Multi-modal Preference Alignment Remedies Degradation of Visual Instruction Tuning on Language Models

Shengzhi Li TIFIN Inc alex.li@tifin.com

Rongyu Lin KAUST rongyu.lin@kaust.edu.sa Shichao Pei*

University of Massachusetts Boston shichao.pei@umb.edu

Motivation

Multi-modal large language models (MLLMs) are expected to support multi-turn queries of interchanging image and text modalities in production.

However, the current MLLMs trained with visual-questionanswering (VQA) datasets could suffer from degradation, as VOA datasets lack the diversity and complexity of the original text instruction datasets with which the underlying language model was trained.

Contribution

■ Exploration of Modality Degradation

This work is the first to identify and address modality degradation in MLLMs, a phenomenon where visual instruction tuning detrimentally impacts language instruction capabilities.

- Efficient and scalable preference alignment pipeline as remedy
- Our data collection strategy employs a granular quality metric annotation format, leveraging cost-effective commercial APIs.
- This scalable approach enables the efficient production of high-quality datasets.
- We are able to surpass LLaVA and Vicuna's language instructionfollowing capability with DPO on a 6k dataset.

Method

We propose to harness alignment methods that utilize selfsampled responses and preference annotations in addition to Supervised Fine-Tuning (SFT) as a baseline.

From a visual-instruction-tuned pre-trained model, we generate 4 completions for a given image-question prompt. These answers are then **presented to Gemini** to obtain granular annotations given a labeling guide. We construct a preference dataset of (imagetext prompt, preferred completion) and (image-text prompt, rejected completion). We benchmarked DPO, Rejection sampling, and SteerLM alignment methods, in addition to a pure SFT baseline using Gemini-provided answers directly.

5 Metric

Helpfulness I Correctness Coherence I Complexity Verbosity

3 Alignment Methods

- Direct Preference Optimization(DPO)
- > Self-sampled SteerLM
- Rejection Sampling

2 Data

Data Type	Data Name	Size
VQA	LRV-Instruct	2562
	SciGraphQA	2522
Total		5084

Our SFT method relied on answers from the respective datasets directly, while DPO, SteerLM, and rejection sampling methods use selfgenerated instead.

Experiments

Model Name	Visual Instruc	tion Benchmark	Visual Mult	ii-Choice Benchmark	Text Instruction	Benchmark	
	MM-Vet	LLaVA-bench	PoPe	MM-Bench	MT-bench	AlpacaEval	
Vicuna-1.5-13b (Chiang	-	-	-	-	6.57	81.4	
et al., 2023)							
LLaVA-1.5-13b (Liu	36.3	73.1	0.859	67.4	5.99	79.3	
et al., 2023b)							
LLaVA-RLHF-13b	37.2	76.8	0.869	60.1	6.18	81.0	
(Sun et al., 2023)							
Alignment method we benchmarked, finetuning LLaVA-1.5-13b							
Standard SFT	36.5	63.7	0.850	65.4	5.01	50.2	
SteerLM	35.2	67.0	0.878	65.1	5.70	68.8	
Rejection-sampling	38.0	70.6	0.883	67.6	6.22	74.9	
DPO	41.2	79.1	0.870	66.8	6.73	86.4	

Result: LLaVA's performance on MT-Bench had dipped from Vicuna's 6.57 to 5.99, whereas our DPO model advanced to 6.73. DPO also bolstered performance on multi-modal benchmarks, enhancing accuracy by 4.9% on MM-Vet and 6% on LLaVABench.

The performance surpasses that of the Vicuna-v1.5-13b benchmark using less than 75% or 4.2K of the DPO data. underlining DPO's data efficiency.

Discussion

6.35

Robustness of the model wi

Model	LLM	Noisy-image MT-Bench
Vicuna 13B v1.5	Vicuna _{13B}	6.57
Vicuna 7B v1.5	Vicuna _{7B}	6.17
BLIP-2	FlanT5	1.93
InstructBLIP	Vicuna _{7B}	4.73
LLaVA-v1.5-13b	Vicuna _{13B}	5.92
DPO (ours)	Vicuna _{13B}	6.63

Table 7: This benchmark adds an irrelevant image in context when benchmarking MT-Bench, testing for robustness in a real-world co

Cross-model transfer ability: Can preference dataset

Model Name	MT-Bench Score	MM-Vet Sco
Vicuna-7B-v1.5	6.17	N/A
LLaVA-V1.5-7b	5.87	30.5
DPO-7b (ours)	6.228	39.8