Problem Set 4 - CPSC 326 Solutions

Fernando, Dang, Raj, Eric M. October 23, 2025

Problem 1

Consider the following Language:

 $L_1 = \{w \in \{a, b, c, d\}^* \mid (w \text{ contains the strings } abb \text{ and } bbc) \text{ or } (w \text{ contains the string } abc)\}$

Develop a NFA for L_1 .

Answer:

The NFA uses nondeterminism to check for either:

- Case 1: Both abb and bbc appear in w
- Case 2: abc appears in w

States:

- q_0 : Initial state
- q_1, q_2, q_3 : Track progress toward finding abb
- q_4, q_5, q_6 : Track progress toward finding bbc (after finding abb)
- q_7 : Found both abb and bbc (accepting)
- q_8, q_9, q_{10} : Track progress toward finding abc
- q_{11} : Found abc (accepting)

NFA Diagram:

Explanation: The NFA nondeterministically chooses between:

- Following the upper path to find abb, then continuing to find bbc
- \bullet Following the lower path to find abc

Once either accepting state is reached, the string is accepted.

Problem 2

Let $L_2 = \{w \in \{a, b, c\}^* \mid w = (abc)^*a^*\}$. Design a NFA that accepts the language L_2 .

The language consists of zero or more repetitions of abc, followed by zero or more a's. **States:**

- q_0 : Initial and accepting state
- q_1 : Just read a (could be start of abc or final a's)
- q_2 : Read ab (continuing abc)
- q_3 : Read abc (back to accepting, or continue with more a's)

NFA Diagram:

Explanation:

- From q_0 , we can either accept immediately (ε is in the language) or read a
- After reading a, we nondeterministically choose:
 - Continue with bc to complete an abc block
 - Stay in q_1 reading more a's (the final a^* part)
- After completing abc (reaching q_3), we can start another abc block or accept
- States q_0 , q_1 , and q_3 are accepting to handle $(abc)^*a^*$ properly

Problem 3

Let $L_3 = \{w \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^* \mid \text{ the final digit of the string } w \text{ has not appeared before in } w\}$. Design a NFA that accepts the language L_3 .

Answer:

The NFA uses nondeterminism to guess which digit will be the final digit that hasn't appeared before.

Strategy: From the start state, when we read symbols, we nondeterministically choose which digit we're "watching for" as the final new digit. We have 10 branches (one for each digit 0-9), where each branch avoids seeing that specific digit until the very end.

States:

- q_0 : Initial state (accepting, for single-digit strings)
- Branches for each digit:
 - $-q_1, q_2$: Branch watching for digit 0
 - $-q_3, q_4$: Branch watching for digit 1
 - $-q_5, q_6$: Branch watching for digit 2
 - $-q_7, q_8$: Branch watching for digit 3
 - $-q_9, q_{10}$: Branch watching for digit 4
 - $-q_{11}, q_{12}$: Branch watching for digit 5
 - $-q_{13}, q_{14}$: Branch watching for digit 6
 - $-q_{15}, q_{16}$: Branch watching for digit 7
 - $-q_{17}, q_{18}$: Branch watching for digit 8
 - $-q_{19}, q_{20}$: Branch watching for digit 9
- Accepting states: $q_0, q_2, q_4, q_6, q_8, q_{10}, q_{12}, q_{14}, q_{16}, q_{18}, q_{20}$

NFA Diagram:

Explanation:

The NFA has 21 states total $(q_0 \text{ through } q_{20})$, organized as follows:

- q_0 : Starting state (also accepting for single-digit strings)
- 10 branches, each with 2 states, one for each digit 0-9:
 - States $q_1, q_3, q_5, q_7, q_9, q_{11}, q_{13}, q_{15}, q_{17}, q_{19}$: "Avoiding" states where we read any digit except the one we're watching for
 - States $q_2, q_4, q_6, q_8, q_{10}, q_{12}, q_{14}, q_{16}, q_{18}, q_{20}$: "Found" states (accepting) where we just read the digit we were watching for

How it works:

- 1. From q_0 , nondeterministically choose which digit will be the final new digit
- 2. For example, to watch for digit 0:

- \bullet Go to q_1 by reading any digit 1-9
- Stay in q_1 reading more digits 1-9 (avoiding 0)
- Read 0 and go to accepting state q_2
- 3. Similarly for digits 1-9, using states $(q_3, q_4), (q_5, q_6), \dots, (q_{19}, q_{20})$

Example:

For string w = 237 (where 7 appears for the first time at the end):

- \bullet Read 2: $q_0 \xrightarrow{2} q_{15}$ (nondeterministically choose to watch for 7)
- Read 3: $q_{15} \xrightarrow{3} q_{15}$ (3 is not 7, stay in q_{15})
- Read 7: $q_{15} \xrightarrow{7} q_{16}$ (accept!)

For string w = 5 (single digit):

- Read 5: $q_0 \xrightarrow{5} q_{12}$ (accept immediately)
- \bullet Or stay in q_0 which is also accepting