Total 46 Pages

RF TEST REPORT

Tes	t n	tor	n
100		LUI	, ,

WiMAX & WiFi Dual CPE

Model No.

IMW-C910W

Order No.

1109-01216

Date of receipt

2011-09-19

Test duration

: 2012-01-04 ~ 2012-01-10

Date of issue

: 2012-01-12

Use of report

: FCC Original Grant

Applicant: Infomark Co., Ltd.

#801, KINS Tower, 25-1, Jeongja-Dong, Bundang-Gu, Seongnam-Si

Gyeonggi-do, Korea, 137-130

Test laboratory

Digital EMC Co., Ltd.

683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Kyunggi-Do, 449-080, Korea

Test specification

: FCC Part 15.247 Subpart C

ANSI C63.4-2003

Test environment

: See appended test report

Test result

□ Pass

☐ Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of Digital EMC Co., Ltd.

Tested by:

Witnessed by:

Reviewed by:

Engineer

S.K.Ryu

N/A

Teehnical Director Harvey Sung

CONTENTS

1. Equipment information	3
1.1 Equipment description	3
1.2 Ancillary equipment	3
2. Information about test items	4
2.1 Test mode	4
2.2 Auxiliary equipment	4
2.3 Tested frequency	4
2.4 Tested environment	4
2.5 EMI Suppression Device(s)/Modifications	4
3. Test Report	5
3.1 Summary of tests	5
3.2 Transmitter requirements	6
3.2.1 6 dB Bandwidth	6
3.2.2 Peak Output Power	13
3.2.3 Out of Band Emissions / Band Edge	14
3.2.4 Out of band Emission – Radiated	24
3.2.5 Transmitter Power Spectral Density	28
3.2.6 AC Conducted Emissions	35
3.2.7 Antenna Requirements	42
ADDENDIY	13

1. Equipment information

1.1 Equipment description

FCC Equipment Class	Digital Transmission System (DTS)
Equipment type	WiMAX & WiFi Dual CPE
Equipment model name	IMW-C910W
Equipment add model name	N/A
Equipment serial no.	Identical prototype
Frequency band	2412 ~ 2462 MHz
Modulation type	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g: OFDM(64QAM, QPSK, BPSK) 802.11n (HT20): OFDM(64QAM, 16QAM, QPSK, BPSK)
Channel Access Protocol	CSMA/CA
Channel Spacing	5.0 MHz
Antenna type	Internal Type: Chip Antenna (Max. Peak Gain:-2.66 dBi)
Power Supply	DC 3.7 V

1.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

2. Information about test items

2.1 Test mode

1. This device was tested in below worst case modes with the maximum power. And the worst case data are reported.

Test Case 1	802.11b 5.5Mbps
Test Case 2	802.11g 54Mbps
Test Case 3	802.11n(HT20) MCS6

2.2 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
Notebook	X51RL	85N0AS318314227	ASUSTeK Computer Inc.	-
-	-	-	-	-

2.3 Tested frequency

	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	2412	2412
Middle Channel	2437	2437
Highest Channel	2462	2462

2.4 Tested environment

Temperature	:	23 ~ 25 °C
Relative humidity content	:	33 ~ 41 % R.H.
Details of power supply	:	DC 3.7 V

2.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status Note 1
I. Test Items (TX)			
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Transmitter Output Power	< 1Watt	Conducted	С
15.247(c)	Out of Band Emissions / Band Edge	20dBc in any 100kHz BW	Conducted	С
15.247(d)	Transmitter Power Spectral Density	< 8dBm / 3kHz		С
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	<fcc 15.209="" limits<="" td=""><td>Radiated</td><td>C Note.2</td></fcc>	Radiated	C Note.2
15.207	AC Conducted Emissions	<fcc 15.207="" limits<="" td=""><td>AC Line Conducted</td><td>С</td></fcc>	AC Line Conducted	С
15.203	Antenna Requirements	FCC 15.203	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: This test item was performed in each axis and the worst case data were reported.

The sample was tested according to the following specification: ANSI C-63.4-2003

3.2 Transmitter requirements

3.2.1 6 dB Bandwidth

- Procedure:

The bandwidth at 6 dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = 50 MHz (Greater than EBW)

RBW = 100 kHz Sweep = auto

VBW = ≥ RBW Detector function = peak

Trace = max hold

- Measurement Data: Comply

easurement Data. Comply		
Test Mode	Frequency	Test Results (MHz)
	Lowest	10.490
Test Case 1	Middle	11.140
	Highest	11.140
	Lowest	16.480
Test Case 2	Middle	16.510
	Highest	16.490
	Lowest	17.640
Test Case 3	Middle	17.660
	Highest	17.360

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

The minimum 6 dB bandwidth shall be at least 500 kHz

6 dB Bandwidth

Lowest Frequency & Test Case 1

6 dB Bandwidth

Middle Frequency & Test Case 1

6 dB Bandwidth

Highest Frequency & Test Case 1

6 dB Bandwidth

Lowest Frequency & Test Case 2

6 dB Bandwidth

Middle Frequency & Test Case 2

6 dB Bandwidth

Highest Frequency & Test Case 2

6 dB Bandwidth

Lowest Frequency & Test Case 3

6 dB Bandwidth

Middle Frequency & Test Case 3

6 dB Bandwidth

Highest Frequency & Test Case 3

3.2.2 Peak Output Power

- Test Procedure and Spectrum Analyzer setting:

This is an RF conducted test. Use a direct connection between the antenna port of the transmitter and the Peak power meter, through suitable attenuation. Power Output Option 1 is a peak measurement. Power Output Option 2 is the same procedure used for UNII output power measurements. Either option can be used for DTS devices.

This test items were measured with Power Output Option 1.

- Measurement Data: Comply

Total Mode	Frequency	Test Results		
Test Mode		dBm	w	
	Lowest	11.45	0.014	
Test Case 1	Middle	9.89	0.010	
	Highest	7.78	0.006	
Test Case 2	Lowest	18.08	0.064	
	Middle	17.30	0.054	
	Highest	16.38	0.043	
Test Case 3	Lowest	18.06	0.064	
	Middle	17.54	0.057	
	Highest	16.50	0.045	

Minimum Standard:	< 1W
-------------------	------

3.2.3 Out of Band Emissions / Band Edge

- Procedure:

All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB.

For Band-edge testing the spectrum analyzer is set to:

Tested frequency = the highest and the lowest Frequencies

Center frequency = 2400MHz, 2483.5MHz

Span = 100MHz Detector function = peak

RBW = 100 kHz $VBW \ge RBW$ Trace = max hold Sweep = auto

For spurious testing the spectrum analyzer is set to:

Tested frequency = the highest, middle and the lowest Frequencies

RBW = 100 kHz

Detector function = peak

VBW = 100 kHz

Sweep = auto

Trace = max hold

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots.

Minimum Standard:	> 30 dBc

Low Band-edge at 20 dB blow

Lowest Frequency & Test case 1

Conducted Spurious Emissions

Lowest Frequency & Test case 1

Reference for limit

Middle Frequency & Test case 1

Conducted Spurious Emissions

Middle Frequency & Test case 1

High Band-edge at 20 dB blow

Highest Frequency & Test case 1

Conducted Spurious Emissions

Highest Frequency & Test case 1

Low Band-edge at 20 dB blow

Lowest Frequency & Test case 2

Conducted Spurious Emissions

Lowest Frequency & Test case 2

Reference for limit

Middle Frequency & Test case 2

Conducted Spurious Emissions

Middle Frequency & Test case 2

High Band-edge at 20 dB blow

Highest Frequency & Test case 2

Conducted Spurious Emissions

Highest Frequency & Test case 2

Low Band-edge at 20 dB blow

Lowest Frequency & Test case 3

Conducted Spurious Emissions

Lowest Frequency & Test case 3

Reference for limit

Middle Frequency & Test case 3

Conducted Spurious Emissions

Middle Frequency & Test case 3

High Band-edge at 20 dB blow

Highest Frequency & Test case 3

Conducted Spurious Emissions

Highest Frequency & Test case 3

3.2.4 Out of band Emission – Radiated

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Tested frequency = Low, Middle, High Frequencies

Frequency Range = 30 MHz ~ 10th harmonic.

RBW and VBW = 1. Frequency range: 30MHz ~ 1GHz

RBW = 120KHz / VBW = ≥ RBW

2. Frequency range: 1GHz ~ 10th harmonics
Peak mode: RBW = 1MHz / VBW = ≥ RBW
Average mode: RBW = 1MHz / VBW = 10Hz

Detector function = Sweep = auto

Trace = max hold

- Measurement Data: Comply

Note 1: See next pages for actual measured data.

- Minimum Standard:

- FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	17.7 ~ 21.4
4.125 ~ 4.128	12.52025	156.52475 ~	1660 ~ 1710	7.25 ~ 7.75	22.01 ~ 23.12
4.17725 ~ 4.17775	12.57675 ~	156.52525	1718.8 ~ 1722.2	8.025 ~ 8.5	23.6 ~ 24.0
4.20725 ~ 4.20775	12.57725	156.7 ~ 156.9	2200 ~ 2300	9.0 ~ 9.2	31.2 ~ 31.8
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	9.3 ~ 9.5	36.43 ~ 36.5
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	10.6 ~ 12.7	Above 38.6
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900	13.25 ~ 13.4	
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358		
	25.5 ~ 25.67	960 ~ 1240			
	37.5 ~ 38.25				
	73 ~ 74.6				
	74.8 ~ 75.2				

[•] FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

TRF-RF-201(02)100714 Page 24 / 46

30MHz ~ 25GHz Radiated Spurious Emissions (Test Case 1)

Lowest Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2345.440	V	Z axis	PK	52.83	-3.75	49.08	74.00	24.92
2388.240	V	Z axis	AV	39.05	-3.75	35.30	54.00	18.70
4824.210	Н	Z axis	PK	47.33	5.89	53.22	74.00	20.78
4823.780	Н	Z axis	AV	34.51	5.89	40.40	54.00	13.60

Middle Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4874.460	Н	Z axis	PK	47.95	4.86	52.81	74.00	21.19
4874.660	Н	Z axis	AV	34.59	4.86	39.45	54.00	14.55

Highest Channel

Tilghoot ondimo										
Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)		
2495.759	V	Z axis	PK	54.19	-3.75	50.44	74.00	23.56		
2496.815	V	Z axis	AV	38.34	-3.75	34.59	54.00	19.41		
4924.730	Н	Z axis	PK	47.51	6.34	53.85	74.00	20.15		
4925.225	Н	Z axis	AV	34.53	6.34	40.87	54.00	13.13		

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions on above table.
- 2. Sample Calculation.

 $\begin{aligned} & \text{Margin = Limit - Result} & / & \text{Result = Reading + T.F} & / & \text{T.F = AF + CL - AG} \\ & \text{Where, T.F = Total Factor,} & \text{AF = Antenna Factor,} & \text{CL = Cable Loss,} & \text{AG = Amplifier Gain} \end{aligned}$

30MHz ~ 25GHz Radiated Spurious Emissions (Test Case 2)

Lowest Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2389.920	V	Z axis	PK	62.19	-3.75	58.44	74.00	15.56
2390.000	V	Z axis	AV	43.87	-3.75	40.12	54.00	13.88
4823.620	Η	Z axis	PK	47.62	5.89	53.51	74.00	20.49
4823.230	Н	Z axis	AV	34.43	5.89	40.32	54.00	13.68

Middle Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4873.475	Н	Z axis	PK	47.44	4.86	52.30	74.00	21.70
4874.995	Н	Z axis	AV	34.61	4.86	39.47	54.00	14.53

Highest Channel

riigiliot olidiilioi										
Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)		
2492.592	V	Z axis	PK	50.35	-3.75	46.60	74.00	27.40		
2483.533	V	Z axis	AV	36.92	-3.75	33.17	54.00	20.83		
4925.480	Н	Z axis	PK	47.96	6.34	54.30	74.00	19.70		
4924.585	Н	Z axis	AV	34.47	6.34	40.81	54.00	13.19		

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions on above table.
- 2. Sample Calculation.

 $\begin{aligned} & \text{Margin = Limit - Result} & / & \text{Result = Reading + T.F} & / & \text{T.F = AF + CL - AG} \\ & \text{Where, T.F = Total Factor,} & \text{AF = Antenna Factor,} & \text{CL = Cable Loss,} & \text{AG = Amplifier Gain} \end{aligned}$

30MHz ~ 25GHz Radiated Spurious Emissions (Test Case 3)

Lowest Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2389.920	V	Z axis	PK	62.96	-3.75	59.21	74.00	14.79
2390.000	V	Z axis	AV	45.77	-3.75	42.02	54.00	11.98
4824.275	Н	Z axis	PK	47.01	5.89	52.90	74.00	21.10
4823.360	Н	Z axis	AV	34.34	5.89	40.23	54.00	13.77

Middle Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4874.550	Н	Z axis	PK	48.11	4.86	52.97	74.00	21.03
4874.885	Н	Z axis	AV	34.60	4.86	39.46	54.00	14.54

Highest Channel

Freq. (MHz)	ANT Pol	The worst case EUT Position	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2485.068	V	Z axis	PK	50.26	-3.75	46.51	74.00	27.49
2483.500	V	Z axis	AV	37.26	-3.75	33.51	54.00	20.49
4924.140	Н	Z axis	PK	48.03	6.34	54.37	74.00	19.63
4925.280	Н	Z axis	AV	34.48	6.34	40.82	54.00	13.18

Note.

1. No other spurious and harmonic emissions were reported greater than listed emissions on above table.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

3.2.5 Transmitter Power Spectral Density

- Procedure:

The same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used. Use PSD Option 1 if Power output Option 1 was used. Use PSD Option 2 if power output Option 2 was used.

This test item was measured with PSD Option 1.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = 900KHz

RBW = 3KHz

VBW = ≥ RBW

Sweep = 300s

Trace = max hold

- Measurement Data: Comply

weasurement Data: Compty								
Test Mode	Frequency	Test Results (dBm)						
	Lowest	-15.66						
Test case 1	Middle	-16.76						
	Highest	-18.65						
	Lowest	-17.70						
Test case 2	Middle	-17.23						
	Highest	-19.66						
	Lowest	-16.80						
Test case 3	Middle	-16.90						
	Highest	-18.72						

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any 3kHz BW.

TRF-RF-201(02)100714 Page 28 / 46

Transmitter Power Spectral Density

Lowest Frequency & Test Case 1

Transmitter Power Spectral Density

Middle Frequency & Test Case 1

Transmitter Power Spectral Density

Highest Frequency & Test Case 1

Transmitter Power Spectral Density

Lowest Frequency & Test Case 2

Transmitter Power Spectral Density

Middle Frequency & Test Case 2

Transmitter Power Spectral Density

Highest Frequency & Test Case 2

Transmitter Power Spectral Density

Lowest Frequency & Test Case 3

Transmitter Power Spectral Density

Middle Frequency & Test Case 3

Transmitter Power Spectral Density

Highest Frequency & Test Case 3

3.2.6 AC Conducted Emissions

- Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. Emissions closest to the limit are measured in the quasi-peak mode (QP) and average mode (AV) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.

- Minimum Standard: FCC Part 15.207(a)/EN 55022

٠.	viiiiiiiuiii Stailaara. 1 00 1 art 13.20	T (a) LIT 55022					
	Frequency Range	Conducted Limit (dBuV)					
	(MHz)	Quasi-Peak	Average				
	0.15 ~ 0.5	66 to 56 *	56 to 46 *				
	0.5 ~ 5	56	46				
	5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

AC Line Conducted Emissions (Graph)

Test Mode: 802.11b

AC Line Conducted Emissions (Data List)

Test Mode: 802.11b

Results of Conducted Emission

Digital EMC Date : 2012-01-06

Model No.

IMW-C910W

: 802.11b

Type Serial No.

Referrence No. Power Supply Temp/Humi.

120 V 60 Hz 24 'C 40 % R.H. S.K.RYU

Operator

Test Condition

LIMIT : CISPR22_B QP CISPR22_B AV

NC	FREQ	READ		C.FACTOR	RESI		LIM			GIN	PHASE	
	[ACIT -]	QP	AV	[1p.1	QP	AV	QP	AV	QP	AV	,	
	[MHz]	[aBuv]	[aBuv]	[dB]	[dBuV]	[aBuv]	[aBuv]	[dBuV]	[dBuV]	lann]	
1	0.15018	44.1	15.0	0.2	44.3	15.2	66.0	56.0	21.7	40.8	N	
2	0.19545	49.1	34.2	0.1	49.2	34.3	63.8	53.8	14.6	19.5	N	
3	0.25833	38.4	25.2	0.1	38.5	25.3	61.5	51.5	23.0	26.2	N	
4	0.32559	34.9	22.4	0.1	35.0	22.5	59.6	49.6	24.6	27.1	N	
5	0.39071	33.7	24.2	0.2	33.9	24.4	58.0	48.0	24.1	23.6	N	
6	1.10850	22.1	18.0	0.2	22.3	18.2	56.0	46.0	33.7	27.8	N	
7	5.47000	33.1	31.0	0.4	33.5	31.4	60.0	50.0	26.5	18.6	N	
8	7.68550	29.3	24.5	0.5	29.8	25.0	60.0	50.0	30.2	25.0	N	
9	13.22650	23.7	17.9	0.9	24.6	18.8	60.0	50.0	35.4	31.2	N	
10	17.45750		27.0	1.0	32.9	28.0	60.0	50.0	27.1	22.0	N	
11	0.15024	43.9	14.7	0.2	44.1	14.9	66.0	56.0	21.9	41.1	L1	
12	0.19505	49.3	34.4	0.1	49.4	34.5	63.8	53.8	14.4	19.3	L1	
13	0.26091	39.9	25.6	0.1	40.0	25.7	61.4	51.4	21.4	25.7	L1	
14	0.32450	34.0	20.5	0.1	34.1	20.6	59.6	49.6	25.5	29.0	L1	
15	0.39050	31.8	20.9	0.2	32.0	21.1	58.1	48.1	26.1	27.0	L1	
16	1.17100	17.7	13.0	0.2	17.9	13.2	56.0	46.0	38.1	32.8	L1	
17	5.01500	31.8	29.7	0.4	32.2	30.1	60.0	50.0	27.8	19.9	L1	
18	7.49050	27.0	23.8	0.5	27.5	24.3	60.0	50.0	32.5	25.7	L1	
19	17.77700	33.1	28.1	1.0	34.1	29.1	60.0	50.0	25.9	20.9	L1	

AC Line Conducted Emissions (Graph)

Test Mode: 802.11g

AC Line Conducted Emissions (Data List)

Test Mode: 802.11g

Results of Conducted Emission

Digital EMC Date : 2012-01-06

Model No.

IMW-C910W

802.11g

Referrence No.

Type Serial No.

Test Condition

Power Supply Temp/Humi.

120 V 60 Hz 24 'C 40 % R.H. S.K.RYU

Operator

LIMIT : CISPR22_B QP CISPR22_B AV

NC	FREQ	READIN		C.FACTOR	REST		LIM			GIN	PHASE	
	[MHz]	QP [dBuV] [d	AV lBuV]	[dB]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]		
1	0.15190		5.3	0.2		15.5	65.9	55.9	22.0	40.4	N	
2	0.19350	48.1 3	3.2	0.1	48.2	33.3	63.9	53.9	15.7	20.6	N	
3	0.26051	39.7 2	6.4	0.1	39.8	26.5	61.4	51.4	21.6	24.9	N	
4	0.39083	32.8 2	2.6	0.2	33.0	22.8	58.0	48.0	25.0	25.2	N	
5	0.45526	27.9 1	8.2	0.1	28.0	18.3	56.8	46.8	28.8	28.5	N	
6	1.17250	20.2 1	6.3	0.2	20.4	16.5	56.0	46.0	35.6	29.5	N	
7	5.27650	31.9 3	0.0	0.4	32.3	30.4	60.0	50.0	27.7	19.6	N	
8	7.29400	29.2 2	5.4	0.5	29.7	25.9	60.0	50.0	30.3	24.1	N	
9	14.52600	28.5 2	3.6	0.9	29.4	24.5	60.0	50.0	30.6	25.5	N	
10	18.04350	31.8 2	7.0	1.1	32.9	28.1	60.0	50.0	27.1	21.9	N	
11	0.15071	44.0 1	5.0	0.2	44.2	15.2	66.0	56.0	21.8	40.8	L1	
12	0.19530	49.4 3	4.2	0.1	49.5	34.3	63.8	53.8	14.3	19.5	L1	
13	0.26081	40.0 2	5.7	0.1	40.1	25.8	61.4	51.4	21.3	25.6	L1	
14	0.32563	34.2 2	0.6	0.1	34.3	20.7	59.6	49.6	25.3	28.9	L1	
15	0.39065	32.0 2	1.1	0.2	32.2	21.3	58.0	48.0	25.8	26.7	L1	
16	1.17350	18.5 1	3.7	0.2	18.7	13.9	56.0	46.0	37.3	32.1	L1	
17	5.08150	32.0 2	9.9	0.4	32.4	30.3	60.0	50.0	27.6	19.7	L1	
18	7.29450	27.2 2	4.2	0.5	27.7	24.7	60.0	50.0	32.3	25.3	L1	
19	13.08900	22.8 1	7.1	0.9	23.7	18.0	60.0	50.0	36.3	32.0	L1	
20	17.45750	33.0 2	8.2	1.0	34.0	29.2	60.0	50.0	26.0	20.8	L1	

AC Line Conducted Emissions (Graph)

Test Mode: 802.11n HT20

AC Line Conducted Emissions (Data List)

Test Mode: 802.11n HT20

Results of Conducted Emission

Digital EMC Date : 2012-01-06

Model No.

IMW-C910W

Referrence No.

Туре Serial No. **Test Condition** : : 802.11n

Power Supply Temp/Humi.

120 V 60 Hz 23 'C 40 % R.H. S.K.RYU

Operator

Memo

LIMIT : CISPR22_B QP CISPR22_B AV

NO	FREQ	READ		C.FACTOR		JLT	LIM			GIN	PHASE	
Va-	[MHz]	QP [dBuV]	AV [dBuV]	[dB]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	
1	0.15085	43.7	15.0	0.2	43.9	15.2	66.0	56.0	22.1	40.8	N	
2	0.19565	49.0	34.0	0.1	49.1	34.1	63.8	53.8	14.7	19.7	N	
3	0.23991	43.3	27.6	0.1	43.4	27.7	62.1	52.1	18.7	24.4	N	
4	0.32550	34.6	21.9	0.1	34.7	22.0	59.6	49.6	24.9	27.6	N	
5	0.39114	32.8	22.8	0.2	33.0	23.0	58.0	48.0	25.0	25.0	N	
6	1.17250	20.0	16.4	0.2	20.2	16.6	56.0	46.0	35.8	29.4	N	
7	5.01800	32.2	29.8	0.4	32.6	30.2	60.0	50.0	27.4	19.8	N	
8	7.10350	27.4	23.9	0.5	27.9	24.4	60.0	50.0	32.1	25.6	N	
9	13.09400	24.1	18.5	0.9	25.0	19.4	60.0	50.0	35.0	30.6	N	
10	17.65500	32.4	27.6	1.0	33.4	28.6	60.0	50.0	26.6	21.4	N	
11	0.15025	43.9	14.9	0.2	44.1	15.1	66.0	56.0	21.9	40.9	L1	
12	0.19554	49.1	33.9	0.1	49.2	34.0	63.8	53.8	14.6	19.8	L1	
13	0.26069	39.7	25.5	0.1	39.8	25.6	61.4	51.4	21.6	25.8	L1	
14	0.32309	32.0	18.9	0.1	32.1	19.0	59.6	49.6	27.5	30.6	L1	
15	0.39173	31.7	20.7	0.2	31.9	20.9	58.0	48.0	26.1	27.1	L1	
16	1.17250	18.9	13.9	0.2	19.1	14.1	56.0	46.0	36.9	31.9	L1	
17	4.88700	32.1	30.4	0.4	32.5	30.8	56.0	46.0	23.5	15.2	L1	
18	7.69100	26.0	21.9	0.5	26.5	22.4	60.0	50.0	33.5	27.6	L1	
19	13.22550	23.3	17.6	0.9	24.2	18.5	60.0	50.0	35.8	31.5	L1	
20	18.63550	28.3	24.1	1.1	29.4	25.2	60.0	50.0	30.6	24.8	L1	

3.2.7 Antenna Requirements

- Procedure:

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

- Conclusion: Comply

The antenna is permanently attached by soldering. (Refer to Internal Photo file.)

