## Stochastic Processes

#### Eklavya Sharma

**Definition 1** (Stochastic Process). Let  $\mathcal{T} \subseteq \mathbb{R}$ . For any  $t \in \mathcal{T}$ , let  $X_t$  (or X(t)) be a random variable with support D. Then  $X := \{X_t : t \in \mathcal{T}\}$  is called a stochastic process on state-space D and time  $\mathcal{T}$ . Usually,  $\mathcal{T}$  is either  $\mathbb{Z}_{\geq 0}$  (discrete-time) or  $\mathbb{R}_{\geq 0}$  (continuous-time).

#### 1 Discrete-Time Markov Chains

**Definition 2** (Markov Chain). Let  $X := [X_0, X_1, \ldots]$  be a stochastic process on state-space D and time  $\mathbb{Z}_{\geq 0}$ . X is called a discrete-time markov chain if  $\Pr(X_{t+1} = d \mid X_t, X_{t-1}, \ldots, X_0) = \Pr(X_{t+1} = d \mid X_t)$ . If  $\Pr(X_{t+1} = v \mid X_t = u) = \Pr(X_1 = v \mid X_0 = u)$  for all t, u, v, then X is called time-homogeneous.

**Definition 3** (Transition function). Let X be a markov chain on state space D. Define  $P^{(k)}: D \times D \mapsto [0,1]$  as  $P^{(k)}(i,j) = \Pr(X_k = j \mid X_0 = i)$ . Then  $P^{(k)}$  is called the k-step transition function of X. For k = 1, we simply write P instead of  $P^{(1)}$ . For a finite state space, we can represent P as a matrix.

**Lemma 1** (Chapman-Kolmogorov Equation).  $P^{(m+n)}(i,j) = \sum_k P^{(m)}(i,k) P^{(n)}(k,j)$ .

# 1.1 Classification of States, Recurrence, Limiting Probabilities

**Definition 4.** Let  $f_{i,j} := \Pr\left(\bigvee_{t \geq 1} (X_t = j) \mid X_0 = i\right)$ . Then  $f_{i,j}$  is called the eventual transition probability from i to j. If i = j, then we write  $f_{i,i}$  as  $f_i$ , and call it the recurrence probability of state i.

**Definition 5.** For a state i, let  $N_i$  be the random variable that counts the number of times we are in state i, i.e.,  $N_i := \sum_{t=0}^{\infty} \mathbf{1}(X_t = i)$ . Then  $N_i$  is called the visit-count of i.

**Definition 6.** A state i of a markov chain is recurrent iff (the following are equivalent):

- the recurrence probability  $(f_i)$  of i is 1.
- i is visited infinitely often, i.e.,  $\Pr(N_i = \infty \mid X_0 = i) = 1$ .
- i is visited infinitely often in expectation, i.e.,  $E(N_i \mid X_0 = i) = \infty$ .

A non-recurrent state is called a transient state.

**Lemma 2.** 
$$\Pr(N_i = k \mid X_0 = i) = f_i^{k-1}(1 - f_i).$$

**Lemma 3.** 
$$E(N_i \mid X_0 = i) = 1/(1 - f_i) = \sum_{t=0}^{\infty} P^{(t)}(i, i)$$
.

**Definition 7.** State j is accessible from state i if  $P^{(t)}(i,j) > 0$  for some t. States i and j communicate (denoted as  $i \leftrightarrow j$ ) if i and j are both accessible from each other.

**Lemma 4.** Accessibility is reflexive and transitive. Communication is an equivalence relation. The equivalence classes of communicability are called state classes. A markov chain is irreducible if it has just one state class.

**Definition 8.** Let  $T_i$  be the time when a markov chain moves to state i, i.e.,  $T_i := \min_{t \geq 1}(X_t = i)$ . When conditioned on  $X_0 = i$ ,  $T_i$  is called the recurrence time of i. State i is called positive recurrent if  $E(T_i \mid X_0 = i)$  is finite, otherwise it is null recurrent.

**Lemma 5.** Recurrence and positive recurrence are class properties, i.e., they are same for all states in a class.

**Lemma 6.** In a finite-state markov chain, all recurrent states are positive recurrent, and there is at least one recurrent state.

**Definition 9** (Periodicity). For a state i, its period is defined as  $gcd(\{t : Pr(T_i = t \mid X_0 = i) > 0\})$ . A state is aperiodic if its period is 1.

**Lemma 7.** Periodicity is a class property.

**Definition 10** (Ergodicity). A state is ergodic if it is positive recurrent and aperiodic. A markov chain is ergodic if all its states are ergodic.

**Lemma 8.** In an irreducible ergodic markov chain, for every state j,  $\lim_{t\to\infty} P^{(t)}(j,i) = \pi_i$  for a unique real number  $\pi_i$ .  $\pi_i$  is called the limiting probability of state i. Furthermore,  $\pi_i$  is the unique solution to this system of equations:  $\pi_i = \sum_j \pi_j P(j,i)$  for all i ( $\pi = P^T \pi$  in matrix form) and  $\sum_i \pi_i = 1$ .

**Lemma 9.** In an irreducible ergodic markov chain,  $E(T_i \mid X_0 = i) = 1/\pi_i$ .

Corollary 9.1. A state i is null recurrent iff  $\pi_i = 0$ .

**Theorem 10.** If the transition function of markov chain X is doubly-stochastic (i.e., each row and each column sums to 1), then the limiting probability of each state is 1/n, where n is the number of states.

### 1.2 Time-Reversibility

**Definition 11.** For an irreducible ergodic markov chain X with limiting probabilities  $\pi$ . Let Y be a markov chain whose transition function is  $Q(i,j) = P(j,i)(\pi_j/\pi_i)$ . Then Y is called the time-reversed markov chain of X. X is called time-reversible if Q = P.

**Theorem 11.** Let X be a time-reversible markov chain with limiting probabilities  $\pi$ . Then  $\pi$  is the unique solution to this system of equations:  $x_j P(j,i) = x_i P(i,j)$  for all states i and j, and  $\sum_i x_i = 1$ .

**Theorem 12.** If the transition function of markov chain X is symmetric, then X is time-reversible.

## 2 Counting Process

**Definition 12** (Counting Process). Let N be a stochastic process on state space  $\mathbb{Z}_{\geq 0}$  and time  $\mathbb{R}_{\geq 0}$ . Then N is called a counting process if N(0) = 0 and N(t) is monotone in t, i.e.,  $t_1 < t_2 \implies N(t_1) \leq N(t_2)$ .

**Definition 13** (Independent increments). A counting process N has independent increments iff for any two disjoint intervals  $(u_1, v_1]$  and  $(u_2, v_2]$  in  $\mathbb{R}_{\geq 0}$ , the random variables  $N(v_1) - N(u_1)$  and  $N(v_2) - N(u_2)$  are independent.

**Definition 14** (Stationary increments). A counting process N has stationary increments iff for any  $u \leq v$ , the random variables N(v) - N(u) and N(v - u) have the same distribution.

**Definition 15** (Arrival and interarrival times). For a counting process N, for  $i \in \mathbb{Z}_{\geq 0}$ , define the  $i^{th}$  arrival time  $S_i := \min_{t \geq 0} (N(t) = i)$ . For  $i \in \mathbb{Z}_{\geq 1}$ , define the  $i^{th}$  interarrival time  $T_i := S_i - S_{i-1}$ .

**Lemma 13.** For a counting process N with arrival times S,  $N(t) \ge n \iff S_n \le t$ .

#### 3 Poisson Process

**Definition 16** (Poisson process). A counting process N is a Poisson process with rate function  $\lambda : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}_{\geq 0}$  if N has independent increments and  $N(t_2) - N(t_1) \sim \text{Poisson}(\mu)$ , where  $\mu := \int_{t_1}^{t_2} \lambda(t) dt$ . N is called homogeneous if  $\lambda(t) = \lambda(0)$  for all t, otherwise it is called inhomogeneous. For a homogeneous process, we denote  $\lambda(0)$  by  $\lambda$ .

**Lemma 14.** A Poisson process N is homogeneous iff it has stationary increments.

**Theorem 15** (Alternative definition of Poisson process). A counting process N is a Poisson process with continuous rate function  $\lambda$  iff N has independent and stationary increments and  $\Pr(N(t+h)-N(t)=1)=\lambda(t)h+o(h)$  and  $\Pr(N(t+h)-N(t)\geq 2)=o(h)$ .

Proof sketch for homogeneous. Let  $g(u,t) := \mathrm{MGF}_u(N(t)) = \mathrm{E}(e^{uN(t)})$ . Show  $g(u,t) = 1 + \lambda t(e^u - 1) + o(t)$  straightforwardly. Use calculus to show that  $g(u,t) = \exp(e^{\lambda t}(e^u - 1))$  (find derivative w.r.t t by computing  $\lim_{h\to 0} (g(u,t+h) - g(u,t))/h$ ; this gets rid of o(h)). Conclude that  $N(t) \sim \mathrm{Poisson}(\lambda t)$  since g(u,t) is MGF of  $\mathrm{Poisson}(\lambda t)$ .

