

Matrix methods – QR factorisation (1) MATH 2740 – Mathematics of Data Science – Lecture 07

Julien Arino

julien.arino@umanitoba.ca

Department of Mathematics @ University of Manitoba

Fall 202X

The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

Outline

Matrix factorisations

Orthogonality and projections

Gram-Schmidt orthogonalisation process

Orthogonal matrices

Matrix factorisations

Matrix factorisations are popular because they allow to perform some computations more easily

There are several different types of factorisations. Here, we study just the QR factorisation, which is useful for many least squares problems

p. 1 – Matrix factorisations

Definition 57 (Orthogonal set of vectors)

The set of vectors $\{v_1, \dots, v_k\} \in \mathbb{R}^n$ is an **orthogonal set** if

$$\forall i, j = 1, \ldots, k, \quad i \neq j \implies \mathbf{v}_i \bullet \mathbf{v}_j = 0$$

Theorem 58

 $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}\in\mathbb{R}^n$ with $\forall i,\ \mathbf{v}_i\neq\mathbf{0}$, orthogonal set $\Longrightarrow \{\mathbf{v}_1,\ldots,\mathbf{v}_k\}\in\mathbb{R}^n$ linearly independent

Definition 59 (Orthogonal basis)

Let S be a basis of the subspace $W \subset \mathbb{R}^n$ composed of an orthogonal set of vectors. We say S is an **orthogonal basis** of W

Proof of Theorem 58

Assume $\{v_1, \dots, v_k\}$ orthogonal set with $v_i \neq \mathbf{0}$ for all $i = 1, \dots, k$. Recall $\{v_1, \dots, v_k\}$ is LI if

$$c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{0} \iff c_1 = \cdots = c_k = \mathbf{0}$$

So assume $c_1, \ldots, c_k \in \mathbb{R}$ are s.t. $c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{0}$. Recall that $\forall \mathbf{x} \in \mathbb{R}^k$, $\mathbf{0}_k \bullet \mathbf{x} = \mathbf{0}$. So for some $\mathbf{v}_i \in \{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$

$$0 = \mathbf{0} \bullet \mathbf{v}_{i}$$

$$= (c_{1} \mathbf{v}_{1} + \dots + c_{k} \mathbf{v}_{k}) \bullet \mathbf{v}_{i}$$

$$= c_{1} \mathbf{v}_{1} \bullet \mathbf{v}_{i} + \dots + c_{k} \mathbf{v}_{k} \bullet \mathbf{v}_{i}$$
(1)

As $\{v_1, \dots, v_k\}$ orthogonal, $v_i \bullet v_i = 0$ when $i \neq j$, (1) reduces to

$$c_i \mathbf{v}_i \bullet \mathbf{v}_i = 0 \iff c_i ||\mathbf{v}_i||^2 = 0$$

As $\mathbf{v}_i \neq 0$ for all i, $\|\mathbf{v}_i\| \neq 0$ and so $c_i = 0$. This is true for all i, hence the result

Example – Vectors of the standard basis of \mathbb{R}^3

$$i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad j = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ and } k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

 $(\mathbb{R}^k \text{ for } k > 3, \text{ we denote them } \boldsymbol{e}_i)$

For \mathbb{R}^3 , we denote

Clearly, $\{i, j\}$, $\{i, k\}$, $\{j, k\}$ and $\{i, j, k\}$ orthogonal sets. The standard basis vectors are also $\neq \mathbf{0}$, so the sets are LI. And

$$\{i, j, k\}$$

is an orthogonal basis of \mathbb{R}^3 since it spans \mathbb{R}^3 and is LI

$$c_1 oldsymbol{i} + c_2 oldsymbol{j} + c_3 oldsymbol{k} = c_1 egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + c_2 egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} + c_3 egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} = egin{pmatrix} c_1 \ c_2 \ c_3 \end{pmatrix}$$

Orthonormal version of things

Definition 60 (Orthonormal set)

The set of vectors $\{v_1, \dots, v_k\} \in \mathbb{R}^n$ is an **orthonormal set** if it is an orthogonal set and furthermore

$$\forall i=1,\ldots,k, \quad \|\mathbf{v}_i\|=1$$

Definition 61 (Orthonormal basis)

A basis of the subspace $W \subset \mathbb{R}^n$ is an **orthonormal basis** if the vectors composing it are an orthonormal set

 $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}\in\mathbb{R}^n$ is orthonormal if

$$\mathbf{v}_i \bullet \mathbf{v}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Projections

Definition 62 (Orthogonal projection onto a subspace)

 $W \subset \mathbb{R}^n$ a subspace and $\{u_1, \dots, u_k\}$ an orthogonal basis of W. $\forall v \in \mathbb{R}^n$, the **orthogonal projection** of v onto W is

$$\operatorname{proj}_{W}(\mathbf{v}) = \frac{\mathbf{u}_{1} \bullet \mathbf{v}}{\|\mathbf{u}_{1}\|^{2}} \mathbf{u}_{1} + \cdots + \frac{\mathbf{u}_{k} \bullet \mathbf{v}}{\|\mathbf{u}_{k}\|^{2}} \mathbf{u}_{k}$$

