Accepted Manuscript

Ovarian Teratoma Associated with Coexisting anti-N-Methyl-D-Aspartate Receptor and Glial Fibrillary Acidic Protein Autoimmune Meningoencephalitis in an Adolescent Girl: A Case Report

Alexandra L. Martin, M.D., Evan Jolliffe, M.B. Ch.B., S. Paige Hertweck, M.D.

PII: \$1083-3188(17)30540-5

DOI: 10.1016/j.jpag.2017.12.009

Reference: PEDADO 2192

To appear in: Journal of Pediatric and Adolescent Gynecology

Received Date: 27 November 2017

Accepted Date: 21 December 2017

Please cite this article as: Martin AL, Jolliffe E, Hertweck SP, Ovarian Teratoma Associated with Coexisting anti-N-Methyl-D-Aspartate Receptor and Glial Fibrillary Acidic Protein Autoimmune Meningoencephalitis in an Adolescent Girl: A Case Report, *Journal of Pediatric and Adolescent Gynecology* (2018), doi: 10.1016/j.ipag.2017.12.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Title: Ovarian Teratoma As	sociated with Coexisting anti-N-Methyl-D-Aspartate
2	Receptor and Glial Fibrillary	y Acidic Protein Autoimmune Meningoencephalitis in an
3	Adolescent Girl: A Case Re	port
4		
5	Alexandra L. Martin, M.D. ^a	, Evan Jolliffe, M.B. Ch.B. ^b , S. Paige Hertweck, M.D. ^c
6		
7	Author Affiliations:	
8	^a Department of Obstetrics,	Gynecology and Women's Health
9	University of Louisville Sch	nool of Medicine
10	Louisville, Kentucky	
11	^b Department of Neurology	
12	Mayo Clinic	
13	Rochester, Minnesota	
14	^c Department of Pediatric an	d Adolescent Gynecology
15	Norton Children's Hospital	
16	Louisville, Kentucky	
17		
18	Corresponding author:	Alexandra Martin, M.D.
19		529 South Jackson Street
20		Louisville, Kentucky 40202
21	<i>></i>	Phone: (270) 559-8912
22		Email: almart15@louisville.edu
23		

24	Keywords: ovarian teratoma; anti-NMDA receptor encephalitis; glial fibrillary acidic
25	protein (GFAP) meningoencephalitis; autoimmune meningoencephalitis
26	
27	Acknowledgements
28	The authors received no funding for the research described in this manuscript.
29	The authors would also like to acknowledge the Mayo Clinic Medical Laboratories for
30	their cerebrospinal fluid evaluation in this patient.

31	Abstract
32	Background: Ovarian teratomas are rarely associated with paraneoplastic autoimmune
33	meningoencephalitis. In addition to the well-known N-Methyl-D-Aspartate Receptor
34	(NMDA-R) antibody, the glial fibrillary acidic protein (GFAP) antibody is a novel
35	biomarker of autoimmune meningoencephalitis that may be seen in patients with ovarian
36	teratoma.
37	Case: A 13-year-old girl with acute-onset meningoencephalitis and incidental finding of
38	ovarian teratoma was found to have co-existing anti-NMDA-R and GFAP antibodies
39	present in her cerebrospinal fluid (CSF).
40	Summary and Conclusion: NMDA-R and GFAP autoimmune encephalitis should be
41	considered in adolescent patients with neurologic or psychiatric symptoms and an ovarian
42	teratoma. Prompt diagnosis and surgical resection increase the likelihood of full
43	neurologic recovery.
44	

