

96700-658.ST25.txt SEQUENCE LISTING

```
<110>
        Somlo, Stefan
       Mochizuki, Toshio
<120>
       POLYCYSTIC KIDNEY DISEASE PKD2 GENE AND USES THEREOF
<130>
       96700/658
<140>
       09/753,008
       2001-01-02
<141>
       08/651,999
1996-05-23
<150>
<151>
<150>
       09/385,752
       1999-08-30
<151>
<160>
       15
<170>
       PatentIn version 3.3
<210>
<211>
       866
<212>
       PRT
<213>
       Homo sapiens
<220>
<221>
       misc_feature
<222>
       (384)..(384)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
       misc_feature
<222>
       (395)..(395)
       Xaa can be any naturally occurring amino acid
<223>
<220>
<221>
<222>
       misc_feature
       (426)..(426)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
       misc_feature
       (432)..(432)
<222>
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
<222>
       misc_feature (547)..(547)
       Xaa can be any naturally occurring amino acid
<223>
<220>
<221>
       misc_feature
<222>
       (586)..(588)
       Xaa can be any naturally occurring amino acid
<223>
<220>
<221>
       misc_feature
       (849)..(849)
<222>
<223>
       Xaa can be any naturally occurring amino acid
```

<400> 1

Met Val Asn Ser Ser Arg Val Gln Pro Gln Gln Pro Gly Asp Ala Lys 1 10 15

Arg Pro Pro Ala Pro Arg Ala Pro Asp Pro Gly Arg Leu Met Ala Gly
20 25 30

Cys Ala Ala Val Gly Ala Ser Leu Ala Ala Pro Gly Gly Leu Cys Glu 35 40 45

Gln Arg Gly Leu Glu Ile Glu Met Gln Arg Ile Arg Gln Ala Ala 50 55 60

Arg Asp Pro Pro Ala Gly Ala Ala Ser Pro Ser Pro Pro Leu Ser 65 70 75 80

Ser Cys Ser Arg Gln Ala Trp Ser Arg Asp Asn Pro Gly Glu Glu 85 90 95

Ala Glu Glu Glu Glu Glu Val Glu Glu Glu Glu Gly Met Val
100 105 110

Val Glu Met Asp Val Glu Trp Arg Pro Gly Ser Arg Arg Ser Ala Ala 115 120 125

Ser Ser Ala Val Ser Ser Val Gly Ala Arg Ser Arg Gly Leu Gly Gly 130 140

Tyr His Gly Ala Gly His Pro Ser Gly Arg Arg Arg Arg Glu Asp 145 150 155 160

Gln Gly Pro Pro Cys Pro Ser Pro Val Gly Gly Gly Asp Pro Leu His 165 170 175

Arg His Leu Pro Leu Glu Gly Gln Pro Pro Arg Val Ala Trp Ala Glu 180 185 190

Arg Leu Val Arg Gly Leu Arg Gly Leu Trp Gly Thr Arg Leu Met Glu 195 200 205

Glu Ser Ser Thr Asn Arg Glu Lys Tyr Leu Lys Ser Val Leu Arg Glu 210 220

Leu Val Thr Tyr Leu Leu Phe Leu Ile Val Leu Cys Ile Leu Thr Tyr 225 230 235 240

Gly Thr Glu Ala Asp Asn Arg Ser Phe Ile Phe Tyr Glu Asn Leu Leu Page 2

Leu Gly Val Pro Arg Ile Arg Gln Leu Arg Val Arg Asn Gly Ser Cys 260 265 270 Ser Ile Pro Gln Asp Leu Arg Asp Glu Ile Lys Glu Cys Tyr Asp Val 275 280 285 Tyr Glu Thr Ala Ala Gln Val Ala Ser Leu Lys Lys Asn Val Trp Leu 290 295 300 Asp Arg Gly Thr Arg Ala Thr Phe Ile Asp Phe Ser Val Tyr Asn Ala 305 310 315 320 Asn Ile Asn Leu Phe Cys Val Val Arg Leu Leu Val Glu Phe Pro Ala Thr Gly Gly Val Ile Pro Ser Trp Gln Phe Gln Pro Leu Lys Leu Ile 340 345 350 Arg Tyr Val Thr Thr Phe Asp Phe Phe Leu Ala Ala Cys Glu Ile Ile 355 360 365 Phe Cys Phe Phe Ile Phe Tyr Tyr Val Val Glu Glu Ile Leu Glu Xaa 370 380 Ile Arg Ile His Lys Leu His Tyr Phe Arg Xaa Ser Phe Trp Asn Cys 385 390 395 400 385 Leu Asp Val Val Ile Val Val Leu Ser Val Val Ala Ile Gly Ile Asn Ile Tyr Arg Thr Ser Asn Val Glu Val Xaa Leu Leu Gln Phe Leu Xaa 420 Glu Asp Gln Asn Thr Phe Pro Asn Phe Glu His Leu Ala Tyr Trp Gln Ile Gln Phe Asn Asn Ile Ala Ala Val Thr Val Phe Phe Val Trp Ile Lys Leu Phe Lys Phe Ile Asn Phe Asn Arg Thr Met Ser Gln Leu Ser 465 470 475 480Thr Thr Met Ser Arg Cys Ala Lys Asp Leu Phe Gly Phe Ala Ile Met 485 490 495 96700-658.ST25.txt