**Lemma 16.** For a homogeneous Poisson process N,

$$\Pr(N(s) = a \mid N(s+t) = a+b) = \binom{a+b}{a} \left(\frac{s}{s+t}\right)^a \left(\frac{t}{s+t}\right)^b.$$

**Theorem 17.** Let N be a counting process. Then N is a homogeneous Poisson process with rate  $\lambda$  iff all interarrival times are independent and distributed  $\text{Expo}(\lambda)$ .

**Theorem 18** (Decomposition theorem 1). Let K be a finite set, and let  $\{N_i : i \in K\}$  be independent Poisson processes, where  $N_i$  has rate function  $\lambda_i$ . Let  $N := \sum_{i \in K} N_i$ . Then N is a Poisson process with rate function  $\sum_{i \in K} \lambda_i$ .

**Theorem 19** (Decomposition theorem 2). Let N be a Poisson process with rate function  $\lambda$ . Let K be a finite set (called set of labels). Suppose the  $j^{th}$  event receives label  $L_j \in K$ , where  $\Pr(L_j = i) = p_i(S_j)$  for some function  $p_i : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}_{\geq 0}$ , and  $\{N, L_1, L_2, \ldots\}$  are independent. For  $i \in K$ , let  $N_i(t)$  be the number of events having label i, i.e,  $N_i(t) = \sum_{j=1}^{N(t)} \mathbf{1}(L_j = i)$ . Then  $N_i$  is a Poisson process with rate function  $p_i\lambda$ . Furthermore, all  $N_i$  are independent and if all  $p_i$  are constant, then  $N_i(t) \mid N(t) \sim \text{Binom}(N(t), p_i)$ .

**Lemma 20.** Let  $N^{(1)}$  and  $N^{(2)}$  be independent homogeneous Poisson processes with rates  $\lambda_1$  and  $\lambda_2$ . Then

$$\Pr(S_n^{(1)} < S_m^{(2)}) = \sum_{i=n}^{n+m-1} \binom{n+m-1}{i} \frac{\lambda_1^i \lambda_2^{n+m-1-i}}{(\lambda_1 + \lambda_2)^{n+m-1}}.$$

*Proof sketch.* Model as a continuous markov chain with state space  $(n_1, n_2)$ , where  $n_i$  is the number of events of  $N^{(i)}$  that have occurred.

**Theorem 21** (arrival times distributed as order statistics). Let  $X = [X_1, X_2, ..., X_n]$  be IID uniform variables over [0, t]. Let U = sorted(X). Let  $S = [S_1, S_2, ..., S_n]$ . Then conditioned on N(t) = n, the distribution of S and U are identical.

#### 4 Continuous-Time Markov Chain

**Definition 17** (CTMC). Let  $X := \{X(t) : t \in \mathbb{R}_{\geq 0}\}$  be a stochastic process on discrete state-space D. X is called a continuous-time markov chain (CTMC) if  $\Pr(X(t+s) = d \mid \{X(u) : 0 \leq u \leq s\}) = \Pr(X(t+s) = d \mid X(s))$  for all  $s, t \in \mathbb{R}_{\geq 0}$ . If  $\Pr(X(t+s) = v \mid X(s) = u) = \Pr(X(t) = v \mid X(0) = u)$  for all u, v, s, t, then X is called time-homogeneous (TH) or stationary.

**Theorem 22** (Equiv defin of TH CTMC). Let  $X := \{X(t) : t \in \mathbb{R}_{\geq 0}\}$  be a stochastic process on discrete state-space D. Let  $Y(t) := \{X(u) : 0 \leq u < t\}$ . Let  $T_i^{(s)} := \min_{t \geq 0}(X(t+s) \neq i)$ . Let  $P_{i,j}^{(s)} := \Pr(X(s+T_i^{(s)}) = j \mid X(s) = i, Y(s))$ . X is TH CTMC iff  $(T_i^{(s)} \mid X(s) = i, Y(s)) \sim \operatorname{Expo}(\nu_i)$ , where  $\nu_i$  is a constant that doesn't depend on S or S o

Since  $T_i^{(s)}$  and  $P_{i,j}^{(s)}$  don't depend on s, we simply write  $T_i$  and  $P_{i,j}$ .  $T_i$  is called the transition time out of state i,  $\nu_i$  is called the transition rate out of state i, and  $P_{i,j}$  is the probability of transitioning from state i to state j.

Let 
$$q_{i,j} := \nu_i P_{i,j}$$
. Then  $\nu_i = \sum_i q_{i,j}$ .

**Theorem 23** (Chapman-Kolmogorov DiffEqs). For a TH CTMC X, let  $P_{i,j}(t) := \Pr(X(t) = j \mid X(0) = i)$ . Then

• Backward DiffEqs: 
$$\frac{dP_{i,j}(t)}{dt} = \sum_{k \neq i} q_{i,k} P_{k,j}(t) - \nu_i P_{i,j}(t).$$

• Forward DiffEqs: 
$$\frac{dP_{i,j}(t)}{dt} = \sum_{k \neq j} P_{i,k}(t) q_{k,j} - P_{i,j}(t) \nu_j.$$

Lemma 24. Let X be a TH CTMC.

$$\lim_{h \to 0} \frac{1 - P_{i,i}(h)}{h} = \nu_i \quad \forall i \qquad \qquad \lim_{h \to 0} \frac{P_{i,j}(h)}{h} = q_{i,j} \quad \forall i \neq j$$

**Lemma 25** (Limiting probability). In an irreducible positive-recurrent TH CTMC X, for every state j,  $\lim_{t\to\infty} P_{j,i}(t) = P_i$  for a unique real number  $P_i$ .  $P_i$  is called the limiting probability of state i. Furthermore,  $P_i$  is the unique solution to CK forward equations and  $\sum_i P_i = 1$ .

**Lemma 26** (Limiting probability of embedded chain). Let X be an irreducible positive-recurrent TH CTMC. Let Y be the sequence of states visited by X. Then Y is a discrete MC. Let P and  $\pi$  be the limiting probabilities of X and Y, respectively. Then  $P_i = (\pi_i/\nu_i)/(\sum_j \pi_j/\nu_j)$  and  $\pi_i = P_i\nu_i/(\sum_j P_j\nu_j)$ .

**Definition 18.** A CTMC is time-reversible iff the corresponding embedded discrete-time MC is time-reversible.

#### 4.1 Birth and Death Process

**Definition 19.** A birth-and-death (B&D) process is a TH CTMC X on state space  $\mathbb{Z}_{\geq 0}$  where  $q_{i,j} = 0$  if  $j \notin \{i-1, i+1\}$ . Let  $\lambda_i := q_{i,i+1}$  for  $i \geq 0$ ,  $\mu_i := q_{i,i-1}$  for  $i \geq 1$ ,  $\mu_0 := 0$ .

X(t) is called the population at time t,  $\lambda_i$  is called the birth rate at population i, and  $\mu_i$  is called the death rate at population i.

**Lemma 27.** Let X be a  $B \otimes D$  process where X(0) = n. Let  $T_n$  be the time to reach state n+1, i.e.,  $T_n := \min_{t \geq 0} (X(t) = n+1)$ . Then

$$E(T_n) = \frac{1}{\lambda_n} + \frac{\mu_n}{\lambda_n} E(T_{n-1}) = \frac{1}{\lambda_n} \sum_{i=0}^n \prod_{j=1}^i \frac{\mu_{n-j+1}}{\lambda_{n-j}}.$$

$$Var(T_n) = \frac{1}{\lambda_n(\lambda_n + \mu_n)^2} + \frac{\mu_n}{\lambda_n} Var(T_{i-1}) + \frac{\mu_n}{\lambda_n + \mu_n} (E(T_{n-1}) + E(T_n))^2$$

*Proof sketch.* Let  $I_i = \mathbf{1}$  (next transition goes to state i + 1). Let  $X_i$  be the transition time out of state i. Then  $I_i \sim \text{Bernouilli}(\lambda_i/(\mu_i + \lambda_i))$ ,  $X_i \sim \text{Expo}(\lambda_i + \mu_i)$ , and

$$E(T_i \mid I_i) = E(X_i) + (1 - I_i)(E(T_{i-1}) + E(T_i)),$$

$$Var(T_i \mid I_i) = Var(X_i) + (1 - I_i)(Var(T_{i-1}) + Var(T_i)).$$

CKBE for B&D:

$$\frac{dP_{i,j}(t)}{dt} = \mu_i P_{i-1,j}(t) + \lambda_i P_{i+1,j}(t) - (\lambda_i + \mu_i) P_{i,j}(t).$$

CKFE for B&D:

$$\frac{dP_{i,j}(t)}{dt} = \mu_{j+1}P_{i,j+1}(t) + \lambda_{j-1}P_{i,j-1}(t) - (\lambda_j + \mu_j)P_{i,j}(t).$$

**Theorem 28** (Limiting Probabilities). Let X be an irreducible  $B \mathcal{E} D$  process on state space  $D \subseteq \mathbb{Z}_{\geq 0}$  where  $0 \in D$ . For  $n \in D$ , let  $\alpha_n := \prod_{i=1}^n \frac{\lambda_{i-1}}{\mu_i}$ . If  $\sum_{i \in D} \alpha_i$  is finite, then  $P_i = \alpha_i P_0$ , and  $P_0 = 1/\sum_{i \in D} \alpha_i$ .

*Proof sketch.* Use Lemma 25 and add adjacent equations.