Seminar: Realitionsmechanismuc

ein Pfeil markiert Bewegung von Elektronen Ipacuen und nicht von Teilchen

$$H - NI + H_{3} \subset \mathcal{E}^{1} \subset \mathcal{E$$

ling Draw Ly tomputer zeichner

Rea Utionsmechanismen;

Nucleophile Substitution.

- · Vonzetiet, einstulig
- · Rucusetevangri H ~ Walden'sche Um Kehning / Inversion
- · s.p3 hybridicienter Kohlenstoff

kinetik

v = K. [Mic] [Flekk] E2

L. Realition 2. Ordining

Carolation

es entsteht Racemat

· 2 veistulia

· Carboliation (planar)

Vergleich:

mann 5,1/5,22

- 1.) Son 2 Steil spinhloggen Son Z
- 2.). S_{n.} 1 ie stubbu Curbollation umso ele S_n. 1

Hyperkonjugation

Tro	SAM	15,2	Beispiel			
111.44.1		+++	ASC-I		٠	٠
primar	,	+ +	. ~1			
<i>Selumnd</i> är	+	+	<i>≻T</i> • → r			
tertiāv	+ +	-	Allyl Brit	Benzyl I	(+/	n)
Alkyl/Banyl	++ (+)	+(+)	l I	•	1-N	1)
d-Gubonyl - 1		/ 	(. / * .		*	*

Abganozgmp pengualitat:

XE	Phan	ne. Rate	_
FO	+3 *	lowersawn mittel echnell	=1 je basischer dedo
d	->	mittel echnell	schiechterdie Abgungsgruppe
ar O	-9 .	schnell.	
IO	-10	sehr schnell	

Mucleophilie:

	1- ple +4	rel. Rate
ρh - Ş _I Θ	~64	5.107
H-010	~15i=	12000
Ph-00	~10	2000
10.010	15°	845
H20	2-1,7	* 1 *
aou	~ 10	0
. (_	\

Elektrophile aromatische Substitution:

Nucleophil ?

11- Walke des Bromater ist Elektronenquelle/Mckaphil

Elektrophile ?

Seminour: Nuc undekktr aromatische Substitution + Eliminiemng

hir "Hansgebranch"

L) schouen wo -M EKKAL Elektrorendichte veröndere

FHekt Beispiel Reaktivität
$$S_{EA}$$
 Dingieren E^{\oplus}
+ I Alkyl + ortho/para
+ M - O Me - N H2 + + + + ortho/para
+ M - O Re N -R2.
- M - N O2 - C = N - - (-)

 N - N O2 - N C = N - - (-)

 N - N O2 - N C = N - - (-)

 N - N O2 - N C = N - - (-)

 N - N O2 - N C = N - - (-)

 N - N O2 - N C = N - - (-)

 N - N O2 - N C = N - - (-)

Nucleophile aromatische Substitution;

Beispiel.