不像监督学习,不是一次决定,需要一直做决定

deterministic model: given s 和 a, s'is deterministic not

random!!

stochastic model 随机的

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
- → Transitions P(s'|s,a) (or T(s,a,s'))
- → Rewards R(s,a,s') (and discount γ)
 - Start state s₀

• Quantities:

- → Policy = map of states to actions
- Utility = sum of discounted rewards
- → Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)
- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:
 - $\pi^*(s)$ = optimal action from state s

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$\begin{split} V^*(s) &= \max_{a} Q^*(s, a) \\ Q^*(s, a) &= \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \\ V^*(s) &= \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \end{split}$$

- These are the Bellman equations, and they characterize optimal values in a way we'll use over and over
- $V^*(s)$ 给定 state s 的 value function!!!

 $Q^*(s,a)$ chang state 的 value function

从 s 开始,已经 take action a 的情况下的 acuumulated reward,

不一定是哪个 state

V 和 Q 本质一样!!!! 都是 acuumulated reward

只是 Q 的 state 没有确定!!!

$$V^*(s) = \max_a Q^*(s, a)$$

 $Q^*(s,a)$: 已经 take action,immediate reward 已经获得,此选择 $v^*(s')$ 的 S'时,就是 $v^*(s)$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

可以 compute each other

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value 不同于 Utility,是期望!!!

MDP

5tuple: (S 状态集 A 行为集 P γ R)

 P_{sa} transition distribution ,对于给定 **state** , action 转向下一个 state s'是个概率分布 P(s') $\sum P(s')=1$ 假设一个 grid,向上概率 0.8,向左 0.1,向右 0.1 γ discount factor

R reward function:map state s to Real bumbers(s->R)

 $P_{(s)N}(s')$ transition function 从 s 出发,到达 s'的概率,s'是随机变量!!!

Reward function

at state s0 choose a0

get to s1 N $P_{s_0a_0}$ (draw random from $P_{s_0a_0}$) chooser a1

get to s2 N $P_{s_{\rm l}a_{\rm l}}$

直到结束

得到一个 state sequence, how well the sequence

total payoff 薪酬 也被成为 gain

金钱在贬值,未来的钱越来越不值钱

Value function: V(s) expection of total payoff of s

当 $s_0 = s$

V(s)是期望, S_1,S_2 …是从 s 开始到下个 state,是随机变量,要求他们的期望,希望 V(s)最大

goal:

choose action(a1,a2,....)

to maximize the s expection of total payoff of s

也就是用强化学习算法,计算一个 optimal policy (denote by π^*)

Policy π is function map one state to one action

得到这个 policy 函数我们就可以,知道每一 state 应该如何走

上面是一个 optimal policy,每个 state 应该如何 action

 π^* optimal policy maximize expect total value payoff

给定一个 π 就是一个 policy

 V^{π}

For any π , define a value function V^{π} : $S \Rightarrow R$ s.t $V^{\pi}(s)$ is expectation of total payoff if **start in state s,and execute** π 。 也就是从 **s** 开始按照 **policy** 走到 **end**,而最终得到的 **total payoff**,是 long term reward

给定一个 π ,所有 state 的 $V^{\pi}(s)$ 就固定了!!! 见下图

期望是因为 s1 s2..都是随机变量

$$V^{\pi}(s) = E(R(s0) + \gamma R(s1) + ... | s_0 = s, \pi)$$

例子:

given a policy π : 得到右边的 V^{π} value fucntion:

可以看出右下角的 V^{π} (s)很小,因为从这个 state 开始,采取 π ,就到了-1 而结束,说明是 bad π !!!

