

TEMA 2: Protocolos y servicios de red (Capa de Red) - Relación de Problemas -

1) Complete la siguiente tabla con los datos de cada **dirección IP** y su subred correspondiente, considerando que son direcciones IPv4:

1)

2)

		1			1
IP	10.20.210.40	221.34.56.181	9.10.128.12	192.169.23.223	172.17.25.94
Clase	A	С	A	С	В
Pública/ Privada	PRIVADA	PÚBLICA	PÚBLICA	PÚBLICA (16 <mark>9</mark>)	PRIVADA
Máscara	255.255.240.0	255.255.255.248	255.255.128.0	255.255.255.192	255.255.255.224
Máscara CIDR	/20	/29	/17	/26	/27
Num. Bits para hosts	12 (32-20)	3 (32-29)	15 (32-17)	6 (32-26)	5 (32-27)
Num. IPs en la subred	4096 (212)	8 (2 ³)	32768 (2 ¹⁵)	64 (2 ⁶)	32 (2 ⁵)
Num. IPs Disponibles	4094	6	32766	62	30
Dirección de Red	10.20.208.0	221.34.56.176	9.10.128.0	192.169.23.192	172.17.25.64
Primera IP Disponible	10.20.208.1	221.34.56.177	9.10.128.1	192.169.23.193	172.17.25.65
Última IP Disponible	10.20.223.254	221.34.56.182	9.10.255.254	192.169.23.254	172.17.25.94
Dirección de Broadcast	10.20.223.255	221.34.56.183	9.10.255.255	192.169.23.255	172.17.25.95

DIRECCIONES DE RED

- 1) Desplegamos la IP (en los números afectados por la máscara) → 10.20.1101|0010.00101000 Ponemos a 0 los bits a la derecha de la máscara → 10.20.1101|0000.00000000 Convertimos a decimal los números afectados por el cambio → 10.20.208.0
- 2) 221.34.56.10110|101 $221.34.56.10110|000 \Rightarrow 221.34.56.176$
- 1) DIRECCIONES DE BROADCAST

2) 221.34.56.10110|101 $221.34.56.10110|111 \rightarrow 221.34.56.183$

Las siguientes direcciones IP pertenecen a interfaces de hosts de una única red desconocida. Averigüe la **dirección red y máscara** que, englobando a todos estos hosts, hacen a dicha red lo más compacta posible.

HOSTS	DIRECCIÓN DE RED/MÁSCARA	
192.168.2.6		
192.168.14.20	192.168.0.0/18	
192.168.50.32	192.168.0.0/255.255.192.0	
192 168 33 0		
10.128.10.10		
10.138.10.10	10.128.0.0/11	
10.148.10.10	10.128.0.0/255.224.0.0	
10.158.10.10		
156.250.3.4	156.224.0.0/11	
156.235.45.3	156.224.0.0/255.224.0.0	
156.244.45.2	130.224.0.0/233.224.0.0	
80.90.130.100	00.00.400.0/00	
80.90.138.100	80.90.128.0/20	
80.90.139.100	80.90.128.0/255.255.240.0	
80.90.143.100		
193.23.220.145	193.23.192.0/18	
193.23.245.145	193.23.192.0/255.255.192.0	
193.23.251.145	175.45.174.0/455.455.174.0	

La dirección de la red más compacta que incluye a un conjunto de direcciones IP dado, consiste en la **secuencia binaria coincidente** en todas las IP del conjunto **empezando por la izquierda** y dejando a cero el resto de bits a partir del primer bit en el que no haya coincidencia.

La máscara será la longitud de la secuencia de bits coincidentes.

Ejemplo:

2) 10.128.10.10: <u>00001010.100</u>000000.00001010.00001010 10.138.10.10: <u>00001010.100</u>01010.00001010.00001010 10.148.10.10: <u>00001010.100</u>10100.00001010.00001010 10.158.10.10: <u>00001010.100</u>11110.00001010.00001010 Por tanto la Dirección de red/Máscara sería: 10.128.0.0/11 ⇔ 10. 128.0.0/255.224.0.0

- Disponemos de una Red con la topología mostrada en la figura. Usando direcciones **IPv4 de clase C privada**, realice una asignación de direcciones, en la que todas las subredes deben tener la máscara /27 y además ser contiguas:
 - Asigne direcciones de red a todas las redes de la figura.
 - Asigne direcciones IP a todos los interfaces que corresponda.
 - Asigne el default Gateway (puerta de enlace predeterminada) a todos los PCs.
 - Escriba las rutas estáticas en la tabla de enrutamiento del router *RoutC* para poder llegar a todas las redes por el camino más corto. Incluya en cada entrada <red destino> <máscara> <next hop>

2)

Hay 5 subredes a las que asignar direcciones.

Al tener máscara /27 podremos direccionar con 32-27 = 5 bits $\Rightarrow 25 = 32$ IPs. Podremos direccionar 32-2 = 30 equipos/interfaces en cada subred.

Vamos a denominar a las subredes A, B, C, D y E (según su switch).

Subred A \rightarrow 192.168.100.0/27 - Desde 192.168.100.1 hasta 192.168.100.31 (broadcast) Subred B \rightarrow 192.168.100.32/27 - Desde 192.168.100.33 hasta 192.168.100.63 (broadcast) Subred C \rightarrow 192.168.100.64/27 - Desde 192.168.100.65 hasta 192.168.100.95 (broadcast) Subred D \rightarrow 192.168.100.96/27 - Desde 192.168.100.33 hasta 192.168.100.127 (broadcast) Subred E \rightarrow 192.168.100.128/27 - Desde 192.168.100.33 hasta 192.168.100.159 (broadcast)

TABLA DE ENRUTAMIENTO RoutC

DESTINO	MÁSCARA	SIGUIENTE
192.168.100.32	255.255.255.224 \Leftrightarrow /27	-
192.168.100.64	255.255.255.224 \Leftrightarrow /27	-
192.168.100.0	255.255.255.224 \Leftrightarrow /27	192.168.100.33
192.168.100.96	255.255.255.224 \Leftrightarrow /27	192.168.100.94
192.168.100.128	255.255.255.224 \Leftrightarrow /27	192.168.100.94

Depto.	Dirección de Red	Máscara	Dirección de Broadcast	Cant. Direcs. IP Disponibles
D2 (100)	200.0.0.0	/25	200.0.0.127	126 (128-2)
D6 (75)	200.0.0.128	/25	200.0.0.255	126 (128-2)
D5 (59)	200.0.1.0	/26	200.0.1.63	62 (64-2)
D1 (32)	200.0.1.64	/26	200.0.1.127	62 (64-2)
D3 (24)	200.0.1.128	/27	200.0.1.159	30 (32-2)
D4 (18)	200.0.1.160	/27	200.0.1.191	30 (32-2)
¿Sobran/ Faltan IPs?	Sobran 64 IPs en la subred 200.0.1.0. A partir de la 200.0.1.192			

SUPERRED

 $200.0.0.0/24 \rightarrow \underline{200.0.0000000} | 0.000000000$ $200.0.1.0/24 \rightarrow \underline{200.0.0000000} | 1.00000000 \rightarrow 200.0.0.0/23$

Al ser máscara 24 (Clase C), disponemos de 256 IPs en cada rango → 512 IPs

Ordenamos los departamentos de mayor a menor número de direcciones IP requeridas.

** Se empieza a asignar por la subred 200.0.0/24

- D2 (100) → para 100 IPs el menor número de bits posible sería 7 (128) → la máscara sería 25 (32-7) La última dirección (broadcast) será 128-1 =127
- D6 (75) → seguimos repartiendo la misma subred. Empezaría en la siguiente a la anterior → ...128

 Para 75 IPs el menor número de bits posible sería 7 (128) → la máscara sería 25 (32-7)

 *** Ya estaría completa la subred 200.0.0.0

** Se asigna la subred 200.0.1.0/24

- D5 (59) → para 59 IPs el menor número de bits posible sería 6 (64) → la máscara sería 26 (32-6) La última dirección (broadcast) será 64-1 =63
- D1 (32) → 32 IPs no caben en una subred de tamaño 32, porque hay 2 direcciones reservadas
 Para 32 IPs el menor número de bits posible sería 6 (64) → la máscara sería 26 (32-6)
 La última dirección (broadcast) será 128-1 =127
- D3 (24) → para 24 IPs el menor número de bits posible sería 5 (32) → la máscara sería 27 (32-5) La última dirección (broadcast) será 160-1 =159
- D4 (18) → para 18 IPs el menor número de bits posible sería 5 (32) → la máscara sería 27 (32-5) La última dirección (broadcast) será 192-1 =191

