Security

- LV 4121 und 4241 -

Monoalphabetische Chiffren und deren Analyse

Kapitel 5

Lernziele

- Terminologie und Grundsätze der Kryptographie
- Transpositions- und Substitutionsschiffren
- Verschiebechiffre (Caesar-Verschlüsselung)
- Multiplikative Chiffre
- Tauschchiffre (Affine Chiffre)
- Häufigkeitsanalyse
- Realisierung

Kap. 3: Monoalphabetische Chiffren und deren Analyse

Teil 1: Einteilung der kryptographischen Chiffrierverfahren

- Transpositionschiffren
- Substitutionschiffren

- Bei einer **Transpositionschiffre** wird der Geheimtext durch eine Permutation der Klartextzeichen erzeugt.
 - ⇒ Die Zeichen bleiben gleich, tauschen aber ihre Plätze.
- Bei einer **Substitutionschiffre** wird jedes Zeichen des Klartextes durch ein anderes ersetzt.
 - ⇒ Die Position bleibt jedoch erhalten.
 - Substitutionschiffren sind demnach <u>invertierbare</u> Abbildungen eines endlichen Alphabets A auf ein (evtl. anderes) endliches Alphabet.
 - Eine Substitutionschiffre heißt **monoalphabetisch**, wenn jedes Klartextzeichen immer auf das <u>gleiche</u> Geheimtextzeichen abgebildet wird.
 - Ansonsten heißt die Substitutionschiffre polyalphabetisch.

Kap. 3: Monoalphabetische Chiffren und deren Analyse

Teil 2: Einfache Chiffriermaschinen

- Skytale
- Alberti-Scheibe

Arithmetik Substitutionschiffre

- Für die rechnergestützte Realisierung einer Substitutionschiffre benötigen wir Rechenregeln für das Addieren und Multiplizieren von Zahlen in {0, 1, 2, ..., n-1}, deren Resultat ebenfalls in {0, 1, 2, ..., n-1} liegt.
- Ferner müssen für das erzielte Resultat die zuvor aufgestellten Rechenregeln weiterhin gelten.
- Wir erreichen dies, indem wir Resultate größer als n-1 durch n dividieren und den Divisionsrest als neues Ergebnis benutzen.
- Zum Rechnen mit Resten benötigen wir des weiteren einige grundlegende Sätze aus der elementaren Zahlentheorie (vgl. Kap. II), insbesondere zum Rechnen mit Zahlen **modulo** n.

- Julius Caesar (100 bis 44 v. Chr.)
- Jedes Klartextzeichen wird um **drei** Positionen verschoben.

Klartext: a b c d e f g

Z

Chiffretext: D E F G H I J

 <u>Verallgemeinerung</u>: Bei einer Verschiebechiffre wird jedes Klartextzeichen z durch ein um k Zeichen im Alphabet verschobenes Zeichen ersetzt.

Es sei A ein Alphabet mit n Zeichen, die von 0 bis n-1 durchnumeriert sind.

Dann gilt für eine Verschiebechiffre allgemein: $E: z \rightarrow (z + k) \mod n$

- Eigenschaften:
 - Durch Probieren leicht zu knacken
 - Durchführung von Häufigkeitsanalysen möglich

Die 26 möglichen Verschiebechiffren:

```
abcdefghijklmnopqrstuvwxyz
Klartext:
         0 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Chiffretexte:
           B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
         2 CDEFGHIJKLMNOPQRSTUVWXYZAB
 Schlüssel
           DEFGHIJKLMNOPQRSTUVWXYZABC
   k
           E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
           F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
          GHIJKLMNOPQRSTUVWXYZABCDEF
          HIJ KL MNOP QRSTUVWXYZABCDEFG
          I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
```

25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Kap. 3: Monoalphabetische Chiffren und deren Analyse

Teil 3: Komplexe Verschiebechiffren

- Multiplikative Chiffren
- Affine Tauschchiffren

- Bei einer multiplikativen Chiffre über dem Alphabet A wird jedes Klartextzeichen z mit einer Zahl $t \in \{0, 1, ..., n\}$ multipliziert.
- t und n = |A| (Mächtigkeit) müssen teilerfremd sein, d. h. es muss gelten: ggT(t, n) = 1
- Die Chiffrevorschrift lautet:

E:
$$z \rightarrow (z \cdot t) \mod n$$
 mit $t \in Z_n \setminus \{0\} = \{1, ..., n-1\}$

- Zu jeder multiplikativen Chiffre E mit ggT(t, n) = 1 gibt es eine multiplikative Dechiffrierfunktion D mit D(E(z)) = z für $\forall z \in A$.
- Es gilt:

$$D: z' \rightarrow (b \cdot z') \mod n$$

wobei $b \in \mathbb{Z}_n$ mit $t \cdot b \equiv 1 \mod n$ ist.

