

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Стохастический анализ и моделирование»

Студент 415 группы И. А. Кулешов

Руководитель практикума к.ф.-м.н, доцент С. Н. Смирнов

Содержание

1	Зад	ание 1	L																															3
	1.1	Поста	НО	вка	зад	ачи	Ι.									•						•		•										9
	1.2	Решен	н	: зад	цачи	ı .																												9
		1.2.1	Γ	Іунк	т 1																													3
		1.2.2	Γ	Іунк	т 2																													4
		1.2.3	Ι.	Іунк	т 3								•	 •					•	•				•										ŀ
2	3011	ание 2)																															6
4	Зад 2.1	ание 2 Поста		риа	ת פכי	ашк	г																											6
	$\frac{2.1}{2.2}$	Решен																																7
	2.2	2.2.1		: зад Гунк																														7
		2.2.1 $2.2.2$		гунк Гунк																														8
		2.2.2		гунк Гунк																														Ĝ
		2.2.3	1.	гунк	.1 0		•	• •	٠	•	 •	•	•	 ٠	•	•	•	•	•	•	 •	•	• •	•	٠	•	•	•	•	٠	•	•	•	č
3	Зад	ание 3	3																															11
	3.1	Поста	НО	вка	зад	ачи	Ι.																											11
	3.2	Решен																																11
		3.2.1	Ι.	Іунк	т 1																													11
		3.2.2	Ι.	Іунк	т 2																													13
		3.2.3	Γ	Іунк	т 3																													14
		3.2.4	Γ	Іунк	т 4																													15
4	Зал	ание 4	1																															17
	4.1	` Поста		вка	зал	ачи	Ι.																											17
	4.2	Решен																																17
		4.2.1		Іунк																														17
		4.2.2		Гунк																														18
		4.2.3		Гунк																														$\frac{1}{21}$
_	_	_	_																															
5		ание 5																																22
	5.1	Поста																																22
	5.2	Решен																																22
		5.2.1		Іунк																														22
		5.2.2		Гунк																														23
		5.2.3	1.	Іунк	т 3		٠		•	٠	 •	•	•	 •	•	•	•		•	•	 •	•		•	•	•	•			•	•	•	•	25
6	Зад	ание б	3																															26
	6.1	Поста	НО	вка	зад	ачи	Ι.			٠																								26
	6.2	Решен																																26
		6.2.1	Γ	Іунк	т 1																													26
		6.2.2		Гунк																														27
7	Биб	блиогр	ad	рия																														30

1 Задание 1

1.1 Постановка задачи

- 1. Реализовать генератор схемы Бернулли с заданной вероятностью успеха p. На основе генератора схемы Бернулли построить датчик для биномиального распределения.
- 2. Реализовать генератор геометрического распределения. Проверить для данного распределения свойство отсутствия памяти.
- 3. Рассмотреть игру в орлянку бесконечную последовательность независимых испытаний с бросанием правильной монеты. Выигрыш S_n определяется как сумма по всем n испытаниям значений 1 или -1 в зависимости от выпавшей стороны. Проиллюстрировать (в виде ломаной) поведение нормированной суммы $Y(i) = S_i/\sqrt{n}$ как функцию от номера испытания $i = 1, \ldots, n$ для одной отдельно взятой траектории. Дать теоретическую оценку для Y(n) при $n \to \infty$.

1.2 Решение задачи

1.2.1 Пункт 1

Определение 1. Схемой Бернулли с заданной вероятностью успеха р называется эксперимент, удовлетворяющих следующим свойствам:

- 1. Отсутствие взаимного влияния между испытаниями в эксперименте.
- 2. Воспроизводимость испытаний (испытания производятся в сходных условиях).
- 3. В каждом испытании можно выделить признак, который может проявиться с определенной вероятностью р.

Определение 2. Случайная величина X, которая принимает значение 1, когда признак реализуется, и 0, когда он не реализуется, в схеме Бернулли из 1 испытания называется бернуллиевской. Обозначение: $X \sim Bern(p)$.

В таком случае мы можем реализовать генератор схемы Бернулли на основе датчика случайной величины, распределенной равномерно $\xi \sim U[0;1]$ следующим образом:

$$X = \begin{cases} 1, & \xi \in [0, p), \\ 0, & \xi \in [1, p]. \end{cases}$$

Определение 3. Случайная величина

$$Y = \sum_{k=1}^{n} X_k, \quad X_k \sim Bern(p), \quad k = \overline{1, n}$$

имеет по определению биномиальное распределение с параметрами n и p. Обозначение: $Y \sim B(n,p)$.

Теоретическое распределение:

$$\mathbb{P}(Y=k) = C_n^k p^k (1-p)^{n-k}.$$

Рис. 1: Гистограмма биномиального распределения с параметрами p=0.6, n=100. Размер выборки $10^5.$

1.2.2 Пункт 2

Определение 4. Распределение случайной величины, равной количеству неудач до появления первого успеха в схеме Бернулли с параметром p, называется геометрическим распределением. Обозначение: $Z \sim Geom(p)$.

Теоретическое распределение:

$$\mathbb{P}(Z=k) = (1-p)^k p.$$

Утверждение 1. Если $Z \sim Geom(p)$, то выполняется

$$\mathbb{P}(Z > m + n \mid Z \geqslant m) = P(Z > n)$$

для любых целых неотрицательных п и т.

Доказательство.

$$\mathbb{P}(Z > m + n \mid Z \geqslant m) = \frac{\mathbb{P}(Z > m + n, Z \geqslant m)}{\mathbb{P}(Z \geqslant m)} = \frac{\mathbb{P}(Z > m + n)}{\mathbb{P}(Z \geqslant m)} = \frac{(1 - p)^{m+n+1}}{(1 - p)^m} = (1 - p)^{n+1} = P(Y > n) \quad (1)$$

Это называют свойством отсутствия памяти у геометрического распределения.

