Package 'sasLM'

April 25, 2023

Version 0.9.8	
Title 'SAS' Linear Model	
Description This is a core implementation of 'SAS GLM, REG, ANOVA, FREQ, and UNIVARD vide type II and type III SS. However, the reent from those of 'SAS.' Different results does ever, many wants the same results to SAS. TReference: Littell RC, Stroup WW, Freund F.	ATE. Some R packages prosults of nested and complex designs are often differes not necessarily mean incorrectness. Howhis package aims to achieve that.
Depends R ($>= 3.0.0$), mvtnorm	
Imports methods	
Suggests MASS	
Author Kyun-Seop Bae [aut]	
Maintainer Kyun-Seop Bae <k@acr.kr></k@acr.kr>	
Copyright 2020-, Kyun-Seop Bae	
License GPL-3	
Repository CRAN	
<pre>URL https://cran.r-project.org/package= NeedsCompilation no</pre>	sasLM
R topics documented:	
af	

cSS		15
CV		16
Diffogram		17
el		18
e2		18
e3		19
EMS		20
est		20
ESTM		22
estmb	· • • •	23
G2SWEEP		23
geoCV		25
geoMean		25
		26
is.cor		27
Kurtosis		28
KurtosisSE		29
LCL		29
lfit	. 	30
lr	. 	31
lr0		32
LSM		33
Max		34
Mean		35
Median		35
Min		36
ModelMatrix		36
N		37
OR		38
ORcmh		39
ORinv		40
ORmn		41
ORmn1		42
pB		43
Pcor.test		44
pD		45
PDIFF		45
pResD		47
QuartileRange		47
Range		48
RanTest		48
RD		49
		50
RDmn		51
RDmn1		52
REG		54
regD		55
RR	. 	56
RRinv		57
RRmn		58
RRmn1		59
satt		60

sasLM-package 3

sasLl	M-package	'SAS' Linear Model	
Index			7:
	UNIV		7
	UCL		72
	tsum3		7
	tsum2		7
	tsum1		6
	tsum0		6
	tsum		6
	trimmedMean		6
	T3test		6
	T3MS		6.
	SS		6.
	SLICE		64
	SkewnessSE		6.
	Skewness		6.
	SEM		6
	SD		6

Description

This is a core implementation of 'SAS' procedures for linear models - GLM, REG, and ANOVA. Some packages provide type II and type III SS. However, the results of nested and complex designs are often different from those of 'SAS'. A different result does not necessarily mean incorrectness. However, many want the same result with 'SAS'. This package aims to achieve that. Reference: Littell RC, Stroup WW, Freund RJ (2002, ISBN:0-471-22174-0).

Details

This will serve those who want SAS PROC GLM, REG, and ANOVA in R.

Author(s)

Kyun-Seop Bae k@acr.kr

```
## SAS PROC GLM Script for Typical Bioequivalence Data
# PROC GLM DATA=BEdata;
# CLASS SEQ SUBJ PRD TRT;
# MODEL LNCMAX = SEQ SUBJ(SEQ) PRD TRT;
# RANDOM SUBJ(SEQ)/TEST;
# LSMEANS TRT / DIFF=CONTROL("R") CL ALPHA=0.1;
# ODS OUTPUT LSMeanDiffCL=LSMD;
# DATA LSMD; SET LSMD;
# PE = EXP(DIFFERENCE);
# LL = EXP(LowerCL);
```

4 af

```
# UL = EXP(UpperCL);
# PROC PRINT DATA=LSMD; RUN;
## SAS PROC GLM equivalent
BEdata = af(BEdata, c("SEQ", "SUBJ", "PRD", "TRT")) # Columns as factor
formula1 = log(CMAX) ~ SEQ/SUBJ + PRD + TRT # Model
GLM(formula1, BEdata) # ANOVA tables of Type I, II, III SS
RanTest(formula1, BEdata, Random="SUBJ") # Hypothesis test with SUBJ as random
ci0 = CIest(formula1, BEdata, "TRT", c(-1, 1), 0.90) # 90$ CI
exp(ci0[, c("Estimate", "Lower CL", "Upper CL")]) # 90% CI of GMR
## 'nlme' or SAS PROC MIXED is preferred for an unbalanced case
## SAS PROC MIXED equivalent
# require(nlme)
# Result = lme(log(CMAX) ~ SEQ + PRD + TRT, random=~1|SUBJ, data=BEdata)
# summary(Result)
# VarCorr(Result)
# ci = intervals(Result, 0.90) ; ci
# exp(ci$fixed["TRTT",])
```

af

Convert some columns of a data.frame to factors

Description

Conveniently convert some columns of data.frame into factors.

Usage

```
af(DataFrame, Cols)
```

Arguments

DataFrame a data.frame

Cols column names or indices to be converted

Details

It performs conversion of some columns in a data. frame into factors conveniently.

Value

Returns a data. frame with converted columns.

Author(s)

aov1

aov1	ANOVA with Type I SS	

Description

ANOVA with Type I SS.

Usage

```
aov1(Formula, Data, BETA=FALSE, Resid=FALSE)
```

Arguments

Formula a conventional formula for a linear model.

Data a data. frame to be analyzed

BETA if TRUE, coefficients (parameters) of REG will be returned. This is equivalent to

SOLUTION option of SAS PROC GLM

Resid if TRUE, fitted values (y hat) and residuals will be returned

Details

It performs the core function of SAS PROC GLM, and returns Type I SS. This accepts continuous independent variables also.

Value

The result table is comparable to that of SAS PROC ANOVA.

Df degree of freedom

Sum Sq sum of square for the set of contrasts

Mean Sq mean square

F value F value for the F distribution Pr(>F) proability of larger than F value

Next returns are optional.

Parameter Parameter table with standard error, t value, p value. TRUE is 1, and FALSE is 0

in the Estimable column. This is returned only with BETA=TRUE option.

Fitted Fitted value or y hat. This is returned only with Resid=TRUE option.

Residual Weighted residuals. This is returned only with Resid=TRUE option.

Author(s)

Kyun-Seop Bae k@acr.kr

```
aov1(uptake ~ Plant + Type + Treatment + conc, CO2)
aov1(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE)
aov1(uptake ~ Plant + Type + Treatment + conc, CO2, Resid=TRUE)
aov1(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE, Resid=TRUE)
```

6 aov2

aov2 ANOVA with T	Type II SS
-------------------	------------

Description

ANOVA with Type II SS.

Usage

```
aov2(Formula, Data, BETA=FALSE, Resid=FALSE)
```

Arguments

Formula a conventional formula for a linear model.

Data a data.frame to be analyzed

BETA if TRUE, coefficients (parameters) of REG will be returned. This is equivalent to

SOLUTION option of SAS PROC GLM

Resid if TRUE, fitted values (y hat) and residuals will be returned

Details

It performs the core function of SAS PROC GLM, and returns Type II SS. This accepts continuous independent variables also.

Value

The result table is comparable to that of SAS PROC ANOVA.

Df degree of freedom

Sum Sq sum of square for the set of contrasts

Mean Sq mean square

F value F value for the F distribution

Pr(>F) proability of larger than F value

Next returns are optional.

Parameter Table with standard error, t value, p value. TRUE is 1, and FALSE is 0

in the Estimable column. This is returned only with BETA=TRUE option.

Fitted Fitted value or y hat. This is returned only with Resid=TRUE option.

Residual Weighted residuals. This is returned only with Resid=TRUE option.

Author(s)

Kyun-Seop Bae k@acr.kr

```
aov2(uptake ~ Plant + Type + Treatment + conc, CO2)
aov2(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE)
aov2(uptake ~ Plant + Type + Treatment + conc, CO2, Resid=TRUE)
aov2(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE, Resid=TRUE)
aov2(uptake ~ Type, CO2)
aov2(uptake ~ Type - 1, CO2)
```

aov3 7

aov3	ANOVA with Type III SS	

Description

ANOVA with Type III SS.

Usage

```
aov3(Formula, Data, BETA=FALSE, Resid=FALSE)
```

Arguments

Formula a conventional formula for a linear model.

Data a data. frame to be analyzed

BETA if TRUE, coefficients (parameters) of REG will be returned. This is equivalent to

SOLUTION option of SAS PROC GLM

Resid if TRUE, fitted values (y hat) and residuals will be returned

Details

It performs the core function of SAS PROC GLM, and returns Type III SS. This accepts continuous independent variables also.

Value

The result table is comparable to that of SAS PROC ANOVA.

Df degree of freedom

Sum Sq sum of square for the set of contrasts

Mean Sq mean square

F value F value for the F distribution Pr(>F) proability of larger than F value

Next returns are optional.

Parameter Parameter table with standard error, t value, p value. TRUE is 1, and FALSE is 0

in the Estimable column. This is returned only with BETA=TRUE option.

Fitted Fitted value or y hat. This is returned only with Resid=TRUE option.

Residual Weighted residuals. This is returned only with Resid=TRUE option.

Author(s)

Kyun-Seop Bae k@acr.kr

```
aov3(uptake ~ Plant + Type + Treatment + conc, CO2)
aov3(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE)
aov3(uptake ~ Plant + Type + Treatment + conc, CO2, Resid=TRUE)
aov3(uptake ~ Plant + Type + Treatment + conc, CO2, BETA=TRUE, Resid=TRUE)
```

8 BEdata

aspirinCHD

An example data for meta-analysis - aspirin in coronary heart disease

Description

The data is from 'Canner PL. An overview of six clinical trials of aspirin in coronary heart disease. Stat Med. 1987'

Usage

aspirinCHD

Format

A data frame with 6 rows.

y1 death event count of aspirin group

n1 total subjet of aspirin group

y2 death event count of placebo group

n2 total subject of placebo group

Details

This data is for educational purpose.