- Sei ggT(t, n) = 1. Dann wird jede Chiffre
 E: z → (z·t + k) mod n mit t ∈ Z_n \ {0} = {1, ..., n-1}
 eine affine Chiffre oder Tauschchiffre genannt.
- Um aus Chiffrezeichen z' wieder Klartextzeichen berechnen zu können, wendet man die Dechiffrierfunktion D wie folgt an:

$$D: z' \rightarrow (b \cdot z' + l) \mod n$$

wobei $b, l \in \mathbb{Z}_n$ mit $t \cdot b \equiv 1 \mod n$ und $l \cdot t \equiv (n - k) \mod n$ gilt. Ferner besteht der Zusammenhang: $l = b (n - k) \mod n$

- Beispiel: t = 5; k = 7; n = 26
 - \Rightarrow E: $z' = (5 \cdot z + 7) \mod 26$ mit der Dechiffrierfunktion D: $z = (21 \cdot z' + 9) \mod 26$, um aus z' wieder z berechnen zu können \Rightarrow b = 21; l = 9 und t·b = 105 \equiv 1 mod 26.

Kryptographische Algorithmen

Tauschchiffren (2)

Z	$z' = (5 \cdot z + 7) \bmod 26$	$z = (21 \cdot z^4 + 9) \mod 26$
1	12	$(21 \cdot 12 + 9) \mod 26 = 1$
2	17	$(21 \cdot 17 + 9) \mod 26 = 2$
3	22	$(21 \cdot 22 + 9) \mod 26 = 3$
4	1	$(21 \cdot 1 + 9) \mod 26 = 4$
•••	•••	•••
12	15	$(21 \cdot 15 + 9) \bmod 26 = 12$

Kap. 3: Monoalphabetische Chiffren und deren Analyse

Teil 4: Häufigkeitsanalyse

- Buchstabenverteilungen
- Bi- und Trigramme

Buchstabe	Häufigkeit [%]	Buchstabe	Häufigkeit [%]
a	6,51	n	9,78
ь	1,89	0	2,51
c	3,06	p	0,79
d	5,08	q	0,02
e	17,40	r	7,00
f	1,66	S	7,27
g	3,01	t	6,15
h	4,76	u	4,35
i	7,55	V	0,67
j	0,27	W	1,89
k	1,21	X	0,03
1	3,44	y	0,04
m	2,53	Z	1,13

Gruppenhäufigkeiten und Bigramme der deutschen Sprache:

Gruppe	Anteil der Buchstaben dieser Gruppe an einem Text in [%]
e, n	27,18
i, s, r, a, t	34,48
d, h, u, l, c, g, m, o, b, w, f, k, z	36,52
p, v, j, y, x, q	1,82

Buchstabenpaar	Häufigkeit [%]	Buchstabenpaar	Häufigkeit [%]
en	3,88	nd	1,99
er	3,75	ei	1,88
ch	2,75	ie	1,79
te	2,26	in	1,67
de	2,00	es	1,52

Buchstabe	Häufigkeit [%]	Buchstabe	Häufigkeit [%]
a	8,2	n	6,7
b	1,5	0	7,5
c	2,8	p	1,9
d	4,3	q	0,1
e	12,7	r	6,0
f	2,2	S	6,3
g	2,0	t	9,1
h	6,1	u	2,8
i	7,0	V	1,0
j	0,2	W	2,4
k	0,8	X	0,2
1	4,0	У	2,0
m	2,4	Z	0,1


```
* /
/* Datum: 19.07.2002
                                                                 * /
/* Autor: Bernhard Geib
/* Funktion: Verschluesselung mit einer affinen Tauschchiffre */
#include <stdio.h>
int main (void)
{ int c;
  c = getchar();
   while (c != EOF)
      if (c != ' n')
         c = (17 * c + 4) % 256;
      printf ("%c", c);
      c = getchar();
   return 0;
```

```
* /
/* Datum: 19.07.2002
                                                                 * /
/* Autor: Bernhard Geib
/* Funktion: Entschluesselung mit einer affinen Tauschchiffre */
#include <stdio.h>
int main (void)
{ int c;
  c = getchar();
   while (c != EOF)
      if (c != ' n')
         c = (241 * c + 60) % 256;
      printf ("%c", c);
      c = getchar();
   return 0;
```