

Probabilistic Model Checking

Marta Kwiatkowska Dave Parker

Oxford University Computing Laboratory

ESSLLI'10 Summer School, Copenhagen, August 2010

Part 2

Markov decision processes

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- PCTL for MDPs
- PCTL model checking
- Further model checking (LTL, costs & rewards)
- Case study: Firewire root contention

Nondeterminism

- Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}
- Unknown environments
 - e.g. probabilistic security protocols unknown adversary

Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states

Markov decision processes

- Formally, an MDP M is a tuple (S,s_{init},Steps,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - Steps: S → 2^{Act×Dist(S)} is the transition probability function
 where Act is a set of actions and Dist(S) is the set of discrete
 probability distributions over the set S
 - L : S → 2^{AP} is a labelling with atomic propositions

For example:

Steps(s0) = $\{(a,u)\}$ where u is a "distribution" describing the probability of getting to a state if we take an a-transition on s1:

$$u(s0)=0$$
, $u(s1)=1$, $u(s2)=0$, $u(s3)=0$

For state s1, we have

```
Steps(s1) = { (b,v), (c,w) }

where v and w are distributions :

v(s0) = 0.7, v(s1) = 0.3, v(s2) = 0. v(s3)=0

w(s0) = 0, w(s1) = 0, w(s2) = 0.5, w(s3) = 0.5
```


Simple MDP example

- Modification of the simple DTMC communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here

at every state above there is a non-deterministic choice between taking a blue or a brown transition.

Paths and probabilities

- A (finite or infinite) path through an MDP
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
 - such that $(a_i, \mu_i) \in \mathbf{Steps}(s_i)$ and $\mu_i(s_{i+1}) > 0$ for all $i \ge 0$
 - represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
 - note that a path resolves both types of choices: nondeterministic and probabilistic
- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ...for which we can define a probability measure over paths

Adversaries

- An adversary resolves nondeterministic choice in an MDP
 - also known as "schedulers", "strategies" or "policies"
- Formally:
 - an adversary A of an MDP M is a function mapping every finite path $\omega = s_0(a_1, \mu_1)s_1...s_n$ to an element of Steps(s_n)
- For each A can define a probability measure Pr^A, over paths
 - constructed through an infinite state DTMC (Path^A_{fin}(s),s,P^A_s)
 - states of the DTMC are the finite paths of A starting in state s
 - initial state is s (the path starting in s of length 0)
 - $P^{A}_{s}(\omega,\omega') = \mu(s)$ if $\omega' = \omega(a, \mu)s$ and $A(\omega) = (a,\mu)$
 - $P^{A}_{s}(\omega,\omega')=0$ otherwise

Adversaries – Examples

Consider the simple MDP below

- note that s_1 is the only state for which |Steps(s)| > 1
- i.e. s₁ is the only state for which an adversary makes a choice
- let μ_b and μ_c denote the probability distributions associated with actions **b** and **c** in state s_1

Adversary A₁

- picks action c the first time
- $A_1(s_0s_1) = (c, \mu_c)$

Adversary A₂

- picks action b the first time, then c
- $-A_2(s_0s_1)=(b,\mu_b), A_2(s_0s_1s_1)=(c,\mu_c), A_2(s_0s_1s_0s_1)=(c,\mu_c)$

Adversaries – Examples

- Fragment of DTMC for adversary A₁
 - $-A_1$ picks action c the first time

Adversaries – Examples

- Fragment of DTMC for adversary A₂
 - $-A_2$ picks action b, then c

Memoryless adversaries

- Memoryless adversaries always pick same choice in a state
 - also known as: positional, Markov, simple
 - formally, for adversary A:
 - $A(s_0(a_1,\mu_1)s_1...s_n)$ depends only on s_n
 - resulting DTMC can be mapped to a |S|-state DTMC
- From previous example:
 - adversary A_1 (picks c in s_1) is memoryless, A_2 is not

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- PCTL for MDPs
- PCTL model checking
- Further model checking (LTL, costs & rewards)
- Case study: Firewire root contention

PCTL for MDPs

- The temporal logic PCTL can also describe MDP properties
- Identical syntax to the DTMC case:

ψ is true with probability ~p

 $- \varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\neg p} [\psi]$

(state formulas)

(path formulas)

- Semantics are also the same as DTMCs for:
 - atomic propositions, logical operators, path formulas

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific adversary A
 - $-s \models P_{-p}[\psi]$ means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all adversaries A"
 - formally $s \models P_{\sim p} [\psi] \Leftrightarrow Prob^A(s, \psi) \sim p$ for all adversaries A
 - where Prob^A(s, ψ) = Pr^A_s { $\omega \in Path^A(s) \mid \omega \models \psi$ }

Prob^A(s, ψ) ~ p

Minimum and maximum probabilities

Letting:

- $-p_{max}(s, \psi) = sup_A Prob^A(s, \psi)$
- $p_{min}(s, \psi) = inf_A Prob^A(s, \psi)$

We have:

- $\text{ if } \textbf{\sim} \in \{ \geq, > \} \text{, then } \textbf{s} \vDash P_{\textbf{\sim}p} \left[\ \psi \ \right] \quad \Leftrightarrow \quad p_{min}(\textbf{s}, \ \psi) \ \textbf{\sim} \ p$
- if ~ ∈ {<,≤}, then s \models P_{~p} [ψ] \iff p_{max}(s, ψ) ~ p
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all adversaries of either:
 - the minimum probability of ψ holding
 - the maximum probability of ψ holding
- Crucial result for model checking PCTL on MDPs
 - memoryless adversaries suffice, i.e. there are always memoryless adversaries A_{min} and A_{max} for which:
 - Prob^{Amin}(s, ψ) = $p_{min}(s, \psi)$ and Prob^{Amax}(s, ψ) = $p_{max}(s, \psi)$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - quantitative form (two types): $Pmin_{=?} [\psi]$ and $Pmax_{=?} [\psi]$
 - i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
 - corresponds to an analysis of best-case or worst-case behaviour of the system
 - model checking is no harder since compute the values of p_{min} (s, ψ) or $p_{max}(s, \psi)$ anyway
 - useful to spot patterns/trends
- Example: CSMA/CD protocol
 - "min/max probability that a message is sent within the deadline"

Some real PCTL examples

- Byzantine agreement protocol
 - Pmin_{=?} [F (agreement \land rounds≤2)]
 - "what is the minimum probability that agreement is reached within two rounds?"
- CSMA/CD communication protocol
 - Pmax_{=?} [F collisions=k]
 - "what is the maximum probability of k collisions?"
- Self-stabilisation protocols
 - Pmin_{=?} [F^{\leq t} stable]
 - "what is the minimum probability of reaching a stable state within k steps?"

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- PCTL for MDPs
- PCTL model checking
- Further model checking (LTL, costs & rewards)
- Case study: Firewire root contention

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP $M=(S, s_{init}, Steps, L)$, PCTL formula ϕ
 - output: Sat(ϕ) = { s ∈ S | s $\models \phi$ } = set of states satisfying ϕ
- Basic algorithm same as PCTL model checking for DTMCs
 - proceeds by induction on parse tree of φ
 - non-probabilistic operators (true, a, \neg , \land) straightforward
- Only need to consider $P_{\sim p}$ [ψ] formulas
 - reduces to computation of $p_{min}(s, \psi)$ or $p_{max}(s, \psi)$ for all $s \in S$
 - dependent on whether \sim ∈ {≥,>} or \sim ∈ {<,≤}
 - these slides cover the case $p_{min}(s, \phi_1 \cup \phi_2)$, i.e. $\sim \in \{\geq, >\}$
 - case for maximum probabilities is very similar
 - next (X ϕ) and bounded until (ϕ_1 U^{$\leq k$} ϕ_2) are straightforward extensions of the DTMC case

PCTL next for MDPs

- Computation of probabilities for PCTL next operator
- Consider case of minimum probabilities...
 - $Sat(P_{\sim p}[X \varphi]) = \{ s \in S \mid p_{min}(s, X \varphi) \sim p \}$
 - need to compute $p_{min}(s, X \varphi)$ for all $s \in S$
- Recall in the DTMC case
 - sum outgoing probabilities for transitions to φ-states
 - Prob(s, X ϕ) = $\Sigma_{s' \in Sat(\phi)}$ P(s,s')

$$-p_{min}(s, X \varphi) = min \{ \Sigma_{s' \in Sat(\varphi)} \mu(s') \mid (a,\mu) \in Steps(s) \}$$

