ANALISIS RE-SETTING DISTANCE RELAY MENGGUNAKAN METODE ARTIFICIAL NEURAL NETWORK PADA SALURAN TRANSMISI SISTEM 150 KV GARDU INDUK BANGIL – GARDU INDUK PIER

Wibisono Adi Prasetyo¹, Karel A Karim Mewal¹, Roni Sianturi¹, I Made Mataram², Cok. Gede Indra Partha²

¹Mahasiswa Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana ²Dosen Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana, Alamat Universitas, Jl. Raya Kampus Unud, Jimbaran, Kec. Kuta Sel., Kabupaten Badung, Bali wibisono.2000.adi@gmail.com

ABSTRAK

Hasil pengukuran impedansi penghantar pada Gardu Induk Bangil - Gardu Induk PIER menggunakan alat Omicron CPC100 menunjukan perbedaan hasil dengan nilai impedansi spesifikasi pabrik yang melebihi batas toleransi sebesar 5% terhadap hasil pengujian. *Re-setting distance relay* diperlukan agar *relay* mampu mengamankan saluran transmisi dengan tepat. Penelitian ini menggunakan model *Artificial Neural Network* untuk melakukan *re-setting distance relay* . *Re-setting* yang dilakukan dengan bantuan *software* Analisis Berbasis Pemodelan dan Visualisasi menunjukan bahwa *relay* bekerja dengan sangat baik dalam merespon gangguan tanpa adanya jangkauan *relay* yang saling *overlapping*. Hasil perhitungan menggunakan ANN menunjukan tingkat akurasi yang sangat tinggi sebesar 99,88% dan tingkat *error* sebesar 0,00113. Indikator analisis data lain yang digunakan menghasilkan nilai sebagai berikut : MSE = 0,00002 , RMSE = 0,0047 , MAD = 0,00361 , dan MAPE = 0,163% yang menunjukan bahwa model *Neural Network* yang telah dibuat layak untuk digunakan.

Kata kunci: Re-setting distance relay, Relay Jarak, Artificial Neural Network, Impedansi.

ABSTRACT

The results of conducting impedance measurements at the Bangil - PIER Substation using the Omicron CPC100 tool show the difference in the results with the factory specification impedance value which exceeds the tolerance limit of 5% of the test results. Re-setting the distance relay is needed so that the relay is able to properly secure the transmission line. In this study, the Artificial Neural Network model was used to re-setting the distance relay. Re-setting was carried out using Analysis Software Based on Modeling and Visualization showed that the relay worked very well in responding to disturbances without overlapping it ranges. The results of calculation using ANN showing a very high level of accuracy of 99.88% and an error rate of 0.00113. Other data analysis indicators used produce the following values: MSE = 0,00002, RMSE = 0,0047, MAD = 0,00361, and MAPE = 0,163% which indicates that the Neural Network model that has been made is feasible to use.

Keywords: Re-setting distance relay, Distance Relay, Artificial Neural Network, Impedance.

1. PENDAHULUAN

Listrik merupakan sumber energi utama yang banyak dimanfaatkan untuk menunjang aktifitas manusia [1]. Negara berkembang seperti Indonesia, mengandalkan listrik sebagai komoditi utama yang digunakan untuk meningkatkan perekonomian. Selain digunakan sebagai sumber penerangan oleh masyarakat luas, listrik juga merupakan sumber energi utama bagi sektor industri. Bertambahnya jumlah

penduduk, pertumbuhan ekonomi, dan berkembangnya sektor industri turut membawa konsekuensi meningkatnya kebutuhan energi listrik dari tahun ke tahun. Pemerintah mencatat konsumsi listrik meningkat mencapai 1.109 kwh per kapita di kuartal III 2021 per September 2021. Angka ini mencapai 92,2 persen dari target yang ditetapkan pemerintah yakni 1.203 kwh per kapita.

Gangguan dan kerusakan saluran transmisi listrik merupakan salah satu utama sebuah kendala perusahaan penyedia energi dalam menjalankan pengoperasian sistem ketenagalistrikan. Saluran transmisi merupakan media yang digunakan untuk menvalurkan mentransmisikan tenaga listrik generator station/pembangkit menuju ke saluran distribusi untuk dialirkan konsumen listrik secara merata oleh distribution station. Keandalan saluran transmisi sebagai bagian utama dalam sistem tenaga listrik berperan penting agar listrik dapat tersalurkan dari sumber pembangkit menuju saluran distribusi. Salah satu gangguan yang sering terjadi pada saluran transmisi adalah gangguan hubung Gangguan hubung singkat. singkat merupakan suatu gangguan yang terjadi karena penghantar berarus terhubung dengan penghantar lain atau dengan tanah (ground). Gangguan hubung singkat biasanya terjadi karena kerusakan isolasi pada penghantar. Bila gangguan hubung singkat dibiarkan dalam jangka waktu yang lama maka dapat mengakibatkan berbagai macam kerusakan seperti:

- Berkurangnya kestabilan sistem daya dalam suatu sistem tenaga listrik
- Rusaknya peralatan listrik disekitar lokasi gangguan karena arus yang tidak seimbang
- Ledakan bisa saja terjadi pada peralatan yang mengandung minyak isolasi. Hal ini dapat membahayakan petugas yang menangani gangguan tersebut dan merusak peralatan lain.
- Terganggunya sistem pelayanan tenaga listrik diakibatkan oleh tindakan keamanan yang dilakukan akibat gangguan yang terjadi. Kasus yang terparah dapat dilakukan lokalisir selama beberapa waktu.

Sistem pengamanan yang mumpuni dapat mengurangi resiko dari gangguan hubung singkat. Tandililing dkk. (2018), melakukan sebuah studi analisis gangguan hubung singkat untuk setting distance relay pada saluran transmisi 70 kV[6]. Penelitian menunjukan bahwa jarak lokasi gangguan berpengaruh terhadap besar kecilnya arus gangguan. Penelitian yang dilakukan R. Sudrajat, S. Saodah, and mengenai analisis penelaan Waluyo distance relay sebagai proteksi utama pada saluran udara tegangan tinggi 150 Bandung Selatan - Cigereleng yang

dilakukan secara manual[4]. Hasil penelitian menunjukkan penelaan setting distance relay akibat gangguan tiga phasa, arus hubung singkat, dan gangguan phasa ke tanah. Penelitian tersebut tidak dijelaskan proses pengambilan dan pengujian elemen (impedansi penghantar) atau parameter input setting distance relay. Penelitan lain dilakukan oleh S. Nikolovski and D. Prhal. mengenai numerical simulation of distance protection on three terminal high voltage transmission lines yang dilakukan menggunakan software DIgSILENT power factory dengan hasil yang cukup tepat [3]. Software ini dapat digunakan untuk memeriksa koordinasi distance relay antar jaringan dan menganalisis diagram r-x yang disimulasikan untuk berbagai gangguan. Sebuah simulasi dilakukan untuk melihat apakah seluruh sistem cukup terlindungi oleh hasil perhitungan dan simulasi.

Penelitian ini juga membahas tentang pengaruh perubahan impedansi penghantar terhadap setting distance relay. Penelitian ini menganalisis bagaimana pengukuran impedansi penghantar yang digunakan sebagai parameter setting distance relay. Pengukuran impedansi saluran ini menggunakan alat uji Omicron CPC100 dan memperoleh nilai impedansi urutan positif sebesar 0,934 impedansi karakteristik sebesar 2,535 Ohm, dan kalkulasi impedansi karakteristik sebesar 2,528 Ohm. Nilai impedansi hasil pengujian akan dibandingkan dengan nilai impedansi spesifikasi pabrik setelah dilakukan pengujian dengan batas toleransi sebesar 5% teperhadap hasil pengujian.

Kesalahan dalam melakukan setting distance relay akan berpengaruh terhadap penanganan gangguan dan adanya kecelakaan kerja. Metode ataupun model algorithma yang tepat dibutuhkan agar mampu melakukan setting distance relay secara akurat dan otomatis. Peneliti mengusulkan model Neural Network yang digunakan untuk melakukan setting distance relav pada penelitian ini. Artificial Neural Network akan dibandingkan dengan simulasi menggunakan software Analisis Berbasis Pemodelan dan Visualisasi untuk mengetahui tingkat keakuratan model yang telah dibuat.

Setting Zona Terproteksi Distance Relay

Distance relay mengukur tegangan pada titik relay dan arus gangguan yang terlihat dari relay, dengan membagi besaran tegangan dan arus, maka impedansi sampai titik terjadinya gangguan dapat ditentukan. Perhitungan impedansi pada penghantar dapat dihitung menggunakan rumus pada persamaan berikut:

$$Z_f = \frac{V_f}{I_f} \tag{1}$$

Dimana:

Z_f = Impedansi gangguan (*Ohm*),
 V_f = Tegangan gangguan (*Volt*),
 I_f = Arus gangguan (*Amp*).

2.2. Karakteristik Distance Relay

Karakteristik *distance relay* dibagi menjadi dua yaitu mho (aliran listrik) dan *quadrilateral*.

