NORX: Parallel and Scalable Authenticated Encryption

Jean-Philippe Aumasson

Kudelski Security

jeanphilippe.aumasson@gmail.com

Philipp Jovanovic

University of Passau

jovanovic@fim.uni-passau.de

Samuel Neves

University of Coimbra

sneves@dei.uc.pt

Overview

- Authenticated encryption protects payload data (integrity + authenticity + confidentiality) and associated data (integrity + authenticity).
- NORX is a family of authenticated encryption schemes with support for associated data (AEAD).
- Includes 8-, 16-, 32- and 64-bit variants.
- NORX32/NORX64 are candidates in CAESAR the Competition for Authenticated Encryption: Security, Applicability, and Robustness.
- Latest addition for low-end systems: NORX8/NORX16.
- Features:
 - Secure, fast, and scalable.
 - Based on well-analysed primitives: ChaCha/BLAKE(2)/Keccak.
 - Simple design.
 - Hardware and software friendly.
 - Parallelisable.

Specification

R number of rounds

D parallelism degree

- Online.
- Side-channel robustness (constant-time operations).

S internal state

b state size

c capacity

r rate

- Straightforward to implement.
- High key agility.
- No AES dependence.

4) Layout

Sequential Version: D = 1, W = 8,16,32,64.

Parallel Version: D > 1, W = 32,64.

5) Permutation F^R

Permutation F: updates the four columns and the four diagonals of S.

- a) column step
- b) diagonal step
- Permutation G: updates input words a,b,c,d in eight steps.
 - 1. $a \leftarrow (a \oplus b) \oplus ((a \land b) \ll 1)$
- 5. $a \leftarrow (a \oplus b) \oplus ((a \land b) \ll 1)$
- 2. $d \leftarrow (a \oplus d) \gg r_0$
- 6. $d \leftarrow (a \oplus d) \gg r_2$
- 3. $c \leftarrow (c \oplus d) \oplus ((c \land d) \ll 1)$
- 7. $c \leftarrow (c \oplus d) \oplus ((c \land d) \ll 1)$
- 4. $b \leftarrow (b \oplus c) \gg r_1$
- 8. $b \leftarrow (b \oplus c) \gg r_3$
- Rotation Offsets: used for cyclic rotations in G.

W	8	16	32	64
(r_0,r_1,r_2,r_3)	(1,3,5,7)	(8,11,12,15)	(8,11,16,31)	(8,19,40,63)

6) Initialisation

- Load nonce, key, and constants into S. Constants ui are generated by $(u_0,...,u_{15}) \leftarrow F^2(0,...,15)$.
- Integrate parameters: XOR W, R, D, ITI to s₁₂, s₁₃, s₁₄, s₁₅, respectively.
- Update S by one application of F^R.

Security

- 1) Requirements for Secure Usage
 - Unique nonces.
 - Abort on tag verification failure.
- 2) Expected Security Levels

Security Goal	NORX8	NORX16	NORX32	NORX64
Plaintext confidentiality	80	96	128	256
Plaintext integrity	80	96	128	256
Associated data integrity	80	96	128	256
Nonce integrity	80	96	128	256

3) Cryptanalytic Findings

- Conservative parameter choices. For example, NORX32/64 could increase rate by 2W for higher speeds (+16%) at no penalty for generic security.
- Parallel versions achieve generic security levels as well.
- Upper bounds for differential characteristics (determined with help of SAT/SMT-solvers):

W	F ² (perm)	F (init)	F (init) + F ⁶ (perm)
8	2 -29	2 -32	≤ 2 ⁻¹¹⁹
16	2 -37	2 -53	≤ 2 ⁻¹⁶⁴
32	≤ 2 ⁻²⁷	2-67	≤ 2 ⁻¹⁴⁸
64	≤ 2 ⁻²³	≤ 2 ⁻⁶²	≤ 2 ⁻¹³¹

Performance

1) NORX64-4-1 in SW

Platform	Cycles per Byte	MiBps
Ivy Bridge: i7 3667U @ 2.0 GHz	3.37	593
Haswell: i7 4770K @ 3.5 GHz	2.51	1390
BeagleBone Black: Cortex-A8 @ 1.0 GHz	8.96	111
iPad Air: Apple A7 @ 1.4 GHz	4.07	343

- 2) NORX64-4-1 in HW (ASIC): 59 kGE, 180 nm UMC, 125 MHz, 10 Gbps.
- 3) NORX vs. AES-GCM in SW

2) Parameters

K key

N nonce

1) Notation

- Identifying parameters of an instance: W, R, D and ITI.
- Notation: NORXW-R-D-ITI. Shortened to NORXW-R-D if default value of ITI = IKI is used (see below).

A header

B trailer

P payload

C ciphertext

T authentication tag

Recommended selections:

W	R	D	ITI	IKI	INI	b	r	С
8	4 or 6	1	80	80	32	128	40	88
16	4 or 6	1	96	96	32	256	128	128
32	4 or 6	1	128	128	64	512	320	192
64	4 or 6	1 or 4	256	256	128	1024	640	384

3) State

Distribution of rate (data processing) and capacity (security) words in S:

