수 시 해 석 HW #/0

Fabric Texture Recognition
(Discrete Fourier Transform)
2018007956 김체아

[pattern recognition 과정]

- 1) 반복되는 패턴 사진을 구한다
- 2) 패턴 이미지의 -32~+32부분을 DFT 한다 (- 여기서 magnitude 만을 사용)

```
h, w = img.shape

dft = cv2.dft(np.float32(img[h//2-32:h//2+32, w//2-32:w//2+32])_flags=cv2.DFT_COMPLEX_OUTPUT)

dft_shift = np.fft.fftshift(dft)

magnitude = 20*np.log(cv2.magnitude(dft_shift[:_x:_x0]_dft_shift[:_x:_x1]))

save.append(magnitude[33:50_x33:50].flatten())
```

- 3) pattern recognition 한다
 - DC성분을 제외한 계수 값 비교

⟨pattern recognition⟩

랜덤하게 특정 패턴의 block (64x64)를 넣고 전체 20장의 패턴 중에 무엇인지를 맞춘다 -> 20장의 각 이미지들마다 5번 시행하고,

그 100번의 시도 중 패턴을 인식한 횟수를 구해서 패턴이 인식되는 비율을 구해본다

Input Image

Input Image

Magnitude Spectrum

img size = 999x999

img size = 100x100

Magnitude Spectrum

Input Image

Magnitude Spectrum

[8]

[10]

img size = 200x200

img size = 100x100

Input Image

[12]

Input Image

Magnitude Spectrum

img size = 225x225

img size = 100x100

Magnitude Spectrum

DFT

image rescaling

img size = 1500x1500

img size = 200x200

Input Image

Magnitude Spectrum

img size = 400x400

img size = 100x100

Input Image

Magnitude Spectrum

[16]

image rescaling

img size = 800x800

img size = 400x400

DFT

Input Image

Magnitude Spectrum

[18]

DFT

image rescaling

img size = 224x224

img size = 100x100

DFT

image rescaling

img size = 1000x1000

img size = 200x200

Input Image

Magnitude Spectrum

Input Image

Magnitude Spectrum

[pattern recognition]

- 이미지의 가운데 64x64 블록을 추출해서 dft를 하고 DC성분을 제외한 일부분을 저장한다
- DC성분은 평균값이기 때문에 패턴의 굴곡에 의미가 없으므로 비교 대상에서 제외한다
- 각 패턴당 5개의 랜덤한 64x64 block을 생성해서 20장의 패턴 중에 무엇인지 맞춘다

```
dft = cv2.dft(np.float32(img[h//2-32:h//2+32, w//2-32:w//2+32]),flags=cv2.DFT COMPLEX OUTPUT)
dft[0, 0] = 0 # DC remove

dft_shift = np.fft.fftshift(dft)
magnitude = 20*np.log(cv2.magnitude(dft_shift[:__:__0]_*dft_shift[:__:_1]))

# print(magnitude[h//2,w//2]) # -> DC 정분 위치
# print(mask[32][32]) # DC 정분 위치
```


dft[O, O]=O 으로 만들어보니 magnitude[h//2,w//2] (=mask[32][32])값이 -inf로 나왔다 이를 통해 해당 위치가 DC성분 위치라는 것을 알 수 있었다 이 위치를 비교 대상에서 제외시켰다

save.append(magnitude[33:50,33:50].flatten())

20장의 패턴의 magnitude의 오른쪽 위 사분면 일부분을 뽑아서(대칭성 이용) 저장한다 [32,32]가 DC성분 위치이므로 33부터 추출한다

[pattern recognition using vector distance]

```
# 이미지 하나당 5번씩

for n in range(5):

# 랜덤한 64x64 block 추출

x = random.randrange(h-64),,# 1부터 가로 사이즈 -64 사이의 난수 생성

y = random.randrange(w-64)

print('{}:{}, {}:{}'.format(x,x+63,y,y+63))

mask = testimg[x:x+64,y:y+64]
```

각 이미지당 랜덤한 5개의 64x64 block을 추출한다


```
a=magnitude2[33:50,33:50].flatten()
b=[]
for i in range(20):
    b.append(np.mean(save[i]-a))_# 申录
idx = np.argmin(b)
result.append(name[idx])
```

test img도 같은 부분의 계수들을 뽑고 저장된 값과의 차이가 제일 적은 패턴을 찾는다

```
# 적중률 계산

if len(result)!=0:
    for n in range(5):
        if result[n] == name[img_num]:
        hit_num += 1

img_num += 1

print('100번의 횟수 중 패턴을 잘 인식한 횟수:'_hhit_num)
```

