

Group 1 - Explorer

Dokumen Laporan Final Project

Project Team & Role

Project Manager Imam Maghfir Ramadhan

Tugas: Leading project and set project timeline

Data Engineer

- Nivan Dumatubun
- Syaiful Adri

Tugas: Data pre-processing (Cleansing, encoding dll)

Data Analyst

- Putri Sausan
- Puspita Ayu Utami

Tugas: EDA, Insight (visualization data distribution),

Recommendation

Data Scientist

- Marcellinus Putra Wijaya
- Muhamad Zen Fikri

Tugas: Modeling and Recommendation

Business Intelligence

Wasis Prasetyo

Tugas: Visualization (showing to stakeholder), Recommendation

1. Latar Belakang Masalah

Masalah churn pada nasabah kartu kredit merupakan isu yang sangat umum untuk dihadapi lembaga keuangan. **Churn** terjadi ketika nasabah memutuskan untuk **berhenti** menggunakan produk dan layanan dari bank, termasuk kartu kredit. Hal ini **berdampak negatif** terhadap finansial bank karena dapat menyebabkan penurunan pendapatan hingga kerugian kerugian. Selain itu, **biaya untuk mendapatkan nasabah baru cenderung lebih tinggi** dibandingkan mempertahankan nasabah lama.

Case Study

Churn rate pada nasabah kartu kredit di sebuah bank dalam jangka waktu tertentu mencapai sebesar

20,37%. Bila tidak ditindak, bank akan mengalami kerugian yang semakin besar.

Goal

Analytical approach yang akan dilakukan bertujuan mengurangi atau menurunkan tingkat churn.

Objectives

- Mengidentifikasi faktor-faktor yang mempengaruhi nasabah untuk churn
- Membangun model machine learning (ML) yang akurat yang dapat memprediksi nasabah yang

berpotensi churn berdasarkan faktor-faktor yang ada

Business Metric

Churn Rate (%)

2. EDA & Insight

Analysis

- Mayoritas nasabah customer yang ada berada pada umur 30 40 tahun
- Mayoritas nasabah bank yang ada merupakan nasabah yang tergolong aktif, berjenis kelamin laki-laki, dan memiliki 1 produk
- Sekitar 2,037 (20.37%) nasabah churn dari total 10,000 customer yang ada

2. EDA & Insight

Kelompok umur manakah yang paling banyak memiliki customer churn?

Berdasarkan Jurnal Urgensi Revisi Undang-Undang tentang Kesejahteraan Lanjut Usia (http://jurnal.dpr.go.id/index.php/aspirasi/index)

Penentuan range umur dapat dikelompokkan sebagai berikut:

- •Umur 12 25 = Remaja (teenager)
- •Umur 26 45 = Dewasa (adult)
- •Umur 46 65 = Lansia (elderly)
- •Umur > 65 = Manula (seniors)

Grafik Jumlah Customer Churn Sesuai Klasifikasi Umurnya

Dari grafik diatas, terlihat bahwa paling banyak customer churn adalah kelompok Adult dan Eldery

Customer Bank yang churn berdasarkan keaktifan member

Dari grafik diatas terlihat bahwa **customer yang bukan member aktif** (63,9 %) lebih banyak yang churn dibanding dengan yang **aktif** (36,1 %)

Customer Bank yang churn berdasarkan gender

Dari grafik diatas terlihat bahwa **customer perempuan (female) sebesar 55,9%** lebih banyak yang churn dibanding laki-laki (male) sebesar 44,1%

Customer Bank berdasarkan Kepemilikan Produk

Grafik Jumlah Produk yang Dipunyai Customer

Jumlah customer terbanyak berada di jumlah produk 1, namun produk dengan jumlah 4 memiliki customer churn terbanyak secara persentase

Dari grafik diatas terlihat bahwa paling banyak customer bank memiliki **1 jenis produk** yaitu sebanyak **5.084 customer.** Tetapi untuk presentasi customer bank yang churn paling banyak adalah customer yang memiliki **4 produk.**

3. Pre-processing

Data Cleansing

- Handle Missing Value
- Handle Duplicated Data
- Handle Outlier

Feature Engineering

- Feature Selection
- Feature Extraction
- Feature Encoding
- Feature Transformation
- Handle Class Imbalance

3.1 Data Cleansing

Handle Missing Value, Duplicated Data & Outlier

Handle Missing Value

```
df.isna().sum() # menampilkan jumlah missing value setiap kolom
RowNumber
CustomerId
Surname
CreditScore
Geography
Gender
Age
Tenure
Balance
NumOfProducts
HasCrCard
IsActiveMember
EstimatedSalarv
Churn
Group Age
dtype: int64
```

Semua tipe data sudah sesuai dan tidak ada data kosong

Handle Duplicated Data

```
df.duplicated().sum() # check data duplikat
```

Tidak ada data yang duplikat pada dataset

Handle Outlier

```
perbedaan jumlah data menggunakan z : 3.19%
perbedaan jumlah data menggunakan IQR : 6.64%
```

Pada kasus ini, outlier kebanyakan terdapat pada kolom age, dimana distribusi dari umur nasabah masih tergolong wajar. Pada model ini outlier removal tidak dilakukan

3.2 Feature Engineering

Feature Selection & Feature Extraction

Feature Selection

Menghapus kolom 'RowNumber', 'Surname', 'Customerld' karena tidak penting terhadap target

Feature Extraction

100194 - 149388

Balance_Category: CreditScore_Range: Tenure_Category:

Low = 0 - 97199

Short Term = 0 - 3Poor = 349 - 584

Low = 0 - 51002

Salary_Range:

Medium = 97199 - 127644 Fair = 584 - 652

Medium Term = 3 - 5

Feature Tambahan 51002 - 100194

^tMenambahkan kolom baru berupa TenureByAge dan CreditScoreGivenAge^{3 - 10}

High =

3.2 Feature Engineering

Rakamin

Feature Encoding

One Hot Encoding

Dilakukan pada kolom Geography menjadi tiga fitur yaitu France, Germany dan Spain

Label Encoding

Dilakukan pada Gender, Grup Age, Balance Category, CreditScoreRange, dan Salary Range

	Geography_France	Geography_Germany	Geography_Spain
I	1	0	0
	0	0	1
1	1	0	0
	1	0	0
70	0	0	1

Gender	Group_Age	Balance_Category	CreditScore_Range	Tenure_Category	Salary_Range
1	1	0	1	0	2
1	1	0	1	0	2
1	1	2	0	2	2
1	1	0	2	0	1
1	1	1	3	0	1
0	1	0	3	1	1

3.2 Feature Engineering

Feature Transformation & Handle Class Imbalance

Feature Transformation

Menggunakan Standardisasi karena distribusi data relatif normal dan standardisasi lebih robust terhadap outlier

Handle Class Imbalance

Menggunakan Undersampling karena target prediksi category churn (value=1) lebih sedikit, jika mengunakan oversampling akan menyebabkan bias karena data sintesis yang tergenerate akan lebih banyak

Class distribution before oversampling:

0 6356
1 1644
Name: Churn, dtype: int64

Class distribution after undersampling:

0 1644
1 1644
Name: Churn, dtype: int64

4.1 Modelling - Pemilihan Metrik untuk Evaluasi

Recall

Apa alasannya?

