Chapter 6: Algorithms

Reporter: Xie Li

December 1, 2021

Overview

- 6.1 Abstract worklist algorithm.
- A.C Preliminaries.
- 6.2 Iterating in reverse postorder.
- 6.3 Iterating through strong components.

Part I: Abstract Worklist Algorithm

Worklist Algorithm: Reaching Definition Analysis Example

Example 6.1 Consider the following While program

where $X_{356?}$ represents $\{(x,3),(x,5),(x,6),(x,?)\}$

Assumptions

Assumptions:

- A finite contraint system $(x_i \supseteq t_i)_{i=1}^N$, where $N \ge 1$
- A solution is a total function $\psi: X \to L$, where (L, \sqsubseteq) is a complete lattice satisfying the Acending Chain Condition.
- Terms are interpreted by the solutions. $[\![t]\!]\psi\in L.$
- The interpretation $[\![t]\!]\psi$ of a term t is monotone in ψ and its value only depends on the values $\{\psi(x)\mid x\in \mathsf{FV}(t)\}$

Equations vs. inequations:

$$x \supseteq t_1, \dots x \supseteq t_n$$

and

$$x = x \sqcup t_1 \sqcup \ldots \sqcup t_n$$

have the same solutions, and the least solution of the system is also the least solution of

$$x = t_1 \sqcup \ldots \sqcup t_n$$

Abstract Worklist Algorithms

```
INPUT:
                 A system S of constraints: x_1 \supseteq t_1, \dots, x_N \supseteq t_N
OUTPUT:
                 The least solution: Analysis
METHOD:
                 Step 1:
                             Initialisation (of W, Analysis and infl)
                             W := empty:
                             for all x \supset t in S do
                                 W := insert((x \supset t), W)
                                  Analysis[x] := \bot:
                                 \inf[x] := \emptyset;
                             for all x \sqsubseteq t in \mathcal{S} do
                                  for all x' in FV(t) do
                                      \inf[x'] := \inf[x'] \cup \{x \supseteq t\};
                             Iteration (updating W and Analysis)
                 Step 2:
                             while W \neq \text{empty do}
                                 ((x \supseteq t),W) := extract(W);
                                 new := eval(t,Analysis);
                                 if Analysis[x] \not\supseteq new then
                                      Analysis[x] := Analysis[x] \sqcup new;
                                      for all x' \supseteq t' in \inf[x] do
                                          W := insert((x' \supseteq t'), W);
```

Abstract Worklist Algorithm

```
\begin{split} \mathsf{empty} &= \emptyset \\ \mathsf{function \ insert}((x \sqsubseteq t), \mathsf{W}) \\ \mathsf{return \ } \mathsf{W} \cup \{x \sqsubseteq t\} \\ \mathsf{function \ extract}(\mathsf{W}) \\ \mathsf{return \ } ((x \sqsubseteq t), \mathsf{W} \backslash \{x \sqsubseteq t\}) \ \mathsf{for \ some} \ x \sqsubseteq t \ \mathsf{in \ } \mathsf{W} \end{split} \qquad \begin{array}{l} \mathsf{function \ eval}(t, \mathsf{Analysis}) \\ \mathsf{return \ } (x \sqsubseteq t), \mathsf{W} \backslash \{x \sqsubseteq t\}) \ \mathsf{for \ some} \ x \sqsubseteq t \ \mathsf{in \ } \mathsf{W} \end{array}
```

and

$$infl[x] = \{(x' \supseteq t') \in \mathcal{S} \mid x \in FV(t')\}$$

Example of influence:

$$\begin{array}{rcl} \mathsf{x}_1 & = & X_? \\ \mathsf{x}_2 & = & \mathsf{x}_1 \cup (\mathsf{x}_3 \backslash X_{356?}) \cup X_3 \\ \mathsf{x}_3 & = & \mathsf{x}_2 \\ \mathsf{x}_4 & = & \mathsf{x}_1 \cup (\mathsf{x}_5 \backslash X_{356?}) \cup X_5 \\ \mathsf{x}_5 & = & \mathsf{x}_4 \\ \mathsf{x}_6 & = & \mathsf{x}_2 \cup \mathsf{x}_4 \end{array}$$

	x_1	x_2	x ₃	x_4	x ₅	x ₆
infl	$\{x_2,x_4\}$	$\{x_3,x_6\}$	{x ₂ }	$\{x_5, x_6\}$	{x ₄ }	Ø

Properties of the Algorithm

Given a contraint system $\mathcal{S} = (x_i \supseteq t_i)_{i=1}^N$, we define a function

$$F_{\mathcal{S}}: (X \to L) \to (X \to L)$$

by

$$F_{\mathcal{S}}(\phi)(x) = \left| \begin{array}{c} [[t]] \phi \mid x \supseteq t \text{ in } \mathcal{S} \end{array} \right|$$

This defines a monotone function over complete lattice $X \to L$

- Monotone: can be checked easily. $\phi \sqsubseteq \psi \Rightarrow F_{\mathcal{S}}(\phi) \sqsubseteq F_{\mathcal{S}}(\psi)$
- ullet Ascending chain condition: X is finite and L by assumption satisfies ascending chain condition...

Correctness of the Algorithm

Lemma (6.4)

Given the assumptions, the abstract algorithm computes the least solution of the given contraint system, δ .

Proof.

```
INPUT:
                A system S of constraints: x_1 \supseteq t_1, \dots, x_N \supseteq t_N
OUTPUT:
                The least solution: Analysis
METHOD:
                Step 1: Initialisation (of W. Analysis and infl)
                            W := empty;
                            for all x \supset t in S do
                                W := insert((x \supset t),W)
                                Analysis[x] := \bot;
                                \inf[x] := \emptyset;
                            for all x \supseteq t in S do
                                for all x' in FV(t) do
                                   \inf[x'] := \inf[x'] \cup \{x \supset t\}:
                Step 2: Iteration (updating W and Analysis)
                            while W \neq empty do
                               ((x \supset t),W) := extract(W);
                               new := eval(t,Analysis);
                               if Analysis[x] \not\supseteq new then
                                    Analysis[x] := Analysis[x] \sqcup new;
                                    for all x' \supseteq t' in \inf[x] do
```

 $W := insert((x' \supset t').W)$:

Termination:

Termination of Step 1 is trivial.

Termination of Step 2 while loop can be proved with the ascending chain condition

Correctness:

of L.

- $\forall x. \text{Analysis}_i[x] \sqsubseteq \mu_{\mathcal{S}}(x)$ is a invariant of the while loop of Step 2.
- $F_{\mathcal{S}}(\mathsf{Analysis}) \sqsubseteq \mathsf{Analysis}$

Complexity of the Algorithm

Assumptions:

- The size of RHS of constraints is at most $M \geq 1$ and the evaluation of RHS takes O(M).
- Each assignment takes O(1) step.
- ullet Each constraint is influence by at most M flow variables
- The number of constraints in $\inf[x]$ is N_x . Then we have $\sum_{x \in X} N_x \leq M \cdot N$
- The maximum height of ascending chain is h.

The total number of constraints added: $O(N + h \cdot N \cdot M)$.

Consider their evaluations: $O(N \cdot M + h \cdot M^2 \cdot N) = O(h \cdot M^2 \cdot N)$

Part II: Preliminaries

Directed Graph

- Directed graph: A directed graph G = (N, A). Flow, cycle, SCC...
- Handles and roots:

A handle for G is a $H\subseteq N$ s.t. all $n\in N$ there exsits a node $h\in H$ such that there is a directed path from h to n.

 $\{n\}$ is a handle iff n is a root.

- Tree and forest: in-degree, number of nodes with in-degree 0.
- **Dominator:** we call n' the dominator of n if every path from H to n contains n'.

Reverse Postorder

• **Spanning forests:** A spanning forest of a graph is a subgraph containing all the nodes and the subgraph is a forest.

```
INPUT:
             A directed graph (N, A) with k nodes and handle H
OUTPUT: (1) A DFSF T = (N, A_T), and
             (2) a numbering rPostorder of the nodes indicating the
                 reverse order in which each node was last visited
                 and represented as an element of array [N] of int
METHOD: i := k:
             mark all nodes of N as unvisited;
             let A_T be empty:
             while unvisited nodes in H exists do
                   choose a node h in H:
                   DFS(h):
USING:
             procedure DFS(n) is
                     mark n as visited:
                     while (n, n') \in A and n' has not been visited do
                           add the edge (n, n') to A_T;
                           DFS(n');
                     rPostorder[n] := i;
                     i := i - 1;
```

Example of DFSF Algorithm

Figure C.1: A flow graph.

Figure C.2: A DFSF for the graph in Figure C.1.

Properties of Reverse Postorder

Categories of edges:

- Tree edges: edges present in the spanning forest.
- Forward edges: edges that are not tree edges and that go from a node to a proper descendant in the tree.
- Back edges: edges that go from descendants to ancestors, incluing self-loops.
- Cross edges: edges that go between nodes that are unrelated by the ancestor and descendant relations.

Properties of Reverse Postorder

Lemma C.9 Let G = (N, A) be a directed graph, T a depth-first spanning forest of G and rPostorder the associated ordering computed by the algorithm of Table C.1. An edge $(n, n') \in A$ is a back edge if and only if rPostorder $[n] \ge r$ Postorder[n'] and is a self-loop if and only if rPostorder[n'] = rPostorder[n'].

Proof idea:

- Result of self loop is trivial.
- "Only if" direction can be obtained through the algorithm.
 "If" direction relys on a fact that there is no crossedge of the type.

Corollary C.10 Let G = (N, A) be a directed graph, T a depth-first spanning forest of G and rPostorder the associated ordering computed by the algorithm of Table C.1. Any cycle of G contains at least one back edge.

Corollary C.11 Let G = (N, A) be a directed graph, T a depth-first spanning forest of G and rPostorder the associated ordering computed by the algorithm of Table C.1. Then rPostorder topologically sorts T as well as the forward and cross edges.

Loop Connectedness

- The loop connectedness of G with respect to a DFSF T is the largest number of back edges found in any cycle-free path of G. Write as d(G).
- Dominator-back edge (n_1, n_2) .
- Reducible graph: A directed graph with handle H is reducible iff $(N, A \setminus A_{db})$ is acyclic and H is still a handle.

Lemma C.12 Let G = (N, A) be a reducible graph with handle H, T a depth first spanning forest for G and H, and rPostorder the associated ordering computed by the algorithm of Table C.1. Then an edge is a back edge if and only if it is a dominator-back edge.

Corollary C.14 Let G = (N, A) be a reducible graph with handle H. Any cycle-free path in G beginning with a node in the handle, is monotonically increasing by the ordering rPostorder computed by the algorithm of Table C.1.

Part III: Different Iterating Methods

Iterating in Reverse Postorder

To concretize the algorithm, we can use FIFO or LIFO to instantiate the worklist.

```
empty = nil
function insert((x \supseteq t),W)
return cons((x \supseteq t),W)
function extract(W)
return (head(W), tail(W))
```

Table 6.2: Iterating in last-in first-out order (LIFO).

Iterating in Reverse Postorder

The graph structure of a constraint system. Given a constraint system $S = (x_i \supseteq t_i)_{i=1}^N$ we can construct a graphical representation G_S of the dependencies between the constraints in the following way:

- there is a node for each constraint $x_i \supseteq t_i$, and

Figure 6.2: (a) Graphical representation. (b) Depth-first spanning tree.

Modify the Algorithm

The working list will be splitted into two list: current list W.c and pending list W.p.

