

INR - Introduction aux Réseaux INT1GIR

Année 2014-2015 PMA

Septembre 2014

3. Les supports de transmission

- Caractéristiques des supports de transmission
- Les supports guidés
- Les supports libres
- Conclusion

Caractéristiques techniques des supports

- Ils influencent
 - l'infrastructure du réseau
 - Ses solutions logicielles
 - Ses services
 - La qualité de service

- Conductibilité des métaux
- Propriétés des ondes électromagnétiques
- Complexité des systèmes : liaison sur supports hétérogènes

Bande passante du support de transmission

- Déformation du signal durant sa transmission selon
 - Spectre du signal
 - Bande passante du support

Notions d'analyse spectrale

Spectre de Fourier

$$u(t) = A0 + \sum_{i=1}^{i=\infty} Ui \cos(i\omega t + \varphi i)$$

Décomposition d'un signal carré

Figure 4.3 Décomposition d'un signal carré symétrique par rapport au 0 volt.

Spectre de fréquences d'un signal

- Largeur de bande du signal
- et reconstitution du signal carré

Septembre 2014

Caractéristiques

Notion de bande passante

Distortions de phase et d'amplitude

Figure 4.6 Tracé de la bande passante d'un système.

La paire torsadée (UTP, FTP, STP)

- Qualité du câble augmente :
 - torsades ex. cat.5
 - Immunité aux parasites de l'environnement
 - Taux d'erreurs : 10⁻⁴ à 10⁻⁹

Figure 4.13 Paire torsadée ou paire symétrique.

Figure 4.14 Couplage inductif entre paires : la diaphonie.

La paire torsadée

Systèmes de pré-câblage – UTP / FTP

Le câble coaxial

- LAN: numérique; 10 Mbps; 1Km
 - → Remplacé par UTP
- CATV: analogique; 500 MHz; longues distances
- Plus difficile à installer
- Taux d'erreurs : 10-9

La fibre optique

- Principe
- n = c/v

La fibre optique

- Indice de réfraction et guide d'onde
- Cœur : fil de silice
- Transceiver en 3 éléments :
 - Diode d'émission
 - Photodiode de réception
 - Fibre optique
 - Les connecteurs interviennent dans la BP et les débits réellement disponibles

- Les différents types de fibres optiques
 - Saut ou gradient d'indice
 - Ouverture numérique : multimode ou monomode

- Les performances des fibres optiques
 - BP importante
 - Immunité é.m.
 - Taux erreurs: 10⁻¹²
 - __ / ,..
 - Support privilégié des réseaux à hauts débits et à longues distances
 - Utilisées dans le cœur des réseaux de télécommunication

Liaisons hertziennes

- Principe
 - Propagation dans le vide à la vitesse de la lumière
 - Modes de propagation : fonction de la fréquence de l'onde
 - propagation à vue : portée limitée par l'horizon
 - ou par réflexion et trajets multiples ex. GSM

Liaisons hertziennes

- Domaines d'application
 - Réseaux de diffusion : Radio et TV
 - Réseaux de radio-messagerie pour mobiles
 - Réseaux de radio-téléphonie
 - Hauts débits : ponts inter-réseaux grâce aux faisceaux hertziens ou via satellites

Liaisons hertziennes

Applications et spectre des fréquences

- Attribution stricte des bandes de fréquence par régions et par applications (téléphonie, TV, données, ...)
- Règlementations nationales, régionales et internationales (UIT)

Liaisons hertziennes

Faisceaux hertziens terrestres

- Bande de fréquences : 2 GHz à 15 GHz (en extension vers 40 GHz et même 66 GHz)
- Débits : 155 Mbps
- Distances de liaison sans relais : 100 Kms
- Puissances d'émission et Antennes paraboliques
- Antennes très directives : VSAT et USAT

Liaisons lumineuses

- Liaisons Infra-rouge (IR) et Lasers
 - LAN : les ondes radio sont préférées à l'IR
 - Normes 802.11 à 2.4 GHz et 5 GHz
 - Lasers : ponts inter-LAN
 - Sur toits des bâtiments
 - Liaisons point-à-point (~ 100m)

Liaisons satellitaires Historique

1950 - 1960

- Divers essais de réflexion de signaux radioélectriques sur des ballons de sonde météo
- Utilisation de la Lune par militaires US

• 1962

- Telstar 1 est le premier satellite actif de télécommunication
- Géostationnaire (36.000 Km d'altitude)
- Retransmission d'images TV

Intérêt

- diffusion avec une couverture terrestre la plus large possible
- Applications initiales : programmes de TV et télécommunications militaires

Principe des liaisons satellitaires

- Satellite
 - relais hertzien : liaison à grande distance
 - Nœud spatial d'un réseau terrestre

Liaisons satellitaires

Les 3 types de satellites : GEOS, LEOS et MEOS → temps de propagation différents

- 2 modes orbitaux
 - équatorial : cone de 120°
 - ou constellation : couverture spatiale et temporelle totale

Figure 4.31 Satellites géostationnaires et constellation de satellites (MEO et LEO).

Liaisons satellitaires

- Problèmes des satellites
 - délai de transmission important
 - 250 à 300 ms pour les GEO
 - 540 ms pour les VSAT à relais
 - Liaisons à diffusion
 - problème de sécurité → chiffrement nécessaire
- Avantages
 - Diffusion par satellite moins chère sur de grandes distances géographiques
 - Coût de la communication indépendante de la distance

- Caractéristiques des supports
 - Limites d'utilisation
- Avancée de l'électronique numérique
 - Limites repoussées au maximum
 - Voies de recherche importante pour adapter
 l'information aux différents supports