CSCE 5350 004 FUNDAMENTALS OF DATABSE SYSTEMS GROUP-8

Nitin Chakravarthy - 11601099

Surya Vamsi - 11645442

Lohitha Sai Bonthu - 11611601

Yamini Gollamudi - 11642723

Prathyusharani Dumpala - 11656342

PROJECT DESCRIPTION:

In this project we are creating a database for a National Pharmacy Company. This Company buys drugs from manufacturers and sells them in their stores.

For such a company which operates on a national scale we require to store so much information about various things. We need to store the information about their stores, warehouses, the employees that work there, the patients that visit the stores, the various drugs that are stored at warehouses and sold at the stores. All this information is crucial to the working of the Company. This data can be used to gain information about the sales of a particular drug, keep an eye on the inventory, manage the employees etc.

To create and store such information we need to know what types and how the information should be stored. Hence, we require a database with a good design. To design a database, we

need to know about every piece of information that we will be storing in the database, how they are related to each other and how many types there are. So, we need to do a requirements analysis.

After researching on what information that such a database should contain our group decided to include the following:

Stores: Store Id, Address, Manager, Assigned Pharmacist, Assigned Doctor, Region Code

Warehouses: Warehouse Id, Address, Warehouse Manager, Current Stock, Capacity, Region Code

Region: Region Name, Region Code, Region Manager

Employees: EID, Name, SSN, Age, Gender, Address, Ph NO, Wage, Type, Location, Bank Account Number

Patients: PID, Name, Age, Gender, Ph NO, Address, SSN, Insurance Num

Insurance: INM, Name of Insurance, PID, Amount, Date Claimed, Status

Drug: Drug ID, Name, Price, Drug Type, Dosage, Manf By, Manf Date, Batch NO, Expiry Date

Inventory: Drug ID, Building ID, Current Stock

Logistics: Import/Export, Good, Date, Warehouse ID, Store ID, Quantity, Status

Sales: No of sales per month, Month, Year, Drug ID, Store ID

Two or more Entities that we included above might have a relation between them which might create additional attributes in an entity while creating the tables. Examples of such relations are:

An Employee works in a Store (One to Many)

Store/Warehouse belongs to a Region (One to Many)

Drugs stored in a Warehouse (Many to Many)

Warehouse supplies drugs to Store (Many to Many)

Description about the Entities:

- Store: This entity contains all the information about the various stores that sell the medicine. Their location, their assigned manager and pharmacist, and the region it belongs to. The Store Id is the Primary Key for this.
- Warehouse: This contains the details about a particular warehouse of the company. Its location, capacity, current stock quantity, the region, and the manager. Warehouse Id is the Primary Key.

- Region: This entity is used to ease the management of various stores and warehouses. It contains all the IDs of the stores and the warehouses that belong to a particular region and about the manager. In this Building ID is a multi-valued attribute which contains the IDs of the stores and warehouses. The Region Code is the Primary Key.
- Employees: This entity consists of all the information about the people who work in the company. Their basic information, contact details, position, wage, and banking information. Employee Id (EID) is the Primary Key.
- Patients: It contains the details about the customers of the company. Their basic information, contact information and their insurance details if any. Patient ID (PID) is the Primary Key.
- Insurance: This entity contains information about a patient's insurance so that it can be used to settle the claims. It contains the insurance number, name and amount claimed with date. Insurance Number (INM) is the Primary Key.
- Drug: This is the most important entity. This contains all the information about the various drugs that are dealt by the company like drug name, price, manufacture company etc. Drug ID is the Primary Key.
- Inventory: This is used to keep track of the stock of the medicines that are dealt with by the company. This stores how much quantity of a particular drug is left at a particular location. The Building ID can be either Store ID or Warehouse ID. Drug ID together with Building ID will be the Primary Key.
- Logistics: This keeps information about the various movements of goods in the company. This is used to know what order a particular warehouse placed (import) or what drug a warehouse is sending to a store (export).
- Sales: This is used to get data about how well a particular drug is performing (selling). This reveals to us the information about the market and can be used to design market strategies.

ORACLE DATABASE INSTALLATION:

Individual Contribution:

In this phase everyone had their own ideas and so we decided that each member must come up with two entities on their own and about their attributes such that it satisfies the theme of the project and the requirements mentioned. I came up with the Entities: Drug and Logistics and the relation Drug stored in Warehouse mentioned above.

Each person has typed the description of entities that they came up with on their own. So, the description about Drugs and Logistics are given by me. Lastly this document was prepared by me.

CSCE 5350 004 FUNDAMENTALS OF DATABSE SYSTEMS GROUP-8

Project Group Details

	J 1	
SNO	Name	ID
<i>1</i> .	Surya Vamsi Chintapalli	11645442
<i>2</i> .	Nitin Chakravarthy Chilukuri	11601099
<i>3</i> .	Prathyusharani Dumpala	11656342
<i>4</i> .	Yamini Gollamudi	11642723
<i>5</i> .	Lohitha Sai Bonthu	11611601

Creation of Tables:

Initial Entities and their Attributes:

Stores: Store Id, Address, Manager, Assigned Pharmacist, Assigned Doctor, Region Code

Warehouses: Warehouse Id, Address, Warehouse Manager, Current Stock, Capacity, Region Code

Region: Region Name, Region Code, Region Manager, BuildingID

Employees: EID, Name, SSN, Age, Gender, Address, Ph NO, Wage, Type, Location, Bank

Account Number

Patients: PID, Name, Age, Gender, Ph NO, Address, SSN, Insurance Num

Insurance: INM, Name of Insurance, PID, Amount, Date Claimed, Status

Drug: Drug ID, Name, Price, Drug Type, Dosage, Manf By, Manf Date, Batch NO, Expiry

Date

Inventory: Drug ID, Building ID, Current Stock

Logistics: Import/Export, Good, Date, Warehouse ID, Store ID, Quantity, Status

Sales: No of sales per month, Month, Year, Drug ID, Store ID

ASSUMPTIONS:

Before creating the required tables, we made the following assumptions and changes:

- 1.) There will only be 4 Types of Employees: Normal, Pharmacist, Manager, Doctor.
- 2.) There are only two Genders: Male and Female.
- 3.) There are only three statuses for a transaction using insurance: Pending, Approved and Failed.
- 4.) There are three types of Drugs: Tablet, Syrup, Injection (Shot).
- 5.) There are 3 statuses for logistic order: Pending, In Transit and Delivered.
- 6.) An SSN can only be associated to only one person.
- 7.) We removed the Import/Export attribute from the Logistics relation, Building ID attribute from Region entity and Insurance Number attribute from Patients entity as we found they were unnecessary when we created the ER Diagram.
- 8.) We made a change in Inventory relation such that Building ID now refers to warehouse only and not stores. That is this relation now shows which drug is stored in which warehouse and how much quantity.

Updated Entities and their Attributes:

Stores: Store Id, Address, Manager, Assigned Pharmacist, Assigned Doctor, Region Code

Warehouses: Warehouse Id, Address, Warehouse Manager, Current Stock, Capacity, Region Code

Region: Region Name, Region Code, Region Manager

Employees: EID, Name, SSN, Age, Gender, Address, Ph NO, Wage, Type, Location, Bank Account Number

Patients: PID, Name, Age, Gender, Ph NO, Address, SSN

Insurance: INM, Name of Insurance, PID, Amount, Date Claimed, Status

Drug: Drug ID, Name, Price, Drug Type, Dosage, Manf By, Manf Date, Batch NO, Expiry Date

Inventory: Drug ID, Building ID, Current Stock

Logistics: Good, Date, Warehouse ID, Store ID, Quantity, Status

Sales: No of sales per month, Month, Year, Drug ID, Store ID

The E-R Diagram for the Updated Relations is:

Creating Tables:

```
1.) Employee:
```

```
create table employee(
EID varchar2(20) primary key,
name varchar2(20),
ssn varchar2(10),
unique(ssn),
age int check(age>18),
gender varchar2(10) check(gender in ('Male','Female')),
address varchar2(20),
PhoneNO varchar2(20),
wage varchar2(20),
Type varchar2(20) check(Type in ('Normal','Pharmacist','Doctor','Manager')),
```

```
Location varchar2(20),
  BankAccount varchar2(20)
);
2.) Region:
create table Region(
  RegionCode varchar2(20) primary key,
  RegionName varchar2(20),
  RegionManager varchar2(20),
  foreign key(RegionManager) references employee(EID)
);
3.) Store:
create table store(
  StoreID varchar2(20) primary key,
  address varchar2(20),
  ManagerID varchar2(20),
  PharmacistID varchar2(20),
  foreign key(PharmacistID) references employee(EID),
  DoctorID varchar2(20),
  foreign key(DoctorID) references employee(EID),
  Region varchar2(20),
  foreign key(Region) references region(RegionCode)
```

```
);
```

4.) Warehouse:

```
create table warehouse(
  WarehouseID varchar2(20) primary key,
  address varchar2(20),
  ManagerID varchar2(20),
  foreign key(ManagerID) references employee(EID),
  CurrentStock varchar2(10),
  Capacity varchar2(10),
  Region varchar2(20),
  foreign key(Region) references region(RegionCode)
);
5.) Patients:
create table Patients(
  PID varchar2(10) primary key,
  Name varchar2(20),
  SSN varchar2(20),
  Age int,
  Gender varchar2(10) check(Gender in ('Male', 'Female')),
  PhoneNO varchar2(20),
  Address varchar2(20)
```

```
);
                  son varcharece/,
Age int,
Gender varchar2(10) check(Gender in ('Male','Female')),
PhoneMO varchar2(20),
Address varchar2(20)
6.) Insurance:
create table insurance(
  InsuranceNUM varchar2(20),
  Name varchar2(20),
  PID varchar2(20),
  foreign key(PID) references patients(PID),
  Amount varchar2(10),
  DateClaimed varchar2(20),
  Status varchar2(20) check(Status in ('Pending','Approved','Failed')),
  CONSTRAINT PK INSURANCE PRIMARY KEY(InsuranceNUM, PID)
);
7.) Drug:
create table drug(
  DrugID varchar2(20) primary key,
  Name varchar2(20),
  Price varchar2(10),
  DrugType varchar2(20) check(DrugType in ('Tablet', 'Syrup', 'Injection')),
  Dosage varchar2(10),
  ManfBY varchar2(20),
```

ManfDate varchar2(20),

```
BatchNO varchar2(20),
  ExpiryDate varchar2(20)
);
8.) Inventory:
create table inventory(
  DrugID varchar2(20),
  BuildingID varchar2(20),
  foreign key(DrugID) references drug(DrugID),
  foreign key(BuildingID) references warehouse(WarehouseID),
  CurrentStock varchar2(20),
  CONSTRAINT PK_INVENTORY PRIMARY KEY(DrugID, BuildingID)
);
                       R VATCHAT2(20),
PK_INVENTORY PRIMARY KEY(DrugID, BuildingID)
9.) Logistics:
create table logistics(
  Good varchar2(20),
  WarehouseID varchar2(20),
  StoreID varchar2(20),
  foreign key(Good) references drug(DrugID),
  foreign key(WarehouseID) references warehouse(WarehouseID),
  foreign key(StoreID) references store(StoreID),
  DateofOrder varchar2(20),
```

```
Quantity varchar2(20),
  Status varchar2(20) check(Status in ('Pending','In Transit','Delivered')),
  CONSTRAINT PK_LOGISTICS PRIMARY KEY(Good, WarehouseID, StoreID,
DateofOrder)
);
10.) Sales:
create table sales(
  Number Of Sales varchar2(20),
  Month varchar2(20),
  Year varchar2(20) check (Year>2010),
  DrugID varchar2(20),
  StoreID varchar2(20),
  foreign key(DrugID) references drug(DrugID),
  foreign key(StoreID) references store(StoreID),
  CONSTRAINT PK SALES PRIMARY KEY(DrugID, StoreID, Month, Year)
);
                        varchar2(20)
                         ,
check (Year>2010),
```

Inserting Tuples into Database:

1.) Employee Table:

insert into employee values

('E1','NA1','SSN1',19,'Male','AD1','PH1','15','Normal','S1','BAC1');

```
Oracle Database 21c Express Edition Release 21.0.0.0.0 - Production
Version 21.3.0.0.0

SQL> insert into employee values ('E1', 'NA1', 'SSN1',19, 'Male', 'AD1', 'PH1', '15', 'Normal', 'S1', 'BAC1');

1 row created.

SQL>
SQL> insert into employee values ('E2', 'NA2', 'SSN2',20, 'Female', 'AD2', 'PH2', '15', 'Normal', 'S2', 'BAC2');

1 row created.

SQL>
SQL>
SQL> insert into employee values ('E3', 'NA3', 'SSN3',21, 'Male', 'AD3', 'PH3', '15', 'Normal', 'S3', 'BAC3');

1 row created.

SQL>
SQL>
SQL> insert into employee values ('E4', 'NA4', 'SSN4',22, 'Female', 'AD4', 'PH4', '15', 'Normal', 'S4', 'BAC4');

1 row created.

SQL>
SQL> insert into employee values ('E5', 'NA5', 'SSN5',23, 'Male', 'AD5', 'PH5', '15', 'Normal', 'S5', 'BAC5');

1 row created.

SQL>
SQL> insert into employee values ('E6', 'NA6', 'SSN6',24, 'Female', 'AD6', 'PH6', '15', 'Normal', 'N1', 'BAC6');

1 row created.

SQL>
SQL> insert into employee values ('E6', 'NA6', 'SSN6',24, 'Female', 'AD6', 'PH6', '15', 'Normal', 'W1', 'BAC6');

1 row created.

SQL>
SQL> insert into employee values ('E7', 'NA7', 'SSN7', 25, 'Male', 'AD7', 'PH7', '15', 'Normal', 'W2', 'BAC7');

1 row created.

SQL>
SQL> insert into employee values ('E7', 'NA7', 'SSN7', 25, 'Male', 'AD7', 'PH7', '15', 'Normal', 'W2', 'BAC7');

1 row created.

SQL>
SQL> insert into employee values ('E7', 'NA7', 'SSN7', 25, 'Male', 'AD7', 'PH7', '15', 'Normal', 'W2', 'BAC7');
```

ID LOCATION	NAME BANKACCOUNT	SSN	AGE GENDER	ADDRESS	PHONENO	WAGE	TYPE
 1	NA1	SSN1	19 Male	AD1	PH1	15	Normal
S1	BAC1						
2	NA2	SSN2	20 Female	AD2	PH2	15	Normal
S2	BAC2						
3	NA3	SSN3	21 Male	AD3	PH3	15	Normal
S3	BAC3						
ł	NA4	SSN4	22 Female	AD4	PH4	15	Normal
S4	BAC4	CCNE	22 #-1	405	8115		N
5 S5	NA5 BAC5	SSN5	23 Male	AD5	PH5	15	Normal
55 6	NA6	SSN6	24 Female	AD6	PH6	15	Normal
W1	BAC6	22110	24 remate	ADO	PHO	13	Normac
7	NA7	SSN7	25 Male	AD7	PH7	15	Normal
W2	BAC7	55117	Lo mace	7107		20	moz ma c
8	NA8	SSN8	26 Female	AD8	PH8	15	Normal
W3	BAC8						
9	NA9	SSN9	27 Male	AD9	PH9	15	Normal
W4	BAC9						
10	NA10	SSN10	28 Female	AD10	PH10	15	Normal
W5	BAC10						
1	NA11	SSN11	29 Male	AD11	PH11	25	Pharmacist
S1	BAC11						
ID	NAME	SSN	AGE GENDER	ADDRESS	PHONENO	WAGE	TYPE
LOCATION	BANKACCOUNT						
2	NA12	SSN12	20 Female	AD12	PH12	25	Pharmacist
S2	BAC12						
3	NA13	SSN13	21 Male	AD13	PH13	25	Pharmacist
S3	BAC13						
4	NA14	SSN14	22 Female	AD14	PH14	25	Pharmacist
S4	BAC14						

This table contains 60 entries so all could not be shown in the above screenshot.

