Payment Fraud Detection Using Machine Learning

A data-driven approach to secure transactions.

Introduction to Payment Fraud

What is Payment Fraud?

- Unauthorized transactions
- Deceptive practices
- Growing concern

Why Machine Learning?

- Detect anomalies
- Real-time analysis
- Reduce financial losses

Dataset Overview

1 Dataset Details

Transaction records with amount, balances, etc.

2 Target Variable

isFraud: 0 (genuine), 1 (fraudulent)

3 Data Mining

Explore transaction features.

Exploratory Data Analysis (EDA)

2

Understand Data

Distribution analysis.

Detect Anomalies

Missing values & outliers.

Visualization

Insights from plots.

Feature Engineering

Machine Learning Models

.000

Logistic Regression

Random Forest

XGBoost

Ensemble learning.

Boosted trees.

Simple & interpretable.

Model Evaluation

XGBoost performed best with high fraud detection accuracy.

Key Findings

Unique Patterns

Fraudulent transactions are different.

Crucial Indicators

Account balances are key.

Fraud-Prone Types

Some transactions are riskier.

Future Improvements

2 SMOTE

Balance fraud cases.

2 — Feature Scaling
Optimize performance.

Hyperparameter Tuning
Improve accuracy.

4 Ensemble Learning
Combine model strengths.

Conclusion & Next Steps

Key Takeaways

- ML can detect fraud
- FE is crucial
- Model optimization matters

Next Steps

- Deploy for real-time detection
- Implement in banking & fintech