Additional Topics I: Member Releases

Lesson Objectives:

- 1) Derive the methodology to analyze structures for various member releases and secondary effects.
- 2) Derive the member local stiffness modifications to account for member releases.
- 3) Compute the structure fixed-joint force vector to account for support settlements.
- 4) Compute the member fixed-end force vector to account for temperature changes and fabrication errors.

Review of Previous Class Notes:

1) Previo	1) Previously the focus was on trusses, beams, and frames based on the assumptions the				
a.	The member ends are	to nodes at both ends.			
b.	Supports and restraints are sufficiently	to prevent any			
c.	Loads are				
		loads include:			
	and				
2) These	additional considered topics build on the				
establ	ished (chapters refer to Kassimali textbook).				
a.	Trusses: <u>Chapter 3</u>				
b.	Beams: Chapter 5	·			
c.	Frames: <u>Chapter 6</u>	·			
Background	Reading:				
1) Read	Kassimali – Chapter 7 (focus on 7.1 for m	nember releases)			

Member Releases:

1)	Member releases can be conveniently incorporated into the stiffness method by modifying				
	the	to account for such releases.			
2)	Focus	here is on releases, which may occur at one or both ends of a			
	memb	nember.			
	a.	This release is the most commonly encountered type in practice.			
	b.	This release creates a at the location of release.			
3)	Figure 1 depicts the types of member releases that will be considered.				
	a.	Classified into conditions.			
b. Nomenclature used in these notes aligns with the book definitions.					
	c.	MT denotes <i>member type</i> .			
4)	In prev	previous notes and chapters, focus was placed on			
	a.	That is releases are present.			
	b.	and matrices are valid.			
5)	How d	lo one handle releases?			
	a.	Modify the and matrices as appropriate.			
	b.	Details are presented in the next section.			

Figure 1. Types of member releases considered and definition of the nomenclature¹.

Member Releases

¹ All figures in Additional Topics I modified from: Kassimali, Aslam. (2012). *Matrix Analysis of Structures*. 2nd edition. Cengage Learning.

Local Stiffness Relations for Plane Frame Members with Hinge(s):

- 1) Let's begin to derive the modification of the local stiffness relationship matrices for plane frames.
- 2) Knowing the relationship of the local end forces, local stiffness matrix, and member fixedend forces, one can write:

$$\{Q\} = [k]\{u\} + \{Q_f\}$$

$$\begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \\ Q_5 \\ Q_6 \end{bmatrix} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ 0 & -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix} + \begin{bmatrix} Q_{f1} \\ Q_{f2} \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix} + \begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Q_{f3} \\ u_4 \\ Q_{f4} \\ Q_{f5} \\ Q_{f6} \end{bmatrix}$$

3) Expanding this to a set of equations:

$$Q_{1} = \frac{EA}{L} (u_{1} - u_{4}) + FA_{b}$$

$$Q_{2} = \frac{EI}{L^{3}} (12 u_{2} + 6 L u_{3} - 12 u_{5} + 6 L u_{6}) + FS_{b}$$

$$Q_{3} = \frac{EI}{L^{3}} (6 L u_{2} + 4 L^{2} u_{3} - 6 L u_{5} + 2 L^{2} u_{6}) + FM_{b}$$

$$Q_{4} = \frac{EA}{L} (-u_{1} + u_{4}) + FA_{e}$$

$$Q_{5} = \frac{EI}{L^{3}} (-12 u_{2} - 6 L u_{3} + 12 u_{5} - 6 L u_{6}) + FS_{e}$$

$$Q_{6} = \frac{EI}{L^{3}} (6 L u_{2} + 2 L^{2} u_{3} - 6 L u_{5} + 4 L^{2} u_{6}) + FM_{e}$$

- 4) *Member Type 1*: End _____ of the member is connected to the adjacent joint by a hinged connection.
 - a. Therefore
 - b. Solving for _____, one can obtain an expression for the end rotation as:
 - c. This indicates that _____ (end ______) is no longer a _____
 - d. To eliminate ____ from the member stiffness relations, one can write the updated member stiffness equations as:

$$Q_{1} = \frac{EA}{L} (u_{1} - u_{4}) + FA_{b}$$

$$Q_{2} = \frac{EI}{L^{3}} (3 u_{2} - 3 u_{5} + 3 L u_{6}) + [FS_{b} - \frac{3}{2L}FM_{b}]$$

