Data Streams

- The Stream Data Model
- Stream Queries
- Sampling Data in a Stream
- Filtering Streams
- Counting Distinct Elements in a Stream
- Estimating Moments
- Window Queries

Reading: Chapter 4, Mining of Massive Datasets (Leskovec, Rajaraman, Ullman), http://www.mmds.org

The Stream Data Model

Main assumptions

- Data arrive in one or more streams
- If not processed immediately (or stored), data are lost forever
- Data arrive rapidly
 - not feasible to store data, then process them and obtain results in real time
 - data volumes may exceed storage capacity
- The input rate is controlled externally
 - Google queries
 - Twitter or Facebook status updates
- Data are infinite and non-stationary (the distribution changes over time)

General Stream Processing Model

Ad-hoc queries on a DBMS vs. Standing queries on a DSMS

Problems on Data Streams

- Types of queries one wants on answer on a data stream:
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate avg./std. dev. of last k elements
 - Finding frequent elements

Applications (1)

Analyzing query streams

Google wants to know what queries are more frequent today than yesterday

Analyzing click streams

Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

Analyzing social network news feeds

E.g., look for trending topics on Twitter, Facebook

Applications (2)

Sensor Networks

Many sensors feeding into a central controller

Telephone call records

 Data feeds into customer bills as well as settlements between telephone companies

IP packets monitored at a switch

- Gather information for optimal routing
- Detect denial-of-service attacks

■ Image data

- Satellites transmit streams of imagery data
- Surveillance cameras produce image streams

Approaches

- Maintain and use data summaries while processing the stream
- Process standing queries continuously and filter out useless data
- Apply queries and analysis tasks on a sliding window with the last k elements
- Many stream processing techniques give approximate result by nature!

Sampling from a Stream

Sampling from a Stream

□ Two different problems:

- 1. Sample a fixed proportion of elements in the stream (say 1 in 10)
- 2. Maintain a random sample of fixed size s over a potentially infinite stream
 - At each time k, each of the k elements seen so far has equal probability of being sampled

Objective:

 ask queries on the selected subset and have the answers be statistically representative of the stream as a whole

Example

- Application: Search engine
- Stream of tuples: (user, query, time)
- Answer questions such as: How often did a user run the same query in a single day
- Space for sample: 1/10th of query stream
- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - Keep the query if the integer is 0, otherwise discard

Problem with Naïve Approach

- Query: What fraction of queries by an average search engine user are duplicates?
- Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - **Correct answer:** d/(x+d)
- Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
 - But only d/100 pairs of duplicates
 - $d/100 = 1/10 \cdot 1/10 \cdot d$
 - Of d "duplicates" 18d/100 appear exactly once in sample
 - □ 18d/100 = ((1/10 · 9/10)+(9/10 · 1/10)) · d
- \blacksquare So the sample-based answer is $\frac{x}{x}$

Solution: Sample Users

Solution:

- □ Pick 1/10th of users and take all their searches in the sample
- Use a hash function that maps the user name or user id uniformly to 10 numbers: 0..9
 - Keep data only from users that hash to number 0
 - Using a hash function avoids explicitly keep users we have chosen before (no lookups)
- In general, we can obtain a sample fraction a/b of the users by hashing to numbers 0 through b-1 and adding to the sample data for users that hash to any value less than a.

Generalized Solution

Determine the hash key:

- Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application

■ To get a sample of *a/b* fraction of the stream:

- Hash each tuple's key uniformly into b buckets
- Pick the tuple if its hash value is at most a

Hash table with **b** buckets, pick the tuple if its hash value is at most **a**.

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Varying the sample size:

If the sample size grows too large for our memory, reduce a and drop sampled data with hash value >a

Stream Filtering

Stream filtering

Problem:

- Accept tuples that meet a filtering criterion and reject all other tuples
- Accepted tuples may be passed to another filter

- If the criterion is a selection based on the attribute values of a tuple then the solution is straightforward
 - Example: accept tuples where query = "cat*"
- Challenge: select based on membership in a set S

Filtering Data Streams

- Given a list of keys S, determine which tuples of stream have their key attribute in S
- Example: Email spam filtering
 - We know 1 billion "good" email addresses
 - If an email comes from one of these, it is NOT spam
- Publish-subscribe systems
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user's interest
- Challenge: S could be very large

First Cut Solution (1)

- □ Given a set of keys **S** that we want to filter
- Create a bit array B of n bits, initially all Os
- \square Choose a hash function h with range [0,n)
- □ Hash each member of s∈ S to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if B[h(a)] == 1

First Cut Solution (2)

Drop the item.

It hashes to a bucket set to **0** so it is surely not in **S**.

- Creates false positives but no false negatives
 - If the item is in S, we surely output it
 - If the item is not in S, we may output it (false positive)
 - 100% recall, less than 100% precision

First Cut Solution (3)

- |S| = 1 billion email addresses (=m)
 |B| = 1GB = 8 billion bits (=n)
- If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)
- Approximately 1/8 of the bits are set to 1, so about 1/8 -th of the addresses not in S get through to the output (false positives)
 - Actually, less than 1/8th, because more than one address in S might hash to the same bit

Analysis: Throwing Darts (1)

- More accurate analysis for the number of false positives
- Consider: If we throw m darts into n equally likely targets, what is the probability that a target gets at least one dart?

In our case:

- Targets = *n* bits/buckets
- Darts = m hash values of items (emails in S)

Analysis: Throwing Darts (2)

- We have m darts, n targets
- What is the probability that a target gets at least one dart?

Analysis: Throwing Darts (3)

- □ Fraction of 1s in the array B =
 = probability of false positive = 1 e^{-m/n}
- Example: $m=10^9$ darts, $n=8\cdot10^9$ targets
 - Fraction of 1s in B = $1 e^{-1/8} = 0.1175$

Can we do better?

Bloom Filter

- □ Consider: |S| = m, |B| = n
 - Goal: accept all keys in S, reject most keys not in S
- Use k independent hash functions $h_1,...,h_k$
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i , set $B[h_i(s)] = 1$ (for each i = 1,..., k) (note: we have a single array B!)

Run-time:

- When a stream element with key x arrives
 - □ If $B[h_i(x)] = 1$ for all i = 1,..., k then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function h_i(x)
 - Otherwise discard the element x

Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing $k \cdot m$ darts at n targets
 - So fraction of 1s is $(1 e^{-km/n})$
- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1
- So, false positive probability = $(1 e^{-km/n})^k$

Bloom Filter – Analysis (2)

- \blacksquare m = 1 billion, n = 8 billion
 - $k = 1: (1 e^{-1/8}) = 0.1175$
 - $k = 2: (1 e^{-1/4})^2 = 0.0493$

■ What happens as we keep increasing *k*?

- □ "Optimal" value of k: n/m ln(2)
 - In our case: Optimal $k = 8 \ln(2) = 5.54 \approx 6$
 - □ Error at k = 6: $(1 e^{-1/6})^2 = 0.0235$

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big B or k small Bs?
 - It is the same: $(1 e^{-km/n})^k$ vs. $(1 e^{-m/(n/k)})^k$
 - But keeping 1 big B is simpler

Counting from a Stream

Counting Distinct Elements

□ Problem:

- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far

Obvious approach:

Maintain the set of elements seen so far

That is, keep a hash table of all the distinct elements seen so far

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many unique users have visited a given web page each month?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least log₂ N bits
 - Ensure there are more possible mapped values (hash function results) than elements
- For each stream element a, let r(a) be the number of trailing 0s in h(a)'s binary representation
 - r(a) = position of first 1 counting from the right • E.g., say h(a) = 12, that is 1100 binary, so r(a) = 2
- \square Record R = the maximum r(a) seen
 - $\mathbf{R} = \mathbf{max_a} \mathbf{r(a)}$, over all the items \mathbf{a} seen so far
- Estimated number of distinct elements = 2^R

Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - h(a) hashes a with equal prob. to any of N values
 - Then h(a) is a sequence of log₂ N bits, where 2^{-r} fraction of all as have a tail of r zeros
 - □ About 50% of **a**s hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have probably seen
 about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why It Works: More formally

