CL2035 US NA SEQ SEQUENCE LISTING

<110> E.I. du Pont de Nemours and Co., Inc. Sariaslani, Sima Fateme Van Dyk, Tina K	
<120> PET Family of Efflux Proteins	
<130> CL2035 US NA	
<150> 60/440,760 <151> 2003-01-17	
<160> 21 ·	
<170> PatentIn version 3.2	
<210> 1 <211> 1968 <212> DNA <213> Escherichia coli	
<400> 1 atgggtattt tctccattgc taaccaacat attcgctttg cggtaaaact ggcgaccgcc	60
attgtactgg cgctgtttgt tggctttcac ttccagctgg aaacgccacg ctgggcggta	120
ctgacagcgg cgattgttgc cgccggtacg gcctttgctg cgggaggtga accgtattct	180
ggcgctattc gctatcgtgg ctttttgcgc atcatcggca catttattgg ctgtattgcc	240
ggactggtga tcatcattgc gatgatccgc gcaccattat tgatgattct ggtgtgctgt	300
atctgggccg gtttttgtac ctggatatcc tcgctggtac gaatagaaaa ctcgtatgcg	360
tgggggctgg ccggttatac cgcgctgatc attgtgatca ccattcagcc ggaaccattg	420
cttacgccgc agtttgccgt cgaacgttgt agcgagatcg ttatcggtat tgtgtgtgcg	480
attatggcgg atttgctctt ttctccgcga tcgatcaaac aagaagtgga tcgagagctg	540
gaaagtttgc tggtcgcgca atatcaatta atgcaactct gtatcaagca tggcgatggt	600
gaagttgtcg ataaagcctg gggcgacctg gtgcgacgca ccacggcgct acaaggcatg	660
cgcagcaacc tgaatatgga atcttcccgc tgggcgcggg ccaatcgacg tttaaaagcg	720
atcaatacgc tatcgctgac gctgattacc caatcctgcg aaacttatct tattcagaat	780
acgcgcccgg aattgatcac tgatactttc cgcgaatttt ttgacacgcc ggtagaaacc	840
gcgcaggacg tccacaagca gctcaaacgc ctgcggagag ttatcgcctg gaccggggaa	900
cgggaaacgc ctgtcaccat ttatagctgg gtcgcggcgg caacgcgtta tcagcttctc	960
aagcgcggcg ttatcagtaa cacaaaaatc aacgccaccg aagaagagat cctgcaaggc	1020
gaaccggaag taaaagtaga gtcagccgaa cgtcatcatg caatggttaa cttctggcga	1080
accacacttt cctgcattct gggcacgctt ttctggctgt ggacgggctg gacttccggc	1140
agtggtgcaa tggtgatgat tgcggtagtg acgtcactgg caatgcgttt gccgaatcca	1200
cgcatggtgg cgatcgactt tatctacggg acgctggccg cgctgccgtt agggctgctc	1260
tactttttgg tgattatccc taatacccaa cagagcatgt tgctgctgtg cattagcctg	1320
gcagtgctgg gattcttcct cggtatagaa gtacagaaac ggcgactggg ctcgatgggg Page 1	1380

