Цифровая обработка изображения

11. Функции потерь в задачах компьютерного зрения

План занятия

- Функция потерь
- Классификация
- Сегментации
- Детекция
- Идентификация

Функция потерь (Loss Function)

- оценка качества предсказания
- возвращает 0 в случае правильного ответа
- в противном случае возвращает значение пропорциональное величине ошибки (эмпирический риск)

Функция потерь (Loss Function)

- требования к функции потерь:
 - непрерывность
 - дифференцируемость в каждой точке
 - ВЫПУКЛОСТЬ
- результирующее значение оценивается как среднее по всем примерам в выборке

Функция потерь: классификация

Классификация: Hinge Loss (SVM)

$$\ell(y) = \max(0, 1 - t \cdot y)$$

Классификация: Cross Entropy

$$C = -\frac{1}{n} \sum_{x} \left[y \ln a + (1 - y) \ln(1 - a) \right]$$

Классификация

- Hinge Loss
 - о оптимизирует положение разделяющей гиперплоскости
- Cross Entropy
 - о оценивает вероятность

Сегментация

- задаем количество классов
- дополнительно выбираем класс фона
- каждый пиксель изображения отдельный пример в выборке
- для пикселя предсказываем вероятность принадлежности классам

Сегментация

- оценка градиента по семплу точек
- взвешивание примеров:
 - о классам с меньшей площадью присваиваем больший вес
 - присваиваем больший вес точкам на границах объектов

Детекция объектов на изображении

- функция потерь состоит из двух частей
 - классификация
 - локализация (положение и размер)
- дополнительный бинарный выход, предсказывающий наличие объекта
- важно сбалансировать различия масштабов

Детекция

- классификационная функция потерь
 - Cross Entropy
- наличие объекта
 - Log Loss
- локализационная функция потерь
 - Регрессия

Детекция

N_{ing} = Number of anchor locations (~ 2400)

Детекция: локализация

$$L_{\text{loc}}(t^u, v) = \sum_{i \in \{x, y, w, h\}} \text{smooth}_{L_1}(t_i^u - v_i),$$

$$smooth_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise} \end{cases}$$

Идентификация: Triplet Loss

- векторное представления изображение
- изображения одного объекта должны иметь одинаковое представление
- разные объекты должны различаться

Идентификация: Triplet Loss

$$\sum_{i=1}^{N} \left[\|f(x_i^a) - f(x_i^p)\|_2^2 - \|f(x_i^a) - f(x_i^n)\|_2^2 + \alpha \right]_{+}$$

Полезные материалы

- Loss functions for classification
- On Loss Functions for Deep Neural Networks in Classification
- FaceNet: A Unified Embedding for Face Recognition and Clustering
- In Defense of the Triplet Loss for Person Re-Identification