Clock Speed and Instruction per Second

Present by Md Jakaria Nur

Clock Speed and Instruction per Second

01. What is Clock Speed?

02. What is Instruction per Second?

03. Relationship Between Clock Speed and Instruction per second.

04. Real-World Example of Clock Speed and Instructions per Second.

What is Clock Speed?

Definition:

The clock speed of a processor refers to the frequency at which the CPU executes instructions, measured in hertz (Hz).

Typically expressed in gigahertz (GHz), where 1 GHz = 1 billion cycles per second.

How it Works:

Each cycle allows the processor to perform tasks like fetching, decoding, executing, and storing instructions.

Example:

A CPU with a clock speed of 3.5 GHz can perform 3.5 billion cycles per second.

What is Instruction per Second?

Definition:

The number of instructions a CPU can execute in one second.

Measured in terms like MIPS (Millions of Instructions per Second) or FLOPS

Factors Affecting:

CPU architecture
Clock speed
Instruction set efficiency
Number of cores

Relationship Between Clock Speed and Instruction per Second.

Direct Link:

Higher clock speeds typically mean more instructions can be processed per second.

Limitations:

Clock speed isn't the only factor. Instructions per cycle (IPC) and parallel processing capabilities play a huge role.

Illustration:

A CPU running at 3 GHz with 4 instructions per cycle will execute 12 billion instructions per second.

Real-world Example of Clock Speed and Instruction per Second.

CPU A: 3.2 GHz with 2 instructions per cycle = 6.4 billion instructions/second.

CPU B: 2.8 GHz with 4 instructions per cycle = 11.2 billion instructions/second.

Clock Speed of Core i3:

The Core i3 processors operate at clock speeds ranging from around **2.0 GHz to 4.5 GHz**, depending on the specific model and generation.

This means the processor can complete 2 billion to 4.5 billion cycles per second.

CPI – Cycles per Instruction

$$CPI = \frac{Total \ Clock \ Cycles}{Total \ Instructions}$$

Where:

- Total Clock Cycles: The total number of clock cycles used to execute all instructions.
- Total Instructions: The total number of instructions executed.

Example of Cycles per Instruction

- A processor executes 1 billion instructions.
- It takes 3 billion clock cycles to execute them.

Using the formula:

$$CPI = \frac{3 \text{ billion}}{1 \text{ billion}} = 3$$

This means the processor requires 3 clock cycles per instruction on average.

Relationship Between CPI, Clock Speed, and Performance

Execution Time: The time required to execute a program is influenced by CPI:

$$\mathbf{Execution\ Time} = \frac{\mathbf{Total\ Clock\ Cycles}}{\mathbf{Clock\ Speed}} = \mathbf{CPI} \times \frac{\mathbf{Total\ Instructions}}{\mathbf{Clock\ Speed}}$$

Instructions Per Second (IPS): The performance of a processor can also be expressed in terms of **IPS**:

$$IPS = \frac{Clock\ Speed}{CPI}$$

If clock speed is 3 GHz and CPI is 2:

$$IPS = \frac{3 \text{ billion cycles/second}}{2 \text{ cycles/instruction}} = 1.5 \text{ billion instructions/second}.$$

Conclusion

Clock speed measures how fast a CPU executes cycles.

Instructions per second provide a clearer picture of real-world CPU capability.

Efficient CPU design balances speed, power, and multitasking.

Thank You!