

合众新能源汽车有限公司企业标准

Q/THZ E8-19-2021

代替 Q/THZ E8-19-2015

LIN单体网络通讯测试规范

2021-6-30 发布 2021-7-15 实施

前 言

本标准依据GB/T 1.1-2009给出的规则起草

本标准依据Q/THZ E5-5-2021《LIN网络控制单元技术要求》给出的更新,对应更新该规范 本标准代替 Q/THZ E8-19-2015《LIN 硬件测试规范》,与 Q/THZ E8-19-2015 相比,除编辑性修改 外,主要技术变化如下:

- 1) 新增了测试环境及准备的条目内容,并按照实际测试环境排版;
- 2)对主节点和从节点测试大项进行拆分细化,详细描述了测试用例执行步骤及期望结果。

本标准由合众新能源汽车有限公司智能研究院提出。

本标准由合众新能源汽车有限公司项目管理部归口。

本标准起草单位: 合众新能源汽车有限公司智能研究院电子电气架构部。

本标准主要起草人: 王野、李川、刘淑娟、刘奎、朱洪。

本标准所代替标准的历次版本发布情况为:

—— Q/THZ E8-19-2015。

LIN 单体网络通讯测试规范

1 范围

本标准规定了对合众汽车LIN单体网络控制单元物理层、数据链路层、网络管理、容错性能等的测试方法。

本标准适用于合众新能源汽车有限公司(以下简称合众汽车)在整车 LIN 网络开发阶段对各车载 ECU 实施网络单元测试的方法。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

Q/THZ E5-5-2021 《LIN网络控制单元技术要求》。

3 术语和定义

下列术语和定义适用于本标准。

3. 1

ECU

电子控制单元。

3. 2

DUT

在验装置。

3.3

DIIT上由

KL30电、KL15电闭合,并且供电电压为13.5V±0.1V。

3.4

CAN (CANFD)

控制器局域网、可变速率控制器局域网。

3.5

DLC

报文长度。

3.6

KL30

常电, 蓄电池电源。

3. 7

KL15/IGN

点火开关ON档电源。

3.8

LIN2. 1

LIN Specification Package Revision 2.1.

3 9

物理层

物理层是有顺序的比特流传输的物理介质,包括硬件的、电位的、功能的、程序的物理访问介质。 3.10

数据链路层

通过物理层提供可靠的信息传输;包括发送数据(帧)的必要同步、误差控制、序列控制、流控制。

4 LIN-Master 测试环境及准备

4.1 CFG1 通用测试配置

图 1 CFG1 设置

- a. CANoe: 用来模拟除 DUT 外的其他节点发送和接收报文;记录监测总线报文;对 DUT 进行 ACK 应答;
- b. 可调电源:通过 PC 可控模拟不同供电电压;
- c. 示波器:具有 LIN 译码功能;LIN 线接入单通道输入;KL15/IGN 接入单通道输入。

4.2 CFG2 容错测试配置 1

图 2 CFG2 设置

- a. CANoe: 用来模拟除 DUT 外的其他节点发送和接收报文;记录监测总线报文;对 DUT 进行 ACK 应答;
- b. 控制开关: 实现 DUT 分别与电源、地短路的功能;
- c. 可调电源:通过 PC 可控模拟不同供电电压。

4.3 CFG3 容错测试配置

图 3 CFG3 设置

- a. CANoe: 用来模拟除 DUT 外的其他节点发送和接收报文;记录监测总线报文;对 DUT 进行 ACK 应答;
- b. 控制开关:实现 DUT 分别与电源、地断路的功能;
- c. 可调电源:通过 PC 可控模拟不同供电电压。

4.4 CFG4 隐性输入阈值测试配置

图 4 CFG4 设置

- a. CANoe: 用来模拟除 DUT 外的其他节点发送和接收报文;记录监测总线报文;对 DUT 进行 ACK 应答;
- b. 可调电源:通过 PC 可控模拟不同供电电压;

c. 负载值: Rload=4.0KΩ, Cload=5.5nF。

4.5 CFG5 显性输入阈值测试配置

图 5 CFG5 设置

- a. CANoe: 用来模拟除 DUT 外的其他节点发送和接收报文;记录监测总线报文;对 DUT 进行 ACK 应答;
- b. 可调电源:通过 PC 可控模拟不同供电电压;
- c. 负载值: Rload=4.0KΩ, Cload=5.5nF。

4.6 CFG6 地偏移测试配置

图 6 CFG6 设置

- a. CANoe: 用来模拟除 DUT 外的其他节点发送和接收报文;记录监测总线报文;对 DUT 进行 ACK 应答;
- b. 可调电源:通过 PC 可控模拟不同供电电压。

4.7 CFG7 上升沿/下降沿速率测试配置

图 7 CFG7 设置

- a. 信号发生器: 用来模拟 LIN 总线上输出的方波信号;
- b. 可调电源:通过 PC 可控模拟不同供电电压;
- c. 示波器: 具有 LIN 译码功能; LIN 线接入单通道输入; KL15/IGN 接入单通道输入。

4.8 CFG8 最恶劣电容测试配置

图 8 CFG8 设置

- a. CANoe: 用来模拟除 DUT 外的其他节点发送和接收报文;记录监测总线报文;对 DUT 进行 ACK 应答;
- b. 可调电源:通过 PC 可控模拟不同供电电压;
- c. 示波器:具有 LIN 译码功能;LIN 线接入单通道输入;KL15/IGN 接入单通道输入。

4.9 CFG9 传输延时测试配置

图 9 CFG9 设置

- a. 信号发生器:用来模拟 LIN 总线上输出的方波信号;
- b. 可调电源:通过 PC 可控模拟不同供电电压;
- c. 示波器:具有 LIN 译码功能;LIN 线接入单通道输入;KL15/IGN 接入单通道输入。

4.10 CFG10 电阻测试配置

图 10 CFG10 设置

- a. 信号发生器: 用来模拟 LIN 总线上输出的方波信号;
- b. 可调电源:通过 PC 可控模拟不同供电电压;
- c. 示波器:具有 LIN 译码功能; LIN 线接入单通道输入; KL15/IGN 接入单通道输入;
- d. 负载值: Rload=1.0KΩ, 阻值误差小于±1%。

4.11 CFG11 电容测试配置

图 11 CFG11 设置

- a. 信号发生器: 用来模拟 LIN 总线上输出的方波信号;
- b. 可调电源:通过 PC 可控模拟不同供电电压;
- c. 示波器:具有 LIN 译码功能;LIN 线接入单通道输入;KL15/IGN 接入单通道输入;
- d. 负载值: Rload=1.0KΩ, 阻值误差小于±1%。

5 LIN_Master 物理层测试

5.1 [TG1_TC1]主节点工作电压范围测试

表 1

	表Ⅰ
	测试内容
用例编号	[TG1_TC1]
需求索引	
测试目的	检查主节点工作电压范围内的总线通信行为
测试步骤	SUB CASE1:
	1.设置测试工具 CANoe 为从节点(configuration/hardware
	configuration 取消 master mode 和 master resister);
	2. 设置供电电压为 13.8±0.2V,确定 DUT 正常运行;
	3. 设置 Ubat=7. OV;
	4. 使用 CANoe 检测 DUT 是否发送 TST_FRAME_2_TX 报文头(期望: DUT
	在 8-18V 之间正常响应);
	5. 增加 Ubat 电压 0. 1V;
	6. 使用 CANoe 检测 DUT 是否发送 TST_FRAME_2_TX 报文头(期望: DUT
	在 8-18V 之间正常响应);
	7. 如果 Ubat>19. 0V, 停止; 否则, 跳至第 5 步。
	SUB CASE2:
	1.设置测试工具 CANoe 为从节点(configuration/hardware
	configuration 取消 master mode 和 master resister);
	2. 设置供电电压为 13.8±0.2V,确定 DUT 正常运行;
	3. 设置 Ubat=19. OV;
	4. 使用 CANoe 检测 DUT 是否发送 TST_FRAME_2_TX 报文头, (期望:
	DUT 应在 8-18v 之间正常响应);
	5. 减小 Ubat 电压 0.1V;
	6. 使用 CANoe 检测 DUT 是否发送 TST_FRAME_2_TX 报文头(期望: DUT
	应在 8-18v 之间正常响应);
	7. 如果 Ubat < 7. 0V, 停止; 否则, 跳至第 5 步。
	验收准则
1	

