Mreže za sortiranje

Sortiranje

4		10
9		9
3		8
1		7
2		4
10		3
8		2
7		1

Mreža za sortiranje

(Mreža za bitonik sortiranje)

Mreža za sortiranje

(Mreža za bitonik sortiranje)

Komparator

Komparator

Komparator

Nivoi

Dubina = 3

Nivo 1

Nivo 2

Ulaz Izlaz

Ulaz Izlaz 10

nivoi

Rekurzivna konstrukcija Mreža za bitonik sortiranje Sort(n)

Rekurzivna konstrukcija Mreže za spajanje

Osnova za indukciju

Širina n

Dubina mreže za sortiranje: $O(\log^2 n)$

Širina spajača
$$n \frac{n}{2} \frac{n}{4}$$

Ukupna
$$\log n + \log \frac{n}{2} + \log \frac{n}{4} + ... + \log 2 = O(\log^2 n)$$
 dubina

Mreža za brojanje

Problem brojanja

0

Deljena promenljiva

Token = Zahtev za inkrement

Deljena promenljiva

Zahtev za inkrement

Deljena promenljiva

Deljena promenljiva

Zahtev za inkrement

Deljena promenljiva

Zahtev za inkrement

Deljena promenljiva

Deljena promenljiva

Zahtev za inkrement

Deljena promenljiva

Zahtev za inkrement

Deljena promenljiva

Sekvencijalno usko-grlo

Deljena promenljiva

Zahtevi moraju biti serializovani

Mreža za brojanje

Mreža za brojanje

Balanser

Balanser

Balanser

Svi tokeni zajedno

Osobina koraka

Sledeći primer

Osobina koraka

Sledeći primer

Osobina koraka

Sledeći primer

(Mreža za bitonik brojanje)

Svi tokeni

Svi tokeni

Sledeći primer

Sledeći primer

Sledeći primer

Sledeći primer

Paralelizam

Mnogi zahtevi za inkrement se obrađuju simultano

Brojanje Izlaz Deljene promenljive

Token = Zahtev za inkrement

Izlaz Deljena promenljive

Povratna vrednost

Vrednost deljene promenljive se poveća za 4 (širina izlaza)

Zahtev za inkrement

Zahtev za inkrement

Svi tokeni

Mreža za bitonik brojanje

Izomorfna sa Mrežom za bitonik sortiranje

Count(n) Count(n/2) Ulaz Merge(n) Izlaz Count(n/2) $O(\log^2 n)$ dubina

Neparne podsekvence

Parne

Teorema:

merger(n) proizvodi izlaz Z sa osobinom koraka ako oba ulaza X i Y imaju osobnu koraka

Dokaz:

Dokaz je pomoću indukcije na nOsnova indukcije:

Za n=2 spajač je balanser i tvrdnja je trivijalno zadovoljena

Indukciona hipoteza:

Predpost. da svaki spajač veličine n/2 i manje ispravno obavlja spajanje

Indukcioni korak:

Želimo da pokažemo da je:

Predpost. da X i Y imaju osobinu koraka. Onda ćemo pokazati da Z ima osobinu koraka

X_0 ... X_0 ... X_1 ... X_2 ... X_2 ... X_3 ... X_4 ... X_5 ... X_6 ... X_6 ... X_7 ...

Ako X ima osobinu koraka onda X^{even} i X^{odd} imaju osobinu koraka

Zato, iz indukcione hipoteze:

Prvo, pokažimo: $-1 \le |A| - |B| \le 1$

Gde | A | označava ukupan broj tokena u sekevnci A

$$|A| = |X^{even}| + |Y^{odd}|$$

Spajač 2
$$|B| = |Y^{even}| + |X^{odd}|$$

Pošto X ima osobinu koraka:

$$|X^{even}| = |X^{odd}|$$

$$|X^{even}| = |X^{odd}| + 1$$

$$X_0$$
 X_1
 X_2
 X_3
 X_4
 X_5
 X_6
 X_7

$$X_0$$
 X_1
 X_2
 X_3
 X_4
 X_5
 X_6
 X_7

Zato je:
$$0 \le |X^{even}| - |X^{odd}| \le 1$$

Slično:
$$0 \le |y^{even}| - |y^{odd}| \le 1$$

$$0 \leq |X^{even}| - |X^{odd}| \leq 1$$

$$0 \leq |Y^{even}| - |Y^{odd}| \leq 1$$

$$|A| - |B| = (|X^{even}| - |X^{odd}|) + (|Y^{odd}| - |Y^{even}|)$$

$$-1 \le |A| - |B| \le 1$$

Sada, pokažimo da Z ima osobinu koraka

$$-1 \le |A| - |B| \le 1$$

Postoji najviše jedna žica i gde se dve sekvence razlikuju

