Parameters estimation

Outline

Point estimate and construct confidence interval for popular parameters

- mean population μ
- variance population σ^2
- proportion population *p*

Based on sample data, one makes inferences or generalizations about population parameter

Statistics inference: generalize and prediction

State that the average cost to build a residence in Charleston, South Carolina, is between \$330,000 and \$335,000, based on the estimates of 3 contractors selected at random from the 30 now building in this city

Inference about Population from Sample Information

- compute statistics from a selected sample from a population
- From this statistics, make some statement about a parameter of a population

Two Majors in Statistic inference

- Estimation
- Hypothesis testing

Estimation

- Population parameters (unknown): Mean, variance, standard deviation ...
- Statistics (from data): Sample mean, sample variance ...
- Use statistics to estimate parameter: point estimate
- How accurate: interval estimate

A random sample of size *n* is a sequence of RVs

$$X_1,\ldots,X_n$$

Point estimate

A point estimate of some population parameter θ from random sample X_1, X_2, \ldots, X_n is a single value $\hat{\theta}$ of a statistic $\hat{\Theta} = \hat{\Theta}(X_1, \ldots, X_n)$

Example

• A value of sample mean

$$\bar{X} = \frac{X_1 + \dots X_n}{n}$$

is a point estimate of the population mean μ .

• $\hat{p} = \frac{x}{n}$ is a point estimate of the true proportion p for a binomial experiment.

Statistics is a random variable

Example

- value of sample mean depends on the sample that you observe
- sample is chosen randomly → different value of sample mean for difference sample
- Sample mean is a Random variable

- We do not expect \bar{X} to estimate μ exactly, but we certainly hope that it is not far off.
- it is possible to obtain a closer estimate of μ by using the sample median \tilde{X} as an estimator
- Not knowing the true value of μ , we must decide in advance whether to use \bar{X} or \tilde{X} as our estimator.
- What are the desirable properties of a "good" decision function that would influence us to choose one estimator rather than another?

- We do not expect \bar{X} to estimate μ exactly, but we certainly hope that it is not far off.
- it is possible to obtain a closer estimate of μ by using the sample median \tilde{X} as an estimator
- Not knowing the true value of μ , we must decide in advance whether to use \bar{X} or \tilde{X} as our estimator.
- What are the desirable properties of a "good" decision function that would influence us to choose one estimator rather than another?

- We do not expect \bar{X} to estimate μ exactly, but we certainly hope that it is not far off.
- it is possible to obtain a closer estimate of μ by using the sample median \tilde{X} as an estimator
- Not knowing the true value of μ , we must decide in advance whether to use \bar{X} or \tilde{X} as our estimator.
- What are the desirable properties of a "good" decision function that would influence us to choose one estimator rather than another?

- We do not expect \bar{X} to estimate μ exactly, but we certainly hope that it is not far off.
- it is possible to obtain a closer estimate of μ by using the sample median \tilde{X} as an estimator
- Not knowing the true value of μ , we must decide in advance whether to use \bar{X} or \tilde{X} as our estimator.
- What are the desirable properties of a "good" decision function that would influence us to choose one estimator rather than another?

Unbiased estimator

A statistics $\hat{\Theta}(X_1, \dots, X_n)$ is said to be an unbiased estimator for (population) parameter θ if

$$E(\hat{\Theta}) = \theta$$

Example

Population with mean μ and variance σ^2

• Sample mean
$$\bar{X} = \frac{X_1 + \dots + X_n}{n}$$

$$E(\bar{X}) = \mu$$

• Sample variance
$$S^2 = \frac{(X_1 - \bar{X})^2 + ... (X_n - \bar{X})^2}{n-1}$$

$$E(S^2) = \sigma^2$$

Sample mean \bar{X} and sample variance S^2 are unbiased estimators of μ and σ^2 respectively

Variance of estimator

- $\hat{\Theta}_1$, $\hat{\Theta}_2$: unbiased estimators for θ
- $\hat{\Theta}_1$ is a more efficient estimator than $\hat{\Theta}_2$ if

$$Var(\hat{\Theta}_1) \leq Var(\hat{\Theta}_2)$$

Efficient estimator

- The most efficient estimator: unbiased estimator with smalles variance
- \bar{X} and S^2 are the most efficient estimators of μ and σ^2

