FAIR maturity indicators in the life sciences

Ammar Ammar ORCID: 0000-0002-8399-8990

PhD candidate
BiGCAT, NUTRIM, FHML, Maastricht University

14-10-2020

Acknowledgment

Serena Bonaretti

Transparent MSK Research, Maastricht, The Netherlands (https://tmskr.github.io/)

Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, The Netherlands

Joris Quik, Martine Bakker

National Institute for Public Health and the Environment (RIVM), NL-3720 BA Bilthoven, The Netherlands

Dieter Maier

Biomax Informatics AG, Planegg, Germany

Iseult Lynch

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

Why do we need FAIR?

- Data sharing and reuse are beneficial for time efficiency and increased productivity in scientific research.
- Data reuse remains difficult → lack of infrastructures, standards, and policies.
- FAIR (findable, accessible, interoperable, reusable)
 aim to provide guidance to increase data discovery
 and reuse.
- Maturity indicators are a way to assess the FAIRness of a dataset.

Is research FAIR enough?

- 40% of qualitative datasets were never downloaded [1].
- About 25% of data is used less than 10 times [1].
- Reproducibility of landmark studies are strikingly low:
 - 39% in psychology [2]
 - 21% in pharmacology [3]
 - 11% in cancer [4]

^[2] Monya Baker, Nature, 2015

^[3] Florian Prinz et.al, Nature reviews, 2011

• FAIR principles do not specify how to implement them.

- FAIR principles do not specify how to implement them.
- Lack of practical specifications:
 - generated a large spectrum of interpretations and concerns.
 - raised the need to define measurements of data FAIRness.

- FAIR principles do not specify how to implement them.
- Lack of practical specifications:
 - generated a large spectrum of interpretations and concerns.
 - raised the need to define measurements of data FAIRness.
- The majority of the proposed tools are online questionnaires
 - researchers and repository curators manually assess the FAIRness of their data.

- FAIR principles do not specify how to implement them.
- Lack of practical specifications:
 - generated a large spectrum of interpretations and concerns.
 - raised the need to define measurements of data FAIRness.

- researchers and repository curators manually assess the FAIRness of their data.
- The FAIR metrics guidelines emphasize the importance of creating "objective, quantitative, and machine-interpretable" evaluators.

Problem statement

- Data reusability in the life sciences domain is hard to quantify.
- FAIR assessment is mostly done manually, which makes the process slow and less objective.
- We lack the means of comparing the FAIRness of life sciences data in a visual easy-to-read manner.

Research Aim

- Develop a computational approach to calculate 12 FAIR maturity indicators in the life sciences domain proposed by [6] and [7].
- Apply it on several datasets/databases with toxicology and/or nanotoxicology related data.
- Create a visualization tool to summarize and compare FAIR maturity indicators across various datasets [6] and [7].

Box 2 | The FAIR Guiding Principles

To be Findable:

- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata (defined by R1 below)
- F3. metadata clearly and explicitly include the identifier of the data it describes F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol
- A1.1 the protocol is open, free, and universally implementable
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary A2. metadata are accessible, even when the data are no longer available

To be Interoperable:

- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- 12. (meta)data use vocabularies that follow FAIR principles
- 13. (meta)data include qualified references to other (meta)data

To be Reusable:

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
- R1.1. (meta)data are released with a clear and accessible data usage license
- R1.2. (meta)data are associated with detailed provenance
- R1.3. (meta)data meet domain-relevant community standards

Three uses case, six databases:

@ caNanoLab

- For example:
 - What can eNanoMapper database tell us about nanoscale titanium dioxide (TiO₂) toxicity?

Three uses case, six databases:

aNanoLab

- What can eNanoMapper database tell us about nanoscale titanium dioxide (TiO₂) toxicity?
- importance of *data* and *metadata* being "machine-interpretable" -> we collected information application programming interfaces (API).

Three uses case, six databases:

🛞 caNanoLab

- For example:
 - What can eNanoMapper database tell us about nanoscale titanium dioxide (TiO₂) toxicity?
- importance of data and metadata being "machine-interpretable" -> we collected information application programming interfaces (API).
- We queried <u>re3data.org</u> to compute the maturity indicators for the principles F1, A2, and R1.2, related to providing persistent global identifier, metadata data policy and metadata provenance respectively.

- Searchable resource: We queried <u>Google Dataset Search</u>, an emerging search engine specific for datasets, to quantify the principle F4, which relates to indexing of the metadata in a searchable resource.
- The output of queries consisted of information structured in XML or JSON, which were parsed using Python to extract information.
- Each maturity indicator was encoded as a binary value:
 - "1" if the criterion was satisfied and
 - "0" in the opposite case.
- With the exception of indicators F2 and R1.2.

Results

FAIR maturity indicators

- 0.00 F automatic
- 0.50 I × N/A
- 0.75 R
- 1.00

Conclusion

- In this research, we developed a semi-automated workflow to assess FAIRness and applied it on 6 life sciences resources using maturity indicators.
- We implemented our workflow in a Jupyter notebook to make our analysis open and reproducible.
- We created a FAIR balloon plot to summarize and compare FAIRness compliance.
- Such a workflow could help the developers of the databases to improve their FAIRness.
- Changes to APIs or metadata attributes could affect reproducibility of the results.
- For new datasets, FAIR maturity indicators could be evaluated by changing the search procedure and the values assigned manually.

Acknowledgment

Serena Bonaretti

Transparent MSK Research, Maastricht, The Netherlands (https://tmskr.github.io/)

Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, The Netherlands

Joris Quik, Martine Bakker

National Institute for Public Health and the Environment (RIVM), NL-3720 BA Bilthoven, The Netherlands

Dieter Maier

Biomax Informatics AG, Planegg, Germany

Iseult Lynch

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

