

NAT'L INST. OF STAND & TECH R.I.C.
A11105 600287

NIST
PUBLICATIONS

REFERENCE

NISTIR 6893

Bridging the Gap between Structure and Properties in Nano-Particle Filled Polymers

**Erik Hobbie
Jack Douglas
Francis Starr
Charles Han**

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards
and Technology
Gaithersburg, MD 20899-8910

QC
100
.u56
#6893
2002

NIST

**National Institute of Standards
and Technology**
Technology Administration
U.S. Department of Commerce

Bridging the Gap between Structure and Properties in Nano-Particle Filled Polymers

**Erik Hobbie
Jack Douglas
Francis Starr
Charles Han**

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards
and Technology
Gaithersburg, MD 20899-8910

July 2002

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary
TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary for Technology
NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arden L. Bement, Jr., Director

Bridging the Gap Between Structure and Properties in Nanoparticle-Filled Polymers

May 29-30, 2002

National Institute of Standards and Technology
Gaithersburg, MD

Organizers: Erik Hobbie
Jack Douglas
Francis Starr
Charles Han

I. Nanotechnology Workshop

On May 29-30 of 2002, a workshop on polymer nanocomposites was held at NIST in Gaithersburg, Maryland. The workshop was entitled **Bridging the Gap Between Structure and Properties in Nanoparticle-Filled Polymers** and focused primarily on the interrelation between particle dispersion and the properties of polymers filled with clay and nanotube fillers. The purpose of the workshop was to identify research topics for NIST research and to initiate research collaboration with industrial and academic researchers in this important technological area. The workshop participants included a diverse mix of industrial, government and academic researchers.

This document reproduces the slides presented by the speakers of this workshop along with a few introductory remarks about each contribution. We would like to thank the contributors for providing the presentations that made the workshop a success.

- 1) Douglas Hunter, “**The Effect of Extruder Processing on the Extent of Exfoliation in Clay-Polymer Nanocomposites**”
- 2) Jeff Gilman, “**Flame Retardant Polymer-Clay Nanocomposites**”
- 3) Ramanan Krishnamoorti, “**Melt Rheology of Polymer Nanocomposites**”
- 4) Satish Kumar, “**Processing, Structure, and Properties of Nano-Composite Fibers and Films**”
- 5) Alex Morgan, “**Polypropylene Nanocomposites: Clay Organic Treatment Concentration Effects on Mechanical Properties, Flammability Properties and Clay Dispersion**”

- 6) Atsushi Takahara, “**Structure and Mechanical Properties of Natural Inorganic Nanofiller / Polymer Hybrid**”
- 7) R. A. Vaia, “**Impact and Control of Ultrastructure (Meso) in Polymer Nanocomposites**”
- 8) Francis W. Starr, “**Probing Nanocomposite Structure and Properties Using Computer Simulations**”
- 9) Juan J. de Pablo, “**Molecular Simulation and Characterization of Ultrathin Films and Nanoscopic Polymeric Structures: Departures from Bulk Behavior**”
- 10) Guoqiang Qian, “**Applications of Plastic Nanocomposites**”
- 11) Eric A. Grulke, “**Production, Dispersion and Applications of Multiwalled Carbon Nanotubes**”
- 12) Ken McElrath and Tom Tiano, “**Achieving Conductive Polycarbonate with Single Wall Carbon Nanotubes**”

II. U.S. Government and Nanotechnology

Nanotechnology holds the promise to dramatically change many aspects of the world in which we live. The range and scope of the potential economic and societal benefits from nanotechnologies is so staggering it has been called the “Next Industrial Revolution”. Recognizing the large potential for nanotechnologies, the FY2001 Federal Budget included support for a major new initiative on nanotechnology. The National Nanotechnology Initiative (NNI) was established by the U.S. Government to promote long-term nanoscale research and development leading to potential breakthroughs in areas ranging from materials and manufacturing to biotechnology and agriculture to national security and Defense, and many others. The NNI creates a research infrastructure by coordinating activities such as fundamental research, Grand Challenges (which will be described later), and centers and networks of excellence, activities that are all potentially high payoff and broadly enabling. The NNI evolved from publications authored by the Interagency Working Group on Nanoscience, Engineering and Technology (IWGN), and is currently supported and monitored by the IWGN's successor, the Subcommittee on Nanoscale Science, Engineering, and Technology (NSET). In FY 2001, the total investment by the NSET agencies in nanotechnology was estimated to be \$422million, of which NIST has invested approximately \$13.5 million.

The NNI exemplifies the government's critical role in promoting the development of new science and technology. For clarity's sake, we should first consider what types of things we define as nanotechnology. Ask any scientist, engineer, or layperson for a definition of nanotechnology, and you will most likely receive a very different answer. In many cases, it is

considered hard to define; like good art, most people "know it when they see it" but have difficulty explaining it in general. Thus, we use the definition of nanotechnology given by the NSET:

Nanotechnology is defined as the ability to work at the atomic, molecular or macromolecular levels, in the length scale of approximately 1 - 100 nm range, in order to create, manipulate and use structures, devices and systems that have novel properties and functions because of the small size. The novel and differentiating properties and functions are developed at a critical length scale of matter typically under 100 nm. Nanotechnology includes integration of nanoscale structures into larger material components, systems and architectures that are used in most industries, health care systems, environment and national security. Within these larger scale devices, the control and construction of the devices remains at the nanoscale. In some particular cases, the critical length scale for novel properties and phenomena may be under 1nm (e.g., manipulation of atoms at ~0.1nm) or be larger than 100nm (e.g., nanoparticle reinforced polymers have the unique feature at ~200/300nm as a function of the local bridges or bonds between the nanoparticles and the polymer).

It is critical that the Federal government is involved at this stage in the development of nanotechnology, since "the necessary fundamental nanotechnology research and development is too broad, complex, expensive, long-term, and risky for industry to undertake." Industry is unable to fund or is under-funding critical areas of long-term fundamental research and development and is not developing the necessary nanoscience technologies needed to realize nanotechnology's potential.

In supporting the NNI, the participating agencies fund the NNI recommended R&D priorities as a function of their mission, contingent on

available resources. The stated goals of the NSET involve developing a...
...coherent approach for funding the critical areas of nanoscience and engineering, establishing a balanced and flexible infrastructure, educating and training the necessary workforce, and promoting partnerships to ensure that these collective research activities provide a sound and balanced national research portfolio. By facilitating coordination and collaboration among agencies, the NNI will maximize the productivity and utility of the Federal government's investment in nanotechnology and avoid unnecessary duplication of efforts.

III. Nanotechnology and NIST Polymers Division

Exfoliated clay and carbon nanotube materials can be considered to be two-dimensional polymeric materials, and the Polymers Division at NIST is in a good position to provide essential characterization information and to study the essential physics of this important class of materials, building on former work on conventional polymeric materials.

Similarly to high molecular weight blends, it is difficult to form stable dispersions of clay and nanotubes in polymer matrices. Dispersion is usually a matter of degree and this has a tremendous impact on the properties of polymeric materials filled with these additives. These materials raise many measurement challenges since the dimensions of these particles bridge molecular and colloidal particle scales so that characterization requires an array of techniques. Characterization is also made difficult by the complexity of the materials that depend on their source and processing history. It is clearly important to identify model systems allowing reproducible and meaningful measurement and measurement methods addressing more general questions (dispersion, interparticle interaction) and processes (phase separation, particle clustering). Simulation must play an important role in understanding these systems and the multi-scale physics involved. The workshop was intended to help focus these efforts.

IV. Workshop Presentations

1) Douglas Hunter, “The Effect of Extruder Processing on the Extent of Exfoliation in Clay-Polymer Nanocomposites” [\[PowerPoint\]](#) [\[PDF\]](#)

Dr. Hunter emphasized the importance of process conditions on the properties of exfoliated clay materials. Several screw extruders were investigated and the influence of residence time and position of the clay-polymer extrudate was considered in relation to the extent of clay exfoliation. The processing history and screw geometry was shown to have a pronounced effect on the state of dispersion and a hierarchical dispersion model was introduced to rationalize these results. The importance of combining chemical treatment with processing to achieve good dispersion was emphasized. High shear intensity was found to be not necessarily beneficial for dispersion, but long residence times in the extruder normally has a positive effect on the relative dispersion. One of the general philosophical questions raised by this talk is the need for a better understanding of the role of shear on mixing processes and clustering in colloidal systems.

Extruder Processing of Nanocomposites - Agenda

- Overview of Presentation given at ANTEC
- University of Akron, Screw Pulling Results
- MXD6: Effect of Die
- Die study with PP

Note: Results Based on XRD, TEM. Properties Important to Market Applications not Determined

Processing Nanocomposites Critical objectives of the presentation

- Process parameters as important as the choice of clay.
- Online monitoring of exfoliation can be deceptive – consideration needs to be given to the “die” effect.

The Processing Challenge

Nanocomposite Processing Antec

- Objective: establish the significance of processing.
- Multiple extruders and screw configurations.
- PA6 with Cloisite 15A, not exfoliate and Cloisite 30B, exfoliate.

Single and Co Rotating Screws

Killion Single Screw

Japan Steel Works Co Rotating Twin Screw

Low Shear

Medium Shear

Leistritz Counter Rotating Intermeshing

Low Shear

Medium Shear

High Shear

Leistritz Counter Rotating Non-Intermeshing

XRD Examples: 15A/PA6

TEM Examples: 15A/PA6

TEM Dispersion

TEM Dispersion vs Processing

TEM Dispersion vs Mean Residence Time

Conclusions

- To Optimize Dispersion: Clay Treatment & Processing
- Longer Residence Time Important, Not only Variable
- Dispersion not Simply a Function of Shear Intensity
- Particles Shear Apart
- Platelets Peel Apart to Disperse

Exfoliation not limited to extruder processing

- ◆ Buss Kneader
- ◆ Brabender
- ◆ Banbury
- ◆ 2 Roll mill

2 Roll Mill Extruder

Screw Pulling University of Akron

- Nanocomposites PA6/15A & PP/MAPP/15A
- Vary Screw Design
- Vary Process Conditions

Different Resin, JSW 5kg/hr/200rpm Alloy

TEM Micrographs Pull Screw PA6-Cloisite 15A -JSW Alloy

Beginning KB1 Middle KB1 End KB1

TEM Micrographs Pull Screw PA6-Cloisite 15A -JSW Alloy

Before Die Product

Conclusions

- Screw Design Important
- Process Conditions Important
- Possible to have the Optimum Design with Only Part of Screw
- What is the die effect?

Effect of Die: MXD6 Study

- Two Organoclays, Cloisites 30B and 93A
- Clay Fed Downstream
- Multi-Kneading Block Screw
- Past Experience, Screw Should Work

MXD6 Nanocomposite XRD

TEM MXD6 Nanocomposite

TEM MXD6 Nanocomposite

Cloisite 93A Before Die

Cloisite 93A Product

Conclusions

- Nanocomposite Sheared In Die
- Propose Results Controlled by Resin/Clay Treatment Compatibility
- Less Compatible Nanocomposite, Platelets Align - See in XRD and TEM
- *Die Hole Size Problem?*
- Possible Solution: Larger Die Hole

Vary the Die Hole Diameter PP/MA-g-PP/Cloisite 20A

6 hole 1mm

4 hole 2.1 mm

no die plate

Extruder Monitoring Exfoliation

- Assume slip stream to analysis tool
- Consider effect of shear in lines and analytical tool
- Platelet alignment during analysis alter results of the analysis

2) Jeff Gilman, “**Flame Retardant Polymer-Clay Nanocomposites**”

[\[PowerPoint\]](#) [\[PDF\]](#)

Dr. Gilman first stressed the human cost of home fires and the alternatives that exist for making flame retardant polymers. The challenge was indicated to be the development of environmentally friendly and economical approaches to reduce flammability and the simultaneous improvement of the mechanical properties of the polymer-based materials. Clay nanocomposites were shown to be promising as fire suppressant agents due to the clay reinforcement of the char formed in the course of burning. Degradation issues of these materials under processing conditions were discussed and the advantages of combinatoric flammability tests were discussed in connection with optimizing and understanding the complex parameter space governing these complex materials.

**Flame retardant
Polymer Clay Nanocomposites**

Jeffrey W. Gilman
Group Leader
Materials and Products Group
Fire Science Division

**NIST Workshop
on Polymer Nanocomposites
and Multiphase Materials**

NIST
National Institute of Standards and Technology

Home Fires

- 4,000 Deaths/Year in US Home Fires - highest of Developed Countries
- 37 % from Upholstered Furniture Mattress and Bedding

Fire Statistics: National Fire Protection Assoc 1996

Also: carpet, wire and cable, aircraft, insulation, automotive, consumer electronics....

3 minutes to flashover!

NIST Bunk bed Study: www.fire.nist.gov

General Flame Retardant Approaches for Polymers

I- Gas Phase Flame Retardants

- Reduce Heat of Combustion (ΔH_f) resulting in incomplete combustion.
- Inherent Drawbacks: Negative Public Perception!

II- Endothermic Flame Retardants

- Function in Gas Phase and Condensed Phase
- Via endothermic release of H_2O , polymer cooled and gas phase diluted
- Inherent Drawback: High loadings (30-50%) degrade mechanical properties.

III- Char Forming Flame Retardants

- Operate in Condensed Phase
- Provides thermal insulation for underlying polymer **and** a mass transport barrier, preventing or delaying escape of fuel into the gas phase.

Goal: develop environmentally friendly approaches to reduce flammability **and** improve physical properties

Nylon 6 and Nylon 6/MMT

Injection molding at 300 °C causes polymer degradation

Polymer	M_n (g/mole)	% v. Copolylactam*	End-groups*		
			% Amine	% Acid	% Δ
PA-6 as received	13622 ± 1449	0.00	0.83	0.83	0.00
PA-6 injection molded	12311 ± 1489	0.92	0.92	0.92	0.00
Nanocomposite as received	13672 ± 1504	0.19	0.83	0.83	0.00
Nanocomposite injection molded	6321 ± 334	3.80	0.83	1.79	53.4

*uncertainty (2σ) ± 0.1%

What is the affect on properties?

Davis, R., Gilman, J., *Polym. Deg & Stab*, submitted.

Imidazolium- MMT vs Ammonium-MMT TGA Data

Imidazolium- MMT/ Nanocomposites

DMHDIM-MMT in PA-6 **DMHDIM-MMT in PS**
 Gilman, et al, *Chem. Mater.* In press

Gillman, et al., Chem. Mater. 11, 111

PET Homo- and Copolymers

- PET
 - PET-5%-co-octanediol (PET-OD)
 - Flame Retardant PET (FR-PET)
 - commercial

R=H, C₆H₅

*All PET and copolymers provided by KoSa

Davis, C. MS Thesis, U. So. Miss

Effect of Varying Imidazolium Organic Modifier

Effect of Varying PET Copolymers

CD 12: hexadecyl-MMT/PET
nanocomposite
Screw speed 200 rpm

CD 10: hexadecyl-MMT/PET-OD
nanocomposite
Screw speed: 200 rpm
Residence time: 2 minutes

CD 15. hexadecyl-MMT/FR-PET
nanocomposite
Screw speed. 200 rpm
Residence time. 2 minutes

GPC Data

Sample ^a	M _n	M _w	Polydispersity (M _w /M _n)
PET/OD (as received)	21,350	38,650	1.81
PET/OD (processed)	17,750	30,850	1.74
CD 6 (PET-OD nanocomposite)	17,000	30,000	1.76
PET (as received)	32,200	61,850	1.92
PET (processed)	21,100	39,150	1.86
CD 5 (PET nanocomposite)	20,600	38,350	1.86
FR PET (as received)	23,420	45,600	1.94
FR PET (processed)	16,950	31,100	1.83
CD 16 (FR PET nanocomposite)	15,050	27,750	1.84

^a All samples except as received were extruded at 260 °C, 5 min residence time and 4 rpm at 260 °C.

