Assignment 1

January 30, 2019

You are currently looking at **version 1.3** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ course resource.

1 Assignment 1 - Introduction to Machine Learning

For this assignment, you will be using the Breast Cancer Wisconsin (Diagnostic) Database to create a classifier that can help diagnose patients. First, read through the description of the dataset (below).

```
In [1]: import numpy as np
    import pandas as pd
    from sklearn.datasets import load_breast_cancer

    cancer = load_breast_cancer()

#print(cancer.DESCR) # Print the data set description
```

The object returned by load_breast_cancer() is a scikit-learn Bunch object, which is similar to a dictionary.

```
In [2]: cancer.keys()
Out[2]: dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])
```

1.0.1 Question 0 (Example)

How many features does the breast cancer dataset have? *This function should return an integer.*

```
In [3]: # You should write your whole answer within the function provided. The auto
# this function and compare the return value against the correct solution v
def answer_zero():
    # This function returns the number of features of the breast cancer day
```

The assignment question description will tell you the general format

```
return len(cancer['feature_names'])
         # You can examine what your function returns by calling it in the cell. If
         # about the assignment formats, check out the discussion forums for any FAQ
        answer zero()
Out[3]: 30
1.0.2 Question 1
Scikit-learn works with lists, numpy arrays, scipy-sparse matrices, and pandas DataFrames, so
converting the dataset to a DataFrame is not necessary for training this model. Using a DataFrame
does however help make many things easier such as munging data, so let's practice creating a
classifier with a pandas DataFrame.
  Convert the sklearn.dataset cancer to a DataFrame.
  This function should return a (569, 31) DataFrame with
  columns =
['mean radius', 'mean texture', 'mean perimeter', 'mean area',
'mean smoothness', 'mean compactness', 'mean concavity',
'mean concave points', 'mean symmetry', 'mean fractal dimension',
'radius error', 'texture error', 'perimeter error', 'area error',
'smoothness error', 'compactness error', 'concavity error',
'concave points error', 'symmetry error', 'fractal dimension error',
'worst radius', 'worst texture', 'worst perimeter', 'worst area',
'worst smoothness', 'worst compactness', 'worst concavity',
'worst concave points', 'worst symmetry', 'worst fractal dimension',
'target']
  and index =
RangeIndex(start=0, stop=569, step=1)
```

```
This function creates a pandas dataframe from a numpy array

np.c_ is the numpy concatenate function
which is used to concat cancer['data'] and cancer['target'] arrays
for pandas column argument: concat cancer['feature_names'] list
and string list (in this case one string)

"""

data = np.c_[cancer.data, cancer.target]
columns = np.append(cancer.feature_names, ['target'])
df = pd.DataFrame(data = data, columns = columns)
return df
```

In [4]: def answer one():

answer_one().head()

0.1+[4].	maan madiina maay	. +		maan amaa	maan amaa+	hnoga V
Out[4]:		n texture mean	-			
0	17.99	10.38	122.80	1001.0		11840
1	20.57	17.77	132.90	1326.0		08474
2	19.69	21.25	130.00	1203.0		10960
3	11.42	20.38	77.58	386.1		14250
4	20.29	14.34	135.10	1297.0	0.	10030
						,
	mean compactness		_	_	_	_
0	0.27760	0.300		0.14710		2419
1	0.07864	0.086		0.07017		1812
2	0.15990	0.19		0.12790		2069
3	0.28390	0.241		0.10520		2597
4	0.13280	0.198	30	0.10430	0.	1809
	mean fractal dime			ure worst	-	worst ar
0		.07871		.33	184.60	2019
1		.05667		3.41	158.80	1956
2		.05999		5.53	152.50	1709
3		.09744		5.50	98.87	567
4	0 .	.05883	16	5.67	152.20	1575
0	worst smoothness	worst compact		_	worst conc	_
0	0.1622		.6656	0.7119		0.26
1	0.1238		.1866	0.2416		0.18
2	0.1444		.4245	0.4504		0.24
3	0.2098		.8663	0.6869		0.25
4	0.1374	0	.2050	0.4000		0.16
	worst symmetry v	rorat fractal (dimension t	arget		
0	0.4601	VOISC IIACCAI (0.11890	0.0		
1	0.2750		0.08902	0.0		
2	0.3613		0.08902	0.0		
3	0.6638		0.17300	0.0		
4	0.2364		0.07678	0.0		
						ļ

1.0.3 Question 2

What is the class distribution? (i.e. how many instances of malignant (encoded 0) and how many benign (encoded 1)?)

This function should return a Series named target of length 2 with integer values and index = ['malignant', 'benign']

```
In [5]: def answer_two():
```

[5 rows x 31 columns]

This function determine the class distribution by categorizing 'target and benign (1). Then a series is created by zipping the size of each (1)

```
cancerdf = answer_one()
             # Count malignants and benign as class distribution
            malignant = np.where(cancerdf['target']==0)
            benign = np.where(cancerdf['target']==1)
             # Group both as list. This list will be used to create the series
            binary_list = [np.size(malignant), np.size(benign)]
             # Index the series by index = ['malignant', 'benign']
             index = ['malignant', 'benign']
             # Create series
             srs = pd.Series(binary_list, index = index)
             return srs
        answer_two()
Out[5]: malignant
                      212
        benign
                      357
        dtype: int64
1.0.4 Question 3
Split the DataFrame into X (the data) and y (the labels).
  This function should return a tuple of length 2: (X, y), where * X, a pandas DataFrame, has shape
(569, 30) * y, a pandas Series, has shape (569,).
In [6]: def answer_three():
             This function splits the initial dataframe into dependent and independe
             Resulting X variable contains all the independent variables, while y is
             explained variable 'target'
            cancerdf = answer_one()
            X = cancerdf.drop('target', axis = 1)
             y = cancerdf['target']
            return X, y
        answer_three()
```

11 11 11

Out[6]:	(mean radius	mean texture	mean perimeter	mean area	mean smoothness
000[0].	0	17.990	10.38	122.80	1001.0	0.11840
	1	20.570	17.77	132.90	1326.0	0.08474
	2	19.690	21.25	130.00	1203.0	0.10960
	3	11.420	20.38	77.58	386.1	0.14250
	4	20.290	14.34	135.10	1297.0	0.10030
	5	12.450	15.70	82.57	477.1	0.12780
	6	18.250	19.98	119.60	1040.0	0.09463
	7	13.710	20.83	90.20	577.9	0.11890
	8	13.000	21.82	87.50	519.8	0.12730
	9	12.460	24.04	83.97	475.9	0.11860
	10	16.020	23.24	102.70	797.8	0.08206
	11	15.780	17.89	103.60	781.0	0.09710
	12	19.170	24.80	132.40	1123.0	0.09740
	13	15.850	23.95	103.70	782.7	0.08401
	14	13.730	22.61	93.60	578.3	0.11310
	15	14.540	27.54	96.73	658.8	0.11390
	16	14.680	20.13	94.74	684.5	0.09867
	17	16.130	20.68	108.10	798.8	0.11700
	18	19.810	22.15	130.00	1260.0	0.09831
	19	13.540	14.36	87.46	566.3	0.09779
	20	13.080	15.71	85.63	520.0	0.10750
	21	9.504	12.44	60.34	273.9	0.10240
	22	15.340	14.26	102.50	704.4	0.10730
	23	21.160	23.04	137.20	1404.0	0.09428
	24	16.650	21.38	110.00	904.6	0.11210
	25	17.140	16.40	116.00	912.7	0.11860
	26	14.580	21.53	97.41	644.8	0.10540
	27	18.610	20.25	122.10	1094.0	0.09440
	28	15.300	25.27	102.40	732.4	0.10820
	29	17.570	15.05	115.00	955.1	0.09847
	• •	• • •	• • •	• • •	• • •	
	539	7.691	25.44	48.34	170.4	0.08668
	540	11.540	14.44	74.65	402.9	0.09984
	541	14.470	24.99	95.81	656.4	0.08837
	542	14.740	25.42	94.70	668.6	0.08275
	543	13.210	28.06	84.88	538.4	0.08671
	544	13.870	20.70	89.77	584.8	0.09578
	545	13.620	23.23	87.19	573.2	0.09246
	546 547	10.320	16.35	65.31	324.9	0.09434
	547	10.260	16.58	65.85	320.8	0.08877
	548	9.683	19.34	61.05	285.7	0.08491
	549	10.820	24.21	68.89	361.6	0.08192
	550 551	10.860	21.48	68.51	360.5	0.07431
	551 552	11.130	22.44	71.49	378.4	0.09566
	552 553	12.770 9.333	29.43 21.94	81.35 59.01	507.9 264.0	0.08276 0.09240
	554	12.880	28.92	82.50	514.3	0.09240
	J J 4	12.000	20.92	04.30	214.3	0.0012.

