ОБЩАЯ ЭЛЕКТРОТЕХНИКА

Расчет переходных процессов в цепях первого порядка

Никитина Мария Владимировна mynikitina@itmo.ru
Кононова Мария Евгеньевна maria.kononova@itmo.ru

Санкт-Петербург - 2021

1. Составить цепь, сложившуюся после коммутации. Цепь формируется из исходной путем замены

Используя законы Ома, Кирхгофа, электромагнитной индукции и т.д. составить систему дифференциальных уравнений. Исключением переменных свести систему к $\mathbf{neodhopodhomy}$ дифференциальному уравнению (относительно i_L либо u_C) вида

$$B_0 \frac{d^n a}{dt^n} + B_1 \frac{d^{n-1} a}{dt^{n-1}} + \dots + B_{n-1} \frac{da}{dt} + B_n a = C$$

- 2. Решить *неоднородное* дифференциальное уравнение, т.е. определить i_L либо u_C
- Решение уравнения ищут в виде суммы частного решения неоднородного уравнения и общего решения однородного дифференциального уравнения $a=a_{\rm yer}+a_{\rm cs}$
- Частное решение $a_{\rm ycr}$ определяют, используя методы расчёта цепей в установившемся режиме.
- Общее решение уравнения $a_{\rm cB}$ определяется путем решения odnopodnozo уравнения

$$B_0 \frac{d^n a}{dt^n} + B_1 \frac{d^{n-1} a}{dt^{n-1}} + \dots + B_{n-1} \frac{da}{dt} + B_n a = 0$$

и представляет собой

$$a_{\rm cb} = \sum_{k=1}^n A_k e^{p_k t}$$

где $p_k - k$ -ый корень характеристического уравнения, составленного путем замены в *однородном* уравнении производных на p^k , k — порядок соответствующей производной.

3. Для отыскания иных (кроме найденной) величин в цепи, сложившейся после коммутации, заменяют

 $i_L(t)$

и используя законы Ома, Кирхгофа, электромагнитной индукции и т.д. определяют требуемые токи и напряжения.

1. Составить цепь, сложившуюся **ДО** коммутации и определить значения токов через индуктивные элементы $i_L(0_{-})$ и значения напряжений на емкостных элементах $u_C(0_{-})$. Цепь формируется из исходной путем замены

2. Составить цепь, сложившуюся **В МОМЕНТ** коммутации и определить значения требуемых величин x(0). Цепь формируется из исходной путем замены

3. Составить цепь, сложившуюся **ПОСЛЕ** коммутации и определить значения требуемых величин $x(\infty)$. Цепь формируется из исходной путем замены

4. Составить пассивную цепь и определить постоянную времени цепи (τ) как $\tau = L/R_3$ или $\tau = CR_3$, где R_3 – эквивалентное сопротивление относительно L или C. Цепь формируется из исходной путем замены

5. Определить мгновенные значения требуемых величин.

$$x(t) = x(\infty) + [x(0) - x(\infty)] \cdot e^{-t/\tau}$$

Алгоритм расчета операторным методом

1. Составить цепь, сложившуюся **ДО** коммутации и определить значения токов через индуктивные элементы $i_L(0_{-})$ и значения напряжений на емкостных элементах $u_C(0_{-})$. Цепь формируется из исходной путем замены

Алгоритм расчета операторным методом

2. Составить операторную схему замещения и определить операторные изображения X(p) требуемых токов и напряжений. Цепь формируется из исходной путем замены

Алгоритм расчета операторным методом

3. Перейти от операторных изображений к мгновенным значениям величин, т.е. $X(p) \to x(t)$.

$$\begin{split} x(t) &= X(p) \cdot (p-p_1) \cdot e^{p_1 t}|_{p=p_1} + \\ &+ X(p) \cdot (p-p_2) \cdot e^{p_2 t}|_{p=p_2} + \ldots + X(p) \cdot (p-p_n) \cdot e^{p_n t}|_{p=p_n} \end{split}$$

где $p_1, p_2, ..., p_n$ корни знаменателя X(p).

Дано: $E=E_1=E_3=90$ [B], $R=R_2=R_4=R_5=30$ [Ом], $L=L_6=15$ [мГн].

Найти: i, u классическим и операторным методами расчета; построить найденные величины на интервале времени $[-\tau;4\tau]$.

R_2 R_{Δ} E_1 R_5 u R_2 R_4 E_1 R_5 u

Пример

Решение:

I.1 Классический метод

1) Составление диф. ур-ния

По ЗКІІ:
$$u_{R2}+u_{R4}+u_{R5}+u=E_1$$
 или $R_2\cdot i+R_4\cdot i+R_5\cdot i+L_6(di/dt)=E_1$ $(R_2+R_4+R_5)\cdot i+L_6(di/dt)=E_1$ $3\cdot R\cdot i+L(di/dt)=E$

2) Решение диф. ур-ния ищем как

$$i = i_{ycT} + i_{cB}$$
 i_{ycT} : $3 \cdot R \cdot i_{ycT} + L(di_{ycT}/dt) = E$
 $3 \cdot R \cdot i_{ycT} + L \cdot 0 = E$
 $i_{ycT} = E/(3 \cdot R) = 90/(3 \cdot 30) = 1 \text{ [A]}$

$$i_{\rm cB}$$
: $3 \cdot R \cdot i_{\rm cB} + L(di_{\rm cB}/dt) = 0$ — однородное диф.ур-ние $3 \cdot R + L \cdot p = 0$ — характеристическое уравнение $p = -3 \cdot R/L = -3 \cdot 30/(15 \cdot 10^{-3}) = -6000$ [1/c] — корень хар-го ур-я $i_{\rm cB} = A \cdot e^{-pt} = A \cdot e^{-3 \cdot R \cdot t/L} = A \cdot e^{-6000t}$

$$i(0)=i_L(0)=i_L(0_-)$$
:
По ЗКІІ для правого контура
$$(R_4+R_5)\cdot i_L(0_-)=E_3$$

$$i_L(0_-)=E_3/(R_4+R_5)=E/(2\cdot R)=$$

$$=90/(2\cdot 30)=1,5 \text{ [A]}.$$

$$A$$
: $i=i_{
m yct}+i_{
m cB}=E/(3\cdot R)+A\cdot e^{-3\cdot R\cdot t/L}$ и $i(0)=i_L(0)=i_L(0)=E/(2\cdot R)$ тогда $i(0)=E/(3\cdot R)+A\cdot e^{-3\cdot R\cdot 0/L}$ \rightarrow $E/(2\cdot R)=E/(3\cdot R)+A$ или $A=E/(2\cdot R)-E/(3\cdot R)=E/(6\cdot R)=90/(6\cdot 30)=0,5$ [A] Окончательно $i=i_{
m yct}+i_{
m cB}=E/(3\cdot R)+E/(6\cdot R)\cdot e^{-3\cdot R\cdot t/L}=$ $=90/(3\cdot 30)+90/(6\cdot 30)\cdot e^{-3\cdot 30\cdot t/0,015}=1+0,5\cdot e^{-6000\cdot t}$ [A]

3. Определение и

Πο 3KII:
$$u + (R_2 + R_4 + R_5)i = E_1$$

 $u = E_1 - (R_2 + R_4 + R_5)i = E - 3 \cdot R \cdot i =$
 $= E - 3 \cdot R \cdot [E/(3 \cdot R) + E/(6 \cdot R) \cdot e^{-3 \cdot R \cdot t/L}] =$
 $= E - E - E/2 \cdot e^{-3 \cdot R \cdot t/L} = -E/2 \cdot e^{-3 \cdot R \cdot t/L} =$
 $= -90/2 \cdot e^{-3 \cdot 30 \cdot t/0,015} = -45 \cdot e^{-6000 \cdot t}$ [B]

Величина u так же может быть определена как

$$u = L(di/dt) = L \cdot E/(6 \cdot R) \cdot e^{-3 \cdot R \cdot t/L} \cdot (-3 \cdot R/L) = -E/2 \cdot e^{-3 \cdot R \cdot t/L} =$$
$$= -90/2 \cdot e^{-3 \cdot 30 \cdot t/0,015} = -45 \cdot e^{-6000 \cdot t} \text{ [B]}.$$

І.2 Классический (упрощенный) метод

1. *t*<0

По ЗКІІ для левого контура

$$R_2i(0_{-})=E_1-E_3$$

$$Ri(0_{-})=E-E \rightarrow i(0_{-})=0$$
 [A]

По ЗКІІ для правого контура

$$(R_4 + R_5)i_L(0) = E_3$$

$$2Ri_L(0_{-})=E \rightarrow i_L(0_{-})=E/(2R)=$$

$$=90/(2\cdot30)=1,5$$
 [A]

i(0)

 R_2

 R_{Λ}

Пример

Поскольку индуктивный элемент заменяется проводником, то

$$i(0)=J_L=E/(2R)=90/(2\cdot30)=1,5$$
 [A]
 Π o 3KII:

$$u(0) + (R_2 + R_4 + R_5)i(0) = E_1$$

 $u(0) = E_1 - (R_2 + R_4 + R_5)i(0) =$
 $= E - 3 \cdot R \cdot i(0) = E - 3 \cdot R \cdot E/(2R) = -E/(2R) =$
 $= -90/2 = -45$ [B]

3.
$$t > 0$$

Поскольку индуктивный элемент заменяется проводником, то $u(\infty)=0$ [B].

