Éléments de Logique Opérations sur les propositions

MPSI 2

1 Codage et valeurs logiques

Soit A une proposition. On lui associe une valeur logique (Vrai ou Faux) ou binaire (0 ou 1)

Soient A et B. Si A et B ont la même valeur logique, on note $A \sqcup B$

Soient a et b deux codages binaires.

- Négation de a: $\neg a = 1 a$
- " $a \lor b$ ", "a ou b", "a sup b"

		$(a \lor b)$	
1	1	1	-
1	0	1	$a \lor b = a + b - a b$
0	1	1	
0	0	0	
		$\begin{array}{c cc} a & b \\ \hline 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ \end{array}$	$\begin{array}{c cccc} a & b & (a \lor b) \\ \hline 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ \end{array}$

• " $a \wedge b$ ", "a et b", "a inf b"

α	10	$, a \leftarrow b \rightarrow b$, 4 1111 0
a	b	$(a \wedge b)$	
1	1	1	•
1	0	0	$a \wedge b = a b$
1 0 0	1	0	
0	0	0	

2 Opérations élémentaires sur les propositions

Soient A et B deux propositions de codage binaire a et b. On a alors:

• Négation de A: c'est la proposition dont le codage binaire est $\neg a$.

A	non(A)
1	0
0	1

• Disjonction: "A ou B" est la proposition codée par " $a \vee b$ ".

A	$\mid B \mid$	$(A \vee B)$	
1	1	1	\bullet "A ou B " est Vraie si A est Vraie ou si B est Vraie.
1	0	1	
0	1	1	• " A ou B " est Fausse ssi " A et B " est Fausse.
0	0	0	

3 Autres opérations

• La conjonction

Definition 3.0.1

"A et B" est la proposition "non(non(A) ou non(B))"

• L'implication

Definition 3.0.2

" $A \Rightarrow B$ " est la proposition "non(A) ou B"

A	$\mid B \mid$	$(A \Rightarrow B)$	
1	1	1	• Si A est Fausse, $A \Rightarrow B$ est Vraie par définition.
1	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	0	
0	1	1	\bullet Si A est Vraie, il faut démontrer que B est Vraie.
0	0	1	

- La contraposé: " $A \Rightarrow B$ " et " $non(B) \Rightarrow non(A)$ " ont la même valeur logique. Démonstration triviale.
- l'équivalence

Definition 3.0.3

" $A \Leftrightarrow B$ " est la proposition " $(A \Rightarrow B)$ et $(B \Rightarrow A)$ "

A	$\mid B \mid$	$(A \Leftrightarrow B)$
1	1	1
1	0	0
0	1	0
0	0	1

Remarques:

- 1/ Négation de "ou" et "et":
 - $non(a ou b) \sqcap non(A) et non(B)$
 - $non(a \ et \ b) \ H \ non(A) \ ou \ non(B)$
- 2/ Négation de l'implication: $non(A \Rightarrow B) \vdash A \ et \ non(B)$