Colon Cancer

Jose Tamez

2023-05-02

Contents

1 RRPlot and the Colon data set 1.1 The data set 1.2 Modeling 1.3 Cox Model Performance 1.4 Cross-Validation 1 RRPlot and the Colon data set	1 2 2 3 27
1.0.1 Libraries	
library(survival) library(FRESA.CAD)	
## Loading required package: Rcpp	
## Loading required package: stringr	
## Loading required package: miscTools	
## Loading required package: Hmisc	
## ## Attaching package: 'Hmisc' ## The following objects are masked from 'package:base':	
## format.pval, units	
## Loading required package: pROC	
## Type 'citation("pROC")' for a citation.	
## ## Attaching package: 'pROC'	
<pre>## The following objects are masked from 'package:stats': ##</pre>	
## cov, smooth, var	
<pre>#library(corrplot) #source("~/GitHub/FRESA.CAD/R/RRPlot.R") #source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R") op <- par(no.readonly = TRUE) pander::panderOptions('digits', 3)</pre>	

```
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
```

1.1 The data set

```
data(cancer)
colon <- subset(colon,etype==1)
colon$etype <- NULL
rownames(colon) <- colon$id
colon$id <- NULL
colon <- colon[complete.cases(colon),]
time <- colon$time
status <- colon$status
data <- colon
data$time <- NULL
data$study <- NULL
table(data$status)</pre>
```

0 1 442 446

```
dataColon <- as.data.frame(model.matrix(status~.*age,data))
dataColon$`(Intercept)` <- NULL
dataColon$time <- time/365
dataColon$status <- status
colnames(dataColon) <-str_replace_all(colnames(dataColon),":","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\.","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\+","_")
data <- NULL

trainsamples <- sample(nrow(dataColon),0.7*nrow(dataColon))
dataColonTrain <- dataColon[trainsamples,]
dataColonTest <- dataColon[-trainsamples,]</pre>
```

0	1
311	310

pander::pander(table(dataColonTest\$status))

0	1
131	136

1.2 Modeling

```
ml <- BSWiMS.model(Surv(time, status)~1, data=dataColonTrain, NumberofRepeats = 10)
```

```
[+++-+++-+++-++++++++++++++++++++++-]...
```

pander::pander(sm\$coefficients)

Table 3: Table continues below

	Estimate	lower	HR	upper	u.Accuracy
age_nodes	0.000423	1.000	1.000	1.001	0.607
${f node 4}$	0.355981	1.260	1.428	1.617	0.601
${ m rxLev_5FU_age}$	-0.004353	0.994	0.996	0.998	0.583
${f rxLev_5FU}$	-0.131937	0.824	0.876	0.932	0.583
${f age_node4}$	0.002206	1.001	1.002	1.003	0.601
${f extent}$	0.175181	1.047	1.191	1.356	0.536
\mathbf{nodes}	0.009276	1.002	1.009	1.017	0.605
\mathbf{adhere}	0.067181	1.008	1.069	1.135	0.536

Table 4: Table continues below

	r.Accuracy	full.Accuracy	u.AUC	r.AUC	full.AUC
age_nodes	0.520	0.606	0.607	0.520	0.606
${\bf node 4}$	0.599	0.615	0.600	0.599	0.615
$rxLev_5FU_age$	0.607	0.615	0.583	0.607	0.615
${f rxLev_5FU}$	0.601	0.616	0.583	0.600	0.615
${f age_node4}$	0.608	0.616	0.600	0.608	0.615
\mathbf{extent}	0.601	0.615	0.537	0.600	0.615
\mathbf{nodes}	0.596	0.616	0.605	0.596	0.615
${f adhere}$	0.609	0.606	0.536	0.608	0.606

	IDI	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
age_nodes	0.02968	0.409	5.80	5.51	0.08602	1.0
node4	0.03732	0.401	5.60	5.89	0.01623	1.0
$rxLev_5FU_age$	0.02491	0.333	4.58	4.49	0.00867	1.0
${f rxLev_5FU}$	0.02160	0.333	4.24	4.49	0.01510	1.0
${f age_node4}$	0.01309	0.355	3.92	5.37	0.00764	1.0
${f extent}$	0.00926	0.147	2.66	2.84	0.01517	1.0
\mathbf{nodes}	0.00420	0.207	2.44	2.73	0.01945	1.0
adhere	0.00470	0.143	2.22	2.49	-0.00260	0.9

1.3 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.3.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

index <- predict(ml,dataColonTrain)
timeinterval <- 2*mean(subset(dataColonTrain,status==1)\$time)</pre>

h0 <- sum(dataColonTrain\$status & dataColonTrain\$time <= timeinterval)

h0 <- h0/sum((dataColonTrain\$time > timeinterval) | (dataColonTrain\$status==1))

Cumulative vs. Observed: Raw Train: Colon Cancer

Decision Curve Analysis: Raw Train: Colon Cancer

Relative Risk: Raw Train: Colon Cancer

ROC: Raw Train: Colon Cancer

Time vs. Events: Raw Train: Colon Cancer

Kaplan-Meier: Raw Train: Colon Cancer

1.3.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$keyPoints), caption="Threshold values")

Table 6: Threshold values

	@:0.9	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.449	0.337	0.238	0.18110	0.501
$\mathbf{R}\mathbf{R}$	1.682	1.955	3.582	1.00000	1.717
\mathbf{SEN}	0.294	0.761	0.981	1.00000	0.268
\mathbf{SPE}	0.897	0.521	0.113	0.00643	0.916
\mathbf{BACC}	0.595	0.641	0.547	0.50322	0.592

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 7: O/E Ratio

O/E	Low	Upper	p.value
0.957	0.853	1.07	0.453

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 8: O/E Mean

mean	50%	2.5%	97.5%
1.57	1.57	1.54	1.59

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Mean")

Table 9: O/Acum Mean

mean	50%	2.5%	97.5%
1.35	1.35	1.35	1.36

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.656	0.656	0.627	0.69

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 11: ROC AUC

est	lower	upper
0.682	0.641	0.724

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 12: Sensitivity

est	lower	upper
0.294	0.243	0.348

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 13: Specificity

est	lower	upper
0.897	0.858	0.929

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 14: Probability Thresholds

90%	at_max_BACC	at_max_RR	atSPE100	at_0.5
0.449	0.337	0.238	0.181	0.5

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 15: Risk Ratio

est	lower	upper
1.69	1.46	1.95

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 16: Logrank test Chisq = 63.453880 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0 $class=1$	498	219	267.2	8.69	63.5
	123	91	42.8	54.21	63.5

1.3.3 Cox Calibration

h0	Gain	DeltaTime
0.677	1.52	2.87

1.3.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Calibrated Train: Colon

Decision Curve Analysis: Calibrated Train: Colon

Relative Risk: Calibrated Train: Colon

Time vs. Events: Calibrated Train: Colon

Kaplan-Meier: Calibrated Train: Colon

1.3.5 Calibrated Train Performance

pander::pander(t(rrAnalysisTrain\$keyPoints), caption="Threshold values")

Table 18: Threshold values

	@:0.9	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.597	0.466	0.339	0.26253	0.500
$\mathbf{R}\mathbf{R}$	1.682	1.955	3.582	1.00000	1.619
\mathbf{SEN}	0.294	0.761	0.981	1.00000	0.442
\mathbf{SPE}	0.897	0.521	0.113	0.00643	0.785
\mathbf{BACC}	0.595	0.641	0.547	0.50322	0.613

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 19: O/E Ratio

O/E	Low	Upper	p.value
0.759	0.677	0.849	4.37e-07

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 20: O/E Mean

mean	50%	2.5%	97.5%
0.982	0.982	0.969	0.995

pander::pander(t(rrAnalysisTrain\$0Acum95ci), caption="0/Acum Mean")

Table 21: O/Acum Mean

mean	50%	2.5%	97.5%
1.03	1.03	1.03	1.03

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.656	0.656	0.625	0.686

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 23: ROC AUC

est	lower	upper
0.682	0.641	0.724

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 24: Sensitivity

est	lower	upper
0.294	0.243	0.348

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 25: Specificity

est	lower	upper
0.897	0.858	0.929

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 26: Probability Thresholds

90%	at_max_BACC	at_max_RR	atSPE100	at_0.5
0.597	0.466	0.339	0.263	0.5

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 27: Risk Ratio

est	lower	upper
1.69	1.46	1.95

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 28: Logrank test Chisq = 63.453880 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	$(O-E)^2/E$	(O-E)^2/V
$\begin{array}{c} {\rm class}{=}0 \\ {\rm class}{=}1 \end{array}$	498	219	267.2	8.69	63.5
	123	91	42.8	54.21	63.5

1.3.6 Evaluating on the test set

The calibrated h0 and timeinterval were estimated on the training set

Cumulative vs. Observed: Test: Colon Cancer

Decision Curve Analysis: Test: Colon Cancer

Relative Risk: Test: Colon Cancer

Time vs. Events: Test: Colon Cancer

Kaplan-Meier: Test: Colon Cancer

1.3.7 Test Performance

pander::pander(t(rrAnalysisTest\$keyPoints),caption="Threshold values")

Table 29: Threshold values (continued below)

	@: 0.596543671607801	@: 0.465714066985802	@: 0.338856488077808
Thr	0.597	0.466	0.339
$\mathbf{R}\mathbf{R}$	1.615	1.812	1.946
\mathbf{SEN}	0.324	0.743	0.956
\mathbf{SPE}	0.870	0.519	0.122
\mathbf{BACC}	0.597	0.631	0.539

	@:0.262529412124052	@:0.5	@MAX_BAC	C @MAX_RR	@SPE100	p(0.5)
Thr	0.2854	0.499	0.477	0.334	0.2854	0.499
$\mathbf{R}\mathbf{R}$	20.6844	1.669	2.031	3.015	20.6844	1.669
\mathbf{SEN}	1.0000	0.434	0.662	0.978	1.0000	0.434
\mathbf{SPE}	0.0305	0.809	0.687	0.107	0.0305	0.809
\mathbf{BACC}	0.5153	0.621	0.674	0.542	0.5153	0.621

pander::pander(t(rrAnalysisTest\$0ERatio\$estimate),caption="0/E Ratio")

Table 31: O/E Ratio

O/E	Low	Upper	p.value
0.775	0.65	0.917	0.00222

pander::pander(t(rrAnalysisTest\$0E95ci),caption="0/E Mean")

Table 32: O/E Mean

mean	50%	2.5%	97.5%
0.916	0.916	0.895	0.937

pander::pander(t(rrAnalysisTest\$OAcum95ci),caption="0/Acum Mean")

Table 33: O/Acum Mean

mean	50%	2.5%	97.5%
1.06	1.06	1.06	1.07

pander::pander(rrAnalysisTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.656	0.656	0.614	0.698

pander::pander(t(rrAnalysisTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 35: ROC AUC

est	lower	upper
0.696	0.632	0.759

pander::pander((rrAnalysisTest\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 36: Sensitivity

est	lower	upper
0.324	0.246	0.409

pander::pander((rrAnalysisTest\$ROCAnalysis\$specificity),caption="Specificity")

Table 37: Specificity

est	lower	upper
0.878	0.809	0.929

pander::pander(t(rrAnalysisTest\$thr_atP),caption="Probability Thresholds")

Table 38: Probability Thresholds (continued below)

90%	at_max_BACC	at_max_RR	atSPE100	at_0.5	at_max_BACC	at_max_RR
0.597	0.466	0.339	0.263	0.5	0.477	0.334

atSPE100	at_0.5
0.285	0.5

pander::pander(t(rrAnalysisTest\$RR_atP), caption="Risk Ratio")

Table 40: Risk Ratio

est	lower	upper
1.63	1.31	2.03

pander::pander(rrAnalysisTest\$surdif,caption="Logrank test")

Table 41: Logrank test Chisq = 36.562917 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	103	35	62.1	11.830	21.942
class=1	104	57	52.5	0.389	0.634
class=2	60	44	21.4	23.831	28.634

1.4 Cross-Validation

Here we will cross validate the training set and evaluate also on the testing set. The h0 and the timeinterval are the ones estimated on the calibration process

Cumulative vs. Observed: CV Test: Colon Cancer

Decision Curve Analysis: CV Test: Colon Cancer

Relative Risk: CV Test: Colon Cancer

Time vs. Events: CV Test: Colon Cancer

Kaplan-Meier: CV Test: Colon Cancer

1.4.1 CV Test Performance

pander::pander(t(rrAnalysisCVTest\$keyPoints),caption="Threshold values")

Table 42: Threshold values (continued below)

	@: 0.596543671607801	@: 0.465714066985802	@: 0.338856488077808
Thr	0.597	0.466	0.3387
$\mathbf{R}\mathbf{R}$	1.613	1.623	2.0228
\mathbf{SEN}	0.309	0.738	0.9933
\mathbf{SPE}	0.876	0.471	0.0204
\mathbf{BACC}	0.592	0.604	0.5068

	@: 0.262529412124052	@:0.5	@MAX_BAC	C @MAX_RR	@SPE100	p(0.5)
Thr	0.296	0.500	0.484	0.362	0.296	0.500
$\mathbf{R}\mathbf{R}$	1.000	1.553	1.659	2.527	1.000	1.553
\mathbf{SEN}	1.000	0.451	0.578	0.973	1.000	0.451
\mathbf{SPE}	0.000	0.760	0.674	0.104	0.000	0.760
\mathbf{BACC}	0.500	0.605	0.626	0.539	0.500	0.605

pander::pander(t(rrAnalysisCVTest\$0ERatio\$estimate), caption="0/E Ratio")

Table 44: O/E Ratio

O/E	Low	Upper	p.value
0.754	0.686	0.827	4.53e-10

pander::pander(t(rrAnalysisCVTest\$0E95ci),caption="0/E Mean")

Table 45: O/E Mean

mean	50%	2.5%	97.5%
0.937	0.937	0.926	0.948

pander::pander(t(rrAnalysisCVTest\$OAcum95ci),caption="0/Acum Mean")

Table 46: O/Acum Mean

mean	50%	2.5%	97.5%
1.03	1.03	1.03	1.03

pander::pander(rrAnalysisCVTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.644	0.644	0.618	0.669

pander::pander(t(rrAnalysisCVTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 48: ROC AUC

est	lower	upper
0.67	0.634	0.705

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 49: Sensitivity

est	lower	upper
0.309	0.267	0.355

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$specificity)),caption="Specificity")

Table 50: Specificity

est	lower	upper
0.876	0.841	0.905

pander::pander(t(rrAnalysisCVTest\$thr_atP),caption="Probability Thresholds")

Table 51: Probability Thresholds (continued below)

90%	at_max_BACC	at_max_RR	atSPE100	at_0.5	at_max_BACC	at_max_RR
0.597	0.466	0.339	0.263	0.5	0.484	0.362

atSPE100	at_0.5
0.296	0.5

pander::pander(t(rrAnalysisCVTest\$RR_atP),caption="Risk Ratio")

Table 53: Risk Ratio

est	lower	upper
1.63	1.44	1.84

pander::pander(rrAnalysisCVTest\$surdif,caption="Logrank test")

Table 54: Logrank test Chisq = 94.306437 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	326	117	189.2	27.5255	48.037
class=1	369	191	186.8	0.0963	0.166
class=2	193	138	70.1	65.8142	78.707