Vertex of the Quadratic

Given a quadratic $x(e) = a e^2 + b e + c$ compute its value at $e_1 = -\frac{b}{2a}$ namely $X(e_1) = C - \frac{b^2}{4a}$

Now compute the same quadratic at ${\sf e_{1}}{ ext{+}}{\sf h}$, namely $x(e_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = x(e_1 + h) - x(e_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1.

However if $rac{f a < f 0}$ then riangle < f 0 or vertex is the global maximum!

