

空域图卷积介绍 (二)

报告人: 方 深 博士在读

中科院自动化研究所

课程内容

● 图卷积神经网络回顾

● 空间域图卷积局限性分析——过平滑现象

● 过平滑问题的若干缓解方案

图卷积神经网络分类

- > 谱域图卷积
- > 空间域图卷积

输入特征: $\mathbf{x} \in \mathbb{R}^N$

输出特征: $\mathbf{y} \in \mathbb{R}^N$

图拉普拉斯: L = D - A

归一化形式: $\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$

(a) 结构化特征空间

(c) 生物大分子结构

(b) 非结构化特征空间

(d) 交通网络

谱域图卷积

$$\mathbf{L} = \mathbf{U}\Lambda\mathbf{U}^{T} \qquad \mathbf{y} = g_{\theta}(\mathbf{L})\mathbf{x} = \mathbf{U}g_{\theta}(\Lambda)\mathbf{U}^{T}\mathbf{x}$$

$$\mathbf{y} = \mathbf{g}_{\theta} * \mathbf{x} = \mathbf{U}\mathbf{g}_{\theta}(\Lambda)\mathbf{U}^{T}\mathbf{x} \qquad \tilde{\mathbf{x}} = \mathbf{U}^{T}\mathbf{x} \qquad \tilde{\mathbf{y}} = \mathbf{g}_{\theta}(\cdot)\tilde{\mathbf{x}} \qquad \mathbf{y} = \mathbf{U}\tilde{\mathbf{y}}$$

- > 理论基础
 - ▶ 图拉普拉斯矩阵: 对称、半正定矩阵
 - ▶ 特征向量正交: 傅里叶正交基
- ▶ 缺点
 - > 计算复杂度、参数复杂度
 - > 局部空间卷积

谱域图卷积: 切比雪夫正交基

$$\mathbf{y} = g_{\theta} \left(\mathbf{L} \right) \mathbf{x} = \mathbf{U} \mathbf{g}_{\theta} \left(\mathbf{\Lambda} \right) \mathbf{U}^{T} \mathbf{x} \qquad \mathbf{g}_{\theta} \left(\mathbf{\Lambda} \right) = \sum_{k=0}^{K-1} \theta_{k} \mathbf{T}_{k} \left(\tilde{\mathbf{\Lambda}} \right)$$
$$= \left[\sum_{k=0}^{K-1} \theta_{k} \mathbf{T}_{k} \left(\mathbf{U} \tilde{\mathbf{\Lambda}} \mathbf{U}^{T} \right) \right] \mathbf{x} = \sum_{k=0}^{K-1} \theta_{k} \mathbf{T}_{k} \left(\tilde{\mathbf{L}} \right) \mathbf{x} \right] = \sum_{k=0}^{K-1} \theta_{k} \mathbf{\tilde{x}}_{k}$$

> 迭代计算

$$\mathbf{y} = \sum_{k=0}^{K-1} \theta_k \tilde{\mathbf{x}}_k \qquad \tilde{\mathbf{x}}_0 = \mathbf{x} \qquad \tilde{\mathbf{x}}_1 = \tilde{\mathbf{L}} \mathbf{x}$$
$$\tilde{\mathbf{x}}_k = 2\tilde{\mathbf{L}} \tilde{\mathbf{x}}_{k-1} - \tilde{\mathbf{x}}_{k-2}$$

切比雪夫多项式

$$T_0\left(\tilde{\mathbf{L}}\right) = \mathbf{I} \qquad T_1\left(\tilde{\mathbf{L}}\right) = \tilde{\mathbf{L}}$$
 $T_k\left(\tilde{\mathbf{L}}\right) = 2\tilde{\mathbf{L}}T_{k-1}\left(\tilde{\mathbf{L}}\right) - T_{k-2}\left(\tilde{\mathbf{L}}\right)$

