Basic statistical concepts for modelling

David Makowski

- Population
- Sample
- Estimator, estimate
- Bias and variance of an estimator
- Test
- Confidence interval
- Model

Population

In statistics, a population is the entire pool from which a statistical sample is drawn.

A population may refer to an entire group of people, objects, events, hospital visits, or measurements.

www.investopedia.com/terms/p/population.asp

Sample

A part of a population used to estimate a characteristic of the population.

Sample

A part of a population used to estimate a characteristic of the population.

Random sample

A random sample is a sample that is chosen randomly.

Random samples are used to avoid bias and other unwanted effects.

Random sample

A random sample is a sample that is chosen randomly.

Random samples are used to avoid bias and

other unwanted effects.

Exercise

Consider the following series of numbers

1, 2, 3, 4,...,100

Generate 10 random samples of size 5 with the R function sample()

Why a random sample?

Central Limit theorem

Abraham de Moivre (18th century)
Pierre Simon Marquis de Laplace (19th century)

The distributions of the average of randomly chosen observations is closely approximated by a **normal distribution**

...even if the original observations themselves are not normally distributed.

Normal Distribution

Notation	$\mathcal{N}(\mu,\sigma^2)$
Parameters	$\mu \in \mathbb{R}$ = mean (location)
	$\sigma^2>0$ = variance (squared scale)
Support	$x\in \mathbb{R}$
PDF	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Central Limit theorem

The distributions of the average of randomly chosen observations is closely approximated by a **normal distribution**

... even if the original observations themselves are not normally distributed.

Population = 100,000 wheat plots

mean=3.76 t ha-1

mean=3.76 t ha-1

mean=3.76 t ha-1

mean=3.76 t ha-1

mean=3.76 t ha-1

100 average values

Frequency

10

100 averages of 100 samples of size 5

100 averages of 100 samples of size 100

Ledneuck

Ledneuck

1 2 3 4 5 6 7

Yield (t ha-1)

100 averages of 100 samples of size 500

- Population
- Sample
- Estimator, estimate
- Bias and variance of an estimator
- Test
- Confidence interval
- Model

- Population
- Sample
- Estimator, estimate
- Bias and variance of an estimator
- Test
- Confidence interval
- Model

Estimator

A function of random variables that can be used in estimating unknown parameters of a theoretical probability distribution.

Estimator

A rule used to calculate a quantity of interest from data

Estimator

Example:

$$\bar{X} = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$

Estimate

One value of an estimator calculated from one sample of data

$$\frac{1.1 + 2.8 + 5.8 + 6.1 + 0.8}{5}$$

mean=3.76 t ha-1

Bias and variance of an estimator

Bias = difference between the true value and the mean value of the estimator

Variance = measure of the dispersion of the estimator around its mean value

Standard deviation = \sqrt{Variance}

$$\bar{X} = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$

$$E(\bar{X}) = \frac{E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5)}{5} = E(X) = 3.76$$

$$V(\bar{X}) = \frac{1}{5}V(X) = 8.45$$

100 averages of 100 samples of size 100

25 Bias =0 2 Var=0.42 Frequency 5 9 S 0 1 3 2 5 6 7 4 Yield (t ha-1)

100 averages of 100 samples of size 500

- Population
- Sample
- Estimator, estimate
- Bias and variance of an estimator
- Test
- Confidence interval
- Model

- Population
- Sample
- Estimator, estimate
- Bias and variance of an estimator
- Test
- Confidence interval
- Model

Test

Choose between two hypotheses based on a sample of observations

mean=3.76 t ha-1

A first example

H0: true mean < 4

H1: true mean > 4

How to choose?

If the sample mean m > 4, reject H0

mean=3.76 t ha-1

If the sample mean m > 4, reject H0

H0 rejected

Error of decision

If the sample mean m > 4, reject H0

H0 rejected

Error of decision: we reject H0 while H0 is true

- -> False positive
- -> Type 1 error

What is the false positive rate of our naive test?

