2^{nde}5, novembre 2016 Repérage

1 Coordonnées d'un point du plan

Pour repérer un point sur la droite (d) munie d'un repère (O, \overrightarrow{i}) , il faut un seul nombre : son abscisse.

<Figure : repérage d'un point en dimension 1, $\overrightarrow{OA} = x \overrightarrow{i} >$

Pour repérer un point du plan \mathcal{P} muni d'un repère $(O, \overrightarrow{i}, \overrightarrow{j})$ il faut deux nombres : l'abscisse et l'ordonnée.

<Figure : repérage d'un point en dimension 2, $\overrightarrow{OA} = x\overrightarrow{i} + y\overrightarrow{j} >$ Notation $A(x_A, y_A)$.

Remarque : la correspondance entre un point et son abscisse est une fonction, de même que la correspondance entre un point et son ordonnée.

Exercice 1. 1, 2, 7 p. 166

2 Coordonnées d'un vecteur

2.1 Définition

Définition 1 (et théorème admis)

Soit \overrightarrow{v} un vecteur du plan muni du repère $(O, \overrightarrow{i}, \overrightarrow{j})$. Alors il existe un unique couple de réels (x, y) tel que $\overrightarrow{v} = x \overrightarrow{i} + y \overrightarrow{j}$. <vocabulaire coordonnées, abscisse ordonnée d'un vecteur>. On note : $\overrightarrow{v}(x, y)$ <ou en colonne>.

Exercice 2. 21, 22, 19 p. 212

2.2 Calcul

Théorème 1

Soit A et B deux points du plan muni du repère $(O, \overrightarrow{i}, \overrightarrow{j})$. Alors $\overrightarrow{AB}(x_B - x_A, y_B - y_A)$.

Remarque 1. 1. Le vecteur \overrightarrow{AB} n'est pas égal au vecteur \overrightarrow{BA} , donc la formule n'est pas symétrique.

- 2. <est-ce déjà connu en dimension 1? Évolution = Valeur finale Valeur initiale>.
- 3. moyen mnémotechnique : $A + \overrightarrow{AB} = B \iff \overrightarrow{AB} = B A$.

DÉMONSTRATION:

Exercice 3. 24, 25, 26 p. 212

2.3 Coordonnées et opérations sur les vecteurs

Théorème 2

Soit $\overrightarrow{u}(x,y)$ et $\overrightarrow{u'(x',y')}$ deux vecteurs du plan muni d'un repère $(O,\overrightarrow{i},\overrightarrow{j})$, et k un réel. Alors <coordonnées de u+u', ku>.

Exercice 4. 27 p. 213, 43 et 44 p. 214

2^{nde}5, novembre 2016 Repérage

3 Applications

3.1 Parallélisme

Théorème 3

Deux vecteurs du plan muni d'un repère sont colinéaires si et seulement si leurs coordonnées sont proportionnelles.

Exercice 5. 68, 70 p. 216, 102 et 103 p. 120

3.2 Coordonnées du milieu d'un segment

<Figure : milieu d'un sement>

Théorème 4

Soit A et B deux points du plan muni d'un repère. Le milieu M du segment [AB] a pour coordonnées :

$$x_M = \frac{x_A + x_B}{2}, y_M = \frac{y_A + y_B}{2}$$

Remarque 2. le milieu de [AB] est égal au milieu de [BA], donc les formules sont symétriques :

$$\frac{x_A + x_B}{2} = \frac{x_B + x_A}{2}.$$

DÉMONSTRATION : Soit C le point tel que OACB soit un parallélogramme, alors M est aussi le milieu de [OC], donc :

$$\overrightarrow{OM} = \frac{1}{2}\overrightarrow{OD} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}) = \dots$$

Exercice 6. 35, 44 p. 168 50 p. 169

3.3 Calculs de distances dans le plan muni d'un repère orthonormé

<Figure : distance AB>

Théorème 5 (Admis, conséquence du théorème de Pythagore)

Soit A et B deux points du plan muni d'un repère orthonormé. Alors on a :

$$AB = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Remarque 3. La distance AB est égale à la distance BA, donc la formule est symétrique (grâce aux carrés) :

 $\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$

Exemple 1. On donne, dans un repère orthonormé, A(2,-1) et B(5,-5). Calculer AB.

Exercice 7. 13 p. 167, 21 p. 167, 23 p. 167, 28 p. 168

4 Équation d'un ensemble de points

Exemple 2. L'ensemble E_1 d'équation x=3

Exemple 3. L'ensemble E_2 d'équation y = -3

Exemple 4. L'ensemble E_3 d'équation $x^2 + y^2 = 1$