

Algorithms: Design and Analysis, Part II

NP-Completeness

Reductions and Completeness

Reductions

Conjecture: [Edmonds '65] There is no polynomial-time algorithm that solves the TSP. [Equivalent to $P \neq NP$]

Really good idea: Amass evidence of intractability via <u>relative</u> difficulty - TSP "as hard as" lots of other problems.

Definition: [A little informal] Problem Π_1 reduces to problem Π_2 if: given a polynomial-time subroutine for Π_2 , can use it to solve Π_1 in polynomial time.

Quiz

Which of the following statements are true?

- A) Computing the median reduces to sorting
- B) Detecting a cycle reduces to depth-first search
- C) All pairs shortest paths reduces to single-source shortest paths
- D) All of the above

Completeness

Suppose Π_1 reduces to Π_2 .

Contrapositive: If Π_1 is not in P, then <u>neither is Π_2 </u>.

That is: Π_2 is at least as hard as Π_1 .

Definition: Let C = a set of problems.

The problem Π is C-complete if:

(1) $\Pi \in \mathcal{C}$ and (2) everything in \mathcal{C} reduces to Π .

That is: Π is the hardest problem in all of C.

Choice of the Class $\mathcal C$

Idea: Show TSP is C-complete for a REALLY BIG set C.

How about: Show this where C = ALL problems.

Halting Problem: Given a program and an input for it, will it eventually halt?

Fact: [Turing '36] No algorithm, however slow, solves the Halting Problem.

Contrast: TSP definitely solvable in finite time (via brute-force search).

Refined idea: TSP as hard as all brute-force-solvable problems.