PEAT MARWICK MITCHELL AND CO SAN FRANCISCO CALIF F/G 1/5
TASK FORCE DELAY STUDY. WILLIAM B. HARTSFIELD ATLANTA INTERNATI--ETC(U)
JUN 80
DOT-FA77WA-3961 AD-A092 455 UNCLASSIFIED 10:3

Technical Ceport Documentation Page Report No. Government Accession No. 3. Recipient's Catalog No. 4. Title and Subtitle 5. Report Date Task Force Delay Study. June 1980 William B. Hartsfield Atlanta International 6. Performing Organization Code Airport, VOL. II 8. Performing Organization Report No. 7. Author(s) 9. Performing Organization Name and Audress Atlanta Airport Improvement Working Group FAA Regional Planning Staff, ASO-4 11. Contract or Grant No. - 3400 Whipple Street East Point, GA 30320 13. Type of Report and Period Covered 2. Sponsoring Agency Name and Address U.S. Department of Transportation Federal Aviation Administration Program Management Staff, ATF-4 14. Sponsoring Agency Code Washington, D.C. 20591 Supplementary Notes 6. Abstract This report contains supporting documentation for the detailed analysis of the William B. Hartsfield Atlanta International Airport. The analysis was conducted by the Atlanta Airport Improvement Working Group which had representatives from the City of Atlanta, the Air Transport Association, the airlines serving Atlanta, and the Federal Aviation Administration. Technical support was provided by Peak, Marwick, Mitchell & Co., and the FAA Technical Center. The purpose of the analysis was to determine the causes of delay and the potential delay reduction benefits of recommended improvements. The effort was part of the Airport Improvement Program. 18. Distribution Statement 17. Key Words Document is available to the public Airfield Capacity through the National Technical Aircraft Delay Information Service Experimental Design Springfield, Virginia 22161 Airfield Simulation Model 21. No. of Pages 20. Security Classif. (of this page) 319. Security Classif. (of this report) orm DOT F 1700.7 (8-72) Reproduction of completed page authorized 4094.3

1 /

WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT DATA PACKAGE NO. I

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

prepared for

DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

under contract

DOT FA77WA -3961

Peat, Marwick, Mitchell & Co.

APRIL 1978

PEAT, MARWICK, MITCHELL & Co.

P. O. BOX 8007

SAN FRANCISCO INTERNATIONAL AIRPORT SAN FRANCISCO, CALIFORNIA 94128

Telephone: (415) 347-9521

April 14, 1978

Mr. Ray Fowler, AEM-100 Federal Aviation Administration 800 Independence Avenue, S.W. Washington, D.C. 20591

Re: Input Data for Atlanta Simulation Model Calibration and Annual Delay Baseline Experiment

Dear Ray:

Enclosed are some data materials for use during the second Task Force meeting on April 20, 1978:

- Attachment A contains the preliminary calibration data package. Additional data are required from NAFEC and the Task Force to complete this package.
- Attachment B contains the preliminary annual delay baseline data package.

These attachments contain information that should be reviewed, revised, and approved by the Atlanta Task Force prior to use in model runs.

Sincerely,

Stephen L. M. Hockaday

Manager

SLMH/nbe

Enclosure

cc: Mr. J. R. Dupree (ALG-312)
Mr. B. Drotts (ASO-4) (w/enc1)

Accession for

NTIS GRAWI
DTIC TAS
Unannounced
Ju tification

Py
Distribution/
Availability Codes
Availability Codes
Avail and, or
Distribution

A

Attachment A

PRELIMINARY CALIBRATION DATA PACKAGE

WILLIAM B HARTSFIELD ATLANTA INTERNATIONAL AIRPORT

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

April 14, 1978

INPUT DATA

A. LOGISTICS

- 1. <u>Title</u>: Atlanta International Airport Airfield Simulation Model Calibration Run
- 2. Random Number Seeds: 2017, 3069, 4235, 5873, 6981, 7137, 8099, 9355, 0123, 1985.
- 3. Start and Finish Times: 1430 to 1700.
- 4. Print Options: Detailed run for one random number seed.
 Summary run for ten random number seeds.

5.	<u>Airline Names</u> :	Name	Code
		Air Freight	AF
		Air Taxi	AT
		Braniff	BN
		Delta	\mathtt{DL}
		Eastern	EA
		Northwest	NW
		Piedmont	PI
		Southern	SO
		Trans World	TW
		United	UA

- 6. Processing Options: First run to check model input. Other runs in COMPUTE mode.
- 7. Truncation Limits: + 3 standard deviations.
- 8. Time Switch: Not applicable.

B. AIRFIELD PHYSICAL CHARACTERISTICS

- 9. Airfield Network: See Figure 1.
- 10. Number of Runways: 3.
- 11. Runway Identification: 26, 27L and 27R.
- 12. Departure Runway End Links: 180, 238.
- 13. Runway Crossing Links: 191, 187, 202, 230, 353, 185, 354, 313, 347.

- 14. Exit Taxiway Location: To be based on existing airfield configuration and only those exits used during field data collection for calibration.
- 15. Holding Areas: Holding for (a) EA at north end of Runway 15, and (b) DL on taxiways P and R as appropriate.
- 16. Airline Gates: See Figure 2.
- 17. General Aviation Basing Areas: Two areas, one to west of terminal area and one to east of terminal area.

C. ATC PROCEDURES

18. Aircraft Separations: These values are based on capacity model data--may be revised as a result of reduced field data.

<u>Arrival-Arrival Separation (n.m.)</u> - All cases except as noted.

1. VFR

		Trail	Airci	caft C	lass
		A	В	<u> </u>	D
Lead	A	1.1	1.3	2.3	2.5
Aircraft	В	1.1	1.3	2.3	2.5
Class	C	2.9	3.7	3.1	3.1
	D	4.1	5.1	4.7	4.1

2. IFR

		Trail	Airci	aft C	lass
		A	_ <u>B</u>	C	D
Lead	A	3.0	3.0	3.3	3.5
Aircraft	В	3.0	3.0	3.3	3.5
Class	C	4.5	4.5	3.3	3.3
	D	6.5	6.5	5.5	4.5

22. Vectoring Delays:

This input allocates delays among vectoring and holding. Model input values will be used that hold arrival aircraft if delays to arrival aircraft exceed 10 minutes.

23. Departure Runway Queue Control:

Aircraft are assigned departure runways to preclude airspace crossovers, not to balance departure queues.

24. Gate Hold Control:

Aircraft are held at gates when departure queue at runway is 10 or more, except when gate holds would cause gate congestion.

25. Departure Airspace Constraints:

Aircraft are not held at gates due to departure airspace constraints.

26. Inter-Arrival Gap:

With this runway use, arrival aircraft are delayed in the arrival airspace when departure delays exceed 10 minutes.

27. Runway Crossing Delay Control:

Arrival and departure runway operations are only interrupted for a taxiing aircraft to cross an active runway when the taxiing aircraft is delayed by 10 minutes or more.

D. AIRCRAFT OPERATIONAL CHARACTERISTICS

28. Exit Taxiway Utilization:

	Exit Util:	_ (per	cent)	
	A/C Class	GG	F_	<u> </u>
Runway 26	A B	100 75	25	
	C D			100 100

		tion ((percent)		
	A/C Class	Y	х	W	U
Runway 26L	A B	100	100		
-	C D		_••	65 20	35 80

29. Arrival Runway Occupancy Times:

			incy '	Time	(seconds)
	A/ Cla		GG	F	С
Runway 26	A		48 41	50	
20	B C D		41	30	60 60
	A/C Class	Y	X	W	Ü
Runway 26L	A B C D	37	4	8 4 4	

30. Touch & Go Occupancy Times:

pancy Time (seconds)
Standard Deviation
3
3
4
4

31. Departure Runway Occupancy Times:

Aircraft	Runway O	ccupancy Time (seconds)
Class	Mean	Standard Deviation
A	23	3
В	26	3
C	37	4
D	37	4

32. Taxi Speeds: To be based on reduced field data.

Departure-Departure Separations (seconds)

1. VFR

		Trail	Airc	raft	Class
		A	В	C	D
Lead	Α	25	30	40	50
Aircraft	В	30	40	45	50
Class	C	45	45	60	60
	D	120	120	120	90

2. IFR

		Trail	Airc	raft Cl	ass
		A	В	C	D
Lead	A	60	60	60	60
Aircraft	В	60	60	60	60
Class	С	60	60	60	60
	D	120	120	120	90

19. Route Data: See Figure 3.

20. Two-Way Path Data:

Two-way taxiways are located as follows:

- 1. Taxiway A.
- 2. Taxiway B between Taxiways V and P.
- 3. Taxiway F.

21. Common Approach Paths:

Arrival Runway	Aircraft Class	Length of Common Approach Path
26	A B	3.0 3.0
	C D	5.0 5.0
27L	A	3.0
	В	3.0
	C D	5.0 5.0

33. Approach Speeds:

Aircraft	Appro	ach Speed (knots)
<u>Class</u>	Mean	Standard Deviation
A	95	10
В	120	10
С	130	10
D	140	10

- 34. Gate Service Times: To be supplied by Task Force.
- 35. <u>Airspace Travel Times</u>: To be based on reduced field data.
- 36. Runway Crossing Times: To be based on reduced field data.
- 37. Lateness Distribution: To be supplied by Task Force.
- 38. Demand: To be based on reduced field data.

OUTPUT DATA

- A. FLOW RATES: To be based on reduced field data.
- B. DELAYS: To be based on reduced field data.
- C. TRAVEL TIMES: To be based on reduced field data.

AIRFIELD NETWORK
WILLIAM B. HARTSFIELD ATLANTA INTER

LD NETWORK

TLANTA INTERNATIONAL AIRPORT

THE HARTSFIELD ATLANTA INTERNATIONAL AIRPORT

Figure 3a

Arrivals 26

Source: NAFEC

THE HARTSFIELD ATLANTA INTERNATIONAL AIRPORT

Figure 3c

Arrivals 27L

Source: NAFEC

THE HARTSFIELD ATLANTA INTERNATIONAL AIRPORT

Figure 3d

Departures 27R

Source: NAFEC

Attachment B

PRELIMINARY ANNUAL DELAY BASELINE DATA PACKAGE

WILLIAM B HARTSFIELD ATLANTA INTERNATIONAL AIRPORT

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

April 14, 1978

Group Specification:
3 day groups : High, Average, Low 12 week groups : 12 months, January through December 3 weather groups: VFR, IFR1, IFR2
2 runway uses : Arrivals Departures Runway Runway
1. 8, 9R 8, 9L 2. 26, 27L 26, 27R
Weekly Traffic:
Week Group 1 2 3 4 5 6 7 8 9 10 11 12
% of annual in one week 1.83 1.86 1.88 1.90 1.90 1.91 1.90 1.98 1.95 1.95 1.96 1.98
Number of Weeks in Each Group:
Week Group 1 2 3 4 5 6 7 8 9 10 11 12
Number of weeks 4.43 4.00 4.43 4.29 4.43 4.29 4.43 4.29 4.43 4.29 4.43 4.29 4.43
Daily Traffic:
Day Group 1 2 3
% of weekly in one day 15.0 14.0 13.5
Number of Days in Each Group:
Day Group 1 2 3
Number of Days 3 2 2
Weather Group Demand Factors:
VFR: 1.00 IFR1: 1.00 IFR2: 0.90

1. <u>Annual Demand</u>: 516,558 (1977)

8. Weather Occurrences:

Week Group	1	2	_3_	4	_5_	6	7	8	9	10	11	12
VFR	82	97	84	93	93	100	93	87	84	92	72	86
IFR1	15	3	16	7	7	0	7	13	16	8	22	11
IFR2	3	0	0	0	0	0	0	0	0	0	6	3

9. Hourly Runway Capacity:

	Но	urly Capac	city
Runway Use	VFR	IFRl	IFR2
			
1	139	114	68
2	138	114	-

10. Runway Use Occurrences*:

	Pero	cent Occur	rence
Runway Use	VFR	IFRl	IFR2
1	30.2	8.0	0.8
2	57.8	3.0	0.2

11. Hourly Traffic:

Hour	<pre>% daily traffic</pre>	Hour	<pre>% daily traffic</pre>	Hour	<pre>% daily traffic</pre>	Hour	<pre>% daily traffic</pre>
00-01	2.8	06-07	2.4	12-13	6.0	18-19	6.4
01-02	2.3	07-08	1.4	13-14	4.5	19-20	7.0
02-03	0.4	08-09	2.4	14-15	4.9	20-21	5.0
03-04	0.5	09-10	5.1	15-16	7.3	21-22	5.2
04-05	1.0	10-11	6.0	16-17	6.5	22-23	3.4
05-06	2.0	11-12	6.6	17-18	6.3	23-24	4.6

12. Demand Profile Factor: 30%

13. Runway Use Demand Factor:

All runway uses accommodate air carrier and general aviation demand (Demand factor = 1.0).

14. Aircraft Mix: 1% Class A

13% Class B

73% Class C

13% Class D

^{*} PMM&Co. estimates based on 1977 PMS records.

15. Percent Arrivals:

Hour	% Arrivals	Hour	% Arrivals	Hour	% Arrivals	Hour	<pre>% Arrivals</pre>
00-01	49	06-07	10	12-13	38	18-19	41
01-02	15	07-08	29	13-14	59	19-20	61
02-03	36	08-09	61	14-15	70	20-21	44
03-04	42	09-10	69	15-16	55	21-22	44
04-05	66	10-11	44	16-17	46	22-23	49
05-06	73	11-12	58	17-18	60	23-24	67

16. <u>User-Specified Title</u>: ATL ANNUAL BASELINE

WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT DATA PACKAGE NO. 2

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

prepared for

DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION under contract

DOT FA77WA -3961

Peat, Marwick, Mitchell & Co.

JULY 1978

PEAT. MARWICK. MITCHELL & Co.

P. O. BOX 8007

SAN FRANCISCO INTERNATIONAL AIRPORT

SAN FRANCISCO, CALIFORNIA 94128

Telephone: (415) 347-9521

July 7, 1978

Mr. Ray Fowler, AEM-100 Federal Aviation Administration 800 Independence Avenue, S.W. Washington, D.C. 20591

Re: Atlanta Data Package No. 2

Dear Ray:

Enclosed are some data materials for use during the fourth Task Force meeting on July 12, 1978:

- Attachment A contains the results of the construction experiments. It should be pointed out to all concerned that these results are both preliminary, because they have not been reviewed or accepted by the Atlanta Task Force, and approximate, because they are derived from simplified "handbook type" analysis techniques and not from airfield simulation model runs.
- Attachment B contains the results of the four runway capacity experiments. Again, it should be pointed out that these results are preliminary and approximate.
- Attachment C contains the input data for the remaining Stage 1 experiments. This information should be reviewed, revised, and approved by the Atlanta Task Force before it is used in model runs.

Sincerely,

Stephen L. M. Hockaday

Manager

SLMH/nbe Enclosure

cc: Mr. J. R. Dupree (ALG-312)
Mr. B. Drotts (ASO-4) (w/encl)

ATTACHMENT A

RESULTS OF CONSTRUCTION EXPERIMENTS

William B. Hartsfield Atlanta International Airport

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

July 1978

RESULTS OF CONSTRUCTION EXPERIMENTS

A manual analysis was performed to estimate the effects of the 36-hour closure of Runway 8/26 planned for later in the summer. The objectives of this analysis were to:

- Obtain order-of-magnitude estimates of the severity of delays that can be expected
- Identify the benefits of partial operation of Runway 8/26 for general aviation (propeller) aircraft
- Determine the best time of day to start the 36-hour closure

Figure A-1 shows the three alternative runway-use configurations that were considered. The left panel in Figure A-1 shows a baseline configuration with Runway 8/26 open. The middle panel shows two parallel runways plus propeller operations on Runway 8/26. In this case, propeller aircraft are assumed to land on one side of the construction area and to depart on the other side. The right panel in Figure A-1 shows the use of two parallel runways only.

Also shown in Figure A-1 are estimates of hourly runway capacities assuming 50 percent arrivals. Note that using Runway 8/26 for propeller aircraft (middle panel) yields a capacity increase of about 15 to 30 aircraft per hour.

The reason for the range of capacities associated with the "two parallels only" case is that, when both of these runways are used for arrivals, there are two alternative ATC procedures, shown as Procedures 1 and 2 in Figure A-2.

In Procedure 1, large (L) aircraft are flown on a course parallel to, but slightly ahead of, heavy (H) aircraft on the adjacent approach path. In Procedure 2, however, this L-H stagger is not allowed; instead, wake-vortex separations are provided behind the heavy aircraft. In other words, Procedure 2 treats the situation as a single channel.

Capacity estimates associated with the alternative runway-use configurations for the construction closure period are given in Table A-l for various arrival percentages. It should be emphasized that these capacity estimates are only approximate, having been obtained using manual "handbook" methods.

A graphical comparison of these capacity figures as a function of arrival percentage is presented in Figure A-3. Curves C and D in Figure A-3 depict the capacity differences between ATC Procedures 1 and 2; Curve B shows the benefits of using the stub ends of Runway 8/26 for propeller aircraft.

A comparison was also made of these capacities against total hourly demand (arrivals and departures) by time of day. This comparison is shown in Figure A-4 where the various 50-percent-arrival capacities were superimposed on the profile of hourly weekday demand.

Figure A-4 was the basis for a deterministic queueing analysis of delays and queue lengths that can be expected during the construction period. This analysis was performed using a cumulative plot of total hourly demand at Atlanta International Airport and superimposing on that graph two alternative hourly runway capacities: (1) the Procedure 2 hourly capacity of 85 aircraft per hour, and (2) the minimum expected capacity of 66 aircraft per hour. It was assumed that delays associated with higher capacites, e.g., 99 aircraft per hour, are relatively small and stochastically generated, and not very sensitive to the start time of the closure period. From the resulting composite graph, one can measure (or compute):

- Total delay in aircraft hours
- Maximum and average delay
- Maximum and average queue length
- Length of congested period
- Number of aircraft delayed

Results of the deterministic queueing analyses are summarized in Table A-2 for various starting times of the 36-hour construction closure.

Deterministic queueing methods provide reasonable estimates in cases where these are periods of significant length, say several hours, during which the arrival rate is greater than the service rate. In such circumstances, the deterministic aspects of the queue formation overshadow the effects of stochastic fluctuations that occur in the arrival and service rates. On the basis of the foregoing considerations, it is thought that the deterministic queueing approach used herein is a reasonable one for obtaining estimates of the delay impacts of the Runway 8/26 closure and sensitivities to the starting time.

From the queueing and delay estimates, and other graphical solutions, we constructed an approximate graphical relationship between peak hourly delays and hourly runway capacity for Atlanta (see Figure A-5). This graph is probably most accurate for smaller values of capacity, say less than 90 aircraft per hour. Again, these capacity/delay estimates are only approximate; no high degree of precision is claimed for them.

Figure A-1

ATLANTA TASK FORCE DELAY STUDY CONSTRUCTION EXPERIMENT CAPACITY ESTIMATES (50 PERCENT ARRIVALS)

TWO PARALLELS ONLY	HOURLY CAPACITY= 85 99	
TWO PARALLELS PLUS PROPS ON R/W 8/28	HOURLY CAPACITY = 114	(JETS)
BASELINE	HOURLY CAPACITY= 139	91- 98-

LEGEND:

- CONSTRUCTION AREA

2

- ARRIVALS

■ DEPARTURES

Figure A-2 ALTERNATIVE ATC PROCEDURES

PROCEDURE 1

B) LARGE AND HEAVY

PROCEDURE 2

A) LARGE AIRCRAFT

B) LARGE AND HEAVY AIRCRAFT

Table A-1

ATLANTA CONSTRUCTION EXPERIMENTS ATLANTA TASK FORCE DELAY STUDY Hourly Runway Capacity

	100	79	06	76	99
	06	88	06	85	73
	80	66	06	95	83
S	70	113	114	86	85
RIVAL	09	132	114	86	82
PERCENT ARRIVALS	20	144	114	66	85
PERCE	40	144	114	66	. 85
	30	145	114	100	85
	20	132	114	100	84
	10	117	114	101	84
	0	106	106	101	84
CASE DESCRIPTION					
	CASE DE	THREE RUNWAY BASELINE	PROPS ON 8 JETS ON 9L 9R	ALL ON 9L, 9R (PROCEDURE 1)	ALL ON 9L, 9R (PROCEDURE 2)
		•	®	9	<u> </u>

,

Figure A-3
ATLANTA TASK FORCE DELAY STUDY
CONSTRUCTION EXPERIMENT
CAPACITY ESTIMATES

Figure A-4 (1)

Table A-2

DETERMINISTIC QUEUEING ANALYSIS OF 36-HOUR CONSTRUCTION CLOSURE OF RUNWAY 8/26 Atlanta Task Force Delay Study

(7) Number of aircraft delayed	2,060 2,790 2,990 2,680 1,970 2,030 2,080	1,850 2,360 2,630 2,480 2,100 1,410 1,860
(6) Length of congestion (hr)	29 37 40 39 38 36 29	21 26 30 29 25 17
(5) Avg.a/Peak queue (aircraft)	356 356 363 363 363 363	144 144 144 144 144 144
	175 187 188 161 156 132 178	71 70 77 62 65 77
(4) Avg.a/Peak delay (hr)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.7 1.7 1.7 1.7 1.7
Avg. ⁸	2.5 2.5 3.0 2.4 2.5	0.8 0.9 0.7 0.8 0.8
(3) Total delay (aircraft-hr)	5,100 6,140 7,560 6,350 5,890 4,800	1,500 1,830 2,300 1,790 1,620 1,300
(2) Start time (EDT)	0 4 8 12 16 20b 24 ^C	0 4 8 12 16 20b 24c
(1) Assumed capacity (aircraft/hr)	99 99 99 99 99 99	85 85 85 85 85

. වේ ට

Averages were computed by dividing Column (3) by Columns (6) and (7). Indicates best start time to the nearest 2 hours. Indicates that start times 0 and 24 should agree; this was a check on the

Figure A-5
ATLANTA CONSTRUCTION EXPERIMENTS
VARIATION OF RUNWAY DELAYS WITH CAPACITY

ATTACHMENT B

FOUR-RUNWAY CAPACITY EXPERIMENTS (Numbers 7 through 11 of Technical Plan)

William B. Hartsfield Atlanta International Airport

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

July 1978

FOUR-RUNWAY CAPACITY EXPERIMENTS

The PMM&Co. runway capacity model (RCM) was applied to evaluate alternative ways of operating a four-runway configuration (Runways 8/26 and Runways 9/27) at Atlanta International Airport. Four 4-runway cases were analyzed, as shown in Figure B-1. Table B-1 contains hourly runway capacities for each case as a function of the percentage of arrivals.

The first three cases correspond to Stage I Experiments 7, 9, and 10 of Table III-2 of the Atlanta Technical Plan. From a capacity point of view, Experiments 7 and 8 are the same, although there are differences in the airfield operations of Experiments 7 and 8 (mainly differences in taxiways crossing runways). Similarly, Case 3 applies, from a capacity standpoint, to both Experiments 10 and 11 of the Technical Plan. Case 2, however, applies only to Experiment 9.

One additional experiment, not called for in the Technical Plan, is provided as Case 4 of Figure B-1 and Table B-1. This is the all-operations-on-all-runways configuration that might apply for very short, peak-directional time intervals. All of these experiments are for the pre-1985 demand and ATC system scenario under VFR1 weather with the 8L/26R near-term improvements.

Figure B-1
ATLANTA FOUR RUNWAY EXPERIMENTS

Table B-1

ATLANTA FOUR RUNWAY EXPERIMENTS HOURLY RUNWAY CAPACITY

	901	79		9		. 9	2		791
	06	88		0	e 		<u> </u>		2
	80	66		8	8		2		3
	70	113		12	2	954	<u>8</u>		081
VALS	9	132		133	72	101	<u> </u>	9	0
T ARRI	20	159		150	8	Ş	2	Ş	9
PERCENT ARRIVALS	Q	176		103	3		5	9	9
ď	30	151		101		į	<u> </u>	Ş	3
	20	132		189		189		Ş	3
:	5	117		169	168		80	202	707
	0	106		14.		,	<u> </u>	200	707
39 4 0	386					†			
O TO	DETANIONS.	8L, 9L		8L, 8R, 9L		6	or, on, st	8L, 8R	9 L, 9R
0 14 71 0 0 4	AUNIVALA	8R, 9R	- 4	8L, 9R		0000	on, ol., on	8L, 8R	9L, 9R
2040	CASE	-		7		c	2	•	•

,

ATTACHMENT C

DATA FOR REMAINING STAGE I EXPERIMENTS

William B. Hartsfield Atlanta International Airport

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

July 12, 1978

ATLANTA STAGE I EXPERIMENTS

At the third Atlanta Task Force meeting on June 14, 1978, a number of changes were made to the list of Atlanta Delay Experiments that was contained in Table III-2 of the January 1978 Technical Plan. Attachment B of this data package covered Experiments 7 through 11 of the original list. The remaining Stage I experiments, as modified at Atlanta Task Force Meeting No. 3, are the subject of this attachment. More precisely, input data for the following Stage I Experiments are presented herein:

Seq.	Experiment*	Model	Arrival runways	Departure runways	Weather	Demand	Comments
1	1	ASM	8, 9R	8, 9L	VFR1	Pre-1985	
2	2	ASM	8, 9R	8, 9L	IFRL	Pre-1985	
3	1A	ASM	8, 9R	8, 9L	VFR1	1978	baseline
4	2A	ASM	8, 9R	8, 9L	IFRL	1978	baseline
5	3	ASM	9R	8, 9L	IFR2	Pre-1985	
6	5	ASM	8, 9R	8, 9L	IFRL	Pre-1985	2.0 n.m. stagger
7	6	ASM	8, 9R	8, 9L	IFRL	Pre-1985	1.5 n.m. stagger
8	12	ADM	n.a.	n.a.	n.a.	1978	Only one in Stage I

^{*}Refers to Original Technical Plan. No. contained in the Minutes of Atlanta Airport Improvement Study, Task Force Meeting No. 3, June 14, 1978.

All other aspects of the Stage I Experiments, e.g., ATC System Scenarios and Near-Term Improvements, are as specified in Table III-2 of the <u>Technical Plan</u>.

Input data for each of the foregoing list of experiments are presenced in the remainder of this attachment.

INPUT DATA FOR EXPERIMENT NO. 1

A. LOGISTICS

- 1. <u>Title:</u> Atlanta International Airport Airfield Simulation Model: Stage I Experiments
- 2. Random Number Seeds: 2017, 3069, 4235, 5873, 6981, 7137, 8099, 9355, 0123, 1985.
- 3. Start and Finish Times: 0830 to 2100 EDT.
- 4. Print Options: Summary run for ten random number seeds.

5.	Airline Names:	Name	Code
		Air Freight	AF
		Air Taxi	ΑŤ
		Braniff	BN
		Delta	\mathtt{DL}
		Eastern	EA
		Northwest	NW
		Piedmont	PI
		Southern	SO
		Trans World	TW
		United	UA

- 6. Processing Options: First run to check model input.
 Other runs in COMPUTE mode.
- 7. Truncation Limits: + 3 standard deviations.
- 8. Time Switch: Not applicable.

B. AIRFIELD PHYSICAL CHARACTERISTICS

- 9. Airfield Network: See Figure C-1.
- 10. Number of Runways: 3.
- 11. Runway Identification: 8, 9L, 9R.
- 12. Departure Runway End Links: 194, 300.
- 13. Runway Crossing Links: 188, 192, 195, 203, 310, 313.

14. Exit Taxiway Location:

Runway	Taxiway	Link	Distance from Threshold (feet)
8	E	186	4,890
8	F	185	5,760
8	V	184	6,650
8	G	182	7,530
8	H	181	9,250
8	K	180	10,010
9R	X	345	4,680
9R	Ÿ	347	6,580
9R	M	351	9,000

- 15. Holding Areas: Holding for (a) EA at north end of Runway 15, and (b) DL on taxiways P and R as appropriate.
- 16. Airline Gates: See Figure C-2.
- 17. General Aviation Basing Areas: Two areas, one to west of terminal area and one to east of terminal area (see Figure C-1).

C. ATC PROCEDURES

18. <u>Aircraft Separations</u>: These values are based on Report No. FAA-EM-78-8.

<u>Arrival-Arrival Separation (n.m.)</u> - All cases except as noted.

VFR

		Trail Aircraft Class				
		A	В	С	D	
Lead	Α	1.9	1.9	1.9	1.9	
Aircraft	В	1.9	1.9	1.9	1.9	
Class	С	2.7	2.7	1.9	1.9	
	D	4.0	4.0	3.0	2.7	

Departure-Departure Separations (seconds)

VFR - Near Term

		Trail Aircraft Class					
		A	В	<u>C</u>	D		
Lead	A	35	35	45	50		
Aircraft	В	30	35	45	50		
Class	С	50	50	60	60		
	D	120	120	120	120		

- 19. Route Data: See Figure C-3.
- 20. Two-Way Path Data:

Two-way taxiways are located as follows:

1. Taxiway V.

21. Common Approach Paths:

Arrival Runway	Aircraft Class	Length of Common Approach Path
8	A B C D	3.0 3.0 5.0 5.0
9R	A B C D	3.0 3.0 5.0 5.0

22. Vectoring Delays:

This input allocates delays among vectoring and holding. Model input values will be used that hold arrival air-craft if delays to arrival aircraft exceed 10 minutes.

23. Departure Runway Queue Control:

Aircraft are assigned departure runways to preclude airspace crossovers, not to balance departure queues.

24. Gate Hold Control:

Aircraft are held at gates when departure queue at runway is 10 or more, except when gate holds would cause gate congestion.

25. Departure Airspace Constraints:

Aircraft are not held at gates due to departure airspace constraints.

26. Inter-Arrival Gap:

With this runway use, arrival aircraft are delayed in the arrival airspace when departure delays exceed 10 minutes.

27. Runway Crossing Delay Control:

Arrival and departure runway operations are only interrupted for a taxiing aircraft to cross an active runway when the taxiing aircraft is delayed by 4 minutes or more.

D. AIRCRAFT OPERATIONAL CHARACTERISTICS

28. Exit Taxiway Utilization:

		E	kit U	tili	zation	(pe	rcent)		
	A/C Class	С	D	E	F	v	G	Н	K
Runway									
8	A	70	30	0	0	0	0	0	0
	В	60	20	10	0	10	0	0	0
	С	0	4	28	24	36	7	0	0
	D	0	0	0	0	40	60	0	0

	Exit U	(percent)		
	A/C Class	Х	Y	М
Runway	A	100	0	0
9 R -	В	100	0	0
	С	13	83	4
	D	0	100	0

29. Arrival Runway Occupancy Times:

		Runwa	ay Occ	upanc	y Ti	me (se	cond)	
	A/C Class	С	D	E	F	V	G	Н	K
	01033	<u> </u>	_ _						
Runway	A	40	45	-	-	_	_	-	-
8 _	В	35	40	50	-	-	_	-	-
	С	_	35	45	50	60	-	-	-
	D	-	-	-	-	60	65	~	~
	A/C Class	Х	Y	M					
Runway	A	45	_	_					
9 R -	В	50	-	-					
	С	40	60	65					
	D	-	60	-					

30. Touch & Go Occupancy Times:

Aircraft	Runway	Occupancy Time (seconds)
<u>Class</u>	Mean	Standard Deviation
		
A	22	3
В	23	3
С	27	4
D	27	4

31. Departure Runway Occupancy Times:

Aircraft	Runway	Occupancy Time (seconds)
Class	Mean	Standard Deviation
7	2.4	2
A	34	3
В	34	3
С	39	4
D	39	4

32. Taxi Speeds: To be based on reduced field data.

33. Approach Speeds:

Aircraft	App	roach Speed (knots)
Class_	Mean	Standard Deviation
A	95	10
В	120	10
С	130	10
D	140	10

- 34. Gate Service Times: To be based on reduced field data.
- 35. Airspace Travel Times: To be based on reduced field data.
- 36. Runway Crossing Times: 20 seconds.
- 37. Lateness Distribution: See Table 1.
- 38. Demand: To be based on reduced field data.

WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT DATA PACKAGE NO. 3

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES

prepared for

DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION under contract

DOT FA77WA -3961

Peat, Marwick, Mitchell & Co.

SEPTEMBER 1978

PEAT, MARWICK, MITCHELL & Co.

P. O. BOX 8007

SAN FRANCISCO INTERNATIONAL AIRPORT SAN FRANCISCO, CALIFORNIA 94128

Telephone: (415) 347-9521

September 13, 1978

Mr. Ray Fowler, AEM-100 Federal Aviation Administration 800 Independence Avenue, S.W. Washington, D.C. 20591

Re: Atlanta Data Package No. 3

Dear Ray:

Enclosed is data package No. 3 for William B. Hartsfield Atlanta International Airport. The package contains the results of the Stage 1 delay experiments (Attachment A) ad an input data package for Stage 2 experiments (Attachment B).

These data should be reviewed by the Atlanta Task Force during the 15th September 1978 Task Force meeting.

Sincerely,

Stephen L. M. Hockaday

Manager

SLMH/sq Enclosure

cc: Mr. J. R. Dupree (ALG-312)

Mr. B. Drotts (ASO-4) (w/encl)

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES Atlanta International Airport Data Package No. 3

Table of Contents

																				Page
Attachment A - H	RESUI	TS	5 (OF	S.	rac	ΞE	1	Εž	KPI	ER:	ΙMΙ	EN:	rs	DI	ELA	¥Υ			1
Experiment	1A																			4
Experiment	2A																			7
Experiment	1.																			11
Experiment																				14
Experiment	3.																			19
Experiment	5.														•					22
Experiment																				26
Experiment	12																			30
-																				
Attachment B - I	ATAC	FC	R	S	(A)	ΞE	2	Εž	ζPI	ER:	IMI	EN:	CS						•	37
Experiment	28								•	•										40
Experiment	22	•																		42
Experiment	17	•							•	•			•		•	•				44
Experiment	18														•					51
Experiment	19															•	•			53
Experiment	20	•			•				•	•	•		•	•	•		•	•	•	60
Experiment	21	•		•		•		•	•		•	•	•	•	•	•		•		62
Experiment	16	•	•	•		•	•			•	•	•		•		•	•			65
Experiment	14				•		•	•	•	•	•	•	•	•	•	•	•			69
Experiment	15	•						•		•	•	•	•	•	•	•	•			70
Experiment	13			•		٠		•	•	•	•		•	•	•					71
Experiment	27								•	•					•		•			72
Experiment	25									•				•		•	•			76
Experiment	26									•						•	•			77
Experiment	24			•												•		•	٠	78
Experiment	23	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	79
Attachment C = (OMMC	זאר	TN	ıDı	יחיז	n z	ייי <i>ו</i>	1												80

Attachment A RESULTS OF STAGE 1 DELAY EXPERIMENTS

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

September 1978

Table A-1

ATLANTA TASK FORCE DELAY STUDIES
LIST OF STAGE 1 EXPERIMENTS
AND
INDEX TO RESULTS

Experiment		Rur	nways			
No.	Model	Arrivals	Departures	Weather	Improvement ATC	Page
1A	ASM	8, 9R	8, 9L	VFRL	1978	4
2A	ASM	8, 9R	8, 9L	IFR1	1978	7
1	ASM	8, 9R	8, 9L	VFR1	1982	11
2	ASM	8, 9R	8, 9L	IFR1	1982	14
3	ASM	9R	8, 9L	IFR2	1982	19
5	ASM	8, 9R	8, 9L	IFRL	1982-2 n.m. stagger	22
6	ASM	8, 9R	8, 9L	IFR1	1982-1.5 n.m. stagger	26
12	ADM	n.a.	n.a.	n.a.	1978	30

١

ì

Table A-2

1

ATLANTA TASK FORCE DELAY STUDIES SUMMARY RESULTS OF STAGE 1 EXPERIMENTS AIRFIELD SIMULATION MODEL RUNS

	Comparison	oca)	baseline Baseline	4	2.A	2	. ~	2
lays	Taxi-Out	1 0	4.0	0.2	0.2	9.	0.1	0.1
Average Airfleld Delays	Gate Peak Time							
Aver	Peak Time		0.3	0.3	0.2	0.1	0.1	0.2
Delays	Peak Time	10	10		20:45- 35.4 19:15 21:00 19:30	19-20		
희		11.6	15.5	12.0	35.4	7.1	6.0	4.8
Average Runway Delays	Time				20:45- 21:00	260.3 19-20 7.1		
Arri	Peak	11.6	42.9	11.2	61.7	260.3	87.2	64.7
V Rates Departures	Peak Time	•				10-11		
5	(144)	2 59	12:30- 17 12:45	2 60	12:30- 15 12:45	1 53	9 -0	12:30- 10 12:45
Average Flow Rates Arrivals Depart	Peak Time	11-12	12:30-	11-12	12:30- 12:45	11-11	12;30- 12:45	12:30-
1		70	14	74	16	34	01	13
Weather	Conditions	VFR1	IFRI	VFR1	IFRI	1FR2	IFR1	IFRI
Time	Frame	1978	1978	1982	1982	1982	1982	1982
Runways Used	Arrivals Departures	16 '8	16 ' 8	16 '8	9, 91.	16 '8	16 '8	36 '8
Runway	AFFIVAIS	8, 9к	8, 9R	8, 9R	8, 9R	9.R	8, 9R	8, 9R
Experiment		4 1	2A	1	~	·	s	٠.

EXPERIMENT NO. 1A

Objective:

To obtain 1978 baseline delay estimates in VFR1 weather for the following runway-use configuration:

Arrival Runways

8, 9R

8, 9L

Related Comparison Experiments:

Experiment 2A has same demand and network but in IFRl weather.

Length and Level of Detail of Simulation Run:

From 8:00 to 22:00 (14 hours) with 1-hour output summaries.

Results:

Figure (1A) A shows that the total aircraft flow rates vary from 33 to 129 aircraft per hour over the 13-hour run. The peak hour is from 11:00 to 12:00 hours and contains 70 arrival aircraft and 59 departure aircraft.

Figure (1A) B shows the pattern of average delays to aircraft and that the peak-hour average delay to arrivals was 14.2 minutes while the peak-hour average delay to departures was 12.1 minutes.

Figure (1A) C shows the pattern of average delays to aircraft using the taxiways, i.e., taxi-in delay and taxi-out delays, which had peak-hour average values of 0.5 minutes and 0.6 minutes, respectively.

EXPERIMENT NO. 2A

Objective:

To obtain 1978 baseline delay estimates in IFR1 weather for the following runway-use configuration:

Arrival Runways Departure Runways

8, 9R

8, 9L

Related Comparison Experiments:

Experiment 1A has same demand and network but in VFR1 weather.

Length and Level of Detail of Simulation Run:

From 8:00 to 22:00 (14 hours) with 15-minute summaries.

Results:

Figure (2A) A shows that total aircraft flows vary from 32 to 113 aircraft per hour over the 13-hour simulation run. The peak hour is from 12:00 to 13:00 hours and contained 53 arrivals and 60 departures.

Figure (2A) B shows that average delays to aircraft using the runways are as high as 33.0 minutes per aircraft. Peak hour average delays are 33.0 minutes for arrivals and 25.8 minutes for departures.

Figure (2A) C shows that the peak-period average delays to aircraft using the taxiways are 1.3 minutes for taxi-in and 1.1 minutes for taxi-out.

Figures (2A) E and (2A) F show variation of runway flow rates and delays by 15-minute period. Note that the peak 15-minute total flow rate is 31 aircraft per hour, which is 27 percent of the corresponding peak-hour total flow rate. The peak 15-minute average delays are 42.9 minutes for arrvials and 34.2 minutes for departures.

EXPERIMENT NO. 1

Objective:

To obtain delay estimates in VFRl weather with the new Midfield Terminal, 1982 demand, and near-term ATC separations for the following runway-use configuration:

Arrival Runways Departure Runways

8, 9R

8, 9L

Related Comparison Experiments:

The results of this experiment can be viewed in comparison with Experiment No. 1A which was for the old terminal and 1978 demand and ATC separations in VFR1 weather.

Length and Level of Detail of Simulation Run:

From 8:00 to 22:00 with 1-hour output summaries.

Results:

Figure (1A) A shows that the total aircraft flow rates vary from 33 to 136 aircraft per hour over the 13-hour run. The peak hour is from 19:00 to 20:00 hours and contains 77 arrival aircraft and 59 departure aircraft.

Figure (1A) B shows the pattern of average delays to aircraft and that the peak-hour average delay to arrivals was 11.6 minutes while the peak-hour average delay to departures was 12.0 minutes.

Figure (1A) C shows the pattern of average delays to aircraft using the taxiways, i.e., taxi-in delay and taxi-out delays, which had peak-hour average values of 0.3 minutes and 1.9 minutes, respectively.

FIGURE 1D-AVERAGE TAXIWAY TRAVEL TIMES

EXPERIMENT NO. 2

Objective:

To obtain delay estimates in IFRl weather with the Midfield Terminal, 1982 demand, and near-term ATC separations for the following runway-use configuration:

Arrival Runways Departure Runways

8, 9R

8, 9L

Related Comparison Experiments:

The results of this experiment can be compared to Experiment No. 2A to examine differences due to the new demand, ATC separations, and terminal building compared to today's IRF1 conditions. It can also be compared to Experiment No. 1 to examine differences between 1982 VFR1 and IFR1.

Length and Level of Detail of Simulation Run:

From 8:00 to 22:00 with 15-minute output summaries.

Results:

Figure (2A) A shows that total aircraft flows vary from 32 to 128 aircraft per hour over the 13-hour simulation run. The peak hour is from 11:00 to 12:00 hours and contained 60 arrivals and 68 departures.

Figure (2A) B shows that average delays to aircraft using the runways are as high as 38.3 minutes per aircraft. Peak hour average delays are 38.3 minutes for arrivals and 37.8 minutes for departures.

Figure (2A) C shows that the peak-period average delays to aircraft using the taxiways are 0.2 minutes for taxi-in and 1.3 minutes for taxi-out.

Figures (2A) E and (2A) F show variation of runway flow rates and delays by 15-minute period. Note that the peak 15-minute total flow rate is 31 aircraft per hour, which is 27 percent of the corresponding peak-hour total flow rate. The peak 15-minute average delays are 61.7 minutes for arrvials and 35.4 minutes for departures.

Ţ

EXPERIMENT NO. 3

Objective:

To obtain delay estimates in IFR2 weather with the 1982 demand, Midfield Terminal, and near-term ATC separations for the following runway-use configuration:

Arrival Runways Departure Runways

9R 8, 9L

Related Comparison Experiments:

The results of this experiment can be compared to the results of Experiment No. 2 to examine differences between 1982 IFR1 and IFR2.

Length and Level of Detail of Simulation Run:

From 8:00 to 22:00 with 1-hour output summaries.

Results:

Figure (1A) A shows that the total aircraft flow rates vary from 27 to 84 aircraft per hour over the 13-hour run. The peak hour is from 10:00 to 11:00 hours and contains 31 arrival aircraft and 53 departure aircraft.

Figure (1A) B shows the pattern of average delays to aircraft and that the peak-hour average delay to arrivals was 260.3 minutes while the peak-hour average delay to departures was 7.1 minutes.

Figure (1A) C shows the pattern of average delays to aircraft using the taxiways, i.e., taxi-in delay and taxi-out delays, which had peak-hour average values of 0.1 minutes and 4.8 minutes, respectively.

The foregoing very high arrival delays are due to an extended period during which there is an excess of demand over capacity. In practice, IFR2 weather rarely occurs for 14 hours straight. In any event, delays of 260 minutes are unrealistic as cancellations and diversions would occur long before delays became that great.

Objective:

To obtain delay estimates in IFRI weather associated with 2.0 nautical mile staggered arrival-arrival separations proposed for use when simultaneous, independent arrivals cannot be accommodated on the following runway-use configuration:

Arrival Runways Departure Runways

8, 9R

8, 9L

Related Comparison Experiments:

The results of this experiment, in particular arrival flow rates and delays, can be compared with the results of Experiment No. 2.

Length and Level of Detail of Simulation Run:

From 8:00 to 13:00 with 15-minute output summaries.

Results:

Figure 5E shows the pattern, by 15-minute time interval, of the average flow rates. The peak 15-minute, average flow rate occur in the interval 10:45 to 11:00 which contains a total of 25 aircraft of which 12 are arrivals. This compares to the Experiment No. 2 peak flow of 31 aircraft of which 16 are arrivals.

Figure 5F shows the pattern of average runway delays by 15-minute period. The peak average arrival delay on that figure is 87.2 minutes per aircraft and occurs in the interval 12:30 to 12:45. The corresponding peak average arrival delay for simultaneous operations on 8 and 9R (from Experiment No. 2) is 61.7 minutes per aircraft. The comparison for departure delays is a peak average delay of 12.3 minutes for this experiment versus 35.4 minutes from Experiment No. 2.

Figures 5C shows average taxiway delays for this experiment, by 15-minute interval, for the 5-hour period simulated.

Objective:

To obtain delay estimates in IFR1 weather associated with 1.5 nautical mile staggered arrival-arrival separations proposed for use when simultaneous, independent arrivals cannot be accommodated on the following runway-use configuration:

Arrival Runways Departure Runways

8, 9R

8, 9L

Related Comparison Experiments:

The results of this experiment, in particular arrival flow rates and delays, can be compared with the results of Experiment No. 2.

Length and Level of Detail of Simulation Run:

From 8:00 to 13:00 with 15-minute output summaries.

Results:

Figure 6E shows the pattern, by 15-minute time interval, of the average flow rates. The peak 15-minute, average flow rate occur in the interval 10:30 to 18:45 which contains a total of 27 aircraft of which 13 are arrivals. This compares to the Experiment No. 2 peak flow of 31 aircraft of which 16 are arrivals.

Figure 6F shows the pattern of average runway delays by 15-minute period. The peak average arrival delay on that figure is 64.7 minutes per aircraft and occurs in the interval 12:30 to 12:45. The corresponding peak average arrival delay for simultaneous operations on 8 and 9R (from Experiment No. 2) is 61.7 minutes per aircraft. The comparison for departure delays is a peak average delay of 22.0 minutes for this experiment versus 35.4 minutes from Experiment No. 2.

Figures 6C shows average taxiway delays for this experiment, by 15-minute interval, for the 5-hour period simulated.

15-Minute Period Beginning

İ

ı

Objective:

To determine average annual delays to aircraft in 1978.

Related Comparison Experiments:

None in Stage 1.

Results:

With the annual demand of 534,586 operations for the period July 1977 through June 1978, average annual delays were estimated to be 3.92 minutes per aircraft. Seventy-nine percent of the delays were less than or equal to two minutes.

On the average day of the peak month, peak hour average delays are as high as 9.0 minutes (during IFR1 weather conditions). For the most frequent weather condition (VFR1 weather), average peak hour delays were 6.7 minutes.

(See attached ADM output and list of inputs.)

```
* AIRPORT STUDY CONDITIONS *
ATL 1978 BASELINE *
```

ANNUAL SUMMARY

DEMAND (D/C AT LEAST	RATIO		DISTRIBUTION PERCENT OCCURRENCE
0.1919.45.61,89,049	TO TO TO TO TO TO TO TO	19940.00.0499 19940.00.0499	10.70 9.25 10.34 10.38 11.16 8.10 20.38 11.72 1.77 2.72 1.77
	MEAN S	DE DVC RATIO	0 = . 53

MEAN OF D/C RATIO = .53 STANDARD DEVIATION = .29

CM.	AGE DELAY INUTES) LESS THAN	DISTRIBUTION PERCENT OCCURRENCE
004'00004'60000000000000000000000000000	TO	0049,6490,654,656,60,644,644,644,656,644,664,644,654,654,654

MEAN OF AMERAGE CELAY = 0.32 STANCARD CEMIATION = 1.32

AYERAGE PEAK HOUR DELAY FOR PEAK MONTH, AVG. DAY

RUNWAY USE	WEATHER GROUP	PERCENT OCCURRENCE	PEAK HOUR AYERAGE DELAY (MINUTES)	NUMBER OF SATURATED HOURS	NUMBER OF OVERLOAD HOURS
BERUMM	ubbe ubbe	30.4 7.6 .9 58.2 2.9	5.7 8.9 8.7 9.0 8.9	0 2 2 0 2 2	0 1 1 0 1 1

MINUAL DELAY =34893.168 HOURS
MINUAL DEMAND = 534586 OPERATIONS
MINUTES/AIRCRAFT

```
. 980
1110
980
                                      તું.
                                                                                                    ीटी
पट्ट
1860
                                                           ?;
→
                                                                                                                                                                                                                          . 659
.
                                                                                                                                                                                                                                                                    ਹਰਾ ਹਰਾ ਹਰਾ ਗਰਾ ਜਹਾ ਜਹਾ ਜਹਾ ਵਰਾ
                                                           ₹. <del>1</del>
                                                                                                                                                                                                                         989 AT.
                                                          ્ડા
કરો
                                                          7 43
                                                                                                                                                                                                                        . 01.0
. 063
                                                                                                                                                                                                                                                                   ) (14.
(14.
                                                         ₹.43
                                                                                                                                                                                                                        950.
190.
                                                                                                                                                                                                                                                                  . 950
310
                                                         ?;
*
                                                                                                                                                                                                                       ეეე.
₽90:
                                                                                                                                                                                                                                                                 4.43
                                                                                                                                                                                                                      . ઇન્ડિક
. ઇન્ડિક
                                                                                                                                                                                                                                                                 . 900
1460
                                                      4.43 4.00 4.43 4.20 OFERCENT 5
                                                                                                                                                                                                                                                                 950
                                                                    150 . 150 . 155 2.000 benuineer 6
                                                                                                                                                                                                                       .
છેલ્ડ
                                                                                                                                                                         1.000 1.000 .900
1.000 1.000 .900
343 .727 .800
.557 .273 .800
.051 .045 .002
.051 .045 .002
.051 .045 .002
.051 .045 .002
.051 .045 .002
.051 .045 .002
.051 .045 .002
.051 .045 .002
.051 .045 .002
.051 .045 .002
.051 .002
.50 .50 .50
.50 .50 .50
.50 .50 .50
.50 .50 .50
.50 .50 .50
.50 .50 .50
                          M.PERCENT 3
.018 .019
17.000
M.NUMBER 4
                    A.PERCENT
HILLEPHAND
      534596
GROUPS
```

ATL 1978 BASELINE

(Revised)

INPUT DATA - EXPERIMENT NO. 12

Annual Delay Model

1.	Annual Demand: 534,586 (last 6 months of 1977 and first 6 months of 1978).
2.	Group Specification:
	3 day groups : High, Average, Low 12 week groups : 12 months, January through December 3 weather groups: VFR, IFR1, IFR2
	2 runway uses : Arrivals Departures Runway Runway
	1. 8, 9R 8, 9L 2. 26, 27L 26, 27R
3.	Weekly Traffic 1977:
	Week Group 1 2 3 4 5 6 7 8 9 10 11 12
	% of annual in one week 1.83 1.86 1.88 1.90 1.90 1.91 1.90 1.98 1.95 1.95 1.96 1.98
4.	Number of Weeks in Each Group:
	Week Group 1 2 3 4 5 6 7 8 9 10 11 12
	Number of weeks 4.43 4.00 4.43 4.29 4.43 4.29 4.43 4.29 4.43 4.29 4.43 4.29 4.43
5.	Daily Traffic (1977):
	Day Group 1 2 3
	% of weekly in one day 15.0 14.0 13.5
6.	Number of Days in Each Group:
	Day Group 1 2 3
	Number of Days 3 2 2
7.	Weather Group Demand Factors:

VFR: 1.00 IFR1: 1.00 IFR2: 0.90 8. Weather Occurrences:

Week Group	<u>:</u>	2_	_3_	4	<u>5</u> _	<u>-5.</u>		3_	3	15	<u>::</u>	12
VFR	32	97	34	93	93	100	93	37	84	32	-2	36
IFRl	15	3	16	7	7	5	7	: 3	15	સ	22	
IFR2	3)	5	5	5	5	<i>7</i>	5	5	5	٤	3

9. Hourly Runway Capacity:

	Но	urly_Capac	ity_
Runway Use	VFR	IFRL	IFR2
1	132	110	63
2	132	110	68

10. Runway Use Occurrences*:

	Perd	cent Occur	rence
Runway Use	VFR	IFRL	IFR2
1	30.2	8.0	0.8
2	57.8	3.0	0.2

11. Hourly Traffic (1978):

Hour	% daily traffic	Hour	<pre>3 daily traffic</pre>		<pre>3 daily traffic</pre>	Hour	% daily traffic
00-01	3.1	06-07	2.9	12-13	6.1	13-19	6.4
01-02	1.6	07-08	1.0	13-14	4.3	19-20	5.3
02-03	0.2	08-09	3.2	14-15	4.9	20-21	5.3
03-04	0.3	09-10	5.7	15-16	6.3	21-22	4.2
04-05	0.5	10-11	6.7	16-17	6.8	22-23	3.2
05-06	2.5	11-12	5.3	17-13	6.4	23-24	5.2

12. Demand Profile Factor: 303

13. Runway Use Demand Factor:

All runway uses accommodate air carrier and general aviation demand (Demand factor = 1.0).

14. Aircraft Mix: 1% Class A

13% Class B

71% Class C

15% Class D

^{*} PMM@Co. estimates based on 1977 PMS records.

15. Percent Arrivals (1978):

Hour	* Arrivals	Hour	3 Arrivals	Hour	% Arrivals	Hour	3 Arrivals
00-01	24	06-07	5	12-13	34	18-19	31
01-02	31	07-08	28	13-14	57	19-20	61
02-03	16	08-09	72	14-15	53	20-21	27
03-04	44	09-10	69	15-16	63	21-22	63
04-05	80	10-11	34	16-17	46	22-23	32
05-06	77	11-12	63	17-18	59	23-24	78

16. <u>User-Specified Title</u>: ATL ANNUAL BASELINE

Attachment B

DATA FOR STAGE 2 EXPERIMENTS

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

September 1978

Table B-1

ATLANTA TASK FORCE DELAY STUDIES REVISED STAGE 2 EXPERIMENTS

Comments	Midfield	Old term. Midfield	Old term.	Inboard arrivals	Outboard arrivals	Midfield	4th R/W		Unconstrained	Cancellation	Limit = 1 hr.	4 R/W's	3 K/W's	4 R/W's	3 R/W's	Eliminates single	departure track out 4 nautical	miles
Near-Term Improvements	Pre-1985	None Pre-1985	None	8L/26R	8L/26R	Pre-1985	8L/26R		No gate hold	6 mo3 R/W's	6 mo2 R/W's	Post-1985	None	Post-1985	None	2 departure	tracks per runway	
ATC System Scenario	1982	Today's	Today's	1982	1982	1987	1987		1982	1987		1987	1987	Today's	Today's	Today's		
Demand	1982	1982	1982	1982	1982	1987	1987		1982	1987		1987	1987	1987	1987	1978		
Weather	n,a,	n.a.	n.a.	IFRI	IFR1	IFRI	IFR1		IFRI	n.a.		n.a.	n.a.	n.a.	n.a.	IFRI		
Departure Runways	n.a.	n.a.	n.a.	8L, 9R	8R, 9L	8, 9L	8R, 9L		8, 9L	n.a.		n.a.	n.a.	n.a.	n.a.	8, 9L		
Arrival Runways	n.a.	n.a.	n.a.	8R, 9L	8L, 9R	8, 9R	8L, 9R		8, 9R	n.a.		n.a.	n.a.	n.a.	n.a.	8, 9R		
Study	ADM n.a.	n.a.	n.a.	12	13	S	5	ned	5	n.a.		n.a.	n.a.	n.a.	n.a.	5		
Model	ADM	ADM	ADM	ASM	ASM	ASM	ASM	Undefi	ASM	ADM		ADM	ADM	ADM	ADM	VASM		
Experiment No.	13	15	16	17	18	19	20	21	22	23		24	25	26	27	28		

Table B-2

į

ATLANTA TASK FORCE DELAY STUDIES
REORGANIZATION OF STAGE 2
AIRFIELD SIMULATION MODEL EXPERIMENTS
AND
INDEX TO STAGE 2 INPUTS

Index:	Improvement Page	Existing 40	Pre-1985 42	Pre-1985 44	Pre-1985 51	Pre-1985 53	Post-1985 60	62
	ATC	Todays	Near	Near	Near	Inter.	Inter.	
	Demand	1978	1982	1982	1982	1987	1987	ty)
	Weather	IFR1	IRR1	IFRI	IFR1	IFR1	IFR1	ined by Ci
Runways	Departures	8, 9L	8, 91.	8L, 9R	8R, 9L	8, 9L	8R, 9L	(Undefined - to be defined by City)
Run	Arrivals	8, 9R	8, 9R	8R, 9L	8L, 9R	8, 9R	8L, 9R	(Undefine
	Model	ASM	ASM	ASM	ASM	ASM	ASM	ASM
Experiment	No.*	28	22	17	18	19	20	21
Sednence	No.	1	c	m	r i r	5	ó	7

*Refers to Numbers agreed to at Atlanta Task Force Meeting No. 4, July 12, 1978, and the Subgroup Meeting of August 25, 1978.

Objective:

To obtain 1978 delay estimates assuming that there are two departure tracks per runway, i.e., no environmental constraints, for the following runway use in IFR1 weather:

Arrival Runways Departure Runways

8, 9R

8, 9L

Related Comparison Experiments:

Results of this experiment can be compared to the results of Experiment No. 2A of Stage 1 to evaluate benefits of relieving single departure track constraint.

Data Changes:

Unconstrained departure-departure separations are used in this experiment instead of the constrained values of Stage 1 Experiment No. 2A.

(See attached change sheet.)

SIMULATION MODEL INPUT	DESCRIPTION OF INPUT CHANGE
a. Logistics	
1 7111	ATD Stage 2 Experiments
2 Random number seeds	
3 Start and finish times	
4 Print options	
5 Airline names	
6 Processing options	
7 Truncation limits	
3 Time switch	
b. Airfield Physical Characteristics	
3 Aurfield network	
13 Number of runways	
11 Runway identification	
12 Departure runway end links	
13 Runway crossing links	
14 Exit taxiway location	
15 Holding areas	
- 15 Airline gates	
17 General aviation basing areas	
s. ATC Procedures	
13 Aircraft separations	Unconstrained Dep./Dep. Separations*
_3 Route data	
10 Two-way path data	
21 Common approach paths	
22 Vectoring delays	
13 Separtize minway queue control	
14 Sate mold control	
15 Departure sirapace constraints	
15 Separture queue	
27 Runway trossing delay control	
d. Austraft Operational Characteristics	
13 Exit taxiway utilization	
23 Arrival runway occupancy times	
10 Touch-and-go runway occupancy simes	
11 Departure runway occupancy times	
32 Taxi speeds	
33 Approach speeds	
14 Tate service times	
35 Airspace travel times	
35 Runway drossing times	
37 Lateness distribution	
23 Temand	
*Algording to Report No. FAA-EM-?8-	1

Objective:

To obtain delay estimates for the case where there are no gate holds in 1982 at Midfield with near-term ATC separations and the following runway use in IFR1 weather:

Arrival Runways Departure Runways
8, 9R 8, 9L

Related Comparison Experiments:

Experiment No. 2 estimates the delays associated with an assumed gate-hold procedure where aircraft are held at the gates when the length of departure queue reaches 10 aircraft.

Data Changes:

Input data item No. 24, "Gate Hold Limits" will be changed from the current value of 10 to an arbitrarily large number, say 999.

(See attached change sheet.)

SIMULATION MODEL INPUT	DESCRIPTION OF INPUT CHANGE
4. Dogratics	
1 Title	
1 Random number seeds	
1 3 Start and finish times	
4 Print options	
5 Airline names	
6 Processing options	
7 Truncation limits	
3 Time switch	
D. Airfield Physical Characteristics	
3 Airfield network	
13 Number of runways	
11 Runway identification	
12 Separture runway end links	
13 Runway prossing links	
14 Exit taxiway location	
15 Holding areas	
- 15 Airline gates	
17 Teneral aviation basing areas	
c. ATC Procedures	
13 Aircraft separations	
19 Route data	
ID TWO-Way path data	
21 Common approach paths	
11 Vectoring delays	
13 Departure minway queue control	
24 Sate noid control	Change from "10" to "999."
13 Departure alrapace constraints	
15 Departure queue	
27 Runway prossing delay control	
in Augmant Operational Characteristics	
23 Exit taxiway itilization	
23 Arrival runway occupancy simes	
30 Touch-and-go runway occupancy times	
11 Departure rinway occupancy times	
12 Taxi sceeds	
13 Approach speeds	
14 Tate Bervice times	
15 Alrabage prayel times	
.5 Panway prossing times	
J Lateness distribution	
13 Demand	

Objective:

To obtain delay estimates for 1982 demand, near-term ATC, Midfield, and the fourth runway, 8L/26R, where the "inboard" runways are used for arrivals with the following runway use in IFRI weather:

Arrival Runways Departure Runways

8R, 9L

81, 9R

Related Comparison Experiments:

Experiment No. 18 estimates the delay for the same case but with arrivals on the "outboard" runways. Experiment No. 20 also has arrivals on the "outboard" runways, but in 1987. Experiment No. 2 is the corresponding 3-runway case.

Data Changes and Needs:

- Runway assignments in the schedule.
- ATC procedures for departures crossing the arrival runways.

(See attached data input sheets.)

INPUT DATA FOR EXPERIMENT NO. 17

A. LOGISTICS

- 1. <u>Title</u>: Atlanta International Airport Airfield Simulation Model: Stage 2 Experiments
- 2. Random Number Seeds: 2017, 3069, 4235, 5873, 6981, 7137, 8099, 9355, 0123, 1985.
- 3. Start and Finish Times: 0830 to 2130 EDT in 1-hour summaries.
- 4. Print Options: 1-hour summaries for ten random number seeds.

5. Airline Names:

Name	<u>Code</u>
Air Freight	AF
Air Taxi	ΑT
Braniff	BN
Delta	DL
Eastern	EA
Northwest	NM
Piedmont	ΡI
Southern	SO
Trans World	TW
United	UA
General Aviation	GA

- 6. Processing Options: First run to check model input.
 Other runs in COMPUTE mode.
- 7. Truncation Limits: + 3 standard deviations.
- 3. Time Switch: Not applicable.

B. AIRFIELD PHYSICAL CHARACTERISTICS

- 9. Airfield Network: See Figure C-5.
- 10. Number of Punways: 4.
- 11. Runway Identification: 8L, 3R, 9L, 9R.

AD-A092 455 PEAT MARWICK MITCHELL AND CO SAN FRANCISCO CALIF F/6 1/5 TASK FORCE DELAY STUDY. WILLIAM B. HARTSFIELD ATLANTA INTERNATI--ETC(U) JUN 80 UNCLASSIFIED 2013

- 12. Departure Runway End Links: 340, 378.
- 13. Runway Crossing Links: 299, 300, 374, 448, 451.
- 14. Exit Taxiway Location:

Runway	Taxiway <u>Link</u>	Distance Threshold (Feet)
9L ·	331	4,650
9L	333	6,600
8R	371	9,300
8R	372	6,450
8R	373	4,875
8R	443	6,695
8R	447	4,500
8R	449	4,050

- 15. Holding Areas: Holding for (a) EA at north end of Runway 15, link 141, and (b) DL on taxiways P and R as appropriate.
- 16. Airline Gates: See Figure C-6.
- 17. General Aviation Basing Areas: Two areas, one to west of terminal area and one to east of terminal area (see Figure C-5).

C. ATC PROCEDURES

18. Aircraft Separations: These values are based on Report No. FAA-EM-78-8A.

Arrival-Arrival Separation (n.m.)

IFR Near-Term:

		Trail Aircraft Class			
		Α	В	C	D
Lead	A	3.7	3.9	3.9	4.0
Aircraft Class	B C	3.7 3.7	2.9 3.9	3.9 3.9	4.0
	Ď	4.7	4.9	3.9	4.0

Departure-Departure Separations (Seconds)

IFR Near-Term:

		Trail Aircraft Class			
		A	В	C	D
Lead	A	60	60	60	60
Aircraft	В	60	60	60	60
Class	C	60	60	60	60
	D	120	120	120	90

Departure-Arrival Separation (n.m.)

IFR Todays:

		Trail Aircraft Class			
		A	В	С	D
Lead	Α	2.0	2.0	2.0	2.0
Aircraft	В	2.0	2.0	2.0	2.0
Class	С	2.0	2.0	2.0	2.0
	D	2.0	2.0	2.0	2.0

Arrival-Departure Separations (Seconds)

Arrival runway occupancy times.

Route Data: (Under development) 19.

20. Two-Way Path Data: 285-552

441-131

Two-way taxiways are located as follows:

131-441 172 575 440 130

21. Common Approach Paths:

Arrival Runway	Aircraft Class	Length of Common Approach Path
8R	A B C	4.0 4.0 5.0
9L	D A	5.0 4.0 4.0
	B C D	5.0 5.0

22. Vectoring Delays:

This input allocates delays among vectoring and holding. Model input values will be used that hold arrival aircraft if delays to arrival aircraft exceed 10 minutes.

23. Departure Runway Queue Control:

Aircraft are assigned departure runways to preclude airspace corssovers, not to balance departure queues.

24. Gate Hold Control:

Aircraft are held at gates when departure queue at runway is 10 or more, except when gate holds would cause gate congestion.

25. Departure Airspace Constraints:

Aircraft are not held at gates due to departure airspace constraints.

26. Inter-Arrival Gap:

With this runway use, arrival aircraft are delayed in the arrival airspace when departure delays exceed 10 minutes.

27. Runway Crossing Delay Control:

Arrival and departure runway operations are only interrupted for a taxiing aircraft to cross an active runway when the taxiing aircraft is delayed by 4 minutes or more.

D. AIRCRAFT OPERATIONAL CHARACTERISTICS

28. Exit Taxiway Utilization:

			Exit	Utili:	zation	(Perce	ent)	
		A/C Class	449	447	373	372	443	371
Runway	8R	A	100	0	0	0	0	0
_		В	98	2	0	0	0	0
		С	8	15	14	73	0	0
		D	0	1	8	89	2	1

		Exit Utilization (Percent)		
		A/C Class	345	346
Runway	9L	Α	100	0
_		В	100	0
		С	50	50
		D	16	82

29. Arrival Runway Occupancy Times:

			Runway	Occup	ancy T	ime (S	econd)	
		A/C Class	449	447	373	372	443	<u>371</u>
Runway	8R	A B	50 47	_ 51	- -	-	<u>-</u>	-
		С	38	42	47	60	-	-
		D	-	42	47	60	63	65
		A/C Class	345	346				
Runway	9L	A	_	_				
_		В	_	-				
		C D	40 40	59 59				

30. Touch & Go Occupancy Times:

Aircraft	Runway Occupancy Time (Seconds)				
Class	Mean	Standard Deviation			
A B C	22 23 27	3 3 4			
D	27	4			

31. Departure Runway Occupancy Times:

Aircraft	Runy	vay Occupancy Time (Seconds)
Class	Mean	Standard Deviation
A	34	3
В	34	3
С	39	4
D	39	4

32. <u>Taxi Speeds</u>: To be based on coded network and calibration.

33. Approach Speeds:

Aircraft	rcraft Approach Spe				
Class	Mean	Standard Deviation			
Α	95	10			
В	120	10			
C	130	10			
D	140	10			

- 34. Gate Service Times: See Table C-1.
- 35. Airspace Travel Times: To be based on reduced field data.
- 36. Runway Crossway Times: 20 seconds.
- 37. Lateness Distribution: See Table C-2.
- 38. Demand: Computer printout available copy provided to Task Force Chairman.

Objective:

To obtain delay estimates for 1982 demand, near-term ATC, Midfield Terminal, and the fourth runway, 8L/26R, where the "outboard" runways are used for arrivals with the following runway use in IFRl weather:

Arrival Runways Departure Runways

8L, 9R

8R, 9L

Related Comparison Experiments:

Experiment No. 17 estimates the delay for the same case but with arrivals, on the "inboard" runways. Experiment No. 20 is for "outboard" case but with 1987 demand and ATC scenario. Experiment No. 2 is the corresponding 3-runway case.

Data Changes and Needs:

- Runway assignments for schedule
- ATC procedures for arrivals crossing the departure runways

(See attached change sheet.)

SIMULATION MODEL INPUT	DESCRIPTION OF INPUT CHANGE
a. Logistics	
1 Title	
2 Random number seeds	<u> </u>
3 Start and finish times	
4 Print options	
5 Airline names	
6 Processing options	
7 Truncation limits	
8 Time switch	
b. Airfield Physical Characteristics	
9 Airfield network	
10 Number of runways	
11 Runway identification	
12 Departure runway end links	8R & 9L instead of 8L & 9R
13 Runway crossing links	Arrivals cross departure runways
14 Exit taxiway location	on 8L and 9R
15 Holding areas	
· 16 Airline gates	
17 General aviation basing areas	
c. ATC Procedures	
18 Aircraft separations	
19 Route data	Exits on 8L & 9R; departure on 8R & 9L
20 Two-way path data	for new routing
21 Common approach paths	
22 Vectoring delays	
23 Departure runway queue control	· · · · · · · · · · · · · · · · · · ·
24 Gate hold control	
25 Departure airspace constraints	
26 Departure queue	
27 Runway crossing delay control	
d. Aircraft Operational Characteristics	
28 Exit taxiway utilization	For 8L & 9R exits
29 Arrival runway occupancy times	For 8L & 9R
30 Touch-end-go runway occupancy times	
31 Departure runway occupancy times	For 8R & 9L
32 Taxi speeds	Same by link
33 Approach speeds	
34 Gate service times	
35 Airspace travel times	May differ slightly
36 Runway crossing times	For arrivals across departure runways
37 Lateness distribution	TO ALLIVAIS ACTOSS REPAIRATE LAIMA, S
18 Cemand	

Objective:

To obtain delay estimates for 1987 demand, intermediateterm ATC, Midfield Terminal, and the following runway use in IFRl weather:

Arrival Runways Departure Runways

8, 9R

8, 9L

Related Comparison Experiments:

Experiment No. 2 estimates the delays for the same conditions in 1982. Experiment No. 20 has the same 1987 demand and ATC but with the fourth runway 8L/26R and arrivals on the "outboard" runways.

Data Changes and Needs:

 1987 schedule and assignments (fix, gate, and runway)

(See attached data input summary.)

INPUT DATA FOR EXPERIMENT NO. 19

A. LOGISTICS

- 1. <u>Title:</u> Atlanta International Airport Airfield Simulation Model: Stage 2 Experiments
- 2. Random Number Seeds: 2017, 3069, 4235, 5873, 6981, 7137, 8099, 9355, 0123, 1985.
- 3. Start and Finish Times: 0830 to 2130 EDT by 1-hour summaries.
- 4. Print Options: Summaries for ten random number seeds.
- 5. Airline Names:

<u>Name</u>	Code
Air Freight	AF
Air Taxi	AT
Braniff	BN
Delta	\mathtt{DL}
Eastern	EA
Northwest	NW
Piedmont	PI
Southern	so
Trans World	TW
United	UA
General Aviation	GA

- 6. Processing Options: First run to check model input. Other runs in COMPUTE mode.
- 7. Truncation Limits: + 3 standard deviations.
- 8. Time Switch: Not applicable.

B. AIRFIELD PHYSICAL CHARACTERISTICS

- 9. Airfield Network: See Figure C-3.
- 10. Number of Runways: 3.
- 11. Runway Identification: 8, 9L, 9R.

- 12. Departure Runway End Links: 340, 378
- 13. Runway Crossing Links: 299, 300, 374, 448, 451.

14. Exit Taxiway Location:

Runway	Taxiway Link	Distance Threshold (Feet)
9L	331	4,650
9L	333	6,600
8R	371	9,300
8R	372	6,450
8R	3 73	4,875
8R	443	6,695
8R	447	4,500
8R	449	4,050

- 15. Holding Areas: Holding for (a) EA at north end of Runway 15, and (b) DL on taxiways P and R as appropriate.
- 16. Airline Gates: See Figure C-6.
- 17. General Aviation Basing Areas: Two areas, one to west of terminal area and one to east of terminal area (see Figure C-1).

C. ATC PROCEDURES

18. Aircraft Separations: These values are based on Report No. FAA-EM-78-8A.

Arrival-Arrival Separation (n.m.)

IFR Intermediate-Term:

		Trail Aircraft Class				
		A	<u>B</u>	C	D	
Lead Aircraft Class	A	2.5	2.6	2.7	2.7	
	В	2.5	2.6	2.7	2.7	
	С	3.0	3.1	2.7	2.7	
	D	3.5	3.6	3.2	2.7	

Departure-Departure Separations (Seconds)

IFR Interimate-Term:

		Trail Aircraft Class				
		A	В	С	D	
Lead	Α	60	60	60	60	
Aircraft	В	60	60	60	60	
Class	С	60	60	60	60	
	D	90	90	90	90	

Departure-Arrival Separation (n.m.):

Assume half-way down to current VFR levels:

		Trail	Airci	raft C	lass
		A	В	C	D
Lead	A	1.5	1.6	1.6	1.7
Aircraft	В	1.5	1.6	1.6	1.7
Class	C	1.5	1.7	1.7	1.8
	D	1.5	1.7	1.7	1.8

Arrival-Departure Separations (Seconds)

Arrival runway occupancy times.

- 19. Route Data: See Figure C-4.
- 20. Two-Way Path Data:

Two-way taxiways are located as follows:

21. Common Approach Paths:

Arrival Runway	Aircraft Class	Length of Common Approach Path
8	A B C D	4.0 4.0 5.0 5.0
9R	A B C D	4.0 4.0 5.0 5.0

22. Vectoring Delays:

This input allocates delays among vectoring and holding. Model input values will be used that hold arrival aircraft if delays to arrival aircraft exceed 10 minutes.

23. Departure Runway Queue Control:

Aircraft are assigned departure runways to preclude airspace corssovers, not to balance departure queues.

24. Gate Hold Control:

Aircraft are held at gates when departure queue at runway is 10 or more, except when gate holds would cause gate congestion.

25. Departure Airspace Constraints:

Aircraft are not held at gates due to departure airspace constraints.

26. Inter-Arrival Gap:

With this runway use, arrival aircraft are delayed in the arrival airspace when departure delays exceed 10 minutes.

27. Runway Crossing Delay Control:

Arrival and departure runway operations are only interrupted for a taxiing aircraft to cross an active runway when the taxiing aircraft is delayed by 4 minutes or more.

D. AIRCRAFT OPERATIONAL CHARACTERISTICS

28. Exit Taxiway Utilization:

		Exit Utilization			(Percent)		
	A/C Class	449	447	<u>373</u>	372	443	371
Runway 8	A	100	0	0	0	0	0
-	В	98	2	0	0	0	0
	С	8	15	14	73	0	0
	ם	0	1	8	89	2	1

		Jtiliza ercent	
	A/C Class	331	333
Runway 9R	A	100	0
-	В	100	0
	С	50	50
	D	16	84

29. Arrival Runway Occupancy Times:

			Runway	Occup.	ancy Ti	me (Se	econd)	
		A/C Class	449	447	373	372	443	371
Runway	8	A B C D	47 38	51 42 42	- 47 47	- 60 60	- 63 63	- - 65
		A/C Class	331	333				
Runway	9R	A B C D	- 40 40	- 59 59				

30. Touch & Go Occupancy Times:

Aircraft	Runway Occupancy T. (Seconds)				
Class	Mean	Standard Deviation			
A	22	3			
В	23	3			
C	27	4			
D	27	4			

31. Departure Runway Occupancy Times:

Aircraft	Runway Occupancy Time (Seconds)				
Class	Mean	Standard Deviation			
Α	34	3			
В	34	3			
С	39	4			
D	39	4			

32. Taxi Speeds: To be based on coded network and calibration.

33. Approach Speeds:

Aircraft	Approach Speed (Knots)				
Class	Mean	Standard Deviation			
	0.5	10			
A	95	10			
В	120	10			
С	130	10			
D	140	10			

- 34. Gate Service Times: See Table C-1.
- 35. Airspace Travel Times: To be based on reduced field data.
- 36. Runway Crossway Times: 20 seconds.
- 37. Lateness Distribution: See Table C-2.
- 38. <u>Demand</u>: Computer printout available copy will be provided to Task Force Chairman along with results of Stage 2 runs.

Objective:

To obtain delay estimates for 1987 demand, intermediate-term ATC, Midfield Terminal, the fourth runway 8L/26R, and the following runway use in IFRl weather:

Arrival Runways Departure Runways

8L, 9R

8R, 9L

Related Comparison Experiments:

Experiment No. 18 estimates the delays for the same conditions in 1982. Experiment No. 19 has the same 1987 demand and ATC, but without the fourth runway.

Data Changes and Needs:

o 1987 schedule and assignments (fourth runway)

(See attached change sheet.)

DESCRIPTION OF INPUT CHANGE
urth runway 8L/26R
/26R
r arrivals on 8L
8L
·
r 8L exits
m 8L
r 8L-8R .
r 8L
r 8L
·
r 8L
r arrivals on 8L

Objective:

To be defined by Task Force.

Related Comparison Experiments:

To be defined by Task Force.

Data Changes and Needs:

To be defined by Task Force.

Experiment Number: 2	1 (In	put changes	from expe	riment number)
----------------------	--------	-------------	-----------	---------------	---

SIMULATION MODEL INPUT	DESCRIPTION OF INPUT CHANGE
a. Logistics	
l Tirle	
2 Random number seeds	
3 Start and finish times	
4 Print options	
5 Airline names	
6 Processing Options	
7 Truncation limits	
8 Time switch	
b. Airfield Physical Characteristics	
9 Airfield network	
10 Number of runways	
11 Runway identification	
12 Departure runway end links	
13 Runway crossing links	
14 Exit taxiway location	
15 Holding areas	
· 16 Airline gates	
17 General aviation basing areas	
G. ATC Procedures	
18 Aircraft separations	
19 Route data	·
20 Two-way path data	
21 Common approach paths	
22 Vectoring delays	
23 Ceparture runway queue control	·
24 Gate hold control	
25 Departure airspace constraints	
26 Departure queue	
27 Runway crossing delay control	L
d. Aircraft Operational Characteristics	
28 Exit taxiway utilization	r—————————————————————————————————————
29 Arrival runway occupancy times	
10 Touch-and-go runway occupancy times	
31 Departure runway occupancy times	
32 Taxi speeds	
33 Approach speeds	
34 Gate service times	
35 Airspace travel times	
36 Runway crossing times	
37 Lateness distribution	
38 Demand	

Table B-3
LIST OF STAGE 2 ANNUAL DELAY MODEL (ADM) EXPERIMENTS
AND INDEX TO INPUT DATA

Se	quence No.	Stage 2 Experiment No.	Demand	ATC System	Terminal	No. of Runways	Page
	1	16	1982	Today	old	3	65
	2	14	1982	1982	old	3	69
	3	15	1982	Today	New	3	70
	4	13	1982	1982	New	3	71
	5	27	1987	Today	ola	3	72
	6	25	1987 -	→ 1987 🗸	old	3	76 🗸
: .	7	26	1987	Today	New	4	77
, k	8	24	1987 -	ウ 1987 イ	New	4	78
	9	23	1987 -	→ 1 98 7	New	6 mo 3 6 mo 4	79

1/2 " IFIET

۱ میسرنر

Objective:

To obtain estimates of average annual delays and distribution of delays to aircraft assuming 1982 demand, today's ATC system, the old terminal, and three runways.

Related Comparison Experiments:

Experiment No. 14 is same but with near-term ATC. Experiment No. 15 is the same but with new terminal. Experiment No. 13 is same but with both near-term ATC and new terminal.

(See attached input data summary.)

INPUT DATA - EXPERIMENT NO. 16

Annual Delay Model

- Annual Demand: 620,000 (1982) 1.
- 2. Group Specification:

3 day groups : High, Average, Low 12 week groups : 12 months, January through December 3 weather groups: VFR, IFR1, IFR2

2 runway uses : Arrivals Departures Runway 4 Kury 8, 9L 26, 27L 26, 27R

Weekly Traffic 1977 (Same distribution assumed for 1982):* 3.

Week Group 1 2 3 4 5 6 7 8 9 10 11 12 % of annual 1.87 /in one week 1.83 1.86 1.88 1.90 1.90 1.91 1.90 1.98 1.95 1.95 1.96 1.98

4. Number of Weeks in Each Group:

> Week Group 1 2 3 4 5 6 7 8 9 10 11 12 Number of 4.43 4.00 4.43 4.29 4.43 4.29 4.43 4.29 4.43 4.29 4.43 weeks

5. Daily Traffic (1977):

> Day Group 2 % of weekly in 15.0 14.0 13.5 one day

6. Number of Days in Each Group:

> 2 Day Group 1 2 Number of Days 3

7. Weather Group Demand Factors:

> VFR: 1.00 IFR1: 1.00 IFR2: 0.90

^{*}Peat, Marwick, Mitchell & Co. estimates based on 1977 PMS records and Atlanta ATC Tower Counts.

8. Weather Occurrences:

Week Group	_1_	2	_3_	4_	_5_	_6_	7_	8	9	10	11	12
VFR	82	97	84	93	93	100	93	87	84	92	72	86
IFR1	15	3	16	7	7	0	7	13	16	8	22	11
IFR2	3	0	0	0	0	0	0	0	0	0	6	3

9. Hourly Runway Capacity:

	Hourly Capacity					
Runway Use	VFR	IFRl	IFR2			
1 2	(under	developme	ent)			

10. Runway Use Occurrences*:

	Percent Occurrence					
Runway Use	VFR	IFRl	IFR2			
1	30.2 #4.0	8.0 5.5	0.8	٠,5		
2	57.8 ax u	3.0 45	0.2	- د ح		

11. Hourly Traffic (1978):

Hour	% daily traffic	Hour	% daily traffic	Hour	<pre>% daily traffic</pre>	Hour	<pre>% daily traffic</pre>
00-01	3.1	06-07	2.9	12-13	6.1	18-19	6.4
01-02	1.6	07-08	1.0	13-14	4.3	19-20	6.3
02-03	0.2	08-09	3.215	14-15	4.95	20-21	5.3
03-04	0.3	09-10	6.76/	15-16	6.3	21-22	4.2-7
04-05	0.6	10-11	6.7 <i>i</i> 7	16-17	6.8	22-23	3.2
05-06	2.0	11-12	6.3	17-18	6.4	23-24	5.2

12. Demand Profile Factor: 30%

· 13. Runway Use Demand Factor:

All runway uses accommodate air carrier and general aviation demand (Demand factor = 1.0).

14. Aircraft Mix: 1% Class A

13% Class B

75% Class C

11% Class D

^{*} PMM&Co. estimates based on 1977 PMS records. Assumed same for 1982.

15. Percent Arrivals (1978):

Hour	% Arrivals	Hour	% Arrivals	Hour	% Arrivals	Hour	% Arrivals
00-01	24	06-07	5	12-13	34	18-19	31
01-02	31	07-08	28	13-14	5 7	19-20	61
02-03	16	08-09	72 ·	14-15	53	20-21	27
03-04	44	09-10	6 9	15-16	63	21-22	63
04-05	80	10-11	34	16-17	46	22-23	32
05-06	77	11-12	63	17-18	59	23-24	78

16. <u>User-Specified Title</u>: ATL ANNUAL DELAY NO. 16.

Objective:

To obtain estimates of average annual delays and distributions of delays to aircraft for 1982 demand, near-term ATC system, and the old terminal.

Related Comparison Experiments:

See Table B-3 and Experiment No. 16.

Data Changes From Experiment No. 16:

• Capacities for near-term separations

Objective:

To obtain estimates of average annual delays and distributions of delays to aircraft for 1982 demand, today's ATC system, and the new terminal building.

Related Comparison Experiments:

See Table B-3 and Experiment No. 16.

Data Changes From Experiment No. 16:

 New capacities and demand-delay relationships associated with new terminal area location

Objective:

To obtain estimates of average annual delays and distributions of delays to aircraft for 1982 demand, near-term ATC system, and the new terminal building.

Related Comparison Experiments:

See Table B-3 and Experiment No. 16.

Data Changes From Experiment No. 16:

- Capacities for near-term ATC separations
- Capacities and demand-delay relationships associated with new terminal area location

Objective:

To obtain estimates of average annual delays and distributions of delays to aircraft for the 1987 demand imposed on today's ATC system, terminal building, and 3 runways.

Related Comparison Experiments:

(See Table C-3.) Experiments 25, 26, 24, and 23 have same demand, but they have different ATC, terminal, or number of runways.

(See attached input data summary.)

INPUT DATA - EXPERIMENT NO. 27

Annual Delay Model

1.	Annual	Demand:	690,000	(1987)*
			~~~,~~~	\ <del>-</del> ,

# 2. Group Specification:

3 day groups : High, Average, Low 12 week groups : 12 months, January through December 3 weather groups: VFR, IFR1, IFR2

2	runway	uses	:	Arriva Runwa		Departures Runway	
			1.	8,	9R	8,	9L
			2.	26.	27L	26.	27R

#### 3. Weekly Traffic 1977 (assumed unchanged):

Week Group 1 2 3 4 5 6 7 8 9 10 11 12 % of annual in one week 1.83 1.86 1.88 1.90 1.90 1.91 1.90 1.98 1.95 1.95 1.96 1.98

# Number of Weeks in Each Group:

Week Group 1 2 3 4 5 6 7 8 9 10 11 12 Number of 4.43 4.00 4.43 4.29 4.43 4.29 4.43 4.29 4.43 4.29 4.43 4.29 4.43 weeks

#### 5. Daily Traffic (1977):

Day Group 1 2 3 % of weekly in one day 15.0 14.0 13.5

# 6. Number of Days in Each Group:

Day Group 1 2 3 Number of Days 3 2 2

#### Weather Group Demand Factors: 7.

VFR: 1.00 IFR1: 1.00 IFR2: 0.90

^{*}PMM&Co. estimate based on ATA and FAA forecasts.

مد. ستان

8. Weather Occurrences:

Week Group	1	2	_3_	4	_5_	_6_	_7_	_8_	_9_	10	11	12
VFR	82	97	84	93	93	100	93	87	84	92	72	86
IFRL	15	3	16	7	7	0	7	13	16	8	22	11
IFR2	3	0	0	0	0	0	0	0	0	0	6	3

9. Hourly Runway Capacity (Today's ATC System):

	Hourly Capacity					
Runway Use	VFR	IFRL	IFR2			
1 2	Under	development	Ė			

10. Runway Use Occurrences*:

	Percent Occurrence					
Runway Use	VFR	IFRL	IFR2			
1	30.2	8.0	0.8			
2	57.8	3.0	0.2			

11. Hourly Traffic (1978):

Hour	% daily traffic	Hour	% daily traffic	Hour	% daily traffic	Hour	<pre>% daily traffic</pre>
00-01	3.1	06-07	2.9	12-13	√ <del>6.</del> 1:	18-19	4-6.4 ·
01-02	1.6	07-08	1.0	13-14	< <b>4</b> ⋅ 3 <	19-20	6.3
02-03	0.2	08-09	2.33-226	14-15	66 4.9:	20-21	5.05.3
03-04	0.3	09-10	726.7	15-16	√: <del>6.</del> 3 ′	21-22	4.2
04-05	0.6	10-11	7, 1 <b>6.7</b> 1	16-17	4 : <b>6 . 8</b>	22-23	3.2
05-06	2.0	11-12	د، <del>6</del> .3	17-18	6.4	23-24	5.2

12. Demand Profile Factor: 30%

# 13. Runway Use Demand Factor:

All runway uses accommodate air carrier and general aviation demand (Demand factor = 1.0).

14. Aircraft Mix: 1% Class A
13% Class B
69% Class C
17% Class D

^{*} PMM&Co. estimates based on 1977 PMS records.

# 15. Percent Arrivals (1978):

Hour	% Arrivals	Hour	% Arrivals	Hour	% Arrivals	Hour	% Arrivals
00-01	24	06-07	5	12-13	-34	18-19	31
01-02	31	07-08	28	13-14	57	19-20	61
02-03	16	08-09	72	14-15	53	20-21	27
03-04	44	09-10	69	15-16	63	21-22	63
04-05	80	10-11	34	16-17	46	22-23	32
05-06	77	11-12	63	17-18	<del>59</del>	23-24	78

16. User-Specified Title: ATL ANNUAL INIMPROVED DELAY FOR 1987.

### Objective:

To obtain estimates of average annual delays and the distribution of delays to aircraft for 1987 demand, Intermediate-Term ATC system, the old terminal, and 3 runways.

## Related Comparison Experiments:

See Table B-3 and Experiment No. 27.

#### Data Changes From Experiment No. 27:

• Capacities for Intermediate-Term ATC system

### Objective:

To obtain estimates of average annual delays and the distribution of delays to aircraft for 1987 demand, today's ATC system, the new terminal, and 4 runways.

# Related Comparison Experiments:

See Table B-3 and Experiment No. 27.

#### Data Changes From Experiment No. 27:

 Capacities and demand-delay relationships for 4 runways and the new terminal location

### Objective:

To obtain estimates of average annual delays and the distribution of delays to aircraft for 1987 demand, intermediate-term ATC system, the new terminal, and 4 runways.

# Related Comparison Experiments:

See Table B-3 and Experiment No. 27.

## Data Changes From Experiment No. 27:

- Capacities for intermediate-term separations, 4 runways, and the new terminal location
- Demand-delay relationships for the new terminal location

#### Objective:

To obtain estimates of average annual delays and the distribution of delays to aircraft for 1987 demand, intermediate-term ATC system, new terminal, 3 runways for 6 months and 4 runways for 6 months.

## Related Comparison Experiments:

See Table B-3 and Experiment No. 27.

### Data Changes From Experiment No. 27:

- Capacities for intermediate-term separations,
   3 and 4 runways, and the new terminal location
- Demand-delay relationships for the new terminal location
- Decision on which 6 months or on how to change seasonal distributions, etc.

#### Attachment C

#### COMMON INPUT DATA:

- Airfield Networks
- Taxiway Flows
- Lateness Distribution
- Gate Service Time Distribution

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

September 1978

Table C-1

ARRIVAL AIRCRAFT LATENESS DISTRIBUTION
(Average deviation from schedule, excluding delays due to destination airport)

Amount of Time Late or Early	Cumulative Probability
Less than 15 min. early	0.00
Less than 0.1 min. early	0.02
Less than 0.1 min. late	0.65
Less than 5 min. late	0.78
Less than 10 min. late	0.85
Less than 15 min. late	0.90
Less than 30 min. late	0.95
Less than 45 min. late	0.98
Less than 60 min. late	0.99
Less than 65 min. late	1.00

Source: Peat, Marwick, Mitchell & Co., analysis of data provided by Atlanta Task Force.

Table C-2

GATE SERVICE TIME DISTRIBUTION
Atlanta Task Force Delay Studies

Histogram Points (Times are in Minutes)

(Times are in Minutes)										
Point 1		Point 2		Point 3		Point 4		Point 5		
Time	Prob.*	Time	Prob.	Time	Prob.	Time	Prob.	Time	Prob.	
10	0.40	15	0.40	20	0.10	25	0.10			
15	0.40	20	0.07	25	0.09	30	0.04	35	0.40	
25	0.47	30	0.13	50	0.40					
25	0.07	30	0.04	35	0.40	38	0.09	55	0.40	
	10 15 25	Time         Prob.*           10         0.40           15         0.40           25         0.47	Time         Prob.*         Time           10         0.40         15           15         0.40         20           25         0.47         30	Point 1         Point 2           Time         Prob.*         Time         Prob.           10         0.40         15         0.40           15         0.40         20         0.07           25         0.47         30         0.13	Point 1         Point 2         Point 2         Point 2           Time         Prob.*         Time         Prob.         Time           10         0.40         15         0.40         20           15         0.40         20         0.07         25           25         0.47         30         0.13         50	Point 1         Point 2         Point 3           Time         Prob.*         Time         Prob.           10         0.40         15         0.40         20         0.10           15         0.40         20         0.07         25         0.09           25         0.47         30         0.13         50         0.40	Point 1         Point 2         Point 3         Point 3         Point 3         Point 3         Point 3         Point 3         Time         Prob.         Time         P	Point 1         Point 2         Point 3         Point 4           Time         Prob.*         Time         Prob.         Time         Prob.           10         0.40         15         0.40         20         0.10         25         0.10           15         0.40         20         0.07         25         0.09         30         0.04           25         0.47         30         0.13         50         0.40	Point 1         Point 2         Point 3         Point 4         Point 4           Time         Prob.*         Time         Prob.         Time         Prob.	

^{*}These probabilities add up to 1.0 across the rows.

Source: Peat, Marwick, Mitchell & Co., analysis of data provided by Atlanta Task Force.



AIRFIELD NETWORK
WILLIAM B. HARTSFIELD ATLANTA INTERNATIO





ORK

NTERNATIONAL AIRPORT

Figure C-1

AIRFIELD NETWORK FOR 1978
SIMULATION RUNS



TAXI ROUTES FOR 1978 SIMULATION RUNS



FUTURE AIRFIELD NETWORK
WILLIAM B. HARTSFIELD ATLANTA INTERNAT



PETWORK

INTERNATIONAL AIRPORT

Figure C-3

AIRFIELD NETWORK FOR 1982 SIMULATION RUNS





WILLIAM B. HARTSFIELD ATLANTA INTERNA



WORK ITERNATIONAL AIRPORT

Figure C-5

AIRFIELD NETWORK FOR STAGE 2 SIMULATION RUNS FOR 1987 AND FOUR RUNWAYS

D-North	(11W)	
C-North	EA E	•
B-North	EA FAL LA P. TUMPIE  EA FAL LA P. TUMPIE  EA AGE SYSTEM.  EA AGE SYSTEM.  EA LOOP  LEA LOOP  LEA CALL LA P. TUMPIE  EA LOOP  LOO	
) anount mount	CUTCOURSE BLUGS  CUTCOU	
A-Morth		,
A-Morth Wen		

Figure C-6

Airline Gates for New Terminal

Source: ATA



# WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT DATA PACKAGE NO. 4

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES



prepared for

DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

under contract

DOT FA77WA -3961



Peat, Marwick, Mitchell & Co.

OCTOBER 1978

#### PEAT, MARWICK, MITCHELL & Co.

P. O. BOX 8007

SAN FRANCISCO INTERNATIONAL AIRPORT SAN FRANCISCO, CALIFORNIA 94128

Telephone: (415) 347-9521

October 24, 1978

Mr. Ray Fowler, AEM-100 Federal Aviation Administration 800 Independence Avenue, S.W. Washington, D.C. 20591

Re: Atlanta Data Package No. 4

Dear Ray:

Enclosed is Data Package No. 4 for William B. Hartsfield Atlanta International Airport. The package contains the results of the Stage-2 delay simulations (Attachment B) and results of four, revised Stage-1 delay simulations (Attachment A).

These data should be reviewed by the Atlanta Task Force during the 25 October 1978 Task Force meeting.

Sincerely,

Stephen L. M. Hockaday

Manager

SLMH/nbe Enclosure

cc: Mr. J. R. Dupree, ALG-132

Mr. B. Drotts, ASO-4 (w/encl)

# AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES Atlanta International Airport Data Package No. 4

# Table of Contents

																							Page
Attachment A -	RES	SUI	LTS	s (	OF	R	EV:	IS:	ED	S.	ΓAC	GE-	-1	DI	ELZ	ÀΥ							
	SI	IUN	LΑ.	ric	NC		•		•							•							1
Experimen	t 12	Α.	•																				3
Experimen																							
Experimen	t 1																						9
Experimen	t 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
Attachment B -	DA!	ΓA	F	OR	S.	CA(	GE:	-2	DI	ELA	ΑY	s	IMI	JLA	\T	101	15						15
Experimen	t 28	8.	•	•	•															•			18
Experimen																							
Experimen																							
Experimen																							
Experimen																							
Experimen																							
Experimen	t 2:	1.	•	•	•	•	•		•	•	•	•	•	•	•	•	•	.•	•	•	•	•	36
Attachment C -	API	PEI	ND.	ICI	ES		•	•			•	•			•	•	•	•	•	•		•	39
Summary of Sta	g <b>e-</b> :	1 a	ano	i f	Sta	age	e-:	2 ;	Sir	nu.	Lat	ic	on	Re	est	<b>1</b> 11	s	•	•	•	•	•	40
Airfield Netwo	rks	_	_																				41

#### Attachment A

RESULTS OF STAGE-1 DELAY SIMULATIONS (Revised Experiments 1A, 2A, 1, and 2)

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

October 1978

Table A-1

ATLANTA TASK FORCE DELAY STUDIES
INDEX TO REVISED RESULTS
STAGE 1 EXPERIMENTS

Experiment		Ruj	nways	Demand/ Improvement					
No.	Model	Arrivals	Departures	Weather	ATC	Page			
lA	ASM	8, 9R	8, 9L	VFRl	1978	3			
2A	ASM	8, 9R	8, 9L	IFR1	1978	6			
1	ASM	8, 9R	8, 9L	VFR1	1982	9			
2	ASM	8, 9R	8, 9L	IFR1	1982	12			

# EXFERIMENT NO. 1A

# Objective:

To obtain 1978 baseline delay estimates in VFR1 weather for the following runway-use configuration:

Arrival Runways	Departure Runways
8. 9R	8. 9L

# Related Comparison Experiments:

Experiment 2A has same demand and network but in IFRl weather.

# Length and Level of Detail of Simulation Run:

From 0800 to 2200 hours with 1-hour summaries.

#### Anticipated Results:

Lower delays than in Experiment 2A.

Summary Comparison: (See Figures 1A, B, C, D)

Operation	Performance	This Exp	This Experiment				
Туре	Measure*	Daily*	Peak*				
Arrival	Flow Rate (a/c per hr.)	49.6	70				
Arrival	Air Delay (min)	7.2	11.4				
Arrival	Taxi-In Delay (min)		0.3				
Arrival	R/W Crossing Delay (min)		0.2				
Arrival	Gate Delay (min)		1.3				
Departure	Flow Rate (a/c per hr.)	47.4	70				
Departure	R/W Delay (min)	7.2	11.3				
Departure	Taxi-Out Delay (min)		0.6				
Departure	R/W Crossing Delay (min)		0.3				
Departure	Gate Delay (min)		2.1				

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).









# Objective:

To obtain 1978 baseline delay estimates in IFRI weather for the following runway-use configuration:

Arrival Runways	Departure Runways
8. 9R	8. 9L

# Related Comparison Experiments:

Experiment 1A has same demand and network but in VFR1 weather.

# Length and Level of Detail of Simulation Run:

From 0800 to 1300 hours with 1-hour summaries.

# Anticipated Results:

Higher delays than in Experiment 1A.

Summary Comparison: (See Figures 2A, B, C, D)

Operation	Performance	This Exp	This Experiment				
Туре	Measure*	Daily*	Peak*				
Arrival	Flow Rate (a/c per hr.)	47.8	54				
Arrival	Air Delay (min)	23.5	42.8				
Arrival	Taxi-In Delay (min)		5.9				
Arrival	R/W Crossing Delay (min)		0.2				
Arrival	Gate Delay (min)		2.5				
Departure	Flow Rate (a/c per hr.)	41.4	58				
Departure	R/W Delay (min)	13.6	23.8				
Departure	Taxi-Out Delay (min)		4.5				
Departure	R/W Crossing Delay (min)		0.2				
Departure	Gate Delay (min)		42.1				

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).







#### Objective:

To obtain delay estimates in VFR1 weather with the new Midfield Terminal, 1982 demand, and near-term ATC separations for the following runway-use configuration:

Arrival Runways	Departure Runways
8 - 9R	8. 9T.

#### Related Comparison Experiments:

The results of this experiment can be compared with Experiment No. 1A, which was for the old terminal and 1978 demand and ATC separations in VFR1 weather.

#### Length and Level of Detail of Simulation Run:

From 0800 to 2200 hours with 1-hour summaries

Summary Comparison: (See Figures 1A, B, C, D)

Operation	Performance	This Exp	eriment	Experiment No. 1A			
Type	Measure*	Daily*	Peak*	Daily*	Peak*		
Arrival	Flow Rate (a/c per hr.)	53.0	76	49.6	70		
Arrival	Air Delay (min)	6.1	10.9	7.2	11.4		
Arrival	Taxi-In Delay (min)		0.0		0.3		
Arrival	R/W Crossing Delay (min)		0.2		0.2		
Arrival	Gate Delay (min)		0.1		1.3		
Departure	Flow Rate (a/c per hr.)	51.0	77	47.4	70		
Departure	R/W Delay (min)	6.6	8.0	7.2	11.3		
Departure	Taxi-Out Delay (min)		1.0		0.6		
Departure	R/W Crossing Delay (min)		0.0		0.3		
Departure	Gate Delay (min)		2.3		2.1		

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).



•



# Objective:

To obtain delay estimates in IFR1 weather with the Midfield Terminal, 1982 demand, and near-term ATC separations for the following runway-use configuration:

Arrival Runways	Departure Runways
8. 9R	8, 9L

# Related Comparison Experiments:

The results of this experiment can be compared to Experiment No. 2A to examine differences due to the new demand, ATC separations, and terminal building compared to today's IFRl conditions. It can also be compared to Experiment No. 1 to examine differences between 1982 VFRl and IFRl.

# Length and Level of Detail of Simulation Run:

From 0800 to 2200 hours with 15-minute summaries.

Summary Comparison: (See Figures 2A, B, C, D)

Operation	Performance	This Exp	eriment	Experiment No. 2A			
Type	Measure*	Daily*	Peak*	Daily*	Peak*		
Arrival	Flow Rate (a/c per hr.)	56.4	62	47.2	54		
Arrival	Air Delay (min)	17.7	32.5	23.5	42.8		
Arrival	Taxi-In Delay (min)		0.2		5.9		
Arrival	R/W Crossing Delay (min)		0.7		0.2		
Arrival	Gate Delay (min)		0.0		2.5		
Departure	Flow Rate (a/c per hr.)	49.2	62	41.4	58		
Departure	R/W Delay (min)	12.6	19.4	13.6	23.8		
Departure	Taxi-Out Delay (min)		5.5		4.5		
Departure	R/W Crossing Delay (min)		0.0		0.2		
Departure	Gate Delay (min)		141.4		42.1		

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).







# Attachment B RESULTS OF STAGE-2 DELAY SIMULATIONS

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

October 1978

Table B-1

ATLANTA TASK FORCE DELAY STUDIES
REVISED STAGE-2 EXPERIMENTS

Comments	Midfield	Old terminal	Midfield	Old terminal	Inboard arrivals	Outboard arrivals	Midfield	4th R/W	4th R/W-VFR]	Unconstrained	Cancellation	Limit = 1 hr.		4 R/W's	3 R/W's	4 R/W's	3 R/W's	Eliminates single	out 4 nautical	only.
Near-Term Improvements	Pre-1985	None	Pre-1985	None	81,/26R	8L/26R	Pre-1985	8L/26R	8L/26R	No gate hold	6 mo3 R/W's	6 mo2 R/W's	(no 8-26)	Post-1985	None	Post-1985	None	2 departure tracks on	runway 9L	
ATC System Scenario	1982	1982	Today's	Today's	1982	1982	1987	1987	1987	1982	1987			1987	1987	Today's	Today's	Today's		
Demand	1982	1982	1982	1982	1982	1982	1987	1987	1987	1982	1987			1987	1987	1987	1987	1978		
Weather	n.a.	n.a.	n.a.	n.a.	IFRI	IFRI	IFRI	IFRI	VFK1	IFRI	n.a.			n.a.	n.a.	n.a.	n.a.	IFRI		
Departure Runways	n.a.	n.a.	n.a.	n.a.	8L, 9R	8R, 9L	8, 9L	8R, 9L	8R, 9L	8, 9L	n.a.			n.a.	n.a.	n.a.	n.a.	8, 9L		
Arrival Runways	n.a.	n.a.	n.a.	n.a.	8R, 9L	8L, 9R	8, 9R	8L, 9R	8L, 9R	8, 9R	n.a.			n.a.	n.a.	n.a.	n.a.	8, 9R		
Study	n.a.	n.a.	n.a.	n.a.	12	13	2	5	5	ς.	n.a.			n.a.	n.a.	n.a.	n.a.	S.		
Model	ADM	ADM	ADM	ADM	ASM	ASM	ASM	ASM	ASM	ASM	ADM			ADM	ADM	ADM	ADM	ASM		
Experiment No.	13	14	15	16	17	18	19	20	21	22	23		i	24	25	56	27	28		

n.a. = not applicable.

Table B-2

ATLANTA TASK FORCE DELAY STUDIES
ORGANIZATION OF STAGE-2
AIRFIELD SIMULATION MODEL EXPERIMENTS
AND
INDEX TO STAGE-2 RESULTS

Index: Page	18	21	24	27	30	33	36
Improvement	Existing	Pre-1985	Pre-1985	Pre-1985	Pre-1985	Post-1985	Post-1985
ATC	Today's	Near	Near	Near	Far	Far	Far
Demand	1978	1982	1982	1982	1987	1987	1987
Weather	IFR1	IFRI	IFRI	IFRI	IFRI	IFR1	VFR1
Runways Ls Departures	16 '8	8, 9L	8L, 9R	8R, 9L	8, 9L	8R, 9L	8R, 9L
Run	8, 9R	8, 9R	8R, 9L	8L, 9R	8, 9R	8L, 9R	8L, 9R
Mode 1	ASM	ASM	ASM	ASM	ASM	ASM	ASM
Experiment No.*	28	22	17	18	19	20	21
Sequence No.	1	7	м	4,	Ŋ	9	٢

*Refers to numbers agreed to at Atlanta Task Force Meeting No. 4, July 12, 1978, the Subgroup Meeting of August 25, 1978, and the changes identified on September 25, 1978 at the fifth Task Force Meeting.

#### Objective:

To obtain 1978 delay estimates assuming that there are two departure tracks on Runway 9L, i.e., no environmental constraints on 9L, for the following runway use in IFR1 weather:

Arrival	Runways	Departure	Runways
8.	9R	8.	9L

#### Related Comparison Experiments:

Results of this experiment can be compared to the results of Experiment No. 2A of Stage 1 to evaluate benefits of relieving single departure track constraint.

# Length and Level of Detail of Simulation Run:

0800 to 1300 hours with 15-minute summaries.

# Anticipated Results:

Lower departure delays than in Experiment 2A.

Summary Comparison: (See Figures 28A, B, C, D)

Cperation	Performance	This Experiment		Experiment No. 2A	
Type	Measure*	Daily*	Peak*	Daily*	Peak*
Arrival	Flow Rate (a/c per hr.)	47.6	54	47.8	54
Arrival	Air Delay (min)	23.9	42.7	23.5	42.8
Arrival	Taxi-In Delay (min)		7.4		5.9
Arrival	R/W Crossing Delay (min)		0.2		0.2
Arrival	Gate Delay (min)		2.4		2.5
Departure	Flow Rate (a/c per hr.)	40.4	56	41.4	58
Departure	R/W Delay (min)	13.3	22.3	13.6	23.8
Departure	Taxi-Out Delay (min)		8.5		4.5
Departure	P./W Crossing Delay (min)		0.2		0.2
Departure	Gate Delay (min)		36.7		42.1

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).







#### Objective:

To obtain delay estimates for the case where there are no gate holds in 1982 at Midfield Terminal with near-term ATC separations and the following runway use in IFRl weather:

Arrival Runways	Departure Runways
8. 9R	8. 9T.

# Related Comparison Experiments:

Experiment No. 2 estimates the delays associated with an assumed gate-hold procedure where aircraft are held at the gates when the length of departure queue reaches 10 aircraft.

# Length and Level of Detail of Simulation Run:

0800 to 1300 hours with 15-minute summaries.

#### Anticipated Results:

Reduced arrival and departure gate delays compared to Experiment 2.

Summary Comparison: (See Figures 22A, B, C, D)

Operation	Performance	This Exp	eriment	Experimen	nt No. 2
Type	Measure*	Daily*	Peak*	Daily*	Peak*
Arrival	Flow Rate (a/c per hr.)	56.5	62	56.4	62
Arrival	Air Delay (min)	18.0	43.8	17.7	32.5
Arrival	Taxi-In Delay (min)		0.02		0.2
Arrival	R/W Crossing Delay (min)		0.2		0.7
Arrival	Gate Delay (min)		0.0		0.0
Departure	Flow Rate (a/c per hr.)	46.2	60	49.2	6 <b>2</b>
Departure	R/W Delay (min)	14.5	31.8	12.6	19.4
Departure	Taxi-Out Delay (min)		0.5		5.5
Departure	R/W Crossing Delay (min)		0.0		0.0
Departure	Gate Delay (min)		0.0		141.4

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).







#### Objective:

To obtain delay estimates for 1982 demand, near-term ATC, Midfield Terminal, and the fourth runway, 8L/26R, where the "inboard" runways are used for arrivals in IFR1 weather.

Arrival Runways	Departure Runways
8R. 9T.	8T. 9R

# Related Comparison Experiments:

Experiment No. 18 estimates the delay for the same case but with arrivals on the "outboard" runways. Experiment No. 20 also has arrivals on the "outboard" runways, but in 1987. Experiment No. 2 is the corresponding 3-runway case.

#### Length and Level of Detail of Simulation Run:

0800 to 1300 hours with 15-minute summaries.

Summary Comparison: (See Figures 17A, B, C, D)

Operation	Performance	This Exp	This Experiment		
Туре	Measure*	Daily*	Peak*		
Arrival	Flow Rate (a/c per hr.)	57.5	62.0		
Arrival	Air Delay (min)	16.7	39.8		
Arrival	Taxi-In Delay (min)		8.0		
Arrival	R/W Crossing Delay (min)		0.4		
Arrival	Gate Delay (min)		0.0		
Departure	Flow Rate (a/c per hr.)	53.0	70.0		
Departure	R/W Delay (min)	8.0	18.7		
Departure	Taxi-Out Delay (min)		1.8		
Departure	R/W Crossing Delay (min)		0.2		
Departure	Gate Delay (min)		2.5		

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).







#### Objective:

To obtain delay estimates for 1982 demand, near-term ATC, Midfield Terminal, and the fourth runway, 8L/26R, where the "outboard" runways are used for arrivals with the following runway use in IFR1 weather.

Arrival Runways	Departure Runways
8L. 9R	8R, 9L

# Related Comparison Experiments:

Experiment No. 17 estimates the delay for the same case but with arrivals, on the "inboard" runways. Experiment No. 20 is for "outboard" case but with 1987 demand and ATC scenario. Experiment No. 2 is the corresponding 3-runway case.

# Length and Level of Detail of Simulation Run:

0800 to 1300 hours with 15-minute summaries.

Summary Comparison: (See Figures 18A, B, C, D)

Operation	Performance	This Exp	eriment	Experimen	t No. 17
Type	Measure*	Daily*	Peak*	Daily*	Peak*
Arrival	Flow Rate (a/c per hr.)	56.8	62.0	57.5	62.0
Arrival	Air Delay (min)	17.5	40.1	16.7	39.8
Arrival	Taxi-In Delay (min)		0.2		8.0
Arrival	R/W Crossing Delay (min)		0.5		0.4
Arrival	Gate Delay (min)		0.0		0.0
Departure	Flow Rate (a/c per hr.)	56.0	81.0	53.0	70.0
Departure	R/W Delay (min)	4.8	10.4	8.0	18.7
Departure	Taxi-Out Delay (min)		0.6		1.8
Departure	R/W Crossing Delay (min)		0.0		0.0
Departure	Gate Delay (min)		0.4		2.5

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).



u



### Objective:

To obtain delay estimates for 1987 demand, far-term ATC, Midfield Terminal, and the following runway use in IFR1 weather.

Arrival Runways	Departure Runways
8. 9R	8. 91.

# Related Comparison Experiments:

Experiment No. 2 estimates the delays for the same conditions in 1982. Experiment No. 20 has the same 1987 demand and ATC but with the fourth runway 8L/26R and arrivals on the "outboard" runways.

# Length and Level of Detail of Simulation Run:

0800 to 2200 hours with 15-minute summaries.

#### Anticipated Results:

Lower flow rates and greater runway delays than in Experiment 20.

Summary Comparison: (See Figures 19A, B, C, D)

Operation	Performance	This Experim	
Type	Measure*	Daily*	Peak*
Arrival	Flow Rate (a/c per hr.)	68.4	79.0
	· · · · · · · · · · · · · · · · · · ·		
Arrival	Air Delay (min)	16.5	29.3
Arrival	Taxi-In Delay (min)		4.3
Arrival	R/W Crossing Delay (min)		0.2
Arrival	Gate Delay (min)		0.0
Departure	Flow Rate (a/c per hr.)	41.2	56.0
Departure	R/W Delay (min)	19.9	46.7
Departure	Taxi-Out Delay (min)		28.9
Departure	R/W Crossing Delay (min)		0.0
Departure	Gate Delay (min)		61.9

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).



İ





#### Objective:

To obtain delay estimates for 1987 demand, far-term ATC, Midfield Terminal, the fourth runway, 8L/26P, and the following runway use in IFRI weather.

#### Arrival Runways Departure Runways

8L, 9R

8R, 9L

#### Pelated Comparison Experiments:

Experiment No. 18 estimates the delays for the same conditions in 1982. Experiment No. 19 has the same 1987 demand and ATC, but without the fourth runway.

#### Length and Level of Detail of Simulation Run:

0300 to 2200 hours with 15-minute summaries.

#### Anticipated Results:

Greater flow rates and lower delays than in Experimen. 19.

Summary Comparison: (See Figures 20A, B, C, D)

Operation	Performance	This Exp	eriment	Experiment No. 19		
Type	Measure*	Daily*	Peak*	Daily*	Peak*	
Arrival	Flow Rate (a/c per hr.;	63.2	79.0	68.4	79.0	
Arrival	Air Delay (min)	13.4	28.5	16.5	29.3	
Arrival	Taxi-In Delay (min)		0.2		4.3	
Arrival	P/W Crossing Delay (min)		0.3		9.2	
Arrival	Sate Delay (min)		1.3		0.0	
Departure	Flow Pate (a/c per hr.)	61.6	87.0	41.2	56.0	
Departure	P/W Delay (min)	7.7	21.1	13.9	46.7	
Departure	Taxi-Out Delay (min)		2.7		28.0	
Departure	R/W Crossing Delay (min)		0.0		0.0	
Departure	Sate Delay (min)		11.5		61.3	

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).





#### Objective:

To obtain delay estimates for 1987 demand, far-term ATC, Midfield Terminal, the fourth runway, 8L/26R, and the following runway use in VFRI weather.

Arrival Runways	Departure Runways
8L. 9R	8R. 9L

#### Related Comparison Experiments:

Experiment No. 20 has the same conditions but in IFR1 weather.

#### Length and Level of Detail of Simulation Run:

0800 to 2200 hours with 1-hour summaries.

#### Anticipated Results:

Higher flow rates and lower delays than in Experiment 20.

Summary Comparison: (See Figures 21A, B, C, D)

Cperation	Performance	This Experiment			
Type	Measure*	Daily*	Peak*		
Arrival	Flow Rate (a/c per hr.)	69.6	82.0		
Arrival	Air Delay (min)	10.0	20.4		
Arrival	Taxi-In Delay (min)		0.1		
Arrival	R/W Crossing Delay (min)		0.2		
Arrival	Gate Delay (min)		0.4		
Departure	Flow Pate (a/c per hr.)	62.2	106.0		
Departure	R/W Delay (min)	1.9	3.5		
Departure	Taxi-Out Delay (min)		0.7		
Departure	R/W Crossing Delay (min)		0.0		
Departure	Gate Delay (min)		0.1		

^{*}These are all average values, either over the entire simulation period (daily) or over the peak hour or 15-min period (Peak).







#### Attachment C

#### APPENDICES

- Summary of Stage-1 and Stage-2 Simulation Results
- Airfield Networks

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

October 1978

Table C-1

ATLANTA TASK FORCE DELAY STUDIES RESULTS OF STACE-1 and STACE-2 SIMULATIONS

	Compart Son	Saca	Baseline	Baseline	4	3v			W.	ė,	18, 20, 2	17, 20, 2	Ş.		61 '01	30, 1, 1A
Travel Fines	Departures		4.5	29.6	19.6	19.0		2 4		-1 -5	9.3	6.3	7.03	: :	6.55	6.7
Average Ground Travel Times	Arrivals Dally Peak		`: <b>:</b>	11.4	7.3	10.8	į			7.,	25.3	7.0	9.3		:	6.7
ays	Taxi-Out Dally Peak		3	4.5	1.0	5.5		8.5	5.0		D**	9.0	28.9	2.7	r	ò
Averaye Airfield Delays	Dep.	2.1		47.1	2.3	141.4		36.7	0.0	c	;	4.0	61.9	11.6		<b>.</b>
aye Airf	Arr.	1.3		6.3	0.1	0.0		2.4	0.0	-	· ·	0.0	0.0	1.3	7	ř
Aver	Daily Peak	0.3	G U	6.0	0.0	0.2		7.4	0.0	ď	, ,	0.7	4.3	0.5	0.1	•
ays	Peak	11.3	9.8	3	8.0	19.4		22.3	31.8	18.7	•	•	46.7	21.1	3,5	
Average Runway Delays	Daily Peak	7.2	7	•	9.9	12.6		13.3	14.5	9.0	4	; ;	19.9	7.7	1.9	
Average Ru	Peak	11.4	42.8		10.9	32.5		42.7	43.8	39.8	40 1		29.3	28.5	20.4	
Arri	Dai 1X	1.2	23.5		1.9	17.7		23.9	18.0	16.7	17.5	•	16.5	13.4	10.0	
Flow Rates Departures	Peak	10	58		11	62		99	09	70	91	,	<b>26</b>	183	106	
Average Hourly Flow Rates Arrivals Departures	Daily	47.4	41.4	,	51.0	49.2		40.4	46.2	53.0	56.0	:	41.2	61.6	62.2	
Arrivals	Peak	70	5.4	i	9/	62		54	62	62	62	ć	Ŕ.	79	82	
Aver	Daily	49.6	47.8		0.85	56.4		47.6	56.5	57.5	56.B	9	4.80	69.5	69.69	
Time 6	Weather	1978/VFR1	1978/1FR1	Control Control	1982/VFR1	1982/IFR1		1978/1FK1	1982/IFRI	1982/IFRI	1982/IFR1	(491/1961	1907 IFRI	1987/1FRI	1987/VFR1	
Exjetiment	No.	18	2 <b>A</b>	•	•	7		28	22	17	18	ē	ì	20	2.1	



AIRFIELD NETWORK
WILLIAM B. HARTSFIELD ATLANTA INTERNAT



TWORK

A INTERNATIONAL AIRPORT



FUTURE AIRFIELD NETWORK
WILLIAM B. HARTSFIELD ATLANTA INTERN



LO NETWORK

ANTA INTERNATIONAL AIRPORT



FUTURE AIRFIELD NETWO: WILLIAM B. HARTSFIELD ATLANTA NTG

LO METWORK

ANTA NEERNATIONAL AIRPORT



# WILLIAM B. HARTSFIELD ' ATLANTA INTERNATIONAL AIRPORT

### DATA PACKAGE NO.5

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES



prepared for

**DEPARTMENT OF TRANSPORTATION** 

FEDERAL AVIATION ADMINISTRATION

under contract

DOT FA77WA -3961



Peat, Marwick, Mitchell & Co.

#### PEAT, MARWICK, MITCHELL & Co.

P. O. BOX 8007

SAN FRANCISCO INTERNATIONAL AIRPORT SAN FRANCISCO, CALIFORNIA 94128

Telephone: (415) 347-9521

December 11, 1978

Mr. Ray Fowler, AEM-100 Federal Aviation Administration 800 Independence Avenue, S.W. Washington, D.C. 20591

Re: Atlanta Data Package No. 5

Dear Ray:

Enclosed is Data Package No. 5 for William B. Hartsfield Atlanta International Airport. The package contains revised results of certain Stage 1 and Stage 2 experiments and results of the annual delay model runs. Furthermore, the presentation of all of the Stage 1 and Stage 2 results has been improved by showing results for the peak-demand hour and for the morning peak 3-hour period, which contains both the arrival peak hour and the departure peak hour.

These results should be reviewed by the Atlanta Task Force during the December 13, 1978, Task Force meeting.

Sincerely,

Stephen L. M. Hockaday

Manager

SLMH/nbe Enclosure

cc: Mr. J. R. Dupree, ALG-132

Mr. B. Drotts, ASO-4 (w/enci)

## AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES Atlanta International Airport Data Package No. 5

#### TABLE OF CONTENTS

																					Page
Attachment A	A - R	RESU	JLI	's	OF	, ,	STA	\GE	S <b>-</b> ]	LI	EI	A	7								
		IMU								•			•								1
Experim	nent	1A			•									•			•				3
Experim	ment	2A																			4
Experim	ment	1			•			•		•	•	•		•	•	•		•			5
Experi	nent	2	•		•			•			•	•		•	•		•				6
Experim	ment	3	•	•	•		•			•		•		•		•	•		•		7
Experim	nent	5																		•	9
Experi	ment	6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
Attachment I	B - F	RESU	JLI	S	OF	. 5	STA	\GI	E-2	2 1	ΈI	LA:	7 5	SIN	1U)	·Α	ric	ONS	5	٠	11
Experim	ment	28						•													13
Experim																		•	•		14
Experi	ment	17			•						•				•			•	•		15
Experi	ment	18					•	•													16
Experi	nent	19					•												•		17
Experim	ment	20			•						•			•				•	•		18
Experi	ment	21	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
Attachment (	C - F	RESU	JLI	'S	OF	. 1	ANI	NU!	YL.	DI	ELI	Υ	E	(PI	ER:	ĽΜΙ	EN:	rs			20
Experi	ment	12		•														•	•		22
Experim																•					25
Experi																					28
Experi																					31
Experi	ment	16						•		•						•					34
Experi	ment	24					•					•	•		•	•	•		•	•	37
Experi																					40
Experi	ment	26	•				•		•	•				•		•	•	•		•	43
Experi																					46
Experi																			•		49

## Attachment A RESULTS OF STAGE-1 DELAY SIMULATIONS

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

December 1978

Table A-1 ATLANTA TASK FORCE DELAY STUDIES
INDEX TO REVISED RESULTS STAGE 1 EXPERIMENTS

Experiment		Dur	ways		Demand/ Improvement	
No	Model	Arrivals	Departures	Weather	ATC	Page
1A	ASM	8, 9R	8, 9L	VFRL	1978	3
2A	ASM	8, 9R	8, 9L	IFRL	1978	4
1	ASM	8, 9R	8, 9L	VFR1	1982	5
2	ASM	8, 9R	8, 9L	IFRL	1982	6
3	ASM	9R	8, 9L	IFR2	1982	7
5	ASM	8, 9R	8, 9L	IFRl	1982- 2 n.m. stagger	9
6	ASM	8, 9R	8, 9L	IFRL	1982-	10

1.5 n.m. stagger

#### Objective:

To obtain 1978 baseline delay estimates in VFR1 weather for the following runway-use configuration:

Arrival Runways	Departure Runways
8. 9R	8. 9L

#### Related Comparison Experiments:

Experiment 2A has same demand and network but in IFRl weather.

#### Length and Level of Detail of Simulation Run:

From 0800 to 2200 hours with 1-hour summaries.

#### Anticipated Results:

Lower delays than in Experiment 2A.

#### Results:

Operation		This Experiment 0900-1200					
Type	Performance Measure	Average	Peakb				
Arrival	Runway Delay (min)	9.2	6.2				
Arrival	Taxi-In Delay (min) C	0.2	0.4				
Arrival	Gate Delay (min)	0.8	0.1				
Departure	Runway Delay (min)	8.0	7.6				
Departure	Taxi-Out Delay (min) C	0.4	0.5				
Departure	Gate Delay (min)	1.3	2.1				

a. Average over the period 0900-1200 hours.

b. For peak demand hour, 1000-1100 hours.

c. Includes runway crossing delay.

#### Objective:

To obtain 1978 baseline delay estimates in IFR1 weather for the following runway-use configuration:

Arrival Runway	s Departure Runways
8. 9R	8 . 91.

#### Related Comparison Experiments:

Experiment 1A has same demand and network but in VFR1 weather.

#### Length and Level of Detail of Simulation Run:

From 0800 to 1300 hours with 1-hour summaries.

#### Anticipated Results:

Higher delays than in Experiment 1A.

#### Results:

		This Exper	iment
Operation Type	Performance Measure	0900-1200 Average ^a	Peak
Arrival	Runway Delay (min)	23.8	29.1
Arrival	Taxi-In Delay (min) C	0.7	0.6
Arrival	Gate Delay (min)	0.6	0.1
Departure	Runway Delay (min)	9.9	8.8
Departure	Taxi-Out Delay (min) C	0.8	0.5
Departure	Gate Delay (min)	2.2	1.6

a. Average over the period 0900-1200 hours.

b. For the peak-demand hour, 1000-1100 hours.

c. Includes runway crossing delay, if any.

#### Objective:

To obtain delay estimates in VFR1 weather with the new Midfield Terminal, 1982 demand, and near-term ATC separations for the following runway-use configuration:

Arrival Runways	Departure Runways
8. 9R	8. 9L

#### Related Comparison Experiments:

The results of this experiment can be compared with Experiment No. 1A, which was for the old terminal and 1978 demand and ATC separations in VFR1 weather.

#### Length and Level of Detail of Simulation Run:

From 0800 to 2200 hours with 1-hour summaries..

		This Exper	riment	Experiment	No. lA
Operation Type	Performance Measure	1000-1300 <u>Average</u> ^a	Peak	0900-1200 Average	Peakb
Arrival	Runway Delay (min)	10.1	11.9	9.2	6.2
Arrival	Taxi-In Delay (min) ^C	0.1	0.2	0.2	0.4
Arrival	Gate Delay (min)	0.1	0.0	0.8	0.1
Departure	Runway Delay (min)	9.9	15.2	8.0	7.6
Departure	Taxi-Out Delay (min) ^C	0.3	0.3	0.4	0.5
Departure	Gate Delay (min)	0.2	0.4	1.3	2.1

a. Average over the period 1000-1300 hours.

b. For the peak-demand hour, 1100-1200 hours.

c. Includes runway crossing delay, if any.

#### Objective:

To obtain delay estimates in IFR1 weather with the Midfield Terminal, 1982 demand, and near-term ATC separations for the following runway-use configuration:

Arrival Runways	Departure Runways
8. 9R	8. 9L

#### Related Comparison Experiments:

The results of this experiment can be compared to Experiment No. 2A to examine differences due to the new demand, ATC separations, and terminal building compared to today's IFRl conditions. It can also be compared to Experiment No. 1 to examine differences between 1982 VFRl and IFRl.

#### Length and Level of Detail of Simulation Run:

From 0800 to 2200 hours with 15-minute summaries.

Operation Type	Performance Measure	This Exper 1000-1300 Average ^a	riment Peak ^b	Experiment 0900-1200 Average	No. 2A Peak
Arrival	Runway Delay (min)	25.5	19.3	23.8	29.1
Arrival	Taxi-In Delay (min) C	0.1	0.1	0.7	0.6
Arrival	Gate Delay (min)	0.02	0.0	0.6	0.1
Departure	Runway Delay (min)	10.2	14.1	9.9	8.8
Departure	Taxi-Out Delay (min) C	0.4	0.2	0.8	0.5
Departure	Gate Delay (min)	2.6	2.2	2.2	1.6

a. Average over the period 1000-1300 hours.

b. For the peak-demand hour, 1100-1200 hours.

c. Includes runway crossing delay, if any.

#### Objective:

To obtain delay estimates in IFR2 weather with the 1982 demand, Midfield Terminal, and near-term ATC separations for the following runway-use configuration:

Arrival Runways	Departure Runways
9R	8. 9L

#### Related Comparison Experiments:

The results of this experiment can be compared to the results of Experiment No. 2 to examine differences between 1982 IFR1 and IFR2.

#### Length and Level of Detailed of Simulation Run:

From 0800 to 2200 with 1-hour output summaries.

Results: (See attached figure for graphical corroboration of delay results)

Operation		This Exper	iment
Type	Performance Measure	Average	Peakb
Arrival	Runway Delay (min)	60+	60+
Arrival	Taxi-In Delay (min) C	0.1	0.1
Arrival	Gate Delay (min)	0.0	0.0
Departure	Runway Delay (min)	0.5	0.3
Departure	Taxi-Out Delay (min) C	0.2	0.1
Departure	Gate Delay (min)	0.0	0.0

a. Average over the period 1000-1300 hours.

b. For the peak-demand hour, 1100-1200 hours.

c. Includes runway crossing delay, if any.





•

#### Objective

To obtain delay estimates in IFRI weather associated with 2.0 nautical mile staggered arrival-arrival separations proposed for use when simultaneous, independent arrivals cannot be accommodated on the following runway-use configuration:

Arrival Runways	Departure Runways
8, 9R	8, ^q L

#### Related Comparison Experiments:

The results of this experiment, in particular arrival flow rates and delays, can be compared with the results of Experiment No. 2.

#### Length and Level of Detail of Simulation Run:

From 0800 to 1300 with 15-minute output summaries.

#### Results:

		This Expen	ciment	Experiment No. 2		
Operation Type	Performance Measure	1000-1300 Average ^a	Peakb	1000-1300 Average	<u>Peak</u> b	
Arrival	Runway Delay (min)	60+	60+	25.5	19.3	
Arrival	Taxi-In Delay (min) C	0.1	0.1	0.1	0.1	
Arrival	Gate Delay (min)	0.0	0.0	0.02	0.0	
Departure	Runway Delay (min)	4.8	6.7	10.2	14.1	
Departure	Taxi-Out Delay (min) C	0.1	0.1	0.4	0.2	
Departure	Gate Delay (min)	0.0	0.0	2.6	2.2	

a. Average over the period 1000-1300 hours.

b. For the peak-demand hour, 1100-1200 hours.

c. Includes runway crossing delay, if any.

#### Objective:

To obtain delay estimates in IFRI weather associated with 1.5 nautical mile staggered arrival-arrival separations proposed for use when simultaneous, independent arrivals cannot be accommodated on the following runway-use configuration:

Arrival Runways	Departure Runways
8, 9R	8, 9L

#### Related Comparison Experiments:

The results of this experiment, in particular arrival flow rates and delays, can be compared with the results of Experiments No. 2 and No. 5.

#### Length and Level of Detail of Simulation Run:

From 0800 to 1300 with 15-minute output summaries.

#### Results:

Operation Type	Performance Measure	This Exper 1000-1300 Average	Peak ^b	Experiment 1000-1300 Average ^a	No. 5 Peak
Arrival	Runway Delay (min)	43.5	36.1	60+	60+
Arrival	Taxi-In Delay (min) C	0.1	0.1	0.1	0.1
Arrival	Gate Delay (min)	0.0	0.0	0.0	0.0
Departure	Runway Delay (min)	12.1	19.4	4.8	6.7
Departure	Taxi-Out Delay (min) C	0.1	0.1	0.1	0.1
Departure	Gate Delay (min)	1.6	1.2	0.0	0.0

a. Average over the period 1000-1300 hours.

b. For the peak-demand hour, 1100-1200 hours.

c. Includes runway crossing delay, if any.

## Attachment B RESULTS OF STAGE-2 DELAY SIMULATIONS

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

December 1978

Table B-1

ATLANTA TASK FORCE DELAY STUDIES
ORGANIZATION OF STAGE-2
AIRFIELD SIMULATION MODEL EXPERIMENTS
AND
INDEX TO STAGE-2 RESULTS

Index:	Page	13	14	15	16	17	18	19
	Improvement	Existing	Pre-1985	Pre-1985	Pre-1985	Pre-1985	Post-1985	Post-1985
	ATC	Today's	Near	Near	Near	Far	Far	Far
	Demand	1978	1982	1982	1982	1987	1987	1987
	Weather	IFRI	IFRI	IFRL	IFRL	IFRI	IFRL	VFR1
Runways	Departures	36 '8	8, 9L	8L, 9R	8R, 9L	8, 9L	8R, 9L	8R, 9L
Run	Arrivals	8, 9R	8, 9R	8R, 9L	8L, 9R	8, 9R	8L, 9R	8L, 9R
	Mode1	ASM	ASM	ASM	ASM	ASM	ASM	ASM
	*.	28	22	17	18	19	20	21
Sequence	No.	н	7	т	4	S	9	7

*Refers to numbers agreed to at Atlanta Task Force Meeting No. 4, July 12, 1978, the Subgroup Meeting of August 25, 1978, and the changes identified on September 25, 1978, at the fifth Task Force Meeting.

#### Objective

To obtain 1978 delay estimates assuming that there are two departure tracks on Runway 9L, i.e., no environmental constraints on 9L, for the following runway use in IFRL weather:

Arrival Runways	Departure Runways
8. 9R	8. 9L

#### Related Comparison Experiments:

Results of this experiment can be compared to the results of Experiment No. 2A of Stage 1 to evaluate benefits of relieving single departure track constraint.

#### Length and Level of Detail of Simulation Run:

0800 to 1300 hours with 15-minute summaries.

#### Anticipated Results:

Lower departure delays than in Experiment 2A.

Onedation		This Experiment		Experiment No. 2A	
Operation Type	Performance Measure	Average ^a	<u>Peak</u> b	Average ^a	<u>Peak</u> b
Arrival	Runway Delay (min)	23.6	28.6	23.8	29.1
Arrival	Taxi-In Delay (min) C	0.7	0.7	0.7	0.6
Arrival	Gate Delay (min)	0.6	0.1	0.6	0.1
Departure	Runway Delay (min)	8.9	7.7	9.9	8.8
Departure	Taxi-Out Delav (min) C	0.6	0.4	0.8	0.5
Departure	Gate Delay (min)	2.1	1.3	2.2	1.6

a. Average over the period 0900-1200 hours.

b. For the peak-demand hour, 1000-1100 hours.

c. Includes runway crossing delay, if any.

#### Objective:

To obtain delay estimates for the case where there are no gate-holds in 1982 at Midfield Terminal with near-term ATC separations and the following runway use in IFRI weather:

Arrival Runways	Departure Runways
8. 9R	8, 9L

#### Related Comparison Experiments:

Experiment No. 2 estimates the delays associated with an assumed gatehold procedure where aircraft are held at the gates when the length of departure queue reaches 10 aircraft.

#### Length and Level of Detail of Simulation Run:

0800 to 1300 hours with 15-minute summaries.

#### Anticipated Results:

Reduced departure gate delays compared to Experiment 2.

Operation		This Experiment		Experiment No. 2	
Type	Performance Measure	<u>Average</u> ^a	<u>Peak</u> b	Averagea	<u>Peak</u> D
Arrival	Runway Delay (min)	25.5	19.4	25.5	19.3
Arrival	Taxi-In Delay (min) ^C	0.1	0.2	0.1	0.1
Arrival	Gate Delay (min)	0.02	0.0	0.02	0.0
Departure	Runway Delay (min)	9.5	14.1	10.2	14.1
Departure	Taxi-Out Delay (min) C	0.2	0.1	0.4	0.2
Departure	Gate Delay (min)	0.0	0.0	2.6	2.2

a. Average over the period 1000-1300 hours.

b. For the peak-demand hour, 1100-1200 hours.

c. Includes runway crossing delay, if any.

#### Objective:

To obtain delay estimates for 1982 demand, near-term ATC, Midfield Terminal, and the fourth runway, SL-26R, where the "inboard" runways are used for arrivals in IFR1 weather.

Arrival Runways	Departure	Runways
8R. 9L	8L.	9R

#### Related Comparison Experiments:

Experiment No. 18 estimates the delay for the same case but with arrivals on the "outboard" runways. Experiment No. 20 also has arrivals on the "outboard" runways, but in 1987. Experiment No. 2 is the corresponding 3-runway case.

#### Length and Level of Detail of Simulation Run:

0800 to 1300 hours with 15-minute summaries.

		This Experiment		
Operation Type	Performance Measure	1000-1300 Average ^a	<u>Peak</u> b	
Arrival	Runway Delay (min)	30.6	22.7	
Arrival	Taxi-In Delay (min) ^C	0.3	0.2	
Arrival	Gate Delay (min)	0.0	0.0	
Arrival	Taxi-In Time (min)	6.5	6.3	
Departure	Runway Delay (min)	1.2	1.1	
Departure	Taxi-Out Delay (min) ^C	0.6	0.4	
Departure	Gate Delay (min)	0.0	0.0	
Departure	Taxi-Out Time (min)	6.5	6.9	

a. Average over the period 1000-1300 hours.b. For the peak-demand hour, 1100-1200 hours.

c. Includes runway crossing delay, if any.

#### Objective:

To obtain delay estimates for 1982 demand, near-term ATC, Midfield Terminal, and the fourth runway, 8L-26R, where the "outboard" runways are used for arrivals with the following runway use in IFR1 weather.

Arrival Runways	Departure Runways
8L. 9R	8R. 9L

#### Related Comparison Experiments:

Experiment No. 17 estimates the delay for the same case but with arrivals, on the "inboard" runways. Experiment No. 20 is for "outboard" case but with 1987 demand and ATC scenario. Experiment No. 2 is the corresponding 3-runway case.

#### Length and Level of Detail of Simulation Run:

0800 to 1300 hours with 15-minute summaries.

		This Experiment		Experiment No. 17	
Operation Type	Performance Measure	1000-1300 Average	<u>Peak</u> b	1000-1300 Average	<u> Peak</u> b
Arrival	Runway Delay (min)	30.4	23.0	30.6	22.7
Arrival	Taxi-In Delay (min) ^C	0.2	0.2	0.3	0.2
Arrival	Gate Delay (min)	0.0	0.0	0.0	0.0
Arrival	Taxi-In Time (min)	6.1	5.94	6.5	6.3
Departure	Runway Delay (min)	1.5	1.1	1.2	1.1
Departure	Taxi-Out Delay (min) C	0.5	0.4	0.6	0.4
Departure	Gate Delay (min)	0.0	0.0	0.0	0.0
Departure	Taxi-Out Time (min)	5.6	6.5	6.5	6.9

a. Average over the period 1000-1300 hours.

b. For the peak-demand hour, 1100-1200 hours.

c. Includes runway crossing delay, if any.

#### Objective:

To obtain delay estimates for 1987 demand, far-term ATC, Midfield Terminal, and the following runway use in IFR1 weather.

Arrival Runways	Departure Runways
8. 9R	8. 9L

#### Related Comparison Experiments:

Experiment No. 2 estimates the delays for the same conditions in 1982. Experiment No. 20 has the same 1987 demand and ATC but with the fourth runway, 8L-26R, and arrivals on the "outboard" runways.

#### Length and Level of Detail of Simulation Run:

0800 to 2200 hours with 15-minute summaries.

#### Anticipated Results:

Lower flow rates and greater runway delays than in Experiment No. 20.

		This Experiment		
Operation Type	Performance Measure	0900-1200 Average	Peak b	
Arrival	Runway Delay (min)	20.3	24.3	
Arrival	Taxi-In Delay (min) C	0.2	0.2	
Arrival	Gate Delay (min)	0.03	0.02	
Departure	Runway Delay (min)	12.4	12.0	
Departure	Taxi-Out Delay (min) C	0.6	0.6	
Departure	Gate Delay (min)	1.1	0.6	

a. Average over the period 0900-1200 hours.

b. For the peak-demand hour, 1000-1100 hours.

c. Includes runway crossing delay, if any.

#### Objective:

To obtain delay estimates for 1987 demand, far-term ATC, Midfield Terminal, the fourth runway, 8L-26R, and the following runway use in IFR1 weather.

Arrival Runways	Departure Runways
8L, 9R	8R, 9L

#### Related Comparison Experiments:

Experiment No. 18 estimates the delays for the same conditions in 1982. Experiment No. 19 has the same 1987 demand and ATC, but without the fourth runway.

#### Length and Level of Detail of Simulation Run:

0800 to 2200 hours with 15-minute summaries.

#### Anticipated Results:

Greater flow rates and lower delays than in Experiment 19.

		This Experiment		Experiment No. 19	
Operation Type	Performance Measure	0900-1200 Average	Peak	0900-1200 Average	Peak b
Arrival	Runway Delay (min) _	15.2	23.3	20.3	24.3
Arrival	Taxi-In Delay (min) C	0.2	0.2	0.2	0.2
Arrival	Gate Delay (min)	0.2	0.2	0.03	0.02
Departure	Runway Delay (min)	2.2	3.3	12.4	12.0
Departure	Taxi-Out Delay (min) C	0.3	0.7	0.6	0.6
Departure	Gate Delay (min)	0.0	0.0	1.1	0.6

a. Average over the period 0900-1200 hours.

b. For the peak-demand hour, 1000-1100 hours.

c. Includes runway crossing delay, if any.

#### EXPERIMENT NO. 21

#### Objective:

To obtain delay estimates for 1987 demand, far-term ATC, Midfield Terminal, the fourth runway, 8L-26R, and the following runway use in VFRl weather.

Arrival Runways	Departure Runways
8L, 9R	8R, 9L

#### Related Comparison Experiments:

Experiment No. 20 has the same conditions but in IFRL weather.

#### Length and Level of Detail of Simulation Run:

0800 to 2200 hours with 1-hour summaries.

#### Anticipated Results:

Higher flow rates and lower delays than in Experiment 20.

#### Summary Comparison:

		This Exper	iment
Operation Type	Performance Measure	0900-1200 Average	Peak b
Arrival	Runway Delay (min)	12.0	19.9
Arrival	Taxi-In Delay (min) C	0.2	0.3
Arrival	Gate Delay (min)	0.2	0.6
Departure	Runway Delay (min)	1.4	2.9
Departure	Taxi-Out Delay (min) ^C	0.3	0.6
Departure	Gate Delay (min)	0.0	0.0

a. Average over the period 0900-1200 hours.

b. For the peak-demand hour, 1000-1100 hours.

c. Includes runway crossing delay, if any.

#### Attachment C RESULTS OF ANNUAL DELAY EXPERIMENTS

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

December 1978

Table C-1
LIST OF ANNUAL DELAY MODEL (ADM) EXPERIMENTS
AND INDEX TO RESULTS

Sequence No.	Experiment No.	Demand	ATC System	Terminal	No. of Runways	Page
1	12	1978	Today	01d	3	22
2	16	1982	Today	Old	3	25
3	14	1982	Near-Term	Olđ	3	28
4	15	1982	Today	New	3	31
5	13	1982	Near-Term	New	3	34
6	27	1987	Today	Old	3	37
7	25	1987	Far-Term	Old	3	40
8	26	1987	Today	New	4	43
9	24	1987	Far-Term	New	4	46
10	23	1982	Near-Term	New	6 mo 3 6 mo 2	49

ł

•

á

#### Attachment D SUMMARIES OF EXPERIMENT RESULTS

William B. Hartsfield Atlanta International Airport
Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

December 1978

1

了,你是你想的你们,你你没有你的话,我看着你的女人的女子,我看着我们的女子,我们的女子,我看着我的女子,我看着她的女子,我就是我的人的人,我们们也不是我们的人

## ALLMAL SHITTARY

901208131810	PFRCERF	OCCUPACION
DISTAND TO CAPACIFY	(0/4C RAFIO)	FIRST THAL
H GEVELA	3/(3)	

3 - 1	50.0	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	10.37	11.37	11.76	15.5	10.33	13.71	- x · 9		00 00 00	- 7	·	97.
	~ ;	~.	47 •	-~•	٠.	/ •	÷\$.	٠.	o• 1	- <u>·</u>	c .			
î,		1.0	<del>.</del>	<u>-</u> .	Ē	6.1	57	0.3	<del>.</del> .	Ξ	6.2	? ;-	<del>-</del>	1. VI J. T.
0.0	-:	•	~.		•	•		•	•	€ . ~	 -	•	 -	3

STATE OF BIG RAFTS = .55

₹																																								
noldinads.	OCCURRENA	3.183	.57	.63	. 34	€.	. 1 2	.76	. 41	o: •	2.321	. 7	9.	c.	<u>.</u>	. 29	00.	. 2 1	1	Ç.1	10	<b>*</b> **	/	$\circ$	002.	.210	501.	27 F.		195	. 247		.058	.042	% q	.063	.063	58 0.	400.	<u> </u>
1	ESS THAR	c: •	4.	9.	95 •	- <del>-</del>	1 • 2	1.4	1.6	•	•		•	5.9		•	•		0.01	0.1	12.0	13.0	•	•		·	`. ≾		•	• -	್ತ	0.03	0.18	84.0	85.0	86.0	67.0	9 d. C	93.0	0.56
NCT DEI		0.1	<u>[:]</u>	10	10	$^{ m C}$	e.L	CL	1.0	C.L	C.T.	: <u>-</u>	10	G.	C.1.	10	ίΟ	0.1	[.]	Ē	(· ].	CL	To	10	<u>-</u>	<u>.</u>	G :	 	: c	T.O.	0.1.	LO	ΤO	Te	1.0	LO	Ξ.	Ç.	٠. ن	<u></u>
	AT LEAST	0.0	٠.	4.	9•	. 3	ر <b>٠</b> ا	1.2	1.4	1.6	٥.	•	3.0	4.0	5.0	0·y	7.0	3.0	0.0	10.0		12.0	•	٠	15.0	٠	•	<b>⊃</b> €	• ঃ ঃ		5	$\overline{}$	80.0	83.0	0.4%	35.0	85.0	97.0	n•75	03°J

HEAT OF AVEGAGE DELAY = 4.50 STATEMENT DEVIATION = 3.46

PEAK BOATH, AVG. DAY

HUHBER OF OVERLOAD HOURS	0 % 0 0 % 0
MUMBER OF SATURATED HOURS	0 7 0 0 7 0
PEAK HOOR AVERAGE DELAY (HINUTES)	6.3 13.6 0.0 6.4 16.3
PERCENT	30.4 7.6 58.2 2.9
CROBE	

# PERCEUT DELAY OCCURRENCE IN EACH RUBBAY USE -- VEATHER COMBINATION

ис	TOTAL	48.8	51.2	16.6 100.0
CONDITION	1FR2	13.3	3.3	16.6
UEATHER	IFRI	15.3	11.2	26.5
1/1	VFR	20.5	36.7	50.9
RUMBAY	HSE	-	2	foral.

OPERATIOAS	4.50 MINUTES /AIRCRAFT
534586	4.50
:1	#
ALINDAL DEHAND	AVERAGE DELAY
	:: .2

** SEASON GALAGE SE DISSIPATED IN 25 GOUR PERTOD SEVISE BOSSERS OFFICE DESTRIBUTED . 1 . . . . . . . . .

TV (19) -- BETARD CARBOT BE DISSIPATED IN 24 BORR PERIOD STATES BY SETTING BY SETTING BY SETTING

PASTEL -- DESTO GASTOF BE DISSIPATED IN 24 HOUR PERIOD ACVISE ADDRESS DESTRIBUTION

VESTER + DETACH CATHOL BE DISSIPATED 14-24 HOBE PERIOD BENEFINGER BUTTON

ARRIANE SUBTIARY

AT LEAST		LESS PRAT	PERCENT OCCURRESC
e. e	- :		:
-:	3		
~!	5.		N 0 0
<b>.</b>	Ē		e : .
•	Lo	٠.٠	=
•	ŗ.,	٠.	11.40
	<del></del>	. 7	10.75
•	<u>_</u>		6.32
:		5.	5.28
` .	Ξ	• • • • • • • • • • • • • • • • • • •	13.67
=	; ;=	<u>-</u>	6.52
<del>-</del> -	<u>:</u>	1.2	, c
- : -	<u>:</u> -	-	ج ن س
-	TORY PRINT		99.

· • • • TAND OF DISTANCES STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES O

		3 · 3
1 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	1111112	
# # # # # # # # # # # # # # # # # # #		TO FO THAJ
6	23.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	37.00 0.00 10.00

A LEAST LESS PHAN

TEAN OF AVENAGE DELAY = 11.81 STAUDAND DEVIATION = 7.27

AVERAGE PEAK HOUK GAY FOR PER PEAK HOEFH, AFG, OAY

. . . . . .

HATERA OF BOURLOAD BOURS	2
MATURATED OF HOURS	13 0 18 0
PEAR HOUR AVERAGE DELAY (CLUBEES)	8.2 77.7 0.0 3.4 74.4
PERCEST	44 54 54 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
UEATHER Group	-05-05
SSR AVALDS	

PERCENT DELAY OCCURRENCE IN EACH RUCKAY USE -- VEATHER CONBINATION

111	TOTAL	51.3	48.7	100.0
WEATHER COMPITION	1622	3.9	3.8	7.7
SATHER	[ F !; ]	27.5	26.3	53.9
7.2	VFR	13.0	13.5	38.4
RUBBAY	USE	-	C1	LOTAL

AJENTAL DELAY = 124644.53 HOURS
ALENAL DETARP  $\approx$  633300 OPERATIONS
AVERAGE DELAY  $\approx$  11.81 HIBITES/AIRCRAFT

ANNUAL SUMMARY

TO	DEHAND (D/C	DEHAMB TO CAPACITY (D/C RATIO)	ACITY	DISTRIBUTION
TO .1 TO .3 TO .3 TO .4 TO .5 TO .7 TO .0 TO 1.0 TO 1.1 TO 1.2 TO 1.3				FERCERI OCCURRENCE
1 TO2 3 TO .3 4 TO .3 5 TO .6 6 TO .7 7 TO .9 9 TO 1.1 1 TO 1.6 4 TO 1.5 HORE THAN 1.5	0.0	T 0		G 44
2 TO .3 4 TO .6 5 TO .6 7 TO .7 7 TO .8 8 TO 1.0 9 TO 1.1 1 TO 1.2 1 TO 1.3 4 TO 1.5	-	TO.	~!	ာ လ • လ
3	5.	7.0		30.56
4 TO .5 5 TO .6 7 TO .2 8 TO .8 9 TO 1.0 1 TO 1.2 1 TO 1.3 4 TO 1.5 HORE THAN 1.5	~	E.O.	7.	4.61
5 TO .6 7 TO .7 8 TO .8 9 TO 1.0 0 TO 1.1 1 TO 1.3 4 TO 1.5 HORE THAN 1.5		FO	. 5	4. 30
e 70 .7 7 70 .8 8 70 .9 9 70 1.0 0 70 1.1 1 70 1.2 4 70 1.3	٠.	5.5	9.	13.86
7 TO	٠ •	10	. ,	20.67
TO 1.0 1.0 1.1 TO 1.2 TO 1.3 TO 1.5 HORE THAN 1.5	. 7	10	- 13	70.5
TO 1.0 1.1 TO 1.1 TO 1.2 TO 1.3 TO 1.5 HORE THAN 1.5	χ.	TO	6.	6.36
TO 1.1 TO 1.2 TO 1.3 TO 1.5	٠ ٠	TO	1.0	17.82
	0.1	ë:		10. V
		Ľ	1.2	- ~ ~ •
	~~~	7.0	1.3	· · ·
HORE THAN 1.5		To	1.5	0 T •
	101	RE THAN	1.5	.57

