VERIFICATION OF DIJKSTRA'S ALGORITHM IN IDRIS

Yazhe Feng

A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts

in the

Department of Computer Science

at Bryn Mawr College

Advisor: Richard A. Eisenberg

Acknowledgments

(To be finished...)

Abstract

Contents

Abstract

1	Introduction	1
2	Motivation	1
3	Background3.1 Introduction of Idris	2 2 10
4	Overview of Dijkstra's Implementation and Proof of Correctness 4.1 Data Structures	10 11 11 12 13 22 22
5	Concrete Implementation of Dijkstra's Verification 5.1 Data Structures 5.1.1 The WeightOps data type 5.1.2 Data Types for Node, nodeset, and Graph 5.1.3 Path and shortest Path 5.1.4 The Column data type 5.2 Implementation of Dijkstra's Algorithm 5.2.1 dijkstras and runDijkstras 5.2.2 runHelper and updateDist 5.2.3 calcDist 5.3 Verification of Dijkstra's Algorithm 5.3.1 Lemmas 5.3.2 Verification of Correctness	23 23 24 25 26 26 27 28 29 30 30 35
6	Discussion	36
7	Related Work	36
R	Conclusion	37

1 Introduction

Shortest path problems are concerned with finding the path with minimum distance value between two nodes in a given graph. One variation of shortest path problem is single-source shortest path problem, which focuses on finding the path with minimum distance value from one source to all other vertices within the graph. Dijkstra's algorithm [1] is one of the most well-known single-source shortest path algorithms, and are implemented in various fields including network protocols and aritificial intelligence.

Given the importance of Dijkstra's in real-life applications, we are interested in verifying the implementation of both algorithms. We first provide concrete implementation for Dijkstra's algorithm, and then define functions with precise type signatures which carry specifications that should hold for the correct implementation, for instance returning the minimum distance value from the source to each node in the graph. Having these functions type checked will then ensure the correctness of our algorithm implementation. Our implementation uses the Idris functional programming language, which embraces powerful tools and features that makes program verification possible.

Specifically, our contributions are:

- Provide a concrete implementation of Dijkstra's algorithm in Idris.
- Offer a verification program for Dijkstra's algorithm written in Idris, which is available on this (https://github.com/EileenFeng/algorithm_verification). Although the proof of some lemmas are incomplete, we are confident that we can provide the complete implementation if granted more time.

The structure of this thesis is as follows. Section 2 describes the significance and value of algorithm verification, and reasons of choosing Idris as the language for verifying programs. Section 3 provides some background on Dijkstra's algorithm, follows up by briefly introduction on the Idris functional programming language. Section 4 includes an overview of our verification program, including definition of key concepts, assumptions made by our program, and details on the pseudocode and mathematical proof of Dijkstra's, which serves as important guideline in implementation our verification program. Section 5 covers more details of our verification program, including function type signatures and code of the proof for key lemmas. Section 6 discusses future work. Section 7 presents and compares related work, and section 8 gives a brief conclusion.

2 Motivation

Software bugs are generally undesirable, especially in safety-critical and mission-critical systems. Back in 1985, errors in programs that controlled the Therac-25 radiation therapy machine were responsible for causing patience death by giving massive overdose of raidations ¹. The Northeast Blackout in 2003 due to race condition in power control systems has affected more than 50 million people in 8 states, causing an estimated loss of over 4 billion dollars ². In practice,

¹Therac-25 Wikipedia page

²(1) Northeast Blackout 2003 Wikipedia Page (2) The Economic Impacts of the August 2003 Blackout

people usually convince themselves that a program is probably correct through testing, however as Dijkstras emphasized back in 1970s, "Program testing can be used to show the presence of bugs, but never to show their absence!" [2]. Concerning the serious consequences that might be caused by software errors in real life applications, it is important to validate the actual behaviors of programs.

As computer programs can be considered as formal mathematical objects whose properties are subject to mathematical proofs, program verification aims to provide proofs of correctness for programs by using formal, mathematical techniques [3]. Common techniques in program verification include using proof systems, for instance the Why3 Platform [4] applies the SMT solver³, and automatic verification techniques. Applications of program verification include the Compcert C Compiler, which is verified using machine-assisted mathematical proofs, and is considered exempt from miscompilation issues⁴.

In this thesis we aim to present verification as a programming issue. We want to show that with certain functional programming languages, we can specify the expected bahaviors in function type signatures, and any incorrect function definitions will fail to type check. This not only indicates that program verification can be achieved at compilation level, but more importantly, presents a technique that enforces programmers to write programs that are correct by construction. We choose Dijkstra's algorithm as our target as since it is widely applied in many fields, such as artificial intelligence.

Based on the above motivations, we choose the Idris programming language for implementing our verification program [5]. Compare to other proof management systems, the Idris type checker is based on a smaller code base, which reduces the chance of introducing unexpected bugs into our verification program. Idris is a functional programming language with dependent types, which allows programmers to provide more precise description of function's expected behaviors through its type signature. As we plan to achieve verification with type checking, this feature is essential to our verification process. In addition, the compiler-supported interactive editing feature in Idris allows programmers to inspect functions based on their type and thus to use type as guidance for writing programs, which offers considerable assistance during our implementation. Section 3 covers more backgrounds on the Idris programming language.

3 Background

3.1 Introduction of Idris

Idris is a general-purpose functional programming language with dependent types. Many aspects of Idris are influenced by Haskell and ML. Features of Idris include but not limit to dependent types, with rule, case expression, and interactive editing.

Variables and Types

Idris requires type declarations for all variables and functions defined. To define a variable, we provide the type on one line, and specify the value on the next line. Below presents the syntax

³information on SMT solver

⁴main page of Compcert C

for variable declaration.

```
<variable_name> : <type>
<variable_name> = <value>
```

The example below defines a variable n of type Int with value 37.

```
n : Int
n = 37
```

Types in Idris are first-class values, which means types can be operated as any other values. Type declaration is the same as declaring any other variables, with exactly the same syntax, except that the type of a type is Type. By convention, variables that represent types are capitalized. Below example declares a type CharList, which denotes the type of list of characters.

```
CharList : Type
CharList = List Char
```

CharList is a type that stands for List of Chars, and declaring a variable of type CharList is the same way as we declare a variable of type List Char. The following example declares a variable lisChar of type CharList. lisChar contains the characters for the English word "hello".

```
lisChar : CharList
lisChar = 'h' :: 'e' :: 'l' :: 'l' :: 'o' :: Nil
```

Function

To define a function a Idris, the types for all input values and output values must be specified in the function type signature, connecting by right arrows. Specifically, function type is of the form:

```
<func_name>: x_1 -> x_2 -> ... -> x_n
```

where $x_1, x_2, ..., x_{n-1}$ are types for the input values, and x_n is the output type of the function. Input values can be named to provide more information, and also allows each input to be referred to easily later. For instance the type of the reverse function below names the first input of type Type as elem, which specifies that the input and output lists contain elements of same type.

```
-- "reverse" reverse a list
reverse : (elem : Type) -> List elem -> List elem
```

An example of calling reverse is provided below. The variable nats has type List Nat. When calling reverse on nats, the first argument of reverse denotes the type of the input list and output list, which is Nat in this case, then the output of (reverse Nat nats) is also of type List Nat, as specified by the type of reverse_nats.

```
nats : List Nat
nats = 3 :: 2 :: 1 :: Nil
reverse_nats : List Nat
reverse_nats = reverse Nat nats
```

A function definition is provided on the line below the function type. In Idris, functions are defined by pattern matching, which will be elaborated on later. Here we provide an example for function definition that requires little experience with pattern matching, only aiming to illustrate the syntax for defining functions. The mult function defined below multiplies the two input integers.

```
-- calculates the multiplication of two input integers 'n' and 'm' mult : Int -> Int -> Int mult n m = n * m
```

Data Types

User defined data types are supported in Idris. To define a data type, we need to provide the name and type of the data type starting with the keyword data, followed by the id and the type of the data type. On the next few lines we define the constructors for this data type. Below provides the definition of the natural number type Nat in Idris.

```
-- natural number can be either zero, written as 'Z', or the
   successor of another natural number 'n', written as 'S n'
data Nat : Type where
   Z : Nat
   S : (n : Nat) -> Nat
```

Idris allows data types to be parameterized. The data type defined below shows that the type constructor List takes in a parameter elem of type Type, which stands for the type of elements in the list, and the type constructed is a list of elements of type elem. List type has two data constructor, Nil and (::). Nil builds an empty list of type List elem. (::) append a new element x of type elem to the head of an existing list xs of type List elem, and builds a new list x :: xs of the same type as xs.

```
-- declaration of List data type in Idris standard library
data List : (elem : Type) -> Type where
Nil : List elem
(::) : (x : elem) -> (xs : List elem) -> List elem
```

Dependent Types

Dependent types are types that depend on elements of other types[6]. They allow programmers to specify certain properties of data types explicitly in their type. The following example provides a definition of a vector data type, which is indexed by the vector length len and parameterized over the element type elem.

The type Vect len elem is dependent on the value of type variables len and elem, which means two Vects of length 3 and 4 are considered as different types, and two Vects of same length but with element type Nat and Char are considered as different types. Dependent types allow programmers to obtain more confidence in a function's correctness by specifying its expected behaviors in its type. For instance, consider a function concat that concatenates two Vect, whose type signature is presented below.

```
concat : Vect n elem -> Vect m elem -> resultType
```

The output value of concat is a vector that concatenates both input vectors, which means its length should be the sum of the length of the two input vectors, i.e., (n+m), hence resultType

has the type Vect (n+m)elem. The dependent type system helps to ensure the function correctness of concat through the Idris type checker. By providing a function type for concat that specifies the length of the output Vect, if the definition of concat does not return a vector of length (n+m), concat would fail type check. Take the following definition of concat as an example.

```
concat : Vect n elem -> Vect m elem -> Vect (n+m) elem concat Nil v2 = v2 concat (x :: xs) ys = concat xs ys
```

The type of concat specifies that the output value should be a Vect of length (n+m), where n, m are the length of the two input Vect, however the definition of concat eliminates one element from the input vector x :: xs during each recursive call, which is not the expected function behavior. Idris gives the following error message when compiling this function definition:

The error message clearly indicates that the expected return type is Vect (S (plus len m)) Nat (Expected type), which is a vector of length S (plus len m), however the type of concat xs ys is Vect (plus len m)Nat, whose length is one less than the length of the expected type. As the return type of this definition fail to match with the return type specified in the type of concat, it fails to be type checked. A correct implementation of concat is provided below.

```
concat : Vect n Nat -> Vect m Nat -> Vect (plus n m) Nat
concat Nil v2 = v2
concat (x :: xs) ys = x :: (concat xs ys)

-- definition of 'plus' in Idris
total plus : (n, m : Nat) -> Nat
plus Z right = right
plus (S left) right = S (plus left right)
```

Under the case where the first input argument is (x :: xs) (i.e., vector is not empty), the length of the first vector n should be the successor of some other natural number n', i.e. n = S n', then (x :: xs) has type Vect (S n') Nat, and xs has type Vect n' Nat. The concat function is defined by appending the head of the first input argument, x, to the result of concat xs ys. As the types of xs, ys are Vect n' Nat, Vect m Nat, the type of concat xs ys is Vect (plus n' m) Nat, hence the vector obtained by appending x to concat xs ys has type Vect (S (plus n' m))Nat. Based on the definition of plus in Idris (which is provided above), we see that S (plus n' m) = plus (S n')m, which is exactly the expected output type Vect (plus n m)Nat, which indicates

that the above definition of concat type checks.

