Найти в плоскостях $z_1=0$; $z_2=\left(L/2\right)$ площади поперечных сечений $\mathrm{TEM_{mnq}}$ -моды открытого резонатора (Рис.1) для излучения, имеющего длину волны λ . Рассмотреть случаи $R_{_{\!B}}=4\,L/\left(4-\sqrt{15}\right)$ и $R_{_{\!B}}=L$.

ЗАДАЧА № 2

Найти в пространстве между линзами минимальный размер (радиус) пучка ТЕМ_{mm} -моды открытой линии передачи (Рис.2) для излучения, имеющего длину волны λ . Рассмотреть случаи $F_a = 2\,L/\left(4-\sqrt{15}\right)$;

 $F_b = L/2$; $F_c = L$; $F_d = 2L$; $F_E = L/3$.

ЗАДАЧА № 3

Найти угловую расходимость излучения, которое имеет длину волны $\,\lambda\,$ и структуру поля ${\rm TEM_{mnq}}$ -моды резонатора, представленного на Puc.1.

ЗАДАЧА № 4

Найти комплексные частоты $\widetilde{\omega}_{mnq}$ и добротности Q_{mnq} ТЕМ $_{mnq}$ -мод резонатора (Рис.1), идентичные зеркала которого имеют коэффициенты отражения по полю $r\exp(i\,\varphi)$.

Рассмотреть случаи $R_a = L$; $R_b = 2L$; $R_c = 4L$; $R_c = 4L$; $R_d = 2L/3$. Провести численные расчёты для r = 0.98 , $\varphi = \pi$; m = n = 0 ; $q = 2 \times 10^6$; L = 100 см; $\varepsilon = \mu = 1$.

Найти добротность TEM_{00q} -моды резонатора, представленного на Рис.1. Резонатор имеет идентичные зеркала, имеющие радиус кривизны $R=2\,L$ и гауссов профиль коэффициента

отражения
$$r = \exp\left\{-\frac{k}{2\alpha}(x^2 + y^2)\right\}$$
.

ЗАДАЧА № 6

Найти характеристики основной моды TEM_{00} в открытой линии передачи (Рис.2). Найти ширину пучка и установить её зависимость от продольной координаты на периоде системы, определить фазовую скорость и мощность, полагая заданными фокусное расстояние линзы F и период системы L, а также длину волны λ и амплитуду поля E_0 на оси системы.

ЗАДАЧА № 7

Найти характеристики основной ${\rm TEM_{00q}}$ -моды открытого резонатора (Puc.1). Найти зависимость ширины пучка от продольной координаты, а также комплексную частоту $\widetilde{\omega}_{00q}$ и добротность $\ Q_{00q}$, рассчитать запасённую

энергию, излучаемую мощность и угловую расходимость излучения, полагая заданными радиус кривизны R и коэффициент отражения $r\exp(i\,\varphi)$ зеркал, длину волны λ и размер резонатора L, а также амплитуду поля E_0 на оси системы.

ЗАДАЧА № 8

Найти ширину параксиального волнового пучка (Рис.3) в плоскости z>0 по заданному в плоскости $z_0=0$ полю

$$\vec{\tilde{E}}_{0}(\vec{r}_{\perp}, 0) = \vec{x}_{0} \tilde{E}_{0} \exp\{-(x^{2} + y^{2})/2a_{0}^{2}\}$$
.

Найти комплексную амплитуду поля параксиального волнового пучка (Рис.3) в плоскости z>0 по заданному в плоскости

 $z_0 = 0$ спектру пространственных частот

$$\vec{\widetilde{E}}_0\left(k_x, k_y\right) = \vec{x}_0 \,\widetilde{E}_0 \exp\left\{-\left(k_x^2 + k_y^2\right)/2\kappa^2\right\} .$$

ЗАДАЧА № 10

Найти добротность моды представленного на Рис.1 резонатора, идентичные зеркала которого имеют радиусы кривизны $R=\infty$ и коэффициенты отражения r=0.99 . Известны длина резонатора L=20 см и её отношение к

длине волны $\left(\left. L \right/ \lambda \right. \right) = 10^6$. Дифракционными потерями моды следует пренебречь.

ЗАДАЧА № 11

Найти условие на диаметр $\,D_R\,$ зеркал резонатора (представленного на Рис.1), при выполнении которого можно пренебречь дифракционными потерями моды ${\rm TEM_{00q}}.$ Заданы радиусы кривизны зеркал $\,R=L\,$ и добротность $\,Q=10^8\,$ резонатора коэффициенты отражения $\,r=0.99\,$, а также отношение $\,(\,L\,/\,\lambda\,)\!=\!10^6\,$ его длины к длине волны.

ЗАДАЧА № 12

Найти зависимость ширины пучка основной ${\rm TEM_{00q}}$ -моды резонатора, изображённого на ${\rm Puc.1}$, от продольной координаты. Заданы радиусы кривизны зеркал R=L и отношение $\left(L/\lambda\right)=10^6$ длины резонатора к длине волны генерируемого на этой моде излучения.

Найти зависимость ширины пучка основной TEM_{00} -моды открытой линии передачи, изображённой на Рис.2, от продольной координаты в пространстве между линзами. Заданы расстояние между линзами L=0.75~F и отношение $\left(L/\lambda\right)=10^6$ этого расстояния к длине волны распространяющегося на этой моде излучения.

ЗАДАЧА № 14

Найти условие на диаметр D_R линз открытой линии (изображённой на Рис.2), при выполнении которого можно пренебречь дифракционными потерями моды TEM_{00} . Заданы расстояние между линзами L=2~F и отношение $\left(L/\lambda\right) = 10^6$ этого расстояния к длине волны распространяющегося на этой моде излучения.

ЗАДАЧА № 15

Найти постоянную распространения \widetilde{h}_{00} основной TEM_{00} -моды открытой линии передачи (изображённой на Рис.4). Заданы расстояние L=2 F между линзами, отношение $(L/\lambda)=10^6$ этого расстояния к длине волны распространяющегося на этой моде излучения, а тах

волны распространяющегося на этой моде излучения, а также коэффициент пропускания по полю t < 1 плоскопараллельной пластинки.

Рисунки к задачам F F a Рис. 1 Puc. 3 Puc. 2

Рисунки к задачам

