Chapter 6 Hypothesis Testing

In hypothesis testing, we test an assumed (hypothesised) value of a population parameter. Using some sample information, we may want to know whether a given claim (or statement) about a population parameter is true or not. Then, we can either accept or reject the hypothesised value.

Statistical Hypothesis

- ⇒ A statement, assumption or belief about a population parameter(s)
- ⇒ Experimental or sample evidence is required to verify the statement

Null Hypothesis (H_0)

- ⇒ A claim (or statement) about a population parameter that is assumed to be true until it is declared false
- ⇒ Specifies the value of the population parameter to be tested

Alternative Hypothesis (H_1)

- ⇒ A claim (or statement) about a population parameter that will be true if the null hypothesis is false
- \Rightarrow The rejection of H_0 means to accept the alternative hypothesis H_1

Results of hypothesis testing

There are only four possible results when we test a given hypothesis.

- 1. We accept a true hypothesis
 - ⇒ a correct decision
- 2. We reject a false hypothesis
 - ⇒ a correct decision
- 3. We reject a true hypothesis
 - ⇒ an incorrect decision
 - \Rightarrow known as Type I error (denoted by α --- "alpha")
- 4. We accept a false hypothesis
 - ⇒ an incorrect decision
 - \Rightarrow known as Type II error (denoted by β --- "beta")

Significance Levels

⇒ The maximum probability of making Type I error in hypothesis testing

- \Rightarrow Denoted by α
- ⇒ Usually specified before a hypothesis test is made
- \Rightarrow The value of 5% ($\alpha = 0.05$) or 1% ($\alpha = 0.01$) is frequently used

Example:

If we select 5% significance level, we will expect that the probability of making an error of rejecting the hypothesis when it is true is 5%. In other words, we are about 95% confidence that we will make a correct decision although we could be wrong with a probability of 5%.

Type I error (denoted by α)

- ⇒ Occurs when a null hypothesis is rejected as false when in fact it is true
- $\Rightarrow \alpha = P(H_0 \text{ is rejected} \mid H_0 \text{ is true})$
- \Rightarrow The value of α represents the significance level of the test

Type II error (denoted by β)

- ⇒ Occurs when a null hypothesis is accepted as true when in fact it is false
- $\Rightarrow \beta = P(H_0 \text{ is not rejected} \mid H_0 \text{ is false})$
- \Rightarrow The value of β represents the probability of committing a Type II error
- \Rightarrow The value of 1- β is called the power of the test; it represents the probability of not making a Type II error

Critical Region / Rejection Region

- ⇒ The region which corresponds to a predetermined levels of significance
- ⇒ When the sample statistic falls in the critical region, we reject the hypothesis as it will be considered to be false

The critical region may be represented by a portion of the area under the normal curve in two ways:

- 1. Two tails or sides under the curve
- 2. One tail or side under the curve which is either the right tail or left tail

Two-tailed test

⇒ The test of hypothesis which are based on a critical region represented by both tails under the normal curve

	Rejection Re	gion	A	cceptance Regi	ion	* Critical Value
	e-tailed test The test of hyponly only one tails u				ritical regio	on represented by
*	Right-tailed tes	st				
*	Left-tailed test					
	Rejection Region Acceptance Region * Critical Value					
Critical value ⇒ The value that separates the rejection region from the acceptance region						
		Sign	of H_1	Type of t	test	
			>	Right-tailed	d test	
		=	≠	Two-tailed	test	

Left-tailed test

<

There are different notations for mean, standard deviation, proportion and size of a population and a sample.

Statistic	Population	Sample
Mean	μ	\overline{X}
Standard deviation	σ	S
Proportion	π	P_{s}
Size	N	n

Steps to perform a hypothesis testing

- 1. State the null and alternative hypothesis
- 2. Determine the significance level α and the critical value
- 3. Select the distribution (test statistic) to use
- 4. Determine the rejection and non-rejection regions
- 5. Calculate the value of the test statistic
- 6. Make a decision (reject H_0 or fail to reject H_0)

Test Statistic

 \Rightarrow can be defined as a rule/criterion to determine acceptance/rejection of H_0

Hypothesis testing about a population mean: Large sample

★ The null and alternative hypothesis

	Null Hypothesis H_0	Alternative Hypothesis H_1	Type of test
(i)	$\mu = \mu_0$	$\mu \neq \mu_0$	Two-tailed test
(ii)	$\mu=\mu_0$ or $\mu\geq\mu_0$	$\mu < \mu_0$	Left-tailed test
(iii)	$\mu=\mu_0$ or $\mu\leq\mu_0$	$\mu > \mu_0$	Right-tailed test

★ Test statistic

i)
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
 if σ is known

ii)
$$Z = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
 if σ is unknown and $n \ge 30$

★ Critical value and rejection region

	H_{0}	H_1	Critical Value	Critical Region
(i)	$\mu = \mu_0$	$\mu \neq \mu_0$	$\pmZ_{lpha/2}$	$Z < -Z_{lpha/2}$ or $Z > Z_{lpha/2}$
(ii)	$\mu \ge \mu_0$	$\mu < \mu_0$	$-Z_{\alpha}$	$Z < -Z_{\alpha}$
(iii)	$\mu \leq \mu_0$	$\mu > \mu_0$	Z_{lpha}	$Z > Z_{\alpha}$

(i) Two-tailed test

(ii) Left-tailed test

(iii) Right-tailed test

Rejection Region	Non-rejection / Acceptance Region
- reject H_0 / Accept H_1	- do not reject H_0

Example 1:

A company markets car tyres. Their lives are normally distributed with a mean of 40,000 km and standard deviation of 3,000 km. A change in the production process is believed to result in a better product. A test sample of 64 new tyres has a mean life of 41,200 km. Can you conclude that the new product is significantly better than the current one? ($\alpha = 0.05$)

Example 2:

A large retailer wants to determine whether the mean income of families living within two miles of a proposed building site exceeds RM14400. What can he conclude at the 0.05 level of significance, if the mean income of a random sample of 60 families living within two miles of the proposed site is RM14524 and the standard deviation is RM763?

Example 3:

It is thought that a certain Normal population has a mean of 1.6. A sample of 50 gives a mean of 1.51 and a standard deviation of 0.3. Does this provide evidence, at the 5% level, that the population mean is less than 1.6?

Solution:

Example 4:

The expected lifetime of electric light bulbs produced by a given process was 1500 hours. To test a new batch, a sample of 40 was taken which showed a mean lifetime of 1410 hours. The standard deviation is 90 hours. Test the hypothesis that the mean lifetime of the electric light bulbs has not changed, using a level of significance of 0.05.

Example 5:

The management of a club claims that its members lose an average of 2 kilograms or more within the first month after joining the club. A consumer agency wanted to check this claim took a random sample of 36 members of this health club and found that they lost an average of 1.8 kilograms within the first month of membership with a standard deviation of 0.5 kilograms. Test the management's claim at the 0.05 level of significance. Solution:

Hypothesis testing about a population proportion: Large sample

★ The null and alternative hypothesis

	Null Hypothesis H_0	Alternative Hypothesis H_1	Type of test
(i)	$\pi = \pi_0$	$\pi \neq \pi_0$	Two-tailed test
(ii)	$\pi=\pi_0 \text{ or } \pi\geq\pi_0$	$\pi < \pi_0$	Left-tailed test
(iii)	$\pi=\pi_0$ or $\pi\leq\pi_0$	$\pi > \pi_0$	Right-tailed test

★ Test statistic

$$Z = \frac{P_s - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}} \quad \text{or} \quad Z = \frac{nP_s - n\pi_0}{\sqrt{n\pi_0(1 - \pi_0)}} \quad \text{or} \quad Z = \frac{X - n\pi_0}{\sqrt{n\pi_0(1 - \pi_0)}}$$

★ Critical value and rejection region

	H_{0}	H_1	Critical Value	Critical Region
(i)	$\pi = \pi_0$	$\pi \neq \pi_0$	$\pmZ_{lpha/2}$	$Z < -Z_{\alpha/2}$ or $Z > Z_{\alpha/2}$
(ii)	$\pi \geq \pi_0$	$\pi < \pi_0$	$-Z_{\alpha}$	$Z < -Z_{\alpha}$
(iii)	$\pi \leq \pi_0$	$\pi > \pi_0$	\overline{Z}_{lpha}	$Z > Z_{\alpha}$

	(i) Two-tailed test	
(ii) Left-tailed test	(iii) Right-tailed test	

Note:

- 1. π_0 = the population proportion (predetermined constant)
- 2. $P_s =$ the sample proportion

Rejection Region

- reject H_0 / Accept H_1

3. Population proportion $\boldsymbol{\pi}$, is used instead of sample proportion because the population proportion is known

Non-rejection Region

- do not reject H_0

Example 6:

In an investigation into ownership of calculators, 200 randomly chosen school students were interviewed, 163 of them owned a calculator. Using the evidence of this sample, test at the 5% level of significance, hypothesis that the proportion of school students owning a calculator is more than 80%.

Example 7:

An election candidate claims that 60 percent of the voters support him. A random sample of 2500 voters show that 1400 support him. Test his claim at 0.10 level of significance.

Solution:

Example 8:

A coin is tossed 100 times and 38 heads are obtained. Is there evidence, at the 2% level that the coin is biased in favour of tails?

Solution:

Example 9:

ABC Mailing Company sells computers and computer parts by mail. The company claims that at least 90% of all orders are mailed within 72 hours after they are received. The quality control department at the company often takes samples to check if this claim is valid. A recently taken sample of 150 orders showed that 129 of them were mailed within 72 hours. Do you think the company's claim is true? Use a 2.5% significance level.