Рис. 2: Гистограмма геометрического распределения с параметром p=0.4. Размер выборки 10^5 .

Рис. 3: Свойство отсутствия памяти геометрического распределения. Параметры: $p=0.4,\, n=1$ и $m=6,\, p$ азмер выборки $10^5.$

1.2.3 Пункт 3

Рассмотрим игру в орлянку.

Teopeма 1. $\Pi\Pi$ Т

Пусть X_1, X_2, \ldots, X_n — последовательность невырожеденных н.о.р.с.в. с $\mathbb{E} X_1^2 < \infty$, $S_n = X_1 + \ldots + X_n$. Тогда для $\forall x \in \mathbb{R}$ имеем

$$\mathbb{P}\left\{\frac{S_n - \mathbb{E} S_n}{\sqrt{\mathbb{V}ar S_n}} \leqslant x\right\} \xrightarrow[-\infty]{n \to \infty} \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^2}{2}} dz.$$

Рис. 4: Одна из траекторий игры в орлянку при 10^5 бросаний монеты.

В нашем случае $\mathbb{E} X_1 = a = 0$, \mathbb{V} ar $X_1 = \sigma^2 = 1$. Оценим S_n/\sqrt{n} . По ЦПТ получаем:

$$\mathbb{P}\left\{ \left| \frac{S_n}{\sqrt{n}} \right| \leqslant t_{\frac{1+\gamma}{2}} \right\} = \gamma$$

По таблице квантилей нормального распределения найдем значение $t_{\frac{1+\gamma}{2}}$. Окончательно получим доверительный интервал с коэффициентом доверия $\gamma=0.95$:

$$-1.96 \leqslant \frac{S_n}{\sqrt{n}} \leqslant 1.96,$$

что совпадает с иллюстрацией.

2 Задание 2

2.1 Постановка задачи

- 1. Построить датчик сингулярного распределения, имеющий в качестве функции распределения канторову лестницу. С помощью критерия Колмогорова убедиться в корректности работы датчика.
- 2. Для канторовых случайных величин проверить свойство симметричности относительно $\frac{1}{2}$ (X и 1-X распределены одинаково) и самоподобия относительно деления на 3 (условное распределение Y при условии $Y \in [0,1/3]$ совпадает с распределением $\frac{Y}{3}$) с помощью критерия Смирнова.
- 3. Вычислить значение математического ожидания и дисперсии для данного распределения. Сравнить теоретические значения с эмпирическими для разного объема выборок. Проиллюстрировать сходимость.

2.2 Решение задачи

2.2.1 Пункт 1

Определение 5. Функция распределения называется сингулярной, если она непрерывна и ее множество точек роста имеет нулевую меру Лебега.

Заметим, что канторово множество можно представить как множество всех $x \in [0,1]$, представление которых в троичной системе счисления содержит только цифры 0 и 2. Соответсвенно их можно сгенерировать следующим образом:

$$x = \sum_{k=1}^{\infty} \frac{2\alpha_k}{3^k},$$

где $\alpha_k \sim Bern(0.5)$. Значения функции Кантора C(x) будут определяться путем замены всех цифр 2 числа x в троичной системе на 1 и трактовкой полученного числа в двоичной системе счисления.

Рис. 5: Каторова функция при $n=10^6.$

Пусть у нас есть эмпирическая функция распределения $F_n(x)$, построенная по выборке $X = (X_1, X_2, \dots, X_n)$, и предполагаемая функция распределения F(x). Статистику критерия Колмогорова определим следующим образом:

$$D_n = \sup_{x} |F(x) - F_n(x)|.$$

Принятие решения по критерию Колмогорова:

Если p_{value} , равное $p=1-K(\sqrt{n}D_n)$, где K(x) — это функция распределения Колмогорова, превышает уровнь значимости α , то нулевая гипотеза H_0 о соответствии закону F(x) принимается. Иначе гипотеза отвеграется на уровне α .

N	частота принятия гипотезы
10^{2}	0.96
10^{3}	0.948

Таблица 1: Результаты проверки сингулярности генрируемого распределения при $\alpha = 0.05$.

2.2.2Пункт 2

Пусть случайная величина $Y=\sum\limits_{k=1}^{\infty}\frac{2\alpha_k}{3^k}$, где $\alpha\sim Bern(0.5)$. Рассмотрим случайную величину 1-Y, чтобы показать симметрию распределения относительно $\frac{1}{2}$:

$$1 - Y = 1 - \sum_{k=1}^{\infty} \frac{2\alpha_k}{3^k} = \sum_{k=1}^{\infty} \frac{2}{3^k} - \sum_{k=1}^{\infty} \frac{2\alpha_k}{3^k} = \sum_{k=1}^{\infty} \frac{2(1 - \alpha_k)}{3^k} = \sum_{k=1}^{\infty} \frac{2\beta_k}{3^k},$$

где $\beta_k \sim Bern(0.5)$. Это значит, что случайные величины 1-Y и Y распределены одинаково. Проверим справдливость данного свойства при помощи критерия Смирнова. Пусть у нас есть две эмпирические функции распределения $F_{1,n}(x)$ и $F_{2,m}(x)$, построенные по выборкам $X_1 = (x_1, x_2, \dots, x_n)$ и $X_2 = (x_1, x_2, \dots, x_m)$ соответственно. Статистику критерия Смирнова определим следующим образом:

$$D_{n,m} = \sup_{x} |F_{1,n}(x) - F_{2,m}(x)|.$$

Принятие решения по критерию Смирнова

Если p_{value} , равное $p=1-K\left(\sqrt{\frac{nm}{n+m}}D_{n,m}\right)$, где K(x) — это функция распределения Колмогорова, превышает уровнь значимости α , то нулевая гипотеза H_0 об идентичности распределений выборок X_1 и X_2 принимается. Иначе гипотеза отвеграется на уровне α .

