

Jekuva Pacnoshabahve oбразов

Курс «Компьютерное зрение»

Распознавание объектов Образы и классы

Образ:

> Упорядоченная совокупность дескрипторов

Класс:

Совокупность образов, обладающих некоторыми общими свойствами

Упорядоченное представление признаков:

- > Векторы признаков
- > Символьные строки
- > Деревья

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Пример 1. Дискриминантный анализ Фишера

Пример 2. Представление сигнатуры

Распознавание объектов Локальные признаки

Ступенчатая структура

Задача:

Сохранить числовую и пространственную информацию

Символьная строка: w = ...abababa...

Методы теории принятия решений Классификатор по минимуму расстояния

Решение на основе дискриминативных функций:

$$\mathbf{x} = (x_1, x_2, ..., x_n)^T$$

$$\downarrow$$

$$d_i(\mathbf{x}) > d_j(\mathbf{x}) \quad j = 1, 2, ..., W; \quad j \neq i$$

$$\downarrow$$

$$d_i(\mathbf{x}) - d_j(\mathbf{x}) = 0$$

Классификатор по минимуму расстояния:

$$\mathbf{m}_{j} = \frac{1}{N_{j}} \sum_{\mathbf{x} \in \omega_{j}} \mathbf{x}_{j} \qquad j = 1, 2, \dots, W$$

$$D_j(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{m}_j \right\| \quad j = 1, 2, ..., W \longleftrightarrow d_j(\mathbf{x}) = \mathbf{x}^T \mathbf{m}_j - \frac{1}{2} \mathbf{m}_j^T \mathbf{m}_j \quad j = 1, 2, ..., W$$

$$d_{ij}(\mathbf{x}) = d_i(\mathbf{x}) - d_j(\mathbf{x}) = \mathbf{x}^T (\mathbf{m}_i - \mathbf{m}_j) - \frac{1}{2} (\mathbf{m}_i - \mathbf{m}_j)^T (\mathbf{m}_i - \mathbf{m}_j) = 0$$

Методы теории принятия решений

Коэффициенты

корреляции == отклики

Корреляционное сопоставление

Поиск откликов при пространственной фильтрации:

(m-1)/2└─ Начало координат $(n-1)/2 \rightarrow$ с центром в произвольной точке (x, y)

Расширение

Корреляционное сопоставление с эталоном

Эталон эпицентра урагана

> Максимальный отклик == точка локализации эпицентра

Изображение, ƒ

∕ МФТИ

Статист. оптимальные классификаторы Байесовский классификатор Плотности распределения для двух одномернь

Вероятностный подход к распознаванию:

Средняя величина потерь через вероятность принадлежности образа к классу

$$r_j(\mathbf{x}) = \sum_{k=1}^W L_{kj} p(\omega_k \mid \mathbf{x}) \qquad r_j(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \sum_{k=1}^W L_{kj} p(\mathbf{x} \mid \omega_k) P(\omega_k)$$

> Условие принадлежности к классу

$$\sum_{k=1}^{W} L_{ki} p(\mathbf{x} | \omega_k) P(\omega_k) < \sum_{q=1}^{W} L_{qj} p(\mathbf{x} | \omega_q) P(\omega_q)$$

 \succ С учетом функции потерь $L_{ij} = 1 - \delta_{ij}$

$$r_j(\mathbf{x}) = \sum_{k=1}^{W} (1 - \delta_{kj}) p(\mathbf{x} | \omega_k) P(\omega_k) = p(\mathbf{x}) - p(\mathbf{x} | \omega_j) P(\omega_j)$$

ightharpoonupВычисление дискриминантных функций $d_{j}(\mathbf{x}) = p(\mathbf{x} | \mathbf{\omega}_{j}) P(\mathbf{\omega}_{j})$ j = 1, 2, ..., W

Плотности распределения для двух одномерных классов: х_о - положение разделяющей поверхности при равновероятных классах

Байесовский классификатор для классов с нормальным распределением

$$d_{j}(x) = p(x|\omega_{j})P(\omega_{j}) = \frac{1}{\sqrt{2\pi\sigma_{j}}} e^{-\frac{(x-m_{j})^{2}}{2\sigma_{j}^{2}}} P(\omega_{j}) \qquad j = 1, 2$$

