Extração de Requisitos

Criação: Março 2001

Atualização: Setembro 2008

Referências

- I.Sommerville. "Sw Engineering", 6^a ed, 2001, cap6
- P.Jalote. "An Integrated Approach to Sw Engineering", 2^a ed., 1997, cap3
- Ariadne M.B.R.Carvalho, Thelma C.S.Chiossi. "Introdução à Engenharia de Software". Ed. Unicamp. Cap.2
- S.Raghavan, G.Zelesnik, G.Ford. "Lecture Notes on Requirements Elicitation". Educational Materials. CMU/SEI-94-EM-10, Mar/1994. Obtido na Web em set/2005:
 - www.sei.cmu.edu/publications/documents/ems/94.em. 010.html

Tópicos

- Dificuldades
- Processo
- Estratégias
- Métodos

O processo de engenharia de requisitos

Objetivos

- Descobrir e entender os requisitos através de interação com usuários
- Classificar e organizar os requisitos
- Determinar prioridades

Importância

B.C. by Johnny Hart

Dificuldades - 1

- Usuário desconhece suas reais necessidades e o que o sw pode lhe oferecer
- Desenvolvedor desconhece o domínio do problema
- Desenvolvedor não ouve usuários
- Mal-entendidos entre desenvolvedores e usuários
- Usuário tem dificuldade de tomar decisões pois não pode avaliar as conseqüências

Dificuldades - 2

- Diferentes usuários têm necessidades diferentes
- Fatores políticos dentro da empresa, desconhecidos dos usuários finais, podem afetar requisitos
- Mudanças econômicas ou políticas podem causar mudanças nos requisitos

Falhas típicas nos requisitos

- Fatos incorretos
- Omissões
- Incoerências
- Ambigüidades
- Falhas nos requisitos constituem uma das maiores preocupações na produção de software

Porquê falhas nos requisitos preocupam

"A parte mais difícil da construção de um sistema de software é decidir, precisamente, o que deve ser construído... Nenhuma outra parte do trabalho afeta mais o sistema resultante se feita errada. Nenhuma outra parte é mais difícil de corrigir depois."

[Fred Brooks]

Um processo genérico

Passos do processo genérico - 1

- Compreensão do domínio
 - o Analista de Requisitos toma conhecimento do domínio do problema.
 - Ex.: descobrir como funciona um caixa eletrônico
- Levantamento de requisitos
 - Analista de Requisitos e clientes/usuários interagem para descobrir os requisitos
 - Requisitos Funcionais (RF)

Ex.: sistema para caixa eletrônico → realizar saque

Requisitos n\u00e3o funcionais (RNF)

Ex.: sistema de caixa eletrônico → o sistema necessita de controle de acesso

Passos do processo genérico - 2

- Organização dos requisitos
 - os requisitos coletados são organizados de forma coerente
- Resolução de conflitos
 - identificar e resolver conflitos de necessidades dos diferentes clientes / usuários
- Priorização dos requisitos
 - Essenciais
 - Desejáveis
 - Opcionais

Passos do processo genérico - 3

- Validação dos requisitos
 - Ambigüidades, omissões, incorreções → devem ser eliminados
 - Jargões → devem ser esclarecidos
 - Incoerências → reveladas e eliminadas
- Verificação
 - Revisões e outras formas de análise

Outras informações relevantes - 1

Freqüência dos serviços

Programado

Ex.: todas as manhãs deve ser emitido uma lista dos pedidos recebidos na véspera. O relatório deve conter os pedidos feitos até às 17h e deve ser entregue ao Gerente às 9h da manhã.

Dirigido por eventos

Ex.: toda vez que o nível de estoque de um item ficar abaixo de um nível de segurança, forneça um relatório de status do item. O relatório deve ser emitido até a manhã seguinte.

Eventual

Ex.: qual o valor do pedido nº 32764? O fornecedor precisa sabê-lo agora.

[Thelma 2005 – notas de aula]

Outras informações relevantes - 2

Previsibilidade dos serviços

- Previsíveis
 - Programado

Ex.: todas as manhãs deve ser emitido uma lista dos pedidos recebidos na véspera. O relatório deve conter os pedidos feitos até às 17h e deve ser entregue ao Gerente às 9h da manhã.

