MO – Projekt

Zbrojenie

Maksymilian Skibiński, Paweł Kaźmieruk

13 czerwca 2021 r.

Prostokątny fundament

Zbrojenie

 \mathbf{a}

Zbrojenie – uproszczenie

Sklep

Oferta sklepu:

• możemy kupować druty o rozmiarze e [m],

Sklep

Oferta sklepu:

- możemy kupować druty o rozmiarze e [m],
- możemy je także ciąć dowolną ilość razy w dowolnych miejscach.

Sklep

Oferta sklepu:

- możemy kupować druty o rozmiarze e [m],
- możemy je także ciąć dowolną ilość razy w dowolnych miejscach.

Wszystko oczywiście kosztuje:

cena za metr pręta: g [zł],

cena za jedno cięcie: h [zł].

Pozostałe informacje

 Transport prętów wymaga, by wszystkie pręty były niedłuższe niż f [m],

Pozostałe informacje

- Transport prętów wymaga, by wszystkie pręty były niedłuższe niż f [m],
- Jeśli do budowy jednego pręta na siatce fundamentowej użyjemy więcej niż jednego pręta, to należy zastosować "zakładkę" o minimalnej długości i [m].

Podsumowanie

Wszystkie parametry:

• a x b [m] – wymiary fundamentu,

7/27

Podsumowanie

- a x b [m] wymiary fundamentu,
- $c \times d$ [m] wymiary "oczka" siatki,

Podsumowanie

- a x b [m] wymiary fundamentu,
- c x d [m] wymiary "oczka" siatki,
- e rozmiar sprzedawanych prętów,

Podsumowanie

- a x b [m] wymiary fundamentu,
- c x d [m] wymiary "oczka" siatki,
- e rozmiar sprzedawanych prętów,
- g koszt jednego metra pręta,

Podsumowanie

- a x b [m] wymiary fundamentu,
- c x d [m] wymiary "oczka" siatki,
- e rozmiar sprzedawanych prętów,
- g koszt jednego metra pręta,
- h koszt jednego cięcia,

Podsumowanie

- a x b [m] wymiary fundamentu,
- c x d [m] wymiary "oczka" siatki,
- e rozmiar sprzedawanych prętów,
- *f* − ograniczenie transportowe,
- g koszt jednego metra pręta,
- h koszt jednego cięcia,

Podsumowanie

- a x b [m] wymiary fundamentu,
- c x d [m] wymiary "oczka" siatki,
- e rozmiar sprzedawanych prętów,
- *f* − ograniczenie transportowe,
- g koszt jednego metra pręta,
- h koszt jednego cięcia,
- i długość minimalnej zakładki.

Podsumowanie

Dostaliśmy także pewne przykładowe wartości tych parametrów:

```
a \times b = 8 \text{ m} \times 8 \text{ m},

c \times d = 0.2 \text{ m} \times 0.15 \text{ m},

e = 6 \text{ m},

f = 4 \text{ m},

g = 2.08 \text{ z}^{1},

h = 0.2 \text{ z}^{1},

i = 0.3 \text{ m}.
```

Opis matematyczny

Kupno

- Możemy kupować pręty e metrowe,
- ale możemy je także ciąć w dowolnych miejscach dowolną ilość razy.

Zapis wektorowy

W ten sposób, wszystkie pręty, które posiadamy możemy opisywać w postaci wektorów:

$$\mathbf{p}_{1} = [p_{11} \ p_{12} \ \cdots \ p_{1i} \ \cdots \ p_{1Y_{1}}]$$

$$\mathbf{p}_{2} = [p_{21} \ p_{22} \ \cdots \ p_{2i} \ \cdots \ p_{2Y_{2}}]$$

$$\vdots$$

$$\mathbf{p}_{j} = [p_{j1} \ p_{j2} \ \cdots \ p_{ji} \ \cdots \ p_{jY_{j}}]$$

$$\vdots$$

$$\mathbf{p}_{U} = [p_{U1} \ p_{U2} \ \cdots \ p_{Ui} \ \cdots \ p_{UY_{U}}]$$

Zapis wektorowy

W ten sposób, wszystkie pręty, które posiadamy możemy opisywać w postaci wektorów:

$$\mathbf{p}_{1} = [p_{11} \ p_{12} \ \cdots \ p_{1i} \ \cdots \ p_{1Y_{1}}]$$

$$\mathbf{p}_{2} = [p_{21} \ p_{22} \ \cdots \ p_{2i} \ \cdots \ p_{2Y_{2}}]$$

$$\vdots$$

$$\mathbf{p}_{j} = [p_{j1} \ p_{j2} \ \cdots \ p_{ji} \ \cdots \ p_{jY_{j}}]$$

$$\vdots$$

$$\mathbf{p}_{U} = [p_{U1} \ p_{U2} \ \cdots \ p_{Ui} \ \cdots \ p_{UY_{U}}]$$

Jest w sumie U prętów,

Zapis wektorowy

W ten sposób, wszystkie pręty, które posiadamy możemy opisywać w postaci wektorów:

$$\mathbf{p}_{1} = [p_{11} \ p_{12} \ \cdots \ p_{1i} \ \cdots \ p_{1Y_{1}}]$$

$$\mathbf{p}_{2} = [p_{21} \ p_{22} \ \cdots \ p_{2i} \ \cdots \ p_{2Y_{2}}]$$

$$\vdots$$

$$\mathbf{p}_{j} = [p_{j1} \ p_{j2} \ \cdots \ p_{ji} \ \cdots \ p_{jY_{j}}]$$

$$\vdots$$

$$\mathbf{p}_{U} = [p_{U1} \ p_{U2} \ \cdots \ p_{Ui} \ \cdots \ p_{UY_{U}}]$$

- Jest w sumie U prętów,
- Każdy pręt p_i składa się z Y_i części.

Zapis macierzowy

Ewentualnie, można też zapisać wszystko w postaci jednej większej macierzy:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1i} & \cdots & p_{1Y} \\ p_{21} & p_{22} & \cdots & p_{2i} & \cdots & p_{2Y} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{j1} & p_{j2} & \cdots & p_{ji} & \cdots & p_{jY} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{U1} & p_{U2} & \cdots & p_{Ui} & \cdots & p_{UY} \end{bmatrix}$$

Zapis macierzowy

Ewentualnie, można też zapisać wszystko w postaci jednej większej macierzy:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1i} & \cdots & p_{1Y} \\ p_{21} & p_{22} & \cdots & p_{2i} & \cdots & p_{2Y} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{j1} & p_{j2} & \cdots & p_{jj} & \cdots & p_{jY} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{U1} & p_{U2} & \cdots & p_{Ui} & \cdots & p_{UY} \end{bmatrix}$$

Ale, tym razem musiałby być ustalony pewien stały wymiar Y.

Ograniczenia

Na pręty oraz ich części ("podpręty") nałożone są ograniczenia:

 Długość całego pręta to e m, ze względu na sklep, zatem jego składowe muszą w sumie dawać e m:

$$\forall_{k\in\{1,2,\ldots,U\}} \quad \sum_{j=1}^{Y_k} p_{kj} = e$$

Ograniczenia

Na pręty oraz ich części ("podpręty") nałożone są ograniczenia:

 Długość całego pręta to e m, ze względu na sklep, zatem jego składowe muszą w sumie dawać e m:

$$\forall_{k\in\{1,2,\ldots,U\}} \quad \sum_{j=1}^{Y_k} p_{kj} = e$$

 Każda składowa każdego prętu musi być krótsza niż f m, ze względu na transport:

$$\forall_{k \in \{1,2,\ldots,U\}} \ \forall_{j \in \{1,2,\ldots,Y_k\}} \quad p_{kj} \leq f$$

Funkcja celu

Zatem, jako że chcemy minimalizować wydane pieniądze:

$$\min \leftarrow J = U \cdot e \cdot g + \sum_{j=1}^{U} (Y_j - 1) \cdot h$$

gdzie:

U – liczba prętów,

 Y_j – liczba "podprętów",

e – długość sprzedawanych prętów,

g – cena za metr pręta,

h – cena za jedno przecięcie.

Cała siatka składa się z wielu prętów i wygląda mniej więcej tak:

Cała siatka składa się z wielu prętów i wygląda mniej więcej tak:

Weźmy pod uwagę jeden pręt.

Zakładki

Jeśli mamy jeden pręt... to OK,

Zakładki

- Jeśli mamy jeden pręt... to OK,
- Jeśli kładziemy więcej niż jeden pręt stosujemy zakładkę o pewnej minimalnej długości,

Zakładki

- Jeśli mamy jeden pręt... to OK,
- Jeśli kładziemy więcej niż jeden pręt stosujemy zakładkę o pewnej minimalnej długości,
- równie dobrze zakładka może być dłuższa,

Zakładki

- Jeśli mamy jeden pręt... to OK,
- Jeśli kładziemy więcej niż jeden pręt stosujemy zakładkę o pewnej minimalnej długości,
- równie dobrze zakładka może być dłuższa,
- więcej prętów to więcej zakładek.

