exercise 1:

Problem 9.5.71.

exercise 2:

Problem 9.5.72.

$\underline{\text{exercise } 3}$:

Problem 9.5.73.

exercise 4:

Show that $l^1 \subset l^2 \subset l^{\infty}$, and that these inclusions are strict. Also show that the identity functions from l^1 to l^2 and from l^2 to l^{∞} are continuous.

exercise 5:

Let X be a set and \mathcal{A} be a subset of $\mathcal{P}(X)$.

- (i). If \mathcal{A} is closed under complementation and set difference, show that \mathcal{A} is closed under finite union and finite intersection.
- (ii). If \mathcal{A} contains X and is closed under set difference and finite intersection, show that \mathcal{A} is closed under finite union and set complementation.

exercise 6:

(i). Let V be an open subset of \mathbb{R} which is neither empty nor equal to \mathbb{R} . Let V^c be the complement of V. Show that

$$V = \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : |x| \le n \text{ and } d(x, V^c) \ge \frac{1}{n}\}$$

- (ii). Infer that every non empty open subset of \mathbb{R} is a countable union of compact subsets.
- (iii). Infer that every open subset of \mathbb{R} is a countable union of open intervals.

$\underline{\text{exercise } 7}$:

Let X be a set and \mathcal{A} be a σ - algebra of subsets of X. Let Y be a subset of X. Define a subset \mathcal{B} of $\mathcal{P}(Y)$ by setting $\mathcal{B} := \{A \cap Y : A \in \mathcal{A}\}$. Show that \mathcal{B} is a σ - algebra of subsets of Y.

exercise 8:

Let X be a set and A_i be a σ - algebra of subsets of X for each i in I. Show that $\bigcap_{i \in I} A_i$ is σ -

algebra of subsets of X.

exercise 9:

Show from the definition of the outer measure m^* on \mathbb{R} that for any two subsets A and B of \mathbb{R} , $m^*(A \cup B) \leq m^*(A) + m^*(B)$.

exercise 10:

- (i). Let (X, \mathcal{A}, μ) be a measure space, B_n a decreasing sequence of \mathcal{A} such that $\mu(B_1) < \infty$. Show that $\lim_{n \to \infty} \mu(B_n) = \mu(\bigcap_{n \to \infty}^{\infty} B_n)$.
- (ii). Find a measure space (X, \mathcal{A}, μ) and a decreasing sequence B_n of \mathcal{A} such that $\lim_{n \to \infty} \mu(B_n) \neq \mu(\bigcap_{n=1}^{\infty} B_n)$.

exercise 11:

Let S be the subset of [0, 1] defined by all the sums of the series $\sum_{n=1}^{\infty} \frac{a_n}{10^n}$ where a_n is in the set $\{0, 2, 4, 6, 8\}$.

(i). Assume that $\sum_{n=1}^{\infty} \frac{a_n}{10^n} = \sum_{n=1}^{\infty} \frac{b_n}{10^n}$ where a_n and b_n are in $\{0, 2, 4, 6, 8\}$. Show that $a_n = b_n$ for all interger $n \ge 1$.

Hint: Show that

$$\left|\sum_{n=1}^{p} \frac{a_n}{10^n} - \sum_{n=1}^{p} \frac{b_n}{10^n}\right| \le \frac{8}{9} \frac{1}{10^p}$$

(ii). Show that S is uncountable.

Hint: Define $f: S \to \mathcal{P}(\mathbb{N}^*)$: let $x = \sum_{n=1}^{\infty} \frac{a_n}{10^n}$, $a_n \in \{0, 2, 4, 6, 8\}$. $p \notin f(x)$ if $a_p = 0$, $p \in f(x)$ otherwise. It suffices to show that f is surjective.

(iii). Show that S has Lebesgue measure zero.

Hint: Use the set S_p defined by all the sums of the series $\sum_{n=1}^{p} \frac{a_n}{10^n}$ where a_n is in the set $\{0, 2, 4, 6, 8\}$.