Evidence on the Regularisation Properties of Maximum-Entropy Reinforcement Learning

Rémy Hosseinkhan Boucher, Onofrio Semeraro, Lionel Mathelin, LISN, CNRS, Université Paris-Saclay

What is the bias introduced by entropy regularisation? Are complexity measures linked to noise robustness?

Background

Partially Observable Markov Decision Process (POMDP)

$$X_{h+1} = F\left(X_h, U_h\right)$$

$$Y_h = G(X_h) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma_Y^2 I_d)$$

F : state operator

G : observation operator

 ϵ : Gaussian noise

Maximum-Entropy Objective

$$J^{\pi, \epsilon} = \mathbb{E}^{\pi, \epsilon} \left[\sum_{h=0}^{H} \gamma^h c(X_h, U_h) \right] - \alpha \mathbb{E}^{\pi, \epsilon} \left[\sum_{h=0}^{H} \gamma^h \mathcal{H}(\pi(\cdot \mid X_h)) \right]$$

 α : entropy coefficient

 ${\cal H}$: entropy

Notations

$$P^{\pi}_{\epsilon}$$
 : trajectory probability with **observation noise**

 $\mathbb{E}^{\pi, \epsilon}$: expectation under P^{π}_{ϵ}

 $P^\pi=P^\pi_0$: no noise $(\epsilon\equiv 0)$

Excess Risk Metrics

$$\mathcal{R}^{\pi} = \mathbb{E}^{\pi, \epsilon} \left[\sum_{h=0}^{H} \gamma^{h} c\left(X_{h}, U_{h}\right) \right] - \mathbb{E}^{\pi} \left[\sum_{h=0}^{H} \gamma^{h} c\left(X_{h}, U_{h}\right) \right]$$
$$= J^{\pi, \epsilon} - J^{\pi}$$

$$\mathring{\mathcal{R}}^{\pi} = \frac{J^{\pi, \epsilon} - J^{\pi}}{J^{\pi}} = \frac{\mathcal{R}^{\pi}}{J^{\pi}}$$

Goal

Evaluating the Robustness \mathcal{R}^{π} of Max-Entropy Policies under Observation Noise $\epsilon \sim \mathcal{N}(0, \sigma_V^2 I_d)$

Noise-free training with PPO \longrightarrow $P^{\pi}=P_{0}^{\pi}$: no noise $(\epsilon \equiv 0)$

5 coeff. α (x 10 seeds) \longrightarrow 5 x 10 policies $(\pi_{\theta_{\alpha}^*})$

Test $\pi_{\theta_{\Omega}^*}$ under different noise levels on Y

$$\epsilon \nearrow \longrightarrow J^{\pi^*,\epsilon} \nearrow \text{ (noise impacts perf)}$$
 $\alpha > 0 \longrightarrow \mathcal{R}^{\pi,\alpha} \searrow \text{ (robustness)}$

Find complexity measures $\mathcal{M}(\pi_{\theta})$ controlling the Excess Risk \mathcal{R}^{π}

Parameterised Policy π_{θ}

Parameter Space $\theta \in \Theta$

Complexity measure: $\mathcal{M}:\Theta \to \mathbb{R}_+$

Complexity measures quantify model complexity

Regularisation — Low complexity

RL Environments: Lorenz Kuramoto-Sivashinsky (KS) reward_type = rate_discounted_reward | equilibria = 2

Variation $\frac{J^{\pi_{\alpha}^{*}, \epsilon} - J^{\pi^{*}}}{J^{\pi^{*}}}$. Each **bar block**: noise intensity ϵ Colors: $\alpha = 0$ (black), $\alpha > 0$ (blue), α_{max} (red)

Question

Which complexity measures indicate noise robustness? Why do high entropy policies learn better final solutions?

Contribution

Introduction of complexity measures from Statistical Learning

Norm-based Complexity Measures

 $\pi_{\theta}(\cdot|X_k) \sim \mathcal{N}\left(\mu_{\theta}(X_k), \, \theta_{\sigma_{\pi}}I\right)$

If $\mu_{\theta}(x) = (\sigma_{l} \circ \sigma_{l-1} \circ \ldots \circ \sigma_{1})(x)$, $Lips(\mu_{\theta}) \leq \prod_{i=1}^{l} Lips(\sigma_{i}) = \prod_{i=1}^{l} \|\theta_{i}\|$

Sharpness-based Complexity Measures

Curvature - Hessian — Fisher Information?

 $\bullet \ \mathcal{M}(\pi_{\theta}, \mathcal{D}) = Tr(\mathcal{I}\left(\theta_{\mu}\right)) = Tr(- \ \mathbb{E}^{X \sim \rho^{\pi}, U \sim \pi_{\theta}(\cdot \mid X)} \left[\nabla_{\theta_{\mu}}^{2} \log \pi_{\theta}(U \mid X) \right])$

- $\mathcal{M}(\pi_{\theta}, \mathcal{D}) = \| \boldsymbol{\theta}_{\mu} \|_{p}$
- $\mathcal{M}(\pi_{\theta}, \mathcal{D}) = \prod_{i=1}^{l} \|\theta_{\mu}^{i}\|_{p}$ where θ_{μ}^{i} is the i^{th} layer of the network μ_{θ}

$$\nabla_{\theta}^{2} J^{\pi_{\theta}} = \mathbb{E}^{\pi_{\theta}} \left[\sum_{h,i,j=0}^{H} c\left(X_{h}, U_{h}\right) \left(\nabla_{\theta} \log \pi_{\theta} \left(U_{i} \mid X_{i}\right) \nabla_{\theta} \log \pi_{\theta} \left(U_{j} \mid X_{j}\right)^{T} + \nabla_{\theta}^{2} \log \pi_{\theta} \left(U_{i} \mid X_{i}\right) \right) \right]$$

$$\mathcal{I}(\theta) = -\mathbb{E}^{X \sim \rho, U \sim \pi_{\theta}(\cdot \mid X)} \left[\nabla_{\theta}^{2} \log \pi_{\theta} \left(U \mid X\right) \right]$$

Results

Colors: $\alpha = 0$, $\alpha > 0$, α_{max}

Top: Lorenz, Bottom: KS

 $\mathcal{M}\left(\pi_{\theta}^{\alpha}\right) = -Tr(\mathbb{E}^{X \sim \rho^{\pi_{\theta}}, U \sim \pi_{\theta}(\cdot|X)} \left[\nabla_{\theta_{u}}^{2} \log \pi_{\theta} \left(U|X\right) \right]\right)$ Colors: $\alpha = 0$, $\alpha > 0$, α_{max}

- Measure $\mathcal{M}\left(\pi_{\theta}^{\alpha}\right)$ distribution with **fat-right** tail (extremely large value) farge
- Complexity measures can explain noise robustness

 \checkmark Low $\mathcal{M}\left(\pi_{\theta}^{\alpha}\right)$ corresponds to low \mathcal{R}^{π}