555	10.290	27.61	65.67	321.4	0.09030
556	10.160	19.59	64.73	311.7	0.10030
557	9.423	27.88	59.26	271.3	0.08123
558	14.590	22.68	96.39	657.1	0.08473
559	11.510	23.93	74.52	403.5	0.09261
560	14.050	27.15	91.38	600.4	0.09929
561	11.200	29.37	70.67	386.0	0.07449
562	15.220	30.62	103.40	716.9	0.10480
563	20.920	25.09	143.00	1347.0	0.10990
564	21.560	22.39	142.00	1479.0	0.11100
565	20.130	28.25	131.20	1261.0	0.09780
566	16.600	28.08	108.30	858.1	0.08455
567	20.600	29.33	140.10	1265.0	0.11780
568	7.760	24.54	47.92	181.0	0.05263
	mean compactness	mean concavity	mean cond	cave points	mean symmetry
0	0.27760	0.300100		0.147100	0.2419
1	0.07864	0.086900		0.070170	0.1812
2	0.15990	0.197400		0.127900	0.2069
3	0.28390	0.241400		0.105200	0.2597
4	0.13280	0.198000		0.104300	0.1809
5	0.17000	0.157800		0.080890	0.2087
6	0.10900	0.112700		0.074000	0.1794
7	0.16450	0.093660		0.059850	0.2196
8	0.19320	0.185900		0.093530	0.2350
9	0.23960	0.227300		0.085430	0.2030
10	0.06669	0.032990		0.033230	0.1528
11	0.12920	0.099540		0.066060	0.1842
12	0.24580	0.206500		0.111800	0.2397
13	0.10020	0.099380		0.053640	0.1847
14	0.22930	0.212800		0.080250	0.2069
15	0.15950	0.163900		0.073640	0.2303
16	0.07200	0.073950		0.052590	0.1586
17	0.20220	0.172200		0.102800	0.2164
18	0.10270	0.147900		0.094980	0.1582
19	0.08129	0.066640		0.047810	0.1885
20	0.12700	0.045680		0.031100	0.1967
21	0.06492	0.029560		0.020760	0.1815
22	0.21350	0.207700		0.097560	0.2521
23	0.10220	0.109700		0.086320	0.1769
24	0.14570	0.152500		0.091700	0.1995
25	0.22760	0.222900		0.140100	0.3040
26	0.18680	0.142500		0.087830	0.2252
27	0.10660	0.149000		0.077310	0.1697
28	0.16970	0.168300		0.087510	0.1926
29	0.11570	0.098750		0.079530	0.1739
	0 11000			0 010040	
539	0.11990	0.092520		0.013640	0.2037

540	0.11200	0.067370		0.025940		0.1818
541	0.12300	0.100900		0.038900		0.1872
542	0.07214	0.041050		0.030270		0.1840
543	0.06877	0.029870		0.032750		0.1628
544	0.10180	0.036880		0.023690		0.1620
545	0.06747	0.029740		0.024430		0.1664
546	0.04994	0.010120		0.005495		0.1885
547	0.08066	0.043580		0.024380		0.1669
548	0.05030	0.023370		0.009615		0.1580
549	0.06602	0.015480		0.008160		0.1976
550	0.04227	0.000000		0.000000		0.1661
551	0.08194	0.048240		0.022570		0.2030
552	0.04234	0.019970		0.014990		0.1539
553	0.05605	0.039960		0.012820		0.1692
554	0.05824	0.061950		0.023430		0.1566
555	0.07658	0.059990		0.027380		0.1593
556	0.07504	0.005025		0.011160		0.1791
557	0.04971	0.000000		0.000000		0.1742
558	0.13300	0.102900		0.037360		0.1454
559	0.10210	0.111200		0.037300		0.1388
560	0.11260	0.044620		0.043040		0.1537
561	0.03558	0.000000		0.000000		0.1060
562	0.20870	0.255000		0.094290		0.2128
563	0.22360	0.317400		0.147400		0.2120
564	0.11590	0.243900		0.147400		0.1726
565	0.11330	0.144000		0.138900		0.1752
566	0.10340	0.092510		0.053020		0.1732
567	0.27700	0.092310		0.053020		0.2397
568	0.04362	0.000000		0.000000		0.1587
300	0.04362	0.000000		0.00000		0.1307
	mean fractal dimension			worst	radius	\
0	0.07871		• • •		25.380	
1	0.05667		• • •		24.990	
2	0.05999				23.570	
3	0.09744				14.910	
4	0.05883				22.540	
5	0.07613				15.470	
6	0.05742				22.880	
7	0.07451				17.060	
8	0.07389				15.490	
9	0.08243				15.090	
10	0.05697				19.190	
11	0.06082				20.420	
12	0.07800				20.960	
13	0.05338				16.840	
14	0.07682				15.030	
15	0.07077				17.460	
16	0.05922				19.070	

17		0.07356		20.960
18		0.05395		27.320
19		0.05766		15.110
20		0.06811	• • •	14.500
21		0.06905		10.230
22		0.07032		18.070
23		0.05278		29.170
24		0.06330		26.460
25		0.07413		22.250
26		0.06924		17.620
27		0.05699		21.310
28		0.06540		20.270
29		0.06149		20.010
••		•••		•••
539		0.07751		8.678
540		0.06782		12.260
541		0.06341		16.220
542		0.05680		16.510
543		0.05781		14.370
544		0.06688	• • •	15.050
545		0.05801	• • •	15.350
546		0.06201	•••	11.250
547		0.06714	•••	10.830
548		0.06235	• • •	10.930
549		0.06328	• • •	13.030
550		0.05948	• • •	11.660
551		0.06552	• • •	12.020
552		0.05637	• • •	13.870
553		0.06576	• • •	9.845
554		0.05708	• • •	13.890
555		0.05708	• • •	10.840
556		0.06127	• • •	10.650
557		0.06059	• • •	10.490
			• • •	
558		0.06147	• • •	15.480
559		0.06570	• • •	12.480
560 E.C.1		0.06171	• • •	15.300
561		0.05502	• • •	11.920
562		0.07152	• • •	17.520
563		0.06879	• • •	24.290
564		0.05623	• • •	25.450
565		0.05533	• • •	23.690
566		0.05648	• • •	18.980
567		0.07016	• • •	25.740
568		0.05884	• • •	9.456
	worst texture	worst perimeter	worst area	worst smoothness \
0	17.33	184.60	2019.0	0.16220
1	23.41	158.80	1956.0	0.12380

2	25.53	152.50	1709.0	0.14440
3	26.50	98.87	567.7	0.20980
4	16.67	152.20	1575.0	0.13740
5	23.75	103.40	741.6	0.17910
6	27.66	153.20	1606.0	0.14420
7				0.14420
	28.14	110.60	897.0	
8	30.73	106.20	739.3	0.17030
9	40.68	97.65	711.4	0.18530
10	33.88	123.80	1150.0	0.11810
11	27.28	136.50	1299.0	0.13960
12	29.94	151.70	1332.0	0.10370
13	27.66	112.00	876.5	0.11310
14	32.01	108.80	697.7	0.16510
15	37.13	124.10	943.2	0.16780
16	30.88	123.40	1138.0	0.14640
17	31.48	136.80	1315.0	0.17890
18	30.88	186.80	2398.0	0.15120
19	19.26	99.70	711.2	0.14400
20	20.49	96.09	630.5	0.13120
21	15.66	65.13	314.9	0.13240
22	19.08	125.10	980.9	0.13900
23	35.59	188.00	2615.0	0.14010
24	31.56	177.00	2215.0	0.18050
25	21.40	152.40	1461.0	0.15450
26	33.21	122.40	896.9	0.15250
27	27.26	139.90	1403.0	0.13380
28	36.71	149.30	1269.0	0.16410
29	19.52	134.90	1227.0	0.12550
				0.12000
 539	31.89	54.49	223.6	0.15960
540	19.68	78.78	457.8	0.13450
541	31.73	113.50	808.9	0.13400
542		107.40		
	32.29		826.4	0.10600
543	37.17	92.48	629.6	0.10720
544	24.75	99.17	688.6	0.12640
545	29.09	97.58	729.8	0.12160
546	21.77	71.12	384.9	0.12850
547	22.04	71.08	357.4	0.14610
548	25.59	69.10	364.2	0.11990
549	31.45	83.90	505.6	0.12040
550	24.77	74.08	412.3	0.10010
551	28.26	77.80	436.6	0.10870
552	36.00	88.10	594.7	0.12340
553	25.05	62.86	295.8	0.11030
554	35.74	88.84	595.7	0.12270
555	34.91	69.57	357.6	0.13840
556	22.88	67.88	347.3	0.12650
557	34.24	66.50	330.6	0.10730

5	58	27.27	105.90	733.5	0.10	260	
5	59	37.16	82.28	474.2	0.12	980	
5	60	33.17	100.20	706.7	0.12	410	
5	61	38.30	75.19	439.6	0.09	267	
5	62	42.79	128.70	915.0	0.14	170	
5	63	29.41	179.10	1819.0	0.14	070	
5	64	26.40	166.10	2027.0	0.14	100	
5	65	38.25	155.00	1731.0	0.11	660	
5	66	34.12	126.70	1124.0	0.11	390	
5	67	39.42	184.60	1821.0	0.16	500	
5	68	30.37	59.16	268.6	0.08	996	
	worst	compactness	worst concavity	worst co	oncave points	worst	symme
0		0.66560	0.71190		0.26540		0.4
1		0.18660	0.24160		0.18600		0.2
2		0.42450	0.45040		0.24300		0.3
3		0.86630	0.68690		0.25750		0.6
4		0.20500	0.40000		0.16250		0.2
5		0.52490	0.53550		0.17410		0.3
6		0.25760	0.37840		0.19320		0.3
7		0.36820	0.26780		0.15560		0.3
8		0.54010	0.53900		0.20600		0.4
9		1.05800	1.10500		0.22100		0.4
1	0	0.15510	0.14590		0.09975		0.2
1	1	0.56090	0.39650		0.18100		0.3
1	2	0.39030	0.36390		0.17670		0.3
1	3	0.19240	0.23220		0.11190		0.2
1	4	0.77250	0.69430		0.22080		0.3
1	5	0.65770	0.70260		0.17120		0.4
1	6	0.18710	0.29140		0.16090		0.3
1	7	0.42330	0.47840		0.20730		0.3
1	8	0.31500	0.53720		0.23880		0.2
1	9	0.17730	0.23900		0.12880		0.2
2	0	0.27760	0.18900		0.07283		0.3
2	1	0.11480	0.08867		0.06227		0.2
2	2	0.59540	0.63050		0.23930		0.4
2	3	0.26000	0.31550		0.20090		0.2
2	4	0.35780	0.46950		0.20950		0.3
2	5	0.39490	0.38530		0.25500		0.4
2	6	0.66430	0.55390		0.27010		0.4
2	7	0.21170	0.34460		0.14900		0.2
2	8	0.61100	0.63350		0.20240		0.4
2	9	0.28120	0.24890		0.14560		0.2
• 5	• 39	0.30640	0.33930		0.05000		0.2
	40	0.21180	0.17970		0.06918		0.2
	41	0.42020	0.40400		0.12050		0.2
	42	0.42020	0.16110		0.12030		0.2
J	14	0.13/00	0.10110		0.10,00		0.2

543	0.13810	0.10620	0.07958
544	0.20370	0.13770	0.06845
545	0.15170	0.10490	0.07174
546	0.08842	0.04384	0.02381
547	0.22460	0.17830	0.08333
548	0.09546	0.09350	0.03846
549	0.16330	0.06194	0.03264
550	0.07348	0.0000	0.0000
551	0.17820	0.15640	0.06413
552	0.10640	0.08653	0.06498
553	0.08298	0.07993	0.02564
554	0.16200	0.24390	0.06493
555	0.17100	0.20000	0.09127
556	0.12000	0.01005	0.02232
557	0.07158	0.0000	0.0000
558	0.31710	0.36620	0.11050
559	0.25170	0.36300	0.09653
560	0.22640	0.13260	0.10480
561	0.05494	0.0000	0.0000
562	0.79170	1.17000	0.23560
563	0.41860	0.65990	0.25420
564	0.21130	0.41070	0.22160
565	0.19220	0.32150	0.16280
566	0.30940	0.34030	0.14180
567	0.86810	0.93870	0.26500
568	0.06444	0.0000	0.0000

0.2

0.2

0.2

0.2 0.2 0.2

0.2

0.2

0.2

0.2 0.2 0.2 0.2

worst fractal dimension

	worst	fractal	dimension
0			0.11890
1			0.08902
2			0.08758
3			0.17300
4			0.07678
5			0.12440
6			0.08368
7			0.11510
8			0.10720
9			0.20750
10			0.08452
11			0.10480
12			0.10230
13			0.06287
14			0.14310
15			0.13410
16			0.08216
17			0.11420
18			0.07615
19			0.07259

```
20
                       0.08183
21
                       0.07773
                       0.09946
22
23
                       0.07526
24
                       0.09564
25
                       0.10590
26
                       0.12750
27
                       0.07421
28
                       0.09876
29
                       0.07919
. .
                            . . .
539
                       0.10660
                       0.08134
540
541
                       0.10230
                       0.06956
542
543
                       0.06443
544
                       0.08492
                       0.06953
545
546
                       0.07399
547
                       0.09479
548
                       0.07920
549
                       0.07626
                       0.06592
550
551
                       0.08032
552
                       0.06484
553
                       0.07393
554
                       0.07242
555
                       0.08283
                       0.06742
556
557
                       0.06969
558
                       0.08004
559
                       0.08732
                       0.08321
560
561
                       0.05905
562
                       0.14090
                       0.09873
563
564
                       0.07115
565
                       0.06637
566
                       0.07820
567
                       0.12400
                       0.07039
568
[569 rows x 30 columns], 0
                                   0.0
1
       0.0
2
       0.0
3
       0.0
4
       0.0
5
       0.0
```

```
0.0
6
7
        0.0
8
        0.0
9
        0.0
        0.0
10
11
        0.0
12
        0.0
        0.0
13
        0.0
14
15
        0.0
16
        0.0
17
        0.0
18
        0.0
19
        1.0
20
        1.0
        1.0
21
22
        0.0
23
        0.0
24
        0.0
25
        0.0
26
        0.0
27
        0.0
        0.0
28
29
        0.0
       . . .
539
        1.0
540
        1.0
541
        1.0
        1.0
542
        1.0
543
544
        1.0
545
        1.0
        1.0
546
547
        1.0
548
        1.0
        1.0
549
550
        1.0
        1.0
551
        1.0
552
553
        1.0
554
        1.0
555
        1.0
        1.0
556
557
        1.0
        1.0
558
559
        1.0
        1.0
560
561
        1.0
```

```
562 0.0

563 0.0

564 0.0

565 0.0

566 0.0

567 0.0

568 1.0

Name: target, dtype: float64)
```

1.0.5 Question 4

Using train_test_split, split X and y into training and test sets (X_train, X_test, y_train, and y_test).

Set the random number generator state to 0 using random_state=0 to make sure your results match the autograder!

This function should return a tuple of length 4: (X_train, X_test, y_train, y_test), where * X_train has shape (426, 30) * X_test has shape (143, 30) * y_train has shape (426,) * y_test has shape (143,)

```
In [7]: from sklearn.model_selection import train_test_split
```

```
def answer_four():
```

This function uses question 3's function and then split the data into a To costumize the size of each, train_test_split has "train_size" argument the proper number of observations/rows depending whether the new data is or test data. The exercise allocates 426 observations in to the training

n n n

```
X, y = answer_three()
```

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size =

return X_train, X_test, y_train, y_test

answer_four()

Out[7]: (mean radius	mean texture	mean perimeter	mean area	mean smoothness
2	93	11.850	17.46	75.54	432.7	0.08372
3	32	11.220	19.86	71.94	387.3	0.10540
5	65	20.130	28.25	131.20	1261.0	0.09780
2	78	13.590	17.84	86.24	572.3	0.07948
4	89	16.690	20.20	107.10	857.6	0.07497
3	46	12.060	18.90	76.66	445.3	0.08386
3	57	13.870	16.21	88.52	593.7	0.08743
3	55	12.560	19.07	81.92	485.8	0.08760
1	12	14.260	19.65	97.83	629.9	0.07837
6	8	9.029	17.33	58.79	250.5	0.10660

526	13.460	18.75	87.44	551.1	0.10750
206	9.876	17.27	62.92	295.4	0.10890
65	14.780	23.94	97.40	668.3	0.11720
437	14.040	15.98	89.78	611.2	0.08458
126	13.610	24.69	87.76	572.6	0.09258
429	12.720	17.67	80.98	501.3	0.07896
392	15.490	19.97	102.40	744.7	0.11600
343	19.680	21.68	129.90	1194.0	0.09797
334	12.300	19.02	77.88	464.4	0.08313
440	10.970	17.20	71.73	371.5	0.08915
441	17.270	25.42	112.40	928.8	0.08331
137	11.430	15.39	73.06	399.8	0.09639
230	17.050	19.08	113.40	895.0	0.11410
7	13.710	20.83	90.20	577.9	0.11890
408	17.990	20.66	117.80	991.7	0.10360
523	13.710	18.68	88.73	571.0	0.09916
361	13.300	21.57	85.24	546.1	0.08582
553	9.333	21.94	59.01	264.0	0.09240
478	11.490	14.59	73.99	404.9	0.10460
303	10.490	18.61	66.86	334.3	0.10480
450	0.755	20 20	61 60	200 0	0 0700/
459 510	9.755	28.20	61.68	290.9	0.07984
510	11.740	14.69	76.31	426.0	0.08099
151	8.219	20.70	53.27	203.9	0.09405
244	19.400	23.50	129.10	1155.0	0.10270
543	13.210	28.06	84.88	538.4	0.08671
544	13.870	20.70	89.77	584.8	0.09578
265	20.730	31.12	135.70	1419.0	0.09469
288	11.260	19.96	73.72	394.1	0.08020
423	13.660	19.13	89.46	575.3	0.09057
147	14.950	18.77	97.84	689.5	0.08138
177	16.460	20.11	109.30	832.9	0.09831
99	14.420	19.77	94.48	642.5	0.09752
448	14.530	19.34	94.25	659.7	0.08388
431	12.400	17.68	81.47	467.8	0.10540
115	11.930	21.53	76.53	438.6	0.09768
72	17.200	24.52	114.20	929.4	0.10710
537	11.690	24.44	76.37	406.4	0.12360
174	10.660	15.15	67.49	349.6	0.08792
87	19.020	24.59	122.00	1076.0	0.09029
551	11.130	22.44	71.49	378.4	0.09566
486	14.640	16.85	94.21	666.0	0.08641
314	8.597	18.60	54.09	221.2	0.10740
396	13.510	18.89	88.10	558.1	0.10590
472	14.920	14.93	96.45	686.9	0.08098
70	18.940	21.31	123.60	1130.0	0.09009
277	18.810	19.98	120.90	1102.0	0.08923
9	12.460	24.04	83.97	475.9	0.11860

359	9.436	18.32	59.82	278.6	0.10090
192	9.720	18.22	60.73	288.1	0.06950
559	11.510	23.93	74.52	403.5	0.09261
	mean compactness	mean concavity	mean conca	ve points	mean symmetry
293	0.05642	0.026880		0.022800	0.1875
332	0.06779	0.005006		0.007583	0.1940
565	0.10340	0.144000		0.097910	0.1752
278	0.04052	0.019970		0.012380	0.1573
489	0.07112	0.036490		0.023070	0.1846
346	0.05794	0.007510		0.008488	0.1555
357	0.05492	0.015020		0.020880	0.1424
355	0.10380	0.103000		0.043910	0.1533
112	0.22330	0.300300		0.077980	0.1704
68	0.14130	0.313000		0.043750	0.2111
526	0.11380	0.042010		0.031520	0.1723
206	0.07232	0.017560		0.019520	0.1934
65	0.14790	0.126700		0.090290	0.1953
437	0.05895	0.035340		0.029440	0.1714
126	0.07862	0.052850		0.030850	0.1761
429	0.04522	0.032030		0.030030	0.1459
392	0.15620	0.189100		0.018330	0.1929
343	0.13320	0.186300		0.031130	0.2082
334	0.13390	0.100300		0.110300	0.2082
440	0.04202	0.007738		0.006333	0.1339
	0.11130	0.120400		0.057360	
441					0.1467
137	0.06889	0.035030		0.028750	0.1734
230	0.15720	0.191000		0.109000	0.2131
7	0.16450	0.093660		0.059850	0.2196
408	0.13040	0.120100		0.088240	0.1992
523	0.10700	0.053850		0.037830	0.1714
361	0.06373	0.033440		0.024240	0.1815
553	0.05605	0.039960		0.012820	0.1692
478	0.08228	0.053080		0.019690	0.1779
303	0.06678	0.022970		0.017800	0.1482
				• • •	
459	0.04626	0.015410		0.010430	0.1621
510	0.09661	0.067260		0.026390	0.1499
151	0.13050	0.132100		0.021680	0.2222
244	0.15580	0.204900		0.088860	0.1978
543	0.06877	0.029870		0.032750	0.1628
544	0.10180	0.036880		0.023690	0.1620
265	0.11430	0.136700		0.086460	0.1769
288	0.11810	0.092740		0.055880	0.2595
423	0.11470	0.096570		0.048120	0.1848
147	0.11670	0.090500		0.035620	0.1744
177	0.15560	0.179300		0.088660	0.1794
99	0.11410	0.093880		0.058390	0.1879

448	0.07800	0.088170	0.029250		0.1473
431	0.13160	0.077410	0.027990		0.1811
115	0.07849	0.033280	0.020080		0.1688
72	0.18300	0.169200	0.079440		0.1927
537	0.15520	0.045150	0.045310		0.2131
174	0.04302	0.000000	0.000000		0.1928
87	0.12060	0.146800	0.082710		0.1953
551	0.08194	0.048240	0.022570		0.2030
486	0.06698	0.051920	0.027910		0.1409
314	0.05847	0.000000	0.000000		0.2163
396	0.11470	0.085800	0.053810		0.1806
472	0.08549	0.055390	0.032210		0.1687
70	0.10290	0.108000	0.079510		0.1582
277	0.05884	0.080200	0.058430		0.1550
9	0.23960	0.227300	0.085430		0.2030
359	0.05956	0.027100	0.014060		0.1506
192	0.02344	0.000000	0.000000		0.1653
559	0.10210	0.111200	0.041050		0.1388
	mean fractal dimension		 worst	radius	\
293	0.05715			13.060	
332	0.06028			11.980	
565	0.05533			23.690	
278	0.05520			15.500	
489	0.05325			19.180	
346	0.06048			13.640	
357	0.05883			15.110	
355	0.06184			13.370	
112	0.07769			15.300	
68	0.08046			10.310	
526	0.06317			15.350	
206	0.06285			10.420	
65	0.06654			17.310	
437	0.05898			15.660	
126	0.06130			16.890	
429	0.05544			13.820	
392	0.06744			21.200	
343	0.05715			22.750	
334	0.05945			13.350	
440	0.06640			12.360	
441	0.05407			20.380	
137	0.05865			12.320	
230	0.06325			19.590	
7	0.07451			17.060	
408	0.06069			21.080	
523	0.06843			15.110	
361	0.05696			14.200	
553	0.06576			9.845	

478		0.06574				12.400	
303		0.06600				11.060	
459		0.05952				10.670	
510		0.06758				12.450	
151		0.08261				9.092	
244		0.06000				21.650	
543		0.05781				14.370	
544		0.06688				15.050	
265		0.05674		•••		32.490	
288		0.06233		•••		11.860	
		0.06233		• • •		15.140	
423				• • •			
147		0.06493		• • •		16.250	
177		0.06323		• • •		17.790	
99		0.06390		• • •		16.330	
448		0.05746		• • •		16.300	
431		0.07102				12.880	
115		0.06194				13.670	
72		0.06487				23.320	
537		0.07405				12.980	
174		0.05975				11.540	
87		0.05629				24.560	
551		0.06552				12.020	
486		0.05355				16.460	
314		0.07359				8.952	
396		0.06079		•••		14.800	
472		0.05669		• • •		17.180	
70				• • •			
		0.05461		• • •		24.860	
277		0.04996		• • •		19.960	
9		0.08243		• • •		15.090	
359		0.06959		• • •		12.020	
192		0.06447		• • •		9.968	
559		0.06570		• • •		12.480	
	worst texture	worst per	rimeter	worst area	worst	smoothness	/
293	25.75		84.35	517.8		0.13690	
332	25.78		76.91	436.1		0.14240	
565	38.25		155.00	1731.0		0.11660	
278	26.10		98.91	739.1		0.10500	
489	26.56		127.30	1084.0		0.10090	
346	27.06		86.54	562.6		0.12890	
357	25.58		96.74	694.4		0.11530	
355	22.43		89.02	547.4		0.10960	
112	23.73		107.00	709.0		0.08949	
68	22.65		65.50	324.7		0.14820	
526	25.16		101.90	719.8		0.16240	
206 65	23.22		67.08	331.6		0.14150	
65	33.39		114.60	925.1		0.16480	

437	21.58	101.20	750.0	0.11950
126	35.64	113.20	848.7	0.14710
429	20.96	88.87	586.8	0.10680
392	29.41	142.10	1359.0	0.16810
343	34.66	157.60	1540.0	0.12180
334	28.46	84.53	544.3	0.12220
440	26.87	90.14	476.4	0.13910
441	35.46	132.80	1284.0	0.14360
137	22.02	79.93	462.0	0.11900
230	24.89	133.50	1189.0	0.17030
7	28.14	110.60	897.0	0.16540
408	25.41	138.10	1349.0	0.14820
523	25.63	99.43	701.9	0.14250
361	29.20	92.94	621.2	0.11400
553	25.05	62.86	295.8	0.11030
478	21.90	82.04	467.6	0.13520
303	24.54	70.76	375.4	0.14130
	• • •		• • •	
459	36.92	68.03	349.9	0.11100
510	17.60	81.25	473.8	0.10730
151	29.72	58.08	249.8	0.16300
244	30.53	144.90	1417.0	0.14630
543	37.17	92.48	629.6	0.10720
544	24.75	99.17	688.6	0.12640
265	47.16	214.00	3432.0	0.14010
288	22.33	78.27	437.6	0.10280
423	25.50	101.40	708.8	0.11470
147	25.47	107.10	809.7	0.09970
177	28.45	123.50	981.2	0.14150
99	30.86	109.50	826.4	0.14310
448	28.39	108.10	830.5	0.10890
431	22.91	89.61	515.8	0.14500
115	26.15	87.54	583.0	0.14300
72 527	33.82	151.60	1681.0	0.15850
537	32.19	86.12	487.7	0.17680
174	19.20	73.20	408.3	0.10760
87	30.41	152.90	1623.0	0.12490
551	28.26	77.80	436.6	0.10870
486	25.44	106.00	831.0	0.11420
314	22.44	56.65	240.1	0.13470
396	27.20	97.33	675.2	0.14280
472	18.22	112.00	906.6	0.10650
70	26.58	165.90	1866.0	0.11930
277	24.30	129.00	1236.0	0.12430
9	40.68	97.65	711.4	0.18530
359	25.02	75.79	439.6	0.13330
192	20.83	62.25	303.8	0.07117
559	37.16	82.28	474.2	0.12980

	worst	compactness	worst	concavity	worst	concave points	worst	symme
293		0.17580		0.13160		0.09140		0.3
332		0.09669		0.01335		0.02022		0.3
565		0.19220		0.32150		0.16280		0.2
278		0.07622		0.10600		0.05185		0.2
489		0.29200		0.24770		0.08737		0.4
346		0.13520		0.04506		0.05093		0.2
357		0.10080		0.05285		0.05556		0.2
355		0.20020		0.23880		0.09265		0.2
112		0.41930		0.67830		0.15050		0.2
68		0.43650		1.25200		0.17500		0.4
526		0.31240		0.26540		0.14270		0.3
206		0.12470		0.06213		0.05588		0.2
65		0.34160		0.30240		0.16140		0.3
437		0.12520		0.11170		0.07453		0.2
126		0.28840		0.37960		0.13290		0.3
429		0.09605		0.03469		0.03612		0.2
392		0.39130		0.55530		0.21210		0.3
343		0.34580		0.47340		0.22550		0.4
334		0.09052		0.03619		0.03983		0.2
440		0.40820		0.47790		0.15550		0.2
441		0.41220		0.50360		0.17390		0.2
137		0.16480		0.13990		0.08476		0.2
230		0.39340		0.50180		0.25430		0.3
7		0.36820		0.26780		0.15560		0.3
408		0.37350		0.33010		0.19740		0.3
523		0.25660		0.19350		0.12840		0.2
361		0.16670		0.12120		0.05614		0.2
553		0.08298		0.07993		0.02564		0.2
478		0.20100		0.25960		0.07431		0.2
303		0.10440		0.08423		0.06528		0.2
• •								
459		0.11090		0.07190		0.04866		0.2
510		0.27930		0.26900		0.10560		0.2
151		0.43100		0.53810		0.07879		0.3
244		0.29680		0.34580		0.15640		0.2
543		0.13810		0.10620		0.07958		0.2
544		0.20370		0.13770		0.06845		0.2
265		0.26440		0.34420		0.16590		0.2
288		0.18430		0.15460		0.09314		0.2
423		0.31670		0.36600		0.14070		0.2
147		0.25210		0.25000		0.08405		0.2
177		0.46670		0.58620		0.20350		0.3
99		0.30260		0.31940		0.15650		0.2
448		0.26490		0.37790		0.09594		0.2
431		0.26290		0.24030		0.07370		0.2
115		0.23990		0.15030		0.07247		0.2

72	0.73940	0.65660	0.18990	0.3
537	0.32510	0.13950	0.13080	0.2
174	0.06791	0.0000	0.0000	0.2
87	0.32060	0.57550	0.19560	0.3
551	0.17820	0.15640	0.06413	0.3
486	0.20700	0.24370	0.07828	0.2
314	0.07767	0.0000	0.0000	0.3
396	0.25700	0.34380	0.14530	0.2
472	0.27910	0.31510	0.11470	0.2
70	0.23360	0.26870	0.17890	0.2
277	0.11600	0.22100	0.12940	0.2
9	1.05800	1.10500	0.22100	0.4
359	0.10490	0.11440	0.05052	0.2
192	0.02729	0.0000	0.0000	0.1
559	0.25170	0.36300	0.09653	0.2

worst fractal dimension

293	0.07007
332	0.06522
565	0.06637
278	0.06263
489	0.07623
346	0.08083
357	0.07113
355	0.07188
112	0.10820
68	0.11750
526	0.08665
206	0.07380
65	0.08911
437	0.07234
126	0.07900
429	0.06025
392	0.10190
343	0.07918
334	0.07207
440	0.09532
441	0.07944
137	0.06765
230	0.09061
7	0.11510
408	0.08503
523	0.09031
361	0.06658
553	0.07393
478	0.09180
303	0.07842
• •	

244		0.0/614			
543		0.06443			
544		0.08492			
265		0.08218			
288		0.07009			
423		0.08839			
147		0.09218			
177		0.09519			
99		0.09353			
448		0.07463			
431		0.09359			
115		0.08541			
72		0.13390			
537		0.09970			
174		0.06164			
87		0.09288			
551		0.08032			
486		0.06596			
314		0.08116			
396		0.07686			
472		0.08273			
70		0.06589			
277		0.05737			
9		0.20750			
359		0.08136			
192		0.06559			
559		0.08732			
	ows x 30 col				
			mean perimeter		
512	13.400	20.52	88.64	556.7	0.11060
457	13.210	25.25	84.10	537.9	0.08791
439	14.020	15.66	89.59	606.5	0.07966
298	14.260	18.17	91.22		
37	13.030	18.42	82.61	523.8	0.08983
515	11.340	18.61	72.76	391.2	0.10490
382	12.050	22.72	78.75	447.8	0.06935
310	11.700	19.11	74.33	418.7	0.08814
538	7.729	25.49	47.98	178.8	0.08098
345	10.260	14.71	66.20	321.6	0.09882
421	14.690	13.98	98.22	656.1	0.10310
90	14.620	24.02	94.57	662.7	0.08974
412	9.397	21.68	59.75	268.8	0.07969
157	16.840	19.46	108.40	880.2	0.07445
0.0	11 610	1 5 0 4	05 77	6E1 0	0 11220

