Компьютерный практикум по статистическому анализу данных

Лабораторная работа № 2. Julia. Структуры данных

Сунгурова Мариян

Содержание

1	Введение	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы	6
4	Выводы	25
Список литературы		26

Список иллюстраций

3.1	Примеры. Кортежи
3.2	Примеры. Кортежи
3.3	Примеры. Словари
3.4	Примеры. Словари
3.5	Примеры. Множества
3.6	Примеры. Множества
3.7	Примеры. Массивы
3.8	Примеры. Массивы
3.9	Примеры. Массивы
3.10	Примеры. Массивы
3.11	Примеры. Массивы
	Примеры. Массивы
	Примеры. Массивы
	Задание 1
3.15	Задание 2
	Задание 2
3.17	Задание 2
	Задание 3
3.19	Задание 3
3.20	Задание 3
3.21	Задание 3
3.22	Задание 3
3.23	Задание 3
3.24	Задание 4
3.25	Задание 5
3.26	Залание 6

1 Введение

Цель работы

Основная цель работы – изучить несколько структур данных, реализованных в Julia, научиться применять их и операции над ними для решения задач.

Задачи

- 1. Используя Jupyter Lab, повторите примеры из раздела 2.2.
- 2. Выполните задания для самостоятельной работы (раздел 2.4).

2 Теоретическое введение

Julia — высокоуровневый свободный язык программирования с динамической типизацией, созданный для математических вычислений.[1]. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков, однако имеет некоторые существенные отличия.

Для выполнения заданий была использована официальная документация Julia[2].

3 Выполнение лабораторной работы

Рассмотрим несколько структур данных, реализованных в Julia.

Несколько функций (методов), общих для всех структур данных:

- isempty() проверяет, пуста ли структура данных;
- length() возвращает длину структуры данных;
- in() проверяет принадлежность элемента к структуре;
- unique() возвращает коллекцию уникальных элементов структуры,
- reduce() свёртывает структуру данных в соответствии с заданным бинарным оператором;
- maximum() (или minimum()) возвращает наибольший (или наименьший) результат вызова функции для каждого элемента структуры данных.

Выполним примеры из лабораторной работы для действий над кортежами(рис. fig. 3.1 - fig. 3.2)

Рис. 3.1: Примеры. Кортежи

```
Операции над кортежами

length(x2)

x2[1], x2[2], x2[3]

x2[1], x2[2], x2[2]

x2[1], x2[2],
```

Рис. 3.2: Примеры. Кортежи

Также со словарями(рис. fig. 3.3 - fig. 3.4)

```
Словари

Примеры словарей

phonebook - Dict("Иванов И.И." -> ("867-5309", "333-5544"), "Бухгалтерия" ->"555-2368")

Dict(String, Any) with 2 entries:
    "Бухгалтерия" -> "555-2368"
    "Иванов И.И." -> ("867-5309", "333-5544")

keys(phonebook)

кеубет for a Dict(String, Any) with 2 entries. Keys:
    "Бухгалтерия"
"Иванов И.И."

values(phonebook)

"WalueIterator for a Dict(String, Any) with 2 entries. Values:
    "555-2368"
    ("867-5309", "333-5544")

pairs(phonebook)

"WalueIterator for a Dict(String, Any) with 2 entries. Values:
    "555-2368"
    ("867-5309", "333-5544")

pairs(phonebook)

"Bict(String, Any) with 2 entries:
    "Бухгалтерия" -> "555-2368"
    "Иванов И.И." -> ("867-5309", "333-5544")
```

Рис. 3.3: Примеры. Словари

```
haskey(phonebook, "Meanoe M.M.")

true

phonebook["Cндороe"] = "555-3344"

ppop!(phonebook, "Meanoe M.M.")

pop!(phonebook, "Meanoe M.M.")

pop!(phonebook, "Meanoe M.M.")

(3867-5369", "333-5544")

a = Dict("foo" > 0.0, "bar" > 42.0);
b = Dict("bar" > 17, "bar" > 13.0);
merge(a, b), merge(b, a)

(Dict(String, Real)("bar" >> 13.0, "baz" >> 17, "foo" >> 0.0), Dict(String, Real)("bar" >> 42.0, "baz" >> 17, "foo" >> 0.0))
```

Рис. 3.4: Примеры. Словари

Рассмотрим также примеры опреций над множествами(рис. fig. 3.5 - fig. 3.6)