References

Canner PL. An overview of six clinical trials of aspirin in coronary heart disease. Stat Med. 1987;6:255-263.

BEdata

An Example Data of Bioequivalence Study

Description

Contains Cmax data from a real bioequivalence study.

Usage

BEdata

Format

A data frame with 91 observations on the following 6 variables.

ADM Admission or Hospitalization Group Code: 1, 2, or 3

SEQ Group or Sequence character code: 'RT' or 'TR"

PRD Period numeric value: 1 or 2

TRT Treatment or Drug code: 'R' or 'T'

SUBJ Subject ID

CMAX Cmax values

bk 9

Details

This contains a real data of 2x2 bioequivalence study, which has three different hospitalization groups. See Bae KS, Kang SH. Bioequivalence data analysis for the case of separate hospitalization. Transl Clin Pharmacol. 2017;25(2):93-100. doi.org/10.12793/tcp.2017.25.2.93

bk

Beautify the output of knitr::kable

Description

Trailing zeros after integer is somewhat annoying. This removes those in the vector of strings.

Usage

```
bk(ktab, rpltag=c("n", "N"), dig=10)
```

Arguments

ktab an output of knitr::kable

rpltag tag string of replacement rows. This is usually "n" which means the sample count.

dig maximum digits of decimals in the kable output

Details

This is convenient if used with tsum0, tsum1, tsum2, tsum3, This requires knitr::kable.

Value

A new processed vector of strings. The class is still knitr_kable.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
tsum0, tsum1, tsum2, tsum3
```

BY

```
# |max
         | 45.50000|
# t1 = tsum(uptake ~ Treatment, CO2,
          e=c("mean", "median", "sd", "min", "max", "length"),
          ou=c("chilled", "nonchilled"),
#
          repl=list(c("median", "length"), c("med", "N")))
#
# bk(kable(t1, digits=3)) # requires knitr package
       | chilled| nonchilled| Combined|
# |
# |:----:|-----:|
# |mean | 23.783| 30.643| 27.213|
# |med | 19.700|
                  31.300|
                            28.300|
                    9.705|
# |sd | 10.884|
                            10.814
# |min | 7.700|
                    10.600|
                             7.700|
                    45.500|
                             45.500|
# |max | 42.400|
# |N
      | 42
                    42 |
                             84
```

BY

Analysis BY variable

Description

GLM, REG, aov1 etc. functions can be run by levels of a variable.

Usage

```
BY(FUN, Formula, Data, By, ...)
```

Arguments

FUN Function name to be called such as GLM, REG

Formula a conventional formula for a linear model.

Data a data. frame to be analyzed

By a variable name in the Data

... arguments to be passed to FUN function

Details

This mimics SAS procedues' BY clause.

Value

a list of FUN function outputs. The names are after each level.

Author(s)

Kyun-Seop Bae k@acr.kr

```
BY(GLM, uptake ~ Treatment + as.factor(conc), CO2, By="Type") BY(REG, uptake ~ conc, CO2, By="Type")
```

CIest 11

CIest	Confidence Interval Estimation	
-------	--------------------------------	--

Description

Get point estimate and its confidence interval with given contrast and alpha value using t distribution.

Usage

```
CIest(Formula, Data, Term, Contrast, conf.level=0.95)
```

Arguments

Formula a conventional formula for a linear model

Data a data. frame to be analyzed

Term a factor name to be estimated

Contrast a level vector. Level is alphabetically ordered by default.

conf.level confidence level of confidence interval

Details

Get point estimate and its confidence interval with given contrast and alpha value using t distribution.

Value

Estimate point estimate of the input linear contrast

Lower CL lower confidence limit
Upper CL upper confidence limit

Std. Error standard error of the point estimate

t value value for t distribution

Df degree of freedom

Pr(>|t|) probability of larger than absolute t value from t distribution with residual's

degree of freedom

Author(s)

Kyun-Seop Bae k@acr.kr

```
\label{eq:condition} {\tt CIest(log(CMAX)~\sim~SEQ/SUBJ~+~PRD~+~TRT,~BEdata,~"TRT",~c(-1,~1),~0.90)~\#~90\%~CI}
```

12 CONTR

Coll

Collinearity Diagnostics

Description

Collearity diagnostics with tolerance, VIF, eigenvalue, condition index, variance proportions

Usage

```
Coll(Formula, Data)
```

Arguments

Formula fomula of the model

Data input data as a matrix or data.frame

Details

Sometimes collinearity diagnostics after multiple linear regression are necessary.

Value

Tol tolerance of independent variables

VIF variance inflation factor of independent variables

Eigenvalue eigenvalue of Z'Z (crossproduct) of standardized independent variables

Cond. Index condition index Proportions of variances

under the names of coefficients

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
Coll(mpg ~ disp + hp + drat + wt + qsec, mtcars)
```

CONTR

F Test with a Set of Contrasts

Description

Do F test with a given set of contrasts.

Usage

```
CONTR(L, Formula, Data, mu=0)
```

Cor.test 13

Arguments

L contrast matrix. Each row is a contrast.

Formula a conventional formula for a linear model

Data a data.frame to be analyzed

mu a vector of mu for the hypothesis L. The length should be equal to the row count

of L.

Details

It performs F test with a given set of contrasts (a matrix). It is similar to the CONTRAST clause of SAS PROC GLM. This can test the hypothesis that the linear combination (function)'s mean vector is mu.

Value

Returns sum of square and its F value and p-value.

Df degree of freedom

Sum Sq sum of square for the set of contrasts

Mean Sq mean square

F value F value for the F distribution

Pr(>F) proability of larger than F value

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

cSS

Examples

```
CONTR(t(c(0, -1, 1)), uptake ^{\sim} Type, CO2) # sum of square GLM(uptake ^{\sim} Type, CO2) # compare with the above
```

Cor.test

Correlation test of multiple numeric columns

Description

Testing correlation between numeric columns of data with Pearson method.

Usage

```
Cor.test(Data, conf.level=0.95)
```

Arguments

Data a matrix or a data.frame

conf.level confidence level

14 corFisher

Details

It uses all numeric columns of input data. It uses "pairwise.complete.obs" rows.

Value

Row names show which columns are used for the test

Estimate point estimate of correlation

Lower CL upper confidence limit

Upper CL lower condidence limit

t value t value of the t distribution

Df degree of freedom

Pr(>|t|) probability with the t distribution

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

Cor.test(mtcars)

corFisher

Correlation test by Fisher's Z transformation

Description

Testing correlation between two numeric vectors by Fisher's Z transformation

Usage

```
corFisher(x, y, conf.level=0.95, rho=0)
```

Arguments

x the first input numeric vector
y the second input numeric vector

conf.level confidence level

rho population correlation rho under null hypothesis

Details

This accepts only two numeric vectors.

cSS 15

Value

N sample size, length of input vectors

r sample correlation

Fisher.z Fisher's z bias bias to correct

rho.hat point estimate of population rho

conf.level confidence level for the confidence interval

lower limit of confidence interval upper upper limit of confidence interval

rho0 population correlation rho under null hypothesis

p. value p value under the null hypothesis

Author(s)

Kyun-Seop Bae k@acr.kr

References

Fisher RA. Statistical Methods for Research Workers. 14e. 1973

Examples

corFisher(mtcars\$disp, mtcars\$hp, rho=0.6)

cSS

Sum of Square with a Given Contrast Set

Description

Calculates sum of squares of a contrast from a lfit result.

Usage

```
cSS(K, rx, mu=0, eps=1e-8)
```

Arguments

K contrast matrix. Each row is a contrast.

rx a result of 1fit function

mu a vector of mu for the hypothesis K. The length should be equal to the row count

of K.

eps Less than this value is considered as zero.

Details

It calculates sum of squares with given a contrast matrix and a lfit result. It corresponds to SAS PROC GLM CONTRAST. This can test the hypothesis that the linear combination (function)'s mean vector is mu.

16 CV

Value

Returns sum of square and its F value and p-value.

Df degree of freedom

Sum Sq sum of square for the set of contrasts

Mean Sq mean square

F value F value for the F distribution

Pr(>F) proability of larger than F value

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

CONTR

Examples

```
rx = REG(uptake \sim Type, CO2, summarize=FALSE) cSS(t(c(0, -1, 1)), rx) # sum of square GLM(uptake \sim Type, CO2) # compare with the above
```

CV

Coefficient of Variation in percentage

Description

Coefficient of variation in percentage.

Usage

CV(y)

Arguments

У

a numeric vector

Details

It removes NA.

Value

Coefficient of variation in percentage.

Author(s)

Kyun-Seop Bae k@acr.kr

```
CV(mtcars$mpg)
```

Diffogram 17

Diffogram	Plot Pairwise Differences	

Description

Plot pairwise differences by a common.

Usage

```
Diffogram(Formula, Data, Term, conf.level=0.95, adj="lsd", ...)
```

Arguments

Formula a conventional formula for a linear model

Data a data. frame to be analyzed

Term a factor name to be estimated

conf.level confidence level of confidence interval

adj "lsd", "tukey", "scheffe", "bon", or "duncan" to adjust p-value and confidence

limit

... arguments to be passed to plot

Details

This usually shows the shortest interval. It corresponds to SAS PROC GLM PDIFF. For adjust method "dunnett", see PDIFF function.

Value

no return value, but a plot on the current device

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

LSM, PDIFF

```
Diffogram(uptake ~ Type*Treatment + as.factor(conc), CO2, "as.factor(conc)")
```

18 e2

e1

Get a Contrast Matrix for Type I SS

Description

Makes a contrast matrix for type I SS using forward Doolittle method.

