This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) An organic semiconducting layer formulation, which comprises: comprising an organic binder which has a permittivity, ε, at 1,000 Hz of 3.3 or less; and a polyacene compound of Formula A:

Formula A

wherein:

each of R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁ and R₁₂, which may be the same or different, independently represents hydrogen; an optionally substituted C₁-C₄₀ carbyl or hydrocarbyl group; an optionally substituted C₁-C₄₀ alkoxy group; an optionally substituted C₆-C₄₀ aryloxy group; an optionally substituted C₇-O₄₀ alkylaryloxy group; an optionally substituted C₇-C₄₀ aryloxycarbonyl group; a cyano group (-CN); a carbamoyl group (-C(=O)NH₂); a haloformyl group (-C(=O)-X, wherein X represents a halogen atom); a formyl group (-C(=O)-H); an isocyano group; an isocyanate group; a thiocyanate group or a thioisocyanate group; an optionally substituted amino group; a hydroxy group; a nitro group; a CF₃ group; a halogen halo group (CI, Br, F); or an optionally substituted silyl group; and

wherein independently each pair of R_2 and R_3 and/or R_8 and R_9 , may be cross-bridged to form a C_4 - C_{40} saturated or unsaturated ring, which saturated or unsaturated ring may be intervened by an oxygen atom, a sulphur atom or a group shown by formula- $N(R_a)$ - (wherein R_a is a hydrogen atom or an optionally substituted hydrocarbon group), or may optionally be substituted; and

wherein one or more of the carbon atoms of the polyacene skeleton may optionally be

substituted by a heteroatom selected from N, P, As, θ \underline{O} , S, Se and \underline{or} Te atom; and wherein independently any two or more of the substituents R_1 - R_{12} which are located on adjacent ring positions of the polyacene may, together, optionally constitute a further C_4 - C_{40} saturated or unsaturated ring optionally interrupted by θ \underline{O} , S or -N(R_a) where R_a is as defined above) or an aromatic ring system, fused to the polyacene; and wherein

at least one of R₁ to R₁₂ is an optionally substituted C₁-C₄₀ hydrocarbyl group that is a saturated or unsaturated acyclic group, or a saturated or unsaturated cyclic group, and

n is 0, 1, 2, 3 or 4.

2. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 1, wherein the polyacene compound is selected from Compound Groups a compound of formula 1 or 8 or isomers an isomer thereof wherein:

compound Group 1 is represented by Formula 1:

Formula 1

and

compound Group 8 is represented by Formula 8:

$$\begin{array}{c} R_{15} \\ R_{15} \\ R_{2} \\ R_{6} \\ R_{17} \\ R_{18} \\ R_{18}$$

$$R_{15}$$
 R_{16}
 R_{17}
 R_{10}
 R_{10}

Formula 8

wherein, R₆ and R₁₃ in Group the compound of formula 1 and R₁, R₂, R₃, R₄, R₈, R₉, R₁₀, R₁₁, R₁₅, R₁₆, and R₁₇ and R₁₈, in Group the compound of formula 8 are each independently the same or different and each independently represents: H; an optionally substituted C_I-C₄₀ carbyl or hydrocarbyl group; an optionally substituted C₁-C₄₀ alkoxy group; an optionally substituted C₆-C₄₀ aryloxy group; an optionally substituted C₇-C₄₀ alkylaryloxy group; an optionally substituted C₂-C₄₀ alkoxycarbonyl group; an optionally substituted C₇-C₄₀ aryloxycarbonyl group; a cyano group (-CN); a carbamoyl group (-C(=O)NH2); a haloformyl group (-C(=O)-X, wherein X represents a halogen atom); a formyl group (-C(=O)-H); an isocyano group; an isocyanate group; a thiocyanate group or a thioisocyanate group; an optionally substituted amino group; a hydroxy group; a nitro group; a CF3 group; a halogen halo group (CI, Br, F); or an optionally substituted silyl group; and wherein independently each pair of R_1 and R_2 , R_2 and R_3 , R_3 and R_4 , R_8 and R_9 , R_9 and R_{10} , R_{10} and R_{11} , R_{15} and R_{16} and R₁₆ and R₁₇ may be cross-bridged with each other to form a C ₄-C₄₀ saturated or unsaturated ring, which saturated or unsaturated ring may be intervened by an oxygen atom, a sulphur atom or a group shown by formula: -N(R_a)- (wherein R_a is a hydrogen atom or a hydrocarbon group), or may optionally be substituted; and wherein A represents Silicon or Germanium.

3. (Currently Amended) An organic semiconducting layer formulation as

claimed in claim 1, wherein n is 0 or 2.

- 4. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 3, wherein n is 2.
- 5. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 1, wherein the two or more of R_1 to R_{12} are optionally substituted C_1 - C_{40} hydrocarbyl group groups, each of which is a saturated or unsaturated acyclic group, or a saturated or unsaturated cyclic group.
- 6. (Currently Amended) An organic semiconducting layer formulation as claimed in claim [[‡]] 28, wherein the polyacene compound is 6, 13-bis(triisopropylsilylethynyl)pentacene of Formula 1,

Formula 1.

