딥러닝 세미나 Season #7

Zero-Shot Learning by Convex Combination of Semantic Embeddings

2014, ICLR, M. Norouzi et al.

https://arxiv.org/pdf/1312.5650.pdf

한양대학교 컴퓨터 소프트웨어학과 인공지능 연구실 조건희

10가지 클래스를 분류하는 image classifier 에 대해 생각해보자

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

10가지 클래스를 분류하는 image classifier 에 대해 생각해보자

이미지를 처리해야 하므로

ResNet, VGG, Inception 등을 이용하면 되겠지?

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

10가지 클래스를 분류하는 image classifier 에 대해 생각해보자 이미지를 처리해야 하므로

ResNet, VGG, Inception 등을 이용하면 되겠지?

학습에 이용할 데이터셋은

10가지 클래스에 대한 이미지를 각각 준비하면 되겠다

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

10가지 클래스를 분류하는 image classifier 에 대해 생각해보자

이미지를 처리해야 하므로

ResNet, VGG, Inception 등을 이용하면 되겠지?

학습에 이용할 데이터셋은

10가지 클래스에 대한 이미지를 각각 준비하면 되겠다

이제 학습을 돌려보자!

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

이제 클래스를 좀더 세분화해서

10,000가지 클래스를 분류하는 image classifier 에 대해 생각해보자

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

이제 클래스를 좀더 세분화해서

10,000가지 클래스를 분류하는 image classifier 에 대해 생각해보자

ResNet, VGG, Inception 등은 그대로 이용하면 될 것 같은데,

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

이제 클래스를 좀더 세분화해서

10,000가지 클래스를 분류하는 image classifier 에 대해 생각해보자

ResNet, VGG, Inception 등은 그대로 이용하면 될 것 같은데,

10,000가지 클래스의 이미지 데이터는 어떻게 구하지?

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

이제 클래스를 좀더 세분화해서

10,000가지 클래스를 분류하는 image classifier 에 대해 생각해보자

ResNet, VGG, Inception 등은 그대로 이용하면 될 것 같은데,

10,000가지 클래스의 이미지 데이터는 어떻게 구하지?

게다가 열심히 학습했던 10가지 클래스 분류 모델은

재활용이 안되네 ㅠㅠ

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

정리하자면, n-way classification 문제에서 n이 아주 클 경우에는 기존 기계학습 방법을 그대로 적용하기 어려움

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

정리하자면,

n-way classification 문제에서 n이 아주 클 경우에는 기존 기계학습 방법을 그대로 적용하기 어려움

그래서

이미지의 semantic embedding을 이용하는 방법이 나옴

바로 Zero-Shot Learning

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

$$\mathcal{D}_0 \equiv \{(\mathbf{x}_i, y_i)\}_{i=1}^m \stackrel{ ext{diolety}}{ ext{diolety}}: m$$
 $\mathbf{x}_i \in \mathbb{R}^p$ p 차원 벡터 $y_i \in \mathcal{Y}_0 \equiv \{1, ..., n_0\}$ 클래스: n_0 개

$$\mathcal{D}_1 \equiv \left\{ (\mathbf{x}_j', y_j')
ight\}_{j=1}^{m'}$$
 데이터셋 크기 $: m'$ $\mathbf{x}_j' \in \mathbb{R}^p$ p 차원 벡터 $y_j' \in \mathcal{Y}_1 \equiv \{n_0+1, ..., n_0+n_1\}$ 클래스 $: n_1$ 개

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

〈 제로샷 러닝의 목적 〉

 \mathcal{D}_0 으로 학습한 classifier가

 \mathcal{D}_1 에도 잘 적용되도록 하는 것

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

〈 제로샷 러닝의 목적 〉

 \mathcal{D}_0 으로 학습한 classifier가

 \mathcal{D}_1 에도 잘 적용되도록 하는 것

 $y_0 \cap y_1 = \emptyset$ 이므로 다른 정보가 주어지지 않으면 **불가능**

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

〈제로샷 러닝의 목적〉

 \mathcal{D}_0 으로 학습한 *classifier*가

 \mathcal{D}_1 에도 잘 적용되도록 하는 것

 $y_0 \cap y_1 = \emptyset$ 이므로 다른 정보가 주어지지 않으면 **불가능**

모든 label y ($1 \le y \le n_0 + n_1$) 에 대해서 semantic embedding $s(y) \in \mathcal{S} \equiv \mathbb{R}^q \quad q$ 차원 벡터 가 존재하면 가능

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

Word2Vec

단어의 의미가 비슷하면 semantic embedding space 상의 벡터 좌표도 비슷하도록 학습함

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

- Introduction
- Zero-ShotLearning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

