SIPMOS ® Power Transistor

- P channel
- Enhancement mode
- Avalanche rated

Pin 1	Pin 2	Pin 3
G	D	S

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Ordering Code
BUZ 171	-50 V	-8 A	0.3 Ω	TO-220 AB	C67078-S1450-A2

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		Α
$T_{\rm C}$ = 30 °C		-8	
Pulsed drain current	I _{Dpuls}		
$T_{\rm C}$ = 25 °C		-32	
Avalanche energy, single pulse	E _{AS}		mJ
I_{D} = -8 A, V_{DD} = -25 V, R_{GS} = 25 Ω			
$L = 1.1 \text{ mH}, T_j = 25 \text{ °C}$		70	
Gate source voltage	V_{GS}	± 20	V
Power dissipation	P _{tot}		W
<i>T</i> _C = 25 °C		40	
Operating temperature	$ T_{j} $	-55 + 150	°C
Storage temperature	T_{stg}	-55 + 150	
Thermal resistance, chip case	R _{thJC}	≤ 3.1	K/W
Thermal resistance, chip to ambient	R _{thJA}	≤ 75	
DIN humidity category, DIN 40 040		Е	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = -0.25 mA, $T_{\rm j}$ = 25 °C		-50	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}}=V_{\text{DS}}$, $I_{\text{D}}=1$ mA		-2.1	-3	-4	
Zero gate voltage drain current	I _{DSS}				μA
V_{DS} = -50 V, V_{GS} = 0 V, T_{j} = 25 °C		-	-0.1	-1	
$V_{\rm DS}$ = -50 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 125 °C		-	-10	-100	
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = -20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	-10	-100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{GS} = -10 \text{ V}, I_{D} = -5 \text{ A}$		-	0.25	0.3	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g _{fs}				S
$V_{DS} \ge 2 * I_D * R_{DS(on)max}, I_D = -5 A$		1.5	2.3	-	
Input capacitance	C_{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = -25 \text{ V}, \ f = 1 \text{ MHz}$		-	750	1000	
Output capacitance	C_{oss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = -25 \text{ V}, \ f = 1 \text{ MHz}$		-	270	400	
Reverse transfer capacitance	C_{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = -25 \text{ V}, \ f = 1 \text{ MHz}$		-	120	180	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -2.9 A					
$R_{\rm GS} = 50 \ \Omega$		-	20	30	
Rise time	t_{r}				
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -2.9 A					
$R_{\rm GS} = 50 \ \Omega$		-	110	170	
Turn-off delay time	$t_{\rm d(off)}$				
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -2.9 A					
$R_{\rm GS} = 50 \ \Omega$		-	70	90	
Fall time	<i>t</i> _f				
V_{DD} = -30 V, V_{GS} = -10 V, I_{D} = -2.9 A					
$R_{\rm GS} = 50 \ \Omega$		-	100	140	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				Α
<i>T</i> _C = 25 °C		-	-	-8	
Inverse diode direct current,pulsed	I _{SM}				
<i>T</i> _C = 25 °C		-	-	-32	
Inverse diode forward voltage	V_{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = -16 \text{ A}$		-	-1.25	-1.7	
Reverse recovery time	t_{rr}				ns
V_{R} = -30 V, $I_{F}=I_{S}$, dI_{F}/dt = 100 A/ μ s		-	90	-	
Reverse recovery charge	Q _{rr}				μC
V_{R} = -30 V, $I_{F}=I_{S_{1}} di_{F}/dt$ = 100 A/ μ s		-	0.23	-	

Power dissipation

$$P_{\mathsf{tot}} = f(T_{\mathsf{C}})$$

Drain current

$$I_{\mathsf{D}} = f(T_{\mathsf{C}})$$

parameter: $V_{GS} \ge -10 \text{ V}$

Safe operating area

$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$

parameter: D = 0.01, $T_C = 25$ °C

Transient thermal impedance

$$Z_{\mathsf{th\ JC}} = f(t_{\mathsf{p}})$$

parameter: $D = t_p / T$

Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS})$ parameter: $t_{\rm p} = 80~\mu{\rm s}$

Typ. transfer characteristics $I_D = f(V_{GS})$ parameter: $t_p = 80 \mu s$ $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

-15 -12 I_{D} -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 0 -1 -2 -3 -5 -6 -7 -8 0

Typ. drain-source on-resistance

 $R_{\text{DS (on)}} = f(I_{\text{D}})$ parameter: V_{GS}

Typ. forward transconductance $g_{fS} = f(I_D)$

parameter: $t_p = 80 \mu s$, $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{\rm DS~(on)} = f(T_{\rm j})$ parameter: $I_{\rm D} = -5$ A, $V_{\rm GS} = -10$ V

Gate threshold voltage

 $V_{GS (th)} = f(T_j)$

parameter: $V_{GS} = V_{DS}$, $I_{D} = 1 \text{ mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0V$, f = 1MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_i , $t_p = 80 \mu s$

Avalanche energy $E_{\rm AS} = f(T_{\rm j})$ parameter: $I_{\rm D}$ = -8 A, $V_{\rm DD}$ = -25 V $R_{\rm GS}$ = 25 Ω , L = 1.1 mH

Drain-source breakdown voltage

$$V_{(\mathsf{BR})\mathsf{DSS}} = f(T_{\mathsf{j}})$$

Package Outlines

TO-220 AB

Dimension in mm

- 1) punch direction, burr max. 0.04
- 2) dip tinning
- 3) max. 14.5 by dip tinning press burr max. 0.05