Question A.

1.

- Given block size B 2048 bytes
- The record of the size R can be calculated as:

$$R = 10 + 4 + 5 + 12 + 12 + 15 + 4 = 62$$

• Therefore, bfr can be calculated as:

$$ext{bfr} = \left| rac{2048}{62}
ight| pprox 33$$

 As a result, the number of file blocks needed to store the EMPLOYEE records is:

$$b = \lceil \frac{12000}{33} \rceil = 364 \text{ blocks}$$

2.

- Given the key field size of 15 bytes and the block pointer size of 6 bytes
- The index entry size $R_1=15+6=21$ bytes
- The index blocking factor $Bfr_1=rac{2048}{21}pprox 97$
- The number of index blocks:

$$b_1 = \lceil rac{364}{97}
ceil = 4$$

3.

$$ullet$$
 $Bfr_I=97$

$$ullet b_1=4$$

•
$$b_2=rac{4}{97}pprox 1$$

• Therefore, the total number of occupied blocks used for the index is 4+1=5 blocks.

1.

2.

Question C.

Schedule 1

T_1	T_2	T_3
$r_1(X)$		
$w_1(Y)$		
	$r_2(Y)$	
$r_1(Z)$		
		$w_3(Z)$
		$r_3(X)$
		$r_3(Y)$
	$w_2(X)$	
c_1		
	$r_2(Z)$	
		$w_3(X)$
	$w_2(Y)$	
		c_3
	c_2	

Schedule 2

T_1	T_2	T_3
		$w_3(Z)$
		$r_3(X)$
		$r_3(Y)$
		$w_3(X)$
		c_3
$r_1(X)$		
$w_1(Y)$		
$r_1(Z)$		
c_1		
	$r_2(Y)$	
	$w_2(X)$	
	$r_2(Z)$	
	$w_2(Y)$	
	c_2	

Schedule 1 SG

Schedule 2 SG

• As a result, Schedule 1 is not serialisable due to a cycle, while Schedule 2 is considered serialisable because it is acyclic.

Equivalent Serial Schedule 2

Z)
(7)
⁻)
Y)

Equivalent Serial Schedule 2 SG

2.

Schedule 1 is recoverable, non-strict and cascaded. It is because T_2 and T_3 read a data item Y written by T_1 , and T_1 committed before T_2 and T_3 . Also, T_2 read a data item Z written by T_3 , and T_3 committed before T_2 . Therefore it is recoverable. However, T_2 read a data item Y written by T_1 , and T_1 has not yet committed. Therefore, it is non-strict and cascaded.

Schedule 2 is obviously strict, which also means it is recoverable and cascadeless. This is because a transaction can neither read nor write a data item until the last transaction that wrote the data item has been committed.