Chapter One: Topological Space

Definition:

Let X be a non empty set and let T be a subfamily of P(X), T is said to be a topology on X iff:

- 1) $X, \emptyset \in T$.
- 2) If $U, V \in T \Longrightarrow U \cap V \in T$.
- 3) If $U_{\alpha} \in T$, $\forall \alpha \in \Lambda \Longrightarrow \bigcup_{\alpha \in \Lambda} U_{\alpha} \in T$.

And (X,T) is called a topological space.

Example:

Let $X = \{1,2,3\}$, $T_1 = \{X,\{1\},\{1,2\}\}$ is not a topology on X, since $\emptyset \notin T_1$.

 $T_2 = \{\emptyset, \{1,2\}, \{1,3\}, \{1\}\}\$ is not a topology on X, since $X \notin T_2$.

 $T_3 = \{X, \emptyset, \{1,2\}, \{1,3\}\}$ is not a topology on X,

Since, $\{1,2\} \in T_3 \ \text{ and } \{1,3\} \in T_3 \ \text{ , but } \{1,2\} \cap \{1,3\} = \{1\} \not\in T_3 \ .$

 $T_4=\left\{X,\emptyset,\{1\},\{2\}\right\}$ is not a topology on X, Since, $\{1\}\in T_4$ and $\{2\}\in T_4$, but $\{1\}\cup\{2\}=\{1,2\}\not\in T_4$.

 $T_5 = \{X, \emptyset, \{1\}, \{2\}, \{1,2\}\}\$ is a topology on X, since

- 1. $X, \emptyset \in T_5$
- **2.** $\{1\} \in T_5, \{2\} \in T_5 \Longrightarrow \{1\} \cap \{2\} = \emptyset \in T_5$
 - $\{1\} \in T_5, \{1,2\} \in T_5 \Longrightarrow \{1\} \cap \{1,2\} = \{1\} \in T_5$
 - $\{2\} \in T_5, \{1,2\} \in T_5 \Longrightarrow \{2\} \cap \{1,2\} = \{2\} \in T_5$
- 3. $\{1\} \in T_5, \{2\} \in T_5 \Longrightarrow \{1\} \cup \{2\} = \{1,2\} \in T_5$
 - $\{1\} \in T_5, \{1,2\} \in T_5 \Longrightarrow \{1\} \cup \{1,2\} = \{1,2\} \in T_5$
 - $\{2\} \in T_5, \{1,2\} \in T_5 \Longrightarrow \{2\} \cup \{1,2\} = \{1,2\} \in T_5$
 - $\{1\} \in T_5$, $\{2\} \in T_5$, $\{1,2\} \in T_5$
 - $\implies \{1\} \cup \{2\} \cup \{1,2\} = \{1,2\} \in T_5$.

Homework: On a set with (3) elements we can define (29) topologies.

Definition:

Let (X,T) be a topological space. A subset U of X is said to be open set iff $U \in T$.

i.e. $U \subseteq X$ is open $\Leftrightarrow U \in T$.

A subset F of X is said to be closed set iff F^c is open set.

<u>i.e.</u> $F \subseteq X$ is closed $\iff F^c$ is open $\iff F^c \in T$.

The family of all closed subsets of X is denoted by \mathcal{F} .

<u>i.e.</u> T is the family of all open sets.

 \mathcal{F} is the family of all closed sets.

Example:

Let
$$X = \{1,2,3\}, T = \{X, \emptyset, \{1\}, \{1,2\}\} T$$
 is a topology on X .

Now we can find the family of all closed sets in X as follows:

$$T = \{X, \emptyset, \{1\}, \{1,2\}\}$$

$$\mathcal{F} = \{X^{c}, \emptyset^{c}, \{1\}^{c}, \{1,2\}^{c}\}$$

$$\Rightarrow \mathcal{F} = \{\emptyset, X, \{2,3\}, \{3\}\}$$

The family of all closed subsets of X is $\mathcal{F} = \{X, \emptyset, \{2,3\}, \{3\}\}.$

Theorem:

Let (X,T) be a topological space and Let \mathcal{F} be the family of all closed subsets of X, then:

- 1) $X, \emptyset \in T$.
- 2) If $A, B \in \mathcal{F} \Longrightarrow A \cup B \in \mathcal{F}$.
- 3) If $A_{\alpha} \in \mathcal{F}$, $\forall \alpha \in \Lambda \Longrightarrow \bigcap_{\alpha \in \Lambda} A_{\alpha} \in \mathcal{F}$.

Proof:

- 1) $X^c = \emptyset \in T$, $\emptyset^c = X \in T$ by condition (1) of T.
- \Rightarrow X, $\emptyset \in \mathcal{F}$ by definition of \mathcal{F} .

2) Let A, B $\in \mathcal{F}$, to prove AUB $\in \mathcal{F}$.

 $A \in \mathcal{F} \Longrightarrow A^c \in T$, $B \in \mathcal{F} \Longrightarrow B^c \in T$ (By definition of \mathcal{F}).

- \Rightarrow A^c \cap B^c \in T (By condition (2) of T).
- \Rightarrow (AUB)^c \in T (By De-Morgan Laws).
- \Rightarrow AUB $\in \mathcal{F}$ (By definition of \mathcal{F}).
 - **3**) Let $A_{\alpha} \in \mathcal{F}$, $\forall \alpha \in \Lambda$, To prove $\bigcap_{\alpha \in \Lambda} A_{\alpha} \in \mathcal{F}$.

 $(\bigcap_{\alpha \in \Lambda} A_{\alpha})^{c} = \bigcup_{\alpha \in \Lambda} A_{\alpha}^{c}$ (By De-Morgan Laws)

But $A_{\alpha}^{c} \in T$, $\forall \alpha$ (By definition of \mathcal{F}).

 $\bigcup_{\alpha \in \Lambda} A_{\alpha}^{c} \in T$ (By condition (3) of T)

 $(\bigcap_{\alpha \in \Lambda} A_{\alpha})^{c} \in T \Longrightarrow \bigcap_{\alpha \in \Lambda} A_{\alpha} \in \mathcal{F}.$

Theorem:

Let $X \neq \emptyset$ and let $\mathcal{F} \subseteq \mathbb{P}(X)$ such that:

- 1. $X, \emptyset \in \mathcal{F}$.
- 2. If $A, B \in \mathcal{F} \Longrightarrow A \cup B \in \mathcal{F}$.
- 3. If $A_{\alpha} \in \mathcal{F}$, $\forall \alpha \in \Lambda \Longrightarrow \bigcap_{\alpha \in \Lambda} A_{\alpha} \in \mathcal{F}$, then

 $T = \{U \subseteq X | U^c \in \mathcal{F}\}$ is a topology on X.

Proof:

- 1) $X^c = \emptyset \in \mathcal{F}$, $\emptyset^c = X \in \mathcal{F}$ (By hypothesis (1)).
- \Rightarrow X, $\emptyset \in T$.
 - **2**) Let $U, V \in T$, to prove $U \cap V \in T$.

 $U^c \in \mathcal{F}$, $V^c \in \mathcal{F}$ (By definition of T).

- \Rightarrow U^c \bigcup V^c $\in \mathcal{F}$ (By hypothesis (2)).
- \Rightarrow $(U \cap V)^c \in \mathcal{F}$ (By De-Morgan Laws).
- \Rightarrow U \cap V \in T.

3) Let $U_{\alpha} \in T$, $\forall \alpha \in \Lambda$, To prove $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T$.

 $U_{\alpha}^{c} \in \mathcal{F}$, $\forall \alpha \in \Lambda$ (By definition of T).

 $\bigcap_{\alpha \in \Lambda} U_{\alpha}^{c} \in \mathcal{F}$ (By hypothesis (3))

. $(\bigcup_{\alpha \in \Lambda} U_{\alpha})^c \in \mathcal{F}$ (By De-Morgan Laws).

$$\Rightarrow \bigcup_{\alpha \in \Lambda} U_{\alpha} \in T$$
.

T is a topology on X with family of closed sets \mathcal{F} .

Types Of Topological Spaces

Definition: (The Discrete Topology (D), $D = \mathbb{P}(X)$):

Let $X \neq \emptyset$ and $\mathbb{P}(X)$ is the power set of X, then $T = \mathbb{P}(X)$ is a topology on X which is called the discrete topology and denoted by (D).

Q: Prove that the discrete topology D is topological space.

Proof:

- 1) Since $X \subseteq X \Longrightarrow X \in \mathbb{P}(X)$ (By definition of $\mathbb{P}(X)$).
- $\Rightarrow X \in T$

And since $\emptyset \subseteq X \Longrightarrow \emptyset \in \mathbb{P}(X)$ (By definition of $\mathbb{P}(X)$).

 $\emptyset \in T$.

2) Let $U, V \in T$, to prove $U \cap V \in T$.

 $U,V\in T\Longrightarrow\ U,V\in\mathbb{P}(X)$

- \Rightarrow U \subseteq X and V \subseteq X (By definition of $\mathbb{P}(X)$).
- \Rightarrow U \cap V \subseteq X
- \Rightarrow U \cap V \in $\mathbb{P}(X)$
- \Rightarrow U \cap V \in T.
 - **3**) Let $U_{\alpha} \in T$, $\forall \alpha \in \Lambda$, To prove $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T$.

 $U_{\alpha} \in \mathbb{P}(X) \Longrightarrow U_{\alpha} \subseteq X$, $\forall \alpha \in \Lambda$.

 $\label{eq:continuity} \bigcup_{\alpha \in \Lambda} \mathrm{U}_\alpha \subseteq \mathrm{X} \Longrightarrow \bigcup_{\alpha \in \Lambda} \mathrm{U}_\alpha \in \mathbb{P}(\mathrm{X}).$

 $U_{\alpha \in \Lambda} U_{\alpha} \in T$.

T is a topology on X which is the Largest topology we can defined on X.

Definition:(The Indiscrete Topology (I)):

Let $X \neq \emptyset$, then $T = \{X, \emptyset\}$ is a topology on X which is called the indiscrete topology and denoted by (I), this topology is the smallest topology we can defined on X.

Q: Prove that the indiscrete topology I is topological space.

- 1) $X, \emptyset \in T$ (By definition of T)
- 2) $X \cap \emptyset = \emptyset \in T$
- 3) $X \cup \emptyset = X \in T$

 $T = I = \{X, \emptyset\}$ is a topology on X.

Definition:(The Fixed Point Topology):

Let $X \neq \emptyset$ and $p \in X$ then:-

- i. $T = \{U \subseteq X | p \in X \text{ or } U = \emptyset\}$ is a topology on X.
- ii. $T = \{U \subseteq X | p \notin X \text{ or } U = X\}$ is a topology on X.

Q: Prove that the fixed point topology is topological space.

Proof:

 $T = \{U \subseteq X | p \in X \text{ or } U = \emptyset\}.$

- **1.** $\emptyset \in T$ (By definition of T), since $p \in X \Longrightarrow X \in T$.
- **2.** Let $U, V \in T$, to prove $U \cap V \in T$

$$U \in T \Longrightarrow p \in U \text{ or } U = \emptyset$$

$$V \in T \Longrightarrow p \in V \text{ or } V = \emptyset$$

$$p \in U \cap V \Longrightarrow U \cap V \in T$$

$$U \cap V = \emptyset \Longrightarrow U \cap V \in T$$

 $U \cap V \in T$.

3. Let $U_{\alpha} \in T$, $\forall \alpha \in \Lambda$, to prove $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T$

 $U_{\alpha} \in T \Longrightarrow p \in U_{\alpha}, \forall \alpha \Longrightarrow p \in \bigcup_{\alpha \in \Lambda} U_{\alpha}.$

$$U_{\alpha} \in T \Longrightarrow U_{\alpha} = \emptyset, \forall \alpha \Longrightarrow \bigcup_{\alpha \in \Lambda} U_{\alpha} = \emptyset.$$

 $U_{\alpha} \in T \Longrightarrow p \in U_{\alpha}$, for some α and $U_{\alpha} = \emptyset$ for another some $\alpha \implies p \in \bigcup_{\alpha \in \Lambda} U_{\alpha}$.

 $\Rightarrow \bigcup_{\alpha \in \Lambda} U_{\alpha} \in T.$

 $T = \{U \subseteq X | p \notin X \text{ or } U = X\}.$

- **1.** $X \in T$ (By definition of T), since $p \notin X \Longrightarrow \emptyset \in T$.
- **2.** Let $U, V \in T$, to prove $U \cap V \in T$

$$U \in T \Longrightarrow p \notin U \text{ or } U = X$$

$$V \in T \Longrightarrow p \notin V \text{ or } V = X$$

$$p \notin U \cap V \Longrightarrow U \cap V \in T$$

$$U \cap V = X \Longrightarrow U \cap V \in T$$

 $U \cap V \in T$.

3. Let $U_{\alpha} \in T$, $\forall \alpha \in \Lambda$, to prove $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T$

$$U_{\alpha} \in T \Longrightarrow p \notin U_{\alpha}, \forall \alpha \Longrightarrow p \notin \bigcup_{\alpha \in \Lambda} U_{\alpha}.$$

$$U_{\alpha} \in T \Longrightarrow U_{\alpha} = X$$
, $\forall \alpha \Longrightarrow \bigcup_{\alpha \in \Lambda} U_{\alpha} = X$.

 $U_{\alpha} \in T \Longrightarrow p \notin U_{\alpha} \text{, for some } \alpha \text{ and } U_{\alpha} = X \text{ for another some } \alpha \implies \bigcup_{\alpha \in \Lambda} U_{\alpha} = X.$

 $\Longrightarrow \bigcup_{\alpha \in \Lambda} U_{\alpha} \in T.$

T is a topology on X.

Definition:(The usual Topology):

Let $T_u = \{X, \emptyset, U; \forall x \in U \exists open interval(a, b); x \in (a, b) \subseteq U\}$ or $T_u = \{U \subseteq X; U = union of family of open interval\}.$

Q: Show that (X, T_u) is a topological space. (Exersices).

Definition:(The Cofinite Topology):

Let X be infinite set and $T_{cof} = \{U \subseteq X; U^c = \text{finite set}\} \cup \{\emptyset\}.$

Q: Show that (X, T_{cof}) is a topological space. (Exersices).

Q: The union of any family of closed sets is closed (prove or disprove).

For example: (disprove)

In
$$(\mathbb{N}, T_{cof})$$
, let $A_n = \{n+1\}, n \in \mathbb{N}$

i.e.
$$A_1 = \{2\}, A_2 = \{3\}, A_3 = \{4\}, ...$$

Note that $\{A_n\}_{n\in\mathbb{N}}$ is a family of closed sets in (\mathbb{N}, T_{cof}) .

But
$$\bigcup_{n\in\mathbb{N}} A_n = \{2,3,4,5,...\} = \mathbb{N}/\{1\}$$
 is not closed set in (\mathbb{N}, T_{cof}) .

Therefore, the union of any family of closed sets need not to be closed.

Theorem:

Let X be a nonempty set and let T_1 , T_2 be two topologies on X, then $T_1 \cap T_2$ is atopology on X.

Proof:

- 1) $X, \emptyset \in T_1$ (By condition(1) of T_1).
 - $X, \emptyset \in T_2$ (By condition(1) of T_2).
 - \Rightarrow X, $\emptyset \in T_1 \cap T_2$ (By definition of \cap).
- 2) Let $U, V \in T_1 \cap T_2$, to prove $U \cap V \in T_1 \cap T_2$

$$U \in T_1 \land V \in T_1$$
, $U \cap V \in T_1$ (By condition(2) of T_1).

$$U \in T_2 \land V \in T_2$$
, $U \cap V \in T_2$ (By condition(2) of T_2).

$$\Rightarrow$$
 U\cap V \in T_1\cap T_2 (By definition of \cap).

3) Let
$$U_{\alpha} \in T_1 \cap T_2$$
, $\forall \alpha \in \Lambda$, to prove $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T_1 \cap T_2$

$$U_{\alpha} \in T_1, \forall \alpha \in \Lambda \land U_{\alpha} \in T_2, \forall \alpha \in \Lambda$$

$$\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T_1$$
 (By condition(3) of T_1).

$$\bigcup_{\alpha \in \Lambda} \bigcup_{\alpha} \in T_2(By condition(3) of T_2).$$

$$\Rightarrow \bigcup_{\alpha \in \Lambda} U_{\alpha} \in T_1 \cap T_2.$$

 $T_1 \cap T_2$ is a topology on X.

Q: $T_1 \cup T_2$ need not necessary to be a topology on X (prove or disprove).

For example:

Let $X = \{1,2,3\}$, $T_1 = \{X, \emptyset, \{1\}\}$, $T_2 = \{X, \emptyset, \{2\}\}$, T_1 and T_2 are two topologies on X.

$$T_1 \cup T_2 = \{X, \emptyset, \{1\}, \{2\}\}.$$

Note that $T_1 \cup T_2$ is not a topology on X, since $\{1\}, \{2\} \in T_1 \cup T_2$ but $\{1\} \cup \{2\} = \{1,2\} \notin T_1 \cup T_2$.

Theorem:

Let (X,T) be a topological space. $T = D \Leftrightarrow \{x\} \in T, \forall x \in X$.

Proof:

Let T = D, since $\{x\} \subseteq X$, $\forall x \in X \Longrightarrow \{x\} \in \mathbb{P}(X) \ \forall x \in X$

$$\Rightarrow$$
 {x} \in T, \forall x \in X (T = D = \mathbb{P} (X))

$$\Leftarrow \{x\} \in T, \forall x \in X, \text{to prove } T = D$$

 $T \subseteq D \dots (1)$ (By definition of T).

Let
$$A \in D \Rightarrow A \subseteq X \Rightarrow A = \bigcup_{x \in \Lambda} \{x\}$$

But $\{x\} \in T \implies \bigcup_{x \in \Lambda} \{x\} \in T$ (by condition (3) of T)

$$\Rightarrow$$
 A \in T \Rightarrow D \subseteq T ... (2)

By (1) & (2)

T = D.

Neighborhood And Open Neighborhood

Definition:

Let (X,T) be a topological space and let $A \subseteq X$ and $x \in X$, then A is said to be a **Neighborhood** of x (nbh of x) iff there exists an open set U such that $x \in U \subseteq A$.

<u>i.e.</u> A is a neighborhood of $x \Leftrightarrow \exists U \in T \ni x \in U \subseteq A$.

If A is open set, then A is said to be an open neighborhood of x.

<u>i.e.</u> A is open neighborhood for $x \Leftrightarrow x \in A \in T$.

Remarks: In any topological spaces (X,T):

- 1) X is an open neighborhood for each $x \in X$.
- 2) Every open set is an open neighborhood for each element in it.
- 3) If U and V are two neighborhoods of x, then $U \cap V$ is a neighborhood for x.

Example: In (\mathbb{R}, T_u) find:

- 1) Two open neighborhood for 1.
- 2) three open neighborhood for 2.
- 3) Two open neighborhood for $\sqrt{2}$.

Solution:

(1)(-2,2) is open neighborhood for 1

(since
$$1 \in (-2,2) \in T_u$$
)

(0,3) is open neighborhood for 1

(since
$$1 \in (0,3)$$
 and $(0,3) \in T_u$).

2) \mathbb{R} is open neighborhood for 2.

(since
$$2 \in \mathbb{R} \in T_{n}$$
)

(0,10) is open neighborhood for 2.

(since
$$2 \in (0,10) \in T_{11}$$
).

(-4,4) is open neighborhood for 2.

(since
$$2 \in (-4,4) \in T_u$$
).

3) (1,2) is open neighborhood for $\sqrt{2}$.

(since
$$\sqrt{2} \in (1,2) \in T_{u}$$
).

 $(\frac{1}{2}, \frac{9}{2})$ is open neighborhood for $\sqrt{2}$.

Lectures: Topological Space

Dr. Mohammed Jabbar Hussein

(since $\sqrt{2} \in (\frac{1}{2}, \frac{9}{2}) \in T_u$).

Example: In (\mathbb{N}, T_{cof}) , find:

- 1) Two open neighborhood for 3.
- 2) Two open neighborhood for 10.

Solution:

1) $\mathbb{N}\setminus\{1\}$ is open neighborhood for 3.

(since $\mathbb{N}\setminus\{1\}\in T_{cof}$ and $3\in\mathbb{N}\setminus\{1\}$).

 $\mathbb{N}\setminus\{2,4,6\}$ is open neighborhood for 3.

(since $3 \in \mathbb{N} \setminus \{2,4,6\} \in T_{cof}$).

2) $\mathbb{N}\setminus\{3\}$ is open neighborhood for 10.

(since $10 \in \mathbb{N} \setminus \{3\} \in T_{cof}$).

 $\mathbb{N}\setminus\{20,30,40\}$ is open neighborhood for 10.

(since $10 \in \mathbb{N} \setminus \{20,30,40\} \in T_{cof}$).

Chapter Two Derived Sets

Definition(Interior of a set):

Let (X,T) be a topological space and let $A \subseteq X$ and $x \in A$, then x is called an interior point of A iff there exists an open set U such that $x \in U \subseteq A$.

