Antifeviornagnetism

In 1936 Neel Showed theoretically that it exchange integral Ji = -ve; twee a State of lowest energy is obtained obere the spin of neighbouring atoms have apposite orientation. Such materials are known an anti-feroio magnetic materials.

Two interpracting Sublattice A & B

M = MA + MB

1 MA 1 = 1 MB1

Hspin

neavest neighbour interation " IN FM C magnetization MA = A-Sublattice MB = B-Subtattice

TH = Neel temporature M=MA+MB=D

1 ma-MB1 = Stagged ned Magnetism is used on parameter

Wiess molecular field theory for AFM
Consider magnetic materials with two sublattices 1 & B
Bee lattice A - 1 conner points B - 1 Bee position
An atom at A -size has neavest neighbour that all lie on A-sites.
B-Sites
$H_{M+} = -\lambda M$
HM- = -2 M+
the molecular field HMA acting on ac
Hmm = - NAMMA - NABMO MA & MB = Magnetizations
of A and 13
Sublattice c
MAB = Molecular Field
company too the
Potago Han:
MAPE = 11 For Near Meanust Neighbour Int.
Merghous Ent
The moleular Field HmB acting on the atom B-site
Hmm = - NBA MA - NBB MB
NAA = NBB = NIII
7
on the A and B lattice would be HA = HI HMA HB = HI HMB
on the A will MA - NAB MB - W HB=H+HmB
H-A = 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N. M.
HB = H- NABMA-NAMB (2)
HB = H- NABMA-NIMB (2)
HB = HI NABMA - NAMB - (2) MA = NBMB J BJ (2) NA = JBMB HA MA = MBMB J BJ (2)
$H_{B} = H_{1} - N_{AB}M_{A} - N_{1}M_{B} - (2)$ $M_{A} = N_{2}M_{B}J_{B}J_{A}(x_{B})$ $M_{A} = \frac{J_{2}M_{B}}{K_{B}T}H_{A}$ $M_{B} = \frac{N_{2}}{2}M_{B}J_{B}J_{A}(x_{B})$ $M_{B} = J_{2}M_{B}J_{B}J_{A}(x_{B})$ $M_{B} = J_{2}M_{B}J_{B}J_{A}(x_{B})$ $M_{B} = J_{2}M_{B}J_{B}J_{A}(x_{B})$
HB = H- NABMA-NIMB (2)

RE- CONTRACTOR

Case-1: Behavious above Th T) TN By (N)-1 37+1 X MA = Hghad J+1 = Jgha HA

KAT HA AH (I+E) [Brown BN MB = Ngress J(J+1) HB = Ngress. J(J+1)

Ni: Mas

MA M = MA + MB M = Ngrusy J(J+1) [2H - NAB (MA+MB) - Ni M] $M \left[1 + \left(N_{AB} + N_{ii} \right) \frac{N_0^2 N_B^2}{6 N_0 T} \right] = \frac{N_0^2 N_B^2}{6 N_0 T} \int (J_1 + I) \cdot \frac{3}{4} dt$ Ax= H = Ngvusv. J(J+1) - I + (NAB+ Nii) Ngrangv 7(J+1) $\chi = \frac{1}{1 + (N_{AB} + N_{ii})} \cdot \frac{1}{1 + (N_{AB} + N_{ii})} \cdot$ $\chi = \frac{\sqrt{r}}{1 + \sqrt{2r} \left(N_{AB} + N_{ii}\right)}$ T+C(NAB+NII) for the AFM ET (1+E)[var py = 9 ON= C(NINAMAB) X = C / TON / X = T + ON XI TE I TNI 30N X

Fe
$$T_c = 1043t$$

 $\beta = 0.36 \pm 0.02$
 $\delta = 1.33 \pm 0.02$
 $\delta = 4.35 \pm 0.02$

In 1986 Neel shown theoretically that if exchange integral Jex = -ve, there a state of lowest energy is obtained where the spins of neighbouring atoms have opposite orientation. Such material are known as AFM.

lobony

DIE SAMOTONOE Φ. 即向

similland, the molecular field thmis

HIMB - - NOAMA - MEEMB

MAN = MAN

HALL HA HIMA

weiss moleculare the fild theory for AFM considered magnetic materials with two sublattice Mac H - MII MA - NABMB ARB Becarlattice

A -> Corner point - AMENM - 11

B -> Bcc point

An atom has at A-site has nearcest neighbourd that all lie on B-sites & next neighbour that all lie on A site (iv) jal and = (em)

Magnetisation of A sublattice M- Magnetis ation of B sublattice. -M6- = +MH MM= = -2Mt

The molecular field Hma acting on A site / Hma = - NAA MA - NAB MB, anatom at ma Ma & MB = Magnetisation A&B sublattice NAA = Moleculare field constant for next neigh bour intercaction NAB = Moleculare 2 for neigh nearest neighbours intercaction. simillarly the molecular field HmB racking jorn atom AB-site HmB = -NBAMA - NBBMB NAA = NBB = Nii NBA = NAB af H field is applied the held HABHB at an atom on two A & Blattice would be considered manetic ma HA = H - NII MA - NABMB HB = H - NABMA - Ni MB Bec point HA = H+ HMA HBOOK + HMBO DON 20N An atom bas at 1-site (MA) = Mgus JBy(NA) 110 Horison (MA) = Mgus JBy(NA) 111 110 Horis (MB) = Hg gus JB; (NB) of and of NB 2 JAMB (HA) A to not to site and AM

