

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICERECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA

PROGRAMA DE MATEMÁTICA IV

CÓDIGO: 0826401T

PRE-REQUISITO: 0826301T

SEMESTRE: IV

CARRERAS DE INGENIERÍA:

ELECTRÓNICA, AMBIENTAL,

MECÁNICA, INFORMÁTICA,

INDUSTRIAL Y CIVIL.

UNIDADES CRÉDITO: 4

TEORÍA: 4 Horas / semana PRÁCTICA: 2 Hora / semana Vigente desde Agosto de 2004

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA

ESPECIALIDAD INGENIERÍA ELECTRÓNICA E INDUSTRIAL

CÓDIGO	NOMBRE DE LA ASIGNATURA	ESTRATEGIAS METODOLÓGICAS	UNIDADES CRÉDITO	DENSIDAD HORARIA		IORARIA	PRERREQUISITO
0826401	MATEMÁTICA IV	VER ANEXO	4	H.T.	H.P.	THS/SEM	0826301
				4	2	96	

OBJETIVO TERMINAL DE LA ASIGNATURA

Al finalizar el semestre, el alumno estará en capacidad de:

- 1. Expresar las principales Definiciones del cálculo vectorial, interpretar geométricamente estas definiciones, encontrar derivadas e integrales de funciones vectoriales.
- 2. Aplicar los conocimientos del cálculo vectorial en la resolución de problemas Interpretar geométricamente funciones de variable compleja. Calcular límites, derivadas, integrales de funciones complejas.
- 3. Demostrar habilidad para interpretar, plantear, analizar y resolver problemas relacionados con los conceptos matemáticos de ecuaciones diferenciales.

DESCRIPCIÓN SINÓPTICA DE LA ASIGNATURA

Cálculo vectorial. Integrales de trayectoria y superficies. Variable Compleja. Ecuaciones Diferenciales.

UNI	DAD	OBJETIVO TERMINAL
I	Cálculo vectorial	Al finalizar a unidad, el estudiante estará en capacidad de:
		Conocer los elementos básicos del cálculo vectorial y calcular integrales de funciones vectoriales,
		comprender y aplicar los Teoremas de Green, Stokes y Divergencia.

OBJETIVO	CONTENIDO	ACTIVIDADES Y RECURSOS	EVALUACIÓN
1. Identificar:	Campos vectoriales	- Purcell. Problemas 17.1. Pág. 789. Del 1 al 6	
1.1. Función real de una variable real.			
1.2. Función vectorial de una variable real			
1.3. Funciones reales de varias variables			
reales (Campo escalar)			PARCIAL I
1.4. Campos vectoriales.			SEMANA N° 5
2. Determinar el gradiente de un campo	Gradiente de un campo escalar.	- Purcell. Problemas 17.1. Pág. 789. Del 7 al 12.	
escalar.			
3. Hallar la divergencia y el rotacional de un	3. Divergencia y rotacional de un campo vectorial	- Purcell. Problemas 17.1. Pág. 789. Del 13 al 20.	
campo vectorial.			
4. Calcular integral de línea.	4. Integral de línea.	- Purcell. Problemas 17.2. Pág. 796. Del 1 al 16.	
5. Resolver problemas aplicando integrales de	5.1. Masa de un alambre de densidad dada.	- Purcell. Problemas 17.2. Pág. 796. Del 17 al 31	
línea.	5.2. Trabajo		
6. Verificar cuando un campo vectorial es	6.1. Campo conservativo	- Purcell. Problemas 17.3. Pág. 804. Del I al 10 y	
conservativo y determinar la función escalar	6.2. Construcción de una función a partir de su gradiente.	del 17 al 26	
generada por tal campo vectorial.			
7. Identificar y calcular integrales de línea	7. Criterios para la independencia de la trayecto	- Purcell. Problemas 17.3. Pág. 804. Del 11 al 16	
independientes de su trayectoria.			
8. Demostrar el Teorema de Green en el	8. Teorema de Green en el plano.		
plano.			
9. Resolver integrales de línea aplicando el	9. Ejemplos y aplicaciones del teorema de Green en el	- Purcell. Problemas 17.4. Pág. 812. Del 1 al 8.	
Teorema de Green.	plano		
10. Expresar el Teorema de Green en forma	10. Formas vectoriales del Teorema de Green.	- Purcell. Problemas 17.4. Pág. 812. Del 9 al 12 y	
vectorial.		del 15 al 26.	
11. Determinar el flujo de un campo vectorial a	11. Flujo de un campo vectorial a través de una curva	- Purcell. Problemas 17.4 .Pág. 812. N° 14.	
través de una curva.			
12. Calcular integrales de superficie.	12. Integral de superficie.	- Purcell. Problemas 17,5. Pág. 819. Del 1 al 8.	
13. Determinar el flujo de un campo vectorial a	13. Flujo de un campo vectorial a través de una	- Purcell. Problemas 17.5. Pág. 819. Del 9 al 20.	PARCIAL I
través de una superficie.	superficie.		SEMANA N° 5
14. Demostrar y aplicar el Teorema de la	14. Teorema de la Divergencia de Gauss.	- Purcell. Problemas 17.6. Pág. 826. Del 1 al 20.	
Divergencia de Gauss.			
15. Demostrar y aplicar el Teorema de Stokes.	15. Teorema de Stokes.	- Purcell. Probemas 17.7. Pág. 831. Del I al 20.	

	UNIDAD	OBJETIVO TERMINAL
II	Variable Compleja	Al finalizar a unidad, el estudiante estará en capacidad de:
		Conocer los elementos básicos de la teoría de variable compleja.

	OBJETIVO		CONTENIDO	ACTIVIDADES Y RECURSOS	EVALUACIÓN
1.	Definir y dar la expresión general de un número complejo	1.	Definición de un número complejo. Notación.	-	
2.	Identificar elementos que conforman a un número complejo	2.	Elementos y partes de un número complejo.	-	
3.	Resolver operaciones con números complejos	3.	Operaciones fundamentales con números complejos	- Murray Spiegel. Capítulo 1. Problemas resueltos pág. 8. N° 1. Problemas propuestos pág. 25 ejercicio N° 53.	PARCIAL II SEMANA Nº 8
4.	Dar la definición de valor absoluto de un número complejo.	4.	Definición de valor absoluto de un número complejo	-	
5.	Expresar las propiedades del valor absoluto de los números complejos	5.	Propiedades del valor absoluto de números complejos.	-	
6.	Demostrar las propiedades del valor absoluto de números complejos	6.	Demostración de las propiedades del valor absoluto de números complejos.		
7.	Aplicar las propiedades del valor absoluto de números complejos	7.	Operaciones con valor absoluto de números complejos	- Murray Spiegel. Capitulo 1. Problemas resueltos pág. 9. N° 2, 3 y 4. Problemas propuestos pág. 25 ejercicio N° 54.	
8.	Dada una lista de números complejos representarlos gráficamente en el plano complejo	8.	Representación gráfica de los números complejos en el plano complejo	- Murray Spiegel. Capitulo 1. Problemas resueltos pág. 10 N° 5 y 6 y del 8 al 13. Problemas propuestos pág. 26 del 61 al 74.	
9.	Dado un número expresarlo en forma polar y graficarlo en el plano polar	9.	Forma polar de los números complejos	Murray Spiegel. Capitulo 1 Problemas resueltos pág. 14. Del 16 al 18. Problemas propuestos pág. 27 Del 81 al 88.	
10.	Expresar y aplicar el Teorema de Moivre	10.	Teorema de Moivre	Murray Spiegel. Capitulo 1. Problemas resueltos pág. 15. Del 19 al 27. Problemas propuestos pág. 27. Del 89 al 94.	

