Exercice 1 - Etude d'une structure en béton......(08 points) 06 questions:1,5pt/1,5pt/1pt/1pt/1,5pt

2.2

$$E = E_3 - E_1 = 2.5 - 1.3 = 1.2 Mev$$

Or 1 eV =
$$1,602 \times 10^{-19}$$
 J.

$$E = 1,2.10^6 \times 1,602.10^{-19} = 1,9.10^{-13}J$$

2.3.

$$\begin{split} E &= h \times \nu \\ \nu &= \frac{E}{h} \\ \nu &= \frac{_{1,9.10^{-13}}}{_{6,63.10^{-34}}} = 2,9.\,10^{20} \text{Hz} \end{split}$$

Gammagraphie car ce sont des rayons gamma sui sont utilisés

2.4

T=50 ns

$$f = \frac{1}{T}$$

 $f = \frac{1}{50.10^{-9}} = 2.0.10^7 Hz = 20 MHz$

2.5

Pour qu'un défaut dans la structure soit détectable, il faut qu'il ait une taille au moins égale à la moitié de la longueur d'onde ultrasonore.

Calculons la longueur d'onde ultrasonore :

$$\lambda = \frac{c}{f}$$

$$\lambda = \frac{4500}{2,0.10^7} = 2,3.10^{-4} \text{m} = 0,23 \text{ mm}$$

Calculons la moitié de la longueur d'onde :

$$\frac{\lambda}{2} = \frac{0.23}{2} = 0.13 \text{ mm}$$

La taille de la fissure 0,3 mm est supérieure à la moitié de la longueur d'onde ultrasonore. La fissure est donc détectable.

2.6

Il faut déterminer si le morceau de béton compris entre les récepteurs R2 et R3 ausculté doit subir des réparations.

Pour cela il faut calculer la vitesse des ultrasons.

$$\begin{split} v &= \frac{d}{\Delta t} \\ v &= \frac{60.\,10^{-2} - 40.\,10^{-2}}{195.\,10^{-6} - 121.\,10^{-6}} = 2700 \text{ m. s}^{-1} \end{split}$$

Le béton est de qualité médiocre, il doit donc subir des réparations.

1. La position de l'image est repérée par l'abscisse x_{Δ} . On applique la relation:

$$\frac{1}{x_{\mathsf{A}'}} - \frac{1}{x_{\mathsf{A}}} = \frac{1}{f'}$$

On isole la grandeur recherchée $x_{A'}$, toutes les grandeurs étant en centimètres.

$$\frac{1}{x_{A'}} = \frac{1}{f'} + \frac{1}{x_A} = \frac{1}{15,0 \text{ cm}} + \frac{1}{(-18,0) \text{ cm}}$$

 $D'où x_{A'} = 90,0 \text{ cm}$

L'image se situe à 90,0 cm après la lentille.

3. a. Graphiquement, on trouve $x_{A'} = 90,0\,$ cm, ce qui confirme le calcul précédent. On trouve également :

$$y_{\rm B'} = -3.4 \times 10 \text{ cm} = -34 \text{ cm}$$

 $y_{\rm B'} = -3.4 \times 10^{\circ} \, {\rm cm} = -34 \, {\rm cm}$ **b.** Le grandissement est : $\gamma = \frac{x_{\rm A'}}{x_{\rm A}} = \frac{-34 \, {\rm cm}}{7.0 \, {\rm cm}} = -4.9$.

4. Le grandissement est négatif, cela signifie que l'image est renversée.

Exercice 3 - Molécules à quatre atomes de carbone(07 points) 04 questions:1,5pt/1,5pt/1pt/3pt

1. La formule semi-développée du butan-2-ol :

La formule brute du butan-2-ol : $C_4H_{10}O$

- CH₃—CH—CH₂—CH₃ OH
- 2. La formule semi-développée de l'acide butanoïque :

La formule brute de l'acide butanoïque : $C_4H_8O_2$

- CH₃−CH₂−CH₂−C OH
- **3.** La molécule **4-hydroxybutan-2-one** est bifonctionnelle possède **02** groupes caractéristiques **carbonyle C=O** et **hydroxyle -OH**, les familles correspondantes **cétones** et **alcools**.
- 4. Le spectre IR du :

butan-2-ol est le spectre 1 :

Il comporte une bande d'absorption à **3200-3550 cm**-¹ attribuable à la liaison **O-H** d'une fonction **alcool**, et une bande d'absorption à **2900-3100 cm**-¹ attribuable à la liaison **C-H** présente dans les **alcanes** et leurs dérivés.

Transmittance Spectre 3

l'acide butanoïque est le spectre 3 :

Il comporte une bande d'absorption à **1700-1730 cm**-¹ attribuable à la liaison **C=O** d'une fonction **acide carboxylique**, et une bande d'absorption à **1210-1320 cm**-¹ attribuable à la liaison **C-O** présente dans le groupe carboxyle de l'**acide carboxylique**, ainsi qu'une bande d'absorption à **2500-3500 cm**-¹ attribuable à la liaison **O-H** de l'**acide carboxylique** et enfin une bande d'absorption à **2900-3100 cm**-¹ attribuable à la liaison **C-H** présente dans les **alcanes** et leurs dérivés.

4-hydroxybutan-2-one est le spectre 2 :

Il comporte une bande d'absorption à **3200-3550 cm**⁻¹ attribuable à la liaison **O-H** d'une fonction **alcool**, et une bande d'absorption à **1700-1720 cm**⁻¹ attribuable à la liaison **C=O** présente dans le groupe carbonyle de la **cétone**, et une bande d'absorption à **2900-3100 cm**⁻¹ attribuable à la liaison **C-H** présente dans les **alcanes** et leurs dérivés.

Données . Table de spectroscopie IR :

Liaison	О-Н		C=O			C-O		C-H
	Alcool	Carboxyle	Aldéhyde	Cétone	Carboxyle	Alcool	Carboxyle	2 900 - 3 100
σ (en cm ⁻¹)	3 200 - 3 550	2 500 - 3 500	1 720 - 1 740	1 700 - 1 720	1 700 - 1 730	1 050	1 210 - 1 320	
Bande	Large	Large	Fine	Fine	Fine	Fine	Fine	Fine
Intensité	Forte	Moyenne	Forte	Forte	Forte	Forte	Forte	Forte