Prirodom inspirirani optimizacijski algoritmi

Dr.sc. Marko Čupić Zagreb, 24. svibnja 2012.

Uvod

- Izranjajuća inteligencija
- Optimizacijski problemi
- Genetski algoritam
- Algoritam kolonije mrava

Izranjajuća inteligencija

- Izranjajuća inteligencija
- Optimizacijski problemi
- Genetski algoritam
- Algoritam kolonije mrava

Uvod: Evolucija

Uvod: Evolucija

Evolution

(OR is it?)

Uvod: Jato ptica

Uvod: Rojenje pčela

• Površina 50 m2, dubina 8 metara

Mravinjak, put...

Uvod: Jato riba

Uvod: zaključci

Dumb parts, properly connected into a swarm, yield smart results.

Kevin Kelly
New Rules for the New Economy
Sep 1997

Uvod: zaključci

The whole is greater than

the sum of the parts.

- Izranjajuća inteligencija
- Optimizacijski problemi
- Genetski algoritam
- Algoritam kolonije mrava

- Optimizacija: postupak pronalaženja najboljeg rješenja problema, rješenja s najmanjom cijenom
- Tipično:
 - Kontinuirano područje
 - Kombinatorički problemi

- Pretraživanje prostora stanja:
 - Nađi put od S₀ do S_F
 - Rješenje je **put** (npr. slagalica 3x3!)
- CSP: Constraint Satisfaction Problem
 - Vrsta pretraživanja prostora stanja kod kojeg put od početnog do konačnog stanja nije bitan
 - Rješenje je isključivo konačno stanje

- CSP: Constraint Satisfaction Problem
 - Definira se niz ograničenja koja moraju biti zadovoljena
 - Definira se kriterijska funkcija koja se optimira

- Način rješavanja kombinatoričkih problema već smo upoznali
 - Algoritmi pretraživanja prostora stanja
 - Pretraživanje u širinu
 - Pretraživanje u dubinu
 - A*
 - •
- Nažalost, u praksi često neiskoristivi

- Problem trgovačkog putnika
 - Poznate koordinate n gradova na karti
 - Pronaći najkraću turu kroz sve gradove
 - Matematičkim žargonom: pronaći
 Hamiltonov ciklus u grafu
 - NP težak problem (faktorijelna složenost)

Problem trgovačkog putnika

- Problem trgovačkog putnika
 - 12 gradova, 12 sekundi
 - 13 gradova, 2,5 minute
 - 14 gradova, pola sata
 - 15 gradova, 7,6 sati
 - 16 gradova, 4,7 dana
 - ...
 - 500 gradova, ????

- Drugi problemi
 - Raspoređivanje neraspoređenih studenata u grupe za predavanja
 - Izrada rasporeda međuispita
 - Izrada rasporeda laboratorijskih vježbi
- Iscrpnom pretragom
 - Puno, puno više vremena no što je svemir star!

- Heuristike
 - Algoritmi koji pronalaze dovoljno dobra rješenja, tipično ne nude garanciju optimalnosti, te imaju nisku računsku složenost (polinomijalnu)
 - Dijelimo ih na
 - Konstrukcijske
 - Algoritmi lokalne pretrage

- Heuristike
 - Konstrukcijske
 - Grade rješenje segment po segment
 - Algoritmi lokalne pretrage
 - Kreću od nekog početnog rješenja i pokušavaju ga inkrementalno poboljšavati

- Metaheuristike
 - Skup algoritamskih koncepata koji koristimo za definiranje heurističkih metoda primjenjivih na širok skup problema
 - heuristika koja vodi problemski specifične heuristike

- Metaheuristike
 - Simulirano kaljenje
 - Tabu pretraživanje
 - Evolucijski algoritmi
 - Mravlji algoritmi
 - Algoritmi rojeva
 - Algoritmi umjetnih imunoloških sustava

- ...

Sitan problemčić

- Teorem "No free lunch", Wolpert & Macready, 1995, 1997:
 - Svi algoritmi koji traže ekstrem funkcije cilja ponašaju se upravo jednako s obzirom na bilo koju mjeru performansi, kada se pogleda njihovo prosječno ponašanje nad svim mogućim funkcijama cilja.

• • •

Sitan problemčić

- Teorem "No free lunch", Wolpert & Macready, 1995, 1997:
 - Konkretno, ako algoritam A nadmašuje algoritam B na nekim funkcijama cilja, tada, grubo govoreći, mora postojati upravo toliko drugih funkcija cilja nad kojima B nadmašuje A.

- Izranjajuća inteligencija
- Optimizacijski problemi
- Genetski algoritam
- Algoritam kolonije mrava

- Evolucija kao inspiracija
- Populacijski algoritmi
- Darwinova teorija o postanku vrsta

- Temeljne postavke: Darwin
 - plodnost vrsta potomaka uvijek ima više no što je potrebno
 - veličina populacije je približno stalna
 - količina hrane je ograničena
 - kod vrsta koje se seksualno razmnožavaju, nema identičnih jedinki već postoje varijacije, te
 - najveći dio varijacija prenosi se nasljeđem

- Primjer problema $f(x) = 10 + x^2 10 \cdot \cos(2 \cdot \pi \cdot x)$
 - Naći x za koji je f(x) minimalna

- Kako radi GA?
 - Radimo s populacijom kromosoma
 - Svaki kromosom je jedno rješenje problema
 - Svako rješenje ima svoju dobrotu (engl. fitness) ili kaznu
 - U našem primjeru dobrota i f(x) su suprotni
 - → veći f(x), manja dobrota
 - $\rightarrow f(x)$ odgovara kazni

- Implementacija
 - Iterativno iz trenutne generacije stvaramo sljedeću
 - Potomke imaju veću šansu stvoriti bolja rješenja
 - Rješenja se kombiniraju operatorom križanja
 - Operator mutacije

Dijagram toka

- Uloga
 - Selekcija → selekcijski pritisak → brzina konvergencije
 - Križanje → pretraživanje okoline roditelja
 - Mutacija

 bijeg iz lokalnih ekstrema,
 veliki skokovi u prostoru pretraživanja

- Binarni kromosom
 O 1 0 0 0 1 1 1
 - Niz nula i jedinica koji se interpretira kao rješenje problema (vrijednost varijable)
 - Npr. Trobitni kromosom: 000, 001, ..., 111
 - Ako predstavlja realnu varijablu iz područja [-2, 2], tada: 000=-2, 001=-1.43, ..., 111=2
 - Broj bitova za određenu preciznost?

- Binarni kromosom
 - Složeniji primjer
 - rješenje za funkciju od tri varijable x, y, z

- Križanje s jednom točkom prijeloma
 - Odabiru se dva roditelja
 - Slučajno se odabire točka prijeloma
 - Obavlja se križanje

Točka prijeloma

- Više vrsta križanja
 - Križanje s jednom točkom prijeloma
 - Križanje s n točaka prijeloma
 - Uniformno križanje

– ...

- Operator mutacije
 - Zadana vjerojatnost mutacije bita
 - Operator okreće vrijednost bita

- Može generirati veliku promjenu!

- Umjesto binarno, za prikaz rješenja možemo koristiti i polje decimalnih brojeva
 - Križanje:
 - d(i) = (r1(i) + r2(i))/2
 (d ... dijete; r1, r2 ... roditelji)
 - Mutacija:
 - d(i) += gauss(0, K) ili d(i) += uniformno(-K, K)
 - Za svaki i ili samo za neke slučajno odabrane

