Math 108C Homework 6

Rad Mallari

May 17, 2022

1 Problem 1

Let S be a symmetric matrix and let λ_1 and λ_2 be two distinct eigenvalues of S. Show that the corresponding eigenspaces are orthogonal.

Proof. Taking two arbitrary eigenvectors u and v, corresponding to each eigenvalue, we have the following:

$$Su = \lambda_1 u$$
 $Sv = \lambda_2 v$

For the eigenspaces to be orthogonal, it must be the case that $u \cdot v = 0$ and so:

$$\lambda_{1}(u \cdot v) = (\lambda_{1}u) \cdot v$$

$$= Su \cdot v = (Su)^{T}v$$

$$= u^{T}S^{T}v$$

$$= u^{T}Sv \quad \text{(by symmetry of } S\text{)}$$

$$= u^{T}\lambda_{2}v$$

$$= \lambda_{2}(u \cdot v)$$

$$(1)$$

From here, we see that $\lambda_1(u \cdot v) = \lambda_2(u \cdot v)$ which implies $(\lambda_1 - \lambda_2)(u \cdot v) = 0$. We know that $\lambda_1 \neq \lambda_2 \Rightarrow \lambda_1 - \lambda_2 = 0$, therefore $u \cdot v$ must be 0, implying they are orthogonal.

2 Problem 5

Show that if S is positive definite, then S is invertible and its inverse is also positive definite.

Proof. Since S is a positive definite, we let $S = QDQ^T$ where D are the diagonal entries. QDQ^T here are invertible which implies that S is invertible as it is a product of invertible matrices. Now

$$S^{-1} = QD^{-1}Q^{T}$$

Is a positive definite matrix as well since D^{-1} has positive diagonal entries. \square

3 Problem 7

For what numbers b is the following matrix positive semi-definite?

$$A = \begin{bmatrix} 2 & -1 & b \\ -1 & 2 & -1 \\ b & -1 & 2 \end{bmatrix}$$

Proof. Letting b = 2, we have a semi-positive definite matrix. \Box