变形下:

$$V^{\pi}(s) = E(R(s_0) + \gamma(R(s_1) + \gamma R(s_2) + ...) | s_0 = s, \pi)$$

 $R(s_0)$ immediate reard 后面是 feature reward

括号里面
$$(R(s_1) + \gamma R(s_2) + ...)$$
 是 $V^{\pi}(s_1)$

因此转换成了,只需考虑一步!!!

bellman equation 核心思想:

因为 $V^{\pi}(s)$ 是从 s 起 total payoff,而 R(s)已经固定,只需要计算下一步 state 的 $V^{\pi}(s')$,就可以计算 $V^{\pi}(s)$

$$V^{\pi}(s) = E(R(s) + \gamma V^{\pi}(s') | s_0 = s, \pi)$$

$$V^{\pi}(s) = R(s) + E(\gamma V^{\pi}(s')) | s_0 = s, \pi$$

s'是随机变量,要取期望

 $V^{\pi}(s) = R(s) + \gamma \sum P_{s\pi(s)}(s')V^{\pi}(s')$ bellman equation!!! $P_{s\pi(s)}(s')$ 是给定起点 s,和 $\pi(s)$ action,所对应的下一步 s'(随机变量)的概率分布

 $P_{s\pi(s)}(s')$ 等价 $P_{sa}(s')$:

bellman equation help us solve the value func for policy in closed form 封闭形式的一种解发,可以方便解出所有 state 的 $V^\pi(s)$

$$V^{\pi}(s) = R(s) + \gamma \sum P_{s\pi(s)}(s')V^{\pi}(s')$$

上面 sum 是线性的!!!

通过解决上面 linear system 线性方程组们就可以解出每个 $V^{\pi}(s)$

例子:

起点(3,1) π (3,1)=North ,则 value function V^{π} (3,1)

我们目标是解出每个 state 的 value function!!! 我们共有 11 个这样的方程,11 个未知数,可以解出!

我们最终想得到一个让所有 state value 都最大的 π^* ,也就是每一步每个 action 都达到 $V^*(s)$ 。也就是让 π 的每一 action 都达到最优!!!

Optimal value function

$$V * (s) = \max_{\pi} V^{\pi}(s)$$

起点是 s,遍历所有的策略 π ,取 V(s)最大的值 $\pi*$ 让 V(s)取最大值

$$V * (s) = E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | \pi^*, s_0 = s]$$

$$V * (s) = R(s_0) + \gamma E[(R(s_1) + \gamma R(s_2) + ...) | \pi^*, s_0 = s]$$

以上可以看出一个重要规律,也是最难点:

 $R(s_0)$ 是常数,给定最佳 π^* 下,s 取 optimal value,就要求 s'也要取 optimal value, $V^*(s)$ 把任务交给 $V^*(s')$,即 $V^*(s) = R(s_0) + \gamma V^*(s')$ 递归式

也表示在最佳π*下,所有 state 都取 optimal value 存在这样一个策略,使得所有 state 都取 optimal value

最终得出: bellman equation

$$V^*(s) = R(s) + \max_{a} \gamma \sum_{sa} P_{sa}(s') V^*(s')$$

 $P_{sa}(s')$ 只是 s transit to s'的概率分布 mean:当前 s 下采取 a,使得 $V^*(s')$ 期望最大 $V^*(s')$ 是因为,s'采取的也是 π^* 最佳策略!!! 所有下一个 state 都是 $V^*(s')$ optimal value(难点)

bellman equation

immediate reward+ Γ - \uparrow state value

bellman equation 做的事就算分解,只分解到下一步,得出 当前 state 和下一个 state'(exspect furture state)的关系!!!也 就是当前的值,只跟下一个状态值有关,也就是将任务推给

了下一个状态!!!

上面的式子是个方程组,a 是参数,我们要求得每一个 state 的 optimal a(best action),**其实就是求最佳策略函数** π $\pi^*(s) = \arg\max_a \sum_{a} P_{sa}(s')V^*(s')$ 就得到了每个 s 新策略函数! 得到最佳策略函数,式子是上面化简后的结果

解释:我们处于当前 state s,我们想 choose 一个最佳 action 最大化 **expect furture state** value!!