- Izbor roditelja više tehnika
 - Proporcionalna selekcija
 (engl. Roulette-wheel selection)
 - Što je jedinka bolja, to ima veću šansu biti izabrana

$$probSel(i) = \frac{fit(i)}{\sum_{j=1}^{n} fit(j)}$$

Izbor roditelja – proporcionalna

selekcija

$$len(i) = \frac{fit(i)}{\sum_{j=1}^{n} fit(j)}$$


```
P = stvori početnu populaciju (VEL POP)
evaluiraj(P)
ponavljaj dok nije kraj
  nova populacija P' = Ø
  ponavljaj dok je veličina(P') < VEL POP
    odaberi R1 i R2 iz P
    \{D1, D2\} = krizaj(R1, R2)
    mutiraj D1, mutiraj D2
    dodaj D1 i D2 u P'
  kraj
  P = P'
  evaluiraj(P)
Kraj
```


- Izranjajuća inteligencija
- Optimizacijski problemi
- Genetski algoritam
- Algoritam kolonije mrava

- Mravi iskazuju zanimljivo ponašanje
 - Uspješno pronalaze najkraći put do izvora hrane

Eksperimenti

- Objašnjenje
 - Mravi prilikom kretanja za sobom ostavljaju feromonski trag
 - Mrav se kreće slučajno, ali s većom vjerojatnošću u smjeru u kojem osjeti jači feromonski trag

- Direktna primjena na probleme prikazive grafovima
- Npr. lz 1 može u 2, 3 i 4

$$\tau_0 = konst$$

$$p_{ij}^{k} = \begin{cases} \frac{\tau_{ij}^{\alpha}}{\sum_{l \in N_{i}^{k}} \tau_{il}^{\alpha}}, & \text{ako } j \in N_{i}^{k} \\ 0, & \text{ako } j \notin N_{i}^{k} \end{cases}$$

- Algoritam Ant System
 - Uporaba heurističke informacije dodatno poboljšava ponašanje

Algoritam Ant System

```
ponavljaj dok nije kraj
  ponovi za svakog mravca
    stvori rješenje
    vrednuj rješenje
  kraj ponovi
  ispari feromonske tragove
  ponovi za sve ili neke mrave
    azuriraj feromonske tragove
  kraj ponovi
kraj ponavljanja
```

- Procedura: Stvori rješenje
 - Mrav kreće iz nekog čvora
 - Temeljem vjerojatnosti bira sljedeći čvor, pa sljedeći, sve dok ne dođe do zadnjeg čvora

Uz α =1, β =2:

$$p(4\rightarrow 3)=11,9\%$$

$$p(4\rightarrow 6)=23.7\%$$

$$p(4\rightarrow7)=64,4\%$$

- Procedura: Vrednuj rješenje
 - Funkcija računa ukupnu duljinu puta
 - Prelazak iz jednog čvora u drugi tipično je povezan određenom cijenom (gradovi -> udaljenost)

- Procedura: Ispari tragove
 - Funkcija feromonske tragove na svim bridovima umanji za određeni iznos

$$\tau_{ij} \leftarrow \tau_{ij} \cdot (1 - \rho)$$

- Geometrijska progresija!
- Izuzetno skupo (graf ima puno bridova)

- Procedura: Ažuriraj tragove
 - Funkcija za odabranog mrava dodaje nove feromonske tragove iznosa:

$$\Delta \tau_{ij}^{k} = \begin{cases} 1/C^{k}, & \text{ako je brid } i - j \text{ na stazi } k \text{ - tog mrava} \\ 0, & \text{inačn} \end{cases}$$

Novo stanje je tada:

$$\tau_{ij} \leftarrow \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

Zaključak

- Prirodom inspirirani algoritmi danas vruće područje istraživanja!
- Po prvi puta pronađen način kako se uhvatiti u koštac s prethodno nerješivim problemima
- Svakih nekoliko godina novi algoritam (primjerice Bee Colony Optimization, Intelligent Water Drops, ...)

Linkovi

 Video isječak o koloniji mrava <u>http://www.inquisitr.com/14238/holy-crap-billions-of-ants-in-one-colony/</u>

Linkovi

- Skripta
 http://java.zemris.fer.hr/nastava/ui/
- Implementacija svih algoritama http://java.zemris.fer.hr/nastava/ui/ev oAlg.zip

