```
"Identity": "3",
     "Name": "user_1",
     "E-mail": "user_1@gmail.com"
 }
                     "Id": 3,
                     "name": "user 1"
6406531166069.
                     "Id": "3",
                     "name": "user_1"
6406531166070. **
                     "name": "user_1",
                     "email": "user_1@gmail.com"
6406531166071. **
```

MLF

64065322137

No

Section Number:7Section type:OnlineMandatory or Optional:MandatoryNumber of Questions:12Number of Questions to be attempted:12Section Marks:50Display Number Panel:Yes

Section Id:

Group All Questions:

Enable Mark as Answered Mark for Review and	Yes
Clear Response :	res
Maximum Instruction Time :	0
Sub-Section Number :	1
Sub-Section Id :	64065350400
Question Shuffling Allowed :	No
Question Number : 115 Question Id : 640653351339 Question Type : MCQ Is Question	
Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction	
Time: 0	
Correct Marks : 0	
Question Label : Multiple Choice Question	
THIS IS QUESTION PAPER FOR THE SUBJECT "MACHINE LEARNING FOUNDATIONS"	
ARE YOU SURE YOU HAVE TO WRITE EXAM FOR THIS SUBJECT? CROSS CHECK YOUR HALL TICKET TO CONFIRM THE SUBJECTS TO BE WRITTEN.	
(IF IT IS NOT THE CORRECT SUBJECT, PLS CHECK THE SECTION AT THE <u>TOP</u> FOR THE SUBJECTS REGISTERED BY YOU)	
Options :	
6406531166072. ✓ Yes	
6406531166073. ** No	
Sub-Section Number :	2
Sub-Section Id :	64065350401
Question Shuffling Allowed :	Yes
Question Number : 116 Question Id : 640653351345 Question Type : MCQ Is Question	
Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction	
Time: 0	
Correct Marks : 3	
Question Label : Multiple Choice Question	
The matrix $A = \begin{bmatrix} 4 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ is	

Options:

6406531166092. V positive definite

6406531166093. * positive semi-definite

6406531166094. * negative definite

6406531166095. ** negative semi-definite

Sub-Section Number: 3

Sub-Section Id: 64065350402

Question Shuffling Allowed: Yes

Question Number: 117 Question Id: 640653351344 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 4

Question Label: Multiple Choice Question

The singular value decomposition of matrix $A = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 3 & 1 \end{bmatrix}$ is

Options:

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & \sqrt{6} & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{\sqrt{6}} & 0 & \frac{\sqrt{3}}{\sqrt{6}} \\ -\sqrt{2} & -\sqrt{2} & \frac{\sqrt{2}}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

6406531166088.

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & \sqrt{8} & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{\sqrt{6}} & 0 & \frac{\sqrt{3}}{\sqrt{6}} \\ \frac{-\sqrt{2}}{\sqrt{6}} & \frac{-\sqrt{2}}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{6}} \\ \frac{-\sqrt{1}}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

6406531166089. **

6406531166090. **

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & \sqrt{6} & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{\sqrt{6}} & 0 & \frac{\sqrt{3}}{\sqrt{6}} \\ \frac{-\sqrt{2}}{\sqrt{6}} & \frac{-\sqrt{2}}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{6}} \\ \frac{-\sqrt{1}}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & \sqrt{8} & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{\sqrt{6}} & 0 & \frac{\sqrt{3}}{\sqrt{6}} \\ \frac{-\sqrt{2}}{\sqrt{6}} & \frac{-\sqrt{2}}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{6}} \\ \frac{-\sqrt{1}}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

6406531166091. **

Sub-Section Number: 4

Sub-Section Id: 64065350403

Question Shuffling Allowed: Yes

Question Number: 118 Question Id: 640653351340 Question Type: MSQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 4

Question Label: Multiple Select Question

If $v_1, v_2, \dots, v_{n-1}, v_n \in \mathbb{R}^n$ are orthonormal vectors, then which of the following statements is/are true?

Options:

6406531166074.
$$\checkmark$$
 $v_i^T v_j = 0, 1 \le i \le n, 1 \le j \le n, \text{ and } i \ne j.$

6406531166075.
$$\checkmark v_i^T v_i = 1, 1 \le i \le n.$$

6406531166076. \checkmark Matrix formed by the vectors $v_1, v_2, v_3, \cdots, v_n$ is always orthogonal.

6406531166077. \bowtie Matrix formed by the vectors $v_1, v_2, v_3, \cdots, v_n$ is always symmetric.

Question Number: 119 Question Id: 640653351341 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 4

Question Label: Multiple Select Question

Which of the following is/are eigenvectors of the matrix $A = \begin{bmatrix} 5 & 1+i \\ -1+i & 6 \end{bmatrix}$? Note: This is a MSQ question.

Options:

$$\begin{bmatrix} 1\\ -1+i\\ 2 \end{bmatrix}, \begin{bmatrix} 1\\ 1-i \end{bmatrix}$$

6406531166079. *
$$\left[\frac{1}{-1+2i}\right], \left[\frac{1}{1-i}\right]$$

6406531166080.
$$\checkmark$$
 $\begin{bmatrix} 1+i\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\1-i \end{bmatrix}$

6406531166081. *
$$\left[\frac{1}{-1-2i} \right], \left[\frac{1}{1-i} \right]$$

Question Number: 120 Question Id: 640653351342 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 4

Question Label: Multiple Select Question

Let A be a $n \times n$ Hermitian matrix. Suppose $A = UDU^*$, all the diagonal entries of a diagonal matrix D are 1. Then which of the following statements is/are true about hermitian matrix A?

Options:

6406531166082. \checkmark A is the identity matrix.

6406531166083. * A can be a matrix other than identity matrix.

6406531166084. \checkmark Any vector in $v \in \mathbb{C}^n$ is an eignevector of A with eigenvalue of 1.

6406531166085. Not all vectors in $v \in \mathbb{C}^n$ will be eigen vectors of A.

6406531166086. $\checkmark A = D$

Question Number: 121 Question Id: 640653351346 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 4

Question Label: Multiple Select Question

Which of the following statements are correct?

Options:

6406531166096. ✓ Every positive definite matrix is invertible.

6406531166097. ✓ A diagonal matrix with positive entries is positive definite.

6406531166098. ✓ A symmetric with positive determinant is not necessarily positive definite.

6406531166099. \checkmark If matrix *S* is positive definite then S^{-1} may also be positive definite.

Sub-Section Number: 5

Sub-Section Id: 64065350404

Question Shuffling Allowed: Yes

Question Number: 122 Question Id: 640653351343 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 4

Question Label: Short Answer Question

Then the value of a + b + c is.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

9

Question Number: 123 Question Id: 640653351351 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 4

Question Label: Short Answer Question

We need to find the optimal value of the objective function

f(x, y, z) = log(xyz) + xyz. We start with

$$X_0 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
. If $X_1 = \begin{bmatrix} i \\ j \\ k \end{bmatrix}$ using the gradient descent

algorithm and using $\eta=1$, then what is the absolute value of |i+j+k|? Enter the answer up to 2 decimals accuracy.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas: PlainText

Possible Answers:

7.5 to 8.5

Question Number: 124 Question Id: 640653351352 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 4

Question Label: Short Answer Question

It is known that for some function, f(0) = 1, $f'(x) = -\cos(x)e^{\sin(x)}$, and $f''(x) = \sin(x)e^{\sin(x)} + (\cos(x))^2e^{\sin(x)}$. What is the value of f(1) using taylor series expansion. Use second order approximation (up to f''(x)) starting with x = 0 and nd = 1.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas: PlainText

Possible Answers:

0.4 to 0.6

Question Number: 125 Question Id: 640653351353 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 4

Question Label: Short Answer Question

We need to find the cheapest cylindrical container to hold $1000m^3$ of water. The cost of top and bottom circular base is twice that of material used for side of cylinder. Suppose if $1m^2$ area of side cost 1000 rupees. Top and bottom base costs 2000 rupees each, then what is the value of radius of cylinder such that we get minimum cost?

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas: PlainText

Possible Answers:

3.1 to 3.8

Sub-Section Number: 6

Sub-Section Id: 64065350405

Question Shuffling Allowed: No

Question Id: 640653351347 Question Type: COMPREHENSION Sub Question Shuffling

Allowed: No Group Comprehension Questions: No Calculator: None Response Time: N.A.

Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (126 to 128)

Question Label: Comprehension

Consider the data points x_1, x_2, x_3 to answer the given subquestions.

$$x_1 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, x_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Sub questions

Question Number: 126 Question Id: 640653351348 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 3

Question Label: Short Answer Question

Calculate the mean vector of the data points x_1, x_2, x_3 and write the summation of all elements of mean vector obtained.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

3

Question Number: 127 Question Id: 640653351349 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 4

Question Label: Short Answer Question

for the data points x_1, x_2, x_3 is calculated.

Find the trace of C.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas: PlainText

Possible Answers:

1.3 to 1.5

Question Number: 128 Question Id: 640653351350 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 4

Question Label: Short Answer Question

Project data points x_1 , x_2 , x_3 onto a one dimensional space using PCA. Let z_1 , z_2 , z_3 denotes the projection of x_1 , x_2 , x_3 respectively. Calculate the summation of all elements of z_2

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

0

Java

Section Id: 64065322138