LIMITES ET CONTINUITÉ DES FONCTIONS

Quentin RIGGI

03-09-2022

L'objectif est d'étudié le comportement des valeurs f(x) prisent par une fonction f aux bornes ouvertes de son domaine de définition.

On introduit une nouvelle notion, celle de la continuité d'une fonction, plus forte qu'être définie mais plus faible que dérivable.

I) Limite en l'infini et droite asymptote

Par la suite on considere une fonction f, dont le domaine de définition Df contraint une contient une borne $+\infty$

1°) Limite infinie en l'infini

Definition: On dit qu'une fonction f tend vers $+\infty$ lorsque x tend vers $+\infty$, si tout intervalle ouvert de la forme $]A; +\infty[$ où $A \in \mathbb{R}$ contient toutes les valeurs f(x) prisent par la fonction f dès que x est choisi suffisamment grand.

On note:

$$\lim_{x \to +\infty} f(x) = +\infty$$

Avec les quantificateurs:

$$\lim_{x \to +\infty} f(x) = +\infty$$

$$\Leftrightarrow \forall A \in \mathbb{R}_{+}^{*}, \exists \beta \in \mathbb{R}_{+}^{*}, \forall x \in D_{f} : (x \ge \beta \Rightarrow f(x) \ge A)$$

Définition: On dit qu'une fonction f tend vers $-\infty$ lorsque x tend vers $+\infty$ si tout intervalle ouvert de la forme $]-\infty; A[, A \in \mathbb{R}, \text{ contient toutes les valeurs } f(x)$ prisent par la fonction f dès que x est choisi assez grand. On note:

$$\lim_{x \to +\infty} f(x) = -\infty$$

Avec les quantificateurs:

$$\lim_{x \to +\infty} f(x) = -\infty$$

$$\Leftrightarrow \forall A \in \mathbb{R}_{+}^{*}, \exists \beta \in \mathbb{R}_{+}^{*}, \forall x \in D_{f} : (x \ge \beta \Rightarrow f(x) \le A)$$

On a aussi les deux autres limites:

$$\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall A \in \mathbb{R}_{+}^{*}, \exists \beta \in \mathbb{R}_{+}^{*}, \forall x \in D_{f} : (x \leq \beta \Rightarrow f(x) \geq A)$$

$$\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall A \in \mathbb{R}_{-}^{*}, \exists \beta \in \mathbb{R}_{+}^{*}, \forall x \in D_{f} : (x \leq \beta \Rightarrow f(x) \leq A)$$

Propriétés (Admises):

$$\forall n \in \mathbb{N}^* : \lim_{x \to +\infty} x^n = +\infty \tag{1}$$

$$\forall n \in 2\mathbb{N}, n \neq 0: \lim_{x \to -\infty} x^n = +\infty$$
 (2)

$$\forall n \in 2\mathbb{N} + 1: \lim_{x \to -\infty} x^n = -\infty \tag{3}$$

$$\lim_{x \to +\infty} \exp x = +\infty \tag{4}$$

$$\lim_{x \to +\infty} \exp x = +\infty$$

$$\lim_{x \to \pm \infty} \cos x$$
(5)

Exemple:

La fonction $\mathbf{x} \mapsto x^2$ est définie sur \mathbb{R} Soit $A \in \mathbb{R}_+^*$, on cherche un réel β tel que:

$$x \ge \beta \Rightarrow x^2 \ge A$$

Soit:

$$\begin{aligned} x^2 & \geq A \Leftrightarrow |x|\sqrt{A} \\ & \Leftrightarrow x \in \left] -\infty; -\sqrt{A} \right] \cup \left[\sqrt{A}; +\infty \right[\end{aligned}$$

On pose
$$\beta = \sqrt{A}$$

$$\forall A \in \mathbb{R}_+^*, \exists \beta = \sqrt{A} \in \mathbb{R}_+^*, \forall x \in \mathbb{R} : x \ge \beta \Rightarrow f(x) \ge A$$