3.2.4 カルマンフィルタ (KF) の数学的導出

まずは予測ステップの導出から始める。1 ステップ前の信念 $bel(x_{t-1})$ に、制御 u_t が加わったあとの信念 $\overline{bel}(x_t)$ が計算できる。

$$\overline{bel}(x_t) = \int p(x_t|x_{t-1}, u_t)bel(x_{t-1})dx_{t-1}$$
(1)

$$= \int \mathcal{N}(x_t; A_t x_{t-1} + B_t u_t, R_t) \mathcal{N}(x_{t-1}; \mu_{t-1}, \Sigma_{t-1}) dx_{t-1}$$
 (2)

ただし、 $\mathcal{N}(x;\mu,\Sigma)$ は平均 μ 、共分散行列 Σ のガウス分布の x における確率密度を表す。具体的にガウス分布で表示すると

$$\overline{bel}(x_t) = \int \mathcal{N}(x_t; A_t x_{t-1} + B_t u_t, R_t) \mathcal{N}(x_{t-1}; \mu_{t-1}, \Sigma_{t-1}) dx_{t-1}$$

$$= \eta \int \exp\left[-\frac{1}{2} (x_t - (A_t x_{t-1} + B_t u_t))^T R_t^{-1} (x_t - (A_t x_{t-1} + B_t u_t))\right]$$

$$\exp\left[-\frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma^{-1} (x_{t-1} - \mu_{t-1})\right] dx_{t-1}$$
(4)

指数関数の積は肩の和を取ればよい。なので以下のように関数 L_t を使って書き換えられる。

$$\overline{bel}(x_t) = \eta \int \exp[-L_t] dx_{t-1}$$

$$L_t = \frac{1}{2} (x_t - (A_t x_{t-1} + B_t u_t))^T R_t^{-1} (x_t - (A_t x_{t-1} + B_t u_t))$$

$$+ \frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma^{-1} (x_{t-1} - \mu_{t-1})$$
(6)

 x_{t-1} に関する積分を実行するために、 L_t を x_{t-1} によらない項のみを含む部分 $L_t(x_t)$ と、 x_{t-1} による項も含む部分 $L_t(x_{t-1},x_t)$ に分解する($L_t(x_{t-1},x_t)$ は x_{t-1} によらない項を含んでもよい、なので一意な分解ではない)。こうすると、この積分は

$$\overline{bel}(x_t) = \eta L_t(x_t) \int \exp L_t(x_{t-1}, x_t) dx_{t-1}$$
(7)

とかける。この積分だが、 L_t が x_{t-1} に関して 2 次式だったことを思い出すと、 x_{t-1} に関して「平方完成」すればある x_{t-1} によらないベクトル ξ と行列 Ψ を用いて、 $(x_{t-1}-\xi)^T\Psi^{-1}(x_{t-1}-\xi)$ の形に変形できそうである。この形に変形できれば、 $\exp L_t(x_{t-1},x_t)$ の積分は多変量正規分布 $\mathcal{N}(x_{t-1};\xi,\Psi)$ の規格化定数を求める積分と全く同じになり、特に x_t によらない定数になる。

この変形を行うため、あえて $L_t(x_{t-1},x_t)$ は x_{t-1} によらない項を含めても良いことにしている。 $\exp L_t(x_{t-1},x_t)$ の積分を多変量正規分布 $\mathcal{N}(x_{t-1};\xi,\Psi)$ の積分の形にもっていくために、この分布 $\exp L_t(x_{t-1},x_t)$ の頂点の座標 ξ を求める。 頂点 ξ では、 $L_t(x_{t-1},x_t)$ はベクトル x_{t-1} のあらゆる方向に対して微分係数が

になっている。なので、 $L_t(x_{t-1},x_t)$ を x_{t-1} の各成分に関して微分したもの(この操作を「 L_t を x_{t-1} で 微分」という)がすべて 0 となっている。

 x_{t-1} の第 i 成分を $x_{i,t-1}$ とし、実際にこの計算を実行すると(以下ではアインシュタインの縮約を用いる)

$$\frac{\partial L_t}{\partial x_{i,t-1}} = \frac{\partial}{\partial x_{i,t-1}} \frac{1}{2} (x_t - (A_t x_{t-1} + B_t u_t))^T R_t^{-1} (x_t - (A_t x_{t-1} + B_t u_t))
+ \frac{\partial}{\partial x_{i,t-1}} \frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma^{-1} (x_{t-1} - \mu_{t-1})$$
(9)