Contents

1 Ru	es for weak Martin-Löf type theory	
1.1	Dependent type theory	;
	1.1.1 Judgments and contexts	;
	1.1.2 Variable rule	
	1.1.3 Admissible structural rules	
1.2	Basic type formers	
	1.2.1 Formation rules	
	1.2.2 Introduction rules	
	1.2.3 Elimination rules	
	1.2.4 Computation rules	4
	1.2.5 Uniqueness rules	
	1.2.6 Extensionality rules	
1.3	Judgmental equality	
	1.3.1 Structural rules for judgmental equality	
	1.3.2 Judgmental congruence rules for dependent function types	
	1.3.3 Judgmental congruence rules for dependent pair types	
	1.3.4 Judgmental congruence rules for identity types	
1.4	Equivalence types	
1.5	Empty type	
1.6	Unit type	
1.7	Type of booleans	
1.8	Sum types	
1.9	Product types	
1.1	Function types	
1.1	Type of propositions	
1.1	Predicate logic	1
1.1	Quotient sets	1
	Excluded middle and axiom of choice	
1.1	Natural numbers type	1

2 CONTENTS

Chapter 1

Rules for weak Martin-Löf type theory

1.1 Dependent type theory

1.1.1 Judgments and contexts

Dependent type theory consists of type judgments, term judgments, and context judgments:

A type
$$a:A$$
 Γ ctx

Rules to form the empty context and to extend the context by a term judgment:

$$\frac{\Gamma \cot \Gamma - A \text{ type}}{(\Gamma, a : A) \cot X}$$

1.1.2 Variable rule

Variable rule:

$$\frac{\Gamma, a: A, \Delta \operatorname{ctx}}{\Gamma, a: A, \Delta \vdash a: A}$$

1.1.3 Admissible structural rules

Let \mathcal{J} be any arbitrary judgment.

Weakening rule:

$$\frac{\Gamma, \Delta \vdash \mathcal{J} \quad \Gamma \vdash A \text{ type}}{\Gamma, a: A, \Delta \vdash \mathcal{J}}$$

Substitution rule:

$$\frac{\Gamma \vdash a : A \quad \Gamma, b : A, \Delta(b) \vdash \mathcal{J}(b)}{\Gamma, \Delta(a) \vdash \mathcal{J}(a)}$$

1.2 Basic type formers

The basic type formers of dependent type theory are dependent function types, dependent pair types, and identity types.

1.2.1 Formation rules

Formation rules for dependent function types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \prod_{x : A} . B(x) \text{ type}}$$

Formation rules for dependent pair types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \sum_{x : A} B(x) \text{ type}}$$

Formation rules for identity types:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma, a: A, b: A \vdash \text{Id}_A(a, b) \text{ type}}$$

1.2.2 Introduction rules

Introduction rules for dependent function types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type} \quad \Gamma, x : A \vdash b(x) : B(x)}{\Gamma \vdash \lambda_{\prod_{x : A} B(x)}^{x : A.b(x)} : \prod_{x : A} .B(x)}$$

Introduction rules for dependent pair types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type}}{\Gamma, x : A, y : B(x) \vdash \text{pair}_{\sum}^{A,B}(x,y) : \sum_{x : A} B(x)}$$

Introduction rules for identity types:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma, a : A \vdash \text{refl}_A(a) : \text{Id}_A(a, a)}$$

1.2.3 Elimination rules

Elimination rules for dependent function types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type} \quad \Gamma \vdash f : \prod_{x : A} B(x)}{\Gamma, x : A \vdash f(x) : B(x)}$$

Elimination rules for dependent pair types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type} \quad \Gamma, z : \sum_{x : A} B(x) \vdash C(z) \text{ type}}{\Gamma \vdash \operatorname{ind}_{\sum}^{A,B,C} : \prod_{g : \prod_{x : A} \prod_{y : B(x)} C(\operatorname{pair}_{\sum}^{A,B}(x,y))} \prod_{z : \sum_{x : A} B(x)} C(z)}$$

Dependent elimination rule for identity types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A, y : A, p : x =_A y \vdash C(x, y, p) \text{ type}}{\Gamma \vdash \operatorname{ind}_{=}^{A,C} : \prod_{t : \prod_{x : A} C(x, x, \operatorname{refl}_A(x))} \prod_{x : A} \prod_{y : A} \prod_{p : x =_A y} C(x, y, p)}$$

1.2.4 Computation rules

Computation rules for dependent function types

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type} \quad \Gamma, x : A \vdash b(x) : B(x)}{\Gamma \vdash \beta_{\prod_{x : A} B(x)}^{x : A.b(x)} : \prod_{x : A} \lambda_{\prod_{x : A} B(x)}^{x : A.b(x)}(x) =_{B(x)} b(x)}$$

Computation rules for dependent pair types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type} \quad \Gamma, z : \sum_{x : A} B(x) \vdash C(z) \text{ type}}{\Gamma \vdash \beta^{A,B,C}_{\sum} : \prod_{g : \prod_{x : A} \prod_{y : B(x)} C(\operatorname{pair}^{A,B}_{\sum}(x,y))} \prod_{x : A} \prod_{y : B(x)} \operatorname{ind}^{A,B,C}_{\sum}(g, \operatorname{pair}^{A,B}_{\sum}(x,y)) =_{C(\operatorname{pair}^{A,B}_{\sum}(x,y))} g(x,y)}$$

Computation rules for identity types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A, y : A, p : x =_A y \vdash C(x, y, p) \text{ type}}{\Gamma \vdash \beta_{\text{ind}_{=}}^{A, C} : \prod_{t : \prod_{x : A} C(x, x, \text{refl}_{A}(x))} \prod_{x : A} \text{ind}_{\text{Id}}^{A, C}(t, x, x, \text{refl}_{A}(x)) =_{C(x, x, \text{refl}_{A}(x))} t(x)}$$

1.2.5 Uniqueness rules

Uniqueness rules for dependent function types:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \eta_{\prod_{x : A} B(x)} : \prod_{f : \prod_{x : A} B(x)} f =_{\prod_{x : A} B(x)} \lambda_{\prod_{x : A} B(x)}^{x : A \cdot f(x)}}$$

1.2.6 Extensionality rules

Extensionality rules for dependent function types:

$$\frac{\Gamma \vdash A \text{ type } \quad \Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \text{homToId}_{\prod_{x : A} B(x)} : \prod_{f : \prod_{x : A} B(x)} \prod_{g : \prod_{x : A} B(x)} \prod_{H : \prod_{x : A} f(x) =_{B(x)} g(x)} f =_{\prod_{x : A} B(x)} g}$$

$$\frac{\Gamma \vdash A \text{ type } \quad \Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \text{ext}_{\prod_{x : A} B(x)} : \quad \prod_{f : \prod_{x : A} B(x)} \prod_{g : \prod_{x : A} B(x)} \prod_{H : \prod_{x : A} f(x) =_{B(x)} g(x)} \prod_{g : \prod_{x : A} f(x) =_{B(x)} g(x)} \prod_{f : \prod_{x : A} f(x) =_{B(x)} g(x)} H}$$

1.3 Judgmental equality

We add to the type theory two additional judgments called judgmental equality of types and judgmental equality of terms:

$$\Gamma \vdash A \equiv A' \text{ type } \Gamma \vdash a \equiv a' : A$$

1.3.1 Structural rules for judgmental equality

Reflexivity of judgmental equality

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \equiv A \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash a : A}{\Gamma \vdash a \equiv a : A}$$

Symmetry of judgmental equality

$$\frac{\Gamma \vdash A \equiv B \text{ type}}{\Gamma \vdash B \equiv A \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash a \equiv b : A}{\Gamma \vdash b \equiv a : A}$$

Transitivity of judgmental equality

$$\frac{\Gamma \vdash A \equiv B \text{ type} \quad \Gamma \vdash B \equiv C \text{ type}}{\Gamma \vdash A \equiv C \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash a \equiv b : A \quad b \equiv c : A}{\Gamma \vdash a \equiv c : A}$$

Substitution of judgmentally equal terms:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash a \equiv b : A \quad \Gamma, x : A, \Delta(x) \vdash B(x) \text{ type}}{\Gamma, \Delta(a) \vdash B(a) \equiv B(b) \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash a \equiv b : A \quad \Gamma, x : A, \Delta(x) \vdash B(x) \text{ type}}{\Gamma, \Delta(b) \vdash B(a) \equiv B(b) \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash a \equiv b : A \quad \Gamma, x : A, \Delta(x) \vdash c(x) : B(x)}{\Gamma, \Delta(a) \vdash c(a) \equiv c(b) : B(a)}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash a \equiv b : A \quad \Gamma, x : A, \Delta(x) \vdash c(x) : B(x)}{\Gamma, \Delta(b) \vdash c(a) \equiv c(b) : B(b)}$$

Judgmental variable conversion rule:

$$\frac{\Gamma \vdash A \equiv B \text{ type} \quad \Gamma, x : A, \Delta \vdash \mathcal{J}}{\Gamma, x : B, \Delta \vdash \mathcal{J}}$$

1.3.2 Judgmental congruence rules for dependent function types

$$\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type } \Gamma \vdash A' \text{ type } \Gamma, x : A' \vdash B'(x) \text{ type } \Gamma \vdash A \equiv A' \text{ type } \Gamma, x : A \vdash B(x) \equiv B'(x) \text{ type } \Gamma \vdash A \equiv A' \text{ type } \Gamma \vdash A \equiv A' \text{ type } \Gamma, x : A \vdash B(x) \equiv B'(x) \text{ type } \Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type } \Gamma, x : A \vdash b(x) : B(x) = B'(x) : B(x)$$

$$\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type } \Gamma, x : A \vdash b(x) : B(x) = B'(x) : B(x)$$

$$\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type } \Gamma \vdash f : \prod_{x : A} B(x) = B'(x)$$

$$\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type } \Gamma \vdash f : \prod_{x : A} B(x) = B'(x)$$

$$\Gamma, x : A \vdash f(x) \equiv f'(x) : B(x)$$

$$\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type } \Gamma, x : A \vdash b(x) : B(x) = B(x)$$

$$\Gamma, x : A \vdash B(x) \equiv B'(x) : B(x) = B(x)$$

$$\Gamma \vdash B_{\Pi_{x : A}} B(x) \equiv B_{\Pi_{x : A}} B(x) : \Pi_{x : A} B(x) = B(x)$$

$$\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type } \Gamma, x : A \vdash B'(x) \text{ type } \Gamma, x : A \vdash B'(x) \text{ type } \Gamma, x : A \vdash B(x) \equiv B'(x) \text{ type } \Gamma, x : A$$

$$\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type} \quad \Gamma, x : A \vdash B'(x) \text{ type}$$

$$\Gamma, x : A \vdash B(x) \equiv B'(x) \text{ type}$$

 $\overline{\Gamma \vdash \text{homToId}_{\prod_{x:A} B(x)} \equiv \text{homToId}_{\prod_{x:A} B'(x)} : \prod_{f:\prod_{x:A} B(x)} \prod_{g:\prod_{x:A} B(x)} \left(\prod_{x:A} f(x) =_{B(x)} g(x)\right) \rightarrow \left(f =_{\prod_{x:A} B(x)} g(x)\right)}$

$$\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type} \quad \Gamma, x : A \vdash B'(x) \text{ type}$$

$$\Gamma, x : A \vdash B(x) \equiv B'(x) \text{ type}$$

$$\frac{\Gamma(x:\Pi \cap B(x) = B(x)) \text{ by pc}}{\Gamma \vdash \text{ext}_{\prod_{x:A} B(x)} \equiv \text{ext}_{\prod_{x:A} B'(x)} : \frac{\prod_{f:\prod_{x:A} B(x)} \prod_{g:\prod_{x:A} B(x)} \prod_{H:\prod_{x:A} f(x) = B(x)} g(x)}{\text{rec}_{=}(\lambda f. \lambda x. \text{refl}_{B(x)}(f(x)), f, g, \text{homToId}_{\prod_{x:A} B(x)}(f, g, H)) = \prod_{x:A} f(x) = B(x)} H$$

1.3.3 Judgmental congruence rules for dependent pair types

$$\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type } \Gamma \vdash A' \text{ type } \Gamma, x : A' \vdash B'(x) \text{ type } \Gamma \vdash A \equiv A' \text{ type } \Gamma, x : A \vdash B(x) \equiv B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B'(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B'(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B'(x) \equiv \sum_{x : A'} B'(x) \text{ type } \Gamma \vdash \sum_{x : A} B'(x) \equiv \sum_{x : A} B'(x) \equiv \sum_{x : A'} B'(x) \equiv \sum_{x : A'}$$

$$\frac{\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type } \Gamma \vdash A' \text{ type } \Gamma, x : A' \vdash B'(x) \text{ type }}{\Gamma \vdash A \equiv A' \text{ type } \Gamma, x : A \vdash B(x) \equiv B'(x) \text{ type }}$$

$$\frac{\Gamma}{\Gamma} = \frac{\Gamma}{\Gamma} = \frac{\Gamma}{\Gamma$$

$$\frac{\Gamma \vdash A \text{ type } \quad \Gamma, x : A \vdash B(x) \text{ type } \quad \Gamma, z : \sum_{x : A} B(x) \vdash C(z) \text{ type }}{\Gamma, z : \sum_{x : A} B(x) \vdash C'(z) \text{ type } \quad \Gamma, z : \sum_{x : A} B(x) \vdash C(z) \equiv C'(z) \text{ type }}{\Gamma \vdash \operatorname{ind}_{\sum}^{A,B,C} \equiv \operatorname{ind}_{\sum}^{A,B,C'} : \prod_{g : \prod_{x : A} \prod_{y : B(x)} C(\operatorname{pair}_{\sum}^{A,B}(x,y))} \prod_{z : \sum_{x : A} B(x)} C(z)}$$

$$\frac{\Gamma \vdash A \text{ type } \quad \Gamma, x : A \vdash B(x) \text{ type } \quad \Gamma, z : \sum_{x : A} B(x) \vdash C(z) \text{ type }}{\Gamma, z : \sum_{x : A} B(x) \vdash C'(z) \text{ type } \quad \Gamma, z : \sum_{x : A} B(x) \vdash C(z) \equiv C'(z) \text{ type }} \frac{\Gamma, z : \sum_{x : A} B(x) \vdash C(z) \equiv C'(z) \text{ type }}{\Gamma \vdash \beta_{\sum}^{A,B,C} \equiv \beta_{\sum}^{A,B,C'} : \prod_{g : \prod_{x : A} \prod_{y : B(x)} C(\text{pair}_{\sum}^{A,B}(x,y)) \prod_{x : A} \prod_{y : B(x)} \text{ind}_{\sum}^{A,B,C}(g, \text{pair}_{\sum}^{A,B}(x,y)) =_{C(\text{pair}_{\sum}^{A,B}(x,y))} g(x,y)}}$$

1.3.4 Judgmental congruence rules for identity types

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash A' \text{ type} \quad \Gamma \vdash A \equiv A' \text{ type}}{\Gamma, x : A, y : A \vdash x =_A y \equiv x ='_A y}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash A' \text{ type} \quad \Gamma \vdash A \equiv A' \text{ type}}{\Gamma \vdash \text{refl}_A \equiv \text{refl}_{A'} : \prod_{x:A} x =_A x}$$

$$\frac{\Gamma \vdash A \equiv A' \text{ type} \quad \Gamma, x : A, y : A, p : x =_A y \vdash C(x, y, p) \text{ type} \quad \Gamma, x : A', y : A', p : x =_{A'} y \vdash C'(x, y, p) \text{ type}}{\Gamma, x : A, y : A, p : x =_A y \vdash C(x, y, p) \equiv C'(x, y, p) \text{ type}}$$

$$\frac{\Gamma \vdash \text{ind}_{=}^{A,C} \equiv \text{ind}_{=}^{A',C'} : \prod_{t : \prod_{x : A} C(x, x, \text{refl}_{A}(x))} \prod_{x : A} \prod_{y : A} \prod_{p : x =_A y} C(x, y, p)}{\Gamma \vdash \text{ind}_{=}^{A,C} \equiv \text{ind}_{=}^{A',C'} : \prod_{t : \prod_{x : A} C(x, x, \text{refl}_{A}(x))} \prod_{x : A} \prod_{y : A} \prod_{p : x =_A y} C(x, y, p)}$$

$$\Gamma \vdash A \equiv A' \text{ type} \quad \Gamma, x : A, y : A, p : \text{Id}_A(x, y) \vdash C(x, y, p) \text{ type} \quad \Gamma, x : A', y : A', p : x =_{A'} y \vdash C'(x, y, p) \text{ type}$$

$$\Gamma, x : A, y : A, p : x =_{A} y \vdash C(x, y, p) \equiv C'(x, y, p) \text{ type}$$

$$\Gamma \vdash \beta_{\text{ind}_{=}}^{A,C} \equiv \beta_{\text{ind}_{=}}^{A',C'} : \prod_{t : \prod_{x : A} C(x, x, \text{refl}_A(x))} \prod_{x : A} \text{ind}_{=}^{A,C} (t, x, x, \text{refl}_A(x)) =_{C(x, x, \text{refl}_A(x))} t(x)$$

1.4 Equivalence types

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \text{isContr}(A) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \text{isContr}(A) \equiv \sum_{x:A} \prod_{y:A} x =_A y \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \exists! x : A.B(x) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \exists! x : A.B(x) \equiv \text{isContr}\left(\sum_{x:A} B(x)\right) \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \simeq B \text{ type}} \quad \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \simeq B \equiv \sum_{f: \prod_{x:A} B} \prod_{y:B} \exists ! x : A. f(x) =_B y \text{ type}}$$

1.5 Empty type

Formation rule for the empty type

$$\frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \emptyset \operatorname{type}}$$

Elimination rule for the empty type:

$$\frac{\Gamma, x : \emptyset \vdash C(x) \text{ type}}{\Gamma \vdash \text{ind}_{\emptyset}^{C} : \prod_{x : \emptyset} C(x) \text{ type}}$$

Judgmental congruence rules for the empty type:

$$\frac{\Gamma, x:\emptyset \vdash C(x) \equiv C'(x) \text{ type}}{\Gamma \vdash \operatorname{ind}_{\emptyset}^{C} \equiv \operatorname{ind}_{\emptyset}^{C'}: \prod_{x:\emptyset} C(x) \text{ type}}$$

1.6 Unit type

$$\frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \mathbb{1} \operatorname{type}} \quad \frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \mathbb{1} \equiv \prod_{x : \emptyset} \emptyset \operatorname{type}}$$

1.7 Type of booleans

Formation rule for the type of booleans

$$\frac{\Gamma \operatorname{ctx}}{\Gamma \vdash 2 \operatorname{type}}$$

Introduction rule for the type of booleans

$$\frac{\Gamma \, ctx}{\Gamma \vdash 0:2} \quad \frac{\Gamma \, ctx}{\Gamma \vdash 1:2}$$

Elimination rules for the type of booleans:

$$\frac{\Gamma, x : 2 \vdash C(x) \text{ type}}{\Gamma \vdash \text{ind}_{2}^{C} : \prod_{a:C(0)} \prod_{b:C(1)} \prod_{x:2} C(x)}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma, x : 2 \vdash \text{typerec}_{2}^{A,B}(x) \text{ type}}$$

Computation rules for the type of booleans:

$$\begin{split} & \Gamma, x: 2 \vdash C(x) \text{ type} \\ & \overline{\Gamma \vdash \beta_2^{0,C} : \prod_{a:C(0)} \prod_{b:C(1)} \operatorname{ind}_2^C(a,b,0)} =_{C(0)} a} \\ & \frac{\Gamma, x: 2 \vdash C(x) \text{ type}}{\Gamma \vdash \beta_2^{1,C} : \prod_{a:C(0)} \prod_{b:C(1)} \operatorname{ind}_2^C(a,b,1)} =_{C(1)} b} \\ & \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash \beta_2^{0,A,B} : \text{ typerec}_2^{A,B}(0) \simeq A} \\ & \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash \beta_2^{1,A,B} : \text{ typerec}_2^{A,B}(1) \simeq B} \end{split}$$

Extensionality rule for the type of booleans:

$$\frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \operatorname{ext}_2 : \prod_{x:2} \prod_{y:2} (x =_2 y) \simeq (\operatorname{typerec}_2^{\emptyset, \mathbb{1}}(x) \simeq \operatorname{typerec}_2^{\emptyset, \mathbb{1}}(y))}$$

1.8. SUM TYPES 9

Judgmental congruence rules for the type of booleans:

$$\frac{\Gamma, x: 2 \vdash C(x) \equiv C'(x) \text{ type}}{\Gamma \vdash \operatorname{ind}_{2}^{C} \equiv \operatorname{ind}_{2}^{C'}: \prod_{a:C(0)} \prod_{b:C(1)} \prod_{x:2} C(x)}$$

$$\frac{\Gamma \vdash A \equiv A' \text{ type} \quad \Gamma \vdash B \equiv B' \text{ type}}{\Gamma, x: 2 \vdash \text{ typerec}_{2}^{A,B}(x) \equiv \text{ typerec}_{2}^{A',B'}(x) \text{ type}}$$

$$\frac{\Gamma, x: 2 \vdash C(x) \equiv C'(x) \text{ type}}{\Gamma \vdash \beta_{2}^{0,C} \equiv \beta_{2}^{0,C'}: \prod_{a:C(0)} \prod_{b:C(1)} \operatorname{ind}_{2}^{C}(a,b,0) =_{C(0)} a}$$

$$\frac{\Gamma, x: 2 \vdash C(x) \equiv C'(x) \text{ type}}{\Gamma \vdash \beta_{2}^{1,C} \equiv \beta_{2}^{1,C'}: \prod_{a:C(0)} \prod_{b:C(1)} \operatorname{ind}_{2}^{C}(a,b,1) =_{C(1)} b}$$

$$\frac{\Gamma \vdash A \equiv A' \text{ type} \quad \Gamma \vdash B \equiv B' \text{ type}}{\Gamma \vdash \beta_{2}^{0,A,B} \equiv \beta_{2}^{0,A',B'}: \text{ typerec}_{2}^{A,B}(0) \simeq A}$$

$$\frac{\Gamma \vdash A \equiv A' \text{ type} \quad \Gamma \vdash B \equiv B' \text{ type}}{\Gamma \vdash \beta_{2}^{1,A,B} \equiv \beta_{2}^{1,A',B'}: \text{ typerec}_{2}^{A,B}(1) \simeq B}$$

1.8 Sum types

$$\begin{split} \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A + B \text{ type}} \\ \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A + B \equiv \sum_{x:2} \text{ typerec}_2^{A,B}(x) \text{ type}} \end{split}$$

1.9 Product types

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \times B \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \times B \equiv \prod_{x:2} \text{ typerec}_2^{A,B}(x) \text{ type}}$$

1.10 Function types

$$\begin{split} \frac{\Gamma \vdash A \text{ type} & \Gamma \vdash B \text{ type}}{\Gamma \vdash A \to B \text{ type}} \\ \frac{\Gamma \vdash A \text{ type} & \Gamma \vdash B \text{ type}}{\Gamma \vdash A \to B \equiv \prod_{x:A} B \text{ type}} \end{split}$$

1.11 Type of propositions

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \text{isProp}(A) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \text{isProp}(A) \equiv \prod_{x:A} \prod_{y:A} x =_A y \text{ type}}$$

Formation rules for the type of propositions:

$$\frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \operatorname{Prop \ type}}$$

Introduction rule for the type of propositions:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash \text{proptrunc}_A : \text{isProp}(A)}{\Gamma \vdash A : \text{Prop}}$$

Elimination rules for the type of propositions:

$$\frac{\Gamma \vdash A : \text{Prop}}{\Gamma \vdash A \text{ type}} \quad \frac{\Gamma \vdash A \equiv A' : \text{Prop}}{\Gamma \vdash A \equiv A' \text{ type}}$$
$$\frac{\Gamma \text{ ctx}}{\Gamma \vdash \text{proptrunc} : \prod_{A : \text{Prop}} \text{isProp}(A)}$$

Extensionality rules for the type of propositions:

$$\frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \operatorname{ext}_{\operatorname{Prop}} : \prod_{A:\operatorname{Prop}} \prod_{B:\operatorname{Prop}} (A =_{\operatorname{Prop}} B) \simeq (A \simeq B)}$$

1.12 Predicate logic

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash [A] \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash [A] \equiv \prod_{P: \text{Prop}} (A \to P) \to P \text{ type}}$$

$$\frac{\Gamma \text{ ctx}}{\Gamma \vdash \bot \text{ type}} \quad \frac{\Gamma \text{ ctx}}{\Gamma \vdash \bot \equiv [\emptyset] \text{ type}}$$

$$\frac{\Gamma \text{ ctx}}{\Gamma \vdash \top \text{ type}} \quad \frac{\Gamma \text{ ctx}}{\Gamma \vdash \bot \equiv [1] \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \neg A \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \neg A \equiv [A \to \emptyset] \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \lor B \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \lor B \equiv [A \to B] \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \text{ type}} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \Rightarrow B \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \Leftrightarrow B \equiv [A \to B] \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \Leftrightarrow B \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \Leftrightarrow B \equiv [A \to B] \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \Leftrightarrow B \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \Leftrightarrow B \equiv [A \to B] \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \text{ type}} \quad \frac{\Gamma \vdash B \text{ type}}{\Gamma \vdash A \Leftrightarrow B \equiv [A \to B] \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}} \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \exists x : A . B(x) \text{ type}}$$

1.13 Quotient sets

$$\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma \vdash \mathrm{EquivRel}(A) \; \mathrm{type}}$$

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \text{EquivRel}(A) \equiv \sum_{R:A \times A \to \text{Prop}} \prod_{x:A} R(x,x) \times \prod_{y:A} (R(x,y) \to R(y,x)) \times \prod_{z:A} (R(x,y) \times R(y,z)) \to R(x,z) \text{ type}} \\ \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash R : \text{EquivRel}(A)}{\Gamma \vdash A / R \text{ type}} \\ \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash R : \text{EquivRel}(A)}{\Gamma \vdash A / R \equiv \sum_{P:A \to \text{Prop}} \exists x : A. \forall y : A. P(x) =_{\text{Prop}} \pi_1(R)(x,y) \text{ type}}$$

1.14 Excluded middle and axiom of choice

$$\frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \operatorname{lem} : \prod_{P:\operatorname{Prop}} P + \neg P}$$

$$\frac{\Gamma \vdash A \operatorname{type}}{\Gamma \vdash \operatorname{isSet}(A) \operatorname{type}} \qquad \frac{\Gamma \vdash A \operatorname{type}}{\Gamma \vdash \operatorname{isSet}(A) \equiv \prod_{x:A} \prod_{y:A} \operatorname{isProp}(x =_A y) \operatorname{type}}$$

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B(x) \text{ type} \quad \Gamma, x : A, y : B(x) \vdash C(x,y) \text{ type}}{\Gamma \vdash \text{choice}_{A,B,C} : (\text{isSet}(A) \times \prod_{x : A} \text{isSet}(B(x))) \rightarrow \forall x : A. \exists y : B(x). C(x,y) \rightarrow \exists g : \prod_{x : A} B(x). \forall x : A. C(x,g(x))}$$

$$\frac{\Gamma \vdash A \equiv A' \text{ type} \quad \Gamma, x : A \vdash B(x) \equiv B'(x) \text{ type} \quad \Gamma, x : A, y : B(x) \vdash C(x, y) \equiv C'(x, y) \text{ type}}{\Gamma \vdash \text{choice}_{A,B,C} \equiv \text{choice}_{A',B',C'}: \quad \text{(isSet}(A) \times \prod_{x : A} \text{isSet}(B(x))) \rightarrow} \forall x : A.\exists y : B(x).C(x, y) \rightarrow \exists g : \prod_{x : A} B(x).\forall x : A.C(x, g(x))$$

1.15 Natural numbers type

Formation rules for the natural numbers type:

$$\frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \mathbb{N} \operatorname{type}}$$

Introduction rules for the natural numbers type:

$$\frac{\Gamma \, \mathrm{ctx}}{\Gamma \vdash 0 : \mathbb{N}} \qquad \frac{\Gamma \, \mathrm{ctx}}{\Gamma \vdash s : \mathbb{N} \to \mathbb{N}}$$

Elimination rules for the natural numbers type:

$$\frac{\Gamma, x : \mathbb{N} \vdash C(x) \text{ type}}{\Gamma \vdash \operatorname{ind}_{\mathbb{N}}^{C} : \prod_{c_0 : C(0)} \prod_{c_s : \prod_{x : \mathbb{N}} C(x) \to C(s(x))} \prod_{x : \mathbb{N}C(x)}}$$

Computation rules for the natural numbers type:

$$\frac{\Gamma, x: \mathbb{N} \vdash C(x) \text{ type}}{\Gamma \vdash \beta_{\mathbb{N}}^{0,C}: \prod_{c_0: C(0)} \prod_{c_s: \prod_{x: \mathbb{N}} C(x) \to C(s(x))} \operatorname{ind}_{\mathbb{N}}^C(c_0, c_s, 0) =_{C(0)} c_0}$$

$$\frac{\Gamma, x: \mathbb{N} \vdash C(x) \text{ type}}{\Gamma \vdash \beta_{\mathbb{N}}^{s,C}: \prod_{c_0: C(0)} \prod_{c_s: \prod_{x: \mathbb{N}} C(x) \to C(s(x))} \prod_{x: \mathbb{N}} \operatorname{ind}_{\mathbb{N}}^C(c_0, c_s, s(x)) =_{C(s(x))} c_s(x) (\operatorname{ind}_{\mathbb{N}}^C(c_0, c_s, x))}$$

Judgmental congruence rules for the natural numbers type:

$$\frac{\Gamma, x : \mathbb{N} \vdash C(x) \equiv C'(x) \text{ type}}{\Gamma \vdash \operatorname{ind}_{\mathbb{N}}^{C} \equiv \operatorname{ind}_{\mathbb{N}}^{C'} : \prod_{c_0 : C(0)} \prod_{c_s : \prod_{x : \mathbb{N}} C(x) \to C(s(x))} \prod_{x : \mathbb{N} C(x)}}$$

$$\frac{\Gamma, x : \mathbb{N} \vdash C(x) \equiv C'(x) \text{ type}}{\Gamma \vdash \beta_{\mathbb{N}}^{0,C} \equiv \beta_{\mathbb{N}}^{0,C'} : \prod_{c_0 : C(0)} \prod_{c_s : \prod_{x : \mathbb{N}} C(x) \to C(s(x))} \operatorname{ind}_{\mathbb{N}}^{C}(c_0, c_s, 0) =_{C(0)} c_0}$$

$$\frac{\Gamma, x: \mathbb{N} \vdash C(x) \equiv C'(x) \text{ type}}{\Gamma \vdash \beta_{\mathbb{N}}^{s,C} \equiv \beta_{\mathbb{N}}^{s,C'}: \prod_{c_0:C(0)} \prod_{c_s: \prod_{x:\mathbb{N}} C(x) \to C(s(x))} \prod_{x:\mathbb{N}} \operatorname{ind}_{\mathbb{N}}^C(c_0, c_s, s(x)) =_{C(s(x))} c_s(x) (\operatorname{ind}_{\mathbb{N}}^C(c_0, c_s, x))}$$

Extensionality principle of the natural numbers type:

$$\begin{split} \frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \operatorname{Eq}_{\mathbb{N}} : \mathbb{N} \times \mathbb{N} \to 2} \\ \frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \beta_{\mathbb{N}}^{0,0,2} : \operatorname{Eq}_{\mathbb{N}}(0,0) =_{2} 1} \\ \frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \beta_{\mathbb{N}}^{0,s,2} : \prod_{x:\mathbb{N}} \operatorname{Eq}_{\mathbb{N}}(0,s(x)) =_{2} 0} \\ \frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \beta_{\mathbb{N}}^{s,0,2} : \prod_{x:\mathbb{N}} \operatorname{Eq}_{\mathbb{N}}(s(x),0) =_{2} 0} \\ \frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \beta_{\mathbb{N}}^{s,s,2} : \prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} \operatorname{Eq}_{\mathbb{N}}(s(x),s(y)) =_{2} \operatorname{Eq}_{\mathbb{N}}(x,y)} \\ \frac{\Gamma \operatorname{ctx}}{\Gamma \vdash \operatorname{ext}_{\mathbb{N}} : \prod_{x:\mathbb{N}} \prod_{y:\mathbb{N}} \operatorname{Eq}_{\mathbb{N}}(x=_{\mathbb{N}} y) \simeq \operatorname{typerec}_{2}^{\emptyset,1}(\operatorname{Eq}_{\mathbb{N}}(x,y))} \end{split}$$