SESSION DE 1992

concours externe de recrutement de professeurs agrégés

composition de mathématiques générales

Les candidats composeront sur du papier de composition quadrillé 5×5 .

Tout document est interdit.

Calculatrice électronique de poche — y compris calculatrice programmable et alphanumérique — à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire nº 86-228 du 28 juillet 1986. La clarté et la précision de la rédaction seront prises en compte dans l'appréciation de la copie.

DÉFINITIONS ET NOTATIONS

Dans tout le problème k désigne un corps commutatif. Les termes "espace vectoriel", "application (bi)linéaire" et "forme linéaire" signifient respectivement "k-espace vectoriel", "application k-(bi)linéaire" et "forme k-linéaire".

- 1. Une algèbre est un espace vectoriel A muni d'une application bilinéaire (appelée le produit) $(a,b) \mapsto ab$ de $A \times A$ dans A vérifiant les deux hypothèses suivantes :
 - (i) le produit induit une structure d'anneau sur A,
 - (ii) si $\lambda \in k$ et $a, b \in A$, on $a : \lambda(ab) = (\lambda a)b = a(\lambda b)$.

Nous supposerons que, de même qu'un anneau, une algèbre a toujours une unité notée 1. Un morphisme d'algèbres $f:A\to B$ de l'algèbre A dans l'algèbre B est une application linéaire telle que f(1)=1 et f(aa')=f(a)f(a') pour tout couple (a,a') d'éléments de A. Un sous-espace vectoriel A' d'une algèbre A est une sous-algèbre de A si l'unité 1 de A appartient à A' et si $a,a'\in A'$ implique $aa'\in A'$.

2. Si A est une algèbre, la multiplication des matrices induit une structure d'algèbre sur l'espace vectoriel $M_n(A)$ des matrices carrées de taille $n \times n$ à coefficients dans A ($n \ge 1$). Si a est un élément de A et i et j sont deux entiers vérifiant $1 \le i \le n$ et $1 \le j \le n$, on désigne par $E_{ij}(a)$ la matrice carrée de $M_n(A)$ dont tous les coefficients

Tournez la page S.V.P.

sont nuls à l'exception du coefficient situé sur la *i*-ème ligne et dans la *j*-ème colonne, coefficient qui est égal à a. Le produit dans $M_n(A)$ des matrices $E_{ij}(a)$ et $E_{k\ell}(a')$ vaut :

$$E_{ij}(a)E_{k\ell}(a') = \delta_{jk} E_{i\ell}(aa')$$

où δ_{jk} est le symbole de Kronecker : $\delta_{jj}=1$ et $\delta_{jk}=0$ si $j\neq k$.

On définit la trace $\operatorname{Tr}(m)$ d'une matrice m de $M_n(A)$ comme la somme dans A de ses coefficients diagonaux.

Soit V un espace vectoriel de dimension finie sur k et f un endomorphisme k-linéaire de V. On admet qu'il existe un élément bien défini $\mathrm{Tr}(f)$ de k égal pour toute base de V à la trace de la matrice représentant f dans cette base. On appelle $\mathrm{Tr}(f)$ la trace de l'endomorphisme f.

- 3. Soit A une algèbre et V un espace vectoriel. On appelle trace sur A à valeurs dans V toute application linéaire τ de A dans V telle que $\tau(aa') = \tau(a'a)$ pour tout couple (a,a') d'éléments de A. Les traces sur A à valeurs dans V forment un espace vectoriel noté T(A,V).
- 4. (a) Dans toute algèbre A on définit le commutateur [a,a'] de deux éléments a et a' de A par :

$$[a,a']=aa'-a'a.$$

On désigne par [A, A] le sous-espace vectoriel de A engendré par tous les commutateurs [a, a'] où a et a' parcourent A.

(b) Ŝi A est une algèbre, on désigne par $H_0(A)$ l'espace vectoriel quotient $H_0(A) = A/[A,A]$. On note T l'application linéaire surjective canonique de l'espace vectoriel A sur son quotient $H_0(A)$; celle-ci associe à l'élément a de A sa classe modulo [A,A].

