Chapter 1: Recurrent Problems

Tower of Hanoi

Rules of Game

- 1. Only top disc can be moved
- 2. One disk can be moved at a time
- 3. Larger disk can not be placed on smaller disk

Disk No.	Move
1	A -> C

Disk No.	Move
1	A -> B

Disk No.	Move
1	A -> B
2	A -> C

Disk No.	Move
1	A -> B
2	A -> C
1	B ->C

A B C

- Total number of moves for 2 disks, $T_2 = 3$
- Total number of moves for 1 disks, $T_1 = 1$
- Total number of moves for 0 disks, $T_0 = 0$
- ...
- ...
- •
- Total number of moves for n disks, $T_n = ?$

Steps

Transfer (n-1) smallest disks to the auxiliary peg

- Transfer (n-1) smallest disks back onto the largest disk

Recurrence Formula

•
$$T_n \le 2 * T_{n-1} + 1$$
; for $n > 0$

•
$$T_n >= 2 * T_{n-1} + 1$$
; for $n > 0$

• Recurrence solution:

$$T_0 = 0$$

 $T_n = 2 * T_{n-1} + 1$; for $n > 0$

Solve of Recurrence: Guessing

•
$$T_0 = 0$$

• $T_1 = 2 * T_0 + 1 = 2 * 0 + 1 = 1$
• $T_2 = 2 * T_1 + 1 = 2 * 1 + 1 = 3$
• $T_3 = 2 * T_2 + 1 = 2 * 3 + 1 = 7$
= $2^0 - 1$
= $2^1 - 1$
= $2^2 - 1$

• ...

•

$$\bullet T_n = 2 * T_{n-1} + 1$$

$$= 2^{n} - 1 \dots \dots \dots (2)$$

Mathematical Proof: Induction

Trivial Basis:

$$T_0 = 2^0 - 1 = 0$$

- Suppose equation (2) holds for (n-1). So, $T_{n-1} = 2^{n-1} - 1$ holds
- Now,

$$T_n = 2 * T_{n-1} + 1$$

= 2 * (2ⁿ⁻¹ - 1) + 1
= 2ⁿ - 2 + 1
= 2ⁿ - 1

Hence equation (2) holds for n as well

Solve of Recurrence: Without Inductive Leap

• Recurrence solution:

$$T_0 = 0$$

 $T_n = 2 * T_{n-1} + 1$; for $n > 0$

$$T_0 + 1 = 1$$

 $T_n + 1 = 2 * T_{n-1} + 2 ; \text{ for } n > 0$

Now, if we let, $U_n = T_n + 1$, then we have

$$U_0 = 1$$

 $U_n = 2 * U_{n-1}$; for $n > 0$

$$U_n = 2^n$$
; hence $T_n = 2^n - 1$

The Josephus Problem

Problem Statement

- 1. n people numbered 1 to n around a circle
- 2. Eliminate every second person
- 3. Last person ALIVE!!

$$\cdot J(10) = 5$$

•
$$J(10) = 10/2 = 5$$

•
$$J(2) = 2/2 = 1$$

n	J(n)
1	1
2	1
3	3
4	1
5	3
6	5

Generalization: Even Case

- J(n) is always odd
- If n is an even number, we arrive at a situation similar to what we began with....only half as many people
- Suppose, we start with 2n people. After 1st iteration, we get:

Generalization: Even Case

• Same situation as starting with n people, except...

```
• J(2n) = 2 J(n) - 1; for n > = 1
```

```
• J (20) = 2 J(10) - 1
= 2 * 5 - 1
= 10 - 1
= 9
```

Generalization: Odd Case

- With (2n + 1) people, person #1 is eliminated just after person #2n
- We are left with:

So, J(2n + 1) = 2 J(n) + 1; for n >= 1

$$J(1) = 1$$

$$J(2n) = 2 * J(n) - 1 ; for n >= 1$$

$$J(2n + 1) = 2 * J(n) + 1 ; for n >= 1$$

.....(3)

n	J(n)
1	1
2	1
3	3
4	1
5	3
6	5
7	7
8	1
9	3
10	5
11	7
12	9
13	11
14	13
15	15
16	1

The Josephus Problem: Solution

•J
$$(2^m + p) = 2 * p + 1$$
; for $m >= 0$ and $0 <= p < 2^m$

• Let,
$$n = 2^m + p$$

• So we get, J(n) = 2*p + 1; where $n = 2^m + p$

Proof???

Lines in the Plane

Problem Statement

- What is the maximum number of regions (L_n) defined by n lines in a plane?
- Start by looking at small cases-

- So, $L_n = 2^n$???
- What happens when we add a third line? (Orange)

- So how many new regions for the nth line?
 - Number of intersection + 1

- The nth line will intersect the previous (n-1) line (at most)
- Number of intersections = n-1
- So number of new regions = n 1 + 1 = n

•
$$L_n = L_{n-1} + n$$

• So recursive formula:

•
$$L_0 = 1$$

• $L_n = n + L_{n-1}$
= $n + (n-1) + L_{n-2}$
= $n + (n-1) + (n-2) + L_{n-3}$
= $n + (n-1) + (n-2) + \dots + 1 + L_0$
= $\frac{n(n+1)}{2} + 1$

Problem Statement: Zig

- What is the maximum number of regions (Z_n) defined by n bent lines (zig) in a plane?
- Start by looking at small cases-

•
$$Z_n = L_{2n} - 2n$$

• How??

Approximation

•
$$L_n \sim n^2/2$$

Assignment

Find out the maximum number of regions (ZZ_n) defined by n Zig-zag lines in a plane?

