

Jackychen Lung Gi Lung Gi

FCC PART 15 SUBPART C TEST REPORT

FCC Part 15.247

Report Reference No...... CTL1306281042-WB

Compiled by

(position+printed name+signature)..: File administrators Jacky Chen

Name of the organization performing

the tests

Test Engineer Tracy Qi

(position+printed name+signature)...

Approved by

(position+printed name+signature)..: Manager Tracy Qi

Date of issue...... August 15, 2013

Representative Laboratory Name .: Shenzhen CTL Electromagnetic Technology Co., Ltd.

Address....... Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road,

Nanshan, Shenzhen 518055 China.

Test Firm...... Bontek Compliance Testing Laboratory Ltd

Road, Nanshan, Shenzhen, China

Applicant's name...... SHENZHEN GOLD EAST ELETRONIC CO., LTD

District, Shenzhen, China 518000

Test specification:

Standard FCC Part 15.247: Operation within the bands 902–928 MHz, 2400–

2483.5 MHz, and 5725-5850 MHz.

Master TRF...... Dated 2011-01

Shenzhen CTL Electromagnetic Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Electromagnetic Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Electromagnetic Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Tablet PC

FCC ID...... 2AANTL001-30

Trade Mark /

L002-9S, L097-5S, L010-13S, L011-1S, L013-3S, L001-40, L001-40S, L002-10, L002-10S, L097-6, L097-6S, L010-16, L010-16S,

L011-2, L011-2S

GSM/WCDMA

3G:WCDMA Band II: 1850-1910MHz,

WCDMA Band V: 824~849MHz

	-
Receive:	2G:GSM 850: 869~894MHz, PCS 1900: 1930~1990MHz
	3G:WCDMA Band II: 1930~1990MHz,
	WCDMA Band V: 869~894MHz
Release Version:	2G:R99
	3G:UMTS FDD: Rel-5
Type of modulation:	2G: GMSK for GSM/GPRS/EDGE
	3G: QPSK
GPRS Type:	Class B
GPRS Class	Class 12
GPS	
work frequency:	1575.42MHz
Type of modulation:	BPSK
Bluetooth	
Work frequency:	24 <mark>02~2480MHz</mark>
Version:	V3.0
Type of modulation:	FHSS
Data Rate:	1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps(8DPSK)
Wi-Fi	
Work frequency:	802.11b/g/n(20MHz): 2412~2462MHz
1 8 1	802.11n(40MHz):2422~2452
Type of modulation:	802.11b DSSS, 802.11g/n: OFDM
Data Rate:	802.11b: 1/2/5.5/11 Mbps
1 2 1	802.11g: 6/9/12/18/24/36/48/54 Mbps
1 3	802.11n: up to 150 Mbps
Antenna Gain:	-0.5 dBi for GSM850 and WCDMA Band V
	-1.0 dBi for PCS1900 and WCDMA Band II
11	-2.0 dBi for Bluetooth and Wi-Fi
Antenna type:	Internal
IMEI:	357619049208958

Result..... Positive

TEST REPORT

Test Report No. :	CTL1306281042-WB	August 15, 2013
	C1L1300201042-VVD	Date of issue

Equipment under Test : Tablet PC

Model /Type : L001-30

Listed Models : L002-6, L097-5, L010-13, L011-1, L001-30S, L002-6S,

L002-9S, L097-5S, L010-13S, L011-1S, L013-3S, L001-40, L001-40S, L002-10, L002-10S, L097-6, L097-6S, L010-16,

Report No.: CTL1306281042-WB

L010-16S, L011-2, L011-2S

Difference Description Only the model's name is different.

Applicant : SHENZHEN GOLD EAST ELETRONIC CO., LTD

Address : 6F, Bldg #11, Yusheng Industry Area, #467 Gushu,

Xixiang, Bao'an District, Shenzhen, China 518000

Manufacturer : SHENZHEN GOLD EAST ELETRONIC CO., LTD

Address : 6F, Bldg #11, Yusheng Industry Area, #467 Gushu,

Xixiang, Bao'an District, Shenzhen, China 518000

Test Result according to the standards on page 5:	Positive
---	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	<u>5</u>
2. SUMMARY	6
2.1. General Remarks	4
2.2. Equipment Under Test	
2.3. Short description of the Equipment under Test (EUT)	
2.4. EUT operation mode	6
2.5. EUT configuration	
2.6. Configuration of Tested System	
2.7. Related Submittal(s) / Grant (s)	
2.8. Modifications	
2.9. NOTE 2.10. Frequency Hopping System Requirements	
2.11. Mode of Operation	
1.13	
THE LANGE OF THE PARTY OF THE	
3. TEST ENVIRONMENT	
3.1. Address of the test laboratory	
3.1. Address of the test laboratory	1 1
3.2. Test Facility	11
3.3. Environmental conditions	11
3.4. Statement of the measurement uncertainty	11
3.5. Test Description	12
3.6. Equipments Used during the Test	18
N N N O	
4. TEST CONDITIONS AND RESULTS	<u> 14</u>
4.1. AC Power Conducted Emission	14
4.2. Radiated Emission	17
4.3. Maximum Peak Output Power	24
4.4. 20dB Bandwidth	31
4.5. Band Edge	
Radiated Test:	45
4.6. Frequency Separation	
4.7. Number of hopping frequency4.8. Time Of Occupancy(Dwell Time)	
4.9. Spurious RF Conducted Emissions	
4.10. Antenna Requirement	
4.11. RF Exposure	
•	
TEST SETUD DUOTOS OF THE FUT	0.0
3. IEST SETUP PHUTUS OF THE EUT	<u> 98</u>
5. TEST SETUP PHOTOS OF THE EUT	<u> 9</u>
6 FXTERNAL AND INTERNAL PHOTOS OF THE FUT	100

Report No.: CTL1306281042-WB

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices

<u>FCC Public Notice DA 00-705:</u> Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

ANSI C63.4-2003

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The public notice DA 00-705 for frequency hopping spread spectrum systems shall be performed also.

V1.0 Page 6 of 106 Report No.: CTL1306281042-WB

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	July 22, 2013
Testing commenced on	:	July 22, 2013
Testing concluded on	:	August 15, 2013

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	•	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)	

2.3. Short description of the Equipment under Test (EUT)

A Tablet PC (L001-30) with UMTS/GSM, Bluetooth, GPS and wifi function. For more details, refer to the user's manual of the EUT.

Serial number: Prototype

2.4. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel.

