Predicting Temporal Sets with Deep Neural Networks

Temporal Set: 一个带有时间戳的元素集合,例如一次购物的结账时间以及所购买的商品。

时间集的预测既要考虑集合之间的时序关系,也要考虑集合内元素之间的关系。

创新点/模型的整体结构:

- 1.采用了GCN来学习元素之间的关系,减少元素信息的丢失。
- 2.在GCN之后采用了注意力机制进一步训练卷积的结果。优势在于能够更好的掌握全局的时序关系。
- 3.还通过门控信息融合,考虑了用户于用户之间的相似度进行推荐,

Figure 2: Framework of the proposed model.

时间集转图

Figure 3: The process of weighted graphs construction.

步骤:

- 1.统计每一个时间集之中的元素对。
- 2.计算元素对的总出现次数,并 且对于每一个出现过的元素增加 一个自己和自己配对。这样可以 防止在卷积过程之中丢失该元素 的信息。
- 3.正则化
- 4.用正则化后的值作为边的权值, 构造全连接图,所有元素都产生 一个自环。

卷积:其中A矩阵是边的权重,i是用户的编号,j是元素编号,t是时间集的编号,b和W是卷积神经网络训练的参数,第一层的 $c_{i,j}^{t,0}$ 是代表初始的元素。卷积完成之后获得元素集合 $v_{i,j}$ 的新表现形式 $c_{i,j}$

$$c_{i,j}^{t,l+1} = \sigma(b^l + \sum_{k \in N_{i,j}^t \cup \{j\}} A_i^t[j,k] \cdot (W^l c_{i,j}^{t,l}))$$

注意力机制:这是一个点乘型的注意力机制公式, W_q , W_k , W_v 是分别计算 query,key,value的参数。通过query和key的相似度确定query和value的相似度。 M_i 确保了时间序列靠前的不会受到靠后的影响。这一步将 $c_{i,j}$ 转变成 $z_{i,j}$ 。

$$Z_{i,j} = soft \max(\frac{(C_{i,j}W_q) \cdot (C_{i,j}W_k)^T}{\sqrt{F''}} + M_i) \cdot (C_{i,j}W_v) \qquad M_i^{t,t'} = \begin{cases} 0 & \text{if } t \leq t', \\ -\infty & \text{otherwise.} \end{cases}$$

门控方面:这一部分统计了用户的隐藏信息矩阵Ei。 $I(\cdot)$ 是将元素 $v_{i,j}$ 映射到Ei中其对应索引的函数, β_i 是01矩阵,1代表对应元素在Ei中, γ 调整两部分的重要度权重。由于E矩阵是所有用户共享的,因此通过这个方式能考虑相似用户之间的关系。

$$E_{i,I(j)}^{update} = (1 - \beta_{i,I(j)} \cdot \gamma_{I(j)}) \cdot E_{i,I(j)} + (\beta_{i,I(j)} \cdot \gamma_{I(j)}) \cdot z_{i,j},$$

预测部分函数以及实验的结果

$$\hat{\mathbf{y}}_i = sigmoid(\mathbf{E}_i^{update} \cdot \mathbf{w}_o + b_o),$$

