Sinais e Sistemas - Trabalho 6 - Avaliação 10

Grupo 2

Leonardo Soares da Costa Tanaka Matheus Henrique Sant Anna Cardoso Theo Rudra Macedo e Silva Vinícius Quintanilha Porto Gomes

```
1.) Considere o sinal v(t) = e^{-2t^2}. (Grupo 2:)
(a) Plote o seu gráfico;

%Questão 1.a)

% Intervalo
dt=0.001;

% Dados basicos
t=-2:dt:2-dt;
v=exp(-2*t.^2);
plot (t, v, "r", "linewidth", 3);
title("v(t) por t - 1.a)", "fontsize", 20);
xlabel("t", "fontsize", 18);
ylabel("v(t)", "fontsize", 18);
```


(b) escolha, a seu critério, uma janela de amostragem apropriada;

Foi escolhida uma janela de amostragem de 4 de largura com começo em -2, porque foi quando a função v começa a ficar maior que zero e depois começa a voltar para o zero.

(c) escolha uma frequência de amostragem f_a bem pequena, que coloque poucos pontos na janela, ache a FFt da série temporal obtida e analise o espectro de magnigudes;

Foi escolhida uma frequência de amostragem f_a de $1/\Delta_T$ que nesse caso seria 2,5.

```
dt=0.4;
t=-2:dt:2;
v=exp(-2*t.^2);
plot (t, v, "r*-", "linewidth", 3);
title("v(t) por t - 1.c)", "fontsize", 20);
xlabel("t", "fontsize", 18);
ylabel("v(t)", "fontsize", 18);
```


Então é preciso fazer as seguintes operações para calcular a FFT:

$$\begin{split} &\Delta_f = 1/T_0 = 1/4 = 0.25; \ L_0 = (N-1)\Delta_f = 2,5 \Rightarrow f \in [-1,25\ 1,25] \\ &\text{f=-1.25:} \ (0.25):1.25; \\ &\text{V = fft(v)} \\ &\text{V = fftshift(V);} \\ &\text{modV = abs(V);} \\ &\text{plot(f, modV, "r*-", "linewidth", 3)} \\ &\text{title("Espectro de magnitudes", "fontsize", 20);} \end{split}$$

$$FFT:$$

$$3.1333 + 0i$$

$$-2.3299 - 0.6841i$$

$$0.9509 + 0.6111i$$

$$-0.2069 - 0.2388i$$

$$0.0220 + 0.04$$

(d) escolha a f_a maior que a anterior, que coloque mais pontos na janela, ache a FFT correspondente e compare com a anterior;

```
dt=0.2;
t=-2:dt:2;
v=exp(-2*t.^2);
plot (t, v, "rx", "linewidth", 10);
title("v(t) por t - 1.d)", "fontsize", 20);
xlabel("t", "fontsize", 18);
ylabel("v(t)", "fontsize", 18);
```


$$\Delta_f = 1/T_0 = 1/4 = 0.25; \ L_0 = (N-1)\Delta_f = 5 \Rightarrow f \in [-2,5\ 2,5]$$
 f=-2.5:(0.25):2.5;
$$V = \mathrm{fft}(v)$$

```
V = fftshift(V);
modV = abs(V);
plot(f, modV, "r*")
title("Espectro de magnitudes", "fontsize", 20);
```

```
FFT:
      6.2664 + 0i
                       -4.6846 - 0.7061i
                                                1.9556 + 0.6032i
                                                                       -0.4554 - 0.2193i
                                                                                                0.0588 + 0.0401i
-0.0043 - 0.0040i
                         0.0001 + 0.0002i
                                               -0.0000 - 0.0000i \\
                                                                       -0.0000 - 0.0000i \\
                                                                                              -0.0000 - 0.0000i \\
-0.0000 - 0.0000i
                       -0.0000 + 0.0000i \\
                                               -0.0000 + 0.0000i
                                                                       -0.0000 + 0.0000i
                                                                                              -0.0000 + 0.0000i
 0.0001 - 0.0002i
                       -0.0043 + 0.0040i
                                                0.0588 - 0.0401i
                                                                       -0.4554 + 0.2193i
                                                                                                1.9556 - 0.6032i
-4.6846 + 0.7061i
```


(e) siga o roteiro acima até não haver diferenças entre significativas entre os espectros;

Depois de repetir o processo diversas vezes até não ter uma significativa foi obtido o seguinte código final com Δ_t de 0,0005:

```
dt=0.0005;
t=-2:dt:2;
v=exp(-2*t.^2);
f=-(1/(2*dt)):(1/4):(1/(2*dt));
V = fft(v)
V = fftshift(V);
modV = abs(V);
```

```
plot(f, modV, "r*")
title("Espectro de magnitudes", "fontsize", 20);
```


(f) usando esta f_a "boa" altere a largura inicial da janela, obtenha o espectro mais uma vez e compare.

2.) Para o sinal contínuo a seguir (Grupo 2:)

G2:
$$x(t) = 8\operatorname{sinc}(4t) - 2\operatorname{sinc}(2t)$$

(a) Plote o gráfico;

```
%Questão 2.a)
% Intervalo
dt=0.001;
% Dados basicos
t=-10:dt:10-dt;
x=8*sinc(4*t)-2*sinc(2*t);
plot (t, x, "r", "linewidth", 3);
title("x(t) por t - 2.a)", "fontsize", 20);
xlabel("t", "fontsize", 18);
ylabel("x(t)", "fontsize", 18);
```

(b) encontre, justificando, a largura T_0 de uma janela de observação centrada na origem;

A largura T_0 encontrada foi 8 que começa em -4, porque é o trecho em que maior parte da energia é concentrada e o valor dos máximos e mínimos locais fora desse intervalo deixam de ser tão diferentes.

- (c) idem período de amostragem Δt seguro;
- (d) encontre o número de pontos $N=1+T_0/(\Delta t)$ e o vetor base de tempo $t=-T_0/2:\Delta t:T_0/2;$
- (e) construa a escala frequencial $\Delta f=1/T_0, F_0=(N-1)\Delta f$ e $f=-F_0/2:\Delta f:F_0/2;$
- (f) encontre os vetores x, X = fft(x) e mod = abs(x);
- (g) plote o espectro de amplitude: plot(f, mod);
- (h) comente os resultados.
- **3.)** Os pulsos a seguir são pares e nulos para $|t| > \Delta$:

$$p_{\Delta}$$
 é o plano $p_{\Delta}(t) = \Delta$ para $|t| \leq \Delta$,

 r_{Δ} é triangular com $r_{\Delta}(-\Delta) = r_{\Delta}(\Delta) = 0$ e $r_{\Delta}(0) = \pi/2$ e

 c_{Δ} é uma semicircunferência com $c_{\Delta}(-\Delta)=c_{\Delta}(\Delta)=0$ e $c_{\Delta}(0)=\Delta$.

(a) Esboçar o gráfico para os três pulsos e para (Grupo 2:)

$$x = p_4(t) + r_2(t-2) - c_2(t+2)$$

 p_{Δ}

```
delta = 1; p = delta*(abs(t) \le delta); r_{\Delta} delta = 1;
```

r = (pi/2-(pi/(2*delta))*abs(t)).*(abs(t) <= delta);

 c_{Δ}


```
delta = 1;
c = sqrt(delta^2-(t).^2).*(abs(t)<=delta);
dt=0.001;
t=-5:dt:5;
p=4;
r=2;
c=2;</pre>
```



```
x=4*(abs(t)<=p)+(pi/2-(pi/4)*abs(t-2)).*(abs(t-2)<=r)+sqrt(c^2-(t+2).^2).*(abs(t+2)<=c);
plot(t, x, "r", "linewidth", 3)
title("x(t) por t - 3.a)", "fontsize", 20);
xlabel("t", "fontsize", 18);
ylabel("x(t)", "fontsize", 18);</pre>
```

(b) Traçar os espectros de x(t), via FFT, determinando T_0 e f_0 por tentativa e erros.

Foi escolhido $T_0 = 10$ e $f_0 = 20$. A partir de diversas tentativas e erros escolhemos esses valores. Pois, fica mais claro de

identificar o comportamento da FFT. Isso tudo levando em consideração o x(t), que possui toda energia concentrada de [-4 4] e algumas oscilações diferentes entre os planos positivo e negativo. Então, não foi utilizado um grande T_0 para que não seja utilizado uma informação desnessária. Além disso, f_0 não tão pequeno para que haja uma manutenção do comportamento do x(t).

```
dt=0.05;
T0=10;
t=-(T0/2):dt:(T0/2);
p=4;
r=2;
c=2;
x=4*(abs(t) \le p)+(pi/2-(pi/(2*r))*abs(t-2)).*(abs(t-2) \le r)+sqrt(c^2-(t+2).^2).*(abs(t+2) \le c);
f=-1/(2*dt):(1/T0):1/(2*dt);
X = fft(x)
X = fftshift(X);
modX = abs(X);
angX = angle(X);
subplot(2, 1, 1)
plot(f, modX, "linewidth", 3)
title("Espectro de magnitudes", "fontsize", 20);
subplot(2, 1, 2)
plot(f, angX, "linewidth", 3)
title("Espectro de fases", "fontsize", 20);
```

4.) Sendo $p_{\tau}(t) = e^{-\Delta(t-\tau)^2}$ uma janela amostradora, com $\Delta = 0.5$ considere os sinais contínuos

```
x_1 = \cos(2\pi 261.1t)
x_2 = \cos(2\pi 293.7t)
x_3 = \cos(2\pi 311.1t)
x_4 = \cos(2\pi 329.6t)
x_5 = \cos(2\pi 349.2t)
x_6 = \cos(2\pi 392.0t)
x_7 = \cos(2\pi 440.0t)
x_8 = \cos(2\pi 466.2t)
x_9 = \cos(2\pi 522.2t)
```

e as combinações entre eles (Grupo 2:)

$$x(t) = x_1 p_4 + x_2 p_{12} + x_4 p_{20} + x_1 p_{28} + x_1 p_{36} + x_2 p_{44} + x_7 p_{52} + x_1 p_{60} + x_4 p_{68} + x_5 p_{76} + x_6 p_{84}$$

Se estiver usando o MATLAB/Octave use o comando sound ou o wavplay e ouça os sinais x_i e x; no FAWAV use o comando Graph/Audio com 16 bits, taxa de 8820 e volume de 32000.

(a) Plote o gráfico de x(t) e, a partir dele;

A seguir, o código utilizado:

```
%Questão 4.a)
% Intervalo
dt = 0.008;

% Dados básicos
t = 0:dt:8-dt;
f1=261.1; p4 = exp(-0.5*(t-4).^2); x1=cos(2*pi*f1*t);
f2=293.7; p12=exp(-0.5*(t-12).^2); x2=cos(2*pi*f2*t);
f3=311.1; p20=exp(-0.5*(t-20).^2); x3=cos(2*pi*f3*t);
f4=396.6; p28=exp(-0.5*(t-28).^2); x4=cos(2*pi*f4*t);
f5=349.2; p36=exp(-0.5*(t-36).^2); x5=cos(2*pi*f5*t);
f6=392.0; p44=exp(-0.5*(t-44).^2); x6=cos(2*pi*f6*t);
f7=440.0; p52=exp(-0.5*(t-52).^2); x7=cos(2*pi*f7*t);
f8=466.2; p60=exp(-0.5*(t-60).^2); x8=cos(2*pi*f8*t);
```


(b) estime a mínima frequência de amostragem f_a segura e uma resolução frequencial Δf adequada;

A maior frequência foi para o coeficiente x_9 com f=522.2Hz. Assim, utilizaremos $f_h=550Hz$ para termos uma janela de

amostragem segura. Dessa forma,

$$f_a = 2f_h$$

$$f_a = 2 \cdot 550$$

$$f_a = 1100Hz$$

Nisso, o Δ_t será dado por $\Delta_t = \frac{1}{f_a}$.

Pelo gráfico obtido, podemos estimar o período $T_0=8$ segundos. Portanto, $\Delta_f=\frac{1}{T_0}.$

$$\Delta_f = 0.125$$

- (c) amostre x, calcule sua DFT, e plote os espectros com escalas apropriadas;
- (d) calcule a energia E do sinal.
- (e) Mantendo os pulsos p_{τ} fixos, construa um sinal $x_a(t)$ fazendo uma permutação aleatória nos "coeficientes" x_i ;
- (f) ouça o sinal alterado;
- (g) repita (b) e (c) para o novo sinal;
- (h) comente os resultados.