

Geometry – Triangles

1. Consider $\triangle ABD$ such that $\angle ADB = 20^{\circ}$ and C is a point on BD such that AB = AC and

CD = CA. What is the measure of $\angle ABC$

- a) 45°
- b) 60°
- c) 30°
- d) 40°

2. In $\triangle ABC$, $\angle A + \angle B = 65^{\circ}$, $\angle B + \angle C = 140^{\circ}$, then find $\angle B$.

- a) 40°
- b) 25°
- c) 35°
- d) 20°

3. ABC is a triangle. The bisectors of the internal angle $\angle B$ and external angle $\angle C$ intersect at D.

If angle $\angle BDC = 50^{\circ}$, then what is $\angle A$?

- a) 100°
- b) 90°
- c) 120°
- d) 60°

4. In a triangle ABC, $\angle A = 90^{\circ}$, $\angle C = 55^{\circ}$ AD \perp BC. What is the value of \angle BAD?

- a) 35°
- b) 60°
- c) 45°
- d) 55°

5. In a triangle ABC, AB = AC, $\angle BAC = 40^{\circ}$. Then the external angle at B is

- a) 90°
- b) 70°
- c) 110°
- d) 80°

6. Let BE and CF be the two medians of a $\triangle ABC$ and G be their intersection. Also let EF cut AG

at O. Then AO: OG is_

- a) 1:1
- b) 1:2
- c) 2:1
- d) 3:1

7. In a triangle, if three altitudes are equal then the triangle is

- a) Obtuse
- b) Equilateral c) Right
- d) Isosceles

8. If the ratio of areas of two similar triangles is 9:16, then the ratio of their corresponding sides

is_

- a) 3:5
- b) 3:4
- c) 4:5
- d) 4:3

9. In an obtuse-angled triangle ABC, $\angle A$ is the obtuse angle and H is the orthocenter. If $\angle BHC = 54^{\circ}$ then $\angle BAC$ is_

- $oldsymbol{f O}$
- a) 108°
- b) 126°
- c) 136°
- d) 116°

10. If G is the centroid of \triangle ABC and \triangle ABC = 48 cm², then the area of \triangle BGC is

- a) 32 cm²
- b) 8 cm²
- c) 16 cm²
- d) 24 cm²

11. If S is the circumcentre of $\triangle ABC$ and $\angle A = 50^{\circ}$ then what is the value of $\angle BCS$

- a) 40°
- b) 35°
- c) 110°
- d) 55°

12. I and O are respectively the in-centre and circumcentre of a triangle ABC. The line A1produced intersects the circumcircle of \triangle ABC at the point D. If \angle ABC = x° , \angle BID = y° and \angle BOD = z° , then (z + x)/y = ?

- a) 3
- b) 1
- c) 2
- d) 4

13. If S is the circumcentre of $\triangle PQR$ and $\angle QSR = 110^{\circ}$ and $\angle SPR = 25^{\circ}$ then find $\angle PRQ$

- a) 60°
- b) 75°
- c) 120°
- d) 105°

14. In a right-angled triangle ABC, $\angle B=90^{\circ}$, AB=5cm and BC=12cm. Find the radius of the circumcircle and the length BD, Where D is the midpoint of AC.

a) 7.5cm, 6.5cm

b) 6.5cm, 6.5cm

c) 8.2cm, 6.5cm

d) 9.5cm, 6.5cm

15. If I is in the centre of $\triangle ABC$ and $\angle A=60^{\circ}$, then the value $\angle BIC$ is _

- a) 100°
- b) 120°
- c) 150°
- d) 110°
- 16. The external bisectors of $\angle B$ and $\angle C$ of $\triangle ABC$ meet at point P. If $\angle BAC$ =80°, then $\angle BPC$ is_

- a) 50°
- b) 40°
- c) 80°
- d) 100°
- 17. The height of an equilateral triangle is 15 cm. The area of the triangle is
 - a) 50 3 sq. cm

b) 70 3 sq. cm

c) 75 3 sq. cm

- d) 150 3 sq. cm
- 18. In \triangle ABC, DE ||AC. D and E are two points on AB and CB respectively. If AB = 10 cm and

- AD = 4cm then BE : CE is -
- a) 2:3
- b) 2:5
- c) 5:2
- d) 3:2
- 19. The sum of three altitudes of a triangle is
 - a) equal to the sum of three sides
- b) less than the sum of sides
- c) greater than the sum of sides
- d) twice the sum of sides
- 20. ABC is an isosceles triangle such that AB = AC and \angle B = 35°, AD is the median to the base BC. Then \angle BAD is
 - a) 70°
- b) 35°
- c) 110°
- d) 55°

Answers

1 – d									
11 - a	12 - a	13 - a	14 - b	15 - b	16 - a	17 - с	18 - d	19 - b	20 - d

www.talentsprint.com 3

Additional Examples

1. If I be the incentre of \triangle ABC and \angle B = 70° and \angle C = 50°, then the magnitude of \angle BIC is

- a) 130°
- b) 60°
- c) 120°
- d) 105°
- 2. In $\triangle PQR$, the line drawn from the vertex P intersects QR at a point S. If QR = 4.5 cm and SR = 1.5 cm then the ratios of the area of $\triangle PQS$ and $\triangle PSR$ is

- a) 4:1
- b) 3:1
- c) 3:2
- d) 2:1
- 3. If two medians BE and CF of a \triangle ABC, intersect each other at G and if BG = CG, \angle BGC = 60° and BC = 8 cm. Then area of the \triangle ABC is

