

HI-RELIABILITY PRODUCT

512Kx32 SRAM 3.3V MODULE PRELIMINARY*

FEATURES

- Access Times of 15, 17, 20ns
- Low Voltage Operation
- Packaging
 - 66-pin, PGA Type, 1.075 inch square, Hermetic Ceramic HIP (Package 400)
 - 68 lead, 22.4mm (0.88") CQFP, 4.6mm (0.180") high, (Package 509)
 - 68 lead, 23.9mm (0.940" sq.) Low Profile CQFP (G1U), 3.56mm (0.140") high, (Package 519)
- Organized as 512Kx32; User Configurable as 1Mx16 or 2Mx8
- Commercial, Industrial and Military Temperature Ranges
- Low Voltage Operation:
 - $3.3V \pm 10\%$ Power Supply

- Low Power CMOS
- TTL Compatible Inputs and Outputs
- Fully Static Operation:
 - No clock or refresh required.
- Three State Output.
- Built-in Decoupling Caps and Multiple Ground Pins for Low Noise Operation
- Weight WS512K32V-XG2TX - 8 grams typical WS512K32V-XG1UX - 5 grams typical WS512K32NV-XH1X - 13 grams typical
 - * This data sheet describes a product under development, not fully characterized, and is subject to change without notice.

PIN CONFIGURATION FOR WS512K32NV-XH1X TOP VIEW

1	12	23	34	45	56
○ I/O ₈	$\bigcirc \overline{WE}_2$	OI/O ₁₅	I/O ₂₄	Vcc 🔾	I/O ₃₁
○ I/O ₉	$\bigcirc \overline{CS}_2$	○I/O ₁₄	I/O ₂₅	$\overline{CS}_4\bigcirc$	I/O ₃₀ 🔾
○I/O ₁₀	GND	○I/O 13	I/O ₂₆	WE ₄	I/O ₂₉
○A13	○I/O ₁₁	O1/O ₁₂	A6 (I/O ₂₇	I/O ₂₈ 🔾
○A14	○A ₁₀	$\bigcirc \overline{\text{OE}}$	A7 (A3 🔾	A ₀
○A ₁₅	○A ₁₁	○A ₁₈	NC 🔾	A4 🔾	A1 (
○A16	○A ₁₂	$\bigcirc \overline{WE}_1$	A8 🔾	A5 🔾	A ₂
○A17	Vcc	○ I/ 0 ₇	A9 🔾	WE₃ ○	I/O ₂₃
○1/0₀	$\bigcirc \overline{CS}_1$	○ I/O ₆	I/O ₁₆	$\overline{CS}_3\bigcirc$	I/O ₂₂ 🔾
○I/O ₁	ONC	○ I/ O 5	I/O ₁₇ 🔾	GND 🔾	I/O ₂₁
○I/O ₂	○ I/ O ₃	○I/O ₄	I/O ₁₈	I/O ₁₉	I/O ₂₀ 🔾
11	22	33	44	55	66

PIN DESCRIPTION

L	I/O ₀₋₃₁	Data Inputs/Outputs			
	A 0-18	Address Inputs			
	WE ₁₋₄	Write Enables			
Γ	CS ₁₋₄	Chip Selects			
	OE Output Enable				
	Vcc	Power Supply			
	GND Ground				
ſ	NC	Not Connected			

BLOCK DIAGRAM

PIN CONFIGURATION FOR WS512K32V-XG2TX AND WS512K32V-XG1UX

TOP VIEW

PIN DESCRIPTION

I/O0-31	Data Inputs/Outputs
A0-18	Address Inputs
WE1-4	Write Enables
<u>CS</u> 1-4	Chip Selects
ŌĒ	Output Enable
Vcc	Power Supply
GND	Ground
NC	Not Connected

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Operating Temperature	Ta	-55	+125	°C
Storage Temperature	Tstg	-65	+150	°C
Signal Voltage Relative to GND	VG	-0.5	4.6	V
Junction Temperature	TJ		150	°C
Supply Voltage	Vcc	-0.5	4.6	V

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	3.0	3.6	V
Input High Voltage	ViH	2.2	Vcc + 0.3	V
Input Low Voltage	VIL	-0.3	+0.8	V

TRUTH TABLE

CS	0E	WE	Mode	Data I/O	Power
Н	Х	Х	Standby	High Z	Standby
L	L	Н	Read	Data Out	Active
L	Х	L	Write	Data In	Active
L	Н	Н	Out Disable	High Z	Active

