

Bloque I: Introducción

Tema 1: Redes de Ordenadores e Internet

Índice

- Bloque I: Introducción
 - Tema 1: Redes de Ordenadores e Internet
 - ¿Qué es Internet?
 - ¿Qué es una red?
 - Arquitectura de red
 - Modelo OSI

Lecturas recomendadas:

 Capítulo 1, secciones 1.1, 1.2, 1.3, 1.4 y 1.5, de "Redes de Computadores: Un enfoque descendente". James F. Kurose, Keith W. Ross. Addison Wesley.

¿Qué es Internet?

- Cuando me conecto a la página de Google desde mi ordenador, ¿qué elementos se utilizan para realizar esa comunicación?
- En grupos de 2-4 personas, preparad una lista con estos elementos (5 min).

¿Qué es Internet?

- http://global-internet-map-2012.telegeography.com/
- http://internet-map.net/
- Red de redes: red de comunicación global que interconecta millones de redes.
 - Host, routers y enlaces de comunicación
 - Protocolos: TCP/IP
- Autopistas de la Información: infraestructura que proporciona servicios a las aplicaciones distribuidas.
 - E-mail, Web, aplicaciones P2P, juegos, VozIP, streaming de vídeo, ...
 - Internet proporciona dos tipos de servicio:
 - Fiable y orientado a conexión.
 - No fiable y no orientado a conexión conexión.
 - En Internet no puedo establecer el tiempo máximo de comunicación entre dos máquinas.

¿Qué es una red?

- Es un conjunto de ordenadores y dispositivos interconectados que facilitan la comunicación y la compartición de información y recursos.
- Tipos de redes (cableadas o inalámbricas) según el canal de comunicación:
 - Broadcast: canal de comunicación compartido → Posibilidad de múltiples destinatarios (broadcast o multicast). Redes pequeñas en general.
 - Punto a punto: canales de comunicación dedicados para la comunicación entre dos máquinas.
- Tipos de redes según su longitud:
 - Redes de Área Local (10m- varios Km): LAN (Local Area Network)
 - Medio compartido, 10 Mbps, 100 Mbps, 1Gbps (p.e. Ethernet/IEEE802.3)
 - Incluyen las MAN (Metropolitan Area Network).
 - Redes de Área Extendida (>10 Km): WAN (Wide Area Network)
 - Compuestas habitualmente de líneas de transmisión y elementos de conmutación. Las líneas transportan los bytes y los elementos de conmutación conectan dos o más líneas de transmisión.

Tipos de tecnologías de red

- Conmutación de circuitos: cuando dos nodos se quieren comunicar se establece una conexión terminal a terminal.
 - Los recursos (buffers, ancho de banda, ...) necesarios se reservan a lo largo del recorrido.
 - La reserva se mantiene durante la sesión.
 - Por ejemplo: redes de telefonía.
- Conmutación de paquetes:
 - No hay reserva de recursos.
 - Los mensajes de la sesión utilizan los recursos bajo demanda → Pueden tener que esperar para poder utilizar los recursos.
 - Por ejemplo: Internet.
- Mixtas: ATM → Aunque una conexión haga una reserva puede tener que esperar por los recursos.

Redes de conmutación de circuitos

Multiplexación por división en frecuencia (FDM)

Multiplexación por división en el tiempo (TDM)

Redes de conmutación de paquetes

- Se dividen los mensajes originales en paquetes.
- Los paquetes se envían a través de los enlaces y los routers.
- Los routers utilizan la técnica de transmisión de **almacenamiento y reenvío**:
 - El router debe recibir el paquete completo antes de poder transmitir el primer bit hacia el siguiente destino → Retardo de almacenamiento y reenvío
- Para cada enlace, el router dispone de un buffer de salida (o cola de salida), que almacena los paquetes a enviar por ese enlace.
 - Retardo de cola: si el enlace está ocupado con la transmisión de otro mensaje → Esperar
 - Pérdida de paquetes: si la cola está llena → Es necesario descartar algún paquete (p.e. el último en llegar).
- Redes de datagramas: el envío de paquetes se realiza en base a la dirección de destino.
 - No se mantiene información sobre el estado de las conexiones en los routers.
- Redes de Circuito Virtual (CV): el envío de paquetes se realiza en base al número de circuito virtual.
 - Los conmutadores mantienen información del estado de las comunicaciones entrantes: interfaz de entrada - etiqueta de entrada interfaz de salida - etiqueta de salida (p.e. X.25, Frame Relay, ATM)

