# Implementando Algoritmo de Monte Carlo com Paralelismo em C++

Danilo Sanchez Tuzita (danilo\_st@hotmail.com)

#### I. RESUMO

Esse é um trabalho que tem como objetivo implementar os algoritmo de Monte Carlo em *C*++ para integração numérica usando métodos de paralelismo para aumentar a performance.

# II. INTRODUÇÃO

O cálculo numérico de integrais pode ser mais fácil e rápido de se obter um resultado do que calcular de forma analítica. Porém deve-se levar em conta que esse cálculo não será completamente preciso.

#### III. TEORIA

Para o entendimento desse trabalho é necessário conhecimentos básico de cálculo.

#### IV. PROPOSTA E IMPLEMENTAÇÃO

O Método de Monte Carlo utiliza de números aleatórios e chance para calcular uma integral. É tirado várias amostras em pontos aleatórios da função dentro do intervalo que se quer integrar a função e calculado a média das amostras, como demonstra a fórmula 1, onde n é a quantidade de "chutes" e  $x_i$  um valor aleatório no intervalo [a,b].

$$\int_{a}^{b} f(x) dx \approx (b - a) \times \frac{1}{n} \times \sum_{i=1}^{n} f(x_i)$$
 (1)

Uma das desvantagens desse algorítimo é que ela é muito dependente da função que se quer integrar, se essa não for "bem comportada" é possível que a média se desvie drasticamente pois por chance foi escolhido um  $x_i$  num pico ou vale da função, fazendo com que o resultado não seja tão próximo ao valor real. Porém isso pode ser combatido aumentando o valor de n.

O Método de Monte Carlo, também pode calcular integrais multidimensionais, porém, diferentemente das integrações unidimensionais, é preciso de uma função auxiliar g que retornará se as coordenadas passadas estão dentro ou não da função.

Por exemplo, considerando que se quer calcular o valor de  $\pi$ , teremos a função g demonstrada pela fórmula 2, calculamos a aproximação de  $\pi$  utilizando a fórmula 3.

$$g(x,y) = \begin{cases} 1, & \text{se } x^2 + y^2 \le 1\\ 0, & \text{caso contrario} \end{cases}$$
 (2)



Fig. 1. Representação do Método Monte Carlo para cálculo de pi. Fonte: Wikipédia

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \approx (b - a) \times (d - c) \times \frac{1}{n} \times \sum_{i=1}^{n} g(x_{i}, y_{i})$$
(3)

Esse cálculo pode ser representado pela figura 1, onde os pontos vermelhos indicam que as coordenadas aleatórias geradas estão dentro da área de interesse. Com essas amostras é calculado a proporção de quantas das coordenadas caíram dentro da área do circulo vezes a área total do domínio de teste.

#### A. Paralelismo

Pelo fato de cada iteração do algorítimo usar valores aleatórios para o seu calculo, as iterações se tornam totalmente independentes uma das outras. Com isso, nesse trabalho, foi implementado o método de Monte Carlo com paralelismo em mente, pois a maioria de suas operações são independentes. Foi utilizado a biblioteca MPI em C++. Cada nó processa  $\frac{1}{n}$  iterações e no final é calcula-se a média da solução de cada nó.

#### V. RESULTADOS

Para testar o Método proposto, foi calculado a integral de duas funções e o volume de uma intersecção entre um toroide e um cubo. Para os testes foi utilizado apenas uma máquina com um i5-6500~3.2GHz, 4~núcleos, apesar da biblioteca suportar processamento em paralelo em múltiplas máquinas. Cada experimento consiste do cálculo de cada integral para iterações  $n=\{10^2-10^8\}$ , com diferentes contagens de threads.

