

Тамарин Вячеслав

16 ноября 2020 г.

Оглавление

1	Введение в теорию сложности вычислений			
		1.0.1	Напоминания	1
		1.0.2	Детерминированная машина Тьюринга	6
	1.1	Класс	ы сложности	8
		1.1.1	Классы DTIME и Р	8
	1.2	Недет	ерминированная машина Тьюринга	Ć
	1.3	Сведе	ния и сводимости	10
		1.3.1	Трудные и полные задачи	11
		1.3.2	Булевы схемы	12

ОГЛАВЛЕНИЕ 4

Глава 1

Введение в теорию сложности вычислений

Лекция 1: †

5 nov

1.0.1 Напоминания

Обсудим, что мы решаем.

Обозначение.

- Алфавит будет бинарный {0,1};
- Множество всех слов длины $n: \{0,1\}^n$;
- Множество всех слов конечной длины $\{0,1\}^*$;
- Длина слова x: |x|.

Определение 1

Язык (задача распознавания, decision problem) — $L \subseteq \{0,1\}^*$.

Индивидуальная задача — пара, первым элементом которой является условие, а второй – решение; принадлежит $\{0,1\}^* \times \{0,1\}^*$.

Массовая задача — некоторое множество индивидуальных задач, то есть бинарное отношение на $\{0,1\}^*$.

Определение 2

Будем говорить, что алгоритм **решает задачу поиска** для массовой задачи R, если для условия x он находит решение w, удовлетворяющее $(x, w) \in R$.

Можем сопоставить массовой задаче, заданной отношением R, язык

$$L(R) - \{x \mid \exists w : (x, w) \in R\}.$$

Пример 1.0.1 (Массовая задача и соответствующий язык).

FACTOR =
$$\{(n, d) | d|n, 1 < d < n\}.$$

Здесь условием задачи является натуральное число n, а решением некоторый (не 1, и не n) числа n. Данной задаче соответствует язык

$$L(\widetilde{FACTOR})$$
 = множество всех составных чисел.

1.0.2 Детерминированная машина Тьюринга

Определение 3: Детерминированная машина Тьюринга

Детерминированная машина Тьюринга —

- конечный алфавит (с началом ленты и пробелом): $\Sigma = \{0, 1, \triangleright, \}$;
- несколько лент, бесконечных в одну сторону;
- читающие/пишущие головки, по одной на каждую ленту;
- конечное множество состояний, в том числе начальное (q_S/q_0) , принимающее (q_Y/q_{acc}) и отвергающее (q_N/q_{rej}) ;
- ullet управляющее устройство (программа), содержащее для каждых $q, c_1, \dots c_k$ одну инструкцию вида

$$(q, c_1, \ldots c_k) \mapsto (q', c'_1, \ldots c'_k, d_1, \ldots d_k),$$

где $q,q'\in Q$ — состояния, $c_i,c_i'\in \Sigma$ — символы, обозреваемые головками, $d_i\in \{\to,\leftarrow,\cdot\}$ — направления движения головок.

ДМТ **принимает** входное слово, если заканчивает работу в q_{acc} , и **отвергает**, если заканчивает в q_{rej} .

ДМТ M распознает язык A, если принимает все $x \in A$ и отвергает все $x \notin A$.

$$A = L(M)$$
.

Замечание. Обычно есть отдельная строка только для чтения, куда записаны входные данные, и строка только для вывода, куда нужно поместить ответ. Остальные строки будут рабочими.

Определение 4

Время работы машины M на входе x — количество шагов (применений инструкций) до достижения q_{acc} или q_{rej} .

Используемая память — суммарное крайнее правое положение всех головой на paboux лентах.

Теорема 1.0.1. Для любого $k \in \mathbb{N}$, работу ДМТ M c k рабочими лентами, работающую t шагов, можно промоделировать на ДМТ c двумя рабочими лентами за время $\mathcal{O}(t \log t)$, где константа $O(\ldots)$ зависит только от размеров записи машины M).

• Перестроим исходную МТ:

- Запишем все ленты в одну строку по символу из всех лент по очереди.
- Будем бегать «лентой по головке»: выровняем все ленты, чтобы головки стояли друг над другом и далее будем сдвигать нужную ленту.
- Заметим, что двустороннюю ленту можно смоделировать на односторонней с увеличением количества операций в константу раз: разрезаем двустороннюю пополам и записываем элементы через один.
- Теперь поймем, как экономично сдвигать ленты в однострочной записи.

Разобьем строку на блоки начиная от позиции головки в две стороны: справа блоки R_i , слева L_i . При этом $|L_i| = |R_i| = 2^i$. Раздвинем символы, заполняя пустоту специальными символами пустоты, так, чтобы в каждом блоке ровно половина элементов были пустыми.

