Schriftliche Abgabe bis <u>25.01.2021</u>

Aufgabe 1 (4 Punkte)

Ein stochastischer Prozess in Form eines "Random Walk", d.h.

$$\dot{x} = 0 + w(t).$$

wird von zwei verschiedenen Instrumenten implizit beobachtet. Das erste Instrument liefert Beobachtungen z, die mit dem Zustand x wie folgt zusammen hängen.

$$z = 0.5 \cdot x$$
.

Das zweite Instrument verwendet ein anderes Verfahren, wodurch sich folgender Zusammenhang zwischen Zustand x und Messung z einstellt

$$z = \cos(p) \cdot x$$
 mit $p = 1 + t/120$ (in rad).

Um den eindimensionalen Zustand x zu diskreten Zeitpunkten t_i bestmöglich schätzen zu können, wird ein Kalmanfilter verwendet. Stellen Sie die Unsicherheit, d.h. die Standardabweichung, des Zustandes x für t=1:200 mit $\Delta t=1$ in einem Plot da, wobei Sie annehmen, dass entweder nur Instrument 1 oder nur Instrument 2 zur Verfügung steht. Das heißt, Sie führen zweimal eine Filterung durch. Starten Sie jeweils mit P=100 als Varianz des Zustandes und verwenden Sie $\sigma^2_{Prozess}=4$ als Varianz des Prozessrauschens. Die Varianz der Beobachtungen (für jedes der Instrumente) ist mit $\sigma^2_r=1$ gegeben. Beginnen Sie mit dem Initialwert x=10. Wie lässt das seltsame Verhalten bei ca. t=70 für die Unsicherheit des Zustandes x unter Verwendung des zweiten Instruments erklären? Begründen Sie Ihre Antwort.

Aufgabe 2 (6 Punkte)

Bei GNSS-Messungen kann die Uhr (τ_{CLK}) und der zenith wet delay (τ_{ZWD}) mit gegebenen Elevationswinkel ε wie folgt geschätzt werden:

$$z = \tau_{CLK} + \frac{\tau_{ZWD}}{\sin(\varepsilon)}$$

In der Datei ue04_aufg2_KF.txt befinden sich die Beobachtungen z [m] mit zugehörigen Elevationswinkel ε [deg] für einen Messtag, wobei $\Delta t = 300$ s. Führen Sie eine Kalmanfilterung (vorwärts, rückwürts, sowie die Glättung/Kombination aus vorwärts+rückwärts) durch, indem Sie einen random walk für τ_{ZWD} [m] und einen integrated random walk für τ_{CLK} [m] annehmen, also

$$\frac{d\tau_{ZWD}}{dt} = 0 + w(t)$$

und

$$\frac{d^2\tau_{CLK}}{dt^2} = 0 + w(t)$$

gilt. Verwenden Sie als Startwert für die Varianzen des Zustandes jeweils 1.0 m² (Hinweis: Ihr Zustandsvektor enthält 3 Elemente). Die Varianz der Prädiktion (Prozessrauschen) für τ_{ZWD} ist gegeben mit $\sigma_{ZWD}^2 = 1 \cdot 10^{-8}$ m² und für τ_{CLK} mit $\sigma_{CLK}^2 = 1 \cdot 10^{-12}$ m². Die Varianz der Beobachtungen beträgt $\sigma_r^2 = 0.001$ m². Der Zustandsvektor kann in der ersten Epoche mit $\tau_{ZWD} = 0.15$ m, $\tau_{CLK} = 0$ m und $\frac{d\tau_{CLK}}{dt} = 0$ m/s angenommen werden. Stellen Sie Ihre Ergebnisse (KF vorwärts, rückwärts, kombiniert) der Parameterschätzung sowie deren Standardabweichungen graphisch dar.

Hinweis: Als Initialwerte bei der Rückwärtsfilterung kann für den Zustandsvektor der letzte gefilterte Wert der Vorwärtsfilterung verwendet werden. Für \boldsymbol{P} soll als Initialwert bei der Rückwärtsfilterung wieder $1.0~\text{m}^2$ angenommen werden.