

Swiss Institute of **Bioinformatics**

SINGLE-CELL TRANSCRIPTOMICS WITH R

Integration analysis

Deepak Tanwar

March 18-20, 2025

Adapted from previous year courses

Feedback from Geert van Geest

Learning objectives

Understand the importance of experimental design

Identify scenarios where integration is necessary for data analysis

Apply canonical correlation analysis (CCA) for integrating datasets

Experimental design matters

What changes would you make here to make the experimental design more optimal?

Experimental design matters

Exercise: Identify problem in this plot

Exercise: Identify problem in this plot

- **Explore the data:** do not just always perform integration because you think there might be differences
- If cells cluster by sample, condition, batch, dataset, modality, performing integration can help align cells across the groups to greatly improve the clustering and the downstream analyses.

Example scenarios for integration: conditions

Example scenarios for integration: datasets

Integration using CCA: canonical correlation analysis

Quiz

In which condition will you perform integration?

- A) When cells cluster by sample
- B) When cells cluster by condition
- C) When cells cluster by batch
- D) When cells cluster by dataset
- E) None of the above
- F) All of the above

Summary

Experimental Design Matters: Optimize design to improve data quality and analysis

Integration Scenarios:

- Conditions: Compare different experimental conditions
- <u>Datasets</u>: Analyze data from different platforms together

Integration Using CCA:

- Align cells across groups to improve clustering and downstream analyses
- Compute correction vectors for each query cell to transform its expression for joint analysis

Thank you

sib.swiss

