

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра практической и прикладной информатики (ППИ)

ОТЧЁТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

Технологическая (проектно-технологическая) практика

приказ Университета о направлении на практику от «26» марта 2025 г. № 2960-С

«19» апреля 2025 г.	Дерцян Н.А. (подпись и расшифровка подписи)
«19» апреля 2025 г.	Зуев А.С. (подпись и расшифровка подписи)
	-

Москва 2025 г.

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра практической и прикладной информатики (ППИ)

ОТЧЁТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

Технологическая (проектно-технологическая) практика

приказ Университета о направлении на практику от «26» марта 2025 г. № 2960-С

«19» апреля 2025 г.	Дерцян Н.А. (подпись и расшифровка подписи)
«19» апреля 2025 г.	Зуев А.С. (подпись и расшифровка подписи)
	-

Москва 2025 г.

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра практической и прикладной информатики (ППИ)

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ НА ПРОИЗВОДСТВЕННУЮ ПРАКТИКУ Технологическая (проектно-технологическая) практика

Студенту 4 курса учебной группы ИВБО-06-21 Дерцяну Нареку Ареновичу

Место и время практики: <u>РТУ МИРЭА кафедра ППИ, с 24 марта 2025 г. по 19 апреля 2025 г.</u> **Должность на практике:** студент

1. СОДЕРЖАНИЕ ПРАКТИКИ:

- 1.1. Изучить: соответствующую тематике выпускной квалификационной работы документацию на технологические решения, применяемые при построении ИТ-инфраструктуры.
- 1.2. Практически выполнить: анализ вариантов поставки информационно-технологического сервиса; обзор вариантов и обоснование выбора технологических решений системного и инструментального программного обеспечения, оборудования инфраструктуры передачи, хранения и обработки данных; разработку необходимого организационного обеспечения; оценку рисков и формирование мер по повышению отказоустойчивости и аварийному восстановлению.
- 1.3. Представить: проектный вариант ИТ-архитектуры, соответствующей объекту исследования.
- 1.4. Ознакомиться: с порядком размещения материалов отчета в СДО РТУ МИРЭА.
- 2. ДОПОЛНИТЕЛЬНОЕ ЗАДАНИЕ: нет
- **3. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ:** в процессе практики рекомендуется использовать периодические издания и отраслевую литературу годом издания не старше 5 лет от даты начала прохождения практики

Руководитель практики от кафедры		
«24» марта 2025 г.		(Зуев А.С.)
	Подпись	_
Задание получил		
«24» марта 2025 г.		(Дерцян Н.А.)
	Подпись	=

СОГЛАСОВАНО: Заведующий кафедрой: «24» марта 2025 г. (Зуев А.С.) Подпись Проведенные инструктажи: Охрана труда: «24» марта 2025 г. Инструктирующий Зуев А.С., зав. каф. ППИ Подпись Инструктируемый Дерцян Н.А. Подпись Техника безопасности: «24» марта 2025 г. Инструктирующий Зуев А.С., зав. каф. ППИ Подпись Инструктируемый Дерцян Н.А. Подпись Пожарная безопасность: «24» марта 2025 г.. Зуев А.С., зав. каф. ППИ Инструктирующий Подпись Инструктируемый Дерцян Н.А. Подпись С правилами внутреннего распорядка ознакомлен: «24» марта 2025 г.

Подпись

Дерцян Н.А.

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

РАБОЧИЙ ГРАФИК ПРОВЕДЕНИЯ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

студента Дерцяна Н.А. 4 курса группы ИВБО-06-21 очной формы обучения, обучающегося по направлению подготовки 09.03.01 Информатика и вычислительная техника, профиль «Инфраструктура информационных технологий».

Неделя	Сроки выполнения	Этап	Отметка о выполнении
1	24.03.2025	Подготовительный этап, включающий в себя организационное собрание (вводная лекция о порядке организации и прохождения производственной практики, инструктаж по технике безопасности, получение задания на практику)	
1	24.03.2025- 29.03.2025	Анализ вариантов поставки информационно-технологического сервиса — описание выбора варианта развертывания ИТ-инфраструктуры и соответствующие ему диаграммы в нотации UML или производителя (поставщика) решения.	
2	31.03.2025- 05.04.2025	Анализ возможных вариантов компонентов ИТ- инфраструктуры предмета исследования с обоснованием выбора проектного варианта. Описание решений производится в нотации производителя (поставщика). Обязательно приводится общая топология развертывания.	
	31.03.2025- 05.04.2025	Системное программное обеспечение (СПО) — системы виртуализации, хранения и передачи данных, операционные системы серверов и клиентских устройств. Приводится топология развертывания с указанием СПО, используемого на рабочих местах пользователей и в серверной части инфраструктуры. Приводятся спецификации рабочих станций и серверов с указанием суммарных системных требований для функционирования прикладного, системного и инструментального ПО. Обязательно специфицируется хранение данных с указанием применяемого программного обеспечения.	
2	05.04.2025	Инструментальное программное обеспечение (ИПО) — конфигурационное управление ИТ-инфраструктурой и мониторинг. Приводится топология развертывания с указанием ИПО, используемого на рабочих местах пользователей и в серверной части инфраструктуры. Приводятся требования к функционированию систем конфигурационного управления и мониторинга с учетом состава решаемых задач, состава и частоты сбора метрик от компонентов инфраструктуры.	

2	31.03.2025- 05.04.2025	Сетевая инфраструктура — состав сетевых служб, сетевая топология, сетевое оборудование, схемы адресации узлов и распределения доменных имен, конфигурации сетевых сервисов. Приводится сетевая топология с указанием L2 и L3 коммутаторов, маршрутизаторов, межсетевых экранов и сетевых служб. Для каждого узла специфицируются его IP адрес и доменное имя.	
2	31.03.2025- 05.04.2025	Техническое обеспечение — серверное оборудование, клиентские устройства, периферийное оборудование, электроснабжение, кондиционирование, пожаротушение. Приводится спецификация рабочих мест пользователей, серверов и систем хранения данных. Приводится схема размещения оборудования в стойках для каждой площадки и расчет энергопотребления каждой стойки. Производится суммарный расчет энергопотребления и определение используемых источников бесперебойного и резервного питания. Для серверных помещений и центров обработки данных специфицируются требования к системам кондиционирования и пожаротушения.	
2	31.03.2025- 05.04.2025	Организационное обеспечение – проект соглашения об уровне сервиса с поставщиком услуг для облачного варианта развертывания ИТ-инфраструктуры, для иных вариантов развёртывания – штатная структура отдела сопровождения ИТ-инфраструктуры (ИТ-отдела).	
3	07.04.2025- 12.04.2025	Разработка и описание мер по обеспечению отказоустойчивости и аварийного восстановления ИТ-инфраструктуры для установленного перечня рисков. Специфицируются системы резервного копирования, обеспечения непрерывности, аварийного восстановления, нормы запасов инструментов и приборов. Исходя из итогового варианта развертывания производится расчёт целевой доступности спроектированной ИТ-инфраструктуры. Приводится проектный вариант ИТ-архитектуры, соответствующий объекту исследования — текстовое описание и выполненная на языке ArchiMate диаграмма ИТ-архитектуры «как будет», содержащие описание бизнес-слоя (при наличии), слоя приложений и технологического слоя.	
4	14.04.2025- 18.04.2025	Подготовка окончательной версии отчета по практике (оформление материалов в соответствии с требованиями на	
4	19.04.2025	оформление письменных учебных работ студентов). Предоставление руководителю отчёта по производственной практике – загрузка материалов в СДО РТУ МИРЭА.	