Redes de conmutación de paquetes

- Tipos de retardo en las redes de conmutación de paquetes:
 - Retardo de procesamiento: tiempo requerido por el router para examinar la cabecera y determinar hacia donde seguir el paquete.
 - Retardo de cola: tiempo de espera para ser transmitido (en el buffer de salida).
 - Retardo de transmisión: tiempo para transmitir todos los bits del paquete al enlace
 - Retardo de propagación: tiempo necesario para propagarse desde el inicio del enlace hasta el final del enlace (= siguiente router).
- Ejemplo de retardo de propagación vs retardo de transmisión:
 - http://media.pearsoncmg.com/aw/aw_kurose_network_2/applets/transmission/delay.html

Redes de acceso y medio físico

- El acceso a la red se divide en tres clases:
 - Acceso residencial: conecta sistemas terminales del hogar a la red a través de un ISP (Internet Service Provider).
 - Modem telefónico, acceso de banda ancha (DSL Digital Subscriber Line o HFC – Hybrid Fiber Coaxial Cable)
 - Acceso de empresa: conecta sistemas terminales de una empresa u organismo a la red.
 - Se utilizan LANs para conectar al sistema terminal al router.
 - Ethernet conmutada (10 100 Mbps, o incluso 1 ó 10 Gbps).
 - Acceso móvil: conecta terminales móviles a la red.
 - Wireless LAN: los usuarios móviles transmiten y reciben a través de una estación base (punto de acceso).
 - Redes de acceso sin cable de área amplia: UMTS o 3G
- Medios de transmisión → Lo estudiaremos en el Seminario de MT
 - Guiados
 - Par trenzado: UTP, STP y FTP
 - Cable coaxial
 - Fibra óptica
 - No guiados
 - Canales de radio terrestres (p.e. WIFI, WiMax, 3G, ...)
 - Canales de radio satélite

¿Cuál es mejor?

Depende para qué ...

- ¿Cuál es mejor ... para conectar una red de ordenadores?
 - Enlace de 1 Mbps compartido por varios usuarios.
 - Cada usuario pasa por períodos de actividad (genera datos a 100 Kbps) e inactividad.
 - Un usuario está activo el 10% del tiempo.
 - Conmutación de circuitos: máximo 10 usuarios (10 x 100 Kbps = 1 Mbps).
 - Conmutación de paquetes: si hay 35 usuarios, la probabilidad de que haya más de 10 usuarios activos simultáneamente es de 0.0004.
 - El 99.96% de los casos, la tasa de llegada de datos será inferior a 1 Mbps.

¿Qué es un protocolo?

 Toda actividad en Internet que implica a dos o más entidades remotas que se comunican está gobernada por un protocolo.

Protocolo:

- Conjunto de mensajes válidos
- Significado de cada mensaje: sintáctico (campos que contiene + formato) y semántico (significado + acciones)
- Un protocolo también se puede ver como un proveedor de servicio → Diferencia entre Servicio y Protocolo:
 - Las entidades utilizan los protocolos para implementar el servicio que ha sido solicitado por el usuario.
 - Independencia: podría cambiarse el protocolo sin necesidad de que lo note el usuario (sin cambiar el servicio).
 - Concepto similar a Definición e Implementación de programación.
- Arquitectura de red: conjunto de protocolos y capas que permiten la comunicación entre ordenadores.
- Interfaz: comunicación definida por un conjunto de primitivas y servicios que ocurre entre pares de capas adyacentes.

Arquitectura de red

- Ventajas de la estructuración en nivel y protocolos:
 - Un problema complejo se descompone en piezas pequeñas.
 - Abstracción de los detalles de implementación.
 - Compartición por múltiples niveles superiores los servicios de una capa inferior.
- Inconvenientes:
 - Ocultación de información violación del principio de layering
 - Balance entre ocultación de información y rendimiento del sistema:
 - Una capa superior puede optimizar su rendimiento conociendo el funcionamiento de la capa inferior.

Modelo de referencia OSI

- Un conjunto de protocolos es abierto si:
 - El diseño del protocolo es de dominio público.
 - Los cambios los gestiona una organización cuyos miembros y actividades están abiertos al público.
- Un sistema que implementa protocolos abiertos es un sistema abierto.
- International Organization for Standards (ISO) define un estándar para conectar sistemas abiertos:
 - Open System Interconnect (OSI)
- Ha tenido gran influencia en el diseño de pilas de protocolos

Sistema final Sistema final

Aplicación				Aplicación
Presentación				Presentación
Sesión				Sesión
Transporte	Sistema intermedio			Transporte
Red		Red		Red
Enlace		Enlace		Enlace
Físico		Físico		Físico

Medio físico

Nivel físico

- Transmitir bits entre entidades conectadas físicamente.
- Estandarización:
 - Esquema de codificación para la representación de bits.
 - Sincronización a nivel de bit.
- No existe el concepto de paquete o trama.