Parameter Space for Polymer Nanocomposites

Polymer	Nano-additive	Cation	Organic Treatment	Processing Conditions	Other additives	Flame Retardant
PE	MMT	Na	Alkylammonium	Temperature	Stabilizers	Phosphate
PP	Mica	Ca	Imidazolium	Shear	Processing	Halogenated
PS	Hectorite	Cu	Crown Ether	Residence time	UV	Silicon Based
PA6	Saponite	Fe...	Silane		Antioxidant	
PC	Laponite		Carboxylate		Fillers	
PVC	Silica				Pigments	
PC	POSS					
PEO						
PMMA						
EVA						
- 10	- 5	- 5	- 10	- 10	- 10	- 10

(~ 10⁶ Experiments)

High-Throughput Methods: The Approach

Extrusion of Gradient Samples

Sample Characterization

Fluorenyl-benzimidazolium Layered Silicate.

- The fluorenyl-benzimidazolium LS (FBIM-LS) will be evaluated as an intercalated sensor for monitoring exfoliation.

Horizontal Ignition and Flammability Test

Flux Gradient in HIFT

Gradient Flux Test

HIFT

HIFT

Different Critical Fluxes for Flame-Spread

Radiant Panel Test

Flame Spread
 $\sim \text{HRR}^{2/3}/\text{Tign}$

High Throughput Test

Progression of Flame Front

High Throughput Test

High Throughput Test

Progression of the Flame Front with Time

Conventional vs High Throughput Flammability Measurements

Method	Repeatability (+/-)	Data-to-day	Data Quality
UL 94 V	Poor (-10%)	2-3	Qualitative
CONE	Excellent (3-4)	2-3	Multiple parameters Highly Quantitative
HRR using gradient sample	Excellent (3-4)	50-100	Quantitative

Conclusions

By combining nanotechnology with high-throughput experimentation, we can maximize the effect of additives and thereby provide industry with a powerful tool for the development of a new generation of high performance, low flammability materials.

NIST Combinatorial Methods Center

High Throughput Methods for Flammability Research

Focused Project Consortium

For information:
www.bfrl.nist.gov/focused_project

RESEARCH TEAM

Marc Nyden, Rick Davis, John Shields, Walid Awwad,
Takashi Kashiwagi, Richard Harris, Lori Brassell, Kathy Butler, Michael Smith, Roy McLane
BFRL/NIST

David VenderHart, Tony Bur, Atsushi Asano
MSEL/NIST

Doug L. Hunter
Southern Clay Products Inc.

Thomas Sutto¹, Paul C. Trulove² and Hugh DeLong³

¹Naval Research Laboratory, Washington, DC

²Air Force Office of Scientific Research, Arlington, VA

³Naval Academy, Annapolis, MD

Advanced Technology Program -Monitored by John Hewes and Felix Wu
FAA, Richard Lyon at William J. Hughes Technical Center (Interagency Agreement DTFAS-96-X-9000)
Air Force Office of Scientific Research (SSA-AFOSR-SSA-91-001)

Materials and Products Group

Michael Smith, Richard Harris, Takashi Kashiwagi, Tom Ohlemiller, Marc Nyden
Rick Davis, Kathy Butler, Greg Linters, Lori Brassell, John Shields, Ruth Perkins,
Wes Demory, David Wenz, Walid Awwad

3) Ramanan Krishnamoorti, “**Melt Rheology of Polymer Nanocomposites**”
[\[PowerPoint\]](#) [\[PDF\]](#)

(Talk presented by Charles Han due to family illness.)

This talk emphasized the effect of nanoparticles on the rheological properties of polymer melts. Melt measurements were contrasted for exfoliated (e.g., nylon-6) and intercalated clay-filled polymers. First, small amplitude linear dynamic measurements were considered for a clay-filled block copolymer system and gelation was observed with increasing filler concentration. This was attributed to the formation of a filler network structure, although scattering evidence is not yet available to support this hypothesis. Notably time-temperature superposition applied to the viscoelastic properties of these complex materials. Qualitatively similar behavior was found for intercalated and exfoliated clay-filled materials. Carbon nanotube (single wall) filled materials (polystyrene) were also considered and gelation (reinforcement) was similarly observed with increasing filler concentration-provided the nanotubes were functionalized to improve dispersion. At high concentration of clay, beyond the concentration of gelation, yield was observed and large amplitude oscillatory shear was shown to cause alignment followed by a slow recovery after the cessation of oscillation. An analogy to aging and rejuvenation effects in glass-forming liquids was discussed for these filled materials.

Melt Rheology of Polymer Nanocomposite

Ramanan Krishnamoorti
Department of Chemical Engineering
University of Houston

Introduction

- Need to understand the effect of adding nanoparticles on the melt dynamics and processing.
- How does the dispersion of the nanoparticles affect the rheology of the composites?
- How does processing affect the dispersion (or equivalently rheology) and how does the system recover?

Nanocomposite Classification

Nanocomposites

- Melt State Viscoelastic Measurements
- Exfoliated – Nylon 6 and Poly(ϵ -caprolactone)
- Intercalated – Polystyrene, Polyisobutylene based random copolymers, Polystyrene – Polyisoprene Diblock Copolymers, polycarbonate.
- Layered Silicates – Organically Modified
 - Montmorillonite (Natural Occurring)
 - Synthetic including Laponite, Fluorohectorite and Fluoromicas.

Quiescent State Characterization of Nanocomposites

- Linear Dynamic Viscoelastic properties
 - Oscillatory Strain (small amplitude)

Rejuvenation Tests

- Sample Preparation:
 - Apply $\sigma_p > \sigma_y$ for $t_p = 30 - 75$ sec
 - Erases all prior history
- At $t = 0 \sigma = 0$
- And allowed to rest for a waiting time t_w
- At $t = t_w$, $\sigma_a < \sigma_y$ to probe mechanical properties.

Recovery Creep

- No Elastic Jump at start of constant stress.
- Plastic creep at long times.
- Onset of plastic creep earlier for longer waiting times!
- Contrary to Isotropic Filler based Pastes and Microgels.

Creep Superpositioning

Direction of Pre-Shearing

Pre-Shearing Conditions

α as a Rejuvenation Parameter

Hypothesis for Unique Creep Recovery

- Large Constant Stress (& Steady Shear) do not lead to exclusively parallel orientation (layer normals in velocity gradient direction).
- Most Likely Scenario – Mixed Parallel + perpendicular orientation.(Preliminary scattering measurements support this hypothesis); Other possible hypothesis – Disaggregation and Reaggregation.
- The perpendicular aligned layers are unstable and disorient rapidly in the absence of flow.

Conclusions

- Linear Viscoelasticity Sensitive to Mesoscale Structure.
- Recovery from Oscillatory Alignment appears to follow Physical Aging Like Kinetics.
- Recovery from Large Constant Stress – Unique and illustrative of the anisotropic layers influence on orientation.
 - No Dependence on Pre – Shear Magnitude and Direction.
 - Simple scaling of t_w allows for superposition of creep data
 - α appears to be a powerful parameter to capture the rejuvenation of the nanocomposites.

Acknowledgements

- Koray Yurekli
- Jiaxiang Ren
- Dr. Adriana Silva
- Cynthia Mitchell
- Barbara Casanueva
- Hsien Wang
- Mun Fu Tse
- Jay Dias

Financial Support

- American Chemical Society (PRF)
- Texas Coordinating Board for Higher Education(ATP)
- Welch Foundation
- NIST
- ARL
- ExxonMobil Chemical Company

4) Satish Kumar, “Processing, Structure, and Properties of Nano Composite Fibers and Films” [PowerPoint not available] [[PDF](#)]

Dr. Kumar spent some time reviewing the field of nanocomposites as viewed from the perspective of a composite engineer. The geometrical structure of both single and multi-walled materials was reviewed and some measurements on melt-spinning these filler particles in polymer matrices were described. Some impressive improvements in compressive strength and tensile modulus of filled polypropylene and PMMA fibers were noted. Other notable observations include the observation of length changes in the single wall tubes upon blending and fiber spinning and the influence of the tubes on the size and rate of growth of polypropylene spherulites. It was also shown that highly conducting films could be formed from solutions of single wall nanotubes dispersed in Oleum.

Processing, Structure, and Properties of Nano Composite Fibers and Films

Satish Kumar

School of Textile and Fiber Engineering
Georgia Institute of Technology, Atlanta GA 30332
satish.kumar@textiles.gatech.edu

Nano Composites – Matrix Systems

• In situ Polymerization

- PBO and PBZT

• Melt Blending

- PP
- PET
- PMMA

Nano Composites - Reinforcements

• SWNT

- Diameter ~ 1 nm, From Rice University, HiPCO process

• MWNT or Carbon Nano Fibers

- (Diameter 50 – 200 nm, Applied Sciences Inc., OH)

Carbon Nanotubes – Historical Perspective

- Flexible Polymer – such as Polyethylene (1930s). High modulus PE fiber commercialized in 1980s.
- Rigid Polymers – such as PBZT and PBO (1980s). Zylon fiber commercialized in 1998.
- Carbon Nanotubes – 1990s. By comparison, synthesis, purification, and processing of these tubes is in its infancy.

$$[\eta] = K M^a$$

Flexible polymer	0.5
Semi-flexible polymer	~1
Rigid polymer	1.8
SWNT	?

MWNT

PR-21-PS

PR-24-PS

MWNT

TEM image of the wall of a carbon nanotube grown by ASI's Pyrograft™-III process.

Photograph from Applied Sciences Inc.

MWNT

MWNT	Processing method	Oxygen content (wt%)	Sulfur content (wt%)
PR-21-PS	Pyrolytically stripped	1.2	0.3
PR-24-PS	Pyrolytically stripped	0.6	0.4
PR-24-HT	Graphitized at 3000 °C	0.3	0.0
PR-24-AG	As Grown Fiber	2.2	0.5
PR-24-PPO	Post processing oxidation of PR-24-AG	2.1	0.4
PR-24-ISO	In situ oxidation of PR-24-AG	2.2	1.1

CNFs were provided by Applied Sciences, Inc. (Cedarville, Ohio)

Raman Spectra of MWNT

CNF	Raman intensity ratio of D to G band
PR-24-HT	0.7
PR-24-PS	1.6
PR-21-PS	3.1
PR-24-AG	1.5
PR-24-PPO	1.6
PR-24-ISO	1.8

Melt Blending and Fiber Processing

PET melt blended with 5 wt% carbon nano fibers

- Dry Mixing
 - Ball Milling
 - Hand Mixing
- Melt Compounding
 - Haake Twin-screw extruder TW-100
 - Haake mixer
- Spinning
 - 290°C, 250 µm spinneret
- Drawing
 - 120°C, draw ratio 4X or 6X
- Heat treatment
 - 150 °C at constant length

PP and PMMA melt blended at 240 °C

Melt spinning set up

PET/MWNT Composite Fibers

PP/ MWNT Composite Fiber

PMMA/MWNT

Tensile Modulus of Various PET/CNF fibers

PET/MWNT Composite Fibers

PP/ MWNT Fibers

Sample	Tensile Strength (MPa)	Tensile Modulus (GPa)	Elongation to Break (%)	Compressive Strength (MPa)
PP-control	490 ± 60	4.6 ± 0.7	23 ± 5	25 ± 1
PP + 5 wt % VGNCF	570 ± 70	7.1 ± 0.9	16 ± 2	48 ± 10

PMMA/MWNT Composite Fibers

PMMA/MWNT Composite Fiber

Sample	Tensile Modulus GPa	Tensile Strength GPa	Elongation at break (%)	Compressive Strength (MPa)
PMMA Control	4.7±1.5	0.20±0.04	16±3	28±2
PMMA/PR-24-PS 5wt%	7.5±1.3	0.16±0.03	10±3	66±20
PMMA/PR-21-PS 5wt%	8.0±1.2	0.17±0.04	10±6	73±11

Thermal stability of PMMA/MWNT Composites

	PMMA	PMMA/PR-24-PS 5wt%	PMMA/PR-21-PS 5wt%
5% weight loss temperature (°C)	289	318	315

Shrinkage Behavior - PMMA/MWNT Fibers

	PMMA	PMMA/PR-24-PS 5wt%	PMMA/PR-21-PS 5wt%
Temp at 0.5% shrinkage (°C)	78	88	92
Shrunkage at 100°C	9.0	2.4	2.0

MWNT Length Reduction During Melt Blending and Fiber Spinning

PET/MWNT Composite Fiber WAXD

Fiber Tensile Modulus - PET/CNF Composite

Modified Cox model:

$$\beta = \frac{l}{d} \sqrt{\frac{E_m}{(1+\nu)E_f} \times \ln(\pi/4V)}$$

$$E_c = (1-\nu)E_m + q \left(1 - \frac{\tanh \beta}{\beta} \right) E_f$$

l : nano fiber length
 d : nano fiber diameter
 V : volume fraction
 E_m : matrix modulus
 ν : Poisson's ratio
 E_f : axial tensile modulus
 q : orientation factor

Cox HL. Brit J Appl Phys. 3: 72-79(1952)

Optical Microscopy-PP/SWNT Melt

PP/SWNT Composite (a) before filtration and (b) after filtration

Optical Microscopy - Sperulitic Growth

PP

PP/SWNT

TGA

PP/SWNT - Isothermal Crystallization

The addition of 0.8 wt % SWNT increases the PP crystallization rate.

PP/SWNT - Raman Spectroscopy

SYNTHESIS OF POLYBENZOBISOXAZOLE

AFRL / MLBF

MATERIALS DIRECTORATE

STIR OPALSCENCE

DOPE BIREFRINGE

Fred Arnold and Thuy Dang – AFRL/WPAFB

PBO-SWNT Fiber Spinning Conditions

- Spinning temperature 100~130 °C
- As-spun fiber washed in water for one week.
- Fiber heat-treated under tension 400 °C in nitrogen.

