group meeting 2022-06-01

Noise reduction for piece-wise linear signals embedded in 2d. (e.g. biological twitching trajectories)

twitching motility

Fig 1. Skerker & Berg, 2001

Fig 2. Simulation

Fig 3. Simplified Drawing

Tracking data from Twitching experiments

Fig 1. 20 seconds of Tracking Data (µm)

Fig 2. tracking data with wavelet smoothing

Question: Can we get more useful, more interpret-able information from this trajectory data?

What if we only look for piece-wise linear trajectories?

Question: How do we select for the number of segments?

Minimum Description Length Principle

- When choosing an optimal model to describe some data, the best model might be the one which describes the data using the least "information"
 - This approaching is quite natural for humans, e.g. Occam's Razor
 - Let M be the number of nodes in the piece-wise linear "model", let N be the number of data points.
 - Each model node is counted a 1 unit of information. M units in total
 - Set a threshold r, points within r of the piece-wise linear curve are counted as part of the model, points further than r are considered outliers and counted separately. Let the number of outliers be n.
 - Description Length (DL) = M + n

Fig 1. Initial guess with outliers (red) and points close to the model (blue)

Initial guess

Simple Method for initial guesses.

- 1. Choose a number of segments M.
- 2. Identify the pair of adjacent data points with the minimum separation and join them together.
- 3. repeat until there are M+1 points remaining.

Annealing / Basin Hopping

General Idea

- 1. randomly choose a conformational change to the piece-wise linear curve, i.e. create or destory a node.
- 2. Estimate the local minimum of the description length for this conformation
- 3. If the new description length is better than the current description length, accept the new state of the system, otherwise reject it.
- 4. go to step 1.

Least Squares

Our least squares function is

$$F = \sum_{i}^{N} \min_{j} (\operatorname{distance}(\boldsymbol{x}_i, \boldsymbol{x}_j'
ightarrow \boldsymbol{x}_{j+1}'))^2$$

where $x'_j \to x'_{j+1}$ is the jth PWL segment, let the corresponding vector by denoted by $l_j = x'_{j+1} - x'_j$. We need to evaluate the distance matrix d_{ij} ,

$$d_{ij} = \| \boldsymbol{x}_i - \boldsymbol{x}_j' - s_{ij} \hat{\boldsymbol{l}}_j \|, \quad s_{ij} = \text{clip}((\boldsymbol{x}_i - \boldsymbol{x}_j') \cdot \hat{\boldsymbol{l}}_j, 0, l_j)$$

An additional Monte Carlo move

• Mapping point 128 to segment 6 leads to a better global minimum

Time ordering term

-10

-12

Let t_i be the time at which the *i*th data point was collected and s_i be the corresponding curve coordinate we have a series

$$(t_1, s_1), (t_2, s_2), ..., (t_N, s_N)$$

which we sort by s_i to obtain a new series of length N,

$$(t'_1, s'_1), (t'_2, s'_2), ..., (t'_N, s'_N)$$
.

We then define the term

coordinates.

$$G = \sum_{i}^{N} (s_i' - s_i)^2,$$

Fig. Initial guess + local solve, with (left) and without (right) additional ordering term.

-10

-12

model

data

model

Todo

- Finish implementation.
- Revise and test implementation using synthetic data.
- Analyse individual trajectories and bacteria populations.

E coli, run and tumble

P. Aeruginosa twitching