Phe Phe Ile Ile Phe Leu Ala Tyr Ala Gln Leu Ala Tyr Leu Val Phe
500 505 510 Gly Thr Gln Val Asp Asp Phe Ser Thr Phe Gln Glu Cys Ile Phe Thr 515 520 525 Gln Phe Arg Ile Ile Leu Gly Asp Ile Asn Phe Ala Glu Ile Glu Glu 530 540 Ala Asn Xaa Arg Val Leu Gly Pro Ile Tyr Phe Thr Thr Phe Val Phe Phe Met Phe Phe Ile Leu Leu Asn Met Phe Leu Ala Ile Ile Asn Asp 565 570 575 Thr Tyr Ser Glu Val Lys Ser Asp Leu Xaa Xaa Xaa Ala Gln Gln Lys Ala Glu Met Glu Leu Ser Asp Leu Ile Arg Lys Gly Tyr His Lys Ala 595 600 605 Leu Val Lys Leu Lys Leu Lys Lys Asn Thr Val Asp Asp Ile Ser Glu 610 620 Ser Leu Arg Gln Gly Gly Lys Leu Asn Phe Asp Glu Leu Arg Gln 625 635 640 Asp Leu Lys Gly Lys Gly His Thr Asp Ala Glu Ile Glu Ala Ile Phe 645 650 655 Thr Lys Tyr Asp Gln Asp Gly Asp Gln Glu Leu Thr Glu His Glu His 660 670 Gln Gln Met Arg Asp Asp Leu Glu Lys Glu Arg Glu Asp Leu Asp Leu Asp His Ser Ser Leu Pro Arg Pro Met Ser Ser Arg Ser Phe Pro Arg 690 700 Ser Leu Asp Asp Ser Glu Glu Asp Asp Asp Glu Asp Ser Gly His Ser 705 710 715 720 Ser Arg Arg Gly Ser Ile Ser Ser Gly Val Ser Tyr Glu Glu Phe
725 730 735 Gln Val Leu Val Arg Arg Val Asp Arg Met Glu His Ser Ile Gly Ser 740 745 750

Ile Val Ser Lys Ile Asp Ala Val Ile Val Lys Leu Glu Ile Met Glu Arg Ala Lys Leu Lys Arg Glu Val Leu Gly Arg Leu Leu Asp Gly 770 780 Val Ala Glu Asp Glu Arg Leu Gly Arg Asp Ser Glu Ile His Arg Glu Gln Met Glu Arg Leu Val Arg Glu Glu Leu Glu Arg Trp Glu Ser Asp Asp Ala Ala Ser Gln Ile Ser His Gly Leu Gly Thr Pro Val Gly Leu 820 825 830 Asn Gly Gln Pro Arg Pro Arg Ser Ser Arg Pro Ser Ser Gln Ser 840 Xaa Thr Glu Gly Met Glu Gly Ala Gly Gly Asn Gly Ser Ser Asn Val 850 855 His Val 865 <210> 523 <211> <212> PRT <213> Homo sapiens <220> <221> <222> misc_feature (46)..(46)<223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (51)..(55)<223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (89)..(93)<223> Xaa can be any naturally occurring amino acid <220> misc_feature (101)..(111) <221> <222> <223> Xaa can be any naturally occurring amino acid <220> misc_feature <221> <222> (166)..(167)<223> Xaa can be any naturally occurring amino acid

Page 5

```
<220>
       misc_feature (293)..(293)
<221>
<222>
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
<222>
       misc_feature
       (334)..(335)
       Xaa can be any naturally occurring amino acid
<223>
<220>
<221>
       misc_feature
<222>
       (437)..(440)
       Xaa can be any naturally occurring amino acid
<223>
<220>
<221>
       misc_feature
<222>
       (511)..(517)
       Xaa can be any naturally occurring amino acid
<400>
Phe Leu Ala Lys Glu Glu Ala Arg Lys Val Lys Arg Leu His Gly Met
1 10 15
Leu Arg Ser Leu Leu Val Tyr Met Leu Phe Leu Leu Val Thr Leu Leu
Ala Ser Tyr Gly Asp Ala Ser Cys His Gly His Ala Tyr Xaa Arg Leu
35 40 45
Gln Ser Xaa Xaa Xaa Xaa Ala Ile Lys Gln Glu Leu His Ser Arg
50 55 60
Ala Phe Leu Ala Ile Thr Arg Ser Glu Glu Leu Trp Pro Trp Met Ala
His Val Leu Leu Pro Tyr Val His Xaa Xaa Xaa Xaa Gly Asn Gln
100
Gly Pro Pro Arg Leu Arg Gln Val Arg Leu Gln Glu Ala Leu Tyr Pro
Asp Pro Pro Gly Pro Arg Val His Thr Cys Ser Ala Ala Gly Gly Phe
Ser Thr Ser Asp Tyr Asp Val Gly Trp Glu Ser Pro His Asn Gly Ser
```

