Lecture 12

Inference for One Population Mean

Text: Chapter 5

STAT 8010 Statistical Methods I October 1, 2020

Statistical Inferences

Estimation

Confidence Intervals

Whitney Huang Clemson University

Statistical Inference

Point/Interval Estimation

Confidence Intervals

Statistical Inferences

2 Point/Interval Estimation

Statistical Inference

For the rest of the semester, we will focus on conducting statistical inferences for the following tasks:

- Estimating one population mean
- Comparing two population means
- Comparing more than two population means
- Estimating population proportions
- Estimating relationship between two quantitative variables

Statistical Inferences

Estimation

• We use statistics of a sample to infer the population **Example:** sample mean (\bar{X}) ; sample variance (s_X^2)

UNIVERSIT

Point/Interval

Estimating Population Mean μ

Population Mean

CLEMS IN VERSITY

Inference for One

Statistical Inferences

Estimation

Confidence Intervals

Goal: To estimate the population mean using a (representative) sample:

• The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X

Estimating Population Mean μ

CLEMS#N U N I V E R S I T Y

Statistical Inferences

Estimation

Confidence Intervals

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- Need to quantify the level of uncertainty of the point estimate ⇒ Interval estimation

Estimating Population Mean μ

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- Need to quantify the level of uncertainty of the point estimate ⇒ Interval estimation
- Need to figure out the sampling distribution of \bar{X}_n in order to construct interval estimates \Rightarrow Central Limit Theorem (CLT)

Central Limit Theorem (CLT)

CLT

The sampling distribution of \bar{X}_n will become approximately normally distributed as the sample size (n) becomes "large", regardless of the shape of the population distribution!

Let X_1, X_2, \cdots, X_n be a random sample from a population X with $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X]$. Then $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \stackrel{d}{\to} \text{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$.

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Compute the sample mean of these 100 random numbers
- Repeat this process 120 times

Inference for One Population Mean

Statistical Inferences

Estimation

CLT: Sample Size (n) and the Normal Approximation

Inference for One Population Mean

Statistical Interences

Point/Interval Estimation

Why CLT is important?

Statistical Inferen

Estimation

- CLT tells us the distribution of our estimator
 - $\bar{X}_n \approx \mathrm{N}(\mu, \frac{\sigma^2}{n})$

- ullet The distribution of $ar{X}_n$ is center around the true mean μ
- The variance of \bar{X}_n is decrease with n
- With normality approximation of the sampling distribution of \bar{X}_n , we can perform interval estimation about μ
- Applications: Confidence Interval, Hypothesis testing

Confidence Intervals (CIs) for μ

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

Confidence intervals

• Let's assume we know the population variance σ^2 (will relax this assumption later on)

- Let's assume we know the population variance σ^2 (will relax this assumption later on)
- $(1-\alpha) \times 100\%$ CI for μ :

$$\left[\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right],$$

where $z_{\frac{\alpha}{2}}$ is the $1-\frac{\alpha}{2}$ percentile of $Z\sim N(0,1)$

Confidence Intervals (CIs) for μ

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

- Let's assume we know the population variance σ^2 (will relax this assumption later on)
- $(1-\alpha) \times 100\%$ CI for μ :

$$\left[\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right],$$

where $z_{\frac{\alpha}{2}}$ is the $1 - \frac{\alpha}{2}$ percentile of $Z \sim N(0,1)$

• $\frac{\sigma}{\sqrt{n}}$ is the standard error of \bar{X}_n , that is, the standard deviation of its sampling distribution

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

For any $\alpha \in (0,1)$:

$P\left(\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$ $=P\left(-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\leq \bar{X}_n-\mu\leq z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right)$ $= P\left(-z_{\frac{\alpha}{2}} \le \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \le z_{\frac{\alpha}{2}}\right)$ $=P\left(-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}\right)$ $=\Phi(z_{\frac{\alpha}{2}})-\Phi(-z_{\frac{\alpha}{2}})$ $=1-\frac{\alpha}{2}-\frac{\alpha}{2}=1-\alpha$

Making Sense of Confidence Intervals Cont'd

Inference for One

Point/Interval

Example: Average Height

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (≈175cm). Suppose we know the standard deviation of men's heights is 4" (≈10cm). Find the 95% confidence interval of the true mean height of ALL men.

