EE 301 Fall 2018-2019

HW₃

Group Number:66

Group Members: Ali AYDIN, Enes AYAZ

I) a) If we calculate with rect
$$(\frac{t}{2\pi i})$$
 and period T

rect $(\frac{t}{2\pi i})$

And we can calculate X_k for 1 period.

 $X_k = \frac{1}{T} \int_{-T_k}^{T_k} rec(\frac{t}{2\pi i}) \cdot e^{-jw_0kt} dt$
 $X_k = \frac{1}{T} \int_{-T_k}^{T_k} e^{-jw_0kt} dt = \frac{1}{T} \int_{-T_k}^{T_k} e^{-jw_0kt} dt$
 $X_k = \frac{1}{T} \int_{-T_k}^{T_k} e^{-jw_0kt} dt = \frac{1}{T} \int_{-T_k}^{T_k} (e^{-jw_0kT_k} - e^{-jw_0kT_k}) dt$
 $X_k = \frac{1}{T} \int_{-T_k}^{T_k} sin(w_0kT_1) dt$
 $x_k = \frac{1}{T} \int_{-T_k}^{T_k} sin(\pi_k d)$
 $x_k = \frac{1}{T} \int_{-T_k}^{T_k} sin(\pi_k d)$

b)
$$x(t) = \sum_{k=-\infty}^{\infty} x_k e^{j\omega_0 kt} \quad \text{where} \quad \omega_0 = \frac{2\pi}{T} = \frac{2\pi}{4} = \frac{\pi}{2}$$

$$g(t) = \int x(t-7)d7 + \int x(t-7)d7$$

$$= \int \sum_{k=-\infty}^{\infty} x_k e^{j\omega_0 k(t-7)}d7 + \int \sum_{k=-\infty}^{\infty} x_k e^{j\omega_0 k(t-7)}d7$$

$$= \sum_{k=-\infty}^{\infty} x_k e^{j\omega_0 kt} (e^{-j\omega_0 k} - 1) + \sum_{k=-\infty}^{\infty} x_k e^{j\omega_0 kt} (e^{-j\omega_0 k} - 1)$$

$$= \sum_{k=-\infty}^{\infty} x_k e^{j\omega_0 kt} (e^{-j\omega_0 k} - 1) (1 + e^{-j\omega_0 k})$$

$$= \sum_{k=-\infty}^{\infty} x_k e^{j\omega_0 kt} (e^{-j\omega_0 k} - 1) (1 + e^{-j\omega_0 k})$$

7. - 1 4. Com - 1/2 = 1

()
$$y(+) = \frac{d}{d+} e(+) = \frac{d}{d+} \int_{0}^{4} x(\tau) x(t-\tau) d\tau = x(4) x(t-4) - x(0) x(t)$$

$$f(L) = \sum_{n=0}^{M-1} (e^{\frac{1}{2}\frac{n}{N}}L)^{n} = \frac{1 - (e^{\frac{1}{2}\frac{n}{N}}L)^{N}}{1 - e^{\frac{1}{2}\frac{n}{N}}L}$$

$$= \frac{1 - e^{\frac{1}{2}\frac{n}{N}}L}{1 - e^{\frac{1}{2}\frac{n}{N}}L}, \text{ for } L \text{ integer}$$