Example

Given the sample data

1, 1, 4, 6

Find the best point esimators for the population mean and population variance

Solution

The best estimator for the population mean is the sample mean

$$\bar{x} = \frac{1+1+4+6}{4} = 3$$

The best esimator for the population variance is the sample variance

$$s^{2} = \frac{(1-3)^{2} + (1-3)^{2} + (4-3)^{2} + (6-3)^{2}}{4-1} = 6$$

Solution

The best estimator for the population mean is the sample mean

$$\bar{x} = \frac{1+1+4+6}{4} = 3$$

The best esimator for the population variance is the sample variance

$$s^{2} = \frac{(1-3)^{2} + (1-3)^{2} + (4-3)^{2} + (6-3)^{2}}{4-1} = 6$$

Interval estimate

- estimation accuracy increases with large samples
- but don't expect \bar{X} to be exactly μ
- Want to find an interval around \bar{X} so we can be sure that μ is in it.
- Ex: want to find [a, b] so that 95% of the time $\mu \in [a, b]$
- [a,b] is called 95% confidence interval estimate of μ

Interval Estimates

An interval estimate of a population parameter θ is an interval of the form

$$\hat{\theta}_L < \theta < \hat{\theta}_U$$

where $\hat{\theta}_L$ and $\hat{\theta}_U$ depend on the value of the statistic $\hat{\theta}$ for a particular sample and also on the distribution of $\hat{\theta}$

Interpretation of Interval Estimates

- different samples will generally yield different values of $\hat{\theta}$ and different values for $\hat{\theta}_L$ and $\hat{\theta}_U$
- These end points $\hat{\theta}_L$ and $\hat{\theta}_U$ are random variables
- If distribution of $\hat{\theta}$ is known then we can determine

$$P(\hat{\theta}_L < \theta < \hat{\theta}_U) = 1 - \alpha$$

then we have a probability of $1 - \alpha$ of selecting a random sample that will produce an interval containing θ

Interpretation of Interval Estimates

- different samples will generally yield different values of $\hat{\theta}$ and different values for $\hat{\theta}_L$ and $\hat{\theta}_U$
- These end points $\hat{\theta}_L$ and $\hat{\theta}_U$ are random variables
- If distribution of $\hat{\theta}$ is known then we can determine

$$P(\hat{\theta}_L < \theta < \hat{\theta}_U) = 1 - \alpha$$

then we have a probability of $1 - \alpha$ of selecting a random sample that will produce an interval containing θ

Interpretation of Interval Estimates

- different samples will generally yield different values of $\hat{\theta}$ and different values for $\hat{\theta}_L$ and $\hat{\theta}_U$
- These end points $\hat{\theta}_L$ and $\hat{\theta}_U$ are random variables
- If distribution of $\hat{\theta}$ is known then we can determine

$$P(\hat{\theta}_L < \theta < \hat{\theta}_U) = 1 - \alpha$$

then we have a probability of $1 - \alpha$ of selecting a random sample that will produce an interval containing θ

• The interval

$$\hat{\theta}_L < \theta < \hat{\theta}_U$$

computed from the selected sample is called a $100(1-\alpha)\%$ confident interval

- The fraction $100(1-\alpha)\%$: confidence coefficient or degree of confidence
- $\hat{\theta}_L$ and $\hat{\theta}_U$: lower and upper **confident limits**

• The interval

$$\hat{\theta}_L < \theta < \hat{\theta}_U$$

computed from the selected sample is called a $100(1-\alpha)\%$ confident interval

- The fraction $100(1-\alpha)\%$: confidence coefficient or degree of confidence
- $\hat{\theta}_L$ and $\hat{\theta}_U$: lower and upper confident limits

• The interval

$$\hat{\theta}_L < \theta < \hat{\theta}_U$$

computed from the selected sample is called a $100(1-\alpha)\%$ confident interval

- The fraction $100(1-\alpha)\%$: confidence coefficient or degree of confidence
- $\hat{\theta}_L$ and $\hat{\theta}_U$: lower and upper **confident limits**

Estimate the mean when the variance population σ^2 is known

Sample mean

Select a random sample of size n, X_1, \ldots, X_n , from a population with mean μ and finite variance σ^2 . Sample mean

$$\bar{X} = \frac{X_1 + \ldots + X_n}{n}$$

is used to estimate the true mean μ of the population - called a point estimate of μ

Properties of sample mean

Expectation

$$E(\bar{X}) = \mu_{\bar{X}} = \mu$$

unbiased estimator of the true mean μ

Variance

$$Var(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$$

Sample mean from normal population

- Population has normal distribution $N(\mu, \sigma^2)$
- Each observation $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$
- $(X_1 + \cdots + X_n) \sim N(n\mu, n\sigma^2)$
- Sample mean $\bar{X} \sim N(\mu, \sigma^2/n)$

Central limit theorem

- Suppose X_1, \ldots, X_n i.i.d with mean μ and variance σ^2 .
- then for *n* large enough, *X* has distribution approximately normal with mean μ and variance $\frac{\sigma^2}{n}$.

Distribution of \bar{X}

• Sample mean

$$ar{X} = rac{\sum_{i=1}^{n} X_i}{n} \sim \mathcal{N}\left(\mu, rac{\sigma^2}{n}\right)$$

Standadize

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

• Valid for large sample ($n \ge 30$) or not severely nonnormal population

For sample size $n \ge 30$ or normal population

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

 $z_{\alpha/2}$ is the critical value determined by

$$P(Z > z_{\alpha/2}) = \alpha/2$$

$$P(-z_{\alpha}/2 < Z < z_{\alpha/2}) = 1 - \alpha$$

$$P(-z_{\alpha/2} < \frac{X - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}) = 1 - \alpha$$

Hence

$$P(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

a $100(1-\alpha)\%$ confidence interval (CI) for population mean μ

$$\left[\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

(two-sided CI) $100(1-\alpha)\%$: confidence level

- variance population σ^2 known
- Normal population or large sample size $n \ge 30$

a $100(1-\alpha)\%$ confidence interval (CI) for population mean μ

$$\left[\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

(two-sided CI)

 $100(1-\alpha)\%$: confidence level

- variance population σ^2 known
- Normal population or large sample size $n \ge 30$

Interval estimate for different samples

Remark

- Given $z_{\frac{\alpha}{2}}$, all of these intervals are of the same width, since their widths once \bar{x} is determined
- The larger the value $z_{\frac{\alpha}{2}}$ is, the wider the intervals are and the more confident we can be that the particular sample selected will produce an interval that contains the unknown parameter μ
- For each $z_{\frac{\alpha}{2}}$, $100(1-\alpha)\%$ of the intervals will cover μ

If \bar{x} is used as an estimate of μ , we can be confident that the error will not exceed $z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ at $100(1-\alpha)\%$.

$$\overline{x} - z_{\alpha/2} \sigma / \sqrt{n}$$
 $\overline{x} \mu$ $\overline{x} + z_{\alpha/2} \sigma / \sqrt{n}$

Margin of error ME = $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ is used to evaluate accuracy of estimation.

Alternative formular for IC

$$(\bar{x} - ME, \bar{x} + ME)$$

If \bar{x} is used as an estimate of μ , we can be confident that the error will not exceed $z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ at $100(1-\alpha)\%$.

$$\overline{x} - z_{\alpha/2} \sigma / \sqrt{n}$$
 \overline{x} μ $\overline{x} + z_{\alpha/2} \sigma / \sqrt{n}$

Margin of error ME = $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ is used to evaluate accuracy of estimation.

Alternative formular for IC

$$(\bar{x} - ME, \bar{x} + ME)$$

Example

The average zinc concentration recovered from a *sample* of measurements taken in 36 different locations in a river is found to be 2.6 grams per milliliter. Find the 98% CIs for the mean zinc concentration in the river. Assume that the population standard deviation is .3 gram per milliliter.

Solution for 98% CI

- μ : the mean zinc concentration in the river
- population std $\sigma = .3$
- sample size n = 36, sample mean $\bar{x} = 2.6$ g/mil

• Find $\alpha/2$ from level of confidence

$$1 - \alpha = 98\% = .98 \Rightarrow \alpha/2 = .01$$

• Find $z_{\frac{\alpha}{2}} = 2.33$

In Excel, NORMINV(1 - $\frac{\alpha}{2}$, 0, 1)

Marginal of error

$$ME = z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 2.33 \times \frac{.3}{\sqrt{36}} = .1165$$

- lower bound $\bar{x} ME = 2.6 .1165 = 2.4835$
- upper bound $\bar{x} + ME = 2.6 + .1165 = 2.7165$
- 98% CI

$$2.4835 < \mu < 2.7165$$

Practice

A survey of 30 emergency room patients found that the average waiting time for treatment was 174.3 minutes. Assuming that the population standard deviation is 46.5 minutes, find the **best point estimate** of the population mean and the **99% confidence of the population mean**

Sample size

Given level of confidence and accuracy *ME*, one can determine necessary size of sample

$$n = \left(\frac{z_{\frac{\alpha}{2}}\sigma}{ME}\right)^2$$

Example

From past experience it is known that the weights of salmon grown at a commercial hatchery are normal with a mean that varies from season to season but with a standard deviation that remains fixed at 0.3 pounds. If we want to be **95 percent certain** that our **estimate** of the present season's mean weight of a salmon is correct to within ± 0.1 pounds, how large a sample is needed?

Solution

- Find sample size n such that ME = .1
- Information
 - population std $\sigma = .3$
 - Confidence level $1 \alpha = .95 \Rightarrow z_{\frac{\alpha}{2}} = 1.96$
- $ME = z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 1.96 \frac{0.3}{\sqrt{n}} = .1$
- then n = 35

Practice

An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours.

- 1 If a sample of 30 bulbs has an average life of 780 hours, find a 96% confidence interval for the population mean of all bulbs produced by this firm
- 2 How large a sample is needed if we wish to be 96% confident that our sample mean will be within 10 hours of the true mean?

Estimate the mean when the population variance σ^2 is not known

In statistics - replace unknown population standard deviation σ by computable sample standard deviation S

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Distribution of statistics? depends on

- distribution of sample mean \bar{X}
- distribution of sample standard deviation *S*

Estimate the mean when the population variance σ^2 is not known

In statistics - replace unknown population standard deviation σ by computable sample standard deviation S

$$rac{ar{X} - \mu}{S/\sqrt{n}}$$

Distribution of statistics? depends on

- distribution of sample mean \bar{X}
- distribution of sample standard deviation *S*

Estimate the mean when the population variance σ^2 is not known

In statistics - replace unknown population standard deviation σ by computable sample standard deviation S

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Distribution of statistics? depends on

- distribution of sample mean \bar{X}
- distribution of sample standard deviation S

Distribution of sample variance S^2 ?

$$S^{2} = \frac{(X_{1} - \bar{X})^{2} + \dots + (X_{n} - \bar{X})^{2}}{n - 1}$$

Chi-square distribution

- X_1, \ldots, X_n i.i.d. N(0, 1)
- $Y = X_1^2 + \cdots + X_n^2$ is said to have the chi-square distribution with n degree of freedom, $Y \sim \chi_p^2$

Distribution of sample variance S^2 ?

$$S^{2} = \frac{(X_{1} - \bar{X})^{2} + \dots + (X_{n} - \bar{X})^{2}}{n - 1}$$

Chi-square distribution

- X_1, \ldots, X_n i.i.d. N(0, 1)
- $Y = X_1^2 + \cdots + X_n^2$ is said to have the chi-square distribution with n degree of freedom, $Y \sim \chi_n^2$

Distribution of sample variance S^2 ?

$$S^{2} = \frac{(X_{1} - \bar{X})^{2} + \dots + (X_{n} - \bar{X})^{2}}{n - 1}$$

Distribution of sample variance for normal distribution

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

Distribution of sample mean \bar{X} for unknown σ^2

Statistics

$$T = \frac{X - \mu}{S / \sqrt{n}}$$

t - distribution

If $Z \sim N(0, 1)$ and $C \sim \chi_n^2$ then $T = \frac{Z}{\sqrt{C/n}}$ has t-distribution of n degree of freedom, denoted by $T \sim T(n)$

Distribution of sample mean \bar{X} for unknown σ^2

Statistics

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

t - distribution

If $Z \sim N(0, 1)$ and $C \sim \chi_n^2$ then $T = \frac{Z}{\sqrt{C/n}}$ has t-distribution of n degree of freedom, denoted by $T \sim T(n)$

For normal distribution

- \bar{X} : normal distribution
- S^2 : related to $\chi^2(n-1)$

Statistics

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

For normal distribution

- \bar{X} : normal distribution
- S^2 : related to $\chi^2(n-1)$

Statistics

$$T = \frac{X - \mu}{S / \sqrt{n}} \sim t(n - 1)$$

$100(1-\alpha)\%$ CI of μ

- normal population
- variance population σ^2 unknown

$$(\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}})$$

Margin of error

$$ME = t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}$$

$100(1-\alpha)\%$ CI of μ

- normal population
- variance population σ^2 unknown

$$(\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}})$$

Margin of error

$$ME = t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}$$

t - distribution looks like

t is symmetric about 0

degree of freedom \geq 30 then *t* is approximated by

Remark

For sample size large $n \ge 30$) then t is approximated by $\mathcal{N}(0, 1)$ so

$$t_{\alpha/2,n-1} \approx z_{\alpha/2}$$

for *n* large enough

Example

The contents of seven similar containers of sulfuric acid are 9.8, 10.2, 10.4, 9.8, 10.0, 10.2, and 9.6 liters. Find a **95% confidence interval for the mean contents of all such containers**, assuming an approximately normal distribution.

