

Functions

Summary week 2

Mijke Carlier

Trigonometric Functions

$$\sin(\theta) = \frac{\text{opp}}{\text{hyp}}$$
 $\cos(\theta) = \frac{\text{adj}}{\text{hyp}}$
 $\tan(\theta) = \frac{\text{opp}}{\text{adj}} = \frac{\sin(\theta)}{\cos(\theta)}$

is *y*-coordinate on unit circle is *x*-coordinate on unit circle

Radians

 $2 \pi \text{ rad} = 360^{\circ}$

Radius r=1: angle θ in radians = distance s

Trigonometric functions – special values

	0°	30°	45°	60°	90°
θ	0	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$
$sin(\theta)$	0	1/2	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
$cos(\theta)$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
$tan(\theta)$	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	_

Graphs of Trigonometric Functions

$$\cos(x \pm 2\pi) = \cos(x) = \cos(-x)$$

$$\sin(x \pm 2\pi) = \sin(x) = -\sin(-x)$$

$$\tan(x \pm \pi) = \tan(x)$$

Other Trigonometric Identities

Pythagoras:

$$\sin(x)^2 + \cos(x)^2 = 1$$

$$\cos(\frac{\pi}{2} - \theta) = \sin(\theta)$$

$$\sin(\frac{\pi}{2} - \theta) = \cos(\theta)$$

$$\sin(\alpha + \beta) = \cos(\alpha)\sin(\beta) + \sin(\alpha)\cos(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$
$$\cos(2x) = \cos(x)^2 - \sin(x)^2$$

Composing Functions

Composing with linear functions

f(x) + a	Vertical shift upwards
f(x + a)	Horizontal shift to the left
af(x)	Vertical scaling by a
f(ax)	Horizontal scaling by 1/a

A wave function

$$y = a\sin(bt + c) + d$$

a	Amplitude
$2\pi/b$	Period
С	Phase
d	Equilibrium height

Exponential Functions

Form: Ab^{x}

- *b* : base
- X: exponent

$$b^{x+y} = b^{x}b^{y}$$

$$b^{x-y} = \frac{b^{x}}{b^{y}}$$

$$(b^{x})^{y} = b^{xy}$$

$$b^{x}c^{x} = (bc)^{x}$$

Inverse Functions

- $f^{\text{inv}}(y) = x \longleftrightarrow y = f(x)$
- Inverse exists ←→ injective
 - Horizontal line test

- f^{inv} has domain R and range D
- Graph: reflect in y = x

Logarithms

Logarithm is inverse of exponential:

$$y = \log_b(x) \iff b^y = x$$

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

$$\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$$

$$\log_b(x^k) = k \log_b(x)$$

$$\log_b(x) = \frac{\log_c(x)}{\log_c(b)}$$

Common bases

Common bases *b* for exponentials and logarithms:

- b = 10
- b = e = 2.71828...
- b = 2

$$\frac{d}{dx}e^{x} = e^{x}, \log_{e}(x) = \ln(x)$$

Thank you for your attention!

