Lecture 4: Models for point processes

Jean-François Coeurjolly

http://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/

Why modelling? Classification

Cox point processes

Gibbs point processes

Why modelling?

The main objectives of this section are

- to present more realistic models than the too simple Poisson point process to take into account the spatial dependence between points.
- to present statistical methodologies to infer these models.

Why modelling?

The main objectives of this section are

- to present more realistic models than the too simple Poisson point process to take into account the spatial dependence between points.
- to present statistical methodologies to infer these models.

We can distinguish several classes of models for spatial point processes

- point processes based on the thinning of a Poisson point processes, on the superimposition of Poisson point processes.
 [sometimes hard to relate the stochastic process producing the realization and the physical phenomenon producing the data]
- 2. Cox point processes (which include Cluster point processes,...).
- 3. Gibbs point processes.
- 4. Determinantal point processes.

An attempt to classify these models ...

Model	Allows to model	Are moments expressible in a closed form?	Density w.r.t. Poisson?
Cox	attraction	yes	no
Gibbs	repulsion but also attraction	no	yes
Determinantal	repulsion	yes	yes

An attempt to classify these models . . .

Model	Allows to model	Are moments expressible in a closed form?	Density w.r.t. Poisson?
		in a closed form:	
Cox	attraction	yes	no
Gibbs	repulsion but also attraction	no	yes
Determinantal	repulsion	yes	yes

This lecture only focuses on the first two classes of point processes, that is on Cox and Gibbs point processes.

Definition of Cox point processes

We let $S \subseteq \mathbb{R}^d$ throughout this section. B denotes any bounded domain $\subseteq S$.

Definition

Suppose that $Z = \{Z(u) : u \in S\}$ is a nonnegative random field so that with probability one, $u \to Z(u)$ is a locally integrable function. If the conditional distribution of **X** given Z is a Poisson process on S with intensity function Z, then **X** is said to be a *Cox process* driven by Z.

$\underline{\text{Remarks}}$:

- Z is a random field means that Z(u) is a random variable $\forall u \in S$.
- if EZ(u) exists and is locally integrable then w.p. 1, Z(u) is a locally integrable function.

Basic properties of Cox point processes

Proposition

1. Provided Z(u) has finite expectation and variance for any $u \in S$

$$\rho(u) = \mathrm{E} Z(u), \ \rho^{(2)}(u,v) = \mathrm{E} [Z(u)Z(v)], \ g(u,v) = \frac{\mathrm{E} [Z(u)Z(v)]}{\rho(u)\rho(v)}.$$

2. The void probabilities are given by

$$v(B) = E \exp\left(-\int_B Z(u) du\right)$$

for bounded $B \subseteq S$.

<u>Proof</u>: direct consequence of the fact that $\mathbf{X}|Z$ is a Poisson point process with intensity function Z.

Over-dispersion of Cox processes

Proposition

Let A, B bounded sets of S, then

$$\operatorname{Cov}(N(A), N(B)) = \int_A \int_B \operatorname{Cov}(Z(u), Z(v)) du dv + \int_{A \cap B} \operatorname{E} Z(u) du$$

Over-dispersion of Cox processes

Proposition

Let A, B bounded sets of S, then

$$\operatorname{Cov}(N(A), N(B)) = \int_A \int_B \operatorname{Cov}(Z(u), Z(v)) du dv + \int_{A \cap B} \operatorname{E} Z(u) du$$

Consequence:

- In particular, $Var N(A) \ge EN(A)$ with equality only when **X** is a Poisson process.
- \bullet \Rightarrow over-dispersion of the counting variables.

Over-dispersion of Cox processes

Proposition

Let A, B bounded sets of S, then

$$\operatorname{Cov}(N(A),N(B)) = \int_A \int_B \operatorname{Cov}(Z(u),Z(v)) \mathrm{d} u \mathrm{d} v + \int_{A \cap B} \operatorname{E} Z(u) \mathrm{d} u$$

Consequence:

- In particular, $Var N(A) \ge EN(A)$ with equality only when **X** is a Poisson process.
- \bullet \Rightarrow over-dispersion of the counting variables.

Other remarks:

- Most of models have pcf such that $g \ge 1$ (but a few exceptions \exists).
- If $S = \mathbb{R}^d$ and **X** is stationary and/or isotropic then **X** is stationary and/or isotropic.
- Explicit expressions of the F, G and J functions in the stationary case are in general difficult to derive.

A first example

Definition

A mixed Poisson process is a Cox process where $Z(u) = Z_0$ is given by a positive random variable for any $u \in S$, i.e. $\mathbf{X}|Z_0$ follows a homogeneous Poisson process with intensity Z_0 .

This has a limited interest ...but the following properties are really easy to derive

1. **X** is stationary and (provided Z_0 has first two moments)

$$\rho = EZ_0$$
 and $g(u, v) = \frac{E[Z_0^2]}{E[Z_0]^2} \ge 1.$

2. The K and L functions are given by

$$K(r) = \beta \omega_d r^d \quad \text{ and } \quad L(r) = \beta^{1/d} r \ge r$$

where
$$\omega_d = |B(0,1)|$$
 and $\beta = \frac{E[Z_0^2]}{E[Z_0]^2}$.

Neymann-Scott processes

Definition

Let C be a stationary Poisson process on \mathbb{R}^d with intensity $\kappa > 0$. Conditional on C, let $\mathbf{X}_c, c \in C$ be independent Poisson processes on \mathbb{R}^d where \mathbf{X}_c has intensity function

$$\rho_c(u) = \alpha k(u - c)$$

where $\alpha > 0$ is a parameter and k is a kernel (i.e. for all $c \in \mathbb{R}^d$, $u \to k(u-c)$ is a density function). Then $\mathbf{X} = \bigcup_{c \in C} \mathbf{X}_c$ is a Neymann-Scott process with cluster centres C and clusters \mathbf{X}_c , $c \in C$.

