Gabarito

1.

$$S_{\alpha}^{T} = \frac{2}{\sqrt{145}} = \frac{2\sqrt{145}}{145} = \frac{\sqrt{24^{2} + 2^{2}}}{145} = \frac{\sqrt{580}}{145}$$

- 2. Sistema de Tipo 0; $k_p = -\frac{10}{9}$; $e_d = -9$; Sistema em malha fechada deve ser estável.
- 3. Raízes do sistema em malha fechada: $s_1 = 2 \frac{\sqrt{12}}{2}$ e $s_2 = 2 + \frac{\sqrt{12}}{2}$. Como s_2 tem parte real positiva, não existe erro de regime (o sistema em malha fechada é instável).
- 4. Como o sistema em malha aberta é estável, P=0. (a) N=0 (zero voltas) $\Rightarrow Z=0+P=0$ \Rightarrow Estável. (b) N=2 (duas voltas no sentido horário) $\Rightarrow Z=2+P=2 \Rightarrow$ Instável. (c) N=0 (1 volta no sentido horário e uma no sentido anti-horário) $\Rightarrow Z=-1+1+P=0 \Rightarrow$ Estável.
- 5. Como o sistema é do tipo 1 (um pólo na origem), para que exista um erro constante é necessário que a entrada seja uma rampa. (a) k=840. (b) O sistema em malha fechada deve ser estável para o valor do ganho determinado em (a).
- 6. (a) $0 < k < \frac{1}{4}, k > \frac{2}{3}$; (b) $k < 0, \frac{1}{4} < k < \frac{2}{3}$; (c) $k = 0, k = \frac{1}{4}, k = \frac{2}{3}$.
- 7. P=2, N=0 $\Rightarrow Z = 0 + 2 = 2 \Rightarrow$ Instável para qualquer k.

8. Como k < 1 (restrição adicional) o coeficiente de s^6 nunca será positivo, logo o polinômio não pode ser Hurwitz para nenhum valor de $x, y \in k$.