SUBCASE1:

在 Ubat [8.0-18.0] 范围内, DUT 发送 TST_FRAME_2_TX 报文头。

SUBCASE2:

在 Ubat[8.0-18.0]范围内, DUT 发送 TST_FRAME_2_TX 报文头。

5.2 [TG1_TC2]主节点输出电平测试

700		
测试内容		
用例编号	[TG1_TC2]	
需求索引	LIN2.1Physical layer specification 6.5.4 节	
	SAE J2602-2 7.4.1.1.1	
测试目的	在最大、正常和最小供电电压情况下,验证主节点的显性和隐性输	
	出电压在通信标准规定范围内。	

测试步骤

SUB CASE1:

- 1. 设置测试工具 CANoe 为从节点 (configuration/hardware configuration 取消 master mode 和 master resister);
- 2. 设置 Ubat=8V:
- 3. 在同步段,用示波器测量逻辑"1"和逻辑"0"的电平;
- 4. 重复10次步骤2-3;
- 5. 设置 Ubat=13.8V (DUT 正常);
- 6. 在同步段,用示波器测量逻辑"1"和逻辑"0"的电平:
- 7. 重复10次步骤5-6;
- 8. 设置 Ubat=18V:
- 9. 在同步段,用示波器测量逻辑"1"和逻辑"0"的电平;
- 10. 重复10次步骤8-9。

SUB CASE2:

- 1. 设置测试工具 CANoe 为从节点 (configuration/hardware configuration 取消 master mode 和 master resister):
- 2. 设置 Ubat=8V, Rload=1KΩ, Cload=1nF;
- 3. 使用周期为 100us 占空比为 50%的 5V 方波驱动被测节点的 TX 引脚;
- 4. 检测 LIN 总线上逻辑 "1" 和逻辑 "0" 的电平;
- 5. 设置 Ubat=18V, Rload=1KΩ, Cload=1nF;
- 6. 检测 LIN 总线上逻辑"1"和逻辑"0"的电平。
- 注:测试时可只选择 SUBCASE1 或 SUBCASE2 一种方法进行测试。

验收准则

SUBCASE1:

如下图所示,测量同步字节的逻辑"1"和逻辑"0"电平;

Ubat=8V, 逻辑"1">=5.6V, 逻辑"0"<=1.6V;

Ubat=13.8V, 逻辑"1">=10.24V, 逻辑"0"<=2.76V;

Ubat=18V, 逻辑"1">=13.6V, 逻辑"0"<=3.6V。

SUBCASE2:

如下图所示,测量同步字节的逻辑"1"和逻辑"0"电平;

Ubat=8V, 逻辑"1">=6.4V, 逻辑"0"<1.6V;

Ubat=18V, 逻辑"1">14.4V, 逻辑"0"<3.6V。

5.3 [TG1_TC3]主节点电阻测试

	测试内容
用例编号	[TG1_TC3]

需求索引	LIN2.1 physical layer specification 6.5.4 节	
测试目的	验证主节点电阻值是否满足通信标准要求	
	SUB CASE1:	
测试步骤	1. 设置供电电压为 12V;	
	2. 通过示波器测量总线电压 Ulin。	
验收准则		
SUBCASE1:		
Ubat=12V, 总线电压范围为 4.7V≤Ulin≤6.3V。		

6 LIN 数据链路层测试

6.1 [TG2_TC1]主节点波特率测试

表4

1 × 1			
测试内容			
用例编号	[TG1_TC1]		
需求索引	LIN2.1 physical layer specification 6.3节		
测试目的	验证主节点电阻值是否满足通信标准要求		
	SUB CASE1:		
	1. 设置测试工具 CANoe 为从节点(configuration/hardware		
测试步骤	configuration取消 master mode和 master resister);		
侧风少绿	2. 设置供电电压为 13.8±0.2v;		
	3. 等待网络通信正常,采用 CANoe 获取 DUT 报文波特率;		
	4. 重复10次3步骤。		
验收准则			
SUBCASE1:			
DUT 波特率在标准规定	范围内<±0.5%。		

6. 2 [TG2_TC2]主节点波特率测试

测试内容		
用例编号	[TG1_TC2]	
需求索引	LIN2.1 physical layer specification 6.3节	
测试目的	验证主节点在从节点±2%波特率偏差的条件下是否满足通信标准	
	SUB CASE1:	
	1.设置测试工具 CANoe 为从节点(configuration/hardware	
	configuration 取消 master mode 和 master resister);	
	2. 设置供电电压为 13. 8±0. 2v;	
	3. 等待网络通信正常,采用 CANoe 获取 DUT 报文波特率 BR _H ;	
测试步骤	4. 设置从节点波特率为 1.02 * BR _H 。	
	SUB CASE2:	
	1.设置测试工具 CANoe 为从节点(configuration/hardware	
	configuration 取消 master mode 和 master resister);	
	2. 设置供电电压为 13.8±0.2v;	
	3. 等待网络通信正常,采用 CANoe 获取 DUT 报文波特率 BR _H ;	

	4. 设置从节点波特率为 0.98 * BR _H 。	
验收准则		
SUBCASE1 and SUBCASE2:		
DUT 发送 TST_FRAME_2_Tx 报头无错误帧产生。		

6.3 [TG2_TC3]主节点间隔场显性电平长度

表6

测试内容		
用例编号	[TG2_TC3]	
需求索引	LIN2.1 physical layer specification 2.3.2节	
测试目的	验证主节点间隔场显性电平长度是否在变准规定范围内	
测试环境	如图 2 所示	
测试步骤	SUB CASE1: 1. 设置测试工具 CANoe 为从节点(configuration/hardware configuration 取消 master mode 和 master resister); 2. 设置供电电压为 13.8±0.2v; 3. 等待 DUT 发送任意报文头测量间隔场显性电平长度 T _{SYNBRK} ; 4. 重复 10 次步骤 3。	
验收准则		

验収准则

SUBCASE1:

 $T_{\text{SYNBRK_Nominal}} <= T_{\text{SYNBRK}} <= T_{\text{SYNBRK_MAX}};$

 $T_{\text{SYNBRK_Nominal}} = 13 * T_{\text{bit}};$

 $T_{\text{SYNBRK_MAX}} = 26 * T_{\text{bit}}$

6.4 [TG2_TC4]主节点界定符长度

表 7

衣 (
测试内容		
用例编号	[TG2_TC4]	
需求索引	LIN2.1 physical layer specification 2.3.2节	
测试目的	验证主节点间隔场显性电平长度是否在标准规定范围内	
测试步骤	SUB CASE1: 1. 设置测试工具 CANoe 为从节点(configuration/hardware configuration 取消 master mode 和 master resister); 2. 设置供电电压为 13. 8±0. 2v; 3. 等待 DUT 发送任意报文头测量同步界定符长度 T _{SYNDEL} ; 4. 重复 10 次步骤 3。	
验收准则		
SUBCASE1:		
T _{SYNDEL_Nominal} <= T _{SYNDEL_MAX} ;		
$T_{\text{SYNDEL_Nominal}} = 1 * T_{\text{bit}};$		
$T_{\text{SYNDEL_MAX}} = 14 * T_{\text{bit}}$		

6. 5[TG2_TC5]主节点同步场测试

测试内容		
用例编号	[TG2_TC5]	
需求索引	LIN2.1 physical layer specification 2.3.1 节	
测试目的	验证主节点同步场是否符合标准	
	SUB CASE1:	
	1.设置测试工具 CANoe 为从节点(configuration/hardware	
测试步骤	configuration 取消 master mode 和 master resister);	
侧似少绿	2. 设置供电电压为 13.8±0.2v;	
	3. 发送任意报文头;	
	4. 重复 10 次步骤 3。	
验收准则		
SUBCASE1:		
从节点能够正确响应]	DUT 发送的报文头。	

