Strategic Classification with Random Manipulation Outcomes

Xueru Zhang, Computer Science and Engineering, The Ohio State University

Machine Learning for People

- ML has been increasingly used to help make decisions about people
 - College admission, Hiring, Lending, Healthcare, Criminal justice ...

Responsive and Interactive Distribution Shifts

• Manipulation of social program eligibility (Camacho et al., 2011)

Responsive and Interactive Distribution Shifts

• Manipulation of social program eligibility (Camacho et al., 2011)

Government reveals some information about how the threshold is built

Responsive and Interactive Distribution Shifts

- Loan applicants apply for more credit cards to increase credit scores
- Job applicants manipulate the resumes to pass resume screening
- College applicants prepare application packages in a way that increase their chance of getting admitted

• • •

Challenge: ML under Strategic Behavior

How to receive favorable decisions with lowest effort?

How to make accurate decisions?

• ML is vulnerable to strategic manipulation

Another Challenge: Biases in ML

How to receive favorable decisions with lowest effort?

How to make accurate and fair decisions?

ML can be biased against certain social groups

Existing Work: Fair Machine Learning

- Demographic parity (DP): equal positive rate
- Equal opportunity (EqOpt): equal true positive rate

...

• Stackelberg game formulation (Hardt et al., 2016a; Dong et al. 2018; Milli et al., 2019; Hu et al., 2019; Braverman & Garg, 2020)

Classifier *f*

Initial data xManipulated data $\Delta(x)$ Cost $c(x, \Delta(x))$

 $\max f(\Delta(x)) - c(x, \Delta(x))$

• Stackelberg game formulation (Hardt et al., 2016a; Dong et al. 2018; Milli et al., 2019; Hu et al., 2019; Braverman & Garg, 2020)

Classifier *f*

$$\max \Pr[h(x) = f(\Delta(x))]$$

Initial data xManipulated data $\Delta(x)$ Cost $c(x, \Delta(x))$

$$\max f(\Delta(x)) - c(x, \Delta(x))$$

- Random manipulation outcomes
 - Unknown realizations before/after manipulation
- Cannot compute manipulation cost precisely
 - Random manipulation cost

Existing Stackelberg game formulation does not fit!

This talk:

- A new Stackelberg game formulation that admits
 - Random manipulation outcomes & costs
- How strategic manipulation and fairness intervention impact each other?

Zhang, X., Khalili, M. M., Jin, K., Naghizadeh, P., & Liu, M. (2022, June). Fairness Interventions as (Dis) Incentives for Strategic Manipulation. In *International Conference on Machine Learning* (ICML).

Two demographic groups

• Sensitive attribute $S \in \{a, b\}$ (race/gender)

- Sensitive attribute $S \in \{a, b\}$ (race/gender)
- Feature *X* (exam score)

- Sensitive attribute $S \in \{a, b\}$ (race/gender)
- Feature *X* (exam score)
- Qualification $Y \in \{0,1\}$ (ability to graduate)

$$P_{X|YS}(x|y,s)$$

Two demographic groups

- Sensitive attribute $S \in \{a, b\}$ (race/gender)
- Feature *X* (exam score)
- Qualification $Y \in \{0,1\}$ (ability to graduate)

$$P_{X|YS}(x|y,s)$$

• Decision $D \in \{0,1\}$ (get admitted or not)

School

- Sensitive attribute $S \in \{a, b\}$ (race/gender)
- Feature *X* (exam score)
- Qualification $Y \in \{0,1\}$ (ability to graduate)

$$P_{X|YS}(x|y,s)$$

- Decision $D \in \{0,1\}$ (get admitted or not)
 - Decision-maker's policy $\pi_s(x) = P_{D|XS}(1|x,s)$

- Sensitive attribute $S \in \{a, b\}$ (race/gender)
- Feature *X* (exam score)
- Qualification $Y \in \{0,1\}$ (ability to graduate)

$$P_{X|YS}(x|y,s)$$

- Decision $D \in \{0,1\}$ (get admitted or not)
 - Decision-maker's policy $\pi_S(x) = P_{D|XS}(1|x,s)$
- Manipulation action $M \in \{0,1\}$ (whether to hire someone else to take the exam or not)

