1 point	1.	For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.
		Given a database of information about your users, automatically group them into different market segments.
		Given sales data from a large number of products in a supermarket, figure out which products tend to form coherent groups (say are frequently purchased together) and thus should be put on the same shelf.
		Given historical weather records, predict the amount of rainfall tomorrow (this would be a real-valued output)
		Given sales data from a large number of products in a supermarket, estimate future sales for each of these products.
1 point	2.	Suppose we have three cluster centroids $\mu_1=egin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=egin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=egin{bmatrix}4\\2\end{bmatrix}$.
		Furthermore, we have a training example $x^{(i)} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?
		$c^{(i)} = 1$
		$\bigcirc c^{(i)}=3$
		$\bigcirc c^{(i)}=2$
		$igcup c^{(i)}$ is not assigned
1 point	3.	K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?
		Move each cluster centroid μ_k , by setting it to be equal to the closest training example $x^{(i)}$
		Move the cluster centroids, where the centroids μ_k are updated.
		The cluster assignment step, where the parameters $c^{(i)}$ are updated.
		The cluster centroid assignment step, where each cluster centroid μ_i is assigned (by setting $c^{(i)}$) to the closest training example $x^{(i)}$.
1 point	4.	Suppose you have an unlabeled dataset $\{x^{(1)},\ldots,x^{(m)}\}$. You run K-means with 50 different random
		initializations, and obtain 50 different clusterings of the
		data. What is the recommended way for choosing which one of
		these 50 clusterings to use?
		The only way to do so is if we also have labels $y^{(i)}$ for our data.
		For each of the clusterings, compute $\frac{1}{m}\sum_{i=1}^m x^{(i)}-\mu_{c(i)} ^2$, and pick the one that minimizes this.
		Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.
		The answer is ambiguous, and there is no good way of choosing.
1	5.	Which of the following statements are true? Select all that apply.
point		If we are worried about K-means getting stuck in bad local optima, one way to ameliorate (reduce) this problem is if we try using multiple random initializations.
		Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible.
		The standard way of initializing K-means is setting $\mu_1=\dots=\mu_k$ to be equal to a vector of zeros.
		For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at the data to decide.

提交测试

