Orthogonal Projection

Alvin Kim

 $July\ 19,\ 2024$

ntroduction Formulas Properties Special Cases Conclusion

- 1 Introduction
 - Definitions
 - Example
- 2 Formulas
 - Projection onto a Vector
 - Projection onto a Subspace
 - The Projection Matrix
 - The Error Matrix
- 3 Properties
 - Projection Minimizes Error
 - $P = P^T$
 - $P = P^2$
 - Sanity Check: $E = E^2$

4 Special Cases

- Sanity Check: A has One Column
- A is an Orthonormal Matrix
- Projection from \mathbb{R}^3 onto the xz-plane
- More Special Cases
- 5 Conclusion
 - Formulas Recapped
 - Properties Recapped
 - Next Steps

Definitions

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Note

In this presentation, projection refers to specifically orthogonal projection, \vec{p} refers to proj_S \vec{b} , and \vec{e} refers to the error vector $\vec{e} = \vec{b} - \vec{p}$. The error vector is also called the rejection.

Definitions

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Closest means that the error is orthogonal to S.

Definitions

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Closest means that the error is orthogonal to S.

Note

The dimension of subspace S can be anything from 0 to the dimension of the space we are working inside.

 $_{\rm Example}$

Example

Example

Draw $\operatorname{proj}_a b$.

Example

Example

Note

When projecting a vector onto another vector \vec{a} , the subspace S is the span of \vec{a} .

Example

Example

Example

Projection onto a Vector

Consider projecting \vec{b} onto \vec{a} .

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$

$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$

$$\vec{p} = c\vec{a}$$

$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$
$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$
$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$

$$\vec{p} = c\vec{a}$$

$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$
$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$
$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$=rac{ec{a}\cdot b}{ec{a}\cdot ec{a}}ec{a}$$

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$
$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$
$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$

$$\vec{p} = c\vec{a}$$

$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$
$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$
$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Projection onto a Vector

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$

$$\vec{p} = c\vec{a}$$

$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$
$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$
$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Projection onto a Subspace

Project \vec{b} onto S

Project \vec{b} onto S

Suppose that $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ are a basis of S, let

$$A = \begin{bmatrix} | & | & | \\ \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \\ | & | & | \end{bmatrix}$$

and let $\vec{p} = A\vec{c}$. We also know:

$$\vec{e} = \vec{b} - \vec{p}$$

$$C(A)^{\perp} = N(A^T)$$

Project \vec{b} onto S

Suppose that $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ are a basis of S, let

$$A = \begin{bmatrix} | & | & | \\ \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \\ | & | & | \end{bmatrix}$$

and let $\vec{p} = A\vec{c}$. We also know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$A^T \vec{e} = \vec{0}$$

Projection onto a Subspace

Project \vec{b} onto S

Suppose that $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ are a basis of S, let

$$A = \begin{bmatrix} | & | & & | \\ \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \\ | & | & & | \end{bmatrix}$$

and let $\vec{p} = A\vec{c}$. We also know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$A^T \vec{e} = \vec{0}$$

Then.

$$\vec{e} = \vec{b} - A\vec{c}$$

$$A^T(\vec{b} - A\vec{c}) = \vec{0}$$

$$A^T \vec{b} - A^T A \vec{c} = \vec{0}$$

$$A^T \vec{b} = A^T A \vec{c}$$

$$(A^T A)^{-1} A^T \vec{b} = \vec{c}$$

$$\left| \vec{c} = (A^T A)^{-1} A^T \vec{b} \right|$$

$$\vec{p} = A(A^T A)^{-1} A^T \vec{b}$$

The Projection Matrix

Recall that for some matrix A, the projection $\vec{p} = A(A^T A)^{-1} A^T \vec{b}$.

Observation

For a specific A, \vec{p} is an unchanging linear transformation of \vec{b} . So, we can represent the linear transformation with a matrix P.

The Projection Matrix

The Projection Matrix

Recall that for some matrix A, the projection $\vec{p} = A(A^T A)^{-1} A^T \vec{b}$.

The Projection Matrix

The Projection Matrix

Recall that for some matrix A, the projection $\vec{p} = A(A^TA)^{-1}A^T\vec{b}$.

Let
$$P = A(A^T A)^{-1}A^T$$
. Then, $\vec{p} = P\vec{b}$.

Note

A must have linearly independent columns.

The Error Matrix

The Error Matrix

The error vector is \vec{b} projected onto S^{\perp} .

The Error Matrix

The Error Matrix

The error vector is \vec{b} projected onto S^{\perp} . Since finding the error vector is also a projection, there should be an error matrix E for some P such that $\vec{e} = E\vec{b}$.