The concat example above illustrates how dependent types help programmers to ensure function correctness with the Idris type checker. In program verification, dependent types can be used to specify intended behaviors of a program, and thus allowing us to verify its correctness.

Pattern Matching and Totality Checking

Pattern matching is the process of matching values against specific patterns. In Idris, functions are implemented by pattern matching on possible values of inputs. Continuing with the above example of concate function that concatenates two vectors, to define concate, we need to provide definitions on all possible values of Vect, which can either be Nil, i.e., a vector of length zero, or a non-empty vector of the pattern (x :: xs).

```
concat : Vect n Nat -> Vect m Nat -> Vect (n+m) Nat concat Nil v2 = v2 concat (x :: xs) v2 = x :: concat xs v2
```

Total function are defined for all possible input values and are guaranteed to terminate. Partial functions are not total, and hence might crash for some inputs. To secure the termination of programs, every function definition in Idris is checked for totality after type checking. However, due to the undecidability of the halting problem, the Idris totality checker is conservative, i.e., is never certain on whether a function is total or not. Based on the Idris Tutorial, Idris decides a function f is total if all of the following holds [7]:

- Cover all possible inputs
- Be well-founded i.e. by the time a sequence of (possibly mutually) recursive calls reaches f again, it must be possible to show that one of its arguments has decreased.
- Not use any data types which are not strictly positive
- Not call any non-total functions

Specifically, f is considered as total if it is defined for all possible input values, for instance given an input of type Nat, f must cover the cases where it is either Z or the successor of another Nat (of the form S n'); and must have at least one argument that has a property, for instance its value (the Nat data type) or length (the Vect data type), that is strictly decreasing during each recursive call; the strictly positive restriction is a technical restriction that does not really concern us here, and lastly, f cannot call any non-total functions, otherwise f might fail to terminate due to the non-total functions called. To illustrate totality checking in Idris, continue with our concat function (the definition of concat below is not total):

```
concat : Vect n Nat -> Vect m Nat -> Vect (n+m) Nat
concat (x :: xs) ys = x :: (concat xs ys)
```

We use the :total command to check whether the above definition of concat is total, and we get the following message:

```
*Example > :total Example.concat
Example.concat is not total as there are missing cases
```

As concat is not defined for the case where the first input vector is Nil, hence the Idris totality checker marks concat as not total. If we check totality for the correct implementation of concat provided under the Dependent Types section, we see that Idris considers it as total:

```
concat : Vect n Nat -> Vect m Nat -> Vect (n+m) Nat
concat Nil v2 = v2
concat (x :: xs) ys = x :: (concat xs ys)

-- totality checking result for concat
Type checking ./Example.idr
*Example> :total Example.concat
Example.concat is Total
```

case expressions

case expression can be used to inspect a data value by matching on several cases. The syntax for case expression is as follow:

where <test> is the expression being matched on, followed by all cases in the next few lines. Consider the following example that defines a function findNat with case expressions. findNat checks whether a given number n is an element of the input vector of Nats.

The base case is when input vector is Nil, which indicates that n is not an element in the vector. Otherwise we check whether the head of the input vector (x :: xs) is equal to n with (n == x). Using case expression, we can match on the value of (n == x), that if (n == x) is True, then n is an element of the input vector, findNat returns True; otherwise we recur on the remaining of the vector xs to keep searching.

The with Rule

In a dependently typed language, matching on the resulting value of an intermediate computation can affect what we know about other values. In program implementation and theorem proving, it is a common technique to match on intermediate value in order to obtain more information. Idris provides the with rule for this purpose. Consider the following example checkEvenPrf:

The checkEven function checks whether a given Nat is even or not. It returns True if the input Nat is an even number, and returns False otherwise. The checkEvenPrf function is a proof that if a natural number is even, then its successor must not be even. The type of checkEvenPrf describes the premise and conclusion of this proof: given a natural number n, if the result of calling checkEven on n is true (as specified by checkEven n = True), then the successor of n must not be even, and the result of calling checkEven on (S n) must be False, which is specified by the output type checkEven (S n) = False.

Idris allows holes in a proof which stands for incomplete parts of a program, for instance ?check in the example above is a hole. Idris allows programmers to inspect the type of holes and write functions incrementally. Inspecting the type of check we get the following:

The types of arguments of <code>checkEven</code> is presented above the dash line in the terminal output, and the expected return type, which is the type of the <code>check</code> hole, is presented below the dash line. The information provided by the terminal output shows that the value of <code>(checkEven n)</code> might effect the type of <code>check</code>, which indicates that matching on the value of <code>(checkEven n)</code> with <code>with</code> rule might provide more insights in writing this proof, as presented below.

In the checkEvenPrf definition above we use the with rule to match on the value of checkEven n, which can be either True or False (as checkEven has return type Bool). By postfix the with clause with proof nIsEven, a proof named nIsEven generated by the pattern match will be in scope. By inspecting the type of checkT under the cases where (checkEven n) is matched as True, we get the following information.

```
*Example > :t checkT

n : Nat

prf : True = True

nIsEven : True = checkEven n

checkT : False = False

Holes: Example.checkF, Example.checkT
```

Notice that nIsEven is a proof of True = checkEven n generated by the pattern match directly. As the with rule matches the value of (checkEven n) to True, and based on the definition of checkEven, Idris is able to deduce that the value of checkEven (S n) should be False, and hence the expected type of checkT is False = False as presented above. When (checkEven n) is matched to False, the type of checkF is as follows:

```
*Example > :t checkF
```

As the second argument of checkEvenPrf indicates that the value of (checkEven n) should be True, Idris is able to deduce that under this case the type of prf should be (False = True), which is an absurdity, indicating that the value of (checkEven n) cannot be False. Hence we call the built-in function absurd on prf to mark that the case where (checkEven n) is matched to False is impossible. Refl is the data constructor for the equality data type (=). sym and trueNotFalse are built-in functions in Idris that helps with constructing proof with impossible cases in Idris. The complete checkEvenPrf proof is presented below.

On the other hand, Idris also restricts programmers from proving something that is not true. Consider the following proof checkEven_wrong.

The predN function calculates the predecessor of a natural number (of type Nat). The predecessor of zero Z is Z itself, and the predecessor of (S n) is n. Given the definition of predN, the function $checkEven_wrong$ attempts to prove that for a natural number n, if (checkEven n) is True, as specified by (checkEven n = True), then the predecessor of n must not be even, as specified by the output type checkEven (predN n)= False. Similar to the checkEvenPrf function, the implementation of $checkEven_wrong$ under the case where input value n is (S pn) (the second case) is straightforward, however as we inspect the hole ?caseZ in the first case where n is Z, we notice that it is impossible to complete this proof:

As the type of caseZ is True = False, which is an absurdity, and there is no information available (above the dash line is what we know for approaching the proof) for us to reach this absurdity, there is no way for us to complete this hole, that the implementation for checkEven_wrong can

never be completed, which indicates that Idris restricts programmers from writing proofs that are not true.

3.2 Dijkstra's algorithms

Dijkstra's Algorithm

Dijkstra's algorithm is a greedy algorithm that finds the shortest path from a given source to all other nodes in a directed graph with weighted edges. It was first introduced in 1959 by Edsger Wybe Dijkstra[1], and it is widely applied in many real-life applications, for instance Internet routing protocols such as the Open Shortest Path First protocol, and a variant of Dijkstra's algorithm is formulated as an instance of the best-first search algorithm in artificial intelligence.

Dijkstra's algorithm takes in a directed graph with non-negative edge weights, and computes the shortest path distance from one single source node to all other reachable nodes in the graph. The algorithm maintains a list of unexplored nodes and their distance values to the source node. Initially, the list of unexplored nodes contains all nodes in the input graph, and the distance value of all node are set as infinity except for the source node itself, which is set to zero. The algorithm extracts the node v with minimum distance value from the unexplored list during each iteration, and for each neighbor v' of v, if the path from source to v' via v contributes a smaller distance value, then the distance value of v' is updated.

4 Overview of Dijkstra's Implementation and Proof of Correctness

4.1 Data Structures

Dijkstra's algorithm requires non-negative edge weights and valid input graph, and the data structures in our implementation are designed to ensure these properties of input values. An overview of data structures in our implementation is presented below, and a detailed description is provided under Section 5.

Denote gsize as the size of graph, i.e. the number of vertices in a graph. A graph g is defined as a vector containing gsize number of adjacent lists, one for each node in the graph, and a node is defined as a data structure carrying a value of type Fin gsize. An adjacent list for a node $n \in g$ is defined as a list of tuples $(n', edge_w)$, where the first element n' in each tuple is a neighbor of n in g, and the second element $edge_w$ is the weight of the edge (n, n') in g. To access the adjacent list for a particularly node, the Fin gsize type value carried by this node is used to index the graph g. As the graph is defined as a vector of length gsize, the definition of node data type ensures that every well-typed node is a valid vertex in the graph, and that each indexing to the graph data structure are guaranteed to be in-bound.

The type of edge weight is user-defined in our implementation. Specifically, we define a WeightOps data type, which carries a user-specified type for the edge weight, along with operators and properties proofs for this type, which includes arithmetic operators, proof of nonnegative value, and proof of plus associativity. As all edge weight are non-negative, and we assume a connected input graph, all edge weight should be non-negative and not equal infinity, whereas Dijkstra's algorithm initialize the distance value of all nodes in the graph (except the

source node) as infinity. Based on this consideration we defined a Distance data type in addition to the user-defined edge weight type. Distance is parameterized over the user-defined weight type and can have value of either infinity, or the sum of edge weights.

4.2 Definition

Our implementation and correctness proof are based on the following definitions of key concepts used in Dijkstra's algorithm.

Definition 4.1. Path

(We adopt the definition of path presented in the Discrete Mathematics with Applications book by SUSANNA S. EPP [8].)

A path from node v to w is a finite alternating sequence of adjacent vertices of G, which does not contain any repeated edge or vertex. A path from v to w has the form:

$$vv_0v_1...v_{n-1}w$$

where each adjacent nodes v_{i-1}, v_i has an edge from v_{i-1} to v_i in G. We denote the set of paths from v to w as path(v, w).

Definition 4.2. Prefix of Path

Given a path from node v to w: $path(v, w) = vv_0v_1...v_{n-1}w$, the prefix of this v-w path is defined as a subsequence of path(v, w) that starts with v and ends with some node $w' \in path(v, w)$ (w' is a vertex in the sequence path(v, w)).

Definition 4.3. Length of Path

The length of a path $p = vv_0v_1...v_{n-1}w$ is the sum of the weights of all edges in p. We write:

$$length(p) = \sum weight(v_{i-1}, v_i), \forall v_{i-1}, v_i \in p \text{ where } (v_{i-1}, v_i) \in G.$$

Definition 4.4. Shortest Path

Denote $\Delta(s, v)$ as a shortest path from s to v, and $\delta(v)$ as the length of $\Delta(s, v)$. $\Delta(s, v)$ must fulfills:

$$\Delta(s,v) \in path(s,v)$$
 and
$$\forall p' \in path(s,v), length(\Delta(s,v)) = \delta(v) \leq length(p')$$

4.3 Pseudocode

We denote (u,v) as an edge from node u to v, weight(u,v) as the weight of edge (u,v). Let gsize denote the size of the input graph, i.e., the number of nodes in the graph. The type Graph gsize weight specifies a graph with gsize nodes and edge weight of type weight.

Given input graph g and source node s with types:

```
g : Graph gsize weight
s : Node gsize
```

Define unexplored as the list of unexplored nodes, and dist as a list storing the distance value⁵ from s to all nodes in g calculated by the Dijkstra's algorithm. dist[v] gives the corresponding distance value of v from s. Initially, unexplored contains all node in g, and the distance value from s to every node $v \in g$ is ∞ except for s itself, whose distance value to s is 0, as shown below:

```
(initially unexplored contains all nodes in graph g) unexplored = \{v : v \in g\} (node value is used to index dist, initially distance of all nodes are infinity except the source node) dist[s] = 0, dist[a] = \infty, \forall a \in g, a \neq s
```

We index unexplored and dist by the number of iterations. Specifically, denote u_i as the node being explored at the i^{th} iteration, and denote $dist_i$, $unexplored_i$ as the value of distance list and unexplored list at the beginning of the i^{th} iteration. Then during each iteration the Dijkstra's Algorithm calculates dist, unexplored, explored as follows:

```
 \begin{array}{l} \text{choose } u_k \in unexplored_k \text{ and } \forall u' \in unexplored_k, dist_k[u_k] \leq dist_k[u'] \\ unexplored_{k+1} = unexplored_k - \{u_k\} \\ \text{for } (\forall v \in g) \quad \{ \\ dist_{k+1}[v] = \begin{cases} min(dist_k[v], (dist_k[u_k] + weight(u_k, v))), & (u_k, v) \in g \\ dist_k[v] & otherwise \end{cases} \\ \} \\ \end{cases}
```

This implementation of Dijkstra's algorithm can be viewed as generating a matrix, where the i^{th} column in the matrix stores the value of $unexplored_i$ and $dist_i$. After calculating a matrix with n columns, the $(n+1)^{th}$ column can be calculated based on the value of $unexplored_n$ and $dist_n$ stored in the last column, i.e., the n^{th} column in the matrix. This reprensentation provides a clear recursive structure for the implementation of Dijkstra's algorithm, and the correctness of the program can be verified by proving that certain properties, for instance distance value of explored nodes stored in each column is the minimum distance value, hold for every column generated.

4.4 Proof of Correctness

This section provides a mathematical proof for our Dijkstra's implementation, which includes proof of program termination and proof of correct program behavior.

⁵For convenience purpose, in this thesis we denotes the 'distance value' for a node 'n' in a graph 'g' as the distance from the source node to n in 'g'

4.4.1 Lemmas

Denote explored as the list of nodes in g but not in unexplored, i.e., explored stored all nodes whose neighbors have been updated by the algorithm. We index explored by the number of iterations, such that $explored_i$ denotes the value of explored at the beginning of the i^{th} iteration.

Lemma 4.1. Given any two nodes v, w, the prefix of the shortest path $\Delta(v, w)$ is also a shortest path.

Proof. We will prove Lemma 4.1 by contradiction.

Consider any node q in the sequence of $\Delta(v,w)$, we have $\Delta(v,w) = ve_0v_0e_1v_2...v_iqv_j....v_{n-1}e_nw$. Suppose the prefix of $\Delta(v,w)$ from v to q, denote as p(v,q), is not the shortest path from v to q. Then we know $p(v,q) = ve_0v_0e_1v_2...v_iq$ is a path from v to q and $length(p(v,q)) > length(\Delta(v,q))$.

Based on the definition of shortest path, we know:

$$length(\Delta(v, w)) \le length(p), \forall p \in path(v, w)$$

Fenote the path after the node q as $p(q,w) = qv_j...v_{n-1}e_nw$, since $\Delta(v,w) = ve_0v_0e_1v_2...v_iqv_j....v_{n-1}e_nw$, then $\Delta(v,w) = p(v,q) + p(q,w)$, and that $length(\Delta(v,w)) = length(p(v,q)) + length(p(q,w))$. Then we have:

$$length(\Delta(v,w)) = length(p(v,q)) + length(p(q,w)) \le length(p), \forall p \in path(v,w)$$

Since p(v,q) is not the shortest path from v to q by assumption, then based on the definition of shortest path, $length(p(v,q)) < length(\Delta(v,w))$. Hence there exists another v-w path p'(v,w) such that:

$$\begin{split} p'(v,w) &\in path(v,w) \\ p'(v,w) &= \Delta(v,q) + p(q,w) \\ length(p'(v,w)) &= length(\Delta(v,q)) + length(p(q,w)) \\ &< length(p(v,q)) + length(p(q,w)) \\ \text{i.e. } length(p'(v,w)) &< length(\Delta(v,w)) \end{split}$$

Hence we have reached a contradiction. Thus by the principle of prove by contradiction, for any the prefix p(v,q) of $\Delta(v,w)$ is the shortest path from v to q. Lemma 4.1 holds.

Lemma 4.2. Forall node $v \in g$, $n \ge 0$, if $dist_{n+1}[v] \ne \infty$, then $dist_{n+1}[v]$ is the length of some s - v path, i.e, $path(s, v) \ne \emptyset$.

Proof. We will prove Lemma 4.2 by inducting on the number of iterations. Let P(n) be: After the n^{th} iteration, $n \geq 1$, for all node $v \in g$, if $dist_{n+1}[v] \neq \infty$, then $dist_{n+1}[v]$ is the length of some s-v path.

Base Case: We shall show P(1) holds.

Based on the algorithm, initially $dist_1[s] = 0$ and for all node $v \in g, v \neq s, dist_1[v] = \infty$, then s is the only node whose distance value is not infinity. Based on the definition of path, the path from the source node s to itself is s, $path(s,s) = \{s\}$. Hence P(1) holds.

Inductive Hypothesis: Suppose $\forall i, 1 \leq i \leq k$, P(i) holds. That is, for all nodes $v \in g$, if $dist_{i+1}[v] \neq \infty$, then $dist_{n+1}[v]$ is the length of some s-v path.

Inductive Step: We shall show P(k+1) holds.

For node u_{k+1} being explored during the $(k+1)^{th}$ iteration, based on the algorithm, $dist_{k+1}[u_{k+1}]$ is calculated as:

$$dist_{k+2}[u_{k+1}] = \begin{cases} min(dist_{k+1}[u_{k+1}], dist_{k+1}[u_{k+1}] + weight(u_{k+1}, u_{k+1})), & (u_{k+1}, u_{k+1}) \in g \\ dist_{k+1}[u_{k+1}] & otherwise \end{cases}$$

Since the distance value from u_{k+1} to itself is 0, then $dist_{k+2}[u_{k+1}] = dist_{k+1}[u_{k+1}]$, and that $dist_{k+2}[u_{k+1}]$ and $dist_{k+1}[u_{k+1}]$ are the length of the same $s-u_{k+1}$ path if there exists one. If $dist_{k+2}[u_{k+1}] \neq \infty$, then $dist_{k+1}[u_{k+1}] = dist_{k+2}[u_{k+1}] \neq \infty$. Since $k \leq k$ and $dist_{k+1}[u_{k+1}] \neq \infty$, then based on the inductive hypothesis, $dist_{k+1}[u_{k+1}]$ is the length of some $s-u_{k+1}$ path, and hence $dist_{k+2}[u_{k+1}]$ is the length of some $s-u_{k+1}$ path.

Then for all node $v \in g$ other than u_{k+1} , there are two cases: (1) $(u_{k+1}, v) \in g$; (2) u_{k+1} does not have an edge to v. We will prove P(k+1) holds in both cases separately.

Case (1): $(u_{k+1}, v) \in g$

Based on the algorithm, as $(u_{k+1}, v) \in g$, $dist_{k+2}[v] = min(dist_{k+1}[v], dist_{k+1}[u_{k+1}] + weight(u_{k+1}, v))$.

- If $dist_{k+1}[v] < dist_{k+1}[u_{k+1}] + weight(u_{k+1},v)$, then $dist_{k+2}[v] = dist_{k+1}[v]$. Then if $dist_{k+2}[v] \neq \infty$, we have $dist_{k+1}[v] \neq \infty$, and that $dist_{k+2}[v]$ and $dist_{k+1}[v]$ are the length of the same s-v path if there exists one. Since $dist_{k+1}[v] \neq \infty$, the inductive hypothesis implies that $dist_{k+1}[v]$ is the length of some s-v path, hence $dist_{k+2}[v]$ is the length of some s-v path. P(k+1) holds.
- If $dist_{k+1}[v] \geq dist_{k+1}[u_{k+1}] + weight(u_{k+1},v)$, then $dist_{k+2}[v] = dist_{k+1}[u_{k+1}] + weight(w,v)$. If $dist_{k+2}[v] \neq \infty$, then it follows that $dist_{k+1}[u_{k+1}] = dist_{k+2}[v] weight(u_{k+1},v) \neq \infty$. Then the inductive hypothesis implies that $dist_{k+1}[u_{k+1}]$ must be the length of some $s u_{k+1}$ path, denote as $p(s,u_{k+1})$. Since there is an edge $(u_{k+1},v) \in g$, then $dist_{k+2}[v] = dist_{k+1}[u_{k+1}] + weight(u_{k+1},v)$ must be the length of the s-v path through u_{k+1} . P(k+1) holds.

Hence P(k+1) holds under under Case(1).

Case (2): u_{k+1} does not have an edge to v

Under this case, our algorithm indicates that $dist_{k+2}[v] = dist_{k+1}[v]$, and that $dist_{k+1}[v]$ and $dist_{k+2}[v]$ are the length of the same s-v path if there exists one. If $dist_{k+1}[v] = dist_{k+2}[v] \neq \infty$,

then based on the inductive hypothesis, $dist_{k+1}[v]$ is the length of some s-v path, and hence $dist_{k+2}[v]$ is the length of some s-v path. P(k+1) holds under Case (2).

We have proved P(k+1) holds for u_{k+1} and both cases for all nodes $v \in g$ other than u_{k+1} . Hence by the principle of prove by induction, P(n) holds. Thus Lemma 4.2 holds.

Lemma 4.3. For any node $v \in g$, if $dist_{i+1}[v] = \delta(v)$, then $\forall j > i$, $dist_{j+1}[v] = dist_{i+1}[v] = \delta(v)$.

Proof. We will prove Lemma 4.3 by induction on the number iterations after the i^{th} iteration. Let P(n) be: For any node $v \in g$, if after the i^{th} iteration, $dist_{i+1}[v] = \delta(v)$, then for the $(i+n)^{th}$ iteration, $n \ge 1$, $dist_{i+n+1}[v] = dist_{i+1}[v] = \delta(v)$

Base Case: We shall show P(1) holds.

During the $(i+1)^{th}$ iteration, suppose u_{i+1} is the node being explored, then $dist_{i+2}[v]$ is calculated as:

$$dist_{i+2}[v] = \begin{cases} min(dist_{i+1}[v], dist_{i+1}[u_{i+1}] + weight(u_{i+1}, v)), & (u_{i+1}, v)) \in g \\ dist_{i+1}[v] & otherwise \end{cases}$$

If $(u_{i+1},v) \in g$, then if $dist_{i+1}[u_{i+1}]$ is the length of some $s-u_{i+1}$ path, then $(dist_{i+1}[u_{i+1}]+weight(u_{i+1},v))$ is the length of some s-v path. Since $dist_{i+1}[v]=\delta(v)$, then based on the definition of shortest path, $dist_{i+1}[v] \leq dist_{i+1}[u_{i+1}]+weight(u_{i+1},v)$, and hence $dist_{i+2}[v]=dist_{i+1}[v]=\delta(v)$.

If u_{i+1} does not have an edge to v, then $dist_{i+2}[v] = dist_{i+1}[v] = \delta(v)$. Hence in either cases, $dist_{i+2}[v] = dist_{i+1}[v] = \delta(v)$. P(1) holds.

Inductive Hypothesis: Suppose P(k) holds, that is, for i > 0, if $dist_{i+1}[v] = \delta(v)$, then for the $(i+k)^{th}$ iteration, $k \ge 1$, $dist_{i+k+1}[v] = dist_{i+1}[v] = \delta(v)$.

Inductive Step: We shall show P(k+1) holds.

For the node u_{i+k+1} being explored during the $(i+k+1)^{th}$ iteration, there are two cases: (1) $(u_{i+k+1}, v) \in g$; (2) u_{i+k+1} does not have an edge to v. We will show that P(k+1) holds under both cases separately.

Case 1: $(u_{i+k+1}, v) \in g$

If u_{i+k+1} has an edge to v, then based on the algorithm, for $dist_{i+k+2}[v]$, we have:

$$dist_{i+k+2}[v] = min(dist_{i+k+1}[v], dist_{i+k+1}[u_{i+k+1}] + weight(u_{i+k+1}, v))$$

Since based on our inductive hypothesis, $dist_{i+k+1}[v] = dist_{i+1}[v] = \delta(v)$, then if $dist_{i+k+1}[u_{i+k+1}]$ is the length of some $s - u_{i+k+1}$ path, then $(dist_{i+k+1}[u_{i+1}] + weight(u_{i+k+1}, v))$ is the length of some s - v path, and hence $dist_{i+k+1}[v] = \delta(v) \le (dist_{i+k+1}[u_{i+1}] + weight(u_{i+k+1}, v))$. Then:

$$dist_{i+k+2}[v] = min(dist_{i+k+1}[v], dist_{i+k+1}[u_{i+k+1}] + weight(u_{i+k+1}, v))$$

= $dist_{i+k+1}[v]$
= $dist_{i+1}[v] = \delta(v)$

P(k+1) holds under Case 1.

Case 2: u_{i+k+1} does not have an edge to v

Since u_{i+k+1} does not have an edge to v, then $dist_{i+k+2}[v] = dist_{i+k+1}[v]$. Based on the inductive hypothesis, $dist_{i+k+1}[v] = dist_{i+1}[v] = \delta(v)$. then $dist_{i+k+2}[v] = dist_{i+1}[v] = \delta(v)$. P(k+1) holds for Case (2).

Thus P(k+1) holds. By the principle of prove by induction, P(n) holds. Lemma 4.3 proved.

Lemma 4.4. For any node $v \in g$, for each $u_i \in explored_{n+1}$, $n \geq 1, 1 \leq i \leq n$, $dist_{n+1}[v] \leq dist_i[u_i] + weight(u_i, v)$.

Proof. We will prove Lemma 4.4 by inducting on the number n.

Let P(n) be: for any node $v \in g$, for each $u_i \in explored_{n+1}$, $n \geq 1, 1 \leq i \leq n$, $dist_{n+1}[v] \leq dist_i[u_i] + weight(u_i, v)$.

Base Case: We shall show P(1) holds.

Based on the algorithm, $dist_1[s] = 0$, and for all node $v \in g$ other than s, $dist_1[v] = \infty$, and $explored_2$ only contains s. For node s, $dist_2[s] = 0 \le dist_1[s] + weight(s, s) = 0$. For all node $v \in g$ other than s, we have:

$$dist_2[v] = min(dist_1[v], dist_1[s] + weight(s, v))$$

$$\leq dist_1[s] + weight(s, v)$$

Since s is the only node in $explored_2$, then the above equation directly shows that P(1) holds.

Induction Hypothesis: Suppose P(k) holds for k > 1. That is, for any node $v \in g$, for each $u_i \in explored_{k+1}$, k > 1, $1 \le i \le k$, $dist_{k+1}[v] \le dist_i[u_i] + weight(u_i, v)$.

Inductive Step: we shall show P(k+1) holds. That is, for k+1>1, for all nodes $v\in g$, for each $u_i\in explored_{k+2}, \ k>1, 1\leq i\leq k+1, \ dist_{k+2}[v]\leq dist_i[u_i]+weight(u_i,v)$.

Suppose u_{k+1} is the node being explored during the $(k+1)^{th}$ iteration, then $explored_{k+2} = explored_{k+1} \cup \{u_{k+1}\}$. Forall node $v \in g$, we have:

$$dist_{k+2}[v] = min(dist_{k+1}[v], dist_{k+1}[u_{k+1}] + weight(u_{k+1}, v))$$

Hence we have:

$$dist_{k+2}[v] \le dist_{k+1}[v]([E4.4.1])$$

 $dist_{k+2} \le dist_{k+1}[u_{k+1}] + weight(u_{k+1}, v)([E4.4.2])$

The induction hypothesis implies that $dist_{k+1}[v] \leq dist_i[u_i] + weight(u_i, v), \forall u_i \in explored_{k+1}$. Combining with [E4.4.1], we have:

$$dist_{k+2}[v] \leq dist_i[u_i] + weight(u_i, v), \forall u_i \in explored_{k+1}[E4.4.3]$$

Since $explored_{k+2} = explored_{k+1} \cup \{u_{k+1}\}$, then equation [E4.4.2] and equation [E4.4.3] implies that $dist_{k+2}[v] \leq dist_i[u_i] + weight(u_i, v), \forall u_i \in explored_{k+1} \cup \{u_{k+1}\} = explored_{k+2}$. P(k+1) holds. By the principle of prove by induction, P(n) holds. Lemma 4.4 proved.

Lemma 4.5. Assume g is a connected graph. For all node $v \in explored_{n+1}$:

- 1. $dist_{n+1}[v] < \infty$
- 2. $dist_{n+1}[v] \leq \delta(v'), \forall v' \in unexplored_{n+1}$.
- 3. $dist_{n+1}[v] = \delta(v)$

Proof. We will prove Lemma 4.5 by inducting on the number of iterations.

Let P(n) be: For a connected graph g, for $n \ge 1$, for all node $w \in explored_{n+1}$: (L1) $dist_{n+1}[w] < \infty$; (L2) $dist_{n+1}[w] \le \delta(w')$, $\forall w' \in unexplored_{n+1}$; (L3) $dist_{n+1}[w] = \delta(w)$.

Base Case: We shall show P(1) holds

Based on the algorithm, during the first iteration, the node with minimum distance value is the source node s with $dist_1[s] = 0$. Hence during the first iteration, only s is removed from $unexplored_1$ and added to $explored_2$. Since $dist_2[s] = 0 < \infty$, then (L1) holds for P(1). Since all edge weights are non-negative, then the shortest distance value from s to s is indeed 0, hence $dist_2[s] = 0 = \delta(s)$ and $dist_2[s] \le \delta(v')$, $\forall v' \in unexplored_2$. Thus (L2) and (L3) holds for P(1). Hence P(1) holds.

Induction Hypothesis : Suppose P(i) is true for all $1 \le i \le k$. That is, for all $1 < i \le k$, for all node $w \in explored_{i+1}$: (L1) $dist_{i+1}[w] < \infty$; (L2) $dist_{i+1}[w] \le \delta(w')$, $\forall w' \in unexplored_{i+1}$; (L3) $dist_{i+1}[w] = \delta(w)$;

Inductive Step: We shall show P(k+1) holds. That is, for all node $w \in explored_{k+2}$, (L1) $dist_{k+2}[w] \neq \infty$; (L2) $dist_{k+2}[w] \leq \delta(w')$, $\forall w' \in unexplored_{k+2}$; (L3) $dist_{k+2}[w] = \delta(w)$;

Suppose u_{k+1} is the node added into explored during the $(k+1)^{th}$ iteration, then $explored_{k+2} = explored_{k+1} \cup \{u_{k+1}\}$. We will show that (L1)(L2) and (L3) holds for all nodes in $explored_{k+1}$ in Part (a), and Part (b) proves (L1)(L2)(L3) holds for u_{k+1} , so that the statements holds for all nodes in $explored_{k+2}$.

• Part(a): WTP: After the $(k+1)^{th}$ iteration, $\forall w \in explored_{k+1}$, (L1)(L2)(L3) holds.

Consider each node $q \in (explored_{k+1} \cap explored_{k+2}) = explored_{k+1}$, q must be explored before the $(k+1)^{th}$ iteration. Suppose q is explored during the i^{th} iteration for some i < k+1, then based on our induction hypothesis, $dist_{i+1}[q] = \delta(q)$, and $\delta(q) \le \delta(q'), \forall q' \in unexplored_{i+1}$.

Proof of (L3): Since for each node $q \in explored_{k+1}$, the induction hypothesis implies that $dist_{k+1}[q] = \delta(q)$, then Lemma 3.3 implies that $dist_{k+2}[q] = dist_{k+1}[q] = \delta(q)$. (L3)

holds for $explored_{k+1}$.

Proof of (L2): Based on the algorithm, for each iteration, the algorithm explores exactly one node and never revisits any explored nodes. For each node $q \in explored_{k+1}$ mentioned above, since q is explored before the $(k+1)^{th}$ iteration, then $unexplored_{k+1} \subseteq unexplored_{i+1}$. Since $\delta(q) \leq \delta(q'), \forall q' \in unexplored_{i+1}$, and $unexplored_{i+1}$ includes all node in $unexplored_{k+1}$, then $\delta(q) \leq \delta(q'), \forall q' \in unexplored_{k+1}$. Since proof of (L3) above shows that $dist_{k+2}[q] = \delta(q)$, then $dist_{k+2}[q] \leq \delta(q'), \forall q' \in unexplored_{k+1}$. (L2) holds for $explored_{k+1}$.

Proof of (L1): Since the induction hypothesis implies that $\forall q \in explored_{k+1}, dist_{k+1}[q] < \infty$, and the proof of (L3) above shows that $dist_{k+2}[q] = dist_{k+1}[q]$, then $dist_{k+2}[q] < \infty$. (L1) holds for $explored_{k+1}$.

Hence we have proved that both (1) and (2) holds for all nodes in $explored_{k+1}$.

- Part(b): (L1)(L2)(L3) holds for $\{u_{k+1}\}$. Specifically, we want to show: (L1) $dist_{k+2}[u_{k+1}] < \infty$; (L2) $dist_{k+2}[u_{k+1}] \le \delta(v')$, $\forall v' \in unexplored_{k+2}$, and (L2) $dist_{k+2}[u_{k+1}] = \delta(u_{k+1})$.
 - 1. (L1) $dist_{k+2}[u_{k+1}] \neq \infty$ Since g is a connected graph, then s must have a path to u_{k+1} . Since u_{k+1} is the node currently being explored, then we know there must exists a $s-u_{k+1}$ path, denote as $p(s,u_{k+1})$, such any node proceeding u_{k+1} in $p(s,u_{k+1})$ are explored before u_{k+1} , i.e., in $explored_{k+1}$.