$$\frac{A(L)}{A} = 0$$

$$= \frac{A(L)}{A(L)} = 0$$

$$= \frac{A(L)}{A($$

3) a)	System is causal since it depends
	on only present value. h(+)=0, +20
	If system is stable,
	In(T) d Z ZOO,
	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	$\int_{e^{-\tau}} u \tau \tau d\tau = \int_{e^{-\tau}} e^{-\tau} d\tau = 1$
	-20
	Then, system is stable.
	$X(+)=j^{+}=e^{j\frac{\pi}{2}t}$
	$y(+) = \#(j\frac{\pi}{2})e^{j\frac{\pi}{2}+}$
	$H(s) = \int e^{-ST}h(\tau)dz$
	0 7 1 - 0 7
	$= \int_{-\infty}^{\infty} e^{-SZ} e^{-Z} y(z) dz = \int_{-\infty}^{\infty} e^{-SZ} dz$
	1100
	$H(S) = \frac{1}{S+1}$
	$y(+) = \frac{1}{j_{\frac{\pi}{2}+1}} e^{j_{\frac{\pi}{2}+1}}$
	J_+1
	2007 - 1 17 17 19 17 17 17 17 17 17 17 17 17 17 17 17 17

1 x System is not causal since it depends on future value. hlt/=0, +20  $\frac{1}{2} + \sum_{k=-\infty}^{\infty} \frac{1}{2^{-k}} \sqrt{[k+1]} = \sum_{k=-1}^{\infty} 2^{-k}$  $| = 2 + \sum_{k=0}^{\infty} 2^{-k} = 2 + \frac{1 - \left(\frac{1}{2}\right)^{k+1}}{1 - \frac{1}{2}} |_{k=\infty}$   $= 4 \quad \text{System (s. stable)}.$ y(n) = 21 & h(k) 2 th 1 y[n] = j^2 2-tuT[+1]j-t=j^2 = (2.j)-t  $= j^{n} \left( 2j + \frac{1 - \left( \frac{1}{2j} \right)^{k+1}}{1 - \frac{1}{2j}} \right|_{k = \infty}$   $= j^{n} \left( 2j + \frac{2j}{2j-1} \right) = j^{n} \left( \frac{4+8i}{5} \right)$ 

4)	a)	i)	if periodic x(+)=x(++T)
			sin(2+)+** (3+)=sin(2++2T)+cos(3++3T)
			1T = 2TK 3T = 2TK
			$T = \pi k$ $T = \frac{2\pi}{3}k$
			we should And greatest common divisor
			And, that value is our fundamental period.
			6CD(T, 2T) = 2TT
			[Ta=2T]
			$\sin(2t) + \cos(3t) = \frac{e^{j2t} - i2t}{j2} + \frac{e^{j3t} - i3t}{2}$
			$a_2 = \frac{1}{2j}$ , $a_{-2} = -\frac{1}{2i}$ , $a_1 = a_{-j} = \frac{1}{2}$
			2) 2) 2 000 ax =0
		::7	
		ii)	Ti) Shortly, we can say
			$\frac{3}{4}T = 2\pi k$ $\frac{3}{4}T = 2\pi k$ $T = 4k$ $T = 6k$
			Then, $600(4,6) = 12$
			$\overline{T_{0}}$ =(2)
			シュナー・コー・コー・コーナー・コーナー・コーナー・コーナー・コーナー・コーナー・
			$Sio(\frac{\pi}{2}t)+coo(\frac{\pi}{3}t)=\frac{e^{j\frac{\pi}{2}t}-e^{-j\frac{\pi}{2}t}}{2j}+\frac{e^{j\frac{\pi}{3}t}-e^{j\frac{\pi}{3}t}}{2}$
			$\omega_0 = \frac{2\pi}{T_0} = \frac{T}{8}$
			$a_2 = a_{-2} = \frac{1}{2}$ , $a_3 = \frac{1}{2}$ , $a_{-3} = -\frac{1}{2}$
			aw, ak=0
			42. 42.20

