Тема: КРУТИЛЬНЫЕ КОЛЕБАНИЯ ВАЛА

1. Уравнение движения

Дано: GI_p , l, q(z,t), T(t), μ — массовый момент инерции кручению ед. длины, b — коэф. вязкого сопротивления кручению ед. длины.

Подлежит определению функция углов поворота (закручивания) поперечных сечений вала heta(z,t)!

Уравнение динамического равновесия:

$$\sum M_{z} = 0: \frac{\partial T_{k}(z,t)}{\partial z} \cdot dz + q(z,t) \cdot dz - \mu \cdot \frac{\partial^{2} \theta(z,t)}{\partial t^{2}} \cdot dz - \frac{\partial^{2} \theta(z,t)}{\partial z} \cdot dz - \frac{\partial^{2} \theta(z,t)}{\partial z} \cdot dz = 0;$$

$$\mu \cdot \frac{\partial^2 \theta(z,t)}{\partial t^2} + b \cdot \frac{\partial \theta(z,t)}{\partial t} - \frac{\partial T_k(z,t)}{\partial z} = q(z,t).$$

$$\tau = G\gamma$$
; $T_k = GI_p \frac{\partial \theta(z,t)}{\partial z}$.

Окончательно получим уравнение движения:

$$\mu \cdot \frac{\partial^2 \theta(z,t)}{\partial t^2} + b \cdot \frac{\partial \theta(z,t)}{\partial t} - \frac{\partial}{\partial z} \left(G I_p \frac{\partial \theta(z,t)}{\partial z} \right) = q(z,t). \quad (1)$$

Для однородного вала $\mathit{GI}_p = \mathit{const}$ и $\mu = \mathit{const}$, тогда

$$\frac{\partial^2 \theta(z,t)}{dt^2} + 2n \cdot \frac{\partial \theta(z,t)}{\partial t} - a^2 \cdot \frac{\partial^2 \theta(z,t)}{dz^2} = \frac{1}{\mu} \cdot q(z,t).$$

$$2n = \frac{b}{\mu}, \quad a^2 = \frac{GI_p}{\mu} = \frac{GI_p}{I_p\rho} = \frac{G}{\rho}.$$

$$a=\sqrt{rac{G}{
ho}}$$
 — скорость распространения крутильных волн;

ho — плотность материала вала; G —модуль сдвига материала.

Задача крутильных колебаний вала идентична решению задачи о продольных колебаниях стержня!

1. Свободные колебания однородного вала. Собственные частоты и собственные формы колебаний

$$\frac{\partial^2 \theta(z,t)}{\partial t^2} - a^2 \cdot \frac{\partial^2 \theta(z,t)}{\partial z^2} = 0. \tag{2}$$

$$a^2 = \frac{G}{\rho}$$
.

Решение ищем в форме Фурье (разделения переменных):

$$\theta(z,t) = f(z) \cdot \varphi(t),$$

$$\frac{\partial^2 \theta(z,t)}{\partial t^2} = f(z) \cdot \ddot{\varphi}(t); \ \frac{\partial^2 \theta(z,t)}{\partial z^2} = f''(z) \cdot \varphi(t).$$

Подставляем в (2)

$$f(z) \cdot \ddot{\varphi}(t) - a^2 \cdot f''(z) \cdot \varphi(t) = 0$$
,

$$f(z) \cdot \ddot{\varphi}(t) = a^2 \cdot f''(z) \cdot \varphi(t),$$

$$\frac{\ddot{\varphi}(t)}{a^2 \cdot \varphi(t)} = \frac{f''(z)}{f(z)} = -\mathrm{K}^2$$
, где $\mathrm{K}^2 = const$

$$\ddot{\varphi}(t) + \omega^2 \cdot \varphi(t) = 0$$
, где $\omega^2 = a^2 \cdot K^2$; $f''(z) + K^2 \cdot f(z) = 0$.

Решаем второе уравнение:

его характеристическое ур-е

$$p^2 + K^2 = 0, p^2 = -K^2.$$

Если $K^2 \le 0$, то корни действительные

$$p_{1,2}=\pm K,$$

колебаний нет $f(z) = C_1 \cdot e^{Kz} + C_2 \cdot e^{-Kz}$

 $E c n u K^2 > 0$, то корни комплексно — сопряжённые

$$p_{1,2}=\pm i\cdot K,$$

колебания есть

 $f(z) = C_1 \cdot \cos Kz + C_2 \cdot \sin Kz$, поэтому дальше рассматриваем этот случай.

Аналогично рассматриваем первое ур-е

$$\ddot{\varphi}(t)+\omega^2\cdot \varphi(t)=0$$
, где $\omega^2=a^2\cdot K^2$, его решение

$$\varphi(t) = A_1 \cdot \cos \omega t + A_2 \cdot \sin \omega t =$$

$$= B \cdot \sin(\omega t + \beta).$$

ТАКИМ ОБРАЗОМ ОБЩЕЕ РЕШЕНИЕ УР-Я (2):

$$\theta(z,t) = \sum_{n=1}^{\infty} f_n(z) \cdot \varphi_n(z) =$$

$$= \sum_{n=1}^{\infty} (C_{1n} \cdot \cos K_n z + C_{2n} \cdot \sin K_n z) \cdot B_n \cdot \sin(\omega_n t + \beta_n).$$

ГДЕ $f_n(z)$ — собственные формы колебаний;

 ω_n — собственные частоты колебаний;

 C_{1n} и C_{2n} — константы интегрирования, определяемые из граничных условий;

 B_n — константы интегрирования, определяемые из начальных условий;

 β_n — фазы, определяемые из начальных условий;

 ${\rm K}_n$ — собственные числа или коэффициенты форм колебаний.

Примеры

$$\theta(z,t) = f(z) \cdot \varphi(t) = f(z) \cdot \sin \omega t$$

$$f(z) = C_1 \cdot \cos Kz + C_2 \cdot \sin Kz.$$

$$f'(z) = -K \cdot C_1 \cdot \sin Kz + K \cdot C_2 \cdot \cos Kz.$$

Применительно к валу, защемленному с одной стороны, имеем:

$$f(0) = 0;$$
 $f'(l) = 0;$

$$f(0) = C_1 \cdot \cos 0 + C_2 \cdot \sin 0 = 0,$$

$$C_1 \cdot 1 + C_2 \cdot 0 = 0 \rightarrow C_1 = 0.$$

$$f'(l) = K \cdot C_2 \cdot \cos Kl = 0.$$

$$\cos Kl = 0$$
.

$$K_n l = \frac{\pi}{2}(2n-1), \quad n = 1, 2, \dots$$

$$\omega_n = K_n \cdot a = \frac{\pi}{2l} (2n - 1) \cdot \sqrt{\frac{G}{\rho}},$$

где $\rho = \frac{\mu}{J_p}$ – плотность материала стержня.

Для собственных форм колебаний $C_2 = 1$ получаем выражение

$$f_n(z) = \sin\frac{\pi}{2l}(2n-1)z.$$

При рассмотрении вала с защемлениями по концам имеем:

$$f(0)=f(l)=0;$$
 $C_1=0;$ $C_2\sin Kl=0;$ $Kl=\pi n;$ $\omega_n=K_n\cdot a=(\frac{\pi n}{l})\cdot \sqrt{\frac{G}{\rho}}.$

Для собственных колебаний при $C_2 = 1$ получаем выражение

$$f_n(z) = \sin\frac{\pi n}{l}z.$$