Interpolation:

* Using Newton's formula for interpolation estimate the population for the year 1905.

Yean !	1891	-1901	1911	1921	246050
Year Population	98752	1,32,285	168 040	, ,	

A A STATE OF THE PARTY OF	a Calman	34 4
Yean (x)	\ 43277	58 -10435 41 358
[891	98752 35791 -81	77 3072
1901	168076 27617	
1911	195690 50360	
1921	246050	oletion formula:
1931	I and intelle	v(v-1)(v-

New ton's forward interrest Δ^{γ}_{0} + $\frac{U(U-1)(U-2)}{2!}$ $Y(x) = y_{0} + \frac{U(U-1)(U-2)(U-2)}{4!}$ Δ^{γ}_{0} + $\frac{U(U-1)(U-2)(U-2)}{4!}$

where, $v = \frac{\chi - \chi_0}{h}$; $\chi = 1905$, $\chi_0 = 1891$

CS CamScanner

$$70 = 98752, \quad \Delta \% = 33533$$

$$\Delta \% = 2258, \quad \Delta^{3} \% = -10935$$

$$\Delta^{4} \% = 91358$$

$$7(1905) = 98752 + (1.4 \times 33533) + \frac{1.4 \times (.4 - ...)}{2!} \times 2258$$

$$+ \frac{1.4(1.4 - ...)(1.4 - ...)}{3!} (-10435) + \frac{(1.4)(1.4 - ...)(1.4 - ...)}{(1.4 - ...)}$$

$$= 1,47,841 \quad (\alpha PPNON)$$

Backward:	- napulation(y) Dy D'y	<i>8</i>	₹ 47
Yean (2)	Politica		·
1891	98,75 ²	1351	1100
1901	2258		
1911	168076 33777	-10435	
1921	195690	0-000	41358
1931	246050 50360 22778	* 15	
	-		

Newton's backyand intempoletion formula Y(x) = Yn + U DYn + U(U-1) DVyn + U(U-1)(U-1) av3/n + \(\bu(\bu-1)\left(\bu-2)\left(\bu-3)\right) \(\pi^4\gamma_n + \\\
\begin{array}{c}
\begin{array}{c}
\delta^2 \left(\bu-1)\left(\bu-2)\left(\bu-3)\right) \\
\delta^4\gamma_n + \\\
\delta^1 \\
\delta^2 \left(\bu-1)\left(\bu-2)\left(\bu-3)\right) \\
\delta^4\gamma_n + \\\
\delta^1 \\
\delta^2 \\ Where, $U = \frac{\chi - \chi_n}{h} = \frac{1925 - 1931}{10} = (-0.6)$ x=1925, xn=1931, h=10, 7n=246050 $\nabla y = 50360$, $\nabla^{2}y = 22746$, $\nabla^{2}y = 30923$ y (1925) = 24 6050+ (-0.6) (50360) + (-0.6)(-0.6-1)(22746) + (-0.6) (-0.6-1) (-0.6-2) (30923) $+\frac{(-0.6)(-0.6-1)(-0.6-2)(-0.6-3)}{4!}$ H. Wi that the anea of cinele of diameter 52. Given ten d are of follows:

CS CamScanner

[a's are constant]

To find the values of a's we put x= xo,

 $f(x_0) = 0_0 (x_0 - x_1) (x_0 - x_2) \cdots (x_0 - x_n)$

 $\alpha_{6} = \frac{-\int (x_{0})}{(x_{0}-x_{1})(x_{0}-x_{1})\cdots(x_{0}-x_{0})}$

$$\alpha_{1} = \frac{f(x_{1})}{(x_{1}-x_{0})(x_{1}-x_{2})...(x_{1}-x_{n})}$$

$$\alpha_{n} = \frac{f(x_{n})}{(x_{n}-x_{0})(x_{n}-x_{1})...(x_{n}-x_{n})}$$

$$\alpha_{n} = \frac{f(x_{n})}{(x_{n}-x_{n})}$$

$$\alpha_{n} = \frac{f(x_{n})}{(x_{n}-$$

ODE / NI/ND/SLE

ND: We have Newton's forward formula: Y = Y0 + U 4Y0 + U(U-1) A Y0 + U(U-1)(U-2) 37. where $v = \frac{x-x_0}{h} = \frac{1}{h} (x-x_0)$ 8/16 · du = + (1-0) = + dy = 0+ta/0+ (20-1) a/6 + 30-642 a3/2 $=\frac{1}{4}\left(070+\frac{20-1}{2!}a^{2}70+\frac{30-60+2}{2!}a^{3}70+\cdots\right)$ $\frac{d^{\nu}\gamma}{dx} = \frac{1}{h^{\nu}} \left(\Delta^{\nu}\gamma_{0} + (\upsilon - 1) \Delta^{3}\gamma_{0} + \cdots \right)$ $\frac{d^3y}{dx^3} = \frac{1}{h^3} \left(\Delta^3 y_0 + \cdots \right)$

* find the 1st, 2nd and 3rd denivatives of the function tabulated below.

Form the forward difference table:

a	7	44	47	437
1.5	3.375	3-625	3.0	0.75
2.0	7.0	6.625	3.75	0.75
2.5	13 625	10.375	4.5	0.75
3.0	24.0	14.875	5.25	
		20.125		
	59.0			

9/16

at the point
$$x = 1.5$$
, $y = 2.5$, $y = 0$, $y = 0.5$, $y = 1.5$,

$$\frac{d^{3}y}{dx^{5}} = \frac{1}{h^{2}} \left(\frac{\Delta^{3}y_{0} + (u-1) \Delta^{3}y_{0}}{0.75} \right) = 9.0$$

$$= \frac{1}{0.25} \left(3.0 + (-1) (0.75) \right) = 9.0$$

$$\frac{d^{3}y}{dx^{5}} = \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[0.75 \right] = 6$$

$$= \frac{1}{h^{3}} \left[\Delta^{3}y_{0} + ... \right] = \frac{1}{0.125} \left[\Delta$$