

UC11-N1 Payload Structure

V1.2

Contents

1.Uplink Payload Structure	2
Uplink Packet Example	
2.Downlink Payload Structure	
Downlink Packet Example	
3. Data Types	
3.1 IPSO Standard Definition	
3.2 Ursalink Custom Format	7
3.3 LoRaWAN Parameter	8
4.Decoder Example	

1. Uplink Payload Structure

An uplink message can be sent from end node to gateway. Additionally, the UC11-N1 sends different sensor data in different frames. Therefore, all sensor data must be prefixed with two bytes:

Data Channel: Uniquely identifies each sensor in the UC11-N1 across frames, e.g. "TEMP Sensor" Data Type: Identifies the data type in the frame, e.g. "Power".

Note: The device sends multiple sensor data at a time by using the following payload structure:

1 Byte	1 Byte	N Bytes	1 Byte	1 Byte	M Bytes	1 Byte	
Channel 1	Type 1	Data 1	Channel 2	Type 2	Data 2	Channel 3	

Channel	Description
1	Battery
3	GPIO1
4	GPIO2
5	Analog Input1
6	Analog Input2

Uplink Packet Example

Frame N: Regular AI1 value uplink.

	05 02 c302 c302 c302						
Channel	Туре	Ccy Value	Min Value	Max Value	Avg Value		
05 means Analog Input1	02 means Analog Input	C3 02 => 02 c3 = 707 means 7.07	C3 02 => 02 c3 = 707 means 7.07	C3 02 => 02 c3 = 707 means 7.07	C3 02 => 02 c3 = 707 means 7.07		

Frame N+1: Regular GPIO1 value uplink.

03 00 01					
Channel	Type	Value			
03	00	01			
means	means	means			
GPIO1	Digital	high			
	Input				

Frame N+2: Regular GPIO2 pulse value uplink.

04 c8 78 05					
Channel	Туре	Value			
04 means GPIO2	c8 means Pulse Counter	78 05 => 05 78 => 1400			

Frame N+3: Regular RS485(Modbus Master) channel value uplink.

ff 0e 08 25 00000000						
Channel	Туре	Channel ID	Data Type	Value of this channel.		
ff	Oe means the Data of RS485 slave devices	08 means RS485 (Modbus Master) Channel 2	25 => 00100101 101=>5 means Holding Register (Float) 00100=>4 means Data length = 4	00000000		

Frame N+4: attribute package: SN , hardware version, software version, Al signal type , battery uplink.

Note: attribute package will be sent out when the device is powered on or rejoins the network.

ff 0b ff ff 01 01					
Channel	Type	Value	Channel	Type	Value
	0b = 11			01 = 1	
ff=255	(Device	0xff	ff=255	(Custom	01 = 1
11-255	Restart	reserved.	11-255	Format	(Version 1)
	Notification)			Version)	

		ff 08 61 22 91 36 34 79
Channel	Туре	Value
ff=255	08 = 8	61 22 01 26 24 70
11=255	(Device SN)	61 22 91 36 34 79

		ff 09 01	20 ff 0a 01 10		
Channel	Туре	Value	Channel	Type	Value
ff = 255	09 (Hardware version)	0120 (V1.2)	ff = 255	0a (Software version)	0110 (V1.10)

	ff 14 11 ff 14 20						
		Analog	Analog			Analog	Analog
Channel	Туре	Analog Input	Input Signal	Channel	Туре	Analog Input	Input Signal
		'	Туре			'	Туре
	14 = 20	1	1		14 = 20	2	0
ff = 255	(Al signal	_	(0.10.4)	ff = 255	(Al signal	_	(4-20
	Type)	(AI 1)	(0-10 v)		Type)	(AI 2)	mA)

01 75 5a					
Channel	Туре	Value			
01	75 (Battery Capacity)	5a = 90 means 90%			

Note: Battery packet will be sent every 6 hours (UC11-N1-DC) or 12 hours (UC11-N1).

2. Downlink Payload Structure

A downlink message can be sent from gateway to end node in order to perform some actions on that device.

When the channel range is 1~253, the format is:

1 Byte	2 Bytes	1 Byte1	1 Byte	2 Bytes	1 Byte
Channel 1	Data 1	0xff (reserved)	Channel2	Data2	0xff (reserved)

When the channel range is above 255, the format is:

1 Byte	1 Byte	N Bytes	1 Byte	1 Byte	M Bytess
255	Type 1	Data 1	255	Type 2	Data 2

Downlink Packet Example

Frame N: Set the data reporting interval as 20mins (1200s), and only enable lora channels with index 0,1,2.

ff 03 00 4b ff 05 01 07						
Channel	Туре	Value	Channel	Туре	Value	
ff = 255	03 (set data collecting interval)	b0 04 =>04 b0 = 1200 (second)	ff = 255	05 (set Channel Mask)	01(set channel as with index within 0-15)	

		07=	
		00000	111
		(enable	9
		channe	els
		with	index
		0,1,2)	

3. Data Types

3.1 IPSO Standard Definition

Data Types conform to the IPSO Alliance Smart Objects Guidelines, which identifies each data type with an "Object ID." However, as shown below, a conversion is made to fit the Object ID into a single byte.

DATA_TYPE = IPSO_OBJECT_ID - 3200

IPSO	Hex	Data Size	Data Resolution per Byte
3200	0	1	1
3201	1	1	1
3202	2	8(ccy+min+max+avg)	0.01 signed
3203	3	2	0.01 signed
3301	65	2	1 Lux Unsigned MSB
3302	66	1	1
3303	67	2	0.1 °C Signed MSB
3304	68	1	0.5% Unsigned
3316	74	2	0.01V unsigned
3317	75	1%	1%
3319	77	2	1
3325	7d	2	1
3400	c8	4	1
	3200 3201 3202 3203 3301 3302 3303 3304 3316 3317 3319 3325	3200 0 3201 1 3202 2 3203 3 3301 65 3302 66 3303 67 3304 68 3316 74 3317 75 3319 77 3325 7d	3200 0 1 3201 1 1 3202 2 8(ccy+min+max+avg) 3203 3 2 3301 65 2 3302 66 1 3303 67 2 3304 68 1 3316 74 2 3317 75 1% 3319 77 2 3325 7d 2

3.2 Ursalink Custom Format

Туре	Type ID	Data Size	Data Resolution per Byte
Ursalink Custom Format Version	1 1		0x01
Data Collection Interval	2 2		1s
Data Reporting Interval	3	2	1s
LoRa Channel Mask	5	3	ID (1Byte) + Value (2Byte) ID: 1~6
Debug Level	7	1	Bit 0: info Bit 1: debug Bit 2: warn Bit 3: err
Product SN	8	6	641090824375 => 0x641090824375
Hardware Version	9	2	0110 => 0x01 0x10
Software Version	10	2	0110 => 0x01 0x10
Device Power On Notification	11	1	0xff reserved. Contents reported after rebooting each time: Ursalink Custom Format Version+SN+Hardware Version +Software Version+the battery level
The Data of RS485 Slave Devices	14	mutable	Channel ID of RS485(1 bit) + Data Type (8 bits) + Value (N Bytes) Data Type (0~2 bits): 0: Coil 1: Discrete 2: Input Register (INT16) Input Register (INT32 with upper 16 bits) Input Register (INT32 with lower 16 bits) 3: Holding Register (INT32 with upper 16 bits) Holding Register (INT32 with upper 16 bits) Holding Register (INT32 with lower 16 bits) Holding Register (INT32 with lower 16 bits) 4: Holding Register (INT32) 5: Holding Register (INT32)

			7: Input Register (Float)
			(3~7 Bits): Data Length
Class Type	15	1	0: Class A 2: Class C
Al Signal Type	20	2	Bit0~Bit 3(mode) 0: 4-20 mA

Channel ID of RS485	Description
7	RS485(Modbus Master) Channel 1
8	RS485(Modbus Master) Channel 2
9	RS485(Modbus Master) Channel 3
14	RS485(Modbus Master) Channel 8

3.3 LoRaWAN Parameter

Device EUI	24E1+SN
APP EUI	24E1+24C0002A0001
App Port	0x85
NetID	0x010203
DevAddr	The last 8 digits of SN.
АррКеу	5572404c696e6b4c6f52613230313823
NwkSKey	5572404c696e6b4c6f52613230313823
AppSKey	5572404c696e6b4c6f52613230313823