- 1. Ciri-ciri Mho (aliran listrik)
 - a. Titik pusatnya bergeser sehingga mempunyai sifat directional. Mempunyai keterbatasan untuk mengantisipasi gangguan tanah high resistance. Gangguan high resistance akan menambah nilai Rf (tahanan gangguan) sehingga relay bekeria di luar akan proteksinya (gangguan yang berada di zone-1 namun karena bersifat resistif sehingga relay membacanya sebagai zone-2), begitu pula jika terdapat jenis gangguan kapasitif maupun İnduktif. Gangguan akan menambah nilai Xf (reaktansi kapasitif atau Induktif gangguan) seperti yang ditunjukkan pada Gambar 1 dibawah ini, sehingga akan bekerja di luar zone proteksinya.
 - b. Bekerja digunakan sebagai karakteristik fasa fasa

Gambar 1 Karakteristik Mho

2. Ciri-ciri Quadrilateral

- Karakteristik quadrilateral merupakan kombinasi dari 3 macam komponen yaitu: reaktansi, berarah dan resistif.
- b. Jika seting jangkauan resistif cukup besar maka karakteristik relay quadrilateral dapat mengantisipasi gangguan tanah dengan tahanan tinggi (high resistance) dan batasan jangkauan resistif kurang dari 50 % impedansi beban.
- c. Umumnya pada relay elektromekanik statis dan kecepatan dengan relay karakteristik quadrilateral lebih lambat dari jenis mho. Relav numerik yang telah menggunakan digital sinyal microprocessor (DSP) kecepatan antara karakteristik mho dan quadrilateral relatif sama.
- d. Bisa digunakan untuk karakteristik gangguan fasa – fasa dan fasatanah.

2.3. Alat Uji Impedansi CPC 100

Omicron CPC100 merupakan perangkat pengujian yang cukup lengkap untuk melakukan pengujian transformator arus. Omicron CPC100 juga dapat melakukan pengujian transformator tenaga, sistem pentanahan (*groungding*), pengujian tegangan tinggi (HV), pengujian GIS dan *circuit breaker* [2].

Gambar 2 Alat Uji Impedansi CPC100 [2]

Omicron CPC100 ditunjukkan pada gambar 2, alat ini dapat menginjeksikan arus hingga 2000 A, dan tegangan hingga 12 kV. Alat ini sangat ideal untuk melakukan pengujian karena memiliki fitur yang cukup lengkap dan sangat *portable*.

2.4. Impedansi Saluran Masing-Masing Zona

Peneliti perlu melakukan perhitungan faktor kompensasi residual atau *kZn Res Comp* sebelum melakukan *setting* impedansi pada masing-masing *zone*. Faktor kompensasi residual dapat diterapkan secara khusus ke *zone* tertentu

jika diperlukan. Besaran ini berguna ketika karakteristik impedansi saluran berubah saat sirkit *hybrid* digunakan. Dalam penelitian ini karakteristik impedansi saluran tidak berubah maka dari itu faktor *kZn* umum dapat diterapkan untuk masing-masing *zone*.

$$kZn \operatorname{Res Comp} |kZn| = \frac{|Z_2 - Z_1|}{3Z_1}$$
 (2)

Z adalah nilai masing-masing zona setiap saluran. Langkah selanjutnya setelah menemukan nilai *kZn Res Comp* maka adalah menghitung nilai *setting* masing-masing *zone*. Menghitung masing-masing *zone* untuk menentukan jarak jangkauan gangguan.

1.) Load Avoidance

Dalam praktiknya, pengaturan *relay* harus memungkinkan tingkat kelebihan muatan, biasanya maksimal arus IFLC adalah 120% yang berlaku pada sistem saluran transmisi. Juga, untuk jalur sirkuit ganda selama waktu mati *autoreclose* dari gangguan pada sirkuit yang berdekatan, dua kali tingkat arus ini dapat mengalir pada saluran yang sehat untuk waktu yang singkat. Impedansi *blinder* perlu diatur, untuk menghindari beban berlebih sebagai berikut:

beban berlebih sebagai berikut:
$$Z < blinder = \frac{115}{\sqrt{3}} : (IFLC \times 3)$$
 (3)

IFLC atau nilai arus *full load* (beban penuh) pada Gardu Induk Bangil - PIER adalah sebesar 1620 A. Maka :

adalah sebesar 1620 A. Maka :
$$Z < blinder = \frac{115}{\sqrt{3}}$$
: (1620 × 3) $Z < blinder = 0.0136 \ Ohm$

