Esame di "FONDAMENTI DI AUTOMATICA" (9 CFU)

Prova MATLAB - 20 novembre 2019

Istruzioni per lo svolgimento: lo studente deve consegnare al termine della prova una cartella nominata Cognome_Nome, contenente:

- Un Matlab script file (i.e. file di testo con estensione .m) riportante i comandi eseguiti
 (NOTA: per copiare i comandi dalla Command History, visualizzarla tramite menu
 "Layout → Command History → Docked", selezionare in tale finestra le righe di
 interesse tramite Ctrl+mouse left-click e dal menu visualizzato tramite mouse rightclick selezionare "create script") e la risposta alle eventuali richieste teoriche sotto
 forma di commento (i.e. riga di testo preceduta dal simbolo %)
- Un file workspace.mat contenente le variabili definite nel corso dello svolgimento della prova (creato con il comando save workspace)
- Un file MS Word nel quale siano copiate le figure rilevanti per la dimostrazione dei risultati ottenuti (NOTA: per copiare una figura Matlab come bitmap, usare il menu "Edit → Copy Figure" dalla finestra della figura di interesse ed incollare con Ctrl+V nel file Word), avendo cura che le figure siano copiate quando queste mostrano le caratteristiche di interesse per la verifica del progetto (i.e. Settling Time, Stability Margins, ecc.).

INTRODUZIONE

Si consideri il sistema per la regolazione della pressione in un circuito idraulico, costituito da un motore elettrico a corrente continua, una pompa la cui girante è azionata dal motore stesso, da un serbatoio di fluido e da un accumulatore di volume fissato. Lo schema del circuito è mostrato nella seguente figura:

Applicando le opportune leggi fisiche per il circuito di tipo RL del motore e per la dinamica del fluido attraverso la pompa e l'accumulatore, il modello matematico del sistema può essere descritto tramite le seguenti equazioni differenziali:

$$V_a = RI_a + L\dot{I}_a + K_m\omega_m$$
$$J_m\dot{\omega}_m + b_m\omega_m = K_mI_a - K_pP$$
$$\dot{P} = K_o(K_p\omega - \alpha_pP)$$

nelle quali R e L sono rispettivamente la resistenza e l'induttanza dell'avvolgimento del motore elettrico, J_m e b_m il momento di inerzia e il coefficiente di attrito viscoso del motore, K_m è la costante di coppia/BEMF del motore, K_p è la cilindrata della pompa, α_p è la resistenza fluidica del circuito idraulico e K_o è il coefficiente di comprimibilità.

fissando le seguenti scelte per le variabili di stato, ingresso e uscita:

$$x_1 = I_a$$
; $x_2 = \omega_m$; $x_3 = P$; $u = V_a$; $y = P = x_3$;

Si ottiene un corrispondente modello dinamico nello spazio degli stati, del tipo:

$$\dot{x}(t) = Ax(t) + Bu(t); \ y(t) = Cx(t) + Du(t)$$

Con:

$$\mathbf{A} = \begin{bmatrix} -\frac{R}{L} & -\frac{K_m}{L} & 0\\ \frac{K_m}{J_m} & -\frac{b_m}{J_m} & -\frac{K_p}{J_m}\\ 0 & K_o K_p & -K_o \alpha_p \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} \frac{1}{L} \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$$

ESERCIZIO 1.

a) Dato il modello ottenuto nell'introduzione, si sostituiscano i seguenti valori per i parametri fisici:

$$R = 2$$
; $L = 0.2$; $K_m = 5$; $J_m = 0.5$; $b_m = 0.5$; $K_p = 0.25$; $K_o = 2$; $\alpha_p = 1$;

e si ricavi la funzione di trasferimento G(s) del sistema in esame.

b) Si determinino i poli della funzione di trasferimento e si verifichi se coincidono con gli autovalori di A. Descrivere il motivo di eventuali discrepanze tramite righe di commento (i.e. precedute dal simbolo %) sul file .m

ESERCIZIO 2

Si consideri il sistema in retroazione unitaria rappresentato in figura:

Con G(s) ricavata al punto a) dell'Esercizio 1.

- a) Si verifichi se il sistema ad anello chiuso, con guadagno K=1, risulti o meno stabile tramite l'analisi della risposta y(t) al gradino unitario.
- b) Si determini il valore a regime della risposta al gradino y(t) e si motivi il risultato tramite righe di commento (i.e. precedute dal simbolo %) sul file .m
- c) Si determini, se esiste, il valore del guadagno K_{lim} per il quale il sistema risulta semplicemente stabile, utilizzando il grafico del luogo delle radici della funzione G(s).
- d) Si ponga $K_1 = 0.8 \, K_{lim}$, si visualizzi l'andamento della risposta al gradino y(t) del sistema chiuso in retroazione con tale guadagno e si determini il tempo d'assestamento al 5%.

ESERCIZIO 3

Si consideri il sistema rappresentato in figura

Con $G_c(s) = \frac{1+\tau_1 s}{1+\tau_2 s} = \frac{1+\alpha \tau s}{1+\tau s}$ rete ritardatrice $(\tau_1 < \tau_2 \text{ o } \alpha < 1)$, G(s) ricavata al punto a) dell'Esercizio 1 e K_{lim} ricavato al punto c) dell'Esercizio 2.

Si progetti la rete ritardatrice che garantisca un margine di fase $M_f=45^\circ$ utilizzando la procedura empirica riportata nella dispensa FdA-3.1-RetiCorrettrici o in alternativa il metodo delle formule di inversione (allegate in appendice). In particolare:

- a) Si determini opportunamente la pulsazione critica del sistema compensato (se si sceglie il metodo delle formule di inversione utilizzare i grafici ottenuti con la funzione matlab lagNetDesignBode, in modo che ω^* sia compresa all'interno della regione di realizzabilità della rete ritardatrice).
- b) Si determinino i coefficienti τ_1 e τ_2 della rete ritardatrice e si verifichi che valga $\tau_1 < \tau_2$;
- c) Si visualizzino in un'unica figura i diagrammi di Bode del sistema non compensato e del sistema compensato, evidenziando i relativi margini di fase;
- d) Si verifichi la risposta al gradino del sistema compensato e chiuso in retroazione unitaria negativa e se ne determini la massima sovraelongazione percentuale e il tempo d'assestamento al 5%

APPENDICE (formule d'inversione)

$$\tau_1 = \frac{M^* - \cos \varphi^*}{\omega^* \sin \varphi^*} \qquad \qquad \mathbf{\phi^*} = -180^\circ + \mathbf{M_F} - \arg[\mathbf{G}(\mathbf{j}\omega^*)]$$

$$\tau_2 = \frac{\cos \varphi^* - \frac{1}{M^*}}{\omega^* \sin \varphi^*} \qquad \qquad \mathbf{M^*} = 1 / |\mathbf{G}(\mathbf{j}\omega^*)|$$

SOLUZIONE

```
%% parametri numerici
R = 2;
L = 0.2;
Km = 5;
Jm = 0.5;
bm = 0.5;
Kp = 0.25;
Ko = 2;
alphap = 1;
%% Matrici A,B,C,D
A = [-R/L - Km/L 0; Km/Jm - bm/Jm - Kp/Jm; 0 Ko*Kp -
Ko*alphap];
B = [1/L;0;0];
C = [0 \ 0 \ 1];
D = 0;
%% Es 1-a, funzione di trasferimento
sys = ss(A,B,C,D);
G = tf(sys)
G =
                 25
  s^3 + 13 s^2 + 282.2 s + 522.5
Continuous-time transfer function.
%% Es 1-b poli e autovalori
p = pole(G)
ev = eig(A)
r = rank(obsv(A,C)') % poli e autovalori coincidono,
infatti il sistema è completamente osservabile (r=3)
p =
  -5.4959 +15.1648i
  -5.4959 -15.1648i
  -2.0083 + 0.0000i
```

Continuous-time transfer function.

figure, step(Gcl) % sistema stabile

%% Es 2-b valore a regime della risposta al gradino

ep = 1/(1+dcgain(G)); % Essendo G un sistema di tipo 0
(nessun polo nell'origine) l'errore di posizione ha un
valore finito

Yreg = 1 - ep % valore a regime della risposta al gradino

Yreg =

0.0457

%% Es 2-c luogo delle radici e guadagno limite
figure, rlocus(G)

Klim = 126; % valore selezionato dal grafico

%% Es 2-d risposta al gradino, tempo di assestamento al
5%
Gcl1 = feedback(0.8*Klim*G,1);
popt = timeoptions;
popt.SettleTimeThreshold = 0.05;
figure, step(Gcl1, popt)

%% es 3-a scelta di omega
Mf = 45;

```
G1 = Klim*G;
lagNetDesignBode(G1,Mf)

omega = 10;
M = db2mag(-4);
phi = -180 + Mf + 114; % valori selezionati dal grafico
```



```
0.08444 s + 1
-----
0.1817 s + 1
```

Continuous-time transfer function.

```
%% Es 2-c verifica margini di fase
figure,bode(G1)
hold on
grid on
bode(Gc*G1)
```


%% Es 3-c risposta sistema compensato
Gcl2 = feedback(Gc*G1,1);
figure, step(Gcl2,popt);

