

Sistemas Digitais (SD)

Contadores

Aula Anterior

Na aula anterior:

- ▶ Registos
 - Registos simples
 - Banco de registos
 - Registos de deslocamento
 - Registos multimodo

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

3

Sumário

Tema da aula de hoje:

- ▶ Contadores síncronos
 - Contadores de módulo 2ⁿ
 - Projecto de contadores
 - Frequência máxima de funcionamento
 - Situação de "lock-out"
 - Simbologia
 - Contador em anel
 - Contador Johnson
 - Linear feedback shift-register
- ▶ Contadores assíncronos
 - Contadores por pulsação
 - Contadores assíncronos vs. síncronos

Bibliografia:

- M. Mano, C. Kime: Secções 7.6
- G. Arroz, J. Monteiro, A. Oliveira: Secção 6.6

Contador Binário

▶ Um contador binário é um registo que, por aplicação sucessiva de impulsos de relógio, segue uma sequência de estados correspondente à numeração binária.

Contador Binário (cont.)

▶ Exemplo:

Utilizando FFs Toggle (p.ex. JK com J = K), o projecto do circuito aproveita o facto de, na contagem binária, o Q0 estar sempre a variar, o Q1 variar quando Q0 = 1, o Q2 variar quando Q0 = Q1 = 1, etc.

Contador Binário (cont.)

- ▶ A estrutura do contador é facilmente generalizável para contadores módulo 2^N.
- No entanto, esta estrutura está limitada pelo facto de o *fan-in* das portas AND ir aumentando sucessivamente até à última porta, que tem N entradas.

► A frequência máxima de relógio a que este contador pode funcionar é:

$$f_{\text{max}} = \frac{1}{T_{\text{min}}} = \frac{1}{t_{pFF} + t_{pAND} + t_{suFF}}$$

Contador Binário (cont.)

► Aproveitando os produtos parciais já realizados, é possível modificar a estrutura do contador para usar apenas portas AND de 2 entradas, mantendo a funcionalidade.

► No entanto, o caminho crítico entre FFs aumenta substancialmente, limitando a frequência máxima a que o contador pode funcionar.

$$f_{\text{max}} = \frac{1}{T_{\text{min}}} = \frac{1}{t_{pFF} + (n-2)t_{pAND} + t_{suFF}}$$

Contador Binário com Flip-Flops tipo D

▶ O mesmo contador pode ser realizado definindo um FF Toggle a partir de FF D e aproveitando directamente a mesma estrutura.

Exemplos de Componentes

Contador binário, módulo 16, com carregamento paralelo e clear síncrono

Contador binário, módulo 16, com carregamento paralelo e clear assíncrono

Contador binário bidireccional, módulo 16, com carregamento paralelo e clear assíncrono

Contador Decimal

Contador Decimal

- ▶ Um contador decimal pode ser realizado directamente a partir de um contador módulo 16, forçando a reinicialização do contador após o estado 9.
- ▶ O sinal DETECTA_NOVE pode ser utilizado como indicador de fim de contagem.

Contadores

Contador com 2 "saltos" na contagem

▶ Este contador conta de 0 a 9, passa para o estado 11, conta de 11 a

13, e volta ao estado 0.

Contadores

Ligação em Série de Contadores (1)

- ▶ Um contador módulo 256 pode ser realizado ligando em série 2 contadores módulo 16.
- ▶ O 2º contador só é habilitado quando o 1º chega ao fim de contagem (o sinal de fim de contagem do 1º contador está ligado ao enable do 2º contador)

Contadores

Ligação em Série de Contadores (2)

► Este contador faz uma sequência de contagem de 33 a 161

Contador em Anel

Contador em Anel – "Ring Counter"

► A ligação de N flip-flops em cascata, como registo de deslocamento, pode também ser usada como um contador simples, usando o mínimo de bardwaro.

hardware.

0100

O contador evolui segundo a seguinte sequência de 4 estados e depois repete:

0010

▶ O contador é muito rápido (não existem portas lógicas no caminho entre FFs)...,

1000

- $f_{\text{max}} = \frac{1}{T_{\text{min}}} = \frac{1}{t_{pFF} + t_{suFF}}$
- mas é ineficiente em termos do número total de estados de contagem disponíveis (só usa N estados, dos 2^N estados disponíveis).

Lock-Out

Contadores: "LOCK-OUT"

- ► Estados de LOCK-OUT: no caso de não serem utilizados todos os estados disponíveis, pode ocorrer a situação do contador se encontrar num estado não desejado (fora da sequência de contagem) devido a ruído no circuito ou à não imposição de estado inicial.
- ▶ Nessa situação ou o contador entra na sequência de contagem pretendida ou fica indefinidamente no exterior (Lock-Out).

Exemplo com possibilidade de Lock-Out:

Lock-Out

Contadores: "LOCK-OUT"

- ► Estados de LOCK-OUT: no caso de não serem utilizados todos os estados disponíveis, pode ocorrer a situação do contador se encontrar num estado não desejado (fora da sequência de contagem) devido a ruído no circuito ou à não imposição de estado inicial.
- ▶ Nessa situação ou o contador entra na sequência de contagem pretendida ou fica indefinidamente no exterior (Lockout).

Exemplo sem possibilidade de Lock-Out: o contador acabará sempre por entrar na sequência pretendida

Lock-Out

Contador em Lock-Out:

- ➤ Solução 1: impor a transição de qualquer estado externo para um estado da sequência de contagem
- ► Solução 2: considerar uma entrada extra, de inicialização, que coloque o sistema num dos estados de contagem pretendido.

Alternativas de Inicialização no Estado "1000":

Contador Johnson

Contador Johnson

▶ O contador Johnson usa 2N dos 2^N estados disponíveis, mantendo a rapidez do contador em anel.

SBOA Linear Feedback Shift-Register

Linear Feedback Shift-Register (LFSR)

► O LFSR usa 2^N-1 dos 2^N estados disponíveis, usando apenas uma porta lógica adicional.

Contador Assíncrono

- Contadores <u>Assíncronos</u> por Pulsação "Ripple Counters"
 - Os contadores por pulsação são extremamente simples de realizar.

No entanto, o facto de serem assíncronos (os FF não estão em sincronismo) torna-os pouco fiáveis, por dependerem dos atrasos de propagação do sinal.

Contador Assíncrono

Contadores Assíncronos vs. Síncronos

No contador assíncrono, as mudanças de estado não ocorrem todas na transição de relógio!

<u>Exemplo</u>: na transição de 7 para 8, o contador passa sucessivamente por vários estados intermédios.

Contador Assíncrono

Contador Síncrono

Contador Assíncrono

Contadores Assíncronos vs. Síncronos

- Quanto mais FFs existirem, mais o bit de maior peso demora a transitar, o que torna os contadores por pulsação de grande dimensão muito lentos (o que limita, neste caso, o período de relógio).
- As realizações assíncronas são, portanto e genericamente, de evitar.

Contador Assíncrono

Contador Síncrono

Próxima Aula

Tema da Próxima Aula:

- ▶ Definição de circuito sequencial síncrono
- Máquinas de Mealy e de Moore
- ► Especificação de circuitos sequenciais síncronos:
 - Diagrama de estados
- Projecto de circuitos sequenciais síncronos:
 - Codificação dos estados
 - Tabela de transição de estados
 - Determinação das funções lógicas de saída e estado seguinte

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás