7.1 Integration by parts "Reversing a the product rule." $M = \chi^2 e^{3x}$ ex: $y' = 2x e^{3x} + x^2(3e^{3x})$ $\int (2xe^{3x} + \chi^2(3e^{3x})) dx = \chi^2 e^{3x} + c$ $\int x^2 3e^{3x} dx = x^2 e^{3x} - \int 2x e^{3x} dx$ Also udv = uv - Irdu.

7.1 cont.					
<u></u>					
Find Ix cos 5x dx.					
Step 1) identify u and dr as two					
factors of original integral. Idea: choose u that has simpler derivative.					
$u = x$ $dv = \cos 5 \times dx$ (everything else!)					
Jep 2) differentiale lintegrate					
$dx = 1dx \qquad V = \int \cos 5x dx$					
$=\frac{1}{t}\sin 5x$					
3					
original problem					
step 3) Use formula Sudv = uv - Svdu					
answer-in-progress					
x cossx of x					
$= x \frac{1}{5} \sin 5 x - \int \frac{1}{5} \sin 5 x dx$					
Finish.					
$= \chi \frac{1}{5} \sin 5x - \frac{1}{5} \left(\frac{1}{5} \cos 5x \right)$					
$= \frac{\chi}{5} \sin 5 \chi + \frac{1}{25} \cos 5 \chi + c$					
5 23					

Find	2			
	$\int_{1}^{2} \ln x dx$	u = lnx	dv=dx	
		$da = \frac{1}{x} dx$	ν = χ	
=	$\left[\chi _{n\chi}\right]^{2} - \int_{1}^{2} \chi \frac{1}{\chi}$	dx		
=	$\left[\times \ln \times \right]^2 - \int_1^2 1$	d×		
2	$\left[x \mid n \times \right]_{1}^{2} - \left[x \right]_{1}^{2}$			
$= 2 \ln 2 - 1 \ln 1 - (2 - 1)$				
2	[2h2-1]			
Find	$\int x^2 e^x dx$	$u = \chi^2$	$dv = e^{x}dx$	
		du = 2×dx	v = e ^x	
=	$\chi^2 e^{x} - \int 2x e^{x} dx$	/		
=	$x^2 e^x - 2 \int x e^x dx$	$\begin{cases} = x e^{x} - \int e^{x} dx \\ = x e^{x} - e^{x} \end{cases}$		
$= \chi^2 e^{\times} - 2(\chi e^{\times} - e^{\times}) + c$				
=	$x^2e^x - 2xe^x + 2$	e ^x + c		