WHAT IS CLAIMED IS:

1. A polyimide optical material, comprising heterocyclic polyimide having an unit represented by the following general formula (1), (2) or (3):

5

$$- \underbrace{\hspace{-1em} - \hspace{-1em} N}_{0} \underbrace{\hspace{-1em} - \hspace{-1em} \Psi_{1} \underbrace{\hspace{-1em} - \hspace{-1em} N}_{n}}_{0} - \underbrace{\hspace{-1em} - \hspace{-1em} \Psi_{1} \underbrace{\hspace{-1em} - \hspace{-1em} N}_{n}}_{n} - \underbrace{\hspace{-1em} - \hspace{-1em} (1)}_{n}$$

(wherein Φ_1 s are the same or different and are individually a quadrivalent organic group, the Φ_1 s including at least 0.2 molar equivalent of a quadrivalent hetrocyclic group selected from the following Group (a); Ψ_1 s may be the same or different and are individually a bivalent organic group; and n is a positive integer),

$$- \underbrace{\hspace{-0.2cm} - \hspace{-0.2cm} N}_{0} \hspace{-0.2cm} - \hspace{-0.2cm} \Psi_{2} \hspace{-0.2cm} - \hspace{-0.2cm} - \hspace{-0.2cm} \Psi_{2} \hspace{-0.2cm} - \hspace{-0.2cm} - \hspace{-0.2cm} \cdot \hspace{-0.2cm} \cdot$$

15

20

10

(wherein Φ_2 s are the same or different and are individually a quadrivalent organic group; Ψ_2 s may be the same or different and are individually a bivalent organic group, the Ψ_2 s including at least 0.2 molar equivalent of a bivalent hetrocyclic group selected from the following Group (b); and n is a positive integer),

$$- \underbrace{-} N \underbrace{+} O \underbrace{+}$$

(wherein Φ_3 s are the same or different and are individually a quadrivalent organic group, the Φ_3 s including at least 0.1 molar equivalent of a quadrivalent hetrocyclic group selected from the following Group (a); Ψ_3 s may be the same or different and are individually a bivalent organic group, the Ψ_3 s including at least 0.1 molar equivalent of a bivalent hetrocyclic group selected from the following Group (b); and n is a positive integer): Group (a):

Group (b):

5

10

15

(In the above formulas, Xs are the same or different and are individually >0 group, >S group or >N-R^f group (R^f group is perfluoroalkyl group); R are the same or different and are individually fluoro group, chloro group, bromo group, iodo group, perfluoroalkyl group, perfluoroalkoxy group, perfluoroalkylthio group, nitro group or cyano group; m is an integer of 1 to 4).

- 2. The polyimide optical material according to claim 1, wherein the polyimide optical material is formed of a compound represented by the general formula (1).
- 3. The polyimide optical material according to claim 2, wherein the quadrivalent hetrocyclic group

selected from the Group (a) are the groups shown in the following Group (c):

Group (c):

4. The polyimide optical material according to claim 2, wherein the balance of the Φ_1s is selected from the quadrivalent fluorine-substituted aromatic hydrocarbon groups shown in the following Group (e):

5

Group (e):

5. The polyimide optical material according to claim 2, wherein the bivalent organic groups Ψ_1s are selected from the bivalent fluorine-substituted aromatic hydrocarbon groups shown in the following Group (f):

Group (f):

5

10

15

- 6. The polyimide optical material according to claim 2, wherein the content of fluorine atoms in the unit represented by the general formula (1) is confined within the range of 5 to 40% by weight.
- 7. The polyimide optical material according to claim 1, wherein the polyimide optical material is formed of a compound represented by the general formula (2).
- 8. The polyimide optical material according to claim 7, wherein the bivalent hetrocyclic group of the Group (b) are the quadrivalent fluorine-substituted aromatic hydrocarbon groups shown in the following Group (e):

Group (e):

9. The polyimide optical material according to
5 claim 7, wherein the bivalent hetrocyclic group of the
Group (b) are the bivalent aromatic heterocyclic groups
shown in the following Group (d):

Group (d):

10. The polyimide optical material according to claim 7, wherein the balance of the Ψ_2s is selected from the bivalent fluorine-substituted aromatic hydrocarbon groups shown in the following Group (f):

Group (f):

5

10

15

- 11. The polyimide optical material according to claim 7, wherein the content of fluorine atoms in the unit represented by the general formula (2) is confined within the range of 5 to 40% by weight.
- 12. The polyimide optical material according to claim 1, wherein the polyimide optical material is formed of a compound represented by the general formula (3).
 - 13. The polyimide optical material according to claim 12, wherein the quadrivalent hetrocyclic groups of the Group (a) are the quadrivalent aromatic hetrocyclic groups shown in the following Group (c):

Group (c):

14. The polyimide optical material according to claim 12, wherein the balance of the Φ_3 s is selected from quadrivalent fluorine-substituted aromatic hydrocarbon groups shown in the following Group (e):

Group (e):

15. The polyimide optical material according to

5 claim 12, wherein the bivalent hetrocyclic group of the

Group (b) are the bivalent aromatic heterocyclic groups

shown in the following Group (d):

Group (d):

16. The polyimide optical material according to claim 12, wherein the balance of the Ψ_3s is selected from the bivalent fluorine-substituted aromatic hydrocarbon groups shown in the following Group (f):

Group (f):

5

10

- 17. The polyimide optical material according to claim 12, wherein the content of fluorine atoms in the unit represented by the general formula (3) is confined within the range of 5 to 40% by weight.
- 18. A polyimide precursor solution comprising a heterocyclic polyamic acid having an unit represented by the following general formula (4), (5) or (6):

$$\underbrace{+\stackrel{\text{H}}{\stackrel{\text{O}}{\stackrel{\text{O}}{\stackrel{\text{H}}{\longrightarrow}}}} \Phi_1 \stackrel{\text{O}}{\stackrel{\text{H}}{\longrightarrow}} \Psi_1 \stackrel{\text{H}}{\longrightarrow} \Psi_1 \stackrel{\text{H}}{\longrightarrow} \cdots (4) }_{\text{COOH}}$$

(wherein $\Phi_1 s$ may be the same or different and are individually a quadrivalent organic group, the $\Phi_1 s$

including at least 0.2 molar equivalent of a quadrivalent hetrocyclic group selected from the following Group (a); Ψ_1 s may be the same or different and are individually a bivalent organic group; and n is a positive integer).

$$\underbrace{+\stackrel{\text{H}}{\stackrel{\text{O}}{\stackrel{\text{O}}{\stackrel{\text{H}}{\longrightarrow}}}} \Phi_{2} \stackrel{\text{O}}{\stackrel{\text{H}}{\longrightarrow}} \Psi_{2} \stackrel{\text{H}}{\longrightarrow} \Psi_{2} \stackrel{\text{H}}{\longrightarrow} \cdots (5)}_{\text{COOH}}$$

(wherein Φ_2 s may be the same or different and are individually a quadrivalent organic group; Ψ_2 s may be the same or different and are individually a bivalent organic group, the Ψ_2 s including at least 0.2 molar equivalent of a bivalent hetrocyclic group selected from the following Group (b); and n is a positive integer).

(wherein Φ_3 s may be the same or different and are individually a quadrivalent organic group, the Φ_3 s including at least 0.1 molar equivalent of a quadrivalent hetrocyclic group selected from the following Group (a); Ψ_3 s may be the same or different and are individually a bivalent organic group, the Ψ_3 s including at least 0.1 molar equivalent of a bivalent hetrocyclic group selected from the following

Group (b); and n is a positive integer).

Group (a):

5 Group (b):

10

(In the above formulas, X may be the same or different and are individually >0 group, >S group or $>N-R^f$ group (R^f group is perfluoroalkyl group); R may be the same or different and are individually fluoro

group, chloro group, bromo group, iodo group, perfluoroalkyl group, perfluoroalkoxy group, perfluoroalkylthio group, nitro group or cyano group; m is an integer of 1 to 4).

19. An optical waveguide element comprising a core layer and a clad layer, wherein the core layer and/or the clad layer contain the polyimide optical material claimed in claim 1.