第五章 模拟运算电路

5.4 差分放大电路

差分放大电路

- 差分放大器
- 相关概念

差分信号

• 差分信号是一种信号形式,由两个大小相同、相位相反的信号组成 - 抗干扰

单端信号

- 差分(电压)信号
 - 两个大小相同、相位相反的信号

$$V_d = V_1 - V_2$$

- 单端 (电压) 信号
 - 以地(也就是0电压)为参考

差模分量与共模分量

• 已知单端信号 V_a 、 V_b

$$-$$
 差模分量 $V_d = V_b - V_a$

$$-$$
 共模分量 $V_{cm} = (V_a + V_b)/2$

• 已知差模分量 V_d 、共模分量 V_{cm}

$$V_a = V_{cm} - \frac{1}{2}V_d$$
 $V_b = V_{cm} + \frac{1}{2}V_d$

• 两种表示可以互相转换

减法放大器

$$R_a = R_c, \quad R_b = R_d$$

• 减法放大功能

$$V_o = \frac{R_b}{R_a} (V_b - V_a)$$

• 减法功能

$$(R_a = R_c) = (R_b = R_d)$$

$$V_o = V_b - V_a$$

减法放大器

输入信号:

- 1. 2个单端输入: V_a、V_b
- 2. 差模输入 V_d 、共模输入 V_{cm}

差分放大器

输入信号:

- 1. 2个单端输入: V_a、V_b
- 2. 差模输入 V_d 、共模输入 V_{cm}
- 差模输入

$$V_d = V_b - V_a$$

理想情况下, 只放大差模分量, 不放大共模分量

差分放大器增益

$$\begin{split} V_{o} &= \frac{R_{d} \left(R_{a} + R_{b} \right)}{R_{a} \left(R_{c} + R_{d} \right)} V_{b} - \frac{R_{b}}{R_{a}} V_{a} \\ V_{a} &= V_{cm} - \frac{1}{2} V_{d} \quad V_{b} = V_{cm} + \frac{1}{2} V_{d} \end{split}$$

$$\begin{split} V_o = & \left[\frac{R_a R_d - R_b R_c}{R_a \left(R_c + R_d \right)} \right] V_{cm} + \left[\frac{R_d \left(R_a + R_b \right) + R_b \left(R_c + R_d \right)}{2 R_a \left(R_c + R_d \right)} \right] V_d \\ = & \underbrace{A_{cm} V_{cm} + A_d V_d}_{\text{\#溢 }} \end{split}$$

差分放大器增益

• 如果满足条件 $R_a = R_c$, $R_b = R_d$

$$A_{cm} = \frac{R_a R_d - R_b R_c}{R_a (R_c + R_d)} = 0$$

$$A_{d} = \frac{R_{d} \left(R_{a} + R_{b}\right) + R_{b} \left(R_{c} + R_{d}\right)}{2R_{a} \left(R_{c} + R_{d}\right)} = \frac{R_{b}}{R_{a}}$$

理想的差分放大器只放大差模分量,不放大共模分量

共模抑制比

• 如果不满足条件 $R_a=R_c, \quad R_b=R_d$ $A_{cm}\neq 0$

- 共模抑制比: 衡量差分放大器对共模分量的抑制程度
 - Common Mode Rjection Ratio, CMRR

$$CMRR = 20\log\left|\frac{A_d}{A_{cm}}\right| \quad (dB)$$

• 理想差分放大器

$$A_{cm} = 0$$
, $CMRR = \left| \frac{A_d}{A_{cm}} \right| = \infty$

- 741运放共模抑制比: 典型值90dB
- 供电电压: ±5V
- 理想运放情况下
 - 差模増益 $A_d=4$
 - 共模增益 $A_{cm}=0$

差模增益:

• 差模输入:幅度1V,频率1kHz

• 共模输入: 0V

· 瞬态仿真,仿真时间1ms

共模增益:

• 差模输入: 0V

• 共模输入: 幅度1V, 频率1kHz

· 瞬态仿真,仿真时间1ms

$$A_d = 4$$

$$A_{cm} = 118 \times 10^{-6}$$

$$CMRR = 20 \log \left| \frac{A_d}{A_{cm}} \right| = 20 \log \left| \frac{4}{118 \times 10^{-6}} \right| = 90.6 \quad (dB)$$

电路满足条件
$$R_a = R_c$$
, $R_b = R_d$

共模抑制比由运放决定,与运放数据手册中给出的数据一致