- Sensitive attribute $S \in \{a, b\}$ (race/gender)
- Feature *X* (exam score)
- Qualification $Y \in \{0,1\}$ (ability to graduate)

$$P_{X|YS}(x|y,s)$$

- Decision $D \in \{0,1\}$ (get admitted or not)
 - Decision-maker's policy $\pi_S(x) = P_{D|XS}(1|x,s)$
- Manipulation action $M \in \{0,1\}$ (whether to hire someone else to take the exam or not)
 - Manipulation doesn't affect qualification but results in a better feature distribution

- Sensitive attribute $S \in \{a, b\}$ (race/gender)
- Feature *X* (exam score)
- Qualification $Y \in \{0,1\}$ (ability to graduate)

$$P_{X|YS}(x|y,s)$$

- Decision $D \in \{0,1\}$ (get admitted or not)
 - Decision-maker's policy $\pi_s(x) = P_{D|XS}(1|x,s)$
- Manipulation action $M \in \{0,1\}$ (whether to hire someone else to take the exam or not)
 - Manipulation doesn't affect qualification but results in a better feature distribution
 - Manipulation cost $C_s \ge 0$ (cost of hiring someone)

Manipulate or not?

• For an individual in group s with qualification y, given a policy π_s , he/she manipulates with probability:

• For an individual in group s with qualification y, given a policy π_s , he/she manipulates with probability:

$$\Pr\left(C_S \le P_{D|YMS}(1|y,1,s) - P_{D|YMS}(1|y,0,s)\right)$$

Model: decision-maker's optimal policies

- Policy (π_a, π_b) that maximizes the expected utility $\mathbb{E}[R(Y, D)]$
 - True-positive benefit $R(1,1) = u_+$
 - False-positive penalty $R(0,1) = -u_{-}$

Model: decision-maker's optimal policies

Ability to anticipate manipulative behavior?

Strategic policy

Non-strategic policy

- Policy (π_a, π_b) that maximizes the expected utility $\mathbb{E}[R(Y, D)]$
 - True-positive benefit $R(1,1) = u_+$
 - False-positive penalty $R(0,1) = -u_{-}$

Model: decision-maker's optimal policies

- Policy (π_a, π_b) that maximizes the expected utility $\mathbb{E}[R(Y, D)]$
 - True-positive benefit $R(1,1) = u_+$
 - False-positive penalty $R(0,1) = -u_-$

Special case:

- Individuals manipulate by imitating the features of qualified people
 - Only unqualified individuals have incentives to manipulate
- Threshold decision policy: $\pi_S(x) = P_{D|XS}(1|x,s) = \mathbf{1}(x \ge \theta_S)$
- Monotone likelihood ratio property: $\frac{P_{X|YS}(x|1,s)}{P_{X|YS}(x|0,s)}$ is increasing in $x \in \mathbb{R}$

Strategic **fair** policy

Strategic unconstrained policy

Non-strategic fair policy

Non-strategic unconstrained policy

• Characterize the equilibrium strategies of individuals & decision-maker

Goal:

- 1. How can policies (and fairness property) be affected when decision-maker has ability to anticipate strategic behavior?
- 2. What are the impacts of fairness interventions on policies and resulting manipulative behavior?

Strategic unconstrained policy

VS.

Non-strategic unconstrained policy

• Impacts on acceptance threshold

Let $\delta = \frac{u_-}{u_- + u_+}$, compared to non-strategic policy,

- 1. Strategic policy is the same if $P_{Y|S}(1|s) = \delta$
- 2. Strategic policy over accepts individuals if $P_{Y|S}(1|s) > \delta$ Majority-qualified
- 3. Strategic policy under accepts individuals if $P_{Y|S}(1|s) < \delta$ Majority-unqualified

Strategic unconstrained policy

VS.

