

Маргини на шум – одредување кај транзисторскиот инвертор

- Од преносната карактеристика:
 - \square Тангенти со наклон -1 ги даваат точките (V_{IL}, V_{OH}) и (V_{IH}, V_{OL})

Услов транзисторот да оди во **Sat:** $I_B>I_{Cmax}/\beta \Rightarrow R_B/R_C<\beta \approx 10$ (најлош случај е $\beta\approx 10$)

Електроника, 3ФЕИТ053018

14

Маргини на шум кај транзисторскиот инвертор (приближна пресметка - информативно)

■ 3а типичен случај на β=100, а R_B/R_C=10 :

Act-Sat границата го дава V_{IH} :

$$\frac{V_{IH} - 0.7}{R_B} = \frac{1}{\beta} \frac{V_{CC} - 0.2}{R_C} \Rightarrow$$

$$V_{IH} = 0.7 + \frac{R_B}{\beta R_C} (V_{CC} - 0.2) =$$

$$= 0.7 + \frac{10}{100} 4.8 \approx 1.2V$$

$$NM_H = V_{OH} - V_{IH} = 3.8V$$

 $NM_L = V_{IL} - V_{OL} = 0.5V$

Електроника, 3ФЕИТ053018

15

Потсетување за n-канален и p-канален мосфет (CMOS)

- Подлогите за n-мосфетот и p-мосфетот се поврзуваат на 0V и 5V соодветно со што меѓусебно се изолирани со инверзно поларизиран pn-спој
 - Истовремено (со инверзна поларизација) се изолирани и сорсевите и дрејновите од соодветните подлоги
- Co 0V на G се индуцира канал кај pmos (nmos исклучен), а со 5V на G се индуцира канал кај nmos (pmos исклучен)
 - □ Да забележиме: ако сорсевите не се споени на соодветните подлоги, тогаш S и D можат да си ги заменат улогите.

CMOS - инвертор

- Анализата следува директно од однесувањето на мосфетите како прекинувачи:
 - □ Р-каналниот води при ниско ниво на гејтот (0),
 - □ N-каналниот води при високо ниво на гејтот (1).

	Α	P1	N1	Υ
I	0	ON	OFF	1
	1	OFF	ON	0

25

пектроника, ЗФЕИТ053018

- Анализата е слична како кај инверторот.
- Забележливо е сериско поврзување кон масата и паралелно поврзување кон V_{DD}
 - □ При сериско поврзување треба да се вклучени обата за да има врска
 - □ При паралелно поврзување треба да бидат исклучени обата за да нема врска

Α	В	P1	P2	N1	N2	Υ
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

Електроника, 3ФЕИТ053018

26

CMOS – НИЛИ (пр. со три влеза)

- И овде важи анализата од НИ-колото.
- Сега кон масата има паралелна врска, а кон V_{DD} сериска врска.

TENTOUNE 30ENT053018

27

Трисостојбен излез (бафер) (информативно)

Кога влезот Е (enable) е 0
 тогаш излезот е исклучен = во
 состојба на висока импеданса

 Ако влезот Е е 1, тогаш излезот станува еднаков на А.

Ε	Α	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Електроника, 3ФЕИТ053018

30

Реализација на трисостојбен излез (информативно)

- Со билатерална порта
 - □ висока импеданса е кога портата е исклучена
- Со посебно управување на рmos и n-mos транзисторот во излезниот инвертор (бафер)
 - □ Пример (од каталог) кај колото MC14503 (=CD4503)

пектрочика ЗФЕИТ053018

31

