Experiment 3 Report

第三章上机题6

我们实现了三个函数:

- cholesky(...) : 输入一对称正定矩阵A,程序用平方根法计算其Cholesky分解 $A=LL^T$,并返回下三角矩阵L;
- hilbert(...) : 输入尺寸n, 程序输出 $n \times n$ Hilbert矩阵 H_n ;
- solve_hilbert_system(...): 输入尺寸n和(可选的)扰动 Δb ,程序利用 Cholesky分解求解对应的线性方程组,并给出双精度下的残差和误差。若未给定扰动,则视扰动为零。

之后,我们按照要求构造了对应阶数的Hilbert矩阵,并生成了对应的方程组,对Hilbert矩阵进行Cholesky分解后便捷地计算出了方程组的解(因为计算L矩阵的逆很便捷),然后计算了 $||\mathbf{r}||_{\infty}$ 和 $||\mathbf{\Delta x}||_{\infty}$.

所有计算均在双精度浮点数下进行。

条件	残差无穷范数	解的相对误差
N=10, 无扰动	1.8534e-4	7.00047e6
N=10, 有扰动	1.0242e-4	7.01781e6
N=8, 无扰动	1.9300e-7	2.16215e5
N=12, 无扰动	1.3297e-2	2.35953e8
N=13, 无扰动	1.2470e0	7.39456e8
N=14, 无扰动	*	*

(表中**有扰动**一行的数据为100次随机选择扰动后结果平均值。)

可以发现,随着Hilbert矩阵阶数提升,尽管残差仍然(相对)较小(或者说残差的爆发式增长来得较晚),但解的相对误差已经非常巨大。这验证了Hilbert矩阵作为稀疏矩阵的病态性。随机扰动引发的解的相对误差变化量相对于扰动的大小(以无穷范数计)也是巨大的(数量级约为 10^{13})。

当N=14时,采用单纯的双精度浮点数计算已经导致计算出现错误:

在Cholesky分解的过程中,某一对角元素在减法过程中成为了负数,无法进行正常的平方根操作。这进一步说明了此问题的病态。