	TP1 Aerotherm - Charpin_Chevillard	Pt	АВС	D Note
ı	Préparation du travail			
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	А	2
2	Quel est le nom de la grandeur réglée ?	1	Α	0,5
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α	0,5
4	Quelle est la grandeur réglante ?	1	Α	0,5
5	Donner une grandeur perturbatrice.	1	Α	0,5
6 II.	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités. Etude du procédé	1	A	1
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	А	1
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	С	0,35
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α	1
4	En déduire le sens d'action à régler sur le régulateur.	1	Α	1
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	В	2,25
III.	Etude du régulateur			
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D	0,075
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	D	0,075
IV.	Performances et optimisation			
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	В	0,75
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	С	0,525
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D	0,05
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D	0,075
			Note sur : 2	20 12,2

TP n°1 Aérotherm

I. Préparation du travail

1)

- 2) Le nom de la grandeur réglée est la température (TT).
- 3) L'aire chauffer remonte dans la colonne à l'aide d'un ventilateur, des sondes de température (PT100) sont placées en fin de cheminée pour mesurer la température.
- 4)
 La grandeur réglante est la puissance des résistances qui permettent de chauffer l'air déplacer par le ventilateur.
- 5)
 La grandeur perturbatrice peu être la température de l'air ambiante. La température de base à l'intérieur du système peut varier en fonction de la température ambiante.

II. Étude du procédé

1) Paramètres entrée :

FagName -	01M01_08		LIN Name	01M01_08	
Гуре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>08	
			SiteNo	1	
PV	3(AUTO	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mA
НіНі	100.0	%	Al	8.92	mA
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	Deg C
			LeadRes	0.000	Ohms
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Secs
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	

Paramètres sortie :

TagName	02P01_08		LIN Name	02P01_08	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>08	
			Sitello	2	
OP	100.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	m/
			LR_out	4.00	m/
Out	100.0	%	AO	20.00	m/
Track	0.0	%			
Trim	0.000	mA	Options	>0000	

2) En fonctionnement à 2000W. En manuel... OP=0% \rightarrow OP=30% \rightarrow OP=60% \rightarrow OP=100% OP en gris sur le graphique.

On remarque que le procédé est stable, la mesure se stabilise si on la laisse à une sortie de régulateur constante.

- 3)
 Calcul de gain par le calcul.... Sur capture ci dessus...
 Delta Y= 30%
 Delta X= 17%
 K=17/30= 0,566%
- 4)
 Lorsque la température augmente, il faut baisser la sortie du régulateur. Le sens d'action du régulateur est donc inverse.

28% de la variation de mesure= 46 ,4% 40% de la variation de mesure= 47% Gain= deltax/deltay=5/10=0,5% Calcul de retard= 0,8s constante de temps= 2,75s

Ti= 3,07s Td= 0,29s C'est des minutes III. Etude du régulateur

1)

Le régulateur est un régulateur mixte 2) je sais pâs

IV. Performances et optimisation

1)

TagName	PID		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	9
→PV	49.9	%	LAA	0.0	9
SP	60.0	%	HDA	100.0	9
OP	100.0	%	LDA	100.0	9
SL	60.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	0.5	9
Track	0.0	%	TI	3.07	
			TD	0.20	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	

2)

Manque de temps pour affiner les reglages.

- 3) pas le temps
- 4) pas le temps
- 5) pas le temps réponse lente de la température.