Aplicação de grafos: processamento de imagens

Estrutura de Dados - ED I

lmagem digital: representação

Imagem digital: é uma matriz de valores, cujos elementos são chamados de *pixels* da imagem.

- Linhas e colunas: servem para localizar os pixels da imagem.
- Valor de um elemento na matriz: cor do pixel associado.

Imagem digital: representação no computador

Imagem (em escala de cinza, de 0 a 255). Cor preta: valor 0; Cor branca: valor 255.

Imagem digital colorida

Imagem digital colorida: é definida por três matrizes de cores, R, G e B, que, quando combinadas, geram a imagem colorida.

Segmentação de imagens digitais

O problema de segmentação

Objetivo: "Recortar" um objeto do "fundo" da imagem.

Segmentação de Imagens

Tarefa de segmentação

Problema complexo
sem uma solução
definitiva

Desenvolvimento de algoritmos mais refinados

Alto investimento da indústria de tecnologia

Finalidade básica da segmentação: usada como etapa de pré processamento em uma infinidade de aplicações.

Colorização de imagens.

Ideia-chave: teoria dos grafos

Grafo (definição):

- G = (V, E, W)
 - ✓ Conjunto de vértices
 - ✓ Conjunto de arestas
 - ✓ Conjunto de Pesos

Ideia-chave: teoria dos grafos

Segmentação via Análise Espectral em Grafos

- Vantagens do uso dos operadores laplacianos:
 - Suportam diferentes abordagens para problemas variados;
 - Boa performance e flexibilidade;
 - Possuem forte respaldo matemático;
 - Exploram bem a esparsidade do problema.
- Objetivo: Estudar a funcionalidade desses operadores para o problema de segmentação de grafos gerados a partir de imagens.

Laplaciano combinatorial do grafo (K)

- $G = G(V,E,W_F): W_F = \{1\}$
- W: matriz de adjacência de G
- D: matriz de incidência de G

$$K = D - W,$$

$$K_{ij} = \begin{cases} -1, & \text{se } (i,j) \in E \\ d_i, & \text{se } i = j \\ 0, & \text{se } (i,j) \notin E \text{e } i \neq j, \end{cases}$$

$$\begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & -1 & 0 \\ -1 & 0 & 3 & -1 & -1 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix}$$

Exemplo de um grafo simples e sua matriz laplaciana.

- Laplaciano do grafo (L)
- $G = G(V,E,W_F)$: onde W_F assume pesos não-negativos
- W: matriz dos pesos (matriz de adjacência ponderada)
- D: matriz diagonal formada pela soma dos pesos

$$\mathsf{L}_{ij} = \begin{cases} -w_{ij}, & \text{se } (i,j) \in E \\ \sum_{k \in N(i)} w_{ik}, & \text{se } i = j \\ 0, & \text{se } (i,j) \notin E \text{e } i \neq j, \end{cases}$$

Estrutura de Dados – ED I

Interpretação sob o viés espectral

Operador:
$$L$$

Par (λ^i, f^i) para cada nível i :
$$L(f^i) = \lambda^i f^i$$

$$f^i: V \to \mathbb{R}, \lambda^i \in \mathbb{R}$$

Cada par de autovalor-autovetor acima gera uma segmentação diferente no grafo de adjacência.

■ Laplaciano combinatorial do grafo (corte espectral)

$$\begin{bmatrix} 0.0 & 1.4 & 2.4 & 3.6 & 4.6 \\ 0.4 & 0.5 & -0.6 & 0.2 & 0.4 \\ 0.4 & 0.5 & 0.6 & 0.2 & -0.4 \\ 0.4 & -0.2 & -0.4 & -0.5 & -0.6 \\ 0.4 & -0.2 & 0.4 & -0.5 & 0.6 \\ 0.4 & -0.6 & 0.0 & 0.6 & 0.0 \end{bmatrix}$$

Corte espectral baseado no 4° autovetor.

Autovalores e autovetores associados.

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Grafo.

Matriz laplaciana do grafo.

$$\begin{bmatrix} 0.0 & 3.8 & 3.8 & 1.6 & 2.6 & 2.6 & 4.4 \\ \hline 0.4 & -0.1 & -0.7 & -0.4 & 0.3 & 0.3 & 0.1 \\ 0.4 & -0.1 & -0.4 & 0.2 & -0.6 & -0.4 & -0.4 \\ 0.4 & 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.8 \\ 0.4 & -0.3 & 0.3 & 0.2 & 0.6 & -0.2 & -0.4 \\ 0.4 & -0.5 & 0.5 & -0.4 & -0.4 & 0.2 & 0.1 \\ 0.4 & 0.4 & 0.1 & 0.2 & -0.1 & 0.7 & -0.4 \\ 0.4 & 0.7 & 0.2 & -0.4 & 0.1 & -0.4 & 0.1 \end{bmatrix}$$

Corte espectral do grafo.

$$\begin{bmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & -1 & 4 \end{bmatrix}$$

Grafo.

