DoSA-3D User Manual

Solenoid Example

2022-03-19 GiTae Kweon (zgitae@gmail.com)

DoSA Structure

PC Requirement

> CPU: 4 Core and above

> RAM: 16GB and above

Program Structure

Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Shape: Check the 3D Shape

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Virtual Test

✓ Force : Magnetic force estimation

Analysis Model

Analysis Model

1. Model Shape

2. Product Specifications

A. Coil Turns

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

B. Power

• Voltage: 14.5V

(Example Files : DoSA-3D Install Directory > Samples > Solenoid)

New design

1. Toolbar > Click New Button

2. Design Name: "Solenoid"

3. Shape File (STEP): Select Solenoid.step (provided with this tutorial document)

[Precautions for the Shape Model]

DoSA-3D still has the following functional limitations.

- 가. Limitation of Coil Shape
 - Coil center axis should be Y axis direction.
 - The current is applied like a cylindrical coil. (Square coils can cause some differences)
- 나. Moving Part
 - The moving part still supports only one component..

New design

- 4. Check the solenoid shape in Gmsh.
- 5. Exit the Gmsh.
- 6. Check the part names.
- 7. Click the OK button if there are no problem with the shape and part names.

New design

8. Check the design creation.

Parts Design

Add a Coil

- 1. Toolbar > Click Coil button
- 2. Select "Coil" in the list box.
- 3. Click the OK button.

Coil design

1. Input Coil specifications

✓ Inner Diameter: 9.6

✓ Outer Diameter: 21.6

✓ Coil Height: 16

✓ Copper Diameter: 0.27

2. Calculate the coil specification

✓ Click "Coil Design" button

3. Check the coil specification

Δ	Common Fields	
	Node Name	Coil
Δ	Specification Fields	
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	FIXED
Δ	Calculated Fields	
	Coil Turns	1040
	Coil Resistance [Ω]	15, 20945
	Coil Layers	20
	Turns of One Layer	52
Δ	Design Fields (optio	nal)
	Coil Wire Grade	Enameled_IEC_Grade_2
	Inner Diameter [mm]	9.6
	Outer Diameter [mm]	21,6
	Coil Height [mm]	16
	Copper Diameter [mm]	0.27
	Wire Diameter [mm]	0.31072
	Coil Temperature [°€]	20
	11 1 1 1 0 10 1 1	0.0
	Horizontal Coefficient	0.9
	Vertical Coefficient	0.98

1

Add an Armature

- 1. Toolbar > Click Steel button
- 2. Select "Armature" in the list box.
- 3. Click the OK button.

Armature setting

1. Armature setting

✓ Part Material : SUS_430✓ Moving Parts : MOVING

[BH 곡선]

Add a core

- 1. Toolbar > Click Steel button
- 2. Select "Core" in the list box.
- 3. Click the OK button.

Core setting

1. Core settings

✓ Part Material : SUS_430

1

Add a case

- 1. Toolbar > Click Steel button
- 2. Select "Case" in the list box.
- 3. Click the OK button.

Case setting

1. Case Settings

✓ Part Material : SUS_430

1

Virtual Test

Test of the magnetic force

1. Toolbar > Click Force Button

2. Force Test Name: "Force"

3. Click OK Button

4. Setting of magnetic force test

✓ Voltage: 14.5

5. Setting of analysis condition

✓ Mesh Size Percent : 5

✓ Actuator Type : Solenoid

6. Click "Force Test" Button

Run the virtual test

- 7. Click the Run button after checking the shape.
- 8. If you want to see the analysis progress, click the status bar of the Gmsh.

Results of the virtual test

- 9. Check the analysis results after solving. (The solving time is depend on you system specification)
- 10. Quit the Gmsh. (When finished, Gmsh is automatically restarted)
- 11. Check a magnetic force of the solenoid.

Tips

Open Design

- 1. Toolbar > Click Open Button
- 2. Double click the design directory.
- 3. Double click the design file.

Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org