Aqui está uma tabela resumida com as principais arquiteturas de redes neurais, seus tipos e características para proporcionar uma visão clara e direta das diferenças e usos de cada uma:

Modelo	Tipo de Rede	Arquitetura Principal	Características Principais	Aplicações Típicas
Perceptron Simples	Feedforward (DNN)	Camada de entrada e uma camada de saída	Arquitetura básica, não tem camadas ocultas	Classificação binária simples
MLP (Multilayer Perceptron)	Feedforward (DNN)	Múltiplas camadas ocultas	Capacidade de aprender funções não lineares	Classificação, regressão, detecção de padrões
RNN (Redes Neurais Recorrentes)	Recurrente	Conexões recorrentes entre camadas	Processamento sequencial, dependências temporais	Processamento de linguagem natural, séries temporais
LSTM (Long Short-Term Memory)	Recurrente	Tipo de RNN com células de memória	Resolve o problema de gradiente de longo prazo, excelente para sequências longas	Tradução automática, reconhecimento de fala
GRU (Gated Recurrent Unit)	Recurrente	Variante do LSTM, mais simples	Melhor desempenho em menos tempo de treinamento que o LSTM	Reconhecimento de fala, previsão de séries temporais
CNN (Redes Neurais Convolucionais)	Convolucional	Camadas convolucionais e de pooling	Captura de padrões locais em imagens (bordas, texturas, formas)	Reconhecimento de imagem, detecção de objetos
ResNet (Residual Networks)	Convolucional	Convolução com conexões residuais	Supera o problema de "vanishing gradients" com conexões de salto	Classificação de imagens, detecção de objetos

Modelo	Tipo de Rede	Arquitetura Principal	Características Principais	Aplicações Típicas
Inception	Convolucional	Múltiplas convoluções em paralelo	Usa diferentes tamanhos de filtros de convolução para extrair mais características	Reconhecimento de imagem, segmentação de objetos
GAN (Generative Adversarial Networks)	Generativa	Duas redes adversárias: gerador e discriminador	Uma rede gera dados falsos e a outra tenta distinguir entre falso e real	Geração de imagens, deepfakes, arte generativa
Autoencoder	Não supervisionad a	Codificador e decodificador	Aprende uma representação compacta dos (compressão e reconstrução)	Redução de dimensionalidade , compressão de dados
Transformer	Atencional	Múltiplas camadas de atenção	Processa sequências inteiras simultaneamente , ótimo para dependências longas	Tradução automática, PNL, geração de texto
BERT (Bidirectional Encoder Representation s from Transformers)	Atencional	Encoder Transformer bidirecional	Processa informações de contexto em ambos os sentidos (esquerda e direita)	Compreensão de texto, classificação de sentenças
GPT (Generative Pre-trained Transformer)	Atencional	Decoder Transformer	Geração de texto com foco em entender e gerar sequências de texto grandes	Geração de texto, chatbots, respostas automáticas
T5 (Text-to-Text Transfer Transformer)	Atencional	Encoder- Decoder Transformer	Traduz todas as tarefas em formato de entrada e saída	Tradução, resumo, pergunta- resposta, PNL

Modelo	Tipo de Rede	Arquitetura Principal	Características Principais	Aplicações Típicas
			de texto (universal)	
Vision Transformer (ViT)	Atencional	Mapeia imagens como sequência de patches	Aplica a arquitetura Transformer em imagens, dividindo-as em partes menores	Classificação de imagens, segmentação de objetos
Siamese Networks	Arquitetura especializada	Duas redes idênticas com pesos compartilhado s	Usado para medir a similaridade entre duas entradas	Verificação de assinatura, comparação de imagens
Capsule Networks	Convolucional	Camadas de cápsulas	Tenta melhorar a limitação das CNNs em reconhecer objetos de diferentes orientações	Reconhecimento de objetos, visão computacional

Resumo das Arquiteturas:

- Feedforward (DNN): Redes onde os dados fluem em uma direção, de entrada para saída, com ou sem camadas ocultas. MLP é uma versão mais complexa com múltiplas camadas.
- Recurrente (RNN): Redes que têm conexões de feedback, permitindo que elas se lembrem de informações passadas. LSTM e GRU são variações com melhorias para lidar com dependências de longo prazo.
- **Convolucionais (CNN)**: Focadas em capturar padrões locais, ideais para dados espaciais como imagens e vídeos.
- **Generativas (GAN)**: Redes usadas para gerar novos dados, com duas redes competindo entre si.
- **Transformadoras (Transformer)**: Redes que utilizam atenção para processar sequências inteiras simultaneamente, eficazes para problemas de PNL e também aplicadas em imagens com o **ViT**.
- Outras: Incluem Autoencoders (compressão de dados), Siamese Networks (comparação de imagens), e Capsule Networks (tentam resolver limitações das CNNs).

Cada arquitetura tem suas vantagens específicas dependendo do tipo de dado e tarefa a ser executada. As CNNs são ótimas para imagens, as RNNs e Transformers para sequências temporais e texto, e as GANs e Autoencoders para geração e compressão de dados.