Рис. 6: Симметрия относительно 1/2 при $n=10^6$.

N	частота принятия гипотезы
10^{2}	0.9
10^{3}	0.902

Таблица 2: Результаты проверки симметричности относительно 1/2 при $n=10^6, \alpha=0.05$.

Рассмотрим условное распределение Y при условии, что $Y \in \left[0; \frac{1}{3}\right]$. Из построения Y видно, что $Y \in \left[0; \frac{1}{3}\right]$, если $\alpha_1 = 0$. Получаем:

$$Y = \sum_{k=2}^{\infty} \frac{2\alpha_k}{3^k} = \sum_{k=1}^{\infty} \frac{2\alpha_{k+1}}{3^{k+1}} = \frac{1}{3} \sum_{k=1}^{\infty} \frac{2\alpha_k}{3^k} = \frac{1}{3} Y.$$

N	частота принятия гипотезы
10^{2}	0.97
10^{3}	0.968

Таблица 3: Результаты проверки самоподобия относитеьно деления на 3 при $n=10^6, \alpha=0.05.$

Рис. 7: Самоподобие относитеьно деления на 3 при $n=10^6$.

2.2.3 Пункт 3

Вычислим математическое ожидание и дисперсию для данного распределения:

$$\mathbb{E}Y = \mathbb{E}\sum_{k=1}^{\infty} \frac{2\alpha_k}{3^k} = \sum_{k=1}^{\infty} \frac{2}{3^k} \mathbb{E} \,\alpha_k = \sum_{k=1}^{\infty} \frac{2}{3^k} \frac{1}{2} = \frac{1}{2},$$

$$\mathbb{V}\text{ar}\,Y = \mathbb{V}\text{ar}\,\sum_{k=1}^{\infty} \frac{2\alpha_k}{3^k} = \sum_{k=1}^{\infty} \left(\frac{2}{3^k}\right)^2 \mathbb{V}\text{ar}\,\alpha_k = \sum_{k=1}^{\infty} \frac{4}{9^k} \frac{1}{4} = \frac{1}{8},$$

где $\alpha_k \sim Bern(0.5)$.

Рис. 8: Сходимость матожидания к 1/2 для нескольких выборок.

Рис. 9: Сходимость дисперсии к 1/8 для нескольких выборок.

По иллюстрациям видно, что и математическое ожидание, и дисперсия сходятся к соответсвующим теоретически предсказанным величинам.

3 Задание 3

3.1 Постановка задачи

- 1. Построить датчик экспоненциального распределения. Проверить для данного распределения свойство отсутствия памяти. Пусть $X_1, X_2, \ldots X_n$ независимо экспоненциально распределенные с.в. с параметрами $\lambda_1, \lambda_2, \ldots \lambda_n$ соответственно. Найти распределение случайной величины $Y = \min(X_1, X_2, \ldots X_n)$.
- 2. На основе датчика экспоненциального распределения построить датчик пуассоновского распределения.
- 3. Построить датчик пуассоновского распределения как предел биномиального распределения. С помощью критерия хи- квадрат Пирсона убедиться, что получен датчик распределения Пуассона.
- 4. Построить датчик стандартного нормального распределения методом моделирования случайных величин парами с переходом в полярные координаты. Проверить при помощи критерия t- Стьюдента равенство математических ожиданий, а при помощи критерия Фишера равенство дисперсий.

3.2 Решение задачи

3.2.1 Пункт 1

Определение 6. Случайная величина ξ имеет экспоненциальное распределение с параметром $\lambda > 0$, если её функция распределения имеет вид:

$$F_{\xi}(x) = \begin{cases} 1 - e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0 \end{cases}$$

Теорема 2. Пусть функция F(x) непрерывна и монотонно ворастает на \mathbb{R} , причем $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$, случайная велчина $Y \sim U[0;1]$ распределение, то случайная величина $X = F^{-1}(Y)$ имеет функцию распределения $F_X(x) = F(x)$.

Доказательство можно найти в [3].

Применим эту теорему для моделирования датчика экспоненциального распределения на основе датчика равномерного.

$$F_{\xi}(x) = 1 - e^{\lambda x} \Rightarrow F_{\xi}^{-1}(x) = -\frac{1}{\lambda} \ln(1 - x).$$

Таким образом, если $Y \sim U[0;1]$, то

$$X = -\frac{1}{\lambda}\ln(1 - Y)$$

имеет экспонециальное распределение с параметром λ .

Утверждение 2. Если $Z \sim Exp(\lambda)$, то выполняется

$$P(Z > t + s \mid Z > t) = P(Z > s)$$

для любых неотрицательных t u s.

Рис. 10: Экспоненциальное распределение при $\lambda = 1.5$.

Доказательство.

$$\mathbb{P}(Z > t + s \mid Z > t) = \frac{\mathbb{P}(Z > t + s, Z > t)}{\mathbb{P}(Z > t)} = \frac{\mathbb{P}(Z > t + s)}{\mathbb{P}(Z > t)} = \frac{e^{-\lambda(t + s)}}{e^{-\lambda t}} = e^{-\lambda s} = \mathbb{P}(Y > n) \quad (2)$$

Это называют свойством отсутствия памяти у экспоненциального распределения.

Рис. 11: Свойство отсутствия памяти экспоненциального распределения. Параметры: $\lambda=1.5, n=0.4, m=1.5,$ размер выборки $10^6.$

Утверждение 3. Пусть $X_1, X_2, ..., X_n - \text{н.о.р.с.в.: } X_k \sim Exp(\lambda_k).$ Тогда $Y = min(X_1, X_2, ..., X_n) \sim Exp(\lambda_0), \lambda_0 = \sum_{k=1}^n \lambda_k.$

Доказательство.

$$\mathbb{P}(\min(X_1, \dots, X_n) > x) = \mathbb{P}(X_1 > x, \dots, X_n > x) = \prod_{k=1}^n \mathbb{P}(X_k > x) = \prod_{k=1}^n \exp(-\lambda_k x) = \exp(-x \sum_{k=1}^n \lambda_k).$$
 (3)

Рис. 12: Распределение минимума из вектора экспоненциально распределенных с.в. для $N=10^4$ выборок. Параметры: $\lambda_0\approx 106.4$, размер выборки 100.

3.2.2 Пункт 2

Определение 7. Случайная величина X имеет распределение Пуассона с параметром $\lambda>0,$ если

 $\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k \in \mathbb{N} \cup 0.$

Теорема 3. Пусть $X_1, X_2, \ldots, X_n, \ldots \sim Exp(\lambda) - \textit{н.о.р.с.в.}$ Тогда случайная величина

$$Y = \max_{n} (S_n = X_1 + X_2 + \ldots + X_n) < 1$$

имеет распределение Пуассона с параметром λ . Если $X_1\geqslant 1$, то Y=0.

Доказательство этой теоремы можно найти в [2].

Таким образом, будем разыгрывать случайные величины $X_k \sim Exp(\lambda)$ до тех пор, пока их сумма S_n не превысит 1, и положим Y = n - 1.

Рис. 13: Распределение Пуассона, полученное на основе экспоненциального распределения. Параметры: $\lambda=10$, размер выборки 10^5 .

3.2.3 Пункт 3

Другой способ моделирования пуассоновской случайной величины основывается на теореме Пуассона:

Теорема 4. Пусть случайная величина $X \sim Bi(n,p)$. Пусть $np = \lambda = const.$ Тогда npu

$$\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k} \xrightarrow{n \to \infty} \frac{\lambda^k}{k!} e^{-\lambda}.$$

Рис. 14: Распределение Пуассона как предел биномиального. Параметры: $\lambda=2$, размер выборки 10^4 .

Проверим результаты при помощи критерия Пирсона.

Исследуемое распределение принимает только целые неотрицательные значения. Обозначим за n_i количество элементов в выборке равных i. Обозначим за k максимальное значение в выборке. Построим статистику критерия X^2 Пирсона:

$$X_n^2 = n \sum_{i=1}^k \frac{\left(\frac{n_i}{n} - p_i\right)^2}{p_i},$$

где $p_i = \mathbb{P}(Z=i), Z \sim Pois(\lambda).$

Гипотеза о пуассоновском распределении построенной выборки принимается на уровне значимости α , если вычисленное значение статистики X_n^2 не превосходит квантиль $\chi_{1-\alpha,r}^2$ распределения χ_r^2 , где r=k-1.

N	частота принятия гипотезы
10^{2}	0.92
10^{3}	0.894

Таблица 4: Проверка генерируемого распределения Пуассона как предела биномиального при $n=10^3$, размер выборки 10^4 и уровне значимости $\alpha=0.05$.

3.2.4 Пункт 4

Для моделирования стандартного нормального распределения рассмотрим случаную величину $X = \{X_1, X_2\} \sim N(0, 1)$:

$$\mathbb{P}(X_{1} < x_{1}, X_{2} < x_{2}) = \frac{1}{2\pi} \int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} e^{-\frac{\xi^{2} + \eta^{2}}{2}} d\xi d\eta = \begin{cases} \xi = \rho \cos \phi, \\ \eta = \rho \sin \phi, \\ J = \rho \end{cases} = \frac{1}{2\pi} \iint e^{-\frac{\rho^{2}}{2}} d\rho d\phi = \{\omega = \rho^{2}\} = \frac{1}{2\pi} \iint \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{2} e^{-\frac{\omega}{2}} d\omega d\phi.$$

$$\rho \cos \phi < x_{1} \qquad \qquad \sqrt{\omega} \cos \phi < x_{1}$$

$$\rho \sin \phi < x_{2} \qquad \qquad \sqrt{\omega} \sin \phi < x_{2}$$

Подынтегральное выражение является произведением плотностей случайных величин $Y_1 \sim Exp(\frac{1}{2})$ и $Y_2 \sim U[0;2\pi]$. Таким образом, совместное распределение случайных величин X_1 и X_2 совпадает с совместным распределением

$$\{\sqrt{Y_1}\cos Y_2, \sqrt{Y_1}\sin Y_2\}, \quad Y_1 \sim Exp(\frac{1}{2}), \quad Y_2 \sim U[0; 2\pi].$$

Заметим, что случайные величины X_1 и X_2 являются независимыми, так как их совместное распределение равно произведению их маргинальных распределений.

Рис. 15: Нормальное распределение, генерируемое с помощью перехода в полярные координаты.

Мы полагаем, что полученные выбороки распределены нормально. Проверим, что математическое ожидание полученного нами распределения совпадает с нормальным, при помощи одновыборочного двустороннего критерия Стьюдента. Он применяется для проверки нулевой гипотезы о равенстве математического ожидания $\mathbb{E}(X)$ некоторому известному значению m.

Для проверки построим статистику:

$$t = \frac{\bar{X} - m}{s_X / \sqrt{n}},$$

где s_X^2 — несмещенная оценка дисперсии.

Принятие решения по критерию Стьюдента:

Если статистика t по абсолютному значению не превышает квантиль $t(\alpha/2, n-1)$ распределения Стьюдента, то нулевая гипотеза H_0 о равенстве математических ожиданий принимается на уровне α . Иначе гипотеза отвергается.

N	частота принятия гипотезы
10^{2}	0.95
10^{3}	0.949
10^{4}	0.9506

Таблица 5: Проверка равенства математических ожиданий нормального и полученного распределений при размере выборки 10^5 и уровне значимости $\alpha = 0.05$.

