Algebra liniowa 1R, Lista 9

Na tej liście i następnych, li tylko w celu zaoszczędzenia miejsca, piszemy $(x, y, z)^{\top}$ zamiast $\begin{pmatrix} x \\ y \end{pmatrix}$.

- 1. Uzasadnij, że iloczyn wektorowy jest dwuliniowy i antysymetryczny.
- 2. Sprawdź bezpośrednim rachunkiem:
 - (a) $\langle A \times B, C \rangle = \langle B \times C, A \rangle$; (b) $\langle A \times B \rangle \perp A$, $\langle A \times B \rangle \perp B$; (d) $\langle A \times B \rangle = \langle B \times C, A \rangle + \langle C \times A \rangle + \langle C \times A \rangle = 0$.
- 3. Które z wyrażeń opisują wektor, które liczbę, a które są bez sensu (A, B, C) to wektory, $\lambda \in \mathbf{R}$:
 - (a) $\langle C \times (\lambda B), A \rangle$; (b) $\langle C, (\lambda B) \rangle \times A$; (c) $A \times (\langle C, B \rangle B)$; (d) $\lambda \langle A, B \rangle$; (e) $\lambda (A \times B)$; (f) $\langle A, B \rangle + A \times B$; (g) $\langle A, B \rangle (A \times B)$.
- 4. Znajdź cosinus kąta między płaszczyznami 2x + 7y z = 5, -x + y + 3z = 7.
- 5. Znajdź pola równoległoboków rozpietych przez pary wektorów (a) $(1, -2, 4)^{\top}, (-1, 2, 3)^{\top};$ (b) $(-1, 0, 2)^{\top}, (0, 1, 3)^{\top}.$
- 6. Udowodnij (bezpośrednim ?) rachunkiem wzór $||A \times B|| = ||A|| \cdot ||B|| \cdot \sin(\angle(A, B))$. Wsk.: podnieś do kwadratu i użyj wzorów $\langle A, B \rangle = ||A|| \cdot ||B|| \cdot \cos(\angle(A, B)), \sin^2 a + \cos^2 a = 1$ by pozbyć się sinusa.
- 7. Uprość wyrażenia: (a) $\langle A, A \times C \rangle$; (b) $\langle A \times (B + A \times C), A \rangle$; (c) $\langle A + A \times B, A + B \rangle$; (d) $\langle D \times (A+D), (A \times B) \times (C \times A) \rangle$.
- 8. Sprawdź, które z podanych punktów leżą na płaszczyźnie $X = (1,2,3)^{\top} + t(5,-7,-2)^{\top} + s(-4,3,-1)^{\top}$: $(1,2,3)^{\top}; (7,4,2)^{\top}; (-3,4,3)^{\top}; (-2,3,1)^{\top}; (5,6,7)^{\top}; (5,-6,7)^{\top}; (3,-8,-5)^{\top}; (1,\pi,-\pi)^{\top}; (9,-2,7)^{\top}; (1,\pi,-\pi)^{\top}; (1$ $(12,3,16)^{\mathsf{T}}; (21,-12,13)^{\mathsf{T}}; (11,23,34)^{\mathsf{T}}; (-3,2,1)^{\mathsf{T}}; (-1,1,1)^{\mathsf{T}}; (10,0,10)^{\mathsf{T}}; (2,2,2)^{\mathsf{T}}; (-7,2,5)^{\mathsf{T}};$ $(1,-1,0)^{\top}$; $(3,-7,-4)^{\top}$; $(1,10,100)^{\top}$.
- 9. Zamień równanie płaszczyzny/prostej na parametryczne/nieparametryczne:
 - (a) $X = (0,0,1)^{\top} + t(1,0,1)^{\top} + s(1,2,7)^{\top}$; (b) x + 2y + 3z = 4; (c) $X = (1,0,7)^{\top} + t(2,-1,5)^{\top}$;
 - (d) $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z+5}{-1}$.
- 10. Niech $P=(1,2,3)^{\top}$, niech Π będzie płaszczyzną o równaniu 4x+y-z=2, zaś ℓ niech będzie prostą $\frac{x-1}{2}=\frac{y-3}{7}=\frac{z-(-2)}{3}$. Napisz nieparametryczne równanie (a) płaszczyzny przechodzącej przez P i równoległej do Π ;

 - (b) płaszczyzny przechodzącej przez P i zawierającej ℓ ;
 - (c) prostej przechodzącej przez P i prostopadłej do Π ;
 - (d) prostej przechodzącej przez P i równoległej do ℓ .
 - (e) prostej przechodzącej przez P, równoległej do Π i prostopadłej do ℓ ;
 - (f) płaszczyzny Π' zawierającej ℓ i takiej, że kat między Π a Π' jest równy katowi między Π a ℓ .
- 11. Uzasadnij, że jeśli A + B + C = 0, to $A \times B = B \times C = C \times A$.
- 12. Znajdź cosinus kata między płaszczyzną y-5z-1=0 a prostą $3x+4y=0,\,z=0.$
- 13. Napisz równania parametryczne i nieparametryczne prostej bedacej przekrojem płaszczyzn x+y+z=7, x + 2y - z = 3.
- 14. Znajdź równanie nieparametryczne płaszczyzny zawierającej prostą $\frac{x-1}{3} = \frac{-1-2y}{4} = \frac{3z+9}{-6}$ i prostopadłej do płaszczyzny -x + 4y - 2z = 100.
- 15. Znajdź równanie płaszczyzny zawierającej proste $X = (1,1,3)^{\top} + t(1,-2,1)^{\top}, \frac{1-x}{-2} = \frac{2y+2}{-8} = \frac{z+3}{2}$.
- 16. Znajdź równanie płaszczyzny przechodzącej przez $(2,-1,3)^{\top}$, $(3,1,2)^{\top}$ i równoległej do wektora $(-3, 1, 4)^{\top}$.
- 17. Niech ℓ będzie prostą $X = (0,3,0)^{\top} + t(-1,1,2)^{\top}$. Znajdź prostą przechodzącą przez $(1,0,1)^{\top}$ i przecinająca ℓ pod katem prostym.
- 18. Udowodnij, że proste X = A + tB, X = C + tD zawierają się w pewnej płaszczyźnie wtedy i tylko wtedy gdy $\langle A, B \times D \rangle = \langle C, B \times D \rangle$. Używając tego warunku stwierdź, czy proste $X = (1, 1, 2)^{\top} + t(7, 1, 0)^{\top}$, $X = (-6, 0, 2)^{\top} + t(1, 0, 1)^{\top}$ leżą w jednej płaszczyźnie. Jeśli tak, znajdź równanie tej płaszczyzny.
- 19. Dwie proste w \mathbb{R}^3 moga sie przecinać, być równoległe, lub ani jedno ani drugie (wtedy nazywamy je skośnymi). Dla każdej z tych trzech możliwości ułóż możliwie dużo zadań pytających o kąty/punkty/płaszczyzny/proste. Podaj (możliwie nietrywialne) przykłady pary prostych (a) przecinających się, (b) równoległych, (c) skośnych. Dla tych przykładów rozwiaż ułożone przez siebie (i kolegów) zadania.

- 20. Udowodnij, że $(\forall A, B \in \mathbf{R}^3)(\|A\| = 1 \Rightarrow A \times B = A \times (A \times (A \times (A \times (A \times B))))).$
- 21. Dla każdej ściany F pewnego wielościanu wypukłego narysowano wektor N_F prostopadły do F, skierowany na zewnątrz wielościanu (jeśli zaczepić go gdzieś w środku ściany F), o długości równej polu ściany F. Pokaż, że suma wszystkich narysowanych wektorów jest równa 0. (W razie kłopotów przelicz to zadanie dla czworościanu używając iloczynu wektorowego.)
- 22. Użyj tożsamości z zadania 2.(d) by pokazać, że wysokości trójkąta sferycznego przecinają się w jednym punkcie.