ОСНОВАНИЯ ТИПЫ РЕАКЦИЙ

окислитель + восстановитель

(+ среда) - ОВР ПРИМЕРЫ:

1) Fe + Cl, = FeCl,

2) Na,SO, + H,O, = Na,SO, + H,O

более сильный ВЫТЕСНЯЕТ

более слабого - вытеснение ПРИМЕРЫ:

1) Fe + 2HCl = FeCl, + H,

2) Fe + CuSO, = FeSO, + Cu

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

1) Na,0 + CO, = Na,CO,

2) NaOH + HCl = NaCl + H,O

электролит + электролит (p-p) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

1) NaOH + HCl = NaCl + H₂O

2) KCl + AgNO, = KNO, + AgI

КЛАССИФИКАЦИЯ ОСНОВАНИЙ

Me^{+1,+2} + OH⁻, кроме Zn(OH)₂, Be(OH)₂, Sn(OH)₂, Pb(OH)₂

К основаниям относят гидроксиды металлов с степенях окисления +1, +2, кроме $Zn(OH)_2$, $Be(OH)_2$, $Sn(OH)_2$, $Pb(OH)_2$ Классифицировать основания можно по растворимости, кислотности (!) и силе.

по растворимости

растворимые

NH, ОН и щёлочи - гидроксиды Щ/Щ3 Ме

НЕрастворимые

все остальные $Fe(OH)_2$, $Cu(OH)_2$ и т.д.

по кислотности

однокислотные КОН, LiOH, NaOH двухкислотные Ca(OH)₂, Ba(OH)₂, Fe(OH)₂,

по силе

сильные

щёлочи и АдОН

слабые все остальные

РЯД АКТИВНОСТИ ОСНОВАНИЙ

CsOH - RbOH - KOH - NaOH - LiOH - Ba(OH)₂ - Sr(OH)₂ - Ca(OH)₂ - Mg(OH)₂ - Fe(OH)₂ - NH₄OH - Zn(OH)₂ - Al(OH)₃ - Fe(OH)₃

сила гидроксидов убывает...

ОКРАШИВАНИЕ ИНДИКАТОРОВ

Растворимые основания, кроме NH,OH, - щёлочи - СИЛЬНЫЕ электролиты -> диссоциируют в растворах на Меⁿ⁺ и ОН⁻ -> имеют щелочную среду, а значит, окрашивают индикаторы.

НЕрастворимые основания - не диссоциируют - не окрашивают.

NaOH + фф =

KOH + лакмус =

Fe(OH)₂ + мо =

Ca(OH)₂ + лакмус =

CsOH + мо =

Ba(OH)₂ + фф =

Cu(OH)₃ + лакмус =

РЕАКЦИИ ИОННОГО ОБМЕНА

Основания являются электролитами, поэтому вступают в РИО с кислотами и солями. СИЛЬНЫЕ ОСНОВАНИЯ - ЩЁЛОЧИ

РАСТВОРИМОЕ ОСНОВАНИЕ

РАСТВОРИМАЯ СОЛЬ

РАСТВ/НЕРАСТВ ОСНОВАНИЕ **РАСТВОРИМАЯ КИСЛОТА**

ГАЗ ОСАДОК СЛ. ЭЛЕКТРОЛИТ (ВОДА)

КИСЛОТНОЕ в избытке - КИСЛАЯ соль, ОСНОВНОЕ - ОСНОВНАЯ ИЛИ СРЕДНЯЯ.

NaOH + HCl = NaHCO₃ + NaOH = Ca(H₂PO₄)₂ + Ca(OH)₂ = Cu(OH)₂ + HBr = CuSO₄ + NaOH = Fe(NO₃)₂ + Ca(OH)₂ = NH₄OH + H₂SO₄ = BaSO₄ + NaOH = NH₄OH + H₂SO₄(изб) = NaOH + KCl = Fe(OH)₂ + HCl = Ba(OH)₃ + NH₄Cl =

ОСНОВНО-КИСЛОТНЫЕ ВЗАИМОДЕЙСТВИЯ

КИСЛОТНОЕ в избытке -КИСЛАЯ соль, ОСНОВНОЕ -ОСНОВНАЯ ИЛИ СРЕДНЯЯ.

ОСНОВАНИЕ основные св-ва

Реакции протекает: в растворе - КОМПЛЕКС, в расплаве - СРЕДНЯЯ СОЛЬ.

КИСЛОТА

кислотные св-ва

кислотный оксид кислотные св-ва

РИО: кислота Р, основание Р/Н, в продуктах Н,О

не идёт, если основание Н, а кислотный оксид - газ

АМФ ОКСИД амфотерные св-ва

реакция идёт только со щелочами!

АМФ ГИДРОКСИД амфотерные св-ва

реакция идёт только со щелочами!

NaOH + SO, = NaOH + SO, = NH,OH + P,O, = Ca(OH), + CO, = Fe(OH), + SO, = Fe(OH)₂ + SO₃ = Fe(OH), + HCl =

$Sr(OH)_{,} + P_{,}O_{,}(изб) =$ $NaOH + Al_{,O,}(t) =$ $NaOH + Al(OH)_3 (p-p) =$ NaOH + CO, = KOH + NO, = KOH + ZnO(t) =Ba(OH), + Zn(OH), =

KOH + Al + HO =

KOH + Al(t) =

ОВР С ОСНОВАНИЯМИ

ОСНОВАНИЕ ЩЁЛОЧЬ

НЕМЕТАЛЛ S, P, Cl₂, Br₂, I₂, F₂, Si диспропорционирование (кроме Si и F,)

МЕТАЛЛ Al, Zn, Be

раствор - комплексная соль, расплав - средняя соль

NaOH + Cl_{2} (хол) = NaOH + Cl₂ (rop) = NaOH + Br, (хол) = NaOH + Br, (rop)= NaOH + I, = NaOH + F, = NaOH + S = NaOH + P = NaOH + Si = Ca(OH), + S = Ba(OH), + I, = Fe(OH), + S =

KOH + Zn + H₀ = KOH + Zn(t) =KOH + Be + H.O = KOH + Be(t) = $Fe(OH)_{,} + Al(t) =$ Fe(OH), + O, + H,O =

Большинство оснований также разлагается при нагревании, но это будет подробно разобрано далее, в главе "ОБЩЕЕ СВОЙСТВО ОСНОВАНИЙ И АМФОТЕРНЫХ ГИДРОКСИДОВ".

АМФОТЕРНЫЕ ГИДРОКСИДЫ

Me^{+3,+4} + OH⁻/Zn(OH)₂, Be(OH)₂, Sn(OH)₂, Pb(OH)₂

ОСНОВАНИЕ реакция идёт только основные св-ва со щелочами! основный оксид реакция идёт только с оксидами Щ/Щ3 металлов! основные св-ва АМФ ГИДРОКСИД амф св-ва кислотный оксид Be(OH),, Zn(OH),, Pb(OH), + СО, = идёт; ост - НЕТ! кислотные св-ва **КИСЛОТА** РИО: только с растворимыми кислотами кислотные св-ва

С солями, металлами, неметаллами, амфотерными оксидами и гидроксидами, а также с большинством кислотных оксидов амфотерные гидроксиды не взаимодействуют!

ОБЩЕЕ СВОЙСТВО ОСНОВАНИЙ И АМФОТЕРНЫХ ГИДРОКСИДОВ ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ

ВСЕ основания и амфотерные гидроксиды разлагаются при нагревании -> при этом образуется соответствующий оксид и вода; НЕ РАЗЛАГАЮТСЯ ЛИШЬ ГИДРОКСИДЫ ЩЕЛОЧНЫХ МЕТАЛЛОВ ЗА ИСКЛЮЧЕНИЕМ LiOH); NH_2OH , AgOH, $Hg(OH)_2$ - при комнатной t.

NaOH (t) =	
Al(OH), (t) =	
Fe(OH), (t) =	
Fe(OH) ₃ (t) =	
Hg(OH), (t) =	
CsOH (t) =	OH-
Ca(OH), (t) =	
Cu(OH), (t) =	
NH,OH (t) =	
AgOH (t) =	
D=(OU) (4) -	

БУДЬ ВНИМАТЕЛЬНЫМ!

NaOH + AgNO₃ = _____ Ca(OH)₂ + Hg(NO₃)₂ = ____ KOH + (NH₄)₂SO₄ = ____

Если в продуктах образовался гидроксид, который РАЗЛАГАЕТСЯ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ, то будь добр - разложи его.