0.11320

0.07211 0.09879

0.14860

0.07614

459

510

151244

15.24

95.77

651.9

14.640

89

172	15.460	11.89	102.50	736.9	0.12570
318	9.042	18.90	60.07	244.5	0.09968
233	20.510	27.81	134.40	1319.0	0.09159
389	19.550	23.21	128.90	1174.0	0.10100
250	20.940	23.56	138.90	1364.0	0.10070
31	11.840	18.70	77.93	440.6	0.11090
283	16.240	18.77	108.80	805.1	0.10660
482	13.470	14.06	87.32	546.3	0.10710
211	11.840	18.94	75.51	428.0	0.08871
372	21.370	15.10	141.30	1386.0	0.10010
401	11.930	10.91	76.14	442.7	0.08872
159	10.900	12.96	68.69	366.8	0.07515
14	13.730	22.61	93.60	578.3	0.11310
364	13.400	16.95	85.48	552.4	0.07937
337	18.770	21.43	122.90	1092.0	0.09116
• •					• • •
500	15.040	16.74	98.73	689.4	0.09883
338	10.050	17.53	64.41	310.8	0.10070
427	10.800	21.98	68.79	359.9	0.08801
406	16.140	14.86	104.30	800.0	0.09495
96	12.180	17.84	77.79	451.1	0.10450
490	12.250	22.44	78.18	466.5	0.08192
384	13.280	13.72	85.79	541.8	0.08363
281	11.740	14.02	74.24	427.3	0.07813
325	12.670	17.30	81.25	489.9	0.10280
190	14.220	23.12	94.37	609.9	0.10750
380	11.270	12.96	73.16	386.3	0.12370
366	20.200	26.83	133.70	1234.0	0.09905
469	11.620	18.18	76.38	408.8	0.11750
225	14.340	13.47	92.51	641.2	0.09906
271	11.290	13.04	72.23	388.0	0.09834
547	10.260	16.58	65.85	320.8	0.08877
550	10.860	21.48	68.51	360.5	0.07431
492	18.010	20.56	118.40	1007.0	0.10010
185	10.080	15.11	63.76	317.5	0.09267
306	13.200	15.82	84.07	537.3	0.08511
208	13.110	22.54	87.02	529.4	0.10020
242	11.300	18.19	73.93	389.4	0.09592
313	11.540	10.72	73.73	409.1	0.08597
542	14.740	25.42	94.70	668.6	0.08275
514	15.050	19.07	97.26	701.9	0.09215
236	23.210	26.97	153.50	1670.0	0.09509
113	10.510	20.19	68.64	334.2	0.11220
527	12.340	12.27	78.94	468.5	0.09003
76	13.530	10.94	87.91	559.2	0.12910
162	19.590	18.15	130.70	1214.0	0.11200

mean compactness mean concavity mean concave points mean symmetry

512	0.14690	0.144500	0.081720	0.2116
457	0.05205	0.027720	0.020680	0.1619
439	0.05581	0.020870	0.026520	0.1589
298	0.05220	0.024750	0.013740	0.1635
37	0.03766	0.025620	0.029230	0.1467
515	0.08499	0.043020	0.025940	0.1927
382	0.10730	0.079430	0.029780	0.1203
310	0.05253	0.015830	0.011480	0.1936
538	0.04878	0.000000	0.000000	0.1870
345	0.09159	0.035810	0.020370	0.1633
421	0.18360	0.145000	0.063000	0.2086
90	0.08606	0.031020	0.029570	0.1685
412	0.06053	0.037350	0.005128	0.1274
157	0.07223	0.051500	0.003120	0.1844
89	0.13390	0.099660	0.070640	0.2116
172	0.15550	0.203200	0.109700	0.1966
318	0.19720	0.197500	0.049080	0.2330
233	0.19720	0.155400	0.083400	0.1448
389	0.13180	0.185600	0.102100	0.1448
	0.16060	0.183800		
250			0.131000	0.2205
31	0.15160	0.121800	0.051820	0.2301
283	0.18020	0.194800	0.090520	0.1876
482	0.11550	0.057860	0.052660	0.1779
211	0.06900	0.026690	0.013930	0.1533
372	0.15150	0.193200	0.125500	0.1973
401	0.05242	0.026060	0.017960	0.1601
159	0.03718	0.003090	0.006588	0.1442
14	0.22930	0.212800	0.080250	0.2069
364	0.05696	0.021810	0.014730	0.1650
337	0.14020	0.106000	0.060900	0.1953
• •	• • •	• • •	• • •	• • •
500	0.13640	0.077210	0.061420	0.1668
338	0.07326	0.025110	0.017750	0.1890
427	0.05743	0.036140	0.014040	0.2016
406	0.08501	0.055000	0.045280	0.1735
96	0.07057	0.024900	0.029410	0.1900
490	0.05200	0.017140	0.012610	0.1544
384	0.08575	0.050770	0.028640	0.1617
281	0.04340	0.022450	0.027630	0.2101
325	0.07664	0.031930	0.021070	0.1707
190	0.24130	0.198100	0.066180	0.2384
380	0.11110	0.079000	0.055500	0.2018
366	0.16690	0.164100	0.126500	0.1875
469	0.14830	0.102000	0.055640	0.1957
225	0.07624	0.057240	0.046030	0.2075
271	0.07608	0.032650	0.027550	0.1769
547	0.08066	0.043580	0.024380	0.1669
550	0.04227	0.00000	0.000000	0.1661

492	0.12890	0.117000		0.077620		0.2116
185	0.04695	0.001597		0.002404		0.1703
306	0.05251	0.001461		0.003261		0.1632
208	0.14830	0.087050		0.051020		0.1850
242	0.13250	0.154800		0.028540		0.2054
313	0.05969	0.134600		0.028340		0.1833
542	0.07214	0.041050		0.030270		0.1840
514	0.08597	0.074860		0.043350		0.1561
236	0.16820	0.195000		0.123700		0.1909
113	0.13030	0.064760		0.030680		0.1922
527	0.06307	0.029580		0.026470		0.1689
76	0.10470	0.068770		0.065560		0.2403
162	0.16660	0.250800		0.128600		0.2027
	mean fractal dimension			worst	radius	\
512	0.07325				16.410	
457	0.05584				14.350	
439	0.05586				14.910	
298	0.05586				16.220	
37	0.05863				13.300	
515	0.06211				12.470	
382	0.06659				12.570	
310	0.06128				12.610	
538	0.07285				9.077	
345	0.07005				10.880	
421	0.07406				16.460	
90	0.05866		• • •		16.110	
412	0.06724		• • •		9.965	
157	0.05268		• • •		18.220	
89	0.05268		• • •		16.340	
09 172	0.07069		• • •		18.790	
318	0.07069		• • •		10.060	
233	0.05743		• • •			
			• • •		24.470	
389	0.05884		• • •		20.820	
250	0.05898		• • •		25.580	
31	0.07799		• • •		16.820	
283	0.06684		• • •		18.550	
482	0.06639		• • •		14.830	
211	0.06057		• • •		13.300	
372	0.06183		• • •		22.690	
401	0.05541		• • •		13.800	
159	0.05743		• • •		12.360	
14	0.07682		• • •		15.030	
364	0.05701		• • •		14.730	
337	0.06083		• • •		24.540	
	• • •				• • •	
500	0.06869				16.760	
338	0.06331				11.160	

