

IS CROSS-ATTENTION PREFERABLE TO SELF-ATTENTION FOR MULTI-MODAL EMOTION RECOGNITION?

VANDANA RAJAN¹, ALESSIO BRUTTI², ANDREA CAVALLARO¹

¹CENTRE FOR INTELLIGENT SENSING, QUEEN MARY UNIVERSITY OF LONDON, UK

 $^2\mathrm{CENTER}$ FOR INFORMATION AND COMMUNICATION TECHNOLOGY, FONDAZIONE BRUNO KESSLER, ITALY

Contents

Background

- Automatic emotion recognition
- Self attention & cross attention
- Multi-head attention

Self and cross-attention models

Architecture

Validation

- Dataset
- Results

Conclusion

Automatic emotion recognition

Self-attention

Self-attention (intra-attention):

• relates different positions of a sequence to compute a representation of the *same* sequence [1].

Different colours indicate different weights

[1] Cheng, Jianpeng, Li Dong, and Mirella Lapata. "Long Short-Term Memory-Networks for Machine Reading." *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*. 2016.

Cross-attention

Cross-attention (inter-attention):

• relates different positions of one sequence to compute a representation of *another* sequence.

Different colours indicate different weights

Multi-head attention (1/2)

 Transformers introduced MHA with self and cross-attentions [2]

[2] Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).

Multi-head attention (2/2)

Figure from https://lilianweng.github.io/posts/2018-06-24-attention/

- Self-attention:
 - Intra-modal
 - V, K, Q same modality
- Cross-attention:
 - Inter-modal [3]
 - V,K source modality
 - Q target modality

[3] Tsai, Yao-Hung Hubert, et al. "Multimodal transformer for unaligned multimodal language sequences." *Proceedings of the conference. Association for Computational Linguistics. Meeting.* Vol. 2019. NIH Public Access, 2019.

Self or cross-attention?

RQ: Is cross-attention preferable to self-attention for MMER?

Compare 2 models, one made of self (intra-modal) attention, and another made of cross (inter-modal) attention.

Model design

Modality specific encoders

- 1D convolutions extract local task-relevant components
- $\bullet \ Bi\text{-}GRU-global \ sequence \ modelling$

Attention modules

• MHA – varying focus on time instances according to task-relevance

Temporal averaging

• Global representation of entire utterance

Statistical pooling

• Mean and standard deviation features

Classifier

• Fully connected layers output predictions

Tri-modal crossattention model

Tri-modal selfattention model

Validation

Dataset: IEMOCAP [4] (~ 12 hours)

Total num. utterances: 7487

Classes: 7

1,103 angry, 1,041 excited, 595 happy, 1,084 sad, 1,849 frustrated, 107 surprise and 1,708 neutral

5 fold cross-validation

• Train and evaluate models 10 times per fold (with 10 different random seeds)

Metrics:

- WA Weighted Accuracy
- UWA Un-Weighted Accuracy

[4] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jeannette N Chang, Sungbok Lee, and Shrikanth S Narayanan, "IEMOCAP: Interactive emotional dyadic motion capture database," Language Resources and Evaluation, vol. 42, no. 4, pp. 335–359, 2008.

Results (1/2)

Bi- & Tri-modal results using self and cross-modal attn. models

Tri-modal > Bi-modal > Uni-modal for both fusion models

Results (2/2)

Ablation and model combination

Model	Weighted Accuracy	Unweighted Accuracy
Cross-noSP	.570 (.021)	.634 (.015)
Cross	.578 (.024)	.636 (.012)
Self-noSP	.584 (.021)	.638 (.019)
Self	.587 (.022)	.642 (.019)
Cross+Self	.585 (.028)	.642 (.020)

Conclusion

No statistically significant difference between self and cross-attn. models

Combination of self and cross-attn did not improve performance

This might indicate that the cross-attn model does not contribute any additional info.

Code

https://github.com/smartcameras/SelfCrossAttn