TEST - TEORIA MASURII SI A INTEGRALEI

I. Fie $f, g : [0, 1] \to \mathbb{R}$ definite astfel: f(0) = 3,

$$f(x) = (-1)^n (n+1)$$
 daca $x \in \left(\frac{1}{(2n+1)^3}, \frac{1}{(2n-1)^3}\right], n \in \mathbb{N}, n \ge 1$

 \sin

$$g(x) = \begin{cases} (f(x))^3 & \text{daca } x \in [0,1] \setminus \{\frac{1}{n} : n \in \mathbb{N}^*\} \\ 1 & \text{daca } x = \frac{1}{n}, \ n \in \mathbb{N}^*. \end{cases}$$

- 1) Aratati ca f este masurabila Borel si ca f este masurabila Lebesgue.
- 2) Studiati integrabilitatea Lebesgue a functiei f.
- 3) Este g masurabila Borel? Este g masurabila Lebesgue? Este g integrabila Lebesgue? Justificati raspunsurile!

Nota: Nu se cere calcularea integalelor, ci doar justificarea faptului ca functiile sunt sau nu integrabile!

II. Fie $E \subset [0,9]$ o multime masurabila Lebesgue cu $\lambda(E)=3$ si $f:[0,\infty)\to\mathbb{R},\ f(x)=\lambda(E\cap[0,x]).$ Aratati ca f este uniform continua. Aratati ca exista $A\subset E$ masurabila Lebesgue astfel incat $\lambda(A)=2$.

Bonus: Ramane adevarata afirmatia in cazul in care E este nemarginita?

III. Fie $A_1, A_2, \dots, A_{2003}$ multimi masurabile Borel ale intervalului [0, 1] astfel incat $\lambda(A_k) > 1 - \frac{1}{3^k}$ pentru orice $1 \le k \le 2003$. Aratati ca

$$\lambda \left(\bigcap_{k=1}^{2003} A_k \right) > 0$$

Nota. Timp de lucru: 1 ora. Rezolvarile trebuie scanate si trimise impreuna cu lista de subiecte sub forma unui singur fisier pdf la adresele radu.munteanu@unibuc.ro si radu-bogdan.munteanu@g.unibuc.ro cel tarziu la ora 13.10.

PREGATIRE TEST TEORIA MÁSURII

1. {(01=3)

$$\chi \in \left(\frac{1}{(2n-1)^3}, \frac{1}{(2n-1)^3}\right)$$

Tie f ∈ IR

$$\ell^{-1}((-\omega,t))=?$$

$$(+) f \in \mathbb{R}$$

$$f^{-1}((-\infty, t)) =$$

$$f^{-1}((-\infty, t)) =$$

$$= \left(\frac{1}{(2n-1)^3}, \frac{1}{(2n-1)^3}\right) \cup A_t$$

$$= n \ge 1$$

(-1) " (n+1) < f

unde Az = 60 h, docë # 23 gi Ay = 5 altfel (+) + ∈/K $f^{-1}((-s,t))$ e o reuninn de boralien, deci boreliana Resultà f mås. Borel Orice borelianoi e masurabilo Lebergue, dece f 1/(-0, +)) e manurabila Lebergue, (Y) f∈1.

Resulto f manurabilo Lebergue.

Vrean) (fl d z
$$\leq \infty$$

[0,1]

 $[0,1] = h0h U U (2n.1)^3, (2n-1)^3$

fn (0) = 3

 $f_n(x) = 3 \cdot x_{\{0\}}^{(y)} \left| f(x) \right| \cdot \left(\frac{1}{b_{x-1}} \right)^3, \quad 2 \right],$

 $f_n(\bar{x}) = 3 \cdot Z(\bar{x}) + \sum_{\{0\}} (m+1) \cdot Z(\frac{1}{(2m+1)^3}, \frac{1}{(2m-1)^3})$

 $f_n \in \text{fit. simple} = 1$ =1 $\int f_n dz = \sum_{m=1}^{\infty} (m+1) \cdot \left(\frac{1}{(2m-1)^3} \cdot (2m-1)^3\right)$ [9,1] m=1

In If

Broof. D

$$= \underbrace{\begin{cases} (n+1) \cdot \left(\frac{1}{(2n-n)^3} - \frac{7}{(2n+1)^3} \right) < \infty}_{n \geq 1}$$

3)
$$f$$
 mis. B orel =, f mis. B orel

Fig. $B \in B(R)$

Vector $g^{-1}(B) \in B(E0, 1J)$
 $g^{-1}(B) = \left(\left(f^{3}\right)^{-1}(B)\right) \setminus \left(\frac{1}{n}\right) \in \mathbb{N}$

 $g^{-1}(b) = \left\{ \left(\left(f^{3} \right)^{-1} \left(b \right) \right) \middle| \frac{1}{n} \mid n \in \mathbb{N}^{*} \right\},$ $\left(\left(f^{3} \right)^{-1} \left(b \right) \bigcup \left(\frac{1}{n}, n \in \mathbb{N}^{*} \right) \right\}$ $l \in \mathcal{B}$

4 = 1 x ∈ (N * 4 = U 4 = 4 € B([0,1]) boreliane

Arat g integrabilités
$$f^3$$
 integrabilité.

