BRAC UNIVERSITY DEPT. OF COMPUTER SCIENCE AND ENGINEERING COURSE NO.: CSE250

Circuits and Electronics Laboratory

Experiment No. 2

Name of the Experiment:

Verification of KCL and KVL

KVL

OBJECTIVE:

This experiment is intended to verify Kirchhoff's voltage law (KVL) with the help of series circuits.

THEORY:

KVL states that around any closed circuit the algebraic sum of the voltage rises equals the algebraic sum of the voltage drops.

APPARATUS:

- > One DC Ammeter (0 1A)
- > One multimeter
- > Three Resistors
- > One DC power supply

PROCEDURE:

 \triangleright Connect the resistors R_1 , R_2 and R_3 in series to a DC power supply as shown in Fig 1.

Fig. 1

 \triangleright Take readings of V_1 , V_2 , V_3 , V_s using multimeter . Take two sets of reading and enter them in the table shown below

 \triangleright Verify KVL as $V_S = V_1 + V_2 + V_3$ for each set of readings.

➤ Calculate the theoretical values of V₁, V₂ & V₃ & note them down in 'Theoretical Observation' row in table

Use voltage divider rule as stated below to get these values:

$$V_1 = (R_1/R_e) * V;$$

$$V_2 = (R_2/R_e) * V;$$

$$V_3 = (R_3/R_e) * V$$

Where, $R_e = R_1 + R_2 + R_3$

TABLE 1: Verification of KVL.

Observation	R1	R2	R3	V	V1	V2	V3
Experimental							
Theoretical							

REPORT:

- 1. State the rules of connecting voltmeter and ammeter in the circuit.
- 2. Comment on the results obtained and discrepancies (if any).

KCL

OBJECTIVE:

This experiment is intended to verify Kirchhoff's current law (KCL) with the help of a simple parallel circuit.

THEORY:

KCL states that the algebraic sum of the currents entering any node equals the sum of the currents leaving the node.

APPARATUS:

- ➤ One DC Ammeter (0 1A)
- > Three resistors
- > One multimeter
- ➤ One DC supply

PROCEDURE:

> Connect the resistors in parallel across the power supply as shown in figure 2

- \triangleright Measure V_S, I_O, I₁, I₂, I₃. Take two sets of reading.
- Verify KCL as $I_S = I_1 + I_2 + I_3$ for each set of readings.
- ➤ Calculate the theoretical values of I, I1, I2 & I3 & note them down in 'theoretical observation' row in table
 Use the following to get these values:

I1=V/R1; I2=V/R2; I3=V/R3; I=I1+I2+I3

TABLE 1: Verification of KCL.

Observation	R1	R2	R3	V	I	I1	I2	I3
Experimental								
Theoretical								

REPORT:

1. Comment on the obtained results and discrepancies (if any).