例子:

 $V^*(s)$

加入在(3,1)state
a=west 时 value 值,向左 0.8 概率向上 0.1,不动 0.1
maximize the value

但 policy π太多了,不可能 exhaust 穷尽

方法:

Value iteration algorithm

- 1. For each state s, initialize V(s) := 0.
- 2. Repeat until convergence { $\mbox{For every state, update } V(s) := R(s) + \max_{a \in A} \gamma \sum_{s'} P_{sa}(s') V(s').$ }

第二步类似于后向传播

R,P,V,A 都已知,每个 state, 穷尽 A, 选择最大的 V(s')

update 策略:

1 synchronous update :simutaneously 计算右边式子同时更新 所有状态

2 asynchronous update update a state one time,右面的值会一直变,随着更新后

最后 may converge: $V(s) \rightarrow V^*(s)$

计算出 $V^*(s)$

算法证明比较复杂!!!

policy iteration

Apart from value iteration, there is a second standard algorithm for finding an optimal policy for an MDP. The **policy iteration** algorithm

- 1. Initialize π randomly.
- 2. Repeat until convergence {
 - (a) Let $V := V^{\pi}$.
 - (b) For each state s, let $\pi(s) := \arg \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$.

given random initial policy $\boldsymbol{\pi}$

repeat{

1 given fixed π , to solve for V^π (if you execute π , from that state, the value you got)

例如计算 s_0 的 V^{π}

2 update 每个 state, 穷尽 A, 选择最大的 V(s')

$$\pi^*(s) := \arg\max_{a} \sum P_{sa}(s')V^*(s')$$

得到新的 policy 函数,再进行迭代

}

最后 may converge: $V(s) \to V^*(s)$ $\pi(s) \to \pi^*(s)$

trade off:上面算法最计算消耗的是 $V \coloneqq V^{\pi}$

需要用 bellman equation 方程组,解出每个 $V^{\pi}(s)$,再赋给每个 V,每次 iterate 就要解一次方程组

$$V^{\pi}(s) = R(s) + \gamma \sum P_{s\pi(s)}(s')V^{\pi}(s')$$

如果 state 太多,选择 value iteration 算法

到目前为止,given a 5tuple: (S 状态集 A 行为集 P γ R) 我们可以得到一个最优的 policy!!!

但是 P_{sa} transition probability 我们往往不清楚 需要 learn from data to estimate

$$P_{sa}(s') = \frac{\text{从s, take action a, 到s'次数}}{\text{从s take action a的次数}}$$

如果分子或分母为 0,
$$P_{sa}(s') = \frac{1}{|s|}$$

put together: estimate P and 求得 policy

repeat: {

1 take action using some π to get experience for some number of trials. (execute policy π , observe state transition)

2 update estamate of $P_{sa}(s^{'})$,base on 上面 experience

3 value iteration 尝试所有 A,得到 max V

solve bellman equation of V* get estamate V

(Apply value iteration with the estimated state transition probabilities and rewards to get a new estimated value function V)

(question 如果 initialize use the value of previous round, converage faster!!!)

4 用上面得到的各个 state 的 action 更新

update
$$\pi^*(s) := \arg \max_{a} \sum_{s} P_{sa}(s') V^*(s')$$

(Update π to be the greedy policy with respect to V)

}

- 1. Initialize π randomly.
- 2. Repeat {
 - (a) Execute π in the MDP for some number of trials.
 - (b) Using the accumulated experience in the MDP, update our estimates for P_{sa} (and R, if applicable).
 - (c) Apply value iteration with the estimated state transition probabilities and rewards to get a new estimated value function V.
 - (d) Update π to be the greedy policy with respect to V.

}

MDP 总结,太精彩了!!!!