Usage

```
e1(XpX, eps=1e-8)
```

Arguments

XpX crossprodut of a design or model matrix. This should have appropriate column

names.

eps Less than this value is considered as zero.

Details

It makes a contrast matrix for type I SS. If zapsmall is used, the result becomes more inaccurate.

Value

A contrast matrix for type I SS.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
x = ModelMatrix(uptake \sim Plant + Type + Treatment + conc, CO2)
round(e1(crossprod(x$X)), 12)
```

e2

Get a Contrast Matrix for Type II SS

Description

Makes a contrast matrix for type II SS.

Usage

```
e2(x, eps=1e-8)
```

Arguments

x an output of ModelMatrix

eps Less than this value is considered as zero.

e3

Details

It makes a contrast matrix for type II SS. If zapsmall is used, the result becomes more inaccurate.

Value

A contrast matrix for type II SS.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
round(e2(ModelMatrix(uptake ~ Plant + Type + Treatment + conc, CO2)), 12)
round(e2(ModelMatrix(uptake ~ Type, CO2)), 12)
round(e2(ModelMatrix(uptake ~ Type - 1, CO2)), 12)
```

e3

Get a Contrast Matrix for Type III SS

Description

Makes a contrast matrix for type III SS.

Usage

```
e3(x, eps=1e-8)
```

Arguments

x an output of ModelMatrix

eps Less than this value is considered as zero.

Details

It makes a contrast matrix for type III SS. If zapsmall is used, the result becomes more inaccurate.

Value

A contrast matrix for type III SS.

Author(s)

Kyun-Seop Bae k@acr.kr

```
round(e3(ModelMatrix(uptake ~ Plant + Type + Treatment + conc, CO2)), 12)
```

20 est

EMS

Expected Mean Square Formula

Description

Calculates a formula table for expected mean square of the given contrast. The default is for Type III SS.

Usage

```
EMS(Formula, Data, Type=3, eps=1e-8)
```

Arguments

Formula a conventional formula for a linear model

Data a data. frame to be analyzed

Type type of sum of squares. The default is 3. Type 4 is not supported yet.

eps Less than this value is considered as zero.

Details

This is necessary for further hypothesis tests of nesting factors.

Value

A coefficient matrix for Type III expected mean square

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
f1 = log(CMAX) ~ SEQ/SUBJ + PRD + TRT
EMS(f1, BEdata)
EMS(f1, BEdata, Type=1)
EMS(f1, BEdata, Type=2)
```

est

Estimate Linear Functions

Description

Estimates Linear Functions with a given GLM result.

Usage

```
est(L, X, rx, conf.level=0.95, adj="lsd", paired=FALSE)
```

est 21

Arguments

L	a matrix of linear contrast rows to be tested
X	a model (design) matrix from ModelMatrix
rx	a result of 1fit function
conf.level	confidence level of confidence limit
adj	adjustment method for grouping. This supports "tukey", "bon", "scheffe", "duncan", and "dunnett". This only affects grouping, not the confidence interval.

paired If this is TRUE, L matrix is for the pairwise comparison such as PDIFF function.

Details

It tests rows of linear function. Linear function means linear combination of estimated coefficients. It corresponds to SAS PROC GLM ESTIMATE. Same sample size per group is assumed for the Tukey adjustment.

Value

Estimate	point estimate of the input linear contrast
Lower CL	lower confidence limit by "lsd" method
Upper CL	upper confidence limit by "lsd" method
Std. Error	standard error of the point estimate
t value	value for t distribution for other than "scheffe" method
Fvalue	value for F distribution for "scheffe" method only
Df	degree of freedom of residuals
Pr(> t)	probability of larger than absolute t value from t distribution with residual's degree of freedom, for other than "scheffe" method
Pr(>F)	probability of larger than F value from F distribution with residual's degree of freedom, for "scheffe" method only

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
ESTM, PDIFF
```

```
x = ModelMatrix(uptake ~ Type, CO2)
rx = REG(uptake ~ Type, CO2, summarize=FALSE)
est(t(c(0, -1, 1)), x$X, rx) # Quebec - Mississippi
t.test(uptake ~ Type, CO2) # compare with the above
```

22 ESTM

ESTM Estimate Linear Function

Description

Estimates Linear Function with a formula and a dataset.

Usage

```
ESTM(L, Formula, Data, conf.level=0.95)
```

Arguments

L a matrix of linear functions rows to be tested

Formula a conventional formula for a linear model

Data a data.frame to be analyzed

conf.level confidence level of confidence limit

Details

It tests rows of linear functions. Linear function means linear combination of estimated coefficients. It is similar to SAS PROC GLM ESTIMATE. This is a convenient version of est function.

Value

Estimate point estimate of the input linear contrast

Lower CL lower confidence limit
Upper CL upper confidence limit

Std. Error standard error of the point estimate

t value value for t distribution

Df degree of freedom

Pr(>|t|) probability of larger than absolute t value from t distribution with residual's

degree of freedom

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

est

```
ESTM(t(c(0, -1, 1)), uptake \sim Type, CO2) \# Quevec - Mississippi
```

estmb 23

estmb

Estimability Check

Description

Check the estimability of row vectors of coefficients.

Usage

```
estmb(L, X, g2, eps=1e-8)
```

Arguments

L	row vectors of coefficients
Χ	a model (design) matrix from ModelMatrix
g2	g2 generalized inverse of crossprod(X)

Details

eps

It checks the estimability of L, row vectors of coefficients. This corresponds to SAS PROC GLM ESTIMATE. See <Kennedy Jr. WJ, Gentle JE. Statistical Computing. 1980> p361 or <Golub GH, Styan GP. Numerical Computations for Univariate Linear Models. 1971>.

absolute value less than this is considered to be zero.

Value

a vector of logical values indicating which row is estimable (as TRUE)

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

G2SWEEP

Caci		
UZS	۷۷⊏	СГ

Generalized inverse matrix of type 2, g2 inverse

Description

Generalized inverse is usually not unique. Some programs use this algorithm to get a unique generalized inverse matrix.

Usage

```
G2SWEEP(A, Augmented=FALSE, eps=1e-08)
```

24 G2SWEEP

Arguments

A a matrix to be inverted

Augmented If this is TRUE and A is a model(design) matrix X, the last column should be X'y,

the last row y'X, and the last cell y'y. See the reference and example for the

detail.

eps Less than this value is considered as zero.

Details

Generalized inverse of g2-type is used by some softwares to do linear regression. See 'SAS Technical Report R106, The Sweep Operator: Its importance in Statistical Computing' by J. H. Goodnight for the detail.

Value

```
when Augmented=FALSE
ordinary g2 inverse
when Augmented=TRUE
g2 inverse and beta hats in the last column and the last row, and sum of square error (SSE) in the last cell
attribute "rank"
the rank of input matrix
```

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
lfit, ModelMatrix
```

```
f1 = uptake ~ Type + Treatment # formula
x = ModelMatrix(f1, CO2) # Model matrix and relevant information
y = model.frame(f1, CO2)[, 1] # observation vector
nc = ncol(x$X) # number of columns of model matrix
XpY = crossprod(x$X, y)
aXpX = rbind(cbind(crossprod(x$X), XpY), cbind(t(XpY), crossprod(y)))
ag2 = G2SWEEP(aXpX, Augmented=TRUE)
b = ag2[1:nc, (nc + 1)] ; b # Beta hat
iXpX = ag2[1:nc, 1:nc] ; iXpX # g2 inverse of X'X
SSE = ag2[(nc + 1), (nc + 1)] ; SSE # Sum of Square Error
DFr = nrow(x$X) - attr(ag2, "rank") ; DFr # Degree of freedom for the residual
# Compare the below with the above
REG(f1, CO2)
aov1(f1, CO2)
```

geoCV 25

geoCV

Geometric Coefficient of Variation in percentage

Description

Geometric coefficient of variation in percentage.

Usage

```
geoCV(y)
```

Arguments

У

a numeric vector

Details

It removes NA. This is sqrt(exp(var(log(x))) - 1)*100.

Value

Geometric coefficient of variation in percentage.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

geoMean

Examples

```
geoCV(mtcars$mpg)
```

geoMean

Geometric Mean without NA

Description

mean without NA values.

Usage

```
geoMean(y)
```

Arguments

У

a vector of numerics

26 GLM

Details

It removes NA in the input vector.

Value

geometric mean value

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

geoCV

Examples

geoMean(mtcars\$mpg)

GLM

General Linear Model similar to SAS PROC GLM

Description

GLM is the main function of this package.

Usage

```
GLM(Formula, Data, BETA=FALSE, EMEAN=FALSE, Resid=FALSE, conf.level=0.95,
    Weights=1)
```

Arguments

Formula a conventional formula for a linear model.

Data a data. frame to be analyzed

BETA if TRUE, coefficients (parameters) of REG will be returned. This is equivalent to

SOLUTION option of SAS PROC GLM

EMEAN if TRUE, least square means (or expected means) will be returned. This is equiv-

alent to LSMEANS clause of SAS PROC GLM

Resid if TRUE, fitted values (y hat) and residuals will be returned

conf.level confidence level for the confidence limit of the least square mean

Weights weights for the weighted least square

Details

It performs the core function of SAS PROC GLM. Least square means for the interaction term of three variables is not supported yet.

is.cor 27

Value

The result is comparable to that of SAS PROC GLM.

ANOVA table for the model

Fitness Some measures of goodness of fit such as R-square and CV

Type I Type I sum of square table

Type II Type II sum of square table

Type III Type III sum of square table

Parameter Parameter table with standard error, t value, p value. TRUE is 1, and FALSE is 0

in the Estimable column. This is returned only with BETA=TRUE option.

Expected Mean Least square (or expected) mean table with confidence limit. This is returned

only with EMEAN=TRUE option.

Fitted Fitted value or y hat. This is returned only with Resid=TRUE option.

Residual Weighted residuals. This is returned only with Resid=TRUE option.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
GLM(uptake ~ Type*Treatment + conc, CO2[-1,]) # Making data unbalanced

GLM(uptake ~ Type*Treatment + conc, CO2[-1,], BETA=TRUE)

GLM(uptake ~ Type*Treatment + conc, CO2[-1,], EMEAN=TRUE)

GLM(uptake ~ Type*Treatment + conc, CO2[-1,], Resid=TRUE)

GLM(uptake ~ Type*Treatment + conc, CO2[-1,], BETA=TRUE, EMEAN=TRUE)

GLM(uptake ~ Type*Treatment + conc, CO2[-1,], BETA=TRUE, EMEAN=TRUE, Resid=TRUE)
```

is.cor

Is it a correlation matrix?

Description

Testing if the input matrix is a correlation matrix or not

Usage

```
is.cor(m, eps=1e-16)
```

Arguments

m a presumed correlation matrix

eps epsilon value. An absolute value less than this is considered as zero.

Details

A diagonal component should not be necessarily 1. But it should be close to 1.

28 Kurtosis

Value

TRUE or FALSE

Author(s)

Kyun-Seop Bae k@acr.kr

Kurtosis

Kurtosis

Description

Kurtosis with a conventional formula.

Usage

Kurtosis(y)

Arguments

у

a vector of numerics

Details

It removes NA in the input vector.

Value

Estimate of kurtosis

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

KurtosisSE

KurtosisSE 29

KurtosisSE

Standard Error of Kurtosis

Description

Standard error of the estimated kurtosis with a conventional formula.

Usage

```
KurtosisSE(y)
```

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

Standard error of the estimated kurtosis

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

Kurtosis

LCL

Lower Confidence Limit

Description

The estimate of the lower bound of confidence limit using t-distribution

Usage

```
LCL(y, conf.level=0.95)
```

Arguments

y a vector of numerics conf.level confidence level

Details

It removes NA in the input vector.

30 lfit

Value

The estimate of the lower bound of confidence limit using t-distribution

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

UCL

lfit Linear Fit

Description

Fits a least square linear model.

Usage

```
lfit(x, y, eps=1e-8)
```

Arguments

x a result of ModelMatrix

y a column vector of response, dependent variable

eps Less than this value is considered as zero.

Details

Minimum version of least square fit of a linear model

Value

coeffcients beta coefficients g2 g2 inverse

rank of the model matrix

DFr degree of freedom for the residual

SSE sum of squares error
SST sum of squares total

DFr2 degree of freedom of the residual for beta coefficient

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

ModelMatrix

Ir 31

Examples

```
f1 = uptake ~ Type*Treatment + conc
x = ModelMatrix(f1, CO2)
y = model.frame(f1, CO2)[,1]
lfit(x, y)
```

lr

Linear Regression with g2 inverse

Description

Coefficients calculated with g2 inverse. Output is similar to summary(lm()).

Usage

```
lr(Formula, Data, eps=1e-8)
```

Arguments

Formula a conventional formula for a linear model

Data a data.frame to be analyzed

eps Less than this value is considered as zero.

Details

It uses G2SWEEP to get g2 inverse. The result is similar to summary(lm()) without options.

Value

The result is comparable to that of SAS PROC REG.

Estimate point estimate of parameters, coefficients

Std. Error standard error of the point estimate

t value value for t distribution

Pr(>|t|) probability of larger than absolute t value from t distribution with residual's

degree of freedom

Author(s)

Kyun-Seop Bae k@acr.kr

```
lr(uptake ~ Plant + Type + Treatment + conc, CO2)
lr(uptake ~ Plant + Type + Treatment + conc - 1, CO2)
lr(uptake ~ Type, CO2)
lr(uptake ~ Type - 1, CO2)
```

32 lr0

	a		
lr0	Simple Linear	Regressions with	Each Independent Variable

Description

Usually, the first step to multiple linear regression is simple linear regressions with a single independent variable.

Usage

```
lr0(Formula, Data)
```

Arguments

Formula a conventional formula for a linear model. Intercept will always be added.

Data a data.frame to be analyzed

Details

It performs simple linear regression for each independent variable.

Value

Each row means one simple linear regression with that row name as the only independent variable.

Intercept estimate of the intecept

SE(Intercept) standard error of the intercept

Slope estimate of the slope

SE(Slope) standard error of the slope

Rsq R-squared for the simple linear model

Pr(>F) p-value of slope or the model

Author(s)

```
Kyun-Seop Bae k@acr.kr
```

```
lr0(uptake ~ Plant + Type + Treatment + conc, CO2) lr0(mpg ~ ., mtcars)
```

LSM 33

|--|

Description

Estimates least square means using g2 inverse.

Usage

```
LSM(Formula, Data, Term, conf.level=0.95, adj="lsd", hideNonEst=TRUE, PLOT=FALSE, descend=FALSE, ...)
```

Arguments

Formula a conventional formula of model

Data data.frame

Term term name to be returned. If there is only one independent variable, this can be

omitted.

conf.level confidence level for the confidence limit

adj adjustment method for grouping, "lsd"(default), "tukey", "bon", "duncan", "scheffe"

are available. This does not affects SE, Lower CL, Upper CL of the output table.

hideNonEst logical. hide non-estimables

PLOT logical. whether to plot LSMs and their confidence intervals

descend logical. This specifies the plotting order be ascending or descending.

... arguments to be passed to plot

Details

It corresponds to SAS PROC GLM LSMEANS. The result of the second example below may be different from emmeans. This is because SAS or this function calculates mean of the transformed continuous variable. However, emmeans calculates the average before the transformation. Interaction of three variables is not supported yet. For adjust method "dunnett", see PDIFF function.

Value

Returns a table of expectations, t values and p-values.

Group group character. This appears with one-way ANOVA or Term or adj argument

is provided.

LSmean point estimate of least square mean

LowerCL lower confidence limit with the given confidence level by "Isd" method UpperCL upper confidence limit with the given confidence level by "Isd" method

SE standard error of the point estimate

Df degree of freedom of point estimate

Author(s)

Max Max

See Also

```
PDIFF, Diffogram
```

Examples

```
LSM(uptake ~ Type, CO2[-1,])
LSM(uptake ~ Type - 1, CO2[-1,])
LSM(uptake ~ Type*Treatment + conc, CO2[-1,])
LSM(uptake ~ Type*Treatment + conc - 1, CO2[-1,])
LSM(log(uptake) ~ Type*Treatment + log(conc), CO2[-1,])
LSM(log(uptake) ~ Type*Treatment + log(conc) - 1, CO2[-1,])
LSM(log(uptake) ~ Type*Treatment + as.factor(conc), CO2[-1,])
LSM(log(uptake) ~ Type*Treatment + as.factor(conc) - 1, CO2[-1,])
LSM(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata)
LSM(log(CMAX) ~ SEQ/SUBJ + PRD + TRT - 1, BEdata)
```

Max

Max without NA

Description

maximum without NA values.

Usage

Max(y)

Arguments

У

a vector of numerics

Details

It removes NA in the input vector.

Value

maximum value

Author(s)

Mean 35

Mean

Mean without NA

Description

mean without NA values.

Usage

Mean(y)

Arguments

У

a vector of numerics

Details

It removes NA in the input vector.

Value

mean value

Author(s)

Kyun-Seop Bae k@acr.kr

Median

Median without NA

Description

median without NA values.

Usage

Median(y)

Arguments

У

a vector of numerics

Details

It removes NA in the input vector.

Value

median value

Author(s)

36 ModelMatrix

Min

Min without NA

Description

minimum without NA values.

Usage

Min(y)

Arguments

У

a vector of numerics

Details

It removes NA in the input vector.

Value

minimum value

Author(s)

Kyun-Seop Bae k@acr.kr

ModelMatrix

Model Matrix

Description

This model matrix is similar to model.matrix. But it does not omit unnecessary columns.

Usage

ModelMatrix(Formula, Data, KeepOrder=FALSE, XpX=FALSE)

Arguments

Formula a conventional formula for a linear model

Data a data.frame to be analyzed

KeepOrder If KeepOrder is TRUE, terms in Formula will be kept. This is for Type I SS.

XpX If XpX is TRUE, the cross-product of the design matrix (XpX, X'X) will be re-

turned instead of the design matrix (X).

Details

It makes the model(design) matrix for GLM.

N 37

Value

Model matrix and attributes similar to the output of model.matrix.

X design matrix, i.e. model matrix

XpX cross-product of the design matrix, X'X

terms detailed information about terms such as formula and labels

termsIndices term indices

assign assignemnt of columns for each term in order, different way of expressing term

indices

Author(s)

Kyun-Seop Bae k@acr.kr

Ν

Number of observations

Description

Number of observations excluding NA values

Usage

N(y)

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

Count of the observation

Author(s)

Kyun-Seop Bae k@acr.kr

38 OR

OR Odds Ratio of two	groups
----------------------	--------

Description

Odds Ratio between two groups

Usage

```
OR(y1, n1, y2, n2, conf.level=0.95)
```

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group
y2	positive event count of control (the second) group
n2	total count of control (the second) group
conf.level	confidence level

Details

It calculates odds ratio of two groups. No continuity correction here. If you need percent scale, multiply the output by 100.

