

SOME IMPORTANT MATHEMATICAL FORMULAE

Circle : Area = π r²: Circumference = 2 π r.

Square : Area = x^2 ; Perimeter = 4x.

Rectangle: Area = xy; Perimeter = 2(x+y).

Triangle: Area = $\frac{1}{a}$ (base)(height); Perimeter = a+b+c.

Area of equilateral triangle = $\frac{1}{4} \frac{1}{a}$

Sphere : Surface Area = $4 \pi r^2$; Volume = $\frac{4}{3} \pi r^3$.

: Surface Area = $6a^2$: Volume = a^3 . Cube

Cone : Curved Surface Area = π rl; Volume = $\frac{1}{3}\pi$ r² h

Total surface area = $\pi r 1 + \pi r^2$

: Total surface area = 2 (ab + bh + lh); Volume = lbh. Cuboid

Cylinder: Curved surface area = $2 \pi \text{ rh}$; Volume = $\pi \text{ r}^2 \text{ h}$

Total surface area (open) = $2 \pi \text{ rh}$;

Total surface area (closed) = $2 \pi \text{ rh} + 2 \pi \text{ r}^2$.

SOME BASIC ALGEBRAIC FORMULAE:

1. $(a + b)^2 = a^2 + 2ab + b^2$. 2. $(a - b)^2 = a^2 - 2ab + b^2$. 3. $(a + b)^3 = a^3 + b^3 + 3ab(a + b)$. 4. $(a - b)^3 = a^3 - b^3 - 3ab(a - b)$.

 $5.(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca.$ $6.(a + b + c)^{3} = a^{3} + b^{3} + c^{3} + 3a^{2}b + 3a^{2}c + 3b^{2}c + 3b^{2}a + 3c^{2}a + 3c^{2}a + 6abc.$

 $7.\dot{a}^2 - b^2 = (a+b)(a-b)$.

 $8.a^3 - b^3 = (a - b)(a^2 + ab + b^2).$

 $9.a^3 + b^3 = (a + b)(a^2 - ab + b^2).$

 $10.(a + b)^2 + (a - b)^2 = 4ab.$

 $11.(a+b)^2 - (a-b)^2 = 2(a^2+b^2).$

12.If a + b + c = 0, then $a^3 + b^3 + c^3 = 3$ abc.

INDICES AND SURDS

m n mn

1. $a^{m} a^{n} = a^{m+n}$ 2. $a^{m} = a^{m} - n$ 3. (a) = a 4. (ab) = a b 5. $a^{m} = a^{m} = a^{m}$

9. $a^{X} = b^{X} \Rightarrow a = b$ 10. $a \pm 2$ $b = x \pm y$, where x + y = a and xy = b.

1

2

LOGARITHMS

$$a^{X} = m \triangleright \log_{a} m = x (a > 0 \text{ and } a \neq 1)$$

- 1. $\log_a mn = \log m + \log n$.
- 2. $\log_a \varsigma \stackrel{\underset{m}{\cdot}}{\dot{\circ}} = \log_m \log_n$. $\grave{e} \ n \ \emptyset$
- $3. \quad log_a \; m^n = n \; logm. \\ \frac{log \; a}{}$
- 4. $\log_{b} a = \log_{b} b$.
- 5. $\log_a a = 1$.
- 6. $\log_a 1 = 0$.

7.
$$\log_b a = \frac{1}{\log_a b}$$
.

- 8. $\log_a 1 = 0$.
- 9. $\log (m + n) \neq \log m + \log n$.
- 10. $e^{\log x} = x$.
- 11. $\log_a a^x = x$.

PROGRESSIONS

ARITHMETIC PROGRESSION

a,
$$a + d$$
, $a+2d$,-----are in A.P.

 n^{th} term, $T_n = a + (n-1)d$.

Sum to n terms, $S_n = \frac{n}{2} [2a + (n-1)d]$. If a, b, c are in A.P, then 2b = a + c.

GEOMETRIC PROGRESSION

Sum to n terms,
$$S_n=\frac{a(1-r^n\;)}{1-r}$$
 if $r<1$ and $S_n=\frac{a(r^n\;\text{-}1)}{r\;\text{-}1}$ if $r>1$.

Sum to infinite terms of G.P, $S_{\infty} = \frac{a}{1-r}$.

If a, b, c are in A.P, then $b^2 = ac$.

HARMONIC PROGRESSION

Reciprocals of the terms of A.P are in H.P

$$\frac{1}{a}$$
, $\frac{1}{a+d}$, $\frac{1}{a+2d}$, are in H.P

If a, b, c are in H.P, then b = 2ac.

MATHEMATICAL INDUCTION a + c

$$1+2+3+\dots+n=a_n=a_n=n(n+1)$$

$$1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\mathbf{\mathring{a}}n^{2}=\underline{n(n+1)(2n+1)}$$

$$1_3+2_3+3_3+\dots+n_3=$$
 $\frac{n^2(n+1)^2}{4}$.

PERMUTATIONS AND COMBINATION n!

$$\begin{split} n\,P_r &= \frac{n!}{\left(\:n-r\right)\:!} \;\;. \\ n! \\ nC_r &= r! \left(\:n-r\right)\:! \;\;. \\ n! &= 1.2\:3.-----n. \\ nC_r &= nC_{n-r}. \\ nC_r + nC_{r-1} &= \left(n+1\right)C_r. \\ (m+n)C_r &= \frac{\left(m+n\right)!}{m!n!} \;\;. \end{split}$$

BINOMIAL THEOREM

$$(x + a)^n = x^n + nC_1 \ x^{n-1} \ a + nC_2 \ x^{n-2} \ a^2 + nC_3 \ x^{n-3} \ a^3 + ---- + nC_n \ a^n.$$

$$n^{th} \ term, \ T_{r+1} = nC_r \ x^{n-r} \ a^r \ .$$

PARTIAL FRACTIONS

f(x)

g(x) is a proper fraction if the deg (g(x)) > deg(f(x)).

f(x)

g(x) is a improper fraction if the deg $(g(x)) \le deg(f(x))$.

1. Linear non- repeated factors

$$\frac{f(x)}{(ax + b)(cx + d)} = \frac{A}{ax + b} + \frac{B}{(cx + d)}.$$

2. Linear repeated factors

$$\frac{f(x)}{(ax+b)(cx+d)^{2}} = \frac{A}{ax+b} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^{2}}.$$

3. Non-linear(quadratic which can not be factorized)

$$\frac{f(x)}{(ax^2 + b)(cx^2 + d)} = \frac{Ax + B}{ax^2 + b} + \frac{Cx + D}{(cx^2 + d)}.$$

ANALYTICAL GEOMETRY

- 1. Distance between the two points (x_1, y_1) and (x_2, y_2) in the plane is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2} \quad OR \quad (x_1 x_2)^2 + (y_1 y_2)^2.$
- 2. Section formula

$$\begin{array}{c} \mathbf{\hat{e}}^{\mathbf{X}_{1}+\mathbf{X}_{2},\mathbf{y}_{1}+\mathbf{y}_{2}} \\ \mathbf{\hat{e}}_{22^{+}} \end{array}$$

4. Centriod formula

$$\underset{\varsigma_{33} \div}{\text{ex}_1 + x_2 + x_3, y_1 + y_2 + y_3 \ddot{o}} - \underbrace{}_{\bullet}$$

5. Area of triangle when their vertices are

given,
$$\frac{1}{2}$$
 $\mathring{\mathbf{a}}_{x_1} (y_2 - y_3)$
= $\frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$

STRAIGHT LINE

Slope (or Gradient) of a line = tangent of an inclination = $tan\theta$.

Slope of a X- axis = 0

Slope of a line parallel to X-axis = 0

Slope of a Y- axis = ∞

Slope of a line parallel to Y-axis = ∞

Slope of a line joining (x_1, x_2) and $(y_1, y_2) = y_2 - y_1$.

If two lines are parallel, then their slopes are equal $(m_1=m_2)$

If two lines are perpendicular, then their product of slopes is -1 (m₁ m₂ = -1)

EQUATIONS OF STRAIGHT LINE

1. y = mx + c (slope-intercept form) y

-
$$y_1 = m(x-x_1)$$
 (point-slope form)

$$y - y = y_2 - y_1$$
 (x - x₁) (two point form)

$$\frac{x}{a} + \frac{y}{b} = 1$$
 (intercept form)

 $x \cos \alpha + y \sin \alpha = P \text{ (normal form)}$

Equation of a straight line in the general form is $ax^2 + bx + c = 0$

Slope of
$$ax^2 + bx + c = 0$$
 is $-c$ $= a \ddot{o}$ $= \div$ $= \dot{b} \not = b \not = 0$

2. Angle between two straight lines is given by, $\tan \theta = \frac{m_1 - m_2}{1 + m m}$

Length of the perpendicular from a point (x_1,x_2) and the straight line $ax^2 + bx + c$

$$= 0 \text{ is } \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

5

Equation of a straight line passing through intersection of two lines $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ is $a_1x^2 + b_1x + c_1 + K(a_2x^2 + b_2x + c_2) = 0$, where K is any constant.

