Table of contents

- Basic Settings
 - 。 Coordinate System (数式をハイブリッド化済)
 - 。 Physical Constants (変更なし)

Basic Settings

Here we present the basic setup of the model.

Coordinate System

座標系は、基本的に、経度 λ 、緯度 φ 、正規化気圧 η (定義は後述)を用い、それぞれは直交するとして扱う。ただし、地中の鉛直座標はzを用いる。

Longitude is discretized at equal intervals MODULE: [ASETL] .

$$\lambda_i = 2\pirac{i-1}{I} \quad i=1,\dots I-1$$

The latitude is the Gauss latitude φ_j described in Mechanics, and it is derived from MODULE: [ASETL], the Gauss-Legendre integral formula. This is the zero point of the Legendre polynomial of order J with $\mu = \sin \varphi$ as the argument, MODULE: [GAUSS].

If J is large, we can approximate

$$arphi_j=\pi(rac{1}{2}-rac{j-1/2}{J}) \quad j=1,\ldots J-1$$

Usually, the grid spacing of longitude and latitude is taken to be approximately equal to J = I/2. This is based on the triangular truncation of the spectral method.

気圧pはk=0...Kについて、定数 $A_{k+1/2}$ 、 $B_{k+1/2}$ を用いて次の式で定義する。

$$p_{k+1/2} = A_{k+1/2} + B_{k+1/2} \, p_s$$

ただし、 $A_{1/2}=A_{K+1/2}=0,\ B_{1/2}=1,\ B_{K+1/2}=0$ であり、よって $p_{1/2}=p_s,\ p_{K+1/2}=0$ である。また、 $\sigma\equiv p/p_s$ は以下のように表せる。

$$\sigma_{k+1/2} = rac{A_{k+1/2}}{p_s} + B_{k+1/2}$$

さらに、基準地表気圧 $p_0=1000~\mathrm{hPa}$ を用いて η を次の式で定義する。

$$\eta_{k+1/2} = rac{A_{k+1/2}}{p_0} + B_{k+1/2}$$

 $A_{k+1/2},\,B_{k+1/2},\,p_0$ が定数であるため、 $\eta_{k+1/2}$ も定数であり、これをモデルの鉛直座標とする。ただし、第二章で示すように、離散化を行った後の式は、 $\eta_{k+1/2}$ が陽には現れない形になっている。

整数レベルにおける気圧 p_k $(k=1,2,\ldots K)$ は次の式で内挿する。

$$p_k = \left\{rac{1}{1+\kappa}\left(rac{p_{k-1/2}^{\kappa+1}-p_{k+1/2}^{\kappa+1}}{p_{k-1/2}-p_{k+1/2}}
ight)
ight\}^{1/\kappa}$$

鉛直座標を80層にした場合の整数レベルの気圧を例示する。下層は地形に追従する一方で、上部の層は等圧になっており、両者が滑らかに接続されている。

Each predictor is entirely defined on a grid of $(\lambda_i, \varphi_j, \sigma_k)$ or $(\lambda_i, \varphi_j, z_l)$. (The underground level, z_l , is described in the section on physical processes.)

In the time direction, the predictive equations are discretized at evenly spaced Δt and time integration is performed. However, if the stability of the time integration may be impaired, the Δt may change.

Physical Constants

The basic physical constants are shown below MODULE: [APCON].

Header0	Header1	Header2	Header3
earth radius	a	m	6.37×10^{6}
acceleration of gravity	g	${\sf ms}^-2$	9.8
atmospheric pressure specific heat	C_p	${\sf J}\ {\sf kg}^{-1}\ {\sf K}^{-1}$	1004.6
Atmospheric gas constant	R	${\sf J}\ {\sf kg}^{-1}\ {\sf K}^{-1}$	287.04
Latent heat of water evaporation	L	${\sf J}\ {\sf kg}^{-1}$	2.5×10^{6}
Water vapor constant pressure specific heat	C_v	${\sf J}\ {\sf kg}^{-1}\ {\sf K}^{-1}$	1810\bsp.
Gas constant of water	R_v	${\sf J}\ {\sf kg}^{-1}\ {\sf K}^{-1}$	461.
Density of liquid water	d_{H_2O}	${\sf J}\ {\sf kg}^{-1}\ {\sf K}^{-1}$	1000.
0 Saturated vapor at 0 °	e*(273K)	Pa.	611

σ_{SB}	$\mathrm{W}\;\mathrm{m}^{-2}\;\mathrm{K}^{-4}$	5.67×10^{-8}
k		0.4
L_M	${\sf J}\ {\sf kg}^{-1}$	$3.4 imes 10^5$
T_M	K	273.15
C_w	$J\;kg^{-1}$	4,200.
T_{I}	K	271.35
$C_I = C_w - L_M/T_M$		2397.
$\epsilon=R/R_v$		0.622
$\epsilon_v = \epsilon^{-1} - 1$		0.606
$\kappa = R/C_p$		0.286
	k L_M T_M C_w T_I $C_I = C_w - L_M/T_M$ $\epsilon = R/R_v$ $\epsilon_v = \epsilon^{-1} - 1$	k L_M J kg $^{-1}$ T_M K C_w J kg $^{-1}$ T_I K $C_I = C_w - L_M/T_M$ $\epsilon = R/R_v$ $\epsilon_v = \epsilon^{-1} - 1$