PBO/SWNT Fiber Mechanical Properties

	E (GPa)	ε (%)	σ_t (GPa)
PBO HT	138	2.0	2.6
PBO/SWNHT (95/5)	156	2.3	3.2
PBO/SWNHT (90/10)	167	2.8	4.2

PBO/SWNT – Thermal Shrinkage

PBO/SWNT Creep Behavior at 400 °C

WAXD: Equatorial Scan

Richard A. Vaia – AFRL/WPAFB

Raman Spectroscopy

Cheol Park – NASA Langley

PBO and PBO/SWNT Fibers Fracture Behavior

Georgia Tech Research Institute

Georgia Tech Research Institute

Georgia Tech Research Institute

Georgia Tech Research Institute

Georgia Tech Research Institute

Summary

- Polymer/nanotube composite fibers can be spun using the typical polymer spinning equipment /conditions.
- MWNT exhibit good dispersion in PET, PP, and PMMA. PP and PMMA appears to have good interaction with MWNTs.
- High tensile strength fibers can be processed from PBO/SWNT.
- SWNT act as nucleating agent for PP.
- SWNT films with in plane DC electrical conductivity of the order of 10^5 S/m have been processed from isotropic solutions in oleum.

Acknowledgements

- **Funding**
 - AFOSR, ONR, NSF, KoSa, and CNI
- MWNT – Applied Sciences Inc.
- SWNT work is being done in collaboration with Professor Smalley's group at Rice University and Air force Research Laboratory (Fred Arnold, Thuy Dang, and Richard Vaia).
- Cheol Park - NASA
- Hongming Ma, Jijun Zeng, Harit Doshi, Byung Min, T. V. Sreekumar, Arup R. Bhattacharyya, Xiefei Zhang.

5) Alex Morgan, “**Polypropylene Nanocomposites: Clay Organic Treatment Concentration Effects on Mechanical Properties, Flammability Properties and Clay Dispersion**” [[PowerPoint](#)] [[PDF](#)]

Dr. Morgan summarized some of the efforts at Dow at exploiting clay-filled thermoset and thermoplastic nanocomposites. These materials show major improvements in mechanical properties, gas barrier properties, thermal stability and flame retardancy and the factors influencing these property changes were summarized- synthesis method, extent of dispersion, clay type and organic treatment, polymer matrix type. The presentation emphasized the complexity of understanding and controlling the properties of these complex materials. Particular emphasis was given to property changes that accompany the variation in the amount of organic modifier in the material. The presentation covered a wide range of experimental methodologies (x-ray diffraction, transmission electron microscopy, thermal gravimetric analysis, mechanical property testing, Flammability property testing, NMR, Atomic force microscopy, neutron scattering calorimetry and optical microscopy) since no single method allows for the characterization of these multi-scale materials. The extensive efforts in characterizing these materials are an important factor in slowing the development of these materials and the need for faster and additional validation methodologies for characterization emphasized, especially methods relating to the characterization of polymer-clay and polymer-organic interactions that are important for dispersion stability.

Polypropylene Nanocomposites: Clay Organic Treatment Concentration Effects on Mechanical Properties, Flammability Properties and Clay Dispersion

Alex Morgan
Inorganic Materials
Corporate R&D
The Dow Chemical Company
05/29/02

Current Polymer Nanocomposite Technology

- Polymer Nanocomposites are composed a polymeric material (thermoset or thermoplastic) and a re-enforcing nanoscale material
- The most commonly studied re-enforcing nanoscale materials are layered materials, or clays
- Polymer-clay nanocomposites show major improvements in mechanical properties, gas barrier properties, thermal stability, and flame retardancy
- Many factors affect the polymer-clay nanocomposite properties
 - Synthesis method
 - Melt Compounding, solvent blending, *in-situ* polymerization, emulsion polymerization
 - Polymer nanocomposite morphology
 - Clay type and clay organic treatment
 - Layered clay aspect ratio, structure
 - Organic treatment thermal stability, structure
 - Polymer matrix
 - Crystallinity, molecular weight, polymer chemistry
- Understanding property improvement due to polymer-clay nanocomposite properties very complex

Importance of Organic Treatment for Layered Silicate Nanocomposites

- Since layered silicates are hydrophilic materials, they must be made organophilic (or hydrophobic) to become compatible with the polymer.
- Without organic treatment, layered silicates only disperse in very polar polymers.
- Organic treatment is typically done via ion exchange between inorganic alkali cations on the clay surface and the desired organic cation.
- The organic treatment, being at the interface between inorganic silicate and organic polymer, will be a vital part of the nanocomposite, and therefore, must be tailored to synthetic conditions.
- Synthetic methods include solvent mixing, *in-situ* polymerization, and melt compounding.
- One of the most "industry-friendly" methods of making nanocomposites is with the use of melt compounding.
- Polymer and organically treated clay are heated to the melting point of the polymer, and the two are mixed together via compounding equipment (extruder, mixing head, etc.)

Preparation of Polymer Clay-Nanocomposites

Soxhlet Extraction of Organoclays

- An organoclay (fluorinated synthetic mica (FSM), Somasif ME-100 from Co-op Chemical) treated with an alkyl ammonium chloride (dimethyl, dihydrogenated tallow ammonium, Arquad 2HT from Akzo-Nobel) was extracted with a Soxhlet apparatus from 1 to 4 days with ethanol.
- Each batch of extracted clay (1 day, 2 days, 3 days, 4 days) was analyzed by TGA and XRD.
- By using Soxhlet extraction, excess organic treatment (physisorbed, or non-ion exchanged treatment) can be washed off, possibly improving the thermal stability of the organoclay, as well as removing plasticizing organic treatment.

XRD of Soxhlet Extracted Organoclay

Conclusions

- Soxhlet extraction of organoclays removes excess organic treatment after 1 day extraction time.
 - TGA, DTGA data shows materials to be identical in organic content after 1 day extraction time. Additional extraction removes no more material.
 - XRD patterns do change with increasing extraction time. Reason unknown
- Removal of excess organic treatment does improve mechanical, flammability properties.
 - Flex modulus improved with removal of organic treatment, but Izod impact diminished (Org. treatment acts as plasticizer)
 - Mechanical property changes only occur going from unextracted to 1 day extracted clay. Additional extraction seems to provide no additional benefit, despite changes in XRD (d-spacing decrease with increasing extraction time) and TEM (better dispersion with increasing extraction time)
 - Extraction time seems to have a larger influence on flammability properties.
 - Peak HRR (lowest for unextracted clay nanocomposite, goes up for 1 day extracted material, and then slowly goes back to unextracted clay nanocomposite peak HRR level).
 - T_g delayed with clay extraction (excess organic treatment does cause early ignition).

Nanocomposite Analysis Techniques

- Many different techniques used for Polymer-Clay Nanocomposite analysis
- Commonly used techniques:
 - X-ray Diffraction (XRD)
 - Transmission Electron Microscopy (TEM)
 - Thermal Gravimetric Analysis (TGA)
 - Mechanical Property Testing (Flex modulus, Izod Impact)
 - Flammability Property Testing (Cone calorimeter)
- Other techniques:
 - Nuclear Magnetic Resonance (NMR)
 - Atomic Force Microscopy (AFM)
 - Neutron scattering
 - Thermal analysis (Rheology, Differential Scanning Calorimetry)
 - Optical Microscopy

Nanocomposite Analysis Techniques: XRD

- XRD measures the spacing between the ordered crystalline layers of the clay
- Spacing change (increase or decrease) can help determine the type of nanocomposite made
 - Immiscible (no d-spacing change)
 - Decomposed/De-intercalated (d-spacing decrease)
 - Intercalated (d-spacing increase)
 - Exfoliated (d-spacing outside of wide-angle XRD, or so far apart and disordered to give a signal)
- XRD however, affected by many parameters:
 - Sampling (powder vs. solids, alignment of clay plates, sample orientation)
 - Experimental parameters (slit width, count time, angle step rate)
 - Layered Silicate order (disordered/amorphous materials give no signal by XRD)
- XRD measures d-spacing, not overall (global) clay dispersion in sample

Clay Organic Treatment - XRD Changes

Nanocomposite Analysis Techniques: TEM

- TEM measures the overall clay dispersion in the sample
- Clay dispersion and structure observed under the microscope can determine the nature of a clay nanocomposite:
 - Immiscible (Usually large clay tactoids, undispersed clay particles)
 - Intercalated (Clay layers in ordered stacks can be observed)
 - Exfoliated (Single clay layers can be observed)
 - Can determine global microscale dispersion as well as nanoscale dispersion/structure
- TEM has limitations and drawbacks
 - Sampling (heterogeneous samples will give false results)
 - Labor intensive analysis, expensive analytical instrument.
 - Cannot measure d-spacing of clay, therefore, cannot easily determine difference between intercalated clay nanocomposite and well-dispersed immiscible nanocomposite
- TEM measures overall clay dispersion, but should be combined with XRD data

Nanocomposite Analysis Techniques: Property Testing

- Current property tests follow ASTM or other standards.
- Tests determine property of materials, but do not indicate why properties were obtained
- Example: Flex Modulus Measurement Shows what flex modulus of property is, but does not indicate why stiffness of nanocomposite has improved.
- Exceptions:
 - Cone Calorimeter: Measures additional parameters, such as heat release rate and mass loss rate, thus suggesting some polymer nanocomposite properties.
 - Drawback Must rely upon other techniques to confirm nanocomposite dispersion. Technique measures flammability, but cannot explain why improved flammability was obtained on its own.

Nanocomposite Analysis Needs

- No one technique answers all questions about a polymer nanocomposite. Several techniques needed to understand polymer nanocomposite
- Time to get back all data can slow development of polymer nanocomposite formulation
- Other techniques show promise at nanocomposite analysis, but need to be validated.
 - Neutron scattering - similar issues to XRD, limited access.
 - AFM: "Tip" resolution - uncertainty around images of clay plates (single clay plate, or stack of 2-3 very tightly packed together?)
 - NMR: Currently only works for clays with iron in the clay structure. Technique would need to be adapted for synthetic clays (no Iron).
 - Rheology/DSC: Suggestions made in literature that clay dispersions can be observed by DSC and rheological changes, but this may be specific to certain nanocomposites only
 - XRD: Possible greater use (peak height/broadness analysis relating to clay dispersion, d-spacing changes - what is significant?) - needs to be validated.

Conclusions

- Polymer-clay nanocomposites present a complex analytical problem
 - Properties of polymer clay nanocomposite dependent on many factors
 - No one analytical technique analyzes these many factors
- TGA, XRD, TEM currently major tools for polymer-clay nanocomposites:
 - Techniques in combination give a better description/analysis of polymer-clay nanocomposite
 - Each technique has positive and negative aspects
- Time to complete analysis on polymer-clay nanocomposite slow step
 - New analytical techniques needed to speed up analysis.
 - Techniques that address polymer-clay/polymer-organic treatment interactions are needed.

Acknowledgements

- ◆ Inorganic Materials, Chemical Sciences:
 - Steve Lakso, Juan Garces, Mike Paquette, Wanda Stringfield
- ◆ Analytical Sciences:
 - Joe Harris
- ◆ Fabricated Products:
 - Sylvie Boukami

6) Atsushi Takahara, “Structure and Mechanical Properties of Natural Inorganic Nanofiller / Polymer Hybrids” [PowerPoint] [PDF]

Dr. Takahara discussed a novel inorganic counterpart to carbon nanotubes that should be useful in dispersing nanotubes in polymer polar matrices without the need of surfactant additives. This type of nanotube ('imogolite') has an aluminum silicate composition and has molecular dimensions comparable to single wall carbon nanotubes, and naturally occurs in certain volcanic ashes found near Kyushu University. The environmentally friendly nature of this nanofiller and advantages for chemical functionalization were emphasized. After the extraction of the imogolite from volcanic ash was discussed, the properties were characterized by a variety of techniques (TEM, AFM, wide angle x-ray diffraction) and a tendency towards gel formation was observed. The functionalization of the imogolite was characterized though the adhesive force with an AFM cantilever tip and it was shown that the functionalized imogolite could be dispersed in an organic solvent (hexane). Films of PVA and PMMA and imogolite were prepared and the viscoelastic properties were characterized. Modified imogolite was also dispersed in PMMA and formed fibrous network of gelling nanotubes within the polymer matrix. Notably the transparency of the PMMA was not sacrificed for these nanotube additives. This could be important for applications where carbon nanotubes have a negative impact on appearance because of the characteristic black color of the filled polymers. Finally, clay-filled polymer (nylon) composites and the fatigue and mechanical properties of these materials were considered. The resulting materials are excellent in comparison to glass-fiber reinforced nylon.

Structure and Mechanical Properties of Natural Inorganic Nanofiller/Polymer Hybrids

Atsushi Takahara
Institute for Fundamental Research of Organic Chemistry,
Kyushu University, FUKUOKA, JAPAN

Coworkers
K. YAMAMOTO, R. MATSUNO, H. OTSUKA, S.-I. WADA*,
A. YAMASHITA, T. KAJIYAMA

Content

- Characterization of natural nanofiber "Imogolite"
- Surface modification of natural nanofiber "Imogolite"
Chem. Lett., 1162(2001)
- Preparation of novel polymer nanohybrid from natural nanofiber "Imogolite"
J. Adhesion, (2002).
- Fatigue behavior of nylon clay hybrid based on dynamic viscoelastic measurement during the fatigue process
Composite Interfaces, 6, 247(1999).

What is Imogolite?

Imogolite was first discovered in the soil of volcano ash of Kyushu, Japan in 1962.

Characteristics of imogolite

- Nanotube with an external diameter of 2.5 nm and length in the range of several 100nm to several μm .
- Fibril formation in acidic condition.

Nanofillers

	Polar surface	
Diameter \square 3-5 nm		Diameter 2.5 nm
Allophane \square $1-2\text{SiO}_2\square\text{Al}_2\text{O}_3\square\text{nH}_2\text{O}\square$		Imogolite $\square\text{SiO}_2\square\text{Al}_2\text{O}_3\square\text{nH}_2\text{O}\square$

	Non-polar surface	
Diameter 0.71 nm		Diameter ca.1 nm
Fullerene C60		Carbon nanotube

Nanofiller **Polymer matrix** **Nanocomposite**

Imogolite as a nanofiller

- Extremely high aspect ratio of imogolite
 - Imogolite forms space filling gel at the concentration of 0.2wt%
 - Improve mechanical, thermal, flame - retardant, barrier properties
- Chemical modification of Al-OH group of the external surface of imogolite
 - Control interaction between imogolite and matrix polymer
- Imogolite retain water in soil
 - Environmentally benign nanocomposite "Green Nanohybrid" can be realized.

Purpose
Prepare novel (natural nanofiller/inorganic) nanohybrids

Conclusions

- Surface of imogolite was successfully modified by organic molecule with phosphonic acid. Modified imogolite was successfully dispersed in organic solvent.
- Novel-Green nanohybrid was prepared from imogolite (natural inorganic nanofiber) and environmentally benign poly (vinyl alcohol) (PVA).
- (Imogolite/PMMA) nanohybrid was successfully prepared through surface modification of imogolite with P-HEMA.
- NCH showed excellent fatigue performance compared with conventional short glass-fiber reinforced nylon 6.

