CS4102 Algorithms

Fall 2018

Warm up

Can you cover an 8×8 grid with 1 square missing using "trominoes"?

Can you cover this?

With these?

Today's Keywords

- Recursion
- Recurrences
- Asymptotic notation
- Divide and Conquer
- Trominos
- Merge Sort

CLRS Readings

• Chapters 3 & 4

Homeworks

- Hw0 due 11pm Wednesday, Sept 5
 - Submit 2 attachments (zip and pdf)
- Hw1 released Monday, Sept 3
 - Due 11pm Wednesday, Sept 12
 - Written (use Latex!)
 - Asymptotic notation
 - Recurrences
 - Divide and conquer

Attendance

- How many people are here today?
- Naïve algorithm
 - 1. Everyone stand
 - 2. Professor walks around counting people
 - 3. When counted, sit down
- Run time?
 - Class of n students
 - O(n)
- Other suggestions?

Better Attendance

- 1. Everyone Stand
- 2. Initialize your "count" to 1

What was the run time of this algorithm?

What are we going to count?

- 3. Greet a neighbor who is standing: share your name, full date of birth(pause if odd one out)
- 4. If you are older: give "count" to younger and sit. Else if you are younger: add your "count" with older's
- 5. If you are standing and have a standing neighbor, go to 3

Attendance Algorithm Analysis

$$T(n) = 1 + 1 + T(\frac{n}{2})$$
 How can we "solve" this?
 $T(1) = 3$ Base case?

Do not need to be exact, asymptotic bound is fine. Why?

Let's solve the recurrence!

$$T(n) = 3 + \sum_{i=0}^{\log_2 n} 2 = 2\log_2 n + 3$$

What if $n \neq 2^k$?

More people in the room → more time

•
$$\forall \ 0 < n < m, T(n) < T(m)$$

•
$$T(n) \le T(2^{\lceil \log_2 n \rceil}) = 2\lceil \log_2 n \rceil + 3 = O(\log n)$$

These are unimportant. Why?

Asymptotic Notation*

- O(g(n))
 - At most within constant of g for large n
 - {functions $f \mid \exists$ constants c > 0, $n_0 > 0$ s.t. $\forall n > n_0$, $f(n) \le c \cdot g(n)$ }
- $\Omega(g(n))$
 - At least within constant of g for large n
 - {functions $f \mid \exists$ constants c > 0, $n_0 > 0$ s.t. $\forall n > n_0$, $f(n) \ge c \cdot g(n)$ }
- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $-\Omega(g(n))\cap O(g(n))$

Asymptotic Notation Example

- To Show: $n \log n \in O(n^2)$
 - Find $c, n_0 > 0$ s.t. $\forall n > n_0, n \log n \le c \cdot n^2$
 - $\text{Let } c = 1, n_0 = 1$
 - $-(1)\log(1) = 0, 1 \cdot 1^2 = 1$
 - $\forall n \ge 1, \log(n) < n \Rightarrow n \log n \le n^2$

Asymptotic Notation

- o(g(n))
 - Below *any* constant of g for large n
 - {functions $f \mid \forall$ constants c > 0, $\exists n_0$ s.t. $\forall n > n_0$, $f(n) < c \cdot g(n)$ }
- $\omega(g(n))$
 - Above any constant of g for large n
 - {functions $f \mid \forall$ constants c > 0, $\exists n_0$ s.t. $\forall n > n_0$, $f(n) > c \cdot g(n)$ }
- $\theta(g(n))$?
 - $-o(g(n)) \cap \omega(g(n)) = \emptyset$

Asymptotic Notation Example

- $o(g(n)) = \{\text{functions } f | \forall \text{ constants } c, \exists n_0 \text{ s.t. } \forall n > n_0, f(n) < c \cdot g(n) \}$
- To Show: $n \log n \in o(n^2)$
 - given any c find a $n_0 > 0$ s.t. $\forall n > n_0$, $n \log n < c \cdot n^2$
 - Find a value of n in terms of c: $n \log n < c \cdot n^2$
 - $-n\log n < c \cdot n^2$
 - $-\log n < c \cdot n$
 - For a given c, select any value of n such that $\frac{\log n}{n} < c$

What about larger boards?

Divide the board into quadrants

Place a tromino to occupy the three quadrants without the missing piece

Each quadrant is now a smaller subproblem

Solve Recursively

Divide and Conquer

Our first algorithmic technique!

Divide and Conquer*

When is this a good strategy?

Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

• Combine:

Merge together solutions to subproblems

Analyzing Divide and Conquer

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- Divide: D(n) time,
- Conquer: recurse on small problems, size s
- Combine: C(n) time
- Recurrence:

$$-T(n) = D(n) + \sum T(s) + C(n)$$

Recurrence Solving Techniques

"Cookbook"

Merge Sort

• Divide:

- Break n-element list into two lists of n/2 elements

Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

• Combine:

Merge together sorted sublists into one sorted list

Merge

- Combine: Merge sorted sublists into one sorted list
- We have:

```
- 2 sorted lists (L_1, L_2)
```

-1 output list (L_{out})

```
While (L_1 \text{ and } L_2 \text{ not empty}):

If L_1[0] \leq L_2[0]:

L_{out}.\text{append}(L_1.\text{pop}())

Else:

L_{out}.\text{append}(L_2.\text{pop}())

L_{out}.\text{append}(L_1)

L_{out}.\text{append}(L_2)
```

Analyzing Merge Sort

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- Divide: 0 comparisons
- Conquer: recurse on 2 small problems, size $\frac{n}{2}$
- Combine: *n* comparisons
- Recurrence:

$$-T(n) = 2T(\frac{n}{2}) + n$$

Tree method

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