Comme il est d'usage, les lettres N, Z et Q désignent successivement le monoïde des entiers naturels, l'anneau des entiers relatifs et le corps des nombres rationnels.

PARTIE I : L'ESPACE VECTORIEL $H_0(A)$

A. PRELIMINAIRES

Soit A une algèbre.

- 1. Montrer que la projection canonique $T:A\to H_0(A)$ est une trace sur A.
- 2. Soit $\tau:A\to V$ une trace sur A à valeurs dans un espace vectoriel V. Montrer qu'il existe une unique application linéaire $\overline{\tau}:H_0(A)\to V$ telle que $\overline{\tau}(T(a))=\tau(a)$ pour tout $a\in A$. En déduire que T(A,V) est isomorphe à l'espace vectoriel des applications linéaires de $H_0(A)$ dans V.
- 3. (a) Soit $f: A \to B$ un morphisme d'algèbres. Montrer qu'il existe une unique application linéaire $H_0(f)$ de $H_0(A)$ dans $H_0(B)$ telle que

$$H_0(f) \circ T = T \circ f$$
.

(b) Soit u un élément inversible de l'algèbre A et f l'endomorphisme d'algèbre de A donné par $f(a)=uau^{-1}$. Démontrer que $H_0(f)$ est l'application identité de $H_0(A)$.

B. LES ALGÈBRES DE MATRICES.

On se donne une algèbre A et un entier $n \geq 2$.

- 1. Montrer que $T \circ \operatorname{Tr}$ est une trace de $M_n(A)$ vers $H_0(A)$.
- 2. (a) Calculer dans $M_n(A)$ le commutateur $[E_{ij}(a), E_{k\ell}(b)]$ pour a et b dans A.
 - (b) On pose: $F_i(a) = E_{ii}(a) E_{11}(a)$ $(i \ge 1)$. Montrer que $F_i(a)$ peut s'écrire sous la forme d'un commutateur de $M_n(A)$.
 - (c) Etablir que toute matrice $m = (m_{ij})_{1 \le i \le n, 1 \le j \le n}$ de $M_n(A)$ s'écrit de manière unique sous la forme

$$m = \sum_{1 \le i \ne j \le n} E_{ij}(m_{ij}) + \sum_{2 \le i \le n} F_i(m_{ii}) + E_{11}(\text{Tr}(m)).$$

- (d) On note $M'_n(A)$ le noyau de l'application linéaire T o Tr de $M_n(A)$ dans $H_0(A)$. Etablir que $M'_n(A)$ est un sous-espace vectoriel de $[M_n(A), M_n(A)]$.
- (e) Montrer que l'application $\overline{T \circ \operatorname{Tr}}$ de $H_0(M_n(A))$ dans $H_0(A)$ est un isomorphisme pour tout entier $n \geq 2$.

C. L'ALGÈBRE D'UN GROUPE FINI.

On désigne par G un groupe fini noté multiplicativement, d'unité e et de cardinal N. On note aussi k[G] l'espace vectoriel des fonctions de G à valeurs dans k. A chaque élément g de G on associe la fonction χ_g de k[G] définie par $\chi_g(g)=1$ et $\chi_g(h)=0$ si $h\neq g$.

1. Montrer que si $f \in k[G]$, alors on a :

$$f = \sum_{g \in G} f(g) \, \chi_g$$

et que la famille $\{\chi_g\}_{g\in G}$ forme une base de l'espace vectoriel k[G] .

2. On munit k[G] de la loi de composition $(f, f') \mapsto ff'$ où ff' est appelé le produit de convolution de f et de f' et est défini pour tout g de G par

$$(ff')(g) = \sum_{h \in G} f(h)f'(h^{-1}g).$$

(On ne confondra pas le produit de convolution avec le produit usuel des fonctions qui n'est pas utilisé dans ce problème). Calculer $\chi_g \chi_{g'}$ et montrer que le produit de convolution munit k[G] d'une structure d'algèbre dont l'unité est χ_e .

3. On rappelle que les éléments g et g' du groupe G sont conjugués s'il existe h dans G tel que $g' = hgh^{-1}$. La conjugaison est une relation d'équivalence. Soit G une classe de conjugaison de G. Pour toute fonction f de k[G] on pose :

$$T_C(f) = \sum_{g \in C} f(g).$$

Montrer que T_C est une trace sur l'algèbre k[G] .

4. (a) Montrer que pour toute forme linéaire α sur k[G], il existe une fonction a de k[G] telle que pour toute fonction f on ait :

$$\alpha(f) = \sum_{g \in G} a(g) f(g).$$

- (b) En déduire que toute trace de k[G] à valeurs dans k est combinaison linéaire de traces de la forme T_C .
- 5. Etablir que la famille $\{T_C\}$ (où C parcourt l'ensemble des classes de conjugaison de G) forme une base de l'espace vectoriel T(k[G],k) et que la famille $\{\overline{T_C}\}$ forme une base de l'espace vectoriel dual de $H_0(k[G])$.
- 6. Calculer la dimension de l'espace vectoriel $H_0(k[S_4])$ où S_4 est le groupe symétrique d'ordre quatre.

PARTIE II : INDÉCOMPOSABILITÉ DE Z[G]

A. IDEMPOTENTS.

Soit A_1 et A_2 deux anneaux. On munit l'ensemble $A_1 \times A_2$ d'une structure d'anneau en posant :

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

 $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$

On dit qu'un anneau A est *indécomposable* s'il n'existe aucun isomorphisme d'anneaux de A sur $A_1 \times A_2$ où A_1 et A_2 sont des anneaux tous deux différents de $\{0\}$.

Un élément e de A est dit idempotent si $e^2 = e$. On note P(A) l'ensemble des idempotents de A. On dit que $e, f \in P(A)$ sont orthogonaux si ef = fe = 0.

- 1. Etablir que
 - (a) si e et f sont des idempotents orthogonaux de A, alors $e + f \in P(A)$;
 - (b) si $e \in P(A)$, alors 1 e est un idempotent et e et 1 e sont orthogonaux.
- 2. Soit A un anneau tel qu'il existe une application $r: P(A) \to \mathbb{N}$ vérifiant les trois propriétés:

(R1)
$$r(1) = 1$$
 et $r(0) = 0$,

page 80 5/10 - 1992. Agrégation Ext. Math.générales

- (R2) r(e) > 0 si et seulement si $e \neq 0$,
- (R3) r(e+f) = r(e) + r(f) si e et f sont des idempotents orthogonaux.

Sous ces hypothèses montrer que les seuls idempotents de A sont 0 et 1.

- 3. Montrer que si les seuls idempotents de A sont 0 et 1, alors A est indécomposable.
- 4. Montrer que si e est une matrice idempotente de $M_n(k)$, alors le rang $\operatorname{rg}(e)$ de la matrice e est lié à sa trace par :

$$rg(e)1 = Tr(e)$$

où 1 est l'unité du corps commutatif k.

B. INDÉCOMPOSABILITÉ.

On reprend les notations de I.C. On suppose jusqu'à la fin de cette partie que k est le corps \mathbf{Q} des nombres rationnels. On définit $\mathbf{Z}[G]$ comme le sous-groupe de $\mathbf{Q}[G]$ des combinaisons linéaires à coefficients entiers des éléments χ_g où g parcourt G. On définit aussi une application $\tau: \mathbf{Z}[G] \to \mathbf{Z}$ par

$$\tau(\sum_{g\in G} n(g)\chi_g) = n(e)$$

où e est l'unité de G . On rappelle que N désigne le cardinal du groupe fini G .