Broof: $2\left(\frac{1}{n} \mid n \in (0)^n \right) = 0$

$$f^3 = g \text{ pe } \left[\frac{2}{n} \mid \frac{2}{n} \mid n \in (0)^n \right]$$

[0,1] | 19/d2 = Stf 3/d2

[3(x) ≥ (-1) (n-3) 3 pl. $\chi \in \left(\frac{1}{(2n+1)^3}, \frac{1}{(2n-1)^3}\right)$

I
$$E \subset [0, 9]$$

$$A(E) = 3$$

$$f: [0, \infty) - > [R]$$

$$f(3) = A(E \cap [0, *])$$

Ren: f: /k » /k æniforn sontinuä:

$$(7) \pi, y \in |R| |\pi - y| \times S_{\varepsilon} = 7$$

$$= |f(x) - f(y)| < \varepsilon$$

f. functi Lipschita:
$$(7)L$$
 constantia
 $|f(g) - f(g)| < L \cdot |f - g|$, $(4)g, g$
Lipschitz =, uniform continuo.
Den: Tou $\delta \varepsilon = \frac{\varepsilon}{L}$
Aratam rā f din problemā z
Lipschitz.
 $f(g) - f(g) = 2(E \cap Lo, \#J) -$
 $- 2(E \cap Lo, \#J) -$
 $- 2(E \cap Lo, \#J) = 0$
 $- 2(E \cap Lo, \#J) = 0$

Der 0 = f(9) - f(4) = 2 ([1, 9]) =1 =1 | f(7)- f(n) | = | x-y/ Dei fe Lipschitz. Jemë: (X, F, M) y. en maners $E \in A$ on $\mu(E) < \infty$ ASBSE Atunci µ(B) - µ(A) = µ(B\A) Rem: B = AU(B\A) An(B\A) = Ø

u mesura

$$f(0) = 0$$

$$f(0) = 2(E) = 3 = 1, (7) \approx [0, 9] \text{ a.i.}$$

$$f \text{ continuo} \qquad f(x) = 2,$$

$$adica$$

$$2(E \cap [0, x_0]) = 2$$

$$B_1 = [0, 1] \cdot A_2$$

$$2(B_1) = 1 - 2(A_1) = \frac{1}{3}$$

$$2(B_1) = 1 - 2(A_1) = \frac{1}{3}$$

$$2(A_1) = 2(A_1) \cdot A_2 = 2(A_1) \cdot A_3 = 2(A_1) \cdot A_4 = 2(A_1) \cdot A_5 = 2(A_1$$

 $= 1 - \lambda \left(\int_{x_{-1}}^{2003} \beta \lambda \right)$

$$2\left(\begin{array}{c} 2007\\ 0\\ 1=1 \end{array}\right) \leq \left(\begin{array}{c} 2\\ 2\\ 1=1 \end{array}\right) \leq \left(\begin{array}{c} 2\\ 2\\ 1=1 \end{array}\right)$$

$$2\frac{2}{3}\frac{1}{3} = \frac{2}{3} < 1$$

dei
$$Z\left(\int_{1}^{2003} BL\right) \ge \frac{1}{3} > 0$$

Contraexemple la lemo:

B = 1R

A = 1/ 40%

ASBER

M(A) = M(B/= 0

p(B1A) = 0

Lemo or fi:

00 - 00 = 0

nedeterninare

Bours la II: E nemargirità x > y 70 f(x)- f(y) = 2(ENTO, x])-2(ENTO, y) ENCO, Y] S EN [0, x] = [0,] 2([0, x]) = x < 0 Dei f(x)-f(y) = 2(EN[x +7) | f(x) - f(y) | < | 7 - y/ den f Lipschilz

 $f(\theta) = 0$

lin $f(*) = 2(E \cap [0, \infty))$ *->*Atiata time sit $Z(E \cap [0,\infty)) > 2$, $(J) *_{\circ} > 0$ a.î. f(*) > 2.

Plen wromare $(\mathcal{J}/\mathcal{Z}_1 \in [0, \mathcal{Z}_0] \circ . \hat{1}.$ $f(\mathcal{Z}_1) = 2.$