Noviembre 2018

- 1. Tres partículas, cargadas con la misma carga q, se sitúan en los vértices de un triángulo equilátero de lado 2a, de forma que dos de las cargas están en los puntos (-a,0,0) y (a,0,0) y la tercera está situada sobre el semieje Z positivo. De forma razonada, determinar:
- 1) La energía electrostática del sistema.
- 2) El campo eléctrico en cualquier punto del eje Z (excluida la posición de la carga que está sobre dicho eje).
- 3) El momento de fuerzas que actuaría sobre un dipolo, de momento dipolar $\vec{p} = b(\vec{u}_x 2\vec{u}_y + 4\vec{u}_z)$, que sólo puede rotar, si se colocase en el origen de coordenadas.

Abril 2019

- **2.** Tres cargas puntuales, $q_1 = q$, $q_2 = -2q$ y $q_3 = -q$, están situadas como indica la figura. De forma razonada, obtener:
- 1) La energía electrostática del sistema.
- 2) La energía potencial que tendría un dipolo, de momento dipolar $\vec{p} = p_0 \left(16\vec{u}_x 9\vec{u}_y \right)$, si se situara en el punto (0,3a).

Problema 2

Enero 2019

- **3.** Una carga puntual, $q_1 = -q_0$, se sitúa en el punto $\left(a, -a\sqrt{3}\right)$ del plano XY. Una segunda carga puntual, q_2 , de valor desconocido, se coloca en el punto $\left(-3a, 0\right)$ del mismo plano. Sabiendo que un dipolo, de momento dipolar $\vec{p} = p_0 \left(\frac{\sqrt{3}}{2}\vec{u}_x + \frac{1}{2}\vec{u}_y\right)$, que sólo puede rotar y está situado en el origen de coordenadas, se encuentra en equilibrio, determinar razonadamente:
- 1) El valor de la carga q_2 .
- 2) Si el dipolo está en equilibrio estable o inestable.
- 3) El trabajo que debe realizar un agente externo para colocar el dipolo paralelo al vector $+\vec{u}_x$.

Abril 2018

4. Un plano uniformemente cargado, que coincide con el plano YZ y dos hilos rectilíneos e indefinidos, paralelos al eje Z y cargados uniformemente con densidades $\lambda_1 = \frac{5\lambda}{2}$ y $\lambda_2 = -4\lambda$ se sitúan como indica la figura. Obtener razonadamente la densidad de carga del plano, sabiendo que, para que un dipolo \vec{p} , situado en el punto (a,0,0), estuviera en equilibrio, debería orientarse de forma que $\vec{p} \parallel \vec{u}_y$.

Problema 4

Abril 2019

- 5. El sistema de la figura está formado por un hilo rectilíneo e indefinido y un plano cargado con densidad superficial σ . El hilo, de radio a, está uniformemente cargado y es coaxial con el eje Z. Si en el punto $\left(2a,2a\sqrt{3},0\right)$ se situara una carga puntual, la fuerza que se ejercería sobre ella sería paralela al eje Y. Determinar razonadamente:
- 1) La densidad volumétrica de carga del hilo.

Problema 5

2) La diferencia de potencial $V_B - V_A$ entre los puntos B(0,2a,0) y $A(0,\frac{a}{2},0)$.

Julio 2016

6. Una carga puntual q y una esfera de radio a uniformemente cargada, están situadas como indica la figura. Si el potencial electrostático en el punto (a/2,0,0) es $\frac{115q}{96\pi\epsilon_0 a}$, determinar de forma razonada la energía potencial de un dipolo eléctrico, de momento dipolar $\vec{p} = p\left(\vec{u}_x - \vec{u}_y\right)$, situado en el punto $\left(-a\sqrt{2},0,0\right)$.

Problema 6

Junio 2019

7. Un hilo rectilíneo e indefinido, cargado con densidad lineal de carga λ y paralelo al eje Z, se sitúa como muestra la figura. Determinar la carga que debe situarse en el punto (-6a,0,0), para que un dipolo de momento dipolar $\vec{p}=p\vec{u}_y$, situado en el punto (0,8a,0) y que sólo puede rotar, permanezca en equilibrio. Justificar si el equilibrio es estable o inestable, y obtener su energía potencial.

Problema 7

Julio 2019

8. Una lámina indefinida, de anchura 4b, uniformemente cargada, y un hilo rectilíneo e indefinido, cargado con densidad lineal de carga λ y situado sobre el plano XY, se disponen como muestra la figura. Sabiendo que el campo eléctrico es nulo en el eje Y, obtener razonadamente la diferencia de potencial $V_B - V_A$ entre los puntos A(-3b,b,0) y B(4b,0,0).

Dato. Campo eléctrico generado por una lámina de anchura a: $\vec{E}_{\text{exterior}} = \frac{\rho a}{2\varepsilon} \vec{u}_{\perp}$; $\vec{E}_{\text{interior}} = \frac{\rho d}{\varepsilon} \vec{u}_{\perp}$ (d distancia al plano de simetría)

Problema 8

Enero 2019

- 9. Dos planos indefinidos, uniformemente cargados con densidades de carga σ y $-\sigma$, y un hilo indefinido, cargado con densidad lineal de carga λ , están situados como se indica en la figura. Obtener razonadamente:
- 1) El campo eléctrico en cualquier punto del plano XY.
- 2) La relación que debería existir entre σ y λ para que la diferencia de potencial $V_B V_A$ fuera nula.

Noviembre 2018

10. Un dipolo, de momento dipolar $\vec{p} = p_0 \vec{u}_x$ se sitúa en el origen de coordenadas, punto que coincide con el centro de una corona esférica de radios R y 3R, cargada con densidad cúbica $\rho = \frac{3p_0}{16\pi R^4}$. De forma razonada, obtener el trabajo realizado en contra del campo para desplazar una carga puntual q desde el punto $\left(\frac{R}{2},0,0\right)$ hasta el punto $\left(2R,0,0\right)$.

Problema 9

Julio 2019

11. Un hilo rectilíneo e indefinido, con densidad de carga uniforme λ , se sitúa sobre el eje Y. En el punto $\left(a, a\sqrt{3}, 0\right)$ se coloca un dipolo que sólo puede rotar y se observa que, en el instante inicial, su energía

potencial es
$$-\frac{b\lambda\sqrt{3}}{\pi a\varepsilon_0}$$
 y sobre él actúa un momento de fuerzas $\frac{b\lambda}{\pi a\varepsilon_0}(-\vec{u}_z)$.

1) Determinar razonadamente el momento dipolar del dipolo en el instante inicial.

Una vez que el dipolo se encuentra en su posición de equilibrio estable, obtener detalladamente:

- 2) El campo eléctrico en el punto A(a,0,0).
- 3) La diferencia de potencial entre el punto A y el punto B(2a,0,0).

Julio 2018

- 12. Una varilla de longitud 3a, uniformemente cargada con densidad lineal de carga λ , se sitúa sobre el plano XY, tal como muestra la figura. Determinar de forma razonada:
- 1) El campo eléctrico en el origen de coordenadas.

En el origen de coordenadas se coloca un dipolo eléctrico contenido en el plano XZ:

2) Obtener razonadamente su momento dipolar \vec{p} , expresándolo en coordenadas cartesianas, si el momento de fuerzas que actúa sobre él es $\frac{p_0 \lambda}{\pi \epsilon_v a \sqrt{20}} \left(-2 \, \vec{u}_x + 6 \, \vec{u}_y - \vec{u}_z \right).$

Problema 12

$$\frac{1}{6} = \frac{1}{4\pi 6 \pi^{2}} =$$

2.
$$q_1 = q$$
 $q_2 = dq$ $q_3 = q$

2. $q_1 = q$ $q_2 = dq$ $q_3 = q$

4) Group's elaction by dec.

