CSCI - 544 Homework No. 1

NAME: ASHWIN CHAFALE

USC ID: 1990624801

1. Dataset Preparation

- Downloaded the Amazon Reviews Dataset
- Randomly selected 20,000 reviews from each rating class and created a balanced dataset
- Test train split ratio: 80% & 20 %.

Note: that the train - test split step is done in TF-IDF step

2. Data Cleaning

Data Cleaning steps done for all reviews are as follows:

- Removing Null values
- · Converting all reviews to lower case
- · Removed the HTML and URLs from the reviews
- · Removed non-alphabetical characters
- Removed extra spaces
- Performed contractions using contractions library

Average Length of reviews before Data Cleaning step: 130.81 Average Length of reviews after Data Cleaning step: 126.72

Note: the above length may vary based on the random review samples picked for each class

3. Pre-processing

- Stop word removal
- Lemmatization

Average Length of reviews before Pre-processing step: 126.72 Average Length of reviews after Pre-processing step: 78.67

Note: the above length may vary based on the random review samples picked for each class

Note:

In the assignment Stop Word Removal data pre-processing step have been eliminated. As I have noticed that after stop-words are not removed it leads to increase in average precision of all the ML models by 10%.

4. Feature Extraction

Used sklearn to extract TF-IDF features.

5. Perceptron

Please refer the jupyter notebook below for results

6. SVM

Please refer the jupyter notebook below for results

7. Logistic Regression

Please refer the jupyter notebook below for results

8. Multinomial Naive Bayes

Please refer the jupyter notebook below for results

Libraries Used

```
import pandas as pd
import numpy as np
import nltk
import re
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
import contractions
from nltk.stem import WordNetLemmatizer
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedStratifiedKFold
```

Installation Required

```
# Installation before running the notebook
! pip install bs4
! pip install contractions
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('omw-1.4')
nltk.download('punkt')
```

ashwin-chafale

September 8, 2022

1 CSCI-544 Homework Assignment No. 1

1.0.1 Name: Ashwin Chafale

1.0.2 USC ID: 1990624801

1.1 Sentiment Analysis on Amazon reviews dataset

```
[1]: import pandas as pd
import numpy as np
import nltk
import re
from bs4 import BeautifulSoup
import warnings
warnings.filterwarnings('ignore')
```

```
[2]: # Installation before running the notebook
! pip install bs4
! pip install contractions
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('omw-1.4')
nltk.download('punkt')
```

```
Requirement already satisfied: bs4 in
/Users/ashwin/.conda/envs/HW1/lib/python3.10/site-packages (0.0.1)
Requirement already satisfied: beautifulsoup4 in
/Users/ashwin/.conda/envs/HW1/lib/python3.10/site-packages (from bs4) (4.11.1)
Requirement already satisfied: soupsieve>1.2 in
/Users/ashwin/.conda/envs/HW1/lib/python3.10/site-packages (from
beautifulsoup4->bs4) (2.3.1)
Requirement already satisfied: contractions in
/Users/ashwin/.conda/envs/HW1/lib/python3.10/site-packages (0.1.72)
Requirement already satisfied: textsearch>=0.0.21 in
/Users/ashwin/.conda/envs/HW1/lib/python3.10/site-packages (from contractions)
(0.0.21)
Requirement already satisfied: pyahocorasick in
/Users/ashwin/.conda/envs/HW1/lib/python3.10/site-packages (from
textsearch>=0.0.21->contractions) (1.4.4)
```

```
Requirement already satisfied: anyascii in
/Users/ashwin/.conda/envs/HW1/lib/python3.10/site-packages (from
textsearch>=0.0.21->contractions) (0.3.1)
[nltk_data] Downloading package stopwords to
                /Users/ashwin/nltk data...
[nltk_data]
[nltk_data]
              Package stopwords is already up-to-date!
[nltk_data] Downloading package wordnet to /Users/ashwin/nltk_data...
[nltk_data]
              Package wordnet is already up-to-date!
[nltk data] Downloading package omw-1.4 to /Users/ashwin/nltk data...
[nltk_data]
              Package omw-1.4 is already up-to-date!
[nltk_data] Downloading package punkt to /Users/ashwin/nltk_data...
[nltk_data]
              Package punkt is already up-to-date!
```

[2]: True

1.2 Read Data

- 1. Amazon reviews dataset
- 2. Our goal is to train sentiment analysis classifiers that can predict the rating value for a given review.

```
[3]: df = pd.read_csv("amazon_reviews_us_Jewelry_v1_00.tsv", sep='\t', header=0,_u 
on_bad_lines='skip')
```

1.3 Keep Reviews and Ratings

```
[4]: df = df[['review_body','star_rating']]
df.head()
```

[4]: review_body star_rating

```
0 so beautiful even tho clearly not high end ... 5
1 Great product.. I got this set for my mother, ... 5
2 Exactly as pictured and my daughter's friend 1... 5
3 Love it. Fits great. Super comfortable and nea... 5
4 Got this as a Mother's Day gift for my Mom and... 5
```

Removing Null and missing values from the dataset

```
[5]: df = df.dropna()
    df = df.reset_index(drop=True)
    df.shape
```

[5]: (1766748, 2)

1.4 We select 20000 reviews randomly from each rating class.

```
[6]: df['star_rating'] = df['star_rating'].astype(int)

sample_size = 20000
five_star = df.loc[ df['star_rating'] == 5].sample(sample_size)
four_star = df.loc[ df['star_rating'] == 4].sample(sample_size)
three_star = df.loc[ df['star_rating'] == 3].sample(sample_size)
two_star = df.loc[ df['star_rating'] == 2].sample(sample_size)
one_star = df.loc[ df['star_rating'] == 1].sample(sample_size)

data = pd.concat([five_star, four_star, three_star, two_star, one_star], axis=0)
```

```
[7]: print("Average Length of reviews before Data Cleaning step = ", Gata['review_body'].str.len().mean())
```

Average Length of reviews before Data Cleaning step = 130.81458

2 Data Cleaning

2.0.1 1. Converting all reviews to lower case

```
[8]: # convert all reviews to lower case data["pre_processed_reviews"] = data['review_body'].apply(lambda x: " ".join(x. →lower() for x in str(x).split()))
```

2.0.2 2. Removing the HTML and URLs from the reviews

```
[9]: # remove HTML tags as well as URLs from reviews.

data["pre_processed_reviews"] = data["pre_processed_reviews"].apply(lambda x:

→BeautifulSoup(x).get_text())

data["pre_processed_reviews"] = data["pre_processed_reviews"].apply(lambda x:

→re.sub(r"http\S+", "", x))
```

2.0.3 3. Perform "Contractions" on reviews

2.0.4 4. Remove the non-alpha characters

2.0.5 5. Remove extra spaces among the words

```
[12]: # remove extra spaces among the words
data['pre_processed_reviews'] = data['pre_processed_reviews'].apply(lambda x:

ore.sub(' +', ' ', x))
```

```
[13]: print("Average Length of reviews after Data Cleaning step = ", u odata['pre_processed_reviews'].str.len().mean())
```

Average Length of reviews after Data Cleaning step = 126.72483

3 Pre-processing

```
[14]: print("Average Length of reviews before Data Pre-processing step = ", data['pre_processed_reviews'].str.len().mean())
```

Average Length of reviews before Data Pre-processing step = 126.72483

3.0.1 1. Remove stop words

Note: Just for the purpose of pre-processing I have shown the stop-words removal. However, the stop-word removed pre-processed data is not used to train the model.

Reason for not performing stop-word removing step: I have noticed that after stop-words are not removed it leads to increase in average precision of all the ML models by 10%.

```
[15]: data_copy = data.copy(deep=True)
```

```
[16]: # remove stop words using a NLTK package
      from nltk.corpus import stopwords
      sw nltk = stopwords.words('english')
      sw_nltk.remove("not")
      sw_nltk.remove("don")
      sw_nltk.remove("don't")
      sw_nltk.remove("aren't")
      sw_nltk.remove("couldn't")
      sw_nltk.remove("couldn")
      sw_nltk.remove("didn")
      sw_nltk.remove("didn't")
      sw_nltk.remove("doesn")
      sw_nltk.remove("doesn't")
      sw nltk.remove("won")
      sw_nltk.remove("won't")
      data_copy['pre_processed_reviews'] = data_copy['pre_processed_reviews'].
       →apply(lambda x: " ".join([x for x in x.split() if x not in sw_nltk]))
```

```
[17]: print("Average Length of reviews after Data Pre-processing step = ", u odata_copy['pre_processed_reviews'].str.len().mean())
```

3.0.2 2. Perform Lemmatization

4 TF-IDF Feature Extraction

```
[19]: # Train - test split
     from sklearn.model_selection import train_test_split
     five_star_X_train, five_star_X_test, five_star_Y_train, five_star_Y_test = \
     train test split(data[data["star rating"] == 5]["pre processed reviews"],
                      data[data["star_rating"] == 5]["star_rating"], test_size=0.2,__
      →random_state=30)
     four_star_X_train, four_star_X_test, four_star_Y_train, four_star_Y_test = \
     train_test_split(data[data["star_rating"] == 4]["pre_processed_reviews"],
                      data[data["star_rating"] == 4]["star_rating"], test_size=0.2,__
       →random_state=30)
     three_star_X_train, three_star_X_test, three_star_Y_train, three_star_Y_test = \
     train_test_split(data[data["star_rating"] == 3]["pre_processed_reviews"],
                      data[data["star_rating"] == 3]["star_rating"], test_size=0.2,__
       →random_state=30)
     two_star_X_train, two_star_X_test, two_star_Y_train, two_star_Y_test = \
     train_test_split(data[data["star_rating"] == 2]["pre_processed_reviews"],
                      data[data["star_rating"] == 2]["star_rating"], test_size=0.2,__
       →random state=30)
     one_star_X_train, one_star_X_test, one_star_Y_train, one_star_Y_test = \
     train_test_split(data[data["star_rating"] == 1]["pre_processed_reviews"],
                      data[data["star_rating"] == 1]["star_rating"], test_size=0.2,__
      →random_state=30)
     X_train = pd.concat([five_star_X_train, four_star_X_train, three_star_X_train, __
       →two_star_X_train, one_star_X_train])
     X_test = pd.concat([five_star X_test, four_star X_test, three_star X_test, __
      Y_train = pd.concat([five_star_Y_train, four_star_Y_train, three_star_Y_train, __
       →two_star_Y_train, one_star_Y_train])
```

