Vlastnosti:

- vybavovací doba (rychlost čtení / rychlost zápisu velikost v ns)
- . kapacita paměti (velikost v KiB, MiB, GiB, TiB)
- možnost přepisu buňky (RWM / ROM)
- energetická závislost (zda se paměť po vypnutí počítače vymaže či nikoli)

kapacita paměti

opakování

Jednotka	Značka	Velikost v B (bajtech)	Mocnina
Kibibajt	KiB	1 024	2 ¹⁰
Mebibajt	MiB	1 048 576	2 ²⁰
Gibibajt	GiB	1 073 741 824	2 ³⁰
Tebibajt	TiB	1 099 511 627 776	2 ⁴⁰
Pebibajt	PiB	1 125 899 906 842 624	2 ⁵⁰
Exbibajt	EiB	1 152 921 504 606 846 976	2 ⁶⁰
Zebibajt	ZiB	1 180 591 620 717 411 303 424	2 ⁷⁰
Yobibajt	YiB	1 208 925 819 614 629 174 706 176	2 ⁸⁰

Podle možnosti zápisu/čtení mohou být paměti rozděleny na:

ROM (Read Only Memory) - paměti pouze pro čtení

 ⇒ RWM (Read Write Memory) - paměti pro zápis i čtení

statické hodně součástek - malé kapacity

⇒dynamické jedna součástka =
jeden bit - velké
kapacity

opakování

Polovodičové paměti

Podle typu přístupu mohou být paměti rozděleny na:

 ⇒ RAM (Random Access Memory) - paměti s libovolným přístupem ⇒ SAM (Serail Access
 Memory) - paměti se sériovým přístupem.

opakování

Polovodičové paměti

RWM (Read Write Memory) - paměti pro zápis i čtení

Statické SRAM hodně součástek - <u>malé kapacity</u>

⇒Dynamické DRAM jedna součástka = jeden bit - velké kapacity Informace = náboj kapacity tzn. musím obnovovat = refresh

- běžně je paměť typu RAM/ROM tvořena maticí elektronických prvků
- každý prvek nabývá stavu 0 nebo 1
- prvky jsou spojeny řádkovými a sloupcovými vodiči
- . těmi lze prvky elektronicky ovládat (zapisovat a číst)

ROM

 buňka = el. pojistka. Výrobce některé buňky přepálí a jsou nositelem logické 1. Ostatní, které vedou proud jsou nositelem logické 0

PROM (Programmable ROM)

- podobné jako ROM, ale informace nezapisuje výrobce, ale uživatel pomocí programátoru ROM propojku přepálí EPROM (Erasable PROM)
- · lze do nich opakovaně zapisovat. Informace je kódována pomocí elektrického náboje. Smazání záznamu se provádí pomocí ultrafialového záření

EEPROM (Electrically EPROM)

· jde o mazatelnou paměť. Vymazání se prování elektrickými impulsy. Počet mazání a zápisů je omezen.

Flash-EEPROM

nejrychlejší přepisovatelný typ. Obsahuje řízení, které slouží k rozkládání zápisu na celé flash médium. Jinak by došlo k znehodnocení flash paměti opakovanými zápisy do jednoho místa, zatímco zbytek flash paměti by zůstal neopotřebován.

Flash EEPROM

Memory Technology Device (MTD)

- . pracují podobně jako paměť RAM
- rozdíl ukládání dat v blocích

řadič

Řadič je elektronická součástka, sloužící k řízení dle programu—například všech komponentů počítače.

Příklad řadiče tvořeného ROM pamětí v které je naprogramována činnost zařízení.

jednotlivé vodiče zapínají funkce například v procesoru

CMOS-RAM paměť

- vyrobena technologií CMOS mají malou spotřebu
- po vypnutí zařízení je napájena z baterie
- využití v PC pro zápis BIOS programem SETUP

MOSFET tranzistor je řízen napětím (nepotřebuje k udržení informace výkon) Complement (doplňují se)
= dva tranzistory opačné vodivosti

onakování (LJ+)

Statická RAM (SRAM)

- tvořena bistabilním klopným obvodem rychlé s přístupovou dobou 7,5 15 ns
- více součástek (6) na jeden bit paměti než dynamická paměť
- používány především pro realizaci pamětí typu cache, jejichž kapacita je ve srovnání s operační pamětí mnohonásobně nižší.

Dynamické DRAM

Refresh = el. náboj na kapacitě musím obnovovat

Refresh znamená:

- obnovení náboje na C aktivováním řádku
- nutno aktivovat všechny po určité době

Druhy pamětí dle refresh:

- ⇒ blokové (všechny buňky se obnoví zároveň)
- ⇒ rozložené (obnova po jednotlivých řádcích, třeba po 1ms/řádek)
- ⇒ transparentní (obnovuje se, když paměť není třeba, což řídí procesor)

Buňka paměti-na parazitní kapacitě přívodu tranzistoru je elektrický náboj, který otevře tranzistor.

Kapacita přívodu tranzistoru vůči substrátu na kterém vše umístěno drží el. náboj Q.

Dynamická RAM (DRAM)

- paměť tvořena kondenzátory, které v nabitém stavu představují 1 a vybitém 0
- málo součástek znamená, že se jich vejde hodně na základní destičku v čipu-velké kapacity paměti
- refresh paměť zpomaluje + po přečtení se kapacita vybije-musím obnovit informaci

kapacita přívodu tranzistoru vznikne automaticky

Synchronous dynamic RAM (SDRAM)

- pracuje ve stejném taktu jako paměťová sběrnice
- využívala se na starších základních deskách PC (dnes se již zde nevyužívají)
- přenosová rychlost při taktu FSB 133MHz se sběrnicí 32bitů □ 133 x 8 = 1 064 MB/s

Double Data Rate SDRAM (DDR)

- rychlost prvků základní desky je odvozena od systémového časovače
- paměti DDR pracují tak, že přenášejí data jak na náběžné tak sestupné hraně
- během jednoho taktu tak provede dvě operace
- mají tedy dvojnásobnou datovou propustnost

obvody řízené jak sestupnou tak náběžnou hranou časového pulzu pracují dvojnásobnou rychlostí

opakování

DDR označované číslem

- snižuje se napájecí napájecí napětí (menší el. příkon znamená méně tepla)
- používají se čipy o rychlejším taktu
- spolupráce čtení/zápisů dvou/více čipů do jedné rychlé sběrnice

obvody paměti jsou uloženy na normované destičce (DIMM), která má na spodní straně vyleptány kontakty spolu s výřezem pro identifikaci umístění a typu modulu

DIMM (Dual In-line Memory Module)

- kontakty po obou stranách destičky

Některé typy DIMM:

- 144 pinové
- . 168 pinové
- . 184 pinové
- · 240 pinové

zářezy jsou pro každý typ desky jinde

CACHE-Rychlá vyrovnávací paměť paměť' zrychlení toku dat obsah adrecelé bloky dat řídí organizátor paměti-načítá bloky v okolí buňkv paměti adresy s kterou se pracuje 1 2 3 požadavek načtení obsahu paměti na adrese 5 --vyčtená informace < cache připraveno-kdyby 11 bylo třeba 12 k dispozici v rychlé 13 paměti k načtení 15 17 19

pokud tato konstrukce bude uvnitř paměťového modulu nazýváme tuto část paměti: Zásobníková paměť

20

· část paměti je tvořena rychlejším typem paměti než zbytek (často statická paměť)

Buffer

usnadňuje komunikaci mezi zařízeními, které mají rozdílnou rychlost

Virtuální paměť

 adresní prostor se rozdělí na stránky(na části paměťového prostoru)-pak máme menší číslo, které potřebujeme k zaadresování buňky

Stránkovací soubor

• technika práce s menší pamětí, než je nutná k běhu počítače-pokud v určité části paměti zařízení nepracuje, tak si obsah té části uloží například na pevný disk

