

23, Headington Drive, Cambridge. CB1 9HE Tel: 01954 251974 (test site) or: 01223 241140 (accounts) Fax: 01954 251907 web: www.dbtechnology.co.uk email: mail@dbtechnology.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: TWENTY PENCE TEST SITE

> Twenty Pence Road, Cottenham, Cambridge U.K. **CB24 8PS**

> > on

AlertMe.com Ltd

REP800/REP130

(FCC Part 15.247 measurements only)

dated

19th May 2012

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	19/05/12		Initial release		
2	31/05/12	1 and 16	AC Power conducted emissions 9kHz RBW clarified.	PB	DB

Based on report template: v090319

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	2 of 56

Equipment Unde	r Test (EUT):	REP800/REP130	
Test Commission	ned by:	AlertMe.com Ltd Compass House 80 Newmarket R Cambridge CB5 8DZ	
Representative:		Bruce Benson	
Test Started:		28th April 2012	
Test Completed:	:	17th May 2012	
Test Engineer:		Dave Smith	
Date of Report:		19th May 2012	
Written by:	Dave Smith	Checked by:	Derek Barlow
Signature:	D. A. Snitt	Signature:	D. Barbon
Date:	19th May 2012	Date:	21st May 2012

dB Technology can only report on the specific unit(s) tested at its site. The responsibility for extrapolating this data to a product line lies solely with the manufacturer.

Test Standards Applied

CFR 47 Code of Federal Regulations: Pt 15 Subpart C - Radio Frequency Devices - Intentional Radiators

In particular, the rules of part 15.247 were applied.

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
(dB)	Test No:	T4335	Test Report	Page:	3 of 56

Device operating in the 2400-2483.5 MHz band (part 15.247)

FCC Part	Parameter	
15.207	Conducted Emissions	PASS
15.209	Radiated Emissions	PASS (for frequencies in the Restricted Bands list of 15.205 only - all other parts of 15.209 are not applicable - 15.247 takes precedence.)
15.247(a)(2)	Minumum 6dB bandwidth (must be >500kHz)	PASS
15.247(b)(3)	Peak power (must be < 1W)	PASS
15.247(b)(4)	Antenna gain (must be < 6dBi)	Manufacturer data states a gain of 1dBi. Only integral antenna.
15.247(b)(5)	Exposure to RF	See separate declaration based on calculation.
15.247(d)	Conducted Antenna Spurious (Must be at least 20dB below carrier in - 100kHz bw)	PASS
15.247(e)	Spectral Density (must not exceed 8dBm in any 3kHz band)	PASS

A	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	4 of 56

Contents

1 I	EUT Details	. 6
1.1		
1.2	Modifications to EUT and Peripherals	. 7
1.3		
1.4	Zigbee Duty Cycle	. 7
	Figure 1 EUT and Peripherals	
	Figure 2 Manufacturer's trace showing Zigbee 2msec burst in 100msec period	. 9
	Figure 3 Manufacturer's trace showing duration of Zigbee 2msec	. 9
	Photograph 1 Conducted Emissions - Front	10
	Photograph 2 Conducted Emissions - Back	10
	Photograph 3 Radiated Emissions - Upright - Front	11
	Photograph 4 Radiated Emissions - Flat - Back	11
	Photograph 5 Conducted Antenna	12
2 T	est Equipment	13
3	Test Methods	14
3.1	Conducted Emissions - ac power	14
3.2	Radiated Emissions	14
3.3	Conducted Antenna Emissions	15
4	Test Results	15
4.1		
4.2	Zigbee Peak Power - 15.247(b)(3)	17
4.3	Zigbee Bandwidth - 15.247(a)(2)	
4.4	Zigbee Power Spectral Density in 3kHz bw - 15.247(e)	19
4.5	Zigbee Antenna Conducted Spurious Emissions (100kHz bw) - 15.247(d)	20
4.6	Zigbee Radiated Emissions - Channel 11 - 15.209	
4.7	Zigbee Radiated Emissions - Channel 18 - 15.209	
4.8	Zigbee Radiated Emissions - Channel 25 - 15.209	
4.9	Zigbee Radiated Emissions - Band Edges - 15.209	
	PLOT 1 Peak Power - Channel 11	25
	PLOT 2 Peak Power - Channel 18	26
	PLOT 3 Peak Power - Channel 25	27
	PLOT 4 6dB Bandwidth - Channel 11	28
	PLOT 5 6dB Bandwidth - Channel 18	29
	PLOT 6 6dB Bandwidth - Channel 25	30
	PLOT 7 Spectral Density - Channel 11	31
	PLOT 8 Spectral Density - Channel 18	32
	PLOT 9 Spectral Density - Channel 25	33
	PLOT 10 Antenna Conducted Spurious - 9kHz to 1GHz	34
	PLOT 11 Antenna Conducted Spurious - near band edges	
	PLOT 12 Antenna Conducted Spurious - 1GHz to 5GHz	
	PLOT 13 Antenna Conducted Spurious - 5GHz to 15GHz	
	PLOT 14 Antenna Conducted Spurious - 15GHz to 25GHz	
	PLOT 15 Radiated Emissions - Zigbee Tx - Ch 11 - Band Edge - Vertical	
	PLOT 16 Radiated Emissions - Zigbee Tx - Ch 11 - Band Edge - Horizontal	
	PLOT 17 Radiated Emissions - Zigbee Tx - Ch 25 - Band Edge -Vertical	
	PLOT 18 Radiated Emissions - Zigbee Tx - Ch 25 - Band Edge - Horizontal	
	PLOT 19 Radiated Emissions - Zigbee Tx - 25MHz to 275MHz	
	PLOT 20 Radiated Emissions - Zigbee Tx - 250MHz to 1GHz	
	PLOT 21 Radiated Emissions - Zigbee Tx - 1GHz to 2GHz	
	PLOT 22 Radiated Emissions - Zigbee Tx - 2GHz to 3GHz	
	PLOT 23 Radiated Emissions - Zigbee Tx - 2GHz to 3GHz - 10kHz VBW	
	PLOT 24 Radiated Emissions - Zigbee Tx - 2.75GHz to 6.75GHz	
	PLOT 25 Radiated Emissions - Zigbee Tx - 6GHz to 10GHz	
	PLOT 26 Radiated Emissions - Zigbee Tx - 9GHz to 13GHz	

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
(dB)	Test No:	T4335	Test Report	Page:	5 of 56
PLOT PLOT PLOT PLOT	Г 28 Radi Г 29 Radi Г 30 Radi Г 31 Cond	iated Emission iated Emission iated Emission ducted Emissio	s - Zigbee Tx - 12GHz to 16GHz s - Zigbee Tx - 14GHz to 18GHz s - Zigbee Tx - 18GHz to 22GHz s - Zigbee Tx - 21GHz to 25GHz ons - Live Line - Z-wave & Zigbee Tx ons - Neutral Line - Z-wave & Zigbee Tx		52 53 54 55

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
1 /	Test No:	T4335	Test Report	Page:	6 of 56

1 EUT Details

1.1 General

The EUT was an AlertMe Repeater. The device incorporates two intentional radiators:

- Zigbee: operating in the 2.4GHz to 2.4835GHz band. Operates on 15 equally spaced channels starting at 2.405GHz (channel 11) and ending at 2.475GHz (channel 25).
 O-QPSK (digital) modulation. Integral antenna. Gain of the antenna declared to be 1dBi.
- (b) Z-wave: operating in the 902MHz to 928MHz band. The device operates on 908.42 MHz. GFSK modulation. Integral antenna.