Далее будем поддерживать такое условие:

- 1. В блоке либо информация, либо пусто, либо наполовину пусто
- $2.~L_i$ пустой, согда R_i полный
- 3. L_i наполовину пустой, согда R_i наполовину полный
- 4. L_i полный, согда R_i пустой

Рис. 1.1: Построение новой МТ

Пусть нужно подвинуть головку влево. Найдем слева первый не пустой блок L_i . Возьмем из него правую половину и разложим по пустым $L_{< i}$ так, чтобы порядок сохранился и каждый из $L_{< i}$ стал полупустым, а первый символ попал под головку.

Так получится сделать, так как всего перемещаемых символов 2^{i-1} , а в j-й блок будет помещено 2^{j-1} символов, поэтому всего в $L_{< i}$ поместится

$$1 + 2 + 4 + \ldots + 2^{i-2} = 2^{i-1} - 1.$$

И один символ под головку.

Чтобы инвариант сохранился нужно теперь исправить правую часть.

Так как первые i-1 левых блоков были пусты, первые i-1 правых блоков полны, а R_i пуст. Заполним половину в R_i символами из R_{i-1} . Теперь R_{i-1} пустой, а меньшие полные. Проделаем ту же операцию еще раз для i-1, потом для i-2 и так далее.

Кода мы дойдем до R_1 , положим туда элемент из-под головки.

Итого, инвариант сохранился.

Рис. 1.2: Структура блоков

• Посчитаем количество операций. В алгоритме мы переносим различные отрезки из одного места в другое. Чтобы делать это за линию, сначала скопируем нужный участок на вторую ленту, а затем запишем с нее.

Тогда при перераспределении происходит $c \cdot 2^i$ операций: каждый символ переносили константное число раз (на вторую ленту, со второй ленты) плюс линейное перемещение от L_i к R_i несколько раз.

Докажем, что с i-м блоком происходят изменения не чаще 2^{i-1} шагов. Пусть L_i пустой хотя бы наполовину заполнен. Когда мы забрали половину из него, мы заполнили все $L_{\le i}$ и $R_{\le i}$ наполовину.

Поэтому, чтобы изменить L_i еще раз, нужно сначала опустопить все $L_{< i}$. При перераспределении в левой части становится на один элемент меньше, а всего там 2^{i-1} заполненное место. Для того, чтобы все они ушли из левой половины, придется совершить 2^{i-1} сдвигов.

Итого, для t шагов исходной машины будет

$$\sum_{i} c \cdot 2^{i} \cdot \frac{t}{2^{i-1}} = \mathcal{O}(t \log t).$$

Теорема 1.0.2 (Об универсальной МТ). Существует ДМТ U, выдающая на входе (M, x) тот же результат, что дала бы машина M на входе x, за время $\mathcal{O}(t \log t)$, где t — время работы M на входе x.

□ Используем прием из прошлой теоремы 1.0.1.

1.1 Классы сложности

1.1.1 Классы DTIME и Р

Определение 5: Конструируемая по времени функция

Функция $t: \mathbb{N} \to \mathbb{N}$ называется конструируемой по времени, если

- $t(n) \ge n$:
- \bullet двоичную запись t(|x|) можно найти по входу x на ДМТ за t(|x|) шагов.

Определение 6: Kласc DTIME

Язык L принадлежит классу DTIME[t(n)], если существует ДМТ M, принимающая L за время $\mathcal{O}(t(n))$, где t конструируема по времени.

Константа может зависеть от языка, но не от длины входа.

Определение 7: Класс Р

Класс языков, распознаваемых за полиномиальное время на ДМТ —

$$P = \bigcup_{c} \mathsf{DTIME}[n^c].$$

Будем обозначать задачи, заданные отношениями волной.

Определение 8

Массовая задача R полиномиально ограничена, если существует полином p, ограничивающий длину кратчайшего решения:

$$\forall x \ \Big(\exists u : (x, u) \in R \Longrightarrow \exists w : \big((x, w) \in R \land |w| \leqslant p(|x|) \big) \Big).$$

Массовая задача R полиномиально проверяема, если существует полином q, ограничиваю-

щий время проверки решения: для любой пары (x, w) можно проверить принадлежность $(x, w) \in R$ за время q(|(x, w)|).

Определение 9: **К**ласс $\widetilde{\mathsf{NP}}$

 $\widetilde{\mathsf{NP}}$ — класс задач поиска, задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами.

Определение 10: Класс Р

 $\widetilde{\mathsf{P}}-$ класс задач поиска из $\widetilde{\mathsf{NP}},$ разрешимых за полиномиальное время.

То есть класс задач поиска, задаваемых отношениями R, что для всех $x \in \{0,1\}^*$ за полиномиальное время можно найти w, для которого $(x,w) \in R$.

Ключевой вопрос теории сложности $\widetilde{\mathsf{P}} \stackrel{?}{=} \widetilde{\mathsf{NP}}$

Определение 11: Класс NP

NP — класс языков (задач распознавания), задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами:

$$NP = \{ L(R) \mid R \in \widetilde{NP} \}.$$

Замечание. $L \in NP$, если существует массовая п.о.п.п. задача, такая, что

$$\forall x \in \{0,1\}^* : x \in L \iff \exists w : (x,w) \in R.$$

Определение 12: Класс Р

Р— класс языков (задач распознавания), распознаваемых за полиномиальное время.

$$P = \{L(R) \mid R \in P\}.$$

Замечание. Очевидно, Р ⊆ NР.

Ключевой вопрос теории сложности $P \stackrel{?}{=} NP$

Лекция 2: †

12 nov

1.2 Недетерминированная машина Тьюринга

Определение 13: Недетерминированная машина Тьюринга

Недетерминированная машина Тьюринга — машина Тьюринга, допускающая более одной инструкции для данного состояния $q \in Q$ и $c_1, \dots c_k \in \Sigma$, то есть для состояния q и символа c функция δ будет многозначной.

Из такого определения получаем **дерево вычислений** вместо последовательности состояний ЛМТ.

Мы говорим, что ${\rm HMT}^2$ **принимает** вход, если существует путь в дереве вычислений, заканчивающийся принимающим состоянием.

полиномиально ограниченная полиномиально проверяемая

²недетерминированная машина Тьюринга

Утверждение. В машины (ДМТ / НМТ) с заведомо ограниченным временем работы можно встроить будильник и считать время вычислений на входах одной длины всегда одинаковым. Для этого можем просто записать на дополнительную ленту t(n) единиц и стирать по одной за ход.

Определение 14: Эквивалентное определние НМТ

Недетерминированная машина Тьюринга — ДМТ, у которой есть дополнительный аргумент (конечная подсказка w на второй ленте).

□ Докажем эквивалентность. Представим дерево вычисления как бинарное дерево и пронумеруем ребра из каждой вершины 0 и 1. Теперь запишем нужную принимающую ветку на ленту-подсказку. По подсказке можем построить дерево, где будет нужный путь.

Определение 15

Еще одно определение класса NP — класс языков, принимаемых полиномиальными по времени HMT.

1.3 Сведения и сводимости

Определение 16: Сведение по Карпу

Язык L_1 **сводится по Карпу** к языку L_2 , если существует полиномиально вычислимая функция f такая, что

$$\forall x : x \in L_1 \iff f(x) \in L_2.$$

Определение 17: Сведение по Левину

Задача поиска (отношение) R_1 сводится по Левину к задаче R_2 , если существуют функции f,g,h такие, что для всех x_1,y_1,y_2 верно

- $R_1(x_1, y_1) \Longrightarrow R_2(f(x_1), g(x_1, y_1));$
- $R_1(x_1, h(f(x_1), y_2)) \longleftarrow R_2(f(x_1), y_2);$
- f, g, h полиномиально вычислимые.

Замечание. Первое условие нужно для того, чтобы образы каждого входа, имеющего решение первой задачи, имели решение и второй задачи.

Теорема 1.3.1. Классы P, NP, \widetilde{P} , \widetilde{NP} замкнуты относительно этих сведений.

 \square Рассмотрим $R_2 \in \widetilde{\mathsf{P}}$ и $R_1 \to R_2$. Тогда должно выполняться $R_1 \in \widetilde{\mathsf{P}}$. Аналогично для $\widetilde{\mathsf{NP}}$. В обоих случаях R_2 задано п.о.п.п. Если говорим про $\widetilde{\mathsf{P}}$, то еще есть алгоритм, работающий за полиномиально время.

Что можно узнать про R_1 ? Если есть решение для R_1 , то функция g дает решение R_2 , которое не на много длиннее. Еще есть h, которая позволяет построить из решения R_2 обратно построить решение R_1 .

- Пусть есть некоторое решение y_1 для задачи R_1 . Для него можно получить некоторое решение R_2 $g(x_1, y_1)$.
 - Так как R_2 полиномиально ограничено, для него есть полиномиальное решение поменьше. Поэтому, когда оно будет возвращено функцией h, исходное решение y_2 тоже окажется коротким.
- Полиномиальная проверяемость проверяется аналогично.
- Про алгоритм: если есть алгоритм для R_2 и x_1 , сначала перегоняем $x_1 \to f(x_1)$, далее применяем алгоритм, получаем y_2 , а далее, используя h, перегоняем обратно в R_1 .

Определение 18: Оракульная МТ

Оракульная МТ — МТ с доступом к оракулу, который за один шаг дает ответ на некоторый вопрос.

Обозначение.

При переходе в состояние $q_{\rm in}$ происходит «фантастический переход» в состояние $q_{\rm out}$, заменяющий содержимое некоторой ленты на ответ оракула.

 M^{B} — оракульная машина M, которой дали оракул B.

Определение 19: Сведение по Тьюрингу

Язык или задача A сводится по Тьюрингу к B, если существует оракульная машина полиномиальная по времени M^{\bullet} такая, что M^{B} решает A. Например, если A — язык, $A = L(M^{B})$.

Пример 1.3.1. Классы Р и $\tilde{\mathsf{P}}$ замкнуты относительно сведений по Тьюрингу. А NP и $\tilde{\mathsf{NP}}$ могут быть незамкнуты: если $A = \mathsf{UNSAT}, \ B = \mathsf{SAT}, \ M^O(x) = \overline{(x \in O)}, \ \mathsf{u} \ A$ сводится по Тьюрингу к B, но $B \in \mathsf{NP}, \ \mathsf{a}$ про A не известно.

1.3.1 Трудные и полные задачи

Определение 20: Трудный и полные задачи

Задача A называется **трудной** для класса C, если $\forall C \in C: C \to A$. Задача A называется **полной** для класса C, если она трудная и принадлежит C.

Теорема 1.3.2. *Если* $A - \mathsf{NP}$ -*mpyдная* $u \ A \in \mathsf{P}$, *mo* $\mathsf{P} = \mathsf{NP}$.

Следствие 1. Если $A - \mathsf{NP}$ -полная, то

 $A \in P \iff P = NP$.

Задача об ограниченной остановке

Определение 21: ВН

Определим задачу об ограниченной остановке $\widetilde{\mathsf{BH}}(\langle M, x, 1^t \rangle, w)^a$ так: дана НМТ M и вход x, требуется найти такую подсказку w, чтобы M распознавала x не более чем за t шагов. Соответствующая задача распознавания — ответить, существует ли такая подсказка.

Теорема 1.3.3. Задача об ограниченной остановке $\widetilde{\mathsf{NP}}$ -полная, а соответствующий язык NP -полный.

- Принадлежность $\widetilde{\mathsf{NP}}$ и NP следует из существования универсальной ДМТ, которая за $\mathcal{O}(t\log t)$ промоделирует вычисление ДМТ, описание которой дано ей на вход.
- Проверим, что язык NP-трудный. Пусть язык L принадлежит NP, что равносильно существованию для соответствующего отношения R машины Тьюринга $M^*(x,w)$, которая работает за $\mathsf{poly}(|x|)$.

Сведем L к задаче ВН. Рассмотрим тройку $\langle M^*, x, 1^{\mathsf{poly}(|x|)} \rangle$. Пусть функция f(x) будет равна этой тройке.

Если и только если существует подсказка w для тройки f(x) принадлежит BH, а наш язык L и определяется машиной M^* .

aздесь 1^t — служебные t единиц

• Аналогично для задач поиска.

1.3.2 Булевы схемы

Определение 22: Булева схема

Булева схема — ориентированный граф без циклов,в вершинах которого записаны бинарные, унарные или нульарные операции над битами (Λ, \vee, Φ) , при этом есть специальные вершинывходы и вершины-выходы.

Определение 23: CIRCUIT SAT

CIRCUIT SAT =
$$\{(C, w) \mid C - \text{булева схема}, C(w) = 1\}.$$

Очевидно, что CIRCUIT_SAT \in NP. Чтобы доказать NP-трудность, сведем BH \rightarrow CIRCUIT_SAT: будем рисовать конфигурацию MT на схемах.

- Пусть каждый этаж системы конфигурация ДМТ. Всего этажей будет столько же, сколько шагов в МТ, то есть t. Если в последнем этаже q_{acc} , то результат 1.
- Пересчет конфигураций: меняются только гейты рядом с положением головки. Выделим подсхему, которая должна по состоянию и элементу рядом с головкой получить новое состояние, положение головки и поменять элемент, то есть построить новый уровень с измененными элементами.

Для хранения головки будем после каждого символа с ленты хранить d_i равное единице, если головка на символе c_i перед ним.

Если $d_i = 0$, то новый $c'_i = c_i$, иначе нужно заменить c_i на c'_i из программы МТ:

$$(q, c_{i-1}, c_i, c_{i+1}, d_{i-1}, d_i, d_{i+1}) \mapsto (q', c'_i, d'_i).$$

• Так как входная строка x нам дана, запаяем ее в схему. Тогда входом схемы останется подсказка w для НМТ, а выходом — попадание в q_{acc} .

Таким образом, мы по M, x, t построили схему C(w).