

Aerospace Vehicle Design And System Integration 3 AENG30013 (AVDASI3)

Operational Performance

N A (Sandy) Mitchell

n.a.mitchell@bristol.ac.uk

&

Dr Djamel Rezgui

Djamel.Rezgui@bristol.ac.uk

Performance Overall Objectives

- ➤ Understand Mission Performance in the context of the Overall Design Process;
- ➤ Use the MatLab Tool to calculate Mission Performance for a fixed Aircraft;
- Carry out mission studies varying key parameters.
- Carry out trade studies on the basic aircraft parameters.

The Preliminary Design Process

- The purpose of the Preliminary Design Process is to produce a viable aircraft design which meets the following criteria:
 - Meets the Aircraft Specification i.e. will fly the design range with the design payload & be able to take-off & land at nominated airfields;
 - In addition it must be able to manoeuvre safely over the specified flight envelope;
 - Meet all environmental & safety requirements as laid down by the certifying bodies.
- The "best" design is usually the one that meets all of the above using the minimum amount of fuel for the specified mission;
- The aircraft's structure, drag and engine size (and hence fuel burn) are all a first or second order function of the take-off mass.
- Generally this means that the aircraft take-off mass should be minimised.

The Preliminary Design Process

Typical Mission Profile for a Civil Airliner

Payload Range Diagram

Aircraft Mass Definitions

- MME Manufacturers Mass Empty = Mass of aircraft as delivered by manufacturer (without operator items installed).
- OME Operators Mass Empty = MME + operator items necessary for aircraft service, i.e. interior furnishings (galleys, seats, lavatories, entertainment systems), crew (flight deck and cabin attendants), unusable or trapped fuel.
- MLM Maximum Landing Mass = Maximum mass at which aircraft can land safely.
- MZFM Max Zero Fuel Mass = OME + passengers + baggage
- MTOM* Max Take-off Mass = MZFM + full fuel
- MRM Max Ramp Mass = MTOM + Taxi Fuel
- Design Payload Payload at Design Range.
- Max Payload Maximum Payload
- Max Fuel Capacity Maximum Fuel Load
- * Maximum cleared mass for take-off i.e. Design Case

Drag Characteristics

- $C_{DTot} = C_{Do} + K C_L^2 + \Delta C_{Dw} + \Delta C_{DRe}$
- C_{DTot} = Total Drag Co-efficient
- C_{Do} = Zero Lift Drag at a Reference Reynolds Number
- K = Induced Drag Factor
- C₁ = Lift Coefficient
- Δ C_{Dw} = Increment in drag due to shock wave effects a function of C_L
 & Mach Number
- Δ C_{DRe} = Increment in Drag due to difference in R_e from Reference R_e

Typical Lift/Drag Ratio v C_L No Drag Rise

Drag Rise Characteristics

Engine Data

- The data is in tabulated form of thrust v specific fuel consumption or fuel flow at intervals of Mach Number and altitude.
- The data will cover a range of "throttle settings" from the minimum sustainable (flight idle RC 20) to a maximum cruise (RC 35) & maximum climb (RC 40) rating.
- Thrust v fuel flow can be interpolated linearly.

Mat Lab Mission Phases

1 - 2	Taxi out	Allowance
2 - 3	Take-off to 1500ft	Allowance
3 - 4	Climb 1500ft to Initial Cruise Altitude	Calculation
4 - 5	Cruise	Calculation
5 - 6	Descent final cruise altitude to 1500 ft.	Calculation
6 - 7	Approach	Allowance
7 - 8	Taxi in	Allowance
9 - 10	Overshoot	Allowance
10 - 11	Diversion Climb	Calculation
11 - 12	Diversion Cruise	Calculation
12 - 13	Diversion Descent	Calculation
13 - 14	Diversion Approach	Allowance
15 - 16	En route allowance /Extended Cruise	Calculation

Mat Lab Mission Phases

Fixed Allowances - not generally part of an iteration

Taxi out 7 minutes at ground idle fuel flow or a fixed mass of fuel.

Take-off to 1500ft 2 minutes at SLS Take off fuel flow or a fixed mass of fuel.

Approach 5 minutes at Approach Speed & Thrust (flaps down) or a fixed mass

of fuel.

Taxi in 7 minutes at ground idle fuel flow or a fixed mass of fuel.

Overshoot Typically 80% of Take-off to 1500 ft

Diversion Approach As approach

En route allowance 10 minutes of cruise extended cruise or 5 % of cruise fuel.

Note times may vary with different specifications.

Climb Performance

Climb Profile: 250/280 CAS / M = 0.76

Key: — Take off Max ToM — Take off Reduced ToM (for half range)
 – – 300 ft/min Rate of Climb

It is normal for the top of climb Mach Number to be 0.02M less than the Cruise Mach Number

Cruise Performance Specific Air Range Plots

Descent Performance

Key: Descent Speed Profile 250 knots CAS Mass at end of cruise Cabin Altitude 8000 ft. The maximum rate of change of pressure in the Cabin must not exceed 300 ft/min. Hence Descent Time to 1500 ft should be > 22 mins.

Tutorial Tasks

- Produce the Payload Range diagram for a notional 1990's twin engine, Airliner *.
- Show how the range at the "design case" varies with different cruise Mach Numbers & Cruise Altitudes.
- Compare the block fuel & block time at a series of ranges (e.g. London to Beijing 4461 nm plus other ranges) for variations in Cruise Mach Number & altitude.
- Carry out trade studies on the effect on block fuel at a fixed range for changes in OME, Drag & SFC.
 - * Based largely on the reference aircraft in Chapter 10 of Civil Aircraft Design by Jenkinson, Simpkin & Rhodes.

Fixed Wing Performance Tool

Fixed Wing Performance Tool

- In-house MATLAB tool created by Rezgui, Mitchell and Gibbons.
- Based largely on the reference aircraft in Chapter 10 of Civil Aircraft
 Design by Jenkinson, Simpkin & Rhodes, with a few modification
 from the Airbus design guides
- To tool generates the aircraft **Payload-Range Diagram** and calculate the **operational performance** for:
 - Given aircraft parameters (configuration, e.g. wing span, engine data, MTOM, empty mass, drag polar, ...)
 - Given aircraft mission (Mach number, altitude, required range, payload, ...)
- The tool is simple to use and allows flexibility to customise the run files and plotting functions
- Quick start guide available in the form of html and pdf demo files.

Fixed Wing Performance Tool

- Run files
 - RunDesignCase
 - RunDesignSet
 - RunPayloadRange
- Main function
 - FindDesignPoint
 - FindPayloadRangeDiag

Getting Started with FW Performance Tool

- Download tool from Blackboard
- Go through Quick Start-up Guide (run files and help documents)
- Attempt the tutorial tasks
- Attend labs for the FW Performance design exercise