If the sample mean m > 4, reject H0

100 averages of 100 samples of size 5

100 averages of 100 samples of size 5

A second example

H0: true mean < 5

H1: true mean > 5

How to choose?

If the sample mean m > 5, reject H0

As here m=4.6, we accept H0

No error of decision here: True negative

Two types of error

- Type 1: Reject H0 while H0 true
 - False positive rate
 - Alpha risk

- Type 2: Accept H0 while H0 wrong
 - False negative rate
 - Beta risk
 - Equal to 1-Power

Two types of error

A good test is a test with

- A small type 1 error rate
- A small type 2 error rate (i.e., a high power)

First example

H0: true mean < 4

H1: true mean > 4

How to choose?

100 averages of 100 samples of size 5

100 averages of 100 samples of size 5 2 Type 1 error rate False positive rate Type 1 error rate too high 0.38 Very risky to reject H0 2 Yield (t ha-1)

First example

H0: true mean < 4

H1: true mean > 4

How to choose?

Define T = (m-4)/s m = sample mean s = standard error

T measures how far the value of *m* is from 4 If T is large enough, we reject H0

```
Define T = (m-4)/s
m = sample mean
s = standard error
```

```
Define T = (m-4)/s

m = sample mean

s = standard error

= standard deviation/sqrt(sample size)
```

Define T = (m-4)/s

m = sample mean

s = standard error

= standard deviation/sqrt(sample size)

$$m = \frac{X1 + X2 + X3 + X4 + X5}{5}$$

$$S = \sqrt{\frac{1}{5} \frac{(X1-m)^2 + (X2-m)^2 + (X3-m)^2 + (X4-m)^2 + (X5-m)^2}{5-1}}$$

Define T = (m-4)/s

m = sample mean

s = standard error

= standard deviation/sqrt(sample size)

$$m = \frac{X1 + X2 + X3 + X4 + X5}{5}$$

$$S = \sqrt{\frac{1}{5} \frac{(X1-m)^2 + (X2-m)^2 + (X3-m)^2 + (X4-m)^2 + (X5-m)^2}{5-1}}$$

If T> K, reject H0

How to choose K?

- Set a max acceptable value for the type 1 error rate Ex: 0.05 i.e., 5%
- Choose K in order to stay below this value according to some probability distribution, here, the *student distribution*

t test

Define T = (m-4)/s

m = sample mean

s= standard error

If T > 95% quantile of a student distribution, reject H0

t test with R

```
> Y=c(4.9,4.15,6.3,2.4,5.5)
> Y
[1] 4.90 4.15 6.30 2.40 5.50
> t.test(x=Y,mu=4,alternative="greater")
  One Sample t-test
data: Y
t = 0.9788, df = 4, p-value = 0.1915
alternative hypothesis: true mean is greater than 4
95 percent confidence interval:
3.234287
               Tnf
sample estimates:
mean of x
    4.65
```

t test with R

```
> Y=c(4.9,4.15,6.3,2.4,5.5)
> Y
[1] 4.90 4.15 6.30 2.40 5.50
> t.test(x=Y,mu=4,alternative="greater")
  One Sample t-test
            (mean(Y)-4)/(sd(Y)/sqrt(5))
data: Y
t = 0.9788, df = 4, p-value = 0.1915
alternative hypothesis: true mean is greater than 4
95 percent confidence interval:
 3.234287
               Tnf
sample estimates:
mean of x
     4.65
                mean(Y)
```

t test with R

```
> Y=c(4.9,4.15,6.3,2.4,5.5)
> Y
[1] 4.90 4.15 6.30 2.40 5.50
> t.test(x=Y,mu=4,alternative="greater")
  One Sample t-test
                                   Type 1 error rate
data: Y
t = 0.9788, df = 4, p-value = 0.1915
alternative hypothesis: true mean is greater than 4
95 percent confidence interval:
 3.234287
               Tnf
sample estimates:
mean of x
                        p value >5%
     4.65
                        Too risky to reject H0
```