예를 들어 '호랑이'와 '사자' 이미지를 학습했을 경우

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

예를 들어 '호랑이'와 '사자' 이미지를 학습했을 경우

- learning by convex combination of semantic
 - Introduction

embeddings

Zero-Shot Learning

Zero-shot

- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

'라이거'라는 label은 학습되지 않았지만 분류할 수 있게 됨

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

기존 제로샷은

f: *X* → *S* 를 **직접** 학습하지만

이 논문에서 제안하는 모델(ConSE)은 $f: X \to S$ 를 간접적으로 학습함

오히려 classic machine learning 처럼 기존 classifier를 그대로 가져다 이용

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

$$\widehat{y_0}(\mathbf{x}, 1) \equiv \underset{y \in \mathcal{Y}_0}{\operatorname{argmax}} \, p_0(y|\mathbf{x})$$

most likely training label

(즉, 이 classifier는 x의 label을 이 label로 판단할 것이다)

Zero-shot learning by convex combination of semantic embeddings

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings

- Result

$$\widehat{y_0}(x,t)$$

tth most likely training label

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

 $\widehat{y_0}(\mathbf{x},t)$: t^{th} most likely training label

Zero-shot learning by convex combination of semantic embeddings

- Introduction
- Zero-Shot Learning
- ConSE:

 Convex
 combination
 of semantic
 embeddings
- Result

space

$$f(\mathbf{x}) = \frac{1}{Z} \sum_{t=1}^{T} p(\widehat{y_0}(\mathbf{x}, t) | \mathbf{x}) \cdot s(\widehat{y_0}(\mathbf{x}, t))$$

'라이거' 이미지를 classifier에 넣었을 때 각 label일 확률

y	У		
$\widehat{y_0}(x,1)$	사자	0.6	
$\widehat{y_0}(x,2)$	호랑이	0.4	

$$f(x) = 0.6 \cdot s('사자') + 0.4 \cdot s('호랑이')$$
 $\approx s('라이거')$

$$f(\mathbf{x}) = \frac{1}{Z} \sum_{t=1}^{I} p(\widehat{y_0}(\mathbf{x}, t) | \mathbf{x}) \cdot s(\widehat{y_0}(\mathbf{x}, t))$$

- Introduction
- Zero-Shot Learning
- ConSE:

 Convex
 combination
 of semantic
 embeddings
- Result

'라이거' 이미지를 classifier에 넣었을 때 각 label일 확률

У	У		
$\widehat{y_0}(x,1)$	사자	0.6	
$\widehat{y_0}(x,2)$	호랑이	0.4	

$$f(\mathbf{x}) = 0.6 \cdot s('사자') + 0.4 \cdot s('호랑이')$$
 $\approx s('라이거')$

cosine similarity

$$\widehat{y_1}(\mathbf{x}, 1) \equiv \underset{y' \in \mathcal{Y}_1}{\operatorname{argmax}} \cos(f(\mathbf{x}), s(y'))$$

- Introduction
- Zero-Shot Learning
- ConSE:Convexcombinationof semanticembeddings
- Result

Result

Test Image	Softmax Baseline [7]	DeViSE [6]	ConSE (10)
	wig fur coat Saluki, gazelle hound Afghan hound, Afghan stole	water spaniel tea gown bridal gown, wedding gown spaniel tights, leotards	business suit dress, frock hairpiece, false hair, postiche swimsuit, swimwear, bathing suit kit, outfit
	ostrich, Struthio camelus black stork, Ciconia nigra vulture crane peacock	heron owl, bird of Minerva, bird of night hawk bird of prey, raptor, raptorial bird finch	ratite, ratite bird, flightless bird peafowl, bird of Juno common spoonbill New World vulture, cathartid Greek partridge, rock partridge
	sea lion plane, carpenter's plane cowboy boot loggerhead, loggerhead turtle goose	elephant turtle turtleneck, turtle, polo-neck flip-flop, thong handcart, pushcart, cart, go-cart	California sea lion Steller sea lion Australian sea lion South American sea lion eared seal
O SEATTLE	hamster broccoli Pomeranian capuchin, ringtail weasel	golden hamster, Syrian hamster rhesus, rhesus monkey pipe shaker American mink, Mustela vison	golden hamster, Syrian hamster rodent, gnawer Eurasian hamster rhesus, rhesus monkey rabbit, coney, cony

