

Presented By: Basmah AlQahtani Mariam Alrashdi

We will discuss ...

- 1. Introduction
- 2. Project Aim
- 3. Description
- 4. Models Used
- 5. Dataset Used
- 6. Workflow Explanation
- 7. Results & Discussion
- 8. Conclusion

In news, categorization is a multi-label text classification issue. The purpose is to allocate a news story to one or more categories.

Project Aim ...

In this project, we aim to train a model that can properly categorize previously unknown news articles into some classes such as business, science and technology, entertainment, and health.

Description ...

The purpose of dividing news into multiple categories is to make the news reader's experience easier.

We construct a model that automatically classifies these news headlines based on their category.

Description ...

Preprocessing the dataset

Machine Learning

Model used ...

In this project, two models were used in a dataset for news classification.

Naïve Bayes	Logistic Regression
Collection of classification algorithms based on Bayes' Theorem. It is not a single algorithm but a family of algorithms where all of them share a common principle.	A Classification algorithm is used to forecast a result using a set of independent variables. To describe data and explain the relationship between one dependent binary variable and one or more nominal, ordinal.

Data Used

Data used...

we used a database from Kaggle. This dataset contains headlines, URLs, and categories for 422,937 news stories collected by a web aggregator between March 10th, 2014, and August 10th, 2014.

The columns included in this dataset are:

- **ID:** the numeric ID of the article
- **TITLE:** the headline of the article
- **URL:** the URL of the article
- **PUBLISHER:** the publisher of the article
- **CATEGORY:** the category of the news item; one of:
 - b: business
 - t: science and technology
 - e: entertainment
 - m: health
- **STORY:** alphanumeric ID of the news story that the article discusses
- **HOSTNAME:** hostname where the article was posted
- TIMESTAMP: approximate timestamp of the article's publication, given in Unix time (seconds since midnight on Jan 1, 1970)

Results & Discussions

1- Naïve Bayes:

Naïve Bayes model performance on the training dataset:

accuracy 0.92	2870226522852	203		
	precision	recall	f1-score	support
b	0.90	0.92	0.91	92774
е	0.95	0.97	0.96	121975
m	0.97	0.86	0.91	36511
t	0.91	0.91	0.91	86675
accuracy			0.93	337935
macro avg	0.93	0.91	0.92	337935
weighted avg	0.93	0.93	0.93	337935

1- Naïve Bayes:

Naïve Bayes model performance on the test dataset:

Naive Bayes Model Performance Analysis						
accuracy	accuracy 0.9208844278206524					
		precision	recall	f1-score	support	
	ь	0.89	0.91	0.90	23193	
	e	0.94	0.97	0.96	30494	
	m	0.97	0.84	0.90	9128	
	t	0.90	0.90	0.90	21669	
accur	асу			0.92	84484	
macro	avg	0.93	0.90	0.91	84484	
weighted	avg	0.92	0.92	0.92	84484	

2- Logistic Regression:

Logistic Regression model performance on the training dataset:

accuracy 0.95	342595469542	96		
	precision	recall	f1-score	support
b	0.93	0.94	0.94	92774
е	0.97	0.98	0.98	121975
m	0.97	0.93	0.95	36511
t	0.94	0.94	0.94	86675
accuracy			0.95	337935
macro avg	0.95	0.95	0.95	337935
weighted avg	0.95	0.95	0.95	337935

2- Logistic Regression:

Logistic Regression model performance on test dataset:

Logistic Regression Model Performance Analysis					
accuracy	0.94	0793523033947	73		
		precision	recall	f1-score	support
	ь	0.92	0.92	0.92	23193
	е	0.96	0.98	0.97	30494
	m	0.96	0.91	0.93	9128
	t	0.93	0.92	0.92	21669
accui	racy			0.94	84484
macro	avg	0.94	0.93	0.94	84484
weighted	avg	0.94	0.94	0.94	84484

Basmah AlQahtani 443800986@kku.edu.sa Mariam AlRashdi 443800993@kku.edu.sa 10 May 2022