Week 2

Multiple Linear Regression

Multiple Features

Notation

Vectorisation vs No Vectorisation

Gradient Descent with Multiple Variables

Feature Scaling

Scaling

Mean Normalization

Z-Score Normalization

General Rule of Thumb for Feature Scaling

Feature Engineering

Polynomial Regression

Multiple Linear Regression

Multiple Features

Multiple features (variables)						
	Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's	j=14 n=4
	Xı	X2	Хз	X4		n=4
_	2104	5	1	45	460	_
i=2	1416	3	2	40	232	
	1534	3	2	30	315	
	852	2	1	36	178	
	$x_j = j^{th} f \epsilon$	eature			(2)	
	n = nu	imber of fe		$\vec{\chi}^{(2)} = 1$	416 3 2 40	
$\vec{\mathbf{x}}^{(i)}$ = features of i^{th} training example						(2)
$x_j^{(i)}$ = value of feature j in i^{th} training example $\frac{\chi_3^{(i)}}{3} = \frac{1}{2}$						

i: row

j: column

→: Optional, used to indicate a vector

Notation

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

$$\overrightarrow{w} = \begin{bmatrix} w_1 & w_2 & w_3 & \cdots & w_n \end{bmatrix} \quad \text{parameters} \quad \text{of the model}$$

$$b \text{ is a number}$$

$$vector \overrightarrow{\chi} = \begin{bmatrix} \chi_1 & \chi_2 & \chi_3 & \cdots & \chi_n \end{bmatrix}$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1\chi_1 + w_2\chi_2 + w_3\chi_3 + \cdots + w_n\chi_n + b$$

$$dot \text{ product} \quad \text{multiple linear regression}$$

Vectorisation vs No Vectorisation

Parameters and features

$$\overrightarrow{w} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$$
 $n = 3$

b is a number

 $\overrightarrow{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$

linear algebra: count from 1

 $w(\circ)$ $w(1)$ $w(2)$
 $w = np_1 array([1, 0, 2, 5, -3, 3])$

code: count from 0

Without vectorization 1=100,000

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$f = w[0] * x[0] + w[1] * x[1] + w[2] * x[2] + b$$

Without vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \left(\sum_{j=1}^{n} w_j x_j\right) + b \quad \sum_{j=1}^{n} \rightarrow j = 1...n$$

$$range(o,n) \rightarrow j = 0...n-1$$

Vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$f = np.dot(w,x) + b$$

NB: Vectorisation uses parallelism

Gradient Descent with Multiple Variables

- One vs multiple
- For multiple, you need to update every w

Gradient descent

One feature repeat {
$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{\partial}{\partial w} J(w,b)$$

$$\mathbf{b} = \mathbf{b} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w}, \mathbf{b}}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})$$

simultaneously update w, b

Feature Scaling

}

- How to choose your w's?
- big x_i, small w_i, vice versa.

Feature and parameter values

$$\widehat{price} = w_1 x_1 + w_2 x_2 + b$$

$$\widehat{size} + \widehat{bedrooms}$$

$$x_1: size (feet^2)$$

$$range: 300 - 2,000$$

$$range: 0 - 5$$

$$|arge|$$

$$small$$

House: $x_1 = 2000$, $x_2 = 5$, price = \$500k one training example

size of the parameters w_1, w_2 ?

$$w_1 = 50$$
, $w_2 = 0.1$, $b = 50$
 $v_1 = 50$, $v_2 = 50$, $v_3 = 50$, $v_4 = 50$
 $v_1 = 0.1$, $v_2 = 50$, $v_3 = 50$
 $v_4 = 0.1$, $v_5 = 50$
 $v_5 = 0.1$
 $v_5 = 0.1$

Scaling

• Divide by the max range

Mean Normalization

• Minus the avg, divide by max - min

Mean normalization

Z-Score Normalization

• Minus mean divide by standard deviation

Z-score normalization

General Rule of Thumb for Feature Scaling

• Feature scaling helps to improve gradient descent speeds!

Feature scaling

aim for about
$$-1 \le x_j \le 1$$
 for each feature x_j

$$-3 \le x_j \le 3$$

$$-0.3 \le x_j \le 0.3$$

$$0 \le x_1 \le 3$$

$$-2 \le x_2 \le 0.5$$

$$-100 \le x_3 \le 100$$

$$-100 \le x_4 \le 0.001$$

$$0 \le x_5 \le 105$$

- You can also plot a graph, and ensure function J does not increase at any iterations
- Helps to ensure model is done correctly
- Always try a range of values for α

Make sure gradient descent is working correctly

Feature Engineering

• Defining a new feature by combining existing features which can be a better fit for the model.

Feature engineering

$$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + b$$

frontage depth
 $area = frontage \times depth$
 $x_3 = x_1 x_2$
new feature

$$f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Feature engineering:
Using intuition to design new features, by transforming or combining original features.

Polynomial Regression

Polynomial regression