Definition 63 (Component orthogonal to a subspace)

 $W \subset \mathbb{R}^n$ a subspace and $\{u_1, \dots, u_k\}$ an orthogonal basis of $W. \forall v \in \mathbb{R}^n$, the **component** of v orthogonal to W is

$$\mathsf{perp}_{W}(\mathbf{v}) = \mathbf{v} - \mathsf{proj}_{W}(\mathbf{v})$$

o. 6 – Orthogonality and projections

Matrix factorisations Orthogonality and projections Gram-Schmidt orthogonalisation process Orthogonal matrices

What this aims to do is to construct an orthogonal basis for a subspace $W \subset \mathbb{R}^n$

To do this, we use the Gram-Schmidt orthogonalisation process, which turn s a basis of W into an orthogonal basis of W

Gram-Schmidt process

Theorem 64

$$W \subset \mathbb{R}^n$$
 a subset and $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ a basis of W. Let

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$
 $\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{v}_{1} \bullet \mathbf{x}_{2}}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1}$
 $\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{v}_{1} \bullet \mathbf{x}_{3}}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \frac{\mathbf{v}_{2} \bullet \mathbf{x}_{3}}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2}$
 \vdots

and

$$W_1 = \operatorname{span}(\boldsymbol{x}_1), W_2 = \operatorname{span}(\boldsymbol{x}_1, \boldsymbol{x}_2), \dots, W_k = \operatorname{span}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_k)$$

 $\mathbf{v}_k = \mathbf{x}_k - \frac{\mathbf{v}_1 \bullet \mathbf{x}_k}{\|\mathbf{v}_k\|^2} \mathbf{v}_1 - \dots - \frac{\mathbf{v}_{k-1} \bullet \mathbf{x}_k}{\|\mathbf{v}_k\|^2} \mathbf{v}_{k-1}$

Then $\forall i=1,\ldots,k,$ $\{m{v}_1,\ldots,m{v}_i\}$ orthogonal basis for W_i p. 8 – Gram-Schmidt orthogonalisation process

Matrix factorisations Orthogonality and projections Gram-Schmidt orthogonalisation process Orthogonal matrices

Theorem 65

Let $Q \in \mathcal{M}_{mn}$. The columns of Q form an orthonormal set if and only if

$$Q^TQ = \mathbb{I}_n$$

Definition 66 (Orthogonal matrix)

 $Q \in \mathcal{M}_n$ is an **orthogonal matrix** if its columns form an orthonormal set

So $Q \in \mathcal{M}_{\mathcal{D}}$ orthogonal if $Q^TQ = \mathbb{I}$, i.e., $Q^T = Q^{-1}$

Theorem 67 (NSC for orthogonality)

$$Q \in \mathcal{M}_n$$
 orthogonal $\iff Q^{-1} = Q^T$

Theorem 68 (Orthogonal matrices "encode" isometries)

Let $Q \in \mathcal{M}_n$. TFAE

- 1. Q orthogonal
- 2. $\forall \mathbf{x} \in \mathbb{R}^n$, $\|Q\mathbf{x}\| = \|\mathbf{x}\|$
- 3. $\forall x, y \in \mathbb{R}^n$, $Qx \bullet Qy = x \bullet y$

Theorem 69

Let $Q \in \mathcal{M}_n$ be orthogonal. Then

- 1. The rows of Q form an orthonormal set
- 2. Q^{-1} orthogonal
- 3. $\det Q = \pm 1$
- **4**. $\forall \lambda \in \sigma(Q), |\lambda| = 1$
- 5. If $Q_2 \in \mathcal{M}_n$ also orthogonal, then QQ_2 orthogonal

Proof of 4 in Theorem 69

All statements in Theorem 69 are easy, but let's focus on 4

Let λ be an eigenvalue of $Q \in \mathcal{M}_n$ orthogonal, i.e., $\exists \mathbb{R}^n \ni \mathbf{x} \neq \mathbf{0}$ s.t.

$$Q\mathbf{x} = \lambda \mathbf{x}$$

Take the norm on both sides

$$\|Q\mathbf{x}\| = \|\lambda\mathbf{x}\|$$

From 2 in Theorem 68, $\|Q\mathbf{x}\| = \|\mathbf{x}\|$ and from the properties of norms, $\|\lambda\mathbf{x}\| = |\lambda| \|\mathbf{x}\|$, so we have

$$\|Q\mathbf{x}\| = \|\lambda\mathbf{x}\| \iff \|\mathbf{x}\| = |\lambda| \|\mathbf{x}\| \iff 1 = |\lambda|$$

(we can divide by $\|\mathbf{x}\|$ since $\mathbf{x} \neq \mathbf{0}$ as an eigenvector)

