IUT - MI 1

Test N° 1 le 24-01-2000 Année 1999 - 2000

Dr KENMEUGNE B

Durée : 2 houres 30 mn Mecanique genérale

## Problème Bras manipulateur - (20 pts)

Le manipulateur schematise figure (ci- : d'ine tête (S<sub>3</sub>) en lidison pivot d'axe  $(B, \bar{Z}_0)$  avec le d un bâti  $(S_0)$  auquel est lie le repere bras  $(S_2)$  telle que  $AB = b \overline{X}$ .  $R_{ii}(0, \bar{x}_0, \bar{y}_0, \bar{z}_0)$ I - d un bras (S<sub>1</sub>) en liaison pivot d'axe  $(0, \bar{z}_0)$ avec le bâti  $R_1(0, x_1, \ddot{y}_1, \ddot{z}, = \ddot{z}_2)$  est un repère he à (S<sub>1</sub>), on pose  $\alpha = (\dot{x}_{...}, \dot{x}_{..})$ -d'un bras ( $S_2$ ) en liaison pivot d'axe  $\left(\Lambda, \tilde{Z}_0\right)$ avec le bras (S<sub>1</sub>).  $R_2(0, \bar{x}_2, \bar{y}_2, \bar{z}_2 = \bar{z}_0)$  est un repère lie à  $(S_2)$  tel que  $\overrightarrow{OA} = a \overrightarrow{x_1}$  on pose  $\beta = (\vec{x}_1, \vec{x}_2)$ 



| N° | Questions                                                                                                                                                                                       | Points |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1  | Dessiner la figure montrant la rotation du repère $R_1$ par rapport à $R_0$ et calculer les vecteurs rotation, vitesse et acceleration $\Omega(R_1/R_0)$ . $\vec{V}(A/R_0)$ et $\vec{a}(A/R_0)$ | 5 pts  |
| :  | Donner l'expression de X dans le repère R <sub>0</sub>                                                                                                                                          | ο ρισ  |
| 2  | Dessiner la figure montrant la rotation du repère R2 par rapport à R1 et calculer le                                                                                                            |        |
| !  | vecteur rotation $\vec{\Omega}(\vec{R}_2 / \vec{R}_1)$ , ainsi que les vecteurs vitesse et accélération :                                                                                       | 4 pts  |
|    | $\nabla (B/R_1)$ et $\overline{a}(B/R_1)$ .                                                                                                                                                     | - pts  |
| 3  | En déduire la figure montrant la rotation du repère R2 par rapport à R0 et calculer le                                                                                                          |        |
|    | vecteur rotation $\bar{\Omega}(R_{\frac{1}{2}}/R_{1})$ Donner l'expression de $\bar{x}_{\frac{1}{2}}$ dans le repère $R_0$ .                                                                    | 3 pts  |
| 4  | Conner les coordonnées du $B(x_{\alpha},y_{\alpha},0)_{\mathbf{g}_{\alpha}}$ en fonction de $\mathbf{a},\mathbf{b},\mathbf{a}$ et $\mathbf{\beta}$                                              | 1 pt   |
| 5  | Calculer les vecteurs vitesse et accélération $V(B/R_n)$ et $\bar{a}(B/R_n)$ .                                                                                                                  | 2 pts  |

Le manipulateur est immobilisé dans la position  $\alpha = 30^{\circ}$  et  $\beta = 20^{\circ}$ 

On donne a = 450 mm et 600 mm. On se propose de calculer les variations d $\alpha$  et d $\beta$  des angles  $\alpha$  et  $\beta$  pour que le centre B de la tête se deplace de  $dv_0=-4.5$  mm suivant  $\vec{x}_0$  et  $dy_0=\pm1.5$  mm suivant  $\bar{y}_0$ . On rappelle que la différentielle totale exacte d'une fonction f de deux variables  $\alpha$  et  $\beta$ s'ecrit au point de coordonnées  $(\alpha_n, \beta_n)$ :

$$df = \frac{\partial f}{\partial \alpha} \Big|_{\{\alpha_0, \beta_0\}} d\alpha + \frac{\partial f}{\partial \beta}\Big|_{\{\alpha_0, \beta_0\}} d\beta$$

On procède de la manière suivante

| N°          | Questions                                                                                                     | Points. |
|-------------|---------------------------------------------------------------------------------------------------------------|---------|
| 6           | déterminer les expressions des déplacements $\mathrm{dx}_a$ et $\mathrm{dy}_a$ du point B respectivement      | 2 pts   |
|             | suivant les axes $\vec{x}_n$ et $\vec{y}_n$ en fonction de a. b. $\alpha$ , $\beta$ , $d\alpha$ et $d\beta$ . | ·       |
| 7           | Reporter les valeurs de dividit la billion (la locrite le système d'équations en du                           | 1 pts   |
|             | et dit à résoudre                                                                                             | !       |
| <u> -</u> , | Resource la système, l'equations at tourne de la contraction de la charactères.                               | 2 pts   |

. Dans le repère  $R(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$  se déplace une plaque rigide S dont le contour comporte une partie rectiligne AB. On lie à la plaque un repère  $R_1(O_1, \vec{e}_{x_1}, \vec{e}_{y_1}, \vec{e}_{z_1})$  tel que :

- O<sub>1</sub> appartient à AB.
- O<sub>1</sub> y<sub>1</sub> est dirigé et orienté comme Oy.
- $O_1 z_1$  est dirigé et orienté comme  $\overrightarrow{O_1 G}$ , G étant un point de la plaque.



