

Locomotion | Legged Robotics Autonomous Mobile Robots

Marco Hutter

Margarita Chli, Paul Furgale, Martin Rufli, Davide Scaramuzza, Roland Siegwart

Different types of legged robots

[http://www.ai.mit.edu/projects/leglab] [http://www.honda.asimo.com]

[http://www.robugtix.com/t8]

- The number of legs influences
 - Mechanical complexity
 - Control complexity
- Analogy in Nature
 - Insects can walk directly upon birth
 - Most mammals require several minutes to stand
 - Humans require more than a year to walk on two legs

Static and dynamic gaits

dynamic gaits

- "System is stabilized on a limit cycle"
- Falls over if stopped

static gaits

- "System is statically stable"
- Does NOT fall if stopped

Static and dynamic stability

dynamic gaits

- "System is stabilized on a limit cycle"
- Falls over if stopped

- Poincaré Map $\mathbf{x}_{k+1} = P(\mathbf{x}_k)$
- Fix-Point $\mathbf{x}^* = P(\mathbf{x}^*)$
- Linearization of mapping $\Delta \mathbf{x}_{k+1} = \frac{\partial P}{\partial \mathbf{x}} \Delta \mathbf{x}_k = \mathbf{\Phi} \Delta \mathbf{x}_k$ The system is stable iff: $\lambda_i \left(\mathbf{\Phi} \right) < 1$

[C. David Remy, 2011]

Static and dynamic stability

dynamic gaits

- "System is stabilized on a limit cycle"
- Falls over if stopped

static gaits

- "System is statically stable"
- Does not fall if stopped

Quadrupedal robots

- Point feet
 - Low mechanical complexity
 - High robustness (no actuators in feet)
- 3 DoF per leg
 - Minimal number of actuators
 - No redundancy

dynamic gaits

- "System is stabilized on a limit cycle"
- Falls over if stopped

static gaits

- "System is statically stable"
- Does not fall if stopped

Static locomotion

- Gait execution
 - Body weight supported by ≥3 legs
 - Move one foot at the time
 - CoG shifted betweeen support polygons
- Gait characteristics
 - Statically stable
 - Well-suited for climbing
 - Slow and energetically inefficient

Dynamic locomotion

- Gait execution
 - Body weight supported by <3 legs
 - Move multiple feet at the time
 - Robot is balanced on a step-to-step basis
- Gait characteristics
 - Statically unstable
 - Well suited for fast motion
 - Fast and energetically efficient
 - Demanding for actuation and control

Locomotion control

1. Stepping sequence defined by gait pattern

- 2. Stepping location
 - React to terrain elevatio Kinematics ility
- 3. Contact force distribution
 - Compensate gravity and Dynamics ain body
 - Ensure contact stability a energetic efficiency

