

Spectroscopie de résonance magnétique nucléaire (RMN)

01-11-2023

Lecture 8

Histoire Vraie...

Spectres ¹H RMN et DEPT de l'impureté

Spectre de masse de l'impureté

L'échantillon est incorporé dans une matrice qui contient des ions sodium (23 g/mol) et potassium (39 g/mol)

La masse molaire de l'impureté est donc de 427-23 = 443-39 = 404 g/mol

Spectres RMN ¹H et DEPT de l'impureté

Approximate Values of Chemical Shifts for ¹³ C NMR								
(CH ₃) ₄ Si	0	* I-C	-20 - 40	c=c 100 - 150	155 - 185			
R-CH₃	8 - 30	Br-C	25 - 65	C-H 110 - 170	0 0			
R-CH ₂ -R	15 - 55	CI-C	35 - 80		R, COH R, COR 165 - 185			
R ₃ CH	20 - 60	O-C	40 - 80	C=N 150 - 170	Q Q			
R ₄ C	30 - 50	N-C	30 - 65	C≡N 110 - 140	R ^{,C} ,H R ^{,C} ,R 190 - 220			

Spectres RMN ¹H et DEPT de l'impureté

Pourquoi carbone 6 est plus déblindé que carbone 1?

Notez que le carbone 6 se trouve à l'extrêmité de la délocalisation (flèche rouge), ce qui amplifie le déblindage

Notez aussi que les protons a et d sont placés sur les carbones 2 et 5 (respectivement), et pas sur les carbones 1 et 6.

Spectre de masse de l'impureté

On retrouve bien la valeur de 404 g/mol

Origine de l'impureté

a) Donnez le nombre de groupes de protons différents (non équivalents)

b) Indiquez la multiplicité correspondant à chaque groupe

1)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 - CH_3$$

Associez chaque signal du spectre RMN ¹H au groupe de protons de la molécule ci-dessous :

Associez chaque signal du spectre RMN ¹H au groupe de protons de la molécule ci-dessous :

	Approximate Values of Chemical Shifts for ¹³ C NMR								
(CH ₃) ₄ Si	0	* I-C	-20 - 40	c=c 100 - 150	155 - 185				
R-CH ₃	8 - 30	Br-C	25 - 65	C-H 110 - 170	0 0				
R-CH ₂ -R	15 - 55	CI-C	35 - 80		R ^{,C} OH R ^{,C} OR 165 - 185				
R ₃ CH	20 - 60	O-C	40 - 80	C=N 150 - 170					
R₄C	30 - 50	N-C	30 - 65	C≡N 110 - 140	R ^{,C} ,H R ^{,C} ,R 190 - 220				

Déterminez la structure de formule moléculaire C₇H₁₄O₃ à l'aide des spectres RMN ¹H et RMN ¹³C ci-dessous :

THE STATE OF STREET, WHITE STATE OF STREET, W

