

# Machine Part or Batch Label Recognition with MNIST Handwritten Digit Recognition

Enhancing Inventory Tracking and Reducing Errors in Manufacturing

NAME: Harichandana. Nursing

DATE: 28/10/2024

Use Case: Manufacturing parts and batches are often labeled by hand, making traditional tracking methods prone to errors and delays.

Solution: A digit recognition model trained on MNIST can identify and convert these handwritten labels into digital data directly from photos or scans.

Benefits: This solution automates data entry, reduces errors, and speeds up inventory tracking, ultimately improving operational efficiency.

## PROBLEM:

**Title:** Problem Statement: Handwritten Labels in Manufacturing

- Parts or batches often have handwritten labels for identification.
- Manually entering this information is time-consuming and prone to errors.
- Need for automated recognition to improve efficiency and accuracy.

# Parts with handwritten labels.



# **SOLUTION:**

**Title:** Automated Recognition with MNIST

- Train a model using MNIST data to recognize handwritten digits.
- The model recognizes batch numbers or part IDs from photos or scans.
- Simplifies data entry and enhances inventory tracking accuracy.

# MNIST Data Set Introduction

**TITLE:** MNIST Dataset

Contains 70,000 images of handwritten digits (0-9).

- Images are 28x28 grayscale pixels, ideal for training recognition models.
- Commonly used for digit recognition tasks.

# SAMPLE OF MNIST DATASET:



## Technical Workflow:

**Title:** Technical Workflow for Label Recognition

- Step 1: Capture photo of the part label.
- Step 2: Preprocess the image (grayscale conversion, noise reduction).
- Step 3: Run digit recognition model trained on MNIST.
- Step 4: Output recognized label for inventory entry.

# **Model Training & Recognition Process:**

- MNIST model training process: image preprocessing,KNN,NAIVE-BAYES,NON-NAIVE BAYES models training and validation.
- Recognition process: model outputs digits from image, post-processed to form batch/part ID.

# **Benefits of MNIST-based Recognition:**

Key Benefits of MNIST-based Recognition for Manufacturing

- Automated, fast data entry.
- High accuracy and reduced human error.
- Real-time inventory updates.







# **RESULTS:**

**TITLE:** Results and Potential Impact

- Increased efficiency in data handling.
- Reduction in inventory errors.
- Scalable solution for other handwritten information in manufacturing.

Graph showing potential improvement in processing time or reduction in errors.



# MODEL COMPARISON:

#### **KNN**

**Process:** Flatten the images into a 784-dimensional vector, and calculate the Euclidean distance between vectors.

**OUTPUT:** Predict the digit by identifying the majority label among the KKK nearest neighbors.

Accuracy: 96.84%

### **Naive-Bayes**

Assumption: Each pixel is treated as an independent feature.

Calculation: For each pixel intensity in a given class (like digit "3"), calculate its likelihood assuming Gaussian distribution.

Accuracy: - 62.64%

### **Non-Naive Bayes**

Accuracy: 75.32%

## **SUMMARY:**

- Machine Part or Batch Label Recognition using MNIST Handwritten Digit Recognition is a system designed to automate the recognition and digitization of handwritten labels on parts or batches in manufacturing.
- This process helps streamline inventory tracking and reduces human error by leveraging a machine learning model trained on the MNIST dataset, which consists of thousands of labeled images of handwritten digits.

# **THANKYOU**