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

TRF-RF-201(02)100714 Page 42 / 46

APPENDIX

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
	Spectrum Analyzer	Agilent	E4440A	11/09/30	12/09/30	MY45304199
\boxtimes	Spectrum Analyzer	Rohde Schwarz	FSQ26	12/01/09	13/01/09	200445
	Spectrum analyzer	Agilent	E4404B	11/03/08	12/03/08	US41061134
	Spectrum Analyzer(RE)	H.P	8563E	11/10/04	12/10/04	3551A04634
\boxtimes	MXA Signal Analyzer	Agilent Technologies, Inc	N9020A	12/01/09	13/01/09	MY49100833
	Power Meter	H.P	EPM-442A	11/07/01	12/07/01	GB37170413
	Power Sensor	H.P	8481A	11/07/01	12/07/01	3318A96332
\boxtimes	Wideband Power Sensor	Rohde Schwarz	NRP-Z81	11/06/04	12/06/04	1137.9009.02- 101001
\boxtimes	Virtual Power Meter(S/W)	Rohde Schwarz	R&S Power Viewer Plus	-	-	V 4.1.0
	Power Divider	Agilent	11636B	11/09/30	12/09/30	56471
	4-Way Power Divider	ET Industries	D-0526-4	11/12/01	12/12/01	210195001
	Power Splitter	Anritsu	K241B	11/09/30	12/09/30	020611
	Power Splitter	Anritsu	K241B	11/07/01	12/07/01	017060
	Power Splitters & Dividers	Aeroflex/Weinschel	1594	11/02/21	12/02/21	1177
	Frequency Counter	H.P	5342A	11/07/01	12/07/01	2119A04450
	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	11/09/30	12/09/30	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	11/03/07	12/03/07	3146A13475, US36122178
	Multifunction Synthesizer	HP	8904A	11/10/06	12/10/06	3633A08404
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	11/03/08	12/03/08	101251
\boxtimes	Signal Generator	H.P	ESG-3000A	11/07/01	12/07/01	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	12/01/09	13/01/09	100148
	Vector Signal Generator	Rohde Schwarz	SMBV100A	12/01/09	13/01/09	255571
	Audio Analyzer	H.P	8903B	11/07/02	12/07/02	3011A09448
	Modulation Analyzer	H.P	8901B	11/07/01	12/07/01	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	11/03/07	12/03/07	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU200	11/03/07	12/03/07	106760
	Bluetooth Tester	TESCOM	TC-3000B	11/07/01	12/07/01	3000B000268
	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-3
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-2
	Thermo hygrometer	BODYCOM	BJ5478	11/01/13	12/01/13	090205-4
	AC Power supply	DAEKWANG	5KVA	11/03/08	12/03/08	20060321-1
	DC Power Supply	HP	6622A	11/03/07	12/03/07	3448A03760
\boxtimes	DC Power Supply	HP	6633A	11/03/07	12/03/07	3524A06634
	DC Power Supply	Protek	PWS-3010D	11/09/30	12/09/30	4072702
	DC Power Supply	SM techno	SDP30-5D	11/05/20	12/05/20	305DKA013
	BAND Reject Filter	Microwave Circuits	N0308372	11/09/30	12/09/30	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	11/09/30	12/09/30	2
	High-Pass Filter	ANRITSU	MP526D	11/09/30	12/09/30	M27756

