### Paper presentation at ACML 2022

DALE: Differential Accumulated Local Effects for efficient and accurate global explanations

Vasilis Gkolemis<sup>1,2</sup> Theodore Dalamagas<sup>1</sup> Christos Diou<sup>2</sup>

<sup>1</sup>ATHENA Research and Innovation Center

<sup>2</sup>Harokopio University of Athens

December 2022

# eXplainable AI (XAI)

- Black-box model  $f(\cdot): \mathcal{X} \to \mathcal{Y}$ , trained on  $\mathcal{D}$
- XAI extracts interpretable properties:
  - → Which features are important (in general)?
  - $\rightarrow$  Which features favor a prediction?
- Categories:
  - → Global vs local
  - → Model-agnostic vs Model-specific
  - $\rightarrow$  Output? number, plot, instance etc.

Feature Effect: global, model-agnostic, outputs plot

#### Feature Effect

 $y = f(x_s) \rightarrow \text{plot showing the effect of } x_s \text{ on the output } y$ 



Figure: Image taken from Interpretable ML book [4]

#### Feature Effect Methods

- $x_s o$  feature of interest,  $x_c o$  other features
- FE methods take  $(f, \mathcal{D}, s)$  and return  $y = f_{\leq name}(x_s)$
- PDP[3]
  - Expected outcome over  $\mathbf{x_c}$ :  $f(\mathbf{x_s}) = \mathbb{E}_{\mathbf{x_c}}[f(\mathbf{x_s}, \mathbf{x_c})]$
  - Unrealistic instances

#### Feature Effect Methods

- $x_s o$  feature of interest,  $extbf{\textit{x}}_c o$  other features
- FE methods take  $(f, \mathcal{D}, s)$  and return  $y = f_{\leq name}(x_s)$
- PDP[3]
  - Expected outcome over  $x_c$ :  $f(x_s) = \mathbb{E}_{x_c}[f(x_s, x_c)]$
  - Unrealistic instances
- MPlot[1]
  - ▶ Expected outcome over  $x_c|_{x_s}$ :  $f(x_s) = \mathbb{E}_{x_c|_{x_s}}[f(x_s, x_c)]$
  - Aggregated effects

PDP vs MPlot vs ALE

#### Feature Effect Methods

- $x_s o$  feature of interest,  $extbf{\textit{x}}_c o$  other features
- FE methods take  $(f, \mathcal{D}, s)$  and return  $y = f_{\leq \text{name}}(x_s)$
- PDP[3]
  - Expected outcome over  $x_c$ :  $f(x_s) = \mathbb{E}_{x_c}[f(x_s, x_c)]$
  - Unrealistic instances
- MPlot[1]
  - ▶ Expected outcome over  $\mathbf{x_c}|\mathbf{x_s}$ :  $f(\mathbf{x_s}) = \mathbb{E}_{\mathbf{x_c}|\mathbf{x_s}}[f(\mathbf{x_s},\mathbf{x_c})]$
  - Aggregated effects
- ALE[1]
  - $f(x_s) = \int_{x_{min}}^{x_s} \mathbb{E}_{\mathbf{x_c}|\mathbf{z}} \left[ \frac{\partial f}{\partial x_s} (z, \mathbf{x_c}) \right] \partial z$
  - Resolves both failure modes

PDP vs MPlot vs ALE

## ALE approximation

ALE definition: 
$$f(x_s) = \int_{x_{s,min}}^{x_s} \mathbb{E}_{\mathbf{x_c}|z}[\frac{\partial f}{\partial x_s}(z,\mathbf{x_c})] \partial z$$

ALE approximation: 
$$f(x_s) = \sum_{k}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \underbrace{\left[f(z_k, \mathbf{x}^i_c) - f(z_{k-1}, \mathbf{x}^i_c)\right]}_{\text{point effect}}$$



Figure: Image taken from Interpretable ML book [4]

## ALE approximation

ALE approximation from  $\mathcal{D} = \{ \mathbf{x}^i, y^i \}_{i=1}^N$ 

$$f(x_s) = \sum_{k}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \underbrace{\left[f(z_k, \mathbf{x}^i_c) - f(z_{k-1}, \mathbf{x}^i_c)\right]}_{\text{point effect}}$$
bin effect

- 2 evaluations of f per point  $\rightarrow$  slow
- ullet change bin limits, pay again 2\*N evaluations of f o restrictive
- ullet broad bins may create out of distribution (OOD) samples o not-robust in wide bins

ALE approximation has some weaknesses

#### DALE - Differential ALE

DALE, from the dataset  $\mathcal{D} = \{ \mathbf{x}^i, y^i \}_{i=1}^N$ 

$$f(x_s) = \Delta x \sum_{k}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \underbrace{\left[\frac{\partial f}{\partial x_s}(x_s^i, \mathbf{x}_c^i)\right]}_{\text{point effect}}$$

- only change point effect computation
- ullet Fast o use of auto-differentiation, all derivatives in a single pass
- ullet Versatile o point effects computed once, change bins without cost
- ullet Secure o does not create artificial instances

For differentiable models, DALE resolves ALE weaknesses

◆ロト ◆昼 ト ◆ 重 ト ◆ 重 ・ 夕 Q ②

## DALE is faster and versatile - theory

$$f(x_s) = \Delta x \sum_{k}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \underbrace{\left[\frac{\partial f}{\partial x_s}(x_s^i, \mathbf{x}_c^i)\right]}_{\text{point effect}}$$