Проверим, что дисперсии полученных нами распределений совпадают друг с другом, при помощи двустороннего критерия Фишера. Он применяется для проверки нулевой гипотезы о равенстве дисперсий \mathbb{V} ar (X) и \mathbb{V} ar (Y) двух выборок из n и m элементов соответственно.

Для проверки построим статистику:

$$f = \frac{\hat{\sigma}_X^2}{\hat{\sigma}_Y^2},$$

где $\hat{\sigma}_Z^2$ — соответствующие выборочные дисперсии.

Принятие решения по критерию Фишера:

Если статистика f не превышает квантиль $f(1-\alpha/2,n-1,m-1)$ распределения Фишера и не меньше $f(\alpha/2,n-1,m-1)$, то нулевая гипотеза H_0 о равенстве дисперсий \mathbb{V} ar (X) и \mathbb{V} ar (Y) принимается на уровне α . Иначе гипотеза отвергается.

N	частота принятия гипотезы
10^{2}	0.96
10^{3}	0.955
10^{4}	0.9499

Таблица 6: Проверка равенства математических ожиданий нормального и полученного распределений при размере выборки 10^5 и уровне значимости $\alpha = 0.05$.

4 Задание 4

4.1 Постановка задачи

- 1. Построить датчик распределения Коши.
- 2. На основе датчика распределения Коши с помощью метода фон Неймана построить датчик стандартного нормального распределения. При помощи функции normal probability plot убедиться в корректности построенного датчика и обосновать наблюдаемую линейную зависимость.
- 3. Сравнить скорость моделирования стандартного нормального распределения в заданиях 3 и 4.

4.2 Решение задачи

4.2.1 Пункт 1

Определение 8. Случайная величина X имеет распределение Kоши c параметрами a u b, если ее функция распределения имеет вид:

$$F_X(x) = \frac{1}{\pi} \arctan\left(\frac{x-a}{b}\right) + \frac{1}{2}.$$

Поскольку фунция распределения $F_X(x)$ удовлетворяет условиям теоремы 2, воспользуемся этой теоремой для моделирования случайной величины с распределением Коши. Обратная функция равна:

$$F_X^{-1}(y) = a + b \tan \left(\pi \left(y - \frac{1}{2}\right)\right).$$

Тогда по теореме 2 случайная величина $X = F_X^{-1}(Y)$, где $Y \sim U[0;1]$, имеет распределение Коши.

Рис. 16: Распределение Коши с параметрами $a=0, b=1, n=10^6.$

4.2.2 Пункт 2

Пусть имеется некоторое вещественное вероятностное пространство (E, \mathcal{E}) , на котором заданы абсолютно непрерывные распределения \mathbb{P} и \mathbb{Q} . Пусть выполнено условие:

$$\exists k > 1 : \mathbb{Q}(A) \leqslant k\mathbb{P}(A) \quad \forall A \in \mathcal{E},$$

из которого следует, что $\mathbb{Q} << \mathbb{P}$, т.е. \mathbb{Q} абсолютно непрерывно относительно \mathbb{P} . По теореме Радона-Никодима, отсюда также следует, что существует производная Радона-Никодима $\gamma(x)$:

$$\gamma(x) = \frac{d\mathbb{Q}}{d\mathbb{P}} \leqslant k,$$

где $d\mathbb{Q}$ и $d\mathbb{P}$ — плотности соответствующих распределений.

Предположим, что у нас есть датчик случайной величины X с распределением \mathbb{P} и выполнено условие выше. Будем моделировать \mathbb{Q} , следуя алгоритму метода исключения фон-Неймана:

- 1. Подбираем $k > 1 : d\mathbb{Q}(x) \leq kd\mathbb{P}(x), \forall x \in \mathbb{R},$
- 2. Получим значение x случаной величины X,
- 3. Получим значение y случаной величины $Y(x) \sim Bern\left(\frac{d\mathbb{Q}(x)}{kd\mathbb{P}(x)}\right)$,
- 4. Если y = 1, то x из моделируемого распределения с плотностью $d\mathbb{Q}(x)$, иначе возвращаемся к пункту 2.

Обоснуем изложенный алгоритм. Пусть $\nu \sim Bern\left(\frac{1}{k}\right)$, тогда:

1.
$$p(\nu = 1|X = x) := \frac{\gamma(x)}{k}$$
, т.е. данная плотность соответствует $Bern\left(\frac{d\mathbb{Q}(x)}{kd\mathbb{P}_X(x)}\right)$,

$$\mathbb{P}(X \in B | \nu = 1) = \frac{\mathbb{P}(\{X \in B\} \cap \{\nu = 1\})}{\mathbb{P}(\nu = 1)} =$$

$$= \left\{ \mathbb{P}(\{X \in B\} \cap \{\nu = 1\}) = \int_{B} p(\nu = 1 | X = x) \mathbb{P}_{X}(dx) = \right\}$$

$$= \int_{B} \frac{\gamma(x)}{k} \mathbb{P}_{X}(dx) = \frac{1}{k} \int_{B} \gamma(x) \mathbb{P}_{X}(dx) = \frac{1}{k} \mathbb{Q}(B) \right\} = \frac{\mathbb{Q}(B)}{k \mathbb{P}(\nu = 1)} = \mathbb{Q}(B),$$

что доказывает используемый метод.

Запишем плотность стандартного нормального распределения q(x) и плотность распределения Коши p(x):

$$q(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$
$$p(x) = \frac{1}{\pi} \frac{b}{(x-a)^2 + b^2}.$$

Для данных распределений выполняются все условия метода исключения фон-Неймана, поэтому будем генерировать стандартное нормальное распредедение с помощью распределения Коши K(0,1), а k положим равным $k=\sqrt{\frac{2\pi}{e}}>1.$

Рис. 17: Стандартное нормальное распределение, генерируемое методом фон-Неймана, $n=10^4$.

