

PROPOSTA DE TESTE INTERMÉDIO N.º 1 MATEMÁTICA A - 11.º ANO

"A Matemática é a rainha das ciências." Carl Gauss

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Na figura estão representados uma circunferência de equação $x^2+y^2=r^2$, com $r\in\mathbb{R}$ e o triângulo [PQR]

O ponto A pertence à circunferência e ao eixo Ox. Os pontos Q e R pertencem à circunferência e são simétricos relativamente à origem do referencial. A amplitude do arco APQ é $\frac{5\pi}{6}$. Qual é, em função de r, a área do triângulo [PQR]?

$$D r^2$$

2. Na figura está representado num referencial o.n. xOy, parte do gráfico da função g, de domínio \mathbb{R} , definida por $g(x) = 3 + a\cos\left(bx + \frac{\pi}{3}\right)$, com $a, b \in \mathbb{R} \setminus \{0\}$.

Tal como a figura sugere, o ponto de coordenadas $\left(\frac{\pi}{2},2\right)$ pertence ao gráfico de g, um dos minimizantes da função é π e um dos maximizantes é $-\frac{7\pi}{2}$. Quais são os valores de a e de b?

A
$$a=2 \ e \ b=-\frac{2}{3}$$

A
$$a=2$$
 e $b=-\frac{2}{3}$ **B** $a=-2$ e $b=-\frac{2}{3}$ **C** $a=-2$ e $b=\frac{2}{3}$ **D** $a=2$ e $b=\frac{2}{3}$

$$a = -2 e b = \frac{2}{3}$$

D
$$a=2 \ e \ b=\frac{2}{3}$$

3. Na figura estão representados três planos, α , β e γ , definidos respectivamente por, $a^2x+y+z=ax$, 2x+y=-2-z e x+a(y+z)=0, com $a\in\mathbb{R}\setminus\{0\}$.

Sabe-se que:

- os planos α e β são estritamente paralelos;
- o plano γ intersecta os planos α e β sobre duas rectas paralelas, r e s (α e γ intersectam-se sobre r e β e γ intersectam-se sobre s);

Qual é o valor de a?

Exercício Extra: Escreva as equações cartesianas da recta s.

4. Na figura está representado num referencial o.n. xOy, parte do gráfico da função f, de domínio $\mathbb{R}\setminus \{-c\}$, definida por uma expressão do tipo $f\left(x\right)=a+\frac{b}{x+c}$, com $a,b,c\in\mathbb{R}\setminus \{0\}$ e o triângulo $\left[ABC\right]$.

Sabe-se que:

• as rectas de equação x=-c e y=c são assimptotas do gráfico de f;

o triângulo é rectângulo em B.

Qual é a área do triângulo $\begin{bmatrix} ABC \end{bmatrix}$ em função de c?

A *c*

B 2*c*

C 3*c*

D 4*c*

5. A região admissível D, representada na figura, é a região admissível de um problema de Programação Linear cuja função objectivo é z = x + 2y. Pretende-se maximizar esta função objectivo.

Sabendo que este problema só admite soluções (x,y), com $x,y\in\mathbb{Z}$, quantas são as soluções óptimas deste problema?

- **A** quatro
- **B** três

- **C** duas
- **D** uma

GRUPO II – ITENS DE RESPOSTA ABERTA

1. Na figura estão representados em referencial o.n. xOy uma circunferência definida pela equação $4x^2 + 4y^2 = 1$ e um trapézio OABC.

Sabe-se que:

• o ponto A desloca-se sobre a circunferência, no segundo quadrante (incluindo apenas o eixo Oy). O ponto D acompanha o movimento de A, de modo que A0 é sempre paralelo a A0;

- o ponto C pertence ao eixo Ox e o segmento de recta $\begin{bmatrix} BC \end{bmatrix}$ é perpendicular ao eixo Ox;
- o arco de circunferência AC está centrado em D.
- α é a amplitude, em radianos, do ângulo POA, com $\alpha \in \left\lceil \frac{\pi}{2}, \pi \right\rceil$.

Seja f a função de domínio $\left[\frac{\pi}{2}, \pi\right]$ definida por $f(x) = \frac{2 \operatorname{sen}^2 x - \operatorname{sen} x \cos x}{8}$.

- **1.1.** Mostre que área do trapézio $\left[OABC\right]$ é dada, em função de α , por $f\left(\alpha\right)$. Determine $f\left(\frac{\pi}{2}\right)$ e interpreta geometricamente o resultado obtido.
- **1.2.** Seja $\theta \in \left[\frac{\pi}{2}, \pi\right[\text{ tal que } f(\theta) \frac{\sin^2 \theta}{4} = \frac{1}{24} \text{. Determine o valor de } \left(\sin \theta \cos \theta\right)^6 \text{.}$

- **1.3.** Considere $\alpha = \frac{2\pi}{3}$. Determine as coordenadas do ponto de intersecção da recta tangente à circunferência no ponto A com o eixo Ox.
- 2. Seja g uma função do tipo $g(x) = \frac{Ax^2 + Bx + C}{Dx + E}$, com A, B, C, D e E, constantes reais não nulas.

