Estatística Descritiva III

Associação entre Variáveis Qualitativas

Análises de Correlação e Regressão

Associação entre variáveis qualitativas

Tabelas de Contigência

Podemos construir tabelas de <u>frequências</u> <u>conjuntas</u> (*tabelas de contingência*), relacionando duas variáveis qualitativas.

Exemplo 1: Dados do projeto *Caracterização Postural de Crianças de 7 e 8 anos das Escolas Municipais da Cidade de Amparo/SP*, *CEA06P24*.

- Estudo realizado pelo Depto de Fisioterapia, Fonoaudiologia e Terapia Ocupacional da Faculdade de Medicina da USP;
- •Ano de realização: 2006;
- •Finalidade: Mestrado;
- •Análise Estatística: Centro de Estatística Aplicada (CEA), IME-USP.

A) Há indícios de associação entre Lado da Escoliose e Tipo de Mochila?

Tipo de Mochila	Ausente	Direito	Esquerdo	Total
Carrinho	8	3′	7 35	80
Escapular	16	5 35	72	123
Lateral	2	2 10	0 11	23
Total	26	5 82	2 118	226

Qual é o significado dos valores desta tabela?

- Dados → Importar arquivos de dados →
 - → de conjunto de dados do Excel, Access ou dBase...

(Defina o nome do conjunto de dados: dados)

• Estatísticas → Tabelas de Contingência → Tabelas de dupla entrada

(Variável linha : *tipomochila* ; Variável coluna: *escollado*) – Saída editada do software R

Lado da Escoliose

Tipo de Mochila	Ausente	Direito	Esquerdo	Total
Carrinho	8	37	35	80
Escapular	16	35	72	123
Lateral	2	10	11	23
Total	26	82	118	226

Verificar associação através da:

- porcentagem segundo as colunas, ou
- porcentagem segundo as linhas.

	Lado	iose			
Tipo de Mochila	Ausente Direito		Esquerdo	Total	
Carrinho	10,0%	46,2%	43,8%	100,0%	
Escapular	13,0%	28,5%	58,5%	100,0%	
Lateral	8,7%	43,5%	47,8%	100,0%	
Total	11,5%	36,3%	52,2%	100,0%	

Como concluir? Será que o Tipo de Mochila utilizada influencia o Lado da Escoliose (caso tenha) de uma criança?

Comparando as porcentagens de cada uma das linhas, observamos uma pequena diferença com relação à porcentagem total. Aparentemente, há pouca influência do tipo de mochila utilizada no lado de ocorrência da escoliose.

- Dados → Importar arquivos de dados →
 - → de conjunto de dados do Excel, Access ou dBase...

(Defina o nome do conjunto de dados: dados)

• Estatísticas → Tabelas de Contingência → Tabelas de dupla entrada

(Variável linha: tipomochila; Variável coluna: escollado;

Marcar opção *Percentual nas linhas*) – Saída editada do software R Lado Escoliose

Tipo de Mochila	Ausente	Direito	Esquerdo	Total
Carrinho	10.0	46,2	43.8	100.0
Escapular	13.0	28.5	58.5	100.0
Lateral	8.7	43.5	47.8	100.0
Total	11.5	36.3	52.2	100.0

B) Será que existe relação entre o Sexo das crianças e o Tipo de Mochila utilizada por elas?

	Tipo de Mochila				
Sexo	Carrinho	Escapular	Lateral	Outro	Total
Masculino	53 (40,8)	59 (45,4)	16 (12,3)	2 (1,5)	130 (100,0)
Feminino	27 (27,0)	64 (64,0)	7 (7,0)	2 (2,0)	100 (100,0)
Total	80 (34,8)	123 (53,5)	23 (10,0)	4 (1,7)	230 (100,0)

Como concluir? Será que o Tipo de Mochila utilizada é influenciado pelo Sexo da criança?

Comparando as porcentagens de cada uma das linhas, observamos uma pequena diferença com relação à porcentagem total. Aparentemente, há pouca influência do sexo no tipo de mochila utilizada.

Associação entre variáveis quantitativas

Correlação e Regressão

Objetivo

Estudar a relação entre duas variáveis quantitativas.

Exemplos:

Idade e altura das crianças
Tempo de prática de esportes e ritmo cardíaco
Tempo de estudo e nota na prova
Taxa de desemprego e taxa de criminalidade
Expectativa de vida e taxa de analfabetismo

Investigaremos a presença ou ausência de relação linear sob dois pontos de vista:

- a) Quantificando a força dessa relação: correlação.
- b) Explicitando a forma dessa relação: <u>regressão</u>.

Representação gráfica de duas variáveis quantitativas: **Diagrama de Dispersão**

Exemplo 2: nota da prova e tempo de estudo

X: tempo de estudo (em horas)

Y: nota da prova

Pares de observações (X_i, Y_i) para cada estudante

Tempo(X)	Nota(Y)
3,0	4,5
7,0	6,5
2,0	3,7
1,5	4,0
12,0	9,3

Exemplo no R

O arquivo CEA05P11.xls contém dados sobre o projeto: "Avaliação de um trabalho de Ginástica Laboral implantado em algumas unidades da USP".

Consideremos as variáveis:

- Estado Geral de Saúde antes (EGS_a): é uma autoavaliação do funcionário a respeito do seu estado de saúde antes do início das atividades (quanto maior o índice, melhor o EGS);
- Vitalidade antes (Vit_a): avalia a influência do cansaço e fadiga nos trabalhos diários antes do início das atividades (quanto maior o índice, melhor);

No R

Gráfico de Dispersão

Coeficiente de correlação linear

É uma medida que avalia o quanto a "nuvem de pontos" no diagrama de dispersão aproxima-se de uma reta.

O coeficiente de correlação linear de Pearson é dado por:

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)S_X S_Y},$$

em que,

 \overline{X} e \overline{Y} são as médias de X e Y, respectiva mente; S_X e S_Y são os desvios padrão de X e Y, respectiva mente.

Fórmula alternativa:

$$r = \frac{\sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}}{(n-1)S_X S_Y}$$

$$S^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}}{(n-1)}$$

Voltando ao Exemplo 2:

Tempo (X)	Nota (Y)	(X - X)	(Y - Y)	$(X-\overline{X})(Y-\overline{Y})$
3,0	4,5	-2,1	-1,1	2,31
7,0	6,5	1,9	0,9	1,71
2,0	3,7	-3,1	-1,9	5,89
1,5	4,0	-3,6	-1,6	5,76
12,0	9,3	6,9	3,7	25,53
25,5	28,0	0	0	41,2

$$\bar{X} = 5,1$$
 $\bar{Y} = 5,6$

$$S_{X}^{2} = \frac{(-2,1)^{2} + ... + (6,9)^{2}}{4} = \frac{78,2}{4} = 19,55 \implies S_{X} = 4,42$$

$$S_y^2 = \frac{(-1,1)^2 + ... + (3,7)^2}{4} = \frac{21,9}{4} = 5,47 \implies S_y = 2,34$$

Então,

$$r = \frac{41,2}{4 \cdot 4,42 \cdot 2,34} = 0,9959$$

Criando arquivos no R

Criando arquivos no R

Digitar os dados na janela do editor e dar nomes às variáveis e fechar.

No R temos:

> cor(tempoxnota\$Tempo, tempoxnota\$Nota)

[1] 0.9960249

Em que tempoxnota\$Tempo é a variável Tempo do conjunto de dados denominado tempoxnota.

Ou ainda

• Estatísticas → Resumos → Matriz de Correlação (Selecione *Tempo* e *Nota* no conjunto de dados *tempoxnota*)

Nota Tempo

Nota 1.0000000 0.9960249

Tempo 0.9960249 1.0000000

Propriedade: $-1 \le r \le 1$

Casos particulares:

```
r = 1 \Rightarrow correlação linear positiva e perfeita;

r = -1 \Rightarrow correlação linear negativa e perfeita;

r = 0 \Rightarrow inexistência de correlação linear.
```

r = 1, correlação linear positiva e perfeita

r = -1, correlação linear negativa e perfeita

$r \cong 0$

r≃-1

Exemplo 3: criminalidade e analfabetismo

Considere as duas variáveis observadas em 50 estados norte-americanos.

Y: taxa de criminalidade

X: taxa de analfabetismo

Diagrama de Dispersão

Podemos notar que, conforme aumenta a taxa de analfabetismo (X), a taxa de criminalidade (Y) tende a aumentar. Nota-se também uma tendência linear.

Cálculo da correlação

 $Y=7,\!38\pmod Y$ (média de Y) e $S_Y=3,\!692$ (desvio padrão de Y) $\overset{-}{X}=1,\!17\pmod X$ (média de X) e $S_X=0,\!609$ (desvio padrão de X) $\Sigma X_i Y_i=509,\!12$

Correlação entre X e Y:

$$r = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{(n-1) S_{x} S_{y}}$$

$$r = \frac{509,12 - 50 \cdot 7,38 \cdot 1,17}{49 \cdot 3,692 \cdot 0,609} = \frac{77,39}{110,17} = 0,702$$

Exemplo 4: expectativa de vida e analfabetismo

Considere as duas variáveis observadas em 50 estados norte-americanos.

Y: expectativa de vida

X: taxa de analfabetismo

Diagrama de Dispersão

Podemos notar que, conforme aumenta a taxa de analfabetismo (X), a expectativa de vida (Y) tende a diminuir. Nota-se também uma tendência linear.

