Political Methodology III: Model Based Inference

Justin Grimmer

Associate Professor Department of Political Science Stanford University

May 8th, 2017

Model Based Inference

- 1) Likelihood inference
- 2) Logit/Probit
- 3) Ordered Probit
- 4) Choice Models:
- 5) Count Models
- 6) Survival Models
- 7) Hypothesis Tests + Model Checking in Likelihood
 - Likelihood Ratios, Wald, and Score tests
 - Model Checking: analysis of residuals, hat values, etc.

Simple Example: Antiobama Speech

We'll use the speech data from the problem set, as follows:

- $Y_i=1$ if representative says obamacare or big government during the year, 0 otherwise
- $\boldsymbol{X}_i = (1, I(\mathsf{Year} = 2010)_i, \mathsf{Democrat}_i, \mathsf{DW}\text{-}\mathsf{Nom}_i)$

$$Y_i \sim \operatorname{Bernoulli}(\pi_i)$$
 $\pi_i = \operatorname{logit}^{-1}(\boldsymbol{X}_i'\boldsymbol{\beta}) = \frac{1}{1 + \exp(-\boldsymbol{X}_i'\boldsymbol{\beta})}$

Which covariates do we include? \leadsto depends on goal.

- Predictive goal \rightsquigarrow replicate task
- Model fitting → do covariates increase likelihood? Can we drop them?

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- Let $\widehat{m{\beta}}_R=\widehat{m{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{m{\beta}}_{UR}=\widehat{m{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- Let $\widehat{\beta}_R = \widehat{\beta}_{MLE|H_0}$ (restricted MLE) and $\widehat{\beta}_{UR} = \widehat{\beta}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\pmb{\beta}}_R=\widehat{\pmb{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\pmb{\beta}}_{UR}=\widehat{\pmb{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\boldsymbol{\beta}}_R=\widehat{\boldsymbol{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\boldsymbol{\beta}}_{UR}=\widehat{\boldsymbol{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\boldsymbol{\beta}}_R=\widehat{\boldsymbol{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\boldsymbol{\beta}}_{UR}=\widehat{\boldsymbol{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\boldsymbol{\beta}}_R=\widehat{\boldsymbol{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\boldsymbol{\beta}}_{UR}=\widehat{\boldsymbol{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

- Null (H_0) : $h_1(\beta) = \cdots = h_Q(\beta) = 0$ (Q equality constraints)
- Alternative (H_1) : No such constraints
- \blacksquare Let $\widehat{\boldsymbol{\beta}}_R=\widehat{\boldsymbol{\beta}}_{MLE|H_0}$ (restricted MLE) and $\widehat{\boldsymbol{\beta}}_{UR}=\widehat{\boldsymbol{\beta}}_{MLE}$ (original MLE)
- Likelihood ratio (LR) test: If H_0 is true, $L(\widehat{\boldsymbol{\beta}}_R)$ should be equal to $L(\widehat{\boldsymbol{\beta}}_{UR})$ except for sampling variability
- LR statistic:

$$LR(Y) \equiv -2\log\frac{L(\widehat{\boldsymbol{\beta}}_R)}{L(\widehat{\boldsymbol{\beta}}_{UR})} = 2\left[\ell(\widehat{\boldsymbol{\beta}}_{UR}) - \ell(\widehat{\boldsymbol{\beta}}_R)\right]$$

- \blacksquare We can show that $LR(Y) \stackrel{d}{\longrightarrow} \chi^2_Q$
- Works for testing any nested models
 - model under H_0 has to be a special case of model under H_1

```
un_rest_reg<- glm(once~two_10 + dem + dw_nom,
   data = speech_dat, family = binomial(link = logit))
rest_reg<- glm(once~1, family= binomial(link = logit))
##calculating the likelihood ratio
log_lik<- function(pars, X, Y){</pre>
   y.tilde<- X%*%pars
   probs<- plogis(y.tilde)</pre>
   \log_{\text{out}} - Y\%*\%\log(\text{probs}) + (1-Y)\%*\%\log(1 - \text{probs})
   return(log_out)
}
X<- cbind(1, two_10, dem, speech_dat$dw_nom)</pre>
un_rest<- log_lik(un_rest_reg$coef, X, once)
rest<- log_lik(rest_reg$coef, as.matrix(rep(1, nrow(X))), once)
> 2 * in rest - 2*rest
   [.1]
[1.] 433.996
                                               ←□ → ←□ → ← □ → □ ● ● へ○
```

```
> 2 * un_rest - 2*rest
    [,1]
[1,] 433.996
##get the same statistic automatically from glm
diff<- un_rest_reg$null.deviance - un_rest_reg$deviance
> diff
[1] 433.996

1 - pchisq(diff, 3) ##very small!
[1] 0
```

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β . Call $h(\beta) = (h_1(\beta), \dots, h_Q(\beta))$
- lacktriangle Wald statistic: Use asymptotic distribution of \widehat{eta} and representation of restrictions, properties of normal distribution to obtain form

$$W \equiv h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\operatorname{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq {\sf Var}(h(\widehat{oldsymbol{eta}}_{UR}))$ (Delta method)
- lacktriangle Choose any ${\sf Var}(\widehat{oldsymbol{eta}}_{UR})$ as appropriate (e.g. Huber-White)
- \blacksquare We can show that $W \stackrel{d}{\longrightarrow} \chi_Q^2$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z = W^{1/2} = \frac{\widehat{\beta}_{UR}}{\text{s.e.}(\widehat{\beta}_{UR})} \xrightarrow{d} \text{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β . Call $h(\beta) = (h_1(\beta), \dots, h_Q(\beta))$
- lacktriangle Wald statistic: Use asymptotic distribution of \widehat{eta} and representation of restrictions, properties of normal distribution to obtain form

$$W \, \equiv \, h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathrm{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq {\sf Var}(h(\widehat{oldsymbol{eta}}_{UR}))$ (Delta method)
- lacktriangle Choose any ${\sf Var}(oldsymbol{eta}_{UR})$ as appropriate (e.g. Huber-White)
- \blacksquare We can show that $W \stackrel{d}{\longrightarrow} \chi_Q^2$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z = W^{1/2} = \frac{\widehat{\beta}_{UR}}{\mathrm{s.e.}(\widehat{\beta}_{UR})} \xrightarrow{d} \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β . Call $h(\beta) = (h_1(\beta), \dots, h_Q(\beta))$
- Wald statistic: Use asymptotic distribution of $\widehat{\beta}$ and representation of restrictions, properties of normal distribution to obtain form

$$W \, \equiv \, h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathrm{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq {\sf Var}(h(\widehat{oldsymbol{eta}}_{UR}))$ (Delta method)
- lacktriangle Choose any ${\sf Var}(oldsymbol{eta}_{UR})$ as appropriate (e.g. Huber-White)
- \blacksquare We can show that $W \stackrel{d}{\longrightarrow} \chi_Q^2$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z = W^{1/2} = \frac{\widehat{\beta}_{UR}}{\mathrm{s.e.}(\widehat{\beta}_{UR})} \stackrel{d}{\longrightarrow} \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β . Call $h(\beta) = (h_1(\beta), \dots, h_Q(\beta))$
- lacktriangle Wald statistic: Use asymptotic distribution of \widehat{eta} and representation of restrictions, properties of normal distribution to obtain form

$$W \, \equiv \, h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathrm{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq {\sf Var}(h(\widehat{oldsymbol{eta}}_{UR}))$ (Delta method)
- Choose any $Var(\widehat{\beta}_{UR})$ as appropriate (e.g. Huber-White)
- $\blacksquare \ \ \text{We can show that} \ W \stackrel{d}{\longrightarrow} \chi_Q^2$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z = W^{1/2} = \frac{\widehat{\beta}_{UR}}{\mathrm{s.e.}(\widehat{\beta}_{UR})} \stackrel{d}{\longrightarrow} \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β . Call $h(\beta) = (h_1(\beta), \dots, h_Q(\beta))$
- Wald statistic: Use asymptotic distribution of $\widehat{\beta}$ and representation of restrictions, properties of normal distribution to obtain form

$$W \, \equiv \, h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathrm{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq {\sf Var}(h(\widehat{oldsymbol{eta}}_{UR}))$ (Delta method)
- Choose any $Var(\widehat{\beta}_{UR})$ as appropriate (e.g. Huber-White)
- \blacksquare We can show that $W \stackrel{d}{\longrightarrow} \chi_Q^2$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z = W^{1/2} = \frac{\widehat{\beta}_{UR}}{\mathrm{s.e.}(\widehat{\beta}_{UR})} \stackrel{d}{\longrightarrow} \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β . Call $h(\beta) = (h_1(\beta), \dots, h_Q(\beta))$
- Wald statistic: Use asymptotic distribution of $\widehat{\beta}$ and representation of restrictions, properties of normal distribution to obtain form

$$W \; \equiv \; h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\mathrm{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- lacksquare The "meat" $\simeq {\sf Var}(h(\widehat{oldsymbol{eta}}_{UR}))$ (Delta method)
- lacktriangle Choose any $\mathsf{Var}(\widehat{oldsymbol{eta}}_{UR})$ as appropriate (e.g. Huber-White)
- lacksquare We can show that $W \stackrel{d}{\longrightarrow} \chi^2_Q$
- An important special case: Q = 1 and $H_0: \beta = 0$
- \blacksquare In this case, we can use the z statistic:

$$z = W^{1/2} = \frac{\widehat{\beta}_{UR}}{\mathrm{s.e.}(\widehat{\beta}_{UR})} \stackrel{d}{\longrightarrow} \mathrm{N}(0,1)$$

- Wald test: If true, the null $h_1(\beta) = \cdots = h_Q(\beta) = 0$ should approximately hold even if we substitute $\widehat{\beta}_{UR}$ for β . Call $h(\beta) = (h_1(\beta), \dots, h_Q(\beta))$
- \blacksquare Wald statistic: Use asymptotic distribution of $\widehat{\boldsymbol{\beta}}$ and representation of restrictions, properties of normal distribution to obtain form

$$W \equiv h(\widehat{\boldsymbol{\beta}}_{UR})^{'} \left[\left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right)^{'} \widehat{\operatorname{Var}(\widehat{\boldsymbol{\beta}}_{UR})} \left(\frac{\partial h(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{UR}} \right) \right]^{-1} h(\widehat{\boldsymbol{\beta}}_{UR})$$

- \blacksquare The "meat" $\simeq \operatorname{Var}(h(\widehat{eta}_{UR}))$ (Delta method)
- lacksquare Choose any $\mathsf{Var}(\widehat{oldsymbol{eta}}_{UR})$ as appropriate (e.g. Huber-White)
- \blacksquare We can show that $W \stackrel{d}{\longrightarrow} \chi_Q^2$
- An important special case: Q = 1 and $H_0: \beta = 0$
- In this case, we can use the z statistic:

$$z \; = \; W^{1/2} \; = \; \frac{\widehat{\boldsymbol{\beta}}_{UR}}{\mathsf{s.e.}(\widehat{\boldsymbol{\beta}}_{UR})} \; \stackrel{d}{\longrightarrow} \; \mathsf{N}(0,1)$$

```
> un_rest_reg$coef%*%solve(vcov(un_rest_reg))%*%un_rest_reg$coef
[,1]
[1,] 225.2437
> 1 - pchisq(225.2437, 3)
[1] 0
```

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- Score test: If the null is true, $s(\widehat{\boldsymbol{\beta}}_R)$ should also equal zero except for sampling variability
- \blacksquare Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\pmb{\beta}}_R)$

$$LM = s(\widehat{\boldsymbol{\beta}}_R)' \widehat{\operatorname{Var}(\widehat{\boldsymbol{\beta}}_R)} s(\widehat{\boldsymbol{\beta}}_R) \stackrel{d}{\longrightarrow} \chi_Q^2$$

- lacksquare For $\widehat{oldsymbol{eta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- Score test: If the null is true, $s(\widehat{\boldsymbol{\beta}}_R)$ should also equal zero except for sampling variability
- Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\boldsymbol{\beta}}_R)$

$$LM = s(\widehat{\boldsymbol{\beta}}_R)' \widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_R)} s(\widehat{\boldsymbol{\beta}}_R) \stackrel{d}{\longrightarrow} \chi_Q^2$$

- \blacksquare For $\widehat{\boldsymbol{\beta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- Score test: If the null is true, $s(\widehat{\boldsymbol{\beta}}_R)$ should also equal zero except for sampling variability
- Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\beta}_R)$

$$LM \ = \ s(\widehat{\boldsymbol{\beta}}_R)^{'}\widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_R)}s(\widehat{\boldsymbol{\beta}}_R) \ \stackrel{d}{\longrightarrow} \ \chi_Q^2$$

- lacksquare For $\widehat{oldsymbol{eta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- \blacksquare Score test: If the null is true, $s(\widehat{\pmb{\beta}}_R)$ should also equal zero except for sampling variability
- \blacksquare Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\pmb{\beta}}_R)$

$$LM \ = \ s(\widehat{\boldsymbol{\beta}}_R)^{'}\widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_R)}s(\widehat{\boldsymbol{\beta}}_R) \ \stackrel{d}{\longrightarrow} \ \chi_Q^2$$

- lacksquare For $\widehat{oldsymbol{eta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

- At the unrestricted MLE $\hat{\theta}_{UR}$, $\sum_{i=1}^{N} s_i(\widehat{\beta}_{UR}) = s(\widehat{\beta}) = 0$ by construction
- \blacksquare Score test: If the null is true, $s(\widehat{\pmb{\beta}}_R)$ should also equal zero except for sampling variability
- Score statistic: Use asymptotic distribution and properties of normal distribution to "standardize" $s(\widehat{\boldsymbol{\beta}}_R)$

$$LM \ = \ s(\widehat{\boldsymbol{\beta}}_R)^{'}\widehat{\mathsf{Var}(\widehat{\boldsymbol{\beta}}_R)}s(\widehat{\boldsymbol{\beta}}_R) \ \stackrel{d}{\longrightarrow} \ \chi_Q^2$$

- lacksquare For $\widehat{oldsymbol{eta}}_{QMLE}$, the expression is more complicated
- Also known as the Lagrange multiplier (LM) test due to an alternative derivation

```
score_func<- function(coef, X, Y){</pre>
   y.tilde<- X%*%coef
   probs<- plogis(y.tilde)</pre>
   out<- t(Y - probs)%*%X
   return(out) }
> round(score_func(un_rest_reg$coef, X, once), 2)
[1,] 0 0 0 0
rest_score<- score_func(c(rest_reg$coef, 0, 0, 0), X, once)
> round(rest_score,2)
[1.] 0 -6.30 -128.92 129.51
```

```
hess_func<- function(coef, X, Y){
   v.tilde<- X%*%coef
   probs<- plogis(y.tilde)</pre>
   base<- matrix(0, nrow = len(coef), ncol = len(coef))</pre>
   for(z in 1:nrow(X)){
    base<- base + probs[z]*(1 - probs[z])* X[z,]%*\%t(X[z,])
   return(base)
rest_hess<- solve(hess_func(c(rest_reg$coef, 0, 0, 0), X, once))
>rest_score%*%rest_hess%*%t(rest_score)
[1,] 395.0382
> 1- pchisq(395, 3)
[1] 0
```


- All asymptotically equivalent
- But can be quite different in small samples

	Pros	Cons
LR	Most powerful (Neyman-Pearson)	Must compute both $\hat{ heta}_{UR}$ and $\hat{ heta}_{R}$ Cannot be easily robustified
W	Only need $\hat{ heta}_{UR}$ Easily robustified by sandwich	Not invariant to transformation (e.g. $\theta_1/\theta_2=1$ vs. $\theta_1=\theta_2$)
LM	Only need $\hat{ heta}_R$	$\hat{ heta}_R$ often difficult to estimate