2.) Region Table:

insert into region values('R1','North','M1');

```
SQL> insert into region values('R1','North','M1');
1 row created.
SQL>
SQL> insert into region values('R2','South','M2');
1 row created.
SQL>
SQL> insert into region values('R3','East','M3');
1 row created.
SQL> insert into region values('R4','West','M4');
SQL>
SQL> insert into region values('R5','Cental','M5');
1 row created.
SQL>
SQL> insert into region values('R6','ECoast','M6');
1 row created.
SQL> insert into region values('R7','WCoast','M7');
1 row created.
SQL> insert into region values('R8','MidWest','M8');
1 row created.
```

3.) Store Table:

insert into store values('S1','SAD1','M11','P1','D1','R1');

```
SQL> insert into store values('S1', 'SAD1', 'M11', 'P1', 'D1', 'R1');
1 row created.
SOL>
SQL> insert into store values('S2','SAD2','M12','P2','D2','R2');
1 row created.
SQL>
SQL> insert into store values('S3','SAD3','M13','P3','D3','R3');
1 row created.
SOL>
SQL> insert into store values('S4', 'SAD4', 'M14', 'P4', 'D4', 'R4');
1 row created.
SOL>
SQL> insert into store values('S5','SAD5','M15','P5','D5','R5');
1 row created.
SQL>
SQL> insert into store values('S6','SAD6','M16','P6','D6','R6');
1 row created.
SQL>
SQL> insert into store values('S7','SAD7','M17','P7','D7','R7');
1 row created.
SQL>
SQL> insert into store values('S8','SAD8','M18','P8','D8','R8');
1 row created.
```

STOREID	ADDRESS	MANAGERID	PHARMACISTID	DOCTORID	REGION
 S1	SAD1	M11	P1	D1	R1
S2	SAD2	M12	P2	D2	R2
S3	SAD3	M13	P3	D3	R3
S4	SAD4	M14	P4	D4	R4
S5	SAD5	M15	P5	D5	R5
S6	SAD6	M16	P6	D6	R6
S7	SAD7	M17	P7	D7	R7
S8	SAD8	M18	P8	D8	R8
S9	SAD9	M11	P9	D9	R9
S10	SAD10	M20	P10	D10	R10

4.) Warehouse Table:

insert into warehouse values ('W1', 'WAD1', 'M21', '1000', '5000', 'R1');

```
SQL> insert into warehouse values('W1','WAD1','M21','1000','5000','R1');
1 row created.
SQL>
SQL> insert into warehouse values('W2','WAD2','M22','1500','5000','R2');
1 row created.
SQL>
SQL> insert into warehouse values('W3','WAD3','M23','2000','5000','R3');
1 row created.
SQL>
SQL> insert into warehouse values('W4','WAD4','M24','2500','5000','R4');
1 row created.
SQL> insert into warehouse values('W5','WAD5','M25','3000','5000','R5');
1 row created.
SQL> insert into warehouse values('W6','WAD6','M26','4000','8000','R6');
1 row created.
SQL> insert into warehouse values('W7','WAD7','M27','1000','8000','R7');
1 row created.
SQL>
SQL> insert into warehouse values('W8','WAD8','M28','2000','8000','R8');
1 row created.
```

WAREHOUSEID	ADDRESS	MANAGERID	CURRENTSTO		REGION
 W1	WAD1	M21	1000	5000	R1
W2	WAD2	M22	1500	5000	R2
W3	WAD3	M23	2000	5000	R3
W4	WAD4	M24	2500	5000	R4
W5	WAD5	M25	3000	5000	R5
W6	WAD6	M26	4000	8000	R6
W7	WAD7	M27	1000	8000	R7
W8	WAD8	M28	2000	8000	R8
W9	WAD9	M29	2500	8000	R9
W10	WAD10	M30	4500	8000	R10