Matriz laplaciana do grafo.

$$\begin{bmatrix} 0.0 & 0.3 & 1.0 & 2.0 & 3.0 & 3.7 \\ \hline -0.4 & -0.6 & -0.5 & -0.4 & 0.2 & -0.1 \\ -0.4 & -0.4 & 0.0 & 0.4 & -0.6 & 0.4 \\ -0.4 & -0.1 & 0.5 & 0.4 & 0.2 & -0.6 \\ -0.4 & 0.1 & 0.5 & -0.4 & 0.2 & 0.6 \\ -0.4 & 0.4 & 0.0 & -0.4 & -0.6 & -0.4 \\ -0.4 & 0.6 & -0.5 & 0.4 & 0.2 & 0.1 \end{bmatrix}$$

Corte espectral do grafo.

$$\begin{bmatrix} 0.0 & 0.3 & 1.0 & 2.0 & 3.0 & 3.7 \\ \hline -0.4 & -0.6 & -0.5 & -0.4 & 0.2 & -0.1 \\ -0.4 & -0.4 & 0.0 & 0.4 & -0.6 & 0.4 \\ -0.4 & -0.1 & 0.5 & 0.4 & 0.2 & -0.6 \\ -0.4 & 0.1 & 0.5 & -0.4 & 0.2 & 0.6 \\ -0.4 & 0.4 & 0.0 & -0.4 & -0.6 & -0.4 \\ -0.4 & 0.6 & -0.5 & 0.4 & 0.2 & 0.1 \end{bmatrix}$$

Corte espectral do grafo.

$$\begin{bmatrix} 0.0 & 0.3 & 1.0 & 2.0 & 3.0 & 3.7 \\ -0.4 & -0.6 & -0.5 & -0.4 & 0.2 & -0.1 \\ -0.4 & -0.4 & 0.0 & 0.4 & -0.6 & 0.4 \\ -0.4 & -0.1 & 0.5 & 0.4 & 0.2 & -0.6 \\ -0.4 & 0.1 & 0.5 & -0.4 & 0.2 & 0.6 \\ -0.4 & 0.4 & 0.0 & -0.4 & -0.6 & -0.4 \\ -0.4 & 0.6 & -0.5 & 0.4 & 0.2 & 0.1 \end{bmatrix}$$

Corte espectral do grafo.

$$\begin{bmatrix} 0.0 & 0.3 & 1.0 & 2.0 & 3.0 & 3.7 \\ \hline -0.4 & -0.6 & -0.5 & -0.4 & 0.2 & -0.1 \\ -0.4 & -0.4 & 0.0 & 0.4 & -0.6 & 0.4 \\ -0.4 & -0.1 & 0.5 & 0.4 & 0.2 & -0.6 \\ -0.4 & 0.1 & 0.5 & -0.4 & 0.2 & 0.6 \\ -0.4 & 0.4 & 0.0 & -0.4 & -0.6 & -0.4 \\ -0.4 & 0.6 & -0.5 & 0.4 & 0.2 & 0.1 \end{bmatrix}$$

Corte espectral do grafo.

$$\begin{bmatrix} 0.0 & 0.3 & 1.0 & 2.0 & 3.0 & 3.7 \\ -0.4 & -0.6 & -0.5 & -0.4 & 0.2 & -0.1 \\ -0.4 & -0.4 & 0.0 & 0.4 & -0.6 & 0.4 \\ -0.4 & -0.1 & 0.5 & 0.4 & 0.2 & -0.6 \\ -0.4 & 0.1 & 0.5 & -0.4 & 0.2 & 0.6 \\ -0.4 & 0.4 & 0.0 & -0.4 & -0.6 & -0.4 \\ -0.4 & 0.6 & -0.5 & 0.4 & 0.2 & 0.1 \end{bmatrix}$$

Corte espectral do grafo.

☐ Reconstrução e compressão em malhas de superfícies

Figure 4: The horse model shown in (a) is reconstructed in (b)-(h) using the indicated number of eigenvectors of the graph Laplacian. The original model has 7,502 vertices and 15,000 faces.

☐ Corte "ótimo" de malhas de superfície/grafos

Corte ótimo x algoritmo base do estado-da-arte.

Estrutura de Dados – ED I

☐ Edição e manipulação de superfícies

Diferentes resultados em função da escolha de F.

☐ Identificação de formas/poses

Identificação de formas via descritores de formas.

☐ Segmentação semântica (malhas)

Exemplos de segmentação semântica de diferentes objetos.

☐ Segmentação semântica

Segmentação semântica: possibilita particionamento hierárquico.

☐ Segmentação semântica

Segmentação semântica: robusta à ruído e à captura de detalhes mais finos.