인식된 이미지가 맞으면 hit_num+=1

[pattern recognition] 패턴 인식 : 약 %98

< 1.jpg >	< 13.jpg >	< 17.jpg >	< 20.jpg >	< 6.jpg >
315:378, 164:227	4:67, 29:92	7:70, 23:86	77:140, 134:197	12:75, 175:238
146:209, 68:131	19:82, 22:85	18:81, 6:69	59:122, 135:198	371:434, 223:286
72:135, 369:432	5:68, 10:73	34:97, 0:63	40:103, 7:70	60:123, 722:785
268:331, 280:343	29:92, 13:76	30:93, 5:68	114:177, 28:91	18:81, 322:385
98:161, 386:449	35:98, 31:94	4:67, 17:80	6:69, 59:122	69:132, 105:168
['1.jpg', '1.jpg', '1.jpg', '1.jpg', '1.jpg']	['13.jpg', '13.jpg', '13.jpg', '13.jpg', '13.jpg']	['17.jpg', '17.jpg', '17.jpg', '17.jpg', '17.jpg']	['20.jpg', '20.jpg', '20.jpg', '20.jpg', '20.jpg']	['6.jpg', '6.jpg', '6.jpg', '6.jpg', '5.jpg']
< 10.jpg >	< 14.jpg >	< 18.jpg >	< 3.jpg >	< 7.jpg >
106:169, 55:118	52:115, 35:98	48:111, 108:171	86:149, 174:237	5:68, 31:94
33:96, 69:132	76:139, 97:160	98:161, 51:114	76:139, 54:117	23:86, 33:96
16:79, 123:186	71:134, 66:129	83:146, 35:98	101:164, 68:131	25:88, 34:97
121:184, 19:82	94:157, 66:129	7:70, 118:181	41:104, 117:180	9:72, 12:75
7:70, 126:189	133:196, 33:96	75:138, 74:137	36:99, 70:133	2:65, 31:94
['10.jpg', '10.jpg', '10.jpg', '10.jpg', '10.jpg']	['14.jpg', '14.jpg', '14.jpg', '14.jpg', '14.jpg']	['18.jpg', '18.jpg', '18.jpg', '18.jpg', '18.jpg']	['3.jpg', '3.jpg', '3.jpg', '3.jpg', '3.jpg']	['7.jpg', '7.jpg', '7.jpg', '14.jpg', '7.jpg']
< 11.jpg >	< 15.jpg >	< 19.jpg >	< 4.jpg >	< 8.jpg >
16:79, 5:68	5:68, 21:84	154:217, 467:530	108:171, 80:143	44:107, 137:200
29:92, 31:94	75:138, 116:179	97:160, 240:303	123:186, 76:139	47:110, 72:135
31:94, 7:70	12:75, 44:107	115:178, 365:428	122:185, 94:157	52:115, 23:86
35:98, 22:85	115:178, 23:86	115:178, 130:193	145:208, 156:219	18:81, 150:213
15:78, 1:64	103:166, 97:160	244:307, 303:366	118:181, 16:79	62:125, 75:138
['11.jpg', '11.jpg', '11.jpg', '11.jpg', '11.jpg']	['15.jpg', '15.jpg', '15.jpg', '15.jpg', '15.jpg']	['19.jpg', '19.jpg', '19.jpg', '19.jpg', '19.jpg']	['4.jpg', '4.jpg', '4.jpg', '4.jpg', '4.jpg']	['8.jpg', '8.jpg', '8.jpg', '8.jpg', '8.jpg']
< 12.jpg >	< 16.jpg >	< 2.jpg >	< 5.jpg >	< 9.jpg >
67:130, 93:156	14:77, 59:122	151:214, 18:81	22:85, 11:74	52:115, 110:173
38:101, 182:245	45:108, 36:99	139:202, 22:85	19:82, 1:64	67:130, 89:152
122:185, 3:66	111:174, 3:66	43:106, 73:136	22:85, 10:73	32:95, 102:165
13:76, 90:153	96:159, 24:87	68:131, 67:130	26:89, 3:66	132:195, 45:108
73:136, 65:128	128:191, 5:68	139:202, 146:209	12:75, 25:88	85:148, 62:125
['12.jpg', '12.jpg', '12.jpg', '12.jpg', '12.jpg']	['16.jpg', '16.jpg', '16.jpg', '16.jpg', '16.jpg']	['2.jpg', '2.jpg', '2.jpg', '2.jpg', '2.jpg']	['5.jpg', '5.jpg', '5.jpg', '5.jpg', '5.jpg']	['9.jpg', '9.jpg', '9.jpg', '9.jpg', '9.jpg']

패턴 인식이 상당히 잘 되는 것을 볼 수 있다