This report only covers the operation of the device as an intentional radiator in the 2.4GHz to 2.4835GHz band.

For Zigbee transmit mode tests were performed on:

Ch 11: 2.405 GHz Ch 18: 2.440 GHz Ch 25: 2.475 GHz

The device is powered from ac mains or an internal battery.

Details of the EUT and associated peripherals used during the tests are listed below. Figure 1 shows the interconnections between the EUT and peripherals.

Item	Manufacturer	Model	Description	Serial No:	Notes
1	Alertme	REP800/REP130	Sample 1 with wired co-axial connection to Zigbee transmitter		
2	Alertme	REP800/REP130	Sample 2 with integral antennas. Z-wave tranmitting constant unmodulated carrier. Zigbee programmable.		
3	Alertme	REP800/REP130	Sample 3 - with integral antennas. Z-wave constantly transmitting modulated signal		#1
4	Alertme	REP800/REP130	Sample 4 with integral antennas. Z-wave in receive mode. Zigbee programmable.		

Not used for the tests covered by this report.

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
1 /	Test No:	T4335	Test Report	Page:	7 of 56

1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
0	Original. No modifications were made during the course of testing.	

1.3 EUT Operating Modes

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	Zigbee transmit. Continuously transmitting constant packet stream. The transmit channel was set to either Channel 11, 18 or 25. Individual test results show the actual operating channel. Output set to 0dBm and amplifier switched on.
2	As mode 1 but with Z-wave also continuously transmitting.

1.4 Zigbee Duty Cycle

All Zigbee transmit measurements were made with the device sending continuous packet streams. In the intended application transmissions only occur in short bursts. The manufacturer has stated that in any one 100msec period transmissions are limited to a burst of approximately 2 msec. This is backed up by the traces provided by the manufacturer (see Figure 2 and Figure 3).

This allows an additional duty cycle correction factor to be applied where average limits are specified. This duty cycle correction factor has been calculated as -20dB (=20*log 10/100 - assuming a transmit time of no more than 10msec in a 100msec period). This additional correction factor has only been applied where necessary and it is clearly indicated in the results tables.

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	8 of 56

Figure 1 EUT and Peripherals

	Description	Туре	Length	Notes
#1	Mains extension lead	Unscreened	1.5m	

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	9 of 56

Figure 2 Manufacturer's trace showing Zigbee 2msec burst in 100msec period

Figure 3 Manufacturer's trace showing duration of Zigbee 2msec

\	Report No: Issue No:	R3094A 2	
Ŋ	Test No:	T4335	

FCC ID: WJHRP11

Test Report Page: 10 of 56

Photograph 1 Conducted Emissions - Front

Photograph 2 Conducted Emissions - Back

	Report No: Issue No:	R3094A 2
)	Test No:	T4335

FCC ID: WJHRP11

Test Report Page: 11 of 56

Photograph 3 Radiated Emissions - Upright - Front

Photograph 4 Radiated Emissions - Flat - Back

	Report No: Issue No:	R3094A 2	
1B	Test No:	T4335	

FCC ID: WJHRP11

Test Report Page: 12 of 56

Photograph 5 Conducted Antenna

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
I /\	Test No:	T4335	Test Report	Page:	13 of 56

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

Ref No:	Details	Serial Number	Cal Dat	Cal Interval
A15	Chase X-wing Bilog CBL6140 20MHz-2GHz	1047	18/11/2011	1 year
A10 A20	Alpha 61932500 Horn Antenna (18-26GHz)	50	#1	1 year
A22	Alpha 61932400 Horn Antenna (12.4-18GHz)	55	#1	1 year
A23	EMCO 3115 DR Guide (1-18GHz)	4982	31/01/2012	1 year
A24	Chase X-wing Bilog CBL6144 26MHz-3GHz	27590	18/11/2011	1 year
A5	Chase Bilog CBL6111A	1760	31/01/2012	1 year
L1	EMCO 3825/2 LISN	1358	16/02/2012	1 year
PRE7	LUCIX 0.1GHz to 20GHz	24485	08/01/2012	1 year
PRE8	LUCIX 0.1 dHz to 20 dHz	24486	08/01/2012	•
R1	CHASE LHR 7000	1056	31/01/2012	1 year
R1 R4	R&S ESVS10	421872	16/10/2011	1 year
R4 R8	Agilent E7405A Spectrum Analyser	421872 MY44212494	19/09/2011	1 year 1 year
R8 R9	Agilent E7405A Spectrum Analyser Agilent E7405A Spectrum Analyser			•
	1 - 1	MY45110758	21/11/2011 08/02/2012	1 year
RFF01	High Pass RF Filter 3GHz to 12.75GHz	4		1 year
RFF04	Low Pass RF Filter 0MHz to 2GHz	-	08/02/2012	1 year
RFF15 RFF22	Band Pass Filter 1GHz to 2GHz High Pass Filter - 1.35GHz (to 10GHz) HPM13017	15 33	08/02/2012 08/02/2012	1 year 1 year

#1 Standard Gain Horns - Factors derived by calculation from dimensions.

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	14 of 56

3 Test Methods

3.1 Conducted Emissions - ac power

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUTs and peripheral equipment are normally placed on a 0.8m high non-conducting bench, positioned 0.4m from one of the metallic walls of a screened room. Floor standing EUTs are normally placed 0.1m above the metallic floor of the screened room. Mains leads are bundled so as not to exceed 1m.

The EUT is powered using a 50ohm/50uH Line Impedance Stabilisation Network (LISN). Peripherals are powered using a second a 50ohm/50uH LISN. These LISNs are bonded to the screened room floor.

With the correct supply voltage applied to the EUT scans are performed on both the live and neutral line outputs of the LISN using quasi-peak detection over the specified frequency range. The results of these scans are shown in the plots section at the end of the report.

Significant emissions identified by the scans are measured and the results tabulated. The table of results is shown in the conducted emissions results section.