Maximum probabilities case is analogous

PCTL next - Example

- Model check: P_{>0.5} [X heads]
 - lower probability bound so minimum probabilities required
 - Sat (heads)= $\{s_2\}$
 - $e.g. p_{min}(s_1, X heads) = min(0, 0.5) = 0$
 - can do all at once with matrix-vector multiplication:

Steps · heads =
$$\begin{bmatrix} \frac{0}{0.7} & \frac{1}{0.3} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0.5} & \frac{0}{0} & \frac{1}{0} & \frac{0}{0} & \frac{1}{0} & \frac{0}{0.5} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0.5} & \frac{1}{0.5$$

- Extracting the minimum for each state yields
 - $\underline{p}_{min}(X \text{ heads}) = [0, 0, 1, 0]$
 - Sat($P_{\geq 0.5}$ [X heads]) = {s₂}

PCTL until for MDPs

- Computation of probabilities $p_{min}(s, \phi_1 \cup \phi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - "precomputation" algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
 - either: solve linear programming problem
 - or: approximate with an iterative solution method
 - or: use policy iteration

PCTL until - Precomputation

- Identify all states where $p_{min}(s, \phi_1 \cup \phi_2)$ is 1 or 0
 - $-S^{yes} = Sat(P_{\geq 1} [\varphi_1 U \varphi_2]), S^{no} = Sat(\neg P_{>0} [\varphi_1 U \varphi_2])$
- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes Syes
 - for all adversaries the probability of satisfying $\phi_1 \cup \phi_2$ is 1
 - algorithm Prob0E computes Sno
 - there exists an adversary for which the probability is 0

Example: $P_{\geq p}$ [F a]

Calculating pmin(s, $\varphi_1 \cup \varphi_2$)

pmin(s, φ) = the **minimum** probability for having executions starting from 2 satisfying φ , regardless the adversary. To calculate pmin(s, $\varphi_1 \cup \varphi_2$):

- 1. Calculate first the sets Syes and Sno.
 - S^{yes} = { s | P(s, $\varphi_1 \cup \varphi_2$) \geq 1, for **all** adversaries } \rightarrow with algorithm prob1A.
 - S^{no} = { s | P(s, $\varphi_1 \cup \varphi_2$) ≤ 0 , for **some** adversary } \rightarrow with algorithm prob0E.
- 2. For any state s in S^{yes}, we then know that pmin(s, $\varphi_1 \cup \varphi_2$) ≥ 1 .
- 3. For any state s in S^{no} we have pmin(s, $\varphi_1 \cup \varphi_2$) ≤ 0 .
- 4. We then proceed with calculating the pmin for the remaining states (which are not in Syes nor Sno).

Algorithm **Prob0E**

- The algorithm below first calculates the set R of all states s satisfying E[s, $\varphi_1 \cup \varphi_2$], regardless the adversary. So, for any state in R, and for any adversary Prob(s, $\varphi_1 \cup \varphi_2$) > 0.
- Sno is just complement S/R.
- Sat(φ_1) and Sat(φ_2) in the paremeters are the set of states on which φ_1 and φ_2 respectively hold.

```
PROB0E(Sat(\phi_1), Sat(\phi_2))

1. R := Sat(\phi_2)

2. done := \mathbf{false}

3. \mathbf{while} \ (done = \mathbf{false})

4. R' := R \cup \{s \in Sat(\phi_1) \mid \forall \mu \in Steps(s) . \exists s' \in R . \mu(s') > 0\}

5. \mathbf{if} \ (R' = R) \ \mathbf{then} \ done := \mathbf{true}

6. R := R'

7. \mathbf{endwhile}

8. \mathbf{return} \ S \setminus R
```

Prob1A

Calculate first the set F of states from where we have a path passing exclusively through states satisfying φ₁ Λ ¬φ₂ and ends in S^{no}, under some adversary.

