Топология. Лекция

jdfalkj

12 октября 2024 г.

$$\frac{\operatorname{Ex.}}{\Sigma} (\mathbb{R}, \tau_{(a, +\infty)})$$
 $\Sigma = \{(a, +\infty) \mid a \in \mathbb{R}\}$ \forall подмн-во связно \mathbb{M} . от противного. Пусть $\exists \ S \subset \mathbb{R}$ S несвязно $\Longrightarrow \ S = U \cup V, \ U, V \in \tau$
$$U \cap V \neq \varnothing, \ U, V \neq \varnothing \implies U \text{ - открыто-замкнутое в } \tau_s \implies \exists \ \tilde{U} \in \tau \mid U = \tilde{U} \cap S \ \text{Пусть } U = (a, +\infty)$$

$$\exists \tilde{V} \in \tau \mid U = C\tilde{V} \cap S, \ \text{где } V = (b, +\infty)$$

$$C\tilde{V} = (-\infty, b]$$

$$U = \tilde{U} \cap S = C\tilde{V} \cap S \implies \forall s \in S \implies a < s \leq b \implies S \subset (a, b]$$

 $\underline{\mathrm{Def}}$ Связной компонентой K_x точки x, называется наибольшее связное множество, содержащие точку x Наибольшее связное множество содержит любое связное множество, содержащие точку x

 $U = U \cap S = C\tilde{V} \cap S = S \implies U = S$

<u>Th.8</u> Компонента связности - замкнутое множество

Proof

$$x\in X,\ K_x$$
 - компонента связности $\stackrel{?}{\Longrightarrow} K_x$ - замкнутое множество $\stackrel{\mathrm{Th.5}}{\Longrightarrow} \overline{K_x}$ связно $\Longrightarrow \overline{K_x}\subset K_x \Longrightarrow \overline{K_x}=K_x$

<u>Note</u> Если пространство состоит из конечного числа компонент связности, то каждая компонента связности является открытым множеством

 $\underline{\mathrm{Def}}$ Непрерывное отображение $f:([0,1],\tau_0\to(X,\tau))$ называется путем. f(0) - начало пути. f(1) - конец пути. $\underline{\mathrm{Def}}$ (X,τ) линейно связно, если любые две точки можно соединить путем.

<u>Th.9</u> Если пространство линейно связно, то оно связно

Proof Пусть (X, τ) линейно связно

М. от противного

Пусть (X, τ) несвязно

Противоречие со связностью [0,1]

<u>Th.10</u> Открытое связное подмн-во в (\mathbb{R}^n, τ_0) - линейно связно <u>Proof</u> Пусть $A \subset \mathbb{R}^n, \ A \in \tau_0, \ A$ связно M от противного

Пусть A не является линейно связным. Пусть a и $b, (a, b \in A)$ нельзя соединить путём

Обозначим B - множество точек, которые нельзя соединить путем с точкой а

Докажем, что В открыто-замкнуто

$$b \in B$$
. Пусть $B_r(b) \subset A$, такой шар \exists т.к. $A \in \tau_0$

 $B_r(b)$ - линейно связное пространство, т.к. любые две точки шара можно соединить отрезком

$$\implies B_r(b) \subset B \implies B \in \tau_A$$

Докажем замкнутость В. Для этого мы докажем, что $CB \in \tau_A$

Аналогично предыдущему проверяется, что $CB \in \tau_A$

 $\exists B$ - открыто замкнутый. Т.е. противоречие со связностью А

Ех Связное пр-во, которое не является лин. связным.

Пусть $S = \{(x, \sin \frac{1}{x}) \mid 0 < x \le 1\} \subset (\mathbb{R}, \tau_0)$

S линейно связно

$$\forall (0, a), a \in [-1, 1]$$

$$a_n = \left(\frac{1}{\arcsin a + 2\pi n}, a\right) \in S$$

$$\lim_{n \to \infty} a_n = (0, a)$$

$$(0,a)\in \overline{S}$$

S лин связно $\stackrel{\mathrm{Th.9}}{\Longrightarrow} S$ связно $\stackrel{\mathrm{Th.5}}{\Longrightarrow} \overline{S}$ связно

Докажем, что \overline{S} не явз лин. связным

Метод от противного

Пусть \exists путь из (0,0) в т. $A \in S$

Пусть
$$f: \begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 , $t \in [0,1]$, $x(t)$, $y(t)$ непр

Пусть
$$B = X^{-1}\{0\}$$
 - прообраз 0

 $\{0\}$ - замкнут $\Longrightarrow B$ замкнутое подмножество в [0,1]

Пусть
$$b_0 = \sup X^{-1}\{0\} \implies b_0 \in B$$

Все точки не принадлежащие $[0,b_0]$ отображаются в S

$$(b_0,1] \longrightarrow S$$

Переобозначим $[b_0,1] \longrightarrow [0,1]$

$$f: \begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 $x(0) = 0, \ x(t) > 0, \ \forall t > 0$

$$x(t), y(t)$$
 непр

Построим последовательность $t_n \to 0 \mid \lim_{n \to \infty} y(t_n) \nexists$

Фиксируем n

Выберем
$$u \mid 0 < u < x(\frac{1}{n}) \mid \sin \frac{1}{u} = (-1)^n$$

$$u=rac{1}{rac{\pi}{2}+\pi k}$$
 для достаточно большого k

Определим t_n из условия: $x(t_n) = u$