• Libraries

```
import numpy as
np import pandas
as pd
import matplotlib.pyplot as tlp
%matplotlib inline
import seaborn as
ss
```

Loading the dataset

```
from google.colab import
filesupload=files.upload()
a=pd.read_csv('/content/abalone.csv')
a.head()
```

Sex	Length	Diameter	Height	Whole weigh	nt Shucked	weight	Viscera
	_	Diameter	nergne	Wilded weigi	ic birachea	WCIGIIC	VIBCCIA
weight	\						
0 M	0.455	0.365	0.095	0.514	40	0.2245	
0.1010							
1 M	0.350	0.265	0.090	0.225	55	0.0995	
0.0485							
2 F	0.530	0.420	0.135	0.67	70	0.2565	
0.1415							
3 M	0.440	0.365	0.125	0.516	60	0.2155	
0.1140							
4 I	0.330	0.255	0.080	0.205	50	0.0895	
0.0395							

	Shell weight	Rings
0	0.150	15
1	0.070	7
2	0.210	9
3	0.155	10
4	0.055	7

```
a['age']=a['Rings']+1.
5
a=a.drop('Rings',axis=
1)
```

• A. univariate Analysis

```
ss.kdeplot(a['Diameter'])
<matplotlib.axes. subplots.AxesSubplot at 0x7fbad1961d90>
```


• Bi-Variate Analysis

ss.boxplot(x=a.Diameter,y = a.Length, palette='rainbow')

• Multi-Variate Analysis

ss.pairplot(a)
<seaborn.axisgrid.PairGrid at 0x7fbad096df50>

• Descriptive Statistics

a.info()

<class

'pandas.core.frame.DataFrame'>

RangeIndex: 4177 entries, 0 to 4176

Data columns (total 9 columns):

Column Non-Null Count Dtype

0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64

•	Whole weight	4177 non-null	float64
•	Shucked weight	4177 non-null	float64
•	Viscera weight	4177 non-null	float64

```
float64
     Shell weight
                      4177 non-null
                      4177 non-null
     age
     float64dtypes: float64(8), object(1)
memory usage: 293.8+
KΒ
a['Diameter'].describe
()
          4177.000000
count
             0.407881
mean
             0.099240
std
             0.055000
min
25%
             0.350000
50%
             0.425000
             0.480000
75%
             0.650000
max
Name: Diameter, dtype:
float64a['Sex'].value counts
<bound method IndexOpsMixin.value counts of 0</pre>
                                                        Μ
        F
        Μ
        Ι
   4172
      F
   4173
      Μ
   4174
      Μ
   4175
   4176
Name: Sex, Length: 4177, dtype:
object> 5.Checking for missing values and
```

dealing with thema.isnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked	weight	\
0	False	False	False	False	False		False	

1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	False	False	False
4	False	False	False	False	False	False
		• • •			• • •	• • •
4172	False	False	False	False	False	False
4173	False	False	False	False	False	False
4174	False	False	False	False	False	False
4175	False	False	False	False	False	False
4176	False	False	False	False	False	False

	Viscera weight	Shell	weight	age
0	False		False	False
1	False		False	False
2	False		False	False
3	False		False	False
4	False		False	False
	• • •			
4172	False		False	False
4173	False		False	False
4174	False		False	False
4175	False		False	False
4176	False		False	False

```
[4177 rows x 9
```

columns]

a.isnull().sum()

Length 0 Diameter 0 Height 0 Whole weight 0 Shucked weight Viscera weight 0 Shell weight 0 0 age Sex_F 0 0 Sex_I 0 Sex M dtype: int64

• Find the outliers and replace the outliers

a=pd.get_dummies(a

) dummy_a=a

```
var='Viscera
```

```
weight'
```

```
tlp.scatter(x=a[var],y=a['age'])
tlp.grid(True)
```



```
a['age'] > 25)].index, inplace = True)
var = 'Diameter'
tlp.scatter(x = a[var], y =
a['age'])tlp.grid(True)
```



```
a.drop(a[(a['Length']<0.8) & (</pre>
a['age'] > 25)].index, inplace =
a.drop(a[(a['Length']>=0.8) & (a['age'] < 25)].index, inplace = True)

    Checking for categorical columns

numerical features = a.select dtypes(include = [np.number]).columns
categorical features = a.select dtypes(include = [np.object]).columns
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:2:
DeprecationWarning: `np.object` is a deprecated alias for the builtin
`object`. To silence this warning, use `object` by itself. Doing this
will not modify any behavior and is safe.
Deprecated in NumPy 1.20; for more details and guidance:
https://numpy.org/devdocs/release/1.20.0-
notes.html#deprecations
numerical features
Index(['Length', 'Diameter', 'Height', 'Whole weight',
'Shuckedweight',
       'Viscera weight', 'Shell weight', 'age', 'Sex F', 'Sex I',
'Sex_M'],
      dtype='object')
categorical features
Index([],
dtype='object')
Encoding
from sklearn.preprocessing import
LabelEncoderle=LabelEncoder()
print(a.Length.value counts())
         93
0.550
0.575
         93
0.625
         93
         92
0.580
0.600
         86
0.755
          2
0.220
          2
0.150
          1
0.135
          1
```

