

AKADEMIA INNOWACYJNYCH ZASTOSOWAŃ TECHNOLOGII CYFROWYCH (AI TECH)

"Uczenie maszynowe" – laboratorium

Laboratorium 5 - Zespoły klasyfikatorów

Data aktualizacji: 16.05.2024

Cel ćwiczenia

Celem Ćwiczenia laboratoryjnego jest zapoznanie się z najpopularniejszymi metodami wykorzystywanymi do rozwiązywania rzeczywistych problemów - zespołami klasyfikatorów (opartymi o drzewa). W szczególności celem zadania będzie przetestowanie modeli takich jak Random Forest [1], Histogram-based Gradient Boosting [2], XGBoost [3], LightGBM[4], CatBoost[5].

Wprowadzenie

Algorytmy oparte o zespoły klasyfikatorów do dnia dzisiejszego są uznawane za state-of-the-art w przypadku problemów na danych tabelarycznych (patrz [6]). Zazwyczaj są one de-facto standardem w praktycznych zastosowaniach w przemyśle i dzięki wielu ich własnością umożliwiają modelowanie różnorodnych problemów. Przykładami takich własności są: natywne wsparcie dla zmiennych kategorycznych, natywne wsparcie dla brakujących danych, wsparcie dla wag, ograniczenia monotoniczności, ograniczenia interackji, własne funkcje straty, modelowanie probabilistyczne dla zmiennych ciągłych i wiele innych. Dla ciekawych więcej tutaj [7,8].

Przebieg ćwiczenia

- 1. Wybranie własnego zbioru danych zawierającego zmienne numeryczne, kategoryczne oraz brakujące wartości, który nie pojawił się do tej pory na zajęciach. (Gdyby zabrakło inspiracji to tutaj wskazówka: [9]). Dokładna analiza zbioru danych razem z wnioskami.
- Uruchomienie algorytmów Random Forest [1], Histogram-based Gradient Boosting
 [2], XGBoost [3], LightGBM[4], CatBoost[5] bez szukania hiperparametrów, ale z walidacją krzyżową. Porównanie rezultatów.
- 3. Wybranie jednego z powyższych algortymów oraz zapoznanie się z dostępnymi hiperparametrami. Przeprowadzenie procesu szukania hiperparametów (dla ambitnych można skorzystać z pakietów do optymalizacji bayesowskiej, e.g., https://optuna.org/). Analiza rezultatów.
- 4. Wybranie jednego z powyższych algorytmów wspierających jedną z następujących funkcjonalności: ograniczenia monotoniczności, ograniczenia interackji, własne funkcje straty lub inne wybrane. Przeprowadzenie eksperymentu sprawdzającego wpływ (jednej) wybranej funkcjonalności na wyniki oraz zachowanie modelu.

Punktacja

Przy realizacji zadania student może otrzymać max 10 punktów wedle poniższej tabeli.

2	Realizacja Ćwiczenia 1.
2	Realizacja Ćwiczenia 2.
3	Realizacja Ćwiczenia 3.
3	Realizacja Ćwiczenia 4.

Literatura

1. RandomForest -

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestCl assifier.html#sklearn.ensemble.RandomForestClassifier

2. HistGradientBoosting -

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html#sklearn.ensemble.HistGradientBoostingClassifier

- 3. XGBoost https://xgboost.readthedocs.io/en/stable/
- 4. LightGBM https://lightgbm.readthedocs.io/en/stable/
- 5. CatBoost https://catboost.ai/
- Why do tree-based models still outperform deep learning on tabular data? https://arxiv.org/pdf/2207.08815
- 7. Ensembles in scikit-learn https://scikit-learn.org/stable/modules/ensemble.html
- 8. Introduction to Boosted Trees https://xgboost.readthedocs.io/en/stable/tutorials/model.html
- 9. Zbiór danych Titanic.