Collaboration haptique étroitement couplée pour la manipulation moléculaire interactive

Jean SIMARD

sous la direction de Philippe TARROUX et l'encadrement scientifique de Mehdi Ammi

Université de PARIS-Sud

CNRS-LIMSI

12 mars 2012

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- **3** Étude du travail collaboratif
- 4 Aide au travail collaboratif
- **5** Conclusion et perspectives

Sommaire

- Introduction
 - Docking moléculaire
 - Approches centrées sur l'humain
 - Distribution des charges de travail
 - Approches collaboratives
 - Objectifs de la thèse

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

Nombreux atomes

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Figure: Docking moléculaire

- Nombreux atomes
- Orientation et déplacement

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Figure: Docking moléculaire

- Nombreux atomes
- Orientation et déplacement
- Flexibilité

Définition

ou amarrage moléculaire, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Figure: Docking moléculaire

- Nombreux atomes
- Orientation et déplacement
- Flexibilité
- Physico-chimie

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Figure: Docking moléculaire

- Nombreux atomes
- Orientation et déplacement
- Flexibilité
- Physico-chimie
- Complémentarité
 - géométrique
 - physico-chimie

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Figure: Docking moléculaire

- Nombreux atomes
- Orientation et déplacement
- Flexibilité
- Physico-chimie
- Complémentarité
 - géométrique
 - physico-chimie

Approches centrées sur l'humain

Figure: Visualisation multimodale DAVIES et al. 2005

Figure: *Docking* moléculaire rigide DAUNAY et al. 2009

Figure: Interface haptique à 5 DDL LAI-YUEN et al. 2006

Figure: Modèle haptique moléculaire HOU et al. 2010

Approches centrées sur l'humain

Figure: Visualisation multimodale DAVIES et al. 2005

Figure: Interface haptique à 5 DDL LAI-YUEN et al. 2006

Figure: *Docking* moléculaire rigide DAUNAY et al. 2009

Figure: Modèle haptique moléculaire HOU et al. 2010

L'outil haptique s'impose comme outil de manipulation moléculaire

Distribution des charges de travail

Définition CONEIN 2004

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Figure: Système cognitif distribué

Approches collaboratives

Figure: Manipulation synchrone KRIZ et al. 2003

Figure: Inter-référencement CHASTINE 2007

Figure: Manipulation guidée par des experts PARK et al. 2006

Figure: Gestion des droits d'accès MA 2007

Objectifs de la thèse

Problématiques

- Quels sont les avantages du travail en collaboration étroitement couplée?
- Quelles problématiques la collaboration apporte-t-elle?
- Comment améliorer la collaboration dans un environnement de travail complexe?

Démarche

- Étudier et analyser le travail collaboratif étroitement couplé
- Identifier les limites et les contraintes
- Proposer des solutions haptiques pour améliorer cette configuration
- 4 Évaluer ces solutions dans une tâche de docking moléculaire

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
 - Cahier des charges
 - Organisation logicielle
 - Organisation matérielle
 - Outils supplémentaires proposés
- Étude du travail collaboratif
- 4 Aide au travail collaboratif
- 5 Conclusion et perspectives

Cahier des charges

Objectif

Élaborer une plateforme permettant la collaboration étroitement couplée pour la manipulation moléculaire

Contraintes à respecter

- Interaction synchrone sur des molécules
- Simulation de la dynamique moléculaire
- Manipulation à l'aide d'interface haptique
- Plusieurs outils différents

Solutions proposées

- Modularité logicielle
- Modularité matérielle
- Développement basé sur des logiciels de biologie existants
- Utilisation de modules dédiés à la réalité virtuelle
- Développement de nouveaux outils

Organisation logicielle

Figure: Diagramme de déploiement UML de la plateforme Shaddock

Configuration colocalisée et synchrone

Figure: Plate-forme expérimentale

■ Communication orale et gestuelle autorisée

Figure: Plate-forme expérimentale

■ Vue partagée

Figure: Plate-forme expérimentale

Outil pour la déformation ou le déplacement de molécule

Figure: Plate-forme expérimentale

Outil pour l'orientation de la molécule

Figure: Plate-forme expérimentale

■ Nombre d'outils quasiment illimité

Figure: Plate-forme expérimentale

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

 Sélection difficile (nombre d'atomes important, cibles en mouvement, ...)

Figure: Outil de sélection amélioré

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

 Attraction haptique sur les structures (champ de potentiel SIMARD, AMMI, PICON et al. 2009)

Figure: Outil de sélection amélioré

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

 Attraction haptique sur les structures (champ de potentiel SIMARD, AMMI, PICON et al. 2009)

Figure: Outil de sélection amélioré

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

Possibilité de pointer un atome...

