Math 3435, Spring 2019 – Practice Final 1

Question 1. Solve $u_x + yu_y + yu = y$ with $u(0, y) = e^y$.

Question 2. Solve the heat equation on the half line:

$$\begin{cases} u_t - u_{xx} = 0, & t > 0, x > 0 \\ u(x,0) = 3, & x > 0 \\ u(0,t) = 0, & t > 0 \end{cases}$$

Question 3. Suppose u(x,t) satisfies

$$\begin{cases} u_{tt} - u_{xx} = 0, & 0 < x < 1, -\infty < t < \infty \\ u(x,0) = x^{2}(1-x), & 0 < x < 1, -\infty < t < \infty \\ u_{t}(x,0) = (1-x)^{2}, & 0 < x < 1, -\infty < t < \infty \\ u(0,t) = u(1,t) = 0, & -\infty < t < \infty \end{cases}$$

Find $u(\frac{2}{3},2)$.

Question 4. Solve $u_{tt} = c^2 u_{xx} + \cos x$, $u(x, 0) = \sin x$, $u_t(x, 0) = 1 + x$.

Question 5. Consider the Robin eigenvalue problem

$$\begin{cases} X''(x) + \lambda X(x) = 0, & 0 \le x \le l \\ X'(0) - a_0 X(0) = 0, \\ X'(l) + a_l X(l) = 0. \end{cases}$$

Assume that $a_0 < 0$, $a_l < 0$, and $-a_0 - a_l < a_0 a_l l$. Show that there are two negative eigenvalues.

Question 6. Find the sum $\sum_{n=1}^{\infty} 1/n^2$ by applying Parseval's equality for the Fourier sine series of f(x) = x on the interval (0, l).

Question 7. Find the harmonic function in the square $\{0 < x < \pi, 0 < y < \pi\}$ with the boundary conditions $u_y(x,0) = 0$, $u_y(x,\pi) = 0$, u(0,y) = 0, $u(\pi,y) = \cos^2 y = \frac{1}{2}(1 + \cos 2y)$.

Question 8. Solve $u_{xx} + u_{yy} = 0$ in the exterior $\{r > a\}$ of a disk, with the boundary condition $u = 1 + 3\sin\theta$ on r = a, and the condition at infinity that u be bounded as $r \to \infty$. Here (r, θ) are the polar coordinates.

Question 9. (Extra credit) Show that the Poisson kernel $P(r,\theta) = \frac{a^2 - r^2}{a^2 - 2ar\cos\theta + r^2}$ $(0 \le r < a, -\pi \le \theta \le \pi)$ is an approximation of the delta function as r approaches α following sense:

(1) $P(r, \theta) \ge 0$ for all $0 \le r < a, 0 \le \theta \le 2\pi$.

(2)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P(r,\theta) \ d\theta = 1 \text{ for all } 0 \le r < a.$$

(2)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P(r,\theta) d\theta = 1 \text{ for all } 0 \le r < a.$$
(3)
$$\lim_{r \to a^{-}} \frac{1}{2\pi} \int_{\varepsilon < |\theta| < \pi} P(r,\theta) d\theta = 0, \text{ for any } \varepsilon > 0.$$