Mesh Simplification

Oversampled 3D scan data

Overtessellation: E.g. iso-surface extraction

- Multi-resolution hierarchies for
 - efficient geometry processing
 - level-of-detail (LOD) rendering

Adaptation to hardware capabilities

Size-Quality Tradeoff

Problem Statement

- Given: $\mathcal{M} = (\mathcal{V}, \mathcal{F})$
- Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that
 - 1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $||\mathcal{M} \mathcal{M}'||$ is minimal, or
 - 2. $\|\mathcal{M} \mathcal{M}'\| < \epsilon$ and $|\mathcal{V}'|$ is minimal
- Respect additional fairness criteria
 - normal deviation, triangle shape, scalar attributes, etc.

Mesh Decimation Methods

Vertex clustering

Incremental decimation

Resampling

Mesh approximation

- Cluster Generation
- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
 - Uniform 3D grid
 - Map vertices to cluster cells
- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
 - Hierarchical approach
 - Top-down or bottom-up
- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
- Computing a representative
 - Average/median vertex position
 - Error quadrics
- Mesh generation
- Topology changes

Computing a Representative

Average vertex position

Computing a Representative

Median vertex position

Computing a Representative

Error quadrics

Error Quadrics

- Patch is expected to be piecewise flat
- Minimize distance to neighboring triangles' planes

Error Quadrics

Squared distance of point p to plane q:

$$p = (x, y, z, 1)^T, q = (a, b, c, d)^T$$

$$dist(q,p)^2 = (q^Tp)^2 = p^T(qq^T)p =: p^TQ_qp$$

$$Q_q = egin{bmatrix} a^2 & ab & ac & ad \ ab & b^2 & bc & bd \ ac & bc & c^2 & cd \ ad & bd & cd & d^2 \ \end{bmatrix}$$

Error Quadrics

 Sum distances to planes q_i of vertex' neighboring triangles:

$$\sum_i dist(q_i,p)^2 = \sum_i p^T Q_{q_i} p = p^T \left(\sum_i Q_{q_i}
ight) p =: p^T Q_p p$$

Point p* that minimizes the error satisfies:

$$\left[egin{array}{ccccc} q_{11} & q_{12} & q_{13} & q_{14} \ q_{21} & q_{22} & q_{23} & q_{24} \ q_{31} & q_{32} & q_{33} & q_{34} \ 0 & 0 & 0 & 1 \end{array}
ight] p^* = \left[egin{array}{cccc} 0 \ 0 \ 0 \ 1 \end{array}
ight]$$

Comparison

- Cluster Generation
- Computing a representative
- Mesh generation
 - Clusters $p \leftrightarrow \{p_0,...,p_n\}, q \leftrightarrow \{q_0,...,q_m\}$
- Topology changes

- Cluster Generation
- Computing a representative
- Mesh generation
 - Clusters $p \leftrightarrow \{p_0,...,p_n\}, q \leftrightarrow \{q_0,...,q_m\}$
 - Connect (p,q) if there was an edge (p_i,q_j)
- Topology changes

- Cluster Generation
- Computing a representative
- Mesh generation
- Topology changes
 - If different sheets pass through one cell
 - Can be non-manifold

Outline

- Applications
- Problem Statement
- Mesh Decimation Methods
 - Vertex Clustering
 - Incremental Decimation
 - Extensions

Incremental Decimation

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

General Setup

- Repeat:
- pick mesh region
- apply decimation operator
- · Until no further reduction possible

Greedy Optimization

- For each region
- evaluate quality after decimation
- enqeue (quality, region)
- Repeat:
- get best mesh region from queue
- apply decimation operator
- update queue
- · Until no further reduction possible

Global Error Control

- For each region
- evaluate quality after decimation
- enqeue (quality, region)
- Repeat:
- get best mesh region from queue
- if error < ε
- apply decimation operator
- update queue
- · Until no further reduction possible

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Decimation Operators

- What is a "region" ?
- What are the DOF for re-triangulation?
- Classification
 - Topology-changing vs. topology-preserving
 - Subsampling vs. filtering
 - Inverse operation → progressive meshes

Decimation Operators

- Remove vertex
- Re-triangulate hole
 - Combinatorial degrees of freedom

Decimation Operators

- Merge two adjacent vertices
- Define new vertex position
 - Continuous degrees of freedom
 - Filter along the way

Decimation Operators

- Collapse edge into one end point
 - Special case of vertex removal
 - Special case of edge collapse
- No degrees of freedom
- Separates global optimization from local optimization

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Local Error Metrics

- Local distance to mesh
 - Compute average plane
 - No comparison to original geometry

Global Error Metrics

- Error quadrics
 - Squared distance to planes at vertex
 - No bound on true error

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Topology Changes?

- Merge vertices across non-edges
 - Changes mesh topology
 - Need spatial neighborhood information
 - Generates non-manifold meshes

Topology Changes?

- Merge vertices across non-edges
 - Changes mesh topology
 - Need spatial neighborhood information
 - Generates non-manifold meshes

Comparison

- Vertex clustering
 - fast, but difficult to control simplified mesh
 - topology changes, non-manifold meshes
 - global error bound, but often not close to optimum
- Incremental decimation with quadric error metrics
 - good trade-off between mesh quality and speed
 - explicit control over mesh topology
 - restricting normal deviation improves mesh quality