空间域图卷积:一阶切比雪夫卷积

$$\mathbf{y} = \theta_0 \tilde{\mathbf{x}}_0 + \theta_1 \tilde{\mathbf{x}}_1 = \theta_0 \mathbf{x} + \theta_1 \tilde{\mathbf{L}} \mathbf{x} = (\theta_0 - \theta_1 \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}) \mathbf{x}$$
 $\theta_0 = -\theta_1$

$$\mathbf{y} = \theta_0 \mathbf{\tilde{D}}^{-1/2} \mathbf{\tilde{A}} \mathbf{\tilde{D}}^{-1/2} \mathbf{x}$$
 $\mathbf{\tilde{A}} = \mathbf{A} + \mathbf{I}$

> 物理意义

▶ 第一步: 图上节点添加自连接边

▶ 第二步: 局部空间信息融合

▶ 第三步: 归一化

空间域图卷积:一阶切比雪夫卷积

$$\mathbf{Y} = \hat{\mathbf{A}}\mathbf{X}\mathbf{W}, \quad \hat{\mathbf{A}} \in R^{N \times N}, \quad \mathbf{X} \in R^{N \times C}, \quad \mathbf{W} \in R^{C \times D}$$

> 实际应用: 图半监督学习

$$\mathbf{Z} = f(\mathbf{X}, \mathbf{A}) = softmax(\hat{\mathbf{A}}ReLU(\hat{\mathbf{A}}\mathbf{X}\mathbf{W}^{(0)})\mathbf{W}^{(1)})$$

Semi-Supervised Classification with Graph Convolutional Networks

过平滑现象的发现过程

- ▶ 处理任务:
 - ➤ 基于GCNs的图半监督学习
- ▶ 核心观点:
 - ▶ 拉普拉斯平滑: GCNs中图卷积是特殊形式的拉普拉斯平滑,可聚合近邻节点特征,使同一种类别的节点特征相似
 - ➤ **过平滑问题** (over-smoothing): 多层GCNs使节点输出特征过度平滑,无法区分不同类别节点。该现象在小数据集上发生很快
 - ▶ 标签传播困难:同时,浅层GCNs又不能有效传播节点标签。

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, in AAAI 2019.

➤ GCN表现优异的直接原因: 邻接矩阵

 \triangleright GCN: $\mathbf{Y} = \hat{\mathbf{A}}\mathbf{X}\mathbf{W}$

 \triangleright FCN: Y = XW

One-layer	Two-layer	One-layer	Two-layer
FCN	FCN	GCN	GCN
0.530860	0.559260	0.707940	0.798361

➤ GCN表现优异的根本原因: 拉普拉斯平滑

标准形式: $\mathbf{y}_i = (1 - \gamma) \mathbf{x}_i + \gamma \sum_j \frac{\ddot{a}_{ij}}{d_i} \mathbf{x}_j, 1 \le i \le n$

矩阵形式: $\mathbf{Y} = \mathbf{X} - \gamma \tilde{\mathbf{D}}^{-1} \tilde{\mathbf{L}} \mathbf{X} = (\mathbf{I} - \gamma \tilde{\mathbf{D}}^{-1} \tilde{\mathbf{L}}) \mathbf{X}$

特殊形式: $\mathbf{Y} = (\mathbf{I} - \tilde{\mathbf{D}}^{-1} (\tilde{\mathbf{D}} - \tilde{\mathbf{A}})) \mathbf{X} = \tilde{\mathbf{D}}^{-1} \tilde{\mathbf{A}} \mathbf{X}, \qquad \gamma = 1$

▶ 过平滑现象:多次平滑后,不同节点的特征趋于同质化

> 实验说明

3-Layer

- > 过平滑现象
 - ▶ 理论分析

其中 $\theta_1, \theta_2 \in \mathbb{R}^K$

图
$$\mathcal{G} = \{C_i\}_{i=1}^K$$
 有 K 个连通分量,第 i 个连通分量的指示向量为 $\mathbf{1}^{(i)} \in R^n$
$$\mathbf{1}^{(1)} = [1, 1, 1, 0, 0]^T \quad \mathbf{1}^{(2)} = [0, 0, 0, 1, 1]^T$$

定理 1: 若一个图没有二分连通分量,则对于任意向量
$$\mathbf{w} \in R^n$$
, $\alpha \in (0,1]$,有:
$$\lim_{m \to +\infty} (\mathbf{I} - \alpha \mathbf{L}_{rw})^m \mathbf{w} = [\mathbf{1}^{(1)}, \mathbf{1}^{(2)}, \cdots, \mathbf{1}^{(K)}] \theta_1$$
$$\lim_{m \to +\infty} (\mathbf{I} - \alpha \mathbf{L}_{sym})^m \mathbf{w} = \mathbf{D}^{-\frac{1}{2}} [\mathbf{1}^{(1)}, \mathbf{1}^{(2)}, \cdots, \mathbf{1}^{(K)}] \theta_2$$

定理 1 证明:

图拉普拉斯 \mathbf{L}_{rw} 和 \mathbf{L}_{sym} 的特征值相同。

矩阵	\mathbf{L}_{rw}	$oxed{\mathbf{L}_{sym}}$
特征值	0	0
特征向量	$\{1^{(i)}\}_{i=1}^{K}$	$\{\mathbf{D}^{-\frac{1}{2}}1^{(i)}\}_{i=1}^{K}$

特征值范围 [0,2]	$) \alpha \in (0,1]$
-------------	-----------------------

矩阵	$\mathbf{I} - \alpha \mathbf{L}_{rw}$	$\boxed{\mathbf{I} - \alpha \mathbf{L}_{sym}}$
特征值	1	1
特征空间	$\{1^{(i)}\}_{i=1}^{K}$	$\{\mathbf{D}^{-\frac{1}{2}}1^{(i)}\}_{i=1}^{K}$

特征值范围 (-1,1]

特征多项式定理: 若 λ 是矩阵 \mathbf{L} 的特征值,则 $f(\lambda)$ 是矩阵 $f(\mathbf{L})$ 的特征值

$$f(\lambda) = 1 - \alpha \lambda$$
 $f(\mathbf{L}) = \mathbf{I} - \alpha \mathbf{L}$

定理 1 证明:

矩阵	$\boxed{\mathbf{I} - \alpha \mathbf{L}_{rw}}$	$\boxed{\mathbf{I} - \alpha \mathbf{L}_{sym}}$
特征值	1	1
特征空间	$\{1^{(i)}\}_{i=1}^{K}$	$\{\mathbf{D}^{-\frac{1}{2}}1^{(i)}\}_{i=1}^{K}$

特征值范围 (-1,1]

特征值 $\tilde{\lambda}$ 绝对值小于1

$$\lim_{m \to +\infty} (\mathbf{I} - \alpha \mathbf{L}_{rw})^m \mathbf{w} = [\mathbf{1}^{(1)}, \mathbf{1}^{(2)}, \cdots, \mathbf{1}^{(K)}] \theta_1$$
$$\lim_{m \to +\infty} (\mathbf{I} - \alpha \mathbf{L}_{sym})^m \mathbf{w} = \mathbf{D}^{-\frac{1}{2}} [\mathbf{1}^{(1)}, \mathbf{1}^{(2)}, \cdots, \mathbf{1}^{(K)}] \theta_2$$

基于上述定理, over-smoothing (过平滑) 会使特征难以区分, 影响模型性能。

> 浅层GCNs不能有效传播特征

- ▶ 矛盾分析
 - ➤ GCNs优势
 - 图卷积(拉普拉斯平滑)使分类问题更容易
 - 多层神经网络具备强大的特征提取功能
 - ➤ GCNs
 - 多次拉普拉斯平滑使输出特征过度平滑
 - > 浅层神经网络的感受野、特征提取能力有限
- ▶ 解决方案
 - ▶ 基于随机游走的协同训练 (Co-Training)
 - ➤ 自训练 (Self-Training)