- 1. Montrer que le produit défini en I.C.2 sur $\mathbf{Q}[G]$ fait de $\mathbf{Z}[G]$ un sous-anneau de $\mathbf{Q}[G]$.
- 2. Soit x un élément de $\mathbf{Z}[G]$. On lui fait correspondre l'endomorphisme linéaire \tilde{x} du \mathbf{Q} -espace vectoriel $V = \mathbf{Q}[G]$ défini par $\tilde{x}(y) = xy$ pour tout y dans $\mathbf{Q}[G]$. Montrer que la trace de cet endomorphisme est donnée par :

$$\operatorname{Tr}(\tilde{x}) = N \tau(x)$$
.

3. Montrer que la restriction de τ à $P(\mathbf{Z}[G])$ est à valeurs dans N et vérifie les propriétés (R1), (R2) et (R3) décrites plus haut. En déduire que l'anneau $\mathbf{Z}[G]$ est indécomposable.

PARTIE III : L'ESPACE VECTORIEL $H_1(A)$

Soit A une algèbre. On considère l'espace vectoriel F_A des applications ensemblistes de l'ensemble $A \times A$ dans k. Pour tout couple (a,b) de $A \times A$ on note X(a,b) la fonction qui vaut 1 sur le couple (a,b) et 0 sur tout autre couple. La famille libre $\{X(a,b)\}_{(a,b)\in A\times A}$ engendre un sous-espace vectoriel X_A de F_A . Soit Y_A le sous-espace vectoriel de X_A engendré par les éléments

$$\alpha(a,b) = X(a,b) + X(b,a)$$

Agrégation Ext. Math. générales 1992.

$$\beta(a, b, c) = X(ab, c) - X(a, bc) + X(ca, b)$$
$$\gamma(a, b, \lambda) = X(\lambda a, b) - \lambda X(a, b)$$

et

$$\delta(a,b,c) = X(a+b,c) - X(a,c) - X(b,c)$$

où a, b, c parcourent A et λ parcourt k.

On note C(A) l'espace vectoriel quotient $C(A) = X_A/Y_A$. L'image de X(a,b) dans C(A) est notée $a \wedge b$.

1. Montrer que tout élément de C(A) s'écrit sous la forme :

$$\sum_{i=1}^n a_i \wedge b_i$$

où $a_1, \ldots, a_n, b_1, \ldots, b_n$ sont des éléments de A.

2. Etablir dans C(A) les relations :

$$a \wedge b = -b \wedge a$$

$$a \wedge bc = ab \wedge c + ca \wedge b$$

et

$$1 \wedge a = a \wedge 1 = 0.$$

3. Soit V un espace vectoriel et f une application k-bilinéaire de $A \times A$ dans V vérifiant les relations :

$$f(a,b) + f(b,a) = 0$$
 et $f(a,bc) = f(ab,c) + f(ca,b)$

pour tout $a,b,c\in A$. Montrer qu'il existe une unique application linéaire \widehat{f} de C(A) dans V telle que pour tout couple (a,b) d'éléments de A on a :

$$\widehat{f}(a \wedge b) = f(a,b).$$

- 4. (a) Etablir qu'il existe une unique application linéaire $\theta_A: C(A) \to A$ vérifiant $\theta_A(a \land b) = [a, b]$ pour tout couple $(a, b) \in A^2$. On rappelle que [a, b] = ab ba.
 - (b) Déterminer l'espace vectoriel quotient $A/\theta_A(C(A))$.

On définit l'espace vectoriel $H_1(A)$ comme le noyau de $\theta_A:C(A)\to A$.

5. On considère l'application bilinéaire Tr' de $M_p(A) \times M_p(A)$ dans C(A) définie par

$$\operatorname{Tr}'(m,n) = \sum_{i,j=1}^{p} m_{ij} \wedge n_{ji}$$

où $m=(m_{ij})_{ij}$ et $n=(n_{ij})_{ij}$ sont des matrices de $M_p(A)$.