5.) Patients Table:

insert into patients ('Pa1', 'PNAM1', 'PSSN1', 20, 'Male', 'PPHNO1', 'PAD1');

```
SQL> insert into patients values ('Pa1', 'PNAM1', 'PSSN1', 20, 'Male', 'PPHN01', 'PAD1');
1 row created.
SQL>
SQL> insert into patients values ('Pa2','PNAM2','PSSN2',21,'Female','PPHN02','PAD2');
1 row created.
SQL>
SQL> insert into patients values ('Pa3', 'PNAM3', 'PSSN3',22, 'Male', 'PPHNO3', 'PAD3');
1 row created.
SQL>
SQL> insert into patients values ('Pa4', 'PNAM4', 'PSSN4',23, 'Female', 'PPHNO4', 'PAD4');
1 row created.
SQL>
SQL> insert into patients values ('Pa5', 'PNAM5', 'PSSN5', 24, 'Male', 'PPHN05', 'PAD5');
SQL>
SQL> insert into patients values ('Pa6','PNAM6','PSSN6',25,'Female','PPHN06','PAD6');
1 row created.
SQL>
SQL> insert into patients values ('Pa7', 'PNAM7', 'PSSN7', 26, 'Male', 'PPHN07', 'PAD7');
1 row created.
SQL>
SQL> insert into patients values ('Pa8','PNAM8','PSSN8',27,'Female','PPHNO8','PAD8');
1 row created.
```

PID	NAME	SSN	AGE	GENDER	PHONENO	ADDRESS
Pa1	PNAM1	PSSN1	20	Male	PPHN01	PAD1
Pa2	PNAM2	PSSN2	21	Female	PPHN02	PAD2
Pa3	PNAM3	PSSN3	22	Male	PPHN03	PAD3
Pa4	PNAM4	PSSN4	23	Female	PPHN04	PAD4
Pa5	PNAM5	PSSN5	24	Male	PPHN05	PAD5
Pa6	PNAM6	PSSN6	25	Female	PPHN06	PAD6
Pa7	PNAM7	PSSN7	26	Male	PPHN07	PAD7
Pa8	PNAM8	PSSN8	27	Female	PPHN08	PAD8
Pa9	PNAM9	PSSN9	28	Male	PPHN09	PAD9
Pa10	PNAM10	PSSN10	29	Female	PPHN010	PAD10

6.) Insurance Table:

insert into insurance values ('INSNUM1', 'INSCOM1', 'Pa1', '100\$', '03-01-2023', 'Pending');

```
SQL> insert into insurance values('INSNUM1','INSCOM1','Pa1','100$','03-01-2023','Pending');
1 row created.
SQL> insert into insurance values('INSNUM2','INSCOM2','Pa2','200$','03-02-2023','Approved');
1 row created.
SQL> insert into insurance values('INSNUM3','INSCOM3','Pa3','300$','03-03-2023','Approved');
1 row created.
SQL> insert into insurance values('INSNUM4','INSCOM4','Pa4','400$','03-04-2023','Approved');
1 row created.
SQL>
SQL> insert into insurance values('INSNUM5','INSCOM5','Pa5','250$','03-05-2023','Approved');
1 row created.
SQL> insert into insurance values('INSNUM6','INSCOM6','Pa6','200$','03-06-2023','Approved');
1 row created.
SQL> insert into insurance values('INSNUM7','INSCOM7','Pa7','300$','03-07-2023','Pending');
1 row created.
SQL>
SQL> insert into insurance values('INSNUM8','INSCOM8','Pa8','150$','03-08-2023','Pending');
1 row created.
```

INSURANCENUM	NAME	PID		DATECLAIMED	STATUS
INSNUM1	INSCOM1	Pa1	100\$	03-01-2023	Pending
INSNUM2	INSCOM2	Pa2	200\$	03-02-2023	Approved
INSNUM3	INSCOM3	Pa3	300\$	03-03-2023	Approved
INSNUM4	INSCOM4	Pa4	400\$	03-04-2023	Approved
INSNUM5	INSCOM5	Pa5	250\$	03-05-2023	Approved
INSNUM6	INSCOM6	Pa6	200\$	03-06-2023	Approved
INSNUM7	INSCOM7	Pa7	300\$	03-07-2023	Pending
INSNUM8	INSCOM8	Pa8	150\$	03-08-2023	Pending
INSNUM9	INSCOM9	Pa9		03-09-2023	Approved
INSNUM10	INSCOM10	Pa10	200\$	03-10-2023	Failed

7.) Drug Table:

insert into drug values ('Dg1','DNAM1','5\$','Tablet','10mg','ManfCon1','03-01-2023','BAT01','03-01-2024');

```
SQL> insert into drug values('Dg1','DNAM1','5$','Tablet','10mg','ManfCom1','03-01-2023','BAT01','03-01-2024');

1 row created.

SQL>
SQL> insert into drug values('Dg2','DNAM2','10$','Syrup','20mg','ManfCom2','03-02-2023','BAT02','03-02-2024');

1 row created.

SQL>
SQL> insert into drug values('Dg3','DNAM3','15$','Injection','30mg','ManfCom3','03-03-2023','BAT03','03-03-2024');

1 row created.

SQL>
SQL> insert into drug values('Dg4','DNAM4','20$','Tablet','5mg','ManfCom4','03-04-2023','BAT04','03-04-2024');

1 row created.

SQL>
SQL>
SQL> insert into drug values('Dg5','DNAM5','25$','Syrup','10mg','ManfCom5','03-05-2023','BAT05','03-05-2024');

1 row created.

SQL>
SQL> insert into drug values('Dg6','DNAM6','5$','Tablet','10mg','ManfCom6','03-06-2023','BAT06','03-06-2024');

1 row created.

SQL>
SQL> insert into drug values('Dg6','DNAM6','5$','Tablet','10mg','ManfCom6','03-06-2023','BAT06','03-06-2024');

1 row created.

SQL>
SQL> insert into drug values('Dg7','DNAM7','15$','Injection','5mg','ManfCom6','03-07-2023','BAT07','03-07-2024');

1 row created.

SQL>
SQL> insert into drug values('Dg7','DNAM7','15$','Injection','5mg','ManfCom6','03-08-2023','BAT07','03-07-2024');

1 row created.
```

DRUGID TE	NAME	PRICE	DRUGTYPE	DOSAGE	MANFBY	MANFDATE	BATCHNO	EXPIRYDA
Dg1	DNAM1	5\$	Tablet	10mg	ManfCom1	03-01-2023	BAT01	03-01-20
24)g2 24	DNAM2	10\$	Syrup	20mg	ManfCom2	03-02-2023	BAT02	03-02-20
24 0g3 24	DNAM3	15\$	Injection	30mg	ManfCom3	03-03-2023	BAT03	03-03-20
24 Dg4 24	DNAM4	20\$	Tablet	5mg	ManfCom4	03-04-2023	BAT04	03-04-20
24 0g5 24	DNAM5	25\$	Syrup	10mg	ManfCom5	03-05-2023	BAT05	03-05-20
)g6	DNAM6	5\$	Tablet	10mg	ManfCom6	03-06-2023	BAT06	03-06-20
24 0g7	DNAM7	15\$	Injection	5mg	ManfCom7	03-07-2023	BAT07	03-07-20
24 0g8	DNAM8	25\$	Syrup	15mg	ManfCom8	03-08-2023	BAT08	03-08-20
24)g9	DNAM9	35\$	Tablet	10mg	ManfCom9	03-09-2023	BAT09	03-09-20
24 0g10	DNAM10	45\$	Injection	25mg	ManfCom10	03-10-2023	BAT10	03-10-20
24 10 rows selec								

