システム開発論

第1回 WBS, PERT編

木野 泰伸

kino@mbaib.gsbs.tsukuba.ac.jp

プロジェクトとは? (特徴)

- ・ 普段とは違う独自のもの(単発である)
- 終わりがある
- 目標がある
- 走りながら検討しがち

定常業務 Operation

プロジェクトの特徴

- 独自性
- 有期性
- 段階的詳細化

プロジェクトにはどんなものがあるか?

- ・建設/建築 プロジェクト
- ・ITシステム開発 プロジェクト
- ・イベント(博覧会/コンサート/祭り)プロジェクト
- ・新製品開発 プロジェクト
- ・修士論文作成 プロジェクト

企業の視点から見たプロジェクト

変革・改革するためにプロジェクトを実施する。

プロジェクトマネジメントの目指すところ

科学的/合理的手法を用いて、プロジェクトを 確実に成功させる。

平たく言うと

- 残業しなくてもいいようにしましょう。
- 計画とおり進むようにしましょう。
- 関係者皆が幸せになるようにしましょう。

別の言い方をすると

あたかも易しいプロジェクトを実施したかのように 実行する。

プロジェクト成功のための非公式な秘訣

吳越同舟 『孫子』九地 夫呉人與越人相惡也、當其同舟而濟遇風、其相救也、如左右手。

「How to Win Friends and Influence People」

プロジェクトを成功させるために

目標設定

- 明確な分かりやすい目標を設定する。
- 最終的な成果物は何かを明確にする。

計画の作成

- ・ どのようにして作るのか(製造方法/手順)。
- ・ 誰が、いつ、どこで

5W2H の観点で。

基本工程

構想

計画

設計

製造

試験

運用

- フェーズで区切る (フェーズド・アプローチ)
- ・ フェーズの間は、成果物で情報を受け渡す。

この工程の問題点は?

Processes

Water Fall Model / V-Model Royce 1970

Samples of Expanded Process

- Prototyping process model
 - Disposal
 - Continue development

■ Spiral process model

■ Incremental process model

BASE	Α
	В
	С

■ Iterative process model

WBS (Work Breakdown Structure)

(口に入る大きさに切ろう!)

WBS

プロジェクトの目標を達成する上で必要となる作業を プロジェクト計画の進展に応じてブレークダウンし、 具体的な作業スケジューリングと進捗管理が可能な 単位にまで詳細化したもの

◆ WBSを作成する目的

- (1)プロジェクトに必要な作業の 構造と範囲、作業責任を明確 にする
- (2)作業のスケジュール作成と 実績把握を可能にする
- (3)コスト見積りのための基本 データを提供する

WBS作成時の考慮点

- WBSに含める作業
 - ☑成果物作成に直接関わる作業
 - ☑ プロジェクトマネジメント上必要な計画、管理、支援などの作業
- WBSの詳細化
 - ☑ 初めから全てを詳細に記述するのではなく、 適切な時期に、適切なレベルまで、詳細化する
- ・マスタースケジュールとの整合性☑レベル、項目を合わせる
- OBS, PBS との整合性

WBS作成の作成方法

- ◇ テンプレート(標準版)、他の類似プロジェクトのWBSを 利用 (必ずプロジェクトに合わせ、テーラリングする)
- ◇ トップダウン的にブレークダウン
 - ・作業順序に着目
 - ・成果物に着目
- ◇ ボトムアップ的に結合
 - ・各社、チームごとに担当部分を作成して結合 (作業の抜けがでる可能性が多いので要注意)
- ◇ 複数人、できれば全員で確認
 - ・抜けの検証、担当作業の確認、関連者の確認

スケジュール図法の種類(1)

◆ ガント・チャート (バー・チャート)

H.L.Gantt (1861-1919)

プロジェクトの計画と実績が一目で分かる 日程管理表として考案

利点

- ・見やすい
- ・作りやすい

ガント・チャートのサンプル MSProjectによる詳細 スケジュールの例 | 10月 | 09/29 | 10/06 | 10/13 | 10/20 | 10/27 | 11/03 | 11/10 | 11/17 | 11/24 | 12/01 | 12/08 | 12/15 | 12/22 | 1: D維練日 0継続日 19日 B/R疎通確認 0維続日 余裕日 生管目次ハンド 生管目次疎通確認 0維続日 n維練日 個別修正疎通確認 O継続日 0維続日 49日 0維続日 52日 業務全体テスト(EA・設管) 業務全体テスト(生管) クリティカル・パス n紐縛日 O維続日 0継続日 10日 統合インストーラ配付 0継続日 33日

欠点

・作業の前後関係が分かりにくい

PERT (Program Evaluation and Review Technique)

1956-1958 アメリカ海軍 ポラリス潜水艦建造計画用に開発

特徴:

- ・ネットワーク図による表示
- •日程計算
- ・クリティカル・パスの明示
- ※同時期に開発されたものとして、 CPS(Critical Path Scheduling) がある。 後に、CPM(Critical Path Method)と呼ばれる。 デュポン社が化学プラント建設の設備投資額と日程を 総合的に管理するための手法として開発。

スケジュール図法の種類(2)

- ◆ ネットワーク図
 - · プレシデンス·ダイアグラム法(PDM)

· アロー·ダイアグラム法(ADM)

PERT/Time **_**9 **▶**(8)

PERT/Time 時間見積り

◇1点見積り法 Single Estimate

る正規分布で近似できる。

- ◇3点見積り法 Three-times Estimate
 - ・楽観値, 最可能値, 悲観値 を用いる
 - ・β分布であると仮定して平均、分散を求める

PERT/Man-Power

PERT/Man-Power

PERT/Cost

期間の短縮

- ◇ファースト・トラッキング (Fast Tracking)
 - ・順次に処理している作業を並列に行う -時間、リソースの制約を外し、依存関係を変える
- ◇クラッシング (Crashing)
- ・クリティカル・パス上の作業に、コストを追加し、期間の 短縮を図る
 - -現要員が残業する
 - -追加要員を投入する

CPM (Critical Path Method)

- -1950年代、デュポン社が化学プラント建設の設備投資額と 日程を総合的に管理するための手法として開発。
- -日程とコストが管理対象
- -標準(Normal)コスト・タイムと特急(Crash)コスト・タイムの 2点による見積り
 - (※PERTの時間見積りは、1点もしくは、3点(楽観値、 最可能値、悲観値)を用いたベータ分布による近似)

