

Differentiable Inductive Logic Programming (∂ILP) for Fraud Detection

Data Science Master's Thesis - 2024

Boris Wolfson, Dr. Erman Acar † September 10, 2024

University of Amsterdam † Institute for Logic, Language and Computation

CODE

Github repo: https://github.com/wolfbrr/ThesisDS

OUTLINE

- 1. Introduction
- 2. ∂ILP
- 3. Fraud Detection Framework
- 4. Summary

Introduction

Introduction: Logic Programming - Definitions

Logic programming

- Family of programming languages in which the central component is an if-then rule/clause
- The rules of an ILP framework are written as a set of definite clauses of the following form:

$$\alpha \leftarrow \alpha_1, \alpha_2,, \alpha_n, \tag{1}$$

Here:

Introduction 00000

- A set of atoms $\{\alpha_i\}$ defines a body of the rule.
- α is the head atom of the rule, and equals to True, if all the atoms in the body are True
- Each atom is defined by a predicate

INTRODUCTION: LOGIC PROGRAMMING-EXAMPLES

Example - predicates:

Introduction

00000

 Q(X,Y): Q is a predicate of arity 2, can be "x is greater than y" and "x is the father of y", or x transferred money to y

Example - Logic Program

• The following program defines the set of rules \mathcal{R} for connected relations as the transitive closure of the edge relation:

$$connected(X,Y) \leftarrow edge(X,Y)$$

$$connected(X,Y) \leftarrow edge(X,Z), connected(Z,Y).$$
(2)

INDUCTIVE LOGIC PROGRAMMING

Idea: Based on the background knowledge \mathcal{B} , to derive a set of rules \mathcal{R} for a target predicate such that it [Muggleton, 1991]:

- entails all the positive examples \mathcal{P}
- does not entail the negative examples \mathcal{N}

INDUCTIVE LOGIC PROGRAMMING-EXAMPLE

Example - Even numbers [Evans and Grefenstette, 2018], learn target predicate even(X):

- $\mathcal{B} = \{zero(0), succ(0,1), succ(1,2), succ(2,3), succ(3,4), succ(4,5)\}$
- $\mathcal{P} = \{even(0), even(2), even(4)\}$
- $\mathcal{N} = \{even(1), even(3), even(5)\}$

Possible Solution

Introduction

00000

$$\begin{aligned} & even(X) \leftarrow zero(X) \\ & even(X) \leftarrow even(Y), succ2(Y, X) \\ & succ2(X, Y) \leftarrow succ(X, Z), succ(Z, Y) \end{aligned} \tag{3}$$

∂ILP

∂ILP:

- Combines advantages of ILP and the neural-network-based systems - Neurosymbolic (NeSy) AI.
- · Has two types of predicates:
 - The intensional P_i , target and auxiliary predicates $\{p_a\}$,
 - Yhe extensional P_e , from the background knowledge (zero(X), edge(X, Y), ...)
- Generates a list of possible definite clauses for intentional predicates based on the program template [Tausend, 1994]

Introduction

Each intensional predicate p_a is defined by its arity, and is described by two clauses according to rule templates $(\tau_{p_a}^1, \tau_{p_a}^2)$.

$$\tau = (n_{\exists}, int) \tag{4}$$

- n_∃ the number of existentially quantified variables allowed in the clause
- int is a flag that determines whether the atoms in the clause can use intensional predicates P_i

 ∂ ILP learns a set of clauses to minimize the loss function.