Руководитель практики от	
кафедры	/Зуев А.С., к.т.н., доцент, зав.
	кафедрой ППИ/
Обучающийся	/Дерцян Н.А./
Согласовано:	
Заведующий кафедрой	/Зуев А.С., к.т.н., доцент/

СОДЕРЖАНИЕ

ГЛС	ОССАРИЙ	8
BBE	ЕДЕНИЕ	9
1	ПРОИЗВОДСТВЕННАЯ ПРАКТИКА	10
1.1	Анализ вариатнов поставки информационно-технологического	о сервиса11
1.2	Анализ вариантов компонентов ИТ-инфраструктуры	14
1.3	Системное и прикладное программное обеспечение	20
1.4	Инструментальное программное обеспечение	26
1.5	Сетевая инфраструктура	28
1.6	Техническое обеспечение.	30
1.7	Организационное обеспечение	33
1.8	Проектный вариант ИТ-инфраструктуры	35
2	Заключение	37
СПІ	ИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	40

ГЛОССАРИЙ

VPC — Virtual Private Cloud (виртуальная частная сеть).

ЦОД — Центр обработки данных.

СХД — Система хранения данных.

СПО — Системное программное обеспечение.

FC — Fiber Channel (оптоволоконный канал).

ИТ — Информационные технологии.

ИТ-инфраструктура — Информационно-технологическая инфраструктура.

CRM — Управление взаимоотношениями с клиентами (Customer Relationship Management)

СУБД — Система управления базами данных

ПО — Программное обеспечение

ОКВЭД — Общероссийский классификатор видов экономической деятельности

BPMN — Нотация и модель бизнес-процессов (Business Process Model and Notation)

SLA — Соглашение об уровне предоставления услуги (Service Level Agreement)

UML — Унифицированный язык моделирования (Unified Modeling Language)

DFD — Диаграмма потоков данных (Data Flow Diagrams)

CPU — Центральный процессор (Central Processing Unit)

CMS — Система управления содержимым (Content management system)

ФЗ — Федеральный Закон

PaaS — Платформа как услуга (Platform as a Service)

SaaS — ПО как услуга (Software as a Service)

HA - Высокая доступность (High Availability)

ВВЕДЕНИЕ

Исследуемым объектом в рамках проекта является сервис хранения и обработки данных информационной системы модуля потребительского кредитования. Этот модуль включает в себя ответственность за управление ипотечными и кредитными продуктами, так же за хранение и обработку данных клиентов и генерацию отчетов, как по клиентам так и работе модуля.

Актуальность темы исследования обусловлена стремительным развитием информационных технологий и их внедрением во все сферы социальноэкономической жизни, включая сектор финансовых технологий. Кредитные организации в настоящее время находятся в условиях сильной конкуренции, а это вынуждает активно внедрять новые технологии, в частности цифровые технологии, которые позволяют оптимизировать затраты и внутренние процессы, повышать качество обслуживания клиентов и обеспечивать устойчивость бизнес-моделеи. В этом ключе важное значение приобретает проектирование фунциольное моделирование ИТ-инфраструктуры И одного из ключевых элементов, который обеспечивает эффективаность функционирования автоматизированных кредитных систем, а именно модуля потребительского кредитования.

В отечественной и зарубежной литературе существует много работ, рассматриващих проблемы проектирования и моделирования ИТ-инфраструктуры в которых так же рассматриваются архитектурные подходы, выбор технических решений и методы оптимизации процессов. Однако в условиях быстро меняющейся регуляторной и потребительской среды задача создания адаптированной, масштабируемой и безопасной ИТ-инфраструктуры с учетом специфики бизнес-процессов конкретной организации остается актуальной.

Целью данной работы является проектирование и функциональное моделирование ИТ-инфраструктуры, поддерживающей модуль потребительского кредитования в кредитной организации, включающего описание архитектуры и обоснование выбранного программно-аппаратного решения.

Для достижения поставленной цели в работе решаются следующие задачи:

1. Анализ вариантов поставки информационно-технологического

сервиса;

- 2. Анализ вариантов компонентов ИТ-инфраструктуры и обоснование выбранного варианта;
- 3. Выбор системного программного обеспечения;
- 4. Моделирование топологии развертывания;
- 5. Составление спецификации рабочих станций;
- 6. Моделирование топологии развертывания инструментального программного обеспечения;
- 7. Анализ сетевой инфраструктуры и моделирование сетевой топологии.

Практическая значимость работы заключается в возможности использования представленных разработок для модернизации или внедрения модулей автоматизированных систем потребительского кредитования в ИТ-инфраструктуру кредитных организаций, что способствует повышению надежности, безопасности, отказоустойчивости и производительности.

1 ПРОИЗВОДСТВЕННАЯ ПРАКТИКА

1.1 Анализ вариатнов поставки информационно-технологического сервиса

В работе произведен анализ четырех вариантов поставки информационнотехнологического сервиса, который включает в себя выбор между такими вариантами поставки, как полностью самостоятельный, облачный (SaaS, Paas, IaaS), мульти-облачный и гибридный. На основе анализа выбран, как самый оптимальный вариант поставки, полностью самостоятельный вариант.

Полностью облачный сервис [1] по одному из моделей SaaS, PaaS или IaaS, позволяет снизить затраты на содержание и поддержку ИТ-инфраструктуры, но не является лучшим решением, так как вводит за собой ряд ограничений, таких как сильная зависимость от поставщика, ограниченные возможности кастомизации и настройки, а также, что является критичным, возможные проблемы с безопасностью и сохранностью данных.

Мульти-облачный вариант, подразумевает под собой так же использование облачной инфраструктуры, но в отличие от полностью облачного варианта, позволяет использовать разные облачные решения от разных поставщиков, что позволяет избежать некоторых проблем, связанных с безопасностью и кастомизацией. Однако, данный вариант так же не является оптимальным, так как требует высококвалифицированных специалистов для поддержки и настройки, а так же имеет риски конфликтов совместимости, что существенно сказывается на затратах.

Гибридный подход позволяет совместное исопльзование облачных решений и собственных ресурсов. Такой вариант позволяет наиболее гибко и без особых затруднений масштабировать инфраструктуру, но является более дорогим в долгосрочной перспективе, не исключает пенно данный подход является наиболее гибким, чтобы отвечать всем требованиям регуляторов и требованиям хранения персональных данных, например, Федеральный закона №152-ФЗ «О персональных данных».

Полностью самостоятельный вариант поставки инфраструктуры предполагает использование собственных серверов, систем хранения данных

и сетевого оборудования, размещённых в арендованной серверной стойке в центре обработки данных (ЦОД). Такой подход обеспечивает полный контроль над данными и инфраструктурой, что особенно важно для соблюдения требований регуляторов, таких как Федеральный закон №152-ФЗ «О персональных данных».

Основными преимуществами данного варианта являются полный контроль над чувствительными данными и инфраструктурой, отсутствие зависимости от облачных поставщиков, возможность гибкой настройки и масштабирования в соответствии с требованиями бизнеса, а также соответствие требованиям регуляторов и стандартов безопасности.

Однако данный подход также имеет свои недостатки. К ним относятся высокие первоначальные затраты на закупку оборудования и развертывание инфраструктуры, необходимость содержания квалифицированного ИТ-персонала для обслуживания и поддержки, а также более длительное время внедрения по сравнению с облачными решениями.

В Таблице 1.1 приведено сравнение всех четырех вариантов поставки инфраструктуры. Таблица позволяет точечно рассмотреть все возможные варианты, их преимущества и недостатки.

Таблица 1.1 — Сравнение вариантов поставки ИТ-инфраструктуры

Вариант поставки	Преимущества	Недостатки
Полностью самостоятельный	Частный контроль над	Высокие первоначальные
	чувствительныи данными	затраты на развертывание;
	и инфраструктурой;	необходимость содержания
	отсутствие зависимости	ИТ-персонала; более
	от облачных поставщиков;	длительное внедрение.
	гибкость в соответствии	
	требованиям регуляторов	
	(например, 152-ФЗ).	
Облачный (SaaS, PaaS, IaaS)	Более низкие затраты на	Сильная зависимость от
	поддержку и обслуживание;	поставщика; ограниченные
	быстрое масштабирование	возможности настройки;
	и внедрение; меньшая	риски утечки данных и
	потребность в локальных	проблемы с безопасностью.
	pecypcax.	

Продолжение таблицы 1.1

Вариант поставки	Преимущества	Недостатки
Мульти-облачный	Снижение зависимости	Необходимость
	от одного поставщика;	высококвалифицированного
	гибкость в выборе сервисов;	персонала; риски
	потенциально лучшая	несовместимости решений;
	безопасность.	повышенные затраты на
		администрирование; риски
		утечки данных и проблемы с
		безопасностью.
Гибридный	Гибкость масштабирования;	Более высокая стоимость в
	возможность совмещать	долгосрочной перспективе;
	преимущества облака и	повышенные затраты
	локальной инфраструктуры;	на администрирование;
	частичный контроль над	не исключены риски
	критичными компонентами.	утечки данных; сложность
		интеграции компонентов.

На основе описанных выше данных становится понятно, что для модуля потребительского кредитования оптимальным вариантом является полностью самостоятельный вариант поставки, так как он позволяет иметь полный контроль над данными и инфраструктурой, окупается в долгосрочной перспективе, не требует высококвалифицированного персонала и позволяет избежать проблем с безопасностью.

Компоненты инфраструктуры размещены в серверной стойке внутри Центра обработки данных (ЦОД) предоставляемым Selectel [2]. Selectel это Россйская компания, которая предоставляет услуги облачных вычислений, выделенных серверов и услуги по размещению оборудования в ЦОД. Базовая тарификация серверной стойки включает в себя 5 кВА мощности и 30ТБ интернет трафика в месяц. Оба этих параметра предоставляются бесплатно при базовом тарифе, при необходимости большей мощности, трафика или же 10ГБит/с портов, Selectel предоставляет возможность доплатить. Вендор обеспечивает круглосуточную поддержку и мониторинг оборудования с базовым удаленным обслуживаем.

Такой подход к размещению инфраструктуры позволяет избежать затрат на содержание, позволяет избавиться от затрат на сетевое оборудование, так как вендор предоставляет все необходимое оборудование и нужные каналы связи в

аренду.

В связи с тем, что сохранность пользовательских данных является критически важной, то в проектируемой инфраструктуре предусмотрено использование системы резервного, которая заключается в полном дублировании данных СХД на облачное блочное хранилище (Cold Object Storage) предоставляемое вендором Selectel [3]. Объектное хранилище предоставляемое вендором по официальной документации полностью соответствует требованиям регуляторов и федеральному закону №152-ФЗ «О персональных данных».

Структурная модель выбранного моделя поставки ИТ-инфраструктуры представлена на Рисунке 1.1.

Рисунок 1.1 — Структурная модель выбранного моделя поставки ИТ-инфраструктуры

1.2 Анализ вариантов компонентов ИТ-инфраструктуры

В данном разделе произведен анализ возможных компонентов ИТ-инфраструктуры, которые могут быть использованы в проектируемой инфраструктуре. Основными компонентами являются серверы, системы

хранения данных, сетевое оборудование, системы резервного копирования и восстановления и системы виртуализации.

Основным критерием для инфраструктуры модуля потребительского кредитования является отказоустойчивость, безопасность хранения данных и возможность масштабирования. В связи с этим основные модули инфрастуктуры имеют дубликаты физических компонентов.

Анализ серверов показывает, что для проектируемой инфраструктуры хорошим решением является использование сервера средней мощности производителя присутствующего в реестре минцифры РФ, что упрощает содержвание персонала для обслуживания. Под указанные критерии подходит производитель оборудования «Гравитон» [4]. произаводителя имеется широкий выбор серверов, которые поддерживают разные конфигурации, наиболее подходящим является Сервер «Гравитон» С2122ИУ [5]. Данный эземпляр имеет большой потенциал для увеличения объема оперативной памяти, в отличие от других серверов данной категории, поддерживает до двух процессоров Intel Xeon. Поддерживает горячую замену блоков питания и вентиляторов, имеет встроенный модуль управления ВМС и полностью соответствует требованиям регуляторов. Технические характеристики сервера приведены в Таблице 1.2.

В сервер установлены два диска SSD SATA 2.5 типа «Intel D3-S4610» каждый на 1 ТБ для работоспособности гипервизора и работы системы.

Посколько сервер использует СХД для хранения данных, а подключение происходит благодаря фабрике, это значит, что сервер требует установки дополнительного контроллера НВА, так как изначально не имеет его. Установка контроллера производится производителем по предзаказу самого сервера.

В сервер устанолено 2 процессора Intel Xeon Gold 6233 с тактовой частотой 2.5 ГГц, он имеет 24 ядра и 48 потоков.

Таблица 1.2 — Технические характеристики сервера Гравитон С2122ИУ

Параметр	Значение
Процессор	До 2× Intel Xeon 4-го или 5-го поколения (TDP до
	150 Bt)
Сокет	2× LGA 4677
Чипсет	Intel C741
Оперативная память	До 8 ТБ DDR5; 32 слота DIMM

Продолжение таблицы 1.2

Параметр	Значение	
Поддерживаемые модули памяти	RDIMM: 8/16/32/64 ГБ; LRDIMM: 64/128/256 ГБ	
Форм-фактор	2U, стойка 19"	
Дисковая подсистема	Передняя панель: 8× 3.5"SAS/SATA/NVMe U.2 +	
	4× 3.5"SAS/SATA; Задняя панель (опционально):	
	до 4× 2.5"SATA/SAS; 2× M.2 (2280/22110 PCIe 4.0	
	х4); microSD для BMC	
Слоты расширения	2× PCIe 4.0 x8 (низкопрофильные, опционально);	
	2× PCIe 5.0 x16 (полнопрофильные); 4× PCIe 5.0	
	x8 (полнопрофильные); ОСР NIC	
Сетевые интерфейсы	Выделенный порт управления (1 Гбит/с RJ-45); 1×	
	OCP 3.0	
Порты ввода-вывода (передняя панель)	Кнопка включения питания; UID-кнопка; 2× USB	
	3.0; Индикаторы: питания, сетевой активности,	
	UID, состояния системы	
Порты ввода-вывода (задняя панель)	1× COM4; 1× RJ-45; 1× VGA; 2× USB 3.0; UID-	
	кнопка; Кнопка сброса	
Модуль управления	BMC Aspeed AST2600; Поддержка IPMI 2.0 +	
	iKVM; Выделенный порт IPMI (RJ-45)	
Операционные системы	Astra Linux, BaseALT, ROSA, RedOS	
Система охлаждения	4× 80 мм вентиляторов с горячей заменой	
Блоки питания	2× 800–2000 Вт, 80+ Platinum, с поддержкой	
	горячей замены	
Безопасность	Intrusion Switch	
Габариты (Д \times Ш \times В)	763 × 447 × 87 mm	

Количество физических серверов в проектируемой инфраструктуре составляет наиболее корректно сформировать три, ЭТО позволит отказоустойчивый высокодоступный кластер В паре c системой И витруализации Ред.

Система хранения данных (СХД) является наиболее важным звеном в инфраструктуре внутри ЦОД и отвечает за хранение персональных данных клиентов, их кредитной истории и данных сервисов.

Посколько общеприянтой хорошей практикой является использование одного вендора для всех компонентов инфраструктуры, так как это позволяет избежать проблем с совместимостью и обеспечить более простое администрирование. Исходя из этого, в качестве системы хранения данных выбрана СХД «Гравитон» СХ424И24БМ-РЭ. К конкурентным преимуществам

данной модели можно отнести гибкую мультипротокольную архитектуру, возможность реализации сложных уровней RAID и поддержка WORK (write once, read many), что подходит для хранения персональных данных клиентов, программное обеспечение RAIDIX, которая является Россйской разработкой и имеет все необходимые сертификаты. Так же не менее важной особенностью является поддержка горячей замены дисков, блоков питания и вентиляторов. Выбранный СХД поддерживает до 24 дисков формата 2.5"/3.5 чего достаточно для организации отказаустойчивого RAID и учета роста объема данных, это определяет целесообразность использования одного экземпляра.

В СХД установлены 4 процессора Intel Xeon Gold 6233 с тактовой частотой 2.5 ГГц, он имеет 24 ядра и 48 потоков.

Таблица 1.3 — Технические характеристики СХД Гравитон СХ424И24БМ-РЭ

Параметр	Значение
Форм-фактор	4U, установка в 19"стойку
Процессоры	4× Intel Xeon Gen2
Оперативная память	До 4 ТБ
Контроллеры	Двухконтроллерная конфигурация
	(Active-Active)
Дисковая подсистема	24× 2.5"/3.5"SSD/HDD c
	поддержкой горячей замены
Максимальная емкость хранения	До 2 ПБ
Поддерживаемые интерфейсы дисков	SAS, NL-SAS, SATA
Поддерживаемые уровни RAID	0, 1, 5, 6, 7.3, 10, 50, 60, 70, N+M
Максимальное количество дисков в RAID	64
Максимальное количество LUN	447
Поддерживаемые файловые протоколы	SMB v2/v3, NFS v3/v4, AFP, FTP
Поддерживаемые блочные протоколы	FC 8/16/32 Гбит/с, iSCSI/iSER
	10/25/40/100 Гбит/с, InfiniBand
	SRP 20/40/56/100 Гбит/с, SAS 12
	Гбит/с
Поддерживаемые платформы виртуализации	VMware ESXi, Microsoft Hyper-
	V, KVM, XenServer, Proxmox VE,
	RHEV
Поддерживаемые операционные системы инициаторов	Windows Server 2016/2019/2022,
	Ubuntu 18.04/20.04/22.04, RHEL
	7.x/8.x, Astra Linux 1.7, Альт
	Сервер 10, РЕД ОС 7.3, macOS
Программное обеспечение СХД	RAIDIX 5.X

Продолжение таблицы 1.3

Параметр	Значение		
Дополнительные функции	WORM, упреждающая и		
	частичная реконструкция, защита		
	от скрытого повреждения данных,		
	SSD-кэш, QoSmic, SAN Optimizer		
Сетевые интерфейсы	до 32× 10 Гбит/с Ethernet, до 16×		
	32 Гбит/с Fibre Channel, до 32×		
	8/16 Гбит/с Fibre Channel, 4× 1		
	Гбит/с RJ-45, выделенный порт		
	управления 1 Гбит/с RJ-45		
Блоки питания	2× 1300 Br, 80+ Platinum, c		
	поддержкой горячей замены		
Температурный диапазон	Эксплуатация: 10°C 35°C,		
	хранение: -20°C 45°C		

Операционная система RAIDX [6] используемая в СХД позволяет реализовать автоматический перенос на разные уровни хранения. Все уровни хранения используемые в инфраструктуре представлены в Таблице 1.4.

Таблица 1.4 — Уровни хранения данных СХД

Уровень хранения данных	Тип Дисков	Назначение	Модель	Описание
				модели
Горячие данные	4–6 × SSD	Базы данных,	Intel D3-	Стабилен в
	SAS / NVMe	кэш, логи	S4610	работу, имеет
	SFF			большой
				pecypc DWPD
				и сертиф
				ицирован под
				RAIDIX
Операционные данные	8–12 × HDD	Справочники,	Seagate Exos	Лучшие
	10K SAS SFF	актуальные	10K.2	по цене и
		документы		надежности,
				широко
				поддер
				живаются

Продолжение таблицы 1.4

Уровень хранения данных	Тип Дисков	Назначение	Модель	Описание
				модели
Архив/бэкап	8–12 × NL	- Архивы,	Seagate Exos	Очень
	SAS 7.21	резервы,	X16	популярные,
	SFF	исторические		высокая
		данные		плотность,
				поддержка
				PowerChoice

Для хранения пользовательских данных требуется большой объем хранилища с расчетом на дальнейший рост. Так как Пользовательские данные являются критически важными в СХД реализован RAID 10, которая заключается в разделении данных на блоки и их дублировании на разных дисках, в результате только 50% объема диска остается свободным хранения. Объем данных, сгенерированный пользователями и сервисами на данный момент составляет 5ТБ в едином экземпляре, то есть без учета, например, репликации баз данных.

Исходя из того, что СХД разделена на три уровня хранения, а общее количество слотов для дисков без расширений составляет 24, то для хранения данных на каждом уровне выделено 8 слотов. Это значит, что используя RAID 10 достаточно разместить 6 дисков на каждом уровне объемом в 2 ТБ, что даст 6ТБ объема на каждом уровне, что в сумме даст 18ТБ объема для хранения. Если учесть репликацию в единственном экземпляре, то объем данных составляет 10ТБ. Остальной объем составляющий 8ТБ и 6 дисковых слотов рассчитанных на дальнейший рост объема данных.

В облачном блочном хранилище Selectel дублируются исключительно резервные копии всех данных, которые хранятся на локальной СХД. Данные на облачное хранилище переносятся по протоколу S3 в зашифрованном виде с использованием алгоритма AES256.

Общая топология развертывания приведена на Рисунке 1.2.

Рисунок 1.2 — Топология развертывания ИТ-инфраструктуры

1.3 Системное и прикладное программное обеспечение

Системное программное обеспечение (СПО) является важной частью проектируемой инфраструктуры, так как системное ПО обеспечивает работоспособность ядра системы и взаимодействие между аппаратными компонентами и прикладным ПО. В рамках проектируемой инфраструктуры хранения обработки данных СПО системы ключевым являются операционные системы виртуальных машин и пользовательских устройств, гипервизоры, операционная система СХД и так же могут входить в состав системного ПО системы резервного копирования и восстановления.

