

Examination Paper

Exam Code:

Year:

Examination Session:

May/June	2022	COMP1021-WE01
Title: Mathematics for Computer Science		
Release Date/Time	18/05/2022 14:00	
Latest Submission Date/Time	19/05/2022 14:00	
Format of Exam	Online open book exam	
Duration:	2 hours	
Word/Page Limit:	None	
Additional Material provided:	None	
Expected form of Submission	A SINGLE PDF file submitt	ted to Gradescope
Submission method	Gradescope	
Instructions to Candidates:	Answer ALL questions.	

Section A Linear Algebra (Prof. Andrei Krokhin)

Question 1

- (a) A linear operator T on \mathbb{R}^3 maps $\mathbf{v}_1=(1,-3,-4)$ to $\mathbf{v}_2=(2,7,-8)$ and $\mathbf{v}_3=(-2,5,0)$ to $\mathbf{v}_4=(-1,1,-12).$
 - i. Does the above information uniquely determine $T(\mathbf{v}_2)$? If so, find it.

[4 Marks]

ii. Does the above information uniquely determine $T(\mathbf{v}_4)$? If so, find it.

[4 Marks]

Justify your reasoning.

- (b) Consider the following set S of points in the plane: $\{(1,-2),(2,1),(4,1)\}$. Find a value of α such that S and the set S' obtained by adding the point $(0,\alpha)$ to S have the same least squares straight line fit. Show your working. [7 Marks]
- (c) For a polynomial $p=a_0+a_1x+a_2x^2+\ldots+a_nx^n$, let \hat{p} denote the polynomial obtained from p by removing the constant term, i.e. $\hat{p}=p-a_0$. Consider the vector space P_∞ of all polynomials and let $T:P_\infty\to P_\infty$ be the linear map defined as follows:

$$T(p) = \hat{p} + xp',$$

where p' is the derivative of p.

For example, if $p=2+5x-x^2$ then $\hat{p}=5x-x^2$, p'=5-2x and $T(p)=5x-x^2+x(5-2x)=10x-3x^2$.

i. Find a basis for the kernel of T.

[3 Marks]

ii. What is the range of T?

[3 Marks]

iii. Compute the eigenvalues of T and an eigenvector corresponding to each eigenvalue. [4 Marks]

Justify your answer.

Question 2

(a) Consider the space P_2 of all polynomials of degree at most two, equipped with the inner product $\langle f,g\rangle=\int_{-1}^1 f(x)g(x)\,dx$. Find values of α,β , and γ which make the following set of polynomials orthogonal:

$$\{p_1 = 1, p_2 = \alpha + x, p_3 = \beta + \gamma x + x^2\}.$$

Show your working.

[6 Marks]

- (b) Consider the vector space P_3 of all polynomials of degree at most 3, equipped with the evaluation inner product at sample points -2, -1, 1, 2. Prove that all polynomials $f \in P_3$ satisfying f(x) = f(-x) for all x form a subspace W of P_3 and find an orthonormal basis of W. Show your working. [7 Marks]
- (c) Consider the following matrix

$$A = \left(\begin{array}{cc} 1 & a \\ a & 1 \end{array}\right).$$

- i. For each $a \neq 0$, find a spectral decomposition of A. **[6 Marks]**
- ii. For each $a \neq 0$, find rank-1 approximation of A. **[6 Marks]**

Show your working.

Section B Calculus (Dr Eleni Akrida)

Question 3

Consider $f(x,y,z,w)=x\sqrt{1+y}+y\sqrt{1+x}+z\sqrt{1+w}+w\sqrt{1+z}$, where $x,y,z,w\in\mathbb{R},\ x,y,z,w>-1.$

- (a) Calculate the Hessian matrix for f. Show all your working. [10 Marks]
- (b) Use your solution above to determine the location and nature of the stationary points of f. Show all your working. [15 Marks]

Question 4

- (a) Let $\{a_k\}$ be a sequence of real numbers. Give either a proof or a counterexample to each of the following assertions:
 - i. Let $s_n=a_1+\ldots+a_n$. If the sequence $\{s_n\}$ is bounded then the series $\sum_{k=1}^\infty a_k$ converges.
 - ii. If $a_k>0$ for all $k\in\mathbb{N}$ and $0<\frac{a_{k+1}}{a_k}<1$ for all $k\in\mathbb{N}$, then the series $\sum_{k=1}^\infty a_k$ converges.
 - iii. If $a_k>0$ for all $k\in\mathbb{N}$ and $\frac{a_{k+1}}{a_k}\to+\infty$, then the series $\sum_{k=1}^\infty a_k$ diverges.
 - iv. If $a_k \to 0$, then the series $\sum_{k=1}^{\infty} (-1)^k a_k$ converges.
 - v. If $a_k>0$ for all $k\in\mathbb{N}$ and the series $\sum_{k=1}^\infty a_k$ converges, then the series $\sum_{k=1}^\infty a_k^2$ converges. [10 Marks]
- (b) Determine the values of a > 0 for which the series below converges

$$\sum_{n=1}^{\infty} \frac{a^n}{\sqrt[n]{n!}}.$$

Show all your working.

[7 Marks]

(c) Consider a continuous function $f:[0,a]\to\mathbb{R}$. Apply the Fundamental Theorem of Calculus to show that for all $x\in[0,a]$,

$$\int_0^x f(u)(x-u)du = \int_0^x \left(\int_0^u f(t)dt\right)du$$

[8 Marks]