Chp. 02 – Physical Layer

- 2.1 Aspectos Teóricos de Comunicação de Dados
- 2.2 Meios de Transmissão Guiados
- 2.3 Transmissão sem Fio (Não Guiado)
- 2.4 Satélites de Comunicação (Não Guiado)
- 2.5 Rede Pública de Telefonia
- 2.6 Redes ISDN (Integrated Services Digital Network)
- 2.7 Gerenciamento e Compartilhamento de Terminais

Luís F. Faina - 2017 Pg. 1/118

Referências Bibliográficas

- Andrew S. Tanenbaum "Computer Networks" Prentice Hall;
 Englewook Cliffs; New Jersey; 1989; ISBN 0-13-166836-6
- Luis F.G. Soares et al. "Redes de Computadores LANs, MANs e WANs às Redes ATM"; Editora Campus; ISBN: 85-7001-998-X

- Eleri Cardozo; Maurício Magalhães "Redes de Computadores: Modelo OSI/X.25", Dep.^{to} de Engenharia de Computação e Automação Industrial, FEEC, UNICAMP, 1996.
- Eleri Cardozo; Maurício Magalhães "Redes de Computadores: Arquitetura TCP/IP" - Dep.to de Engenharia de Computação e Automação Industrial, FEEC, UNICAMP, 1994.

Luís F. Faina - 2017 Pg. 2/118

Chp. 02 – Physical Layer

- "função principal da camada física" -
 - geração de sinais elétricos, ótipos ou eletromagnéticos;
 - propagação destes sinais no meio físico.
- Cabe à Camada Física especificar:
 - natureza do meio físico;
 - forma como os hosts e IMPs são conectados ao meio físico;
 - forma como 0s e 1s são codificados em sinais do meio físico;
 - parâmetros e respectivas tolerância de sinais;
 - procedimento de multiplexação de sinais no meio, se houver.

Alguns Padrões: IEEE 802, CCITT X.21, etc.

Luís F. Faina - 2017 Pg. 3/118

... Chp. 02 – Physical Layer

- Transmissão de Bits (... dos quadros da camada de enlace):
 - full duplex os 02 hosts comunicantes transmitem simultaneamente;
 - half duplex apenas um host por vez transmite.
- Transmissão de bits pelo meio físico pode ser:
 - serial um bit é transmitido a cada intervalo de tempo;
 - paralela bits (em conjunto) são transmitidos serialmente por N dutos independentes → N bits por unidade de tempo.

Luís F. Faina - 2017 Pg. 4/118

... Chp. 02 – Physical Layer

- Transmissão Síncrona e Assíncrona:
 - síncrona bit é transmitido a cada intervalo de tempo bem definido;
 - assíncrona bit é transmitido num intervalo de tempo arbitrário.
- Na prática que tipo de transmissão é utilizada ?
 - ... transmissão assíncrona com bloco de bits "Start / Stop".

Luís F. Faina - 2017 Pg. 5/118

- Análise por Série de Fourier informações podem ser transmitidas através de meios físicos variando-se alguma propriedade física, como voltagem (tensão elétrica) ou corrente elétrica
 - ... representando o valor deste sinal como uma função do tempo, g(t), pode-se modelar o comportamento do sinal e analisá-lo matematicamente.
- "Jean Fourier" provou que uma função periódica "g(t)", com período T pode ser construída somando-se funções "seno" e "cosseno" com diferentes amplitudes ...

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

 ... onde f = 1/T é a freqüência fundamental e a_n e b_n são as amplitudes dos termos (harmônicas) das funções seno e cosseno.

Luís F. Faina - 2017 Pg. 6/118

- Através da Série de Fourier, uma função pode ser reconstruída
 - ... ou seja, se o "T" é conhecido e as amplitudes são dadas, a função original pode ser achada realizando-se as somas da equação anterior.
- "a_n" pode ser obtido para uma função "g(t)" multiplicando-se ambos os lados da eq. por "sin(2πnft)" e integrando de 0 a T

$$\int_0^t \sin(2\pi k f t) \sin(2\pi n f t) dt = \begin{cases} 0 & \text{for } k \neq n \\ T/2 & \text{for } k = n \end{cases}$$

• ... para o cálculo dos coeficientes, vale as relações:

$$a_n = \frac{2}{T} \int_0^t g(t) \sin(2\pi n f t) dt \quad b_n = \frac{2}{T} \int_0^t g(t) \cos(2\pi n f t) dt \quad c = \frac{2}{T} \int_0^t g(t) dt$$

Luís F. Faina - 2017

- e.g. ... dado uma taxa de "b" bits/s, o tempo requerido para enviar 8 bits é: b bits – 1 s, então 8 bits – t ??
 - t * b = 8 * 1 → t = 8 * 1 / b → t = 8/b segundos e como se trata de um sinal periódico, a idéia é a de que o mesmo se repita após "t" seg.
 - ... período da 1ª Harmônica é exatamente este tempo, ou seja, 8/b seg., então a freqüência da 1ª harmônica é o inverso – 1 / (8/b) = b/8 Hz.
- ... seja a transmissão do caracter "01100010", então pela Análise da Série de Fourier os coeficientes "a,", "b," e "c" são:

$$c = 3/4 a_n = \frac{1}{\pi n} [\cos(\pi n/4) - \cos(3\pi n/4) + \cos(6\pi n/4) - \cos(7\pi n/4)]$$
$$b_n = \frac{1}{\pi n} [\sin(3\pi n/4) - \sin(\pi n/4) + \sin(7\pi n/4) - \sin(6\pi n/4)]$$

Luís F. Faina - 2017

Fig. 2.1 mostra a saída de voltagem do TX (Transmissor)

Figure 2-1. (a) A binary signal and its root-mean-square Fourier amplitudes. (b)–(e) Successive approximations to the original signal.

Luís F. Faina - 2017 Pg. 9/118

- ... nenhum recurso de transmissão é capaz de transmitir sinais sem perder parte da energia no processo → "atenuações";
- ... no entanto, tais atenuações se dão de forma diferente para cada uma das componentes → "distorções".

- "largura de banda" faixa de frequências transmitidas sem que as componentes sejam fortemente atenuadas.
 - ... trata-se de uma propriedade física do meio de transmissão que, geralmente depende da construção, espessura e comprimento do meio.

Luís F. Faina - 2017 Pg. 10/118

Fig. 2.1 mostra a saída de voltagem do TX (Transmissor)

Figure 2-1. (a) A binary signal and its root-mean-square Fourier amplitudes. (b)–(e) Successive approximations to the original signal.

Luís F. Faina - 2017 Pg. 11/118

- e.g. ... dado uma taxa de "b" bits/s, o tempo requerido para enviar 8 bits é "8/b" s, ou seja, a freqüência da primeira harmônica é o inverso do período da 1ª Harmônica ... "b/8" Hz.
 - ... considere a transmissão deste byte por uma linha telefônica comum cuja frequência de corte está em cerca de 3000 Hz.
- O que significa esta restrição na Linha Telefônica ??!!
 - ... significa que o nro do harmônico mais alto transmitido é aproximadamente "3.000 / (b/8)" ou "24.000 / b";
 - ... por outro lado, o sinal no receptor pode chegar alterado, considerando que algumas componentes serão atenuadas gerando um sinal resultante com distorções em relação ao sinal original.

Luís F. Faina - 2017 Pg. 12/118

- Fig. 2.2 mostra taxas comumente usadas e o efeito da largura de banda de uma linha telefônica comum com f corte = 3000 Hz.
 - ... para 9600 bps em uma linha telefônica de qualidade de voz, o modelo sugerido da Fig. 2.1 (a) assume a forma da Fig. 2.1 (c) ... todas as demais harmônicas serão atenuadas e o resultado final contempla 02 comp.

Bps	T (msec)	First Harmonic (Hz)	Number of Harmonic Sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Luís F. Faina - 2017 Pg. 13/118

 "Teorema de Nyquist" - um canal livre de ruído com largura de banda "H" transmitindo um sinal com "V" bauds possui uma taxa de transmissão "T" <= "2 * H * log₂ v bps"

e.g., ... seja um canal de 3 kHz sem ruído, então podemos transmitir sinais binários (ou seja, 2 níveis = 2 bauds) a uma taxa de até ... 2 * 3.000 * log₂ ² = 2 * 3.000 * 1 = 6.000 bps.

- Alguns valores para Taxas de Transmissão:
 - Elétricos (par trançado cobre) 10 Mbps; 100 Mbps; 1000 Mbps
 - Fibras Óticas 100 Mbps; 1000 Mbps; ... 10s de 1000s
 - ATM faixa de Gbps.

Luís F. Faina - 2017 Pg. 14/118

- Nyquist provou que, se um sinal arbitrário atravessar um filtro com frequência de corte H, o sinal filtrado pode ser completamente reconstruído a partir de apenas 2*H amostras por segundo.
 - ... coletar amostras acima deste limite é inútil, pois este componentes serão filtrados/eliminados e/ou atenuados pelo canal.
- Entretanto, se ruído está presente no canal, "Shannon" mostrou que a máxima taxa de transmissão T para um canal com largura de banda B é no máximo ... T ≤ B * log₂ (1 + S/N) bps
 - S/N comumente denominada de relação "sinal/ruído" reflete a relação entre a potência do sinal propriamente dito e a potência do sinal de ruído.

Luís F. Faina - 2017 Pg. 15/118

- ... normalmente a relação sinal/ruído não é fornecida, ao invés disso, a quantidade 10 * log₁₀ S/N é fornecida (decibels - dB);
 - ... p.ex.: um relação S/N de 10 e→ 10 dB, uma relação de 100 → 20 dB, uma relação de 1000 → 30 dB e assim por diante.
- e.g., seja um canal de 3000 Hz de largura de banda e relação sinal/ruído de 30 dB (parâmetro típico para linha de telefone);
 - ... então B * $\log_2 (1 + S/N) = 3.000 * \log_2 (1 + 1000)$... aprox. 30.000 bps, ou seja, canal não poderá transmitir a mais que 30.000 bps;
 - ... taxa máxima de transmissão independe do nro. de níveis ou "bauds" do sinal (Teorema de Nyquist – T ≤ 2 * H * log₂ ∨ bps)

Luís F. Faina - 2017 Pg. 16/118

- "baud" freqüência com que o sinal pode se propagar no meio de transmissão, ou seja, um canal de 10 M bauds permite 10^6 variações do sinal por segundo.
 - ... p.ex.: um canal de N bauds poderá transportar N bps com codificação On/Off ou N/2 bps com codificação Manchester.
- Como transportar em um canal de N "bauds" um número maior que N bps ?
 - e.g. ... usando sinal digital com codificação On/Off e 4 níveis de tensão representando as ocorrências dos bits 00, 01, 10 e 11 => 2 N bps.
 - ... no entanto, acarreta alta taxa de falhas na decodificação do sinal.

Luís F. Faina - 2017 Pg. 17/118

 "meio físico" - diferentes meios físicos podem ser usados para realizar a transmissão, cada qual com características próprias de largura de banda, retardo, custo de instalação e manutenção.

- "meios magnéticos" gravação de dados em fita magnética.
- e.g., ... considere unidades de fitas com capacidade de 200 GB (Giga Bytes), então 1000 unid. de fita perfazem uma capacidade de 200 terabytes ou 1.600 terabits (1 TB – 2¹² Bytes)
 - ... se considerarmos o transporte deste volume de dados em 24 horas (86.400 seg.), então a largura de banda efetiva será:
 - ... 1.600 terabits / 86.400 seg = 19 Gbps ... nenhuma rede de computadores sequer contempla desempenho próximo deste valor.

Luís F. Faina - 2017 Pg. 18/118

- "par trançado" 02 fios enrolados de forma helicoidal para evitar que os fios assumam característica de antena, além disso minimiza a componente indutiva da impedância;
 - ... componente resistiva da impedância sofre o efeito pelicular.

Luís F. Faina - 2017 Pg. 19/118

 Utilizados para transmissão de Sinais Analógicos e Digitais, em razão do baixo custo e facilidade de instalação.

- freqüência máxima de transmissão depende do comprimento e espessura do par de fios, o que em última instância caracteriza a impedância elétrica do par.
 - 1000s de metros => transmissão não ultrapassa 2 Kbps
 - 10s de metros => transmissão pode atingir 100 Mbps

 Obs.: ... comum redes na faixa de 10 Mbps terem como meio de transmissão pares trançados para distâncias inferiores a 1 Km.

Luís F. Faina - 2017 Pg. 20/118

 "largura de banda" - depende da espessura do fio e da distância percorrida, mas em muitos casos é possível alcançar 10s de 10⁶ ou Mbps por alguns quilômetros.

- Há diversos tipos de cabeamento de pares trançados e dentre eles destacam-se Cabos UTP e STP de várias categorias:
 - Cat. 3 16 MHz / Cat. 5 100 MHz;
 - Cat. 6 250 MHz / Cat. 7 600 MHz

 Obs.: Cabos Cat. 6 ocupam em média 30% mais de espaço que Cabos Cat. 5 / 5e ... exigindo mais espaço na tubulação.

Luís F. Faina - 2017 Pg. 21/118

- "cabo coaxial" composto por um condutor cilíndrico isolado envolto por uma malha de cobre e uma capa plástica de proteção;
 - blindagem forma uma capa de proteção eletrostática ao condutor;
 - forma de construção minimiza as perdas em altas frequências;
 - estrutura assimétrica contribui para a atenuação da amplitude do sinal.

Luís F. Faina - 2017 Pg. 22/118

- cabos de 50 Ω ... comumente usados em transmissões digitais, são adequados ao suporte de 01 freqüência básica de transmissão ou 02 no caso de FSK (Frequency Shift Keying).
- cabos de 75 Ω comumente usados em transmissões analógicas e de TV a Cabo, possuem largura de faixa estendida permitindo a multiplexação pela divisão da freqüência (FDM).
 - ... distância máxima de um cabo depende da atenuação imposta ao sinal, mas o limite máximo de 30 dB é comumente estabelecido.
 - ... atenuação depende do comprimento do cabo, de suas características elétricas, da frequência do sinal e do número de conectores existentes.

Luís F. Faina - 2017 Pg. 23/118

- "fibra ótica" composta de um núcleo de sílica envolto por uma casca também de sílica, tudo protegido por uma camada plástica.
 - ... luz é mantida no núcleo por reflexão na casca (Fibra Multimodo);
 - ... possuem diâmetros entre 50 e 200 μm;
 - ... atenuação de 1 a 5 dB / Km na potência do sinal ótico.

Luís F. Faina - 2017 Pg. 24/118

- Características de um Sinal Ótico:
 - ... luz policromática de comprimento de onda centrado em 0.8 μm;
 - ... sinal é produzido por diodos LED e captado por fotodetectores;
 - ... totalmente imune a interferências eletromagnéticas.

Figure 2-6. (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles. (b) Light trapped by total internal reflection.

Luís F. Faina - 2017 Pg. 25/118

- … diferentes raios de luz incidindo na fronteira acima do ângulo crítico são refletidos internamente em diferentes ângulos e, por isso, os raios de luz tem modos específicos;
- "fibra multimodo" fibra na qual diferentes raios de luz são refletidos em diferentes ângulos.
- "fibra monomodo" fibra cujo diâmetro é tão reduzido que atua como um guia de onda, onde a luz se propaga em linha reta.
 - ... fibra "monomodo" ou fibra de "modo único" são geralmente mais caras, mas são amplamente utilizadas em distâncias mais longas;
 - ... fibras disponíveis "monomodo" podem transmitir 50 Gbps por 100 Km sem necessidade de amplificação do sinal.

Luís F. Faina - 2017 Pg. 26/118

- Utilização de Fibras Óticas:
 - ... são de difícil instalação e por isso utilizadas em redes com topologia em anel, onde o tráfego de informação se dá num único sentido;
 - ... conexão de um host numa fibra ótica é um processo complicado.
- Características de Redes baseadas em Fibra Ótica:
 - ... operam a taxas de 100 Mbits/s
 - ... taxas de Gbits/s com percursos de longas distâncias necessitam fibras monomodo (diâmetros de 5 a 10 μm e luz produzida por diodos laser).

Luís F. Faina - 2017 Pg. 27/118

- Sistema Óptico consiste de 03 elementos básicos: da fonte de luz, meio de transmissão e detector de luz.
- ... atenuação da luz no vidro depende do comprimento de onda da luz e, normalmente, é medida em decibéis.

10 * log 10 Potência Transmitida / Potência Recebida decibéis

e.g., ... considere um fator de perda = 2, ou seja, potência recebida é a ½ da potência transmitida, então a atenuação da luz é:

10 * $\log_{10} {}^2 = 10 * 0,301030 \approx 3 dB (decibéis)$

Luís F. Faina - 2017 Pg. 28/118

 Fig. 2.7 – Atenuação do tipo de vidro usado nas Fibras em dB/Km para 03 bandas de comprimento de onda – 0,85; 1,30 e 1,55 μ

Figure 2-7. Attenuation of light through fiber in the infrared region.

Luís F. Faina - 2017 Pg. 29/118

- "comunicação ótica" utiliza 03 bandas de comprimento de onda centralizadas em 0,85; 1,30 e 1,55 mícron, respectivamente;
- ... as duas últimas, 1,30 e 1,55 mícron, apresentam boas propriedades de atenuação, inferior a 5% por quilômetro;
- ... outro ponto a ser considerado é a dispersão cromática, ou seja, expansão dos pulsos de luz à medida que se propagam;
- ... quando se produz os pulsos de uma forma especial, os mesmos viajam por 1000s de quilômetros sem que haja distorção significativa – também denominados "solitons".

Luís F. Faina - 2017 Pg. 30/118

- "cabos de fibra" são semelhantes aos cabos coaxiais, exceto por não terem a metálica, mas somente a capa plástica ao redor;
- ... normalmente as fibras são agrupadas em feixes, protegidas por um revestimento exterior - "sheath".

Figure 2-8. (a) Side view of a single fiber. (b) End view of a sheath with three fibers.

Luís F. Faina - 2017 Pg. 31/118

- Fibras podem ser conectadas de 03 maneiras:
- "conectores" ... conectores de extremidade permitem que as fibras sejam conectadas em soquetes de fibra;
 - ... tem a vantagem de permitirem a reconfiguração do sistema, mas geram perdas de 10% a 20% da luz.
- "união mecânica" uma luva especial fixa as fibras uma vez que tenham sido cuidadosamente alinhadas;
 - ... normalmente exige tempo de alguns minutos de equipe treinada e resultam em perdas de 10% da luz.
- "fusão" fusão das fibras para formar uma conexão sólida após serem cuidadosamente alinhadas

... desempenho tão bom quanto de uma fibra sem emendas.

Luís F. Faina - 2017 Pg. 32/118

- Para produzir os sinais, utilizam-se 02 tipos de fontes de luz -"Light Emitting Diodes – LEDs e "Semiconductor Lasers"
 - … extremidade de recepção consiste de um fotodiódo, que emite um pulso elétrico ao ser atingido pela luz e tem tempo de resposta em torno de 1 nanosegundo → taxa de dados de 1 Gbps.

Item	LED	Semiconductor laser
Data rate	Low	High
Fiber type	Multi-mode	Multi-mode or single-mode
Distance	Short	Long
Lifetime	Long life	Short life
Temperature sensitivity	Minor	Substantial
Cost	Low cost	Expensive

Figure 2-9. A comparison of semiconductor diodes and LEDs as light sources.

Luís F. Faina - 2017 Pg. 33/118

- "fibras óticas" vs "fios de cobre"
- ... fibras óticas contemplam larguras de banda muito alta do que fios de cobre, o que justifica seu uso nas redes de última geração;
- ... nro de repetidores a cada 50 km em linhas de fibra ótica, enquanto são necessárias a cada 5 km em linhas de cobre;
- ... fibras óticas não são afetadas por picos de tesão, interferência eletromagnética ou quedas no fornecimento de energia;
- ... fibras óticas são imunes a ação corrosiva de alguns elementos químicos no ar, adaptando-se muito bem a ambientes industriais;
- ... fibras são mais leves que fios de cobre, e.g., 1000 pares trançados com 1 km pesam 08 toneladas, enquanto 02 fibras com igual capacidade pesam apenas 100 kg.

Luís F. Faina - 2017 Pg. 34/118

- ... fibras não desperdiçam luz e dificilmente são interceptadas, assim, oferecem um excelente nível de segurança;
- ... por outro lado, fibras são tecnologias menos familiares, exigindo conhecimento de profissionais especializados;
- ... por outro lado, fibras são basicamente unidirecionais, então a comunicação bidirecional exige 02 fibras ou 02 bandas de frequência em uma única fibra ótica.

Luís F. Faina - 2017 Pg. 35/118

2.3 – Transmissão sem Fio

- "ondas eletromagnéticas" resultado do movimento dos elétrons que pode se propagar pelo espaço livre ou mesmo no vácuo.
 - ... nro de oscilações por segundo de uma onda eletromagnética é chamado de frequência - "f" e é medido em Hz (Hertz);
 - ... já a distância entre 02 máximos ou mínimos consecutivos é chamada de comprimento de onda – λ "lambda"

Luís F. Faina - 2017 Pg. 36/118

- ... ondas eletromagnéticas viajam a mesma velocidade, independente da frequência – 3 * 10⁸ m/s = c (velocidade da luz).
- ... em meios físicos como cobre e fibra, esta velocidade cai para 2/3 deste valor e se torna ligeiramente dependente da frequência.

$$\lambda = c * T = c * 1/f \text{ ou } \lambda * f = c$$

Luís F. Faina - 2017 Pg. 37/118

 e.g., ... na prática "lambda" é medido em metros e "f" em MHz, então: λ * f = c (velocidade da luz) ou 3 * 10⁸ m/s

$$\lambda$$
 (m) * f (MHz) = 300 * 10⁶ m/s = aprox. 300

- ... ondas de 100 MHz tem cerca de 3 m (comprimento);
- ... ondas de 1000 MHz tem 0,3 m (comprimento);
- ... ondas de 3000 MHz tem 0,1 m (comprimento).
- "espectro eletromagnético" contempla porções de rádio, microondas, infravermelho e luz visível do espectro;
- ... podem ser usadas na transmissão de dados, desde que seja modulada a amplitude, frequência ou fase das ondas.

Luís F. Faina - 2017 Pg. 38/118

 ... volume de informações que uma onda é capaz de transportar é diretamente proporcional à sua largura de banda.

Luís F. Faina - 2017 Pg. 39/118

 Se diferenciarmos a equação "λ * f = c" em relação a "λ", obtem-se df / dλ = c / λ² e, se na sequência considerarmos as diferenças finitas em vez de diferenciais, obtem-se:

$$\Delta f = c * \Delta \lambda / \lambda^2$$

- e.g., considere a banda de 1,3 mícron, assim, temos $\lambda = 1,3 * 10^{-6}$ e $\Delta\lambda = 0,17 * 10^{-6}$ enquanto $\Delta f = aprox. 30 THz$
- … 8 bits / Hz → 240 Tbps (não é a esmo que pessoas ligadas a redes têm um carinho todo especial pelas fibras óticas).

Luís F. Faina - 2017 Pg. 40/118

- "transmissão de rádio" fáceis de gerar, percorrem longas distâncias e penetram facilmente em prédios, daí serem amplamente utilizadas em redes de comunicação.
 - ... são omnidirecionais, ou seja, viajam em todas as direções a partir da fonte, assim, TX e RX não precisam estar fisicamente alinhados.

- ... ondas de rádio dependem da frequência, p.ex., em baixas frequências elas atravessam obstáculos, mas a potência cai abruptamente à medida que a distância aumenta;
 - ... este decréscimo aumenta cerca de "1 / r²" no ar;
 - ... em altas frequências, as ondas tendem a viajar em linha reta e a ricochetear nos obstáculos → necessidade de alinhamento TX e RX.

Luís F. Faina - 2017 Pg. 41/118

 ... ondas que alcançam a ionosfera – camada de partículas carregadas situada em torno da terra a cerca de 100 a 500 km – são refratadas por elas e retornam à Terra.

Luís F. Faina - 2017 Pg. 42/118

 ... ondas que alcançam a ionosfera – camada de partículas carregadas situada em torno da terra a cerca de 100 a 500 km – são refratadas por elas e retornam à Terra.

Figure 2-12. (a) In the VLF, LF, and MF bands, radio waves follow the curvature of the earth. (b) In the HF band, they bounce off the ionosphere.

Luís F. Faina - 2017 Pg. 43/118

 "transmissão de microondas" - ondas acima de 100 MHz trafegam em linha reta e, portanto, podem ser concentradas em uma faixa estreita do espectro de potência.

Luís F. Faina - 2017 Pg. 44/118

- ... demanda por mais espectro serve para manter o processo de aperfeiçoamento tecnológico, permitindo que as transmissões utilizem frequências cada vez mais altas;
- ... bandas de 10 GHz já são rotineiras, mas a partir de 4 GHz surge um novo problema – absorção pela água;
- e.g., considere ondas de 10 GHz, então o comprimento de onda "lambda" = 3 * 10⁸ m/s / 10 * 10⁹ Hz = 0,03 m = 3 cm
 - ... estas ondas possuem alguns centímetros e são absorvidas pela chuva, exigindo o estabelecimento de novos enlaces para contornar o problema.

 "vantagem" - microondas não exigem direitos sobre um caminho, o que constitui em vantagem significatva sobre fibra ótica.

Luís F. Faina - 2017 Pg. 45/118

- "transmissão de microondas" ondas acima de 100 MHz trafegam em linha reta e, portanto, podem ser concentradas em uma faixa estreita do espectro de potência.
 - ... possibilidade de concentrar um pequeno feixe de energia em uma antena parabólica oferece relação S/N muita alta, mas antenas de TX e RX devem estar alinhadas com o máximo de precisão;
 - ... microondas n\u00e3o atravessam muito bem as paredes de edif\u00edcio diferentemente das ondas de r\u00e1dios.

 História ... durante décadas as microondas formaram o núcleo do sistema de telefônica de longa distância (antes da fibra ótica).

Luís F. Faina - 2017 Pg. 46/118

- ... demanda por mais espectro serve para manter o processo de aperfeiçoamento tecnológico, permitindo que as transmissões utilizem frequências cada vez mais altas;
- ... bandas de 10 GHz já são rotineiras, mas a partir de 4 GHz surge um novo problema – absorção pela água.

- e.g., considere ondas de 10 GHz, então o comprimento de onda "lambda" = 3 * 10⁸ m/s / 10 * 10⁹ Hz = 0,03 m = 3 cm
 - ... estas ondas possuem alguns centímetros e são absorvidas pela chuva, exigindo o estabelecimento de novos enlaces para contornar o problema.

Luís F. Faina - 2017 Pg. 47/118

- "microondas" vs "fibra ótica"
- microondas dispensam a necessidade de se ter direitos sobre um caminho, o que constitui em vantagem significatva sobre fibra;
 - ... basta adquirir um pequeno lote de terra a cada estação repetidora, ou seja, a cada torre de retransmissão;
 - MCI Microware Communications Inc. tornou-se uma companhia telefônica de longa distância – com 100s de repetidores;
 - SPRINT investiu em cabos de fibra ótica, uma vez se formou a partir da Southern Pacific Railroad ... que por deter um grande nro de concessões de direitos de percurso ... investiu em linhas óticas.
- microondas são relativamente mais econômicas, pois a instalação de torres e antenas pode ser mais econômica que enterrar 1000s km de fibras em uma área urbana.

Luís F. Faina - 2017 Pg. 48/118

- "alocação de espectro" governos nacionais alocam bandas de espectro para rádio, televisão, celulares, como também para empresas de telefonia, polícia, usuários marítimos ... etc.
 - ... ITU-R (contexto mundial) coordena a alocação de modo que possam ser fabricados dispositivos de funcionem em vários países.
- ... dentre as abordagens de concessão, destaca-se o leilão de frequências para telefonia móvel que por um lado enriquece governos e por outro deixa as concessionárias endividadas;
- ... outra abordagem é a de simplesmente não alocá-las, permitindo que quem queira fazer uso o faça;
 - ISM (Industrial, Scientific, Medical) bandas para uso sem licença.

Luís F. Faina - 2017 Pg. 49/118

- ISM Industrial, Scientific, Medical uso sem licença.
 - Banda 2,4 GHz está disponível na maioria dos países, mas é sujeita a interferências de fornos de micro-ondas e instalações de radar;
 - Bluetooth e algumas LANs sem Fio seguem o Padrão 802.11 ... utilizam banda 2,4 GHz e mais recentemente 5,7 GHz ... não obstante equipamentos que operam nesta faixa ainda são dispendiosos.
- U-NII Unlicensed National Information Infrastructure
 - U-NII Low (U-NII-1) ... 5.15 a 5.25 GHz
 - U-NII Mid (U-NII-2) ... 5.25 a 5.35 GHz
 - U-NII Worldwide (U-NII-2e) ... 5.47 a 5.725 GHz
 - U-NII Upper (U-NII-3) ... 5.725 a 5.850 GHz

Luís F. Faina - 2017 Pg. 50/118

• "ondas de infravermelho" - ondas relativamente direcionais.

Luís F. Faina - 2017 Pg. 51/118

 "ondas de infravermelho" - ondas usadas na comunicação de curto alcance como aparelhos de TV e equip. estereofônicos.

Figure 2-13. ISM and U-NII bands used in the United States by wireless devices.

Luís F. Faina - 2017 Pg. 52/118

- "ondas de infravermelho" ... são directionais, econômicas e fáceis de montar, mas não atravessam paredes sólidas;
 - ... por isso, não é possível controlar o aparelho de televisão do vizinho com o seu controle remoto há alguns metros e separados por paredes.
- e.g., considere ondas de 1 GHz, então o comprimento de onda "lambda" = 3 * 10⁸ m/s / 1 * 10⁹ Hz = 0,3 m = 30 cm
- e.g., considere ondas de 100 GHz, então o comprimento de onda "lambda" = 3 * 108 m/s / 100 * 109 Hz = 0,003 m = 3 mm.

 "segurança do sistema de infravermelho" - ... mais seguro contra espionagem quando comparada aos sistemas de rádio.

Luís F. Faina - 2017 Pg. 53/118

 "transmissão de ondas de luz" - apontar um feixe laser com 1mm da largura para um alvo do tamanho da cabeça de um alfinete e a 500 m exige uma pontaria quase impossível.

Luís F. Faina - 2017 Pg. 54/118

• "satélite de comunicação" - ... repetidor com diversos "transponders" - cada um ouve uma parte do espectro, amplifica os sinais de entrada e os transmite em outra frequência.

- Lei de Kepler período orbital de um satélite varia de acordo com o raio da órbita elevado à potência de 3/2;
 - ... ou seja, quanto mais alto o satélite, mais longo o período.

e.g., satélites de baixa órbita saem da visão com bastante rapidez e tem período de 90 minutos ... por isso faz-se necessário muitos deles para proporcionar cobertura contínua.

Luís F. Faina - 2017 Pg. 55/118

 ... satélite de comunicação e algumas propriedades como: altitude da terra, tempo RTT, e nro. de satélites para cobertura global.

Luís F. Faina - 2017 Pg. 56/118

- "satélites geoestacionários" satélites de alta órbita e também chamados satélites geossíncronos (tripulados);
 - ... normalmente estão espaçados de 2 graus e se situam no plano equatorial de 360 graus a fim de evitar interferências;
 - ... isto significa 360 / 2 = 180 satélites no céu ao mesmo tempo, mas por outro lado cada "transporder" pode usar várias frequências e polarizações, com a finalidade de aumentar a largura de banda disponível.

Band	Downlink	Uplink	Bandwidth	Problems
L	1.5 GHz	1.6 GHz	15 MHz	Low bandwidth; crowded
S	1.9 GHz	2.2 GHz	70 MHz	Low bandwidth; crowded
С	4.0 GHz	6.0 GHz	500 MHz	Terrestrial interference
Ku	11 GHz	14 GHz	500 MHz	Rain
Ka	20 GHz	30 GHz	3500 MHz	Rain, equipment cost

Luís F. Faina - 2017 Pg. 57/118

- "satélites de órbita média" se deslocam lentamente em longitude, levando cerca de 06 horas para circular a Terra;
 - ... MEOs (Medium Earth Orbit) situam-se em órbitas mais baixas;
 - ... tem área de cobertura menor no solo o que por outro lado exige transmissores menos potentes para alcança-los.
- "satélites de órbita baixa" estão muito próximos da Terras e se deslocam rapidamente, mas são necessários grandes quantidades desses satélites para formar um sistema completo;
 - ... satélites "iridium" estão possicionados em altitude de 750 km em órbitas polares circulares e organizados em eixos polares norte-sul, com um satélite a cada 32 graus de latitude.

Luís F. Faina - 2017 Pg. 58/118

 ... organizados em eixos norte-sul com um satélite a cada 32 graus de latitude permite que toda a Terra seja. coberta.

Luís F. Faina - 2017 Pg. 59/118

• ... propriedade interessante do Iridium é que a comuncação entre clientes distantes ocorre no espaço, com um satélite retransmitindo dados para o satélite seguinte ... Fig. (a).

Luís F. Faina - 2017 Pg. 60/118

"satélites" vs "fibra ótica"

- Há 20 anos, pensava-se que o futuro da comunicação residia nos satélites de comunicações, uma vez que por 100 anos não houve sinais de mudança no sistema telefônico;
- ... em meados da década de 80, companhias telefônicas começaram a substituir suas redes de longa distância por fibra ótica e introduziram serviços de alta largura de banda, como ADSL;
- ... conexões de fibra ótica pareciam ser a melhor opção a longo prazo, no entanto, satélites de comunicações contemplam alguns segmentos de mercado que a fibra ótica não é capaz de alcançar.

Luís F. Faina - 2017 Pg. 61/118

- 1º segmento fibras óticas do sistema telefônico tratam diversas chamadas interurbanas ao mesmo tempo, mas não oferecem alta largura de banda aos usuários individualmente.
- 2º segmento ... comunicação móvel demanda serviço onipresente e, neste sentido, é possível que uma combinação de rádio e fibra funcionem para a maioria dos usuários;
- 3º segmento ... em momentos em que a difusão é essencial, satélites permitem que 1000s de estações terrestres recebam mensagens ao mesmo tempo.
- 4º segmento ... em locais onde o terreno é inadequado ou a infraestrutura terrestre é pouco desenvolvida, lançar um satélite é mais econômico que estender 1000s de cabos submarinos;

Luís F. Faina - 2017 Pg. 62/118

- 5º segmento ... mercado de satélites cobre áreas em que a obtenção do direito de estender cabos de fibra é difícil ou excessivamente dispendiosa.
- 6º segmento ... quando a exploração rápida tem importância crítica, como em sistemas de comunicação militares em guerra, satélites possibilitam uma montagem rápida do sistema.

 resumo ... parece que a comunicação do futuro será por fibras óticas terrestres combinadas com rádio celular, mas, para algumas aplicações específicas, os satélites são melhores.

Luís F. Faina - 2017 Pg. 63/118

- "problema" como conectar sistemas computacionais de uma mesma empresa ou organização, mas em locais diferentes ??
- ... quando as distâncias ficam grandes e é imprescindível atravessar uma estrada ou passagem pública, os custos de instalação de cabos privados são proibitivos;

 "solução" - utilizar recursos de telecomunicações existentes, p.ex., PSTN - "Public Switched Telephone Network" ... projetada (1950) para tráfego de voz humana de forma audível.

Luís F. Faina - 2017 Pg. 64/118

- Alexandre Graham Bell (1876) invenção do telefone e, na sequência, uma grande demanda pela nova invenção. Fig. (a)
 - ... modelo de conexão de telefones exigia que cada aparelho fosse conectado com "n" outros aparelhos de usuários;
 - … logo, ficou claro que este modelo de conexão de um telefone a outro, não seria escalável além de ser altamente dispendioso.

Luís F. Faina - 2017 Pg. 65/118

- Bell Telephone Company 1º estação de comutação de telefonia (New Haven – Connecticut – 1878) ... Fig. (b)
 - ... necessidade de centralizar as conexões individuais dos assinantes através das estações de comutação → aumenta escala.

Luís F. Faina - 2017 Pg. 66/118

- Com a disseminação de Estações de Comutação da Bell System por todos os lugares (USA), tornou-se necessário a reorganização das estações em níveis ... Fig. (c).
 - ... sistema telefônico (1890) passou a contemplar 03 elementos principais: estações de comutação; rede interligando usuários às estações de comutação e conexões de longa distância interligando estações.

Luís F. Faina - 2017 Pg. 67/118

- ... estações interurbanas, regionais e locais se comunicam através de "troncos" de alta largura de banda - "troncos entre estações".
 - ... nro. de diferentes tipos de centros de comutação e sua topologia varia de país para país, dependendo da densidade telefônica do território.

Luís F. Faina - 2017 Pg. 68/118

- "loops locais" normalmente formados por cabos Cat. 3, mas no início utilizou-se cabos sem isolamento separados por 25cm de distância um do outro fixados em postes telefônicos.
 - ... constitui-se no último fragmento de tecnologia análogica.
- "estações de comutação" interligadas por cabos coaxiais, antenas de microondas e principalmente fibra ótica.
 - ... com o advento da fibra ótica, eletrônica digital e computadores "desktop", os troncos e "switches" passam a ser totalmente digitais.

Luís F. Faina - 2017 Pg. 69/118

 ... destaca-se os "loops" locais, os troncos e as estações finais e interurbanas responsáveis pela comutação das chamadas.

Luís F. Faina - 2017 Pg. 70/118

- "local loop" utiliza sinalização analógica há 100 anos e é provável que continue a utilizá-la por mais algumas décadas.
 - ... quando se transmite dados digitais por uma linha de discagem analógica, primeiro os dados são convertidos para a forma analógica;
 - ... conversão é feita por dispositivos responsáveis pela "modulação" e "demodulação" dos sinais – (MODEMs 56 kbps)
 - ... estação de comutação converte os dados para a forma digital, para serem transmitidos pelos troncos de longa distância.

- "sinalização analógica" consiste na variação da tensão elétrica no tempo, de modo a representar um fluxo de informação;
 - ... como os meios de transmissão se comportam como filtros, então o sinal recebido não é igual ao sinal transmitido (atenuação, dispersão e retardo).

Luís F. Faina - 2017 Pg. 71/118

- "ondas quadradas" são representantes para os sinais digitais, no entanto, por contemplam um amplo espectro de frequências, estão sujeitas a forte atenuação bem como distorção.
 - ... diante de tais efeitos, utiliza-se sinalização AC (Alternate Current) ao invés de DC (Direct Current) na linha telefônica.
 - ... introduz-se um sinal contínuo na faixa de 1000 Hz a 2000 Hz, denominado portadora de onda senoidal na qual parâmetros como amplitude, fase ou frequência podem ser alterados.

Luís F. Faina - 2017 Pg. 72/118

 "modulação" - constitui o chaveamento por deslocamento - "shift keying" - da amplitude, frequência ou fase da onda.

Luís F. Faina - 2017

 "modulador-demodulador" ou "modem" - dispositivo que aceita um fluxo serial de bits como entrada e produz um portadora modulada por um (ou mais) desses métodos (ou vice-versa).

- Teorema de Nyquist considerando um linha telefônica perfeita de 3000 Hz, não há razão para amostragem maior que 6000 Hz
 - ... um canal livre de ruído com largura de banda "B" transmitindo um sinal com "V" bauds possui uma taxa de transmissão "T" <= "2 * H * log₂ v bps"
 - ... modems realizam amostragem na faixa de 2.400 vezes/seg. e concentram-se em obter mais bits por amostra.

Luís F. Faina - 2017 Pg. 74/118

 "baud" - nro de amostras ou símbolos por segundo, ou seja, durante cada "baud" envia-se um "símbolo" o que permite que uma linha de "n" bauds envia "n" símbolos / seg.

 e.g., considere uma linha de 2.400 bauds e a modulação de um símbolo "0" volts indica "0" lógico e o símbolo "1" volt indica "1" lógico, então qual será a taxa de transmissão ??

... ...

 ... se os símbolos 0, 1, 2 e 3 são usadas, ou seja, voltagens 0, 1, 2 e 3, então cada símbolo carrega 02 bits de informação e, assim, qual será a taxa de transmissão ??

Luís F. Faina - 2017 Pg. 75/118

- "modems avançados" combinam técnicas de modulação como ASK, PSK e FSK para transmitir vários bits por baud;
 - ... observe os pontos a 45, 135, 225 e 315 graus com amplitude constante, uma vez que a distância a partir da origem é constante;
 - ... fase é indicada pelo ângulo formado entre a linha da origem até o ponto em questão e o eixo da abscissa eixo "x".

Luís F. Faina - 2017 Pg. 76/118

- QPSK contempla 04 combinações válidas e pode ser usada para transmitir 02 bits / símbolo.
- QAM-16 ou 16 "Quadratur Amplitude Modulation" com 04 amplitudes e 04 fases, permite 16 combinações diferentes;
 - ... pode transmitir 04 bits por símbolo, ou seja, em uma linha de 2400 bauds podemos transmitir até 9.600 bits por segundo.
- QAM-64 ou 64 "Quadratur Amplitude Modulation" permite até 64 combinações diferentes, ou seja, 06 bits por símbolo;
 - ... pode transmitir 06 bits por símbolo, ou seja, em uma linha de 2400 bauds podemos transmitir até 14.400 bits por segundo.

Luís F. Faina - 2017 Pg. 77/118

- QAM-16 ou 16 "Quadratur Amplitude Modulation" com 04 amplitudes e 04 fases, permite 16 combinações diferentes;
 - ... pode transmitir 04 bits por símbolo, ou seja, em uma linha de 2400 bauds podemos transmitir até 9.600 bits por segundo.

Luís F. Faina - 2017 Pg. 78/118

- V.32 bits ou QAM-128 ... contém 6 bits de dados e 1 bit de paridade por amostra de 2400 bauds
 - e.g., ... fax modems utilizam essa velocidade para transmitir páginas digitalizadas como mapas de bits.

Luís F. Faina - 2017 Pg. 79/118

- Modems série padrão V.34 funcionam em 28.800 bps a 2.400 bauds com 12 bits de dados / símbolo.
 - Modems série V.34 utilizam 14 bits de dados / símbolo a 2.400 bauds para atingir 33.660 bits por segundo.
- Modems permitem o tráfego em ambos os sentidos ao mesmo tempo, para tanto, utilizam frequências diferentes.
 - ... canal de transmissão pode ser "simplex", "half-duplex" ou "full-duplex".

 Modems modernos param a 33.600 bps, pois o limite de Shanon para o Sistema Telefônico é próximo de 35 kbps.

Luís F. Faina - 2017 Pg. 80/118

- Modems modernos param a 33.600 bps, pois o limite de Shanon para o Sistema Telefônico é próximo de 35 kbps;
 - ... tal restrição está relacionada com o comprimento médio dos "loops" locais ou com a qualidade das linhas desses "loops" locais ??

- Entretanto, se ruído está presente no canal, "Shannon" mostrou que a máxima taxa de transmissão T para um canal com largura de banda B é no máximo ... T ≤ B * log₂ (1 + S/N) bps
 - S/N comumente denominada de relação "sinal/ruído" reflete a relação entre a potência do sinal propriamente dito e a potência do sinal de ruído.

Luís F. Faina - 2017 Pg. 81/118

- ... tem-se 02 "loops" locais entre uma chamada com origem (Computador) e receptor (ISP #1);
- ... adicionalmente "loops" locais acrescentam ruído no sinal e, caso possamos eliminar um deles, a taxa pode ser duplicada.

Luís F. Faina - 2017 Pg. 82/118

- Nyquist provou que, se um sinal arbitrário atravessar um filtro com frequência de corte H, o sinal filtrado pode ser completamente reconstruído a partir de apenas 2*H amostras por segundo.
 - ... coletar amostras acima deste limite é inútil, pois os componentes serão filtrados/eliminados e/ou atenuados pelo canal.

 e.g., ... Modems 56 kpbs – para um canal telefônico de 4000 Hz, o nro. máximo de amostras por segundo é 8000.

Luís F. Faina - 2017 Pg. 83/118

- Modems 56 kbps para um canal telefônico de 4000 Hz, o nro. máximo de amostras independentes por segundo é 8000;
 - USA ... um dos bits da amostra é usado para fins de controle, então podemos transmitir até 56.000 bits / seg. de dados do usuário.
 - Europa ... 08 bits estão disponíveis para os usuários, então modems podem oferecer até 64.000 bits / segundo de dados.
 - Modems V.90 ... denominação para modems neste padrão.

 Modems V.92 – modems capazes de transmitir 48 kbps no canal "upstream" caso a linha possa lidar com esta funcionalidade.

Luís F. Faina - 2017 Pg. 84/118

- Serviço de Banda-Larga serviço com maior largura de banda que o serviço de telefonia padrão e que utiliza a tecnologia xDSL (Digital Subscriber Line – linha digital do assinante).
 - ... justificativa para os modems serem lentos é que o sistema telefônico foi concebido e otimizado para transportar voz humana;
 - ... como não foram concebidos para dados, a faixa de frequência de corte 300 Hz a 3.400 Hz restringe fortemente a taxa de transmissão de dados.
- xDSL conecta-se um a tipo diferente de "switch", sem esse filtro, disponibilizando toda a capacidade de "loop" local;
 - … limitador passa a ser a constituição física do "loop" local, não a largura de banda artificial de 3.100 Hz criada pelo filtro.

Luís F. Faina - 2017 Pg. 85/118

 ... esboço da largura de banda potencial como um função da distância em Cabo UTP de categoria 3 para xDSL.

Luís F. Faina - 2017 Pg. 86/118

- ... quando se escolhe uma velocidade para oferecer, está ao mesmo tempo escolhendo um raio a partir de suas estações finais, além da qual o serviço não pode ser oferecido.
 - ... quanto mais baixo a velocidade escolhida, maior o raio e maior o nro. de clientes cobertos, mas menos atraente é o serviço.
- Serviços xDSL foram criados visando certos objetivos.
 - devem funcionar nos "loops" locais de par trançado existente;
 - não deve afetar os telefones e aparelhos atuais de fax dos clientes;
 - devem ser muito mais rápido que 56 kbps;
 - devem estar sempre ativos e serem tarifados mensalmente.

Luís F. Faina - 2017 Pg. 87/118

- Proposta inicial do ADSL (AT&T) divisão do espectro de frequência do "loop" local (1,1 MHz) em 03 bandas:
 - POTS (Plain Old Telephone Service) sinal de voz;
 - "upstream" do usuário para a estação final;
 - "downstream" da estação final para o usuário.
- AT&T empregou a técnica de Multiplexação por Divisão de Freqüência (FDM – Frequency Division Multiplexing)

 "abordagem alternativa" - DMT (Discrete MultiTone) que divide o espectro de 1,1 MHz do loop local em 256 canais de 4312,5 Hz.

Luís F. Faina - 2017 Pg. 88/118

- DMT (Discrete MultiTone) que divide o espectro de 1,1 MHz do loop local em 256 canais independentes de 4312,5 Hz cada;
 - Canal "0" é usado para o POTS e canais "1" a "5" não são usados para impedir que o sinal de voz e os sinais de dados se interfiram.
 - 02 Canais para Controle "upstream" e "downstream" e 248 Canais disponíveis para dados do usuário.

Luís F. Faina - 2017 Pg. 89/118

- ... embora os canais possam ser usados por fluxos "full-duplex", harmônicos, linhas cruzadas e outros efeitos impedem o seu uso.
- ... cabe ao provedor definir quantos canais serão usados para "upstream" (10%) e para "downstream" (80% a 90%).

- ADSL "Assynchronous" DSL surgiu justamente da assimetria na divisão dos canais para "upstream" e para "downstream".
 - ... divisão comum reserva 32 canais para "upstream" e 216 canais para "downstream", totalizando 248 canais + 2 para controle "up" e "down".
- ADSL (ANSI T1.413 e ITU G.992.1) ... permite velocidades de até 8 Mbps "downstream" e 1 Mbps "upstream".

Luís F. Faina - 2017 Pg. 90/118

- ... em cada canal, utiliza-se modulação semelhante ao V.34, com taxa de amostragem de 4.000 bauds, em vez de 2.400 bauds;
 - … linha é monitorada constantemente de modo que a taxa de dados seja ajustada de forma contínua quando necessário.
 - ... dados são enviados com QAM-16, com até 15 bits por baud, usando um diagrama de constelação análogo ao da Figura 2.25(b).

Luís F. Faina - 2017 Pg. 91/118

- e.g., ... com 224 canais "downstream" e 15 bits/baud a 4000 bauds, a largura de banda downstream é 13,44 Mbps.
 - ... 224 canais * 4000 bauds / canal * 15 bits / baud = 13,44 Mbps
 - ... mas na prática, a relação sinal/ruído nunca é boa o bastante para se alcançar essa taxa, mas é possível utilizar 8 Mbps por curtos períodos.
- Instalação típica ADSL contempla um dispositivo (Network Interface Device – NID) instalado pela companhia nas dependências do cliente ADSL;
 - ... normalmente o NID + Filtro Analógico separa a banda 0 a 4000 Hz utilizada pelo POTS, assim o sinal é roteado até o telefone.

Luís F. Faina - 2017 Pg. 92/118

- Instalação típica ADSL Sinal POTS é roteado até o telefone, e o sinal de dados é roteado até um modem ADSL
 - ADSL é um processador de sinais digitais configurado para atuar como 250 modems QAM operando em paralelo em freqüências diferentes.

Luís F. Faina - 2017 Pg. 93/118

- ... considerando que a maioria dos modems atuais é externo, o computador está conectado ao modem em alta velocidade;
 - ... isto pode ser feito inserindo-se uma placa Ethernet no computador e operando-se uma rede local de apenas 02 nós.

Luís F. Faina - 2017 Pg. 94/118

- ... no lado da estação final, está instalado um divisor correspondente, assim, a voz é filtrada e enviada ao switch de voz.
 - ... sinal acima de 26 kHz é roteado para o dispositivo DSLAM (Digital Subscriber Line Access Multiplexer).

Luís F. Faina - 2017 Pg. 95/118

 ... DSLAM (DSL Access Multiplexer) realiza trabalho semelhante ao do Modem ADSL, o que permite a recuperação do sinal digital (fluxo de bits) que são enviados ao ISP.

Luís F. Faina - 2017 Pg. 96/118

 ... desvantagem deste projeto é a presença do NID e do divisor no local do cliente, pois a instalação desses itens só pode ser feita por um técnico da companhia telefônica (dispendioso).

Luís F. Faina - 2017 Pg. 97/118

 ... desvantagem deste projeto é a presença do NID e do divisor no cliente, pois a instalação desses itens só pode ser feita por um técnico da companhia telefônica (dispendioso).

Luís F. Faina - 2017 Pg. 98/118

- "projeto alternativo" G.lite ou ITU é G.992.2 é o ADSL sem o divisor, assim a linha telefônica é usada como está.
 - ... com uma pequena diferença que é a inserção de um microfiltro em cada tomada de telefone, entre o telefone ou o modem ADSL e o fio.
 - ... microfiltro para o telefone é um filtro de banda baixa que elimina frequências acima de 3400 Hz;
 - ... microfiltro para o modem ADSL é um filtro de banda alta, que elimina frequências abaixo de 26 kHz.

 G.lite não é tão confiável quanto um divisor, e assim só pode ser usado até 1,5 Mbps (contra 8 Mbps para o ADSL com um divisor).

Luís F. Faina - 2017 Pg. 99/118

- "projeto alternativo" G.lite ou ITU é G.992.2 é o ADSL sem o divisor, assim a linha telefônica é usada como está;
 - ... com uma pequena diferença que é a inserção de um microfiltro em cada tomada de telefone, entre o telefone ou o modem ADSL e o fio.

Luís F. Faina - 2017 Pg. 100/118

- "troncos vs multiplexação" ... custo para instalar e manter um tronco de alta largura de banda é o mesmo de um tronco de baixa largura de banda entre duas estações de comutação;
 - ... companhias telefônicas desenvolveram esquemas para multiplexar o uso de um único tronco físico, melhorando a relação de custo e benifício.
- FDM (Frequency Division Multiplexing) espectro de freqüência é dividido em bandas de freqüência, tendo cada usuário a posse exclusiva de alguma banda.
- TDM (Time Division Multiplexing) os usuários se revezam (em um esquema de rodízio), e cada um obtém periodicamente a largura de banda inteira por um determinado período de tempo.

