<u>Theorem</u>: If A is invertible, A^{-1} is unique.

Due to Associativity So, AA' = A'A = I = AA'' = A''Aof Matrix Multiplication A' = A'I = A'(AA'') = (A'A)A'' = IA'' = A''Be careful! $A^{-1} \neq \frac{1}{A}$

Theorem:

If A is invertible, the system of linear

 $x = A^{-1}b$ for any $b \in \mathbb{R}^n$

equations Ax = b has the unique solution

Assume that there are two inverses A', A''

Theorem: If $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then A is invertible if $(ad-bc)\neq 0$. In that case, we can write $A^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

If ad - bc = 0, A is not invertible.

Mark as completed

<u>Theorem</u>: