Tutorial 8

1. Consider two random variables X and Y with joint probability mass function (PMF) given in the following table:

	Y = 0	Y=1	Y=2
X = 0	0.01	0	0
X = 1	0.09	0.09	0
X = 2	0	0	0.81

- (a) Compute the correlation of X and Y, i.e., $r_{X,Y} = \mathbb{E}\{XY\}$.
- (b) Compute cov(X, Y).
- (c) Compute correlation coefficient $\rho_{X,Y}$.

- 2. Express cov(X + Y, X + Y) in terms of var(X), var(Y) and cov(X, Y).
- 3. Prove the following property of correlation coefficient of random variables X and Y with variances σ_X^2 and σ_Y^2 :

$$-1 \le \rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)}\sqrt{\text{var}(Y)}} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} \le 1$$

Hint: Let W = X - aY where $a \in \mathbb{R}$ and then consider var(W) with suitable values of a.

4. A random variable X is transformed to another random variable Y = aX + b where a and b are constants. Suppose a < 0. Determine $\rho_{X,Y}$.

5. Random variables X and Y have the following joint probability density function (PDF):

$$P_{XY}(x,y) = \begin{cases} 5x^2/2, & -1 \le x \le 1; 0 \le y \le x^2 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Compute $\mathbb{E}\{X\}$ and var(X).
- (b) Compute $\mathbb{E}\{Y\}$ and var(Y).
- (c) Compute cov(X, Y).
- (d) Compute $\mathbb{E}\{X+Y\}$ and var(X+Y).

Solution

1.(a)

$$r_{X,Y} = \mathbb{E}\{XY\} = \sum_{x=0}^{2} \sum_{y=0}^{2} xy P_{XY}(x,y)$$

= $(1)(1)(0.09) + (2)(2)(0.81) = 3.33$

1.(b)

The marginal PMFs are:

$$p(x) = \begin{cases} 0.01, & x = 0 \\ 0.18, & x = 1 \\ 0.81, & x = 2 \\ 0, & \text{otherwise} \end{cases} \qquad p(y) = \begin{cases} 0.1, & y = 0 \\ 0.09, & y = 1 \\ 0.81, & y = 2 \\ 0, & \text{otherwise} \end{cases}$$

Then we compute the expected values:

$$\mathbb{E}{X} = (1)(0.18) + (2)(0.81) = 1.8$$

 $\mathbb{E}{Y} = (1)(0.09) + (2)(0.81) = 1.71$

Using (3.21), we have:

$$cov(X, Y) = \mathbb{E}\{XY\} - \mathbb{E}\{X\}\mathbb{E}\{Y\} = 0.252$$

1.(c)

$$\mathbb{E}\{X^2\} = (1)^2(0.18) + (2)^2(0.81) = 3.42$$

$$\mathbb{E}\{Y^2\} = (1)^2(0.09) + (2)^2(0.81) = 3.33$$

Applying (2.23) yields:

$$var(X) = \mathbb{E}\{X^2\} - (\mathbb{E}\{X\})^2 = 0.18$$
$$var(Y) = \mathbb{E}\{Y^2\} - (\mathbb{E}\{Y\})^2 = 0.4059$$

Using (3.25), we have

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)}\sqrt{\text{var}(Y)}} = \frac{0.252}{\sqrt{0.18}\sqrt{0.4059}} = 0.9323$$

2.

According to the commutative and distributive properties of covariance, we get:

$$cov(X + Y, X + Y) = cov(X, X) + cov(X, Y) + cov(Y, X) + cov(Y, Y)$$
$$= var(X) + var(Y) + 2cov(X, Y)$$

which aligns with (3.23) for n = 2.

3.

