Q# 0.10 Language Quick Reference

Primitive Types	
64-bit integers	Int
Double-precision floats	Double
Booleans	Bool
	e.g.: true or false
Qubits	Qubit
Pauli basis	Pauli
	e.g.: PauliI, PauliX, PauliY, or PauliZ
Measurement	Result
results	e.g.: Zero or One
Sequences of	Range
integers	e.g.: 110 or 510
Strings	String
	e.g.: "Hello Quantum!"
"Return no	Unit
information" type	e.g.: ()

Derived Types	
Arrays	elementType[]
Tuples	(type0, type1,) e.g.: (Int, Qubit)
Functions	<pre>input -> output e.g.: ArcCos : (Double) -> Double</pre>
Operations	<pre>input => output is variants e.g.: H : (Qubit => Unit is Adj)</pre>

User-Defined Type	pes				
Declare UDT with anonymous items	<pre>newtype Name = (Type, Type); e.g.: newtype Pair = (Int, Int);</pre>				
Define UDT literal	Name(baseTupleLiteral)				
Define ODT interal	e.g.: let origin = Pair(0, 0);				
Unwrap operator!	VarName!				
(convert UDT to	<pre>e.g.: let originTuple = origin!;</pre>				
underlying type)	(now originTuple = (0, 0))				
Declare UDT with	newtype <i>Name</i> =				
named items	(Name1: Type, Name2: Type);				
	e.g.: newtype Complex =				
	(Re : Double, Im : Double);				
Accessing named	VarName::ItemName				
items of UDTs	e.g.: complexVariable::Re				
Update-and-	set VarName w/= ItemName <- val;				
reassign for named e.g.: mutable $p = Complex(0., 0.)$					
UDT items	set p w/= Re <- 1.0;				

Symbols and Variables				
Declare immutable symbol	let varName = value			
Declare mutable symbol (variable)	mutable varName = initialValue			
Update mutable symbol (variable)	set varName = newValue			
Apply-and-reassign	<pre>set varName operator= expression e.g.: set counter += 1;</pre>			

```
Functions and Operations
                    function Name(in0 : type0, ...)
Define function
(classical routine)
                    : returnType {
                        // function body
Call function
                    Name(parameters)
                    e.g.: let two = Sqrt(4.0);
                    operation Name(in0 : type0, ...)
Define operation
(quantum routine)
                    : returnType {
with explicitly
                        body { ... }
specified body,
                        adjoint { ... }
                        controlled { ... }
controlled and
adjoint variants
                        adjoint controlled { ... }
Define operation
                    operation Name(in0 : type0, ...)
with automatically
                    : returnType is Adj + Ctl {
generated adjoint
and controlled
variants
Call operation
                    Name(parameters)
                    e.g.: Ry(0.5 * PI(), q);
Call adjoint
                    Adjoint Name(parameters)
operation
                    e.g.: Adjoint Ry(0.5 * PI(), q);
Call controlled
                    Controlled Name(controlQubits,
operation
                        parameters)
                    e.g.: Controlled Ry(controls,
                        (0.5 * PI(), target));
```

```
Control Flow
Iterate over
                    for (index in range) {
a range of numbers
                         // Use integer index
                    e.g.: for (i in 0..N-1) { ... }
While loop
                    while (condition) {
(within functions)
Iterate over
                    for (val in array) {
an array
                         // Use value val
                    e.g.: for (q in register) { ... }
Repeat-until-
                    repeat { ... }
success loop
                    until (condition)
                    fixup { ... }
Conditional
                    if (cond1) { ... }
statement
                    elif (cond2) { ... }
                    else { ... }
                    condition ? caseTrue | caseFalse
Ternary operator
Return a value
                     return value
Stop with an error
                    fail "Error message"
Conjugations
                     within { ... }
(ABA^{\dagger} \text{ pattern})
                    apply { ... }
```

Arrays					
Allocate array	<pre>mutable name = new Type[length] e.g.: mutable b = new Bool[2];</pre>				
Get array length	Length(name)				
Access k-th element	name[k] NB: indices are 0-based				
Assign k-th element (copy-and-update)	set name w/= k <- value e.g.: set b w/= 0 <- true;				
Array literal	[value0, value1,] e.g.: let b = [true, false, true];				
Array concatenation	array1 + array2 e.g.: let t = [1, 2, 3] + [4, 5];				
Slicing (subarray)	name[sliceRange] e.g.: if t = [1, 2, 3, 4, 5], then t[1 3] is [2, 3, 4] t[3] is [4, 5] t[1] is [1, 2] t[0 2] is [1, 3, 5] t[1] is [5, 4, 3, 2, 1]				

Debugging (cla	ssical)
Print a string	Message("Hello Quantum!")
Print an	<pre>Message(\$"Value = {val}")</pre>
interpolated string	

Resources

Documentation	
Quantum	https://docs.microsoft.com/
Development Kit	quantum
Q# Language	https://docs.microsoft.com/
Reference	quantum/language
Q# Libraries	https://docs.microsoft.com/
Reference	qsharp/api

Q# Code Repositories			
QDK Samples	https://github.com/microsoft/		
	quantum		
QDK Libraries	https://github.com/microsoft/		
	QuantumLibraries		
Quantum Katas	https://github.com/microsoft/		
(tutorials)	QuantumKatas		
Q# compiler and	https://github.com/microsoft/		
extensions	qsharp-compiler		
Simulation	https://github.com/microsoft/		
framework	qsharp-runtime		
Jupyter kernel and	https://github.com/microsoft/		
Python host	iqsharp		
Source code for	https://github.com/		
the documentation	MicrosoftDocs/quantum-docs-pr		

Qubit Allocation Allocate a register using (reg = Qubit[N]) { of N qubits // Qubits in reg start in $|0\rangle$. // Qubits must be returned to $|0\rangle$. Allocate one qubit using (one = Qubit()) { ... } Allocate a mix of using $((x, y, \dots) =$ (Qubit[N], Qubit(), ...)) { qubit registers and individual qubits

Debugging (quantum) Print amplitudes DumpMachine("dump.txt") of wave function Assert that a qubit is AssertQubit(Zero, zeroQubit) in $|0\rangle$ or $|1\rangle$ state AssertQubit(One, oneQubit)

Measurements	
Measure qubit in	M(oneQubit)
Pauli Z basis	yields a Result (Zero or One)
Reset qubit to $ 0\rangle$	Reset(<i>oneQubit</i>)
Reset an array of qubits to $ 00\rangle$	ResetAll(register)

Command Line Basics			
Change directory	cd dirname		
Go to home	cd ~		
Go up one directory	cd		
Make new directory	mkdir <i>dirname</i>		
Open current directory in VS Code	code .		

Working with Q#	Projects
Create new project	dotnet new console -lang Q#
	output <i>project-dir</i>
Change directory to project directory	cd project-dir
Build project	dotnet build
Run all unit tests	dotnet test

