3. 4 逆 阵 公 式

第 2 章中学习了利用矩阵的初等变换求矩阵的逆,下面我们将给出一个求逆矩阵的公式,形式是很完美的,但在实际应用中,只有对三阶以下的的矩阵才有可操作性.

定义3.5 矩阵 A 的各个元素的代数余子式 A_{ii} 所构成的如下方阵

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \cdots & \cdots & \cdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

称为矩阵 A 的**伴随矩阵**, 简称**伴随阵**.

伴随矩阵的一个基本性质: $AA^* = A^*A = |A|E$.

定理 3. 2 n 阶矩阵 A 可逆的充分必要条件是 $|A| \neq 0$,且

$$A^{-1} = \frac{1}{|A|} A^*$$
,

其中 A^* 为矩阵A的伴随矩阵.称上式为**逆阵公式**.

证 因为 $AA^* = A^*A = |A|E$,且 $|A| \neq 0$,故

$$A\frac{A^*}{|A|} = \frac{A^*}{|A|}A = E,$$

所以A可逆,且 $A^{-1} = \frac{1}{|A|}A^*$.

推论1 设A,B为n阶方阵,若AB = E或BA = E,则A可逆,且 $A^{-1} = B$.

证 因为 $\left|AB\right|=\left|A\right|\left|B\right|=\left|E\right|=1$,故 $\left|A\right|\neq0$,所以A可逆. 设A的逆矩阵为 A^{-1} ,

$$A^{-1} = A^{-1}E = A^{-1}(AB) = (A^{-1}A)B = EB = B$$
.

推论 2 $\left|A^{-1}\right| = \frac{1}{|A|}$.

证 因为 $|AA^{-1}| = |A||A^{-1}| = |E| = 1$,所以 $|A^{-1}| = \frac{1}{|A|}$.

例 4.1 求矩阵 A 的逆矩阵.

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}.$$

$$|A| = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 3, \quad A_{11} = (-1)^{1+1} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3, \quad A_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 1 \\ 0 & 2 \end{vmatrix} = -4,$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 2 & 2 \\ 0 & 1 \end{vmatrix} = 2$$
, $A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 0$, $A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 2$,

$$A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = -1, \quad A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -3, \quad A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 3,$$

$$A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} = 0$$

得到矩阵A的伴随矩阵

$$A^* = \begin{bmatrix} 3 & 0 & -3 \\ -4 & 2 & 3 \\ 2 & -1 & 0 \end{bmatrix}.$$

由逆阵公式,得

$$A^{-1} = \frac{1}{|A|}A^* = \frac{1}{3} \begin{bmatrix} 3 & 0 & -3 \\ -4 & 2 & 3 \\ 2 & -1 & 0 \end{bmatrix}.$$

例 4. 2 求解三元线性方程组
$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$$
.

 \mathbf{m} 方程的系数矩阵就是上例中的矩阵 \mathbf{A} ,因为 \mathbf{A} 可逆,用 \mathbf{A} 的逆阵左乗方程两边,得

$$A^{-1}A\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = A^{-1}\begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix},$$

所以

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 0 & -3 \\ -4 & 2 & 3 \\ 2 & -1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}.$$

例 4. 2 的求解方法可推广到矩阵方程的求解: 对于矩阵方程 AX = B,如果系数矩阵 A 是方阵,且 A 可逆,则 $X = A^{-1}B$.

例 4. 3 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -4 & 5 & 0 \\ 0 & 0 & -6 & 7 \end{pmatrix}$$
, E 为四阶单位矩阵,且 $B = (E+A)^{-1}(E-A)$,

则
$$(E+B)^{-1} =$$
______.

解 由
$$B = (E+A)^{-1}(E-A)$$
,得 $B+AB+A=E$,即 $[\frac{1}{2}(E+A)](E+B)=E$,所以

$$(E+B)^{-1} = \frac{1}{2}(E+A) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & -2 & 3 & 0 \\ 0 & 0 & -3 & 4 \end{pmatrix}. \quad \text{tig} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & -2 & 3 & 0 \\ 0 & 0 & -3 & 4 \end{pmatrix}.$$