Dominik Wawszczak student id number: 440014 group number: 1

Problem 1

Let

$$V(G) = \{v_1, \dots, v_n\}$$
 and $S_n = \{\sigma : \sigma \in \{1, \dots, n\}^{\{1, \dots, n\}} \land \sigma \text{ is a bijection}\}$.

Define

cutwidth_{\sigma}(i) =
$$|\{(u, v) : u \in \{v_{\sigma_1} \dots v_{\sigma_i}\} \land v \in \{v_{\sigma_{i+1}}, \dots, v_{\sigma_n}\} \land (u, v) \in E(G)\}|$$
,

where $\sigma \in S_n$ is any permutation. The objective is to find a permutation $\sigma \in S_n$ that minimizes the value

$$\max_{i \in \{1, \dots, n-1\}} \operatorname{cutwidth}_{\sigma}(i)$$

and to calculate this minimum.

Define the function

$$\operatorname{out}(X) = |\{(u, v) : u \in X \land v \in V(G) \setminus X \land (u, v) \in E(G)\}|,$$

where X is any subset of V(G). Then

$$\operatorname{cutwidth}_{\sigma}(i) = \operatorname{out}(\{v_{\sigma_1}, \dots, v_{\sigma_i}\}).$$

For any given X, $\operatorname{out}(X)$ can be calculated in time $n^{\mathcal{O}(1)}$.

We will use dynamic programming over subsets. Define

$$\mathrm{dp}(X) \ = \ \min\left\{\max_{i\in\{1,\dots,|X|-1\}}\,\mathrm{cutwidth}_\sigma(i) \ : \ \sigma\in S_n \ \land \ \{v_{\sigma_1},\dots,v_{\sigma_{|X|}}\} = X\right\},$$

where X is any subset of V(G). Then

$$dp(\emptyset) = 0,$$

$$dp(X) = \min\{\max(dp(X \setminus \{x\}), out(X \setminus \{x\})) : x \in X\}.$$

The answer to the problem is $dp(\{1,\ldots,n\})$. To compute dp for all subsets of V(G), we iterate over subsets in non-decreasing order of size. The time complexity of this algorithm is $2^n \cdot n^{\mathcal{O}(1)}$.

Problem 2

<u>Lemma 1</u> A set of points S, in which no three points are collinear, does not form the vertices of a convex polygon if and only if there exist points $A, B, C, D \in S$ such that D lies inside $\triangle ABC$.

<u>Proof of lemma 1</u> The implication "to the left" is obvious, so we only need to prove the implication "to the right". Let $\{H_1, \ldots, H_h\}$ be the convex hull of the set S, with the assumption that these points are ordered counterclockwise along the hull. Let D be any point in S that does not belong to the hull, and let $A = H_1$. There exists exactly one $i \in \{2, \ldots, h-1\}$ such that points H_2, \ldots, H_i lie on one side of the line AD, while points H_{i+1}, \ldots, H_h lie on the other side. Taking $B = H_i$ and $C = H_{i+1}$, we will obtain the desired points.

According to lemma 1, if there exist points $A, B, C, D \in S$ such that D lies inside $\triangle ABC$, then at least of these points must be removed from S. This observation leads to the following algorithm:

Algorithm 1 ConvexDeletion

```
1: procedure ConvexDeletion(S, k)
       if no four points A, B, C, D \in S satisfy that D lies inside \triangle ABC then
 2:
 3:
       end if
 4:
5:
       if k \leq 0 then
           return false
 6:
       end if
 7:
       Choose points (A, B, C, D) \in S such that D lies inside \triangle ABC
 8:
       return ConvexDeletion(S \setminus \{A\}, k-1) or ConvexDeletion(S \setminus \{B\}, k-1) or
9:
                ConvexDeletion(S \setminus \{C\}, k-1) or ConvexDeletion(S \setminus \{D\}, k-1)
10: end procedure
```

Finding such quadruples of points A, B, C, D can easily be done in $\mathcal{O}(n^4)$ time by examining all quadruples of points, calculating the relevant cross products for each, and comparing their signs. This can also be done in $\mathcal{O}(n \log n)$ time by computing the convex hull using Graham's algorithm and applying the constructive proof of lemma 1.

The depth of the recursion tree fro of the algorithm 1 is at most k, since with each recursive call, the parameter k decreases by 1. Each node of this tree has at most four children, which gives us an upper bound on the number of nodes in the tree:

$$\sum_{i=0}^{k} 4^{i} = \frac{4^{k+1} - 1}{3} = \mathcal{O}(4^{k}).$$

Therefore, the overall complexity of the algorithm 1 is $\mathcal{O}(4^k) \cdot n^{\mathcal{O}(1)}$.

Problem 3

Let d = 10. We will begin by reducing the size of \mathcal{F} to a polynomial in k.

If $|\mathcal{F}| \leq k^{d+1}$, no reduction is necessary. Otherwise, there exists an element $a_1 \in \bigcup \mathcal{F}$ such that the subset $\mathcal{A}_1 = \{A \in \mathcal{F} : a_1 \in A\}$ has size at least $k^d + 1$. If this were not the case, a hitting set of size k would cover at most k^{d+1} sets. We either include a_1 in the hitting set or exclude it. If we exclude it, then there exists an element $a_2 \in \bigcup \mathcal{F} \setminus \{a_1\}$ such that $\mathcal{A}_2 = \{A \in \mathcal{A}_1 : a_2 \in A\}$ has size at least $k^{d-1} + 1$, and so on.

By repeating this process until it is possible, we obtain a set of l distinct elements $\{a_1, a_2, \ldots, a_l\}$ and a corresponding set of families $\{A_1, A_2, \ldots, A_l\}$ such that for each $i \in \{1, 2, \ldots, l\}$, $A_{i-1} \supseteq A_i$ (with $A_0 = \mathcal{F}$), $|A_i| \geqslant k^{d+1-i} + 1$, and

$$\bigvee_{j \in \{i, i+1, \dots, l\}} \bigvee_{A \in \mathcal{A}_j} a_i \in A.$$

Suppose, for the sake of contradiction, that l > d. Then $|\mathcal{A}_{d+1}| \geq 2$, and all sets in \mathcal{A}_{d+1} would contain $\{a_1, a_2, \ldots, a_{d+1}\}$, which contradicts the assumption that for any two distinct sets $A, B \in \mathcal{F}$, $|A \cap B| \leq d$.

At least one element from $\{a_1, a_2, \dots, a_l\}$ must be included in the hitting set. This can be verified, as otherwise, to cover the entire family \mathcal{A}_l (which has size at least $k^{d+1-l} + 1$), there

would need to be an element a_{l+1} contained in at least $k^{d-l} + 1$ sets from \mathcal{A}_l . This would contradict the fact that the process was repeated until it was possible.

If we include any $a \in \{a_1, a_2, \dots, a_l\}$ in the hitting set, every set $A \in \mathcal{A}_1$ will be covered. Therefore, we can apply the following reduction, until it is possible:

R1: If $|\mathcal{F}| > k^{d+1}$, find $\{a_1, a_2, \dots, a_l\}$ and $\{\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_l\}$, then replace \mathcal{F} with $(\mathcal{F} \setminus \mathcal{A}_1) \cup \{\{a_1, a_2, \dots, a_l\}\}$.

Note that after applying R1, the condition that for any two distinct sets $A, B \in \mathcal{F}$, $|A \cap B| \leq d$ still holds, as the newly added set is a subset of one or more sets that were originally in \mathcal{F} .

The sets $\{a_1, a_2, \ldots, a_l\}$ and $\{A_1, A_2, \ldots, A_l\}$ can be found in polynomial time with respect to the input size. To identify a_i , we iterate through each $a \in \bigcup A_{i-1}$, checking which sets in A_{i-1} contain it.

Applying R1 will require polynomial time overall, as each application of R1 decreases the size of \mathcal{F} by at least $k^d + 1 - 1 = k^d > 0$, so R1 will be applied at most $|\mathcal{F}|$ times.

Once the size of $|\mathcal{F}|$ has been reduced to $\mathcal{O}(k^{d+1})$, we still need to reduce the size of $\bigcup \mathcal{F}$. We apply the following reduction as long as it is possible:

R2: If there exists a set $A \in \mathcal{F}$ such that for every $B \in \mathcal{F} \setminus \{A\}$, $A \cap B = \emptyset$, we replace \mathcal{F} with $\mathcal{F} \setminus \{A\}$, k with k-1, and add any $a \in A$ to the hitting set, unless A is empty, in which case we reject.

Now we assume that for any two distinct sets $A, B \in \mathcal{F}$, $A \cap B \neq \emptyset$, which enables us to apply the next reduction until it is no longer possible:

R3: If there exists an element $a \in \bigcup \mathcal{F}$ that is contained in only one set in \mathcal{F} , replace \mathcal{F} with $\{A \setminus \{a\} : A \in \mathcal{F}\}.$

This reduction is valid, as if a were required in the hitting set, it could be replaced with any other element from the set in \mathcal{F} that contains it, particularly an element included in at least two sets in \mathcal{F} .

After applying R2 and R3, every element in $\bigcup \mathcal{F}$ is contained in at least two sets in \mathcal{F} . Therefore, the size of $\bigcup \mathcal{F}$ is bounded by:

$$\left|\bigcup \mathcal{F}\right| \leqslant \frac{1}{2} \cdot \sum_{A,B \in \mathcal{F} \ \land \ A \neq B} |A \cap B| \leqslant \frac{k^{d+1} (k^{d+1} - 1)d}{2} = k^{\mathcal{O}(1)},$$

which completes the proof.