Расчет параметров за скачком уплотнения

Путин Александр

26.05.2021

Аннотация

Рассматривается процесс образования скачка уплотнения с разных физических точек зрения. Рассчитываются параметры за скачком уплотнения для потока, состоящего из молекул азота.

1 Введение

Статья посвящена вопросу расчета параметров потока газа за скачком уплотнения. Возможны течения газа, при которых возникают разрывы непрерывности в распределении параметров потока. На поверхностях разрыва должны выполняться определенные граничные условия:

- Непрерывность потока вещества на поверхности разрыва: количество газа, входящего с одной стороны, должно быть равно количеству газа, выходящего с другой стороны поверхности.
- Непрерывность потока энергии.
- Непрерывность поток импульса, т. е. должны быть равны силы, с которыми действуют друг на друга газы по обеим сторонам поверхности разрыва.

Процесс будем считать адиабатическим, так как возникновение скачка уплотнения происходит быстро.

2 Методы

2.1 Основные уравнения

Основные уравнения, которые будут использоваться:

$$\begin{cases} \rho_1 v_1 = \rho_2 v_2 & - \text{ сохранение массы} \\ p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2 & - \text{ сохранение импульса} \\ a = \sqrt{\frac{\gamma p}{\rho}} & - \text{ скорость звука} \end{cases}$$
 (1)

Считается, что скачок уплотнения прямой, а ударный фронт покоится.

2.2 Первое приближение

Для вычислений используется адаибата Гюгонио:

$$\varepsilon_1 - \varepsilon_2 + \frac{1}{2} \left(\frac{1}{\rho_1} - \frac{1}{\rho_2} \right) (p_1 + p_2) = 0$$
 (2)

которая получена из предположений, что течение газа адиабатическое, но не изоэнтропическое, что в данном случае верно (так как энтропия при скачке уплотнения возрастает). Здесь $\varepsilon=\frac{1}{\gamma-1}\frac{p}{\rho}$

Проведем расчёт, считая, что на выходе за скачком уплотнения мы получаем тот же газ - молекулярный азот ($\gamma_2 = \gamma_1 = 7/5$). Построим таблицу зависимости параметров за скачком от маха и параметров до скачка.

Таблица 1: Зависимость параметров за скачком от М

		1		1 1			
M_0	M_1	$p_0, \cdot 10^5 \Pi \text{a}$	$p_1, \cdot 10^5 \Pi \text{a}$	$ ho_0$, кг/м 3	$ ho_1$, кг/м 3	T_0 , K	T_1 , K
3	0.48	1	10.33	1.12	4.32	300	806
4.5	0.42	1	23.46	1.12	5.39	300	1446
6	0.4	1	41.83	1.12	5.9	300	2389
8.5	0.39	1	84.13	1.12	6.29	300	4509
10	0.39	1	116.5	1.12	6.4	300	6133

Видно, что сверхзвуковой поток становится недозвуковым, что согласуется с теорией. Температура, давление и плотность возрастают.

Зависимость степени диссоциации азота от температуры выглядит примерно следующим образом:

Рис. 1: Зависимость степени диссоциации азота от температуры

Из графика видно, что диссоциация азота начинается при температурах, больших 4500К. Исходя из расчетов, такая температура достигается на махе 8.5. Считая, что разрыв непрерывности в параметрах потока занимает лишь малую часть потока (порядка нескольких длин свободного пробега), то будем предполагать, что процесс диссоциации молекул азота на атомы происходит за скачком уплотнения.

2.3 Учет диссоциации газа

Энергия диссоциации молекулы N_2 на атомы составляет 225 ккал/моль = 942 кДж/моль. Внутренняя энергия газа рассчитывается по формуле:

$$u = \frac{i}{2}\nu RT\tag{3}$$

Так как рассматриваемый газ будет диссоциировать, то будем считать, что он является смесью двух газов - одноатомного и двухатомного. Также известно, что число степеней свободы двухатомного газа зависит от температуры:

Рис. 2: Зависимость C_v от температуры

Так, для азота колебательные степени свободы появляются при температуре $T_k \approx 3340 \, \mathrm{K}$, а при меньших температурах число степеней свободы равно 5. То есть при $T \geq 3340 \, \mathrm{K}$ $\gamma = 9/7, i = 7$. Вращательная степень свободы у азота активируется при $T \sim 100 \, \mathrm{K}$, поэтому в рассматриваемой модели они присутствуют всегда, так как температуры выше $300 \, \mathrm{K}$. Число степеней свободы у одноатомного газа равно 3.

Будем проводить расчёт, считая, что газ диссоциирует за скачком уплотнения при температурах выше 4500K до тех пор, пока степень диссоциации не совпадет с эмперической, учитывая изменение внутренней энергии газа, расходующейся на процесс диссоциации, а следовательно и изменение температуры (температуру будем считать одинаковой у одноатомного и двухатомного газа).

2.4 Процесс диссоциации

Рассмотрим процесс диссоциации газа подробнее.

Пусть у нас изначально есть ν_0 молей азота при температуре T_0 , давлении p_0 в объёме V_0 . ($\nu_0=m_0/\mu,~\rho_0=m_0/V_0$). Пусть диссоциировала α часть газа. Далее штрихами будем обозначать параметры диссоциировавшего газа, а с индексом 1 - параметры недиссоциировавшего газа.

 $m'=m_0\cdot \alpha,\ \nu'=m'/\mu',$ где $\mu'=0.014$ кг/моль. $m_1=m_0(1-\alpha),\ \nu_1=m_1/\mu,$ где $\mu=0.028$ кг/моль.