$$Q_{3} = 0$$

$$Q_{4} = \frac{EA}{L} (-u_{1} + u_{4}) + FA_{e}$$

$$Q_{5} = \frac{EI}{L^{3}} (-3 u_{2} + 3 u_{5} - 3 L u_{6}) + [FS_{e} + \frac{3}{2L}FM_{b}]$$

$$Q_{6} = \frac{EI}{I^{3}} (3 L u_{2} - 3 L u_{5} + 3 L^{2} u_{6}) + [FM_{e} - \frac{1}{2}FM_{b}]$$

e. Where this can be assembled into matrix form as:

$$\{Q\} = [k]\{u\} + \{Q_f\}$$

$$\begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \\ Q_5 \\ Q_6 \end{bmatrix} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{3EI}{L^3} & 0 & 0 & -\frac{3EI}{L^3} & \frac{3EI}{L^2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{3EI}{L^3} & 0 & 0 & \frac{3EI}{L^3} & -\frac{3EI}{L^2} \\ 0 & \frac{3EI}{L^2} & 0 & 0 & -\frac{3EI}{L^2} & \frac{3EI}{L} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix} + \begin{bmatrix} Q_{f1} \\ Q_{f2} \\ u_3 \\ u_4 \\ u_5 \\ Q_{f5} \\ Q_{f6} \end{bmatrix}$$

$$\begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Qf_3 \\ Q_{f4} \\ Q_{f5} \\ Q_{f6} \end{bmatrix} = \begin{bmatrix} FA_b \\ FS_b - \frac{3}{2L}FM_b \\ 0 \\ FA_e \\ FS_e + \frac{3}{2L}FM_b \\ FM_e - \frac{1}{2}FM_b \end{bmatrix}$$

- f. The above equations are now valid for a plane frame member under the condition of _____.
- 5) *Member Type 2*: End _____ of the member is connected to the adjacent joint by a hinged connection.
 - a. Therefore ______.
 - b. Solving for _____, one can obtain an expression for the end rotation as:
 - c. This indicates that _____ (end ______) is no longer a _____
 - d. To eliminate ____ from the member stiffness relations, one can write the updated member stiffness equations as:

$$Q_{1} = \frac{EA}{L} (u_{1} - u_{4}) + FA_{b}$$

$$Q_{2} = \frac{EI}{L^{3}} (3 + 3 L u_{3} - 3 u_{5}) + [FS_{b} - \frac{3}{2L}FM_{e}]$$

$$Q_{3} = \frac{EI}{L^{3}} (3 L u_{2} + 3 L^{2} u_{3} - 3 L u_{5}) + [FM_{b} - \frac{1}{2}FM_{e}]$$

$$Q_{4} = \frac{EA}{L} (-u_{1} + u_{4}) + FA_{e}$$

Advanced Structural Analysis

$$Q_5 = \frac{EI}{L^3} (-3 u_2 - 3 L u_3 + 3 u_5) + [FS_e + \frac{3}{2L} FM_e]$$

$$Q_6 = 0$$

 ${Q} = [k]{u} + {Q_f}$

e. Where this can be assembled into matrix form as:

$$\begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \\ Q_5 \\ Q_6 \end{bmatrix} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{3EI}{L^3} & \frac{3EI}{L^2} & 0 & -\frac{3EI}{L^3} & 0 \\ 0 & \frac{3EI}{L^2} & \frac{3EI}{L} & 0 & -\frac{3EI}{L^2} & 0 \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{3EI}{L^3} & -\frac{3EI}{L^2} & 0 & \frac{3EI}{L^3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix} + \begin{bmatrix} Q_{f1} \\ Q_{f2} \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix}$$

$$\begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Qf_3 \\ Q_{f4} \\ Q_{f5} \\ Q_{f6} \end{bmatrix} = \begin{bmatrix} FA_b \\ FS_b - \frac{3}{2L}FM_e \\ FM_b - \frac{1}{2}FM_e \\ FA_e \\ FS_e + \frac{3}{2L}FM_e \\ 0 \end{bmatrix}$$

f. The above equations are now valid for a plane frame member under the condition of .

- 6) *Member Type 3*: Ends _____ of the member are connected to the adjacent joint by a hinged connection.
 - a. Therefore
 - b. Solving for ______, one can obtain an expression for the end rotations as:

- c. This indicates that _____ (ends _____) are no longer a
- d. To eliminate _____ from the member stiffness relations, one can write the updated member stiffness equations as:

$$Q_1 = \frac{EA}{L} (u_1 - u_4) + FA_b$$

$$Q_2 = FS_b - \frac{1}{L}[FM_b + FM_e]$$

$$Q_3 = 0$$

$$Q_4 = \frac{EA}{L} (-u_1 + u_4) + FA_e$$

$$Q_5 = FS_e + \frac{1}{L}[FM_b + FM_e]$$

$$Q_6 = 0$$

e. Where this can be assembled into matrix form as:

$${Q} = [k]{u} + {Q_f}$$

$$\begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Qf_3 \\ Q_{f4} \\ Q_{f5} \\ Q_{f6} \end{bmatrix} = \begin{bmatrix} FA_b \\ FS_b - \frac{1}{L}(FM_b + FM_e) \\ 0 \\ FA_e \\ FS_e + \frac{1}{L}(FM_b + FM_e) \\ 0 \\ \end{bmatrix}$$

- f. The above equations are now valid for a plane frame member under the condition of .
- 7) It should be noted that while the _____ has been reduced due to member releases, the _____ of the matrices remain consistent in size.
 - a. One can use the concept of ______ to reduce the size of the matrices due to the eliminated degrees of freedom.

Local Stiffness Relations for Beam Members with Hinge(s):

1) Recall from the beam notes, that beams:

a. ____

b. ____

2) Therefore a beam has ______ degrees of freedom.

3) To derive the updated stiffness relations for a beam, it is simplest to delete ______ from the plane frame members corresponding to each end condition.

- 4) *Member Type 1*: End ____ of the member is connected to the adjacent joint by a hinged connection.
 - a. Therefore
 - b. To obtain the updated stiffness for a beam, delete rows and columns ______ from the plane frame member.

$${Q} = [k]{u} + {Q_f}$$

$$\begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{bmatrix} = \begin{bmatrix} \frac{3EI}{L^3} & 0 & -\frac{3EI}{L^3} & \frac{3EI}{L^2} \\ 0 & 0 & 0 & 0 \\ \frac{3EI}{L^3} & 0 & \frac{3EI}{L^3} & -\frac{3EI}{L^2} \\ \frac{3EI}{L^2} & 0 & -\frac{3EI}{L^2} & \frac{3EI}{L} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} + \begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Qf_3 \\ Q_{f4} \end{bmatrix}$$

$$\begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Q_{f3} \\ Q_{f4} \end{bmatrix} = \begin{bmatrix} FS_b - \frac{3}{2L}FM_b \\ 0 \\ FS_e + \frac{3}{2L}FM_b \\ FM_e - \frac{1}{2}FM_b \end{bmatrix}$$

Advanced Structural Analysis

c. The rotation of _____ (hinged end of member) can be expressed as:

- 5) *Member Type 2*: End _____ of the member is connected to the adjacent joint by a hinged connection.
 - a. Therefore ______.
 - b. To obtain the updated stiffness for a beam, delete rows and columns ______ from the plane frame member.

$$\{Q\} = [k]\{u\} + \{Q_f\}$$

$$\begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{bmatrix} = \begin{bmatrix} \frac{3EI}{L^3} & \frac{3EI}{L^2} & -\frac{3EI}{L^3} & 0 \\ \frac{3EI}{L^2} & \frac{3EI}{L} & -\frac{3EI}{L^2} & 0 \\ -\frac{3EI}{L^3} & -\frac{3EI}{L^2} & \frac{3EI}{L^3} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} + \begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Qf_3 \\ Q_{f4} \end{bmatrix}$$

$$\begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Q_{f3} \\ Q_{f4} \end{bmatrix} = \begin{bmatrix} FS_b - \frac{3}{2L}FM_e \\ FM_b - \frac{1}{2}FM_e \\ FS_e + \frac{3}{2L}FM_e \\ 0 \end{bmatrix}$$

c. The rotation of _____ (hinged end of member) can be expressed as:

- 6) *Member Type 3*: Ends _____ of the member are connected to the adjacent joints by a hinged connection.
 - a. Therefore
 - b. To obtain the updated stiffness for a beam, delete rows and columns ______ from the plane frame member.
 - c. Through inspection of these row and column deletions, it is noted that:
 - i. This indicates that no _____ against small end displacements in the direction perpendicular to its centroidal axis.
 - 1. This behaves like a _____.
 - d. The member end force vector can be expressed as:

$$\begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Q_{f3} \\ Q_{f4} \end{bmatrix} = \begin{bmatrix} FS_b - \frac{1}{L}(FM_b + FM_e) \\ 0 \\ FS_e + \frac{1}{L}(FM_b + FM_e) \\ 0 \end{bmatrix}$$

e. The rotation of _____ (hinged ends of member) can be expressed as:

Procedure for Analysis:

- 1) The general analysis procedure for beam and frames as previously outlined can be applied.
 - a. Account for modified local stiffness matrices, as appropriate.
 - b. The previous relationships are still valid:
- 2) Examine Figure 2 for examples of hinges introduced into a plane frame structure.
- 3) How to account for hinged joints in beams and frames?
 - a. Note a hinged joint is defined as: all framing members of the joint are connected by hinged connections.
 - b. In Figure 2, ______ is a hinged joint.
 - c. Why is joint ____ not considered a hinged joint?

 Only the first end of the beam is hinged. The column ends that frame the joint can transfer a moment.

Figure 2. Example frame structure with hinges.

4) Inclusion of the rotation degree of freedom in the analysis for a hinged joint will result in a

- a. That is the _____.
- 5) What are two possible discretizations of the example frame structure in Figure 2?
- 6) Discretization Type One:
 - a. Figure 3 introduces the concept of a _____
 - i. Herein the ____at joint ____ is eliminated as an imaginary clamp is applied at this joint.
 - ii. Therefore this joint has _____ DOFs, namely: _____ and ____.
 - iii. This method is straightforward and efficient.
 - 1. Easy to implement in computer structural analysis codes.

Figure 3. Example discretization of the frame structure with hinge. Note _____ DOFs are present.

7) Discretization Type Two:

- a. Figure 4 introduces the concept of releasing all the hinges except one.
 - i. Herein the beam frames into the joint where the rotation is free.
 - 1. One and only one framing member can have a restrained rotation.
 - ii. This approach is based on the following concepts:
 - 1. No external moment is applied to the hinged node.
 - 2. The moment of the restrained member end is 0 (along with all other end moments framing into the member).
 - a. Ensures moment equilibrium is satisfied.
 - iii. This method is not as efficient as demonstrated in Figure 3a, why?

Figure 4. Example discretization of the frame structure with hinge. Note DOFs are present.

8)	In sum	mary, <mark>tw</mark>	o different discretization approach	nes are possible for frame where hinges		
	are present.					
	a.	Preferen	ce may be given to the first approa	ach, since:		
		i.				
		ii.				

Member Releases: Example

Example #1

For the steel beam illustrated below, determine the joint displacements, member end forces, and the support reactions. Use the matrix stiffness method.

Additional Information:

Nodes 1 and 3 are fixed Node 2 is hinged w = 1.5 kip/ft $L_1 = 20 \text{ feet}$ $L_2 = 15 \text{ feet}$ E = 29,000 ksi $I = 350 \text{ in}^4$

Solution:

Identify the number of degrees of freedom. NDOF = _____.

Identify the number of reactions. NR = _____.

$$E = \underline{\hspace{1cm}}$$

Examine member 1.

$$MT =$$

$$L = 240 \text{ in}$$

Code numbers: ___ __ ___

$$FS_b = FS_e =$$

$$FM_b = -FM_e =$$

Advanced Structural Analysis

Local stiffness matrix and end force vector:

$$[k_1] = \begin{bmatrix} \frac{3EI}{L^3} & \frac{3EI}{L^2} & -\frac{3EI}{L^3} & 0\\ \frac{3EI}{L^2} & \frac{3EI}{L} & -\frac{3EI}{L^2} & 0\\ -\frac{3EI}{L^3} & -\frac{3EI}{L^2} & \frac{3EI}{L^3} & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} =$$

$$\begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Q_{f3} \\ Q_{f4} \end{bmatrix} =$$

Examine member 2.

MT =

L = 180 in

Code numbers: ___ __ ___

$$FS_b = FS_e =$$

$$FM_b = -FM_e =$$

Local stiffness matrix and end force vector:

$$[k_2] = \begin{bmatrix} \frac{3EI}{L^3} & 0 & -\frac{3EI}{L^3} & \frac{3EI}{L^2} \\ 0 & 0 & 0 & 0 \\ -\frac{3EI}{L^3} & 0 & \frac{3EI}{L^3} & -\frac{3EI}{L^2} \\ \frac{3EI}{L^2} & 0 & -\frac{3EI}{L^2} & \frac{3EI}{L} \end{bmatrix} =$$

$$\begin{bmatrix} Q_{f1} \\ Q_{f2} \\ Q_{f3} \\ Q_{f4} \end{bmatrix} =$$

Assembling the Structure Stiffness Matrix.

$${P_f} =$$

$${P} =$$

Find the Joint Displacements.

Compute Member End Displacements, Forces, and Reactions.