Прикладное программное обеспечение (ППО) является наиболее близким к конечному пользователью и обеспечивает выполнение конкретных

задач, таких как обработка данных, работа с документами, взаимодействие с пользователем и т.д. В рамках проектируемой инфраструктуры прикладным ПО является CRM-кредитования, скоринговая система и система сопровождения кредитов.

В качестве системы виртуализации и гипервизора выбрана система РЕД Виртуализация [7], которая присутствует в реестре отечественного ПО, поддерживает резервное копирование виртуальных машин, совместим с РЕД ОС, применяет алгоритмы шифромания описанные в ГОСТ РФ и является полностью отечественной разработкой, которая вполне может быть заменой программному обеспечению VMware vSphere [8]. Системные требования к оборудованию для РЕД Виртуализация приведены в Таблице 1.5 [9].

Таблица 1.5 — Минимальные и рекомендуемые требования к оборудованию для РЕД Виртуализация

Конфигурация	Минимальная	Рекомендуемая
Процессор	Двухядерный процессор	Четырехьядерный процессор
		или несколько двухъядерных
		процессоров
Оперативная память	16 ГБ установленной	32 ГБ установленной
	оперативной памяти	оперативной памяти
Жесткий диск	80 ГБ доступного дискового	100 ГБ доступного дискового
	пространства	пространства
Сетевой интерфейс	1 сетевой интерфейс с	1 сетевой интерфейс с
	пропускной способностью 1	пропускной способностью
	Гбит/с	10 Гбит/с

В качестве операционной системы для виртуальных машин и для АРМ сотрудников выбрана РЕД ОС [10], которая так же присутствует в реестре отечественного ПО. Эта операционная система имеет две конфигурации «Рабочая станция» и «Сервер». Конфигурация «Рабочая станция» имеет интуитивно понятный интерфейс, встроенные офисные приложения, бразуеры и приложения для работы с документами, что отлично подходит для АРМ сотрудников. Преимуществами конфигурации «Сервер» является возможность построения домена на базе Samba DC, кластеры высокой доступности и программно определяемые системы хранения данных, что для будущего развития и масштабирования инфраструктуры может являться важной деталью. Системные требования для РЕД ОС в конфигурациях «Сервер» и

«Рабочая станция» приведены в Таблице 1.6 [11].

Таблица 1.6 — Системные требования для РЕД ОС 7.3 и 8

Конфигурация	Рабочая станция	Сервер	Сервер
			минимальный
Процессор	х86_64 1,6 ГГц 2	х86_64 1,6 ГГц 2	х86_64 1,6 ГГц 1
	ядра	ядра	ядро
Оперативная память	2 ГБ	2 ГБ	1 ГБ
Свободное дисковое пространство	20 ГБ	20 ГБ	8 ГБ
Видеоадаптер	Поддержка	Поддержка	Поддержка
	режима SVGA	режима SVGA	режима SVGA
	800×600	800×600	800×600

Системное ПО используемое для СХД — это программное обеспечение RAIDIX серии 5.2. RAIDIX это Россйская разработка, которая явялется одним из лидеров в области систем хранения данных. Оснобенностью RAIDIX является то, что он позволяет создавать гибридные и all-flash СХД с высокоскоростным блочным (SAN) и файловым (NAS) доступом, кроме того в СХД он позволяет работать с такими уровнями RAID, как 0, 1, 5, 6, 7.3, 10, 50, 60, 70, N+M.

Выбор в сторону отечественного системного ПО обусловлен тем, что это в первую очередь дешевле, кроме того это полностью соответствует требованиям испортозамещения. На Россйском рынке имеется большое количество специалистов, которые могут поддерживать это ПО в отличии от зарубежных аналогов, которые требуют высококвалифицированных специалистов которым так же требуется высокая оплата труда.

В предоженной инфраструктуре в роли прикладного ПО используется CRM система «Битрикс24» [12] ДЛЯ управления бизнес-процессом дополнительными модулями «бизнес-процессы» кредитования ДЛЯ автоматизации этапов запуска скоринга и автоматические напоминания сотрудникам, «Документооборот» для генерации документов, «Аналитика и отчеты» для проведения анализа и составления отчетов по ним. Стоит учитывать, что количество дополнительных модулей может изменяться в зависимости от потребностей бизнеса, а это значит, что расчет по системным требованиям может изменяться и стоит предусмотреть возможный рост нагрузки на систему. Исходя из данных о количестве активных пользователей составляющей 800 человек и количестве записей от 30005000 в день. Данные о количестве пользователей и операций в день позволяют сформировать системные требования, которые рассчитаны с учетом на будущее масштабирование и приведены в Таблице 1.7 [13].

Таблица 1.7 — Системные требования для установки Битрикс24 с модулями CRM

Конфигурация	Минимальные требования	Рекомендуемые
		требования
Процессор	6 ядра, 2,0 ГГц	8 ядер, 2,4 ГГц и выше
Оперативная память	32 ГБ	64 ГБ
Свободное дисковое пространство	500 ГБ SSD	1 ТБ NVMe SSD
Операционная система	Linux (CentOS 7/8, Ubuntu	Linux (Ubuntu LTS, RHEL)
	20.04/22.04)	
СУБД	MySQL 5.7 / MariaDB 10.5	MariaDB 10.6–10.11,
		кластеризация
Сетевое подключение	Порт 1 Gbps	Выделенный канал 1 Gbps
		с резервированием

Скоринговая система является еще одним прикладным программным обеспечением в проектируемой инфраструктуре, так как она отвечает за автоматизацию процесса оценки кредитоспособности клиентов и принятия решений о выдаче кредита. Скоринговая система позволяет сократить время обработки заявок, повысить точность оценки рисков и снизить количество ошибок. Все вышеперечисленные факторы и характеристики говорят о том, что скоринговая система представляет из себя большой комлекс программных решений, которые крайне требовательны к ресурсам и требуют высокой производительности, кроме того масштабируемость важна для этого ПО, так как объем данных стремительно растет и требует все больше ресурсов для хранения и обработки. Системные требования для ПО скоринговой системы приведены в Таблице 1.8. Стоит обратить внимание на то, что объем памяти указан для самого ПО, а пользовательские данные занимают 5ТБ.

Таблица 1.8 — Системные требования для ПО кредитной скоринговой системы

Конфигурация	Рекомендуемые требования
Процессор	18 ядер, 2,5 ГГц и выше
Оперативная память	56 ГБ
Свободное дисковое пространство	3 ГБ NVMe SSD
Операционная система	Linux
СУБД	PSQL, MongoDB, кластеризация

Система поддержки кредитов является еще одним прикладным программным обеспечением в проектируемой инфраструктуре, так как она отвечает за автоматизацию процесса сопровождения кредитов, включая управление платежами, отслеживание задолженности и взаимодействие с клиентами. Это означает, что система должна на постоянной основе с большой частотой скнировать базы данных и обрабатывать большие объемы данных, которые постоянно растут. Требования к системе поддержки кредитов представлены в Таблице 1.9. Система поддержки кредитов обрабатывает те же самые пользовательские данные, что и скоринговая система.

Таблица 1.9 — Системные требования для ПО поддержки кредитов

Конфигурация	Рекомендуемые требования	
Процессор	16 ядер, 2,4 ГГц и выше	
Оперативная память	56 ГБ	
Свободное дисковое пространство	3 ГБ NVMe SSD	
Операционная система	Linux	

Топология развертывания ЦОД с указанием СПО приведена на Рисунке 1.3.

Рисунок 1.3 — Топология развертывания ЦОД с указанием СПО

Топология развертывания APM сотрудников с указанием СПО приведена на Рисунке 1.4.

Рисунок 1.4 — Топология развертывания АРМ сотрудников с указанием СПО

В Таблице 1.10 представлены системные требования всех компонентов инфраструктуры без учета пользовательских данных для хранлищ и реплик баз

данных.

Таблица 1.10 — Общие системные требования

No	Название	Тип ПО	Назнчание	Требование	Требования	Требования
	ПО		ПО	к СРИ, ядер	к ОЗУ, ГБ	к диску, ГБ
1	Битрикс24	Прикладное	CRM	8	64	1000
			система			
2	Скоринговая	Прикладное	Банковская	18	56	3
			система			
3	Поддержка	Прикладное	Банковская	16	56	3
	кредитов		система			
4	РЕД Вирт	Системное	Гипервизор	4	32	100
5	РЕД ОС	Системное	OC	2	2	20
6	Zabbix	Инструме-	Мониторинг	4	16	100
		нтальное				
7	Grafana	Инструме-	Мониторинг	4	8	50
		нтальное				
8	Prometheus	Инструме-	Метрики	4	8	100
		нтальное				
9	PostgreSQL	Инструме-	База данных	8	32	10
		нтальное				
10	РЕД АДМ	Инструме-	Управление	4	4	100
		нтальное	и настройка			
11	RuBackup	Инструме-	СРК	4	4	480
		нтальное				
12	Kubernetes	Инструме-	Контей-	8	64	150
	Cluster	нтальное	неризация			

1.4 Инструментальное программное обеспечение

Инструментальное программное обеспечение - это совокупность программ, предназначенных для разработки, тестирования, сопровождения и эксплуатации других программных средств и информационных систем. Инструментальное программное обеспечние в инфраструктуре заключается в таких системах, как сбор метрик, конфигурационное управление, контейнеризация, СУБД, система бэкпирования и не только.

Основная СУБД используемая банковскими сервисами предоставляемыми

как прикладное ПО является PostgreSQL. Это объектно-реляционная система управления базами данных (ORDBMS), наиболее развитая из СУБД с открытым исходным кодом в мире и является альтернативой коммерческим базам данных. Именно это СУБД используется для обработки всех клиентских данных объем которых явялется наиболее большим в инфраструктуре. Так как на нее приходится большая нагрузка из-за объема данных, то она будет развернута в том числе в виде репили, а это означает, что под реплику выделена еще одна отдельная виртуальная машина.

Системы сбора и отображения метрик состоят из трех програминых комплексов, такиз как Zabbix, Grafana и Prometheus. Основным из них является zabbix, так как именно он применяется для отслеживания состояния и производительности сетевых интерфейсов, серверов и виртуальных машин. Grafana и Prometheus же применяются для сбора метрик состояния и производительности приложений. Zabbix [14] и все остальные сервисы мониторинга развернуты на одной виртуальной машине внутри кластера РЕД. Собираемые метрики по СХД включают в себя свободное и заятое пространство, производительность, состояние дисков температуру контроллеров. Метрики по критичным данным, таким как паять и доступность и производительность дисков собираются каждые 2 минуты, занятость памяти и состояние пулов СХД каждые 6 минут, а рост данных и износ дисков каждые 2 часа.

Как система централизованного управления ИТ-инфраструктурой используется программный комплекс РЕД АДМ. Он позволяет администрировать инфраструктуру со смешанным набором ОС используя ansible через веб-интерфейс с широким набором инструментов и является масштабируемым и отказаустойчивым ПО при росте нагрузке, что явялется критическим для инфраструктуры информационного сервиса банка.

Для автоматизации и аркестрации управления контейнеризированными приложениями модуля кредитования информационной системы используется Kubernetes [15]. Контейнеры для развертывания кластера Kubernetes размещены на разных физических узлах внутри кластера РЕД вирт, что обеспечивает распределение нагрузки и дополнительную отказаустойчивость в случае отказа какого-либо из компонентов инфраструктуры.

В роли системы резервного копирования используется отвечественное

программное средство RuBackup. RuBackup это ПО назначенное для создания резервных копий данных, виртуальных машин, баз данных рабочих станций и серверов с возможностью их быстрого восстановления. ПО полностью соответствует Россйиским требованиям безопасности и (152-ФЗ). Он собирает все данные хранящиеся на локальном СХД и дублирует их на облачное блочное хранилище.

1.5 Сетевая инфраструктура

Разработка сетевой инфраструктуры ДЛЯ модуля поддержки потребительского информационной кредитования системы кредитной обеспечение организации направлена на надежной, безопасной масштабируемой передачи данных между компонентами ИТ-инфраструктуры. Сетевая инфраструктура выступает основой для интеграции локального центра обработки данных (ЦОД) и облачных ресурсов, обеспечивая выполнение требований по доступности, производительности и безопасности, определенных в рамках целевых уровней качества обслуживания (SLA). В данном разделе рассматриваются состав сетевых служб, сетевая топология, спецификации сетевого оборудования, схемы адресации узлов и распределения доменных имен, а также конфигурации сетевых сервисов.

Так как ЦОД заключается в аренде серверной стойки с применеием модели colocation у вендора, то такие сетевые устройства как маршрутизатор и коммутаторы расположены в той же серверной стойке что и сами серверы и СХД.

В состав стевых служб входят DHCP, NTP, DNS, межсетевой экран.

NTP и DNS предоставляются системой РЕД АДМ, там же происходит удобная конфигурация с исопльзованием пользовательского интерфейса.

Выбранный маршрутизатор — это ESR-3300 от производителя Eltex, который представляет собой универсальную аппаратную платформу и способное выполнять широкий круг задач, связанных с сетевой защитой, шифрованием передаваемых данных, терминированием пользователей и т. д. Маршрутизатор состоит из 4 портов 1000BASE-X/10GBASE-R/25GBASE-R (LAN/WAN) и 4 портов 40GBASE-R QSFP+/100GBASE-R QSFP28. DHCP так

же насроен на маршрутизаторе.

Коммутаторы L3 и L2 выбраны так же от производитя Eltex, а именно модель MES5324. Данная модель коммутатора имеет 24 порта 10Гбит/с (SFP+) и 4 порта 40Гбит/с этого достаточно, чтобы на данный момент обеспечить подключение всех компонентов инфраструктуры и заложить под будущее масштабирование. Количество таких коммутаторов 3, так как один из них используется на уровне ядра и еще 2 на уровне агрегации.

Посколько соединение СХД с севером осуществлется с использованием фабрики, она стоит из двух SAN коммутаторов к каждой из которых имеется соединение от обоих контроллеров СХД, а коммутаторы в свою очередь соеденены с каждым из серверов. Наиболее подходящий вариант коммутатора предоставляется вендором Dell модель DS-6610B. Это SAN коммутатор поддерживащий пропускную способность до 760 Гбит/с и 24 порта скоростью 32Gb SFP+.

Топология сети с устройствами и их схемой адресов представленной на Рисунке 1.11 представлена на Рисунке 1.5.

Таблица 1.11 — Схема адресации устройств внутри ЦОД

Устройство	IP адрес	Доменное имя	ID VLAN
Server_1	126.126.1.2	server1.dc.local	20
Server_2	126.126.1.3	server2.dc.local	20
Server_3	126.126.1.4	server3.dc.local	20
LAN_Switch_L2_1	126.126.2.2	sw1.l2.dc.local	30
LAN_Switch_L2_2	126.126.2.3	sw2.l2.dc.local	30
LAN_Switch_L3_1	126.126.3.2	sw1.l3.dc.local	40
LAN_R_1	126.126.4.2	r1.dc.local	50
SAN_Switch_1	126.126.242.2	sw1.fb.dc.local	-
SAN_Switch_2	126.126.242.3	sw2.fb.dc.local	-

Рисунок 1.5 — Топология сети ЦОД

1.6 Техническое обеспечение

Техническое обеспечение включает серверное оборудование, системы хранения данных, клиентские устройства, периферийное оборудование, а также системы электроснабжения, кондиционирования и пожаротушения. В условиях использования модели colocation, предполагающей аренду серверной стойки у вендора, акцент сделан на оптимизации размещения оборудования, минимизации энергопотребления и обеспечении соответствия нормативным

требованиям. В данном разделе приводятся спецификации серверов, рабочих мест пользователей и систем хранения данных, схема размещения оборудования в стойках, расчет энергопотребления с учетом источников бесперебойного и резервного питания, а также требования к системам кондиционирования и пожаротушения. Проектирование осуществляется с учетом необходимости обеспечения высокой доступности, безопасности данных и возможности масштабирования инфраструктуры.

Все техническое обеспение предложеноое в пункте о компонентах инфраструктуры по итогам расчетов технических требований системного, прикладного и специального ПО верны, так как они рассчитны на обработку именно такого объема данных с дальнейшим масшиабированием. К используемым периферйным устройствам можно отнести НВА-адаптер для каждого из серверов, который используется для формирования фабрики между самим сервером и СХД.

Так как серверная инфраструктура полностью расположена в одной серверной стойке арендуемой у вендора Selecte, то системы электроснабжения, кондиционирования и пожаротушения так же предоставляются им. Базовый пакет услуг collocation включает в себя 5КВА мощности с условием, что дополнительные мощности можно приобрести с оплатой, так же в базоывй пакет входят 2 независимых луча электропитания, что обеспечивает бесперебойное энергоснабжение. Итоговая таблица тхенического обеспечения с сетевыми устройствами их потреблением мощности представлена в Таблице 1.12

Таблица 1.12 — Итоговая таблица технического обеспечения с потреблением электроэнергии

Оборудование	Потребление электроэнергии, Вт	Количество
Сервер «Гравитон» С2122ИУ	350	3
СХД «Гравитон» СХ424И24БМ-РЭ	1200	1
Коммутатор Eltex MES5324	240	3
Dell DS-6610B	77	2
Маршрутизатор ESR-3300	177	1
Итого	3300	10

Итоговое энергопотребеление составляет 3300 Вт, что равняет 3,3 кВт. Это означает, что предоставляемого количества вендором достаточно для поддержвания существущей инфраструктуры в том числе с будущим

масштабированием.

Серверная стойка с компоновкой всех физических компонентов инфраструктуры внутри стойки приведены на Рисунке 1.6

Рисунок 1.6 — Серверная стойка

Автоматизированные работчие места (APM) сотрудников - это корпоративные ноутбуки, которые являются опциольными для сотрудников, так как все сотрудники компании работют удаленно. В связи с этим, для проектируемой инфраструктуры выбраны ноутбуки «Aquarius AQbook NE355» [16]. Ноутбук поддерживает процессор AMD ryzen 5600, до 64 ГБ

оперативной памяти и от 256 ГБ постоянной памяти. Тот факт, что это ноутубки Российского производства позволяет иметь быстрое сервисоное обслуживание и поддержку.

1.7 Организационное обеспечение

В условиях использования модели colocation с арендой серверной стойки в центре обработки данных акцент сделан на создании оптимальной организационной модели, учитывающей специфику локального развертывания. В данном разделе рассматривается штатная структура отдела сопровождения ИТ-инфраструктуры, включающая роли, обязанности и квалификационные персонала, необходимые для эксплуатации и проектируемой инфраструктуры. Проектирование организационного потребностей обеспечения осуществляется с учетом обеспечении отказоустойчивости, безопасности данных и оперативного реагирования на инциденты, а также минимизации эксплуатационных рисков.

Соглашение об уровне обслуживания, заключаемое с компанией Selectel:

- Доступность сервисов (Uptime) не менее 99,95% в месяц.
- Реакция на инциденты критические сбои: реагирование за 15 минут, устранение в течение 4 часов.
- Плановые работы уведомление минимум за 5 рабочих дней.
- Электроснабжение гарантированное питание с двух независимых вводов, отказ не более 5 минут в год.
- Интернет-канал резервированный канал, пропускная способность согласно тарифу, отказ не более 30 минут в месяц.
- Охрана и физический доступ круглосуточная охрана, доступ по заявке, аудит посещений.
- Ответственность компенсация части затрат при нарушении SLA (обычно в виде кредитов на услуги).

Далее, в Таблице 1.13 представлены необходимые кадры, для успешной поддержки и функционирования инфраструктуры.

Таблица 1.13 — Штат ИТ-отдела для арендуемой стойки

Должность	Основные задачи	Численность	Оценочная зарплата
			(на апрель 2025,
			Руб/мес)
Системный	Управление	1	120 000
администратор	серверами,		
	гипервизорами,		
	обновлениями		
	ПО, настройка		
	отказоустойчивости		
Сетевой инженер	Настройка	1	130 000
	маршрутизаторов,		
	фабрики		
	коммутаторов,		
	VLAN, мониторинг		
	сети		
Инженер по СХД	Управление	1 (совмещено	
	аппаратной СХД,	с системным	
	RAID-массивами,	админом)	
	мониторинг		
	состояния дисков и		
	трафика на хранение		
SLE Специалист	Поддержка и	1	70 000
	настройка Zabbix,		
	сбор метрик,		
	реагирование на		
	алерты		
Специалист по	Аудит доступа,	1	90 000
безопасности	защита каналов,		
	контроль событий		
	безопасности		

Такой состав покрывает основные потребности в кадровом обеспечении ИТ-отдела рассматриваемой организации, в рамках исходного бизнеспроцесса.

1.8 Проектный вариант ИТ-инфраструктуры

условиях локального развертывания инфраструктуры базе арендованной серверной стойки в центре обработки данных (модель colocation) особое внимание уделяется созданию надежных механизмов резервирования, резервного копирования и восстановления. В данном разделе специфицируются системы резервного копирования, меры обеспечения непрерывности и аварийного восстановления, а также нормы запасов инструментов и приборов для оперативного устранения неисправностей. На основе выбранного варианта развертывания производится расчет целевой доступности инфраструктуры, обеспечивающей выполнение требований по уровню обслуживания (SLA). Кроме того, представляется проектный вариант ИТ-архитектуры объекта исследования, включающий текстовое описание и диаграмму в нотации ArchiMate, отражающую целевое состояние бизнесслоя, слоя приложений и технологического слоя. Разработка осуществляется с учетом необходимости достижения высокой отказоустойчивости, безопасности данных и соответствия нормативным требованиям.

