## Teoria dei Segnali

Esempi applicazione rappresentazione geometrica



- Proprietà delta di Dirac
- La serie di Fourier
- La trasformata di Fourier

Anno accademico 2024-2025

Ultimo aggiornamento: Settembre 2024

# Esempio di applicazione rappresentazione geometrica dei segnali



□ Rappresentazione dei segnali continui tramite funzioni «porta» nel tempo



## Premesse: La funzione «porta» nel tempo

 $\square$  Definizione di "funzione porta" di durata  $\Delta t$ 



$$p_{\Delta t}(t) = \begin{cases} 1 & t \in \left[ -\frac{\Delta t}{2}, +\frac{\Delta t}{2} \right] \\ 0 & \text{altrove} \end{cases}$$

Viene talvolta anche usata la notazione  $\Pi_{\Delta t}(t)$  facendo uso della funzione rettangolare Heaviside

$$\Pi_{\Delta t}(t) = \Pi\left(\frac{t}{\Delta t}\right)$$

$$\Pi(t) = 1 \ per \ t \in \left[-\frac{1}{2}, +\frac{1}{2}\right] \ e \ 0 \ altrove$$



### Base ortogonale costituita da porte

Consideriamo questo insieme di segnali









Versioni traslate nel tempo della quantità  $i\Delta t$ 

☐ Si può facilmente verificare che questo insieme di segnali sono tra di loro ortogonali secondo la definizione da noi usata:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle x(t), y(t) \rangle \triangleq \int_{-\infty}^{\infty} x(t) y^*(t) dt$$

Conseguentemente, questo insieme di funzioni costituisce una possibile base (non è però normalizzata a 1)



#### Approssimazione di un segnale continuo tramite funzioni porta

☐ Un segnale continuo può essere approssimato mediante una base costituita dalle traslazioni nel tempo della funzione "porta" nel tempo



- ☐ Si tratta chiaramente di una approssimazione
- lacktriangle Osserviamo che è tanto «migliore» quanto più  $\Delta t$  è piccolo

### Commenti





- $\square$  Se x(t) è a supporto limitato, la base ha un numero N finito di elementi
- □ Viceversa, se x(t) è a supporto illimitato, è necessaria una base di dimensione infinita





 $\square$  Facendo tendere il supporto  $\Delta t$  a zero è intuitivo che la approssimazione risultante migliora

$$x(t) = \lim_{\Delta t \to 0} \sum_{n = -\infty}^{+\infty} x(n\Delta t) p_{\Delta t}(t - n\Delta t)$$

- Questo risultato sarà fondamentale più avanti nell'ambito del «teorema del campionamento»
- ☐ Si osserva che in questa situazione è richiesto un insieme infinito e non numerabile di funzioni ortogonali per ottenere una "base completa" per lo spazio dei segnali
  - Il passaggio al limite su  $\Delta t$  a zero comporta però delle conseguenze matematiche non banali sulla funzione porta

### Base ortonormale



□ Per essere una base ortonormale, le funzioni porta devono però essere normalizzate in modo da avere energia unitaria



L'approssimazione è dunque in questo caso:

$$\sum_{n=-\infty}^{+\infty} x(n \cdot \Delta t) \cdot \sqrt{\Delta t} \cdot w_{\Delta t}(t)$$

## La funzione «speciale» delta di Dirac





## La «funzione speciale» delta di Dirac

- ☐ Si tratta di una «funzione speciale» molto utile nel campo della Teoria dei Segnali
- ☐ In realtà, NON è una funzione tradizionale, ma matematicamente è una «distribuzione» che si può costruire come limite delle seguenti funzioni porta:



10



## La «funzione speciale» delta di Dirac

 Esistono in letteratura scientifica anche altre definizioni della delta di Dirac, che portano allo stesso risultato

□ A titolo di esempio:





### Rappresentazione grafica

Useremo spesso versioni traslate nel tempo e moltiplicate per una costante, e graficamente le rappresenteremo come:



## Proprietà Delta di Dirac



 $\square$  La delta di Dirac  $\delta(t)$  ha «area» unitaria (proprietà importante!), infatti:

$$\int_{-\infty}^{+\infty} \delta(t) dt = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{-\infty}^{+\infty} p_{\Delta t}(t) dt = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \cdot \Delta t = 1$$

Attenzione invece al fatto che ha energia infinita:

$$E(\delta(t)) = \int_{-\infty}^{+\infty} (\delta(t))^2 dt = \lim_{\Delta t \to 0} \left(\frac{1}{\Delta t}\right)^2 \int_{-\infty}^{+\infty} (p_{\Delta t}(t))^2 dt = \lim_{\Delta t \to 0} \frac{1}{(\Delta t)^2} \cdot \Delta t = \lim_{\Delta t \to 0} \frac{1}{\Delta t} = \infty$$

13

## Proprietà Delta di Dirac



Un'altra proprietà fondamentale della Delta di Dirac è la seguente: dato un segnale continuo x(t) si ha che:

$$\int_{-\infty}^{+\infty} x(t)\delta(t) dt = x(0)$$

$$\int_{-\infty}^{+\infty} x(t) \delta(t) dt = x(0)$$
 Dim.: 
$$\int_{-\infty}^{+\infty} x(t) \delta(t) dt = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{-\infty}^{+\infty} x(t) \cdot p_{\Delta t}(t) dt = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \cdot x(0) \cdot \Delta t$$

☐ Per il nostro corso, questa sarà di gran lunga la proprietà più importante della delta di Dirac, soprattutto nella sua versione più generale presentata nella seguente equazione:

$$\int_{-\infty}^{+\infty} x(t)\delta(t-t_0) dt = x(t_0)$$

$$\int_{-\infty}^{+\infty} x(t) \delta(t - t_0) dt = x(t_0)$$
Dim.: 
$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{-\infty}^{+\infty} x(t) \cdot p_{\Delta t}(t - t_0) dt = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \cdot x(t_0) \cdot \Delta t$$



#### Proprietà del «campionamento» tramite delta di Dirac

☐ Interpretando il risultato della slide precedente, si deduce che l'integrale della moltiplicazione tra un generico segnale continuo e la delta "campiona" il valore del segnale nella posizione temporale della delta

$$\int_{-\infty}^{+\infty} x(t) \cdot \delta(t - t_0) dt = x(t_0)$$

Useremo anche la seguente espressione relativa alla moltiplicazione per una delta:

$$x(t) \cdot \delta(t - t_0) = x(t_0) \cdot \delta(t - t_0)$$



## Moltiplicazione per una delta

 $\square$  La delta vale zero dappertutto tranne che in  $\tau$ , quindi il solo valore che conta della funzione che la moltiplica è solo quello che essa assume in  $\tau$ 



$$x(t)\delta(t-\tau) = x(\tau)\delta(t-\tau)$$

<u>ATTENZIONE</u>: la sola moltiplicazione per la delta <u>non campiona</u> il segnale secondo quanto visto nella slide precedente. Infatti il risultato è ancora una funzione delta con un coefficiente che dipende dal valore del segnale in quel punto.

## Proprietà della Delta di Dirac



□ In una delle lezioni successive (sistemi lineari), definiremo il prodotto di convoluzione come:

$$x(t) * y(t) = \int_{-\infty}^{+\infty} x(\tau)y(t-\tau)d\tau$$

Data la proprietà di campionamento ne consegue che:

$$x(t) * \delta(t) = \int_{-\infty}^{+\infty} x(\tau) \delta(t - \tau) d\tau = x(t)$$

La convoluzione di un segnale continuo x(t) con una delta fornisce il segnale di partenza x(t)

$$x(t) * \delta(t - \theta) = \int_{-\infty}^{+\infty} x(\tau) \delta(t - \theta - \tau) d\tau = x(t - \theta)$$

Analogamente, la convoluzione con una delta traslata fornisce il segnale traslato

\*Si noti che la variabile di integrazione della convoluzione è  $\tau$ , quindi t è una traslazione in cui è "centrata" la  $\delta(\tau)$ 

# Politecnico di Torino Department of Electronics and Telecommunications

## Proprietà delta: traslazione e convoluzione

$$x(t) * \delta(t - \theta) = x(t - \theta)$$



### Derivata di funzioni discontinue



- Un'ulteriore utile applicazione della delta di Dirac è quella di poter definire la derivata anche sulle discontinuità di una funzione.
- Ad esempio per la seguente funzione "a gradino" si può dimostrare il seguente risultato:



### La serie di Fourier

- Rappresentazione in serie di seni e coseni di un segnale periodico
- Già presentata in corsi precedenti, qui Per questo motivo, non faremo nessuna dimostrazione viene solo «richiamata» come: dettagliata
  - Introduzione alla trasformata di Fourier
  - Un esempio "particolare" di rappresentazione geometrica dei segnali su una base di funzioni sinusoidali

Politecnico

#### La serie di Fourier

☐ Si può dimostrare che l'insieme infinito ma numerabile costituito dalle seguenti funzioni:

$$w_n(t) = \frac{1}{\sqrt{T}} e^{j\frac{2\pi}{T}nt} - T/2 \le t \le T/2$$

□ è una possibile <u>base completa</u> per tutti <u>i segnali (anche</u> complessi) ad energia finita definiti nell'intervallo [-T/2, T/2]

## Quali segnali posso rappresentare esattamente con la serie di Fourier?



- $\square$  La serie di Fourier permette di scrivere un segnale x(t) con supporto tra  $\left[-\frac{T}{2}, \frac{T}{2}\right]$  come combinazione lineare di esponenziali complesse
- ☐ Se osserviamo il segnale ricostruito anche al di fuori dell'intervallo  $\left[-\frac{T}{2},\frac{T}{2}\right]$ , data la natura periodica delle sinusoidi otterremo un segnale periodico che in ciascun periodo è pari a x(t), cioè del tipo:

$$y(t) = \sum_{n=-\infty}^{+\infty} x(t - nT) \qquad \text{in cui } x(t) \neq 0 \text{ solo per } -\frac{T}{2} \leq t \leq \frac{T}{2}$$

Quindi la stessa base permette ANCHE di rappresentare tutti i segnali periodici di periodo T

22





23

Ricordando la formula di Eulero

$$e^{j2\pi\frac{n}{T}t} = \cos\left(2\pi\frac{n}{T}t\right) + j\sin\left(2\pi\frac{n}{T}t\right)$$

Si nota che la scomposizione si basa su <u>segnali sinusoidali (sin e</u> <u>cos</u>) alle frequenze  $f_n = \frac{n}{r}$ .



Un segnale periodico di periodo T si può dunque scomporre in una somma di seni e coseni (opportunamente pesati) alle frequenze multiple intere di 1/T

# Politecnico di Torino Department of Electronics and Telecommunications

## La serie di Fourier per segnali periodici

 $\square$  In particolare, si può dimostrare che, per qualunque segnale periodico di periodo T si può scrivere che:

$$x(t) = \frac{1}{\sqrt{T}} \sum_{n=-\infty}^{\infty} c_n e^{j\frac{2\pi}{T}nt}$$

$$c_n = \frac{1}{\sqrt{T}} \int_{-T/2}^{T/2} x(t) \cdot e^{-j\frac{2\pi}{T}nt} dt = \langle x(t), w_n(t) \rangle$$

$$E(x) = \sum_{n} \left| c_n \right|^2$$

$$x(t) \Leftrightarrow (c_n)_{n=-\infty}^{\infty}$$

Espansione in serie di Fourier

Coefficienti dello sviluppo, che si possono interpretare come prodotto scalare con i termini della base ortogonale:

ortogonale:  

$$w_n(t) = \frac{1}{\sqrt{T}} e^{j\frac{2\pi}{T}nt} - T/2 \le t \le T/2$$

Energia su un periodo *T* (dimostrazione più avanti)

Vettore a infinite dimensioni (sequenza)



#### Altre forme di scrittura della serie di Fourier

□ Nei vari testi si trovano anche espressioni della Serie di Fourier leggermente diverse da quella introdotta nella slide precedente, quali:

$$x(t) = \sum_{n=-\infty}^{\infty} \mu_n e^{j\frac{2\pi}{T}nt}$$

In questo Corso useremo questa notazione nell'ambito della Trasformata di Fourier di segnali periodici

$$\mu_{n} = \frac{1}{\sqrt{T}} c_{n} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot e^{-j\frac{2\pi}{T}nt} dt$$

Coefficienti dello sviluppo



#### Energia segnali periodici utilizzando la serie di Fourier

Calcoliamo l'energia su un singolo periodo nell'intervallo [-T/2, T/2]

$$E_{T}(x) = \int_{-T/2}^{+T/2} |x(t)|^{2} dt = \int_{-T/2}^{+T/2} \left| \sum_{n=-\infty}^{+\infty} \mu_{n} e^{j2\pi \frac{n}{T}t} \right|^{2} dt = \int_{-T/2}^{+\infty} \sum_{n_{1}=-\infty}^{+\infty} \mu_{n_{1}} e^{j2\pi \frac{n_{1}}{T}t} \cdot \sum_{n_{1}=-\infty}^{+\infty} \mu_{n_{2}}^{*} e^{-j2\pi \frac{n_{2}}{T}t} dt =$$

$$=\sum_{n_2=-\infty}^{+\infty}\sum_{n_1=-\infty}^{+\infty}\mu_{n_1}\cdot\mu_{n_2}^*\left(\int\limits_{-T/2}^{+T/2}e^{j2\pi\frac{n_1-n_2}{T}t}dt\right) \qquad \text{Il termine in parentesi tonda è nullo per indici diversi, mentre è pari a T per indici uguali.}$$

Infatti per indici diversi, l'esponenziale complessa si può scomporre in seni e coseni con periodo multiplo intero di T, e dunque l'integrale su T risulterà sempre nullo per tutti questi termini

$$E_T(x) = T \sum_{n_1 = -\infty}^{+\infty} \left| \mu_n \right|^2$$

Energia su un periodo T

L'energia su tutto il segnale periodico (cioè su tutto l'asse dei tempi) è dunque ovviamente infinita



#### Potenza segnali periodici utilizzando la serie di Fourier

□ Per quanto riguarda la potenza media di un segnale periodico, abbiamo dunque:

$$P(x) = \frac{E_T(x)}{T} = \sum_{n_1 = -\infty}^{+\infty} |\mu_n|^2$$



28

## Interpretazione della serie di Fourier

☐ Scrivere un segnale (eventualmente complesso) ad energia finita con supporto nell'intervallo [-T/2,T/2] (o un segnale periodico di periodo T) come:

$$x(t) = \sum_{n=-\infty}^{\infty} \mu_n e^{j\frac{2\pi}{T}nt} - T/2 \le t \le T/2$$

□ significa scrivere il segnale come combinazione lineare di infinite sinusoidi di frequenza  $f_n = n/T$ , in quanto:

$$e^{j2\pi\frac{n}{T}t} = \cos\left(2\pi\frac{n}{T}t\right) + j\sin\left(2\pi\frac{n}{T}t\right)$$

 $\square$  L'ampiezza di ciascun coefficiente  $\mu_n$  ci dice, per ciascuna componente a frequenza  $f_n$ , quanto essa è «forte» nel segnale x(t)

# Serie di Fourier per segnali reali



 $\square$  Nel caso che x(t) sia reale, si dimostra facilmente che:

$$\mu_{n} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot e^{-j\frac{2\pi}{T}nt} dt \qquad \mu_{-n} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot e^{+j\frac{2\pi}{T}nt} dt \implies \boxed{\mu_{-n} = \mu_{n}^{*}}$$

Si può dunque riscrivere la serie di Fourier come segue

$$x(t) = \sum_{n=-\infty}^{\infty} \mu_n e^{j\frac{2\pi}{T}nt} = \mu_0 + \sum_{n=1}^{\infty} \left( \mu_n e^{j\frac{2\pi}{T}nt} + \mu_n^* e^{-j\frac{2\pi}{T}nt} \right) = \mu_0 + 2\sum_{n=1}^{\infty} \text{Re} \left\{ \mu_n e^{j\frac{2\pi}{T}nt} \right\}$$

sia 
$$\mu_n = |\mu_n| e^{j\phi_n} \Rightarrow x(t) = \mu_0 + 2\sum_{n=1}^{\infty} \text{Re} \left\{ |\mu_n| e^{j\left(\frac{2\pi}{T}nt + \phi_n\right)} \right\}$$

Fourier é possibile scomporre un seg reale 
$$x(t) = \mu_0 + 2\sum_{n=1}^{\infty} |\mu_n| \cdot \cos(2\pi f_n t + \phi_n)$$
 Fourier é possibile scomporre un seg reale  $x(t)$  in una somma (infinita) di segnali sinusoidali alle frequenze  $f_n$  de comporte un segnali sinusoidali sinusoi

Questa formula evidenza (ancora più chiaramente) che tramite la serie di Fourier è possibile scomporre un segnale segnali sinusoidali alle frequenze  $f_n$  con opportune ampiezze e fasi

# Rappresentazione grafica e terminologia dei coefficienti della serie di Fourier





Interpretazione in termini di "analisi in frequenza" per segnali periodici x(t) di periodo T:

- x(t) è esprimibile come una sommatoria di seni a coseni alle frequenze  $f_n = \frac{n}{T}$ i cui "pesi" (cioè la potenza per armonica) dipendono dalla "forma" del segnale x(t)
- ☐ Terminologia: <u>analisi</u> <u>spettrale del segnale</u>



#### Un'osservazione sulla serie di Fourier



□ Notare che la "<u>separazione spettrale</u>" tra due frequenze dello sviluppo in serie di Fourier è pari a 1/T

Osservazione per ora apparentemente irrilevante... ma che tornerà molto utile più avanti per interpretare la Serie di Fourier

# Politecnico di Torino Department of Electronics and Telecommunications

## Esempio: serie di Fourier per porta simmetrica

□ Calcoliamo i coefficienti per una porta di ampiezza A e durata  $\tau < T$ :



$$\mu_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j\frac{2\pi}{T}nt} dt$$

$$= \frac{1}{T} \int_{-\tau/2}^{\tau/2} A e^{-j\frac{2\pi}{T}nt} dt$$

$$= -\frac{A}{j2\pi n} \left( e^{-j\frac{\pi}{T}n\tau} - e^{j\frac{\pi}{T}n\tau} \right)$$

$$= -\frac{-2jA}{j2\pi n} \sin\frac{\pi}{T} n\tau$$

$$= \frac{A}{\pi n} \sin \frac{\pi}{T} n \tau = A \frac{\tau}{T} \frac{\sin \pi n \frac{\tau}{T}}{\pi n \frac{\tau}{T}}$$

$$= A \frac{\tau}{T} \operatorname{sinc}\left(\frac{n\tau}{T}\right)$$

Nell'ultimo passaggio abbiamo introdotto la funzione speciale:

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

### Andamento dei coefficienti







Segnale risultante tenendo conto SOLO dei termini

sino a n=3 $x(t) = \sum_{n=-3}^{+3} \mu_n e^{j\frac{2\pi}{T}nt}$ 



# Politecnico di Torino Department of Electronics and Telecommunications

## Altro esempio: onda quadra periodica

□ Dal sito: <a href="http://www.intmath.com/fourier-series/fourier-graph-applet.php">http://www.intmath.com/fourier-series/fourier-graph-applet.php</a>

Number of terms = 8

$$f(t) \approx 2.5 + \frac{10}{\pi} \left( \sin \frac{\pi t}{4} + \frac{1}{3} \sin \frac{3\pi t}{4} + \frac{1}{5} \sin \frac{5\pi t}{4} + \frac{1}{7} \sin \frac{7\pi t}{4} + \frac{1}{9} \sin \frac{9\pi t}{4} + \frac{1}{11} \sin \frac{11\pi t}{4} + \frac{1}{13} \sin \frac{13\pi t}{4} \right)$$



# Politecnico di Torino Department of Electronics and Telecommunications

## Esempio: onda quadra



Esempio Matlab: scomposizione in serie di Fourier

di un segnale "a campana" (gaussiana)







% Fouries Serie simple example

Teoria dei segnali

36

### Un'altra funzione





# Politecnico di Torino Department of Electronics and Telecommunications

## Commento sull'esempio precedente

- $\square$  Per lo specifico segnale x(t) considerato nell'esempio precedente, la "approssimazione" ottenuta è già molto buona con 8 termini
- $\square$  Curiosità: si noti dunque che si potrebbe rappresentare "abbastanza bene" x(t) con soli 17 coefficienti reali (sulla base data dai termini in sin e cos della serie di Fourier), cioè
  - I 2x8 coefficienti reali delle varie armoniche
  - Il coefficiente della componente continua





## Calcolo (in Matlab) della serie di Fourier relativa ad un breve brano musicale

- Hallelujah di Handel (disponibile in Matlab tramite "load handel")
- Seleziono T=5 secondi iniziali del brano e lo elaboro calcolandone i coefficienti della serie di Fourier
- Notare che per la formula vista in precedenza la separazione tra le armoniche risulta pari a:
  1 1

$$\Delta f = f_n - f_{n-1} = \frac{1}{T} = \frac{1}{5[s]} = 0.2 \, Hz$$

- Il brano ha una frequenza di campionamento di 8192 Hz e dunque contiene componenti spettrali sino a circa 4 kHz
  - ☐ Si analizzerà nel dettaglio questa questione a metà corso, nell'ambito del Teorema del Campionamento... per ora prendetela per buona ☺
- I coefficienti da calcolare sono dunque molto numerosi (!!), all'incirca 40000
  - ☐ Si vedrà nella seconda parte del corso che tramite la "Fast Fourier Transform" i software numerici possono calcolare questi coefficienti in modo numericamente molto efficiente

## Esempio di applicazione su segnale audio









41









- ☐ Il brano è in Re Maggiore
  - Si riesce ad "intuire" dalla serie di Fourier?
- Zoom attorno al "picco" principale



| Note     | ottave |       |       |       |       |       |      |      |      |       |  |
|----------|--------|-------|-------|-------|-------|-------|------|------|------|-------|--|
|          | 0      | 1     | 2     | 3     | 4     | 5     | 6    | 7    | 8    | 9     |  |
| Do       | 16,35  | 32,70 | 65,41 | 130,8 | 261,6 | 523,3 | 1047 | 2093 | 4186 | 8372  |  |
| Do#-Reb  | 17,32  | 34,65 | 69,30 | 138,6 | 277,2 | 554,4 | 1109 | 2217 | 4435 | 8870  |  |
| Re       | 18,35  | 36,71 | 73,42 | 146,8 | 293,7 | 587,3 | 1175 | 2349 | 4699 | 9397  |  |
| Re#-Mib  | 19,45  | 38,89 | 77,78 | 155,6 | 311,1 | 622,3 | 1245 | 2489 | 4978 | 9956  |  |
| Mi       | 20,60  | 41,20 | 82,41 | 164,8 | 329,6 | 659,3 | 1319 | 2637 | 5274 | 10548 |  |
| Fa       | 21,83  | 43,65 | 87.31 | 174,6 | 349,2 | 698,5 | 1397 | 2794 | 5588 | 11175 |  |
| Fa#-Solb | 23,12  | 46,25 | 92,50 | 185,0 | 370,0 | 740,0 | 1480 | 2960 | 5920 | 11840 |  |
| Sol      | 24,50  | 49,00 | 98,00 | 196,0 | 392,0 | 784,0 | 1568 | 3136 | 6272 | 12544 |  |
| Sol#-Lab | 25,96  | 51,91 | 103,8 | 207,7 | 415,3 | 830,6 | 1661 | 3322 | 6645 | 13290 |  |
| La       | 27,50  | 55,00 | 110,0 | 220,0 | 440,0 | 880,0 | 1760 | 3520 | 7040 | 14080 |  |
| La#-Sib  | 29,14  | 58,27 | 116,5 | 233,1 | 466,2 | 932,3 | 1865 | 3729 | 7459 | 14917 |  |
| Si       | 30,87  | 61,74 | 123,5 | 246,9 | 493,9 | 987,8 | 1976 | 3951 | 7902 | 15804 |  |

ı dei segnali 42

## Let's play... ☺



□ Diamo un'occhiata ai due "picchi" successivi...



| Note     | ottave |       |       |       |       |       |      |      |      |       |  |
|----------|--------|-------|-------|-------|-------|-------|------|------|------|-------|--|
|          | 0      | 1     | 2     | 3     | 4     | 5     | 6    | 7    | 8    | 9     |  |
| Do       | 16,35  | 32,70 | 65,41 | 130,8 | 261,6 | 523,3 | 1047 | 2093 | 4186 | 8372  |  |
| Do#-Reb  | 17,32  | 34,65 | 69,30 | 138,6 | 277,2 | 554,4 | 1109 | 2217 | 4435 | 8870  |  |
| Re       | 18,35  | 36,71 | 73,42 | 146,8 | 293,7 | 587,3 | 1175 | 2349 | 4699 | 9397  |  |
| Re#-Mib  | 19,45  | 38,89 | 77,78 | 155,6 | 311,1 | 622,3 | 1245 | 2489 | 4978 | 9956  |  |
| Mi       | 20,60  | 41,20 | 82,41 | 164,8 | 329,6 | 659,3 | 1319 | 2637 | 5274 | 10548 |  |
| Fa       | 21,83  | 43,65 | 87,31 | 174,6 | 349,2 | 698,5 | 1397 | 2794 | 5588 | 11175 |  |
| Fa#-Solb | 23,12  | 46,25 | 92,50 | 185,0 | 370,0 | 740.0 | 1480 | 2960 | 5920 | 11840 |  |
| Sol      | 24,50  | 49,00 | 98,00 | 196,0 | 392,0 | 784,0 | 1568 | 3136 | 6272 | 12544 |  |
| Sol#-Lab | 25,96  | 51,91 | 103,8 | 207,7 | 415,3 | 830,6 | 1661 | 3322 | 6645 | 13290 |  |
| La       | 27,50  | 55,00 | 110,0 | 220,0 | 440,0 | 880,0 | 1760 | 3520 | 7040 | 14080 |  |
| La#-Sib  | 29,14  | 58,27 | 116,5 | 233,1 | 466,2 | 932,3 | 1865 | 3729 | 7459 | 14917 |  |
| Si       | 30,87  | 61,74 | 123,5 | 246,9 | 493,9 | 987,8 | 1976 | 3951 | 7902 | 15804 |  |

- I 3 "picchi" sono all'incirca sulle noteRe Fa#- La
- ... cioè sull'accordo di Re Maggiore !!

## Let's play... ☺



#### ☐ In conclusione



Curiosità: la tabella sottostante riporta l'accordatura "ufficiale" con il La a 440Hz.

Tuttavia, molte esecuzioni di musica barocca usano <u>un'accordatura</u> <u>leggermente più bassa</u>, con il La attorno a 420-430 Hz

... come si vede dalla nostra analisi!

| Note     | ottave |       |       |       |       |       |      |      |      |       |  |
|----------|--------|-------|-------|-------|-------|-------|------|------|------|-------|--|
|          | 0      | 1     | 2     | 3     | 4     | 5     | 6    | 7    | 8    | 9     |  |
| Do       | 16,35  | 32,70 | 65,41 | 130,8 | 261,6 | 523,3 | 1047 | 2093 | 4186 | 8372  |  |
| Do#-Reb  | 17,32  | 34,65 | 69,30 | 138,6 | 277,2 | 554,4 | 1109 | 2217 | 4435 | 8870  |  |
| Re       | 18,35  | 36,71 | 73,42 | 146,8 | 293,7 | 587,3 | 1175 | 2349 | 4699 | 9397  |  |
| Re#-Mib  | 19,45  | 38,89 | 77,78 | 155,6 | 311,1 | 622,3 | 1245 | 2489 | 4978 | 9956  |  |
| Mi       | 20,60  | 41,20 | 82,41 | 164,8 | 329,6 | 659,3 | 1319 | 2637 | 5274 | 10548 |  |
| Fa       | 21,83  | 43,65 | 87,31 | 174,6 | 349,2 | 698,5 | 1397 | 2794 | 5588 | 11175 |  |
| Fa#-Solb | 23,12  | 46,25 | 92,50 | 185,0 | 370,0 | 740,0 | 1480 | 2960 | 5920 | 11840 |  |
| Sol      | 24,50  | 49,00 | 98,00 | 196,0 | 392,0 | 784,0 | 1568 | 3136 | 6272 | 12544 |  |
| Sol#-Lab | 25,96  | 51,91 | 103,8 | 207,7 | 415,3 | 830,6 | 1661 | 3322 | 6645 | 13290 |  |
| La       | 27,50  | 55,00 | 110,0 | 220,0 | 440,0 | 880,0 | 1760 | 3520 | 7040 | 14080 |  |
| La#-Sib  | 29,14  | 58,27 | 116,5 | 233,1 | 466,2 | 932,3 | 1865 | 3729 | 7459 | 14917 |  |
| Si       | 30,87  | 61,74 | 123,5 | 246,9 | 493,9 | 987,8 | 1976 | 3951 | 7902 | 15804 |  |

## Esempio di applicazione su segnale audio



☐ Il codice Matlab usato nelle slides precedenti:

```
% Carica file musicale
load handel
time window=5; % in secondi
x=y(1:ceil(time window*Fs));
soundsc(x,Fs); % riproduce il suono originale
pause (length (x) / Fs + 0.5)
figure(1)
time=(1:length(x))./Fs;
plot(time,x);
xlabel('Time [s]'); ylabel('Amplitude'); grid on; zoom on;
% serie di Fourier tramite FFT
fft vector=fft(x);
figure (2)
frequency axis=((1:length(fft vector))-length(fft vector)/2)*(Fs/length(fft vector));
plot(frequency axis,fftshift(abs(fft vector)));
xlabel('Frequency [Hz]'); ylabel('modulus of coefficients'); grid on; zoom on;
```

### La trasformata di Fourier



□ Rappresentazione in frequenza di segnali x(t) generici anche non periodici

#### Dalla serie alla trasformata



- ☐ Come rappresentare segnali che non hanno supporto limitato all'intervallo  $-\frac{T}{2} \le t \le \frac{T}{2}$ ?
  - O equivalentemente generici segnali x(t) NON periodici e su un supporto temporale illimitato?
- Consideriamo nuovamente la serie di Fourier

$$x(t) = \sum_{n=-\infty}^{\infty} \mu_n e^{j\frac{2\pi}{T}nt} \qquad \mu_n = \frac{1}{\sqrt{T}} c_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j\frac{2\pi}{T}nt} dt$$

□ E uniamo le due equazioni, ottenendo l'espressione:

$$x(t) = \sum_{n=-\infty}^{\infty} \left[ \frac{1}{T} \int_{-T/2}^{T/2} x(\theta) e^{-j2\pi \frac{n}{T}\theta} d\theta \right] e^{j2\pi \frac{n}{T}t}$$

### Dalla serie alla trasformata di Fourier



$$x(t) = \sum_{n=-\infty}^{\infty} \left[ \frac{1}{T} \int_{-T/2}^{T/2} x(\theta) e^{-j2\pi \frac{n}{T}\theta} d\theta \right] e^{j2\pi \frac{n}{T}t}$$

- ☐ Proviamo ora a vedere cosa succede per *T* arbitrariamente grande
- $\square$  La <u>trasformata di Fourier</u> si ottiene in particolare facendo tendere T a infinito nella precedente espressione
- Si devono fare le seguenti «modifiche»

$$T \to \infty \quad \Rightarrow \begin{cases} \frac{1}{T} = \Delta f \to df \\ \frac{n}{T} \to f \\ \sum \to \int \end{cases}$$

#### Dalla serie alla trasformata di Fourier





I passaggi matematici presenti in questa slides sono FONDAMENTALI per capire "intuitivamente" che cosa rappresenta la trasformata di Fourier.

