SVKM's NarseeMonjee Institute of Management Studies Mukesh Patel School of Technology Management & Engineering

Unit IV

Tutorial No. 1

1. Evaluate
$$\int_{0}^{1} \int_{x^{2}}^{x} xy(x+y)dxdy$$
. Ans: $\frac{3}{56}$

2. Evaluate
$$\int_0^{a\sqrt{3}} \int_0^{\sqrt{a^2+x^2}} \frac{xdydx}{y^2+x^2+a^2}$$
. Ans: $\frac{\pi a}{4}$.

3. Evaluate
$$\int_{0}^{1} \int_{-\sqrt{y}}^{-y^2} xy dx dy$$
. Ans: $-\frac{1}{12}$

4. Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{x^2+1}} \frac{1}{y^2+x^2+1} dx dy$$
. Ans: $\frac{\pi}{4} \Big[\log \Big(1 + \sqrt{2} \Big) \Big]$

5. Evaluate
$$\iint_R y dx dy$$
 where R is the region between the parabola $x^2 = y$ and the line $x + y = 2$.

Ans.
$$\frac{36}{5}$$

6. Evaluate
$$\iint_{R} \frac{dydx}{\sqrt{1-x^2-y^2}}$$
 where R is the region of the first quadrant of ellipse $2x^2+y^2=1$.

Ans:
$$\frac{\pi}{4}$$

7. Change the order of integration
$$\int_{0}^{2a} \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} f(x,y) dx.dy \text{ Ans. } \int_{a}^{2a} \int_{y^2/2a}^{2a} + \int_{0}^{a} \int_{y^2/2a}^{a+\sqrt{a^2-y^2}} + \int_{0}^{a} \int_{a+\sqrt{a^2-y^2}}^{2a} f(x,y) dx.dy \text{ Ans. } \int_{a}^{2a} \int_{y^2/2a}^{2a} + \int_{0}^{a} \int_{y^2/2a}^{2a} + \int_{0}^{a$$

8. Change the order and Evaluate
$$\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy. dx$$
 Ans. $1-\frac{1}{\sqrt{2}}$

9. Evaluate
$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx.dy$$
 Ans. 1

10. Change the order and Evaluate
$$\int_{0}^{a} \int_{x^2/a}^{2a-x} xy \ dx \, dy$$
 Ans. $\frac{3a^4}{8}$

11. Change to polar co-ordinates and evaluate
$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} (x^2+y^2) dx.dy$$
 Ans. $\frac{3\pi}{4}$

12. Find the area bounded by
$$y^2 = 4 - 2x, x \ge 0, y \ge 0$$
. Ans: $\frac{8}{3}$ sq.units.

13. Using double integration, find the area bounded between parabolas
$$x^2 = 4ay$$
 and

SVKM's NarseeMonjee Institute of Management Studies Mukesh Patel School of Technology Management & Engineering

$$x^2 = -4a(y - 2a).$$
 Ans: $\left[\frac{16a^2}{3}\right]$

14. Find by double integration the area common to the circle $x^2 + y^2 = 10$ and the parabola $y^2 = 9x$.

Tutorial No. 2

1. Evaluate
$$\int_{-1-2}^{1} \int_{-3}^{2} dx dy dz$$
.

2. Evaluate
$$\int_{0}^{2} \int_{0}^{x} \int_{0}^{2x+2y} e^{x+y+z} dx dy dz$$
.

Ans:
$$\frac{e^{12}}{18} - \frac{e^6}{9} - \frac{e^4}{2} + e^2 - \frac{4}{9}$$

3. Evaluate
$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$$
.

4. Evaluate
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{dx dy dz}{(1+x+y+z)^{3}}.$$

$$Ans: \frac{1}{2} \left[\log 2 - \frac{5}{8} \right]$$

5. Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{dxdydz}{\left(1+x^2+y^2+z^2\right)^2}$$
 using spherical coordinates. Ans: $\frac{\pi^2}{8}$

6. Evaluate
$$\iiint \frac{dxdydz}{\sqrt{a^2 - x^2 - y^2 - z^2}}$$
 over the volume of the sphere $x^2 + y^2 + z^2 = a^2$.

Ans: $\pi^2 a^2$.

8. Find the volume bounded by the cylinder
$$x^2 + y^2 = 4$$
 and the planes $y + z = 4$ and $z = 0$
Ans: 16π

9. Find the volume bounded by
$$y^2 = x$$
, $x^2 = y$ and the planes $z = 0$ and $x + y + z = 1$.
Ans: $\left[\frac{1}{30}\right]$

10. Find the volume of the tetrahedron bounded by the plane
$$x = 0$$
, $y = 0$, $z = 0$ and $6x + 3y + 2z = 6$ Ans. 1

11. Find the volume of the sphere
$$x^2 + y^2 + z^2 = 9$$
 in first octant. Ans. 36π