Value

The result is a data.frame.

odd1	proportion from the first group
odd2	proportion from the second group
OR	odds ratio, odd1/odd2
SElog	standard error of log(OR)
lower	lower confidence limit of OR
upper	upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
\mathsf{RD},\,\mathsf{RR},\,\mathsf{RDmn1},\,\mathsf{RRmn1},\,\mathsf{ORmn1},\,\mathsf{RDmn},\,\mathsf{RRmn},\,\mathsf{ORmn}
```

```
OR(104, 11037, 189, 11034) # no continuity correction
```

ORcmh 39

ORcmh	Odds Ratio of two groups with strata by CMH method
ORcmh	Odds Ratio of two groups with strata by CMH method

Description

Odds ratio and its score confidence interval of two groups with stratification by Cochran-Mantel-Haenszel method

Usage

```
ORcmh(d0, conf.level=0.95)
```

Arguments

d0 A data frame or matrix, of which each row means a strata. This should have four

columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1 and n2 for sample size of each strata. The second group is usually the control group.

conf.level confidence level

Details

It calculates odds ratio and its score confidence interval of two groups. This can be used for metaanalysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

odd1 odd from the first group, y1/(n1 - y1)odd2 odd from the second group, y2/(n2 - y2)

OR odds ratio, odd1/odd2. The point estimate of common OR is calculated with

MH weight.

lower confidence limit of OR upper upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn, RDinv, RRinv, ORinv
```

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE) colnames(d1) = c("y1", "n1", "y2", "n2") ORcmh(d1)
```

40 ORinv

OD:		
ORinv		

Odds Ratio of two groups with strata by inverse variance method

Description

Odds ratio and its score confidence interval of two groups with stratification by inverse variance method

Usage

```
ORinv(d0, conf.level=0.95)
```

Arguments

d0 A data frame or matrix, of which each row means a stratum. This should have

four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1 and n2 for sample size of each strata. The second group is usually the control

group.

conf.level confidence level

Details

It calculates odds ratio and its confidence interval of two groups by inverse variance method. This supports stratification. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

odd1 odd from the first group, y1/(n1 - y1)odd2 odd from the second group, y2/(n2 - y2)

OR odds ratio, odd1/odd2. The point estimate of common OR is calculated with

MH weight.

lower confidence limit of OR upper upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn, RDinv, RRinv, ORcmh
```

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE) colnames(d1) = c("y1", "n1", "y2", "n2") ORinv(d1)
```

ORmn 41

ORmn	Odds Ratio and Score CI of two groups with strata by MN method

Description

Odds ratio and its score confidence interval of two groups with stratification by the Miettinen and Nurminen method

Usage

```
ORmn(d0, conf.level=0.95, eps=1e-8)
```

Arguments

d0 A data.frame or matrix, of which each row means a strata. This should have four

columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1 and n2 for sample size of each strata. The second group is usually the control group.

conf.level confidence level

eps absolute value less than eps is regarded as negligible

Details

It calculates odds ratio and its score confidence interval of the two groups. The confidence interval is asymmetric, and there is no standard error in the output. This supports stratification. This implementation uses uniroot function, which usually gives at least 5 significant digits. Whereas PropCIs::orscoreci function uses incremental or decremental search by the factor of 1.001 which gives only about 3 significant digits. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

odd1 odd from the first group, y1/(n1 - y1) odd2 odd from the second group, y2/(n2 - y2)

OR odds ratio, odd1/odd2. The point estimate of common OR is calculated with

MN weight.

lower confidence limit of OR upper upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

```
RDmn1, RRmn1, ORmn1, RDmn, RRmn, RDinv, RRinv, ORinv, ORcmh
```

ORmn1

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE) colnames(d1) = c("y1", "n1", "y2", "n2") ORmn(d1)
```

ORmn1

Odds Ratio and Score CI of two groups without strata by the MN method

Description

Odds ratio and its score confidence interval of two groups without stratification

Usage

```
ORmn1(y1, n1, y2, n2, conf.level=0.95, eps=1e-8)
```

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group
y2	positive event count of control (the second) group
n2	total count of control (the second) group
conf.level	confidence level
eps	absolute value less than eps is regarded as negligibl

Details

It calculates odds ratio and its score confidence interval of the two groups. The confidence interval is asymmetric, and there is no standard error in the output. This does not support stratification. This implementation uses uniroot function, which usually gives at least 5 significant digits. Whereas PropCIs::orscoreci function uses incremental or decremental search by the factor of 1.001 which gives only less than 3 significant digits.

Value

There is no standard error.

```
odd1 odd from the first group, y1/(n1 - y1)
odd2 odd from the second group, y2/(n2 - y2)
OR odds ratio, odd1/odd2
lower of OR
```

upper upper confidence limit of OR

Author(s)

Kyun-Seop Bae k@acr.kr

pB 43

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

```
RDmn1, RRmn1, RDmn, RRmn, ORmn
```

Examples

```
ORmn1(104, 11037, 189, 11034)
```

рΒ

Plot Confidence and Prediction Bands for Simple Linear Regression

Description

It plots bands of the confidence interval and prediction interval for simple linear regression.

Usage

```
pB(Formula, Data, Resol=300, conf.level=0.95, lx, ly, ...)
```

Arguments

Formula a formula
Data a data.frame

Resol resolution for the output

conf.level confidence level

1x x position of legend

1y y position of legend

... arguments to be passed to plot

Details

It plots. Discard return values. If 1x or 1y is missing, the legend position is calculated automatically.

Value

Ignore return values.

Author(s)

Kyun-Seop Bae k@acr.kr

```
pB(hp ~ disp, mtcars)
pB(mpg ~ disp, mtcars)
```

Pcor.test Pcor.test

п	 •	+	-	st

Partial Correlation test of multiple columns

Description

Testing partial correlation between many columns of data with Pearson method.

Usage

```
Pcor.test(Data, x, y)
```

Arguments

Data	a numeric matrix or data.frame
x	names of columns to be tested
У	names of control columns

Details

It performs multiple partial correlation test. It uses "complete.obs" rows of x and y columns.

Value

Row names show which columns are used for the test

Estimate point estimate of correlation

Df degree of freedom

t value of the t distribution

Pr(>|t|) probability with the t distribution

Author(s)

```
Kyun-Seop Bae k@acr.kr
```

```
Pcor.test(mtcars, c("mpg", "hp", "qsec"), c("drat", "wt"))
```

pD 45

рD

Diagnostic Plot for Regression

Description

Four standard diagnostic plots for regression.

Usage

```
pD(rx, Title=NULL)
```

Arguments

rx a result of lm, which can give fitted, residuals, and rstandard.

Title title to be printed on the plot

Details

Most frequently used diagnostic plots are 'observed vs. fitted', 'standardized residual vs. fitted', 'distribution plot of standard residuals', and 'Q-Q plot of standardized residuals'.

Value

Four diagnostic plots in a page.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
pD(lm(uptake ~ Plant + Type + Treatment + conc, CO2), "Diagnostic Plot")
```

PDIFF

Pairwise Difference

Description

Estimates pairwise differences by a common method.

Usage

46 PDIFF

Arguments

Formula a conventional formula for a linear model

Data a data. frame to be analyzed

Term a factor name to be estimated

conf.level confidence level of confidence interval

adj "lsd", "tukey", "scheffe", "bon", "duncan", or "dunnett" to adjust p-value and

confidence limit

ref reference or control level for Dunnett test

PLOT whether to plot or not the diffogram

reverse A - B to B - A

... arguments to be passed to plot

Details

It corresponds to PDIFF option of SAS PROC GLM.

Value

Returns a table of expectations, t values and p-values. Output columns may vary according to the adjustment option.

Estimate point estimate of the input linear contrast

Lower CL lower confidence limit
Upper CL upper confidence limit

Std. Error standard error of the point estimate

t value value for t distribution

Df degree of freedom

Pr(>|t|) probability of larger than absolute t value from t distribution with residual's

degree of freedom

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
LSM, Diffogram
```

```
PDIFF(uptake ~ Type*Treatment + as.factor(conc), CO2, "as.factor(conc)")
PDIFF(uptake ~ Type*Treatment + as.factor(conc), CO2, "as.factor(conc)", adj="tukey")
```

pResD 47

pResD

Residual Diagnostic Plot for Regression

Description

Nine residual diagnostics plots.

Usage

```
pResD(rx, Title=NULL)
```

Arguments

rx a result of lm, which can give fitted, residuals, and rstandard.

Title title to be printed on the plot

Details

SAS-style residual diagnostic plots.