Eventual

Ex.: qual o valor do pedido nº 32764? O fornecedor precisa sabêlo agora.

- Imprevisíveis
 - Qual o montante de negócios gerado pelo cliente nº 5617 nos últimos 3 anos? Terei uma reunião com ele depois de amanhã.

[Thelma 2005 – notas de aula]

Outras informações relevantes - 3

- Frequência de atualização dos dados
 - Dados atualizados a cada transação
 Ex.: qual o saldo do cliente após a realização do saque?
 - Dados atualizados ao final de um período

Ex.: ao final do dia deve ser gerado um relatório com as transações realizadas no caixa eletrônico até às 17h.

[Thelma 2005 – notas de aula]

Levantamento dos requisitos

- Identificar as fontes de informação
 - Interessados: clientes, desenvolvedores, usuários finais e outros que podem ser afetados pelo sistema
 - Livros
 - Documentos
 - Outros sistemas similares
- Coletar fatos

Coleta de fatos

- Leitura de documentos
- Observação
- Entrevistas
- Reuniões
- Questionários
- Engenharia reversa
- Etnografia
- •

Tarefas [Carvalho e Chiossi 2001]

- Para auxiliar no Levantamento de Requisitos as seguintes tarefas devem ser consideradas:
 - Perguntar ⇒ encontrar a pessoa apropriada (ex.: usuários)
 - Observar e inferir ⇒ observar o comportamento dos usuários de um produto existente (manual ou automático) para inferir suas necessidades
 - Discutir e formular ⇒ discutir com os usuários suas necessidades e, juntamente com eles, formular um entendimento comum dos requisitos.

Tarefas [Carvalho e Chiossi 2001]

- Negociar ⇒ ajuda na priorização. Negociar com os usuários quais requisitos devem ser incluídos, excluídos ou modificados
- Estudar e identificar problemas ⇒ investigar problemas para identificar os requisitos que podem melhorar o produto.
 - Ex.: o produto atual é muito lento? É pouco seguro (*safe*)?
- Supor ⇒ usar a intuição quando não existe acesso ao usuário ou para a criação de um produto inexistente.

Técnicas para extração e análise de requisitos [Carvalho e Chiossi 2001]

Técnicas informais

- requisitos obtidos através de interação com usuários
- descrição dos modelos de domínio e do produto é informal, geralmente em linguagem natural

Técnicas formais

- construção de um modelo conceitual do problema
- construção de um protótipo (eventual)

Técnicas informais

- Etnografia
- Entrevistas com clientes / usuários
- "Brainstorming"
- Joint Application Design (JAD)
- PIECES

. . .

Etnografia [Sommerville2001, c.6]

Conceito

- Técnica de observação que pode ser usada para a compreensão dos requisitos sociais e organizacionais
- Porquê usá-la em Eng. de Sw
 - A satisfação de requisitos sociais e organizacionais é crucial para o sucesso de um produto

Etnografia

Como fazer:

- Imersão no ambiente de trabalho onde o sistema será usado
- O dia-a-dia de trabalho dos participantes é observado.

• Vantagens:

- Útil para descobrir requisitos implícitos, que refletem a maneira com que as pessoas realmente fazem as tarefas e não a maneira como elas deveriam fazê-las, conforme descrito em processos formais.
- Útil para descobrir requisitos derivados da cooperação com ou da expertise de outros. Um observador externo pode perceber melhor as relações entre as tarefas dos diversos indivíduos dentro da organização.

Entrevista

Identificar candidatos

 clientes, usuários, gerentes, pessoas que não usam diretamente o sw mas interagem com usuários, ...

• Preparar a entrevista

agendar entrevista e preparar lista de questões

Conduzir a entrevista

 informar os objetivos da entrevista, o porquê da mesma, temas abordados, tempo alocado para cada tema, uso da informação obtida

Finalizar entrevista

 resumir informações obtidas, indicando pontos ainda em aberto e próximas ações a serem tomadas

"Brainstorming"

Reuniões com um líder. Em cada sessão há:

- geração de idéias, onde cada participante fornece idéias, sem discussão sobre seu mérito
- consolidação das idéias, onde as idéias fornecidas são discutidas, revisadas e organizadas
- © útil no começo do processo de extração de requisitos
- imuito informal, o que pode estimular a criatividade
- © facilidade de ser aprendida
- igo os resultados obtidos podem não ter boa qualidade

