

Fourth Industrial Summer School

Day 3

Supervised Learning: Regression

Session Objectives

- ✓ Part 1:
 - Ordinary Linear Regression
 - Regression Evaluation
 - Multi-Linear Regression
- ✓ Part 2
 - Polynomial Regression
 - Spline Regression
- ✓ Part 3
 - Regularization
 - Ridge Regression
 - Lasso Regression

Introduction

- Supervised Learning is a set of learning techniques where the 'right answer' for each datapoint exists at the learning stage.
- There are two types of supervised learning
 - Regression problems: the right answers are in the form of Continues Real values
 - Classification problems: the right answers are in the form of Finite Integer values.

Regression

- Regression is a statistical technique that is used widely to predict a continuous future output.
- It models a relationship between two sets of variables

x: (Input), y: (Response).

Regression data

• Data: (X_i, Y_i) for i = 1, ..., n

$$y = \beta_0 + \beta_1 X$$

They are not always clean

$$y = \beta_0 + \beta_1 X + \epsilon$$

Example:

- Suppose we have one Independent variable (number of rooms per hours)
- And a history of a selling price for each house

Suppose someone asked you to estimate the price of his House (6 rooms)

Linear Regression Modeling

Given

x: (Feature/s), y: (Outcome).

- Mean of Y is a straight line function of X, plus an error term (residual)
- Goal is to find the best fit line that minimizes the sum of the error terms

Contd.

• **Regression**: the mean of a response variable as a function of one or more explanatory variables: $\mu\{Y \mid X\}$

$$\mu\{Y \mid X\} = \beta_0 + \beta_1 X$$

- $\mu\{Y \mid X\}$: "mean of Y given X" or "regression of Y on X"
- β_0 : The intercept
- β_1 : The slope
- *X*: Independent variable

9

Regression Procedure

• A fitter value for sample x_i is its estimated mean:

$$\widehat{y}_i = \mu\{y_i|x_i\} = \beta_0 + \beta_1 x_i$$

Residual (Error) for observation x_i :

$$E_i = y_i - \widehat{y}_i$$

• The objective is to make the Residual E_i as small as possible:

$$\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Least Square Procedure

- Expand the Residual: $\sum_{i=1}^{n} (y_i \beta_0 \beta_1 x_i)^2$
- Compute the partial derivative of the objective function LS, and equate the result to zero, we get these two equations

1.
$$\sum_{i} \beta_0 + \sum_{i} \beta_1 x_i = \sum_{i} y_i$$

2.
$$\sum_{i} \beta_{0} x_{i} + \sum_{i} \beta_{1} x_{i}^{2} = \sum_{i} x_{i} y_{i}$$

It can be written as

$$n.\beta_0 + \beta_1 \sum_i x_i = \sum_i y_i,$$

$$\beta_0 \sum_i x_i + \beta_1 \sum_i x_i^2 = \sum_i x_i y_i$$

It will be clearer if we write them in matrix form:

$$\begin{bmatrix} n & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} = \begin{bmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i} y_{i} \end{bmatrix}$$

Contd.

$$\begin{bmatrix} n & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} = \begin{bmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i} y_{i} \end{bmatrix}$$

By Cramer's rule or Gaussian-elimination to solve this system of liner equations:

$$\beta_{1} = \frac{(n \sum_{i} x_{i} y_{i} - \sum_{i} x_{i} \sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}$$

$$\beta_0 = \frac{1}{n} \sum_i y_i - \frac{\beta_1}{n} \sum_i x_i$$

Contd.