4.2 Modelling - Modelling Experiments

4.3 Modelling - Modelling Hypertuning Parameter

parameter default

AdaBoostClassifier (random_state=42,default)

Parameter Nilai (%)
recall train 90.4
recall test 82.4

GradientBoostingClassifier (random_state=42,default)

Parameter	Nilai (%)
recall train	93.6
recall test	81.4

Ada Boost Classifier	Manu al	GridSearchCV
recall train (%)	88.2	90.7
recall test (%)	84.7	86.5
recall train (%) (cross validation)	83.4	78.6
recall test (%) (cross validation)	83.2	78.3

Hasil Tuning				
/	Gradient Boosting	Manu al	GridSearchCV	
	recall train (%)	90.1	100	
	recall test (%)	83.7	100	
	recall train (%) (cross validation)	84.4	87	
	recall test (%) (cross validation)	85.1	86.2	

Hypertuning Parameter

- Manual Tuning
- GridSearchCV

AdaBoost Classifier	Manual	GridSearchC V
algoritma	SAMME.R	SAMME.R
n_estimator	10	200
learning_rate	0.8	0.01

GradientBoostin g Classifier	Manual	GridSearchC V
n_estimator	12	10
learning_rate	0.2	0.01
max_depth	3	3
min_samples_leaf	65	1
min_samples_split	default	2
subsample	default	0.8

4.3 Modelling - Modelling Hypertuning Parameter (Lanjutan)

AdaBoostCla	AdaBoostClassifier Hypertuning (manual)				
report test :	precision	recall	f1-score	support	
0 1	0.95 0.40	0.69 0.85	0.80 0.54	1607 393	
accuracy macro avg weighted avg	0.67 0.84	0.77 0.72	0.72 0.67 0.75	2000 2000 2000	
report train	: precision	recall	f1-score	support	
0 1	0.84 0.87	0.83 0.88	0.83 0.88	4111 5531	
accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	9642 9642 9642	

GradientBoostingClassifier	Hypertuning	(GridSearchCV)	
Cladicitiboostiligolassilici	riyporturning	(Chaccarone v)	

report test :					
	precision	recall	f1-score	support	
0	0.00	0.00	0.00	1607	
1	0.20	1.00	0.33	393	
accuracy			0.20	2000	
macro avg	0.10	0.50	0.16	2000	
weighted avg	0.04	0.20	0.06	2000	
report train	:				
	precision	recall	f1-score	support	
0	0.00	0.00	0.00	4111	
1	0.57	1.00	0.73	5531	
accuracy			0.57	9642	
macro avg	0.29	0.50	0.36	9642	
weighted avg	0.33	0.57	0.42	9642	

Model terbaik adalah dengan menggunan AdaBoostClassifier

Alasan: setelah dibandingkan dengan GradientBoosting, Gradient Boosting memiliki recall yang tinggi namun, recall 0 bernilai 0%. Artinya bahwa gradient boosting memprediksi banyak nasabah yang churn walaupun sebenarnya nasabah tersebut tidak churn

5. Executive Summary & Recommendation

5. Executive Summary & Recommendation

1 Age
Umur Customer

• Kelompok umur
Elderly 46-65 tahun
memiliki tingkat churn
yang tinggi

Survei Khusus

Menyesuaikan produk dan layanan yang relevan dengan kebutuhan dan preferensi Customer

2

NumOfProducts

Jumlah Produk yang digunakan Customer

Customer dengan 1 produk memiliki jumlah churn paling banyak Observasi Customer dengan 4 produk memiliki persentase/tingkat churn paling tinggi

Program Loyalitas

Memberikan insentif (tambahan manfaat) untuk penggunaan lebih banyak produk

3

IsActiveMember

Nasabah yang aktif menggunakan produk dan layanan

Observasi

 Customer yang tidak aktif memiliki tingkat churn tinggi

Notifikasi Rutin

- Memberikan reward penggunaan produk kembali
- Memberikan poin untuk setiap transaksi

4 Gender
Jenis Kelamin Customer

• Customer wanita memiliki tingkat churn tinggi

Evaluasi Produk dan Layanan

Mengembangkan produk dan layanan khusus yang lebih relevan dengan kebutuhan dan preferensi customer wanita

TERIMA KASIH!