▶ 解决方案

Algorithm 1 Expand the Label Set via ParWalks

1:
$$P := (L + \alpha \Lambda)^{-1}$$

2: **for** each class k **do**

3:
$$p := \sum_{j \in \mathcal{S}_k} P_{:,j}$$

- 4: Find the top t vertices in $p \blacktriangleleft$
- 5: Add them to the training set with label k
- 6: end for

吸收概率矩阵 \mathbf{P} , $\mathbf{P}_{i,j}$ 表示从节点 i 出发,吸收到节点 j 的概率,即节点 i, j 属于同一类的可能性

 S_k 表示第 k 类有标签节点集合

 $p \in N$ 维向量,表示所有顶点属于第k类概率

Algorithm 2 Expand the Label Set via Self-Training

- 1: $\mathbf{Z} := GCN(X) \in \mathbb{R}^{n \times F}$, the output of GCN
- 2: **for** each class k **do**
- 3: Find the top t vertices in $Z_{i,k}$
- 4: Add them to the training set with label k
- 5: end for

> 实验结果

Dataset	Nodes	Edges	Classes	Features
CiteSeer	3327	4732	6	3703
Cora	2708	5429	7	1433
PubMed	19717	44338	3	500

	Pub	Med							
Label Rate	Label Rate 0.03% 0.05% 0.1% 0.3%								
LP	61.4	66.4	65.4	66.8					
Cheby	40.4	47.3	51.2	72.8					
GCN-V	46.4	49.7	56.3	76.6					
GCN+V	60.5	57.5	65.9	77.8					
Co-training	62.2 51.9 58.4 52.0	68.3	72.7	78.2					
Self-training		58.7	66.8	77.0					
Union		64.0	70.7	79.2					
Intersection		59.3	69.4	77.6					

Cora							
Label Rate	0.5%	1%	2%	3%	4%	5%	
LP	56.4	62.3	65.4	67.5	69.0	70.2	
Cheby	38.0	52.0	62.4	70.8	74.1	77.6	
GCN-V	42.6	56.9	67.8	74.9	77.6	79.3	
GCN+V	50.9	62.3	72.2	76.5	78.4	79.7	
Co-training	56.6	66.4	73.5	75.9	78.9	80.8	
Self-training	53.7	66.1	73.8	<u>77.2</u>	<u>79.4</u>	80.0	
Union	58.5	69.9	75.9	<u>78.5</u>	<u>80.4</u>	81.7	
Intersection	49.7	65.0	72.9	<u>77.1</u>	<u>79.4</u>	80.2	

CiteSeer							
Label Rate	0.5%	1%	2%	3%	4%	5%	
LP	34.8	40.2	43.6	45.3	46.4	47.3	
Cheby	31.7	42.8	59.9	66.2	68.3	69.3	
GCN-V	33.4	46.5	62.6	66.9	68.4	69.5	
GCN+V	<u>43.6</u>	55.3	64.9	<u>67.5</u>	<u>68.7</u>	<u>69.6</u>	
Co-training	<u>47.3</u>	55.7	62.1	62.5	64.5	65.5	
Self-training	43.3	<u>58.1</u>	<u>68.2</u>	<u>69.8</u>	<u>70.4</u>	71.0	
Union	<u>46.3</u>	<u>59.1</u>	66.7	66.7	67.6	68.2	
Intersection	42.9	<u>59.1</u>	<u>68.6</u>	<u>70.1</u>	<u>70.8</u>	<u>71.2</u>	

