Design of a drift chamber tracking system for the IDEA experiment at FCC-ee

Niloufar Alipour Tehrani (CERN), Benedikt Hegner, Giovanni Francesco Tassielli, Francesco Grancagnolo, P. Janot, A. M. Kolano, G. Voutsinas

2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney, Australia r Collider Experiment (FCC) The Future Circular Collider Experiment (FCC)

A future possibility for the post-LHC era

- 3 options of circular colliders
 - FCC-ee: electron positron collisions
 - FCC-hh: proton proton collisions
 - FCC-eh: electron proton collisions
- \sim 100 km tunnel in Geneva area

Average bunch spacing [ns] 19.6 163

• FCC-ee collider narameters.

• 1 CC-ee confuer paramet	ers.			
Stages	Z	WW	H (ZH)	tī
Beam energy [GeV]	45.6	80	120	182.5

The IDEA detector concept for FCC-ee

• The IDEA detector is one of the two detector concepts for the FCC-ee experiment

3396

- Ultimate goal for the IDEA detector concept
 - Vertex detector: MAPS
 - Ultra-light drift chamber with particle identification
 - Double readout calorimetry
 - Aditional silicon disk layers placed in the space between the drift chamber and the dual readout calorimeter to increase the forward coverage
 - 2 T solenoidal magnetic field
 - Instrumented return yoke
 - Large tracking volume (R \sim 8 m) for very weakly coupled (long-lived) particles

- Common software for all FCC experiments (ee, hh & eh)
- Detector and physics studies
- Fast & full simulations
- One software stack from event generation to physics analysis
- Collaborative approach with other CERN experiments
 - Gaudi from LHC
 - DD4hep from CLIC & LHCb
 - New solutions where needed

Geometry	Segmen-	Geant4	Digiti-
DDhep	tation	simulation	zation

The IDEA detector as simulated with FCCSW

The IDEA detector as simulated with FCCSW

The parameters of the drift chamber

• The parameters of the drift chamber

position of	
Gas	90 % Helium &
	10 % isobutane
Length	4500 mm
Inner radius	345 mm
Outer radius	2000 mm
Nb. layer	112
Cell size	12 mm - 14.7 mı

Number of sensitive wires 56448 Single cell resolution 0.1 mm Longitudinal resolution 1 mm

- The first layer of
- Wires are illustrated using different colors
- The wires are rotated by a stereo angle to increase the hit resolution

wires ratio 5:1

of layers measuring the tracks.

Main sources of beam-induced backgrounds

- Three main sources of beam-induced backgrounds
 - Incoherent e^+e^- pairs du to bremstrahlung photons \Rightarrow highest source of background
 - $\gamma\gamma \rightarrow$ hadrons \Rightarrow Expected to have a very low impact
 - Synchrotron radiation (SR) \Rightarrow Dictates the design of the interaction region (IR)
 - Defines the beampipe radius, the design of the shielding (in Tungesten)
 - Mostly stopped by the shielding, few SR photons can hit the detector

z [mm]

	 In the barrel region, the drift
of the drift chamber	chamber has a high coverage o
rated using different	\sim 112 wires in average.

80

60

40 |

20 [

 In the forward region, silicon disks are foresean to increase the number

40

60

20

80

100

Layers

Background	Average occupancy		
	$E_{cm} = 91.2 \text{ GeV}$	$E_{cm} = 365 \text{ GeV}$	
e^+e^- pair background	1.1%	2.9%	
$\gamma\gamma ightarrow { m hadrons}$	0.001%	0.035%	
Synchrotron radiation	_	0.2%	

 The overall impact remains low and the results are promising for the track reconstruction with this detector.

