Práctico 5 Matemática Discreta I – Año 2019 **FAMAF**

- 1. ¿Cuántas aristas tiene el grafo completo K_n ? ¿Para cuáles valores de n se puede encontrar un dibujo de K_n con la propiedad que las líneas representan las aristas sin cruzarse?
- 2. Encuentre un isomorfismo entre los grafos por las siguientes listas. (Ambas listas especifican versiones de un famoso grafo conocida como grafo de Petersen.)

a	b	c	d	e	f	g	h	i	j	0	1	2	3	4	5	6	7	8	9
b	a	b	c	d	a	b	c	d	e	1	2	3	4	5	0	1	0	2	6
e	c	d	e	a	h	i	j	f	g	5	0	1	2	3	4	4	3	5	7
f	g	h	i	j	i	j	f	g	h	7	6	8	7	6	8	9	9	9	8

- 3. a) Encuentre todos los grafos de 5 vértices y 2 aristas no isomorfos entre sí.
 - b) ¿Cuál es el máximo número de aristas que puede tener un grafo de 5 vértices?
- 4. Para cada una de las siguientes secuencias, encuentre un grafo que tenga exactamente las valencias indicadas o demuestre que tal grafo no existe:
 - a) 3, 3, 1, 1

- c) 3, 3, 2, 2, 1, 1 e) 7, 3, 3, 3, 2, 2

b) 3, 2, 2, 1

- d) 4, 1, 1, 1, 1
- f) 4, 1, 1, 1
- 5. Demuestre que los siguientes pares de grafos son isomorfos (encuentre un isomorfismo):

(a)

- 6. Sean G=(V,E) y G'=(V',E') dos grafos y sea $\alpha:V\mapsto V'$ una función tal que $\delta(v)=\delta(\alpha(v))\ \forall\ v\in V.$
 - a) ¿Puede afirmar que α es un isomorfismo?.
 - b) ¿Puede afirmarlo si |V| = 3 ó 4?.
- 7. Encuentre una función del grafo A al B que preserve valencias. ¿Es un isomorfismo?.

A:

B:

- 8. Pruebe que si G es un grafo con más de un vértice, entonces existen dos vértices con la misma valencia.
- 9. Si G = (V, E) grafo, el grafo complemento es G' = (V, E'), donde E' son todos los 2-subconjuntos de V que no están en E. Es decir, el grafo complemento tiene los mismos vértices que el grafo original y todas las aristas que le faltan a G para ser grafo completo.
 - a) Halle el complemento de los siguientes grafos:

- b) Si $V = \{v_1 \dots v_n\}$ y $\delta(v_i) = d_i \ \forall \ i = 1, \dots, n$, calcule las valencias de el grafo complemento.
- 10. Pruebe que los siguientes grafos no son isomorfos:

11. Dados los siguientes grafos:

(2)

(3)

(4)

(5)

(6)

(7)

a) Determine en cada caso si existen subgrafos completos de más de 2 vértices.

- b) Para el grafo (1), dé todos los caminos que unen a con b.
- c) Dé caminatas eulerianas que unan a con b en los grafos (2), (3) y (4).
- d) Para (5) y (6), decir si existen ciclos hamiltonianos partiendo de a.
- e) Determinar cuales de los siguientes pares de grafos son isomorfos:
 - (i) (4) y (2),
 - (ii) (5) y (6),
 - (iii) (5) y (1).
- f) Halle las componentes conexas del grafo (7).

A:

B:

12. Dado el siguiente grafo

0	1	2	3	4	5	6	7	8
1	0	1	0	3	0	1	0	1
3	2	3	2	5	4	5	2	3
5	6	7	4		6	7	6	5
7	8		8		8		8	7.

encuentre un ciclo hamiltoniano (si existe). Determine si existe una caminata euleriana y en caso de ser así encuentre una.

- 13. Un ratón intenta comer un $3 \times 3 \times 3$ cubo de queso. Él comienza en una esquina y come un subcubo de $1 \times 1 \times 1$, para luego pasar a un subcubo adyacente. ¿Podrá el ratón terminar de comer el queso en el centro?
- 14. Dé todos los árboles de 6 vértices no isomorfos.