Imaging sciences – Overview

• Imaging:

Modeling the image formation process

• Computer graphics:

Rendering images/videos from symbolic representation

Imaging sciences – Overview

• Computer vision:

Extracting information from images/videos

Imaging sciences – Overview

• Computer vision:

Extracting information from images/videos

• Image/Video processing:

Producing new images/videos from input images/videos

Denoising

Feature detection

Enhancement

Inpainting

Compression

 ${\bf Super-resolution}$

Source: Iasonas Kokkinos

- Image processing: define a new image from an existing one
- ullet Video processing: same problems + motion information

Denoising

Enhancement

Inpainting

 ${\bf Compression}$

 ${\bf Super-resolution}$

Source: Iasonas Kokkinos

- Image processing: define a new image from an existing one
- ullet Video processing: same problems + motion information

Colorimetric transform

• Filtering: change pixel values

• Segmentation: provide an attribute to each pixel

Imaging sciences – Photo manipulation

Photo manipulation – Applications & Techniques

(sources Wikipedia)

Media industry

 $Skin \ flaw \ removal \ (Minnie \ Driver \ by \ Justin \ Hoch)$

Art

Editing (by Achraf Baznani)

- Media / Journalism / Advertising
- Restoration of cultural heritage
- Propaganda / Political purpose
- Art / Personal use

Propaganda

Joseph Stalin with Nikolai Yezhov entirely removed after retouching

Imaging sciences – Photo manipulation

Photo manipulation – Applications & Techniques

(sources Wikipedia)

Media industry

Art

Skin flaw removal (Minnie Driver by Justin Hoch) Editing (by

Editing (by Achraf Baznani)

Propaganda

Joseph Stalin with Nikolai Yezhov entirely removed after retouching

- Media / Journalism / Advertising
- Restoration of cultural heritage
- Propaganda / Political purpose
- Art / Personal use
- Color & contrast enhancement
- Image sharpening (reduce blur)
- Removing elements (inpainting)
- Removing flaws (skin, scratches)
- Image compositing/fusion
- Image colorization

Imaging sciences – Photo manipulation

Photo manipulation – Applications & Techniques

(sources Wikipedia)

Media industry

Skin flaw removal (Minnie Driver by Justin Hoch)

Art

Editing (by Achraf Baznani)

- Media / Journalism / Advertising
- Restoration of cultural heritage
- Propaganda / Political purpose
- Art / Personal use

Propaganda

Joseph Stalin with Nikolai Yezhov entirely removed after retouching

- Color & contrast enhancement
- Image sharpening (reduce blur)
- Removing elements (inpainting)
- Removing flaws (skin, scratches)
- Image compositing/fusion
- Image colorization

Often handmade by graphic designers/artists/confirmed amateurs or aided with raster images/graphics editor

Classical editors: Adobe Photoshop (commercial), GIMP (free and open-source)

Imaging sciences – Is image processing = Photo manipulation?

Photo manipulation

Manual/Computer aided

Performed image per image

Users: artists, graphic designers

Target: general public

Input: photography

Goal: visual aspects

Main image processing purposes

Automatic/Semi-supervised

• Applied to image datasets

• Users: industry, scientists

• Target: industry, sciences

• Input: any kind of \geqslant 2d signals

• Goal: measures, post analysis

Photo manipulation uses some image processing tools Scope of image processing is much wider than photography

V.S

Imaging sciences – Related fields

Multidisciplinary of Image processing

Intersection of several covering fields

• Physics and biology: link between phenomena and measures

• Mathematics: analyze observations and make predictions

• Computer science: algorithms to extract information

• Statistics: account for uncertainties in data

Imaging sciences - Related fields

Multidisciplinary of Image processing

Intersection of several covering fields

• Physics and biology: link between phenomena and measures

• Mathematics: analyze observations and make predictions

• Computer science: algorithms to extract information

• Statistics: account for uncertainties in data

Differences with signal processing

• Image processing: subset of signal processing

• Inputs and outputs: images, series of images or videos

• Content: sound waves, stock prices behave differently

• Signals are usually causal: $f(t_0)$ depends only on f(t) for any time $t \leqslant t_0$

• Images are non-causal: $f(s_0)$ may depend on f(s) for any position s

Imaging sciences – What is image restoration?