- > 过平滑问题是否具有一般性
 - ➤ 采样机制(GraphSAGE),注意力机制(GATs)
- ▶ 过平滑问题与其它问题的综合交互
 - ▶ 梯度消失、过拟合
- > 如何缓解过平滑问题
 - 深度拓展: 高层特征融合底层特征
 - ▶ 宽度拓展:全局特征融合局部特征

- ▶ 如何缓解过平滑问题——深度拓展
 - ▶ 残差连接、稠密连接

$$egin{aligned} Z^{(l+1)} &= \hat{D}^{-rac{1}{2}} \hat{A} \hat{D}^{-rac{1}{2}} X^{(l)} W^{(l)} \ X^{(l+1)} &= \sigma \left(Z^{(l+1)}
ight) + X^{(l)} \end{aligned} \qquad X^{(l+1)} &= \mathcal{T}(\sigma \left(Z^{(l+1)}
ight), X^{(l)})$$

> 强化自连接

$$X^{(l+1)} = \sigma \left(\left(\hat{D}^{-rac{1}{2}} \, \hat{A} \hat{D}^{-rac{1}{2}} + I
ight) X^{(l)} W^{(l)}
ight)$$

Semi-supervised Classification with Graph Convolutional Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

- ▶ 如何缓解过平滑问题——宽度拓展
 - > 多阶近邻连接

$$N-GCN = softmax(\mathcal{T} egin{pmatrix} GCN(ar{A}^0, X; heta^{(0)}) \ GCN(ar{A}^1, X; heta^{(1)}) \ \dots \ GCN(ar{A}^n, X; heta^{(n)}) \end{pmatrix} W) \quad GCN(ar{A}, X; heta) = \sigma(ar{A}X heta)$$

> 序列化连接

$$X^{\left(l+1
ight)}=RNN\left(GCN\left(X^{\left(l
ight)},A; heta^{\left(l
ight)}
ight),X^{\left(l
ight)}
ight)$$

N-GCN: Multi-Scale Graph Convolution for Semi-Supervised Node Classification

Residual or Gate? Towards Deeper Graph Neural Networks for Inductive Graph Representation Learning

- ➤ 核心思想:将U-Net网络迁入到图结构数据中,深度宽度同时拓展
- ➤ 难点: 图池化 (Graph Pooling)

Graph U-Net, in ICML 2019.

▶ 图池化

> 图逆池化

$$X^{\ell+1} = \text{distribute}(0_{N \times C}, X^{\ell}, \text{idx})$$

▶ 图增广技术:减少图稀疏

$$A^2 = A^{\ell}A^{\ell}, \quad A^{\ell+1} = A^2(\mathrm{idx}, \mathrm{idx})$$

Graph U-Net 整体结构

- > 实验结果:测试数据集
 - ▶ 节点分类

Dataset	Nodes	Features	Classes	Training	Validation	Testing	Degree
Cora	2708	1433	7	140	500	1000	4
Citeseer	3327	3703	6	120	500	1000	5
Pubmed	19717	500	3	60	500	1000	6

▶ 图分类

Dataset	Graphs	Nodes (max)	Nodes (avg)	Classes
D&D	1178	5748	284.32	2
PROTEINS	1113	620	39.06	2
COLLAB	5000	492	74.49	3

> 实验结果

Models	Cora	Citeseer	Pubmed
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
GAT (Veličković et al., 2017)	$83.0 \pm 0.7\%$	$72.5 \pm 0.7\%$	$79.0 \pm 0.3\%$
g-U-Nets (Ours)	$\textbf{84.4} \pm \textbf{0.6}\%$	$\textbf{73.2} \pm \textbf{0.5}\%$	$\textbf{79.6} \pm \textbf{0.2}\%$

