Mathematics Course Descriptions

Algebra

A Linear Algebra I (Honors), Fall 2019.

Vector spaces, linear transformations, change of basis, eigenvalues, diagonalizability, inner product spaces, adjoint, spectral theorem, unitary operators.

Hoffman and Kunze: Linear Algebra (ch. 2-6, 8)

A Linear Algebra II, Winter 2020.

Infinite-dimensional vector spaces, dual spaces, quotient spaces, Caley–Hamilton theorem, singular value decomposition, generalized eigenspaces, Jordan canonical form.

Freidberg, Insel, and Spence: Linear Algebra (ch. 5-7)

Axler: Linear Algebra Done Right (ch. 3, 7-8) (supplemental self-study)

A Group Theory (Honors), Fall 2020.

Integers, groups, cosets, Lagrange's theorem, isomorphism theorems, group actions, Sylow theorems, Noetherian groups, finitely generated groups, universal properties.

Elman: Lectures on Abstract Algebra (ch. 1-2)

Aluffi: Algebra: Chapter 0 (ch. 1-2, 4) (supplemental self-study)

A Ring and Module Theory (Honors), Winter 2021.

Rings, ideals, PIDs, Zorn's lemma, integral domains, UFDs, polynomial rings, Nullstellensatz, modules, Noetherian modules, Smith normal form, rational and Jordan canonical forms.

Elman: Lectures on Abstract Algebra (ch. 3-4)

Aluffi: Algebra: Chapter 0 (ch. 3, 5-6) (supplemental self-study)

A- Field and Galois Theory, *Spring 2021*.

Field extensions, algebraic closure, separability, squaring the circle and related problems, fundamental theorem of Galois theory, Hilbert's theorem 90, Abel–Ruffini theorem.

Elman: Lectures on Abstract Algebra (ch. 5-6)

Analysis

B+ Multivariable Calculus and Analysis I (Honors), Fall 2019.

Continuity, compactness, linear algebra, big-O and little-o notation, total derivative, Hessian matrix, extreme values, inverse and implicit function theorems, Lagrange multipliers.

Shurman: Calculus and Analysis in Euclidean Space (ch. 2-5)

A Multivariable Calculus and Analysis II (Honors), Winter 2020.

Riemann integrability, volume zero, gamma/beta integral, Feynman's trick, Fubini's theorem, connectedness, change of variable, differential forms, generalized Stokes' theorem.

Shurman: Calculus and Analysis in Euclidean Space (ch. 6-9)

A- Complex Analysis (Honors), Winter 2020.

Goursat's theorem, Cauchy's integral theorem, Cauchy's integral formula, residue formula, argument principle, logarithm, Möbius transformations, Riemann mapping theorem.

Stein and Shakarchi: Complex Analysis (ch. 1-3, 8)

A Real Analysis I (Honors), Winter 2020.

Peano axioms, equivalence relations, construction of reals, sequences and series, Riemann rearrangement theorem, cardinality, metric spaces, open and closed sets, completeness.

Rudin: Principles of Mathematical Analysis (ch. 1-3)

A Real Analysis II (Honors), Spring 2020.

Continuity, compactness, connectedness, Arzelà–Ascoli theorem, differentiation, integration, uniform convergence, trigonometric functions, Fourier series, contraction mapping.

Rudin: Principles of Mathematical Analysis (ch. 4-8)

B- Measure Theory and L^p Spaces (Graduate), Fall 2020.

Measures, measurable functions, Lebesgue integration, Fubini's theorem, absolute continuity, L^p spaces, convex functions, Riesz representation theorem.

Evans and Gariepy: *Measure Theory and Fine Properties of Functions* (ch. 1) Lieb and Loss: *Analysis* (ch. 2)

A Real Analysis III, Spring 2021.

Banach spaces, Stone-Weierstrass theorem, ODEs, Picard-Lindelöf theorem, review of Riemann integral, classical Stokes' theorem, measure and Lebesgue integration.

No textbook.