6. 6[TG2_TC6] 主节点报文头长度

表9

X3		
测试内容		
用例编号	[TG2_TC6]	
需求索引	LIN2.1 physical layer specification 2.3.2节	
测试目的	验证主节点报文头长度是否在标准规定范围内	
测试步骤	SUB CASE1: 1. 设置测试工具 CANoe 为从节点(configuration/hardware configuration 取消 master mode 和 master resister); 2. 设置供电电压为 13. 8±0. 2v; 3. DUT 发送所有的报文头测量报文头长度 T _{Header} ; 4. 重复 10 次步骤 3。	
验收准则		
SUBCASE1:		
T _{Header_Nominal} <= THeader<=T _{Header_Maximunm} ;		
T _{Header_Nominal} = 34*T _{bit} ;		
$T_{\rm Header_Maximunm} = 47*T_{\rm bit}$ °		

6.7[TG2_TC7]主节点的从任务响应空间长度范围

测试内容	
用例编号	[TG2_TC7]
需求索引	/
测试目的	验证主节点的从任务的响应空间长度是否在标准的范围内
测试步骤	SUB CASE1: 1. 设置测试工具 CANoe 为从节点(configuration/hardware configuration 取消 master mode 和 master resister); 2. 设置供电电压为 13. 8±0. 2v; 3. 等待 DUT 发送的 TST_FRAME_2_Tx 报文,测量响应空间电平长度 TRESSPACE;

	4. 重复 10 次步骤 3。
	验收准则
SUBCASE1:	
$T_{\text{RESSPACE}} <= 8 T_{\text{bit}} \circ$	

6.8[TG2_TC8]主节点校验方式检测

表11

1211		
测试内容		
用例编号	[TG2_TC8]	
需求索引	LIN2.1 physical layer specification 2.3.1.5 节	
测试目的	验证主节点的发送的响应的校验方式是否符合要求	
	SUB CASE1:	
	1. 设置测试工具 CANoe 为从节点(configuration/hardware	
 测试步骤	configuration取消 master mode和 master resister);	
例似少称	2. 设置供电电压为 13.8±0.2v;	
	3. 等待 DUT 发送 TST_FRAME_2_Tx 报文, 检测 DUT 发送的响应校验方	
	式是否为增强型校验。	
验收准则		
SUBCASE1:		
校验方式为增强	型校验。	

6. 9[TG2_TC9] 总线消息总长度测试

表12

	X12	
测试内容		
用例编号	[TG2_TC9]	
需求索引	LIN2.1 physical layer specification 2.3.2 节	
测试目的	验证消息总长度是否在标准规定范围内	
	SUB CASE1:	
	1. 设置测试工具 CANoe 为从节点(configuration/hardware	
	configuration 取消 master mode 和 master resister);	
测试步骤	2. 设置供电电压为 13.8±0.2v;	
	3. DUT 发送报文头, 此报文头需要 DUT 恢复响应测量消息电平总长度	
	TFRAME;	
	4. 重复 10 次步骤 3。	
验收准则		
SUBCASE1:		
T _{FRAME_Nominal} <= TFRAME<=T _{FRAME_MAX} ;		
$T_{\text{FRAME}} = 10 * (N_{\text{DATA}} + 4.4) T_{\text{BIT}};$		
$T_{\text{FRAME_MAX}} = 10 * (N_{\text{DATA}} + 4.4) T_{\text{BIT}}$		

6. 10 [TG2_TC10] 主节点不完整帧干扰测试

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		测试内容
用例编号	[TG2_TC10]	

需求索引	LIN2.1 physical layer specification 2.3.2节	
测试目的	验证消息总长度是否在标准规定范围内	
	SUB CASE1:	
	1.设置测试工具 CANoe 为从节点(configuration/hardware	
	configuration 取消 master mode 和 master resister);	
	2. 设置供电电压为 13. 8±0. 2v;	
测试步骤	3. DUT 发送 TST_FRAME_@_TX 报文头;	
	4. CANoe 对 TST_FRAME_2_Tx 报文头进行响应,仅发送数据场第一字	
	节;	
	5. canoe 恢复正常响应;	
	6. DUT 发送连续任意报文头。	
	验收准则	
SUBCASE1:		
总线通信正常。		

6.11[TG2_TC11]主节点不完整帧干扰测试

表14

	衣14
测试内容	
用例编号	[TG2_TC11]
需求索引	LIN2.1 physical layer specification 2.5节
测试目的	验证主节点 PID 奇偶校验错误的条件下对总线的影响
测试步骤	SUB CASE1: 1. 设置测试工具 CANoe 为从节点(configuration/hardware configuration 取消 master mode 和 master resister); 2. 设置供电电压为 13. 8±0. 2v; 3. DUT 发送 TST_FRAME_2_TX 报文头; 4. CANoe 对 TST_FRAME_2_Tx 报文头中的 PID 场第 7 位进行单词干扰; 5. DUT 发送正常的 TST_FRAME_2_Tx 报文头。
	验收准则
SUBCASE1:	

步骤 4: 总线有错误帧产生; 步骤 5: 总线无错误帧产生。

7 网络管理

7.1 [TG3_TC1]主节点发送睡眠命令帧

· ·		
测试内容		
用例编号	[TG3_TC1]	
需求索引	LIN2.1 physical layer specification 2.5 节	
测试目的	验证主节点能够正确的发送睡眠命令帧	
测试步骤	SUB CASE1:	
	1.设置测试工具 CANoe 为从节点(configuration/hardware	

	configuration 取消 master mode 和 master resister); 2.是 DUT 睡眠条件满足。
验收准则	

SUBCASE1:

DUT 向总线发送睡眠命令帧,TST_FRAME_4,然后 DUT 停止发送其他任何报文头,及信息。总线为隐性状态。

7.2 [TG3_TC2]主节点收到唤醒请求信号

表16

1210	
测试内容	
用例编号	[TG3_TC2]
需求索引	LIN com RS5.1 节
测试目的	验证主节点接收到唤醒请求信号后,能够在规定时间内唤醒并向总
	线发送报文头。
	SUB CASE1:
	1.设置测试工具 CANoe 为从节点(configuration/hardware
测试步骤	configuration 取消 master mode 和 master resister);
	2. LIN 测试工具依据通信标准 DUT 发送唤醒请求信号, 其显性电平
	长度为 250 µ s。
验收准则	

SUBCASE1:

DUT 必须在唤醒信号显性电平结束上升沿后 100ms 内向总线发送第一个报文头, 依据标准显性电平做多 canoe 发送三次。

7.3 [TG3_TC3]主节点被本地事件或 can 唤醒

测试内容		
用例编号	[TG3_TC3]	
需求索引	LIN com RS5.1节	
测试目的	验证主节点被唤醒后,是否发送唤醒信号用来唤醒从节点	
	SUB CASE1:	
	1.设置测试工具 CANoe 为从节点(configuration/hardware	
	configuration 取消 master mode 和 master resister);	
	2. 使 DUT 进入睡眠状态;	
	3. 触发本地事件;	
	4. 计算触发本地事件的时间与发出唤醒信号的时间差 T _{Init} ;	
测试步骤	5. 录唤醒信号显性电平持续时间 TwakeUp。	
	SUB CASE2:	
	1.设置测试工具 CANoe 为从节点(configuration/hardware	
	configuration 取消 master mode 和 master resister);	
	2. 使 DUT 进入睡眠状态;	
	3. 通过发送 0x400 报文唤醒 DUT;	
	4. 计算触发本地事件的时间与发出唤醒信号的时间差 T _{Init} ;	

5. 记录唤醒信号显性电平持续时间 Twakelip。

验收准则

SUBCASE1:

步骤 2: DUT 向总线发送睡眠命令帧 TST_FRAME_4;

步骤 3: DUT 的发送唤醒信号或者主机任务;

步骤 4: DUT 的初始化时间 T_{Init}<= 100ms;

步骤 5: 250 μs < T_{WakeUp}<5000 μs。

SUBCASE2:

步骤 2: DUT 向总线发送睡眠命令帧 TST FRAME 4;

步骤 3: DUT 的发送唤醒信号;

步骤 4: DUT 的初始化时间 T_{Init}<= 100ms;

步骤 5: 250 μs < T_{WakeUp}<5000 μs。

8 调度表测试

8.1 [TG4_TC1]调度表调度顺序与时隙

表18

12.10	
	测试内容
用例编号	[TG4_TC1]
需求索引 LINMatrix	
测试目的	验证主节点在发送的调度表的调度顺序与时隙是否符合规范要求
 测试目的 验证主节点任友达的调度表的调度顺序与时隙是省付合规范要求 SUB CASE1: 设置测试工具 CANoe 为从节点(configuration/hardware configuration 取消 master mode 和 master resister); 设置供电电源电压为 13. 8v±0. 2v; 测试工具接收主节点发送的报文头 2min,并记录所有的报文等id 的发送顺序。 	
	验收准则

SUBCASE1:

步骤 2: DUT 正常通信;

步骤 3: 主节点发送报文头的时隙及报文头发送顺序,主节点从任务数据长度与 LDF 数据库 定义一致, T_{slot}值符合 0.95*T_{slot}<= T_{slot}<= 1.05*T_{slot}范围, T_{slot}中包含了 T_{Jitter}时间要求。

9 容错性能

9.1 [TG5_TC1]丢失电源、地漏电流测试

	测试内容	
用例编号	[TG5_TC1]	
需求索引	LIN Com RS 2.7节	
	SAE J2602-2 7.7.1 和 7.10.1	
测试目的	验证主节点在丢失电源地漏测试后电流是否满足要求	
测试步骤	SUB CASE1:	
	1.设置测试工具 CANoe 为从节点(configuration/hardware	

configuration 取消 master mode 和 master resister);

- 2. RBUSLoad= 1KΩ CBusLoad =1nF, 断开 DUT 的电源;
- 3. 设置 U_{BAT} =8v;
- 4. 测量漏电 I_{leak_batt}, 公式为[U_{bat}-U_{Lin}]/R_{Bus_load} (R_{Bus_load} = 1000 Ω, U_{Lin} 是 Lin 总线的电压);
- 5. 消除断开 DUT 电源的故障, 计算电源恢复时间与 DUT 发出第一帧 报文头时间的差值 \triangle T1;
- 6. 设置供电电压 18. 0v 重复步骤 4-5。

SUB CASE2:

- 1. 设置测试工具 CANoe 为从节点 (configuration/hardware configuration 取消 master mode 和 master resister);
- 2. RBUSLoad= 1KΩ CBusLoad =1nF, 断开 DUT 的地线;
- 3. 设置 U_{RAT} =8v;
- 4. 测量漏电 I_{leak_batt}, 公式为[U_{bat}-U_{Lin}]/R_{Bus_load} (R_{Bus_load} = 1000 Ω, U_{Lin} 是 Lin 总线的电压);
- 5. 消除断开 DUT 电源的故障, 计算电源恢复时间与 DUT 发出第一帧 报文头时间的差值 \triangle T2;
- 6. 设置供电电压 18. 0v 重复步骤 4-5。

验收准则

SUBCASE1:

步骤 4 : -23 μ A < I_{leak batt} <23 μ A;

步骤 5: 故障恢复后, DUT 恢复正常 △T1<100ms;

-100 μ A 〈 I_{leak batt} 〈100 μ A 故障恢复后, DUT 恢复正常 △T1〈100ms。

SUBCASE2:

步骤 4 : $-100\,\mu\,A$ < I_{leak_batt} $<100\,\mu\,A$;

步骤 5: 故障恢复后, DUT 恢复正常 △T1<100ms;

步骤 6: $-100\,\mu\,A$ 〈 I_{leak_batt} 〈 $100\,\mu\,A$)故障恢复后,DUT 恢复正常 Δ T2〈100ms 。

9.2 [TG5_TC2]总线与地短路测试

测试内容			
用例编号	[TG5_TC2]		
需求索引	LIN Com RS 2.7节		
测试目的	验证主节点在丢失电源/地测试后漏电流是否满足要求		
	SUB CASE1:		
	1.设置测试工具 CANoe 为从节点(configuration/hardware		
	configuration 取消 master mode 和 master resister);		
测试步骤	2. 设置 U _{BAT} =13.8v;		
侧缸少绿	3. 使 LIN 线与地短路持续 1min;		
	4. 消除 LIN 线与地短路的故障;		
	5 记录 trace 窗口时间为 1min 的报文数据;		
	6. 用示波器测量逻辑 1 和逻辑 0 的电平。		
验收准则			

SUBCASE1:

步骤 2: DUT 能够正常通信,按照调度表发送报头;

步骤 4: DUT 恢复通信;

步骤 5 : 调度表的发送顺序及发送时隙正常; 步骤 6 : 逻辑 1 >=10.24, 逻辑 0 <=2.76。

9.3 [TG5_TC3] 总线与电源短路测试

表21

测试内容			
用例编号	[TG5_TC3]		
需求索引	LIN Com RS 2.7节		
测试目的	验证主节点的总线与电源电路故障恢复以后是否能够正常通信		
	SUB CASE1:		
	1.设置测试工具 CANoe 为从节点(configuration/hardware		
	configuration 取消 master mode 和 master resister);		
	2. 设置 U _{BAT} =13.8v;		
	3. 使 LIN 线与电源短路持续 1min;		
	4. 消除 LIN 线与电源短路的故障;		
	5 记录 trace 窗口时间为 1min 的报文数据;		
	6. 用示波器测量逻辑 1 和逻辑 0 的电平。		
测试步骤	SUB CASE2:		
	1.设置测试工具 CANoe 为从节点(configuration/hardware		
	configuration 取消 master mode 和 master resister);		
	2. 设置 U _{BAT} =13.8v;		
	3. 使 LIN 线与电源短路持续 1min;		
	4. 保持 LIN 线与电源短路,断开 DUT 的电源,在连接 DUT 的电源;		
	5. 消除 LIN 线与电源短路;		
	6. 记录 trace 窗口时间为 1min 的报文数据;		
	7. 用示波器测量逻辑 1 和逻辑 0 的电平。		

验收准则

SUBCASE1:

步骤 2: DUT 能够正常通信,按照调度表发送报头;

步骤 4: DUT 恢复通信;

步骤 5: 调度表的发送顺序及发送时隙正常;

步骤 6: 逻辑 1 >=10.24, 逻辑 0 <=2.76。

SUBCASE2:

步骤 2: DUT 能够正常通信,按照调度表发送报头;

步骤 5: DUT 恢复通信;

步骤 6: 调度表的发送顺序及发送时隙正常;

步骤 7: 逻辑 1 >=10.24, 逻辑 0 <=2.76。

9.4 [TG5_TC4] 地偏移测试

• •
测试内容

用例编号	[TG5_TC4]	
需求索引	LIN Com RS 2.7 节	
测试目的	验证节点在产生地偏移时是否能够产生正常通信	
	SUB CASE1:	
	1. 设置测试工具 CANoe 为从节点(configuration/hardware	
	configuration 取消 master mode 和 master resister);	
测试步骤	2. 设置 U _{BAT} =13.8v;	
	3. 设置 powerSupply2 的输出为-2v;	
	4. 以 0. 1 步长,增长 powerSupply2 的输出,重复步骤 3 知道输出	
	为 2v。	
	验收准则	
SUBCASE1:		
步骤 2: DUT 能够正常通信,按照调度表发送报头;		
步骤 3 : DUT 通信不受	步骤 3 : DUT 通信不受影响,能正常的发送报文头;	
步骤 4 : DUT 通信不受影响,能正常的发送报文头。		

10 LIN 从节点测试环境

Lin 从节点测试环境分为以下几种,如下图:

10.1 CFG1 通用测试配置

图 12 CFG1 设置

- a. Canoe:用来模拟除 DUT 外的其他节点发送和接受报文:记录检测总线报文;对 DUT 进行 ACK 应答;
- b. 可调电源:通过 pc 可控模拟不同供电点压;
- c. 示波器: 具有 Lin 译码功能; Lin 线接入单通道输入, KL15/IGN 介入单通道输入。

10.2 CFG2 容错测试配置 1

图 13 CFG2 设置

- a. Canoe: 用来模拟除 DUT 外其他节点发送和接收报文;记录检测总线报文;对 DUT 进行 ACK 应答;
- b. 控制开关:实现 Lin 线分别与电源、地短路的功能;
- c. 可调电源:通过 pc 可控模拟不同供电电压。

10.3 CFG3 容错测试配置 2

图 14 CFG3 设置

- a. Canoe: 用来模拟除 DUT 外其他节点发送和接收报文;记录检测总线报文;对 DUT 进行 ACK 应答;
- b. 控制开关:实现 Lin 线分别与电源、地短路的功能;
- c. 可调电源:通过 pc 可控模拟不同供电电压。
 - 10.4 CFG4 隐性输入阀值测试配置

图 15 CFG4 设置

- a. CANoe: 用来模拟除、DUT 外其他节点发送和接受报文;记录监测总线数据报文,对 DUT 进行 ACK 应答:
- b. VT: 控制开关,实现 DUT 分别与电源和地断路的功能;
- c. 可调电源:通过 PC 可控模拟不同供电电压;
- d. 负载值: Rload = 875KΩ, CLoad = 5.5nF。

10.5 CFG5 显性输入阀值测试配置

图 16 CFG5 设置

- a. CANoe: 用来模拟除、DUT 外其他节点发送和接受报文;记录监测总线数据报文,对 DUT 进行 ACK 应答;
- b. VT: 控制开关,实现 DUT 分别与电源和地断路的功能;
- c. 可调电源:通过 PC 可控模拟不同供电电压;
- d. 负载值: Rload = 875KΩ, CLoad = 5.5nF。

10.6 CFG6 地偏移测试配置

图 17 CFG6 设置

- a. CANoe:用来模拟除、DUT外其他节点发送和接受报文;记录监测总线数据报文,对 DUT进行 ACK 应答:
- b. VT: 控制开关,实现 DUT 分别与电源和地断路的功能;
- c. 可调电源:通过 PC 可控模拟不同供电电压。

10.7 CFG7 上升沿/下降沿速率测试配置

图 18 CFG7 设置

- a. 信号发生器:用来模拟 LIN 总线上输出的方波信号;
- b. 示波器: LIN 线单通道输入, 信号发生器接入单通道输入;

c. 可调电源:通过 PC 可控模拟不同供电电压。

10.8 CFG8 最恶劣电容测试配置

图 19 CFG8 设置

- a. CANoe: 用来模拟除 DUT 外的其他节点发送和接收报文,记录监测总线报文, DUT 进行 ACk 应答;
- b. 可调电源:通过 pc 可控模拟不同供电电压;
- c. 示波器: 具有 LIN 译码功能: LIN 线介入单通道输入; KL15/IGN 接入单通道输入。

10.9 CFG9 传输延时测试配置

图 20 CFG9 设置

- a. 信号发生器:用来模拟 LIN 总线上输入的方波信号;
- b. 示波器: LIN 线单通道输入,信号发生器接入单通道输入;
- c. 可调电源:通过 PC 可控模拟不同供电电压。

10.10 CFG10 电阻测试配置

图 21 CFG10 设置

- a. CANoe:用来模拟除 DUT 外的其他节点发送和接收报文;记录和监测总线报文;
- b. 可调电源: 通过 PC 可控,模拟不同供电电压;
- c. 示波器: 捕获总线波形;
- d. 负载值: Rload = 30 KΩ。

10.11 CFG11 电阻测试配置

图 22 CFG11 设置

- a. 信号发生器: 向总线中输入方波信号;
- b. 2. 示波器: 捕获总线波形;
- c. 3. RTest: DUT内部电阻RTest = $30 \text{ k}\Omega$.

11 从节点物理层

11.1 [TG6_TC1]从节点工作电压范围测试

		1220
测试内容		测试内容
用例编号	[TG6 TC1]	

需求索引	LIN2 Com RS 2.5.1 节		
	·		
测试目的	<u>监测从节点工作电压范围内的总线通信行为</u>		
测试步骤	SUB CASE1:		
	1.设置测试工具CANoe为主节点(configuration/hardware		
	configuration选择master mode和master resister);		
	2. 设置供电电源电压为13.8±0.2V,确定DUT正常运行;		
	3. 设置UBAT =7. 0V;		
	4. Lin测试工具向DUT发送TST_FRAME_2_Rx;		
	5. 增加Ubat电压0.1v ;		
	6. Lin测试工具向DUT发送TST_FRAME_2_Rx;		
	7. 如果Ubat> 19. 0V,停止,否则跳至第5步。		
	SUB CASE2:		
	1.设置测试工具CANoe为主节点(configuration/hardware		
	configuration选择master mode和master resister);		
	2. 设置供电电源电压为13.8±0.2V,确定DUT正常运行;		
	3. 设置UBAT =19.0V;		
	4. Lin测试工具向DUT发送TST_FRAME_2_Rx;		
	5. 减小Ubat电压0.1v ;		
	6. Lin测试工具向DUT发送TST_FRAME_2_Rx;		
	7. 如果Ubat<7. 0V,停止,否则跳至第5步。		
	验收准则		
Successful:			

DUT应在8v -18v之间正常发送TST_FRAME_2_Rx的响应。 11.2 [TG6_TC3]从节点输出电平测试

衣24			
	测试内容		
用例编号	[TG6_TC3_SC1]		
需求索引	LIN2.1 physical Layer specification 6.5.4节		
	SAE J2602-2 7.4.1.1.1		
测试目的	在最大、正常和最小供电电压情况下,验证主节点的显性和隐性输		
	出电压在通信标准规定范围内。		
测试步骤	SUB CASE1:		
	1.设置测试工具CANoe为主节点(configuration/hardware		
	configuration选择master mode和master resister);		
	2. 设置UBAT =8. Ov .;		
	3. Lin测试工具向DUT发送TST_FRAME_2_Rx;		
	4. 测试DUT响应的RSID 的逻辑 "1" 和逻辑 "0" 电平;		
	5. 重复10次2-4步骤;		
	6. 设置UBAT =13.8V. 重复2-5步骤;		
	7. 设置UBAT =18V. 重复2-5步骤。		
	验收准则		
No	Ubat 期望		

1	Ubat =8v;	逻辑 1 >=5.6v 逻辑 0 <=1.6v;
2	Ubat =13.8v;	逻辑 1 >=10.24v 逻辑 0 <=2.76v;
3	Ubat =18v.	逻辑 1 >=13.6v 逻辑 0 <=3.6v。

表25

仪25			
测试内容			
用例编号	[TG6_TC3_SC2]		
需求索引	LIN2.	l physical Layer specifi	cation 6.5.4节
	SAE .	J2602-2 7. 4. 1. 1. 1	
测试目的	的 在最大、正常和最小供电电压情况下,验证主节点的显性和隐		兄下,验证主节点的显性和隐性输
	出电压在通信标准规定范围内。		
测试步骤	SUB CASE1:		
	1.设置Ubat = 8v Rload = 1KΩ, Cload =1nF。		$Cload = 1nF_{\circ}$
	2. 使用周期为100 μs 占空比为50% 的5v方波驱动被测节点的TX引		
	脚;		
	3. 检测LIN总线上逻辑1 和逻辑0 的电平;		的电平;
	4.设置Ubat =18v,Rload = 1KΩ, Cload = 1nF;		
	5. 检测LIN总线上逻辑1 和逻辑0的电平。		
验收准则			
No		Ubat	期望
1		Ubat =8v;	逻辑 1 >=6.4 逻辑 0 <1.6;
2		Ubat =18v.	逻辑 1 >=14.4v 逻辑 0 <3.6v。

12 LIN 从节点数据链路层

12.1 [TG7_TC1]从节点波特率(不适用同步场同步)

表26

1220		
测试内容		
用例编号	[TG7_TC1]	
需求索引	高求索引 LIN2.1 Physical Layer Specification 6.3 节	
测试目的	验证从节点DUT波特率是否在规定范围内<±1.5%	
测试步骤	N試步骤 SUB CASE1: 1.设置测试工具CANoe为主节点(configuration/hardware	
configuration选择master mode和master resister);		
2. 设置供电电压为13.8±0.2V;		
3. LIN测试工具向DUT发送TST_FRAME_2_Rx,测试DUT响应波特率;		
4. 重复10次步骤3。		
	验收准则	
SUB CASEL.		

SUB CASE1:

DUT能够正确发送TST_FRAME_2_Rx的响应;

DUT波特率在标准规定范围内<±1.5%。

12.2 [TG7_TC2]从节点波特率(使用同步场同步)

测试内容		
用例编号	[TG7_TC2]	
需求索引	LIN2.1 Physical Layer Specification 6.3 节	
测试目的	验证从节点DUT波特率是否在规定范围内<±2%	
测试步骤	SUB CASE1:	
	1.设置测试工具CANoe为主节点(configuration/hardware	
	configuration选择master mode和master resister);	
	2. 设置供电电压为13.8±0.2V;	
	3.LIN测试工具向DUT发送TST_FRAME_2_Rx,测试DUT响应波特率;	
	4. 重复10次步骤3。	
验收准则		

SUB CASE1:

DUT能够正确发送TST_FRAME_2_Rx的响应;

DUT能够正确发送TST_FRAME_2_Rx的响应。

DUT波特率在标准规定范围内<±2%。

12.3 [TG7_TC3]从节点兼容测试范围

表28

	农20
	测试内容
用例编号	[TG7_TC3]
需求索引	LIN2.1 Physical Layer Specification 6.3 节
测试目的	验证从节点在主节点±0.5%的波特率偏差的条件下是否满足通信标
	准要求
测试步骤	SUB CASE1:
	1. 设置测试工具CANoe为主节点(configuration/hardware
	configuration选择master mode和master resister);
	2. 设置供电电压为13.8±0.2V;
	3. 设置主节点波特率19296Kbit/s;
	4.LIN测试工具向DUT发送TST_FRAME_2_Rx,测试DUT响应波特率。
	SUB CASE2:
	1. 设置测试工具CANoe为主节点(configuration/hardware
	configuration选择master mode和master resister);
	2. 设置供电电压为13.8±0.2V;
	3. 设置主节点波特率19Kbit/s;
	4.LIN测试工具向DUT发送TST_FRAME_2_Rx,测试DUT响应波特率。
	验收准则
SUB CASE1:	
DUT能够正确发送TS	ST_FRAME_2_Rx的响应。
SUB CASE2:	

表29

测试内容

用例编号	[TG7_TC4]	[TG7_TC4]		
需求索引	LIN2.1 Pł	LIN2.1 Physical Layer Specification 2.3.2 节		
测试目的	验证从节	点接收间隔场显性	电平长度在标	性规定范围内
测试步骤	SUB CASE	SUB CASE1:		
	1. 设置测i	式工具CANoe为主	古点(configu	ration/hardware
	configura	configuration选择master mode和master resister);		
	2. 设置供	2. 设置供电电压为13.8±0.2V;		
	3. LIN测词	3. LIN测试工具向DUT发送TST FRAME 2 Rx;		
	4. 转到步	4. 转到步骤3, 依次完成下图的三组测试。		
	No.	Tsynbrk	TSYNDEL	T _{H_INTERBYTE}
	1	13 T _{BIT} (min)	1 T _{BIT} (min)	0
	2	26 T _{BIT} (max)	1 T _{BIT} (min)	0
	3	20 Trit	1 T _{BIT} (min)	0

SUB CASE1:

SUB CASE1:

DUT能够正确发送TST_FRAME_2_Rx的响应。

12.5 [TG7_TC5]从节点识别界定符长度范围

表30

rv				
测试内容				
用例编号	[TG7_TC5]			
需求索引	LIN2.1 Physical	Layer Specific	cation 2.3.2 节	•
测试目的	验证从节点接收	界定符长度在标准	 主规定范围内	
测试步骤	SUB CASE1:			
	1. 设置测试工具(CANoe为主节点(d	configuration/h	ardware
	configuration选择master mode和master resister);			
	2. 设置供电电压为13. 8±0. 2V;			
	3. LIN测试工具向DUT发送TST_FRAME_2_Rx;			
	4. 转到步骤3,依次完成下图的三组测试。			
	NO. TSYNBRK TSYNDEL TH INTERBYTE			
	1	13 T _{BIT} (min)	1 T _{BIT} (min)	0
	2	13 T _{BIT} (min)	14 T _{BIT} (max)	0
	3	13 T _{BIT} (min)	10 T _{BIT}	0
47 1/4 1/4				

DUT能够正确发送TST_FRAME_2_Rx的响应。 12.6 [TG7_TC6]从节点接收报文头长度范围

测试内容	
用例编号 [TG7_TC6]	
需求索引	LIN2.1 Physical Layer Specification 2.3.2 节

测试目的	验证从节	验证从节点接收报文头长度在标准规定范围内			
测试步骤	SUB CASE	SUB CASE1:			
	1. 设置测	1.设置测试工具CANoe为主节点(configuration/hardware			
	configur	configuration选择master mode和master resister);			
	2. 设置供	2. 设置供电电压为13. 8±0. 2V;			
	3. LIN测词	3. LIN测试工具向DUT发送TST FRAME 2 Rx;			
	4. 转到步	4. 转到步骤3, 依次完成下图的四组测试。			
	No.	No. TSYNBRK TSYNDEL TH_INTERBYTE =>THeader			
	1	13 T _{BIT} (min)	1 T _{BIT}	0	34 T _{BIT} (min)
	2	19 T _{BIT}	2 T _{BIT}	6 T _{BIT}	47 T _{40 TBIT} (max)
	3	15 T _{BIT}	3 T _{BIT}	2 TBIT	40 T _{BIT}
	4	13 T _{BIT}	1 T _{BIT}	13 T _{BIT}	47 T _{BIT} (max)
SUB CASE1:					
DUT能够正确发送	TST EDAME 2 Pa	. 64min 155			

12.7 [TG7_TC7]从节点响应空间长度范围

表32

1832		
测试内容		
用例编号	[TG7_TC7]	
需求索引	/	
测试目的	验证从节点响应空间长度是否在标准规定范围内	
测试步骤	SUB CASE1:	
	1.设置测试工具CANoe为主节点(configuration/hardware	
	configuration选择master mode和master resister);	
	2. 设置供电电压为13.8±0.2V;	
	3. LIN测试工具向DUT发送TST_FRAME_2_Rx;	
	4. 测量响应空间电平长度T _{RESSPACE} ;	
	5. 重复10次步骤3-4。	
验收准则		
SUB CASE1:		
DUT能够正确发送了	IST_FRAME_2_Rx的响应;	

12.8 [TG7_TC8]报文 DLC 检测

 $T_{\text{RESSPACE}} <= 8T_{\text{bit}}$

测试内容		
用例编号	[TG7_TC8]	
需求索引	LINMatrix	
测试目的	验证从节点发送的DLC检测是否符合要求	
测试步骤	SUB CASE1:	
	1.设置测试工具CANoe为主节点(configuration/hardware	
	configuration选择master mode和master resister);	
	2. LIN测试工具向DUT发送TST_FRAME_2_Rx;	
	3. 检测DUT发送的响应的DLC检测是否与LDF数据库一致。	

