$$G_{c}(s) = \frac{K(s+z)}{s+p}$$

$$G_{(ka)}(1) = \frac{K(1+\alpha \tau_s)}{\kappa(1+\tau_s)} = \frac{K(1+\kappa \tau_{(ij)})}{K(1+\tau_{(ij)})} \longrightarrow \Phi(w) = tax^{-1}(\alpha \tau_w) - tax^{-1}(\tau_w) = tax^{-1}\left(\frac{\alpha w \tau - w\tau}{1+(w\tau)^2\kappa}\right)$$

$$\frac{1}{\delta \omega} \Phi(\omega) = 0 \implies \frac{1}{\delta \omega} \left(\frac{\alpha - 1}{1 + \omega^2 \tau^2 \alpha} \omega \tau \right) = 0 \implies (\alpha - 1) \tau \left(1 + \omega^2 \tau^2 \alpha \right) - (2\tau^2 \alpha \omega) (\alpha - 1) \tau \omega = 0 \implies 1 + \omega^2 \tau^2 \alpha - 2\tau^2 \alpha \omega^2 = 0$$

$$\implies \omega = \sqrt{\frac{1}{\tau^2 \alpha}} = \frac{1}{\tau \sqrt{\alpha}}$$

$$\Phi_{\mathbf{m}}(\mathbf{w}) = tan^{-1}\left(\frac{\sqrt{\alpha} - \frac{1}{\sqrt{\alpha}}}{2}\right) = tan^{-1}\left(\frac{\alpha - 1}{2\sqrt{\alpha}}\right) \implies tan(\Phi_{\mathbf{m}}) = \frac{\alpha - 1}{2\sqrt{\alpha}} \implies \delta n(\Phi_{\mathbf{m}}) = \frac{\alpha - 1}{\sqrt{(\alpha - 1)^2 + 4\alpha}} = \frac{\alpha - 1}{\alpha + 1} \implies \alpha = \frac{1 + 5in(\Phi_{\mathbf{m}})}{1 - 5in(\Phi_{\mathbf{m}})} = \frac{\alpha - 1}{\sqrt{(\alpha - 1)^2 + 4\alpha}} = \frac{\alpha - 1}{\alpha + 1} \implies \alpha = \frac{1 + 5in(\Phi_{\mathbf{m}})}{1 - 5in(\Phi_{\mathbf{m}})} = \frac{\alpha - 1}{\sqrt{(\alpha - 1)^2 + 4\alpha}} = \frac{\alpha - 1}{\alpha + 1} \implies \alpha = \frac{1 + 5in(\Phi_{\mathbf{m}})}{1 - 5in(\Phi_{\mathbf{m}})} = \frac{\alpha - 1}{\sqrt{(\alpha - 1)^2 + 4\alpha}} = \frac{\alpha - 1}{\alpha + 1} \implies \alpha = \frac{1 + 5in(\Phi_{\mathbf{m}})}{1 - 5in(\Phi_{\mathbf{m}})} = \frac{\alpha - 1}{\sqrt{(\alpha - 1)^2 + 4\alpha}} = \frac{\alpha - 1}{\alpha + 1} \implies \alpha = \frac{1 + 5in(\Phi_{\mathbf{m}})}{1 - 5in(\Phi_{\mathbf{m}})} = \frac{\alpha - 1}{\sqrt{(\alpha - 1)^2 + 4\alpha}} = \frac{\alpha - 1}{\alpha + 1} \implies \alpha = \frac{\alpha - 1}{\alpha + 1} = \frac$$

$$G_{\text{tag}}(s) = \frac{K \kappa (1+Ts)}{1+\kappa Ts} = \frac{K \kappa (1+Twj)}{(1+\kappa Twj)} \longrightarrow \Phi(w) = \tan^{-1}(Tw) - \tan^{-1}(\kappa Tw) = \tan^{-1}\left(\frac{wT - \kappa Tw}{1+(wT)^2\kappa}\right)$$

$$\frac{1}{\delta w} \Phi(w) = 0 \implies \frac{1}{\delta w} \left(\frac{1-\kappa}{1+w^2 \tau^2 \kappa} w \tau \right) = 0 \implies (1-\kappa) \tau \left(1+w^2 \tau^2 \kappa \right) - \left(2\tau^2 \kappa w \right) (1-\kappa) \tau w = 0 \implies 1+w^2 \tau^2 \kappa - 2\tau^2 \kappa w^2 = 0$$

