

# Laboratório 4: Síntese e Análise de Unidades Lógicas Aritméticas (ULAs).

Bernardo Hoffmann da Silva Marcos Vinicius Pereira Veloso

## 4. Tarefas

## 4.1. Simulação de ULA de 1 bit

Feita a montagem especificada para a ULA de 1 bit dada, pode-se obter o diagrama de temporização conforme simulação, no qual o resultado é dado pela Figura 1.



Figura 1: Diagrama de temporização obtido para a ULA especificada no item 4.1.

Por inspeção, pode-se denotar que, para cada valor de entrada M,  $S_1$ ,  $S_0$  e  $C_i$ , o resultado de simulação é condizente com a Tabela de operações especificada.

# 4.2. Projeto e e Simulação de uma ULA de 4 bits utilizando o circuito integrado 74181

Note-se, para a implementação das operações requeridas para a ULA, basta que sejam utilizadas as funções pertinentes e necessárias para efetuar as operações desejadas.

Nesse sentido, feita a inserção das entradas de 4 bits A e B na ULA, deve-se especificar a operação a ser feita a partir da variável de seleção S. Para S=1, a operação especificada é A mais B, i.e., a que corresponde às variáveis de seleção  $S_3S_2S_1S_0\bar{C}_n=10011$ , enquanto que para S=0 tem-se a seleção  $S_3S_2S_1S_0\bar{C}_n=01100$ , para que ocorra A menos B. Dado que o valor de M é o mesmo para ambas as operações (valor zero), basta associarmos a tal entrada o parâmetro ground. Com as duas expressões de seleção dadas, visto que o valor de cada variável alterna quando S se alterna, uma possível implementação da lógica é que seja associado a cada entrada



Figura 2: Montagem do circuito lógico desejado usando a ULA 74181, conforme projeto do item 4.2.

 $S_i$  e  $\bar{C}_n$  o valor lógico S ou  $\bar{S}$ . Com isso em mente, pode-se montar o circuito conforme segue na Figura 2.

Feito o circuito, pode-se simular os resultados de saída conforme os valores de S, para a obtenção dos diagramas de temporização das operações soma e diferença, conforme seguem nas Figuras 3 e 4.



Figura 3: Diagrama de temporização do operador soma da ULA especificada no item 4.2. Notase que as somas são realizadas como o esperado.

Pode-se denotar, por inspeção de cada coluna, que as saídas condizem com o as saídas de resultado e de carry/borrow dos operadores soma e subtração. Para fins de consulta, pode-se comparar os resultados obtidos em tais diagramas com as respectivas colunas que fazem a operação soma de A, B e C das Tabelas 1 e 3, relativas ao tópico que segue.



Figura 4: Diagrama de temporização do operador subtração da ULA especificada no item 4.2. Nota-se que as subtrações são feitas como o eseprado.

## 4.3: Projeto e Simulação de uma célula básica ULA de 1 bit

Com as funções da ULA especificada, pode-se elaborar a Tabela verdade para cada uma das operações, tanto para a saída de resultado quanto para a saída de carry. Tais resultados estão sintetizados nas Tabelas 1, 2 e 3.

|                | $S_1S_0$ |   | 00         | 01          | 10                  | 11                    |
|----------------|----------|---|------------|-------------|---------------------|-----------------------|
| $\overline{A}$ | B        | C | A mais $C$ | A  menos  C | A mais $B$ mais $C$ | A  menos  B  menos  C |
| 0              | 0        | 0 | 0          | 0           | 0                   | 0                     |
| 0              | 0        | 1 | 1          | 1           | 1                   | 1                     |
| 0              | 1        | 0 | 0          | 0           | 1                   | 1                     |
| 0              | 1        | 1 | 1          | 1           | 0                   | 0                     |
| 1              | 0        | 0 | 1          | 1           | 1                   | 1                     |
| 1              | 0        | 1 | 0          | 0           | 0                   | 0                     |
| 1              | 1        | 0 | 1          | 1           | 0                   | 0                     |
| 1              | 1        | 1 | 0          | 0           | 1                   | 1                     |

Tabela 1: Esquema de saída F da Tabela Verdade para a ULA especificada, para as operações com M=0.

|   | $S_1S_0$ | 00             | 01              | 10               | 11           |
|---|----------|----------------|-----------------|------------------|--------------|
| A | В        | $\overline{A}$ | $\overline{AB}$ | $\overline{A+B}$ | $A \oplus B$ |
| 0 | 0        | 1              | 1               | 1                | 0            |
| 0 | 1        | 1              | 1               | 0                | 1            |
| 1 | 0        | 0              | 1               | 0                | 1            |
| 1 | 1        | 0              | 0               | 0                | 0            |

Tabela 2: Esquema de saída F da Tabela Verdade para a ULA especificada, para as operações com M=1.

