2. Tìm tất cả các hàm số f N*->N* thoả mãn:

Với mọi số nguyên dương a,b, f(ab)=f(a)f(b)

Với mọi số nguyên dương a,b ít nhất 2 trong 3 số f(a),f(b),f(a+b) có giá trị bằng nhau

Ta chỉ cần xét f(p) với p là số nguyên tố

Xét p là số nguyên tố nhỏ nhất để f(p)>1

Để ý là nếu f(n) và f(n+1) đều khác 1 thì f(n)=f(n+1)

Bây giờ giả sử tồn tại số nguyên dương n để f(n),f(n+1),...,f(n+p-1) đều khác 1, khi này f(n)=f(n+1)=...=f(n+p-1). WLOG f(n-1)=1, nếu ko ta có f(n-1)=f(n) và ta có thể lùi xuống.

Khi này xét f((p-1)(n-1)), f(n+p-1) và f(pn), để ý f(p-1)=f(n-1)=1, f(pn)=f(p)f(n) và f(n+p-1)=f(n) và vì f(p)>1 nên cả 3 số đôi 1 phân biệt, tạch

Nên trong p số liên tiếp phải có 1 số mà f của nó =1.

Nếu có p số nguyên tố $q_1,q_2,...,q_p$ mà $f(q_i)>1$ với i=1,2,...,p

Khi này chọn $n+1\equiv 0 \pmod{q_1}$, $n+2\equiv 0 \pmod{q_2}$..., $n+p\equiv 0 \pmod{q_p}$ thì ta lại có p số nguyên dương liên tiếp thoả f của chúng >1, tạch.

Giả sử $q_1,q_2,...,q_m$ là tất cả m số nguyên tổ thoả $f(q_i)>1$ với i=1,2,...,m, vậy nên với mọi n nguyên tố cùng nhau với $q_1,q_2,...,q_m$ thì f(n)=1

Nếu m \geq 2 thì xét f(q₁^k), f(q₂...q_m) và f(q₁^k+ q₂...q_m) thì f(q₁^k+ q₂...q_m)=1 và f(q₂...q_m)< f(q₁^k) khi k đủ lớn, tạch

Vậy nên có ko quá 1 số nguyên tố q để f(q)>1.

Khi này ta đ
c $f(n)=c^{v_q(n)}$ với mọi số nguyên dương n.