Bioinformatics for COVID19

Kim Dill-McFarland 2021.05.18

kadm@uw.edu @kdillmcfarland

Biology

Statistics

Bioinformatics

Computer science

Biology

Most biological data analysis

Statistics

Bioinformatics

Computer science

Biology

Most biological data analysis

Big data

Bioinformatics

Statistics

Computer science

Goal

Build a bioinformatic pipeline to efficiently and reproducibly analyze Respiratory Pathogen ID/AMR Panel sequences

Specific aims

- Generate COVID19 consensus genomes for upload to public database
- Track variants of interest and variants of concern
- Track co-infections
- Create phylogenetic trees to
 - Track local variants
 - Identify local outbreaks
- Create reproducible, informative reports

Building a pipeline: Consider the data

Respiratory Pathogen ID/AMR Panel (RPIP)

- Targeted sequencing of
 - All genes in SARS-CoV-2
 - All genes in influenza A/B
 - Identifying genes for 180 bacteria, 50 fungi, 40 viruses
 - Identifying genes for 1200 antimicrobial resistance markers

- Sequences from MiniSeq
 - 7 million (mid)
 - 20 million (rapid)
 - 22 million (high)

Raw data

.fastq
@SRR001666.1
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCAC
+SRR001666.1

Unique ID
Sequence
+Unique ID repeated
Quality scores

.fasta

@SRR001666.1 GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCAC Unique ID Sequence

Building a pipeline: Outline a workflow

Raw sequences Quality control Remove flu and Remove human? SARS-CoV-2 Build consensus genome Identify other organisms and AMR Variant calling Phylogenetic trees

Building a pipeline: Research software

Software considerations

0. Usefulness

Does it do what you need it to do?

1. Documentation

- Manuals, tutorials, GitHub
- Open-source or black box

2. Cost

Ownership vs annual membership vs cost-per-use

3. Platform

- Local (Windows, Mac, Linux), cloud, web
- Command line, graphical user interface (GUI), hybrid

Command line

Web hybrid

FastQC cutadapt

Hisat2 samtools vcftools

MAFFT R::ggtree

Raw sequences Quality control Remove flu and Remove human? SARS-CoV-2 Build consensus genome Identify other Variant calling organisms and AMR

Phylogenetic trees

Nextstrain

IDbyDNA

Kraken

Specific aims

- Generate COVID19 consensus genomes for upload to public database
- Track variants of interest and variants of concern
 - How often does it update the global database?
- Track co-infections
- Create phylogenetic trees to
 - Track local variants
 - Identify local outbreaks
- Create reproducible, informative reports
 - How will software updates impact results?

Raw sequences Quality control Remove flu and Remove human? SARS-CoV-2 Build consensus genome Identify other organisms and AMR Variant calling Phylogenetic trees

Building a consensus genome

Reference genome

DNA in sample

Shear / amplify

Sequenced reads

Reconstruct *de novo*

Consensus

Torsten Seemann

Errors in consensus

- Real or sequencing error? → PhiX control DNA
- If it's real...
 - IUPAC codes for uncertainty \rightarrow R = A/G, N = ACTG, etc
 - Mixed population

Variant calling

- Compare to database with variants of interest/concern
- Usually translated alignment

Phylogenetic tree

- Based on translated alignment
- Groups more similar "species"

NextStrain

https://nextstrain.org/ncov/north-america

Building a pipeline: Putting it all together

Pipeline wrappers

- Custom executable script
 - Short input in command line like my pipeline.sh data.fastq
 - Download data + databases and run locally
- Web-based workflows (Terra Bio, Shiny apps)
 - Run executable script in the cloud
 - Data + databases can also be stored in the cloud
- Hybrid with IDbyDNA
 - Most steps on web
 - Download consensus sequence
 - Trees run locally, web, or cloud

Next steps

• Decide on desired pipeline format (platform, wrapper, cost, etc)

Build and test pipeline on pilot data

Addtl resources

NextStrain https://nextstrain.org/

Shiny apps https://shiny.rstudio.com/gallery/

- Terra Bio https://terra.bio/
 - Example workflow usage https://www.youtube.com/watch?v=HObb_J9fPc0&t=604s