FORENSICS OF FRONT CAMERA ACQUISITIONS

Alberto Casagrande Alessio Belli Joy Battocchio Davide Guidolin

TABLE OF CONTENTS

O1. Camera source identification

O2. CNN-based fast source device identification

03. Live demo

04. Outlook

O1. Camera source identification

Camera source identification

Source identification allows to trace back the origin of an image

It can be used to:

- Claim intellectual property
- Reveal the authors of illicit materials.

PRNU extraction:

$$n^{(k)} = p^{(k)} - F(p^{(k)})$$

$$P_c = \frac{\sum_{k=0}^{N} n^{(k)}}{N}$$

Noise residual of candidate image:

$$n^c = p^c - F(p^c)$$

O2.
CNN-based fast source device identification

CNN-based fast source device identification

The authors proposed a 2-channel-based *CNN* that learns a way of comparing camera fingerprint and image noise at patch level

CNN-based fast source device identification PCN

The architecture is drawn using 3 convolutional layers. Then, a pair-wise correlation pooling layer and a fully connected layer follow to obtain a single score $C_{\rm S}$

CNN-based fast source device identification EFFB2

CNN-based fast source device identification Network training

Batch size = 2 * D

1 residual noise for each device Paired with coherent PRNU and non-coherent PRNU

CNN-based fast source device identification Tests

BACKBONE

PCN and EfficientNet

DATASET

VISION and Frontal camera acquisitions of personal devices

BASELINE

Peak to correlation energy (PCE)

CNN-based fast source device identification Tests | Datasets

VISION

35 different cameras1750 flat images1400 natural images

CNN-based fast source device identification Tests | Datasets

VISION

35 different cameras1750 flat images1400 natural images

FRONT CAMERA

11 different cameras550 flat images440 natural images

CNN-based fast source device identification Results - VISION

CNN-based fast source device identification Results - VISION - PCE

CNN-based fast source device identification Results - VISION - PCN

CNN-based fast source device identification Results - VISION - EFFB2

CNN-based fast source device identification Results - Frontal Camera

CNN-based fast source device identification
Results - Frontal Camera - PCE

CNN-based fast source device identification

Results - Frontal Camera - PCN

CNN-based fast source device identification

CNN-based fast source device identification Results - Computation time

03. Live demo

Full size image

Full size image

THANK YOU

Alberto Casagrande Alessio Belli Joy Battocchio Davide Guidolin

APPENDIX

	2 Apple_iPhone4_0
	3 Apple_iPhone4s_0
	4 Apple_iPhone4s_1
	5 Apple_iPhone5_0
	6 Apple_iPhone5_1
	7 Apple_iPhone5c_0
	<pre>8 Apple_iPhone5c_1</pre>
	9 Apple_iPhone5c_2
	10 Apple_iPhone6Plus_0
	11 Apple_iPhone6_0
	12 Apple_iPhone6_1
	13 Asus_Zenfone2Laser_0
	14 Huawei_Ascend_0
	15 Huawei_Honor5c_0
	16 Huawei_P8_0
VISION	17 Huawei_P9Lite_0
	18 Huawei_P9_0
	19 LG_D290_0
	20 Lenovo_P70A_0
	21 Microsoft_Lumia640LTE_0
	22 OnePlus_A3000_0
	23 OnePlus_A3003_0
	24 Samsung_GalaxyS3Mini_0
	<pre>25 Samsung_GalaxyS3Mini_1</pre>
	26 Samsung_GalaxyS3_0
	27 Samsung_GalaxyS4Mini_0
	28 Samsung_GalaxyS5_0
	<pre>29 Samsung_GalaxyTab3_0</pre>
	30 Samsung_GalaxyTabA_0
	31 Samsung_GalaxyTrendPlus_0
	32 Sony_XperiaZ1Compact_0
	33 Wiko_Ridge4G_0

34 Xiaomi_RedmiNote3_0

0 Apple_iPad2_0
1 Apple_iPadMini_0

FRONTAL CAMERA

```
0 Acer_AspireE5_0
1 Apple_MacBookAir2018_0
2 Apple_MacBookAir_0
3 Apple_iPadAir3_0
4 Apple_iPhone11_0
5 Apple_iPhone13_0
6 Apple_iPhoneX_0
7 Asus_VivoBookPro_0
8 HP_Laptop15_0
9 Huawei_P20Lite_0
10 Redmi_Note7_0
```

CNN-based fast source device identification Results - Frontal Camera + VISION - PCE

- 0.8

Crop size → 256x256 **Accuracy** → 77.4

CNN-based fast source device identification

Results - Frontal Camera + VISION - PCN

Crop size → 256x256 **Accuracy** → 78.2

CNN-based fast source device identification

Results - Frontal Camera + VISION - EFFB2

Crop size → 256x256 **Accuracy** → 79.1