第一章引论

第一章 引论

- •1.1 数值分析研究的对象与特点
- •1.2 数值计算的误差与有效数字
- •1.3 数值运算的误差估计
- •1.4 数值计算中的一些基本原则

1.1 数值分析研究的对象与特点

• 数值分析是做什么用的?

• 研究对象: 用计算机求解各种数学问题的数值计算方法及其理论与软件实现.

计算机解决科学计算的过程:

实际问题→数学模型→数值计算方法→程序设计→结果 实际上述过程可分两部分:

- 1.由实际问题应用有关知识和数学理论建立模型,
 - -----应用数学任务
- 2.由数学模型提出求解的数值计算方法直到编程出结果,
 - -----计算数学任务

数值分析是计算数学的一个主要部分, 研究的即是后半部分, 将理论与计算相结合.

特点:

- 面向计算机,提供切实可行的算法;
- 有可靠的理论分析,能达到精度要求,保证近 似算法的收敛性和数值稳定性;
- 要有好的计算复杂性,节省时间及存储量;
- 有数值实验,证明算法有效.

常采用的处理方法:

- 构造性方法;
- 离散化方法;
- 递推化方法;
- 迭代法:
- 近似替代方法;
- 以直代曲法;
- 化整为零处理法;
- 外推法.

数学基础:

微积分的若干定理:

- 罗尔定理和微分中值定理
- 介值定理及推论
- 泰勒公式 (一元、二元)
- 积分中值定理

线性代数的若干概念和结论:

- · 行列式
- · 初等变换
- 特殊三角阵

部分数学基础知识:

1. 一元函数 y=f(x)的 Taylor 公式

$$f(x) = f(x^*) + (x - x^*)f'(x) + \frac{f''(x)}{2}(x - x^*)^2 + \cdots$$
$$+ \frac{f^{(n)}(x^*)}{n!}(x - x^*)^n + \frac{(x - x^*)^{n+1}}{(n+1)!}f^{(n+1)}(\xi).$$

或

$$f(x) = f(x^*) + (x - x^*)f'(x) + \frac{f''(x)}{2}(x - x^*)^2 + \cdots$$
$$+ \frac{f^{(n)}(x^*)}{n!}(x - x^*)^n + O(x - x^*)^n.$$

图1.1 ex的多项式近似情况及误差

2. 一元函数 y=f(x)的微分中值定理

设函数 $f(x) \in C([a, b])$,在(a, b)内可导,则存在 $\xi \in [a, b]$,使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

3. 中间值定理

设 $f(x) \in C([a, b])$,假设w是介于f(a)和f(b)之间的一个值,也就是说

$$f(a) \le w \le f(b)$$

或

$$f(b) \le w \le f(a)$$

则必存在点 $c \in [a, b]$, 使得f(c)=w.

4. 积分中值定理

设函数 $f(x) \in C([a, b])$,则至少存在一点 $\xi \in [a, b]$, 使得

$$\int_{a}^{b} f(x) dx = f(\xi)(b-a).$$

广义积分中值定理:设f(x)和g(x)都在C([a, b])中,且g(x)在区间[a, b]上不变号,则存在一点 $\xi \in [a, b]$ 使得

$$\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx.$$

5. 渐进阶

使用的一种所谓的"O"表示法来表示"渐近" 近似. 比如:

$$|y-y_h| \le C\beta(h)$$

则记为

$$y = y_h + O(\beta(h)) \quad (h \to 0)$$

其中

$$\lim_{h\to 0}\beta(h)=0.$$

6. 数字精度对计算的影响

k	x_k	f(x)	单精度	双精度
1	0.5000000000000000	1. 297442541400260	1. 297442436218300	1. 297442541400300
2	0. 2500000000000000	1. 136101666750970	1. 136101722717300	1. 136101666751000
3	0. 1250000000000000	1. 065187624534610	1. 065187454223600	1. 065187624534600
4	0.0625000000000000	1. 031911342685750	1. 031911849975600	1. 031911342685800
5	0. 031250000000000	1. 015789039971290	1. 015789031982400	1. 015789039971300
6	0. 015625000000000	1. 007853349547890	1. 007850646972700	1. 007853349547900
7	0.007812500000000	1. 003916442425350	1. 003921508789100	1.003916442425300
8	0.003906250000000	1. 001955670616950	1. 001953125000000	1. 001955670617000
9	0.001953125000000	1. 000977198593430	1. 000976562500000	1. 000977198593400
10	0.000976562500000	1. 000488440234450	1. 000488281250000	1. 000488440234400
11	0.000488281250000	1. 000244180366280	1. 000244140625000	1. 000244180366300
12	0.000244140625000	1. 000122080246910	1. 0000000000000000	1. 000122080246900
13	0.000122070312500	1.000061037639170	1. 0000000000000000	1. 000061037639200
14	0. 000061035156250	1. 000030518200220	1. 0000000000000000	1. 000030518200200

1.2 数值计算的误差与有效数字

1.2.1 误差来源与分类:

按来源分,误差分为固有误差和计算误差.

- (1) 固有误差:建立模型时已存在.
 - 模型误差: 建立数学模型时所引起的误差;
 - 观测误差:测量工具的限制或在数据的获取 时随机因素所引起的物理量的误差.

- (2) 计算误差: 计算过程中出现的误差.
 - 截断误差:用数值方法求解数学模型时,用简单代替复杂,或者用有限过程代替 无限过程所引起的误差;
 - 舍入误差: 计算机表示的数的位数有限, 通常用四舍五入的办法取近似值,由此引起的误差.

截断误差:

例如:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$S_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

由泰勒余项定理得其截断误差为:

$$e^{x} - S_{n}(x) = \frac{x^{n+1}}{(n+1)!} e^{\theta x}, 0 < \theta < 1$$

舍入误差:

$$\pi = 3.14159265 \cdots$$

$$\pi \approx 3.1415927$$

$$\sqrt{2} = 1.414213562 \dots$$

$$\sqrt{2} \approx 1.4142136$$

$$\frac{1}{3!} \approx 0.16666667$$

例: 近似计算
$$\int_0^1 e^{-x^2} dx$$
 (= 0.747...)

解: 将 e^{-x^2} 作 Taylor 展 开 后 再 积 分

$$\int_{0}^{1} e^{-x^{2}} dx = \int_{0}^{1} (1 - x^{2} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \frac{x^{8}}{4!} - \dots) dx$$

$$= 1 - \frac{1}{3} + \frac{1}{2!} \times \frac{1}{5} - \frac{1}{3!} \times \frac{1}{7} + \frac{1}{4!} \times \frac{1}{9} - \dots$$

$$S_{4}$$

取 $\int_0^1 e^{-x^2} dx \approx S_4$,则 $R_4 = \frac{1}{4!} \times \frac{1}{9} - \frac{1}{5!} \times \frac{1}{11} + \dots$ 称为截断误差 这里 $|R_4| < \frac{1}{4!} \times \frac{1}{9} < 0.005$

$$S_4 = 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} \approx 1 - 0.333 + 0.1 - 0.024 = 0.743$$

舍入误差 < 0.0005×2=0.001

 $\int_0^1 e^{-x^2} dx$ 的总体误差<0.005+0.001=0.006

误差的传播与积累:

例:蝴蝶效应 —— 纽约的一只蝴蝶翅膀一拍,风和日丽的北京就刮起台风来了?!

该问题是一病态问题.

1.2.2 误差与有效数字:

1. 绝对误差与相对误差:

定义1.1 设x*为某一数据的准确值,x为x*的一个近似值,称e(x)=x-x*(近似值一准确值)为近似值x的绝对误差,简称误差.

e(x) 可正可负,当e(x) > 0时近似值偏大,叫强近似值;当e(x) < 0时近似值偏小,叫弱近似值。

由于x*通常无法确定,只能估计其绝对误差值的绝对值不超过某个正整数 $\varepsilon(x)$,即

$$|e(x)| = |x - x^*| \le \varepsilon(x)$$

则称 $\varepsilon(x)$ 为绝对误差限.

由上式得
$$x - \varepsilon(x) \le x^* \le x + \varepsilon(x)$$

可知x*的范围. 或记为

$$x^* = x \pm \varepsilon(x)$$

但误差e(x)并不足以刻划x的精度.

如:

$$x*=15\pm 2$$
, $x=15$, $\varepsilon(x)=2$; $y*=1000\pm 5$, $y=1000$, $\varepsilon(y)=5$

因此考虑精度时除看误差大小外,还应考虑精确值本身的大小,故引入相对误差概念.

定义1.2 设x*为某一数据的准确值, x为x*的一个近似值, 称

$$e_r(x) = \frac{e(x)}{x^*} = \frac{x - x^*}{x^*}, \quad (x^* \neq 0)$$

为近似值x的相对误差.

实际计算时, 由于x*不知, 通常取

$$e_r(x) = \frac{e(x)}{x} = \frac{x - x^{-x}}{x}$$

如果存在一适当小的正数 ε_r , 使得

$$|e_r(x)| = \left|\frac{e(x)}{x^*}\right| = \left|\frac{x - x^*}{x^*}\right| \le \varepsilon_r$$

则称 ε_r 为相对误差限.

