```
In [1]: import numpy as np
        import pandas as pd
        from matplotlib import pyplot as plt
        from sklearn.datasets import make_classification
In [2]: | dff = pd.DataFrame({
             'x': [2,3,4,5,6,7,5,3.5,4,8],
             'y': [3.5,5,6,7,8,4,9,7,6,1.2],
             'z': [3,4,5,7,8,5,6,7,6.6,5]
        })
        plt.scatter(dff['x'],dff['y'],c=dff['z'])
        plt.scatter(4.5,6,color='blue')
Out[2]: <matplotlib.collections.PathCollection at 0x1d19f0a2df0>
         9
         8
          7
         6
         5
         4
         3
         2
                                               ż
                    3
                                 5
                                        6
In [3]: def ed(x1,x2,z1,z2):
            return np.sqrt((x2-x1)**2 + (z2-z1)**2)
        ed(3.4,5,7,9)
Out[3]: 2.5612496949731396
In [4]: ed(3.2,4,5,3)
Out[4]: 2.1540659228538015
In [5]: | np.argmin([4,5,6,7])
```

Customer Purchase

Out[5]: 0

```
In [6]: df = pd.read_csv('Social_Network_Ads .csv')
df
```

Out[6]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

```
In [7]: df.drop(columns='User ID',inplace=True)
```

```
In [8]: from sklearn.preprocessing import LabelEncoder, StandardScaler
lb = LabelEncoder()
sc = StandardScaler()
df['Gender'] = lb.fit_transform(df['Gender'])
df[['Age','EstimatedSalary']] = sc.fit_transform(df[['Age','EstimatedSalary']]
```

In [9]: df

Out[9]:		Gender	Age	EstimatedSalary	Purchased
	0	1	-1.781797	-1.490046	0
	1	1	-0.253587	-1.460681	0
	2	0	-1.113206	-0.785290	0
	3	0	-1.017692	-0.374182	0
	4	1	-1.781797	0.183751	0
	395	0	0.797057	-0.844019	1
	396	1	1.274623	-1.372587	1
	397	0	1.179110	-1.460681	1
	398	1	-0.158074	-1.078938	0
	399	0	1.083596	-0.990844	1

400 rows × 4 columns

```
In [10]: ind = df.iloc[:,:3]
dep = df.iloc[:,-1]
dep
```

```
Out[10]: 0
                  0
                  0
          2
                  0
          3
                  0
          4
                  0
          395
                  1
          396
                  1
          397
                  1
          398
                  0
          399
```