NB 2 KBT HB offer the site of the AM

KBT - M

By
$$(XA) = \frac{(2j+1)}{2j} coth \frac{(2j+1)}{2j} M_A - \frac{1}{2j} coth \frac{1}{2j} M_A$$

COLCIE Behaviour above T_N , T T_N

By $(X) = \frac{(3j+1)}{2j} (X)$
 $X \rightarrow Bec ome gmall MA = (\frac{N}{2}) \frac{2^2 G}{2^2 G} \frac{1}{2^2 G} \frac{1}{2^2$

A Jublatic & B-sublattice man 1111 (ill man) (thoes'not apply and magnetic field) T<TM below TH both sublattice posses spontinous magnetisation. ANT = O TH - MAS MA = C (-NII MA - NAB MB) MB = C (- NAB MA - NIIMB) MI OF INM FI MA (S) NAB + MB [I+ ST NI] = 2. 88 & AA AE Y : C NAB C1203 301 XX Ox2A, 20 950 (x+x) (x+x) =0 000 xx-y -x=y - toxt- 0002 21 +1 not possible C (NAB - Nii) = 1 1+ CNii = ST NAB 1+ C (Nii - NAB) = 0

TM= & (NAB-Nii) 11 11 - DSW Soitholder 2 0 2 Molder (Din 2 (Nii + NAB) THE WORLD SUBTRILLE POSSET NIN - WILL BOLLD SUBTRIBLE OF THE PRINT OF if Mil' = 0 TIY = NAB MA = ST (-MI MA - NAB POBNT 17 Nxi +0 TH (01:11 - aM 8M -) = 8M TH increase if AFM AB interraction NAB become stronger but decreesing with increasing AA & BB . = [IM = +1] SM + SAM (PE) AM Mafernial | TN(K) MnF2: 67 -80 \times 5/2 Mn0 116 -510 5/2 -330 3/2iin 5 +1 = 1 2 116 Fe O -48510 1 3/2 Cr203 307 Pe202 950 It is seen that this of the 1-1 9T MII = 37 MAB | STN (MAB - MII) = 1 1+ cts (1111 - MAB) = 0

0= P In spin flop state B = -2MB coro + AM2 corpo) - = 4 coro minimum enercy configuration de sillo palinique $2MB + (24 - 4AM^{2}) CO20 = 0$ $2MB + (24 - 4AM^{2}) CO20 = 0$ $2MB - (24 - 4AM^{2}) CO20 = 0$ 401 0010, 2011 4AM2 0. = co- [2AM) 5= -2MB (B) 1+2AM2 B - AM29MDNOXO LOSING $B_{A}^{MC} - 2 \stackrel{\mathsf{MB}}{\mathsf{Co}} \stackrel{\mathsf{Co}}{\mathsf{O}} \stackrel{\mathsf{T}}{\mathsf{O}} \stackrel{\mathsf{A}}{\mathsf{M}^{2}} \stackrel{\mathsf{Z}}{\mathsf{S}} \stackrel{\mathsf{Sino}}{\mathsf{Coso}} - 4 \stackrel{\mathsf{Co}}{\mathsf{Co}} \stackrel{\mathsf{D}}{\mathsf{O}},$ $= -2 \stackrel{\mathsf{MB}}{\mathsf{Co}} \stackrel{\mathsf{D}}{\mathsf{E}} \stackrel{\mathsf{A}}{\mathsf{M}} + \underset{\mathsf{Z}}{\mathsf{M}^{2}} \stackrel{\mathsf{B}^{2}}{\mathsf{V}} \stackrel{\mathsf{D}}{\mathsf{M}^{2}} - \left(4 \cdot \frac{\mathsf{B}^{2}}{\mathsf{V}^{2} \mathsf{M}^{2}}\right)$ $= -\frac{\mathsf{B}^{2}}{\mathsf{B}^{2}} - \frac{\mathsf{B}^{2}}{\mathsf{B}^{2}} - \frac{\mathsf{B}^{2}}{\mathsf{B}^{2}} \stackrel{\mathsf{D}}{\mathsf{D}} \stackrel{\mathsf{D}} \stackrel{\mathsf{D}}{\mathsf{D}}$

The craftical tempercuture can be found by approaching from the high temp. MA = C (H-NIIMA-NAB MB) state T> IN MB = = (H-NABMA - NIIMB) 0 = 4.415 Pto In the visinity of The (saturcation effects are unim porctant.) H = 0 MA = 2T (-Nii MA - NAB MB) MB = C (- NAB MA - Nii MB) MONTURIN for Non-Zerco value of MAS MB the determinant the position of MAS MB, must be Zerro. proviers: (i) considere anostera material cohicin nas as insurand between meanest neither al 1916 - The 112 (NAB - NII) PAL 215 PIPI NOUR, 2016 Colonate the molues of

(10)

$$X = \begin{cases} C \\ T+0 \end{cases}$$

$$= \begin{cases} C \\ T+T \end{cases}$$

$$\frac{c}{2T+T_N} = \frac{c}{3TN}$$

C
3TN
,0.1

$$\frac{\chi = \frac{274\chi_0}{31\mu}}{\chi = \frac{2}{3}\chi_0}$$
for (454)