Neural Coreference Resolution Models

Natalie Parde UIC CS 421

Neural Classification Models

- Generally end-to-end systems
- May not have a separate mention detection step
 - Instead, consider every possible text span of length < k as a possible mention
- Same overall goal as usual:
 - Assign to each span i an antecedent y_i ranging over the values $Y(i) = \{1, ..., i-1, \epsilon\}$

What goes on behind the scenes?

- For each pair of spans i and j, the system assigns a score s(i,j) for the coreference link between the two
 - s(i,j) = m(i) + m(j) + c(i,j)
 - m(i): Whether span i is a mention
 - m(j): Whether span j is a mention
 - c(i,j): Whether j is the antecedent of i
- The functions $m(\cdot)$ and $c(\cdot,\cdot)$ are computed using neural models:
 - $m(i) = w_m \cdot FFNN_m(g_i)$
 - $c(i,j) = w_c \cdot FFNN_c([g_i, g_j, g_i \circ g_j, \phi(i,j)])$
 - Where g_i is a vector representation of span i, and $\phi(i,j)$ encodes manually-defined characteristics of the relationship between i and j
 - Note that the exact definition of c(i, j) may differ across models!

