Leçon 235. Problèmes d'interversion de limites et d'intégrales.

1. Limites, suites et intégrales : premières interversions

1.1. Convergence uniforme et interversions

1. DÉFINITION. Soient X un ensemble et E un espace vectoriel normé. On dit d'une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions $X\longrightarrow E$ qu'elle converge vers une fonction $f\colon X\longrightarrow E$ sur l'ensemble X de manière

- $simple \text{ si } f_n(x) \longrightarrow f(x) \text{ pour tout élément } x \in X;$
- uniformément si $||f_n f||_{\infty} = \sup_{x \in X} ||f_n(x) f(x)|| \longrightarrow 0.$
- 2. Remarque. La convergence uniforme implique la convergence simple.
- 3. Contre-exemple. La réciproque est très fausse : la suite donnée par les fonctions $x \mapsto x^n$ converge simplement sur [0,1] vers la fonction $\mathbf{1}_{\{1\}}$, mais elle n'y converge uniformément sur [0,1].
- 4. THÉORÈME. Soient E et F deux espaces vectoriels normés. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues $E\longrightarrow F$ qui converge uniformément sur E. Alors la limite uniforme est continue sur E.
- 5. Contre-exemple. La convergence simple ne suffit pas : le contre-exemple précédent convient.
- 6. THÉORÈME. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continue $[a,b]\longrightarrow \mathbb{R}$ qui converge uniformément vers une fonction f. Alors

$$\int_a^b f_n(x) \, \mathrm{d}x \longrightarrow \int_a^b f(x) \, \mathrm{d}x.$$

7. CONTRE-EXEMPLE. La convergence simple ne suffit pas : la suite formée des fonctions $f_n \colon x \in [0,1] \longmapsto n^2 x e^{-nx}$ converge simplement vers la fonction nulle et

$$\int_0^1 f_n(x) dx = n^2 \left(\left[-\frac{xe^{-nx}}{n} \right]_0^1 + \int_0^1 \frac{e^{-nx}}{n} dx \right) = -ne^{-n} - e^{-n} + 1 \longrightarrow 1.$$

- 8. COROLLAIRE. On suppose que les fonctions f_n sont dérivables sur [a,b] et qu'on dispose les convergences uniformes $f_n \longrightarrow f$ et $g_n \longrightarrow g$ sur [a,b]. Alors la fonction f est dérivable et f'=g.
- 9. REMARQUE. Ce résultat se généralise pour des fonctions de classe \mathscr{C}^k ou \mathscr{C}^{∞} .

1.2. Problèmes sur les séries de fonctions

- 10. DÉFINITION. Une série $\sum f_n$ de fonctions $[a,b] \longrightarrow \mathbf{R}$ converge
 - simplement si la série $\sum u_n(x)$ converge pour tout réel $x \in [a, b]$;
 - uniformément si la suite $(\sum_{k=0}^{n} f_k)_{n \in \mathbb{N}}$ converge uniformément sur [a, b];
 - normalement si la série $\sum ||f_n||_{\infty}$ converge.
- 11. Remarque. La convergence normalement implique la converge uniforme.
- 12. Exemple. La réciproque est fausse : la série $\sum (-1)^n x e^{-nx}$ converge uniformément sur [0,1], mais elle ne converge pas normalement.
- 13. THÉORÈME. Soit $\sum f_n$ une série de fonctions continue $[a,b] \longrightarrow \mathbf{R}$ qui converge

uniformément. Alors

$$\int_{a}^{b} \sum_{n=0}^{+\infty} u_n(x) \, \mathrm{d}x.$$

14. Exemple. Le théorème permet de montrer l'égalité

$$\int_0^1 x^{-x} \, \mathrm{d}x = \sum_{n=1}^{+\infty} n^{-n}.$$

- 15. THÉORÈME. Soit $\sum f_n$ une suite de fonctions de classe \mathscr{C}^k sur [a,b] qui converge normalement sur [a,b]. On suppose que les séries $\sum f_n^{(j)}$ avec $j \leq k$ convergent normalement sur [a,b]. Alors la somme $f := \sum_{k=0}^{+\infty} f_n$ est de classe \mathscr{C}^k et $f^{(j)} = \sum_{n=0}^{+\infty} f_n^{(j)}$ pour tout entier $j \leq k$.
- 16. APPLICATION. La fonction exponentielle

$$\exp \colon x \in \mathbf{R} \longmapsto \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

est de classe \mathscr{C}^{∞} .