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

	# Candidate			<u>Flat hit@k (%)</u>			
Test Label Set	Labels	Model	1	2	5	10	20
		DeViSE	6.0	10.0	18.1	26.4	36.4
2 hons	1,589	ConSE(1)	9.3	14.4	23.7	30.8	38.7
2-hops	1, 569	ConSE(10)	9.4	15.1	24.7	32.7	41.8
		ConSE(1000)	9.2	14.8	24.1	32.1	41.1
		DeViSE	0.8	-2.7	7.9	14.2	$-2\overline{2}.\overline{7}$
2-hops (+1K)	1,589	ConSE(1)	0.2	7.1	17.2	24.0	31.8
2-110ps (<u>+1K)</u>	+1000	ConSE(10)	0.3	6.2	17.0	24.9	33.5
		ConSE(1000)	0.3	6.2	16.7	24.5	32.9
	7,860	DeViSE	1.7	2.9	5.3	8.2	12.5
3-hops		ConSE(1)	2.6	4.2	7.3	10.8	14.8
3-nops		ConSE(10)	2.7	4.4	7.8	11.5	16.1
		ConSE(1000)	2.6	4.3	7.6	11.3	15.7
		DeViSE	0.5	1.4	3.4	5.9	9.7
3-hops (+1K)	7,860	ConSE(1)	0.2	2.4	5.9	9.3	13.4
3-110ps (+1K)	+1000	ConSE(10)	0.2	2.2	5.9	9.7	14.3
		ConSE(1000)	0.2	2.2	5.8	9.5	14.0
		DeViSE	0.8	1.4	2.5	3.9	6.0
ImageNet 2011 21K	20,841	ConSE(1)	1.3	2.1	3.6	5.4	7.6
imagenet 2011 21K	20, 641	ConSE(10)	1.4	2.2	3.9	5.8	8.3
		ConSE(1000)	1.3	2.1	3.8	5.6	8.1
		DeViSE	0.3	0.8	1.9	$\overline{3.2}$	5.3
ImageNet 2011 21K (+1K)	20,841	ConSE(1)	0.1	1.2	3.0	4.8	7.0
imagenet 2011 21K (+1K)	+1000	ConSE(10)	0.2	1.2	3.0	5.0	7.5
		ConSE(1000)	0.2	1.2	3.0	4.9	7.3

- Introduction
- Zero-Shot Learning
- ConSE:Convexcombinationof semanticembeddings
- Result

		Hierarchical precision@k					
Test Label Set	Model	1	2	5	10	20	
2 hong	DeViSE	0.06	0.152	0.192	0.217	0.233	
2-hops	ConSE(10)	0.094	0.214	0.247	0.269	0.284	
	Softmax baseline	0	0.236	0.181	0.174	0.179	
2-hops (+1K)	DeViSE	0.008	0.204	0.196	0.201	0.214	
	ConSE(10)	0.003	0.234	0.254	0.260	0.271	
2 hons	DeViSE	0.017	0.037	0.191	0.214	0.236	
3-hops	ConSE(10)	0.027	0.053	0.202	0.224	0.247	
	Softmax baseline	0	0.053	0.157	0.143	0.130	
3-hops (+1K)	DeViSE	0.005	0.053	0.192	0.201	0.214	
	ConSE(10)	0.002	0.061	0.211	0.225	0.240	
ImageNet 2011 21K	DeViSE	0.008	0.017	0.072	0.085	0.096	
	ConSE(10)	0.014	0.025	0.078	0.092	0.104	
	Softmax baseline	0	0.023	0.071	0.069	0.065	
ImageNet 2011 21K (+1K)	DeViSE	0.003	0.025	0.083	0.092	0.101	
	ConSE(10)	0.002	0.029	0.086	0.097	0.105	

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

		Hierarchical precision@k					
Test Label Set	Model	1	2	5	10	20	
	Softmax baseline	0.556	0.452	0.342	0.313	0.319	
	DeViSE	0.532	0.447	0.352	0.331	0.341	
ImageNet 2011 1K	ConSE (1)	0.551	0.422	0.32	0.297	0.313	
	ConSE (10)	0.543	0.447	0.348	0.322	0.337	
	ConSE (1000)	0.539	0.442	0.344	0.319	0.335	

		Flat hit@ k (%)				
Test Label Set	Model	1	2	5	10	
	Softmax baseline	55.6	67.4	78.5	85.0	
	DeViSE	53.2	65.2	76.7	83.3	
ImageNet 2011 1K	ConSE (1)	55.1	57.7	60.9	63.5	
	ConSE (10)	54.3	61.9	68.0	71.6	
	ConSE (1000)	53.9	61.1	67.0	70.6	

- Introduction
- Zero-Shot Learning
- ConSE:
 Convex
 combination
 of semantic
 embeddings
- Result

감사합니다