OBJETIVO	CONTENIDO	ACTIVIDADES Y RECURSOS	EVALUACIÓN
11. Dado un número complejo determinar sus n	11. Raíces de un número complejo	- Murray Spiegel. Capitulo 1. Problemas resueltos	
raíces		pág. 18. Del 28 al 30. Problemas propuestos Pág.	
		28. Del 95 al 99 y el 105.	
12. Dado un número complejo expresarlo	12. Fórmula de Euler.	-	PARCIAL II
usando la fórmula de Euler			SEMANA Nº 8
13. Resolver ecuaciones polinómicas con	13. Ecuaciones polinómicas.	- Murray Spiegel. Capitulo 1. Problemas resueltos	
solución números complejos		pág. 19. Del 31 al 36. Problemas propuestos pág.	
		28. Del 100 al 104.	
14. Definir función de variable compleja	14. Definición de función de variable compleja	- Murray Spiegel. Capitulo 2. Problemas resueltos	
		Pág. 41. Del 1 al 5. Problemas propuestos Pág.	
		58. Del 47 al 54.	
15. Distinguir funciones univocas y funciones	15. Funciones univocas y multívocas	- Murray Spiegel. Capitulo 1. Problemas resueltos	
multívocas		Pág 43. Del 6 al 7. Problemas propuestos Pág.	
		59. Del 55 al 57.	
16. Demostrar la existencia del límite de una	16. Definición de una función de variable compleja	-	
función de variable compleja aplicando la			
definición			
17. Calcular límites de funciones de variable	17. Teoremas sobre límites.	- Murray Spiegel. Capitulo 2. Problemas resueltos	
compleja aplicando los teoremas	17.1. Aplicación de los teoremas sobre límites.	Pág. 51. Del 26 al 30. Problemas propuestos pág.	
fundamentales sobre cálculo de límites.		60. Del 92 al 103.	
18. Analizar la continuidad de una función de	18. Continuidad y discontinuidad.	- Murray Spiegel. Capitulo 2. Problemas resueltos	
variable compleja en un punto.	18.1. Definición	pág. 54. Del 31 al 35. Problemas propuestos	
	18.2. Estudio de la continuidad de una función	pág.61. Del 102 al 113.	
	ejercicios.		
	18.3. Continuidad en una región.		
	18.4. Teoremas sobre continuidad.		
19. Expresar en forma verbal y escriba la	19. Definición de derivada de una función de variable	-	
Definición de derivada de una función de	compleja.		
variable compleja.			
20. Hallar la derivada de una función de	20. Cálculo de derivadas de funciones de variable	- Murray Spiegel. Capitulo 3. Problemas resueltos	
variable compleja constante, polinómica y/o	compleja aplicando la definición.	pág. 72. Del 1 al 4. Problemas propuestos Pág.	
racional aplicando la Definición de derivada.		87. Del 43 al 44.	

