

_

Linear Regression Analysis in R

```
# Applying multiple linear regression model model 1 = Im(cnt ~ .,data=train) summary(model1)
```

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-79.4201	7.3917	-10.744	< 2e-16 ***	
season2	41.7616	5.3578	7.794	6.93e-15***	
season3	33.3129	6.3740	5.226	1.75e-07***	
season4	67.2826	5.4338	12.382	< 2e-16 ***	
yr1	86.2941	1.7468	49.401	< 2e-16 ***	
mnth2	0.7558	4.3763	0.173	0.862893	
mnth3	12.2441	4.9101	2.494	0.012655*	
mnth4	3.5236	7.2709	0.485	0.627950	
mnth5	20.2297	7.7696	2.604	0.009233 **	
mnth6	2.6876	7.9759	0.337	0.736150	
:					
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1					

Residual standard error: 101.6 on 1385 degrees of freedom Multiple R-squared: 0.6869 Adjusted R-squared: 0.6857 F-statistic: 595.7 on 51 and 13851 DF p-value: < 2.2e-16

In the full output there are 51 predictor rows in addition to the intercept.

```
\widehat{o}= 101.8

df = n-p-1 = 13,903 - 52 - 1 = 13,850

R<sup>2</sup> ≈ 0.6852 ≈ 68.5% variability explained
```

Georgia Tech

3

Coding Dummy Variables in R

Create Dummy Variables weathersit = data\$weathersit

weathersit.1 = rep(0,length(weathersit)) weathersit.1[weathersit==1] = 1 weathersit.2 = rep(0,length(weathersit))

weathersit.2[weathersit==2] = 1

weathersit.3 = rep(0, length(weathersit))weathersit.3[weathersit==3] = 1

Include all dummy vars without intercept

fit.1 = Im(cnt ~ weathersit.1 + weathersit.2 +weathersit.3 - 1)

Include 3 dummy variables with intercept

 $fit.2 = Im(cnt \sim weathersit.1 + weathersit.2)$

Use categorical variable

weathersit = as.factor(data\$weathersit)

 $fit.3 = Im(cnt \sim weathersit)$

	Estimate	Std. Error	t value	Pr(> t)
weathersit.1	204.869	1.680	121.97	<2e-16 ***
weathersit.2	175.165	2.662	65.80	<2e-16 ***
weathersit.3	111.501	4.758	23.43	<2e-16 ***

summary(fit.2)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	111.501	4.758	23.43	<2e-16 ***
weathersit.1	93.369	5.046	18.50	<2e-16 ***
weathersit.2	63.665	5.452	11.68	<2e-16 ***
(6)				

summary(fit.3)

Estimate	Stu. ETTO	t value	F1(> 4)
204.869	1.680	121.972	<2e-16 ***
-29.704	3.148	-9.437	<2e-16 ***
-93.369	5.046	-18.503	<2e-16 ***
	204.869 -29.704	204.869 1.680 -29.704 3.148	204.869 1.680 121.972 -29.704 3.148 -9.437

Georgia Tech

Δ

Coding Dummy Variables in R

## Create Dummy Variables	summary(fit.1	I)			
weathersit = data\$weathersit					
weathersit.1 = rep(0,length(weathersit))		Estimate	Std. Error	t value	Pr(> t)
weathersit.1[weathersit==1]=1	weathersit.1	204.869	1.680	121.97	<2e-16 ***
weathersit.2 = $rep(0, length(weathersit))$	weathersit.2	175.165	2.662	65.80	<2e-16 ***
weathersit.2[weathersit==2] = 1	weathersit.3	111.501	4.758	23.43	<2e-16 ***
weathersit.3 = rep(0,length(weathersit)) weathersit.3[weathersit==3] = 1	summary(fit.2)				
		Estimate	Std. Error	t value	Pr(> t)
## Include all dummy vars without intercept	(Intercept)	111.501	4.758	23.43	<2e-16 ***
fit.1 = Im(cnt ~ weathersit.1 + weathersit.2 +weathersit.3 - 1)	weathersit.1	93.369	5.046	18.50	<2e-16 ***
_	weathersit.2	63.665	5.452	11.68	<2e-16 ***
## Include 3 dummy variables with intercept fit.2 = Im(cnt ~ weathersit.1 + weathersit.2)	summary(fit.3	3)			
		Estimate	Std. Error	t value	Pr(> t)
## Use categorical variable	(Intercept)	204.869	1.680	121.972	<2e-16 ***
weathersit = as.factor(data\$weathersit)	weathersit2	-29.704	3.148	-9.437	<2e-16 ***
fit.3 = Im(cnt ~ weathersit)	weathersit3	-93.369	5.046	-18.503	<2e-16 ***