Name: Purchased, Length: 400, dtype: int64

In [11]: ind

t[11]:	G	ender	Δαe	EstimatedSalary				
	0		-1.781797	-1.490046				
	1		-0.253587	-1.460681				
	2		-1.113206	-0.785290				
	3	0	-1.017692	-0.374182				
	4	1	-1.781797	0.183751				
	395	0	0.797057	-0.844019				
	396	1	1.274623	-1.372587				
	397	0	1.179110	-1.460681				
	398	1	-0.158074	-1.078938				
	399	0	1.083596	-0.990844				
	400 row	s × 3	columns					
[12]:	xx = df from sk x_train	clear n,x_t	n.model_s est,y_tra	election impo rt t in,y_test = trair	_test_split(i	ind,dep,	test_size	=0.2,rand
[12]: [13]: t[13]:	xx = dffrom skx_train from skknn = kknn.fit	clear n,x_t clear cNeig c(x_t	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr	<pre>in,y_test = train rs import KNeight sifier(n_neighbor</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand
[13]: t[13]:	<pre>xx = df from sk x_train from sk knn = k knn.fit KNeight testing 'y' 'y'</pre>	<pre>clear n,x_t clear (Neig c(x_t porsC g = p ':y_t</pre>	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr lassifier d.DataFra est,	<pre>in,y_test = train rs import KNeight sifier(n_neighbor ain) r(n_neighbors=2)</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand
[13]: t[13]:	<pre>xx = df from sk x_train from sk knn = k knn.fit KNeight testing 'y</pre>	<pre>clear n,x_t clear KNeig c(x_t corsC g = p ':y_t hat'</pre>	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr lassifier d.DataFra est, : knn.pre	<pre>in,y_test = train rs import KNeight sifier(n_neighbor ain) r(n_neighbors=2) me({</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand
[13]: t[13]: [14]:	<pre>xx = df from sk x_train from sk knn = k knn.fit KNeight testing 'y' 'y_ }) testing</pre>	<pre>clear n,x_t clear KNeig c(x_t corsC g = p ':y_t hat'</pre>	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr lassifier d.DataFra est, : knn.pre ple(8)	<pre>in,y_test = train rs import KNeight sifier(n_neighbor ain) r(n_neighbors=2) me({</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand
[13]: :[13]: [14]:	<pre>xx = df from sk x_train from sk knn = k knn.fit KNeight testing 'y' 'y_ }) testing</pre>	<pre>clear n,x_t clear KNeig t(x_t poorsC g = p ':y_t hat' g.sam y_ha</pre>	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr lassifier d.DataFra est, : knn.pre ple(8)	<pre>in,y_test = train rs import KNeight sifier(n_neighbor ain) r(n_neighbors=2) me({</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand
[13]: :[13]: [14]:	<pre>xx = df from sk x_train from sk knn = k knn.fit KNeight testing 'y' 'y_ }) testing</pre>	<pre>clear n,x_t clear KNeig t(x_t poorsC g = p ':y_t hat' g.sam y_ha</pre>	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr lassifier d.DataFra est, : knn.pre ple(8) t	<pre>in,y_test = train rs import KNeight sifier(n_neighbor ain) r(n_neighbors=2) me({</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand
[13]: :[13]: [14]:	<pre>xx = df from sk x_train from sk knn = k knn.fit KNeight testing 'y' 'y_ }) testing y 191 0</pre>	<pre>clear n,x_t clear (Neig c(x_t corsC g = p ':y_t hat' g.sam y_ha</pre>	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr lassifier d.DataFra est, : knn.pre ple(8) t	<pre>in,y_test = train rs import KNeight sifier(n_neighbor ain) r(n_neighbors=2) me({</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand
[13]: t[13]: [14]:	<pre>xx = df from sk x_train from sk knn = k knn.fit KNeight testing 'y' 'y_ }) testing y 191 0 363 0</pre>	<pre>clear n,x_t clear (Neig c(x_t corsC g = p ':y_t hat' g.sam y_ha () () ()</pre>	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr lassifier d.DataFra est, : knn.pre ple(8) t	<pre>in,y_test = train rs import KNeight sifier(n_neighbor ain) r(n_neighbors=2) me({</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand
[13]: t[13]:	<pre>xx = df from sk x_train from sk knn = k knn.fit KNeight testing 'y' 'y_ }) testing y 191 0 363 0 175 0</pre>	<pre>clear n,x_t clear (Neig c(x_t corsC g = p ':y_t hat' g.sam y_ha () () () () ()</pre>	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr lassifier d.DataFra est, : knn.pre ple(8) t))	<pre>in,y_test = train rs import KNeight sifier(n_neighbor ain) r(n_neighbors=2) me({</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand
[13]: t[13]: [14]:	xx = df from sk x_train from sk knn = k knn.fit KNeight testing 'y 'y_ }) testing y 191 0 363 0 175 0 361 1	<pre>clear n,x_t clear c</pre>	n.model_s est,y_tra n.neighbo hborsClas rain,y_tr lassifier d.DataFra est, : knn.pre ple(8) t	<pre>in,y_test = train rs import KNeight sifier(n_neighbor ain) r(n_neighbors=2) me({</pre>	_test_split(i	ind,dep,	test_size	=0.2,rand

313 1

1