Рис. 3.5: Примеры. Множества

Рис. 3.6: Примеры. Множества

И с массивами(рис. fig. 3.7 - fig. 3.11)

```
Maccubbi

emp_arr_1 = []
emp_arr_2 = (Int64)[]
emp_arr_3 = (Float64)[]

x = [1, 2, 3]
b = [1 2 3]
b = [1 2 3]

b = [1 2 3]

A = [1, 2, 3] [4, 5, 6] [7, 8, 9]]
B = [1 2 3]; [4 5 6]; [7 8 9]]

A = [1, 2, 3] [4, 5, 6] [7, 8, 9]]
B = [1 2 3]; [4 5 6]; [7 8 9]]

c = rand(1, 8)

c = rand(1, 8)

x = x8 Matrix(Float64):
0.0118475 0.144387 0.0256888 0.457047 ... 0.19639 0.998878 0.471298
```

Рис. 3.7: Примеры. Массивы

Рис. 3.8: Примеры. Массивы

Рис. 3.9: Примеры. Массивы

Рис. 3.10: Примеры. Массивы

Рис. 3.11: Примеры. Массивы

```
ar[:, [2 , 5]]

v 005

10-2 Matrix{Int64}:
15 18
16 14
14 18
10 17
17 11
10 16
13 11
19 20
19 20

ar[[2, 4, 6], [1, 5]]

v 005

ar[[2, 4, 6], [1, 5]]

v 005

ar[1, 3:end]

v 005

ar[1, 3:end]

v 005

ar[1, 3:end]

v 005

18
17
18

sort(ar, dims-1)

v 005

10-85 Matrix{Int64}:
11 10 10 11 11
12 10 10 13 11
12 13 13 14 14
12 14 15 16 16
```

Рис. 3.12: Примеры. Массивы

Рис. 3.13: Примеры. Массивы

Выполним задания для самостоятельной работы. С

```
** Задание 1

1. Даны множества: A = {0, 3, 4, 9}, B = {1, 3, 4, 7}, C = {0, 1, 2, 4, 7, 8, 9}.

Найти P = A ∩ B ∪ A ∩ B ∪ A ∩ C ∪ B ∩ C.

A = Set([0, 3, 4, 9])
B = Set([1, 3, 4, 7])
C = Set([0, 1, 2, 4, 7, 8, 9])

** 0.05

*** Set{Int64} with 7 elements:

0
4
7
2
9
8
1

union(intersect(A, B), intersect(A, C), intersect(B, C))

** 0.05

*** Set{Int64} with 6 elements:

0
4
7
9
3
1
```

Рис. 3.14: Задание 1

2. Приведем свои примеры с выполнением операций над множествами элементов разных типов. (рис. fig. 3.16 - fig. 3.17)

```
Tipuseдите свои примеры с выполнением операций над множествами элементов разных типов.

$1 = Set([18, 2.8, 3, 4])
$2 = Set(["Some", "text", "and", 10])

println("Nonellinu множества $1: ")

for i in $1

    println(i)
    end

println("\nПомерина множества $2: ")

for i in $2

    println("\nПомерина множества $2: ")

println("\nПомерина множеств:")

println("\nПомерина множеств:")
```

Рис. 3.15: Задание 2

```
Элементы множества 51:
4.0
2.0
10.0
3.0
Элементы множества 52:
10
Some
text
and
Проверка эквивалентности:
false
Пересечение множеств:
Set(Any[10])
Объединение множеств:
Set(Any[4.0, 2.0, 10, "Some", "text", 3.0, "and"])
Разность множеств:
Set(Any[4.0, 2.0, 10, "Some", "text", 3.0, "and"])
Проверка вхождения элементов одного множества в другое:
false
```

Рис. 3.16: Задание 2

```
println("\пдобавление элемента в множество 52:")
push!($2, "end")

println("\п3ламенты множества 52: ")
for i in $2
    println(i)
end

println("\п3ламенты множества 52:")
pop!($2)

println("\п3ламенты множества 52: ")
for i in $2
    println(i)
end

✓ 0.0s

добавление элемента в множество $2:

Элементы множества $2:
10

Some
text
and
end

удаление последнего элемента в множестве $2:

Элементы множества $2:

Злементы множества $2:
```