- a) 48cm²

- b) $64\sqrt{3}$ cm² c) $96\sqrt{3}$ cm² d) $48\sqrt{3}$ cm²
- 4. ABC is a cyclic triangle and the bisectors of ∠BAC, ∠ABC and ∠BCA meet the circle at P, Q and R respectively. The exterior angle bisector of ∠BAC and ∠ACB meet at M. If \angle AMC = 60°, then the \angle RIB is
 - a) 45°
- b) 75°
- c) 60°
- d) 30°
- 5. Given that, $\triangle ABC \sim \triangle PQR$, $\triangle ABC$ and $\triangle PQR$ are right angle triangle, $\frac{\text{area }(\triangle PQR)}{\text{area }(\triangle ABC)} = \frac{49}{441}$ and

- PR = 5cm. If AC is the hypotenuse, what is the radius of the circumcentre of the ΔABC ?
- a) 15.5 cm
- b) 16cm
- c) 15 cm
- d) 7.5 cm
- 6. ABC is an equilateral triangle and CD is the internal bisector of ∠C. If DC is produced to E such that AC = CE, then what is \angle AOE if O is the orthocenter of the \triangle ACE?

- a) 45°
- b) 75°
- c) 30°
- d) 15°

7. A, B, and C are three points on a circle such that the angles subtended by the chords AB and AC at the centre O are 90° and 110° respectively. Further suppose that the centre 'O' lies in the interior ∠BAC, then what is the supplementary angle of ∠BAC

- a) 40°
- b) 80°
- c) 100°
- d) 20°
- 8. If the lengths of the sides AB, BC and CA of a ΔABC are 10cm, 8cm and 6cm respectively. If M is the midpoint of BC and MN || AB to cut AC at N, then the area of the trapezium ABMN is equal to
 - a) 18sq.cm
- b) 20sq.cm
- c) 12sq.cm
- d) 16sq.cm
- 9. ABC is an equilateral triangle. P and Q are two points on AB and AC respectively such that PQ // BC. If PQ = 5 cm the area of \triangle APQ is:

- a) $\frac{25}{4}$ sq.cm b) $\frac{25}{\sqrt{3}}$ sq cm c) $\frac{25\sqrt{3}}{4}$ sq cm d) $25\sqrt{3}$ sq cm
- 10. The external bisector of ∠B and ∠C of △ABC (where AB and AC extended to E and F respectively) meet at point P. If $\angle BAC = 100^{\circ}$, then the measure of $\angle BPC$ is
 - a) 50°
- b) 80°
- c) 40°
- d) 100°
- 11. The lengths of the perpendiculars drawn from any point in the interior of an equilateral triangle to the respective sides are P₁, P₂ and P₃. The length of each side of the triangle is
 - a) $\frac{2}{\sqrt{3}}$ (P₁+ P₂ +P_{c)}

b) $\frac{1}{3}$ (P₁+ P₂ +P_{c)}

c) $\frac{1}{\sqrt{3}}$ (P₁+ P₂ +P_{c)}

- d) $\frac{4}{\sqrt{3}}$ (P₁+ P₂ +P_{c)}
- 12. If the difference between areas of the circumcircle and the incircle of an equilateral triangle is 44cm², then the area of the triangle is (Take $\pi = \frac{22}{7}$)
 - a) 28cm²
- b) $7\sqrt{3}$ cm²
- c) $14\sqrt{3}$ cm²
- d) 21cm²

13. ABC is an equilateral triangle of side 2cm. With A, B, C as centres and radius 1cm three arcs are drawn. The area of the region within the triangle bounded by the three arcs is

b)
$$(\sqrt{3} - \frac{3\pi}{2})$$
 cm²

c) $(\sqrt{3} - \frac{\pi}{2})$ cm²

d)
$$(\frac{\pi}{2} - \sqrt{3})$$
 cm²

14. In an equilateral triangle ABC of side 10cm, the side BC is trisected at D. Then the length (in cm) of AD is

a) $3\sqrt{7}$

- b) $7\sqrt{3}$ c) $\frac{10\sqrt{7}}{3}$ d) $\frac{7\sqrt{10}}{3}$
- 15. ABC is an isosceles triangle with AB = AC. A circle through B touching AC at the middle point intersects AB at P. Then AP:AB is:

a) 4:1

- b) 2:3
- c) 3:5
- d) 1:4
- 16. In ∆ ABC, ∠C is an obtuse angle. The bisectors of the exterior angles at A and B meet BC and AC produced at D and E respectively. If AB = AD = BE, then $\angle ACB =$

a) 105°

- b) 108°
- c) 110°
- d) 135°
- 17. D is any point on side AC of Δ ABC. If P, Q, X, Y are the midpoints AB, BC, AD and DC respectively, then the ratio of PX and QY is

- a) 1:2
- b) 1:1
- c) 2:1
- d) 2:3
- 18. If the circumcentre of a triangle lie on the side whose adjacent angles are 45° each, then find the other two sides if the radius of the circumcircle is 15 cm

- a) 15 cm
- b) 30cm
- c) $15\sqrt{2}$ cm
- d) $30\sqrt{2}$ cm

- 19. ABCD is a cyclic quadrilateral. AB and DC when produced meet at P, if PA = 8cm, PB = 6cm, PC = 4cm, then the length (in cm) of PD is
 - a) 10cm
- b) 12cm
- c) 6cm
- d) 8cm
- 20. From a point within an equilateral triangle perpendiculars, draw to the three side, are 6cm, 7 cm and 8 cm respectively. The length of the side of the triangle is:
 - a) $7\sqrt{3}$ cm
- b) 10.5 cm
- c) 14√3 cm
- d) $14\sqrt{3} / 3$ cm

Answers

1 – c	2 – d	3 – d	4 – c	5 – d	6 - d	7 - c	8 - a	9 - c	10 - с
11 - a	12 - с	13 - с	14 - с	15 - d	16 - b	17 - b	18 - с	19 - b	20 - с

www.talentsprint.com 7