The Error Matrix

The Error Matrix

The error vector is \vec{b} projected onto S^{\perp} . Since finding the error vector is also a projection, there should be an error matrix E for some P such that $\vec{e} = E\vec{b}$.

$$\vec{e} = \vec{b} - \vec{p}$$

$$\vec{e} = I\vec{b} - P\vec{b}$$

$$\vec{e} = (I - P)\vec{b}$$

$$E = I - P$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

Hint

$$||\vec{d}|| > ||\vec{e}|| \iff \vec{d}^2 > \vec{e}^2$$

$$\vec{d}^2 = (\vec{b} - \vec{x})^2$$

$$\vec{d}^2 = (\vec{b} + \vec{0} - \vec{x})^2$$

Projection Minimizes Error

$$\vec{d}^2 = (\vec{b} - \vec{p} + \vec{p} - \vec{x})^2$$

Projection Minimizes Error

$$\vec{d}^2 = (\vec{b} - \vec{p} + \vec{p} - \vec{x})^2$$

$$\vec{d}^2 = (\vec{e} + \vec{p} - \vec{x})^2$$

$$\vec{d}^2 = \vec{e}^2 + 2\vec{e} \cdot (\vec{p} - \vec{x}) + (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 = \vec{e}^2 + 2\vec{e} \cdot (\vec{p} - \vec{x}) + (\vec{p} - \vec{x})^2$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$

Projection Minimizes Error

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$
$$\vec{d}^2 - \vec{e}^2 = (\vec{p} - \vec{x})^2$$

Projection Minimizes Error

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 - \vec{e}^2 = (\vec{p} - \vec{x})^2 > 0$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$. that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 - \vec{e}^2 = (\vec{p} - \vec{x})^2 > 0$$

$$\vec{d}^2 > \vec{e}^2$$

Prove that $P = P^T$.

Prove that $P = P^T$.

Hint

Start with $P = A(A^T A)^{-1} A^T$.

Prove that $P = P^T$.

$$P = A(A^{T}A)^{-1}A^{T}$$

$$P^{T} = (A(A^{T}A)^{-1}A^{T})^{T}$$

$$P^{T} = (A^{T})^{T}((A^{T}A)^{-1})^{T}A^{T}$$

$$P^{T} = A((A^{T}A)^{T})^{-1}A^{T}$$

$$P^{T} = A(A^{T}(A^{T})^{T})^{-1}A^{T}$$

$$P^{T} = A(A^{T}A)^{-1}A^{T}$$

$$P^{T} = P$$

Prove that $P = P^2$.

$$P = A(A^{T}A)^{-1}A^{T}$$

$$P^{2} = (A(A^{T}A)^{-1}A^{T})^{2}$$

$$P^{2} = (A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T})$$

$$P^{2} = A(A^{T}A)^{-1}(A^{T}A)(A^{T}A)^{-1}A^{T}$$

$$P^{2} = A(A^{T}A)^{-1}IA^{T}$$

$$P^{2} = A(A^{T}A)^{-1}A^{T}$$

$$P^{2} = A(A^{T}A)^{-1}A^{T}$$

$$P^{2} = P$$

Sanity Check: $E = E^2$

Prove that $E = E^2$.

Reminder

E is also a projection matrix and E = I - P.

$$E = I - P$$

$$E^{2} = (I - P)^{2}$$

$$E^{2} = I - 2IP + P^{2}$$

$$E^{2} = I - 2P + P$$

$$E^{2} = I - P$$

Sanity Check: A has One Column

Sanity Check: A has One Column

Suppose
$$A=[\vec{a}].$$
 Then, $\vec{p}=A(A^TA)^{-1}A^Tb$ and $\vec{p}=\frac{\vec{a}\cdot\vec{b}}{\vec{a}\cdot\vec{a}}\vec{a}.$

A is an Orthonormal Matrix

Note

An orthonormal matrix has unit columns all orthogonal to each other. In other words, an orthonormal matrix Q will satisfy $Q^TQ=I$.

A is an Orthonormal Matrix

A is an Orthonormal Matrix

Note

An orthonormal matrix has unit columns all orthogonal to each other. In other words, an orthonormal matrix Q will satisfy $Q^TQ = I$.

Then,
$$P = A(A^{T}A)^{-1}A^{T} = AIA^{T} = AA^{T}$$
.

A is an Orthonormal Matrix

Note

An orthonormal matrix has unit columns all orthogonal to each other. In other words, an orthonormal matrix Q will satisfy $Q^TQ = I$.

Then,
$$P = A(A^{T}A)^{-1}A^{T} = AIA^{T} = AA^{T}$$
.

Additionally, the coefficients vector, $\vec{c} = (A^T A)^{-1} A^T \vec{b}$, will just be $\vec{c} = A^T \vec{b}$.

Projection from \mathbb{R}^3 onto the xz-plane

troduction Formulas Properties **Special Cases** Conclusion

Projection from \mathbb{R}^3 onto the xz-plane

Projection from \mathbb{R}^3 onto the xz-plane

Hint

What are a basis of the xz-plane?

Projection from \mathbb{R}^3 onto the xz-plane

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Projection from \mathbb{R}^3 onto the xz-plane

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Note

A is orthonormal.

Projection from \mathbb{R}^3 onto the xz-plane

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P = AA^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Projection from \mathbb{R}^3 onto the xz-plane

$$P = AA^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example

$$P\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ 0 \\ z \end{bmatrix}$$

More Special Cases

More Special Cases (Practice)

- Find the projection matrix from \mathbb{R}^3 onto the y-axis.
- What would \vec{p} be if $\vec{b} \perp S$? What if $\vec{b} \in S$?

troduction Formulas Properties Special Cases **Conclusion**

Next Steps

- Applications
 - Graphics
 - Least Squares Regression
 - Orthonormal and Orthogonal Matrices
- Further Learning
 - Practice
 - Introduction to Linear Algebra 6th Edition Chapter
 4.2 by Gilbert Strang

