Teoria da Computação

Complexidade de Tempo

Aula 12

Prof. Felipe A. Louza

Roteiro

- Complexidade de Tempo
- 2 A classe P
- 3 A classe NP
- 4 A questão P versus NP
- NP-completude
- 6 Referências

Nas aulas anteriores, vimos que existem problemas **indecidíveis** (não pussuem solução computacional).

Apresentamos a tese de Church-Turing.

"Um problema tem solução algorítmica se, e somente se, ele tem solução em uma máquina de Turing"

Agora, vamos investigar problemas **decidíveis** mas que não possuem solução em *tempo aceitável*.

- Ou seja, o fato de um problema ser decidível não é suficiente.
- Esses problemas são chamados de intratáveis.

Como medimos o $\underline{\text{tempo de execução}}$ ou $\underline{\text{complexidade de tempo}}$ de um algoritmo?

- O tempo está relacionado com a quantidade de passos realizados pelo algoritmo.
- Pode depender de diversos parâmetros. (ex. um grafo G = (V, A))
- Por simplicidade, representaremos o tempo em função do tamanho da cadeia $\langle G \rangle$ que representa a entrada, $|\langle G \rangle| = n$.

Em geral, estamos interessados em analisar

- Pior caso: maior tempo (número de passos) considerando todas as entradas possíveis.
- <u>Caso médio</u>: análise amortizada dos tempos para todas as entradas

Como medimos o $\underline{\text{tempo de execução}}$ ou $\underline{\text{complexidade de tempo}}$ de um algoritmo?

- O tempo está relacionado com a quantidade de passos realizados pelo algoritmo.
- Pode depender de diversos parâmetros. (ex. um grafo G = (V, A))
- Por simplicidade, representaremos o tempo em função do tamanho da cadeia $\langle G \rangle$ que representa a entrada, $|\langle G \rangle| = n$.

Em geral, estamos interessados em analisar:

- Pior caso: maior tempo (número de passos) considerando todas as entradas possíveis.
- <u>Caso médio</u>: análise amortizada dos tempos para todas as entradas.

Definição

Seja *M* uma **MT** determinística que pára sobre todas as entradas. O tempo de execução ou complexidade de tempo de *M* é uma função

$$f: \mathbb{N} \to \mathbb{N}$$

em que f(n) é o número **máximo de passos** que M realiza sobre entradas de **tamanho** n.

Podemos dizer que:

- M roda em tempo f(n); ou
- M tem complexidade de tempo f(n)

Calcular o número exato de passos pode ser complicado.

• Em geral, fazemos uma uma análise assintótica, em que buscamos entender o comportamento de f(n) quando n é grande.

Por exemplo, considere:

$$f(n) = \underline{5n^3} + 2n^2 + 22n + 6$$

- O termo $5n^3$ "domina" o crescimento de f.
- Dizemos que f é <u>assintóticamente</u> no máximo n^2
- A notação assintótica ou notação O-grande para esse relacionamento é

$$f(n) = O(n^3)$$

A função $g(n) = n^8$ é um limitante superior da função f.

Calcular o número exato de passos pode ser complicado.

• Em geral, fazemos uma uma análise assintótica, em que buscamos entender o comportamento de f(n) quando n é grande.

Por exemplo, considere:

$$f(n) = \frac{5n^3}{2} + 2n^2 + 22n + 6$$

- O termo $5n^3$ "domina" o crescimento de f.
- Dizemos que f é <u>assintóticamente</u> no máximo <u>n³</u>
- A notação assintótica ou notação O-grande para esse relacionamento é

$$f(n) = O(n^3)$$

A função $g(n) = n^8$ é um limitante superior da função f.

Relembrando a notação assintótica (O-grande)

Definição

Sejam f e g funções, $f,g:\mathbb{N}\to\mathbb{R}^+$.

Dizemos que $\underline{f(n) = O(g(n))}$ se existirem dois inteiros $c \in n_0$, tais que, para todo $n \ge n_0$:

$$f(n) \leq c \cdot g(n)$$

g(n) é um limitante superior assintótico:

•
$$f(n) = \frac{5n^3}{n^3} + n^2 + 22n + 6 = \frac{O(n^3)}{n^3}$$

- para $c = 6$ e $n_0 = 10$, $f(n) \le 6n^3$

• f(n) também é $O(n^4)$?

 Sim, mas estamos interessados em limites "apertados" para f.

Relembrando a notação assintótica (O-grande)

Definição

Sejam f e g funções, $f,g:\mathbb{N}\to\mathbb{R}^+$.

Dizemos que $\underline{f(n) = O(g(n))}$ se existirem dois inteiros $c \in n_0$, tais que, para todo $n \ge n_0$:

$$f(n) \leq c \cdot g(n)$$

g(n) é um limitante superior assintótico:

•
$$f(n) = \frac{5n^3}{n^3} + n^2 + 22n + 6 = \frac{O(n^3)}{n^3}$$

- para $c = 6$ e $n_0 = 10$, $f(n) \le 6n^3$

- f(n) também é $O(n^4)$?
 - Sim, mas estamos interessados em limites "apertados" para f.

Considere a linguagem $L_1 = \{0^k 1^k \mid k \geq 0\}$, a seguinte **MT** decide L_1 .

- M_1 = "Sobre a cadeia de entrada w:
 - **1** Faça uma varredura na fita e rejeite $w \times se w \neq 0^*1^*$.
 - Repita o próximo passo enquanto existir ambos 0s e 1s na fita:
 - 3 Faça uma varredura na fita "marcando" um único 0 e um único 1.
 - Se restarem 0s após sobreescrever todos os 1s (ou o contrário), rejeite w ✗, senão aceite w ✓"

Complexidade de tempo:

$$O(n) + \underbrace{O(n^2)}_{\text{passo 2}} + O(n) = O(n^2)$$

Número de passos: (i) 2n, (ii) $n/2 \times O(n)$, (iv) $1 \times O(n)$

Considere a linguagem $L_1 = \{0^k 1^k \mid k \geq 0\}$, a seguinte **MT** decide L_1 .

