

Problema 1 (2 puntos)

Se dispone de un sistema monoprocesador con política de planificación del procesador MLQ con dos colas, la cola 1 es más prioritaria que la 2 y es expropiativo entre colas. La gestión de la cola 1 es RR con q = 2 ut, mientras que la gestión de la cola 2 es FCFS. Además, existe gestión de los dispositivos de E/S FCFS. La ejecución de los procesos al sistema sigue el esquema descrito en la figura. Si el quantum de un proceso en ejecución expira a la vez que la llegada de otro a la cola de preparados (nuevo o desde operación de E/S), entonces el proceso que llega se añade antes que el proceso que termina.

El instante de llegada de los procesos y la cola a la que pertenecen:

Proceso	T. llegada	Cola
A	0	1
В	4	2
C	8	1 \
D	10	2

Mostrar la evolución temporal de los procesos A, B, C y D

× Problema 2 (3 puntos)

En un puesto fronterizo español solo se deja pasar personas de una en una, con independencia de si la persona sale de España o entra a España. El sistema dará prioridad a las personas que salen de España.

Soluciona el problema mediante semáforos.

Problema 3 (2.5 puntos)

Disponemos de un sistema de Memoria Virtual de Paginación por Demanda. Las direcciones lógicas tienen 11 bits, de los cuales 2 se interpretan internamente como número de página. La memoria está organizada en 3 marcos. En este momento únicamente tenemos 2 procesos: A y B. La situación inicial de las páginas es:

	1	-11	THE
17	AS		
VA	Enero 202		à
1	2(1)2	U	1
	100		

PROCESO A		PROCESO B	
Página	Marco	Página	Marco
0	0	0	2
1	1	1	_
2		2	
3		3	

Se pide:

• (a) El tamaño de página

• (b) La tabla de marcos en la situación inicial

(c) Si se obtuviera de la situación inicial cada una de las siguientes direcciones físicas, calcular las direcciones lógicas de las que proceden y el resto de los valores de la siguiente tabla:

Dir. Física	Desplazamiento	Marco	Página	Dir. Lógica
845				
623				
1024				
1603				

(d) Si se utiliza un algoritmo de reemplazo LRU global, y a partir de la situación inicial se generan las siguientes direcciones lógicas:

(A, 632), (A, 1130), (B, 555), (B, 28), (A, 1333), (B, 446), (A, 801), (A, 1422), (B, 111), (A, 999), (A, 1222), (A, 888) indicar el número de fallos de página producido.

NOTA: Las últimas referencias a páginas antes de la situación inicial han sido: B0, A1, A0 (en este orden).

Problema 4 (1,5 puntos)

Un sistema operativo específico implementa un sistema de archivos híbrido indexado-enlazado con la siguiente estructura para cada archivo: 10 punteros directos, un puntero indirecto simple, un puntero indirecto doble y, finalmente, un puntero a una lista enlazada de bloques hasta un máximo de 1000 bloques. Si tenemos un dispositivo de almacenamiento secundario con una capacidad de 32 Mbytes y los bloques son de 512 bytes. Determina el tamaño máximo de los datos de un archivo (en bytes) que puede gestionar el sistema operativo en ese dispositivo.

Problema 5 (1 puntos)

Un disco de 255 GBytes (1 GByte=2³⁰ bytes) tiene 65536 (2¹⁶) cilindros, 255 sectores por pista y 512 bytes por sector.

a) ¿Cuántas cabezas tiene el disco?

b) Dada la correspondencia entre sectores físicos y lógicos, ¿cuál es la dirección física expresada como (cilindro, cabeza, sector) del número de sector lógico 10000.

Normas

- La duración del examen es de 2 h.
- Contestar cada problema en una hoja separada.