2.) Setting Zone

Software Microsoft excel digunakan untuk mempercepat perhitungan manual. Program ini menggunakan formula sederhana untuk melakukan perhitungan manual. Berdasarkan data input seperti ada Tabel 1 dengan variabel impedansi saluran, panjang saluran, sudut impedansi, dan rasio CT dan PT. Berikut adalah formula masingmasing zone yang digunakan dalam perhitungan manual menggunakan formula Microsoft excel

a. Zone 1

Jangkauan Zone 1 yang diperlukan adalah 80% dari impedansi saluran antara Gardu Induk Bangil - Gardu Induk PIER. Jangkauan zone 1 phase dan Zone 1 ground ditetapkan 80%. Relay akan secara otomatis menghitung jangkauan

impedansi yang diperlukan, maka nilai zone 1:

$$Z1 = 0.8 \times L \times ZL1 \times rasio \frac{cT}{PT}$$
 (4)

b. Zone 2

Impedansi zone 2 yang diperlukan adalah saluran Gardu Induk Bangil - PIER ditambah 50% saluran Gardu Induk PIER Gondongwetan, maka nilai jangkauan zone 2 adalah $Z2 = (L1 + (50\% \times L2)) \times ZL1 \times rasio \frac{CT}{PT}$ (5) Alternatifnya, dalam pengaturan sederhana, jangkauan ini dapat diatur sebagai persentase dari garis terlindung.

c. Zone 3

Nilai jangkauan zone 3 yang diperlukan adalah total dari jangkauan saluran Gardu Induk Bangil – PIER ditambah Gardu Induk PIER - Gondongwetan dikali dengan nilai maksimum 120%.

$$Z3 = (L1 + L2) \times ZL1 \times rasio \frac{CT}{PT} \times 1,2$$
 (6)

Alternatifnya, dalam mode pengaturan sederhana, jangkauan ini dapat diatur sebagai persentase dari garis terlindung.

d. Zone-3 Reverse

Setelan zone-3 reverse atau zone 4 (arah belakang) dipakai untuk membackup proteksi busbar. Setelan zone-3 reverse adalah 10% dari impedansi line terkecil atau saluran 1. Relay jarak yang tidak mempunyai range sampai dengan 10% dipilih setting minimum. Setting zone 4 reverse dengan skema POR dan BLOCKING di mana zone 4 digunakan untuk memberikan keputusan arah terbalik untuk pemblokiran atau permisif skema penjangkauan. Sebagai relay jarak jauh, jangkauan zone-3 reverse harus lebih jauh dari pada jangkauan zone-2.

$Z3 - reverse = 10\% \times ZL1 \tag{7}$

2.5. Nerual Network

Penelitian ini menggunakan algoritma Artificial Neural Network untuk memprediksi jenis gangguan hubung singkat pada saluran transmisi. Disebut ANN (Artificial Neural Network) karena algoritma ini meniru prinsip kerja jaringan syaraf manusia dalam prinsip kerjanya. Lapisan-lapisan penyusun ANN dibagi menjadi 3, yaitu lapisan input (input layer), lapisan tersembunyi (hidden

layer), dan lapisan output (output layer) [5]. Artificial Neural Network atau Artificial Neural Network menawarkan keakuratan yang tinggi dalam prediksi klasifikasi. Setiap lapisan bertanggung jawab untuk melakukan fungsi yang sama berdasarkan inputan sebelumnya.

Nantinya, pola tersebut yang akan dijadikan sebagai acuan untuk memprediksi output berdasarkan input yang diberikan. Algoritma yang lazim digunakan adalah algoritma klasifikasi. Classification atau klasifikasi berarti proses memprediksi output atau kategori data dengan memanfaatkan yang nilai ada. Data data akan dikelompokkan dan di proses untuk mempelajari pola yang telah dibuat.

Gambar 3. Struktur dasar Neural Network

Gambar 3. adalah skema dasar dari struktur Neural Network yang terdiri dari input layer, hidden layer, dan output layer. Sistem kerja Neural Network bergantung pada tiga hal utama yaitu: pola hubungan antar neuron, metode untuk menentukan bobot penghubung (trainning learning), dan fungsi aktivasi.

 Hubungan Antara Neuron
 Hubungan antara neuron
 direpresentasikan sebagai input yang
 berisi berbagai macam informasi yang
 diperlukan oleh model Neural Network
 untuk menyelesaikan masalah.

2. Trainning learning

Disini terjadi proses komputasi dimana informasi diolah untuk menemukan pola dari data yang telah di*input*kan. Proses ini terjadi di *hidden layer* dimana bobot (*input*) yang sedang diolah akan diperbarui secara terus menerus hingga salah satu dari jumlah iterasi, *error* dan waktu proses telah tercapai. Hal ini dilakukan guna menyesuaikan struktur model *Neural Network* terhadap pola yang diinginkan berdasarkan masalah tertentu yang akan dipecahkan.

