t+1)$.

So for any $t \in \mathbb{Z}$ we have a derived equivalence

$$\Phi_t: D^b(X_+) \xrightarrow{\sim} D^b(X_-)$$

passing through \mathcal{G}_t . Composing these, we get auto-equivalences

$$\Phi_{t+1}^{-1}\Phi_t: D^b(X_+) \xrightarrow{\sim} D^b(X_+).$$

To see what these do, we need to check them on the generating set of line-bundles $\{\mathcal{O}(t),\mathcal{O}(t+1)\}$. Applying Φ_t to this set is easy, it just sends them to the same line-bundles on X_- . To apply Φ_{t+1}^{-1} however, we first have to resolve $\mathcal{O}(t)$ in terms of $\mathcal{O}(t+1)$ and $\mathcal{O}(t+2)$. We do this using the exact sequence $\iota_-K_-(t)$. The result is that $\Phi_{t+1}^{-1}\Phi_t$ sends

$$\mathcal{O}(t) \mapsto \left[\mathcal{O}(t+2) \xrightarrow{(-y_2,y_1)} \mathcal{O}(t+1)^{\oplus 2} \right], \qquad \mathcal{O}(t+1) \mapsto \mathcal{O}(t+1).$$

Claim 2.5. $\Phi_{t+1}^{-1}\Phi_t$ is an inverse spherical twist around $\mathcal{O}_{\mathbb{P}^1_{x_1;x_2}}(t)$.

A spherical twist is an autoequivalence discovered by [?] associated to any spherical object in the derived category, i.e. an object S such that

$$\operatorname{Ext}(S,S) = \mathbb{C} \oplus \mathbb{C}[-n]$$

for some n (i.e. the homology of the n-sphere). It sends any object \mathcal{E} to the cone on the evaluation map

$$[\operatorname{RHom}(S,\mathcal{E})\otimes S\longrightarrow \mathcal{E}].$$

The inverse twist sends \mathcal{E} to the cone on the dual evaluation map

$$[\mathcal{E} \longrightarrow \mathrm{RHom}(\mathcal{E}, S)^{\vee} \otimes S].$$

The object $\mathcal{O}_{\mathbb{P}^1_{x_1:x_2}}(t) \simeq \iota_+ K_-(t)$ is spherical, and the inverse twist around it sends $\mathcal{O}(t+1)$ to itself and $\mathcal{O}(t)$ to the cone

$$\left[\mathcal{O}(t) \longrightarrow \iota_+ K_-(t)\right] \simeq \left[\mathcal{O}(t+2) \xrightarrow{(-y_2,y_1)} \mathcal{O}(t+1)^{\oplus 2}\right],$$

which agrees with $\Phi_{t+1}^{-1}\Phi_t$. To complete the proof of the claim we would just need to check that the two functors also agree on the Hom-sets between $\mathcal{O}(t)$ and $\mathcal{O}(t+1)$.

Now instead let $V=\mathbb{C}^{p+q}$ with co-ordinates $x_1,\ldots,x_p,y_1,\ldots,y_q$. Let \mathbb{C}^* act linearly on V with positive weights on each x_i and negative weights on each y_i . The two GIT quotients X_+ and X_- are both the total spaces of orbi-vector bundles over weighted projective spaces.

We must assume the Calabi-Yau condition that \mathbb{C}^* acts through SL(V). Let d be the sum of the positive weights, so the sum of the negative weights is -d. The above argument goes through word-for-word, where now

$$\mathcal{G}_t = \langle \mathcal{O}(t), \dots, \mathcal{O}(t+d-1) \rangle.$$

3 References

NOTES ON GIT AND SYMPLECTIC REDUCTION FOR BUNDLES AND VARIETIES by R. P. THOMAS

Alper Moduli

Segal paper