5) Considerando el reparto de direcciones a las diferentes subredes hecho en el ejercicio anterior, dibuje una posible **topología para la red corporativa** completa, en la que se muestren 2 equipos por cada subred. Utilice tantos switches y routers como estime oportuno, suponiendo que cada uno podrá tener tantos puertos/interfaces como fuese necesario. Asigne direcciones IP a todas las interfaces involucradas.

Consideramos las direcciones de red de cada departamento:

Depto.	Dirección de Red	Máscara
D2 (100)	200.0.0.0	/25
D6 (75)	200.0.0.128	/25
D5 (59)	200.0.1.0	/26
D1 (32)	200.0.1.64	/26
D3 (24)	200.0.1.128	/27
D4 (18)	200.0.1.160	/27

*** Las primeras IPs se suelen asignar a los routers de cada subred.

D1: 200.0.1.64/26R1-1: 200.0.1.65
PC1-1: 200.0.1.66
PC1-2: 200.0.1.67

D2: 200.0.0/25 R1-2: 200.0.0.1

PC2-1: 200.0.0.2 PC2-2: 200.0.0.3

D3: 200.0.1.128/27

R1-3: 200.0.1.129 PC2-1: 200.0.1.130 PC2-2: 200.0.1.131

D4: 200.0.1.160/27

R1-3: 200.0.1.161 PC2-1: 200.0.1.162 PC2-2: 200.0.1.163

D5: 200.0.1.0/26

R1-3: 200.0.1.1 PC2-1: 200.0.1.2 PC2-2: 200.0.1.3

D6: 200.0.0.128/25

R1-3: 200.0.0.129 PC2-1: 200.0.0.130 PC2-2: 200.0.0.131

Otra compañía tiene nueve departamentos (D01...D09). En cada uno de ellos se necesitan respectivamente 12, 100, 54, 30, 9, 75, 6, 47 y 17 direcciones IP. Sabiendo que sólo disponemos del rango público 50.40.30.0/24 y 50.40.31.0/24 (equivalente a 50.40.30.0/23). Defina las **subredes necesarias de tamaño mínimo** para cubrir esa demanda. ¿Sobran o faltan direcciones IP?

Depto.	Dirección de Red	Máscara	Dirección de	Cant. Direcs.
			Broadcast	IP Disponibles
D02 (100)	50.40.30.0	/25	50.40.30.127	126 (128-2)
D06 (75)	50.40.30.128	/25	50.40.30.255	126 (128-2)
D03 (54)	50.40.31.0	/26	50.40.31.63	62 (64-2)
D08 (47)	50.40.31.64	/26	50.40.31.127	62 (64-2)
D04 (30)	50.40.31.128	/27	50.40.31.159	30 (32-2)
D09 (17)	50.40.31.160	/27	50.40.31.191	30 (32-2)
D01 (12)	50.40.31.192	/28	50.40.31.207	14 (16-2)
D05 (9)	50.40.31.208	/28	50.40.31.223	14 (16-2)
D07 (6)	50.40.31.224	/29	50.40.31.231	6 (8-2)
¿Sobran/ Faltan IPs?	Sobran 24 IPs en la su	ibred 50.40	.31.0. A partir de la 50.	.40.31.232

SUPERRED

 $50.40.30.0/24 \rightarrow \underline{50.40.0001111}|0.00000000$ $50.40.31.0/24 \rightarrow \underline{50.40.0001111}|1.00000000 \rightarrow 50.40.30.0/23$

Al ser máscara 24 (Clase C), disponemos de 256 IPs en cada rango → 512 IPs

Ordenamos los departamentos de mayor a menor número de direcciones IP requeridas.