Denote the node right before u_{k+1} in $p(s,u_{k+1})$ as $u',u' \in explored_{k+1}$. Suppose u' is explored during the i^{th} iteration, i < k+1. The induction hypothesis implies that $dist_{i+1}[u'] < \infty$. Since $dist_{i+1}[u'] = min(dist_i[u'], dist_i[u'] + weight(u',u')) = min(dist_i[u'], dist_i[u'] + 0) = dist_i[u']$, then $dist_i[u'] < \infty$. Lemma 4.4 implies $dist_{k+2}[u_{k+1}] \leq dist_i[u'] + weight(u',u_{k+1}]$, then it follows that $dist_{k+1}[u_{k+1}] < \infty$. (L1) holds for u_{k+1} .

2. (L2) $dist_{k+2}[u_{k+1}] \leq \delta(v'), \forall v' \in unexplored_{k+2}$

We will prove (L2) by contradiction. Suppose there exists $w \in unexplored_{k+2}$, such that $dist_{k+2}[u_{k+1}] > \delta(w)$ ([E4.5.1]).

Consider the shortest path $\Delta(s, w)$ from s to w, $\delta(w) = length(\Delta(s, w))$. Since $w \notin explored_{k+2}$, then there must exists some node in $\Delta(s, w)$ that are not in $explored_{k+2}$. Suppose the first node along $\Delta(s, w)$ that is not in the $explored_{k+2}$ list is w_2 , and the node right before w_2 in the s to w_2 subpath is w_1 , thus $w_1 \in explored_{k+2}$. The image below illustrates this construction:

Denote the subpath from s to w_1 in $\Delta(s,w)$ as $p(s,w_1)$, subpath from s to w_2 in $\Delta(s,w)$ as $p(s,w_2)$, and subpath w_2 to w as $p(w_2,w)$. Based on Definition 2.2 Prefix of Path, $p(s,w_1)$ is a prefix of $\Delta(s,w)$. Since $p(s,w_1)$ is the prefix of the shortest s-w path, then based on Lemma 3.1, $p(s,w_1)$ is the shortest path from s to w_1 , $\Delta(s,w_1)=p(s,w_1)$, $length(p(s,w_1))=\delta(w_1)$.

Similarly, since $p(s, w_2) = p(s, w_1) + (w_1, w_2)$, then $p(s, w_2)$ is a prefix of $\Delta(s, w)$, and hence Lemma 3.1 implies that $p(s, w_2)$ is the shortest path from s to w_2 . Then we have:

$$\begin{split} \Delta(s, w_2) &= p(s, w_2) = p(s, w_1) + (w_1, w_2) \\ \delta(w_2) &= length(\Delta(s, w_2)) \\ &= length(p(s, w_2)) \\ &= length(p(s, w_1)) + weight(w_1, w_2) \\ &= \delta(w_1) + weight(w_1, w_2)([E4.5.2]) \end{split}$$

For $\Delta(s, w)$ we have:

$$\delta(w) = length(p_w)$$

$$= length(p(s, w_1)) + weight(w_1, w_2) + length(p(w_2, w))$$

$$= \delta(w_1) + weight(w_1, w_2) + length(p(w_2, w))$$

Since all edge weights are non-negative, then:

$$\delta(w_2) = \delta(w_1) + weight(w_1, w_2) \le \delta(w)$$
 ([E4.5.3])

Since $w_1 \in explored_{k+2}$, there are two cases to consider: $w_1 = u_{k+1}$ and $w_1 \neq u_{k+1}$. We will prove P(k+1) under both cases below.

Case 1: $w_1 = u_{k+1}$

Since $\delta(w_2) = \delta(w_1) + weight(w_1, w_2) \le \delta(w)$ and all edge weights are non-negative, then $\delta(w_1) \le \delta(w)$. When $w_1 = u_{k+1}$, we have $\delta(u_{k+1}) \le \delta(w)$. Since $dist_{k+2}[u_{k+1}] > 0$

 $\delta(w)$ and $\delta(u_{k+1}) \leq \delta(w)$, we have $\delta(u_{k+1}) < dist_{k+2}[u_{k+1}]$.

Suppose the node right before u_{k+1} in $\Delta(s,u_{k+1})$ is w_3 . We know $length(\Delta(s,u_{k+1})) = length(p(s,w_3)) + weight(w_3,u_{k+1}))$, where $p(s,w_3)$ is the prefix of $\Delta(s,u_{k+1})$. Based on Lemma 3.1, we know $length(p(s,w_3)) = \delta(w_3)$. Hence:

$$\begin{split} \delta(u_{k+1}) &= length(p(s, w_3)) + weight(w_3, u_{k+1})) \\ &= \delta(w_3) + weight(w_3, u_{k+1}) \\ &< dist_{k+2}[u_{k+1}] \end{split}$$

i.e.

$$dist_{k+2}[u_{k+1}] > \delta(w_3) + weight(w_3, u_{k+1})([E4.5.6])$$

Based on the construction, w_2 is the first node along $\Delta(s, w)$, w_1 is right before w_2 in the path, w_3 is right before $w_1 = u_{k+1}$ in the path, then $w_3 \in explored_{k+2}$. Assume w_3 is explored during the j^{th} iteration. Then based on Lemma 4.4, we have:

$$dist_{k+2}[u_{k+1}] \le dist_j[w_3] + weight(w_3, u_{k+1})([E4.5.7])$$

The induction hypothesis implies $dist_{j+1}[w_3] = \delta(w_3)$. For $dist_{j+1}[w_3]$ we have:

$$dist_{j+1}[w_3] = min(dist_j[w_3], dist_j[w_3] + weight(w_3, w_3))$$

= $min(dist_j[w_3], dist_j[w_3] + 0)$
= $dist_j[w_3]$

Hence $dist_i[w_3] = \delta(w_3)$, combine with [E4.5.7], we have:

$$dist_{k+2}[u_{k+1}] < \delta(w_3) + weight(w_3, u_{k+1})([E4.5.8])$$

The equation [E4.5.8] contradicts with equation [E4.5.6]. Hence by the principle of prove by contradiction, (L2) holds when $w_1 = u_{k+1}$.

Case 2: $w_1 \neq u_{k+1}$

Since $w_1 \in explored_{k+2}$ and $w_1 \neq u_{k+1}$, w_1 is explored before the $(k+1)^{th}$ iteration. i.e., $w_1 \in explored_{k+1}$. Suppose w_1 is being explored during the i^{th} iteration, i < k+1, then based on the algorithm, the value of $dist_{i+1}[w_1]$ is calculated as:

$$dist_{i+1}[w_1] = min(dist_i[w_1], dist_i[w_1] + weight(w_1, w_1))$$

$$= min(dist_i[w_1], dist_i[w_1] + 0)$$

$$= min(dist_i[w_1], dist_i[w_1])$$

$$= dist_i[w_1]$$

Since the induction hypothesis implies that $dist_{i+1}[w_1] = \delta(w_1)$, then $dist_i[w_1] = \delta(w_1)$.

Since w_1 has an edge to w_2 , then $dist_{i+1}[w_2]$ must have been updated according as

follows:

$$dist_{i+1}[w_2] = min(dist_i[w_2], dist_i[w_1] + weight(w_1, w_2))$$

= $min(dist_i[w_2], \delta(w_1) + weight(w_1, w_2))$

Based on [E4.5.2] we know that $\delta(w_2) = \delta(w_1) + weight(w_1, w_2)$, then $dist_{i+1}[w_2] = min(dist_i[w_2], \delta(w_2))$. If $dist_i[w_2] = \infty$, then $dist_{i+1}[w_2] = min(dist_i[w_2], \delta(w_2)) = \delta(w_2)$. If $dist_i[w_2] \neq \infty$, then based on Lemma 3.2, $dist_i[w_2]$ is the length of some $s-w_2$ path. Since $\delta(w_2) \leq length(p), \forall p \in path(s, w_2)$, then $dist_{i+1}[w_2] = min(dist_i[w_2], \delta(w_2)) = \delta(w_2)$. Hence in either cases, we conclude that $dist_{i+1}[w_2] = \delta(w_2)$. Since $dist_{i+1}[w_2] = \delta(w_2)$ and i < k+1, then based on Lemma 3.3, we have:

$$dist_{k+1}[w_2] = dist_{i+1} = \delta(w_2)([E4.5.4])$$

Based on our assumption, at the beginning of the $(k+1)^{th}$ generation, $u_{k+1}, w_2 \notin explored_{k+1}$ and u_{k+1} is selected by the algorithm, then we must have $dist_{k+1}[w_2] \ge dist_{k+1}[u_{k+1}]$. For $dist_{k+2}[u_{k+1}]$ we have:

$$dist_{k+2}[u_{k+1}] = min(dist_{k+1}[u_{k+1}], dist_{k+1}[u_{k+1}] + weight(u_{k+1}, u_{k+1}))$$

$$= min(dist_{k+1}[u_{k+1}], dist_{k+1}[u_{k+1}] + 0)$$

$$= dist_{k+1}[u_{k+1}]$$

Hence $dist_{k+1}[w_2] \ge dist_{k+2}[u_{k+1}]$. Combine with [E4.5.4], [E4.5.3] we have:

$$dist_{k+1}[w_2] \ge dist_{k+2}[u_{k+1}]($$

$$dist_{k+1}[w_2] = dist_{i+1} = \delta(w_2)(from[E4.5.4])$$

$$\delta(w) \ge \delta(w_2) = \delta(w_1) + weight(w_1, w_2)(from[E4.5.3])$$

Hence $\delta(w) \geq dist_{k+2}[u_{k+1}]$, which contradicts with [E4.5.1]. Hence by the principle of prove by contradiction, when $w_1 \neq u_{k+1}$, $dist_{k+2}[u_{k+1}] \leq \delta(w)$, $\forall w \in unexplored_{k+2}$. (L2) holds for u_{k+1} .

3. (L3)
$$dist_{k+2}[u_{k+1}] = \delta(u_{k+1})$$

We will prove this by contradiction.

Since (L1) proves $dist_{k+2}[u_{k+1}] \neq \infty$, then Lemma 3.2 implies that $dist_{k+2}[u_{k+1}]$ is the length of some $s-u_{k+1}$ path, denote as p. Suppose there is a $s-u_{k+1}$ path p' that's shorter than p, i.e, $dist_{k+2}[u_{k+1}] > length(p')$ ([E4.5.9]). Suppose the node right before u_{k+1} in p' is v'. Then we know:

$$length(p') = length(p(s, v')) + weight(v', u_{k+1})$$
$$length(p') < dist_{k+2}[u_{k+1}]$$

, where p(s, v') is the prefix of p' from s to v'. Hence:

$$dist_{k+2}[u_{k+1}] > length(p(s, v')) + weight(v', u_{k+1})$$

Based on the definition of shortest path, $length(p(s, v')) \ge \delta(v')$, then we have:

$$dist_{k+2}[u_{k+1}] > \delta(v') + weight(v', u_{k+1})([E4.5.10])$$

There are two cases to consider: (1) $v' \in explored_{k+2}$; (2) $v' \notin explored_{k+2}$

Case(1): $v' \in explored_{k+2}$

Suppose v' is explored during the i^{th} iteration. Then Lemma 4.4 implies:

$$dist_{k+2}[u_{k+1}] \le dist_i[v'] + weight(v', u_{k+1})([E4.5.11])$$

The induction hypothesis implies $dist_{i+1}[v'] = \delta(v')$, and for $dist_{i+1}[v']$ we have:

$$dist_{i+1}[v'] = min(dist_i[v'], dist_i[v'] + weight(v', v'))$$
$$= min(dist_i[v'], dist_i[v'] + 0)$$
$$= dist_i[v']$$

Hence $dist_i[v'] = \delta(v')$. Combining [E4.5.11], we have:

$$dist_{k+2}[u_{k+1}] \le \delta(v') + weight(v', u_{k+1})([E4.5.12])$$

Hence equation [E4.5.12] contradicts with equaltion [E4.5.10]. By the principle of prove by contradiction, (L3) holds when $v' \in explored_{k+2}$.

Case(2): $v' \notin explored_{k+2}$

Since $length(p') = length(p(s,v')) + weight(v',u_{k+1})$, p(s,v) is the prefix of p' from s to v', then based on the definition of shortest path, $length(p(s,v')) \leq \delta(v')$, and thus $\delta(v') + weight(v',u_{k+1}) \leq length(p(s,v')) + weight(v',u_{k+1}) = length(p')$. Since all edge weights are non-negative, then $\delta(v') \leq length(p')$.

Since $v' \notin explored_{k+2}$, i.e., $v' \in unexplored_{k+2}$, based on proof of (L2), $dist_{k+2}[u_{k+1}] \leq \delta(v')$. Since $dist_{k+2}[u_{k+1}] \leq \delta(v')$ and $\delta(v') \leq length(p')$, then $dist_{k+2}[u_{k+1}] \leq length(p')$, which contradicts with our assumption ([E4.5.9]). Hence by the principle of prove by contradiction, (L3) holds when $v' \notin explored_{k+2}$.

Since we have proved (L3) for both cases, then (L3) holds for P(K+1).

Since we have proved (L1)(L2)(L3) forall nodes in $explored_{k+1}$ after the $(k+1)^{th}$ iteration, P(k+1) holds. Then by the principle of prove by induction, Lemma 4.5 holds.

4.4.2 Proof of Termination

Proof. The inner for loop is guaranteed to terminate as the algorithm goes through each adjacent node exactly once. As the size of list unexplored decreases by one during each iteration of the while loop, the algorithm is guaranteed to terminate. \Box

4.4.3 Prove of Correctness

Proof. By applying Lemma 4.5 to the last iteration, denote as m^{th} iteration, of the algorithm, we obtained that for all nodes n in the explored list, $dist_{m+1}[n]$ is indeed the shortest path distance

value from source s to n, hence Dijkstra's algorithm indeed calculates the shortest path distance value from the source s to each node $n \in q$.

5 Concrete Implementation of Dijkstra's Verification

5.1 Data Structures

5.1.1 The WeightOps data type

Our implementation of Dijkstra's algorithm allows user-defined edge weight type, with a WeightOps data type specifying the operations and properties of the edge weight type that user needs to provide. Below presents part of the definition of WeightOps.

```
using (weight : type)
  record WeightOps weight where
    constructor MKWeight
    -- zero value of weight
    zero : weight
    -- greater than or equal to
    gtew : weight -> weight -> Bool
    -- equality
    eq : weight -> weight -> Bool
    -- addition
    add : weight -> weight -> weight
    triangle_ineq : (a : weight) ->
            (b : weight) -> gtew (add a b) a = True
    addComm : (a : weight) ->
          (b : weight) ->
          add \ a \ b = add \ b \ a
```

WeightOps is defined as a record data type, which allows programmers to collect several values (referred as record's fields) together. WeightOps is parameterized over the user-defined edge weight type weight. The MKWeight constructor takes in all the fields and build a WeightOps weight type. The field name can be used to access the field value. For instance given a value ops of WeightOps weight type, add ops will gives the addition operator for the weight data type.

The zero field stands for the zero value for the weight type, and gtew, eq, add are basic operators for weight. The triangle_ineq field in WeightOps ensures that the value of weight data type can only be non-negative. Given any two values a, b of type weight, triangle_ineq specifies that the sum of a, b is greater than or equal to either of them, which guarantees that both a, b have non-negative values. The remaining fields in WeightOps are required for Dijkstra's implementation and verification.

As we assume the input graph is a connected graph, the value of edge weight between two adjacent nodes are considered as not infinity, whereas Dijkstra's algorithm initializes the distance value from source node to all other nodes in the graph as infinity. Based on this consideration, we define a Distance type to represent the distance value between two nodes. Distance is parameterized over the user-defined weight type, and the value of Distance weight is either infinity, or sum of weights. The definition of Distance data type is provided below.

```
data Distance : Type -> Type where
  DInf : Distance weight
  DVal : (val : weight) -> Distance weight
```

The data constructor DInf builds a value of Distance weight that represents infinity distance, and DVal carries a value val of type weight, which is the sum of one or more weights. Arithmetic operators for the Distance weight type is defined based on operators of weight.

5.1.2 Data Types for Node, nodeset, and Graph

The size of a graph is defined as the number of nodes in the graph, and all nodes in a graph is enumerated by natural numbers starting from zero. For instance given a graph of size 3, each node in the graph is represented by a natural number in the range from zero to two, with three nodes in total. Given a graph G of size gsize, the Node type is indexed by graph size gsize and carries a value that is strictly less than gsize. A nodeset is defined as a List of pairs of adjacent nodes and corresponding edge weights for each node in the graph, and the definition of Graph data type contains a vector of nodesets for all nodes in the graph. The definition of Node, nodeset and Graph data structure are presented below.

The Node gsize type is indexed by a Nat, gsize, and stands for a node in a graph of size gsize. The data constructor MKNode takes in a parameter of type Fin gsize, which captures a Nat value that is greater than or equal to Z and strictly smaller than gsize. nodeset is defined as a type synonym for the type (List (Node gsize, weight)). As the edge weight type is user defined, the Graph data type is parameterized over the edge weight type weight, and index by the size of the graph gsize. Operators and properties of weight are carried in the Graph data type by the ops parameter. The edges parameter is a vector of length gsize with element type nodeset.

Such construction ensures that, given a graph G of type 'Graph gsize weight ops' (graph size is gsize and edge weight type is weight), any well-typed 'Node gsize' value is a valid node in G, and the that there are only gsize possible values of the type 'Node gsize' as restricted by the 'Fin gsize' type, which ensures that a graph of size gsize indeed has gsize nodes. In addition, since the elements of vector edges in G has type 'nodeset gsize weight', all nodesets in G can only contain valid nodes. More importantly, as our implementation uses the value carried by each Node to index its nodeset in the graph, for each node with type 'Node gsize' in G, the value with type 'Fin gsize' carried by this node is guaranteed to be a bounded index for the vector

edges in G (as edges has length gsize).

Based on the above construction, a node m is considered as adjacent to a node n in a graph g if m is in the nodeset of n. The definition of adjancent nodes is provided below.

The getNeighbors function takes in a graph g and a node n, and gets the nodeset of n in g, and the inNodeset function takes in a node and a nodeset, and returns true fi the input node is in the input nodeset, returns false otherwise. The definition of adj above states that m is adjacent to n in g if we can find m in the nodeset of n in g.

5.1.3 Path and shortest Path

A path in a graph is defined as a sequence of non-repeating nodes, where each two adjacent nodes have an edge in this graph. A path can contain only one node, as specified by the Unit data constructor below, or multiple nodes, as the Cons data constructor allows a new path to be constructed from an existing path. Specifically, given a path from node s to v, if n is an adjacent to v (adj g v n specifies that there is an edge from v to n in the graph g), then we can obtain a new path from s to n by appending the node n to the end of the existing s-to-v path.

To implement a shortest path in a graph, recall in section 4.2, we define the length of a path as the sum of the weights of all edges in the path, and define a shortest path as follows:

Denote $\Delta(s,v)$ as a shortest path from s to v, and $\delta(v)$ as the length of $\Delta(s,v)$. $\Delta(s,v)$ must fulfills:

```
\Delta(s,v) \in path(s,v) and \forall p' \in path(s,v), length(\Delta(s,v)) = \delta(v) \leq length(p')
```

The above definition specifies that given a shortest path $\Delta(s,v)$, the length of $\Delta(s,v)$ is smaller than or equal to the length of any other s-to-v path in the graph. We then provide the following implementation of shortest path based on the above definition.

The statement stated by the return type of shortestPath is highly similar to our mathematical definition of shortest path above. Specifically, given a graph g, and a path sp from node s to inly in g, the return type of shortestPath specifies that, given any path 1p from s to v in g, the length of 1p must be greater than or equal to the length of sp. dgte is the greater than or equal to operator for Distance data type.

5.1.4 The Column data type

As we mentioned back in section 4.3, our implementation viewed Dijkstra's algorithm as generating a matrix, where each column in the matrix represents one state of the algorithm, we define a Column data type for this purpose. The definition of Column type is provided below.

The Column data type takes in the input graph g, the source node src, the number of unexplored nodes len, which is also the length of unexp, the vector of unexplored nodes, and a vector of distance values from source for all nodes in the graph. The Column type is indexed by the number of unexplored nodes. As Dijkstra's requires a source node for running the algorithm, the type Column is also dependent on the input graph as well as the source node src.

Such definition of Column data type provides enough information for us to calculate a new column in the matrix, as the unexp and dist vectors provides enough information for calculating the current unexplored node with minimum distance value and generating the new distance vector with updated distance values for all nodes in the graph. Our implementation of Dijkstra's algorithm has a recursive structgure that generates a new Column during each recursive call. With an input graph of size gsize, the first column should have length gsize as all nodes are unexplored, and the last column generated contains an empty vector for unexplored nodes, and a vector of the minimum value from source to all nodes in the graph.

5.2 Implementation of Dijkstra's Algorithm

Our implementation of Dijkstra's algorithm can be viewed as generating a matrix, where one column of the matrix represents one state during the execution of the algorithm. Each column stores the original input graph, source node, a vector of currently unexplored node, and a vector of current distance value for all nodes in the graph, and a new column is calculated based on the value stored in the last column generated. The Column data type in the data structure section (section 5.1.4) is defined for this column representation. However, since the calculation of a new column does not requires all previous columns calculated, and in order to simplify the data structures, the implementation does not maintain the whole matrix, rather, only one variable of the Column data type is maintained to store the last column calculated. Even though the whole matrix is not presented, we can still visualize this implementation as generating a matrix representation of Dijkstra's algorithm, where the columns shows how distance value of all nodes in the graph is

gradually updated, hence in the following sections we still refers = to this matrix representation of Dijkstra's algorithm, based on the above clarification that the actual matrix is not presented in the implementation. Eliminating the matrix structure not only reduces some redundancy in our implementation, but also allows us to verify Dijkstra's algorithm by proving properties over each Column calculated, which provides a clear structure for our verification program.

The implementation can be divided into three layers, where each layer breaks down the calculation to deal with a smaller structure. Specifically, the first layer calculates the whole matrix representation by calling function from the second layer. The second layer is responsible for generating a new Column data based on the last Column calculated, where the updated distance value for each node in the graph is calculated by the third layer. The remaining of this section provides more details on our three layers of calculation.

