Regularization Methods and Cross Validation

Timothy Daley

November 30, 2016

Regularization methods

In linear models the goal is to minimize the residual sum of squares

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{i=1}^{p} \beta_i x_{ij} \right)^2$$

- ▶ What if we add a penalty term for the β_j 's?
 - ▶ Don't include β_0 since we could just set $\beta_0 = \bar{y}$ and de-mean the y's

Ridge regression

▶ Ridge regression adds a penalty proportional to β_i^2 :

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{i=1}^{p} \beta_i x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- ▶ This "shrinks" the β_j 's towards 0
 - But not all the way.

LASSO (least absolute shrinkage and selection operator)

▶ Lasso adds a penalty proportional to $|\beta_j|$:

$$\sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{i=1}^{p} \beta_{j} x_{ij} \right)^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|$$

▶ This "shrinks" the β_j 's to be 0

How to choose λ ?

- $\lambda = 0$ is equivalent to plain regression
- ▶ $\lambda = \infty$ will make all $\beta_j = 0$.
- ▶ Want $0 < \lambda < \infty$, but what is optimal?

Cross validation

- Divide the data into two non-overlapping parts:
 - Training set to build the model
 - ▶ Test set to test or validate the model
 - The model will naturally fit the training set better than the test set.
 - Use the performance test set to choose the best model

Cross validation

- In cross validation you successively divide the data into training and test sets
- Leave one out cross validation:
 - For each of the n observations, take the test set to be a single observation and the training set to be the other n-1 observations.
 - Average performance across the test sets.

k-fold cross validation

▶ In *k*-fold cross validation you divide the data into *k* parts. Use each *k* parts as test sets, successively, and the remainder as training. Average performance across *k* test sets.