Value

Nine residual diagnostic plots in a page.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
pResD(lm(uptake ~ Plant + Type + Treatment + conc, CO2), "Residual Diagnostic Plot")
```

 ${\tt QuartileRange}$

Inter-Quartile Range

Description

Interquartile range (Q3 - Q1) with a conventional formula.

Usage

```
QuartileRange(y, Type=2)
```

Arguments

y a vector of numerics

Type a type specifier to be passed to IQR function

Details

It removes NA in the input vector. Type 2 is SAS default, while Type 6 is SPSS default.

48 RanTest

Value

The value of an interquartile range

Author(s)

Kyun-Seop Bae k@acr.kr

Range Range

Description

The range, maximum - minimum, as a scalar value.

Usage

Range(y)

Arguments

y a vector of numerics

Details

It removes NA in the input vector.

Value

A scalar value of a range

Author(s)

Kyun-Seop Bae k@acr.kr

RanTest

Test with Random Effects

Description

Hypothesis test of with specified type SS using random effects as error terms. This corresponds to SAS PROC GLM's RANDOM /TEST clause.

Usage

```
RanTest(Formula, Data, Random="", Type=3, eps=1e-8)
```

RD 49

Arguments

Formula a conventional formula for a linear model

Data a data.frame to be analyzed

Random a vector of random effects. All should be specified as primary terms, not as in-

teraction terms. All interaction terms with random factor are regarded as random

effects.

Type Sum of square type to be used as contrast eps Less than this value is considered as zero.

Details

Type can be from 1 to 3. All interaction terms with random factor are regarded as random effects. Here the error term should not be MSE.

Value

Returns ANOVA and E(MS) tables with specified type SS.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
\label{eq:rander} $$\operatorname{RanTest}(\log(\operatorname{CMAX}) \sim \operatorname{SEQ/SUBJ} + \operatorname{PRD} + \operatorname{TRT}, \operatorname{BEdata}, \operatorname{Random="SUBJ"})$$ fBE = \log(\operatorname{CMAX}) \sim \operatorname{ADM/SEQ/SUBJ} + \operatorname{PRD} + \operatorname{TRT} $$ \operatorname{RanTest}(\operatorname{fBE}, \operatorname{BEdata}, \operatorname{Random=c}(\operatorname{"ADM"}, \operatorname{"SUBJ"})) $$ \operatorname{RanTest}(\operatorname{fBE}, \operatorname{BEdata}, \operatorname{Random=c}(\operatorname{"ADM"}, \operatorname{"SUBJ"}), \operatorname{Type=2}) $$ \operatorname{RanTest}(\operatorname{fBE}, \operatorname{BEdata}, \operatorname{Random=c}(\operatorname{"ADM"}, \operatorname{"SUBJ"}), \operatorname{Type=1}) $$
```

RD

Risk Difference between two groups

Description

Risk (proportion) difference between two groups

Usage

```
RD(y1, n1, y2, n2, conf.level=0.95)
```

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group
y2	positive event count of control (the second) group
n2	total count of control (the second) group
conf.level	confidence level

RDinv

Details

It calculates risk difference between the two groups. No continuity correction here. If you need percent scale, multiply the output by 100.

Value

The result is a data.frame.

p1	proportion from the first group
p2	proportion from the second group
RD	risk difference, p1 - p2
SE	standard error of RD
lower	lower confidence limit of RD
upper	upper confidence limit of RD

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
RR, OR, RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn
```

Examples

```
RD(104, \ 11037, \ 189, \ 11034) # no continuity correction
```

RDinv	Risk Difference between two groups with strata by inverse variance
	method

Description

Risk difference and its score confidence interval between two groups with stratification by inverse variance method

Usage

```
RDinv(d0, conf.level=0.95)
```

Arguments

d0	A data.frame or matrix, of which each row means a stratum. This should have
----	---

four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1 and n2 for the sample size of each stratum. The second group is usually the

control group.

conf.level confidence level

RDmn 51

Details

It calculates risk difference and its confidence interval between two groups by inverse variance method. If you need percent scale, multiply the output by 100. This supports stratification. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

p1 proportion from the first group, y1/n1 p2 proportion from the second group, y2/n2

RD risk difference, p1 - p2. The point estimate of common RD is calculated with

MH weight.

lower confidence limit of RD upper upper confidence limit of RD

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn, RRinv, ORinv, ORcmh
```

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE) colnames(d1) = c("y1", "n1", "y2", "n2") RDinv(d1)
```

RDmn Risk Difference and Score CI between two groups with strata by the MN method

Description

Risk difference and its score confidence interval between two groups with stratification by the Miettinen and Nurminen method

Usage

```
RDmn(d0, conf.level=0.95, eps=1e-8)
```

Arguments

d0 A data frame or matrix, of which each row means a stratum. This should have

four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1 and n2 for sample size of each stratum. The second group is usually the control $\frac{1}{2}$

group. Maximum allowable value for n1 and n2 is 1e8.

conf.level confidence level

eps absolute value less than eps is regarded as negligible

52 RDmn1

Details

It calculates risk difference and its score confidence interval between the two groups. The confidence interval is asymmetric, and there is no standard error in the output. If you need percent scale, multiply the output by 100. This supports stratification. This implementation uses uniroot function which usually gives at least 5 significant digits. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

p1	proportion from the first group, y1/n1
p2	proportion from the second group, y2/n2

RD risk difference, p1 - p2. The point estimate of common RD is calculated with

MN weight.

lower confidence limit of RD upper upper confidence limit of RD

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

```
RDmn1, RRmn1, ORmn1, RRmn, ORmn, RDinv, RRinv, ORinv, ORcmh
```

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE) colnames(d1) = c("y1", "n1", "y2", "n2") RDmn(d1)
```

RDmn1

Risk Difference and Score CI between two groups without strata by the MN method

Description

Risk difference and its score confidence interval between two groups without stratification

Usage

```
RDmn1(y1, n1, y2, n2, conf.level=0.95, eps=1e-8)
```

RDmn1 53

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group. Maximum allowable value is 1e8.
y2	positive event count of control (the second) group
n2	total count of control (the second) group. Maximum allowable value is 1e8.
conf.level	confidence level
eps	absolute value less than eps is regarded as negligible

Details

It calculates risk difference and its score confidence interval between the two groups. The confidence interval is asymmetric, and there is no standard error in the output. If you need percent scale, multiply the output by 100. This does not support stratification. This implementation uses uniroot function which usually gives at least 5 significant digits.

Value

There is no standard error.

p1	proportion from the first group, y1/n1
p2	proportion from the second group, y2/n2
RD	risk difference, p1 - p2
lower	lower confidence limit of RD
upper	upper confidence limit of RD

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

```
RRmn1, ORmn1, RDmn, RRmn, ORmn
```

```
RDmn1(104, 11037, 189, 11034)
```

54 REG

REG Regression of Linear Least Square, similar to SAS PROC REG

Description

REG is similar to SAS PROC REG.

Usage

```
REG(Formula, Data, conf.level=0.95, HC=FALSE, Resid=FALSE, Weights=1,
    summarize=TRUE)
```

Arguments

Formula a conventional formula for a linear model

Data a data.frame to be analyzed

conf.level confidence level for the confidence limit

HC heteroscedasticity related output is required such as HC0, HC3, White's first and

second moment specification test

Resid if TRUE, fitted values (y hat) and residuals will be returned

Weights weights for each observation or residual square. This is usually the inverse of

each variance.

summarize If this is FALSE, REG returns just 1fit result.

Details

It performs the core function of SAS PROC REG.

Value

The result is comparable to that of SAS PROC REG.

The first part is ANOVA table.

The second part is measures about fitness.

The third part is the estimates of coefficients.

Estimate point estimate of parameters, coefficients

Estimable estimability: 1=TRUE, 0=FALSE. This appears only when at least one inestima-

bility occurs.

Std. Error standard error of the point estimate

Lower CL lower confidence limit with conf.level

Upper CL lower confidence limit with conf.level

Df degree of freedom t value value for t distribution

Pr(>|t|) probability of larger than absolute t value from t distribution with residual's

degree of freedom

regD 55

The above result is repeated using HC0 and HC3, with following White's first and second moment specification test, if HC option is specified. The t values and their p values with HC1 and HC2 are between those of HC0 and H3.

Fitted Fitted value or y hat. This is returned only with Resid=TRUE option.

Residual Weighted residuals. This is returned only with Resid=TRUE option.

If summarize=FALSE, REG returns;

coeffcients beta coefficients g2 g2 inverse

rank of the model matrix

DFr degree of freedom for the residual

SSE sum of square error

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

1r

Examples

```
REG(uptake ~ Plant + Type + Treatment + conc, CO2)
REG(uptake ~ conc, CO2, HC=TRUE)
REG(uptake ~ conc, CO2, Resid=TRUE)
REG(uptake ~ conc, CO2, HC=TRUE, Resid=TRUE)
REG(uptake ~ conc, CO2, summarize=FALSE)
```

regD

Regression of Conventional Way with Rich Diagnostics

Description

regD provides rich diagnostics such as student residual, leverage(hat), Cook's D, studentized deleted residual, DFFITS, and DFBETAS.

Usage

```
regD(Formula, Data)
```

Arguments

Formula a conventional formula for a linear model

Data a data.frame to be analyzed

Details

It performs the conventional regression analysis. This does not use g2 inverse, therefore it cannot handle a singular matrix. If the model(design) matrix is not full rank, use REG or fewer parameters.

56 RR

Value

Coefficients conventional coefficients summary with Wald statistics

Diagnostics Diagnostics table for detecting outlier or influential/leverage points. This in-

cludes fitted (Predicted), residual (Residual), standard error of residual(se_resid), studentized residual(RStudent), hat(Leverage), Cook's D, studentized deleted

residual(sdResid), DIFFITS, and COVRATIO.

DFBETAS Column names are the names of coefficients. Each row shows how much each

coefficient is affected by deleting the corresponding row of observation.

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
regD(uptake ~ conc, CO2)
```

RR

Relative Risk of the two groups

Description

Relative Risk between the two groups

Usage

```
RR(y1, n1, y2, n2, conf.level=0.95)
```

Arguments

y1 positive event count of test (the first) group n1 total count of the test (the first) group

y2 positive event count of control (the second) group

n2 total count of control (the second) group

conf.level confidence level

Details

It calculates relative risk of the two groups. No continuity correction here. If you need percent scale, multiply the output by 100.

Value

The result is a data.frame.

p1 proportion from the first group p2 proportion from the second group

RR relative risk, p1/p2

SElog standard error of log(RR)

lower lower confidence limit of RR

upper upper confidence limit of RR

RRinv 57

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
RD, OR, RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn
```

Examples

```
RR(104, 11037, 189, 11034) # no continuity correction
```

RRinv

Relative Risk of two groups with strata by inverse variance method

Description

Relative risk and its score confidence interval of two groups with stratification by inverse variance method

Usage

```
RRinv(d0, conf.level=0.95)
```

Arguments

d0 A data frame or matrix, of which each row means a stratum. This should have

four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1 and n2 for sample size of each stratum. The second group is usually the control

group.

conf.level confidence level

Details

It calculates relative risk and its confidence interval of two groups by inverse variance method. This supports stratification. This can be used for meta-analysis also.

Value

The following output will be returned for each stratum and common value. There is no standard error.

p1 proportion from the first group, y1/n1 p2 proportion from the second group, y2/n2

RR relative risk, p1/p2. The point estimate of common RR is calculated with MH

weight.

lower confidence limit of RR upper upper confidence limit of RR

Author(s)

Kyun-Seop Bae k@acr.kr

58 RRmn

See Also

```
RDmn1, RRmn1, ORmn1, RDmn, RRmn, ORmn, RDinv, ORinv, ORcmh
```

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE) colnames(d1) = c("y1", "n1", "y2", "n2") RRinv(d1)
```

RRmn

Relative Risk and Score CI of two groups with strata by the MN method

Description

Relative risk and its score confidence interval of two groups with stratification by the Miettinen and Nurminen method

Usage

```
RRmn(d0, conf.level=0.95, eps=1e-8)
```

Arguments

do A data frame or matrix, of which each row means a strata. This should have

four columns named y1, n1, y2, and n2; y1 and y2 for events of each group, n1 and n2 for sample size of each stratum. The second group is usually the control

group.

conf.level confidence level

eps absolute value less than eps is regarded as negligible

Details

It calculates relative risk and its score confidence interval of the two groups. The confidence interval is asymmetric, and there is no standard error in the output. This supports stratification. This implementation uses uniroot function, which usually gives at least 5 significant digits. Whereas PropCIs::riskscoreci function uses cubic equation approximation which gives only about 2 significant digits. This can be used for meta-analysis also.

Value

The following output will be returned for each strata and common value. There is no standard error.

p1 proportion from the first group, y1/n1 p2 proportion from the second group, y2/n2

RR relative risk, p1/p2. Point estimate of common RR is calculated with MN weight.

lower confidence limit of RR upper upper confidence limit of RR

Author(s)

Kyun-Seop Bae k@acr.kr

RRmn1 59

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

```
RDmn1, RRmn1, ORmn1, RDmn, ORmn, RDinv, RRinv, ORinv, ORcmh
```

Examples

```
d1 = matrix(c(25, 339, 28, 335, 23, 370, 40, 364), nrow=2, byrow=TRUE) colnames(d1) = c("y1", "n1", "y2", "n2") RRmn(d1)
```

RRmn1

Relative Risk and Score CI of two groups without strata by by MN method

Description

Relative risk and its score confidence interval of the two groups without stratification

Usage

```
RRmn1(y1, n1, y2, n2, conf.level=0.95, eps=1e-8)
```

Arguments

y1	positive event count of test (the first) group
n1	total count of the test (the first) group
y2	positive event count of control (the second) group
n2	total count of control (the second) group
conf.level	confidence level
eps	absolute value less than eps is regarded as negligible

Details

It calculates the relative risk and its score confidence interval of the two groups. The confidence interval is asymmetric, and there is no standard error in the output. This does not support stratification. This implementation uses uniroot function, which usually gives at least 5 significant digits. Whereas PropCIs::riskscoreci function uses cubic equation approximation which gives only about 2 significant digits.

Value

There is no standard error.

p1 proportion from the first group, y1/n1 p2 proportion from the second group, y2/n2 RR relative risk, p1/p2

lower confidence limit of RR upper upper confidence limit of RR

60 satt

Author(s)

Kyun-Seop Bae k@acr.kr

References

Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985;4:213-26

See Also

```
RDmn1, ORmn1, RDmn, RRmn, ORmn
```

Examples

```
RRmn1(104, 11037, 189, 11034)
```

satt

Satterthwaite Approximation of Variance and Degree of Freedom

Description

Calculates pooled variance and degree of freedom using Satterthwaite equation.

Usage

```
satt(vars, dfs, ws=c(1, 1))
```

Arguments

vars a vector of variances

dfs a vector of degree of freedoms

ws a vector of weights

Details

The input can be more than two variances.

Value

Variance approximated variance
Df degree of freedom

Author(s)

Kyun-Seop Bae k@acr.kr

ScoreCI 61

ScoreCI

Score Confidence Interval for a Proportion or a Binomial Distribution

Description

Score confidence of a proportion in one group

Usage

```
ScoreCI(y, n, conf.level=0.95)
```

Arguments

y positive event count of a group

n total count of a group

conf.level confidence level

Details

It calculates score confidence interval of a proportion in one group. The confidence interval is asymmetric and there is no standard error in the output. If you need percent scale, multiply the output by 100.

Value

The result is a data.frame. There is no standard error.

PE point estimation for the proportion

Lower lower confidence limit of Prop

Upper upper confidence limit of Prop

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
binom.test, prop.test
```

```
ScoreCI(104, 11037)
```

62 SEM

SD

Standard Deviation

Description

Standard deviation of a sample.

Usage

SD(y)

Arguments

У

a vector of numerics

Details

It removes NA in the input vector. The length of the vector should be larger than 1.

Value

Sample standard deviation

Author(s)

Kyun-Seop Bae k@acr.kr

SEM

Standard Error of the Sample Mean

Description

The estimate of the standard error of the sample mean

Usage

SEM(y)

Arguments

У

a vector of numerics

Details

It removes NA in the input vector.

Value

The estimate of the standard error of the sample mean

Author(s)

Kyun-Seop Bae k@acr.kr

Skewness 63

Skewness

Skewness

Description

Skewness with a conventional formula.

Usage

Skewness(y)

Arguments

У

a vector of numerics

Details

It removes NA in the input vector.

Value

Estimate of skewness

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

SkewnessSE

SkewnessSE

Standard Error of Skewness

Description

Standard errof of the skewness with a conventional formula.

Usage

SkewnessSE(y)

Arguments

У

a vector of numerics

Details

It removes NA in the input vector.

64 SLICE

Value

Standard error of the estimated skewness

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

Skewness

SLICE

F Test with Slice

Description

Do F test with a given slice term.

Usage

```
SLICE(Formula, Data, Term, By)
```

Arguments

Formula a conventional formula for a linear model

Data a data.frame to be analyzed

Term a factor name (not interaction) to calculate the sum of square and do F test with

least square means

By a factor name to be used for slice

Details

It performs F test with a given slice term. It is similar to the SLICE option SAS PROC GLM.

Value

Returns sum of square and its F value and p-value. Row names are the levels of the slice term.

Df degree of freedom

Sum Sq sum of square for the set of contrasts

Mean Sq mean square

F value F value for the F distribution

Pr(>F) proability of larger than F value

Author(s)

Kyun-Seop Bae k@acr.kr

```
SLICE(uptake ~ Type*Treatment, CO2, "Type", "Treatment")
SLICE(uptake ~ Type*Treatment, CO2, "Treatment", "Type")
```

SS 65

SS

Sum of Square

Description

Sum of squares with ANOVA.

Usage

```
SS(x, rx, L, eps=1e-8)
```

Arguments

x a result of ModelMatrix containing design information

rx a result of lfit

L linear hypothesis, a full matrix matching the information in x

eps Less than this value is considered as zero.

Details

It calculates sum of squares and completes the ANOVA table.

Value

ANOVA table a classical ANOVA table without the residual(Error) part.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

ModelMatrix, lfit

T3MS

Type III Expected Mean Square Formula

Description

Calculates a formula table for expected mean square of Type III SS.

Usage

```
T3MS(Formula, Data, L0, eps=1e-8)
```

66 *T3test*

Arguments

Formula a conventional formula for a linear model

Data a data.frame to be analyzed

L0 a matrix of row linear contrasts, if missed, e3 is used

eps Less than this value is considered as zero.

Details

This is necessary for further hypothesis tests of nesting factors.

Value

A coefficient matrix for Type III expected mean square

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
T3MS(log(CMAX) \sim SEQ/SUBJ + PRD + TRT, BEdata)
```

T3test

Test Type III SS using error term other than MSE

Description

Hypothesis test of Type III SS using an error term other than MSE. This corresponds to SAS PROC GLM's RANDOM /TEST clause.

Usage

```
T3test(Formula, Data, H="", E="", eps=1e-8)
```

Arguments

Formula a conventional formula for a linear model

Data a data. frame to be analyzed

H Hypothesis term

E Error tem

eps Less than this value is considered as zero.

Details

It tests a factor of type III SS using some other term as an error term. Here the error term should not be MSE.

Value

Returns one or more ANOVA table(s) of type III SS.

trimmedMean 67

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

```
T3test(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata, E=c("SEQ:SUBJ"))
T3test(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata, H="SEQ", E=c("SEQ:SUBJ"))
```

trimmedMean

Trimmed Mean

Description

Trimmed mean wrapping mean function.

Usage

```
trimmedMean(y, Trim=0.05)
```

Arguments

y a vector of numerics

Trim trimming proportion. Default is 0.05

Details

It removes NA in the input vector.

Value

The value of trimmed mean

Author(s)

Kyun-Seop Bae k@acr.kr

tsum

Table Summary

Description

Summarize a continuous dependent variable with or without independent variables.

Usage

```
tsum(Formula=NULL, Data=NULL, ColNames=NULL, MaxLevel=30, ...)
```

68 tsum0

Arguments

Formula a conventional formula

Data a data.frame or a matrix

ColNames If there is no Formula, this will be used.

MaxLevel More than this will not be handled.

... arguments to be passed to tsum0, tsum1, tsum2, or tsum3

Details

A convenient summarization function for a continuous variable. This is a wrapper function to tsum0, tsum1, tsum2, or tsum3.

Value

A data.frame of descriptive summarization values.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
tsum0, tsum1, tsum2, tsum3
```

Examples

```
tsum(1h)
t(tsum(CO2))
t(tsum(uptake ~ Treatment, CO2))
tsum(uptake ~ Type + Treatment, CO2)
print(tsum(uptake ~ conc + Type + Treatment, CO2), digits=3)
```

tsum0

Table Summary 0 independent(x) variable

Description

Summarize a continuous dependent(y) variable without any independent(x) variable.