96700-658.ST25.txt Gly Thr Trp Ala Thr Xaa Xaa Ser Ala Pro Asp Leu Leu Gly Ala Trp 165 170 175 Ser Trp Gly Ser Cys Ala Val Tyr Asp Ser Gly Gly Tyr Val Gln Glu 180 185 190 Leu Gly Leu Ser Leu Glu Glu Ser Arg Asp Arg Leu Arg Phe Leu Gln 195 200 205 Leu His Asn Trp Leu Asp Asn Arg Ser Arg Ala Val Phe Leu Glu Leu Thr Arg Tyr Ser Pro Ala Val Gly Leu His Ala Ala Val Thr Leu Arg 225 230 235 240 Leu Glu Phe Pro Ala Ala Gly Arg Ala Leu Ala Ala Leu Ser Val Arg 245 250 255 Pro Phe Ala Leu Arg Arg Leu Ser Ala Gly Leu Ser Leu Pro Leu Leu 260 265 270 Thr Ser Val Cys Leu Leu Leu Phe Ala Val His Phe Ala Val Ala Glu 275 280 285 Ala Arg Thr Trp Xaa His Arg Glu Gly Arg Trp Arg Val Leu Arg Leu 290 295 300 Gly Ala Trp Ala Arg Trp Leu Leu Val Ala Leu Thr Ala Ala Thr Ala 305 310 315 320 Leu Val Arg Leu Ala Gln Leu Gly Ala Ala Asp Arg Gln Xaa Xaa Trp 325 330 335 Thr Arg Phe Val Arg Gly Arg Pro Arg Arg Phe Thr Ser Phe Asp Gln 340 345 350 Val Ala Gln Leu Ser Ser Ala Ala Arg Gly Leu Ala Ala Ser Leu Leu 355 360 365 Phe Leu Leu Val Lys Ala Ala Gln Gln Leu Arg Phe Val Arg Gln 370 380 Trp Ser Val Phe Gly Lys Thr Leu Cys Arg Ala Leu Pro Glu Leu Leu 385 390 395 400 Gly Val Thr Leu Gly Leu Val Val Leu Gly Val Ala Tyr Ala Gln Leu 405 410 415

Ala Ile Leu Leu Val Ser Ser Cys Val Asp Ser Leu Trp Ser Val Ala 420

Gln Ala Leu Leu Xaa Xaa Xaa Xaa Val Leu Cys Pro Gly Thr Gly Leu 435 440 445

Ser Thr Leu Cys Pro Ala Glu Ser Trp His Leu Ser Pro Leu Leu Cys

Val Gly Leu Trp Ala Leu Arg Leu Trp Gly Ala Leu Arg Leu Gly Ala

Val Ile Leu Arg Trp Arg Tyr His Ala Leu Arg Gly Glu Leu Tyr Arg 485 490 495

Pro Ala Trp Glu Pro Gln Asp Tyr Glu Met Val Glu Leu Phe Xaa Xaa

Xaa Xaa Xaa Xaa Leu Arg Arg Leu Arg Leu

<210>

399 <211> <212> PRT

<213> Caenorhabditis elegans

<220>

misc_feature <221>

<222> (62)..(62)

<223> Xaa can be any naturally occurring amino acid

<220>

misc_feature (363)..(367) <221>

<222>

<223> Xaa can be any naturally occurring amino acid

<400> 3

Glu Asn Arg Lys Met Arg Asp Glu Gln Leu Phe Ile Thr Ile Arg Asp

Met Leu Cys Phe Phe Ala Ser Leu Tyr Ile Met Val Met Leu Thr Tyr 20 25 30

Tyr Cys Lys Asp Arg His Gly Tyr Trp Tyr Gln Leu Glu Met Ser Thr 35 40 45

Ile Leu Asn Ile Asn Gln Lys Asn Tyr Gly Asp Asn Thr Xaa Phe Met $50 \hspace{1cm} 55 \hspace{1cm} 60$