On désigne par d la distance  $O_1G$ . Le côté AB est astreint à se déplacer dans le plan (xOy) du repère R et reste parallèle à Oy. La plaque S s'appuie sur une tige contenue dans le plan (yOz), parallèle à Oy et située à la distance constante b de cet axe. La position de S est repérée à un instant donné par :

$$\begin{cases} h = \overline{OH} & (H : \text{projection de } O_1 \text{ sur } Oy) \\ \varphi = (\overline{O_1H}, \overline{O_1C}) & (C \text{ point de contact de la tige avec } O_1z_1) \end{cases}$$

Le repère de projection est R

- 1º Déterminer le vecteur rotation  $\vec{\omega}(S/R)$ .
- 2° Calculer  $\tilde{v}(O_1/R)$ .

ints

- 3° En déduire  $\bar{v}(G/R)$ .
- 4° Exprimer  $\bar{a}(G/R)$  par deux méthodes différentes :
- a) directement à partir de  $\overrightarrow{V}(G/R)$ ;
- b) à l'aide de  $\vec{a}(Q_1/R)$  que l'on calculera.
- 5° Donner les éléments de réduction en O du torseur cinématique  $\overrightarrow{C}(S/R)$ .
- 6° a) En déduire l'équation vectorielle de l'axe instantané du mouvement  $\Delta$ , sous la forme :  $OK = OQ + \lambda \overline{\omega}(S/R)$  (K : point courant de  $\Delta$  et Q : intersection de  $\Delta$  avec le plan (xOz).
- b) Déterminer l'ensemble des points Q lorsque φ varie.
- c) Donner une construction géométrique simple de la position de Q dans le plan (xOz).

nstitut Universitaire de la Côte

Option : Génie Industriel et Maintenance (GIM)

Master 1

Année 2012-2013 Durée : 2 h 00 Dr KENMEUGNE B.

# Session d'examen de fin de 1er semestre

UE : Mécanique des systèmes industriels

Documents autorisés : Notes de cours uniquement.

### PROBLEME - (20 pts)

But du problème : étude mécanique d'un chariot élévateur de capacité maximale 10 000 N roulant sur un sol horizontal (1) afin de garantir sa stabilité. Seule l'étude statique sera faite.



#### Données:

- Distance entre les deux roues A et B : b
- Poids du chariot seul :  $\vec{P}_1$
- Position du centre de gravité G<sub>1</sub> du chariot (2) seul : (c, e)
- Position du centre de gravité G<sub>2</sub> du contrepoids (4) P<sub>2</sub> : (a, e)
- Poids de la charge (3): F
- Position du centre de gravité G₃ de la charge en position basse : (d, f), en position haute (d, g).

N.B. – Les candidats prêteront particulièrement attention au fait qu'une résolution littérale complète est exigée avant chaque application numérique. L'accélération de la pesanteur est 10 m/s² pour tout le problème.

## Partie A - Stabilité du chariot

On se propose ici de déterminer les valeurs extrêmes du contrepoids  $P_2$  de maniere à cu que le chariot soit en équilibre à vide et en charge. (Les actions  $\vec{A}_{1/2}$  et  $\vec{B}_{1/2}$  se reduisent à  $aos 1, \dots$ perpendiculaires au sol dont on designera les composantes non nulles respectives par al et y l' Pour ce faire, on étudie l'équilibre de l'ensemble (5) représentant le chânict elévaleur et constant de (2), (3) et (4).

- 1. Faire le bilan des actions mécaniques appliquées sur (S). On exprimera tous les torseurs au po-A. (5 pts)
- 2. Appliquer le principe fondamental de la statique et écrire le système d'équations qui entrepart (2 pts).
- 3. Donner les expressions de  $Y_A$  et  $Y_B$  en fonction de  $a_i$  bi  $c_i$  d,  $m_z$  et g ( 2 pt  $_{i,j}$
- 4. Pour que le chariot ne béseule pas, ir faut que le contact sus maintens an alizeau des rocc arrières Alei avant B. Ecrire les conditions sur Y<sub>A</sub> at Y<sub>B</sub> qui tradulaunt de maintien de conque y l'apr
- 5. Déduire des conditions obtenues à la question 4 un encadrement de la valeur  $m_2$  d contrepoids pour que le chariot ne bascule pas. (1 pt)
- 6. Quel encadrement de m2 obtient-on lorsque le chariot est à vide ? (1 pt)
- 7. Donner alors les valeurs limites du contrepoids m<sub>2</sub> qui assure l'équilibre du chariot à vide et en le charge. (1 pt)
- 8. Application numérique (1 pt)

a = 0.2 m

b = 1 m

c = 0.7 m d = 2.5 m  $P_1 = 4.000 \text{ N}$ 

 $F_{\text{max}} = 100000 \text{ M}^{-1}$ 

- 9. Déterminer les actions de contact  $\vec{A}_{1/2}$  et  $\vec{B}_{1/2}$  exercées par le sol (1) sur les roues  $\vec{A}$  et  $\vec{B}$  en fonction de la charge soulevée  $\vec{F}$ . Le contrepoids  $\vec{P}_2$  a une valeur  $P_2$  fixée entre les valeurs extrêmes définies à la question précédente. (1 pt)
- **10.** Application numérique  $P_2 = 13\,000\,\text{N}$ . (0,5 pt + 0,5 pt)

# Partie B - Paramètres barycentriques du chariot

- 11. Déterminer la position du centre de gravité G du chariot muni de son contrepoids P₂ et charge avec sa charge maximale F<sub>max</sub> lorsque le plateau elévateur est :
  - a) En position basse, (1 pt)
  - b) En position haute. (1 pt)
- 12. Application numérique : ( 0,5 pt + 0,5 pt )

 $f = 0.1 \, \text{m}$ 

g = 4 m

e = 0.5 m  $P_2 = 13 000 \text{ N}$