Introduction to Options

Liming Feng

Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Readings: Hull Chapters 8, 9, 10

©Liming Feng. Do not distribute without permission of the author

Call options

- Call option: gives the holder the right but not the obligation to buy an asset for price K (strike price) by a future time T (maturity)
- Long call: buy a call; short call: sell/write a call
- Long call **payoff** at $T: (S_T K)^+$; short call payoff: $-(S_T K)^+$

Put options

- Put option: gives the holder the right but not the obligation to sell an asset for price K by a future time T
- Long put **payoff** at $T: (K S_T)^+$; short put payoff: $-(K S_T)^+$

European and American options

- European: can be exercised only at maturity
 - CBOE S&P 500 index options
 - PHLX (www.phlx.com) British Pound options
- American: can be exercised any time before or at maturity
 - CBOE Microsoft stock option
 - American option = European option + right to exercise early
 - American option price ≥ European option price
- Bermudan: can be exercised at any time in a discrete set

• Intrinsic value of an American option at $t \leq T$

call:
$$(S - K)^+$$
, put: $(K - S)^+$

• American option value \geq its intrinsic value at any time $t \leq T$

Time value = option value - intrinsic value

- A call (put) option at time $t \leq T$ is
 - in the money if S > K (S < K)
 - out of the money if $S < K \ (S > K)$
 - at the money (ATM) if S = K (S = K)
- Exercise a European option: if in the money at time T;
 exercise an American option: if in the money & time value = 0

Trading basics

- Underlying assets:
 - stock
 - currency
 - stock index (e.g., S&P 500, DJIA), cash settled
- Maturities: months to years (LEAPS: long-term equity anticipation securities)
- Strikes: close to current asset price initially
- Flex options: flexible strikes/maturities
- Market makers: earn ask (ready to sell) bid (ready to buy)
- Other issues: adjustment for stock splits, commissions, margining, clearing, regulation, taxation, option like contracts

Option value function

- Option price depends on: S_0 , K, T, **volatility** (σ) , r, dividend (yield q or discrete dividends)
- Current stock price: call price higher when asset price higher, put price lower when asset price higher
- Strike price: call price lower when strike price higher, put price higher when strike price higher
- Time to maturity: American option price higher for larger maturity
- Volatility: option price higher for larger volatility

Arbitrage relationships for options

- Relationships must hold for option prices; arbitrage opportunities exist otherwise
- Model independent
- Call price is a decreasing function of strike price K. How do you construct an arbitrage strategy if otherwise: $K_1 < K_2$ but $c_1 < c_2$?
- ullet Put price is an increasing function of strike price K

Notations

0 : current time

T : option maturity

 S_0 : current asset price

K : strike price

 S_T : asset price at maturity

r: continuous compounding risk free interest rate

c/p: European call/put price C/P: American call/put price

D: present value of income during [0, T]

q : continuous yield

European put-call parity

European put-call parity (assets with no income)

$$c + Ke^{-rT} = p + S_0$$

Consider two portfolios: (1). call $+ Ke^{-rT}$ deposited at rate r; (2). put + asset

Same payoff at time $T \Rightarrow$ same value at time 0

• Long forward = long call + short put:

$$S_T - K = (S_T - K)^+ - (K - S_T)^+$$

Value at time 0 of long forward contract $V_0 = c - p$

Recall that

$$V_0 = e^{-rT}(F_0 - K)$$

where F_0 is the **forward price**

$$F_0 = \left\{ egin{array}{ll} S_0 e^{rT} & ext{asset paying no income} \ (S_0 - D) e^{rT} & ext{asset paying known income} \ S_0 e^{(r-q)T} & ext{asset with continuous yield} \end{array}
ight.$$

European put-call parity (general case)

$$c + e^{-rT}K = p + \left\{ egin{array}{ll} S_0 & ext{asset paying no income} \\ S_0 - D & ext{asset paying known income} \\ S_0 e^{-qT} & ext{asset with continuous yield} \end{array}
ight.$$

• Example consider a call and a put (European) on a non-dividend-paying stock with the same strike K=30 and maturity T=1/4. $S_0=31, r=10\%$. The call price is c=3. The put price is p=2.25. Is there arbitrage opportunities?