Fraud Detection Framework

PIPELINE

- Dataset Paysim [Lopez-Rojas et al., 2016], and synthetically generated scenarios
- *Binarizer* converts numerical columns to binary and creates sets of facts, positive and negative examples.
- High level rules generated SQL query from the derived rules

RESULTS

Chain of fraud

- Transaction(X,Y) X sends transaction to Y
 Fraud(Z,X) Transaction from Z to X is
 Fraud
- Fraud_Chain(X,Y) X and Y are in a chain of a
- fraud event • Template $\tau_{target}^1 = (n_3 = 1, int = 0)$
- Rule $Fraud_Chain(X, Y) \leftarrow Fraud(Z, X), Transaction(X, Y)$

	orig	destination	Fraud_chain-orig-destination
0	16058	16066	False
1	16065	16052	False
2	16036	16067	False
1	16006	16014	True
4	16043	16004	False
5	16011	16067	True
6	16002	16011	False
7	16051	16086	False
	16000	16077	Exica

Fraud Relationship

- Fraudsters(X,Y) X and Y are Fraudsters
- Fraud(X,Y) Transaction from X to Y is Fraud • Template $\tau_{target}^1 = (n_{\exists} = 0, int = 1)$

$$\tau_{target}^{2} = (n_{3} = 1, int = 1)$$

• Rule $\begin{aligned} & \textit{Fraudsters}(X,Y) \leftarrow \textit{Fraud}(X,Y) \\ & \textit{Fraudsters}(X,Y) \leftarrow \textit{Fraud}(Z,Y), \end{aligned}$

	×	¥	Fraudsters-X-Y	Fraud-X-Y
0	1	2	True	True
1	2	3	True	True
2	3	4	True	True
3	2	1	True	True
4	1	3	True	False
s	1	4	True	False
6	1	1	True	False
7	2	4	True	False
	2	2	True	False

PaySim Dataset

- Binarised Columns from Decision Trees Thresholds
- X transaction id
- Template

$$\begin{split} \tau_{target}^1 &= (n_\exists = 0, int = 1) \\ \tau_{target}^2 &= (n_\exists = 0, int = 1) \\ \tau_{p1}^1 &= (n_\exists = 0, int = 1) \end{split}$$

 $\tau_{p_1}^2 = (n_3 = 0, int = 1)$ $\tau_{p_1}^2 = None$ $\tau_{n_2}^1 = (n_3 = 0, int = 0)$

 $\tau_{p2}^1 = (n_{\exists} = 0, i_t$ $\tau_{p2}^2 = None$

Rule ^{**} p_Z = None
 isFraud(X₀) ← NOT{oldbalanceDest > -0.007}{X₀}, pred2(X₀)
 isFraud(X₀) ← pred2(X₀), amount > 1.297(X₀)
 prod1(X₀) ← NOT{oldbalanceDest > -0.007}{X₀}, pred2(X₀)
 pred2(X₀) ← external_dest(X₀), type_TRANSFER(X₀)

Performance	∂ILP	DT	DSC
Accuracy	0.999	0.999	0.999
Precision	0.973	0.971	0.984
Recall	0.501	0.665	0.501
F1	0.662	0.789	0.664
MCC	0.698	0.803	0.702

Summary

Pros/Cons

Introduction

· Pros:

- ∂ILP generalizes from a small amount of data Paysim results based on 1000 from the database out of 6 million transactions
- Can create recursion predicates
- Provided shorter explainable rules than the Decision Tree approach

PROS/CONS

- Cons:
 - Scalability
 - Did not outperform other techniques showed low recall
 - Expert knowledge Program Template definition

FUTURE DIRECTIONS

 One of the possible future work directions is to apply another neurosymbolic extension for ILP to the scenarios covered in this thesis.

REFERENCES I

Introduction

Evans, R. and Grefenstette, E. (2018).

Learning explanatory rules from noisy data.

Journal of Artificial Intelligence Research, 61:1-64.

Lopez-Rojas, E., Elmir, A., and Axelsson, S. (2016).

Paysim: A financial mobile money simulator for fraud detection.

In 28th European Modeling and Simulation Symposium, EMSS, Larnaca, pages 249-255. Dime University of Genoa.

Muggleton, S. (1991).

Inductive logic programming.

New generation computing, 8:295–318.

Tausend, B. (1994).

Representing biases for inductive logic programming.

In European Conference on Machine Learning, pages 427–430. Springer.