Cálculo da correlação

$$\overline{Y}=70,88$$
 (média de Y) e $S_Y=1,342$ (desvio padrão de Y) $\overline{X}=1,17$ (média de X) e $S_X=0,609$ (desvio padrão de X) $\Sigma X_i Y_i=4122,8$

Correlação entre X e Y:

$$r = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{(n-1) S_{x} S_{y}}$$

$$r = \frac{4122,8 - 50 \cdot 70,88 \cdot 1,17}{49 \cdot 1,342 \cdot 0,609} = \frac{-23,68}{40,047} = -0,59$$

Comentário:

• Na interpretação do coeficiente de correlação é importante visualizar o diagrama de dispersão.

Suponha o seguinte exemplo: 6 variáveis são medidas em 11 indivíduos

Id	X	Y 1	Y2	Y 3	X4	Y4
1	10	8,04	9,14	7,46	8	6,58
2	8	6,95	8,14	6,77	8	5,76
3	13	7,58	8,74	12,74	8	7,71
4	9	8,81	8,77	7,11	8	8,84
5	11	8,33	9,26	7,81	8	8,47
6	14	9,96	8,10	8,84	8	7,04
7	6	7,24	6,13	6,08	8	5,25
8	4	4,26	3,10	5,39	19 1	2,50
9	12	10,84	9,13	8,15	8	5,56
10	7	4,82	7,26	6,42	8	7,91
11	5	5,68	4,74	5,73	8	6,89

Correlação de Pearson entre X e Y1 = 0,816 Correlação de Pearson entre X e Y2 = 0,816 Correlação de Pearson entre X e Y3 = 0,816 Correlação de Pearson entre X e Y4 = 0,817

- ⇒ Mesmos valores de correlação.
- ⇒ Qual a forma esperada da dispersão
 conjunta destas variáveis?

ARQUIVO FA.MTW

Diagramas de Dispersão e Coeficientes de Correlação r=0.816

Dispersão esperada!

Pontos influentes!

Análise de Regressão

Diagramas de Dispersão

 ⇒ Explicar a forma da relação por meio de uma função matemática: Y = a + bX

Análise de Regressão

Reta ajustada:

$$\hat{Y} = a + bX$$

O que são a e b?

a: intercepto

b: inclinação ou coeficiente angular

Análise de Regressão

- •Iguais coeficientes angulares
- •Diferentes interceptos

- •Diferentes coeficientes angulares
- •Iguais interceptos

Reta ajustada:

$$\hat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}\mathbf{X}$$

Interpretação de b:

Para cada aumento de uma unidade em X, temos um aumento médio de b unidades em Y.

Reta ajustada (método de mínimos quadrados)

Reta ajustada (método de mínimos quadrados)

Os coeficientes a e b são calculados da seguinte maneira:

$$b = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{(n-1) S_{X}^{2}}$$

$$a = \overline{Y} - b \overline{X}$$

No Exemplo 3,

A reta ajustada é:

$$\hat{\mathbf{Y}} = 2,397 + 4,257 \, \mathbf{X}$$

Ŷ: valor predito para a taxa de criminalidade

X: taxa de analfabetismo

Interpretação de b:

Para um aumento de uma unidade na taxa do analfabetismo (X), a taxa de criminalidade (Y) aumenta, em média, 4,257 unidades.

Graficamente, temos

$$\hat{\mathbf{Y}} = 2,397 + 4,257 \, \mathbf{X}$$

Como desenhar a reta no gráfico?

No exemplo 4,

A <u>reta</u> <u>ajustada</u> é:

$$\hat{\mathbf{Y}} = 72,395 - 1,296 \, \mathbf{X}$$

Ŷ: valor predito para a expectativa de vida

X: taxa de analfabeti smo

Interpretação de b:

Para um aumento de uma unidade na taxa do analfabetismo (X), a expectativa de vida (Y) diminui, em média, 1,296 anos.

Graficamente, temos

$$\hat{Y} = 72,395 - 1,296 \text{ X}$$

Continuando com o arquivo CEA05P11

Saída

Coefficients:

Exemplo 5: consumo de cerveja e temperatura

Y: consumo de cerveja diário por mil habitantes, em litros.

X: temperatura máxima (em °C).

As variáveis foram observadas em nove localidades com as mesmas características demográficas e sócio-econômicas.

Dados:

Localidade	Temperatura	Consumo
	(X)	(Y)
1	16	290
2	31	374
3	38	393
4	39	425
5	37	406
6	36	370
7	36	365
8	22	320
9	10	269

Diagrama de Dispersão

A <u>correlação</u> entre X e Y é r = 0,962.

A reta ajustada é:

$$\hat{\mathbf{Y}} = 217,37 + 4,74 \, \mathbf{X}$$

Qual é a interpretação de b?

Aumentando-se um grau de temperatura (X), o consumo de cerveja (Y) aumenta, em média, 4,74 litros por mil habitantes.

Qual é o consumo previsto para uma temperatura de 25°C?

$$\hat{Y} = 217,37 + 4,74 (25) = 335,87$$
 litros