Two lines meeting a point are called intersecting lines.

More than two lines meeting a point are called concurrent lines.

Equation of bisector of angle between the lines $a_1x + b_1y + c_1 = 0$ and

$$a_2x + b_2y + c_2 = 0$$
 is $\frac{a_1x + b_1y + c_1}{\sqrt{a^2 + b^2}} = \pm \frac{a_2x + b_2y_2 + c_2}{\sqrt{a_2^2 + b^2}}$

PAIR OF STRAIGHT LINES

1. An equation $ax^2 + 2hxy + by^2 = 0$, represents a pair of lines passing through origin generally called as homogeneous equation of degree 2 in x and y and

angle between these is given by
$$\tan \theta = \frac{2 \sqrt{a^2 - ab}}{a + b}$$
.

 $ax^2 + 2hxy + by^2 = 0$, represents a pair of coincident lines, if $h^2 = ab$ and the same represents a pair of perpendicular lines, if a + b = 0.

If m_1 and m_2 are the slopes of the lines $ax^2 + 2hxy + by^2 = 0$, then $m_1 + m_2 = -\frac{2h}{b}$

<u>a</u>

and m_1 $m_2 = b$.

2. An equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is called second general second order equation represents a pair of lines if it satisfies the the condition

 $abc + 2fgh - af^2 - bg^2 - ch^2 = 0.$

The angle between the lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is given by

$$\tan\theta = \frac{2\sqrt{4^2 - ab}}{a + b}.$$

 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, represents a pair of parallel lines, if $h^2 = ab$ and $af^2 = bg^2$ and the distance between the parallel lines is

$$\frac{2 \text{ gf} - \text{ac}}{\sqrt{}}$$

ax 2 +2hxy +by 2 +2gx +2fy +c = 0, represents a pair of perpendicular lines ,if a+b=0.

TRIGNOMETRY

Area of a sector of a circle = $\frac{1}{2}$ r² θ .

Arc length,
$$S = r \theta$$
.

STANDARD ANGLES

STANDARD ANGLES								
			<u>:</u>	<u>τ</u> <u>π</u>	<u>π</u>	<u>π</u>	π	5π
	00	r ()	30^0 or	6 45 ⁰ or 4	$60^0 \text{ or } 3$	90^0 or 2	15 ^{0 or} 12 7	5 ⁰ of 12
Sin			<u>1</u>	1	3	_	3 –1	3 + 1
Car		0	2	2	2	I	2/2	2 2
Cos	1		3	1	1 1 7	0	<u>3 +</u> 1	5 -1
£	1		2	2	2 🔻	0	2 2	2 2
Tan			1	. [3 –1	3 + 1
	0		3	<u>v</u> 1	3—	_ ∞	3 + 1	3 −1
Cot				_	1 √		3 + 1	3-1
C	d	0	3	I	3	0	3 -1	3 + 1
Sec			2	$\overline{\mathcal{L}}_{\alpha}$			2/2	$2 \mid 2$
	1		3	$\sqrt{2}$		∞	$\frac{v}{3} + 1$	3-1
Cosec					2		2 2	2 2
	đ	0	2	Γ^{2}	3	1	3 /= 1	3 + 1

ALLIED ANGLES

Trigonometric functions of angles which are in the 2nd, 3rd and 4th quadrants can be obtained as follows:

 $tan \leftrightarrow \ cot$

 $sec \leftrightarrow cosec$

COMPOUND ANGLES

CATKing

$$Sin(A+B) = sinAcosB + cosAsinB.$$

$$Sin(A-B) = sinAcosB - cosAsinB.$$

$$Cos(A+B) = cosAcosB - sinAsinB.$$

$$Cos(A-B) = cosAcosB + sinAsinB.$$

$$tan(A+B) = \frac{tan A + tan B}{1 - tan A tan B}$$

$$tan(A-B) = \frac{tan A - tan B}{1 + tan A tan B}$$

$$\stackrel{\text{def}}{=} \frac{\text{def}}{=} \frac{1 + tan A}{1 - tan A}$$

$$\stackrel{\text{def}}{=} \frac{\text{def}}{=} \frac{1 - tan A}{1 + tan A}$$

$$\stackrel{\text{def}}{=} \frac{\text{def}}{=} \frac{1 - tan A}{1 + tan A}$$

$$tan A + tan B + tan C - tan A tan B tan C$$

$$tan(A+B+C) = \frac{1 - (tan A tan B + tan B tan C + tan C tan A)}{1 - (tan A tan B + tan B tan C + tan C tan A)}$$