Luís F. Faina - 2017 Pg. 101/118

 FDM – 03 canais telefônicos são multiplexados, os filtros limitam a largura de banda utilizável a 3.100 Hz por canal de voz.

Luís F. Faina - 2017 Pg. 102/118

 FDM – apesar de haver intervalos entre os canais, há uma certa sobreposição entre canais adjacentes (limites não são nítidos).

Luís F. Faina - 2017 Pg. 103/118

- Padrão FDM ... padrão muito difundido tem 12 canais de voz de 4.000 Hz multiplexados na banda de 60 a 108 kHz (grupo);
- ... banda de 12 a 60 kHz pode ser utilizada por outro grupo;
- ... permite que concessionárias de comunicações ofereçam o serviço de linha privada de 48 a 56 kbps baseado no grupo.

Luís F. Faina - 2017 Pg. 104/118

- TDM (Time Division Multiplexing) pode ser inteiramente manipulada por circuitos eletrônicos digitais.
- ... como só pode usada para dados digitais e como os loops locais produzem sinais analógicos, é necessário uma conversão.
- ... dados de computadores enviados por um modem também são analógicos, então, também é necessário a digitalização.

Luís F. Faina - 2017 Pg. 105/118

 WDM (Wavelength Division Multiplexing) ... quatro fibras chegam juntas a um combinador óptico, cada uma com sua energia presente em um comprimento de onda distinto.

Luís F. Faina - 2017 Pg. 106/118

- ... 04 feixes são combinados em uma única fibra compartilhada para transmissão a um destino remoto.
 - ... na outra extremidade (extremidade remota), o feixe é dividido no mesmo número de fibras que havia no lado da entrada.

Luís F. Faina - 2017 Pg. 107/118

- WDM ... primeiros sistemas comerciais (1990) tinham 08 canais, com 2,5 Gbps por canal e logo em seguinda sistemas (1998) com 40 canais de 2,5 Gbps estavam no mercado.
 - 2001 produtos com 96 canais de 10 Gbps, dando um total de 960 Gbps.
 - ... largura de banda suficiente para transmitir 30 filmes de longa metragem por segundo (em MPEG- 2).

 Dense WDM - ... acomodam 200 canais e tem por característica um grande nro. de canais e comprimentos de onda pouco espaçados ... e.g., 0,1 nm (nano metro ou 10-9 m)

Luís F. Faina - 2017 Pg. 108/118

- Popularidade do WDM ... energia em uma única fibra ocupa apenas alguns gigahertz de largura de banda;
 - ... mas no momento é impossível realizar a conversão entre meios elétricos e ópticos com rapidez maior que essa (GHz)
- Obs.: ... largura de banda agregada aumenta de forma linear com o número de canais em paralelo com diferentes "lambdas".
- Amplificadores Ópticos" podem regenerar o sinal a cada 1000 km, sem a necessidade de várias conversões ópticas/elétricas.
 - modo padrão dividir os canais a cada 100 km e converter cada um deles em um sinal elétrico para amplificação em separado, antes de convertê-los novamente em sinais ópticos e combiná-los.

Luís F. Faina - 2017 Pg. 109/118

- "CODEC (Codificador-Decodificador) ... sinais analógicos são digitalizados para produzir uma série de números de 8 bits.
- … são 8000 amostras por segundo (125 microseg. / amostra), pois o teorema de Nyquist diz que isso é suficiente para captar todas as informações da largura de banda do canal de 4 kHz.
- ... informações se perdem a uma taxa de amostragem mais baixa, e nenhuma informação extra é obtida a uma taxa mais alta.

Luís F. Faina - 2017 Pg. 110/118

- PCM (Pulse Code Modulation) técnica utilizada para digitalizar um sinal analógico, por isso, virtualmente todos os intervalos de tempo no sistema telefônico são múltiplos de 125 micro seg.
 - … método em uso na América do Norte e no Japão é a portadora T1, e o formato e chamado DS1 (tecnicamente falando).

Luís F. Faina - 2017 Pg. 111/118

- ... portadora T1 consiste em 24 canais de voz multiplexados;
- ... efetua-se a amostragem dos sinais analógicos em rodízio, e o fluxo analógico resultante é enviado para o "codec" em vez de serem utilizados 24 codecs separados;

- Cada canal dos 24 canais consegue inserir 8 bits no fluxo de saída, dos quais 07 bits representam dados, e 01 é o controle;
 - ... 56.000 bps (7 * 8000) de dados e 8000 bps (1 * 8000) de informações de sinalização por canal.

Luís F. Faina - 2017 Pg. 112/118

- ... quadro consiste em 24 * 8 = 192 bits, mais um bit extra para enquadramento, produzindo 193 bits a cada 125 micro seg.
 - ... resulta em uma taxa de dados bruta de 1,544 Mbps, ou seja, 193 bits * 8000 amostras / seg. = 1.544.000 bps ou 1,544 Mbps.
 - ... 193º bit é usado para sincronização de quadros e utiliza o padrão específico - 0101010101.
- Quando um sistema T1 está sendo utilizado inteiramente para dados, apenas 23 dos canais são utilizados para esse fim.
 - ... 24º canal é empregado para um padrão especial de sincronização, para permitir a recuperação mais rápida no caso de problemas.

Luís F. Faina - 2017 Pg. 113/118

- Do ponto de vista do Engenheiro de Telefonia médio, o sistema telefônico é dividido em 02 partes principais: a planta externa (loops locais e troncos) e a planta interna (os switches);
 - ... vejamos como funciona estes elementos de comutação.
- comutação por circuitos caminho dedicado entre ambas as extremidades até que a chamada seja finalizada.
- comutação por mensagens ... msgs. de dados são enviados conforme necessário, sem o estabelecimento de caminho dedicado.
- comutação por pacotes ... pacotes individuais são enviados conforme necessário, sem o estabelecimento de caminho dedicado.

Luís F. Faina - 2017 Pg. 114/118

- "comutação de circuitos" ... quando uma chamada passa por uma estação de comutação, é (conceitualmente) estabelecida uma conexão física entre a linha que transportou a chamada e uma das linhas de saída (linhas pontilhadas).
 - ... uma vez estabelecida uma chamada, haverá um caminho dedicado entre ambas as extremidades até que a chamada seja finalizada.

Luís F. Faina - 2017 Pg. 115/118

- "comutação de mensagens" ... blocos de dados são enviados conforme necessário, sem o estabelecimento de circuito;
 - ... cada bloco é recebido integralmente, inspecionado em busca de erros, e depois retransmitido (store-and-forward).

Luís F. Faina - 2017 Pg. 116/118

- "comutação de pacotes" ... pacotes de dados são enviados conforme necessário, sem o estabelecimento de circuito;
 - ... redes de comutação de pacotes impõem um limite máximo restrito sobre o tamanho do bloco, permitindo que os pacotes sejam ar-mazenados temporariamente na memória principal do roteador e não em um disco.

Luís F. Faina - 2017 Pg. 117/118

 Comparação entre redes de comutação de circuitos versus redes de comutação de pacotes sob diferentes aspectos.

Item	Comutação circuitos	Comutação pacotes
Configuração de chamadas	Obrigatória	Não necessária
Caminho físico dedicado	Sim	Não
Cada pacote segue a mesma rota	Sim	Não
Os pacotes chegam em ordem	Sim	Não
A falha de um switch é fatal	Sim	Não
Largura de banda disponível	Fixa	Dinâmica
Momento de possível congestionamento	Durante a configuração	Em todos os pacotes
Largura de banda potencialmente desperdiçada	Sim	Não
Transmissão store-and-forward	Não	Sim
Transparência	Sim	Não
Tarifação	Por minuto	Por pacote

Luís F. Faina - 2017 Pg. 118/118