7) R. A. Vaia, “**Impact and control of Ultrastructure (Meso) in Polymer Nanocomposites**” [[PowerPoint](#)] [[PDF](#)]

Dr. Vaia emphasized the balance between cost and added value in filled materials that drive the development of these materials at the Air Force Research Laboratory and elsewhere. After giving a valuable summary of opportunity areas for development of nanocomposites in aerospace and the challenges for understanding structure-property relationships in these systems, he summarized some experience of filled systems in relation to self-passivation and erosion in aggressive environments. Tools found helpful in characterizing these systems are summarized (SAXS, WAXS). Challenges in understanding filled rubbers and parallels of the filled systems to complex liquids were also considered. It was suggested that many useful properties of these nanocomposites could be obtained by exploiting the high particle anisotropy and field structuring and preliminary work on this topic (e.g., orientation of clay particles with an E-field).

Air Force Research Laboratory Nanostructured Materials

Impact and Control of Ultrastructure (Meso) in Polymer Nanocomposites

R. A. Vaia, H. Koerner, R. Reuter, G. Price
Air Force Research Laboratory, Polymer Branch
WPAFB, OH, 45433-7750

Air Force Office of Scientific Research
AFRL Materials and Manufacturing Directorate

Air Force Research Laboratory Nanostructured Materials

Outline

- Introduction & Drivers
- MesoScale Morphology
- Morphology and Properties
- Framework
- Morphology Control
- Summary

Air Force Research Laboratory Nanostructured Materials

Organic-Inorganic Nanostructured Materials

Objective: maintain processibility and cost
modest mechanical enhancements / weight savings
value-added functionality

Approaches:

- A. Exfoliation
- B. In-situ formation (templating)
- C. Molecular incorporation

Air Force Research Laboratory Nanostructured Materials

Polymer NanoComposites for Aerospace

Conductive Plastics electrical - permittivity - stiffness / ductility - processing
Carbon NT, Metal NP, Dielectric Oxide NP

Photronics NLO - refractive Index modulation - PL - laser - processing
ODs, Hybrid NP, Oxide NP

MultiFunctional Plastics mechanicals - self-passivation - shape memory - barrier - processing
Layered Silicates, Carbon NT

Propulsion Space Deployables, Tanks, Composites, Tires

Sensors (bio) Sources Flex, Peckaging, Optical Elements

Air Force Research Laboratory Nanostructured Materials

Fundamental Challenge: Structure-Property-Processing Relationships

DESIGN

Properties of nanoelements:	inorganic and interfacial polymer relative contribution to composite properties
Properties of polymer:	semicrystalline amorphous network topology
Interface:	tailoring and responsive strength v. processibility trade-off
Properties of composite:	general v. system specific

STRUCTURE

Thermodynamics:	mean field v. site specific experimental verification
De-aggregation:	mechanisms and relation to synthesis and processing
Process-morphology relationships:	block copolymer/LC parallel multi-length scale control
Engineered morphology:	beyond 'dispersion'

PERFORMANCE

Mechanics:	continuum v. molecular experimental database residual stress synergism and cooperativity
-------------------	--

Air Force Research Laboratory Nanostructured Materials

Outline

- Introduction & Drivers
- MesoScale Morphology
- Morphology and Properties
- Self-Passivation
- Mechanicals
- Framework
- Morphology Control
- Summary

Parallel to Complex Fluids

Air Force Research Laboratory **Nanostructured Materials**

Thermodynamics

Dynamics

Rigid Rod Polymers
Block-copolymers
Surfactants
Liquid Crystals
Colloidal Dispersion (double layer)
Inorganic LCs

Outline

Air Force Research Laboratory **Nanostructured Materials**

- Introduction & Drivers
- MesoScale Morphology
- Morphology and Properties
- Framework
- Morphology Control
 - Core-Shell Fab
 - E-Field
 - Holography
- Summary

LCs Under Electric Fields

Air Force Research Laboratory **Nanostructured Materials**

Dielectric Permittivity

M. F. Bonc, A. H. Price, M. O. Clem, D. G. McCormick, from Liquid Crystals and Ordered Fluids - Vol. 4, 1984

Conductive Instabilities

Carr-Helfrich effect and Kapustin-Williams domains

Clay & E-Fields

Air Force Research Laboratory **Nanostructured Materials**

Aqueous Clay: Majority literature Russian &/or 1960's: electro-sedimentation
Sedimentation (water expulsion) at high fields 75-100 V/cm (~ 0.01 V/micron)

E-field polarizes diffuse double layer &/or interface
Response to field decreases with decrease in ion mobility
Effect in hydrocarbon suspension (NaMnt)
depended on humidity

Permanent electric dipole? (hectorite, attapulgite)
Charge mobility in lattice - internal induced dipole? (attapulgite)
Intercalated mobility at surface? (methylbenzene blue - Mont)

Intercalated LS - LC: Kawasumi et al. (e.g. App Clay Sci, 15, 1999, 63)

LC aligns
Proces a ligna LS
LS inhibits rotation
LC instability at high frequency randomizes morphology

Clay Inert component

On-Demand Switching of Nanocomposites

Air Force Research Laboratory **Nanostructured Materials**

8wt% Mnt (6A) in Epoxy

Orlen Param
Epoxy Off 0.2
Epoxy On 0.6
Tol On/Off 0.56

8wt% Mnt (6A) in toluene

After

Current Hypothesis

Air Force Research Laboratory **Nanostructured Materials**

Random

flow

Perp. Aligned

Induced dipole
Interface
x = 30 nm
MHz
D = 10⁻⁴ cm²/s

Vert. Aligned

Induced dipole
Interface
Torque = S_d individual plates v. network

Implications: induced dipole

Critical frequency, v_c
 $v > v_c$ no alignment
 $v_c \sim Q_{surface} \sim$ interfacial interact

Randomization:
perpendicular field flow instabilities

Outline

Air Force Research Laboratory **Nanostructured Materials**

Introduction & Drivers

MesoScale Morphology

Morphology and Properties

Framework

Morphology Control

Summary

Conclusions

Air Force Research Laboratory **Nanostructured Materials**

General Conclusions

- Nanocomposites – must consider anisotropic aspects
Not sufficient to treat as isotropic systems
Preferential reinforcement, self-passivation, CTE, etc..
- Initial Frameworks exist to develop SPP Relationships
Stiffness enhancements in elastomers ($E_t \gg E_m$) primarily aspect ratio
Heterogeneity of local stress/strain distribution
- Network history (not just individual particle key)
Anisotropic percolation and recovery
Aspect ratio - persistence length
- Techniques for Hierarchical Morphology Control Necessity
Experimental data for SPP theory
Unique nanocomposite applications:
Electronic packaging, optics, polyelectrolytes

Potential

Air Force Research Laboratory **Nanostructured Materials**

Precision Morphology	Predictive Relationships	Cost Effective Manufacturing
Nanoscale inorganics	Objectives	
Nanotubes carbon silica V_2O_5 stc..	Multifunctional materials EMI shielding Smart fabrics Embedded antennas Chem/Bio membranes	
Nanoparticles (dots, rods, sheets) magnetic photonic metallic ceramic semiconductors		
Biological (proteins, viruses) Air	Active photonic crystals Actuators Sensor protection Obscurants Dielectrics Nonlinear-optical materials Fuel cell membranes	
Polymers Liquid crystal polymers Block copolymers Colloidal assemblies Electro-optical polymers Inorganic polymers Thermoplastics Thermosets Hyperbranched		

Nanostructured Polymer Systems Team

Air Force Research Laboratory **Nanostructured Materials**

Morphology & Rheology	Synthesis	3D Fabrication & NanoPhotonics	Simulations
D. Lincoln H. Koerner G. Price R. Reuter W. Liu R. Krishnamoorti (U. Houston) B. Hsiao (SUNY Stony Brook) E. Giannelis (Cornell) MIT DURNT	T. Dang F. Vastuner E. Vasiliu C. Co (U. Conn) D. Dean (Tuskegee) W. J. Brittan (U. Akron)	R. Jakubiaik D. Tomlin B. J. Gazdecki L. Natarajan V. Tondiglia T. Bunning	R. Bharadwaj A. Sansuaje B. Farmer
C-Nanotube and Fiber	Thermal Stability	Thermomech. & Mechanics	
M. Alexander F. Arnold S. Kumar (G. Tech) C.-S. Wang T. Dang	W. Xie (U.W. Kentucky) W. P. Pan (U.W. Kentucky) D. Hunter (Southern Clay Prod.)	T. Benson Tolle J. Brown N. Pigano C. Chen	MIT DURNIT
Space Durability	H. Fong J. Sanders C. Cerbus S. Phillips		

Extra

Air Force Research Laboratory **Nanostructured Materials**

Holographic photopolymerization

Air Force Research Laboratory **Nanostructured Materials**

holographic illumination

Modulated intensity profile

$$R_i = 2\vartheta I_a f$$

$$R_p = k_p [M] (R_i / 2k_t)^{1/2}$$

Well-documented; Dupont et al.
Bunning et al.

**Why Holography?
(H-PDLCs)**

Air Force Research Laboratory **Nanostructured Materials**

Transmission geometry

Reflection geometry

Advantages:

- Large area
- Any orientation
- Simple, one-step

Bunning et al.

Directed Nanocomposite Morphology

Air Force Research Laboratory **Nanostructured Materials**

Approach: Use holographic (laser) photopolymerization to induce movement and sequester nanoparticles into defined 3-dimensional patterns

Holographic illumination
Intensity interference pattern
Functional nanoparticles in reactive matrix
Sub-micron periods (50-800 nm)
Spatially defined chemical reactivity

Advantages:

- Large scale area
- Various geometries
- Simple, one step

C.L. Denna, L. Narayan,
V.P. Tondiglia, H.G. Jeon,
D.W. Tomlin, R.A. Vess,
T.J. Bunning

Measured vs theory

Air Force Research Laboratory **Nanostructured Materials**

$$\eta = \sin^2 \left(\frac{2 f_c (n_1 - n_2) \sin(\alpha \pi) L}{\lambda \cos \theta_B} \right)$$

	f_c	α	$n_1 - n_2$	$L (\mu\text{m})$	η (calc)	η (meas)
Gold	0.05	0.25	1.05*	6.75	0.5	0.33
	0.04	0.25	1.05*	6.75	0.35	0.33
Clay	0.75	0.25	0.03*	10.0	0.25	0.30
PS spheres	0.78	0.33	0.07 ^b	20.0	.04	0.09

* Real part (i.e. No absorption)
a high end of clay
b 1.57 for PS

8) Francis W. Starr, “**Probing Nanocomposite Structure and properties using Computer Simulations**” [\[PowerPoint\]](#) [\[PDF\]](#)

Dr. Starr emphasized the need to study nanofilled systems using idealized models with the intention of identifying general properties. First, he summarized recent molecular dynamics work by himself and coworkers showing that the glass transition T_g of filled systems can be shifted to higher or lower temperature depending on the polymer particle interaction. This effect was compared to similar results, supported both by experiment and theory, for shifts of T_g in thin polymer films with variable polymer surface interactions at the boundaries. Preliminary results were then shown for simple simulation models of clay sheets and compact nanoparticles. Not surprisingly, the compact nanoparticles aggregated when the polymer-particle interaction was weak. This effect was quantified through the ‘phase diagrams’ governing the clustering state of the particles in the plane of temperature and polymer-particle interaction and the plane of the concentration of particles versus polymer-particle interaction. The clustering transition was identified through a maximum in the specific that accompanies the particle clustering transition. These observations are consistent with an equilibrium clustering transition that requires further investigation. Useful criteria for identifying this clustering from scattering measurements were then summarized. Finally, the influence of shear on the clustering of model clay particles in a polymer matrix was investigated by molecular dynamics and the thermodynamic clustering line was found to shift under shear. Finally, the importance of developing hierarchical multi-scale modeling approaches was emphasized in order to model nanoparticle systems under more realistic processing conditions.

Probing Nanocomposite Structure and Properties using Computer Simulations

Francis W. Starr

Polymers Division, Center for Theoretical and Computational Materials Science

Jack Douglas, NIST

Sharon Glotzer, NIST & Michigan

Thomas Schröder, NIST & Roskilde

Barry Farmer, AFRL

Anuchai Sinsuwan, AFRL

Richard Vaia, AFRL

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

NIST, May 2002

Example Nanofiller Geometries

Spherical/Polyhedral

e.g.
colloidal
silica, gold

Plates

e.g.
clays

Rods, Tubes, and Fibers

e.g.
carbon
nanotubes

Random/Fractal

e.g.
fumed
silica,
carbon
black

NIST, May 2002

Filled Polymers and Nanocomposites

- Improve mechanical, rheological, dielectric, optical and other properties
- Low tech: tires, bumpers, paints and coatings
- High tech: micro- and nano-electronic devices
- Nanofillers
 - Tailor size and interactions to make specific property modifications
 - Custom designed materials!

Molecular level mechanisms poorly understood!

- Philosophy of this work: Start with simple systems, and work towards complexity

NIST, May 2002

Multiple Length Scales

NIST, May 2002

Outline

- Single, Symmetric Nanoparticle in a Dense Melt; consider effect of interactions on:
 - Chain Structure and Dynamics near interface
 - Relation to thin films (geometry implications)
- Nanocomposite: Symmetric nanoparticles in a melt
 - Aggregation and dispersion
 - Response to shear/relation to structure
- Clay-like Nanocomposite:
 - Response to shear (preliminary!)

Single Nanoparticle results: Starr, Schröder, Glotzer, Phys Rev E 65, 051503 (2001)
Macromolecules 35, 4481 (2002)

NIST, May 2002

MD Simulation Model

"Bead-Spring" Polymer

Icosahedral Nanoparticle

Interactions:

- Monomer: Lennard Jones; adjustable monomer-filler attraction
- Bonds: FENE springs along chains and within nanoparticles
- Vary polymer-nanoparticle interaction strength!

Systems:

- 100-1500 chains, 1-125 nano-filters (loading 4%-30%)
- Periodic Boundary Conditions
- $0.3 < T < 2.0$
- $10^{-4} < \gamma < 0.2$

NIST, May 2002

Nanocomposite: Particle Dispersion

Clustering "Phase Diagram"

Measuring Particle Dispersion

How do we know the state of dispersion?

- Particle Potential Energy ideal for this system, BUT
 - Experimentally inaccessible
 - Complicated geometries: no information about orientations
- Structure should be apparent in scattering profile
 - Growth of $S(q \rightarrow 0)$ indicates long range ordering

Effect of Shear

- Start from initially clustered state
- Shear rate $\gamma = 0.1$

- Nanoparticles disperse in direction of shear quickly
- Disperse fully on longer time scale

NIST, May 2002

Effect of Shear

- Initially clustered state near transition line
- Shear rate $\gamma = 0.1$

- Nanoparticles disperse in direction of shear quickly
- Disperse fully on longer time scale

NIST, May 2002

Morphology and Shear Viscosity

- Effect of shear on clustering
 - Shear has little effect on dispersed systems
 - Very high shear to disperse systems far from "transition"
 - Shear dependent shift to clustering diagram
- Strength: Shear Viscosity
 - Shear far from transition (stable morphology)
 - Greater viscosity for dispersed system for $\phi > 0.1$
 - Why no effect for smaller ϕ ?

Shear: Clay-like sheets

Intercalated
(stacked sheets)

Exfoliated
(disperse sheets)

- Loading: $\phi = 0.057$
- Viscosity disparity equivalent to $\phi = 0.2$ for nanoparticles

NIST, May 2002

Conclusions

- Surface Effects
 - Chains align with filler surface
 - Chain conformation insensitive to interaction
 - Interactions dominate surface dynamics and T_g
- Clustering and Dispersion
 - Dispersion dominated by particle-polymer interaction
 - Dispersion measurable via scattering (impractical)
- Response to shear
 - Shear favors disorder here
 - Greater viscosity when dispersed
 - Geometry important for improving properties

NIST, May 2002

What next?

- Filler Geometry and Interactions
 - Expand sheet studies
 - More complex interactions (electrostatic?)
 - Keep models simple
- New Approaches?
 - Larger length scales impractical for MD/MC approach
 - Mesoscopic methods
 - Lattice Boltzmann/Lattice Gas
 - Dissipative particle dynamics

NIST, May 2002

Acknowledgments

Eric Amis
Charles Han
Eric Hobbie
Alamgir Karim
Alan Nakatani
Andrew Roosen
Wen-li Wu

NIST, May 2002

- 9) Juan J. de Pablo, “**Molecular Simulation and Characterization of Ultrathin Films and Nanoscopic Polymeric Structures: Departures from Bulk Behavior**” (talk presented by Kevin Van Workum) [[PowerPoint](#)] [[PDF](#)]

Dr. De Pablo’s approach to modeling polymer thin films and nanoparticle filled polymer materials stresses the need for molecular modeling (molecular dynamics and Monte Carlo), continuum theory and measurement. As in the talk of Dr. Francis Starr, this contribution emphasizes simple model systems capable of inferring behavior of qualitative importance for process applications. First, recent experimental and simulation studies of the glass transition in thin films are summarized as an illustration of the value of computational methods in interpreting measurement. This is followed by the challenge of understanding finite size effects in polymer lithography applications where the scale of the patterns becomes below the scale of convenient measurement and where continuum theory can no longer be trusted. Simulations provide insight into what might be expected in this nanoscale regime. The Young's modulus of the etched lines depends on the line width and elastic constants become anisotropic. Nanoparticle fillers are shown to offer some promise in improving the properties and stability of these nanoscopic patterns. Further simulation applications explore the alignment of liquid crystal molecules about nanoparticles in connection with the development of sensors based on the binding of biological molecules to liquid crystalline substrates. Segregation of nanoparticles in block copolymer systems was also investigated in connection with the self-assembly of metal nanostructures on diblock copolymer scaffolds.

"Molecular Simulation and Characterization of Ultrathin Films and Nanoscopic Polymeric Structures: Departures from Bulk Behavior"

*Kevin Van Workum,
Prof. Juan J. de Pablo and Paul F. Nealey*

Department of Chemical Engineering
and the Center for NanoTechnology
University of Wisconsin - Madison

Introduction

Understanding Structure-Property relationships at nanometer length scales is becoming increasingly important.

Three Distinct Applications:

- Mechanical Properties of Nanostructures and Nanocomposites
- Nanoparticles dispersed in Liquid Crystals
- Nanoparticles dispersed in Block Copolymers

Vital Research Tools:
Molecular Modeling, Continuum Theory, Experiments

Multiscale Modeling of the Mechanical Properties of Polymeric Nanoscopic Structures

Industry Goals

2001
Linewidth (Dense Features) = 150 nm
Aspect Ratio = 3.0 - 4.0

2002
Linewidth (Dense Features) = 130 nm
Aspect Ratio = 3.0 - 4.0

2008
Linewidth (Dense Features) = 70 nm
Aspect ratio = 3.0 - 4.0

300 nm

At the 150nm or 130 nm node collapse of dense and semi-dense photoresist structures may limit our ability to stay on the SIA roadmap.

Multi-Scale Modeling

- Can we use models to anticipate which defect structure arises for specific systems?
- Can we use theory to establish quantitative relations between bound-particle concentration and shape and defect structure?
- Can we use these results to design optimal substrates?
- Can we make use of transient or time-dependent observations to infer additional information ?

19

Multi-scale Modeling

- use *detailed models* to study defect structure on nm length scales
- use *continuum models* to study defect structure and amplification over μm length scales

protein - 5nm long

virus - 145x100nm

20

Different approaches to computational studies of LC

Molecular Simulations:

- Monte Carlo/Molecular Dynamics
- Gay-Berne, interatomic forces

Advantages:

- direct defect structure

Disadvantages:

- cover length scales ~0.2 – 5 nm
- short time scale

Challenges:

- Difficulties associated with sampling of phase space

Approximate theories:

- Onsager approach (rigid rods)
- *Continuum theory* (Frank free energy)

Advantages:

- mesoscale ~10nm – 1 μm
- longer time scale

Disadvantages:

- need input from experiment or molecular simulations
- approximate

Challenges:

- Approximations and coarse-graining might introduce artifacts

21

Simulation Details

- Monte Carlo NVT simulations with a sphere fixed at (0,0,Zph)
- purely repulsive Gay-Berne potential (cut-off and shifted at the minimum) between LC, LC/surface, and LC/sphere
- repulsive potential results in homeotropic anchoring
- N=11,500, KT=1

22

Confined System

- line density and Zwall for a "bulk-like" region in the middle
- undamped oscillations in density profile seemed to be minimal for Zwall = 34

Molecular Simulations of LC

Sphere in the Confined LC

- Detailed representation of the system on the nm length scale
- Defect structure from intermolecular interactions
- Can investigate fundamental characteristics such as the influence of surfaces and molecular interactions on the type of defect that arises

24

Acknowledgements

Contributors:

- Qiang Wang – Diblock Copolymers
- Evelyn Kim – Liquid Crystals

Group Members:

- Roland Faller
- Tushar Jain

Advisors:

- Juan J. de Pablo
- Paul F. Nealey

43

10) Guoqiang Qian, “Applications of Plastic Nanocomposites”
[\[PowerPoint\]](#) [\[PDF\]](#)

The main purpose of this talk was to provide ample evidence of the growing commercial importance of clay-filled polymer materials. Dr. Qian summarized numerous Nanocor products and the desirable property changes achieved by these products in the area of control of gas permeation, food packaging. The promise of these materials in the area of fire suppression and anti-sagging agents for fiberglass processing was also noted. The development of pre-dispersed pellets enlarges the number of users of these products.

APPLICATIONS OF PLASTIC NANOCOMPOSITES

Guoqiang Qian and Tie Lan

OUTLINE

- NANOCOR PRODUCT INTRODUCTION
- Nano-NYLON 6
- Nano-MXD6: ULTRA-HIGH BARRIER
- Nano-POLYOLEFIN
- Nano-UNSATURATED POLYESTER
- SUMMARY

WWW.NANOCOR.COM

PRODUCTS

- NANOMER® POWDERS
 - I.24TL, I.34TCN, I.42TC for Nylons
 - I.30P, I.44PA for Polyolefins
 - I.30E, I.28E for Thermoset Epoxy
 - Rhoespan® AS for UPE
- NANOMER® CONCENTRATES
 - C.30P, C.44PA, C.30PE, and C.44TPO for Polyolefins
- IMPERM™ NANOCOMPOSITES
 - High Barrier Packaging Applications

TARGET SEGMENTS

WWW.NANOCOR.COM

NYLON 6 NANOCOMPOSITES

Nanomer I.24 TL

NYLON 6 NANOCOMPOSITES

COMMERCIAL SOURCES:

Bayer AG and Honeywell Eng. Polymers and Solutions

COMMERCIAL PRODUCTS:

- 2-4% Nanomer® loading

FEATURES:

- 2-3X improvement in gas barrier
- FDA Approval for food direct contact
- Enhanced mechanicals
- Processes similar to neat nylon

WWW.NANOCOR.COM

BARRIER PROPERTIES OF NANO-PA6

Nanocor
www.nanocor.com

REDUCED SENSITIVITY TO HUMIDITY

Percent Improvement Nano-PA6 Versus Neat Nylon 6

Nanocor
www.nanocor.com

FILM APPLICATIONS

- Mono and multilayer
- Thin-wall structures
- Stiffness ideal for stand-up pouches
- Barrier/strength combo permits down-gauging

Nanocor
www.nanocor.com

FILM APPLICATIONS

End Products	Fabrication Method	Property Enhancements	Benefits
--------------	--------------------	-----------------------	----------

Nanocor
www.nanocor.com

ImpermTM ULTRA-HIGH BARRIER NANOCOMPOSITES

- Nylon MXD6 based nanocomposite
- Easy processing for multi-layer and blend applications

Nanocor
www.nanocor.com

ImpermTM ULTRA-HIGH BARRIER NANOCOMPOSITES

- COMMERCIAL SOURCE:
Nanocor
- FEATURES:
 - 3-SX improvement in oxygen barrier vs MXD6
 - Low haze
 - Rigid and flexible packaging
 - Multi-layer or blends with PET and PA6

Nanocor
www.nanocor.com

Imperm™ ULTRA-HIGH BARRIER NANOCOMPOSITES

Nanocor
www.nanocor.com

Imperm™ BEER BOTTLE

- 16 oz. non-pasteurized
- Multilayer design with 5-10% Imperm™ layer
- OTR
1-1.5 micro-L/day
- 100X versus PET
- CO₂ shelflife is 28 weeks

Nanocor
www.nanocor.com

Imperm™ MULTILAYER PACKAGING

- Juice and other beverage package
- Paper coating/laminate
- PP/Imperm/PP Thermoform package
- PE/Imperm/PE Co-extrusion film
- PET/Imperm/PET film
- PA6/Imperm/PA6 film

Nanocor
www.nanocor.com

POLYOLEFIN NANOCOMPOSITES

Nanocor
www.nanocor.com

POLYOLEFIN NANOCOMPOSITES

- COMMERCIAL SOURCES:
Nanocor, PolyOne, and Clariant Corporation
- COMMERCIAL PRODUCTS:
Nanomer, Nanomer Concentrates and Nanocomposites
- FEATURES:
Enhanced mechanicals
Enhanced barrier
Synergy with FRs for flame retardancy

Nanocor
www.nanocor.com

POLYOLEFIN NANOCOMPOSITES

Masterbatch	Polyolefin Type	Nanomer Loading (%)	Tensile Strength (MPa)	Flexural Modulus (MPa)	Notched Izod (ft-lb/in)	HDT (C)
	Homo PP	0	32.0	1148	0.7	86.0
C-30P	Homo PP	6	38.0 (+19%)	2043 (+78%)	0.8	114 (+33%)
			19.5	780	9.8	71.0
C-44TPO	TPO	6	21.8 (+12%)	1228 (+57%)	9.8	84.7 (+19%)
			19.5	780	9.8	84.7 (+19%)

Nanocor
www.nanocor.com

POLYOLEFIN NANOCOMPOSITES

Barrier Properties

FR APPLICATION OF NANOCOMPOSITE

Fundamental Study

Performance Screening

FR-Rating

Nanocor
www.nanocor.com

FR APPLICATION OF NANOCOMPOSITE

Reduction of Traditional FR Agents

Reduction of Dripping

Anti-Blooming

Good Mechanical Properties

Easy Processing

Regulation Favorable

Nanocor
www.nanocor.com

FR APPLICATION OF NANOCOMPOSITE

Nanomer Synergy with Br-FRs

Components						
Homo-PP (wt%)	73.3	80	77	74	74	68
DBDPO (wt%)	20	15	15	15	15	15
Sh ₂ O ₃ (wt%)	6.7	5.0	5.0	5.0	5.0	5.0
Nanomer I.44PA (wt%)	0	0	3.0	6.0	(3.0)	(6.0)
Nanomer C.44PA (wt%)	0	0	0	0	6	12
UL-94 Rating	V-0	Fail	V-2	V-0	V-2	V-0

- Nanomer can be added in powder or concentrate forms
- 6wt% Nanomer can replace at least 6 wt% Br-FR
- Reduction of Blooming

Nanocor
www.nanocor.com

FR APPLICATION OF NANOCOMPOSITE

Nanomer Synergy with Mg(OH)₂

Components				
EVA (wt%)	40	45	42	47
Mg(OH) ₂ (wt%)	60	55	55	50
Nanomer I.30P (wt%)	0	0	3	3
UL-94 rating	V-0	Fail	V-0	V-0

- Nanomer can be added in powder or concentrate forms
- 3 wt% Nanomer can replace at least 10 wt% Mg(OH)₂
- Easy Processing

Nanocor
www.nanocor.com

FR APPLICATION OF NANOCOMPOSITE

Mechanical Properties of Nano-FR Formulations

Properties	UL-94	Tensile Modulus (MPa)	Elongation @ Break	Specific Gravity
Regular FR EVA Mg(OH) ₂	V-0	533	30-40%	1.42
Nano-FR EVA Mg(OH) ₂	V-0	569	30-40%	1.34
Regular Br-FR PP DBDPO/ATO	V-0	2018	20-30%	
Nano-Br-FR PP DBDPO/ATO	V-0	2055	20-30%	

Nanocor
www.nanocor.com

FR APPLICATION OF NANOCOMPOSITE

- Heavy duty PP electrical enclosure
- SG reduction from 1.35 to 1.16
- Flex modulus increased by 25%
- Maintain UL94 V-0 rating

 Nanocor
www.nanocor.com

UPE NANOCOMPOSITES

• Rheospan® AS

Montmorillonite based anti-sag agent
Easy processing and nano benefits

 Nanocor
www.nanocor.com

SAG CONTROL

 Nanocor
www.nanocor.com

UPE NANOCOMPOSITES

- COMMERCIAL SOURCE:
Nanocor and Polymeric Supply Inc.
- COMMERCIAL PRODUCTS:
Formulations containing 1-2% loading
- FEATURES:
Enhanced chemical resistance
Char formation for flame retardancy
Sag control

 Nanocor
www.nanocor.com

BOAT ACCESSORIES

- UPE/fiberglass construction
- Reduced microcracking
- Reduced color fading
- Elimination of fumed silica

 Nanocor
www.nanocor.com

SUMMARY

- Nanocomposite plastics are commercial
- Barrier, reinforcement and flame retardancy drive most applications
- More applications are emerging

 Nanocor
www.nanocor.com

Acknowledgment

NIST

Amcol/Nanocor Management

Nanocor Technology Group

11) Eric A. Grulke, ‘**Production, Dispersion and Applications of Multiwalled Carbon Nanotubes**’ [\[PowerPoint\]](#) [\[PDF\]](#)

Dr. Grulke provides an overview of the many activities of the Advanced Carbon Materials center at the University of Kentucky, which specializes in the production characterization, and development of applications of multi-walled carbon nanotubes. The first part of the talk provided a contrast between the morphologies of the single and multi-walled nanotubes. It was made clear that these materials exhibit a variety of hierachal structures, depending on the conditions of their formation and that dispersion is a matter of degree because of these superstructures. The synthesis procedure for the mass production of multi-walled tubes was then discussed along with economic factors relevant to developing these materials. TEM images showed that these tube layers grow as a 'turf' from the substrate on which they are grown where the iron catalyst particles tend to concentrate near the tips of the growing tubes. The mechanism of the tip growth was identified as a fundamental problem in understanding and controlling the structure of these materials. The further essential problem of tube dispersal makes the functionalization of the tubes another essential problem. Progress on functionalization and the characterization of this functionalization was then summarized. Some essential properties of polymer materials filled with multi-walled tubes are considered. The viscosity depends strongly on shear in these non-Newtonian fluids and large changes in the conductive properties are found. Finally, a variety of processing techniques for forming nanotube filled polymers are reviewed and dispersion and property changes resulting from these various methods are characterized. Preliminary observations indicate that the concentration of the tubes has a large impact on the tendency of the particles to cluster and the resulting properties.

MWNTs Dispersed in Various Media

Bridging the Gap... NIST 1

Example of MWNT Dispersion

Nanotubes quickly settle without use of a proper dispersant; b. The very stable nanotube nanofluid produced by this method is thus suitable for thermal conductivity measurements and future heat transfer applications Poly(α -olefin)

Bridging the Gap... NIST 2

Dispersion with High Thermal Conductivity

Bridging the Gap... NIST 3

2.5 wt % MWNTs in Poly(α -olefin).

High shear dispersion This sample has high thermal conductivity.

Bridging the Gap... NIST 4

Dispersion during Melt Blending

- MWNTs in polystyrene
- Haake rheometer, 180 C, Dow 666, 30 min, constant torque @ 30 min, 50 rpm
- Consistent flow properties, physical properties (tensile, resistivity) in bulk tests
- *What is the dispersion quality?*

Bridging the Gap... NIST 5

SEM Analysis

A possible dispersion challenge due to mechanical entanglements between MWNTs

Bridging the Gap... NIST 6

PS Melt Blending. 15 min.

Bridging the Gap... NIST

7

PS Melt Blending. 15 min.

Bridging the Gap... NIST

8

PS Melt Blending. 30 min.

Bridging the Gap... NIST

9

Optical Microscopy

Bridging the Gap... NIST

10

Melt Blending. MWNTs in PS.

5 minute sample. Large fragments of the MWNT "mat" are not dispersed. Toluene suspension. Logo is 50 μ wide.

ViewCast

Bridging the Gap... NIST

11

Melt Blending.

10 minute sample. MWNTs in PS.

Toluene suspension. Completely dispersed material. Logo is 20 μ wide.

ViewCast

Bridging the Gap... NIST

12

Melt Blending.

10 minute sample. MWNTs in PS.
Toluene has evaporated. Logo is 50 μ wide.

Bridging the Gap - NIST

13

Melt Blending.

30 minute sample MWNTs in PS.
THF has evaporated. Logo is 50 μ wide

Bridging the Gap - NIST

14

Melt Blending.

30 minute sample MWNTs in PS.
Toluene suspension. Logo is 50 μ wide

Bridging the Gap - NIST

15

Melt Blending Dispersion Summary

- The MWNTs are dispersed with respect to bulk properties
- Multiple step dispersion: fragmentation of "Astroturf", expansion, individual tubes
- Evidence that some agglomerates exist that are mechanically entangled
- Potential problems in fiber spinning, high surface gloss

Bridging the Gap - NIST

16

Surface Chemistry

- Distinct differences on solvent removal from MWNT solutions
- Drying from toluene gave agglomerates of 25 microns in size, while drying from THF gave much smaller agglomerates
- Surface chemistry (with control by solvent, polymer, surfactants, etc) may be useful in developing aggregate structures

Bridging the Gap - NIST

17

Solution Rheology Samples.

VGB 78 (B). 0.1 wt% MWNTs in 20% PS in toluene
Undiluted. A. Karicherla.

Bridging the Gap - NIST

18

Solution Rheology Sample.

VGB 78 (B). Diluted 1:5. 20wt% PS A. Karicherla

Bridging the Gap NIST

19

Solution Rheology Sample.

VGB 63 (C). Diluted 5.1. 20 wt% PS A. Karicherla

Bridging the Gap NIST

20

Re-entanglement (Mechanical)

- Agglomerates that appeared to be physically entangled will redisperse when the MWNT concentration is reduced
- Consistent with statistical approach to percolation, i.e., as the concentration increases, a distribution of particle agglomerates form

Bridging the Gap NIST

21

Conclusions. Melt Blending.

- MWNT mat fractures to dense fragments, which then "expand" and can disperse
- 30 min. melt blending samples show few dense fragments, but do have "expanded" structures that are mechanically intact
- There is a MWNT length distribution
- Continuous phase affects particle-particle associations, particularly when an air-fluid interface is present

Bridging the Gap NIST

22

Conclusions. Ultrasonic Dispersion

- Distribution of MWNT lengths
- Few expanded structures, but long dispersion times used to attain constant viscosities
- Dilutions show that most of the MWNTs can be individually separated

Bridging the Gap NIST

23

Particle Comminution

- Ultrasonics
- Melt blending
- High shear mixing
- High shear nozzle
- mechanical

Bridging the Gap NIST

24

As-Produced MWNTs

Bridging the Gap . NIST

25

As-Produced MWNTs.

Bridging the Gap . NIST

26

As-Produced MWNTs

Bridging the Gap . NIST

27

Mechanical grinding

Bridging the Gap . NIST

28

Ground MWNTs

Bridging the Gap . NIST

29

Length Reduction via Ultrasonics

Bridging the Gap . NIST

30

Power law comminution model

Bridging the Gap - NIST

31

Conclusions. High Shear Dispersions.

- Very efficient dispersion, but lengths are < 10 microns
- Still achieve “percolation” limits, but these should be based on different lengths from the starting material

Bridging the Gap - NIST

32

Composites and Solutions Processing

Bridging the Gap.

Carbon Composite Materials

Composites with Nanotube Fibers

Typical composite materials issues:
Fatigue, high temperature, chemical resistance, weathering

Typical composite materials failure mechanisms:
Fiber pullout, stress concentration at fiber ends

Typical composite processing issues:
Dispersion, orientation, conventional processing

Bridging the Gap..

3

Accomplishments

- Dispersion via ultrasonics and polymer melt processing techniques
- Orientation in shear fields, leading to 2-D, 3-D structures
- Adhesion between matrix and MWNTs is an issue: functionalization should help

Bridging the Gap.

4

Commercial Forming Methods for Nanotube Composites

- Pultrusion: applicable for yarns
- Filament winding: MWNT-containing fibers (2)
- Compression molding: extrusion and pelletizing (3)
- Hand lay-up: thin films fabricated (2)
- Hand spray-up: spray coatings (3)
- Reactive RIM: suspending agents (2)

0=science fiction, 2=demonstrated, 4=ready for market

Bridging the Gap.

5

Demonstrated Nanotube Orientation Methods

Bridging the Gap.

6

Composites: New Work

- Functionalization: improved dispersion in liquids, tethered chains for improved interfacial adhesion, *in situ* end group functionalization
- Mechanical testing of improved nanotube composites
- Engineering science models of processing methods

Bridging the Gap

Solution Processing

- Ultrasonic mixing
- Individual dispersion
- Surfactants for simple fluids
- Neat MWNTs for viscous polymer solutions

- MWNTs in film spun from PS solution. 30 microns diameter

Bridging the Gap

Tensile strength and modulus

Bridging the Gap

Melt Processing

- Mixing and dispersion into pitch and polymer melts
 - Polystyrene, High Impact PS, Polypropylene, ABS
 - Petroleum Pitch, Coal-derived Pitch
 - Furfural Resins
- Thin polymer film and fiber formation
- Nanotube alignment in shear field
- Use of traditional polymer processing equipment
 - Industrially viable processing techniques

Bridging the Gap

Shear Mixing of MWNTs

- Haake Polylab Shear Mixer
 - 50 gram charge
 - 0 – 25 wt% fiber

Mixing Energy

Bridging the Gap

11

Dispersion of MWNTs

- Determination
 - Optical microscopy
 - SEM and TEM
 - 0 - 10 rating

- Polypropylene matrix
- 2.5 vol% MWNT

Bridging the Gap

12

Mixing Energy for Dispersion

Possible Route to Functionalization!

Bridging the Gap...

13

Melt Processing

Thin Polymer Films

Bridging the Gap...

14

Tensile Properties of Films. PP

Bridging the Gap...

15

Surface Resistivity

Bridging the Gap...

16

Conductive Plastics

10%

1%

- Current technology
 - carbon blacks
 - 10-15% loadings
 - loss of mechanical properties

- MWNT Composites
 - 0.1 - 1 wt% loadings
 - low percolation threshold

Bridging the Gap...

17

Melt Processing

Polymer and Pitch Fibers

Bridging the Gap...

18

Polymer Fibers with Aligned MWNTs

Bridging the Gap.

19

Carbon Fiber with 1wt% MWNT

Bridging the Gap

20

Carbon Fiber with 2wt% MWNT

Bridging the Gap.

21

Benzyne Functionalization of MWNT

- Benzyne addition
 - on sidewall of MWNT
- Composite polystyrene films
 - Improved dispersion
 - Improved matrix-nanotube adhesion
- Results
 - Good dispersion
 - Reduction in film brittleness
 - Improved flexibility over blank films and unfunctionalized MWNT composites

Bridging the Gap

22

Computational Studies of the Mechanical and Tribological Properties of Carbon Nanotubes. (Sinnott)

- Results for indentation of multi-walled nanotubes on surfaces:
 - Mechanism is the same as for the single-walled nanotubes
 - MWNTs are stiffer than comparably sized SWNTs
- Shearing of Carbon Nanotube Bundles Between Sliding Surfaces
 - Movement of the nanotubes is sliding, no rolling is predicted
- Horizontal bundles of single-walled nanotubes
 - little change in frictional forces with sliding
 - forces do not vary with changes in pressure
- Vertical bundles of single-walled nanotubes:
 - Strong dependence of frictional forces on applied pressure for capped nanotubes
 - little dependence for attached nanotubes

Bridging the Gap.

23

NT-Composite Failure

Bridging the Gap

24

Failure modes of MWNT Composites

Bridging the Gap.

25

Sizing

- Commercial graphite fibers having sizings that improve fiber/matrix adhesion
- We have been developing sizings for MWNTs in various commodity polymers

Bridging the Gap.

26

Production, Dispersion and Applications of Multiwalled Carbon Nanotubes

Eric A. Grulke

University of Kentucky

egrulke@engr.uky.edu

05/30/2002

Bridging the Gap . NIST

1

NSF MRSEC Advanced Carbon Materials Center

- Eric Grulke
- Janet Lummel
- Mark Meier
- Zhi Chen
- Robert Haddon
- Marit Jagtoyen
- Rodney Andrews
- Susan Sinnott, U of Fl
- John Anthony
- Kozo Saito
- Jack Selegue
- Bruce Hinds
- Madhu Menon
- Leonidas Bachas

05/30/2002

Bridging the Gap . NIST

2

Nanoparticle Morphology and Polymer Applications

Theme: nanoparticle morphology has scientific and economic value [this is not a new concept]

- Manipulate the production process to develop different morphologies
- Manipulate dispersion, orientation and interphase region

05/30/2002

Bridging the Gap . NIST

3

Outline

- Synthesis of ordered carbons: emphasis on MWNTs
- Functionalization of MWNTs
- MWNTs applications in polymer systems and fluids

05/30/2002

Bridging the Gap . NIST

4

Synthesis of Ordered Carbons

1. What can we make?

05/30/2002

Bridging the Gap . NIST

5

Single Wall CNTs 1 nm diameter, 1-10 microns long

05/30/2002

Bridging the Gap . NIST

6

Platelet Structure: catalyst support?

TEM images of the filamentous carbon growth from Ni/Ta₂O₅. M. A. Keane

05/30/2002

Bridging the Gap... NIST

13

Synthesis of Ordered Carbons

- SWNTs, MWNTs and other ordered carbons
- Promote comparison of different carbon materials
- Determine growth mechanisms, rate-limiting steps for synthesis

05/30/2002

Bridging the Gap... NIST

14

Synthesis of Ordered Carbons

- What can we make?
- What will it cost?

05/30/2002

Bridging the Gap... NIST

15

Production Methods

- SWNTs: arc process (Carbolex), laser/graphite target, gas phase (HIPCO/Rice)
- MWNTs: CVD process, high quality tubes, scalable process, reproducible morphology (ACMC/CAER and others)
- Diffusion flame: MWNTs grown from methane on metal screen (Saito)
- Platelets: heterogeneous catalysis (Keane)

05/30/2002

Bridging the Gap... NIST

16

CVD Process Economics

Study by Gene Harlacher, Conoco, CAER visiting scientist, 12/99.

- MWNT cost is sensitive to labor, energy, catalyst cost and efficiency, HC cost and yield
- Fe is a low cost catalyst now
- 10⁶ kg/year gives cost of \$20/kg MWNT
- Conclusion: ferrocene-based CVD process is a reasonable choice for extensive research

05/30/2002

Bridging the Gap... NIST

17

CVD Process Economics-Details

Batch: labor is a major portion of the cost

05/30/2002

Bridging the Gap... NIST

18

Synthesis of Ordered Carbons

- What can we make?
- What will it cost?
- How do we make more?

05/30/2002

Bridging the Gap .. NIST

19

Scale-up of Carbon Nanotube Production Systems

- Quantity & Quality
- Bench scale, pilot plant, commercial plant
- Morphology control
- Recycle of gases, conversion and yield, choice of carbon source, catalyst recycle, solids recovery, solids post processing

05/30/2002

Bridging the Gap .. NIST

20

CVD Methods for Nanotube Synthesis

- Transition metals and their alloys: Fe, Co, Ni
- Prepared nanoscale metal oxide particles Fe_2O_3 , NiO-CoO on supports
- Catalyst thin films on silica

Floating catalyst—
organometallic precursors
form metal nanoparticles *in situ*

05/30/2002

Bridging the Gap .. NIST

21

Two Step Synthesis

- Gas flow into quartz tube: carbon source, H_2 , Ar
- Sublime ferrocene into reaction zone and prepare *in situ* catalyst on reactor surfaces
- Xylene feedstock decomposes over Fe nanoparticles to produce CNTs
- Vary T, C:H ratio to evaluate effect of MWNT growth over rxn. time

05/30/2002

Bridging the Gap .. NIST

22

Two-Step Synthesis Reactor

05/30/2002

Bridging the Gap .. NIST

23

Analytical

- Reactor tailgas: HP 5980 ac, Series 2) on 21 gas bag for C_mH_n , Rosemount 400A Hydrocarbon Analyzer for total carbon ($\text{CH}_4\text{-He}$ for calibration)
- TEM: JEOL 2000FX TEM (LaB_6 at 200 kV)
- SEM: Hitachi SN-3200 at 5 kV

05/30/2002

Bridging the Gap .. NIST

24

Results

- Growth mechanism
- Effects of reactor temperature and time on MWNT production
- Effect of C:H ratio
- Chemistry of xylene degradation over Fe nanoparticles

05/30/2002

Bridging the Gap... NIST

25

Step 1. Floating Catalyst Production

05/30/2002

Bridging the Gap... NIST

26

Typical MWNT Growth

1

Some variation in
MWNT mass on
various reactor
surfaces

05/30/2002

Bridging the Gap... NIST

27

Tip Growth

(a)
Root ends show no
Fe nanoparticles at
fracture surface

Tip ends are
capped with Fe
nanoparticles

05/30/2002

Bridging the Gap... NIST

28

Tapered MWNTs

MWNTs taper
from the root end
(~ 30 nm) to the
tip end (~15 nm).
Fe may diffuse on
surface to MWNT
base.

