${\bf BIOSTAT~651} \\ {\bf Notes~\#13:~Poisson~Regression} \\$

- Lecture Topics:
 - o Motivation: count, rate data
 - Inference procedures
 - o Examples
- Text (Dobson & Barnett, 3rd Ed.): Chapter 9

Data Structure: Count Response

- Often in biomedical studies, the response variate is a *count*
 - \circ response = event count

• Examples:

- number of incident lung cancer cases in Michigan, 2000-2004
- number of acute liver failure cases diagnosed between 01/01/1990 and 12/31/1999, among males age 40-64 working in either Michigan, Ohio or Illinois.
- o number of physician visits for influenza among University of Michigan students in 2005

Data Structure: Count, Rate

- If follow-up time (or, *exposure*) is constant across all subjects, we can model the mean count directly
 - o more generally, we model rate, where:

$$rate_i = \frac{E(count_i)}{exposure_i}$$

- Rates are typically reported as events per unit time (or person-time)
 - \circ e.g., cases per 100,000 patient-years
- Units of time dimension are arbitrary
 - must use same units for all observations.

Example: Equal Exposure

• Example: A group of clinicians wishes to study the association between air temperature and physician claims for asthma. The setting is Ann Arbor, with observed data given in the following table:

Month	Avg. Temp	Claims
Sep	51	16
Oct	44	14
Nov	40	9
Dec	29	6
Jan	23	11
Feb	21	8
Mar	32	15
Apr	41	17
May	62	7
Jun	78	5

Examples: Unequal Exposure

• Example: A study carried out at the University of Michigan Department of Internal Medicine examined hospital admission patterns among dialysis patients. Each patient was followed from the initiation of dialysis until 12/31/2009. Below is a subset of the records from the analysis file:

IDNUM	YEARS	ADMITS	DIAB	AGE
1	0.6	5	1	61
2	4.2	11	0	56
3	1.3	7	1	45
4	2.2	8	0	66

Poisson Distribution

• General data structure:

 $Y_i = \text{event count}$

 $\mathbf{x}_i = \text{covariate vector}$

 $T_i = \text{exposure}$

observed data: (\mathbf{x}_i, Y_i, T_i) for $i = 1, \dots, n$

- Assume that:
 - \circ triplets (\mathbf{x}_i, Y_i, T_i) are iid
 - Probability function:
 - Moments:
 - Rate function:

Poisson Regression Model

• Rate model:

$$\log \lambda_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

• written in terms of mean function:

$$\log E\left[\frac{Y_i}{T_i}\right] = \mathbf{x}_i^T \boldsymbol{\beta}$$

$$\log E[Y_i] = \log T_i + \mathbf{x}_i^T \boldsymbol{\beta}$$

 \circ the term $\log(T_i)$ is referred to as an offset

Poisson Regression as a GLM

- Poisson regression model is a special case of a GLM
 - o link function:
 - mean function:
 - variance function:

• Standard implementation features the canonical link

Interpretation of Parameters

• Consider a Poisson model with a single covariate where (for now) X_i is continuous

$$\log \lambda_i = \beta_0 + \beta_1 (X_i - \overline{X})$$

• Interpretation of β_0 :

• Interpretation of β_1 :

Interpreting Parameters

• Suppose now that the covariate is binary:

$$X_i = I_i(\text{treated})$$

$$\log \lambda_i = \beta_0 + \beta_1 X_i$$

• Interpretation of β_0 :

• Interpretation of β_1 :

Poisson Regression: Estimation

• Applying general GLM results to the case where $Y_i \sim$ follows the Poisson model:

$$\lambda_i = \lambda(\mathbf{x}_i) = e^{\mathbf{x}_i^T \boldsymbol{\beta}}$$

• Score function:

$$U(\boldsymbol{\beta}) = \sum_{i=1}^{n} \mathbf{x}_{i}^{T}(y_{i} - \mu_{i}) = \sum_{i=1}^{n} \mathbf{x}_{i}^{T}(y_{i} - T_{i}\lambda_{i})$$
$$= \sum_{i=1}^{n} \mathbf{x}_{i}(y_{i} - T_{i}e^{\mathbf{x}_{i}^{T}\boldsymbol{\beta}})$$

Information matrix:

$$J(\boldsymbol{eta}) = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} v(\mu_{i})$$

$$= \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} T_{i} e^{\mathbf{x}_{i}^{T} \boldsymbol{eta}}$$

Poisson Model: Maximum Likelihood

• From first principles,

$$L_{i}(\boldsymbol{\beta}) \propto \frac{\exp\{-T_{i}e^{\mathbf{x}_{i}^{T}\boldsymbol{\beta}}\} \left(T_{i}e^{\mathbf{x}_{i}^{T}\boldsymbol{\beta}}\right)^{Y_{i}}}{Y_{i}!}$$

$$= \exp\{-T_{i}e^{\mathbf{x}_{i}^{T}\boldsymbol{\beta}}\} \left(T_{i}e^{\mathbf{x}_{i}^{T}\boldsymbol{\beta}}\right)^{Y_{i}}$$

$$\ell_{i}(\boldsymbol{\beta}) = -T_{i}e^{\mathbf{x}_{i}^{T}\boldsymbol{\beta}} + Y_{i}\log T_{i} + Y_{i}\mathbf{x}_{i}^{T}\boldsymbol{\beta}$$

$$U_{i}(\boldsymbol{\beta}) = \mathbf{x}_{i}(Y_{i} - T_{i}e^{\mathbf{x}_{i}^{T}\boldsymbol{\beta}})$$

$$J_{i}(\boldsymbol{\beta}) = \mathbf{x}_{i}\mathbf{x}_{i}^{T}T_{i}e^{\mathbf{x}_{i}^{T}\boldsymbol{\beta}}$$

Poisson Regression: SAS

- Like other GLMs, Poisson models can be fitted using PROC GENMOD
- e.g., Reconsider the data set from Slide #5, with input records of the form:

IDNUM	YEARS	ADMITS	DIAB	AGE	LOG_YRS
1	0.6	5	1	61	-0.5108
2	4.2	11	0	56	1.4351
3	1.3	7	1	45	0.2624
4	2.2	8	0	66	0.7885

RUN;