The set of all interior points of A is said to be the interior set of A and denoted by A° or int(A)

i.e.
$$A^{\circ} = \{x \in A | \exists U \in T \ni x \in U \subseteq A\}.$$

 $x \in A^{\circ} \iff \exists U \in T \ni x \in U \subseteq A$
 $x \notin A^{\circ} \iff \forall U \in T \ni x \in U \not\subseteq A$

Example:

Let
$$X = \{1, 2, 3\}, T = \{X, \emptyset, \{1\}, \{1, 2\}\}$$

1) If $A = \{1, 3\}$, find A° .

Solution:

$$1 \in A^{\circ}$$
 since $\exists U = \{1\} \in T \ni 1 \in \{1\} \subseteq \{1,3\}$
 $3 \notin A^{\circ}$ since $\exists U = X \in T \ni 3 \in X \not\subseteq \{1,3\}$
 $\Rightarrow A^{\circ} = \{1\}.$

Solution:

2) If
$$A = \{2, 3\}$$
, find A° .
 $2 \notin A^{\circ}$ since $\forall U \in T \ni 2 \in \{1, 2\} \not\subseteq \{1, 3\}$
 $3 \notin A^{\circ}$ since $\exists U \in T \ni 3 \in X \not\subseteq \{1, 3\}$
 $\Rightarrow A^{\circ} = \emptyset$.

Theorem:

Let (X,T) be a topological space and let A,B be two subsets of X:

- 1) $A^{\circ} \subseteq A$.
- 2) if $A \subseteq B \Rightarrow A^{\circ} \subseteq B^{\circ}$ but $A^{\circ} \subseteq B^{\circ} \Rightarrow A \subseteq B$.
- 3) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
- 4) $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$, but $(A \cup B)^{\circ} \not\subseteq A^{\circ} \cup B^{\circ}$.
- 5) $A \in T \Leftrightarrow A^{\circ} = A$.
- 6) $A^{\circ} = \bigcup \{ U \in T \ni U \subseteq A \} = \text{The Largest open set contained in A.}$
- 7) $X^{\circ} = X$, $\emptyset^{\circ} = \emptyset$.

Proof:

1) $A^{\circ} \subseteq A$

 $x \in A^{\circ} \implies \exists U \in T \ni x \in U \subseteq A \text{ (By definition of int(A))}$

- \Rightarrow x \in A
- $\implies A^{\circ} \subseteq A$.
 - 2) Let $A \subseteq B$ to prove $A^{\circ} \subseteq B^{\circ}$

Let $x \in A^{\circ} \implies \exists U \in T \ni x \in U \subseteq A$ (By definition of int(A))

- $\Rightarrow \exists U \in T \ni x \in U \subseteq B \text{ (since } A \subseteq B)$
- \Rightarrow x \in B°(By definition of int(B))
- $\implies A^{\circ} \subseteq B^{\circ}$.

Note that if $A^{\circ} \subseteq B^{\circ} \Rightarrow A \subseteq B$ (disprove)

For example:

$$X = \{1,2,3\}, T = \{X, \emptyset, \{1\}, \{1,3\}\}$$

$$A = \{3\} \Longrightarrow A^{\circ} = \emptyset$$

$$B = \{1,2\} \Longrightarrow B^{\circ} = \{1\}$$

 \Rightarrow A° \subseteq B°, but A \subseteq B.

3) To prove $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ} \& A^{\circ} \cap B^{\circ} \subseteq (A \cap B)^{\circ}$

Since $(A \cap B) \subseteq A \& (A \cap B) \subseteq B$

$$\Rightarrow$$
 $(A \cap B)^{\circ} \subseteq A^{\circ} \& (A \cap B)^{\circ} \subseteq B^{\circ}$

$$\Rightarrow$$
 $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ} \dots (1)$

Since $A^{\circ} \subseteq A \& B^{\circ} \subseteq B$ (By (1) in theorem)

$$\Rightarrow A^{\circ} \cap B^{\circ} \subseteq A \cap B$$

$$\Rightarrow$$
 $(A^{\circ} \cap B^{\circ})^{\circ} \subseteq A^{\circ} \cap B^{\circ}$ (By (2) in theorem)

But $A^{\circ} \cap B^{\circ} \in T$ (since $A^{\circ} \& B^{\circ}$ are open)

$$\Rightarrow$$
 $(A^{\circ} \cap B^{\circ})^{\circ} = A^{\circ} \cap B^{\circ}$ (By theorem. $A \in T \Leftrightarrow A^{\circ} = A$)

$$\Rightarrow A^{\circ} \cap B^{\circ} \subseteq (A \cap B)^{\circ} \dots (2)$$

By (1) &(2) we get $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.

4) To prove $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$

Since $A^{\circ} \subseteq A \& B^{\circ} \subseteq B$ (By (1) in theorem)

$$\Rightarrow A^{\circ} \cup B^{\circ} \subseteq A \cup B$$

$$\Rightarrow$$
 $(A^{\circ} \cup B^{\circ})^{\circ} \subseteq (A \cup B)^{\circ}$ (By (2) in theorem)

But $A^{\circ} \cup B^{\circ} \in T$ (since $A^{\circ} \& B^{\circ}$ are open sets)

$$\Rightarrow$$
 $(A^{\circ} \cup B^{\circ})^{\circ} = A^{\circ} \cup B^{\circ}$ (By theorem. $A \in T \Leftrightarrow A = A^{\circ}$)

$$\Rightarrow A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$$

Note that: $(A \cup B)^{\circ} \nsubseteq A^{\circ} \cup B^{\circ}$ (disprove)

For example:

$$X = \{1,2,3\}, T = \{X, \emptyset, \{1\}, \{1,3\}\}$$

$$A = \{1\} \Longrightarrow A^{\circ} = \emptyset$$

$$B = \{3\} \Longrightarrow B^{\circ} = \emptyset$$

$$\Rightarrow$$
 A°UB° = Ø

$$AUB = \{1,3\}$$

$$\Rightarrow$$
 (AUB)° = {1,3}

$$A^{\circ}UB^{\circ} = \emptyset \nsubseteq \{1,3\} = (AUB)^{\circ}$$

5) \implies suppose that $A \in T$ to prove $A = A^{\circ}$

 $A^{\circ} \subseteq A \dots (1)$ (By (1) in theorem)

Let $x \in A \in T \implies \exists U \in T \ni x \in U \subseteq A$ (By theorem $A \in T \iff \forall x \in A \exists U \in T \ni x \in U \subseteq A$)

 \Rightarrow x \in A° (By definition of int(A))

$$A \subseteq A^{\circ} \dots (2)$$

By (1) & (2) we get $A = A^{\circ}$

 \leftarrow Let $A = A^{\circ}$ To prove $A \in T$

Let
$$x \in A = A^{\circ} \Longrightarrow x \in A^{\circ}$$

- $\Rightarrow \exists U \in T \ni x \in U \subseteq A \text{ (By definition of A}^\circ\text{)}$
- $\Rightarrow \forall x \in A \exists U \in T \ni x \in U \subseteq A$
- \Rightarrow A \in T(By theorem A \in T \Leftrightarrow \forall x \in A \exists U \in T \ni x \in U \subseteq A).
 - **6)** We have to show that

$$A^{\circ} \subseteq \bigcup \{ U \in T \ni U \subseteq A \} \& \bigcup \{ U \in T \ni U \subseteq A \} \subseteq A^{\circ}$$

Let $x \in A^{\circ} \implies \exists U \in T \ni x \in U \subseteq A$ (By definition of int(A))

$$\Rightarrow$$
 x \in U{ U \in T \ni U \subseteq A} (By definition of union)

$$\Rightarrow A^{\circ} \subseteq U\{U \in T \ni U \subseteq A\}...(1)$$

Let
$$x \in U\{U \in T \ni U \subseteq A\}$$

$$\Rightarrow \exists U \in T \ni x \in U \subseteq A$$
 (By definition of union)

$$\Rightarrow$$
 x \in A° (By definition of int(A))

$$\Rightarrow$$
 U{ U \in T \ni U \subseteq A} \subseteq A° ... (2)

By (1) & (2) we get

$$A^{\circ} = U\{ U \in T \ni U \subseteq A\}.$$

7) Since $X, \emptyset \in T$ (By condition (1) of T)

$$\Rightarrow$$
 $X^{\circ} = X \land \emptyset^{\circ} = \emptyset$ (By Theorem $A \in T \iff A = A^{\circ}$).

Definition(Exterior of a set):

Let (X,T) be a topological space and let $A \subseteq X$ and $x \in A^c$, then x is called an Exterior point of A iff there exists an open set U such that $x \in U \subseteq A^c$.

The set of all Exterior points of A is said to be the Exterior set of A and denoted by A^x or Ext(A)

i.e.
$$A^{x} = \{x \in A^{c} | \exists U \in T \ni x \in U \subseteq A^{c} \}.$$

 $x \in A^{x} \iff \exists U \in T \ni x \in U \subseteq A^{c}$
 $x \notin A^{x} \iff \forall U \in T \ni x \in U \not\subseteq A^{c}$

Example:

Let
$$X = \{1,2,3\}, T = D = \mathbb{P}(X), A = \{2,3\}, \text{ find } A^x.$$

Solution:

$$T = \{X, \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$$

$$A = \{2,3\} \Longrightarrow A^{c} = \{1\}$$

$$1 \in A^{x} \text{ since } \exists U = \{1\} \in T \ni 1 \in \{1\} \subseteq \{1\}$$

$$A^{x} = \{1\}.$$

Theorem:

Let (X,T) be a topological space and let A,B be two subsets of X:

- 1) $A^x \subseteq A^c$.
- $2) A^{x} = (A^{c})^{\circ}$
- 3) if $A \subseteq B \Rightarrow B^x \subseteq A^x$ but $B^x \subseteq A^x \not\Rightarrow A \subseteq B$.
- 4) $A^{\circ} \cap A^{x} = \emptyset$

- 5) $(A \cup B)^x = A^x \cup B^x$.
- 6) $A^c \in T \iff A^x = A^c$.
- 7) $\emptyset^{\mathbf{x}} = \mathbf{X}$, $\mathbf{X}^{\mathbf{x}} = \emptyset$.

Proof:

- 1) Let $x \in A^x \implies \exists U \in T \ni x \in U \subseteq A^c$ (By definition of Ext(A))
- \Rightarrow x \in A^c
- \implies $A^x \subseteq A^c$.
 - **2**) To prove $A^x \subseteq (A^c)^\circ \& (A^c)^\circ \subseteq A^x$

Let $x \in A^x \iff \exists U \in T \ni x \in U \subseteq A^c$

 \Leftrightarrow x \in (A^c)° (By definition of ext(A) & int(A^c)

3) Let $A \subseteq B$, To prove $B^x \subseteq A^x$

Let $x \in B^x \Longrightarrow \exists U \in T \ni x \in U \subseteq B^c$

 $\Rightarrow \exists U \in T \ni x \in U \subseteq A^c \text{ (since } A \subseteq B \Rightarrow B^c \subseteq A^c)$

 \implies x \in A^x

 $B^x \subseteq A^x$

Note that: $B^x \subseteq A^x \Rightarrow A \subseteq B$ (disprove)

For example:

$$X = \{1,2,3\}, T = \{X,\emptyset,\{1\},\{2\},\{1,2\}\}$$

$$A = \{1,3\} \Longrightarrow A^c = \{2\} \Longrightarrow A^x = \{2\}$$

$$B = \{1,2\} \Longrightarrow B^c = \{3\} \Longrightarrow B^x = \emptyset$$

$$B^{x} \subseteq A^{x} \Rightarrow A \subseteq B$$

$$\emptyset \subseteq \{2\} \Rightarrow \{1,3\} \not\subseteq \{1,2\}$$

4) Suppose that $A^{\circ} \cap A^{x} \neq \emptyset$

$$\Rightarrow$$
 x \in A $^{\circ}$ \cap Ax

$$\Rightarrow$$
 x \in A° \land x \in Ax

$$\Rightarrow \exists U \in T \ni x \in U$$

 $U \subseteq A$ (By definition of A°)

 $U \subseteq A^c$ (By definition of A^x)

$$\Rightarrow$$
 x \in A \land x \in A^c

 \Rightarrow x \in A \cap A^c which is a contradiction

$$A^{\circ} \cap A^{x} \neq \emptyset$$
.

5)
$$(AUB)^x = ((AUB)^c)^\circ (By (2) in theorem)$$

$$= (A^c \cap B^c)^{\circ}$$
 (By De-Morgan Law)

=
$$(A^c)^{\circ} \cap (B^c)^{\circ}$$
 (By proposition of interior set)

$$= A^{x} \cup B^{x}$$
 (By (2) in theorem)

6)
$$A^{x} = (A^{c})^{\circ}$$
 (By (2) in theorem)

 $A^c \in T \iff A^c = (A^c)^\circ$ (By proposition of interior set $A \in T \iff A = A^\circ$)

$$A^c \in T \iff A^c = A^x$$

7) Since $X^c = \emptyset$ and $\emptyset^c = X$ and since $\emptyset, X \in T$ (By condition (1) of T)

$$\Rightarrow$$
 X^c = \emptyset & \emptyset ^c = X (By theorem A^c \in T \Leftrightarrow A^x = A^c).

Definition(Boundary of a set):

Let (X,T) be a topological space and let $A \subseteq X$ and $x \in X$, then x is called an Boundary point of A iff there exists an open set contains x intersected with A and with A^c .

The set of all Boundary points of A is said to be the Boundary set of A and denoted by A^b or b(A) or $\partial(A)$.

i.e.
$$A^b = \{x \in X | \forall U \in T \ni x \in U, U \cap A \neq \emptyset \land U \cap A^c \neq \emptyset\}.$$

i.e.
$$x \in A^b \iff \forall U \in T \ni x \in U, U \cap A \neq \emptyset \land U \cap A^c \neq \emptyset$$

 $x \notin A^b \iff \exists U \in T \ni x \in U, U \cap A = \emptyset \land U \cap A^c = \emptyset$

Example:

Let
$$X = \{1, 2, 3\}, T = \{X, \emptyset, \{1\}, \{1, 2\}\}$$

$$A = \{1, 3\}, B = \{1, 2\}, C = \{2, 3\}.$$
 Find A^b, B^b, C^b .

Solution:

$$A = \{1,3\} \Longrightarrow A^c = \{2\}$$

$$1 \notin A^b \text{ since } \exists \{1\} \in T \ni 1 \in \{1\}, \{1\} \cap \{1,3\} = \{1\} \neq \emptyset \land \{1\} \cap \{2\} = \emptyset$$

$$2 \in A^b \text{ since } \forall \{1,2\} \in T \ni 2 \in \{1,2\}, \{1,2\} \cap \{1,3\} = \{1\} \neq \emptyset \ \land \{1,2\} \cap \{2\} = \{2\} \neq \emptyset$$

$$3 \in A^b \text{ since } \forall X \in T \ni 3 \in X, X \cap \{1,3\} = \{1,3\} \neq \emptyset \land X \cap \{2\} = \{2\} \neq \emptyset$$

$$A^b = \{2,3\}$$

$$B = \{1,2\} \Longrightarrow B^c = \{3\}$$

$$1 \notin B^b \text{ since } \exists \{1\} \in T \ni 1 \in \{1\}, \{1\} \cap \{1,2\} = \{1\} \neq \emptyset \land \{1\} \cap \{3\} = \emptyset$$

$$2 \notin B^b \text{ since } \exists \{1,2\} \in T \ni 2 \in \{1,2\}, \{1,2\} \cap \{1,2\} = \{1,2\} \neq \emptyset \land \{1,2\} \cap \{3\} = \emptyset$$

$$3 \in B^b \text{ since } \forall X \in T \ni 3 \in X, X \cap \{1,2\} = \{1,2\} \neq \emptyset \land X \cap \{3\} = \{3\} \neq \emptyset$$

$$\implies$$
 B_p = {3}

$$C = \{2,3\} \Longrightarrow C^c = \{1\}$$

$$1 \notin C^b \text{ since } \exists \{1\} \in T \ni 1 \in \{1\}, \{1\} \cap \{2,3\} = \emptyset \ \land \{1\} \cap \{1\} = \{1\} \neq \emptyset$$

$$2 \in C^b \text{ since } \forall \{1,2\} \in T \ni 2 \in \{1,2\}, \{1,2\} \cap \{2,3\} = \{2\} \neq \emptyset \ \land \ \{1,2\} \cap \{1\} = \{1\} \neq \emptyset$$

$$3 \in C^b$$
 since $\forall X \in T \ni 3 \in X, X \cap \{2,3\} = \{2,3\} \neq \emptyset \land X \cap \{1\} = \{1\} \neq \emptyset$
 $\implies C^b = \{2,3\}$

Remarks: In Any Topological Space:

1) A^b may be a subset of A or a subset of A^c or A^b intersects A and A^c.

$$\underline{i.e.}\ A^b\subseteq A\ or\ A^b\subseteq A^c\ or\ A^b\cap A\neq\emptyset\ \land\ A^b\cap A^c\neq\emptyset$$

2) If $\{a\} \in T$, then $a \notin A^b$ for any $A \subseteq X$ since if $a \in A \Longrightarrow \{a\} \cap A^c = \emptyset$

And if $a \in A^c \Longrightarrow \{a\} \cap A = \emptyset \Longrightarrow a \notin A^b$

- 3) In (X,I), if $\emptyset \neq A \nsubseteq X$, then $A^b = X$ (since X is the only open neighborhood for each $x \in X$ and $X \cap A \neq \emptyset \land X \cap A^c \neq \emptyset$).
- 4) In (X,D), if $A \subseteq X$, then $A^b = \emptyset$ (since $\forall x \in X, \{x\} \in T \implies x \notin A^b \ \forall x \in X, A^b = \emptyset$).

Example:

Define a topological space and find subset of it has six boundary points.

Solution:

Let
$$X = \{1,2,3,4,5,6,7\}$$
 and let $T = \{X,\emptyset,\{4\}\}$ and $A = \{1,3,5,7\} \Longrightarrow A^c = \{2,4,6\}$

$$4 \notin A^b$$
 since $\exists \{4\} \in T \ni 4 \in \{4\}, \{4\} \cap \{1,3,5,7\} = \emptyset \ \forall x \in X \ni x \neq 4, x \in A^b$

Since the only open neighborhood of x is X and $X \cap A \neq \emptyset \land X \cap A^c \neq \emptyset$.

$$A^b = \{1,2,3,5,6,7\}$$

Theorem:

Let (X,T) be a topological space and A,B be two subsets of X:

- $1) A^b = (A^c)^b$
- 2) $A^b \cap A^\circ = \emptyset$, $A^b \cap A^x = \emptyset$
- 3) $(A \cup B)^b \subseteq A^b \cup B^b$
- 4) $A \in T \Leftrightarrow A^b \subseteq A^c$
- 5) $A^c \in T \iff A^b \subseteq A$
- 6) $A, A^c \in T \Leftrightarrow A^b = \emptyset$
- 7) $X^b = \emptyset \& \emptyset^b = X$
- 8) A^b is a closed set.

Proof:

1)
$$x \in A^b \iff \forall U \in T \ni x \in U, U \cap A \neq \emptyset \land U \cap A^c \neq \emptyset$$
 (By definition of b(A))

$$\Leftrightarrow \forall U \in T \ni x \in U, U \cap (A^c)^c \neq \emptyset \land U \cap A^c \neq \emptyset [(A^c)^c = A]$$

 $x \in (A^c)^b$ (By definition of $b(A^c)$)

$$A^{b} = (A^{c})^{b}.$$

2) To prove $A^b \cap A^\circ = \emptyset$

Suppose that $A^b \cap A^\circ \neq \emptyset$

$$\Rightarrow$$
 x \in A^b \cap A° \neq Ø

$$\Rightarrow$$
 x \in A^b \land x \in A° (By definition of \cap)

$$x \in A^{\circ} \implies \exists U \in T \ni x \in U \subseteq A$$
(By definition of int(A))

$$\Rightarrow \exists U \in T \ni x \in U, U \cap A^c = \emptyset$$
 (since $A \cap A^c = \emptyset$

$$\Rightarrow x \notin A^b$$
 which is contradiction

$$A^b \cap A^\circ = \emptyset$$

To prove
$$A^b \cap A^x = \emptyset$$

Suppose that $A^b \cap A^x \neq \emptyset$

$$\Rightarrow \exists x \in A^b \cap A^x \neq \emptyset$$

$$\Rightarrow$$
 x \in A^b \land x \in A^x (By definition of \cap)

$$x \in A^x \Longrightarrow \exists U \in T \ni x \in U \subseteq A^c$$
 (By definition of ext(A))

$$\Rightarrow \exists U \in T \ni x \in U, U \cap A = \emptyset$$
 (since $A \cap A^c = \emptyset$

$$\Rightarrow x \notin A^b$$
 which is contradiction

$$A^b \cap A^x = \emptyset$$
.

3) To prove
$$(A \cup B)^b \subseteq A^b \cup B^b$$

Let
$$x \in (A \cup B)^b$$

$$\Rightarrow \forall U \in T \ni x \in U, U \cap (A \cup B) \neq \emptyset \land U \cap (A \cup B)^c \neq \emptyset$$

(By definition of b(AUB))

$$\Rightarrow$$
 (U\(\Omega\)) \(U(\Omega\)) \(\perp \phi\) \(\Lambda\) \(U\(\Omega\)) \(\perp \phi\)

(since ∩ distribution over U) (By De-Morgan Laws)

$$\Rightarrow$$
 (U\cap A)\cup (U\cap B) \neq \alpha \land (U\cap A^c)\cup (U\cap B^c) \neq \alpha

(since \cap distribution over \cap)

$$\Rightarrow [(U \cap A) \neq \emptyset \lor (U \cap B) \neq \emptyset] \land [(U \cap A^c) \neq \emptyset \land (U \cap B^c) \neq \emptyset]$$

$$\Rightarrow [(U \cap A) \neq \emptyset \land (U \cap A^c) \neq \emptyset] \lor [(U \cap B) \neq \emptyset \land (U \cap B^c) \neq \emptyset]$$

$$\Rightarrow$$
 x \in A^b \lor x \in B^b

$$\Rightarrow$$
 x \in A^bUB^b

$$(AUB)^b \subseteq A^bUB^b$$

Note that $A^b \cup B^b \nsubseteq (A \cup B)^b$ in general (disprove)

For example:

Let
$$X = \{1,2,3\}, T = \{X,\emptyset\} = I, A = \{1,2\}, B = \{3\}$$

$$A^b = X \& B^b = X$$

$$\Rightarrow A^b \cup B^b = X \cup X = X$$

$$AUB = \{1,2\}U\{3\} = \{1,2,3\} = X$$

$$(AUB)^b = X^b = \emptyset$$

 $(A \cup B)^b \subseteq A^b \cup B^b$ but $A^b \cup B^b \not\subseteq (A \cup B)^b$.

4)
$$A \in T \iff A^b \subseteq A^c$$

Suppose that $A \in T$ To prove $A^b \subseteq A^c$

Let
$$A^b \nsubseteq A^c$$

$$\Rightarrow$$
 x \in A^b \land x \notin A^c

$$\Rightarrow \forall U \in T \ni x \in U, U \cap A \neq \emptyset \land U \cap A^c \neq \emptyset$$
(By definition of A^b)

But $A \in T$ (by hyperthesis) and $x \in A$ (since $x \notin A^c$

 \Rightarrow A\cap A^c \neq \emptyset which is contradiction. (since A\cap A^c = \emptyset)

$$A^b \subseteq A^c$$

 \leftarrow suppose that $A^b \subseteq A^c$ To prove $A \in T$

Let $x \in A \implies x \notin A^c$ (since $A \cap A^c = \emptyset$)

 \Rightarrow x \notin A^b (since A^b \subseteq A^c by hyperthesis)

 $\Rightarrow \exists U \in T \ni x \in U, U \cap A = \emptyset \lor U \cap A^c = \emptyset$ (By definition of A^b)

But $x \in A \land x \in U \Longrightarrow A \cap U \neq \emptyset$

$$\Rightarrow$$
 U \cap A^c = \emptyset

 $\Rightarrow \exists U \in T \ni x \in U \subseteq A$

 $A \in T$.

5)
$$A^c \in T \Leftrightarrow A^b \subseteq A$$

Let $A^c \in T$ To prove $A^b \subseteq A$

Let $A^b \nsubseteq A$

$$\Rightarrow$$
 x \in A^b \land x \notin A

 $\Rightarrow \forall U \in T \ni x \in U, U \cap A \neq \emptyset \land U \cap A^c \neq \emptyset \text{ (By definition of } A^b\text{)}$

But $A^c \in T$ (by hyperthesis) and $x \in A^c$ (since $x \notin A$

 \Rightarrow A^c \cap A \neq Ø which is contradiction. (since A \cap A^c = Ø)

$$A^b \subseteq A$$

 \leftarrow Suppose that $A^b \subseteq A$ To prove $A^c \in T$

Let $x \in A^c \implies x \notin A$ (since $A^c \cap A \neq \emptyset$)

 \Rightarrow x \notin A^b (since A^b \subseteq A by hyperthesis)

 $\Rightarrow \exists U \in T \ni x \in U, U \cap A = \emptyset \lor U \cap A^c = \emptyset$ (By definition of A^b)

 \implies U \cap A = \emptyset (since x \in A^c \cap U)

$$\Rightarrow \exists U \in T \ni x \in U \subseteq A^c$$

 $A^c \in T$.

6)
$$A, A^c \in T \iff A^b = \emptyset$$

$$A, A^c \in T \iff A^b \subseteq A \land A^b \subseteq A^c$$

$$\Leftrightarrow A^b \subseteq A \cap A^c$$

$$\Leftrightarrow A^b \subseteq \emptyset$$

$$\Leftrightarrow A^b = \emptyset$$
 (since $\emptyset \subseteq A^b$ and $A^b \subseteq \emptyset$).

7) Since
$$X, \emptyset \in T$$

$$\Longrightarrow$$
 X, $X^c \in T$ and \emptyset , $\emptyset^c \in T$

$$\Rightarrow$$
 $X^b = \emptyset$ and $, \emptyset^b = \emptyset$ (By (6)).

8) A^b is closed set

$$A^b = (A^{\circ} \cup A^x)^c$$
, $A^{\circ} \in T$ and $A^x \in T$

$$A^{\circ}UA^{x} \in T$$
 (By condition (3) of T)

$$\Rightarrow$$
 (A°UA^x)^c is closed set

$$\Rightarrow$$
 A^b is closed set.

Remark: In any topological space (X,T) and any subset A of X:

1)
$$A^{\circ} \cap A^{b} = \emptyset$$
, $A^{\circ} \cap A^{x} = \emptyset$, $A^{x} \cap A^{b} = \emptyset$

2)
$$A^{\circ} \cup A^{b} \cup A^{x} = X$$
.

The family $\left\{A^{\circ},A^{x},A^{b}\right\}$ form a partition for X.

Note that:

$$\mathbf{A}^{\circ} = \mathbf{X} \backslash \mathbf{A}^{\mathbf{x}} \cup \mathbf{A}^{\mathbf{b}} = \left(\mathbf{A}^{\mathbf{x}} \cup \mathbf{A}^{\mathbf{b}} \right)^{\mathbf{c}}$$

$$A^{x} = X \backslash A^{\circ} \cup A^{b} = (A^{\circ} \cup A^{b})^{c}$$

$$A^b = X \setminus A^\circ \cup A^x = (A^\circ \cup A^x)^c$$

Definition(Limit point or an acculumation point):

Let (X,T) be a topological space and let $A \subseteq X$ and $x \in X$, then x is called **Limit point of A** or an acculumation point of A iff every open neighborhood of x has another element y of A such that $y \neq x$.

The set of all Limit points of A is said to be the derived set of A and denoted by d(A) or A'.

i.e.
$$A' = \{x \in X | \forall U \in T \ni x \in U, U \setminus \{x\} \cap A \neq \emptyset \}.$$

i.e.
$$x \in A' \iff \forall U \in T \ni x \in U, U \setminus \{x\} \cap A \neq \emptyset$$

$$x \notin A' \iff \exists U \in T \ni x \in U, U \setminus \{x\} \cap A = \emptyset$$

Example:

Let
$$X = \{1, 2, 3\}, T = \{X, \emptyset, \{1\}, \{2, 3\}\}$$

$$A = \{1, 3\}, B = \{2\}, C = \{2, 3\}.$$
 Find $A', B', C'.$

Solution:

$$A = \{1,3\}$$

$$1 \notin A' \text{ since } \exists U = \{1\} \in T \ni 1 \in \{1\}, \{1\} \setminus \{1\} \cap \{1,3\} = \emptyset$$

$$2 \in A' \text{ since } \forall U = \{2,3\} \in T \ni 2 \in \{2,3\}, \{2,3\} \setminus \{2\} \cap \{1,3\} = \{3\} \neq \emptyset$$

$$3 \notin A' \text{ since } \exists U = \{2,3\} \in T \ni 3 \in \{2,3\}, \{2,3\} \setminus \{3\} \cap \{1,3\} = \emptyset$$

$$A' = \{2\}$$

$$B = \{2\}$$

$$1 \notin B' \text{ since } \exists U = \{1\} \in T \ni 1 \in \{1\}, \{1\} \setminus \{1\} \cap \{2\} = \emptyset$$

$$2 \notin B' \text{ since } \exists U = \{2,3\} \in T \ni 2 \in \{2,3\}, \{2,3\} \setminus \{2\} \cap \{2\} = \emptyset$$

$$3 \in B' \text{ since } \forall U = \{2,3\} \in T \ni 3 \in \{2,3\}, \{2,3\} \setminus \{3\} \cap \{2\} = \{2\} \neq \emptyset$$

$$B' = \{3\}$$

$$C = \{2,3\}$$

$$1 \notin C' \text{ since } \exists U = \{1\} \in T \ni 1 \in \{1\}, \{1\} \setminus \{1\} \cap \{2,3\} = \emptyset$$

 $2 \in C' \text{ since } \forall U = \{2,3\} \in T \ni 2 \in \{2,3\}, \{2,3\} \setminus \{2\} \cap \{2,3\} = \{3\} \neq \emptyset$ $3 \in C' \text{ since } \forall U = \{2,3\} \in T \ni 3 \in \{2,3\}, \{2,3\} \setminus \{3\} \cap \{2,3\} = \{2\} \neq \emptyset$ $C' = \{2,3\}.$

Theorem:

Let (X,T) be a topological space and A,B be two subsets of X:

- 1) If if $A \subseteq B \Rightarrow A' \subseteq B'$ but $A' \subseteq B' \not\Rightarrow A \subseteq B$
- 2) $(A \cup B)' = A' \cup B'$
- 3) $(A \cap B)' \subseteq A' \cap B'$ but $A' \cap B' \not\subseteq (A \cap B)'$
- 4) $A^c \in T \iff A' \subseteq A$.

Proof:

- 1) Let $x \in A' \implies \forall U \in T \ni x \in U, U \setminus \{x\} \cap A \neq \emptyset$ (By definition of d(A))
- $\Rightarrow \forall U \in T \ni x \in U, U \setminus \{x\} \cap B \neq \emptyset$ (since $A \subseteq B$)
- \Rightarrow x \in B' (By definition of d(B))

 $A' \subseteq B'$

Note that, if $A' \subseteq B' \Rightarrow A \nsubseteq B$ (disprove)

For example:

Let
$$X = \{1,2,3\}, T = \{X, \emptyset, \{1\}, \{1,2\}\}$$

$$A = \{3\}, B = \{1,2\}$$

$$\Rightarrow$$
 A' = \emptyset , B' = $\{2,3\}$

$$\emptyset \subseteq \{2,3\} \not\Rightarrow \{3\} \not\subseteq \{1,2\}$$

2) To prove $A' \cup B' \subseteq (A \cup B)'$

 $A \subseteq A \cup B \land B \subseteq A \cup B$ (By proposition of the union)

$$A' \subseteq (A \cup B)' \land B' \subseteq (A \cup B)' (By A \subseteq B \Longrightarrow A' \subseteq B')$$

$$\Rightarrow$$
 (AUB)' \subseteq A'UB' ... (1)

To prove $(A \cup B)' \subseteq A' \cup B'$

Let $x \in (A \cup B)'$

$$\Rightarrow \forall U \in T \ni x \in U, U \setminus \{x\} \cap (A \cup B) \neq \emptyset$$

$$\Rightarrow \forall U \in T \ni x \in U, (U \setminus \{x\} \cap A) \cup (U \setminus \{x\} \cap B) \neq \emptyset$$

$$\Rightarrow \forall U \in T \ni x \in U, (U \setminus \{x\} \cap A) \neq \emptyset \lor (U \setminus \{x\} \cap B) \neq \emptyset$$

$$\Rightarrow \forall \mathsf{U} \in \mathsf{T} \ni \mathsf{x} \in \mathsf{U}, (\mathsf{U} \setminus \{x\} \cap \mathsf{A}) \neq \emptyset \ \lor \ \forall \mathsf{U} \in \mathsf{T} \ni \mathsf{x} \in \mathsf{U}, (\mathsf{U} \setminus \{x\} \cap \mathsf{B}) \neq \emptyset$$

$$\Rightarrow$$
 x \in A' \vee x \in B' (By definition of derived set)

$$\Rightarrow$$
 x \in A'UB' (By definition of the union)

$$\Rightarrow$$
 (AUB)' \subseteq A'UB' ... (2)

By (1)&(2) we get
$$(AUB)' = A'UB'$$

3) To prove $(A \cap B)' \subseteq A' \cap B'$

Since $A \cap B \subseteq A \land A \cap B \subseteq B$ (By proposition of intersection)

$$(A \cap B)' \subseteq A' \land (A \cap B)' \subseteq B' (By A \subseteq B \Longrightarrow A' \subseteq B')$$

$$\Rightarrow$$
 $(A \cap B)' \subseteq A' \cap B'$ (By definition of \cap)

Note that $A' \cap B' \nsubseteq (A \cap B)'$ in general (disprove)

For example:

Let
$$X = \{1,2,3\}, T = \{X, \emptyset, \{1\}\}$$

$$A = \{1\}, B = \{2\}$$

$$\implies$$
 A' = {2,3}, B' = {2,3}

$$\Rightarrow A \cap B = \{1\} \cap \{2\} = \emptyset$$

$$\Rightarrow$$
 (A\cap B)' = \emptyset' = \emptyset \lambda A'\cap B' = \{2,3}

$$A' \cap B' = \{2,3\} \cap \{2,3\} = \{2,3\} \nsubseteq \emptyset$$

4) Let $A^c \in T$ to prove $A' \subseteq A$

$$\Rightarrow$$
 x \notin A \Rightarrow x \in A^c which is open

 $\Rightarrow \exists U \in T \ni x \in U \subseteq A^c$ (By theorem $A \in T \Leftrightarrow \forall x \in A \exists U \in T \ni x \in U \subseteq A$)

$$\Rightarrow \exists U \in T \ni x \in U, U \cap A = \emptyset$$

$$\Rightarrow \exists U \in T \ni x \in U, U \setminus \{x\} \cap A = \emptyset$$

$$\Rightarrow$$
 x \notin A' (By definition of d(A))

$$A' \subseteq A$$

$$\leftarrow$$
 Let A' \subseteq A, to prove A^c \in T

$$\Rightarrow$$
 x \in A^c \Rightarrow x \notin A \Rightarrow x \notin A'

$$\Rightarrow \exists U \in T \ni x \in U, U \setminus \{x\} \cap A = \emptyset$$
 (By definition of d(A))

$$\Rightarrow \exists U \in T \ni x \in U, U \cap A = \emptyset \text{ (since } x \notin A)$$

$$\Rightarrow \exists U \in T \ni x \in U, U \subseteq A^c$$

$$\Rightarrow$$
 A^c \in T (By theorem. A \in T \Leftrightarrow \forall x \in A \exists U \in T \ni x \in U \subseteq A).

Definition(Closure of a set):

Let (X,T) be a topological space and let $A \subseteq X$, the closure set of A is denoted by cl(A), \bar{A} and defined by: $\bar{A} = A \cup A'$.

Example:

Let
$$X = \{1, 2, 3\}, T = \{X, \emptyset, \{1\}, \{1, 2\}\}$$

$$A = \{1, 3\}, B = \{2, 3\}, C = \{1, 2\}. Find \overline{A}, \overline{B}, \overline{C}$$

Solution:

$$\overline{A} = AUA'$$
. To find \overline{A}

$$1 \notin A' \text{ since } \exists U = \{1\} \in T \ni 1 \in \{1\}, \{1\} \setminus \{1\} \cap \{1,3\} = \emptyset$$

$$2 \in A' \text{ since } \forall U = \{1,2\} \in T \ni 2 \in \{1,2\}, \{1,2\} \setminus \{2\} \cap \{1,3\} = \{1\} \neq \emptyset$$

$$3 \in A' \text{ since } \exists U = X \in T \ni 3 \in X, X \setminus \{3\} \cap \{1,2\} \neq \emptyset$$

$$A' = \{2,3\} \Longrightarrow \overline{A} = \{1,3\} \cup \{2,3\} = X$$

$$\overline{B} = BUB'$$
. To find \overline{B}

$$1 \notin B' \text{ since } \exists U = \{1\} \in T \ni 1 \in \{1\}, \{1\} \setminus \{1\} \cap \{2,3\} = \emptyset$$

$$2 \notin B' \text{ since } \exists U = \{1,2\} \in T \ni 2 \in \{1,2\}, \{1,2\} \setminus \{2\} \cap \{2,3\} = \emptyset$$

$$3 \in B'$$
 since $\forall U = X \in T \ni 3 \in X, X \setminus \{3\} \cap \{2,3\} = \{2\} \neq \emptyset$

$$B' = \{3\} \Longrightarrow \overline{B} = \{2,3\} \cup \{3\} = \{2,3\}$$

$$\bar{C} = CUC'$$
. To find \bar{C}

$$1 \notin C' \text{ since } \exists U = \{1\} \in T \ni 1 \in \{1\}, \{1\} \setminus \{1\} \cap \{1,2\} = \emptyset$$

$$2 \in C'$$
 since $\forall U = \{1,2\} \in T \ni 2 \in \{1,2\}, \{1,2\} \setminus \{2\} \cap \{1,2\} = \{1\} \neq \emptyset$

$$3 \in C'$$
 since $\forall U = X \in T \ni 3 \in X, X \setminus \{3\} \cap \{1,2\} = \{1,2\} \neq \emptyset$

$$C' = \{2,3\} \implies \overline{C} = \{1,2\} \cup \{2,3\} = X.$$

Theorem:

Let (X,T) be a topological space and let $A \subseteq X$, then:

$$\overline{A} = \bigcap \{ F \subseteq X | F^c \in T \land A \subseteq F \}$$

i.e. \overline{A} = smallest closed set containing A

Proof:

We have to show that

$$\overline{A} \subseteq \bigcap \{ F \subseteq X | F^c \in T \land A \subseteq F \} \& \bigcap \{ F \subseteq X | F^c \in T \land A \subseteq F \} \subseteq \overline{A}$$

To prove
$$\overline{A} \subseteq \bigcap \{F \subseteq X | F^c \in T \land A \subseteq F\}$$

Let $x \in \overline{A} \Longrightarrow x \in A \cup A'$ (By definition of \overline{A})

 \Rightarrow x \in A \vee x \in A' (By definition of union)

If
$$x \in A \implies x \in \bigcap \{F \subseteq X | F^c \in T \land A \subseteq F\}$$
 (since $A \subseteq F \forall F$)

If $x \in A'$ suppose that $x \notin \bigcap \{F \subseteq X | F^c \in T \land A \subseteq F\}$

$$\Rightarrow \exists F \subseteq X \ni F^c \in T \land A \subseteq F \text{ and } x \notin F$$

$$\Rightarrow \exists U = F^c \in T \ni x \in U \land U \cap A = \emptyset (x \in F^c, F^c \cap A = \emptyset)$$

$$\Rightarrow \exists U \in T \ni x \in U \land U \setminus \{x\} \cap A = \emptyset$$

 \Rightarrow x \notin A' which is a contradiction

$$x \in \bigcap \{F \subseteq X | F^c \in T \land A \subseteq F\}$$

$$\overline{A} \subseteq \bigcap \{ F \subseteq X | F^c \in T \land A \subseteq F \} \dots (1)$$

To prove $\bigcap \{F \subseteq X | F^c \in T \land A \subseteq F\} \subseteq \overline{A}$

Let $x \in \bigcap \{F \subseteq X | F^c \in T \land A \subseteq F\}$

To prove $x \in \overline{A}$

Suppose that $x \notin \overline{A}$

 \Rightarrow x \notin AUA' \Rightarrow x \notin A \land x \notin A' (By definition of \overline{A})(By definition of union)

 $x \notin A' \implies \exists U \in T \ni x \in U \land U \setminus \{x\} \cap A = \emptyset$ (By definition of d(A))

- $\Rightarrow \exists U \in T \ni x \in U \land U \cap A = \emptyset \text{ (since } x \notin A)$
- \Rightarrow U^c is closed set and A \subseteq U^c and x \notin U^c

 $x \notin \bigcap \{F \subseteq X | F^c \in T \land A \subseteq F\}$ which is a contradiction.

- \Rightarrow x $\in \overline{A}$
- $\Rightarrow \bigcap \{F \subseteq X | F^c \in T \land A \subseteq F\} \subseteq \overline{A} \dots (2)$

By (1) & (2) we get $\overline{A} = \bigcap \{F \subseteq X | F^c \in T \land A \subseteq F\}$

Theorem:

Let (X,T) be a topological space, and A,B be two subsets of X, then:

- 1) $A \subseteq \overline{A}$
- 2) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$ but $\overline{A} \subseteq \overline{B} \Rightarrow A \subseteq B$
- 3) $\overline{(A \cap B)} \subseteq \overline{A} \cap \overline{B}$ but $\overline{A} \cap \overline{B} \not\subseteq \overline{(A \cap B)}$
- 4) $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$
- 5) $A^c \in T \iff A = \overline{A}$
- 6) $\overline{\overline{A}} = \overline{A}, \overline{X} = X, \overline{\emptyset} = \emptyset$

Proof:

- 1) Since $A \subseteq A \cup A'$
- \Rightarrow A $\subseteq \overline{A}$ (since $\overline{A} = A \cup A'$)
 - **2**) Let $A \subseteq B$ to prove $\overline{A} \subseteq \overline{B}$

 $A \subseteq B \Longrightarrow A' \subseteq B'$ (By properties of A')

 \Rightarrow AUA' \subseteq BUB' (By properties of U)

 $\Rightarrow \overline{A} \subseteq \overline{B}$ (By definition of cl(A)&cl(B))

Note that $\overline{A} \subseteq \overline{B} \Rightarrow A \subseteq B$ in general (disprove)

For example:

In (\mathbb{R}, T_u) , let $A = \{0\}$, B = (0,1)

$$\overline{A} = \overline{\{0\}}, \overline{B} = \overline{(0,1)} = [0,1]$$

Note that $\overline{A} = \overline{\{0\}} \subseteq [0,1] = \overline{B}$ but $A \nsubseteq B$.