OBJETIVO	CONTENIDO	ACTIVIDADES Y RECURSOS	EVALUACIÓN
21. Verificar cuando una función de variable compleja es analítica en un punto y en una región del plano complejo.	21. Funciones analíticas.21.1. Ecuaciones de Cauchy-Riemann.	 Murray Spiegel. Capitulo 3. Problemas resueltos pág. 72. Del 5 al 6. Problemas propuestos Pág. 87. Del 47 al 52. 	PARCIAL II SEMANA N° 8
22. Verificar si la parte real y la parte imaginari de una función de variable compleja son armónicas o no.	22. Funciones armónicas.	 Murray Spiegel. Capitulo 3. Problemas resueltos Pág. 74. Del 6 al 8. Problemas propuestos Pág. 87. Del 53 al 55. 	
 Expresar en forma verbal y escrita la interpretación geométrica de la derivada de una función de variable compleja. 	23. Interpretación geométrica de a derivada de una función de variable compleja.	-	
24. Calcular derivadas de funciones de variable compleja aplicando las reglas básicas de derivación las derivadas de las funciones dadas y la regla de la cadena.	 24.1. Reglas básicas de derivación de funciones de variable compleja. 24.2. Derivadas de algunas funciones elementales de variable compleja. 24.3. Regla de la cadena. 	 Murray Spiegel. Capitulo 3. Problemas resueltos pág. 75. Del 10 al 20. Problemas propuestos Pág. 88. Del 62 al 77. 	
25. Determinar los puntos singulares de una función de variable compleja y decidir si es aislado, polo, de ramificación, removible, esencial o al infinito.	25. Puntos singulares	 Murray Spiegel. Capitulo 3. Problemas resueltos Pág. 80. Del 25 al 26. Problemas propuestos Pág. 90. Del 82 al 85. 	
26. Determinar el vector tangente, la velocidad y la aceleración de una curva dada en el plano complejo.	26. Aplicaciones a la geometría y la mecánica.26.1. Vector tangente.26.2. Velocidad26.3. Aceleración	 Murray Spiegel. Capitulo 3. Problemas resueltos Pág. 82. Del 29 al 30. Problemas propuestos Pág. 90. Del 90 al 93. 	
 Hallar el vector gradiente, la divergencia, e rotor y el laplaciano de una función de variable compleja. 	27.1.Operadores diferenciales.27.2.Gradiente, Divergencia, Rotor y Laplaciano.	 Murray Spiegel. Capitulo 3. Problemas resueltos Pág. 83. Del 31 al 36. Problemas propuestos Pág. 90. Del 94 al 100. 	
28. Hallar la integral de línea de una curva de variable compleja.	28. Integrales complejas de línea	- Murray Spiegel. Capitulo 4. Problemas resueltos Pág. 99. Del 1 al 3	
29. Escribir y explicar el Teorema Green en forma compleja.	29. Forma compleja del Teorema de Green.	- Murray Spiegel. Capitulo 4. Problemas resueltos Pág. 103 el 10. Problemas propuestos pág. 115. Del 53 al 59.	

OBJETIVO	CONTENIDO	ACTIVIDADES Y RECURSOS	EVALUACIÓN
30. Escribir y explicar el Teorema de Cauchi	30. Teorema de Cauchy. (Toorema de Cauchy-Goursat)	- Murray Spiegel. Capitulo 4. Problemas resueltos	
		pág. 104. Del 11 al 23. Problemas propuestos	
		pág. 115. Del 60 al 78.	
31. Determinar la antiderivada (integral) de una	31. Integrales indefinidas.	- Murray Spiegel. Capitulo 4. Problemas resueltos	PARCIAL II
función de variable compleja aplicando los		pág. 110. Del 24 al 26. Problemas propuestos	SEMANA N° 8
Teoremas básicos de antiderivada y la		pág. 117. Del 79 al 85.	
antiderivada (integral) de funciones			
elementales			
32. Escribir y aplicar las fórmulas integrales de	32. Fórmulas integrales de Cauchy.	- Murray Spiegel. Capitulo 4. Problemas resueltos	
Cauchy.		pág. 110 - Del 24 al 26. Problemas propuestos	
		pág. 117. Del 79 al 85.	
33. Escribir y aplicar el Teorema del Residuo	33. Teorema del Residuo	- Murray Spiegel. Capitulo 7. Problemas resueltos	
		pág. 176 Problemas propuestos Pág. 195.	

	Ul	NIDAD	OBJETIVO TERMINAL
III	y IV	Ecuaciones Diferenciales	Al finalizar a unidad, el estudiante estará en capacidad de:
			Identificar, plantear y resolver ecuaciones diferenciales ordinarias de primero y superior orden.

