Quiz 2 Solutions

MATH 100 October 15, 2018

(1) (Q) Determine the truth value of each of the following statements:

a)
$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R} \text{ s.t. } y = x^2 + 1$$

b)
$$\exists x \in [0,2]$$
 s.t. $x^5 - 2x^3 - 2 = 0$

- (A) a) We can see that for y=0 there does not exist a $x \in \mathbb{R}$ s.t. $x^2+1=0$ because $x=\pm i \notin \mathbb{R}$. It follows that the statement has a truth value of \mathbf{F} .
 - b) Let $f(x) = x^5 2x^3 2$. By direct evaluation we see that f(0) = -2 and f(2) = 14 and so by the Intermediate Value Theorem there exists a $x \in [0,2]$ s.t. f(x) = 0. It follows that the statement has a truth value of T.
- (2) (Q) For $A=\{1,2,\ldots,6\}$ and $B=\{1,2,\ldots,7\}$ let P(x):7x+4 is odd and Q(y):5y+9 is odd where $x\in A$ and $y\in B$. Now define:

$$S = \{(P(x), Q(y)) \mid x \in A, y \in B, \text{ and } P(x) \implies Q(y) \text{ is false}\}$$

What is |S|?

(A) For the implication to be ${\bf F}$ we want P(x) and Q(y) to be ${\bf T}$ and ${\bf F}$ respectively. By directly plugging in we can see that P(x) takes on the truth value ${\bf T}$ exactly when x=1,3, and 5. Moreover, for y=1,3,5, and 7 we see that Q(y) takes on the truth value ${\bf F}$. Any pair of the x and y values just mentioned will produce $({\bf T},{\bf F})\in {\cal S}$ which is in fact the only element inside the set as no other pair of truth values will make the implication ${\bf F}$. Therefore, $|{\cal S}|=1.$