Datasets	Methods	K=10			K=20			K=30			K=40		
		Recall	NDCG	PHR									
TaFeng	Top	0.1025	0.0974	0.3047	0.1227	0.1033	0.3682	0.1446	0.1104	0.4256	0.1561	0.1140	0.4474
	PersonalTop	0.1214	0.1128	0.3763	0.1675	0.1280	0.4713	0.1882	0.1336	0.5063	0.2022	0.1398	0.5292
	ElementTransfer	0.0613	0.0644	0.2255	0.0721	0.0670	0.2519	0.0765	0.0676	0.2590	0.0799	0.0687	0.2671
	DREAM	0.1174	0.1047	0.3088	0.1489	0.1143	0.3814	0.1719	0.1215	0.4383	0.1885	0.1265	0.4738
	Sets2Sets	0.1427	0.1270	0.4347	0.2109	0.1489	0.5500	0.2503	0.1616	0.6044	0.2787	0.1700	0.6379
	DNNTSP	0.1752	0.1517	0.4789	0.2391	0.1720	0.5861	0.2719	0.1827	0.6313	0.2958	0.1903	0.6607
DC	Top	0.1618	0.0880	0.2274	0.2475	0.1116	0.3289	0.3204	0.1288	0.4143	0.3940	0.1448	0.4997
	PersonalTop	0.4104	0.3174	0.5031	0.4293	0.3270	0.5258	0.4499	0.3318	0.5496	0.4747	0.3332	0.5785
	ElementTransfer	0.1930	0.1734	0.2546	0.2280	0.1816	0.3017	0.2589	0.1929	0.3417	0.2872	0.1955	0.3783
	DREAM	0.2857	0.1947	0.3705	0.3972	0.2260	0.4964	0.4588	0.2407	0.5613	0.5129	0.2524	0.6184
	Sets2Sets	0.4488	0.3136	0.5458	0.5143	0.3319	0.6162	0.5499	0.3405	0.6517	0.6017	0.3516	0.7005
	DNNTSP	0.4615	0.3260	0.5624	0.5350	0.3464	0.6339	0.5839	0.3578	0.6833	0.6239	0.3665	0.7205
ТаоВао	Тор	0.1567	0.0784	0.1613	0.2494	0.1019	0.2545	0.3166	0.1164	0.3220	0.3679	0.1264	0.3745
	PersonalTop	0.2190	0.1535	0.2230	0.2260	0.1554	0.2306	0.2354	0.1575	0.2402	0.2433	0.1590	0.2484
	ElementTransfer	0.1190	0.1153	0.1217	0.1253	0.1166	0.1284	0.1389	0.1197	0.1427	0.1476	0.1214	0.1516
	DREAM	0.2431	0.1406	0.2491	0.3416	0.1657	0.3483	0.4060	0.1796	0.4129	0.4532	0.1889	0.4606
	Sets2Sets	0.2811	0.1495	0.2868	0.3649	0.1710	0.3713	0.4267	0.1842	0.4327	0.4672	0.1922	0.4739
	DNNTSP	0.3035	0.1841	0.3095	0.3811	0.2039	0.3873	0.4347	0.2154	0.4406	0.4776	0.2238	0.4843
TMS	Тор	0.2627	0.1627	0.4619	0.3902	0.2017	0.6243	0.4869	0.2269	0.7222	0.5605	0.2448	0.8007
	PersonalTop	0.4508	0.3464	0.6440	0.5274	0.3721	0.7146	0.5453	0.3765	0.7339	0.5495	0.3771	0.7374
	ElementTransfer	0.3292	0.2984	0.4752	0.3385	0.3038	0.4828	0.3410	0.3034	0.4863	0.3423	0.3036	0.4889
	DREAM	0.3893	0.3039	0.6090	0.4962	0.3379	0.7279	0.5677	0.3570	0.794	0.6155	0.3690	0.8315
	Sets2Sets	0.4748	0.3782	0.6933	0.5601	0.4061	0.7594	0.6145	0.4204	0.8131	0.6627	0.4321	0.8570
	DNNTSP	0.4693	0.3473	0.6825	0.5826	0.3839	0.7880	0.6440	0.4000	0.8439	0.6840	0.4097	0.8748

最后一部分的数据之中有一些数据表现并非最优,这是因为 Set2Sets会对于重复的行为进行建模

Dataset	Methods	K=10			K=20			K=30			K=40		
		Recall	NDCG	PHR									
TMS	Sets2Sets-	0.3954	0.3494	0.6198	0.4845	0.3771	0.7216	0.5539	0.3956	0.7943	0.5975	0.4062	0.8328
	Sets2Sets	0.4748	0.3782	0.6933	0.5601	0.4061	0.7594	0.6145	0.4204	0.8131	0.6627	0.4321	0.8570
	DNNTSP	0.4693	0.3473	0.6825	0.5826	0.3839	0.7880	0.6440	0.4000	0.8439	0.6840	0.4097	0.8748
	DNNTSP+	0.4883	0.3805	0.7092	0.6066	0.4179	0.8086	0.6684	0.4343	0.8665	0.7061	0.4435	0.8922

Set2Sets-是Set2Sets删除重复数据建模部分 DNNTSP+是DNNTSP增加了和Set2Sets同样的重复数据建模部分 在同等情况下DNNTSP全面优于Set2Sets