UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION - APRIL 2001

AER510S - AEROSPACE PROPULSION

EXAM TYPE: X

Duration:

2-1/2 Hours

Examiner:

Prof. J.P. Sislian

Teaching Assistant: V. Turca

1. A ramjet has *ideal* performance in every component except that combustion occurs at finite Mach number at constant pressure. Show that in this case the specific thrust is given by

$$\frac{Th}{\dot{m}_o} = a_o M_o \left\{ \left[\tau_b - \left(\frac{M_3}{M_o} \right)^2 (\tau_b - 1) \right]^{1/2} - 1 \right\}$$

Mark: 30/100

2. For an *ideal* turbojet engine with fixed τ_{λ} and π_{c} , does the nozzle-exit static temperature increase or decrease with increasing M_{o} ? What does this imply about the thermal efficiency of the engine?

Mark: 20/100

3. A turbojet compressor of pressure ratio π_c = 30 and a compressor efficiency η_c = 0.89 is driven by a turbine with polytropic efficiency e_t = 0.90. Determine π_t and the turbine efficiency η_t .

Assume:

$$T_2^{\circ} = 255.6 \text{ K},$$
 $T_4^{\circ} = 1444.4 \text{ K},$ $f = 0.02,$ $C_{pc} = 1000 \text{ J/kg-K},$ $\gamma_c = 1.4,$ $C_{pt} = 1240 \text{ J/kg-K},$ $\gamma_t = 1.3$ and $\eta_m = 1.0$

Mark: 20/100

4. For an ideal turbofan show that when s is minimized with respect to $\tau_{c'}$ for given τ_c and α , it is required to have $u_g = u_{g'}$

Mark: 30/100