Mécanique des fluides

E. Machefer

10 janvier 2024

1 Poussée d'Archimède

1.1 De la pression à la poussée d'Archimèdedefinition

FIGURE 1 – Forces pressantes sur un solide

Sur un solide immergé dans un fluide, le mouvement des particules du fluide provoque des chocs sur les parois du solide, assimilés à une **force pressante** perpendiculaire aux parois.

La pression au point M de sur la surface du volume est définie telle que

 $d\vec{F} = -p_M d\vec{S},$ avec dS un élément de surface, soit

$$p_{\rm M} = dF/dS$$
 (en Pa)

La loi de la statique des fluides est

$$\Delta p_{AB} = p_A - p_B = \rho g (z_A - z_B),$$

pour $z_B < z_A$, $p_B > p_A$, donc pour un même élément de surface $dS : F_B > F_A$.

La résultante des forces s'exerçant sur le solide est donc verticale vers le haut. Cela correspond à la **poussée d'Archimède**.

Définition 1.

Notée \vec{F}_P , elle correspond à la somme des forces pressantes exercées par un fluide au repos sur la partie immergée d'un corps (solide ou fluide).

1.2 Expression de la poussée d'Archimède

Soit dV un élément de volume dans un fluide au repos. D'après le principe d'inertie,

$$\vec{0} = \vec{P}_{fluide} + \vec{F}_P,$$
 soit $\vec{F}_P = -\vec{P} = -m_{fluide}\vec{g} = -\rho V \vec{g}$

Remarque 1.

La poussée d'Archimède exercée par un fluide de masse volumique $\rho_{\rm fluide}$ est une force opposée au poids du fluide déplacé

 $\vec{F}_P = -\rho_{fluide} V_{im} \vec{g},$

avec F_P en N, ρ_{fluide} en kg· m⁻³, V_{im} en m³ et g en N· kg⁻¹

4 p 288 exercice

- 1. Les flèches correspondent aux forces pressantes exercées sur les parois du solide.
- 2. La résultante des forces correspond à la poussée d'Archimède.

5 p 288 exercice

- 1. Schéma : P et F_P
- 2. $\vec{P}_{ice} = \rho_i ceV_i ce\vec{g}$

$$P_{ice} = \rho_{ice} \ V_{ice} \ g = 9.2e2 * 7.0e4 * 9.81 = 6.3e8 \ N$$

$$\vec{F}_P = -\rho_e au V_i m \vec{g}$$

$$F_P = \rho_{eau} V_{im} g = 1.02e3 * 6.3e4 * 9.81 = 6.3e8 N$$

L'iceberg est en équilibre.

TODO 18 p 290 exercice

- 1. Schéma : P et F_P
- 2. $F_P = \rho_{eau} V_{im} g$
- 3. Dans le référentiel terrestre considéré galiléen, les forces qui s'exercent sur le tronc se compensent, soit

$$\vec{0} = \vec{P} + \vec{F}_P$$

4. $F_P = P$, soit $\rho_{\rm eau} V_{\rm im} = m_{\rm tronc} = \rho_{\rm bois} V_{\rm tronc}$ $V_{\rm tronc} = \pi \ (D/2)^2 \ l, \ h = D/2, \ donc \ V_{\rm im} = V_{\rm tronc}/2$

Donc $\rho_{\text{bois}} V_{\text{tronc}} = \rho_{\text{eau}} V_{\text{tronc}}/2$

 $\rho_{\rm bois} = \rho_{\rm eau}/2 = 500 \text{ kg/m}^3$

Le sapin est donc sec.

TODO 23 p 292 exercice

2 Conservation du débit volumique

2.1 Débit volumique

Un fluide s'écoule en régime permanent stationnaire si la valeur de sa vitesse en chaque point est indépendante du temps

$$\frac{d\vec{v}}{dt} = \vec{0}$$

Définition 2

En régime permanent stationnaire, lorsqu'un volume V de fluide s'écoule au travers d'une section pendant une durée Δ t, le **débit volumique** (D_v) est donné par

$$D_v = dV / \Delta t,$$

avec D_v en m^3/s , dV en m^3 et Δ t en s.

Remarque 2.

L'élément de volume s'exprime dV = S dl, donc le débit volumique D_V est égal au produit de la surface de la section traversée par le fluide par la valeur v de la vitesse du fluide au niveau de cette section, soit

$$D_v = S \times v$$

2.2 Conservation du débit volumique d'un fluide incompressible

FIGURE 2 - Conservation du volume

Un fluide incompressible s'écoule en régime permanent stationnaire dans deux tubes de sections différentes. La masse de fluide qui s'écoule dans le tube de section S_A est identique à la masse de fluide qui s'écoule dans le tube de section S_B pendant le même intervalle de temps Δ t.

Remarque 3.

