Least squares solution to a linear system

Definition (Least squares solution)

Recall:

Let Ax = b be a linear system where A is a $m \times n$ matrix.

A vector $u \in \mathbb{R}^n$ is called a least squares solution to the

linear system if $\|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{u}\| \leq \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{v}\|$ for all $\boldsymbol{v} \in \mathbb{R}^n$.

When is a linear system consistent?

Recall that $\underline{Ax = b}$ is consisent if and only if \underline{b} belongs to the column space of A.

Ax = b is consistent. Least squares solution = Exact solution.

Ax = b is inconsistent. Least squares solution =?

An inconsistent linear system

Recall that $\underline{Ax = b}$ is consisent if and only if \underline{b} belongs to the column space of A.

 Ax_{1} Ax_{2} Au = p Ax_{3} Ax_{3} Ax_{4} Ax_{3} Ax_{4} Ax_{4} Ax_{4} Ax_{5} Ax_{6} Ax_{1} Ax_{2} Ax_{4} Ax_{4} Ax_{5} Ax_{6} Ax_{7} Ax_{8} Ax_{1} Ax_{2} Ax_{3} Ax_{4} Ax_{4} Ax_{5} Ax_{6} Ax_{7} Ax_{7} Ax_{8} Ax_{1} Ax_{2} Ax_{3} Ax_{4} Ax_{4} Ax_{5} Ax_{6} Ax_{7} Ax_{8} Ax_{8} Ax_{1} Ax_{1} Ax_{2} Ax_{3} Ax_{4} Ax_{5} Ax_{6} Ax_{7} Ax_{8} Ax_{8} Ax_{8} Ax_{8} Ax_{8} Ax_{8} Ax_{8} Ax_{8} Ax_{8}

To find least squares solution u, we solve Ax = p.

Which u will be such that Au is 'closest' to b?

Answer: An u such that Au = p where p is the projection of b onto the column space of A.

Theorem

Let Ax = b be a linear system, where A is an $m \times n$ matrix, and let p be the projection of b onto the column space of A. Then $\|(b-p)\| \leq \|(b-Av)\| \text{ for all } v \in \mathbb{R}^n$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } V = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
(column space of \mathbf{A})

 $V = \operatorname{span}\{(1,0,1),(1,1,1)\}$ (a plane in \mathbb{R}^3 containing origin).

Find the (shortest) distance from u = (1, 2, 3) to V.

By Gram-Schmidt Process, (1,0,1) and (0,1,0) forms an orthogonal basis for V.

$$p = \frac{(1,2,3) \cdot (1,0,1)}{(1,0,1)} \underbrace{(1,0,1)} + \frac{(1,2,3) \cdot (0,1,0)}{(0,1,0)} \underbrace{(0,1,0)}_{(0,1,0)} \underbrace{(0,1,0)}_{(0,1,0)} = (2,2,2)$$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } V = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

(column space of A)

Projection of
$$\mathbf{b}$$
 onto V is $\mathbf{p} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$. What is a least squares solution $\mathbf{to} \mathbf{A} \mathbf{x} = \mathbf{b}$?

$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 is a least squares solution if and only if
$$\begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} x \\ 3 \end{pmatrix} \begin{pmatrix} x \\ 3 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$$

$$A \binom{x}{y} = \binom{2}{2} \Leftrightarrow \binom{x}{y} = \binom{0}{2}.$$

Theorem (Least squares solution)

Let Ax = b be a linear system. Then x is a least squares solution to Ax = b if and only if x is a solution to

Proof: Let
$$A = (u_1 \ u_2 \ \dots \ u_n)$$
 $u_i = i$ th column of A

Let $V = \text{span}\{u_1, ..., u_n\} = \text{column space of } A$.

x is a least squares solution

- $\Leftrightarrow x$ is a solution to Ax = p (p is the projection of b onto V)
- $\Leftrightarrow Ax$ is the projection of b onto V

Theorem (Least squares solution)

Proof: Let
$$A = (u_1 \ u_2 \ \dots \ u_n)$$

 $u_i = i$ th column of A

Let
$$V = \text{span}\{u_1, ..., u_n\}$$
 = column space of A .