96700-658.ST25.txt Ser Ile Gln His Ala Asp Asp Phe Trp Asp Trp Ala Arg Glu Ser Leu 65 70 75 80 Ala Thr Ala Leu Leu Ala Ser Trp Tyr Asp Gly Asn Pro Ala Tyr Gly 85 90 95 Met Arg Ala Tyr Met Asn Asp Lys Val Ser Arg Ser Met Gly Ile Gly 100 105 110Thr Ile Arg Gln Val Arg Thr Lys Lys Ser Glu Ile Ile Thr Leu Phe 115 120 125 Asn Lys Leu Asp Ser Glu Arg Trp Ile Asp Asp His Thr Arg Ala Val 130 140Ile Ile Glu Phe Ser Ala Tyr Asn Ala Gln Ile Asn Tyr Phe Ser Val Val Gln Leu Leu Val Glu Ile Pro Lys Ser Gly Ile Tyr Leu Pro Asn 165 170 175 Ser Trp Val Glu Ser Val Arg Leu Ile Lys Ser Glu Gly Ser Asp Gly 180 185 190 Thr Val Val Lys Tyr Tyr Glu Met Leu Tyr Ile Phe Phe Ser Val Leu 195 200 205 Ile Phe Val Lys Glu Ile Val Trp Asn Phe Met Asp Leu Ile Val Gly 210 215 220 Ala Leu Ala Val Ala Ser Val Leu Ala Tyr Thr Ile Arg Gln Arg Thr 225 230 235 240 Thr Asn Arg Ala Met Glu Asp Phe Asn Ala Asn Asn Gly Asn Ser Tyr 245 250 255 Ile Asn Leu Thr Glu Gln Arg Asn Trp Glu Ile Val Phe Ser Tyr Cys 260 265 270 Leu Ala Gly Ala Val Phe Phe Thr Ser Cys Lys Met Ile Arg Ile Leu 275 280 285 Arg Phe Asn Arg Arg Ile Gly Val Leu Ala Ala Thr Leu Asp Asn Ala 290 295 300 Leu Gly Ala Ile Val Ser Phe Gly Ile Ala Phe Leu Phe Phe Ser Met 305 310 315 320

Thr Phe Asn Ser Val Leu Tyr Ala Val Leu Gly Asn Lys Met Gly Gly 325 Tyr Arg Ser Leu Met Ala Thr Phe Gln Thr Ala Leu Ala Gly Met Leu Gly Lys Leu Asp Val Thr Ser Ile Gln Pro Xaa Xaa Xaa Xaa Ile 360 Ser Gln Phe Ala Phe Val Val Ile Met Leu Tyr Met Ile Glu Phe Glu 375 Glu Ile Arg Asn Asp Ser Glu Lys Gln Thr Asn Asp Tyr Glu Ile 390 <210> 363 <211> <212> PRT <213> Homo sapiens <220> <221> misc_feature <222> (24)..(24)<223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (55)..(55)<223> Xaa can be any naturally occurring amino acid <220> <221> <222> misc_feature (57)..(71)<223> Xaa can be any naturally occurring amino acid <220> misc_feature <221> <222> <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature (163)..(163) <222> <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (173)..(173)<223> Xaa can be any naturally occurring amino acid <220> misc_feature (211)..(267) <221> <222> <223> Xaa can be any naturally occurring amino acid <220>

Page 10

- <221> misc_feature
- <222> (276)..(276)
- <223> Xaa can be any naturally occurring amino acid

<400> 4

Phe Thr Met Val Phe Ser Leu Glu Cys Val Leu Lys Val Ile Ala Phe 1 5 10 15

Gly Phe Leu Asn Tyr Phe Arg Xaa Asp Thr Trp Asn Ile Phe Asp Phe 20 25 30

Ile Thr Val Ile Gly Ser Ile Thr Glu Ile Ile Leu Thr Asp Ser Lys 35 40 45

Xaa Xaa Xaa Xaa Xaa Xaa Asn Met Ser Phe Leu Lys Xaa Xaa Xaa 65 70 75 80

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Phe Arg Ala Ala Arg Leu Ile 85 90 95

Lys Leu Leu Arg Gln Gly Tyr Thr Ile Arg Ile Leu Leu Trp Thr Phe 100 105 110

Val Gln Ser Phe Lys Ala Leu Pro Tyr Val Cys Leu Leu Ile Ala Met 115 120 125

Leu Phe Phe Ile Tyr Ala Ile Ile Gly Met Gln Val Phe Gly Asn Asn 130 140

Phe Arg Ser Phe Phe Gly Ser Leu Met Leu Leu Phe Arg Ser Ala Thr 150 155 160

Gly Glu Xaa Ala Trp Gln Glu Ile Glu Arg Cys Gly Xaa Thr Asp Leu 165 170 175

Ala Tyr Val Tyr Phe Val Ser Phe Ile Phe Phe Cys Ser Phe Leu Met 180 185 190

Leu Asn Leu Phe Val Ala Val Ile Met Asp Asn Phe Glu Tyr Leu Thr 195 200 205

His Leu Asp Xaa Glu Phe Val Arg Val Trp Ala Glu Tyr Asp Arg Ala 275 280 285

Ala Cys Gly Arg Ile His Tyr Thr Glu Met Tyr Glu Met Glu Arg Arg 290 295 300

Arg Ser Lys Glu Arg Lys His Leu Leu Ser Pro Asp Val Ser Arg Cys

Asn Ser Glu Glu Arg Gly Thr Gln Ala Asp Trp Glu Ser Pro Glu Arg 325 330 335

Arg Gln Ser Arg Ser Pro Ser Glu Gly Arg Ser Gln Thr Pro Asn Arg 340 345 350

Gln Gly Thr Gly Ser Leu Ser Glu Ser Ser Ile 355 360

<210> <211> 28

<212> PRT

<213> Homo sapiens

<400>

Glu Ile Ala Ile Phe Thr Lys Tyr Asp Gln Asp Gly Asp Gln Glu Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Glu His Glu His Gln Gln Met Arg Asp Asp Leu 20 25

