- import matplotlib.pyplot as plt
- 2 import numpy as np
- 3 import pandas as pd
- 4 %matplotlib inline

```
1 df = pd.read_csv("income.csv")
2 df.head()
```

	Name	Age	<pre>Income(\$)</pre>	Gender	2
0	Rob	27	70000	male	
1	Bob	29	90000	male	
2	Luci	29	61000	female	
3	Joy	28	60000	male	
4	Sky	42	150000	female	

```
1 plt.scatter(df['Age'], df['Income($)'])
```

<matplotlib.collections.PathCollection at 0x7fc539a12fd0>


```
1 from sklearn.cluster import KMeans
```

- 2 km = KMeans(n_clusters = 3)
- 3 km

KMeans(n_clusters=3)

```
1 y_predict = km.fit_predict(df[['Age','Income($)']])
2 y_predict
```

```
array([1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 0, 0, 0, 2, 1, 1, 2, 2], dtype=int32)
```

```
1 df['cluster']=y_predict
```

2 df.head()

2	cluster	Gender	<pre>Income(\$)</pre>	Age	Name	
	1	male	70000	27	Rob	0
	1	male	90000	29	Bob	1
	2	female	61000	29	Luci	2
	2	male	60000	28	Joy	3
	0	female	150000	42	Sky	4

1 plt.scatter(df['cluster'], df['Income(\$)'])

<matplotlib.collections.PathCollection at 0x7fc539988e10>

1 plt.scatter(df['cluster'], df['Age'])

<matplotlib.collections.PathCollection at 0x7fc539908210>


```
1 import seaborn as sns
2 sns.scatterplot(x=df['Age'],y=df['Income($)'],hue=df['cluster'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fc5398bded0>

```
1 df1 = df[df.cluster ==0]
2 df2 = df[df.cluster ==1]
3 df3 = df[df.cluster ==2]
```

```
1 plt.scatter(df1['Age'], df1['Income($)'], color ='green')
2 plt.scatter(df2['Age'], df2['Income($)'], color ='red')
3 plt.scatter(df3['Age'], df3['Income($)'], color ='yellow')
4
5 plt.xlabel('Age')
6 plt.ylabel('Income')
7 plt.legend()
```

No handles with labels found to put in legend. <matplotlib.legend.Legend at 0x7fc5398085d0>


```
1 from sklearn.preprocessing import MinMaxScaler
2 scaler = MinMaxScaler()
3 features = ['Income($)']
4 scaler.fit(df[features])
5 df['Income($)'] =scaler.transform(df[features])
6 df.head()
```



```
1 scaler = MinMaxScaler()
2 features = ['Age']
3 scaler.fit(df[features])
4 df['Age'] = scaler.transform(df[features])
5 df
```

```
Joy 0.21875
                                                 2
                         0.142857
                                     male
4
         Sky 0.65625
                         0.899160
                                   female
                                                 0
5
     Gautam 0.56250
                         0.941176
                                                 0
                                     male
6
         Raj 0.62500
                         0.983193
                                     male
                                                 0
7
        Roja 0.53125
                         1.000000
                                   female
       Ranbir 0.46875
8
                         0.949580
                                     male
                                                 0
9
         Tom 0.43750
                         0.731092
                                                 0
                                     male
10
        Kory 0.50000
                         0.789916
                                   female
                                                 0
11
       Javed 0.15625
                         0.016807
                                     male
                                                 2
12 Mohamod 0.18750
                         0.042017
                                                 2
                                     male
```

```
1 km = KMeans(n_clusters = 3)
2 y_predict =km.fit_predict(df[['Age','Income($)']])
3 y_predict
```

17 Monica 0.62500 0.168067 female 2

² df.head()

	Name	Age	<pre>Income(\$)</pre>	Gender	cluster
0	Rob	0.18750	0.226891	male	0
1	Bob	0.25000	0.394958	male	0
2	Luci	0.25000	0.151261	female	0
3	Joy	0.21875	0.142857	male	0
4	Sky	0.65625	0.899160	female	1

```
26 Cootha 0.00000 0.462185 famala
```

¹ df['cluster']=y_predict

¹ import seaborn as sns

² sns.scatterplot(x=df['Age'],y=df['Income(\$)'],hue=df['cluster'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fc5397e0910>

```
duster
1 km.cluster_centers_
    array([[0.22222222, 0.16643324],
                     , 0.8487395 ],
           [0.55625
           [0.73214286, 0.22689076]])
    ⊆ 0.4 1
1 df1 = df[df.cluster ==0]
2 df2 = df[df.cluster ==1]
3 df3 = df[df.cluster ==2]
1 plt.scatter(df1['Age'], df1['Income($)'], color ='green')
2 plt.scatter(df2['Age'], df2['Income($)'], color ='red')
3 plt.scatter(df3['Age'], df3['Income($)'], color ='yellow')
5 plt.xlabel('Age')
6 plt.ylabel('Income')
7 plt.legend()
```

No handles with labels found to put in legend. <matplotlib.legend.Legend at 0x7fc53974fed0>


```
1 df1 = df[df.cluster ==0]
2 df2 = df[df.cluster ==1]
3 df3 = df[df.cluster ==2]
4
5
6 plt.scatter(df1['Age'], df1['Income($)'], color ='green')
7 plt.scatter(df2['Age'], df2['Income($)'], color ='red')
8 plt.scatter(df3['Age'], df3['Income($)'], color ='yellow')
9 plt.scatter(km.cluster_centers_[:,0], km.cluster_centers_[:, 1], color ='purple', mark10 plt.xlabel('Age')
11 plt.ylabel('Income')
12 plt.legend()
```

<matplotlib.legend.Legend at 0x7fc539681310>


```
[5.708753283351154,
2.2851486642451095,
0.9562308716378707,
0.6399754025225444,
0.5125185891446198,
0.39412650542037386,
0.3308234032517945,
0.27402053135132737,
```

0.21684146429711595]

```
plt.xlabel('Number of K')
plt.ylabel("Sum of squared errors")
plt.plot(k_rng,sse)
```

[→ [<matplotlib.lines.Line2D at 0x7fc534d8e6d0>]

https://colab.research.google.com/drive/1SS8F11wQagKZYwNWQ8NTwuZpsBVNWpsR#scrollTo=_AyGpX-yo61a&printMode=true