Исследуем, как будут распределены с.в. $Y = \mu + \sigma X$, где $X \sim N(0,1)$:

$$\varphi_{\mu+\sigma X}(t) = \mathbb{E} e^{it(\mu+\sigma X)} = \mathbb{E} e^{it\sigma X} e^{it\mu} = e^{it\mu} \varphi_X(\sigma t) = e^{it\mu} e^{\frac{t\sigma^2}{2}} = \varphi_Z(t),$$

где $Z \sim N(\mu, \sigma^2)$. Соответсвенно, с.в. Y будет распределена нормально $Y \sim N(\mu, \sigma^2)$.

На графике коэффициент μ будет отвечать за сдвиг вдоль оси x, а коэффициент σ — за коэффициент наклона прямой (чем больше σ , тем более пологий график):

Рис. 18: Результат сдвига и сжатия с.в. $X \sim N(0,1)$, полученной методом фон-Неймана. Параметры: $\mu=10, \sigma=4, n=10^4$.

Функция, normplot, по-сути, строит линейную часть функции распределения нормального распределения, а форма функций распределения других распределений отличается от нормального. Например, для экспоненциального распределения, прямая на графике не получится:

Рис. 19: Результат применения normplot к экспоненциальному распределению, $n=10^3$.

4.2.3 Пункт 3

Сравним скорости моделирования стандартного нормального распределения в заданиях 3 и 4:

N	Newmann	Polar
10	0.0016919	0.00076547
10^{3}	0.00024191	0.00005675
10^{5}	0.013248	0.0036173
10^{7}	1.3195	0.42665

Таблица 7: Среднее время генерации N случайных величин при 10^3 тестах.

Как можем видеть, моделирование стандартно нормально рапределенных случайных величин методом фон-Неймана меделенее, чем моделирование парами.

5 Задание 5

5.1 Постановка задачи

1. Пусть $X_i \sim N(\mu, \sigma^2)$. Убедиться эмпирически в справедливости ЗБЧ и ЦПТ, т.е. исследовать поведение суммы S_n и эмпирического распределения величины

$$\sqrt{n}\left(\frac{S_n}{n}-a\right).$$

- 2. Считая μ и σ неизвестными для пункта 1 построить доверительные интервалы для среднего и дисперсии.
- 3. Пусть $X_i \sim K(a,b)$ имеет распределение Коши со сдвигом а и масштабом b. Проверить эмпирически, как ведут себя суммы S_n/n . Результат объяснить, а также найти закон распределения данных сумм.

5.2 Решение задачи

5.2.1 Пункт 1

Теорема 5. *ЗБЧ*

Пусть X_1, X_2, \dots, X_n — независимые случайные величины и дисперсия каждой из них существует и ограничена сверху некоторой константой: $\forall i: 1 \leq i \leq n \ \exists \mathbb{V}ar X_i \leq C$. Тогда

$$\forall \varepsilon > 0 \quad \mathbb{P}\left(\left|\frac{X_1 + \ldots + X_n}{n} - \frac{\mathbb{E}X_1 + \ldots + \mathbb{E}X_n}{n}\right| < \varepsilon\right) \xrightarrow{n \to \infty} 1$$

Рис. 20: Демонстрация ЗБЧ для выборки размером $n=10^6$ при $\mu=1.$

Теорема 6. ЦПТ

Пусть X_1, X_2, \dots, X_n — последовательность невырожденных н.о.р.с.в. с $\mathbb{E} X_1^2 < \infty$, $S_n = X_1 + \dots + X_n$. Тогда для $\forall x \in \mathbb{R}$ имеем

$$\mathbb{P}\left(\frac{S_n - \mathbb{E} S_n}{\sqrt{\mathbb{V}ar S_n}} \leqslant x\right) \xrightarrow{n \to \infty} \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^2}{2}} dz.$$

В нашем формулировке при $\mathbb{E}\, X_1 = a, \mathbb{V}\mathrm{ar}\, X_1 = \sigma^2$ это преобразуется в

$$\mathbb{P}\left(\sqrt{n}\left(\frac{S_n}{n} - a\right) \leqslant x\right) \xrightarrow[]{n \to \infty} \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{z^2}{2\sigma^2}} dz.$$

Рис. 21: Демонстрация ЦПТ для $N=10^5$ статистик на основе выборок размером $n=10^3$ при $\mu=1,\sigma^2=2$.

5.2.2 Пункт 2

Предположим, что наблюдается случайная величина $X \sim N(\mu, \sigma^2)$, а (x_1, \dots, x_n) — ее реализация. Тогда получим доверительные интервалы вида:

$$\mu \in \left(\bar{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}; \bar{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right),$$

$$\sigma^2 \in \left(\frac{(n-1)s^2}{\chi^2_{\alpha/2, n-1}}; \frac{(n-1)s^2}{\chi^2_{1-\alpha/2, n-1}}\right),$$

где $\bar{x}=\sum\limits_{k=1}^n(x_k/n)$ — выборочное среднее, $s^2=\frac{1}{n-1}\sum\limits_{i=1}^n(x_i-\bar{x})$ — выборочная дисперсия, $t_{\beta,n-1}$ - квантиль распределения Стьюдента с n-1 степенью свободы для уровня значимости β , $\chi^2_{\beta,n-1}$ - β -квантиль χ^2 - распределения с n-1 степенью свободы.

Доказательства можно найти в [4].