验收准则	
SUB CASE1:	
DUT发送的响应的DLC检测是否与LDF数据库一致。	

12.9 [TG7_TC9] 校验方式检测

表34

	测试内容	
用例编号	[TG7_TC9]	
需求索引	/	
测试目的	验证从节点发送的响应的校验方式是否符合要求	
测试步骤	SUB CASE1:	
	1.设置测试工具CANoe为主节点(configuration/hardware	
	configuration选择master mode和master resister);	
	2. LIN测试工具向DUT发送Ox3D 的报文;	
	3. 检测DUT发送的响应的校验方式是否为经典型校验。	
	SUB CASE2:	
	1.设置测试工具CANoe为主节点(configuration/hardware	
	configuration选择master mode和master resister);	
	2.LIN测试工具向DUT发送TST_FRAME_2_Rx报文;	
	3. 检测DUT发送的响应的校验方式是否为增强型校验。	
	验收准则	

SUB CASE1:

DUT诊断/配置报文期望为经典型校验方式。

SUB CASE2:

DUT发送的响应的校验方式为增强型校验。

12.10 [TG7_TC10]总线消息总长度测试

表35

	测试内容	
用例编号	[TG7_TC10]	
需求索引	/	
测试目的	验证消息总长度是否在标准规定范围内	
测试步骤	SUB CASE1:	
	1.设置测试工具CANoe为主节点(configuration/hardware	
	configuration选择master mode和master resister);	
	2. 设置供电电源电压为13.8±0.2v;	
	3. LIN测试工具向DUT发送TST_FRAME_2_Rx报头;	
	4. 测量消息电平总长度T _{FRAME} ;	
	5. 重复10次步骤3-4。	
	验收准则	

SUB CASE1:

步骤3: DUT能够正确发送TST_FRAME_2_Rx的响应;

步骤4 : $T_{FRAME_Nominal} <= T_{FRAME_MAX}$ $T_{FRAME_Nominal} = 10*(N_{DATA} + 4.4)$ T_{Bit} ; $T_{FRAME_MAX} = 14*(N_{DATA} + 4.4)$ T_{Bit} ; $T_{FRAME_MAX} = 14*(N_{DATA} + 4.4)$ T_{Bit} ; $T_{FRAME_MAX} = 14*(N_{DATA} + 4.4)$ T_{Bit} ;

12.11 [TG7_TC11]从节点不完整帧干扰测试

表36

	• •
	测试内容
用例编号	[TG7_TC11]
需求索引	LIN2.1 LINProtocol Specification 2.7节
测试目的	验证从节点对不完整帧的响应是否符合要求
测试步骤	SUB CASE1:
	1.设置测试工具CANoe为主节点(configuration/hardware
	configuration选择master mode和master resister);
	2. 设置供电电源电压为13.8±0.2v;
	3. LIN测试工具向DUT发送只包含间隔场的报头;
	4. LIN测试工具向DUT发送只包含间隔场,同步场的报头;
	5. LIN测试工具向DUT发送包含间隔场,同步场,数据场第一个自己
	的报头;
	6.LIN测试工具向DUT发送TST_FRAME_2_Rx。
验收准则	

SUB CASE1:

步骤3-5: DUT不响应;

步骤6: DUT能够正确发送TST_FRAME_2_Rx的响应。

12.12 [TG7_TC12]从节点 PID 奇偶校验错误测试

表37

	101	
测试内容		
用例编号	[TG7_TC12]	
需求索引	LIN2.1 LINProtocol Specification 2.7节	
测试目的	验证从节点PID奇偶校验错误的条件下对总线的影响	
测试步骤	SUB CASE1:	
	1.设置测试工具CANoe为主节点(configuration/hardware	
	configuration选择master mode和master resister);	
	2. 设置供电电源电压为13.8±0.2v;	
	3. LIN测试工具向DUT发送第一帧奇偶校验错误的状态的报头;	
	4. LIN测试工具向DUT发送第二帧奇偶校验错误的状态的报头;	
	5. LIN测试工具向DUT发送第三帧奇偶校验错误的状态的报头。	
验收准则		

SUB CASE1:

步骤3: DUT对奇偶校验错误的状态报头不响应;

步骤4: DUT对第二帧奇偶校验正确的状态报头响应中, response_error设置为true;

步骤5: DUT对第二帧奇偶校验正确的状态报头响应中, response_error设置为false

13 网络管理

13.1 [TG8_TC1]从节点接收睡眠命令帧

测试内容

用例编号	[TG8_TC1]
需求索引	/
测试目的	验证从节点接收到睡眠命令帧后,能够依据标准做出正确的处理
测试步骤	SUB CASE1:
	1.设置测试工具CANoe为主节点(configuration/hardware
	configuration选择master mode和master resister);
	2.LIN测试工具向DUT发送TST_FRAME_2_Rx报头。使用CANOE检测DUT
	是否发送响应;
	3. 测试工具向DUT发送睡眠命令TST_FRAME_4, 其第一个字节为0x00,
	后面填充为为0xff;
	4.LIN测试工具向DUT发送ST_FRAME_2_Rx报头,使用canoe检测dut是
	否发送响应。
	=1, U >0 =1

SUB CASE1:

步骤2: DUT正常响应报文;

步骤3: DUT接收到睡眠命令后, 节点睡眠;

步骤4: DUT不响应该报头。

13.2 [TG8_TC2]从节点初始化时间

表39

1200	
	测试内容
用例编号	[TG8_TC2]
需求索引	
测试目的	验证从节点上电后,能够在100ms内初始化进入常规运行状态
测试步骤	SUB CASE1:
	1.设置测试工具CANoe为主节点(configuration/hardware
	configuration选择master mode和master resister);
	2. DUT上电,记录DUT上电时间;
	3.LIN测试工具每个10ms向DUT发送一次ST_FRAME_2_Rx报头;
	4. 监测DUT响应报头时间,计算DUT上电到开始响应报头的时间差
	T _{init} ;
	5. 重复步骤 2-4。
验收准则	
SUB CASE1:	
DUT初始化时间T _{Init} <=	110ms .

13. 3 [TG8_TC3] 总线空闲 4s 进入睡眠模式

	70.10	
测试内容		
用例编号	[TG8_TC3]	
需求索引	/	
测试目的	验证从节点在总线持续空闲大于4s(4-10s之间)后,自动进入睡眠	
	状态	
测试步骤	SUB CASE1:	

1.设置测试工具CANoe为主节点(configuration/hardware
configuration选择master mode和master resister);
2. LIN测试工具向DUT发ST_FRAME_2_Rx报头;
3. 测试工具停止发送任何信息;
4. 等待3. 9s;
5. canoe仿真ST_FRAME_2_Rx报头发送到总线上;
6. 等待10s;
7. canoe仿真ST_FRAME_2_Rx报头发送到总线上。

SUB CASE1:

步骤2: DUT发送响应报文;

步骤4: DUT未进入睡眠状态;

步骤5: DUT响应该报头;

步骤6: DUT进入睡眠状态;

步骤7: DUT不像应该报头。

13.4 [TG8_TC4]从节点发送唤醒请求

表41

测试内容	
用例编号	[TG8_TC4]
需求索引	/
测试目的	验证从节点发送的唤醒请求满足标准要求,该测试只针对支持本地
	唤醒后能够发送唤醒信号的从节点。
测试步骤	SUB CASE1:
	1.设置测试工具CANoe为主节点(configuration/hardware
	configuration选择master mode和master resister);
	2. 使总线进入睡眠状态;
	3. 设置触发条件(ECU规范)使dut向总线发送唤醒请求信号;
	4. 测试工具在收到第一个唤醒信号后向dut发送ST_FRAME_2_Rx报
	头。
验收准则	

SUB CASE1:

步骤3: DUT正常发送唤醒信号;

步骤4: DUT停止重复发送唤醒信号(只发一次),切唤醒信号显性持续250 μ s $^{\sim}5ms$, dut对 ST_FRAME_2_Rx报头。做出响应 。

