Surveys with Julia

Introduction to Survey.jl

Shikhar Mishra

March 22, 2023

What is complex survey analysis?

- Surveys are an empirical tool for social and behavioural analysis
- Goal: obtaining estimates for a large population by surveying a well selected subset
- In contrast to a census
- Techniques available for increasing precision and representation of the survey
 - Several types of survey "designs" and sampling methods

Some survey terminology

Weighting How many people does each respondent represent?

Strata Subgroups of the population known a priori eg. states, districts, gender. Strata info used to improve representation

Clusters Logistical constraints on survey sampling, can only visit n states, districts and suburbs

Why does a "survey analysis" package do?

- Computing summary statistics from a survey requires applying mathematical corrections and adjustments
 - eg. population mean is not as simple as arithmetic mean of a numeric vector
- Point estimation (relatively) easy
- Variance estimation is complex
- A "survey" package:
 - exposes an intuitive API to user
 - automatically applies formulae and corrections in background
- ► Eg. in Survey.jl for population mean (with SE) of a variable you can do mean(:variable,data)

Our engineering journey

- Users of R survey package
 - Benchmark for open-source complex survey analysis
 - CMIE CPHS, Prowess, NFHS etc.
- R 'survey' designed in early 2000's for MB's of data
 - slow for "large" modern datasets and many class of simulation problems
 - eg. variance estimation using bootstrapping
 - Computation times upto few hours for simple summary statistics
- Real-world performance a key factor in development of Survey.jl

Why Julia for complex survey analysis

- Performance **Expressivity** of R/Python meets **speed** of a systems language
- Development Avoid "two-language problem". Survey researchers just want something that works great out of the box. Easy maintenance.
 - Community Several unmaterialised attempts to create survey analysis package. We received feedback and even contributing PRs.
 - Ecosystem Julia has substantial statistical computing abilities, with state of the art DataFrames, Makie, Optim, Turing, Flux, LinearAlgebra packages.

 Survey is complement to and complemented by the entire data ecosystem.

Survey.jl

An efficient computing framework for survey analysis

- Summary statistics mean, total, ratio, and quantile
- Subpopulations / domain estimation for subsets of sample
- Variance estimation using (Rao-Wu) bootstrap
 - ▶ 1000 MC simulations for variance in Julia takes similar computation time as 50 simulations in R.
- Modularity Can write custom replicate weighting algorithm
- ▶ Visualisations support for weighted scatter plots, histograms
- ► Tested and compared against R survey

Survey.jl

Getting started with Survey.jl GitHub and Documentation

Demo workflow

Import and load data

Survey: CMIE Consumer Pyramids Household Survey - Multistage stratified high frequency survey of Indian households

```
1 # Imports and housekeeping
2 . . .
3 # Connect to SQL server
4 conn = DBInterface.connect(MySQL.Connection, host, user,
  → password; db = "hhd")
5 query = "SELECT RESPONSE_STATUS, STATE, HR, DISTRICT,

→ STRATUM, PSU_ID, REGION_TYPE, FAMILY_SHIFTED, HH_ID,
     MONTH SLOT, MONTH, TOTAL INCOME, HH WEIGHT MS,
     HH NON RESPONSE MS FROM hh income monthly WHERE MONTH

→ = 'Apr 2022' AND RESPONSE STATUS = 'Accepted'"

6 # Pipe query output into DataFrame
7 df = DBInterface.execute(conn, query) | DataFrame
```

Demo workflow

Create SurveyDesign

```
# Load df into survey design object
julia> CPHS_income = SurveyDesign(df, clusters = :HH_ID,

    strata = :STRATUM, weights = :HH_WEIGHT_MS)

SurveyDesign:
data: 123816×17 DataFrame
strata: STRATUM
    [HR 1 URBAN S, HR 1 URBAN S, ... HR 110 RURAL R]
cluster: HH ID
    [5.3877505e7, 4.3406519e7 ... 6.742216e7]
popsize: [8.81791619977e7 ... 1.034108342135e8]
sampsize: [123816, 123816, 123816 ... 123816]
weights: [712.1791, 712.1791, 712.1791 ... 835.1977]
allprobs: [0.0014, 0.0014, 0.0014 ... 0.0012]
```

Demo workflow

Create ReplicateDesign

```
# Create replicate design using Rao-Wu bootstrap weights
julia > CPHS income bootstrap = bootweights(CPHS income,
→ replicates = 500)
ReplicateDesign:
data: 123816×517 DataFrame
strata: STRATUM
    [HR 1 URBAN S, HR 1 URBAN S ... HR 102 URBAN M]
cluster: HH ID
    [1.0034716e7, 1.0190136e7 ... 9.9842237e7]
popsize: [8.81791619977e7 ... 2.92096840303e7]
sampsize: [123816, 123816, 123816 ... 123816]
weights: [712.1791, 712.1791, 712.1791 ... 235.912]
allprobs: [0.0014, 0.0014, 0.0014 ... 0.0042]
replicates: 500
```

Demo workflow with CPHS

Calculate summary statistics

```
# Mean income (overall India)
julia> mean(:TOTAL_INCOME, CPHS_income_bootstrap)
1x2 DataFrame
R.ow
               SE
      mean
      Float64 Float64
      23870.2 81.8377
# Total income by homogenous regions (Subpopulation estimation)
julia> total(:TOTAL INCOME, :HR, CPHS income bootstrap)
102×3 DataFrame
R.ow
      HR.
               total
                           SE
      String Float64 Float64
      HR. 1
               3.95686e10 6.88132e8
      HR. 2
               6.72443e9
                           1.96195e8
      HR. 3
               1.93887e10 6.04332e8
 101
      HR. 95
              1.4761e10 4.65155e8
 102
      HR. 97
               1.83399e10 3.58032e8
                      93 rows omitted
```

Plans

Efficient implementations of all the methods in R 'survey'. Features for future releases will include:

- Proportion and count estimation
- Variance by Taylor linearization for 'SurveyDesign'
- More replicate weighting algorithms (BRR, Jackknife, other types of bootstrap) for 'ReplicateDesign'
- Post-stratification, raking, calibration, GREG estimation
- ► Frequency/contingency table analysis, association tests
- Missing data handling (like R mitools)
- Integration with survival analysis tools
- Integration with GLM.jl
- Out-of-memory integration with SQL databases

Credits

We gratefully acknowledge the JuliaLab at MIT for financial support for this project.

Contributors:

- Ayush Patnaik, XKDR and U Sydney
- Shikhar Mishra XKDR and ANU
- ▶ Iulia Dmitru, GSoc and XKDR, U Bucharest, Romania
- Siddhant Chaudhary, Chennai Maths Institute (CMI)
- Sayantika Sengupta, CMI
- Nadia Enhaili, UBC Vancouver
- ► Fabian Greimel Asso Prof of Economics, U Amsterdam

References

- ► Model Assisted Survey Sampling (1992)
- ► Sampling: Design and Analysis, Sharon Lohr, (2010)
- JNK Variance Estimation Literature Review
- R survey package documentation
- Julia Discourse posts here and here
- Unmaterialised attempts samplics/survey.jl and jamanrique/SurveyAnalysis.jl