| $S_1S_0$       |   |   | 00         | 01          | 10                  | 11                    |
|----------------|---|---|------------|-------------|---------------------|-----------------------|
| $\overline{A}$ | В | C | A mais $C$ | A  menos  C | A mais $B$ mais $C$ | A  menos  B  menos  C |
| 0              | 0 | 0 | 0          | 0           | 0                   | 0                     |
| 0              | 0 | 1 | 0          | 1           | 0                   | 1                     |
| 0              | 1 | 0 | 0          | 0           | 0                   | 1                     |
| 0              | 1 | 1 | 0          | 1           | 1                   | 1                     |
| 1              | 0 | 0 | 0          | 0           | 0                   | 0                     |
| 1              | 0 | 1 | 1          | 0           | 1                   | 0                     |
| 1              | 1 | 0 | 0          | 0           | 1                   | 0                     |
| 1              | 1 | 1 | 1          | 0           | 1                   | 1                     |

Tabela 3: Esquema de saída C da Tabela Verdade para a ULA especificada, para as operações com M=0.

Pelo mapa de Karnaugh reduzido, pode-se encontrar uma expressão de saída F a partir dos termos de seleção M,  $S_1$  e  $S_0$ . Como há três termos de seleção, há  $2^3 = 8$  modos de seleção mutualmente exclusivos, que podem por sua vez ser implementada com um multiplexador 8x1. A expressão de F, conforme mencionada, é dada na Relação (1).

$$F = S_1 S_0 M(A \oplus B) + S_1 S_0 \overline{M}(A - B - C) + S_1 \overline{S}_0 M \overline{A} + \overline{B}$$
  
+  $\overline{S}_1 S_0 M(\overline{AB}) + \overline{S}_1 \overline{S}_0 M(\overline{A}) + \overline{S}_1 S_0 \overline{M}(A - C) + S_1 \overline{S}_0 \overline{M}(A \text{ mais } B \text{ mais } C) + \overline{S}_1 \overline{S}_0 \overline{M}(A \text{ mais } C)$ 

$$(1)$$

Como as operações soma e subtração possuem mesma tabela verdade de saída (i. e., saída de resultado da forma  $A \oplus B$ ), podemos implemenar tais operações com portas XOR, fazendo as devidas substituições dos operadores + e - destacados por  $\oplus$ .

Posto isso, para a implementação da saída C da ULA especificada, tem-se que, para cada par  $S_1S_0$  especificado, a saída carry é tal que é gerada por cada uma das quatro operações de soma/diferença definidos na ULA especificada quando M=0. Dado que:

- Para uma operação soma entre A e B com carry inicial C, o carry de saída é dado por C = A(B+C) + BC;
- Para uma diferença entre A e B com borrow inicial C, o borrow de saída é dado por  $C = \bar{A}(B+C) + BC$

Nesse sentido, pode-se usar as duas relações acima para definir o carry de saída conforme uma das 4 operações possíveis para M=0. Note-se que, como para M=1 não são feitas operações de soma ou subtração, o resultado de carry de saída não é um dado pertinente (don't care). Pode-se então, tal como especificado para a saída F conforme relação (1), usar um multiplexador de três variáveis de seleção  $(S_1, S_0 \in M)$ ) para selecionar cada um dos 8 casos possíveis de saída. Para o Carry,pode-se utilizar outro multiplexador 8x1, de variáveis de seleção  $S_1, S_0 \in M$ , no qual é convencionado o valor zero para as 4 entradas com M=1 (já que tal valor não é relevante) e o uso das funções booleanas especificadas pelas duas relações dadas no parágrafo anterior para o caso em que M=0. A figura 5 apresenta o circuito simulado para as especificações dadas.



Figura 5: Circuito montado utilizando dois mux 8x1 para as saídas  $F_i$  e  $C_i$  especificadas em 4.3

Em seguida, foram feitos testes para 12 operações - as funções booleanas, as somas e subtrações (essas sem e com Carry-in, respectivamente). As 12 operações foram testadas para os valores  $A_i=1$  e  $B_i=0$ , cujos resultados são mostrados na figura 6,  $A_i=0$  e  $B_i=1$ , cujos resultados são mostrados na figura 7 e  $A_i=1$  e  $B_i=1$ , cujos resultados são mostrados na figura 8.



Figura 6: Resultados das operações da ULA para  $A_i=1$ e $B_i=0$ 



Figura 7: Resultados das operações da ULA para  $A_i=0$  e  $B_i=1$ 



Figura 8: Resultados das operações da ULA para  $A_i=1$  e  $B_i=1$ 

Nota-se que os resultados encontrados pela simulação seguem o esperado das Tabelas Verdade construídas nas tabelas 1, 2 e 3. Com isso, conclui-se o projeto e a simulação da ULA de 1 bit com as operações enunciadas em 4.3.