3. Fungsi Aktivasi

Fungsi aktivasi merupakan fungsi yang digunakan pada jaringan syaraf untuk mengaktifkan atau tidak mengaktifkan inputan pada neuron. Fungsi aktivasi akan melakukan perhitungan terhadap input dan bobot yang akan dikeluarkan pada layer output.

Penelitian ini menggunakan metode Backpropagation algoritma merupakan algoritma pembelajaran yang terawasi dan biasanya digunakan oleh perceptron dengan banyak lapisan untuk mengubah bobot- bobot yang terhubung dengan neuron-neuron yang ada pada tersembunyinya. lapisan Algoritma Backpropagation menggunakan output untuk mengubah nilai bobotbobotnya dalam arah mundur (backward). Untuk mendapatkan error ini, perambatan maju (feedforward) harus dikerjakan terlebih dahulu.

Arsitektur algoritma ini memiliki beberapa unit yang ada dalam satu atau lebih hidden layer.

Gambar 4. Arsitektur Backpropagation

Gambar 4. adalah arsitektur *Backpropagation* dengan n buah masukan (termasuk sebuah bias), sebuah *hidden* layer yang terdiri dari p unit (termasuk satu bias), serta m unit *output*.

 V_{ij} merupakan bobot garis dari unit masukan x_i ke unit layer tersembunyi z_j (V_{j0} nerupakan bobot garis yang menghubungkan bias di unit masukan ke unit layar tersembunyi z_j). w_{kj} merupakan bobot dari unit layer tersembunyi z_j ke unit output y_k .

3. METODOLOGI PENELITIAN

Penelitian ini dilaksanakan di Gardu Induk Bangil - Gardu Induk PIER Unit Induk

Transmisi Jawa Bali Madura PLN pada bulan September 2022:

Adapun langkah – langkah yang dilakukan untuk menyelesaikan masalah penelitian disusun dalam diagram alir pada Gambar 5.

Gambar 5. Diagram alir penelitian

Penjelasan Gambar 5. dijabarkan pada langkah – langkah di bawah ini:

1. Pengumpulan dan Pengolahan Data Akuisisi data atau pengumpulan data adalah serangkaian proses pengukuran, pengumpulan, dan validasi data vang dibutuhkan dalam memecahkan sebuah masalah. Pengumpulan pengukuran data dilakukan dengan menguji impedansi saluran pada saluran Gardu Induk Bangil - Gardu Induk PIER dengan menggunakan alat OMICRON CPC 100. Pengukuran dilakukan di area PT. PLN (Persero) Gardu Induk PIER - Gardu Induk Bangil, Provinsi Jawa Timur pada tanggal 01 Oktober Sampai 20 Oktober untuk mengetahui kondisi dan situasi sistem transmisi jaringan listrik di Unit Induk Transmisi Jawa Bali dan Madura (UIT JBM).

Tabel 1. Data Penghantar Gardu Induk Bangil – gardu Induk PIER

Dangii – garuu muuk Fillik									
No	Nama	GI bangil – PIER	GI PIER – Gondongwetan						
1	Jenis Penghantar	OHL-150kV- ZEBRA 2X484.5mm (1620A)	OHL-150kV- ZEBRA 2X484.5mm (1620A)						
2	Impedansi Saluran (<i>Ohm</i> /km)	1,4593	3,0789						
3	Panjang Saluran (Km)	5,15	10,87						
4	Rasio CT	200	400						
5	Rasio PT	1363,6364	1363,6364						
6	Sudut Impedansi (θ)	82,1503°	82,1504°						

 Melakukan Simulasi Software Analisis Berbasis Pemodelan dan Visualisasi Tahap selanjutnya adalah melakukan simulasi menggunakan software Analisis Berbasis Pemodelan dan Visualisasi untuk setting distance relay menggunakan variabel - variabel inputan pada Gardu Induk Bangil – gardu Induk PIER – Gardu Induk Gondangwetan. Gambar 6 dan 7 adalah Single Line Diagram dari Gardu Induk tersebut.

Gambar 7. SLD Gardu Induk PIER – Gardu Induk Gondangwetan

Merancang Model Neural Network
 Model ANN digunakan untuk melakukan
 perhitungan inputan distance relay
 secara otomatis. Data yang digunakan
 akan diolah sehingga menghasilkan
 sebuah pola yang dapat digunakan
 untuk menentukan hasil nilai inputan
 distance relay secara otomatis dan
 efisien, lalu data perhitungan dari model
 ANN akan dibandingkan dengan data
 yang diperoleh dari data perhitungan
 manual.

