Lecture 9. Visual Data Association

CAIT
Mobile Robotics Lab
Perception in Robotics course

Motivation. Why do we need data association?

PS2. An observation of **4-th** landmark.

No need for DA

Factor graph (**trajectory** and **observations**) of **Square Root SAM**.

covariance matrix

DA is required

What if we don't know what landmark are the observation associated with?

Front-end and back-end of a SLAM system

Construct
the graph
(Frontend),
depends on
the data
and the
method

Solved poses

Back-end is the **Mathematical Optimization framework**

- Extended Kalman Filter
- Particle Filter
- Graph SLAM
- Bundle Adjustment (Visual SLAM)

Front-end (Visual SLAM):

- Feature extraction
- Feature association

Landmarks for Visual SLAM?

Sparse local features. Keypoints

Green circles are **keypoints** detected on both images

Sparse local features. Descriptors

256d. Binary vector. **Hamming distance**

Sparse local features. Associations

NN matching

Consider two sets of descriptors:

$$d_i^1 \in \{d_0^1, \dots, d_{n_1-1}^1\}, \quad ||d_i^1||_2 = 1$$

$$d_i^2 \in \{d_0^2, \dots, d_{n_2-1}^2\}, \quad ||d_i^2||_2 = 1$$

Then the NN for **each index** from the **first set** can be found as:

$$m_i^1 = \underset{j \in \{0, \dots, n_2 - 1\}}{argmin} ||d_i^1 - d_j^2||_2$$

Association filtering. Lowe ratio. Mutual NN

Lowe ratio test

Let $\tilde{m}_i^1 = j$ be retained then it holds:

$$\frac{||d_i^1 - d_j^2||_2}{||d_i^1 - d_k^2||_2} < r, \quad r \in [0, 1]$$

where

$$k = \underset{l \in \{0, \dots, j-1, j+1, \dots, n_2-1\}}{argmin} ||d_i^1 - d_l^2||_2$$

Mutual NN

Enforce: $\tilde{m}_i^1 \to j \cap \tilde{m}_j^2 \to i$

