Решение задачи коммивояжёра методом отсечений и поиском восхождением к вершине

Докладчик: Ларионов А. О., Чернов Н. В.

Группа ФН2-42Б

27 июня 2025 г.

Постановка задачи

Постановка задачи

Рассматривается задача коммивояжёра (TSP) с несимметричной матрицей стоимостей.

Исследуемые алгоритмы

- Поиск с восхождением к вершине (Hill Climbing) жадная оптимизация.
- Метод отсечений Гомори точный метод для целочисленного программирования.

Hill Climbing для задачи коммивояжёра (TSP)

Суть алгоритма

- Локальный поиск, улучшающий решение на каждом шаге
- Работает до достижения локального/глобального оптимума
- В TSP соседние решения перестановки 2 городов $(\frac{n(n-1)}{2})$ вариантов)

Варианты реализации

- Basic: переход к первому улучшающему решению
- Steepest Ascent: выбор наилучшего соседнего решения
- Multi-start: запуск из разных начальных точек

Преимущества и ограничения

- + Простота реализации и высокая скорость
- + Хорош для быстрого получения приемлемого решения

Формализация задачи коммивояжёра

Исходные данные

- ullet n вершин, D_{ij} расстояние $(D_{ij}
 eq D_{ji})$
- ullet $x_{ij} \in \{0,1\}$ индикатор пути

Ограничения

$$\sum_{i=1}^{n} x_{ik} = 1, \quad \sum_{j=1}^{n} x_{kj} = 1$$
$$x_{ij} \ge 0 \quad \forall i, j$$

Целевая функция

$$\min \sum_{i,i=1}^n D_{ij} x_{ij}$$

Проблемы начальной формулировки

Неучтённые аспекты

- Целочисленность x_{ij}
- Возможность подциклов

Пример подцикла

Для 5 городов: $1{\to}2{\to}3{\to}1$ и $4{\to}5{\to}4$

Стратегия решения

- Решить ослабленную задачу
- Добавлять ограничения:

$$\sum_{x_{ij} \in S} x_{ij} \le |S| - 1$$

Применять алгоритм Гомори

Применение симплекс-метода

Основные шаги

- Приведение к каноническому виду
- 2 Нахождение опорного решения
- Построение симплекс-таблицы
- Итеративное улучшение

Критерии

- Минимизация: все коэффициенты ≤ 0
- Ведущий столбец тах положительный

Особенности

Высокая эффективность на практике, несмотря на экспоненциальную сложность

Алгоритм Гомори

Когда применяется

При дробных значениях в оптимальном решении

Формирование отсечения

Из уравнения:

$$x_i + \sum_{j \in N} a_{ij} x_j = b_i$$

Строим ограничение:

$$\sum_{i \in N} (a_{ij} - \lfloor a_{ij} \rfloor) x_j \ge b_i - \lfloor b_i \rfloor$$

Свойства

- Сохраняет все целочисленные решения
 - Гарантирует конечность алгоритма

Таблица измерений

Количество городов	С++, мс	Walfram matematica, c
10	3,48	1,81
12	0,2	1,0
15	3,68	4,23
17	6,28	7,51
20	13,48	29,76

Таблица: Время работы алгоритма Гомори

Таблица измерений

Города	С++ (мс)	WM (c)	Погр.
10	0	0.04	1.19
12	0	0.06	1.37
15	0	0.16	1.89
17	0	0.19	2.00
20	0	0.36	2.01

Города	С++ (мс)	WM (c)	Погр.
10	0	0.04	1.03
12	0	0.05	1.28
15	0	0.12	1.49
17	0	0.18	1.59
20	0	0.28	1.50