Data Collection and Preprocessing

Project Title: Amazon Instruments Review

Summarizes the preprocessing steps applied to the Amazon Instrument Reviews dataset to ensure clean and consistent input for machine learning models.

Preprocessing steps:

Section	Description		
Data Overview	Loaded CSV dataset, checked missing values, and reviewed class distribution.		
Handling Missing Values	Filled missing reviewText with empty strings and reviewerName with " ".		
Concatenation	Combined reviewText and summary into a single column reviews.		
Labelling	Assigned labels: Positive (rating > 3), Negative (rating < 3), Neutral (rating = 3).		
Text Cleaning	Lowercasing, punctuation removal, number removal, URL removal, newline removal.		
Text Preprocessing	Tokenized reviews, removed stopwords, and applied WordNet Lemmatizer.		
Polarity Scores	Calculated polarity of reviews using TextBOB for strength		
Feature Engineering	Generated features: review length, word count, n-grams and dropped columns.		
Encoding	Encoded target sentiment labels using LabelEncoder.		
Vectorization	Applied TF-IDF with Unigram,Bigram, Trigram (max 5000 features).		

Balancing Used SMOTE to oversample minority classes.

Data Preprocessing Code Screenshots:


```
def GramAnalysis(Corpus, Gram, N):
                                                                                                           Vectorizer = CountVectorizer(stop_words="english", ngram_range=(Gram,Gram))
                                                                                                           ngram_matrix = Vectorizer.fit_transform(Corpus)
                                                                                                            # N-Gram Frequency
                                                                                                           Counts = ngram_matrix.sum(axis=0)
                                                                                                           words = [(word, Counts[0, idx]) for word, idx in Vectorizer.vocabulary_.items()]
                                                                                                           # Sort Descending
words = sorted(words, key=lambda x: x[1], reverse=True)
                                                                                                           return words[:N]
                                                                                                       # Filter the platforms Based on Sentiments
Positive = df[df["sentiment"]=="Positive"].dropna()
Negative = df[df["sentiment"]=="Negative"].dropna()
Neutral = df[df["sentiment"]=="Neutral"].dropna()
                                                                                                    # Feature Engineering
columns_to_keep = ['reviews', 'sentiment'] # Add other columns you've created
df = df[columns_to_keep]
                                                                                                        df.head()
                                                                                                    ∓÷
                                                                                                                                          reviews sentiment
                                                                                                         0 much write exactly supposed filter pop sound r... Positive
                                                                                                         1 product exactly quite affordablei realized dou...
                                                                                                        2 primary job device block breath would otherwis... Positive
                                                                                                         3 nice windscreen protects mxl mic prevents pop ... Positive
Encoding
                                                                                                       # Encoding Our Target Variables
                                                                                                             import warnings
                                                                                                             warnings.filterwarnings('ignore')
                                                                                                             from sklearn.preprocessing import LabelEncoder
                                                                                                             encoder = LabelEncoder()
                                                                                                             df['sentiment'] = encoder.fit_transform(df['sentiment'])
                                                                                                             df['sentiment'].value_counts()
                                                                                                                             count
                                                                                                              sentiment
                                                                                                              2
                                                                                                                              9022
                                                                                                                                772
                                                                                                                    1
                                                                                                                   0
                                                                                                                                467
                                                                                                             dtype: int64
Vectorization
                                                                                                         from \ sklearn.feature\_extraction.text \ import \ TfidfVectorizer
                                                                                                         TF_IDF = TfidfVectorizer(max_features = 5000, ngram_range = (1,3))
X = TF_IDF.fit_transform(df['reviews']).toarray()
                                                                                                         Y = df['sentiment']
Counter(Y)
                                                                                                    → Counter({2: 9022, 1: 772, 0: 467})
Balancing
                                                                                                    # Resampling our Dataset (to Balance)
                                                                                                           from imblearn.over_sampling import SMOTE
                                                                                                           Balancer = SMOTE(random_state=42)
                                                                                                           X_final, y_final = Balancer.fit_resample(X, Y)
                                                                                                           Counter(y_final)
                                                                                                    Counter({2: 9022, 1: 9022, 0: 9022})
```