- 教材讨论
 - TC第34章

问题1: 判定问题和优化问题

- Although P, NP, and NP-complete problems are confined to the realm of decision problems, we can take advantage of a convenient relationship between optimization problems and decision problems.
 - 你怎么理解这句话?
 - 以下这些优化问题对应的判定问题分别是什么?
 - · traveling salesperson problem
 - set cover problem
 - knapsack problem
 - 优化问题和对应的判定问题哪个更难?

问题1: 判定问题和优化问题(续)

• 优化问题有自己的"NP"和"P", 你理解了吗?

Definition 2.3.3.21. NPO is the class of optimization problems, where $U = (\Sigma_I, \Sigma_O, L, L_I, \mathcal{M}, cost, goal) \in \text{NPO}$ if the following conditions hold:

- (i) $L_I \in P$,
- (ii) there exists a polynomial p_U such that
 - a) for every $x \in L_I$, and every $y \in \mathcal{M}(x)$, $|y| \leq p_U(|x|)$, and
 - b) there exists a polynomial-time algorithm that, for every $y \in \Sigma_O^*$ and every $x \in L_I$ such that $|y| \leq p_U(|x|)$, decides whether $y \in \mathcal{M}(x)$, and
- (iii) the function cost is computable in polynomial time.

Informally, we see that an optimization problem U is in NPO if

- one can efficiently verify whether a string is an instance of U,
- (ii) the size of the solutions is polynomial in the size of the problem instances and one can verify in polynomial time whether a string y is a solution to any given input instance x, and
- (iii) the cost of any solution can be efficiently determined.

Definition 2.3.3.23. PO is the class of optimization problems $U = (\Sigma_I, \Sigma_O, L, L_I, \mathcal{M}, \cos t, goal)$ such that

- (i) $U \in NPO$, and
- (ii) there is a polynomial-time algorithm that, for every x ∈ L_I, computes an optimal solution for x.

问题2: P

- 关于P, 你如何理解这几句话:
 - Very few practical problems require time on the order of a highdegree polynomial.
 - For many reasonable models of computation, a problem that can be solved in polynomial time in one model can be solved in polynomial time in another.
 - 特别地,对于parallel computer,为什么要强调the number of processors grows polynomially with the input size
 - The class of polynomial-time solvable problems has nice closure properties.

问题2: P(续)

- 为什么关于复杂性的讨论会涉及到编码? 你能举个例子吗?
- 如何将编码从复杂性的讨论中隔离出去?
 - Rule out "expensive" encodings.
 - If two encodings e_1 and e_2 of an abstract problem are polynomially related, whether the problem is polynomial-time solvable or not is independent of which encoding we use.

问题2: P(续)

- decide in polynomial time和accept in polynomial time的区别 是什么?
 - To accept a language, an algorithm need only produce an answer when provided a string in L, but to decide a language, it must correctly accept or reject every string in {0, 1}*.
- 联系又是什么? 为什么会有这种联系?

```
\mathbf{P} = \{L \subseteq \{0,1\}^* : \text{ there exists an algorithm } A \text{ that decides } L \\ \text{ in polynomial time} \} \; .
```

 $P = \{L : L \text{ is accepted by a polynomial-time algorithm} \}$.

在模拟接受算法的判定算法中,如果接受算法不停机,判 定算法可以在什么时候停下来?

问题3: NP

- 你怎么理解certificate?
- 这些NP问题中的certificate是什么?如何来验证?
 - longest simple path
 - Hamiltonian cycle
 - 3-CNF satisfiability
 - circuit satisfiability
 - formula satisfiability
 - clique problem
 - vertex cover problem
 - traveling salesman problem
 - subset sum problem
 - primality testing
 - http://en.wikipedia.org/wiki/Primality_certificate

问题3: NP (续)

- · 你能结合这个例子,从以下两个方面来解释P和NP吗?
 - 可解 vs. 可验证
 - 确定性 vs. 非确定性
- 因此,为什么P⊆NP?

问题4: NP-hard与NPC

你怎么理解L₁ is polynomial-time reducible to L₂?

if there exists a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for all $x \in \{0, 1\}^*$,

 $x \in L_1$ if and only if $f(x) \in L_2$.

- 作为一种二元关系, ≤具有什么性质?
- 为什么这条引理成立?

Lemma 34.3

If $L_1, L_2 \subseteq \{0, 1\}^*$ are languages such that $L_1 \leq_P L_2$, then $L_2 \in P$ implies $L_1 \in P$.

 $L' \leq_{\mathbf{P}} L$ for every $L' \in NP$

NPC又是怎么定义的?为什么这条定理成立?

Theorem 34.4

If any NP-complete problem is polynomial-time solvable, then P = NP.

 $\{0,1\}*$

• 你理解这条引理的证明了吗?。

Lemma 34.6

The circuit-satisfiability problem is NP-hard.

- 如何建立reduction?
 - 电路的内部结构是什么?
 - 电路的输入输出是什么?
- 如何证明它是polynomial-time computable?

· 证明NPC的一般方法是什么?

- 1. Prove $L \in NP$.
- 2. Select a known NP-complete language L'.
- 3. Describe an algorithm that computes a function f mapping every instance $x \in \{0, 1\}^*$ of L' to an instance f(x) of L.
- Prove that the function f satisfies x ∈ L' if and only if f(x) ∈ L for all x ∈ {0, 1}*.
- 5. Prove that the algorithm computing f runs in polynomial time.

• 这张图是什么含义?

如何将circuit satisfiability归约到formula satisfiability,从而证明后者是NP-hard?

如何将formula satisfiability归约到3-CNF satisfiability,从而证明后者是NP-hard?

If C_i has 2 distinct literals, that is, if $C_i = (l_1 \vee l_2)$, where l_1 and l_2 are literals, then include $(l_1 \vee l_2 \vee p) \wedge (l_1 \vee l_2 \vee \neg p)$ as clauses of ϕ''' .

If C_i has just 1 distinct literal l, then include $(l \lor p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor q) \land (l \lor \neg p \lor \neg q)$ as clauses of ϕ''' .

• 如何将3-CNF satisfiability归约到clique problem,从而证明后者是NP-hard?

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

$$C_1 = x_1 \vee \neg x_2 \vee \neg x_3$$

$$x_1 \qquad x_1 \qquad x_2 \vee x_3$$

$$C_2 = \neg x_1 \vee x_2 \vee x_3$$

$$x_3 \qquad x_3 \qquad x_3$$

• 如何将clique problem归约到vertex cover problem,从而证明后者是NP-hard?

 如何将hamiltonian cycle归约到traverling salesman problem, 从而证明后者是NP-hard?

• 如何将3-CNF satisfiability归约到subset sum problem,从而证明后者是NP-hard?

 $\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$, where $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3)$, $C_2 = (\neg x_1 \vee \neg x_2 \vee \neg x_3)$, $C_3 = (\neg x_1 \vee \neg x_2 \vee x_3)$, and $C_4 = (x_1 \vee x_2 \vee x_3)$.

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
ν_1	=	1	0	0	1	0	0	1
ν_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
S_3	=	0	0	0	0	0	1	0
S_3'	=	0	0	0	0	0	2	0
S4	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4