Echantillon Aléatoire Les fonctions usuelles d'un échantillon Echantillon gaussien Fluctuations de la moyenne : cas Gaussien Les théorèmes limites Fluctuations de la moyenne : cas Bernoulli

Suites Variables Aléatoires et Théorèmes Limites

Frédérique Leblanc

Echantillon Aléatoire
Les fonctions usuelles d'un échantillon
Echantillon gaussien
Fluctuations de la moyenne : cas Gaussien
Les théorèmes limites
Fluctuations de la moyenne : cas Bernoulli

données : $x_1,, x_n$ observations d'une variable X pour n individus.

formalisation : une réalisation (un tirage) d'un vecteur $(X_1, ..., X_n)$ aléatoire.

Echantillon: On appelle échantillon aléatoire de taille n d'une variable X, la suite des variables indépendantes $X_1, ..., X_n$ et de même loi que X. Une réalisation d'un échantillon aléatoire noté $x_1, ..., x_n$ s'appelle un échantillon (de données).

Exemples :

1 La suite $(x_1, ..., x_n) = (49, 53, 50, 49, ..., 75, 78)$ des poids à 20 ans (X) observés sur un groupe de n = 32 étudiants.On **supposera** (i.e. on posera **le modèle**) :

X suit une loi $\mathcal{N}(\mu, \sigma^2)$ avec (μ, σ) inconnus

2 La suite $(x_1, ..., x_n) = (1, 1, 1, 1,, 0, 0)$ des sexes (X) prend la valeur 1 pour les filles) observés sur le même groupe de n = 32 étudiants. On **supposera** que :

X suit une loi $\mathcal{B}(p)$ avec p inconnu

où p: la proportion inconnue de filles dans la population de laquelle est extrait l'échantillon.

Inférence statistique :

- **1 Modéliser**: choisir une loi pour décrire X. Choix usuels utilisés dans ce cours : si X est continue la loi normale et si X est binaire la loi de Bernoulli (modèle naturel pour un problème sur une probabilité) \Longrightarrow deux (μ et σ^2) ou un (p) paramètres inconnus selon le modèle.
- **Estimer**: proposer une fonction de l'échantillon aléatoire, appelé estimateur et qui appliqué au jeu de données (on remplacera X_i par x_i) donnera une **estimation**.
- Propriétés Probabilistes des Estimateurs : moyenne (espérance), variance et loi
- IC et tests : donner des marges ou risques d'erreurs en estimation ou sur une décision

Definitions:

Soit $X_1, ..., X_n$ un échantillon de X. Notons $\mu = E(X)$ et $\sigma^2 = V(X)$. On appelle moyenne et variance empiriques (aléatoires) les quantités suivantes :

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 et $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i^2 - \bar{X}_n)^2$.

Variance empirique corrigée :

$$S_n^{\prime 2} = \frac{1}{n-1} \sum_{i=1}^n (X_i^2 - \bar{X}_n)^2.$$

Propriétés :

1

$$S_n'^2 = \frac{n}{n-1}S^2$$
 et $S^2 = \frac{1}{n}\sum_{i=1}^n X_i^2 - \bar{X}_n^2$.

2

$$E(\bar{X}) = \mu, \quad E(S^2) = \frac{n-1}{n} \sigma^2 \text{ et } E(S'^2) = \sigma^2$$

3

$$V(\bar{X}) = \frac{\sigma^2}{n}$$

Dans ce cas s'ajoutent aussi les propriétés suivantes sur les lois de X et S^2 ou S'^2 :

Lois:

$$\bar{X}_n$$
 suit une loi $\mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$

$$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2}$$
 suit une loi du \mathcal{X}_n^2

$$\frac{nS^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2}$$
 suit une loi du \mathcal{X}_{n-1}^2

Ex : démontrer les points 1 et 2 en utilisant la proprièté 4 de la loi de gauss (voir diapo 19 du CM2) pour établir le premier point et la déf. la var. \mathcal{X}_n^2 pour le point 2.

Grâce aux propriétés de l'échantillon gaussien on montre (à faire en ex.) que pour tout $\alpha \in [0,1]$:

$$P\left(\bar{X}_n \in \left[\mu - \frac{\sigma}{\sqrt{n}}u_{1-\frac{\alpha}{2}}; \mu + \frac{\sigma}{\sqrt{n}}u_{1-\frac{\alpha}{2}}\right]\right) = 1 - \alpha$$

Rappel notation : $u_{1-rac{lpha}{2}} = \Phi^{-1}\left(1-rac{lpha}{2}
ight)$

- L'intervalle s'appelle intervalle de fluctuation de niveau $1-\alpha$ (ou risque α) pour la moyenne empirique.
- il est fonction des paramètres du modèle (et pas de X_n)
- si l'échantillon de donnée produit \bar{x}_n est dans l'intervalle on dira que l'échantillon est conforme (ou dans la norme) au niveau $1-\alpha$

Echantillon Aléatoire Les fonctions usuelles d'un échantillon Echantillon gaussien Fluctuations de la moyenne : cas Gaussien Les théorèmes limites Fluctuations de la moyenne : cas Bernoulli

Loi des grands nombres : $X_1,...,X_n$ échantillon de X où on note $E(X) = \mu$

$$\bar{X}_n \to \mu$$

Ex : n répétition d'un lancé de pièce de monnaie avec $x_i = 1$ si pile : $x_1, ..., x_n$ alors la fréquence d'apparition de pile qui est donnée par \bar{x}_n tend vers p = E(X) où p = 1/2 si pièce non truquée. ici la variable qui modélise est X de loi $\mathcal{B}(p)$.

Si la loi de X n'est pas normale l'intervalle précédent ne peut être utilisé pour n petit mais pour n assez grand c'est un interde fluc. de niveau approx. $1-\alpha$ grâce au TCL (Theorem Central Limit)

Le Théorème Central Limite (TCL)

Soit $X_1, ..., X_n$ un échantillon de la variable X qui admet une espérance et variance finie notées $\mu = E(X)$ et $\sigma^2 = V(X) < +\infty$, alors

$$\frac{\sqrt{n}(\bar{X}_n - E(X))}{\sqrt{V(X)}} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \longrightarrow \mathcal{N}(0, 1) \quad \text{lorsque} \quad n \to +\infty$$

C'est ce théorème qui permet d'approcher une loi binômiale par une loi normale :

$$\mathcal{B}(n,p) \approx \mathcal{N}(np, np(1-p))$$

Dans le cas Bernoulli : X_i de loi $\mathcal{B}(p)$ donc $\mu = E(X) = p$ et $\sigma^2 = V(X) = p(1-p)$ le TCL donne alors pour np > 10 et n(1-p) > 10 :

$$\frac{\sqrt{n}(\bar{X}_n-p)}{\sqrt{p(1-p)}}$$
 suit approx la loi $\mathcal{N}(0,1)$

d'où l'intervalle de fluctuation de niveau approx. $1-\alpha$ pour \bar{X}_n :

$$\left[p-\frac{\sqrt{p(1-p)}}{\sqrt{n}}u_{1-\frac{\alpha}{2}};p+\frac{\sqrt{p(1-p)}}{\sqrt{n}}u_{1-\frac{\alpha}{2}}\right]$$

 \bar{x}_n est souvent noté f_n car il représente une fréquence lorsque $x_i \in \{0, 1\}$