最终 state 叫 absorving state

recap

VI(value iteration)compute v*

once we find the v*,we can compute π *

continuous state

state 可能有很多维度

如 car: (x,y, orientation,v) 4 个维度 而且是连续的

discretization

transfer continuous state problem with a finite or discrete set of states and then you can use policy iteration or value iteration to solve for $V^*(s)$ -bar

假设有 2dimension continuous state variables

将连续的值,划分为不同的范围 interval state,处于某个值,就知道属于某个 state

piecewise function 分段函数

approximate this function using something that's piecewise constant

- 1 这种代表性不好
- 2 数据维度太大,每个 state 就是一个变量 对于维度小的,如上面 2dimension

Value function approximation

我们另外的更好方法 approximate V* directly

解决问题: Continous State, discrete Action

每次 input,相当于一个随机试验,S'是随机变量,随机变量分别服从 P_{sa} ,如何确定 model?

方法: learn a model

参看讲义: $\phi(s)$ 是 s feature 的一个 map,feature 的一个组合,和 create new feature。

得到 V*如何计算 π *对于 continuous state 只计算当 robot 或 system 的 some specific state 的 action,如 上

The optimal action

$$V(f(s,a)) = \theta^{T} \phi(s')$$

where, $s' = f(s,a)$

词汇:暂时的 temporarily 放下 put aside chop 砍 obstacle 障碍 关联 associate common practice 惯例 helicopter 直升机 resort to 求助于 度假胜地

More general model

change Reward function

State-action Reward : $R: S \times A \Rightarrow R$

total payoff; $R(s_0, a_0) + \gamma R(s_1, a_1) + \dots$

可以帮助我们 model problem in which different actions have different cost(机器人,移动 or 不动,耗油不同,cost 不同) reward 不仅跟状态有关,还和 action 有关!

因为 immediate reward 也包含参数 a,因此 max 要提在外面

VI:

通过 V*,就得到π*

Finite horizon MDPS,一般不用加 gama

也就是时间有限最大是 T,每个 state,reward 对应不同时间: 不同时间 cost 不同,因此 reward 也不同 $R^{(T)}(s_0,a_0)$

最佳策略,non-stationary

有图,左边+1,右边=10,但由于 finite T,只能取左边近的! 所有 state transition probability $P_{_{sa}}^{^{(t)}}$ 也随着时间变化,是

non-stationary

如何找到 optimal policy?

先求 V*(s)

 $\mathbf{1}^{V_t^*}(s)$ 是在 s 下,t 时刻开始时的 optimal value 等于在采取最佳策略 π *的情况下得到的 total payoff 期望!!! 2 转成 bellman equation:

$$V_{t}^{*}(s) = \max_{a} R^{(t)}(s,a) + \sum_{s} P_{s}^{(t)}(s') V_{t+1}^{*}(s')$$

以上是递归是,递归的开始:最后一个时刻 T(最后一次 action) $V_T^*(s) = \max_a R^{(T)}(s,a)$

use dynamic programing algorithm

从后往前计算 $V_{T-1}^*(s)$, $V_{T-2}^*(s)$

依次计算: $\pi_T^*(s), \pi_{T-1}^*(s), \pi_{T-2}^*(s)$

以上是用 use dynamic programing algorithm for finite MDPS

Linear Quadrastic Regulation(LQR)

non-stationary dynamic A,B always change

P 还是用 regression A,B 的维度? question

w N(均值0,协方差矩阵)

Quadrastic Reward function:

UV 都是 Positive Semi-Definite 半正定矩阵 imply:

example: 直升机

求 MDP Model

try different your system, and watch what state we get to try m time

使得误差平方和最小

另一种求法

linearize a non –linear model

f 是 non linear model

f函数图如上

有一点S,取这一点的切线,就变成 linear 了!

点斜式 直线方程(s 是单变量,暂时忽略 a),

S 是个常数,上面成了 S_t 和 S_{t+1} 的线性关系式!