- (a) Calculer $\operatorname{Tr}'(E_{ij}(a), E_{k\ell}(b))$ pour les matrices introduites au début du problème.
- (b) Montrer qu'il existe une application linéaire et une seule $\widehat{\operatorname{Tr}}'$ de $C(M_p(A))$ dans C(A) telle que $\widehat{\operatorname{Tr}}'(m \wedge n) = \operatorname{Tr}'(m,n) \ (m,n \in M_p(A))$.
- (c) Etablir la relation : $\theta_A \circ \widehat{\operatorname{Tr}}' = \operatorname{Tr} \circ \theta_{M_p(A)}$ où Tr désigne la trace de $M_p(A)$ dans A. En déduire que la restriction Tr_1 de $\widehat{\operatorname{Tr}}'$ à $H_1(M_p(A))$ est à valeurs dans $H_1(A)$.
- (d) Montrer que $\operatorname{Tr}_1: H_1(M_p(A)) \to H_1(A)$ est surjective.
- 6. Considérons l'espace vectoriel $k[t, t^{-1}]$ des séries $\sum_{n \in \mathbb{Z}} \lambda_n t^n$ où $(\lambda_n)_{n \in \mathbb{Z}}$ est une suite indexée par \mathbb{Z} d'éléments de k tous nuls sauf un nombre fini d'entre eux. On admettra que le produit

$$(\sum_{n\in\mathbb{Z}} \lambda_n t^n)(\sum_{n\in\mathbb{Z}} \mu_n t^n) = \sum_{n\in\mathbb{Z}} (\sum_{i+j=n} \lambda_i \mu_j) t^n$$

munit $k[t,t^{-1}]$ d'une structure d'algèbre d'unité $t^0=1$. Pour tout élément $P=\sum_{n\in\mathbb{Z}}\,\lambda_nt^n$, on pose :

$$P' = \sum_{n \in \mathbb{Z}} (n+1) \lambda_{n+1} t^n \quad \text{et} \quad res(P) = \lambda_{-1}.$$

(a) Vérifier que pour tout $P \in k[t, t^{-1}]$ on a :

$$(PQ)' = P'Q + PQ'$$
 et $res(P') = 0$.

(b) Etablir qu'il existe une forme linéaire Res sur $C(k[t,t^{-1}])$ et une seule telle que pour tout couple (P,Q) d'éléments de $k[t,t^{-1}]$ on a :

$$Res(P \land Q) = res(PQ')$$
.

(c) Montrer que si $n \in \mathbb{Z}$ et $P \in k[t, t^{-1}]$, on a les relations :

$$P \wedge t^n = nPt^{n-1} \wedge t$$

dans $C(k[t,t^{-1}])$ (on pourra commencer par traiter le cas $n\geq 0$). En déduire les relations (pour $P,Q\in k[t,t^{-1}]$) :

$$P \wedge Q = PQ' \wedge t = -QP' \wedge t$$

et

$$P' \wedge t = 0$$
.

(d) Etablir que la restriction de Res à $H_1(k[t, t^{-1}])$ est un isomorphisme de $H_1(k[t, t^{-1}])$ sur k lorsque k est un corps de caractéristique nulle.

8/10

PARTIE IV: EXTENSIONS

On suppose jusqu'à la fin du problème que le corps commutatif k est de caractéristique nulle.

A. GÉNÉRALITÉS.

Soit U un espace vectoriel. On appelle crochet sur U toute application k-bilinéaire <,> de $U\times U$ dans U vérifiant pour tous $u,v,w\in U$ les deux conditions :

(L1)
$$\langle u, v \rangle + \langle v, u \rangle = 0$$

(L2)
$$\langle u, \langle v, w \rangle \rangle + \langle v, \langle w, u \rangle \rangle + \langle w, \langle u, v \rangle \rangle = 0$$
.

On appelle ℓ -espace tout couple L=(U,<,>) où <, > est un crochet sur l'espace vectoriel U. Soit L' = (U', <, >') un autre ℓ -espace. Un ℓ -morphisme de L dans L' est une application linéaire $f: U \to U'$ vérifiant $\langle f(u), f(v) \rangle = f(\langle u, v \rangle)$ pour tous u, v dans U.

Soit E un espace vectoriel. On appelle cocycle sur le ℓ -espace L = (U, <, >) à valeurs dans E toute application bilinéaire α de $U \times U$ dans E vérifiant pour tous $u, v, w \in U$ les deux conditions:

(C1)
$$\alpha(u,v) + \alpha(v,u) = 0$$

(C2)
$$\alpha(u, \langle v, w \rangle) + \alpha(v, \langle w, u \rangle) + \alpha(w, \langle u, v \rangle) = 0.$$

Avec ces données considérons l'application bilinéaire $\{,\}\$ de $(U \times E) \times (U \times E)$ dans $U \times E$ définie par

$$\{(u, x), (v, y)\} = (\langle u, v \rangle, \alpha(u, v))$$

où $u, v \in U$ et $x, y \in E$.

- 1. (a) Montrer que l'application bilinéaire {, } ainsi définie vérifie les conditions (L1) et (L2). On note $L(\alpha)$ le ℓ -espace ($U \times E$, $\{,\}$) ainsi obtenu : $L(\alpha)$ est appelé l'extension de L par le cocycle α .
 - (b) Soit p la projection canonique de $U \times E$ sur U. Montrer que p est un ℓ -morphisme de $L(\alpha)$ sur L.
 - (c) Montrer qu'il existe un ℓ -morphisme $s:L\to L(\alpha)$ tel que $p\circ s=$ identité de L si et seulement s'il existe une application linéaire $f: U \to E$ telle que $\alpha(u,v) = f(\langle u,v \rangle)$ pour tous u,v dans U. Si une telle application s existe, on dira que l'extension $L(\alpha)$ est triviale.
- 2. On reprend les notations de la partie III. Soit A une algèbre.
 - (a) Montrer que l'application "commutateur" [,] de $A \times A$ dans A vérifie les conditions (L1) et (L2). On note L(A) le ℓ -espace (A, [,]).
 - (b) Soit φ une application linéaire de C(A) dans un espace vectoriel E. Montrer que l'application bilinéaire $\alpha_{\varphi}: A \times A \to E$ définie par $\alpha_{\varphi}(a,b) = \varphi(a \wedge b)$ est un cocycle sur L(A) à valeurs dans E.
 - (c) Montrer que l'extension $L(A)(\alpha_{\varphi})$ est triviale si et seulement si la restriction de $\varphi \stackrel{.}{a} H_1(A)$ est nulle.

B. EXTENSIONS AFFINES.

On considère l'algèbre $A = k[t, t^{-1}]$ définie en III.6. Soit

$$\varphi = Res \circ \widehat{\operatorname{Tr}}' : C(M_p(A)) \to k$$

la composée des applications Res et Îr' définies dans la Partie III.

1. Dans $M_p(A) \times k$ posons:

$$c = (0,1)$$
 et $e_{ij}(t^n) = (E_{ij}(t^n), 0)$.

Montrer que l'ensemble $\{c\} \cup \{e_{ij}(t^n)\}_{1 \leq i,j \leq p,\, n \in \mathbb{Z}}$ est une base de l'espace vectoriel $M_p(A) \times k$ et que dans l'extension $L(M_p(A))(\alpha_{\varphi})$ on a les relations :

$$\{c,c\} = \{c,e_{ij}(t^n)\} = \{e_{ij}(t^n),c\} = 0$$

$$\{e_{ij}(t^n),e_{k\ell}(t^m)\} = \delta_{jk}e_{i\ell}(t^{n+m}) - \delta_{i\ell}e_{kj}(t^{n+m}) \quad \text{si } n+m \neq 0$$

$$\{e_{ij}(t^{-m}),e_{k\ell}(t^m)\} = \delta_{jk}e_{i\ell}(1) - \delta_{i\ell}e_{kj}(1) + m \,\delta_{jk}\delta_{i\ell}\,c.$$

2. L'extension $L(M_p(A))(\alpha_{\varphi})$ est-elle triviale ?

C. OPÉRATEURS DIFFÉRENTIELS.

On considère à nouveau l'algèbre $A=k[t,t^{-1}]$. Pour tout élément P de A, on note \tilde{P} l'endomorphisme linéaire de A défini par $\tilde{P}(Q)=PQ$ ($Q\in A$). De même on note d l'endomorphisme linéaire de A donné par d(P)=P'.

