Recall: The congruence $ax \equiv b \pmod{m}$ has a solution if and only if $(a,m) \mid b$. When $(a,m) \mid b$, the set of all solutions is $\left\{x \in \mathbb{Z} : x_o + t \cdot \frac{m}{(a,m)}, t \in \mathbb{Z} \right\}$ which is same as $\left\{x \in \mathbb{Z} : x \equiv x_o \pmod{\frac{m}{(a,m)}}\right\}$, where x_o is just one of the solutions.

We can find x_0 using Euclid's algorithm: $ax = b \pmod{m} \implies ax = mk + b \implies ax - mk = b$

Inverse in \mathbb{Z}_n : For an a, is there an x such that $ax \ge 1 \pmod{n}$?

• Only when (a,n)|1, i.e (a,n)=1. x is called the inverse of a modulo n, and we write $x \equiv a^{-1} \pmod{n}$.

To solve $ax \equiv b \pmod{n}$ with $(a,n) \equiv 1$: $ax \equiv b \pmod{n} \iff a^{-1} \cdot a \cdot x \equiv a^{-1} \cdot b \pmod{n}$ $\iff x \equiv a^{-1} \cdot b \pmod{n}$.

Exercise: $(a,n) = 1 \Rightarrow (a^{-1},n) = 1$. Also $(a^{-1})^{-1} \equiv a \pmod{n}$. Some Terminology: In the previous lecture we solved $9x \equiv 6 \pmod{12}$,

Answer: $\{x \in \mathbb{Z}: x = 2 + 4t, t \in \mathbb{Z}\}$ = $\{x \in \mathbb{Z}: x = 2 \pmod{4}\}$

Question: Solve 9x=6 (mod 12) in Z12.

 $X \equiv 2 \pmod{4}$:, 2,6,10,14,18,22,26,...

 \Rightarrow $\times = 2, 6, 10 \pmod{12}$

Question: Solve x = 1 (mod 3) in Zq?

x=3k+1. Write $k=3\ell+r$ with $0 \le r \le 2$,

 \Rightarrow x = 3. (3 \(\ext{+} \(\ext{r} \)) + 1 = 9 \(\ext{+} \(\ext{3} \) \(\ext{r} \) + 1

⇒ x = 1, 4, or 7 (mod 9).

Question: Can we solve x=1 (mod 6) in Z8?

Is 7 in Zg (i.e. [7]g) a solution or not?

- $7 \equiv 1 \pmod{6} \Rightarrow \text{ it should be a solution}$
- [7] = [15] and 15 ≠ 1 (mod 6) => maybe not.

So, we cannot solve $x \equiv 1 \pmod{6}$ in \mathbb{Z}_8 .

In general, when does it make sense to solve $X \equiv a \pmod{m}$ in \mathbb{Z}_n ?

• We should have $b \equiv c \pmod{n} \Rightarrow b \equiv c \pmod{m}$, i.e. $n \mid b - c \Rightarrow m \mid b - c$.
Only when $m \mid n$.

Simultaneous Linear Congruences

Easier case: Which integers x satisfy both $x \equiv 1 \pmod{2}$ and $x \equiv 1 \pmod{5}$?

- · We can solve x ≡ 1 (mod 2) in Zn for 2/n.
- We can solve $x \equiv 1 \pmod{5}$ in \mathbb{Z}_n for $5 \ln n$
- \Rightarrow we should expect a solution in \mathbb{Z}_{10} .

$$2|x-1$$
 and $5|x-1 \Leftrightarrow 10|x-1 \Leftrightarrow x \equiv 1 \pmod{10}$

What about $x \equiv 2 \pmod{4}$, $x \equiv 2 \pmod{6}$, $x \equiv 2 \pmod{15}$?

$$4|x-2,6|x-2,15|x-2 \iff [4,6,15]|x-2$$

Theorem: $x \equiv a \pmod{m_1}$, $x \equiv a \pmod{m_2}$,..., $x \equiv a \pmod{m_k}$ is equivalent to $x \equiv a \pmod{m}$ where $m = [m_1, m_2, ..., m_k]$. (Special case: $(m_i, m_j) = 1$ for all $i \neq j$ and $m = m_1 m_2 ... m_k$)

• If $m = p_1 p_2 \dots p_k$, then working with $m_i = p_i$ might be extremely useful.

e.g., To prove x is divisible by 120 $(x \equiv 0 \pmod{120})$, we can show that x is divisible by all of 8,3, and 5.

Next, we make our problem a little bit harder.

Which integers x satisfy both $x \equiv 1 \pmod{5}$ and $x \equiv 5 \pmod{7}$?