当我们 linearize 曲线时,有些地方 aproximate 比较好,有些 - 不好,所以要将 S 周围的点也作为参数,来拟合直线

choose the position to linearize,where spent most of time 对于 s,a,linearize 一个平面,倒三角是偏导数

得到了 $s_{t+1} = As_t + Ba_t$

find policy maximize finite horizon reward

先找:
$$V_T^*(s_T) = \max_{a,T} R^{(T)}(s_T, a_T)$$

然后再 backforward to $V_{T-1}^*(s_{T-1})$

上边的 T donte 矩阵 transpose 转置

下边 T time

question: 因为 UV 都是正定矩阵,因此乘积都是正的,整个式子是负的,max=0

右边的为正,为啥就等于左边的呢???

our goal: dynamic program step: $V_{t+1}^* \rightarrow V_t^*$

LQR 有个 porperty,每个 $V_{\scriptscriptstyle t}^*$ can be represented as quadrastic function

假设 V_{t+1}^* 是以上 quadrestic 形式 Φ 是矩阵, Ψ 是实数 我们带入上面的式子,可以得到相同的形式的 V_t^* ,条件是找 到合适的 Φ , Ψ 。LQR 的 porperty!!!

s 是向量(x1,x2,x3)^T

Φ是一个 3*3 矩阵

 $s^T\Phi s$ 很奇妙,他是 x1,x2,x3 的所有二次的组合,依据 Φ 的变化而变化

如:

start the recursion

已知
$$V_t^*(s_t) = -s_t^T U_t s_t$$
 $V_t^*(s_t) = s_t^T \Phi_t s_t + \Psi_t$
从头开始推:
 $V_T^*(s_T) = -s_T^T U_T s_T$
因此, $\Phi_T = -U_T \quad \Psi_T = 0$
 $V_T^*(s_T) = s_T^T \Phi_T s_T + \Psi_T$

转为 bellman equation 求解:

$$\begin{split} & \boldsymbol{V}_t^*(\boldsymbol{s}_t) = \max_{\boldsymbol{a}_t} - \boldsymbol{s}_t^T \boldsymbol{U}_t \boldsymbol{s}_t - \boldsymbol{a}_t^T \boldsymbol{V}_t \boldsymbol{a}_t + \boldsymbol{E}_{\boldsymbol{s}_{t+1} \sim \mathrm{N}(\boldsymbol{A}_t \boldsymbol{s}_t + \boldsymbol{B}_t \boldsymbol{s}_t, \boldsymbol{\varepsilon}_w)} (\boldsymbol{s}_{t+1}^T \boldsymbol{\Phi}_{t+1} \boldsymbol{s}_{t+1} + \boldsymbol{\Psi}_{t+1}) \\ & - \boldsymbol{s}_t^T \boldsymbol{U}_t \boldsymbol{s}_t - \boldsymbol{a}_t^T \boldsymbol{V}_t \boldsymbol{a}_t \not \equiv \text{immediate reward} \end{split}$$

 $s_{t+1} \sim N(A_t s_t + B_t s_t, \varepsilon_w)$ $\uparrow - \uparrow$ state draw from distribution

因为 $s_{t+1} = A_t s_t + B_t s_t + \varepsilon_w$ 正态分布

 $N(A_t s_t + B_t s_t, \varepsilon_w) = P_{s_t a_t}$ state transition probability 加上 $V_{t+1}^*(s_{t+1})$ 的期望

bellman 就是 dynamic programing!!!

展开 expand $E_{s_{t+1} \sim N(A_t s_t + B_t s_t, \varepsilon_w)}(s_{t+1}^T \Phi_{t+1} s_{t+1} + \Psi_{t+1})$ 化简为: 是一个 quadrastic function of a_t

再回到前面公式:

只需对 a_t , 求导数令 0, 解出 a_t

optmal action is linear function of current state s optimal action is straight line

解出 a 将 a 带入上面,得到 $\Phi_{t}\Psi_{t}$,

 $\boldsymbol{\Phi}_t$: discrete time Ricarti equation

summary:

