Berkeley Problems in Mathematics

John Peloquin

Abstract

Alternate solutions to problems from Berkeley Problems in Mathematics.

Chapter 6

Section 1

Problem 6.1.9. Let *G* be a finite group with identity *e* such that for all $a, b \in G$ with $a, b \neq e$, there exists an automorphism σ of *G* such that $\sigma(a) = b$. Then *G* is abelian.

Proof. Set n = |G| and assume $n \neq 1$. Then Aut(G) acts on G and yields two orbits, the trivial orbit and an orbit of order n-1. Recall Inn(G) \subseteq Aut(G), so Inn(G) also acts on G, and the order of any Inn(G)-orbit divides the order of an Aut(G)-orbit. This implies the order of any Inn(G)-orbit divides n-1. But by the Orbit-Stabilizer Theorem, the order of any Inn(G)-orbit also divides |Inn(G)|. And since there is a natural surjection $G \to Inn(G)$, |Inn(G)| in turn divides n. It follows that there are no nontrivial Inn(G)-orbits, so any element in G is preserved under conjugation by another element, and hence G is abelian. □

References

[1] Dummit, David S. and Richard M. Foote. Abstract Algebra, 3rd ed. Wiley, 2003.

¹[1], Exercise 4.1.9(a).