A better estimate using Lagrange polynomials

Thm. Suppose $x_0, x_1, ... x_n$ are distinct numbers in the interval [a,b] and $f \in C^{(n+1)}[a,b]$.

Then for each $x \in [a,b]$, there exists $S(x) \in [a,b]$ between $x_0, x_1, ... x_n$ such that $f(x) = p(x) + \frac{f^{(n+1)}(S(x))}{(n+1)!} (x-x_0)(x-x_1) \cdots (x-x_n)$ where $p(x) = \sum_{i=0}^{n} L_{n,k}(x) \cdot f(x_k)$

Rmk. Lagrange error R_L is similar to Taylor polynomial error: $\frac{f^{(n+1)}(S(x))}{(n+1)!}(x-x_0)^{n+1} \quad v_S. \quad \frac{f^{(n+1)}(S(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$ but error in R_L is "spread" across the different nodes.

Ex. Given $x_0=2$, $x_1=2.75$, $x_2=4$ for $f(x)=\frac{1}{x}$ a) Determine the error form for the Lagrange polynomial p(x).

b) Determine the maximum error when p(x) is used to approximate f(x) for $x \in [2, 4]$ Sol. a) $f'(x) = \frac{1}{x^2}$, $f''(x) = \frac{2}{x^3}$, $f''(x) = \frac{-6}{x^4}$ Error: $R(x) = \frac{f'''(3(x))}{3!} (x-x_0)(x-x_1)(x-x_2)$ $\approx \frac{-6}{3!} (3(x))^4 (x-2)(x-2.75)(x-4)$ $3(x) \in (2,4)$

b) want to find $\max_{x \in C_1, 47} |R_2(x)|$ Note: $|S(x)^{-4}| \le 2^{-4} = \frac{1}{16}$

Let
$$g(x) = (x-2)(x-2.15)(x-4)$$

= $x^3 - \frac{35}{4}x^1 + \frac{49}{2}x - 22$

To find max values of g on [2,4], first find critical points:

$$g'(x) = 3x^{2} - \frac{35}{2}x + \frac{49}{2} = 0$$

$$x = \frac{7}{3} \rightarrow g(\frac{7}{3}) = \frac{25}{108}$$

$$x = \frac{7}{2} \qquad g(\frac{1}{2}) = \frac{-9}{16}$$

$$(|\frac{-9}{16}| > |\frac{25}{108}|)$$

⇒ $\max_{x \in (2,4)} |g(x)| \le \frac{9}{16}$. Hence max error is $|R_{L}(x)| \le \frac{6}{3!} |g(x)| \le \frac{1}{16} |\frac{9}{16}|$

Note In general, we have to evaluate g at boundary points.

Rmk. 1. Power series form \equiv Lagrange form but with different basis:

Power series basis: {xn, xn-1,...x, 1}

Lagrange basis: {Ln,n(x), Ln,n-1(x),... Ln,1(x), Ln,0(x)}

2. Can use f_{min} bound (f_{un}, x_1, x_2) to find maximum of a function on (x_1, x_2) .

note: $\max_{x} f(x) = -\min_{x} f(x)$

3. Adding a new node x; changes all bases

Ln,js to Ln+1,js