Part A MCQ (30%)

(5pts) Problem 1

If a_n is the sequence given by

$$\ln\left(\frac{2}{1}\right), \ln\left(\frac{3}{2}\right), \ln\left(\frac{4}{3}\right), \dots$$

Evaluate $\lim_{n\to\infty} a_n$.

- (a) a_n converges to 1
- (b) a_n converges to $\ln 2$
- (c) a_n converges to 0
- (d) a_n converges to $\ln 3$
- (e) a_n diverges

(5pts) Problem 2

The sum of the geometric series

$$4-1+\frac{1}{4}-\frac{1}{16}+\dots$$

is

- $(a) \quad \frac{17}{16}$
- (b) $\frac{19}{4}$
- $\begin{pmatrix} c \end{pmatrix} \quad \frac{145}{16}$
- $(d) \frac{14}{3}$
- (e) $\frac{16}{5}$

(5pts) Problem 3

The series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sqrt{n}}$$

- (a) converges absolutely
- (b) converges conditionally
- (c) diverges
- (d) is a convergent geometric series
- (e) is a divergent telescoping series

(5pts) Problem 4

The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{2^n x^n}{n+1}$ is

- (a) 2
- $(b) \quad \frac{1}{2}$
- (c) 1
- (d) ∞
- (e) 0

(5pts) Problem 5

The power series representation of the function $\frac{1}{4-x^2}$ is equal to

(a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{4^n}$$
, $|x| < 2$

(b)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{4^{n+1}}$$
, $|x| < 2$

(c)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+2}}{4^{n+1}}, \quad |x| < 2$$

(d)
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2^{n+1}}$$
, $|x| < 2$

(e)
$$\sum_{n=0}^{\infty} \frac{x^{4n}}{2^{n+1}}$$
, $|x| < 2$

(5pts) Problem 6

The coefficient of x^3 in Maclaurin series of the function $f(x) = \ln(1-x)$ equal to

- $(a) \quad \frac{-1}{3}$
- $(b) \quad \frac{-1}{6}$
- $(c) \quad \frac{5}{6}$
- $(d) \quad \frac{1}{2}$
- (e) 1

Part B Written Questions (70%)

(15pts)Problem 1

Find the interval of convergence of the following power series

$$1. \sum_{n=1}^{\infty} \frac{x^n}{n2^n}$$

1.
$$\sum_{n=1}^{\infty} \frac{x^n}{n2^n}$$
 2. $\sum_{n=0}^{\infty} \frac{(x+2)^n}{n!}$.

(15pts)Problem 2

Solve the initial value problem for the separable equation below

$$\frac{dy}{dx} = 3x^2y^2, \qquad y(0) = \frac{1}{2}.$$

(20pts)Problem 3

Show that the differential equation is exact and solve the equation.

$$(\cos y + y\cos x) dx + (\sin x - x\sin y) dy = 0.$$

(20pts)Problem 4

Solve the initial value problem for the Bernoulli equation below

$$x\frac{dy}{dx} - 2y = 4x^3y^{1/2},$$
 $y(1) = 0.$