4 Teoria global de corbes planes

§1 Curvatura total.

Exercici 4.1. Sigui $\mathbf{x} : [0, l] \to \mathbb{R}^2$ una parametrització per l'arc d'una corba plana C. Proveu que existeix una funció diferenciable $\theta : [0, l] \to \mathbb{R}$ tal que $\mathbf{t}(s) = \mathbf{x}'(s) = (\cos \theta(s), \sin \theta(s))$. Indicació: Per provar l'existència de $\theta(s)$ considereu la integral $\int_0^s (u(t)v'(t) - v(t)u'(t)) dt$ on $\mathbf{t}(s) = (u(s), v(s))$.

La curvatura total d'una corba plana C és la integral de la seva curvatura

$$\int_C k := \int_0^l k(s) \, ds = \theta(l) - \theta(0)$$

i mesura la rotació del vector tangent al llarg de C.

La corba \mathbf{x} es diu tancada si existeix una extensió diferenciable $\bar{\mathbf{x}}: \mathbb{R} \to \mathbb{R}^2$ de \mathbf{x} que sigui l-periòdica. Observeu que la curvatura total d'una corba tancada és de la forma $2k\pi$ amb $k \in \mathbb{Z}$. Aquest enter s'anomena el nombre de rotació de \mathbf{x} .

Exercici 4.2. Construïu una corba plana tancada amb un nombre de rotació $k \in \mathbb{Z}$ donat.

El Teorema de Whitney-Graustein diu que dues corbes $\mathbf{x}_0, \mathbf{x}_1 \colon [0, l] \to \mathbb{R}^2$ tenen el mateix index de rotació si i només si existeix $F \colon [0, 1] \times [0, l] \to \mathbb{R}^2$ diferenciable tal que $F(0, t) = \mathbf{x}_0(t)$, $F(1, t) = \mathbf{x}_1(t)$ i $t \mapsto F(u, t)$ és una corba regular per tot $u \in [0, 1]$ (es pot passar d'una a l'altra per una família de corbes regulars).

§2 Teorema dels quatre vèrtexs.

Definició. Un punt $\mathbf{x}(s)$ d'una corba regular plana s'anomena v ret x si k'(s) = 0.

Exercici 4.3. Proveu que els vèrtexs d'una corba regular $\mathbf{x}(s)$ parametritzada per l'arc es corresponen amb els punts singulars (i.e. $\mathbf{y}'(s) = 0$) de la parametrització $\mathbf{y}(s) = \mathbf{x}(s) + \frac{1}{k(s)}\mathbf{n}(s)$ de la seva *evoluta* (i.e. el lloc geomètric dels seus centres de curvatura). ⁴

Definició. Un conjunt $K \subset \mathbb{R}^2$ és convex si per punts $P,Q \in K$ el segment que els uneix està totalment contingut a K.

Teorema 4.1. Sigui $\mathbf{x} : [0, l] \to \mathbb{R}^2$ una corba tancada simple, són equivalents:

- 1. La imatge de ${\bf x}$ és vora d'un conjunt convex.
- 2. Per a tot punt $P = \mathbf{x}(s)$ la corba està continguda en un dels dos semiplans determinats per la recta tangent en P.
- 3. La curvatura k de \mathbf{x} no canvia de signe.
- 4. Per tota recta r es compleix que $\mathbf{x}([0,l]) \cap r$ té com a molt dues components connexes.

Teorema 4.2 (Teorema dels quatre vèrtexs). Una corba tancada simple i convexa té almenys quatre vèrtexs.

Noteu que el nombre de vèrtexs és exactament quatre en el cas d'una el·lipse (vegeu figura 4.3).

⁴De fet, és cert que els vèrtexs són punts singulars de qualsevol parametrització de l'evoluta.

Figura 4.3: Evoluta de l'el·lipse

Exercici 4.4. Provem el Teorema dels quatre vèrtexs.

a) Sigui $\mathbf{x}(s) = (x(s), y(s))$ una corba tancada parametritzada per l'arc amb $s \in [0, l]$. Per $A, B, C \in \mathbb{R}$ qualssevol, demostreu que

$$\int_{0}^{l} (Ax(s) + By(s) + C)k'(s)ds = 0$$

on k(s) denota la curvatura amb signe.

