

Mouse motion measures improve SSRT in impulsivity assessment

ANTON LEONTYEV & TAKASHI YAMAUCHI TEXAS A&M UNIVERSITY, DEPARTMENT OF PSYCHOLOGICAL AND BRAIN SCIENCES

INTRODUCTION

ADHD and other disorders are characterized by impulsivity. It is studied through both questionnaires and performance-based tasks. However, these measures rarely correlate with each other (Toplak et al., 2013). **Why?**

- Decision-making is dynamic (Stillman et al., 2017)
- Performance-based tasks rely only on accuracy and RT
- Motor-based measures are indicative of ADHD (Leontyev et al., 2018)

Hypothesis: Augmenting traditional performance-based task with motor measure will improve associations with questionnaire-based measures.

PARTICIPANTS & DESIGN

Design: Contrasting keypress and mouse movement conditions.

- Keypress: N = 56 (25 male/31 female)
- Mouse movement: N = 35 (16 male/17 female)

Materials & Methods

Stop-signal task (Ma & Yu, 2016):

- 576 trials (432 "go"/144 "stop")
- Random Dot Kinematogram (10, 50 or 80 % coherence)

Questionnaires:

- Connors' Adult ADHD Questionnaire (CAARS)
 - Subscale C (Impulsivity/Emotional lability)
 - Subscale F (DSM-IV: Hyperacitve/Impulsive symptoms)
- Barkley Deficits in Executive Functioning Scale (BDEFS)
 - BDEFS section 5 (Self-regulation of Emotion)

MATERIALS & METHODS

Figure 1: Keypress trial

Figure 2: Mouse movement trial

Independent variables:

- Mean RT, SD RT, Accuracy
- SSRT

Independent variables:

- Mean RT, SD RT, Accuracy, SSRT
- Mean total distance, mean maximum acceleration, mean maximum velocity
- Stopping distance

 $d_{stop} = d_{total} - d_{before\ stop-signal}$

RESULTS

Spearman's rank correlations

Keypress: Accuracy in "stop" trials and Impulsivity/Emotional lability (ρ = -0.288, p = .03). *Mouse movement:*

	Impulsivity/Emotional lability	DSM-IV: Hyperactive/ Impulsive
Velocity in "go" trials	0.019	-0.455**
Acceleration in "go" trials	0.29	-0.079
Total distance in "go" trials	0.343*	-0.19
Velocity in "stop" trials	0.034	-0.436**
Acceleration in "stop" trials	0.36*	0.029
Total distance in "stop" trials	0.38*	0.031
Mean stopping distance	0.43**	0.18
*p<.05, **p<.01		

RESULTS

Adjusted \mathbb{R}^2 for final stepwise regression models

	Impulsivity/ Emotional lability	DSM-IV: Hyperactive/ Impulsive
Keypress	.11	_
Mouse motion	.17	.13

CONCLUSION

- Stop-signal task's ability to assess impulsive symptoms can be strongly improved by introducing mouse movement features.
- Stopping distance is a good analogue of SSRT for motor control.
- Horse-race model's assumptions can be challenged.
- This measure is useful for non-clinical populations.

REFERENCES

- 1. Leontyev, A., Sun, S., Wolfe, M., & Yamauchi, T. (2018). Augmented Go/No-Go Task: Mouse Cursor Motion Measures Improve ADHD Symptom Assessment in Healthy College Students. *Frontiers in Psychology*, 9(April), 1–14.
- 2. Ma, N., & Yu, A. J. (2016). Inseparability of go and stop in inhibitory control: Go stimulus discriminability affects stopping behavior. *Frontiers in Neuroscience*, 10(MAR), 1–10.
- 3. Stillman, P. E., Medvedev, D., & Ferguson, M. J. (2017). Resisting Temptation: Tracking How Self-Control Conflicts Are Successfully Resolved in Real Time. *Psychological Science*, 28(9), 1240–1258.
- 4. Toplak, M. E., West, R. F., & Stanovich, K. E. (2013). Practitioner Review: Do performance-based measures and ratings of executive function assess the same construct? *Journal of Child Psychology and Psychiatry and Allied Disciplines*, 54(2), 131–143.