CLAIMS

We claim:

1. A process for preparing a compound of formula (R),

$$X_3$$
 $N-X_2$
 N

(R)

comprising the step of:

reacting a compound of formula (Q)

$$X_3$$
 O_2N
 N
 N
 N
 N

with an alkylating agent,

wherein

 X_1 is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, or C_1 - C_4 hydroxyalkyl;

 X_2 is C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, or aralkyl; and

X₃ is hydrogen or halogen.

2. A process for preparing a compound of formula (I)

$$X_2$$
 X_2
 X_4
 X_4

comprising the step of:

reacting a compound of formula (Q')

with an alkylating agent to prepare a compound of formula (R'),

$$O_2N$$
 $N-X_2$
(R')

wherein:

X₁ is hydrogen or C₁-C₄ alkyl;

X₂ is C₁-C₄ alkyl or benzyl;

X4 is hydrogen or C1-C4 alkyl;

 Q_1 is A^1 or A^2 ;

 Q_2 is A^1 when Q_1 is A^2 and Q_2 is A^2 when Q_1 is A^1 ;

wherein

WO 03/106416

 A^1 is hydrogen, halogen, C_1 – C_3 alkyl, C_1 – C_3 haloalkyl, C_1 – C_4 alkoxy, and A^2 is the group defined by – $(Z)_m$ – (Z^1) – (Z^2) , wherein

Z is C(R')(R''), where R' and R" are independently selected from -H or C_1 - C_4 alkyl, or R' and R" together with the carbon to which they are attached form a C_3 - C_7 cycloalkyl group and m is 0, 1, 2, or 3;

 Z^1 is $S(O)_2$, S(O), or C(O); and

 Z^2 is C_1 - C_4 alkyl, NR^1R^2 , aryl, arylamino, aralkyl, aralkoxy, or heteroaryl, R^1 and R^2 are each independently selected from hydrogen, C_1 - C_4 alkyl, C_3 - C_7 cycloalkyl, – $S(0)_2R^3$, and – $C(0)R^3$; and R^3 is C_1 - C_4 alkyl or C_3 - C_7 cycloalkyl.

, 3. A process for preparing a compound of formula (I)

$$X_2$$
 N
 X_4
 Q_2
 Q_1
 Q_1
 Q_2
 Q_1
 Q_2
 Q_1
 Q_2
 Q_2
 Q_2
 Q_1
 Q_2
 Q_2
 Q_2
 Q_1
 Q_2
 Q_2

comprising the steps of:

(i) reacting a compound of formula (Q')

$$O_2N$$
 (Q')

with an alkylating agent to prepare a compound of formula (R'),

$$O_2N$$
 $N-X_2$

(R')

; and

(ii) converting the compound of formula (R') to the compound of formula (I), said converting step comprising serial condensation with a compound of formula (A') and then a compound of formula (A")

$$Q_2$$
 Q_1
 Q_2
 Q_2
 Q_2
 Q_2
 Q_2
 Q_1
 Q_2
 Q_2

wherein:

X₁ is hydrogen or C₁-C₄ alkyl;

X2 is C1-C4 alkyl or benzyl;

X4 is hydrogen or C1-C4alkyl;

 Q_1 is A^1 or A^2 ;

 Ω_2 is A^1 when Ω_1 is A^2 and Ω_2 is A^2 when Ω_1 is A^1 ;

wherein

 A^1 is hydrogen, halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_4 alkoxy, and A^2 is the group defined by - $(Z)_m$ - (Z^1) - (Z^2) , wherein

Z is C(R')(R''), where R' and R'' are independently selected from -H or C_1 - C_4 alkyl, or R' and R'' together with the carbon to which they are attached form a C_3 - C_7 cycloalkyl group and m is 0, 1, 2, or 3;

 Z^1 is $S(0)_2$, S(0), or C(0); and

Z² is C1-C4 alkyl, NR¹R², aryl, arylamino, aralkyl, aralkoxy, or heteroaryl,

 R^1 and R^2 are each independently selected from hydrogen, C_1 - C_4 alkyl, C_3 - C_7 cycloalkyl, – $S(0)_2R^3$, and – $C(0)R^3$; and R^3 is C_1 - C_4 alkyl or C_3 - C_7 cycloalkyl.