OBJETIVO		CONTENIDO	ACTIVIDADES Y RECURSOS	EVALUACIÓN
UNIDAD III.	1.	Definición de ecuación diferencial.	-	
Definir ecuaciones diferencial y dar				
ejemplos				
2. Dadas varias ecuaciones diferenciales,	2.	Clasificación de las ecuaciones diferenciales	- Zill Dennis. Ejercicios 1.1 Pág. 9. Del 1 al 10.	
clasificarlas de acuerdo al tipo, orden y				
linealidad				
3. Verificar si una función dada es solución de	3.	Solución de una ecuación diferencial	- Zill Dennis. Ejercicios 1.1 Pág. 9. Del 11 al 50.	PARCIAL III
una ecuación diferencial indicada				SEMANA Nº 12
4. Dado un problema de valor Inicial, analizar	4.	Problemas de valor inicial	- Zill Dennis. Ejercicios 1.2 Pág. 17. Del 1 al 26.	
las condiciones dadas y verificar si admite				
solución y cuándo ésta es única				
5. Dadas situaciones físicas, químicas,	5.	Las ecuaciones diferenciales como modelos	- Zill Dennis. Ejercicios 1.3 Pág. 28. Del 1 al 17.	
biológicas y geométricas, plantear la		matemáticos		
ecuación diferencial correspondiente				
6. Dada una ecuación diferencial de primer	6.	Ecuaciones diferenciales de variables separables	- Zill Dennis. Ejercicios 2.1 Pág. 42. Del 1 al 56.	
orden identificar si es de variables				
separables y resolverla				
7. Dada una ecuación diferencial de primer	7.	Ecuaciones diferenciales exactas	- Zill Dennis. Ejercicios 2.2 Pág. 50. Del 1 al 42.	
orden identificar si es exacta y resolverla				
Definir ecuaciones diferenciales de primer	8.	Ecuaciones diferenciales de primer orden lineales.	-	
orden lineales				
9. Identificar una ecuación diferencial de	9.	Solución de ecuaciones diferenciales de primer	- Zill Dennis. Ejercicios 2.3 Pág. 60. Del 1 al 50	
primer orden lineal y resolverla por el		orden lineal por el procedimiento de variación de		
procedimiento de variación parámetros		parámetros		
10. Resolver ecuaciones diferenciales de	10.	Solución de ecuaciones diferenciales por el método	- Zill Dennis. Ejercicios 2.4 Pág. 67. Del 1 al 30.	
primer orden por el método de método de		de sustitución		

	OBJETIVO	CONTENIDO	ACTIVIDADES Y RECURSOS	EVALUACIÓN
	sustitución			
	10.1. Ecuaciones homogéneas	10.1. Uso de sustituciones : ecuaciones homogéneas	-	PARCIAL III SEMANA Nº 12
	10.2. Ecuación de Bernoulli	10.2. Uso de sustituciones: ecuaciones de Bernoulli	-	
	10.3. Reducción a separación de variables	10.3. Uso de sustituciones		
11.	Dadas situaciones físicas, químicas y	11.1. Modelado con ecuaciones diferenciales de primer	- Zill Dennis. Ejercicios 3.1 Pág. 81. Del 1 al 33	
	biológicas plantear la ecuación diferencial	orden	-	
	de primer orden lineal o no y resolverlas	11.2. Ecuaciones lineales.		
		11.3. Ecuaciones no lineales		
		11.4. Sistemas de ecuaciones lineales y no lineales.		
	UNIDAD IV.		-	
12.	Definir ecuación diferencial lineal de orden	12. Ecuaciones diferenciales homogéneas y no	-	
	n homogénea y no homogéneas	homogéneas.		
13.	Determinar si un conjunto de funciones	13.1. Principio de superposición	- Zill Dennis. Ejercicios 4.1.2 Pág. 128. Del 23 al	PARCIAL IV
	forman un conjunto fundamental de	13.2. Dependencia o Independencia lineal	30.	SEMANA N° 16
	soluciónes de una ecuación diferencial	13.3. El Wronskiano.		
	homogénea de orden n	13.4. Conjunto fundamental de soluciónes		
14.	Generar la solución general de una	14. Solución general de una ecuación diferencial lineal	-	
	ecuación diferencial lineal homogénea de	homogénea de grado n		
	orden n en un intervalo indicado dándose el			
	conjunto fundamental de soluciónes.			
15.	Comprobar que una familla biparamétrica	15.1. Solución general de ecuaciones diferenciales	- Zill Dennis. Ejercicios 4.1.3 Pág. 128. Del 33 al	
	de funciones dadas es la solución general	lineales no homogéneas de grado n	48.	
	de una ecuación diferencial lineal no	15.2. Principio de superposición, ecuaciones no		
	homogénea de grado n indicada.	homogéneas.		
16.	Obtener la segunda solución de una	16. Método de reducción de orden para determinar la	- Zill Dennis.	
	ecuación diferencial lineal de Segundo	segunda solución de una ecuación diferencial lineal		
	orden, dada por el método de reducción de	de segundo orden		
	orden, conocida una solución			
17.	Identificar una ecuación diferencial lineal	17. Ecuaciones lineales homogéneas con coeficientes	- Zill Dennis. Ejercicios 4.3 Pág. 140. Del 1 al 56.	
	homogénea con coeficientes constantes y	constantes		