Let W = X - aY where $a \in \mathbb{R}$. Applying the result in Question 2, the variance of W is:

$$var(W) = var(X) + a^{2}var(Y) - 2acov(X, Y)$$

As variance must be nonnegative, we have:

$$\operatorname{var}(W) \ge 0 \Rightarrow \operatorname{var}(X) + a^2 \operatorname{var}(Y) \ge 2a \operatorname{cov}(X, Y)$$

 $\Rightarrow \sigma_X^2 + a^2 \sigma_Y^2 \ge 2a \operatorname{cov}(X, Y)$

Note that the inequality holds for all $a \in \mathbb{R}$. Set $a = \sigma_X/\sigma_Y > 0$:

$$2\sigma_X^2 \ge 2\sigma_X/\sigma_Y \cdot \text{cov}(X,Y) \Rightarrow \sigma_X\sigma_Y \ge \text{cov}(X,Y) \Rightarrow \rho_{X,Y} \le 1$$

We then set $a = -\sigma_X/\sigma_Y < 0$:

$$-2\sigma_X^2 \le 2\sigma_X/\sigma_Y \cdot \text{cov}(X,Y) \Rightarrow -\sigma_X\sigma_Y \le \text{cov}(X,Y) \Rightarrow \rho_{X,Y} \ge -1$$

Combining the results yields $1 \ge \rho_{X,Y} \ge -1$.

4.

From the results of Question 4 in Tutorial 6, we have:

$$\mathbb{E}\{Y\} = \mu_y = \mathbb{E}\{aX + b\} = \mathbb{E}\{aX\} + \mathbb{E}\{b\} = a\mathbb{E}\{X\} + b = a\mu_x + b$$
$$\text{var}(Y) = \sigma_y^2 = \mathbb{E}\{(Y - \mu_y)^2\} = a^2 \text{var}(X) = a^2 \sigma_x^2$$

According to (3.21), we obtain:

$$cov(X,Y) = \mathbb{E}\{(X - \mu_x)(aX + b - a\mu_x - b)\}\$$

= $\mathbb{E}\{(X - \mu_x)(aX - a\mu_x)\} = a\mathbb{E}\{(X - \mu_x)^2\} = a\sigma_x^2$

From (3.25), the correlation coefficient is:

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)}\sqrt{\text{var}(Y)}} = \frac{a\sigma_x^2}{\sqrt{\sigma_x^2}\sqrt{a^2\sigma_x^2}} = \frac{a}{|a|}$$

When a < 0, we get $\rho_{X,Y} = -1$.

5.(a)

$$\mathbb{E}\{X\} = \int_{-1}^{1} \int_{0}^{x^{2}} x \frac{5x^{2}}{2} dy dx = \int_{-1}^{1} \frac{5x^{5}}{2} dx = -\frac{5x^{6}}{12} \Big|_{-1}^{1} = 0$$

Since $\mathbb{E}{X} = 0$, $var(X) = \mathbb{E}{X^2}$:

$$\operatorname{var}(X) = \mathbb{E}\{X^2\} = \int_{-1}^{1} \int_{0}^{x^2} x^2 \frac{5x^2}{2} dy dx = \int_{-1}^{1} \frac{5x^6}{2} dx = \frac{5x^7}{14} \Big|_{-1}^{1} = \frac{5}{7}$$

5.(b)

$$\mathbb{E}\{Y\} = \int_{-1}^{1} \int_{0}^{x^{2}} y \frac{5x^{2}}{2} dy dx = \frac{5}{14}$$

$$\mathbb{E}\{Y^2\} = \int_{-1}^{1} \int_{0}^{x^2} y^2 \frac{5x^2}{2} dy dx = \frac{5}{27}$$

Hence

$$var(Y) = \mathbb{E}\{Y^2\} - (\mathbb{E}\{Y\})^2 = 0.0576$$

5.(c)

Since $\mathbb{E}{X} = 0$, we have:

$$cov(X,Y) = \mathbb{E}\{XY\} - \mathbb{E}\{X\}\mathbb{E}\{Y\} = \mathbb{E}\{XY\}$$

Hence

$$cov(X,Y) = \mathbb{E}\{XY\} = \int_{-1}^{1} \int_{0}^{x^{2}} xy \frac{5x^{2}}{2} dy dx = \int_{-1}^{1} \frac{5x^{7}}{4} dx = 0$$

5.(d)

$$\mathbb{E}\{X+Y\} = \mathbb{E}\{X\} + \mathbb{E}\{Y\} = \frac{5}{14}$$

$$var(X + Y) = var(X) + var(Y) + 2cov(X, Y) = 0.7719$$