INDUCCIÓN EJERCICIOS RESUELTOS

1. Demostrar que la suma de los η primeros números naturales es igual a $\eta(\eta + 1)/2$.

Solución: Queremos probar que

$$\forall \eta \in \mathbb{N} : 1 + 2 + 3 + ... + \eta = \eta(\eta + 1)/2$$

Sea $\rho(\eta)$: $1+2+3+...+\eta=\eta(\eta+1)/2$; debemos probar que $\rho(\eta)$ satisface las propiedades (1) y (2) del teorema 2.

- (1) $\rho(1)$: 1 = 1(1 + 1)/2, lo cual es verdadero.
- (2) Sea $\eta \in N$, debemos probar que $\rho(\eta) \Rightarrow \rho(\eta + 1)$ es verdadero. Nótese que *si* $\rho(\eta)$ es falsa la implicación es verdadera, de modo que hay que hacer la demostración suponiendo que $\rho(\eta)$ es verdadera. (Esto es lo que se llama hipótesis inductiva).

Supongamos entonces que $\rho(\eta)$ es verdadera, es decir, que $1+2+3+...+\eta=\eta(\eta+1)/2$ es verdadera.

Como $\rho(\eta+1)$: $1+2+3+...+(\eta+1)=(\eta+1)[(\eta+1)+1]/2$, $\rho(\eta+1)$ debe poder formarse de $\rho(\eta)$ sumando $\eta+1$ a ambos miembros de la igualdad (de la hipótesis inductiva):

$$1 + 2 + 3 + \dots + \eta + (\eta + 1) = \eta(\eta + 1)/2 + (\eta + 1)$$

= $(\eta + 1) [\eta / 2 + 1]$
= $(\eta + 1) (\eta + 2) / 2$

Hemos confirmado nuestras sospechas, lo que, en lenguaje formal, significa que hemos deducido que $\rho(\eta+1)$ es verdadera, suponiendo que $\rho(\eta)$ lo es. Así, hemos probado que $\forall \eta \in N : \rho(\eta) \Rightarrow \rho(\eta+1)$ es verdadera.

Luego, $\forall \eta \in \mathbb{N} : 1+2+3+\ldots+\eta = \eta (\eta+1)/2$ es una fórmula correcta.

2. Probar que, $\forall \eta \in \mathbb{N} : 1.3+2.4+3.5+...+\eta(\eta+2) = \eta(\eta+1)(2\eta+7)/6$.

Solución : Sea
$$\rho(\eta)$$
 : $1\cdot 3+2\cdot 4+3\cdot 5+\ldots+\eta(\eta+2)=\eta(\eta+1)$ $(2\eta+7)$ /6
Entonces $\rho(1)$: $1\cdot 3=1\cdot (1+1)$ $(2\cdot 1+7)$ /6 $=2\cdot 9$ /6 $=3$, prueba que $\rho(1)$ es verdadera.

Hipótesis inductiva:

$$1\cdot 3+2\cdot 4+3\cdot 5+...+\eta(\eta+2)=\eta(\eta+1)(2\eta+7)/6$$
 (suponemos que $\rho(\eta)$ es verdadera)

Tesis: $1 \cdot 2 + 2 \cdot 4 + 3 \cdot 5 + ... + (\eta + 1) (\eta + 3) = (\eta + 1) (\eta + 2) (2\eta + 9) / 6$ (queremos probar que $\rho(\eta + 1)$ es verdadera)

Tenemos:
$$1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + ... + \eta(\eta + 2) + (\eta + 1) (\eta + 3) =$$

 $= \eta(\eta + 1) (2\eta + 7) / 6 + (\eta + 1) (\eta + 3)$
 $= (\eta + 1) / 6[\eta(2\eta + 7) + 6(2\eta + 7)]$
 $= (\eta + 1) [(2\eta^2 + 13\eta + 18)] / 6$
 $= (\eta + 1) (2\eta + 9) (\eta + 2) / 6$

lo que prueba que $\rho(\eta+1)$ es verdadera.