- Now we show why Flajolet-Martin works
- Formally, we will show that probability of finding a tail of r zeros:
 - Goes to 1 if $m \gg 2^r$
 - Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

□ Thus, 2^R will almost always be around *m*

Why It Works: More formally

- What is the probability that a given h(a) ends in at least r zeros
 - h(a) hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2-r
- Then, the probability of **NOT** seeing a tail of length *r* among *m* elements:

Why It Works: More formally

- □ Note: $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- Prob. of **NOT** finding a tail of length *r* is:
 - If $m << 2^r$, then prob. tends to 1 □ $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$ as

- as $m/2^r \rightarrow 0$
- So, the probability of finding a tail of length r tends to **0**
- If $m >> 2^r$, then prob. tends to 0
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$
- as $m/2^r \rightarrow \infty$
- So, the probability of finding a tail of length r tends to **1**
- □ Thus, **2**^R will almost always be around *m*

Estimating Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values
- \blacksquare Let m_i be the number of times value i occurs in the stream
- \Box The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$

Special Cases

$$\sum_{i\in A} (m_i)^k$$

- Oth moment = number of distinct elements
 - The problem just considered
- 1st moment = count of the numbers of elements = length of the stream
 - Easy to compute
- 2nd moment = surprise number S = a measure of how uneven the distribution is

Example: Surprise Number

- Stream of length 100
- 11 distinct values
- □ Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

 Surprise S = 8110

AMS Method

- Assumption: not enough memory to explicitly count all m_i's
- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store X.el and X.val
 - X.el corresponds to an item i
 - X.val corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- \square Our goal is to compute $S = \sum_i m_i^2$

One Random Variable (X)

□ How to set **X.val** and **X.el**?

- Assume stream has length n (we relax this later)
- Pick some random time t (t<n) to start, so that any time is equally likely
- Let at time t the stream have item i. Set X.el=i
- Then maintain count c (X.val = c) of the number of is in the stream starting from the chosen time t
- Then the estimate of the 2nd moment $(\sum_i m_i^2)$ is: $S = f(X) = n (2 \cdot c 1)$
 - □ Note, we will keep track of multiple X_i 's, $(X_1, X_2, ..., X_k)$ and our final estimate will be $S = 1/k \sum_{i=1}^{k} f(X_i)$

Example

- Stream: a,b,c,b,d,a,c,d,a,b,d,c,a,a,b (n=15)
- Real 2nd moment is:
- \square Set X_1 , X_2 , X_3 at positions 3, 8, 13
 - $X_1.el = c, X_2.el = d, X_3.el = a$
- \square From X_1 : $n(2X_1.val-1) = 15 \times (2 \times 3 1) = 75$
- \square From X_2 : $n(2X_2.val-1) = 15 \times (2 \times 2 1) = 45$
- □ From X_3 : $n(2X_3.val-1) = 15×(2×2-1) = 45$
- \square Final estimate: average(75,45,45) = 55

Expectation Analysis

- lacksquare 2nd moment is $S = \sum_i m_i^2$
- c_t ... number of times item at time t appears from time t onwards ($c_1 = m_a$, $c_2 = m_a 1$, $c_3 = m_a 2$)

$$E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$$

$$= \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i - 1)$$

$$= \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i - 1)$$
Time t when the last i is seen $(c_i = n_i)$ the first i is seen $(c_i = m_i)$

m_i ... total count of item *i* in the stream (we are assuming stream has length *n*)

seen

Expectation Analysis

- - Little side calculation: $(1+3+5+\cdots+2m_i-1)=\sum_{i=1}^{m_i}(2i-1)=2\frac{m_i(m_i+1)}{2}-m_i=(m_i)^2$
- □ Then $E[f(X)] = \frac{1}{n} \sum_{i} n (m_i)^2$
- $lacksquare{ }$ So, $\mathbf{E}[\mathbf{f}(\mathbf{X})] = \sum_{i} (m_i)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used n (2·c 1)
 - For k=3 we use: $n(3 \cdot c^2 3c + 1)$ (where c=X.val)

□ Why?

