OPERATORY LINIOWE

1. WARTOŚCI I WEKTORY WŁASNE OPERATORÓW I MACIERZY.

1.1. **DEFINICJA** Niech V będzie przestrzenią wektorową nad ciałem K i niech F będzie operatorem liniowym na przestrzeni V. $\lambda \in K$ nazywamy <u>wartością własną operatora F</u>, jeśli $\ker(F - \lambda I_V) \neq \mathbf{0}$. Jeśli λ jest wartością własną F, to każdy niezerowy wektor z przestrzeni $\ker(F - \lambda I_V)$ nazywamy <u>wektorem własnym operatora F</u> odpowiadającym wartości własnej λ . Przestrzeń $\ker(F - \lambda I_V)$ oznaczamy V_{λ} F lub V_{λ} i nazywamy **podprzestrzenią własną** odpowiadającą λ .

UWAGA. λ jest wartością własną operatora F wtedy i tylko wtedy, gdy istnieje niezerowy wektor $\mathbf{v} \in V$, taki że $F(\mathbf{v}) = \lambda \mathbf{v}$. Wektor $\mathbf{v} \neq \mathbf{0}$ jest wektorem własnym odpowiadającym wartości λ wtedy i tylko wtedy, gdy $F(\mathbf{v}) = \lambda \mathbf{v}$.

Niech $A \in M^n(K)$. Wartościami własnymi i wektorami własnymi macierzy A nazywamy wartości własne i wektory własne operatora L_A . $(L_A: M_n(K) \to M_n(K); L_A(X) = AX.)$

- **1.2. TWIERDZENIE.** Niech A będzie macierzą kwadratową nad ciałem K i $\lambda \in K$. Wtedy λ jest wartością własną macierzy A wtedy i tylko wtedy, gdy $Det(A \lambda I) = 0$.
- 1.3. **TWIERDZENIE.** Niech F będzie operatorem liniowym na przestrzeni V, takim że $A = M_B^B(F)$, gdzie B baza V. Wtedy:
- i) λ jest wartością własną operatora F wtedy i tylko wtedy, gdy λ jest wartością własną A.
- ii) dla dowolnej wartości własnej λ , $v \in V_{\lambda}(F) \Leftrightarrow M_{B}(v) \in V_{\lambda}(A)$.
- 1.4. **DEFINICJA.** Niech F będzie operatorem liniowym na przestrzeni wektorowej V. Mówimy, że **podprzestrzeń** U przestrzeni V jest **niezmiennicza względem operatora F**, jeśli $F(U) \subseteq U$.

PRZYKŁAD. Podprzestrzenie własne operatora F są podprzestrzeniami niezmienniczymi względem F.

2. <u>WIELOMIAN CHARAKTERYSTYCZNY MACIERZY I OPERATORÓW</u>

2.1. **TWIERDZENIE.** Niech $A \in M^n_n(K)$. Wtedy Det(xI - A) jest wielomianem unormowanym stopnia n nad K. Ponadto $Det(A - xI) = \begin{cases} Det(xI - A) & \text{gdy } n = 2k \\ -Det(xI - A) & \text{gdy } n = 2k + 1 \end{cases}$

DEFINICJA. Wielomian Det(xI - A) nazywamy <u>wielomianem charakterystycznym</u> <u>macierzy A</u> i oznaczamy $\chi_A(x)$. **UWAGA**. $\lambda \in K$ jest wartością własną macierzy $A \Leftrightarrow \lambda$ jest pierwiastkiem wielomianu $\chi_A(x)$.

2.2. **LEMAT.** Jeśli A, B $\in M^n_n(K)$ są macierzami podobnymi (tzn. istnieje macierz odwracalna N, taka że B = N⁻¹AN), to $\chi_A(x) = \chi_B(x)$.

FAKT. Niech B oraz C będą bazami przestrzeni wektorowej V. Wtedy jeśli F jest operatorem na V, to macierze $M^B_B(F)$ oraz $M^C_C(F)$ mają jednakowe wielomiany charakterystyczne.

Wielomian charakterystyczny macierzy $M^B_B(F)$ nazywamy <u>wielomianem</u> charakterystycznym operatora F i oznaczamy $\chi_F(x)$.

3. <u>DIAGONALIZACJA MACIERZY OPERATORA LINIOWEGO.</u>

3.1. TWIERDZENIE. Niech F będzie operatorem liniowym na przestrzeni wektorowej V i niech B = $(\mathbf{v}_1, ..., \mathbf{v}_n)$ będzie bazą V. Macierz $M^B_B(F)$ jest macierzą diagonalną wtedy i tylko wtedy, gdy B składa się z wektorów własnych operatora F. Dokładniej, $M^B_B(F)$ =diag $(\lambda_1, ..., \lambda_n) \Leftrightarrow F(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$ dla j = 1, ..., n.

TWIERDZENIE. Niech A, N $\in M_n^n(K)$ i niech N będzie macierzą odwracalną. Wtedy następujące warunki są równoważne:

- i) $N^{-1}AN = diag(\lambda_{1,...,}\lambda_{n}),$
- ii) $AN^{(j)} = \lambda_j N^{(j)}$ dla j = 1, ..., n.
- **3.2. DEFINICJA.** Mówimy, że operator F na V jest <u>diagonalizowalny</u> wtedy i tylko wtedy, gdy istnieje baza B przestrzeni V, taka że $M^B_B(F)$ jest diagonalna. (\Leftrightarrow istnieje baza V złożona z wektorów własnych operatora F).

DEFINICJA. Mówimy, że macierz $A \in M_n^n(K)$ jest <u>diagonalizowalna</u> wtedy i tylko wtedy, gdy istnieje macierz odwracalna $N \in M_n^n(K)$, taka że $N^{-1}AN = diag(\lambda_1, ..., \lambda_n)$. ((\Leftrightarrow istnieje baza $M_n(K)$ złożona z wektorów własnych macierzy A).

3.3 TWIERDZENIE. Wektory własne odpowiadające różnym wartościom własnym są liniowo niezależne.

WNIOSEK. (warunek wystarczający diagonalizowalności operatora F). Jeśli operator F na n wymiarowej przestrzeni wektorowej V ma n różnych wartości własnych, to jest diagonalizowalny.

3.4.TWIERDZENIE. Niech F będzie operatorem liniowym na przestrzeni wektorowej V nad ciałem K i niech $\chi_F(x) = (x - \lambda_1)^{m_1} ... (x - \lambda_k)^{m_k}$, gdzie $\lambda_j \in K$ dla j = 1, ..., k oraz $\lambda_i \neq \lambda_j$ dla i $\neq j$. Wtedy następujące warunki są równoważne:

i) istnieje baza przestrzeni V złożona z wektorów własnych operatora F,

ii)
$$V = V_{\lambda_1} \oplus ... \oplus V_{\lambda_k}$$
,

iii)
$$\dim V_{\lambda_j} = m_j$$
, dla $j = 1, ...,k$.

3.5. TWIERDZENIE (Jordana). Niech F będzie operatorem liniowym na przestrzeni V nad

ciałem *C*. Wtedy istnieje baza B przestrzeni *V*, taka że
$$M^{B}_{B}(F) = \begin{bmatrix} K_{1} & \dots & 0 \\ & \ddots & & \\ & & \ddots & \\ & & \ddots & \\ 0 & \dots & K_{p} \end{bmatrix}$$
, gdzie

każda z klatek
$$K_j$$
 jest postaci $K = \begin{vmatrix} \lambda & . & . & . & 0 \\ 1 & \lambda & & & . \\ . & 1 & . & & . \\ . & . & . & . & . \\ 0 & . & . & 1 & \lambda \end{vmatrix}$, gdzie λ jest wartością własną F.