

Hyderabad Campus

Lecture 27: Design of clocked sequential circuits_2 Sat, 13 Nov 2021

BITS Pilani **Hyderabad Campus**

If you have choice choose the best. If you have No choice do the best

To detect a pattern 1001

Present State	Input	Next State	Output
A	0	A B	0
В	0	C	0
В	1	В	0
C	0	D B	0
D D	0	A B	0

	ent ate	Input		ext	Output
Q ₁	Qo	Х	Q ₁	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Pres Sta	ent ate	Input		ext	Flip-flop Inputs			Output	
Q_1	Q_0	X	Q	Q_0	J ₁	K ₁	J_0	K_0	Z
0	0	0	0	0	0	Х	0	Х	0
0	0	1	0	1	0	Χ	1	X	0
0	1	0	1	0	1	Х	Х	1	0
0	1	1	0	1	0	X	Х	0	0
1	0	0	1	1	Х	0	1	Х	0
1	0	1	0	1	X	1	1	X	0
1	1	0	0	0	Х	1	Х	1	0
1	1	1	0	1	X	1	X	0	1

$$J_1 = X'Q_0$$

$$K_1 = X + Q_0$$

$$J_0 = X + Q_1$$

$$K_0 = X'$$

$$Z = Q_1Q_0X$$

Building the same circuit with D flip-flops

- What if you want to build the circuit using D flip-flops instead?
- We already have the state table and state assignments, so we can just start from Step 3, finding the flip-flop input values.
- D flip-flops have only one input, so our table only needs two columns for D₁ and D₀.

	sent ate	Input	Next State		Flip-flop Inputs		Output
Q_1	Q_{0}	Χ	Q	$\mathbf{q}_{_{\! o}}$	b ₁	$\sqrt{D^0}$	Ž
0	0	0	O	0	O	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	\mathcal{O}	0
0	1	1	0	1	O	1	0
1	0	0	1	1		1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	Ø	0	0
1	1	1	0	1	0	1	1

Finding equations (Step 4)

If you use K-maps again, you should find the following equations.

$$D_{1} = Q_{1}Q_{0}'X' + Q_{1}'Q_{0}X'$$

$$D_{0} = X + Q_{1}Q_{0}'$$

$$Z = Q_{1}Q_{0}X$$

	ent ate	Input		ext	Flip-flop Inputs		Output
Q ₁	Q_0	Χ	Q_1	Q_0	D_1	D_0	Z
0	0	0 1	00	0 1	0 0	0 1	0 0
0	1 1	0 1	1 0	0 1	1 0	0 1	0
1	0	0 1	1 0	1 1	1 0	1 1	0
1	1 1	0 1	00	0 1	0 0	0 1	0 1

Building the circuit (Step 5)

Flip-flop comparison

 JK flip-flops are good because there are many don't care values in the flip-flop inputs, which can lead to a simpler circuit.

D flip-flops have the advantage that you don't have to set up flip-flop inputs at all, since Q(t+1) = D. However, the D input equations are usually more complex than JK input equations.

- In practice, D flip-flops are used more often.
 - There is only one input for each flip-flop, not two.
 - There are no excitation tables to worry about.
 - D flip-flops themselves are simpler to implement than JK flip-flops.

DESIGN WITH UNUSED STATES

Design the circuit using Flip Flops

	PS				NS		1	1	1	
A	В	С	X	A	В	С	Da	D _b	D _c	Y
0	0	0	0	0	1	1				0
0	0	0	1	1	0	0				1
0	0	1	0	0	0	1				0
0	0	1	1	1	0	0				1
0	1	0	0	0	1	0				0
0	1	0	1	0	0	0				1
0	1	1	0	0	0	1				0
0	1	1	1	0	1	0				1
1	0	0	0	0	1	0				0
1	0	0	1	0	1	1				0

	PS				NS					
A	В	С	X	Α	В	С	D _A	D _B	D _C	Y
	Г	1			T	<u> </u>				
0	0	0	0	0	1	1	0	1	1	0
0	0	0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0	1	0
0	0	1	1	1	0	0	1	0	0	1
0	1	0	0	0	1	0	0	1	0	0
0	1	0	1	0	0	0	0	0	0	1
0	1	1	0	0	0	1	0	0	1	0
0	1	1	1	0	1	0	0	1	0	1
1	0	0	0	0	1	0	0	1	0	0
1	0	0	1	0	1	1	0	1	1	0

CX AB	00	01	11	10
00	1			1
01				1
11	Х	Х	Х	Х
10		1	Х	X

CX AB	00	01	11	10
00	1			
01	1		1	
11	Х	Х	Х	Х
10	1	1	Х	Х

CX AB	00	01	11	10
00		1	1	
01		1	1	
11	Х	Х	Х	Х
10			Х	X

Answer:

$$D_a = A'B'x$$

$$D_b = C'x' + A + BCx$$

$$D_c = A'B'x' + Cx' + Ax$$

$$Y=A'x$$

Answer:

$$D_a = A'B'x$$

$$D_b = C'x' + A + BCx$$

$$D_c = A'B'x' + Cx' + Ax$$

$$Y=A'x$$

The circuit is self correcting

	PS				NS					
A	В	С	X	A	В	С	T _a	T _b	T _c	Y
0	0	0	0	0	1	1				0
0	0	0	1	1	0	0				1
0	0	1	0	0	0	1				0
0	0	1	1	1	0	0				1
0	1	0	0	0	1	0				0
0	1	0	1	0	0	0				1
0	1	1	0	0	0	1				0
0	1	1	1	0	1	0				1
1	0	0	0	0	1	0				0
1	0	0	1	0	1	1				0

sed states **Answer:** $T_a = A + B'x$ $T_b = B'C'x' + A + BCx' + BC'X$ $T_c = A'B'C'x' + Cx + Ax$ Selt Correcting Y=A'x

Excitation table Flip flop Conversions SRTOJK REKAT

Registers

- Register is an extension of a Flip-flop that can store multiple bits Register consists of group of flip-flops and some combinational gates. Each FF is capable of storing one bit of information. N-bit register has group of n-FFs capable of storing n-bits of binary information. The logic gates determine how the information is transferred into the register.
- > Ex: Used as a Temporary storage in Microprocessors

A basic register

An example: Register constructed using D FFs.

D0-D3 Data inputs; Q0-Q3 data output.

