DÖNÜŞTÜR YÖNET (Transform & Conquer)

Tasarım daha kolay hale gelir Aynı problemin farklı ifade ediliş biçimi Farklı ifade ediliş biçimine daha önce çözüm bulunmuş

En çok kullanılan Teknik

PreSorting (Önce Sırala)

Nerelerde kullanılıyor?

- 1. Arama yapılacaksa
- 2. Orta değerin bulunması
- 3. Tek olan elemanın bulunması (unique)
- 4. Birçok geometrik problemde
 - a. Noktaların koordinatların sıralanması

PreSorting Kullanarak Arama

k değeri A[0-100] aranıyor

- En etkili bir algoritma ile A dizisini sırala
 - MergeSort *kullandığımız varsayalım* En kötü durumda O(n.logn)
- İkili aramayı kullan O(logn)
- **PERFORMANS**: O(nlogn) + O(logn) = O(nlogn)

Presortin Kullanarak Tek olan elemanın bulunması

Bir kere yapmak yetmiyor, Hepsini diğerleri ile karşılaştırmak gerek

- Etkili bir algoritma ile birdiziyi sırala
 - MergeSort O(nlogn)
- Dizide eleman eleman ilerle ve komşulara bak
 - \circ O(n)
- **PERFORMANS**: O(nlogn)+O(n)=O(nlogn)

Brute Force - Kaba Kuvvet Kullansaydık

- İç içe for döngüsü
 - O(n²) // Bütün elemanları diğer bütün elemanlar ile karşılaştır.

Daha iyileştiremez miyiz?

- En kötü durum O(n)
- Tüm elemanların aynı indisle bulunması

Dizide en sık geçen elemanı bulmak BruteForce kullanılmış olsa

$$C(n) = (n-1) + (n-2) + (n-3)\dots + 1$$

$$C(n) = \sum_{i=1}^{n} i - 1 = \frac{(n-1) \cdot n}{2}$$

$$O(n^{2})$$

PreSort (Önce Sırala) Kullanılsaydı

rl: O anki seçilen elemanın kaç adet olacağırv: O anki seçilen elemanın ne olduğu

```
PresortMode[A[0\cdots n-1]]
                                      mf En yüksek frekansa sahip eleman
    A Dizisini Sırala
    i = 0; mf = 0;
    while(i < n) -
                                             n elemanlı dizi
    rl = 1; \quad rv = A[i];
                                                                             İç içe iki döngü
            while(i + rl < n \& \& A[i + rl] == rv)
                                                                             gibi görülse de
                                                                             daha az çalışır
            rl = rl + 1;
            if(rl < mf)
                   mf = rl;
                   mv = rv;
            i+=rl:
           // endwhile
```

Analiz

a. Sıralama için
$$O(\log n)$$
 // MergeSort
b. Dıştaki while $O(n)$ // En iyi ve En kötü durum için
c. İçteki while $O(n) + O(\log n) = O(\log n)$

Ağaçlar üzerinde PreSort Kullanımı İkili Arama Ağacı

1 2 3 4 5 6 7 8

En kötü durum sıralı olması Karma dizide eleman aramaya benzer

1 2 3 4 5 6 7

Yükseklik arttıkça performans düşer Performans ağacın yüksekliği ile ilgilidir. $h = \text{Yükseklik} \quad \log n \leq h < n$

En Kötü Durum O(n)Ortalama Durum $O(\log n)$ En iyi Durum O(1) Her iki durumda da amaç logn'e yaklaştırmak

- 1. AVL Ağaçları
- 2. RBT (Kırmızı Siyah Ağaçlar)

AVL Ağaçları yüksekliği baz alır.

Yükseklik;

Çocuğu olmayan kök = 0 Düğümü olmayan ağacın yüksekliği = -1 Bir ağacın <u>derinliği</u> olamaz. // Anlamsız

En uzaktaki yaprağa olan uzaklık Yükseklik = 1 + Max(sol, sağ)

AVL Ağaçları

Denge Bozulduğu an dengeyi sağlar

- 1. Yaprak ve kök olmayan her düğüm mutlaka bir kardeşi olmalıdır.
- 2. Kardeşlerin yükseklikleri eşit veya en fazla bir (1) fark olmalıdır.

Dengesiz bir ağaç; hafif yada ağır diye nitelendirilebilir.

Kök Ağırdır // Bir kardeşi olmayacağı için ağırdır

Hafif Düğüm // Kardeşin yüksekliği daha fazla ise düğüm hafiftir.

Ağacıdır

Bu iki koşulu sağlayan her

ağaç AVL

Hafif olmayan her düğüm Ağırdır

Bir düğüm **solAğır →** yükseklik(sol)> yükseklik(sağ)

Bir düğüm $\mathbf{sağ}\mathbf{Ağır} \Rightarrow y \ddot{u}kseklik \big(sa\check{g}\big) > y \ddot{u}kseklik (sol)$

AVL Ağaçlarında;

Tek dönüş veya çift dönüş yapılarak denge sağlanıyor

Eğer yükseklik (sol(d)) = yükseklik $(sa\S(d))$ + 2

Eğer yükseklik sol(sol(d)) = h+1 ise

Sol çocuk üzerinde tek dönüş yapılacak

Eğer yükseklik $sa\S(sol(d))$ = h+1 ise

Sol çocuk üzerinde çift dönüş yapılacak

Eğer yükseklik $(sa\check{g}(d)) = y$ ükseklik (sol(d)) + 2Eğer yükseklik $sa\check{g}(sa\check{g}(d)) = h + 1$ ise Sağ çocuk üzerinde tek dönüş yapılacak Eğer yükseklik $sol(sa\check{g}(d)) = h + 1$ ise Sağ çocuk üzerinde çift dönüş yapılacak

Örnek

Örnek

Örnek

AVL Ağacı Analizi

Arama-Ekleme $O(\log n)$

Silme $O(\log n)$ // Çok karmaşık olmasına rağmen

Dengeleme sabiti // Bir c sabiti kadar yavaşlatır

AVL Ağacı Dezavantajları

- Dengeleme (Sik Yapılması)
- Karmaşıklık

RBT (Kırmızı Siyah Ağaçlar)

AVL'de eleman silindikten sonraki dengeleme işlemi bizi başka arayışlara yönlendiriyor!

Kırmızı-Siyah Ağalarda güncelleme işlemi O(1) 'i garanti ediyor

RBT Özellikleri

- Kök her zaman siyahtır
- Eğer bir düğüm kırmızı ise çocukları siyah olmalıdır
- Yaprakları köke giden her yolda aynı sayıda siyah düğüm vardır.
- Bu şartları sağlayan ağaç Kırmızı-Siyah Ağaçtır

Örnek

Teorem

k adet anahtara sahiptir

k adet anahtara sahip bir RB ağacının yüksekliği $h \le 2\log(k+1)$ h=Yükseklik

Ekleme işlemi

Yeni düğüm kırmızı olarak eklenir

Eğer kural bozulursa renk değiştir veya döndür

Derinlik Farkı ≤ 2 *olduğunda sağlıyor*

Herhangi bir düğüm arama işlemi	$O(\log n)$
Bir düğümün eklenmesi	$O(\log n)$
Bir düğümün silinmesi	$O(\log n)$
Dengeleme	O(1)