Simplificación de gramáticas libres de contexto

Clase 16

IIC 2223

Prof. Cristian Riveros

¿cómo podemos simplificar está gramática?

Algunos aspectos a considerar:

- Dada una variable X, ¿es X útil para producir palabras?
- Dada una producción $p: X \to \gamma$, ¿es p útil para producir palabras?

Outline

Eliminación de variables inútiles

Eliminación de producciones inútiles

Outline

Eliminación de variables inútiles

Eliminación de producciones inútiles

Variables inútiles

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

Diremos que una variable $X \in V$ es útil si existe una derivación:

$$S \stackrel{\star}{\Rightarrow} \alpha X \beta \stackrel{\star}{\Rightarrow} w$$

Al contrario, diremos que una variable X es **inútil** si NO es útil.

¿qué variables son inútiles?

Variables inútiles

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

Diremos que una variable $X \in V$ es útil si existe una derivación:

$$S \stackrel{\star}{\Rightarrow} \alpha X \beta \stackrel{\star}{\Rightarrow} w$$

Al contrario, diremos que una variable X es **inútil** si NO es útil.

¿cómo podemos determinar si un símbolo es inútil?

Desde el lado positivo: símbolos útiles

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG.

Definición

Para una variable $X \in V$:

1. Decimos que X es alcanzable si existe una derivación:

$$S \stackrel{\star}{\Rightarrow} \alpha X \beta$$

2. Decimos que X es generadora si existe una derivación:

$$X \stackrel{\star}{\Rightarrow} w$$

¿cómo determinamos si una variable es alcanzable o generadora?

¿cómo determinamos si una variable es generadora?

Sea $G = (V, \Sigma, P, S)$ una CFG.

Propiedad

Para toda variable $X \in V$:

existe una regla $X \to \alpha$ tal que todas las variables en α son generadoras

si, y solo si, X es generadora.

Demostración: ejercicio.

¿cómo determinamos si una variable es generadora?

```
input: Gramática \mathcal{G} = (V, \Sigma, P, S)
output: Conjunto G de variables generadoras
Function Generadores (G)
   let G_0 := \{ X \in V \mid (X \to w) \in P \}
   let G := \emptyset
   while G_0 \neq G do
   foreach (X \to \alpha) \in P do
   return G
```

¿cómo determinamos si una variable es generadora?

¿cómo determinamos si una variable es alcanzable?

Sea $G = (V, \Sigma, P, S)$ una CFG.

Propiedad

Para toda variable $X \in V - \{S\}$,

existe una producción $Y \rightarrow \alpha X \beta$ en P tal que $Y \in V$ es alcanzable

si, y solo si, X es alcanzable.

Demostración: ejercicio.

¿cómo determinamos si una variable es alcanzable?

```
input : Gramática \mathcal{G} = (V, \Sigma, P, S)
output: Conjunto C de variables alcanzables
```

```
Function alcanzables (G)
     let C_0 := \{S\}
     let C := \emptyset
     while C_0 \neq \emptyset do
      take Y \in C_0
C_0 := C_0 - \{Y\}
C := C \cup \{Y\}
         foreach X \in V - C tal que existe una regla (Y \rightarrow \alpha X \beta) \in P do
            C_0 \coloneqq C_0 \cup \{X\}
     return C
```

¿cómo determinamos si una variable es alcanzable?

¿cuáles son las variables alcanzables?

S → aAa

A → ab

 $\mathsf{B} \quad \to \quad \mathsf{aBa} \; \mid \; \mathsf{b}$

C → abb

Sea
$$G = (V, \Sigma, P, S)$$
 una CFG.

Teorema

Sea G'' una gramática creada a partir de G después de:

- eliminar todos la variables y reglas **NO** generadoras.
- eliminar todas las variables y reglas NO alcanzables.

Entonces, $\mathcal{L}(\mathcal{G}'')$ = $\mathcal{L}(\mathcal{G})$ y \mathcal{G}'' no contiene variables ínutiles.

Demostración

Sea $G = (V, \Sigma, P, S)$ una CFG.

Sea
$$\mathcal{G}' = (V', \Sigma, P', S)$$
 al eliminar las variables no generadoras de \mathcal{G} :

$$V' = \{ X \in V \mid \exists w. \ X \stackrel{\star}{\underset{g}{\longrightarrow}} w \}$$

$$P' = \{ X \to \alpha \in P \mid X \in V' \land \alpha \in (V' \cup \Sigma)^* \}$$

Sea
$$\mathcal{G}'' = (V'', \Sigma, P'', S)$$
 al eliminar las variables no alcanzables de \mathcal{G}' :

$$V'' = \{X \in V' \mid \exists \alpha, \beta. \ S \xrightarrow{\star} \alpha X \beta \}$$

$$P'' = \{X \to \alpha \in P' \mid X \in V'' \land \alpha \in (V'' \cup \Sigma)^* \}$$

$$P'' = \{X \to \alpha \in P' \mid X \in V'' \land \alpha \in (V'' \cup \Sigma)^*\}$$

Demostración

Sea
$$\mathcal{G}' = (V', \Sigma, P', S)$$
 tal que $V' = \{ X \in V \mid \exists w. X \stackrel{\star}{\Rightarrow} w \}.$

Sea
$$\mathcal{G}'' = (V'', \Sigma, P'', S)$$
 tal que $V'' = \{ X \in V' \mid \exists \alpha, \beta. S \stackrel{\star}{\underset{G'}{\longrightarrow}} \alpha X \beta \}.$

Considere las siguientes propiedades de \mathcal{G} , \mathcal{G}' y \mathcal{G}'' .

- 1. Para todo $\alpha \in (V \cup \Sigma)^*$, si $\alpha \underset{\mathcal{G}}{\overset{\star}{\Rightarrow}} w$ entonces $\alpha \underset{\mathcal{G}'}{\overset{\star}{\Rightarrow}} w$.
- 2. Para todo $\alpha \in (V' \cup \Sigma)^*$, si $S \underset{G'}{\overset{\star}{\Rightarrow}} \alpha$ entonces $S \underset{G''}{\overset{\star}{\Rightarrow}} \alpha$.
- 3. Para todo $\alpha \in (V'' \cup \Sigma)^*$, si $\alpha \underset{g'}{\overset{\star}{\Rightarrow}} w$ entonces $\alpha \underset{g''}{\overset{\star}{\Rightarrow}} w$.

Ejercicio: demuestre las propiedades.

Demostración

PD:
$$\mathcal{L}(\mathcal{G}'') = \mathcal{L}(\mathcal{G})$$
.

Como
$$V'' \subseteq V$$
 y $P'' \subseteq P$, entonces $\mathcal{L}(\mathcal{G}'') \subseteq \mathcal{L}(\mathcal{G})$.

PD:
$$\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{G}'')$$
.

Sea
$$w \in \mathcal{L}(\mathcal{G})$$
 tal que $S \overset{\star}{\underset{G}{\Rightarrow}} w$.

- Por la propiedad 1. tenemos que $S \underset{G'}{\overset{\star}{\Rightarrow}} w$.
 - Por la propiedad 2. tenemos que $S \underset{G''}{\stackrel{*}{\Rightarrow}} w$.
- Por lo tanto $w \in \mathcal{L}(\mathcal{G}'')$ y concluimos que $\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{G}'')$.

Demostración

PD: Para todo $X \in V''$, X es útil en G''.

Como
$$X \in V''$$
, entonces $S \underset{G'}{\overset{\star}{\Rightarrow}} \alpha X \beta$ para algún $\alpha, \beta \in (V' \cup \Sigma)^*$.

Por la propiedad 2. se tiene que: $S \stackrel{\star}{\underset{C''}{\Rightarrow}} \alpha X \beta$ y $\alpha, \beta \in (V'' \cup \Sigma)^*$.

Como $X \in V'$ y $\alpha, \beta \in (V' \cup \Sigma)^*$, entonces existen u, v, w tal que:

$$\alpha \stackrel{\star}{\underset{G}{\Rightarrow}} u , \quad X \stackrel{\star}{\underset{G}{\Rightarrow}} v , \quad \beta \stackrel{\star}{\underset{G}{\Rightarrow}} w$$

Por la propiedad 1. se tiene que: $\alpha \underset{G'}{\overset{\star}{\Rightarrow}} u$, $X \underset{G'}{\overset{\star}{\Rightarrow}} v$, $\beta \underset{G'}{\overset{\star}{\Rightarrow}} w$.

Por la propiedad 3. se tiene que: $\alpha \underset{g''}{\overset{\star}{\Rightarrow}} u$, $X \underset{g''}{\overset{\star}{\Rightarrow}} v$, $\beta \underset{g''}{\overset{\star}{\Rightarrow}} w$.

Juntando todo $S \underset{G''}{\overset{\star}{\Rightarrow}} \alpha X \beta \underset{G''}{\overset{\star}{\Rightarrow}} uvw \ y \ X \ \text{es útil en } \mathcal{G}''.$

¿qué falla al eliminar primero las no alcanzables y después las no generadoras?

Ejemplo

Al eliminar variables no alcanzables en G:

$$\mathcal{G}':$$
 S \rightarrow AB | b
A \rightarrow a

Al eliminar variables no generadoras en \mathcal{G}' :

$$G'': S \rightarrow b$$

$$A \rightarrow a$$

Outline

Eliminación de variables inútiles

Eliminación de producciones inútiles

Producciones en vacío y unitarias

Sea $G = (V, \Sigma, P, S)$ una CFG.