7. (Currently Amended) An organic semiconducting layer formulation as claimed in claim [[4]] 28, wherein the polyacene compound is 2,3,9,10-tetramethyl,6,13-bis (triisopropylsilylethynyl)pentacene of Formula 2:

Formula 2.

8. (Currently Amended) An organic semiconducting layer formulation as claimed in claim [[4]] 28, wherein the polyacene compound is of Formula 3:

Formula 3

wherein n and m is are each independently 0,1, 2, 3 or 4, more preferably 0,1 or 2;

- 9. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 1, wherein the organic binder resin has a permittivity at 1,000 Hz of less than 3.0, preferably 2.9 or less.
- 10. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 10, wherein the organic binder resin has a permittivity at 1,000 Hz greater than 1.7, especially a permittivity from 2.0 to 2.9.
- 11. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 1, wherein the organic binder resin is an insulating binder.
- 12. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 11, wherein the insulating binder is selected from poly(α-methylstyrene), polyvinylcinnamate, poly(4-vinylbiphenyl), poly(4-methylstyrene) or linear olefin and cycloolefin(norbornene)copolymer and Topas TM-8007, more preferably poly(amethylstyrene), polyvinylcinnamate and poly(4-vinylbiphenyl).
 - 13. (Currently Amended) An organic semiconducting layer formulation

as claimed in claim 1, wherein the organic binder resin is a semiconductor binder.

- 14. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 13, wherein the semiconductor binder comprises a number average molecular weight (M_n) of at least 1500-2000, more preferably at least 3000, even more preferably at least 4000 and most preferably at least 5000.
- 15. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 13, wherein the semiconductor binder is selected from poly(9-vinylcarbazole) or a triarylamine compound of the following formula

wherein n=10.7 PTAA1.

- 16. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 1, wherein the formulation further comprises a solvent.
- 17. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 4 16, wherein the solvent is selected from xylene(s), toluene, tetralin and or odichlorobenzene.
- 18. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 1, wherein the ratio of polyacence compound to binder is 20:1 to 1:20 by weight, preferably 10:1 to 1:10 more preferably 5:1 to 1:5, still more preferably 3:1 to 1:3 further preferably 2:1 to 1:2 and especially 1:1.
- 19. (Currently Amended) An organic semiconducting layer formulation as claimed in claim 1, which comprises has a solids content of 0.1 to 10% more preferably 0.5 to

5% by weight.

- 20. (Currently Amended) A process for preparing an organic semiconducting layer formulation as claimed in claim 1, comprising which comprises: (i) depositing on a substrate a liquid layer of a mixture which comprises the polyacene compound, the organic binder resin or precursor thereof and optionally a solvent, and (ii) forming from the liquid layer a solid layer which is the organic semiconducting layer.
- 21. (Currently Amended) An electronic device, comprising an organic semiconducting layer formulation as claimed in claim 1.
- 22. (Currently Amended) An electronic device according to claim 21, which comprises a field effect transistor (FET), organic light emitting diode (OLED), photodetector, chemical detector, photovoltaic cell (PVs), capacitor sensor, logic circuit, display or memory device.
- 23. (Currently Amended) An OFET device, comprising an organic semiconducting layer formulation, wherein the organic semiconducting layer formulation comprises:

a compound of Formula 1;

a binder; and

solvent,

Formula 1

wherein the binder is selected from poly(α-methylstyrene), TopasTM 8007 linear olefin and cycloolefin(norbornene)copolymer, poly(4-methylstyrene), polystyrene and or polystyrene-co-

α-methylstyrene, most preferably poly(α-methylstyrene); and the solvent is selected from toluene, ethylcyclohexane, anisole and or pxylene; most preferably toluene.

- 24. (Currently Amended) An OFET device, comprising an organic semiconducting layer formulation, wherein the organic semiconducting layer formulation comprises:
 - a compound of Formula 2;
 - a binder; and
 - solvent,

Formula 2

wherein the binder is selected from poly(α -methylstyrene), polyvinylcinnamate, and or poly(4-vinylbiphenyl), most-preferably poly(α methylstyrene); and the solvent is 1,2-dichlorobenzene.

- 25. (Currently Amended) An OFET device, comprising an organic semiconducting layer formulation, wherein the organic semiconducting layer comprises:
 - a compound of Formula 3;
 - a binder; and
 - a solvent,

Formula (3)

wherein:

n and m are each independently 0,1, 2, 3 or 4; , more preferably 0,1 or 2; and the binder is poly(α -methylstyrene); and the solvent is toluene.

wherein n and m are each independently 1 or 3, more preferably 1.

- 27. (New) An organic semiconducting layer formulation as claimed in claim 1, wherein the halogen group is Cl, Br or F.
- 28. (New) An organic semiconducting layer formulation, comprising an organic binder which has a permittivity, ϵ , at 1,000 Hz of 3.3 or less; and a polyacene compound which is
 - a) 6, 13-bis(triisopropylsilylethynyl)pentacene of Formula 1,

Formula 1;

b) 2,3,9,10-tetramethyl,6,13-bis (triisopropylsilylethynyl)pentacene of Formula 2:

Formula 2;

or

c) of Formula 3:

Formula 3

wherein n and m are each independently 0,1, 2, 3 or 4.