MF Benchmark Functions

1, borehole:

$$f(\mathbf{x}) = \frac{2\pi T_u (H_u - H_l)}{\ln(r/r_w) \left(1 + \frac{2LT_u}{\ln(r/r_w)r_w^2 K_w} + \frac{T_u}{T_l}\right)}$$

$$f_L(\mathbf{x}) = \frac{5T_u(H_u - H_l)}{\ln(r/r_w) \left(1.5 + \frac{2LT_u}{\ln(r/r_w)r_w^2K_w} + \frac{T_u}{T_l}\right)}$$

2、branin:

$$high: f(\mathbf{x}) = (x_2 - bx_1^2 + cx_1 - r)^2 + s(1 - t)\cos(x_1) + s$$

$$mid: f_m(\mathbf{x}) = \sqrt{f_{high}(\mathbf{x} - 2)} + \frac{2(x_1 - 0.5) - 3(3x_2 - 1) - 1}{100}$$

$$Low: f_m(1.2(\mathbf{x} + 2)) - \frac{3x_2 + 1}{100}$$

3, currin:

$$high: f_{high}(\mathbf{x}) = \left[1 - \exp\left(-rac{1}{2x_2}
ight)
ight] rac{2300x_1^3 + 1900x_1^2 + 2092x_1 + 60}{100x_1^3 + 500x_1^2 + 4x_1 + 20}$$

 $Low: f_{low}(\mathbf{x}) = rac{1}{4}[f_{high}(x_1 + 0.05, x_2 + 0.05) + f_{high}(x_1 + 0.05, \max(0, x_2 - 0.05)) + f_{high}(x_1 - 0.05, x_2 + 0.05) + f_{high}(x_1 - 0.05, \max(0, x_2 - 0.05))]$

4、hartmann:

$$f(x,\alpha) = -\sum_{i=1}^{4} \alpha_i \exp\left(-\sum_{j=1}^{3} A_{i,j} (x_j - P_{i,j})^2\right)$$

$$\mathbf{A} = \begin{bmatrix} 3.0 & 10 & 30 \\ 0.1 & 10 & 35 \\ 3.0 & 10 & 30 \\ 0.1 & 10 & 35 \end{bmatrix}$$

$$\mathbf{P} = 10^{-4} \begin{bmatrix} 3689 & 1170 & 2673 \\ 4699 & 4387 & 7470 \\ 1091 & 8732 & 5547 \\ 381 & 5743 & 8828 \end{bmatrix}$$

$$high: \alpha = (1.0, 1.2, 3.0, 3.2)^T$$

$$middle: \alpha = (1.01, 1.19, 2.9, 3.3)^T$$

$$low: \alpha = (1.02, 1.18, 2.8, 3.4)^T$$

5. park:

$$high: f_{high}(\mathbf{x}) = rac{x_1}{2} \left[\sqrt{1 + \left(x_2 + x_3^2\right) rac{x_4}{x_1^2}} - 1
ight] + \left(x_1 + 3x_4\right) \exp\left[1 + \sin x_3\right]$$
 $Low: f_{low}(\mathbf{x}) = \left[1 + rac{\sin x_1}{10}\right] f_{high}(\mathbf{x}) - 2x_1 + x_2^2 + x_3^2 + 0.5$

6, forrester_my

from highest fidelity to 4 lowest fidelity level:

$$f_1(x) = (6x - 2)^2 \sin(12x - 4)$$

$$f_2(x) = (5.5x - 2.5)^2 \sin(12x - 4)$$

$$f_3(x) = 0.75f_1(x) + 5(x - 0.5) - 2$$

$$f_4(x) = 0.5f_1(x) + 10(x - 0.5) - 5$$
× [0,1]^D

from:

Forrester, A.I.; Sóbester, A.; Keane, A.J. Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 3251–3269. [CrossRef]

两个版本?:

$$y^L(x) = \begin{cases} 0.5(6x-2)^2 \sin(12x-4) \\ +10(x-0.5)-5, & 0.5 < x \le 1, \\ 0.5(6x-2)^2 \sin(12x-4) \\ +10(x-0.5)-2, & 0.5 < x \le 1; \end{cases} \quad y^H(x) = \begin{cases} 2y^L(x)-20x+20, \\ 0 \le x \le 0.5, \\ 4+2y^L(x)-20x+20, \\ 0.5 \le x \le 1. \end{cases} \quad x \in [0,1]$$

(和tl1重复了 ---

7. Non linear Sin

$$high: f_{high}(x) = (x - \sqrt{2})f_{low}(x)^2$$

 $low: f_{low}(x) = \sin(8\pi x)$

8~17: tl2~tl10

2	HF LF	$y_h = \sin(2\pi(x - 0.1)) + x^2$ $y_1 = \sin(2\pi(x - 0.1))$	1	$[0,1]^{\mathrm{D}}$
3	HF LF	$y_h = x\sin(x)/10$ $y_1 = x\sin(x)/10 + x/10$	1	$[0,10]^{\mathrm{D}}$
4	HF LF	$y_h = \cos(3.5\pi x)\exp(-1.4x)$ $y_1 = \cos(3.5\pi x)\exp(-1.4x) + 0.75x^2$	1	$[0,1]^{D}$
5	HF	$y_h = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$	2	$[-2,2]^{D}$
	LF	$y_1 = 2x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + 0.5x_1x_2 - 4x_2^2 + 2x_2^4$		
6	HF	$y_h = \frac{1}{6} [(30 + 5x_1 \sin(5x_1))(4 + \exp(-5x_2)) - 100]$	2	[0,1] ^D
	LF	$y_l = \frac{1}{6} \left[(30 + 5x_1 \sin(5x_1)) \left(4 + \frac{2}{5} \exp(-5x_2) \right) - 100 \right]$		D
7	HF	$y_h = \sum_{i=1}^{2} x_i^4 - 16x_i^2 + 5x_i$	2	$[-3,4]^{D}$
	LF	$y_l = \sum_{i=1}^2 x_i^4 - 16x_i^2$		
8	HF LF	$y_h = [1 - 2x_1 + 0.05\sin(4\pi x_2 - x_1)]^2 + [x_2 - 0.5\sin(2\pi x_1)]^2$ $y_1 = [1 - 2x_1 + 0.05\sin(4\pi x_2 - x_1)]^2 + 4[x_2 - 0.5\sin(2\pi x_1)]^2$	2	$[0,1]^{D}$
9	HF LF	$y_h = (x_1 - 1)^2 + (x_1 - x_2)^2 + x_2x_3 + 0.5$ $y_l = 0.2y_h - 0.5x_1 - 0.2x_1x_2 - 0.1$	3	$[0,1]^{\mathrm{D}}$
10	HF	$y_h = \sum_{i=1}^8 x_i^4 - 16x_i^2 + 5x_i$	8	[-3,3] ^D
	LF	$y_l = \sum_{i=1}^8 0.3x_i^4 - 16x_i^2 + 5x_i$		

Note: D stands for the dimension of the functions, and S is the design space.

18~25: test3~test9

Test-3 (<i>cf.</i> [32])	$y^L(x) = e^{1.4x} \cos(3.5\pi x)$	$y^H(x) = e^x \cos(x) + \frac{1}{x^2}$	$x \in [0, 1]$
Test-4 (<i>cf.</i> [33])	$y^L(x) = \sin\left(\frac{2\pi x}{10}\right) + 0.2\sin\left(\frac{2\pi x}{2.5}\right)$	$y^H(x) = \sin\left(\frac{2\pi x}{2.5}\right) + \cos\left(\frac{2\pi x}{2.5}\right)$	$x \in [0, 10]$
Test-5 (<i>cf.</i> [34])	$y^{L}(x_1, x_2) = y^{H}(0.7x_1, 0.7x_2) + x_1x_2 - 65$	$y^{H}(x_{1}, x_{2}) = 4x_{1}^{2} - 2.1x_{1}^{4} + \frac{x_{1}^{6}}{3} - 4x_{2}^{2} + 4x_{2}^{4} + x_{1}x_{2}$	$(x_1, x_2) \in [-2, 2]^2$
Test-6 (<i>cf.</i> [35])	$y^L(\mathbf{x}) = 100e^{\sin(x_1)} + 5x_2x_3 + x_4 + e^{x_5x_6}$	$y^H(\mathbf{x}) = e^{\sin[(0.9(x_1+0.48))^{10}]} + x_2x_3 + x_4$	$\mathbf{x} \in [0,1]^6$
Test-7 (cf. [36])	$y^{L}(\mathbf{x}) = \sum_{i=5}^{8} x_{i} \cos \left(\sum_{j=1}^{4} x_{j}\right) + \sum_{i=5}^{8} x_{i} \sin \left(\sum_{j=1}^{4} x_{j}\right)$	$y^{H}(\mathbf{x}) = \left[\left(\sum_{i=5}^{8} x_i \cdot \cos\left(\sum_{j=1}^{4} x_j\right) \right)^2 + \left(\sum_{i=5}^{8} x_i \cdot \sin\left(\sum_{j=1}^{4} x_j\right) \right)^2 \right]^{\frac{1}{2}}$	(x_1, \cdots, x_8) $\in [0, 2\pi]^4 \times [0, 1]^4$
Test-8 (<i>cf.</i> [20])	$y^H(\mathbf{x}) = (x_1)^2 + \sum_{i=2}^{20} (2x_i^2 - x_{i-1})^2$	$y^{L}(\mathbf{x}) = 0.8y^{H}(\mathbf{x}) - \sum_{i=1}^{19} 0.4x_{i}x_{i+1} - 50$	$\mathbf{x} \in [-3, 3]^{20}$
Test-9 (cf. [37])	$y^{L}(\mathbf{x}) = (y^{H}(\mathbf{x}))^{3} + (y^{H}(\mathbf{x}))^{2} + y^{H}(\mathbf{x})$	$y^{H}(\mathbf{x}) = (x_1 - 1)^2 + (x_{30} - 1)^2 + 30 \sum_{i=1}^{29} (30 - i)(x_i^2 - x_{i+1})^2$	$\mathbf{x} \in [-3, 2]^{30}$

