Title

D. Zack Garza

Sunday 23rd August, 2020

Contents

1	Friday, August 21	1
	1.1 Intro and Definitions	1
1	Friday, August 21	

1.1 Intro and Definitions

Definition 1.0.1 (Affine Variety).

Let $k = \overline{k}$ be algebraically closed (e.g. $k = \mathbb{C}, \overline{\mathbb{F}_p}$). A variety $V \subseteq k^n$ is an affine k-variety iff V is the zero set of a collection of polynomials in $k[x_1, \dots, x_n]$.

Here $\mathbb{A}^n := k^n$ with the Zariski topology, so the closed sets are varieties.

Definition 1.0.2 (Affine Algebraic Group).

An $affine\ algebraic\ k$ -group is an affine variety with the structure of a group, where the multiplication and inversion maps

$$\mu:G\times G\longrightarrow G$$

$$\iota:G\longrightarrow G$$

are continuous.

Example 1.1.

 $G = \mathbb{G}_a \subseteq k$ the additive group of k is defined as $\mathbb{G}_a := (k, +)$. We then have a coordinate ring $k[\mathbb{G}_a] = k[x]/I = k[x]$.

Example 1.2.

G = GL(n, k), which has coordinate ring $k[x_{ij}, T]/\det(x_{ij}) \cdot T = 1$.

Example 1.3.

Setting n=1 above, we have $\mathbb{G}_m := \mathrm{GL}(1,k) = (k^{\times},\cdot)$. Here the coordinate ring is $k[x,T]/\langle xT=1\rangle$.