Water Quality and Methane Emissions at Apple Valley Lake

J. Beaulieu and S. Waldo

January 27, 2017

1. Background:

The US Environmental Protection Agency (USEPA) is conducting an investigation of methane (CH_4) dynamics in reservoirs. CH_4 is a potent greenhouse gas that is produced by microorganisms in reservoir sediments. The objective is to estimate the magnitude of CH_4 emissions from reservoirs in the United States.

The USEPA measured CH₄ emissions from 32 reservoirs in Ohio, Indiana, and Kentucky during the summer of 2016. We designated a minimum of 15 sampling sites in each reservoir (depending on reservoir size), where we measured CH₄ emissions and several water quality indicators. CH₄ emissions were measured using a device which captures CH₄-rich bubbles as they rise through the water column toward the atmosphere. A sonde was used to measure chlorophyll a, dissolved oxygen, pH, specific conductivity, water temperature, and turbidity just below the water surface at each of the 15 sites. Additionally, nutrient chemistry was analyzed at one shallow and one deep site for each reservoir.

This preliminary report presents results from the USEPA 2016 measurement campaign relevant to Apple Valley Lake. These data will be included in a formal peer-reviewed publication to be submitted for publication in early 2018. This preliminary report includes:

- 1. This background information
- 2. A map showing the location of the sampled sites
- 3. A 3D map of the reservoir showing the measurement results for : $\,$
 - CH₄ emissions
 - Chlorophyll a
- 4. Figures showing how Apple Valley Lake compared to the other 31 reservoirs in the study in terms of:
 - CH₄ emissions
 - Total phosphorus
 - Total nitrogen
 - Chlorophyll a
- 5. Tables summarizing the other measured water quality values at each site within Apple Valley Lake

Thank you for your help in including Apple Valley Lake in this project.

2. Map of Sampled Sites

We sampled Apple Valley Lake on July 20th - 21st of 2016. The sampling sites were chosen using a generalized random tesselation stratified design ("GRTS"), an approach which combines elements of systematic and random survey designs which allows for the random allocation of sampling sites with maximum spatial coverage of the reservoir. We used a GPS and geographic information system (GIS) software to locate each sampling site (+/- 30 meters).

Figure 1: Location of the fifteen sample sites within Apple Valley Lake. Satellite image from Google Maps.

3. Within-lake values of methane emissions and chlorophyll a concentrations

Previous studies have found a general pattern of higher CH₄ emissions in the river-reservoir transition (tributary) area, and lower emissions in the deeper downstream waters. The observations at Apple Valley Lake followed this pattern.

Figure 2: Methane emissions measured at the 15 sample sites within Apple Valley Lake. The height of each "lollipop" corresponds to the emission rate shown on the vertical z-axis in units of milligrams CH_4 per square meter of lake surface per hour.

Similarly, chlorophyll a concentrations in Apple Valley Lake also had a clear gradient from upstream to downstream sites.

Figure 3: Chlorophyll a concentrations measured at the 15 sample sites within Apple Valley Lake. The height of each "lollipop" corresponds to the concentration shown on the vertical z-axis in units of micrograms per liter of water.

4. Comparative plots

We used the results from the individual measurement sites to calculate mean values and an uncertainty range for the reservoir. The uncertainty measure we used is the 95% confidence interval (CI), which is similar to two standard deviations (sd) from the mean in a normally distributed data set (where 2*sd = 95.45%). In the case of this study, the majority of the uncertainty is due to the spatial variability of a given parameter within the reservoir, rather than uncertainty due to analytical errors.

Figure 4: Mean and 95% confidence interval (CI) of the CH_4 emission rate for each reservoir in this study, calculated from the vaules measured at >=15 sites within each reservoir.

Figure 5: Mean and 95% confidence interval (CI) of the chlorophyll a concentration for each reservoir in this study, calculated from the vaules measured at >=15 sites within each reservoir.

Figure 6: Mean and 95% confidence interval (CI) of the total phosphorus (TP) concentration for each reservoir in this study, calculated from the vaules measured at >=15 sites within each reservoir.

Figure 7: Mean and 95% confidence interval (CI) of the total nitrogen (TN) concentration for each reservoir in this study, calculated from the vaules measured at >=15 sites within each reservoir.

