Practical-3

<u>AIM:</u> Implement Randomized Primality Testing algorithm using Fermat's Theorem.

Fermat's Little Theorem:

If n is a prime number, then for every a, 1 < a < n-1, $a^{n-1} \equiv 1 \pmod{n}$ i.e. in other words $a^{n-1} \% n = 1$

Example:

- 1. Since 5 is prime, $2^4 \equiv 1 \pmod{5}$ [or $2^4 \% 5 = 1$], $3^4 \equiv 1 \pmod{5}$ and $4^4 \equiv 1 \pmod{5}$
- 2. Since 7 is prime, $2^6 \equiv 1 \pmod{7}$, $3^6 \equiv 1 \pmod{7}$, $4^6 \equiv 1 \pmod{7}$ $5^6 \equiv 1 \pmod{7}$ and $6^6 \equiv 1 \pmod{7}$

This method is a probabilistic method and is based on Fermat's Little Theorem. If a given number is prime, then this method always returns true. If the given number is composite (or non-prime), then it may return true or false, but the probability of producing incorrect results for composite is low and can be reduced by doing more iterations.

Algorithm:

- // Higher value of k indicates probability of correct // results for composite inputs become higher. For prime // inputs, result is always correct
- 1) Repeat following k times:
 - a) Pick a randomly in the range [2, n 2]
 - b) If $gcd(a, n) \neq 1$, then return false
 - c) If $a^{n-1} \mod n \neq 1 \pmod n$, then return false
- 2) Return true [probably prime].

Algorithm:GCD(a,b)

```
int GCD(int a,int b)
{
   if(a < b)
    return GCD(b,a)
   else if (a%b==0)
   return b;
   else
   return GCD(b,a%b);
}</pre>
```

Algorithm: Modular Exponentiation (a,m,n)

//This will compute a^m mod n

- 1. res=1 /*To store the result of $a^m \mod n$ */
- 2. Convert Exponent 'm' into Binary and store its bits in Array X. Least significant bit is say at 0th Index and Most significant bit is say at (n-1)th Index.
- 3. count=X.length //j indicates number of bits required to represent exponent m

```
4. for (i=count-1;i>=0;i--)
{
    res=(res*res)%n; //Square the result
    if(X[i]==1) /*If i<sup>th</sup> bit is set then Multiply else skip
    {
       res=(res*a)%n; //Multiply
    }
}
```

5. return res;

To compute $a^m \mod n$, $\log_2(m)$ multiplications are required, so to compute $a^{n-1} \mod n$, $\log_2(n)$ multiplications are required.

Thus we can use Multiply and Square Algorithm to find out the Modular Exponentiation i.e. to compute a^m mod n and Euclidean's algorithm to find out GCD (Greatest Common Divisor) of two numbers.

As both can be computed in Logarithmic Time, overall running time will be upper bounded by O(klog(n)).

Exercise

- 1. What is the need of Randomized algorithm for Primality Testing?
- 2. Justify: Fermat's algorithm to test primality is the Monte-Carlo type of algorithm.
- 3. Which kind of error can this algorithm make? How to reduce probability of Error?
- 4. Trace Modular Exponentiation on following by showing all the steps: 145^47 MOD 48