PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

DIFFERNATIONAL APPLICATION PURILISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	INTERNATIONAL APPLICATION PUBLIS	ישמח	DIADER HIP HILLERY COLLEGE	
1	(51) International Patent Classification 7:		(11) International Publication Number:	WO 00/28055
	C12N 15/82, 15/31, A01N 63/02	A3	(43) International Publicati n Date:	18 May 2000 (18.05.00)
7	(21) Internati nal Applicati n Number: PCT/US (22) International Filing Date: 4 November 1999		BR, BY, CA, CH, CN, CU, CZ, GD, GE, GH, GM, HR, HU, II KP, KR, KZ, LC, LK, LR, LS, L MN, MW, MX, NO, NZ, PL, P	, DE, DK, EE, ES, F1, GB, D, IL, IN, IS, JP, KE, KG, JT, LU, LV, MD, MG, MK,

US

(71) Applicant: EDEN BIOSCIENCE CORPORATION [US/US]; 11816 North Creek Parkway N., Bothell, WA 98011-8205

5 November 1998 (05.11.98)

(US).
(72) Inventors: WEI, Zhong-Min; 8230 125th Court, Kirkland, WA 98034 (US). SCHADING, Richard, L.; 3607 Carriage Gate

Drive, West Melbourne, FL 32904 (US).

(74) Agents: GOLDMAN, Michael, L. et al.; Nixon Peabody LLP,
Clinton Square, P.O. Box 1051, Rochester, NY 14603 (US).

DE, RR, KZ, LC, LK, LR, LS, LT, LU, LY, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurnsian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, EF, RF, RG, GR, ET, TL, UM, CN, LP, TS, ED, OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(88) Date of publication of the international search report: 14 September 2000 (14.09.00)

(54) Title: HYPERSENSITIVE RESPONSE ELICITOR-INDUCED STRESS RESISTANCE

(57) Abstract

(30) Priority Data:

60/107.243

The present invention is directed to imparting stress resistance to plants. This can be achieved by applying a hypersensitive response elicitor in a non-infectious form to plants or plant seeds under conditions effective to impart stress resistance to plants or plants served the plant seeds. Alternatively, transgenic plants or plants estable transformed with a DNA molecule encoding the elicitor can be provided and the transgenic plants or plants resulting from the transgenic plant seeds are grown under conditions effective to impart stress resistance to plants or plant grown from the plant seeds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	ĹŸ	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Togo
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Tajikistan .
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkmenistan
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Turkey
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Trinidad and
BR	Brazil	IL	Israel	MR	Mauritania	UG	Ukraine
BY	Belarus	IS	Iceland	MW	Malawi		Uganda
CA	Canada	IT	Italy	MX	Mexico	US	United States
CF	Central African Republic	JP	Japan	NE	Niger	UZ	Uzbekistan
CG	Congo	KE	Kenya	NL.	Niger Netherlands	VN	Viet Nam
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ		zw	Zimbabwe
CM	Cameroon		Republic of Korea	PL	New Zealand		
CN	China	KR	Republic of Korea	PT	Poland		
CU	Cuba	KZ	Kazakstan	RO	Portugal		
CZ	Czech Republic	LC	Saint Lucia		Romania		
DETA	-Germany V E D	u	Liechtenstein	RU SD	Russian Federation		
DK	Denmark	LK	Sri Lanka		Sudan		
		LR	Liberia	SE	Sweden		
SE	P ^E 2 ⁿⁱ 2 2000	- LK	Liucita	SG	Singapore		

HYPERSENSITIVE RESPONSE ELICITOR-INDUCED STRESS RESISTANCE

5

FIELD OF THE INVENTION

10

15

The present invention relates to imparting stress resistance to plants with a hypersensitive response elicitor.

BACKGROUND OF THE INVENTION

20

25

Under both natural and agricultural conditions, plants are exposed to various forms of environmental stress. Stress is mainly measured with respect to growth (i.e. biomass accumulation) or with respect to the primary assimilation processes (i.e. carbon dioxide and mineral intake). Soil water deficits, suboptimal and supraoptimal temperatures, salinity, and poor aeration of soils may each cause some growth restrictions during the growing season, so that the yield of plants at the end of the season expresses only a small fraction of their genetic potential. Indeed, it is estimated that in the United States the yield of field-grown crops is only 22% of genetic potential. The same physicochemical factors can become extreme in some habitats, such as deserts or marshes, and only specially adapted vegetation can complete its life cycle in the unusually hostile conditions. In less extreme environments, individual plants can become acclimated to changes in water potential, temperature, salinity, and oxygen deficiency so that their fitness for those environments improves. Some species are better able to adapt than others, and various anatomical, structural, and biochemical mechanisms account for acclimation.

30

Under natural and agriculture conditions, plants must constantly endure stress. Some environmental factors can become stressful in a very short period of time (e.g., high or low temperature) or may take long periods of time to stress plants (e.g., soil water content or mineral nutrients). Generally, environmental stress effecting plants can be in the form of climate related stress, air pollution stress,

10

15

20

25

30

chemical stress, and nutritional stress. Examples of climate related stress include drought, water, frost, cold temperature, high temperature, excessive light, and insufficient light. Air pollution stress can be in the form of carbon dioxide, carbon monoxide, sulfur dioxide, NO_x, hydrocarbons, ozone, ultraviolet radiation, and acidic rain. Chemical stress can result from application of insecticides, fungicides, herbicides, and heavy metals. Nutritional stress can be caused by fertilizers, micronutrients, and macronutrients.

For most plants, water is essential for growth. Some plants are able to preserve some water in the soil for later use, while others complete their life cycles during a wet season before the onset of any drought. Other plants are able to aggressively consume water to save themselves while causing water deprivation for other plants in that location. Plants lacking any of these capabilities are severely hampered by the absence of water.

Chilling injury occurs in sensitive species at temperatures that are too low for normal growth but not sufficiently low to form ice. Such injury typically occurs in species of tropical or subtropical origin. When chilling occurs, discoloration or lesions appear on leaves giving them a water-soaked appearance. If roots are chilled, the plants may wilt. On the other hand, freezing temperatures and the accompanying formation of ice crystals in plants can be lethal if ice crystals extend into protoplasts or remain for long periods.

Stress is also caused by the other temperature extremes with few plants being able to survive high temperatures. When higher plant cells or tissues are dehydrated or are not growing, they can survive higher temperatures than cells which are hydrated, vegetative, and growing. Tissues which are actively growing can rarely survive at temperatures above 45°C.

High salt concentrations are another form of environmental stress which can afflict plants. In natural conditions, such high concentrations of salt are found close to seashores and estuaries. Farther inland, natural salt may seep from geological deposits adjoining agricultural areas. In addition, salt can accumulate in irrigation water when pure water is evaporated or transpired from soil. About 1 all irrigated farmland is effected by high salt concentrations. High salt content not

only injures plants but degrades soil structure by decreasing porosity and water permeability.

Air pollution in the form of ozone, carbon dioxide, carbon monoxide, sulfur dioxide, NO_{x_1} and hydrocarbons can very adversely effect plant growth by creating smog and environmental warming.

The present invention is directed to overcoming various forms of environmental stress and imparting resistance in plants to such stress.

SUMMARY OF THE INVENTION

10

15

5

The present invention relates to the use of a hypersensitive response elicitor protein or polypeptide to impart stress resistance to plants. In one embodiment of the present invention, the hypersensitive response elicitor protein or polypeptide is applied to plants or plant seeds under conditions effective to impart stress resistance. Alternatively, stress resistance is imparted by providing a transgenic plant or plant seed transformed with a DNA molecule which encodes for a hypersensitive response elicitor protein or polypeptide and growing the transgenic plant or plants produced from the transgenic plant seeds under conditions effective to impart stress resistance.

20

25

30

Stress encompasses any environmental factor having an adverse effect on plant physiology and development. Examples of such environmental stress include climate-related stress (e.g., drought, water, frost, cold temperature, high temperature, excessive light, and insufficient light), air polllution stress (e.g., carbon dioxide, carbon monoxide, sulfur dioxide, NO₈, hydrocarbons, ozone, ultraviolet radiation, acidic rain), chemical (e.g., insecticides, fungicides, herbicides, heavy metals), and nutritional stress (e.g., fertilizer, micronutrients, macronutrients). Applicants have found that use of hypersensitive response elicitors in accordance with the present invention impart resistance to plants against such forms of environmental stress.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to the use of a hypersensitive response elicitor protein or polypeptide to impart stress resistance to plants. In one

10

20

25

30

embodiment of the present invention, the hypersensitive response elicitor protein or polypeptide is applied to plants or plant seeds under conditions effective to impart stress resistance. Alternatively, the stress resistance is imparted by providing a transgenic plant or plant seed transformed with a DNA molecule which encodes for a hypersensitive response elicitor protein or polypeptide and growing the transgenic plant or plants produced from the transgenic plant seeds under conditions effective to impart stress resistance.

The hypersensitive response elicitor polypeptides or proteins according

to the present invention are derived from hypersensitive response elicitor polypeptides or proteins of a wide variety of fungal and bacterial pathogens. Such polypeptides or proteins are able to elicit local necrosis in plant tissue contacted by the elicitor. Examples of suitable bacterial sources of polypeptide or protein elicitors include Erwinia, Pseudomonas, and Xanthamonas species (e.g., the following bacteria: Erwinia amylovora, Erwinia chrysanthemi, Erwinia stewartii, Erwinia carotovora, Pseudomonas syringae, Pseudomonas solancearum, Xanthomonas campestris, and 15 mixtures thereof). In addition to hypersensitive response elicitors from these Gram negative bacteria, it is possible to use elicitors from Gram positive bacteria. One

An example of a fungal source of a hypersensitive response elicitor protein or polypeptide is Phytophthora. Suitable species of Phytophthora include Phytophthora parasitica, Phytophthora cryptogea, Phytophthora cinnamomi, Phytophthora capsici, Phytophthora megasperma, and Phytophthora citrophthora.

example is Clavibacter michiganensis subsp. sepedonicus.

The hypersensitive response elicitor polypeptide or protein from Erwinia chrysanthemi has an amino acid sequence corresponding to SEQ. ID. No. 1 as follows:

Leu Gly Ser Ser Val Asp Lys Leu Ser Ser Thr Ile Asp Lys Leu Thr

Ser Ala Leu Thr Ser Met Met Phe Gly Gly Ala Leu Ala Gln Gly Leu

										_		~1	•	61. -	C1 n	cor	
	65					70					75				Gln	80	
	Phe	Gly	Asn	Gly	Ala 85	Gln	Gly	Ala	Ser	Asn 90	Leu	Leu	Ser	Val	Pro 95	Lys	
5	Ser	Gly	Gly	Asp 100	Ala	Leu	Ser	Lys	Met 105	Phe	Asp	Lys	Ala	Leu 110	Asp	Asp	
	Leu	Leu	Gly 115	His	Asp	Thr	Val	Thr 120	Lys	Leu	Thr	Asn	Gln 125	Ser	Asn	Gln	
10	Leu	Ala 130	Asn	Ser	Met	Leu	Asn 135	Ala	Ser	Gln	Met	Thr 140	Gln	Gly	Asn	Met	
	Asn 145	Ala	Phe	Gly	Ser	Gly 150	Val	Asn	Asn	Ala	Leu 155	Ser	Ser	Ile	Leu	Gly 160	
	Asn	Gly	Leu	Gly	Gln ī65	Ser	Met	Ser	Gly	Phe 170	Ser	Gln	Pro	Ser	Leu 175	Gly	
15	Ala	Gly	Gly	Leu 180	Gln	Gly	Leu	Ser	Gly 185	Ala	Gly	Ala	Phe	Asn 190	Gln	Leu	
	Gly	Asn	Ala 195	Ile	Gly	Met	Gly	Val 200	Gly	Gln	Asn	Ala	Ala 205	Leu	Ser	Ala	
20	Leu	Ser 210		Val	Ser	Thr	His 215	Val	Asp	Gly	Asn	Asn 220	Arg	His	Phe	Val	
	Asp 225		Glu	Asp	Arg	Gly 230	Met	Ala	Lys	Glu	1le 235	Gly	Gln	Phe	Met	Asp 240	
	Glr	туз	Pro	Glu	11e 245	Phe	Gly	Lys	Pro	250	тут	Gln	Lys	Asp	Gly 255	Trp	
25	Ser	Ser	Pro	260		Asp	Asp	Lys	265	Trp	Ala	Lys	Ala	270	ser	Lys	
	Pro) Ası	Asp 275		Gly	/ Met	Thr	Gl ₃	/ Ala	a Sei	. Met	. Asp	285	Phe	arg	Gln	
30	Ala	a Me		/ Met	: Ile	e Lys	Ser 295	Ala	a Vai	l Ala	a Gl	ASI 300	Th	r Gly	/ Asr	Thr	
	As:		u Ası	ı Le	ı Arg	31:	y Ala	a Gly	y Gl	y Ala	a Se:	r Let	ı Gl	y Ile	e Asp	320	
	Al	a Va	l Va	l Gl	y Asj 32:	o Ly	s Ile	e Ala	a As	n Me	t Se	r Le	u Gl	у Гу	s Let 33!	a Ala	
35	As	n Al	a														

This hypersensitive response elicitor polypeptide or protein has a molecular weight of 34 kDa, is heat stable, has a glycine content of greater than 16%, and contains

substantially no cysteine. The *Erwinia chrysanthemi* hypersensitive response elicitor polypeptide or protein is encoded by a DNA molecule having a nucleotide sequence corresponding to SEQ. ID. No. 2 as follows:

5	CGATTTTACC CGGGTGAACG TGCTATGACC GACAGCATCA CGGTATTCGA CACCGTTACG	60
	GCGTTTATGG CCGCGATGAA CCGGCATCAG GCGGCGCGCT GGTCGCCGCA ATCCGGCGTC	120
	GATCTGGTAT TTCAGTTTGG GGACACCGGG CGTGAACTCA TGATGCAGAT TCAGCCGGGG	180
	CAGCAATATC CCGGCATGTT GCGCACGCTG CTCGCTCGTC GTTATCAGCA GGCGGCAGAG	240
	TGCGATGGCT GCCATCTGTG CCTGAACGGC AGCGATGTAT TGATCCTCTG GTGGCCGCTG	300
10	CCGTCGGATC CCGGCAGTTA TCCGCAGGTG ATCGAACGTT TGTTTGAACT GGCGGGAATG	360
	ACGTTGCCGT CGCTATCCAT AGCACCGACG GCGCGTCCGC AGACAGGGAA CGGACGCGCC	420
	CGATCATTAA GATAAAGGCG GCTTTTTTTA TTGCAAAACG GTAACGGTGA GGAACCGTTT	480
	CACCGTCGGC GTCACTCAGT AACAAGTATC CATCATGATG CCTACATCGG GATCGGCGTG	540
	GGCATCCGTT GCAGATACTT TTGCGAACAC CTGACATGAA TGAGGAAACG AAATTATGCA	600
15	AATTACGATC AAAGCGCACA TCGGCGGTGA TTTGGGCGTC TCCGGTCTGG GGCTGGGTGC	660
	TCAGGGACTG AAAGGACTGA ATTCCGCGGC TTCATCGCTG GGTTCCAGCG TGGATAAACT	720
	GAGCAGCACC ATCGATAAGT TGACCTCCGC GCTGACTTCG ATGATGTTTG GCGGCGCGCT	780
	GGCGCAGGGG CTGGGCGCCA GCTCGAAGGG GCTGGGGATG AGCAATCAAC TGGGCCAGTC	840
	TTTCGGCAAT GGCGCGCAGG GTGCGAGCAA CCTGCTATCC GTACCGAAAT CCGGCGGCGA	900
20	TGCGTTGTCA AAAATGTTTG ATAAAGCGCT GGACGATCTG CTGGGTCATG ACACCGTGAC	960
	CAAGCTGACT AACCAGAGCA ACCAACTGGC TAATTCAATG CTGAACGCCA GCCAGATGAC	1020
	CCAGGGTAAT ATGAATGCGT TCGGCAGCGG TGTGAACAAC GCACTGTCGT CCATTCTCGG	1080
	CAACGGTCTC GGCCAGTCGA TGAGTGGCTT CTCTCAGCCT TCTCTGGGGG CAGGCGGCTT	1140
	GCAGGGCCTG AGCGGCGCGG GTGCATTCAA CCAGTTGGGT AATGCCATCG GCATGGGCGT	1200
25	GGGGCAGAAT GCTGCGCTGA GTGCGTTGAG TAACGTCAGC ACCCACGTAG ACGGTAACAA	1260
	CCGCCACTTT GTAGATAAAG AAGATCGCGG CATGGCGAAA GAGATCGGCC AGTTTATGGA	1320
	TCAGTATCCG GAAATATTCG GTAAACCGGA ATACCAGAAA GATGGCTGGA GTTCGCCGAA	1380
	GACGGACGAC AAATCCTGGG CTAAAGCGCT GAGTAAACCG GATGATGACG GTATGACCGG	1440
	CGCCAGCATG GACAAATTCC GTCAGGCGAT GGGTATGATC AAAAGCGCGG TGGCGGGTGA	1500
30	TACCGGCAAT ACCAACCTGA ACCTGCGTGG CGCGGGCGGT GCATCGCTGG GTATCGATGC	1560
	TAGCCARCAT GTCGCTGGT AAGCTGGCCA ACGCCTGATA	1620

170

	ATCTGTGCTG	GCCT	GATAA	A GC	GGAAA	CGA	LAAAA	AGAGA	C GG	GGAAG	CCT	STCTO	TTTT	С	1680	
	TTATTATGCG	GTTT	ATGCG	G TT	ACCTO	GAC	CGGT	TAATO	A TC	GTCAT	CGA 1	CTG	STACA	A	1740	
	ACGCACATTT	TCCC	GTTC	T TC	GCGT	CGTT	ACGC	GCCAC	TA AT	CGCGA	TGG	CATC:	TTCCT	C	1800	
	GTCGCTCAGA	TTGC	GCGGG	CT GA	TGGG	SAAC	GCCG	GGTGG	A AT	ATAGA	GAA .	ACTC	GCCGG	C	1860	
5	CAGATGGAGA	CACG	TCTG	CG AT	TAAA	CTGT	GCCG'	TAACO	T GT	TTCT	ATCC	GCCC	CTTTA	.G	1920	
	CAGATAGATT	GCGG	TTTC	ST AF	TCAA	CATG	GTAA	TGCGG	T TC	CGCC	TGTG	CGCC	GGCCG	G	1980	
	GATCACCACA	ATA	TCAT	AG AA	AAGCT	GTCT	TGCA	CCTA	CC GT	ATCG	CGGG	AGAT	ACCGA	C.	2040)
	AAAATAGGGC	AGT	TTTG	CG TO	GTAT	CCGT	GGGG	TGTT	cc gg	CCTG	ACAA	TCTT	GAGT	rg	2100)
	GTTCGTCATC	ATC:	TTCT	CC A	rctgg	GCGA	CCTG	ATCG	зт т						214	-
10														٠		
														ein de		l
	from Erwin	nia ar	nylov	ora l	nas ar	ami	no ac	id se	quen	ce co	rresp	ondi	ng to	SEQ.	ID.	
	No. 3 as fo	llows	3:													
15										_				-1-	-1-	
	Met 1	Ser	Leu	Asn	Thr 5	Ser	Gly	Leu	Gly	Ala 10	Ser	Thr	Met	Gln	11e 15	261
		Gly	Gly	Ala 20	Gly	Gly	Asn	Asn	Gly 25	Leu	Leu	Gly	Thr	ser 30	Arg	Gln
20	Asn	Ala	Gly 35	Leu	Gly	Gly	Asn	Ser 40	Ala	Leu	Gly	Leu	Gly 45	Gly	Gly	Asn
	Gln	Asn 50	Asp	Thr	Val	Asn	Gln 55	Leu	Ala	Gly	Leu	Leu 60	Thr	Gly	Met	Met
25	Met 65	Met	Met	Ser	Met	Met 70	Gly	Gly	Gly	Gly	Leu 75	Met	Gly	Gly	Gly	Leu 80
	Gly	Gly	Gly	Leu	Gly 85	Asn	Gly	Leu	Gly	Gly 90	Ser	Gly	Gly	Leu	Gly 95	Glu
	_			100					105					Leu 110		
30	Leu	Gly	Ser 115		Gly	Gly	Asn	Asn 120	Thr	Thr	Ser	Thr	Thr 125	Asn	Ser	Pro
		130)				135					140		Asp		
35	145	5				150)				155			Met		
	Let	ı Leı	ı Lys	Met	: Phe	Ser	Glu	ılle	Met	Glr	Ser	Let	Phe	Gly	Asp	Gly

165

	Gln	Asp	Gly	Thr 180	Gln	Gly	Ser	Ser	Ser 185	Gly	Gly	Lys	Gln	Pro 190	Thr	Glu
	Gly	Glu	Gln 195	Asn	Ala	Tyr	Lys	Lys 200	Gly	Val	Thr	Asp	Ala 205	Leu	Ser	Gly
5	Leu	Met 210	Gly	Asn	Gly	Leu	Ser 215	Gln	Leu	Leu	Gly	Asn 220	Gly	Gly	Leu	Gly
	Gly 225	Gly	Gln	Gly	Gly	Asn 230	Ala	Gly	Thr	Gly	Leu 235	Asp	Gly	Ser	Ser	Leu 240
10	Gly	Gly	Lys	Gly	Leu 245	Gln	Asn	Leu	Ser	Gly 250	Pro	Val	Asp	Tyr	Gln 255	Gln
	Leu	Gly	Asn	Ala 260	Val	Gly	Thr	Gly	11e 265	Gly	Met	Lys	Ala	Gly 270	Ile	Gln
	 Ala	Leu	Asn 275	Asp	Ile	Gly	Thr	His 280		His	ser	Ser	Thr 285	Arg	Ser	Phe
15	Val	Asn 290	Lys	Gly	Asp	Arg	Ala 295	Met	Ala	Lys	Glu	11e 300	Gly	Gln	Phe	Met
	Asp 305	Gln	Tyr	Pro	Glu	Val 310	Phe	Gly	Lys	Pro	Gln 315	Tyr	Gln	Lys	Gly	Pro 320
20	Gly	Gln	Glu	Val	Lys 325	Thr	Asp	Asp	Lys	Ser 330	Trp	Ala	Lys	Ala	Leu 335	Ser
	Lys	Pro	Asp	Asp 340	Asp	Gly	Met	Thr	Pro 345	Ala	Ser	Met	Glu	Gln 350	Phe	Asn
	Lys	Ala	Lys 355	Gly	Met	Ile	Lys	Arg 360	Pro	Met	Ala	Gly	Asp 365	Thr	Gly	Asn
25	Gly	Asn 370	Leu	Gln	Ala	Arg	Gly 375	Ala	Gly	Gly	Ser	Ser 380	Leu	Gly	Ile	Asp
	Ala 385	Met	Met	Ala	Gly	Asp 390	Ala	Ile	Asn	Asn	Met 395		Leu	Gly	Lys	Leu 400
	Gly	Ala	Ala													

This hypersensitive response elicitor polypeptide or protein has a molecular weight of about 39 kDa, has a pI of approximately 4.3, and is heat stable at 100°C for at least 10 minutes. This hypersensitive response elicitor polypeptide or protein has substantially no cysteine. The hypersensitive response elicitor polypeptide or protein derived from

35 Erwinia amylovora is more fully described in Wei, Z.-M., R. J. Laby, C. H. Zumoff, D. W. Bauer, S.-Y. He, A. Collmer, and S. V. Beer, "Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia amylovora,"

Science 257:85-88 (1992), which is hereby incorporated by reference. The DNA molecule encoding this polypeptide or protein has a nucleotide sequence corresponding to SEQ. ID. No. 4 as follows:

5	AAGCTTCGGC	ATGGCACGTT	TGACCGTTGG	GTCGGCAGGG	TACGTTTGAA	TTATTCATAA	60
	GAGGAATACG	TTATGAGTCT	GAATACAAGT	GGGCTGGGAG	CGTCAACGAT	GCAAATTTCT	120
	ATCGGCGGTG	CGGGCGGAAA	TAACGGGTTG	CTGGGTACCA	GTCGCCAGAA	TGCTGGGTTG	180
	GGTGGCAATT	CTGCACTGGG	GCTGGGCGGC	GGTAATCAAA	ATGATACCGT	CAATCAGCTG	240
	GCTGGCTTAC	TCACCGGCAT	GATGATGATG	ATGAGCATGA	TGGGCGGTGG	TGGGCTGATG	300
10	GGCGGTGGCT	TAGGCGGTGG	CTTAGGTAAT	GGCTTGGGTG	GCTCAGGTGG	CCTGGGCGAA	360
	GGACTGTCGA	ACGCGCTGAA	CGATATGTTA	GGCGGTTCGC	TGAACACGCT	GGGCTCGAAA	420
	GGCGGCAACA	ATACCACTTC	AACAACAAAT	TCCCCGCTGG	ACCAGGCGCT	GGGTATTAAC	480
	TCAACGTCCC	AAAACGACGA	TTCCACCTCC	GGCACAGATT	CCACCTCAGA	CTCCAGCGAC	540
	CCGATGCAGC	AGCTGCTGAA	GATGTTCAGC	GAGATAATGC	AAAGCCTGTT	TGGTGATGGG	600
15	CAAGATGGCA	CCCAGGGCAG	TTCCTCTGGG	GGCAAGCAGC	CGACCGAAGG	CGAGCAGAAC	660
	GCCTATAAAA	AAGGAGTCAC	TGATGCGCTG	TCGGGCCTGA	TGGGTAATGG	TCTGAGCCAG	720
	CTCCTTGGCA	ACGGGGGACT	GGGAGGTGGT	CAGGGCGGTA	ATGCTGGCAC	GGGTCTTGAC	780
	GGTTCGTCGC	TGGGCGGCAA	AGGGCTGCAA	AACCTGAGCG	GGCCGGTGGA	CTACCAGCAG	840
	TTAGGTAACG	CCGTGGGTAC	CGGTATCGGT	ATGAAAGCGG	GCATTCAGGC	GCTGAATGAT	900
20	ATCGGTACGC	ACAGGCACAG	TTCAACCCGT	TCTTTCGTCA	ATAAAGGCGA	TCGGGCGATG	960
	GCGAAGGAAA	TCGGTCAGTT	CATGGACCAG	TATCCTGAGG	TGTTTGGCAA	GCCGCAGTAC	1020
	CAGAAAGGCC	CGGGTCAGGA	GGTGAAAACC	GATGACAAAT	CATGGGCAAA	AGCACTGAGC	1080
	AAGCCAGATG	ACGACGGAAT	GACACCAGCO	AGTATGGAGG	AGTTCAACAA	AGCCAAGGGC	1140
	ATGATCAAAA	GGCCCATGGC	GGGTGATACO	GGCAACGGC	ACCTGCAGG	ACGCGGTGCC	1200
25	GGTGGTTCTT	CGCTGGGTAT	TGATGCCATC	ATGGCCGGTC	ATGCCATTA	CAATATGGCA	1260
_	CTTGGCAAGC	recerecee	TTAAGCTT				1288

Another potentially suitable hypersensitive response elicitor from

30 Erwinia amylovora is disclosed in U.S. Patent Application Serial No. 09/120,927, which is hereby incorporated by reference. The protein is encoded by a DNA molecule having a nucleic acid sequence of SEQ. ID. No. 5 as follows:

55

60

	ATGTCAATTC	TTACGCTTAA	CAACAATACC	TCGTCCTCGC	CGGGTCTGTT	CCAGTCCGGG	60
5	GGGGACAACG	GGCTTGGTGG	TCATAATGCA	AATTCTGCGT	TGGGGCAACA	ACCCATCGAT	120
3	CGGCAAACCA	TTGAGCAAAT	GGCTCAATTA	TTGGCGGAAC	TGTTAAAGTC	ACTGCTATCG	180
	CCACAATCAG	GTAATGCGGC	AACCGGAGCC	GGTGGCAATG	ACCAGACTAC	AGGAGTTGGT	240
10	AACGCTGGCG	GCCTGAACGG	ACGAAAAGGC	ACAGCAGGAA	CCACTCCGCA	GTCTGACAGT	300
	CAGAACATGC	TGAGTGAGAT	GGGCAACAAC	GGGCTGGATC	AGGCCATCAC	GCCCGATGGC	360
15	CAGGGCGGCG	GGCAGATCGG	CGATAATCCT	TTACTGAAAG	CCATGCTGAA	GCTTATTGCA	420
13	CGCATGATGG	ACGGCCAAAG	CGATCAGTTT	GGCCAACCTG	GTACGGGCAA	CAACAGTGCC	480
	TCTTCCGGTA	CTTCTTCATC	TGGCGGTTCC	CCTTTTAACG	ATCTATCAGG	GGGGAAGGCC	540
20	CCTTCCGGCA	ACTCCCCTTC	CGGCAACTAC	TCTCCCGTCA	GTACCTTCTC	ACCCCCATCC	600
	ACGCCAACGT	CCCCTACCTC	ACCGCTTGAT	TTCCCTTCTT	CTCCCACCAA	AGCAGCCGGG	660
25	GGCAGCACGC	CGGTAACCGA	TCATCCTGAC	CCTGTTGGTA	GCGCGGGCAT	CGGGGCCGGA	720
23	AATTCGGTGG	CCTTCACCAG	CGCCGGCGCT	AATCAGACGG	TGCTGCATGA	CACCATTACC	780
	GTGAAAGCGG	GTCAGGTGTT	TGATGGCAAA	GGACAAACCT	TCACCGCCGG	TTCAGAATTA	840
30	GGCGATGGCG	GCCAGTCTGA	AAACCAGAAA	CCGCTGTTTA	TACTGGAAGA	CGGTGCCAGC	900
	CTGAAAAACG	TCACCATGGG	CGACGACGGG	GCGGATGGTA	TTCATCTTTA	CGGTGATGCC	960
35	AAAATAGACA	ATCTGCACGT	CACCAACGTG	GGTGAGGACG	CGATTACCGT	TAAGCCAAAC	1020
33	AGCGCGGGCA	AAAAATCCCA	CGTTGAAATC	ACTAACAGTT	CCTTCGAGCA	CGCCTCTGAC	1080
	AAGATCCTGC	AGCTGAATGC	CGATACTAAC	CTGAGCGTTG	ACAACGTGAA	GGCCAAAGAC	1140
40	TTTGGTACTT	TTGTACGCAC	TAACGGCGGT	CAACAGGGTA	ACTGGGATCT	GAATCTGAGC	1200
	CATATCAGCG	CAGAAGACGG	TAAGTTCTCG	TTCGTTAAAA	GCGATAGCGA	GGGGCTAAAC	1260
45	GTCAATACCA	GTGATATCTC	ACTGGGTGAT	GTTGAAAACC	ACTACAAAGT	GCCGATGTCC	1320
45	GCCAACCTGA	AGGTGGCTGA	ATGA				1344

See GenBank Accession No. U94513. The isolated DNA molecule of the present invention encodes a hypersensitive response elicitor protein or polypeptide having an amino acid sequence of SEQ. ID. No. 6 as follows:

Met Ser Ile Leu Thr Leu Asn Asn Asn Thr Ser Ser Ser Pro Gly Leu 1 5 Ser Gly Leu Gly Gly His Asn Ala Asn Ser Pro Gly Leu Gly Gly His Asn Ala Asn Ser 20 25 30

Ala Leu Gly Gln Gln Pro Ile Asp Arg Gln Thr Ile Glu Gln Met Ala

	Gln	Leu 50	Leu	Ala	Glu	Leu	Leu 55	Lys	Ser	Leu	Leu	Ser 60	Pro	Gln	Ser	Gly
5	Asn 65	Ala	Ala	Thr	Gly	Ala 70	Gly	Gly	Asn	Asp	Gln 75	Thr	Thr	Gly	Val	Gly 80
10	Asn	Ala	Gly	Gly	Leu 85	Asn	Gly	Arg	Lys	Gly 90	Thr	Ala	Gly	Thr	Thr 95	Pro
10	Gln	Ser	Asp	Ser 100	Gln	Asn	Met	Leu	Ser 105	Glu	Met	Gly	Asn	Asn 110	Gly	Leu
15	Asp	Gln	Ala 115	Ile	Thr	Pro	Asp	Gly 120	Gln	Gly	Gly	Gly	Gln 125	Ile	Gly	Asp
	Asn	Pro 130	Leu	Leu	Lys	Ala	Met 135	Leu	Lys	Leu	Ile	Ala 140	Arg	Met	Met	Asp
20	Gly 145	Gln	ser	Asp	_Gln	Phe 150	Gly	Gln	Pro	Gly	Thr 155	Gly	Asn	Asn	Ser	Ala 160
25	Ser	Ser	Gly	Thr	Ser 165	Ser	Ser	Gly	Gly	Ser 170	Pro	Phe	Asn	Asp	Leu 175	Ser
23	Gly	Gly	Lys	Ala 180	Pro	Ser	Gly	Asn	Ser 185	Pro	Ser	Gly	Asn	Tyr 190	Ser	Pro
30	Val	Ser	Thr 195	Phe	Ser	Pro	Pro	Ser 200	Thr	Pro	Thr	Ser	Pro 205	Thr	Ser	Pro
		210	Phe				215					220				
35	Val 225	Thr	Asp	His	Pro	Asp 230	Pro	Val	Gly	Ser	Ala 235	Gly	Ile	Gly	Ala	Gly 240
40	Asn	Ser	Val	Ala	Phe 245	Thr	Ser	Ala	Gly	Ala 250	Asn	Gln	Thr	Val	Leu 255	His
	Asp	Thr	Ile	Thr 260	Val	Lys	Ala	Gly	Gln 265	Val	Phe	Asp	Gly	Lys 2 7 0	Gly	Gln
45	Thr	Phe	Thr 275	Ala	Gly	Ser	Glu	Leu 280	Gly	Asp	Gly	Gly	Gln 285	Ser	Glu	Asn
	Gln	Lys 290	Pro	Leu	Phe	Ile	Leu 295	Glu	Asp	Gly	Ala	Ser 300	Leu	Lys	Asn	Val
50	Thr 305	Met	Gly	Asp	Asp	Gly 310	Ala	Asp	Gly	Ile	His 315	Leu	Tyr	Gly	Asp	Ala 320
55	Lys	Ile	Asp	Asn	Leu 325	His	Val	Thr	Asn	Val 330	Gly	Glu	Asp	Ala	11e 335	Thr
	Val	Lys	Pro	Asn 340	Ser	Ala	Gly	Lys	Lys 345		His	Val	Glu	11e 350	Thr	Asn

	Ser	Ser	Phe 355	Glu	His	Ala	Ser	Asp 360	Lys	Ile	Leu	Gln	Leu 365	Asn	Ala	Asp
5	Thr	Asn 370	Leu	Ser	Val	Asp	Asn 375	Val	Lys	Ala	Lys	Asp 380	Phe	Gly	Thr	Phe
	Val 385	Arg	Thr	Asn	Gly	Gly 390	Gln	Gln	Gly	Asn	Trp 395	Asp	Leu	Asn	Leu	Ser 400
10	His	Ile	Ser	Ala	Glu 405	Asp	Gly	Lys	Phe	Ser 410	Phe	Val	Lys	Ser	Asp 415	Ser
15	Glu	Gly	Leu	Asn 420	Val	Asn	Thr	Ser	Asp 425	Ile	Ser	Leu	Gly	Asp 430	Val	Glu
13	Asn	His	Tyr 435	Lys	Val	Pro	Met	Ser 440	Ala	Asn	Leu	Lys	Val 445	Ala	Glu	

20 This protein or polypeptide is acidic, rich in glycine and serine, and lacks cysteine. It is also heat stable, protease sensitive, and suppressed by inhibitors of plant metabolism. The protein or polypeptide of the present invention has a predicted molecular size of ca. 4.5 kDa.

Another potentially suitable hypersensitive response elicitor from

25 Erwinia amylovora is disclosed in U.S. Patent Application Serial No. 09/120,663, which is hereby incorporated by reference. The protein is encoded by a DNA molecule having a nucleic acid sequence of SEQ. ID. No. 7 as follows:

ANTOACTOGG AACTGAACAC AAGGCGGCAG TACACACAGC GGCGCACAAC

30	ATGGAATTAA	AMICACIGGG	AACIGAACAC	ANGUCUUCAU	Inchescade	00000	• • •
30	CCTGTGGGGC	ATGGTGTTGC	CTTACAGCAG	GGCAGCAGCA	GCAGCAGCCC	GCAAAATGCC	120
	GCTGCATCAT	TGGCGGCAGA	AGGCAAAAAT	CGTGGGAAAA	TGCCGAGAAT	TCACCAGCCA	180
35	TCTACTGCGG	CTGATGGTAT	CAGCGCTGCT	CACCAGCAAA	AGAAATCCTT	CAGTCTCAGG	240
	GGCTGTTTGG	GGACGAAAAA	ATTTTCCAGA	TCGGCACCGC	AGGCCAGCC	AGGTACCACC	300
40	CACAGCAAAG	GGGCAACATT	GCGCGATCTG	CTGGCGCGGG	ACGACGGCGA	AACGCAGCAT	360
40	GAGGCGGCCG	CGCCAGATGC	GGCGCGTTTG	ACCCGTTCGG	GCGGCGTCAA	ACGCCGCAAT	420
	ATGGACGACA	TGGCCGGGCG	GCCAATGGTG	AAAGGTGGCA	GCGGCGAAGA	TAAGGTACCA	480
45	ACGCAGCAAA	AACGGCATCA	GCTGAACAAT	TTTGGCCAGA	TGCGCCAAAC	GATGTTGAGC	540
	AAAATGGCTC	ACCCGGCTTC	AGCCAACGCC	GGCGATCGCC	TGCAGCATTC	ACCGCCGCAC	600
50	ATCCCGGGTA	GCCACCACGA	AATCAAGGAA	GAACCGGTTG	GCTCCACCAG	CAAGGCAACA	660
30	ACGGCCCACG	CAGACAGAGT	GGAAATCGCT	CAGGAAGATG	ACGACAGCGA	ATTCCAGCAA	720
	CTGCATCAAC	AGCGGCTGGC	GCGCGAACGG	GAAAATCCAC	CGCAGCCGCC	CAAACTCGGC	780
55	GTTGCCACAC	CGATTAGCGC	CAGGTTTCAG	CCCAAACTGA	CTGCGGTTGC	GGAAAGCGTC	840

	CTTGAGGGGA	CAGATACCAC	GCAGTCACCC	CTTAAGCCGC	AATCAATGCT	GAAAGGAAGT	900
5	GGAGCCGGGG	TAACGCCGCT	GGCGGTAACG	CTGGATAAAG	GCAAGTTGCA	GCTGGCACCG	960
3	GATAATCCAC	CCGCGCTCAA	TACGTTGTTG	AAGCAGACAT	TGGGTAAAGA	CACCCAGCAC	1020
	TATCTGGCGC	ACCATGCCAG	CAGCGACGGT	AGCCAGCATC	TGCTGCTGGA	CAACAAAGGC	1080
10	CACCTGTTTG	ATATCAAAAG	CACCGCCACC	AGCTATAGCG	TGCTGCACAA	CAGCCACCCC	1140
	GGTGAGATAA	AGGGCAAGCT	GGCGCAGGCG	GGTACTGGCT	CCGTCAGCGT	AGACGGTAAA	1200
15	AGCGGCAAGA	TCTCGCTGGG	GAG CGGTACG	CAAAGTCACA	ACAAAACAAT	GCTAAGCCAA	1260
13	CCGGGGGAAG	CGCACCGTTC	CTTATTAACC	GGCATTTGGC	AGCATCCTGC	TGGCGCAGCG	1320
	CGGCCGCAGG	GCGAGTCAAT	CCGCCTGCAT	GACGACAAAA	TTCATATCCT	GCATCCGGAG	1380
20	CTGGGCGTAT	GGCAATCTGC	GGATAAAGAT	ACCCACAGCC	AGCTGTCTCG	CCAGGCAGAC	1440
	GGTAAGCTCT	ATGCGCTGAA	AGACAACCGT	ACCCTGCAAA	ACCTCTCCGA	TAATAAATCC	1500
25	TCAGAAAAGC	TGGTCGATAA	AATCAAATCG	TATTCCGTTG	ATCAGCGGGG	GCAGGTGGCG	1560
23	ATCCTGACGG	ATACTCCCGG	CCGCCATAAG	ATGAGTATTA	TGCCCTCGCT	GGATGCTTCC	1620
	CCGGAGAGCC	ATATTTCCCT	CAGCCTGCAT	TTTGCCGATG	CCCACCAGGG	GTTATTGCAC	1680
30	GGGAAGTCGG	AGCTTGAGGC	ACAATCTGTC	GCGATCAGCC	ATGGGCGACT	GGTTGTGGCC	1740
	GATAGCGAAG	GCAAGCTGTT	TAGCGCCGCC	ATTCCGAAGC	AAGGGGATGG	AAACGAACTG	1800
35	AAAATGAAAG	CCATGCCTCA	GCATGCGCTC	GATGAACATT	TTGGTCATGA	CCACCAGATT	1860
33	TCTGGATTTT	TCCATGACGA	CCACGGCCAG	CTTAATGCGC	TGGTGAAAAA	TAACTTCAGG	1920
	CAGCAGCATG	CCTGCCCGTT	GGGTAACGAT	CATCAGTTTC	ACCCCGGCTG	GAACCTGACT	1980
40	GATGCGCTGG	TTATCGACAA	TCAGCTGGGG	CTGCATCATA	CCAATCCTGA	ACCGCATGAG	2040
	ATTCTTGATA	TGGGGCATTT	AGGCAGCCTG	GCGTTACAGG	AGGGCAAGCT	TCACTATTTT	2100
45	GACCAGCTGA	CCAAAGGGTG	GACTGGCGCG	GAGTCAGATT	GTAAGCAGCT	GAAAAAAGGC	2160
45	CTGGATGGAG	CAGCTTATCT	ACTGAAAGAC	GGTGAAGTGA	AACGCCTGAA	TATTAATCAG	2220
	AGCACCTCCT	CTATCAAGCA	CGGAACGGAA	AACGTTTTTT	CGCTGCCGCA	TGTGCGCAAT	2280
50	AAACCGGAGC	CGGGAGATGC	CCTGCAAGGG	CTGAATAAAG	ACGATAAGGC	CCAGGCCATG	2340
	GCGGTGATTG	GGGTAAATAA	ATACCTGGCG	CTGACGGAAA	AAGGGGACAT	TCGCTCCTTC	2400
55	CAGATAAAAC	CCGGCACCCA	GCAGTTGGAG	CGGCCGGCAC	AAACTCTCAG	CCGCGAAGGT	2460
55	ATCAGCGGCG	AACTGAAAGA	CATTCATGTC	GACCACAAGC	AGAACCTGTA	TGCCTTGACC	2520
	CACGAGGGAG	AGGTGTTTCA	TCAGCCGCGT	GAAGCCTGGC	AGAATGGTGC	CGAAAGCAGC	2580
60	AGCTGGCACA	AACTGGCGTT	GCCACAGAGT	GAAAGTAAGC	TAAAAAGTCT	GGACATGAGC	2640
	CATGAGCACA	AACCGATTGC	CACCTTTGAA	GACGGTAGCC	AGCATCAGCT	GAAGGCTGGC	2700
65	GGCTGGCACG	CCTATGCGGC	ACCTGAACGC	GGGCCGCTGG	CGGTGGGTAC	CAGCGGTTCA	2760

	CAAACCGTCT	TTAACCGACT	AATGCAGGGG	GTGAAAGGCA	AGGTGATCCC	AGGCAGCGGG	2820
	TTGACGGTTA	AGCTCTCGGC	TCAGACGGGG	GGAATGACCG	GCGCCGAAGG	GCGCAAGGTC	2880
5	AGCAGTAAAT	TTTCCGAAAG	GATCCGCGCC	TATGCGTTCA	ACCCAACAAT	GTCCACGCCG	2940
	CGACCGATTA	AAAATGCTGC	TTATGCCACA	CAGCACGGCT	GGCAGGGGCG	TGAGGGGTTG	3000
	AAGCCGTTGT	ACGAGATGCA	GGGAGCGCTG	ATTAAACAAC	TGGATGCGCA	TAACGTTCGT	3060
10	CATAACGCGC	CACAGCCAGA	TTTGCAGAGC	AAACTGGAAA	CTCTGGATTT	AGGCGAACAT	3120
	GGCGCAGAAT	TGCTTAACGA	CATGAAGCGC	TTCCGCGACG	AACTGGAGCA	GAGTGCAACC	3180
15	CGTTCGGTGA	CCGTTTTAGG	TCAACATCAG	GGAGTGCTAA	AAAGCAACGG	TGAAATCAAT	3240
	AGCGAATTTA	AGCCATCGCC	CGGCAAGGCG	TTGGTCCAGA	GCTTTAACGT	CAATCGCTCT	3300
20	GGTCAGGATC	TAAGCAAGTC	ACTGCAACAG	GCAGTACATG	CCACGCCGCC	ATCCGCAGAG	3360
20	AGTAAACTGC	AATCCATGCT	GGGGCACTTT	GTCAGTGCCG	GGGTGGATAT	GAGTCATCAG	3420
	AAGGGCGAGA	TCCCGCTGGG	CCGCCAGCGC	GATCCGAATG	ATAAAACCGC	ACTGACCAAA	3480
25	TCGCGTTTAA	TTTTAGATAC	CGTGACCATC	GGTGAACTGC	ATGAACTGGC	CGATAAGGCG	3540
	AAACTGGTAT	CTGACCATAA	ACCCGATGCC	GATCAGATAA	AACAGCTGCG	CCAGCAGTTC	3600
30	GATACGCTGC	GTGAAAAGCG	GTATGAGAGC	AATCCGGTGA	AGCATTACAC	CGATATGGGC	3660
30	TTCACCCATA	ATAAGGCGCT	GGAAGCAAAC	TATGATGCGG	TCAAAGCCTT	TATCAATGCC	3720
	TTTAAGAAAG	AGCACCACGG	CGTCAATCTG	ACCACGCGTA	CCGTACTGGA	ATCACAGGGC	3780
35	AGTGCGGAGC	TGGCGAAGAA	GCTCAAGAAT	ACGCTGTTGT	CCCTGGACAG	TGGTGAAAGT	3840
	ATGAGCTTCA	GCCGGTCATA	TGGCGGGGGC	GTCAGCACTG	TCTTTGTGCC	TACCCTTAGC	3900
40	AAGAAGGTGC	CAGTTCCGGT	GATCCCCGGA	GCCGGCATCA	CGCTGGATCG	CGCCTATAAC	3960
40	CTGAGCTTCA	GTCGTACCAG	CGGCGGATTG	AACGTCAGTT	TTGGCCGCGA	CGGCGGGGTG	4020
	AGTGGTAACA	TCATGGTCGC	TACCGGCCAT	GATGTGATGC	CCTATATGAC	CGGTAAGAAA	4080
45	ACCAGTGCAG	GTAACGCCAG	TGACTGGTTG	AGCGCAAAAC	ATAAAATCAG	CCCGGACTTG	4140
	CGTATCGGCG	CTGCTGTGAG	TGGCACCCTG	CAAGGAACGC	TACAAAACAG	CCTGAAGTTT	4200
50	AAGCTGACAG	AGGATGAGCT	GCCTGGCTTT	ATCCATGGCT	TGACGCATGG	CACGTTGACC	4260
50	CCGGCAGAAC	TGTTGCAAAA	GGGGATCGAA	CATCAGATGA	AGCAGGGCAG	CAAACTGACG	4320
	TTTAGCGTCG	ATACCTCGGC	AAATCTGGAT	CTGCGTGCCG	GTATCAATCT	GAACGAAGAC	4380
55	GGCAGTAAAC	CAAATGGTGT	CACTGCCCGT	GTTTCTGCCG	GGCTAAGTGC	ATCGGCAAAC	4440
	CTGGCCGCCG	GCTCGCGTGA	ACGCAGCACC	ACCTCTGGCC	AGTTTGGCAG	CACGACTTCG	4500
60	GCCAGCAATA	ACCGCCCAAC	CTTCCTCAAC	GGGGTCGGCG	CGGGTGCTAA	CCTGACGGCT	4560
50	GCTTTAGGGG	TTGCCCATTC	ATCTACGCAT	GAAGGGAAAC	CGGTCGGGAT	CTTCCCGGCA	4620
	TTTACCTCGA	CCAATGTTTC	GGCAGCGCTG	GCGCTGGATA	ACCGTACCTC	ACAGAGTATC	4680
65	AGCCTGGAAT	TGAAGCGCGC	GGAGCCGGTG	ACCAGCAACG	ATATCAGCGA	GTTGACCTCC	4740

	ACGCTGGGAA	AACACTTTAA	GGATAGCGCC	ACAACGAAGA	TGCTTGCCGC	TCTCAAAGAG	4800
_	TTAGATGACG	CTAAGCCCGC	TGAACAACTG	CATATTTTAC	AGCAGCATTT	CAGTGCAAAA	4860
5	GATGTCGTCG	GTGATGAACG	CTACGAGGCG	GTGCGCAACC	TGAAAAAACT	GGTGATACGT	4920
	CAACAGGCTG	CGGACAGCCA	CAGCATGGAA	TTAGGATCTG	CCAGTCACAG	CACGACCTAC	4980
10	AATAATCTGT	CGAGAATAAA	TAATGACGGC	ATTGTCGAGC	TGCTACACAA	ACATTTCGAT	5040
	GCGGCATTAC	CAGCAAGCAG	TGCCAAACGT	CTTGGTGAAA	TGATGAATAA	CGATCCGGCA	5100
	CTGAAAGATA	TTATTAAGCA	GCTGCAAAGT	ACGCCGTTCA	GCAGCGCCAG	CGTGTCGATG	5160
15	GAGCTGAAAG	ATGGTCTGCG	TGAGCAGACG	GAAAAAGCAA	TACTGGACGG	TAAGGTCGGT	5220
	CGTGAAGAAG	TGGGAGTACT	TTTCCAGGAT	CGTAACAACT	TGCGTGTTAA	ATCGGTCAGC	5280
20	GTCAGTCAGT	CCGTCAGCAA	AAGCGAAGGC	TTCAATACCC	CAGCGCTGTT	ACTGGGGACG	534
	AGGAAGAGCG	CTGCTATGAG	CATGGAGCGC	AACATCGGAA	CCATTAATTT	TAAATACGGC	540
25	CAGGATCAGA	ACACCCCACG	GCGATTTACC	CTGGAGGGTG	GAATAGCTCA	GGCTAATCCG	546
23	CAGGTCGCAT	CTGCGCTTAC	TGATTTGAAG	AAGGAAGGGC	TGGAAATGAA	GAGCTAA	551

This DNA molecule is known as the dspE gene for *Erwinia amylovora*. This isolated DNA molecule of the present invention encodes a protein or polypeptide which elicits a plant pathogen's hypersensitive response having an amino acid sequence of SEQ. ID. No. 8 as follows:

35 Met Glu Leu Lys Ser Leu Gly Thr Glu His Lys Ala Ala Val His Thr
1 10 15

Ala Ala His Asn Pro Val Gly His Gly Val Ala Leu Gln Gln Gly Ser
20 20 25

40 Ser Ser Ser Ser Pro Gln Asn Ala Ala Ala Ser Leu Ala Ala Glu Gly
45 45

Lys Asn Arg Gly Lys Met Pro Arg Ile His Gln Pro Ser Thr Ala Ala
50 60 Ser Thr Ala Ala
45

Asp Gly Ile Ser Ala Ala His Gln Gln Lys Lys Ser Phe Ser Leu Arg
65 70 61 Cly Ser Leu Gly Thr Lys Lys Phe Ser Arg Ser Ala Pro Gln Gly Gln
85 95

Pro Gly Thr Thr His Ser Lys Gly Ala Thr Leu Arg Asp Leu Leu Ala
115 120

Arg Asp Asp Gly Glu Thr Gln His Glu Ala Ala Ala Pro Asp Ala Ala
115 120

Arg Leu Thr Arg Ser Gly Gly Val Lys Arg Arg Asn Met Asp Asp Met
130

	Ala 145	Gly	Arg	Pro	Met	Val 150	Lys	Gly	Gly	Ser	Gly 155	Glu	Asp	Lys	Val	Pro 160	
5	Thr	Gln	Gln	Lys	Arg 165	His	Gln	Leu	Asn	Asn 170	Phe	Gly	Gln	Met	Arg 175	Gln	
	Thr	Met	Leu	Ser 180	Lys	Met	Ala	His	Pro 185	Ala	Ser	Ala	Asn	Ala 190	Gly	Asp	
10	Arg	Leu	Gln 195	His	Ser	Pro	Pro	His 200	Ile	Pro	Gly	Ser	His 205	His	Glu	Ile	
15	Lys	Glu 210	Glu	Pro	Val	Gly	Ser 215	Thr	Ser	Lys	Ala	Thr 220	Thr	Ala	His	Ala	
	Asp 225	Arg	Val	Glu	Ile	Ala 230	Gln	Glu	Asp	Asp	Asp 235	Ser	Glu	Phe	Gln	Gln 240	
20	Leu	His	Gln	Gln	Arg 245	Leu	Ala	Arg	Glu	Arg 250	Glu	Asn	Pro	Pro	Gln 255	Pro	
		-		Gly 260					265					270			
25			275	Val				280					285				
30		290		Lys			295					300					
	305			Ala		310				_	315					320	
35	_			Pro	325					330					335		
	_			His 340					345					350			
40			355	Leu				360					365				
45		370		Tyr			375					380					
	385			Ala		390					395					400	
50		_		Ile	405	_				410					415		
				Gln 420					425					430			
55	_		435	Pro				440					445				
60		450	-	Asp			455					460					
	465			Asp		470					475					480	
65	Gly	Lys	Leu	Tyr	Ala 485		Lys	Asp	Asn	Arg 490	Thr	Leu	Gln	Asn	Leu 495	Ser	

	Asp Asn Lys Ser Ser Glu Lys Leu Val Asp Lys Ile Lys Ser Tyr Ser 500 505
5	Val Asp Gln Arg Gly Gln Val Ala Ile Leu Thr Asp Thr Pro Gly Arg 515 520 525
3	His Lys Met Ser Ile Met Pro Ser Leu Asp Ala Ser Pro Glu Ser His 530 540
10	530 The Ser Leu Ser Leu His Phe Ala Asp Ala His Gln Gly Leu Leu His 550 555 545
	Gly Lys Ser Glu Leu Glu Ala Gln Ser Val Ala Ile Ser His Gly Arg 575 570 570
15	Leu Val Val Ala Asp Ser Glu Gly Lys Leu Phe Ser Ala Ala Ile Pro 580 585
20	Lys Gln Gly Asp Gly Asn Glu Leu Lys Met Lys Ala Met Pro Gln His 595 600 600
20	Ala Leu Asp Glu His Phe Gly His Asp His Gln Ile Ser Gly Phe Phe 620 615
25	610 His Asp Asp His Gly Gln Leu Asn Ala Leu Val Lys Asn Asn Phe Arg 635 636 637 638
	Gln Gln His Ala Cys Pro Leu Gly Asn Asp His Gln Phe His Pro Gly 655 650 650
30	Trp Asn Leu Thr Asp Ala Leu Val Ile Asp Asn Gln Leu Gly Leu His 660 665 670
35	His Thr Asn Pro Glu Pro His Glu Ile Leu Asp Met Gly His Leu Gly 680 675
	675 Ser Leu Ala Leu Gln Glu Gly Lys Leu His Tyr Phe Asp Gln Leu Thr 695 690 691 692 693 694 695 695 696 697 698 698 698 699 699
40	690 Lys Gly Trp Thr Gly Ala Glu Ser Asp Cys Lys Gln Leu Lys Lys Gly 710 710 710 710 710 710 710 710
	705 Leu Asp Gly Ala Ala Tyr Leu Leu Lys Asp Gly Glu Val Lys Arg Leu 730 725 730 725 730 730 730 730 730 730 730 730 730 73
45	Asn Ile Asn Gln Ser Thr Ser Ser Ile Lys His Gly Thr Glu Asn Val
50	Phe Ser Leu Pro His Val Arg Asn Lys Pro Glu Pro Gly Asp Ala Leu 765 755 750 750 750 750 750 750 750 750 75
	Gln Gly Leu Asn Lys Asp Asp Lys Ala Gln Ala Met Ala Val Ile Gly 775 770 770 770 770 770 770 770 770 770
55	Val Asn Lys Tyr Leu Ala Leu Thr Glu Lys Gly Asp Ile Arg Ser Phe 800 785 780 781 Leu Glu Arg Pro Ala Gln Thr Leu
60	785 Gln Ile Lys Pro Gly Thr Gln Gln Leu Glu Arg Pro Ala Gln Thr Leu 805 Ser Arg Glu Gly Ile Ser Gly Glu Leu Lys Asp Ile His Val Asp His 825 830
60	Ser Arg Glu Gly Ile Ser Gly Glu Leu Lys
65	Lys Gln Asn Leu Tyr Ala Leu Thr his Gld 577 845 835

	Pro	Arg 850	Glu	Ala	Trp	Gln	Asn 855	Gly	Ala	Glu	Ser	Ser 860	Ser	Trp	His	Lys
5	Leu 865	Ala	Leu	Pro	Gln	Ser 870	Glu	Ser	Lys	Leu	Lys 8 7 5	Ser	Leu	Asp	Met	Ser 880
	His	Glu	His	Lys	Pro 885	Ile	Ala	Thr	Phe	Glu 890	Asp	Gly	Ser	Gln	His 895	Gln
10	Leu	Lys	Ala	Gly 900	Gly	Trp	His	Ala	Tyr 905	Ala	Ala	Pro	Glu	Arg 910	Gly	Pro
15	Leu	Ala	Val 915	Gly	Thr	Ser	Gly	Ser 920	Gln	Thr	Val	Phe	Asn 925	Arg	Leu	Met
15	Gln	Gly 930	Val	Lys	Gly	Lys	Val 935	Ile	Pro	Gly	Ser	Gly 940	Leu	Thr	Val	Lys
20	Leu 945	Ser	Ala	Gln	Thr	Gly 950	Gly	Met	Thr	Gly	Ala 955	Glu	Gly	Arg	Lys	Val 960
0.0			-		965					970			Phe		975	
25				980					985				Ala	990		
30	Gly	Trp	Gln 995	Gļy	Arg	Glu	Gly	Leu 1000	Lys	Pro	Leu	Tyr	Glu 1005	Met	Gln	Gly
30	Ala	Leu 1010		Lys	Gln	Leu	Asp 1015	Ala	His	Asn	Val	Arg 102	His O	Asn	Ala	Pro
35	Gln 1025		Asp	Leu	Gln	Ser 1030		Leu	Glu	Thr	Leu 103	Asp 5	Leu	Gly	Glu	His 1040
	Gly	Ala	Glu	Leu	Leu 104		Asp	Met	Lys	Arg 105		Arg	Asp	Glu	Leu 105	Glu 5
40	Gln	Ser	Ala	Thr 106	1045 Arg	Ser	Val	Thr	Val 106	105 Leu 5	Gly	Gln	His	Gln 107	Gly	Val
0.	Gln Leu	Ser Lys	Ala Ser 107	Thr 106 Asn	Arg Gly	Ser Glu	Val Ile	Thr Asn 108	Val 106 Ser	Leu 5 Glu	Gly Phe	Gln Lys	His Pro 108	Gln 107 Ser	Gly O Pro	Val Gly
40 45	Gln Leu Lys	Ser Lys Ala	Ser 1079	Thr 1060 Asn 5	Arg Gly	Ser Glu Ser	Val	Thr Asn 1080 Asn	Val 106: Ser Val	Leu 5 Glu Asn	Gly Phe Arg	Gln Lys Ser 110	Pro 108 Gly	Gln 107 Ser 5	Gly O Pro Asp	Val Gly Leu
0.	Gln Leu Lys Ser 1109	Ser Lys Ala 1090 Lys	Ser 1079 Leu	Thr 1066 Asn Val	Arg Gly Gln Gln	Ser Glu Ser Gln	Val Ile Phe 1099	Asn 1080 Asn 5	Val 1069 Ser Val	Leu 5 Glu Asn Ala	Gly Phe Arg Thr	Gln Lys Ser 110 Pro	Pro 108 Gly O	Gln 107 Ser 5 Gln Ser	Gly O Pro Asp	Val Gly Leu Glu 1120
45	Gln Leu Lys Ser 1109	Ser Lys Ala 1090 Lys	Ser 1079 Leu Ser	Thr 1066 Asn Val	Arg Gly Gln Gln	Ser Glu Ser Gln 1110	Val Ile Phe 1099	Asn 1080 Asn 5	Val 1069 Ser Val	Leu 5 Glu Asn Ala	Gly Phe Arg Thr 111 Val	Gln Lys Ser 110 Pro	Pro 108 Gly	Gln 107 Ser 5 Gln Ser	Gly O Pro Asp	Val Gly Leu Glu 1120 Asp
45	Gln Leu Lys Ser 1109 Ser	Lys Ala 1090 Lys Lys Ser	Ser 107! Leu Ser Leu His	Thr 1060 Asn 5 Val Leu Gln Gln	Gly Gln Gln Ser 112:	Ser Glu Ser Gln 1110 Met 5	Val Ile Phe 1099 Ala Leu Glu	Asn 1086 Asn Val Gly	Val 106: Ser Val His Pro	Leu 5 Glu Asn Ala Phe 113 Leu 5	Gly Phe Arg Thr 111 Val 0	Gln Lys Ser 110 Pro 5 Ser	Pro 108: Gly Pro Ala	Gln 107 Ser 5 Gln Ser Gly Arg	Gly O Pro Asp Ala Val 113 Asp	Val Gly Leu Glu 1120 Asp Pro
45 50 55	Gln Leu Lys Ser 1109 Ser Met	Lys Lys Lys Ala Ala Ala Asp	Ala Ser 1079 Leu Ser Leu His	Thr 1066 Asn 5 Val Leu Gln 114	Arg Gly Gln Gln Lys Ala	Ser Glu Ser Gln 1110 Met 5	Val Ile Phe 1099 Ala Clu Glu Thr	Asn 1086 Asn Val Gly Ile	Val 1069 Ser Val His Pro 114	Leu 5 Glu Asn Ala Phe 113 Leu 5	Gly Phe Arg Thr 111 Val 0 Gly	Gln Lys Ser 110 Pro 5 Ser Arg	Pro 108 Gly 0 Pro Ala Gln Leu 116	Gln 107 Ser 6Gln Ser Gly Arg 115 Asp 5	Gly 0 Pro Asp Ala Val 113 Asp 0 Thr	Val Gly Leu Glu 1120 Asp 5
45	Gln Leu Lys Ser 1100 Ser Met Asn	Lys	Ser 1079 Leu Ser Leu His Lys 115	Thr 1066 Asn Val Leu Gln Gln 114 Thr	Arg Gly Gln Gln Ser 112: Lys Ala	Ser Glu Ser Gln 1110 Met 5 Gly Leu His	Val Ile Phe 1099 Ala Clu Thr Glu 1171	Asn 1086 Asn Val Gly Ile Lys 1166	Val 1066 Ser Val His Pro 114 Ser	Leu S Glu Asn Ala Phe 113 Leu S Arg	Gly Phe Arg Thr 111 Val Gly Leu	Ser 110 Pro 5 Ser Arg	Pro 108 Gly 0 Pro Ala Gln Leu	Gln 1077 Ser 5 Gln Ser Gly Arg 115 Asp 5	Gly O Pro Asp Ala Val 113 Asp O Thr	Val Gly Leu Glu 1120 Asp Fro Val Ser

	Asp Thr Leu Arg Glu Lys Arg Tyr Glu Ser Asn Pro Val Lys His Tyr 1205 1210 1210	
5	Thr Asp Met Gly Phe Thr His Asn Lys Ala Leu Glu Ala Asn Tyr Asp 1220 1225 1230	
10	Ala Val Lys Ala Phe Ile Asn Ala Phe Lys Lys Glu His His Gly Val 1235 1240 1245	
10	Asn Leu Thr Thr Arg Thr Val Leu Glu Ser Gln Gly Ser Ala Glu Leu 1250 1255 1260	
15	Ala Lys Lys Leu Lys Asn Thr Leu Leu Ser Leu Asp Ser Gly Glu Ser 1265 1270 1275 1280)
	Met Ser Phe Ser Arg Ser Tyr Gly Gly Gly Val Ser Thr Val Phe Val 1285 1290 1295	
20	Pro Thr Leu Ser Lys Lys Val Pro Val Pro Val Ile Pro Gly Ala Gly 1300 1305 1310	
25	Ile Thr Leu Asp Arg Ala Tyr Asn Leu Ser Phe Ser Arg Thr Ser Gly 1315 1320 1325	
	Gly Leu Asn Val Ser Phe Gly Arg Asp Gly Gly Val Ser Gly Asn Ile 1330 1335 1340	
30	Met Val Ala Thr Gly His Asp Val Met Pro Tyr Met Thr Gly Lys Lys 1345 1350 1355 136	
	Thr Ser Ala Gly Asn Ala Ser Asp Trp Leu Ser Ala Lys His Lys Ile 1365 1370 1375	
35	Ser Pro Asp Leu Arg Ile Gly Ala Ala Val Ser Gly Thr Leu Gln Gly 1380 1385 1390	
40	Thr Leu Gln Asn Ser Leu Lys Phe Lys Leu Thr Glu Asp Glu Leu Pro 1395 1400 1405	
	Gly Phe Ile His Gly Leu Thr His Gly Thr Leu Thr Pro Ala Glu Leu 1410 1425 1420	
45	Leu Gln Lys Gly Ile Glu His Gln Met Lys Gln Gly Ser Lys Leu Thr 1425 1430 1435 144	0
	Phe Ser Val Asp Thr Ser Ala Asn Leu Asp Leu Arg Ala Gly Ile Asn 1445 1450 1450	
50	Leu Asn Glu Asp Gly Ser Lys Pro Asn Gly Val Thr Ala Arg Val Ser 1460 1465 1470	
55	Ala Gly Leu Ser Ala Ser Ala Asn Leu Ala Ala Gly Ser Arg Glu Arg 1475 1480 1485	
	Ser Thr Thr Ser Gly Gln Phe Gly Ser Thr Thr Ser Ala Ser Asn Asn 1490 1495 1500	
60	Arg Pro Thr Phe Leu Asn Gly Val Gly Ala Gly Ala Asn Leu Thr Ala 1505 1510 1515 152	0
	Ala Leu Gly Val Ala His Ser Ser Thr His Glu Gly Lys Pro Val Gly 1525 1530 1535	

	Ile Phe Pro Ala I 1540	Phe Thr Ser Thr Asn 154		Leu Ala Leu 1550
5	Asp Asn Arg Thr S	Ser Gln Ser Ile Ser 1560	Leu Glu Leu Lys 156	
	Pro Val Thr Ser A	Asn Asp Ile Ser Glu 1575	Leu Thr Ser Thr 1580	Leu Gly Lys
10	His Phe Lys Asp S 1585	Ser Ala Thr Thr Lys 1590	Met Leu Ala Ala 1595	Leu Lys Glu 1600
15		Lys Pro Ala Glu Gln 1605	Leu His Ile Leu 1610	Gln Gln His 1615
	Phe Ser Ala Lys A	Asp Val Val Gly Asp 162		Ala Val Arg 1630
20	Asn Leu Lys Lys I 1635	Leu Val Ile Arg Gln 1640	Gln Ala Ala Asp 164	
	1650	Ser Ala Ser His Ser 1655	1660	
25	1665	Asp Gly Ile Val Glu 1670	1675	1680
30	1	Ala Ser Ser Ala Lys 1685	1690	1695
	1700		5	1710
35	1715	Ser Val Ser Met Glu 1720	172	25
	1730	Ala Ile Leu Asp Gly 1735	1740	
40	1745	Gln Asp Arg Asn Asn 1750	1755	1760
45		Val Ser Lys Ser Glu 1765	1770	1775
	1780		15	1790
50	1795	Phe Lys Tyr Gly Glr 1800	180	5
55	1810	Gly Gly Ile Ala Glr 1815	1820	
<i>3</i> 3	1825	Leu Lys Lys Glu Gly 1830	1835	. set

This protein or polypeptide is about 198 kDa and has a pI of 8.98.

The present invention relates to an isolated DNA molecule having a nucleotide sequence of SEQ. ID. No. 9 as follows:

	ATGACATCGT	CACAGCAGCG	GGTTGAAAGG	TTTTTACAGT	ATTTCTCCGC	CGGGTGTAAA	60
	ACGCCCATAC	ATCTGAAAGA	CGGGGTGTGC	GCCCTGTATA	ACGAACAAGA	TGAGGAGGCG	120
5						AATCATTGAG	180
						TTTTGAAATG	240
10						TTTATGTTTT	300
10						CGGCTTCATC	360
						CGCGGCATAA	420
15	GAACATGCGG	CAGAMOTOCO	,= =				

This is known as the dspF gene. This isolated DNA molecule of the present invention encodes a hypersensitive response elicitor protein or polypeptide having an amino acid sequence of SEQ: ID: No.:10 as follows:

20	1				5					10					Phe 15		
25	Ala	Gly	Cys	Lys 20	Thr	Pro	Ile	His	Leu 25	Lys	Asp	Gly	Val	Cys 30	Ala	Leu	
-	Tyr	Asn	Glu 35	Gln	Asp	Glu	Glu	Ala 40	Ala	Val	Leu	Glu	Val 45	Pro	Gln	His	
30	Ser	Asp 50	Ser	Leu	Leu	Leu	His 55	Cys	Arg	Ile	Ile	Glu 60	Ala	Asp	Pro	Gln	
	Thr	Ser	Ile	Thr	Leu	Tyr 70	Ser	Met	Leu	Leu	Gln 75	Leu	Asn	Phe	Glu	Met 80	
35	Ala	Ala	Met	Arg	Gly 85	Сув	Trp	Leu	Ala	Leu 90	Asp	Glu	Leu	His	Asn 95	Val	
40	Arg	Leu	Сув	Phe 100	Gln	Gln	Ser	Lev	Glu 105	His	Leu	Asp	Glu	110	Ser	Phe	
	Ser	Asp	11e		Ser	Gly	Phe	120	Glu	His	Ala	Ala	125	ı Va:	Arg	Glu	
45	Туз	: Ile		G1:	ı Let	ı Asp	Glu 139	se:	Se	c Ala	a Ala	1					

This protein or polypeptide is about 16 kDa and has a pI of 4.45.

The hypersensitive response elicitor polypeptide or protein derived from *Pseudomonas syringae* has an amino acid sequence corresponding to SEQ. ID. No. 11 as follows:

Met Gln Ser Leu Ser Leu Asn Ser Ser Ser Leu Gln Thr Pro Ala Met
55 1 5 10 15

	Ala	Leu	Val	Leu 20	Val	Arg	Pro	Glu	Ala 25	Glu	Thr	Thr	Gly	Ser 30	Thr	Ser
5	Ser	Lys	Ala 35	Leu	Gln	Glu	Val	Val 40	Val	Lys	Leu	Ala	Glu 45	Glu	Leu	Met
	Arg	Asn 50	Gly	Gln	Leu	Asp	Asp 55	Ser	Ser	Pro	Leu	Gly 60	Lys	Leu	Leu	Ala
	Lys 65	Ser	Met	Ala	Ala	Asp 70	Gly	Lys	Ala	Gly	Gly 75	Gly	Ile	Glu	Asp	Val 80
10	Ile	Ala	Ala	Leu	Asp 85	Lys	Leu	Ile	His	Glu 90	Lys	Leu	Gly	Asp	Asn 95	Phe
	Gly	Ala	Ser	Ala 100	Asp	Ser	Ala	Ser	Gly 105	Thr	Gly	Gln	Gln	Asp 110	Leu	Met
15	Thr	Gln	Val 115	Leu	Asn	Gly	Leu	Ala 120	Lys	Ser	Met	Leu	Asp 125	Asp	Leu	Leu
	Thr	Lys 130	Gln	Asp	Gly	Gly	Thr 135	ser	Phe	Ser	Glu 、	Asp 140	Asp	Met	Pro	Met
	Leu 145	Asn	Lys	Ile	Ala	Gln 150	Phe	Met	Asp	Asp	Asn 155	Pro	Ala	Gln	Phe	Pro 160
20	Lys	Pro	Asp	Ser	Gly 165	Ser	Trp	Val	Asn	Glu 170	Leu	Lys	Glu	Asp	Asn 175	Phe
	Leu	Asp	Gly	Asp 180	Glu	Thr	Ala	Ala	Phe 185	Arg	Ser	Ala	Leu	Asp 190	Ile	Ile
25	Gly	Gln	Gln 195	Leu	Gly	Asn	Gln	Gln 200	Ser	Asp	Ala	Gly	Ser 205	Leu	Ala	Gly
	Thr	Gly 210	Gly	Gly	Leu	Gly	Thr 215	Pro	Ser	Ser	Phe	Ser 220	Asn	Asn	Ser	Ser
	Val 225	Met	Gly	Asp	Pro	Leu 230	Ile	Asp	Ala	Asn	Thr 235	Gly	Pro	Gly	Asp	Ser 240
30	Gly	Asn	Thr	Arg	Gly 245	Glu	Ala	Gly	Gln	Leu 250	Ile	Gly	Glu	Leu	11e 255	Asp
	5	•		260					265		Gly			270		
35			275					280			Gly		285			
	Asp	Leu 290	Asp	Gln	Leu	Leu	Gly 295	Gly	Leu	Leu	Leu	Lys 300	Gly	Leu	Glu	Ala
	Thr 305	Leu	Lys	Asp	Ala	Gly 310	Gln	Thr	Gly	Thr	Asp 315	Val	Gln	Ser	Ser	Ala 320

Ala Gln Ile Ala Thr Leu Leu Val Ser Thr Leu Leu Gln Gly Thr Arg

Asn Gln Ala Ala Ala 340

This hypersensitive response elicitor polypeptide or protein has a molecular weight of 34-35 kDa. It is rich in glycine (about 13.5%) and lacks cysteine and tyrosine. Further information about the hypersensitive response elicitor derived from Pseudomonas syringae is found in He, S. Y., H. C. Huang, and A. Collmer, "Pseudomonas syringae pv. syringae Harpin_{Pss}: a Protein that is Secreted via the Hrp 10 Pathway and Elicits the Hypersensitive Response in Plants," Cell 73:1255-1266 (1993), which is hereby incorporated by reference. The DNA molecule encoding the hypersensitive response elicitor from Pseudomonas syringae has a nucleotide

sequence corresponding to SEQ. ID. No. 12 as follows:

15 ATGCAGAGTC TCAGTCTTAA CAGCAGCTCG CTGCAAACCC CGGCAATGGC CCTTGTCCTG 60 GTACGTCCTG AAGCCGAGAC GACTGGCAGT ACGTCGAGCA AGGCGCTTCA GGAAGTTGTC GTGAAGCTGG CCGAGGAACT GATGCGCAAT GGTCAACTCG ACGACAGCTC GCCATTGGGA 180 AAACTGTTGG CCAAGTCGAT GGCCGCAGAT GGCAAGGCGG GCGGCGGTAT TGAGGATGTC 240 ATCGCTGCGC TGGACAAGCT GATCCATGAA AAGCTCGGTG ACAACTTCGG CGCGTCTGCG 300 20 360 AAGTCGATGC TCGATGATCT TCTGACCAAG CAGGATGGCG GGACAAGCTT CTCCGAAGAC 420 GATATGCCGA TGCTGAACAA GATCGCGCAG TTCATGGATG ACAATCCCGC ACAGTTTCCC 480 AAGCCGGACT CGGGCTCCTG GGTGAACGAA CTCAAGGAAG ACAACTTCCT TGATGGCGAC 540 GARACGGCTG CGTTCCGTTC GGCACTCGAC ATCATTGGCC AGCAACTGGG TAATCAGCAG 600 25 AGTGACGCTG GCAGTCTGGC AGGGACGGGT GGAGGTCTGG GCACTCCGAG CAGTTTTTCC 660 AACAACTCGT CCGTGATGGG TGATCCGCTG ATCGACGCCA ATACCGGTCC CGGTGACAGC 720 GGCRATACCC GTGGTGAAGC GGGGCAACTG ATCGGCGAGC TTATCGACCG TGGCCTGCAA 780 TCGGTATTGG CCGGTGGTGG ACTGGGCACA CCCGTAAACA CCCCGCAGAC CGGTACGTCG 840 GCGAATGGCG GACAGTCCGC TCAGGATCTT GATCAGTTGC TGGGCGGCTT GCTGCTCAAG 900 30 GGCCTGGAGG CAACGCTCAA GGATGCCGGG CAAACAGGCA CCGACGTGCA GTCGAGCGCT 960 GCGCAAATCG CCACCTTGCT GGTCAGTACG CTGCTGCAAG GCACCCGCAA TCAGGCTGCA 1020 1026 GCCTGA

Another potentially suitable hypersensitive response elicitor from Pseudomonas syringae is disclosed in U.S. Patent Application Serial No. 09/120,817, which is hereby incorporated by reference. The protein has a nucleotide sequence of SEQ. ID. No. 13 as follows:

	TCCACTTCGC	TGATTTTGAA	ATTGGCAGAT	TCATAGAAAC	GTTCAGGTGT	GGAAATCAGG	60
10	CTGAGTGCGC	AGATTTCGTT	GATAAGGGTG	TGGTACTGGT	CATTGTTGGT	CATTTCAAGG	120
10	CCTCTGAGTG	CGGTGCGGAG	CAATACCAGT	CTTCCTGCTG	GCGTGTGCAC	ACTGAGTCGC	180
	AGGCATAGGC	ATTTCAGTTC	CTTGCGTTGG	TTGGGCATAT	AAAAAAAGGA	ACTTTTAAAA	240
15	ACAGTGCAAT	GAGATGCCGG	CAAAACGGGA	ACCGGTCGCT	GCGCTTTGCC	ACTCACTTCG	300
	AGCAAGCTCA	ACCCCAAACA	TCCACATCCC	TATCGAACGG	ACAGCGATAC	GGCCACTTGC	360
20	TCTGGTAAAC	CCTGGAGCTG	GCGTCGGTCC	AATTGCCCAC	TTAGCGAGGT	AACGCAGCAT	420
20	GAGCATCGGC	ATCACACCCC	GGCCGCAACA	GACCACCACG	CCACTCGATT	TTTCGGCGCT	480
	AAGCGGCAAG	AGTCCTCAAC	CAAACACGTT	CGGCGAGCAG	AACACTCAGC	AAGCGATCGA	540
25	CCCGAGTGCA	CTGTTGTTCG	GCAGCGACAC	ACAGAAAGAC	GTCAACTTCG	GCACGCCCGA	600
	CAGCACCGTC	CAGAATCCGC	AGGACGCCAG	CAAGCCCAAC	GACAGCCAGT	CCAACATCGC	660
30	TAAATTGATC	AGTGCATTGA	TCATGTCGTT	GCTGCAGATG	CTCACCAACT	CCAATAAAAA	720
30	GCAGGACACC	AATCAGGAAC	AGCCTGATAG	CCAGGCTCCT	TTCCAGAACA	ACGGCGGCT	780
	CGGTACACCG	TCGGCCGATA	G CGGGGGCGG	CGGTACACCG	GATGCGACAG	GTGGCGGCGG	840
35	CGGTGATACG	CCAAGCGCAA	CAGGCGGTGG	CGGCGGTGAT	ACTCCGACCG	CAACAGGCGG	900
	TGGCGGCAGC	GGTGGCGGCG	GCACACCCAC	TGCAACAGGT	GGCGGCAGCG	GTGGCACACC	960
40	CACTGCAACA	GGCGGTGGCG	AGGGTGGCGT	AACACCGCAA	ATCACTCCGC	AGTTGGCCAA	1020
40	CCCTAACCGT	ACCTCAGGTA	CTGGCTCGGT	GTCGGACACC	GCAGGTTCTA	CCGAGCAAGC	1080
	CGGCAAGATC	AATGTGGTGA	AAGACACCAT	CAAGGTCGGC	GCTGGCGAAG	TCTTTGACGG	1140
45	CCACGGCGCA	ACCTTCACTG	CCGACAAATC	TATGGGTAAC	GGAGACCAGG	GCGAAAATCA	1200
	GAAGCCCATG	TTCGAGCTGG	CTGAAGGCGC	TACGTTGAAG	AATGTGAACC	TGGGTGAGAA	1260
50	CGAGGTCGAT	GGCATCCACG	TGAAAGCCAA	AAACGCTCAG	GAAGTCACCA	TTGACAACGT	1320
30	GCATGCCCAG	AACGTCGGTG	AAGACCTGAT	TACGGTCAAA	GGCGAGGGAG	GCGCAGCGGT	1380
	CACTAATCTG	AACATCAAGA	ACAGCAGTGC	CAAAGGTGCA	GACGACAAGG	TTGTCCAGCT	1440
55	CAACGCCAAC	ACTCACTTGA	AAATCGACAA	CTTCAAGGCC	GACGATTTCG	GCACGATGGT	1500
	TCGCACCAAC	GGTGGCAAGC	AGTTTGATGA	CATGAGCATC	GAGCTGAACG	GCATCGAAGC	1560
60	TAACCACGGC	AAGTTCGCCC	TGGTGAAAAG	CGACAGTGAC	GATCTGAAGC	TGGCAACGGG	1620
UU							

	CARCATCGCC ATGACCGACG TCAAACACGC CTACGATAAA ACCCAGGCAT CGACCCAACA	1680											
	CARCATCGCC ATGACCOAGO TOURS	1729											
	CACCGAGCTT TGAATCCAGA CAUCTIO												
5	This DNA molecule is known as the dspE gene for Pseudomonas syringae.	This											
	isolated DNA molecule of the present invention encodes a protein or polypeptide												
	which elicits a plant pathogen's hypersensitive response having an amino acid												
	which elicits a plant patnogen's hyperschaft of especial sequence of SEQ. ID. No. 14 as follows:												
10	Met Ser Ile Gly Ile Thr Pro Arg Pro Gln Gln Thr Thr Thr 1												
15	Asp Phe Ser Ala Leu Ser Gly Lys Ser Pro Gln Pro Asn Thr 25 20 25												
	Glu Gln Asn Thr Gln Gln Ala Ile Asp Pro Ser Ala Leu Leu 35 40												
20	Ser Asp Thr Gln Lys Asp Val Asn Phe Gly Thr Pro Asp Ser 50 60												
	Gln Asn Pro Gln Asp Ala Ser Lys Pro Asn Asp Ser Gln Ser 65 75												
25	Ala Lys Leu Ile Ser Ala Leu Ile Met Ser Leu Leu Gln Me 85 90												
30	Asn Ser Asn Lys Lys Gln Asp Thr Asn Gln Glu Gln Pro As 100 105												
	Ala Pro Phe Gln Asn Asn Gly Gly Leu Gly Thr Pro Ser Al 125 120												
35	Gly Gly Gly Gly Thr Pro Asp Ala Thr Gly Gly Gly Gly Gl 130 135												
	Pro Ser Ala Thr Gly Gly Gly Gly Gly Asp Thr Pro Thr Al 145 150												
40	Gly Gly Gly Ser Gly Gly Gly Gly Thr Pro Thr Ala Thr G 165 170												
45	Ser Gly Gly Thr Pro Thr Ala Thr Gly Gly Gly Glu Gly G 180 185												
	Pro Gln Ile Thr Pro Gln Leu Ala Asn Pro Asn Arg Thr S 195 200	,											
50	210												
55	Asn Val Val Lys Asp Thr Ile Lys Val Gly Ala Gly Glu V 235 25	/al Phe Asp 240											

	Gly	His	Gly	Ala	Thr 245	Phe	Thr	Ala	Asp	Lys 250	Ser	Met	Gly	Asn	Gly 255	Asp
5	Gln	Gly	Glu	Asn 260	Gln	Lys	Pro	Met	Phe 265	Glu	Leu	Ala	Glu	Gly 270	Ala	Thr
	Leu	Lys	Asn 275	Val	Asn	Leu	Gly	Glu 280	Asn	Glu	Val	Asp	Gly 285	Ile	His	Val
10	Lys	Ala 290	Lys	Asn	Ala	Gln	Glu 295	Val	Thr	Ile	Asp	Asn 300	Val	His	Ala	Gln
1.5	Asn 305	Val	Gly	Glu	Asp	Leu 310	Ile	Thr	Val	Lys	Gly 315	Glu	Gly	Gly	Ala	Ala 320
15	Val	Thr	Asn	Leu	Asn 325	Ile	Lys	Asn	Ser	Ser 330	Ala	Lys	Gly	Ala	Asp 335	Asp
20	Lys	Val	Val	Gln 340	Leu	Asn	Ala	Asn	Thr 345	His	Leu	Lys	Ile	Asp 350	Asn	Phe
	Lys	Ala	Asp 355	Asp	Phe	Gly	Thr	Met 360	Val	Arg	Thr	Asn	Gly 365	Gly	Lys	Gln
25	Phe	Asp 370	Asp	Met	Ser	Ile	Glu 375	Leu	Asn	Gly	Ile	Glu 380	Ala	Asn	His	Gly
30	Lys 385	Phe	Ala	Leu	Val	Lys 390	Ser	Asp	Ser	Asp	Asp 395	Leu	Lys	Leu	Ala	Thr 400
30	Gly	Asn	Ile	Ala	Met 405	Thr	Asp	Val	Lys	His 410	Ala	Tyr	Asp	Lys	Thr 415	Gln
35	Ala	Ser	Thr	Gln 420	His	Thr	Glu	Leu								

This protein or polypeptide is about 42.9 kDa.

The hypersensitive response elicitor polypeptide or protein derived from *Pseudomonas solanacearum* has an amino acid sequence corresponding to SEQ. ID. No. 15 as follows:

Met Ser Val Gly Asn Ile Gln Ser Pro Ser Asn Leu Pro Gly Leu Gln 1 5 15

Asn Leu Asn Leu Asn Thr Asn Thr Asn Ser Gln Gln Ser Gly Gln Ser 25 Ser Gln Gln Ser Gly Gln Ser 25 Val Gln Asp Leu Ile Lys Gln Val Glu Lys Asp Ile Leu Asn Ile Ile 35 Ala Ala Leu Val Gln Lys Ala Ala Gln Ser Ala Gly Gly Asn Thr Gly 55 55 55 Ser Ala Gly Gly Asn Thr Gly 55 55 55 Ser Ala Gly Gly Asn Thr Gly 55 55 55 Ser Ala Gly Gly Asn Thr Gly 55 55 Ser Ala Gly Gly Asn Thr Gly 55 55 Ser Ala Gly Gly Asn Thr Gly 55 55 Ser Ala Gly Gly Asn Thr Gly 55 Ser Ala Ala Gly Gly Asn Thr Gly 55 Ser Ala Gly Gly Asn Thr Gly 55 Ser Gly Gly Asn Thr Gly 55 Ser Ala Gly Gly Asn Thr Gly 55 Ser Gly Gly Gly Asn Thr Gly 55 Ser Gly Gly Gly Gly Gly Asn Thr Gly 55 Ser Gly Gl

	Asn Thr Gly Asn Ala Pro Ala Lys Asp Gly Asn Ala Asn Ala Gly Ala 80 65 70							
	Asn Asp Pro Ser Lys Asn Asp Pro Ser Lys Ser Gln Ala Pro Gln Ser 85 90 95							
5	Ala Asn Lys Thr Gly Asn Val Asp Asp Ala Asn Asn Gln Asp Pro Met 100 105 110							
	Gln Ala Leu Met Gln Leu Leu Glu Asp Leu Val Lys Leu Leu Lys Ala 115 120							
10	Ala Leu His Met Gln Gln pro Gly Gly Asn Asp Lys Gly Asn Gly Val 130 140							
	Gly Gly Ala Asn Gly Ala Lys Gly Ala Gly Gly Gln Gly Gly Leu Ala 150 155 160							
	Glu Ala Leu Gln Glu Ile Glu Gln Ile Leu Ala Gln Leu Gly Gly Glv Ala Leu Gln Glo Gly 175							
15	Gly Ala Gly Ala Gly Gly Ala Gly Gly Val Gly Gly Ala Gly Gly 180							
	Ala Asp Gly Gly Ser Gly Ala Gly Gly Ala Gly Gly Ala Asn Gly Ala 205							
20	Asp Gly Asn Gly Val Asn Gly Asn Gln Ala Asn Gly Pro Gln Asn 220 215 220							
20	Ala Gly Asp Val Asn Gly Ala Asn Gly Ala Asp Asp Gly Ser Glu Asp 240 235 230 235							
	Gln Gly Gly Leu Thr Gly Val Leu Gln Lys Leu Met Lys Ile Leu Asn 255 255							
25	Ala Leu Val Gln Met Met Gln Gln Gly Gly Leu Gly Gly Asn Gln 260 265							
	Ala Gln Gly Gly Ser Lys Gly Ala Gly Asn Ala Ser Pro Ala Ser Gly 285 275							
30	Ala Asn Pro Gly Ala Asn Gln Pro Gly Ser Ala Asn Asn Gln Ser Ser 290 295							
	Gly Gln Asn Asn Leu Gln Ser Gln Ile Met Asp Val Val Lys Glu Val 315 320							
	Val Gln Ile Leu Gln Gln Met Leu Ala Ala Gln Asn Gly Gly Ser Gln 325 325							
35	Gln Ser Thr Ser Thr Gln Pro Met 340							
It is encoded by a DNA molecule having a nucleotide sequence corresponding SEQ.								

It is encoded by a DNA molecule having a nucleotide sequence corresponding SEQ. ID. No. 16 as follows:

WO 00/28055

	ATGTCAGTCG GAAACATCCA GAGCCCGTCG AACCTCCCGG GTCTGCAGAA CCTGAACCTC	60
	AACACCAACA CCAACAGCCA GCAATCGGGC CAGTCCGTGC AAGACCTGAT CAAGCAGGTC	120
	GAGAAGGACA TCCTCAACAT CATCGCAGCC CTCGTGCAGA AGGCCGCACA GTCGGCGGGC	180
	GGCAACACCG GTAACACCGG CAACGCGCCG GCGAAGGACG GCAATGCCAA CGCGGGCGCC	240
5	AACGACCCGA GCAAGAACGA CCCGAGCAAG AGCCAGGCTC CGCAGTCGGC CAACAAGACC	300
	GGCAACGTCG ACGACGCCAA CAACCAGGAT CCGATGCAAG CGCTGATGCA GCTGCTGGAA	360
	GACCTGGTGA AGCTGCTGAA GGCGGCCCTG CACATGCAGC AGCCCGGCGG CAATGACAAG	420
	GGCAACGGCG TGGGCGGTGC CAACGGCGCC AAGGGTGCCG GCGGCCAGGG CGGCCTGGCC	480
	GAAGCGCTGC AGGAGATCGA GCAGATCCTC GCCCAGCTCG GCGGCGGCGG TGCTGGCGCC	540
10	GGCGGCGCGG GTGGCGGTGT CGGCGGTGCT GGTGGCGCGG ATGGCGGCTC CGGTGCGGGT	600
	GGCGCAGGCG GTGCGAACGG CGCCGACGGC GGCAATGGCG TGAACGGCAA CCAGGCGAAC	660
	GGCCCGCAGA ACGCAGGCGA TGTCAACGGT GCCAACGGCG CGGATGACGG CAGCGAAGAC	720
	CAGGGCGGCC TCACCGGCGT GCTGCAAAAG CTGATGAAGA TCCTGAACGC GCTGGTGCAG	780
	ATGATGCAGC AAGGCGGCCT CGGCGGCGGC AACCAGGCGC AGGGCGGCTC GAAGGGTGCC	840
15	GGCAACGCCT CGCCGGCTTC CGGCGCGAAC CCGGGCGCGA ACCAGCCCGG TTCGGCGGAT	900
	GATCAATCGT CCGGCCAGAA CAATCTGCAA TCCCAGATCA TGGATGTGGT GAAGGAGGTC	960
	GTCCAGATCC TGCAGCAGAT GCTGGCGGCG CAGAACGGCG GCAGCCAGCA GTCCACCTCG	1020
	ACGCAGCCGA TGTAA	1035

20

25

Further information regarding the hypersensitive response elicitor polypeptide or protein derived from *Pseudomonas solanacearum* is set forth in Arlat, M., F. Van Gijsegem, J. C. Huet, J. C. Pemollet, and C. A. Boucher, "PopA1, a Protein which Induces a Hypersensitive-like Response in Specific Petunia Genotypes, is Secreted via the Hrp Pathway of *Pseudomonas solanacearum*," EMBO J. 13:543-533 (1994), which is hereby incorporated by reference.

The hypersensitive response elicitor polypeptide or protein from Xanthomonas campestris pv. glycines has an amino acid sequence corresponding to SEQ. ID. No. 17 as follows:

30

Thr Leu Ile Glu Leu Met Ile Val Val Ala Ile Ile Ala Ile Leu Ala 1 $$ 5 $$ 10 $$ 15

25

30

35

Ala Ile Ala Leu Pro Ala Tyr Gln Asp Tyr

5 This sequence is an amino terminal sequence having only 26 residues from the hypersensitive response elicitor polypeptide or protein of Xanthomonas campestris pv. glycines. It matches with fimbrial subunit proteins determined in other Xanthomonas campestris pathovars.

The hypersensitive response elicitor polypeptide or protein from

Xanthomonas campestris pv. pelargonii is heat stable, protease sensitive, and has a
molecular weight of 20 kDa. It includes an amino acid sequence corresponding to

SEQ. ID. No. 18 as follows:

Ser Ser Gln Gln Ser Pro Ser Ala Gly Ser Glu Gln Gln Leu Asp Gln

15

Leu Leu Ala Met

Isolation of Erwinia carotovora hypersensitive response elictor protein or polypeptide is described in Cui et al., "The RsmA Mutants of Erwinia carotovora subsp. carotovora Strain Ecc71 Overexpress hrp N_{Ecc} and Elicit a Hypersensitive Reaction-like Response in Tobacco Leaves," MPMI, 9(7):565-73 (1996), which is hereby incorporated by reference. The hypersensitive response elicitor protein or polypeptide of Erwinia stewartii is set forth in Ahmad et al., "Harpin is Not Necessary for the Pathogenicity of Erwinia stewartii on Maize," 8th Int'l. Cong. Molec. Plant-Microbe Interact., July 14-19, 1996 and Ahmad, et al., "Harpin is Not Necessary for the Pathogenicity of Erwinia stewartii on Maize," Ann. Mtg. Am. Phytopath. Soc., July 27-31, 1996, which are hereby incorporated by reference.

Hypersensitive response elicitor proteins or polypeptides from Phytophthora parasitica, Phytophthora cryptogea, Phytophthora cinnamoni, Phytophthora capsici, Phytophthora megasperma, and Phytophora citrophthora are described in Kaman, et al., "Extracellular Protein Elicitors from Phytophthora: Most Specificity and Induction of Resistance to Bacterial and Fungal Phytopathogens," Molec. Plant-Microbe Interact., 6(1):15-25 (1993), Ricci et al., "Structure and Activity of Proteins from Pathogenic Fungi Phytophthora Eliciting Necrosis and

15

20

25

30

Acquired Resistance in Tobacco," Eur. J. Biochem., 183:555-63 (1989), Ricci et al., "Differential Production of Parasiticein, and Elicitor of Necrosis and Resistance in Tobacco, by Isolates of Phytophthora parasitica," Plant Path. 41:298-307 (1992), Baillreul et al, "A New Elicitor of the Hypersensitive Response in Tobacco: A Fungal Glycoprotein Elicits Cell Death, Expression of Defence Genes, Production of Salicylic Acid, and Induction of Systemic Acquired Resistance," Plant L., 8(4):551-60 (1995), and Bonnet et al., "Acquired Resistance Triggered by Elicitors in Tobacco and Other Plants," Eur. J. Plant Path., 102:181-92 (1996), which are hereby incorporated by reference.

Another hypersensitive response elicitor in accordance with the present invention is from *Clavibacter michiganensis* subsp. sepedonicus which is fully described in U.S. Patent Application Serial No. 09/136,625, which is hereby incorporated by reference.

The above elicitors are exemplary. Other elicitors can be identified by growing fungi or bacteria that elicit a hypersensitive response under conditions which genes encoding an elicitor are expressed. Cell-free preparations from culture supernatants can be tested for elicitor activity (i.e. local necrosis) by using them to infiltrate appropriate plant tissues.

Fragments of the above hypersensitive response elicitor polypeptides or proteins as well as fragments of full length elicitors from other pathogens are encompassed by the method of the present invention.

Suitable fragments can be produced by several means. In the first, subclones of the gene encoding a known elicitor protein are produced by conventional molecular genetic manipulation by subcloning gene fragments. The subclones then are expressed *in vitro* or *in vivo* in bacterial cells to yield a smaller protein or peptide that can be tested for elicitor activity according to the procedure described below.

As an alternative, fragments of an elicitor protein can be produced by digestion of a full-length elicitor protein with proteolytic enzymes like chymotrypsin or *Staphylococcus* proteinase A, or trypsin. Different proteolytic enzymes are likely to cleave elicitor proteins at different sites based on the amino acid sequence of the elicitor protein. Some of the fragments that result from proteolysis may be active elicitors of resistance.

10

15

20

25

30

In another approach, based on knowledge of the primary structure of the protein, fragments of the elicitor protein gene may be synthesized by using the PCR technique together with specific sets of primers chosen to represent particular portions of the protein. These then would be cloned into an appropriate vector for expression of a truncated peptide or protein.

Chemical synthesis can also be used to make suitable fragments. Such a synthesis is carried out using known amino acid sequences for the elicitor being produced. Alternatively, subjecting a full length elicitor to high temperatures and pressures will produce fragments. These fragments can then be separated by conventional procedures (e.g., chromatography, SDS-PAGE).

An example of suitable fragments of a hypersensitive response elicitor which do not elicit a hypersensitive response include fragments of the *Erwinia*. Suitable fragments include a C-terminal fragment of the amino acid sequence of SEQ. ID. No. 3, an N-terminal fragment of the amino acid sequence of SEQ. ID. No. 3. The C-terminal fragment of the amino acid sequence of SEQ. ID. No. 3 acn span the following amino acids of SEQ. ID. No. 3: 169 and 403, 210 and 403, 267 and 403, or 343 and 403. The internal fragment of the amino acid sequence of SEQ. ID. No. 3 can span the following amino acids of SEQ. ID. No. 3: 105 and 179, 137 and 166, 121 and 150, or 137 and 156. Other suitable fragments can be identified in accordance with the present invention.

Another example of suitable fragments of a hypersensitive response elicitor which do elicit a hypersensitive response are *Erwinia amylovora* fragments including a C-terminal fragment of the amino acid sequence of SEQ. ID. No. 3, an N-terminal fragment of the amino acid sequence of SEQ. ID. No. 3. or an internal fragment of the amino acid sequence of SEQ. ID. No. 3. The C-terminal fragment of the amino acid sequence of SEQ. ID. No. 3 can span amino acids 105 and 403 of SEQ. ID. No. 3. The N-terminal fragment of the amino acid sequence of SEQ. ID. No. 3 can span the following amino acids of SEQ. ID. No. 3: 1 and 98, 1 and 104, 1 and 122, 1 and 168, 1 and 218, 1 and 266, 1 and 342, 1 and 321, and 1 and 372. The internal fragment of the amino acid sequence of SEQ. ID. No. 3 can span the

10

15

20

25

30

following amino acids of SEQ. ID. No. 3: 76 and 209, 105 and 209, 99 and 209, 137 and 204, 137 and 200, 109 and 204, 109 and 200, 137 and 180, and 105 and 180.

Suitable DNA molecules are those that hybridize to the DNA molecule comprising a nucleotide sequence of SEQ. ID. Nos. 2, 4, 5, 7, 9, 12, 13, and 16 under stringent conditions. An example of suitable high stringency conditions is when hybridization is carried out at 65°C for 20 hours in a medium containing 1M NaCl, 50 mM Tris-HCl, pH 7.4, 10 mM EDTA, 0.1% sodium dodecyl sulfate, 0.2% ficoll, 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, 50 µm g/ml E. coli DNA.

Variants may be made by, for example, the deletion or addition of amino acids that have minimal influence on the properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which cotranslationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification, or identification of the polypeptide.

The hypersensitive response elicitor of the present invention is preferably in isolated form (i.e. separated from its host organism) and more preferably produced in purified form (preferably at least about 60%, more preferably 80%, pure) by conventional techniques. Typically, the hypersensitive response elicitor of the present invention is produced but not secreted into the growth medium of recombinant host cells. Alternatively, the protein or polypeptide of the present invention is secreted into growth medium. In the case of unsecreted protein, to isolate the protein, the host cell (e.g., E. coli) carrying a recombinant plasmid is propagated, lysed by sonication, heat, or chemical treatment, and the homogenate is centrifuged to remove bacterial debris. The supernatant is then subjected to heat treatment and the hypersensitive response elicitor is separated by centrifugation. The supernatant fraction containing the hypersensitive response elicitor is subjected to gel filtration in an appropriately sized dextran or polyacrylamide column to separate the fragment. If necessary, the protein fraction may be further purified by ion exchange or HPLC.

The DNA molecule encoding the hypersensitive response elicitor polypeptide or protein can be incorporated in cells using conventional recombinant DNA technology. Generally, this involves inserting the DNA molecule into an

10

15

expression system to which the DNA molecule is heterologous (i.e. not normally present). The heterologous DNA molecule is inserted into the expression system or vector in sense orientation and correct reading frame. The vector contains the necessary elements for the transcription and translation of the inserted protein-coding sequences.

U.S. Patent No. 4,237,224 to Cohen and Boyer, which is hereby incorporated by reference, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including procaryotic organisms and eucaryotic cells grown in tissue culture.

Recombinant genes may also be introduced into viruses, such as vaccina virus. Recombinant viruses can be generated by transfection of plasmids into cells infected with virus.

Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gtl1, gt WES.tB, Charon 4, and plasmid vectors such as pBR322, pBR325, pACYC177, pACYC1084, pUC8, pUC9, pUC18, pUC19, pLG339, pR290, pKC37, pKC101, SV 40, pBluescript II SK +/- or KS +/- (see "Stratagene Cloning Systems" Catalog (1993) from Stratagene, La Jolla, Calif, which is hereby incorporated by reference), pQE, pIH821, pGEX, pET series (see F.W. 20 Studier et. al., "Use of T7 RNA Polymerase to Direct Expression of Cloned Genes," Gene Expression Technology vol. 185 (1990), which is hereby incorporated by reference), and any derivatives thereof. Recombinant molecules can be introduced into cells via transformation, particularly transduction, conjugation, mobilization, or electroporation. The DNA sequences are cloned into the vector using standard 25 cloning procedures in the art, as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, New York (1989), which is hereby incorporated by reference.

A variety of host-vector systems may be utilized to express the proteinencoding sequence(s). Primarily, the vector system must be compatible with the host 30 cell used. Host-vector systems include but are not limited to the following: bacteria transformed with bacteriophage DNA, plasmid DNA, or cosmid DNA;

20

25

30

microorganisms such as yeast containing yeast vectors; mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); and plant cells infected by bacteria. The expression elements of these vectors vary in their strength and specificities. Depending upon the host-vector system utilized, any one of a number of suitable transcription and translation elements can be used.

Different genetic signals and processing events control many levels of gene expression (e.g., DNA transcription and messenger RNA (mRNA) translation).

Transcription of DNA is dependent upon the presence of a promotor which is a DNA sequence that directs the binding of RNA polymerase and thereby promotes mRNA synthesis. The DNA sequences of eucaryotic promotors differ from those of procaryotic promotors. Furthermore, eucaryotic promotors and accompanying genetic signals may not be recognized in or may not function in a procaryotic system, and, further, procaryotic promotors are not recognized and do not function in eucaryotic cells.

Similarly, translation of mRNA in procaryotes depends upon the presence of the proper procaryotic signals which differ from those of eucaryotes. Efficient translation of mRNA in procaryotes requires a ribosome binding site called the Shine-Dalgarno ("SD") sequence on the mRNA. This sequence is a short nucleotide sequence of mRNA that is located before the start codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3'-end of the 16S rRNA (ribosomal RNA) and probably promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression, see Roberts and Lauer, Methods in Enzymology, 68:473 (1979), which is hereby incorporated by reference.

Promotors vary in their "strength" (i.e. their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promotors in order to obtain a high level of transcription and, hence, expression of the gene. Depending upon the host cell system utilized, any one of a number of suitable promotors may be used. For instance, when cloning in *E. coli*, its bacteriophages, or plasmids, promotors such as the T7 phage promotor, *lac* promotor,

10

15

20

25

30

trp promotor, recA promotor, ribosomal RNA promotor, the P_R and P_L promotors of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, lpp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promotor or other E. coli promotors produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene.

Bacterial host cell strains and expression vectors may be chosen which inhibit the action of the promotor unless specifically induced. In certain operations, the addition of specific inducers is necessary for efficient transcription of the inserted DNA. For example, the *lac* operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside). A variety of other operons, such as *trp*, *pro*, etc., are under different controls.

Specific initiation signals are also required for efficient gene transcription and translation in procaryotic cells. These transcription and translation initiation signals may vary in "strength" as measured by the quantity of gene specific messenger RNA and protein synthesized, respectively. The DNA expression vector, which contains a promotor, may also contain any combination of various "strong" transcription and/or translation initiation signals. For instance, efficient translation in *E. coli* requires an SD sequence about 7-9 bases 5' to the initiation codon ("ATG") to provide a ribosome binding site. Thus, any SD-ATG combination that can be utilized by host cell ribosomes may be employed. Such combinations include but are not limited to the SD-ATG combination from the *cro* gene or the *N* gene of coliphage lambda, or from the *E. coli* tryptophan E, D, C, B or A genes. Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving incorporation of synthetic nucleotides may be used.

Once the isolated DNA molecule encoding the hypersensitive response elicitor polypeptide or protein has been cloned into an expression system, it is ready to be incorporated into a host cell. Such incorporation can be carried out by the various forms of transformation noted above, depending upon the vector/host cell system. Suitable host cells include, but are not limited to, bacteria, virus, yeast, mammalian cells, insect, plant, and the like.

The present invention's method of imparting stress resistance to plants can involve applying the hypersensitive response elicitor polypeptide or protein in a non-infectious form to all or part of a plant or a plant seed under conditions effective for the elicitor to impart stress resistance. Alternatively, the hypersensitive response elicitor protein or polypeptide can be applied to plants such that seeds recovered from such plants themselves are able to impart stress resistance in plants.

5

10

15

20

25

As an alternative to applying a hypersensitive response elicitor polypeptide or protein to plants or plant seeds in order to impart stress resistance in plants or plants grown from the seeds, transgenic plants or plant seeds can be utilized. When utilizing transgenic plants, this involves providing a transgenic plant transformed with a DNA molecule encoding a hypersensitive response elicitor polypeptide or protein and growing the plant under conditions effective to permit that DNA molecule to impart stress resistance to plants. Alternatively, a transgenic plant seed transformed with a DNA molecule encoding a hypersensitive response elicitor polypeptide or protein can be provided and planted in soil. A plant is then propagated from the planted seed under conditions effective to permit that DNA molecule to impart stress resistance to plants.

The embodiment of the present invention where the hypersensitive response elicitor polypeptide or protein is applied to the plant or plant seed can be carried out in a number of ways, including: 1) application of an isolated hypersensitive response elicitor or 2) application of bacteria which do not cause disease and are transformed with a genes encoding the elicitor. In the latter embodiment, the elicitor can be applied to plants or plant seeds by applying bacteria containing the DNA molecule encoding a hypersensitive response elicitor polypeptide or protein. Such bacteria must be capable of secreting or exporting the elicitor so that the elicitor can contact plant or plant seed cells. In these embodiments, the elicitor is produced by the bacteria in planta or on seeds or just prior to introduction of the bacteria to the plants or plant seeds.

The methods of the present invention can be utilized to treat a wide

variety of plants or their seeds to impart stress resistance. Suitable plants include
dicots and monocots. More particularly, useful crop plants can include: alfalfa, rice,
wheat, barley, rye, cotton, sunflower, peanut, corn, potato, sweet potato, bean, pea,

30

chicory, lettuce, endive, cabbage, brussel sprout, beet, parsnip, cauliflower, broccoli, turnip, radish, spinach, onion, garlic, eggplant, pepper, celery, carrot, squash, pumpkin, zucchini, cucumber, apple, pear, melon, citrus, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane. Examples of suitable ornamental plants are: *Arabidopsis thaliana*, *Saintpaulia*, petunia, pelargonium, poinsettia, chrysanthemum, carnation, and zinnia.

In accordance with the present invention, the term "stress" refers to drought, salt, cold temperatures (e.g., frost), chemical treatment (e.g., insecticides, fungicides, herbicides, fertilizers), water, excessive light, and insufficient light.

The method of the present invention involving application of the 10 hypersensitive response elicitor polypeptide or protein can be carried out through a variety of procedures when all or part of the plant is treated, including leaves, stems, roots, propagules (e.g., cuttings), etc. This may (but need not) involve infiltration of the hypersensitive response elicitor polypeptide or protein into the plant. Suitable application methods include high or low pressure spraying, injection, and leaf 15 abrasion proximate to when elicitor application takes place. When treating plant seeds or propagules (e.g., cuttings), in accordance with the application embodiment of the present invention, the hypersensitive response elicitor protein or polypeptide, in accordance with present invention, can be applied by low or high pressure spraying, coating, immersion, or injection. Other suitable application procedures can be 20 envisioned by those skilled in the art provided they are able to effect contact of the elicitor with cells of the plant or plant seed. Once treated with the hypersensitive response elicitor of the present invention, the seeds can be planted in natural or artificial soil and cultivated using conventional procedures to produce plants. After plants have been propagated from seeds treated in accordance with the present 25 invention, the plants may be treated with one or more applications of the hypersensitive response elicitor protein or polypeptide to impart stress resistance to plants.

The hypersensitive response elicitor polypeptide or protein, in accordance with the present invention, can be applied to plants or plant seeds alone or in a mixture with other materials. Alternatively, the hypersensitive response elicitor

10

15

20

25

polypeptide or protein can be applied separately to plants with other materials being applied at different times.

A composition suitable for treating plants or plant seeds in accordance with the application embodiment of the present invention contains a hypersensitive response elicitor polypeptide or protein in a carrier. Suitable carriers include water, aqueous solutions, slurries, or dry powders. In this embodiment, the composition contains greater than 500 nM of the elicitor.

Although not required, this composition may contain additional additives including fertilizer, insecticide, fungicide, nematacide, and mixtures thereof. Suitable fertilizers include (NH₄)₂NO₃. An example of a suitable insecticide is Malathion. Useful fungicides include Captan.

Other suitable additives include buffering agents, wetting agents, coating agents, and abrading agents. These materials can be used to facilitate the process of the present invention. In addition, the hypersensitive response elicitor can be applied to plant seeds with other conventional seed formulation and treatment materials, including clays and polysaccharides.

In the alternative embodiment of the present invention involving the use of transgenic plants and transgenic seeds, a hypersensitive response elicitor need not be applied topically to the plants or seeds. Instead, transgenic plants transformed with a DNA molecule encoding such an elicitor are produced according to procedures well known in the art

The vector described above can be microinjected directly into plant cells by use of micropipettes to transfer mechanically the recombinant DNA.

Crossway, Mol. Gen. Genetics, 202:179-85 (1985), which is hereby incorporated by reference. The genetic material may also be transferred into the plant cell using polyethylene glycol. Krens, et al., Nature, 296:72-74 (1982), which is hereby incorporated by reference.

Another approach to transforming plant cells with a gene is particle bombardment (also known as biolistic transformation) of the host cell. This can be accomplished in one of several ways. The first involves propelling inert or biologically active particles at cells. This technique is disclosed in U.S. Patent Nos. 4.945,050, 5.036,006, and 5.100,792, all to Sanford et al., which are hereby

15

20

25

30

incorporated by reference. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer surface of the cell and to be incorporated within the interior thereof. When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the heterologous DNA. Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried bacterial cells containing the vector and heterologous DNA) can also be propelled into plant cells.

Yet another method of introduction is fusion of protoplasts with other entities, either minicells, cells, lysosomes, or other fusible lipid-surfaced bodies. Fraley, et al., <u>Proc. Natl. Acad. Sci. USA</u>, 79:1859-63 (1982), which is hereby incorporated by reference.

The DNA molecule may also be introduced into the plant cells by electroporation. Fromm et al., Proc. Natl. Acad. Sci. USA, 82:5824 (1985), which is hereby incorporated by reference. In this technique, plant protoplasts are electroporated in the presence of plasmids containing the expression cassette. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and regenerate.

Another method of introducing the DNA molecule into plant cells is to infect a plant cell with Agrobacterium tumefaciens or A. rhizogenes previously transformed with the gene. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots or roots, and develop further into plants. Generally, this procedure involves inoculating the plant tissue with a suspension of bacteria and incubating the tissue for 48 to 72 hours on regeneration medium without antibiotics at 25-28°C.

Agrobacterium is a representative genus of the Gram-negative family Rhizobiaceae. Its species are responsible for crown gall (A. tumefaciens) and hairy root disease (A. rhizogenes). The plant cells in crown gall tumors and hairy roots are induced to produce amino acid derivatives known as opines, which are catabolized only by the bacteria. The bacterial genes responsible for expression of opines are a

10

20

25

30

convenient source of control elements for chimeric expression cassettes. In addition, assaying for the presence of opines can be used to identify transformed tissue.

Heterologous genetic sequences can be introduced into appropriate plant cells, by means of the Ti plasmid of *A. tumefaciens* or the Ri plasmid of *A. rhizogenes*. The Ti or Ri plasmid is transmitted to plant cells on infection by Agrobacterium and is stably integrated into the plant genome. J. Schell, <u>Science</u>, 237:1176-83 (1987), which is hereby incorporated by reference.

After transformation, the transformed plant cells must be regenerated.

Plant regeneration from cultured protoplasts is described in Evans et al., Handbook of Plant Cell Cultures. Vol. 1: (MacMillan Publishing Co., New York, 1983); and Vasil I.R. (ed.), Cell Culture and Somatic Cell Genetics of Plants, Acad. Press, Orlando, Vol. I, 1984, and Vol. III (1986), which are hereby incorporated by reference.

It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to, all major species of sugarcane, sugar beets, cotton, fruit trees, and legumes.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable.

After the expression cassette is stably incorporated in transgenic plants, it can be transferred to other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.

Once transgenic plants of this type are produced, the plants themselves can be cultivated in accordance with conventional procedure with the presence of the

25

30

gene encoding the hypersensitive response elicitor resulting in stress resistance to the plant. Alternatively, transgenic seeds or propagules (e.g., cuttings) are recovered from the transgenic plants. The seeds can then be planted in the soil and cultivated using conventional procedures to produce transgenic plants. The transgenic plants are propagated from the planted transgenic seeds under conditions effective to impart stress resistance to plants. While not wishing to be bound by theory, such stress resistance may be RNA mediated or may result from expression of the elicitor polypeptide or protein.

When transgenic plants and plant seeds are used in accordance with the

present invention, they additionally can be treated with the same materials as are used to treat-the plants and seeds to which a hypersensitive response elicitor in accordance with the present invention is applied. These other materials, including a hypersensitive response elicitor in accordance with the present invention, can be applied to the transgenic plants and plant seeds by the above-noted procedures, including high or low pressure spraying, injection, coating, and immersion. Similarly, after plants have been propagated from the transgenic plant seeds, the plants may be treated with one or more applications of the hypersensitive response elicitor in accordance with the present invention to impart stress resistance. Such plants may also be treated with conventional plant treatment agents (e.g., insecticides, fertilizers,

EXAMPLES

Example 1 - Hypersensitive Response Elicitor-Treated Cotton is More Resistant to the Damage Caused by Insecticide Stress

Aphids (Aphids gossypii) infect cotton during the entire growth season. The damage of aphid infection ranges from honeydew deposit that contaminates the lint and reduces crop value to defoliation that reduces or destroys crops. To protect plants from aphid infection, cotton is usually sprayed with insecticides, for example Asana XL when the infection pressure is not very high, and Admire when the infestation pressure is high. The effect of a hypersensitive response elicitor on aphids in cotton was studied by a trial involving a randomized complete block design. This

involved treatment with Erwinia amylovora hypersensitive response elicitor (i.e. HP-1000™) at 20, 60, and 80 ppm and a chemical insecticide, Asana XL, at 8 oz./ac. Each treatment involved foliar application beginning at cotyledon to three true leaves and thereafter at 14 day intervals using a backpack sprayer. Aphid counts and overall growth of the cotton were made immediately prior to spray application at 14, 28, 35, and 42 days after the first treatment ("DAT 1"). Twenty-five randomly selected leaves per plot were collected at the first three sampling dates and the leaves per plot at the final sampling date.

10 Results

15

5

Aphid control: The number of aphids in the hypersensitive response elicitor-treated cotton were significantly reduced in comparison to the chemical treated cotton (see Table 1).

Table 1. Aphid count per leaf on cotton after treatment with Asana XL® or HP-1000™

Treatment		No. s	Number of apsprays applied/o	hids per leaf ^l lavs after treatr	nent
Asana XL	Rate ²	1/14DA 1 1	2/28DAT1	3/35DAT1	4/42DAT1
HP-1000TM	8 oz/ac	0.2 a	32.2 a	110.0 a	546.9 a
HP-1000™	20 μg/ml	0.2 a	7.8 ь	22.9 b	322.1 a
HP-1000™	60 μg/ml	0.1 a	4.9 b	34.6 b	168.3 a
Means follow	80 μg/ml	0.0 a	2.7 ь	25.8 b	
P=0.05. 2Rate ingredient (a.i.)	for Asana XL	is for formulate	icantly different d product, rate	t according to for HP-1000™	Duncan's MR

20 ingredient (a.i.).

At 14 days after DAT 1, aphid counts were relatively low across all of the treatments, but by 28 days after DAT 1 (by which time two sprayings had been applied), the number of aphids per leaf were significantly greater in Asana XL-treated 25 plants compared to the hypersensitive response elicitor-treated cottons. By 35 days after DAT 1 (by which time three sprayings had been applied), aphid counts had risen for all treatments, yet aphid counts per leaf were still significantly lower for hypersensitive response elicitor-treated cotton compared to the Asana XL treatment. 30 Finally, at 42 days after DAT 1 (by which time four sprayings had been applied), the number of aphids per leaf had increased to a level that threatened to overwhelm the

plants even when treated with the standard chemical insecticide. To save the trial, another chemical, Pravado (Admire), was applied to all plots to eradicate aphids from the field.

Hypersensitive response elicitor-treated cotton was more 2. resistant to the damage caused by Pravado (Admire) and Asana. After the second chemical spraying, it was observed that cotton plants were stress shocked by the insecticides. The cotton plants previously treated with Asana and untreated control were defoliated. On most of the chemical-treated cotton, there were no leaves, or very few leaves, in the lower portion of plants. However, the hypersensitive response elicitor-treated plants, especially the plot where hypersensitive response elicitor was 10 applied at 80 ppm, had no defoliation and the cotton plants were vigorous and healthy. By counting the number of mature balls, it clearly showed that hypersensitive response elicitor-treated plants (at 80 ppm) had more ball setting than chemical and untreated control (Table 2), indicating that hypersensitive response elicitor-treated plants were more tolerant to the stress caused by insecticide.

Number of Formed Cotton Balls Counted on Ten Plants Table 2. in Each of Four Replicates Per Treatment.

No. balls/10 plants/replicate Treatment 20 28 TITC 6 Chemical standard Hypersensitive Response Elicitor 35

25

30

35

15

Example 2 - Hypersensitive Response Elicitor-Treated Cucumbers are More Resistant to Drought

A cucumber field trial was set up to test the effect of Erwinia amylovora hypersensitive response elicitor on disease control, tolerance to drought stress, and yield. Three different rates were tested, there at 15, 30, and 60 µg/ml. In addition to hypersensitive response elicitor treatment, there was an untreated control. Each treatment contained three replicate plots. When the first true leaf emerges, hypersensitive response elicitor was sprayed with a back bag sprayer. The second spray was applied ten days after the first spray. The third application was right after

the recovery of cucumber seedlings after the transplanting to the field. Individual treatment was randomly assigned in the field.

When the first true leaf emerged (Day 0), a first application was sprayed. Usually cucumber seedlings are transplanted when seedlings show two true leaves. It has been known that the recovery rate after the transplanting is closely related to the size of the seedlings. Because of the drought, the seedlings were maintained in the nursery for an extra ten days and the second spray was applied on Day 10. Two days after the second spray, the plants were transplanted into fields and covered with plastic sheets. The plants had 4 – 5 true leaves.

10

15

20

25

5

Result

The recovery rate of the transplanted cucumber seedlings was higher for the hypersensitive response elicitor-treated plants than for the untreated control. More than 80% of the hypersensitive response elicitor-treated cucumber seedlings survived, while only 57% untreated plants survived.

Throughout the growth season, there was a serious drought problem. Early field visits indicated that hypersensitive response elicitor-treated plants had more root mass and better over-all growth. Hypersensitive response elicitor-treated cucumber started to flower 14 days earlier than untreated control cucumber. The early flowering resulted in an earlier harvest. In the first harvest, more than 0.4 kilograms of cucumber fruits per plant were harvested from the hypersensitive response elicitor-treated cucumbers; however, virtually no fruit was harvested from untreated control. By the end of the season, untreated plants died due to severe drought, but hypersensitive response elicitor-treated plants were still alive and had one more harvest.

The final yield was significantly different between hypersensitive response elicitor-treated and untreated plants. Hypersensitive response elicitor administered at the rate of 30 ppm produced three times greater yield than the control plants (Table 3).

Table 3. Yield Increase of Cucumber Fruit from Hypersensitive Response Elicitor Treated Plants

Treatment	Replicate	kg/plant	Yield/R	leplicate	% of the Yield Increase
		1.25	37.5		
110.16	i	1.00	30.0	103.8	241
HP 15	111	1.21	36.3		
	1	1.54	46.2		220
HP 30	- 11	1.43	42.9	133.2	339
HP 30	111	1.47	44.1		
	1	0.43	12.9		
Control	i	0.41	12.3	39.3	
Control	111	0.47	14.1		

The increased yield was partially attributed to hypersensitive response elicitor-induced growth enhancement and partially resulted from more tolerance of hypersensitive response elicitor-treated cucumber to drought, because usually the yield increase from hypersensitive response elicitor-induced growth enhancement is between 10-40%.

Example 3 - Hypersensitive Response Elicitor-Treated Pepper is More Tolerant to Herbicide Stress

15

20

10

Pepper seedlings were drenched with hypersensitive response elicitor at 20 ppm seven days before transplanting, sprayed seven days after the transplanting, and then, sprayed every fourteen days. Standard chemicals, Brave, Maneb, Kocide, and Admire, were used for the rest of the treatment. In addition to early growth enhancement, which resulted in a higher yield, larger fruit, and resistance to several diseases, hypersensitive response elicitor-treated pepper was more tolerant to herbicide damage. The pepper field was applied with the herbicide SENCOR which is not labeled for pepper. This herbicide is known to cause severe foliar damage to pepper in chemically-treated plants but not with hypersensitive response elicitor-treated plants.

25

The difference between the adverse effect of the herbicide on the hypersensitive response elicitor and non-hypersensitive response elicitor treated plants is dramatic. See Table 4 below. Thirty-nine of the 60 elicitor-treated plants showed only minor damage by the herbicide, the damaged leaves were less than 20%. In

contrast, 53 out of the 60 chemically-treated pepper plants had severe damage, 40-57% of the leaves were damaged, and 20 plants were dead. The ability of hypersensitive response elicitors to help crops withstand the phytotoxic effects of a herbicide is very important benefit to in agricultural industry.

5

Table 4. Hypersensitive Response Elicitor-Treated Peppers are More Tolerant to Herbicide Damage.

10	Treatment		Dan	nage R	ating				Damage Index %
10	TT		1	2	3 .	4	5	6	41
	Hypersensitive Response Elicit		1	38	17	.3	1	0	
15	Chemicals	0	1	6	16	19	18		87

Damage Rating: 1. No damage; 2. 0-20% leaves damaged; 3. 20-40% leaves damaged; 4. 40-50% leaves damaged; 6. More than 75% leaves damaged or entire plant dead.

20

Damage index = sum of each rating times the number of plants under the rating scale, divided by total number of plants times 6.

Damage index for hypersensitive response elicitor-treated plants = $1 \times 1 + 2 \times 38 + 3 \times 17 + 4 \times 3 + 5 \times 1 + 6 \times 0 \times 100\% = 41\%$

25

30

Example 4 - Hypersensitive Response Elicitor-Treated Pepper is More Tolerant to Herbicide Stress under Controlled Experimental Conditions

- A field trial was conducted to test if hypersensitive elicitor treated pepper would be more tolerant to herbicide stress. The trial contains 6 treatments and 4 replicates for each treatment. The treatments are described as follows:
- Control, the peppers were neither treated by a hypersensitive
 response ("HR") elicitor nor by LEXONE™ herbicide (DuPont Agricultural Products,
 Wilmington, Delaware).
 - Control pepper with application of 0.15 pound LEXONE™ herbicide /acre.
 - 3. Control pepper with application of 0.3 pound LEXONE™
- 40 herbicide /acre.

10

15

20

25

30

- HR elicitor treatment with no application of LEXONE™
 herbicide using a formulated product known as MESSENGER™ biopesticide (Eden
 Bioscience Corporation, Bothell, Washington) containing 3% HR elicitor protein was
 used.
- HR elicitor treatment with application of 0.15 pound
 LEXONETM herbicide /acre.
- 6. HR elicitor treatment with application of 0.3 pound LEXONE™ herbicide /acre.

LEXONETM contains the same active ingredient as SENCORTM herbicide (Bayer, Kansas City, Missouri) used in Example 3. Pepper seedlings were drenched with MESSENGERTM solution at the concentration of HR elicitor protein of about 20 ppm seven days before transplanting into the field and then sprayed every 14 days after the transplanting. LEXONE was applied at high (0.3 pound/acre) and low levels (0.15 pound/acre). 50 gallon water and 100 mL of the herbicide solution was introduced into the root zone of each plant in the respective treatment five weeks after transplant into the field.

The treatments were evaluated for the percent of chlorosis caused by the LEXONETM herbicide application and for the pepper yield. HR elicitor-treated plants exposed to the high rate of herbicide had significantly less chlorosis and produced 108 % more fruit in comparison to the non-hypersensitive response elicitor treated plants exposed to the same amount of herbicide. See Tables 5 and 6 below. There was no significant difference in the reduction of chlorosis at the low rate of herbicide between the HR elicitor treated and non-HR elicitor treated peppers. However, the HR elicitor treated plants produced 15% more fruit than the corresponding control plants exposed to the same amount of herbicide. There was no chlorosis in either the check or HR elicitor-treated plants that did not receive LEXONETM herbicide treatment.

The HR elicitor treated plants were much less severely affected by the herbicide application than the respective control plants at the high rate of herbicide. However, the amount of visual chlorosis was similar at the low rate for both the check and HR elicitor-treated plants. More importantly, the yields from both the high and low rate herbicide treatments of HR elicitor treated plants were less severely effected

20

by the herbicide than the checks. These findings further confirm that HR elicitors can help crops withstand the phytotoxic effects of herbicides and are very beneficial to the agricultural industry.

5 Table 5. Reduction of Foliar Chlorosis and Increase in Yield in Hypersensitive Response Elicitor Treated Plants after Exposure to LEXONE™ Herbicide

50 July 10 British 1 S ARV		Percent	foliar chlor	osis and vi	eld of pepp	er	9018434 1. PK
Treatment	^	В	C	D	Е	Yield (pound)	% difference from the respective control
6 (MESSENGERTM4 High rate LEXONETM)	13.75	30.00	37.50	36.25	40.00	8.31	108 %
3 (High rate LEXONETM)	26.25	43.75	51.25	50.00	51.25	4.00	
5 (MESSENGER TM + low rate LENOXE TM)	16.25	22.50	28.75	23.75	27.50	8.00	15 %
2 (LENOXE™)	12.50	20.00	25.00	25.00	23.75	6.81	-

Table 6. Weight of Harvested Peppers Increased in Hypersensitive Response Elicitor Treated Plants after Exposure to LEXONE™ Herbicide Compared to Check Plants.

CONTRACTOR OF THE WAR AND THE	Weight of peppers harvested 12/1/98 in pounds
Treatment	
HP20 + high rate LEXONE™	8.31
Check + high rate LEXONE™	4.00
HP20 + low rate LEXONE™	8.00
Check + low rate LEXONE™	6.81

15 Example 5 - Hypersensitive Response Elicitor-Treated Cotton is More Tolerant to Drought Stress

A non-irrigated cotton trial experienced 26 consecutive days of drought. The average daily heat index was near or over 100 degrees F, adding to the stress placed on the plants in the field.

Observations in the field indicated that plants treated with HR elicitor at the concentration of 15 ppm (2.2 oz formulated product, MESSENGER™ containing 3 % active ingredient HR elicitor protein) were more vigorous and had less defoliation than the check plants as a result of the heat and drought stress. Equal numbers of plants from the MESSENGER TM -treated and the non-MESSENGER TM treated plots were carefully removed from the field and mapped for the number of nodes and bolls by position. The plants were also weighed on a Metler analytical scale to determine whole plant, root and shoot weights.

MESSENGER™ treated plants survived the heat and drought stresses much better than the untreated plants did. Plants treated with MESSENGER $^{\text{TM}}$ had 37.6% more root and shoot mass than the check plants (Table 7). The MESSENGER™ treated plants also had significantly more cotton bolls than the check plants (Table 8). The number of cotton bolls from positions 1 and 2 have a significant contribution to the overall yield. Table 8 showed that MESSENGER $^{\mathsf{TM}}$ treated plants had 47% more bolls in positions 1 and 2 and 57% more boll from a whole plant in comparison to the yield achieved using a grower standard treatment 15 (i.e. with no MESSENGER™ treatment). A common reaction to stress in cotton is for the plant to abort bolls. The results indicate that MESSENGER™-treated plants are more tolerant to the drought stress.

20

10

Weight per Plant of Non-Irrigated Cotton Following 26 Days of Drought. Table 7.

Freatment	Root weight (pond/plant)	%Difference	Shoot weight (pond/plant)	% difference	Whole plant weight (pond/plant) 0.546	% difference
MESSENGERTM 2.2 oz/acre Control (Grower	0.041 a*	37.6 %	0.505 a 0.367 b	37.5 %	0.340	
standard) Level of statistically significant	P=0.119	1	P=0.034		. (1)	P=0.033

Same letter indicates no statistical difference between the two treatments at the defined level; different letter indicates a statistical difference between the two treatments at the defined level.

15

20

25

30

Table 8. Number of Bolls per 5 Plants at the Number 1 & 2 positions, and Total Number of Bolls from Whole Plants in Non-irrigated Cotton Following 26 days of drought.

Treatment	Avg. # bolls in the #1 & 2 position	Percent difference	Avg. # of total bolls per 5 plant	Percent difference
MESSENGER™ 2.2 OZ.	18.4 a	+46.0%	21.4 a	+57.0%
Check	12.6 b		13.6 b	•
Statistically significant level	P=0.032		P=0.01	

^{*} Same letter indicates no statistical difference between the two treatments at the defined level; different letter indicates a statistical difference between the two treatments at the defined level.

10 <u>Example.6</u> - Hypersensitive Response Elicitor-Treated Tomato is More Tolerant to Calcium Deficiency

Calcium is an important element for plant physiology and development. A deficiency in calcium can cause several plant diseases. For example, blossom-end rot is caused by a localized calcium deficiency in the distal end of the tomato fruit. Because calcium is not a highly mobile element, a deficiency can occur with a fluctuation in water supply. In the past, tomato growers experienced higher level of blossom-end rot during dry weather conditions when infrequent rains storms dumped a lot of water and then return to a hot and dry condition quickly. Lowering or raising the irrigation water table erratically during a dry and hot growing season can also increase the disease.

A field trial was designed to test if HR elicitor protein-treated tomato can be more tolerant to the calcium deficiency under a dry hot growing season.

MESSENGERTM, the formulated product containing 3% HR elicitor, was used for the trial. The application rate of the MESSENGERTM was 2.27 oz per care. The first spray of MESSENGERTM was carried out 7 days before the transplanting and then every 14-days after transplanting. MESSENGERTM-treated tomatoes were compared with a standard grower treatment not utilizing MESSENGERTM. Each treatment had 4 replicates.

The number of infected fruit was counted from a 100 square foot field. The rot typically begins with light tan water soaked lesions, which then enlarge, and then turn black. In a survey, about 20% of the fruits were infected. Severe end-rot

10

symptoms occurred in the standard treatment; however, an average of only 2.5 % of the fruit was infected in the MESSENGERTM-treated plants. The harvest data showed that MESSENGERTM-treated plants had 8% more marketable fruit (Table 9). The test results demonstrated that MESSENGERTM-treatment can reduce the stress resulting from calcium deficiency and increase plant resistance to blossom-end rot.

Table 9. Hypersensitive Response Elicitor Treatment Reduced Blossom-End Rot Infection, Increased Yield of Tomato Fruit

Treatment	Blosso	om-End Info	ected Fruit*		Tomato F	ruit Yield
	Rep-l	Rep-II	_Rep_III	Rep IV	Bin/Acre	% Difference
MESSENGER™	0	9	0	.1	35	8
Standard Treatment)	24	22	16	17	31.5	-

^{*}The data were collected from the fruits in 100 square foot plot

Although the invention has been described in detail for the purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.

WHAT IS CLAIMED:

- A method of imparting stress resistance to plants comprising:
 applying a hypersensitive response elicitor protein or
- 5 polypeptide in a non-infectious form to a plant or plant seed under conditions effective to impart stress resistance.
- A method according to claim 1, wherein the stress resistance is resistance to a stress selected from the group consisting of climated related stress, air
 pollution stress, chemical stress, and nutritional stress.
 - 3. A method according to claim 2, wherein the stress is chemical stress where the chemical is selected from the group consisting of insecticides, fungicides, herbicides, and heavy metals.
- 4. A method according to claim 2, wherein the stress is climaterelated stress selected from the group consisting of drought, water, frost, cold temperature, high temperature, excessive light, and insufficient light.
- 20 5. A method according to claim 2, wherein the stress is air pollution stress selected from the group consisting of carbon dioxide, carbon monoxide, sulfur dioxide, NO_x, hydrocarbons, ozone, ultraviolet radiation, and acidic rain.
- 25 6. A method according to claim 2, wherein the stress is nutritional stress where the nutritional stress is caused by fertilizer, micronutrients, or macronutrients.
- A method according to claim 1, wherein the hypersensitive
 response elicitor protein or polypeptide is derived from Erwinia, Pseudomonas,
 Xanthamonas, Phythophthera, or Clavibacter.

- A method according to claim 7, wherein the hypersensitive response elicitor protein or polypeptide is derived from Erwinia amylovora, Erwinia carotovora, Erwinia chrysanthemi, and Erwinia stewartii.
- 5 9. A method according to claim 7, wherein the hypersensitive response elicitor protein or polypeptide is derived from *Pseudomonas syringae* or *Pseudomonas solancearum*.
- 10. A method according to claim 7, wherein the hypersensitive 10 response elicitor protein or polypeptide is derived from a Xanthamonas species.
 - A method according to claim 7, wherein the hypersensitive response elicitor protein or polypeptide is derived from a Phythophthera.
- 15 12. A method according to claim 7, wherein the hypersensitive response elicitor protein or polypeptide is derived from Clavibacter michiganesis subsp. sepedonicus.
 - 13. A method according to claim 1, wherein plants are treated during said applying.
 - 14. A method according to claim 1, wherein plant seeds are treated during said applying, said method further comprising:

 planting the seeds treated with the hypersensitive response elicitor protein or polypeptide in natural or artificial soil and propagating plants from seeds planted in soil.
 - from the group consisting of alfalfa, rice, wheat, barley, rye, cotton, sunflower,

 peanut, corn, potato, sweet potato, bean pea, chicory, lettuce, endive, cabbage, brussel sprout, beet, parsnip, cauliflower, broccoli, turnip, radish, spinach, onion, garlic, eggplant, pepper, celery, carrot, squash, pumpkin, zucchini, cucumber, apple, pear,

polypeptide and

melon, citrus, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane.

- 16. A method according to claim 1, wherein the plant is selected
 from the group consisting of Arabidopsis thaliana, Saintpaulia, petunia, pelargonium, poinsettia, chrysanthemum, carnation, and zinnia.
- 17. A method of imparting stress resistance to plants comprising:

 providing a transgenic plant or plant seed transformed with a

 DNA molecule which encodes for a hypersensitive response elicitor protein or

growing the transgenic plant or plants produced from the transgenic plant seeds under conditions effective to impart stress resistance.

- 15 A method according to claim 17, wherein a transgenic plant is provided.
 - 19. A method according to claim 17, wherein a transgenic plant seed is provided, said method further comprising: planting the transgenic seeds in natural or artificial soil and propagating plants from seeds planted in soil.
- A method according to claim 17, wherein the stress resistance is resistance to a stress selected from the group consisting of climated related stress,
 air pollution stress, chemical stress, and nutritional stress.
 - 21. A method according to claim 20, wherein the stress is chemical stress where the chemical is selected from the group consisting of insecticides, fungicides, herbicides, and heavy metals.

- 22. A method according to claim 20, wherein the stress is climaterelated stress selected from the group consisting of drought, water, frost, cold temperature, high temperature, excessive light, and insufficient light.
- 5 23. A method according to claim 20, wherein the stress is air pollution stress selected from the group consisting of carbon dioxide, carbon monoxide, sulfur dioxide, NO_x, hydrocarbons, ozone, ultraviolet radiation, and acidic rain.
- 10 24. A method according to claim 20, wherein the stress is nutritional stress where the nutritional stress is caused by fertilizer, micronutrients, or macronutrients.
- 25. A method according to claim 20, wherein the hypersensitive response elicitor protein or polypeptide is derived from Erwinia, Pseudomonas, Xanthamonas, Phythophthera, or Clavibacter.
 - 26. A method according to claim 25, wherein the hypersensitive response elicitor protein or polypeptide is derived from Erwinia amylovora, Erwinia carotovora, Erwinia chrysanthemi, and Erwinia stewartii.
 - 27. A method according to claim 25, wherein the hypersensitive response elicitor protein or polypeptide is derived from *Pseudomonas syringae* or *Pseudomonas solancearum*.
 - 28. A method according to claim 25, wherein the hypersensitive response elicitor protein or polypeptide is derived from a Xanthamonas species.
 - 29. A method according to claim 20, wherein the plant is selected from the group consisting of alfalfa, rice, wheat, barley, rye, cotton, sunflower, peanut, corn, potato, sweet potato, bean pea, chicory, lettuce, endive, cabbage, brussel sprout, beet, parsnip, cauliflower, broccoli, turnip, radish, spinach, onion, garlic,

eggplant, pepper, celery, carrot, squash, pumpkin, zucchini, cucumber, apple, pear, melon, citrus, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane.

5 30. A method according to claim 20, wherein the plant is selected from the group consisting of *Arabidopsis thaliana*, *Saintpaulia*, petunia, pelargonium, poinsettia, chrysanthemum, carnation, and zinnia.

SEQUENCE LISTING

<110> Ed n Bioscience Corporation

<120> HYPERSENSITIVE RESPONSE ELICITOR-INDUCED STRESS RESISTANCE

<130> 21829/42

<140>

<141>

<150> 60/107,243

<151> 1998-11-05

<160> 18

<170> Patentin Ver. 2.0

<210> 1

<211> 338

<212> PRT

<213> Erwinia chrysanthemi

Met Gln Ile Thr Ile Lys Ala His Ile Gly Gly Asp Leu Gly Val Ser

Gly Leu Gly Ala Gln Gly Leu Lys Gly Leu Asn Ser Ala Ala Ser Ser 20

Leu Gly Ser Ser Val Asp Lys Leu Ser Ser Thr Ile Asp Lys Leu Thr 35

Ser Ala Leu Thr Ser Met Met Phe Gly Gly Ala Leu Ala Gln Gly Leu 50

Gly Ala Ser Ser Lys Gly Leu Gly Met Ser Asn Gln Leu Gly Gln Ser 65

Phe Gly Asn Gly Ala Gln Gly Ala Ser Asn Leu Leu Ser Val Pro Lys 85

Ser Gly Gly Asp Ala Leu Ser Lys Met Phe Asp Lys Ala Leu Asp Asp 100

Leu Leu Gly His Asp Thr Val Thr Lys Leu Thr Asn Gln Ser Asn Gln 120 115

PCT/US99/26039

WO 00/28055
Leu Ala Asn S r Met Leu Asn Ala Ser Gln M t Thr Gln Gly Asn Met 130 135 130 130 130 130 130 130
Asn Ala Phe Gly Ser Gly Val Asn Asn Ala Leu Ser Ser Ile Leu Gly 160 155 150 150 150 150 150
Asn Gly Leu Gly Gln Ser Met Ser Gly Phe Ser Gln Pro Ser Leu Gly 175 165 170 175
Ala Gly Gly Leu Gln Gly Leu Ser Gly Ala Gly Ala Phe Asn Gln Leu 180 185 190
Gly Asn Ala Ile Gly Met Gly Val Gly Gln Asn Ala Ala Leu Ser Ala 200 205
Leu Ser Asn Val Ser Thr His Val Asp Gly Asn Asn Arg His Phe Val 210 210 210 210 210 210 210 210 210 210
Asp Lys Glu Asp Arg Gly Met Ala Lys Glu Ile Gly Gln Phe Met Asp 240 235
Gln Tyr Pro Glu Ile Phe Gly Lys Pro Glu Tyr Gln Lys Asp Gly Trp 255 245
Ser Ser Pro Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser Lys 260 265 270
Pro Asp Asp Asp Gly Met Thr Gly Ala Ser Met Asp Lys Phe Arg Gln 285
Ala Met Gly Met Ile Lys Ser Ala Val Ala Gly Asp Thr Gly Asn Thr 290 295 300
Asn Leu Asn Leu Arg Gly Ala Gly Gly Ala Ser Leu Gly Ile Asp Ala 310 315
305 Ala Val Val Gly Asp Lys Ile Ala Asn Met Ser Leu Gly Lys Leu Ala 330 335

Asn Ala

<210> 2 <211> 2141 <212> DNA <213> Erwinia chrysanthemi


```
cgattttacc cgggtgaacg tgctatgacc gacagcatca cggtattcga caccgttacg 60
gogtttatgg cogogatgaa coggcatcag goggogogot ggtogoogoa atcoggogto 120
gatotggtat ttoagtttgg ggacacoggg ogtgaactca tgatgcagat tcagcogggg 180
cagcatate coggoatgtt gogoacgctg ctogotogte gttatcagca ggcggcagag 240
tgcgatggct gccatctgtg cctgaacggc agcgatgtat tgatcctctg gtggccgctg 300
ccgtcggatc ccggcagtta tccgcaggtg atcgaacgtt tgtttgaact ggcgggaatg 360
 acgttgccgt cgctatccat agcaccgacg gcgcgtccgc agacagggaa cggacgcgcc 420
 cgatcattaa gataaaggcg gctttttta ttgcaaaacg gtaacggtga ggaaccgttt 480
 caccgtcggc gtcactcagt aacaagtatc catcatgatg cctacatcgg gatcggcgtg 540
 ggcatcostt gcagatactt ttgcgaacac ctgacatgaa tgaggaaacg aaattatgca 600
  aattacgatc aaagcgcaca toggcggtga tittgggcgtc tocggtotgg ggctgggtgc 660
  tragggartg aaaggartga attrogegge ttrategetg ggttcrageg tggataaact 720
  gagcagcacc atogataagt tgacctccgc gctgacttcg atgatgtttg gcggcgcgct 780
  ggogcagggg ctgggcgcca gctcgaaggg gctggggatg agcaatcaac tgggccagtc 840
  tttoggcaat ggcgcgcagg gtgcgagcaa cctgctatcc gtaccgaaat ccggcggcga 900
  tgcgttgtca-aaaatgtttg ataaagcgct ggacgatctg ctgggtcatg acaccgtgac 960
   caagetgact aaccagagca accaactggc taattcaatg ctgaacgcca gccagatgac 1020
   ccagggtaat atgaatgcgt tcggcagcgg tgtgaacaac gcactgtcgt ccattctcgg 1080
   caacggtete ggccagtega tgagtggett eteteageet tetetggggg caggeggett 1140
   grangements agregating stream accapting antique accapting antiques and second s
    ggggcagaat gctgcgctga gtgcgttgag taacgtcagc acccacgtag acggtaacaa 1260
    cogcoacttt gtagataaag aagatogogg catggogaaa gagatoggoo agtttatgga 1320
    tragtatrog gaaatattog gtaaaccgga ataccagaaa gatggotgga gttogcogaa 1380
    gacggacgac asstructggg ctassagcgct gagtasaccg gatgatgacg gtatgaccgg 1440
     cgccagcatg gacaaattcc gtcaggcgat gggtatgatc aaaagcgcgg tggcgggtga 1500
     tacoggcaat accaacctga acctgcgtgg cgcgggcggt gcatcgctgg gtatcgatgc 1560
     ggctgtcgtc ggcgataaaa tagccaacat gtcgctgggt aagctggcca acgcctgata 1620
     atctptgctg gcctgataaa gcggaaacga aaaaagagac ggggaagcct gtctcttttc 1680
      ttattatgcg gtttatgcgg ttacctggac cggttaatca tcgtcatcga tctggtacaa 1740
      acgeacattt teeegtteat tegegtegtt acgegeeaca ategegatgg catetteete 1800
      gtcgctcaga ttgcgcggct gatggggaac gccgggtgga atatagagaa actcgccggc 1860
      cagatggaga cacgtotgcg ataaatotgt gccgtaacgt gtttctatcc gcccctttag 1920
      cagatagatt geggtttegt aatcaacatg gtaatgeggt teegeetgtg egeeggeegg 1980
       gatcaccaca atattcatag aaagctgtct tgcacctacc gtatcgcggg agataccgac 2040
       aaaatagggc agtttttgcg tggtatccgt ggggtgttcc ggcctgacaa tcttgagttg 2100
       gttcgtcatc atctttctcc atctgggcga cctgatcggt t
```

```
<210> 3
<211> 403
<212> PRT
<213> Erwinia amylovora
```

<400> 3
Met Ser Leu Asn Thr Ser Gly Leu Gly Ala Ser Thr Met Gln Ile Ser
1
1
5

WO 00/28055
WO 00/28055 le Gly Gly Ala Gly Gly Asn Asn Gly Leu L u Gly Thr S r Arg Gln 20 25 30
Asn Ala Gly Leu Gly Gly Asn Ser Ala Leu Gly L u Gly Gly Gly Asn 45 46
Gln Asn Asp Thr Val Asn Gln Leu Ala Gly Leu Leu Thr Gly Met Met 55 60
Met Met Met Ser Met Met Gly Gly Gly Gly Leu Met Gly Gly Gly Leu 70 75
Gly Gly Leu Gly Asn Gly Leu Gly Gly Ser Gly Gly Leu Gly Glu 95 95
Gly Leu Ser Asn Ala Leu Asn Asp Met Leu Gly Gly Ser Leu Asn Thr 100 100
Leu Gly Ser Lys Gly Gly Asn Asn Thr Thr Ser Thr Thr Asn Ser Pro 125 115 120 125
Leu Asp Gln Ala Leu Gly Ile Asn Ser Thr Ser Gln Asn Asp Asp Ser 130 135 140
Thr Ser Gly Thr Asp Ser Thr Ser Asp Ser Ser Asp Pro Met Gln Gln 160 155
Leu Leu Lys Met Phe Ser Glu Ile Met Gln Ser Leu Phe Gly Asp Gly 175 165 170 175
Gln Asp Gly Thr Gln Gly Ser Ser Ser Gly Gly Lys Gln Pro Thr Glu 180 185 190
Gly Glu Gln Asn Ala Tyr Lys Lys Gly Val Thr Asp Ala Leu Ser Gly 195 200 205
Leu Met Gly Asn Gly Leu Ser Gln Leu Leu Gly Asn Gly Gly Leu Gly 210 215 220
Gly Gly Gln Gly Gly Asn Ala Gly Thr Gly Leu Asp Gly Ser Ser Leu 230 235 240
Gly Gly Lys Gly Leu Gln Asn Leu Ser Gly Pro Val Asp Tyr Gln Gln 255 245 250
Leu Gly Asn Ala Val Gly Thr Gly Ile Gly Met Lys Ala Gly Ile Gln 260 265 270

PCT/US99/26039

WO 00/28055 Ala Leu Asn Asp Ile Gly Thr His Arg His Ser Ser Thr Arg Ser Ph 285 275 280

Val Asn Lys Gly Asp Arg Ala Met Ala Lys Glu Ile Gly Gln Phe Met 290 295 300

Asp Gln Tyr Pro Glu Val Phe Gly Lys Pro Gln Tyr Gln Lys Gly Pro 305 310 315

Gly Gln Glu Val Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser 325 330 335

Lys Pro Asp Asp Asp Gly Met Thr Pro Ala Ser Met Glu Gln Phe Asn 340 345 350

Lys Ala Lys Gly Met Ile Lys Arg Pro Met Ala Gly Asp Thr Gly Asn 365 365

GIY ABN Leu Gln Ala Arg Gly Ala Gly Gly Ser Ser Leu Gly Ile Asp 370 375

Ala Met Met Ala Gly Asp Ala Ile Asn Asn Met Ala Leu Gly Lys Leu 385 390 395

Gly Ala Ala

<210> 4 <211> 1288 <212> DNA

<213> Erwinia amylovora

```
WO 00/28055
ttaggtaacg ccgtgggtac cggtatcggt atgaaagcgg gcattcaggc gctgaatgat 900
atoggtacgc acaggcacag ttcaacccgt tetttegtea ataaaggega tegggegatg 960
gcgaaggaaa tcggtcagtt catggaccag tatcctgagg tgtttggcaa gccgcagtac 1020
cagaaaggcc cgggtcagga ggtgaaaacc gatgacaaat catgggcaaa agcactgagc 1080
aagccagatg acgacggaat gacaccagcc agtatggagc agttcaacaa agccaagggc 1140
atgatcaaaa ggcccatggc gggtgatacc ggcaacggca acctgcaggc acgcggtgcc 1200
ggtggttctt cgctgggtat tgatgccatg atggccggtg atgccattaa caatatggca 1260
cttggcaagc tgggcgcggc ttaagctt
<210> 5
-211> 1344
<212> DNA
<213> Erwinia amylovora
 atgicaatto ttacgottaa caacaataco togicologo egggiotgit ecagicoggg 60
<400> 5
 ggggacaacg ggcttggtgg tcataatgca aattctgcgt tggggcaaca acccatcgat 120
eggeaaacca ttgageaaat ggeteaatta ttggeggaac tgttaaagte actgetateg 180
 ccacaatcag gtaatgcggc aaccggagcc ggtggcaatg-accagactac aggagttggt 240
 aacgctggcg gcctgaacgg acgaaaaggc acagcaggaa ccactccgca gtctgacagt 300
 cagaacatgo tgagtgagat gggcaacaac gggctggatc aggccatcac gcccgatggc 360
 cagggcggcg ggcagatcgg cgataatcct ttactgaaag ccatgctgaa gcttattgca 420
 cgcatgatgg acggccaaag cgatcagttt ggccaacctg gtacgggcaa caacagtgcc 480
 tottcoggta ottottcato tggcggttcc cottttaacg atotatcagg ggggaaggcc 540
 cottecggca acteccette eggcaactae tetecegtea gtacettete acceccatee 600
  acgccaacgt cocctacctc accgcttgat ttoccttctt ctcccaccaa agcagccggg 660
  ggcagcacgc cggtaaccga tcatcctgac cctgttggta gcgcgggcat cggggccgga 720
  aattoggtgg cottoaccag ogcoggogot aatcagaogg tgotgoatga caccattaco 780
  gtgaaagegg gteaggtgtt tgatggeaaa ggacaaacet teacegeegg tteagaatta 840
  ggcgatggcg gccagtctga aaaccagaaa ccgctgttta tactggaaga cggtgccagc 900
  ctgaaaaacg tcaccatggg cgacgacggg gcggatggta ttcatcttta cggtgatgcc 960
  aaaatagaca atctgcacgt caccaacgtg ggtgaggacg cgattaccgt taagccaaac 1020
  agogogggca aaaaatocca ogttgaaato actaacagtt oottogagca ogcototgac 1080
  aagatootgo agotgaatgo ogatactaac otgagogttg acaacgtgaa ggocaaagac 1140
  tttggtactt ttgtacgcac taacggcggt caacagggta actgggatct gaatctgagc 1200
  catatcagcg cagaagacgg taagttctcg ttcgttaaaa gcgatagcga ggggctaaac 1260
  gtcaatacca gtgatatctc actgggtgat gttgaaaacc actacaaagt gccgatgtcc 1320
  gccaacctga aggtggctga atga
   -210> 6
   <211> 447
   <212> PRT
   <213> Erwinia amylovora
   Met Ser Ile Leu Thr Leu Asn Asn Asn Thr Ser Ser Fro Gly Leu
                                         10
```


PCT/US99/26
WO 00/28055 Phe Gln Ser Gly Gly Asp Asn Gly Leu Gly Gly His Asn Ala Asn Ser 20 25 30
Ala Leu Gly Gln Gln Pro Ile Asp Arg Gln Thr Il Glu Gln Met Ala 35 40 45
Gln Leu Leu Ala Glu Leu Leu Lys Ser Leu Leu Ser Pro Gln Ser Gly 55 60
Asn Ala Ala Thr Gly Ala Gly Gly Asn Asp Gln Thr Thr Gly Val Gly 75 80
Asn Ala Gly Gly Leu Asn Gly Arg Lys Gly Thr Ala Gly Thr Thr Pro 85 90 95
Gln Ser Asp Ser Gln Asn Met Leu Ser Glu Met Gly Asn Asn Gly Leu 100 105 110
Asp Gln Ala Ile Thr Pro Asp Gly Gln Gly Gly Gln Ile Gly Asp 115 120 125
Asn Pro Leu Leu Lys Ala Met Leu Lys Leu Ile Ala Arg Met Met Asp 130 135 140
Gly Gln Ser Asp Gln Phe Gly Gln Pro Gly Thr Gly Asn Asn Ser Ala 150 155 160 145
Ser Ser Gly Thr Ser Ser Ser Gly Gly Ser Pro Phe Asn Asp Leu Ser 175 165 170
Gly Gly Lys Ala Pro Ser Gly Asn Ser Pro Ser Gly Asn Tyr Ser Pro 180 185 190
Val Ser Thr Phe Ser Pro Pro Ser Thr Pro Thr Ser Pro Thr Ser Pro 205
Leu Asp Phe Pro Ser Ser Pro Thr Lys Ala Ala Gly Gly Ser Thr Pro 210 215 220
Val Thr Asp His Pro Asp Pro Val Gly Ser Ala Gly Ile Gly Ala Gly 240 225 230 230
Asn Ser Val Ala Phe Thr Ser Ala Gly Ala Asn Gln Thr Val Leu His 255 245
Asp Thr Ile Thr Val Lys Ala Gly Gln Val Phe Asp Gly Lys Gly Gln 260 265

PCT/US99/26039

WO 00/28055 Thr Phe Thr Ala Gly Ser Glu Leu Gly Asp Gly Gly Gln Ser Glu Asn 280 275

Gln Lys Pro L u Phe Ile Leu Glu Asp Gly Ala Ser Leu Lys Asn Val 295 290

Thr Met Gly Asp Asp Gly Ala Asp Gly Ile His Leu Tyr Gly Asp Ala 310 305

Lys Ile Asp Asn Leu His Val Thr Asn Val Gly Glu Asp Ala Ile Thr 325

Val Lys Pro Asn Ser Ala Gly Lys Lys Ser His Val Glu Ile Thr Asn 340

Ser Ser Phe Glu His Ala Ser Asp Lys Ile Leu Gln Leu Asn Ala Asp 360 355

Thr Asn Leu Ser Val Asp Asn Val Lys Ala Lys Asp Phe Gly Thr Phe 375 370

Val Arg Thr Asn Gly Gly Gln Gln Gly Asn Trp Asp Leu Asn Leu Ser 390 385

His Ile Ser Ala Glu Asp Gly Lys Phe Ser Phe Val Lys Ser Asp Ser

Glu Gly Leu Asn Val Asn Thr Ser Asp Ile Ser Leu Gly Asp Val Glu 425 420

Asn His Tyr Lys Val Pro Met Ser Ala Asn Leu Lys Val Ala Glu 440 435

<210> 7 <211> 5517 <212> DNA <213> Erwinia amylovora

atggaattaa aatcactggg aactgaacac aaggeggeag tacacacage ggegeacaac 60 cctgtggggc atggtgttgc cttacagcag ggcagcagca gcagcagccc gcaaaatgcc 120 getgeateat tggeggeaga aggeaaaaat egtgggaaaa tgeegagaat teaccageea 180 totactgcgg ctgatggtat cagcgctgct caccagcaaa agaaatcctt cagtctcagg 240

ggctgtttgg ggacgaaaaa attttccaga teggcacege agggccagee aggtaceace 300 cacagcaaag gggcaacatt gcgcgatctg ctggcgcggg acgacggcga aacgcagcat 360 gaggoggoog ogcoagatgo ggogogtttg accogttogg goggogtoaa acgoogoaat 420

WO 00/28055

acgcagcaaa aacggcatca gctgaacaat tttggccaga tgcgccaaac gatgttgagc 540 aaaatggoto acceggotto agceaacgee ggegategee tgeageatte accgeegeae 600 atcccgggta gccaccacga aatcaaggaa gaaccggttg gctccaccag caaggcaaca 660 acggcccacg cagacagagt ggaaatcgct caggaagatg acgacagcga attccagcaa 720 ctgcatcaac agcggctggc gcgcgaacgg gaaaatccac cgcagccgcc caaactcggc 780 gttgccacac cgattagcgc caggtttcag cccaaactga ctgcggttgc ggaaagcgtc 840 cttgagggga cagataccac gcagtcaccc cttaagccgc aatcaatgct gaaaggaagt 900 ggagccgggg taacgccgct ggcggtaacg ctggataaag gcaagttgca gctggcaccg 960 gataatccac ccgcgctcaa tacgttgttg aagcagacat tgggtaaaga cacccagcac 1020 tatotggogo accatgocag cagogaoggt agocagoato tgotgotgga caacaaaggo 1080 cacctgtttg atatcaaaag caccgccacc agctatagcg tgctgcacaa cagccacccc 1140 ggtgagataa agggcaagct ggcgcaggcg ggtactggct ccgtcagcgt agacggtaaa 1200 agcggcaaga totogotggg gagcggtacg caaagtcaca acaaaacaat gotaagccaa 1260 cogggggaag cgcaccgttc cttattaacc ggcatttggc agcatcctgc tggcgcagcg 1320 eggecgeagg gegagteaat eegeetgeat gacgacaaaa tteatateet geateeggag 1380 ctgggcgtat ggcaatctgc ggataaagat acccacagcc agctgtctcg ccaggcagac 1440 ggtaagetet atgegetgaa agacaacegt accetgeaaa aceteteega taataaatee 1500 tcagaaaagc tggtcgataa aatcaaatcg tattccgttg atcagcgggg gcaggtggcg 1560 atcotgacgg atactcccgg-ccgccataag atgagtatta tgccctcgct ggatgcttcc 1620 coggagagec atatttccct cagectgeat tttgccgatg cccaccaggg gttattgcac 1680 gggaagtegg agettgagge acaatetgte gegateagee atgggegaet ggttgtggge 1740 gatagcgaag gcaagctgtt tagcgccgcc attccgaagc aaggggatgg aaacgaactg 1800 aaaatgaaag ccatgcctca gcatgcgctc gatgaacatt ttggtcatga ccaccagatt 1860 totggatttt tocatgacga ccacggocag ottaatgogo tggtgaaaaa taacttcagg 1920 cagcagcatg cotgeocogtt gggtaacgat catcagttte accoeggetg gaacctgact 1980 gatgegetgg ttategacaa teagetgggg etgeateata ceaateetga accgeatgag 2040 attettgata tggggcattt aggcageetg gegttacagg agggcaaget teactatttt 2100 gaccagctga ccaaagggtg gactggcgcg gagtcagatt gtaagcagct gaaaaaaggc 2160 ctggatggag cagcttatct actgaaagac ggtgaagtga aacgcctgaa tattaatcag 2220 agcacctcct ctatcaagca cggaacggaa aacgtttttt cgctgccgca tgtgcgcaat 2280 aaaccggagc cgggagatgc cctgcaaggg ctgaataaag acgataaggc ccaggccatg 2340 goggtgattg gggtaaataa atacctggcg ctgacggaaa aaggggacat tcgctccttc 2400 cagataaaac coggoaccca gcagttggag cggccggcac aaactctcag ccgcgaaggt 2460 atcageggeg aactgaaaga cattcatgte gaccacaage agaacetgta tgeettgace 2520 cacgagggag aggtgtttca tcagccgcgt gaagcctggc agaatggtgc cgaaagcagc 2580 agctggcaca aactggcgtt gccacagagt gaaagtaagc taaaaagtct ggacatgagc 2640 catgagcaca aaccgattgc cacctttgaa gacggtagcc agcatcagct gaaggctggc 2700 ggctggcacg cctatgcggc acctgaacgc gggccgctgg cggtgggtac cagcggttca 2760 caaaccgtct ttaaccgact aatgcagggg gtgaaaggca aggtgatccc aggcagcggg 2820 ttgacggtta agctctcggc tcagacgggg ggaatgaccg gcgccgaagg gcgcaaggtc 2880 agcagtaaat tttccgaaag gatccgcgcc tatgcgttca acccaacaat gtccacgccg 2940 cgaccgatta aaaatgctgc ttatgccaca cagcacggct ggcaggggcg tgaggggttg 3000 aagoogttgt acgagatgca gggagcgctg attaaacaac tggatgcgca taacgttcgt 3060 cataacgcgc cacagccaga tttgcagagc aaactggaaa ctctggattt aggcgaacat 3120 ggcgcagaat tgcttaacga catgaagcgc ttccgcgacg aactggagca gagtgcaacc 3180 cgttcggtga ccgttttagg tcaacatcag ggagtgctaa aaagcaacgg tgaaatcaat 3240 agogaattta agocatogoo oggcaaggog ttggtocaga gotttaacgt caatogotot 3300 ggtcaggatc taagcaagtc actgcaacag gcagtacatg ccacgccgcc atccgcagag 3360


```
agtaaactgc aatccatgct ggggcacttt gtcagtgccg gggtggatat gagtcatcag 3420
aagggcgaga teeegetggg eegecagege gateegaatg ataaaacege aetgaccaaa 3480
togogittaa tittagatac ogigaccato ggigaactgo atgaactggo ogataaggog 3540
aaactggtat ctgaccataa acccgatgcc gatcagataa aacagctgcg ccagcagttc 3600
gatacgctgc gtgaaaagcg gtatgagagc aatccggtga agcattacac cgatatgggc 3660
ttcacccata ataaggcgct ggaagcaaac tatgatgcgg tcaaagcctt tatcaatgcc 3720
tttaagaaag agcaccacgg cgtcaatctg accacgcgta ccgtactgga atcacagggc 3780
agtgcggagc tggcgaagaa gctcaagaat acgctgttgt ccctggacag tggtgaaagt 3840
atgagettea geoggteata tggegggge gteageactg tetttgtgee taccettage 3900
aggaggtgc cagttccggt gatccccgga gccggcatca cgctggatcg cgcctataac 3960
ctgagettea gtegtaceag eggeggattg aacgteagtt ttggeegega eggeggggtg 4020
agtggtaaca tcatggtcgc taccggccat gatgtgatgc cctatatgac cggtaagaaa 4080
accagtgcag gtaacgccag tgactggttg agcgcaaaac ataaaatcag cccggacttg 4140
cgtatcggcg ctgctgtgag tggcaccctg caaggaacgc tacaaaacag cctgaagttt 4200
 aggctgacag aggatgagct gcctggcttt atccatggct tgacgcatgg cacgttgacc 4260
 ccggcagaac tgttgcaaaa ggggatcgaa catcagatga agcagggcag caaactgacg 4320
 tttagegteg atacetegge aaatetggat etgegtgeeg gtateaatet gaacgaagae 4380
 ggcagtaaac caaatggtgt cactgooogt gtttetgoog ggctaagtge ateggcaaac 4440
 ctggccgccg gctcgcgtga acgcagcacc acctctggcc-agtttggcag cacgacttcg 4500
 gccagcaata accgcccaac cttcctcaac ggggtcggcg cgggtgctaa cctgacggct 4560
 getttagggg ttgcccatte atctacgcat gaagggaaac eggtegggat etteceggca 4620
  tttacctoga ccaatgtttc ggcagcgctg gcgctggata accgtacctc acagagtatc 4680
  agootggaat tgaagoggg ggagooggtg accagcaacg atatcagoga gttgacotco 4740
  acgotyggaa aacaotttaa ggatagogoo acaacgaaga tgottgoogo totcaaagag 4800
  ttagatgacg ctaagcccgc tgaacaactg catattttac agcagcattt cagtgcaaaa 4860
  gatgtogtog gtgatgaacg ctacgaggeg gtgcgcaacc tgaaaaaact ggtgatacgt 4920
  caacaggctg oggacagcca cagcatggaa ttaggatctg ccagtcacag cacgacctac 4980
  aataatctgt cgagaataaa taatgacggc attgtcgagc tgctacacaa acatttcgat 5040
  goggcattac cagcaagcag tgccaaacgt cttggtgaaa tgatgaataa cgatccggca 5100
  ctgaaagata ttattaagca gctgcaaagt acgccgttca gcagcgccag cgtgtcgatg 5160
  gagetgaaag atggtetgeg tgageagaeg gaaaaageaa taetggaegg taaggteggt 5220
  cgtgaagaag tgggagtact tttccaggat cgtaacaact tgcgtgttaa atcggtcagc 5280
   gtragtragt cogtragram angogange ttrantacce canogetest actggggacg 5340
   agcaacagcg ctgctatgag catggagcgc aacatcggaa ccattaattt taaatacggc 5400
   caggatcaga acaccccacg gcgatttacc ctggagggtg gaatagctca ggctaatccg 5460
                                                                     5517<sup>~</sup>
   caggtegeat etgegettae tgatttgaag aaggaaggge tggaaatgaa gagetaa
```

```
<210> 8
<211> 1838
<212> PRT
<213> Erwinia amylovora
```

Met Glu Leu Lys Ser Leu Gly Thr Glu His Lys Ala Ala Val His Thr 1

Ala Ala His Asn Pro Val Gly His Gly Val Ala Leu Gln Gln Gly Ser 25 20

er S r S r Ser Fr Gln Asn Ala Ala Ala Ser Leu Ala Ala Glu Gly 35 40 45
Lys Asn Arg Gly Lys Met Pro Arg Ile His Gln Pr Ser Thr Ala Ala 50 . 60
Asp Gly Ile Ser Ala Ala His Gln Gln Lys Lys Ser Phe Ser Leu Arg 65 70 75
Gly Cys Leu Gly Thr Lys Lys Phe Ser Arg Ser Ala Pro Gln Gly Gln 95 95
Pro Gly Thr Thr His Ser Lys Gly Ala Thr Leu Arg Asp Leu Leu Ala 100 105 110
Arg Asp Asp Gly Glu Thr Gln His Glu Ala Ala Ala Pro Asp Ala Ala 115 120 125
Arg Leu Thr Arg Ser Gly Gly Val Lys Arg Arg Asn Met Asp Asp Met 130 135 140
Ala Gly Arg Pro Met Val Lys Gly Gly Ser Gly Glu Asp Lys Val Pro 150 155 150
Thr Gln Gln Lys Arg His Gln Leu Asn Asn Phe Gly Gln Met Arg Gln 175 165 170
Thr Met Leu Ser Lys Met Ala His Pro Ala Ser Ala Asn Ala Gly Asp 180 185 190
Arg Leu Gln His Ser Pro Pro His Ile Pro Gly Ser His His Glu Ile 195 200 205
Lys Glu Glu Pro Val Gly Ser Thr Ser Lys Ala Thr Thr Ala His Ala
210
Asp Arg Val Glu Ile Ala Gln Glu Asp Asp Ser Glu Phe Gln Gln 225 230 235 240
Leu His Gln Gln Arg Leu Ala Arg Glu Arg Glu Asn Pro Pro Gln Pro 255 245 250 250
Pro Lys Leu Gly Val Ala Thr Pro Ile Ser Ala Arg Phe Gln Pro Lys 260 265 270
Leu Thr Ala Val Ala Glu Ser Val Leu Glu Gly Thr Asp Thr Thr Gln 275 280 285

West
Ser Pro Leu Lys Pro Gln Ser Met Leu Lys Gly Ser Gly Ala Gly Val 295 300
Thr Pro Leu Ala Val Thr Leu Asp Lys Gly Lys Leu Gln Leu Ala Pro 320 315 310 315 320
Asp Asn Pro Pro Ala Leu Asn Thr Leu Leu Lys Gln Thr Leu Gly Lys 325 330 335
Asp Thr Gln His Tyr Leu Ala His His Ala Ser Ser Asp Gly Ser Gln 340 345 350
His Leu Leu Leu Asp Asn Lys Gly His Leu Phe Asp Ile Lys Ser Thr 355 360 365
Ala Thr Ser Tyr Ser Val Leu His Asn Ser His Pro Gly Glu Ile Lys 375 380
Gly Lys Leu Ala Gln Ala Gly Thr Gly Ser Val Ser Val Asp Gly Lys 395 390
Ser Gly Lys Ile Ser Leu Gly Ser Gly Thr Gln Ser His Asn Lys Thr 405 410 415
Met Leu Ser Gln Pro Gly Glu Ala His Arg Ser Leu Leu Thr Gly Ile 420 425 430
Trp Gln His Pro Ala Gly Ala Ala Arg Pro Gln Gly Glu Ser Ile Arg 440 445
Leu His Asp Asp Lys Ile His Ile Leu His Pro Glu Leu Gly Val Trp 460 450
Gln Ser Ala Asp Lys Asp Thr His Ser Gln Leu Ser Arg Gln Ala Asp 465 470 475
Gly Lys Leu Tyr Ala Leu Lys Asp Asn Arg Thr Leu Gln Asn Leu Ser 495
Asp Asn Lys Ser Ser Glu Lys Leu Val Asp Lys Ile Lys Ser Tyr Ser 500 505 510
Val Asp Gln Arg Gly Gln Val Ala Ile Leu Thr Asp Thr Pro Gly Arg 515 520 525
His Lys Met S r Ile Met Pro Ser Leu Asp Ala Ser Pro Glu Ser His 530 540

PCT/US99/26039

WO 00/28055
Il Ser Leu Ser Leu His Phe Ala Asp Ala His Gln Gly Leu Leu His 560 555 550 555
Gly Lys Ser Glu Leu Glu Ala Gln Ser Val Ala Il Ser His Gly Arg 575 565 570 570 570
Leu Val Val Ala Asp Ser Glu Gly Lys Leu Phe Ser Ala Ala Ile Pro 580 585 585 617 His
Lys Gln Gly Asp Gly Asn Glu Leu Lys Met Lys Ala Met Pro Gln His 595 600 605 607 608 608 608 609 609 609 609 609
Ala Leu Asp Glu His Phe Gly His Asp His Gln Ile Ser Gly Phe Phe 610 615 620
His Asp Asp His Gly Gln Leu Asn Ala Leu Val Lys Asn Asn Phe Arg 640 625 630 630 630 630 630 630 630 630 630 630
Gln Gln His Ala Cys Pro Leu Gly Asn Asp His Gln Phe His Pro Gly 655 645
Trp Asn Leu Thr Asp Ala Leu Val Ile Asp Asn Gln Leu Gly Leu His 660 665 670
His Thr Asn Pro Glu Pro His Glu Ile Leu Asp Met Gly His Leu Gly 685 675 680 680 680 Asn Gln Leu Thr
Ser Leu Ala Leu Gln Glu Gly Lys Leu His Tyr Phe Asp Gln Leu Thr 700 690 695 700 690 695
Lys Gly Trp Thr Gly Ala Glu Ser Asp Cys Lys Gln Leu Lys Lys Gly 715 710 710 710 710 710 710 710 710 710 710
Leu Asp Gly Ala Ala Tyr Leu Leu Lys Asp Gly Glu Val Lys Arg Leu 735 725 720 730 730 740 Gly Thr Glu Asn Val
Asn Ile Asn Gln Ser Thr Ser Ser Ile Lys His Gly Thr Glu Asn Val 745 740 740 745 740 740 745 740 747 748 749 749 749 749 749 749 749 749 749 749
phe Ser Leu Pro His Val Arg Asn Lys Pro Glu Pro Gly Asp Ala Leu 760 765
Gin Gly Leu Asn Lys Asp Asp Lys Ala Gin Ala Met Ala Val Ile Gly 770 775 780 770 775 780 112 Asp Ile Arg Ser Phe
Val Asn Lys Tyr Leu Ala Leu Thr Glu Lys Gly Asp Ile Arg Ser Phe 785 790 795 800

PCT/US99/26039

WO 00/28055
Gln Ile Lys Pro Gly Thr Gln Gln Leu Glu Arg Pro Ala Gln Thr Leu 805 810 815
Ser Arg Glu Gly Ile Ser Gly Glu Leu Lys Asp Ile His Val Asp His 820 825 830
Lys Gln Asn Leu Tyr Ala Leu Thr His Glu Gly Glu Val Phe His Gln 835 840 845
Pro Arg Glu Ala Trp Gln Asn Gly Ala Glu Ser Ser Ser Trp His Lys 850 855
Leu Ala Leu Pro Gln Ser Glu Ser Lys Leu Lys Ser Leu Asp Met Ser 880 865
His Glu His Lys Pro Ile Ala Thr Phe Glu Asp Gly Ser Gln His Gln 895
Leu Lys Ala Gly Gly Trp His Ala Tyr Ala Ala Pro Glu Arg Gly Pro 900 905 910
Leu Ala Val Gly Thr Ser Gly Ser Gln Thr Val Phe Asn Arg Leu Met 915 920 925
Gln Gly Val Lys Gly Lys Val Ile Pro Gly Ser Gly Leu Thr Val Lys
Leu Ser Ala Gln Thr Gly Gly Met Thr Gly Ala Glu Gly Arg Lys Val 960 945
Ser Ser Lys Phe Ser Glu Arg Ile Arg Ala Tyr Ala Phe Asn Pro Thr 975
Met Ser Thr Pro Arg Pro Ile Lys Asn Ala Ala Tyr Ala Thr Gln His
Gly Trp Gln Gly Arg Glu Gly Leu Lys Pro Leu Tyr Glu Met Gln Gly 995 1000 1005
Ala Leu Ile Lys Gln Leu Asp Ala His Asn Val Arg His Asn Ala Pro 1010 1015 1020
Gln Pro Asp Leu Gln Ser Lys Leu Glu Thr Leu Asp Leu Gly Glu His 1035 1040
Gly Ala Glu Leu Leu Asn Asp Met Lys Arg Phe Arg Asp Glu Leu Glu 1055 1045

Gln Ser Ala Thr Arg S r Val Thr Val L u Gly Gln His Gln Gly Val 1060 1065 1070

Leu Lys Ser Asn Gly Glu Ile Asn Ser Glu Phe Lys Pro Ser Pro Gly 1075 1080 1085

Lys Ala Leu Val Gln Ser Phe Asn Val Asn Arg Ser Gly Gln Asp Leu 1095 1100

Ser Lys Ser Leu Gln Gln Ala Val His Ala Thr Pro Pro Ser Ala Glu

Ser Lys Leu Gln Ser Met Leu Gly His Phe Val Ser Ala Gly Val Asp 1125 1130 1135

Met Ser His Gln Lys Gly Glu Ile Pro Leu Gly Arg Gln Arg Asp Pro 1140 1145 1150

Asn Asp Lys Thr Ala Leu Thr Lys Ser Arg Leu Ile Leu Asp Thr Val 1155 1160 1165

Thr Ile Gly Glu Leu His Glu Leu Ala Asp Lys Ala Lys Leu Val Ser 1170 1180

Asp His Lys Pro Asp Ala Asp Gln Ile Lys Gln Leu Arg Gln Gln Phe 1185 1190 1195 1200

Asp Thr Leu Arg Glu Lys Arg Tyr Glu Ser Asn Pro Val Lys His Tyr 1205 1210 1215

Thr Asp Met Gly Phe Thr His Asn Lys Ala Leu Glu Ala Asn Tyr Asp 1220 1225 1230

Ala_Val_Lys_Ala_Phe Ile Asn Ala_Phe Lys_Lys_Glu His_His_Gly_Val

Asn Leu Thr Thr Arg Thr Val Leu Glu Ser Gln Gly Ser Ala Glu Leu 1250 1260

Ala Lys Lys Leu Lys Asn Thr Leu Leu Ser Leu Asp Ser Gly Glu Ser 1255 1270 1275 1280

Met Ser Phe Ser Arg Ser Tyr Gly Gly Gly Val Ser Thr Val Phe Val 1285 1290 1295

Pro Thr Leu Ser Lys Lys Val Pro Val Pro Val Ile Pro Gly Ala Gly 1300 1305 1310

·	
•	

Ile Thr Leu Asp Arg Ala Tyr Asn Leu Ser Phe Ser Arg Thr Ser Gly
1315 1320 1325

Gly Leu Asn Val Ser Phe Gly Arg Asp Gly Gly Val Ser Gly Asn Ile 1330 1335 1340

Met Val Ala Thr Gly His Asp Val Met Pro Tyr Met Thr Gly Lys Lys 1360 1355 1350

Thr Ser Ala Gly Asn Ala Ser Asp Trp Leu Ser Ala Lys His Lys Ile 1375 1370 1375

Ser Pro Asp Leu Arg Ile Gly Ala Ala Val Ser Gly Thr Leu Gln Gly 1380 1385 1390

Thr Leu Gln Asn Ser Leu Lys Phe Lys Leu Thr Glu Asp Glu Leu Pro 1395 1400 1405

Gly Phe Ile His Gly Leu Thr His Gly Thr Leu Thr Pro Ala Glu Leu 1410 1415

Leu Gln Lys Gly Ile Glu His Gln Met Lys Gln Gly Ser Lys Leu Thr 1425 1430 1435 1440

Phe Ser Val Asp Thr Ser Ala Asn Leu Asp Leu Arg Ala Gly Ile Asn 1455

Leu Asn Glu Asp Gly Ser Lys Pro Asn Gly Val Thr Ala Arg Val Ser 1460 1465 1470

Ala Gly Leu Ser Ala Ser Ala Asn Leu Ala Ala Gly Ser Arg Glu Arg 1485

Ser Thr Thr Ser Gly Gln Phe Gly Ser Thr Thr Ser Ala Ser Asn Asn 1490 1495 1500

Arg Fro Thr Phe Leu Asn Gly Val Gly Ala Gly Ala Asn Leu Thr Ala 1505 1510 1515 1520

Ala Leu Gly Val Ala His Ser Ser Thr His Glu Gly Lys Pro Val Gly
1525 1530 1535

Ile Phe Pro Ala Phe Thr Ser Thr Asn Val Ser Ala Ala Leu Ala Leu 1540 1545 1550

Asp Asn Arg Thr Ser Gln Ser Ile Ser Leu Glu Leu Lys Arg Ala Glu 1555 1560 1565

Pro Val Thr Ser Asn Asp Il Ser Glu Leu Thr Ser Thr Leu Gly Lys 1570 1580

His Phe Lys Asp Ser Ala Thr Thr Lys Met Leu Ala Ala Leu Lys Glu 1595 1590 1595

Leu Asp Asp Ala Lys Pro Ala Glu Gln Leu His Ile Leu Gln Gln His 1605 1610 1615

Phe Ser Ala Lys Asp Val Val Gly Asp Glu Arg Tyr Glu Ala Val Arg 1625 1630

Asn Leu Lys Lys Leu Val Ile Arg Gln Gln Ala Ala Asp Ser His Ser

Met Glu Leu Gly Ser Ala Ser His Ser Thr Thr Tyr Asn Asn Leu Ser 1650 1655 1660

Arg Ile Asn Asn Asp Gly Ile Val Glu Leu Leu His Lys His Phe Asp 1685 1670 1675 1680

Ala Ala Leu Pro Ala Ser Ser Ala Lys Arg Leu Gly Glu Met Met Asn 1695

Asn Asp Pro Ala Leu Lys Asp Ile Ile Lys Gln Leu Gln Ser Thr Pro 1700 1705 1710

Phe Ser Ser Ala Ser Val Ser Met Glu Leu Lys Asp Gly Leu Arg Glu 1715 1720 1725

Gln Thr Glu Lys Ala Ile Leu Asp Gly Lys Val Gly Arg Glu Glu Val

Gly Val Leu Phe Gln Asp Arg Asn Asn Leu Arg Val Lys Ser Val Ser 1745 1750 1755 1760

Val Ser Gln Ser Val Ser Lys Ser Glu Gly Phe Asn Thr Pro Ala Leu 1765 1770 1775

Leu Leu Gly Thr Ser Asn Ser Ala Ala Met Ser Met Glu Arg Asn Ile

Gly Thr Ile Asn Phe Lys Tyr Gly Gln Asp Gln Asn Thr Pro Arg Arg 1805

Phe Thr Leu Glu Gly Gly Ile Ala Gln Ala Asn Pro Gln Val Ala Ser 1810 1815 1820

WO 00/28055

Ala Leu Thr Asp Leu Lys Lys Glu Gly Leu Glu Met Lys Ser 1830 1825

<210> 9

<211> 420

<212> DNA <213> Erwinia amylovora

atgacategt cacageageg ggttgaaagg tttttacagt attteteege egggtgtaaa 60 acgoccatac atotgaaaga cggggtgtgc gccctgtata acgaacaaga tgaggaggcg 120 geggtgetgg aagtacegea acacagegae ageetgttae tacactgeeg aateattgag 180 gotgacccac asacttcast saccetgtst tegatgetst tacagetgss tittgssstg 240 goggocatgo goggotgttg gotggogotg gatgaactgo acaacgtgog titatgttit 300 cagcagtege tggagcatct ggatgaagca agttttageg atategttag eggetteate 360 gaacatgcgg_cagaagtgcg tgagtatata gcgcaattag acgagagtag cgcggcataa 420

<210> 10

<211> 139

<212> PRT

<213> Erwinia amylovora

Met Thr Ser Ser Gln Gln Arg Val Glu Arg Phe Leu Gln Tyr Phe Ser

Ala Gly Cys Lys Thr Pro Ile His Leu Lys Asp Gly Val Cys Ala Leu

Tyr Asn Glu Gln Asp Glu Glu Ala Ala Val Leu Glu Val Pro Gln His 35

Ser Asp Ser Leu Leu His-Cys Arg_Ile_Ile_Glu_Ala_Asp_Pro_Gln 50

Thr Ser Ile Thr Leu Tyr Ser Met Leu Leu Gln Leu Asn Phe Glu Met 65

Ala Ala Met Arg Gly Cys Trp Leu Ala Leu Asp Glu Leu His Asn Val

Arg Leu Cys Phe Gln Gln Ser Leu Glu His Leu Asp Glu Ala Ser Phe 100

Ser Asp Ile Val Ser Gly Phe Ile Glu His Ala Ala Glu Val Arg Glu 120 115

Tyr Ile Ala Gln Leu Asp Glu Ser Ser Ala Ala 135

<210> 11

<211> 341

<212> PRT

<213> Pseudomonas syringae

Met Gln Ser Leu Ser Leu Asn Ser Ser Ser Leu Gln Thr Pro Ala Met

Ala Leu Val Leu Val Arg Pro Glu Ala Glu Thr Thr Gly Ser Thr Ser 20

Ser Lys Alz Leu Gln Glu Val Val Val Lys Leu Ala Glu Glu Leu Met 35

Arg Asn Gly Gln Leu Asp Asp Ser Ser Pro Leu Gly Lys Leu Leu Ala

Lys Ser Met Ala Ala Asp Gly Lys Ala Gly Gly Gly Ile Glu Asp Val

Ile Ala Ala Leu Asp Lys Leu Ile His Glu Lys Leu Gly Asp Asn Phe 85

Gly Ala Ser Ala Asp Ser Ala Ser Gly Thr Gly Gln Gln Asp Leu Met 100

Thr Gln Val Leu Asn Gly Leu Ala Lys Ser Met Leu Asp Asp Leu Leu

Thr Lys Gln Asp Gly Gly Thr Ser Phe Ser Glu Asp Asp Met Pro Met 135

Leu Asn Lys Ile Ala Gln Phe Met Asp Asp Asn Pro Ala Gln Phe Pro 150

Lys Pro Asp Ser Gly Ser Trp Val Asn Glu Leu Lys Glu Asp Asn Phe 165

Leu Asp Gly Asp Glu Thr Ala Ala Phe Arg Ser Ala Leu Asp Ile Ile 180

Gly Gln Gln Leu Gly Asn Gln Gln Ser Asp Ala Gly Ser Leu Ala Gly

195

200

205

Thr Gly Gly Gly Leu Gly Thr Pro Ser S r Phe Ser Asn Asn Ser Ser 210 215

Val Met Gly Asp Pro Leu Ile Asp Ala Asn Thr Gly Pro Gly Asp Ser 225 230 235 240

Gly Asn Thr Arg Gly Glu Ala Gly Gln Leu Ile Gly Glu Leu Ile Asp 255

Arg Gly Leu Gln Ser Val Leu Ala Gly Gly Gly Leu Gly Thr Pro Val 260 265 270

Asn Thr Pro Gln Thr Gly Thr Ser Ala Asn Gly Gly Gln Ser Ala Gln 285

Asp Leu Asp Gln Leu Leu Gly Gly Leu Leu Leu Lys Gly Leu Glu Ala 295 100

Thr Leu Lys Asp Ala Gly Gln Thr Gly Thr Asp Val Gln Ser Ser Ala 310 315 320

Ala Gln Ile Ala Thr Leu Leu Val Ser Thr Leu Leu Gln Gly Thr Arg

Asn Gln Ala Ala Ala 340

<210> 12

<211> 1026

<212> DNA <213> Pseudomonas syringae

 <400> 12

 atgcagagtc
 toagtottaa
 cagcagteg
 ctgcaaaccc
 cggcaatgg
 ccttgtcctg
 60

 gtaagtetg
 aagcggagac
 gactggcagt
 aggcgtctca
 aggacagctc
 gagaattgt
 120

 gtaagtetg
 ccgaggaact
 gatcagatgg
 gacaagtgg
 gagaatgtg
 gacaagtgg
 gagatgtct
 240

 aacatgtegg
 cggacaagt
 gacaagtgg
 cagattgatc
 240
 acaacttcg
 cggtctcg
 300

 gacaaggact
 cgggttaccg
 acaggaggac
 ctggatgatc
 tcggctcgc
 300
 aggtcgact
 ctccaagaa
 cacaggagg
 gacaaggtc
 ctccaagaac
 420

 gatagcgact
 cgggtctcctg
 gtcgaacgac
 ctcaaggaat
 acaactccgc
 caagttccc
 48

 gaacggact
 cgggtctcctg
 gtcgaacgac
 ctcaaggaag
 acaactcctc
 caagttccc
 420

 aagccggact
 cgggtctcctg
 gtcgaacgac
 ctcaaggaag
 acaactcctc
 caagttccc
 48

 aagccggact
 cgggtcctcaa
 gtcgaacgac
 ctcaaggaag
 acaactcctc
 caagttccc
 48

 aagccggact
 cgggtcctcaa
 gtcgcaaggac
 ct

ggcaataccc gtggtgaagc ggggcaactg atcggcgagc ttatcgaccg tggcctgcaa 780 toggtattgg coggtggtgg actgggcaca coogtaaaca cocogcagac oggtacgtog 840 gcgaatggcg gacagtccgc tcaggatctt gatcagttgc tgggcggctt gctgctcaag 900 ggcotggagg caacgotcaa ggatgcoggg caaacaggca cogacgtgca gtcgagcgct 960 gogcamatog coacettget ggteagtacg etgetgeaag geaceegeam teaggetgem 1020 gcctga

<210> 13 <211> 1729

<212> DNA

<213> Pseudomonas syringae

tocacttogo tgattttgaa attggcagat toatagaaac gttcaggtgt ggaaatcagg 60 ctgagtgcgc agatttcgtt gataagggtg tggtactggt cattgttggt catttcaagg 120 octotgagtg oggtgoggag caataccagt ottootgotg gogtgtgoac actgagtogc 180 aggcataggc atttcagttc cttgcgttgg ttgggcatat aaaaaagga acttttaaaa 240 acagtgcaat gagatgccgg caaaacggga accggtcgct gcgctttgcc actcacttcg 300 agcaagetca accecaaaca tecacateco-tategaaegg acagegatae ggccaettge 360 totygtamac cotygagoty gogtogytoc aattycccac ttagogaggt aacycagcat 420 gagcategge ateacacee ggccgcaaca gaccaceacg ccaetegatt ttteggeget 480 aagcggcaag agtcctcaac caaacacgtt cggcgagcag aacactcagc aagcgatcga 540 cccgagtgca ctgttgttcg gcagcgacac acagaaagac gtcaacttcg gcacgcccga 600 cagcacegte cagaateege aggacgeeag caageecaae gacageeagt ceaacatege 660 taaattgatc agtgcattga tcatgtcgtt gctgcagatg ctcaccaact ccaataaaaa 720 gcaggacacc aatcaggaac agcctgatag ccaggctcct ttccagaaca acggcgggct 780 eggtacaccg teggeegata gegggggegg eggtacaccg gatgegacag gtggeggegg 840 eggtgatacg ccaagegcaa caggeggtgg eggeggtgat acteegaceg caacaggegg 900 tggcggcagc ggtggcggcg gcacacccac tgcaacaggt ggcggcagcg gtggcacacc 960 cactgcaaca ggcggtggcg agggtggcgt aacaccgcaa atcactccgc agttggccaa 1020 ccctaaccgt acctcaggta ctggctcggt gtcggacacc gcaggttcta ccgagcaagc 1080 cggcaagatc aatgtggtga aagacaccat caaggtcggc gctggcgaag tctttgacgg 1140 ccacggegea acetteactg cegacaaate tatgggtaac ggagaccagg gegaaaatca 1200 gaagcccatg ttcgagctgg ctgaaggcgc tacgttgaag aatgtgaacc tgggtgagaa 1260 egaggtegat ggcatccacg tgaaagccaa aaacgetcag gaagtcacca ttgacaacgt 1320 gcatgcccag aacgtcggtg aagacctgat tacggtcaaa ggcgagggag gcgcagcggt 1380 cactaatctg aacatcaaga acagcagtgc caaaggtgca gacgacaagg ttgtccagct 1440 caacgccaac actcacttga aaatcgacaa cttcaaggcc gacgatttcg gcacgatggt 1500 togcaccaac ggtggcaagc agtttgatga catgagcatc gagctgaacg gcatcgaagc 1560 taaccacggc aagttcgccc tggtgaaaag cgacagtgac gatctgaagc tggcaacggg 1620 caacategee atgacegacg teaaacaege etacgataaa acceaggeat egaceeaaca 1680 caccgagett tgaatccaga caagtagett gaaaaaaggg ggtggacte

<212> PRT

<213> Pseudomonas syringae

<210> 14 <211> 424

		PCT/US9
WO 00/28055		Dro Leu
Met Ser Ile Gly Ile Thr	Pro Arg Pr Gln Gln Thr Thr Thr	15
1 5		
20	Gly Lys Ser Pro Gln Pro Asn Thr 25	
35	Ala Ile Asp Pro Ser Ala Leu Let 40 45	
50	p Val Asn Phe Gly Thr Pro Asp Se: 55 60	
65 7		
85	a Leu Ile Met Ser Leu Leu Gln Me 90	
100	in Asp Thr Asn Gln Glu Gln Pro As 105	
115	sn Gly Gly Leu Gly Thr Pro Ser A 120 125	*
130	ro Asp Ala Thr Gly Gly Gly Gly G 135 140	
145	sly Gly Gly Gly Asp Thr Pro Thr # 155	
165	Gly Gly Thr Pro Thr Ala Thr (
	Thr Ala Thr Gly Gly Gly Glu Gly	Gly Val Thr
Ser_Gly_Gly_Thr_Pro180	185	190
195	Gln Leu Ala Asn Pro Asn Arg Thr 200 205	
210	Thr Ala Gly Ser Thr Glu Gln Ala 215 220	
Asn Val Val Lys Asp 225	Thr Ile Lys Val Gly Ala Gly Glu 230 235	vai Phe Asp 240

Gly His Gly Ala Thr Phe Thr Ala Asp Lys Ser Met Gly Asn Gly Asp 250 245

Gln Gly Glu Asn Gln Lys Pro Met Phe Glu L u Ala Glu Gly Ala Thr 265 260

Leu Lys Asn Val Asn Leu Gly Glu Asn Glu Val Asp Gly Il His Val 280 275

Lys Ala Lys Asn Ala Gln Glu Val Thr Ile Asp Asn Val His Ala Gln 295

Asn Val Gly Glu Asp Leu Ile Thr Val Lys Gly Glu Gly Gly Ala Ala 310 305

Val Thr Asn Leu Asn Ile Lys Asn Ser Ser Ala Lys Gly Ala Asp Asp 325

Lys Val Val Gln Leu Asn Ala Asn Thr His Leu Lys Ile Asp Asn Phe 345 340

Lys Ala Asp Asp Phe Gly Thr Met Val Arg Thr Asn Gly Gly Lys Gln 360 355

Phe Asp Asp Met Ser Ile Glu Leu Asn Gly Ile Glu Ala Asn His Gly 375 370

Lys Phe Ala Leu Val Lys Ser Asp Ser Asp Asp Leu Lys Leu Ala Thr 390

Gly Asn Ile Ala Met Thr Asp Val Lys His Ala Tyr Asp Lys Thr Gln 410 405

Ala Ser Thr Gln His Thr Glu Leu 420

<210> 15

<211> 344

<212> PRT

<213> Pseudomonas solanacearum

Met Ser Val Gly Asn Ile Gln Ser Pro Ser Asn Leu Pro Gly Leu Gln 10 1

Asn Leu Asn Leu Asn Thr Asn Thr Asn Ser Gln Gln Ser Gly Gln Ser 20

Val Gln Asp Leu Ile Lys Gln Val Glu Lys Asp Ile Leu Asn Ile Ile

35 Ala Ala Leu Val Gln Lys Ala Ala Gln Ser Ala Gly Gly Asn Thr Gly Asn Thr Gly Asn Ala Pro Ala Lys Asp Gly Asn Ala Asn Ala Gly Ala 75 Asn Asp Pro Ser Lys Asn Asp Pro Ser Lys Ser Gln Ala Pro Gln Ser

85

Ala Asn Lys Thr Gly Asn Val Asp Asp Ala Asn Asn Gln Asp Pro Met 105 100

Gln Ala Leu Met Gln Leu Leu Glu Asp Leu Val Lys Leu Leu Lys Ala 120 115

Ala Leu His Met Gln Gln Pro Gly Gly Asn Asp Lys Gly Asn Gly Val 135

Gly Gly Ala Asn Gly Ala Lys Gly Ala Gly Gly Gln Gly Gly Leu Ala 150

Glu Ala Leu Gln Glu Ile Glu Gln Ile Leu Ala Gln Leu Gly Gly Gly 170 165

Gly Ala Gly Ala Gly Gly Ala Gly Gly Gly Val Gly Gly Ala Gly Gly 185 180

Ala Asp Gly Gly Ser Gly Ala Gly Gly Ala Gly Ala Asp Gly Ala

Asp Gly Gly Asn Gly Val Asn Gly Asn Gln Ala Asn Gly Pro Gln Asn 220 215

Ala Gly Asp Val Asn Gly Ala Asn Gly Ala Asp Asp Gly Ser Glu Asp 235 230

Gln Gly Gly Leu Thr Gly Val Leu Gln Lys Leu Met Lys Ile Leu Asn 245

Ala Leu Val Gln Met Met Gln Gln Gly Gly Leu Gly Gly Asn Gln 265 260

Ala Gln Gly Gly Ser Lys Gly Ala Gly Asn Ala Ser Pro Ala Ser Gly 280 275

Ala Asn Pro Gly Ala Asn Gln Pro Gly Ser Ala Asp Asp Gln Ser Ser

300

Gly Gln Asn Asn Leu Gln Ser Gln Ile Met Asp Val Val Lys Glu Val 305 310 315

Val Gln Ile Leu Gln Gln Met Leu Ala Ala Gln Asn Gly Gly Ser Gln 325 330 335

Gln Ser Thr Ser Thr Gln Pro Met

<210> 16 <211> 1035

<211> 103:

<213> Pseudomonas solanacearum

atgtcagtcg gaaacatcca gagcccgtcg aacctcccgg gtctgcagaa cctgaacctc 60 aacaccaaca ccaacagcca gcaatcgggc cagtccgtgc aagacctgat caagcaggtc 120 gagaaggaca teetcaacat categeagee etegtgeaga aggeegeaca gteggeggge 180 ggcaacaccg gtaacaccgg caacgcgccg gcgaaggacg gcaatgccaa cgcgggcgcc 240 aacgacccga gcaagaacga cccgagcaag agccaggctc cgcagtcggc caacaagacc 300 ggcaacgtcg acgacgccaa caaccaggat ccgatgcaag cgctgatgca gctgctggaa 360 gacctggtga agctgctgaa ggcggccctg cacatgcagc agcccggcgg caatgacaag 420 ggcaacggcg tgggcggtgc caacggcgcc aagggtgccg gcggccaggg cggcctggcc 480 gaagcgctgc aggagatcga gcagatcctc gcccagctcg gcggcggcgg tgctggcgcc 540 ggcggcgcgg gtggcggtgt cggcggtgct ggtggcgcgg atggcggctc cggtgcgggt 600 ggcgcaggcg gtgcgaacgg cgccgacggc ggcaatggcg tgaacggcaa ccaggcgaac 660 ggcccgcaga acgcaggcga tgtcaacggt gccaacggcg cggatgacgg cagcgaagac 720 cagggeggee teaceggegt getgeaaaag etgatgaaga teetgaaege getggtgeag 780 atgatgcagc aaggcggcct cggcggcggc aaccaggcgc agggcggctc gaagggtgcc 840 ggcaacgcot cgccggcttc cggcgcgaac ccgggcgcga accagcccgg ttcggcggat 900 gatcaatcgt ccggccagaa caatctgcaa tcccagatca tggatgtggt gaaggaggtc 960 gtccagatcc tgcagcagat gctggcggcg cagaacggcg gcagccagca gtccacctcg 1020 acgcagccga tgtaa

<210> 17

<211> 26

<212> PRT

<213> Xanthomonas campestris pv. glycines

<400> 17
Thr Leu Ile Glu Leu Met Ile Val Val Ala Ile Ile Ala Ile Leu Ala
1
1
5
1
0
15

Ala Ile Ala Leu Pro Ala Tyr Gln Asp Tyr

<210> 18
<211> 20
<2112> PRT
<2113> Xanthomonas campestris pv. pelargonii
<400> 18
Ser Ser Gln Gln Ser Pro Ser Ala Gly Ser Glu Gln Gln Leu Asp Gln
1 5 10 15

Leu Leu Ala Met 20

INTERNATIONAL SEARCH REPORT

•

Inter and Application No PCT/US 99/26039

ÎPC 7	· · · · · · · · · · · · · · · · · · ·		
	to International Patent Classification (IPC) or to both national class S SEARCHED	affication and IPC	
Minimum do	documentation searched (classification system followed by classific	ioation symbols)	
IPC 7	A01N		
			·
Documental	ation searched other than minimum documentation to the extent the	at such documents are included in the fields ea	aarched
Electronic of	data base consulted during the international search (name of data	a hase and, where practical, search terms used	
i			•
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	- relevant passages	Relevant to claim No.
	<u> </u>	100	
x	WO 98 32844 A (CORNELL RES FOUN	DATION INC)	1-30
, 1	30 July 1998 (1998-07-30)]	1
	claims		l
A	WO 96 39802 A (CORNELL RES FOUN	DATION INC)	1-30
, 1	19 December 1996 (1996-12-19)	1	
	claims		l _
A	WO 98 24297 A (CORNELL RES FOUND	DATION INC)	1-30
i I	11 June 1998 (1998-06-11)	,	1-50
. 1	claims	ı	i
A	WO 98 37752 A (CORNELL RES FOUNI	INATTON INC)	1-30
" 1	3 September 1998 (1998-09-03)	DATION INC.	1-30
. 1	claims	~	I
. 1		1	l .
	f ,	J	i
. * 1	i		i
	<u> </u>		I
<u> </u>	her documents are listed in the continuation of box C.	Patent family members are listed in	in annex.
	tregories of cited documents :	T later document published after the intern	mational filing date
conside	ent defining the general state of the art which is not lered to be of particular relevance	or priority date and not in conflict with the cited to understand the principle or the cinvention.	the application but
"E" earlier de filing de	document but published on or after the international late	"X" document of particular relevance: the cir	salmed invention
"L" documer which is	ent which may throw doubts on priority claim(s) or is ofted to establish the publication date of another	involve an inventive step when the doc	be considered to current is taken alone
CILLIDION	n or other special reason (as specified)	"Y" document of particular relevance; the cia cannot be considered to involve an inve	ventive sten when the
obbulinative reterring to an oral discreture, use, exhibition or document is combined with one or more other such documents, such combination being obvious to a person skilled			
valuer tru	ent published prior to the international filing date but an the priority date claimed	"&" document member of the same patent fa	lamily
Date of the a	actual completion of the international search	Date of mailing of the international sean	
22	2 May 2000	07/06/2000	
Name and m	nailing address of the ISA	Authorized officer	5
	European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Facc (+31-70) 340-3016	Decorte, D	

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter vital Application No PCT/US 99/26039

					1 11, 00 00, 20000	
cite	atent document d in search repo	ort -	Publication date		Patent family member(s)	Publication date
WO	9832844	A	30-07-1998	AU	6043198 A	18-08-1998
				PL	334907 A	27-03-2000
WO	9639802	Α	19-12-1996	US	5650387 A	22-07-1997
				AU	714512 B	06-01-2000
				AU	5982196 A	30-12-1996
				BR	9609073 A	26-01-1999
				CA	2223616 A	19-12-1996
				CN	1192647 A	09-09-1998
				EP	0871354 A	21-10-1998
				FI	974430 A	26-01-1998
				JP	11506938 T	22-06-1999
				NZ	309611 A	30-08-1999
				PL	323823 A	27-04-1998
				US	5859324 A	12-01-1999
				US	5776889 A	07-07-1998
WO-	9824297	A	11-06-1998	AU	5693598 A	29-06-1998
				CN	1245393 A	23-02-2000
				EP	0957672 A	24-11-1999
		· 		PL	334126 A	14-02-2000
MO	9837752	Α	03-09-1998	AU	6666498 A	18-09-1998
				BR	9807632 A	22-02-2000
				US	5977060 A	02-11-1999