Mathematical Statistics I

Derek Li

Contents

1	Pro	bability and Distribution
	1.1	Sets
	1.2	Probability Set Function
		1.2.1 Counting Rule
		1.2.2 Additional Properties of Probability
	1.3	Conditional Probability and Independence
	1.4	Random Variable
	1.5	Discrete Random Variable
		1.5.1 Transformation
	1.6	Continuous Random Variable
		1.6.1 Quantile
		1.6.2 Transformation
	1.7	Expectation of a Random Variable
	1.8	Inequality
2	Mu	ltivariate Distributions
	2.1	Distribution of Two Random Variables
		2.1.1 Marginal Distribution
		2.1.2 Expectation
	2.2	Transformations: Bivariate Random Variables

1 Probability and Distribution

1.1 Sets

Theorem 1.1 (Distributive Laws). For any sets A, B, and C,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Theorem 1.2 (DeMorgan's Laws). For any sets A and B,

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

1.2 Probability Set Function

Definition 1.1 (Probability Set Function). Let \mathcal{S} be a sample space, let \mathcal{B} be the set of events, P be a real-valued function defined on \mathcal{B} . Then P is a **probability set function** if P satisfies the following three conditions:

- 1. $P(A) \ge 0, \forall A \in \mathcal{B}$.
- 2. P(S) = 1.
- 3. If $\{A_n\}$ is a sequence of events in \mathcal{B} and $A_m \cap A_n = \emptyset, \forall m \neq n$, then

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

Definition 1.2. A collection of events whose members are pairwise disjoint is said to be a *mutually exclusive collection* and its union is referred to as a disjoint union. The collection is said to be *exhaustive* if the union of its events is the sample space. A mutually exclusive and exhaustive collection of events forms a partition of S.

Theorem 1.3. For each event $A \in \mathcal{B}$, $P(A) = 1 - P(A^c)$.

Proof. We have
$$S = A \cup A^c$$
 and $A \cap A^c = A$. Thus, $P(A) + P(A^c) = A$.

Theorem 1.4. The probability of the null set is zero, i.e., $P(\emptyset) = 0$.

Proof. We have
$$\emptyset^c = \mathcal{S}$$
. Accordingly, $P(\emptyset) = 1 - P(\mathcal{S}) = 1 - 1 = 0$.

Theorem 1.5. If A and B are events s.t. $A \subset B$, then $P(A) \leq P(B)$.

Proof. We have $B = A \cup (A^c \cap B)$ and $A \cap (A^c \cap B) = \emptyset$. Hence, $P(B) = P(A) + P(A^c \cap B)$. From the definition, $P(A^c \cap B) \ge 0$, and thus $P(B) \ge P(A)$.

Theorem 1.6. For each $A \in \mathcal{B}, 0 \leq P(A) \leq 1$.

Proof. Since
$$\emptyset \subset A \subset \mathcal{S}$$
, we have $P(\emptyset) \leq P(A) \leq P(\mathcal{S})$ or $0 \leq P(A) \leq 1$.

Theorem 1.7. If A and B are events in S, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Proof. We can represent $A \cup B$ and B as a union of non-intersecting sets: $A \cup B = A \cup (A^c \cap B)$ and $B = (A \cap B) \cup (A^c \cap B)$. Hence, $P(A \cup B) = P(A) + P(A^c \cap B)$ and $P(B) = P(A \cap B) + P(A^c \cap B)$. Therefore, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Definition 1.3 (Equiprobability). Let $S = \{x_1, \dots, x_m\}$ be a finite sample space. Let $p_i = \frac{1}{m}$ for all $i = 1, \dots, m$. For all subsets A of S define

$$P(A) = \sum_{x_i \in A} \frac{1}{m} = \frac{\#(A)}{m}$$

where #(A) denotes the number of elements in A. Then P is a probability on \mathcal{S} and it is referred to as the equilikely case.

1.2.1 Counting Rule

Definition 1.4 (Permutation). The number of k permutations taken from a set of n elements is

$$P_k^n = \frac{n!}{(n-k)!}$$

Definition 1.5 (Combination).

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

which is also referred to a binomial coefficient.