- b) Suposem $\mathbf{x}(s)$ convexa i tancada. Siguin s_0 i s_1 els paràmetres on k(s) és màxima i mínima respectivament. Considereu la recta Ax + By + C = 0 que passa per $\mathbf{x}(s_0)$ i $\mathbf{x}(s_1)$ i demostreu que en algun dels dos costats d'aquesta recta hi ha punts $\mathbf{x}(s)$ amb k'(s) > 0 i punts amb k'(s) < 0.
- c) Deduïu el Teorema dels quatre vèrtexs.

Observeu que hem demostrat l'existència d'almenys quatre vèrtexs que a més són extrems relatius de la curvatura.

Exercici 4.5. Trobeu una parametrització de la lemniscata de Bernoulli

$$C = \{ P \in \mathbb{R}^2 : 4d(A, P)d(B, P) = d(A, B)^2 \}$$

on $A \neq B$ són dos punts donats del pla. Feu una representació gràfica aproximada de la corba C, proveu que té exactament dos vèrtexs i determineu el seu nombre de rotació.

Observació: La funció $k(s) = 1 + \frac{1}{2}\sin(s)$ es 2π -periòdica i positiva. Considerem una corba plana $\mathbf{x}(s)$, $s \in [0, 2\pi]$, parametritzada per l'arc amb curvatura k(s). La curvatura total de $\mathbf{x}(s)$ és 2π . Si $\mathbf{x}(s)$ fos tancada i simple aleshores seria convexa, i pel teorema anterior hauria de tenir quatre vèrtexs, la qual cosa no és certa perquè k(s) només té dos punts crítics a l'interval $[0, 2\pi]$. Dibuixeu-la fent servir alguna eina al vostre abast.

§3 Rotació de les tangents.

Una corba parametritzada regular $\mathbf{x}:[0,l]\to\mathbb{R}^2$ es diu simple si no té auto-interseccions, i.e. $\mathbf{x}(s)\neq\mathbf{x}(s')$ si $s\neq s'$. Es diu que \mathbf{x} és tancada simple si és tancada i $\mathbf{x}(s)=\mathbf{x}(s')$ si i només si s=s' o $\{s,s'\}=\{0,l\}$.

Teorema 4.3 (Umlaufsatz). El nombre de rotació d'una corba tancada simple és ± 1 .

Exercici 4.6. Demostrem l'*Umlaufsatz* per deformació⁵. Sigui $\mathbf{x} = (x, y) : [0, l] \to \mathbb{R}^2$ tancada i simple parametritzada per l'arc. Prenent els eixos convenientment, podem suposar que y(t) és mínim per t = 0. Suposem a més que $\mathbf{x}(0) = (0, 0)$ i $\mathbf{x}'(0) = (1, 0)$.

a) Considereu el triangle $\Delta = \{(s,t) \colon 0 \le s \le t \le l\}$ i l'aplicació

$$\Psi(s,t) = \begin{cases} \frac{\mathbf{x}(t) - \mathbf{x}(s)}{\|\mathbf{x}(t) - \mathbf{x}(s)\|} & \text{si} \quad s \neq t, (s,t) \neq (0,l) \\ \mathbf{x}'(s) & \text{si} \quad s = t \\ -\mathbf{x}'(0) & \text{si} \quad (s,t) = (0,l) \end{cases}$$

Interpreteu-la geomètricament i proveu que és contínua.

- b) Donat $u \in [0,1]$ considereu una corba $c_u \colon [0,l] \to \Delta$ definida a trossos com segueix. Per $0 \le t \le l/2$ fem que $c_u(t)$ recorri amb velocitat constant el segment des de (0,0) fins a $\frac{l}{2}(1-u,1+u)$). Per $l/2 \le t \le l$ fem que $c_u(t)$ recorri amb velocitat constant el segment des de $\frac{l}{2}(1-u,1+u)$) fins a (l,l). Proveu que existeix una aplicació contínua $\Theta \colon [0,1] \times [0,l] \to \mathbb{R}$ tal que $\Psi(c_u(t)) = (\cos(\Theta(u,t)), \sin(\Theta(u,t))$.
- c) Proveu que $\Theta(u, l) \Theta(u, 0) \in 2\pi \mathbb{Z}$ i deduïu que és independent de u.
- d) Proveu que $\Theta(1, l) \Theta(1, 0) = 2\pi$.
- e) Deduïu l'Umlaufsatz.

 $^{^5 {}m vegeu}\ {
m http://www.mathematik.com/Hopf/index.html}$