МФТИ

Статист. оптимальные классификаторы

Применение байесовского классификатора

Классификация мультиспектральных изображений

Нейронные сети Предпосылки

Предыдущие идеи:

 Обучение – процесс, в ходе которого с помощью обучающей выборки оцениваются параметры функции, на основе которой строятся дискриминантные функции

Реальные задачи:

- Статистические свойства классов заранее неизвестны
- Требуется устранить необходимость использовать предположения о функциях плотностей распределения вероятностей классов
- > => построение дискриминантных функций непосредственно в ходе обучения

Этапы развития идей нейронных сетей в контексте машинного обучения

Нейронные сети Перцептрон для разделения двух классов

Простейший вид:

- Построение линейной дискриминантной функции для двух линейно разделимых классов
- > Отклик на основе взвешенной суммы входов

$$d(\mathbf{x}) = \sum_{i=1}^{n} w_i x_i + w_{n+1}$$

> С точки зрения разделяющей поверхности

$$d(\mathbf{x}) = \sum_{i=1}^{n} w_i x_i + w_{n+1} = 0$$

> Выражение через расширенный вектор признаков

$$d(\mathbf{y}) = \sum_{i=1}^{n+1} w_i y_i = \mathbf{w}^T \mathbf{y}$$

Представление модели персептрона для двух классов образов

Beca

Нейронные сети Варианты обучения перцептрона

Случай двух линейно разделимых классов:

- \succ Две обучающие выборки $\omega 1$ и $\omega 2$, w(1) некоторый начальный весовой вектор, выбираемый произвольно
- \succ На k-м шаге итерации, если y(k) ∈ ω1 и w^T(k)y(k) ≤ 0, то w(k) заменяется на $\mathbf{w}(k+1) = \mathbf{w}(k) + c\mathbf{y}(k)$
- \triangleright Ecλu ecλu y(k) \in ω2 и w^T(k)y(k) \geq 0, το w(k) заменяется на $\mathbf{w}(k+1) = \mathbf{w}(k) - c\mathbf{y}(k)$

Алгоритм постоянного коэффициента коррекции.

Сходимость алгоритма => обучающие выборки обоих классов целиком проходят через последовательность итераций без единой ошибки

Случай линейно неразделимых классов:

Дельта-правило наименьшего среднего квадрата Уидроу - Хоффа

- > Целевая функция $J(\mathbf{w}) = \frac{1}{2} (r \mathbf{w}^T \mathbf{y})^2$
- > Изменение весового вектора на k-м шаге

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \alpha \left[\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} \right]_{\mathbf{w} = \mathbf{w}(k)}$$

> Величина допущенной ошибки

$$e(k) = r(k) - \mathbf{w}^{T}(k)\mathbf{y}(k)$$

Уменьшение ошибки на k-й итерации

$$\Delta e = -\alpha e(k) \mathbf{y}^{T}(k) \mathbf{y}(k) = -\alpha e(k) \|\mathbf{y}(k)\|^{2}$$

Алгоритм сходится к решению, минимизирующему средний квадрат ошибки на образах обучающей выборки

Модель многослойной нейронной сети

Нейронные сети Многослойные нейронные сети

Базовая архитектура:

Слои, в которых находятся идентичные по структуре вычислительные узлы

Нейронные сети Пример классификации формы фигуры

Поэтапное обучение модели:

- Инициализация весов
- > Обучение на эталонных формах
- Несколько итераций обучения на формах с постепенным увеличением искажений

Форма 1

Форма 1

A

4

Форма 2

Форма 3

Входной вектор признаков

Форма 4

Слой A $N_A = 48$

Повышение качества распознавания для Rt = 0,4 при увеличении объема обучающей выборки

Нейронные сети

Сложность разделяющих поверхностей

Структура сети	Виды областей решений	Решение проблемы «исключающего ИЛИ»	Классы с «зацепляющимися» областями	Разделяющие поверхности наиболее общей формы
Однослойная	Полупрос- транство	ω_1 ω_2 ω_1	ω_2	
Двухслойная	Открытая или замкнутая выпуклая область	ω_1 ω_2 ω_1	ω_2	
Трехслойная	Произвольная (сложность ограничена числом узлов)	(ω_1) (ω_2) (ω_1)	ω_2	

