Some relations between equilibria of harmonic vector fields and the domain topology.

Master Thesis

Theo Koppenhöfer

Lund

December 29, 2023

Contents

Sy	Symbols	
7	Harmonic functions, $d=4$	46
6	Harmonic vector fields, $d=3$ No inflow or outflow	44 44
5	$\label{eq:harmonic functions, } \begin{aligned} & \text{Harmonic functions, } d = 3 \\ & \text{The cylinder } \dots $	33 33 33 35
4	Harmonic vector fields, $d=2$ No inflow or outflow	26 26 30
3	Harmonic functions, $d=2$ A proof involving level-sets	20 20 22 23 25
2	Some general remarks Betti numbers	15 16 16 18
1	Introduction General definitions	5 5 11

Todo list

2do	3
Some amazing introduction	5
Some proof	10
Fill in the details for the following	13
The following implication is false, look into [5] for fix	14
Bring order into this section	15
This was stated somewhere in [6]	15
State the theorem of Sard	15
State proof	15
Comment on the finiteness of Betti numbers. Check numbers for ball with torus bubble.	16
Give outline of proof idea	17
Write some proof	18
Give a classical example of a Morse function to determine the Betti numbers	18
write omega-limit	20
use argument with ∇f here to show that extrema can be assumed to be alternating	21
More precise	22
elaborate	23
elaborate	23
One could use the argument principle for Riemann surfaces	27
Look into James Kelliher, stream functions for divergence free vector fields. Relation	
to differential forms	28
continue this argument	37
continue proof	38
Rewrite: It should be much easier arguing in \mathbb{R}^3	38
insert picture here, remove quadrant notation	39
fill in the details	41
complete this section	42
A little more rigour would not harm	44
Check that the transition at the boundary is legal	47
Change Gamelin to Lang, complex analysis	48

General TODOs

- Check for typos.
- Does Girault-Raviart theorem with Helmholtz decomp. help?
- bring in results from [1] and [2]
- Harmonic vector fields, find up to date reference
- Mention Sard's theorem
- Does Bocher's theorem help?
- Look at application of Sperner's lemma
- C is used once for critical points, once for level sets.
- Define traversing vector field

Some questions

• Should I state Hopf's Lemma?

1 Introduction

Some amazing introduction

Unless otherwise stated we denote by $X \subseteq \mathbb{R}^d$ a compact subset of \mathbb{R}^d with boundary $\Sigma = \partial X$ and nonempty interior $\Omega = \operatorname{int}(X)$. In the following we will work in dimensions $d \in \{2,3\}$. Unless otherwise stated we denote by

$$f: X \to \mathbb{R}$$

a \mathbb{C}^2 function on X. Often f will be assumed to be harmonic. We also denote by

$$u: X \to \mathbb{R}^d$$

a vector field of class C^1 . In the following we often assume that u is in fact harmonic, that is u fulfils Div u = 0 and curl u = 0. Often but not always we assume that in fact $u = \nabla f$ is a gradient field. One question we seek to answer in this thesis is the following:

Question 1.1 (Flowthrough with stagnation point). Does there exist a region $X \subseteq \mathbb{R}^3$ homeomorphic to a ball with flow u through the region such that

- 1. u is a harmonic vector field
- 2. *u* has an interior stagnation point
- 3. the boundary on which u enters the region is simply connected?

The answer for this will turn out to be 'yes' for dimensions $d \ge 3$ and 'no' for d = 2 dimensions. Another question we will consider is of the type:

Question 1.2 (stagnation points of harmonic vector fields without inflow or outflow). Let u be a harmonic vector field in a domain X such that at every boundary point it is tangential to the boundary. What can be said about the relation between the number of stagnation points and the domain topology?

This question yields a very nice result in the case of d=2 dimensions. To make the formulation of these questions more precise we begin with some general definitions regarding stagnation points and the boundary behaviour.

General definitions

We start by requiring some regularity for the boundary of X. More precisely, we require X to be a compact Riemannian manifold with corners: