Relational Calculus

- Relational Calculus in database management system (DBMS) is all about "What you want?".
- Relational calculus does not tell us how to get the results from the Database, but it just cares about what we want.
- The theory of Relational calculus was introduced by computer scientist and mathematician Edgar Codd.

Tuple Relational Calculus

- Tuple Relational Calculus is a **non-procedural query language** unlike relational algebra.
- Tuple Calculus provides only the description of the query but it does not provide the methods to solve it.
- Thus, it explains what to do but not how to do.
- In Tuple Calculus, a query is expressed as :

{t| P(t)}

where t = resulting tuples,

P(t) = known as Predicate and these are the conditions that are used to fetch t

- Thus, it generates set of all tuples t, such that Predicate P(t) is true for t.
- P(t) may have various conditions logically combined with OR (\vee), AND (\wedge), NOT(\neg). It also uses quantifiers:

 $\exists t \in r(Q(t)) = "there exists" a tuple in t in relation r such that predicate Q(t) is true.$

 \forall t \in r (Q(t)) = Q(t) is true "for all" tuples in relation r.

Example

- Let's say we have a table called "Employees" with the following attributes:
- EmployeeID
- Name
- Salary
- DepartmentID

To retrieve the names of all employees who earn more than \$50,000 per year, we can use the following TRC query:

```
{ t | Employees(t) \land t.Salary > 50000 }
```

In this query, the "Employees(t)" expression specifies that the tuple variable t represents a row in the "Employees" table. The " \land " symbol is the logical AND operator, which is used to combine the condition "t.Salary > 50000" with the table selection.

Example contd..

Table-1: Customer

Customer name	Street	City
Saurabh	A7	Patiala
Mehak	B6	Jalandhar
Sumiti	D9	Ludhiana
Ria	A5	Patiala

Table-5: Borrower

Customer name	Loan number
Saurabh	L33
Mehak	L49
Ria	L98

Table-2: Branch

Branch city
Patiala
Ludhiana
Jalandhar

Table-3: Account

Account number	Branch name	Balance
1111	ABC	50000
1112	DEF	10000
1113	GHI	9000
1114	ABC	7000

Table-4: Loan

ce	Loan number	Branch name	Amount
	L33	ABC	10000
	L35	DEF	15000
	L49	GHI	9000
	L98	DEF	65000

Table-6: Depositor

Customer name	Account number
Saurabh	1111
Mehak	1113
Sumiti	1114

Exercise

- 1: Find the loan number, branch, amount of loans of greater than or equal to 10000 amount.
- 2: Find the loan number for each loan of an amount greater or equal to 10000.
- 3: Find the names of all customers who have a loan and an account at the bank.
- 4: Find the names of all customers having a loan at the "ABC" branch.

Solution

• 1: Find the loan number, branch, amount of loans of greater than or equal to 10000 amount.

```
\{t \mid t \in loan \land t[amount] >= 10000\}
```

• 2: Find the loan number for each loan of an amount greater or equal to 10000.

```
\{t \mid \exists s \in loan(t[loan number] = s[loan number] \land s[amount] >= 10000)\}
```

• **3:** Find the names of all customers who have a loan and an account at the bank.

```
{t | ∃ s ∈ borrower( t[customer-name] = s[customer-name])

∧ ∃ u ∈ depositor( t[customer-name] = u[customer-name])}
```

4: Find the names of all customers having a loan at the "ABC" branch.

```
\{t \mid \exists s \in borrower(t[customer-name] = s[customer-name] \\ \land \exists u \in loan(u[branch-name] = "ABC" \land u[loan-number] = s[loan-number]))\}
```

Domain Relational Calculus

- Domain Relational Calculus is a non-procedural query language equivalent in power to Tuple Relational Calculus.
- Domain Relational Calculus provides only the description of the query but it does not provide the methods to solve it.
- Domain Relational Calculus uses domain Variables to get the column values required from the database based on the predicate expression or condition.
- In Domain Relational Calculus, a query is expressed as,

$$\{ < x1, x2, x3, ..., xn > | P(x1, x2, x3, ..., xn) \}$$

where, < x1, x2, x3, ..., xn > represents resulting domains variables and P (x1, x2, x3, ..., xn) represents the condition or formula equivalent to the Predicate calculus.

Note: The domain variables those will be in resulting relation must appear before |
 within ≺ and ≻ and all the domain variables must appear in which order they are in
 original relation or table.

Example

Table-1: Customer

Customer name	Street	City
Debomit	Kadamtala	Alipurduar
Sayantan	Udaypur	Balurghat
Soumya	Nutanchati	Bankura
Ritu	Juhu	Mumbai

Table-3: Borrower

Customer name	Loan number
Ritu	L01
Debomit	L08
Soumya	L03

Tab	le-2:	Loan

Loan number	Branch name	Amount
L01	Main	200
L03	Main	150
L10	Sub	90
L08	Main	60

Queries

1: Find the loan number, branch, amount of loans of greater than or equal to 100 amount.

$$\{l \in b, a \land \Box l, b, a \Box \Box loan \Box (a \ge 100)\}$$

2: Find the loan number for each loan of an amount greater or equal to 150.

$$\{b \notin \land b, a (\Box I, b, a \Box \Box loan \Box (a \ge 150)\}$$

3: Find the names of all customers having a loan at the "Main" branch and find the loan amount.

$$\{ \langle c, a \rangle \mid \exists 1 (\langle c, l \rangle \in borrower \land \exists b (\langle l, b, a \rangle \in loan \land (b = "Main"))) \}$$