<210> 5057 <211>

<212> DNA

<213> Homo sapiens

<220>

misc_feature (3995)..(3997) <221> <222>

<223> n is a, c, g, or t

<220>

misc_feature <221>

```
<222> (4906)..(4906)
<223> n is a, c, g, or t
<220>
      misc_feature
(4923)..(4923)
<221>
<222>
<223> n is a, c, g, or t
<220>
      misc_feature
<221>
<222>
      (4932)..(4932)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (4995)..(4995)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (5028)..(5028)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (5056)..(5056)
<223>
      n is a, c, g, or t
<400> 6
ggctcctgag gcgcacagcg ccgagcgcgg cgccgcgcac ccgcgcgccg gacgccagtg
                                                                       60
                                                                      120
accgcgatgg tgaactccag tcgcgtgcag cctcagcagc ccggggacgc caagcggccg
                                                                      180
cccgcgcccc gcgccgga cccgggccgg ctgatggctg gctgcgcggc cgtgggcgcc
agcctcgccg ccccgggcgg cctctgcgag cagcggggcc tggagatcga gatgcagcgc
                                                                      240
                                                                      300
atccggcagg cggccgcgcg ggaccccccg gccggagccg cggcctcccc ttctcctccg
ctctcgtcgt gctcccggca ggcgtggagc cgcgataacc ccggcttcga ggccgaggag
                                                                      360
                                                                      420
gaggaggagg aggtggaagg ggaagaaggc ggaatggtgg tggagatgga cgtagagtgg
                                                                      480
cgcccgggca gccggaggtc ggccgcctcc tcggccgtga gctccgtggg cgcgcggagc
cgggggcttg ggggctacca cggcgcgggc cacccgagcg ggaggcggcg ccggcgagag
                                                                      540
gaccagggcc cgccgtgccc cagcccagtc ggcggcgggg acccgctgca tcgccacctc
                                                                      600
cccctggaag ggcagccgcc ccgagtggcc tgggcggaga ggctggttcg cgggctgcga
                                                                      660
ggtctctggg gaacaagact catggaggaa agcagcacta accgagagaa ataccttaaa
                                                                      720
                                                                      780
agtgttttac gggaactggt cacatacctc ctttttctca tagtcttgtg catcttgacc
tacggcatga tgagctccaa tgtgtactac tacacccgga tgatgtcaca gctcttccta
                                                                      840
gacacccccg tgtccaaaac ggagaaaact aactttaaaa ctctgtcttc catggaagac
                                                                      900
                                                                      960
ttctggaagt tcacagaagg ctccttattg gatgggctgt actggaagat gcagcccagc
                                                                     1020
aaccagactg aagctgacaa ccgaagtttc atcttctatg agaacctgct gttaggggtt
```

ccacgaatac	ggcaactccg	agtcagaaat	96700-658. ggatcctgct		ggacttgaga	1080
gatgaaatta	aagagtgcta	tgatgtctac	tctgtcagta	gtgaagatag	ggctcccttt	1140
gggccccgaa	atggaaccgc	ttggatctac	acaagtgaaa	aagacttgaa	tggtagtagc	1200
cactggggaa	tcattgcaac	ttatagtgga	gctggctatt	atctggattt	gtcaagaaca	1260
agagaggaaa	cagctgcaca	agttgctagc	ctcaagaaaa	atgtctggct	ggaccgagga	1320
accagggcaa	cttttattga	cttctcagtg	tacaacgcca	acattaacct	gttctgtgtg	1380
gtcaggttat	tggttgaatt	cccagcaaca	ggtggtgtga	ttccatcttg	gcaatttcag	1440
cctttaaagc	tgatccgata	tgtcacaact	tttgatttct	tcctggcagc	ctgtgagatt	1500
atcttttgtt	tctttatctt	ttactatgtg	gtggaagaga	tattggaaat	tcgcattcac	1560
aaactacact	atttcaggag	tttctggaat	tgtctggatg	ttgtgatcgt	tgtgctgtca	1620
gtggtagcta	taggaattaa	catatacaga	acatcaaatg	tggaggtgct	actacagttt	1680
ctggaagatc	aaaatacttt	ccccaacttt	gagcatctgg	catattggca	gatacagttc	1740
aacaatatag	ctgctgtcac	agtattttt	gtctggatta	agctcttcaa	attcatcaat	1800
tttaacagga	ccatgagcca	gctctcgaca	accatgtctc	gatgtgccaa	agacctgttt	1860
ggctttgcta	ttatgttctt	cattattttc	ctagcgtatg	ctcagttggc	ataccttgtc	1920
tttggcactc	aggtcgatga	cttcagtact	ttccaagagt	gtatcttcac	tcaattccgt	1980
atcattttgg	gcgatatcaa	ctttgcagag	attgaggaag	ctaatcgagt	tttgggacca	2040
atttatttca	ctacatttgt	gttctttatg	ttcttcattc	ttttgaatat	gtttttggct	2100
atcatcaatg	atacttactc	tgaagtgaaa	tctgacttgg	cacagcagaa	agctgaaatg	2160
gaactctcag	atcttatcag	aaagggctac	cataaagctt	tggtcaaact	aaaactgaaa	2220
aaaaataccg	tggatgacat	ttcagagagt	ctgcggcaag	gaggaggcaa	gttaaacttt	2280
gacgaacttc	gacaagatct	caaagggaag	ggccatactg	atgcagagat	tgaggcaata	2340
ttcacaaagt	acgaccaaga	tggagaccaa	gaactgaccg	aacatgaaca	tcagcagatg	2400
agagacgact	tggagaaaga	gagggaggac	ctggatttgg	atcacagttc	tttaccacgt	2460
cccatgagca	gccgaagttt	ccctcgaagc	ctggatgact	ctgaggagga	tgacgatgaa	2520
gatagcggac	atagctccag	aaggaggga	agcatttcta	gtggcgtttc	ttacgaagag	2580
tttcaagtcc	tggtgagacg	agtggaccgg	atggagcatt	ccatcggcag	catagtgtcc	2640
aagattgacg	ccgtgatcgt	gaagctagag	attatggagc	gagccaaact	gaagaggagg	2700
gaggtgctgg	gaaggctgtt	ggatggggtg	gccgaggatg	aaaggctggg	tcgtgacagt	2760
gaaatccata	gggaacagat	ggaacggcta	gtacgtgaag	agttggaacg	ctgggaatcc	2820
gatgatgcag	cttcccagat	cagtcatggt	ttaggcacgc	cagtgggact	aaatggtcaa	2880
cctcgcccca	gaagctcccg	cccatcttcc	tcccaatcta Page	cagaaggcat 14	ggaaggtgca	2940

