Regla	Nombre
$\neg \neg p = p$	doble negación
$false = \neg true$	definición de false
$\neg false = true$	negación de false

Tabla 1: Equivalencias de Falso / verdadero y doble negación

Regla	Nombre	Regla	Nombre
$p \vee false \equiv p$	identidad ∨	$p \wedge true \equiv p$	identidad de ∧
$p \lor true \equiv true$	dominación ∨	$p \land false \equiv false$	dominación ∧
$p \vee p \equiv p$	idempotencia ∨	$p \wedge p \equiv p$	idempotencia ∧
$p \vee q \equiv q \vee p$	conmutatividad ∨	$p \wedge q \equiv q \wedge p$	conmutatividad ∧
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	asociatividad ∨	$(p \land q) \land r \equiv p \land (q \land r)$	asociatividad ∧
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	distributividad ∨/∧	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	distributividad ∧/∨
$\neg (p \lor q) \equiv \neg p \land \neg q$	de Morgan ∨	$\neg (p \land q) \equiv \neg p \lor \neg q$	de Morgan de ∧
$p \lor (p \land q) \equiv p$	absorción ∨/∧	$p \land (p \lor q) \equiv p$	absorción de ∧/∨
$p \vee \neg p \equiv true$	Medio Excluido	$p \land \neg p \equiv false$	Contradicción
$\neg p \lor (p \land q) \equiv \neg p \lor q$	absorción-¬∨/∧	$\neg p \land (p \lor q) \equiv \neg p \land q$	absorción-¬∧/∨

Tabla 2: Equivalencias de \vee y de \wedge

Regla	Nombre
$p \Rightarrow q \equiv \neg p \lor q$	Definición ⇒
$p \equiv q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$	Definición ≡
$(p \equiv q) \equiv (q \equiv p)$	Conmutatividad de \equiv
$((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$	Asociatividad de \equiv
$p \equiv p \equiv true$	Identidad
$p \equiv \neg p \equiv false$	Definicion de false
$p \not\equiv q \equiv \neg (p \equiv q)$	Definición XOR
$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$	contrapositiva
$p \lor q \equiv \neg p \Rightarrow q$	Definición de \vee con \Rightarrow
$p \land q \equiv \neg(p \Rightarrow \neg q)$	Definición de \land con \Rightarrow
$\neg(p \Rightarrow q) \equiv p \land \neg q$	Negación de \Rightarrow
$(p \Rightarrow q) \land (p \Rightarrow r) \equiv (p \Rightarrow (q \land r))$	Distributividad izquierda \Rightarrow / \land
$(p \Rightarrow q) \lor (p \Rightarrow r) \equiv (p \Rightarrow (q \lor r))$	Distributividad izquierda de \Rightarrow /\lor
$(p \Rightarrow r) \land (q \Rightarrow r) \equiv (p \lor q) \Rightarrow r$	Distributividad derecha de \Rightarrow / \land :al distribuir se cambia \land por \lor
$(p \Rightarrow r) \lor (q \Rightarrow r) \equiv (p \land q) \Rightarrow r$	Distributividad derecha de \Rightarrow / \land : al distribuir se cambia \lor por \land
$p \Rightarrow (q \Rightarrow r) \equiv (p \land q) \Rightarrow r$	Asociatividad izquierda de \Rightarrow : al asociar se cambia \Rightarrow por \land
$r \lor (p \equiv q) \equiv (r \lor p) \equiv (r \lor q)$	Distrib \vee/\equiv
$r \wedge (p \equiv q) \equiv (r \wedge p) \equiv (r \wedge q) \equiv r$	Distrib \wedge/\equiv
$p \equiv q \equiv \neg p \equiv \neg q$	Contrapositiva ≡
$\neg (p \equiv q) \equiv \neg p \equiv q$	$Negacion_1 \equiv$
$\neg (p \equiv q) \equiv p \equiv \neg q$	$Negaci\'on_2 \equiv$
$p \equiv q \equiv (p \land q) \lor (\neg p \land \neg q)$	$Definción_3 \equiv$
$p \equiv \neg q \equiv \neg p \equiv q$	negación
$p \not\equiv q \equiv (p \lor q) \land \neg (p \land q)$	Definción $_2XOR$

