Natural Language Understanding, Generation, and Machine Translation

Lecture 7: Sequence-to-sequence Models with Attention

Shay Cohen

29 January 2024 (week 3)

School of Informatics University of Edinburgh scohen@inf.ed.ac.uk

Based on slides by Frank Keller, Adam Lopez, Rico Sennrich.

Overview

Encoding and decoding sequences

RNN for Translation

Translation as String Completion

Encoder-Decoder Architecture

Attention

Attention Distribution over Source Words

Bidirectional RNN

Attention and Alignment

Reading: Sections 7-9 of Neubig (2017).

Agenda for Today

Last week: We saw that we could model a probability distribution over a strings, like $w = w_1 \dots w_{|w|}$:

- 1. Use the chain rule, $P(w) = \prod_{i=1}^{|w|+1} P(w_i \mid w_1, \dots, w_{i-1})$, and
- 2. Use *universal function approximators* in the form of neural networks to model the conditional distributions $P(w_i \mid w_1, \dots, w_{i-1})$

The second idea brings many benefits over classic *n*-gram models. It gives us parameter sharing and representation learning, and it frees us from zero probabilities and independence assumptions.

Today: We will see how to model *conditional probability distributions* like $P(y \mid x)$, where x and y are both sequences of discrete symbols, aka strings.

Encoding and decoding sequences

How would you model translation with *n*-grams?

Input: Så varför minskar inte vi våra utsläpp?

Output: So why are we not reducing our emissions?

How would you model translation with *n*-grams?

Input: Så varför minskar inte vi våra utsläpp?

Output: So why are we not reducing our emissions?

Let x be the *source* (Swedish) sentence, y be the *target* (English) sentence.

$$x = x_1...x_{|x|}$$

$$y = y_1...y_{|y|}$$

How can we define $P(y \mid x)$?

How would you model translation with *n*-grams?

Input: Så varför minskar inte vi våra utsläpp?

Output: So why are we not reducing our emissions?

Let x be the *source* (Swedish) sentence, y be the *target* (English) sentence.

$$x = x_1...x_{|x|}$$

$$y = y_1...y_{|y|}$$

How can we define $P(y \mid x)$?

Expand using the chain rule:

$$P(y \mid x) = \prod_{i=1}^{|y|+1} P(y_i \mid y_1, \dots, y_{i-1}, x_1, \dots x_{|x|})$$

Word order is different!

Different number of words!

Idea: model translation as string completion

Idea: model translation as string completion

Idea: model translation as string completion

Does this design make sense? Why or why not?

Language model:

$$p(y) = \prod_{i=1}^{n} p(y_i|y_1,\ldots,y_{i-1})$$

Translation model:

$$p(y \mid x) = \prod_{i=1}^{n} p(y_i | y_1, \dots, y_{i-1}, x_1, \dots, x_{|x|})$$

Language model:

$$p(y) = \prod_{i=1}^{n} p(y_i|y_1,\ldots,y_{i-1})$$

Translation model:

$$p(y \mid x) = \prod_{i=1}^{n} p(y_i | y_1, \dots, y_{i-1}, x_1, \dots, x_{|x|})$$

We could treat sentence pair as one long sequence, but:

• This is really a model of $P(x, y) = P(x)P(y \mid x)$.

Language model:

$$p(y) = \prod_{i=1}^{n} p(y_i|y_1,\ldots,y_{i-1})$$

Translation model:

$$p(y \mid x) = \prod_{i=1}^{n} p(y_i | y_1, \dots, y_{i-1}, x_1, \dots, x_{|x|})$$

We could treat sentence pair as one long sequence, but:

- This is really a model of $P(x, y) = P(x)P(y \mid x)$.
- But we do not care about P(x)!

Language model:

$$p(y) = \prod_{i=1}^{n} p(y_i|y_1,\ldots,y_{i-1})$$

Translation model:

$$p(y \mid x) = \prod_{i=1}^{n} p(y_i | y_1, \dots, y_{i-1}, x_1, \dots, x_{|x|})$$

We could treat sentence pair as one long sequence, but:

- This is really a model of $P(x, y) = P(x)P(y \mid x)$.
- But we do not care about P(x)!
- The source and target language may have very different vocabulary and morphosyntactic structure.

Insight. We need two RNNs, one for source and one for target.

Decoder RNN

Formalizing the Encoder-Decoder approach

An RNN is a function of a hidden state and new input vector, returning a hidden state (so any RNN variant can be used).

Encoder:

$$\mathbf{h}_i = \mathsf{RNN}_{\mathsf{enc}}(\mathbf{x}_i, \mathbf{h}_{i-1})$$

Decoder:

$$\begin{aligned} \mathbf{s}_i &= \mathsf{RNN}_{\mathsf{dec}}(\mathbf{y}_{i-1}, \mathbf{s}_{i-1}) \\ P(y_i \mid y_1, \dots, y_{i-1}, x_1, \dots, x_{|x|}) &= \mathsf{softmax}(\mathbf{W} \, \mathsf{concat}(\mathbf{s}_i, \mathbf{h}_{|x|}) + \mathbf{b}) \end{aligned}$$

Final encoder hidden state $\mathbf{h}_{|x|}$ is *context* for decoder softmax.

Interpreting the Encoder-Decoder approach

- Given a conditional probability $P(y \mid x)$, we can design two neural architectures: one to *encode* x into a hidden representation, and one to *decode* y from that representation.
- In machine translation, RNNs are a reasonable choice for both encoder and decoder.
- The hidden representation from the encoder is supplied as input to the decoder at every time step.
- But the idea is general. Encoder and decoder can be designed to suit the task.
- The encoder RNN does not need to compute P(x). It only needs to compute a representation.

Q: Does this architecture make sense for translation?

Q: Does this architecture make sense for translation?

Encoder-decoder models must consider structure of input

- Hidden representation is a bottleneck: it must be able to represent a sentence of any length, but its size is fixed.
- RNNs and their variants suffer from vanishing gradients.
- So, representation from the encoder also has a recency bias: it
 mostly represents final words of the input sentence.
- Target words whose corresponding source words are at the beginning of the sentence therefore depend on information that originates further away in the computation graph.

Encoder-decoder models must consider structure of input

- Empirically, this means the model forgets first words of input!
- Reversing input order makes model forget final words of input.

Source: https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Encoder-decoder models must consider structure of input

- Empirically, this means the model forgets first words of input!
- Reversing input order makes model forget final words of input.

Source: https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/

Q. What can we do?

Attention

Decoder RNN

Attention computes a distribution over source words

In decoder softmax, the *context* is now a *weighted average* of source hidden state vectors:

$$\begin{split} P(y_i \mid y_1, \dots, y_{i-1}, x_1, \dots, x_{|x|}) &= \mathsf{softmax}(\mathbf{W} \, \mathsf{concat}(\mathbf{s}_i, \mathbf{c}_i) + \mathbf{b}) \\ \mathbf{c}_i &= \sum_{j=1}^{|x|} \alpha_{i,j} \mathbf{h}_j \end{split}$$

Attention computes a distribution over source words

In decoder softmax, the *context* is now a *weighted average* of source hidden state vectors:

$$P(y_i \mid y_1, \dots, y_{i-1}, x_1, \dots, x_{|x|}) = \operatorname{softmax}(\mathbf{W} \operatorname{concat}(\mathbf{s}_i, \mathbf{c}_i) + \mathbf{b})$$

$$\mathbf{c}_i = \sum_{j=1}^{|x|} \alpha_{i,j} \mathbf{h}_j$$

Notice that α_i is a distribution over elements of x. But the length of x can vary! So how can we compute it?

Attention computes a distribution over source words

In decoder softmax, the *context* is now a *weighted average* of source hidden state vectors:

$$P(y_i \mid y_1, \dots, y_{i-1}, x_1, \dots, x_{|x|}) = \operatorname{softmax}(\mathbf{W} \operatorname{concat}(\mathbf{s}_i, \mathbf{c}_i) + \mathbf{b})$$

$$\mathbf{c}_i = \sum_{j=1}^{|x|} \alpha_{i,j} \mathbf{h}_j$$

Notice that α_i is a *distribution* over elements of x. But the length of x can vary! So how can we compute it? A simple solution:

$$a_{i,j} = \mathbf{s}_i \cdot \mathbf{h}_j$$
 query.key/sum $\alpha_i = \operatorname{softmax}(\mathbf{a}_i)$ (query.keys)

Interpreting attention

$$a_{i,j} = \mathbf{s}_i \cdot \mathbf{h}_j$$
 $lpha_i = \operatorname{softmax}(\mathbf{a}_i)$

- Attention solves a problem: we have a variable length input, and we want to summarize it into a fixed vector, focusing only on the relevant parts of the input.
- But relevance depends on current prediction task! So we compute a function of the *output hidden state* (the *query*) and each of the available input vectors (the *keys*).

Interpreting attention

$$a_{i,j} = \mathbf{s}_i \cdot \mathbf{h}_j$$
 $lpha_i = \operatorname{softmax}(\mathbf{a}_i)$

- Attention solves a problem: we have a variable length input, and we want to summarize it into a fixed vector, focusing only on the relevant parts of the input.
- But relevance depends on current prediction task! So we compute a function of the *output hidden state* (the *query*) and each of the available input vectors (the *keys*).
- This computation can take many alternative forms:

$$a_{i,j} = \mathbf{s}_i \mathbf{V} \mathbf{h}_j$$
 (bilinear model) $a_{i,j} = \mathsf{FFN}(\mathbf{s}_i, \mathbf{h}_j)$ (feedforward neural network)

 Attention treats each hidden state of an RNN as a representation of the corresponding source word.

- Attention treats each hidden state of an RNN as a representation of the corresponding source word.
- Last week, we introduced RNNs as a way of summarizing the complete history of a sequence. So \mathbf{h}_i represents $x_1 \dots x_i$.

- Attention treats each hidden state of an RNN as a representation of the corresponding source word.
- Last week, we introduced RNNs as a way of summarizing the complete history of a sequence. So \mathbf{h}_i represents $x_1 \dots x_i$.
- Truth is in between: recency bias means that \mathbf{h}_i mostly represents x_i , but in the context of $x_1 \dots x_{i-1}$.

- Attention treats each hidden state of an RNN as a representation of the corresponding source word.
- Last week, we introduced RNNs as a way of summarizing the complete history of a sequence. So \mathbf{h}_i represents $x_1 \dots x_i$.
- Truth is in between: recency bias means that \mathbf{h}_i mostly represents x_i , but in the context of $x_1 \dots x_{i-1}$.
- This makes sense to disambiguate different meanings of x_i , but what about context $x_{i+1} \dots x_{|x|}$?

- Attention treats each hidden state of an RNN as a representation of the corresponding source word.
- Last week, we introduced RNNs as a way of summarizing the complete history of a sequence. So \mathbf{h}_i represents $x_1 \dots x_i$.
- Truth is in between: recency bias means that \mathbf{h}_i mostly represents x_i , but in the context of $x_1 \dots x_{i-1}$.
- This makes sense to disambiguate different meanings of x_i , but what about context $x_{i+1} \dots x_{|x|}$?

Idea. Use *two* encoder RNNs: one left-to-right, one right-to-left. Concatenate their states at position *i*. This is a *bidirectional RNN*. Widely used for encoding input strings.

- Attention treats each hidden state of an RNN as a representation of the corresponding source word.
- Last week, we introduced RNNs as a way of summarizing the complete history of a sequence. So \mathbf{h}_i represents $x_1 \dots x_i$.
- Truth is in between: recency bias means that \mathbf{h}_i mostly represents x_i , but in the context of $x_1 \dots x_{i-1}$.
- This makes sense to disambiguate different meanings of x_i , but what about context $x_{i+1} \dots x_{|x|}$?

Idea. Use *two* encoder RNNs: one left-to-right, one right-to-left. Concatenate their states at position *i*. This is a *bidirectional RNN*. Widely used for encoding input strings.

Q. Can decoders be bidirectional?

- Attention treats each hidden state of an RNN as a representation of the corresponding source word.
- Last week, we introduced RNNs as a way of summarizing the complete history of a sequence. So \mathbf{h}_i represents $x_1 \dots x_i$.
- Truth is in between: recency bias means that \mathbf{h}_i mostly represents x_i , but in the context of $x_1 \dots x_{i-1}$.
- This makes sense to disambiguate different meanings of x_i , but what about context $x_{i+1} \dots x_{|x|}$?

Idea. Use *two* encoder RNNs: one left-to-right, one right-to-left. Concatenate their states at position *i*. This is a *bidirectional RNN*. Widely used for encoding input strings.

Q. Can decoders be bidirectional? A. No! Right context missing.

Attention is not alignment (but alignment inspired attention)

- We are directly modeling $P(y \mid x)$.
- We modeled alignment as a latent variable to work around Markov assumptions: $P(y, z \mid x)$

Attention is not alignment (but alignment inspired attention)

- We are directly modeling $P(y \mid x)$.
- We modeled alignment as a latent variable to work around Markov assumptions: $P(y, z \mid x)$
- Our neural model has no Markov assumptions. Attention is deterministic, not stochastic. It does not represent a probabilistic choice and we do not marginalize it out.

Attention is not alignment (but alignment inspired attention)

- We are directly modeling $P(y \mid x)$.
- We modeled alignment as a latent variable to work around Markov assumptions: $P(y, z \mid x)$
- Our neural model has no Markov assumptions. Attention is deterministic, not stochastic. It does not represent a probabilistic choice and we do not marginalize it out.
- Practically: attention looks somewhat like alignment, but since information can flow along recurrent connections, it is more difficult to interpret.

Attention is a widespread design pattern

Encoder-decoder with attention is a common design pattern

We surveyed many applications in the first lecture.

Task	Input type	Output type
Question answering	string	string
Sentiment analysis	string	label
Syntactic parsing	string	tree
Semantic parsing	string	graph (logical form)
Generation	table	string
Image captioning	image	string
Machine translation	string	string

Encoder-decoder with attention is a common design pattern

We surveyed many applications in the first lecture.

Task	Input type	Output type
Question answering	string	string
Sentiment analysis	string	label
Syntactic parsing	string	tree
Semantic parsing	string	graph (logical form)
Generation	table	string
Image captioning	image	string
Machine translation	string	string

Q. How might you use encoder-decoder with attention to model text classification?

Summary

- To model a conditional probability distribution $P(y \mid x)$, use a neural architecture to *encode* x, and another to *decode* y.
- A bidirectional encoder uses both left and right context.
- A decoder can choose to <u>attend</u> to different elements of the encoded input. This shortcut avoids long distances between encoded and decoded elements.
- Attention uses a query vector to compute a distribution over a key vectors, using the softmax function.
- Encoding, decoding, and attention are general ideas. Choose architectures that are appropriate to input and output types.

Summary

- To model a conditional probability distribution $P(y \mid x)$, use a neural architecture to *encode* x, and another to *decode* y.
- A bidirectional encoder uses both left and right context.
- A decoder can choose to <u>attend</u> to different elements of the encoded input. This shortcut avoids long distances between encoded and decoded elements.
- Attention uses a query vector to compute a distribution over a key vectors, using the softmax function.
- Encoding, decoding, and attention are general ideas. Choose architectures that are appropriate to input and output types.

Next lecture. Transformers. Then we'll have covered most of the key modeling ideas in the course!

References

 Neural Machine Translation and Sequence-to-sequence Models: A Tutorial (2017), Neubig, arXiv 1703.01619.