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
	High-pass filter	Wainwright	WHNX2.1	11/09/30	12/09/30	1
\boxtimes	High-pass filter	Wainwright	WHNX3.0	11/09/30	12/09/30	9
	High-pass filter	Wainwright	WHNX5.0	11/09/19	12/09/19	8
	High-Pass Filter	Wainwright	WHKX8.5	11/09/19	12/09/19	1
	High-Pass Filter	Wainwright	WHKX1.0	11/09/30	12/09/30	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	32
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40- 10SSK	N/A	N/A	53
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	30
	HORN ANT	ETS	3115	11/09/06	12/09/06	21097
	HORN ANT	ETS	3115	11/03/22	12/03/22	6419
\boxtimes	HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	154
	HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	155
	HORN ANT	SCHWARZBECK	BBHA9120A	10/04/13	12/04/13	322
	Dipole Antenna	Schwarzbeck	VHA9103	11/11/22	12/11/22	2116
	Dipole Antenna	Schwarzbeck	VHA9103	11/11/22	12/11/22	2117
	Dipole Antenna	Schwarzbeck	UHA9105	11/11/22	12/11/22	2261
	Dipole Antenna	Schwarzbeck	UHA9105	11/11/22	12/11/22	2262
	LOOP Antenna	ETS	6502	10/10/29	12/10/29	3471
	Coaxial Fixed Attenuators	Agilent	8491B	11/07/02	12/07/02	MY39260700
	Attenuator (3dB)	WEINSCHEL	56-3	11/09/30	12/09/30	Y2342
	Attenuator (3dB)	WEINSCHEL	56-3	11/09/30	12/09/30	Y2370
	Attenuator (10dB)	WEINSCHEL	23-10-34	11/09/30	12/09/30	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	12/01/09	13/01/09	BP4387
	Attenuator (10dB)	WEINSCHEL	86-10-11	11/09/30	12/09/30	446
	Attenuator (10dB)	WEINSCHEL	86-10-11	11/09/30	12/09/30	408
	Attenuator (20dB)	WEINSCHEL	86-20-11	11/09/30	12/09/30	432
	Attenuator (30dB)	JFW	50FH-030-300	11/03/07	12/03/07	060320-1
	Attenuator (40dB)	WEINSCHEL	57-40-33	11/09/30	12/09/30	NN837
	Termination	H.P	HP-909D	11/07/02	12/07/02	02750
	Termination	H.P	HP-909D	11/07/02	12/07/02	02702
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	11/07/01	12/07/01	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	11/07/01	12/07/01	790
	Amplifier (30dB)	Agilent	8449B	11/03/07	12/03/07	3008A01590
\boxtimes	Amplifier (30dB)	H.P	8449B	11/03/07	12/03/07	3008A00370
	Amplifier	EMPOWER	BBS3Q7ELU	11/09/30	12/09/30	1020
	RF Power Amplifier	OPHIRRF	5069F	11/07/01	12/07/01	1006
\boxtimes	EMI TEST RECEIVER	R&S	ESU	12/01/09	13/01/09	100014

	Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
\boxtimes	BILOG ANTENNA	SCHAFFNER	CBL6112B	10/07/14	12/07/14	2737
\boxtimes	Amplifier (22dB)	H.P	8447E	12/01/09	13/01/09	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	11/03/08	12/03/08	100364
	BICONICAL ANT.	Schwarzbeck	VHA 9103	10/11/29	12/11/29	91032789
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	10/11/29	12/11/29	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	10/12/21	12/12/21	91031946
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	10/07/07	12/07/07	0590
	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	11/03/07	12/03/07	1252741
	Low Noise Pre Amplifier	TSJ	MLA-00108-B02-36	12/01/09	13/01/09	1518831
	Amplifier (25dB)	Agilent	8447D	11/03/07	12/03/07	2944A10144
	Amplifier (25dB)	Agilent	8447D	11/07/01	12/07/01	2648A04922
	Spectrum Analyzer(CE)	H.P	8591E	11/03/07	12/03/07	3649A05889
	LISN	Kyoritsu	KNW-407	12/01/09	13/01/09	8-317-8
	LISN	Kyoritsu	KNW-242	11/07/02	12/07/02	8-654-15
	CVCF	NF Electronic	4420	11/09/15	12/19/15	304935/4420023
	50 ohm Terminator	НМЕ	CT-01	12/01/09	13/01/09	N/A
	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	11/07/02	12/07/02	4N-170-3
\boxtimes	EMI Test Receiver	R&S	ECSI	11/03/08	12/03/08	100364
\boxtimes	LISN	R&S	ESH2-Z5	11/09/30	12/09/30	8287391006
\boxtimes	CVCF	NF Electronic	4420	11/03/08	12/03/08	304935/337980
\boxtimes	RFI/FIELD Intensity Meter	ES4152	424059	11/09/30	12/09/30	424059
	Wideband Radio Communication Tester	R&S	CMW500	11/09/30	12/09/30	100989