Final Level = Receiver Reading + Combined Cable & Attenuator Correction Factor (dBuV) (dBuV) (dB)

Example: if at 191kHz the receiver level is 45.8 dBuV

@ 191kHz Final Level = 45.8 + 10.0 = 55.8 dBuV

3.2 Radiated Emissions

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Initial scans are performed in a semi-anechoic screened room at a distance of up to 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The results of the scans are shown in the plots included at the end of the report. Attempts are made to identify the layout of cables that give highest readings.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using the specified detector function. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1 m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

Tabulated results show levels based on the following calculation:

Field Strength (dBuV) = receiver reading (dBuV) + CF (dB/m)

CF is the correction factor for the antenna and cable.

For example:

if at 434.478MHz receiver reading was 57.8dBuV and combined correction factor = 20.4 (dB/m).

Total field strength = 57.8 + 20.4 = 78.2 dBuV/m.

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	15 of 56

3.3 Conducted Antenna Emissions

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

The antenna port of the EUT was connected directly to the input of a spectrum analyser. Sweeps were made over the required frequency ranges with the specified detectors applied.

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	16 of 56

Conducted Emissions (Power) - Results 4.1

L1_11A AB002_CBL005_CBL039_11A --Factor Set 1:

Factor Set 2: Factor Set 3: Test Equipment: R1 L1

			ns (Powe					Produc	nt:			
			Me.co	m Lto	d		NEFOUU/NEF 13U					
Date		04/05				Test Eng: Dave Smith						
Ports	•				using I	imita	of	FCC(D١			
Ports		ANSI	C63.4:	2003	using i	imits	OI	FCC(I	DΙ			
Test.					using l	imits	of					
		1 1		1 1			ı	1				
Plot	Op	Mod	Line	Fact	Freq.	Det	Rec.	Corr'n	Total	Limit	Margin	Notes
	Mode	State	(L/N)	Set	MHz	qp/	Level	Factor	Level	FCC	FCC	
						av	dBuV	dB	dBuV	dBuV	dB	
.1	_			1	0.104		27.1	10.0	07.1	62.0	20.0	
31 31	2 2	0	L L	1 1	0.194 0.194	qp av	27.1 16.8	10.0	37.1 26.8	63.9 53.9	26.8 27.1	
31	2	0	L		0.163	qp	24.4	10.0	34.4	61.4	26.9	
31	2	0	L	1	0.263	av	14.3	10.0	24.3	51.4	27.0	
31	2	0	L	1	1.587	qp	24.1	10.0	34.1	56.0	21.9	
31	2	0	L	1	1.587	av	14.0	10.0	24.0	46.0	22.0	
32	2	0	N	1	0.200	qp	28.0	10.0	38.0	63.6	25.6	
32	2	0	N	1	0.200	av	8.0	10.0	18.0	53.6	35.6	
32	2	0	N	1	0.319	qp	22.8	10.0	32.8	59.7	26.9	
32	2	0	N	1	0.319	av	10.0	10.0	20.0	49.7	29.7	
32	2	0	N	1	1.587	qp	24.6	10.0	34.6	56.0	21.4	
32	2	0	N	1	1.587	av	12.0	10.0	22.0	46.0	24.0	
	Resul	ts					Minimu PASS/F	-	jin	21.4 PASS	dB	
No	tes	s Con			Comme	ents and Observations						
			Dog des	of	no obser	o in!	oto 21 -	nd 22	Mass	roments :	ا طفانین	
		1				-					nade with bo the "worse o	
		1	mode (S		_		y will	JII WUS	55113140	J. 50 10 DE	THE WOLGE	0400
		1	-		conducto	ed em	issions ı	measure	ements	were mad	le using a 9k	Hz
			Limits f	or 15.	207 are	showr	١.					

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	17 of 56

4.2 Zigbee Peak Power - 15.247(b)(3)

Test Equipment: R8

Peak Power

Test: Notes

_	reak rowei			
	Company:	AlertMe.com Ltd	Product:	REP800/REP130
	Date:	17/05/2012	Test Eng:	Dave Smith
	Ports:	Antenna		
	Test:	15.247(b)(3		
	Ports:		•	

Comments and Observations

Results of scans are shown in plots 1 to 3.

The method of 558074 D01 DTS Meas Guidance v01 section 5.2.1.2 was applied. The spectrum analyser's "band power" measurement was used with a

This was performed as a conducted measurement on sample 1.

Results were as follows:

peak detector selected.

Channel	Level (dBm)	Limit (dBm)	
11	21.80	30	PASS
18	21.79	30	PASS
25	21.53	30	PASS

<u> </u>	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
l /\	Test No:	T4335	Test Report	Page:	18 of 56

4.3 Zigbee Bandwidth - 15.247(a)(2)

Test Equipment: R8

Bandwidth

Test:

2411411141		
Compar	^{Py:} AlertMe.com Ltd	Product: REP800/REP130
Date:	17/05/2012	Test Eng: Dave Smith
Ports:	Antenna	
Test:	15.247(a)(2)	
Ports:		

Notes Comments and Observations

This was performed as a conducted measurement on sample 1.

Results of scans shown in plots 4 to 6.

The method of 558074 D01 DTS Meas Guidance v01 section 5.1.1 was applied.

The results are as follows:

Channel	Measured Bandwidth (MHz)	Limit	
11	1.540	>500kHz	PASS
18	1.580	>500kHz	PASS
25	1.570	>500kHz	PASS

PASS

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	19 of 56

Zigbee Power Spectral Density in 3kHz bw - 15.247(e) 4.4

Test Equipment: R8	
Spectral Density	
Company: AlertMe.com Ltd	Product: REP800/REP130

Date:	17/05/2012 Test Eng: Dave Smith
Ports:	Antenna
Test: Ports:	15.247(e)
Test:	
Notes	Comments and Observations
Notes	This was performed as a conducted measurement on sample 1. The method of 558074 D01 DTS Meas Guidance v01 section 5.3.1 was applied. As specified, measurements were made with a RBW of 100kHz and an additional CF of -15.2dB applied to convert to dBm/3kHz. Results of scans shown in plots 7 to 9. In all cases the spectral density is below 8dBm/3kHz.

