

NEUROTECHUOFT: INTERMEDIATE WORKSHOPS MACHINE LEARNING IN NEUROTECHNOLOGY

Agenda

- Event-related potentials
- Why Machine Learning?
- · Statistics: Review
- Intro to ML

Event related potentials (Motivation)

Add text here

Why Machine Learning

- Adaptability
- Learn non-trivial patterns in data
- Observe patterns in an online fashion
- Make sense of a lot of data

Review: Statistics

- Population: a collection of objects of interest
- Sample: a subset of a population
- Parameter: a value that describes a feature of the population

What is an estimator

Estimator: functions of observations that estimate some parameter

Unbiasedness

An estimator $\hat{\theta}$ of an unknown parameter θ is **unbiased** if and only if

$$E(\hat{\theta}) = \theta$$

Consistency

An estimator $\hat{\theta}$ of an unknown parameter θ is **consistent** if

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| \ge \epsilon) = 0$$

Calculus: Quick Review

How to take partial derivatives?

Partial Derivatives

 Regular derivative: if we change x by a bit, how does y change?

$$y = f(x)$$

 Partial derivative: if we change ONLY x by a bit, how does y change?

$$y = f(v, w, x)$$

Partial Derivatives in GIF form

Maximum Likelihood Estimation

- $L(\theta) = f(x_1 \dots x_N | \theta) \approx \prod_{i=1}^N f(x_i | \theta)$
- Take logarithm and derivative and set to zero and you're blessed!

Regression Estimator with MLE: Solution

Linear Algebra Review

· Basis and components

• Eigenvectors and eigenvalues

From Wikipedia

Intro to Machine Learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Semi-supervised learning

Supervised vs. Unsupervised

Supervised Learning

- When is it used?
 - When you are dealing with **labelled data** (for classification)
 - o Making predictions on **unseen** data -- can be classification or regression
- Example: Say I have a dataset of images, can be either cat or dog
- Train a supervised learning model to learn to distinguish the two by feeding it labelled images of both categories
- How to test the model?
 - o Give the model a cat or dog image that it has not seen before

Gradient Descent

- Iterative Algorithm
- Minimizing a cost function
- Learning rate

Performance Metrics

AUC - Area Under Curve

ROC - Receiver Operator Characteristic

TPR - True positive rate

FPR - False positive rate

Regression

- Simple linear regression: y = w*X + B
 - W and B are unknown
 - · What is the goal?
- Optimal w?
- Direct solution (we are deriving this)

Unsupervised Learning

- When is it used?
 - When you are dealing with unlabelled data that contains some underlying structure
 - o Making predictions on **unseen** data -- can be classification or regression
- Example: sample of patients with a particular disease
 - Based on medical records/tests for each patient, can you identify subtypes of the disease?
- Train an unsupervised learning model to learn some structure or clusters within the data
- How to test the model?
 - Test on a dataset that contains labels
 - If not available, experts with domain knowledge can manually label the data
 - Can be hard to find the "ground truth"!