- M_1 = "Sobre a cadeia de entrada w:
 - **1** Faça uma *varredura* na fita e rejeite $w \times se w \neq 0^*1^*$.
 - Repita o próximo passo enquanto existir ambos 0s e 1s na fita:
 - 3 Faça uma varredura na fita "marcando" um único 0 e um único 1.
 - Se restarem 0s após sobreescrever todos os 1s (ou o contrário), rejeite w X, senão aceite w √"

Complexidade de tempo:

$$O(n) + \underbrace{O(n^2)}_{\text{passo 2}} + O(n) = O(n^2)$$

Número de passos: (i) 2n, (ii) $\underline{n/2 \times O(n)}$, (iv) $1 \times O(n)$.

Vamos fixar uma notação para classificar linguagens (problemas) a partir de seus requisitos de tempo.

Definição

Seja $t:\mathbb{N} \to \mathbb{R}^+$ uma função. A classe de complexidade de tempo

é a coleção de todas as linguagens decidíveis em tempo t(n).

Então temos que $L_1 = \{0^k 1^k \mid k \ge 0\}$ é $TIME(n^2)$

• Será que existe outra MT (algoritmo) que decide L_1 em menos tempo?

A linguagem
$$L_1 = \{0^k 1^k \mid k \ge 0\}$$
 pode ser decida em tempo $O(n \log n)$

Nova ideia:

- M_2 = "Sobre a cadeia de entrada w:
 - Faça uma varredura na fita e rejeite $w \times se w \neq 0*1*$.
 - 2 Repita o próximo passo enquanto existir ambos 0s e 1s na fita:
 - Faça uma varredura na fita contando se o número de 0s e 1s é ímpar, se for rejeite w X.
 - Faça uma varredura na fita "marcando" alternadamente um 0 sim, outro não, faço o mesmo para os 1s.
 - Se restarem 0s ou 1s, rejeite w ✗, senão aceite w ✓"

Complexidade de tempo

$$O(n) + \underbrace{O(n \log n)}_{\text{passo } 2} + O(n) = O(n \log n)$$

A linguagem
$$L_1 = \{0^k 1^k \mid k \ge 0\}$$
 pode ser decida em tempo $O(n \log n)$

Nova ideia:

- M_2 = "Sobre a cadeia de entrada w:
 - Faça uma varredura na fita e rejeite $w \times se w \neq 0*1*$.
 - 2 Repita o próximo passo enquanto existir ambos 0s e 1s na fita:
 - Faça uma varredura na fita contando se o número de 0s e 1s é ímpar, se for rejeite w X.
 - Faça uma varredura na fita "marcando" alternadamente um 0 sim, outro não, faço o mesmo para os 1s.
 - Se restarem 0s ou 1s, rejeite w ✗, senão aceite w ✓"

Complexidade de tempo:

$$O(n) + \underbrace{O(n \log n)}_{\text{passo } 2} + O(n) = O(n \log n)$$

Número de passos: (i) 2n, (ii) $\lceil \log n \rceil \times O(n)$, (iv) $1 \times O(n)$.

Então, na verdade, $L_1 = \{0^k 1^k \mid k \ge 0\} \in TIME(n \log n)$.

- Será que existe outra MT (algoritmo) ainda mais rápida para L_1 ?
 - Sim e não!
 - Na verdade, somente **Linguagens Regulares** podem ser decididas em menos de $O(n \log n)$ por uma **MT** de uma única fita.

Podemos decidir L_1 em O(n), tempo linear, com uma \mathbf{MT} de 2 fitas Ideia de M_3 (duas fitas):

- Copie todos os 0s na segunda fita;
- Compare os 0s e 1s.

Complexidade de tempo:

$$\underbrace{1 \cdot O(n)}_{\text{passos 1 e 2}} = O(n)$$

Essa complexidade de tempo é a melhor possível, já que para ler a entrada são necessário n passos.

Então, na verdade, $L_1 = \{0^k 1^k \mid k \ge 0\} \in TIME(n \log n)$.

- Será que existe outra MT (algoritmo) ainda mais rápida para L_1 ?
 - Sim e não!
 - Na verdade, somente **Linguagens Regulares** podem ser decididas em menos de $O(n \log n)$ por uma **MT** de uma única fita.

Podemos decidir L_1 em O(n), tempo linear, com uma ${\sf MT}$ de 2 fitas. deia de M_3 (duas fitas):

- Copie todos os 0s na segunda fita;
- Compare os 0s e 1s.

Complexidade de tempo:

$$\underbrace{1 \cdot O(n)}_{\text{passos 1 e 2}} = O(n)$$

Essa complexidade de tempo é a melhor possível, já que para ler a entrada são necessário *n* passos.

Então, na verdade, $L_1 = \{0^k 1^k \mid k \ge 0\} \in TIME(n \log n)$.

- Será que existe outra MT (algoritmo) ainda mais rápida para L_1 ?
 - Sim e não!
 - Na verdade, somente **Linguagens Regulares** podem ser decididas em menos de $O(n \log n)$ por uma **MT** de uma única fita.

Podemos decidir L_1 em O(n), tempo linear, com uma \mathbf{MT} de 2 fitas.

Ideia de M_3 (duas fitas):

- Copie todos os 0s na segunda fita;
- 2 Compare os 0s e 1s.

Complexidade de tempo:

$$\underbrace{1 \cdot O(n)}_{\text{passos 1 e 2}} = O(n)$$

Essa complexidade de tempo é a melhor possível, já que para ler a entrada são necessário *n* passos.

Então, na verdade, $L_1 = \{0^k 1^k \mid k \ge 0\} \in TIME(n \log n)$.

- Será que existe outra **MT** (algoritmo) ainda mais rápida para L_1 ?
 - Sim e não!
 - Na verdade, somente **Linguagens Regulares** podem ser decididas em menos de $O(n \log n)$ por uma **MT** de uma única fita.

Podemos decidir L_1 em O(n), tempo linear, com uma \mathbf{MT} de 2 fitas.

Ideia de M_3 (duas fitas):

- Copie todos os 0s na segunda fita;
- ② Compare os 0s e 1s.

```
# # # # # # 1 1 1 1 1 1 1 ...
```

Complexidade de tempo:

$$\underbrace{1 \cdot O(n)}_{\text{passos 1 e 2}} = O(n)$$

Essa complexidade de tempo é a melhor possível, já que para ler a entrada são necessário *n* passos.

Com isso, temos que:

 A <u>classe de complexidade</u> depende do modelo computacional escolhido:

$$\underbrace{L_1 \in \mathit{TIME}(n \log n)}_{\mathsf{MT} \ \mathsf{de} \ 1 \ \mathsf{fita}} \quad \mathsf{e} \quad \underbrace{L_1 \in \mathit{TIME}(n)}_{\mathsf{MT} \ \mathsf{multifita}}$$

Aqui temos uma diferença importante entre

- Teoria da Computabilidade: o modelo n\u00e3o importa para ser decid\u00edvel/reconhec\u00edvel ou n\u00e3o^1.
- Teoria da Complexidade: a escolha do modelo pode afetar a complexidade de tempo.

Com isso, temos que:

 A <u>classe de complexidade</u> depende do modelo computacional escolhido:

$$\underbrace{L_1 \in \mathit{TIME}(n \log n)}_{\mathsf{MT} \ \mathsf{de} \ 1 \ \mathsf{fita}} \quad \mathsf{e} \quad \underbrace{L_1 \in \mathit{TIME}(n)}_{\mathsf{MT} \ \mathsf{multifita}}$$

Aqui temos uma diferença importante entre:

- Teoria da Computabilidade: o modelo não importa para ser decidível/reconhecível ou não¹.
- Teoria da Complexidade: a escolha do modelo pode afetar a complexidade de tempo.

¹A **tese de Church-Turing** implica que todos os modelos razoáveis de computação são equivalentes.

Com isso, temos que:

 A <u>classe de complexidade</u> depende do modelo computacional escolhido:

$$L_1 \in TIME(n \log n)$$
 e $L_1 \in TIME(n)$
MT de 1 fita

MT multifita

Aqui temos uma diferença importante entre:

- Teoria da Computabilidade: o modelo não importa para ser decidível/reconhecível ou não¹.
- 2 Teoria da Complexidade: a escolha do modelo pode afetar a complexidade de tempo.

¹A tese de Church-Turing implica que todos os modelos razoáveis de computação são equivalentes.

Qual modelo devemos escolher para classificar linguagens/problemas em TIME(t(n))?

- Vamos considerar o relacionamento de tempo de execução entre 3 modelos:
 - MT (fita única);
 - MT multifita;
 - 3 MT não-determinística (fita única).

Teorema 7.8 (Sipser)

Toda MT multifita que roda em tempo t(n) possuí uma MT (fita única) equivalente que roda em tempo

$$O(t^2(n))$$

No pior dos casos, elevamos ao quadrado t(n)

- Pode ser ruim na prática: $t^2(n^3) = O(n^6)$
- Mas TIME(t(n)) continua polinomial \leftarrow ou seja, "tratável"

<u>Ideia da prova</u> é analisar a simulação de uma MT multifita por uma MT (fita única) \leftarrow aula 10.

Teorema 7.8 (Sipser)

Toda MT multifita que roda em tempo t(n) possuí uma MT (fita única) equivalente que roda em tempo

$$O(t^2(n))$$

No pior dos casos, elevamos ao quadrado t(n).

- Pode ser ruim na prática: $t^2(n^3) = O(n^6)$
- Mas TIME(t(n)) continua polinomial \leftarrow ou seja, "tratável".

ldeia da prova é analisar a simulação de uma MT multifita por uma MT (fita única) ← aula 10

Teorema 7.11 (Sipser)

Toda MT não-determinística que roda em tempo t(n) possuí uma MT (fita única) equivalente que roda em tempo

 $2^{O(t(n))}$

Nesse caso, a diferença de tempo pode ser muito maior, no máximo exponêncial

— considerada "intratável".

 $[\]frac{\text{Ideia da prova}}{\text{(multifita), depois para uma MT (fita única)}} \leftarrow \text{aula 10}.$

Para os nossos propósitos (em Teoria da Complexidade):

- Diferenças polinomiais serão consideradas pequenas;
- Diferenças exponênciais serão consideradas grandes (enormes).

Isso porque existe uma diferença dramática entre as taxas de crescimento de polinomios e exponênciais.

Considere

$$n^3 \ e^{2^n}$$
, com $n = 1000$

- $-n^3 = 1$ bilhão, não é muito em termos computacionais.
- 2" é **maior do que** o <u>número de átomos</u> no universo.

Para os nossos propósitos (em Teoria da Complexidade):

- Diferenças polinomiais serão consideradas pequenas;
- Diferenças exponênciais serão consideradas grandes (enormes).

Isso porque existe uma diferença dramática entre as taxas de crescimento de polinomios e exponênciais.

Considere

$$n^3$$
 e 2^n , com $n = 1000$

- $-n^3=1$ bilhão, não é muito em termos computacionais.
- -2^n é **maior do que** o <u>número de átomos</u> no universo.

- 1

^{2&}lt;sup>1000</sup> tem aproximadamente 300 dígitos.

Voltando à pergunta de qual modelo de \mathbf{MT} escolher para classificar uma linguagem em TIME(t(n))?

- Todos os modelos computacionais determinísticos são polinomialmente equivalentes.
 - MT (fita única);
 - MT multifita;
 - Computador real;
 - Outros modelos "razoáveis" (deterministicos).

Para os *nossos propósitos* (que será classificar em <u>polinomial</u> e não-polinomial) a escolha do **modelo deterministico** não terá impacto.

- No exemplo, L₁ é resolvível em tempo polinomial;
- Isso nos permite desenvolver uma teoria independente do modelo.

Isto é, um simula o outro com uma diferença de tempo polinomial.

Voltando à pergunta de qual modelo de \mathbf{MT} escolher para classificar uma linguagem em TIME(t(n))?

- Todos os modelos computacionais determinísticos são polinomialmente equivalentes.
 - MT (fita única);
 - MT multifita;
 - Computador real;
 - Outros modelos "razoáveis" (deterministicos).

Para os *nossos propósitos* (que será classificar em <u>polinomial</u> e <u>não-polinomial</u>) a escolha do **modelo deterministico** não terá impacto.

- No exemplo, L₁ é resolvível em tempo polinomial;
- Isso nos permite desenvolver uma teoria independente do modelo.

Voltando à pergunta de qual modelo de \mathbf{MT} escolher para classificar uma linguagem em TIME(t(n))?

- Todos os modelos computacionais determinísticos são polinomialmente equivalentes.
 - MT (fita única);
 - MT multifita;
 - Computador real;
 - Outros modelos "razoáveis" (deterministicos).

Para os *nossos propósitos* (que será classificar em <u>polinomial</u> e <u>não-polinomial</u>) a escolha do **modelo deterministico** não terá impacto.

- No exemplo, L₁ é resolvível em tempo polinomial;
- Isso nos permite desenvolver uma teoria independente do modelo.

O nosso objetivo é estudar propriedades fundamentais da Computação.

Roteiro

- Complexidade de Tempo
- 2 A classe P
- 3 A classe NP
- 4 A questão P versus NP
- NP-completude
- 6 Referências

Em geral, dizemos que problemas que podem ser resolvidos em tempo polinomial, podem ser resolvidos em um tempo aceitável;

- Enquanto que problemas que levam tempo exponencial (ou mais) não podem ser resolvidos na prática (intratáveis).
- Esses algoritmos são "úteis" apenas para entradas pequenas

Em geral, dizemos que problemas que podem ser resolvidos em tempo polinomial, podem ser resolvidos em um tempo aceitável;

- Enquanto que problemas que levam tempo exponencial (ou mais)
 não podem ser resolvidos na prática (intratáveis).
- Esses algoritmos são "úteis" apenas para entradas pequenas.

Agora, vamos definir uma importante classe de linguagens (problemas) em **Teoria de Complexidade**.

Definição

P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma **MT** determinística.

Em outras palavras,

$$P = \bigcup_{k} TIME(n^{k})$$

- P é invariante para os modelos de computação polinomialmente equivalentes à MT (modelos determinísticos); e
- **2** P corresponde \approx à classe de problemas que são **realisticamente** solúveis por um computador.

Então, quando um problema está em P, temos um algoritmo para resolvê-lo em tempo $O(n^k)$, **polinomial**, para alguma constante k.

- Esse tempo é prático? depende de k e da aplicação.
 - È improvável que $O(n^{100})$ seja útil na prática
 - Entretanto, sempre que uma solução polinomial é encontrada para um problema (que não sabiamos estar em P), novas ideias são obtidas, o que pode permirtir futuras reduções em t(n).

Com o passar do tempo, dizer que P é o <u>limite da solubilidade</u> tem se provado útil.

Essa vai ser a linha divisória entre problemas tratáveis e problemas intratáveis

Então, quando um problema está em P, temos um algoritmo para resolvê-lo em tempo $O(n^k)$, **polinomial**, para alguma constante k.

- Esse tempo é prático? depende de k e da aplicação.
 - É improvável que $O(n^{100})$ seja útil na prática
 - Entretanto, sempre que uma solução polinomial é encontrada para um problema (que não sabiamos estar em P), novas ideias são obtidas, o que pode permirtir futuras reduções em t(n).

Com o passar do tempo, dizer que P é o <u>limite da solubilidade</u> tem se provado útil.

Então, quando um problema está em P, temos um algoritmo para resolvê-lo em tempo $O(n^k)$, **polinomial**, para alguma constante k.

- Esse tempo é prático? depende de *k* e da aplicação.
 - É improvável que $O(n^{100})$ seja útil na prática.
 - Entretanto, sempre que uma **solução polinomial** é encontrada para um problema (que não sabiamos estar em P), novas ideias são obtidas, o que pode permirtir futuras reduções em t(n).

Com o passar do tempo, dizer que P é o <u>limite da solubilidade</u> tem se provado útil.

Então, quando um problema está em P, temos um algoritmo para resolvê-lo em tempo $O(n^k)$, **polinomial**, para alguma constante k.

- Esse tempo é prático? depende de *k* e da aplicação.
 - É improvável que $O(n^{100})$ seja útil na prática.
 - Entretanto, sempre que uma **solução polinomial** é encontrada para um problema (que não sabiamos estar em P), novas ideias são obtidas, o que pode permirtir futuras reduções em t(n).

Com o passar do tempo, dizer que P é o <u>limite da solubilidade</u> tem se provado útil.

Então, quando um problema está em P, temos um algoritmo para resolvê-lo em tempo $O(n^k)$, **polinomial**, para alguma constante k.

- Esse tempo é prático? depende de *k* e da aplicação.
 - É improvável que $O(n^{100})$ seja útil na prática.
 - Entretanto, sempre que uma **solução polinomial** é encontrada para um problema (que não sabiamos estar em P), novas ideias são obtidas, o que pode permirtir futuras reduções em t(n).

Com o passar do tempo, dizer que P é o <u>limite da solubilidade</u> tem se provado útil.

Daqui por diante, descreveremos algoritmos por pseudo-códigos

- Sem considerar um modelo computacional específico (ou detalhes como fitas/cursores).
- Podemos fazer isso já que qualquer <u>algoritmo</u> pode rodar em uma MT em tempo polinomialmente equivalente.

Um algoritmo é polinomial quando:

- Cada estágio roda em tempo polinomial;
- Cada estágio é executado um número polinomial de vezes;
- A codificação/decodificação da entrada ocorrem em tempo polinomial.

Vamos considerar o problema de determinar se existe um caminho em um grafo direcionado G do nó $s \rightsquigarrow t$.

 $CAM = \{\langle G, s, t \rangle \mid G \text{ \'e um grafo que tem um caminho de } s \text{ para } t\}$

CAM ∈ P?

A codificação de $\langle G, s, t \rangle$ pode ser feita (em tempo polinomial) como uma lista de nós e arestas \leftarrow vimos um exemplo na aula 10.

Uma solução (força bruta) decide CAM em tempo exponencial:

- 1 Lista todos os caminhos de tamanho máximo m (número de nós).
- ② Verifica se um caminho $s \leadsto t$, nesse caso, aceite $\langle G, s, t \rangle$ ✓

O problema é que o número de caminho no pior caso (grafo completo):

$$\approx m^m$$
 (exponencial)

Outra possibilidade é fazer uma busca em largura no grafo:

- Algoritmo: "Sobre a cadeia de entrada $\langle G, s, t \rangle$:
 - 1 "Marque" o nó s
 - Repita o próximo passo até que nenhum novo nó seja marcado:
 - Faça uma varredura na lista de arestas. Se (a, b) for encontrada, com a marcado e b não marcado, marque b.
 - Se t estiver marcado <u>aceite w √</u>, senão rejeite w X"

Complexidade de Tempo:

$$\approx 1 + m + 1 = O(n) \Rightarrow CAM \in \mathbf{P}$$
 (polinomial)

Outra possibilidade é fazer uma busca em largura no grafo:

- Algoritmo: "Sobre a cadeia de entrada $\langle G, s, t \rangle$:
 - 1 "Marque" o nó s
 - Repita o próximo passo até que nenhum novo nó seja marcado:
 - Faça uma varredura na lista de arestas. Se (a, b) for encontrada, com a marcado e b não marcado, marque b.
 - Se t estiver marcado <u>aceite w √</u>, senão rejeite w X"

Complexidade de Tempo:

$$\approx 1 + m + 1 = O(n) \Rightarrow CAM \in P$$
 (polinomial)

Outros problemas em P?

$$PRIM-ES = \{\langle x, y \rangle \mid x \text{ e } y \text{ são inteiros primos entre si} \}$$

$$A_{GLC} = \{\langle G, w \rangle \mid G \text{ \'e uma GLC que gera } w\}$$

$$A_{GLC} \in \mathbf{P} \checkmark$$

E muitos outros . . .

 $A_{\it GLC}$ está relacionado ao problema de compilar linguagens de programação.

Teoremas 7.15 e 7.16 (Spiser).

Outros problemas em P?

$$PRIM-ES = \{\langle x, y \rangle \mid x \text{ e } y \text{ são inteiros primos entre si}\}$$

$$A_{GLC} = \{\langle G, w \rangle \mid G \text{ \'e uma GLC que gera } w\}$$

$$A_{GLC} \in \mathbf{P} \checkmark$$

• E muitos outros . . .

 $A_{\it GLC}$ está relacionado ao problema de compilar linguagens de programação.

Teoremas 7.15 e 7.16 (Spiser).

Roteiro

- Complexidade de Tempo
- 2 A classe P
- 3 A classe NP
- 4 A questão P versus NP
- NP-completude
- 6 Referências

Existem muitos (MUITOS) problemas interessantes, práticos e úteis, para os quais não conhecemos <u>nenhuma</u> solução **polinomial**.²

- Pode ser que exista um algoritmo polinomial, ainda desconhecido
- ② Ou o problema é intrinsicamente difícil (simplesmente não existe solução em tempo polinomial).

No momento, não sabemos distinguir essas duas situações

28

²O que existem são algoritmos exponenciais que fazem uma **busca exaustiva** em todo espaco de solucões.

Existem muitos (MUITOS) problemas interessantes, práticos e úteis, para os quais não conhecemos nenhuma solução **polinomial**.²

- Pode ser que exista um algoritmo polinomial, ainda desconhecido.
- ② Ou o problema é intrinsicamente difícil (simplesmente não existe solução em tempo polinomial).

No momento, não sabemos distinguir essas duas situações

²O que existem são algoritmos exponenciais que fazem uma **busca exaustiva** em todo espaco de soluções.

Existem muitos (MUITOS) problemas interessantes, práticos e úteis, para os quais não conhecemos nenhuma solução polinomial.²

- Pode ser que exista um algoritmo polinomial, ainda desconhecido.
- Ou o problema é intrinsicamente difícil (simplesmente não existe solução em tempo polinomial).

No momento, não sabemos distinguir essas duas situações.

²O que existem são algoritmos exponenciais que fazem uma **busca exaustiva** em todo espaco de soluções.

Para certos problemas, embora para resolver (decidir) conhecemos apenas algoritmos exponenciais:

- Verificar se uma solução candidata é mesmo uma resposta para o problema pode ser feito em tempo polinomial.
- Essa classe de problemas é chamada de NP.

 \acute{e} fácil ver que $P \subseteq NP$

Vamos ver que esse termo NP vem de decidível em tempo polinomial sobre uma MT não-determinística.

Para certos problemas, embora para resolver (decidir) conhecemos apenas algoritmos exponenciais:

- Verificar se uma solução candidata é mesmo uma resposta para o problema pode ser feito em tempo polinomial.
- Essa classe de problemas é chamada de NP.

é fácil ver que $P\subseteq NP$

Vamos ver que esse termo NP vem de decidível em tempo polinomial sobre uma MT não-determinística.

Para certos problemas, embora para resolver (decidir) conhecemos apenas algoritmos exponenciais:

- Verificar se uma solução candidata é mesmo uma resposta para o problema pode ser feito em tempo polinomial.
- Essa classe de problemas é chamada de NP.

é fácil ver que $P\subseteq NP$

Vamos ver que esse termo NP vem de **decidível em tempo polinomial** sobre uma MT não-determinística.

Vamos considerar o problema de determinar se existe um caminho Hamiltoniano em um grafo direcionado G do nó $s \rightsquigarrow t$.

 $CAMHAM = \{ \langle G, s, t \rangle \mid G \text{ \'e um grafo com um caminho Hamiltoniano de } s \text{ para } t \}$

• $CAMHAM \in NP$?

30

Um caminho Hamiltoniano de $s \leadsto t$ é um caminho que passa por cada nó exatamente 1 vez.

Qual a complexidade de tempo de CAMHAM?

- 1 Não conhecemos nenhuma solução polinomial.
- Mas! Dado um caminho s → t no grafo, é "fácil" verificar se ele é ou não Hamiltoniano em tempo polinomial.
 - V = "Sobre a cadeia de entrada $\langle \langle G, s, t \rangle, c \rangle$:
 - Verifique se o caminho c:
 - Começa em s e termina em t; e passa por todos os m nós 1 vez.

Portanto, $CAMHAM \in NP$

Não sabemos se tal solução pode existir.

31

Qual a complexidade de tempo de CAMHAM?