<u> </u>	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	20 of 56

4.5 Zigbee Antenna Conducted Spurious Emissions (100kHz bw) - 15.247(d)

Test Equipment: R8	

Conducted Emissions (Signal)

Conducte	u Liiiissions (Signai)	
Compan	^{py:} AlertMe.com Ltd	Product: REP800/REP130
Date:	03/05/2012	Test Eng: Dave Smith
Ports:	Antenna	
Test:	15.247(d)	
Ports:		
Test:		

Notes			Comment	s and Observation	ons		
	This was pe	rformed as a	a conducted m	neasurement on s	sample 1.		
	The method	of 558074	DO1 DTS Me	as Guidance v01	section F	5 4 1 was	
	applied.	01 000074	DOT DTO WICE	do Galdanico VOT	30001011	7.4.1 Wu3	
	Results of s	cans shown	in plots 10 to	14.			
	Frequency	Tx Ch	Level	Level w.r.t Fundamental	Limit	Margin	
	MHz		dBm	dB	dB	dB	
	2.4050	Ch 11	16.4				
	2.4000 4.8094	Ch 11 Ch 11	-25.8 -37.3	-42.2 -53.7	-20 -20	22.2 33.7	PASS N/A *
	2.4400	Ch 18	15.4				
	4.8794	Ch 18	-37.1	-52.5	-20	32.5	N/A *
	2.4750	Ch 25	16.0				
	2.4835	Ch 25	-33.2	-33.2	-20	13.2	PASS
	4.9494	Ch 25	-37.4	-53.4	-20	33.4	N/A *
	* This emi	ssion falls w	ithin a restrict	ed band and was	s therefo	re also mea	sured
	as a radi the radia	ated test us	ing the limits of 15.209 there	of 15.209. Provi	iding an e	emission me	ets
	PASS						

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	21 of 56

Zigbee Radiated Emissions - Channel 11 - 15.209 4.6

A23_3m_10A PRE7_CBL052_CBL093_11A RFF01_11A -Factor Set 1:

A20_3m_10B PRE8_CBL052_CBL092_11A - -Factor Set 2:

Factor Set 3:

Test Equipment: R8 A23 A15 PRE7 RFF01 A20 PRE8 A22 RFF04

	Company: AlertMe.com Ltd Product: REP800/REP130												
					Ltd				Г	REP800/I			
Date Ports		01/0	01/05/2012										
Test		ANSI	C63	4:20	03 using	limits	s of	15	.209				
Ports													
Test	:				using	limits	of						
Plot	Ор	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
	Mode	State	m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC	FCC	
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
25		nnel 11		1	4800 005	V	62.4	F 2		E 7 1	74.0	16.0	Pk
25 25	1 1	0 0	3 3	1 1	4809.095 4809.095	V V	62.4 55.5	-5.3 -5.3		57.1 50.1	74.0 54.0	16.9 3.9	Av
25	1	0 3 1 4809.095 H 58.4 -5.3 53.1 74.0 20.9									Pk		
25	1	0 3 1 4809.095 H 50.9 -5.3 45.6 54.0 8.4									Av		
27	1	0	0 3 1 12028.037 V 48.4 3.6 51.9 74.0 22.1 Pk									Pk	
27	1	0	3	1	12028.037	V	38.2	3.6		41.8	54.0	12.2	Av
27	1	0	3	1	12028.037	Н	44.8	3.6		48.4	74.0	25.6	Pk
27	1	0	3	1	12028.037	Н	32.0	3.6		35.6	54.0	18.4	Av
30	1	0	3	2	19236.500	V	46.7	1.6		48.3	74.0	25.7	Pk
30	1	0	3	2	19236.500	V	37.5	1.6		39.1	54.0	14.9	Av
30 30	1 1	0 0	3	2 2	19236.500 19236.500	Н	46.1 36.5	1.6		47.8 38.1	74.0 54.0	26.2 15.9	Pk Av
30	'		3		19236.500	Н	30.5	1.6		30.1	54.0	15.9	Av
	Resul	ults Minimum Margin 3.9 dB PASS/FAIL PASS											
No	tes	Comments and Observations											
			Resul	ts of	scans show	n in p	olots 19	to 30.					
		All average measurements could be reduced by a further 20dB if the "Duty Cycle Correction" were applied.											
			Corr	ectioi	n were app	olled.							
ν.			an -		ook ov s		بام مع	ما ماد					
	ey:		чр - (uasi-	peak, av - a	vera	је, μк -	peak					

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	22 of 56

Zigbee Radiated Emissions - Channel 18 - 15.209 4.7

A23_3m_10A PRE7_CBL052_CBL093_11A RFF01_11A -Factor Set 1:

Factor Set 2: Factor Set 3:

Test Equipment: R8 A23 A15 PRE7 RFF01 A20 PRE8 A22 RFF04

Radia	ted Em	nissions	5											
Com	pany:	Alert	Me.	com	Ltd			Prod	Product: REP800/REP130					
Date		01/05	5/201	2				Test	Eng:	ave Smitl	า			
Ports Test		ANSI	C63	.4:20	03 using	limits	s of	15	.209					
Ports	s:	,	-											
Test	:				using	limits	of							
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC dBuV/m	Margin FCC dB	Notes	
	Char	nnel 18	3										•	
25	1	0	3	1	4879.220	V	63.3	-5.0		58.3	74.0	15.7	Pk	
25	1	0	3	1	4879.220 4879.220	V	56.8	-5.0		51.7	54.0	2.3	Av Pk	
25 25	1 1	0 0	3 3	1	4879.220	H H	60.4 53.3	-5.0 -5.0		55.4 48.3	74.0 54.0	18.6 5.7	Av	
25	'		3	'	4073.220	•••	33.3	3.0		+0.0	54.0	0.7	/	
26	1	0	3	1	7318.755	V	61.9	-0.7		61.2	74.0	12.8	Pk	
26	1	0	3	1	7318.755	V	54.3	-0.7		53.6	54.0	0.4	Av	
26	1	0	3	1	7318.755	Н	60.5	-0.7		59.8	74.0	14.2	Pk	
26	1	0	0 3 1 7318.755 H 52.8 -0.7 52.1						52.1	54.0	1.9	Av		
27	1	0	3	1	12198.030	V	50.9	3.4		54.3	74.0	19.7	 Pk	
27	1	0	3	1	12198.030	V	41.4	3.4		44.7	54.0	9.3	Av	
27	1	0	3	1	12198.030	Н	48.9	3.4		52.3	74.0	21.7	Pk	
27	1	0	3	1	12198.030	Н	38.6	3.4		42.0	54.0	12.0	Av	
	Resul	ts					Minimu	m Marc	ıin		0.4	dB		
	ricoai						PASS/F		,		PASS	u.D		
No	tes					Comr	ments aı	nd Obse	ervation	าร				
			Resul	ts of	scans show	/n in p	olots 19	to 30.						
				_	e measuren n" were app		could b	e reduc	ed by a	a further 2	20dB if the "	Duty Cycle		
Κe	ey:		qp - c	quasi-	peak, av - a	veraç	ge, pk -	peak						

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	23 of 56

Zigbee Radiated Emissions - Channel 25 - 15.209 4.8

A23_3m_10A PRE7_CBL052_CBL093_11A RFF01_11A -Factor Set 1:

Factor Set 2: Factor Set 3:

Test Equipment: R8 A23 A15 PRE7 RFF01 A20 PRE8 A22 RFF04

	Company: AlertMe.com Ltd Product: REP800/REP130												
					Ltd				Г	REP800/I			
Date Ports		01/0	01/05/2012										
Test		ANSI	C63.	4:200	03 using	limits	of	15	.209				
Ports													
Test	<u> </u>				using	limits	of						
Plot	Ор	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
		State	m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC	FCC	140103
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
	Char	nel 25	5										
25	1	0	3	1	4949.235	V	59.5	-5.0		54.5	74.0	19.5	Pk Av
25 25	1 1	0 3 1 4949.235 V 52.1 -5.0 47.1 54.0 6.9 0 3 1 4949.235 H 58.3 -5.0 53.2 74.0 20.8									Pk		
25	1										Av		
00												DI.	
26 26	1 1	0 0	3 3	1 1	7423.750 7423.750	V V	60.5 52.9	-0.1 -0.1		60.4 52.8	74.0 54.0	13.6	Pk Av
26	1	0	3	1	7423.750	H	57.7	-0.1		57.7	74.0	16.3	Pk
26	1	0	3	1	7423.750	Н	49.8	-0.1		49.8	54.0	4.2	Av
27	1	0	3	1	12373.000	V	50.7	3.4		54.1	74.0	19.9	Pk
27	1	0	3	1	12373.000	V	40.8	3.4		44.2	54.0	9.8	Av
27	1	0	3	1	12373.000	Н	50.5	3.4		53.9	74.0	20.1	Pk
27	1	0	3	1	12373.000	Н	40.4	3.4		43.8	54.0	10.2	Av
				ı				1				ı	
	Resul	· · · · · · · · · · · · · · · · · · ·											
		PASS/FAIL PASS											
No	tes	Comments and Observations											
		Results of scans shown in plots 19 to 30.											
			i iosul	13 01	JULII JIIUW	,,, ,,, ,	הטנט וט	.0 30.					
		All average measurements could be reduced by a further 20dB if the "Duty Cycle Correction" were applied.											
			Corr	ection	n" were app	olied.							
Κe	ey:		qp - c	quasi- _l	peak, av - a	veraç	ge, pk -	peak					

<u> </u>	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	24 of 56

Zigbee Radiated Emissions - Band Edges - 15.209 4.9

A23_3m_10A CBL049_11A --Factor Set 1:

Factor Set 2: Factor Set 3: Test Equipment: R8 A23

Key:

Results of scans shown in plots 15 to 18. Measurements were made with a continuous data stream transmission. As describe in the "Duty Cycle" section of this report, average measurements can be reduced by an additional 20dB because transmissions occur for no more than 10msec in any 100msec period. This -20dB factor is included in the above table as the "second" correction factor.								b					
tes					Comr	ments a	nd Obse	ervation	ns				
Resul	ts						-	jin		12.3 PASS	dB		
			-										
1 1	0	3 3	1	2486.750 2486.750	H H	31.4 15.7	29.9	-20.0	61.3 25.6	74.0 54.0	12.7 28.4	Pk Av	
1	0	3	1	2486.750	V	14.6	29.9	-20.0	24.6	54.0	29.4	Av	
1	0	3	1	2486 750	V	31.5	29.9		61 4	74 0	12.6	Pk	
1	0						33.6	54.0	20.4	Av			
1	0	3	1		V H	23.8 31.8	29.9	-20.0	61.7	54.0 74.0	12.3	Pk	
1	0	3	1	2483.500	٧	31.6	29.9	00.0	61.5	74.0	12.5	Pk Av	
Char	 nnel 25	5											
1	0	3	1	2390.000	Н	11.6	29.7	-20.0	21.3	54.0	32.7	Av	
1	0	3	1	2390.000	Н	21.9	29.7		51.6	74.0	22.4	Pk	
1	0	3	1	2390.000	V V	22.1 11.6	29.7	-20.0	51.8 21.3	74.0 54.0	22.2	Pk Av	
Char	nnel 11												
Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes	
•				using	limits	of							
•	ANSI	C63.	4:20	03 using	limits	of	15	15.209					
	28/04	1/201	2				Test	Eng: D	Dave Smith				
				Lta			Product: REP800/REP130						
	Char 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Channel 11	28/04/201	Second	ANSI C63.4:2003 using using using Using Using Using Op Mod Dist Fact Freq. MHz Channel 11 1 0 3 1 2390.000 1 0 3 1 2390.000 1 0 3 1 2390.000 1 0 3 1 2390.000 Channel 25 1 0 3 1 2483.500 1 0 3 1 2483.500 1 0 3 1 2483.500 1 0 3 1 2483.500 1 0 3 1 2483.500 1 0 3 1 2486.750 1 0 3 1 2486.750 1 0 3 1 2486.750 Results Results of scans show Measurements were in the "Duty Cycle" sby an additional 20dB 100msec period. This	ANSI C63.4:2003	ANSI C63.4:2003	### ANSI C63.4:2003 using limits of ### Set	### ANSI C63.4:2003 using limits of ### 15.209 ### Using limits of ### 15.209 ### Using limits of ### Set ### Set ### MHz ### Pol Level Factor GBuV GB/m GB/m	### 28/04/2012 ### 28/04/2012 ### 3	### ANSI C63.4:2003 using limits of 15.209 ANSI C63.4:2003 using limits of 15.209	ANSI C63.4:2003	

qp - quasi-peak, av - average, pk - peak

PLOT 1 Peak Power - Channel 11

Company:	Alertme		Product:	Repeater	
Date:	17/05/2012		Test Eng:	Dave Smith	
Method:	D01 DTS Mea	s Guidance v01	Method:		
Limit1:(VIO)	30dBm		Limit2:		
Limit3:			Limit4:		
	m which therefo	N (-26dB points) us ore complies with the ().		or.	
Facility:	GTEM_1			Mode:	1
				Modification State:	0
		File: H	241743B		

PLOT 2 Peak Power - Channel 18

Company:	Alertme		Product:	Repeater	
Date:	17/05/2012		Test Eng:	Dave Smith	
Method:	D01 DTS Meas	s Guidance v01	Method:		
Limit1:(VIO)	30dBm		Limit2:		
Limit3:			Limit4:		
	Bm which therefo	V (-26dB points) usi ore complies with th).			
Facility:	GTEM_1			Mode:	1
				Modification State:	0
		File: H2	241743F		

*VBW 3 MHz

Sweep 5mS (401 pts)

PLOT 3 Peak Power - Channel 25

*RBW 1 MHz

Company:	Alertme		Product:	Repeater	
Date:	17/05/2012		Test Eng:	Dave Smith	
Method:	D01 DTS Meas	s Guidance v01	Method:		
Limit1:(VIO)	30dBm		Limit2:		
Limit3:			Limit4:		
	Bm which theref	V (-26dB points) usione complies with th		or.	
Facility:	GTEM_1			Mode:	1
				Modification State:	0
		File: H2	417437		

Report No: R3094A FCC ID: WJHRP11 Issue No: 2 Test No: **Test Report** Page: T4335 28 of 56

Marker 1: 2.407GHz

PLOT 4 6dB Bandwidth - Channel 11

			-
Company:	Alertme	Product:	Repeater
Date:	17/05/2012	Test Eng:	Dave Smith
Method:	D01 DTS Meas Guidance v01	Method:	
Limit1:(VIO)	-6dB	Limit2:(GRN)	-26dB
Limit3:		Limit4:	
Channel 11			

6dB Bandwidth lies between 2.4043000 GHz and 2.4058375GHz.

6dB Bandwidth = 1.54MHz.

26dB Bandwidth = 4.31MHz.

Part 15.247(a)(2) requires the 6dB bandwidth to be more than 500kHz.

Facility:	GTEM_1			Mode:	1
				Modification State:	0
		File:	H241741C		

| Report No: | R3094A | | FCC ID: WJHRP11 | | Fcc ID: WJHRP11 | | Fcc ID: WJHRP11 |

Marker 1: 2.442GHz

PLOT 5 6dB Bandwidth - Channel 18

Company:	Alertme		Product:	Repeater		
Date:	17/05/2012		Test Eng:	Dave Smith		
Method:	D01 DTS Meas G	Guidance v01	Method:			
Limit1:(VIO)	-6dB		Limit2:(GRN)	-26dB		
Limit3:			Limit4:			
Channel 18 6dB Bandwidth lies between 2.4392875 GHz and 2.4408625GHz. 6dB Bandwidth = 1.58MHz. 26dB Bandwidth = 4.26MHz. Part 15.247(a)(2) requires the 6dB bandwidth to be more than 500kHz.						
Facility:	GTEM_1			Mode: 1		
				Modification State: 0		
	Fil	e: H	2417427			

 Centre 2.475GHz
 Span 5MHz

 *RBW 100 kHz
 *VBW 3 MHz
 Sweep 5mS (401 pts)

PLOT 6 6dB Bandwidth - Channel 25

Company: Alertme Product: Repeater Date: 17/05/2012 Test Eng: Dave Smith Method: D01 DTS Meas Guidance v01 Method: Limit1:(VIO) -6dB Limit2:(GRN) -26dB Limit3: Limit4:

Channel 25

6dB Bandwidth lies between 2.4743000 GHz and 2.4758750GHz.

6dB Bandwidth = 1.57MHz.

26dB Bandwidth = 4.27MHz.

Part 15.247(a)(2) requires the 6dB bandwidth to be more than 500kHz.

 Facility:
 GTEM_1
 Mode:
 1

 Modification State:
 0

 File:
 H2417433

Marker 1: 2.405GHz

CF1:-15.2

PLOT 7 Spectral Density - Channel 11

Company:	Alertme		Product:	Repeater		
Date:	17/05/2012		Test Eng:	Dave Smith		
Method:	D01 DTS Mea	s Guidance v	01 Method:			
Limit1:(VIO)	8dBm/3kHz		Limit2:			
Limit3:			Limit4:			
Includes correct		ver from 100l	kHz to 3kHz bandw ectral density to be			
Facility:	GTEM_1			Mode:	1	
				Modification State:	1	
		File:	H2417449			

CF1:-15.2

PLOT 8 Spectral Density - Channel 18

Company:	Alertme		Product:	Repeater	
Date:	17/05/2012		Test Eng:	Dave Smith	
Method:	D01 DTS Mea	as Guidance v01	Method:		
Limit1:(VIO)	8dBm/3kHz		Limit2:		
Limit3:			Limit4:		
Part 15 Subpart 6 8dBm/3kHz	on factor to con (c) 15.247(e) re	04 dBm/3kHz over from 100kHz to equires the spectral		low	
Facility:	GTEM_1			Mode:	1
				Modification State:	1
		File:	H2417443		

Marker 1: 2.475GHz

PLOT 9 Spectral Density - Channel 25

Company:	Alertme		Product:	Repeater	
Date:	17/05/2012		Test Eng:	Dave Smith	
Method:	D01 DTS Mea	s Guidance v01	Method:		
Limit1:(VIO)	8dBm/3kHz		Limit2:		
Limit3:			Limit4:		
Part 15 Subpart 8dBm/3kHz	on factor to conv (c) 15.247(e) red	79 dBm/3kHz ver from 100kHz to quires the spectral		low	
Facility:	GTEM_1			Mode:	1
		E1	110447440	Modification State:	1
		File:	H2417446		

<u> </u>	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	34 of 56

PLOT 10 Antenna Conducted Spurious - 9kHz to 1GHz

Company:	Alertme		Product:	Repeater		
Date:	02/05/2012		Test Eng:	Dave Smith		
Method:			Method:			
Limit1:(VIO)	-20dBc		Limit2:			
Limit3:			Limit4:			
Black = Channel 11 Blue = Channel 18 Red = Channel 25 Part 15 Subpart (c) 15.247(d) requires spurious conducted emissions to be at least 20dB below carrier. Carrier level of 15dBm used to set limit. (With 100kHz RBW all channels measured within 0.5dB of 15dBm) Sample 1.						
Facility:	GTEM_1	Height	_	Mode: 1		
Distance		Polarisation		Modification State: 0		
Angle		File:	H2403737			

*VBW 3 MHz

Sweep 12mS (401 pts)

PLOT 11 Antenna Conducted Spurious - near band edges

*RBW 100 kHz

Company:	Alertme		Product:	Repeater			
Date:	02/05/2012		Test Eng:	Dave Smith			
Method:	D01 DTS Meas	Guidance v01	Method:				
Limit1:(VIO)	-20dBc		Limit2:				
Limit3:			Limit4:				
Black = Channel 11 Blue = Channel 18 Red = Channel 25 Part 15 Subpart (c) 15.247(d) requires spurious conducted emissions to be at least 20dB below carrier. Carrier level of 15dBm used to set limit. (With 100kHz RBW all channels measured within 0.5dB of 15dBm) Sample 1.							
Facility:	GTEM_1			Mode:	1		
				Modification State:	0		
	F	File: H2	40370B				

PLOT 12 Antenna Conducted Spurious - 1GHz to 5GHz

Company:	Alertme		Product:	Repeater			
Date:	02/05/2012		Test Eng:	Dave Smith			
Method:	D01 DTS Meas Guidar	nce v01	Method:				
Limit1:(VIO)	-20dBc		Limit2:				
Limit3:			Limit4:				
Black = Channel 11 Blue = Channel 18 Red = Channel 25 Part 15 Subpart (c) 15.247(d) requires spurious conducted emissions to be at least 20dB below carrier. Carrier level of 15dBm used to set limit. (With 100kHz RBW all channels measured within 0.5dB of 15dBm) Sample 1.							
Facility:	GTEM_1			Mode:	1		
				Modification State:	0		
	File:	H24	403713				

PLOT 13 Antenna Conducted Spurious - 5GHz to 15GHz

*VBW 3 MHz

Sweep 1S (401 pts)

*RBW 100 kHz

Company:	Alertme	Product:	Repeater
Date:	02/05/2012	Test Eng:	Dave Smith
Method:	D01 DTS Meas Guidance v01	Method:	
Limit1:(VIO)	-20dBc	Limit2:	
Limit3:		Limit4:	
Black = Channe	11		

Blue = Channel 18 Red = Channel 25 Part 15 Subpart (c) 15.247(d) requires spurious conducted emissions to be at least 20dB below carrier. Carrier level of 15dBm used to set limit. (With 100kHz RBW all channels measured within 0.5dB of 15dBm) Sample 1. Facility: GTEM_1 Mode: Modification State: File: H240371C

	Report No: Issue No:	R3094A 2	FCC ID: WJHRP11		
dB	Test No:	T4335	Test Report	Page:	38 of 56

PLOT 14 Antenna Conducted Spurious - 15GHz to 25GHz

*VBW 3 MHz

Sweep 1S (401 pts)

*RBW 100 kHz

Company: Alertme Product: Repeater Date: 02/05/2012 Test Eng: Dave Smith Method: D01 DTS Meas Guidance v01 Method: Limit1:(VIO) Limit2: -20dBc

Limit3: Limit4: Black = Channel 11 Blue = Channel 18 Red = Channel 25 Part 15 Subpart (c) 15.247(d) requires spurious conducted emissions to be at least 20dB below carrier. Carrier level of 15dBm used to set limit. (With 100kHz RBW all channels measured within 0.5dB of 15dBm) Sample 1. GTEM_1 Facility: Mode: Modification State: File: H2403730

PLOT 15 Radiated Emissions - Zigbee Tx - Ch 11 - Band Edge - Vertical

Company:	Alertme		Product:	repeater	
Date:	28/04/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC Restricte	d Bands@3m A	v Limit2:(GF	RN) FCC Restricte	ed Bands@3m Pk
Limit3:			Limit4:		
Transmitting o	'BW (green limit), n channel 11. UT upright and fla		vv (red limit)		
Facility:	Anech_2	Height	1.5m	Mode:	1
Distance	3m	Polarisation	V	Modification State:	0
Angle	0-360	File:	H23284B5		

PLOT 16 Radiated Emissions - Zigbee Tx - Ch 11 - Band Edge - Horizontal

Company:	Alertme		Product:	repeater	
Date:	28/04/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC Restricted	l Bands@3m Av	Limit2:(GRN)	FCC Restricte	d Bands@3m Pk
Limit3:			Limit4:		
Transmitting o Maximum of E	on channel 11. EUT upright and flat				
Facility:	Anech_2	Height	1.5m	Mode:	1
r acmry.					
Distance	3m	Polarisation	Н	Modification State:	0

PLOT 17 Radiated Emissions - Zigbee Tx - Ch 25 - Band Edge - Vertical

Company:	Alertme		Product:	repeater	
Date:	28/04/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC Restricted	I Bands@3m A∖	/ Limit2:(GRN) FCC Restricted	d Bands@3m Pk
Limit3:			Limit4:		
Transmitting of	BW (green limit), n channel 25. UT upright and flat		V (red limit)		
Facility:	Anech_2	Height	1.5m	Mode:	1
Distance	3m	Polarisation	V	Modification State:	0
Angle	0-360	File:	H2328506		

RBW 1 MHz

PLOT 18 Radiated Emissions - Zigbee Tx - Ch 25 - Band Edge - Horizontal

*VBW 30 Hz

Sweep 870.7mS (401 pts)

Company:	Alertme		Product:	repeater	
Date:	28/04/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC Restricted	Bands@3m Av	Limit2:(GRN) FCC Restricted	Bands@3m Pk
Limit3:			Limit4:		
Transmitting or	BW (green limit), In channel 25. UT upright and flat		V (red limit)		
Facility:	Anech_2	Height	1.5m	Mode:	1
Distance	3m	Polarisation	Н	Modification State:	0
Angle	0-360	File:	H23284E7		

CF1:A15_100811 CF2:CBL002_CBL069_100809 CF4:RFF04_110112

PLOT 19 Radiated Emissions - Zigbee Tx - 25MHz to 275MHz

Company:	Alertme		Product:	Repeater	
Date:	02/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC Restricte	ed Bands	Limit2:		
Limit3:			Limit4:		
Sample 4. Black: Ch11, Blu Peak measurem Maximum of EU	ent				
Facility:	Anech_1	Height	1m,1.5m,2m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24026A9		

CF1:A15_100811 CF2:CBL002_CBL069_100809 CF4:RFF04_110112

PLOT 20 Radiated Emissions - Zigbee Tx - 250MHz to 1GHz

Company:	Alertme		Product:	Repeater	
Date:	02/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC Restrict	ed Bands	Limit2:		
Limit3:			Limit4:		
Peak measurer Maximum of EU	ue: Ch18, Red: nent JT upright and fl	at.			
Facility:	Anech_1	Height	1m,1.5m,2m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24026B9		

CF1:A23_3m_100806 CF2:CBL002_CBL069_100809 CF3:PRE7_110112 CF4:RFF04_110112

PLOT 21 Radiated Emissions - Zigbee Tx - 1GHz to 2GHz

Company:	Alertme		Product:	Repeater	
Date:	02/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC Restricte	ed Bands	Limit2:		
Limit3:			Limit4:		
Sample 4. Black: Ch11, Blu Peak measurem Maximum of EU	nent				
Facility:	Anech_1	Height	1m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24025E7		

PLOT 22 Radiated Emissions - Zigbee Tx - 2GHz to 3GHz

Company:	Alertme		Product:	repeater		
Date:	28/04/2012		Test Eng:	Dave Smith		
Method:	ANSI C63.4		Method:			
Limit1:(VIO)	FCC Restricted E	Bands@3m A	v Limit2:			
Limit3:			Limit4:			
Peak measure Maximum of E	ement EUT upright and flat.					
Facility:	Anech_2 H	eight	1.5m	Mode:	1	
Distance	3m Pe	olarisation	V+H	Modification State:	0	

