#number function

number = 18
absolute_value = abs(number)

print(f"The absolute value of
{number} is {absolute_value}")

power functions

base = 2 exponent = 12 result_power = base ** exponent

print(f"{base} raised to the power of
{exponent} is {result_power}")

logarithmic functions

import math

number = 64
base_log = 2
result_log = math.log(number, base_log)

print(f"The logarithm of {number}
with base {base_log} is {result_log}")

trigonometric functions

import math

angle_in_degrees = 5
angle_in_radians =
math.radians(angle_in_degrees)

Convert degrees to radians sin_value = math.sin(angle_in_radians)

print(f"The sine of {angle_in_degrees}
degrees is {sin_value}")

angular conversion function

import math

angle_in_degrees = 30

Convert degrees to radians angle_in_radians = math.radians(angle_in_degrees) print(f"{angle_in_degrees} degrees is equal to {angle_in_radians} radians")

Convert radians to degrees
angle_in_degrees_again =
math.degrees(angle_in_radians)
print(f"{angle_in_radians} radians is equal to
{angle_in_degrees_again} degrees")

hyperbolic functions

import math

x = 5
hyperbolic_sine_value = math.sinh(x)

print(f"The hyperbolic sine of {x} is
{hyperbolic_sine_value}")

