Лабораторная работа № 8

ИЗУЧЕНИЕ ТЕРМОЭЛЕКТРИЧЕСКИХ ЯВЛЕНИЙ.

<u>Цель работы</u>: изучение термоэлектрических явлений, исследование зависимости термоэдс от температуры.

Общие сведения.

Если металлические или полупроводниковые тела приведены в тесный контакт, то между ними возникает так называемая контактная разность потенциалов, величина которой зависит только от химического состава и температуры соприкасающихся тел.

Согласно классической электронной теории контактная разность потенциалов (φ_1 - φ_2) возникает вследствие частичного перехода электронов проводимости из одного металла в другой, так как при соприкосновении двух разнородных металлов атомы сближаются в отдельных местах на расстояния порядка 10^{-8} см.

Возникновение контактной разности потенциалов в металлах обуславливают две причины: различные значения работы выхода электронов проводимости и различная концентрация электронов проводимости в металлах.

Контактная разность потенциалов определяется по формуле:

$$\varphi_1 - \varphi_2 = \frac{A_2 - A_1}{e} + \frac{kT}{e} \cdot \ln \frac{n_{01}}{n_{02}}$$
,

где A_1 , A_2 — работы выхода электронов из контактирующих металлов; e — заряд электрона; k — постоянная Больцмана; T — абсолютная температура; n_{01} , n_{02} — концентрация электронов в металлах.

В замкнутой цепи, образованной из разнородных метал-

лов, имеющих одинаковую температуру, алгебраическая сумма контактных разностей потенциалов равна нулю, поэтому ЭДС в такой цепи не возникает. Если температуры спаев различны $(T_1 \neq T_2)$, то ЭДС в цепи существует:

$$\mathcal{E} = \alpha (T_2 - T_1).$$

Постоянная α численно равна термоэдс, возникающей при разности температур в $I^{\circ}C$ и зависит от химического состава тел. Наблюдаются случаи, когда α является непостоянной величиной, например, в паре цинк-серебро в интервале температур от 0° до $100^{\circ}C$ она составляет $0.5\cdot10^{-6}$ B/град, а в интервале от 300° до $400^{\circ}C - 4.6\cdot10^{-6}$ B/град. При этом возможно изменение знака ЭДС, например, в паре молибденвольфрам при переходе от низких температур к высоким. Более полное объяснение термоэлектрических явлений дается в квантовой теории твердых тел. Более полное объяснение термоэлектрических явлений теории твердых тел.

Приведенная формула справедлива для определенного интервала температур. Такую цепь можно использовать в качестве генератора,, превращающего тепловую энергию в электрическую, или термопары для измерения температуры в различных интервалах.

Описание лабораторной установки и метода измерений.

В данной работе для измерения термоэдс используется метод компенсации. Для этого собирается цепь (рис. 1), состоящая из вспомогательного источника тока

 \mathcal{E} , реостата R, микроамперметра μA , известного сопротивления

 R_0 , гальванометра Γ , источника тока \mathcal{E}_X , ЭДС которого определяется. Перемещая ползунок реостата, подбирают такое падение напряжения на образцовом сопротивлении ($\Delta \phi_{AB} = I \cdot R_0$), чтобы оно равнялось искомой ЭДС.

В момент, когда достигается равенство $\mathcal{E}_{X} = \Delta \varphi_{AB}$, ток в гальванометре отсутствует, что возможно при встречном включении \mathcal{E} и \mathcal{E}_{X} при условии $\mathcal{E} > \mathcal{E}_{X}$.

Для определения термоэдс термопара NI подключается через ключ K к сопротивлению R_{θ} . Общая схема установки показана на рис. 2, где термопара NI является исследуемой, а термопара N2 служит для определения разности температур, она подключена к

милливольтметру mV, шкала которого проградуирована в градусах Цельсия. Один спай каждой термопары находится при постоянной (комнатной) температуре T_I , второй спай помещен в нагреватель (медный цилиндр на электроплитке).

Термопару можно использовать и для измерения температуры в различных интервалах, и как термоэлектрический генератор.

Порядок выполнения работы.

- 1. Ознакомиться с элементами установки.
- 2. Включить источник питания компенсационной цепи и нагревателя в сеть и замерять ЭДС через каждые 20 °C. Производить исследования до температуры 100 °C для

- термопары медь-железо, для других термопар по заданию преподавателя. ($R_0 = 100 \ Om$).
- 3. По полученным данным построить график зависимости ЭДС термопары от разности температур спаев (с учетом погрешностей).
- 4. Определить $\alpha = \frac{\Delta \mathcal{E}}{\Delta T}$ на любом участке кривой.
- 5. Полученные данные (ΔT , I, \mathcal{E}_{X}) занести в таблицу:

№ п/п	Разность температур спаев ΔT , K	Ток в цепи <i>I, A</i>	ЭДС £ , В

Контрольные вопросы.

- 1. Что называется работой выхода электрона из металла?
- 2. Расскажите о причинах возникновения контактной разности потенциалов. При каких условиях и почему возникает термоэдс?
- 3. Какова зависимость термоэдс от температуры?
- 4. Расскажите о схеме установки и методе измерения термоэдс (методе компенсации).
- 5. Практическое применение термопар.