A

Mini-Project on

"Data Analyzation and Prediction on job postings of data scientists in last 2 years"

3rd YEAR OF ENGINEERING (Computer Engineering)

By

Sudity Khushi COTB02

Lokesh Kolte COTB03

Rohit Mahajan COTB08

Prathmesh Pachpute COTB16

Under The Guidance of Prof. A. K. Magar

SINHGAD ACADEMY OF ENGINEERING

CERTIFICATE

This is to certify that the project report entitles

"Data Analyzation and Prediction on job postings of data scientists in last 2 years"

Submitted By

Sudity Khushi COTB02

Lokesh Kolte COTB03

Rohit Mahajan COTB08

Prathmesh Pachpute COTB16

Is a bonafide work carried out under the supervision of

Prof. A. K. Magar and it is approved for the partial fulfillment of the requirement of third year computer engineering.

Prof. A. K. Magar *Guide* Dept. of Comp. Eng.

Prof. B. B. Gite *Head*Dept. of Comp. Eng.

Dr. K. P. Patil

Principal

Sinhgad Academy of Engineering Pune – 48, Pune

Date:

Working-

We have divided the working in 2 parts i.e. Analysis and Prediction. Analysis has the graphs and analyzed data, we have used **pandas**, **matplotlib**, etc. modules to analyze the dataset. Prediction has **sklearn** module included, we are training the machine by giving inputs and it can predict the future job postings in the program.

Analysis-

- Loads the dataset and plot the graph of data scientist job postings per month in last 2 years.
- Shows the Average job postings in 1 month.
- Minimum and maximum job postings in last 2 years.
- Shows pie-chart of number of data scientist job postings of every month in 2018.
- Shows pie-chart of number of data scientist job postings of every month in 2019.
- Shows pie-chart on number of total job postings of data scientists in last 2 years.
- Shows double bar graph for male and female job postings per month in 2018
- Shows double bar graph for male and female job postings per month in 2019

Prediction-

- Program prompts the user to enter the month for the prediction.
- Program prompts the user to enter the year for the prediction.
- Program uses the Linear Regression to predict the job postings in the month that user has entered.
- Shows a dialogue box through **pyautogui** module to display the prediction result.