Data yang digunakan didalam model ANN menggunakan perhitungan 75:25 atau dengan 80:20, dengan keterangan sebagai berikut 75% / 80% data digunakan sebagai data trainning dan 25% / 20% digunakan sebagai data testing. Penggunaan perhitungan tersebut sudah se lazimnya untuk membuat model Neural Network yang efektif dan optimal.

- Analisis Re-setting distance relay
 Analisis re-setting distance relay mengikuti langkah-langkah sebagai berikut:
 - a. Mencari akurasi model *Neural Network*.
 - b. Membandingkan nilai pengukuran inputan distance relay menggunakan Neural Network dengan nilai inputan distance relay yang dilakukan menggunakan perhitungan manual.
 - c. Mencari *mean square error* antara model *Neural Network* dan perhitungan manual.
 - d. Menganalisis kinerja *relay* setelah diberikan *input*an *relay*.
 - e. Menganalisis pengaruh variabel *input*an *setting relay* terhadap kinerja *relay*.
- 5. Analisis Performansi Model
 Pengujian performansi model
 diperlukan untuk menguji keakuratan
 antara data perhitungan manual dan
 perhitungan menggunakan Neural
 Network. Beberapa kategori analisis
 data yang digunakan diantaranya
 mean absolute deviation (MAD),
 mean absolute percentage error
 (MAPE), mean square error (MSE),
 dan root mean square error (RMSE).

4. HASIL DAN PEMBAHASAN

4.1. Analisis Simulasi Analisis Berbasis Pemodelan dan Visualisasi

Berdasarkan simulasi kerja yang telah dilakukan pada *software* Analisis Berbasis Pemodelan dan Visualisasi, *re-setting distance relay* pada Gardu Induk PIER – Bangil karena adanya perubahan nilai impedansi bekerja dengan sangat baik. Koordinasi semua *relay* pada kondisi *eksisting* maupun *re-setting* sudah benar ditandai dengan tidak adanya jangkauan *relay* yang saling *overlapping*.

Hasil simulasi menunjukkan relay yang bekerja ketika gangguan diletakkan pada zone-1 yang menjangkau 80% panjang saluran. Begitupun relay mendeteksi adanya gangguan yang mengakibatkan perbedaan impedansi sehingga relay memberikan komando (koordinasi) terhadap switch selanjutnya untuk memutuskan arus lebih penyebab vana menjadi gangguan. Berdasarkan pada setting yang telah dilakukan relay melakukan trip untuk pengamanan yang ditunjukan tanda silang hijau.

4.2. Hasil Perhitungan Manual

Dalam mementukan nilai setting relay jarak diperlukan beberapa besaran inputan yaitu impedansi saluran, panjang saluran, rasio transformator arus (CT), dan transformator tegangan (PT). Berdasarkan data inputan yang telah disebutkan pada tabel 1, maka untuk melakukan setting relay jarak di perlukan analisa sistem tenaga.

Dengan software Microsoft Excel untuk mempermudah perhitungan manual menggunakan variabel impedansi saluran (ZL), panjang saluran (L), sudut impedansi, dan rasio CT/PT. Menghasilkan nilai yang ditunjukkan pada Tabel 2.

Tabel 2. Hasil Perhitungan Setting Impedansi Masing – Masing Zona Terproteksi

Zon	e 1	Zone 2	Zone 3	Zone 4
0,88	318	2,2655	4,1145	0,1459

4.3. Hasil Nilai Setting Relay menggunakan Artificial Neural Network

Pembuatan model Artificial Neural Network dilakukan dengan proses pengolahan dataset berupa penskalaan (normalisasi data), inisialisasi iaringan, inisialisasi bobot. proses pelatihan Backpropagation, analisis hasil perdiksi, dan nilai kerja. Pengolahan dan analisa yang dilakukan menggunakan dataset dari Gardu Induk yang diteliti dengan mengembangkan variabel titik gangguan yang terjadi. Sampel data yang didapatkan melalui perhitungan manual ditunjukkan pada Tabel 3 data tersebut digunakan untuk trainning dan testing model artificial Neural Network.

Tabel 3. Data Trainning dan Testing

	Sampel Data Trainning dan Testing											
TG %	5	10	15	20	35	40	45	50	85	90	95	100
Zone1	0.044	0.088	0.132	0.176	0.309	0.353	0.397	0.441	0.75	0.794	0.838	0.882
Zone2	0.113	0.227	0.34	0.453	0.793	0.906	1.019	1.133	1.926	2.039	2.152	2.266
Zone3	0.206	0.411	0.617	0.823	1.44	1.646	1.852	2.057	3.497	3.703	3.909	4.115
Zone4	0.007	0.015	0.022	0.029	0.051	0.058	0.066	0.073	0.124	0.131	0.139	0.146

Menggunakan dataset pada Tabel 3 yang sudah dilakukan pengembangan titik terjadinya gangguan (TG%) untuk dilakukan normalisasi data. Tabel 4 adalah sampel hasil normalisasi data *output* dari data *trainning* ataupun *testing*.

Tabel 4. Hasil normalisasi data output

Table III I I I I I I I I I I I I I I I I I									
Zone 1	Zone 2	Zone 3	Zone 4						
0.00000	0.00000	0.00000	0.00000						
0.04989	0.04989	0.05007	0.04795						
0.09977	0.10022	0.09990	0.10274						
0.40023	0.40000	0.39985	0.39726						
0.45011	0.44989	0.44993	0.45205						
0.50000	0.50022	0.50000	0.50000						
0.54989	0.55011	0.55007	0.54795						
0.89909	0.90022	0.89985	0.89726						
0.95011	0.95011	0.94993	0.95205						
1.00000	1.00000	1.00000	1.00000						

Pelatihan dan pengujian model optimal (arsitektur 6-24-4) yang didapatkan performansi model sebagai berikut.

Tabel 5. Hasil Performansi Model

Arsitektur	Iterasi	Akurasi	Error	
6-24-4	1000000	0,99887	0,00113	

Berdasarkan Tabel 5. dapat dijelaskan bahwa setelah melakukan iterasi sebanyak 1000000 kali didapatkan nilai akurasi akhir sebesar 0,99887 dan nilai *loss* sebesar 0,00113. Berikut adalah hasil pelatihan dan pengujian dengan arsitektur model 6-24-4 ditunjukkan pada Tabel 6.

4.4. Analisis Model Neural Network

Beberapa uji coba yang dilakukan didapatkan model ANN yang sangat optimal, dengan menggunakan arsitektur model 4-24-4. Model Neural Network dikatakan bagus ditunjukkan pada Tabel 5. yaitu memiliki akurasi diatas 90% atau mendekati 100% yang artinya nilai prediksi mendekati nilai Aktual. Selain menggunakan fitur accuracy terdapat beberapa parameter yang dapat peneliti gunakan dalam analisis perbandingan jaringan syaraf tiruan diantaranya *mean* absolute deviation (MAD), mean absolute percentage error (MAPE), mean square error (MSE), dan root mean square error (RMSE).

Perhitungan data target (prediksi) dengan model ANN yang sudah dibuat dengan disandingkan dengan data aktual ditunjukkan pada Tabel 7.

Tabel 7. Perbandingandata aktual dan prediksi

producer										
Data	Perh	itungan ma	anual	Neural Network						
TG	0	96	153	0	96	153				
Zone1	0.044	0.838	0.882	0.033	0.838	0.881				
Zone2	0.113	2.152	2.226	0.089	2.152	2.261				
Zone3	0.206	3.908	4.115	0.159	3.910	4.107				
Zone4	0.007	0.139	0.146	0.005	0.139	0.146				

Perhitungan dengan model ANN dianalisis menggunakan beberapa parameter diantaranya MAD, MAPE, MSE, dan RMSE. Analisis MAD atau mean absolute deviation digunakan untuk menghitung rata-rata kesalahan mutlak atau peramalan. absolute dari Hasil perhitungan menunjukan bahwa model memiliki rata-rata kesalahan absolute yang relatif kecil sebesar 0,00361. Nilai ini cukup bagus untuk sebuah model Neural Network. Semakin nilai MAD mendekati 0 maka semakin bagus model yang dibuat.

MAPE adalah bentuk persen dari MAD, menghasilkan nilai sebesar 0,163% . Sesuai rentang nilai MAD dalam kisaran <10% menunjukan kemampuan model dalam melakukan prediksi sangat baik.

Mean square error digunakan untuk mengecek estimasi berapa nilai kesalahan dalam peramalan atau prediksi. Hasil nilai MSE adalah 0,00002 menunjukan bahwa rata-rata jarak kesalahan data aktual dan data prediksi adalah sebesar 0,00002. Perbedaan angka ini sangat kecil dan bisa dijadikan untuk perhitungan peramalan di periode mendatang.

