Satz des Pythagoras

Der Satz des Pythagoras besagt: Errichtet man auf den drei Kanten eines rechtwinkligen Dreiecks jeweils ein Quadrat, so sind die beiden kleineren Quadrate zusammengenommen genauso groß wie das größte Quadrat (siehe Skizze rechts). Als Formel:

$$a \cdot a + b \cdot b = c \cdot c$$
.

Wieso ist das so? Das sollen die beiden anderen Skizzen beantworten. Kannst du diesen Beweis erklären?

Summe der natürlichen Zahlen I

Was ist 1+2+3+4? Was ist 1+2+3+4+5+6+7+8? Das zu berechnen, wird immer mühsamer. Zum Glück gibt es eine einfache Formel, die das Ergebnis sofort liefert:

$$1+2+3+4+5+6+7+8=8\cdot 9:2$$

$$1+2+3+4+\cdots +97+98+99+100=100\cdot 101:2$$

Die Formel funktioniert auch mit jeder anderen Obergrenze als 100. Wieso stimmt die Formel? Das soll die Skizze beantworten. Bei ihr ist die Obergrenze 6. Kannst du den Beweis erklären?

Summe der natürlichen Zahlen II

Was ist 1+2+3+4? Was ist 1+2+3+4+5+6+7+8? Das zu berechnen, wird immer mühsamer. Zum Glück gibt es eine einfache Formel, die das Ergebnis sofort liefert:

$$1+2+3+4+5+6+7+8=8\cdot 9:2$$

1+2+3+4+\cdots+97+98+99+100=100\cdot 101:2

Die Formel funktioniert auch mit jeder anderen Obergrenze als 100. Wieso stimmt die Formel? Das soll die Skizze beantworten. Bei ihr ist die Obergrenze 100. Kannst du den Beweis erklären?

Summe der ungeraden Zahlen

Was ist 1+3+5+7+9? Was ist 1+3+5+7+9+11+13+15? Das zu berechnen, wird immer mühsamer. Zum Glück gibt es eine einfache Formel, die das Ergebnis sofort liefert:

$$1+3+5+7+9+11 = 6 \cdot 6 = 36$$

 $1+3+5+7+9+11+13 = 7 \cdot 7 = 49$
 $1+3+5+7+9+11+13+15=8 \cdot 8 = 64$

Wieso stimmt die Formel? Das soll die Skizze beantworten. Kannst du diesen Beweis erklären?

Summe der Fibonacci-Zahlen