Definición

- Decimos que una producción de la forma: $X \rightarrow \epsilon$ es en vacío.
- Decimos que una producción de la forma: X → Y es unitaria.

Deseamos eliminar este tipo de producciones!

¿por qué?

Producciones en vacío y unitarias

Ejemplo

- ¿cuáles producciones son en vacío?
- ¿cuáles producciones son unitarias?

¿cómo eliminamos las producciones en vacío y unitarias?

¿podemos eliminar siempre las producciones en vacío?

¿és posile eliminar las producciones en vacío?

$$S \rightarrow a S b \mid \epsilon$$

Conclusión

Si $\epsilon \in \mathcal{L}(\mathcal{G})$, entonces

NO se pueden borrar las producciones en vacío sin alterar el lenguaje $\mathcal{G}.$

Desde ahora supondremos que $\epsilon \notin \mathcal{L}(\mathcal{G})$

¿es razonable?

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Observación

Suponga las reglas $X \to Y$ y $Y \to \gamma$ en P.

■ Si
$$\mathcal{G}' = (V, \Sigma, P \cup \{X \to \gamma\}, S)$$
 $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$?

• Si
$$\mathcal{G}'' = (V, \Sigma, P \cup \{X \to \gamma\} - \{X \to Y\}, S)$$
 $\mathcal{L}(\mathcal{G}'') = \mathcal{L}(\mathcal{G})$?

Suponga las reglas $X \to \epsilon$ y $Z \to \alpha X \beta$ en P.

• Si
$$\mathcal{G}' = (V, \Sigma, P \cup \{Z \to \alpha\beta\}, S)$$
 $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$?

• Si
$$\mathcal{G}'' = (V, \Sigma, P \cup \{Z \to \alpha\beta\} - \{X \to \epsilon\}, S)$$
 $\mathcal{L}(\mathcal{G}'') = \mathcal{L}(\mathcal{G})$?

Sea
$$\mathcal{G} = (V, \Sigma, P, S)$$
 una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Clausura de producciones unitarias y en vacío

Sea P^* el menor conjunto de producciones que contiene a P y cerrado bajo las siguientes reglas:

- 1. Si $X \to Y \in P^*$ y $Y \to \gamma \in P^*$, entonces $X \to \gamma \in P^*$.
- 2. Si $X \to \epsilon \in P^*$ y $Z \to \alpha X \beta \in P^*$, entonces $Z \to \alpha \beta \in P^*$.

Defina $\mathcal{G}^* = (V, \Sigma, P^*, S)$. Entonces:

- P^* es finito. (¿por qué?)
- $\mathcal{L}(\mathcal{G}^*) = \mathcal{L}(\mathcal{G}).$ (¿por qué?)

Para cualquier palabra $w \in \mathcal{L}(\mathcal{G}^*)$, sea \mathcal{T} un árbol de derivación de w en \mathcal{G}^* de tamaño mínimo.

Propiedad 1

El árbol de derivación \mathcal{T} NO usa una **producción unitaria**.

Demostración (por contradicción)

Suponemos que ${\mathcal T}$ usa una producción unitaria:

Para cualquier palabra $w \in \mathcal{L}(\mathcal{G}^*)$, sea \mathcal{T} un árbol de derivación de w en \mathcal{G}^* de tamaño mínimo.

Propiedad 2

El árbol de derivación $\mathcal T$ NO usa una producción **en vacío**.

Por la **Propiedad 1** y **Propiedad 2** tenemos que:

Para todo $w \in \mathcal{L}(\mathcal{G}^*)$, existe una derivación de w en \mathcal{G} que NO usa producciones en vacío ni producciones unitarias.

Podemos eliminar las producciones en vacío y unitarias de \mathcal{G}^* !

Teorema

Para toda CFG \mathcal{G} tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$, sea:

- \mathbf{G}^* la clausura de producciones unitarias y en vacío.
- $\hat{\mathcal{G}}$ el resultado de remover toda producción unitaria o en vacío de \mathcal{G}^* .

Entonces $\mathcal{L}(\hat{\mathcal{G}}) = \mathcal{L}(\mathcal{G})$ y $\hat{\mathcal{G}}$ no tiene producciones unitarias o en vacío.

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Para eliminar las producciones en vacío o unitarias de G:

- \blacksquare construimos \mathcal{G}^* haciendo la clausura de prod. unitarias y en vacío,
- construimos $\hat{\mathcal{G}}$ removiendo todas las prod. unitarias o en vacío de \mathcal{G}^* .

Por el resultado anterior sabemos que $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\hat{\mathcal{G}})$.

Importante: es posible que $\hat{\mathcal{G}}$ contiene símbolos inútiles.