ggtggaaatg	ggagttctaa	tgtccacgta	tgatatgtgt	gtttcagtat	gtgtgtttct	3000
aataagtgag	gaagtggctg	tcctgaattg	ctgtaacaag	cacactattt	atatgccctg	3060
accaccatag	gatgctagtc	tttgtgaccg	attgctaatc	ttctgcactt	taatttattt	3120
tatataaact	ttacccatgg	ttcaaagatt	ttttttttt	tttctcatat	aagaaatcta	3180
ggtgtaaata	ttgagtacag	aaaaaaaatc	ttcatgatgt	gtattgagcg	gtacgcccag	3240
ttgccaccat	gactgagtct	tctcagttga	caatgaagta	gccttttaaa	gctagaaaac	3300
tgtcaaaggg	cttctgagtt	tcatttccag	tcacaaaaat	cagtattgtt	attttttcc	3360
aagagtgtga	aggaaaatgg	ggcaattcct	ttccactctg	gcatagttca	tgagcttaat	3420
acatagcttt	cttttaagaa	aggagccttt	tttttcaact	agcttcctgg	ggtaaacttt	3480
tctaaaagat	aaaatgggaa	ggaactccaa	actatgatag	aatctgtgtg	aatggttaag	3540
atgaatgtta	aatactatgc	ttttttgtaa	gttgatcgta	tctgatgtct	gtgggactaa	3600
ctgtatcact	taatttttac	cttattttgg	ctctaatttg	aataagctga	gtaaaaccac	3660
caaagatcag	ttataggata	aaatggcatc	tctaaccata	acacaggaga	attggaagga	3720
gccctaagtt	gtcactcagt	ttaatttctt	ttaatggtta	gtttagccta	aagatttatc	3780
tgcatattct	ttttcccatg	tggctctact	catttgcaac	tgaatttaat	gttataactc	3840
atctagtgag	accaacttac	taaattttta	gtatgcactg	aaagttttta	tccaacaatt	3900
atgttcattt	taagcaaaat	tttaagaaag	ttttgaaatt	cataaagcat	ttggttttaa	3960
actattttaa	gaatatagta	ctcggtcagg	tatgnnncac	gcctgtaatc	ccagcacttt	4020
gggaggccga	aacaggcgaa	tcacttgagc	ccaggagttc	aagaccaaca	tgggcaatgt	4080
ggcgaaactc	catctctaca	aaaaatgcaa	aaataaaaaa	tatagtactc	aagtattctt	4140
gatcctgtgt	ttcaaaacta	gaatttgtaa	tgcaaatgga	gctcagtcta	ataaaaaaga	4200
ggttttggta	ttaaaagttc	atacattaga	cagtatcagc	caaaatttga	gttagcaaca	4260
ctgttttctt	tacgagaggg	tctcacccaa	atttatgggg	agaaatctat	ttctcaaaaa	4320
aaaaaaatct	tcttttacag	aaatgttgag	taaggtgaca	ttttgagcgc	taataagcaa	4380
aagagcatgc	agtgctgttg	aataaccctc	acttggagaa	ccaagagaat	cctgtcgttt	4440
aatgctatat	tttaatttca	caagttgttc	atttaactgg	tagaatgtca	gtccaatctc	4500
caatgagaac	atgagcaaat	agacctttcc	aggttgaaag	tgaaacatac	tgggtttctg	4560
taagtttttc	ctcatggctt	catctctatc	tttactttct	cttgaatatg	ctacacaaag	4620
ttctttatta	ctacatacta	aagtttgcat	tccagggata	ttgactgtac	atatttatgt	4680
atatgtacca	tgttgttaca	tgtaaacaaa	cttcaatttg	aagtgcagct	attatgtggt	4740
atccatgtgt	atcgaccatg	tgccatatat	caattatggt	cactagaaag	tctctttatg	4800

