

Konz

Name:	
Vorname:	
Matrikelnummer:	
Unterschrift:	

Zugelassene Hilfsmittel:

- Selbstgeschriebene Formelsammlung (max. 2 Blätter)
- Taschenrechner

Zeit: 60 Minuten

Wichtig:

- Schreiben Sie nur auf den Klausurblättern/Rückseiten. Extrazettel werden nicht bewertet.
- Das Auseinanderheften dieses Dokumentes ist nicht gestattet.

Aufgabe	1	2	3	4	5	Summe
Max. Punktzahl	6	4	8	7	4	29
Erreichte Punkte						

1. Aufgabe: PWM

Ein Wert wird über das gezeigte PWM-Signal übertragen.

- a) Wie groß ist die Signalfrequenz?
- b) Wie groß ist das Tastverhältnis?
- c) Wie groß ist der übertragene Wert?

2. Aufgabe: Zündung Airbag

Eine Airbag-Zündpille mit einem Ohmschen Widerstand von 4 Ω werde per Wechselspannung gezündet (Amplitude: 14 V). Die zur Zündung notwendige Wärmeenergie betrage 0,01 mJ. Die Zündung soll 4 ms nach Einschalten der Wechselspannung erfolgen. Die in den Zündkreis eingefügte Kapazität betrage 1 nF.

Berechnen Sie die notwendige Frequenz der Wechselspannung zur Zündung des Airbags.

3. Aufgabe: E-Gas

Zu untersuchen ist der Regelkreis vom EGAS eines Fahrzeugs mit Otto-Motor. Dieser besteht aus einer Drosselklappe, einem P-Regler und einem Vergleicher. Die Drosselklappe kann als rein Integrierendes Regelkreisglied angesehen werden.

- a) Der P-Regler kann eine Winkeldifferenz von 40° zwischen Soll- und Istwert in die Spannung 8V umsetzen. Durch welche Konstante wird er beschrieben? Berechnen Sie den Wert.
- b) Zum Zeitpunkt t=0 erfolge ein Sprung der Führungsgröße. Es ergibt sich das oben gezeigte zeitliche Verhalten des Drosselklappenwinkels. Der Wert von 55° ist nach 60ms erreicht. Wann sind 63% des Differenzwinkels vom Anfangswert (bei t =0) zum Sollwert erreicht?
- c) Nach einer Zeit (10τ) läuft der Motor mit der konstanten Drehzahl 3000 min⁻¹. Die Motorelektronik nutzt das gezeigte Kennfeld (gemessen bei 1000 hPa) und einen Drucksensor (dieser misst 950 hPa) zur Auswertung.
- d) Welcher Wert wird für die Luftfüllung vom Steuergerät ermittelt?

Welche Kraftstoffmasse muss hinzugefügt werden, um eine stöchiometrische Verbrennung einzustellen?

4. Aufgabe: Zündanlage

Untersucht wird eine Hochspannungs-Zündanlage:

- Elektrischer Widerstand der Primärspule: 7Ω
- Wicklungszahl der Primärspule: 50
- Querschnittsfläche der Primärspule: 1 cm²
- Magnetische Permeabilitätszahl der Primärspule: μ_r = 1000
- Wicklungszahl der Sekundärspule: 3000
- Batteriespannung: 14 V.

- a) Wie groß ist der maximale elektrische Strom im Primärkreis?
- b) Berechnen Sie die benötigte Induktivität der Spule, damit nach einer Zeitspanne von 1 ms nach Schließen des Primärkreises ein Strom von 1,5 A fließt.
- c) Beschreiben Sie das Zustandekommen des Zündfunkens stichpunktartig.

5. Aufgabe: 2-Punkt-λ-Regelung

Der Kraftstofffluss eines Magnetventils werde durch die Proportionalitätskonstante 10 g/s beschrieben. Die Kraftstoffmasse wird fortlaufend durch eine 2-Punkt-Lambda-Regelung korrigiert. Das für Regelung definierte Zeitinkrement hat den Wert 20 μ s.

Ergänzen Sie die nachfolgende Tabelle um die einzuspritzende Kraftstoffmenge:

Zyklus	m _K /mg	nach Einspritzung gemessenes λ
1	2	0,9
2		0,92
3		0,97
4		1,01
5		1,01
6		0,98
7		1,02
8		-