

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задание 4_1_2 »

С тудент группы	ИКБО-13-21	Дамарад Д.В.
Руководитель практики	Ассистент	Асадова Ю.С.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
Постановка задачи
Метод решения
Описание алгоритма
Блок-схема алгоритма
Код программы
Тестирование
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

введение

Постановка задачи

Иерархия наследования

Описать четыре класса которые последовательно наследуют друг друга, последовательными номерами классов 1,2,3,4. Реализовать программу, в которой использовать единственный указатель на объект базового класса (номер класса 1). Наследственность реализовать так, что можно было вызвать методы, принадлежащие объекту конкретного класса, только через объект данного класса.

В закрытом разделе каждого класса определены два свойства: строкового типа для наименования объекта и целого типа для значения определенного целочисленного выражения.

Описание каждого класса содержит один параметризированный конструктор с строковым и целочисленным параметром. В реализации каждого конструктора объекта определяются значения закрытых свойств:

- наименование объекта по шаблону: «значение строкового параметра»_«номер класса»;
- целочисленного свойства значением выражения возведения в степень номера класса целочисленного значения параметра конструктора.

Еще в описании каждого класса определен метод с одинаковым наименованием для всех классов, реализующий вывод значений закрытых свойств класса.

В основной функции реализовать алгоритм:
1. Вводиться идентификатор и натуральное число от 2 до 10.

2.	Созд	ιат	ь объект і	класса 4, исп	ользуя парам	етризирован	ный конструкто	p,
котој	ому	В	качестве	аргументов	передаются	введенный	идентификатор	И
натуј	зальн	oe					числ	01

3. Построчно, для всех объектов согласно наследственности, от объекта базового (класс 1) до производного объекта (класса 4) вывести наименование объекта класса и значение целочисленного свойства.

Описание входных данных

Первая строка:

«идентификатор» «натуральное число»

Пример ввода:

Object 2

Описание выходных данных

Построчно (четыре строки):

«идентификатор»_«номер класса» «значение целочисленного свойства»

Разделитель 1 пробел

Пример вывода:

Object_1 2

Object_2 4

Object_3 8

Object_4 16

Метод решения

Для решения поставленной задачи используются:

- Объекты стандартных потоков ввода и вывода cin и cout соотвественно. Используются для ввода с клавиатуры и вывода на экран.
- Объект par класса Base.
- Объект obj класса Child4.

Класс Base:

- Свойства/поля:
 - Свойство (хранящее наименование объекта):
 - Наименование пате;
 - Тип строковый
 - Модификатор доступа private.
 - Свойство (хранящее значения определенного целочисленного значения):
 - Наименование n;
 - Тип целочисленный;
 - Модификатор доступа private.
- Методы:
 - Метод Base:
 - Функционал параметризированный конструктор со строковым и целочисленным параметром.
 - Mетодт print_args():
 - Функционал вывод значений свойств класса на экран.

Класс Child2:

- Свойства/поля:
 - Свойство (хранящее наименование объекта):
 - Наименование name;
 - Тип строковый
 - Модификатор доступа private.
 - Свойство (хранящее значения определенного целочисленного значения):
 - Наименование n;
 - Тип целочисленный;
 - Модификатор доступа private.
 - Методы:
 - Метод Child2:
 - Функционал параметризированный конструктор со строковым и целочисленным параметром.
 - Mетодт print_args():
 - Функционал вывод значений свойств класса на экран.

Класс Child3:

- Свойства/поля:
 - Свойство (хранящее наименование объекта):
 - Наименование пате;
 - Тип строковый
 - Модификатор доступа private.
 - Свойство (хранящее значения определенного целочисленного значения):
 - Наименование n;

- Тип целочисленный;
- Модификатор доступа private.
- Методы:
 - Метод Child3:
 - Функционал параметризированный конструктор со строковым и целочисленным параметром.
 - Mетодт print_args():
 - Функционал вывод значений свойств класса на экран.

Класс Child4:

- Свойства/поля:
 - Свойство (хранящее наименование объекта):
 - Наименование пате;
 - Тип строковый
 - Модификатор доступа private.
 - Свойство (хранящее значения определенного целочисленного значения):
 - Наименование n;
 - Тип целочисленный;
 - Модификатор доступа private.
- Методы:
 - Метод Child4:
 - Функционал параметризированный конструктор со строковым и целочисленным параметром.
 - Mетодт print_args():
 - Функционал вывод значений свойств класса на экран.

No	Имя класса	Классы наследники	Модификатор доступа при наследовании	Описание	Номер	Комментарий
1	Base	GL II In	1.11	Базовый класс в иерархии классов		
2	Child2	Child2	public	Класс объектов, подчиненны йх классу Base	2	
		Child3	public		3	
3	Child3			Класс объектов, подчиненны йх классу Child2		
		Child4	public		4	
4	Child4			Класс объектов, подчиненны йх классу Child3		

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Функция: main

Функционал: Основной алгоритм программы

Параметры: Отсутствуют

Возвращаемое значение: Целочисленное значение - код возврата

Алгоритм функции представлен в таблице 2.

Таблица 2. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление строковой переменной пате и целочисленной переменной п	2	
2		Считывание значений переменных пате, п с клавиатуры	3	
3		Создание объекта obj с параметрами name, n	4	
4			Ø	

Класс объекта: Base

Модификатор доступа: public

Метод: Base

Функционал: Параметризированный конструктор

Параметры: Строковый name - название объекта, целочисленный n - значение свойств

Возвращаемое значение: Ссылка на параметр name, ссылка на параметр n

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода Base класса Base

N₂	Предикат	Действия	№ перехода	Комментарий
1			Ø	

Класс объекта:

Модификатор доступа:

Метод:

Функционал:

Параметры: нет

Возвращаемое значение:

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода класса

N₂	Предикат	Действия	№ перехода	Комментарий
1			Ø	

Блок-схема алгоритма

Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл Base.cpp

Файл Base.h

Файл Child2.cpp

```
#include "Base.h"
#include "Child2.h"
#include <string>
#include <iostream>
using namespace std;
Child2::Child2(string name, int n)
```

Файл Child2.h

```
#ifndef CHILD2_H
#define CHILD2_H
#include "Base.h"
#include <string>
using namespace std;
class Child2: public Base{
    private:
        string name;
        int n;
    public:
        Child2(string name, int n);
        void print_args();
};
#endif
```

Файл Child3.cpp

Файл Child3.h

Файл Child4.cpp

Файл Child4.h

Файл main.cpp

```
#include "Base.h"
#include "Child2.h"
#include "Child3.h"
```

```
#include "Child4.h"
#include <string>
#include <iostream>
using namespace std;
int main(){
        string name;
        int n;
        cin>>name>>n;
        Child4 obj(name,n);
        Base* par=&obj;
        par -> print_args();
        ((Child2*) par)-> print_args();
        ((Child3*) par)-> print_args();
        ((Child4*) par)-> print_args();
        return 0;
}
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
3 2	3_1 2 3_2 4 3_3 8 3_4 16	3_1 2 3_2 4 3_3 8 3_4 16
2 3	2_1 3 2_2 9 2_3 27 2_4 81	2_1 3 2_2 9 2_3 27 2_4 81

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).