427		0.05977		12.760
406		0.05875		17.710
96		0.06635		12.830
490		0.05976		14.170
384		0.05594	• • •	14.240
281		0.06113	•••	13.310
325		0.05984	• • •	13.710
190		0.07542	• • •	15.740
380		0.06914	• • •	12.840
366		0.06914	• • •	24.190
			• • •	
469		0.07255	• • •	13.360
225		0.05448	• • •	16.770
271		0.06270	• • •	12.320
547		0.06714	• • •	10.830
550		0.05948	• • •	11.660
492		0.06077	• • •	21.530
185		0.06048	• • •	11.870
306		0.05894	• • •	14.410
208		0.07310	• • •	14.550
242		0.07669	• • •	12.580
313		0.06100	• • •	12.340
542		0.05680	• • •	16.510
514		0.05915		17.580
236		0.06309		31.010
113		0.07782		11.160
527		0.05808		13.610
76		0.06641		14.080
162		0.06082	• • •	26.730
	worst texture	worst perimeter	worst area	worst smoothness \
512	29.66	113.30	844.4	0.15740
457	34.23	91.29	632.9	0.12890
439	19.31	96.53	688.9	0.10340
298	25.26	105.80	819.7	0.09445
37	22.81	84.46	545.9	0.09701
515	23.03	79.15	478.6	0.14830
382	28.71	87.36	488.4	0.08799
310	26.55	80.92	483.1	0.12230
538	30.92	57.17	248.0	0.12560
345	19.48	70.89	357.1	0.13600
421	18.34	114.10	809.2	0.13120
90	29.11	102.90	803.7	0.11150
412	27.99	66.61	301.0	0.10860
157	28.07	120.30	1032.0	0.08774
89	18.24	109.40	803.6	0.12770
172	17.04	125.00	1102.0	0.15310
318	23.40	68.62	297.1	0.12210
233	37.38	162.70	1872.0	0.12230
	3,.30	102.70	_0,_0	J • ± 2 2 3 0

389	30.44	142.00	1313.0	0.12510
250	27.00	165.30	2010.0	0.12110
31	28.12	119.40	888.7	0.16370
283	25.09	126.90	1031.0	0.13650
482	18.32	94.94	660.2	0.13930
211	24.99	85.22	546.3	0.12800
372	21.84	152.10	1535.0	0.11920
401	20.14	87.64	589.5	0.13740
159	18.20	78.07	470.0	0.11710
14	32.01	108.80	697.7	0.16510
364	21.70	93.76	663.5	0.12130
337	34.37	161.10	1873.0	0.14980
	• • •			
500	20.43	109.70	856.9	0.11350
338	26.84	71.98	384.0	0.14020
427	32.04	83.69	489.5	0.13030
406	19.58	115.90	947.9	0.12060
96	20.92	82.14	495.2	0.11400
490	31.99	92.74	622.9	0.12560
384	17.37	96.59	623.7	0.11660
281	18.26	84.70	533.7	0.10360
325	21.10	88.70	574.4	0.13840
190	37.18	106.40	762.4	0.15330
380	20.53	84.93	476.1	0.16100
366	33.81	160.00	1671.0	0.12780
469	25.40	88.14	528.1	0.17800
225	16.90	110.40	873.2	0.12970
271	16.18	78.27	457.5	0.13580
547	22.04	71.08	357.4	0.14610
550	24.77	74.08	412.3	0.10010
492	26.06	143.40	1426.0	0.13090
185	21.18	75.39	437.0	0.15210
306	20.45	92.00	636.9	0.11280
208	29.16	99.48	639.3	0.13490
242	27.96	87.16	472.9	0.13470
313	12.87	81.23	467.8	0.10920
542	32.29	107.40	826.4	0.10600
514	28.06	113.80	967.0	0.12460
236	34.51	206.00	2944.0	0.14810
113	22.75	72.62	374.4	0.13000
527	19.27	87.22	564.9	0.12920
76	12.49	91.36	605.5	0.14510
162	26.39	174.90	2232.0	0.14380

	worst	compactness	worst concavity	worst concave points wor	rst symme
512		0.38560	0.51060	0.20510	0.3
457		0.10630	0.13900	0.06005	0.2
439		0.10170	0.06260	0.08216	0.2

298	0.21670	0.15650	0.07530	0.2
37	0.04619	0.04833	0.05013	0.1
515	0.15740	0.16240	0.08542	0.3
382	0.32140	0.29120	0.10920	0.2
310	0.10870	0.07915	0.05741	0.3
538	0.08340	0.00000	0.0000	0.3
345	0.16360	0.07162	0.04074	0.2
421	0.36350	0.32190	0.11080	0.2
90	0.17660	0.09189	0.06946	0.2
412	0.18870	0.18680	0.02564	0.2
157	0.17100	0.18820	0.08436	0.2
89	0.30890	0.26040	0.13970	0.3
172	0.35830	0.58300	0.18270	0.3
318	0.37480	0.46090	0.11450	0.3
233	0.27610	0.41460	0.15630	0.2
389	0.24140	0.38290	0.18250	0.2
250	0.31720	0.69910	0.21050	0.3
31	0.57750	0.69560	0.15460	0.4
283	0.47060	0.50260	0.17320	0.2
482	0.24990	0.18480	0.13350	0.3
211	0.18800	0.14710	0.06913	0.2
372	0.28400	0.40240	0.19660	0.2
401	0.15750	0.15140	0.06876	0.2
159	0.08294	0.01854	0.03953	0.2
14	0.77250	0.69430	0.22080	0.3
364	0.16760	0.13640	0.06987	0.2
337	0.48270	0.46340	0.20480	0.3
••	• • •	• • •	• • •	0.5
500	0.21760	0.18560	0.10180	0.2
338	0.14020	0.10550	0.06499	0.2
427	0.16960	0.19270	0.07485	0.2
406	0.17220	0.23100	0.11290	0.2
96	0.09358	0.04980	0.05882	0.2
490	0.18040	0.12300	0.06335	0.3
384	0.26850	0.28660	0.09173	0.2
281	0.08500	0.06735	0.08290	0.3
325	0.12120	0.10200	0.05602	0.2
190	0.93270	0.84880	0.17720	0.5
380	0.24290	0.22470	0.13180	0.3
366	0.24250	0.37030	0.21520	0.3
469	0.28780	0.31860	0.14160	0.2
225	0.15250	0.16320	0.10870	0.2
271	0.15070	0.16320	0.08750	0.3
547	0.13070	0.12730	0.08333	0.2
550				0.2
	0.07348	0.00000	0.00000	
492	0.23270	0.25440	0.14890	0.3
185	0.10190	0.00692	0.01042	0.2
306	0.13460	0.01120	0.02500	0.2

208	0.44020	0.31620	0.11260
242	0.48480	0.74360	0.12180
313	0.16260	0.08324	0.04715
542	0.13760	0.16110	0.10950
514	0.21010	0.28660	0.11200
236	0.41260	0.58200	0.25930
113	0.20490	0.12950	0.06136
527	0.20740	0.17910	0.10700
76	0.13790	0.08539	0.07407
162	0.38460	0.68100	0.22470
	worst fractal dimension		
512	0.11090		
457	0.06788		
439	0.06710		
298	0.07676		
37	0.06169		
515	0.06783		
382	0.09349		
310	0.06958		
538	0.09938		
345	0.08488		
421	0.09208		
90	0.07246		
412	0.09206		
157	0.05972		
89	0.08473		
172	0.10100		
318	0.10550		
233	0.08328		
389	0.07602		
250	0.07849		
31	0.14020		
283	0.10630		
482	0.09326		
211	0.07993		
372	0.08666		
401	0.07262		
159	0.07685		
14	0.14310		
364	0.07582		
337	0.09870		
 500	0.08549		
	0.08549		
338			
427	0.07662		
406	0.07012		