■ The reply to our friend is $\approx \$20K$

print("Your House with 6 Rooms Can be Sold with: \$%0.2fk"% (b0 + b1* 6))

Your House with 6 Rooms Can be Sold with: \$19.94K

Try it out

```
np.random.seed(42)

#X = 8 * np.random.randn(20) + 20 # std and mean

X = 1 * np.random.randn(20) # std and mean

y = 23 + 5 * X + np.random.randn(20) + 10 # approximately std=1, mean=0

plt.scatter(X,y, c='b')

# Estimator

def estimate_coef(x,y):
```

```
# Estimator
def estimate_coef(x,y):

# get size of samples
n = np.size(x)

# compute b1
b1 = (n * np.sum(x*y) - (np.sum(x) * np.sum(y)) ) / (n* (np.sum(x**2)) - (np.sum(x)**2) )
b0 = np.mean(y) - b1 * (np.mean(x))
return (b0, b1)
```

```
40.0
1 # Estimate the papmetres
                                                                         37.5
2 b0, b1 = estimate_coef(X,y)
                                                                         35.0
3 \text{ y pred} = b0 + X *b1
                                                                         32.5
4 plt.scatter(X,y, c='g')
                                                                         30.0
5 plt.plot(X, y_pred, c='r')
6 plt.grid()
                                                                         27.5
7 plt.show()
                                                                         25.0
                                                                                   -1.0
                                                                                       -0.5
                                                                                            0.0
```

Multiple solutions

We may have similar situation when we do not have enough data!

Scikit-learn

LinearRegression Class can be found in linear_model package in scikit learn.

```
1 from sklearn.linear_model import LinearRegression
```

Use .fit() function to train the model on some data

```
1 LR = LinearRegression()
2 LR.fit(X[:,None],y) # most of the Scikit learn algorithms requires 2d data
```

To predict response values

```
1 y_pred= LR.predict(Xts[:,None])
```

Attributes

■ To get the β_0 and β_1

```
print('From Scikit:\n b0:', LR.intercept_, ' b1:', LR.coef_)
```

Evaluation: How well our model is?

- R-squared is the proportion of variance explained
- R-squared can be used to understand the power of the predictions

$$R^2 = 1 - \frac{\text{Explained variation(SSE)}}{\text{Total Variation (SST)}}$$

$$\hat{y} = (\beta_0 + \beta_1 x_1)$$

$$SSE = \sum (y_i - \hat{y}_i)^2$$

$$SST = \sum (\hat{y}_i - \bar{y})^2$$

- \bar{y} : is the mean of y
- What is a good value for \mathbb{R}^2 ?

Evaluation: How well our model is?

R-Squared is also called **coefficient of determination**.

```
from sklearn.metrics import r2_score
```

- It ranges [negative, 1]
 - A R-squared value of 1 means the model explains all the variation of the target variable.
 - A value of 0 measures zero predictive power of the model.
 - negative values means our model is arbitrary worse!
 - We may expect a value of R-squared $\geq \frac{\# Features}{\# of samples}$
- Higher R-squared value, better the model. But require adjustment

What is a good value for \mathbb{R}^2

- The threshold for a good R-squared value depends on the domain!
- In other words, the nature of the spread in the dependent variable may vary according to the data.
- R-squared is a fraction by which the variance of the errors is less than the variance of the dependent variable.
- But, it is useful as a tool for comparing different models
- **Note:** R-squared will always increase as you add more features to the model.

Multi-LR

- Is a generalization case where we have multiple features instead of only 1
- The data is in this form: $X = [X_1, X_2, ..., X_n]$ and one response value
- Exercise 3 introduces a dataset that is collected from our labs at the RI(KFUPM). The goal of the experiments were to refine to types of fuels and reduce sulfur content from them using a processing called hydrodesulfurization.
 - Response variable 'sulfur_concentraction'
 - And there are 5 independent variables (temperature, pressure, dosage, initial concentration, and fuel type)

Exr3 Data Source: https://www.sciencedirect.com/science/article/pii/S0167732218358161#s0075

Multi-LR

Training

	temperature	Pressure	Dosage	Init_concentration	fuel_type	sulfur_concentraction
coc.	c to scr	25.0	ble click	to hide 500.0	1.0	415.0
1	200.0	25.0	0.4	1500.0	1.0	1258.0
2	200.0	25.0	0.8	500.0	1.0	390.0

Testing

	temperature	Pressure	Dosage	Init_concentration	fuel_type	sulfur_concentraction
0	332.0	66.0	0.61	649.0	2.0	212.0
1	251.0	58.0	0.58	563.0	1.0	245.0
2	289.0	65.0	0.41	1183.0	1.0	215.0

