Reinforcement learning

Dr. Aissa Boulmerka

The National School of Artificial Intelligence aissa.boulmerka@ensia.edu.dz

2024-2025

Chapter 2 Multi-armed Bandits

Outline

- Introduction
- k-armed Bandit Problem
- Estimating Action-Values
- Incremental Implementation
- Exploration and Exploitation Trade-off
- Summary

Introduction

- In reinforcement learning, the agent generates its own training data by interacting with the world.
- The agent must learn the consequences of his own actions through trial and error, rather than being told the correct action.
- In this chapter, we will study this evaluative aspect of reinforcement learning.
 We will focus on the problem of decision-making in a simplified setting called bandits.

K-armed bandit problem

k-armed Bandit Problem

- In the k-armed bandit problem, we have a decision-maker or agent, who chooses between "k" different options or actions, and receives a numerical reward chosen from a stationary probability distribution based on the action it selects.
- The objective is to maximize the expected total reward over some time period, for example, over 1000 action selections, or time steps.

k-armed Bandit Problem

- Imagine the next problem where the doctor has to give medicine to a patient and based on which one he choose, he will receive a reward (cure the patient).
- For the doctor to decide which action is best, we must define the value of taking each action. We call these values the action values or the action value function.

Action-Values

- We call these values the Action-Values or the action value function. The value is the expected reward.
- We denote the action selected on time step t as A_t , and the corresponding reward as R_t .

$$q_*(a) \doteq \mathbb{E}[R_t \mid A_t = a] \quad \forall a \in \{1, \dots, k\}$$
$$= \sum_r p(r|a)r$$

- The value of an arbitrary action a, denoted $q_*(a)$, is the **expected reward** given that a is selected:
- The goal is to maximize the expected reward

$$\underset{a}{\operatorname{argmax}} q_*(a)$$

Calculating $q_*(a)$

Some applications of K-armed bandit problem

- Online advertising
- 2. Clinical trials
- 3. Recommendation systems
- 4. Portfolio optimization in finance
- 5. Dynamic pricing in e-commerce
- 6. Traffic routing and navigation
- 7. Fraud detection

Estimating Action-Values

Sample-Average Method

- The sample-average method is a method for estimating the action values. We will use this method to compute the value of each treatment in our medical trial example.
- The **value** of selecting an **action** q^* is the expected reward received after that action has been taken.

$$q_*(a) \doteq \mathbb{E}[R_t \mid A_t = a]$$

- q^* is not known to the agent, just like the doctor doesn't know the effectiveness of each treatment.
- Instead, we will need to find a way to estimate it.

Sample-Average Method

• One way to **estimate** q^* is to compute a **sample-average**.

$$Q_t(a) \doteq \frac{\text{sum of rewards when a taken prior to t}}{\text{number of times a taken prior to t}}$$
$$= \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_3({\bf P}) = {\bf 0.5}$$

$$Q_3(\overline{2}) = 1.0$$

$$Q_3({\bf 1}) = {\bf 0.0}$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_7(\overline{\Theta}) = \mathbf{0.5}$$

$$Q_7(\frac{1}{10}) = 0.5$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_9(\overline{2}) = 0.66$$
 $Q_9(\overline{3}) = 0.66$

$$Q_9(\frac{1}{10}) = 0.66$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_{10}(\frac{1}{2}) = 0.33$$

$$Q_{10}(\overline{2}) = 0.33$$
 $Q_{10}(\overline{2}) = 0.66$ $Q_{10}(\overline{2}) = 0.5$

$$Q_{10}(\frac{1}{10}) = 0.5$$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_{11}(\overline{P}) = \mathbf{0.25}$$
 $Q_{11}(\overline{P}) = \mathbf{0.66}$ $Q_{11}(\overline{P}) = \mathbf{0.5}$

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i}{(t-1)}$$

$$Q_{12}(^{-}) = 0.25$$

$$Q_{12}(\overline{2}) = 0.25$$
 $Q_{12}(\overline{2}) = 0.75$ $Q_{12}(\overline{3}) = 0.5$

$$Q_{12}(\overline{\$}) = \mathbf{0.5}$$

Action Selection

- The simplest action selection rule is to select one of the actions with the highest estimated value.
- We call this method of choosing actions greedy. The greedy action is the action that currently has the largest estimated value.
- Selecting the greedy action means the agent is exploiting its current knowledge. It is trying to get the most reward it can right now.
- If there is more than one greedy action, then a selection is made among them in some arbitrary way, perhaps randomly.
- We write this greedy action selection method as:

$$A_t \doteq \mathop{argmax}_{a} Q_t(a)$$

Action Selection

$$A_t \doteq \mathop{argmax}_{a} Q_t(a)$$

ε -greedy action selection

- Greedy action selection maximizes immediate rewards, without exploring less promising options that might improve the solution.
- Instead of that, we can behave **greedily most of the time**, but every once with small probability epsilon (ε) , select randomly from **among all the actions** with equal probability, independently of the action-value estimates.
- We call methods using this near-greedy action selection rule ε -greedy methods.
- An advantage of these methods is that, in the limit as the number of steps increases, every action will be sampled an infinite number of times, thus ensuring that all the $Q_t(a)$ converges to $q_*(a)$.
- This of course implies that the probability of selecting the optimal action converges to greater than 1ε , that is, to near certainty.

ε -greedy action selection

• ε -greedy action:

$$A_t = \begin{cases} argmax \, Q_t(a) & with \, probability \, 1 - \varepsilon \\ randomly \, selected \, action & with \, probability \, \varepsilon \end{cases}$$

Exercise:

• In ε -greedy action selection, for the case of two actions and $\varepsilon=0.5$, what is the probability that the greedy action is selected?

Answer:

$$Action = \begin{cases} 50\% \text{ Exploit } -\text{Greedy} \\ 50\% \text{ Explore} \end{cases} \begin{cases} 50\% \text{ Greedy} \\ 50\% \text{ Explore} \end{cases} = \begin{cases} 75\% \text{ Greedy} \\ 25\% \text{ Explore} \end{cases}$$

Incremental Implementation

Incremental Implementation

- The action-value methods we have discussed so far all estimate action values as sample averages of observed rewards.
- How these averages can be computed in a computationally efficient manner with constant memory and constant per-time-step computation?
- Let R_i denote the **reward** received after the *i*th selection of one action.
- Let Q_n denote the **estimate** of its action value after it has been selected n-1 times, which can be written simply as

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$
.

Incremental update rule

$$Q_{n+1} \doteq \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} (R_{n} + (n-1)Q_{n})$$

$$= Q_{n} + \frac{1}{n} [R_{n} - Q_{n}]$$
Recall:
$$Q_{n} = \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i}$$

$$= \frac{1}{n} (R_{n} + (n-1)Q_{n})$$

• This implementation requires memory only for Q_n and n, and only the previous small computation for each new reward.

Incremental update rule

The general form is

 $NewEstimate \leftarrow OldEstimate + StepSize[Target - OldEstimate]$

$$Q_{n+1} = Q_n + \frac{1}{n} [R_n - Q_n]$$

- The expression [Target OldEstimate] is an **error** in the estimate. It is reduced by taking a step toward the Target.
- The **target** is presumed to indicate a desirable **direction** in which to move. In the case above, for example, the target is the *n*th reward.
- We denote the step-size parameter by $\alpha = \frac{1}{n}$ or, more generally, by $\alpha_n \to [0,1]$.

A simple Bandit algorithm

- Pseudo-code for a complete **bandit algorithm** using incrementally computed **sample averages** and ε -greedy action selection.
- The function bandit(a) is assumed to take an action and return a corresponding reward.

```
Initialize, for a=1 to k:
Q(a) \leftarrow 0
N(a) \leftarrow 0
Loop forever:
A \leftarrow \begin{cases} \arg\max_a Q(a) & \text{with probability } 1-\varepsilon \\ \text{a random action with probability } \varepsilon \end{cases}
R \leftarrow bandit(A)
N(A) \leftarrow N(A) + 1
Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]
```

Non-stationary Bandit Problem

- The averaging methods discussed so far are appropriate for stationary bandit problems, that is, for bandit problems in which the reward probabilities do not change over time.
- We often encounter reinforcement learning problems that are effectively nonstationary. In such cases it makes sense to give more weight to recent rewards than to long-past rewards.
- One of the most popular ways of doing this is to use a constant step-size parameter.
- For example, the incremental update rule for updating an average \mathcal{Q}_n of the n-1 past rewards is modified to be

$$Q_{n+1} = Q_n + \alpha_n [R_n - Q_n]$$

where the step-size parameter $\alpha_n \in (0, 1]$ is constant.

Non-stationary Bandit Problem

- This results in Q_{n+1} being a **weighted average** of past rewards and the initial estimate Q_1
- Proof:

$$Q_{n+1} = Q_n + \alpha [R_n - Q_n]$$

$$= \alpha R_n + (1 - \alpha) Q_n$$

$$= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 Q_{n-1}$$

$$= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 \alpha R_{n-2} + \dots + (1 - \alpha)^{n-1} \alpha R_1 + (1 - \alpha)^n Q_1$$

$$= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$$

Non-stationary Bandit Problem

$$Q_{n+1} = (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$$

- The updating equation can be written as the initial value of Q plus a weighted sum of the rewards over time.
- The first term tells us that the contribution of Q_1 decreases exponentially with time.
- The second term tells us that the rewards further back in time contribute exponentially less to the sum.
- The influence of our **initialization** of Q goes to zero with **more and more data**.
- The most recent rewards contribute most to our current estimate.

Exploration and exploitation trade-off

Exploration and Exploitation

- Exploration allows the agent to improve his knowledge about each action.
 Hopefully, leading to long-term benefit.
- By improving the accuracy of the estimated action values, the agent can make more informed decisions in the future.
- Exploitation on the other hand, exploits the agent's current estimated values. It chooses the greedy action to try to get the most reward.
- But by being greedy with respect to estimated values, may not get the most reward.
- How do we choose when to explore, and when to exploit?

Epsilon-Greedy Action Selection

Epsilon-Greedy Action Selection.

The 10-armed Testbed

- We take a set of **2000 randomly generated** k-armed bandit problems with k = 10.
- For each bandit problem, the action values, $q_*(a)$, $a=1,\cdots,10$ were selected according to a normal (Gaussian) distribution with mean 0 and variance 1
- The reward, R_t , was selected from a normal distribution with mean $q_*(A_t)$ and variance 1.

The 10-armed Testbed

Average performance of ε -greedy action-value methods on the 10-armed testbed. These data are averages over 2000 runs with different bandit problems. All methods used sample averages as their action-value estimates.

Optimistic Initial Values

- The methods above are dependent to some extent on the **initial action-value** estimates, $Q_1(a)$.
- For the sample-average methods $(\alpha_n(a) = 1/n)$, the bias disappears once all actions have been selected at least once.
- For methods with constant α , the bias is permanent.
- The downside of this bias is that the initial estimates become a set of parameters that must be picked by the user, if only to set them all to zero.
- The upside is that they provide an easy way to supply some prior knowledge about what level of rewards can be expected.
- Initial action values can also be used as a simple way to encourage exploration.

Optimistic Initial Values

Upper-Confidence-Bound (UCB) Action Selection

- ε -greedy action selection forces the **non-greedy actions to be tried**, but **indiscriminately**.
- It would be better to select among the non-greedy actions according to their potential for actually being optimal.
- One effective way of doing this is to select actions according to :

$$A_t \doteq \operatorname*{argmax}_{a} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

- $N_t(a)$ denotes the number of times that action a has been selected prior to time t.
- c > 0 controls the degree of exploration.
- Difficulty 1 : non-stationary problems.
- Difficulty 2 : large state spaces.

Upper-Confidence-Bound (UCB) Action Selection

Gradient Bandit Algorithms

- We define a **preference** $H_t(a)$ for each action a.
- The larger the preference, the more often that action is taken.
- We determine the action probabilities, according to the Softmax distribution:

$$Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{h=1}^k e^{H_t(b)}} \doteq \pi_t(a)$$

- A natural learning algorithm for Softmax action preferences based on the idea of stochastic gradient ascent:
- On each step, after selecting action A_t and receiving the reward R_t , the action preferences are updated :

$$H_{t+1}(A_t) = H_t(A_t) + \alpha (R_t - \bar{R}_t) (1 - \pi_t(A_t)),$$
 and $H_{t+1}(a) = H_t(a) + \alpha (R_t - \bar{R}_t) \pi_t(a),$ for all $a \neq A_t$

- α : step size parameter,
- \bar{R}_t : the average of the rewards up to but not including t (baseline).

Gradient Bandit Algorithms

Average performance of the gradient bandit algorithm with and without a reward baseline ($\bar{R}_t \neq 0$ or = 0) on the 10-armed testbed when the $q_*(a)$ are chosen to be near +4 rather than near zero.

Summary

Each point is the average reward obtained over 1000 steps with a particular algorithm at a particular setting of its parameter.

Thank you! Q/A