- All asymptotically equivalent
- But can be quite different in small samples

	Pros	Cons
LR	Most powerful (Neyman-Pearson)	Must compute both $\hat{ heta}_{UR}$ and $\hat{ heta}_{R}$ Cannot be easily robustified
VV	Only need $\hat{ heta}_{UR}$ Easily robustified by sandwich	Not invariant to transformation (e.g. $\theta_1/\theta_2=1$ vs. $\theta_1=\theta_2$)
LM	Only need $\hat{ heta}_R$	$\hat{ heta}_R$ often difficult to estimate

- All asymptotically equivalent
- But can be quite different in small samples

	Pros	Cons
LR	Most powerful (Neyman-Pearson)	Must compute both $\hat{ heta}_{UR}$ and $\hat{ heta}_{R}$
		Cannot be easily robustified
W	Only need $\hat{ heta}_{UR}$	Not invariant to transformation
	Easily robustified by sandwich	(e.g. $ heta_1/ heta_2=1$ vs. $ heta_1= heta_2$)
LM	Only need $\hat{ heta}_R$	$\hat{ heta}_R$ often difficult to estimate

- All asymptotically equivalent
- But can be quite different in small samples

	Pros	Cons
LR	Most powerful (Neyman-Pearson)	Must compute both $\hat{ heta}_{UR}$ and $\hat{ heta}_{R}$
		Cannot be easily robustified
W	Only need $\hat{ heta}_{UR}$	Not invariant to transformation
	Easily robustified by sandwich	(e.g. $ heta_1/ heta_2=1$ vs. $ heta_1= heta_2$)
LM	Only need $\hat{ heta}_R$	$\hat{ heta}_R$ often difficult to estimate

- Many of the models we have learned so far all assume that Y_i is a (stochastic) function of the linear predictor, $X_i^\top \beta$
- They also share many characteristics, e.g. the form of the score and Hessian functions
- In fact, many are special cases of the generalized linear model (GLM)
- Here, we provide a general treatment of GLMs to study those models more systematically
- 3 components of a GLM
 - 1 Systematic component: $X_i^{\top} \beta$
 - \blacksquare Must be a linear function of X_i
 - 2 Random component: $f(Y; \theta, \phi)$
 - Must be in the exponential family
 - lacksquare θ is called the canonical parameter
 - lacktriangledown ϕ : is called the dispersion parameter
 - Ill Link function: $g(\mu_i) = X_i^{\top} \beta$ where $\mu_i = \mathsf{E}(Y_i \mid X_i)$
 - Must be monotonic and differentiable wrt μ_i

- Many of the models we have learned so far all assume that Y_i is a (stochastic) function of the linear predictor, $X_i^\top \beta$
- They also share many characteristics, e.g. the form of the score and Hessian functions
- In fact, many are special cases of the generalized linear model (GLM)
- Here, we provide a general treatment of GLMs to study those models more systematically
- 3 components of a GLM
 - 1 Systematic component: $X_i^{\top} \beta$
 - \blacksquare Must be a linear function of X_i
 - 2 Random component: $f(Y; \theta, \phi)$
 - Must be in the exponential family
 - lacksquare θ is called the canonical parameter
 - lacktriangledown ϕ : is called the dispersion parameter
 - Ill Link function: $g(\mu_i) = X_i^{\top} \beta$ where $\mu_i = \mathsf{E}(Y_i \mid X_i)$
 - Must be monotonic and differentiable wrt μ_i

- Many of the models we have learned so far all assume that Y_i is a (stochastic) function of the linear predictor, $X_i^\top \beta$
- They also share many characteristics, e.g. the form of the score and Hessian functions
- In fact, many are special cases of the generalized linear model (GLM)
- Here, we provide a general treatment of GLMs to study those models more systematically
- 3 components of a GLM
 - I Systematic component: $X_i^{\top} \beta$
 - \blacksquare Must be a linear function of X_i
 - 2 Random component: $f(Y; \theta, \phi)$
 - Must be in the exponential family
 - lacksquare θ is called the canonical parameter
 - lacktriangledown ϕ : is called the dispersion parameter
 - Illustration: $g(\mu_i) = X_i^{\top} \beta$ where $\mu_i = \mathsf{E}(Y_i \mid X_i)$
 - Must be monotonic and differentiable wrt μ_i

- Many of the models we have learned so far all assume that Y_i is a (stochastic) function of the linear predictor, $X_i^\top \beta$
- They also share many characteristics, e.g. the form of the score and Hessian functions
- In fact, many are special cases of the generalized linear model (GLM)
- Here, we provide a general treatment of GLMs to study those models more systematically
- 3 components of a GLM
 - 1 Systematic component: $X_i^{\top} \beta$
 - \blacksquare Must be a linear function of X_i
 - **2** Random component: $f(Y; \theta, \phi)$
 - Must be in the exponential family
 - lacksquare θ is called the canonical parameter
 - lacktriangledown ϕ : is called the dispersion parameter
 - Illustration: $g(\mu_i) = X_i^{\top} \beta$ where $\mu_i = \mathsf{E}(Y_i \mid X_i)$
 - Must be monotonic and differentiable wrt μ_i

- Many of the models we have learned so far all assume that Y_i is a (stochastic) function of the linear predictor, $X_i^\top \beta$
- They also share many characteristics, e.g. the form of the score and Hessian functions
- In fact, many are special cases of the generalized linear model (GLM)
- Here, we provide a general treatment of GLMs to study those models more systematically
- 3 components of a GLM
 - I Systematic component: $X_i^{\top} \beta$
 - lacksquare Must be a linear function of X_i
 - **2** Random component: $f(Y; \theta, \phi)$
 - Must be in the exponential family
 - \blacksquare θ is called the canonical parameter
 - lacktriangledown ϕ : is called the dispersion parameter
 - 3 Link function: $g(\mu_i) = X_i^{\top} \beta$ where $\mu_i = \mathsf{E}(Y_i \mid X_i)$
 - Must be monotonic and differentiable wrt μ_i

Generalized Linear Models

- Many of the models we have learned so far all assume that Y_i is a (stochastic) function of the linear predictor, $X_i^\top \beta$
- They also share many characteristics, e.g. the form of the score and Hessian functions
- In fact, many are special cases of the generalized linear model (GLM)
- Here, we provide a general treatment of GLMs to study those models more systematically
- 3 components of a GLM
 - **1** Systematic component: $X_i^{\top} \beta$
 - lacksquare Must be a linear function of X_i
 - **2** Random component: $f(Y; \theta, \phi)$
 - Must be in the exponential family
 - \blacksquare θ is called the canonical parameter
 - lacktriangledown ϕ : is called the dispersion parameter
 - **3** Link function: $g(\mu_i) = X_i^{\top} \beta$ where $\mu_i = \mathsf{E}(Y_i \mid X_i)$
 - \blacksquare Must be monotonic and differentiable wrt μ_i

Any distribution in the exponential family has the density of the following form:

$$f(y|\theta,\phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

$$\Pr(Y_i = y \mid \lambda) = \frac{\exp(-\lambda)\lambda^y}{y!} = \exp\{y\log\lambda - \exp(\log\lambda) - \log y!\}$$

$$\implies \theta = \log \lambda, \ \phi = 1, \ a(\phi) = \phi, b(\theta) = \exp(\theta), \ \text{and} \ c = -\log y!$$

Any distribution in the exponential family has the density of the following form:

$$f(y|\theta,\phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

$$\Pr(Y_i = y \mid \lambda) = \frac{\exp(-\lambda)\lambda^y}{y!} = \exp\{y\log\lambda - \exp(\log\lambda) - \log y!\}$$

$$\implies \theta = \log \lambda, \ \phi = 1, \ a(\phi) = \phi, b(\theta) = \exp(\theta), \ \text{and} \ c = -\log y!$$