5 Perceptron

```
from sklearn.linear_model import Perceptron
from sklearn.metrics import classification_report
perceptron = Perceptron(max_iter=1000, random_state=0)
perceptron.fit(tf_x_train,Y_train)
y_test_predicted = perceptron.predict(tf_x_test)

report = classification_report(Y_test, y_test_predicted, output_dict=True)
pd.DataFrame.from_dict(report)[["1", "2", "3", "4", "5", "weighted avg"]][:3].

stranspose()
```

```
[21]: precision recall f1-score
1 0.529361 0.46200 0.493392
2 0.302142 0.46900 0.367519
3 0.320768 0.22125 0.261873
4 0.383514 0.36175 0.372314
5 0.590234 0.55600 0.572606
weighted avg 0.425204 0.41400 0.413541
```

tf_x_test = tf_idf_vector.transform(X_test)

6 SVM

```
[22]: precision recall f1-score

1 0.563424 0.67625 0.614703
2 0.404890 0.33950 0.369323
3 0.424075 0.38400 0.403044
4 0.472624 0.41650 0.442791
5 0.639847 0.75150 0.691193
weighted avg 0.500972 0.51355 0.504211
```

7 Logistic Regression

1. Simple Logistic Regression

```
[23]: precision recall f1-score
1 0.601127 0.66650 0.632128
2 0.427997 0.39900 0.412990
3 0.442865 0.42825 0.435435
4 0.495403 0.44450 0.468573
5 0.665905 0.72900 0.696026
weighted avg 0.526659 0.53345 0.529030
```

7.0.1 2. Hyper-parameter tuning for Logistic Regression

```
# summarize results
      print("Best Tuning parameters : " , grid_result.best_params_)
     Best Tuning parameters : {'C': 1.0, 'penalty': '12', 'solver': 'lbfgs'}
[25]: grid = dict(solver=["lbfgs"], penalty=["l2"], C=[1.0])
      cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
      grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv,__
      ⇔scoring='accuracy', error_score=0)
      grid_result = grid_search.fit(tf_x_train, Y_train)
      y_test_pred = grid_search.predict(tf_x_test)
      report = classification_report(Y_test, y_test_pred, output_dict=True)
      pd.DataFrame.from_dict(report)[["1", "2", "3", "4", "5", "weighted avg"]][:3].
       →transpose()
[25]:
                    precision recall f1-score
      1
                     0.601263 0.66650 0.632203
      2
                     0.428150 0.39925 0.413195
```

0.442865 0.42825 0.435435

0.495403 0.44450 0.468573 0.665905 0.72900 0.696026

0.526717 0.53350 0.529086

8 Naive Bayes

weighted avg

3

4

8.0.1 1. Multinomial Naive Bayes

```
[26]: from sklearn.naive_bayes import MultinomialNB
nb = MultinomialNB()
nb.fit(tf_x_train,Y_train)
y_test_predicted = nb.predict(tf_x_test)

report = classification_report(Y_test, y_test_predicted, output_dict=True)
pd.DataFrame.from_dict(report)[["1", "2", "3", "4", "5", "weighted avg"]][:3].

stranspose()
```

```
[26]: precision recall f1-score
1 0.592847 0.60500 0.598862
2 0.384177 0.38725 0.385707
3 0.411308 0.42375 0.417436
4 0.458140 0.42000 0.438242
5 0.657394 0.67350 0.665349
weighted avg 0.500773 0.50190 0.501119
```

```
8.0.2 2. Hyper-parameter tuning for MultinomialNB
[27]: # Hyper-parameter tuning for MultinomialNB
      cv_method = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=999)
      grid_params = {
          'alpha': np.linspace(0.5, 1.5, 6),
          'fit_prior': [True, False]
      }
      mul_nom_NB = GridSearchCV(estimator=MultinomialNB(),
                                param_grid=grid_params,
                                cv=cv_method,
                                verbose=1,
                                scoring='accuracy')
      mul_nom_NB.fit(tf_x_train, Y_train)
      print("Best Tuning parameters : ", mul_nom_NB.best_params_)
     Fitting 15 folds for each of 12 candidates, totalling 180 fits
     Best Tuning parameters : {'alpha': 1.3, 'fit_prior': True}
      mul_nom_NB = GridSearchCV(estimator=MultinomialNB(),
```

Fitting 15 folds for each of 1 candidates, totalling 15 fits

```
[28]: precision recall f1-score
1 0.599248 0.59775 0.598498
2 0.386182 0.39825 0.392123
3 0.412117 0.43025 0.420988
4 0.460335 0.42650 0.442772
5 0.661254 0.66175 0.661502
weighted avg 0.503827 0.50290 0.503177
```

```
[28]:
```