STANDARD DEVIATION = .62

• • •		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	62 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	,	a),28 a 6,41
: - · · ·				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AVERAGE DELAY ARD DEVIATION
5555	2 0 0 0 0 3 4 4 4 9	2222) d
					-

PERCHANT PERCHAN SCORREGICS

LESS THAT

(A REST SESS TO

-	
_	
	~
	_
DELAI	_
_	
•	
•	-
_	-
	-
_	
	1000
11.0	-
-	-
-	-
	-
_	•
	- 1
	11.14
	-
114	
• -	
	_
	-
	-
-	
1-	•
	•
	- i
	Î
. —	•
	-
•	•
•	
-	
	Í
-	-

DESTUDE OF ROBES	- 5 - 5 - 5 - 6	
HURER OF SATURATO BOURS	2 0 0 1 0 0	
PEAK HOUR AVERAGE DELAY (TEUTES)	0.1 67.5 0.0 7.8 71.7 0.0	PERCENT DELAY OCCURRENCE IN EACH RUNGAY USEVEATHER COUSTAATION
PERCETT	64.3 64.3 5.2 5.2	ERCEUT DELAY O UNYAY USEUEA
ZEATHER Group	- 01 - 01 - 01 - 01 - 01 - 01 - 01 - 01	4 4
REPTAY TSE	en en en en en e.	

TOTAL 53.6 46.4

#GATHER COUNTITION FR IFR1 1FR2 TOT +6 28-4 4-4 53. +1 21-8 4-4 46.

VPR [FR1 20.6 28.4 20.1 21.8

802274 88E 1

8.8 100.0

40.9 50.2

TOTAL

HOSES	OPERATIONS	* MATES/AIRCRAFF
97918.45	008889	5.28
11	Ħ	H
A3380AL DELAY = 97918,45 HOURS	ANMIAL DETAND =	AVERAGE DELAY =

;

ARBUAL SUMBLARY

The America Kadyo I W	HOLI 08 1 5 1 6 1 6	PERCERT	OCCURRENCE
DEMAND TO CAPACITY	(D/C RATIO)		NEH Conn

8.37	1.20	8.78	12.51	6.78	12.24 8.20	5.03
- 7	. 3	٠. ناب د		0 5° 5	· · ·	1.3
TO TO	TO TO	10 10	10	TO T	5	<u> </u>
0.0	٠, ٣	1 vo	. ú	· ας ဘ	1.0	1.2 MOR

. 6 l MEAN OF D/C RATIO STABBARD DEVINCTION

AVERA (211	GE D	ELAY S.)	
AT LEAST	-	ESS THAN	URR
0.0		• 2	~
. 2		7.	. 28
5 •	Ι0	9.	c.
9•		æ.	.26
∞.		1.0	.69
1.0		1.2	. 1.8
1.2		1.4	.50
1.4	10	1.6	.65
9•1		1.8	. 71
1.8		•	.05
•	T 0	•	940
•		•	.04
0.4	TO	5.0	80
		•	.23
•		•	. 37
•		•	7
		•	01.
		•	
		12.0	/
~			_
		•	
		2.	8
~		٠,	0 0
~		. ,	\sim
7 .		8	.00
တ		9.	7
6		·	
•		. 4	S
0.46		5.	
95.0	10	0.96	
110 R.E.	THAN	100.0	.608

HEAN OF AVERAGE DELAY = 9.75 STANDARD DEVIATION = 6.77

Antique of the

AVERAGE PEAK HOUR DELAY FOR PEAE TOUTH, AVG. DAY

HUMBER OF OVERLOAD HOURS	1 1 5 0
NUHRER OF SATURATED HOURS	2 17 0
PEAK HOUR AVERAGE BELAY (MINUTES)	8.1 68.7 0.0
PERCENT OCCURRENCE	88.5 10.5 1.0
VEATHER GROUP	3 2 1
SEL	

PERCEUT DELAY OCCURRENCE IN EACH RUHUAY USE -- VEATUER COUBLUATION

111	TOTAL	100.0	9.2 100.0
CONDITIC	IFR2 TOTAL	9.2 100.0	9.2
ATHER	IFRI	51.9	38.8 51.9
WE	VFR	38.8 51.9 9.2 100	38.8
RUHUAY		-	TOTAL

OPERATIONS HIMITES/AIRCRAFT 110 U R S ASSUAL DELAY =102952.59
ASSUAL DEMAND = 633300
ASSUACE DELAY = 0.75

《《《《《》》》 《《《《《《》》 《《《《》》 《《《》》 《《《》》 《《《》》 《《《》》 《《《》》 《《《》》 《《《》》 《《》》 《《《》》 《《

Ŝ,

AMBUAL SUMMARY

normanarsio	PERCENT	OCCURRERCE
DEHAND TO CAPACITY	(b/c RATIO)	T LESS THAN
DEHAN	Ē	AT LEAST

P. 86	11.45	(17)	4. 31	10.62	9.15	12.17	4 . 79	17.70	16° b	1.14	3.03	. 36	2 -	.57
-:	•	٠,	. 4	. 5	• 6	. 7	æ.	6.	1.0	1.1	1.2	1.3	1.5	1.5
Γυ	10	To	To	To	\mathbf{r}_0	LΩ	1.0	0.1	T ()	TO	O.L	T.O	TO	HORE THAN
0.0	-	• 2	<u>.</u>	•	• 5	9•	. 7	က •	6.	1.0		1.2	1.4	i OH

MEAN OF D/C RAFIO = .58 STANDARD DEVIATION = .32

NISTALBUTION PEPERSON	0000000000	<u>~</u>	1-144	\supset	, / 5	5.637	- '	Tag.	5.851	•	2.203		•	13.516		10.583	1.609	. 46%	501.	7		. 559	.453		\sim i	1.557		() (750.	.17.	~	2.00		= -	
LAY	ESS THAL	∴		a.	≈.	: -	~ ; -	· · ·	٤.	١. ه	2.0	3. n	4.0	6.0	tı . (t	7.0	a: ::	C . C	0.01	11.0	13.0	0.1,	17.11	 	0.61		0.17	82.0	3.3.0	a. a.	0.,0	6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6			101141430 02
NOK DEL		c.j	Fo	∵ :-	<u>:</u>	<u></u>	0	5.	<u>.</u>	<u>-</u>	2	. j.	T:	G.J.	<u>.</u>	<u>-</u> :	2	Œ.	<u>:</u>	<u></u>	0.1	0.1	5.3	Ţ	Ç.	<u>:</u>	£.	(. <u>.</u>].	<u>:</u> -	 	1.0	<u>.</u>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	102411416
AMERICA	AF LEAST	e. e	· ·	٠,	:	×0.	٦	c: -	1 . 4	١. 6		2.0	3.0	4.1)	5.0	0.0	7.11	α.α	D*6	0.01	12.0	13.0	- e - e -	17.0	∵	c : = -	20.0		82.0	5.4.0	0.50	0.10	:		•

AVERACE PLAK TOUR BELAY FOR PEAK TOURE, AVG. DAY

ACTELANO OVEOLONO ROTELANO	- ₹ 3
SAFURAFED AOURS	F- 70 C
PEAR HOFF AVERAGE DEBAF (TITHES)	0.4 20.3 0.0
TOLEGISTO OF	28.5 10.5
SELVINEE APORE	<u> </u>
285 2861 Ha	

PERCENT BELAY OCCURRENCE IN FACT RHTVAT USC +- TEATHER CONSTRATION

110	1FR2 TOTAL 15.7 100.0	15.7 150.0
MEATURE CORPURING		
CATTER	VFG 1FR1 53.4 25.3	25.8
M	53.4	٠٠ ښ
ED 2012	HSE 1	COTAL

OPERATIONS Hone; 5 AGREAL BURAT = 53755.42 A RREAR BURATO = 633300 AVERAGE OFLAY = 5.09

PUBUTUS/AURCRAFF

** ATRACE STORY COURTIONS

ATRACE STORY COURTIONS

** ATRACES TO EXPERSE

** ARREST AND EXPERSE

** ARREST

ANNUAL SURBARY

DISTRIBUTION	PERCENT	OCCURRENCE
DESTAND TO CAPACITY	RATTO)	LESS THAN
DESTAND TO	3/a)	AT LEAST

	07.0	7.92	4.08	. 4.3	5.43	8.39	5.26	2.46	2.26	.45	2.61	43.01	2.12	~7	1.03	α. •
_		.1	~*	٠,٠	. 5	9.	. 7	တ	Ď.	0.1	1.1	1.2	1.3	١.٠	1.5	٠.۶
5	2	To	To	10	To	10	TO	13	T0	TO	TO	ΤO	T.)	To	C I	HORE THAN
5	?	-	• •	~	·†	٠.	.0		≈.	<u>ت</u> •	0.1	1 . 1		١٠١	· · ·	Ξ.:

STAMBARD DEVIATION = .83

•

- 49.05	12.51	
MAN OF ATTENDED BY	E1 13 V 1 V 5 P P P P P P P P P P P P P P P P P P	

ACCURATE CONTRACTOR OF A CONTR

1.754 1.427	2.380 2.369	F\$0.	502.	3 t t t t	1.353	.03%	1.129	\$ to * \$. 821	.12₽	609.	. 700	670-1	en e	125.	122	.132	2.349	2.349	2.536	2.530	2.458	8.163	2.894	5 - 2 5 4	2.713	12.205	5.777	2.391	8.341	500 · 60	= 0 		=======================================	2,53	.217	.655	165.	1.251	1.647	1.411	. 74%	£3.3.	****	25.
2:5	n : 1	1.7	و ». 	. c.).e	4.6	7.0	□• ?	D•6	-	-	c.a.				23.0			_													2.5						93.0	0.4%	35.41	117, 10			= <u>-</u>	9.61
211	<u> </u>	- :	_ =	2	ē.	e.j	ء ښ	<u>-</u>	÷	Ţ	<u>.</u>	? <i>!</i>	Ξ,	= :	÷ ;	<u>-</u>	<u>-</u>	Ē	Ç ;•	<u>:</u>	÷-	2.	Ę.	<u>-</u>	C.	2.	Ţ.	<u>.</u>	5 ; -	-	Ţ.,	<u> </u>	- :	. :			Ē	÷	£ 4	ĵ.	; ;-	Ç.	<u>.</u>	-	1111
e ~ .	÷		· · ·	. ж. —	3.0	5.1	6.0	7.11	G . %	÷.	0.4.	0.71	= :	a	0.17	22.0	23.0	42.0	0.7.	= . × .,	14.1	5.0.5	5.5.0	5 % 0	56.0	0.03	61.0	0.59	6,6,0	65.0	6.6.0	: :: ::::	77.6	74.0	74.0	0.03	G	0.10	81.0	84.0	6.5%	6.1.0	0.00	e	HOWE.