Codding Dummy Variables

R Sets the "first" class as being the baseline

• If a different class is the baseline, either use dummy variables or specify with 'contr.treatment' Be careful when using a model without intercept in R!

No baseline comparison

Georgia Tech

5

Goodness of Fit: Constant Variance Assumption

Fitting the model

Creating scatterplot of residuals vs fitted values

resids = rstandard(model1) fits = model1 \$fitted plot(fits, resids, xlab="Fitted Values", ylab="Residuals", main="Scatterplot", col="darkblue")

- The constant variance assumption does not hold -- the variance increases when moving from lower to higher fitted values.
- The residuals, at low y values, seem to follow a straight-line pattern. The linear pattern in the beginning suggests that the response variable stays constant for a range of predictor values.

Georgia Tech

Goodness of Fit: Outliers

Cook's Distance

cook = cooks.distance(model1)
plot(cook,
 type="h",

lwd=3, col="darkred", ylab = "Cook's Distance", main="Cook's Distance")

There is one observation with a Cook's Distance noticeably higher than the other observations. However, its Cook's distance is close to 0.004, suggesting that there are likely no outliers.

Georgia Tech

9

Transformation of the Response Variable

Box Cox transformation

bc <- boxcox(model1)
lambda <- bc\$x[which(bc\$y=max(bc\$y))]</pre>

Fitting the model with square root transformation model2<-Im(sqrt(cnt)~..data=train)

summary(model2)

 Generally, when the response data consist of count data, a theoretically recommended transformation is the square root, corresponding to a 0.5 power transformation.

Georgia Tech

Regression Analysis after Transformation

Fitting the model with square root transformation model2<-Im(sqrt(cnt)-.,data=train)

modei2<-**im(sqrt**(cnt)~.,data=train summary(model2)

Find Insignificant Values

which(summary(model2)\$coeff[,4]>0.05)

mnth2 mnth4 mnth6 mnth7 mnth8 mnth10 mnth11 weekday1

Multicollinearity

vif(model2)

	GVIF	Df	GVIF*(1/(2*Df))
season	165.308	3	2.343
y r	1.025	1	1.012
mnth	323.778	11	1.300
hr	1.771	23	1.012
holiday	1.121	1	1.059
weekday	1.137	6	1.011
weathersit	1.386	2	1.085
temp	51.283	1	7.161
atemp	43.748	1	6.614
hum	1.921	1	1.386
windspeed	1.251	1	1.118

Model Performance

summary (model2)\$r.squared

##[1]0.786535

As VIFs of the season, mnth, temp, atemp factors are greater than max(10, 1/(1-R²)), it indicates there is a problem of multicollinearity in the linear model. So, we should not use all the predictors in the model.

Georgia Tech

11

12

Removing Low Demand Data

Remove data for hours 0-6

hrs <- as.numeric(data\$hr) data_red <- data[which(hrs>=7),] ## Test/Train Data

set.seed(9) # for uniformity sample_size <- floor(0.8*nrow(data_red)) picked <- sample(seq_len(nrow(data_red)),size = sample_size)</pre> train_red <- data_red[picked, -c(1,2,9,15,16)] test_red <- data_red[-picked, -c(1,2,9,15,16)]

Fitting the model with square root transformation

model3<-lm(sqrt(cnt)~.,data=train_red) summary(model3)\$r.squared [1] 0.6579021 df<-which(summary(model3)\$coeff[,4]>0.05)

mnth7 mnth11 mnth12 hr14 hr15 hr20 23

Georgia

13

Goodness of Fit without Low Demand Data

- The constant variance assumption is still violated even for the model without the low demand data and with the transformed response.
- The implication of the constant variation assumption violation is that the uncertainty in predicting bike demand when in high demand will be higher than estimated using the multiple regression models in this lesson.

Georgia