26~30:

Test		Formulation	Ref.	Domain	D
	$f_1(x) =$	$\sin(30(x-0.9)^4)\cos(2(x-0.9)) + (x-0.9)/2 + \eta_1\lambda_1(x)$	[19]		
P_1	$f_2(x) =$	$(f_1(x) - 1 + x)/(1 + 0.25x) + \eta_2 \lambda_1(x)$	[19]	$x \in [0, 1]$	1
	$f_3(x) =$	$\sin(20(x-0.87)^4)\cos(2(x-0.87)) + (x-0.87)/2$		$x \in [0, 1]$	1
		$-(2.5 - (0.7x - 0.14)^2) + 2x + \eta_3 \lambda_1(x)$			
	$f_1(x) =$	$\sin(30(x-0.9)^4)\cos(2(x-0.9)) + (x-0.9)/2 + \eta_1\lambda_2(x)$	[19]		
P_2	$f_2(x) =$	$(f_1(x) - 1 + x)/(1 + 0.25x) + \eta_2 \lambda_2(x)$	[19]	$x \in [0, 1]$	1
1 2	$f_3(x) =$	$\sin(20(x-0.87)^4)\cos(2(x-0.87)) + (x-0.87)/2$	_	x ∈ [0, 1]	1
		$-(2.5 - (0.7x - 0.14)^2) + 2x + \eta_3 \lambda_2(x)$			
	$f_1(\mathbf{x}) =$	$\sum_{j=1}^{\mathbf{D}-1} \left[100(x_{j+1} - x_j^2)^2 + (1 - x_j)^2 \right] + \eta_1 \lambda_1(x_1)$	[9]		
P_3	$f_2(\mathbf{x}) =$	$\sum_{j=1}^{\mathbf{D}-1} \left[50(x_{j+1} - x_j^2)^2 + (-2 - x_j)^2 \right] - \sum_{j=1}^{\mathbf{D}} 0.5x_j + \eta_2 \lambda_1(x_1)$	_	$x \in [-2, 2]$	2
	$f_3(\mathbf{x}) =$	$(f_1(\mathbf{x}) - 4 - \sum_{j=1}^{\mathbf{D}} 0.5x_j)/(10 + \sum_{j=1}^{\mathbf{D}} 0.25x_j) + \eta_3\lambda_1(x_j)$	[9]		
	$f_1(\mathbf{x}) =$	$\sum_{j=1}^{\mathbf{D}} \frac{x_j^2}{25} - \prod_{j=1}^{\mathbf{D}} \cos \left(\frac{x_j}{\sqrt{j}} \right) + 1 + \eta_1 \lambda_1(x_1)$	[21]		
P_4		$-\prod_{j=1}^{\mathbf{D}}\cos\left(\frac{x_j}{\sqrt{j}}\right) + 1 + \eta_2\lambda_1(x_1)$	_	$\mathbf{x} \in [-6, 5]$	2
	$f_3(\mathbf{x}) =$	$\sum_{j=1}^{\mathbf{D}} \frac{x_j^2}{20} - \prod_{j=1}^{\mathbf{D}} \cos \left(\frac{x_j}{\sqrt{j+1}} \right) - 1 + \eta_3 \lambda_1(x_1)$	-		
	$f_H(\mathbf{z}) =$	$\sum_{j=1}^{\mathbf{D}} (z_j^2 + 1 - \cos(10\pi z_j))$	[20]		
P_5	31()	$f_H(\mathbf{z}) + e_r(\mathbf{z}, \phi_i) + \eta_i \lambda_3(x_1), \qquad i = 1, \dots, N$	[20]		
	$e_r(\mathbf{z}, \phi_i) =$	$\sum_{j=1}^{\mathbf{D}} a(\phi_i) \cos^2 \omega(\phi_i) z_j + b(\phi_i) + \pi, i = 1, \dots, N$	[20]	$\mathbf{x} \in [-0.1, 0.2]$	2
	with	$a(\phi_i) = \Theta(\phi_i), \omega(\phi_i) = 10\pi\Theta(\phi_i), b(\phi_i) = 0.5\pi\Theta(\phi_i)$	[20]		
	and	$\Theta(\phi_i) = 1 - 0.0001\phi_i$	[20]		
	with	$\phi = \{10000, 5000, 2500\}$	-		

from: R. Pellegrini et al. Assessing the Performance of an Adaptive Multi-Fidelity Gaussian Process with Noisy Training Data: A Statistical Analysis

28, P3?:

highest to lowest:

$$f_1(\mathbf{x}) = \sum_{i=1}^{D-1} 100 \left(x_{i+1} - x_i^2 \right)^2 + (1 - x_i)^2$$

$$f_2(\mathbf{x}) = \sum_{i=1}^{D-1} 50 \left(x_{i+1} - x_i^2 \right)^2 + (-2 - x_i)^2 - \sum_{i=1}^{D} 0.5 x_i$$

$$f_3(\mathbf{x}) = \frac{f_1(\mathbf{x}) - 4 - \sum_{i=1}^{D} 0.5 x_i}{10 + \sum_{i=1}^{D} 0.25 x_i}$$

x:
$$[-2,2]^D$$

D can be 2\5\10

from: Multi-Fidelity Sparse Polynomial Chaos and Kriging SurrogateModels Applied to Analytical Benchmark Problems

31, ?not sure:

$$f_{\rm LF}(x) = \sin(8\pi x),$$

 $f_{\rm HF}(x) = (x - \sqrt{2}) f_{\rm LF}^2(x).$

$$\Omega = [0, 1].$$

from: Multi-fifidelity regression using artifificial neural networks: efficient approximation of parameter-dependent output quantities

32、Colville function (和P2很像)

$$y_{h} = 100(x_{1}^{2} - x_{2})^{2} + (x_{1} - 1)^{2} + (x_{3} - 1)^{2} + 90(x_{3}^{2} - x_{4})$$

$$+ 10.1((x_{2} - 1)^{2} + (x_{4} - 1)^{2}) + 19.8(x_{2} - 1)(x_{4} - 1)$$

$$y_{l} = y_{h}(A^{2}(x_{1}, x_{2}, x_{3}, x_{4})) - (A + 0.5)(5x_{1}^{2} + 4x_{2}^{2} + 3x_{3}^{2} + x_{4}^{2})$$

$$x_{i} \in [-1, 1]$$

$$A \le 0.68$$

$$A \ge 0.68$$

from: A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity modelse

33~44 、maolin1~maolin20:

No	LF/HF	Test functions	D	S	r^2
1	HF	$y_H = \frac{\sin(10\pi x)}{2x} + (x-1)^4$	1	$[0,1]^{D}$	0.733
	LF	$y_L = \frac{\sin(10\pi x)}{x} + 2(x-1)^4$			
5	HF	$y_H = \left(x_2 - \frac{5.1x_1^2}{4\pi^2} + \frac{5.1x_1}{\pi} - 6\right)^2 + 10(1 - 0.125\pi)\cos(x_1) + 10$	2	$[0, 5]^{D}$	0.771
	LF	$y_L = (1 - 0.125\pi)\cos(x_1)$		_	
6	HF LF	$y_H = 101x_1^2 + 101(x_1^2 + x_1^2)^2$ $y_L = x_1^2 + 100(x_1^2 + x_1^2)^4$	2	$[-1, 1]^{D}$	0.771
7	HF	$y_L = x_1^2 + 100(x_1^2 + x_1^2)$ $y_H = [1 - 0.2x_2 + 0.05 \sin(4\pi x_2 - x_1)]^2 + [x_2 - 0.5 \sin(2\pi x_1)]^2$	2	r 5 101D	0.706
/	LF	$y_H = [1 - 0.2x_2 + 0.05 \sin(4\pi x_2 - x_1)] + [x_2 - 0.5 \sin(2\pi x_1)]$ $y_L = [1 - 0.2x_2 + 0.05 \sin(4\pi x_2 - x_1)]^2 + 4[x_2 - 0.5 \sin(2\pi x_1)]^2$	2	$[-5, 10]^{D}$	0.706
8	HF	$y_H = (1.5 - x_1 + x_1 x_2)^2 + (2.25 - x_1 + x_1 x_2^2)^2 + (2.625 - x_1 + x_1 x_2^3)^2$	2	$[0, 1]^{D}$	0.445
	LF	$y_L = (1.5 - x_1 + x_1 x_2)^2 + x_1 + x_2$			
10	HF	$y_H = \left[1 - \exp\left(-\frac{1}{2v_2}\right)\right] \frac{230x_1^3 + 1900x_1^2 + 2092x_2 + 60}{100x_1^3 + 500x_1^2 + 4x_2 + 20}$	2	$[0,0.5]^{\mathrm{D}}$	0.752
	LF	$y_L = -\frac{2}{5} \left[y_H(x_1 + 0.05, x_2 + 0.05) \right] + \frac{1}{4} \begin{bmatrix} y_H(x_1 + 0.05, \max(0, x_2 - 0.05)) \\ + y_H(x_1 - 0.05, x_2 + 0.05) + y_H(x_1 - 0.05, \max(0, x_2 - 0.05)) \end{bmatrix}$			
12	HF	$y_H = x_1 \exp(-x_1^2 - x_2^2)$	2	$[-2, 2]^{D}$	0.828
	LF	$y_L = x_1 \exp\left(-x_1^2 - x_2^2\right) + \frac{x_1}{10}$			
13	HF LF	$y_H = \exp(x_1 + x_2)\cos(x_1 x_2)$	2	$[-1, 1]^{D}$	0.927
14	HF	$y_L = \exp(x_1 + x_2)\cos(x_1x_2) + \cos(x_1^2 + x_2^2)$	2	[-1, 1] ^D	0.927
14	пг	$y_H = \sum_{i=1}^3 \alpha_i \exp\left(-\sum_{j=1}^3 A_{ij} \left(x_j - p_{ij}\right)^2\right)$	2	[-1, 1]	0.927
	LF	$y_L = \sum_{i=1}^{3} \exp\left(-\sum_{j=1}^{3} A_{ij} (x_j - p_{ij})^2\right)$			
15	HF	$y_H = 100 \left(\exp\left(-\frac{2}{x^{1.75}}\right) + \exp\left(-\frac{2}{x^{1.75}}\right) + \exp\left(-\frac{2}{x^{1.75}}\right) \right)$	3	$[0, 1]^{D}$	0.865
	LF	$y_L = 100 \left(\exp\left(-\frac{2}{\sqrt{1.75}}\right) + \exp\left(-\frac{2}{\sqrt{1.75}}\right) + 0.2 \exp\left(-\frac{2}{\sqrt{1.75}}\right) \right)$			
19	HF	$y_{H} = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_{i}^{2})^{2} + (x_{i}^{-1})^{2} \right]$	6	$[-5, 10]^{D}$	0.761
	LF	$y_{L} = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_{i})^{2} + 4(x_{i} - 1)^{4} \right]$			
20	HF		8	[0, 1] ^D	0.731
	LF	$y_H = 4(x_1 - 2 + 8x_2 - 8x_2^2)^2 + (3 - 4x_2)^2 + 16\sqrt{x_3 + 1}(2x_3 - 1)^2 \sum_{i=4}^{8} i \ln(1 + \sum_{j=3}^{i} x_j)$	-	[~, *]	
	LI	$y_H = 4(x_1 - 2 + 8x_2 - 8x_2^2)^2 + (3 - 4x_2)^2 + 16\sqrt{x_3 + 1}(2x_3 - 1)^2 \sum_{i=4}^{8} \ln\left(1 + \sum_{j=3}^{i} x_j\right)$			

from: Maolin Shi1 & Liye Lv1 & Wei Sun1 & Xueguan Song1. A multi-fidelity surrogate model based on support vector regression

