

Exercise 4C

Question 7: Given: AB || CD

To Prove: ∠BAE - ∠DCE = ∠AEC

Construction : Through E draw EF || AB Proof : Since EF || AB, AE is a transversal.

So, $\angle BAE + \angle AEF = 180^{\circ}$ (i)

[sum of consecutive interior angles is 180°]

As EF || AB and AB || CD [Given] So, EF || CD and EC is a transversal.

So, ∠FEC + ∠DCE = 180°(ii)

[sum of consecutive interior angles is 180°]

From (i) and (ii) we get,

 \angle BAE + \angle AEF = \angle FEC + \angle DCE

 $\Rightarrow \angle BAE - \angle DCE = \angle FEC - \angle AEF = \angle AEC [Proved]$

Question 8:

Since AB \parallel CD and BC is a transversal.

So, $\angle BCD = \angle ABC = x^{O}$ [Alternate angles]

As BC \parallel ED and CD is a transversal.

 $\angle BCD + \angle EDC = 180^{\circ}$

 \Rightarrow \angle BCD + 75 $^{\circ}$ =180 $^{\circ}$

 \Rightarrow \angle BCD = 180 $^{\circ}$ - 75 $^{\circ}$ = 105 $^{\circ}$

 $\angle ABC = 105^{\circ}$ [since $\angle BCD = \angle ABC$]

 $\therefore x^{\circ} = \angle ABC = 105^{\circ}$

Hence, x = 105.

********* END *******