Contrôle en machines hydrauliques

I- TURBINE HYDRAULIQUE: Une turbine tourne à 150 tr/min avec un débit volumique, $q_v = 0.8 \text{ m}^3/\text{s}$. Les vitesses débitantes à l'entrée et à la sortie sont respectivement $V_{d1} = 2\text{m}$ et $V_{d2} = 6\text{m/s}$. Les rayons à l'entrée et à la sortie sont respectivement $R_1 = 0.5 \text{ m}$ et $R_2 = 0.2 \text{ m}$ avec des côtes $z_1 = z_2$. Les angles sont $\alpha_1 = (\vec{U}_1, \vec{V}_1) = 15^\circ$, $\beta_2 = (\vec{U}_2, \vec{W}_2) = 135^\circ$. Le rendement manométrique de la turbine est 0.8.

- 1. Déterminer les triangles de vitesses à l'entrée et à la sortie
- 2.
- 2. a. Calculer la hauteur théorique de la turbine Hth. Quel type de turbine pourra-t-on utiliser?
- 2. b. Calculer la puissance théorique et le couple engendré par cette puissance.
- 3.
- 3. a. Calculer la hauteur nette.
- 3. b. Calculer la puissance nette et le couple engendré par cette puissance
- En utilisant la conservation de la charge relative, calculer P₁-P₂.
- 5. Que deviennent la puissance nette et la puissance théorique si l'on double la vitesse de rotation ?

II-POMPE CENTRIFUGE: Une pompe centrifuge à entrée radiale est constituée d'une roue ayant un diamètre intérieur $D_1 = 140$ mm, un diamètre extérieur $D_2 = 300$ mm et une largeur, b = 20 mm. Cette pompe fournit un débit de 30 litres/s et tourne avec une vitesse de rotation N = 1000 tours/minute. Le rendement hydraulique de cette pompe est $\eta = 0.8$. Les angles d'entrée et de sortie de la roue sont les suivants:

$$\beta_2 = (\overrightarrow{U}_2, \overrightarrow{W}_2) = 150^{\circ},$$
 $\alpha_1 = (\overrightarrow{U}_1, \overrightarrow{V}_1) = 90^{\circ}$

- 1°) Déterminer les triangles des vitesses à l'entrée et à la sortie de la roue. On calculera les vitesses d'entrainement \overrightarrow{U}_1 , \overrightarrow{U}_2 , les vitesses absolues \overrightarrow{V}_1 , \overrightarrow{V}_2 et les vitesses relatives \overrightarrow{W}_1 , \overrightarrow{W}_2 .
- 2°) Calculer la hauteur théorique ainsi que la puissance théorique de la pompe.
- 3°) Calculer la hauteur nette et la puissance nette
- 4°) Calculer donc l'augmentation de pression : $p_2 p_1$.

III- STATION DE POMPAGE

Nous considérons le réseau hydraulique de la figure ci-dessous. Le coefficient de perte de charge singulière de la vanne (valve) est K_L = 0.5. La caractéristique de la pompe est donnée par sa hauteur nette en fonction du débit : H_n = 52 -1.01 x 10³ q_v^2 . Le coefficient de perte de charge linéaire est λ =0.02.

- #1°) Déterminer l'équation caractéristique du réseau hydraulique.
- 2°) Déterminer la hauteur nette et le débit du point de fonctionnement.
- 3°) Calculer la puisance nette.
- 4°) Calculer la puissance sur l'arbre si le rendement de la pompe est de 75%. En déduire la hauteur théorique.