- 1 Não conhecemos nenhuma solução polinomial.
- Mas! Dado um caminho s → t no grafo, é "fácil" verificar se ele <u>é ou não</u> Hamiltoniano em tempo polinomial.
- V = "Sobre a cadeia de entrada $\langle \langle G, s, t \rangle, c \rangle$:
 - Verifique se o caminho c:
 - Começa em s e termina em t; e passa por todos os m nós 1 vez
 - ② Caso positivo <u>aceite√</u>, senão rejeite X'

Portanto, $CAMHAM \in NP$

Qual a complexidade de tempo de CAMHAM?

- 1 Não conhecemos nenhuma solução polinomial.
- ② Mas! Dado um caminho s → t no grafo, é "fácil" verificar se ele é ou não Hamiltoniano em tempo polinomial.
 - V = "Sobre a cadeia de entrada $\langle \langle G, s, t \rangle, c \rangle$:
 - Verifique se o caminho c:
 - Começa em s e termina em t; e passa por todos os m nós 1 vez.
 - ② Caso positivo aceite√, senão rejeite X"

Portanto, $CAMHAM \in NP$

Número de passos: (i) no pior caso (distância m): O(m), (ii) $\times O(1)$.

Definição

NP é a classe de linguagens que são <u>verificáveis</u> em **tempo polinomial** sobre uma MT determinística.

Obviamente,

$$P \subseteq NP$$

- Mas será que P = NP?
- Falaremos mais sobre isso (depois).

Na verdade, o termo NP vem de **tempo polinomial não-determinístico** (*Nondeterministic Polynomial Time*).

Definição (alternativa)

Uma linguagem está em NP se e somente se ela é <u>decidida</u> por uma \mbox{MT} não-determinística em **tempo polinomial**.

Mais uma vez,

$$P \subseteq NP$$

- Toda MT é uma MT não-determinística (sem opções de movimento).
- A MT não-determinística "adivinha" (em tempo polinomial) um dos caminhos de computação para aceitar a linguagem.

A intuição é que a MT não-determinística tem a habilidade de avaliar "em paralelo" todo o espaço de possíveis soluções (que pode ser exponencial) e verificar cada ramo em tempo polinomial

Com isso, falar que um problema é <u>verificável em tempo polinomial</u>
é o mesmo que falar que <u>existe uma MTN que decide</u> o problema em tempo polinomial.

3.

Se existe um "caminho de computação" para a solução a MTN o encontra (mesmo caminho para a verificação).

Definição

Seja $t: \mathbb{N} \to \mathbb{R}^+$ uma função. A classe de complexidade de tempo não-deterministico

é a coleção de todas as linguagens decidíveis por alguma MT não-determinística em tempo t(n).

Com isso.

$$NP = \bigcup_{k} NTIME(n^{k})$$

Tempo polinomial não-deterministico.

A classe CO-NP

Para alguns problemas, nem para a verificação conhecemos um algoritmo polinomial.

 $\overline{\textit{CAMHAM}} = \{ \langle \textit{G}, \textit{s}, \textit{t} \rangle \mid \textit{G} \text{ \'e um grafo } \underline{\mathsf{que n\~ao tem}} \text{ um } \mathbf{caminho Hamiltoniano } \text{de } \textit{s} \text{ para } \textit{t} \}$

- Não sabemos como verificar se um grafo não tem CAMHAM em tempo polinomial
- Solução exponencial: (i) liste todos os m^m caminhos e (ii) verifique-os.

A classe CO-NP

Aparentemente, verificar se algo não está presente "parece" mais difícil³.

 Definimos uma classe de complexidade separada para esses problemas, CO-NP:

a classe das linguagens que são complemento de $L \in \mathrm{NP}$

• Não se sabe se $CO-NP \neq NP$.

37

³Conhecemos apenas soluções exponenciais.

Roteiro

- Complexidade de Tempo
- 2 A classe P
- 3 A classe NP
- 4 A questão P versus NP
- 5 NP-completude
- 6 Referências

Resumindo:

- P: é a classe de problemas que podem ser <u>resolvidos</u> em **tempo polinomial** (*"rapidamente"*).
- NP: é a classe de problemas que podem ser <u>verificados</u> em **tempo** polinomial.

Um exemplo de problemas em NP, mas $\underline{n\~{ao}}$ sabemos se pertence à P é o CAMHAM.

- O poder/capacidade de <u>verificar</u> "parece" ser muito maior do que c de <u>decididir</u> (em **tempo polinomial**).
- No entanto, por mais difícil que seja imaginar, pode ser que

$$P = NP$$

Somos incapazes de provar um único problema que esteja em NP mas que não esteja em P

Resumindo:

- P: é a classe de problemas que podem ser <u>resolvidos</u> em **tempo polinomial** (*"rapidamente"*).
- NP: é a classe de problemas que podem ser <u>verificados</u> em **tempo** polinomial.

Um exemplo de problemas em NP, mas <u>não sabemos</u> se pertence à P é o $\it CAMHAM$.

- O poder/capacidade de <u>verificar</u> "parece" ser muito maior do que o de <u>decididir</u> (em **tempo polinomial**).
- No entanto, por mais difícil que seja imaginar, pode ser que

P = NP

Somos incapazes de provar um único problema que esteja em $\overline{\mathrm{NP}}$ mas que $\overline{\mathrm{n}}$ ão esteja em $\overline{\mathrm{P}}$.

Resumindo:

- P: é a classe de problemas que podem ser <u>resolvidos</u> em **tempo polinomial** (*"rapidamente"*).
- NP: é a classe de problemas que podem ser <u>verificados</u> em **tempo** polinomial.

Um exemplo de problemas em NP, mas <u>não sabemos</u> se pertence à P é o CAMHAM.

- O poder/capacidade de <u>verificar</u> "parece" ser muito maior do que o de <u>decididir</u> (em **tempo polinomial**).
- No entanto, por mais difícil que seja imaginar, pode ser que

$$P = NP$$

39

Somos incapazes de provar um único problema que esteja em NP mas que $\operatorname{n\~{ao}}$ esteja em P .

A questão $\underline{P=NP}$? é um dos **maiores** problemas em aberto da Computação teórica e Matemática⁴.

• Dois cenários possíveis:

40

⁴https://en.wikipedia.org/wiki/Millennium_Prize_Problems

Muitos (a maioria) acreditam que $P \neq NP$.