结论: g-U-Nets优于其它图卷积方法

Models	D&D	PROTEINS	COLLAB
PSCN (Niepert et al., 2016)	76.27%	75.00%	72.60%
DGCNN (Zhang et al., 2018)	79.37%	76.26%	73.76%
DiffPool-DET (Ying et al., 2018)	75.47%	75.62%	82.13%
DiffPool-NOLP (Ying et al., 2018)	79.98%	76.22%	75.58%
DiffPool (Ying et al., 2018)	80.64%	76.25%	75.48%
g-U-Nets (Ours)	82.43%	77.68%	77.56%

结论: g-U-Nets优于其它图池化方法

> 消融实验

Models	Cora	Citeseer	Pubmed		
g-U-Nets without gPool or gUnpool	$82.1 \pm 0.6\%$	$71.6 \pm 0.5\%$	$79.1 \pm 0.2\%$		
g-U-Nets (Ours)	$\textbf{84.4} \pm \textbf{0.6}\%$	$\textbf{73.2} \pm \textbf{0.5}\%$	$\textbf{79.6} \pm \textbf{0.2\%}$		

结论: 图池化增加节点感受野, 提高模型准确率

Models	Cora	Citeseer	Pubmed		
g-U-Nets without augmentation	$83.7 \pm 0.7\%$	$72.5 \pm 0.6\%$	$79.0 \pm 0.3\%$		
g-U-Nets (Ours)	$\textbf{84.4} \pm \textbf{0.6}\%$	$\textbf{73.2} \pm \textbf{0.5}\%$	$\textbf{79.6} \pm \textbf{0.2\%}$		

结论:图增广缓解图池化造成的图稀疏问题

Depth	Cora	Citeseer	Pubmed
2	$82.6 \pm 0.6\%$	$71.8 \pm 0.5\%$	$79.1 \pm 0.3\%$
3	$83.8 \pm 0.7\%$	$72.7 \pm 0.7\%$	$79.4 \pm 0.4\%$
4	$\textbf{84.4} \pm \textbf{0.6}\%$	$\textbf{73.2} \pm \textbf{0.5}\%$	$\textbf{79.6} \pm \textbf{0.2}\%$
5	$84.1 \pm 0.5\%$	$72.8 \pm 0.6\%$	$79.5 \pm 0.3\%$

结论: U-Net结构提升模型深度

> 多层图卷积:梯度消失、过度平滑

➤ 借鉴: ResNet、DenseNet、Dilated Convolution (查阅第一节课)

DeepGCNs: Can GCNs Go as Deep as CNNs? in ICCV 2019.

▶ 应用: 点云分割

(a) 点云分割模型基本框架

(b) 点云分割模型特征提取部分

▶ 解决方案

➤ Res-GCN: 残差连接

$$\begin{aligned} \mathcal{G}_{l+1} &= \mathcal{H}(\mathcal{G}_l, \mathcal{W}_l) \\ &= \mathcal{F}(\mathcal{G}_l, \mathcal{W}_l) + \mathcal{G}_l = \mathcal{G}_{l+1}^{res} + \mathcal{G}_l. \end{aligned}$$

➤ Dense-GCN: 稠密连接

$$\begin{split} \mathcal{G}_{l+1} &= \mathcal{H}(\mathcal{G}_l, \mathcal{W}_l) \\ &= \mathcal{T}(\mathcal{F}(\mathcal{G}_l, \mathcal{W}_l), \mathcal{G}_l) \\ &= \mathcal{T}(\mathcal{F}(\mathcal{G}_l, \mathcal{W}_l), ..., \mathcal{F}(\mathcal{G}_0, \mathcal{W}_0), \mathcal{G}_0) \end{split}$$