Complex Arithmetic (a+c)+(b+d)i(a+bi)+(c+di) $a \cdot b + a \cdot di + c \cdot bi + (b \cdot d)i^2 =$ (a+bi)(c+di) $a \cdot b - b \cdot d + (a \cdot d + c \cdot b)i$ Complex conjugate $\overline{x} = a - bi$ x = a + bi $\frac{x}{y} = \frac{x}{y} \cdot 1 = \frac{x}{y} \cdot \frac{\overline{y}}{\overline{y}} =$ $= \frac{(a+bi)(c-di)}{(c+di)(c+di)} = \frac{(a+bi)(c+di)}{c^2+d^2}$ Complex division $\frac{a+bi}{c+di}$ $\overline{(c+di)(c-di)}$ Modulus $|x| = \sqrt{a^2 + b^2}$ x = a + bi $\cos(\theta) + i\sin(\theta)$ e^{a+bi} $e^a \cdot e^{bi} = e^a(\cos(b) + i\sin(b))$ r^{a+bi} $c^a \cdot c^{bi} = c^a \cdot e^{bi \ln c} =$ $= c^a(\cos(b \ln c) + i \sin(b \ln c))$ Polar form Cartesian form $re^{i\theta}$ $r(\cos(\theta) + i\sin(\theta))$ a + biCartesian form Polar form a + bi $r = \sqrt{a^2 + b^2}$ $\theta = \arctan(\frac{b}{a})$ **Linear Algebra** n columns $a_{1,1}$ $a_{1,2}$ $a_{1,3}$ m rows $a_{2,1}$ $a_{2,2}$ $a_{2,3}$ N X M Matrix $a_{3,1}$ $a_{3,2}$ $a_{3,3}$ Vector of size N $\begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix}$ Working with Q# from command line Addition $\begin{bmatrix} a+e & b+f \end{bmatrix}$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix}$ Scalar multiplication $\begin{vmatrix} c+g & d+h \end{vmatrix}$ $\begin{bmatrix} a \cdot b & a \cdot c \end{bmatrix}$ $\begin{vmatrix} a \cdot d & a \cdot e \end{vmatrix}$ a · d eMatrix multiplication $[a \cdot x + b \cdot y + c \cdot z]$ $|d \cdot x + e \cdot y + f \cdot z|$ d eTranspose $\begin{bmatrix} a & b & c \end{bmatrix}$ bd e|c|Ādjoint \overline{a} \overline{e} $\begin{bmatrix} a & b & c \end{bmatrix}^{\dagger}$ \bar{b} \overline{d} $\begin{vmatrix} d & e & f \end{vmatrix}$ \overline{c} Inner product $= \begin{bmatrix} \overline{a} & \overline{b} \end{bmatrix}$ $\begin{bmatrix} a \\ b \end{bmatrix}$ $\overline{a} \cdot c + \overline{b} \cdot d$ Outer product $\begin{bmatrix} a \\ b \end{bmatrix}$ and $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $\begin{bmatrix} a \cdot \overline{x} & a \cdot \overline{y} & a \cdot \overline{z} \end{bmatrix}$ $b \cdot \overline{x} \quad b \cdot \overline{y} \quad b \cdot \overline{z}$