** Se empieza a asignar por la subred 50.40.30.0/24

D02 (100) → para 100 IPs el menor número de bits posible sería 7 (128) → la máscara sería 25 (32-7)

La última dirección (broadcast) será 128-1 =127

D06 (75) → seguimos repartiendo la misma subred. Empezaría en la siguiente a la anterior → ...128
Para 75 IPs el menor número de bits posible sería 7 (128) → la máscara sería 25 (32-7)
*** Ya estaría completa la subred 50.40.30.0

** Se asigna la subred 50.40.31.0/24

D03 (54) → Para 54 IPs el menor número de bits posible sería 6 (64) → la máscara sería 26 (32-6)

La última dirección (broadcast) será 64-1 =63

D08 (47) → Para 47 IPs el menor número de bits posible sería 6 (64) → la máscara sería 26 (32-6) La última dirección (broadcast) será 128-1 =127

D04 (30) → para 30 IPs el menor número de bits posible sería 5 (32), pero hay 2 reservadas) → la máscara sería 26 (32-6).

La última dirección (broadcast) será 160-1 =159

D09 (17) → para 17 IPs el menor número de bits posible sería 5 (32) → la máscara sería 27 (32-5) La última dirección (broadcast) será 192-1 =191

D01 (12) → para 12 IPs el menor número de bits posible sería 4 (16) → la máscara sería 28 (32-4) La última dirección (broadcast) será 208-1 =207

D05 (9) → para 9 IPs el menor número de bits posible sería 4 (16) → la máscara sería 28 (32-4) La última dirección (broadcast) será 224-1 =223

D07 (6) → para 6 IPs el menor número de bits posible sería 3 (8) → la máscara sería 29 (32-3) La última dirección (broadcast) será 224-1 =223

Sobre la topología, defina todas las **direcciones IP** de los interfaces presentes (algunas ya están). Escriba las **máscaras de red** que hacen las subredes lo más compactas posible. Indique las **tablas de enrutamiento** de Snellville y Sioux Falls. Indique las entradas aprendidas si se usase **RIP** y **OSPF** y cuáles prevalecerían.

todas estas redes de destino ***

TABLA DE ENRUTAMIENTO SNELLVILLE

	DESTINO	MÁSCARA	SIGUIENTE
C	150.150.1.200	255.255.255.248 \Leftrightarrow /29	-
C	150.150.1.160	255.255.255.224 \Leftrightarrow /27	-
S	150.150.1.0	255.255.255.128 👄 /25	150.150.1.190
S	150.150.2.0	255.255.255.0 ⇔ /24	150.150.1.170
ſs	150.150.2.100	255.255.255.252 🖙 /30	150.150.1.170
\prec \leq	150.150.2.184	255.255.255.248 \(\Delta /29	150.150.1.170
S	150.150.2.208	255.255.255.240 \Leftrightarrow /28	150.150.1.170
\	grupamos las 3 entrada		

(100) **150.150.2.**01100100

(184) <u>150.150.2.</u>10111000 (208) <u>150.150.2.</u>11001000 **150.150.2.0** /24

TABLA DE ENRUTAMIENTO SIUX FALLS

		DESTINO	MÁSCARA	SIGUIENTE
	C	150.150.2.100	255.255.255.252 \$\infty\$ /30	-
	\mathbf{C}	150.150.2.208	255.255.255.240 \$\leftrightarrow\$ /28	-
	S	150.150.0.0	255.255.0.0 \Leftrightarrow /22	150.150.2.101
	ſs	150.150.2.184	255.255.255.248 \(\Display /29	150.150.2.101
_	S	150.150.1.160	255.255.255.224 \(\Delta /27	150.150.2.101
	S	150.150.1.0	255.255.255.128 🖙 /25	150.150.2.101
	S	150.150.1.200	255.255.255.248 \Leftrightarrow /29	150.150.2.101
		rupamos las 4 entrada		
\mathcal{N}		34) <u>150.150.000000</u> 10		
7/	(16	50) 150.150. 0000000	.10100000 \rightarrow 150.150.0.0 \/ 22	*** Se podría usar 'default' para agrupar

*** Para usar RIP y OSPF no debe haber entradas estáticas, porque éstas tienen menor Distancia Administrativa (1), frente a 120 de RIP y 110 de OSPF. Prevalece la de menor DA. ***

Supongamos que solamente se tienen las entradas directas y las demás se aprenden. RIP será Versión 2 (para enviar las máscaras de red).