1.2.2 Additional Properties of Probability

Theorem 1.8. Let $\{C_n\}$ be a non-decreasing sequence of events, then

$$\lim_{n \to \infty} P(C_n) = P\left(\lim_{n \to \infty} C_n\right) = P\left(\bigcup_{n=1}^{\infty} C_n\right)$$

Let $\{C_n\}$ be a decreasing sequence of events, then

$$\lim_{n \to \infty} P(C_n) = P\left(\lim_{n \to \infty} C_n\right) = P\left(\bigcap_{n=1}^{\infty} C_n\right)$$

Theorem 1.9 (Boole's Inequality). Let $\{C_n\}$ be an arbitrary sequence of events, then

$$P\left(\bigcup_{n=1}^{\infty} C_n\right) \leqslant \sum_{n=1}^{\infty} P(C_n)$$

1.3 Conditional Probability and Independence

Definition 1.6 (Conditional Probability). Let B and A be events with P(A) > 0, then we defined the conditional probability of B given A as

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Property 1.1. We have:

- 1. $P(B|A) \ge 0$.
- 2. P(A|A) = 1.
- 3.

$$P\left(\bigcup_{n=1}^{\infty} B_n | A\right) = \sum_{n=1}^{\infty} P(B_n | A)$$

provided that B_1, \ldots, B_n are mutually exclusive events.

4.
$$P(A \cap B) = P(A)P(B|A)$$
.

Theorem 1.10 (Bayes' Theorem). Let A_1, \dots, A_k be events s.t. $P(A_i) > 0, i = 1, \dots, k$. Assume that A_1, \dots, A_k form a partition of the sample space \mathcal{S} . Let B be any event. Then

$$P(A_j|B) = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^{k} P(A_i)P(B|A_i)}$$

Definition 1.7 (Independence). We say A and B are **independent** if when P(A) > 0, P(B|A) =P(B), i.e., the occurrence of A does not change the probability of B; or when $P(A \cap B) = P(A)P(B)$.

Property 1.2. Suppose A and B are independent, then the following three pairs are independent: A^c and B, A and B^c , and A^c and B^c .

Proof. We have

$$P(A^{c} \cap B) = P(B) - P(A \cap B) = P(B) - P(A)P(B) = [1 - P(A)]P(B) = P(A^{c})P(B)$$

Definition 1.8 (Mutually Independence). The events are mutually independent iff they are pairwise independent.

Example 1.1. We say A_1, A_2 , and A_3 are mutually independent iff

$$P(A_1 \cap A_3) = P(A_1)P(A_3)$$

$$P(A_1 \cap A_2) = P(A_1)P(A_2)$$

$$P(A_2 \cap A_3) = P(A_2)P(A_3)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$

Random Variable 1.4

Definition 1.9. Consider a random experiment with a sample space \mathcal{S} . A function X, which assigns to each element $s \in \mathcal{S}$ one and only one number X(s) = x, is called a **random variable**. The **space/range** of X is the set of real numbers $\mathcal{D} = \{x : x = X(s), s \in \mathcal{S}\}.$

Definition 1.10 (Cumulative Distribution Function (CDF)). Let X be a r.v., then its *cumulative* distribution function (CDF) is defined as

$$F_X(x) = P_X((-\infty, x]) = P(\{s \in \mathcal{S} : X(s) \leqslant x\}) = P(X \leqslant x)$$

Definition 1.11 (Equal in Distribution). Let X and Y be two r.v.s., then X and Y are **equal in distribution** iff $F_X(x) = F_Y(x), \forall x \in \mathbb{R}$, denoted $X \stackrel{D}{=} Y$.

Note. While X and Y may be equal in distribution, they may be quite different.

Theorem 1.11. Let X be a r.v. with CDF F(x). Then

- 1. $\forall a, b, \text{ if } a < b, \text{ then } F(a) \leq F(b).$
- $2. \lim_{x \to -\infty} F(x) = 0.$
- $3. \lim_{x \to -\infty} F(x) = 1.$
- 4. F is right continuous: $\lim_{x \to \infty} F(x) = F(x_0)$.

Theorem 1.12. Let X be a r.v. with CDF F_X . Then for a < b, $P(a < X \le b) = F_X(b) - F_X(a)$.

Theorem 1.13. For any r.v., $P(X = x) = F_X(x) - F_X(x-), \forall x \in \mathbb{R}$, where $F_X(x-) = \lim_{z \uparrow x} F_X(z)$.