Nilai RMSE menunjukkan bahwa variasi nilai yang dihasilkan oleh suatu model peramalan (*Neural Network*) mendekati variasi nilai observasinya. Nilai 0,0047 menunjukan bahwa hasil prediksi menggunakan model *Neural Network* yang

Tabel 6. Hasil pengujian dengan data trainning

	raber of riadii pengajian dengan data trairining									
_	zone1	0.088	0.132	0.176	0.220	0.265	0.044	0.573	0.705	0.838
Nilai \ktua	zone2	0.227	0.340	0.453	0.566	0.680	0.113	1.473	1.812	2.152
Nila	zone3	0.411	0.617	0.823	1.029	1.234	0.206	2.674	3.292	3.909
	zone4	0.015	0.022	0.029	0.037	0.044	0.007	0.095	0.117	0.139
Si	zone1	0.084	0.121	0.165	0.214	0.264	0.043	0.567	0.710	0.838
Nilai redik	zone2	0.218	0.333	0.425	0.548	0.675	0.109	1.459	1.824	2.152
iz ja	zone3	0.404	0.607	0.801	1.095	1.227	0.209	2.648	3.312	3.910
Ф	zone4	0.014	0.020	0.027	0.035	0.044	0.005	0.094	0.117	0.139
I	loss	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
M	1APE	4.46	5.28	4.31	3.82	0.52	8.87	0.9	0.63	0.5

telah dibuat mendekati varian nilai dari perhitungan manual.

5. KESIMPULAN

Berdasarkan analisa dari hasil perhitungan setting distance relay secara manual dan menggunakan Artificial Neural Network, dapat disimpulkan:

- 1. Setting impedansi masing-masing zone menghasilkan nilai, zone-1 = 0,882 Ohm, zone-2 = 2,226, zone-3 = 4,1154, zone-4 (zone-3 reverse) = 0,1459. Simulasi kerja menggunakan software Analisis Berbasis Pemodelan dan Visualisasi dengan *input*an data dari perhitungan manual diatas bekerja dengan sangat baik. Tidak ada jangkauan relay yang saling overlapping. Ketika gangguan diberikan pada penghantar (tanda silang merah) melakukan trip (tanda silang hijau) PMT untuk memutuskan jaringan.
- 2. Model Neural Network yang digunakan untuk melakukan prediksi setting zone memiliki akurasi yang sangat bagus sesuai pada Tabel 5 dengan rata-rata akurasi di atas 90%. Indikator analisis data yang lain memiliki nilai, MAD (mean absolute deviation) = 0,00361, MAPE (mean absolute percentage error) = 0,163%, MSE (mean square error) = 0,00002, RMSE (root mean square error) = 0,0047. Berdasarkan nilai hasil dari data prediksi yang didapatkan memiliki model yang baik, mengingat nilai MSE, RMSE, dan MAD mendekati nilai 0, dan tidak melebihi dari 0,1. Nilai MAPE hasil prediksi memiliki kategori kemampuan peramalan model sangat baik dengan rentang 0 - 10%.
- Keempat indikator analisis data yang telah dijelaskan diatas menunjukan bahwa model Neural Network yang telah dibuat memenuhi kriteria untuk digunakan sebagai prediksi nilai setting zone dalam re-setting distance relay pada Gardu Induk Bangil - Gardu Induk PIER.

6. DAFTAR PUSTAKA

- [1] Aditya. A., Oky. A. 2021. "Identifikasi Jenis Gangguan Pada Jaringan Distribusi Menggunakan Metode Artificial *Neural Network*". Jurnal Inovtek Seri Elektro. Vol. 3, no. 1.
- [2] Margianto. R., & Hani. S. 2016. "Pengujian Transformator Arus 150 kV untuk Sistem Proteksi Transformator

- Tenaga 3 Gardu Induk Purworejo". Jurnal Elektrikal. Vol. 3, no. 1.
- [3] Nikolovski Srete, Marić Predrag, Prhal Dalibor. 2009. "Numerical Simulation of Distance Protection on Three Terminal High Voltage Transmission Lines". International Journal Advanced Engineering. Vol. 3.
- [4] Sudrajat, R., Saodah, S. 2014. "Analisis Penalaan Rele Jarak sebagai Proteksi Utama pada Saluran Udara Tegangan Tinggi 150 kV". Jurnal Reka Elkomika Teknik Elektro. Vol. 2, no.1.
- [5] Sutojo T., (2011). Kecerdasan Buatan. Dian Nuswaranto University.
- [6] Tandililing. B., Petingko. A., Sarjan, M., & Pirade. Y. S. 2018. "Analisis Gangguan Hubung Singkat Untuk Setting distance relay Pada Saluran Udara Tegangan Tinggi (SUTT) 70 kV Antara Gardu Induk Sidera - Gardu Induk Talise". Forum Teknik Elektro dan Teknologi Informasi. Vol. 8, no. 1.