

4. Ошибка стробирования.

На практике выборки значений x(t) берутся не точно в моменты времени $t_k = \frac{k}{2F_e}$, в моменты $t_k = \frac{k}{2F_e} + \mu_k$, где μ_k - ошибка стробирования. Тогда восстановленный сигнал имеет вид:

$$\hat{x}_4(t) = \sum_{k=-\infty}^{\infty} x(\frac{k}{2F_e} + \mu_k) \frac{\sin(\pi(2F_e t - k))}{\pi(2F_e t - k)}.$$

Так как ошибка μ_k мала, то функцию $x(\bullet)$ можно разложить в ряд Тейлора и ограничиться первым приближением:

$$x(\frac{k}{2F_e} + \mu_k) = x(\frac{k}{2F_e}) + x'(\frac{k}{2F_e})\mu_k$$

где $x'(\frac{k}{2F_e})$ - первая производная функции $x(\bullet)$ в точке $\frac{k}{2F_e}$. Обозначим $\delta_k = x'(\frac{k}{2F_e})\mu_k$. Тогда ошибка восстановления определяется следующим образом:

$$e_4(t) = \hat{x}_4(t) - x(t) = \sum_{k=-\infty}^{\infty} \delta_k \frac{\sin(\pi (2F_{e}t - k))}{\pi (2F_{e}t - k)}$$

и справедлива оценка

$$\left| e_4 \right| \le \sqrt{\sum_{k = -\infty}^{\infty} \delta_k^2} \tag{4.24}$$

5. Ошибка, вызвана не идеальностью характеристик восстанавливающего фильтра нижних частот.

Если вместо ИФНЧ взять RC фильтр, у которого импульсная характеристика имеет вид $h(t) = \frac{1}{RC} e^{-\frac{t}{RC}}$, то получим следующую картину: