Question	# of Points Possible	# of Points Obtained	Grader
# 1	20	20	IK
# 2	18	8	MS
# 3	20	16	JBH
# 4	22	18	X1B
# 5	20	18	JB11
Total	100	2 90	Y.B

For full credit when sketching: remember to label axes and make locations and amplitudes clear.

Before starting the exam, read and sign the following agreement.

By signing this agreement, I agree to solve the problems of this exam while adhering to the policies and guidelines of the University of Florida and EEL 4750 / EEE 5502 and without additional external help. The guidelines include, but are not limited to,

- The University of Florida honor pledge: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."
- Only one 8.5 by 11 inch cheat sheet (double-sided) may be used
- No calculators or computers may be used
- No textbooks or additional notes may be used
- No collaboration is allowed
- No cheating is allowed

Bexi Im

Date

Full Name: ______ ExamID: 010001 EEL 4750 / EEE 5502 (Fall 2019) - Exam #03 Date: Dec. 4, 2019

Question #1: Consider the DTFT of the signal x[n] (i.e., $X(\omega)$) shown below.

(a) (10 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after downsampling by 2 (with <u>no</u> anti-aliasing filter). Remember to label important locations / values.

(b) (10 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after downsampling by 8 (with an anti-aliasing filter). Remember to label important locations / values.

Full Name:

EEL 4750 / EEE 5502 (Fall 2019) - Exam #03

ExamID: 010001

Date: Dec. 4, 2019

Question #2: Consider the DTFT of the signal x[n] (i.e., $X(\omega)$) shown below.

(a) (10 pts) Sketch the DTFT (from $\omega = -3\pi$ to $\omega = 3\pi$) of x[n] after upsampling by 3 (with an interpolation filter). Remember to label important locations / values.

10

(True or False) Upsampling by M followed by downsampling by N is equivalent to downsampling by N followed by upsampling by M. Justify why.

Reconse downsompting may cause information.

The downsompting first. We way loss some points. example:

Full Name:

EEL 4750 / EEE 5502 (Fall 2019) - Exam #03

ExamID: 010001

Date: Dec. 4, 2019

Question #3: Consider a 2-channel filter bank shown below.

Let the filters and input be defined by the impulse responses

$$h_0[n] = g_0[-n] = \delta[n-2]$$
 , $h_1[n] = g_1[-n] = \delta[n-5]$, $x[n] = (-1)^n u[n]$

$$h_1[n] = g_1[-n] = \delta[n-5]$$

$$x[n] = (-1)^n u[n]$$

(a) (12 pts) Sketch $y_1[n]$ and $v_1[n]$ (inverse z-transforms of $Y_1(z)$ and $V_1(z)$) for $0 \le n \le 8$.

X(2)= 1+2-1 H.(2)= 2-5

(True or False) If the frequency responses $H_0(\omega)$ and $H_1(\omega)$ are periodic with a period of π (i.e., $H_0(\omega) = H_0(\omega - \pi)$ and $H_1(\omega) = H_1(\omega - \pi)$), then the filter bank always satisfies the alias canceling conditions. Justify why.

=> 7=1 (nolw)(nal-w)+(nolw)(n.(-w)+

Not satisifyier alias concelly on why?

 ExamID: 010001

Date: Dec. 4, 2019

Question #4: Consider the following non-standard wavelet bank and filter bank.

Let H(z) and G(z) be defined by the transfer functions:

$$H(z) = 1 - z^{-1}$$
 , $G(z) = 1 + z^{-1}$

(a) (10 pts) Use the Noble identities to simplify the reconstruction bank (left) and represent it as a filter bank (right). Determine M_0 , M_1 , M_2 , $F_0(z)$, $F_1(z)$, $F_2(z)$. Fully simplify.

$$12 \rightarrow 1/12) = 1/12^2) \rightarrow 12.$$
 $12 \rightarrow 6(2) = 06(2^2) \rightarrow 12.$

$$F_{0}(z) = ||f(z)||_{L(z^{2})} F_{1}(z) = ||f(z)||_{L(z^{2})} F_{2}(z) = ||f(z)||_{L(z^{2})$$

$$X(z) = -2z^{-2}.$$

Compute $\beta^{(1)}(z)$, $\beta^{(2)}(z)$, and $\alpha^{(2)}(z)$.

$$F_{1}(z) \times (z)^{-2} - 2z^{-1}$$

$$F_{1}(z) \times (z)^{-2} - 2z^{-1} + z^{-2} + z^{-3}) = z(z^{-2} - z^{-2} - z^{-2} + z^{-5})$$

$$\mathcal{L}^{(1)}(z) - -2(z^{-1} + z^{-2}) \times$$

Full Name:

EEL 4750 / EEE 5502 (Fall 2019) - Exam #03

ExamID: 010001

Date: Dec. 4, 2019

Question #5: Consider a filter and its polyphase implementation, as shown below.

Let h[n], $f_0[n]$, $f_1[n]$, and $f_2[n]$ be the inverse z-transforms of H(z), $F_0(z)$, $F_1(z)$, and $F_2(z)$.

(12 pts) Let $h[n] = \delta[n] + \sum_{k=-\infty}^{\infty} 4\delta[n-3k-2]$. Mathematically express $f_0[n]$, $f_1[n]$, and $f_2[n]$.

$$f_{0}[n] = h[e3n] = \delta[n] + \sum_{k=100}^{\infty} 4 \int [e3n-3k-2].$$

$$f_{1}[n] = h[e3n+1] = \int [-3n+1] + \sum_{k=100}^{\infty} 4 \int [e3n-3k-1].$$

$$f_{2}[n] = h[e3n+2] = \int [-3n+2] + \sum_{k=100}^{\infty} 4 \int [e3n-3k].$$

(b) (8 pts) (True or False) If H(z) represents an FIR filter, then the filters represented by $F_0(z)$, $F_1(z)$, and $F_2(z)$ will be 1/6 the length of H(z) in time. Justify why.