CS684 Documentation

CS684 – 2010 Project

Project: A hand gesture following firebird bot

The objective of this document is to help someone else run the code that is delivered as part of this project.

Project Title: A hand gesture following firebird bot

Students:

Name	Roll No.	Email
Milind Kothekar	06D07017	milindsk@ee.iitb.ac.in
Kumar Lav	06D05012	kumarlav@cse.iitb.ac.in
Surinderjeet Singh	06D05021	surinderjeet@cse.iitb.ac.in
Prithvi Raj Kanakam	06D05018	prithvirajk@cse.iitb.ac.in

Project Objective

The goal of our project was to build a vehicle controlled using accelerometers, mounted on a glove that wirelessly transmits data to a Firebird bot using Zigbee technology, to move in any direction. The accelerometer is mounted on a glove, such that if the users want to move forward they can lean the glove forward and backward for reverse; to turn left or right they need to tilt the glove like a plane changing its direction.

Hardware Platform

- 1. Firebird V ATMEGA2560
- 2. ZigBee modules (2)
- 3. Accelerometer MMA 7361LC
- 4. External analog accelerometer interface
- 5. ATMEGA8 microcontroller
- 6. 7805 5V voltage regulator
- 7. TPS7A4533 3.3V voltage regulator
- 8. In System Programming Feature
- 9. Mode control switch

Software

- 1. AVR Studio 4
- 2. AVRDUDE Programmer's notepad
- 3. WinAVR
- 4. Eagle (PCB design)
- 5. USBASP driver

Code Description

Code Files.

Filename	Purpose	Executes on
gesture.c	Main Program	Robot
lcd.h	LCD display functions	Robot
firebird.h	Firebird movement functions	Robot
test_uart.c	To get acceleration values and transmit them	Glove
acc_ana_ext.c	To get digital values from accelerometer	Glove

Deliverables

Filename	Contains
Bot-code	Source code of programs to be burnt on Robot. Contains documentation of the code as well.
Glove-code	Source code of programs to be burnt on the glove circuit
Documents	Contains Project related doc files.

Execution Instructions

- Preparing FireBird Bot
 - 1. Open Gesture project in AVR studio 4.1.
 - 2. Configure Project properties as follows:
 - a. Device: Atmegs2560
 - b. Frequency: 11059200
 - c. Optimization: -00
 - 3. Compile the source code
 - 4. Connect the FireBird V bot
 - 5. Burn the hex file generated
- Programming Glove
 - 1. Connect the relimate connector in such a way that there is a common GND
 - 2. Install the USBASP driver on the computer
 - 3. Install WinAVR
 - 4. Use AVRDUDE Programmer's notepad to program the Glove
 - a. Open the makefile and the files that need to be compiled and burnt
 - b. Go to \rightarrow Build \rightarrow Make Clean \rightarrow Make All \rightarrow Program
- Running the bot
 - 1. The 1st design
 - a. Make proper connections between Accelerometer PCB and Microcontroller PCB

- b. Connect the VCC supply from 8V-18V DC
- c. Connect the 3.3 V jumper
- d. Connect the accelerometer jumper
- e. Reset the microcontroller
- f. Reset the Zigbee
- g. Play
- 2. The Final Design
 - a. Connect the 3.3V jumper
 - b. Connect the accelerometer jumper
 - c. Reset the microcontroller
 - d. Reset Zigbee
 - e. Play

Coding Guidelines

- 1. We have insured that our code is readable, reusable and commented.
- 2. We employed Doxygen to generate the documentation for our code.
- 3. We have followed the file structure and other project submission guidelines