14 容错性能

14.1 [TG9_TC1] 丢失电源/地漏电流测试

72.12	
测试内容	
用例编号	[TG9_TC1]
需求索引	/
测试目的	验证从节点在丢失电源/地漏测试后电流是否满足要求

测试步骤	SUB CASE1:
	1.设置测试工具CANoe为主节点(configuration/hardware
	configuration选择master mode和master resister);
	2. RbusLoad =20kΩ, CBusLoad = 1nF, 断开DUT的地线;
	3. 将供电电压设置为8v;
	4.测量点电流 Ileak_batt,公式为[U _{bat} -U _{Lin}]/R _{bus load} ,(R _{bus load} =20K
	Ω, U _{lin} 是Lin总线的电压);
	5.消除故障,使用canoe仿真唤ST_FRAME_2_Rx报头;
	6. 计算电源恢复时间与DUT发出第一帧包头时间的差值T1;
	7. 设置供电电压为18. 0v, 重复步骤4。
	SUB CASE2:
	1.设置测试工具CANoe为主节点(configuration/hardware
	configuration选择master mode和master resister);
	2. RbusLoad =20kΩ, CBusLoad = 1nF,断开DUT的电源线;
	3. 将供电电压设置为8v;
	4.测量点电流 I _{leak_batt} ,公式为[U _{bat} -U _{Lin}]/R _{bus_load} ,(R _{bus_load} =20KΩ,U _{lin}
	是Lin总线的电压);
	5.消除故障,使用canoe仿真唤ST_FRAME_2_Rx报头;
	6. 计算电源恢复时间与DUT发出第一帧包头时间的差值T2;
	7. 设置供电电压为18.0v,重复步骤4。

SUB CASE1:

步骤4: $-23 \mu \text{ A} < I_{leak batt} < 23 \mu \text{ A}$;

步骤5: DUT开始正常通信;

步骤6: 故障恢复后, DUT通信正常, T1应小于100ms;

步骤7: 故障恢复后, DUT通信正常, T1应小于100ms。

SUB CASE2:

步骤4: $-100 \,\mu\,\text{A} < I_{\text{leak_batt}} < 100 \,\mu\,\text{A}$;

步骤5: DUT开始正常通信;

步骤6: 故障恢复后, DUT通信正常, T2应小于100ms; 步骤7: 故障恢复后, DUT通信正常, T2应小于100ms。

14.2 [TG9_TC2]总线与地短路测试

测试内容	
用例编号	[TG9_TC2]
需求索引	/
测试目的	验证从节点的总线与地短路故障恢复后能否正常通信
测试步骤	SUB CASE1:
	1.设置测试工具CANoe为主节点(configuration/hardware
	configuration选择master mode和master resister);
	2.用canoe向DUT发ST_FRAME_2_Rx报头;

4	3. 使lin线与地短路,持续一分钟; 4. 消除LIN线与地短路的故障,使用canoe仿真TST_FRAME_2_Rx报头; 5. 用示波器测量逻辑1 和逻辑0的电平。
77. 11. 14. 14. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	

SUB CASE1:

步骤2: 步骤5: DUT发送响应报文;

步骤4: DUT恢复通信;

步骤5: 逻辑1 >=10.24v ,逻辑0 <= 2.76v。

14.3 [TG9_TC3] 总线与电源短路测试

表44

测试内容		
用例编号	[TG9_TC3]	
需求索引	/	
测试目的	验证从节点的总线与地短路故障恢复后能否正常通信	
测试步骤	SUB CASE1:	
	1.设置测试工具CANoe为主节点(configuration/hardware	
	configuration选择master mode和master resister);	
	2. 设置UBAT =13.8v;	
	3. 使lin线与电源短路,持续一分钟;	
	4. 保持Lin线与电源短路;	
	5. 消除LIN线与电源短路的故障,使用canoe仿真TST_FRAME_2_Rx报	
	头;	
	6. 用示波器测量逻辑1 和逻辑0的电平。	
	SUB CASE2:	
	1.设置测试工具CANoe为主节点(configuration/hardware	
	configuration选择master mode和master resister);	
	2. 设置UBAT =13.8v;	
	3. 使lin线与电源短路,持续一分钟;	
	4. 保持Lin线与电源短路,断开dut的电源,在连接dut的电源;	
	5. 消除LIN线与电源短路的故障,使用canoe仿真TST_FRAME_2_Rx报	
	头;	
	6. 用示波器测量逻辑1 和逻辑0的电平。	
	验收准则	

SUB CASE1:

步骤2: 步骤5: DUT发送响应报文;

步骤5: DUT恢复通信;

步骤6: 逻辑1 >=10.24v ,逻辑0 <= 2.76v。

SUB CASE2:

步骤2: 步骤5: DUT发送响应报文;

步骤5: DUT恢复通信;

步骤6: 逻辑1 >=10.24v ,逻辑0 <= 2.76v。

14.4 [TG9_TC4] 地偏移测试

表45

	**		
	测试内容		
用例编号	[TG9_TC4]		
需求索引	/		
测试目的	验证节点在产生地偏移时是否能够正常通信		
测试步骤	SUB CASE1:		
	1.设置测试工具CANoe为主节点(configuration/hardware		
	configuration选择master mode和master resister);		
	2. 配置dut,是dut上电工作,使用canoe仿真TST_FRAME_2_Rx报头;		
	3. 设置powersupp1y2的输出为-2v,使用canoe仿真TST_FRAME_2_Rx		
	报头;		
	4. 以0. 1v步长,增长powerSupp1y2的输出,使用canoe仿真		
	TST_FRAME_2_Rx报头重复步骤3,知道输出为2v。		
	1 会		

验收准则

SUB CASE1:

步骤2: DUT发送响应报文;

步骤4: 在地电压偏移范围为[-2, 2]v内, DUT的通信不受影响DUT能够正确发送TST_FRAME_2_Rx的响应。

15 错误故障监测

15.1 [TG10_TC1] checksum 错误监测

表46

	10				
	测试内容				
用例编号	[TG10_TC1]				
需求索引	/				
测试目的	观察校验场被干扰后DUT的responseError位是否置为1				
测试步骤	SUB CASE1:				
	1.设置测试工具CANoe为主节点(configuration/hardware				
	configuration选择master mode和master resister);				
	2. 利用canoe发送TST_FRAME_2_Rx报头,干扰DUT发送的响应场的校				
	验场;				
	3. 重新发送TST_FRAME_2_Rx,观察DUT响应场的responseError位;				
	4. 重复2-3步骤5次。				
	验收准则				

SUB CASE1:

步骤3: DUT发现错误后,在下一个想用报文中,响应的responseError置为1;步骤4: DUT正常通信。

15.2 [TG10_TC2]数据场故障监测

表47

	秋11					
	测试内容					
用例编号	[TG10_TC2]					
需求索引	/					
测试目的	观察数据场被干扰后的DUT的ResponseError位是否置为1					
测试步骤	SUB CASE1:					
	1.设置测试工具CANoe为主节点(configuration/hardware					
	configuration选择master mode和master resister);					
	2. 供电电压设置为13. 8v;					
	3. 利用canoe发送TST_FRAME_2_Rx报头,干扰DUT发送的响应场中的					
	数据场的任意位;					
	4. 重新发送TST_FRAME_2_Rx,观察DUT响应场的responseError位;					
	5. 重复2-3步骤5次。					
	SUB CASE2:					
	1.设置测试工具CANoe为主节点(configuration/hardware					
	configuration选择master mode和master resister);					
	2. 供电电压设置为13. 8v;					
	3. 利用canoe发送TST_FRAME_2_Rx报头,干扰DUT发送的响应场中的					
	数据场的结束位;					
	4. 重新发送TST_FRAME_2_Rx,观察DUT响应场的responseError位;					
	5. 重复2-3步骤5次。					
	验收准则					

验收准则

SUB CASE1:

步骤4: DUT发现错误后,在下一个响应报文中,响应的responseError置为1;

步骤5: DUT开始正常通信;

SUB CASE2:

步骤4: DUT发现错误后,在下一个响应报文中,响应的responseError置为1;

步骤5: DUT开始正常通信。

编制:		
校对:		
审核:		
标准化:		
批准:		

版本: 01