Quartum Mechanical Wave Egg · Quick recap: A free particle moving > +x has wavefu $Y = Ae^{ikx} = iwt$ Time - and position dependence can be factorised / separated Schrödinger o To build the Schrödings Equation (wave egn for a QM free particle is a potential V(x,t): - Assumptions: => Energy conservation T+V = E => Linear diff egg. so superposition
of waves still works 30 4 24 2 27 ... Vox torus and $\frac{1}{4}$, $\left(\frac{\partial \Psi}{\partial x}\right)^2$, $\sin \frac{\partial \Psi}{\partial x^2} = X$ not ok

Llo	=> Must be consistent with:
	$\rho = \frac{\lambda}{\lambda} = \hbar k$ $E = \hbar f = \hbar \omega$ from before
	$\begin{bmatrix} \frac{1}{4} & \frac{1}{3?} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{4} & \frac{1}{3?} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$ $\frac{1}{4} = 1.0546 \times 10^{-34} \text{ Js}$
	- Now the game is to guess what terms to tell us kinetic energy total energy etc might look like then throw them into T+V=E > Y= Ae e has k and w in it > info on p, E is in there!
	$\Rightarrow \text{ Let's try } \Im z$ $\frac{\partial}{\partial x} \Psi(x,t) = ik \text{ Ae } ikz = iwt$ $= ik \Psi$ $= ik \Psi$ $\text{interesting! so how about}$ $-ih \Im \psi = -ih ik \Psi = \frac{1}{2}k \Psi$
	P. Momentum!

Llo → ox, identify P= = -it = as the momentum operator in the x direction We can then write this eigenvalue equation unchanged wavefur

Par Y = Par P Operator Real number (eigenvalue) Note that this is like matrix maths, operators do not commute: $\hat{p}_{x} \psi \neq \psi \hat{p}_{x}$ Note also - the fact that this works and we get an eigenvalue tells us momentum is well-defined for this system - not always true for all operators \rightarrow ok we can get p... and $T = \frac{p^2}{2m}$ right? $\hat{T} = \frac{1}{2m} \hat{\rho} \hat{\rho} = \frac{-\frac{1}{2}}{2m} \frac{\partial^2}{\partial x^2}$

40 You can show this works gives on eigenvalue for kinetic energy $T = \frac{\pi^2 k^2}{2M} = \frac{p^2}{2M}$ works => same idea, for total energy we want to pull out w (E=tw) so try: $\hat{E} = i \frac{1}{2t}$ $\Rightarrow E = \hbar \omega$ (cleck!) => Potential V is obviously totally general - and can be ugly! We will look at simple constant V terms, so $\hat{V} = V$, simple

· Now we are ready to sub in these operators into T+V=E to get the... Schrödinger equation: $-\frac{t^2}{2M}\frac{\partial^2 \Psi(x,t)}{\partial t^2} + V(x,t)\Psi(x,t) = i\frac{1}{2M}\frac{\partial \Psi(x,t)}{\partial t^2}$ When V is time independent, we can factorise out the boring t dependence: Time-Independent Schrödinger Egn (TISE): $-\frac{1}{2} \frac{\partial^2 Y(x)}{\partial x} + V(x) \frac{1}{2} \frac{\partial Y(x)}{\partial x} = -i \frac{1}{2} \frac{\partial Y(x)}{\partial x}$ or can rewrite as: $\left[-\frac{t^{2}}{2m} \frac{d^{2}}{dx^{2}} + V(x) \right] \Psi = E \Psi$ Hamiltonian ! > (Energy eigenvalue egn) We'll look at using this next week.

LID · Expectation Values' - like on 'average' I get if I measure for fix times and average the results Sandwich the operator between 4th 4 and integrate to find it: > Example: operator for \hat{x} just = x so (x) = Jxy dx For our so well friend well $\Upsilon = \sqrt{\frac{2}{L}} \sin kx$ k = T(z) = 2 x sin 2 T x dx $= 2 \int_{2C} (1 - \cos \frac{2\pi}{L} x) dx$ $= \frac{1}{L} \begin{bmatrix} x^2 \end{bmatrix}^{L} - \frac{1}{L} \begin{bmatrix} x \cos \frac{2\pi}{L} x & dx \end{bmatrix}$

For the J term, integrale by ports as [on exercise 1] Using $V = \frac{L}{2\pi} \sin \frac{2\pi}{L} \times u = x$ and show it = 0 \Rightarrow $\langle x \rangle = \frac{1}{4} \left[\frac{x^2}{a} \right]^4$ Which makes serse! We expect the particle on average, to be in the middle. · To conclude: - Operators pull out observables from the wavefor - Build operators for T E V and sub into T+V = E to get Schrödiger Egr - Espectation values from eg Jyd p'y de for things without well-defined eigenvalues