Molekülorbitale

- Molekülorbitale (MO) lasen sich durch numerisches Lösen der Schrödingergleichung für die Elektronen bestimmen («Quantenchemie»)
- Qualitativ korrekte MO können durch Linearkombination von AO erhalten werden.
- Mathematisch durch Addition von AO (Interferenzen)

Beispiel: Zweiatomige Moleküle H₂+, H₂, He₂+, He₂

Molekülorbitale

ETH zürich

Molekülorbitale

Elektronen- $(1\sigma_g^+)^1$

 $(1\sigma_g^+)^2$

 $(1\sigma_{g}^{+})^{2}(1\sigma_{u}^{+})^{1}$

 $(1\sigma_{g}^{+})^{2}(1\sigma_{u}^{+})^{2}$

Bindungsordnung =(#bind. El.-#antibind. El.)/2 1/2

1

1/2

0

Gleichgewichtsabstand (R_e)

106 pm

75 pm

108 pm

>1000 pm

Linearkombination von p-Orbitalen

 $\Psi^{\text{MO(2)}} = \Psi_{\text{p,z}}^{\text{(a)}} + \Psi_{\text{p,z}}^{\text{(b)}}$

bindendes MO

antibindendes MO

$$\Psi_{p,x}^{(a)}$$
 $\Psi_{p,x}^{(b)}$

bindendes MO

antibindendes MO

- → Keine Erhöhung der Elektronendichte zwischen den Kernen
- → Keine Bindung

Linearkombination von p-Orbitalen

Linearkombination von p- und s-Orbitalen

Keine Bindung

Regeln zur Bildung von MOs aus AOs

- 1) Aus n AOs werden n MOs gebildet
- Bindende/antibindende MOs entstehen nur, wenn AO beim Glg.-Abstand gut überlappen.
- 3) AOs müssen passende Symmetrien besitzen und etwa dieselbe Energie haben, um bindende/antibindende MOs zu bilden.
- 4) Wenn MOs durch Überlappung zweier nicht äquivalenter Atome entstehen, trägt das AO mit der tieferen Energie mehr zum bindenden und das mit der höheren Energie mehr zum antibindenden MO bei.

Nomenklatur

 σ , π , δ , ϕ , γ , ...

σ: keine Knotenebene, die die internukleare Achse enthält

 π : eine Knotenebene, die die internukleare Achse enthält

δ: zwei Knotenebenen, die die internukleare Achse enthalten

φ: drei Knotenebenen, die die internukleare Achse enthalten

(Analogie zu s, p, d, f-Orbitalen in Atomen)

σ-Orbital

π-Orbital

 δ -Orbital (z.B. in Mo₂)

Nomenklatur

g/u g: gerade bzgl. Inversion durch das Inversionszentrum des Moleküls

u: ungerade bzgl. ...

Hydride (HF, HO, HN, HC, HB, HBe, HF+, OH+, ...)

H (1s)
F
$$(1s)^2(2s)^2(2p)^5$$
 E

 $IE_1 \approx 1300 \text{ kJ mol}^{-1} \text{ (1s)}^{-1}$ $IE_1 \approx 1800 \text{ kJ mol}^{-1} \text{ (2p)}^{-1}$

Elektronenkonfiguration: eigentlich:

 $(1s_F)^2(2s_F)^2(3\sigma^+)^2(2p_x,F)^2(2p_y,F)^2$ $(1\sigma^+)^2(2\sigma^+)^2(3\sigma^+)^2(1\pi_{x,y})^4$

Bindungsordnung: 1

Hydride (HF, HO, HN, HC, HB, HBe, HF+, OH+, ...)

Elektronenkonfiguration: $(1\sigma^+)^2(2\sigma^+)^2(3\sigma^+)^2(1\pi_{x,y})^3$

Bindungsordnung: 1

Homonukleare Moleküle (O₂, F₂, Ne₂)

Homonukleare Moleküle (O₂, F₂, Ne₂)

Homonukleare Moleküle (O₂, F₂, Ne₂)

Homonukleare Moleküle (B₂, C₂, N₂)

Energie der 2s-AO liegt bei B, C, N nur wenig tiefer als Energie von 2p-AO

Homonukleare Moleküle (B₂, C₂, N₂)

Energie der 2s-AO liegt bei B, C, N nur wenig tiefer als Energie von 2p-AO

Homonukleare Moleküle (B₂, C₂, N₂)

Energie der 2s-AO liegt bei B, C, N nur wenig tiefer als Energie von 2p-AO

Eigenschaften von B₂, C₂, ..., F₂, Ne₂

	B_2 ,	C ₂ ,	N_2 ,	O ₂ ,	F ₂ ,	Ne ₂
Bindungsordnung	1	2	3	2	1	0
Bindungslänge / Å	1.59	1.31	1.10	1.21	1.43	3.30
Diss.Energie / kJ mol ⁻¹	290	640	940	459	250	1.91