N-Body Simulations with REBOUND

Lab course protocol

Group 3+10

Pratyush Singh, Proshmit Dasputpa, Erasyl Telman

07/03/2025

Advanced lab course in astronomy Eberhard Karls Universität Tübingen

WiSe 2024/25

Abstract

This is optional, but never longer than half a page.

Contents

1	Intr	roduction	1
2	$\operatorname{Th}\epsilon$	eory	2
	2.1	Classical N-Body Problem	2
	2.2	Time Integrators	2
		2.2.1 Leapfrog	2
		2.2.2 IAS15	2
		2.2.3 WHFast	2
		2.2.4 Gragg-Bulirsch-Stoer	2
	2.3	REBOUND	2
3	Exp	periment	2
	3.1	Two Body Problem	2
	3.2	Three Body Problem and Stability of the Planet System	2
	3.3	Jupiter and Kirkwood Gaps	2
	3.4	Resonant Capture of a Planet	2
4	Con	nclusions	2
${f A}$ 1	Appendix		

Group 3+10; N-Body Simulations with REBOUND				
Code	3			

1 Introduction

Very short summary what the experiment is about and why the subject plays a role in astronomy/astrophysics.

2 Theory

- 2.1 Classical N-Body Problem
- 2.2 Time Integrators
- 2.2.1 Leapfrog
- 2.2.2 IAS15
- 2.2.3 WHFast
- 2.2.4 Gragg-Bulirsch-Stoer
- 2.3 REBOUND
- 3 Experiment
- 3.1 Two Body Problem
- 3.2 Three Body Problem and Stability of the Planet System
- 3.3 Jupiter and Kirkwood Gaps
- 3.4 Resonant Capture of a Planet

4 Conclusions

An important section in which you should critically review the experiment and its results. Mention also parts that did not work out as expected, but keep a neutral to positive view. This can span from a few sentences to half a page.

References

- [1] Brown B, Aaron M (2001) The politics of nature. In: Smith J (ed) The rise of modern genomics, 3rd edn. Wiley, New York, p 234–295
- [2] Dod J (1999) Effective Substances. In: The dictionary of substances and their effects. Royal Society of Chemistry. Available via DIALOG. http://www.rsc.org/dose/title of subordinate document. Cited 15 Jan 1999
- [3] Slifka MK, Whitton JL (2000) Clinical implications of dysregulated cytokine production. J Mol Med, doi: 10.1007/s001090000086
- [4] Smith J, Jones M Jr, Houghton L et al (1999) Future of health insurance. N Engl J Med 965:325–329
- [5] South J, Blass B (2001) The future of modern genomics. Blackwell, London

Appendix

Code

Please attach here your original handwritten notes and other documents created during the experiment.