

Доцент каф. АСУ: Суханов А.Я.

Нелинейная оптимизация с ограничениями

Необходимые условия оптимальности:

Будем рассматривать задачу

где функции f и g_i $(i \in I)$ непрерывно дифференцируемы.

Х множество решений задачи

$$X = \{ x \in \mathbb{R}^n : g_i(x) \le 0, \ i \in I \}.$$

где функции f и g_i $(i \in I)$ непрерывно дифференцируемы.

Х множество решений задачи

$$X = \{ x \in \mathbb{R}^n : g_i(x) \le 0, \ i \in I \}.$$

Точка $x^0 \in X$ есть локальный оптимум (минимум) задачи

$$f(x) \to \min,$$

 $g_i(x) \le 0, \quad i \in I = \{1, \dots, m\},$
 $x \in \mathbb{R}^n,$

если для некоторого числа $\epsilon>0$ выполняется условие

$$f(x^0) \le f(x) \quad \forall \ x \in X, \ \|x - x^0\| \le \epsilon.$$

Необходимые условия Куна – Таккера

Теорема 2.1 (Куна — **Таккера).** Предположим, что все функции f и g_i $(i=1,\ldots,m)$ непрерывно дифференцируемы и в точке $x^0 \in X$ выполняется условие выделения ограничений. Если x^0 есть точка локального минимума, то существуют такие числа $\lambda_i \geq 0$ $(i=1,\ldots,m)$, что

$$\nabla f(x^0) + \sum_{i=1}^m \lambda_i \nabla g_i(x^0) = 0,$$

$$\lambda_i g_i(x^0) = 0, \quad i = 1, \dots, m.$$

 $(\mathit{Числа}\ \lambda_i\ \mathit{называются}\ \mathit{множителями}\ \mathit{Куна-Tаккерa.})$

Условия Куна — Таккера допускают также следующую физическую интерпретацию. Материальная точка движется внутри множества Xпод действием переменной силы, вектор которой в точке x равен $-\nabla f(x)$. Грани (границы) множества X являются абсолютно упругими и, когда материальная точка досгагает грани $g_i(x) = 0$ в точке x^0 , на материальную точку дествует сила реакции $\lambda_i \nabla g_1(x^0)$, где множитель $\lambda_i \geq 0$ выбирается из условия, что сила $\lambda_i \nabla g_i(x^0)$ должна уравновешивать силу, с которой материальная точка давит на данную грань. Нужно найти $mочку покоя x^0$, в которой движение материальной точки прекратиться. В такой интерпретации условия Куна — Таккера выражают тот факт, что в точке покоя силы реакции $\lambda_i \nabla g_i(x^0)$ граней уравновешивают силу

 $^{-\}nabla f(x^0)$, действующую на материальную точку.

Числовой пример:

Записывая и решая системы уравнений и неравенств, выражающих условия Куна — Таккера, мы можем решать небольшие примеры оптимизационных задач. При этом следует заметить, что в компьютерных программах, способных решать задачи реалистичных для практики размеров, реализованы совершенно иные (численные) методы решения гладких оптимизационных задач с ограничениями, а теорема Куна — Таккера — это важный теоретический результат, который применяется при доказательтве многих теорем.

Решим задачу:

$$f(x) = x_1^2 + x_2^2 + x_3^2 \to \min,$$

$$g_1(x) = 2x_1 - x_2 + x_3 - 5 \le 0,$$

$$g_2(x) = x_1 + x_2 + x_3 - 3 = 0.$$

Учитывая, что

$$\nabla f(x) = \begin{bmatrix} 2x_1 \\ 2x_2 \\ 2x_3 \end{bmatrix}, \quad \nabla g_1(x) = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \quad \nabla g_2(x) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix},$$