$$\implies w = \sqrt{\frac{1}{\tau^2 \kappa}} = \frac{1}{\tau \sqrt{\kappa}}$$

$$\Phi_{\mathbf{m}}(\mathbf{w}) = \tan^{-1}\left(\frac{\frac{1}{\sqrt{\alpha}} - \sqrt{\alpha}}{2}\right) = \tan^{-1}\left(\frac{1 - \alpha}{2\sqrt{\alpha}}\right) \implies \tan(\Phi_{\mathbf{m}}) = \frac{1 - \alpha}{2\sqrt{\alpha}} \implies \sin(\Phi_{\mathbf{m}}) = \frac{1 - \alpha}{\sqrt{(1 - \alpha)^2 + 4\alpha}} = \frac{1 - \alpha}{\alpha + 1} \implies \alpha = \frac{1 - \sin(\Phi_{\mathbf{m}})}{1 + \sin(\Phi_{\mathbf{m}})} = \frac{1 - \alpha}{2\sqrt{\alpha}} \implies \alpha = \frac{1 - \sin(\Phi_{\mathbf{m}})}{1 + \sin(\Phi_{\mathbf{m}})} = \frac{1 - \alpha}{2\sqrt{\alpha}} \implies \alpha = \frac{1 - \alpha$$

2-
$$G(s) = \frac{\kappa}{s(s+10)(s+14)}$$
 $G_c(s) = \frac{\kappa_1 \kappa_2}{\kappa_1'} \frac{1+\tau s}{1+\alpha \tau s}$

$$e_{55} = 10 \% A = \frac{A}{K_V} \longrightarrow K_V = 10 \implies K_V = \lim_{5 \to \infty} sL(5) = \frac{K}{140} K_1' = 10 \implies K_1' = \frac{1400}{K}$$

$$L(s) = \frac{1900}{s(s+10)(s+14)} = \frac{10}{s(\frac{1}{10}s+1)(\frac{1}{14}s+1)}$$

$$\begin{aligned} |U(wj)| &= 1400 \left((140 - w^2)^2 w^2 + (24w^3)^2 \right)^{\frac{-1}{2}} = 1 & \longrightarrow w = 7.21 \\ & \Phi(w) &= -90^{\sigma} - \tan^{-1} \left(\frac{1}{10} w \right) - \tan^{-1} \left(\frac{1}{14} w \right) & \Phi(w) &= -153^{\circ} & \Longrightarrow PM = 27^{\sigma} \end{aligned}$$

$$Z = 0.707 \rightarrow PM = 70.7^{\circ} \rightarrow 76^{\circ} \Rightarrow \phi(w) = -104^{\circ} \rightarrow w = 1.43 \Rightarrow |L(w)| = 6.88 , \kappa = 6.88$$

$$Z = \frac{\omega_2'}{10} = 0.143$$
 , $p = \frac{z}{\alpha} = 0.02$, $K_1 = \frac{K_1'}{\alpha} = \frac{203.5}{k}$

$$\Rightarrow G_{c} = \frac{203.5}{K} \frac{5+0.193}{5+0.02} , L(5) = \frac{203.5(5+0.193)}{5(5+0.(5+19)(5+0.02))}$$

2-

Plots for our system with controller:

3_ a)
$$9.0. < 10\%$$
 $\rightarrow 7 > 0.59$

T, $< 2 \rightarrow \frac{4}{2w_0} < 2 \rightarrow 2w_0 > 2$
 $\Rightarrow 7 = 0.6$, $w_0 = 3.5$ $\Rightarrow 2.1 \pm 2.8$; $\Rightarrow 7 = -2.1$

$$53^{\circ} + \tan^{-1}\left(\frac{2.8}{7.1}\right) - \tan^{-1}\left(\frac{1.3}{3.1}\right) - \tan^{-1}\left(\frac{2.3}{7.1}\right) - \tan^{-1}\left(\frac{2.8}{12.1}\right) - \theta_{p} = -180 \implies \theta_{p} = 160.7^{\circ} \implies p = -8-2.1 = -10.1$$

$$1 + \sin^{-1}\left(\frac{2.8}{7.1}\right) - \tan^{-1}\left(\frac{2.3}{3.1}\right) - \tan^{-1}\left(\frac{2.3}{7.1}\right) - \theta_{p} = -180 \implies \theta_{p} = 160.7^{\circ} \implies p = -8-2.1 = -10.1$$

as-1 7 = 65-1 0.6 = 53°

As we see rise time and settling time of different optimized transfer functions are different. Except n=2 in general settling time is getting greater and rise time getting smaller.

Also in bode plots we could see that magnitude is decreasing faster by increasing n and phase become more negative. (90 deg every step)

$$I = \frac{v_1}{R_1} + 5c_1v_1$$

$$-V_2 = \left(\frac{1}{R_2} + 5c_2\right)^{-1} I$$

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4

$$G(s) = \frac{R + C_1}{R_3 c_2} \frac{s + \frac{1}{R_1 c_1}}{s + \frac{1}{R_2 c_2}}$$

$$\longrightarrow G(s) = \frac{R_1 c_1}{R_3 c_2} \xrightarrow{s + \frac{1}{R_1 c_1}} \xrightarrow{s + \frac{1}{R_2 c_2}} \left(\frac{1}{R_1 c_1} < \frac{1}{R_2 c_2} \Rightarrow R_2 c_2 < R_1 c_1 \right)$$

6. 0)
$$L(s) = \frac{4000 \text{ K}}{5(5+20)(5+10)}$$
 $E(s) = \frac{1}{1+L(s)}R(s) - \frac{G(s)}{1+L(s)}T_{\delta}(s)$

$$\frac{40}{5(5+20)} - T_{\frac{1}{2}}(5) = \frac{40(5+10)}{5(5+20)(5+10)+4000 \text{ k}} \frac{1}{5} = 11(5)$$

$$\lim_{s\to 0} sH(s) = \frac{1}{\log k} \leq 5\% \implies 2 \leq K \implies K = 2$$

b)
$$\Delta(s) = -5(s+20)(s+10) + 4000 \cdot K = -5^{\frac{3}{4}} + 305^{\frac{2}{4}} + 2005 + 8000$$

1 $\frac{-200}{3}$ \circ \rightarrow $ne^{\frac{1}{4}}$ stable

$$C) \qquad G_{lest}(s) = \frac{K (1+\alpha \tau s)}{\kappa (1+\tau t s)}$$

$$|L(\omega_j)| = 4000 \left(\omega^2 (900 \omega_+^2 (200-\omega^2)^2)\right)^{\frac{-1}{2}} = 1 \qquad \omega = 11.43$$

$$\Phi(w) = -90 - \tan^{3}\left(\frac{1}{10}w\right) - \tan^{3}\left(\frac{1}{20}w\right) = -168^{\circ} \qquad \Rightarrow P.M. = 12^{\circ}$$

$$\alpha = \frac{1 + st_{\Lambda}(\Phi_{\mathbf{m}})}{1 - st_{\Lambda}(\Phi_{\mathbf{m}})} = 3 \qquad \qquad 20 \text{ lag } |L(w_j)| = -10 \text{ lag } (\alpha) \Rightarrow |L(w_j)| = \frac{1}{15} \Rightarrow w_{\mathbf{m}} = 15.2$$

$$p = W_{K}\sqrt{\kappa} = 26.3$$
 $z = \frac{p}{\kappa} = 8.7$ $\Rightarrow G_{c}(s) = 2 \frac{5 + 8.7}{5 + 26.3}$

$$\frac{\frac{40}{5(5+20)}}{1+\frac{8000(5+8.7) \text{ k'}}{5(5+20)(5+10)(5+26.7)}} T_{ij}(5) = \frac{40(5+10)(5+26.7)}{5(5+20)(5+10)(5+26.7) + 8000(5+8.7) \text{ k'}} \frac{1}{5} = \text{H'}(5)$$

$$\lim_{s\to 0} sH(s) = \frac{26.3}{20 \times 8.7 \text{ K}'} \leq 5\% \implies 3 < \text{K}' \qquad \longrightarrow \text{K}' = 3$$

$$\alpha = \frac{1 + \sin{(\Phi_m)}}{1 - \sin{(\Phi_m)}} = 2 \qquad \qquad 20 \text{ lag } |L(\omega_j)| = -10 \text{ lag } (M) \qquad \Rightarrow |L(\omega_j)| = \frac{1}{\sqrt{2}} \Rightarrow W_m = 14.6$$

$$p = W_{pq}\sqrt{\kappa} = 20.65$$
 $z = \frac{p}{\kappa} = 10.32$ $\implies G_c(s) = 3 \frac{5 + 20.65}{5 + 10.52}$

MATLAB Assignments

7 PID Tuner Toolbox

First we define transfer functions as below:

```
%% 7

G1 = tf([1],[10,1]);
G2 = tf([1],[1,0.1,1]);
G3 = tf([1],[1,0.1,1,0]);
G4 = tf([1],[1,0,0,0,-1,0]);
```

a) $G_1(s)$

(P):

By decreasing response time we will have less settling time and greater value for Kp but overshoot will be 0% all the time so it doesn't effect of which value we choose.