Neymann-Scott processes

Definition

Let C be a stationary Poisson process on \mathbb{R}^d with intensity $\kappa > 0$. Conditional on C, let $\mathbf{X}_c, c \in C$ be independent Poisson processes on \mathbb{R}^d where \mathbf{X}_c has intensity function

$$\rho_c(u) = \alpha k(u - c)$$

where $\alpha > 0$ is a parameter and k is a kernel (i.e. for all $c \in \mathbb{R}^d$, $u \to k(u-c)$ is a density function). Then $\mathbf{X} = \bigcup_{c \in C} \mathbf{X}_c$ is a Neymann-Scott process with cluster centres C and clusters \mathbf{X}_c , $c \in C$.

- **X** is also a Cox process on \mathbb{R}^d driven by $Z(u) = \sum_{c \in C} \alpha k(u c)$.
- Simulating a Neymann-Scott process (on W) is very simple (if k has compact support $T < \infty$)
 - 1. Generate $C \sim \text{Poisson}(W \oplus T, \kappa)$.
 - 2. For each $c \in C$, generate $\mathbf{X}_c \sim \text{Poisson}(W, \rho_c)$.
 - 3. Concatenate all the \mathbf{X}_c 's.
- If k has unbounded support, an exact simulation is still possible.

Two classical Neymann-Scott processes

We obtain specific models by choosing specific kernel densities.

1. the Matérn cluster process where

$$k(u) = \mathbf{1}(\|u\| \le R) \frac{1}{\omega_d R^d}$$

is the uniform density on the B(0, R).

2. the *Thomas process* where

$$k(u) = \left(\frac{1}{2\pi\sigma^2}\right)^{d/2} \exp\left(-\frac{\|u\|^2}{2\sigma^2}\right)$$

is the density of $\mathcal{N}(0, \sigma^2 I_d)$.

When R is small or when σ is small, then point pattern exhibit strong attraction.

Basic properties of Neymann-Scott processes

- κ is the mean number of cluster centres per unit square, α is the mean number of daughters points per cluster.
- **X** is stationary (since Z is stationary) and is isotropic if k(u) = k(||u||).
- Intensity of $\mathbf{X} : \rho(u) = \alpha \kappa$.
- The (stationary) pair correlation function is given by

$$g(u,v) = 1 + \frac{k * k(v-u)}{\kappa} \ge 1 \quad \text{ where } \quad k*k(u) = \int k(c)k(u-c)\mathrm{d}c.$$

• The F, G and J functions are also expressible in terms of k. In particular

$$J(r) = \int k(u) \exp \left(-\alpha \int_{\|v\| \le r} k(u+v) \mathrm{d}v \right) \mathrm{d}u$$

whereby we deduce that $\exp(-\alpha) \le J(r) \le 1$.

Back to the Thomas process

Recall that k is the density of a $\mathcal{N}(0, \sigma^2 I_d)$. Applying the previous results, we get (for the pcf)

$$g(r) = 1 + \frac{1}{(4\pi\sigma^2)^{d/2}} \exp\left(-r^2/(4\sigma^2)\right)/\kappa$$

(similar developments can be done for the K, L, J functions and with more work for the Matérn process).

Four realizations of Thomas point processes

$$\kappa = 50$$
, $\sigma = 0.01$, $\alpha = 5$

Correponding L estimates

Correponding J estimates

Complements

- Inhomogeneous Neymann-Scott processes can be obtained by replacing the intensity parameter κ by a spatial function $\kappa(u)$.
- The natural extension of NS processes is given by shot-noise Cox processes which is a Cox process driven by

$$Z(u) = \sum_{(c,\gamma)\in\Phi} \gamma k(c,u)$$

where $k(\cdot, \cdot)$ is a kernel and Φ is a Poisson point process on $\mathbb{R}^d \times (0, \infty)$ with a locally integrable intensity function ζ . (see e.g. Møller and Waagepetersen 2004 for complements).

Log-Gaussian Cox processes

Definition

Let **X** be a Cox process on \mathbb{R}^d driven by $Z = \exp Y$ where Y is a Gaussian random field. Then, **X** is said to be a *log Gaussian Cox process* (LGCP).

Log-Gaussian Cox processes

Definition

Let **X** be a Cox process on \mathbb{R}^d driven by $Z = \exp Y$ where Y is a Gaussian random field. Then, **X** is said to be a *log Gaussian Cox process* (LGCP).

$\underline{\text{Remarks}}$:

- we could consider Z = h(Y) for some non-negative function h, but the exp leads to tractable calculations.
- another possibility: using a χ^2 field, i.e. $Z(u) = Y_1(u)^2 + \ldots + Y_m(u)^2$ are the Y_i 's are independent Gaussian fields with zero mean.
- LGCP are easy to simulate since the problem is transferred to generate a Gaussian field (which can be handled by several methods).
- The mean and covariance function of Y determine the distribution of X.

Particular cases

• In the following we let

$$m(u) = EY(u)$$
 and $c(u, v) = Cov(Y(u), Y(v))$

and we focus on the case where c(u, v) depends only on ||v - u|| (covariance function invariant by translation and by rotation).

- Conditions on c are needed to get a covariance function. Among functions satisfying these properties we find :
 - the power exponential family satisfies these conditions

$$c(u, v) = \sigma^2 r(||v - u||/\alpha) \text{ with } r(t) = \exp(-t^{\delta}), t \ge 0$$

with $\alpha, \sigma > 0$. $\delta = 1$ is the exponential correlation function; $\delta = 1/2$ is the stable correlation function; $\delta = 2$ is the Gaussian correlation function.

• the cardinal sine correlation:

$$c(u, v) = \sigma^2 r(\|v - u\|/\alpha)$$
 with $r(t) = \frac{\sin(t)}{t}, t \ge 0$

Summary statistics for the LGCP

Proposition

Let \mathbf{X} be a LGCP then under the previous notation

1. the intensition function of **X** is

$$\rho(u) = \exp\left(m(u) + c(u, u)/2\right).$$

2. The pair correlation function g of \mathbf{X} is

$$g(u, v) = \exp(c(u, v)).$$

<u>Proof</u>: based on the fact that for $U \sim \mathcal{N}(\zeta, \sigma^2)$, the Laplace transform of U is $E \exp(tU) = \exp(\zeta + \sigma^2 t/2)$.

- one to one correspondendee between (m, c) and (ρ, g) .
- If c is translation invariant then \mathbf{X} is second order reweighted stationary (stationary if m is constant, and isotropic if in addition c(u, v) depends only on ||v u||).

A few plots of pair correlation function

- pcf for the power exponential family : $\log g(r) = \sigma^2 \exp\left(-\left(\frac{r}{\alpha}\right)^{\delta}\right), \quad \alpha, \sigma, \delta > 0$
- pcf for the cardinal sine correlation: $\log g(r) = \sigma^2 \frac{\sin(r/\alpha)}{r/\alpha}, \quad \alpha, \sigma > 0$

Four realizations of (stationary) LGCP point processes

• with exponential correlation function ($\delta = 1$).

• The mean m of the Gaussian process is such that $\rho = \exp(m + \sigma^2/2)$.

$$\sigma = 2.5, \ \alpha = 0.01, \ \rho = 200$$

$$\sigma = 2.5$$
, $\alpha = 0.005$, $\rho = 100$

$$\sigma = 2.5, \; \alpha = 0.005, \; \rho = 200$$

Correponding L estimates

Correponding J estimates

Is likelihood available?

• Assume (only here) that S is a bounded domain, then the density of \mathbf{X}_S w.r.t a Poisson processes with unit rate is given by

$$f(\mathbf{x}) = \mathbb{E}\left[\exp\left(|S| - \int_{S} Z(u) du\right) \prod_{u \in \mathbf{x}} Z(u)\right]$$

for finite point configurations $\mathbf{x} \subset S$. Explicit expression of the expectation is usually unknown and the integral may be difficult to calculate.

 \Rightarrow MLE is usually impossible to calculate (approximations or Bayesian should be used)

• Assume (only here) that S is a bounded domain, then the density of \mathbf{X}_S w.r.t a Poisson processes with unit rate is given by

$$f(\mathbf{x}) = \mathbb{E}\left[\exp\left(|S| - \int_{S} Z(u) du\right) \prod_{u \in \mathbf{x}} Z(u)\right]$$

for finite point configurations $\mathbf{x} \subset S$. Explicit expression of the expectation is usually unknown and the integral may be difficult to calculate.

- \Rightarrow MLE is usually impossible to calculate (approximations or Bayesian should be used)
- In most of applications, we only observe the realization of X.
 ⇒ Z should be considered as a latent process generating the point process, which is not observed.

Inference by minimum contrast estimation

- Assume we observe the realization of a stationary Cox point process which belongs to a parametric family with parameter θ (ex: $\theta = (\alpha, \kappa, \sigma^2)$ for the Thomas process, $\theta = (\mu, \alpha, \sigma^2)$ for a LGCP with exponential correlation function).
- For most of Cox point processes, $\rho = \rho_{\theta}$, $K = K_{\theta}$ or $g = g_{\theta}$ functions are expressible in a closed form, for instance:
 - for a planar (d=2) Thomas process (NS process with Gaussian kernel) : $\rho = \alpha \kappa$ and

$$g_{\theta}(r) = 1 + \frac{1}{\sqrt{4\pi\sigma^2}} \exp\left(-r^2/(4\sigma^2)\right)/\kappa \quad \text{and} \quad K_{\theta}(r) = \pi r^2 + \left(1 - \exp\left(-r^2/(4\sigma^2)\right)\right)/\kappa$$

• for a LGCP with exponential correlation function

$$\rho = \exp(m + \sigma^2/2)$$
 and $\log g_{\theta}(r) = \sigma^2 \exp(-r/alpha)$.

Inference by minimum contrast estimation (2)

• Then the idea is to estimate θ using a minimum contrast approach: i.e. define $\hat{\theta}$ as the minimizer of

$$\int_{r_1}^{r_2} \left| \widehat{K}(r)^q - K_{\theta}(r)^q \right|^2 dr \quad \text{or} \quad \int_{r_1}^{r_2} \left| \widehat{g}(r)^q - g_{\theta}(r)^q \right|^2 dr$$

where

- K(r) and $\widehat{g}(r)$ are the nonparametric estimates of K(r) and g(r).
- where $[r_1, r_2]$ is a set of r fixed values.
- q is a power parameter (adviced in the literature to be set to q = 1/4 or 1/2).
- If X is not stationary but second-order reweighted stationary, the estimation can be done into two steps
 - estimate the intensity parametrically (e.g. Poisson likelihood estimator for instance).
 - use the inhomogeneous K or g function in the minimum contrast estimation method.

A short simulation

- we generated 200 replications of a Thomas process on W with parameters $\kappa = 100$, $\sigma^2 = 10^{-4}$ and $\alpha = 5$
- we estimated the parameters σ^2 and κ using the minimimum contrast estimat based on the K function.
- Then α is estimated using $\widehat{\alpha} = \widehat{\rho}/\widehat{\kappa}$

	Parameter κ	
	$W = [0, 1]^2$	$W = [0, 2]^2$
Emp. mean	98.9	102.4
Emp. var.	251.9	78.1

	Parameter α	
	$W = [0, 1]^2$	$W = [0, 2]^2$
Emp. mean	4.9	4.9
Emp. var.	40.1	6.1

	Parameter σ^2	
	$W = [0, 1]^2$	$W = [0, 2]^2$
Emp. mean	1.01×10^{-4}	9.7×10^{-5}
Emp. var.	1.5×10^{-5}	8.2×10^{-6}

Exercise 7: R and Cox pp - Simulation study in R

- Reproduce the previous simulation study with other parameters. Hint: use the R functions intensity, rThomas, kppm.
- Same question with a LGCP with exponential covariance function. Hint: use rLGCP to generate Log-Gaussian Cox processes.

Exercise 8: R and Cox pp - Dataset finpines

- 1. Plot the K or L function, and construct envelopes by simulation and justify the next question. After justifying it, model the data by a stationary Thomas process and estimate its parameters.
- 2. Simulate m realizations (m as large as possible) of Thomas process with estimated parameters. Construct 95% confidence bands based on the m estimated K functions, plot the original one. Is the Thomas process well-suited?

Exercise 9: R and Cox pp - Dataset bei

Same exercise for the beilschmedia dataset, except that the intensity is modeled as an inhomogeneous function of elevation and gradient of elevation.

Introduction to Gibbs point processes

- the objective of this section is to introduce a new class of point processes: the class of Gibbs point processes.
- Gibbs point process:
 - are mainly used to model repulsion between point (but a
 few models allows also to produce aggregated models).
 That's why this kind of models are widely used in statistical
 physics to model particles systems.
 - are defined (in a bounded domain) by a **density** w.r.t. a Poisson point process
 - \Rightarrow very easy to interpret the model and the parameters.
 - their main drawback : **moments are not expressible** in a closed form and density known up to a scalar
 - ⇒ **specific inference methods** are required.

Important restriction of this section

- Throughout this chapter : we assume that the point process **X** is defined in a bounded domain $S \subset \mathbb{R}^d$ ($|S| < \infty$).
- Gibbs point processes defined on \mathbb{R}^d are of particular interest :
 - in statistical physics because they can model **phase** transition .
 - in asymptotic statistics : if for instance we want to prove the convergence of an estimator as the window expands to \mathbb{R}^d

However, the formalism is more complicated and technical and this is not considered here.

 \Rightarrow from now, **X** is a **finite point process in** S **(bounded)** taking values in N_f (space of finite configurations of points)

$$N_f = \{ \mathbf{x} \subset S : n(\mathbf{x}) < \infty \}.$$

Most of the results presented here have an extension to $S = \mathbb{R}^d$.

Definition of Gibbs point processes

Definition

A finite point process **X** on a bounded domain S $(0 < |S| < \infty)$ is said to be a Gibbs point process if it admits a density f w.r.t. a Poisson point process with unit rate, i.e. for any $F \subseteq N_f$

$$P(\mathbf{X} \in F) = \sum_{n \ge 0} \frac{\exp(-|S|)}{n!} \times \int_{S} \dots \int_{S} \mathbf{1}(\{x_1, \dots, x_n\} \in F) f(\{x_1, \dots, x_n\}) dx_1 \dots dx_n$$

where the term n = 0 is read as $\exp(-|S|)\mathbf{1}(\emptyset \in F)f(\emptyset)$.

- Gpp can be viewed as a perturbation of a Poisson point process.
- f is easily interpretable since it is in some sense a weight w.r.t. a Poisson process.

The simplest example ...

is the inhomogeneous Poisson point process. Indeed for $\mathbf{X} \sim \text{Poisson}(S, \rho)$ (such that $\mu(S) < \infty$), we recall that \mathbf{X} admits a density w.r.t. to a Poisson point process with unit rate given for any $\mathbf{x} \in N_f$ by

$$f(\mathbf{x}) = \exp(|S| - \mu(S)) \prod_{u \in \mathbf{x}} \rho(u).$$

The simplest example . . .

is the inhomogeneous Poisson point process. Indeed for $\mathbf{X} \sim \text{Poisson}(S, \rho)$ (such that $\mu(S) < \infty$), we recall that \mathbf{X} admits a density w.r.t. to a Poisson point process with unit rate given for any $\mathbf{x} \in N_f$ by

$$f(\mathbf{x}) = \exp(|S| - \mu(S)) \prod_{u \in \mathbf{x}} \rho(u).$$

In most of cases, f is specified up to a proportionality $f = c^{-1}h$ where $h: N_f \to \mathbb{R}^+$ is a known function. $\Rightarrow c$ is given by

$$c = \sum_{n>0} \frac{\exp(-|S|)}{n!} \int_S \dots \int_S h(\{x_1, \dots, x_n\}) dx_1 \dots dx_n = \mathbb{E}[h(Y)]$$

where $Y \sim \text{Poisson}(S, 1)$.

Papangelou conditional intensity

Definition

The Papangelou conditional intensity for a point process X with density f is defined by

$$\lambda(u, \mathbf{x}) = \frac{f(\mathbf{x} \cup u)}{f(\mathbf{x})}$$

for any $\mathbf{x} \in N_f$ and $u \in S$ $(u \notin \mathbf{x})$, taking a/0 = 0 for $a \ge 0$.

- λ does not depend on c.
- for Poisson (S, ρ) , $\lambda(u, \mathbf{x}) = \rho(u)$ does not depend on \mathbf{x} !
- $\lambda(u, \mathbf{x}) du$ can be interpreted as the conditional probability of observing a point in an infinitesimal region containing u of size du given the rest of \mathbf{X} is \mathbf{x} .

Attraction, repulsion, heredity

Definition

We often say that \mathbf{X} (or f) is

• attractive if

$$\lambda(u, \mathbf{x}) \leq \lambda(u, \mathbf{y})$$
 whenever $\mathbf{x} \subset \mathbf{y}$.

repulsive if

$$\lambda(u, \mathbf{x}) \ge \lambda(u, \mathbf{y})$$
 whenever $\mathbf{x} \subset \mathbf{y}$.

hereditary if

$$f(\mathbf{x}) > 0 \Rightarrow f(\mathbf{y}) > 0$$
 for any $\mathbf{y} \subset \mathbf{x}$.

• if f is hereditary, then $f \Leftrightarrow \lambda$ (one-to-one correspondence).

Existence of a Gpp in S ($|S| < \infty$)

Proposition

Let $\phi^*: S \to \mathbb{R}^+$ be a function so that $c^* = \int_S \phi^*(u) du < \infty$. Let h = cf, we say that **X** (or f) satisfies the

• local stability property if for any $\mathbf{x} \in N_f$, $u \in S$

$$h(\mathbf{x} \cup u) \le \phi^{\star}(u)h(\mathbf{x}) \Leftrightarrow \lambda(u, \mathbf{x}) \le \phi^{\star}(u).$$

• the Ruelle stability property if for any $\mathbf{x} \in N_f$ and for $\alpha > 0$

$$h(\mathbf{x}) \le \alpha \prod_{u \in \mathbf{x}} \phi^{\star}(u).$$

local stability condition \Rightarrow Ruelle stability condition (and that f is hereditary) \Rightarrow existence of point process in S.

<u>Proof</u>: the first implication is obvious; for the last one it consists in checking that $c < \infty$.

Pairwise interaction point processes

For simplicity, we focus on the isotropic case.

Definition

A istotropic parwise interaction point process (PIPP) has a density of the form (for any $\mathbf{x} \in N_f$)

$$f(\mathbf{x}) \propto \prod_{u \in \mathbf{x}} \phi(u) \prod_{\{u,v\} \subseteq \mathbf{x}} \phi_2(||v - u||)$$

where $\phi: S \to \mathbb{R}^+$ and $\phi_2: \mathbb{R}^+_* \to \mathbb{R}+$.

- If ϕ is constant (equal to β) then the Gpp is said to be homogeneous (note that $\prod_{u \in \mathbf{x}} \phi(u) = \beta^{n(\mathbf{x})}$).
- ϕ_2 is called the interaction function.
- this class of models is hereditary
- f is repulsive if $\phi_2 \leq 1$, in which case the process is locally stable if $\int_S \phi(u) du$.

Strauss point process

Among the class of PIPP, the main example is the Strauss point process defined by

$$f(\mathbf{x}) \propto \beta^{n(\mathbf{x})} \gamma^{s_R(\mathbf{x})}$$
 $\lambda(u, \mathbf{x}) = \beta \gamma^{t_R(u, \mathbf{x})}$

where $\beta > 0$, $R < \infty$, where $s_R(\mathbf{x})$ is the number of R-close pairs of points in \mathbf{x} and $t_R(u, \mathbf{x}) = s_R(\mathbf{x} \cup u) - s_R(\mathbf{x})$ is the number of R-close neighbours of u in \mathbf{x}

$$s_R(\mathbf{x}) = \sum_{\{u,v\} \in \mathbf{x}} \mathbf{1}(\|v-u\| \leq R) \text{ and } t_R(u,\mathbf{x}) = \sum_{v \in \mathbf{x}} \mathbf{1}(\|v-u\| \leq R).$$

Strauss point process

Among the class of PIPP, the main example is the Strauss point process defined by

$$f(\mathbf{x}) \propto \beta^{n(\mathbf{x})} \gamma^{s_R(\mathbf{x})}$$
 $\lambda(u, \mathbf{x}) = \beta \gamma^{t_R(u, \mathbf{x})}$

where $\beta > 0$, $R < \infty$, where $s_R(\mathbf{x})$ is the number of R-close pairs of points in \mathbf{x} and $t_R(u, \mathbf{x}) = s_R(\mathbf{x} \cup u) - s_R(\mathbf{x})$ is the number of R-close neighbours of u in \mathbf{x}

$$s_R(\mathbf{x}) = \sum_{\{u,v\} \in \mathbf{x}} \mathbf{1}(\|v - u\| \le R) \text{ and } t_R(u,\mathbf{x}) = \sum_{v \in \mathbf{x}} \mathbf{1}(\|v - u\| \le R).$$

The parameter γ is called the **interaction parameter**:

- $\gamma = 1$: homogeneous Poisson point process with intensity β .
- $0 < \gamma < 1$: repulsive point process.
- $\gamma = 0$: hard-core process with hard-core R; the points are prohibited from being closer han R.
- $\gamma > 1$: the model is not well-defined (if there exists a set $A \subset S$ with |A| > 0 and $diam(A) \le R$, then $c > \sum_{n \ge 0} \frac{(\beta |A|)^n}{n!} \gamma^{n(n-1)/2} = \infty$).

Realizations of Strauss point processes

(simulation of spatial Gibbs point processes can be done using spatial birth-and-death process or using MCMC with reversible jumps, see Møller and Waagepetersen for details)

$$\beta=100,\,\gamma=0.3,\,R=0.075$$

Corresponding L estimates

Corresponding J estimates

Finite range property (spatial Markov property)

Definition

A Gibbs point process X has a finite range R if the Papangelou conditional intensity satisfies

$$\lambda(u, \mathbf{x}) = \lambda(u, \mathbf{x} \cap B(u, R)).$$

- the probability to insert a point u into \mathbf{x} depends only on some neighborhood of u.
- this definition is actually more general and leads to the definition of Markov point process (omitted here to save time).
- interesting property when we want to deal with edge effects.
- Finite range of the Strauss point process = R.

Other pairwise interaction point processes

- Strauss point process : $\phi_2(r) = \gamma^{\mathbf{1}(r \le R)}$.
- Piecewise Strauss point process:

$$\phi_2(r) = \gamma_1^{\mathbf{1}(r \le R_1)} \gamma_2^{\mathbf{1}(R_1 < r \le R_2)} \dots \gamma_p^{\mathbf{1}(R_{p-1} < r \le R)},$$

with $\gamma_i \in [0,1]$ and $0 \le R_1 < \dots < R_p = R < \infty$ (finite range R).

• Overlap area process:

$$\phi_2(r) = \gamma^{|B(u,R/2) \cap B(v,R/2)|},$$

with r = ||v - u|| with $\gamma \in [0, 1]$ (finite range R).

• Lennard-Jones process :

$$\phi_2(r) = \exp(\alpha_1(\sigma/r)^6 - \alpha_2(\sigma/r)^{12}),$$

with $\alpha \ge 0$, $\alpha_2 > 0$, $\sigma > 0$ (well-known example used in statistical physics, not locally stable but Ruelle stable) (infinite range).