Nivel de enlace

- Introduce la noción de trama (frame):
 - Conjunto de bits.
- Cada trama está delimitada por un inicio y un final (distinguir el patrón desocupado).
- En un enlace de Broadcast (Ethernet):
 - Se necesita dirección de nivel de enlace.
 - También se arbitra el acceso al medio.
 - Estas funciones son proporcionadas por la subcapa Medium Access (MAC).
- Algunos niveles de enlace también retransmiten paquetes dañados y controlan el flujo de transmisión de datos
 - Funciones de la subcapa LLC (Logical Link Control)
 - Situada por encima de la MAC.
- Los protocolos del nivel de enlace son la primera capa de software.
- Muy dependiente del medio físico subyacente:
 - Normalmente coexisten el medio físico y el nivel de enlace en el adaptador de tarjeta (p.e. Ethernet).
- Internet:
 - Gran variedad de protocolos de nivel de enlace.
 - Él más común es Ethernet.
 - Otros son FDDI, SONET, HDLC.

Nivel de red

- Concatena un conjunto de enlaces para formar la abstracción de un enlace extremo a extremo.
- Permite a un sistema final comunicarse con otro, calculando la ruta entre ellos.
- Oculta las particularidades del nivel de enlace.
- Proporciona direcciones de red únicas.
- Es un nivel que existe tanto en sistemas finales como en los intermedios.
- En sistemas finales, principalmente oculta detalles de nivel de enlace:
 - Fragmentación y ensamblado.
 - Detección de errores.
- En los sistemas intermedios:
 - Enrutamiento (tablas de enrutamiento).
 - Responsable del envío de paquetes.
 - Planificación del orden de transmisión de paquetes.
 - Determina qué paquetes se descartan.

Nivel de red

Internet:

- Nivel de red proporcionado por el protocolo IP, Internet Protocol.
- Se encuentra en todos los sistemas finales e intermedios.
- Proporciona abstracción de la comunicación extremo a extremo.
- Fragmentación y reensamblado.
- Envío de paquetes, enrutamiento y planificación.
- Direcciones IP únicas.
- Servicio best-effort.

Nivel de transporte

- El nivel de red proporciona un servicio extremo a extremo "pelado".
- El nivel de transporte crea un enlace extremo a extremo multiplexado, con control de errores y de flujo (servicios opcionales)
- Control de errores:
 - Los mensajes llegan a su destino independientemente de que:
 - Se pierdan paquetes: retransmisión.
 - Se dupliquen: detección y descarte.
 - Se corrompan: detección, descarte y retransmisión.
- Control de flujo: la velocidad de transmisión del origen se adapta a la velocidad del receptor.
- Multiplexa varias aplicaciones sobre la misma conexión extremo a extremo:
 - Añade un identificador específico para cada aplicación (nº de puerto)
 - Objetivo: el sistema receptor final pueda llevar los paquetes entrantes a la aplicación correcta.
- Internet:
 - Dos protocolos muy populares TCP y UDP.
 - Se multiplexa en base al número de puerto.
 - TCP ofrece un servicio orientado a conexión y fiable → Proporciona control de flujo, de errores y multiplexación.
 - UDP ofrece un servicio no orientado a conexión y no fiable → Sólo proporciona multiplexación.

Nivel de sesión

- No es muy común.
- Proporciona servicio full-duplex, envío de datos urgentes y sincronización de sesiones.
- Full-duplex:
 - Si el nivel de transporte es simplex, gestiona dos conexiones independientes para crear un servicio fullduplex.
- Envío de datos urgentes:
 - Permite a algunos mensajes saltarse la cola de mensajes.
- Sincronización:
 - Permite a los extremos establecer checkpoints para ejecutar roll-backs (transferencias de datos atómicas).
- Internet:
 - No tiene un nivel de sesión estandarizado.
 - TCP: full-duplex y datos urgentes
 - Sincronización: nivel de aplicación en caso de ser necesario.

Nivel de presentación

- El nivel de presentación maneja datos de aplicaciones (no meta-datos).
- Oculta las diferencias de representación de datos entre aplicaciones:
 - 0000 0001 (little-endian)
 - 1000 0000 (big-endian)
- Puede también cifrar y comprimir datos.
- Internet:
 - No tiene un nivel de presentación estándar.

Nivel de aplicación

- Conjunto de aplicaciones que utilizan la red.
- No proporciona servicios a ninguna otra capa o nivel.
- Internet:
 - Múltiples aplicaciones: WWW, e-mail, telnet...