Frequency Range:	2400-2483.5MHz
Channel number:	79 channels
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna:	internal

Test Channel	Test Frequency
Low Channel	2402 MHz
Middle Channel	2441 MHz
High Channel	2480 MHz

V1.0 Page 7 of 106 Report No.: CTL1306281042-WB

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- supplied by the lab

•	Notebook PC	Manufacturer:	lenovo
		Model No. :	E43L
•	TV	Manufacturer:	SHARP
		Model No. :	LCD-26Z100A

2.6. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

No.	Product	Product Manufacturer Model No.		Serial No.	FCC ID
1	Notebook PC	lenovo	E43L	EB14896577	

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AANTL001-30** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. NOTE

1. The EUT is a an Bluetooth Standard type device, The functions of the EUT listed as below:

	Test Standards	Reference Report
Radio	FCC Part 15 Subpart C (Section15.247)	CTL1306281042-WB
RF Exposure	FCC Per 47 CFR 2.1093	CTL1306281042-WB

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
Bluetooth	\checkmark	_		_

3. The EUT provides one completed transmitter and receiver.

Modulation Mode	TX Function		
Bluetooth	1TX		

2.10. Frequency Hopping System Requirements

Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

Number of shift register stages: 9 Length of pseudo-random sequence: 29-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

The frequencies allocated for the Bluetooth Module is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The selection scheme chooses a segment of 32 hop frequencies spanning about 64 MHz and visits these hops in a pseudo-random order. Next, a different 32-hop segment is chosen, etc. In the page, master page response, slave page response, page scan, inquiry, inquiry response and inquiry scan hopping sequences, the same 32-hop segment is used all the time (the segment is selected by the address; different devices will have different paging segments).

When the basic channel hopping sequence is selected, the output constitutes a pseudo-random sequence that slides through the 79 hops.

Hop selection scheme in CONNECTION state.

Channels list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

The pseudorandom frequency hoping sequence sample:

42,41,66,4,78,59,55,48,54,46,52,78,41,26,24,34,39,32,51,18,25,9,12,73,70,58,54,6,66,4,32,67,60,16,3,78,76,47,45,47,49,14,34, etc.

Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 channels (1 MHz separation; from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for DA 00-705 and FCC Part 15.247 rule.

2.11. Mode of Operation

CTL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode

Mode 1: Transmitter-1Mbps(GFSK_DH5) DH5

Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5) 2DH5

Mode 3: Transmitter-3Mbps(8DPSK_DH5) 3DH5

V1.0 Page 11 of 106 Report No.: CTL1306281042-WB

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Bontek Compliance Testing Laboratory Ltd 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 7631A

The 3m alternate test site of Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on March, 2011.

FCC-Registration No.: 338263

Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March 24, 2008.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Bontek Compliance Testing Laboratory Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

rech

Hereafter the best measurement capability for Bontek laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Test Description

FCC PART 15 Subpart C		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)	20dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.247(a)(1)	Frequency Separation	PASS
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency	PASS
FCC Part 15.247(a)(1)(iii)	Time of Occupancy	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Remark: The measurement uncertainty is not included in the test result.

3.6. Equipments Used during the Test

Item	Test Equipment	Manufacturer	Model No.	Last Cal.	Due. Date
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	2013/04/14	2014/04/13
2	Radio Communication Tester	ROHDE & SCHWARZ	CMU200	2013/04/14	2014/04/13
3	Dual Directional Coupler	Agilent	778D	2013/04/14	2014/04/13
4	10dB attenuator	SCHWARZBECK	MTAIMP-136	2013/04/14	2014/04/13
5	Tunable Bandreject filter	K&L	3TNF-800	2013/04/14	2014/04/13
6	Tunable Bandreject filter	K&L	5TNF-1700	2013/04/14	2014/04/13
7	High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	2013/04/14	2014/04/13
8	High-Pass Filter	K&L	41H10- 1375/U12750- O/O	2013/04/14	2014/04/13
9	Coaxial Cable	Huber+Suhner	AC4-RF-H	2013/04/14	2014/04/13
10	AC Power Supply	IDRC	CF-500TP	2013/04/14	2014/04/13
11	DC Power Supply	IDRC	CD-035-020PR	2013/04/14	2014/04/13
12	RF Current Probe	FCC	F-33-4	2013/04/14	2014/04/13
13	Temperature /Humidity Meter	zhicheng	ZC1-2	2013/04/14	2014/04/13
14	MICROWAVE AMPLIFIER	HP	8349B	2013/04/14	2014/04/13
15	Amplifier	HP	8447D	2013/04/14	2014/04/13
16	SIGNAL GENERATOR	HP	8647A	2013/04/14	2014/04/13
17	Log Periodic Antenna	ELECTRO-METRICS	EM-6950	2013/04/14	2014/04/13
18	Horn Antenna	Schwarzbeck	BBHA9120A	2013/04/14	2014/04/13
19	EMI Test Receiver	R&S	ESPI	2013/04/14	2014/04/13
20	Loop Antenna	ZHINAN	ZN30900A	2013/04/14	2014/04/13
21	Horn Antenna	Schwarzbeck	BBHA9120D	2013/04/14	2014/04/13
22	Horn Antenna	Schwarzbeck	BBHA9170	2013/04/14	2014/04/13
23	Spectrum Analyzer	Agilent	E4446A	2013/04/14	2014/04/13
24	Wideband Peak Power Meter	Anritsu	ML2495A	2013/04/14	2014/04/13
25	Power Sensor	Anritsu	MA2411B	2013/04/14	2014/04/13

V1.0 Page 14 of 106 Report No.: CTL1306281042-WB

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2009
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
- 4 The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

 Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguenev	Maximum RF Line Voltage (dBμV)						
Frequency (MHz)	CLAS	SS A	CLASS B				
(111112)	Q.P.	Ave.	Q.P.	Ave.			
0.15 - 0.50	79	66	66-56*	56-46*			
0.50 - 5.00	73	60	56	46			
5.00 - 30.0	73	60	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

The 1Mbps (GFSK Modulation) is the worst case as results in the report based on the Pre-test for all modulation models.

Mode 1:

MEASUREMENT RESULT: "CTL130722003_fin"

7/22/2013 Frequen M		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.1950 0.2670	 58.40 51.70	9.8 9.8	64 61	5.4 9.5	-	N N	GND GND

MEASUREMENT RESULT: "CTL130722003_fin2"

7/22/2013 2:3 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.199500	46.70	9.8	54	6.9	AV	N	GND
0.271500	38.60	9.8	51	12.5	AV	N	GND
0.334500	33.00	9.8	49	16.3	AV	N	GND

Page 16 of 106 Report No.: CTL1306281042-WB

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL130722004 fin"

7/22/2013 2:	41PM						
Frequency MHz			Limit dBµV	Margin dB	Detector	Line	PE
0.154500	52.60	9.8	66	13.2	QP	Ll	GND
0.253500	40.10	9.8	62	21.5	QP	Ll	GND
0.303000	35.60	9.8	60	24.6	QP	Ll	GND

MEASUREMENT RESULT: "CTL130722004 fin2"

7/22/2013 2: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154500 0.253500 0.357000	41.80 31.30 28.40	9.8 9.8 9.8	56 52 49	14.0 20.3 20.4	AV	Li	GND GND GND

V1.0 Page 17 of 106 Report No.: CTL1306281042-WB

4.2. Radiated Emission

TEST CONFIGURATION

Radiated Emission Test Set-Up Frequency range 9KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. the fundamental frequency is 2400-2483.5MHz, So the radiation emissions frequency range were tested from 9KHz to 25GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Mode 1: Transmitter-1Mbps(GFSK_DH5)

	Antenna	Frequency	Reading	Factor	Measure	Limit (dBuV/m)	_	Detector
		(MHz)	Level	(dB)	Level		(dB)	
			(dBuV/m)		(dBuV/m)			
	Н	4804.0	48.3	-2.6	45.7	54(Note2)	-8.3	PK
	V	4804.0	47.0	-2.6	44.4	54(Note2)	-9.6	PK
0	Н	7206.0	39.8	2.6	42.4	54(Note2)	-11.6	PK
U	V	7206.0	39.7	2.6	42.3	54(Note2)	-11.7	PK
	Н	9608.0	40.5	4.8	45.3	54(Note2)	-8.7	PK
	V	9608.0	40.8	4.8	45.6	54(Note2)	-8.4	PK
	Н	4882.0	45.8	-2.3	43.5	54(Note2)	-10.5	PK
	V	4882.0	44.6	-2.3	42.3	54(Note2)	-11.7	PK
39	Н	7323.0	40.4	2.7	43.1	54(Note2)	-10.9	PK
39	V	7323.0	40.5	2.7	43.2	54(Note2)	-10.8	PK
	Н	9764.0	40.9	4.7	45.6	54(Note2)	-8.4	PK
	V	9764.0	40.7	4.7	45.4	54(Note2)	-8.6	PK
	Η	4960.0	40.8	-2.0	38.8	54(Note2)	-15.2	PK
	V	4960.0	41.8	-2.0	39.8	54(Note2)	-14.2	PK
78	Н	7440.0	40.7	2.7	43.4	54(Note2)	-10.6	PK
10	V	7440.0	40.6	2.7	43.3	54(Note2)	-10.7	PK
	Н	9920.0	40.9	5.0	45.9	54(Note2)	-8.1	PK
	V	9920.0	41.1	5.0	46.1	54(Note2)	-7.9	PK

Note 1: Measure Level = Reading Level + Factor.

^{2:} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Mode 2: Transmitter-2Mbps(Pi/4 DQPSK _DH5)

СН	Antenna	Frequency (MHz)	Reading Level	Factor (dB)	Level	Limit (dBuV/m)	Margin (dB)	Detector
			(dBuV/m)		(dBuV/m)			
	Н	4804.0	41.0	-2.6	38.4	54(Note2)	-15.6	PK
	V	4804.0	41.4	-2.6	38.8	54(Note2)	-15.2	PK
0	Η	7206.0	40.1	2.6	42.7	54(Note2)	-11.3	PK
U	V	7206.0	39.6	2.6	42.2	54(Note2)	-11.8	PK
	Н	9608.0	40.6	4.8	45.4	54(Note2)	-8.6	PK
	V	9608.0	40.3	4.8	45.1	54(Note2)	-8.9	PK
	Н	4882.0	44.9	-2.3	42.6	54(Note2)	-11.4	PK
	V	4882.0	44.6	-2.3	42.3	54(Note2)	-11.7	PK
39	Н	7323.0	41.2	2.7	43.9	54(Note2)	-10.1	PK
39	V	7323.0	40.3	2.7	43.0	54(Note2)	-11.0	PK
	Н	9764.0	40.9	4.7	45.6	54(Note2)	-8.4	PK
	V	9764.0	41.9	4.7	46.6	54(Note2)	-7.4	PK
	Н	4960.0	40.5	-2.0	38.5	54(Note2)	-15.5	PK
	V	4960.0	40.6	-2.0	38.6	54(Note2)	-15.4	PK
	Н	7440.0	40.9	2.7	43.6	54(Note2)	-10.4	PK
78	V	7440.0	41.0	2.7	43.7	54(Note2)	-10.3	PK
	Н	9920.0	40.7	5.0	45.7	54(Note2)	-8.3	PK
	V	9920.0	40.8	5.0	45.8	54(Note2)	-8.2	PK

Note 1: Measure Level = Reading Level + Factor.

^{2:} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Mode 3: Transmitter-3Mbps(8DPSK_DH5)

СН	Antenna	Frequency (MHz)	Reading Level	Factor (dB)	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
		(1411 12)	(dBuV/m)	(ab)	(dBuV/m)		(ab)	
			(3.2 3.1,111)		(======================================			
	Η	4804.0	41.8	-2.6	39.2	54(Note2)	-14.8	PK
	V	4804.0	41.7	-2.6	39.1	54(Note2)	-14.9	PK
0	Η	7206.0	40.7	2.6	43.3	54(Note2)	-10.7	PK
"	V	7206.0	40.3	2.6	42.9	54(Note2)	-11.1	PK
	Н	9608.0	39.9	4.8	44.7	54(Note2)	-9.3	PK
	V	9608.0	40.3	4.8	45.1	54(Note2)	-8.9	PK
	Н	4882.0	45.8	-2.3	43.5	54(Note2)	-10.5	PK
	V	4882.0	44.5	-2.3	42.2	54(Note2)	-11.8	PK
	Н	7323.0	40.0	2.7	42.7	54(Note2)	-11.3	PK
39	V	7323.0	40.7	2.7	43.4	54(Note2)	-10.6	PK
	Η	9764.0	41.3	4.7	46.0	54(Note2)	-8.0	PK
	V	9764.0	40.4	4.7	45.1	54(Note2)	-8.9	PK
	Н	4960.0	43.1	-2.0	41.1	54(Note2)	-12.9	PK
	V	4960.0	43.2	-2.0	41.2	54(Note2)	-12.8	PK
78	Н	7440.0	40.7	2.7	43.4	54(Note2)	-10.6	PK
10	V	7440.0	40.6	2.7	43.3	54(Note2)	-10.7	PK
	Н	9920.0	40.9	5.0	45.9	54(Note2)	-8.1	PK
	V	9920.0	41.3	5.0	46.3	54(Note2)	-7.7	PK

Note 1: Measure Level = Reading Level + Factor.

^{2:} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

The 1Mbps (GFSK Modulation) is the worst case as results in the report based on the Pre-test for all modulation models.

The worst case(Mode 1) of Radiated Emission below 1GHz:

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak 300.0 ms 120 kHz JB1

MEASUREMENT RESULT: "CTL130815502 red"

8/15/2013 9	9:40AM							
Frequency	y Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MH2	dBµV/m	dB	dBµV/m	dB		cm	deg	
050 00000			46.0					
359.800000		17.3	46.0	6.9		0.0	0.00	HORIZONTAL
408.300000		18.4	46.0	2.8		0.0	0.00	HORIZONTAL
414.120000		18.6	46.0	3.9		0.0	0.00	HORIZONTAL
431.580000	40.20	18.9	46.0	5.8		0.0	0.00	HORIZONTAL
449.040000	40.60	19.2	46.0	5.4		0.0	0.00	HORIZONTAL
623.640000	38.70	22.3	46.0	7.3		0.0	0.00	HORIZONTAL
	en CTL	Elec	trom	agn	etic	Teck	VE0/01/1	

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi
Start Stop Detector , Field Strength Meas. IF Stop Frequency Frequency 30.0 MHz 1.0 GHz Detector Meas. Transducer Time Bandw. MaxPeak 300.0 ms 120 kHz JB1

MEASUREMENT RESULT: "CTL130815501 red"

8/15/2013 9:3 Frequency MHz		Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	24.50	21.1	40.0	15.5		0.0	0.00	VERTICAL
408.300000	30.10	18.4	46.0	15.9		0.0	0.00	VERTICAL
449.040000	29.40	19.2	46.0	16.6		0.0	0.00	VERTICAL
600.360000	33.60	21.8	46.0	12.4		0.0	0.00	VERTICAL
623.640000	37.70	22.3	46.0	8.3		0.0	0.00	VERTICAL
945.680000	34.80	26.6	46.0	11.2		0.0	0.00	VERTICAL

V1.0 Page 24 of 106 Report No.: CTL1306281042-WB

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured.

VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power (don't forget added the external attenuation and cable loss).

LIMIT

The Maximum Peak Output Power Measurement limit is 30dBm.

TEST RESULTS

Product	1	Tablet PC
Test Item		Power Output
Test Mode	1	Mode 1: Transmitter-1Mbps(GFSK_DH5)

Channel No.	Frequency	Measurement Power	Limit	Result
	(MHz)	Output	(dBm)	
		(dBm)		
0	2402	2.56	30.00	Pass
39	2441	3.01	30.00	Pass
78	2480	3.63	30.00	Pass
	1	Ctra	100	
		*Ctromagnetic		

DH5 2402MHz

DH5 2441MHz

DH5 2480MHz

Report No.: CTL1306281042-WB

Product	:	Tablet PC
Test Item		Power Output
Test Mode	:	Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5)

Channel No.	Frequency	Measurement Power	Limit	Result
	(MHz)	Output	(dBm)	
		(dBm)		
0	2402	3.39	30.00	Pass
39	2441	3.98	30.00	Pass
78	2480	4.63	30.00	Pass

2DH5 2402MHz

2DH5 2441MHz

2DH5 2480MHz

Product	:	Tablet PC
Test Item	• •	Power Output
Test Mode	:	Mode 3: Transmitter-3Mbps(8DPSK_DH5)

Channel No.	Frequency	Measurement Power	Limit	Result
	(MHz)	Output	(dBm)	
		(dBm)		
0	2402	3.83	30.00	Pass
39	2441	4.29	30.00	Pass
78	2480	4.81	30.00	Pass

3DH5 2402MHz

3DH5 2441MHz

3DH5 2480MHz

V1.0 Page 31 of 106 Report No.: CTL1306281042-WB

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel

RBW \ge 1% of the 20dB bandwidth, VBW \ge RBW, Sweep = auto, Detector function = peak, Trace = max hold The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize.

Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

00

z)

Product	:	Tablet PC	
Test Item	:	Occupied Bandwidth	
Test Site	:	TR-8	
Test Mode	:	Mode 1: Transmitter-1Mbps(GFSK_DH5)	

Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	99% Bandwidth (kHz)
00	2402	931.3	850.2
39	2441	928.9	854.8
78	2480	927.3	852.9

Channel 39 (2441MHz)

Channel 78 (2480MHz)

Product	:	Tablet PC	
Test Item		Occupied Bandwidth	
Test Site	:	TR-8	
Test Mode	:	Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5)	

Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	99% Bandwidth (kHz)
00	2402	1226.0	1148.7
39	2441	1239.0	1149.4
78	2480	1222.0	1147.8

Channel 39 (2441MHz)

Channel 78 (2480MHz)

Product	•	Tablet PC	
Test Item	• •	Occupied Bandwidth	
Test Site	•••	TR-8	
Test Mode	:	Mode 3: Transmitter-3Mbps(8DPSK_DH5)	

Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	99% Bandwidth (kHz)
00	2402	1255.0	1144.9
39	2441	1256.0	1151.7
78	2480	1256.0	1164.3

Channel 39 (2441MHz)

Channel 78 (2480MHz)

V1.0 Page 38 of 106 Report No.: CTL1306281042-WB

4.5. Band Edge

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST PROCEDURE

According to ANSI C63.10: 2009.

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation.

RBW ≥ 1% of the span

VBW ≧ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

TEST RESULTS

Conducted Test:

2DH5 Mode

Hopping Mode

Radiated Test:

te: A	C5	Toms									1	Time:	2013/	07/22	2 - 10:	49						
mit: F	-CC	_Part	15.20	9_RE	(3m)						N	∕largi	า: 0									
robe:	BBI	HA912	20D-7	37(1-	18GH	z)							ty: Ho									
		et PC									F	Powe	: DC	3.7V								
		e1: Tr	ansm	it at c	nanne	1 2402	2MHz	by D	H5													
	120					1	1	-					T	1	- 1	- 17	- A		- 17	A		-
																						2
																						1
3	80					-	-	_	_				-						-	_		
αVΔ	-					+	-	_	_	_			_	-	_		_			-	_	4
(g)	70						+	-					-	+								
Level(dBuV/m)																						3
H	60																		1			
	50	AL HALL HALL	nalid repaid	hydronopus	Nation (Major	-	Hauminield	-	anne de la compete	Aprillinger	nide manufel	-	الداري البريدان	wantelen.	April Control	terfe particular	and the same and the	diportered	-	physically an	Margaret	
	70																					
	40																					
	30																					
	20																					
	231	.0 231	.5 23	320 2	325 2	330 2	2335	2340	2345	235		55 2 mency(M		2365	2370	2375	2380	2385	2390	2395	2400	240

Engin	eer: To	ms																		
Site: A	AC5									Tin	ne:201	3/07/2	2 - 10	:56						
Limit:	FCC_F	Part15.	209_R	E(3n	n)					Ма	rgin: ()								
Probe	: BBHA	19120	D-737(1-180	GHz)					Pol	arity:	Horizor	ntal							
EUT:	Tablet	: PC								Po	wer: D	C 3.7V	'							
Note:		: Tran	smit at	char	nnel 24	102MH	z by	DH5												
3uV/m)	80																			2
Level(dBuV/m)	60																			
	40	1 0															1		1	
	30																			
	2310	2315	2320	2325	2330	2335	2340	2345		2355 Frequenc	2360 y(MHz)	2365	2370	2375	2380	2385	2390	2395	2400	2404
No	Mark		quency MHz)			ure Leve BuV/m)	el		ng Level BuV)		Over L (dE	3)		Limit dBuV/m	1)		ctor B)		Туре	;
1			2390.		Ca	38.7		20	11.03		1	-15.267			.000		27.68			ΑV
2	*		2401.	.885	22	82.0)21		54.29	92	10%	N/A		70	N/A	1	27.72	29		ΑV

12	30	-1 1				, ,			- 1			N	T 17	- 1	- 17
g 8	30														\dashv
Level(dBuV/m)	10	_	_	_				_	_		_	_		_	
를 '	70														1
e e	50														
													1		1
5	50 - selection from Application		my manusches		white william	mande	and the state of t	highlandson serve	annich de parade	March of the last	Marian Compa	-	Historian haddigen a	ومادي المديد والمادة	and a
4	10														
92	80														7
8.5	20														
	2310 2315	2320 232	25 2330	2335	2340 23	45 23	50 235	5 2360	2365	2370	2375	2380 23	385 2390	2395	2400

Engin	eer:	Ton	าร																				
Site: /	AC5											Т	īme	:2013	3/07/2	2 - 10	:59						
Limit:	FCC	C_Pa	art15.	209_l	RE(3)	n)						N	Лarg	in: 0									
Probe	: BE	BHAS	1200)-737	(1-18	GHz)					F	Polar	ity: V	'ertical								
EUT:	Tab	let F	C									F	owe	er: D0	3.7V	'							
Note:	Mod	de1:	Trans	smit a	t cha	nnel	240	2MH	z by I	DH5													
	120		-	- 11	- 11										- 1	- 10		- 1			N	- 1/	-
_	. 80																						2
Level(dBuV/m)																						1	řτ
Pag	70																						1
vel(c																							
ڎ	60																						
					_				_	_			_	_		_			_	_	_		-
	50																					-	1
	40																			1			
	40		-		- 17		~~~													*			
	30																						
	20																						
	23	310	2315	2320	2325	23	30	2335	2340	2345	2350			2360	2365	2370	2375	2380	2385	2390	2395	2400	2404
18													tency(l										
No	Mar	k		quenc MHz)	y /		asur dBu\	e Leve V/m)	el	Readir (dl	ng Leve BuV)	el	0	ver Li (dB)		(Limit dBuV/m	1)		ctor B)		Туре)
1				2390	0.000	0		38.6	588	1	11.	006	100	4	15.312	A	54	1.000	,	27.68	32		ΑV
2		*		2401	.885	7	f. ,	76.3	395	3/1	48.	666	1	10	N/A		70	N/A	i i	27.72	.9		ΑV

Engineer: Toms	
Site: AC5	Time:2013/07/22 - 11:00
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D-737(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: DC 3.7V
Note: Mode1: Transmit at channel 2480MHz by DI	H5

No	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	*	2479.979	96.645	68.601	N/A	N/A	28.044	PK
2		2483.500	53.171	25.114	-20.829	74.000	28.057	PK

ΑV

Engineer: Toms	
Site: AC5	Time:2013/07/22 - 11:04
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D-737(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: DC 3.7V
Note: Mode1: Transmit at channel 2480MH	by DH5
120	
1	
₹ 80	
AB 70	
P /	
Tevel(dBuVm)	
1 00	
50	
2	
40	
30	
20	
2477 2478 2479 2480 2481 2482 2483	
	Frequency(MHz)
Mark Frequency Measure Leve	Reading Level Over Limit Limit Factor Type

Site: AC5		Time:2013/07/22 - 11:04									
imit: FCC_Part15.209_RE(3m)	Margin: 0									
Probe: BBHA9120D-737(1-1		Polarity: Vertical									
UT: Tablet PC		Power: DC 3.7V									
Note: Mode1: Transmit at ch	annel 2480MHz by DH5										
120 (w/Ang p) 30 (w/Ang p) 30	2										

No	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	*	2480.013		65.789	N/A	N/A	28.044	PK
2		2483.500	52.417	24.360	-21.583	74.000	28.057	PK
			enzhen CTLERO	tromagn	etic Tech	1,000 VEO.,L		

Frequency(MHz)

30 20

ngineer: Toms te: AC5	Time:2013/07/22 - 11:07
mit: FCC_Part15.209_RE(3m)	Margin: 0
robe: BBHA9120D-737(1-18GHz)	Polarity: Vertical
UT: Tablet PC	Power: DC 3.7V
ote: Mode1: Transmit at channel 2480MHz by D	DH5
120	
1	
€ 80	
(tw/Angg)/ang	
3 60 /	

No	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	*	2480.013	78.859	50.815	N/A	N/A	28.044	AV
2		2483.500	39.720	11.663	-14.280	54.000	28.057	AV
			enzhen CTILLIEC	tromagn	etic Tech	770/09V Co.,1		

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 Frequency(MHz)

Engineer: Toms		
Site: AC5	Time:2013/07/22 - 11:16	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D-737(1-18GHz)	Polarity: Horizontal	
EUT: Tablet PC	Power: DC 3.7V	

	120	1	nit at c										T				AI		- 10	М	- 1//	-
																						2
3	80																					ů L
ıΥ'n																					1	1
(gB)	70																				-	1
Level(dBuV/m)																						
À	60																					
	50																					
																			1			
	40								1										Į.			
																			Î			
	30																					
	20 2310 2	315 2	320 2	325	2330	2335	2340	0 2	345	2350	235.	5 2	360	2365	2370	2375	2380	2385	2390	2395	2400	2.
	2010 2.	J1J 2	J20 Z	040	2550	2000	2540	0 2.	745		Freque			2505	2510	2010	2500	2000	2330	2333	2400	۷.

Engin	eer: To	ms																			
Site: A											Time	e:201	3/07/2	2 - 11	:19						
Limit:	FCC_F	Part15.	209_R	E(3m	n)							gin: 0									
Probe	: BBH/	19120	D-737(1	1-180	GHz)								/ertica								
EUT:	Tablet	PC									Pow	er: D	C 3.7V	'							
Note:	Mode2	: Tran	smit at	chan	nel 24	102MH	lz by	2DH	5												
	120	- 1/	- 11	7												- 4		- 17		- 1/	- 4
																					2
																				7	*
3	80	_									-										1
αVΔ	<u> </u>	_		_	_		_					_	_		_						+
IdB	70																				1
Level(dBuV/m)	60																				Ц
	1					والمعالمة والمارية	ad days as discount	media di	Acceptable and			ر در الله	مرادات المالية	والماري والمسا		والمعارض المعارض		<u> </u>	u, luna sau	uu l	
	50		A CONTRACTOR OF THE PARTY OF TH	and man and	Mandada -0	Consideration of the	ALL MARKS	740			A. S.	(Chambida)	A strategies day	and a second	- Andrew	-11-11-11-11-11	The state of the state of	110000000000000000000000000000000000000			
	40																				
	30																				
	30																				
	20	0015	0000	0005	0000	0005	004			FO 6		0050	0005	0.000	0000	0000	0005	0000	0005	0400	0404
	2310	2315	2320	2325	2330	2335	234	0 234	15 23		2355 quency	2360 (MHz)	2365	2370	2375	2380	2385	2390	2395	2400	2404
No	Mark		quency MHz)	1		ure Lev BuV/m)	el	Read	ling Le	vel	(Over L (dB			Limit dBuV/r	n)		ctor (B)		Туре	
1			2390.	000	Co		362	1		3.680			-22.638		_	4.000	(0	27.68	32		PK
2	*		2402.		40		723	100		9.993	1	10	N/A	_	-77	N/A		27.73			PK

27.682

27.729

Engine Site: A		oms												ŀ	Time	.201	3/07/	22 - 1	1.21							
_imit: F		Part	15.2	209	RE(3m)										gin: 0			1.21							
Probe:																	/ertic	al								
EUT: T																	C 3.7									
Note: N	Mode	2: T	rans	mit a	at ch	ann	el 2	402	MHz	by	2DI	1 5														
	120 —																									
Level(dBuV/m)	80																								Ī	2_
Lev	60 50																								1	1
	40						••••		-								+			-			1	-		
	30																									
	20	0 23	815	2320	23	25	2330) 2	335	2340) 2	345	2350		355 uency	2360 (MHz)	2365	2370	237	5 23	80	2385	2390	2395	2400	2404
No	Mark			uenc (Hz)	у	9		sure BuV	Leve m)	Y	Rea	ading (dB)	J Lev			ver L (dB		3	Lim (dBuV				ctor (B)		Тур	9

Engineer: Toms		
Site: AC5	Time:2013/07/22 - 11:22	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D-737(1-18GHz)	Polarity: Horizontal	
EUT: Tablet PC	Power: DC 3.7V	

Note: Mode2: Transmit at channel 2480MHz by 2DH5

120

40

50

40

20

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

Frequency(MHz)

No	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	*	2480.013	96.039	67.995	N/A	N/A	28.044	PK
2		2483.500	56.275	28.218	-17.725	74.000	28.057	PK

30 20

Engineer: Toms	
Site: AC5	Time:2013/07/22 - 11:27
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D-737(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: DC 3.7V
Note: Mode2: Transmit at channel 2480MHz by 2	DH5
120	
3 80 1	
(w _A n _B O) 70	
g 70	
- Negli	
3 60	
50	
40	

No	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	*	2479.979	75.545	47.501	N/A	N/A	28.044	AV
2		2483.500	39.950	11.893	-14.050	54.000	28.057	AV
			enzhen CTILLIEC	tromagn	etic Tec	770000 CO.,1		

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 Frequency(MHz)

28.044 28.057 PK PK

Engineer: Toms	
Site: AC5	Time:2013/07/22 - 11:27
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D-737(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: DC 3.7V
Note: Mode2: Transmit at channel 2480MHz by 2DH5	•
120 100 100 100 100 100 100 100	37 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
211. 2.10 2410 2400 2401 2402 2400 2400 2400	Frequency(MHz)
No Mark Frequency Measure Level Reading Leve (MHz) (dBuV/m) (dBuV)	el Over Limit Limit Factor Type (dB) (dBuV/m) (dB)

Engineer: Toms		
Site: AC5	Time:2013/07/22 - 11:30	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D-737(1-18GHz)	Polarity: Vertical	
EUT: Tablet PC	Power: DC 3.7V	

lote: Mode2: Transmit at channel 2480MHz by 2DH5
120
ĝ 80
À
(W _A An _Q) 70 (W _A A
\$ 60 / L
50
40
30
20
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
Frequency(MHz)

No	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	*	2480.048	78.440	50.396	N/A	N/A	28.044	AV
2		2483.500	40.402	12.345	-13.598	54.000	28.057	AV
			enzhen CTLTIec	tromagn	etic Tech	1,00/09V Co.,L		

Engine	eer:	Tom																					
Site: A												-	Time	:201	3/07/2	2 - 11	:31						
Limit:	FCC	_Pa	rt15.	209_	RE(3	m)								gin: 0									
Probe							<u>'</u>)								lorizor	ntal							
EUT:	Tab	let P	С										Pow	er: D0	C 3.7V	1							
Note:	Mod	le3: 1	rans	mit a	it cha	nnel	240	2MH	z by :	3DH5													
	120				7/								10					- 4		- 1	- N	- 1/-	- 4
																							2
																						7	*
																							1
9	. 80																						
Level(dBuV/m)																							Ц
ą	70																						
vel(1	1
دٌ	60																			1			
		والمادات		للبة المراجعة		ير جاره براي	بالماسية			A SALES AND A SALES	er de Bresse	المالية والمحاد	de Broad-land	A market had be	المستعامه		والماحة المالية	بماسيم	Han Hotel Lie	Lawrence	المرابعة أبطرتها	Market V	
	50		100		and day (look)							THE OWNER OF							10-10-1010				
	40																						
	70																						
	30																						
	20																						
	23:	10 2	315	2320	232	5 23	330	2335	2340	2345	2350		355	2360	2365	2370	2375	2380	2385	2390	2395	2400	2404
							,,,	,		L /			uency	3 3		1 10-		-					
No	Marl	k		quenc MHz)	y			e Leve V/m)	el	Readii (dl	ng Lev BuV)	el		ver Li (dB)		(Limit dBuV/m	1)		ctor IB)		Туре)
1			,		0.000		ra _k	52.0	000	20		318	1	()	-22.000			1.000	,	27.68	32		PF
2		*		2402	2.026	7	J	92.9	955	SYN	65.	225	1	1/2	N/A		10	N/A	1	27.73	30		PF

Penzhen Chillips Chromagnetic Technology

120	1										T T	
_ 80												
Level(dBuV/m) 20 00 00 00 00 00 00 00 00 00 00 00 00 0	1											
svel(
പ് 60												- 1
50												
											1	
40	l										*	
22												
30	1											
20												
		20 2325	2330 2	335 2340	2345	2350 2	355 2360	2365 2	2370 2375	2380 2385	2390 239	95 2400

Engin	eer:	Tom	ns																				
Site: A													Tim	e:201	3/07/2	2 - 11	:36						
Limit:	FCC	_Pa	rt15.	209_	RE(3	3m)							Margin: 0										
Probe	: BB	HA9	120[)-737	7(1-1	8GH	lz)						Polarity: Vertical										
EUT:	Tab	let F	С										Pov	ver: D	C 3.7\	/							
Note:	Mod	le3: ˈ	Trans	smit a	at ch	anne	el 24	02MF	lz by	3DH5													
	120				- 7								-	- 1	- 1	- 10		- A	- 13		-	- 17	-
																							2
																						7	łt.
_	. 80																					- 1	
Level(dBuV/m)																						I	
Ē.	70										1												
el(d																							
Ę.	60												-							-		-	
		. The same				4.519.00							*****				and the same of the						
	50	aller and places	A STATE OF THE PERSON NAMED IN	transfer to the	Mark Control of the C	-	AND PARTY OF THE	har-afferder son head of	-problem		Paristan estimate	-u), ghadag	hat the state of	Andria Carrie	-		Adamatic Albahama	françail at pool 10 cm	Antigerical profession	ecal reported to the second	aparati de apar	re, a Las	-
	40																						
	30																						
	20																						
	20																						
	23:	10	2315	2320	232	25	2330	2335	2340	2345	5 235	50 :	2355	2360	2365	2370	2375	2380	2385	2390	2395	2400	2404
												Fre	quency	y(MHz)									
No	Marl	k		queno MHz)	су	N		re Lev uV/m)	el	Readi	ng Le BuV)	vel		Over L (dE		7	Limit dBuV/r			ctor IB)		Туре	9
1					0.000)	(ub		903	(u		1.221			-22.09			4.000	(0	27.68	22		Pŀ
2		*			1.885		0		952).223	The same	1	-22.09 N/A		-7	N/A	1	27.72			Pr Pk
2		4.		240	1.000)		8/.	932	- 10)O	1.223		1 1/4 1	IN/F	1	100	IN/A		21.12	49		PI

enzhen de la comagnetic Technologia de la comagnetic Technologia de la comagnetic de la com

Engine Site: A			110								Tir	ne:20	13/07/	22 - 1 ⁻	1:39						
Limit:	FC	C_P	art15	209_1	RE(3r	n)					Margin: 0										
Probe:											Polarity: Vertical										
EUT:	Ta	blet	PC								Po	wer: [OC 3.7	V							
Note: I	Мс	ode3:	Tran	smit a	t cha	nnel 2	402M	dz by 3	BDH5												
	120	.0	-	-			- 1		- T	-1		- 1	-	- 1		- 1			-1	- 17	_
Ē	. 81	0																			2
Level(dBuV/m)	71	0																		1	ħ.
el(d)	"	۰																			1
Le V	61	0																			1
	51	0																			1
	41	0																1			
	41	0			-													*			
	31	0																			
	20	0 2310	2315	2320	0205	022	2335	0240	2345	2350	2355	2360	2365	2370	2375	0200	0205	2390	0205	2400	0404
	2	2310	2315	2320	2325	2330	3 2335	2340	2345			2360 (cy(MHz)		2370	2315	2380	2385	2390	2395	2400	2404
No	Ma	ark	Fre	quenc	v A	Mea	sure Le	/el	Readin			Over		130	Limit	- 70	Fa	ctor		Туре	<u>,</u>
				(MHz)			BuV/m)	7	(dB	uV)		(dl			(dBuV/r	n)		dB)		. , pc	-
1					0.000	50	38	.749	20	11.0	57		-15.25		•	4.000	<u>.</u>	27.68	2		Α
2		*		240	1.885	2	74	.519	10	46.79	90	10%	N/	Ά	10	N/A	1	27.72	9		Α

enzhen Carta de Chino Chromagnetic Technologia

PK PK

ita: ACE	Time:2013/07/22 - 11:40
ite: AC5 imit: FCC_Part15.209_RE(3m)	Margin: 0
robe: BBHA9120D-737(1-18GHz)	Polarity: Horizontal
UT: Tablet PC	Power: DC 3.7V
ote: Mode3: Transmit at channel 2480M	
120	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
30	
20	

28.044

28.057

Time:2013/07/22 - 11:43								
Margin: 0								
Polarity: Horizontal								
Power: DC 3.7V								
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 250								
Frequency(MHz)								

Engineer: Toms		
Site: AC5	Time:2013/07/22 - 11:44	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA9120D-737(1-18GHz)	Polarity: Vertical	
EUT: Tablet PC	Power: DC 3.7V	

Note: Mode3: Transmit at channel 2480MHz by 3DH5

120

2

40

30

2

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

Frequency(MHz)

No	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре
1	*	2480.013	93.559	65.515	N/A	N/A	28.044	PK
2		2483.500	55.593	27.536	-18.407	74.000	28.057	PK

Engineer Tomo																	
Engineer: Toms Site: AC5						Time	2013/0	7/22	<u>- 11·⊿</u>	LR							
Limit: FCC_Part1	5.209 RE(3r	n)				Time:2013/07/22 - 11:48 Margin: 0											
Probe: BBHA9120						Polarity: Vertical											
EUT: Tablet PC	32 . 6. (· ·-/					r: DC 3										
Note: Mode3: Tra	nsmit at char	nnel 2480l	MHz by	3DH5													
120				77	1 1		1		-		- 1/-						-
Level(dBuVm) 09 0.0																	
50			2														
40			-+														_
20																	
30 20																	
2477 2478	2479 2480 248	81 2482 24	83 2484	2485 2	486 2487 F	2488 24 requency(1	89 2490 MHz)	2491	2492	2493	2494	2495	2496	2497	2498	2499	2500
No Mark Fi	requency (MHz)	Measure I (dBuV/		Readi (d	ng Level BuV)	_	ver Limit (dB)	3		_imit BuV/m)	1	ı	actor			Туре)
1 *	2479.979		76.555		48.51	1		N/A	A		N/A			8.044			A۱
2	2483.500	27	40.085	130	12.02	8	-13	.915		54.	000	1	23	8.057			A۱

V1.0 Page 69 of 106 Report No.: CTL1306281042-WB

4.6. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Product	Tablet PC
Test Item	Carrier Frequency Separation
Test Mode	Mode 1: Transmitter-1Mbps (GFSK_DH5)