gcactggcca gcaccataaa tattatcgtg ctggataacc cgatgacttt ccatttcagt	1440
cagtttctcg acagcgcatt agggcaaatc gtcggctgtg tgctcgcgtt caccgttatt	1500
ttgctggtgc gggataaatc gcgcgacagg accggacgtg tactgcttaa tcagtttgtt	1560
tctgccgctg tttccgcgat gactaccaat gtggcacgtc gtaaagagaa ccacctcccg	1620
gcactttatc agcagctgtt tttgctgatg aataagttcc caggggattt gccgaaattt	1680
cgcctggcgc tgacgatgat tatcgcgcac cagcgcctgc gtgatgcacc gatcccggtt	1740
aacgaggatt tatcggcgtt tcaccgacaa atgcgccgca cagcagacca tgtgatatct	1800
gcccgtagcg atgataaacg tcgtcggtac tttggccagt tgctggaaga actggaaatc	1860
taccaggaaa agctacgcat ctggcaagcg ccaccgcagg tgacggaacc ggtaaatcgg	1920
ctggcgggga tgctccataa gtatcaacat gcgttgaccg atagttaa	1968
<210> 2 <211> 933 <212> DNA <213> Escherichia coli	
gtgaaaacac taataagaaa attctcccgt acggccatca cggtcgtatt agtcattctg	60
gccttcatcg caatttttaa tgcctgggtc tattacaccg aatccccctg gacgcgtgac	120
gcgcgcttta gcgctgacgt cgttgcgatc gcgccggacg tttctggact cattacccag	180
gtgaatgttc atgataacca gctggtgaaa aaaggacaga tactgttcac catcgaccag	240
ccgcgctatc aaaaggcgct tgaggaagcg caagccgatg ttgcttatta tcaggtactg	300
gcacaggaga aacgccagga ggccggacgt cgtaaccgtc tcggtgtgca ggcgatgtct	360
cgcgaagaga tcgaccaggc caacaacgta ctacaaacgg ttctgcatca gttagcgaaa	420
gcgcaggcga cccgcgatct ggcaaaactg gatcttgaac gcacggtgat ccgcgcgcca	480
gcagatggct gggtgaccaa cctcaacgtc tataccggtg agtttattac tcgaggatca	540
acggcggttg cgctggtgaa acagaactcc ttctatgtac tggcctatat ggaagaaact	600
aagctggaag gggtgcgtcc ggggtatcgt gcagagatca cgccgcttgg cagtaacaaa	660
gtgctgaaag ggactgttga tagtgttgcc gcaggggtca ccaacgccag cagcacgcgt	720
gacgacaaag ggatggcgac tatagactct aaccttgaat gggtgcgtct tgcgcaacgt	780
gttccggttc gtattcgtct cgacaaccag caagagaaca tctggcctgc gggcaccact	840
gctacagtgg tggtcactgg caaacaagat cgcgacgaaa gccaggattc gttcttccgt	900
aaaatggccc atcgcctgcg tgagtttggt taa	933
<210> 3 <211> 2906 <212> DNA <213> Escherichia coli <400> 3	50
gtgaaaacac taataagaaa attctcccgt acggccatca cggtcgtatt agtcattctg Page 2	60

gccttcatcg	caatttttaa	tgcctgggtc	tattacaccg	aatccccctg	gacgcgtgac	120
gcgcgcttta	gcgctgacgt	cgttgcgatc	gcgccggacg	tttctggact	cattacccag	180
gtgaatgttc	atgataacca	gctggtgaaa	aaaggacaga	tactgttcac	catcgaccag	240
ccgcgctatc	aaaaggcgct	tgaggaagcg	caagccgatg	ttgcttatta	tcaggtactg	300
gcacaggaga	aacgccagga	ggccggacgt	cgtaaccgtc	tcggtgtgca	ggcgatgtct	360
cgcgaagaga	tcgaccaggc	caacaacgta	ctacaaacgg	ttctgcatca	gttagcgaaa	420
gcgcaggcga	cccgcgatct	ggcaaaactg	gatcttgaac	gcacggtgat	ccgcgcgcca	480
gcagatggct	gggtgaccaa	cctcaacgtc	tataccggtg	agtttattac	tcgaggatca	540
acggcggttg	cgctggtgaa	acagaactcc	ttctatgtac	tggcctatat	ggaagaaact	600
aagctggaag	gggtgcgtcc	ggggtatcgt	gcagagatca	cgccgcttgg	cagtaacaaa	660
gtgctgaaag	ggactgttga	tagtgttgcc	gcaggggtca	ccaacgccag	cagcacgcgt	720
gacgacaaag	ggatggcgac	tatagactct	aaccttgaat	gggtgcgtct	tgcgcaacgt	780
gttccggttc	gtattcgtct	cgacaaccag	caagagaaca	tctggcctgc	gggcaccact	840
gctacagtgg	tggtcactgg	caaacaagat	cgcgacgaaa	gccaggattc	gttcttccgt	900
aaaatggccc	atcgcctgcg	tgagtttggt	taatcacgat	gggtattttc	tccattgcta	960
accaacatat	tcgctttgcg	gtaaaactgg	cgaccgccat	tgtactggcg	ctgtttgttg	1020
gctttcactt	ccagctggaa	acgccacgct	gggcggtact	gacagcggcg	attgttgccg	1080
ccggtacggc	ctttgctgcg	ggaggtgaac	cgtattctgg	cgctattcgc	tatcgtggct	1140
ttttgcgcat	catcggcaca	tttattggct	gtattgccgg	actggtgatc	atcattgcga	1200
tgatccgcgc	accattattg	atgattctgg	tgtgctgtat	ctgggccggt	ttttgtacct	1260
ggatatcctc	gctggtacga	atagaaaact	cgtatgcgtg	ggggctggcc	ggttataccg	1320
cgctgatcat	tgtgatcacc	attcagccgg	aaccattgct	tacgccgcag	tttgccgtcg	1380
aacgttgtag	cgagatcgtt	atcggtattg	tgtgtgcgat	tatggcggat	ttgctctttt	1440
ctccgcgatc	gatcaaacaa	gaagtggatc	gagagctgga	aagtttgctg	gtcgcgcaat	1500
atcaattaat	gcaactctgt	atcaagcatg	gcgatggtga	agttgtcgat	aaagcctggg	1560
gcgacctggt	gcgacgcacc	acggcgctac	aaggcatgcg	cagcaacctg	aatatggaat	1620
cttcccgctg	ggcgcgggcc	aatcgacgtt	taaaagcgat	caatacgcta	tcgctgacgc	1680
tgattaccca	atcctgcgaa	acttatctta	ttcagaatac	gcgcccggaa	ttgatcactg	1740
atactttccg	cgaattttt	gacacgccgg	tagaaaccgc	gcaggacgtc	cacaagcagc	1800
tcaaacgcct	gcggagagtt	atcgcctgga	ccggggaacg	ggaaacgcct	gtcaccattt	1860
atagctgggt	cgcggcggca	acgcgttatc	agcttctcaa	gcgcggcgtt	atcagtaaca	1920
caaaaatcaa	cgccaccgaa	gaagagatcc	tgcaaggcga	accggaagta	aaagtagagt	1980
cagccgaacg	tcatcatgca	atggttaact	tctggcgaac	cacactttcc	tgcattctgg	2040
gcacgctttt	ctggctgtgg	acgggctgga	cttccggcag Page 3	tggtgcaatg	gtgatgattg	2100

cggtagtgac	gtcactggca	atgcgtttgc	cgaatccacg	catggtggcg	atcgacttta	2160
tctacgggac	gctggccgcg	ctgccgttag	ggctgctcta	ctttttggtg	attatcccta	2220
atacccaaca	gagcatgttg	ctgctgtgca	ttagcctggc	agtgctggga	ttcttcctcg	2280
gtatagaagt	acagaaacgg	cgactgggct	cgatgggggc	actggccagc	accataaata	2340
ttatcgtgct	ggataacccg	atgactttcc	atttcagtca	gtttctcgac	agcgcattag	2400
ggcaaatcgt	cggctgtgtg	ctcgcgttca	ccgttatttt	gctggtgcgg	gataaatcgc	2460
gcgacaggac	cggacgtgta	ctgcttaatc	agtttgtttc	tgccgctgtt	tccgcgatga	2520
ctaccaatgt	ggcacgtcgt	aaagagaacc	acctcccggc	actttatcag	cagctgtttt	2580
tgctgatgaa	taagttccca	ggggatttgc	cgaaatttcg	cctggcgctg	acgatgatta	2640
tcgcgcacca	gcgcctgcgt	gatgcaccga	tcccggttaa	cgaggattta	tcggcgtttc	2700
accgacaaat	gcgccgcaca	gcagąccatg	tgatatctgc	ccgtagcgat	gataaacgtc	2760
gtcggtactt	tggccagttg	ctggaagaac	tggaaatcta	ccaggaaaag	ctacgcatct	2820
ggcaagcgcc	accgcaggtg	acggaaccgg	taaatcggct	ggcggggatg	ctccataagt	2880
atcaacatgc	gttgaccgat	agttaa				2906

<210> 4 <211> 3186 <212> DNA

<213> Escherichia coli

<400> atgcccttct ctgcggcgac agatgctgaa aataataacg cctgctctct ctttacaacc 60 aaggtcaaca tgagtctgtt tcccgttatc gtggtgtttg ggctgtcctt cccaccgata 120 ttttttgaat tgcttttatc actggcgatt ttctggctgg tgcgccgggt acttgtgcca 180 acaggtatct acgactttgt ctggcatccg gcgttgttca acaccgcgct ctattqctqc 240 ttgttttatt tgatatcgcg actgttcgtt tgaggttgaa gtgaaaacac taataagaaa 300 attctcccgt acggccatca cggtcgtatt agtcattctg gccttcatcg caatttttaa 360 tgcctgggtc tattacaccg aatccccctg gacgcgtgac gcgcgcttta gcgctgacgt 420 cgttgcgatc gcgccggacg tttctggact cattacccag gtgaatgttc atgataacca 480 gctggtgaaa aaaggacaga tactgttcac catcgaccag ccgcgctatc aaaaggcgct 540 tgaggaagcg caagccgatg ttgcttatta tcaggtactg gcacaggaga aacgccagga 600 ggccggacgt cgtaaccgtc tcggtgtgca ggcgatgtct cgcgaagaga tcgaccaggc 660 caacaacgta ctacaaacgg ttctgcatca gttagcgaaa gcgcaggcga cccgcgatct 720 ggcaaaactg gatcttgaac gcacggtgat ccgcgcgcca gcagatggct gggtgaccaa 780 cctcaacgtc tataccggtg agtttattac tcgaggatca acggcggttg cgctggtgaa 840 acagaactcc ttctatgtac tggcctatat ggaagaaact aagctggaag gggtgcgtcc 900 ggggtatcgt gcagagatca cgccgcttgg cagtaacaaa gtgctgaaag ggactgttga 960

CL2035 US NA SEQ tagtgttgcc gcaggggtca ccaacgccag cagcacgcgt gacgacaaag ggatggcgac 1020 tatagactct aaccttgaat gggtgcgtct tgcgcaacgt gttccggttc gtattcgtct 1080 cgacaaccag caagagaaca tctggcctgc gggcaccact gctacagtgg tggtcactgg 1140 caaacaagat cgcgacgaaa gccaggattc gttcttccgt aaaatggccc atcgcctgcg 1200 tgagtttggt taatcacgat gggtattttc tccattgcta accaacatat tcgctttgcg 1260 gtaaaactgg cgaccgccat tgtactggcg ctgtttgttg gctttcactt ccagctggaa 1320 1380 acgccacgct gggcggtact gacagcggcg attgttgccg ccggtacggc ctttgctgcg ggaggtgaac cgtattctgg cgctattcgc tatcgtggct ttttgcgcat catcggcaca 1440 tttattggct gtattgccgg actggtgatc atcattgcga tgatccgcgc accattattg 1500 atgattctgg tgtgctgtat ctgggccggt ttttgtacct ggatatcctc gctggtacga 1560 atagaaaact cgtatgcgtg ggggctggcc ggttataccg cgctgatcat tgtgatcacc 1620 attcagccgg aaccattgct tacgccgcag tttgccgtcg aacgttgtag cgagatcgtt 1680 atcggtattg tgtgtgcgat tatggcggat ttgctctttt ctccgcgatc gatcaaacaa 1740 gaagtggatc gagagctgga aagtttgctg gtcgcgcaat atcaattaat gcaactctgt 1800 atcaagcatg gcgatggtga agttgtcgat aaagcctggg gcgacctggt gcgacgcacc 1860 acggcgctac aaggcatgcg cagcaacctg aatatggaat cttcccgctg ggcgcgggcc 1920 1980 aatcgacgtt taaaagcgat caatacgcta tcgctgacgc tgattaccca atcctgcgaa acttatctta ttcagaatac gcgcccggaa ttgatcactg atactttccg cgaatttttt 2040 gacacgccgg tagaaaccgc gcaggacgtc cacaagcagc tcaaacgcct gcggagagtt 2100 2160 atcgcctgga ccggggaacg ggaaacgcct gtcaccattt atagctgggt cgcggcggca 2220 acgcgttatc agcttctcaa gcgcggcgtt atcagtaaca caaaaatcaa cgccaccgaa gaagagatcc tgcaaggcga accggaagta aaagtagagt cagccgaacg tcatcatgca 2280 atggttaact tctggcgaac cacactttcc tgcattctgg gcacgctttt ctggctgtgg 2340 acgggctgga cttccggcag tggtgcaatg gtgatgattg cggtagtgac gtcactggca 2400 atgcgtttgc cgaatccacg catggtggcg atcgacttta tctacgggac gctggccgcg 2460 ctgccgttag ggctgctcta ctttttggtg attatcccta atacccaaca gagcatgttg 2520 ctgctgtgca ttagcctggc agtgctggga ttcttcctcg gtatagaagt acagaaacgg 2580 cgactgggct cgatgggggc actggccagc accataaata ttatcgtgct ggataacccg 2640 atgactttcc atttcagtca gtttctcgac agcgcattag ggcaaatcgt cggctgtgtg 2700 ctcgcgttca ccgttatttt gctggtgcgg gataaatcgc gcgacaggac cggacgtgta 2760 ctgcttaatc agtttgtttc tgccgctgtt tccgcgatga ctaccaatgt ggcacgtcgt 2820 aaagagaacc acctcccggc actttatcag cagctgtttt tgctgatgaa taagttccca 2880 ggggatttgc cgaaatttcg cctggcgctg acgatgatta tcgcgcacca gcgcctgcgt 2940 gatgcaccga tcccggttaa cgaggattta tcggcgtttc accgacaaat gcgccgcaca 3000