Структурные методы распознавания

Сопоставление номеров фигур

Ранее:

Учет количественных характеристик, без структурных связей

Сопоставление:

 Степень сходства к формы границ двух областей определяется как наибольшее значение порядка, при котором номера фигур совпадают

Дерево сходство

Степень сходства

Матрица сходства

	a	b	c	d	e	f
a	8	6	6	6	6	6
b		∞	8	8	10	8
c			00	8	8	12
d				00	8	8
e					00	8
f						00
'						14

Структурные методы распознавания

Сопоставление строк символов Примеры границ объектов из двух различных классов

- > Границы а и b закодированы в виде строк символов a1, a2, ... an, b1, b2, ..., bm
- ➤ Совпадение на k-й позиции, если ak == bk
- ightharpoonup Пусть α общее число совпадений этих строк, тогда число несовпадающих символов равно $\beta = \max(|a|,|b|) \alpha$
- Мера сходства а и b

$$R = \frac{\alpha}{\beta} = \frac{\alpha}{\max(|a|,|b|) - \alpha}$$

Аппроксимация этих границ ломаными линиями

R		1.a	1.b	1.c	1.d	1.e	1.f
1.8	a	∞					
1.1)	16.0 9.6 5.1	∞				
1.0	С	9.6	26.3	∞			
1.0	1	5.1	8.1	10.3	∞		
1.0	Э	4.7	7.2	10.3	14.2	∞	
1.	f	4.7 4.7	7.2	10.3	8.4	23.7	∞

R	2.a	2.b	2.c	2.d	2.e	2.f
2.a	∞					
2.b	33.5	∞				
2.c	4.8	5.8	∞			
2.d	3.6	4.2	19.3	∞		
2.e	2.8	3.3	9.2	18.3	∞	
2.f	2.6	3.0	7.7	13.5	27.0	∞

Таблицы значений R

R	1.a	1.b	1.c	1.d	1.e	1.f
2.a	1.24	1.50	1.32	1.47	1.55	1.48
2.b	1.18	1.43	1.32	1.47	1.55	1.48
2.c	1.02	1.18	1.19	1.32	1.39	1.48
2.d	1.02	1.18	1.19	1.32	1.29	1.40
2.e	0.93	1.07	1.08	1.19	1.24	1.25
2.f	0.89	1.02	1.02	1.24	1.22	1.18

L2 (Euclidean) distance

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

 $d_1(I_1, I_2) = \sum |I_1^p - I_2^p|$

Distance Metric to compare images

 $d_1(I_1, I_2) = \sum |I_1^p - I_2^p|$

Пример структуризации знаний

На примере лекции курса CS231n

ML в компьютерном зрении / CS231n Постановка проблемы

An image classifier

def classify_image(image):
 # Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

1. Problem setting up

miro

K-Nearest Neighbors: Distance Metric

k-Nearest Neighbor on images never used.

- Curse of dimensionality

ML в компьютерном зрении / CS231n

Data-driven подход

Distance Metric to compare images

ML в компьютерном зрении / CS231n

Гиперпараметры

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

for this data)

miro

ML в компьютерном зрении / CS231n Функциональный подход

- > Распознавание образов
- > Использование локальных признаков
- > Классификаторы по минимуму расстояния
- > Статистически оптимальные классификаторы
- > Нейронные сети
- > Структурные методы распознавания
- ➤ + метод организации знаний на примере лекции курса CS231n

Спасибо за внимание!

Колокольников Георгий Андреевич

Telegram: @Georg_Bell

E-mail: geokolok5@gmail.com

Caйт: https://github.com/GeorgBell

Использованные материалы:

- ▶ Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2012. 1104 с. ISBN 978-5-94836-331-8.2.
- > Kypc лекций cs231n «Convolutional Neural Networks for Visual Recognition» (http://cs231n.stanford.edu).
- > Kypc лекций HSE «Deep Learning in Computer Vision» (https://www.coursera.org/learn/deep-learning-in-computer-vision)