

江西理工大学

Jiangxi University of Science and Technology

信息工程学院

School of information engineering

Spring_2020

Prof Associate, School of information engineering Jiangxi university of science and technology, China

EMAIL: ajm@jxust.edu.cn

Jiangxi University of Science and Technology

Sequential circuits

3 example with detail solution

DR AJM

DIGITAL SYSTEMS DESIGN

Design the circuit with the help of D flip Flop and write the State Table for the below State Diagram,

Design the circuit with the help of D flip Flop and write the State Table for the below State Diagram,

Design the circuit with the help of D flip Flop and write the State Table for the below State Diagram,

Th	e ckt ir	nput	Next state		OUTPUT Z	
Input	Curre	nt state				
X=0	A	В	A	В	X=0	
0	0	0	0	0	0	
0	0	1	0	0	0	
0	1	0	0	0	0	
0	1	1	0	0	0	

Design the circuit with the help of D flip Flop and write the State Table for the below State Diagram,

Th	e ckt ir	nput			
Input	Curre	nt state	Next	state	OUTPUT Z
X=1	A	В	A	В	X=1
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	0	1

Design the circuit with the help of D flip Flop and write the State Table for the below State Diagram,

Th	e ckt ii	nput				
Input	Curre	nt state	Next state		OUTPUT Z	
X=0	A	В	A	В	X=0	
0	0	0	0	0	0	
0	0	1	0	0	0	
0	1	0	0	0	0	
0	1	1	0	0	0	

Th	e ckt ii	nput				
Input	Curre	nt state	Next state		OUTPUT Z	
X=1	A	В	A	В	X=1	
1	0	0	0	1	0	
1	0	1	1	0	0	
1	1	0	1	0	1	
1	1	1	1	0	1	

Design the circuit with the help of D flip Flop and write the

State Table for the below State Diagram,

		q^*	z	
${ m_A}^q{ m_B}$	$x_{\mathbf{A}} = 0$	x = 1	x = 0	x = 1
0 0	0 0	0 1	0	0
0 1	0 0	1 0	0	0
1 0	0 0	1 0	0	1
1 1	0 0	1 0	0	1

D-FF characteristic eq: D = Q*

	x AB	00	01	11	10
D_A	0	0	0	0	0
A	1	0	1	1	1
		D.	=Ax-	+Bx	

A	В	X
0	1	1
1	0	1
1	1	1

	x AB	00	01	11	10
D_B	0	0	0	0	0
В	1	1	0	0	0
D _B =A'B'x					

A	В	X
0	0	1

	x AB	00	01	11	10
z	0	0	0	0	0
	1	0	0	1	1
			7=	Δ.	

A	В	X
1	1	1
1	0	1

	9	<i>l</i> *		z		
$\mathbf{A}^{q}\mathbf{B}$	$x_{\mathbf{A}} = 0$	x = 1 A B	x = 0	x = 1		
0 0	0 0	0 1	0	0		
0 1	0 0	1 0	0	0		
1 0	0 0	1 0	0	1		
11	0 0	1 0	0	1		

D-FF characteristic eq: D = Q*

Example 1 Design circuit

z=Ax

Show the state diagram of following circuit

Show the state diagram of following circuit

Show the state diagram of following circuit

$$y = AB$$

 $D_A = Ax+Bx$
 $D_B = Ax+B'x$

$$y = AB$$
 $D_A = Ax+Bx$
 $D_B = Ax+B'x$

x: input, y: output A, B: present state D_A, D_B: next state (D-FF)

FIGURE 5.29 Logic diagram of sequence detector

The ckt input			Next	state	OUTPUT Y	
Input	Input Current state					
X=0	A	В	A B		X=0	
0	0	0	0	0	0	
0	0	1	0	0	0	
0	1	0	0	0	0	
0	1	1	0	0	1	

The ckt input			Nevt	state	OUTPUT Y	
Input	Current state		TVCAL	State		
X=1	A	В	A	B	X=1	
1	0	0	0	1	0	
1	0	1	1	0	0	
1	1	0	1	1	0	
1	1	1	1	1	1	

DR AJM

Present State		Next State					
		x = 0		x = 1		Output	
A	B	A	В	A	В	у	
0	0	0	0	0	1	0	
0	1	0	0	1	0	0	
1 1	0 1	0	0	1	1	0	
_	•	0	0	1	1	1	

Design a 2-bit complex counter with one input x that can be

- a down counter when x=0 (... $\rightarrow 11 \rightarrow 10 \rightarrow 01 \rightarrow 00 \rightarrow 11 \rightarrow ...)$
- a Johnson counter when x=1 (... \rightarrow 00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00 \rightarrow ...)

		NEXT S	TATE
PRESENT STATE		x=0	x=1
\mathbf{A}	В	ΑВ	A B
0	0	1 1	0 1
0	1	0 0	1 1
1	0	0 1	0 0
1	1	1 0	1 0

18

		NEXT	STATE
PRES ST	SENT ATE	x=0	x=1
A	В	ΑВ	A B
0	0	11	0 1
0	1	0 0	11
1	0	0 1	0 0
1	1	1 0	1 0

DR AJM

		NEXT STATE				
PRESENT STATE		x=0		x=1	L	
A	В	АВ		A	В	
0	0	1	1	0	1	
0	1	0	0	1	1	
1	0	0	1	0	0	
1	1	1	0	1	0	

DR AJM

	NEXT STATE						
PRESENT STATE		x=0			x=1		
\mathbf{A}	В	A	В		A	В	
0	0	1	1		0	1	
0	1	0	0		1	1	
1	0	0	1		0	0	
1	1	1	0		1	0	

$$D_B=B'x'+A'x$$

Reference

