Communication Systems EE-351

Huma Ghafoor Lectures 34 to 36

Companding:

Compressing + Expanding

Companding:

Advantages:

- Reduce dynamic range
 - Quantization error ↓
- Step-size is reduced
- SNR1, efficiency1

Characteristics of Companding:

$$Q_{e_{max}} = \left| \frac{\Delta}{2} \right|$$
$$\Delta \downarrow \Rightarrow Q_e \downarrow$$

Gain:

Quantization Error:

$$Q_e = x_q(kT_s) - x(kT_s)$$

 Q_e = quantized value – sampled value

$$Q_{e_{max}} = \left| \frac{\Delta}{2} \right| \Rightarrow -\frac{\Delta}{2} \operatorname{to} \frac{\Delta}{2}$$

Quantization error \rightarrow uniformly distributed function in $\left(-\frac{\Delta}{2}, \frac{\Delta}{2}\right)$

Step size =
$$\frac{V_{max} - V_{min}}{L}$$

Optimal Quantizer: Lloyd-Max Quantizer:

Optimal Quantizer: Lloyd-Max Quantizer:

Choose Quantization levels (QL) &

Quantization Intervals (QT)

That minimize The QE.

Optimal

Optimal

And Many - - - Me Colorism

Quantizat

And Many - - - Me Colorism

Quantizat

And Many - - - Me Colorism

Quantizat

And Many - - - - Me Colorism

QL.

How Lloyd-max algorithm optimally choose these levels/intervals?

How Lloyd-max algorithm optimally choose these levels/intervals?

Summery.

Step A. Eventiretion Intervals => Levels] Step B. Levels => Intervals

> iteratively repeat Until get final grantiza

Convergence both &I & &L cre approx. constant.

Optimal Quantizer: Lloyd-Max Quantizer:

Condition:

Choose such that Quantization Error (average square value) is minimized

$$\int_{m_{k-1}}^{m_k} (\mu_k - m)^2 F_m(m) dm$$

Average quantization error for the interval $[m_{k-1}, m_k]$

= Duk mr. (Mk.m)2 Fm (m) dm

Compute every a. = 1 d (up-m)2 Fm(m)dm $\Rightarrow \int_{m_{k-1}}^{m_k} 2(\mu_k - m) F_n(m) dm = 0$ The find μ_k for which meen is minimized) 2 (ux - m) Fm (m) dm 50

Hallia Oliaiool 18001 DEECO OPHIIS 2020

(uk-m) Fm(m) dm 50 July Fm (m) dm 5 Sm Fm (m) dm =) ue does not depend on m Me S Fm(m) dm = Sm Fm(m) dm Mp = Sm Fn (n) dn optimel fru(m) In

can de soletermined from dynamic renje.

if
$$g(m) = \mu_{R+1}$$

eq. error = $(m - \mu_{R+1})^2$
if $g(m) = \mu_{R}$
eq. error = $(m - \mu_{R})^2$
eboore μ_{R} and il
 $(m - \mu_{R})^2 < (m - \mu_{R+1})^2$
 $mx + \mu_{R}^2 - 2m\mu_{R} < mx + \mu_{R+1} = 2m\mu_{R+1}$
 $m < \frac{1}{2} (\mu_{R+1} + \mu_{R})$
if $m_{R} = \frac{1}{2} (\mu_{R} + \mu_{R+1})$

Example:

Design a 3-level mid-tread quantizer

$$F_m(m) = (1 - m^2)$$
 [-2,2]

Midpoint,

$$\mu_k = \frac{\int mF_m(m)dm}{\int F_m(m)dm}$$

$$\mathcal{H}_{R} = \int \frac{1}{\sqrt{1 - m^{2}}} \frac{1}{\sqrt{1 - m^{2}}$$

-1.75

$$M_{K} = \int_{-0.67}^{0.67} \frac{m(1-m^{2})dm}{(1-m^{2})dm} = \frac{0.22-0.25-0.22+0.05}{0.67-0.10+0.67-0.10} = 0$$

$$M_{K} = \int_{-0.67}^{2} \frac{m(1-m^{2})dm}{(1-m^{2})dm} = \frac{-2.17}{-1.23} = 1.76$$

$$mid. Keep = 1.76$$

Conclusion:

- Drawbacks:
 - Large dynamic range
 - Large number of levels to quantize
 - Number of bits large
 - BW large
 - Same no. of levels
 - Step size large
 - Quantization error large
 - Large redundant bits are encoded
 - Large number of redundant bits are transmitting
 - each and every bit requires BW for propagation