Au cours d'un écoulement en régime permanent stationnaire, le débit volumique d'un fluide incompressible est conservé

$$\frac{dDv}{dt} = 0$$

La valeur v de la vitesse du fluide incompressible augmente si la surface traversée diminue.

9 p 288 exercice

- 1. Dans un régime permanent stationnaire, le débit volumique des deux extrémités du tube est la même.
- $\begin{array}{l} 2. \;\; D_{V1} = D_{V2}, \; donc \\ S_1 \; v_1 = S_2 \; v_2 \\ v_2 = S_1 \; v_1 \; / \; S_2 = 2.2 \; {}^* \; 30 \; / \; 10 = 6.6 \\ m/s \end{array}$

TODO 21 p 291 exercice

$$\begin{array}{l} 1. \ \, D_V = V \; / \; \Delta \; t \\ \, D_V = 75 e\text{-}6 \; / \; (60/70) = 8.8 e\text{-}5 \; \text{m}^3/\text{s} \\ 2. \ \, v_A = 0.31 \; \text{m/s} \\ \, D_V = S \; v_A, \; \text{donc} \\ \, S = D_V \; / \; v_A \\ \, \pi \; D^2/4 = D_V \; / \; v_A \\ \, D = \sqrt{4*D_V/v_A*\pi} = 9.5 e\text{-}3 \; \text{m} = 9.5 \; \text{mm} \\ 3. \ \, D_{VA} = D_{VR} \\ \, v_A \; S_A = v_R \; S_R \\ \, v_R = v_A \; S_A \; / \; S_R = v_A \; (4\pi \; D^2/4)/(4\pi \; d^2/4) \\ \, v_R = v_A \; D^2/d^2 = v_A \; D^2/(D^2/5^2) \\ \, v_R = 25 \; v_A = 25 \; * \; 0.31 = 7.75 \; \text{m/s} \\ \end{array}$$

4. La vitesse est supérieure à 6 m/s, un souffle est donc entendu lors de l'auscultation.

3.1 Ligne de courant

Définition 3

Une **ligne de courant** modélise la trajectoire d'une particule dans un fluide. Elle est orientée dans le sens du déplacement du fluide.

3.2 Relation de Bernouilli

La relation de Bernouilli est une généralisation de la loi fondamentale de la statique des fluides, elle relie en toute position du fluide appartenant à une même ligne de courant la pression P, la valeur de la vitesse v et la coordonnée verticale de la position z

$$1/2 \rho v^2 + \rho g z + P = constante$$

3.3 Exercices

12 p 289 exercice

15 p 289 exercice

TODO 26 p 293 exercice

Remarque 4.

Pour un fluide incompressible, si $S_A > S_B$, et $z_A = z_B$, la relation de Bernouilli devient 1/2 a $v_A^2 + P_A = 1/2$ a $v_B^2 + P_B$

 $1/2 \rho v_A^2 + P_A = 1/2 \rho v_B^2 + P_B$ $1/2 \rho (D_V/S_A)^2 + P_A = 1/2 \rho (D_V/S_B)^2 + P_B$

Une section plus grande en A qu'en B implique une vitesse plus petite en A qu'en B, donc une pression grande en A qu'en B.

C'est l'effet Venturi.

4 Exercices

4.1 Ballon d'hélium

Données:

- $\rho_{\mathrm{helium}} = 0.18 \mathrm{\ g/L}$
- $\rho_{\rm air} = 1.292 \; {\rm kg/m^3}$
- $-\rho_{air} = p(z)M/RT$

Soit un ballon d'hélium considéré sphérique de rayon r = 10 cm.

- 1. Faire le bilan des forces et le schéma correspondant à la situation.
- 2. Calculer la valeur de chaque force en jeu.
- 3. Conclure sur la trajectoire suivie par le ballon.
- 4. D'après la loi fondamentale de la statique des fluides, que peut-on dire de la pression si l'altitude augmente?
- 5. Le ballon peut-il continuer de monter indéfiniment?

4.2 Préparation ECE

1.
$$v_A = \Delta$$
h / Δ t = (60 - 29)/(0 - 400) = 0.775 mm/s

2. (a) Conservation du débit volumique

$$D_{\mathrm{VA}} = D_{\mathrm{VC}}$$

$$v_A\ S_A = v_C\ S_C$$

$$v_C = v_A S_A / S_C$$

(b) A.N. :
$$v_C = 0.775 (\pi \ 100^2)/(\pi \ 4^2) = 484 \text{ mm/s}$$

3. (a) v_{CTorr} = $\sqrt{2gH} = 20m/s$

5 À retenir

PDF

Définition 4. Poussé d'Archimèdes

$$\vec{F}_P = -\vec{P} = -m_{fluide}\vec{g} = -\rho V\vec{g}$$

Définition 5. Relation de Bernouilli

$$\frac{1}{2} \times \rho \times v^2 + \rho \times g \times z + P = \text{constante}$$

5.1 Conservation du débit volumique