Chimica Fisica e Laboratorio

Giovanni Granucci

Secondo semestre, 6 CFU

Termodinamica

Energia interna U e funzioni ausiliarie H, A e G.

Potenziale chimico $\Rightarrow \begin{cases} & \text{equilibrio chimico} \\ & \text{equilibrio di fase} \end{cases}$

$$\mu_J = \mu_J^\circ + RT \ln a_J$$
 $a_J = ext{attività del componente } J$

$$\mathcal{K}_{eq} = \prod_J (a_J)^{
u_J}$$
 $\Delta G_r^\circ = -RT \ln \mathcal{K}_{eq}$

Spettroscopia: stati molecolari

- Separazione dei moti
- Approssimazione di Born-Oppenheimer
- Accoppiamenti nonadiabatici
- Simmetria molecolare

acqua	A	C_{2v}
ammoniaca	~ § 0	C_{3v}
CO_2	0-0-0	$D_{\infty h}$
<i>trans</i> -azobenzene	なな	C_{2h}
<i>cis</i> -azobenzene	44	C_2

Spettroscopia UV-Vis: stati elettronici

- Caratterizzazione degli stati (multi)-elettronici in termini degli orbitali molecolari di frontiera
- Superfici di energia potenziale elettroniche
- Regioni di forte accoppiamento: incroci evitati
- Intersezioni coniche

Spettroscopia UV-Vis

- Regole di selezione: approssimazione di Condon e fattori di Franck-Condon
- Canali di decadimento radiativi e non-radiativi
- Regola di Kasha (molecole organiche)

Spettroscopia IR

- Stati vibrazionali
- Regole di selezione

Spettroscopia IR

Identificazione composti organici

Laboratorio

Si svolgerà nei locali del Dipartimento di Chimica e Chimica Industriale

- Termodinamica: entalpie di reazione e di evaporazione
- Spettroscopia: spettri IR e UV-Vis; molecole in fase gassosa e in soluzione