

Grundlagenpraktikum: Rechnerarchitektur

Technische Universität München

TUM School of Computation, Information and Technology

Prof. Dr. rer. nat. Martin Schulz

München, 29. August 2023

Arithmetik in Zahlensystemen mit ungewöhnlicher Basis

Alireza Kamalidehghan, Sina Mozaffari Tabar, Mostafa Nejati Hatamian München, 29. August 2023

Inhaltsübersicht

- Basisumwandlung
 - Umrechnung von Zahlen in unterschiedlichen Basen
 - Zahlen in der komplexen Basis
- Implementierung der Basisumwandlung Funktionen
 - to_carthesian Methode
 - Variante I
 - Variante II
 - to_bm1pi Methode
 - Variante I
- Performanzanalyse

Basisumwandlung

Umrechnung von Zahlen in unterschiedlichen Basen

Funktion f() zur Berechnung des Wertes:

$$f(a,g,n) = \sum_{i=0}^{n-1} (a_i * g^i)$$

Beispiel:

- Basis: g = 10
- Ziffern: $a \in \{0,1,2,3,4,5,6,7,8,9\}$
- Beispiel: 2023₁₀

$$f((2,0,2,3),10,4) = \sum_{i=0}^{3} (a_i * 10^i)$$

= 3 * 10⁰ + 2 * 10¹ + 0 * 10² + 2 * 10³
= 2023

Zahlen in der komplexen Basis

Funktion f() zur Berechnung des Wertes:

$$f(a,g,n) = \sum_{z=0}^{n-1} (a_z * b^z)$$

Beispiel:

- Basis: g = -1 + i
- Ziffern: $a \in \{0,1\}$
- Beispiel: 1001₁₀

$$f((1,0,0,1), (-1+i), 4) =$$

$$\sum_{z=0}^{3} (a_i * (-1+i)^z)$$

$$= 1 * (-1+i)^0 + 0 * (-1+i)^1 + 0 * (-1+i)^2 + 1 * (-1+i)^3$$

$$= 3 + 2i$$

Implementierung der Basisumwandlung Funktionen

to_carthesian Methode - Variante I

$$(1 \quad -1 \quad 0 \quad 2 \quad -4 \quad 4 \quad 0 \quad -8 \quad \dots \quad -2^{64})_{1 \times 128} \times \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \\ \vdots \\ a_{127} \end{pmatrix} = (Real)$$

- a_i i-te Ziffer der Eingabe
- Relation zwischen jede achte Potenz

$$\begin{pmatrix} 0 & 1 & -2 & 2 & 0 & -4 & 8 & -8 & \dots & -2^{64} \end{pmatrix}_{1 \times 128} \times \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \\ \vdots \end{pmatrix} = (Imag)$$

to_carthesian Methode - Variante I

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n mod 8	Real $(-1+i)^n$	Imag $(-1+i)^n$
2 0 -2 ^{4k+1} 3 2 ^{4k+1} 2 ^{4k+1} 4 -2 ^{4k+2} 0 5 2 ^{4k+2} -2 ^{4k+2} 6 0 2 ^{4k+3}	0	2 ^{4k}	0
3 2 ^{4k+1} 2 ^{4k+1} 4 -2 ^{4k+2} 0 5 2 ^{4k+2} -2 ^{4k+2} 6 0 2 ^{4k+3}	1	-2 ^{4k}	2 ^{4k}
4 -2 ^{4k+2} 0 5 2 ^{4k+2} -2 ^{4k+2} 6 0 2 ^{4k+3}	2	0	-2 ^{4k+1}
5 2 ^{4k+2} -2 ^{4k+2} 6 0 2 ^{4k+3}	3	2 ^{4k+1}	2 ^{4k+1}
6 0 2 ^{4k+3}	4	-2 ^{4k+2}	0
	5	2 ^{4k+2}	-2 ^{4k+2}
7 04k+3 04k+3	6	0	2 ^{4k+3}
/ -Z ^{4K+3} -Z ^{4K+3}	7	-2 ^{4k+3}	-2 ^{4k+3}

to carthesian Methode - Variante II

SIMD-Matrixmultiplikation:

plikation:
$$\begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -2 \\ 2 & 2 \\ -4 & 0 \\ 4 & -4 \\ 0 & 8 \\ -8 & -8 \end{pmatrix}^{T} \times \begin{pmatrix} a_{0} & a_{8} & \dots & a_{120} \\ a_{1} & a_{9} & \dots & a_{121} \\ a_{2} & a_{10} & \dots & a_{122} \\ a_{3} & a_{11} & \dots & a_{123} \\ a_{4} & a_{12} & \dots & a_{124} \\ a_{5} & a_{13} & \dots & a_{125} \\ a_{6} & a_{14} & \dots & a_{126} \\ a_{7} & a_{15} & \dots & a_{127} \end{pmatrix} \times \begin{pmatrix} 2^{0} \\ 2^{4} \\ 2^{8} \\ 2^{12} \\ 2^{16} \\ 2^{20} \\ 2^{24} \\ 2^{28} \\ 2^{32} \\ 2^{36} \\ 2^{40} \\ 2^{44} \\ 2^{48} \\ 2^{52} \\ 2^{56} \\ 2^{60} \end{pmatrix}$$

$$\begin{pmatrix} 2^{0} \\ 2^{4} \\ 2^{8} \\ 2^{12} \\ 2^{16} \\ 2^{20} \\ 2^{24} \\ 2^{28} \\ 2^{32} \\ 2^{36} \\ 2^{40} \\ 2^{44} \\ 2^{48} \\ 2^{52} \\ 2^{56} \\ 2^{60} \end{pmatrix}$$

to_bm1pi Methode

Beispiel (Input 3 + 2i):

		(Division by $(-1+i)$) * 2		Modified		
Real	Imag	Real	Imag	Real	Imag	Remainder
3	2	-1	-5	0	-4	1
0	-2	-2	2	-2	2	0
-1	1	2	0	2	0	0
1	0	-1	-1	0	0	1

to_bm1pi Methode - Korrektheit

Division der Zahl durch die gewählte Basis:

$$\frac{n+im}{-1+i} = \frac{(n+im)(-1-i)}{2} = \frac{m-n}{2} - i\frac{n+m}{2}$$

Fallunterscheidung:

Wenn n und m beide gerade oder ungerade sind:

$$\frac{m-n}{2}-i\frac{n+m}{2}$$

• Wenn nur eins von *n* oder *m* gerade(bzw. das andere ungerade) ist:

$$\frac{m-n+1}{2}-i\frac{n+m-1}{2}$$

Performanzanalyse

Performanzanalyse

Laufzeitanalyse für to_bm1pi Methode

- *O*(1)
- Iterationen: 128 mal

Laufzeitanalyse für to_carthesian Methode

- O(1)
- Iterationen: 16 mal

Unabhängigkeit von der Eingabegröße

Vielen Dank für Ihre Aufmerksamkeit!