- For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms 2c-1 (for c=1,...,m) sum to m^2
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c-1)^2 = m^2$
 - □ So: $2c 1 = c^2 (c 1)^2$
- For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- □ Generally: Estimate = $n(c^k (c-1)^k)$

Streams Never End: Problem

- □ The number *n* of positions is infinite
- Assumption: times t picked at random
- If we pick most times t early, we will overestimate moment
- If we delay picking, we will underestimate moment first, maybe overestimate later

Streams Never End: Fixup

- Suppose we can only store k counts. We must throw some Xs out as time goes on:
 - Objective: Each starting time t is selected with probability k/n
 - Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - □ When the n^{th} element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability

General problem: maintaining a fixed-size sample

- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
 - Don't know length of stream in advance
- Suppose at time *n* we have seen *n* items
 - Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2

Stream: a x c y z kj c d e g...

At **n= 5**, each of the first 5 tuples is included in the sample **S** with equal prob.

At **n= 7**, each of the first 7 tuples is included in the sample **S** with equal prob.

Solution: Fixed Size Sample

□ Algorithm: Reservoir Sampling

- Store all the first s elements of the stream to S
- Suppose we have seen n-1 elements, and now the nth element arrives (n > s)
 - With probability s/n, keep the nth element, else discard it
 - If we picked the nth element, then it replaces one of the selements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample S of size s with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

Proof: By Induction

■ We prove this by induction:

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element n+1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)

□ Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

- Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s/n
- \square Now element n+1 arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

$$\begin{pmatrix} 1 - \frac{S}{n+1} \\ n+1 \\ \text{discarded} \end{pmatrix} + \begin{pmatrix} \frac{S}{n+1} \\ n+1 \\ \text{otherwise} \end{pmatrix} \begin{pmatrix} \frac{S-1}{S} \\ \frac{S}{\text{Element in the anotherwise}} = \frac{n}{n+1}$$

- \square So, at time n, tuples in S were there with prob. S/n
- □ Time $n \rightarrow n+1$, tuple stayed in **S** with prob. n/(n+1)
- □ So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

Sliding Window Queries

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N the N most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored

Amazon example:

- For every product **X** we keep 0/1 stream of whether that product was sold in the **n**-th transaction
- We want answer queries, how many times have we sold \mathbf{X} in the last \mathbf{k} sales, where $\mathbf{k} \leq \mathbf{N}$

Sliding Window: 1 Stream

□ Sliding window on a single stream: N=6

```
q w e r t y u i o p a s d f g h j k l z x c v b n m
q w e r t y u i o p a s d f g h j k l z x c v b n m
q w e r t y u i o p a s d f g h j k l z x c v b n m
q w e r t y u i o p a s d f g h j k l z x c v b n m
   ← Past
                            Future
```

Counting Bits (1)

Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form How many 1s are in the last k bits? where k ≤ N

Obvious solution:

Store the most recent **N** bits

■ When new bit comes in, discard the N+1st bit

0100110111010110

Suppose N=6

Future

Counting Bits (2)

- You can not get an exact answer without storing the entire window
- Real Problem:
 What if we cannot afford to store N bits?
 - E.g., we're processing 1 billion streams and N = 1 billion 01001101110101011011
- But we are happy with an approximate answer

An attempt: Simple solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity assumption
- Maintain 2 counters:
 - S: number of 1s from the beginning of the stream
 - Z: number of 0s from the beginning of the stream
- □ How many 1s are in the last N bits? $N \cdot \frac{S}{S+Z}$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

DGIM Method

- DGIM solution that does <u>not</u> assume uniformity
- We store $O(log^2N)$ bits per stream
- Solution gives approximate answer, never off by more than 50%

DGIM method

- Idea: Summarize blocks with specific number of 1s:
 - Let the block sizes (number of 1s) increase exponentially
 - The number of 1s in a block is a power of 2
- When there are few 1s in the window, block sizes stay small, so errors are small

1001010110001011 0 101010101011 0 10101010111 0 1010101 110101 000 101 1 00 1 0

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(log_2N)$ bits

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [O(log N) bits]
 - (B) The number of 1s between its beginning and end [O(log log N) bits]
- Constraint on buckets: Number of 1s must be a power of 2
 - That explains the O(log log N) in (B) above

_____64

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their
 end-time is > N time units in the past

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time
- 2 cases: Current bit is 0 or 1
- If the current bit is 0: no other changes are needed

Updating Buckets (2)

- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1,
 combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
 - (4) And so on ...