Figure: Outil de sélection amélioré

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

... ou un résidue (ou d'autres structures moléculaires)

Figure: Outil de sélection amélioré

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

■ Pour enfin le sélectionner

Figure: Outil de sélection amélioré

Description

Basé sur les PC Virtuelles FUCHS et al. 2006

Description

Basé sur les PC Virtuelles FUCHS et al. 2006

Recherche Identifier une cible (atome, résidue, ...)

Description

Basé sur les PC Virtuelles FUCHS et al. 2006

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire identifiée

Description

Basé sur les PC Virtuelles FUCHS et al. 2006

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire

identifiée

Manipulation Déplacer ou orienter la

structure moléculaire

Description

Basé sur les PC Virtuelles FUCHS et al. 2006

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire

identifiée

Manipulation Déplacer ou orienter la

structure moléculaire

Évaluation Évaluer l'équilibre physico-chimique

Figure: Manipulation moléculaire

Description

Basé sur les PC Virtuelles FUCHS et al. 2006

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire

identifiée

Manipulation Déplacer ou orienter la

structure moléculaire

Évaluation Évaluer l'équilibre

physico-chimique

Recommencer Si l'évaluation n'est pas

satisfaisante

Description

Basé sur les PC Virtuelles FUCHS et al. 2006

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire

identifiée

Manipulation Déplacer ou orienter la

structure moléculaire

Évaluation Évaluer l'équilibre

physico-chimique

Recommencer Si l'évaluation n'est pas

satisfaisante

Sommaire

- Introduction
- Plateforme de manipulation moléculaire Shaddock
- 3 Étude du travail collaboratif
 - Étude 1 − Recherche et sélection collaborative de résidus
 - Objectifs
 - Présentation de la tâche proposée
 - Résultats
 - Synthèse
 - Étude 2 Déformation collaborative de molécules
 - Étude 3 Dynamique de groupe
- 4 Aide au travail collaboratif
- 5 Conclusion et perspectives

Primitives Comportementales (PC)

Figure: Manipulation moléculaire

Objectifs

Objectif principal

Étudier la contribution et les contraintes de la collaboration dans une tâche de recherche et de sélection de structures moléculaires

Hypothèses

- Amélioration des performances (individuel vs. collaboratif)
- Identifier les stratégies de travail
- Utilisabilité de la plate-forme

Variables

Nombre de sujets monôme (24 sujets) ou binôme (12 couples)

Complexité de la tâche Forme, nature, position, similarités...

Présentation de la tâche proposée

Residue 4 and 9 Residue 5 and 10

Figure: Répartitions des residues sur les molécules (TRP-Cage et Prion)

Figure: Temps de réalisation de la tâche

Figure: Temps de réalisation de la tâche

Synthèse

Pas d'évolution sur les tâches simples

Figure: Temps de réalisation de la tâche

- Pas d'évolution sur les tâches simples
- Une amélioration significative de la collaboration sur les tâches complexes

Figure: Temps de réalisation de la tâche

- Pas d'évolution sur les tâches simples
- Une amélioration significative de la collaboration sur les tâches complexes

Figure: Temps de réalisation de la tâche

- Pas d'évolution sur les tâches simples
- Une amélioration significative de la collaboration sur les tâches complexes

Stratégies de travail

Figure: Distance moyenne entre le curseur des sujets

Synthèse

Trois stratégies liée à l'affinité entre les collaborateurs

Champs distants Peu de collaboration avec peu de conflits de coordination

Champs voisins Bonne collaboration avec conflits de coordination

Champs proches Forte collaboration mais conflits de coordination importants

Synthèse

Complexité de la tâche

Stratégie de travail

Résultats

- Amélioration des performances sur les tâches complexes
- Distribution des charges de travail dépendante de la nature de la tâche

Limites

- Comment définir une tâche complexe?
- La complexité de la tâche influe-t-elle sur les performances?

