

Universidad Carlos III de Madrid Grado en Ingeniería Informática.

Tecnología de Computadores. Enero de 2009

PRIMERA PARTE

Problema 1.1 (2.25 p.)

Dada la siguiente función lógica:

$$f(a,b,c,d) = \sum_{4} (0,4,6,7,8,10,12) + \underline{\Lambda} (2,13)$$

- a) Obtenga la expresión más simplificada posible como producto de sumas
- b) Obtenga la expresión más simplificada posible como suma de productos
- c) Implemente la función lógica utilizando únicamente puertas NOR de dos entradas.
- d) Implemente la función lógica utilizando un decodificador 4:16 con salidas activas a nivel alto.
- e) Implemente la función lógica utilizando un MUX4 y lógica adicional

Nota importante: se valorará el uso del menor número de componentes en las soluciones

<u>Cuestión 1.1</u> (0,75 p.)

- a) Expresar 0_{10} , 1_{10} , 129_{10} y 829_{10} en binario, octal, hexadecimal y BCD natural
- b) Expresar 671₈ en BCD natural
- c) Expresar +165₁₀ y -165₁₀ mediante el convenio de complemento a 2. Utilizar el menor número posible de bits para representar todos ellos.
- d) Realizar las siguientes operaciones en complemento a 2. Utilizar el número de bits necesario para que no haya desbordamiento en ninguna operación.

165-165 165+97 97-165

Universidad Carlos III de Madrid Grado en Ingeniería Informática.

Tecnología de Computadores. Enero de 2009

SEGUNDA PARTE

Nombre:	Grupo:
Apellidos:	5. 7

Cuestión 2.1 (1 p.)

Dado el circuito de la figura, rellenar el cronograma adjunto, utilizando las variables intermedias que sean precisas.

Universidad Carlos III de Madrid Grado en Ingeniería Informática.

Tecnología de Computadores. Enero de 2009

Problema 2.1 (1,5 p.)

El diagrama de estados de la figura representa el comportamiento de un circuito secuencial síncrono, que se quiere implementar mediante biestables D. Se pide:

- a) Determinar razonadamente si el diagrama corresponde a un modelo de Moore o de Mealy.
- b) Determinar el número mínimo de biestables necesario para implementar el circuito correspondiente.
- c) Representar la tabla de asignación de estados.
- d) Determinar las transiciones que no están especificadas en el diagrama.
- e) Representar la tabla de transiciones.
- f) Calcular las ecuaciones de estado y de salida simplificadas.
- g) Dibujar el esquemático de circuito. No olvide conectar las señales de reloj y reset, teniendo en cuenta que el estado inicial es E2.

Cuestión 2.2 (1 punto)

Dibujar el diagrama de estados de un circuito que detecte las secuencias 100111, 100101 y 100100. Considerar que las secuencias son de tamaño fijo de 6 bits, y por tanto, no puede haber solapamiento de secuencias. La salida debe valer '0' durante todo el tiempo y '1' si al llegar el 6º bit la secuencia es una de las seleccionadas.

Universidad Carlos III de Madrid Grado en Ingeniería Informática.

Tecnología de Computadores. Enero de 2009

Nombre:	<u> </u>
Apellidos:	

Cuestión 3.2 (0,5 punto)

Implemente las siguientes funciones lógicas utilizando la PAL de la figura:

$$F1 = \sum_{e} (2,6,8)$$

$$F2 = \sum_{e} (1,3,9,11)$$

$$F3 = \sum_{e} (1,2,3,5,6,8,9,11)$$

Question 1.1

a)
$$0\lambda_0 = 02 = 08 = 016 = 0000 800$$

 $1_{10} = 12 = 18 = 1_{16} = 8001 800$
 $129_{10} = \frac{2}{10000001} = 2018 = 81_{16} = 8001.8010.1001800$

$$129_{10} = 10000001_2 = 201_3 = 81_{16} = 0001.0010.1001800$$
 $829_{10} = 10000001_{2} = 201_{3} = 81_{16} = 0001.0010.1001800$
 $10000001_{2} = 201_{3} = 81_{16} = 0001.0010.1001800$
 $100000001_{2} = 201_{3} = 81_{16} = 0001.0010.1001800$
 $100000001_{2} = 1000111101_{2} = 1475_{8} = 330_{16} = 1000.0010.1001800$

- C) $165 = 128 + 32 + 4 + 4 = 10100101_2$ Para representant 165 y 165 recesitames unbit ma's +165 = 010100101) (abouter et C2 165 = 101011011
- d) Para que no haya desbordamiento, 165+97=262, Se necesitan 9 bits (0-511) más el de signo. 10 bits \Rightarrow -512 a+511 97=69+32+1=01100001

$$+165 = 00.1010.0101$$

 $-165 = 11.0101.1011$
 $+97 = 00.0110.0001$

Sehace por extensión del signo: se repite el bit de signo porla izda. las veces que haga falta.

+165 = 00.1010.0101 -165 = 11.0101.1011 + $\times 00.0000.0000 = 0$ +165 = 00.1010.0101 +97 = 00.0110.0001 01.0000.0110 = 256 + 4 + 2 = 262 +97 = 00.0110.0001 -165 = 11.0101.1011 11.1011.1100 = -512 + 256 + 128 + 32 + +16 + 8 + 4 = -68

Problema 2.1

- a) El diagrama es de Healy ya que los valores de las salidas dependen de cada transición, es decir, dependen de las entradas y no sólo del estado.
- b) 3 estados => 2 biestables

c)	Estado	0,00		
	EØ	00		
	E1	0 1		
	E 2	10		

d) Al estado E0 le falta la transición correspondiente a las entradas AB=11.

				0, 0,	ι
e)	Estado	0,00	AB	વે, વેં	HNO
	EG	00	80	00	001
			0\	00	001
			10	01	O X X
			11	XX	XXX
	EI	01	0 0	0 1	010
			٥ ر	01	010
			(0	00	OXX
			()	10	XXX
	E2	10	00	00	001
-	_		0 (00	× × ×
			(0	10	100
			()	00	×××
	Resto			XX	XXX

Puesto que el estado de inicio es E2, anya codificación es "10", la señal de Reset debe hacer preset a Q, y clear a Qo.