Luego, la fórmula es verdadera para todo $\eta \in N$

3. Determinar si el producto de 3 números impares consecutivos es siempre divisible por 6 Soluci'on: Sea $\rho(\eta)$: $(2\eta-1)$ $(2\eta+1)$ $(2\eta+3) = 6q$, donde q es algún número natural. Queremos determinar si $\rho(\eta)$ se cumple $\forall \eta \in \mathbb{N}$.

 $\rho(1): 1\cdot 3\cdot 5 = 6q \implies q = \frac{5}{2} \notin \mathbb{N} : \rho(1) \text{ es falso.}$ Luego $\rho(\eta)$ no es necesariamente cierto para todo $\eta \in \mathbb{N}$.

4. Determinar si la suma de 3 enteros consecutivos es siempre divisible por 6.

Solución: Sea
$$\rho(\eta)$$
: $\eta+(\eta+1)+(\eta+2)=6q$, $q\in\mathbb{N}$.
Entonces $\rho(1)$: $1+2+3=6$ es verdadera $q=1$

Hipótesis inductiva :
$$\rho(\eta) = \eta + (\eta + 1) + (\eta + 2) = 6q_1$$
, $q_1 \in \mathbb{N}$ es verdadera.

Por dem.
$$\rho(\eta+1) = (\eta+1) + (\eta+2) + (\eta+3) = 6q_2$$
, $q_2 \in \mathbb{N}$ es verdadera

$$(\eta+1) + (\eta+2) + (\eta+3) = \{ (\eta+1) + (\eta+2) + \eta \} + 3 = 6q_1 + 3 = 6(q_1 + \frac{1}{2}). Pero q_1 + \frac{1}{2} \notin N.$$

Luego $\rho(\eta)$ verdadero no implica $\rho(\eta+1)$ verdadero.

Por lo tanto, $\rho(\eta)$: $\eta + (\eta+1) + (\eta+2) = 6q$, $q \in \mathbb{N}$, es falso. La suma de 3 enteros consecutivos no es necesariamente divisible por 6.

NOTAS: (1) ejercicio 3 y 4 muestran que las propiedades (1) y (2) del teorema 2 son necesarias.

- (2) en los ejercicios siguientes no se explicitarán las funciones proposicionales $\rho(\eta)$; el lector no tendrá dificultades en identificarlas.
- 5. Determinar todos los números naturales para los cuales :

$$1 \cdot 2 \cdot 3 \cdot \dots \cdot \eta > 2^n$$
.

Solución: La fórmula no es válida para $\eta = 1, 2, 3$.

Para
$$\eta = 4$$
, se tiene que: $1 \cdot 2 \cdot 3 \cdot 4 > 2^4 = 16$ es verdadero

Supongamos que la desigualdad es válida para $k\in N$, con $k\geq 4$; esto es $1\cdot 2\cdot \ldots\cdot k>2^k$, $k\geq 4$.

Por demostrar que la desigualdad es válida para k+1, es decir que $1\cdot 2\cdot \ldots (k+1)>2^{k+1}$, $k\geq 4$.

En efecto:

$$1 \cdot 2 \cdot \dots \cdot (k+1) = (1 \cdot 2 \cdot \dots \cdot k) \cdot (k+1) > 2^{k} \cdot (k+1)$$

$$> 2^k \cdot 2 = 2^{k+1}$$
.

Luego $1 \cdot 2 \cdot ... \cdot (k+1) > 2^{k+1}$, y por lo tanto:

$$\forall \eta \in \mathbb{N}, \ \eta \geq 4: 1 \cdot 2 \cdot \dots \cdot \eta > 2^{\eta} \quad [teorema \ 3]$$

6. Demostrar por inducción, que si η es impar, $7^{\eta} + 1$ es divisible por 8.

Solución: Antes de aplicar inducción conviene hacer un cambio de índices. Sea $\eta=2i-1$.

