Step-1

Given that A is an m by n matrix of rank r and its reduced echelon form is R.

We have to describe exactly the reduced row echelon form of R^{T} (not A^{T}).

Step-2

Given that A is an m by n matrix of rank r and its reduced echelon form is R.

Therefore R has r independent rows (or R has r non zero rows). Then R^T has r independent columns. That is R^T has $\hat{a} \in \hat{r} \hat{a} \in \mathbb{R}^T$ columns which are pivot columns.

Therefore R^T has $\hat{a} \in r\hat{a} \in T^M$ non -zero columns and $\hat{a} \in r\hat{a} \in T^M$ non-zero rows.

Thus $R^T R$ is in the form

$$R^{T} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$$
, where I , is the identity matrix of r by r .