PLOT 23 Radiated Emissions - Zigbee Tx - 2GHz to 3GHz - 10kHz VBW

Company:	Alertme	Produc	t: repeater		
Date:	28/04/2012	Test E	ng: Dave Sm	iith	
Method:	ANSI C63.4	Method	d:		
Limit1:(VIO)	FCC Restricted Band	s@3m Av Limit2:			
Limit3:		Limit4:			
	EUT upright and flat. ath reduced to 10kHz for a	average indication.			
Facility:	Anech_2 Height	1.5m	Mode:	1	
Facility: Distance	Anech_2 Height 3m Polarisa		Mode: Modification Sta	•	

PLOT 24 Radiated Emissions - Zigbee Tx - 2.75GHz to 6.75GHz

Company:	Alertme		Product:	Repeater			
Date:	28/04/2012		Test Eng:	Dave Smith			
Method:	ANSI C63.4		Method:				
Limit1:(VIO)	FCC Restricte	ed Bands@1.5m	Limit2:				
Limit3:	Limit3: Limit4:						
Sample 4. Black: Vertical, Black: Ch11, Blu Peak measurem Maximum of EU	ie: Ch18, Red: 0 ient	Ch25					
Facility:	Anech_2	Height	1.5m	Mode:	1		
Distance	1.5m	Polarisation	V+H	Modification State:	0		
Angle	0-360	File:	H23286E5				

PLOT 25 Radiated Emissions - Zigbee Tx - 6GHz to 10GHz

Company:	Alertme		Product:	Repeater			
Date:	28/04/2012		Test Eng	: Dave Smith			
Method:	ANSI C63.4		Method:	Method:			
Limit1:(VIO)	FCC Restricted	Bands@1.5n	n Limit2:				
Limit3: Limit4:							
Black: Ch11, B Peak measure	Blue: Horizontal lue: Ch18, Red: Ch ment UT upright and flat.						
Facility:	Anech_2	Height	1.5m	Mode:	1		
Distance	1.5m	Polarisation	V+H	Modification State:	0		
Angle	0-360	File:	H23286C2				

PLOT 26 Radiated Emissions - Zigbee Tx - 9GHz to 13GHz

Company:	Alertme		Product:	Repeater			
Date:	28/04/2012		Test Eng	: Dave Smith			
Method:	ANSI C63.4		Method:				
Limit1:(VIO)	FCC Restricted	Bands@1.5n	n Limit2:				
Limit3: Limit4:							
Black: Ch11, B Peak measure	, Blue: Horizontal Blue: Ch18, Red: Ch ment UT upright and flat.						
Facility:	Anech_2	Height	1.5m	Mode:	1		
Distance	1.5m	Polarisation	V+H	Modification State:	0		
Angle	0-360	File:	H23286A5				

PLOT 27 Radiated Emissions - Zigbee Tx - 12GHz to 16GHz

Company:	Alertme		Product:	Repeater		
Date:	01/05/2012		Test Eng:	Test Eng: Dave Smith		
Method:	ANSI C63.4		Method:			
Limit1:(VIO)	FCC Restricte	ed Bands@1.5m	Limit2:			
Limit3:			Limit4:			
Sample 4. Black: Vertical, Black: Ch11, Blu Peak measurem Maximum of EU	ue: Ch18, Red: (nent	Ch25				
Facility:	Anech_2	Height	1.5m	Mode:	1	
Distance	1.5m	Polarisation	V+H	Modification State:	0	
Angle	0-360	File:	H2401768			

CF1:A22_3m_100201 CF2:PRE7_CBL052_CBL093_110112

PLOT 28 Radiated Emissions - Zigbee Tx - 14GHz to 18GHz

Company:	Alertme		Product:	Repeater			
Date:	01/05/2012		Test Eng:	Dave Smith			
Method:	ANSI C63.4		Method:				
Limit1:(VIO)	FCC Restricte	ed Bands@1.5m	Limit2:	Limit2:			
Limit3: Limit4:							
Sample 4. Black: Vertical, Black: Ch11, Blu Peak measurem Maximum of EU	ue: Ch18, Red: nent	Ch25					
Facility:	Anech_2	Height	1.5m	Mode:	1		
Distance	1.5m	Polarisation	V+H	Modification State:	0		
Angle	0-360	File:	H2401742				

PLOT 29 Radiated Emissions - Zigbee Tx - 18GHz to 22GHz

Company:	Alertme		Product:	Repeater		
Date:	01/05/2012		Test Eng:	Dave Smith		
Method:	ANSI C63.4		Method:			
Limit1:(VIO)	FCC Restricted B	ands@1.5m	Limit2:			
Limit3:			Limit4:			
Black: Ch11, I Peak measure	I, Blue: Horizontal Blue: Ch18, Red: Ch2 ement EUT upright and flat.	5				
		ight	4.5	Manda	1	
Facility:	Anech_2 He	agrit	1.5m	Mode:	I	
Facility: Distance	_	larisation	1.5m V+H	Mode: Modification State:	0	

PLOT 30 Radiated Emissions - Zigbee Tx - 21GHz to 25GHz

CF1:A20_3m_100201 CF2:PRE8_CBL052_CBL092_110112

Company:	Alertme		Product:	Repeater	
Date:	01/05/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC Restricted B	ands@1.5m	Limit2:	15.21	
Limit3:			Limit4:		
Peak measure	Blue: Ch18, Red: Ch29 ement EUT upright and flat.	J			
Facility:	Anech_2 He	ight	1.5m	Mode:	1
Facility: Distance		_	1.5m V+H	Mode: Modification State:	1 0

PLOT 31 Conducted Emissions - Live Line - Z-wave & Zigbee Tx

Company:	Alertme		Product:	Repeater				
Date:	04 May 12		Test Engine	er: Dave Smith				
Test:	FCC part 15		Limit:	15.21				
Sample 2.	Z-wave Transmitting. Zigbee transmitting on Ch 18.							
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	2			
Detector:	QuasiPeak			Mod. State:	0			
LISN:	EMCO	Filename:	C2504789.plt					

Frequency List (MHz)

PLOT 32 Conducted Emissions - Neutral Line - Z-wave & Zigbee Tx

Company:	Alertme		Product:	Repeater				
Date:	04 May 12		Test Engineer	: Dave Smith				
Test:	FCC part 15		Limit:	FCC Class B				
Notes:								
Z-wave Transmitt	Z-wave Transmitting. Zigbee transmitting on Ch 18.							
Sample 2.	Sample 2.							
Equip:R1,L1,AB0	002,CBL005,CBL	.039						
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode: 2				
Detector:	QuasiPeak			Mod. State: 0				
LISN:	EMCO	Filename:	C250479C.plt					

Frequency List (MHz)