Probability

Derek Li

Contents

1	Review		
	1.1	Set	2
	1.2	Number Systems and Euclidean Space	2
	1.3	Functions	3
	1.4	Inverse Image	3
	1.5	Indicator Functions and Indicator Map	4
	1.6	Series	5
2	Random Variables		
	2.1	Distribution Functions in General	6
	2.2	Fundamental Theorem of Applied Probability	6

1 Review

1.1 Set

Definition 1.1 (Power Set). For a given set Ω , the power set is the set of all of its subsets

$$\mathcal{P}(\Omega) = \{A | A \subset \Omega\}.$$

The power set is closed w.r.t. all the usual set-theoretic operations.

Definition 1.2 (Arbitrary Unions). Let $\omega \in \Omega$, $A_n \subset \Omega$, $n \in \mathbb{N}$.

$$\omega \in \bigcup_{n=1}^{\infty} A_n \text{ iff } \exists n \text{ s.t. } \omega \in A_n$$

Definition 1.3 (Arbitrary Intersections). Let $\omega \in \Omega$, $A_n \subset \Omega$, $n \in \mathbb{N}$.

$$\omega \in \bigcap_{n=1}^{\infty} A_n \text{ iff } \forall n, \omega \in A_n.$$

Hence, we have

$$P(\omega \in A_n, \exists n) = P\left(\omega \in \bigcup_{n=1}^{\infty} A_n\right) \text{ and } P(\omega \in A_n, \forall n) = P\left(\omega \in \bigcap_{n=1}^{\infty} A_n\right).$$

Definition 1.4 (Infinitely Often). Let $\omega \in \Omega$, $A_n \subset \Omega$, $n, N \in \mathbb{N}$.

$$\omega \in \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A_n \text{ iff } \forall N, \exists n \geqslant N \text{ s.t. } \omega \in \bigcup_{n=N}^{\infty} A_n.$$

1.2 Number Systems and Euclidean Space

With the notation of set, one way to consider whole number could be: $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{0, 1\}, \cdots$, and thus

$$n + 1 = n \cup \{n\}$$

$$= \{0, 1, \dots, n - 1\} \cup \{n\}$$

$$= \{0, 1, \dots, n\}.$$

We can also define number systems with set:

$$\mathbb{N} = \{1, 2, \dots\}, \mathbb{W} = \mathbb{N} \cup \{0\}, \mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}, \mathbb{Q} = \left\{\frac{n}{m} \middle| n \in \mathbb{Z}, m \in \mathbb{N}\right\},$$

$$\mathbb{R} = \left\{x = \lim_{n \to \infty} r_n \middle| r_n \in \mathbb{Q}, n \in \mathbb{N}\right\}, \mathbb{C} = \{z = x + iy \middle| x, y \in \mathbb{R}\}.$$

In multi-variable calculus, we define

$$\mathbb{R}^n = \{ \mathbf{x} | x_i \in \mathbb{R}. i = 1, \cdots, n \},\$$

where $\mathbf{x} = (x_i, i = 1, \dots, n)$ and

$$\mathbb{R}^{\infty} = \{ \mathbf{x} = (x_i, i = 1, 2, \cdots) | x_i \in \mathbb{R}, i \in \mathbb{N} \}.$$

1.3 Functions

Before we define a function, we look at the product $A \times B$ of any two sets A and B, which is defined as the set of all ordered pairs that may be formed of the elements of the first set A, with the second set B:

$$A\times B=\{(a,b)|a\in A,b\in B\}.$$

Definition 1.5 (Ordered Pairs). An ordered pair is $(a, b) = \{\{a\}, \{a, b\}\}$.

Definition 1.6 (Function). A function f with domain A and range B, denoted by $f: A \to B$, is any $f \subset A \times B$ s.t. $\forall a \in A, \exists! b \in B$ with $(a, b) \in f$.