0.760

1

Name: Length, Length: 126, dtype: int64

x=a.iloc[:,:
5]x

	Length	Diameter	Height	Whole	weight	Shucked	weight
0	0.455	0.365	0.095		0.5140		0.2245
1	0.350	0.265	0.090		0.2255		0.0995
2	0.530	0.420	0.135		0.6770		0.2565
3	0.440	0.365	0.125		0.5160		0.2155
4	0.330	0.255	0.080		0.2050		0.0895
	• • •						
4172	0.565	0.450	0.165		0.8870		0.3700
4173	0.590	0.440	0.135		0.9660		0.4390
4174	0.600	0.475	0.205		1.1760		0.5255
4175	0.625	0.485	0.150		1.0945		0.5310
4176	0.710	0.555	0.195		1.9485		0.9455

[4096 rows x 5

columns]

y=a.iloc[:,:5]

У

	Length	Diameter	Height	Who	le	weight	Shu	cked	weight
0	0.455	0.365	0.095			0.5140			0.2245
				•					
1	0.350	0.265	0.090			0.2255			0.0995
2	0.530	0.420	0.135			0.6770			0.2565
3	0.440	0.365	0.125			0.5160			0.2155
4	0.330	0.255	0.080			0.2050			0.0895
4172	0.565	0.450	0.165			0.8870			0.3700
4173	0.590	0.440	0.135			0.9660			0.4390
4174	0.600	0.475	0.205			1.1760			0.5255
4175	0.625	0.485	0.150			1.0945			0.5310
4176	0.710	0.555	0.195			1.9485			0.9455
[4096	rows x	5 columns]							

• Spliting the data into training and testing

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

• Building the model

from sklearn.linear_model import LinearRegression
mlr=LinearRegression()

```
mlr.fit(x_train,y_trai
n)LinearRegression()
```

11.Training the model

• Testingthe model

x_test[0:5]

	Length	Diameter	Height	Whole	weight	Shucked	weight
2358	0.610	0.485	0.210		1.3445		0.5350
723	0.525	0.410	0.130		0.9900		0.3865
2535	0.640	0.500	0.180		1.4995		0.5930
2717	0.345	0.255	0.095		0.1830		0.0750
29	0.575	0.425	0.140		0.8635		0.3930

y_test[0:5]

	Length	Diameter	Height	Whole	weight	Shucked	weight
2358	0.610	0.485	0.210		1.3445		0.5350
723	0.525	0.410	0.130		0.9900		0.3865
2535	0.640	0.500	0.180		1.4995		0.5930
2717	0.345	0.255	0.095		0.1830		0.0750
29	0.575	0.425	0.140		0.8635		0.3930

• Scaling the independent variables

```
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
x_train=ss.fit_transform(x_train)
mlrpred=mlr.predict(x_test[0:9])
```

mlrpred							
milpica							
array([[0.61	,	0.485	,	0.21	,	1.3445,	0.535],
[0.525	,	0.41	,	0.13	,	0.99 ,	0.3865],
[0.64	,	0.5	,	0.18	,	1.4995,	0.593],
[0.345	,	0.255	,	0.095	,	0.183 ,	0.075],
[0.575	,	0.425	,	0.14	,	0.8635,	0.393],
[0.57	,	0.48	,	0.18	,	0.9395,	0.399],
[0.61	,	0.485	,	0.165	,	1.087 ,	0.4255],
[0.635	,	0.505	,	0.17	,	1.2635,	0.512],
[0.53	,	0.41	,	0.155	,	0.7155,	0.2805]])

• Measuring the performance using metrics

```
from sklearn.metrics import
r2_score
r2_score(mlr.predict(x_test),y_test)
1.0
```