1.3. Le cas des séries entières

- 17. DÉFINITION. Une série entière est une série $\sum f_n$ de fonctions $f_n : \mathbf{C} \longrightarrow \mathbf{C}$ de la forme $f_n(z) = a_n z^n$ pour tout $z \in \mathbf{C}$ et un complexe $a_n \in \mathbf{C}$. On la note $\sum a_n z^n$.
- 18. PROPOSITION (lemme d'Abel). Soit $(a_n)_{n \in \mathbb{N}}$ une suite complexe. On suppose que la suite $(a_n r^n)_{n \in \mathbb{N}}$ est bornée pour un réel r > 0. Alors la série entière $\sum a_n z^n$ converge normalement sur tout disque $\overline{\mathbf{D}}(0,s) \subset \mathbf{C}$ avec s < r.
- 19. DÉFINITION. Le rayon de convergence d'une série entière $\sum a_n z^n$ est le réel $R := \sup\{r \geq 0 \mid \text{la suite } (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée}\} \in \mathbb{R} \cup \{+\infty\}.$
- 20. COROLLAIRE. Sous les mêmes notations, la série entière $\sum a_n z^n$ converge normalement sur tout compact du disque $\mathbf{D}(0,R)$
- 21. EXEMPLE. La fonction $z \in \mathbf{C} \longmapsto e^z \in \mathbf{C}$ est la somme de la série entière $\sum z^n/n!$ qui est de rayon de convergence infini. De même, la fonction $z \in \mathbf{D}(0,1) \longmapsto 1/(1-z)$ est la somme de la série entière $\sum z^n$ qui est de rayon de converge 1.
- 22. PROPOSITION. Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. Alors sa somme f est infiniment \mathbf{C} -dérivable sur le disque ouvert $\mathbf{D}(0,R)$.
- 23. Exemple. L'exponentielle prolongée sur le plan complexe ${\bf C}$ est holomorphe.

2. Théorème de la théorie de la mesure : limites et intégrales

24. NOTATION. On considère un espace mesure (X, \mathcal{A}, μ) .

2.1. Suites de fonctions et intégration

25. THÉORÈME (lemme de Fatou). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables positives. Alors

$$\int_X \liminf_{n \to +\infty} f_n \, \mathrm{d}\mu \leqslant \liminf_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu.$$

26. APPLICATION. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions intégrables qui converge simplement vers une fonction f et vérifiant

$$\sup_{n \in \mathbf{N}} \int_X |f_n| \, \mathrm{d}\mu < +\infty.$$

Alors la fonction f est intégrable

27. THÉORÈME (de convergence dominée). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions intégrables vérifiant les points suivants :

- pour presque tout $x \in X$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge vers $f(x) \in \mathbb{K}$;
- il existe une fonction intégrable q telle que, pour tout $n \in \mathbb{N}$, on ait $|f_n(x)| \leq q(x)$ pour presque tout $x \in X$.

Alors

$$\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

28. Contre-exemple. L'hypothèse de domination est nécessaire comme le montre le contre-exemple 7.

29. APPLICATION. Soit $f:[0,1]\longrightarrow \mathbf{K}$ une fonction dérivable de dérivée bornée. Alors

$$\int_0^1 f'(x) \, \mathrm{d}x = f(1) - f(0).$$

2.2. Les intégrales à paramètres

30. THÉORÈME. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables.

- Si elles sont positives, alors

$$\int_{X} \sum_{n=0}^{+\infty} f_n \, \mathrm{d}\mu = \sum_{n=0}^{+\infty} \int_{X} f_n \, \mathrm{d}\mu. \tag{*}$$

– Si la série $\sum \int_X |f_n| d\mu$ converge, alors on a aussi (*).

31. APPLICATION (lemme de Borel-Cantelli). Soit $(A_k)_{k\in\mathbb{N}}$ une suite d'ensembles mesurables. Si la série $\sum \mu(A_n)$ converge, alors

$$\mu(\limsup_{n\to+\infty} A_n)=0.$$

32. THÉORÈME. Soient X un espace métrique et (E, \mathcal{A}, μ) un espace mesurable. Soit $f: X \times E \longrightarrow \mathbf{K}$ une fonction vérifiant les points suivants :

- pour tout $x \in X$, la fonction $f(x, \cdot)$ est mesurable;
- pour presque tout $t \in E$, la fonction $f(\cdot,t)$ est continue sur X;
- il existe une fonction intégrable $g: E \longrightarrow \mathbf{R}_+$ telle que, pour tout $t \in E$, on ait $|f(x,t)| \leq g(t)$ pour presque tout $x \in X$.

rable
$$a: E \longrightarrow \mathbf{R}_{\perp}$$
 telle que, pour

Alors la fonction

$$x \in X \longmapsto \int_{E} f(x,t) \,\mathrm{d}\mu(t)$$

est continue sur X.

33. COROLLAIRE. Soient $I \subset \mathbf{R}$ un intervalle ouvert et (E, \mathcal{A}, μ) un espace mesurable. Soit $f: I \times E \longrightarrow \mathbf{K}$ une fonction vérifiant les points suivants :

- pour tout $x \in I$, la fonction $f(x, \cdot)$ est mesurable;
- pour presque tout $t \in E$, la fonction $f(\cdot, t)$ est dérivable sur I;
- il existe une fonction intégrable $q: E \longrightarrow \mathbf{R}_+$ telle que, pour tout $t \in E$, on ait $|\partial_x f(x,t)| \leq g(t)$ pour presque tout $x \in I$.

Alors la fonction

$$F \colon x \in I \longmapsto \int_E f(x,t) \, \mathrm{d}\mu(t)$$

est dérivable sur I et

$$F'(x) = \int_E \partial_x f(x,t) \, d\mu(t), \qquad x \in I.$$

34. Exemple. La fonction gamma d'Euler

$$\Gamma: x > 0 \longmapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$$

est dérivable sur \mathbf{R}_{\perp}^{*} .

35. Remarque. Un énoncé analogue existe pour les régularités \mathscr{C}^k et l'holomorphie.

36. EXEMPLE. La fonction Γ se prolonge en une fonction holomorphe sur $\{Re > 0\}$.

37. THÉORÈME. La fonction Γ se prolonge en une fonction holomorphe sur $\mathbb{C} \setminus \mathbb{Z}_{-}$ qui n'admet que des pôles simples en les entiers négatifs. Par ailleurs, son inverse $1/\Gamma$ soit entière.

2.3. Interversion d'intégrales

38. THÉORÈME (Fubini-Tonelli). Soient (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés. Soit $f: X \times Y \longrightarrow \mathbf{K}$ une fonction mesurable. Alors

- les fonction $x \in X \mapsto \int_{Y} f(x,y) d\nu(y)$ et $y \in Y \mapsto \int_{Y} f(x,y) d\mu(x)$ sont mesurables;
- on a

$$\int_{X\times Y} f \,\mathrm{d}\mu \otimes \nu = \int_X \int_Y f(x,y) \,\mathrm{d}\nu(y) \,\mathrm{d}\mu(x) = \int_Y \int_X f(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\nu(y).$$

39. COROLLAIRE (Fubini-Lebesque). La même conclusion est vérifiée si les fonctions partielles sont presque partout intégrables.

40. Application. On calcul

$$\int_{\mathbf{R}} e^{-x^2} \, \mathrm{d}x = \sqrt{2\pi}.$$

41. Théorème. Soit $(u_{n,m})_{n,m\in\mathbb{N}}$ une famille réelles ou complexe telle que la quan-

$$\sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} u_{n,m} = \sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} u_{n,m}.$$

3. Application à l'analyse de Fourier

3.1. Transformée de Fourier

42. DÉFINITION. La transformée de Fourier d'une fonction $f \in L^1(\mathbb{R}^n)$ est la fonction

$$\hat{f} = \mathscr{F}(f) : \begin{vmatrix} \mathbf{R}^n \longrightarrow \mathbf{C}, \\ \xi \longmapsto \int_{\mathbf{R}^n} e^{-ix \cdot \xi} f(x) \, \mathrm{d}x. \end{vmatrix}$$

43. EXEMPLE. Soit a>0. La transformée de la fonction $g\colon x\in\mathbf{R}\longmapsto e^{-a|x|^2}$ s'écrit

$$\hat{g}(\xi) = \left(\frac{\pi}{a}\right)^{n/2} e^{-|\xi|/4a}.$$

44. PROPOSITION. Soient $f, g \in L^1(\mathbf{R}^n)$ et $\xi \in \mathbf{R}^n$. Alors

$$\widehat{f \star g}(\xi) = \widehat{f}(xi)\widehat{g}(\xi).$$

- 45. THÉORÈME. Soit $f \in L^1(\mathbf{R}^n)$. Alors la fonction \hat{f} est continue, tend vers 0 en l'infini et vérifie $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$.
- 46. EXEMPLE. Pour a > 1, la transformée de la fonction triangle $\mathbf{1}_{[-a,a]} \star \mathbf{1}_{[-a,a]}$ est la fonction

$$\xi \in \mathbf{R} \longmapsto \left(\frac{2\sin a\xi}{\xi}\right)^2.$$

47. THÉORÈME. Soient $f \in L^1(\mathbf{R})$ et $k \in \mathbf{N}$. Si la fonction $x \in \mathbf{R} \longmapsto x^k f(x)$ est intégrable, alors la fonction \hat{f} est k-fois dérivable. Réciproquement, si la fonction f est de classe \mathscr{C}^k et sa dérivée k-ième est intégrable, alors

$$\mathscr{F}(f^{(k)})(\xi) = (i\xi)^k \hat{f}(\xi) \quad \text{et} \quad \xi^k \hat{f}(\xi) \xrightarrow[\xi \to \infty]{} 0.$$

