2.2 概念模型(教材2.3)

- 1. 基本概念
- 2. E-R模型

1. 基本概念

- (1) 实体 (Entity)
 - · 客观存在并可相互区别的事物称为实体。
 - ·可以是具体的人、事、物或抽象的概念。
 - ·例如:一个学生、一个部门、一张桌子、一个 账户
 - •实体的命名:
 - 实体与应用相关。例如,教务管理系统涉及的 实体有学生、。。。

1. 基本概念

(2) 属性 (Attribute)

实体所具有的某一特性称为属性。

一个实体可以由若干个属性来刻画。

例如:教务管理系统涉及的学生实体的属性有。。。

(3) 码(Key)

唯一标识实体的属性集<u>(一个属性或几个属性的属</u>性组)称为码。

例如:教务管理系统中,学生实体的码是学号。

码可能不唯一,例如:身份证号也是码。

(4) 域 (Domain)

・属性的取值范围称为该属性的域。

例如: 学号的域: 9位的数字字符串

出生日期的域: 1988-1-1,1994-12-31]

职工年龄的域: [18,60]

(5) 实体型(Entity Type)

- · 用实体名及其属性名集合来抽象和刻画同类实体称为实体型
- •实体型的表示:用实体名及属性名的列表表示
- 例如:学生(学号,姓名,性别,出生日期,专业,班级,系,身份证号,照片)课程(课程编号,课程名,学时,学分)银行卡(卡号,姓名,开户时间,身份证号,余额)

图书(。。。。)

(6) 实体集(Entity Set)

- 同一类型实体(实体型相同)的集合称为实体集
- •实体集的表示:
- 1.表格

学生

学号	姓名	性别	出生日期
20021001	张三	男	1978-5-6
20021003	李四	女	1980-1-24
20021004	王五	男	1979-11-12

- 2.集合 学生(学号,姓名,性别,出生日期) ={(20021001,张三,男,1978-5-6), (20021003,李四,女,1980-1-24),(20021004, 王五,男,1979-11-12)}
- 3.实体型 学生(学号,姓名,性别,出生日期)

(7) 联系(Relationship)

现实世界中事物内部以及事物之间的联系在信息 世界中反映为实体(集)内部的联系和实体 (集)之间的联系

联系的类型:

一对一联系(1:1)

一对多联系(1:n)

多对多联系(m:n)

2. E-R模型

・用E-R图来表示概念模型 ★

实体:用矩形表示,矩形框内写明实体名。

例:

学生

教师

属性:用椭圆形表示,并用无向边将其与相应的实体连接起来

■ 联系:

联系:用菱形表示,菱形框内写明联系名,并用无向边分别与有关实体连接起来,同时在无向边旁标上联系的类型(1:1、1:n或m:n)

联系的属性:联系也可以有属性。如果一个联系具有属性,则这些属性也要用无向边与该联系连接起来

• 两个(不同)实体型之间的联系

用图形(E-R图)来表示<u>两个实体型之间的三类联系</u>

1:1联系

1:n联系

m:n联系

• 两个实体型之间的联系(续)

•一对一联系(1:1)

・定义: 🛖

如果对于实体集A中的每一个实体,实体集B中至多有一个(也可以没有)实体与之联系,反之亦然,则称实体集A与实体集B具有一对一联系,记为1:1

- 实例
 - 一个班级只有一个正班长
 - 一个班长只在一个班中任职

1:1联系

• 两个实体型之间的联系(续)

- •一对多联系(1:n)
 - 实例
 - 一个班级中有若干名学生, 每个学生只在一个班级中学习
 - ・定义: ★

如果对于实体集A中的每一个实体,实体集B中有n个实体(n≥0)与之联系,反之,对于实体集B中的每一个实体,实体集A中至多只有一个实体与之联系,则称实体集A与实体集B有一对多联系,记为1:n

1:n联系

• 两个实体型之间的联系(续)

- ·多对多联系(m:n)
 - 实例

课程与学生之间的联系:

- 一门课程同时有若干个学生选修
- 一个学生可以同时选修多门课程
- 定义:

如果对于实体集A中的每一个实体,实体集B中有n个实体(n≥0)与之联系,反之,对于实体集B中的每一个实体,实体集A中也有m个实体(m≥0)与之联系,则称实体集A与实体B具有多对多联系,记为m:n

m:n联系

• 两个以上实体型之间的联系

- 两个以上实体型之间一对多联系
 - 若实体型 E_1 , E_2 , ..., E_n 存在联系,对于实体型 E_j (j=1, 2, ..., i-1, i+1, ..., n) 中的给定实体,最多只和 E_i 中的一个实体相联系,则我们说 E_i 与 E_1 , E_2 , ..., E_{i-1} , E_{i+1} , ..., E_n 之间的联系是一对多的

* 实例

课程、教师与参考书三个实体

型

一门课程可以有若干个教师讲授, 使用若干本参考书, 每一个教师只讲授一门课程, 每一本参考书只供一门课程使用

三个实体型间1:n联系

• 两个以上实体型之间的联系(续)

- 两个以上实体型间的多对多联系
 - 实例

供应商、项目、零件三个实体型

一个供应商可以供给多个项目多种零件;

每个项目可以使用多个供应商供应的 零件;

每种零件可由不同供应商供给.

(注意:多对多联系符号只能用m、n、p表示)

三个实体型间m:n联系

• 两个以上实体型之间的联系(续)

- · 以上两个实例也称为三元联系
 - 举例: 三元的一对一联系

三个实体型间的1:1联系

• 单个实体型内的联系

- 同一实体集内的各实体之间的关系
 - 一对多联系

实例

职工实体型内部具有领导与被领导的 联系

某一职工(干部)"领导"若干名职工一个职工仅被另外一个职工直接领导 这是一对多的联系

职工实体型内部的1:n 联系

单个实体型内的联系(续)

❖同一实体集内的各实体之间的关系

■多对多联系

举例:

件。

某一零件由其他几种零件组装构成; 某一种零件用于组装其他的几种零

单个实体型内的 m:n联系

联系的属性的表示方法:

E-R图实例—某企业物资管理数据库的概念模型

(1) 仓库:属性有仓库号、面积、电话

(2) 零件:属性有零件号、名称、规格、单价、描述

(3) 供应商:属性有供应商号、姓名、地址、电话、帐号

(4) 项目:属性有项目号、预算、开工日期

E-R图实例——物资管理

实体:仓库、零件、供应商、项目、职工

联系1:仓库和零件 联系2:仓库和职工

联系3:零件、供应商、项目 联系4:职工之间

物资管理(总体)E-R图

(c) 完整的实体-联系图

概念模型小结:

- · 概念模型描述了信息世界,是对现实世界抽象的 结果。
- · 对现实世界抽象的方法: 找出实体和联系。
- · 概念模型的表示:E-R图,因此,概念模型也称为 E-R模型。
- 概念模型与机器无关。
- · 如何设计概念模型:在第4章中具体介绍。

