Tutorial 6-3 Discrete Fourier Transform

Figure 5.1 – Relationship of various Fourier transforms

	Input is		Output Spectrum is	
	Periodic	Time Resolution	Periodic	Frequency Resolution
Fourier Series Continuous CT-DFS	Periodic	Continuous	No	Discrete
Fourier Series Discrete DT-DFS	Periodic	Discrete	Periodic	Discrete
Fourier Transform CTFT	Non-periodic	Continuous	Non- periodic	Continuous
Fourier Transform DTFT	Non-periodic	Discrete	Periodic	Continuous
Discrete Fourier Transform DFT	Non-periodic	Discrete	Periodic	Discrete

Table I – Properties of Fourier transform input and output signals

- Discrete Fourier transform (DFT) which has all three desired properties.
 - (a) Periodic or non-periodic
 - (b) Of finite duration
 - (c) Have a discrete frequency spectrum

$$X(\Omega) = \sum_{k=-\infty}^{\infty} x[k] e^{-j\Omega k} DTFT$$

$$X(n) = \sum_{k=0}^{N-1} x[k] e^{-j(2\pi kn/N)} DFT$$

$$X(n) = \sum_{k=0}^{N-1} x[k] e^{-j(2\pi kn/N)}$$
 DFT