DUALITY

FORMULATION OF DUAL PROBLEM

To obtain dual of the problem, we proceed as follows:

- 1. We write the LPP as canonical form
- 2. The maximization problem in the primal becomes minimization problem in the dual and vice versa
- 3. The "less than or equal to" type of constraints in the primal become "greater than or equal to" constraints in the dual and vice versa
- **4.**The coefficients c_1, c_2, \dots, c_n in the objective function in the primal become the right hand side constants of the constraints of the dual
- 5. The right hand side constants b_1, b_2, \dots, b_m of the constraints in the primal become the coefficients in the objective function in the dual and vice versa

FORMULATION OF DUAL PROBLEM

- **5.**If the primal has n decision variables and m constraints then the dual has m decision variables and n constraints and vice versa
- **6.**The transpose of the body matrix (coefficient matrix) in the primal is the body matrix (coefficient matrix) in the dual and vice versa
- 7. The variables in both the primal and dual are non-negative

Following the above rules we can obtain the dual of the problem

Maximize
$$z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

Subject to $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$
 $x_1, x_2, \dots, x_n \ge 0$

as Minimize
$$w = b_1 y_1 + b_2 y_2 + \dots + b_m y_m$$

Subject to $a_{11} y_1 + a_{21} y_1 + \dots + a_{m1} y_m \ge c_1$
 $a_{12} y_1 + a_{22} y_2 + \dots + a_{m2} y_m \ge c_2$
 $a_{1n} y_1 + a_{2n} y_2 + \dots + a_{mn} y_m \ge c_n$
 $y_1, y_2, \dots, y_m \ge 0$

The above pair of programmes can be written as

Primal	Dual
Maximize $Z = \sum_{j=1}^{n} c_j x_j$	Minimize $W = \sum_{i=1}^{m} b_i y_i$
Subject to $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$, $i = 1, 2, 3, m$	Subject to $\sum_{i=1}^{n} a_{ij} y_i \ge c_j$, $j = 1, 2, 3, \dots n$
Where $x_j \ge 0, j = 1, 2, 3, n$	Where $y_i \ge 0$, $i = 1, 2, 3, m$

Construct the dual of the following problem

$$Minimize z = x_2 + 3x_3$$

Subject to
$$2x_1 + x_2 \le 3$$
, $x_1 + 2x_2 + 6x_3 \ge 5$, $-x_1 + x_2 + 2x_3 = 2$, x_1 , x_2 , $x_3 \ge 0$

Solution: Since the objective function is of "minimization" type, the constraints must be of greater than or equal to" type.

Hence, we multiply the first constraints by (-1) and get $-2x_1, -x_2 \ge 3$

Since, the third constraints is of "equal to" type we write it as

$$-x_1 + x_2 + 2x_3 \ge 2$$
 and $-x_1 + x_2 + 2x_3 \le 2$ i.e. $-(-x_1 + x_2 + 2x_3) \ge -2$ i.e. $x_1 - x_2 - 2x_3 \ge -2$

Thus, the given problem become

Minimize
$$z = 0x_1 + x_2 + 3x_3$$

Subject to $-2x_1 - x_2 + 0x_3 \ge -3$,
 $x_1 + 2x_2 + 6x_3 \ge 5$, $-x_1 + x_2 + 2x_3 \ge 2$, $x_1 - x_2 - 2x_3 \ge -2$,
 $x_1, x_2, x_3 \ge 0$

Since the last given equality type constraint is now expressed in the form of two constraints, we

write
$$y_3$$
 as $y_3' - y_3''$

: The dual of the problem is

Maximize
$$w = -3y_1 + 5y_2 + 2y_3' - 2y_3''$$

Subject to $-2y_1 + y_2 - y_3' + y_3'' \le 0$,
 $-y_1 + 2y_2 + y_3' - y_3'' \le 1$,
 $0y_1 + 6y_2 + 2y_3' - 2y_3'' \le 3$

Replacing $y_3' - y_3''$ by y_3 which is now unrestricted, the dual becomes

Maximize
$$w = -3y_1 + 5y_2 + 2y_3$$

Subject to $-2y_1 + y_2 - y_3 \le 0$,
 $-y_1 + 2y_2 + y_3 \le 1$, $6y_2 + 2y_3 \le 3$,
 $y_1, y_2 \ge 0$, y_3 is unrestricted

Construct the dual of the following LPP

Maximize
$$z = 3x_1 + 17x_2 + 9x_3$$

Subject to $x_1 - x_2 + x_3 \ge 3$, $-3x_1 + 2x_3 \le 1$, $2x_1 + x_2 - 5x_3 = 1$, $x_1, x_2, x_3 \ge 0$

Solution: Since the problem is of maximization type, all the constraints must be expressed in less than or equal to form (\leq) .

Hence, we multiply the first constraints by -1 and get

$$-x_1 + x_2 - x_3 \le 3$$

Since, the third constraint is in the form of an equality, we write it as $2x_1 + x_2 - 5x_3 \ge 1$ and $2x_1 + x_2 - 5x_3 \le 1$

$$\therefore -2x_1 - x_2 + 5x_3 \le -1 \text{ and } 2x_1 + x_2 - 5x_3 \le 1$$

Thus, the given problem becomes,

Maximize
$$z = 3x_1 + 17x_2 + 9x_3$$

Subject to $-x_1 + x_2 - x_3 \le -3$,
 $-3x_1 + 0x_2 + 2x_3 \le 1$, $2x_1 + x_2 - 5x_3 \le 1$,
 $-2x_1 - x_2 + 5x_3 \le -1$, $x_1, x_2, x_3 \ge 0$

Since the last constraint in the primal is an equality, y_3 must be unrestricted.

Let y_1, y_2, y_3', y_3'' be the associated non-negative variables of the dual. Then the dual is

Minimize
$$w = -3y_1 + y_2 + y_3' - y_3$$
"
Subject to $-y_1 - 3y_2 + 2y_3' - 2y_3$ " ≥ 3
 $y_1 + 0y_2 + y_3' - y_3$ " ≥ 17
 $-y_1 + 2y_2 - 5(y_3' - y_3") \geq 19$

Putting $y_3' - y_3'' = y_3$ where y_3 is unrestricted, the required dual is

Minimize
$$w = -3y_1 + y_2 + y_3$$

Subject to $-y_1 - 3y_2 + 2y_3 \ge 3$, $y_1 + y_3 \ge 17$, $-y_1 + 2y_2 - 5y_3 \ge 19$, $y_1, y_2 \ge 0$, y_3 is unrestricted

Obtain the dual from the following primal

Minimize
$$z = x_1 - 3x_2 - 2x_3$$

Subject to $3x_1 - x_2 + 2x_3 \le 7$, $2x_1 - 4x_2 \ge 12$, $-4x_1 + 3x_2 + 8x_3 = 10$, $x_1, x_2 \ge 0$, x_3 is unrestricted

Solution: First we express the given problem in standard form

Minimize
$$z = x_1 - 3x_2 - 2x_3$$

Subject to $-3x_1 + x_2 - 2x_3 \ge -7, 2x_1 - 4x_2 + 0x_3 \ge 12,$ $-4x_1 + 3x_2 + 8x_3 \ge 10$ and $-4x_1 + 3x_2 + 8x_3 \le 10$
i.e. $4x_1 - 3x_2 - 8x_3 \ge -10$
Since, x_3 is unrestricted, we put $x_3 = x_3' - x_3$ "
 \therefore Minimize $z = x_1 - 3x_2 - 2x_3' + 2x_3$ "
Subject to $-3x_1 + x_2 - 2x_3' + 2x_3$ " $\ge -7,$ $2x_1 - 4x_2 + 0x_3' - 0x_3$ " $\ge 12,$ $-4x_1 + 3x_2 + 8x_3' - 8x_3$ " $\ge 10,$ $4x_1 - 3x_2 - 8x_3' + 8x_3$ " $\ge -10,$ x_1, x_2, x_3', x_3 " ≥ 0

If y_1, y_2, y_3', y_3'' are dual variables and w is the function of the dual then dual of the given problem will be

Maximize
$$w = -7y_1 + 12y_2 + 10y_3' - 10y_3$$
"
Subject to $-3y_1 + 2y_2 - 4y_3' + 4y_3$ " ≤ 1 ,
 $y_1 - 4y_2 + 3y_3' - 3y_3$ " ≤ -3 ,
 $-2y_1 + 8y_3' + 8y_3$ " ≤ 2 ,
Putting $y_3' - y_3$ " $= y_3$, we get
Maximize $w = -7y_1 + 12y_2 + 10y_3$
Subject to $-3y_1 + 2y_2 - 4y_3 \leq 1$,
 $y_1 - 4y_2 + 3y_3 \leq -3$,
 $-2y_1 + 8y_3 = -2$,

 $y_1, y_2 \ge 0, y_3$ unrestricted