-181

Top Item Previous Next

ALLOY SEPARATOR FOR SOLID ELECTROLYTIC FUEL CELL AND MANUFACTURE OF THE SAME

JP05036425

- Patent Assignee
 TOKYO ELECTRIC POWER CO
- Inventor UMEMURA FUMIO
- International Patent Classification
 C25D-003/12C25D-005/48C25D-007/00H01
 M-008/02H01M-008/12
- Publication Information
 JP5036425 A 19930212 [JP05036425]
- Priority Details
 1991JP-0038935 19910212

FamPat family

JP5036425

[JP05036425]

· Abstract:

(JP05036425)

PURPOSE: To economically manufacture a separator having high electric conductivity and durability by forming a separator from a heat resisting alloy material, and providing predetermined plating layers by wet plating on required surfaces of the separator, respectively.

(JP05036425)

CONSTITUTION: Separators 4, 4' are formed from heat resisting alloy material, and a Ni plating layer and a LaCrO(sub 3) plating layer are provided by wet plating on the respective surfaces opposite to a fuel electrode 1 and an air electrode 2 of the separators 4, 4'. These plating layers prevent the formation of oxidized films on the opposite surfaces to the respective electrodes of the separators, and an alloy separator for solid electrolytic fuel battery economically enhanced in electric conductivity and durability is provided.

(JP05036425)

COPYRIGHT: (C)1993, JPO& Japio

© Questel Orbit

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-36425

(43)公開日 平成5年(1993)2月12日

						40/公開	コ 平成5年(1993)2月12月
(51) Int.Cl. ⁵		識別記号	庁内整理番号	FΙ			++45-4
H 0 1 M	8/02	В	9062-4K				技術表示箇所
C 2 5 D	3/12		8414-4K				
	5/48		6919-4K				
	7/00	G					
H 0 1 M	8/12		9062-4K				
					審査請求	未請求	請求項の数3(全 4 頁)
21)出願番号		特顯平3-38935		(71)出顧人	0000036	87	
(22)出顧日		平成3年(1991)2月12日			東京電力株式会社		
(Co) Miss I	`			東京都千代田区内幸町1丁目1番3号			
				(72)発明者	梅村文		
					東京都龍 東京電	布市西 力株式会	つつじケ丘二丁目4番1号 社技術研究所内
				(74)代理人			

(54) 【発明の名称】 固体電解質型燃料電池用合金セパレータ及びその製造

方法

(57)【要約】

【目的】本発明は、電気伝導性及び耐久性の優れた固体 電解質型燃料電池用合金セパレータを低コストで供給する。

【構成】固体電解質と燃料極と空気極と、そしてセパレータとを備えてなる固体電解質型燃料電池に使用される合金セパレータにおいて、セパレータを耐熱合金で構成し、かつ酸セパレータの燃料極面側にはNiメッキ層を、また空気極面側にはLaCrOa層を湿式メッキ法を用いて設ける。

1

【特許請求の範囲】

【請求項1】 固体電解質と燃料極と空気極と、そしてセパレータとを備えてなる固体電解質型燃料電池のセパレータにおいて、セパレータを耐熱合金で構成し、かつ該セパレータの燃料極面側にはニッケルメッキ層を、また空気極面側にはLaCrO₃系メッキ層を湿式メッキ処理で設けてなることを特徴とする固体電解質型燃料電池用合金セパレータ。

【請求項2】 メッキ層の厚さが3~30μmであることを特徴とする請求項1記載の固体電解質型燃料電池用 10合金セパレータ。

【請求項3】 固体電解質と燃料極と空気極と、そしてセパレータとを備えてなる固体電解質型燃料電池のセパレータの製造方法において、セパレータを耐熱合金で構成し、かつ該セパレータの燃料極面側に湿式メッキ法でニッケルメッキ層を設け、また空気極面側には湿式法で電析させたLaCr系メッキ層を酸化処理してLaCr〇ュ系メッキ層を設けてセパレータを製造することを特徴とする固体電解質型燃料電池用合金セパレータの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池、 特に改善された固体電解質型燃料電池用合金セパレータ 及びその製造方法に関する。

[0002]

【従来の技術】従来より、水素のように酸化され易いガスと、酸素のように酸化力のあるガスとを電気化学的反応プロセスを経て反応させることにより、直流電力を得るようにした各種燃料電池が開発されており、そのうちの一つにイオン性電気伝導を示す固体電解質を用いる固体電解質型燃料電池(Solid Oxide Fuel Cell)がある。該電池は、白金等の高価な貴金属触媒を必要とせず、エネルギー変換効率が高く、石炭化ガス等の低質燃料も使用できるなどの有利性がある。また、該電池は固体のみで構成されているため、他のリン酸電解質型燃料電池や熔融炭酸塩型燃料電池のように液体電解質を扱う不利点がなく、かつ800~1000℃の高い作動温度であるためこの廃熱を利用できるなどの利点がある。

【0003】 該固体電解質型燃料電池には、平板型や円筒型のものがあり、例えば平板型の固体電解質型燃料電池の構成は、その単電池が図1に示すごとく、固体電解質(例えばZrO2)板3を一対の燃料極1と空気極2で挟持し、更にこれらを一対の多数の長溝付きセパレータ4、4'で挟持してなり、そしてこれら単電池は直列に接続されて集合電池とされ、実用的な電力の供給を可能化する。 そしてこれら各単位電池は、単位電池間で上記直列接続のための電気的な接続機能と各電極板への反応ガス(燃料ガス及び空気)の供給通路を形成する機

能とを兼ね備えた導電性のセパレータ4を介して積層されている。

【0004】一般に、電解質板3は電解質の安定化ジルコニア等の焼結体であり、燃料極(アノード)1はニッケル多孔質焼結体よりなり、空気極(カソード)2はペロブスカイト酸化物焼結体を主体とするものであって、燃料極1とセパレータ4との間に燃料である水素が導入され、また空気極2とセパレータ4、との間に酸素、空気等が導入され、下配反応により、起電力が生成する。

空気極(電解質界面での反応): O₂ + 4 e → 2 O⁻² 燃料極(電解質界面での反応): 2 H₂ + 2 O⁻² → 2 H₂ O + 4 e

【0005】セパレータ4、4'は通常、セラミックあるいは耐熱合金で構成され、互いに直交して設けられ、酸セパレータ4、4'の対向面には多数の長滯からなる燃料又は空気の通路が形成され、それらに燃料又は空気が分流供給される。セパレータ4、4'の材質としては、LaCrO3、Mg添加LaCrO3、Sr添加LaCrO3等のLaCrO3系セラミックあるいは例えば、20 Fe-Cr系、Fe-Cr-Ni系、Ni-Cr系、Ni-Cr-Mo系、Fe-Al系、Fe-Cr-Al系等の耐熱合金の使用が試みられている。

[0006]

【発明が解決しようとする課題】上記セパレータは、前述のごとく単位電池間で電気的な接続機能と各電極板への燃料及び空気の供給通路を形成する機能を備える必要から、良電気電導性が要求され、また空気と燃料ガスながら、前記耐熱合金セパレータは、1000℃付近の高温で使用されるため、空気極側では母金属(鉄、ニッケン酸化物膜(Cr2O3、Al2O3、SiO2等)の両方が形成される。また燃料側には合金元素を主体とする酸化物(Cr2O3、Al2O3、SiO2等)の膜が形成される。その結果電気電導性が低下し、単位電池間の電気的な接続機能が損なわれてしまう。また、空気極側では厚い皮膜が形成されるためにセル(空気極/電解質/燃料極)を破壊してしまう。

【0007】そこで、これら膜の形成を阻止して電気電 40 導性の低下を回避するため、溶射法やスラリーコーティング法等により、LaCrOa系、LaMnOa系、LaCoOa系のコーティングを施すことが検討されたが、これらの方法では緻密な膜の形成が困難であり、セパレータの酸化防止にはあまり役立たなかった。

[0008]

に接続されて集合電池とされ、実用的な電力の供給を可能化する。 そしてこれら各単位電池は、単位電池間で上記直列接続のための電気的な接続機能と各電極板への反応ガス(燃料ガス及び空気)の供給通路を形成する機 50 に接続されて集合電池とされ、実用的な電力の供給を加速である。 そしてこれら各単位電池は、単位電池間で果、セパレータにある種の金属又は金属酸化物を湿式メッキすることにより、セパレータの酸化防止に役立ち、かつ電気的な接続機能の低下も阻止できることを見いだ

した。すなわち本発明は、固体電解質と燃料極と空気極 と、そしてセパレータからなる固体電解質型燃料電池の セパレータにおいて、セパレータ4, 4°を耐熱合金で 構成し、かつ該セパレータの燃料極1面側にはニッケル メッキ層4aを、また空気極2面側にはLaCrО₃系 メッキ層4 bを湿式法を適用することにより設けてなる ことを特徴とする固体電解質型燃料電池用合金セパレー タ、及び固体電解質と燃料極と空気極と、そしてセパレ ータとを備えてなる固体電解質型燃料電池のセパレータ の製造方法において、セパレータを耐熱合金で構成し、 かつ該セパレータの燃料極面側に湿式メッキ法でニッケ ルメッキ層を設け、また空気極面側には湿式法で電析さ せたLaCr系メッキ層を酸化処理してLaCrOa系 メッキ層を設けてセパレータを製造することを特徴とす る固体電解質型燃料電池用合金セパレータの製造方法で ある。

【0009】本発明において、耐熱合金としては、Fe -Cr系、Fe-Cr-Ni系、Ni-Cr系、Ni-Cr-Mo系、Fe-Al系又はFe-Cr-Al系等 ッキ層4 a を施した理由は、耐熱合金元素が酸化され、 C r 2 O2 やA l 2 O3等の高抵抗皮膜が形成されないよ うにするためであり、また空気極2面側にLaCrО。 層4bを形成させた理由は、LaCr₂О₃は電気伝導 性が良好で、かつ耐酸化性にも優れ、С r 2 O 2 や A 1 2 O₃等の高抵抗皮膜の形成を防止するからである。

【0010】上記本発明において、メッキ層の厚さは3 \sim 30 μ mが好ましく、そのメッキ法は湿式電気メッキ 法により燃料極側にはニッケルメッキを形成する。 また 空気極側のLaCrO₃層はLaCrメッキを施した後 30 に実運転酸化処理を行うことにより形成することができ る。メッキ層の厚さが3μmより薄いと、酸化防止の効 果が薄く、また30μmを越えると電気抵抗が増大する ことになる。よって厚さは $3\sim30\,\mu\mathrm{m}$ で、電気的な接 続機能の低下を充分に阻止することができる。

【0011】なお、上配ニッケルメッキの代わりにコパ ルトメッキを施しても良結果が得られる。LaCrО; 系としては、LaCrO;のほか、La。. 。Mg。. ı CrOa、Lao. 。Sro. ı CrOa等が好まし く、同様に湿式メッキ法で形成できる。

【0012】セパレータの断面構造としては、例えば図 2の(A)に示すごとき、燃料極面側と空気極面側の各 長溝を表裏に設けてなる一体型、また図2の(B)に図 示するごとき、燃料極側部材と空気極側部材の中間に耐 熱合金をサンドウィッチに挟持した3分割型、さらに図 2 (C) に示す燃料極面側薄板と、空気極面側薄板とで 構成する2分割型等が挙げられる。 なお、図中4aはN

i メッキ層、4bはLaCrО₂メッキ層を表す。 [0013]

【実施例】以下に本発明を実施例によって詳細に説明す る。合金セパレータとして、Ni-Cr-Mo合金を使 用し、燃料極側の面にNi層を、空気極側の面にLaC rO₃層を被覆した。Ni層は、硫酸ニッケル(NiS O4・6 H₂ O) 浴を用い、2~10 A/d m² の電流 密度で、厚さ20~30μmに電析させた。LaCrO ュ層は [(NH₄) ₂ C r ₂ Oτ + L a (NO₃) ₃] 浴を 10 用い、定電位 (-2.0 V~-1.5 V v s S C E) 電 析で、La/Crモル比1の数 μ mの厚さの皮膜を形成 した後、700℃~1000℃の空気中酸化処理でLa CrOs層にした。

【0014】こうして得られた合金セパレータを固体電 解質型燃料電池に使用したときの出力特性の経時変化を 図3に示した。また同図にはメッキ層を設けていない合 金セパレータを使用したときの出力特性の経時変化も示 した。同図からみて、メッキを施していない合金セパレ 一夕を使用した場合に比較して、本実施例のメッキ処理 が挙げられる。メッキ層として、燃料極1面側にN1メ 20 をした合金セパレータの場合のほうが、長時間運転によ る性能低下の程度が少ないことが解る。運転後の合金セ パレータを観察すると、実施例のメッキ処理したセパレ ータはあまり変化していないが、無処理のものには厚い 酸化皮膜が形成されていた。実施例のメッキ処理材の性 能低下が少ない理由は、酸化膜の形成が抑制され、電気 抵抗の増加が少なかったためである。

[0015]

【発明の効果】上述のとおり、本発明の合金セパレータ は低コストで電気的な接続機能の低下のないものであ り、該セパレータを有する固体電解質型燃料電池は連続 使用による性能低下のない優れものとなる。

【図面の簡単な説明】

【図1】 固体電解質型燃料電池の単電池の分解斜視説明

【図 2】 本発明実施例の平板型固体電解質型燃料電池の 各種セパレータの断面構造図。

【図3】実施例の合金セパレータ及びメッキ処理を施し ていない合金セパレータを固体電解質型燃料電池に使用 したときの出力特性の経時変化を示すグラフ図。

【符号の説明】

- 1:燃料極.
- 2:空気極,
- 3:固体電解質板、
- 4, 4':セパレータ,
- 4 a: Niメッキ層.
- 4 b:LaCrO₃メッキ層

