```
In [1]: import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

In [42]: x = np.linspace(11,22,11)
y = np.linspace(23, 34, 11)

In [43]: x

Out[43]: array([11. , 12.1, 13.2, 14.3, 15.4, 16.5, 17.6, 18.7, 19.8, 20.9, 22. ])

In [44]: y

Out[44]: array([23. , 24.1, 25.2, 26.3, 27.4, 28.5, 29.6, 30.7, 31.8, 32.9, 34. ])

In [77]: #usage of xlim and ylim

plt.plot(x, y, color = 'r')
plt.title("Random Plot")
plt.xlabel('X label')
plt.ylabel('Y label')
```

Out[77]: Text(0, 0.5, 'Y label')


```
In [46]: plt.scatter(x,y,color = "orange")
    plt.xlabel("this is x label")
    plt.ylabel("this is y label")
    plt.title("this is title")
    plt.show()
```



```
In [47]: plt.subplot(2, 2, 3)
    plt.scatter(x,y,color = "orange", label = "X and Y")
    plt.xlabel("this is x label")
    plt.ylabel("this is y label")
    plt.title("this is title")
    plt.legend()
    plt.show()

plt.subplot(2, 2, 4)
    plt.plot(x, y, color = 'r')
    plt.title("Random Plot")
    plt.xlabel('X label')
    plt.ylabel('Y label')
```


Out[47]: Text(0, 0.5, 'Y label')


```
In [48]: plt.bar(x, y, color = 'green')
    plt.xlabel("this is x label")
    plt.ylabel("this is y label")
    plt.title("this is title")
    plt.show()
```



```
In [67]: courses = ["Engineering", 'Science', 'Arts', 'Finance', 'Medical', 'Technical Edg
students = [234, 342, 452, 324, 234, 344]
```



```
In [83]: fig = plt.figure(figsize = (20,20))
    ax1 = fig.add_subplot(2,2,1)
    ax2 = fig.add_subplot(2,2,2)
    ax3 = fig.add_subplot(2,2,3)
    ax4 = fig.add_subplot(2,2,4)
    ax1.plot(x,y,color = "green")
    ax2.scatter(x,y,color = "red")
    ax3.bar(x,y,color = "blue")
    ax4.pie(students,labels = courses, autopct= '%0.3f%%',colors = ["purple","pink","plt.show
```

Out[83]: <function matplotlib.pyplot.show(*args, **kw)>


```
In [80]: plt.subplot(2,2,2)
          plt.scatter(x,y,color = "green")
          plt.subplot(2,2,3)
          plt.plot(x,y,color = "purple")
          plt.show()
                                      30
                                      25
                                               15.0 17.5 20.0 22.5
           30
           25
                12.5 15.0 17.5 20.0 22.5
In [81]: x1 = np.random.rand(11)
          y1 = x1**2
In [82]: plt.bar(x1, y1)
Out[82]: <BarContainer object of 11 artists>
           1.0
           0.8
           0.6
           0.4
           0.2
           0.0
                  0.0
                        0.2
                              0.4
                                    0.6
                                          0.8
                                                1.0
                                                      1.2
```

Seaborn Practice using IRIS Dataset

```
In [84]: iris = sns.load_dataset('iris')
```

In [88]: iris

Out[88]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [86]: iris.isnull().sum()
```

Out[86]: sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64

```
In [90]: sns.scatterplot(x = "sepal_length", y = "species", data = iris)
```

Out[90]: <matplotlib.axes._subplots.AxesSubplot at 0x18953427610>


```
In [103]: plt.subplot(1, 2, 1)
    sns.lineplot(x = "sepal_length", y = "petal_length", data = iris)
    plt.subplot(1, 2, 2)
    sns.lineplot(x = "sepal_width", y = "petal_width", data = iris)
```

Out[103]: <matplotlib.axes._subplots.AxesSubplot at 0x18952fae5e0>

In [110]: #converting the species into numeric values for distplot
 import pandas as pd
 df = pd.DataFrame(iris)

In [109]: iris

Out[109]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

In [113]: df

Out[113]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	1
1	4.9	3.0	1.4	0.2	1
2	4.7	3.2	1.3	0.2	1
3	4.6	3.1	1.5	0.2	1
4	5.0	3.6	1.4	0.2	1
145	6.7	3.0	5.2	2.3	3
146	6.3	2.5	5.0	1.9	3
147	6.5	3.0	5.2	2.0	3
148	6.2	3.4	5.4	2.3	3
149	5.9	3.0	5.1	1.8	3

150 rows × 5 columns

```
In [116]: sns.distplot(df["species"])
```

Out[116]: <matplotlib.axes._subplots.AxesSubplot at 0x189531457f0>


```
In [118]: sns.countplot(x = "species", data = iris)
```

Out[118]: <matplotlib.axes._subplots.AxesSubplot at 0x189533c4d60>


```
In [121]: sns.boxplot(x ="sepal_length",y = "petal_length",data = iris)
```

Out[121]: <matplotlib.axes._subplots.AxesSubplot at 0x18954a7d4c0>

In [122]: iris.describe()

Out[122]:

	sepal_length	sepal_width	petal_length	petal_width	species
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	2.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	1.000000
25%	5.100000	2.800000	1.600000	0.300000	1.000000
50%	5.800000	3.000000	4.350000	1.300000	2.000000
75%	6.400000	3.300000	5.100000	1.800000	3.000000
max	7.900000	4.400000	6.900000	2.500000	3.000000

In [125]: sns.pairplot(iris)

Out[125]: <seaborn.axisgrid.PairGrid at 0x18953145400>

In [126]: iris.corr()

Out[126]:

	sepal_length	sepal_width	petal_length	petal_width	species
sepal_length	1.000000	-0.117570	0.871754	0.817941	0.782561
sepal_width	-0.117570	1.000000	-0.428440	-0.366126	-0.426658
petal_length	0.871754	-0.428440	1.000000	0.962865	0.949035
petal_width	0.817941	-0.366126	0.962865	1.000000	0.956547
species	0.782561	-0.426658	0.949035	0.956547	1.000000

In [130]: sns.heatmap(iris.corr(),annot= True)
 plt.show()

Name : Kesavan Raman

College: Vellore Institute of Technology, Bhopal

Assignment : 03 (Matplotlib and Seaborn)

In []:	
In []:	
In []:	