- 1. (a) Montrer que l'application $P \mapsto \tilde{P}$ est un morphisme d'algèbres de A dans l'algèbre End(A) des endomorphismes linéaires de A munie de la composition.
 - (b) Vérifier que pour tout $P \in A$ et tout $q \ge 1$ on a la relation suivante dans End(A):

$$d^q \, \widetilde{P} = \sum_{\ell=0}^q \left(\begin{array}{c} q \\ \ell \end{array} \right) \, \widetilde{P^{(\ell)}} \, d^{q-\ell}$$

où $\begin{pmatrix} q \\ \ell \end{pmatrix}$ désigne le coefficient binômial $\frac{q!}{\ell!(q-\ell)!}$ et où $P^{(\ell)}$ est défini par récurrence par : $P^{(0)} = P$ et $P^{(\ell)} = (P^{(\ell-1)})'$ si $\ell > 0$.

2. Soit D l'espace vectoriel des éléments de End(A) de la forme :

$$\widetilde{P_0} + \widetilde{P_1}d + \widetilde{P_2}d^2 + \cdots + \widetilde{P_n}d^n$$

où n parcourt N et $P_0, P_1, P_2, \ldots, P_n$ parcourent A . On pose : $u = \tilde{t}$.

- (a) Montrer que $\{u^p d^q\}_{p \in \mathbb{Z}, q \in \mathbb{N}}$ est une base de l'espace vectoriel D .
- (b) Montrer que si $x,y\in D$ alors $xy\in D$. En déduire que D est une sous-algèbre de End(A) .

Agrégation Ext. Math. générales _ 1992 -

3. Dans l'algèbre D calculer le commutateur $[u,u^qd^r]$. En déduire que $H_0(D)=0$ et que toute trace sur D est nulle.

D. EXTENSION DE VIRASORO.

On considère le sous-espace vectoriel W de D engendré par les éléments u^pd où p parcourt ${\bf Z}$.

- 1. Soit $P, Q \in A = k[t, t^{-1}]$. Montrer que $[\tilde{P}d, \tilde{Q}d] = (PQ' QP')d$. En déduire que (W, [,]) est un ℓ -espace que nous noterons encore W.
- 2. Considérons l'application bilinéaire $\alpha: W \times W \to k$ définie par

$$\alpha(\tilde{P}d,\tilde{Q}d) = \frac{1}{12} \operatorname{res}(P'Q'' - Q'P'')$$

où $P,Q\in A$, Q''=(Q')' et res est la forme linéaire sur A définie en III.6. Montrer que α est un cocycle sur W.

3. On note $Vir = W(\alpha)$ l'extension correspondante. Montrer que Vir possède une base $\{c\} \cup \{L_n\}_{n \in \mathbb{Z}}$ telle que son crochet $\{,\}$ soit déterminé par :

$$\{c,c\} = \{c,L_n\} = \{L_n,c\} = 0$$

 $\{L_n,L_m\} = (m-n)L_{n+m} \quad \text{si } n+m \neq 0$
 $\{L_{-m},L_m\} = 2mL_0 - \frac{m^3 - m}{6}c.$

- 4. (a) Démontrer que l'extension Vir n'est pas triviale.
 - (b) En admettant que le cocycle α soit de la forme α_{φ} où φ est une forme linéaire sur C(D), établir la non-nullité de l'espace vectoriel $H_1(D)$.