Any distribution in the exponential family has the density of the following form:

$$f(y|\theta,\phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

$$\Pr(Y_i = y \mid \lambda) = \frac{\exp(-\lambda)\lambda^y}{y!} = \exp\{y \log \lambda - \exp(\log \lambda) - \log y!\}$$

$$\Longrightarrow \theta = \log \lambda$$
, $\phi = 1$, $a(\phi) = \phi$, $b(\theta) = \exp(\theta)$, and $c = -\log y!$

Any distribution in the exponential family has the density of the following form:

$$f(y|\theta,\phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

$$\Pr(Y_i = y \mid \lambda) = \frac{\exp(-\lambda)\lambda^y}{y!} = \exp\{y\log\lambda - \exp(\log\lambda) - \log y!\}$$

$$\Longrightarrow \theta = \log \lambda$$
, $\phi = 1$, $a(\phi) = \phi$, $b(\theta) = \exp(\theta)$, and $c = -\log y!$

Any distribution in the exponential family has the density of the following form:

$$f(y|\theta,\phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

$$\Pr(Y_i = y \mid \lambda) = \frac{\exp(-\lambda)\lambda^y}{y!} = \exp\{y\log\lambda - \exp(\log\lambda) - \log y!\}$$

$$\implies \theta = \log \lambda$$
, $\phi = 1$, $a(\phi) = \phi$, $b(\theta) = \exp(\theta)$, and $c = -\log y!$

$$f(y_i|\theta_i,\phi) = \exp\left\{\frac{y\theta_i - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

$$\Pr(Y_i = y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$= \exp\left[\frac{y_i \theta_i - \log[1 + \exp(\theta_i)]}{1} - 0\right]$$

$$\theta_i = \operatorname{logit}(\pi_i) = \operatorname{log}\left(\frac{\pi_i}{1 - \pi_i}\right)$$

$$b(\theta_i) = \operatorname{log}[1 + \exp(\theta_i)]$$

$$a(\phi) = 1; c(y_i, \phi) = 0$$

$$f(y_i|\theta_i,\phi) = \exp\left\{\frac{y\theta_i - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

$$\Pr(Y_i = y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$= \exp\left[\frac{y_i \theta_i - \log[1 + \exp(\theta_i)]}{1} - 0\right]$$

$$\theta_i = \operatorname{logit}(\pi_i) = \operatorname{log}\left(\frac{\pi_i}{1 - \pi_i}\right)$$

$$b(\theta_i) = \operatorname{log}[1 + \exp(\theta_i)]$$

$$a(\phi) = 1; c(y_i, \phi) = 0$$

$$f(y_i|\theta_i,\phi) = \exp\left\{\frac{y\theta_i - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

$$Pr(Y_i = y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$
$$= \exp\left[\frac{y_i \theta_i - \log[1 + \exp(\theta_i)]}{1} - 0\right]$$

$$\begin{array}{rcl} \boldsymbol{\theta_i} & = & \mathsf{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) \\ b(\boldsymbol{\theta_i}) & = & \log[1 + \exp(\boldsymbol{\theta_i})] \\ a(\phi) & = & 1; c(y_i, \phi) = 0 \end{array}$$

$$f(y_i|\theta_i,\phi) = \exp\left\{\frac{y\theta_i - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

$$\Pr(Y_i = y_i | \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$= \exp\left[\frac{y_i \theta_i - \log[1 + \exp(\theta_i)]}{1} - 0\right]$$

$$\theta_i = \log it(\pi_i) = \log \left(\frac{\pi_i}{1 - \pi_i}\right)$$

$$b(\theta_i) = \log[1 + \exp(\theta_i)]$$

$$a(\phi) = 1; c(y_i, \phi) = 0$$

 \blacksquare Mean is a function of θ and given by

$$\mathsf{E}(Y) \ \equiv \ \mu \ = \ b'(\theta)$$

lacktriangle Variance is a function of heta and ϕ and given by

$$Var(Y) \equiv V = b''(\theta)a(\phi)$$

- Common forms of $a(\phi)$: 1 (Poisson, Bernoulli), ϕ (normal, Gamma), and ϕ/ω_i (binomial)
- $lackbox{b}''(\theta)$ is called the variance function

■ Mean is a function of θ and given by

$$\mathsf{E}(Y) \equiv \mu = b'(\theta)$$

$$Var(Y) \equiv V = b''(\theta)a(\phi)$$

- Common forms of $a(\phi)$: 1 (Poisson, Bernoulli), ϕ (normal, Gamma), and ϕ/ω_i (binomial)
- $lackbox{b}''(\theta)$ is called the variance function

■ Mean is a function of θ and given by

$$\mathsf{E}(Y) \ \equiv \ \mu \ = \ b'(\theta)$$

$$Var(Y) \equiv V = b''(\theta)a(\phi)$$

- Common forms of $a(\phi)$: 1 (Poisson, Bernoulli), ϕ (normal, Gamma), and ϕ/ω_i (binomial)
- $lackbox{b}''(\theta)$ is called the variance function

■ Mean is a function of θ and given by

$$\mathsf{E}(Y) \ \equiv \ \mu \ = \ b'(\theta)$$

$$Var(Y) \equiv V = b''(\theta)a(\phi)$$

- Common forms of $a(\phi)$: 1 (Poisson, Bernoulli), ϕ (normal, Gamma), and ϕ/ω_i (binomial)
- $b''(\theta)$ is called the variance function

■ Mean is a function of θ and given by

$$\mathsf{E}(Y) \ \equiv \ \mu \ = \ b'(\theta)$$

$$Var(Y) \equiv V = b''(\theta)a(\phi)$$

- Common forms of $a(\phi)$: 1 (Poisson, Bernoulli), ϕ (normal, Gamma), and ϕ/ω_i (binomial)
- $b''(\theta)$ is called the variance function

■ In the Poisson model, $\theta_i = \log \lambda_i$, $a(\phi) = 1$ and $b(\theta_i) = \exp(\theta_i)$

$$\Rightarrow \mathsf{E}(Y_i) = \frac{\partial b(\theta_i)}{\partial \theta_i} = \exp(\theta_i) = \lambda_i \text{ and } \\ \mathsf{Var}(Y_i) = \frac{\partial^2 b(\theta_i)}{\partial \theta_i^2} = \exp(\theta_i) = \lambda_i$$

■ In the Bernoulli model, $\theta_i = \text{logit}(\pi_i)$, $a(\phi) = 1$ and $b(\theta_i) = \log[1 + \exp(\theta_i)]$.

$$\Rightarrow \\ \mathsf{E}(Y_i) = \frac{\partial b(\theta_i)}{\partial \theta_i} = \frac{\exp(\theta_i)}{1 + \exp(\theta_i)} = \mathsf{logit}^{-1}(\theta_i) = \mathsf{logit}^{-1}(\mathsf{logit}(\pi_i)) = \pi \\ \mathsf{Var}(Y_i) = \frac{\partial^2 b(\theta_i)}{\partial \theta_i^2} = \frac{\exp(\theta_i)(1 + \exp(\theta_i)) - \exp(\theta_i) \exp(\theta_i)}{(1 + \exp(\theta_i))^2} = \\ \frac{\exp(\theta_i)}{1 + \exp(\theta_i)} \frac{1}{1 + \exp(\theta_i)} = \pi_i (1 - \pi_i)$$

- In the Poisson model, $\theta_i = \log \lambda_i$, $a(\phi) = 1$ and $b(\theta_i) = \exp(\theta_i)$ $\Rightarrow \mathsf{E}(Y_i) = \frac{\partial b(\theta_i)}{\partial \theta_i} = \exp(\theta_i) = \lambda_i \text{ and }$ $\mathsf{Var}(Y_i) = \frac{\partial^2 b(\theta_i)}{\partial \theta_i^2} = \exp(\theta_i) = \lambda_i$
- In the Bernoulli model, $\theta_i = \text{logit}(\pi_i)$, $a(\phi) = 1$ and $b(\theta_i) = \log[1 + \exp(\theta_i)]$.