Applied Mathematics

A Nonlinear Differential Equations, Winter 2020.

1- and 2-dimensional differential equations, fixed points and stability, bifurcations, phase plane, existence and uniqueness theorems, conservative and reversible systems, limit cycles.

Strogatz: Nonlinear Dynamics and Chaos (ch. 1-7)

A **Optimization**, Winter 2020.

Newton's method, gradient methods and convergence, conjugate direction methods, linear programming, simplex algorithm, duality, Lagrange condition, KKT condition.

Chong and Zak: An Introduction to Optimization (ch. 6-11, 15-17, 20-21)

Discrete Mathematics

A Graph Theory, Spring 2020.

Graph score, Eulerian graphs, 2-connectivity, triangle-free graphs, trees, planar graphs, Euler's formula, 5 color theorem, matrix-tree theorem, Ramsey theory.

Matoušek and Nešetřil: An Invitation to Discrete Mathematics (ch. 4-6, 8)

A- Mathematical Logic, Spring 2020.

Propositional logic, first order logic, Tarski conditions, expressibility, soundness, completeness, compactness, Tarski's theorem, Gödel's first incompleteness theorem.

No textbook.

planned Probabilistic Methods (Graduate), Fall 2021.

Second movement method, local lemma, correlation inequalities, martingales, large deviation inequalities, Janson and Talagrand inequalities, pseudo-randomness.

No textbook.

planned Combinatorial Theory I (Graduate), Fall 2021.

Generating functions, enumerative graph theory, partitions, matchings, duality theorems, packings, coverings, configurations, polyhedra, Ramsey theory, finite and transfinite.

No textbook.

Geometry

A Topology, Winter 2021.

Metric spaces, point-set topology, separation axioms, continuity, compactness, connectedness, product spaces, Tychonoff's theorem, homotopic paths, fundamental group, covering spaces.

Gamelin and Greene: Introduction to Topology (ch. 1-3)

A- Differential Geometry, Spring 2021.

Curves and surfaces in 3-space, Frenet formulas, Gaussian curvature, congruence of curves and surfaces, intrinsic geometry of surfaces, isometries, geodesics, Gauss–Bonnet theorem.

Shifrin: Differential Geometry (ch. 1-3)

Theoretical Computer Science

A Parameterized Algorithms (Graduate), Spring 2020.

FPT, kernelization, crown decomposition, bounded search trees, iterative compression, randomized methods, treewidth.

Cygan, et al.: Parameterized Algorithms (ch. 1-5, 7)

A Computability and Complexity (Graduate), Fall 2020.

Turing machines, NP, uncomputability, oracle computation, space bounds, polynomial hierarchy, randomized complexity, circuit complexity, interactive proofs, PCP Theorem.

Arora and Barak: Computational Complexity (ch. 1-8, 11)

A Communication Complexity (Graduate), Winter 2021.

Determinism, nondeterminism, randomness, lower bound methods, polynomial hierarchy, Yao's min-max principle, multiparty communication, quantum communication.

Kushilevitz and Nisan: Communication Complexity (ch. 1-3, 6)

A Greatest Theory Hits of the 21st Century (Graduate), Winter 2021.

SL=L, graph sparsification, interlacing polynomials, extender formulations, sensitivity conjecture, sunflower conjecture, log-concave polynomials, mixing-in matroids.

No textbook.

P Algorithmic Machine Learning (Graduate), Spring 2021.

Analysis of gradient descent and variants, SVD, online learning, graphical models, GLMs, GANs, streaming algorithms, frequency estimation.

No textbook.

planned Cryptography (Graduate), Fall 2021.

One-way functions, hard-core bits, pseudorandom generators, semantic security, encryption, digital signatures, interactive/zero-knowledge proofs, hash functions, commitment protocols.

No textbook.

Other

P Advanced Problem Solving, Fall 2019 and Fall 2020.

 $\label{lem:various} \mbox{Various problems from across undergraduate mathematics for Putnam preparation.}$

Andreescu and Gelca: Putnam and Beyond (ch. 2-6)