☐ Segmentação semântica

Segmentação semântica: geração de "esqueletos" (grafos "mínimos" de representação).

E no caso de imagens digitais?

Abordagem 1:

Cortes Espectrais em Grafos

Teoria envolvida:

- Teoria Espectral em Grafos
- Cortes Espectrais e Algoritmos de Clustering
- Operadores Laplaciano do Grafo
- Autovalores e Autovetores do Laplaciano

Segmentação espectral

Passos iniciais:

- Leitura da imagem
- Construção de um grafo de afinidade
- Pesos devem refletir as intensidades dos pixels da imagem

Segmentação espectral

Ideia chave: resolução de um problema de autovalor generalizado

$$(\mathbf{D} - \mathbf{W})\mathbf{x} = \lambda \mathbf{D}\mathbf{x}$$
 $\mathbf{D} = (\mathbf{w}_{ij}) = \sum_{j \in N(i)} w_{ij}$

Ilustração do processo.

Segmentação espectral

Exemplo de cortes espectrais recursivos

Segmentação espectral - Exemplos

Exemplos de segmentações geradas a partir da metodologia proposta.

Resultados - Segmentação espectral

Sensibilidade textura + ruído

Interatividade com o usuário

(a) Imagem de entrada

(b) Brush feito pelo usuário

(c) Imagem reprocessada

Abordagem 2 de segmentação

Segmentação de imagens

Abordagem 2:

Minimização de Funcionais de Energia

Teoria envolvida:

- Teoria dos Grafos
- Análise Funcional
- Operadores Laplaciano do Grafo

Etapa inicial: autonomia do usuário

Pixels rotulados pelo usuário:

- Vermelho:
 - \Box pixel **Pi** = 0
- Verde:
 - \Box pixel Pi = 1

Etapa inicial: construção de um grafo de afinidade.

Pesos calculados pela fórmula:

$$w_{ij} = \exp\left(-\frac{\beta||I_i - I_j||_{\infty}^2}{\sigma}\right), \quad \sigma = \max_{(P_i, P_j) \in E} ||I_i - I_j||_{\infty}$$

Objetivo: Minimizar a função E(x) abaixo

$$E(\mathbf{x}) = \sum_{i \in B} \|x_i - x_B\|_2^2 + \sum_{i \in F} \|x_i - x_F\|_2^2 + \sum_{i \in V} \left\| d_i x_i - \sum_{j \in N(i)} w_{ij} x_j \right\|_2^2$$

$$x_B = \mathbf{0} \text{ (background)} \quad x_F = \mathbf{1} \text{ (foreground)}$$

Propriedades

- ✓ Alta aderência nos contornos.
- ✓ Característica de anisotropia.
- ✓ Preservação da média entre as vizinhanças (a menos de di).
- ✓ Garantia de unicidade de solução.
- ✓ Problema de segmentação → solução de um sistema linear esparso.

Então, até agora o que temos?

Imagem + delineações (em verde e vermelho)

Proposta: Minimizar o seguinte funcional de energia

$$E(\mathbf{x}) = \sum_{i \in B} \|x_i - x_B\|_2^2 + \sum_{i \in F} \|x_i - x_F\|_2^2 + \sum_{i \in V} \left\| d_i x_i - \sum_{j \in N(i)} w_{ij} x_j \right\|_2^2$$

 $x_B = 0$ (background) $x_F = 1$ (foreground)

Manipulação algébrica

$$E(\mathbf{x}) = \mathbf{x^t}(\mathbf{I_S} + \mathbf{L^2})\mathbf{x} - 2\mathbf{x^t}\mathbf{b} + c$$
 Forma matricial (quadrática)

Minimização de E(x)

$$(\mathbf{I_S} + \mathbf{L^2})\mathbf{x} = \mathbf{b}$$

Sistema linear esparso

LC: Gerando a segmentação a partir da solução de E(x)

$$(\mathbf{I_S} + \mathbf{L^2})\mathbf{x} = \mathbf{b}$$
 $y_i = \begin{cases} x_B, & \text{if } x_i \ge \frac{x_B + x_F}{2} \\ x_F, & \text{otherwise} \end{cases}$

(a) Entrada

(b) Mapa de Saliência

(c) Segmentação

Segmentação interativa: Coordenadas de Laplace

Alguns exemplos ilustrativos

Segmentações produzidas pelas Coordenadas de Laplace.

Coordenadas de Laplace - Propriedades

Flexibilidade e adaptabilidade

Selecionando diferentes objetos em uma mesma imagem.

Coordenadas de Laplace - vídeo

Laplacian Coordinates for Seeded Image Segmentation

Wallace Casaca¹², Luis Gustavo Nonato¹, Gabriel Taubin²

¹ICMC, University of São Paulo, Brazil ²School of Engineering, Brown University, USA

Paper ID: 2080

Available on

http://goo.gl/jfyG0t

