VALEO_SOLUTION_11 ADAS 系统解决方案介绍报告

一、方案概述

VALEO_SOLUTION_11 是一款域控制器(DC)类型的高级驾驶辅助系统(ADAS)解决方案,当前处于规划阶段。该方案旨在通过先进的软硬件结合,为车辆提供全面的驾驶辅助功能,支持 L3 级自动驾驶,提升行车安全性与驾驶体验。

二、软件系统

(一) 软件产品核心信息

项目	详情
产品名称	ADS_SW_8.0
描述	支持 L3 级自动驾驶
感知软件组件(SWC:PERCEPTION)	PCEP
环境模型软件组件(SWC:ENV MODEL)	ENVD
驾驶功能软件组件(SWC:DRIVING FUCTION)	DRPL
碰撞避免软件组件(SWC:COLLISION AVOIDANCE)	DRPL
主动安全软件组件(SWC:ACTIVE SAFETY)	DRPL
地图软件组件(SWC:MAP)	DMHM
定位软件组件(SWC:LOC)	LOCH

(二) 软件功能特点

ADS_SW_8.0 通过多个软件组件协同工作,实现感知、环境建模、驾驶决策、碰撞避免等核心功能。例如,PCEP 组件负责感知外界环境信息,为后续决策提供数据基础; DRPL 组件则承担驾驶功能、碰撞避免和主动安全等关键任务,确保车辆在行驶过程中的安全性和稳定性。同时,结合 DMHM 地图组件和 LOCH 定位组件,实现精准的地图匹配与定位,为高级驾驶辅助功能提供有力支撑。

三、硬件系统

(一) 域控制器核心硬件配置

本方案采用 DC7M - 2 作为域控制器, 其核心硬件配置如下:

硬件类别	具体型号	作用
系统级芯片 / 系统级封装(- SoC/SIP)	QC8650*2	提供强大的计算能力,支撑复 杂的 ADAS 算法运行
微控制单元(MCU)	RH850U2A8	实现对车辆各子系统的控制与 协调
以太网交换机	88Q5152	保障数据在系统内的高速传输 与交换
其他	EMMC、LPDDR、Serializer 、Deserializer、Flash 均为 "X",CAN Tranceiver 为 2TJA1042TK,2TJA1046TK	满足不同功能模块的数据存储 、传输与控制需求

(二) 硬件配置优势

QC8650*2 的双核配置确保了系统具备强大的计算性能,能够实时处理大量传感器数据和复杂的 AI 算法;RH850U2A8 作为 MCU,凭借其高可靠性和稳定性,可精准控制车辆的各项功能;88Q515 2 以太网交换机则为系统内数据的高效传输提供保障,使各硬件模块之间能够快速、稳定地交互信息,共同支撑 ADAS 系统的稳定运行。

四、传感器系统

(一) 传感器配置总览

VALEO_SOLUTION_11 配备了丰富的传感器,形成 "11V1R1L" 的传感器组合,即 11 个摄像头、1 个毫米波雷达和 1 个激光雷达,具体配置如下:

传感器类型	数量	核心作用
摄像头(CAM)	11个	用于环境视觉感知,识别车道 线、车辆、行人、交通标志等 目标
毫米波雷达(RDR)	1个	检测目标物体的距离、速度和 角度,尤其适用于恶劣天气环 境
激光雷达(LIDAR)	1个	构建高精度的三维环境模型, 提升对复杂场景的感知能力

(二) 传感器详细信息

1. 摄像头:

- **PH 系列(7 个)**:包括前视广角、前视窄角、侧视和后视摄像头,不同的视角和特性使其能够覆盖车辆周围的各个区域,为系统提供全面的视觉信息。例如,前视广角摄像头可提前检测前方大范围的路况,侧视摄像头则有助于车辆变道和泊车时的环境感知。
- **FE 系列(4 个)**: 分别布置在车辆的前后左右,进一步补充视觉感知信息,增强系统对周围环境的细节捕捉能力。
- 2. **毫米波雷达**: 前视中距毫米波雷达(MCR1.2),能够在不同天气和光照条件下,稳定地检测前方目标物体的距离、速度和相对角度,为碰撞避免和自适应巡航等功能提供关键数据。
- 3. **激光雷达**: 前视 MEMS 激光雷达(SCALA3),凭借其高精度的三维建模能力,可精确感知车辆前方的 障碍物和地形信息,在复杂路况和自动驾驶场景中发挥重要作用。

五、功能支持与依赖关系

(一) 支持功能列表

本方案支持丰富的驾驶辅助功能,涵盖安全预警、自适应巡航、车道保持、自动变道等多个方面,具体如下:

功能类别	具体功能	功能描述
安全预警类	前方碰撞预警(FCW)、车道 偏离预警(LDW)、盲点监测 (BSD)、开门预警(DOW)等	实时监测车辆周围环境,在潜 在危险发生前向驾驶员发出预 警,避免事故发生
自适应巡航类	自适应巡航(ACC)及其增强 功能(ACC - Overtaking Pre - Boost、ACC - Predictive ACC 等)	根据前方车辆的速度和距离, 自动调整车速,保持安全车距 ,同时在不同场景下提供更智 能的速度调节
车道控制类	车道保持辅助(LKA)、增强 型车道保持辅助(ELKA) 、车道居中控制(LCC)等	帮助车辆保持在车道内行驶, 通过对方向盘的轻微干预,纠 正车辆的偏离行为
自动变道类	自动变道辅助(LCA)、智能 变道辅助(SLCA)等	在满足一定条件下,自动完成 车辆的变道操作,提升驾驶的 便利性和效率
其他	交通标志识别(TSR)、交通 灯识别(TLR)、紧急制动辅 助(AEB)等	识别交通标志和信号灯信息, 为驾驶决策提供依据;在紧急 情况下自动制动,避免或减轻 碰撞事故

(二) 功能依赖关系

- 1. 强依赖项:该方案对全球导航卫星系统(GNSS)、导航地图(NAVI_MAP)、高精度地图(HD_MAP)、惯性测量单元(IMU)和实时动态定位(RTK)存在强依赖关系。这些依赖项为系统提供精确的位置信息、地图数据和姿态感知,是实现高级自动驾驶功能的基础。例如,高精度地图为车辆提供详细的道路信息,帮助车辆提前规划路径;RTK技术则确保车辆定位的高精度,使自动驾驶功能更加安全可靠。
- 2. 可选依赖项:目前该方案无可选依赖项。

六、技术栈与计算单元

(一) 技术栈信息

本方案采用的技术栈包括 FREESPACE、BEV、OCC、AI BASED、1 PHASE E2E、OneFunc 等。这些技术相互融合,为系统提供强大的技术支持。例如,基于 AI 的算法能够对传感器数据进行智能分析和处理,实现对复杂场景的准确识别;BEV(鸟瞰视图)技术则通过对多个摄像头数据的融合,为驾驶员提供车辆周围环境的全景视图,提升驾驶安全性和便利性。

(二) 计算单元配置

计算单元采用 QC86502 和 RH850U2A8 的组合。QC86502 提供强大的通用计算能力,用于处理复杂的 AI 算法和数据融合任务;RH850U2A8 则专注于实时控制任务,确保对车辆各子系统的精准控制。两者 协同工作,满足 ADAS 系统对计算性能和实时性的双重要求。

以上报告从多个维度对 VALEO_SOLUTION_11 ADAS 系统解决方案进行了介绍。若你对报告内容的详略、呈现形式等有调整需求,欢迎随时告诉我。

(注: 文档部分内容可能由 AI 生成)