Exercise

- Explore the dataset and make sure its clean
- Use all features to train a model for predicting a sulfur concentration after the process.
- Evaluate your model using the test dataset
- Try a combination of features to improve if possible

Part 2 Polynomial Regression Spline Regression

Quadratic Regression

- A quadratic regression is the process of finding the equation of the parabola that best fits the data.
- The quadratic equation has the form of:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$
, where $\beta_2 \neq 0$

- One way to find this equation is using the lest squares method.
 - Find β_0 , β_1 , β_2 such that the squared vertical distances between each point (x_i, y_i) and the quadratic curve is minimal:

$$\begin{bmatrix} \sum x_i^4 & \sum x_i^3 & \sum x_i^2 \\ \sum x_i^3 & \sum x_i^2 & \sum x_i \\ \sum x_i^2 & \sum x_i & n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} \sum x_i^2 y_i \\ \sum x_i y_i \\ \sum y_i \end{bmatrix}$$

Quadratic Regression

• Consider the set of data. Determine the quadratic regression for the set.

	Х	Υ
0	-3	7.5
1	-2	3.0
2	-1	0.5
3	0	1.0
4	1	3.0
5	2	6.0
6	3	14.0

PL results (degree 2 and degree 4)

Transform to polynomial features

Transform to higher degrees

```
    from sklearn.preprocessing import PolynomialFeatures
```

Quadratic example

Steps to carryout

There are three important steps

```
# 1- do some feature polynomial transformation

dg = 2

poly_reg = PolynomialFeatures(degree = dg)

X_poly = poly_reg.fit_transform(X_train[:,None])

# 2- Generate a linear model to fit the new features

1rP = LinearRegression()

1rP.fit(X_poly, yd)

# 3- test values must pass through feature transformation again

Xtest_poly = poly_reg.fit_transform(X_test[:,None])
```

Find Possible Ploy degree (Brute-Force)

- Loop through a list of numbers (degrees) 2,3, 5, 7, .. 11
- Use R-squared to judge, should I stop
- Stop when the difference between the previous and the current R² is less or equal to 0.1

Piece-wise polynomial regression (spline)

- Unfortunately, Polynomial Regression has a number of issues:
 - By increasing the complexity of the formula, the number of features is also increased (might be difficult to handle).
 - Polynomial regression models suffer over-fitting problem(High variance), even on these simple one dimensional data.
 - It is inherently non-local. (The fit is affected greatly by any change in Y values during training)
- PR can be substituted with many different small degree polynomial functions, i.e. piece-wise polynomials (splines)

Piece-wise polynomial regression (spline)

An example: The blue dots are generated using a polynomial function of degree 4, compared to a deg(4) model

How spline regression works?

- It divides the space into several knots.
- Then, it transforms X into piece-wise polynomials that can captures general shapes. (Basis function)

$$y_i = \beta 0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \beta_3 b_3(x_i) + ... + \beta_K b_K(x_i)$$

General points

- Unlike polynomial Regression, which tries to use a high degree polynomials to produce flexible fits, splines introduce flexibility by increasing the number of knots but keep the degree fixed.
- Splines allow more flexibility, we can place more knots around rapidly changing regions of a function

Do not go beyond cubic-splines (unless one is interested in smooth derivatives).

Upgrade Colab statsmodels library

We need to update these packages

Exercise on splines (statsmodels required)

Load both formula.api and api from **statsmodels**. Then load design matrix (dmatrix) from **patsy** library

```
# for the stas model, it requires an update above import statsmodels.formula.api as smf import statsmodels.api as sm 4 from patsy import dmatrix
```

Generate some hard data

```
def Concave(x):
    return 1/(1+25*x**4)

# make example data
tmpx = np.linspace(-1,1,30)
y = Concave(tmpx) + np.random.normal(0, 0.2, len(tmpx))
```

Contd.