Put call parity not holding:

$$c + Ke^{-rT} = 3 + 30e^{-0.1/4} = 32.26 : buy call, sell put, (short) sell stock, deposit 30.25$$

At T=1/4, get $30.25e^{0.1/4}=31.02$, **if** $S_T>30$, exercise call and buy stock for K=30, earn 1.02

If $S_{\mathcal{T}} \leq 30$, put exercised and obliged to buy stock for $\mathcal{K}=30$, earn 1.02

Option price bounds - calls

European call option price bounds (asset with continuous yield q)

$$(S_0e^{-qT}-Ke^{-rT})^+ \leq c \leq S_0e^{-qT}$$

• **Upper bound**: European call option payoff $(S_T - K)^+ \leq S_T$:

$$c \leq S_0 e^{-qT}$$

Construct an arbitrage strategy otherwise

• Low bound: from put-call parity

$$c = p + S_0 e^{-qT} - K e^{-rT}$$
$$\geq S_0 e^{-qT} - K e^{-rT}$$

call price is non-negative

$$c \ge 0$$

Therefore, $c \ge (S_0 e^{-qT} - K e^{-rT})^+$

• Example consider a European call on a non-dividend-paying stock. $S_0 = 20$, K = 18, r = 10%, T = 1. Suppose the call price is c = 3. Construct an arbitrage strategy.

Lower bound
$$S_0 - Ke^{-rT} = 20 - 18e^{-0.1} = 3.71$$
: buy call, (short) sell stock, deposit $S_0 - c = 17$

At
$$T=1$$
: get $17e^{0.1}=18.79$; **if** $S_T>18$, exercise call and buy stock at $K=18$, earn $18.79-18=0.79$

If
$$S_T \leq 18$$
, abandon call and buy stock at S_T , earn $18.79 - S_T \geq 0.79$

Option price bounds - puts

European put option price bounds

$$(Ke^{-rT} - S_0e^{-qT})^+ \le p \le Ke^{-rT}$$

• **Upper bound**: European put option payoff is $(K - S_T)^+ < K$. So

$$p \le Ke^{-rT}$$

Construct an arbitrage strategy otherwise

• Lower bound: from put-call parity,

$$p = c + Ke^{-rT} - S_0e^{-qT}$$
$$\geq Ke^{-rT} - S_0e^{-qT}$$

Therefore,
$$p \ge (Ke^{-rT} - S_0e^{-qT})^+$$
 since $p \ge 0$

• Otherwise, one can construct an arbitrage strategy

• Example consider a European put on a non-dividend-paying stock. $S_0 = 37$, K = 40, r = 5%, T = 0.5. The put price is p = 1. Construct an arbitrage strategy.

Lower bound:
$$Ke^{-rT} - S_0 = 40e^{-0.05/2} - 37 = 2.01$$
: buy put, buy stock, borrow $p + S_0 = 38$

At T=0.5, need to repay $38e^{0.05/2}=38.96$, **if** $S_T<40$, exercise put and sell stock for 40, earn 1.04

If $S_T \geq$ 40, abandon put and sell stock for S_T , earn $S_T - 38.96 \geq 1.04$

Bounds and parity for American options

- A lower bound for a European call/put is also a lower bound for an American call/put
- American option price cannot be lower than its intrinsic value

$$P \ge (K - S_0)^+, \quad C \ge (S_0 - K)^+$$

- Upper bounds: $C \leq S_0$, $P \leq K$
- "Parity"

$$S_0e^{-qT}-K\leq C-P\leq S_0-Ke^{-rT}$$

American calls on assets with no income

- Early exercise never optimal: suppose S > K
- Exercise the call to buy the share and hold the share:

Better to exercise later to delay the cash payment K

• Exercise the call to buy the share, sell the share immediately, receive S - K:

Better to sell the call

since

$$C \ge (S - Ke^{-rT})^+ > S - K$$

- Call on assets with no income: Early exercise is not optimal;
 American call price = European call price
- Positive time value at any time before maturity

asset with no income

American calls on assets with income

 May be optimal to early exercise an American call on an asset paying income

asset with income

 Find A: call should be exercised when S > A; early exercise boundary: collection of A's for varying maturities

American puts

- Early exercise may be optimal for American puts
- When the underlying asset price is close to zero, early exercise is optimal
 - Exercise the put and receive K immediately
 - Exercise later to receive at most K
- Find A: put should be exercised when S < A; find the early exercise boundary

Option trading strategies

- Trading strategies involving an option and the underlying, multiple calls or puts (spreads), combinations of calls and puts (combinations)
- Different strategies reflecting different market views (bull spreads, bear spreads, butterfly spreads, etc.)
- Understand the risks

Covered calls

• Covered call: sell call, buy asset (with no income), cost S-c>0, payoff $S_T-(S_T-K)^+$

Bull spreads

• **Bull spreads:** buy call with strike K_1 , sell call with strike $K_2 > K_1$, cost $c_1 - c_2 > 0$

- ullet Give up upside potential profit by selling a call with strike K_2
- Appropriate if expect a moderate increase in the asset price
- Bull spreads **using puts** (long put with strike K_1 , short put with strike K_2)

Bear spreads

• **Bear spreads:** buy put with strike K_2 , sell put with strike K_1 cost $p_2 - p_1 > 0$

- ullet Give up some potential profit by selling a put with strike K_1
- Appropriate if expect a moderate decrease in the asset price
- Bear spreads using calls: long call with strike K_2 , short call with strike K_1

Box spreads

Box spreads: bull (call) spread + bear (put) spread

- Cost $c_1 c_2 + p_2 p_1 > 0$, payoff: $K_2 K_1$
- No arbitrage $\Rightarrow c_1 c_2 + p_2 p_1 = (K_2 K_1)e^{-r(T-t)}$ (European options used!)

Butterfly spreads

• Butterfly spreads: buy calls with strikes K_1 and K_3 , sell two calls with strike $K_2 \in (K_1, K_3)$, cost $c_1 + c_3 - 2c_2$

- Appropriate if expect no significant change in the asset price
- Butterfly spreads using puts

• Example three European calls on a stock are available with strikes $K_1 = 55$, $K_2 = 60$, $K_3 = 65$. Call prices are $c_1 = 10$, $c_2 = 7$, $c_3 = 5$. Analyze the P&L of a butterfly spread constructed using the calls.

Long calls with strikes 55 and 65, short two calls with strike 60, initial cost $1\,$

At maturity, **if** $S_T \le 55$, all calls expire worthless, profit of -1 **If** $55 < S_T \le 60$, profit of $S_T - 55 - 1 = S_T - 56$ **If** $60 < S_T \le 65$, profit of $S_T - 55 - 2(S_T - 60) - 1 = 64 - S_T$ **If** $65 < S_T$, profit of $S_T - 55 - 2(S_T - 60) + S_T - 65 - 1 = -1$

Calendar spreads

• Calendar spreads: sell call (maturity T), buy call (maturity $T_1 > T$), cost $c_1 - c$, payoff at time T

- Similar as butterfly spreads, using 2 calls only
- Calendar spreads using puts
- Diagonal spreads: different strikes, different maturities

Straddles

• **Straddle:** buy call & put with strike K, cost c + p > 0

- Appropriate if expect a large move in the asset price (don't know the direction)
- Short straddles: expect no large moves, Highly risky!

Barings Bank

- Oldest investment bank in UK
- One of the two companies who facilitated the **Louisiana** Purchase in 1803 (15m = 3m down payment + bonds)
- Nick Leeson of Barings Bank: short straddles on Nikkei 225, betting the Japanese stock market would not move significantly
- Kobe earthquake on Jan 17 1995
- Long futures to manipulate the market; caused a loss of \$1.4b; Barings bankrupted

Strangles

• **Strangle:** buy put with strike K_1 and call with strike $K_2 > K_1$, cost c + p > 0

• Less expensive than straddle

Strips

• **Strip:** buy two puts & one call with strike K, cost c + 2p > 0

Appropriate when expecting a large move, more likely a drop

Straps

• **Strap:** buy two calls & one put with strike K, cost 2c + p > 0

Appropriate when expecting a large move, more likely a rise