Example: Updating Buckets

current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

<mark>010110001011</mark>01010101010101101010101011110<mark>1010101</mark>110101000<mark>1011001</mark>0<mark>1**10**1</mark>

Buckets get merged...

State of the buckets after merging

How to Query?

- To estimate the number of 1s in the most recent *N* bits:
 - 1. Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket)
 - Add half the size of the last bucket

Remember: We do not know how many 1s of the last bucket are still within the wanted window

Example: Bucketized Stream

Error Bound: Proof

- Why is error 50%? Let's prove it!
- Suppose the last bucket has size 2^r
- □ Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- □ Since there is at least one bucket of each of the sizes less than 2^r , the true sum is at least $1 + 2 + 4 + ... + 2^{r-1} = 2^r 1$
- □ Thus, error at most 50%

At least 16 1s

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, allow either r-1 or r buckets (r>2)
 - Except for the largest size buckets; we can have any number between 1 and r of those
- \blacksquare Error is at most O(1/r)
- By picking r appropriately, we can tradeoff between number of bits we store and the error

Extensions

- Can we use the same trick to answer queries How many 1's in the last k? where k < N?
 - A: Find earliest bucket B that at overlaps with k.
 Number of 1s is the sum of sizes of more recent buckets
 + ½ size of B

■ Can we handle the case where the stream is not bits, but integers, and we want the sum of the last *k* elements?

Extensions

- Stream of positive integers
- We want the sum of the last k elements
 - Amazon: Avg. price of last k sales
- Solution:
 - Use buckets to keep partial sums
 - Sum of elements in size b bucket is at most 2b

Idea: Sum in each bucket is at most 2^b (unless bucket has only 1 integer)

Bucket sizes:

Exponentially Decaying Windows

Exponentially Decaying Windows

- Exponentially decaying windows: A heuristic for selecting likely frequent items
 - What are "currently" most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream
- If stream is a_1 , a_2 ,... and we are taking the sum of the stream, take the answer at time t to be: $= \sum_{i=1}^{t} a_i (1-c)^{t-i}$
 - c is a constant, presumably tiny, like 10⁻⁶ or 10⁻⁹
- When new a_{t+1} arrives:
 - Multiply current sum by (1-c) and add a_{t+1}

Example: Counting Items

- If each a_i is an "item" we can compute the characteristic function of each possible item x as an Exponentially Decaying Window
 - That is: $\sum_{i=1}^{t} \delta_i \cdot (1-c)^{t-i}$ where δ_i =1 if a_i =x, and 0 otherwise
 - Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)
 - New item x arrives:
 - Multiply all counts by (1-c)
 - Add +1 to count for element x
- Call this sum the "weight" of item x

Sliding Versus Decaying Windows

□ Important property: Sum over all weights $\sum_{t} (1-c)^{t}$ is 1/[1-(1-c)] = 1/c

Example: Counting Items

- What are "currently" most popular movies?
- When a new ticket arrives on the stream, do the following:
 - For each movie whose score we are currently maintaining, multiply its score by (1 c)
 - Suppose the new ticket is for movie M. If there is currently a score for M, add 1 to that score. If there is no score for M, create one and initialize it to 1.
 - If any score is below the threshold 1/2, drop movie from counting (drop score)
- Suppose we want to find movies of weight > ½
 - Important property: Sum over all weights $\sum_t (1-c)^t$ is 1/[1-(1-c)] = 1/c
- Thus:
 - There cannot be more than 2/c movies with weight of ½ or more
- So, 2/c is a limit on the number of movies being counted at any time

Summary

- Streaming data are ubiquitous in applications
- Objective: read the stream just once and compute some statistics, given limited storage
- Specialized objectives:
 - Sampling from a stream
 - Filtering streaming data
 - Counting data from a stream
 - Estimating moments
 - Sliding window queries
 - Exponentially decaying windows