The Change of Base Formula

Use a calculator to approximate each to the nearest thousandth.

1) log₃ 3.3

2) log₂ 30

3) log₄ 5

4) log₂ 2.1

5) log 3.55

6) log₆ 13

7) log₆ 40

8) log₄ 3.5

9) log₂ 2.9

10) log₆ 22

11) log₇ 8.7

12) log₃ 62

13) log₈ 4

14) ln 94

15) log₂ 8.7

16) log₉ 71

17) log₁₃ 194

18) ln 14.1

19) log₁₃ 12.9

20) log₅ 10.818

21) log₃ 189

22) log ₁₆ 194

23) log₅ 183

24) log₁₄ 2.6

Critical thinking question:

25) Show that $\log_8 1000 = \log_2 10$ algebraically.

The Change of Base Formula

Use a calculator to approximate each to the nearest thousandth.

1) log₃ 3.3

1.087

2) log₂ 30

4.907

3) log₄ 5

1.161

4) $\log_2 2.1$

1.07

5) log 3.55

0.55

6) log₆ 13

1.432

7) log₆ 40

2.059

8) log₄ 3.5

0.904

9) log₂ 2.9

1.536

10) log₆ 22

1.725

11) log₇ 8.7

1.112

12) log₃ 62

3.757

13) log₈ 4

0.667

14) ln 94

4.543

15) log₂ 8.7

3.121

16) log₉ 71

1.94

17) log₁₃ 194

2.054

18) ln 14.1

2.646

19) log₁₃ 12.9

0.997

20) log₅ 10.818

1.48

21) log₃ 189

4.771

22) log ₁₆ 194

1.9

23) log₅ 183

3.237

24) log₁₄ 2.6

0.362

Critical thinking question:

25) Show that $\log_8 1000 = \log_2 10$ algebraically.

$$\log_8 1000 = \frac{\log_2 1000}{\log_2 8} = \frac{\log_2 1000}{3} = \log_2 \sqrt[3]{1000} = \log_2 10$$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com