3.1.6. 4 kByte EPROM *U2732 C*

TGL 43 809

Vergleichstypen

2732 Intel

(2732 A mit 21 V Programmierspannung)

Übersicht

organisiert mit 4096 Worten zu 8 bit, voll decodiert

- Zugriffszeit *U 2732 C 35* 350 ns *U 2732 C 45* 450 ns *U 2732 C 55* 550 ns
- einfache Programmierung, byteweise möglich
- geringe Leistungsaufnahme
- TTL-kompatible Ein- und Ausgänge
- Arbeitsweise voll statisch
- 5 V Stromversorgung

Bild 1 Übersichtsschaltplan

Tabelle 1 Grenzwerte

Parameter ·	Symbol	Werte	Einheit
Betriebstemperatur	$\vartheta_{\rm a}$	0 bis 70	°C
Lagerungstemperatur	$\vartheta_{ m stg}$	-55 bis 125	°C
Ein-/Ausgangsspannun-	U_1 , U_0	-0.5 bis 6.5	V
gen Programmierspannung	$U_{\mathtt{PP}}$	-0.5 bis 26	V
Verlustleistung	P_{tot}	max. 1,5	W

3. Speicher

Tabelle 2 Betriebsarten ($U_{CC} = 5 \text{ V}; U_{SS} = 0 \text{ V}$)

Modus (Anschluß)	CE (18)	OE/U _{PP} (20)	D0 bis D7 (9-11, 13-17)
lesen nicht ausgewählt ruhend programmieren programmieren gesperrt	$egin{array}{c} U_{ m IL} \ U_{ m IL} \ U_{ m IH} \ U_{ m IL} \ U_{ m IH} \end{array}$	$egin{array}{c} U_{ m IL} \ U_{ m IL} \ { m x} \ U_{ m PR} \ U_{ m PR} \end{array}$	Datenausgabe hochohmig hochohmig Dateneingabe hochohmig

Tabelle 3 Kapazitäten $(\theta_a = 25 \, ^{\circ}\text{C}; f = 1 \, \text{MHz})$

Parameter	Symbol	max.	Ein- heit
Eingänge (außer Anschluß 20)	C_1	6	pF
Eingang Anschluß 20	C_{120}	20	pF
Ausgang	C_{o}	12	pF

Tabelle 5 Dynamische Kennwerte

Parameter	Symbol	27	32-35	27	32-45	273	32-55	Einheit
		mi	n.max.	mi	n.max.	mi	n.max.	•
Verzögerung Adressen/ Ausgang	t _{AVDV}	-	350	<u>'</u>	450	-	550	ns
Verzögerung CE/Ausgänge	$t_{\rm CLDV}$	_	350	_	450	_	550	ns
Verzögerung OE/Ausgänge	$t_{\rm CLDV}$	_	120	-	120	_	120	ns
Verzögerung OE/hoch- ohmig	t_{CHDZ}	0	100	0	100	0	100	ns
Verzögerung CE/hoch- ohmig	t_{CHDZ}	0	100	0	100	0	100	ns

Tabelle 4 Statische Kennwerte

Parameter	Symbol	min.	max.	Einheit	Bedingungen
Betriebsspannung Eingangsspannung L	U _{CC} U _{IL}	4,75 -0,3	5,25 0,8	V V	
Eingangsspannung H außer Anschluß 20	U_{IH}	2,0	$U_{\rm cc}$ + 1	V	
Eingangsspannung H Anschluß 20 (Lesen)	$U_{ m IH20}$	2,0	U_{cc}	V	•
Eingangsreststrom außer Anschluß 20	I_1		0,01	mA	$U_{\rm I} = 5.5 \text{V}; \ U_{\rm CC} = 4.75 \text{V}$
Eingangsreststrom (20)	I_{120}		1	mA	$UP_{I} = UP_{PR} = 5.5 \text{ V};$ $U_{CC} = 4.75 \text{ V}$
Ausgangsleckstrom	I_{o}		10	uА	$U_{\rm CC} = 5.5 \mathrm{V}$
Stromaufnahme ru- hend	$I_{\rm CCR}$	-	30	mA	
Stromaufnahme ak- tiv	$I_{\rm CC2}$	- '	180	mA	
Ausgangsspannung L	U_{OL}	-	0,45	V	$U_{\rm CC} = 4,75 \text{ V}; I_{\rm OL} = 2,1 \text{ mA}$
Ausgangsspannung H	U_{OH}	2,4	_	y	$U_{\rm CC} = 4.75 \mathrm{V};$ $I_{\rm OH} = -400 \mathrm{\mu A}$

Bild 3 Dynamisches Verhalten

3. Speicher

Tabelle 6 Programmierbedingungen ($\theta_a = 25 \pm 5$ °C; $U_{CC} = 5 \text{ V} \pm 5 \text{ %}; U_{PP} = 25 \text{ V} \pm 1 \text{ V}$)

Parameter	Symbol	min.	typ.	max.	Einheit	
Adressenvorhaltezeit	t _{AVCL}	2	_	_	μs	
OE-Vorhaltezeit	t_{CHPL}	2	~	_	μs	
Datenvorhaltezeit	$t_{ m DVCL}$	2	_	_	μs	
Adressenhaltezeit	t_{CHAX}	0 •	_	_	μs	
Datenhaltezeit	t_{CHDX}	2	_	-	μs	
Verzögerung CE-Ausgang hochoh- mig	t_{CHDZP}	-	-	120	ns	
Programmierimpulsdauer	$t_{\rm CLCH}$	45	50	55	ms	
$U_{\mathtt{PP}} ext{-}Anstiegszeit$	tpan	50			ns	
$U_{\rm pp}$ -Setzzeit L	$t_{ m PLCL}$	2			μs	
U_{PP} -Setzzeit H	t _{PHCL}	2			μs	

Programmierung

Nach der Auslieferung sowie nach jedem Löschen haben alle 32768 bits des EPROM H-Pegel. Die Programmierung geschieht durch Einschreiben des L-Pegels. Die Betriebsart Programmierung stellt man ein, indem 25 ± 1 V an $U_{\rm PP}$ gelegt wird. Danach werden Adressen und Daten angelegt. Mit einem 50-ms-Impuls (TTL-LOW-Pegel)-an CE geschieht die Programmierung der ausgewählten Speicherzelle. Der Speicherinhalt wird mit einer UV-Strahlung von etwa 254 nm und 15 Ws/cm gelöscht, Löschzeit etwa 15 min.

Bild 2 Anschlußbelegung

Bild 4 Programmierbedingungen