Résultats

- Trois stratégies différentes
- Meilleurs résultats avec une stratégie en champs voisins

Limites

- Modification du comportement naturel des groupes
- Conflits de coordination en champs voisins

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- **3** Étude du travail collaboratif
 - Étude 1 − Recherche et sélection collaborative de résidus
 - Étude 2 Déformation collaborative de molécules
 - Objectifs
 - Présentation de la tâche proposée
 - Résultats
 - Synthèse
 - Étude 3 Dynamique de groupe
- 4 Aide au travail collaboratif
- 5 Conclusion et perspectives

Primitives Comportementales (PC)

Figure: Manipulation moléculaire

Objectifs

Objectif principal

Quantifier et qualifier les conflits de coordination en fonction de la complexité de la tâche

Hypothèses

- Amélioration des performances (bimanuel vs. collaboratif)
- La complexité de la tâche influence différemment les performances individuelles et collaboratives

Variables

Nombre de sujets monôme (12 sujets) ou binôme (12 couples)

Complexité de la molécule 2 molécules (TRP-ZIPPER et TRP-CAGE)

Outil de déformation 2 configuration de déformation (atom et residue)

Présentation de la tâche proposée

Scénarios

- 2 niveaux de manipulation
 - Résiduel
 - Atomique
- 4 niveaux de complexité
 - Nombre d'atomes
 - Cassures
 - Champ de force

Figure: Tâche de déformation

Amélioration des performances

Synthèse

Manipulation plus efficace en monomanuel

Figure: Distances passive et active

Synthèse

Meilleure utilisation des ressources disponibles

Figure: Nombre de sélections

Influence de la complexité de la tâche

Figure: Temps de réalisation des scénarios

Difficulté	Description	Exemple
Simple	1 outil est nécessaire1 manipulation	Tâche 1a
Avancé	 1 outil est suffisant mais 2 sont préférables 2 manipulations peuvent être coordonnées 	Tâche 2a, 2b
Expert	 2 outils sont nécessaires 2 manipulations doivent être coordonnées 	Tâche 1b

Synthèse

Charge de travail

Résultats

- Gestion d'un espace de travail plus grand
- Meilleur rendement des ressources disponibles

Limites

Comment répartir équitablement la charge de travail?

Conflits de coordination

Résultats

 Certaines manipulations nécessitent une coordination

Limites

- La coordination est plus efficace en individuel mais...
 - ...espace de travail restreint
 - ...nombre réduit de tâches élémentaires en parallèle

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- 3 Étude du travail collaboratif
 - Étude 1 − Recherche et sélection collaborative de résidus
 - Étude 2 Déformation collaborative de molécules
 - Étude 3 Dynamique de groupe
 - Notions importantes sur la dynamique de groupe
 - Objectifs
 - Protocole expérimental
 - Résultats
 - Synthèse
- 4 Aide au travail collaboratif
- 5 Conclusion et perspectives

Notions importantes sur la dynamique de groupe

Facilitation sociale TRIPLETT 1898

Une action collaborative préparée ou en progression possède une réponse; la stimulation sociale provoque une augmentation de cette réponse par la perception de collaborateurs effectuant les mêmes mouvements.

Figure: Performances de cyclistes

Paresse sociale RINGELMANN 1913

Tendance à fournir un effort moindre lorsqu'une tâche est effectuée en groupe plutôt que de manière individuelle.

Figure: Performances au tir à la corde

Objectifs

Objectif principal

Observer la dynamique de groupe lors d'une coordination étroitement couplée

Hypothèses

- Amélioration des performances en fonction du nombre de sujets
- Analyse des rôles dans le groupe
- Influence d'une étape de brainstorming sur les performances

Variables

Nombre de participants 8 couples et 4 groupes

Tâches différentes 2 molécules (tâche faiblement et fortement couplées)

Stratégie de travail Étape de brainstorming

Présentation de la tâche proposée

Scénarios

2 niveaux de complexité

- faiblement couplé
- fortement couplé

Figure: Tâche de déformation

Amélioration des performances

Synthèse

Une vitesse moyenne de travail supérieur : phénomène de facilitation sociale

Figure: Vitesse moyenne

Figure: Nombre d'échanges verbaux

Synthèse

Paresse sociale

- Spécialisation
- Personnalité
- Paresse

Collaboration haptique étroitement couplée pour la manipulation moléculaire interactiv

Influence du brainstorming

Synthèse

Le *brainstorming* permet l'élaboration d'une stratégie : gain en performances

Figure: Temps de réalisation

Synth<u>èse</u>

Meilleur rendement des actions effectuées

Figure: Fréquence des sélections

Synthèse

Paresse sociale

Résultats

- Déséquilibre important dans la répartition des charges de travail
- Potentiel collaboratif non-exploité au maximum

Limites

 Comment redonner de l'importance à chaque membre du groupe?

Brainstorming

Résultats

- Amélioration importante des performances
- Conflits de communication pendant le brainstorming
- Réduit les conflits de coordination

Limites

Comment optimiser cette étape?