3) To prove $\overline{(A \cap B)} \subseteq \overline{A} \cap \overline{B}$

Since $A \cap B \subseteq A \land A \cap B \subseteq B$ (By properties of intersection)

$$\Longrightarrow \overline{(A \cap B)} \subseteq \overline{A} \land \overline{(A \cap B)} \subseteq \overline{B} \ (By \ A \subseteq B \Longrightarrow \overline{A} \subseteq \overline{B})$$

$$\Rightarrow \overline{(A \cap B)} \subseteq \overline{A} \cap \overline{B}$$

Note that $\overline{A} \cap \overline{B} \nsubseteq \overline{(A \cap B)}$ in general (disprove)

For example:

In
$$(\mathbb{R}, T_{11})$$
, let $A = (2,3)$, $B = [1,2]$

$$\Rightarrow$$
 A\cap B = \varphi \infty \overline{(A\cap B)} = \overline{\varphi} = \varphi

$$\bar{A} = [2,3], \bar{B} = [1,2]$$

$$\Rightarrow \overline{A} \cap \overline{B} = \{2\} \nsubseteq \emptyset = \overline{(A \cap B)}$$

4) We have to show that:

 $\overline{(AUB)} \subseteq \overline{A}U\overline{B} \& \overline{A}U\overline{B} \subseteq \overline{(AUB)}$

Since $A \subseteq A \cup B \land B \subseteq A \cup B$

$$\Rightarrow \overline{A} \subseteq \overline{(A \cup B)} \land \overline{B} \subseteq \overline{(A \cup B)} \text{ (By } A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B})$$

$$\Rightarrow \overline{A} \cup \overline{B} \subseteq \overline{(A \cup B)} \dots (1)$$

Since $A \subseteq \overline{A} \land B \subseteq \overline{B}$ (By (1) of theorem)

 \Rightarrow AUB $\subseteq \overline{A}U\overline{B}$

And since \overline{A} , \overline{B} are two closed set (By \overline{A} = smallest closed set $\exists A \subseteq \overline{A}$)

 $\Rightarrow \overline{A} \cup \overline{B}$ is closed set (the union of finite number of closed set is closed)

 $\overline{A}U\overline{B}$ is closed set containing AUB

 $\overline{(AUB)} \subseteq \overline{A} \cup \overline{B} \dots (2)$

By (1)&(2) we get $\overline{(AUB)} = \overline{A}U\overline{B}$

5) Let $A^c \in T$, To prove $A = \overline{A}$

 $A = \overline{A} \dots (1)$ (By (1) of theorem)

To prove $\overline{A} \subseteq A$

Let $x \in \overline{A} \Longrightarrow \forall U \in T \ni x \in U, U \cap A \neq \emptyset$

If $x \notin A \Longrightarrow x \in A^c \in T$

 \Rightarrow A^c \cap A \neq Ø which is contradiction

 $x \in A \Longrightarrow \overline{A} \subseteq A \dots (2)$

By (1)&(2) we get $A = \overline{A}$

Let $A = \overline{A}$, To prove $A^c \in T$

Since \overline{A} is closed set

 \Rightarrow A is closed set (since A $\subseteq \overline{A}$)

 \implies A^c is open set

 $\Rightarrow A^c \in T$

6) Since \overline{A} is closed set

 $\Rightarrow \overline{\overline{A}} = \overline{A} \text{ (By } A^c \in T \Leftrightarrow \overline{A} = A)$

Since X is closed set

 $\Rightarrow \overline{X} = X \text{ (By } A^c \in T \Leftrightarrow \overline{A} = A)$

Since Ø is closed set

$$\Rightarrow \overline{\emptyset} = \emptyset \text{ (By A}^c \in T \Leftrightarrow \overline{A} = A)$$

(Homework) Prove Or Disprove:

- 1) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
- 2) $(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$
- 3) $(A \cap B)^x = A^x \cap B^x$
- 4) $(A \cup B)^x = A^x \cup B^x$
- 5) $(A \cap B)^b = A^b \cap B^b$
- 6) $(A \cup B)^b = A^b \cup B^b$
- 7) $\overline{(A \cap B)} = \overline{A} \cap \overline{B}$
- 8) $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$

<u>Chapter three:Metrizable Topological Spaces</u> Definition:

Let $X \neq \emptyset$ and $d: X \times X \rightarrow \mathbb{R}$ is any map, then d is said to be <u>a metric</u> <u>map</u> iff:

- 1) $d(x, y) \ge 0, \forall x, y, z \in X$
- 2) d(x,y) = d(y,x)
- 3) $d(x, y) = 0 \Leftrightarrow x = y$
- 4) $d(x,z) \le d(x,y) + d(y,z)$

Then (X,d) is called a metric space.

Definition:

Let (X,d) be a metric space and let $x \in X$ and $\epsilon > 0$, the ball with center x and radius ϵ is denoted by $B_{\epsilon}(x)$ and defined by:

$$B_{\epsilon}(x) = \{ y \in X | d(x, y) < \epsilon \}$$

Definition:

Let (X,d) be a metric space and let U be a subset of X, then U is said to be <u>open set</u> iff for each $x \in U$, there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$.

<u>i.e.</u> U is open set $\Leftrightarrow \forall x \in U, \exists \epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$.

Proposition:

Let (X,d) be a metric space and let $U \subseteq X$, then

U is open set \Leftrightarrow U = $\bigcup_{x \in U} B_{\epsilon}(x)$

Now, if (X,d) is a metric space we can induced a topological space from it as follows:

 $T_d = \{U \subseteq X | U \text{ is open set } w. \, r. \, t \, d\}$

T_d is a topology on X since:

- 1) X, \emptyset are open sets w.r.t d \Longrightarrow X, $\emptyset \in T_d$
- **2**) If $U, V \in T_d$ to prove $U \cap V \in T_d$

U,V are two open sets w.r.t d

- \Rightarrow U \cap V is open set w.r.t d
 - \Rightarrow U \cap V \in T_d
 - 3) Let $U_{\alpha} \in T_d \forall \alpha \in \Lambda$, To prove $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T_d$
- \Longrightarrow U_{α} is open set w.r.t d , $\forall \alpha$
- $\Rightarrow \bigcup_{\alpha \in \Lambda} \bigcup_{\alpha}$ is open set w.r.t d
- $\Rightarrow \bigcup_{\alpha \in \Lambda} U_{\alpha} \in T_d$

So (X, T_d) is a topological space which is called a metrizable topological space from a metric space (X,d).

Example:

 (\mathbb{R}, T_u) is a metrizable topological space.

Since, in (\mathbb{R}, d)

Where $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \ni d(x,y) = |x - y| \forall x, y \text{ if } x \in \mathbb{R} \text{ and } \epsilon > 0$

$$\begin{split} B_{\epsilon}(x) &= \{d(x, y) < \epsilon; y \in \mathbb{R}\} \\ &= \{y \in \mathbb{R}; \ |y - x| < \epsilon\} \\ &= \{y \in \mathbb{R}| - \epsilon < y - x < \epsilon\} = (x - \epsilon, x + \epsilon) \end{split}$$

That is every open ball in (\mathbb{R}, d) is open interval and so every open set w.r.t d is the union of open intervals.

$$\Rightarrow$$
 $T_d = \{U \subseteq \mathbb{R} | U = \text{union of open intervals}\} = T_u$

Remark:

We can get a topological space from any metric space, but we can not get a metric space from a topological space.

Example:

1) Let
$$X = \{1,2,3\}, T = \{X,\emptyset,\{1\}\}$$

(X,T) is a topological space, we can not get any metric space from (X,T).

2) Let
$$(X,d)$$
 be a metric space such that $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \ni d(x,y) = \begin{cases} 1 \text{ if } x \neq y \\ 0 \text{ if } x = y \end{cases}$

We can defined T_d as follows:

$$T_d = \{U \subseteq X | U \text{ is open set w. r. t d} \}$$

In this metric space if U is open set then:

$$U = \{x\}, x \in X \text{ or } U = X$$

$$\underline{\mathbf{i.e.}} \{x\} \in T_d \forall x \in X$$

$$T_d = D$$

Therefore, we can say that (X,D) is a metrizable topological space for any $X \neq \emptyset$.

Base Or Basis

Definition:

Let (X,T) be a topological space and let \mathfrak{B} be a subfamily of T, then \mathfrak{B} is said to be <u>a base</u> for T iff every open set is a union of a members of \mathfrak{B} .

<u>i.e.</u> \mathfrak{B} is a base for T \Leftrightarrow ∀U \in T, U = $\bigcup_{i \in \Lambda} B_i$, $B_i \in \mathfrak{B}$ ∀i and $\mathfrak{B} \subseteq T$

Remarks: In any topological space (X,T):

- 1) T is a base for T, which is a trivial base.
- 2) T has more than one base.
- 3) Any base $\mathfrak B$ of T, must containing \emptyset . (i.e. $\emptyset \in \mathfrak B$, for any base $\mathfrak B$).
- 4) If B is a base for T, then X need not be in B.
- 5) If $\{x\} \in T$, $x \in X$, then $\{x\} \in \mathfrak{B}$.

Example:

Let $X = \{1, 2, 3\}, T = \{X, \emptyset, \{1\}, \{2\}, \{1, 2\}\}$ define anon trivial base for T.

Solution:

Let
$$\mathfrak{B} = \{X, \emptyset, \{1\}, \{2\}\}$$

Note that $\mathfrak{B} \subseteq T$ and $X = X \cup X$

$$\emptyset = \emptyset \cup \emptyset$$

$$\{1\} = \{1\} \cup \{1\}, \{2\} = \{2\} \cup \{2\}$$

$$\{1,2\} = \{1\} \cup \{2\}$$

B is a base for T.

Example:

Let $X = \{1, 2, 3\}, T = D$ define two non trivial bases for T.

