The group G is isomorphic to the group labelled by [40, 12] in the Small Groups library. Ordinary character table of $G \cong C2$ x (C5 : C4):

Trivial source character table of $G \cong C2 \times (C5 : C4)$ at p = 5:

Normalisers N_i					N_1								N_2			
p-subgroups of G up to conjugacy in G					P_1								P_2			
Representatives $n_j \in N_i$	1a	4a	2b	2a	4c	4b	2c	4d	1a	2a	4a	2b	4b	2c	4c	4d
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	5	1	5	1	1	1	1	1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	5	E(4)	5	-1	E(4)	-E(4)	-1	-E(4)	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	5	-1	5	1	-1	-1	1	-1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	5	-E(4)	5	-1	-E(4)	E(4)	-1	E(4)	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	5	1	-5	1	-1	1	-1	-1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	5	E(4)	-5	-1	-E(4)	-E(4)	1	E(4)	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	5	-1	-5	1	1	-1	-1	1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	5	-E(4)	-5	-1	E(4)	E(4)	1	-E(4)	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	-1	1	-1	1	-1	-1	1	-1	1	1	-1	-1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	-1	1	1	-1	-1	1	-1	1	1	-1	1	-1	1	-1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	-E(4)	1	-1	-E(4)	E(4)	-1	E(4)	1	1	-E(4)	-1	-E(4)	-1	E(4)	E(4)
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$		E(4)	1	-1	E(4)	-E(4)	-1	-E(4)	1	1	E(4)	-1	E(4)	-1	-E(4)	-E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	E(4)	-1	-1	-E(4)	-E(4)	1	E(4)	1	-1	E(4)	-1	-E(4)	1	-E(4)	E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$		-E(4)	-1	-1	E(4)	E(4)	1	-E(4)	1	-1	-E(4)	-1	E(4)	1	E(4)	-E(4)

 $P_1 = Group([(1)]) = 1$ $P_2 = Group([(1, 5, 12, 20, 28)(2, 8, 16, 24, 32)(3, 10, 18, 26, 34)(4, 11, 19, 27, 35)(6, 14, 22, 30, 37)(7, 15, 23, 31, 38)(9, 17, 25, 33, 39)(13, 21, 29, 36, 40)]) \cong C5$

1a	5a	4a	2a	4b	2b	10a	4c	2c	4d
1	1	1	1	1	1	1	1	1	1
1	1	E(4)	-1	-E(4)	1	1	E(4)	-1	-E(4)
1	1	-1	1	-1	1	1	-1	1	-1
1	1	-E(4)	-1	E(4)	1	1	-E(4)	-1	E(4)
4	-1	0	0	0	4	-1	0	0	0
1	1	1	1	1	-1	-1	-1	-1	-1
1	1	E(4)	-1	-E(4)	-1	-1	-E(4)	1	E(4)
1	1	-1	1	-1	-1	-1	1	-1	1
1	1	-E(4)	-1	E(4)	-1	-1	E(4)	1	-E(4)
4	-1	0	0	0	-4	1	0	0	0

 $N_1 = Group([(1,2,4,7)(3,6,9,13)(5,16,35,31)(8,19,38,20)(10,22,39,36)(11,23,28,24)(12,32,27,15)(14,25,40,26)(23,29)(24,30)(27,33)(28,34)(31,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(5,35)(6,13)(8,38)(10,39)(11,28)(12,27)(14,40)(15,32)(16,31)(17,34)(18,33)(19,20)(21,37)(22,36)(23,24)(25,26)(29,30), (1,5,12,20,28)(2,8,16,24,32)(3,10,18,26,34)(4,11,19,27,35)(6,14,22,30,37)(7,15,23,31,38)(9,17,25,33,39)(13,21,29,36,40)] \\ = C_2 \times (C_5 : C_4) \\ N_2 = Group([(1,5,12,20,28)(2,8,16,24,32)(3,10,18,26,34)(4,11,19,27,35)(6,14,22,30,37)(7,15,23,31,38)(9,17,25,33,39)(13,21,29,36,40), (1,2,4,7)(3,6,9,13)(5,16,35,31)(8,19,20)(12,27)(14,40)(15,32)(16,31)(17,34)(18,33)(19,20)(21,37)(22,36)(23,24)(25,26)(29,30), (1,5,12,20,28)(2,8,16,24,32)(3,10,18,26,34)(4,11,19,27,35)(6,14,22,30,37)(7,15,23,31,38)(9,17,25,33,39)(13,21,29,36,40)] \\ = C_2 \times (C_5 : C_4) \\ = C_3 \times (C_5 : C_4) \\ = C_4 \times$