3

45	Introduction
46	The most common ovarian neoplasm found in adolescents is the mature cystic teratoma,
47	accounting for up to 50% of pediatric tumors ¹ . These tumors may contain tissue derived
48	from all 3 germ cell layers. An estimated 30-50% contain neural tissue ² , which has been
49	implicated in rare cases of paraneoplastic encephalitis. It is theorized that exposure to the
50	ectopic neural tissue leads to autoimmune production of antibodies targeting receptors in
51	neurons responsible for memory and learning in the hippocampus and forebrain ³ .
52	
53	The first report of an association between ovarian teratomas and an autoimmune central
54	nervous system (CNS) disorder was in 2005. The suggested etiology was an autoimmune
55	hippocampal antigen, which was later identified as the N-Methyl-D-Aspartate Receptor
56	(NMDA-R) ⁴ . The NMDA-R is a glycine and glutamate ligand-gated cation receptor,
57	which participates in excitatory synaptic transmission. Antibodies produced in response
58	to the neural component of an ovarian dermoid can bind this receptor and lead to
59	encephalitis ³ . Case reports and observational studies have estimated that 36-50% of
60	patients with anti-NMDA-R encephalitis have an ovarian teratoma ^{4,5} .
61	
62	Antibodies to an intermediate filament found in astrocytic cytoplasm, glial fibrillary
63	acidic protein (GFAP), were recently identified as a novel marker of autoimmune
64	meningoencephalomyelitis ⁶ . Though serum GFAP positivity has been reported in
65	multiple pathologies such as gliobastoma multiforme, glioma, traumatic brain injury, and
66	autism, GFAP cerebrospinal fluid (CSF) positivity is highly specific for autoimmune
67	CNS disorders ⁷ . GFAP astrocytopathy can present with a wide range of psychiatric,

68	meningeal and myelopathic symptoms. Other reported hallmarks include optic disc
69	edema and radial linear periventricular enhancement on magnetic resonance imaging
70	(MRI) ⁷ . Initial studies also report an association with neoplasia, with ovarian teratoma in
71	6-14% of patients with GFAP astrocytopathy ^{6,7} .
72	
73	We report the case of an adolescent girl with an ovarian teratoma associated with
74	coexisting anti-NMDA-R and GFAP autoantibodies in her CSF presenting with acute-
75	onset meningoencephalitis.
76	
77	Case
78	A developmentally appropriate 13-year-old girl presented to the emergency department
79	complaining of intractable headache associated with photophobia, phonophobia, nausea
80	and vomiting, and decreased appetite for four days. She was febrile to 39.3 degrees
81	Celsius. A rapid group A strep throat culture was positive and she was started on
82	Amoxicillin. She was alert and following commands with no neurologic deficits or signs
83	of meningismus. She had mild pharyngeal erythema and submandibular
84	lymphadenopathy. She was admitted with concern for meningitis verses encephalitis.
85	Pediatric neurology was consulted and headaches continued despite multiple medications.
86	Computed tomography (CT) head, magnetic resonance imaging (MRI) and magnetic
87	resonance venography (MRV) of the brain were normal. MRI of the spine showed a 3.5 x
88	2.2 cm benign-appearing right adnexal cyst. Lumbar puncture was significant for a
89	lymphocytic pleocytosis with 204 white blood cells/ μL and 91% lymphocytes, elevated
90	protein at 124 mg/dL, and increased opening pressure (33 cm H ₂ O) concerning for viral

91	meningitis. She received a ceftriaxone, vancomycin, and acyclovir until CSF bacterial,
92	viral and fungal studies returned negative. Systemic infectious and rheumatologic
93	evaluations were also negative. She was started on acetazolamide for elevated opening
94	pressure.
95	
96	Four days later, her headache continued and she developed agitation, insomnia, diplopia,
97	vertigo, abdominal pain, generalized myalgias, leg weakness and difficulty walking.
98	Physical exam was notable for disinhibition, perseveration, dysarthria, vertical binocular
99	diplopia, generalized hyperreflexia with asymmetric clonus, and ataxic gait without lower
100	extremity weakness. Repeat CT head was normal. Continuous video
101	electroencephalogram (EEG) showed no epileptiform activity but did reveal diffuse
102	generalized slowing suggestive of encephalopathy. The differential diagnosis at this time
103	included post-infectious autoimmune encephalitis, acute disseminated encephalomyelitis
104	(ADEM), and meningoencephalitis. Repeat laboratory blood evaluation was
105	unremarkable. Repeat CSF was positive for oligoclonal banding and a normal IgG index
106	of 0.5. Flow cytometry was normal. NMDA-R antibodies were detected in the CSF, but
107	not in the serum. Serum protein electrophoresis, myeloperoxidase IgG and proteinase 3
108	IgG were normal. She received intravenous methylprednisolone 20 mg/kg daily for five
109	days with some improvement in gait, but otherwise minimal change. She received three
110	of five plasma exchanges, which were discontinued due to a central line-associated blood
111	stream infection with methicillin-sensitive staphylococcus aureus (MSSA). She then
112	received two intravenous immunoglobulin (IVIG) 1g/kg infusions with improvement in
113	symptoms. She was ultimately discharged home on hospital day 34 with significant

