

Il prodotto scalare in ambiente multicore strategie di parallelizzazione

Docente: Prof. L. Marcellino

Tutor: Prof. P. De Luca

Previously on... CPD

Previously on... CPD

- Classificazione di Flynn MIMD (SM) multicore
- I° nucleo computazionale: somma tra due vettori di lunghezza N – decomposizione del dominio (algoritmi full parallel)
- II° nucleo computazionale: somma di N numeri decomposizione del dominio – collezione dei risultati (1-2 strategia)
- Parametri di valutazione algoritmo parallelo:
 - Speedup, efficienza, overhead, legge di Ware-Amdahl, isoefficienza, scalabilità
- Implementazione in ambiente multicore (usando openMP) dei nuclei computazionali:

somma vettori – somma N numeri (1-2 strat) - calcolo PiGreco

Modellizzazione di problemi su larga scala

- Ricerca su internet
- Trasporto
- Pubblicità e Marketing
- Servizi bancari e finanziari
- Media e intrattenimento
- Meteorologia
- Assistenza sanitaria
- Sicurezza informatica
- Formazione

Usiamo quello che abbiamo studiato (I-II nucleo computazionale) per parallelizzare il PRODOTTO SCALARE

Input: $a = (a_0, a_1, a_2, ..., a_{N-1}), b = (b_0, b_1, b_2, ..., b_{N-1})$

Output:
$$c = a_0 \times b_0 + a_1 \times b_1 + a_2 \times b_2 + a_{N-1} \times b_{N-1}$$

su un calcolatore parallelo
tipo MIMD

A MEMORIA CONDIVISA

Algoritmo: prodotto scalare

Su un calcolatore monoprocessore il prodotto scalare è calcolato eseguendo:

1. N moltiplicazioni una per volta (prodotto puntuale tra due vettori)

$$c_0 := a_0 \times b_0$$

 $c_1 := a_1 \times b_1$
...
 $c_{N-1} := a_{N-1} \times b_{N-1}$

È uguale alla somma tra vettori.

Devo solo sostituire + con ×

2. N-1 addizioni una per volta (somma tra gli elementi di un vettore)

$$c := c_0$$
 $c := c + c_1$
 $c := c + c_2$
...
 $c := c + c_{N-1}$

È uguale alla somma tra gli elementi di un vettore!

Prodotto scalare tra due vettori di dimensione N - algoritmo sequenziale

```
begin
    c := 0;
    for i=0 to N-1 do
        c := c + (a<sub>i</sub> × b<sub>i</sub>);
    endfor
end
```

Qual è l'ALGORITMO PARALLELO?

Il parallelismo delle architetture MIMD prodotto scalare

Se ho a disposizione np unità processanti, come posso procedere sfruttando il concetto di calcolo parallelo?

Decomporre un problema di dimensione N in **np** sottoproblemi di dimensione N/**np** e risolverli contemporaneamente usando **np** CPU

Strategia di parallelizzazione prodotto scalare

Esempio: N=16, np=4 - fase1

Strategia di parallelizzazione prodotto scalare

Esempio: N=16, np=4 – fase 2

Calcolo di speedup, overhead ed efficienza (def classica)

algoritmo parallelo per il prodotto scalare

dim[a]=dim[b]=N

Complessità computazionale sequenziale

N prodotti + (N-1) somme

somme ~ prodotti

$$T_1(N) = 2 N - 1$$

p=8, dim[a]=dim[b]=N

... a questo punto devo decidere come voglio collezionare le somme parziali!

$$C_0$$
 C_1 C_2 C_3 C_4 C_5 C_6 C_7

In sequenziale

$$T_1(N) = 2 N - 1$$

$$S_p = T_1(N)/T_p(N) =$$
= [2 N-1] /[(2 N/p -1) + (p -1)]

Oh =
$$p T_p(N) - T_1(N) = p[(2 N/p -1) + (p -1)] - (2N-1)$$

$$E_p = S_p / p = [2 N-1] / p [(2 N/p -1) + (p -1)]$$

collezione 2 strategia

shared

In sequenziale

$$T_1(N) = 2 N - 1$$

$$S_p = T_1(N)/T_p(N) =$$
= [2 N-1] /[(2 N/p -1) + log(p)]

Oh =
$$p T_p(N) - T_1(N) = p[(2 N/p -1) + log(p)] - (2N-1)$$

$$E_{D} = S_{D} / p = [2 N-1] / p [(2 N/p -1) + log(p)]$$

p=8, N=67

Cosa succede se N non è esattamente divisibile per p???

Calcolo prodotti locali

int(N/p)+1 prodotti

Come se tutti i processori avessero due vettori da 9 elementi tra cui fare il prodotto puntuale!

p=8, N=67

Cosa succede se N non è esattamente divisibile per p???