Non pairwise interaction point processes

• Geyer's triplet point process:

$$f(\mathbf{x}) \propto \beta^{n(\mathbf{x})} \gamma^{s_R(\mathbf{x})} \delta^{u_R(\mathbf{x})}$$

 $\beta > 0$, $s_R(\mathbf{x})$ is defined as in the Strauss case and

$$u_R(\mathbf{x}) = \sum_{\{u,v,w\}} \mathbf{1}(\|v - u\| \le R, \|w - v\| \le R, \|w - u\| \le R)$$

- (i) $\gamma \in [0,1]$ and $\delta \in [0,1]$: locally stable, repulsive, finite range R.
- (ii) $\gamma > 1$ and $\delta \in (0,1)$: locally stable, neither attractive nor repulsive, finite range R.

Non pairwise interaction point processes (2)

• Area-interaction point process :

$$f(\mathbf{x}) \propto \boldsymbol{\beta}^{n(\mathbf{x})} \boldsymbol{\gamma}^{-|U_{\mathbf{x},R}|}$$

where $U_{\mathbf{x},R} = \bigcup_{u \in \mathbf{x}} B(u,R)$, $\beta > 0$ and $\gamma > 0$. It is attractive for $\gamma \geq 1$ and repulsive for $0 < \gamma \leq 1$. In both cases, it is locally stable since

$$\lambda(u, \mathbf{x}) = \beta \gamma^{-|B(u, R) \setminus \bigcup_{v \in \mathbf{x} : ||v - u|| \le 2R} B(v, R)|}$$

satisfies $\lambda(u, \mathbf{x}) \leq \beta$ when $\gamma \geq 1$ and $\lambda(u, \mathbf{x}) \leq \beta \gamma^{-\omega_d R^d}$ in the other case. (finite range 2R)

GNZ formula

The following result is also a characterization of a Gibbs point process.

Georgii-Nguyen-Zeissin Formula

Let X be a finite and hereditary Gibbs point process defined on S. Then, for any function $h: S \times N_f \to \mathbb{R}^+$, we have

$$\mathrm{E}\Big[\sum_{u\in\mathbf{X}}h(u,\mathbf{X}\setminus u)\Big] = \int_{S}\mathrm{E}[h(u,\mathbf{X})\lambda(u,\mathbf{X})]\mathrm{d}u.$$

<u>Proof</u>: we know that $Eg(\mathbf{X}) = E[g(\mathbf{Y})f(\mathbf{Y})]$ where f is the density of a Poisson point process with unit rate Y. Apply this to the function $g(\mathbf{X}) = \sum_{u \in \mathbf{X}} h(u, \mathbf{X} \setminus u)$

$$\begin{split} \mathbf{E}[g(\mathbf{X})] &= \mathbf{E}[\sum_{u \in \mathbf{Y}} h(u, Y \setminus u) f(\mathbf{Y})] \\ &= \int_{S} \mathbf{E}[h(u, \mathbf{Y}) f(Y \cup u)] \mathrm{d}u \quad \text{ from the Slivnyak-Mecke Theorem} \\ &= \int_{S} \mathbf{E}[h(u, \mathbf{Y}) f(\mathbf{Y}) \lambda(u, Y)] \mathrm{d}u \quad \text{ since } \mathbf{X} \text{ is hereditary} \\ &= \int_{S} \mathbf{E}[h(u, \mathbf{X}) \lambda(u, \mathbf{X})] \mathrm{d}u. \end{split}$$

First and second order intensities

Proposition

1. The intensity function is given by

$$\rho(u) = \mathrm{E}[\lambda(u, \mathbf{X})].$$

2. The second order intensity function is given by

$$\rho^{(2)}(u, v) = \mathbf{E}[\lambda(u, \mathbf{X})\lambda(v, \mathbf{X})]$$

- can be deduced from the GNZ formula.
- Except for the Poissonian case, moments are not expressible in a closed form, e.g.

$$\rho(u) = \frac{1}{c} \sum_{r>0} \frac{\exp(-|S|)}{n!} \int_{S} \dots \int_{S} \lambda(u, \{x_1, \dots, x_n\}) h(\{x_1, \dots, x_n\}) dx_1 \dots dx_n.$$

• Approximations can be obtained using a Monte-Carlo approach or using a saddle-point approximation (very recent).

Position of the problem

- we observe a realization of **X** on W = S ($|S| < \infty$; edge effects occur when $W \subset S$) of a parametric Gibbs point process with density which belongs to a parametric family of densities $(f_{\theta} = h_{\theta}/c_{\theta})_{\theta \in \Theta}$ for $\Theta \subset \mathbb{R}^p$.
- Problem : estimate the parameter θ based on a single realization.

Position of the problem

- we observe a realization of **X** on W = S ($|S| < \infty$; edge effects occur when $W \subset S$) of a parametric Gibbs point process with density which belongs to a parametric family of densities $(f_{\theta} = h_{\theta}/c_{\theta})_{\theta \in \Theta}$ for $\Theta \subset \mathbb{R}^p$.
- Problem : estimate the parameter θ based on a single realization.
- $MLE \ approach$: the log-likelihood is $\ell_W(\mathbf{x}; \theta) = \log h_{\theta} \log c_{\theta}$. **Pbm**: Given a model h_{θ} can be computed but c_{θ} cannot be evaluated even for a single value of θ ; asymptotic properties are only partial.

Position of the problem

- we observe a realization of **X** on W = S ($|S| < \infty$; edge effects occur when $W \subset S$) of a parametric Gibbs point process with density which belongs to a parametric family of densities $(f_{\theta} = h_{\theta}/c_{\theta})_{\theta \in \Theta}$ for $\Theta \subset \mathbb{R}^p$.
- Problem : estimate the parameter θ based on a single realization.
- $MLE \ approach$: the log-likelihood is $\ell_W(\mathbf{x}; \theta) = \log h_{\theta} \log c_{\theta}$. **Pbm**: Given a model h_{θ} can be computed but c_{θ} cannot be evaluated even for a single value of θ ; asymptotic properties are only partial.
 - \Rightarrow several solutions exist
 - 1. Approximate c_{θ} using a Monte-Carlo approach.
 - 2. Bayesian approach, importance sampling method (to estimate a ratio of normalizing constants).
 - 3. Combine the MLE with the Ogata-Tanemura approximation.
 - 4. Find another method which does not involve c_{θ} .

