

Greedy Algorithms Examples

Luis Velasco

(Ivelasco @ ac.upc.edu)

Campus Nord D6-107

Assignments

Luis Velasco

Assign tasks to computers (lab session 2)

- T Set of tasks, index t.
- *C* Set of computers, index *c*.
- r_t Resources requested by task t.
- r_c Available capacity of computer c.

minimize z subject to:

$$\sum_{c \in C} x_{tc} = 1 \quad \forall t \in T$$

$$\sum_{t \in T} r_t \cdot x_{tc} \le r_c \quad \forall c \in C$$

$$z \ge \frac{1}{r_c} \cdot \sum_{t \in T} r_t \cdot x_{tc} \quad \forall c \in C$$

$$x_{tc} \in \{0,1\} \quad \forall c \in C, t \in T$$

Assign tasks to computers


```
sortedT ← sort(T, r_r, DESC)

for each c in C do usedCapacity_c ← 0

for each t in sortedT do

C(t) \leftarrow \emptyset
for each c in C do

if usedCapacity_c + r_t \le r_c then C(t) \leftarrow C(t) \cup \{c\}

if |C(t)| = 0 then return INFEASIBLE

c_{best} \leftarrow \operatorname{argmin} \{q(< t, c>, \omega) \mid c \text{ in } C(t)\}
usedCapacity_{cbest} \leftarrow usedCapacity_{cbest} + r_t
\omega \leftarrow \omega \cup \{< t, c_{best}>\}
return \omega
```


Assignment Tasks to computers: Iterative execution

Computers	c1	c2	c3	
rc	505.67	503.68	701.78	
Tasks	t1	t2	t3	t4
rt	261.27	560.89	310.51	105.8

sortedTasks t2 t3 t1 t4	sortedTasks	t2	t3	t1	t4
---------------------------------	-------------	----	----	----	----

Computers	c1	c2	c3
residualCap	505.67	503.68	701.78

#1

task: t2	560.89		
C(t2)	c3		
cbest	c3		

Computers	c1	c2	c3	
residualCap	505.67	503.68	140.89	
Load	0	0	0.799	
Solution	{ <t2,c3>}</t2,c3>	{ <t2,c3>}</t2,c3>		

#2

task: t3	310.51		
C(t2)	c1 (
Load if assignment			
c1	0.6141		
c2	0.6165		
cbest	c1		

Computers	c1	c1 c2 c3			
residualCap	195.16	195.16 503.68 140.89			
load	0.6141	0.6141 0 0.799			
Solution	{ <t2,c3>,<</t2,c3>	{ <t2,c3>,<t3,c1></t3,c1>}</t2,c3>			

Computers	c1	c1 c2 c3					
residualCap	195.16	195.16 242.41 140.89					
load	0.6141	0.6141 0.5187 0.799					
Solution	{ <t2,c3>,</t2,c3>	{ <t2,c3>,<t3,c1>,<t1,c2></t1,c2>}</t3,c1></t2,c3>					

task: t4	105	.8	
C(t4)	c1	c2	c3
Load if assignmen	t		
c1	0.823	33	
c2	0.728	38	
c3	0.9	95	
cbest	c2		

Computers	c1	c2	c3
residualCap	195.16	136.61	140.89
load	0.6141	0.7288	0.799
Solution	{ <t2,c3>,</t2,c3>	<t3,c1>,</t3,c1>	<t1,c2>,<</t1,c2>

Solution	{ <t2,c3>,<t3,c1>,<t1,c2>,<t4,c2>}</t4,c2></t1,c2></t3,c1></t2,c3>
f(Solution)	0.799

Set Covering

Luis Velasco

Set Covering

- Let *M*={1, 2, ..., m} be the universe of elements to be covered.
- Let $P=\{p_j\}_{j\in N}$, be a family of subsets p_j , $N=\{1, 2, ..., n\}$. Coefficient a_{ij} is 1 if element i is in subset p_j , and 0 otherwise.
- Let c_j be the cost associated with p_j , e.g. its cardinality $(|p_j|)$.
- The set covering problem consists on finding the sub-family of elements $\{p_j\}_{j\in N^*}$, $N^* \leq N$, with minimum cost such that $Up_j = M$, i.e., covering M.

minimize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to:
$$\sum_{j=1}^{n} a_{ij}x_{j} \geq 1 \quad \forall i \in M$$

$$x_{j} \in \{0,1\}$$

Set Covering

M/P	p1	p2	р3	p4	p5	p6	p7	p8
1						X		
2			X	X			X	
3	X	X		X	X		X	
4	X			X	X	X		X
5					X	X		
cost	2	1	1	3	3	3	2	1

