Problem G - Tnge Twstr

Jeremy loves partying but often attracts too much attention to himself when he's drunk, much to the annoyance of his girlfriend. Fortunately, whenever Jeremy loses a game at a party he gets embarrassed and quickly leaves the party. Mandy wants to stop Jeremy's partying addiction by making Jeremy lose party games.

One day, in his drunken state at a Thursday night party, Jeremy gathers all the girls around to show off his verbal prowess with a game of TngeTwstr. The game goes as follows.

First Jeremy selects a string s. Given any integer k (0 < k < |s|), he considers the set b_k : the set of all subsequences of s with length k without consecutive adjacent characters. If the b_k is nonempty, he randomly selects one subsequence from b_k and rapidly recites it 20 times. If Jeremy stutters, he loses the game!

Mandy knows Jeremy stutters when pronouncing a word if and only if the word ends in a vowel. Help Mandy analyse Jeremy's chance of losing the game!

For this problem, vowels are characters belonging to the set $\{'a', 'e', 'i', 'o', 'u'\}$. String s will only consist of lowercase letters.

Input

The first line of the input is an integer t $(0 \le t \le 50)$ indicating the number of test cases.

The first and only line of each test case consists of a string s ($0 \le |s| \le 2000$). String s will only consist of lower case letters.

Output

For each test case, output |s|-1 lines, with two integers on each line. On the ith line, output r % MOD and p % MOD, where MOD=100000007, r denotes the size of b_i , and p denotes the number of elements from b_i that will make Jeremy stutter.

Sample Input

2 bba cda

Sample Output

2 1

1 1

3 1

3 2

Explanation of sample test cases:

For the first test case, consider all possible values of k.

When
$$k=1$$
, b_k is {"b","a"}, $r=2$, $p=1$.

When k=2, b_k is {"ba"}. ("bb" has consecutive adjacent characters), r=1, p=1.

For the second test case, consider all possible values of k.

When
$$k=1$$
, b_k is {"c","d","a"}, $r=3$, $p=1$.

When k=2, b_k is {"cd","ca","da"}, r=3, p=2.