Five yield data: 1.2, 4.2, 5.0, 5.2, 1.6

H0: True mean <1 t ha-1

H1: True mean > 1 t ha-1

Use a t test to test this hypothesis

Five yield data: 1.2, 4.2, 5.0, 5.2, 1.6

H0: True mean <2 t ha-1

H1: True mean > 2 t ha-1

Use a t test to test this hypothesis

Five yield data: 1.2, 4.2, 5.0, 5.2, 1.6

H0: True mean >6 t ha-1

H1: True mean <6 t ha-1

Use a t test to test this hypothesis

Key concepts

- Population
- Sample
- Estimator, estimate
- Bias and variance of an estimator
- Test
- Confidence interval
- Model

Key concepts

- Population
- Sample
- Estimator, estimate
- Bias and variance of an estimator
- Test
- Confidence interval
- Model

Confidence interval

Range of values that contains the true value with a certain probability

95% confidence interval of a mean

$$IC95 = [L, U]$$

P(L< True mean< U) = 0.95

L and U are calculated from the sample of data

Example

```
> Y
  [1] 4.90 4.15 6.30 2.40 5.50
  > t.test(Y,conf.level=0.95)
     One Sample t-test
  data: Y
  t = 7.0022, df = 4, p-value = 0.00219
  alternative hypothesis: true mean is not equal to 0
  95 percent confidence interval:
2.806223 6.493777
  sample estimates:
  mean of x
       4.65
```

Five yield data: 1.2, 4.2, 5.0, 5.2, 1.6

Ten yield data: 1.2, 4.2, 5.0, 5.2, 1.6, 2.8, 3.4, 6.1, 4.1, 3.2

Calculate

- 95% confidence interval with 5 and 10 data
- 90% confidence interval with 5 and 10 data

Key concepts

- Population
- Sample
- Estimator, estimate
- Bias and variance of an estimator
- Test
- Confidence interval
- Model

Key concepts

- Population
- Sample
- Estimator, estimate
- Bias and variance of an estimator
- Test
- Confidence interval
- Model

What is a statistical model?

- A particular type of mathematical model
- A model including measurable components
 ... and unmeasurable components
- Some of the model components are defined as random variables

What is a statistical model?

What is a linear statistical model?

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1P} \\ x_{21} & x_{22} & \dots & x_{2P} \\ \dots & \dots & \dots \\ x_{N1} & x_{N2} & \dots & x_{NP} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \\ \dots \\ \theta_P \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_N \end{pmatrix}$$

$$y_2 = x_{21}\theta_1 + x_{22}\theta_2 + ... + x_{2p}\theta_p + \varepsilon_2$$

Applications

- Test whether an output (Y) is related to one or several inputs (X)
 - → Statistical test

- Quantify effect of input X on output Y
 - Estimation and confidence interval

- Predict Y as a function of X
 - → Prediction

r -

Is yield influenced by N fertilizer rate?

By how much is yield increased if we add +1 kg ha⁻¹ of N fertilizer?

Can we predict yield from N fertilizer rate?

$$Y = \alpha + \beta X + \varepsilon$$

Estimation

Use estimators to compute parameter values from a sample of data

Classic estimators: Ordinary least squares

- Unbiaised
- With small variances (under some assumptions)

Ordinary least squares

Estimate the parameters by minimizing

$$OLS = \sum_{i=1}^{N} \left[y_i - (\alpha + \beta x_i) \right]^2$$

Ordinary least squares

Estimate the parameters by minimizing

$$OLS = \sum_{i=1}^{N} \left[y_i - (\alpha + \beta x_i) \right]^2$$

Ordinary least squares

Estimate the parameters by minimizing

$$OLS = \sum_{i=1}^{N} [y_i - (\alpha + \beta x_i)]^2$$

$$\frac{-\alpha + \beta x}{y}$$

$$y - \alpha + \beta x$$

$$X$$

Function « lm() » de R

```
Dose<-c(0,250,100,50,70,170,300,50,80,90,0,280,200,150)
Obs<-c(1.5,2.4,1.1,1.5,2.2,1.8,6.2,2.4,3.1,3.0,0.4,4.1,3.1,2)

plot(Dose,Obs, xlab="N fertilizer rate (kg ha-1)", ylab="Yield (t ha-1)", ylim=c(0,7),pch=19)

Mod<-lm(Obs~Dose)
summary(Mod)
```

```
> summary(Mod)
Call:
lm(formula = Obs \sim Dose)
Residuals:
              1Q Median
    Min
                                30
                                       Max
-1.38665 -0.72333 -0.08014 0.65167
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
           1.123915 0.445230 2.524 0.02670 *
(Intercept)
           0.010651 0.002789 3.818 0.00245 **
Dose
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.9973 on 12 degrees of freedom
Multiple R-squared: 0.5485, Adjusted R-squared: 0.5109
F-statistic: 14.58 on 1 and 12 DF, p-value: 0.002446
```

```
plot(Dose,Obs, xlab="N fertilizer rate (kg ha-1)", ylab="Yield (t ha-1)", ylim=c(0,7),pch=19)
Mod<-lm(Obs~Dose)
summary(Mod)
D<-1:300
pred<-coef(Mod)[1]+coef(Mod)[2]*D
lines(D,pred,col="red",lwd=2)</pre>
```


Test on the effect of N fertilizer

 H_0 : « β = 0 » against H_1 : « $\beta \neq 0$ »

Test on the effect of N fertilizer

 H_0 : « β = 0 » against H_1 : « $\beta \neq 0$ »

```
> summary(Mod)
Call:
lm(formula = Obs \sim Dose)
Residuals:
    Min 10 Median 30
                                      Max
-1.38665 -0.72333 -0.08014 0.65167 1.88080
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.123915  0.445230  2.524  0.02670 *
Dose 0.010651 0.002789 3.818 0.00245 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.9973 on 12 degrees of freedom
Multiple R-squared: 0.5485, Adjusted R-squared: 0.5109
F-statistic: 14.58 on 1 and 12 DF, p-value: 0.002446
```

Confidence intervals


```
Dose <-c(0,250,100,50,70,170,300,50,80,90,0,280,200,150)
0bs < -c(1.5, 2.4, 1.1, 1.5, 2.2, 1.8, 6.2, 2.4, 3.1, 3.0, 0.4, 4.1, 3.1, 2)
plot(Dose, Obs, xlab="N fertilizer rate (kg ha-1)", ylab="Yield (t ha-1)", ylim=c(0,7),pch=19)
Mod<-lm(Obs~Dose)</pre>
summary(Mod)
D < -1:300
pred<-coef(Mod)[1]+coef(Mod)[2]*D</pre>
lines(D,pred,col="red",lwd=2)
predIC<-predict(Mod, newdata=data.frame(Dose=D), interval="confidence", level=0.95)</pre>
predIC
lines(D,predIC[,2],lty=2,lwd=2, col="blue")
lines(D,predIC[,3],lty=2,lwd=2, col="blue")
```

```
Model evaluation
> summary(Mod)
Call:
lm(formula = Obs \sim Dose)
Residuals:
    Min
             1Q Median
                              3Q
                                      Max
-1.38665 -0.72333 -0.08014 0.65167 1.88080
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.123915  0.445230  2.524  0.02670 *
       0.010651 0.002789 3.818 0.00245 **
Dose
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.9973 on 12 degrees of freedom
Multiple R-squared: 0.5485. Adjusted R-squared: 0.5109
```

F-statistic: 14.58 on 1/and 12 DF, p-value: 0.002446

Conclusion Main steps for the development of a model

- Definition of inputs X and outputs Y
- Definition of equations f
- Estimation of parameters θ
- Tests and model assessment
- Practical use