Optimal solutions (cost 5)

$$\omega = \{p6, p7\}$$

$$\omega = \{p2, p3, p6\}$$

Other feasible solutions

$$\omega = \{p1, p3, p6\} \text{ (cost=6)}$$

$$\omega = \{p4, p6\} \text{ (cost=6)}$$

Greedy for set covering

Let ω the solution sub-family Let R the set of covered elements

Greedy function:

$$q(p_j,R)=|p_j\cap (M\backslash R)|=|p_j\setminus (R\cap p_j)|\to Number of additional elements of $p_j$$$

If every p_i has its own associated cost c_i , the greedy function would be:

$$q(p_j,R) = c_j / |p_j \cap (M\backslash R)|$$

$$\omega = \{\}$$

compute q(pj) ∀ p _j ∈P\ω	q(p1) = 2	q(p5) = 3
Select the best element: p4	q(p2) = 1	q(p6) = 3
$\omega = \{p4\}$	q(p3) = 1	q(p7) = 2
R={2, 3, 4}	q(p4) = 3	q(p8) = 1
compute q(pj) ∀ p _i ∈P\ω	q(p1) = 0	q(p5) = 1
compute $q(pj) \forall p_j \in P \setminus \omega$ Select the best element: p6	1 (1 /	q(p5) = 1 q(p6) = 2
compute $q(pj) \forall p_j \in P \setminus \omega$ Select the best element: p6 $\omega = \{p4, p6\}$	1 (1 /	q(p6) = 2

Network planning

Luis Velasco

Network planning

- A set of users *U* needs to be connected to the Internet. For that purpose, we have a set of access point locations *A* where we could install routers (one per access point at the most).
 - For each user u, the amount cr_u of capacity units it consumes from the router it is connected to is given.

Network planning

- We have a set M of router models.
 - Each model m with its fixed cost f_m , capacity k_m , and reach d_m .
 - A router m can only connect users that are within a distance d_m from the access point.
- We assume Euclidean distances, so for each user *u* and each access point *a*, we know its Cartesian coordinates (*x*, *y*).
- We have to decide:
 - which model of router, if any, should be installed in each access point,
 - which access point each user should be connected to.
 - The goal is to minimize the total cost, computed as the summation of the cost of all the installed routers.

Network planning: Greedy algorithm

$$q(u,\omega) = \min\{q(< u,a>,\omega)\}$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach or the load
$$(c u,a>,\omega)$$
 Infeasible either because of the reach

Router currently installed in location *a* needs to be upgraded because of the reach or the load to serve user *u*

$$\omega \leftarrow \emptyset, C \leftarrow U$$
Evaluate $q(u, \emptyset) \ \forall u \in C$
while $C \neq \emptyset$ do
$$u^{min} \leftarrow \operatorname{argmin} \ \{q(u, \omega) \mid u \in C\}$$

$$\omega \leftarrow \omega \cup \{u^{min}\}$$

$$C \leftarrow C \setminus \{u^{min}\}$$
Reevaluate the incremental costs $q(u, \omega) \ \forall u \in C$
return ω

Network planning: Problem Instance

4	APs
7	
3	5
	1
2	
	4 2
1	
0	3
0	

	R1	R2	R3
f	100	140	180
k	6	8	10
d	2	3	4

								_				
		u	1	2	3	4	5	6	7	8	9	10
d(u,a)		Х	1	2	0	4	1	2	0	1	3	2
		у	1	3	1	1	2	2	1	1	4	4
1	2	3	2.2	0.0	2.8	2.8	1.4	1.0	2.8	2.2	1.4	1.0
2	1	2	1.0	1.4	1.4	3.2	0.0	1.0	1.4	1.0	2.8	2.2
3	1	1	0.0	2.2	1.0	3.0	1.0	1.4	1.0	0.0	3.6	3.2
4	0	2	1.4	2.2	1.0	4.1	1.0	2.0	1.0	1.4	3.6	2.8
5	1	3	2.0	1.0	2.2	3.6	1.0	1.4	2.2	2.0	2.2	1.4
а	x	v										

Network planning: Iterative execution (1/5)

H	1	
π	4	

—										
u	1	2	3	4	5	6	7	8	9	10
cr	2	3	4	1	2	2	1	2	3	4
q(u)	100	100	100	140	100	100	100	100	100	100
а	3	1	3	1	2	1	3	3	1	1
d(u,a)	0.0	0.0	1.0	2.8	0.0	1.0	1.0	0.0	1.4	1.0

