***** Cumulative Distribution Function

$$F_X(x) = P(X \le x)$$

Probability Density Function

$$f_X(x) - given(family of CRV)$$

	Probability Density Function	Cumulative Distribution Function
interchange	$f_X(x) = F_X'(x)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$
$P(a < X \le b)$	$\int_{a}^{b} f_{X}(x) dx$	$F_X(b) - F_X(a)$
	$f_X(x) \ge 0$	$\lim_{x\to-\infty}F_X(x)=0$
	$\int_{-\infty}^{\infty} f_X(x) dx = 1$	$ \lim_{x\to\infty}F_X(x)=1 $

• Probability of any one outcome: P(X = x) = 0

Expected Values

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

• Function g(X):

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx$$

Families of CRV

\Leftrightarrow Uniform (a, b)

$$f_X(x) = \begin{cases} \frac{1}{b-a}, a \le x \le b\\ 0, otherwise \end{cases}$$

$$F_X(x) = \begin{cases} 0, x \le a \\ \frac{x - a}{b - a}, a \le x < b \\ 1, x > b \end{cases}$$

•
$$E(X) = \frac{a+b}{2}$$

•
$$Var(X) = \frac{(a-b)^2}{12}$$

Exponential (λ)

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0\\ 0, otherwise \end{cases}$$

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, x \ge 0\\ 0, otherwise \end{cases}$$

•
$$E(X) = \frac{1}{\lambda}$$

•
$$Var(X) = \frac{1}{\lambda^2}$$

\Leftrightarrow Gaussian (μ, σ)

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F_X(x) = \Phi(\frac{x - \mu}{\sigma})$$

$$\Phi(z) = \frac{1}{2\pi} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt$$

•
$$E(X) = \mu$$

•
$$Var(X) = \sigma^2$$

$$P(a < X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$
$$\Phi(-z) = 1 - \Phi(z)$$

\Rightarrow Pareto (α, β)

$$f_X(x) = \begin{cases} \frac{\alpha}{\beta} \cdot (\frac{\beta}{x})^{\alpha+1}, x \ge \beta \\ 0, x < \beta \end{cases}$$

$$F_X(x) = \begin{cases} 1 - (\frac{\beta}{x})^{\alpha}, x \ge \beta \\ 0, x < \beta \end{cases}$$

•
$$E(X) = \frac{\alpha\beta}{\alpha-1}$$

•
$$E(X) = \frac{\alpha\beta}{\alpha - 1}$$

• $Var(X) = \frac{\alpha\beta^2}{(\alpha - 1)^2(\alpha - 2)}$

Conditional CRV

$$f_{X|B}(x) = \begin{cases} \frac{f_X(x)}{P(B)}, x \in B\\ 0, otherwise \end{cases}$$

$$f_X(x) = \sum_{i=0}^n f_{X|B}(x) \cdot P(B_i)$$

•
$$E(X|B) = \int_{-\infty}^{\infty} x \cdot f_{X|B}(x) dx$$

Derived CRV

$Y = c \cdot X$

- $Uniform(a,b) \Rightarrow Uniform(c \cdot a, c \cdot b)$
- Exponential $(\lambda) \Rightarrow$ Exponential $(\frac{\lambda}{c})$
- Gaussian $(\mu, \sigma) \Rightarrow$ Gaussian $(c \cdot \mu, c \cdot \sigma)$

	$Y = c \cdot X$	Y = X + c
CDF	$F_Y(y) = F_X(\frac{y}{c})$	$F_Y(y) = F_X(y - c)$
PDF	$f_Y(y) = \frac{1}{c} f_X(\frac{y}{c})$	$f_Y(y) = f_X(y - c)$