Рис. 3.17: Задание 2

1. Создадим разными способами массивы и вектора. Для создания нужных массивов, используем генераторы и циклы(рис. fig. 3.18 - fig. 3.23)

```
      Задание 3

      Содайте разными способым:

      3.1) миссие (1, 2, 3, ... № 1, N, N выберите больше 20;

      3.2) миссие (1, 2, 3, ... № 1, N, N 1, ..., 2, 1), N выберите больше 20;

      3.3) миссие (1, 2, 3, ... № 1, N, N 1, ..., 2, 1), N выберите больше 20;

      3.4) миссие, в согором первый элемент миссима Imp повторыется 10 рах;

      3.6) миссие, в сотором первый элемент миссима Imp повторыется 10 рах;

      3.7) миссие, в сотором первый элемент миссима Imp повторыется 10 рах;

      3.8) миссие, в сотором первый элемент миссима Imp веречается 1 рах; пторой элемент — 10 рах; претий элемент — 10 рах;

      3.9) миссие, в сотором первый элемент миссима Imp веречается 1 рах; пторой элемент — 20 раз подрах, претий элемент — 30 раз подрах;

      3.9) миссие из элементов выза 2 лендії, 1 = 1, 2, 3, где элемент 2 гендії разграфій регречается 4 разк посчитайте в полученном весторо, сколько раз встречается цифра 6, и выведите это элемение на экран;

      а! - (1 fert 1 in 127); а! - гентегі (1 fert 1 in 127); претий элемент — 10 рах; претий элемент — 20 раз подрах, претий элемент — 30 раз встречается цифра 6, и выведите это элемение на экран;

      а! - (1 fert 1 in 127); а! - гентегі (1 fert 1 in 127); претий (1 fert
```

Рис. 3.18: Задание 3

Рис. 3.19: Задание 3

```
Вектор C элементами 2 i i, i = 1, 2, ..., M, M = 25;

M = 25
    is = 1:N
    v1 = [2*1/i for i in is]

v2 = [2*1/i for i in is]
    v2.0
    2.0
    2.0
    2.0
    2.0
    2.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
    3.0
```

Рис. 3.20: Задание 3

Рис. 3.21: Задание 3

```
1M4

** * -29 (100,000) for initial profit of the profit o
```

Рис. 3.22: Задание 3

```
### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 200 | ### 2
```

Рис. 3.23: Задание 3

4. Создадим массив squares, в котором будут храниться квадраты всех целых чисел от 1 до 100.(рис. fig. 3.24)

Рис. 3.24: Задание 4

5. Подключим пакет Primes (функции для вычисления простых чисел). Затем сгенерируем массив myprimes, в котором будут храниться первые 168 простых чисел. Определим также 89-е наименьшее простое число и срез

массива с 89-го до 99-го элемента включительно, содержащий наименьшие простые числа.(рис. fig. 3.25)

```
Pkg.add("Primes")
import Primes as pm

(215) 

7 17.65

Resolving package versions...
Installed IntegerMathUtils — v0.1.2
Installed Primes — v0.5.6
Updating 'C:\Users\HP\.julia\environments\v1.10\Project.toml'
[27ebfcd6] + Primes v0.5.6
Updating 'C:\Users\HP\.julia\environments\v1.10\Manifest.toml'
[18e3dd8] + IntegerMathUtils v0.1.2
[27ebfcd6] + Primes v0.5.6

Precompiling project...

7 IntegerMathUtils

9 Primes
2 dependencies successfully precompiled in 11 seconds. 315 already precompiled.

myprimes = [pm.prime(1) for i=1:168]
prime_89 = myprimes[89]
prime_89 = myprimes[89:99]

11-element Vector(Int64):
461
463
467
479
487
491
499
503
509
521
523
```

Рис. 3.25: Задание 5

6. Вычислим выражения(рис. fig. 3.26)

```
# 6.1
res61 = sum([i^3 + 4*i^2 for i=10:100])
println("6.1) ", res61)

# 6.2
res62 = sum([ ((2^i)/(i) + (3^i)/(i^2) ) for i=1:25])
println("6.2) ", res62)

# 6.3
res63 = 1
tmp = 1
for i=1:2:38
tmp*= i/(i+1)
res63 = res63 + tmp
end
println("6.3) ", res63)

✓ 0.1s

...
6.1) 26852735
6.2) 2.1291704368143802e9
6.3) 5.01482750478317
```

Рис. 3.26: Задание 6

4 Выводы

В результате выполнения данной лабораторной работы были изучены структуры данных, реализованных в Julia: словарь, массив, кортеж множество, также юыли получены практические навыки применения этих структур и операций над ними решения задач.

Список литературы

- 1. JuliaLang [Электронный ресурс]. 2024 JuliaLang.org contributors. URL: https://julialang.org/ (дата обращения: 11.10.2024).
- 2. Julia 1.11 Documentation [Электронный pecypc]. 2024 JuliaLang.org contributors. URL: https://docs.julialang.org/en/v1/ (дата обращения: 11.10.2024).