By definition this F also includes S^{no}.

- So any state s in F has Prob(s, $\varphi_1 \cup \varphi_2$) < 1, for some adversary. In other words pmin(s, $\varphi_1 \cup \varphi_2$) < 1.
- Pyes in the the complement S/F.
- **Note**: for the calculation of pmin(s, $\varphi_1 \cup \varphi_2$), we can also just take S^{yes} = Sat(φ_2). The calculation would still works, though it would take more steps to get its final results.

Method 1 – Linear programming

• Probabilities $p_{min}(s, \phi_1 \cup \phi_2)$ for remaining states in the set $S^? = S \setminus (S^{yes} \cup S^{no})$ can be obtained as the unique solution of the following linear programming (LP) problem:

maximize
$$\sum_{s \in S^?} x_s$$
 subject to the constraints:
 $x_s \le \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$
for all $s \in S^?$ and for all $(a, \mu) \in Steps(s)$

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut

Let
$$x_i = p_{min}(s_i, F a)$$

 $S^{yes}: x_2=1, S^{no}: x_3=0$
For $S^? = \{x_0, x_1\}:$

$$x_0 \le x_1$$

$$x_0 \le 0.25 \cdot x_0 + 0.5$$

$$x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Let
$$x_i = p_{min}(s_i, F a)$$

Syes:
$$x_2=1$$
, S^{no} : $x_3=0$

For
$$S^? = \{x_0, x_1\}$$
:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

Let
$$x_i = p_{min}(s_i, F a)$$

 $S^{yes}: x_2=1, S^{no}: x_3=0$
For $S^? = \{x_0, x_1\}:$

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

Let
$$x_i = p_{min}(s_i, F a)$$

 S^{yes} : $x_2 = 1$, S^{no} : $x_3 = 0$
For $S^? = \{x_0, x_1\}$:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

Method 2 - Value iteration

• For probabilities $p_{min}(s, \phi_1 \cup \phi_2)$ it can be shown that:

$$-p_{min}(s, \varphi_1 \cup \varphi_2) = \lim_{n\to\infty} x_s^{(n)}$$
 where:

$$X_s^{(n)} = \begin{cases} & 1 & \text{if } s \in S^{yes} \\ & 0 & \text{if } s \in S^{no} \\ & 0 & \text{if } s \in S^? \text{ and } n = 0 \end{cases}$$

$$\min_{(a,\mu) \in Steps(s)} \left(\sum_{s' \in S} \mu(s') \cdot X_{s'}^{(n-1)} \right) \text{ if } s \in S^? \text{ and } n > 0$$

- This forms the basis for an (approximate) iterative solution
 - iterations terminated when solution converges sufficiently

Example - PCTL until (value iteration)


```
Compute: p_{min}(s_i, F a)
S^{yes} = \{x_2\}, S^{no} = \{x_3\}, S^? = \{x_0, x_1\}
            [X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)}]
        n=0: [0, 0, 1, 0]
  n=1: [min(0,0.25·0+0.5),
            0.1 \cdot 0 + 0.5 \cdot 0 + 0.4, 1, 0
              = [0, 0.4, 1, 0]
           [ min(0.4,0.25\cdot0+0.5),
n=2:
           0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4, 1, 0
            = [0.4, 0.6, 1, 0]
              n=3: ...
```

Example - PCTL until (value iteration)


```
[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]
         [0.000000, 0.000000, 1, 0]
n=0:
n=1:
         [0.000000, 0.400000, 1, 0]
         [0.400000, 0.600000, 1, 0]
n=2:
         [ 0.600000, 0.740000, 1, 0 ]
n=3:
         [ 0.650000, 0.830000, 1, 0 ]
n=4:
n=5:
         [ 0.662500, 0.880000, 1, 0 ]
n=6:
         [0.665625, 0.906250, 1, 0]
         [ 0.666406, 0.919688, 1, 0 ]
n=7:
n=8:
         [ 0.666602, 0.926484, 1, 0 ]
         [ 0.666650, 0.929902, 1, 0 ]
n=9:
         [ 0.666667, 0.933332, 1, 0 ]
n=20:
n=21:
         [ 0.666667, 0.933332, 1, 0 ]
           \approx [2/3, 14/15, 1, 0]
```

