Concordia University

Dept. of Computer Science and Software Engineering

COMP 335 - Introduction to Theoretical Computer Science

Fall 2024

Assignment 2

Submission through Moodle is due by Sunday, October 6th at 23:55

- 1. [20 Points] For each of the following languages over the alphabet $\Sigma = \{a, b\}$ give an NFA (as a transition diagram) with the specified number of states. *Hint: try simplifying a DFA and/or use* λ *transitions*.
 - (a) The language $\{a^n : n \ge 0\} \cup \{b^n a : n \ge 1\}$ with at most 4 states.
 - (b) The language $\{w: w \text{ either has no consecutive } a$'s or no consecutive b's $\}$ with at most 5 states.
 - (c) The language $\{w: w \text{ contains an even number of } a$'s or exactly two b's $\}$ with at most 6 states.
 - (d) The language $\{ab, aab, aba\}^*$ with at most 4 states.
- 2. [20 Points] Let $\Sigma = \{a, b\}$. Convert each NFA below to a DFA using the subset construction. Draw the transition diagram of your DFA, label the states of your DFA by subsets of states of the original NFA.

- 3. [20 Points] Find a regular expression for each of the following languages.
 - (a) $\{ba^nb^m : n \ge 3, m \ge 2\}.$
 - (b) $\{w \in \{a,b\}^* : \text{ every maximal substring of } w \text{ consisting entirely of symbols } a \text{ is of length exactly } 3\}.$

 q_2

- (c) $\{w \in \{a,b\}^* : w \text{ does not contain } bab \text{ as a substring}\}.$
- (d) $\{w \in \{a, b\}^* : w \text{ begins with } bb \text{ and } n_b(w) \text{ mod } 3 = 0\}.$