Vamos a suponer que OSPF usa como métrica el número de saltos, al igual que RIP.

TABLA DE ENRUTAMIENTO SNELLVILLE

(0) **150.150.**000000001.000000000

(200) **150.150**.000000001.11001000

	DESTINO	MÁSCARA	SIGUIENTE	DA/MÉTRICA
C	150.150.1.200	255.255.255.248 \Leftrightarrow /29	-	0/0
C	150.150.1.160	255.255.255.224 \Leftrightarrow /27	-	0/0
Baı	rnesville			
R	150.150.1.0	255.255.255.128 ⇔ /25	150.150.2.190	120/1
O	150.150.1.0	255.255.255.128 <code-block></code-block>	150.150.1.190	110/1
Atl	anta			
R	150.150.2.100	255.255.255.252 ↔ /30	150.150.1.170	120/1
R	150.150.2.184	255.255.255.248 ↔ /29	150.150.1.170	120/1
R	150.150.2.208	255.255.255.240 ⇔ /28	150.150.1.170	120/2
O	150.150.2.100	255.255.255.252 😂 /30	150.150.1.170	110/1
O	150.150.2.184	255.255.255.248 \Leftrightarrow /29	150.150.1.170	110/1
O	150.150.2.208	255.255.255.240 \Leftrightarrow /28	150.150.1.170	110/2

TABLA DE ENRUTAMIENTO SIUX FALLS

DESTINO	MÁSCARA	SIGUIENTE	DA/MÉTRICA
C 150.150.2.100	255.255.255.252 \Leftrightarrow /30	-	0/0
C 150.150.2.208	255.255.255.240 \Leftrightarrow /28	-	0/0
Atlanta			
R 150.150.2.184	255.255.255.248 ⇔ /29	150.150.2.101	120/1
R 150.150.1.160	255.255.255.224 ⇔ /27	150.150.2.101	120/1
R 150.150.1.0	255.255.255.128 ⇔ /25	150.150.2.101	120/2
R 150.150.1.200	255.255.255.248 ⇔ /29	150.150.2.101	120/2
O 150.150.2.184	255.255.255.248 \Leftrightarrow /29	150.150.2.101	110/1
O 150.150.1.160	255.255.255.224 \Leftrightarrow /27	150.150.2.101	110/1
O 150.150.1.0	255.255.255.128 👄 /25	150.150.2.101	110/2
O 150.150.1.200	255.255.255.248 \Leftrightarrow /29	150.150.2.101	110/2

*** Prevalecerían las de OSPF por ser iguales que las RIP pero con menor Distancia Administrativa.

Sobre la topología de red de la figura:

a) Asigne **direcciones IP, máscara** y Default Gateway donde se solicite. Use direccionamiento **privado de clase B** para las subredes UNO y DOS y direccionamiento **público de clase C** para la subred GEST. Como máscara considere la que se tiene por defecto en cada clase.

Las direcciones de red podrían ser: RED UNO → 172.16.0.0/16 RED DOS → 172.31.0.0/16 RED GEST → 210.0.0.0/24

b) Suponiendo que se está ejecutando **RIP** y que éste garantiza conectividad total en toda la red, complete las tablas de enrutamiento de R1 y R2.

Tabla de Enrutamiento de R1					
Red destino Máscara Next Hop Coste					
С	172.16.0.0	/16	*	0	
С	210.0.0.0	/24	*	0	
R	172.31.0.0	/16	210.0.0.1	1	

	Tabla de Enrutamiento de R2					
	Red destino Máscara Next Hop Coste					
С	172.31.0.0	/16	*	0		
С	210.0.0.0	/24	*	0		
R	172.16.0.0	/16	210.0.0.2	1		

Las conexiones directas tienen coste 0.

Por RIP se envían las redes conectadas a los routers. Se van pasando por broadcast a los vecinos hasta llegar a todos los de la red (protocolo IGP).

RIPv2 para enviar las máscaras de red también.

c) Suponga que se está ejecutando NAT dinámico Overload (PAT) en el router R1 y que la dirección INSIDE GLOBAL de la subred UNO coincide con la dirección del interfaz de R1 en la red GEST.

Tabla NAT de R1			
Inside Local (con num. Puerto)	Inside Global	Puerto	
172.16.0.2:2222	210.0.0.2	3194	
172.16.0.3:4193	210.0.0.2	1192	

NAT DINÁMICO OVERLOAD

Una dirección OUTSIDE corresponde a varias direcciones INSIDE. Se diferencian los equipos por el puerto al que llegan los mensajes de fuera.

Inside local: direcciones de mi red, vistas desde dentro de mi red **Inside global**: direcciones de mi red vistas desde fuera de mi red

Se asocian varias IPs locales con una global y se diferencian por los puertos, que no tienen por qué ser los mismos. Si fuese siempre el mismo, dos equipos no podrían hacer una comunicación usando los mismos puertos, lo cual no se puede controlar porque los puertos son asignados aleatoriamente.

Los puertos en NAT sí se controlan para que no coincidan.

Es decir, podríamos tener:

Inside Local (con num. Puerto)	Inside Global	Puerto
172.16.0.2: 2222	210.0.0.2	3194
172.16.0.3: 2222	210.0.0.2	1192

- Los routers Rx_A y Rx_B de la figura están configurados para ejecutar **NAT dinámico Overload** de manera que las direcciones Inside local en las redes A y B sean transformadas a un único Inside Global que coincide con la IP de su interfaz F0/1 respectivo. Tanto Rx_A como Rx_B saben cómo llegar a las redes A y B mediante **rutas estáticas** con next-hop la IP del F0/1 de siguiente router. Cada router del lado INSIDE, R1, y R2, tiene configurada una ruta por defecto a través del F0/0 de Rx_A y Rx_B respectivamente.
 - a) Asigne direcciones IP y máscaras a todos los interfaces que considere
 - b) ¿Qué ocurriría si R1 hiciera ping a la dirección INSIDE GLOBAL de R2?
 - c) ¿Y si R1 hiciera ping a la dirección INSIDE LOCAL de R2?

a) Asignamos IPs a todos los interfaces.

b) R1 hace ping a la dirección INSIDE GLOBAL de R2

- o La Inside Global de R2 coincide con el F0/1 de Rx_B (1.0.0.2)
- O Puesto que R1 tiene la interfaz F0/1 (1.0.0.4) en esa red (1.0.0.0/24), enviará el mensaje ICMP Echo_request a través de esa misma interfaz (SA 1.0.0.4;DA=1.0.0.2)
- o El mensaje ICMP llega directamente a Rx_B pasando por el Sw_Gestion.
- o El mensaje ICMP Echo reply llega a R1. Lo responde Rx B.
- o Las tablas NAT de Rx_A y Rx_B están vacías

c) R1 hace ping a la dirección INSIDE LOCAL de R2

- La Inside Local de R2 es la 12.0.0.2. Que sólo es accesible a través de la ruta por defecto de R1
- O R1 usa la ruta por defecto a través de Rx_A para enviar el ICMP Echo_request (SA=11.0.0.2; DA=12.0.0.2)
- Rx_A sabe cómo llegar a la Red B (12.0.0.0/24) porque esa red sí está en su tabla de rutas a través de una ruta estática
- Rx_A hace NAT y reenvía el mensaje ICMP_Echo request (SA=1.0.0.1; DA=12.0.0.2) al Next hop que es el F0/1 de RX_B (1.0.0.2).
 En la tabla NAT de Rx_A, aparecen las siguientes entradas correspondientes a los 5 mensajes ICMP generados por Ping.

Pro Inside global	Inside local	Outside local	Outside global
icmp 1.0.0.1:11	11.0.0.2:11	12.0.0.2:11	12.0.0.2:11
icmp 1.0.0.1:12	11.0.0.2:12	12.0.0.2:12	12.0.0.2:12
icmp 1.0.0.1:13	11.0.0.2:13	12.0.0.2:13	12.0.0.2:13
icmp 1.0.0.1:14	11.0.0.2:14	12.0.0.2:14	12.0.0.2:14
icmp 1.0.0.1:15	11.0.0.2:15	12.0.0.2:15	12.0.0.2:15

