Digital System Laboratory

FPGA

T. Hui

Introduction to FPGA

Lesson Plan

- Introduction to FPGA
- FPGA boards briefing
- FPGA software setup
- Handson Tasks

Introduction to FPGA

• FPGA: Field Programmable Gate Array

FPGA Fabric

LUT: Lookup Table

Parameterizing a CLB

- FPGA is about parameterizing a CLB, by bitstream.
- Bitstream is generated from HDL through synthesis.

Input/Output

- Interface blocks (called IOBs)
- Input, Output or InOut
- (Push-pull, open drain, etc.

MOSFETS

Special Blocks

- Memories
 - RAM banks
- DSP (digital signal processing)
 - arithmetic blocks
- PLL (phase lock loop)
 - multiple clock signals, at different phases and frequencies
- serdes (Serializer-Deserializer)
 - allow parallel/serial conversion and vice versa at speeds of several Gb/s
- Others
 - controllers for external DRAM, Ethernet modules, A/D and D/A converters etc

PLL

- PLL
 - multiple clock signals, at different phases and frequencies

FPGA - SoC

- SoC (System on Chip)
 - FPGA fabric
 - HPS (Hard Processor Systems), generally ARM or RISC-V core

SoC

FPGA Design Flow

Programming a FPGA

- Programming a FPGA means establishing the parameterization of the individual blocks and their interconnections.
- Programming methodologies
 - System: Processor
 - Behavioral: HLS
 - RTL (Register Transfer Level): Verilog HDL
 - Physical: ASIC

Programming a FPGA

Programming a FPGA

- Graphical
 - Schematic entry (NAND & NOR gates)
- Textual
 - Verilog HDL entry
 - VHDL

FPGA Providers (old data)

FPGA Board

Digilent Cmod A7-35T

- Xilinx Artix-7 XC7A35T
- 33,280 CLBs, 1,800Kb of RAM blocks, 90 DSPs, 5 Transceivers at 6.6 Gb/s
- 512MB of SRAM
- Cmod A7-35 T is the board for 2D
- https://digilent.com/sho p/cmod-a7-35tbreadboardable-artix-7fpga-module/

Breadboardable

Digilent Cmod A7-35T

- Cmod A7 Reference
 Manual
- https://digilent.com/ref erence/programmablelogic/cmoda7/referencemanual?redirect=1

1300 Henley Court Pullman, WA 99163 509.334.6306 www.diglentinc.com

Cmod A7 Reference Manual

Revised October 4, 2019 This manual applies to the Cmod A7 Rev. B

Overview

The Digilent Cmod A7 is a small, 48-pin DIP form factor board built around a Xilinx Artix-7 FPGA. The board also includes a USB-1TAG programming circuit, USB-UART bridge, dock source, Pmod host connector, SRAM, Quad-SPI Flash, and basic VO devices. These components make it a formidable, albeit compact, platform for digital logic circuits and MicroBlaze™ embedded soft-core processor designs alike. There are 44 Digital FPGA /O signals and two FPGA Analog inputs that are routed to 100-mil-spaced through-hole pins so that users can integrate programmable logic design directly into a solderless breadboard circuit. At just 0.7" by 2.75", it can also be loaded in a standard socket and used in embedded systems.

The Cmod A7.

- System Features
 - 512KB SRAM with an 8-bit bus and 8ns access times
 - o 4MB Quad-SPI Flash
 - USB-JTAG Programming Circuitry
 Powered from USB or external 3.3-5.5V
 - supply connected to DIP pins
- System Connectivity
- USB-UART bridge
 Interaction and Sensory Devices
 - o 2 LEDs
 - o 1 RGB LED
- 2 Push Buttor
 Expansion Connectors
- 48-pin DIP connector with 44 Digital I/O and 2 Analog inputs (0-3.3V)
- o One Pmod connector with 8 Digital I/O

The Cmod A7 can be purchased with either an Artix-15T or Artix-35T FPGA. These two Cmod A7 product variants are referred to as the Cmod A7-15T and Cmod A7-35T, respectively. When Digilent documentation describes functionality that is common to both of these variants, they are referred to collectively as the "Cmod A7". When describing something that is only common to a specific variant, the variant will be explicitly called out by its name.

The only difference between the Cmod A7-15T and Cmod A7-35T are the capabilities of the FPGA found on the board. They compare as follows:

Digilent Cmod A7-35T

- System Features
- 512KB SRAM with an 8-bit bus and 8ns access times
- 4MB Quad-SPI Flash
- USB-JTAG Programming Circuitry
- Powered from USB or external 3.3-5.5V supply connected to DIP pins
- System Connectivity
- USB-UART bridge
- Interaction and Sensory Devices
- 2 LEDs, 1 RGB LED, 2 Push Buttons
- Expansion Connectors
- 48-pin DIP connector with 44 Digital I/O and 2 Analog inputs (0-3.3V)
- One Pmod connector with 8 Digital I/O

Product Variant	Cmod A7-35T
FPGA Part	XC7A35T-1CPG236C
1 MSPS On-chip ADC	Yes
Programming options	Quad-SPI Flash/JTAG
Look-up Tables (LUTs)	20,800
Flip-Flops	41,600
Block RAM	225 KB
Clock Management Tiles	5

FPGA Board

Digilent Basys 3

- It has the same chip as the Cmod A7 35-T (to be used for 2D)
- It is a learning-oriented board, with
 - 16 switches, 5 buttons, 4 7segment displays and a 12-bit VGA output
- Basys 3 will be used for Handson / Learning only
- https://digilent.com/referenc e/programmable-logic/basys-3/start

Learning-oriented

FPGA Software

- Register an account with Xilinx
 - You need this registration for download, and installation
- Download Vivado-design-tools
 - 2023.1
- Please refer to the below Guide for detail setup

https://pe8sutd.larksuite.com/docx/NfZid9uy5oiYvbxoEWMui94HsfY?from=from_copylink

2D Briefing

- This 2D is a Group work.
- The Theme is Cybersecured Systems.
- The group needs to design a Pseudo-Random Numbers Generator, using Cmod A7 board.
- You can propose your project as well but limited to use CMOD A7, with external components.
- Evaluation criteria are:
 - Functionality, able to demonstrate working prototype, and show the evaluation processes
 - how to proof that your board is working as PRNG, e.g. the number is random?.
 - Innovativeness, able to implement unique ideas,
 - such as using a unique random source.
 - the design itself is conventional, but the process is new, e.g. using own fine-tuned generative AI to perform the design automatically.
 - Educational contribution, the documentation and prototype are comprehensive and be able to be used as learning materials for public
 - Compulsory to host in the accessible github, with proper documentation, source files.
 - Name the github for this project as Y23T6_PRNG_gX, where is the group number.

2D Briefing

Week		Task	Deliverable	
		project	in class demo, interview,	
Week 12	2D	evaluation	accessible Github;	
			15 min per group	
			(10 min demo, 5 min q&a)	25%
		report		
Week 13	2D	submission	innovativeness	10%
			education	5%
			Total	40%

FPGA Hardware Setup – Basys 3, Cmod A7

- Basys 3, Cmod A7 FPGA board x1
- Isolation board x1 (USB-C in, USB-A out): optional
- Please prepare one USB cable (micro-B) to program the Basys 3 FPGA board
 - Example, USB-A micro B (Charging & Transfer Cable)
 - If your laptop has USB-C only, you can use USB-C micro B cable or through USB-C extension
 - Not all USB-A micro B cable is working well with fpga board
 - Example, the USB-A micro B from Daiso is working (sgd2.16)
 - It is hard for lab to prepare the cables as different computer require different cable

FPGA Hardware Setup – Basys 3

FPGA Hardware Setup – CMOD A7

FPGA Software Setup - Vivado

- Register an account with Xilinx
 - You need this registration for download, and installation
- Download Vivado-design-tools
 - 2023.1
- Please refer to the below Guide for detail setup

https://pe8sutd.larksuite.com/docx/NfZid9uy5oiYvbxoEWMui94HsfY?from=from_copylink

Handson – T01 (Basys 3-Group)

- Basys 3 Logic Gates
- Group work: only one member needs to submit
- Please refer to his link for the handson instruction.

https://pe8sutd.larksuite.com/docx/W7yQdjBk1ohFT5xWEL2uvsflsCb?from=from_copylink

Handson – T02 (Basys 3-Group)

- Basys 3 StopWatch
- Group work: only one member needs to submit
- Please refer to his link for the handson instruction.

https://pe8sutd.larksuite.com/docx/PTJudpWubouUNoxrNdzueuvNsIc?from=from_copylink

Handson – T03 (CMOD A7-Group)

- CMOD A7 StopWatch
- Group work: only one member needs to submit
- Please refer to his link for the handson instruction.

https://pe8sutd.larksuite.com/docx/QITjdxNogoEYY0x4gdhu5hrBsEc?from=from_copylink

Handson – T04 (CMOD A7-Group)

- CMOD A7 PRNG (2D)
- Group work: only one member needs to submit
- Please refer to his link for the handson instruction.

https://pe8sutd.larksuite.com/docx/E9NldHApPoR0fBxAmoPuT3dtsmd?from=from_copylink

