Advanced VLSI System Design (Graduate Level) Fall 2024

DRAM Simulator

Advisor: Lih-Yih Chiou

Speaker: Victor

Date: 2024/11/6

Outline

- Introduction
- DRAM controller
- Simplified DRAM Simulator
 - Timing Specification
 - > Waveform

Introduction

- Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory.
- Consisting only a capacitor and a transistor for each bit of data.
- The electric charge on the capacitors slowly leaks off.
 - > refresh!

Introduction

■ Three Basic Operations

- >Row Access
- >Column Access
- > Pre-charge

DRAM controller

- Ensure correct operation of DRAM
 - Address Mapping, refresh and timing
- Translate request to DRAM command sequences
- Buffer and schedule requests to improve performance
 - >Reordering, row-buffer, bank, rank, bus management
- Manage power consumption and thermals in DRAM
 - Turn off/on DRAM chips, manage power modes

DRAM controller

State diagram

Simplified DRAM Simulator

- Act : Activate row
 - > RASn = low
 - > CASn = high
 - > WEn = 4'hf
- READ: Read operation and access column address
 - > RASn = high
 - > CASn = low
 - > WEn = 4'hf
- WRITE: Write operation and access column address
 - > RASn = high
 - > CASn = low
 - > WEn = 4'h0 (for a word)
- PRE : Pre-charge
 - > RASn = low
 - > CASn = high
 - \sim WEn = 4'h0
 - The address should be the same as the one that activated last time.

Simplified DRAM Simulator

	System signals			
	CK	input	1	System clock
DRAM	RST	input	1	System reset (active high)
	Memory ports			
	CSn	input	1	DRAM Chip Select
				(active low)
	WEn	input	4	DRAM Write Enable
				(active low)
	RASn	input	1	DRAM Row Access Strobe
				(active low)
	CASn	input	1	DRAM Column Access Strobe
				(active low)
	A	input	11	DRAM Address input
	D	input	32	DRAM data input
	Q	output	32	DRAM data output
	VALID	output	1	DRAM data output valid
	Memory space			
	Memory_byte0	reg	8	Size: [0:2097151]
	Memory_byte1	reg	8	Size: [0:2097151]
	Memory_byte2	reg	8	Size: [0:2097151]
	Memory_byte3	reg	8	Size: [0:2097151]

[★] Row address is 11-bit and column address is 10-bit

Timing Specification

- tRP -Precharge TimeDelay time until the next RAS is asserted
- **tRCD** -Row Address to Column Address Delay Active to Read/Write command time
- CL -CAS Latency
 Delay time between the READ command and the moment data is available

Timing Specification

If the transition violates the timing specification, it will show error or terminates the execution.

4 cycles, but at least 5 cycles.


```
ncsim: *E,ASRTST (./DRAM.sv,149): (time 1195 NS) Assertion test.M1.CL_check has failed

*** CL Violation ! CASn should have more than 5 cycles interval ***
```

- $ightharpoonup RAS \rightarrow Set Row$
 - > A should be ready
- CAS → Set Column
 - >READ : A and WEn should be ready
 - WRITE: A, WEn and D should be ready

Read/Write command Registration

READ if WEn = 4'hf

WRITE if WEn != 4'hf

Waveform

- Read operation
 - Data will output with a valid signal

Advanced VLSI System Design (Graduate Level) Fall 2024

Thanks for listening