例:
$$x=15$$
, $\varepsilon(x)=2$, $\varepsilon_r(x)=2/15=13.33\%$; $y=1000$, $\varepsilon(y)=5$, $\varepsilon_r(y)=5/1000=0.5\%$

2. 有效数字:

定义1.3 若近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x有n位有效数字,x可表示为

$$x = \pm 0.a_1 a_2 \cdots a_n \times 10^m$$

其中, $a_1, a_2, ..., a_n$ 都是 $0 \sim 9$ 中的任一整数, 但 $a_1 \neq 0$.

其绝对误差限满足:

$$e(x) = |x - x^*| \le \frac{1}{2} \times 10^{m-n}$$

(1) 取x=3.14,则m=1,

$$|x - x^*| \le 0.002 \le 0.005 = \frac{1}{2} \times 10^{1-3}$$

即n=3, 有三位有效数字;

(2) 取x=3.1416,则m=1,

$$|x - x^*| \le 0.0000008 \le 0.000005 = \frac{1}{2} \times 10^{1-5}$$

即n=5,有5位有效数字.

定理1: 设近似数x表示为

$$x = \pm 0.a_1 a_2 \cdots a_n \times 10^m$$

若x具有n位有效数字,则其相对误差限为

$$\left| e_r(x) \right| \le \frac{1}{2a_1} \times 10^{-(n-1)}$$

反之, 若x的相对误差限为

$$|e_r(x)| \le \frac{1}{2(a_1+1)} \times 10^{-(n-1)}$$

则x至少具有n位有效数字.

证明:由

$$x = \pm 0.a_1 a_2 \cdots a_n \times 10^m$$

得

$$|a_1 \times 10^{m-1} \le |x| \le (a_1 + 1) \times 10^{m-1}$$

当x具有n位有效数字时,

$$|e_r(x)| = \frac{|x - x^*|}{|x|} \le \frac{0.5 \times 10^{m-n}}{a_1 \times 10^{m-1}}$$
$$\le \frac{1}{2a_1} \times 10^{-(n-1)}$$

反之,由

$$|e_r(x)| \le \frac{1}{2(a_1+1)} \times 10^{-(n-1)}$$

得

$$|x-x*|=|x||e_r(x)|$$

$$\leq (a_1+1)\times 10^{m-1}\times \frac{1}{2(a_1+1)}\times 10^{-(n-1)}$$

$$=0.5\times10^{m-n}$$

则x至少具有n位有效数字.

例1. 某零件质量取决于零件某参数x, 设参数标定值为1个单位, 在生产过程中允许参数与标定值间有一定误差, 据此将零件分成A、B、C三等, 等级由相对误差限决定, A: 1%, B: 5%, C: 10%, 试确定三个等级的零件参数允许变化的范围.

解
$$x^*=1$$
,由 $\left|\frac{x-x^*}{x^*}\right| \le \varepsilon_r$ 得 $-\varepsilon_r \le \frac{x}{x^*}-1 \le \varepsilon_r$ 故 $x^*(1-\varepsilon_r) \le x \le x^*(1+\varepsilon_r)$

将三个相对误差限分别带入, 得范围如下:

 $A: x \in [0.99, 1.01]$

B: $x \in [0.95,0.99)$ U(1.01,1.05]

 $C: x \in [0.9,0.95) \text{U}(1.05,1.1]$

- 例2. 测量一物体的长度为954cm, 问测量数据的相对误差限多大?
- 解 因实际问题所截取的近似数,其绝对误差限一般 不超过最小刻度的半个单位,

故当x=954cm时,有 $\varepsilon(x)=0.5$ cm,

而x的相对误差

 $e_r(x) \le 0.5/954 = 0.0005241.... < 0.00053 = 0.053\%$ 故 $\varepsilon_r(x) = 0.053\%$. 例3. 要使√20的相对误差不超过0.1%, 应取几位有效数字?

解: $\sqrt{20}$ 的首位数是 $a_1 = 4$.

设 $\sqrt{20}$ 的近似值x有n位有效数字.

则由定理1,相对误差满足

$$|e_r(x)| = \frac{|x - x^*|}{|x^*|} \le \frac{1}{2 \times a_1} \times 10^{1-n}$$

$$\frac{1}{2 \times 4} \times 10^{1-n} \le 0.001 \qquad n \ge 3.097$$

即应取4位有效数字,近似值的相对误差不超过0.1%.