マルチラベル付き日本語レビュー文章の分類

ソフトウェアシステム研究グループ M1 楠本祐暉

- 1. はじめに
- 2. 要素技術と関連研究
- 3. データセット
- ◆ 4. 提案手法
- ▶ 5. 実験
- ▶ 6. まとめと今後の課題

- 1. はじめに
- 2. 要素技術と関連研究
- 3. データセット
- 4. 提案手法
- 5. 実験
- 6. まとめと今後の課題

はじめに

▶・近年、説明可能な人工知能が注目されている

■日本語レビュー文章を用いた多値分類に取り組む

- → 1. はじめに
- 2. 要素技術と関連研究
- 3. データセット
- 4. 提案手法
- 5. 実験
- 6. まとめと今後の課題

BERT (Bidirectional Encoder Representations from Transformers)

- 複数の双方向 Transformer に基づく汎用言語モデル
- 文章に依存した各単語、および文章の分散表現が得られる
- ▶ 本研究では、日本語 Wikipedia を用いた事前学習済み BERT モデルを使用 (東北大学 乾・鈴木研究室)

関連研究

▶ アスペクトベースの感情分析

文章中に含まれるアスペクト情報を利用

どの様なことについて書かれた文章なのかを分析

アスペクトベースの感情分析とは

- → 1. はじめに
- 2. 要素技術と関連研究
- 3. データセット
- 4. 提案手法
- 5. 実験
- 6. まとめと今後の課題

データセット

- ▶ 楽天トラベルレビューのアスペクトセンチメントタグ付きコーパスを使用
- ▶ 1 つの文章に対して 12 のラベルが付与されている

楽天データセット

https://dsc.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=1752&item_no=1&page_id=13&block_id=21

データの具体例

テキスト	夕 食 pos itiv e	夕 食 ne gat ive	風 B pos itiv e	風 呂 ne gat ive	サービス pos itiv e	サービス ne gat ive	立 地 pos itiv e	立 地 ne gat ive	設備 pos itiv e	設 備 ne gat ive	部屋 pos itiv e	部 屋 ne gat ive
お部屋も広くて, お料理もとても美味しく, 部屋の露天風呂からは星がプラネタリウムのように広がっていて, とにかく最高でした	1	0	1	0	1	0	0	0	0	0	1	0
一部の方が指摘した通り, 廊下が夕バコ臭いのが気になりました	0	0	0	0	0	1	0	0	0	1	0	0
立地と値段で決めました.	0	0	0	0	0	0	1	0	0	0	0	0

- → 1. はじめに
- 2. 要素技術と関連研究
- 3. データセット
- ◆ 4. 提案手法
- 5. 実験
- 6. まとめと今後の課題

データ

提案手法

▶ 文章を多クラスに分類するモデルの提案

- → 1. はじめに
- 2. 要素技術と関連研究
- 3. データセット
- 4. 提案手法
- ▶ 5. 実験
- 6. まとめと今後の課題

実験

■ 立っているラベルをどれ程予測できるのかを調べる

<u>全ラベルのうち、少なくとも1つのラベルが立っている</u>データ群のみを 用いて実験

実験

▶ 予測方法

- 1. BERT の出力に対して閾値を設ける
- 2. 値が閾値を下回れば 0, 上回れば 1 に丸める
- 3. 全ラベルが立たないデータに対しては、最大値のみを1に丸める

実験

■ 3の処理を行わないと...

少なくとも1つのラベル が立たないと予測結果と して不適切

識別機の評価指標

▶ 精度評価

正解率 (Accuracy), 適合率 (Precision), 再現率 (Recall), F1 値 (F1)を用いる

識別器の評価指標

- ▶ 全データ中の 2 割をテストデータ, 8 割を訓練データとした
- 訓練データを 5 分割し, 5 分割検証をすることで 5 個の識別機を作成した
- ▶ このうち、最も正解率の高いモデルを用いてテストデータでの評価をした

実験時のパラメータ

パラメータ	値
入力層の次元数	768
出力層の次元数	12
バッチサイズ	12
目的関数	BCE with Logistic Loss
エポック数	20

識別の精度

	夕食 positive	夕食 negative	風呂 positive	風呂 negative	サービス positive	サービス negative	立地 positive	立地 negative	設備 positive	設備 negative	部屋 positive	部屋 negative
正解率	0.8583	0.9583	0.9125	0.9583	0.8167	0.8333	0.8750	0.9833	0.8125	0.8792	0.9083	0.9208
適合率	0.8182	0.25	0.5676	0.1818	0.6486	0.4324	0.7037	0	0.2895	0.4231	0.6829	0.3333
再現率	0.5806	0.3333	0.8076	0.6667	0.7273	0.4571	0.4634	0	0.3793	0.44	0.7568	0.1875
F 1 値	0.6792	0.2857	0.6667	0.2857	0.6857	0.4444	0.5588	Nan	0.3284	0.4313	0.7179	0.2400

識別結果

データ	データ数
全テストデータ	240
全ラベルが正解	85
一部ラベルが正解 (立っているクラスのみ)	59
全ラベルが不正解 (立っているクラスのみ)	96

識別結果

▶ 全ラベルが正解したデータのラベル数の分布

識別結果

▶ 全ラベルが正解したデータのラベル数の分布

- → 1. はじめに
- 2. 要素技術と関連研究
- 3. データセット
- 4. 提案手法
- 5. 実験
- 6. まとめと今後の課題

まとめ

- ▶ 本研究では多値分類を行ったが、異なるモデルでの比較検討であったり、より適切 な閾値やパラメータの設定であったり、できていないことがあった
- ほとんどのデータにおいてラベルが立っていないクラスがほとんどであるため、 予測が 0 に寄ってしまう問題があった

今後の課題

■ 一部正解データや全不正解データについて、関連研究であるアスペクトベースの 感情分析の手法を用いて分析する