What is image restoration?

• Subset of image processing

• Input: corrupt image

Output: estimate of the clean/original image

• Goal: reverse the degradation process

Image restoration requires **accurate models** for the degradation process. Knowing and modeling the sources of corruptions is essential.

Imaging sciences – Why image restoration?

Why image restoration?

- Artistic value?
- or, Automatic image analysis?
 - Object recognition
 - Image indexation
 - Image classification
 - . . .
- Usually one of the first steps in computer vision (CV) pipelines.

Pointillism (Georges Seurat, 1884-1886)

• A source of inspiration to perform higher level tasks.

What is an image?

La Trahison des images, René Magritte, 1928 (Los Angeles County Museum of Art)

Definition (Collins dictionary)

image, *noun*: the visual impression of something produced by reflection from a mirror, refraction through a lens, etc.

Definition (Collins dictionary)

image, *noun*: the visual impression of something produced by reflection from a mirror, refraction through a lens, etc.

Definition (Oxford dictionary)

image, *noun*: a visible impression obtained by a camera, telescope, microscope, or other device, or displayed on a computer or video screen.

Definition (Collins dictionary)

image, *noun*: the visual impression of something produced by reflection from a mirror, refraction through a lens, etc.

Definition (Oxford dictionary)

image, *noun*: a visible impression obtained by a camera, telescope, microscope, or other device, or displayed on a computer or video screen.

Definition (Merriam-Webster dictionary)

image, noun: a visual representation of something: such as (1): a likeness of an object produced on a photographic material (2): a picture produced on an electronic display (such as a television or computer screen).

Definition (Collins dictionary)

image, *noun*: the visual impression of something produced by reflection from a mirror, refraction through a lens, etc.

Definition (Oxford dictionary)

image, *noun*: a visible impression obtained by a camera, telescope, microscope, or other device, or displayed on a computer or video screen.

Definition (Merriam-Webster dictionary)

image, noun: a visual representation of something: such as (1): a likeness of an object produced on a photographic material (2): a picture produced on an electronic display (such as a television or computer screen).

- Obtained/Produced form a device
- Something you can visualize on a display
- A representation/impression of something

Definition (Collins dictionary)

image, *noun*: the visual impression of something produced by reflection from a mirror, refraction through a lens, etc.

Definition (Oxford dictionary)

image, *noun*: a visible impression obtained by a camera, telescope, microscope, or other device, or displayed on a computer or video screen.

Definition (Merriam-Webster dictionary)

image, noun: a visual representation of something: such as (1): a likeness of an object produced on a photographic material (2): a picture produced on an electronic display (such as a television or computer screen).

- Obtained/Produced form a device
- Something you can visualize on a display
- A representation/impression of something

How has it been acquired?

What is the format?

What is the content?

Definition (Collins dictionary)

image, noun: the value of a function, f(x), corresponding to the point x.

Definition (Collins dictionary)

image, noun: the value of a function, f(x), corresponding to the point x.

Definition (Oxford dictionary)

image, noun: a point or set formed by mapping from another point or set.

Definition (Collins dictionary)

image, noun: the value of a function, f(x), corresponding to the point x.

Definition (Oxford dictionary)

image, noun: a point or set formed by mapping from another point or set.

Definition (Merriam-Webster dictionary)

image, *noun*: a set of values given by a mathematical function (such as a homomorphism) that corresponds to a particular subset of the domain.

Definition (Collins dictionary)

image, noun: the value of a function, f(x), corresponding to the point x.

Definition (Oxford dictionary)

image, noun: a point or set formed by mapping from another point or set.

Definition (Merriam-Webster dictionary)

image, *noun*: a set of values given by a mathematical function (such as a homomorphism) that corresponds to a particular subset of the domain.

Imaging sciences – What is an image for us?