запишем условия Куна — Таккера:

$$\begin{bmatrix} 2x_1 \\ 2x_2 \\ 2x_3 \end{bmatrix} + \lambda_1 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0,$$

$$2x_1 - x_2 + x_3 - 5 \le 0,$$

$$x_1 + x_2 + x_3 - 3 = 0,$$

$$\lambda_1 (2x_1 - x_2 + x_3 - 5) = 0,$$

$$\lambda_2 (x_1 + x_2 + x_3 - 3) = 0,$$

$$\lambda_1 \ge 0.$$

$$2x_{2} - \lambda_{1} + \lambda_{2} = 0,$$

$$2x_{3} + \lambda_{1} + \lambda_{2} = 0,$$

$$2x_{1} - x_{2} + x_{3} - 5 \leq 0,$$

$$\lambda_{1}(2x_{1} - x_{2} + x_{3} - 5) = 0,$$

$$x_{1} + x_{2} + x_{3} = 3,$$

$$\lambda_{1} \geq 0.$$

или

 $2x_1 + 2\lambda_1 + \lambda_2 = 0$,

Рассмотрим два случая.

 $\lambda_1 = 0$. Тогда из первых трех уравнений получаем, что $x_1 = -\frac{\lambda_2}{2}$, $x_2 = -\frac{\lambda_2}{2}$ и $x_3 = -\frac{\lambda_2}{2}$. Подставляя эти значения в поледнее уравнение, найдем λ_2 :

$$x_1 + x_2 + x_3 = -\frac{3}{2}\lambda_2 = 3 \implies \lambda_2 = -2.$$

Откуда $x^1 = (1,1,1)^T$ — стационарная точка. Причем, поскольку f(x) — выпуклая функция, то x^1 точка глобального минимума⁵.

 $\lambda_1 > 0$. Теперь в силу условия дополняющей нежесткости

$$2x_1 - x_2 + x_3 = 5.$$

Из первых трех уравнение найдем:

$$x_1 = -\frac{1}{2}(2\lambda_1 + \lambda_2),$$

$$x_2 = -\frac{1}{2}(-\lambda_1 + \lambda_2),$$

$$x_3 = -\frac{1}{2}(\lambda_1 + \lambda_2).$$

Подставляя эти значение в уравнения:

$$2x_1 - x_2 + x_3 = 5,$$
$$x_1 + x_2 + x_3 = 3,$$

Получим:
$$-2\lambda_1-\lambda_2-\frac{1}{2}\lambda_1+\frac{1}{2}\lambda_2-\frac{1}{2}\lambda_1-\frac{1}{2}\lambda_2=5,$$
 или $-3\lambda_1-\lambda_2=5,$ $-\lambda_1-\frac{1}{2}\lambda_2+\frac{1}{2}\lambda_1-\frac{1}{2}\lambda_2-\frac{1}{2}\lambda_1-\frac{1}{2}\lambda_2=3,$ $-\lambda_1-\frac{3}{2}\lambda_2=3.$

$$-\lambda_1 - \frac{3}{2}\lambda_2 = 3$$

Умножив первое уравнение на $-\frac{3}{2}$ и сложив со вторым, получим:

$$\left(\frac{9}{2}-1\right)\lambda_1+\left(\frac{3}{2}-\frac{3}{2}\right)\lambda_2=-\frac{3}{2}5+3$$
, или $\frac{7}{2}\lambda_1=-\frac{9}{2}$.

Отсюда $\lambda_1 = -\frac{9}{7}$, что противоречит требованию неотрицательности λ_1 . Следовательно, $x^1 = (1, 1, 1)$ — единственная точка глобального минимума.

Экономическая интерпретация множителя Куна – Таккера

Фирма использует n производственных процесса для производства n продуктов. Процес j ($j = 1, \ldots, n$) описывается производственной функцией f_j :

$$x_j = f_j(x_1^j, \dots, x_m^j),$$

где переменная x_j обозначает количество единиц продукта j, производимого j-м процессом, а переменная x_i^j обозначает количество единиц ресурса i ($i=1,\ldots,m$), используемого в j-м процессе. В наличии имеется a_i единиц ресурса i, $i=1,\ldots,m$. Задан вектор цен $p=(p_1,\ldots,p_n)^T$ выпускаемых продуктов. Нужно найти производственный план $x^*=(x_1^*,\ldots,x_n^*)^T$, стоимость которого p^Tx^* максимальна.

Данная задача формулируется следующим образом:

$$p^T x \to \max$$

$$\lambda_j: x_j - f_j(x_1^j, \dots, x_m^j) = 0, \quad j = 1, \dots, n,$$

$$\mu_i: \sum_{j=1}^n x_i^j - a_i \le 0, \quad i = 1, \dots, m,$$

$$\nu_j: x_j \ge 0, \quad j = 1, \dots, n,$$

$$\rho_i^j: x_i^j \ge 0, \quad i = 1, \dots, m, \ j = 1, \dots, n.$$

Здесь в самом левом столбце записаны множители Куна – Таккера для соответствующих ограничений.

Условия Куна – Таккера для задачи:

$$-p_j + \lambda_j + \nu_j = 0, \quad j = 1, \dots, n,$$

$$\mu_i - \lambda_j \frac{\partial f_j}{\partial x_i^j} (x_1^j, \dots, x_m^j) + \rho_i^j = 0, \quad i = 1, \dots, m, \ j = 1, \dots, n, \ \mathbf{b}$$

$$x_j - f_j(x_1^j, \dots, x_m^j) = 0, \quad j = 1, \dots, n,$$

$$\sum_{j=1}^{n} x_i^j \le a_i, \quad i = 1, \dots, m,$$

$$\mu_i \left(\sum_{j=1}^n x_i^j - a_i \right) = 0, \quad i = 1, \dots, m,$$

$$\nu_j x_j = 0, \quad j = 1, \dots, n,$$

$$\rho_i^j x_i^j = 0, \quad i = 1, \dots, m, \ j = 1, \dots, n,$$

$$\nu_j \le 0, \quad j = 1, \dots, n,$$

$$\rho_i^j \le 0, \quad i = 1, \dots, m, \ j = 1, \dots, n.$$

$$u_j x_j = 0, \quad j = 1, \dots, n,$$
 f
$$-p_j + \lambda_j + \nu_j = 0, \quad j = 1, \dots, n,$$
 a

Если продукт ј производится $(x_j > 0)$, то из условия дополняющей нежесткости (f) имеем, что $v_j = 0$, и тогда из (a) следует, что $\lambda_j = p_j$, т. е. множители, соответствующие технологическим процессам производимых продуктов, равны ценам этих продуктов.

$$\rho_i^j x_i^j = 0, \quad i = 1, \dots, m, \ j = 1, \dots, n,$$

Если ресурс i используется в j-м процессе $(x_i^j>0)$, то из (2.9g) вытекает, что $\rho_i^j=0$, и тогда для проиводимого продукта j $(x_j>0)$ из (2.9b) имеем:

$$\mu_i = p_j \frac{\partial f_j}{\partial x_i^j} (x_1^j, \dots, x_m^j).$$

Если ресурс i не используется полностью $\left(\sum_{j=1}^n x_i^j < a_i\right)$, то из (2.9e) имеем, что $\mu_i = 0$. Но, если ресурс i используются в производственном процессе для какого-либо производимого продукта j, и поскольку $p_j > 0$ и $\frac{\partial f_j}{\partial x_i^j}(x_1^j,\ldots,x_m^j) > 0$, то и $\mu_i > 0$, т. е. такой ресурс i должен использываться полностью.

$$\mu_i \left(\sum_{j=1}^n x_i^j - a_i \right) = 0, \quad i = 1, \dots, m,$$

<u>Суммируя сказанное выше, мы формулируем свойства</u> <u>множителей ресурсных ограничений следующим образом</u>:

множитель ресурса, который не используется ни в одном технологическом процессе, производящем продукт, равен нулю; если ресурс і используется в технологическом процессе, производящем некоторый продукт j, то соответствующий этому ресурсу множитель μ_i равен стоимости предельного продукта j относительно ресурса i.

СПАСИБО ЗА ВНИМАНИЕ!

г. Томск, ул. Вершинина, 47, офис 434

e-mail: aleksandr.i.sukhanov@tusur.ru

тел.: (3822) 70-15-36

tusur.ru