5.2.1 dijkstras and runDijkstras

The first layer involves two functions, dijkstras and runDijkstras, where dijkstras takes in the input graph and the source node, generate the first Column of the matrix representation, and calls runDijkstras on the first Column to calculate the whole matrix and returns the last column generated. The definition of dijkstras and runDijkstras are provided below.

```
runDijkstras : {g : Graph gsize weight ops} ->
               (cl : Column len g src) ->
               Column Z g src
runDijkstras {len = Z} {src} cl = cl
runDijkstras {len = S 1'} cl@(MKColumn g src (S 1') _ _ ) =
   runDijkstras $ runHelper cl
dijkstras : (gsize : Nat) ->
            (g : Graph gsize weight ops) ->
            (src : Node gsize) ->
            (nadj : ((n : Node gsize) ->
                  inNodeset n (getNeighbors g n) = False)) ->
            (Vect gsize (Distance weight))
dijkstras gsize g src nadj {weight} {ops} = cdist $ runDijkstras
   cl
  where
    nodes : Vect gsize (Node gsize)
    nodes = mkNodes gsize
    dist : Vect gsize (Distance weight)
    dist = mkdists gsize src ops
    cl : Column gsize g src
    cl = (MKColumn g src gsize nodes dist)
```

The dijkstras function takes in the size of graph gsize, the input graph g, the source node src, and a function nadj stating that any node in the graph cannot be in its own nodeset. nadj ensures that when constructing a Path data with the Cons constructor, it is not possible to append a node n to itself, as adj g n n cannot hold for any node in the input graph(definitions of adj and Path is illustrated in section 5.1.3). dijkstras function constructs the first Column c1 and calls the runDijkstras on c1. runDijkstras traverses all unexplored nodes and returns the last Column calculated, which should contain an empty vector of unexplored nodes. The dijkstras function

then returns the vector of distance values in the Column returned by runDijkstras, which contains the minimum distance values for all nodes in the graph.

The mkNodes function takes in a Nat and generates a vector nodes with type 'Vect gsize (Node gsize)', where the 'Fin gsize' value carried by each node in nodes is increasing in order. Specifically, suppose gsize is not zero, i.e., gsize = S n, then the first node in nodes FZ with type 'Fin gsize', the second node carries 'FS FZ', ..., and the last element in nodes carries a value of type Fin gsize that captures the natural number n, which the largest Nat value that falls into the range of Z to n. Since we enumerate all nodes in the graph by natural numbers starting from Z (as mentioned in section 5.1.2), the vector generated by mkNodes contains all nodes in the input graph. Since initially all nodes are unexplored, when constructing the first Column cl , the dijkstras function calls the mkNodes function to generate the initial vector of unexplored nodes. The mkdists function generates the initial vector of distance values for all nodes in the graph(distance value for all nodes are infinity except for the source node, which is 0), in the same ordering as the vector generated by mkNodes. In the definition of dijkstras, both mkNodes and mkdists return a vector of length gsize (named as dists and nodes correspondingly), which ensures that the i^{th} element dists is the initial distance value for the i^{th} node in nodes. Later paragraphs shows how this constructions gives a clear recursive structure for the implementation of Dijkstra's algorithm. s

The runDijkstras algorithm takes in a parameter cl of type 'Column len g src', traverses all unexplored nodes in cl(if there is any), and returns a value of type 'Column Z g src'. runDijkstras is defined recursively: if the input value cl contains an empty vector of unexplored nodes, then simply returns cl, otherwise we extracts the unexplored nodes in cl with minimum distance value, calculate a new Column with updated vectors of unexplored nodes and distance values, and recurs on the new Column calculated. The calculation of new Column is completed with the runHelper function, which is elaborated in the following.

5.2.2 runHelper and updateDist

The second layer includes two functions, runHelper and updateDist, which calculate a new Column value based on the last column generated. runHelper takes in a column with non-empty unexplored list type and returns the new Column calculated with one less unexplored nodes, and the updateDist function calculates the updated distance vector for the new Column. The implementation of runHelper and updateDist are provided below.

The input value cl of runHelper has type Column (S len)g src, which is a Column with non-empty vector of unexplored nodes, as specified by S len in the type. runHelper extracts the unexplored node with minimum distance value from the unexplored vector in cl, and calculates a new column with the updated unexplored and distance vectors. The currently unexplored node with minimum distance value is named as min_node and calculated by calling getMin cl under the where clause. The return value of runHelper has type Column len g src, indicating the unexplored vector in the new Column has one less element than that cl. The deleteMinNode is responsible for calculating the updated vector of unexplored nodes based on that of cl, but with min_node removed. deleteMinNode requires a proof that the targeting node to be removed is in the input vector, as specified by (minCElem cl).

The updated vector of distance values for the new Column(named as newds in definition of runHelper) is calculated by updateDist, which takes in a graph g, the minimum node min_node and its distance value min_dist, and vectors of nodes and distances, both have the same length. Notice that in runHelper, updateDist is called on the vector generated by mkNodes gsize (which contains all nodes in the graph) rather than the vector of unexplored nodes, and the initial input distance vector of updateDist is calculated by mkdists and passed down from the dijkstras function. The definition of mkNodes and mkdists mentioned in previous paragraphs allows updateDist to recur on the nodes and distances vectors in parallel and update the distance value for every node in the graph, as long as the elements ordering in both vectors remains the same during each recursive step. Since updateDist never changes the ordering of the input nodes vector, and during each recursive step, the new distance value for the current head node x calculated is append to the result of calling updateDist on the remaining nodes xs and their distance values ds, the element ordering of the distance vector is also unchanged. This definition of updateDist again provides a clear recursive structure in implementing our verification program, which is expanded in more details in section TODO.

5.2.3 calcDist

The third layer contains the function calcDist, which is called by updateDist to calculate the updated distance value for one specific node in the graph. Below presents the implementation of calcDist.

```
(cur_dist : Distance weight) ->
        Distance weight
calcDist g min_node cur min_dist cur_dist
= min ops cur_dist (dplus ops (edgeW g min_node cur) min_dist)
```

Given the input graph g, the current node being explored(named as min_node), the distance value of min_node(named as min_dist), a node cur and its distance value cur_dist, calcDist compares the distance value from source node to cur through min_node in g with cur_dist and returns the smaller value. The distance value of cur passing min_node is calculated by adding min_dist with the weight of edge from min_node to cur. If there is no edge between min_node and cur in g, the edge weight will be infinity, which is already greater than or equal to the original distance of cur, then cur_dist will be returned by calcDist in this case. Otherwise, calcDist calls the min function to find and return the smaller value between cur_dist, and the sum of min_dist and weight of edge from min_node to cur.

5.3 Verification of Dijkstra's Algorithm

Our verification of Dijkstra's algorithm is based on and has a similar structure as the implementation in section 5.2. Instead of proving Dijkstra's correctness based on the dijkstras and runDijkstras functions directly, we approach the verification by proving that certain properties maintain for each new Column value generated by every call to the runHelper function. Specifically, since the Column structure carries information on the unexplored nodes and distance values calculated for all nodes in the graph, we can re-state Lemma ?? to Lemma ?? in the mathematical proof of Dijkstra's correctness(in Section ??) as properties on Column, and prove that if these properties preserve after calling runHelper. As runHelper is called by the runDijkstras function, the implementation of our verification follows the same structure by defining a function that recursively applies the above proof of properties preservation, and shows that same properties also hold for the last Column value calculated, i.e., the value returned by the runDijkstras function, which verifies the correctness of Dijkstra's algorithm.

In the following sections, we first provide proofs of lemmas that state the properties preservation of each new Column generated by runHelper, and then present the functions that directly verifies the correctness of Dijkstra's algorithm. As the implementation of all proofs are highly complicated and involves significantly amount of details, the following only elaborates on the implementation of two lemma proofs for the purpose of presenting some techniques on how proofs are approached in our verification, and discuss on the types of other lemmas instead. As this thesis aims to verify Dijkstra's algorithm with the Idris type checker, the types of proofs should provide sufficient information on our verification program.

5.3.1 Lemmas

The mathematical proof of Dijkstra's algorithm in section 4.4 includes five lemmas, however in implementing our verification program, we found it easier to approach by merging Lemma 4.4 into Lemma 4.5 as one of its statements. Lemma 4.1 to 4.5 are defined in order, meaning that the proof of Lemma 4.2 is built on Lemma 4.1, and proof of Lemma 4.3 is built on Lemma 4.1 and 4.2 etc. The implementation of Lemma 4.5 (function 15_spath) is directly applied in verifying

Dijkstra's correctness, and implementations of Lemma 4.1 to Lemma 4.4 are helper proofs for proving Lemma 4.5

The following first presents the types for all lemmas of our verification program, and then elaborate on the implementation of one of the lemma proofs, in order to provide more insights into how we approach proofs generally. We choose to expand on the proofs of Lemma ?? (which corresponds to function 11_prefixSP) and Lemma 4.3 (which corresponds to the 13_preserveDelta function), as compare to other lemma proofs, proof of Lemma 4.3 involves less details but presents enough information on our techniques in implementing proofs.

5.3.1.1 Lemma 1 - 11_prefixSP

Lemma 4.1 states that the prefix of a shortest path is also a shortest path. In section 4.2, we provide the following definition for the prefix of a path.

Definition 5.1. Prefix of Path

Given a path from node v to w: $path(v, w) = vv_0v_1...v_{n-1}w$, the prefix of this v-w path is defined as a subsequence of path(v, w) that starts with v and ends with some node $w' \in path(v, w)$ (w' is a vertex in the sequence path(v, w)).

Specifically, a prefix of a path is a subsequence of this path, and has the same start node (i.e., the first node in a path) as the path. Based on the above mathematical definition of path prefix, and our Path data type defined in section 5.1.3, we first define a append function that concatenates two paths by appending one path to the beginning of the other path, and then implement the prefix of a path based on the append function. The following presents the implementation of append and pathPrefix.

The type of append function specifies that, given a path p1 from node s to v in g, and a path p2 from node v to w in g, the result of appending p1 to the head of p2 is a path from node s to w in g. Notice that the ending node v in p1 is exactly the starting node of p2, and the resulting path of appending p1 to p2 (i.e., return value of append p1 p2) starts from the same node as p1, and ends at the same node as p2. Then according to our definition of prefix of a path above, the first input path p1 is actually a prefix of the return value of append p1 p2.

The pathPrefix function is a predicate stating that the first input path pprefix is a prefix of the second input path p. (v ** P) is the syntax for dependent pairs, which states that the second element P in the pair is dependent on the value of the first element v. Dependent pairs are used to represent existential quantification in Idris. For instance, the dependent pair (n : Nat ** Vect n Nat) states the existence of a natural number n, such that n is the length of the Vect included

as the second element of the pair. In the definition of pathPrefix, as pprefix is the prefix of p, then there only exists one path (with type Path w v g) such that the result of appending pprefix to this path is p. This is specified by the dependent pair (ppost : Path w v g ** append pprefix ppost = p) in our definition, which quantified a specific path ppost with type Path w v g such that the result of append pprefix ppost is p, and hence the path pprefix is a prefix of p.