5. Tables of measured values at each site

Table 1: Water quality parameters measured via sonde at each site

8-0140.4444282.346775.96.810.38.927228.38-0240.4359482.346185.53.18.08.827329.38-0340.4359482.346185.53.49.827228.88-0440.445782.346181.04.410.48.927228.88-0640.445282.345315.72.49.68.827329.48-0740.442882.34539.13.39.68.827229.48-0840.4258882.345939.13.39.68.827229.48-0940.4258882.345939.12.24.710.18.927229.48-1040.4258282.336059.52.99.718.927229.48-2140.4559382.337691.09.716.19.126.128.88-3340.4455682.338692.48.110.58.827.428.38-3540.4455682.338692.48.110.58.827.428.38-3540.4455682.3340435.07.810.99.027.029.08-3740.4462382.3340435.07.810.99.027.029.0	Site ID	Latitude	Site ID Latitude Longitude	Depth (m)	Chl a (ug/L)	DO (mg/L)	$_{ m Hd}$	Sp. Cond	Water Temp (C)	Turbidity
40.435482.3487510.33.18.08.827340.439382.346185.53.410.08.827340.4267982.3482215.53.49.88.227240.4452782.339781.04.410.48.927040.4422882.3429015.72.49.68.827240.425882.347852.24.710.18.927240.4159382.347852.24.710.18.927240.423282.336059.52.99.78.827240.4559182.337691.09.711.99.126140.4495582.338892.48.110.58.827440.4462382.336435.07.810.99.0270	S-01	40.44442	82.34077	5.9	8.9	10.3	8.9	272	28.3	1.3
40.43935 82.34618 5.5 3.5 10.0 8.8 273 40.42679 82.34822 15.5 3.4 9.8 272 40.44527 82.34290 15.7 2.4 9.6 8.8 273 40.44228 82.34413 6.3 3.5 10.3 8.9 273 40.42588 82.34593 9.1 3.3 9.6 8.8 272 40.42589 82.34785 2.2 4.7 10.1 8.9 272 40.42320 82.33605 9.5 2.9 9.7 8.8 272 40.45593 82.33769 1.0 9.7 15.1 9.1 261 40.44559 82.33856 2.4 8.3 273 261 40.445180 82.33889 2.4 8.1 10.9 8.8 274 40.44623 82.34043 5.0 7.8 10.9 9.0 274	S-0.2	40.43594	82.34875	10.3	3.1	8.0	8.8	273	29.3	0.2
40.42679 82.34822 15.5 3.4 9.8 8.8 272 40.44527 82.33978 1.0 4.4 10.4 8.9 270 40.41965 82.34290 15.7 2.4 9.6 8.8 273 40.42588 82.34593 9.1 3.3 9.6 8.8 272 40.42589 82.34785 2.2 4.7 10.1 8.9 272 40.42521 82.35005 9.5 2.9 9.7 8.8 272 40.45791 82.33627 1.0 22.3 14.9 9.3 260 40.45593 82.33769 1.0 9.7 15.1 9.1 261 40.44955 82.33889 2.4 8.1 10.5 8.8 274 40.44623 82.34043 5.0 7.8 10.9 9.0 274	S-03	40.43935	82.34618	5.5	3.5	10.0	8.8	273	28.7	8.0
40.44527 82.33978 1.0 4.4 10.4 8.9 270 40.41965 82.34290 15.7 2.4 9.6 8.8 273 40.4258 82.34593 9.1 3.3 9.6 8.8 272 40.4258 82.34785 2.2 4.7 10.1 8.9 272 40.4232 82.35005 9.5 2.9 9.7 8.8 272 40.45791 82.33627 1.0 22.3 14.9 9.3 260 40.45593 82.33769 1.0 9.7 15.1 9.1 261 40.44955 82.33889 2.4 8.1 10.5 8.8 273 40.44623 82.34043 5.0 7.8 10.9 9.0 274	S-04	40.42679	82.34822	15.5	3.4	8.6	8.8	272	28.8	9.0