Ricordare l'obiettivo: "<u>estendere</u>" il concetto della serie di Fourier a segnali <u>non</u> periodici

#### La Trasformata di Fourier



□ Definizione:

$$X(f) \triangleq \int_{-\infty}^{\infty} x(\theta) e^{-j2\pi f\theta} d\theta = \mathcal{F}\left\{x(t)\right\}$$

Anti-trasformata di Fourier

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df = \mathcal{F}^{-1} \{X(f)\}$$

 □ Queste due relazioni fondamentali definiscono la trasformata e l'antitrasformata di Fourier

$$x(t) \xrightarrow{\mathcal{F}} X(f)$$

$$X(f) \xrightarrow{\mathcal{F}^{-1}} X(t)$$

#### Commenti



- □ Le due definizioni di trasformata e anti-trasformata di Fourier introdotte della slides precedente hanno una fondamentale importanza in tantissimi campi dell'Ingegneria
  - Grazie a queste formule, come vedremo durante le prossime lezioni del corso, è possibile introdurre <u>il concetto di contenuto spettrale attorno ad una certa frequenza f anche per un segnale generico</u>
- □ A titolo di esempio: SENZA il concetto di rappresentazione in frequenza, NON esisterebbero
  - Le trasmissioni radio, tutte basate (anche) sulla cosiddetta multiplazione di frequenza
  - Gli equalizzatori per segnali musicali
  - Molte tecniche di compressione dei segnali audio e video
  - L'analisi in frequenza delle vibrazioni di un sistema meccanico
  - Etc. etc. etc.



## Dettagli matematici sulle trasformate di Fourier

- Esistono alcune condizioni per l'esistenza e l'invertibilità della trasformata  $\int_{-\infty}^{\infty} |x(t)| dt < \infty$ Si tratta di una condizione sufficiente ma non necessaria. Una importante eccezione sono ad esempio i segnali periodici, che NON soddisfano questa condizione ma di cui
- □ La trasformata di Fourier e quella di Laplace sono legate. Infatti:  $X_{Laplace}(s) \triangleq \int_{-\infty}^{\infty} x(t)e^{-st}dt$
- Quando la regione di convergenza della trasformata di Laplace contiene l'asse immaginario si ha

$$X(f) = X_{Laplace}(j2\pi f) + \frac{1}{2}\sum_{i} A_{i}\delta(f - f_{i})$$

 $\square$  Dove  $f_i$  sono le eventuali singolarità sull'asse immaginario

Teoria dei seanali 52

esiste comunque la trasformata di Fourier

#### Calcolo di trasformate di Fourier



- □ Il calcolo della trasformata di Fourier tramite la definizione integrale è solitamente abbastanza complicato, come vedremo nelle slide successive su alcuni esempi
- □ Nel capitolo successivo si vedrà tuttavia che tramite:
  - 1. Tavole delle trasformate di Fourier fondamentali
  - 2. Proprietà delle trasformate di Fourier
  - gli effettivi calcoli si possono spesso semplificare notevolmente negli esercizi di questo corso
    - ☐ A partire da un numero limitato di "trasformate fondamentali"
- □ Nelle prossime slides calcoleremo comunque alcune trasformate fondamentali a partire dalla definizione

#### Alcune trasformate fondamentali



#### Delta



$$\mathcal{F}(\delta(t)) = \int_{-\infty}^{\infty} \delta(t) \exp(-j2\pi ft) dt$$
$$= \exp(-j2\pi f0) = 1$$
$$X(f) = F(\delta(t)) = 1$$

$$\mathcal{F}^{-1}$$
 Anti-trasformando 
$$\delta(t) = \int_{-\infty}^{\infty} \exp(j2\pi ft) df$$

Questa formula è una ulteriore possibile definizione della delta di Dirac

Inoltre, è un'espressione che utilizzeremo in varie altre dimostrazioni nel resto del corso, anche al di fuori dell'ambito della trasformata di Fourier.

## Trasformata di una costante



$$x(t) = 1$$

$$X(f) = F\{x(t)\} = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt = \int_{-\infty}^{+\infty} e^{-j2\pi ft}dt =$$

In una slide precedente, avevamo dimostrato che:

$$\delta(t) = \int_{-\infty}^{\infty} \exp(j2\pi ft) df$$

Analogamente dunque

$$X(f) = \int_{-\infty}^{+\infty} e^{-j2\pi ft} dt = \delta(f)$$

$$X(f) = F(1) = \delta(f)$$









$$= \frac{j}{\pi f} \left[ \cos(2\pi ft) \right]_{0}^{\infty}$$

$$= \lim_{a \to \infty} j \frac{\cos(2\pi fa)}{\pi f} - \frac{j}{\pi f} = -\frac{j}{\pi f} = \frac{1}{j\pi f}$$

$$X(f) = F(\operatorname{sgn}(t)) = \frac{1}{j\pi f}$$

Distribuzione che tende a zero a limite  $a\to\infty$ . Questo risultato non è affatto banale da dimostrare. Intuitivamente, per  $a\to\infty$  il coseno oscilla in modo "infinitamente veloce" tra +1 e -1

# Politecnico di Torino Department of Electronics and Telecommunications

## Trasformata Funzione «Segno»

- Il risultato della slide precedente può essere ottenuto in maniera più rigorosa mediante la seguente dimostrazione, che si avvale di una funziona ausiliaria che al limite coincide con la funzione segno.
- ☐ Si definisca dunque:

$$x(t) = \operatorname{sgn}(t)$$

$$e^{-\alpha t}$$

$$-e^{+\alpha t}$$

$$s_{\alpha}(t) = \begin{cases} e^{-\alpha t} & \text{per } t \ge 0 \\ -e^{+\alpha t} & \text{per } t < 0 \end{cases}$$

