标题

作者 XX 大学 XX 学院

XXXX年X月X日

电子邮件: XXXX@mail.nwpu.edu.cn

摘 要

摘要内容……

关键词: 词 1, 词 2, 词 3, 词 4, 词 5

目 录

| 摘 | 要 | | |
 |
i |
|----|-----|-----|-----|------|------|------|------|------|------|------|------|--------|
| 目 | 录 | | |
 |
ii |
| 第一 | 章 | 我是第 | 51章 |
 |
1 |
| 1. | 1 — | 章一节 | · |
 |
1 |
| 第二 | _章 | 我是第 | 52章 |
 |
3 |
| 2. | 1 = | 章一节 | · |
 |
3 |
| 参考 | (文献 | t f | |
 |
3 |

第一章 我是第1章

第一章内容。

$$\left(\frac{\delta_n}{\delta_{no}}\right)^2 + \left(\frac{\delta_t}{\delta_{so}}\right)^2 = 1 \tag{1-1}$$

其中, δ_n 与 δ_t 分别为法向和切向开裂位移, δ_{no} 与 δ_{so} 为对应的初始损伤位移阈值。

假设切向位移可表示为 $\delta_t = \beta \delta_n$, 其中

$$\beta = \frac{\sqrt{\delta_{t1}^2 + \delta_{t2}^2}}{\delta_n} \tag{1-2}$$

代入式 (1-1) 可得:

$$\left(\frac{\delta_n}{\delta_{no}}\right)^2 + \left(\frac{\beta \delta_n}{\delta_{so}}\right)^2 = 1 \tag{1-3}$$

整理得到:

$$\delta_n^2 \left(\frac{1}{\delta_{no}^2} + \frac{\beta^2}{\delta_{so}^2} \right) = 1 \quad \Rightarrow \quad \delta_n^2 = \frac{1}{\frac{1}{\delta_{no}^2} + \frac{\beta^2}{\delta_{so}^2}} = \frac{\delta_{no}^2 \delta_{so}^2}{\delta_{so}^2 + \delta_{no}^2 \beta^2}$$
 (1-4)

此时的等效初始位移 δ_{mo} 可表示为:

$$\delta_{mo}^2 = \delta_n^2 + \delta_t^2 = \delta_n^2 (1 + \beta^2) \tag{1-5}$$

最终得到混合模式下的等效初始位移为:

$$\delta_{mo} = \delta_{no}\delta_{so}\sqrt{\frac{1+\beta^2}{\delta_{so}^2 + \delta_{no}^2\beta^2}}$$
 (1-6)

1.1 一章一节

内容……

图 1-1 Main name

第二章 我是第2章

2.1 二章一节

文献[1-3], 真的[1] 叙述了……

图2.1(a), 图2.1(b), 图2.1(c)如下所示:

(a) name1

(b) name2

(c) name3

图 2-1 Main name

这是一个三线表。

表 2-1 力学试验标准及试件尺寸

试验	参考标准	试件尺寸 (mm)	加载速率 (mm/min)
弯曲试验	ASTM-D7264	$95.0\times10.0\times2.0$	1.0
短梁剪切试验	ASTM-D2344	$6.0\times4.0\times2.0$	1.0
双悬臂梁试验	ASTM-D5528	$150.0\times25.0\times2.0$	2.0

参考文献

- [1] LI X, ZHANG W. Deep Learning in Engineering[J]. Journal of Engineering AI, 2023, 12(3): 45-56.
- [2] LI X, ZHANG W. Deep Learning in Engineering[J]. Journal of Engineering AI, 2023, 12(3): 45-56.
- [3] LI X, ZHANG W. Deep Learning in Engineering[J]. Journal of Engineering AI, 2023, 12(3): 45-56.