A function?

- ullet Think of an image as a function f from \mathbb{R}^2 (2d space) to \mathbb{R} (values).
- $f(s_1, s_2)$ gives the intensity at location $(s_1, s_2) \in \mathbb{R}^2$.
- In practice, usually limited to: $f:[0,1]^2 \to \mathbb{R}$.

Source: Steven Seitz

Convention: larger values correspond to brighter colors.

Imaging sciences – What is an image for us?

A function?

- Think of an image as a function f from \mathbb{R}^2 (2d space) to \mathbb{R} (values).
- $f(s_1, s_2)$ gives the intensity at location $(s_1, s_2) \in \mathbb{R}^2$.
- In practice, usually limited to: $f:[0,1]^2 \to \mathbb{R}$.

Source: Steven Seitz

Convention: larger values correspond to brighter colors.

A color image is defined similarly as a 3 component vector-valued function:

$$f(s_1, s_2) = \begin{pmatrix} r(s_1, s_2) \\ g(s_1, s_2) \\ b(s_1, s_2) \end{pmatrix} .$$

Imaging sciences – Types of images

- Continuous images:
 - Analog images/videos,
 - Vector graphics editor, or
 - 2d/3d+time graphics editors.
 - Format: svg, pdf, eps, 3ds...
- Discrete images:
 - Digital images/videos,
 - Raster graphics editor.
 - Format: jpeg, png, ppm...
- (Adobe Photoshop, GIMP, ...)

(Adobe Illustrator, Inkscape, ...)

(Blender, 3d Studio Max, ...)

• All are displayed on a digital screen as a digital image/video (rendering).

(a) Inkscape

(b) Gimp

20

Imaging sciences – Types of images – Analog photography

- Progressively changing recording medium,
- Often chemical or electronic,
- Modeled as a continuous signal, e.g.:

ullet Gray level images: $[0,1]^2 o \mathbb{R}$

• Color images: $[0,1]^2 \to \mathbb{R}^3$

position to gray level, position to RGB levels.

(a) Daguerrotype

(b) Roll film

(c) Orthicon tube

Imaging sciences – Types of images – Analog photography

Example (Analog photography/video)

• First type of photography was analog.

(a) Daguerrotype

(b) Carbon print

(c) Silver halide

• Still in used by photographs and the movie industry for its artistic value.

(d) Carol (2015, Super 16mm) (e) Hateful Eight (2015, 70mm) (f) Grand Budapest Hotel (2014, 35mm)

Raster images

ullet Sampling: reduce the 2d continuous space to a discrete grid $\Omega\subseteq\mathbb{Z}^2$

ullet Gray level image: $\Omega o \mathbb{R}$ (discrete position to gray level)

ullet Color image: $\Omega o \mathbb{R}^3$ (discrete position to RGB)

Bitmap image

ullet Quantization: map each value to a discrete set [0,L-1] of L values (e.g., round to nearest integer)

• Often $L = 2^8 = 256$ (8bits images \equiv unsigned char)

 $\begin{array}{ll} \bullet \ \ {\rm Gray \ level \ image:} & \Omega \to [0,255] \\ \bullet \ \ {\rm Color \ image:} & \Omega \to [0,255]^3 \end{array}$ $(255 = 2^8 - 1)$

• Optional: assign instead an index to each pixel pointing to a color palette (format: .png, .bmp)

ullet Digital images: sampling + quantization

→ 8bits images can be seen as a matrix of integer values

Definition (Collins dictionary)

pixel, *noun*: any of a number of very small "picture elements" that make up a picture, as on a visual display unit.

pixel, *noun*: smallest area on a computer screen which can be given a separate color by the computer.

We will refer to an element $s \in \Omega$ as a pixel location,

f(s) as a pixel value,

and a pixel is a pair (s, f(s)).