$$\Rightarrow \\ \mathsf{E}(Y_i) = \frac{\partial b(\theta_i)}{\partial \theta_i} = \frac{\exp(\theta_i)}{1 + \exp(\theta_i)} = \mathsf{logit}^{-1}(\theta_i) = \mathsf{logit}^{-1}(\mathsf{logit}(\pi_i)) = \pi \\ \mathsf{Var}(Y_i) = \frac{\partial^2 b(\theta_i)}{\partial \theta_i^2} = \frac{\exp(\theta_i)(1 + \exp(\theta_i)) - \exp(\theta_i) \exp(\theta_i)}{(1 + \exp(\theta_i))^2} = \\ \frac{\exp(\theta_i)}{1 + \exp(\theta_i)} \frac{1}{1 + \exp(\theta_i)} = \pi_i (1 - \pi_i)$$

- In the Poisson model, $\theta_i = \log \lambda_i$, $a(\phi) = 1$ and $b(\theta_i) = \exp(\theta_i)$ ⇒ $\mathsf{E}(Y_i) = \frac{\partial b(\theta_i)}{\partial \theta_i} = \exp(\theta_i) = \lambda_i$ and $\mathsf{Var}(Y_i) = \frac{\partial^2 b(\theta_i)}{\partial \theta_i^2} = \exp(\theta_i) = \lambda_i$
- In the Bernoulli model, $\theta_i = \operatorname{logit}(\pi_i)$, $a(\phi) = 1$ and $b(\theta_i) = \log[1 + \exp(\theta_i)]$. \Rightarrow $\mathsf{E}(Y_i) = \frac{\partial b(\theta_i)}{\partial \theta_i} = \frac{\exp(\theta_i)}{1 + \exp(\theta_i)} = \operatorname{logit}^{-1}(\theta_i) = \operatorname{logit}^{-1}(\operatorname{logit}(\pi_i)) = \pi_i$

$$\mathsf{Var}(Y_i) = \frac{\partial^2 b(\theta_i)}{\partial \theta_i^2} = \frac{\exp(\theta_i)(1 + \exp(\theta_i)) - \exp(\theta_i) \exp(\theta_i)}{(1 + \exp(\theta_i))^2} = \frac{\exp(\theta_i)}{1 + \exp(\theta_i)} \frac{1}{1 + \exp(\theta_i)} = \pi_i (1 - \pi_i)$$

- Link function: $g(\mu_i) = X_i^{\top} \beta$
- lacksquare Defines the relationship between $X_i^ op eta$ and the mean μ_i
- lacksquare Must map the real line onto the possible range of μ_i
- \blacksquare Recall that $\mu_i = b'(\theta_i)$
- Therefore, θ_i is always a (often simple) function of $X_i^\top \beta$
- In particular, when $\theta_i = X_i^{\top} \beta$, the link is called the canonical link
 - In Poisson, $\theta_i = \log(\lambda_i) = \log(\exp(X_i'\beta)) = X_i'\beta$ $\longrightarrow \exp^{-1} = \log$ is the canonical link function
 - In Bernoulli $\theta_i = \mathsf{logit}(\pi_i); \pi_i = \frac{\exp(X_i^{'}\beta)}{1 + \exp(X_i^{'}\beta)}$

$$\theta_i = \mathsf{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \log\left(\frac{\frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}}{\frac{1}{1 + \exp(X_i\beta)}}\right) = \log(\exp(X_i\beta)) = X_i\beta$$

- Must be monotonic and differentiable
- This allows us to express the mean function as: $\mu_i = g^{-1}(X_i^\top \beta)$

- Link function: $g(\mu_i) = X_i^{\top} \beta$
- lacksquare Defines the relationship between $X_i^ op eta$ and the mean μ_i
- \blacksquare Must map the real line onto the possible range of μ_i
- lacksquare Recall that $\mu_i = b'(\theta_i)$
- Therefore, θ_i is always a (often simple) function of $X_i^\top \beta$
- In particular, when $\theta_i = X_i^{\top} \beta$, the link is called the canonical link
 - In Poisson, $\theta_i = \log(\lambda_i) = \log(\exp(X_i'\beta)) = X_i'\beta$ $\longrightarrow \exp^{-1} = \log$ is the canonical link function
 - In Bernoulli $\theta_i = \text{logit}(\pi_i); \pi_i = \frac{\exp(X_i'\beta)}{1 + \exp(X_i'\beta)}$

$$\theta_i = \mathsf{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \log\left(\frac{\frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}}{\frac{1}{1 + \exp(X_i\beta)}}\right) = \log(\exp(X_i\beta)) = X_i\beta$$

- Must be monotonic and differentiable
- This allows us to express the mean function as: $\mu_i = g^{-1}(X_i^\top \beta)$

- Link function: $g(\mu_i) = X_i^{\top} \beta$
- lacksquare Defines the relationship between $X_i^ op eta$ and the mean μ_i
- lacksquare Must map the real line onto the possible range of μ_i
- \blacksquare Recall that $\mu_i = b'(\theta_i)$
- Therefore, θ_i is always a (often simple) function of $X_i^\top \beta$
- In particular, when $\theta_i = X_i^{\top} \beta$, the link is called the canonical link
 - In Poisson, $\theta_i = \log(\lambda_i) = \log(\exp(X_i'\beta)) = X_i'\beta$ $\longrightarrow \exp^{-1} = \log$ is the canonical link function
 - In Bernoulli $\theta_i = \mathsf{logit}(\pi_i); \pi_i = \frac{\exp(X_i'\beta)}{1 + \exp(X_i'\beta)}$

$$\theta_i = \mathsf{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \log\left(\frac{\frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}}{\frac{1}{1 + \exp(X_i\beta)}}\right) = \log(\exp(X_i\beta)) = X_i\beta$$

- Must be monotonic and differentiable
- This allows us to express the mean function as: $\mu_i = g^{-1}(X_i^\top \beta)$

- Link function: $g(\mu_i) = X_i^{\top} \beta$
- lacktriangle Defines the relationship between $X_i^ op eta$ and the mean μ_i
- lacksquare Must map the real line onto the possible range of μ_i
- \blacksquare Recall that $\mu_i = b'(\theta_i)$
- Therefore, θ_i is always a (often simple) function of $X_i^\top \beta$
- In particular, when $\theta_i = X_i^{\top} \beta$, the link is called the canonical link
 - In Poisson, $\theta_i = \log(\lambda_i) = \log(\exp(X_i'\beta)) = X_i'\beta$ $\longrightarrow \exp^{-1} = \log$ is the canonical link function
 - In Bernoulli $\theta_i = \text{logit}(\pi_i); \pi_i = \frac{\exp(X_i'\beta)}{1 + \exp(X_i'\beta)}$

$$\theta_i = \mathsf{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \log\left(\frac{\frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}}{\frac{1}{1 + \exp(X_i\beta)}}\right) = \log(\exp(X_i\beta)) = X_i\beta$$

- Must be monotonic and differentiable
- This allows us to express the mean function as: $\mu_i = g^{-1}(X_i^\top \beta)$

- Link function: $g(\mu_i) = X_i^{\top} \beta$
- lacksquare Defines the relationship between $X_i^ op eta$ and the mean μ_i
- lacksquare Must map the real line onto the possible range of μ_i
- \blacksquare Recall that $\mu_i = b'(\theta_i)$
- Therefore, θ_i is always a (often simple) function of $X_i^\top \beta$
- In particular, when $\theta_i = X_i^{\top} \beta$, the link is called the canonical link
 - In Poisson, $\theta_i = \log(\lambda_i) = \log(\exp(X_i'\beta)) = X_i'\beta$ $\longrightarrow \exp^{-1} = \log$ is the canonical link function
 - In Bernoulli $\theta_i = \mathsf{logit}(\pi_i); \pi_i = \frac{\exp(X_i \beta)}{1 + \exp(X_i' \beta)}$

$$\theta_i = \mathsf{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \log\left(\frac{\frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}}{\frac{1}{1 + \exp(X_i\beta)}}\right) = \log(\exp(X_i\beta)) = X_i\beta$$

- Must be monotonic and differentiable
- This allows us to express the mean function as: $\mu_i = g^{-1}(X_i^\top \beta)$