For binning data, you can use dmatrix

```
# Generating cubic spline with 3 knots

Ttmpx3 = dmatrix("bs(train, knots=(-1,0,0.3), degree=3, include_intercept=False)",

{"train": tmpx},return_type='dataframe')

Ttmpx3
```

• The data frame shows different datapoints divided by knots. As we have 3 knots, the result columns will be 6.

D•	Intercept	bs(train, knots=(-1, 0, 0.3), degree=3, include_intercept=False) [0]	bs(train, knots=(-1, 0, 0.3), degree=3, include_intercept=False) [1]	bs(train, knots=(-1, 0, 0.3), degree=3, include_intercept=False) [2]	bs(train, knots=(-1, 0, 0.3), degree=3, include_intercept=False) [3]	bs(train, knots=(-1, 0, 0.3), degree=3, include_intercept=False) [4]	bs(train, knots=(-1, 0, 0.3), degree=3, include_intercept=False) [5]
0	1.0	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1	1.0	0.807044	0.182426	0.010403	0.000126	0.000000	0.000000
2	1.0	0.640658	0.319010	0.039323	0.001009	0.000000	0.000000
3	1.0	0.498872	0.414397	0.083324	0.003406	0.000000	0.000000
4	1.0	0.379720	0.473235	0.138970	0.008074	0.000000	0.000000
5	1.0	0.281233	0.500170	0.202827	0.015770	0.000000	0.000000

Contd

• For splines, we use the general model from the **statsmodels.api**

```
1 Spline3 = sm.GLM(y, Ttmpx3).fit()
```


Predict

■ Then, we use **Spline3.predict(dmatrix())** to compute **y_pred**

```
# Predicting new examples, remember we need to do the same transformation of data

X_new = dmatrix("bs(train, knots=[-0.5, 0, 0.5], degree=2, include_intercept=False)",

{"train": tmpx},return_type='dataframe')

pred2 = SplineL.predict(X_new)
```

Part 3: Regularization

- Ridge
- Lasso

Regularization

Assessment:

- Sometimes, we have very few features on a dataset and the score is poor for both the training and testing Underfitting (High bias)
- But sometimes, we have large number of features and test score is relatively poor than the training score, then we have a problem of generalization- Overfitting

Lasso and Ridge Regression are two techniques that prevent Overfitting problem

Ridge Regression

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2 + \alpha \sum_{i=1}^{n} \beta_i^2$$

- In Ridge regression the cost function is modified by adding a penalty equivalent to square of the magnitude of the coefficients.
- It is similar to simple LR, but with adding the following condition:

for some
$$c > 0$$
, $\sum_{i=1}^{n} \beta^2 < c$

- The penalty term α regularizes the coefficients such that if the coefficients take large values the optimization function penalized.
- Ridge regression shrinks the coefficients and it helps to reduce the model complexity and multi-collinearity.

Lasso Regression

The cost function for Lasso (least absolute shrinkage and selection operator) regression can be written as

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2 + \lambda \sum_{i=1}^{n} |\beta|$$
for some $c > 0$, $\sum_{i=1}^{n} \beta^2 < c$

Lasso regression coefficients subject to similar constrain as Ridge.

Simple regression

Lasso Regression

When to use:

- Regularization can used in these two situations:
 - Use either method when number of features are greater than samples.
 - If the features are multi-colinear

Scikit-learn

Ridge and lasso regressions are in scikit-learn linear_model package.

```
1 from sklearn.linear model import Ridge
2 from sklearn.linear model import Lasso
1 ridge = Ridge(alpha=0.02)
2 ridge.fit(X[:,None], y)
4 lasso = Lasso(alpha=0.1)
5 lasso.fit(X[:,None], y)
1 yr_pred = ridge.predict(X[:,None])
2 yr pred = lasso.predict(X[:,None])
```

Tips To Improve

- Normalize your data, i.e., shift it to have a mean of zero, and a spread of 1 standard deviation
- Do feature engineering:
 - Are the features collinear?
 - Do any of them have cross terms/higher-order terms?

```
1 from sklearn.preprocessing import StandardScaler

1 zscore = StandardScaler()
2 zscore.fit(X.reshape(-1,1))

1 X = zscore.transform(X[:,None])
```

Thank you