Joint Application Development (JAD)

Histórico

- Proposto em 1977 por Chuck Morris, da IBM
- Adotado pela IBM Canadá em 1980
- A IBM formaliza o JAD em 1984

Princípios básicos

- reuniões de grupo onde cada participante tem um papel
- uso de técnicas visuais para melhorar comunicação e entendimento
- processo bem estruturado
- uso de documentação padrão que é preenchida e assinada por todos os participantes

JAD

- Apesar de ter "desenvolvimento" no nome, o JAD não é método de desenvolvimento pois só cobre definição e análise de requisitos, bem como projeto.
- Quando usar:
 - Desenvolvimento de sistemas novos
 - Melhorias de sistemas existentes
 - Conversão de sistema
 - Aquisição de produto

JAD: Participantes

Cada participante tem um papel

- Líder: conhecedor da técnica; coordena as reuniões
- **Engenheiro de requisitos**: responsável pela produção dos documentos de saída das sessões. Pode fazer protótipos se julgar necessário.
- **Executor**: responsável pelo produto. Informa o porquê da construção do produto. Aloca recursos.
- Representantes dos usuários
- Representantes de produtos de sw: ajudam usuários a compreender as capacitações e limitações de produtos de sw
- **Especialista**: conhecedor de algum tópico específico

JAD: processo

JAD: processo

JAD: atividades de cada fase

Adaptação

adaptação da técnica ao produto de sw desenvolvido

Sessão

 reuniões em que cada participante traz idéias e visões diferentes do produto. Ao final de cada sessão tem-se o acordo de todos os participantes a respeito dos requisitos levantados

Finalização

 geração do documento de requisitos de sw a partir das informações produzidas durante as sessões

JAD – Mais informações

- www.umsl.edu/~sauter/analysis/488_f01_papers/r ottman.htm
- http://www.cse.fau.edu/~maria/COURSES/CEN4 010-SE/jad.pdf
- Entre inúmeras outras

PIECES [Carvalho e Chiossi 2001]

- PIECES sigla em inglês para desempenho (Performance), Informação e dados, Economia, Controle, Eficiência e Serviços
- Útil para determinar por onde começar:
 - Problemas a serem levantados são organizados de acordo com as seis categorias acima
 - Questões são elaboradas para cada uma das categorias
- Melhores resultados quando existe produto anterior

- Desempenho (P)
 - Para extrair requisitos de desempenho é preciso fazer perguntas do tipo:
 - Quais tarefas serão executadas?
 - Qual o número de tarefas a serem completadas por unidade de tempo (*trhoughput*)?
 - Qual a quantidade de tempo necessária para realizar cada tarefa (tempo de resposta)?

- Informação e dados
 - O produto atual fornece as informações que o usuário necessita?
 - As informações fornecidas são em número e formato que o usuário espera?
 - As informações são fornecidas no tempo certo?

- Economia
 - O custo de se usar um determinado produto pode estar ligado a dois fatores:
 - Nível do serviço → desempenho
 - Capacidade de lidar com alta demanda nas horas de pico ⇒ necessidade de processadores adicionais, unidades de disco com alta capacidade, conexões de rede, entre outras

Controle

- O acesso ao sistema deve ser restrito a certos usuários?
- O acesso a algumas informações deve ser restrito?
- O sistema deve ter a habilidade de monitorar e restaurar a execução após uma situação de erro?
- O usuário tem a capacidade de abortar a execução do sistema em caso de erro?
- O usuário pode recuperar dados perdidos?

Eficiência

- Está relacionada com a perda no uso de recursos, ou seja, é a relação entre os recursos efetivamente usados na realização de uma tarefa útil e o total de recursos alocados. A ineficiência pode estar ligada a:
 - Redundâncias desnecessárias
 - ex.: coletar e armazenar o mesmo dado mais de uma vez
 - Uso de algoritmos ou estruturas de dados inadequados para o problema
 - Interface com baixa usabilidade

Serviços

- Quais os serviços que o produto deve realizar?
- Como estes serviços devem ser fornecidos?
- Para que outros produtos de software serão prestados serviços?
- Que produtos prestam serviços para o que está sendo desenvolvido?

Principais pontos aprendidos

