Statistical Tests Reference

Parametric and Non-Parametric Tests with Examples and Assumptions

Parametric vs Non-Parametric Tests

Parametric Tests

- Assume data follows a normal distribution
- Examples: Z-test, T-test, ANOVA
- Use interval/ratio data

Non-Parametric Tests

- No strict distribution assumption
- Examples: Chi-square, Mann-Whitney
- Use ordinal/nominal data

Z-Test

- Use: Compare sample mean to population mean (large n)
- Formula: $Z = (\bar{X} \mu) / (\sigma / \sqrt{n})$
- Example: Average height of 100 students vs national average
- Assumptions: Normal distribution, known population variance (σ^2)

T-test

- •Use: Compare means when σ is unknown (small n)
- •Types: One-sample, Independent, Paired
- •Formula: $t = (\bar{X} \mu) / (s / \sqrt{n})$
- •Example: Compare average exam scores of two classes
- •Assumptions: Normal distribution, equal variances,

independence

ANOVA (Analysis of Variance)

- •Use: Compare means of 3 or more groups
- Logic: Between-group vs within-group variation
- •Formula: F = MSB / MSW
- •Example: Different teaching methods effect on marks
- •Assumptions: Normality, equal variances, independent

samples

Chi-Square Test (χ²)

Use: Association between categorical variables

•Formula: $\chi^2 = \Sigma((O - E)^2 / E)$

•Example: Gender vs product preference

Assumptions: Independent observations,

expected frequency ≥ 5, categorical data

Summary Comparison of Statistical Tests

Test	Туре	Purpose	Formula / Logic	Example	Assumptions
Z-Test	Parametric	Compare sample mean to population mean (large n)	$Z = (\bar{X} - \mu) / (\sigma / \sqrt{n})$	Average height of 100 students vs national average	Normal distribution, σ known
T-Test	Parametric	Compare means when σ unknown (small n)	$t = (\bar{X} - \mu) / (s / \sqrt{n})$	Compare exam scores of two classes	Normal distribution, equal variances, independence
ANOVA	Parametric	Compare means of 3+ groups	F = MSB / MSW	Teaching methods effect on marks	Normality, equal variances, independent samples
Chi-Square (χ²)	Non-Parametric	Test association between categorical variables	$\chi^2 = \Sigma((O - E)^2 / E)$	Gender vs product preference	Independent observations, expected freq ≥ 5, categorical data