40.4196582.3429015.72.49.68.827340.4422882.344136.33.510.38.927240.4258882.347852.24.710.18.927240.4159382.350059.52.99.78.827240.4559182.337691.09.715.19.126140.445582.338892.48.110.58.827440.4462382.340435.07.810.99.0270	S-05	40.44527	82.33978	1.0	4.4	10.4	8.9	270	28.8	1.2
40.44228 82.34413 6.3 3.5 10.3 8.9 272 40.42588 82.34593 9.1 3.3 9.6 8.8 272 40.41593 82.34785 2.2 4.7 10.1 8.9 270 40.42322 82.35005 9.5 2.9 9.7 8.8 272 40.45791 82.33627 1.0 9.7 14.9 9.3 260 40.45593 82.33769 1.0 9.7 15.1 9.1 261 40.44556 82.33889 2.4 8.1 10.5 8.8 273 40.44623 82.34043 5.0 7.8 10.9 9.0 270	90-S	40.41965	82.34290	15.7	2.4	9.6	8.8	273	29.4	0.4
40.42588 82.34593 9.1 3.3 9.6 8.8 272 40.41593 82.34785 2.2 4.7 10.1 8.9 270 40.4572 82.35005 9.5 2.9 9.7 8.8 272 40.45593 82.33769 1.0 9.7 15.1 9.1 261 40.4456 82.33889 2.4 8.1 10.5 8.8 274 40.44623 82.34043 5.0 7.8 10.9 9.0 270	Z-02	40.44228	82.34413	6.3	3.5	10.3	8.9	272	28.7	1.2
40.41593 82.34785 2.2 4.7 10.1 8.9 270 40.42322 82.35005 9.5 2.9 9.7 8.8 272 40.45791 82.33627 1.0 22.3 14.9 9.3 260 40.45593 82.33769 1.0 9.7 15.1 9.1 261 40.44955 82.33889 2.4 8.1 10.5 8.8 274 40.44623 82.34043 5.0 7.8 10.9 9.0 270	S-08	40.42588	82.34593	9.1	3.3	9.6	8.8	272	29.1	0.5
40.42322 82.35005 9.5 2.9 8.8 272 40.45791 82.33627 1.0 22.3 14.9 9.3 260 40.45593 82.33769 1.0 9.7 15.1 9.1 261 40.445180 82.33889 2.4 8.1 10.5 8.8 274 40.44623 82.34043 5.0 7.8 10.9 9.0 270	8-00	40.41593	82.34785	2.2	4.7	10.1	8.9	270	29.1	6.0
40.45791 82.33627 1.0 22.3 14.9 9.3 260 40.45593 82.33769 1.0 9.7 15.1 9.1 261 40.44955 82.33956 3.8 7.3 10.0 8.8 273 40.45180 82.33889 2.4 8.1 10.5 8.8 274 40.44623 82.34043 5.0 7.8 10.9 9.0 270	S-10	40.42322	82.35005	9.5	2.9	2.6	8.8	272	29.4	9.0
40.45593 82.33769 1.0 9.7 15.1 9.1 261 40.44955 82.33956 3.8 7.3 10.0 8.8 273 40.45180 82.33889 2.4 8.1 10.5 8.8 274 40.44623 82.34043 5.0 7.8 10.9 9.0 270	S-31	40.45791	82.33627	1.0	22.3	14.9	9.3	260	28.8	13.3
40.44955 82.33956 3.8 7.3 10.0 8.8 273 40.45180 82.33889 2.4 8.1 10.5 8.8 274 40.44623 82.34043 5.0 7.8 10.9 9.0 270	S-32	40.45593	82.33769	1.0	5.6	15.1	9.1	261	28.5	9.1
40.45180 82.33889 2.4 8.1 10.5 8.8 274 40.44623 82.34043 5.0 7.8 10.9 9.0 270	S-33	40.44955	82.33956	3.8	7.3	10.0	8.8	273	28.2	1.7
40.44623 82.34043 5.0 7.8 10.9 9.0 270	S-35	40.45180	82.33889	2.4	8.1	10.5	8.8	274	28.3	5.0
	S-37	40.44623	82.34043	5.0	7.8	10.9	0.6	270	29.0	2.1

Table 2: Water chemistry parameters measured at one shallow and one deep site

Latitude Longitude	Longi	tude	Depth (m)	NH4 (ugN/L)	NO2.3 (ugN/L)	Total N (ugN/L)	Reactive P (ug/L)	Total P (ugP/L)
40.41965 82.34290 15.7		15.7		∞	558	1046	∞	15
40.45791 82.33627 1.0		1.0		20	6	721	20	09

6. EPA disclaimer

I have a call into John Olszewski about this.