Si ha che: 
$$\operatorname{sgn}(t) = \lim_{\alpha \to 0^+} s_{\alpha}(t)$$

$$S_{\alpha}(f) = F\{s_{\alpha}(t)\} = \int_{-\infty}^{+\infty} s_{\alpha}(t)e^{-j2\pi ft}dt = \int_{-\infty}^{0} -e^{+\alpha t}e^{-j2\pi ft}dt + \int_{0}^{\infty} e^{-\alpha t}e^{-j2\pi ft}dt = \int_{0}^{\infty}$$

Calcoliamo la trasformata di Fourier

$$S_{\alpha}(f) = -\int_{-\infty}^{0} e^{-(j2\pi f - \alpha)t} dt + \int_{0}^{\infty} e^{-(j2\pi f + \alpha)t} dt = \frac{-1}{-(j2\pi f - \alpha)} \left[ e^{-(j2\pi f - \alpha)t} \right]_{-\infty}^{0} + \frac{1}{-(j2\pi f + \alpha)} \left[ e^{-(j2\pi f + \alpha)t} \right]_{0}^{+\infty}$$

$$= \frac{1}{(j2\pi f - \alpha)} \left[ 1 - \lim_{t \to -\infty} \left( e^{-(j2\pi f - \alpha)t} \right) \right] - \frac{1}{(j2\pi f + \alpha)} \left[ \lim_{t \to \infty} \left( e^{-(j2\pi f + \alpha)t} \right) - 1 \right]$$
Tende a zero per  $\alpha$ 
positivo

Tende a zero per  $\alpha$ 
positivo





$$S_{\alpha}(f) = \frac{1}{(j2\pi f - \alpha)} + \frac{1}{(j2\pi f + \alpha)}$$

$$F\{\operatorname{sgn}(t)\} = \lim_{\alpha \to 0^{+}} S_{\alpha}(f) = \lim_{\alpha \to 0^{+}} \left(\frac{1}{(j2\pi f - \alpha)} + \frac{1}{(j2\pi f + \alpha)}\right) = \frac{1}{j2\pi f} + \frac{1}{j2\pi f} = \frac{1}{j\pi f}$$

$$X(f) = F(\operatorname{sgn}(t)) = \frac{1}{j\pi f}$$



## Department of Electronics and Telecommunications

## Trasformata «gradino» nel tempo

Gradino u(t)  $\mathcal{F}(u(t)) = \int_0^\infty \exp(-j2\pi ft) dt$   $u(t) = \frac{1}{2} + \frac{1}{2} \operatorname{sgn}(t)$   $= \int_0^\infty \cos(2\pi ft) dt - j \int_0^\infty \sin(2\pi ft) dt$   $= \lim_{a \to \infty} \frac{\sin(2\pi fa)}{2\pi f} + j \lim_{a \to \infty} \frac{\cos(2\pi fa)}{2\pi f} - \frac{j}{2\pi f}$   $= \frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$ 

Più semplicemente, sfruttando la linearità della trasformata di Fourier (si veda il gruppo di slides successive):

$$u(t) = \frac{1}{2} + \frac{1}{2}\operatorname{sgn}(t) \Longrightarrow F(u(t)) = F\left(\frac{1}{2} + \frac{1}{2}\operatorname{sgn}(t)\right) =$$

$$F(u(t)) = \frac{1}{2}F(1) + \frac{1}{2}F(\operatorname{sgn}(t)) = \frac{1}{2}\delta(f) + \frac{1}{2}\frac{1}{j\pi f}$$

# Politecnico di Torino Department of Electronics and Telecommunications

## Trasformata di Fourier di segnali periodici

Utilizzando la Serie di Fourier su segnali periodici di periodo T

$$x(t) = \sum_{n=-\infty}^{\infty} \mu_n e^{j\frac{2\pi}{T}nt}$$

- Possiamo ottenere l'espressione della trasformata di Fourier
  - Applichiamo infatti la definizione di Trasformata di Fourier e successivamente una proprietà della delta di Dirac dimostrata qualche slide prima

$$X(f) = \int_{-\infty}^{+\infty} x(\theta) e^{-j2\pi f \theta} d\theta = \int_{-\infty}^{+\infty} \left( \sum_{n=-\infty}^{+\infty} \mu_n e^{+j2\pi f_n \theta} \right) e^{-j2\pi f \theta} d\theta =$$

$$X(f) = \sum_{n=-\infty}^{+\infty} \mu_n \int_{-\infty}^{+\infty} e^{-j2\pi (f - f_n) \theta} d\theta = \sum_{n=-\infty}^{+\infty} \mu_n \cdot \delta(f - f_n)$$

## Trasformata di Fourier di segnali periodici



$$X(f) = \sum_{n=-\infty}^{+\infty} \mu_n \cdot \delta(f - f_n)$$

- □ In uno dei capitoli successivi del corso riprenderemo nel dettaglio questo risultato relativo alla trasformata di segnali periodici
- □ Per ora osserviamo che un segnale periodico ha componenti spettrali non nulle SOLO per frequenze multiple della frequenza fondamentale 1/T del segnale periodico
  - E su queste frequenze  $f_n = n/T$  compaiono delle delta di Dirac