W.c	W.p	x_1	x_2	x_3	x_4	x ₅	x ₆
[]	$\{x_1,\cdots,x_6\}$	Ø	Ø	Ø	Ø	Ø	Ø
$[x_2, x_3, x_4, x_5, x_6]$	$\{x_2,x_4\}$	$X_{?}$	-	-	_	-	_
$[x_3,x_4,x_5,x_6]$	$\{x_2, x_3, x_4, x_6\}$	-	$X_{3?}$	-	_	-	_
$[x_4,x_5,x_6]$	$\{x_2, x_3, x_4, x_6\}$	_	_	$X_{3?}$	_	-	-
$[x_5, x_6]$	$\{x_2,\cdots,x_6\}$	-	-	-	$X_{5?}$	_	_
$[x_6]$	$\{x_2,\cdots,x_6\}$	–	_	_	_	$X_{5?}$	_
$[x_2, x_3, x_4, x_5, x_6]$	Ø	_	_	_	-	_	$X_{35?}$
$[x_3, x_4, x_5, x_6]$	Ø	_	_	_	_	_	-
$[x_4,x_5,x_6]$	Ø	-	_	_	_	_	_
$[x_5, x_6]$	Ø	_	_	_	_	-	_
$[x_6]$	Ø	_	_	_	_	_	_
[]	Ø	-	_	_	_	-	_

Figure 6.3: Example: Reverse postorder iteration.

Comparison with LIFO

W	$ x_1 $	x_2	x ₃	x_4	x ₅	x ₆
$[x_1, x_2, x_3, x_4, x_5, x_6]$	Ø	Ø	Ø	Ø	Ø	Ø
$[x_2, x_4, x_2, x_3, x_4, x_5, x_6]$	$X_{?}$	-	-	-	_	_
$[x_3, x_6, x_4, x_2, x_3, x_4, x_5, x_6]$	_	$X_{3?}$	-	-	-	-
$[x_2, x_6, x_4, x_2, x_3, x_4, x_5, x_6]$	-	-	$X_{3?}$	_	-	_
$[x_6, x_4, x_2, x_3, x_4, x_5, x_6]$	_	_	-	_	_	-
$[x_4, x_2, x_3, x_4, x_5, x_6]$	-	_	_	-	_	$X_{3?}$
$[x_5, x_6, x_2, x_3, x_4, x_5, x_6]$	-	-	_	$X_{5?}$	–	_
$[x_4, x_6, x_2, x_3, x_4, x_5, x_6]$	_	_	_	_	$X_{5?}$	_
$[x_6, x_2, x_3, x_4, x_5, x_6]$	_	_	_	_	_	_
$[x_2, x_3, x_4, x_5, x_6]$	-	_	_	_	_	$X_{35?}$
$[x_3, x_4, x_5, x_6]$	-	_	_	_	_	_
$[x_4,x_5,x_6]$	-	-	_	-	_	_
$[x_5,x_6]$	-	_	_	_	_	_
[× ₆]	-	-	_	_	_	_
[]	–	_	_	_	_	_

Figure 6.1: Example: LIFO iteration.

Round Robin Algorithm

```
INPUT:
                A system S of constraints: x_1 \supseteq t_1, \dots, x_N \supseteq t_N
                ordered 1 to N in reverse postorder
OUTPUT:
                The least solution: Analysis
METHOD:
                           Initialisation
                Step 1:
                           for all x \in X do
                               Analysis[x] := \bot
                           change := true:
                           Iteration (updating Analysis)
                Step 2:
                           while change do
                               change := false;
                               for i := 1 to N do
                                   new := eval(t_i,Analysis);
                                   if Analysis[x_i] \not\supseteq new then
                                      change := true;
                                      \mathsf{Analysis}[x_i] := \mathsf{Analysis}[x_i] \sqcup \mathsf{new};
USING:
                function eval(t,Analysis)
                return [t] (Analysis)
```

Table 6.4: The Round Robin Algorithm.

Theoretical Properties

Lemma 6.11 Given the assumptions, the algorithm of Table 6.4 computes the least solution of the given constraint system, S.

Lemma 6.12 Under the assumptions stated above, the algorithm of Table 6.4 halts after at most $d(G_S, T) + 3$ iterations. It therefore performs at most $O((d(G_S, T) + 1) \cdot N)$ assignments.

Proof idea of Lemma 6.12:

A path contain d back edges will cause the while loop in step 2 to iterate at most d+1 times.

Overall bound: $O((d+1) \cdot b)$, where b is the number of the basic blocks.

Iterating through Strong Components

- The algorithm: SCCs are visited in topological order and within each SCC the nodes will be visited in reverse postorder.
- Outer loop, intermediate loop and inner loop.
- Priority of the constraint is obtained by pairs like (scc, rp).