Pseudo-likelihood

• To avoid the computation of the normalizing constant, the idea is to compute a likelihood based on conditional densities

$$PL_W(\mathbf{x}; \theta) = \exp(-|W|) \lim_{i \to \infty} \prod_{j=1}^{m_i} f(\mathbf{x}_{A_{ij}} | \mathbf{x}_{W \setminus A_{ij}}; \theta)$$

where $\{A_{ij}: j=1,\ldots,m_i\}$ $i=1,2,\ldots$ are nested subdivisions of W.

• By letting $m_i \to \infty$ and $m_i \max |A_{ij}|^2 \to 0$ as $i \to \infty$ and taking the log, Jensen and Møller (91) obtained

$$LPL_W(\mathbf{x}; \theta) = \sum_{u \in \mathbf{x}_W} \lambda(u, \mathbf{x} \setminus u; \theta) - \int_W \lambda(u, \mathbf{x}; \theta) du$$

The MPLE is the estimate $\widehat{\theta}$ maximizing

$$LPL_W(\mathbf{x}; \theta) = \sum_{u \in \mathbf{x}_W} \log \lambda(u, \mathbf{x} \setminus u; \theta) - \int_W \lambda(u, \mathbf{x}; \theta) du$$

1. **Independent on** c_{θ} , so the *LPL* is up to an integral discretization and up to edge effects very to compute.

The MPLE is the estimate $\widehat{\theta}$ maximizing

$$LPL_W(\mathbf{x}; \theta) = \sum_{u \in \mathbf{x}_W} \log \lambda(u, \mathbf{x} \setminus u; \theta) - \int_W \lambda(u, \mathbf{x}; \theta) du$$

- 1. **Independent on** c_{θ} , so the LPL is up to an integral discretization and up to edge effects very to compute.
- 2. If **X** has a finite range R, then since **x** is observed in W, we can replace W by $W_{\ominus R}$ so that for instance $\lambda(u, \mathbf{x}; \theta)$ can always be computed for any $u \in W_{\ominus R}$ (border correction).

The MPLE is the estimate $\widehat{\theta}$ maximizing

$$LPL_W(\mathbf{x}; \theta) = \sum_{u \in \mathbf{x}_W} \log \lambda(u, \mathbf{x} \setminus u; \theta) - \int_W \lambda(u, \mathbf{x}; \theta) du$$

- 1. **Independent on** c_{θ} , so the LPL is up to an integral discretization and up to edge effects very to compute.
- 2. If **X** has a finite range R, then since **x** is observed in W, we can replace W by $W_{\ominus R}$ so that for instance $\lambda(u, \mathbf{x}; \theta)$ can always be computed for any $u \in W_{\ominus R}$ (border correction).
- 3. If $\log \lambda(u, \mathbf{x}; \theta) = \theta^{\top} v(u, \mathbf{x})$ (exponential family class of all examples presented before), then LPL is a **concave** function of θ .

The MPLE is the estimate $\widehat{\theta}$ maximizing

$$LPL_W(\mathbf{x}; \theta) = \sum_{u \in \mathbf{x}_W} \log \lambda(u, \mathbf{x} \setminus u; \theta) - \int_W \lambda(u, \mathbf{x}; \theta) du$$

- 1. **Independent on** c_{θ} , so the *LPL* is up to an integral discretization and up to edge effects very to compute.
- 2. If **X** has a finite range R, then since **x** is observed in W, we can replace W by $W_{\ominus R}$ so that for instance $\lambda(u, \mathbf{x}; \theta)$ can always be computed for any $u \in W_{\ominus R}$ (border correction).
- 3. If $\log \lambda(u, \mathbf{x}; \theta) = \theta^{\mathsf{T}} v(u, \mathbf{x})$ (exponential family class of all examples presented before), then LPL is a **concave** function of θ .
- 4. under suitable conditions $\widehat{\theta}$ is a **consistent** estimate and satisfies a **CLT** (and a fast covariance estimate is available) as the window W expands to \mathbb{R}^d . [Jensen and Künsch'94, Billiot Coeurjolly and Drouilhet'08-'10, Coeurjolly and Rubak'12].

Simulation example

We generated 100 replications of Strauss point processes (a border correction was applied):

- 1. $\text{mod } 1: \beta = 100, \ \gamma = 0.2, \ R = .05.$
- 2. $\text{mod } 2: \beta = 100, \ \gamma = 0.5, \ R = .05.$

Estimates of β							
	$W = [0, 1]^2$		$W = [0, 2]^2$				
mod1	99.52	(17.84)	97.98	(9.24)			
mod2	99.28	(20.48)	98.21	(8.53)			

Estimates of γ							
	$W = [0, 1]^2$		$W = [0, 2]^2$				
mod1	0.20	(0.09)	0.21	(0.06)			
mod2	0.52	(0.19)	0.51	(0.09)			

Takacs-Fiksel method

• Denote for any function h (eventually depending on θ)

$$L_W(\mathbf{X},h;\theta) = \sum_{u \in \mathbf{X}_W} h(u,\mathbf{X} \backslash u;\theta) \text{ and } R_W(\mathbf{X},h;\theta) = \int_W h(u,\mathbf{X};\theta) \lambda(u,\mathbf{X};\theta) \mathrm{d}u$$

- The GNZ formula states : $E[L_W(\mathbf{X}, h; \theta)] = E[R_W(\mathbf{X}, h; \theta)].$
- **Idea**: if θ is a p-dimensional vector,
 - 1. choose p test function h_i and define the contrast

$$U_W(\mathbf{X}, \theta) = \sum_{i=1}^{p} (L_W(\mathbf{X}, h; \theta) - R_W(\mathbf{X}, h; \theta))^2.$$

2. Define $\widehat{\theta}^{TF} = \operatorname{argmin}_{\theta} U_W(\mathbf{X}, \theta)$.

Takacs-Fiksel (2)

General comments:

- like the MPLE:
 - independent of c_{θ} , border correction possible in case of **X** has a finite range
 - consistent and asymptotically Gaussian estimate (Coeurjolly et al.'12).

Takacs-Fiksel (2)

General comments:

- like the MPLE:
 - independent of c_{θ} , border correction possible in case of **X** has a finite range
 - consistent and asymptotically Gaussian estimate (Coeurjolly et al.'12).
- Another advantage: interesting choices of test functions cal least to a decreasing of computation time.

Ex : $h_i(u, \mathbf{X}) = n(B(u, r_i))\lambda^{-1}(u, \mathbf{X}; \theta) \Rightarrow R_W$ independent of θ .

Takacs-Fiksel (2)

General comments:

- like the MPLE:
 - independent of c_{θ} , border correction possible in case of **X** has a finite range
 - consistent and asymptotically Gaussian estimate (Coeurjolly et al.'12).
- Another advantage: interesting choices of test functions cal least to a decreasing of computation time.

Ex : $h_i(u, \mathbf{X}) = n(B(u, r_i)) \lambda^{-1}(u, \mathbf{X}; \theta) \Rightarrow R_W$ independent of θ .

• Actually : **MPLE** = **TFE** with $h = (h_1, ..., h_p)^{\top} = \lambda^{(1)}(\cdot, \cdot; \theta)$. Indeed (assume $\log \lambda(u, \mathbf{X}; \theta) = \theta^{\top} v(u, \mathbf{X})$ (for simplicity)

$$\nabla LPL_W(\mathbf{X};\theta) = \sum_{u \in \mathbf{X}_W} v(u, \mathbf{X} \setminus u) - \int_W v(u, \mathbf{X}) \lambda(u, \mathbf{X}; \theta) \mathrm{d}u.$$

Exercise 10 (Takacs-Fiksel and Strauss model)

1. We focus on the Strauss point process. Consider the test functions

$$h_1(u, \mathbf{X}) = \mathbf{1}(n(B(u, R) = 0))$$
 and $h_2(u, \mathbf{X}) = \mathbf{1}(n(B(u, R) = 1))$
and show that $L_W(\mathbf{X}, h_i) = L_i$ $(i = 1, 2)$, $R_W(\mathbf{X}, h_1) = \beta I_1$ and $R_W(\mathbf{X}, h_2) = \beta \gamma I_2$ where L_i and I_i are independent of the parameters.

- 2. Write the contrast function $U_W(\mathbf{X};\theta) = (L_1 \beta I_1)^2 + (L_2 \beta \gamma I_2)^2$ and show that the minimization of this contrast leads to an explicit estimator of the parameters β and γ .
- 3. Extend the methodology for the Gibbs point process with Papangelou conditional intensity

$$\lambda(u, \mathbf{X}) = \beta \gamma_1^{t_{R_1}(u, \mathbf{X})} \gamma_2^{t_{R_2}(u, \mathbf{X})} \text{ with } t_{R_i}(u, \mathbf{X}) = \sum_{v \in \mathbf{X}} \mathbf{1}(R_{i-1} \le ||v - u|| \le R_i)$$
 for $i = 1, 2$ where $R_0 = 0 < R_1 < R_2$.

Exercise 11: R and Gibbs pp - Simulation Study

- Generate m Strauss point processes with parameters $\beta = 200$, $\gamma = 0.5$ and R = 0.05 on $W = [0, 1]^2$, $[0, 2]^2$. Estimate the parameters β and γ (assume R is known) by pseudo-likelihood for each replication. Hint: use the R functions rStrauss, ppm
- Evaluate the empirical mean and standard deviation and comment the results. Same questions with $\gamma = 0.2$ and $\gamma = 0.8$.

Execercise 12: R and Gibbs pp - swedishpines dataset

- Plot the K or L function and construct 95% confidence bands under CSR by simulation.
- After justifying it, model the data by a Strauss point process and estimate the parameters (with R = .5).
- Generate m replications of the fitted model, construct 95% confidence bands under the fitted model of the K function and plot the K function estimated on the data. Is the model well-suited?
- Propose a 95% confidence interval for the parameters β , γ .

Complements

Other parametric approaches:

- Variational approach: (Baddeley and Dereudre'12).
- Method based on a logistic regression likelihood (Baddeley, Coeurjolly, Rubak, Waagepetersen'13).

Complements

$Other\ parametric\ approaches:$

- Variational approach: (Baddeley and Dereudre'12).
- Method based on a logistic regression likelihood (Baddeley, Coeurjolly, Rubak, Waagepetersen'13).

$Model\ fitting:$

- Monte-Carlo approach : we can compare a summary statistic e.g. L with $L_{\widehat{\theta}}$.
 - **Pbm** : L_{θ} not expressible in a closed form and must be approximated.
- We can still use the GNZ formula : given a test function h, we can construct

$$L_W(\mathbf{X}, h; \widehat{\theta}) - R_W(\mathbf{X}, h; \widehat{\theta}) =: \text{Residuals}(\mathbf{X}, \mathbf{h}).$$

If the model is correct, then Residuals(**X**, h) should be close to zero. (Baddeley et al.'05,08', Coeurjolly and Lavancier'12).

General Conclusion

The analysis of spatial point pattern

- very large domain of research including probability, mathematical statistics, applied statistics
- own specific models, methodologies and software(s) to deal with.
- is involved in more and more applied fields : economy, biology, physics, hydrology, environmetrics,...

General Conclusion

The analysis of spatial point pattern

- very large domain of research including probability, mathematical statistics, applied statistics
- own specific models, methodologies and software(s) to deal with.
- is involved in more and more applied fields : economy, biology, physics, hydrology, environmetrics,...

Still a lot of challenges

- Modelling: the "true model", problems of existence, phase transition.
- Many classical statistical methodologies need to be adapted (and proved) to s.p.p.: robust methods, resampling techniques, multiple hypothesis testing.
- High-dimensional problems : $S = \mathbb{R}^d$ with d large, selection of variables, regularization methods,...
- Space-time point processes.