- o El mensaje ICMP Echo_request le llega a Rx_B y puesto que conoce la red de destino, lo reenruta hacia la red 12.0.0.0/24 sin hacer NAT
- La tabla NAT de Rx_B estará vacía
- o A continuación R2 recibe el mensaje ICMP Echo_request (SA=1.0.0.1; DA=12.0.0.2) y responde con un ICMP Echo_reply (SA=12.0.0.2; DA=1.0.0.1).
- O Puesto que R2 dispone de la interfaz F0/1 en la red de destino del paquete ICMP (1.0.0.0/24) es a través de esa interfaz por el que responde sin tener que pasar por Rx_B
- La tabla NAT de Rx_B sigue estando vacía
- Al llegar el mensaje ICMP Echo_reply a Rx_A y existir una entrada en la tabla NAT que coincide con la respuesta, hace la conversión NAT (SA=12.0.0.2; DA=11.0.0.2) y reenruta el paquete hacia su F0/0.
- En R1 se recibe el mensaje ICMP Echo_reply (en realidad son 5, correspondientes a los 5 ICMP Echo_request que envió)
- 10) Identifique los diferentes **campos** (parte de red, parte de subred y parte de hosts) en la siguiente **dirección IPv6**, e indique el tipo de dirección que es:

2FFE:4403:1240::A5E2:2:1900:AA

3	13	8	24	16	64 bits
FP	TLA ID	RES	NLA	SLA ID	Interface ID
	public topology site topology			Interface	
network portion			host portion		

2FFE:43AB:3240:0000:85E2:0002:2900:00AC FPTLARESNLA SLA INTERFACE (3) (13) (8) (24) (16) (64)

Se trata de una dirección pública (Global Unicast).

- 11) Una universidad tiene asignado el rango IPv6 2001:0720:1E10::/48.
 - a. Se quiere dar un bloque /56 para que cada facultad lo asigne libremente junto con otro bloque de igual tamaño para uso futuro.
 - b. Dentro de cada facultad hay un solo edificio. Se desea una distribución por plantas dentro de cada edificio, en cada planta se asigna un bloque /60 y otro igual de reserva.
 - c. Posteriormente, dentro de cada planta se desea poder disponer de tantas subredes como sea posible de tamaño /64.

Con este esquema de direccionamiento:

¿A cuántas facultades se le podría dar servicio?, ¿cuántas plantas máximo podría tener cada edificio?, ¿cuántas redes podría haber por planta?, ¿cuántos equipos podrían ser direccionados en cada subred?

La IP completa sería: 2001:0720:1E10:0000:0000:0000:0000:0000/48

2001:0720:1E10:0000 0000:0000:0000:0000/48 Parte de RED (64 bits) Parte de HOSTS (64 bits)

La máscara indicará la parte de la IP que corresponde a la red. El resto hasta los 64 bits se puede asignar a subredes.

 $2001:0720:1E10 \rightarrow Red \quad 0000 \rightarrow Subredes$

a. Para /56 consideramos los 48 bits de red + 8 bits de subred (dos dígitos hexadecimales) 2001:0720:1E10:**00**/56

¿A cuántas facultades se le podría dar servicio? $2^8 = 256$ facultades \Rightarrow 128 facultades con 2 bloques para cada una

DIRECCIONES DE RED DE FACULTADES

Facultad 1 → 2001:0720:1E10:**00**00::/56

2001:0720:1E10:**01**00::/56

Facultad 2 → 2001:0720:1E10:**02**00::/56

2001:0720:1E10:**03**00::/56

. .

Facultad 128 → 2001:0720:1E10:**FE**00::/56

2001:0720:1E10:**FF**00::/56

 Para /60 consideramos los 48 bits de red + 8 bits de subred de facultades + 4 bits de subred de cada planta (un dígito hexadecimal) 2001:0720:1E10:000/60

¿Cuántas plantas máximo podría tener cada edificio? 2^4 = 16 plantas → 8 plantas con 2 bloques para cada una

DIRECCIONES DE RED DE PLANTAS (FACULTAD 2)

Planta 0 → 2001:0720:1E10:02**0**0::/60

2001:0720:1E10:0210::/60

Planta 1 → 2001:0720:1E10:02**2**0::/60

2001:0720:1E10:02**3**0::/60

. .