Sabe-se que:

- O gráfico de g tem uma assimptota vertical e uma assimptota oblíqua;
- α é a amplitude da inclinação da assimptota oblíqua de tal modo que $5 \sec \alpha = 2\sqrt{5}$ e $\frac{\pi}{2} < \alpha < \pi$. O ponto de coordenadas (3,-5) pertence à assimptota;
- os pontos de coordenadas (0,-2), (2,0) pertencem ao gráfico de g.
- **2.1.** Mostre que $g(x) = \frac{-2x^2 + 3x + 2}{x 1}$.
- **2.2.** Sem recorrer à calculadora, resolva a inequação g(x)-2x>8. (Apresente o conjunto solução na forma de intervalo, ou união de intervalos)
- 3. Na figura está representado, num referencial o.n. Oxyz, um octaedro.

Sabe-se que:

- o quadrado [ACFE] está contida no plano xOz;
- o ponto A pertence ao eixo Ox;
- o ponto C pertence ao eixo Oz;
- o ponto G é o centro do octaedro;
- os vértices do octaedro pertencem à superfície esférica de equação:

$$x^2 + y^2 + z^2 - 4x - 4z + 4 = 0$$

3.1. Escreva uma equação do plano ABE.

- **3.2.** Determine as coordenadas do ponto de intersecção do plano ABE com a recta r. Caso não tenha feito a alínea anterior, considere que ABE: x + y z = 2.
- **3.3.** Sejam T um ponto pertencente ao eixo Oy com a mesma ordenada de B e Q um ponto que se desloca sobre a recta r. Quais são as coordenadas de Q de modo que o triângulo $\lceil TQF \rceil$ seja rectângulo em Q?
- **3.4.** Para um certo valor de $\alpha \in \left[\pi, \frac{3\pi}{2} \right]$ o ponto P de coordenadas $\left(2\cos^2 \alpha, \sin \alpha, 2\sin \alpha \right)$ pertence ao plano ABE. Determina o valor de α e indique os valores numéricos das coordenadas do ponto P. Caso não tenha feito a alínea 3.1., considere que ABE: x + y z = 2.
- **4.** Na figura está representado um rectângulo [ABCD].

Sabe-se que:

• E é o ponto médio do lado AD;

$$\overline{AD} = \frac{2}{3}\overline{CD}$$

•
$$\overline{CD} = 3\overline{CF}$$

•
$$\overline{AG} = \overline{CF}$$

Mostre que $\overrightarrow{EC} \cdot \overrightarrow{FG} = -5\overrightarrow{CF}^2$.

5. Considere as funções f, g e h tais que, f tem domínio $\mathbb{R} \setminus \{-1,1\}$ e é definida por $f(x) = \frac{1}{x^2 - 1}$, g tem domínio \mathbb{R} e é definida por $g(x) = x^3 + x^2 - 2x$ e h tem domínio $[0, +\infty[$ e o seu gráfico encontra-se parcialmente representado na figura seguinte:

- **5.1.** Determine o valor de $(f-g)(-2)+(f\circ h)(0)$.
- **5.2.** Caracterize a função $f \times g$ e escreva as equações das assimptotas do seu gráfico. (Apresente a expressão analítica de $f \times g$ na forma mais simplificada possível)

- **5.3.** Resolva a inequação $\left(\frac{h}{f}\right)(x) \le 0$. (Apresente o conjunto solução na forma de intervalo, ou união de intervalos)
- **5.4.** Determine o domínio da função $h \circ g$.
- **5.5.** Determine o conjunto solução da equação $(h \circ f)(x) = 0$

Solucionário

- $f\left(\frac{\pi}{2}\right) = \frac{1}{4}$. Quando $\alpha = \frac{\pi}{2}$ o trapézio transforma-se num quadrado de lado $\frac{1}{2}$, cuja área é $\frac{1}{4}$. 1.2. $\frac{125}{27}$

- 1, $\frac{3}{4}$ 3.2. $\left(\frac{20}{7}, 2, \frac{20}{7}\right)$ 3.3. Q(2,2,4) ou $Q\left(\frac{16}{5}, 2, \frac{12}{5}\right)$
- 3.4. $\alpha = \frac{7\pi}{6}$; $\left(\frac{3}{2}, -\frac{1}{2}, -1\right)$
- **5.2.** $D_{f \times g} = \mathbb{R} \setminus \{-1,1\}$; $(f \times g)(x) = \frac{x^2 + 2x}{x+1}$; A.V.: x = -1; A.O.: y = x+1
- **5.4.** $[-2,0] \cup [1,+\infty[$ **5.5.** $\left\{-\sqrt{2},-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3},\sqrt{2}\right\}$ $[0,1[\,\cup\,]1,3]$ 5.3.