Network Forensics

in Industrial Networks

Tilbe Ugurel Tim Nebel

Outline

- 1. Definition: Network Forensics
- 2. Selection of Forensic tools & live demo
 - 2.1. tcpdump
 - 2.2. wireshark
 - 2.3. snort
 - 2.4. pcapxray
 - 2.5. scapy
 - 2.6. ARMORE
- 3. Conclusion: Comparison of tools

Digital forensics

[hide]

Computer exams · Data analysis · Database study ·
Malware analysis · Mobile devices ·
Network analysis · Photography · Video analysis ·
Audio analysis

Network forensics

From Wikipedia, the free encyclopedia

Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of <u>information gathering</u>, <u>legal</u> <u>evidence</u>, or <u>intrusion detection</u>. ^[1] Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation. ^[2]

Industrial Networks

Characteristics

- Machine-to-machine communication
- Predictable system behaviour
- Protocols unencrypted
- Usually concise traffic

Challenges

- Unintuitive protocol structure
- Limited computing resources
- Different hardware, software and network protocols

ISO/OSI Model (Recap)

Layer			Protocol data unit (PDU)
Host layers	7	Application	
	6	Presentation	Data
	5	Session	
	4	Transport	Segment, Datagram
Media layers	3	Network	Packet
	2	Data link	Frame
	1	Physical	Bit, Symbol

Selection of Forensic tools

Live Demo

- Packet sniffing
- + Packet analysis
- + Filter network traffic
- + passive

What it doesn't:

- IDS
- GUI for packet inspection
- Interfere in network traffic

How it works:

- sniff packets matching boolean expressions
- save captured packets to a file
 - → preprocessing network dump for further analysis

- + Packet capture
 - + information gathering
 - + libpcap / npcap → pcap / pcapng
- + Analysis Tool
- + GUI to inspect captured traffic
- + Visually prepares ISO/OSI model
- + passive

- Intrusion Detection System
- send packets
- check legality of operation

- → copies incoming / outgoing traffic
- → may conflict with company policy (!)
- → not "safe" https://www.opencve.io/cve?vendor=wireshark
- → CLI: tshark (terminal wireshark)
- → API-daemon: sharkd
- → DEMO

tshark

- → CLI for wireshark
- → Remote capture (like tcpdump)
- → more complex pcap-editing

sharkd

- → Wireshark JSON-API
- → send/receive wireshark information

- + IDS & IPS
- + Packet sniffing & capture
- + Analyse captured traffic
- + Block network traffic
- + Can be passive and active

What it doesn't:

- GUI for packet inspection (possibility to visualize alerts in external tools)

How it works:

- Rule-based
- Compare packets with rules/signatures
- Write known attacks in rules

Snort: Modbus extension

- Morris et al.
- Monitor and analyze Modbus traffic
- Uses Snort rules
- Accuracy depends on definition of rules
- Proposed 50 Modbus-specific rules

- + Plot network diagram using pcap file
- + Display network topologies
- + Highlight important traffic

- Packet sniffing
- Capture packets

- + CLI / Python Library
- + Packet manipulation
 - + craft and monitor
 - + scanning
 - + tracerouting
 - + probing
 - + unit tests
 - + attacks
 - + network discovery

- Intrusion Detection
- provide ready to execute exploits

- + IDS/IPS for ICS
- + Detects suspicious communication
- + Enforce defined policies
- + Communication frequencies
- + Function details
- + Collect and visualize statistics
- + Encrypt communication

- + Analyze network dumps
- + Send packets
- + Filter network traffic

Model-based IDS for SCADA networks

- Cheung et al.
- Process control systems have regular traffic patterns
- Construct models for expected behaviour of the system
- Potential for detecting unknown attacks

- Construct protocol specification model
- Higher false alarm rate
- Difficult/expensive to construct models

Conclusion

Comparison

Summary & Conclusion

- → lots of capable tools
- → GUI and CLI versions
- → .pcap-files are used as a foundation
- → tools can be interchangeable
- → Using the right tool makes the job easier
- → CLI versions can be leveraged to automate monitoring
- → use visualisation tools for a first "feel"
- → we can't rely on identifying intrusion with available IDSs
- → start with wireshark!

References & further reading

Demo: https://github.com/loeschzwerg/IIDL-Network-Forensics

Clipart: https://openclipart.org/

Industrial control protocols in the internet core: https://onlinelibrary.wiley.com/doi/full/10.1002/nem.2158

https://journals.sagepub.com/doi/full/10.1177/1550147718794615

https://github.com/ITI/ICS-Security-Tools/tree/master/tools/analysis

T. Morris, R. Vaughn and Y. Dandass, "A Retrofit Network Intrusion Detection System for MODBUS RTU and ASCII Industrial Control Systems," 2012 45th Hawaii International Conference on System Sciences, 2012, pp. 2338-2345, doi: 10.1109/HICSS.2012.78.