Example - Value iteration + LP


```
[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]
         [0.000000, 0.000000, 1, 0]
n=0:
n=1:
         [0.000000, 0.400000, 1, 0]
         [0.400000, 0.600000, 1, 0]
n=2:
         [ 0.600000, 0.740000, 1, 0 ]
n=3:
n=4:
         [ 0.650000, 0.830000, 1, 0 ]
n=5:
         [ 0.662500, 0.880000, 1, 0 ]
n=6:
         [ 0.665625, 0.906250, 1, 0 ]
         [0.666406, 0.919688, 1, 0]
n=7:
n=8:
         [ 0.666602, 0.926484, 1, 0 ]
         [ 0.666650, 0.929902, 1, 0 ]
n=9:
n=20:
         [ 0.666667, 0.933332, 1, 0 ]
n = 21:
         [ 0.666667, 0.933332, 1, 0 ]
            \approx [2/3, 14/15, 1, 0]
```

PCTL until for MDPs - Prob0A

Maximum probabilities 0

$$- S^{no} = \{ s \in S \mid p_{max}(s, \varphi_1 \cup \varphi_2) = 0 \}$$

```
PROB0A(Sat(\phi_1), Sat(\phi_2))

1. R := Sat(\phi_2)

2. done := \mathbf{false}

3. \mathbf{while} \ (done = \mathbf{false})

4. R' := R \cup \{s \in Sat(\phi_1) \mid \exists \mu \in Steps(s) . \exists s' \in R . \mu(s') > 0\}

5. \mathbf{if} \ (R' = R) \ \mathbf{then} \ done := \mathbf{true}

6. R := R'

7. \mathbf{endwhile}

8. \mathbf{return} \ S \setminus R
```

PCTL until for MDPs - Prob1E

- Maximum probabilities 1
 - $-S^{yes} = \{ s \in S \mid p_{max}(s, \varphi_1 \cup \varphi_2) = 1 \} = Sat(\neg P_{<1} [\varphi_1 \cup \varphi_2])$
- Prob1E algorithm (see next slide)
 - two nested loops (double fixed point)
 - result, stored in R, will be Syes; initially R is S
 - iteratively remove (some) states u with $p_{max}(u, \phi_1 U \phi_2) < 1$
 - i.e. remove (some) states for which, under no adversary σ , is Prob $^{\sigma}$ (s, $\phi_1 \cup \phi_2$)=1
 - done by inner loop which computes subset R' of R
 - R' contains ϕ_1 -states with a probability distribution for which all transitions stay within R and at least one eventually reaches ϕ_2
 - note: after first iteration, R contains:
 - { s | Prob^A(s, $\phi_1 \cup \phi_2$)>0 for some A }
 - · essentially: execution of ProbOA and removal of Sno from R

Prob1E - Example

• Syes = { $s \in S \mid p_{max}(s, \neg a \cup b)=1$ }

- R = { 1, 2, 4, 5, 6 }
 R' = {2}; R' = {1, 2, 5}
- R = { 1, 2, 5 }
 R' = {2}; R' = {1, 2, 5}
- $R = \{ 1, 2, 5 \}$
- $S^{yes} = \{ 1, 2, 5 \}$

PCTL model checking – Summary

- Computation of set Sat(Φ) for MDP M and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - Φ₁ U Φ₂ : linear programming problem, polynomial in |S| (assuming use of linear programming)
- Complexity:
 - linear in |Φ| and polynomial in |S|
 - S is states in MDP, assume |Steps(s)| is constant

Summary

- Markov decision processes (MDPs)
 - extend DTMCs with nondeterminism
 - to model concurrency, underspecification, ...
- An adversary resolve nondeterminism in an MDP
 - induce a probability space over paths
 - consider minimum/maximum probabilities over all adversaries
- Property specifications
 - use e.g. PCTL or LTL, as for DTMCs
 - but quantify over all adversaries
- Model checking algorithms
 - covered three basic techniques for MDPs: linear programming, value iteration, or policy iteration
- Tomorrow: continuous time Markov chains (CTMCs)