4.Decoder Example

```
// N1: Payload Decoder
function Decoder(bytes, port) {
     var decoded = {};
     for (i = 0; i < bytes.length;) {
          // BATTERY
          if (bytes[i] == 0x01) {
               decoded.battery = bytes[i + 2];
               i += 3;
               continue;
          }
          // GPIO
          if (bytes[i] == 0x03) {
               decoded.gpio1 = bytes[i + 2] === 0 ? "off" : "on";
               i += 3;
               continue;
          }
          if (bytes[i] == 0x04 \&\& bytes[i + 1] == 0x00) {
               decoded.gpio2 = bytes[i + 2] === 0 ? "off" : "on";
               i += 3;
               continue;
          }
          if (bytes[i] == 0x04 \&\& bytes[i + 1] == 0xc8){
           //Pulse Counter
            decoded.counter = readUInt16LE(bytes.slice(i + 2, i + 4));
            i += 4;
            continue;
          }
          // ADC
          if (bytes[i] == 0x05) {
               decoded.adc1 = {};
               decoded.adc1.cur = readInt16LE(bytes.slice(i + 2, i + 4)) / 100;
               decoded.adc1.min = readInt16LE(bytes.slice(i + 4, i + 6)) / 100;
               decoded.adc1.max = readInt16LE(bytes.slice(i + 6, i + 8)) / 100;
               decoded.adc1.avg = readInt16LE(bytes.slice(i + 8, i + 10)) / 100;
               i += 10;
```



```
continue;
}
if (bytes[i] == 0x06) {
     decoded.adc2 = {};
     decoded.adc2.cur = readInt16LE(bytes.slice(i + 2, i + 4)) / 100;
     decoded.adc2.min = readInt16LE(bytes.slice(i + 4, i + 6)) / 100;
     decoded.adc2.max = readInt16LE(bytes.slice(i + 6, i + 8)) / 100;
     decoded.adc2.avg = readInt16LE(bytes.slice(i + 8, i + 10)) / 100;
     i += 10;
     continue;
}
// MODBUS
if (bytes[i] == 0xFF \&\& bytes[i + 1] == 0x0E) {
     var chnId = bytes[i + 2];
     var packageType = bytes[i + 3];
     var dataType = packageType & 7;
     var dataLength = packageType >> 3;
     var chn = 'chn' + chnId;
     switch (dataType) {
          case 0:
               decoded[chn] = bytes[i + 4]? "on": "off";
               i += 5;
               break;
          case 1:
               decoded[chn] = bytes[i + 4];
               i += 5;
               break;
          case 2:
          case 3:
               decoded[chn] = readUInt16LE(bytes.slice(i + 4, i + 6));
               i += 6;
               break;
          case 4:
          case 6:
               decoded[chn] = readUInt32LE(bytes.slice(i + 4, i + 8));
               i += 8;
               break;
          case 5:
          case 7:
               decoded[chn] = readFloatLE(bytes.slice(i + 4, i + 8));
```



```
i += 8;
                        break;
              }
         }
    return decoded;
}
 * bytes to number
 *********
function readUInt8LE(bytes) {
    return (bytes & 0xFF);
}
function readInt8LE(bytes) {
    var ref = readUInt8LE(bytes);
    return (ref > 0x7F) ? ref - 0x100 : ref;
}
function readUInt16LE(bytes) {
    var value = (bytes[1] << 8) + bytes[0];</pre>
    return (value & 0xFFFF);
}
function readInt16LE(bytes) {
    var ref = readUInt16LE(bytes);
    return (ref > 0x7FFF) ? ref - 0x10000 : ref;
}
function readUInt32LE(bytes) {
    var value = (bytes[3] << 24) + (bytes[2] << 16) + (bytes[1] << 8) + bytes[0];
    return (value & 0xFFFFFFF);
}
function readInt32LE(bytes) {
    var ref = readUInt32LE(bytes);
    return (ref > 0x7FFFFFFF) ? ref - 0x100000000 : ref;
}
function readFloatLE(bytes) {
```



```
// JavaScript bitwise operators yield a 32 bits integer, not a float.
// Assume LSB (least significant byte first).
var bits = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
var sign = (bits >>> 31 === 0) ? 1.0 : -1.0;
var e = bits >>> 23 & 0xff;
var m = (e === 0) ? (bits & 0x7fffff) << 1 : (bits & 0x7fffff) | 0x800000;
var f = sign * m * Math.pow(2, e - 150);
return f;
}</pre>
```

---End---

