CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

We have studied these proof strategies

- Direct proof
- Proof by contradiction
- Proof by contraposition

Plan for today

- A new proof strategy: Proof by dividing into cases
- Disproof

Part 1: Proof by dividing into cases

The four color theorem

- Theorem: No more than four colors are required to color the regions of any map so that no two adjacent regions have the same color.
- Proved by reducing maps into 1,834 configurations

Proof by dividing into cases

- You are asked to prove Q and you consider an exhaustive list cases. For each case, Q is true.
- Proof
 - We use proof by dividing into cases to proceed
 - We consider N cases.
 - Case 1: ____. Therefore Q
 - Case 2: ____.... Therefore Q
 - ...
 - Case N: ____ Therefore Q
- QED.

Example 1: Prove the following statement

Proposition If $n \in \mathbb{N}$, then $1 + (-1)^n (2n - 1)$ is a multiple of 4.

Proposition If $n \in \mathbb{N}$, then $1 + (-1)^n (2n - 1)$ is a multiple of 4.

Proof. Suppose $n \in \mathbb{N}$.

Then n is either even or odd. Let's consider these two cases separately.

Case 1. Suppose *n* is even. Then n = 2k for some $k \in \mathbb{Z}$, and $(-1)^n = 1$.

Thus $1 + (-1)^n (2n - 1) = 1 + (1)(2 \cdot 2k - 1) = 4k$, which is a multiple of 4.

Case 2. Suppose *n* is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$, and $(-1)^n = -1$. Thus $1 + (-1)^n (2n - 1) = 1 - (2(2k + 1) - 1) = -4k$, which is a multiple of 4.

These cases show that $1 + (-1)^n (2n - 1)$ is always a multiple of 4.

Example 2: Prove the following statement

Every multiple of 4 equals $1 + (-1)^n (2n - 1)$ for some $n \in \mathbb{N}$.

Proposition Every multiple of 4 equals $1 + (-1)^n (2n - 1)$ for some $n \in \mathbb{N}$.

Proof. In conditional form, the proposition is as follows:

If *k* is a multiple of 4, then there is an $n \in \mathbb{N}$ for which $1 + (-1)^n (2n - 1) = k$.

What follows is a proof of this conditional statement.

Suppose k is a multiple of 4.

This means k = 4a for some integer a.

We must produce an $n \in \mathbb{N}$ for which $1 + (-1)^n (2n - 1) = k$.

This is done by cases, depending on whether a is zero, positive or negative.

Case 1. Suppose a = 0. Let n = 1. Then $1 + (-1)^n (2n - 1) = 1 + (-1)^1 (2 - 1) = 0$ $= 4 \cdot 0 = 4a = k$.

Case 2. Suppose a > 0. Let n = 2a, which is in \mathbb{N} because a is positive. Also n is even, so $(-1)^n = 1$. Thus $1 + (-1)^n (2n - 1) = 1 + (2n - 1) = 2n = 2(2a) = 4a = k$.

Case 3. Suppose a < 0. Let n = 1 - 2a, which is an element of \mathbb{N} because a is negative, making 1 - 2a positive. Also n is odd, so $(-1)^n = -1$. Thus $1 + (-1)^n (2n - 1) = 1 - (2n - 1) = 1 - (2(1 - 2a) - 1) = 4a = k$.

The above cases show that no matter whether a multiple k = 4a of 4 is zero, positive or negative, $k = 1 + (-1)^n (2n - 1)$ for some $n \in \mathbb{N}$.

Example 3: Prove the following statement

if n is an integer, then $2n^2 + n + 1$ is not divisible by 3.

When n is divided by 3, the possible remainders are 0, 1, or 2. I consider these three cases.

Case 1. When n is divided by 3, the remainder is 0.

Then n = 3q + 0 = 3q for some integer q. So

$$2n^{2} + n + 1 = 2(3q)^{2} + (3q) + 1$$
$$= 18q^{2} + 3q + 1$$
$$= 3(6q^{2} + q) + 1$$

The last expression shows that in this case when $2n^2 + n + 1$ is divided by 3, the remainder is 1. Hence, $2n^2 + n + 1$ is not divisible by 3.

Case 2. When n is divided by 3, the remainder is 1.

Then n = 3q + 1 for some integer q. So

$$2n^{2} + n + 1 = 2(3q + 1)^{2} + (3q + 1) + 1$$
$$= 18q^{2} + 15q + 4$$
$$= 3(6q^{2} + 5q + 1) + 1$$

The last expression shows that in this case when $2n^2 + n + 1$ is divided by 3, the remainder is 1. Hence, $2n^2 + n + 1$ is not divisible by 3.

Case 3. When n is divided by 3, the remainder is 2.

Then n = 3q + 2 for some integer q. So

$$2n^{2} + n + 1 = 2(3q + 2)^{2} + (3q + 2) + 1$$
$$= 18q^{2} + 27q + 11$$
$$= 3(6q^{2} + 9q + 3) + 2$$

The last expression shows that in this case when $2n^2 + n + 1$ is divided by 3, the remainder is 2. Hence, $2n^2 + n + 1$ is not divisible by 3.

Since in every case $2n^2 + n + 1$ is not divisible by 3, it follows that $2n^2 + n + 1$ is not divisible by 3 for any integer n. \square

Example 4: Prove the following statement

Suppose a is an integer. If 7|4a, then 7|a.

- Proof: (Proof by dividing into cases)
 - Suppose 7 | 4a
 - 4a = 7k for some integer k.
 - a = 7/4 k (*)
 - k mod 4 can be 0, 1, 2, or 3
 - Case 1: k = 4k' for some integer k'. In this case, a = 7k'
 - Case 2: k = 4k' + 1 for some integer k'. In this case, LHS in (*) = a, RHS in (*) 7k'
 + 1/4 which is not an integer. So this case is not possible.
 - Case 3: k = 4k' + 2 for some integer k'. In this case, LHS in (*) = a, RHS in (*) 7k'
 + 1/2 which is not an integer. So this case is not possible.
 - Case 2: k = 4k' + 3 for some integer k'. In this case, LHS in (*) = a, RHS in (*) 7k'
 + 3/4 which is not an integer. So this case is not possible.
 - Therefore 7 | a
- QED.

- Proof: (direct proof)
 - Suppose 7 | 4a
 - 4a = 7k for some integer k.
 - k must be even. So k = 2k' for some integer k'
 - 4a = 14 k'. So 2a = 7k'.
 - k' must be even So k' = 2k" for some integer k"
 - 2a = 14 k". So a = 7k"
 - Therefore 7 | a
- QED.

Exercises

Prove the following statement

If $n \in \mathbb{Z}$, then $n^2 + 3n + 4$ is even.

Prove the following statement

Prove that if n is an integer, then $3n^2 + n + 14$ is even.

Prove the following statement

Prove that for all integers n, n-2 is not divisible by 4. (hint: consider the odd and even cases separately)