Circular Motion

Basics

Angular Momentum = $L = mvr = m\omega r^2$ Centripetal Force = $\frac{mv^2}{r} = m\omega^2 r$

Perpendicular Axis Theorem

Parallel Axis Theorem

$$I_f = I_i + mr^2$$

Simple Harmonic Motion

$$d = a\sin(\omega t)$$

$$f = 1/T$$

$$f = \frac{\omega}{2\pi}$$

$$\begin{array}{ll} \mathbf{Spring} & T = 2\pi\sqrt{\frac{m}{k}} \\ \omega = \sqrt{\frac{k}{m}} & \end{array}$$

Error Propagation

Collisions

Gravity

Energy

Kinematics

1.
$$v = v_0 + at$$

2.
$$\Delta x = \frac{(v+v_0)}{2}t$$

1.
$$v = v_0 + at$$

2. $\Delta x = \frac{(v+v_0)}{2}t$
3. $\Delta x = v_0t + \frac{1}{2}at^2$
4. $v = v_0 + at$
5. $v^2 = v_0^2 + 2a\Delta x$

4.
$$v = v_0 + at$$

5.
$$v^2 = v_0^2 + 2a\Delta x$$

Launching Ball from Ground

$$Range = \frac{2v^2 \sin \theta \cos \theta}{g} = \frac{v^2 \sin (2\theta)}{g}$$

Launching ball from cliff

Range

Optimal angle
$$h = \frac{v^2}{g} \left(\frac{1}{2 \sin^2 \theta} - 1 \right)$$

 $\Rightarrow \sin \theta = \left(2 \left(\frac{gh}{v^2} + 1 \right) \right)^{-1/2}$