1. $q_1 = q_2$
 $q_1 = q_2$
 $q_1 = q_2$
 $q_1 = q_2$
 $q_2 = q_2$
 $q_3 = q_4$
 $q_4 = q_4$
 $q_4 = q_5$
 $q_4 = q_4$
 $q_4 = q_5$
 $q_5 =$

Ep = -p". E fosso) = Po (16 eix - 9 vy). \(\frac{9}{4 \pi_6 a^2} \left(\frac{253}{200} \left(\frac{71}{100} \right) = \frac{9}{4 \pi_6 a^2} \left(\frac{71}{100} \right) = \frac{9}{4 \pi_6 a^2} \left(\frac{71}{100} \right) = \frac{9}{4 \pi_6 a^2} \left(\frac{71}{100} \right) Ep = 4 Po 182 - 4 Po 89

Costa el corpo en alintora de un sirretro Tintera baia, enten palinde)

Al colabor el capa bass els siretis a hagatalts colabor Gouss,

El compo senosdo por el cilindo en cleinterio es indotiguide del seesde por la

indefinde de denoited limit de 605,1 D.

$$\vec{\epsilon}$$
 (2a, 2a, $\vec{\epsilon}$) = $\vec{\epsilon}$ [$\vec{\epsilon}$ [$\vec{\epsilon}$ [$\vec{\epsilon}$ [$\vec{\epsilon}$] $\vec{\epsilon}$] + $\vec{\epsilon}$ [$\vec{\epsilon}$ [$\vec{\epsilon}$] $\vec{\epsilon}$] + $\vec{\epsilon}$ [$\vec{\epsilon}$ [$\vec{\epsilon}$] $\vec{\epsilon}$] = $\vec{\epsilon}$ [$\vec{\epsilon}$ [$\vec{\epsilon}$] $\vec{\epsilon}$] $\vec{\epsilon}$] $\vec{\epsilon}$] $\vec{\epsilon}$ [$\vec{\epsilon}$] $\vec{\epsilon}$

$$f_{X} = 0 = -0 + \frac{\lambda}{S\pi a}$$

$$\sigma = \frac{\lambda}{S\pi a}$$

$$\lambda = S\sigma\pi a$$

$$\lambda = \frac{q}{S}$$

5: elempe combo de exprésió hoy que horele en voiso 2000. Esta de exploide condo solge y entre de la siretas o corde contre de postié relates respecte a us frente de enga

Bis colorlas el comperend intois del cilinate options Gouss

Tonte de co de se soulon

The dsi are
$$dsi$$
 to probe.

The dsi are dsi to probe.

$$\iint_{S} \vec{E} \cdot ds = \iint_{S} \vec{E} \cdot ds = \underbrace{\int_{S} \vec{E} \cdot S_{3} = E \cdot S_$$

Portablished:

$$Cost = \frac{p^{\alpha}}{2\epsilon e} \text{ is } Cost = \frac{p^{\alpha}}{2\epsilon$$

PLANOS. 9

$$\mathcal{E}_{\beta} = \frac{\sigma}{2E\sigma} \quad \mathcal{U}_{\beta}$$

$$\mathcal{E}_{hlo} = \frac{\lambda}{2\pi E_{\sigma} r} \quad \mathcal{U}_{r}$$

$$\frac{1}{E_{T}} = \frac{\sigma}{2E_{0}} \left(-\frac{1}{\sqrt{2}}\right) + \frac{\lambda}{2\pi E_{0} \left(b+1\times 1\right)} \left(-\frac{1}{\sqrt{2}}\right) + \frac{\left(-\frac{1}{\sqrt{2}}\right)}{2E_{0}} \left(-\frac{1}{\sqrt{2}}\right)$$

$$\frac{1}{E_{T}} \left(x(0)\right) = \frac{\lambda}{2\pi E_{0} \left(b+1\times 1\right)} \left(-\frac{1}{\sqrt{2}}\right)$$