05/30/2002

Bridging the Gap... NIST

29

Temperature vs. MWNT Diameter and Length

05/30/2002

Bridging the Gap... NIST

30

Effects of Temperature

- Tube coarsening is occurring increasing with time at 700 C, while 650 C, 750 C samples have nearly constant tube diameters
- MWNT mass increases with temperature

05/30/2002

Bridging the Gap.. NIST

31

Effects of C:H Ratio

- Decreasing the C:H ratio results in
- Higher purity MWNTs
- Lower external diameters, and
- Lower standard deviations of the diameter distributions
- H₂:Ar ratio of 0.25:1 gives 8% of MWNTs with D < 10 nm, and some double wall tubes

05/30/2002

Bridging the Gap.. NIST

32

Effect of C:H Ratio

Gas mixture	C:H ratio	Length (μm)	Average OD (nm)	Purity
0 % H ₂ -Ar	1: 1.25	2 (1)	18.2 (12.3)	< 50 % NT
5 % H ₂ -Ar	1: 4.3	10 (3.0)	14.1 (6.86)	~ 70 % NT
10 % H ₂ -Ar	1: 7.4	35 (31)	24.4 (8.83)	~ 90 % NT
25 % H ₂ -Ar	1: 16.6	6 (1.8)	14.4 (7.09)	~ 95 % NT

05/30/2002

Bridging the Gap.. NIST

33

MWNT Distributions

Some distributions may be multimodal, i.e., 1:16.6

05/30/2002

Bridging the Gap.. NIST

34

Xylene Degradation.

Simplified kinetics, dilute carbon source, no mass transfer limitations

Few hydrocarbons with C < 6 are observed in the tailgas

05/30/2002

Bridging the Gap.. NIST

35

Hydrocarbons in the Tailgas

Feed has 3750 ppm xylene, 0.1 H₂:Ar, 700 C

C _n H _x Fraction (%) (Concentration, ppm)	C ₁ H ₆ + C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂	C ₆ H ₁₆
5 min	3.47 (5 ppm)	0.00 (0)	0.54 (1)	7.98 (12)	87.45 (135)
15 min	5.38 (11 ppm)	0.00 (0)	0.00 (0)	7.99 (17)	86.63 (182)
30 min	4.49 (21 ppm)	0.20 (1)	0.45 (2)	15.28 (73)	79.58 (379)
60 min	2.93 (23 ppm)	0.09 (1)	0.29 (2)	12.53 (99)	83.39 (657)
90 min	2.90 (42 ppm)	0.07 (1)	0.27 (4)	11.13 (161)	85.63 (1240)
120 min	2.59 (38 ppm)	0.08 (1)	0.26 (4)	11.88 (172)	85.02 (1234)

05/30/2002

Bridging the Gap.. NIST

36

Catalyst Deactivation

30,000 ppm xylene in feed

05/30/2002

Bridging the Gap . NIST

37

Conclusions

- Tip growth is critical mechanism
- Temperature is important for catalyst coarsening, deactivation
- Xylene, toluene conversions may be rate-limiting; benzene and smaller molecules are present in low mass fractions

05/30/2002

Bridging the Gap . NIST

38

Computational Fluid Dynamics

05/30/2002

Bridging the Gap . NIST

41

Mass Transfer of C through Fe Nanoparticle

Left: Concentration levels of C.

Right: Flux of C on nanosphere surface.

05/30/2002

Bridging the Gap . NIST

40

CVD Process Summary

- Practical experience: scaled from 1 cm to 10 cm tube in 2 steps; from 2 to 6 g/2hr run over one year
- Computational fluid mechanics: gas flows and concentrations
- Overall and component balances: conversion, yield, mechanism(s)
- Catalyst particle model: NT growth, limiting rates
- Needs/Directions: multiple scale model, metal nanoparticle detection/control, "morphology" meter

05/30/2002

Bridging the Gap . NIST

41

Functionalization: MWNTs

1. What can we make?

05/30/2002

Bridging the Gap.. NIST

43

Functionalization Methods

Tube Ends

Tube Sides: dichlorocarbene, benzyne, ion bombardment

Functionalization via ion bombardment, Ni and Sinnott

05/30/2002

Bridging the Gap.. NIST

44

Functionalization: New Work

Haddon, Meier, Anthony

- Transfer dichlorocarbene method from SWNTs to MWNTs; benzyne method from fullerenes to MWNTs
- Attach oligomer and polymer chains to MWNTs
- Attach conductive links and ion-specific sites

05/30/2002

Bridging the Gap.. NIST

45

Functionalization

- Fullerene work shows that “defect sites” are more reactive to functionalization
- Feedstocks used in CVD synthesis control defects
- MWNTs have been functionalized and incorporated into composites

05/30/2002

Bridging the Gap.. NIST

46

Current Research Directions

Functionalized Carbon Materials

- Additions: halogenation, halomethylation,cycloaddition, Grignard
- Cleaning: CO₂, steam, graphitization
- Novel Carbons: fulleroids, baskets and test tubes
- Functionalized Soluble Graphenes
- Characterization: FFF

05/30/2002

Bridging the Gap.. NIST

47

MWNTs in Polymer Systems

05/30/2002

Bridging the Gap.. NIST

48

12) Ken McElrath and Tom Tiano, “Achieving Conductive Polycarbonate with Single Wall Carbon Nanotubes” [\[McElrath Powerpoint\]](#) [\[McElrath PDF\]](#) [\[Tiano PowerPoint\]](#) [\[Tiano PDF\]](#)

Dr. McElrath and Dr. Tiano give an emphasis on the single-walled carbon nanotubes that is complementary to the presentation of Dr. Grulke that emphasized the multi-walled tubes. The single wall materials should have remarkable strength, electrical conductivity and electrical conductivity and are characterized by a rather precise molecular structure. The realization of this potential is limited by the tendency to form rope like structures and thus there is a great need to improve the dispensability to fully realize the potential of this type of material. Progress on the development of single wall tubes as commercial materials were summarized along with the intense scientific interest generated in the course of the development of this exceptional material.

After the introductory material, the presenters focused specifically on the problem of nanotube dispersal and which solvents were favorable for this. The importance of ultrasonic processing in effective dispersion was also emphasized. The most dramatic success in dispersion was found and characterized for single wall tubes dispersed in polycarbonate. Substantial improvements in electrical and thermal conductivity were found for polar polymer matrices where appreciable dispersion of the tubes was possible. The presentation was concluded with a summary of the many areas where single walled nanotubes have promising commercial applications.

Carbon Nanotechnologies, Inc.

Achieving Conductive Polycarbonate with Single Wall Carbon Nanotubes

Ken McElrath

NIST Workshop; Bridging the Gap Between Structure and Properties in Nanoparticle-Filled Polymers
Gaithersburg, Maryland

30-May-02

Agenda

- What are single wall carbon nanotubes?
- Why are they useful?
- CNI plans for SWNT commercialization
- Presentation by Tom Tiano, Research Partner with Foster-Miller

Forms of Carbon

Types of Nanotubes

- Defined by the number of walls they are made of

Single-wall (SWNT) 1 nm

SWNTs have Tremendous Accessible Surface Area

SWNTs: The Perfect Material

- Single-wall Carbon Nanotubes (SWNTs) are unique:
 - Fullerene molecules
 - Perfect structures
 - Polymers of pure carbon
- SWNTs have extraordinary properties:
 - Strength (~100x steel)
 - Electrical conductivity (~Copper)
 - Thermal conductivity (~3x Diamond)
 - Combination of the above

SWNTs are Perfect: Each Atom in its Place

7

CNI Copyright 2002

Ropes of Single-Wall Carbon Nanotubes

- Caused by strong Van der Waals forces between sidewalls
- Enables self-assembly...but makes dispersion challenging

8

CNI Copyright 2002

SWNTs can be Customized

- In most applications, raw SWNTs will need to be customized
- This customization can be precisely controlled using everyday organic chemistry
 - Open ends
 - Closed ends
 - Sidewalls

9

CNI Copyright 2002

Dramatic Proof of SWNT-Polymer Interaction

Smalley and CNI launch Carbon Nanotechnology

- SWNT availability spurs research and commercial development
- Hundreds of companies world-wide use CNI SWNTs

13

CNI: taking SWNTs from the lab to Industry

14

CNI Copyright 2002

As Scale of Supply Increases, Price Decreases

15

16

CNI's Value

CNI Copyright 2002

Dispersing Single-Wall Carbon Nanotubes in Polycarbonate to Achieve Electrical Conductivity

Thomas Tiano - Foster-Miller, Inc.

Ken McElrath and Ken Smith - Carbon Nanotechnologies, Inc.

Presented to

National Institute of Standards and Technology

May 29 & 30, 2002

Objective

- ❖ Develop processes for preparing single wall carbon nanotube (SWNT) composites in which the SWNTs are highly dispersed in the polymer matrix.
- ❖ Assess electrical and thermal conductivity and mechanical properties.
- ❖ Target applications in the electronics industry.

Single Wall Nanotubes Properties

Aspect Ratio	1000:1
Specific Gravity	1.3
Electrical Res.	$10^{-4} \Omega \cdot \text{cm}$
Therm. Cond.	1750-5800 W/m·K
Young's Modulus	650 GPa - 1 TPa
Tensile Strength	65 - 300 GPa
Tensile Elong.	20%

Adequate dispersion is required to take advantage of these properties in multi-phase systems.

Electrical Critical Composition

- ❖ Critical composition is the filler volume loading at which a conductive network is created (see schematic).
- ❖ Critical composition is highly dependent on aspect ratio (see schematic).

Impediments to Dispersion of SWNTs in Nanotube Composites

- ❖ Strong Van der Waals interactions
 - ♦ SWNTs form ropes (bundles of tubes) ranging from 10 to 100 nm in diameter
 - ♦ Ropes are very difficult to de-bundle
- ❖ Low surface energy
 - ♦ Low affinity for organic solvents and matrices
 - ♦ Extremely high critical length

Processing Steps

- ❖ Disperse SWNT into polar polymer (assisted by polar solvent)
- ❖ Remove and recover solvent
- ❖ Process composite into parts and specimens
- ❖ Perform electrical, thermal and mechanical assessment
- ❖ Perform “let-down” studies for processability

SWNT Dispersion Polymer and Solvent Selection

- ❖ **Solvent Requirements**
 - ♦ Good dispersant for SWNTs
 - ♦ Good solvent for polycarbonate
 - ♦ Low boiling point
- ❖ **Polycarbonate grades**
 - ♦ Lexan 101-112 (multi-purpose)
 - ♦ Lexan HF1110 (high-flow)

“Solubility” for SWNTs in Organic Solvents

Solvent	“Solubility” (mp/L)	Solvent density (g/cc)	Solubility (wt percent)	Boiling Point °C
1,2-dichlorobenzene	95	1.306	0.0073	180
chloroform	31	1.492	0.0021	61.5
1-methylnaphthalene	25	1.001	0.0025	243
1-bromo-2-methylnaphthalene	23	1.418	0.0016	291
n-methylpyrrolidinone	10	1.028	0.0010	202
dimethylformamide	7.2	0.944	0.00080	153
tetrahydrofuran	4.9	0.889	0.00055	67
1,2-dimethylbenzene (o-xylene)	4.7	0.870	0.00054	145
pyridine	4.3	0.978	0.00044	115
Carbon disulfide	2.6	1.266	0.00021	46
1,3,5-trimethylbenzene	2.3	0.864	0.00027	164

Bair, Mickelson, Bronikowski, Smalley, Tour, Chem. Comm., 2001:193-194

SWNT Dispersion Ultrasonic Processing

- ❖ Dissolve polymer into solvent
- ❖ Add SWNT to solvent and insonify for 30 minutes
- ❖ High amplitude insonification induces cavitation
- ❖ Cavitation bubbles nucleate on nanotube clusters
- ❖ De-agglomeration occurs when cavitation bubbles collapse on SWNT bundles
- ❖ Implosion of voids is driven by reversal of pressure in the sound wave

SWNT Dispersion Ultrasonic Processing

- ❖ Branson titanium wedge tip ultrasonic welding horn
- ❖ 40 kHz frequency
- ❖ 2:1 amplitude gain
- ❖ Branson 940B power supply
- ❖ 700W continuous power
- ❖ Adjust amplitude to 45%

SWNT Solvent Removal

SWNT composite processing

- ❖ Develop conditions for processing composite feedstock into useful parts
- ❖ Injection molding and compression molding
 - ♦ both require relative high pressure (120 psi & 2000 psi respectively)

Room Temp. Thermal Conductivity SWNT in Lexan 101-112 (In-Plane)

Further Research in Thermoplastics

- ❖ Continue to investigate SWNT dispersion techniques to increase conductivity
- ❖ Obtain more data for electrical and thermal conductivity and mechanical properties
- ❖ Further develop composite processing techniques
- ❖ Investigate polymer "let-down" procedures
- ❖ Investigate different thermoplastic polymers

19

20

Potential Applications of SWNT-Filled Thermoplastics

- ❖ Electromagnetic interference protection
- ❖ Electrostatic discharge materials
- ❖ Electrostatic paint substrates
- ❖ Lightweight thermal management materials
- ❖ Thermoplastic die attach

21

FinalParticipants' List

Bridging the Gap between Structure & Properties in Nanoparticle-Filled Polymers

May 29-30, 2002

National Institute of Standards and Technology (NIST), Gaithersburg, MD

Fred Allen
Engelhard Corp.
101 Wood Ave.
Iselin, NJ 08550 USA
Telephone: 732/205-6042
Fax: 732/205-5300
Email: fred.allen@engelhard.com

George Baran
Temple Univ.
1947 N. 12th St.
Philadelphia, PA 19122 USA
Telephone: 215/204-8824
Fax: 215/204-4956
Email: grbaran@astro.templ.edu

Eric Amis
NIST
100 Bureau Dr., Mail Stop 8540
Gaithersburg, MD 20899-8540 USA
Telephone: 301/975-6681
Email: eric.amis@nist.gov

Gary Beall
Southwest Texas State Univ.
601 University Dr.
San Marcos, TX 78666 USA
Telephone: 512/245-8796
Fax: 512/245-2374
Email: gb11@swt.edu

Larry Anderson
PPG Industries
4325 Rossanna Dr.
Allison Park, PA 15101 USA
Telephone: 412/492-5210
Email: lyanderson@ppg.com

Charles Beatty
Univ. of Florida
Dept. of Ma'tl. Sci. & Eng.
Gainesville, FL 32611 USA
Telephone: 352/846-3786
Fax: 352/846-3355
Email: cbeat@mse.ufl.edu

Tony Andrade
Research Triangle Institute
3040 Cornwallis Rd.
Durham, NC 27709 USA
Telephone: 919/541-6713
Email: andrade@rti.org

Phillip Britt
Oak Ridge National Laboratory
P.O. Box 2008
Bldg 4500N, C-26, MS
Oak Ridge, TN 37922 USA
Telephone: 865/574-5029
Fax: 865/576-7956
Email: brittpf@ornl.gov

Joe Antonucci
NIST
100 Bureau Dr., Mail Stop 8545
Gaithersburg, MD 20899-8545 USA
Telephone: 301/975-6794
Email: joe.antonucci@nist.gov

Geoff Broadhurst
GWB Consultants LLC
26 Cottontail Lane
Irvington, NY 10533 USA
Telephone: 914/591-7356
Fax: 914/591-4630
Email: g.broadhurst@worldnet.att.net

Tony Bur
NIST
100 Bureau Dr., Mail Stop 8544
Gaithersburg, MD 20899 USA
Telephone: 301/975-6748
Email: abur@nist.gov

Anthony Carignano
ITC Minerals & Chemicals
6 North Park Dr., Ste. 105
Hunt Valley, MD 21030 USA
Telephone: 410/512-4108
Fax: 815/333-2997
Email: awcarignano@itcglobal.com

John Coulter
Lehigh Univ.
19 Memorial Dr. West
Bethlehem, PA 18015 USA
Telephone: 610/758-5148
Fax: 610/758-5623
Email: john.coulter@lehigh.edu

Mark Dadmun
Univ. of Tennessee
321 Buehler Hall
Knoxville, TN 37996 USA
Telephone: 865/974-6582
Fax: 865/974-3454
Email: Dad@utk.edu

Vinay Dayal
Iowa State Univ.
2271 Howe Hall
AEEM Dept., Rm. 1200
Ames, IA 50011 USA
Telephone: 515/294-0720
Fax: 515/294-3262
Email: vdayal@iastate.edu

Hugh De Long
Air Force Ofc. of Scie. Research
801 N. Randolph St., Rm. 732
Arlington, VA 22203 USA
Telephone: 703/696-7722
Fax: 703/696-8449
Email: hugh.delong@afosr.af.mil

Jack Douglas
NIST
100 Bureau Dr., Mail Stop 8542
Gaithersburg, MD 20899-8542 USA
Telephone: 301/975-6779
Email: jack.douglas@nist.gov

Fangming Du
M.S.E. of UPenn
3231 Walnut St., Rm. 324
Philadelphia, PA 19104 USA
Telephone: 215/898-2700
Email: fangming@seas.upenn.edu

Peter Ferraro
Specialty Minerals, Inc.
640 Noth 13th St.
Easton, PA 18042 USA
Telephone: 610/250-3202
Fax: 610/258-1203
Email: peter.ferraro@mineralstech.com

William Finch
Rohm & Haas Co.
727 Norristown Rd.
P.O. Box 904
Spring House, PA 19477 USA
Telephone: 215/619-1547
Fax: 215/619-1648
Email: WFinch@rohmhaas.com

Jeffrey Gilman
NIST
100 Bureau Dr., Mail Stop 8665
Gaithersburg, MD 20899-8665 USA
Telephone: 301/975-6573
Email: jeffrey.gilman@nist.gov

Harris Goldberg
InMat LLC
216 Route 206, Ste. 7
Hillsborough, NJ 08844 USA
Telephone: 908/874-7788
Fax: 908/874-7672
Email: hagoldberg@inmat.com

Caiguo Gong
ExxonMobil Chemical
5200 Bayway Dr.
Baytown, TX 77520 USA
Telephone: 281/834-1326
Fax: 281/834-2480
Email: caiguo.gong@exxonmobil.com

Eric Grulke
Univ. of Kentucky
Chemical & Materials Engineering
Lexington, KY 40506 USA
Telephone: 859/257-2300
Fax: 859/323-1929
Email: egrulke@engr.uky.edu

Reto Hagggenmueller
Univ. of Pennsylvania
3231 Walnut St.
LRSM
Philadelphia, PA 19104 USA
Telephone: 215/898-2700
Fax: 215/573-2128
Email: retohagg@seas.upenn.edu

Charles Han
NIST
100 Bureau Dr., Mail Stop 8543
Gaithersburg, MD 20899-8543 USA
Telephone: 301/975-6772
Email: charles.han@nist.gov

Christopher Harrison
NIST
100 Bureau Dr., Mail Stop 8542
Gaithersburg, MD 20899-8542 USA
Telephone: 301/975-3586
Email: christopher.harrison@nist.gov

Erik Hobbie
NIST
100 Bureau Dr., Mail Stop 8543
Gaithersburg, MD 20899-8543 USA
Telephone: 301/975-6774
Fax: 301/975-4977
Email: erik.hobbie@nist.gov

Douglas Hunter
Southern Clay Products

Tadahiro Ishii
Tokyo University of Science
1-3 Kaguraska
Shinjuku-ku
Tokyo 162-8601, JAPAN
Telephone: 81/3 5228 8257
Fax: 81/3 3235 2214
Email: taishii@ch.kagu.sat.ac.jp

Jack Johnson
ExxonMobil Research & Engineering
1545 Route 22 East
Annandale, NJ 08801 USA
Telephone: 908/730-2895
Fax: 908/730-3198
Email: jack.w.johnson@exxonmobil.com

Karl Kamena
Omni Tech. International
2715 Ashman St.
Midland, MI 48640 USA
Telephone: 989/631-3377
Fax: 989/631-7360
Email: kkamena@omnitechintl.com

Alamgir Karim
NIST
100 Bureau Dr., Mail Stop 8542
Gaithersburg, MD 20899-8542 USA
Telephone: 301/975-6588
Email: karim@nist.gov

Takashi Kashiwagi
NIST
100 Bureau Dr., Mail Stop 8665
Gaithersburg, MD 20899-8665 USA
Telephone: 301/975-6699
Email: takashi.kashiwagi@nist.gov

Hubert King
ExxonMobil Research & Engineering
1546 Route 22 East
Annandale, NJ 08822 USA
Telephone: 908/730-2888
Fax: 908/730-2536
Email: hubert.e.king@exxonmobil.com

Satish Kumar
Georgia Institute of Technology
School of Textile & Fiber Eng.
Atlanta, GA 30332-0295 USA
Telephone: 404/894-7550
Fax: 404/894-8780
Email: satish.kumar@textiles.gatech.edu

Steve Lawrence
Naval Research Lab
Code 6134
Washington, DC 20375 USA
Telephone: 202/767-3310
Fax: 202/767-4642
Email: Steven.Lawrence@nrl.navy.mil

Marshall Ledbetter
Mitsubishi Polyester Film
P.O. Box 1400
2001 Hood Rd.
Greer, SC 29652 USA
Telephone: 864/879-5352
Fax: 864/879-5940

Charles Lee
AFOSR/NL
801 N. Randolph St., Ste. 732
Arlington, VA 22203 USA
Telephone: 703/696-7779
Email: charles.lee@afosr.af.mil

Andre Lee
Michigan State Univ.
Dept. of Chemical Eng. & Mat'l. Scie.
East Lansing, MI 48824 USA
Telephone: 517/355-5112
Fax: 517/432-1105
Email: leea@msu.edu

Wendy Lin
GE Global Research
1 Research Circle
K-1 4B5
Niskayuna, NY 12309 USA
Telephone: 518/387-4081
Fax: 518/387-7403
Email: Wendy.Lin@crd.ge.com

Eric Lundquist
Rohm & Haas Co.
727 Norristown Rd.
Spring House, PA 19477 USA
Telephone: 215/619-5335
Email: wlundquist@rohmhaas.com

Michael Mackay
Michigan State Univ.
Dept. Chem. Eng. Mat. Sci.
East Lansing, MI 48824 USA
Telephone: 517/432-4495
Fax: 517/432-1105
Email: mackay@msu.edu

Michael McBrearty
Chemical ElectroPhysics Co., Inc.
705 Yorklyn Rd.
Hockessin, DE 19707 USA
Telephone: 302/234-8206
Fax: 302/239-4677
Email: cep@cep-corp.com

Kenneth McElrath
Carbon Nanotechnologies, Inc.
16200 Park Row
Houston, TX 77084 USA
Telephone: 281/492-5883
Fax: 281/492-5810
Email: kmcelrath@cnanotech.com

Alexander Morgan
Dow Chemical Company
1776 Bldg, Door A
Midland, MI 48674 USA
Telephone: 989/638-1774
Fax: 989/638-9716
Email: abmorgan@dow.com

Tinh Nguyen
NIST
100 Bureau Dr., Mail Stop 8621
Gaithersburg, MD 20899-8621 USA
Telephone: 301/975-6718
Email: tinh.nguyennist.gov

Marc Nyden
NIST
100 Bureau Dr., Mail Stop 8665
Gaithersburg, MD 20899-8665 USA
Telephone: 301/975-6692
Email: marc.nyden@nist.gov

Byoungkyeu Park
Cornell Univ.
Bard Hall
Ithaca, NY 14853 USA
Telephone: 607/255-4557
Fax: 607/255-2365
Email: bkp@cornell.edu

Ray Pearson
Lehigh Univ.
5 East Packer Ave.
Bethlehem, PA 18015 USA
Telephone: 610/758-3857
Fax: 610/758-4244
Email: rp02@lehigh.edu

Giampaolo Pellegatti
Basell USA, Inc.
912 Appleton Rd.
Elkton, MD 21921 USA
Telephone: 410/996-1677
Fax: 410/996-1811
Email: giampaolo.pellegatti@basell.com

Louis Pilato
Pilato Consulting
598 Watchung Rd.
Bound Brook, NJ 08805 USA
Telephone: 732/469-4057
Fax: 732/764-9747
Email: pilato-consulting@worldnet.att.ne

Srinivasa Raghavan
Univ. of Maryland
Dept. of Chem Engineering, Bldg. 090
College Park, MD 20742 USA
Telephone: 301/405-8164
Email: sraghava@eng.umd.edu

Asif Rasheed
Univ. of Tennessee
Dept. of Chemistry
Knoxville, TN 37996 USA
Telephone: 865/974-6596
Email: arasheed@utk.edu

Kim Rasmussen
Los Alamos National Laboratory
Theoretical Div.
MS-B262
Los Alamos, NM 87545 USA
Telephone: 505/665-3851
Fax: 505/665-4063
Email: kor@lanl.gov

Robert Reitz
Dupont Co.
Experimental Station, Bldg. 310
Wilmington, DE 19880 USA
Telephone: 302/695-2182
Fax: 302/675-1513
Email: robert.r.reitz@usa.dupont.com

Paul Rice
NIST
325 Broadway
Boulder, CO 80305-3328 USA
Telephone: 303/497-7601
Fax: 303/497-5030
Email: paulrice@boulder.nist.gov

Stephanie Scierka
NIST
100 Bureau Dr., Mail Stop 8621
Gaithersburg, MD 20899-8621 USA
Telephone: 301/975-6448
Fax: 301/990-6891
Email: stephanie.scierka@nist.gov

John Shost
Congoleum Corp.
861 Sloan Ave.
P.O. Box 3127
Trenton, NJ 08619 USA
Telephone: 609/584-3347
Fax: 609/584-3333
Email: jhost@congoleum.com

Andrew Slifka
NIST
325 Broadway
Boulder, CO 80305 USA
Telephone: 303/497-3744
Fax: 303/497-5030
Email: slifka@boulder.nist.gov

James Smith
Univ. of Utah
12 S. Central Campus, MSE Dept.
EMRO 304
Salt Lake City, UT 84112 USA
Telephone: 801/585-6131
Fax: 801/581-4816
Email: jsmith@bede.coe.utah.edu

Chad Snyder
NIST
100 Bureau Dr., Mail Stop 8541
Gaithersburg, MD 20899-8541 USA
Telephone: 301/975-4526
Fax: 301/975-3928
Email: chad.snyder@nist.gov

Francis Starr
NIST
100 Bureau Dr., Mail Stop 8540
Gaithersburg, MD 20899-8540 USA
Telephone: 301/975-8359
Email: francis.starr@nist.gov

Li-Piin Sung
NIST
100 Bureau Dr., Mail Stop 8621
Gaithersburg, MD 20899-8621 USA
Telephone: 301/975-6737
Fax: 301/990-6891
Email: lipiin@nist.gov

Atsushi Takahara
Kyushu University
Hokozaki, Higashikm
Fukuoka, 812-8581 JAPAN
Telephone: 81/92 642 2721
Fax: 81/92 642 2715
Email: takahara@cstf.kyushu-u.ac.jp

Russell Thompson
Los Alamos National Laboratory
Theoretical Div.
MS B262
Los Alamos, NM 87545 USA
Telephone: 505/665-9283
Fax: 505/665-4063
Email: rthompson@lanl.gov

Richard Vaia
Air Force Research Laboratory
2941 P St.
AFRL/MLBP
WPAFB, OH 45433 USA
Telephone: 937/255-9184
Fax: 937/255-9158
Email: richard.vaia@wpafb.af.mil

Kevin Van Workum
Univ. of Wisconsin

Mark VanLandingham
NIST
100 Bureau Dr., Mail Stop 8621
Gaithersburg, MD 20899-8621 USA
Telephone: 301/975-4686
Fax: 301/990-6891
Email: mack.vanlandingham@nist.gov

Noel Vanier
PPG Industries, Inc.
4325 Rosanna Dr.
Allison Park, PA 15101 USA
Telephone: 412/492-5640
Fax: 412/492-5522
Email: vanier@ppg.com

Vedagiri Velpari
PPG Ind., Inc.
Guys Run Rd.
Pittsburgh, PA 15238 USA
Telephone: 412/820-4946
Fax: 412/820-4952
Email: velpari@ppg.com

Daike Wang
Milliken Research Corp.
920 Milliken Rd.
Spartanburg, SC 29334 USA
Telephone: 864/503-2793
Fax: 864/503-2793
Email: daike.wang@milliken.com

Howard Wang
NIST
100 Bureau Dr., Mail Stop 8543
Gaithersburg, MD 20899-8543 USA
Telephone: 301/975-6781
Email: wangh@nist.gov

J.B. Wright
U.S. Army SBCCOM
Kansas St.
Natick, MA 01760 USA
Telephone: 508/233-6313
Fax: 508/233-5521
Email: jeffery.wright@natick.army.mil

Jusong Xia
Milliken Chemical
920 Milliken Rd., M-401
Spartanburg, SC 29304 USA
Telephone: 864/503-6055
Fax: 864/503-1365
Email: jusong.xia@milliken.com

Langqiu Xu
PPG Industries, Inc.
Glass Technology Ctr.
P.O. Box 2844
Pittsburgh, PA 15230-2844 USA
Telephone: 412/820-4953
Fax: 412/820-4952
Email: lqxu@ppg.com

Xiaoping Yang
Goodyear Tire & Rubber Co.
142 Goodyear Blvd.
Akron, OH 44305 USA
Telephone: 330/796-1325
Fax: 330/796-7060
Email: Xiaoping_Yang@goodyear.com

William Znidarsic
Univ. of Pennsylvania
4045 Baltimore Ave.
Apt C-1
Philadelphia, PA 19104 USA
Telephone: 215/662-7523
Email: williamz@seas.upenn.edu

