6 SCR Controller Motherboard Project Outline

Synopsis:

- Solid State Systems needs a new motherboard for their 3000 series of magnetic particle inspection machines
- The project proposed is to make a new motherboard that controls 6 SCRs to generate a
 3 phase full-wave DC signal using a microcontroller + PWM design

Requirements:

- Motherboard specifications
 - Power Source
 - 240V 480V AC
 - Input
 - 1V-5V Range Clean DC Signal
 - Energize button
 - Output
 - 10V DC Burst followed by 3-4V to gate of 6 SCRS with 3 SCRS for Positive half-waves and 3 SCRs for Negative half-wave. 60Hz with Phase angle difference of 60 degrees between each SCR activation.
 - Each SCR must be isolated from each other
 - Electrical Isolation between microcontroller and SCRs
 - Signal at SCR's gate should be in phase with the respective SCR's sine wave across its anode and cathode.

Input/Output Example	
DC Input (1V - 5V)	3-4V Output to SCR Gate with 10V Burst at beginning
1V DC	Only burst
3V DC	Burst and 3-4V signal half length of sine wave, starting at middle to end of sine wave
5V DC	Burst and 3-4V signal full length of sinewave

New Motherboard Features:

- Software Logic
- Updateable Software
- Compact Board
- Modular
- Fewer Electronics Components
- Fewer Modules
- Less Maintenance
- Less Calibration Needed
- LCD Screen Status Display

Schedule (10 - 18 weeks):

- Research requirements for prototype (1 week)
 - Determine calibration pots needed
 - Document legacy motherboard waveforms
 - o Finalize inputs and outputs of new motherboard
 - Add debugging components (LEDs, Pins, etc.)
 - Obtain current ratings for input and output
 - o Simulate circuit in LTSPICE
 - Generate bill of materials
- Create Prototype PCB Board (4-8 weeks)
 - Schematic Design
 - o PCB Design
 - Research and order from different manufacturers
 - Repeat prototype process as needed
- Assemble and Test Prototype PCB Board (1 week)
 - Programming Software
 - Function Generator and Oscilloscope Testing
 - Stress Testing
 - Particle Inspection Machine Testing
- Create Finalized PCB Board: (4 8 weeks)
 - Schematic Design
 - o PCB Design
 - Order from manufacturers
- Assemble and Test Finalized PCB Board (1 week)
 - Software Revisions
 - Function Generator and Oscilloscope Testing
 - Stress Testing
 - o Particle Inspection Machine Testing

Bill of Materials for Prototype (Work In Progress):

- Power Supply: 240V 480V AC to 20V DC and 20V DC to 3.3V DC
- Microcontroller (ESP-32): Development board for now, chip later if needed
- Analog-to-Digital Converter: Reads Incoming Wave
- 6-Channel Digital-to-Analog Converter: Controls 6 SCR Channels at once
- Calibration Pots: Calibrates minimum and maximum SCR values and energize timing