Zakładki

Spójrzmy na zakładkę od innej strony – rozsuńmy pręty:

a

Siatka Zakładki

Spójrzmy na zakładkę od innej strony – rozsuńmy pręty:

Czym więcej prętów, tym ich wspólna długość musi być większa.

Równanie stanu

Jeden pręt na siatce możemy opisać poprzez równanie stanu.

Równanie stanu

Jeden pręt na siatce możemy opisać poprzez równanie stanu.

$$x_{n+1} = x_n + u_n$$

$$x_0 = 0$$

$$x_N \ge a + (N-1) \cdot 2 \cdot i$$

$$i \le u_n \le f$$

gdzie:

a – to długość wymiaru siatki,

N – to liczba prętów na długości,

i – to długość minimalnej zakładki,

f − to ograniczenie transportowe.

Równania stanu

Każdy pręt z siatki jest opisanie przez swój stan i sterowania:

Równania stanu

Każdy pręt z siatki jest opisanie przez swój stan i sterowania:

Jest w sumie M prętów:

- R poziomych,
- M R pionowych.

Sterowania

Wektory sterowań dla każdego prętu siatki:

$$\mathbf{u}_{1} = \begin{bmatrix} u_{10} & u_{11} & \cdots & u_{1K_{1}} \end{bmatrix}$$

$$\mathbf{u}_{2} = \begin{bmatrix} u_{20} & u_{21} & \cdots & u_{2K_{2}} \end{bmatrix}$$

$$\vdots$$

$$\mathbf{u}_{i} = \begin{bmatrix} u_{i0} & u_{i1} & \cdots & u_{iK_{i}} \end{bmatrix}$$

$$\vdots$$

$$\mathbf{u}_{M} = \begin{bmatrix} u_{M0} & u_{M1} & \cdots & u_{MK_{M}} \end{bmatrix}$$

Sterowania

Wektory sterowań dla każdego prętu siatki:

$$\mathbf{u}_{1} = \begin{bmatrix} u_{10} & u_{11} & \cdots & u_{1K_{1}} \end{bmatrix}$$

$$\mathbf{u}_{2} = \begin{bmatrix} u_{20} & u_{21} & \cdots & u_{2K_{2}} \end{bmatrix}$$

$$\vdots$$

$$\mathbf{u}_{i} = \begin{bmatrix} u_{i0} & u_{i1} & \cdots & u_{iK_{i}} \end{bmatrix}$$

$$\vdots$$

$$\mathbf{u}_{M} = \begin{bmatrix} u_{M0} & u_{M1} & \cdots & u_{MK_{M}} \end{bmatrix}$$

Analogicznie do prętów zakupionych (p) te zapisy też możemy sprowadzić do jednej macierzy \mathbf{U} .

Podsumowanie

Równanie stanu:

$$x_{in+1} = x_{in} + u_{in}$$

Podsumowanie

Równanie stanu:

$$x_{in+1} = x_{in} + u_{in}$$

Ograniczenia na stan:

$$x_{i0} = 0$$
 $x_{iN_i} \ge \begin{cases} a + (N_i - 1) \cdot 2 \cdot i & \text{dla } i \in \{1, 2, \dots, R\} \\ b + (N_i - 1) \cdot 2 \cdot i & \text{dla } i \in \{R + 1, R + 2, \dots, M\} \end{cases}$

Podsumowanie

Równanie stanu:

$$x_{in+1} = x_{in} + u_{in}$$

Ograniczenia na stan:

$$x_{i0} = 0$$
 $x_{iN_i} \ge \begin{cases} a + (N_i - 1) \cdot 2 \cdot i & \text{dla } i \in \{1, 2, \dots, R\} \\ b + (N_i - 1) \cdot 2 \cdot i & \text{dla } i \in \{R + 1, R + 2, \dots, M\} \end{cases}$

Ograniczenie na sterowania to:

$$i \leq u_{in} \leq f$$
,

czyli pręty muszą być dłuższe niż minimalna zakładka (i), ale krótsze niż ograniczenie transportowe (f).

Zaproponowaliśmy opisy dwóch zagadnień:

- prętów zakupionych (wektory p),
- prętów na siatce (wektory u).

Zaproponowaliśmy opisy dwóch zagadnień:

- prętów zakupionych (wektory p),
- prętów na siatce (wektory u).

Jak to powiązać?

Zasada:

Dla każdego pręta p_{ij} (zakupionego) istnieje dokładnie jeden pręt u_{mk} (zbrojeniowy) i vice versa.

Zakładając macierzowy zapis P i U:

Niestety, sposób w jaki opisaliśmy problem utrudnił nam znalezienie rozwiązania...

Koniec