Proof. For any $x \in \mathbb{R}$, we have

$$\{x\} = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, x\right]$$

i.e., $\{x\}$ is the limit of a decreasing sequence of sets. Hence, by theorem,

$$P(X = x) = P\left(\bigcap_{n=1}^{\infty} \left\{ x - \frac{1}{n} < X \le x \right\} \right)$$

$$= \lim_{n \to \infty} P\left(x - \frac{1}{n} < X \le x \right)$$

$$= \lim_{n \to \infty} [F_X(x) - F_X(x - 1/n)]$$

$$= F_X(x) - F_X(x - 1/n)$$

1.5 Discrete Random Variable

Definition 1.12 (Discrete Random Variable). We say a r.v. is a *discrete random variable* is its space is either finite or countable.

Definition 1.13 (Probability Mass Function (PMF)). Let X be a discrete r.v. with space \mathcal{D} . The **probability mass function** (PMF) of X is

$$p_X(x) = P(X = x), x \in \mathcal{D}$$

which satisfies the two properties:

- 1. $0 \leqslant p_X(x) \leqslant 1, x \in \mathcal{D}$.
- $2. \sum_{x \in \mathcal{D}} p_X(x) = 1.$

1.5.1 Transformation

Assume X is discrete with space \mathcal{D}_X and Y = g(X), then the space of Y is $\mathcal{D}_Y = \{g(x) : x \in \mathcal{D}_X\}$. If g is one-to-one, then the PMF of Y is

$$p_Y(y) = P(Y = y) = P(g(X) = y) = P(X = g^{-1}(y)) = p_X(g^{-1}(y))$$

1.6 Continuous Random Variable

Definition 1.14 (Continuous Random Variable). We say a r.v. is a *continuous random variable* if its cumulative distribution function $F_X(x)$ is a continuous function for all $x \in \mathbb{R}$.

Note 1. For a continuous r.v. X, there are no points of discrete mass, i.e., if X is continuous, then P(X = x) = 0 for all $x \in \mathbb{R}$.

Note 2. Most continuous r.v.s. are absolutely continuous, i.e.,

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

for some function $f_X(t)$, which is called a **probability density function** (PDF) of X.

Note 3. If $f_X(x)$ is continuous, then the fundamental theorem of calculus implies that

$$\frac{\mathrm{d}}{\mathrm{d}x}F_X(x) = f_X(x)$$

Note 4. The support of a continuous r.v. X consists of all points x s.t. $f_X(x) > 0$.

Note 5. If X is a continuous r.v., then probabilities can be obtained by integration

$$P(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(t) dt$$

Note 6. For continuous r.v.,

$$P(a < X \leq b) = P(a \leq X \leq b) = P(a \leq X < b) = P(a < X < b)$$

Note 7. PDF satisfies two properties: $f_X(x) \ge 0$ and $\int_{-\infty}^{\infty} f_X(t) dt = 1$ (follows from $F_X(\infty) = 1$).

1.6.1 Quantile

Definition 1.15 (Quantile). Let 0 < 0 < 1. The *quantile* of order p of the distribution of a r.v. X is a value ξ_p s.t. $P(X < \xi_p) \leq 0$ and $P(X \leq \xi_p) \geq p$. It is also known as the (100p)th percentile of X.

1.6.2 Transformation

Theorem 1.14. Let X be a continuous r.v. with PDF $f_X(x)$ and support \mathcal{S}_X . Let Y = g(X), where g(x) is a one-to-one differentiable function, on the support of X, \mathcal{S}_X . Denote the inverse of g by $x = g^{-1}(y)$ and let $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\mathrm{d}[g^{-1}(y)]}{\mathrm{d}y}$. Then the PDF of Y is given by

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\mathbf{x}}{\mathrm{d}y} \right|, y \in \mathcal{S}_Y$$

where the support of Y is $S_Y = \{y = g(x) : x \in S_X\}$

Note. We refer to $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\mathrm{d}g^{-1}(y)}{\mathrm{d}y}$ as the Jacobian (denoted by J) of the transformation.

Assume that transformation Y = g(X) is one-to-one, the following steps lead to the PDF of Y:

- 1. Find the support of Y.
- 2. Solve for the inverse of transformation, i.e., solve for x in terms of y in y = g(x), thereby obtaining $x = g^{-1}(y)$.
- obtaining $x = g^{-1}(y)$. 3. Obtain $\frac{\mathrm{d}x}{\mathrm{d}y}$.
 - 4. The PDF of Y is $f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$.

Example 1.2. Let X have the PDF

$$f(x) = \begin{cases} 4x^3, & 0 < x < 1\\ 0, & \text{elsewhere} \end{cases}$$

Consider the r.v. $Y = -\ln X$.

The support of Y is $(0, \infty)$. If $y = -\ln x$, then $x = e^{-y}$ and $\frac{\mathrm{d}x}{\mathrm{d}y} = -e^{-y}$. The PDF of Y is

$$f_Y(y) = f_X(e^{-y})| - e^{-y}| = 4e^{-4y}$$

1.7 Expectation of a Random Variable

Definition 1.16 (Expectation). Let X be a r.v. If X is a continuous r.v. with PDF f(x) and $\int_{-\infty}^{\infty} |x| f(x) dx < \infty$, then the expectation of X is

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \mathrm{d}x$$

If X is a discrete r.v. with PMF p(x) and $\sum_{x} |x| p(x) < \infty$, then the expectation of X is

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

Theorem 1.15. Let X be a r.v. and Y = g(X) for some function g. If X is continuous with PDF $f_X(x)$ and $\int_{-\infty}^{\infty} |g(x)| f_X(x) dx < \infty$, then the expectation of Y exists:

$$\mathbb{E}[Y] = \int_{-\infty}^{\infty} g(x) f_X(x) \mathrm{d}x$$

If X is discrete with PMF $p_X(x)$ with the support \mathcal{S}_X and $\sum_{x \in \mathcal{S}_X} |g(x)| p_X(x) < \infty$, then the expectation of Y exists:

$$\mathbb{E}[Y] = \sum_{x \in \mathcal{S}_X} g(x) p_X(x)$$

Theorem 1.16. Let $g_1(X)$ and $g_2(X)$ be functions of a r.v. X. Suppose the expectations of $g_1(X)$ and $g_2(X)$ exists. Then for any constants k_1 and k_2 , the expectation of $k_1g_1(X) + k_2g_2(X)$ exists:

$$\mathbb{E}[k_1 g_1(X) + k_2 g_2(X)] = k_1 \mathbb{E}[g_1(X)] + k_2 \mathbb{E}[g_2(X)]$$

Definition 1.17 (Mean). Let X be a r.v. whose expectation exists. The **mean** value μ of X is defined to be $\mu = \mathbb{E}[X]$.

Definition 1.18 (Variance). Let X be a r.v. with finite mean μ and s.t. $\mathbb{E}[(X-\mu)^2]$ is finite. Then the **variance** of X is defined to be $\sigma^2 = \text{Var}[X] = \mathbb{E}[(X-\mu)^2]$

Note.
$$\sigma^2 = \mathbb{E}[X^2] - \mu^2$$
.

Theorem 1.17. Let X be a r.v. with finite mean μ and variance σ^2 . Then for all constants a and b,

$$Var[aX + b] = a^2 Var[X]$$

Definition 1.19 (Moment Generating Function). Let X be a r.v. s.t. for some h > 0, the expectation of e^{tX} exists for -h < t < h. The **moment generating function** (MGF) of X is defined to be the function

$$M(t) = \mathbb{E}[e^{tX}]$$

for -h < t < h.

Theorem 1.18. Let X and Y be r.v.s. with MGF M_X and M_Y , respectively, existing in open intervals about 0. Then $F_X(z) = F_Y(z)$ for all $z \in \mathbb{R}$ iff $M_X(t) = M_Y(t)$ for all $t \in (-h, h)$ for some h > 0.

Theorem 1.19. $M'(0) = \mathbb{E}[X] = \mu$ and $M''(0) = \mathbb{E}[X^2]$. Accordingly, $\sigma^2 = M''(0) - [M'(0)]^2$. In general, if m is a positive integer and if $M^{(m)}(t)$ means the mth derivative of M(t), we have

$$M^{(m)}(0) = \mathbb{E}[X^m]$$

which is called the mth moment of the distribution, or the mth moment of X.

1.8 Inequality

Theorem 1.20. Let X be a r.v. and m be a positive integer. Suppose $\mathbb{E}[X^m]$ exists. If k is a positive integer and $k \leq m$, then $\mathbb{E}[X^k]$ exists.