Tabla 3: Equivalencias de \Rightarrow y \equiv

Regla	Nombre	
p	1.0111010	
$p \Rightarrow q$	Modus ponens	
$\frac{P + q}{q}$	r	
$\neg q$		
$p \Rightarrow q$	Modus tollens	
$\neg p$		
$p \Rightarrow q$		
$q \Rightarrow r$	transitividad	
$p \Rightarrow r$		
$p \lor q$		
q	Silogismo disjuntivo	
p		
	suma	
$p \lor q$		
$p \wedge q$	simplificación	
p	•	
p	Caniumaiár	
$\frac{q}{m \wedge a}$	Conjunción	
$p \wedge q$		
$p \lor q$	resolución	
$\frac{\neg p \vee r}{q \vee r}$	resolucion	
X = Y		
E[z := X]	Leibniz	
E[z := Y]		
$p \equiv q$	C: 1:C :/ 1.1	
$p \Rightarrow q$	Simplificación ₁ del \equiv	
$p \equiv q$	Simplificación ₂ del \equiv	
$q \Rightarrow p$	Simplificacion ₂ del =	
$p \equiv q$	Simplificación ₃ del \equiv	
$\neg p \Rightarrow \neg q$	L	
$p \equiv q$	Simplificación ₄ del \equiv	
$\neg q \Rightarrow \neg p$		
p	Doduccion con = 1	
$p \equiv q$	Deduccion con $\equiv 1$	
$\frac{q}{a}$		
$ \begin{array}{c} q\\p \equiv q \end{array} $	Deduccion con $\equiv 2$	
$\frac{p-q}{p}$		
$\neg p$		
$p \equiv q$	Deduccion con $\equiv 3$	
$\frac{P-q}{\neg q}$		
$\neg q$		
$p \equiv q$	Deduccion con $\equiv 4$	
$-\frac{1}{\neg p}$		
	•	

Tabla 4: Reglas de Inferencia

Regla	Nombre
$(\forall x R \lor Q : P) \equiv ((\forall x R : P) \land (\forall x Q : P))$	Partir el Rango ∀
$(\exists x R \lor Q : P) \equiv ((\exists x R : P) \lor (\exists x Q : P))$	Partir el Rango ∃
$(\forall x R : Q \land P) \equiv ((\forall x R : Q) \land (\forall x R : P))$	Distributividad \forall
$(\exists x R : Q \lor P) \equiv ((\exists x R : Q) \lor (\exists x R : P))$	Distributividad ∃
Si P no depende de x : $(\forall x R:Q\vee P)\equiv (\forall x R:Q)\vee P$	Distributividad \vee/\forall
$(\forall x R : P) \equiv (\forall x : R \Rightarrow P)$	Trading-∀
$(\exists x R : P) \equiv \neg(\forall x R : \neg P)$	de Morgan generalizada
$(\forall x R : P) \equiv \neg(\exists x R : \neg P)$	de Morgan generalizada ₂
$\neg(\forall x R:P) \equiv (\exists x R:\neg P)$	de Morgan generalizada ₃
$\neg(\exists x R : P) \equiv (\forall x R : \neg P)$	de Morgan generalizada 4
$(\exists x R : P) \equiv (\exists x : R \land P)$	Trading-∃
$(\exists x R \land Q : P) \equiv (\exists x R : Q \land P)$	Trading- \exists_1
$(\forall x R \land Q : P) \equiv (\forall x R : Q \Rightarrow P)$	$\operatorname{Trading-}\forall_1$
$(\forall x Q : R \Rightarrow P) \equiv (\forall x R : Q \Rightarrow P)$	Trading- \forall_2

Tabla 5: Equivalencias de cuantificadores

Nombre	Regla	Condición
Instanciación Universal	$\frac{(\forall x :P)}{P[x:=c]}$	Cualquier c del dominio
Generalización Universal	$\frac{P[x := c]}{(\forall x : P)}$	c es un elemento ARBITRARIO del dominio
Instanciación Existencial	$\frac{(\exists x : P)}{P[x := \hat{c}]}$	\hat{c} es un elemento particular que hace que P sea cierto.
Generalización Existencial	$\frac{P[x := c]}{(\exists x : P)}$	c cualquier elemento del dominio
Universal Modus Ponens	$\frac{(\forall x P : Q)}{P[x := c]}$ $Q[x := c]$	Cualquier c del dominio
Universal Modus Tollens	$\frac{(\forall x P : Q)}{\neg Q[x := c]}$ $\frac{\neg P[x := c]}{\neg P[x := c]}$	Cualquier c del dominio
Instanciación Universal ₂	$\frac{(\forall x R : P)}{R[x := c] \Rightarrow P[x := c]}$	Cualquier c del dominio
Generalización Universal $_2$	$R[x := c] \Rightarrow P[x := c]$ $(\forall x R : P)$	c es un elemento ARBITRARIO del dominio
Instanciación Existencial $_2$	$\frac{(\exists x R : P)}{R[x := \hat{c}] \land P[x := \hat{c}]}$	\hat{c} es un elemento particular que hace que P y Q sean ciertas
Generalización Existencial $_2$	$\frac{R[x := c] \land P[x := c]}{(\exists x R : P)}$	c cualquier elemento del dominio
Silogismo ∀	$(\forall x : P \lor Q)$ $\neg P[x := c]$ $Q[x := c]$	c cualquier elemento del dominio
Silogismo \forall_1	$(\forall x R : P \lor Q)$ $\neg P[x := c]$ $R[x := c]$ $Q[x := c]$	c cualquier elemento del dominio

Tabla 6: Más Reglas de inferencia