CAPACITANCE

 $(T_A = +25^{\circ}C)$

Parameter	Symbol	Conditions	Max	Unit
OE capacitance	СоЕ	VIN = 0 V, f = 1.0 MHz	50	pF
WE ₁₋₄ capacitance HIP (PGA)	Cwe	VIN = 0 V, f = 1.0 MHz	20	pF
CQFP G2T/G1U			20	
CS ₁₋₄ capacitance	Ccs	Vin = 0 V, f = 1.0 MHz	20	pF
Data I/O capacitance	C1/0	V _{1/0} = 0 V, f = 1.0 MHz	20	pF
Address input capacitance	CAD	Vin = 0 V, f = 1.0 MHz	50	pF

This parameter is guaranteed by design but not tested.

DC CHARACTERISTICS

 $(Vcc = 3.3V \pm 0.3V, TA = -55^{\circ}C \text{ to } +125^{\circ}C)$

Parameter	Sym	Conditions			Units
			Min	Max	
Input Leakage Current	ILI	Vin = GND to Vcc		10	μΑ
Output Leakage Current	ILO	$\overline{\text{CS}} = \text{Vih}, \ \overline{\text{OE}} = \text{Vih}, \ \text{Vout} = \text{GND to Vcc}$		10	μА
Operating Supply Current (x 32 Mode)	Icc x 32	$\overline{CS} = VIL$, $\overline{OE} = VIH$, $f = 5MHz$, $Vcc = 3.6V$		400	mA
Standby Current	Isb	$\overline{\text{CS}} = \text{ViH}, \ \overline{\text{OE}} = \text{ViH}, \ f = 5\text{MHz}, \ \text{Vcc} = 3.6\text{V}$		200	mA
Output Low Voltage	Vol	lol = 4.0mA		0.4	٧
Output High Voltage	Vон	Iон = -4.0mA	2.4		V

NOTE: DC test conditions: $V_{IH} = V_{CC} - 0.3V$, $V_{IL} = 0.3V$.

NOTE: Contact factory for low power option.

AC CHARACTERISTICS

 $(Vcc = 3.3V, Ta = -55^{\circ}C \text{ to } +125^{\circ}C)$

Parameter	Symbol	<u>-15</u>		<u>-17</u>		<u>-20</u>		Units
Read Cycle		Min	Max	Min	Max	Min	Max	
Read Cycle Time	trc	15		17		20		ns
Address Access Time	taa		15		17		20	ns
Output Hold from Address Change	tон	0		0		0		ns
Chip Select Access Time	tacs		15		17		20	ns
Output Enable to Output Valid	toe		8		8		10	ns
Chip Select to Output in Low Z	tcLZ1	1		1		1		ns
Output Enable to Output in Low Z	toLZ1	0		0		0		ns
Chip Disable to Output in High Z	tcHZ1		8		8		10	ns
Output Disable to Output in High Z	tonz1		8		8		10	ns

^{1.} This parameter is guaranteed by design but not tested.

AC CHARACTERISTICS

 $(Vcc = 3.3V, Ta = -55^{\circ}C \text{ to } +125^{\circ}C)$

Parameter	Symbol	<u>-15</u>		<u>-17</u>		<u>-20</u>		Units
Write Cycle		Min	Max	Min	Max	Min	Max	
Write Cycle Time	twc	15		17		20		ns
Chip Select to End of Write	tcw	12		12		14		ns
Address Valid to End of Write	taw	12		12		14		ns
Data Valid to End of Write	tow	9		9		10		ns
Write Pulse Width	twp	12		14		14		ns
Address Setup Time	tas	0		0		0		ns
Address Hold Time	tah	0		0		0		ns
Output Active from End of Write	tow¹	2		3		3		ns
Write Enable to Output in High Z	twnz¹		8		8		9	ns
Data Hold Time	tрн	0		0		0		ns

^{1.} This parameter is guaranteed by design but not tested.

AC TEST CONDITIONS

Parameter	Тур	Unit
Input Pulse Levels	VIL = 0, VIH = 2.5	٧
Input Rise and Fall	5	ns
Input and Output Reference Level	1.5	٧
Output Timing Reference Level	1.5	٧

NOTES:

Vz is programmable from -2V to +7V. IOL & IOH programmable from 0 to 16mA.

Tester Impedance $Z_0 = 75 \Omega$.

Vz is typically the midpoint of VoH and VoL.

IOL & IOH are adjusted to simulate a typical resistive load circuit.

ATE tester includes jig capacitance.