Solution

- μ : mean contents of all containers
- Sample size n = 7, sample mean $\bar{x} = 10.0$, sample std s = 0.283
- Find $\frac{\alpha}{2}$ from confidence level

$$1 - \alpha = .95 \Rightarrow \frac{\alpha}{2} = .025$$

• Find $t_{\alpha/2,n-1} = t_{.025,6} = 2.447$

				α			
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5_	0.267	0.559	0.920	1.156	1.476	2.015	2.171
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365

•
$$ME = t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} = 2.447 \times \frac{.283}{\sqrt{7}} = .26$$

- Lower bound $\bar{x} ME = 10.0 .26 = 9.74$
- Upper bound $\bar{x} + ME = 10.0 + .26 = 10.26$
- 95% CI

$$9.74 \le \mu \le 10.26$$

Practice

The following measurements were recorded for the drying time, in hours, of a certain brand of latex paint: 3.4, 2.5, 4.8, 2.9, 3.6, 2.8, 3.3, 5.6, 3.7, 2.8, 4.4, 4.0, 5.2, 3.0, 4.8 Assuming that the measurements represent a random sample from a normal population, find a 95% confidence interval for the average drying time of the paint.

Remark

For large sample size n > 30 then

$$t_{\frac{\alpha}{2},n-1} \approx z_{\frac{\alpha}{2}}$$

Hence CI of μ is

$$(\bar{X}-z_{\alpha/2}\frac{S}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{S}{\sqrt{n}})$$

Practice

Scholastic Aptitude Test (SAT) mathematics scores of a random sample of 500 high school seniors in the state of Texas are collected, and the sample mean and standard deviation are found to be 501 and 112, respectively. Find a 99% confidence interval on the mean SAT mathematics score for seniors in the state of Texas.

Estimate a proportion - mean of Bernoulli RV

- Sample *n* independent trials from a population, each success with unknown probability p
- Each observation $X_1, \ldots, X_n \sim \text{Ber}(p)$ has two value 1 - success and 0 - failure
- $X = X_1 + \cdots + X_n$: number of successes in n sample trials
- point estimate for p is $\hat{p} = \bar{X} = \frac{X}{n}$ fraction of successes in sample
- Want to find confidence interval for *p*

Estimator of population proportion

Point estimate

$$\hat{p} = \frac{X}{n}$$

then $E(\hat{p}) = p$

- Use \hat{p} as unbiased estimator for p
- For large sample size, by central limit theorem

$$\frac{X - np}{\sqrt{p(1-p)}} = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \approx Z \sim N(0,1)$$

Contruct inteval confidence for *p*

$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$$

So

$$P\left(\hat{p} - z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}
standard error of point estimator$$

However p is unknown. Replace p by \hat{p} in standard error

$100(1 - \alpha)\%$ IC for *p*

$$\left|\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

with

$$ME = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Sample size

$$n = (\hat{p})(1 - \hat{p}) \left(\frac{z_{\alpha/2}}{ME}\right)^2$$

Example

In a random sample of 85 automobile engine crankshaft bearings, 10 have a surface finish that is rougher than the specifications allow.

- 1 Find a 95% two-sided confidence interval for p the proportion of bearings in the population that exceeds the roughness specification.
- 2 How large a sample is required if we want to be 95% confident that the error in using \hat{p} to estimate p is less than 0.05

Solution

- Information
 - sample size n = 85
 - sample proportion of bearing that exceeds... : $\hat{p} = \frac{x}{n} = \frac{10}{85} \approx 0.12$
 - Confidence level $1 \alpha = .95 \Rightarrow z_{\alpha/2} = 1.96$
 - $ME = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 1.96 \sqrt{\frac{(.12)(.88)}{85}} \approx .07$
 - 95%CI for *p*

$$.12 - .07 or $.05$$$

2 Need to find sample size *n* such that

$$ME = 0.05$$

or

$$z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=0.05$$

Solve

$$1.96\sqrt{\frac{(.12)(.88)}{n}} = 0.05$$

and round up to obtain n = 163

Example

On October 14, 2003, the New York Times reported that a recent poll indicated that 52 percent of the population was in favor of the job performance of President Bush, with a margin of error of ± 4 percent and 95% confidence level. Can we infer **how many people were questioned**?

Solution

- $\alpha = .05, z_{.025} = 1.96$
- $\hat{p} = .52$
- $ME = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 1.96 \sqrt{\frac{.52(.48)}{n}}$
- $1.96\sqrt{.52(.48)/n} = .04$
- n = 599

Practice

A sample of 100 transistors is randomly chosen from a large batch and tested to determine if they meet the current standards. If 80 of them meet the standards, then find 95% confidence interval for p, the fraction of all the transistors that meet the standards.

Estimation of population variance σ^2 for normal population

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

- *n*: sample size
- S^2 : sample variance

Estimation of population variance σ^2 for normal population

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

- *n*: sample size
- S^2 : sample variance

$$P(\chi^2_{1-\alpha/2,n-1} < (n-1)\frac{S^2}{\sigma^2} < \chi^2_{\alpha/2,n-1}) = 1 - \alpha$$

or

$$I(\chi_{1-\alpha/2,n-1} < (n-1)\frac{1}{\sigma^2} < \chi_{\alpha/2,n-1}) - 1 - \epsilon$$

 $P(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}) = 1 - \alpha$

$100(1 - \alpha)\%$ CI of σ^2

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$$

Example

The sugar content of the syrup in canned peaches is normally distributed. A random sample of n=10 cans yields a sample standard deviation of s=4.8 milligrams. Calculate a 95% two-sided CI for the population variance σ^2 .

Solution

- Information
 - sample size n = 10
 - sample standard deviation s = 4.8mg
 - Confidence level $1 \alpha = .95 \Rightarrow \alpha/2 = .025$

• Critical value of χ^2

$$\chi^2_{1-\alpha/2,n-1} = \chi^2_{.975,9} = 2.7$$

• Critical value of χ^2

$$\chi^2_{\alpha/2,n-1} = \chi^2_{.025,9} = 19.023$$

Table A.5	(continued)	Critical Values	of the Chi-	Squared Distribution

	α										
v	0.30	0.25	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.001	
1	1.074	1.323	1.642	2.706	3.841	5.024	5.412	6.635	7.879	10.827	
2	2.408	2.773	3.219	4.605	5.991	7.378	7.824	9.210	10.597	13.815	
3	3.665	4.108	4.642	6.251	7.815	9.348	9.837	11.345	12.838	16.266	
4	4.878	5.385	5.989	7.779	9.488	11.43	11.668	13.277	14.860	18.466	
5	6.064	6.626	7.289	9.236	11.070	12.832	13.388	15.086	16.750	20.515	
6	7.231	7.841	8.558	10.645	12.592	14.449	15.033	16.812	18.548	22.457	
7	8.383	9.037	9.803	12.017	14.067	16.013	16.622	18.475	20.278	24.321	
8	9.524	10.219	11.030	13.362	15.507	17.535	18.168	20.090	21.955	26.124	
9	10.656	11.389	12.242	14.684	16.919	19.023	19.679	21.666	23.589	27.877	
10	11.781	12.549	13.442	15.987	18.307	20.483	21.161	23.209	25.188	29.588	

Upper bound

$$\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}} = \frac{9*(4.8)^2}{2.7} = 76.8$$

 $10.9 < \sigma^2 < 76.8 (mg^2)$

Lower bound

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} = \frac{9*(4.8)^2}{19.023} = 10.9$$

• 95% CI for population variance

Practice

The following are the weights, in decagrams, of 10 packages of grass seed distributed by a certain company: 46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2, and 46.0. Find a 95% confidence interval for the variance of the weights of all such packages of grass seed distributed by this company, assuming a normal population

Keywords

 point estimate and efficient estimator for population mean, proportion and variance are sample mean, sample proportion and sample variance

• two-sided $100(1-\alpha)\%$ CI for population mean μ

$$(\bar{x} - ME, \quad \bar{x} + ME)$$

• Case 1: population variance σ^2 known, large sample size or normal population $ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

• Case 2: population variance σ^2 unknown, normal population $ME = t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$

• two-sided $100(1-\alpha)\%$ CI for population proportion p

proportion
$$p$$
 $(\hat{p} - ME, \qquad \hat{p} + ME)$

where

$$ME = z_{lpha/2} \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

• two-sided $100(1-\alpha)\%$ CI for population variance