From the definition, b is uniquely determined by a and we may write b = f(a).

The collection of all functions from a particular domain A to a certain B is denoted by

$$B^A = \{ f \subset A \times B | f : A \to B \}.$$

1.4 Inverse Image

Definition 1.7 (Inverse Image). For any function say $X: \Omega \to \mathcal{X}$, the inverse image of any $A \subset \mathcal{X}$ is defined as

$$X^{-1}(A) := \{ \omega \in \Omega | X(\omega) \in A \}.$$

1.5 Indicator Functions and Indicator Map

Definition 1.8 (Indicator Function). For any $A \subset \Omega$, we define $I_A \in 2^{\Omega}$ by

$$I_A(\omega) := \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}.$$

Indicator function defines a bijective correspondence between subsets of Ω and their indicator functions, that is referred to as the indicator map

$$I: \mathcal{P}(\Omega) \stackrel{\cong}{\to} 2^{\Omega}$$

 $A \mapsto I_A.$

Theorem 1.1. The indicator map is bijective.

Proof. We want to show the indicator map is both injective and surjective.

(Injection) Let $I_A = I_B$, then $I_A(\omega) = I_B(\omega), \forall \omega$.

We have

$$\omega \in A \Leftrightarrow I_A(\omega) = 1 = I_B(\omega) \Leftrightarrow \omega \in B$$
,

i.e., A = B.

(Surjection) Want to show $\forall f \in 2^{\Omega}, \exists A \in \mathcal{P}(\Omega) \text{ s.t. } I(A) = I_A = f.$

Take any $f \in 2^{\Omega}$ and let $A = {\omega | f(\omega) = 1}$. We have

$$\omega \in A \Leftrightarrow \begin{cases} f(\omega) = 1 \\ I_A(\omega) = 1 \end{cases} \Rightarrow f(\omega) = I_A(\omega), \forall \omega.$$

Hence, $f = I_A$.

From the proof, we also have

$$A = f^{-1}(1) = I_A^{-1}(1).$$

Note that

$$I_{\bigcap_{n=1}^{\infty} A_n}(\omega) = \inf_{n=1}^{\infty} I_{A_n}(\omega) \text{ and } I_{\bigcup_{n=1}^{\infty} A_n}(\omega) = \sup_{n=1}^{\infty} I_{A_n}(\omega).$$

Also,

$$\sum_{n=1}^{\infty} I_{A_n}(\omega) \in \mathbb{W} \cup \{\infty\}.$$

1.6 Series

Recall that when |a| < 1,

$$\sum_{i=0}^{\infty} a^i := \lim_{n \to \infty} \sum_{i=0}^n a^i = \lim_{n \to \infty} \frac{1 - a^{n+1}}{1 - a} = \frac{1}{1 - a}.$$

2 Random Variables

Definition 2.1 (Finite Discrete Uniform Distribution). $U \sim \text{unif}(\Omega)$ with ${}^{\#}\Omega < {}^{\#}\mathbb{N}$ iff

$$P(U = \omega) = \frac{1}{\Omega} \Leftrightarrow P(U \in A) = \frac{\#A}{\#\Omega}.$$

Example 2.1. $U \sim \text{unif}\{1, \dots, n\} \text{ iff } P(U = i) = \frac{1}{n}, i = 1, \dots, n.$

Note. $-U \sim \text{unif}\{-n, \cdots, -1\}$ and $n+1-U \sim \text{unif}\{1, \cdots, n\}$. Hence we say $n+1-U \stackrel{\text{d}}{=} U$ and thus

$$n+1-\mathbb{E}[U]=\mathbb{E}[U]\Rightarrow \mathbb{E}[U]=\frac{n+1}{2}=\frac{1+\cdots+n}{n}.$$

Here is another way to express $Z \sim \text{unif}\{0, 1, \dots, p-1\}$.

Definition 2.2. $Z \sim \text{unif}(p)$, where $p = \{0, 1, \dots, p-1\}$, iff

$$P(Z=i) = \frac{1}{p}, \forall i \in p.$$

Definition 2.3 (Uniform Distribution). $U \sim \text{unif}[0,1]$ iff

$$P(U \le u) = u, \forall 0 \le u \le 1.$$

2.1 Distribution Functions in General

Theorem 2.1 (Sequential Continuity). $A_n \to A \Rightarrow P(A_n) \to P(A)$.

2.2 Fundamental Theorem of Applied Probability

For any $p \in \mathbb{N}$ with $p \ge 2$ we define the p-adic series

$$U = \sum_{i=1}^{\infty} Z_i p^{-i}.$$

Example 2.2. $Z: z_{11}, z_{12}, \cdots, z_{1n}, \cdots; z_{21}, z_{22}, \cdots, z_{2n}$ and $U = .z_{11}z_{12}z_{13}\cdots, .z_{21}z_{22}z_{23}\cdots$.

If
$$Z \sim \text{unif}(10)$$
, then $z_1 z_2 \cdots z_n \cdots = \sum_{i=1}^{\infty} z_i 10^{-i}$.

Lemma 2.1. Let $\dot{p}^{\infty} = \{\mathbf{z} = (z_i, i \in \mathbb{N}) | z_i \in p, i \in \mathbb{N}, z_i < p-1 \text{ io}(i)\}$. Then $u = \sum_{i=1}^{\infty} z_i p^{-i}$ defines a bijective function $\Phi : \dot{p}^{\infty} \xrightarrow{\cong} [0, 1)$.

Note. The range cannot include 1, because it is not allowed to end in p-1 repeated and

$$\sum_{i=1}^{\infty} p^{-i}(p-1) = \frac{p-1}{p} \sum_{i=0}^{\infty} p^{-i} = \frac{p-1}{p} = 1.$$

Proof. We know $0 \le u < \frac{p-1}{p} \sum_{i=0}^{\infty} p^{-i} = 1$.

Besides.

$$u = \sum_{i=1}^{\infty} z_i p^{-i}$$

$$\Leftrightarrow 0 \leqslant u - \sum_{i=1}^{n} z_i p^{-i} = \sum_{i=n+1}^{\infty} z_i p^{-i} < \sum_{i=n+1}^{\infty} p^{-i} (p-1) = p^{-(n+1)} \frac{p-1}{1-1/p} = p^{-n}.$$

$$\Leftrightarrow z_n p^{-n} \leqslant u - \sum_{i=1}^{n-1} z_i p^{-i} < p^{-n} + z_n p^{-n} = (z_n + 1) p^{-n}.$$

$$\Leftrightarrow z_n \leqslant p^n \left(u - \sum_{i=1}^{n-1} z_i p^{-i} \right) < z_n + 1.$$

Recall that [x] = m iff $m \le x < m+1$ uniquely determines m as the greatest integer less than or equal to x. Therefore,

$$z_n = \left[p^n \left(u - \sum_{i=1}^{n-1} z_i p^{-i} \right) \right], n \geqslant 2,$$

and $z_1 = [pu]$.

Lemma 2.2. For $u = \sum_{i=1}^{\infty} z_i p^{-i}$, $\mathbf{z} \in \dot{p}^{\infty}$, we have

$$z_1 = b_1, \dots, z_n = b_n \Leftrightarrow u \in \left[\sum_{i=1}^n b_i p^{-i}, \sum_{i=1}^n b_i p^{-i} + p^{-n}\right]$$

Theorem 2.2 (Fundamental Theorem of Applied Probability). For $U=\sum_{i=1}^{\infty}Z_ip^{-i}, p\geqslant 2$, we have

$$U \sim \mathrm{unif}[0,1] \Leftrightarrow Z_i \overset{\mathrm{i.i.d.}}{\sim} \mathrm{unif}(p).$$