CL2035 US NA SEQ gcagaccatg tgatatctgc ccgtagcgat gataaacgtc gtcggtactt tggccagttg						
ctggaagaac tggaaatcta ccaggaaaag ctacgcatct ggcaagcgcc accgcaggtg						
acggaaccgg taaatcggct ggcggggatg ctccataagt atcaacatgc gttgaccgat						
agttaa						
ag : Luu						
<210> 5 <211> 655 <212> PRT <213> Escherichia coli						
<400> 5						
Met Gly Ile Phe Ser Ile Ala Asn Gln His Ile Arg Phe Ala Val Lys 1 10 15						
Leu Ala Thr Ala Ile Val Leu Ala Leu Phe Val Gly Phe His Phe Gln 20 25 30						
Leu Glu Thr Pro Arg Trp Ala Val Leu Thr Ala Ala Ile Val Ala Ala 35 40 45						
Gly Thr Ala Phe Ala Ala Gly Gly Glu Pro Tyr Ser Gly Ala Ile Arg 50 60						
Tyr Arg Gly Phe Leu Arg Ile Ile Gly Thr Phe Ile Gly Cys Ile Ala 65 70 75 80						
Gly Leu Val Ile Ile Ala Met Ile Arg Ala Pro Leu Leu Met Ile 85 90 95						
Leu Val Cys Cys Ile Trp Ala Gly Phe Cys Thr Trp Ile Ser Ser Leu 100 105 110						
Val Arg Ile Glu Asn Ser Tyr Ala Trp Gly Leu Ala Gly Tyr Thr Ala 115 120 125						
Leu Ile Ile Val Ile Thr Ile Gln Pro Glu Pro Leu Leu Thr Pro Gln 130 135 140						
Phe Ala Val Glu Arg Cys Ser Glu Ile Val Ile Gly Ile Val Cys Ala 145 150 155 160						
Ile Met Ala Asp Leu Leu Phe Ser Pro Arg Ser Ile Lys Gln Glu Val 165 170 175						
Asp Arg Glu Leu Glu Ser Leu Leu Val Ala Gln Tyr Gln Leu Met Gln 180 185 190						
Leu Cys Ile Lys His Gly Asp Gly Glu Val Val Asp Lys Ala Trp Gly 195 205						

CL2035 US NA SEQ Asp Leu Val Arg Arg Thr Thr Ala Leu Gln Gly Met Arg Ser Asn Leu 210 215 220 Asn Met Glu Ser Ser Arg Trp Ala Arg Ala Asn Arg Arg Leu Lys Ala 225 230 235 240 Ile Asn Thr Leu Ser Leu Thr Leu Ile Thr Gln Ser Cys Glu Thr Tyr 245 250 255 Leu Ile Gln Asn Thr Arg Pro Glu Leu Ile Thr Asp Thr Phe Arg Glu 260 265 270 Phe Phe Asp Thr Pro Val Glu Thr Ala Gln Asp Val His Lys Gln Leu 275 280 285 Lys Arg Leu Arg Arg Val Ile Ala Trp Thr Gly Glu Arg Glu Thr Pro 290 295 300 Val Thr Ile Tyr Ser Trp Val Ala Ala Ala Thr Arg Tyr Gln Leu Leu 305 310 315 320 Lys Arg Gly Val Ile Ser Asn Thr Lys Ile Asn Ala Thr Glu Glu Glu 325 330 335 Ile Leu Gln Gly Glu Pro Glu Val Lys Val Glu Ser Ala Glu Arg His 340 345 350 His Ala Met Val Asn Phe Trp Arg Thr Thr Leu Ser Cys Ile Leu Gly 355 365 Thr Leu Phe Trp Leu Trp Thr Gly Trp Thr Ser Gly Ser Gly Ala Met 370 375 380 Val Met Ile Ala Val Val Thr Ser Leu Ala Met Arg Leu Pro Asn Pro 385 390 395 400 Arg Met Val Ala Ile Asp Phe Ile Tyr Gly Thr Leu Ala Ala Leu Pro 405 410 415 Leu Gly Leu Leu Tyr Phe Leu Val Ile Ile Pro Asn Thr Gln Gln Ser 420 425 430 Met Leu Leu Cys Ile Ser Leu Ala Val Leu Gly Phe Phe Leu Gly 435 440 445 Ile Glu Val Gln Lys Arg Arg Leu Gly Ser Met Gly Ala Leu Ala Ser 450 455 460 Thr Ile Asn Ile Ile Val Leu Asp Asn Pro Met Thr Phe His Phe Ser 465 470 475 480