PLROPET OCCUERLACE

(11 424) S) AT LEAST | LISS TRAD

AVERAGE PEAK HOUR DELAY POR PEAK HORPE, AVG. DAY

AGYBER OF OVERLOAD HORPS	
BUTBER OF SATURATED ROBES	23 0 16 23 0
PEAK HOBR AVERAGE BFLAY (MAUTES)	65.7 en. g 0.0 66.2 85.0
PERCENT	44.3 5.2 44.3 5.2
SCATHER GROUP	35435
ASA ASA ASA	1

PERCENT PELAY OCCURRENCE IN FACH RUMMAY USE -- UDATHER COINTNATION

10141 53.0 47.0	100.0
UEATURE COUDITION 1F21 LFR2 8, c 1.1 3.5 1.1	2 • 2
RATUER 1F21 8, 0 3, 5	17.4
UFR 43.9 37.4	8.08
RHMUAY HSE 1 2	TOTAL

Jegova do son

ASSUAL DELAY =615010.38 qoues
ASSUAL DELAY =615010.38 qoues
ASSUAL DELAY = 753300 obeqyftyge
ASSUAL Octavit = 753300 obeqyftyge

ATL AUH EXPT 25 #***************** 我们是我们在社会是是这种的的种种的种种的特殊的特殊的的特殊的 * AIRPORT STUDY COMBITIONS

ARMUAL SUMMARY

	C 7 1 1 7 7	9 4 1 6
	LESS THAN	FENCENT OCCURRENCE
- 2 - 4	-	~ ~ &
	. 2	8, 78
• 3 TO • 4	٠.	3, 17
• 4 TO	7.	5.20
	. 5	
.5 T.9	9.	
.6 To	. 7	11.43
.7 To	æ. •	4.59
.8 To	د.	8.63
0 J.	0.1	14.51
1.0 TO		: -: :-:
1.1 To	1.2	13.71
1.2 To	1.3	
1.1		~.
TO THE THE	· · ·	04.

· (·) <u>:</u> HEAR OF 97G RATIO STATOARD BEYNAMED

DISTRIBUT VI	OCCURRENCE	• 1	.51	.40	.51	2.657	.53	<u>.</u>	.59	<u>.</u> 23	, 64	. 0.	†; <u>₹</u> •	~	141	. 6.5	, ís 4	.20	٠ ا ٠	. h 2	\Box	_	. 449	_	~	TC 1		ς.	04/ •	- 5	ς.			~	2	~.	or.	. 130	ے
DF LA ES)	. KSS FHAM	c: •	,,.	9.	٤.	0.1	- · · ·	l • '•	١• ن		5.0	3.0	٠,٠	5 • 1)	0.0	7.0	= • ష	0.5	10.0	11.0	12.0	17.0	=	31.0	33.0	<u>.</u>	36.0	• ;	5: 13 2: 13 3: 13	• •	•	ه ۱ سع		32.0	33.0	85.0	36.0	80.0	0.00
;	· :	a r	T:	Î,	C.I.	T.O	Ç.,	0	<u>.</u>	C.	10	10	7.7	<u>-</u>	<u>:</u>	Γ 0	Ţ	C.J.	Lυ	٠ <u>.</u> ۲	LO	LO	0.1	LO	0.1	01	∵ :	= : :	- E) - E) -	T 0	C.	C L	Ţ	1.0	C L	C.L	1.1
AVERAGE	AT LEAST	6.0	64.	• 4	9.	•	۹ <u>.</u>	1.2	1.4	1.6	ુ. ઝ	•	3.0	7.0	5.0	6.0	7.0	•	•	•	_	٠.	29.0	·	2.	• ÷.	<u>.</u>		37.00	• c -	•	• • •		_	82.0		85.0	0.88	0 • 62

THAT OF AVECAGE DELAY = 3.55 STACOARD DEVIATION = 6.07

AVERAGE PEAS HOUR BELAY FOR PEAS HONTH, AVG. DAY

NUTBER OF OVERLOAD HOURS	
NUMBER OF SAFURATED AOURS	16 16 17 17 18
PEAC HOUR AVERAGE DELAY (TIMUTES)	16.1 56.7 0.0 10.9 37.8
PLRCEST	44.3 44.3 6.3 6.3 6.3 7.5
WEATHER	— 01 M — 01 M
18 J. W.	

PERCENT DELAY OCCURRENCE IN EACH RUBEAX USE -- UEATHER COTSINATION

=======================================	TOTAL	54.5	45.1	6.4 100.0
COMDITION	TFR2	7 7	4 • 2	भा 0.
VEATHER	1FK1	/ . ;	0.8.1	15.3
III	VFK	(1) (1)	27.3	56.3
RUNGAY	3.50		• 1	To fal.

THERES / ATROUAGE OPERAFIONS HOURS ACHUAL DELAT =107388.65 ACHUAL DETATO = 753300 TMIRTOR DETAY = 8.55

ATHUAL SUMBARY

DETARD TO	TO CA	CAPACITY	HOLLIST STATE OF THE STATE OF T
AT LEAST		LESS THAN	OCCURRENCE
O.C	C.I		51.01
-:	10	• 2	10.18
• 2	1.0	~.	1.95
~	1:0	•	11.15
٠,	T:	۲.	8.34
. 5	ίO	٠,	5.52
٠.	10	. 7	11.13
. 7	7.1	٥.	19.22
œ •	1.0	<u>ن</u> . •	3.50
5	1.0	1.0	2.17
≘ .	7.3	1:1	4.65
-	01	1.2	3.64
1.2	1.0	۲. ۶	2.12
1.3	1.0	1.1	6.93
1.4	T.O	1.5	. 28

STANDARD DEVLATION = .50

S DELAY DISTRIBUTION PERCEST	LESS FHAN OCCUR	3.48	69. 4. 65	0.01	0. 6	0 1.0	0 1.2	0 1.6 1.17	9 1.6 2.30	0 1.8	0 2.0 2.83	3.9 21.09	0 4.0 4.47	0 5.0	62.0	0 7.9 13.83	0 8.0	0 5.0 4.32	0.01 0	0.15.0	0 13.0	a 22.0	0 24.0 .01	0 25.0	15. 69.0	0.07 0	0.17	.54	0 75.0	0 7/20
CH SUTES		01	<u>:</u>	(.)	C.	LO	Ţ		G.	ľO	1.0	C.I.	10	r_0	To	7.0	TO	T.O	10	C.	C.L	C .T	10	1.0	Ţ.)	<u> </u>				
and av	AT LEAST	o. c	۲,		`: <u>.</u>	c: •	: · ·		1.4	1.6	33 - 7	0.5	3.0	· · ·	٠.	6.0	7.0		ن• ت		7		23.0		0.85		70.0	71.0	7:00	7., ()

TOAT OF AVERAGE DELAY = 10.65 STABDARD DEVIATIOD = 7.60

ARCHAR ROAD HORB OLLAN FOR FARE AND AND DAY

T. P.

AVERACE PEAK HOUR OFLAY FOR PEAK GOAFH, AVG. DAY

MUTBER OF OVERLOAD HOURS	a J a – 27 a
SUTBER OF SATURATED HOURS	0 0 0 0 0 ° °
PEAR HOUR AVERAGE DELAY CHIHTES)	6.6 74. c 0.0 0.0 6.1 74. c
PERCENT	4 4 40 4 40 40 40 br>40 4
USATHER	— a m — a m
RUBFAY	

PERCENT DELAY OCCURRENCE IN EACH AURINAY USE -- UEATHER CORBINATION

ou Foral (4.7 55.3	4.8 190.0
VEATHER COMBITTON 1781 1782 - 1 13.3 2.4	± €
EATHER 1F21 33.3	6.66
VPR C.0 19.7	1.85
RUMBAY USE I 2	TOTAL

AURUAL DELAY =133716.06 HOURS
AURUAL DEMATE = 753300 OPERATIONS
AVERAGE DELAY = 10.65 HIMDES/AIRCRAFT

ATMUAL SUTTARY

0111111	DETAID TO CAPACLEY (D/C 8 AFER)	PACI IY Fod	SCILIBIALSIQ
AT LEAST		LESS THAY	OCCURRENCE
0.0	10	•	14.01
-	0.1	e:	
• 2	1.0	٠.	10.84
٠,	T.O	*	30.5
\$.	ΤO	٠,	10.07
	C.I	9•	14.12
9•	£19	. 7	15.36
. 7	O.L	ω.	6.4.4
≈.	10	٠,	6.25
•	Ţ:)	0.1	00.5
0.1	1.0		-
1:1	-1-O	1.2	2.05
	HEAN OF	OF D/C RATIO	37. = 01
	STABBARB);; = .29

AVERAGE DELAT DISTRIBUTION

2.15 TEAN OF AVERAGE DELAY STARDARD DEWLATION

BISTRIBUTION PERCETT		3.552	€£ 0.*s	4.004	6.402	4. 070	7.294	11.577	12.593	3.439	2. (31	120.5	7. 64,7	6.829	6.022	3. 366
		·		÷.	•	e	-:-		- c	1. s	13.4%	j•0		5.0	£. • 3	7.0
WERVER DELAT	<u>-</u>	5 1.	<u>.</u>	<u> </u>	S.	£.	<u>.</u>	<u>.</u>	<u></u>	<u>:</u> :	:- -	Ţ÷	(; ,	1)	·.	÷:
		a• t	•	•	£.	•	<u>.</u>	` <u>·</u>	· · ·	-	· :	0.	÷.	6.0	٦. ن	11.11

į

AVERAGE PEAK GORE DELAY FOR PEAR BOTTH, AVG. DAY

MUSBER OF OVERLOAD SOURS	: ::::::::::::::::::::::::::::::::::::
MUTBER OF SATURATED JOHNS	340040
PEAR HOBE AVERAGE BELAY (14.34755)	3.3 6.6 6.6 6.6 6.9
PERCETY OCCUARETY	2.5 2.5 2.5 5.5 5.5
UEAFHER Sear	c1 C c1 C
Tea AVACPU	

PERCENT DELAY OCCURRENCE IN EACH AUMUAY USE -- VEATHER COUBLIANTION

ON TOTAL 34. 8 65. 2	100.0
COMBITION 1 PR2 1	-:
WEATHER TERT 8.7 8.7	17.3
VFR 25.5 56.0	81.6
RUBHAY USE 1 2	TOLUT

HOURS OPERATIONS DIMTES/AIRCRAFT AMBHAL DELAY = 26971.20
AMBHAL DERAHS = 753300
AVERAGE DELAY = 2.15 ANNUAL DERAND = AVERAGE DELAY =

ANNUAL SUPERARY

104 7 05													
DISTALBUTION PERCERT OF OCCURRENCE OCCURRENC	:		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.77	1. 92	12.72	1.02	4.26	3.89	7.09	7. 17	28.08	10.44
\C TY) S T A	-	- •	· ·	٠,٠	. 5	9.	. 1	×.	6.	0.1		1.2	. 5
DEDAMB TO CAPACITY (D/C RATIO) LEAST LESS TH	S E	2 5	: :	7.0	T.O.	LO	CL	1.0	To	To	o.L	O.L.	HOME THAM
DEIAND (D/C AT LEAST	9	? ~ ?	1	~	**	۶.	9.	. 7	es •	<u>د</u> •	≎ . 1	1:1	E G.

STAIDARD DEVIATION = .50

MEAD C.

Š	(SI ILLES)		
AT LEAST	i	ESS 7 173	0000888408
0.0	6.2	7:	1 . 935
	t.T	٠,	1.234
•	1.0	<i>a</i> .	1.937
g.	0.1	ε.	3.179
es •	T _O	ə. _–	6/8.1
0.1	6.1	1.2	2.198
1.2	0.7	1.4	070
٠,٠	G.	1.6	894.
1.6	G.T.	હ્યું -	.250
1.3	1.0	2.0	.092
3.0	1.0	(1.1)	345.
4.0	e:	5.0	4634
5.0	T.	6.0	6.770
() • ()	1.1	7.0	2.533
0.5	O J.	10.0	4.137
10.0	C.I.	0.11	5.308
31.0	T.O	32.0	10.357
32.0	£0	13.0	9. 985
35.0	<u> </u>	36.0	10.873
39.0	7.0	40.0	9.534
42.0	$_{ m LO}$	43.0	11.040
0.00	J. C	0 1 3	1.6 (7.5)

= 29.21 = 10.23 MEAN OF AVERAGE DELAY STANDARD DEVIATION

AVELAGE PEAK HOUR DELAY FOR PEAK HOURIN, AVOL. DAY

NUTSER OF	11
OVERLOAD	22
HOURS	15
NUTRER OF	16
SATHRATEO	24
HOURS	24
PEAK HOUR	42.4
AVERAGE DELAY	60.0
(HINUTES)	60.0
PERCENT	85.5 12.5 2.0
UEATHER GROUP	3 2 -
PUNDAY	

PERCENT DELAY OCCURRENCE IN DACH RUNDAY USE--UEATHER COMBINATION

TOT		3.8 100.0
1542	3.8	3. 3
IFR 1	25.7	25.7
VTR	70.5	70.5
HSE	-	TOTAL
	VPR IFRI IFR2	VER 1881 70.5 25.7

ноикз	OPERATIONS	TITULES /NIRCHAFT
ATHUAL DELAY =152273.64	312320	29.21
Ħ	Ľ	:1
DELAY	AMMUAL DEHAMD	AVERAGE DELAY
ATHUAL	HAUKE	VERACE
	•	~

Telephone: (415) 347-9521

August 6, 1979

Mr. Michael J. Powderly Chief, Atlanta Tower Martsfield International Airport P. O. Box 20722 Atlanta, Georgia 30320

Re: Discussion Outline, July 23, 1979

Dear Mike:

The attached contains changes to pages 3 and 8 of the July 23, 1979, discussion outline. These changes reflect the effect of the West Operation at Atlanta which is unaffected by the proposed single departure route to the East.

The numbers now reflect that there is a higher percentage of IFR weather when the East Operation is used (22% instead of 12%) but the East Operation is used only 40% of the year.

If you have any questions on this, please let me know.

Sincerely,

W. J. Dunlay, Jr. Senior Consultant

WJD/nlm Enclosure

bcc: TFD Corresp.
TFD Proj ATL
S. L. M. Hockaday

(w/o encl)

WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT TASK FORCE DELAY STUDIES SPECIAL DELAY SIMULATION STUDIES

PROPOSED SINGLE DEPARTURE ROUTE

VFR2 WEATHER OR BETTER OCCURS 78% OF THE TIME THAT THE EAST OPERATION IS IN USE Assumptions: (1)

(2) IFR1 WEATHER OR WORSE OCCURS 22% OF THE TIME THAT THE EAST OPERATION IS IN USE

(3) THE EAST OPERATION IS USED APPROXIMATELY 40% OF THE YEAR

WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT TASK FORCE DELAY STUDIES SPECIAL DELAY SIMULATION EXPERIMENTS

WEATHER CONDITIONS: VFR2

0400-0400 HOURS (A 24-HOUR PERIOD), EAST OPERATION SIMULATION PERIOD:

841 DEPARTURES SCHEDULE: JUNE 15, 1979: 843 ARRIVALS

COMPARISON OF DAILY AVERAGE DELAYS - MINUTES

TYPE OF DELAY	TWO DEPARTURE STREAMS	ONE DEPARTURE STREAM	DELAY
AVERAGE ARRIVAL AIR:	18,8	20,5	1.7
AVERAGE ARRIVAL TAXI:	0,3	0,4	0.1
AVERAGE ARRIVAL GATE:	2.1	3,2	1,1
AVERAGE ARRIVAL TOTAL:	21,2	24,1	2,9
AVERAGE DEPARTURE RUNWAY:	5,4	21,2	15.8
AVERAGE DEPARTURE TAXI:	9'0	2,8	2.2
Average Departure Gate:	0.7	9,5	8 8
AVERAGE DEPARTURE TOTAL:	6.7	33,5	26,8
TOTAL DAILY DELAY:	22,990	46,770	23,780

WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT TASK FORCE DELAY STUDIES SPECIAL DELAY SIMULATION EXPERIMENTS

WEATHER CONDITIONS: IFRI

SIMULATION PERIOD: 0400-0400 HOURS (A 24-HOUR PERIOD), EAST OPERATION

841 DEPARTURES SCHEDULE: JUNE 15, 1979; 843 ARRIVALS

COMPARISON OF DAILY AVERAGE DELAYS - MINUTES

TYPE OF DELAY	Two Departure Streams	ONE DEPARTURE STREAM	DELAY
AVERAGE ARRIVAL AIR:	15,9	31,0	15.1
AVERAGE ARRIVAL TAXI:	9.0	14,9	14,3
Average Arrival Gate:	6'6	11,8	1,9
AVERAGE ARRIVAL TOTAL:	76,4	57,7	31,3
Average Departure Runway:	50,6	61,1	10,5
Average Departure Taxi:	14,6	1,7µ	33,1
Average Departure Gate:	30,3	294.0	263,7
AVERAGE DEPARTURE TOTAL:	95,5	402,8	307,3
TOTAL DAILY DELAY:	101,190	373,000	271,810

WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT TASK FORCE DELAY STUDIES SPECIAL DELAY SIMULATION EXPERIMENTS

<u>VER2 DELAY PENALTIES WITH PROPOSED SINGLE DEPARTURE ROUTE - EAST OPERATION</u>

ADDED AIRCRAFT OPERATING COSTS*	64\$	\$456	\$404,260
DENALTY - MINUTES (2.9	26.8	23,780
	AVERAGE ADDITIONAL PER ARRIVAL:	AVERAGE ADDITIONAL PER DEPARTURE:	TOTAL ADDITIONAL PER DAY (ALL AIRCRAFT):

^{*}Assuming \$17,00 per minute, which is the average cost for the fleet OPERATING AT ATLANTA INTERNATIONAL AIRPORT,

WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT TASK FORCE DÉLAY STUDIES SPECIAL DELAY SIMULATION EXPERIMENTS

IERI DELAY PENALTIES WITH PROPOSED SINGLE DEPARTURE ROUTE - EAST OPERATION

ADDED AIRCRAFT OPERATING COSTS* \$532 \$5,224 \$4,620,770 DENALTY - MINUTES 271,810 31,3 307,3 AVERAGE ADDITIONAL PER DEPARTURE: AVERAGE ADDITIONAL PER ARRIVAL: TOTAL ADDITIONAL PER DAY (ALL AIRCRAFT);

*Assuming \$17.00 PER MINUTE, WHICH IS THE AVERAGE COST FOR THE FLEET OPERATING AT ATLANTA INTERNATIONAL AIRPORT.

WILLIAM B. HARTSFIELD ATLANTA INTERNATIONAL AIRPORT TASK FORCE DELAY STUDIES SPECIAL DELAY SIMULATION STUDIES

SUMMARY OF EFFECTS OF PROPOSED SINGLE DEPARTURE ROUTE - EAST OPERATION

- IN IFRI WEATHER, 71 OF THE 841 SCHEDULED DAILY DEPARTURES CANNOT BE ACCOMMODATED IN THE 24-HOUR PERIOD, 0400-0400 HOURS
- ADDITIONAL \$0.4 MILLION IN DAILY AIRCRAFT OPERATING COSTS IN VFRZ WEATHER
- ADDITIONAL \$4.6 MILLION IN DAILY AIRCRAFT OPERATING COSTS IN IFRI WEATHER
- THE TOTAL ADDITIONAL ANNUAL DELAY PENALTY OF 11,4 MILLION MINUTESA
- THE TOTAL ADDITIONAL ANNUAL AIRCRAFT OPERATING COST OF \$193 MILLIONA

ATAKES INTO ACCOUNT THAT NO ADDITIONAL PENALTY IS INCURRED IN THE WEST OPERATION, WHICH OCCURS ABOUT 60% OF THE YEAR. Telephone: (415) 347-9521

March 11, 1930

Mr. Billy M. Brotts
Task Force Chairman
Federal Aviation Administration
Southern Region
F.O. Dox 20035
Atlanta, Georgia 30320

We: Capacity Exhibit for Atlanta Task Force Report

Tear Billy:

Inclosed is a photostat and one copy of the exhibit depicting hourly runway capacities. Tote that part or all of the exhibit title block, which is on MAC-TAC, can be removed and replaced with your own lapels.

This photostat should serve as a reproducible copy for the Task Porce report.

If you have any questions about the exhibit please call mo.

Sincerely,

filliam J. Punlay, Jr. Derior Consultant

./s.:
/nclosure

co: .ir. J. C. Crman

bcc: S. L. M. Hockaday
Atlanta TFD Project

Figure 2
HOURLY RUNWAY CAPACITIES AT
30%, 50%, 70% ARRIVALS
Atlanta International Airport
PMM & Co. June 1929