x is a least squares solution

- $\Leftrightarrow x$ is a solution to Ax = p (p is the projection of b onto V)
- $\Leftrightarrow Ax$ is the projection of b onto V
- $\Leftrightarrow b Ax$ is orthogonal to V

$$\Leftrightarrow u_i \cdot (b - Ax) = 0$$
 for all $i = 1, ..., n$.

$$\Leftrightarrow A^{T}(b-Ax)=0 \Leftrightarrow A^{T}Ax=A^{T}b$$

Back to our experiments!

i	1	2	3	4	5	6
r_i	0	0	1	1	2	2
S_{i}	0	1	2	0	1	2
t_i	0.5	1.6	2.8	0.8	5.1	5.9

$$\begin{pmatrix} r_1^2 & s_1 & 1 \\ r_2^2 & s_2 & 1 \\ \vdots & \vdots & \vdots \\ r_6^2 & s_6 & 1 \end{pmatrix} \begin{pmatrix} c \\ d \\ e \end{pmatrix} = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_6 \end{pmatrix} \Leftrightarrow Ax = b \quad A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \\ 4 & 1 & 1 \\ 4 & 2 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 0.5 \\ 1.6 \\ 2.8 \\ 0.8 \\ 5.1 \\ 5.9 \end{pmatrix}$$

Back to our experiments!

$$\mathbf{A}^{T}\mathbf{A} = \begin{pmatrix} 34 & 14 & 10 \\ 14 & 10 & 6 \\ 10 & 6 & 6 \end{pmatrix} \qquad \mathbf{A}^{T}\mathbf{b} = \begin{pmatrix} 47.6 \\ 24.1 \\ 16.7 \end{pmatrix}$$

Solving

$$\begin{pmatrix} 34 & 14 & 10 \\ 14 & 10 & 6 \\ 10 & 6 & 6 \end{pmatrix} \begin{pmatrix} c \\ d \\ e \end{pmatrix} = \begin{pmatrix} 47.6 \\ 24.1 \\ 16.7 \end{pmatrix}$$

we have c = 0.9275, d = 0.9225, e = 0.3150.

Let $V = \text{span}\{(1,-1,1,-1),(1,2,0,1),(2,1,1,0)\}$. Find the projection of (1,1,1,1) onto V.

Let
$$A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$. Note that V is the column space of A .

We first obtain a least squares solution of Ax = b.

Let $V = \text{span}\{(1,-1,1,-1),(1,2,0,1),(2,1,1,0)\}$. Find the projection of (1,1,1,1) onto V.

$$\begin{pmatrix} 4 & -2 & 2 \\ -2 & 6 & 4 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ = \begin{pmatrix} 0 \\ 4 \\ 4 \end{pmatrix}$$

choose one:

We first obtain a least squares solution of
$$Ax = b$$
.

Solving $A^TAx = A^Tb$:
$$\begin{pmatrix}
4 & -2 & 2 \\
-2 & 6 & 4 \\
2 & 4 & 6
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
x \\
4 \\
4
\end{pmatrix}$$
Solving...
$$\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
-t + \frac{2}{5} \\
-t + \frac{4}{5} \\
t
\end{pmatrix}, t \in \mathbb{R}$$
Infinitely many least squares solution of $Ax = b$.

Infinitely many least squares solution of $Ax = b$.

least squares solutions

Let $V = \text{span}\{(1,-1,1,-1),(1,2,0,1),(2,1,1,0)\}$. Find the projection of (1,1,1,1) onto V.

$$A\begin{bmatrix} \frac{2}{5} \\ \frac{4}{5} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{6}{5} \\ \frac{6}{5} \\ \frac{2}{5} \\ \frac{2}{5} \end{bmatrix}$$
 is the projection of (1,1,1,1) onto V .

choose one: $\begin{bmatrix} \frac{2}{5} \\ \frac{4}{5} \\ 0 \end{bmatrix}$

Summary

- 1) A least squares solution to Ax = b is given by the vector u that satisfies Au = p where p is the projection of b onto the column space of A.
- 2) Finding a least squares solution to Ax = b by solving the normal equation $A^TAx = A^Tb$.