```
#Import Libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load Dataset
from google.colab import files
uploaded = files.upload()

Choose Files No file chosen

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to
```

enable.

import pandas as pd
Step 3: Read Your sales_data.csv
df= pd.read_csv('sales_data.csv',encoding='latin1')
df.head()

₹	Row_ID	Order_	[D Order_Date	Ship_ Date	Ship_Mode	Customer_ID	Customer_Name	Segment	Country	City	•••	Postal_Code	Regio
	0 1	CA-201 1521		11-11- 2016	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		42420	Soutl
	1 3	CA-201 1386		16- 06- 2016	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles		90036	Wes
	2 4	US-201 1089		18- 10- 2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale		33311	Soutl
	3 6	CA-201 1158		14- 06- 2014	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Los Angeles		90032	Wes
	4 13	CA-201 1144		20- 04- 2017	Standard Class	AA-10480	Andrew Allen	Consumer	United States	Concord		28027	Soutl

5 rows × 21 columns

Basic info about dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5009 entries, 0 to 5008
Data columns (total 21 columns):

Data	columns (total	21 cc	olumr	ns):		
#	Column	Non-N	Null	Count	Dtype	
0	Row_ID	5009	non-	-null	int64	
1	Order_ID	5009	non-	-null	object	
2	Order_Date	5009	non-	null	object	
3	Ship_ Date	5009	non-	-null	object	
4	Ship_Mode	5009	non-	-null	object	
5	Customer_ID	5009	non-	null	object	
6	Customer_Name	5009	non-	null	object	
7	Segment	5009	non-	-null	object	
8	Country	5009	non-	-null	object	
9	City	5009	non-	-null	object	
10	State	5009	non-	-null	object	
11	Postal_Code	5009	non-	null	int64	
12	Region	5009	non-	-null	object	
13	Product_ID	5009	non-	-null	object	
14	Category	5009	non-	-null	object	
15	Sub_Category	5009	non-	-null	object	
16	Product_Name	5009	non-	null	object	
17	Sales	5009	non-	-null	float64	
18	Quantity	5009	non-	-null	int64	
19	Discount	5009	non-	-null	float64	
20	Profit	5009	non-	-null	float64	
dtypes: float64(3), int64(3), object(15)						
memory usage: 821.9+ KB						

```
# Check for missing values
df.isnull().sum()
```


	0
Row_ID	0
Order_ID	0
Order_Date	0
Ship_ Date	0
Ship_Mode	0
Customer_ID	0
Customer_Name	0
Segment	0
Country	0
City	0
State	0
Postal_Code	0
Region	0
Product_ID	0
Category	0
Sub_Category	0
Product_Name	0
Sales	0
Quantity	0
Discount	0
Profit	0

dtype: int64

See basic statistics df.describe()

	Row_ID	Postal_Code	Sales	Quantity	Discount	Profit
count	5009.000000	5009.000000	5009.000000	5009.000000	5009.000000	5009.000000
mean	5044.337792	55410.136754	219.577213	3.801956	0.157007	26.455628
std	2884.456224	31989.416278	553.491762	2.223151	0.207802	207.275558
min	1.000000	1040.000000	0.560000	1.000000	0.000000	-3839.990000
25%	2552.000000	23464.000000	16.270000	2.000000	0.000000	1.800000
50%	5060.000000	60068.000000	51.710000	3.000000	0.200000	8.470000
75%	7577.000000	90008.000000	199.990000	5.000000	0.200000	27.990000
max	9994.000000	99301.000000	11199.970000	14.000000	0.800000	5039.990000

Check column names
df.columns

```
#Sales Distribution - Histogram

plt.figure(figsize=(8,5))
sns.histplot(df['Sales'],bins=30,kde=True)
plt.title('Sales Distribution')
plt.xlabel('sales Amount')
plt.ylabel('Count')
plt.show()
```

8/5/25, 5:27 PM sales_eda - Colab


```
#Profit vs Sales - Scatter Plot

plt.figure(figsize=(8,5))
sns.scatterplot(data=df, x='Sales', y='Profit', hue='Category')
plt.title('Profit Vs Sales by Category')
plt.xlabel('Sales')
plt.ylabel('Profit')
plt.show
```

```
matplotlib.pyplot.show
def show(*args, **kwargs) -> None

Display all open figures.

Parameters
-----
block : bool, optional
Whether to wait for all figures to be closed before returning.
```



```
# Total Sales by Category - Bar Chart
category_sales = df.groupby('Category')['Sales'].sum().reset_index()

plt.figure(figsize=(8,5))
sns.barplot(data=category_sales,x='Category',y='Sales')
plt.title('Total Sales by Category')
plt.ylabel('Total Sales')
plt.show()
```



```
# Correlation matrix
corr = df.corr(numeric_only=True)

# Plot heatmap
plt.figure(figsize=(8,5))
sns.heatmap(corr,annot=True,cmap='coolwarm',fmt=".2f")
plt.title("Correlation matrix")
plt.show()
```



```
# Profit vs Discount
plt.figure(figsize=(8,5))
sns.scatterplot(data=df,x='Discount',y='Profit')
plt.title("Profit Vs Discount")
plt.show()
```



```
# Regionalwise sales
region_sales=df.groupby('Region')['Sales'].sum().reset_index()
plt.figure(figsize=(8,5))

sns.barplot(data=region_sales,x='Region',y='Sales')
plt.title('Region-wise Sales')
plt.ylabel='Total Sales'
plt.show()
```



```
# Quantity Vs Profit
plt.figure(figsize=(8,5))
sns.scatterplot(data=df,x='Profit',y='Quantity')
plt.show()
```

```
14 - (6)
12 - (6)
10 - (8)
(8)
```

```
# Correlation Heatmap
# Let's calculate and visualize the correlation between key numerical features:
```

```
# Sales
```

Profit

Discount

Quantity

numeric_data=df[['Sales','Profit','Discount','Quantity']]

plt.figure(figsize=(8,5))
corr2=numeric_data.corr()

sns.heatmap(corr2,annot=True,cmap='coolwarm',linewidths=0.5)

plt.title('Correlation Heatmap')

plt.show