114 improvement in neurologic status and plans to continue clonidine and olanzapine for 115 dysautonomia and agitation, respectively. 116 117 Following discharge, CSF studies returned positive for GFAP autoantibodies, which prompted performance of an abdominal ultrasound to evaluate for the presence of an 118 119 ovarian teratoma. A 2.4 x 2.1 x 1.6 cm right ovarian complex cystic structure with an 120 echogenic focus consistent with a dermoid tumor (Figure 1) was noted. She underwent 121 laparoscopic ovarian cystectomy (Figure 2). Final pathology showed a mature teratoma 122 containing mature glial tissue involved by a T-cell lymphocytic infiltrate, suggesting a 123 likely nidus of disease (Figure 3). At a 2 month follow-up, she was being weaned off of 124 clonidine and olanzapine, reported drastic improvement in her neurologic symptoms and 125 was working with speech therapy on short term memory difficulty. 126 127 **Summary and Conclusion** This report describes the case of an adolescent girl with acute-onset meningoencephalitis. 128 129 The discovery of the associated teratoma was made when gynecology was notified of the 130 presence of anti-NMDA-R and GFAP antibodies in her CSF. Confounding the clinical 131 picture was a recent diagnosis of group A streptococcal pharyngitis, which was initially 132 thought to be the etiology of a post-infectious autoimmune encephalitis. Making the 133 diagnosis of paraneoplastic autoimmune encephalitis is difficult. Indeed, the differential 134 diagnosis for the neurologic and psychiatric symptoms seen in our patient is wide and

includes infectious, neoplastic, paraneoplastic, autoimmune, vasculitic, traumatic, toxic

and metabolic etiologies. Presenting symptoms for both NMDA-R and GFAP

135

136

137	autoimmune meningoencephalitis can include headache, behavioral and cognitive
138	changes, altered mental status, seizures, vision changes, movement disorder, ataxia,
139	gastrointestinal symptoms and weight loss ^{3,6,8} . Both NMDA-R and GFAP antibodies
140	have been associated with underlying neoplasm, most commonly ovarian teratoma. When
141	NMDA-R and GFAP coexist, the likelihood of underlying neoplasm is increased ^{6,7} .
142	Identification of either antibody should prompt evaluation for an underlying neoplastic
143	process.
144	
145	Few cases of concurrent ovarian teratoma and meningoencephalitis with CSF positivity
146	for GFAP IgG with or without NMDA-R autoantibodies have been reported in the
147	neurology literature. In a retrospective review of 16 patients with GFAP
148	meningoencephalitis, there were 2 cases of co-existing NMDA-R autoantibodies in CSF.
149	One of these had an ovarian teratoma and neither had classic NMDA-R encephalitis ⁶ .
150	Another retrospective study of 102 patients with GFAP-IgG positivity of serum, CSF or
151	both, found that 22% of cases were also positive for NMDA-R-IgG. Of those with co-
152	existing GFAP-IgG and NMDA-R-IgG, 8 ovarian teratomas were identified ⁷ .
153	
154	The treatment for anti-NMDA-R encephalitis with an ovarian teratoma is tumor excision
155	with or without immunotherapy ^{3,8} . Reported outcomes include full neurologic recovery,
156	mild to severe deficits, and death. Outcomes depend on the rapidity of diagnosis and
157	resection. Rates of neurologic recovery in patients undergoing early resection are
158	reported to be 72-92% ^{3,8} . Though there is little information on treatment and outcomes of
159	GFAP meningoencephalitis, it has been suggested that the multiplicity of neural antigens

160	in ovarian dermoids drive the immune response against both NMDA-R and GFAP ⁶ .
161	Therefore, teratoma resection is also likely to be beneficial in GFAP meningoencephalitis.
162	
163	Though the relationship between ovarian teratomas and NMDA-R encephalitis has been
164	established for more than a decade, there is little knowledge among gynecologic surgeons
165	regarding the association of ovarian teratomas with the novel GFAP antibody.
166	Awareness of this exceedingly rare entity among pediatric and adolescent gynecologists
167	is critical as rapid diagnosis and surgical resection likely portend the best prognosis.
168	
169	
170	Conflicts of Interest
171	The authors report no proprietary or commercial interests in any product mentioned or
172	concept discussed in this article.
173	

174 References

175

- Kathleen E. O'Neill MDaARC, M.D., M.S.C.I. The Approach to Ovarian
 Dermoids in Adolescents and Young Women. *Journal of Pediatric Adolescent Gynecology*. 2011;24(3):176-180.
- 179 2. A K. Nervous component of mature cystic ovarian teratomas. *Ceskoslovenska Patologie*. 2005;41(1):19-28.
- Daniel H. Kort M, Amy M. Vallerie, MD, Eileen F. DeMarco, MD, and Rogerio
 A. Lobo, MD. Paraneoplastic Anti–N-Methyl-D-Aspartate Receptor Encephalitis
 From Mature Cystic Teratoma. *Obstet Gynecol*. 2009;114(1):373-376.
- Maarten J Titulaer LM, Iñigo Gabilondo, Thaís Armangué, Carol Glaser,
 Takahiro Iizuka, Lawrence S Honig, Susanne M Benseler, Izumi Kawachi,
 Eugenia Martinez-Hernandez, Esther Aguilar, Núria Gresa-Arribas, Nicole Ryan Florance, Abiguei Torrents, Albert Saiz, Myrna R Rosenfeld, Rita Balice-Gordon,
 Francesc Graus, Josep Dalmau. Treatment and prognostic factors for long-term
 outcome in patients with anti-NMDA receptor encephalitis: an observational
 cohort study. Lancet Neurology. 2013;12(157-165).
- Caitlin A. Cundiff NE, Mina M. Naguib, Samuel N. Jactel, Dina El Demellawy,
 Carols R. Abramowsky, Megan M. Durham, Lara Youssef, Michael L. Wittkamp,
 Bahig M. Shehata. Does MAP2 Have a Role in Predicting the Development of
 Anti-NMDAR Encephalitis Associated with Benign Ovarian Teratoma? A Report
 of Six New Pediatric Cases. Pediatric and Developmental Pathology.
 2015;18:122-126.
- Boyan Fang M, PhD; Andrew McKeon, MD; Shannon R. Hinson, PhD; Thomas J.
 Kryzer, AA; Sean J. Pittock, MD;, Allen J. Aksamit MVAL, MD, PhD.
 Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy A Novel
 Meningoencephalomyelitis. *JAMA Neurology*. 2016;73(11):1297-1307.
- Eoin P. Flanagan M, Shannon R. Hinson, PhD, Vanda A. Lennon, MD, PhD,
 Boyan Fang, MD, Allen J. Aksamit, MD, P. Pearse Morris, MB, BCh, Eati Basal,
 PhD, Josephe A. Honorat, MD, PhD, Nora B. Alfugham, MD, Jenny J. Linnoila,
 MD, PhD, Brian G. Weinshenker, MD, Sean J. Pittock, MD, Andrew McKeon,
 MD. Glial Fibrillary Acidic Protein Immunoglobulin G as Biomarker of
 Autoimmune Astrocytopathy: Analysis of 102 Patients. Annals of Neurology.
 207
 2017;81:298-309.
- 208 8. Aaron P. Leshera TJM, Fred Tecklenburgb, Christian J. Streck. Anti–N-methyl-209 D-aspartate receptor encephalitis associated with an ovarian teratoma in an 210 adolescent female. *Journal of Pediatric Surgery*. 2010;45(7):1550-1553.

211

212

Figure Legends
Figure 1. Abdominal ultrasound showing 2.4 x 2.1 x 1.6 cm right ovarian complex cystic
structure with an echogenic focus consistent with a dermoid tumor.
Figure 2. Gross specimen of ovarian teratoma following laparoscopic resection.
Figure 3. Histologic slides showing mature glial tissue component of teratoma with
inflammation in low (A) and high (B) powered views. Lymphocytes stained positive for
CD3, indicating a T-cell lymphocytic infiltrate (C).

Figure 1. Images from abdominal ultrasound showing complex, right ovarian cyst consistent with an ovarian dermoid.

Figure 2. Two views of gross specimen following laparoscopic resection of mature ovarian teratoma.