Рис. 22: Доверительные интервалы для μ при $n=10^6$ при $\mu=2,\sigma^2=4.$

Рис. 23: Доверительные интервалы для σ при $n=10^6$ при $\mu=2, \sigma^2=4.$

5.2.3 Пункт 3

Пусть $X_i \sim K(a,b)$ имеет распределение Коши со сдвигом a и масштабом b. Найдем распределение S_n/n при помощи аппарата характеристических функций.

$$\varphi_X(t) = \mathbb{E}\left(e^{itX}\right) = \int_{\mathbb{R}} e^{itx} p(x) dx,$$

$$\varphi_X(t) = \int_{\mathbb{R}} \frac{e^{itx}}{\pi b \left[1 + \left(\frac{x-a}{b}\right)^2\right]} dx \Rightarrow \varphi_X(t) = \exp(iat - b|t|).$$

Вспомним некоторые свойства характеристических функций:

- Для независимых случайных величин X_1, \ldots, X_n верно: $\varphi_{X_1+\ldots+X_n}(t) = \prod_{k=1}^n \varphi_{X_k}(t)$,
- $\varphi_{aX+b} = e^{itb}\varphi_X(at)$.

Исходя из этого получим:

$$\varphi_{S_n}(t) = \prod_{k=1}^n \exp(iat - b|t|) = \exp(iant - bn|t|),$$

$$\varphi_{S_n/n}(t) = \varphi_{S_n}(t/n) = \exp(iat - b|t|),$$

что совпадает с исходным распределением Коши.

Как мы можем наблюдать, распределения действительно совпали:

Рис. 24: Распределение $n=10^5$ искомых «сумм», составленных из 10^3 с.в., при a=0,b=1 .

У распределения Коши не существует математического ожидания, поэтому не выполняются условия теоремы 5 и суммы S_n/n ведут себя хаотично. Это видно на рисунке ниже:

Рис. 25: Демонстрация ЗБЧ для распределения Коши размером $n=10^5$ при a=0,b=1 .

6 Задание 6

6.1 Постановка задачи

1. Посчитать интеграл

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \frac{e^{-\left(x_1^2 + \dots + x_{10}^2 + \frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2} dx_1 dx_2 \dots dx_{10}$$

- (а) методом Монте-Карло
- (b) методом квадратур, сводя задачу к вычислению собственного интеграла Римана
- 2. Для каждого оценить погрешность вычислений.

6.2 Решение задачи

6.2.1 Пункт 1

Перепишем исходный интеграл в виде:

$$I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_{10}) g(x_1, x_2, \dots, x_{10}) dx_1 dx_2 \dots dx_{10},$$

где

$$f(x_1, x_2, \dots, x_{10}) = \pi^5 \frac{e^{-\frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}}}{x_1^2 \cdot \dots \cdot x_{10}^2}, \quad g(x_1, x_2, \dots, x_{10}) = \frac{1}{\pi^5} e^{-(x_1^2 + \dots + x_{10}^2)}.$$

Легко заметить, что функции g(x) является совместной плотностью набора независимых нормально распределенных случайных величин с параметрами 0 и 1/2. Таким образом, можно переписать исходный интеграл в виде:

$$I = \mathbb{E}[f(x_1, x_2, \dots, x_{10})], \quad x_i \sim N\left(0, \frac{1}{2}\right).$$

В силу ЗБЧ выборочное среднее будет стремится к математическому ожиданию:

$$\frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n f(x_1^k, x_2^k, \dots, x_{10}^k) \xrightarrow{n \to \infty} \mathbb{E}\left[f(x_1^1, x_2^1, \dots, x_{10}^1)\right], \quad x_i^k \sim N\left(0, \frac{1}{2}\right).$$

Оценим погрешность метода Монте- Карло при помощи ЦПТ:

$$\mathbb{P}\left(\left|\frac{S_n}{n} - I\right| < \varepsilon\right) = \mathbb{P}\left(\left|\frac{S_n - In}{n}\right| < \varepsilon\right) = \mathbb{P}\left(\left|\frac{S_n - In}{\sigma\sqrt{n}}\right| < \frac{\sqrt{n}}{\sigma}\varepsilon\right) = \\
= \mathbb{P}\left(-\frac{\sqrt{n}}{\sigma}\varepsilon < \frac{S_n - In}{\sigma\sqrt{n}} < \frac{\sqrt{n}}{\sigma}\varepsilon\right) \approx \Phi\left(\frac{\sqrt{n}}{\sigma}\varepsilon\right) - \Phi\left(-\frac{\sqrt{n}}{\sigma}\varepsilon\right) = \\
= 2\Phi\left(\frac{\sqrt{n}}{\sigma}\varepsilon\right) - 1,$$

где $\Phi(x)$ — функция распределения стандартного нормального распределения. Воспользовавшись таблицей квантилей и полученного квантиля z_{α} получим:

$$\varepsilon = \frac{z_{\alpha}\sigma}{\sqrt{n}}.$$

Так как точное значение σ неизвестно, будем пользоваться выборочной дисперсией:

$$\sigma_n^2 = \left(\frac{1}{n}\sum_{i=1}^n f^2(\hat{x}_i)\right) - \left(\frac{1}{n}\sum_{i=1}^n f(\hat{x}_i)\right)^2$$

N	Значение интеграла	Погрешность, %	Время работы
10^{5}	123.14	0.074	0.017
10^{6}	125.1903	0.0234	0.1761
10^{7}	125.011	0.0074	1.7316
10^{8}	124.7931	0.0024	17.2832

Таблица 8: Таблица значений интеграла, посчитанного методом Монте-Карло.

