$$[notL] \quad \frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, \neg \phi \Longrightarrow \Delta}$$

[andL]
$$\frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, \phi \land \psi \Rightarrow \Delta}$$

[orL]
$$\frac{\Gamma, \phi \Longrightarrow \Delta \qquad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \lor \psi \Longrightarrow \Delta}$$

$$[impL] \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta}$$

[allL]
$$\frac{\Gamma, \forall \tau x; \ \phi, \ [x/t'] \ \phi \Longrightarrow \Delta}{\Gamma, \forall \tau x; \ \phi \Longrightarrow \Delta}$$

[exL]
$$\frac{\Gamma, [x/c] \phi \Longrightarrow \Delta}{\Gamma, \exists \tau \, x; \, \phi \Longrightarrow \Delta}$$

$$[notR] \quad \frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \neg \phi, \Delta}$$

[andR]
$$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$

[orR]
$$\frac{\Gamma \Rightarrow \phi, \psi, \Delta}{\Gamma \Rightarrow \phi \lor \psi, \Delta}$$

[impR]
$$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$$

[allR]
$$\frac{\Gamma \Rightarrow [x/c] \phi, \Delta}{\Gamma \Rightarrow \forall \tau x; \phi, \Delta}$$

$$[\text{exR}] \ \frac{\Gamma \Longrightarrow [x/t'] \, \phi, \ \exists \, \tau \, x; \, \phi, \Delta}{\Gamma \Longrightarrow \exists \, \tau \, x; \, \phi, \Delta}$$

[close]
$$\overline{\Gamma, \phi \Rightarrow \phi, \Delta}$$

$$[closeT] \xrightarrow{\Gamma \implies true, \Delta}$$

- \blacktriangleright $[t/t'] \phi$ is result of replacing each occurrence of t in ϕ with t'
- ightharpoonup t,t' variable-free terms of type τ
- \triangleright c **new** constant of type τ (occurs not on current proof branch)