Point/Interval
Estimation

Inference for One Population Mean

CLEMS N

Statistical Inferences

Point/Interval Estimation

Soffice intervals

- Inference for One **Population Mean**

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Population standard deviation: $\sigma = 4$ inches

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches
- 95%CI: Need to find $z_{0.05/2}$ = 1.96 from the Z-table

- Population Mean

 CLEMS N
- Statistical Inferences
 - Estimation
 - Confidence Intervals

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **2** Population standard deviation: $\sigma = 4$ inches
- § Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches
- 95%CI: Need to find $z_{0.05/2} = 1.96$ from the Z-table
- **95%** CI for μ_X is:

$$[69 - 1.96 \times 0.63, 69 + 1.96 \times 0.63]$$

= [67.77, 70.23]

estimation uncertainty

• In contrast with the point estimate, \bar{X}_n , a $(1 - \alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our

UNIVERSIT

Point/Interval

Estimation

- CLEMS N
- In contrast with the point estimate, \bar{X}_n , a $(1-\alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty
- Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1-\alpha)\%$ of these confidence intervals will contain the true μ

Statistical Inferences

Estimation

• In contrast with the point estimate, \bar{X}_n , a $(1 - \alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty

• Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1-\alpha)\%$ of these confidence intervals will contain the true μ

• The length of a CI depends on

Statistical Inferences

• In contrast with the point estimate, \bar{X}_n , a $(1 - \alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty

• Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1 - \alpha)\%$ of these confidence intervals will contain the true μ

- The length of a CI depends on
 - Population Standard Deviation: σ

Statistical Inferences

• In contrast with the point estimate, \bar{X}_n , a $(1 - \alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty

- Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1-\alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - Population Standard Deviation: σ
 - Confidence Level: 1α

• In contrast with the point estimate, \bar{X}_n , a $(1 - \alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty

• Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1-\alpha)\%$ of these confidence intervals will contain the true μ

- The length of a CI depends on
 - Population Standard Deviation: σ
 - Confidence Level: 1α
 - Sample Size: n

Statistical Inferences

Sample Size Calculation

- We may want to estimate μ with a confidence interval with a predetermined margin of error (i.e. $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$)
- For example, in estimating the true mean height of All men we may want our CI to be just 0.5 inches in width
- The question is then, "how many observations do we need to take so that we have the desired margin of error?"

Sample Size Calculation Cont'd

Statistical Inferences

Estimation

Confidence Intervals

To compute the sample size needed to get a CI for
$$\mu$$
 with a specified margin of error, we use the formula below

$$n = \left(\frac{z_{\alpha/2} \times \sigma}{\text{Margin of error}}\right)^2$$

Exercise: Derive this formula using margin of error = $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Average Height Example Revisited

UNIVERSIT

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

Average Height Example Revisited

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

Estimation
Confidence Intervals

- Length of CI: $2 \times z_{0.025} \frac{\sigma}{\sqrt{n}} = 2 \times$ margin of error
- **2** Want to find *n* s.t. $z_{0.025} \frac{\sigma}{\sqrt{n}} = 0.25$
- **(a)** We have $n = \left(\frac{1.96 \times 4}{0.25}\right)^2 = 983.4496$

Therefore, the required sample size is 984

Confidence Intervals When σ Unknown

Statistical Inferences

Estimation

- In practice, it is unlikely that σ is available to us
- One reasonable option is to replace σ with s, the sample standard deviation
- We need to account for this added uncertainty with a (slightly) different sampling distribution that has fatter tails

⇒ Student t Distribution (William Gosset, 1908)

Student t Distribution

Estimation

- \bullet Recall the standardize sampling distribution $\frac{\bar{X}_n \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$
- Similarly , the studentized sampling distribution $\frac{\bar{X}_n-\mu}{\frac{\bar{X}_n}{2}}\sim t_{df=n-1}$

Confidence Intervals (CIs) for μ When σ is Unknown

Population Mean

Statistical Inferences

Point/Interva Estimation

Confidence Intervals

• $(1-\alpha) \times 100\%$ CI for μ :

$$\left[\bar{X}_n - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}, \bar{X}_n + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right],$$

where $t_{\frac{\alpha}{2},n-1}$ is the $1-\frac{\alpha}{2}$ percentile of a student t distribution with the degrees of freedom = n-1

ullet is an estimate of the standard error of $ar{X}_n$

Average Height Example Revisited

Statistical Inferences

Point/Interva Estimation

Confidence Intervals

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (\approx 175cm), and a standard deviation of 4.5" (\approx 11.4cm). Find the 95% confidence interval of the true mean height of ALL men.

O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches

Inference for One Population Mean

Statistical Inference

Point/Interval Estimation

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- 2 Sample standard deviation: s = 4.5 inches

- CLEMS N
- Statistical Inferences
 - Point/Interval
- Confidence Intervals

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches

- **Output** Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- 95%CI: Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- 95%CI: Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)
- **95%** CI for μ_X is:

$$[69 - 2.02 \times 0.71, 69 + 2.02 \times 0.71]$$

= [67.57, 70.43]