	OBJETIVO	CONTENIDO	ACTIVIDADES Y RECURSOS	EVALUACIÓN
	determinar la solución general.			
18.	Determinar la solución de una ecuación diferencial lineal no homogénea empleando el método de variación de parámetros	18.1. Solución de ecuaciones diferenciales no homogéneas por el método de los coeficientes indeterminados.	- Zill Dennis. Ejercicios 4.4 Pág. 152. Del 1 al 39.	
10	Determinar la solución de una ecuación	18.2. Coeficientes indeterminados, método del anulador 19. Solución de ecuaciones diferenciales lineales no	- Zill Dennis. Ejercicios 4.5 Pág. 161. Del 1 al 72 - Zill Dennis. Ejercicios 4.6 Pág. 168. Del 1 al 30	
19.	diferencial lineal no homogénea empleando	homogéneas por el método de variación de	- Ziii Derinis. Ejercicios 4.0 Fag. 100. Dei 1 ai 30	PARCIAL IV
	el método de variación de parámetros	parámetro.		SEMANA N° 16
20.	Identificar una ecuación diferencial del tipo Cauchy – Euler y determinar su solución.	20. Ecuación de Cauchy – Euler.	- Zill Dennis. Ejercicios 4.7 Pág. 176. Del 1 al 40	OLIMAIA IV
21.	Resolver ecuaciones diferenciales por series así como sus aplicaciones	21. Ecuaciones diferenciales por series.	-	
22.	Resolver un sistema de ecuaciones diferenciales lineales	22. Sistemas de ecuaciones lineales.	- Zill Dennis. Ejercicios 4.8 Pág. 185. Del 1 al 26	
23.	Resolver ejercicios que permitan plantear una ecuación diferencial de orden superior de:	Modelado con ecuaciones diferenciales de orden superior.	- Zill Dennis. Ejercicios 5.1.1 Pág. 214 Del 1 al 16.	
	23.1. Movimiento libre no amortiguado.		- Zill Dennis. Ejercicios 5,1.2 Pág. 214. Del 17 al 28.	
	23.2. Movimiento amortiguado libre.		-	
	23.3. Movimiento forzado.		- Zill Dennis. Ejercicios 5.1.3 Pág. 214 Del 29 al 44.	
	23.4. Sistemas análogos.		- Zill Dennis. Ejercicios 5.1.4 Pág. 214 Del 45 al 58.	

BIBLIOGRAFÍA

1. EDVVIN PURCELL Y DALE VARBERG Cálculo y Geometría analítica

2. LARSON R/HOSTETLER R/BRUCE Cálculo

3. STEWART JAMES Cálculo multivariable

4. CHURCHIL Variables complejas con aplicaciones

5. DERRICK, WILLIAM Variables complejas

6. DWARDS Y PENNEY Ecuaciones diferenciales elementales

7. KREYSZIG ERWIN Matemática avanzada para ingeniería Vol. I y II

MURRAY SPIEGEL Cálculo Superior Schaum

9. MURRAY SPIEGEL Variables complejas Shaum

Transformadas de Laplace, Schaum

10. ZILL DENIS Ecuaciones diferenciales