48. THÉORÈME (formule d'inversion de Fourier). Soit $f \in L^1(\mathbf{R}^n)$ une fonction telle que $\hat{f} \in L^1(\mathbf{R}^n)$. Pour presque tout $x \in \mathbf{R}^n$, on a

$$f(x) = \frac{1}{(2\pi)^n} \overline{\mathscr{F}} \hat{f}(x) \quad \text{avec} \quad \overline{\mathscr{F}} \hat{f}(x) \coloneqq \int_{\mathbf{R}^n} e^{\xi \cdot x} \hat{f}(\xi) \, \mathrm{d}\xi.$$

3.2. Série de Fourier

49. Définition. Les coefficients de Fourier d'une fonction continue 2π périodique $f: \mathbf{R} \longrightarrow \mathbf{C}$ sont les quantités $c_n(f)$ avec $n \in \mathbf{N}$ définies par les relations

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt.$$

- 50. Théorème (lemme de Riemann-Lebesque). Pour toute fonction continue 2πpériodique f, on a $c_n(f) \longrightarrow 0$.
- 51. PROPOSITION. Soient $f, g: \mathbf{R} \longrightarrow \mathbf{C}$ deux fonctions continues 2π -périodiques

et $\lambda \in \mathbf{C}$ un complexe. Alors

$$c_n(f + \lambda g) = c_n(f) + \lambda c_n(g)$$
 et $c_n(f \star g) = c_n(f)c_n(g)$.

- 52. Théorème (Fejér). Les deux points suivants constituent le théorème.
 - Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique. Alors

$$\forall n \in \mathbf{N}^*, \qquad \|\sigma_N(f)\|_{\infty} \leqslant \|f\|_{\infty}$$

 $_{
m et}$

$$\|\sigma_N(f) - f\|_{\infty} \longrightarrow 0.$$

- Si $f \in L^p(\mathbf{T})$, alors on la même conclusion avec la norme p.
- 53. COROLLAIRE (égalité de Parseval). Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue et 2π -périodique. Alors

$$\sum_{n \in \mathbf{Z}} |c_n(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f|.$$

- 54. APPLICATION. En utilisant la fonction f définie par l'égalité $f(x) = 1 x^2/\pi^2$ sur $[-\pi, \pi]$, on trouve $\zeta(2) = \pi^2/6$ et $\zeta(4) = \pi^4/90$.
- 55. PROPOSITION. Soit $f \colon \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique de classe \mathscr{C}^1 par morceaux. Alors la série $(S_N(f))_{N\in\mathbb{N}}$ converge normalement vers la fonction f. 56. THÉORÈME. Soient $F \in L^1(\mathbf{R}) \cap \mathscr{C}^0(\mathbf{R})$ une fonction intégrable et continue. On suppose qu'il existe deux constantes M>0 et $\alpha>1$ telles que

$$\forall x \in \mathbf{R}, \qquad |F(x)| \leqslant M(1+|x|)^{-\alpha} \qquad \text{et} \qquad \sum_{n=-\infty}^{+\infty} |\hat{F}(n)| < +\infty.$$

Alors

$$\sum_{n=-\infty}^{+\infty} F(n) = \sum_{n=-\infty}^{+\infty} \hat{F}(n).$$

57. APPLICATION. Pour tout t > 0, on a

$$\sum_{n \in \mathbf{Z}} e^{-\pi n^2/t} = \sqrt{t} \sum_{n \in \mathbf{Z}} e^{-\pi n^2 t}.$$

58. DÉFINITION. Soit $f: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction. L'équation de la chaleur est le problème de Cauchy

$$\begin{cases} \partial_t u(x,t) = \partial_{xx} u(x,t), & x \in \mathbf{R}, \ t > 0, \\ \lim_{t \to 0} u(x,t) = f(x) & x \in \mathbf{R}. \end{cases}$$
 (1)

59. PROPOSITION. On suppose que la fonction f est 1-périodique et de classe \mathscr{C}^2 . Alors il existe une unique solution $u \colon \mathbf{R} \times \mathbf{R}_{\perp}^* \longrightarrow \mathbf{R}$ au problème (1) qui est 1-périodique par rapport à la variable d'espace.

Marc Briane et Gilles Pagès. Théorie de l'intégration. Vuibert, 2012.

^[1] [2] [3] Bernard Candelpergher. Calcul intégral. Cassini, 2009.

Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.