June 7, 2023

El proceso matemático para este tipo de red neuronal es: $W_{hh}^{(0)}, W_{xh}^{(0)}, b_h^{(0)}$ - Pesos y sesgos de la capa oculta en el instante 0 $W_{hy}^{(0)}, b_y^{(0)}$ - Pesos y sesgo de la capa de salida en el instante 0 Propagación hacia adelante:

$$h_t = f(W_{hh}^{(t-1)} \cdot h_{t-1} + W_{xh}^{(t-1)} \cdot x_t + b_h^{(t-1)})y_t = g(W_{hy}^{(t-1)} \cdot h_t + b_y^{(t-1)})$$

donde:

- h_t es el estado oculto en el instante t - x_t es la entrada en el instante t - y_t es la salida en el instante t - $f(\cdot)$ es la función de activación de la capa oculta - $g(\cdot)$ es la función de activación de la capa de salida

Cálculo del error:

$$E_t = \frac{1}{2} (y_t - \hat{y}_t)^2$$

donde \hat{y}_t es el valor objetivo en el instante tRetropropagación del error:

$$\delta_y^{(t)} = (y_t - \hat{y}_t) \cdot g'(net_y^{(t)}) \\ \delta_h^{(t)} = (\delta_y^{(t)} \cdot W_{hy}^{(t)}) \odot f'(net_h^{(t)})$$

donde \odot representa la multiplicación elemento a elemento y $net_y^{(t)}$ y $net_h^{(t)}$ son las entradas ponderadas de las capas de salida y oculta en el instante t, respectivamente.

Actualización de pesos y sesgos:

$$W_{hy}^{(t)} \leftarrow W_{hy}^{(t-1)} - \eta \cdot \delta_y^{(t)} \cdot h_t b_y^{(t)} \leftarrow b_y^{(t-1)} - \eta \cdot \delta_y^{(t)} W_{hh}^{(t)} \leftarrow W_{hh}^{(t-1)} - \eta \cdot \dots$$