Soha Niroumandijahromi

University of Southern California Viterbi School of Engineering

Office:

e-mail:

Michelson Center for Convergent Bioscience, 1002 Childs Way,

Los Angeles, 90089, CA snirouma@usc.edu

Google Scholar

EDUCATION

2023 – Present	University of Southern California, Los Angeles, CA M.S., Department of Computer Science
2021 – Present	University of Southern California, Los Angeles, CA Ph.D. Student, Department of Mechanical Engineering Advisor: Prof. Niema Pahlevan
2021 – 2023	University of Southern California, Los Angeles, CA M.S., Department of Mechanical Engineering
2016 – 2019	University of Tehran, Tehran, Iran M.S., Department of Aerospace and Mechanical Engineering
2011 – 2016	Yazd University, Yazd, Iran B.S., Department of Mechanical Engineering

RESEARCH INTERESTS

Biofluid Mechanics, Data Science in Healthcare, Physics-informed Machine Learning, Non-invasive Methods in Cardiovascular Disease, Cardiovascular Biomechanics, Rheology, Soft matter, Spectral Numerical Methods, Scientific Computing

ACADEMIC AND PROFESSIONAL EXPERIENCE

2021 – Present PhD student

Department of Mechanical Engineering,

University of Southern California, Los Angeles, CA

AWARDS AND ACHIEVEMENTS

2024	American Heart Association Predoctoral Fellowship Award
2023	American Heart Association Travel Grant Award (Basic Cardiovascular Sciences Council)

JOURNAL PUBLICATIONS

- **9. Niroumandi S**, Alavi R, Wolfson AM, Vaidya AS, Pahlevan NM. Assessment of aortic characteristic impedance and arterial compliance from non-invasive carotid pressure waveform in the Framingham heart study. *The American Journal of Cardiology*. 2023 Oct 1;204:195-9.
- **8.** Alavi R, Aghilinejad A, Wei H, **Niroumandi S**, Wieman S, Pahlevan NM. A coupled atrioventricular-aortic setup for in-vitro hemodynamic study of the systemic circulation: Design, fabrication, and physiological relevancy. *PLOS ONE*. 2022 Nov 4;17(11):e0267765.
- **7.** Shojaeifard M, **Niroumandi S**, Baghani M. Swelling of pH-sensitive hydrogel pressure vessel under altered-pH coupled with inflation, extension, and torsion. *Meccanica*. 2022 Jun;57(6):1391-411.

- **6.** Shojaeifard M, **Niroumandi S**, Baghani M. Programmable self-folding of trilayer and bilayer-hinge structures by time-dependent swelling of tough hydrogels. *Journal of Intelligent Material Systems and Structures*. 2022 Sep;33(16):2106-20.
- **5.** Shojaeifard M, **Niroumandi S**, Baghani M. pH-Responsive Hydrogel Bilayer with Reversible, Bidirectional Bending Behavior. *Frontiers in Materials*. 2022 May 26;9:865652.
- **4. Niroumandi S**, Shojaeifard M, Baghani M. On single and multiple pH-sensitive hydrogel micro-valves: a 3D transient fully coupled fluid–solid interaction study. *Transport in Porous Media*. 2022 Mar;142(1-2):295-316.
- **3. Niroumandi S**, Shojaeifard M, Baghani M. PH-sensitive hydrogel-based valves: A transient fully-coupled fluid-solid interaction study. *Journal of Intelligent Material Systems and Structures*. 2022 Jan;33(1):196-209.
- **2.** Shojaeifard M, **Niroumandi S**, Baghani M. Programming shape-shifting of flat bilayers composed of tough hydrogels under transient swelling. *Acta Mechanica*. 2022 Jan;233(1):213-32.
- **1. Niroumandi S**, Shojaeifard M, Baghani M. Finite deformation of swollen pH-sensitive hydrogel cylinder under extension and torsion and its Poynting effect: analytical solution and numerical verification. *International Journal of Applied Mechanics*. 2021 Jul 20;13(06):2150071.

PEER-REVIEWED CONFERENCE PROCEEDING PUBLICATIONS

- **7.** Vaidya A, **Niroumandi S**, Mazandarani SP, Wolfson A, Pahlevan NM. Single Pressure Waveform Calculation of Total Arterial Compliance Predict Heart Failure Events in Framingham Heart Study. *Journal of the American College of Cardiology*. 2024 Apr 2;83(13):712-.
- **6.** Vaidya A, **Niroumandi S**, Mazandarani SP, Wolfson A, Pahlevan NM. Left Ventricle Pulsatile Workload from A Single Pressure Waveform Using Physics-Based Machine Learning Approach and Cardiovascular Disease Events in The Framingham Heart Study. *Journal of the American College of Cardiology*. 2024 Apr 2:83(13):2451-.
- **5.** Vaidya A, **Niroumandi S**, Mazandarani SP, Wolfson A, Pahlevan NM. Prognostic Value of Aortic Characteristic Impedance Calculated from A Single Carotid Waveform Using Hybrid Intrinsic Frequency-Machine Learning Approach. *Journal of the American College of Cardiology*. 2024 Apr 2;83(13):1988-.
- **4.** Liu J, **Niroumandi S**, Petrasek D, Pahlevan NM. Non-Invasive Insulin Resistance Evaluation Using Carotid Pressure Waveforms in Framingham Heart Study. *Circulation*. 2023 Nov 6;148: A16533- A16533
- **3. Niroumandi S**, Rinderknecht D, Bilgi C, Wolfson A, Vaidya A, King KS, Pahlevan NM. A Noninvasive Smartphone Assessment of Aortic Arch Pulse Wave Velocity and Total Arterial Compliance. *Circulation*. 2023 Nov 6;148:A18846-A18846.
- **2. Niroumandi S**, Wolfson A, Vaidya A, Pahlevan NM. Abstract P367: Evaluation of Left Ventricular Pulsatile Workload in Heart Failure with Preserved Ejection Fraction Using a Single Pressure Waveform Form Framingham Heart Study. *Hypertension*. 2023 Sep;80: AP367- AP367.
- **1. Niroumandijahromi S**, Vaidya A, Pahlevan NM. Hybrid Intrinsic Frequency Machine Learning Approach for Calculation of Total Arterial Compliance and Aortic Characteristic Impedance from A Single Carotid Waveform in Heart Failure With Preserved Ejection Fraction. *Hypertension*. 2022 Sep;79:A039-A039.

PATENTS

1. Alavi R, Amlani F, Gorji H, Niroumandijahromi S, Heng Wei H, and Pahlevan NM. (2024).

"Sequentially-Reduced Artificial Intelligence Based Systems And Methods For Cardiovascular Transfer Functions" (US-20230138773-A1).

https://ppubs.uspto.gov/dirsearch-public/print/downloadPdf/20240138773

GRANTS

1. American Heart Association (AHA) predoctoral fellowship award

Period: 01/01/2024-12/31/2025

Amount: \$67,388.00

Role: PI

CLINICAL TRIALS AND STUDIES

A Noninvasive, inexpensive intervention for heart failure patients to reduce morbidity, hospitalizations, and improve quality of life.

Location: University of Southern California,

Keck Medical School and Viterbi School of Engineering

Time Period: 2023-2027 Role: Co-Investigator

Principal Investigators: Ajay Vaidya, MD, Niema Pahlevan, PhD

Collaborating Investigator: Aaron Wolfson MD

CONFERENCE PRESENTATIONS

- **4. Niroumandi S**, Amlani F, Matthews R, Pahlevan N. The Influence of Left Ventricle and Aorta Interactions on the Coronary Blood Flow Using One-Dimensional Model of Hemodynamics and Wave Propagation in the Entire Circulatory System. Bulletin of the American Physical Society. 2023 Nov 19.
- **3.** Alavi R, Aghilinejad A, Wei H, **Niroumandi S**, Wieman S, Pahlevan N. In-vitro coupled left atrioventricular-aortic hemodynamic simulator for systemic circulation. InAPS Division of Fluid Dynamics Meeting Abstracts 2021 (pp. E28-003).
- **2. Niroumandi S**, Alavi R, Pahlevan N. A Machine Learning Methodology for estimation of vascular characteristics using a single carotid waveform. InAPS Division of Fluid Dynamics Meeting Abstracts 2021 (pp. H14-003).
- **1. Niroumandi S**, Jafari A, Vakilipour S. 3-D simulation of pulsatile blood flow using a haemorheological model. In AERC 2019.

MENTORING

MENTORINO	
1. Christopher Lopez	Summer Highschool Intensive in Next-Generation Engineering 2022,
	"Using Machine Learning to Predict Arterial Compliance".
2. Jayden Solis	Summer Highschool Intensive in Next-Generation Engineering 2022,
	"Artificial Organ Fabrication and Experiments".
3. Vedika Kothari	Summer Highschool Intensive in Next-Generation Engineering 2022,
	"Non-Invasive Prediction of Aortic Stiffness".
4. Justine Ludden	Summer Highschool Intensive in Next-Generation Engineering 2022,
	"Classification of CVD Patients using Machine Learning".
5. Abigail Gugsa	Summer Highschool Intensive in Next-Generation Engineering 2023,
	"Predicting Pulse Wave Velocity in Cardiovascular Disease Patients"
6. Melodie Ebrahimi	Summer Highschool Intensive in Next-Generation Engineering 2023,
	"Correlations Between Heart Failure, Age, Arterial Compliance, and
	Other Biomarkers: Found Using Machine Learning Algorithms"
7. Nico Marazzi	Summer Highschool Intensive in Next-Generation Engineering 2023,
	"Artificial Cardiovascular Organ Production"
8. Hyunwoo Lee	Summer Highschool Intensive in Next-Generation Engineering 2023,
	"Using Machine Learning to Predict Cardiovascular Age"
9. Jessica Ferrie	Summer Highschool Intensive in Next-Generation Engineering 2024,
	"Exploring the Circulatory System and Predicting Aortic Stiffness
	through Machine Learning Techniques".
10. Sophia Choi	Summer Highschool Intensive in Next-Generation Engineering 2024,
•	"Investigation of the Circulatory System and Prediction of Cardiovascular
	Biomarkers Using Machine Learning".

11. Dylan Thai Summer Highschool Intensive in Next-Generation Engineering 2024,

"Investigation of Cardiovascular System Using A Mock Circulatory

System".

12. Janelle Hurtado Summer Highschool Intensive in Next-Generation Engineering 2024,

"Predicting Arterial Stiffness through Circulatory System Analysis Using

Machine Learning".

ACADEMIC SERVICES

NSF outreach Program

4 visits for Gardena Highschool students starting

2023