CSE 613: Parallel Programming

Lecture 7 (Analyzing Divide-and-Conquer Algorithms)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2019

A Useful Recurrence

Consider the following recurrence:

$$T(n) = \begin{cases} \Theta(1), & if \ n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & otherwise; \end{cases}$$

where, $a \ge 1$ and b > 1.

Arises frequently in the analyses of divide-and-conquer algorithms.

Recall the following from the analyses of QSort (quicksort) in lecture 1.

Serial:
$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

Parallel (with serial partition):
$$T(n) = T(\frac{n}{2}) + \Theta(n)$$

Parallel (with parallel partition):
$$T(n) = T(\frac{n}{2}) + \Theta(\log n)$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) \qquad \downarrow \qquad \qquad$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$f(n) + aT\left(\frac{n}{b}\right)$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

How the Recurrence Unfolds: Case 1

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

How the Recurrence Unfolds: Case 2

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

How the Recurrence Unfolds: Case 3

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \Theta(f(n))$$

The Master Theorem

$$T(n) = \begin{cases} \Theta(1), & if \ n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & otherwise \ (a \geq 1, b > 1). \end{cases}$$

Case 1: $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$ $T(n) = \Theta(n^{\log_b a})$

$$T(n) = \Theta(n^{\log_b a})$$

Case 2: $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$. $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$

$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$

Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ and $af(\frac{n}{b}) \le cf(n)$ for constants $\epsilon > 0$ and c < 1.

$$T(n) = \Theta(f(n))$$

Back to QSort Complexities

Now let's try the QSort (quicksort) recurrences from lecture 1.

Serial:
$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

Master Theorem Case 2: $T(n) = \Theta(n \log n)$

Parallel (with serial partition):
$$T(n) = T(\frac{n}{2}) + \Theta(n)$$

Master Theorem Case 3: $T(n) = \Theta(n)$

Parallel (with parallel partition):
$$T(n) = T(\frac{n}{2}) + \Theta(\log n)$$

Master Theorem Case 2: $T(n) = \Theta(\log^2 n)$

More Example Applications of Master Theorem

Karatsuba's Algorithm:
$$T(n) = 3T(\frac{n}{2}) + \Theta(n)$$

Master Theorem Case 1: $T(n) = \Theta(n^{\log_2 3})$

Strassen's Matrix Multiplication:
$$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$$

Master Theorem Case 1: $T(n) = \Theta(n^{\log_2 7})$

Fast Fourier Transform:
$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

Master Theorem Case 2: $T(n) = \Theta(n \log n)$

Recurrences not Solvable using the Master Theorem

Example 1:
$$T(n) = \sqrt{n} T\left(\frac{n}{2}\right) + n$$

 $a = \sqrt{n}$ is not a constant

Example 2:
$$T(n) = 2T\left(\frac{n}{\log n}\right) + n^2$$

 $b = \log n$ is not a constant

Example 3:
$$T(n) = \frac{1}{2}T\left(\frac{n}{2}\right) + n^2$$

$$a = \frac{1}{2}$$
 is not ≥ 1

Example 4:
$$T(n) = 2T\left(\frac{4n}{3}\right) + n$$

$$b = \frac{3}{4}$$
 is not > 1.

Recurrences not Solvable using the Master Theorem

Example 5:
$$T(n) = 3T(\frac{n}{2}) - n$$

 $f(n) = -n$ is not positive

Example 6:
$$T(n) = 2 T\left(\frac{n}{2}\right) + n^2 \sin n$$
 violates regularity condition of case 3

Example 7:
$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$$

$$f(n) = O(n^{\log_b a})$$
, but $\neq O(n^{\log_b a - \epsilon})$ for any constant $\epsilon > 0$

Example 8:
$$T(n) = T\left(\frac{n}{2}\right) + 2T\left(\frac{n}{4}\right) + n$$
 a and b are not fixed

Multithreaded Matrix Multiplication

Parallel Iterative MM

```
Iter-MM ( Z, X, Y ) { X, Y, Z are n \times n matrices, where n is a positive integer }

1. for i \leftarrow 1 to n do

2. for j \leftarrow 1 to n do

3. Z[i][j] \leftarrow 0

4. for k \leftarrow 1 to n do

5. Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]
```



```
Par-Iter-MM ( Z, X, Y ) { X, Y, Z are n \times n matrices, where n is a positive integer }

1. parallel for i \leftarrow 1 to n do

2. parallel for j \leftarrow 1 to n do

3. Z[i][j] \leftarrow 0

4. for k \leftarrow 1 to n do

5. Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]
```

Parallel Iterative MM

```
Par-Iter-MM ( Z, X, Y ) { X, Y, Z are n \times n matrices, where n is a positive integer }

1. parallel for i \leftarrow 1 to n do

2. parallel for j \leftarrow 1 to n do

3. Z[i][j] \leftarrow 0

4. for k \leftarrow 1 to n do

5. Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]
```

Work:
$$T_1(n) = \Theta(n^3)$$

Span:
$$T_{\infty}(n) = \Theta(\log n + \log n + n) = \Theta(n)$$

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta(n^2)$$

Parallel Recursive MM

Parallel Recursive MM

```
Par-Rec-MM (Z, X, Y) {X, Y, Z are n \times n matrices,
                                where n = 2^k for integer k \ge 0 }
 1. if n = 1 then
        Z \leftarrow Z + X \cdot Y
 3. else
 4.
        spawn Par-Rec-MM (Z_{11}, X_{11}, Y_{11})
       spawn Par-Rec-MM (Z_{12}, X_{11}, Y_{12})
 5.
 6.
        spawn Par-Rec-MM (Z_{21}, X_{21}, Y_{11})
               Par-Rec-MM ( Z_{22}, X_{21}, Y_{12})
 7.
 8.
        sync
 9.
       spawn Par-Rec-MM (Z_{11}, X_{12}, Y_{21})
10.
       spawn Par-Rec-MM (Z_{12}, X_{12}, Y_{22})
       spawn Par-Rec-MM (Z_{21}, X_{22}, Y_{21})
11.
12.
               Par-Rec-MM ( Z_{22}, X_{22}, Y_{22})
13.
        sync
14. endif
```

Parallel Recursive MM

```
Par-Rec-MM (Z, X, Y) {X, Y, Z are n \times n matrices,
                                where n = 2^k for integer k \ge 0 }
 1. if n = 1 then
     Z \leftarrow Z + X \cdot Y
 3. else
       spawn Par-Rec-MM (Z_{11}, X_{11}, Y_{11})
 4.
 5.
       spawn Par-Rec-MM (Z_{12}, X_{11}, Y_{12})
        spawn Par-Rec-MM (Z_{21}, X_{21}, Y_{11})
 6.
               Par-Rec-MM (Z_{22}, X_{21}, Y_{12})
 7.
 8.
        sync
 9.
        spawn Par-Rec-MM (Z_{11}, X_{12}, Y_{21})
10.
        spawn Par-Rec-MM (Z_{12}, X_{12}, Y_{22})
        spawn Par-Rec-MM (Z_{21}, X_{22}, Y_{21})
11.
               Par-Rec-MM ( Z_{22}, X_{22}, Y_{22})
12.
13.
        sync
14. endif
```

Work:

$$T_1(n) = \begin{cases} \Theta(1), & if \ n = 1, \\ 8T_1\left(\frac{n}{2}\right) + \Theta(1), & otherwise. \end{cases}$$

$$=\Theta(n^3)$$
 [MT Case 1]

Span:

$$T_{\infty}(n) = \begin{cases} \Theta(1), & if \ n = 1, \\ 2T_{\infty}\left(\frac{n}{2}\right) + \Theta(1), & otherwise. \end{cases}$$

$$=\Theta(n)$$
 [MT Case 1]

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta(n^2)$$

Additional Space:

$$s_{\infty}(n) = \Theta(1)$$

Recursive MM with More Parallelism

Recursive MM with More Parallelism

```
Par-Rec-MM2(Z, X, Y)
                                 \{X, Y, Z \text{ are } n \times n \text{ matrices}, \}
                                 where n = 2^k for integer k \ge 0 }
 1. if n = 1 then
        Z \leftarrow Z + X \cdot Y
                  \{ T \text{ is a temporary } n \times n \text{ matrix } \}
 3. else
 4.
        spawn Par-Rec-MM2 (Z_{11}, X_{11}, Y_{11})
 5.
        spawn Par-Rec-MM2 (Z_{12}, X_{11}, Y_{12})
        spawn Par-Rec-MM2 (Z_{21}, X_{21}, Y_{11})
 6.
        spawn Par-Rec-MM2 (Z_{22}, X_{21}, Y_{12})
 7.
        spawn Par-Rec-MM2 (T_{11}, X_{12}, Y_{21})
 8.
        spawn Par-Rec-MM2 (T_{12}, X_{12}, Y_{22})
 9.
        spawn Par-Rec-MM2 (T_{21}, X_{22}, Y_{21})
10.
11.
                Par-Rec-MM2 ( T_{22}, X_{22}, Y_{22})
12.
        sync
13.
        parallel for i \leftarrow 1 to n do
14.
           parallel for j \leftarrow 1 to n do
15.
                Z[i][j] \leftarrow Z[i][j] + T[i][j]
16. endif
```

Recursive MM with More Parallelism

```
Par-Rec-MM2 (Z, X, Y) \{X, Y, Z \text{ are } n \times n \text{ matrices}, \}
                                 where n = 2^k for integer k \ge 0 }
 1. if n = 1 then
        Z \leftarrow Z + X \cdot Y
 3. else { T is a temporary n \times n matrix }
        spawn Par-Rec-MM2 (Z_{11}, X_{11}, Y_{11})
 4.
        spawn Par-Rec-MM2 (Z_{12}, X_{11}, Y_{12})
 5.
        spawn Par-Rec-MM2 (Z_{21}, X_{21}, Y_{11})
 6.
        spawn Par-Rec-MM2 (Z_{22}, X_{21}, Y_{12})
 7.
        spawn Par-Rec-MM2 (T_{11}, X_{12}, Y_{21})
 8.
 9.
        spawn Par-Rec-MM2 (T_{12}, X_{12}, Y_{22})
        spawn Par-Rec-MM2 ( T_{21}, X_{22}, Y_{21})
10.
11.
                Par-Rec-MM2 ( T_{22}, X_{22}, Y_{22})
12.
        sync
13.
        parallel for i \leftarrow 1 to n do
14.
           parallel for j \leftarrow 1 to n do
15.
                Z[i][j] \leftarrow Z[i][j] + T[i][j]
16. endif
```

Work:

$$T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8T_1\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$$

$$=\Theta(n^3)$$
 [MT Case 1]

Span:

$$T_{\infty}(n) = \begin{cases} \Theta(1), & if \ n = 1, \\ T_{\infty}\left(\frac{n}{2}\right) + \Theta(\log n), & otherwise. \end{cases}$$

$$= \Theta(\log^2 n)$$
 [MT Case 2]

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta\left(\frac{n^3}{\log^2 n}\right)$$

Additional Space:

$$s_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8s_{\infty}\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$$

$$=\Theta(n^3)$$
 [MT Case 1]

Multithreaded Merge Sort

Parallel Merge Sort

```
Merge-Sort (A, p, r) { sort the elements in A[p \dots r]}

1. if p < r then

2. q \leftarrow \lfloor (p+r)/2 \rfloor

3. Merge-Sort (A, p, q)

4. Merge-Sort (A, q+1, r)
```


5. Merge(A, p, q, r)

```
Par-Merge-Sort (A, p, r) { sort the elements in A[p \dots r]}

1. if p < r then

2. q \leftarrow \lfloor (p+r)/2 \rfloor

3. spawn Merge-Sort (A, p, q)

4. Merge-Sort (A, q+1, r)

5. sync

6. Merge (A, p, q, r)
```

Parallel Merge Sort

```
Par-Merge-Sort (A, p, r) { sort the elements in A[p ... r]}
     1. if p < r then
     2. q \leftarrow \lfloor (p+r)/2 \rfloor
     3. spawn Merge-Sort ( A, p, q)

    4.  Merge-Sort ( A, q + 1, r )
    5.  sync
    6.  Merge ( A, p, q, r )

Work: T_1(n) = \begin{cases} \Theta(1), & if \ n = 1, \\ 2T_1\left(\frac{n}{2}\right) + \Theta(n), & otherwise. \end{cases}
                          =\Theta(n\log n) [MT Case 2]
Span: T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases}
                          =\Theta(n) [MT Case 3]
Parallelism: \frac{T_1(n)}{T_{12}(n)} = \Theta(\log n)
```


Step 1: Find $x = T[q_1]$, where q_1 is the midpoint of $T[p_1...r_1]$

Step 2: Use binary search to find the index q_2 in subarray $T[p_2...r_2]$ so that the subarray would still be sorted if we insert x between $T[q_2-1]$ and $T[q_2]$

Step 3: Copy x to $A[q_3]$, where $q_3 = p_3 + (q_1 - p_1) + (q_2 - p_2)$

Perform the following two steps in parallel.

Step 4(a): Recursively merge $T[p_1...q_1-1]$ with $T[p_2...q_2-1]$, and place the result into $A[p_3...q_3-1]$

Perform the following two steps in parallel.

- **Step 4(a):** Recursively merge $T[p_1..q_1-1]$ with $T[p_2..q_2-1]$, and place the result into $A[p_3..q_3-1]$
- **Step 4(b):** Recursively merge $T[q_1+1..r_1]$ with $T[q_2+1..r_2]$, and place the result into $A[q_3+1..r_3]$

```
Par-Merge (T, p_1, r_1, p_2, r_2, A, p_3)
 1. n_1 \leftarrow r_1 - p_1 + 1, n_2 \leftarrow r_2 - p_2 + 1
 2. if n_1 < n_2 then
 3. p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2
 4. if n_1 = 0 then return
 5. else
 6. q_1 \leftarrow \lfloor (p_1 + r_1) / 2 \rfloor
 7. q_2 \leftarrow Binary-Search (T[q_1], T, p_2, r_2)
 8. q_3 \leftarrow p_3 + (q_1 - p_1) + (q_2 - p_2)
 9. A[q_3] \leftarrow T[q_1]
          spawn Par-Merge (T, p_1, q_1-1, p_2, q_2-1, A, p_3)
10.
                  Par-Merge (T, q_1+1, r_1, q_2+1, r_2, A, q_3+1)
11.
12.
          sync
```

Par-Merge ($T, p_1, r_1, p_2, r_2, A, p_3$)

1.
$$n_1 \leftarrow r_1 - p_1 + 1$$
, $n_2 \leftarrow r_2 - p_2 + 1$

2. if
$$n_1 < n_2$$
 then

3.
$$p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$$

4. if
$$n_1 = 0$$
 then return

6.
$$q_1 \leftarrow \lfloor (p_1 + r_1) / 2 \rfloor$$

7.
$$q_2 \leftarrow Binary\text{-Search}(T[q_1], T, p_2, r_2)$$

8.
$$q_3 \leftarrow p_3 + (q_1 - p_1) + (q_2 - p_2)$$

9.
$$A[q_3] \leftarrow T[q_1]$$

10. spawn Par-Merge
$$(T, p_1, q_1-1, p_2, q_2-1, A, p_3)$$

11. Par-Merge
$$(T, q_1+1, r_1, q_2+1, r_2, A, q_3+1)$$

We have,

$$n_2 \le n_1 \Rightarrow 2n_2 \le n_1 + n_2 = n$$

In the worst case, a recursive call in lines 9-10 merges half the elements of $T[p_1...r_1]$ with all elements of $T[p_2...r_2]$.

Hence, #elements involved in such a call:

$$\left\lfloor \frac{n_1}{2} \right\rfloor + n_2 \le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n_2}{2} = \frac{n_1 + n_2}{2} + \frac{2n_2}{4} \le \frac{n}{2} + \frac{n}{4} = \frac{3n}{4}$$

Par-Merge (T, p_1 , r_1 , p_2 , r_2 , A, p_3)

1.
$$n_1 \leftarrow r_1 - p_1 + 1$$
, $n_2 \leftarrow r_2 - p_2 + 1$

2. if
$$n_1 < n_2$$
 then

3.
$$p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$$

4. if
$$n_1 = 0$$
 then return

6.
$$q_1 \leftarrow \lfloor (p_1 + r_1) / 2 \rfloor$$

7.
$$q_2 \leftarrow Binary\text{-Search}(T[q_1], T, p_2, r_2)$$

8.
$$q_3 \leftarrow p_3 + (q_1 - p_1) + (q_2 - p_2)$$

9.
$$A[q_3] \leftarrow T[q_1]$$

10. spawn Par-Merge
$$(T, p_1, q_1-1, p_2, q_2-1, A, p_3)$$

11. Par-Merge
$$(T, q_1+1, r_1, q_2+1, r_2, A, q_3+1)$$

Span:

$$T_{\infty}(n) = egin{cases} \Theta(1), & if \ n = 1, \ T_{\infty}\left(rac{3n}{4}
ight) + \Theta(\log n), & otherwise. \ = \Theta(\log^2 n) & [ext{MT Case 2}] \end{cases}$$

Work:

Clearly,
$$T_1(n) = \Omega(n)$$

We show below that, $T_1(n) = O(n)$

For some $\alpha \in \left[\frac{1}{4}, \frac{3}{4}\right]$, we have the following recurrence,

$$T_1(n) = T_1(\alpha n) + T_1((1 - \alpha)n) + O(\log n)$$

Assuming $T_1(n) \le c_1 n - c_2 \log n$ for positive constants c_1 and c_2 , and substituting on the right hand side of the above recurrence gives us: $T_1(n) \le c_1 n - c_2 \log n = O(n)$.

Hence,
$$T_1(n) = \Theta(n)$$
.

Parallel Merge Sort with Parallel Merge

```
Par-Merge-Sort (A, p, r) { sort the elements in A[p ... r]}
      1. if p < r then
      2. q \leftarrow \lfloor (p+r)/2 \rfloor
      3. spawn Merge-Sort ( A, p, q)

    4. Merge-Sort ( A, q + 1, r )
    5. sync
    6. Par-Merge ( A, p, q, r )

Work: T_1(n) = \begin{cases} \Theta(1), & if \ n = 1, \\ 2T_1\left(\frac{n}{2}\right) + \Theta(n), & otherwise. \end{cases}
                           =\Theta(n\log n) [MT Case 2]
Span: T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}\left(\frac{n}{2}\right) + \Theta(\log^2 n), & \text{otherwise.} \end{cases}
                           = \Theta(\log^3 n) [MT Case 2]
Parallelism: \frac{T_1(n)}{T_1(n)} = \Theta\left(\frac{n}{\log^2 n}\right)
```