Code of the project –

```
import pandas
import numpy as np
import matplotlib.pyplot as plt
import pyautogui as win
from sklearn import linear model
def Avg(lst):
    return sum(lst) / len(lst)
def Min(lst):
    return min(lst)
def Max(lst):
    return max(lst)
df = pandas.read csv('Demo 2 .csv')
print(df)
monthyear = (df['month&year']).tolist()
male = (df['Male']).tolist()
female = (df['Female']).tolist()
monthyear = monthyear[48:]
posting = (df['Postings']).tolist()
posting= posting[48:]
plt.rcParams["figure.figsize"] = [16, 6]
ax = plt.axes()
ax.set facecolor("yellow")
plt.title("Number of Job Postings of Data Scientists Every Month in Past 2 Years")
plt.xlabel("Months with Year")
plt.ylabel("Number of Postings")
plt.plot(monthyear, posting, color='r')
plt.ylim(5000, 10000)
plt.legend(['No. of job posted'])
```

```
plt.show()
avg = "Average Job Postings in 1 Month - {:.2f}\nMinimun Job Postings in Past 2 years
- {:.0f} \nMaximum Job Postings in Past 2 years- {:.0f} ".format(Avg(posting), Min(p
osting), Max(posting))
win.alert(avg)
month2018 = []
def mo1(lst):
    for i in range (0, 12):
        temp = lst[i]
        month2018.append(temp)
job2018 = []
def pos1(lst):
    for i in range (0, 12):
        temp1 = lst[i]
        job2018.append(temp1)
mo1(monthyear)
pos1(posting)
explode = (0.1, 0.0, 0.1, 0.2, 0.0, 0.1, 0.1, 0.2, 0.1, 0.1, 0.2, 0.1)
          "grey", "indigo", "beige", "yellow", "green", "blue", "violet", "pink", "pu
def pie1():
    k = job2018[i]
```

```
plt.style.use('dark background')
fig, ax = plt.subplots(figsize=(10, 7))
wedges, texts, autotexts = ax.pie(job2018,
                                    autopct=lambda pct1: pie1(),
                                    explode=explode,
                                    labels=month2018,
                                    shadow=True,
                                    colors=colors,
                                    startangle=90,
                                    wedgeprops=wp,
                                    textprops=dict(color="red"))
ax.legend(wedges, month2018,
          loc="best",
plt.setp(autotexts, size=8, weight="bold")
ax.set title("Number of Job Postings of Data Scientists Every Month in 2018")
plt.show()
month2019 = []
def mo2(lst):
    for i in range (12, 24):
        temp = lst[i]
        month2019.append(temp)
iob 20\overline{19} = []
def pos2(lst):
    for i in range (12, 24):
        temp1 = lst[i]
        job2019.append(temp1)
mo2 (monthyear)
pos2(posting)
```

```
explode = (0.1, 0.0, 0.1, 0.2, 0.0, 0.1, 0.1, 0.2, 0.1, 0.1, 0.2, 0.1)
          "grey", "indigo", "beige", "red", "yellow", "blue", "violet", "pink", "purp
le")
wp = {'linewidth': 1, 'edgecolor': "green"}
def pie2():
   k = job2019[i]
fig, ax = plt.subplots(figsize=(10, 7))
wedges, texts, autotexts = ax.pie(job2019,
                                  autopct=lambda pct2: pie2(),
                                  explode=explode,
                                  labels=month2019,
                                  shadow=True,
                                  colors=colors,
                                  startangle=90,
                                  wedgeprops=wp,
                                  textprops=dict(color="green"))
ax.legend(wedges, month2019,
          bbox to anchor=(0.8, -0.4, 0.5, 1)
plt.setp(autotexts, size=8, weight="bold")
ax.set title("Number of Job Postings of Data Scientists Every Month in 2019")
plt.show()
total = []
def tot2018(lst):
    for i in lst:
```

```
total.append(tem)
total2019 = []
def tot2019(lst):
    for i in 1st:
    total.append(tem)
tot2018(job2018)
tot2019(job2019)
print(total)
year = ["2018", "2019"]
explode = (0.0, 0.1)
colors = ("orange", "cyan",
wp = {'linewidth': 1, 'edgecolor': "green"}
def pie3():
    k = total[i]
fig, ax = plt.subplots(figsize=(10, 7))
wedges,texts, autotexts = ax.pie(total,
                                   autopct=lambda jjj: pie3(),
                                   explode=explode,
                                   labels=year,
                                   shadow=True,
                                   colors=colors,
                                   startangle=90,
                                   wedgeprops=wp,
                                   textprops=dict(color="red"))
ax.legend(wedges, year,
```

```
title="year",
          bbox to anchor=(0.8, -0.4, 0.5, 1))
plt.setp(autotexts, size=8, weight="bold")
ax.set title("Number of Job Postings of Data Scientists in past 2 year")
plt.show()
male2018 = []
def male1(lst):
    for i in range (48,60):
        mens = lst[i]
        male2018.append(mens)
female2018 = []
def female1(lst):
    for i in range (48,60):
        female = lst[i]
        female2018.append(female)
male2019 = []
def male2(lst):
    for i in range (60,72):
        mens = lst[i]
        male2019.append(mens)
female2019 = []
def female2(lst):
    for i in range (60,72):
        female = lst[i]
        female2019.append(female)
male1(male)
female1(female)
```

```
male2(male)
female2(female)
w = 0.4
bar1 = np.arange(len(month2018))
bar2 = [i + w for i in bar1]
plt.bar(bar1, male2018, w, label="male", color="violet")
plt.bar(bar2, female2018, w, label="female", color="silver")
plt.xticks(bar1 + w / 2, month2018)
plt.ylabel("job posting")
plt.xlabel("male and female")
plt.title("job posting for male and female in 2018")
plt.legend()
plt.show()
w = 0.4
bar3 = np.arange(len(month2019))
bar4 = [i + w for i in bar1]
plt.bar(bar1, male2019, w, label="male", color="cyan")
plt.bar(bar2, female2019, w, label="Female", color="pink")
plt.xticks(bar1 + w / 2, month2019)
plt.ylabel("job posting")
plt.xlabel("male and female")
plt.title("job posting for male and female in 2018")
plt.legend()
plt.show()
win.alert("Here you can check prediction in the console")
reg = linear model.LinearRegression()
reg.fit(df[['month', 'year']], df.Postings)
x=int(input("Enter month no(ex:1/2/3/4/5/6/7/8/9/10/11/12):=>"))
y=int(input("Enter year (ex:2020/2021/2022/2023/2024/2025....):=>"))
prediction=reg.predict([(x,y)])
predict = "predicted posting for the given month is {posting:.0f} "
predic=predict.format(posting=int(prediction))
win.alert(predic)
```

Outputs-

Thank you.