Planta 8 → 2001:0720:1E10:02**E**0::/60

2001:0720:1E10:02**F**0::/60

c. Para /64 consideramos los 48 bits de red + 8 bits de subred de facultades + 4 bits de subred de cada planta + 4 bits de subred interna (un dígito hexadecimal) 2001:0720:1E10:0000/64

¿Cuántas redes podría haber por planta? $2^4 = 16$ redes internas

DIRECCIONES DE RED DE REDES INTERNAS (FACULTAD 2 – PLANTA1)

Red Interna 1 → 2001:0720:1E10:022**0**::/64

Red Interna 2 → 2001:0720:1E10:0221::/64

. . .

Red Interna $16 \rightarrow 2001:0720:1E10:022F::/64$

¿Cuántos equipos podrían ser direccionados en cada subred?

Disponemos de 64 bits para direccionamiento de hosts \rightarrow 2^64 equipos podrá haber en cada subred.

- 12) Un parque tecnológico tiene asignado el rango IPv6 **2055:55:4BB:3400::/56**. Se pretende hacer una asignación de tamaño variable de este rango entre los 5 edificios que componen el parque, según las siguientes necesidades:
 - Edificios 1 y 2: 64 subredes cada uno
 - Edificios 3, 4 y 5: 32 subredes cada uno
 - a) Rellene la siguiente tabla, asignando direcciones de red consecutivas a cada edificio, empezando por el Edificio 1 en adelante.
 - b) En caso de que sobren direcciones escríbalas en la última fila de la tabla.

Edificio	Dirección de red	Máscara
1	2055:0055:04BB:3400::	/64
2	2055:0055:04BB:3440::	/64
3	2055:0055:04BB:3480::	/64
4	2055:0055:04BB:34A0::	/64
5	2055:0055:04BB:34C0::	/64
Bloque	Desde el 2055:0055:04BB:34E0::	/64
sin	Hasta el 2055:0055:04BB:34FF::	/64
Asignar	(224 al 255)	

2055:55:4BB:3400::/56

La IP completa sería: 2055:0055:04BB:3400:0000:0000:0000:0000/56

2055:0055:04BB:34| 00: 0000:0000:0000:0000/56 Parte de RED (64 bits) Parte de HOSTS (64 bits)

La máscara indicará la parte de la IP que corresponde a la red. El resto hasta los 64 bits se puede asignar a subredes.

 $2055:0055:04BB:34 \rightarrow Red 00 \rightarrow Subredes (8 bits)$

Con 8 bits podremos crear hasta 256 subredes. Necesitamos $64 + 64 + 32 + 32 + 32 = 224 \implies$ hay suficiente

Edificio 1

Necesita direccionar 64 subredes → desde 0 a 63

Desde 2055:0055:04BB:34... 00000000::HOSTS ⇔ 2055:0055:04BB:3400:: 2055:0055:04BB:34... 00000001::HOSTS

.

Hasta 2055:0055:04BB:34... 001111111::HOSTS ⇔ 2055:0055:04BB:343F::

Edificio 2

Necesita direccionar 64 subredes → desde 64 a 127

Desde 2055:0055:04BB:34... 01000000::HOSTS ⇔ 2055:0055:04BB:3440:: Hasta 2055:0055:04BB:34... 01111111::HOSTS ⇔ 2055:0055:04BB:347F::

Edificio 3

Necesita direccionar 32 subredes → desde 128 a 159

Desde 2055:0055:04BB:34... 10000000::HOSTS ⇔ 2055:0055:04BB:3480:: Hasta 2055:0055:04BB:34... 10011111::HOSTS ⇔ 2055:0055:04BB:349F::

Edificio 4

Necesita direccionar 32 subredes → desde 160 a 191

Desde 2055:0055:04BB:34... 10100000::HOSTS ⇔ 2055:0055:04BB:34A0:: Hasta 2055:0055:04BB:34... 10111111::HOSTS ⇔ 2055:0055:04BB:34BF::

Edificio 5

Necesita direccionar 32 subredes → desde 192 a 223

Desde 2055:0055:04BB:34... 11000000::HOSTS ⇔ 2055:0055:04BB:34C0:: Hasta 2055:0055:04BB:34... 110111111::HOSTS ⇔ 2055:0055:04BB:34DF::