- Isso por que muitas tentativas foram feitas para encontrar **soluções polinomiais** para *certos problemas* em NP (todas sem sucesso).
 - Esses problemas s\(\tilde{a}\) o chamados de NP-completos (uma subclasse especial).
 - O que provaria que P = NP.

Mas, provar (de fato) que $ext{P}
eq ext{NP}$ também é difícil.

- Envolve provar que um algoritmo não existe
- Ou, mostrar que o método conhecido para simular uma MTN em uma MT determinística (tempo exponencial) é o melhor possível

Muitos (a maioria) acreditam que $P \neq NP$.

- Isso por que muitas tentativas foram feitas para encontrar soluções polinomiais para certos problemas em NP (todas sem sucesso).
 - Esses problemas s\(\tilde{a}\) o chamados de \(\frac{NP-completos}{n}\) (uma subclasse especial).
 - O que provaria que P = NP.

Mas, provar (de fato) que $P \neq NP$ também é difícil.

- Envolve provar que um algoritmo não existe.
- Ou, mostrar que o método conhecido para simular uma MTN em uma MT determinística (tempo exponencial) é o melhor possível.

No momento, sabemos que ${\rm NP}$ é um subconjunto da classe dos problema exponenciais 5 .

$$NP \subseteq \textit{EXPTIME} = \bigcup_k \textit{TIME}(2^k)$$

 Mas, <u>não sabemos</u> se NP está contida em outra classe de problemas de tempo determinístico menor.

4

⁵A MTN que resolve o problema em tempo **polinomial não-determinístico** sempre pode ser convertida em tempo exponencial: $2^{O(t(n))}$.

A questão P versus NP

No momento, sabemos que ${\rm NP}$ é um subconjunto da classe dos problema exponenciais 5 .

$$\mathrm{NP} \subseteq \textit{EXPTIME} = \bigcup_k \textit{TIME}(2^k)$$

 Mas, <u>não sabemos</u> se NP está contida em outra classe de problemas de tempo determinístico menor.

⁵A MTN que resolve o problema em tempo **polinomial não-determinístico** sempre pode ser convertida em tempo exponencial: $2^{O(t(n))}$.

Roteiro

- Complexidade de Tempo
- 2 A classe P
- 3 A classe NP
- 4 A questão P versus NP
- **5** NP-completude
- 6 Referências

Existe uma <u>classe especial</u> de <u>problemas em NP</u> que "capturam" a dificuldade de resolver qualquer outro problema em NP ($^{\text{em tempo polinomial}}$).

 Um problema é NP-completo se todo problema em NP pode ser reduzido à ele em tempo polinomial.

Qual a relação com P versus NP?

Voltando à questão P versus NP

Se houver <u>uma única solução</u> polinomial para algum problema NP-completo, então todos os problemas em NP estão em P:

$$P = NP$$

Por outro lado, se alguém provar que não existe solução polinomial para algum problema NP-completo:

$$P \neq NP$$

Mas, até hoje ninguém resolveu nenhum desses problemas.

Voltando à questão P versus NP

Se houver <u>uma única solução</u> polinomial para algum problema NP-completo, então todos os problemas em NP estão em P:

$$P = NP$$

Por outro lado, se alguém provar que não existe solução polinomial para algum problema NP-completo:

$$P \neq NP$$

Mas, até hoje ninguém resolveu nenhum desses problemas.

Voltando à questão P versus NP

Se houver <u>uma única solução</u> polinomial para algum problema NP-completo, então todos os problemas em NP estão em P:

$$P = NP$$

Por outro lado, se alguém provar que não existe solução polinomial para algum problema NP-completo:

$$P \neq NP$$

45

Mas, até hoje ninguém resolveu nenhum desses problemas.

Redutibilidade por mapeamento

O conceito de redução de um problema A em tempo polinomial a um outro problema B, é o mesmo que vimos anteriormente, agora denotado por

$$A \leq_P B$$

- A função computável f : Σ* → Σ*, deve rodar em tempo polinomial.
- Podemos converter questões do tipo

"
$$w \in A$$
" em " $f(w) \in B$ "

Podemos relacionar a "dificuldade" de resolução dos problemas A e B.

Redutibilidade por mapeamento

Primeiro resultado interessante:

Teorema 7.31 (Sipser)
Se $A \leq_P B$ e $B \in P$, então $A \in P$

 Podemos "reutilizar" a solução de B para f(w) em tempo polinomial.

Teorema 7.34 (Sipser)

Uma linguagem B é NP-completa se satisfaz:

- B está em NP; e
- ② toda linguagem $A \in NP$ é redutível em tempo polinomial a B.

 Podemos falar que esses são os mais difícies problemas em NP.

Não é imediatamente óbvio que problemas NPC existam, mas acontece que existem vários deles (WIKIPEDIA lista ≈ 3.000).

- ullet Aparentemente, problemas NPC são mais comuns na prática, do que problemas que estão apenas em NP.
- Existe uma **grande chance** de você se deparar com um problema desses: *SAT*, *CAMHAM*, *CLIQUE*, *SOMA-SUB*, . . .

https://youtu.be/YX40hbAHx3s

40

Historicamente, o <u>primeiro problema</u> provado NPC foi o problema da **satisfabilidade** (SAT).

Teorema 7.27 (Sipser)

SAT é NP-completo

 Esse resultado foi provado por <u>Stephen Cook</u> e <u>Leonid Levin</u> (independentemente) no início dos anos 1970.

Teorema de Cook-Levin.

SAT

O problema *SAT* consiste em verificar se uma <u>fórmula booleana</u> é **satisfazível** ou não, isto é, se existe <u>alguma atribuição</u> de 0s e 1s às <u>variáveis</u> que faz a fórmula ter valor 1.

Por exemplo:

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

é satisfazível, pois $x=0,\ y=1$ e z=0 fazem com que $\phi=1$.

Ideia da prova:

- **1** $SAT \in NP$: é fácil ver que podemos <u>verificar uma solução</u> em tempo polinomial
- Todo problema em NP é redutível (em tempo polinomial) ao SAT
 - Mais difícil!!
 - A ideia é mostrar que uma MTN (que decide um problema em NP)
 pode ser representada por uma expressão booleana.