Math reference

Gates reference

Single	Single Qubit gates						
Gate	Matrix representation	Ket-bra representation	Applying to $ \psi angle=lpha 0 angle+eta 1 angle$	Applying to basis states:	$\ket{0},\ket{1},\ket{+},\ket{-}$ and	$ \pm i\rangle = \frac{1}{\sqrt{2}}(0\rangle \pm i 1\rangle)$	
Χ	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$ 0\rangle \left<1 + 1\rangle \left<0 \right $	$\left \psi ight angle = \alpha\left 1 ight angle + \beta\left 0 ight angle$	$X 0\rangle = 1\rangle X 1\rangle = 0\rangle$	$\begin{array}{l} X\mid +\rangle =\mid +\rangle \\ X\mid -\rangle =-\mid -\rangle \end{array}$	$egin{aligned} X \left i ight angle &= i \left -i ight angle \ X \left -i ight angle &= -i \left i ight angle \end{aligned}$	
Υ	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$i(\left 1\right\rangle \left\langle 0\right -\left 0\right\rangle \left\langle 1\right)$	$Y\ket{\psi} = i(\alpha\ket{1} - \beta\ket{0})$	$Y 0\rangle = i 1\rangle$ $Y 1\rangle = -i 0\rangle$	$egin{aligned} Y \mid + \rangle &= -i \mid - \rangle \\ Y \mid - \rangle &= i \mid + \rangle \end{aligned}$	$Y i\rangle = i\rangle$ $Y -i\rangle = - -i\rangle$	
Z	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$ 0\rangle \left< 0 \right - \left 1 \right> \left< 1 \right $	$Z\left \psi\right\rangle = \alpha\left 0\right\rangle - \beta\left 1\right\rangle$	$Z 0\rangle = 0\rangle Z 1\rangle = - 1\rangle$	$Z \mid + \rangle = \mid - \rangle$ $Z \mid - \rangle = \mid + \rangle$	$egin{aligned} Z\ket{i} &= \ket{-i} \ Z\ket{-i} &= \ket{i} \end{aligned}$	
1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$ 0\rangle \langle 0 + 1\rangle \langle 1 $	$I\ket{\psi}=\ket{\psi}$				
Н	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$	$ 0\rangle \langle + + 1\rangle \langle - $	$H \mid \psi \rangle = \alpha \mid + \rangle + \beta \mid - \rangle = \frac{\alpha + \beta}{\sqrt{2}} \mid 0 \rangle + \frac{\alpha - \beta}{\sqrt{2}} \mid 1 \rangle$	$H 0\rangle = +\rangle$ $H 1\rangle = -\rangle$	$H \mid + \rangle = \mid 0 \rangle$ $H \mid - \rangle = \mid 1 \rangle$	$\begin{array}{l} H\left i\right\rangle = e^{i\pi/4}\left -i\right\rangle \\ H\left -i\right\rangle = e^{-i\pi/4}\left i\right\rangle \end{array}$	
S	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	$ 0\rangle \langle 0 + i 1\rangle \langle 1 $	$S\left \psi\right\rangle = \alpha\left 0\right\rangle + i\beta\left 1\right\rangle$	$S 0\rangle = 0\rangle$ $S 1\rangle = i 1\rangle$	$S \mid + \rangle = \mid i \rangle$ $S \mid - \rangle = \mid -i \rangle$	$S i\rangle = -\rangle$ $S -i\rangle = +\rangle$	
T	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	$ 0\rangle \langle 0 + e^{i\pi/4} 1\rangle \langle 1 $	$T\left \psi\right\rangle = \alpha\left 0\right\rangle + e^{i\pi/4}\beta\left 1\right\rangle$	$T 0\rangle = 0\rangle T 1\rangle = e^{i\pi/4} 1\rangle$			
$R_x(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$	$\begin{array}{l} \cos\frac{\theta}{2}\left 0\right\rangle\left\langle 0\right -i\sin\frac{\theta}{2}\left 1\right\rangle\left\langle 0\right \\ -i\sin\frac{\theta}{2}\left 0\right\rangle\left\langle 1\right +\cos\frac{\theta}{2}\left 1\right\rangle\left\langle 1\right \end{array}$	$\begin{array}{l} R_x(\theta) \left \psi \right\rangle = \ \left(\alpha \cos \frac{\theta}{2} - i \beta \sin \frac{\theta}{2} \right) \left 0 \right\rangle + \\ + \left(\beta \cos \frac{\theta}{2} - i \alpha \sin \frac{\theta}{2} \right) \left 1 \right\rangle \end{array}$	$R_x(\theta) \left 0 \right> = \cos rac{ heta}{2} \left 0 \right> - i \sin rac{ heta}{2} \left 1 \right>$	$R_x(heta) \left 1 ight angle = \cos rac{ heta}{2} \left 1 ight angle - i \sin rac{ heta}{2} \left 0 ight angle$		
$R_y(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$	$\begin{array}{l} \cos\frac{\theta}{2}\left 0\right\rangle\left\langle 0\right +\sin\frac{\theta}{2}\left 1\right\rangle\left\langle 0\right \\ -\sin\frac{\theta}{2}\left 0\right\rangle\left\langle 1\right +\cos\frac{\theta}{2}\left 1\right\rangle\left\langle 1\right \end{array}$	$\begin{split} R_y(\theta) \left \psi \right\rangle &= \left(\alpha \cos \frac{\theta}{2} - \beta \sin \frac{\theta}{2} \right) \left 0 \right\rangle + \\ &+ \left(\beta \cos \frac{\theta}{2} + \alpha \sin \frac{\theta}{2} \right) \left 1 \right\rangle \end{split}$	$R_y(heta)\ket{0} = \cos rac{ heta}{2}\ket{0} + \sin rac{ heta}{2}\ket{1}$	$R_y(heta)\ket{1} = \cos rac{ heta}{2}\ket{1} - \sin rac{ heta}{2}\ket{0}$		
$R_z(\theta)$	$\begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix}$	$e^{-i\theta/2} 0\rangle \langle 0 + e^{i\theta/2} 1\rangle \langle 1 $	$R_z(\theta) \psi\rangle = \alpha e^{-i\theta/2} 0\rangle + \beta e^{i\theta/2} 1\rangle$	$R_z(\theta) 0\rangle = e^{-i\theta/2} 0\rangle$	$R_z(\theta) 1\rangle = e^{i\theta/2} 1\rangle$		
$R_1(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$	$ 0\rangle \langle 0 + e^{i\theta} 1\rangle \langle 1 $	$R_1(\theta) \psi\rangle = \alpha 0\rangle + \beta e^{i\theta} 1\rangle$	$R_1(\theta) 0\rangle = 0\rangle$	$R_1(\theta) 1\rangle = e^{i\theta} 1\rangle$		