PDD
$$0 < x < b$$

$$\frac{1}{t} = \frac{\sigma}{2\epsilon_0} \left(\frac{1}{\sqrt{1+\epsilon_0}} \right) + \frac{\lambda}{2\pi\epsilon_0} \left(\frac{1}{\sqrt{1+\epsilon_0}} \right) + \frac{\lambda}{2\epsilon_0} \left(\frac{1}{\sqrt{1+\epsilon_0}} \right) + \frac{\lambda}{2\epsilon_0}$$

Par b < x 22b
$$\vec{\xi} = \frac{\sigma}{2\epsilon_0} (\vec{\omega_x}) + \frac{\lambda}{2 + \epsilon_0 (x-b)} \vec{\omega_x} + \frac{(-\sigma)}{2\epsilon_0} (-\vec{\omega_x}) = \frac{\lambda}{2 + \epsilon_0 (x-b)} \vec{\omega_x} + \frac{\sigma}{\epsilon_0} \vec{\omega_x}$$

But
$$2b \in X$$

$$E = \frac{O(1)}{2E}(1) + \frac{\lambda}{2\pi E(X-b)} + \frac{1}{2EO} = \frac{\lambda}{2\pi E(X-b)}$$

$$\frac{1}{2\pi E(X-b)} = \frac{\lambda}{2\pi E(X-b)}$$

Vertical enter
$$\sigma_{Y}\lambda$$

Richard (\frac{9b}{3},0)

 $V_{B}-V_{A} = 0$

Prite B: $(\frac{9b}{3},0)$
 $V_{B}-V_{A} = -\int_{A}^{B} \vec{c} d\vec{l} = -\int_{\frac{9b}{3}}^{\frac{9b}{3}} \left(\frac{\lambda}{2\pi\epsilon_{0}(x-b)} + \frac{\sigma}{\epsilon_{0}}\right) dx$

$$= -\left(\frac{\lambda}{2\pi\epsilon_{0}} \int_{a}^{\infty} (x-b) + \frac{\sigma}{\epsilon_{0}} x\right) \int_{\frac{9b}{3}}^{\frac{9b}{3}} = -\left(\frac{\lambda}{2\pi\epsilon_{0}} \int_{a}^{\infty} \frac{2b/3}{b/3} + \frac{\sigma}{\epsilon_{0}} b/3\right)$$

where $V_{B}-V_{A} = 0$

$$\frac{O}{\epsilon_{0}} b/3 = \frac{\lambda}{2\pi\epsilon_{0}} \int_{a}^{\infty} \left(\frac{2b/3}{b/2}\right) dx$$

$$\frac{O}{\epsilon_{0}} b/3 = \frac{\lambda}{2\pi\epsilon_{0}} \int_{a}^{\infty} \left(\frac{2b/3}{b/2}\right) dx$$

$$\frac{O}{\epsilon_{0}} b/3 = \frac{\lambda}{2\pi\epsilon_{0}} \int_{a}^{\infty} \left(\frac{2b/3}{b/2}\right) dx$$

Herresto dipeter pepo ux Densided velocidizes de la cargo : P = Q & P = 3po = de de de la cargo : P = Q & P = 16 TR4 = dV Wext (cost A host B) = DEp = q DV = q (VB-VA) Wext = - WE V(B)-V(A) = - \int_A \int d\bar{\epsilon} = - \int_A \int dipdo - \int_B \int corons d\bar{\epsilon} E=Edipb + Ecorono. Vdipolo = PCOO] Prode A:

TA = R/Z ; COOB=1

TB = ZR ; COOB=1 $V_{A} = \frac{P^{CSQ}}{4\pi\epsilon \left[\frac{P}{2}\right]^{2}} = \frac{P}{4\pi\epsilon} \cdot \frac{4}{R^{2}}$ $V_{B} = \frac{P^{CSQ}}{4\pi\epsilon \left[\frac{P}{2R}\right]^{2}} = \frac{P}{4\pi\epsilon} \cdot \frac{1}{4R^{2}}$ VB-VA = 1780 (4R2 - 1/2) = - 15 PO
16 TEO R2

$$\int_{A}^{B} \frac{1}{16\pi R^{4}} \int_{A}^{B} \frac{1}{16\pi R^{4}} \frac{1}{16$$

Dipole person equilibre with:

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out}$$

$$E_{p} = -p \cdot E_{out}$$

Problema 1

1)
$$W = \frac{3q^2}{8\pi\epsilon_0 a}$$

2)
$$\vec{E}(z < a\sqrt{3}) = \left(\frac{2qz}{4\pi\varepsilon_0 (z^2 + a^2)^{3/2}} - \frac{q}{4\pi\varepsilon_0 (a\sqrt{3} - z)^2}\right) \vec{u}_z$$

$$\vec{E}(z > a\sqrt{3}) = \left(\frac{2qz}{4\pi\varepsilon_0 (z^2 + a^2)^{3/2}} + \frac{q}{4\pi\varepsilon_0 (z - a\sqrt{3})^2}\right) \vec{u}_z$$

3)
$$\vec{\tau} = \frac{bq}{12\pi\varepsilon_0 a^2} \left(2 \vec{u}_x + \vec{u}_y \right)$$

Problema 2

$$1) \quad W = -\frac{q^2}{120\pi\varepsilon_0 a}$$

2)
$$E_p = -\frac{91p_0q}{250\pi\epsilon_0 a^2}$$

Problema 3

1)
$$q_2 = -\frac{9}{2}q_0$$

2) Equilibrio inestable.

3)
$$W = -\frac{q_0 p_0 \sqrt{3}}{32\pi\epsilon_0 a^2} (2 - \sqrt{3})$$

Problema 4

$$\sigma = -\frac{9\lambda}{40\pi a}$$

Problema 5

1)
$$\rho = 8\frac{\sigma}{a}$$

2)
$$V_B - V_A = -\frac{4\sigma a}{\varepsilon_0} \left(\frac{3}{8} + \ln 2 \right)$$

Problema 6

$$E_p = \frac{3pq}{8\pi\epsilon_0 a^2}$$

Problema 7

$$Q = \frac{64\lambda a}{5}$$
. El equilibrio es estable. $E_p = -\frac{39p\lambda}{1250\pi\epsilon_0 a}$

Problema 8

$$V_B - V_A = \frac{3\lambda}{2\pi\varepsilon_0} \left[\left(\ln 2 \right) - \frac{9}{20} \right]$$

Problema 9

1)
$$\vec{E}(x<0) = \frac{\lambda}{2\pi\epsilon_0(x-b)}\vec{u}_x = \vec{E}(x>2b); \quad \vec{E}(0$$

$$2) \quad \frac{\sigma}{\lambda} = -\frac{3 \ln 2}{2\pi b}$$

Problema 10

$$W = -\frac{q p_0}{\pi \varepsilon_0 R^2}$$

Problema 11

1)
$$\vec{p}_i = 4b \left(\frac{\sqrt{3}}{2} \vec{u}_x + \frac{1}{2} \vec{u}_y \right)$$

$$2) \quad \vec{E}_A = \frac{1}{2\pi\varepsilon_0 a} \left(\lambda - \frac{2b}{3a^2 \sqrt{3}} \right) \vec{u}_x$$

3)
$$V_A - V_B = \frac{1}{2\pi\varepsilon_0} \left[(\lambda \ln 2) - \frac{b}{4a^2} \right]$$

Problema 12

1)
$$\vec{E}(0,0) = -\frac{\lambda}{80\pi\varepsilon_0 a} \left(3\vec{u}_x + \vec{u}_y \right)$$

2)
$$\vec{p} = \frac{80p_0}{\sqrt{20}} (\vec{u}_x - 2\vec{u}_z)$$