TABLE I RESULTADOS EXPERIMENTO 1A

| Experiment 1a. |            |       |       |            |  |  |
|----------------|------------|-------|-------|------------|--|--|
| Threads        | 1          | Thre  | ads   | 2          |  |  |
| Iterations     | Result     | Itera | tions | Result     |  |  |
| 100            | 3.062506   |       | 100   | 3.120475   |  |  |
| 1000           | 3.129705   |       | 1000  | 3.129128   |  |  |
| 10000          | 3.143852   |       | 10000 | 3.143251   |  |  |
| 100000         | 3.143789   | 10    | 00000 | 3.143075   |  |  |
| 1000000        | 3.141701   | 100   | 00000 | 3.140935   |  |  |
| 10000000       | 3.141583   | 1000  | 00000 | 3.141560   |  |  |
| 100000000      | 3.141569   | 10000 | 00000 | 3.141486   |  |  |
| Time           | 16.46843 s | Time  |       | 8.161513 s |  |  |
| Threads        | 4          | Thre  | ads   | 8          |  |  |
| Iterations     | Result     | Itera | tions | Result     |  |  |
| 100            | 3.111144   |       | 100   | 2.999217   |  |  |
| 1000           | 3.099512   |       | 1000  | 3.167914   |  |  |
| 10000          | 3.151772   |       | 10000 | 3.115333   |  |  |
| 100000         | 3.137877   | 10    | 00000 | 3.134642   |  |  |
| 1000000        | 3.142671   | 100   | 00000 | 3.138915   |  |  |
| 10000000       | 3.141144   | 1000  | 00000 | 3.142072   |  |  |
| 100000000      | 3.141652   | 10000 | 00000 | 3.141468   |  |  |
| Time           | 4.921759 s | Time  |       | 4.652310 s |  |  |

### A. Experimento 1

As funções calculadas com o método de Monte Carlo foram as seguintes integrais 4 e 5:

$$\int_0^1 \frac{4}{1+x^2} \, dx \tag{4}$$

$$\int_0^1 \sqrt{x + \sqrt{x}} \, dx \tag{5}$$

1) a: A tabela I demonstra os resultados obtidos para o calculo da integral 4. Nota-se que quanto mais iterações o resultado mais se aproxima de  $\pi$ , o resultado analítico dessa integral. Também pode-se notar o tempo significantemente mais curto para os processamentos em paralelo.

2) b: A tabela II demonstra os resultados obtidos para o calculo da integral 5. Diferentemente do Experimento 1a. o cálculo dessa integral de modo geral, com apenas 100 iterações, já se aproxima consideravelmente do resultado final. Isso de deve ao fato dessa função ser mais "comportada" do que a função do experimento anterior.

# B. Experimento 2

Para o cálculo do volume da intersecção de um toroide com um cubo, foi dado a fórmula 6 e a figura 2. Com isso podemos descobrir que o cálculo do volume da intersecção pedida pode ser descrita pela fórmula 7.

$$g(x, y, z) = \begin{cases} 1, & \text{se } z^2 \times \left(\sqrt{x^2 + y^2} - 3\right) \le 1\\ 0, & \text{caso contrario} \end{cases}$$
 (6)

$$\int_{-1}^{1} \int_{-3}^{4} \int_{1}^{4} f(x, y, y) \, dx \, dy \, dz \approx$$

$$(4-3) \times (4-(-3)) \times (1-(-1)) \times \frac{1}{n} \times \sum_{i=1}^{n} g(x_{i}, y_{i}, z_{i})$$

TABLE II RESULTADOS EXPERIMENTO 1B

| Experiment 1b. |             |     |            |            |  |  |
|----------------|-------------|-----|------------|------------|--|--|
| Threads        | 1           |     | Threads    | 2          |  |  |
| Iterations     | Result      | 1 1 | Iterations | Result     |  |  |
| 100            | 1.035658    | 1 1 | 100        | 1.061828   |  |  |
| 1000           | 1.034073    |     | 1000       | 1.024322   |  |  |
| 10000          | 1.045930    |     | 10000      | 1.047984   |  |  |
| 100000         | 1.044759    |     | 100000     | 1.046520   |  |  |
| 1000000        | 1.045265    |     | 1000000    | 1.045285   |  |  |
| 10000000       | 1.045237    |     | 10000000   | 1.045382   |  |  |
| 100000000      | 1.045275    |     | 100000000  | 1.045272   |  |  |
| Time           | 14.970445 s |     | Time       | 7.268767 s |  |  |
| Threads        | 4           |     | Threads    | 8          |  |  |
| Iterations     | Result      | 1 1 | Iterations | Result     |  |  |
| 100            | 1.073535    | 1 1 | 100        | 1.023526   |  |  |
| 1000           | 1.060576    | 1 1 | 1000       | 1.024151   |  |  |
| 10000          | 1.044722    |     | 10000      | 1.034570   |  |  |
| 100000         | 1.045832    |     | 100000     | 1.041491   |  |  |
| 1000000        | 1.044776    | 1   | 1000000    | 1.046187   |  |  |
| 10000000       | 1.045154    | 1   | 10000000   | 1.044556   |  |  |
| 100000000      | 1.045333    | 1 1 | 100000000  | 1.045391   |  |  |
| Time           | 4.518436 s  |     | Time       | 4.447252 s |  |  |

TABLE III RESULTADOS EXPERIMENTO 2

| Experiment 2. |             |     |            |             |  |  |  |
|---------------|-------------|-----|------------|-------------|--|--|--|
| Threads       | 1           |     | Threads    | 2           |  |  |  |
| Iterations    | Result      | 1   | Iterations | Result      |  |  |  |
| 100           | 22.68       | 1   | 100        | 25.2        |  |  |  |
| 1000          | 21.672      | ] [ | 1000       | 22.512      |  |  |  |
| 10000         | 22.8228     | ] [ | 10000      | 21.504      |  |  |  |
| 100000        | 22.04412    | ] [ | 100000     | 22.02816    |  |  |  |
| 1000000       | 22.084272   | 1 [ | 1000000    | 22.063776   |  |  |  |
| 10000000      | 22.118292   | 1 [ | 10000000   | 22.094268   |  |  |  |
| 100000000     | 22.094325   | ] [ | 100000000  | 22.104509   |  |  |  |
| Time          | 50.871556 s | ] [ | Time       | 27.623872 s |  |  |  |
| Threads       | 4           | ] [ | Threads    | 8           |  |  |  |
| Iterations    | Result      | ] [ | Iterations | Result      |  |  |  |
| 100           | 13.44       | ] [ | 100        | 35          |  |  |  |
| 1000          | 19.152      | ] [ | 1000       | 12.096      |  |  |  |
| 10000         | 21.672      | ] [ | 10000      | 22.3104     |  |  |  |
| 100000        | 22.12224    | ] [ | 100000     | 22.33056    |  |  |  |
| 1000000       | 22.143072   | ] [ | 1000000    | 22.010688   |  |  |  |
| 10000000      | 22.094318   | ] [ | 10000000   | 22.084138   |  |  |  |
| 100000000     | 22.094678   | ] [ | 100000000  | 22.09153    |  |  |  |
| Time          | 14.845529 s | ] [ | Time       | 14.564261 s |  |  |  |



Fig. 2. Representação da intersecção do toroide e cubo a ser calculado

Os resultados desse experimento são demonstrados na Tabela III, para esse experimento nota-se que é necessário uma quantidade razoavelmente maior para se ter uma boa acurácia, se comparado aos experimentos anteriores. Isso se deve ao fato de ser uma integral de uma função multidimensional e seu domínio de onde pode ser amostrado valores é também significativamente maior do que o nos experimentos anteriores.

Assim como nos experimentos anteriores, pode se observar que o tempo de processamento cai consideravelmente de acordo com a quantidade de nós.

## VI. CONCLUSÃO

A utilização de métodos de integração numérica pode ser muito útil quando é difícil calcular a integral analiticamente especialmente o calculo de integrais em múltiplas dimensões.

O Método de Monte Carlo resolve esse problema atingindo uma precisão razoável a um baixo custo computacional. Além disso pode-se usar paralelismo para o processamento, pois suas operações são majoritariamente independentes.