45、 Toal:

HF function:

$$y_h = \sum_{i=1}^{10} (x_i - 1)^2 - \sum_{i=2}^{10} x_i x_{i-1}$$

LF function:

$$y_l = \sum_{i=1}^{10} (x_i - A)^2 - (A - 0.65) \sum_{i=2}^{10} i x_i x_{i-1}$$

where $x_i \in [-100,100]$, i = 1,2,...,10. The parameter A varies from 0 to 1.

from: Toal DJ (2015) Some considerations regarding the use of multi-fdelity Kriging in the construction of surrogate models. Struct Multidisc Optim 51(6):1223–1245

46~49:

No.	HF/LF	Test functions	D	S
6	HF	$y_h = \left[x_2 - 1.275 \left(\frac{x_1}{\pi}\right)^2 + 5\frac{x_1}{\pi} - 6\right]^2 + 10\left(1 - \frac{1}{8\pi}\right)\cos(x_1)$	2	$x_1 \in [-5,10]$ $x_2 \in [0,15]$
	LF	$y_l = \frac{1}{2} \left[x_2 - 1.275 \left(\frac{x_1}{\pi} \right)^2 + 5 \frac{x_1}{\pi} - 6 \right]^2 + 10(1 - \frac{1}{8\pi}) \cos(x_1)$		
11	HF	$y_h = \sum_{i=1}^{3} 0.3 \sin\left(\frac{16}{15}x_i - 1\right) + \left[\sin\left(\frac{16}{15}x_i - 1\right)\right]^2$	3	$[-1,1]^{D}$
	LF	$y_l = \sum_{i=1}^{3} 0.3 \sin\left(\frac{16}{15}x_i - 1\right) + 0.2 \left[\sin\left(\frac{16}{15}x_i - 1\right)\right]^2$		
15	HF	$y_h = \sum_{i=1}^{2} \left[\left(x_{4i-3} + 10x_{4i-2} \right)^2 + 5\left(x_{4i-1} - x_{4i} \right)^2 + \left(x_{4i-2} - 2x_{4i-1} \right)^4 + 10\left(x_{4i-3} - x_{4i} \right)^4 \right]$	8	$[0,1]^{D}$
	LF	$y_{l} = \sum_{i=1}^{2} \left[\left(x_{4i-3} + 10x_{4i-2} \right)^{2} + 125 \left(x_{4i-1} - x_{4i} \right)^{2} + \left(x_{4i-2} - 2x_{4i-1} \right)^{4} + 10 \left(x_{4i-3} - x_{4i} \right)^{4} \right]$		
16	HF	$y_h = \sum_{i=1}^{10} \exp(x_i) \left[A(i) + x_i - \ln\left(\sum_{k=1}^{10} \exp(x_k)\right) \right]$	10	$[-2,3]^{D}$
		A = [-6.089, -17.164, -34.054, -5.914, -24.721, -14.986, -24.100, -10.708, -26.662, -22.662, -22.179]		
	LF	$y_l = \sum_{i=1}^{10} \exp(x_i) \left[B(i) + x_i - \ln(\sum_{k=1}^{10} \exp(x_k)) \right]$		
		B = [-10, -10, -20, -10, -20, -20, -20, -10, -20, -20]		

和maolin13撞车:

10 HF
$$y_h = \cos(x_1 + x_2) \exp(x_1 x_2)$$
 2 $[0,1]^D$
LF $y_l = \cos[0.6(x_1 + x_2)] \exp(0.6x_1 x_2)$

和maolin19撞车:

13 HF
$$y_h = \sum_{i=1}^{5} \left[100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2 \right]$$

$$LF \qquad y_l = \sum_{i=1}^{5} \left[100(x_i^2 - 4x_{i+1})^2 + (x_i - 1)^2 \right]$$

All from: Shuo Wang, et al. A multi-fdelity surrogate model based on moving least squares: fusing diferent fdelity data for engineering design.