APRENDIZADO DE TRANSFORMAÇÕES DE IMAGENS VIA CLASSIFICAÇÃO DE MICRORREGIÕES¹

Pedro H. B. de Almeida* Orientadora: Nina S. T. Hirata*

INTRODUÇÃO

Sistemas de visão computacional dependem de informações extraídas das imagens. A maioria das análises depende, por sua vez, de um processamento adequado das imagens, dentre os quais destaca-se a segmentação de regiões de interesse.

O problema de segmentação de imagens consiste no particionamento do domínio de imagens em segmentos disjuntos, de forma que cada segmento corresponda a um objeto ou parte de objeto que sejam componentes de interesse na análise em questão.

O aprendizado de operadores de imagens refere-se ao problema de, dados pares de imagens entrada-saída, determinar a transformação que mapeia a imagem de entrada para a correspondente imagem de saída.

Devido à quantidade de pixels, o custo computacional do processamento pixel a pixel é alto. A classificação de microrregiões pode ser uma opção interessante para se contornar esse problema. Com isso, métodos que precisariam ser aplicados a cada pixel individualmente podem ser substituídos por métodos que processam microrregiões.

OBJETIVOS

Comparar a segmentação de imagens realizada via classificação pixel a pixel com a realizada via classificação de microrregiões.

MÉTODOS

Como conjunto de dados, foram utilizadas imagens de revistas, nas quais, cada pixel da imagem estava rotulado como "texto" (valor 0) ou "não-texto" (valor 1) [1].

Para a extração de componentes conexos (CC) da imagem, utilizou-se a função "label" da biblioteca scikit-imagem que rotula regiões conexas de um array de inteiros. Dois pixels estão conectados quando eles são vizinhos e têm o mesmo valor. Para cada CC, atribuiu-se o rótulo mais frequente sobre o componente.

Já para a extração de superpixels (SP), utilizou-se uma versão própria do SLIC, que gera superpixels apenas em determinadas regiões da imagem. Para gerar esses superpixels locais, usa-se o algoritmo de clustering K-means num espaço cujas dimensões são compostas pela cor e pela distância espacial dos pixels (x,y,z) [2]. Para cada SP, atribuiu-se o rótulo mais frequente sobre ele.

Com relação ao treinamento, enquanto que a extração de features é feita de modo manual por quem está treinando no modelo de Redes Neurais, no aprendizado profundo, almeja-se que essa extração ocorra de maneira automatizada, junto com a classificação. Nesse sentido, utilizou-se uma Rede Neural Convolucional (ConvNet), que é bastante parecida com uma Rede Neural, isto é, ela é feita de neurônios que têm pesos e vieses que serão aprendidos. A diferença é que uma ConvNet assume explicitamente que as entradas são imagens, o que permite codificar certas propriedades na arquitetura [3].

Os *pipelines* desse problema são ilustrados a seguir:

Extrator de patches para Imagem de entrada cada pixel

Processamento das imagens a nível de pixels.

Classificador de pixels

Imagem de saída

lmagem de Extrator de patches para lmagem de Cálculo de microrregiões entrada cada microrregião de microrregiões Processamento das imagens a nível das microrregiões (componentes conexos e superpixels).

RESULTADOS

Dimensões da imagem de treino: 250x346x3 (RGB)			
	Pixels	Componentes conexos	Superpixels
Número de patches	86500	135	277
Tempo para extração de patches (segundos)	1.7740120887756348	0.21044301986694336	2.9262919425964355
Acurácia	0.9183072463768116	0.9832775919732442	0.9763651181744091
Precisão	0.8150964391691394	0.9857442348008386	0.9816053511705686
Recall	0.7692532088681447	0.9974543911752227	0.9940728196443692
Dimensões da imagem de treino: 2202x3047x3 (RGB)			
	Pixels	Componentes conexos	Superpixels
Número de patches	MemoryError	3322	16395
Tempo para extração de patches (segundos)	MemoryError	5.441878795623779	62.490108489990234
Acurácia	MemoryError	0.9959069366652306	0.9908612811449263
Precisão	MemoryError	0.9973770491803279	0.9969210174029451
Recall	MemoryError	0.9984682713347921	0.9889774236387783

DISCUSSÃO

O número de patches foi reduzido em aproximadamente 99,84% no caso dos componentes conexos (CCs) e em 99,67% no caso dos superpixels (SPs). Isso possibilita que o treinamento seja feito com imagens de maiores dimensões e em maior quantidade.

Nota-se que o desempenho da classificação de microrregiões foi superior ao da classificação pontual, sendo os CCs a granularidade que mais se destaca na acurácia.

Em contrapartida, chega-se a perder muito tempo para calcular as microrregiões, sendo o cálculo dos SPs, através do algoritmo localSLIC, o mais demorado. No entanto, como a quantidade de pixels chega com muita frequência aos milhões, pode acontecer do tempo para o cômputo dos patches de CCs ser menor que o tempo para o cálculo dos patches de cada um dos pixels.

Em suma, as evidências indicam que a granularidade mais vantajosa para se fazer a classificação binária "texto" e "não-texto" é a de componentes conexos.

AGRADECIMENTOS

Pedro H. B. de Almeida foi financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) sob o processo nº 2018/11899-8.

REFERÊNCIAS

[1] Julca-Aguilar, F. D., Maia, A. L. M., and Hirata, N. S. T. (2017). Text/non-text classification of connected components in document images. In 30th Conference on Graphics, Patterns and Images (SIBGRAPI), pages 450-455.

[2] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Susstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell., 34(11):2274-2282.

[3] Karpathy, A. Class notes. CS231n: Convolutional Neural Networks for Visual Recognition.