Section 10.5 The Dot Product

1 Find the Dot Product of Two Vectors

If $\mathbf{v} = a_1 \mathbf{i} + b_1 \mathbf{j}$ and $\mathbf{w} = a_2 \mathbf{i} + b_2 \mathbf{j}$ are two vectors, the **dot product** $\mathbf{v} \cdot \mathbf{w}$ is defined as

$$\mathbf{v} \cdot \mathbf{w} = a_1 a_2 + b_1 b_2 \tag{1}$$

Finding Dot Products

If $\mathbf{v} = -3\mathbf{i} + 4\mathbf{j}$ and $\mathbf{w} = 2\mathbf{i} - 5\mathbf{j}$, find:

(a) **v·w**

(b) $\mathbf{w} \cdot \mathbf{v}$

(c) $\mathbf{v} \cdot \mathbf{v}$

(d) $\mathbf{w} \cdot \mathbf{w}$

(e) $\|\mathbf{v}\|$

(f) ||w||

(a)
$$\mathbf{v} \cdot \mathbf{w} = -3(2) + 4(-5) = -6 - 20 = -26$$

(b)
$$\mathbf{w} \cdot \mathbf{v} = 2(-3) - 5(4) = -6 - 20 = -26$$

(c)
$$\mathbf{v} \cdot \mathbf{v} = -3(-3) + 4(4) = 9 + 16 = 25$$

(d)
$$\mathbf{w} \cdot \mathbf{w} = 2(2) - 5(-5) = 4 + 25 = 29$$

(e)
$$\|\mathbf{v}\| = \sqrt{(-3)^2 + (4)^2} = \sqrt{9 + 16} = 5$$

(f)
$$\|\mathbf{w}\| = \sqrt{2^2 + (-5)^2} = \sqrt{4 + 25} = \sqrt{29}$$

Properties of the Dot Product

If **u**, **v**, and **w** are vectors, then

Commutative Property

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

Distributive Property

$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

$$\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$$

$$\mathbf{0} \cdot \mathbf{v} = 0$$

2 Find the Angle between Two Vectors

The Law of Cosines

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta$$

Theorem

Angle between Vectors

If **u** and **v** are two nonzero vectors, the angle θ , $0 \le \theta \le \pi$, between **u** and **v** is determined by the formula

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

EXAMPLE Finding the Angle θ between Two Vectors

Find the angle θ between $\mathbf{u} = 4\mathbf{i} - 3\mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.

$$\mathbf{u} \cdot \mathbf{v} = 4(2) + (-3)(5) = -7$$

$$\|\mathbf{u}\| = \sqrt{4^2 + (-3)^2} = 5$$

$$\|\mathbf{v}\| = \sqrt{2^2 + 5^2} = \sqrt{29}$$

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{-7}{5\sqrt{29}} \approx -0.26$$

We find that $\theta \approx 105^{\circ}$.

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Two vectors \mathbf{v} and \mathbf{w} are said to be **parallel** if there is a nonzero scalar α so that $\mathbf{v} = \alpha \mathbf{w}$. In this case, the angle θ between \mathbf{v} and \mathbf{w} is 0 or π .

EXAMPLE

Determining Whether Vectors Are Parallel

The vectors $\mathbf{v} = 3\mathbf{i} - \mathbf{j}$ and $\mathbf{w} = 6\mathbf{i} - 2\mathbf{j}$ are parallel, since $\mathbf{v} = \frac{1}{2}\mathbf{w}$. Furthermore, since

$$\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{18 + 2}{\sqrt{10}\sqrt{40}} = \frac{20}{\sqrt{400}} = 1$$

the angle θ between **v** and **w** is 0.

If the angle θ between two nonzero vectors \mathbf{v} and \mathbf{w} is $\frac{\pi}{2}$, the vectors \mathbf{v} and \mathbf{w} are called **orthogonal**.

v is orthogonal to w.

Theorem

Two vectors v and w are orthogonal if and only if

$$\mathbf{v} \cdot \mathbf{w} = 0$$

Determining Whether Two Vectors Are Orthogonal

The vectors

$$\mathbf{v} = 2\mathbf{i} - \mathbf{j}$$
 and $\mathbf{w} = 3\mathbf{i} + 6\mathbf{j}$

are orthogonal, since

$$\mathbf{w} = 3\mathbf{i} + 6\mathbf{j}$$

$$\mathbf{v} \cdot \mathbf{w} = 6 - 6 = 0$$

Copyrigni ⊌ 2012 rearson Education, Inc. Publishing as Prentice Hall.

THEOREM

If **v** and **w** are two nonzero vectors, the vector projection of **v** onto **w** is

$$\mathbf{v}_1 = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w}$$

The decomposition of \mathbf{v} into \mathbf{v}_1 and \mathbf{v}_2 , where \mathbf{v}_1 is parallel to \mathbf{w} and \mathbf{v}_2 is perpendicular to \mathbf{w} , is

$$\mathbf{v}_1 = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w} \qquad \mathbf{v}_2 = \mathbf{v} - \mathbf{v}_1$$

Decomposing a Vector into Two Orthogonal Vectors

Find the vector projection of $\mathbf{v} = \mathbf{i} + 3\mathbf{j}$ onto $\mathbf{w} = \mathbf{i} + \mathbf{j}$. Decompose \mathbf{v} into two vectors \mathbf{v}_1 and \mathbf{v}_2 , where \mathbf{v}_1 is parallel to \mathbf{w} and \mathbf{v}_2 is orthogonal to \mathbf{w} .

$$\mathbf{v}_1 = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w} = \frac{1+3}{\left(\sqrt{2}\right)^2} \mathbf{w} = 2\mathbf{w} = 2(\mathbf{i} + \mathbf{j})$$

$$\mathbf{v}_2 = \mathbf{v} - \mathbf{v}_1 = (\mathbf{i} + 3\mathbf{j}) - 2(\mathbf{i} + \mathbf{j}) = -\mathbf{i} + \mathbf{j}$$

Finding the Force Required to Hold a Wagon on a Hill

A wagon with two small children as occupants that weighs 100 pounds is on a hill with a grade of 20°. What is the magnitude of the force that is required to keep the wagon from rolling down the hill?

$$\mathbf{F}_{\mathbf{w}} = -100\mathbf{j}$$
 $\mathbf{w} = \cos 20^{\circ}\mathbf{i} + \sin 20^{\circ}\mathbf{j}$

$$\mathbf{v} = \frac{\mathbf{F}_{\mathbf{w}} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w} = \frac{-100(\sin 20^\circ)}{\left(\sqrt{\cos^2 20^\circ + \sin^2 20^\circ}\right)^2} (\cos 20^\circ \mathbf{i} + \sin 20^\circ \mathbf{j})$$

$$= -34.2(\cos 20^\circ \mathbf{i} + \sin 20^\circ \mathbf{j})$$

The magnitude of v is 34.2 pounds, so the magnitude of the force required to keep the wagon from rolling down the hill is 34.2 pounds.

6 Compute Work

In elementary physics, the **work** W done by a constant force F in moving an object from a point A to a point B is defined as

$$W = (\text{magnitude of force})(\text{distance}) = ||\mathbf{F}|| ||\overrightarrow{AB}||$$

Figure 71

$$W = \mathbf{F} \cdot \overrightarrow{AB}$$

Computing Work

Figure 72(a) shows a girl pulling a wagon with a force of 50 pounds. How much work is done in moving the wagon 100 feet if the handle makes an angle of 30° with the ground?

We position the vectors in a coordinate system in such a way that the wagon is $\overrightarrow{AB} = 100i$. The force vector **F**, as shown in Figure 73(b), is

$$\mathbf{F} = 50(\cos 30^{\circ}\mathbf{i} + \sin 30^{\circ}\mathbf{j}) = 50\left(\frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}\right) = 25(\sqrt{3}\mathbf{i} + \mathbf{j})$$

