FMI, Info, Anul I

Logică matematică și computațională

Seminar 4

(S4.1) Fie LP logica propoziţională.

- (i) Demonstrați că mulțimea *Expr* a expresiilor lui LP este numărabilă.
- (ii) Demonstrați că mulțimea Form a formulelor lui LP este numărabilă.

(S4.2) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

(i)
$$((x_0 \to x_1) \to x_0) \to x_0 = 1$$
;

(ii)
$$(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$$
.

Fie φ , $\psi \in Form$. Pentru orice $e: V \to \{0,1\}$, notăm cu $e \vDash \varphi$ (și spunem că e satisface φ sau e este model pentru φ) dacă $e^+(\varphi) = 1$. Notăm cu $\vDash \varphi$ (și spunem că φ este tautologie) dacă pentru orice $e: V \to \{0,1\}$ avem că $e \vDash \varphi$. Spunem că φ este satisfiabilă dacă există $e: V \to \{0,1\}$ cu $e \vDash \varphi$ și nesatisfiabilă în caz contrar, când nu există $e: V \to \{0,1\}$ cu $e \vDash \varphi$, i.e. pentru orice $e: V \to \{0,1\}$ avem că $e \nvDash \varphi$. Notăm $\varphi \vDash \psi$ (și spunem că din φ se deduce semantic ψ sau că ψ este consecință semantică a lui φ) dacă pentru orice $e: V \to \{0,1\}$ cu $e \vDash \varphi$ avem $e \vDash \psi$. Notăm cu $\varphi \sim \psi$ dacă pentru orice $e: V \to \{0,1\}$ avem $e \vDash \varphi$ dacă și numai dacă $e \vDash \psi$, i.e. pentru orice $e: V \to \{0,1\}$ avem $e^+(\varphi) = e^+(\psi)$.

(S4.3) Să se găsească câte un model pentru fiecare dintre formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

(S4.4) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

- (i) $\psi \vDash (\varphi \rightarrow \psi)$;
- (ii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iii) $\varphi \vee (\varphi \wedge \psi) \sim \varphi$;
- (iv) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$

(S4.5) Să se demonstreze că, pentru orice formulă φ , φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.