$$sin(A+B) sin(A-B) = sin^2 A - sin^2 B$$

$$- cos^2 A cos(A+B) cos(A-B) = cos^2$$

$$A - sin^2$$

MULTIPLE ANGLES

1.
$$\sin 2A = 2 \sin A \cos A$$
. 2. $\sin 2A = 1 + \tan 2 A$.
3. $\cos 2A = \cos^2 A - \sin^2 A$
=1-2 $\sin^2 A$.
= $2 \cos^2 A - 1$
= $\frac{1 - \tan^2 A}{1 + \tan^2 A}$
4. $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$, 5. 1+cos 2A= 2cos₂ A, 6. $\cos^2 A = \frac{1}{2} (1 + \cos 2A)$.
7. 1-cos 2A= 2sin₂ A, 8. $\sin^2 A = \frac{1}{2} (1 - \cos 2A)$, 9.1+sin 2A=(sin A + cos A)², 10. 1-sin 2A=(cos A - sin A)² = (sin A - cos A)², 11.cos 3A= 4cos₃ A - 3cos A, 12. $\sin 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$.

HALF ANGLE FORMULAE

1)
$$\sin \theta = 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}$$
. 2) $\sin \theta = \frac{2\tan \frac{\pi}{6}\frac{q\ddot{o}}{2\not{o}}}{1+\tan \frac{2\pi}{6}\frac{q\ddot{o}}{2\not{o}}}$. 3) $\cos \theta = \cos \frac{2\theta}{2} - \sin \frac{2\theta}{2}$.
4) $\cos q = 1 - 2\sin^2 \frac{\theta}{2}$. 5) $\cos q = 2\cos^2 \frac{\theta}{2}$. 6) $\cos q = \frac{1 - \tan \frac{2\pi q\ddot{o}}{6\sqrt{2}}\ddot{o}}{1 + \tan \frac{2\pi q\ddot{o}}{6\sqrt{2}}\ddot{o}}$.
 $\tan \frac{\pi}{2}$ $\tan \frac{\pi}{2}$ $\tan \frac{\pi}{2}$ $\tan \frac{\pi}{2}$ $\tan \frac{\pi}{2}$ 8) $1 + \cos q = 2\cos^2 \frac{\theta}{2}$. 9) $1 - \cos q = 2\sin^2 \frac{\theta}{2}$.

PRODUCT TO SUM

$$2 \sin A \cos B = \sin(A+B) + \sin(A-B).$$

$$2 \cos A \sin B = \sin(A+B) - \sin(A-B).$$

$$2 \cos A \cos B = \cos(A+B) + \cos(A-B).$$

$$2 \sin A \sin B = \cos(A+B) - \cos(A-B).$$

SUM TO PRODUCT

Sin C + sin D = 2sin ç
$$\frac{\text{æ C+D\"o}}{\text{è 2 } \emptyset \text{ è 2 } \emptyset}$$

$$\frac{\text{c C+D\"o}}{\text{ê 2 } \emptyset \text{ è 2 } \emptyset}$$
Sin C - sin D = 2cos
$$\frac{\text{æ C+D\"o}}{\text{ê 2 } \emptyset \text{ è 2 } \emptyset}$$

$$\frac{\text{c C+D\"o}}{\text{e 2 } \emptyset \text{ è 2 } \emptyset}$$
Cos C + cos D = 2cos
$$\frac{\text{æ C+D\"o}}{\text{ê 2 } \emptyset \text{ è 2 } \emptyset}$$

$$\frac{\text{c C+D\"o}}{\text{ê 2 } \emptyset \text{ è 2 } \emptyset}$$
Cos C - cos D = -2sin
$$\frac{\text{æ C+D\"o}}{\text{e 2 } \emptyset \text{ è 2 } \emptyset}$$
OR
$$\frac{\text{c C+D\"o}}{\text{e 2 } \emptyset \text{ è 2 } \emptyset}$$

$$\frac{\text{c C+D\"o}}{\text{e 2 } \emptyset \text{ è 2 } \emptyset}$$

$$\frac{\text{c C+D\"o}}{\text{e 2 } \emptyset \text{ è 2 } \emptyset}$$

$$\frac{\text{c C+D\"o}}{\text{e 2 } \emptyset \text{ è 2 } \emptyset}$$

$$\frac{\text{c C+D\"o}}{\text{e 2 } \emptyset \text{ è 2 } \emptyset}$$

$$\frac{\text{c C+D\"o}}{\text{e 2 } \emptyset \text{ è 2 } \emptyset}$$

$$\frac{\text{c C+D\"o}}{\text{e 2 } \emptyset \text{ è 2 } \emptyset}$$

PROPERTIES AND SOLUTIONS OF TRIANGLE

Borivali | Andheri | Powai | Thane | Vile Parle | Mira Road

Sine Rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, where R is the circum radius of the triangle.

Cosine Rule: $a^2 = b^2 + c^2 - 2bc \cos A$ or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$,

$$b^2 = a^2 + c^2 - 2ac \cos B$$
 or $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$,
 $c^2 = a^2 + b^2 - 2ab \cos C$ or $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

Projection Rule: $a = b \cos C + c \cos B$ $b = c \cos A + a \cos C$ $c = a \cos B + b \cos A$

Tangents Rule:

$$\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c}\cot\left(\frac{A}{2}\right),$$

$$\tan\left(\frac{C-A}{2}\right) = \frac{c-a}{c+a}\cot\left(\frac{B}{2}\right),$$

$$\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b}\cot\left(\frac{C}{2}\right).$$

$$\sin\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{bc}}, \cos\left(\frac{A}{2}\right) = \sqrt{\frac{s(s-a)}{bc}}, \tan\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$

$$\sin\left(\frac{B}{2}\right) = \sqrt{\frac{(s-a)(s-c)}{ac}}, \cos\left(\frac{B}{2}\right) = \sqrt{\frac{s(s-b)}{ac}}, \tan\left(\frac{B}{2}\right) = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}.$$

$$\sin\left(\frac{C}{2}\right) = \sqrt{\frac{(s-a)(s-b)}{ab}}, \cos\left(\frac{C}{2}\right) = \sqrt{\frac{s(s-c)}{ab}}, \tan\left(\frac{C}{2}\right) = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}.$$
Area of triangle ABC = $\sqrt{s(s-a)(s-b)(s-c)}$,
Area of triangle ABC = $\frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C$.

LIMITS

- 1. If f(-x) = f(x), then f(x) is called **Even Function**
- 2. If f(-x) = -f(x), then f(x) is called **Odd Function**
- 3. If P is the smallest +ve real number such that if f(x+P) = f(x), then f(x) is called a **periodic function** with period P.
- 4. Right Hand Limit (RHL) = $\lim_{x \to a+} (f(x)) = \lim_{h \to 0} (f(a+h))$

Left Hand Limit (LHL) = $\lim_{x \to a^{-}} (f(x)) = \lim_{h \to 0} (f(a-h))$

If RHL=LHL then $\lim_{x\to a} (f(x))$ exists and

 $\lim_{x \to a} (f(x)) = RHL = LHL$

- 5. Lt $\frac{1}{n^p} = 0$, if p > 0 and Lt $n^p = \infty$ if p > 0
- 6. $Lt \frac{\sin x}{x} = Lt \frac{\tan x}{x} (x \text{ in radians}) = Lt \frac{x}{\sin x} = Lt \frac{x}{\tan x} = 1$
- 7. $Lt_{x\to 0} \frac{\sin x^0}{x} = Lt_{x\to 0} \frac{\tan x^0}{x} = \frac{\pi}{180}$
- 8. $Lt_{x \to \frac{\pi}{2}} \frac{\sin x}{x} = \frac{2}{\pi}$
- 9. $\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1 = \lim_{x \to 0} \frac{\tan^{-1} x}{x}$
- 10. $\lim_{x \to a} \frac{x^n a^n}{x a} = na^{n-1}$, where n is an **integer** or a **fraction**.
- 11. $\lim_{x \to 0} \frac{a^x 1}{x} = \log a$, $\lim_{x \to 0} \frac{e^x 1}{x} = \log e = 1$
- 12. $\lim_{x\to\infty} \left(1+\frac{1}{n}\right)^n = e,$ $\lim_{x\to0} \left(1+n\right)^{\frac{1}{n}} = e$
- 13. $\lim_{x \to a} [kf(x)] = k \lim_{x \to a} f(x)$
- 14. $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- 15. $\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$

 $\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} f(x) \atop \lim_{x \to a} g(x) \ provided \ \lim_{x \to a} g(x) \neq 0$

- 16. A function f(x) is said to be **continuous** at the point x = a if
 - (i) $\lim_{x \to a} f(x)$ exists
- (ii) f(a) is defined
- (iii) $\lim f(x) = f(a)$
- 17. A function f(x) is said to be **discontinuous or not continuous** at x = a if
 - (i) f(x) is not defined at x = a
- (ii) $\lim_{x \to a} f(x)$ does not exist at x = a
- (iii) $\lim_{x \to a+0} f(x) \neq \lim_{x \to a-0} f(x) \neq f(a)$
- 18. If two functions f(x) and g(x) are continuous then f(x) + g(x) is continuous