CTCS

Sets

1

Let $h: W \to S$ be a function. Define a function $\operatorname{Hom}(h,T): \operatorname{Hom}(S,T) \to \operatorname{Hom}(W,T)$ by $\operatorname{Hom}(h,T)(g) = g \circ h$. Show that if T has at least 2 elements, then h is surjective iif $\operatorname{Hom}(h,T)$ is injective.

 \implies : Let h be surjective. We wish to show that $\operatorname{Hom}(h,T)$ is injective. Suppose $\operatorname{Hom}(h,T)(f) = \operatorname{Hom}(h,T)(g)$. Then

$$\operatorname{Hom}(h,T)(f) = \operatorname{Hom}(h,T)(g) \tag{1}$$

$$f \circ h = q \circ h \tag{2}$$

Let $y \in S$ be arbitrary. Since h is onto S, there exists x such that y = h(x). Then

$$f(h(x)) = g(h(x)) \tag{3}$$

$$f(y) = g(y) \tag{4}$$

Since y was arbitrary, f = g. Hence Hom(h, T) is injective.

 \Leftarrow : Let h be not surjective. We wish to show that $\operatorname{Hom}(h,T)$ is not injective. Since h is not surjective there exists $y \in S$ such that $y \neq h(x)$ for all x. Let f and g be functions both from XXX that agree on all values in their domain except that $f(y) \neq g(y)$. Note that they are different functions. However $\operatorname{Hom}(h,T)(f) = \operatorname{Hom}(h,T)(g)$ because $g \circ h = f \circ h$. Hence $\operatorname{Hom}(h,T)$ is not injective.

2a

Show that the mapping that takes a pair $(f: X \to S, g: X \to T)$ of functions to the function $(f, g): X \to S \times T$ defined by (f, g): (

Surjective: we show that the range of the mapping is equal to the codomain, $\operatorname{Hom}(X, S \times T)$. Let $h \in \operatorname{Hom}(X, S \times T)$ be given. Then $h: X \to S \times T$. We construct f and g as follows. Let x be arbitrary. Then $h(x) \in S \times T$, so h(x) = (a, b). Then let f(x) = a, g(x) = b.

Injective: Suppose $\langle f, g \rangle = \langle h, j \rangle$. Then for all x we have

$$< f, g > (x) = < h, j > (x)$$

 $(f(x), g(x)) = (h(x), j(x))$
 $f(x) = h(x)$
 $g(x) = j(x)$

Since this is true of all x we have f = h, g = j

2b

If you set $X = S \times T$ in (a) what does $id_{S \times T}$ correspond to under the bijection?

3a

Let S and T be disjoint sets. Let V be a set. Let $\phi: \operatorname{Hom}(S,V) \times \operatorname{Hom}(T,V) \to \operatorname{Hom}(S \cup T,V)$ be the mapping that takes a pair $(f: S \to V, g: T \to V)$ to the function $(f \mid g) : S \cup T \to V$ defined by $(f \mid g) : (f \mid$

3b

If you set $V = S \cup T$ in (a), what is $\phi(id_{S \cup T})$?

4a

If P(C) denotes the powerset of all subsets of C, then $Rel(A,B) = P(A \times b)$ denotes the set of relations from A to B. Let $\phi : Rel(A,B) \to \operatorname{Hom}(A,P(B))$ be defined by $\phi(\alpha)(a) = \{b \in B | (a,b) \in \alpha\}$. Show that ϕ is a bijection.

4b

Let A = B. What corresponds to Δ_A under this bijection?

4c

If we let A = P(B) then ϕ^{-1} : Hom $(P(B), P(B)) \to Rel(P(B), B)$. What is $\phi^{-1}(id_{P(B)})$?