➤ Dilated GCN: 膨胀卷积

膨胀图卷积示意图

> 实验结果

Ablation	Model mIoU ΔmIoU dynamic		connection	dilation	stochastic	# NNs	# filters	# layers		
Reference	ResGCN-28	52.49	0.00	✓	\oplus	✓	✓	16	64	28
		51.98	-0.51	✓	\oplus	✓		16	64	28
Dilation		49.64	-2.85	✓	\oplus			16	64	28
	PlainGCN-28	40.31	-12.18	✓				16	64	28
Fixed k-NN		48.38	-4.11		\oplus			16	64	28
FIXEG κ-ININ		43.43	-9.06					16	64	28
	DenseGCN-28	51.27	-1.22	✓	\bowtie	✓	✓	8	32	28
		40.47	-12.02	✓		✓	\checkmark	16	64	28
Connections		38.79	-13.70	✓		\checkmark	\checkmark	8	64	56
		49.23	-3.26	✓		\checkmark	\checkmark	16	64	14
		47.92	-4.57	✓		\checkmark	\checkmark	16	64	7
Ni-t-lab		49.98	-2.51	✓		✓	✓	8	64	28
Neighbors		49.22	-3.27	✓	\oplus	\checkmark	\checkmark	4	64	28
	ResGCN-56	53.64	1.15	✓	⊕	✓	✓	8	64	56
Depth	ResGCN-14	49.90	-2.59	✓	\oplus	✓	✓	16	64	14
	ResGCN-7	48.95	-3.53	✓	\oplus	\checkmark	\checkmark	16	64	7
	ResGCN-28W	53.78	1.29	✓	⊕	✓	√	8	128	28
XX/: J4l-		49.18	-3.31	✓	\oplus	\checkmark	✓	32	32	28
Width		48.80	-3.69	✓	\oplus	✓	✓	16	32	28
		45.62	-6.87	✓	\oplus	\checkmark	\checkmark	16	16	28

- > 实验结论
 - 残差连接:提高准确率的关键方法,加入残差连接之后,各项模型性能都会获得有效提升(10%)
 - ➤ 稠密连接:性能提升同残差连接(10%),但是由于concat操作,会引入相当大的内存代价,因此推荐使用残差连接
 - ▶ 膨胀率:可在一定程度上提高模型准确率 (2%-3%)
 - ➤ 动态K近邻:可提高模型准确率 (4%) ,但带来相对较高的计算代价

> 实验结论

▶ 近邻大小: 邻居数量增多时, 可提高性能 (2%-3%)

网络深度:只有当使用残差连接和膨胀卷积时,层数加深,才会提高网络性能

> 网络宽度: 提高宽度可以达到和提升深度相同的性能加持

Method	OA	mIOU	ceiling	floor	wall	beam	column	window	door	table	chair	sofa	bookcase	board	clutter
PointNet [27]	78.5	47.6	88.0	88.7	69.3	42.4	23.1	47.5	51.6	54.1	42.0	9.6	38.2	29.4	35.2
MS+CU [8]	79.2	47.8	88.6	95.8	67.3	36.9	24.9	48.6	52.3	51.9	45.1	10.6	36.8	24.7	37.5
G+RCU [8]	81.1	49.7	90.3	92.1	67.9	44.7	24.2	52.3	51.2	58.1	47.4	6.9	39.0	30.0	41.9
PointNet++ [29]	-	53.2	90.2	91.7	73.1	42.7	21.2	49.7	42.3	62.7	59.0	19.6	45.8	48.2	45.6
3DRNN+CF [49]	86.9	56.3	92.9	93.8	73.1	42.5	25.9	47.6	59.2	60.4	66.7	24.8	57.0	36.7	51.6
DGCNN [42] ResGCN-28 (Ours)	84.1 85.9	56.1 60.0	93.1	95.3	78.2	33.9	37.4	56.1	68.2	64.9	61.0	34.6	51.5	51.1	54.4

▶ 点云分割结果可视化:

小结

- > 空域图卷积
 - ▶ 理论基础:从谱域图卷积到空域图卷积
 - ▶ 技术路线: 多阶拉普拉斯平滑
 - ▶ 潜在问题: 过平滑现象
 - 解决方案:深度拓展、宽度拓展
- ▶ 下次内容
 - ▶ 图卷积的实践应用

END