Seminar

Knowledge Engineering und Lernen in Spielen

"Reinforcement Learning to Play Tetris"

Überblick

- Allgemeines zu Tetris
- Tetris ist NP-vollständig
- Reinforcement Learning
 - □ Anwendung auf Tetris
 - □ Repräsentationen des Zustandsraumes
- Relational Reinforcement Learning

Allgemeines zu Tetris

Funktionen: Rotation, Translation

Spielbrett: m x n, opt. gefüllt

Allgemeines zu Tetris

- "Offline" Version:
 - Spielbrett, sowie komplette Folge von Tetrominos sind bekannt.

Geg.: Initiales Spielbrett und endliche Folge von Tetrominos

Frage: Kann das Spielbrett gelöscht werden?

(=> <u>Tetris Problem</u>)

- Grundlagen
 - P: Komplexitätsklasse der Probleme mit "effizienten" Algorithmen.
 - NP: zusätzlich die Probleme für die noch kein "effizienter"
 Algorithmus gefunden wurde.
 - P NP
 - S → A und B zwei Probleme. Dann heißt A auf B "polynomial reduzierbar" (A≤_pB), falls es eine totale und mit polynomialer Komplexität berechenbare Funktion gibt, mit x € A <=> f(x) € B

Grundlagen

- A heißt NP-hart (schwer), falls für alle Probleme L € NP gilt:
 L ≤_p A.
- A heißt NP-vollständig, falls A NP-hart ist und A € NP ist.
- ≤_p ist transitiv. => L ≤_p A und A ≤_p B folgt L ≤_p B
- Falls A NP-hart, genügt A ≤_p B und B € NP zu zeigen.

- Das 3 Partitions Problem
 - Geg.: Sequenz A von positiven natürlichen Zahlen a₁,...a_{3s} und eine positive Zahl T, so dass
 - 1.) $T/4 < a_i < T/2$ für alle $1 \le i \le 3_s$ und
 - 2.) $\sum_{i=1}^{3s} a_i = sT$

Kann A in s disjunkte Teilmengen $B_1,...,B_s$ unterteilt werden, so dass $\sum_{ai \in B_i} a_i = T$ für alle $1 \le j \le s$?

 $\Rightarrow |B_j| = 3$, da falls $|B_j| < 3$ gilt: $\sum_{ai \in B_j} a_i < 2 * T/2 = T$ wegen 1.) und falls $|B_j| > 3$ gilt: $\sum_{ai \in B_j} a_i > 4 * T/4 = T$

Bsp.: T = 20 A = $\{6,6,6,6,7,7,7,7,8\}$. s ist hier also 3 und die Summe der a_i beträgt 3 * T = 60. s disjunkte Teilmengen: $B_1=\{6,7,7\}$ $B_2=\{6,6,8\}$ $B_3=\{6,7,7\}$

Sei P das 3-Partitionen-Problem und Q das Tetris Problem:

Zu zeigen: P ≤_p Q

Ges.: Abbildung f von (A,T) auf ein Spielbrett und auf eine Folge von Tetrominos.

Spielbrett:

S buckets == s Teilmengen

W=4s+6

H=5T+18

TU - Darmstadt

Mustafa Gökhan Sögüt, Harald Matussek

- Unsere gesuchte Funktion informell beschrieben :
 - Für jedes a. E A erzeuae folgende Seguenz:

Füllen eines Buckets mit Wert 3

Abbildung 3: Füllen der buckets Aus [Breukelaar, S. 5]

Eine lösbare Instanz

- Füllen von bucket j mit Wert a_i korrespondiert mit Aufnehmen des Wertes a_i in B_i.
- Es werden a_i + 1 notches gefüllt.
- Höhe 5T+18 wegen $\sum_{\text{ai aus Bj}} a_i = T$ => T+3 notches und somit 5*(T+3) = 5T+15 , +3 (Anfang) = 5T+18

- Eine unlösbare Instanz
 - Lemma 1
 - Wenn ein Stein oberhalb der 5T +18 Zeilen platziert wird, kann das Spielbrett nicht gelöscht werden. (jedenfalls nicht mit unserer Funktion)
 - Lemma 2
 - Um das Spielbrett zu löschen, darf kein anderer Stein als der dafür vorgesehene den Platz bei lock füllen. (alle anderen hinterlassen lücken-L1)
 - Lemma 3
 - Wenn das Platzieren eines Steins eine Lücke hinterlässt, die kein anderer Stein durch Translation und Rotation erreichen kann, kann das Spielbrett nicht gelöscht werden. (L1)

- Eine unlösbare Instanz
 - Lemma 4
 - Wenn zwei Steine einer Sequenz von "Anfang", "Mitte", "Ende" für einen Wert a_i in verschiedene buckets platziert werden, kann das Spielbrett nicht gelöscht werden. (Stein für Anfang wurde schon plaziert)

Abbildung 5: Alle Möglichkeiten Aus [Breukelaar, S. 7]

Eine unlösbare Instanz

Lemma 5

 Um das Spielbrett zu löschen, müssen die Steine der Sequenz für ein a_i genau so in einem bucket untergebracht werden, wie es in der lösbaren Instanz beschrieben wurde.

Abbildung 7: Alle Möglichkeiten für "Mitte"

Aus [Breukelaar, S. 8]

Abbildung 6: Alle Möglichkeiten für "Anfang"

Aus [Breukelaar, S. 8]

Abbildung 8: Alle Möglichkeiten für "Ende" Aus [Breukelaar, S. 8]

- Eine unlösbare Instanz
 - Lemma 6
 - Um das Spielbrett zu löschen, muss ein bucket genau drei Werte a
 enthalten und die Summe dieser Werte muss T betragen.
 - Das Spielbrett kann aufgrund der Höhe von 5T+18 aber nur gelöscht werden, wenn T+3 notches pro Bucket gefüllt werden. Dies ist mit einer lösbaren Instanz möglich , denn T+3 = ∑aiCB ai +|B|. In einer unlösbaren Instanz ist es nicht möglich.
 - Damit ist gezeigt, dass es eine Funktion gibt mit:
 - $(A,T) \in P \Rightarrow f(A,T) \in Q \text{ und } (A,T) \notin P \Rightarrow f(A,T) \notin Q$
 - => $(A,T) \in P \le f(A,T) \in Q$. D.h. Tetris ist NP-hart; da Tetris auch n NP ist, folgt daraus dass Tetris NP-Vollständig ist.

Reinforcement Learning

- Variante des Maschinellen Lernens
- Agent lernt durch Belohnung & Strafe
- Zustand ⇒ Aktion
- Nutzen maximieren : Nutzenfunktion

Anwendung auf Tetris

- Ziel: Elimination möglichst vieler Reihen
- Problem: Zufällige Blöcke
 Nichtdeterministisch
- Nutzen maximieren mit Nutzentabelle
- Echtzeitproblem

- Blöcke:

- Ouelle: [1]

- Spielfeldgröße: 6x2 Einheiten
- Mögliche Zustände:

Zeileneliminierung:

Quelle: [1]

TU - Darmstadt

Sonderfall:

- Spielrundendauer: 10.000 Blöcke
- Größe der Nutzentabelle: 4096

Performanz

Update:

□ U(Zust.)= U(Zust.) * (1 - α) + (reward + γ * U(nächst. Zust.)) * α

- Verbesserungsvorschlag
 - $\square \alpha = 1/n$
 - \square n \rightarrow Spielrunde

(γ=0.8) value of Alpha			
Game	0.002	0.02	0.2
1	1451	1485	1404
2	1204	1166	1043
4	1043	1032	752
8	971	902	525
16	938	837	420
32	912	644	370
64	955	395	342
128	848	303	339
256	679	289	351

Quelle: [1]

- Probleme
 - □ Exploitation ⇐⇒ Exploration
 - □ Spielfeldgröße ➡ Größe der Nutzentabelle

Repräsentation des Zustandsraumes

- Konturbeschreibung (Skyline)
- TOP TWO LEVEL

Konturbeschreibung

- Höhenunterschiede benachbarter Spalten
 - □ Werte: [-2,-1,0,1,2]
- Informationsverlust: Löcher
- Speicherreduzierung: 3125 Zustände

Konturbeschreibung

Beispiel

Quelle: [2]

Konturbeschreibung

Sonderfall

TU - Darmstadt Mustafa Gökhan Sögüt, Harald Matussek

TOP TWO LEVEL

- M: höchste Spalte
- Informationen der Reihen (M-1) und M

Quelle: [2]

- 4096 Zustände
- Informationen über Löcher

TOP TWO LEVEL

- Verbesserung
 - Zustandsraumverkleinerung: Symmetrie
 - □ 2080 Zustände

Ziel: Schnelleres Lernen

Benchmark

■ 1024 Spiele, 10.000 Blöcke

Quelle: [2]

TU - Darmstadt Mustafa Gökhan Sögüt, Harald Matussek Lg(Spiel)

Repräsentation des Zustandsraumes

- Relevante Informationen: Oberfläche
- α =1/n \Longrightarrow Konvergenz

Relational Reinforcement Learning

- RL-Problem
 - Speicherproblem
 - Konvergenz der Q-Funktion

- Lösung RRL
 - Q-Learning + Relationale Repräsentation

Relational Reinforcement Learning

- Exploration des Zustandsraumes
- Q-Funktion Generalisierung
 - Regression Tree
 - Schätzungen für Zustands Aktionspaare
- Anwendung auf andere/ähnliche Situationen

Fazit

- RL-Technik
 - Effizient trainieren & spielen
- Zustandsraumrepräsentation
 - Detaillierungsgrad: Anwendung auf Vollversion
- RRL-Technik
 - Bandbreite der Anwendungsmöglichkeiten

Quellen

- Stan Melax. Reinforcement Learning Tetris Example, 1998. [1]
 - □ http://www.melax.com/tetris/
- Yael Bdolah and Dror Livnat. Reinforcement Learning Playing Tetris, Course Project, Tel Aviv University 2000. [2]
 - □ http://www.tau.ac.il/~mansour/rl-course/student_proj/livnat/tetris.html
- K. Driessens, and S. Dzeroski, Integrating guidance into relational reinforcement learning, Machine Learning 57, pp. 271-304, 2004. [3]
 - □ http://www.cs.kuleuven.ac.be/~kurtd/papers/2004_mlj_driessens.pdf
 - □ http://www.cs.waikato.ac.nz/~kurtd/papers/2001_acai_driessens_chapter.ps.gz
 - □ http://www.cs.waikato.ac.nz/~kurtd/papers/2005 aic driessens.pdf
 - □ http://www.cs.waikato.ac.nz/~kurtd/papers/2004_phd_driessens.pdf
- www.wikipedia.org
- Tetris ist NP-vollständig, Alexander Wiese Uni Stuttgart
- [Breukelaar] Breukelaar, R., Hoogeboom H.J. und Kosters W.A. (2003), Tetris is Hard, Made Easy, Leiden Institiute of Advanced Computer Science, Universität Leiden 2003

Danke

??? FRAGEN???