We choose value of Kp in the way that settling time will be 1 sec. (Kp = 37.8562)

(PI):

We set response time to 1 sec and then change other parameters for reaching our needed values for settling time an overshoot. (Kp = 19.8508, Ki = 5.2708)

(PD):

(PID):

By increasing values of Kp, KI and KD in different situations we could see that settling time will decrease and overshoot will increase. Step response of systems are like below:

b) G₂(s)(P):

Controller Parameters

(PI):

(PD):

(PID):

Step responses:

c) G₃(s)

(P):

	Tuned	
Kp	0.084992	Δ.
Ki	n/a	
Kd	n/a	
Tf	n/a	
		-

Performance and Robustness

	Tuned	
Rise time	20.5 seconds	_
Settling time	193 seconds	
Overshoot	4.82 %	
Peak	1.05	
Gain margin	1.41 dB @ 1 rad/s	
Phase margin	89.5 deg @ 0.0856 rad/s	
Closed-loop stability	Stable	-

(PI):

Controller Parameters

	Tuned	
Kp	0.057078	À
Ki	5.7215e-05	
Kd	n/a	1
Tf	n/a	
		_

Performance and Robustness

	Tuned	
Rise time	33.1 seconds	
Settling time	65.1 seconds	
Overshoot	1.97 %	
Peak	1.02	
Gain margin	4.87 dB @ 1 rad/s	
Phase margin	88.7 deg @ 0.0573 rad/s	
Closed-loop stability	Stable	

(PD):

Controller Parameters

	Tuned	
Кр	0.062469	Δ
Ki	n/a	
Kd	0.0062716	
Tf	n/a	

Performance and Robustness

	Tuned	
Rise time	32.5 seconds	4
Settling time	77.2 seconds	
Overshoot	0.763 %	
Peak	1.01	
Gain margin	4.17 dB @ 1.01 rad/s	
Phase margin	90 deg @ 0.0627 rad/s	
Closed-loop stability	Stable	

(PID):

Step responces:

8 Cascade Control System

First we determine PID controller for loop1. Following table shows Coefficients and properties of the controller. Output of system is like below:

Also we should check u1:

It is suitable for our demand.

For loop2 we have:

And loop3:

Everything seems to be appropriate for our system. So now we connect them together:

Following plot is the output of the system.

We should consider that settling time of each loop should be in a way that it gets stable before the outer loop gets stable.

e) Now we just want to use one controller instead of cascade one:

Checking u1:

f) Output of two types of controllers:

We see that the system with cascade controller will be stable faster (settling time is smaller). So we reach our appropriate response faster but as the question mentioned we can't do some measurements in cascade controller.

9 Reducing The Effect of Measurement Noise

First we find PID controllers for aggressive setting by changing noise variance:

variance = 1

variance = 0.75

variance = 0.5

variance = 0.25

variance = 0

We should mention that we considered settling time is equal to 1.

Now we find PID controllers for robust setting by changing noise variance:

variance = 1

variance = 0.75

variance = 0.5

Performance and Robustness

	Tuned	Block
Rise time	0.0788 seconds	0.135 seconds
Settling time	0.139 seconds	1.8 seconds
Overshoot	0 %	8.17 %
Peak	0.997	0.967
Gain margin	Inf dB @ Inf rad/s	Inf dB @ Inf rad/s
Phase margin	89.2 deg @ 27.4 rad/s	90 deg @ 11.6 rad/s
Closed-loop stability	Stable	Stable

variance = 0.25

Hor	Da	ra	m	ot	re

Tuned	Block	
19.7173	5.8047	
3.1545	0.4712	
27.3832	11.5531	
3134.0408	1329.6428	
	19.7173 3.1545 27.3832	19.7173 5.8047 3.1545 0.4712 27.3832 11.5531

Performance and Robustness

	Tuned	Block
Rise time	0.0788 seconds	0.135 seconds
Settling time	0.139 seconds	1.8 seconds
Overshoot	0 %	8.17 %
Peak	0.997	0.967
Gain margin	Inf dB @ Inf rad/s	Inf dB @ Inf rad/s
Phase margin	89.2 deg @ 27.4 rad/s	90 deg @ 11.6 rad/s
Closed-loop stability	Stable	Stable

variance = 0

Controller Parameters

	Tuned	Block	
Р	19.7173	5.8047	_
I	3.1545	0.4712	
D	27.3832	11.5531	
N	3134.0408	1329.6428	

Performance and Robustness

	Tuned	Block	
Rise time	0.0788 seconds	0.135 seconds	4
Settling time	0.139 seconds	1.8 seconds	
Overshoot	0 %	8.17 %	7
Peak	0.997	0.967	
Gain margin	Inf dB @ Inf rad/s	Inf dB @ Inf rad/s	7
Phase margin	89.2 deg @ 27.4 rad/s	90 deg @ 11.6 rad/s	
Closed-loop stability	Stable	Stable	-

Now we add a low-pass filter. Here we have a problem, our close loop system after applying filter will be unstable. For solving this problem we ignore the amount of settling time to be 1 second and we focus on stability of system.

Our new PID controller and the output for aggressive setting will be like below:

(noise variance =1)

Now we add filter:

For robust setting we have:

After adding filter:

