Wykładniki p-adyczne i LTE

Jakub Słowikowski

28 września 2022

1 Teoria

1.1 Definicja

Wykładnikiem p-adycznym liczby całkowitej $n \neq 0$ nazywamy największą taką liczbę $k \in \mathbb{N}$, że $p^k \mid n$, oznaczamy go symbolem $v_p(n)$. Przyjmijmy ponadto, że $v_p(0) = +\infty$.

Możemy również rozszerzyć pojęcie wykładnika p-adycznego na liczby wymiarne, stosując wzór $v_p(\frac{a}{b}) = v_p(a) - v_p(b)$.

1.2 Kilka własności

- $v_p(ab) = v_p(a) + v_p(b)$
- $v_p(a^n) = nv_p(a)$
- $\forall_p : v_p(a) = v_p(b) \iff a = b$
- $v_p(a\pm b) \geq \min\{v_p(a), v_p(b)\}$ (jeśli $v_p(a) \neq v_p(b)$ to zachodzi równość)
- $v_p(NWD(a,b)) = min\{v_p(a), v_p(b)\}$
- $v_n(NWW(a,b)) = max\{v_n(a), v_n(b)\}$
- $a \mid b \iff \forall_p : v_p(a) \le v_p(b)$
- $a = k^n \iff \forall_p : n \mid v_p(k)$
- (Legendre) $v_p(n!) = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \lfloor \frac{n}{p^3} \rfloor + \dots$

1.3 LTE (Lifting The Exponent Lemma)

Niech p będzie liczbą pierwszą, natomiast x i y niepodzielnymi przez nią liczbami całkowitymi. Wtedy, dla dowolnej dodatniej liczby całkowitej n:

• (Podstawowa wersja) jeśli $p \neq 2$ i $p \mid x - y$ to

$$v_p(x^n - y^n) = v_p(x - y) + v_p(n)$$

• jeśli p = 2 i 4 | x - y to

$$v_n(x^n - y^n) = v_n(x - y) + v_n(n)$$

• jeśli p = 2, 2 | n i 2 | x - y to

$$v_p(x^n - y^n) = v_p(x - y) + v_p(x + y) + v_p(n) - 1$$

• jeśli $2 \nmid n$ i $p \mid x + y$ to

$$v_p(x^n + y^n) = v_p(x+y) + v_p(n)$$

1.4 Na rozgrzewkę

Ćwiczenie 1. $Udowodnij, \ \dot{z}e \ dla \ a,b,c \in Z_{>0} \ zachodzi \ \frac{NWW(a,b,c)NWD(a,b)NWD(b,c)NWD(c,a)}{NWD(a,b,c)} = abc.$

Ćwiczenie 2. $Liczby\ a,b\neq 0\ oraz\ \frac{b^2}{a}+\frac{a^2}{b}\ jest\ calkowite.\ Udowodnij,\ \dot{z}e\ \frac{b^2}{a}\ oraz\ \frac{a^2}{b}\ r\'ownie\dot{z}\ sq\ calkowite.$

Ćwiczenie 3. *Udowodnij, że jeżeli* $p \mid a^p - 1$ *to* $p^2 \mid a^p - 1$.

Ćwiczenie 4. Wyznaczyć wszystkie liczby naturalne n, dla których zachodzi podzielność $5^n \mid 3^n + 7^n$.

1.5 Zadania

Zadanie 1. (Bay Area Olympiad 2018) Liczby $a, b, c \neq 0$ oraz $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ są całkowite. Udowodnij, że abc jest sześcianem liczby całkowitej.

Zadanie 2. (Romanian Junior Balkan TST 2008) Niech p będzie liczbą pierwszą różną od 3, a a i b takimi liczbami całkowitymi, że p | a + b i p^2 | $a^3 + b^3$. Udowodnij, że p^2 | a + b lub p^3 | $a^3 + b^3$.

Zadanie 3. Korzystając z postulatu Bertranda (dla każdej liczby naturalnej $n \ge 1$ w przedziale [n,2n] znajduje się co najmniej jedna liczba pierwsza), udowodnić, że dla naturalnych n>1:

- a) liczba n! nie jest potęgą liczby naturalnej o wykładniku naturalnym i większym niż 1,
- b) $liczba\ 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ nie jest naturalna.

Zadanie 4. Dane są liczby $a, b \in \mathbb{Z}_{>0}$ takie, że dla każdej liczby $n \in \mathbb{N}$ zachodzi $a^n \mid b^{n+1}$. Udowodnij, że $a \mid b$.

Zadanie 5. (Russia 1996) Załóżmy, że $x^k + y^k = p^n$, gdzie $x, y, k, n \in \mathbb{N}$, $2 \nmid k$ i $p \in \mathbb{P}_{>2}$. Udowodnić, że k ma co najwyżej jeden dzielnik pierwszy.

Zadanie 6. (Iran Second Round 2008) Pokaż, że jedyną liczbą całkowitą a > 1, dla której $4(a^n + 1)$ jest sześcianem liczby całkowitej dla każdego $n \in \mathbb{Z}_{>0}$ jest a = 1.

Zadanie 7. (Romania TST 2009) Niech $a, n \ge 2$ będą liczbami całkowitymi o następującej własności: istnieje taka liczba całkowita $k \ge 2$, że $n \mid (a-1)^k$. Udowodnij, że $n \mid a^{n-1} + a^{n-2} + \cdots + a + 1$.

Zadanie 8. (LXX OM, II etap) Dane są takie dodatnie liczby całkowite $a_1, a_2, \ldots, a_n \ (n \geq 3)$, że nie istnieje liczba całkowita m > 1 dzieląca każdą z nich. Ponadto, jeśli oznaczymy $s = a_1 + a_2 + \cdots + a_n$, to każda z liczb a_1, a_2, \ldots, a_n dzieli s. Udowodnić, że liczba s^{n-2} jest podzielna przez $a_1 a_2 \ldots a_n$.

Zadanie 9. Niech k>1 będzie liczbą całkowitą. Udowodnij, że istnieje nieskończenie wiele dodatnich liczb całkowitych n takich, że

$$n \mid 1^n + 2^n + 3^n + \dots + k^n$$

Zadanie 10. (LXX OM, II etap) Niech $f(t) = t^3 + t$. Rozstrzygnąć, czy istnieją takie liczby wymierne x, y oraz dodatnie liczby całkowite $m, n, \dot{z}e$ xy = 3 oraz

$$f^n(x) = f^m(y)$$

 $gdzie\ f^1(x) = f(x)\ oraz\ f^{n+1}(x) = f(f^n(x))$

Zadanie 11. (Ireland 1996) Niech $p \in \mathbb{P}$ i $a, n \in \mathbb{N}$. Udowodnić, że jeżeli $2^p + 3^p = a^n$, to n = 1.

Zadanie 12. Niech $p \in \mathbb{P}$. Rozwiąż równanie $a^p - 1 = p^k$ w dodatnich liczbach całkowitych.

Zadanie 13. Niech a, b będą różnymi liczbami całkowitymi takimi, że liczby

$$a-b$$
, a^2-b^2 , a^3-b^3 , ...

wszystkie są całkowite. Udowodnij, że a i b również są całkowite.

Zadanie 14. (Bulgaria 1997) Udowodnić, że jeżeli dla pewnego $k \in \mathbb{N}$ zachodzi równość $3^k - 2^k = p^n$, gdzie $p \in \mathbb{P}$, a $n \geq 2$, to k jest liczbą pierwszą.

Zadanie 15. (Asian-Pacific Olympiad 2017) Niech a, b, c będą dodatnimi liczbami wymiernymi, dla których abc = 1. Załóżmy, że istnieją dodatnie liczby całkowite x, y, z, dla których $a^x + b^y + c^z$ jest liczbą całkowitą. Udowodnij, że kiedy napiszemy a, b, c w formie ułamków nieskracalnych to ich liczniki będą potęgami liczb całkowitych.

Zadanie 16. (USAMO 2016) Udowodnij, że dla każdej dodatniej liczby całkowitej k

$$(k^2)! \prod_{j=0}^{k-1} \frac{j!}{(j+k)!}$$

Zadanie 17. (IMO 2018) Niech a_1, a_2, \ldots będzie nieskończonym ciągiem dodatnich liczb całkowitych. Załóżmy, że istnieje liczba całkowita N > 1 taka, że dla każdego $n \ge N$ liczba

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$$

jest całkowita. Udowodnij, że istnieje dodatnia liczba całkowita M, taka że $a_m = a_{m+1}$ dla każdej dodatniej liczby całkowitej $m \ge M$.

Zadanie 18. (IMO 2000) Czy istnieje taka dodatnia liczba całkowita n, że n ma dokładnie 2000 dzielników pierwszych oraz $n \mid 2^n + 1$?

Zadanie 19. (IMO 1990) Wyznacz wszystkie liczby naturalne n > 1, dla których

$$\frac{2^n+1}{n^2}$$

jest liczbą całkowitą.

Zadanie 20. (China TST 2009) Niech a > b > 1 będą dodatnimi liczbami całkowitymi oraz niech b będzie nieparzyste. Udowodnij, że jeśli dla pewnej dodatniej liczby całkowitej n zachodzi $b^n \mid a^n - 1$ to $a^b > \frac{3^n}{n}$.

Zadanie 21. (USA TST 2008) Udowodnij, że $n^7 + 7$ nie jest kwadratem liczby całkowitej dla żadnej liczby całkowitej n.

Zadanie 22. Znajdź wszystkie liczby całkowite a, b > 1 spełniające

$$b^a | a^b - 1$$

Zadanie 23. (IMO Shortlist 2014 N5) Znajdź wszystkie takie liczby pierwsze p i dodatnie liczby całkowite $x, y, \dot{z}e\ x^{p-1} + y\ i\ y^{p-1} + x\ sq\ potęgami\ p$.

Zadanie 24. (IMO 2022) Znajdź wszystkie takie trójki (a,b,p) pozytywnych liczb całkowitych, gdzie p jest liczbą pierwszą, że:

$$a^p = b! + p$$

Zadanie 25. (IMO Shortlist 2017 N4) Liczbę rzeczywistą nazwiemy krótką jeśli ma skończenie wiele cyfr w swoim rozwinięciu dziesiętnym. Dla $m \in \mathbb{Z}_{>0}$, mówimy, że $t \in \mathbb{Z}_{>0}$ jest m-tastyczne jeśli istnieje liczba $c \in 1, 2, \ldots, 2017$ taka, że $\frac{10^t - 1}{cm}$ jest krótka natomiast $\frac{10^k - 1}{cm}$ nie jest krótka dla żadnego $1 \le k < t$. Niech S(m) będzie zbiorem m-tastycznych liczb. Rozważ S(m) dla $m = 1, 2, \ldots$ Jaka jest maksymalna liczba elementów S(m)?

Zadanie 26. (IMO Shortlist 2007 N7) Dana jest dodatnia liczba całkowita d oraz skończony zbiór liczb pierwszych p_1, p_2, \ldots, p_k . Pokaż, że jest nieskończenie wiele dodatnich liczb całkowitych n takich, że d dzieli $v_{p_i}(n!)$ dla wszystkich $1 \le i \le k$.