

Universidade de Pernambuco (UPE) Escola Politécnica de Pernambuco (POLI) Instituto de Ciências Biológicas (ICB)

Programa de Pós-Graduação em Engenharia de Sistemas

Hugo Abreu Mendes

MODELOS HÍBRIDOS AUTOMATIZADOS PARA PREVISÃO DE IRRADIAÇÃO E PRODUÇÃO FOTOVOLTAICA

Dissertação de Mestrado

Recife, Março de 2020.

Universidade de Pernambuco (UPE) Escola Politécnica de Pernambuco (POLI) Instituto de Ciências Biológicas (ICB)

Programa de Pós-Graduação em Engenharia de Sistemas

Hugo Abreu Mendes

MODELOS HÍBRIDOS AUTOMATIZADOS PARA PREVISÃO DE IRRADIAÇÃO E PRODUÇÃO FOTOVOLTAICA

Dissertação apresentada à Universidade de Pernambuco como parte dos requisitos para a obtenção do título de Mestre em Engenharia de Sistemas.

Área de concentração: Telemática

Orientadora: Prof. Dr. Manoel Henrique da Nóbrega Marinho Coorientador: Prof. Dr. João Fausto Lorenzato de Oliveira

Recife, Março de 2019.

Agradecimentos

Agradeço primeiramente a deux

Resumo

resumindo aqui a parada doida

Palavras-chave: transmissão de imagens, 2-BAC, códigos turbo, decodificação iterativa

Abstract

Keywords: image transmission, 2-BAC, turbo codes, iterative decoding

Lista de Abreviações e Siglas

Lista de Figuras

Lista de Tabelas

Sumário

1	Intr	odução	9
	1.1	Motivação	9
	1.2	Objetivos	10
		1.2.1 Objetivo Geral	10
		1.2.2 Objetivos específicos	10
	1.3	Estado-da-arte	10
	1.4	Estrutura da dissertação	10
2	Ima	gens e Canal 2-BAC	11
	2.1	Imagem Digital	11
		2.1.1 Formato Portable Gray Map	11
	2.2	Métricas	11
	2.3	Probabilidade de Erro de Bit	11
	2.4	Canal 2-BAC	11
3	Cod	ificação Turbo	12
	3.1	Introdução aos Códigos Convolucionais	12
	3.2	O Codificador Turbo	12
	3.3	O Decodificador	12
4	Siste	emas Simulados e Resultados	13
5	Con	clusões	14
	5.1	Sugestões para Trabalhos Futuros	14
A	Apê	ndice	15
Referências Ribliográficas			15

Introdução

1.1 Motivação

Estimativa de potencial de geração fotovoltaico é um tema que já obteve grande avanço na academia [?,?,?]. Os trabalhos levam em consideração a tecnologia utilizada pela célula e modelos de satélite que visam definir os parâmetros físicos de entrada, tais como radiação, temperatura e velocidade do vento [?,?,?,?].

A utilização de técnicas de inteligência artificial aplicadas a este tema tem sido limitada a predição temporal de geração [?, ?, ?]. Este tipo de predição é muito útil levando-se em consideração o sistema elétrico completo de uma região ou país, para balanceamento de oferta e demanda, sendo possível uma programabilidade maior para o operador do sistema elétrico, em relação a adequação do uso de outras fontes de energia. Por exemplo, o operador pode exigir que por volta das 12h da manhã, dado o pico de radiação, sendo assim maior geração fotovoltaica, que comportas de usinas hidrelétricas sejam fechadas e usinas térmicas parem de queimar combustível.

Entretanto este tipo de predição requer que um possível usuário final já tenha instalado sua usina e tenha operante dados temporais sobre ela. Praticamente, a IA (Inteligência Artificial) ainda não adentrou no âmbito em que a predição de geração fotovoltaica não dependa do sistema existir. Os trabalhos geralmente envolvem apenas dados tipo GIS (*Geographic Information System*) [?,?,?,?].

Este trabalho busca unir de uma melhor forma o uso da ciência de dados e algoritmos de aprendizado de máquina para estimação de potencial de geração em sítios, levando a otimização da escolha utilizando dados reais de geração e dados de simulação, levando em consideração diversas bases de dados diferentes em um estudo de caso para a região nordeste do Brasil.

A escolha desta região do Brasil para estudo de caso leva em consideração o fato de ser a região com a maior quantidade de dados de empreendimentos de geração fotovoltaicas disponíveis pela plataforma da ONS (Operador Nacional do Sistema) [?]. Além disto, o uso de energia solar consta somente com 1,2 da produção nacional [?].

1.2 Objetivos

- 1.2.1 Objetivo Geral
- 1.2.2 Objetivos específicos
- 1.3 Estado-da-arte

1.4 Estrutura da dissertação

A organização das seções deste trabalho se dá da seguinte forma. Na seção ?? será discutido dados espaciais obtidos de diferentes fontes, todos os dados desta seção são obtidos a partir de médias temporais durante todos os anos de coleta de cada base. Na seção ?? é apresentado um modelo de estimação espacial baseado em análise estatística. Posteriormente, na seção ?? é explicado o uso de análise de series temporais para dados de geração diária em algumas usinas do nordeste. Por fim, nos resultados ?? é uma compilação de todas as análises apresentadas anteriormente. Fechando o trabalho, na discussão ?? são levantadas melhoras sobre o trabalho e ideias para a posterioridade.

Imagens e Canal 2-BAC

- 2.1 Imagem Digital
- 2.1.1 Formato Portable Gray Map
- 2.2 Métricas
- 2.3 Probabilidade de Erro de Bit
- 2.4 Canal 2-BAC

3 Codificação Turbo

- 3.1 Introdução aos Códigos Convolucionais
- 3.2 O Codificador Turbo
- 3.3 O Decodificador

Sistemas Simulados e Resultados

5 Conclusões

5.1 Sugestões para Trabalhos Futuros

Apêndice