0.4

0.3

0.2

0.2

0.2

0.07376

96

```
490
                       0.08203
384
                       0.07320
281
                       0.06688
325
                       0.06888
                       0.14460
190
380
                       0.09215
                       0.07632
366
469
                       0.09270
225
                       0.06072
271
                       0.08022
547
                       0.09479
550
                       0.06592
492
                       0.07625
                       0.07697
185
306
                       0.08385
                       0.10760
208
242
                       0.12970
313
                       0.07434
542
                       0.06956
514
                       0.06954
                       0.08677
236
113
                       0.09026
527
                       0.07592
76
                       0.07191
162
                       0.09223
[143 rows x 30 columns],
293
       1.0
       1.0
332
565
       0.0
       1.0
278
489
       0.0
346
       1.0
357
       1.0
355
       1.0
       1.0
112
68
       1.0
526
       1.0
206
       1.0
65
       0.0
437
       1.0
126
       0.0
429
       1.0
392
       0.0
343
       0.0
334
       1.0
440
       1.0
441
       0.0
```

```
137
       1.0
230
       0.0
7
       0.0
408
       0.0
       1.0
523
361
       1.0
553
       1.0
       1.0
478
303
       1.0
       . . .
459
       1.0
510
       1.0
151
       1.0
244
       0.0
543
       1.0
544
       1.0
265
       0.0
288
       1.0
423
       1.0
147
       1.0
177
       0.0
99
       0.0
       1.0
448
431
       1.0
115
       1.0
72
       0.0
537
       1.0
174
       1.0
87
       0.0
       1.0
551
486
       1.0
314
       1.0
396
       1.0
472
       1.0
70
       0.0
277
       0.0
9
       0.0
       1.0
359
192
       1.0
559
       1.0
Name: target, dtype: float64,
       0.0
512
       1.0
457
       1.0
439
298
       1.0
37
       1.0
515
       1.0
382
       1.0
```

310 538 345 421 90 412 157 89 172 318 233 389 250 31 283 482 211 372 401 159 14 364 337	1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
500 338 427 406 96 490 384 281 325 190 380 366 469 225 271 547 550 492 185 306 208 242 313 542	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

```
514 0.0

236 0.0

113 1.0

527 1.0

76 1.0

162 0.0

Name: target, dtype: float64)
```

1.0.6 **Question 5**

Using KNeighborsClassifier, fit a k-nearest neighbors (knn) classifier with X_train, y_train and using one nearest neighbor (n_neighbors = 1).

This function should return a sklearn.neighbors.classification.KNeighborsClassifier.

```
In [8]: from sklearn.neighbors import KNeighborsClassifier
```

1.0.7 **Question 6**

Using your knn classifier, predict the class label using the mean value for each feature.

Hint: You can use cancerdf.mean()[:-1].values.reshape(1, -1) which gets the mean value for each feature, ignores the target column, and reshapes the data from 1 dimension to 2 (necessary for the precict method of KNeighborsClassifier).

This function should return a numpy array either array ([0.]) or array ([1.])

```
In [9]: def answer_six():
    """

    This function takes the original dataframe and considered only the index
    Then attributions' means are estimated. The mean values estimated are
    from question 5 ...

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='min
```

metric_params=None, n_jobs=1, n_neighbors=1, p=2,

```
In this case the possible outcomes are either 1 (benign) or 0 (malig
            cancerdf = answer_one()
            means = cancerdf.mean()[:-1].values.reshape(1, -1)
            result = answer_five().predict(means)
            return result# Return your answer
        answer_six()
Out[9]: array([ 1.])
1.0.8 Question 7
Using your knn classifier, predict the class labels for the test set X_test.
  This function should return a numpy array with shape (143,) and values either 0.0 or 1.0.
In [10]: def answer_seven():
              This function takes the original dataframe and considered only the ind
              Then attributions' values are used to predict outcomes on each value
              the testing set. Then the outcome from question 5 ...
                     KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='ma
                     metric_params=None, n_jobs=1, n_neighbors=1, p=2,
                     weights='uniform'))
              ... isused here to predict row by row. In this case the possible out
             X_train, X_test, y_train, y_test = answer_four()
             knn = answer_five()
             result = knn.predict(X_test)
              return result
         answer_seven()
                                      1.,
                                                 1.,
                                                      1.,
                                  0.,
Out[10]: array([ 1., 1.,
                            1.,
                                           1.,
                                                            1.,
                                                                 1.,
                                                                       0.,
                  1.,
                       0.,
                            0.,
                                  1.,
                                       0.,
                                             0.,
                                                  0.,
                                                       0.,
                                                            1.,
                                                                  1.,
                                                                                  1.,
                                                                       1.,
                                                                             0.,
                  1.,
                       1.,
                            1.,
                                  0.,
                                       1.,
                                             0.,
                                                  1.,
                                                       0.,
                                                            1.,
                                                                  0.,
                                                                       1.,
                                                                             0.,
                                                                                  1.,
                                       1.,
                                            0.,
                                                  0.,
                                                       1.,
                                                            1.,
                  0.,
                       0.,
                            1.,
                                  0.,
                                                                  1.,
                                                                       0.,
                                                                             0.,
                                                                                  1.,
                                                      0.,
                  0.,
                       1.,
                            1.,
                                  1.,
                                      1.,
                                            1.,
                                                 1.,
                                                            0.,
                                                                 0.,
                                                                      1.,
                                                                             1.,
                                                                                  0.,
```

weights='uniform'))

```
0.,
            0.,
                  0.,
                        1.,
                              1.,
                                     0.,
                                           1.,
                                                 1.,
                                                       0.,
                                                             1.,
1.,
                                                                          1.,
1.,
      1.,
            0.,
                  0.,
                        0.,
                               1.,
                                     0.,
                                           1.,
                                                 1.,
                                                       1.,
                                                              0.,
                                                                    0.,
                                                                          1.,
0.,
      1.,
            0.,
                  1.,
                        1.,
                               0.,
                                     1.,
                                           1.,
                                                 1.,
                                                       1.,
                                                              1.,
                                                                    1.,
0.,
      1.,
            0.,
                  1.,
                        0.,
                              1.,
                                     1.,
                                           0.,
                                                 0.,
                                                       1.,
                                                              1.,
                                                                          0.,
            1.,
                  1.,
                        1.,
                              1.,
                                     1.,
                                           0.,
                                                 1.,
                                                       1.,
            1.,
                  1.,
                        1.,
                              1.,
                                     1.,
                                           0.,
                                                 0.,
                                                       1.,
                                                              1.,
                                                                          0.1)
```

1.0.9 **Question 8**

Find the score (mean accuracy) of your knn classifier using X_test and y_test. This function should return a float between 0 and 1

```
In [11]: def answer_eight():
    """

    This function scores the accuracy of the model in question. We can define the score()
        2.- By using the score()
        2.- By averaging the outcomes from the model vs the actuals

    """

    X_train, X_test, y_train, y_test = answer_four()
    knn = answer_five()

    outcome = knn.score(X_test, y_test)
    #outcome = np.mean(y_test == answer_seven())

    return outcome# Return your answer
    answer_eight()

Out[11]: 0.91608391608391604
```

1.0.10 Optional plot

Try using the plotting function below to visualize the differet predicition scores between training and test sets, as well as malignant and benign cells.

```
In [12]: def accuracy_plot():
    import matplotlib.pyplot as plt

%matplotlib notebook

X_train, X_test, y_train, y_test = answer_four()

# Find the training and testing accuracies by target value (i.e. malignal_train_X = X_train[y_train==0]
    mal_train_y = y_train[y_train==0]
    ben_train_X = X_train[y_train==1]
    ben_train_y = y_train[y_train==1]

mal_test_X = X_test[y_test==0]
```

```
mal_test_y = y_test[y_test==0]
ben_test_X = X_test[y_test==1]
ben_test_y = y_test[y_test==1]
knn = answer five()
scores = [knn.score(mal_train_X, mal_train_y), knn.score(ben_train_X,
                                knn.score(mal_test_X, mal_test_y), knn.score(ben_test_X, ber
plt.figure()
# Plot the scores as a bar chart
bars = plt.bar(np.arange(4), scores, color=['#4c72b0','#4c72b0','#55a8
# directly label the score onto the bars
for bar in bars:
            height = bar.get_height()
            plt.gca().text(bar.get_x() + bar.get_width()/2, height*.90, '{0:...}
                                                      ha='center', color='w', fontsize=11)
# remove all the ticks (both axes), and tick labels on the Y axis
plt.tick_params(top='off', bottom='off', left='off', right='off', labe
# remove the frame of the chart
for spine in plt.gca().spines.values():
             spine.set_visible(False)
plt.xticks([0,1,2,3], ['Malignant\nTraining', 'Benign\nTraining', 'Malignant\nTraining', 'M
plt.title('Training and Test Accuracies for Malignant and Benign Cells
```

Uncomment the plotting function to see the visualization.

Comment out the plotting function when submitting your notebook for grading.

```
In [13]: accuracy_plot()
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
In []:
```