TD agreg n°2

Coralie Renault

14 septembre 2016

Exercice 1

[Intégrales de Bertrand] Pour $\alpha, \beta \in \mathbb{R}$ on étudie la nature de l'intégrale

$$\int^{+\infty} \frac{t}{t^{\alpha} (\ln t)^{\beta}}$$

- 1. On suppose $\alpha > 1$. Montrer que l'intégrale étudiée converge.
- 2. On suppose $\alpha = 1$. Calculer

$$\int^x \frac{t}{t(\ln t)^\beta}$$

et déterminer pour quels $\beta \in \mathbb{R}$ l'intégrale étudiée converge.

3. On suppose $\alpha < 1$, que pouvez-vous dire de l'intégrale?

Exercice 2 (Espace L^p , inégalités de Young et Hölder)

Soit (Ω, Σ, μ) un espace mesuré.

1. Soit $a, b \ge 0$ et soit $p, q \in (1, +\infty)$ tel que $\frac{1}{p} + \frac{1}{q} = 1$. Montrer l'inégalité de Young :

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$$

2. $p,q\in(1,+\infty)$ tel que $\frac{1}{p}+\frac{1}{q}=1,$ $f\in L^p(\mu)$ et $g\in L^q(\mu)$ Montrer que pour tout $\lambda>0$ on a :

$$\int_{\Omega} |fg| d\mu \leq \frac{\lambda^p}{p} \int_{\Omega} |f|^p d\mu + \frac{\lambda^{-q}}{q} \int_{\Omega} |g|^q d\mu.$$

3. Montrer l'inégalité de Hölder :

$$||fg||_1 \le ||f||_p ||g||_q.$$

Cette inégalité est-elle vraie pour p = 1 et $q = +\infty$?

- 4. Soient p et p' dans $[1, +\infty[$. Montrer que si $f \in L^p(\mu) \cap L^{p'}(\mu)$, alors $f \in L^r(\mu)$, $\forall r \in [p, p']$.
- 5. Montrer que si μ est une mesure finie alors

$$L^{\infty}(\mu) \subset \bigcap_{p \geq 1} L^p(\mu),$$

et pour tout f

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

1

6. Montrer que si $f \in L^p(\mu)$ et $g \in L^q(\mu)$ avec $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ alors $fg \in L^r(\mu)$ et $||fg||_r \le ||f||_p ||g||_q$.

Exercice 3 (Sphère aléatoire AP 2014)

On considère une sphère ayant un rayon aléatoire R qui suit une loi ayant pour densité $f \in L^1([0,1])$ et une variable aléatoire H indépendate de R qui suit une loi uniforme sur [0,1]. On coupe la sphère aléatoire S de centre $0 \in \mathbb{R}^3$ par un plan aléaloite P à distance H du centre et on désigne par X le rayon du cercle $P \cap S$ avec pour convention X = 0 si $H \geq R$

- 1. Déterminer la loi du couple (R, H).
- 2. Calculer P(X=0).
- 3. Pour $x \in [0, 1)$, montrer que

$$P(X > x) = \int_{x}^{1} \sqrt{r^2 - x^2} f(r) dr.$$

- 4. Pour $h \in L^1([0,1])$, on pose \tilde{h} la fonction définie pp par $\tilde{h}(x) = \frac{h(\sqrt{x})}{2\sqrt{x}}$. Montrer que $h \to \tilde{h}$ est un isomorphisme isométrique de $L^1([0,1])$.
- 5. soit ϕ la fonction définie pp sur [0,1] par $\phi(u) = u \int_u^1 \frac{f(r)}{\sqrt{r^2 u^2}} dr$. On admet que $\phi \in L^1([0,1])$. Montrer que

$$P(X > x) = \int_{x}^{1} \phi(u) du.$$

6. Montrer que la loi de X est la mesure P_X sur [0,1] définie par :

$$P_X = P(X=0)\delta_0 + \phi(u)du.$$

Exercice 4

Montrer que si un sous-espace vectoriel F d'un espace vectoriel normé E est ouvert alors F=E.

Exercice 5 (Important!)

Soit E un espace normé et F un espace de Banach. Alors $\mathcal{L}(E,F)$ est aussi un espace de Banach.