Calcolo somme parziali locali

int(N/p) somme

Come se tutti i processori avessero 9 elementi da somma tra loro!

$$p=8, N=67$$

Cosa succede se N non è esattamente divisibile per p???

Fase Locale

int(N/p)+1 prodotti + int(N/p) somme

La fase di collezione dei risultati, ovviamente resta invariata...

ma attenzione!

p, N

Cosa succede se N non è esattamente divisibile per p???

In sequenziale

$$T_1(N) = 2 N - 1$$

 $T_p(N) = 2 int(N/p) + 1 + p-1$

1 strategia

 $T_p(N) = 2 int(N/p) + 1 + log(p)$

2 strategia

isoefficienza

Definizione

L'ISOEFFICIENZA

è una funzione di tre variabili p_0 , p_1 , n_0

e definisce la costante che lega la nuova dimensione del problema da scegliere n_1 per valutare la **scalabilità** di un algortimo

$$I(p_0, p_1, n_0) = O_h(p_1, n_1)/O_h(p_0, n_0)$$

Calcolo isoefficienza

prodotto scalare di 2 vettori di dimensione N

$$O_h(p, N) = T_1(N) - p T_p(N) =$$

$$= p[(2 N/p - 1) + (p - 1)] - (2N-1) =$$

$$= 2pN/p - p + p^2 - p - 2N + 1 =$$

$$= 2N + p^2 - 2N + 1 - 2p = p^2 - 2p + 1$$

$$I = (p_1^2 - 2 p_1 + 1)/(p_0^2 - 2 p_0 + 1)$$

È sempre la 1 strategia di collezione della somma

Calcolo isoefficienza

prodotto scalare di 2 vettori di dimensione N

$$O_h(p, N) = T_1(N) - p T_p(N) =$$
 II strategia
= $p[(2 N/p - 1) + log(p)] - (2N-1) =$
= $2pN/p - p + p log(p) - 2N + 1 =$
= $2N - p + p log(p) - 2N + 1 = p log(p) - p + 1$

$$I = (p_1 \log(p_1) - p_1 + 1)/(p_0 \log(p_0) - p + 1)$$

È sempre la 2 strategia di collezione della somma

Caratterizziamo ora lo speedup usando la legge di Ware-Amdahl

generalizzata

$$S_p = \frac{1}{\alpha_p + \sum_{k=2}^{p-1} \frac{\alpha_k}{k} + \alpha_1}$$

p=8, dim[a]=dim[b]=32, nloc=4

In sequenziale 2N-1=63 operazioni

1 fase (tutta parallela)

nloc = 4 prodotti

nloc-1 = 3 somme

7 operazioni fatte contemporaneamente da 8 core

7x8=56 delle 63 operazioni

$$\alpha_8 = 56/63$$

... a questo punto devo decidere come voglio collezionare le somme parziali!

In sequenziale

In sequenziale 2N-1=63 operazioni

$$\alpha_8 = 56/63$$

I strategia

$$\alpha_7 = \alpha_6 = \alpha_5 = \alpha_4 = \alpha_3 = \alpha_2 = 0$$

7 somme fatte da 1 solo core

$$\alpha_1 = (7 \cdot 1)/63$$

È sempre la 1 strategia di collezione della somma

In sequenziale

In sequenziale 2N-1=63 operazioni

$$\alpha_8 = 56/63$$

II strategia

$$\alpha_7 = \alpha_6 = \alpha_5 = 0$$

1 somma fatta da 4 core

$$\alpha_4 = (1 \cdot 4)/63$$

In sequenziale

$$\alpha_8 = 56/63$$

$$\alpha_7 = \alpha_6 = \alpha_5 = 0$$

II strategia

$$\alpha_3 = 0$$

1 somma fatta da 2 core

$$\alpha_2 = (1 \cdot 2)/63$$

In sequenziale

In sequenziale 2N-1=63 operazioni

II strategia

$$\alpha_8 = 56/63$$
 $\alpha_7 = \alpha_6 = \alpha_5 = 0$
 $\alpha_3 = 0$
 $\alpha_2 = (1 \cdot 2)/63$

1 somma fatta da 1 core

$$\alpha_1 = (1 \cdot 1)/63$$

È sempre la 2 strategia di collezione della somma

Cosa succede se N non è esattamente divisibile per p???

p=8, N=54

Quale che sia la strategia per la $\text{collezione delle} \\ \text{somme parziali, quello che cambia è solo} \\ \alpha_8 \\$

p=8, N=54, nloc=6, r=6

In sequenziale

2 N - 1 = 107 operazioni

calcolo locale

6 core - 2nloc-1=13 operazioni 2 core - 2nloc-1=11 operazioni

13 operazioni fatte contemporaneamente da 6 processori/core

11 operazioni fatte contemporaneamente da 2 processori/core

 $\alpha_8 = (13 \times 6 + 11 \times 2)/107 = (78 + 22)/107 = 100/107$