Algorithmic Foundations of Data Science: Assignment #7

Khaled AlHosani (kah579), Myunggun Seo (ms9144)

New York University Abu Dhabi April 1, 2018

Problem 1

Create a table **D** of size $n \times k$. In the position (i, j) of D save the minimum loss (the total sum of squares of distance between each datapoint and the corresponding cluster center) of the i lowest data points with j clusters. Initialize the table with D[i, j] = 0 for all $i \leq j$ Since if we have more clusters than the points, we can always get 0 loss.

Create a table **d** of size n^2 . In the position (i,j) of d, we will save the sum of squares of distance between each datapoint $m \in \{i...j\}$ and their mean $(i \le j)$. For a fixed i, we can iteratively compute $d[i,j] = d[i,j-1] + \frac{i-j-2}{i-j-1}(x_j-\mu)^2$ and update $\mu = \frac{i-j-2}{i-j-1}(\mu+x_j)$.

The value of D[i,j] can be computed by breaking the i points into all possible clusterings of 1+(j-1) clusters. We need to consider the cases where we have $j \leq m < i$ where m is the index of the greatest point on the (j-1)th cluster. (We don't need to consider the case when $i \leq j$ since the loss will be 0.)

We can find the $D[i,j] = \min_{j \leq m < i} (D[m,j-1] + d[j,i])$ where d[j,i] is the sum of squares of distance between each datapoint in j,...,i and their mean. Since d[j,i] can be retrieved in linear time, computing each D[i,j] requires O(n) time, which is order required for looping with $m \in [n]$. This job needs to be done for half of the O(nk) table and thus requires $O(n^2k)$ time overall.

We read the following paper as reference: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156/

Problem 2

Please refer to Assignment #7 (ms9144, kah579) Problem 2 for the code.

Problem 3

Please refer to Assignment #7 (ms9144, kah579) Problem 3 for the code.

Problem 4

We need to show that the subspace of the eigenvectors of L with eigenvalue 0 is spanned by the vectors $\{\mathbbm{1}_{A_i}: i\in [k]\}$.

We have that for any $x \in \mathbb{R}^n$, $x^T L x = \sum_{\{i,j\} \in E} (x_i - x_j)^2$. If x is an eigenvector corresponding to eigenvalue 0, the left hand side is equal to 0. In such a case, the right hand side equals 0 iff $x_i = x_j$ for all $\{i,j\} \in E$. This means that unless E is an empty set, in which case L = 0 and x can take any value, the vertices of any and all connected components have the same x_i for each 0-eigenvector whereas two disconnected vertices must have different x_i values for each 0-eigenvector.

If for each 0-eigenvector v_i (i=1..k) each connected component has a corresponding value c_j for $j \in [k]$, then $v_i = \sum_j c_j \mathbbm{1}_{A_j}$. Which means that v_i is a linear combination of all A_j 's. Thus the subspace spanned by v_i 's are also spanned by A_j 's.