8.) Inventory Table:

insert into inventory values ('Dg1','W1','200');

```
SQL> insert into inventory values('Dg1','W1','200');
1 row created.

SQL>
SQL> insert into inventory values('Dg2','W2','300');
1 row created.

SQL>
SQL> insert into inventory values('Dg3','W3','400');
1 row created.

SQL>
SQL> insert into inventory values('Dg4','W4','500');
1 row created.

SQL>
SQL> insert into inventory values('Dg4','W4','500');
1 row created.
```

```
SQL> select * from inventory;

DRUGID BUILDINGID CURRENTSTOCK

Dg1 W1 200
Dg2 W2 300
Dg3 W3 400
Dg4 W4 500
Dg5 W5 200
Dg5 W6 100
Dg7 W7 150
Dg8 W8 250
Dg9 W9 200
Dg9 W9 200
Dg9 W9 200
Dg10 W10 300
```

9.) Logistics Table:

insert into inventory values ('Dg1','W1','S1','03-01-2023','50','Pending');

```
SQL> insert into logistics values('Dg1','W1','S1','03-01-2023','50','Pending');
1 row created.
SQL>
SQL> insert into logistics values('Dg2','W2','S2','03-02-2023','25','In Transit');
1 row created.
SQL>
SQL> insert into logistics values('Dg3','W3','S3','03-03-2023','30','Delivered');
1 row created.
SQL> insert into logistics values('Dg4','W4','S4','03-04-2023','40','In Transit');
1 row created.
SQL> insert into logistics values('Dg5','W5','S5','03-05-2023','50','Pending');
1 row created.
SQL> insert into logistics values('Dg6','W6','S6','03-06-2023','50','Pending');
1 row created.
SQL> insert into logistics values('Dg7','W7','S7','03-07-2023','10','Pending');
1 row created.
SOL>
SQL> insert into logistics values('Dg8','W8','S8','03-08-2023','20','Delivered');
1 row created.
```

GOOD	WAREHOUSEID	STOREID	DATEOFORDER	QUANTITY	STATUS
 Dg1	W1	S1	03-01-2023	50	Pending
Dg2	W2	S2	03-02-2023	25	In Transit
Dg3	W3	S3	03-03-2023	30	Delivered
Dg4	W4	S4	03-04-2023	40	In Transit
Dg5	W5	S5	03-05-2023	50	Pending
Dg6	W6	S6	03-06-2023	50	Pending
Dg7	W7	S7	03-07-2023	10	Pending
Dg8	W8	88	03-08-2023	20	Delivered
Dg9	W9	S9	03-09-2023	25	Pending
Dg10	W10	S10	03-10-2023	30	In Transit

10.) Sales Table:

insert into sales values ('40', 'January', '2023', 'Dg1', 'S1');

```
SQL> insert into sales values('40','January','2023','Dg1','S1');
1 row created.
SQL>
SQL> insert into sales values('30','Febuary','2023','Dg2','S2');
1 row created.
SQL>
SQL> insert into sales values('50', 'March', '2023', 'Dg3', 'S3');
1 row created.
SQL>
SQL> insert into sales values('10', 'April', '2022', 'Dg4', 'S4');
1 row created.
SQL> insert into sales values('20','May','2022','Dg5','S5');
1 row created.
SOL>
SQL> insert into sales values('25','June','2022','Dg6','S6');
1 row created.
SQL> insert into sales values('45','July','2022','Dg7','S7');
1 row created.
SQL>
SQL> insert into sales values('15', 'August', '2022', 'Dg8', 'S8');
1 row created.
```

NUMBER_OF_SALES	MONTH	YEAR	DRUGID	STOREID
40	January	 2023	 Dg1	S1
30	Febuary	2023	Dg2	S2
50	March	2023	Dg3	S3
10	April	2022	Dg4	S4
20	May	2022	Dg5	S5
25	June	2022	Dg6	S6
45	July	2022	Dg7	S7
15	August	2022	Dg8	S8
10	September	2021	Dg9	S9
10	October	2021	Dg10	S10