Solution:

$$T = D = \mathbb{P}(X) = \{X, \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$$

$$\mathfrak{B}_1 = \{X, \emptyset, \{1\}, \{2\}, \{3\}\}$$

 \mathfrak{B}_1 is a base for T since:

$$\emptyset = \emptyset \cup \emptyset$$

$$\{1\} = \{1\} \cup \{1\}$$

$$\{2\} = \{2\} \cup \{2\}$$

$${3} = {3} \cup {3}$$

$$\{1,3\} = \{1\} \cup \{3\}$$

$$\{1,2\} = \{1\} \cup \{2\}$$

$$\{2,3\} = \{2\} \cup \{3\}$$

$$\mathfrak{B}_2 = \{\emptyset, \{1\}, \{2\}, \{3\}, \{2,3\}\} \subseteq T$$

\mathfrak{B}_2 is a base for T (check).

Q: Define anon trivial base for (\mathbb{R}, T_u)

Solution:

 $T_u = \{U \subseteq \mathbb{R} | U = \text{union of open intervals} \}$

$$\mathfrak{B}_{\mathbf{u}} = \{(a, b) : a, b \in \mathbb{R}\} \subseteq T_{\mathbf{u}}$$

Note that: $(0,1) \in T_n \land (0,1) \in \mathfrak{B}_n$

$$(-\infty, 1) \in T_{\mathbf{u}}$$
 but $(-\infty, 1) \notin \mathfrak{B}_{\mathbf{u}}$

$$(0, \infty) \in T_{\mathbf{u}}$$
 but $(0, \infty) \notin \mathfrak{B}_{\mathbf{u}}$

$$\Rightarrow \mathfrak{B}_{n} \not\subseteq T_{n}$$

$$(a, b) \in T_u \& (a, b) = (a, b) U(a, b)$$

$$\emptyset \in T_u \& \emptyset = (a, a) \in \mathfrak{B}_u \& \emptyset = \emptyset \cup \emptyset$$

$$(-\infty, b) \in T_u \& (-\infty, b) = \bigcup_{n \in \mathbb{N}} (a - n, b)$$

$$(a, \infty) \in T_u \& (a, \infty) = \bigcup_{n \in \mathbb{N}} (a, b + n)$$

$$(-\infty, \infty) = \mathbb{R} \in T_u \& (-\infty, \infty) = \bigcup_{n \in \mathbb{N}} (a - n, b + n)$$

 \mathfrak{B}_{u} is anon trivial base for T_{u} .

Theorem:

Let (X,T) be a topological space and let $\mathfrak B$ be a base for T, then:

- $X = \bigcup_{i \in \Lambda} B_i$, $B_i \in \mathfrak{B} \ \forall i$
- If $B_1, B_2 \in \mathfrak{B}$, then $B_1 \cap B_2 = \bigcup_{i \in \Lambda} B_i$, $B_i \in \mathfrak{B} \ \forall i$

Proof:

- Since X ∈ T (By condition (1) of T) and 𝔞 is a base for T(by hyperthesis)
- \Rightarrow X = $\bigcup_{i \in \Lambda} B_i$, $B_i \in \mathfrak{B} \ \forall i$ (By definition of base)
 - Let $B_1, B_2 \in \mathfrak{B} \subseteq T$
- \implies B₁, B₂ \in T
- \Rightarrow B₁ \cap B₂ \in T (By condition (2) of T)
- \Rightarrow B₁ \cap B₂ = $\bigcup_{i \in \Lambda} B_i$, B_i $\in \mathfrak{B} \ \forall i \ (By \ definition \ of \ \mathfrak{B})$

Theorem:

Let $X \neq \emptyset$ and let $\mathfrak B$ be a subfamily of $\mathbb P(X)$ such that:

- 1) $X = \bigcup_{i \in \Lambda} B_i$, $B_i \in \mathfrak{B} \ \forall i$
- 2) If $B_1, B_2 \in \mathfrak{B} \Longrightarrow B_1 \cap B_2 = \bigcup_{i \in \Lambda} B_i$, $B_i \in \mathfrak{B} \ \forall i$
- 3) $\emptyset \in \mathfrak{B}$. Then: $T = \{U \subseteq X; U = \bigcup_{i \in \Lambda} B_i, B_i \in \mathfrak{B} \ \forall i\}$ is a topology on X, which is the unique topology with base \mathfrak{B} .

Proof:

1) Since
$$\emptyset = \emptyset \cup \emptyset$$
 and $\emptyset \in \mathfrak{B} \Longrightarrow \emptyset \in T$ (By (3))

Since
$$X = \bigcup_{i \in \Lambda} B_i$$
, $B_i \in \mathfrak{B} \ \forall i \ (By \ (1))$

$$\Rightarrow$$
 X \in T

2) Let $U, V \in T$ to prove $U \cap V \in T$

$$U = \bigcup_{i \in \Lambda} B_i$$
, $B_i \in \mathfrak{B} \ \forall i$

$$V = \bigcup_{j \in \Lambda} B_j$$
, $B_j \in \mathfrak{B} \ \forall j$ (By definition of T)

$$\Rightarrow$$
 U\cap V = $\bigcup_{i \in \Lambda} B_i \cap \bigcup_{j \in \Lambda} B_j = \bigcup_{i,j \in \Lambda} (B_i \cap B_j)$

But
$$B_i \cap B_j = \bigcup_{k \in \Lambda} B_k$$
 , $B_k \in \mathfrak{B}$ (By(2))

$$\Rightarrow$$
 U \cap V = $\bigcup_{i,j\in\Lambda}(\bigcup_{k\in\Lambda}B_k) = \bigcup_{k\in\Lambda}B_k$, $B_k\in\mathfrak{B}$

$$\Rightarrow$$
 U \cap V \in T

3) Let
$$U_{\alpha} \in T \forall \alpha \in \Lambda$$
, To prove $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T$

$$\Rightarrow$$
 $U_{\alpha} = \bigcup_{i \in \Lambda} B_i$, $B_i \in \mathfrak{B} \forall i, \forall \alpha$

$$\Longrightarrow \bigcup_{\forall \alpha \in \Lambda} U_{\alpha} = \bigcup_{\forall \alpha \in \Lambda} (\bigcup_{i \in \Lambda} B_i), B_i \in \mathfrak{B} \ \forall i$$

$$= \bigcup_{i \in \Lambda} B_i, B_i \in \mathfrak{B} \ \forall i$$

$$U_{\alpha \in \Lambda} U_{\alpha} \in T$$

T is a topology on X, which is the unique topology with base B

Example:

Let $X = \{1,2,3\}$, $\mathfrak{B} \subseteq \mathbb{P}(X)$ such that $\mathfrak{B} = \{\emptyset, \{1\}, \{2,3\}\}$, find T which \mathfrak{B} is a base for it.

Solution:

$$T = \{U \subseteq X; U = \bigcup_{i \in \Lambda} B_i, B_i \in \mathfrak{B} \ \forall i\}$$

$$\emptyset = \emptyset \cup \{1\} = \{1\}$$

$$\emptyset \cup \emptyset = \emptyset$$

$$\emptyset = \emptyset \cup \{2,3\} = \{2,3\}$$

$$\{1\} \cup \{1\} = \{1\}$$

$$\{1\} \cup \{2,3\} = X$$

$$\{2,3\} \cup \{2,3\} = \{2,3\}$$

$$\Rightarrow T = \{\emptyset, X, \{1\}, \{2,3\}\}$$

Sub base

Definition:

Let (X,T) be a topological space and let \mathfrak{B} be a base for T and let \mathcal{S} be a subfamily of T, then \mathcal{S} is said to be <u>a sub-base</u> for T, iff every element of \mathfrak{B} is a finite intersection of members of \mathcal{S} .

 $\underline{\textbf{i.e.}} \; \mathcal{S} \; \text{is a sub-base for} \; T \Longleftrightarrow \mathcal{S} \subseteq T \; \text{and} \; \forall B \in \mathfrak{B}, B = \bigcap_{j=1}^n S_j, S_j \in \mathcal{S} \forall j$

Remarks: In any topological space (X,T)

- 1) T is a sub-base for T which is a trivial sub-base.
- 2) There are more than one sub-base for T.
- 3) If S is a sub-base for T, then \emptyset need not be in S.
- 4) If S is a sub-base for T, then X need not be in S.

Example:

Let
$$X = \{1,2,3\}, T = \{X,\emptyset,\{1\},\{2\},\{1,2\},\{1,3\}\},$$

 $\mathfrak{B} = \{\emptyset,\{1\},\{1,2\},\{1,3\}\}$ define a sub-base for T.

Solution:

$$S = \{\emptyset, \{1,2\}, \{1,3\}\} \subseteq T$$

S is a sub-base for T since:

$$\emptyset = \emptyset \cap \emptyset$$

$$\{1\} = \{1,2\} \cap \{1,3\}$$

$$\{1,2\} = \{1,2\} \cap \{1,2\}$$

$$\{1,3\} = \{1,3\} \cap \{1,3\}$$

Example:

Let
$$X = \{1, 2, 3\}, T = D = \mathbb{P}(X), \mathfrak{B} = \{\emptyset, \{1\}, \{2\}, \{3\}\}$$

define a sub-base for T.

Solution:

$$S = \{\{1,2\}, \{1,3\}, \{2,3\}, \{3\}\}$$

Note that $S \subseteq T$ and

$$\emptyset = \{1,2\} \cap \{3\}$$

$$\{1\} = \{1,2\} \cap \{1,3\}$$

$$\{2\} = \{1,2\} \cap \{2,3\}$$

$${3} = {1,3} \cap {2,3}$$

S is a sub-base for T.

Q: define anon-trivial sub-base for (\mathbb{R}, T_u)

Solution:

$$T_u = \{U \subseteq \mathbb{R} | U = \text{union of open intervals} \}$$

$$\mathfrak{B}_{\mathrm{u}} = \{(\mathsf{a},\mathsf{b}) \colon \mathsf{a},\mathsf{b} \in \mathbb{R}\}$$

$$S_{\mathbf{u}} = \{(\mathbf{a}, \mathbf{b}) : \mathbf{a} = -\infty \lor \mathbf{b} = \infty\}$$

Note that:

$$(0,1) \in T_{\mathrm{u}} \land (0,1) \in \mathfrak{B}_{\mathrm{u}}, (0,1) \notin \mathcal{S}_{\mathrm{u}}$$

$$(0,\infty) \in T_{\mathrm{u}}$$
, $(0,\infty) \notin \mathfrak{B}_{\mathrm{u}}$, $(0,\infty) \in \mathcal{S}_{\mathrm{u}}$

$$(-\infty,1)\in T_u$$
 , $(-\infty,1)\notin \mathfrak{B}_u$, $(-\infty,1)\in \mathcal{S}_u$

$$(-\infty,\infty) \in T_{11}$$
, $(-\infty,\infty) \notin \mathfrak{B}_{11}$, $(-\infty,\infty) \in \mathcal{S}_{11}$

$$\forall (a, b) \in \mathfrak{B}_{u}, (a, b) = (-\infty, b) \cap (a, \infty)$$

 \mathcal{S}_u is anon trivial sub-base for T_u .