The Labeling types in ML

In the machine learning when we have features in string format we need to implement different methods to convert the string to numeric calues

Build dataframe

Out[70]:

	first_name	last_name	age	preTestScore	postTestScore
0	Jason	Miller	42	4	25,000
1	Molly	Jacobson	52	24	94,000
2	Tina		36	31	57
3	Jake	Milner	24		62
4	Amy	Cooze	73		70

```
In [63]: import pandas as pd

url = 'http://bit.ly/kaggletrain'
train = pd.read_csv(url)
train.head(5)
```

Out[63]: Passengerld Survived Pclass Name Sex Age SibSp Parch **Ticket** Fare Cabi Braund. 0 1 0 3 0 A/5 21171 7.2500 Mr. Owen male 22.0 1 Na Harris Cumings, Mrs. John Bradley 1 2 female 38.0 0 PC 17599 71.2833 C8 1 1 (Florence Briggs Th... Heikkinen, STON/O2. 2 3 1 3 female 26.0 0 7.9250 Miss. Na 3101282 Laina Futrelle, Mrs. Jacques 3 female 35.0 0 113803 53.1000 C12 4 1 1 Heath (Lily May Peel) Allen, Mr. 5 0 3 William male 35.0 0 0 373450 8.0500 Na Henry

Type *Markdown* and LaTeX: α^2

```
In [61]: from sklearn.preprocessing import LabelEncoder
    nmushroom=mushroom
    n2mushroom=mushroom
    nmushroom[nmushroom.columns].head(5)
```

Out[61]:

	р	X	S	n	t	p.1	f	С	n.1	k	 W	w.1	p.2	w.2	0	p.3	k.1	s.3	u	new_p
0	е	х	s	у	t	а	f	С	b	k	 w	W	р	w	0	р	n	n	g	0
1	е	b	s	w	t	I	f	С	b	n	 w	W	р	W	0	р	n	n	m	0
2	р	Х	у	w	t	р	f	С	n	n	 w	W	р	W	0	р	k	s	u	1
3	е	Х	s	g	f	n	f	w	b	k	 w	W	р	W	0	е	n	а	g	0
4	е	х	у	у	t	а	f	С	b	n	 w	W	р	W	0	р	k	n	g	0

5 rows × 24 columns

Label Types

1- LabelEncoder

LabelEncoder: change the data to the sequence and us it. for example in ['A','A','C','E','C'] => [1,1,2,3,2]

Apply the LabelEncoder to the DataFrame

0

2 1

2

2 1

0

```
In [65]: n2mushroom.apply(LabelEncoder().fit transform).head(5)
Out[65]:
            p x s n t p.1 f c n.1 k ... w w.1 p.2 w.2 o p.3 k.1 s.3 u new_p
         0 0 5 2 9 1
                         0 1 0
                                  0 4 ... 7
                                                  0
                                                      2 1
                                                               3
                                                                   2 1
                                                                            0
         1 0 0 2 8 1
                         3 1 0
                                  0 5 ... 7
                                              7
                                                  0
                                                      2 1
                                                                   2 3
                                                                            0
                                                               3
         2 1 5 3 8 1
                         6 1 0
                                  1 5 ... 7
                                              7
                                                     2 1
                                                               2
                                                                   3 5
                                                                            1
                                  0 4 ... 7
           0 5 2 3 0
                         5 1 1
                                              7
                                                     2 1
                                                                   0 1
                                                                            0
```

0 5 ... 7 7

5 rows × 24 columns

4 0 5 3 9 1

4- MultiLabelBinarizer

0 1 0

Change the specift rows and get the features and use it to change to columns

```
In [56]:
         # Creating an MultiLabel Array
          multilabel_feature = [("New Delhi", "New York"),
                                ("New York", "Sydney", "Hyderabad", "Bangalore"),
                                ("Hyderabad", "Sydney", "Chennai"),
("Chennai", "New Delhi", "Bangalore"),
                                ("Bangalore", "Chennai", "Iraq")]
          # Printing the MultiLabel Array
          print(multilabel_feature)
          [('New Delhi', 'New York'), ('New York', 'Sydney', 'Hyderabad', 'Bangalore'),
          ('Hyderabad', 'Sydney', 'Chennai'), ('Chennai', 'New Delhi', 'Bangalore'), ('Ba
          ngalore', 'Chennai', 'Iraq')]
In [59]: # Encoding MultiLabel data using MultiLabel Binarizer
          from sklearn.preprocessing import MultiLabelBinarizer
          multilabelbinarizer = MultiLabelBinarizer()
         multilabel encoded results = multilabelbinarizer.fit transform(multilabel feature
          # Classes created in MultiLabel data after Encoding
          multilabelbinarizer.classes
Out[59]: array(['Bangalore', 'Chennai', 'Hyderabad', 'Iraq', 'New Delhi',
                 'New York', 'Sydney'], dtype=object)
```

```
In [60]: df_multilabel_data = pd.DataFrame(multilabel_encoded_results, columns=multilabel\
# Viewing few rows of data
df_multilabel_data.head()
```

Out[60]:

	Bangalore	Chennai	Hyderabad	Iraq	New Delhi	New York	Sydney
0	0	0	0	0	1	1	0
1	1	0	1	0	0	1	1
2	0	1	1	0	0	0	1
3	1	1	0	0	1	0	0
4	1	1	0	1	0	0	0

3- get_dummies

We have to spacify the columns to compare them all columns

Compare columns (p,x) with all another columns

Change the specify column (rows) to columns

```
In [53]: # making data frame from csv at url
    data = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/employees
    # making dataframe using get_dummies()
    dummies = data["Team"].str.get_dummies()
    dummies.head(5)
```

Out[53]:		Business Development	Client Services	Distribution	Engineering	Finance	Human Resources	Legal	Marketing	Produc
	0	0	0	0	0	0	0	0	1	
	1	0	0	0	0	0	0	0	0	
	2	0	0	0	0	1	0	0	0	
	3	0	0	0	0	1	0	0	0	
	4	0	1	0	0	0	0	0	0	
	4									>

```
In [ ]: import pandas as pd
```

2- LabelBinarizer

change the value to binary for example ['A','A','C','D'] => [001,001,010,100]

```
In [34]: from sklearn.preprocessing import LabelBinarizer
import pandas as pd
lb = LabelBinarizer()

train["new_sex"]=lb.fit_transform(train["Sex"])
train.head(5)
```

Out[34]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na