Для обеспечения отказоустойчивости и аварийного восстановления ИТ-инфраструктуры проектируемой системы были разработаны следующие меры. В проектируемой инфраструктуре используется система резервного копирования RuBackup, которая обеспечивает создание резервных копий данных, виртуальных машин, баз данных и рабочих станций. Резервные копии данных хранятся на облачном блочном хранилище, предоставляемом вендором Selectel. Дублирование данных осуществляется с использованием протокола S3 в зашифрованном виде с применением алгоритма AES256. Частота создания резервных копий критичных данных составляет один раз в час, а для менее критичных данных — один раз в день. Такой подход позволяет минимизировать риск потери данных в случае сбоев или аварий.

Для обеспечения непрерывности работы системы предусмотрены меры, направленные на повышение отказоустойчивости и оперативное восстановление работоспособности. В инфраструктуре используется отказоустойчивый кластер серверов на базе гипервизора РЕД Виртуализация, что позволяет перераспределять нагрузку между серверами в случае выхода одного из них из строя. Критичные компоненты инфраструктуры, такие

как серверы, СХД и SAN-коммутаторы, дублируются, что обеспечивает их доступность даже при отказе одного из экземпляров. Для обеспечения бесперебойного электропитания используются два независимых источника питания, предоставляемых вендором Selectel. Это позволяет избежать простоев, связанных с перебоями в подаче электроэнергии. Кроме того, система мониторинга Zabbix используется для оперативного выявления и устранения неисправностей, что позволяет минимизировать время простоя. Регулярное тестирование сценариев аварийного восстановления, включая восстановление данных из резервных копий, обеспечивает готовность системы к различным аварийным ситуациям.

Для оперативного устранения неисправностей предусмотрены запасы необходимых инструментов и компонентов. В их числе резервные диски для СХД (SSD и HDD) в количестве 10% от общего числа используемых, резервные блоки питания и вентиляторы для серверов и СХД, а также набор инструментов для замены компонентов, таких как отвертки и тестеры. Это позволяет оперативно устранять неисправности и минимизировать время простоя.

Целевая доступность инфраструктуры рассчитывается на основе показателей доступности всех её компонентов. Для серверов, СХД и сетевого оборудования целевая доступность составляет 99,95%, что соответствует требованиям SLA, предоставляемым вендором Selectel. Общая доступность инфраструктуры рассчитывается по формуле: $A_{\text{total}} = 1 - \prod_{i=1}^{n} (1 - A_i)$, где A_i — доступность каждого компонента. При учёте всех компонентов целевая доступность системы составляет не менее 99,9%. Это позволяет обеспечить высокий уровень надежности и соответствие требованиям бизнеса.

Проектный вариант ИТ-архитектуры включает три слоя: бизнесслой, слой приложений и технологический слой. Бизнес-слой описывает основные процессы, такие как управление кредитами и обработка данных клиентов. Слой приложений включает СRM-систему, скоринговую систему и систему поддержки кредитов, которые обеспечивают выполнение ключевых бизнес-функций. Технологический слой включает серверы, СХД, сетевое оборудование и системы виртуализации, которые обеспечивают надежную и производительную основу для работы приложений. Диаграмма ИТархитектуры, выполненная на языке ArchiMate, представлена на Рисунке 1.7.

Рисунок 1.7 — Диаграмма на языке ArchiMate «to be»

2 Заключение

В ходе работы были рассмотрены различные варианты поставки информационно-технологического сервиса, проведен анализ компонентов инфраструктуры, выбраны системное и прикладное программное обеспечение, а также разработаны топологии развертывания и сетевой инфраструктуры. Ha проведенного анализа был обоснован выбор основе полностью инфраструктуры, самостоятельного варианта поставки что позволяет обеспечить высокий уровень безопасности, отказоустойчивости и соответствие требованиям регуляторов.

Проектируемая инфраструктура включает в себя серверы, системы хранения данных, сетевое оборудование и программное обеспечение, обеспечивающее выполнение ключевых бизнес-функций. Особое внимание уделено вопросам резервного копирования, аварийного восстановления и обеспечения отказоустойчивости. Использование отечественного оборудования и программного обеспечения позволяет снизить затраты на эксплуатацию и обеспечить соответствие требованиям импортозамещения.

работы Практическая значимость заключается В возможности ИТ-инфраструктуры разработанной применения ДЛЯ модернизации модулей автоматизированных систем потребительского внедрения кредитования в кредитных организациях. Это способствует повышению надежности, производительности и безопасности информационных систем, а также улучшению качества обслуживания клиентов. Полученные результаты могут быть использованы в дальнейшем для масштабирования и адаптации инфраструктуры под изменяющиеся потребности бизнеса.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Shanan R., Collier M. Основы Micrasoft Azure. 2015. 268 с.
- 2. Selectel: Аренда места под сервер в дата-центре // URL: https://selectel.ru/services/colocation/?section=products (дата обращения: 18.04.2025).
- 3. Selectel: Блоковое хранилище // URL: https://selectel.ru/services/cloud/storage/?section=prices (дата обращения: 18.04.2025).
- 4. Гравитон: О компании // URL: https://graviton.ru (дата обращения: 18.04.2025).
- 5. Технические характеристики сервера «Гравитон» C2122ИУ // URL: https://graviton.ru/catalog/servery-i-khranenie-dannykh/servery/server-graviton-s2122iu (дата обращения: 18.04.2025).
- 6. RAIDIX: Облачные решения // URL: https://www.raidix.com/solutions/cloud (дата обращения: 18.04.2025).
- 7. РЕД Виртуализация: Система управления виртуализацией серверов и рабочих станций // URL: https://redvirt.red-soft.ru (дата обращения: 18.04.2025).
- 8. VMware для виртуализации // URL: https://www.vmware.com (дата обращения: 18.04.2025).
- 9. РЕД Виртуализация: Системные требования // URL: https://redvirt.red-soft.ru/base/red-virt/system-requirements-red-virt/hardware-rv (дата обращения: 18.04.2025).
- 10. Ред ОС: Российская операционная система общего назначения для серверов и рабочих станций // URL: https://redos.red-soft.ru (дата обращения: 18.04.2025).
- 11. Ред ОС: Системные требования // URL: https://redos.red-soft.ru/base/redos-7_3/7_3-install/7_3-sys-req (дата обращения: 18.04.2025).

- 12. Bitrix24: CRM и управление проектами // URL: https://www.bitrix24.ru (дата обращения: 18.04.2025).
- 13. Bitrix24: Системные требования // URL: https://helpdesk.bitrix24.ru/open/5825131 (дата обращения: 18.04.2025).
- 14. Zabbix: система маниторинга инфраструктуры // URL: https://www.zabbix.com (дата обращения: 18.04.2025).
- 15. Kubernetes: ПО для аркестрации контейнеров // URL: https://kubernetes.io (дата обращения: 18.04.2025).
- 16. Описание и характеристики ноутбука Aquarius AQbook NE355 // URL: https://www.aq.ru/product/aquarius-cmp-ne355 (дата обращения: 17.03.2025).