A MTN aceita $w\iff \phi$ é satisfazível

Parece "razoável" já que circuitos eletrônicos são baseados em operações booleanas.

Ideia da prova:

- SAT ∈ NP: é fácil ver que podemos <u>verificar uma solução</u> em tempo polinomial
- ② Todo problema em NP é **redutível** (em tempo polinomial) ao SAT.
 - Mais difícil!!
 - A ideia é mostrar que uma MTN (que decide um problema em NP) pode ser representada por uma expressão booleana.

A MTN aceita $w \iff \phi$ é satisfazível

Parece "razoável" já que circuitos eletrônicos são baseados em operações booleanas.

Ver prova no livro, Spiser (pág. 293).

Ideia da prova:

- **①** $SAT \in NP$: é fácil ver que podemos <u>verificar uma solução</u> em tempo polinomial
- ② Todo problema em NP é **redutível** (em tempo polinomial) ao SAT.
 - Mais difícil!!
 - A ideia é mostrar que uma MTN (que decide um problema em NP) pode ser representada por uma expressão booleana.

A MTN aceita $w \iff \phi$ é satisfazível

Parece "razoável" já que circuitos eletrônicos são baseados em operações booleanas.

Ideia da prova:

- **9** $SAT \in NP$: é fácil ver que podemos <u>verificar uma solução</u> em tempo polinomial
- ② Todo problema em NP é **redutível** (em tempo polinomial) ao SAT.
 - Mais difícil!!
 - A ideia é mostrar que uma \mbox{MTN} (que decide um problema em $\rm NP)$ pode ser representada por uma expressão booleana.

A MTN aceita $w \iff \phi$ é satisfazível

Parece "razoável" já que circuitos eletrônicos são baseados em operações booleanas.

Conhecer um problema NPC é extremamente poderoso

Teorema 7.36 (Sipser)

Se $B \in NPC$ e $B \leq_P C$, para C em NP, então $C \in NPC$.

- Para provar que um problema C é NPC, basta reduzir o SAT (ou outro) para ele.
- Não é preciso uma prova direta, apenas uma redução (tempo polinomial).

O problema SAT serve como uma "semente" para encontrar outros problemas $\operatorname{NP-completos}$

Por que é importante?

Problemas $\operatorname{NP-completos}$ formam a base para os **melhores** argumentos de que um problema é intratável.

- Não é uma prova formal (questão em aberta \underline{P} versus \underline{NP})
- Para efeitos práticos, caso você encontre um problema NPC⁶, não vale a pena tentar uma solução polinomial.
- O melhor a fazer é buscar alternativas: aproximações, heurísticas,

[°]Você deve provar que ele é NPC (por redução, por exemplo)

Por que é importante?

Problemas NP -completos formam a base para os **melhores** argumentos de que um problema é intratável.

- Não é uma prova formal (questão em aberta P versus NP)
- Para efeitos práticos, caso você encontre um problema NPC⁶, não vale a pena tentar uma solução polinomial.
- O melhor a fazer é buscar alternativas: aproximações, heurísticas,

5

⁶Você deve provar que ele é NPC (por redução, por exemplo)

Por que é importante?

Problemas NP -completos formam a base para os **melhores** argumentos de que um problema é intratável.

- Não é uma prova formal (questão em aberta P versus NP)
- Para efeitos práticos, caso você encontre um problema NPC^6 , não vale a pena tentar uma **solução polinomial**.
- O melhor a fazer é buscar alternativas: aproximações, heurísticas,
 ...

5

 $^{^6 \}text{Você}$ deve provar que ele é NPC (por redução, por exemplo)

Vamos finalizar (o curso!) com um exemplo:

- Suponha que você encontrou um problema A.
 - 1 Você sabe como verificar a resposta (em tempo polinomial),
 - Mas acha que o problema é intratável.

 O seu chefe n\u00e3o acredita em voc\u00e0 e quer que voc\u00e0 encontre uma solu\u00e7\u00e3o eficiente para o problema A.

O que você pode fazer nessa situação?

 $A \in NP$ mas não sabemos se $A \in P$.

Vamos finalizar (o curso!) com um exemplo:

- Suponha que você encontrou um problema A.
 - Você sabe como verificar a resposta (em tempo polinomial),
 - Mas acha que o problema é intratável.

 O seu chefe não acredita em você e quer que você encontre uma solução eficiente para o problema A.

O que você pode fazer nessa situação?

 $A \in NP$ mas não sabemos se $A \in P$

Vamos finalizar (o curso!) com um exemplo:

- Suponha que você encontrou um problema A.
 - Você sabe como verificar a resposta (em tempo polinomial),
 - Mas acha que o problema é intratável.

 O seu chefe n\u00e3o acredita em voc\u00e0 e quer que voc\u00e0 encontre uma solu\u00e7\u00e3o eficiente para o problema \u00e1.

O que você pode fazer nessa situação?

Algumas possibilidade:

- Provar que $A \notin P$
 - Isso de fato resolveria o problema, mas você faria muito mais! Você estaria provando que $P \neq NP$

 $A \in NP$ mas não sabemos se $A \in P$.

Algumas possibilidade:

- **2** Reduzir um problema em NP B para A, isto é, mostrar $B \leq_P A$
 - Isso não significa muita coisa, apenas que B é tão dificil quanto A, só que B pode ser mostrado mais tarde em P.

 $A \in NP$ mas não sabemos se $A \in P$.

Algumas possibilidade:

- **3** Reduzir um problema NPC C para A, isto é, mostrar $C \leq_P A$
 - Isso mostra que o seu problema é ${\bf t\tilde{a}o}$ dificil quanto qualquer outro problema NPC, e que ele é NPC.

A menos que P = NP, você pode dizer que A é intratável.

 $A \in NP$ mas não sabemos se $A \in P$.

Fim

Dúvidas?

Roteiro

- Complexidade de Tempo
- 2 A classe P
- 3 A classe NP
- 4 A questão P versus NP
- 5 NP-completude
- 6 Referências

Referências

Referências:

- "Introdução à Teoria da Computação" de M. Sipser, 2007.
- "Introdução à Teoria de Autômatos, Linguagens e Computação" de J. E. Hopcroft, R. Motwani, e J. D. Ullman, 2003.