Channel No.	Frequency	Carrier Frequency Separation	Limit	Result
	(MHz)	(kHz)	(kHz)	
00	2402	1000	>25 kHz or	Pass
00	2402	1000	2/3 of 20 dB BW	
30	2444	1000	>25 kHz or	Pass
39	2441	1000	2/3 of 20 dB BW	
78	2480	1000	>25 kHz or	Pass
10	2400	1000	2/3 of 20 dB BW	

Channel 00 (2402MHz)

Channel 39 (2441MHz)

Channel 78 (2480MHz)

Product	Tablet PC
Test Item	Carrier Frequency Separation
Test Mode	Mode 2: Transmitter-2Mbps (Pi/4 DQPSK_DH5)

Channel No.	Frequency	Carrier Frequency Separation	Limit	Result
	(MHz)	(kHz)	(kHz)	
00	0.400	4000	>25 kHz or	Pass
00	2402	1000	2/3 of 20 dB BW	
00	0444	4000	>25 kHz or	Pass
39	2441	1000	2/3 of 20 dB BW	
70	0.400	4000	>25 kHz or	Pass
78	2480	1000	2/3 of 20 dB BW	

Product	Tablet PC
Test Item	Carrier Frequency Separation
Test Mode	Mode 3: Transmitter-3Mbps (8DPSK_DH5)

Channel No.	Frequency	Carrier Frequency Separation	Limit	Result
	(MHz)	(kHz)	(kHz)	
00	0.400	4000	>25 kHz or	Pass
00	2402	1000	2/3 of 20 dB BW	
00	0444	4000	>25 kHz or	Pass
39	2441	1000	2/3 of 20 dB BW	
70	0.400	4000	>25 kHz or	Pass
78	2480	1000	2/3 of 20 dB BW	

V1.0 Page 76 of 106 Report No.: CTL1306281042-WB

4.7. Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW \geq 1% of the span

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. It may prove necessary to bread the span up to sections, in order to clearly show all of the hopping frequencies.

LIMIT

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

TEST RESULTS

Product	Tablet PC
Test Item	Number of Hopping Frequencies
Test Mode	Mode 1: Transmitter-1Mbps (GFSK_DH5)

Frequency Band	Number of Hopping Frequencies	Limit	Result
(MHz)			
2400 - 2483.5	79 Magnett	>15	Pass

2402 - 2421 MHz

2442 - 2461 MHz

2462 - 2480 MHz

Product	Tablet PC
Test Item	Number of Hopping Frequencies
Test Mode	Mode 2: Transmitter-2Mbps (Pi/4 DQPSK_DH5)

Frequency Band	Number of Hopping Frequencies	Limit	Result
(MHz)			
2400 - 2483.5	79	>15	Pass

2402 - 2421 MHz

2422 - 2441 MHz

2442 - 2461 MHz

2462 - 2480 MHz

Product	Tablet PC
Test Item	Number of Hopping Frequencies
Test Mode	Mode 3: Transmitter-3Mbps (8DPSK_DH5)

Frequency Band	Number of Hopping Frequencies	Limit	Result
(MHz)			
2400 - 2483.5	79	>15	Pass

2402 - 2421 MHz

Tromagnetic

2422 - 2441 MHz

2442 - 2461 MHz

2462 - 2480 MHz

V1.0 Page 85 of 106 Report No.: CTL1306281042-WB

4.8. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW = 1MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

Product	Tablet PC
Test Item	Time of Occupancy (Dwell Time)
Test Mode	Transmitter-3Mbps (8DPSK_DH1)
	ectromagnetic Tech

Char	nnel No.	Frequency	Time of Occupancy	Limit	Result
		(MHz)	(ms)	(ms)	
	39	2441	128.0	< 400	Pass

DH1: Dwell time=Pulse time (0.4 ms) \times (1600 \div 2 \div 79) \times 31.6 Second

Channel 39 (2441MHz)-(3DH1)

Product	Tablet PC
Test Item	Time of Occupancy (Dwell Time)
Test Mode	Transmitter-3Mbps (8DPSK_DH3)

Channel No.	Frequency	Time of Occupancy	Limit	Result
	(MHz)	(ms)	(ms)	
39	2441	264.0	< 400	Pass

DH3: Dwell time=Pulse time (1.65 ms) \times (1600 \div 4 \div 79) \times 31.6 Second

Product	Tablet PC
Test Item	Time of Occupancy (Dwell Time)
Test Mode	Transmitter-3Mbps (8DPSK_DH5)

Channel No.	. Frequency Time of Occupancy		Limit	Result
	(MHz)	(ms)	(ms)	
39	2441	327.0	< 400	Pass

DH5: Dwell time=Pulse time (2.917 ms) \times (1600 \div 6 \div 79) \times 31.6 Second

V1.0 Page 89 of 106 Report No.: CTL1306281042-WB

4.9. Spurious RF Conducted Emissions

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10: 2009.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100KHz, VBW ≥ RBW, Sweep =auto, Detector function = peak, Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this section.

LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) of FCC part 15 is not required.

TEST RESULT

Product	Tablet PC
Test Item	Spurious RF Conducted Emissions
Test Mode	Mode 1: Transmitter-1Mbps (GFSK_DH5)

Channel 00 (2402MHz)

Product	Tablet PC
Test Item	Spurious RF Conducted Emissions
Test Mode	Mode 2: Transmitter-2Mbps (Pi/4 DQPSK_DH5)

Channel 00 (2402MHz)

Product	Tablet PC
Test Item	Spurious RF Conducted Emissions
Test Mode	Mode 3: Transmitter-3Mbps (8DPSK_DH5)

Channel 00 (2402MHz)

V1.0 Page 96 of 106 Report No.: CTL1306281042-WB

4.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a internal Antenna, The directional gains of antenna used for transmitting is -2 dBi.

V1.0 Page 97 of 106 Report No.: CTL1306281042-WB

4.11. RF Exposure

STANDARD APPLICABLE

According to § 1.1307 (b)(1), system operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a device with bluetooth function.

LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)
(A) Limits for Occ	cupational/ Contr	ol Exposures		
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for Ge	neral Population/	Uncontrolled Exp	osures	
300-1500			F/1500	6
1500-100,000			1	30

F= Frequency in MHz

MEASUREMENT RESULTS

Per KDB 447498 D01 V05

This is a bluetooth function and the Max peak output power is 4.81dBm (3.03 mW) lower than low threshold 10 mW in general population category.

The SAR measurement is not necessary.

V1.0 Page 98 of 106 Report No.: CTL1306281042-WB

5. Test Setup Photos of the EUT

6. External and Internal Photos of the EUT

External Photos of EUT

Internal Photos of EUT

.....End of Report.....