- Faster
  - gradients wrt all features  $\nabla_{\mathbf{x}} f(\mathbf{x}^i)$  in a single pass
  - auto-differentiation must be available (deep learning)
- Versatile
  - ► Change bin limits, with near zero computational cost

DALE is faster and allows redefining bin-limits



## DALE is faster and versatile - Experiments



Figure: Light setup; small dataset ( $N = 10^2$  instances), light f. Heavy setup; big dataset ( $N = 10^5$  instances), heavy f

DALE considerably accelerates the estimation

## DALE uses on-distribution samples - Theory

$$f(x_s) = \sum_{k}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: x^i \in \mathcal{S}_k} \underbrace{\left[\frac{\partial f}{\partial x_s}(x_s^i, x_c^i)\right]}_{\text{point effect}}$$

- point effect independent of bin limits
- bin limits affect only the resolution of the plot
  - lacktriangle wide bins ightarrow low resolution plot, bin estimation from more points
  - lacktriangleright narrow bins ightarrow high resolution plot, bin estimation from less points

DALE enables wide bins without creating out of distribution instances

4□ > 4□ > 4 = > 4 = > = 90

## DALE uses on-distribution samples - Experiments

$$f(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 \pm g(x)$$
  
 $x_1 \in [0, 10], x_2 \sim x_1 + \epsilon, x_3 \sim \mathcal{N}(0, \sigma^2)$   
 $f_{ALE}(x_1) = \frac{x_1^2}{2}$ 

- point effects affected by  $(x_1x_3)$   $(\sigma \text{ is large})$
- bin estimation is noisy (samples are few)



Intuition: we need wider bins (more samples per bin)

### DALE vs ALE - 40 Bins



- ullet DALE: on-distribution, noisy bin effect o poor estimation
- ullet ALE: on-distribution, noisy bin effect o poor estimation

### DALE vs ALE - 40 Bins



- DALE: on-distribution, noisy bin effect  $\rightarrow$  poor estimation
- ullet ALE: on-distribution, noisy bin effect o poor estimation

#### DALE vs ALE - 20 Bins



- ullet DALE: on-distribution, noisy bin effect o poor estimation
- ALE: on-distribution, noisy bin effect → poor estimation

### DALE vs ALE - 20 Bins



- DALE: on-distribution, noisy bin effect → poor estimation
- ALE: on-distribution, noisy bin effect → poor estimation

#### DALE vs ALE - 10 Bins



- ullet DALE: on-distribution, noisy bin effect o poor estimation
- ullet ALE: starts being OOD, noisy bin effect o poor estimation

### DALE vs ALE - 10 Bins



- DALE: on-distribution, noisy bin effect  $\rightarrow$  poor estimation
- ALE: starts being OOD, noisy bin effect → poor estimation

### DALE vs ALE - 5 Bins



- ullet DALE: on-distribution, robust bin effect ightarrow good estimation
- ullet ALE: completely OOD, robust bin effect ightarrow poor estimation

### DALE vs ALE - 5 Bins



- ullet DALE: on-distribution, robust bin effect ightarrow good estimation
- ullet ALE: completely OOD, robust bin effect o poor estimation

#### DALE vs ALE - 3 Bins



- ullet DALE: on-distribution, robust bin effect ightarrow good estimation
- ullet ALE: completely OOD, robust bin effect ightarrow poor estimation

#### DALE vs ALE - 3 Bins



- ullet DALE: on-distribution, robust bin effect ightarrow good estimation
- ullet ALE: completely OOD, robust bin effect o poor estimation

## Real Dataset Experiments - Efficiency

- Bike-sharing dataset[2]
- $y \rightarrow$  daily bike rentals
- x : 10 features, most of them characteristics of the weather

Efficiency on Bike-Sharing Dataset (Execution Times in seconds)

|      | Number of Features |      |      |      |      |      |      |      |      |      |      |
|------|--------------------|------|------|------|------|------|------|------|------|------|------|
|      | 1                  | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   |
| DALE | 1.17               | 1.19 | 1.22 | 1.24 | 1.27 | 1.30 | 1.36 | 1.32 | 1.33 | 1.37 | 1.39 |
| ALE  | 0.85               | 1.78 | 2.69 | 3.66 | 4.64 | 5.64 | 6.85 | 7.73 | 8.86 | 9.9  | 10.9 |

DALE requires almost same time for all features

## Real Dataset Experiments - Accuracy

- Difficult to compare in real world datasets
- We do not know the ground-truth effect
- In most features, DALE and ALE agree.
- Only  $X_{\text{hour}}$  is an interesting feature



Figure: (Left) DALE (Left) and ALE (Right) plots for  $K = \{25, 50, 100\}$ 

#### What next?

- How to (automatically) decide the optimal bin sizes?
  - Sometimes narrow bins are ok
  - Sometimes wide bins are needed
- Can we DALE are fast to decide optimal bin splitting?
- What about variable size bins?
- Model the uncertainty of the estimation?

DALE advantages can be a driver for future work

# Thank you

• Questions?

#### References I

- [1] Daniel W. Apley and Jingyu Zhu. Visualizing the effects of predictor variables in black box supervised learning models. *Journal of the Royal Statistical Society. Series B: Statistical Methodology*, 82(4):1059–1086, 2020.
- [2] Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and background knowledge. *Progress in Artificial Intelligence*, pages 1–15, 2013.
- [3] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. *Annals of Statistics*, 29(5):1189–1232, oct 2001.
- [4] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022.