Usage

```
tsum0(d, y, e=c("Mean", "SD", "N"), repl=list(c("length"), c("n")))
```

Arguments

d	a data.frame or matrix with colnames
У	y variable name, a continuous variable
е	a vector of summarize function names

repl list of strings to replace after summarize. The length of list should be 2, and

both should have the same length.

tsum1 69

Details

A convenient summarization function for a continuous variable.

Value

A vector of summarized values

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
tsum, tsum1, tsum2, tsum3
```

Examples

```
tsum0(CO2, "uptake")
tsum0(CO2, "uptake", repl=list(c("mean", "length"), c("Mean", "n")))
```

tsum1

Table Summary 1 independent(x) variable

Description

Summarize a continuous dependent(y) variable with one independent(x) variable.

Usage

```
tsum1(d, y, u, e=c("Mean", "SD", "N"), ou="", repl=list(c("length"), ("n")))
```

Arguments

d	a data.frame or matrix with colnames
у	y variable name. a continuous variable
u	x variable name, upper side variable
e	a vector of summarize function names
ou	order of levels of upper side x variable
repl	list of strings to replace after summarize. The length of list should be 2, and both should have the same length.

Details

A convenient summarization function for a continuous variable with one x variable.

Value

A data.frame of summarized values. Row names are from e names. Column names are from the levels of x variable.

70 tsum2

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
tsum, tsum0, tsum2, tsum3
```

Examples

tsum2

Table Summary 2 independent(x) variables

Description

Summarize a continuous dependent(y) variable with two independent(x) variables.

Usage

```
tsum2(d, y, l, u, e=c("Mean", "SD", "N"), h=NULL, ol="", ou="", rm.dup=TRUE, repl=list(c("length"), c("n")))
```

Arguments

d	a data.frame or matrix with colnames
У	y variable name. a continuous variable
1	x variable name to be shown on the left side
u	x variable name to be shown on the upper side
e	a vector of summarize function names
h	a vector of summarize function names for the horizontal subgroup. If $\ensuremath{NULL},$ it becomes the same as e argument.
ol	order of levels of left side x variable
ou	order of levels of upper side x variable
rm.dup	if TRUE, duplicated names of levels are specified on the first occurrence only.
repl	list of strings to replace after summarize. The length of list should be 2, and both should have the same length.

Details

A convenient summarization function for a continuous variable with two x variables; one on the left side, the other on the upper side.

tsum3 71

Value

A data.frame of summarized values. Column names are from the levels of u. Row names are basically from the levels of 1.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
tsum, tsum0, tsum1, tsum3
```

Examples

tsum3

Table Summary 3 independent(x) variables

Description

Summarize a continuous dependent(y) variable with three independent(x) variables.

Usage

Arguments

d	a data.frame or matrix with colnames
у	y variable name. a continuous variable
1	a vector of two x variable names to be shown on the left side. The length should be 2 .
u	x variable name to be shown on the upper side
е	a vector of summarize function names
h	a list of two vectors of summarize function names for the first and second horizontal subgroups. If NULL, it becomes the same as e argument.
ol1	order of levels of 1st left side x variable
ol2	order of levels of 2nd left side x variable
ou	order of levels of upper side x variable
rm.dup	if TRUE, duplicated names of levels are specified on the first occurrence only.
repl	list of strings to replace after summarize. The length of list should be 2, and both should have the same length.

72 UCL

Details

A convenient summarization function for a continuous variable with three x variables; two on the left side, the other on the upper side.

Value

A data.frame of summarized values. Column names are from the levels of u. Row names are basically from the levels of 1.

Author(s)

Kyun-Seop Bae k@acr.kr

See Also

```
tsum, tsum0, tsum1, tsum2
```

Examples

UCL

Upper Confidence Limit

Description

The estimate of the upper bound of the confidence limit using t-distribution

Usage

```
UCL(y, conf.level=0.95)
```

Arguments

```
y a vector of numerics conf.level confidence level
```

Details

It removes NA in the input vector.

Value

The estimate of the upper bound of the confidence limit using t-distribution

Author(s)

```
Kyun-Seop Bae k@acr.kr
```

UNIV 73

UNIV Univariate Descriptive Statistics

Description

Returns descriptive statistics of a numeric vector.

Usage

```
UNIV(y, conf.level = 0.95)
```

Arguments

y a numeric vector

conf. level confidence level for confidence limit

Details

A convenient and comprehensive function for descriptive statistics. NA is removed during the calculation. This is similar to SAS PROC UNIVARIATE.

Value

nAll count of all elements in the input vector

nNA count of NA element nFinite count of finite numbers Mean mean excluding NA

SD standard deviation excluding NA
CV coefficient of variation in percent

SEM standard error of the sample mean, the sample mean divided by nFinite

LowerConfLimit lower confidence limit of given confidence interval UpperConfLimit upper confidence limit of given confidence interval TrimmedMean trimmed mean with trimming 1 - confidence level

Min minimum value
Q1 first quartile value
Median median value
Q3 third quartile value
Max maximum value

Range range of finite numbers. maximum - minimum

IQR inter-quartile range type 2, which is SAS default

MAD mean absolute deviation

Skewness skewness

SkewnessSE standard error of skewness

Kurtosis kurtosis KurtosisSE kurtosis

GeometricMean geometric mean, calculated only when all given values are positive.

GeometricCV geometric coefficient of variation in percent, calculated only when all given val-

ues are positive.

74 WhiteTest

Author(s)

Kyun-Seop Bae k@acr.kr

Examples

UNIV(1h)

WhiteTest

White's Model Specification Test

Description

This is shown in SAS PROC REG as the Test of First and Second Moment Specification.

Usage

```
WhiteTest(rx)
```

Arguments

rx

a result of lm

Details

This is also called as White's general test for heteroskedasticity.

Value

Returns a direct test result by more coomplex theorem 2, not by simpler corollary 1.

Author(s)

Kyun-Seop Bae k@acr.kr

References

White H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 1980;48(4):817-838.

```
WhiteTest(lm(mpg ~ disp, mtcars))
```

Index

* Descriptive Statistics	GLM, 26
UNIV, 73	
* Table Summary	is.cor, 27
tsum, 67	
tsum0,68	Kurtosis, 28, 29
tsum1,69	KurtosisSE, 28, 29
tsum2,70	1.01.20
tsum3,71	LCL, 29
* datasets	lfit, 24, 30, 65
aspirinCHD, 8	lr, 31, 55
BEdata, 8	lr0, 32
	LSM, 17, 33, 46
af, 4	Max, 34
aov1, 5	Mean, 35
aov2, 6	Median, 35
aov3, 7	Min, 36
aspirinCHD, 8	ModelMatrix, 24, 30, 36, 65
PEdata 8	110000111001111, 27, 30, 30, 03
BEdata, 8 binom.test, 61	N, 37
bk, 9	,
BY, 10	OR, 38, 50, 57
51, 10	ORcmh, 39, 40, 41, 51, 52, 58, 59
CIest, 11	ORinv, 39, 40, 41, 51, 52, 58, 59
Coll, 12	ORmn, 38–40, 41, 43, 50–53, 57–60
CONTR, 12, <i>16</i>	ORmn1, 38–41, 42, 50–53, 57–60
Cor.test, 13	
corFisher, 14	pB, 43
cSS, <i>13</i> , 15	Pcor.test,44
CV, 16	pD, 45
,	PDIFF, 17, 21, 34, 45
Diffogram, 17, 34, 46	pResD, 47
	prop.test, 61
e1, 18	
e2, 18	QuartileRange,47
e3, 19	Damma 40
EMS, 20	Range, 48
est, 20, 22	RanTest, 48
ESTM, 21, 22	RD, 38, 49, 57 RDinv, 39–41, 50, 52, 58, 59
estmb, 23	RDINV, 39–41, 30, 32, 38, 39 RDmn, 38–41, 43, 50, 51, 51, 53, 57–60
ESTMIMATE (ESTM), 22	
C25WEED 23 23	RDmn1, 38–41, 43, 50–52, 52, 57–60
G2SWEEP, 23, 23	REG, 54
geoCV, 25, 26 geoMean, 25, 25	regD, 55
geomean, 23, 23	RR, 38, 50, 56

76 INDEX

```
RRinv, 39-41, 51, 52, 57, 59
RRmn, 38–41, 43, 50–53, 57, 58, 58, 60
RRmn1, 38–41, 43, 50–53, 57–59, 59
sasLM (sasLM-package), 3
sasLM-package, 3
satt, 60
ScoreCI, 61
SD, 62
SEM, 62
Skewness, 63, 64
SkewnessSE, 63, 63
SLICE, 64
SS, 65
T3MS, 65
T3test, 66
trimmedMean, 67
tsum, 67, 69-72
tsum0, 9, 68, 68, 70-72
tsum1, 9, 68, 69, 69, 71, 72
tsum2, 9, 68-70, 70, 72
tsum3, 9, 68-71, 71
UCL, 30, 72
UNIV, 73
WhiteTest, 74
```