Problem 1

Let \vec{a}, \vec{b} be two vectors in \mathbb{R}^3 .

- 1. Show that the vector $\vec{b} \text{proj}_a b$ is orthogonal to \vec{a} .
- 2. Under what condition do we have $||\operatorname{proj}_a b|| = ||\operatorname{proj}_b a||$?
- 3. Under what condition do we have $\text{proj}_a b = \text{proj}_b a$?

Problem 2

Let
$$\vec{a} = (1, 1, -1), \vec{b} = (1, -1, 1).$$

- 1. Find a unitary vector \vec{n} which is orthogonal to both \vec{a} and \vec{b} . How many vectors satisfy such properties? Draw the one you found.
- 2. Find the volume of the parallelepiped spanned by \vec{a}, \vec{b} and \vec{n} .
- 3. Find the area of the triangle spanned by \vec{a} and \vec{b} .

Problem 3

- 1. Find the equation in parametric form and in symmetric form of the line r_1 in \mathbb{R}^3 passing through the points $P_1 = (6, 1, -3)$ and $P_2 = (2, 4, 5)$.
- 2. Find the equation of a line which intersects r_1 in one point and show that it is intersecting.
- 3. Consider the line $\mathbf{r_2}(t) = (3 + 8t, 3 6t, -16)$. Write its symmetric form. Is it intersecting, skew or parallel to $\mathbf{r_1}$?
- 4. Determine whether the following lines are skew, parallel or intersecting:

$$r_3: \frac{x-1}{2} = \frac{y-3}{2} = \frac{z-2}{-1}$$

$$r_4: \frac{x-2}{1} = \frac{y-6}{-1} = \frac{z+2}{3}$$

Problem 4

1. Find the plane through the point $P_1 = (2, 5, -1)$ and containing the line

$$r(t) = (4 - t, 2, 3 + 2t)$$

.

- 2. Find the plane that is parallel to the plane x + y z = 1 and contains the point $P_2 = (1, 0, -1)$.
- 3. Given the plane x + y z = 1, find whether the line with symmetric equations

$$\frac{x-2}{1} = \frac{y-6}{-1} = \frac{z+2}{3}$$

is parallel, orthogonal or neither.

4. Bonus question: Consider the generic equation of a plane ax+by+cz=d, where at least one coefficient is nonzero. Prove that the vector normal to the plane is $\vec{n}=(a,b,c)$.

Problem 5

Consider the function $f: D_1 \subset \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x, y, z) = \frac{\sqrt{x^2 + y^2 - 4z^2}}{x^2 + y^2}$$

- 1. Find the domain D of f.
- 2. Describe the domain in terms of quadrics and use the trace method to identify it.
- 3. Consider $g: D_2 \subset \mathbb{R}^2 \to \mathbb{R}$ defined as g(x,y) = f(x,y,1) and write an expression for it. Find the domain D_2 , draw it on the plane and calculate $\lim_{(x,y)\to\infty} g(x,y)$.