а	1	2	3	4	5
m			R1		
U(a)			{1}		
km-cr			4		

u	1	2	3	4	5	6	7	8	9	10
cr	2	3	4	1	2	2	1	2	3	4
q(u)		40	0	40	0	0	0	0	80	80
а	3	3	3	3	3	3	3	3	3	3
d(u,a)	0.0	2.2	1.0	3.0	1.0	1.4	1.0	0.0	3.6	3.2

а	1	2	3	4	5
m			R1		
U(a)			{1,8}		
km-cr			2		

Network planning: Iterative execution (2/5)

#3										
u	1	2	3	4	5	6	7	8	9	10
cr	2	3	4	1	2	2	1	2	3	4
q(u)		40	40	0	0	0	0		80	80
a	3	3	3	3	3	3	3	3	3	3
d(u,a)	0.0	2.2	1.0	3.0	1.0	1.4	1.0	0.0	3.6	3.2

а	1	2	3	4	5
m			R1		
U(a)			{1,5,8}		
km-cr			0		

u	1	2	3	4	5	6	7	8	9	10
cr	2	3	4	1	2	2	1	2	3	4
q(u)		80	80	40		40	40		80	80
а	3	3	3	3	3	3	3	3	3	3
d(u,a)	0.0	2.2	1.0	3.0	1.0	1.4	1.0	0.0	3.6	3.2

а	1	2	3	4	5
m			R2		
U(a)			{1,5,7,8}		
km-cr			1		

Network planning: Iterative execution (3/5)

#5										
u	1	2	3	4	5	6	7	8	9	10
cr	2	3	4	1	2	2	1	2	3	4
q(u)		100	100	0		40			100	100
а	3	1	4	3	3	3	3	3	1	1
d(u,a)	0.0	0.0	1.0	3.0	1.0	1.4	1.0	0.0	1.4	1.0

а	1	2	3	4	5
m			R2		
U(a)			{1,4,5,7,8}		
km-cr			0		

u	1	2	3	4	5	6	7	8	9	10
cr	2	3	4	1	2	2	1	2	3	4
q(u)		100	100			40			100	100
а	3	1	4	3	3	3	3	3	1	1
d(u,a)	0.0	0.0	1.0	3.0	1.0	1.4	1.0	0.0	1.4	1.0

a	1	2	3	4	5
m			R3		
U(a)			{1,4,5,6,7,8}		
km-cr			0		

Network planning: Iterative execution (4/5)

#7										
u	1	2	3	4	5	6	7	8	9	10
cr	4	3	4	1	2	2	1	2	3	4
q(u)		100	100						100	100
a	3	1	4	3	3	3	3	3	1	1
d(u,a)	0.0	0.0	1.0	3.0	1.0	1.4	1.0	0.0	1.4	1.0

а	1	2	3	4	5
m	R1		R3		
U(a)	{2}		{1,4,5,6,7,8}		
km-cr	3		0		

10

4

#8

u 1 2 3 4 5 6 7 8 9

cr 4 3 4 1 2 2 1 2 3
q(u) 40 0

40 3 3 3 3 3 а d(u,a) 0.0 0.0 2.8 3.0 1.0 1.0 1.0 1.4 1.0 0.0

а	1	2	3	4	5
m	R1		R3		
U(a)	{2,9}		{1,4,5,6,7,8}		
km-cr	0		0		

Network planning: Iterative execution (5/5)

#9										
u	1	2	3	4	5	6	7	8	9	10
cr	4	3	4	1	2	2	1	2	3	4
q(u)			80							80
а	3	1	1	3	3	3	3	3	1	1
d(u,a)	0.0	0.0	2.8	3.0	1.0	1.0	1.0	0.0	1.4	1.0

а	1	2	3	4	5
m	R3		R3		
U(a)	{2,9,10}		{1,4,5,6,7,8}		
km-cr	0		0		

#10

u	1	2	3	4	5	6	7	8	9	10
cr	4	3	4	1	2	2	1	2	3	4
q(u)			100							
а	3	1	4	3	3	3	3	3	1	1
d(u,a)	0.0	0.0	1.0	3.0	1.0	1.0	1.0	0.0	1.4	1.0

Solution Cost=460

а	1	2	3	4	5
m	R3		R3	R1	
U(a)	{2,9,10}		{1,4,5,6,7,8}	{3}	
km-cr	0		0	2	

Greedy Algorithms

Luis Velasco