<del></del>			
		iii)	11) Like, but 2 part
			2T= ETTE IT = 2TK
			$2T = 2\pi k$ $T = \pi k$ $T = 6k$
			It's not periodic,
	b)	i)	b) i) if periodic x[n] =x[n+N]
			sin(2n)+cos(3n) = sin(2n+2N)+cos(3n+3N)
			2N=2TIK 3N=2TIK
			$N=7k$ $N=\frac{2\pi}{3}k$
			Nis integer. Then, this signal is not
			periodic
		ii)	sin(12n)+cos(13n)=sin(12n+ 2N)+cos(3n+ 3N)
			TN=2TE 11N=2TE 2 N=46 N=6E
			600(4,6)=12, periodic
			Then No = 12
			sin(豆り+cos(豆り)=e ^豆 つとっ豆り+e ^豆 つとっこう
			ふ= 27 = で
			$a_2 = a^2 - 2 = \frac{1}{2},  a_{-3} = \frac{1}{2},  a_{-3} = \frac{1}{2}$
			0.W, 9E=O
		iii)	Sin(2n)+ cos(3n) = sin(2n+2N)+cos(3n+3N)
			2N=271K
			N=RE
			It is not periodic since N is not
			integer.

5)	2)	Pact/
	a)	
		1 11111 1
		00 - 1111-10.
		Ni Pi
		-i21 N L
		$q_k = 1 \leq x \cdot (n) e^{-N}$
		AL = 1 SXMDE NO L
		we can use I period of XINJ to find as
		we can use I period of X(n) 10 miles
		NI -iestal
		The = 1 SARect ( ) e-jetale Property
		N A=-N1 (2N1+1)
		1 M - JUTAL 1 MA JETT NE
		AL = 1 SA e NAL + 1 SA A e NAL AL
		N = 0 $N = 1$ $N = 1$ $N = 1$
		$= \frac{A}{N} \cdot \frac{1 - (e^{-\frac{i}{N}E})^{N/+1}}{1 - e^{-\frac{i}{N}E}} + \frac{A}{N} \cdot \frac{1 - (e^{\frac{i}{N}E})^{N/+1}}{1 - e^{\frac{i}{N}E}} - \frac{A}{N}$
		$= \frac{A}{\sqrt{1-(e^{N})}} + \frac{\pi}{\sqrt{1-e^{j2\pi}k}} N$
		N 1- e-500
		$=\frac{A}{N}\left(\frac{e^{j2\pi k}-e^{-j2\pi k},N_1}{e^{j2\pi k}-1}+\frac{\left(e^{j2\pi k}\right)^{N_1+1}-1}{e^{j2\pi k}-1}-1\right)$
		$=\frac{1}{N}\left(\frac{1}{N}-\frac{1}{N}-1\right)$
		$\left(e^{\frac{12\pi i k}{N}}-1\right)$ $e^{\frac{12\pi i k}{N}}$
		$=\frac{A}{N}\left(\frac{e^{j2\pi k}N^{N+1}-e^{-j2\pi k}N^{N}}{e^{j2\pi k}-1}\right)=\frac{A}{N}e^{j\pi k}\frac{e^{j\pi k}N^{N+1}}{e^{j2\pi k}}=e^{-j2\pi k}N^{N+1}$
		$=\frac{H}{H}\left(\frac{e^{N}}{e^{N}}\right)=\frac{A}{e^{N}}\left(\frac{e^{N}}{e^{N}}\right)^{2}-e^{N}$
		$N = \frac{J2\pi k}{2\pi k} = 1$
		$e^{\frac{12\pi k}{N}} - 1$ $e^{\frac{1\pi k}{N}} (e^{\frac{1\pi k}{N}} - e^{-\frac{1\pi k}{N}})$
		en (en -en)
		= A sin (2Th (NITE)) = A SIN (Thed)
		N sin(The) sin(The)
		ak = A sin (TEd)
		10k = 1/1 311/11/20)
		sin(TE)

b)	$Q_{k} = Q_{-k}^{*}$ $Q_{k} = Q_{k}^{*}$ $Q_{k} = $
c)	$q_0 = A.d$ $c$ depends only as and anisodd function as is zero $C = -A.d$



Figure 1: x[n] for N = 10



*Figure 2:* x[n] *for* N = 20



Figure 3: ak for N = 10



Figure 4: ak for N = 20



Figure 5: fft for N = 10



Figure 6: fft for N = 20