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- Étude du travail collaboratif
- 4 Aide au travail collaboratif
 - Étude 4 Assistance haptique et stratégie de travail
 - Synthèse des études effectuées
 - Présentation des solutions proposées
 - Objectifs
 - Résultats
- Conclusion et perspectives

Solutions

Solutions

Solutions

Figure: Outil de désignation

Figure: Outil de désignation

Étapes de la désignation

Recherche d'une structure à manipuler (coordinateur)

Figure: Outil de désignation

- Recherche d'une structure à manipuler (coordinateur)
- Désignation de la structure (coordinateur)

Figure: Outil de désignation

- Recherche d'une structure à manipuler (coordinateur)
- Désignation de la structure (coordinateur)
- 3 Acceptation par le manipulateur

Figure: Outil de désignation

- Recherche d'une structure à manipuler (coordinateur)
- Désignation de la structure (coordinateur)
- 3 Acceptation par le manipulateur

Figure: Outil de désignation

- Recherche d'une structure à manipuler (coordinateur)
- Désignation de la structure (coordinateur)
- 3 Acceptation par le manipulateur
- 4 Sélection par le manipulateur

Objectifs

Objectif principal

Proposer et évaluer des outils haptiques pour assister la coordination

Hypothèses

- Influence de l'outil proposé associé à la configuration
- Influence des propositions sur la communication
- Évaluations des propositions par des bio-informaticiens

Variables

Nombre de participants 8 trinômes

Tâches différentes 2 molécules (tâche faiblement et fortement couplée)

Métaphore haptique Avec ou sans assistance

Efficacité de la collaboration

Synthèse

Manipulation plus efficace sur le scénario le plus complexe

Figure: Temps pour atteindre le score RMSD minimum

Synthèse

Meilleur rendement pour l'utilisation des ressources

J. Sauraigure: Nombre de sélectio (Sglapperios trapperium de interactive

Amélioration de la communication

Figure: Temps d'acceptation d'une désignation

Figure: Nombre de désignations acceptées

Synthèse

Communication haptique plus rapide que la communication verbale

Synthèse

Meilleur taux d'acceptation pour les désignations du coordinateur

Conclusion

Plateforme Shaddock

- Plateforme validée
- Des améliorations sont encore nécessaires

Travail collaboratif

- Adapté pour l'appréhension de tâches très complexes
- Nécessité d'améliorer les canaux de communication

Communication haptique

- Remplace la communication verbale dans certains cas
- Plus efficace et plus rapide

Perspectives

Plus loin dans l'étude du travail collaboratif...

- Collaboration distante
- Collaboration multi-experts
- Apprentissage en collaboration

Comment expérimenter le travail collaboratif?

- Comment mesurer les conflits de coordination et de communication?
- Comment définir un protocole expérimental pour le collaboratif?
- Comment mesure la charge de travail de chaque collaborateur?

Journaux internationaux

Simard, Jean, Mehdi AMMI et Malika AUVRAY (2012). « Collaborative strategies for 3D targets search during the molecular design process ». Dans : Transaction on Multimedia Computing, Communications and Applications. Simard, Jean, Mehdi AMMI et Anaïs MAYEUR (2012). « Comparative study of the bimanual and collaborative modes for closely coupled manipulations ». Dans: International Journal of Human-Computer Studies. **Simard**, **Jean** et Mehdi AMMI (11/2011). « Haptic interpersonal communication: gesture coordination for collaborative virtual assembly task ». Dans: Springer on Virtual Reality, p. 1–14.

Conférences internationales

Simard, Jean, Mehdi AMMI et Anaïs MAYEUR (09/2011). « How to improve group performances on collocated synchronous manipulation tasks? » Dans : Proceedings of Joint Virtual Reality Conference. JVRC - EuroVR-EGVE. Simard, Jean et Mehdi AMMI (09/2010). « Gesture coordination in collaborative tasks through augmented haptic feedthrough ». Dans : Proceedings of Joint Virtual Reality Conference (JVRC), p. 43–50. Simard, Jean, Mehdi AMMI et Malika AUVRAY (11/2010a). « Closely coupled collaboration for search tasks ». Dans: Proceedings of the 17th ACM symposium on Virtual Reality Software and Technology. VRST '10, p. 181-182.

— (09/2010b). « Study of synchronous and colocated collaboration for search tasks ». Dans: Proceedings of Joint Virtual Reality Conference (JVRC), p. 51-54.

Simard, Jean, Mehdi AMMI, Flavien PICON et Patrick BOURDOT (05/2009). « Potential field approach for haptic selection ». Dans : Proceedings of Graphics Interface 2009, p. 203-206.

Questions

Merci pour votre attention