Non-strategic unconstrained policy

- Impacts on unfairness (DP/EqOpt): $(T)PR_a (T)PR_b$
- Let disadvantaged group be the group with smaller (true) positive rate

If $P_{Y|S}(1|a) > \delta > P_{Y|S}(1|b)$ and group b is disadvantaged under non-strategic policy, then under strategic policy:

- 1. Unfairness get worse; and
- 2. Group b is still disadvantaged

Strategic unconstrained policy

VS.

Non-strategic unconstrained policy

- Impacts on unfairness (DP/EqOpt): $(T)PR_a (T)PR_b$
- Let disadvantaged group be the group with smaller (true) positive rate

If $\delta > P_{Y|S}(1|s)$ for both groups and group b is disadvantaged under non-strategic policy, then always there exists C_a for group a such that:

- 1. Strategic policy mitigates unfairness; or
- 2. The disadvantaged group is flipped from group b to group a

Non-strategic unconstrained policy

Impacts of fairness constraint on non-strategic policy

Under certain scenarios, a non-strategic decision-maker can benefit from fairness interventions by receiving higher utility from both groups

Strategic vs. Strategic unconstrained policy

- Impacts of fairness constraint on strategic policy and individual behavior
- More complicated relations

Fairness interventions can serve as incentives and/or disincentives for strategic manipulation. We identified scenarios under which:

- 1. Both groups are more/less likely to manipulate under fair policy
- 2. One group is more likely to manipulate while the other is less likely to manipulate under fair policy.

- Scores are normalized from [300, 850] to [0, 1]
- Use empirical data to estimate:
 - Qualification (repayment) rates $P_{Y|S}(1|s)$, group proportion $P_S(s)$

• Fit Beta distribution to get $P_{X|YS}(x|y,s)$

Monotone likelihood ratio property

Manipulation costs:

• Uniform: $C_S \sim U[0, \bar{c}]$

• Beta: $C_S \sim Beta[v, w]$

- Impacts of using strategic policy on unfairness: $(T)PR_a (T)PR_b$
 - Group *b*: African-American
 - Group a: Caucasian/Hispanic/Asian
 - $u_{-} = u_{+}$, we have $P_{Y|S}(1|a) > \delta > P_{Y|S}(1|b)$
 - When $C_a \neq C_b$, it is less costly for group b to manipulate

	C	strategic		non stratagia	
	${\cal G}_a$	$C_a = C_b$	$C_a \neq C_b$	non-strategic	
EqOpt	Caucasian	0.355	0.556	0.136	
	Hispanic	0.292	0.493	0.034	
	Asian	0.333	0.533	0.123	
DP	Caucasian	0.611	0.680	0.449	
	Hispanic	0.421	0.490	0.242	
	Asian	0.634	0.703	0.522	

Unfairness get worse; Group b is still disadvantaged

- Impacts of using strategic policy on unfairness: $(T)PR_a (T)PR_b$
 - Group *b*: African-American
 - Group *a*: Hispanic
 - $u_{-} = 2u_{+}$, we have $\delta > P_{Y|S}(1|s)$ for both groups
 - ullet Fix group b and decrease the manipulation cost of group a

Unfairness can get mitigated; The disadvantaged group may be flipped

- Impacts of fairness constraint on non-strategic decision-maker
 - Group *b*: Caucasian
 - Group *a*: Asian

With fairness intervention

	_			
C_a	$U_a(\widehat{ heta}_a^{ ext{ iny UN}})$	$U_a(\widehat{\theta}_a^{\mathcal{C}})$	$U_b(\widehat{ heta}_b^{ ext{ iny UN}})$	$U_b(\widehat{ heta}_b^{\mathcal{C}})$
Beta(10, 10)	-0.190	-0.189	0.024	0.034
Beta(10, 1)	0.396	0.397	0.181	0.201

Under scenarios we identified, non-strategic decision-maker can benefit from fairness constraint by receiving higher utilities from both groups

Conclusion

- A new Stackelberg game formulation that admits
 - Random manipulation outcomes & costs
- Equilibrium strategies of both individuals & decision-maker

Strategic **fair** policy

Strategic unconstrained policy Non-strategic fair policy

Non-strategic unconstrained policy

- What happens if decision-maker can (not) anticipate manipulative behavior?
- How is the population and decision-maker affected by fairness intervention?