We should expect to find a solution in \mathbb{Z}_{35} . 5k+1 $k=7\ell+1$ $x\equiv 1 \pmod{5} \implies x\equiv 1,6,11,16,21,26,31 \pmod{35}$

 $x = 5 \pmod{7} \implies x = 5, 12, 19, 26, 33, 40 \pmod{35}$

⇒ x = 26 (mod 35)

What about $x \equiv 1 \pmod{10}$, $x \equiv 5 \pmod{14}$? [10, 14] = 70

 $x \equiv 1 \pmod{10} \implies x \equiv 1, 11, 21, 31, 41, 51, 61 \pmod{70}$

 $x = 5 \pmod{14} \implies x = 5, 19, 33, 47, (61) \pmod{70}$

⇒ x = 61 (mod 76).

What about $x \equiv 1 \pmod{10}$, $x \equiv 4 \pmod{14}$?

[10, 14] = 70 $x = 1 \pmod{10} \implies x = 1, 11, 21, 31, 41, 5$

 $x = 1 \pmod{10} \implies x = 1, 11, 21, 31, 41, 51, 61 \pmod{70}$ $x = 4 \pmod{14} \implies x = 4, 18, 32, 46, 60 \pmod{70}$

⇒ No solution.

 $x \equiv 1 \pmod{10} \Rightarrow x \text{ is odd}$ $x \equiv 4 \pmod{14} \Rightarrow x \text{ is even.}$

We should be careful about this kind of compatibility issues in the linear congruences. The congruences above were not compatible in \mathbb{Z}_2 (2/10 and 2/14) and we won't have such a problem if we work with pairwise coprime moduli.

Chinese Remainder Theorem: (pairwise coprime moduli) $x \equiv a_1 \pmod{m_1}, x \equiv a_2 \pmod{m_2}, \dots, x \equiv a_k \pmod{m_k}$ with $(m_{i_1}m_{j_1}) = 1$ for all $i \neq j$ has a unique solution $x \equiv a \pmod{m_1 m_2 \dots m_k}$ in $\mathbb{Z}_{m_1 m_2 \dots m_k}$ for some a.

• Let's see an example with $k=2: x\equiv 2 \pmod{15}$ and $x\equiv 3 \pmod{7}$.

 $x \equiv 3 \pmod{7} \Rightarrow x = 7k+3$. Now, we solve $7k+3 \equiv 2 \pmod{15}$

 \Rightarrow 7k=-1 (mod 15) \Rightarrow 7k=14 (mod 15) \Rightarrow k=2 (mod 15).

Write $k = 15\ell + 2$ and $x = 7k + 3 = 7 \cdot (15\ell + 2) + 3$ = $105\ell + 17$

So, X=17 (mod 105).

<u>Proof:</u> We'll prove by induction on k.

k=1: trivial

k=2: similar to the example given above.

 $x \equiv a_1 \pmod{m_1} \implies x = c \cdot m_1 + a_1$.

 $cm_1 + a_1 \equiv a_2 \pmod{m_2} \Rightarrow cm_1 \equiv a_2 - a_1 \pmod{m_2}$.

Since $(m_1, m_2) = 1$, there is an m_1 (mod m_2).

Then $cm_{1} \cdot m_{1} = (a_{2} - a_{1}) \cdot m_{1}^{-1} \pmod{m_{2}}$

 $\Rightarrow c = (a_2 - a_1) \cdot m_1^{-1} \pmod{m_2} \Rightarrow c = \ell \cdot m_2 + (a_2 - a_1) \cdot m_1^{-1}$

 $\Rightarrow x = (\ell \cdot m_2 + (\alpha_2 - \alpha_1) \cdot m_1^{-1}) \cdot m_1 + \alpha_1$ $= \ell \cdot m_1 m_2 + (\alpha_2 - \alpha_1) \cdot m_1^{-1} \cdot m_1 + \alpha_1 \rightarrow \alpha \pmod{m_1 m_2}.$

Assume CRT is true for some k and consider it for k+1.

Using base case, combine the last two congruences and apply the induction hypothesis for the remaining congruences.

 $(m_{1}, m_{2}, ..., m_{k-1}, m_{k}, m_{k+1}) \longrightarrow (m_{1}, m_{2}, ..., m_{k-1}, m_{k}, m_{k+1}).$

What if we don't have (mi, mj) = 1?

- Split each (mod m_i) into some (mod p^q) using prime factorisations
- For each prime, gather all congruences like (mod p "). They will be either incompatible or they can be reduced to a single congruence.

 highest power of p
 - look at $(mod p^{\alpha})$ with largest α . Other congruences might be incompatible with this one or they will be redundant.
 - If everything is compatible, then solve the congruences (mod p^{α}) using CRT. If at least one of them is incompatible, then there is no solution.

We'll see some examples on wednesday.