a	67	\sim	_ 6	50	ST	- 25	+	v+
ч	n/	110	-n	`````````````````````````````````````	` \ I	<i>/</i> 7	- T	XТ

atactttta	ttgtactgtt	tttcatttca	cttgcaaaat	tttgcagaat	tcctcctttc	4860
tacccataaa	ttacatataa	tttttcttct	ttagtcatgg	agaacncccc	cccatcatct	4920
canccctatt	anctttccca	tgtgtactgg	tattattaaa	aagacattta	catacgcaag	4980
tttttcactg	acaancaaga	atgttattaa	tgtgtaatac	tgagcacntt	tacttcttaa	5040
taaaaacttg	atatant					5057

<210> 7 <211> 968 <212> PRT

<213> Homo sapiens

<400> 7

Met Val Asn Ser Ser Arg Val Gln Pro Gln Gln Pro Gly Asp Ala Lys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Arg Pro Pro Ala Pro Arg Ala Pro Asp Pro Gly Arg Leu Met Ala Gly 20 25 30

Cys Ala Ala Val Gly Ala Ser Leu Ala Ala Pro Gly Gly Leu Cys Glu 35 40 45

Gln Arg Gly Leu Glu Ile Glu Met Gln Arg Ile Arg Gln Ala Ala 50 55 60

Arg Asp Pro Pro Ala Gly Ala Ala Ala Ser Pro Ser Pro Pro Leu Ser 65 70 75 80

Ser Cys Ser Arg Gln Ala Trp Ser Arg Asp Asn Pro Gly Phe Glu Ala 85 90 95

Glu Glu Glu Glu Glu Val Glu Gly Glu Gly Gly Met Val Val 100 105

Glu Met Asp Val Glu Trp Arg Pro Gly Ser Arg Arg Ser Ala Ala Ser 115 120 125

Ser Ala Val Ser Ser Val Gly Ala Arg Ser Arg Gly Leu Gly Gly Tyr 130 135 140

His Gly Ala Gly His Pro Ser Gly Arg Arg Arg Arg Glu Asp Gln 145 155 160

Gly Pro Pro Cys Pro Ser Pro Val Gly Gly Asp Pro Leu His Arg 165 170 175

His Leu Pro Leu Glu Gly Gln Pro Pro Arg Val Ala Trp Ala Glu Arg Page 16

Leu Val Arg Gly Leu Arg Gly Leu Trp Gly Thr Arg Leu Met Glu Glu 195 200 205 Ser Ser Thr Asn Arg Glu Lys Tyr Leu Lys Ser Val Leu Arg Glu Leu 210 220 Val Thr Tyr Leu Leu Phe Leu Ile Val Leu Cys Ile Leu Thr Tyr Gly 235 230 235 Met Met Ser Ser Asn Val Tyr Tyr Tyr Thr Arg Met Met Ser Gln Leu 245 250 255 Phe Leu Asp Thr Pro Val Ser Lys Thr Glu Lys Thr Asn Phe Lys Thr 260 265 270 Leu Ser Ser Met Glu Asp Phe Trp Lys Phe Thr Glu Gly Ser Leu Leu 275 280 285 Asp Gly Leu Tyr Trp Lys Met Gln Pro Ser Asn Gln Thr Glu Ala Asp 290 295 300 Asn Arg Ser Phe Ile Phe Tyr Glu Asn Leu Leu Gly Val Pro Arg 305 310 315 320 Ile Arg Gln Leu Arg Val Arg Asn Gly Ser Cys Ser Ile Pro Gln Asp 325 330 335 Leu Arg Asp Glu Ile Lys Glu Cys Tyr Asp Val Tyr Ser Val Ser Ser 340 345 350 Glu Asp Arg Ala Pro Phe Gly Pro Arg Asn Gly Thr Ala Trp Ile Tyr 355 360 365 Thr Ser Glu Lys Asp Leu Asn Gly Ser Ser His Trp Gly Ile Ile Ala 370 375 380 Thr Tyr Ser Gly Ala Gly Tyr Tyr Leu Asp Leu Ser Arg Thr Arg Glu 385 390 395 400 Glu Thr Ala Ala Gln Val Ala Ser Leu Lys Lys Asn Val Trp Leu Asp 405 410 415 Arg Gly Thr Arg Ala Thr Phe Ile Asp Phe Ser Val Tyr Asn Ala Asn 420 425 430

96700-658_ST25.txt Ile Asn Leu Phe Cys Val Val Arg Leu Leu Val Glu Phe Pro Ala Thr 435 440 445 Gly Gly Val Ile Pro Ser Trp Gln Phe Gln Pro Leu Lys Leu Ile Arg 450 455 460 Tyr Val Thr Thr Phe Asp Phe Phe Leu Ala Ala Cys Glu Ile Ile Phe 465 Cys Phe Phe Ile Phe Tyr Tyr Val Val Glu Glu Ile Leu Glu Ile Arg Ile His Lys Leu His Tyr Phe Arg Ser Phe Trp Asn Cys Leu Asp Val Val Ile Val Val Leu Ser Val Val Ala Ile Gly Ile Asm Ile Tyr Arg 515 Thr Ser Asn Val Glu Val Leu Leu Gln Phe Leu Glu Asp Gln Asn Thr Phe Pro Asn Phe Glu His Leu Ala Tyr Trp Gln Ile Gln Phe Asn Asn Ile Ala Ala Val Thr Val Phe Phe Val Trp Ile Lys Leu Phe Lys Phe 565 570 575 Ile Asn Phe Asn Arg Thr Met Ser Gln Leu Ser Thr Thr Met Ser Arg Cys Ala Lys Asp Leu Phe Gly Phe Ala Ile Met Phe Phe Ile Ile Phe 595 600 605 Leu Ala Tyr Ala Gln Leu Ala Tyr Leu Val Phe Gly Thr Gln Val Asp Asp Phe Ser Thr Phe Gln Glu Cys Ile Phe Thr Gln Phe Arg Ile Ile 625 630 Leu Gly Asp Ile Asn Phe Ala Glu Ile Glu Glu Ala Asn Arg Val Leu Gly Pro Ile Tyr Phe Thr Thr Phe Val Phe Phe Met Phe Phe Ile Leu Leu Asn Met Phe Leu Ala Ile Ile Asn Asp Thr Tyr Ser Glu Val Lys

Ser Asp Leu Ala Gln Gln Lys Ala Glu Met Glu Leu Ser Asp Leu Ile 690 700 Arg Lys Gly Tyr His Lys Ala Leu Val Lys Leu Lys Leu Lys Lys Asn 705 710 715 720 Thr Val Asp Asp Ile Ser Glu Ser Leu Arg Gln Gly Gly Lys Leu 725 730 735 Asn Phe Asp Glu Leu Arg Gln Asp Leu Lys Gly Lys Gly His Thr Asp 740 745 750 Ala Glu Ile Glu Ala Ile Phe Thr Lys Tyr Asp Gln Asp Gly Asp Gln 755 760 765 Glu Leu Thr Glu His Glu His Gln Gln Met Arg Asp Asp Leu Glu Lys 770 775 780 Glu Arg Glu Asp Leu Asp Leu Asp His Ser Ser Leu Pro Arg Pro Met 785 790 795 800 Ser Ser Arg Ser Phe Pro Arg Ser Leu Asp Asp Ser Glu Glu Asp Asp 815 Asp Glu Asp Ser Gly His Ser Ser Arg Arg Gly Ser Ile Ser Ser 820 825 830 Gly Val Ser Tyr Glu Glu Phe Gln Val Leu Val Arg Arg Val Asp Arg 835 840 845 Met Glu His Ser Ile Gly Ser Ile Val Ser Lys Ile Asp Ala Val Ile 850 860 Val Lys Leu Glu Ile Met Glu Arg Ala Lys Leu Lys Arg Arg Glu Val 865 870 875 880 Leu Gly Arg Leu Leu Asp Gly Val Ala Glu Asp Glu Arg Leu Gly Arg 885 890 895 Asp Ser Glu Ile His Arg Glu Gln Met Glu Arg Leu Val Arg Glu Glu
900 905 910 Leu Glu Arg Trp Glu Ser Asp Asp Ala Ala Ser Gln Ile Ser His Gly 915 920 925 Leu Gly Thr Pro Val Gly Leu Asn Gly Gln Pro Arg Pro Arg Ser Ser 930 940 Page 19

Arg Pr 945	o Ser Ser	Ser	Gln 950	Ser	Thr	Glu	Gly	Met 955	Glu	Gly	Ala	Gly	Gly 960	
Asn Gl	y Ser Ser	Asn 965	۷a٦	His	٧a٦									
<210> <211> <212> <213>	8 19 DNA Homo sap	iens												
<400> gggcta	8 .ccat aaag	cttt	g											19
<210> <211> <212> <213>	9 20 DNA Homo sap	iens												
<400> gttcat	9 gttc gatc	agtto	ct											20
<210> <211> <212> <213>	10 23 DNA Homo sap	iens												
<400> gggcta	10 gaaa tact	cttai	tc ac	cc										23
<210> <211> <212> <213>	11 20 DNA Homo sap	iens												
<400> gcctca	11 agtg ttcc	actga	at											20
<210> <211> <212> <213>	12 22 DNA Homo sap	iens												
<400> aggttt	12 ttct gggta	aacco	ct ag]										22
<210> <211> <212> <213>	13 15 DNA Homo sap	iens												
<220> <221>	misc_fea	ture					D	200	20					

<222> <223>	(11)(11) n is G or A	
	13 ccact nggga	
<210> <211> <212> <213>	15	
<222>	misc_feature (4)(4) n is C or T	
	14 acaag atctc	
<210> <211> <212> <213>	15	
	misc_feature (10)(10) n is c or t	
<400> acagct	15 tgcan aagtt	