Πο 3ΚΙΙ:
$$(R_2+R_4+R_5)i(∞) = E_1$$

$$i(\infty) = E_1/(R_2 + R_4 + R_5) = E/(3R) = 90/(3.30) = 1$$
 [A]

4.
$$\tau$$
 - ?

$$R_{\text{3KB}} = R_2 + R_4 + R_5 = 3R = 3.30 = 90 \text{ [OM]}$$

Тогда
$$\tau = L_6/R_{_{\rm ЭKB}} = L/(3R) =$$

$$= 15 \cdot 10^{-3} / (3 \cdot 30) = 10^{-3} / 6 [c]$$

$$d = 1/\tau = 1/(10^{-3}/6) = 6000 [1/c]$$

5.
$$x(t)$$
 - ?
 $x(t) = x(\infty) + [x(0) - x(\infty)] \cdot e^{-t/\tau}$

$$i(t) = i(\infty) + [i(0) - i(\infty)] \cdot e^{-t/\tau} = E/(3R) + [E/(2R) - E/(3R)] \cdot e^{-d\cdot t} =$$

$$= E/(3R) + E/(6R) \cdot e^{-d\cdot t} = 90/(3\cdot 30) + 90/(6\cdot 30) \cdot e^{-6000 \cdot t} =$$

$$= 1 + 0.5 \cdot e^{-6000 \cdot t} [A]$$

$$u(t) = u(\infty) + [u(0) - u(\infty)] \cdot e^{-t/\tau} = 0 + [-E/2 - 0] \cdot e^{-d \cdot t} =$$

$$= -E/2 \cdot e^{-d \cdot t} = -90/2 \cdot e^{-6000 \cdot t} = -45 \cdot e^{-6000 \cdot t}$$
[B]

II. Операторный метод

1. $i_L(0)=E/(2R)=90/(2\cdot30)=1,5$ [A] (см. классический метод)

2.
$$E_L = L_6 \cdot i_L(0) = E \cdot L/(2R)$$

 $\Pi o \ 3KII: (R_2 + R_4 + R_5 + L_6 \cdot p) \cdot I(p) = E_1/p + E_L$

$$I(p) = (E_1/p + E_L)/(R_2 + R_4 + R_5 + L_6 \cdot p)$$

$$I(p) = (E/p + E \cdot L/(2R))/(3R + Lp) = \underbrace{E(2R + Lp)}_{2Rp(3R + Lp)}$$
 $E_L \xrightarrow{L_6 \cdot p}$

По обобщённому 3О:
$$U(p)=L_6pI(p)-E_L=$$

$$= \frac{LpE(2R + Lp)}{2Rp(3R + Lp)} - \frac{EL}{2R} = \frac{-ERL}{2R(3R + Lp)} = \frac{-EL}{2(3R + Lp)}$$

$$3. x(t) - ?$$

$$\begin{split} x(t) &= X(p) \cdot (p-p_1) \cdot e^{p_1 t}|_{p=p_1} + \\ &+ X(p) \cdot (p-p_2) \cdot e^{p_2 t}|_{p=p_2} + \ldots + X(p) \cdot (p-p_n) \cdot e^{p_n t}|_{p=p_n} \end{split}$$

$$i(t) = \frac{E(2R+Lp)}{2Rp(3R+Lp)} (p-0) \cdot e^{p_1 t}|_{p=0} + \frac{E(2R+Lp)}{2Rp(3R+Lp)} (p-(-\frac{3R}{L}) \cdot e^{p_2 t}|_{p=-\frac{3R}{L}} = \frac{E(2R+L\cdot 0)}{2Rp(3R+L\cdot 0)} (p-0) \cdot e^{0\cdot t} + \frac{E(2R+L(-\frac{3R}{L}))}{2R(-\frac{3R}{L})(3R+Lp)} (p+\frac{3R}{L}) \cdot e^{-\frac{3R}{L} \cdot t} = \frac{E}{3R} + \frac{E}{6R} \cdot e^{-\frac{3R}{L} \cdot t} = \frac{90}{(3\cdot 30) + \frac{90}{(6\cdot 30) \cdot e^{-3\cdot 30\cdot t/0.015}} = \frac{1+0.5 \cdot e^{-6000 \cdot t}}{2R(-\frac{3R}{L})(3R+Lp)} [A]$$

$$u(t) = \frac{-EL}{2(3R+Lp)} \left(p - \left(-\frac{3R}{L} \right) \right) \cdot e^{p_1 t} \Big|_{p = -\frac{3R}{L}} =$$

$$= \frac{-EL}{2\left(3R+L\left(-\frac{3R}{L}\right)\right)} \left(p + \frac{3R}{L} \right) \right) \cdot e^{-\frac{3R}{L} \cdot t} = \frac{-E}{2} \cdot e^{-\frac{3R}{L} \cdot t} =$$

$$= -90/2 \cdot e^{-3 \cdot 30 \cdot t/0.015} = -45 \cdot e^{-6000 \cdot t} \text{ [B]}$$

III. Графики

$$x(t) = \begin{cases} x(0_{-}) \text{ если } t < 0 \\ x(\infty) + [x(0) - x(\infty)] \cdot e^{-\frac{t}{\tau}} \text{ если } t \ge 0 \end{cases}$$

$$u(t) = \begin{cases} 0 & \text{если } t < 0 \\ -45 \cdot e^{-6000t} & \text{если } t \ge 0 \end{cases}$$
 [B]

t/τ	-1	0	1	2	3	4
i(t)	1,5	1,5	1,184	1,066	1,025	1,009
u(t)	0	-45	-16,555	-6,09	-2,24	-0,824

$$u(t) = \begin{cases} 0 & \text{если } t < 0 \\ -45 \cdot e^{-6000t} & \text{если } t \ge 0 \end{cases}$$
 [B]

СПАСИБО ЗА ВНИМАНИЕ!