Universidad Alfonso X el Sabio

Lucía Mielgo Torres, Martina García González

Grado en Ingeniería Matemática

AMPLIACIÓN DE LOS MÉTODOS NUMÉRICOS

Taller 5

28 de enero de 2025

1. Introducción

- 1. Implemente una función en Python que calcule la solución de una ecuación diferencial ordinaria del tipo: $\frac{dx}{dt} = f(x,t)$ donde $t \in [t_0,t_f]$ y con la condición inicial $x(t_0) = x_0$, siendo x_0 una constante, utilizando el método de Euler. La función debe aceptar como variables a f(x,t), t_0 , t_f , x_0 , N, siendo N el número de pasos.
- 2. Implemente computacionalmente un programa que resuelva la ecuación diferencial $y' = ty + t^3$, donde $t \in [0, 1]$, y(0) = 1, mediante el método de Euler utilizando los anchos de paso de h = 0,1, h = 0,01 y h = 0,001. Grafique los resultados y compárelos con los resultados de la solución analítica.

2. Métodos y modelos matemáticos

El método de Euler es una técnica numérica para resolver ecuaciones diferenciales ordinarias de la forma:

$$\frac{dy}{dt} = f(t, y) \tag{1}$$

con una condición inicial $y(t_0) = y_0$. El método de Euler utiliza la derivada para aproximar la solución de la ecuación diferencial mediante una secuencia de pasos discretos. A partir de un valor inicial conocido, se calcula el siguiente valor de la función utilizando la fórmula:

$$y_{n+1} = y_n + h f(t_n, y_n) (2)$$

donde:

- h es el tamaño del paso,
- $t_n = t_0 + nh$ es el tiempo en el paso n,
- y_n es la aproximación numérica de la solución en el tiempo t_n .

El método de Euler es explícito, lo que significa que el nuevo valor y_{n+1} se calcula directamente a partir del valor actual y_n y la pendiente $f(t_n, y_n)$. Este método es sencillo de implementar, pero puede ser ineficiente para obtener soluciones precisas cuando el tamaño de paso h es grande, ya que introduce errores numéricos acumulativos. Sin embargo, al reducir el valor de h, se mejora la precisión de la solución a costa de un mayor número de cálculos.

3. Resultados

4. Discusión

La gráfica muestra cómo el método de Euler se aproxima a la solución analítica conforme se reduce el tamaño del paso h. Para h=0,1, la solución numérica presenta una desviación notable a medida que t aumenta, lo que indica una menor precisión. Sin embargo, al disminuir h a 0,01 y 0,001, las curvas obtenidas mediante Euler se ajustan mucho mejor a la solución analítica, evidenciando que un paso más pequeño reduce el error de aproximación.

5. Conclusiones

6. Referencias

Douglas J. Faires and Richard L. Burden, Análisis Numérico, Cengage Learning, 1998.

7. Anexos

Las funciones utilizadas para realizar los ejercicios son las siguientes. Función del Método de Euler

```
import numpy as np
import matplotlib.pyplot as plt
```

Comparación del Método de Euler con la Solución Analítica

Figura 1: solución del método de Euler y la analítica de $y = ty + t^3$

```
def euler_method(f, t0, tf, x0, N):
"""
f : función que describe la EDO dx/dt = f(x, t)
t0 : tiempo inicial
tf : tiempo final
x0 : valor inicial x(t0)
N : número de pasos
Retorna:
t : array de tiempos
x : array de soluciones x(t)
"""
h = (tf - t0) / N # tamaño del paso
```

```
t = np.linspace(t0, tf, N+1)
x = np.zeros(N+1)
x[0] = x0

for i in range(N):
    x[i+1] = x[i] + h * f(x[i], t[i])

return t, x
```