- Link function: $g(\mu_i) = X_i^{\top} \beta$
- lacksquare Defines the relationship between $X_i^ op eta$ and the mean μ_i
- lacksquare Must map the real line onto the possible range of μ_i
- \blacksquare Recall that $\mu_i = b'(\theta_i)$
- Therefore, θ_i is always a (often simple) function of $X_i^\top \beta$
- In particular, when $\theta_i = X_i^{\top} \beta$, the link is called the canonical link
 - In Poisson, $\theta_i = \log(\lambda_i) = \log(\exp(X_i'\beta)) = X_i'\beta$ $\longrightarrow \exp^{-1} = \log$ is the canonical link function
 - In Bernoulli $\theta_i = \mathsf{logit}(\pi_i); \pi_i = \frac{\exp(\pmb{X}_i'\pmb{\beta})}{1 + \exp(\pmb{X}_i'\pmb{\beta})}$

$$\theta_i = \operatorname{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \log\left(\frac{\frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}}{\frac{1}{1 + \exp(X_i\beta)}}\right) = \log(\exp(X_i\beta)) = X_i\beta$$

- Must be monotonic and differentiable
- This allows us to express the mean function as: $\mu_i = g^{-1}(X_i^\top \beta)$

- Link function: $g(\mu_i) = X_i^{\top} \beta$
- lacksquare Defines the relationship between $X_i^ op eta$ and the mean μ_i
- lacksquare Must map the real line onto the possible range of μ_i
- \blacksquare Recall that $\mu_i = b'(\theta_i)$
- Therefore, θ_i is always a (often simple) function of $X_i^\top \beta$
- In particular, when $\theta_i = X_i^{\top} \beta$, the link is called the canonical link
 - In Poisson, $\theta_i = \log(\lambda_i) = \log(\exp(X_i'\beta)) = X_i'\beta$ $\longrightarrow \exp^{-1} = \log$ is the canonical link function
 - In Bernoulli $\theta_i = \mathsf{logit}(\pi_i); \pi_i = \frac{\exp(\mathbf{X}_i'\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i'\boldsymbol{\beta})}$

$$\theta_i = \mathsf{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \log\left(\frac{\frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}}{\frac{1}{1 + \exp(X_i\beta)}}\right) = \log(\exp(X_i\beta)) = X_i\beta$$

- Must be monotonic and differentiable
- This allows us to express the mean function as: $\mu_i = g^{-1}(X_i^\top \beta)$

- Link function: $g(\mu_i) = X_i^{\top} \beta$
- lacksquare Defines the relationship between $X_i^ op eta$ and the mean μ_i
- lacksquare Must map the real line onto the possible range of μ_i
- lacksquare Recall that $\mu_i = b'(\theta_i)$
- \blacksquare Therefore, θ_i is always a (often simple) function of $X_i^\top \beta$
- lacksquare In particular, when $heta_i = X_i^{ op} eta$, the link is called the canonical link
 - In Poisson, $\theta_i = \log(\lambda_i) = \log(\exp(X_i'\beta)) = X_i'\beta$ $\longrightarrow \exp^{-1} = \log$ is the canonical link function
 - In Bernoulli $\theta_i = \mathsf{logit}(\pi_i); \pi_i = \frac{\exp(\mathbf{X}_i'\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i'\boldsymbol{\beta})}$

$$\theta_i = \mathsf{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \log\left(\frac{\frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}}{\frac{1}{1 + \exp(X_i\beta)}}\right) = \log(\exp(X_i\beta)) = X_i\beta$$

- Must be monotonic and differentiable
- \blacksquare This allows us to express the mean function as: $\mu_i = g^{-1}(X_i^\top \beta)$

■ Log-likelihood function:

$$l_n(\theta, \phi; Y) = \sum_{i=1}^n \left\{ \frac{Y_i \theta_i - b(\theta_i)}{a(\phi)} + c(Y_i, \phi) \right\}$$

- lacksquare Recall our notation: $\mu_i = \mathsf{E}[Y_i \mid X_i]$ and $V_i = \mathsf{Var}[Y_i \mid X_i]$
- Score:

$$s(\beta) = \frac{\partial l_n(\theta, \phi; Y)}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - b'(\theta_i)}{a(\phi)b''(\theta_i)} \frac{\partial \mu_i}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - \mu_i}{V_i} \left(\frac{\partial \mu_i}{\partial X_i^\top \beta}\right) X_i$$

■ Information:

$$I(\beta) \ = \ - \mathbb{E}\left[H(\beta)\right] \ = \ - \mathbb{E}\left(\frac{\partial^2 l_n(\theta,\phi;Y)}{\partial \beta \partial \beta^\top}\right) \ = \ \sum_{i=1}^n \frac{1}{V_i} \left(\frac{\partial \mu_i}{\partial X_i^\top \beta}\right)^2 X_i X_i^\top$$

■ Exercise: Check these hold for logit, probit, Poisson, etc.!

■ Log-likelihood function:

$$l_n(\theta, \phi; Y) = \sum_{i=1}^n \left\{ \frac{Y_i \theta_i - b(\theta_i)}{a(\phi)} + c(Y_i, \phi) \right\}$$

- lacksquare Recall our notation: $\mu_i = \mathsf{E}[Y_i \mid X_i]$ and $V_i = \mathsf{Var}[Y_i \mid X_i]$
- Score:

$$s(\beta) = \frac{\partial l_n(\theta, \phi; Y)}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - b'(\theta_i)}{a(\phi)b''(\theta_i)} \frac{\partial \mu_i}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - \mu_i}{V_i} \left(\frac{\partial \mu_i}{\partial X_i^\top \beta}\right) X_i$$

Information:

$$I(\beta) \ = \ -\mathsf{E}\left[H(\beta)\right] \ = \ -\mathsf{E}\left(\frac{\partial^2 l_n(\theta,\phi;Y)}{\partial \beta \partial \beta^\top}\right) \ = \ \sum_{i=1}^n \frac{1}{V_i} \left(\frac{\partial \mu_i}{\partial X_i^\top \beta}\right)^2 X_i X_i^\top$$

■ Exercise: Check these hold for logit, probit, Poisson, etc.!

←□ → ←□ → ← □ → □ ● の へ ○

■ Log-likelihood function:

$$l_n(\theta, \phi; Y) = \sum_{i=1}^n \left\{ \frac{Y_i \theta_i - b(\theta_i)}{a(\phi)} + c(Y_i, \phi) \right\}$$

- lacksquare Recall our notation: $\mu_i = \mathsf{E}[Y_i \mid X_i]$ and $V_i = \mathsf{Var}[Y_i \mid X_i]$
- Score:

$$s(\beta) = \frac{\partial l_n(\theta, \phi; Y)}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - b'(\theta_i)}{a(\phi)b''(\theta_i)} \frac{\partial \mu_i}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - \mu_i}{V_i} \left(\frac{\partial \mu_i}{\partial X_i^\top \beta}\right) X_i$$

Information:

$$I(\beta) \ = \ - \mathbb{E} \left[H(\beta) \right] \ = \ - \mathbb{E} \left(\frac{\partial^2 l_n(\theta, \phi; Y)}{\partial \beta \partial \beta^\top} \right) \ = \ \sum_{i=1}^n \frac{1}{V_i} \left(\frac{\partial \mu_i}{\partial X_i^\top \beta} \right)^2 X_i X_i^\top$$

■ Exercise: Check these hold for logit, probit, Poisson, etc.!