6.2.2 Пункт 2

Для подсчета интергала I методом квадратур сделаем замену:

$$x_i = \operatorname{tg}\left[\frac{\pi}{2}t_i\right].$$

Исходный интеграл примет следующий вид:

$$I = \left(\frac{\pi}{2}\right)^{10} \int_{-1}^{1} \dots \int_{-1}^{1} \frac{\exp\left\{-\left(\sum_{k=1}^{10} \operatorname{tg}^{2}\left[\frac{\pi}{2}t_{k}\right] + \frac{1}{2^{7} \cdot \prod_{k=1}^{10} \operatorname{tg}^{2}\left[\frac{\pi}{2}t_{k}\right]}\right)\right\}}{\prod_{k=1}^{10} \operatorname{tg}^{2}\left[\frac{\pi}{2}t_{k}\right] \cdot \prod_{k=1}^{10} \cos^{2}\left[\frac{\pi}{2}t_{k}\right]} dt_{1} \dots dt_{10}.$$

Воспользуемся методом прямоугольников. Для этого равномерно разобьем отрезок [-1;1] на N частей и будем считать величину :

$$I_N = \frac{1}{N^{10}} \sum_{k_1=1}^N \dots \sum_{k_{10}=1}^N f\left(\frac{2}{N}k_1 - 1, \dots, \frac{2}{N}k_{10} - 1\right).$$

Погрешность метода прямоугольников на равномерной сетке составляет:

$$\varepsilon = \frac{\max |f''(\xi)|}{24} (1+1)h^2,$$

где h — диаметр разбиения. В нашем случае:

$$\varepsilon = \frac{h^2}{12} \sum_{i,j=1}^{10} \max \left| f_{x_i,x_j}'' \right|, \quad h = \frac{2}{N}.$$

Если внимательно посмотреть на интегрируемую функцию можно заметить, что она **«очень сильно симметричная»**.

- 1. Функция зависит от только от значений x_k^2 . Это значит, что нам достаточно будет просчитать только те точки, которые находятся в области, где $x_k > 0 \forall k = 1, [N/2]$. Пусть [N/2] = L. Обозначим значение интеграла по этой области за I_+ . Тогда значение исходного интеграла I будет равно $I = 2^{10}I_+$. Далее будем рассматривать только $k: x_i^k > 0$.
- 2. Функция симметрична по любой паре переменных. Это значит, что если мы поменяем местами x_{k_1} и x_{k_2} в аргументах функции, то значение самой функции у нас никак не поменяется. По-сути, перед нами встает задача просчета функции только в тех точках, значение функции в которых уникально. После этого мы домножим это значение на количество «эквивалентных» точек.

Для начала поймем, как нам выделить «уникальные» точки.

Идея заключается в том, что там необходимо подходящий положительный ортант в \mathbb{R}^n рассечь с помощью элементарных плоскостей симметрии {например $x_1 = x_2$, т.к. $f(x_1, x_2, \dots x_n) = f(x_2, x_1, \dots x_n)$ }. Тогда, выбрав одну из элементарных полученных фигур, мы получим все «уникальную область», т.е. не будет существовать значений функции, отличных от тех, что были получены в этой области.

Проще всего это рассуждение представить в \mathbb{R}^3 . В нем таким уникальным множеством будет пирамида с вершинами, например, (0,0,0), (L,0,0), (L,L,0), (L,L,L).

Опишем алгоритм перебора точек в уникальной области. Представим себе матрицу A размером $10 \times L$:

$$A = \begin{array}{ccccc} a_{1,1} & a_{1,2} & \dots & a_{1,L} \\ a_{2,1} & a_{2,2} & \dots & a_{2,L} \\ \vdots & \vdots & \ddots & \vdots \\ a_{10,1} & a_{10,2} & \dots & a_{10,L} \end{array}$$

Логично, что можно сделать просто 10 вложенных for от 1 до L, но мы сделаем чуть- чуть по -другому.

Допустим, мы находимся в i-ой строке, т.е. в i-том вложенном for. Пусть мы начнем перебор с j_0^i -ого столбца, т.е. далее в ходе «перебора вглубь» из i-ой строки будут использоваться только числа больше j_0 . Алгоритм выделения уникальных наборов из 10 чисел заключается в том, что в каждой следующей строке перебора мы будем брать $j_0^{i+1} >= j_0^i$. Это логично, поскольку в противном случае перебрав один раз пару $(\dots, x_i^j, x_{i+1}^{j+1}, \dots)$ нам не имеет смысла перебирать пару $(\dots, x_i^{j+1}, x_{i+1}^j, \dots)$, потому что значения функции на них совпадают.

Идейно это можно объяснить так, что с увеличением каждого предыдущего индекса, размер «уникального подпространства» для конкретного среза уменьшается. Можно проиллюстрировать эту трактовку для размерностей 2,3,4 и небольшого L.

В связи с таким подходом, нам нужно понять какое количество точек эквивалентно каждой уникальной точке. Пусть вектор из 10 чисел состоит из m разных чисел, каждое из которых встречается k_i раз. Тогда количество эквивалентных точек равно:

$$n_{reps} = \frac{10!}{k_1! \dots k_m!}.$$

```
Псевдокод функции:
```

```
for i_1 = 1:10 for i_2 = i_1:10 ... f_{unique} = f(i_1, \ldots, i_{10}); \ \{ \text{нашли уникальное значение функции} \} f_{sim} = 2^{10} * n_{reps} * f_{unique}; \ \{ \text{сумма значений функции во всех симметричных точках } \} ... end
```

N	Значение интеграла	Время работы
20	124.704	0.51648
32	124.8081	13.6501
40	124.8003	83.5463
50	124.8052	535.404
60	124.812	2675.4143

Таблица 9: Таблица значений интеграла, посчитанного методом квадратур.

В коде также реализован механизм уменьшения количества «холостых» проходов при малых номерах точек. «Холостой» проход — это такой проход, когда Matlab получает в качестве значения функции наскольно маленькое число, что кладет его равным точному нулю. Критическое значение в моем случае $eps \approx 10^{-800}$.

7 Библиография

Список литературы

- [1] С. Н. Смирнов Лекции по стохастическому анализу, 2019.
- [2] В. Феллер Введение в теорию вероятностей и ее приложения, том 1. М: Мир, 1984.
- [3] Н. Ю. Кропачева, А. С. Тихомиров *Моделирование случайных величин*. Издательство Новгородского Государственного Университета, 2004.
- [4] Л. Н Фадеева, А. В. Лебедев Теория вероятностей и математическая статистика. М.: Эксмо, 2010.