CL2035 US NA SEQ Gln Phe Leu Asp Ser Ala Leu Gly Gln Ile Val Gly Cys Val Leu Ala 485 490 495 Phe Thr Val Ile Leu Leu Val Arg Asp Lys Ser Arg Asp Arg Thr Gly 500 505 Arg Val Leu Leu Asn Gln Phe Val Ser Ala Ala Val Ser Ala Met Thr 515 525 Thr Asn Val Ala Arg Arg Lys Glu Asn His Leu Pro Ala Leu Tyr Gln 530 540 Gln Leu Phe Leu Leu Met Asn Lys Phe Pro Gly Asp Leu Pro Lys Phe 545 550 555 560 Arg Leu Ala Leu Thr Met Ile Ile Ala His Gln Arg Leu Arg Asp Ala 565 570 575 Pro Ile Pro Val Asn Glu Asp Leu Ser Ala Phe His Arg Gln Met Arg 580 585 590 Arg Thr Ala Asp His Val Ile Ser Ala Arg Ser Asp Asp Lys Arg Arg 595 600 605 Arg Tyr Phe Gly Gln Leu Leu Glu Glu Leu Glu Ile Tyr Gln Glu Lys 610 620 Leu Arg Ile Trp Gln Ala Pro Pro Gln Val Thr Glu Pro Val Asn Arg Leu Ala Gly Met Leu His Lys Tyr Gln His Ala Leu Thr Asp Ser <210> 6 <211> <212> 36 DNA <213> Artificial Sequence <220> <223> Primer <400> gaagttagca agcttttaac tatcggtcaa cgcatg 36 <210> <211> 36 <212> DNA Artificial Sequence <213> <220> <223> Primer <400> 7 acaggagaat gaattcatgc ccttctctgc ggcgac 36

CL2035 US NA SEQ 8 23 <210> <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 8 ttaactatcg gtcaacgcat gtt 23 <210> 36 <211> <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 9 acaggagaat gaattcgtga aaacactaat aagaaa 36 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 10 ttaaccaaac tcacgcaggc 20 <210> 11 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Primer acaggagaat gaattcatgc ccttctctgc ggcgac 36 <210> 12 <211> 32 <212> DNA Artificial Sequence <213> <220> <223> Primer <400> 12 gttagcaagc ttttaactat cggtcaacgc at 32 <210> 13

<211> <212>

<220> <223> 32

Primer

<213> Artificial Sequence

<400> agcagt	13 gaat tcatgggtat tttctccatt gc	32
<210> <211> <212> <213>	14 24 DNA Artificial Sequence	
<220> <223>	Primer	
<400> gacggc	14 ggct ttgttgaata aatc	24
<210> <211> <212> <213>	15 25 DNA Artificial Sequence	
<220> <223>	Primer	
	15 ttta atcgcggcct cgagc	25
<210> <211> <212> <213>	16 20 DNA Artificial Sequence	
<220> <223>	Primer	
<400> tgtttg	16 atcg atcgcggaga	20
<210> <211> <212> <213>	17 20 DNA Artificial Sequence	
<220> <223>	Primer	
<400> tcggca	17 catt tattggctgt	20
<210> <211> <212> <213>	DNA	
<220> <223>	Primer	
<400> acctac	18 aaca aagctctcat caacc	25
<210> <211> <212> <213>	19 25 DNA Artificial Sequence	

<220> <223>	Primer	
<400> gcaatg	19 taac atcagagatt ttgag	25
<212>	20 20 DNA Artificial Sequence	
<220> <223>	Primer	
	20 tgtc ggtgtttgcc	20
<220> <223>	Primer	
<400> cgtgca	21 tctc ctgaacaatt taccg	25