Давление смеси атомарного и двухатомного газа будет равно сумме давлений: $p_{\sum} = p_1 + p'.$

Рассмотрим 2 модели: адиабатическую и изохорную.

2.4.1 Адиабатическая модель диссоциации

Будем считать, что процесс распада молекул происходит в газе без обмена со внешней средой, то есть он адиабатический:

$$p_{\sum}V^{\gamma} = const \tag{4}$$

где γ - показатель адиабаты в недиссоциировавшем газе. Соответственно общая плотность потока будет вычисляться как $\rho_{\sum} = (m_1 + m')/V_1$. Начальный объем возьмем равным 1 м³. Итоговый объём после несложных преобразований вычисляется по следующей формуле:

$$V_1 = \left(\frac{pV^{\gamma}}{\nu + \nu'} \frac{1}{RT}\right)^{\frac{1}{\gamma_2 - 1}} \tag{5}$$

где $\gamma_2 = \alpha \gamma_1 + (1 - \alpha) \gamma$.

И из формулы для сохранения массы получим $v_2 = \frac{\rho_1 v_1}{\rho_{\Sigma}}$.

2.4.2 Изохорная модель диссоциации

Будем считать, что процес диссоциации изохорный - поток не расширяется. Тогда $V_0 = V_1$.

Откуда можно вычислить: $p_2=(\nu_1+\nu')RT/V_1,$ $\rho_{\sum}=(\nu\cdot 0.028+\nu'\cdot 0.014)/V_0,$ зная которые получим $v_2=\frac{\rho_1v_1}{\rho_{\sum}}$

3 Результаты расчётов

Проведем расчёты для махов, на которых будет наблюдаться процесс диссоциации. Сведем полученные данные в таблицу (α - степень диссоциации газа):

Адиабатическая модель

Таблица 2: Зависимость параметров за скачком от М при диссоциации

M_0	M_1	$p_0, \cdot 10^5 \Pi \text{a}$	$p_1, \cdot 10^5 \Pi \text{a}$	$ ho_0$, кг/м 3	$ ho_1$, кг/м 3	T_0 , K	T_1 , K	$\alpha, \%$
9	0.23	1	92.5	1.12	6.23	300	5112	0.15
10	0.34	1	65.7	1.12	4.06	300	5382	5
11	0.54	1	41.3	1.12	2.45	300	5505	12
12	0.7	1	31	1.12	1.71	300	5750	18.5
15	1.4	1	17.7	1.12	17.7	300	6512	39
20	2.9	1	9.89	1.12	0.33	300	7256	73.6

Построим графики зависимости параметров от числа маха:

Рис. 3: Зависимость параметров от числа маха

При диссоциации, считая этот процесс адиабатическим, получаем расширение потока и как следствие падение плотности и особенно давления.

Изохорная модель Если же будем считать процесс изохорным, то получим следующие зависимости:

Taovinga o. Sabirenmoerb napamerpob sa ena mom er ivi npir gnecegnagi	Таб	лица 3:	Зависимость	параметров	за скачком	от М	I при диссоциации
---	-----	---------	-------------	------------	------------	------	-------------------

M_0	M_1	$p_0, \cdot 10^5 \Pi \text{a}$	$p_1, \cdot 10^5 \Pi \text{a}$	$ ho_0$, кг/м 3	$ ho_1$, кг $/{ m M}^3$	T_0 , K	T_1 , K	$\alpha, \%$
9	0.23	1	93.9	1.12	6.33	300	5112	0.15
10	0.22	1	102.7	1.12	6.32	300	5382	5
11	0.21	1	105.3	1.12	6.25	300	5505	12
12	0.2	1	110	1.12	6.16	300	5750	18.5
15	0.2	1	126	1.12	5.78	300	6512	39
20	0.2	1	142.8	1.12	4.71	300	7256	73.6

Построим графики зависимости параметров от числа маха:

Рис. 4: Зависимость параметров от числа маха

Сравнение изменения температур для модели, не учитывающей диссоциацию газа и учитывающей:

Рис. 5: Сравнение двух моделей

Из графиков видно, что учет диссоциации начинает влиять примерно на махе 9, и после этого две модели сильно расходятся в описании параметров за скачком.

4 Заключение

На основании полученных данных, можно сделать вывод о том, что изохорная модель диссоциации газа в потоке ближе к реальности, чем адиабатическая, так как в первом случае поток после скачка уплотнения становится недозвуковым, в отличие от второго подхода, где число маха за скачком уплотнения получилось равным 2.9 на выходе (для маха 20 входного потока) и 1.4 (для маха 15 входного потока), что не соотносится с реальностью.

Также при использовании данных моделей получаем меньшее изменение температуры, чем при расчете, не учитывающим распад молекул на атомы, что ближе к реальности.

Таким образом, можно считать, что данная модель достаточно неплохо соотносится с реальностью и позволяет лучше приближать процессы, происходящие за скачком уплотнения, чем "обыкновенная модель".

Ссылка на git-репозиторий с используемым кодом: https://github.com/alex2211-put/compaction_surge

Список литературы

- [1] Ландау, Л. Д., Лифшиц, Е. М. Гидродинамика. М.: Физматлиб, 2006. 732 с. («Теоретическая физика», том VI).
- [2] Кириченко, Н. А. Термодинамика, статистическая и молекулярная физика М.:Физматкнига, 2005. 176 с. С.96-99.
- [3] Крайко А. Н. Краткий курс теоретической газовой динамики. М.: МФТИ, 2007. 300 с.
- [4] Ловля С. А. и др. Закон сохранения энергии. Взрывное дело. Изд. 2-е. Москва: Недра, 1976.