6.002x

CIRCUITS AND ELECTRONICS

Inside the Digital Gate

Reading: Chapter 6 of A&L

Review

The Digital Abstraction

luen soll soll

- Discretize value: (0, 1)
- Static discipline -- digital devices meet voltage thresholds

Specifies how gates must be designed

Review

Combinational gate abstraction

- outputs function of input alone
- satisfies static discipline

- A Nehalem class microprocessor from Intel has approx 1 billion gates
- The RAW multicore chip (http://groups.csail.mit.edu/cag/raw/) built by students at CSAIL, MIT, had about 3 million gates
- The 64-core Tile processor from Tilera has approx a half billion gates

Review

A digital circuit

http://localhost:8000/static/book/p027.jpg

How to build a digital gate

Use this insight to build an AND gate.

6

How to build a digital gate

Electrical Analogy

Key: we need a "switch" device

New Switch Element Consider abstract "switch" device

Equivalent ckt

For mechanical switch, control mechanical pressure

3-Terminal device

if C = 6. Ashort circuit between in and out

else: open circuit between, in and out

Now, consider this circuit

Behavior of this circuit

What about?

We can also build compound gates

Now let's get back to reality... we need a physical switch

The MOSFET Device

Metal-Oxide Semiconductor Field-Effect Transistor

3 terminal lumped element behaves like a switch

G: control terminal

D, S: behave in a symmetric manner (for our needs) 6-002×

Check the MOS device on a scope $i_{I_{DS}}$

(As we will see soon, note that the actual MOSFET behavior is quite a bit more complex. The above switch characterization is a gross simplification. If you cannot wait, check out Section 7.3 of the textbook for the actual MOSFET characteristics)

A MOSFET Inverter Note the power of abstraction: The abstract inverter gate representation hides internal details such as power supply connections, R, GND, etc. When we build digital circuits, the 1 and ___ are common across all gates! A, B: Logic value ره ا v_{IN}: Voltage value

We can plot the relationship between the input and output voltages Vas Ealted Worklage characteristic Question: The T1000 model laptop needs gates that satisfy a static discipline with voltage thresholds given below. Does our inverter qualify?

$$V_{OL}$$
 = 0.5V V_{IL} = 0.9V V_{OH} = 4.5V V_{IH} = 4.1V

Does our inverter satisfy the voltage thresholds for this static discipline?

Does our inverter satisfy the static discipline for these different thresholds?

How about these thresholds?

$$V_{OL}$$
 = 0.5V V_{IL} = 1.5V V_{OH} = 4.5V V_{IH} = 3.5V

Switch Resistor (SR) Model of MOSFET

...a more accurate MOSFET model

SR Model of MOSFET

Transfer Function for Inverter using the SR MOSFET Model

Does our inverter satisfy the voltage thresholds for this static discipline? $V_{II} = 0.9 \text{V}$ So, our inverter satisfies this static discipline 28

Some Interesting Insights... Our Digital Subcircuits are Linear

Static Power in Digital Circuits

Analog and Digital (or Mixed Signals) are Everywhere