Functional representation: $f:\Omega\subseteq\mathbb{Z}^d\to\mathbb{R}^K$

- *d*: dimension (d=2 for pictures, d=3 for videos, ...)
- *K*: number of channels (K = 1 monochrome, 3 color, ...)
- $\begin{array}{ll} \bullet & s = (i,j) \text{:} & \text{pixel position in } \Omega \\ \bullet & f(s) = f(i,j) \text{:} & \text{pixel value(s) in } \mathbb{R}^K \\ \end{array}$

Functional representation: $f: \Omega \subseteq \mathbb{Z}^d \to \mathbb{R}^K$

- d: dimension (d = 2 for pictures, d = 3 for videos, ...)
- K: number of channels (K = 1 monochrome, 3 color, ...)
- $\bullet \ \ s=(i,j) \text{: } \qquad \text{ pixel position in } \Omega$
- f(s) = f(i, j): pixel value(s) in \mathbb{R}^K

Array representation (d=2): $x \in (\mathbb{R}^K)^{n_1 \times n_2}$

- $n_1 \times n_2$: n_1 : image height, and n_2 : width
- $x_{i,j} \in \mathbb{R}^K$: pixel value(s) at position s = (i,j): $x_{i,j} = f(i,j)$

Vector representation: $y \in (\mathbb{R}^K)^n$

- $n = n_1 \times n_2$: image size (number of pixels)
- $y_k \in \mathbb{R}^K$: value(s) of the k-th pixel at position s_k : $y_k = f(s_k)$

139	162	111	98	127	202
66	(1)	44		65	160
95	121	88		106	184
138				159	218
54				167	185
86				143	204
147			145	200	226
47			810	150	198
86			128	187	210
112		137	186	220	229
39			145	189	199
82		120	175	207	207
128	162	186	208	220	222
60	14/4/	144	179	194	190
107	149	180	201	207	195
169	192	206	220	219	224
1777	148	170	189	187	187
156	171	182	195	192	194

Color 2d image: $\Omega \subseteq \mathbb{Z}^2 \to [0, 255]^3$

- Red, Green, Blue (RGB), K=3
- RGB: Usual colorspace for acquisition and display
- Exist other colorspaces for different purposes:

HSV (Hue, Saturation, Value), YUV, YCbCr...

Spectral image: $\Omega \subseteq \mathbb{Z}^2 \to \mathbb{R}^K$

- ullet Each of the K channels is a wavelength band
- For $K \approx 10$: multi-spectral imagery
- For $K \approx 200$: hyper-spectral imagery
- Used in astronomy, surveillance, mineralogy, agriculture, chemistry

The Horse in Motion (1878, Eadweard Muybridge)

Gray level video: $\Omega \subseteq \mathbb{Z}^3 \to \mathbb{R}$

- 2 dimensions for space
- 1 dimension for time

MRI slices at different depths

3d brain scan: $\Omega \subseteq \mathbb{Z}^3 \to \mathbb{R}$

- 3 dimensions for space
- 3d pixels are called voxels ("volume elements")

What is noise?

Knowing and modeling the sources of corruptions is essential.

Analog optical imagery

Crystals are sensitive to light (chemical reaction during exposure and development)

Film grain:

- Depends on the amount of crystals (quality/type of film roll)
- Depends on the scale it is observed (noticeable in an over-enlarged picture)

Analog optical imagery

Analog television Noise due to bad transmission and/or interference

Digital optical imagery / CCD

Include:

- digital photography
- optical microscopy
- optical telescopes (e.g., Hubble, Planck, ...)
- optical earth observation satellite (e.g., Landsat, Quickbird, ...)

Digital optical imagery / CCD

Charge Coupled Device - Simplified description

Some photons,

captured during the exposure time (shutter speed),

leading to a charge converted to voltage,

next amplified,

quantized and digitized,

providing a grey level.

Digital optical imagery / CCD

Charge Coupled Device - Simplified description

•	Some photons,
	captured during the exposure time (shutter speed),
$\Theta \Theta$	are converted to electrons,
=	leading to a charge converted to voltage,
-	next amplified,
	next amplified,
$\boxed{42}$	providing a grey level. (Often followed by non-linear post-processing and lossy compression)

Random fluctuations lead to noise