■ Log-likelihood function:

$$l_n(\theta, \phi; Y) = \sum_{i=1}^n \left\{ \frac{Y_i \theta_i - b(\theta_i)}{a(\phi)} + c(Y_i, \phi) \right\}$$

- lacksquare Recall our notation: $\mu_i = \mathsf{E}[Y_i \mid X_i]$ and $V_i = \mathsf{Var}[Y_i \mid X_i]$
- Score:

$$s(\beta) = \frac{\partial l_n(\theta, \phi; Y)}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - b'(\theta_i)}{a(\phi)b''(\theta_i)} \frac{\partial \mu_i}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - \mu_i}{V_i} \left(\frac{\partial \mu_i}{\partial X_i^\top \beta}\right) X_i$$

Information:

$$I(\beta) \ = \ -\mathsf{E}\left[H(\beta)\right] \ = \ -\mathsf{E}\left(\frac{\partial^2 l_n(\theta,\phi;Y)}{\partial\beta\partial\beta^\top}\right) \ = \ \sum_{i=1}^n \frac{1}{V_i} \left(\frac{\partial\mu_i}{\partial X_i^\top\beta}\right)^2 X_i X_i^\top$$

■ Exercise: Check these hold for logit, probit, Poisson, etc.!

■ Log-likelihood function:

$$l_n(\theta, \phi; Y) = \sum_{i=1}^n \left\{ \frac{Y_i \theta_i - b(\theta_i)}{a(\phi)} + c(Y_i, \phi) \right\}$$

- lacksquare Recall our notation: $\mu_i = \mathsf{E}[Y_i \mid X_i]$ and $V_i = \mathsf{Var}[Y_i \mid X_i]$
- Score:

$$s(\beta) = \frac{\partial l_n(\theta, \phi; Y)}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - b'(\theta_i)}{a(\phi)b''(\theta_i)} \frac{\partial \mu_i}{\partial \beta} = \sum_{i=1}^n \frac{Y_i - \mu_i}{V_i} \left(\frac{\partial \mu_i}{\partial X_i^{\top} \beta}\right) X_i$$

Information:

$$I(\beta) \ = \ -\mathsf{E}\left[H(\beta)\right] \ = \ -\mathsf{E}\left(\frac{\partial^2 l_n(\theta,\phi;Y)}{\partial\beta\partial\beta^\top}\right) \ = \ \sum_{i=1}^n \frac{1}{V_i} \left(\frac{\partial\mu_i}{\partial X_i^\top\beta}\right)^2 X_i X_i^\top$$

■ Exercise: Check these hold for logit, probit, Poisson, etc.!

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ・ 夕 ♀ ○

Assessing Goodness of Fit for GLMs

- \blacksquare Null model: Predict every observation by sample mean \bar{Y} \Rightarrow one parameter, maximum data reduction
- Saturated model: Predict every observation by its own value Y_i $\Rightarrow n$ parameters, no data reduction
- A useful model sits somewhere in between

■ Goodness of fit can be measured by comparing the model likelihood to the saturated model likelihood

Assessing Goodness of Fit for GLMs

- \blacksquare Null model: Predict every observation by sample mean \bar{Y} \Rightarrow one parameter, maximum data reduction
- Saturated model: Predict every observation by its own value Y_i $\Rightarrow n$ parameters, no data reduction
- A useful model sits somewhere in between

■ Goodness of fit can be measured by comparing the model likelihood to the saturated model likelihood

Analysis of Deviance

■ Scaled Deviance (Unscaled: $\phi \times$ Deviance $D(Y, \hat{\theta})$):

$$D^*(Y; \hat{\theta}) \equiv 2\{l_n(\tilde{\theta}; Y, \phi) - l_n(\hat{\theta}; Y, \phi)\}$$
$$= 2\sum_{i=1}^n \left\{Y_i(\tilde{\theta}_i - \hat{\theta}_i) - (b(\tilde{\theta}_i) - b(\hat{\theta}_i))\right\} / a(\phi)$$

where
$$\left\{ \begin{array}{ll} \hat{\theta}_i &= \theta(\hat{\mu}_i) & \text{(estimate from the model of interest)} \\ \tilde{\theta}_i &= \theta(Y_i) & \text{("estimate" from the saturated model)} \end{array} \right.$$

- Note that *D** is a likelihood-ratio statistic
- This implies $D^*(Y; \hat{\theta}) \stackrel{approx.}{\sim} \chi^2_{n-k}$ if the model fits the data well
- We can also compare models: $D_1^* D_2^* \sim \chi^2_{k_1 k_2}$ (LR test)
- McFadden's pseudo- R^2 :

$$\tilde{R}^{2} = \frac{l_{n}(\hat{\theta}; Y, \phi) - l_{n}(\theta(\bar{Y}); Y, \phi)}{l_{n}(\tilde{\theta}; Y, \phi) - l_{n}(\theta(\bar{Y}); Y, \phi)} = 1 - \frac{D^{*}(Y; \hat{\theta})}{D^{*}(Y; \theta(\bar{Y}); Y, \phi)}$$

where $\bar{\theta}_i = \theta(\bar{Y})$ for all i

Analysis of Deviance

■ Scaled Deviance (Unscaled: $\phi \times$ Deviance $D(Y, \hat{\theta})$):

$$D^*(Y; \hat{\theta}) \equiv 2\{l_n(\tilde{\theta}; Y, \phi) - l_n(\hat{\theta}; Y, \phi)\}$$
$$= 2\sum_{i=1}^n \left\{Y_i(\tilde{\theta}_i - \hat{\theta}_i) - (b(\tilde{\theta}_i) - b(\hat{\theta}_i))\right\} / a(\phi)$$

where
$$\left\{ \begin{array}{ll} \hat{\theta}_i &= \theta(\hat{\mu}_i) & \text{(estimate from the model of interest)} \\ \tilde{\theta}_i &= \theta(Y_i) & \text{("estimate" from the saturated model)} \end{array} \right.$$

- \blacksquare Note that D^* is a likelihood-ratio statistic
- This implies $D^*(Y; \hat{\theta}) \overset{approx.}{\sim} \chi^2_{n-k}$ if the model fits the data well
- We can also compare models: $D_1^* D_2^* \sim \chi^2_{k_1 k_2}$ (LR test)
- McFadden's pseudo- R^2 :

$$\tilde{R}^2 = \frac{l_n(\hat{\theta}; Y, \phi) - l_n(\theta(\bar{Y}); Y, \phi)}{l_n(\tilde{\theta}; Y, \phi) - l_n(\theta(\bar{Y}); Y, \phi)} = 1 - \frac{D^*(Y; \hat{\theta})}{D^*(Y; \theta(\bar{Y}))}$$

where $\bar{\theta}_i = \theta(\bar{Y})$ for all ϵ

4 D > 4 B > 4 E > 4 E > 9 Q C

Analysis of Deviance

■ Scaled Deviance (Unscaled: $\phi \times$ Deviance $D(Y, \hat{\theta})$):

$$D^*(Y; \hat{\theta}) \equiv 2\{l_n(\tilde{\theta}; Y, \phi) - l_n(\hat{\theta}; Y, \phi)\}$$
$$= 2\sum_{i=1}^n \left\{Y_i(\tilde{\theta}_i - \hat{\theta}_i) - (b(\tilde{\theta}_i) - b(\hat{\theta}_i))\right\} / a(\phi)$$

where
$$\left\{ \begin{array}{ll} \hat{\theta}_i &= \theta(\hat{\mu}_i) & \text{(estimate from the model of interest)} \\ \tilde{\theta}_i &= \theta(Y_i) & \text{("estimate" from the saturated model)} \end{array} \right.$$

- Note that *D** is a likelihood-ratio statistic
- This implies $D^*(Y; \hat{\theta}) \stackrel{approx.}{\sim} \chi^2_{n-k}$ if the model fits the data well
- We can also compare models: $D_1^* D_2^* \sim \chi^2_{k_1 k_2}$ (LR test)
- McFadden's pseudo- R^2 :

$$\tilde{R}^2 = \frac{l_n(\hat{\theta}; Y, \phi) - l_n(\theta(\bar{Y}); Y, \phi)}{l_n(\tilde{\theta}; Y, \phi) - l_n(\theta(\bar{Y}); Y, \phi)} = 1 - \frac{D^*(Y; \hat{\theta})}{D^*(Y; \theta(\bar{Y}))}$$

where $\bar{\theta}_i = \theta(\bar{Y})$ for all i

4 D > 4 B > 4 E > 4 E > 9 Q C

Analysis of Deviance

■ Scaled Deviance (Unscaled: $\phi \times$ Deviance $D(Y, \hat{\theta})$):

$$D^*(Y; \hat{\theta}) \equiv 2\{l_n(\tilde{\theta}; Y, \phi) - l_n(\hat{\theta}; Y, \phi)\}$$
$$= 2\sum_{i=1}^n \left\{Y_i(\tilde{\theta}_i - \hat{\theta}_i) - (b(\tilde{\theta}_i) - b(\hat{\theta}_i))\right\} / a(\phi)$$

where
$$\left\{ \begin{array}{ll} \hat{\theta}_i &= \; \theta(\hat{\mu}_i) \quad \text{(estimate from the model of interest)} \\ \tilde{\theta}_i &= \; \theta(Y_i) \quad \text{("estimate" from the saturated model)} \end{array} \right.$$

- \blacksquare Note that D^* is a likelihood-ratio statistic
- This implies $D^*(Y; \hat{\theta}) \stackrel{approx.}{\sim} \chi^2_{n-k}$ if the model fits the data well
- We can also compare models: $D_1^* D_2^* \sim \chi^2_{k_1 k_2}$ (LR test)
- McFadden's pseudo- R^2 :

$$\tilde{R}^2 = \frac{l_n(\hat{\theta}; Y, \phi) - l_n(\theta(\bar{Y}); Y, \phi)}{l_n(\tilde{\theta}; Y, \phi) - l_n(\theta(\bar{Y}); Y, \phi)} = 1 - \frac{D^*(Y; \hat{\theta})}{D^*(Y; \theta(\bar{Y}))}$$

where $\bar{\theta}_i \ = \ \theta(\bar{Y})$ for all i

4 D > 4 D > 4 E > 4 E > E 9 Q C

Unscaled Deviance for Normal GLMs

$$\begin{array}{rcl} \hat{\theta}_i & = & \boldsymbol{X}_i' \boldsymbol{\beta} \\ b(\hat{\theta}_i) & = & \hat{\theta}^2/2 \\ \text{Saturated model} & \Rightarrow & \tilde{\theta}_i = y_i; b(\tilde{\theta}_i) = y_i^2/2 \\ \\ \text{Deviance} & = & 2 \sum_{i=1}^N \left[y_i (y_i - \hat{\mu}_i) - y_i^2/2 + \hat{\mu}_i^2/2) \right] = \sum_{i=1}^N (y_i - \hat{\mu}_i)^2 \end{array}$$

Deviance for Poisson

Saturated model $\tilde{\lambda}_i = y_i$. This implies a log-likelihood of:

$$\begin{array}{rcl} \tilde{\theta}_i &=& \log y_i \\ b(\tilde{\theta})_i &=& \exp(\log y_i) = y_i \\ \\ \text{Deviance} &=& 2\sum_{i=1}^N \left[y_i \log \frac{y_i}{\hat{\lambda}_i} - y_i + \hat{\lambda}_i \right] \end{array}$$

- \blacksquare In normal linear regression, $D=\mathcal{X}^2=\sum_{i=1}^n\hat{\epsilon}_i^2=RSS$
- This suggests the following generalization of residuals for GLM:
 - 1 Deviance residual:

$$\hat{\epsilon}_i^D \equiv \operatorname{sign}(Y_i - \hat{\mu}_i) \sqrt{d_i}$$

where d_i is the deviance for the *i*th observation

$$\hat{\epsilon}_i^P \equiv \frac{\sqrt{\omega_i}(Y_i - \hat{\mu}_i)}{\sqrt{b^{\prime\prime}(\hat{\theta}_i)}}$$

- \blacksquare These residuals have approximately the same properties as OLS residuals when N is large
- Thus, most regression diagnostics for linear models also work for GLMs:
 - Plotting standardized and studentized residuals
 - Analyze influence points and outliers
 - Added-variable plots, component-residual plots, etc.

- In normal linear regression, $D = \mathcal{X}^2 = \sum_{i=1}^n \hat{\epsilon}_i^2 = RSS$
- This suggests the following generalization of residuals for GLM:
 - 1 Deviance residual:

$$\hat{\epsilon}_i^D \equiv \mathrm{sign}(Y_i - \hat{\mu}_i) \sqrt{d_i}$$

where d_i is the deviance for the *i*th observation

$$\hat{\epsilon}_i^P \equiv \frac{\sqrt{\omega_i}(Y_i - \hat{\mu}_i)}{\sqrt{b''(\hat{\theta}_i)}}$$

- \blacksquare These residuals have approximately the same properties as OLS residuals when N is large
- Thus, most regression diagnostics for linear models also work for GLMs:
 - Plotting standardized and studentized residuals
 - Analyze influence points and outliers
 - Added-variable plots, component-residual plots, etc.

- In normal linear regression, $D = \mathcal{X}^2 = \sum_{i=1}^n \hat{\epsilon}_i^2 = RSS$
- This suggests the following generalization of residuals for GLM:
 - 1 Deviance residual:

$$\hat{\epsilon}_i^D \equiv \mathrm{sign}(Y_i - \hat{\mu}_i) \sqrt{d_i}$$

where d_i is the deviance for the ith observation

$$\hat{\epsilon}_i^P \equiv \frac{\sqrt{\omega_i}(Y_i - \hat{\mu}_i)}{\sqrt{b''(\hat{\theta}_i)}}$$

- \blacksquare These residuals have approximately the same properties as OLS residuals when N is large
- Thus, most regression diagnostics for linear models also work for GLMs:
 - Plotting standardized and studentized residuals
 - Analyze influence points and outliers
 - Added-variable plots, component-residual plots, etc.

- In normal linear regression, $D = \mathcal{X}^2 = \sum_{i=1}^n \hat{\epsilon}_i^2 = RSS$
- This suggests the following generalization of residuals for GLM:
 - 1 Deviance residual:

$$\hat{\epsilon}_i^D \equiv \mathrm{sign}(Y_i - \hat{\mu}_i) \sqrt{d_i}$$

where d_i is the deviance for the *i*th observation

$$\hat{\epsilon}_i^P \equiv \frac{\sqrt{\omega_i(Y_i - \hat{\mu}_i)}}{\sqrt{b''(\hat{\theta}_i)}}$$

- \blacksquare These residuals have approximately the same properties as OLS residuals when N is large
- Thus, most regression diagnostics for linear models also work for GLMs:
 - Plotting standardized and studentized residuals
 - Analyze influence points and outliers
 - Added-variable plots, component-residual plots, etc.

- Y_i : # of involvement in international wars, 1960–80
- X_i : democracy (Freedom House score), population, military capacity, economic interdependence

- Y_i : # of involvement in international wars, 1960–80
- X_i : democracy (Freedom House score), population, military capacity, economic interdependence

- Y_i : # of involvement in international wars, 1960–80
- X_i : democracy (Freedom House score), population, military capacity, economic interdependence

- Y_i : # of involvement in international wars, 1960–80
- X_i : democracy (Freedom House score), population, military capacity, economic interdependence

Example: Democracy and War Involvement

Plotting $\hat{\epsilon}_i^P$ against X_{ij} and $X_i^{\top}\hat{\beta}$:

- Evidence of mild nonlinearity (quadratic) for log population
- Heavy skew to the right:
 - Nonnegativity of the outcome variable + small sample size
 - Potentially alleviated by a "zero inflation" model

Example: Democracy and War Involvement

Plotting $\hat{\epsilon}_i^P$ against X_{ij} and $X_i^{\top}\hat{\beta}$:

- Evidence of mild nonlinearity (quadratic) for log population
- Heavy skew to the right:
 - Nonnegativity of the outcome variable + small sample size
 - Potentially alleviated by a "zero inflation" model

Example: Democracy and War Involvement Studentized residuals and hat values:

- The density of studentized residuals confirms the right skew
- No obvious outliers (except perhaps Israel)

Example: Democracy and War Involvement Studentized residuals and hat values:

- The density of studentized residuals confirms the right skew
- No obvious outliers (except perhaps Israel)

Model fit