Proof. We prove it for the continuous cases. Let f(x) be the PDF of X, then

$$\int_{-\infty}^{\infty} |x|^k f(x) dx = \int_{|x| \le 1} |x|^k f(x) dx + \int_{|x| > 1} |x|^k f(x) dx$$

$$\leq \int_{|x| \le 1} f(x) dx + \int_{|x| > 1} |x|^m f(x) dx$$

$$\leq \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} |x|^m f(x) dx$$

$$\leq 1 + \mathbb{E}[|X|^m] < \infty$$

Theorem 1.21 (Markov's Inequality). Let u(X) be a non-negative function of the r.v. X. If $\mathbb{E}[u(X)]$ exists, then for every positive constant c,

$$P(u(X) \ge c) \le \frac{\mathbb{E}[u(X)]}{c}$$

Theorem 1.22 (Chebyshev's Inequality). Let X be a r.v. with finite variance σ^2 . Then for every k > 0,

$$P(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

or equivalently

$$P(|X - \mu| < k\sigma) \geqslant 1 - \frac{1}{k^2}$$

Theorem 1.23 (Jensen's Inequality). If ϕ is convex on an open interval I and X is a r.v. whose support is contained in I and has finite expectation, then

$$\phi[\mathbb{E}[X]] \leq \mathbb{E}[\phi(X)]$$

8

If ϕ is strictly convex, then the inequality is strict unless X is a constant r.v.

2 Multivariate Distributions

2.1 Distribution of Two Random Variables

Definition 2.1 (Random Vector). Given a random experiment with a sample space S, consider two r.v.s. X_1 and X_2 , which assign to each element s of S on and only one ordered pair of numbers $x_1(s) = x_1, X_2(s) = x_2$. Then we say that (X_1, X_2) is a **random vector**. The space of (X_1, X_2) is the set of ordered pairs $D = \{(x_1, x_2) : x_1 = X_1(s), x_2(s), s \in S\}$.

Note. We often denote random vectors using $\mathbf{X} = (X_1, X_2)^T$.

2.1.1 Marginal Distribution

Let (X_1, X_2) be a random vector. The marginal distribution of X_1 is $F_{X_1}(x_1) = P(X_1 \le x_1, -\infty < X_2 < \infty)$.

For discrete case, let \mathcal{D}_{X_1} be the support of X_1 . For $x_1 \in \mathcal{D}_{X_1}$,

$$F_{X_1}(x_1) = \sum_{w_1 \leqslant x_1, -\infty < x_2 < \infty} p_{X_1, X_2}(w_1, x_2) = \sum_{w_1 \leqslant x_1} \left[\sum_{x_2 < \infty} p_{X_1, X_2}(w_1, x_2) \right]$$

By the uniqueness of CDF,

$$p_{X_1}(x_1) = \sum_{x_2 < \infty} p_{X_1, X_2}(x_1, x_2)$$

for all $x_1 \in \mathcal{D}_{X_1}$.

For continuous case, let \mathcal{D}_{X_1} be the support of X_1 . For $x_1 \in \mathcal{D}_{X_1}$,

$$F_{X_1}(x_1) = \int_{-\infty}^{x_1} \int_{-\infty}^{\infty} f_{X_1, X_2}(w_1, x_2) dx_2 dw_1 = \int_{-\infty}^{x_1} \left[\int_{-\infty}^{\infty} f_{X_1, X_2}(w_1, x_2) dx_2 \right] dw_1$$

By the uniqueness of CDF,

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_2$$

for all $x_1 \in \mathcal{D}_{X_1}$.

2.1.2 Expectation

Let (X_1, X_2) be a random vector and $Y = g(X_1, X_2)$ for some real-valued function. Suppose (X_1, X_2) is continuous, then $\mathbb{E}[Y]$ exists if

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |g(x_1, x_2)| f_{X_1, X_2}(x_1, x_2) dx_1 dx_2 < \infty$$

and

$$\mathbb{E}[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_1, x_2) f_{X_1, X_2}(x_1, x_2) dx_1 dx_2$$

If (X_1, X_2) is discrete, then $\mathbb{E}[Y]$ exists if

$$\sum_{x_1} \sum_{x_2} |g(x_1, x_2)| p_{X_1, X_2}(x_1, x_2) < \infty$$

and

$$\mathbb{E}[Y] = \sum_{x_1} \sum_{x_2} g(x_1, x_2) p_{X_1, X_2}(x_1, x_2)$$

Theorem 2.1. Let (X_1, X_2) be a random vector. Let $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$ be r.v.s. whose expectations exist. Then for all real numbers k_1 and k_2 ,

$$\mathbb{E}[k_1Y_1 + k_2Y_2] = k_1\mathbb{E}[Y_1] + k_2\mathbb{E}[Y_2]$$

Definition 2.2 (Moment Generating Function of a Random Vector). Let $\mathbf{X} = (X_1, X_2)^T$ be a random vector. If $\mathbb{E}[e^{t_1X_1+t_2X_2}]$ exists for $|t_1| < h_1$ and $|t_2| < h_2$ where h_1 and h_2 are positive, it is denoted by $M_{X_1,X_2}(t_1,t_2)$ and is called the **moment generating function** (MGF) of \mathbf{X} .

Note 1. MGF of a random vector uniquely determines the distribution of the random vector, as in the one-variable case.

Note 2. Let $\mathbf{t} = (t_1, t_2)^T$, then we can write

$$M_{X_1,X_2}(\mathbf{t}) = \mathbb{E}[e^{\mathbf{t}^T\mathbf{X}}]$$

Definition 2.3 (Expected Value of a Random Vector). Let $\mathbf{X} = (X_1, X_2)^T$ be a random vector. Then the *expected value* of \mathbf{X} exists if the expectations of X_1 and X_2 exist. If it exists, then

$$\mathbb{E}[\mathbf{X}] = \begin{bmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \end{bmatrix}$$

2.2 Transformations: Bivariate Random Variables

Let $p_{X_1,X_2}(x_1,x_2)$ be the joint PMF of two discrete r.v.s. X_1 and X_2 with \mathcal{S} the two-dimensional set of points at which $p_{X_1,X_2}(x_1,x_2) > 0$. Let $y_1 = u_1(x_1,x_2)$ and $y_2 = u_2(x_1,x_2)$ define a one-to-one transformation that maps \mathcal{S} onto \mathcal{T} . The joint PMF of the two new r.v.s. $Y_1 = u_1(X_1,X_2)$ and $Y_2 = u_2(X_1,X_2)$ si given by

$$p_{Y_1,Y_2}(y_1,y_2) = \begin{cases} p_{X_1,X_2}[w_1(y_1,y_2), w_2(y_1,y_2)], & (y_1,y_2) \in \mathcal{T} \\ 0, & \text{elsewhere} \end{cases}$$

where $x_1 = w_1(y_1, y_2), x_2 = w_2(y_1, y_2)$ is the single-valued inverse of $y_1 = u_1(x_1, x_2), y_2 = u_2(x_1, x_2)$.

Example 2.1. Suppose the joint PMF is

$$p_{X_1,X_2}(x_1,x_2) = \frac{\mu_1^{x_1}\mu_2^{x_2}e^{-\mu_1}e^{-\mu_2}}{x_1!x_2!}, x_1 = 0, 1, \cdots, x_2 = 0, 1, \cdots$$

Suppose we want to know the distribution of $Y_1 = X_1 + X_2$ and we take $Y_2 = X_2$. Then $y_1 = x_1 + x_2$ and $y_2 = x_2$ represent a one-to-one transformation that maps S onto

$$\mathcal{T} = \{(y_1, y_2) : y_2 = 0, 1, \dots, y_1, y_1 = 0, 1, 2, \dots\}$$

Note that if $(y_1, y_2) \in \mathcal{T}$, then $0 \leq y_2 \leq y_1$. The inverse functions are given by $x_1 = y_1 - y_2$ and $x_2 = y_2$. Thus the joint PMF of Y_1 and Y_2 is

$$p_{Y_1,Y_2}(y_1,y_2) = \frac{\mu_1^{y_1-y_2}\mu_2^{y_2}e^{-\mu_1-\mu_2}}{(y_1-y_2)!y_2}, (y_1,y_2) \in \mathcal{T}$$

The marginal PMF of Y_1 is

$$p_{Y_1}(y_1) = \sum_{y_2=0}^{y_1} p_{Y_1,Y_2}(y_1,y_2) = \frac{e^{-\mu_1-\mu_2}}{y_1!} \sum_{y_2=0}^{y_1} \frac{y_1!}{(y_1-y_2)!y_2!} \mu_1^{y_1-y_2} \mu_2^{y_2} = \frac{(\mu_1+\mu_2)^{y_1}e^{-\mu_1-\mu_2}}{y_1!}, y_1 = 0, 1, \dots$$

For continuous case,

$$f_{Y_1,Y_2}(y_1,y_2) = \begin{cases} f_{X_1,X_2}[w_1(y_1,y_2), w_2(y_1,y_2)]|J|, & (y_1,y_2) \in \mathcal{T} \\ 0, & \text{elsewhere} \end{cases}$$

where

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$