National University of Computer and Emerging Sciences, Lahore Campus

SAME SAME SAME SAME SAME SAME SAME SAME	Course Name:	Computer Architecture	Course Code:	EE204
	Program:	BS(Computer Science)	Semester:	Fall 2019
	Duration:	30 Minutes	Total Marks:	20
	Paper Date:	04-12-2019	Weight	~3
	Exam Type:	Quiz 5c	Page(s):	2

Section:		KOII NO	
Question 1 [2+2+4]			
Assume for specific system the: Clock rate is 2 GHz, Base L1 access time is 1 cycle, L1 hit rate is 60%, L2 hit Memory Accesses Per Ins	L2 access time is 10 cycles, rate is 70%.	Memory access time is 100 cycles,	

1. What is the average memory access time?

2. What is the global miss rate?

3. What is the effective execution time for a program with 1000 instructions?

Question 2 [3+3+2+2+2]

Consider a memory sub-system—with 16-bit addresses—that has two levels of cache (L1 and L2). L1 is a direct-mapped cache with 4 bytes block size and cache capacity of 4 KB. L2 is an 8-way set associative cache with 8 bytes block size and cache capacity of 32 KB.

a.	Calculate the size of tag, index, and	Number of tag bits	
	offset fields for the L1 cache	Number of index bits	
		Number of offset bits	
b.	O, ,	Number of tag bits	
	offset fields for the L2 cache	Number of index bits	
		Number of offset bits	
C.	Suppose the byte with address 0001 1010 0001 1011 is stored in L1 cache. What are the addresses of the other bytes stored along with it in the same block?		
d.	Calculate the size of tag array for L1 cache!		
e.	Calculate the total bits of storage required for L2 cache!		