федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Математический анализ Расчётно-графическая работа №1 Последовательность и её предел

Выполнили:

Студенты потока 13.3: Дорошенко Артём Алвари Юсеф Кулагин Вячеслав Знаменский Александр Преподаватель: Трушихина Ирина Петровна

Оглавление

Задание 1. Метод математической индукции (№ 1.1)	3
Задание З. Исследование сходимости (№3.3)	
Вывод.	
Оценочный лист	

Задание 1. Метод математической индукции (№ 1.1)

Пользуясь методом математической индукции, докажите, что при любом n ∈ N:

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{13}{24} npu n > 1$$

Для доказательства будем пользоваться планом из варианта задания.

1. База индукции – проверим утверждение на произвольном номере n, пусть это будет число 2.

$$\frac{1}{2+1} + \frac{1}{2+2} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12} = \frac{14}{24} > \frac{13}{24}$$
, база индукции выполняется

2. Предположим, что утверждение верно при n = k, обозначим его как а

$$a = \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} > \frac{13}{24} npu k > 1$$

3. Шаг индукции. Докажем, что утверждение верно при n = k + 1

$$\frac{1}{k+2}$$
+ $\frac{1}{k+3}$ +...+ $\frac{1}{2k+2}$ должно быть больше 13/24

Распишем последовательность шире, а также добавим и сразу вычтем $\frac{1}{k+1}$:

$$\frac{-1}{k+1}$$
 + $\frac{1}{k+1}$ + $\frac{1}{k+2}$ + ... + $\frac{1}{2k}$ + $\frac{1}{2k+1}$ + $\frac{1}{2k+2}$, используя утверждение при $n=k$ получим

$$\frac{-1}{k+1}$$
 + a + $\frac{1}{2k+1}$ + $\frac{1}{2k+2}$

$$a + \frac{1}{2(2k+1)(k+1)}$$

4. Таким образом мы видим, что следует добавить к а положительную дробь (т.к. k>1), при этом $a>\frac{13}{24}$ (из пункта 2), а если добавить к положительному числу другое положительное, которое больше какого-то значения, то мы получим число, которое заведомом больше нашего значения. Последовательность доказана.

Задание 3. Исследование сходимости (№3.3)

Дана последовательность a_n . Исследуйте её поведение при $n \to \infty$.

$$a_n = \frac{3+8+...+(5n-2)}{4+7+...+(3n+1)}$$

1. Найдем, чему равен предел этой последовательности.

Заметим, что и в числителе, и в знаменателе представлены арифметические прогрессии. Чтобы вычислить предел, найдем суммы этих последовательностей, используя формулу $S = \frac{2a_1 + d(n-1)}{2} \cdot n$.

Разница первой прогрессии равна 8 - 3 = 5. Тогда d = 5. Вычислим сумму:

$$S = \frac{2 \cdot 3 + 5 \cdot (n-1)}{2} \cdot n = (5n+1) \cdot \frac{n}{2}$$

Разница второй прогрессии равна 7 - 4 = 3. Тогда d = 3. Вычислим сумму:

$$S = \frac{2 \cdot 4 + 3 \cdot (n-1)}{2} \cdot n = (3n+5) \cdot \frac{n}{2}$$

Подставим полученные значения в изначальную последовательнось:

$$a_n = \frac{(5n+1) \cdot \frac{n}{2}}{(3n+5) \cdot \frac{n}{2}} = \frac{5n+1}{3n+5}$$

Теперь найдем предел последовательности:

$$\lim_{n \to \infty} \frac{5n+1}{3n+5} = \lim_{n \to \infty} \frac{n(5+\frac{1}{n})}{n(3+\frac{5}{n})} = \lim_{n \to \infty} \frac{5+\frac{1}{n}}{3+\frac{5}{n}} = \frac{5+0}{3+0} = \frac{5}{3}$$

2. Для построения графика будем пользоваться уже полученной последовательностью $a_n = \frac{5n+1}{3n+5}$, построим график зависимости а от n (n > 1)

На графике также выделен предел (5/3) пунктирной линией, видно, что график стремится к этому числу.

- 3. Для демонстрации сходимости последовательности выполним несколько промежуточных пунктов:
- а. По определению предела последовательности, докажем найденный ранее предел и найдем ϵ и n_0

$$\begin{split} & \Pi y cmb \, \varepsilon > 0 \colon \\ & \left| \frac{5n+1}{3n-5} - \frac{5}{3} \right| < \varepsilon \\ & \left| \frac{15n+3-15n-25}{9n+15} \right| < \varepsilon \\ & \left| \frac{-22}{9n+15} \right| < \varepsilon \\ & \frac{22}{9n+15} < \varepsilon \\ & \frac{22-15\varepsilon}{9\,\varepsilon} < n \\ & n_0 = \left[\frac{22-15\,\varepsilon}{9\,\varepsilon} \right] \end{split}$$

- b. Возьмём 3 разных числа $\epsilon_1 > \epsilon_2 > \epsilon_3$. Пусть это будут $\epsilon_1 = 0,1$; $\epsilon_2 = 0,01$; $\epsilon_3 = 0,001$.
 - с. Изобразим графики для каждого є

На рисунках график выполнен красным цветом, предел изображён чёрными точками, а є-труба выполнена оранжевыми пунктирными линиями.

Для
$$\varepsilon_1 = 0,1$$
:

Для $\varepsilon_3 = 0,001$:

d. Найдем для каждого графика n_0 после которого все элементы попадают в ϵ -трубу. На скриншотах графиков представлены эти точки.

$$\varepsilon_1 = 0.1: \quad n_0 = \left[\frac{22 - 1.5}{0.9} \right] = 23$$

$$\varepsilon_2 = 0.01: \quad n_0 = \left[\frac{22 - 0.15}{0.09} \right] = 243$$

$$\varepsilon_3 = 0.001: \quad n_0 = \left[\frac{22 - 0.015}{0.009} \right] = 2443$$

Вывод

Проведя данную работу, мы доказали справедливость выражения с помощью метода математической индукции, а также вычислили предел последовательности и исследовали его сходимость.

Оценочный лист

ФИ	Вклад в процентах
Дорошенко Артём	100
Алвари Юсеф	100
Кулагин Вячеслав	100
Знаменский Александр	100