Given the definition of pathPrefix above and definition of shortest path in section 5.1.3, the implementation of Lemma 4.1 is provided below.

```
shorter_trans : {g : Graph gsize weight ops} ->
              (p1 : Path s w g) ->
              (p2 : Path s w g) ->
              (p3 : Path w v g) ->
              (p : dgte ops (length p1) (length p2) = False) ->
              dgte ops (length $ append p1 p3)
                        (length $ append p2 p3) = False
11_prefixSP : {g: Graph gsize weight ops} ->
              {s, v, w : Node gsize} ->
              {sp : Path s v g} \rightarrow
              {sp_pre : Path s w g} ->
              (shortestPath g sp) ->
              (pathPrefix sp_pre sp) ->
              (shortestPath g sp_pre)
11_prefixSP spath (post ** appendRefl) lp_pre {ops} {sp_pre}
  with (dgte ops (length lp_pre) (length sp_pre)) proof lpsp
    | True = Refl
    | False = absurd $ contradict (spath (append lp_pre post))
                                   (rewrite (sym appendRefl) in
                                     (shorter_trans
                                       lp_pre sp_pre post (sym lpsp)))
```

The type of the l1_prefixSP states that, given an input graph g, nodes s, v, w, a path sp from s to v in g (as specifies by the type Path s v g), the prefix of sp from s to w (named as sp_pre), if sp is a shortest path from s to v, as specifies by shortestPath g sp, then the prefix sp_pre of sp is also a shortest path from s to w in g.

The definition of shortestPath allows us to bring into scope a variable lp_pre with type Path s w g that quantifies over any path from s to w in g. We approach the proof of ll_prefixSP by matching on the value of (dgte ops (length lp_pre)(length sp_pre)), which compares the length of lp_pre against the length of the prefix sp_pre of sp.

When (dgte ops (length lp_pre)(length sp_pre)) is matched to True, this indicates that the length of any path from s to w is longer than or equal to the length of sp_pre, then sp_pre is a shortest path from s to w based on the definition of shortest path.

When (dgte ops (length lp_pre) (length sp_pre)) is matched to False, this indicates that the length of lp_pre is smaller than the length of sp_pre, i.e., length(lp_pre) < length(sp_pre). Since sp_pre, lp_pre are both paths from s in w in g, and appending sp_pre to ppost gives us the path sp from s to v (sp_pre is the prefix of sp), then we can construct another path p': Path s v g from s to v by appending lp_pre to ppost, whose length is smaller than that of sp as

we conclude length(lp_pre)< length(sp_pre) before. As indicated by the type of shorter_trans provided above, (shorter_trans lp_pre sp_pre post (sym lpsp)) is a proof that shows, since we know length(lp_pre)< length(sp_pre), then the length of the path obtained by appending lp_pre to ppost (the length p'), is smaller than the length of the path obtained by appending sp_pre to ppost (the length of p). This contradicts with the statement that p is a shortest path from s to v in g(specified by shortestPath sp p). Hence with prove by contradiction we can show that the case when (dgte ops (length lp_pre)(length sp_pre)) is matched to False is impossible, i.e., the length of sp_pre is smaller than or equal to the length of any other s to w path in g, and that sp_pre is a shortest path from s to v in g. Proof of ll_prefixSP is completed.

The structure of the implementation of Lemma 4.2 and Lemma 4.5 is as follows: we first define functions that specifies the Column properties stated by each lemma, and then implement a function that proves the preservation of these properties. This structure provides a more clear and straightforward type signatures for our functions in the verification program by separating the types that specifies Column properties from the types of the proofs.

5.3.1.2 Lemma 2 - 12_existPath

In our mathematical proof of Dijkstra's correctness, Lemma 4.2 states that given an input graph g, for all nodes v in g, if $dist_{n+1}[v] \neq \infty$, then $dist_{n+1}[v]$ is the length of some s-to-v path in g. As mentioned at the beginning of this section, in our verification program, we state Lemma 4.2 as a Column property and prove these properties preserve after calling runHelper. The function neDInfPath provided below specifies the Column property stated by Lemma 4.2.

Given cl with type Column len g src, the function neDInfPath specifies that for any node v in the graph, if the distance value of v stored in cl is smaller than infinity, then it is the length of some path from src to v in g. nodeDistN is a function that indexes the distance value for a specific node in a Column, and in the definition of neDInfPath, nodeDistN v cl gets the distance value of v stored in cl, and the dependent pair (psv : Path src v g ** dEq ops (nodeDistN v cl) (length psv) = True) specifies the existence of a path psv from src to v in g, such that the distance value of v stored in cl is the length of psv. We then define the type of the function 12_existPath that states the preservation of the neDInfPath property.

12_existPath states that given c1 with type Column (S len)g src, if neDInfPath holds for c1 (specified by 12_ih), then it also holds for the column generated by (runHelper c1). Notice that the input c1 of 12_existPath contains a non-empty vector of unexplored nodes, which is restricted

by the runHelper function. Similar to the previous proof on 11_prefixSP, we can bring the node v and statement ne : dgte ops (nodeDistN v cl)DInf = False in neDInfPath into scope. The proof of 12_existPath is approached by matching on the distance value of v stored in the Column generated by runHelper cl. If the distance value of v in runHelper cl is the same as that in cl, then the proof is given by 12_ih. Otherwise we check whether v is equal to getMin cl (the current unexplored node with minimum distance value, mentioned in Section 5.2.2), and prove both cases by applying 12_ih on (getMin cl). The detailed proof is provided in the Appendix (TODO: cross reference).

5.3.1.3 Lemma 3 - 13_preserveDelta

In verifying Dijkstra's correctness, it is important to show that forall nodes v in the input graph, once the distance value calculated for v is equal to the minimum distance value from the source node to v, then the distance value of v does not change through the execution of the algorithm. This is proved by Lemma ?? in the mathematical proof of Dijkstra's algorithm, and implemented by the function 13_preserveDelta below (the proof of 13_preserveDelta is provided in later paragraphs).

13_preserveDelta states that given a Column named cl, for any node v in graph, if the distance value of v stored in cl is equal to the length of a shortest path (named as psv) from source node src to v in g (stated by the input eq : dEq ops (nodeDistN v cl)(length psv)= True), then the distance value of v stored in runHelper cl is also equal to the length of psv. Since the proof of Lemma 4.3 is based on Lemma 4.2 as we mentioned at the beginning of Section 5.3.1, the proof of property neDInPath on cl is provided by the input 12_ih : neDInfPath cl.

We implement the proof of 13_preservDelta by contradiction, which requires a proof that shows the distance value stored for all node is non-increasing after each call of runHelper. The function runDecre provided below states this property. We provide a detailed discussion on the implementation of runDecre as it presents how we approach the proofs of some key lemmas in our verification. Specifically, we break the statement that we want to prove into smaller ones by destructing the data structures involved in the statement, so that the implementation of functions that involve more complex data types can be built on functions that deal with simpler data types. The following explanation on the implementation of runDecre illustrates this technique.

The return type of the runDecre function specifies that for all node v, the distance value stored for v in cl is either decreasing, or maintains the same after each call of runHelper on cl. Since runDecre involves the Column data type, and the main field in Column that concerns us here is the Vect of distance values, the implementation of runDecre is built on a function distDecre, which states the same non-increasing property of distance values calculated, however involves the Vect of distance values instead. The implementation of distDecre is presented below. (explain finToNat)

Similarly, the property specified by distDecre is again break down into a statement on the distance value of a specific node in the graph, as specified by the calcistEq function.

5.3.1.4 Lemma 5 - 15_spath

5.3.2 Verification of Correctness

The implementation of lemma proofs in the previous section shows that if certain properties, such as those specified by the function 15_stms, holds for the current column cl, then they must hold for the new column generated based on cl. With the proofs of the lemmas, we are able to define the below recursive function, correctness, which specifies that given a column cl relating to an input graph g and source node src, if all properties stated by neDInfPath and 15_stms hold for cl (specified by 12_ih and 15_ih inputs), then the properties should also hold after calling runDijkstras on cl. We updates the inputs to the next recursive call by applying lemmas to 12_ih and 15_ih, which is indeed equivalent to the inductive steps in our theoretical proofs of Dijkstra's algorithm provided back in Section 4.

We then defined a dijkstras_correctness function that wraps up all proofs and verify the minimum distance property for all nodes in the input graph.

6 Discussion

7 Related Work

The increasing importance of Dijkstra's algorithm in many real-world applications has raised an interest on verifying it's implementation. Mange and Kuhn provide a project that verifies a Java implementation of Dijkstra's algorithm with the Jahob verification system in their report on efficient proving of Java programs [9]. Although the concrete implementation of this work is unavailable, the report demonstrates the verification process. Function behaviors are specified with preconditions, postconditions, and invariants, and Jahob allows programmers to provide these specifications in high-order logic(HOL), which reduces the problem of program verification to the validity of HOL formulas.

Klasen et. al. verifies Dijkstra's algorithm with the KeY system [10], an interactive theorem prover for Java. Concrete implementations of Dijkstra's algorithm with different variants are provided, and all of them are written in Java. Similarly to the work by Mange and Kuhn, the verification process in the work by Klasen involves describing the behavior of each function with preconditions, postconditions and modifies clause. Loop invariants are specified to support the verification. A function is then verified as correct by the KeY system, with respect to its behavior specifications, if the postconditions specified hold after execution. A similar implementation is provided by Filliâtre, a senior researcher from the National Center for Scientific Research(CNRS), which verifies Dijkstra's implementation with Why3, a deductive program verification platform that relies on external theorem provers [11][4].

All works presented above are largely dependent on theorem proving systems, however our work relies on a significantly smaller trusted code base. Most proofs in our work will be implemented from scratches, and considerable amount of details on verification is presented explicitly. This reduces the chance of introducing errors into our verification program due to bugs in the proof management systems, and additionally, provides an example of how program verification can be achieved with a general-purpose programming language, and that the implementation is highly similar to that of any other programs.

8 Conclusion

References

- [1] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. *Numerische Mathematik*, 1(1):269–271, 12 1959.
- [2] Edsger W. Dijkstra. *Structured Programming*, chapter 1, pages 1–82. Academic Press Ltd. London, UK, UK, 1972. Section 3 ("On The Reliability of Mechanisms"), corollary at the end.
- [3] Robert S. Boyer and J Strother Moore. Program verification. *Journal of Automated Reasoning*, 1:17–23, 1985.
- [4] Jean-Christophe Filliâtre et al. François Bobot. *The Why3 platform*. Toccata, Inria Saclay-Île-de-France / LRI Univ Paris-Sud 11 / CNRS, 1 edition.
- [5] Christoph Herrmann Edwin Brady and Kevin Hammond. Lightweight Invariants with Full Dependent Types. In *Draft Proceedings of Trends in Functional Programming 2008*, 2008.
- [6] Ana Bove and Peter Dybjer. *Dependent Types at Work*, volume 5520, pages 57–99. Springer, 2008.
- [7] The Idris Tutorial. http://docs.idris-lang.org/en/latest/tutorial/index.html# the-idris-tutorial, 2017.
- [8] Susanna S. Epp. *Discrete Mathematics with Applications*. Brooks/Cole Publishing Co., Pacific Grove, CA, USA, 4 edition, 2010.
- [9] R. Mange and J. Kuhn. Verifying dijkstra algorithm in Jahob. Student Project at Ecole Polytechnique Fédérale de Lausanne, 2007.
- [10] Volker Klasen. *Verifying Dijkstra's Algorithm with KeY*. PhD thesis, Universitat Koblenz-Landau, 3 2010.
- [11] Jean-Christophe Filliâtre. Dijkstra's Shortest Path Algorithm. Toccata, 2007.

Appendix

Statutory Declaration