Proyecto 1: Simplex

Jorge Antonio Rotter Vallejo 158391

Carlos Eduardo Gil Mezta 158612

1. Introducción

En este documento se muestran los resultados obtenidos al usar nuestra implementación del método Simplex para resolver los problemas planteados en el Proyecto 1 de Programación Lineal. Nuestro programa utiliza la regla de Bland para la selección de las variables de entrada y ejecuta el algoritmo por medio de operaciones matriciales, es decir, no calcula explícitamente los tableaus.

2. Problema 1: Implementación y verificación

Consideremos el siguiente ejemplo,

minimizar
$$-3x_1 - 5x_2$$

sujeto a $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1 \ge 0, x_2 \ge 0$

Agregando variables de holgura,

minimizar
$$-3x_1-5x_2$$

sujeto a $x_1+x_3=4$
 $2x_2+x_4=12$
 $3x_1+2x_2+x_5=18$
 $x_1\geq 0, x_2\geq 0, x_3\geq 0, x_4\geq 0, x_5\geq 0$

A continuación se muestran las tableaus del método Simplex usando la regla de mayor descenso.

Tabla 1: Tableau inicial

base	x_1	x_2	x_3	x_4	x_5	lado derecho
x_3	1	0	1	0	0	4
x_4	0	2	0	1	0	12
x_5	3	2	0	0	1	18
$r^{ op}$	3	5	0	0	0	0

La entrada máxima del vector r^{\top} es 5, que corresponde a la variable x_2 . Por lo tanto, la variable de entrada es $x_e = x_2$. Los cocientes de las entradas de la columna lado derecho entre las positivas de la columna de x_2 son $\frac{12}{2} = 6$ y $\frac{18}{2} = 9$. Como el mínimo de dichos cocientes es el que está relacionado con la variable x_4 , la variable de salida es $x_s = x_4$. Por medio de operaciones elementales obtenemos el siguiente tableau.

Tabla 2: Tableau siguiente

base	x_1	x_2	x_3	x_4	x_5	lado derecho
$\overline{x_3}$	1	0	1	0	0	4
x_2	0	1	0	1/2	0	6
x_5	3	0	0	-1	1	6
$r^{ op}$	3	0	0	-5/2	0	-30

La única entrada positiva del vector r^{\top} es 3, que corresponde a la variable x_1 . Por lo tanto, la variable de entrada es $x_e = x_1$. Los cocientes de las entradas de la columna lado derecho entre las positivas de la columna de x_1 son $\frac{4}{1} = 4$ y $\frac{6}{3} = 2$. Como el mínimo de dichos cocientes es el que está relacionado con la variable x_5 , la variable de salida es $x_s = x_5$. Por medio de operaciones elementales obtenemos el siguiente tableau.

Tabla 3: Tableau final

base	x_1	x_2	x_3	x_4	x_5	lado derecho
$\overline{x_3}$	0	0	1	1/3	-1/3	2
x_2	0	1	0	1/2	0	6
x_1	1	0	0	-1/3	1/3	2
$r^{ op}$	0	0	0	-3/2	-1	-36

Como el vector r^{\top} ya no tiene entradas positivas, el método ha terminado. De modo que la solución óptima a este problema es $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$, con valor óptimo z=-36. Esta conclusión coincide con la de nuestra implementación del método.

3. Problema 2: Klee-Minty

Consideremos el ejemplo de de Klee-Minty, dado por

minimizar
$$-x_1 - x_2 - x_3 - \dots - x_m$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 2 & 2 & 1 & 0 & \dots & 0 & 0 \\ & & & \ddots & & & \\ 2 & 2 & 2 & 2 & \dots & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_m \end{bmatrix} \le \begin{bmatrix} 2^1 - 1 \\ 2^2 - 1 \\ 2^3 - 1 \\ \vdots \\ 2^m - 1 \end{bmatrix}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, \dots, x_m \ge 0$$

De acuerdo con Kitahara y Mizunoara, quienes propusieron el ejemplo, para cada $m \in \mathbb{N}$, el método Simplex requiere 2^m-1 iteraciones para hallar una solución básica factible óptima. En la siguiente tabla se verifica dicha afirmación y se muestra cuánto tiempo tardó nuestra implementación en resolver el problema. Corroboramos que el número de iteraciones se comporta como indica la teoría de los autores del ejemplo y que al duplicar el número de iteraciones se duplica el tiempo de máquina.

Tabla 4: Klee-Minty

\overline{m}	número de iteraciones	tiempo de máquina
3	7	0.002036404609680175
4	15	0.004327058792114258
5	31	0.009139060974121094
6	63	0.022255897521972656
7	127	0.044594764709472656
8	255	0.08532977104187012
9	511	0.17149996757507324
10	1023	0.3492770195007324

4. Problema 3: Complejidad computacional de Simplex

Ejecutamos nuestra implementación del método Simplex en 100 problemas aleatorios. En la gráfica siguiente se muestra $\log(N)$, donde N es el número de iteraciones, contra $\log(\min\{n, m\})$

Notemos que si $N = O(\min^p\{n, m\})$, tomando log de ambos lados, $\log(N) = p \cdot \log(m+n) + c$. La línea azul en la gráfica anterior es la ajustada por mínimos cuadrados a los puntos obtenidos con los problemas aleatorios; su pendiente es p = 2.18659992902. Esto nos dice que en promedio el orden del método es 2.18659992902 con respecto a mín $\{n, m\}$.