DINAMICA DEI SISTEMI

ESERCIZIO 1

Un cannone spara un proiettile di massa M con velocitá iniziale \vec{v}_0 la cui direzione forma un angolo $\alpha=30^o$ rispetto al suolo. Durante il moto, nel punto più alto della traiettoria, il proiettile esplode in due frammenti di masse $m_1=\frac{1}{3}M$ ed $m_2=\frac{2}{3}M$. I due frammenti toccano terra a distanze d_1 e d_2 dal punto in cui viene sparato il proiettile. Sapendo che $v_0=15m/s$ e $d_1=10m$, si calcoli d_2 .

$$[d_2 = 24.79m]$$

ESERCIZIO 2

Una pallina di massa m puó scorrere senza attrito lungo una guida semicircolare di raggio R e massa M. La guida é appoggiata su di un piano orizzontale e puó strisciare su di esso senza attrito. Inizialmente la pallina viene lasciata libera di muoversi partendo dalla sommitá della guida. Si calcolino lo spostamento Δx della guida, la velocitá della pallina e la velocitá della guida quando la pallina giunge nel punto piú basso della guida. Si assuma la guida omogenea.

$$[\ \Delta x = -\frac{mR}{M+m};\ v_p = \sqrt{\frac{2gMR}{M+m}},\ v_g = -\frac{m}{M}\sqrt{\frac{2gMR}{M+m}}\ \text{rispetto a un versore } \vec{u}_x\ \text{orientato verso destra}]$$

ESERCIZIO 3

Un cannone di massa M, inizialmente fermo, spara un proiettile di massa m ad una velocitá \vec{v}_p , inclinata di un angolo α rispetto all'orizzontale. Trascurando ogni forma di attrito si calcolino:

1

- 1. la velocitá di rinculo V del cannone;
- 2. l'impulso \vec{I} della reazione vincolare del piano d'appoggio.

$$[V = -\frac{mv_p cos\alpha}{M}; \vec{I} = mv_p sin\alpha]$$