Entonces si $\ i=1,2,3,...$ se tiene que $\ \eta=1,3,5,...$, y nuestro enunciado se transforma en :

 $7^{2i-1}+1$ es divisible por 8, $\forall i \in \mathbb{N}$.

Para i = 1: $7^1 + 1$ es divisible por 8 es una proposición verdadera.

Hipótesis inductiva: $7^{2i-1}+1$ es divisible por 8.

Tesis: $7^{2i+1}+1$ es divisible por 8.

Dado que nuestra única información es la hipótesis debemos hacer que la expresión $7^{2i-1}+1$, aparezca en nuestro desarrollo.

$$7^{2i+1}+1 = 7^{2}(7^{2i-1}) +1 = 7^{2}(7^{2i-1}+1) - 7^{2}+1$$

$$= 7^{2}(7^{2i-1}+1) -48$$

y aquí ambos sumandos son divisibles por 8

Luego: 8 divide a: $7^{2i+1}+1$

Así, por teorema (2) resulta que $\,7^{\,\eta}\,+\,1\,$ es divisible por 8 para todo η impar

7. Se define $f: N \rightarrow N$ en la forma siguiente

$$f(1) = 25 \text{ y } \forall \eta \in N : f(\eta+1) = f(\eta) + 4$$

- a) Examinando algunos valores de f, conjeturar una fórmula para f en términos de η .
- b) Demostrar la conjetura de a)

Solución: a)
$$f(1) = 25$$
, $f(2) = f(1) + 4 = 25 + 4$
 $f(3) = f(2) + 4 = 25 + 2 \cdot 4$,
 $f(4) = f(3) + 4 = 25 + 3 \cdot 4$

una fórmula razonable para f parece ser

$$f(\eta) = 25 + (\eta - 1) \cdot 4$$

b) Si $\eta = 1$ tenemos

 $25 + (1-1) \cdot 4 = f(1)$; lo que prueba que la fórmula es válida para 1.

Supongamos que para $\eta \in N$ la fórmula es verdadera, entonces,

prueba que también es verdadera para $\eta + 1$.

Luego, el teorema (2) nos dice que $\forall \eta \in N$

 $f(\eta) = 25 + (\eta - 1) \cdot 4$ es verdadera.

8.- Sean a_1 , a_2 , ..., $a_{\eta} \in (-1, 0]$. Probar que

$$(1 + a_1)(1 + a_2)...(1 + a_n) \ge 1 + a_1 + a_2 + ... + a_n$$

Solución: Si $\eta = 1$, la desigualdad es $1 + a_1 \ge 1 + a_1$, que ciertamente es verdadera.

Supongámosla válida para algún $\eta \in \mathbb{N}$, entonces $(1+a_1)(1+a_2) \dots (1+a_{\eta}) \ge 1+a_1+a_2+\dots+a_{\eta}$.

Si $a_{_{\eta+1}} \in \mbox{ (-1,0]}$, entonces $\mbox{ } 1+a_{_{\eta+1}}>0$, $\mbox{ con lo que}$

$$(1 + a_1)(1 + a_2) \dots (1 + a_{\eta}) (1 + a_{\eta+1})$$

$$\geq (1 + a_1 + a_2 + \dots + a_{\eta}) (1 + a_{\eta+1})$$

$$\geq 1 + a_1 + a_2 + \dots + a_{\eta} + a_{\eta+1} + a_1 a_{\eta+1} + a_2 a_{\eta+1} + \dots + a_{\eta} a_{\eta+1}.$$

Pero $a_1 a_{\eta+1} \ge 0$, $a_2 a_{\eta+1} \ge 0$, ..., $a_{\eta} a_{\eta+1} \ge 0$ luego

 $(1+a_1)(1+a_2)\dots(1+a_{\eta+1})\geq 1+a_1+a_2+\dots+a_{\eta+1}, \qquad \text{relación que prueba que la}$ desigualdad es válida para $\ \eta+1$. Así, ésta es verdadera para todo $\ \eta\in N.$