

CNN 2

23.02.16 / 8기 정건우

YONSEI DATA SCIENCE LAB | DSL

O. INTRO

CNN1	Computer Vision이란? CNN은 왜 등장했을까? CNN 기본 개념 Convolutional Layer / Padding, Stride / Batch Normalization, ···
CNN2	지금까지는 어떤 CNN 모델들이 있었지? CNN 모델의 발전과정 CNN Architecture / Comparing Model Complexity
CNN3	그래서 성능 좋은 (CNN) 모델을 만들려면 어떻게 해야 되는데? CNN을 이용하는 이유 / 전이학습(Transfer Learning)

CNN overview

Feature Extractor는 아래 과정의 반복

Classifier는 Feature Extractor 과정의 반복이 끝나면

CNN overview

ReLU

What is 'Good' CNN model?

무작정 Feature Extractor 쌓고, Classifier 써서 CNN 모델 만들면 모든 이미지를 분류할 수 있을까?

- → NO. 유의미한 Feature를 만들어낼 수 있도록 모델을 구성해야 함
- → Filter의 크기, Network의 깊이, Activation func, 언제 어디서 Padding, Stride, Pooling 할지, ···

1998년 Yann LeCun이 Convolutional Neural Network를 최초로 개발한 이후,

Image Recognition의 성능(accuracy, time complexity, …)을 높이기 위한 다양한 모델이 등장

→ 유의미하다고 평가받는 모델들을 살펴보면서, CNN 모델의 발전을 알아보고 배운 개념을 이해해보자.

CONTENTS

01. AlexNet

- Architecture
- Complexity
- Overlapping Pooling
- Local Response Normalization

04. ResNet

- Background
- Architecture
- Residual Block
- Bottleneck Residual Block

02. VGGNet

- Architecture
- Complexity
- Max pooling
- How downsampling?
- Performance

05. After ResNet…

- 2016 : ResNet era

- 2017 : SENet

03. GoogleNet

- Architecture
- Stem Network
- Inception Modules
- Auxiliary Classifier
- Global Average Pooling

06. SUMMARY

1. AlexNet

Architecture

"First CNN-based winner"

Input: 227 * 227 *3

5 Conv layer + 3 FC layer

ReLU Nonlinearities

Max pooling (Overlapping)

Local Response Normalization

Data Augmentation

Dropout (in FC layer 1,2)

1. AlexNet

Complexity

of parameters가 약 6,000만 개 (Ex. Conv1에서 # of parameters는 3 * 11 * 11 * 64 = 23,232)

대부분의 parameter가 FC Layer에 있다!

AlexNet

		Input	t size		Laye	er		Outp	out size			
Layer	С		н / w	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1		3	22	7 64	11	4	2	64	56	784	23	73
pool1		64	5	5	3	2	0	64	27	182	0	0
conv2		64	2	7 192	5	1	2	192	2 27	547	307	224
pool2		192	2	7	3	2	0	192	13	127	0	0
conv3		192	1	384	3	1	. 1	384	13	254	664	112
conv4		384	1	256	3	1	. 1	256	13	169	885	145
conv5		256	1	256	3	1	1	256	13	169	590	100
pool5		256	1	3	3	2	0	256	6	36	0	0
flatten		256		5				9216	5	36	0	0
fc6		9216		4096	j			4096	5	16	37,749	38
fc7		4096		4096	i			4096	5	16	16,777	17
fc8		4096		1000				1000)	4	4,096	4

YONSEI DATA SCIENCE LAB | DSL

1. AlexNet

Overlaping Pooling

우리가 흔히 아는 Max pooling 은 Non-overlapping 방식

AlexNet은 window=3, stride=2 인 overlapping 방식. 왜?

- →Image의 해상도가 낮았기 때문에, pixel 하나하나가 중요했음
- →Overfitting을 막기 위해, 한 번의 pooling이어도 window 크게!

Non-overlapping pooling

1	3	5	5
4	1	4	9
3	2	0	1
5	2	4	6

Stride 2 2 x 2 max pooling

Overlapping pooling

4	5	9
4	4	9
5	4	6

Stride 1 2 x 2 max pooling

1. AlexNet

LRN (Local Response Normalization)

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

 $a_{x,y}^{i}$ 는 픽셀 x,y에서 i번째 채널의 값 $b_{x,y}^{i}$ 는 정규화된 결과

가까운 채널의 feature map에서 같은 위치에 있는 뉴런들을 정규화 현재에는 LRM 사용하지 않고, Batch Normalization을 사용

Architecture

"Deeper Network"

13 Conv layer + 3 FC layer

3*3 small filter(kernel)

- → Deeper Network
- → 동일한 Receptive field에 대해 Input Problem: For large images we need many layers for each output to "see" the whole image image solution: Downsample inside the network

 More non-linearities & Less parameters

Receptive Fields

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

→ 풍부한 feature를 효율적으로 뽑아낼 수 있음

But 초반 feature map이 크고, FC layer 사용

- → memory도 많이 필요하고 parameter도 많음
- → 지금 관점에서 별로 효율적이지는 않지만, 참신했다!

Complexity

VGG16 VGG19

Table 1: **ConvNet configurations** (shown in columns). The depth of the configurations increases from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The convolutional layer parameters are denoted as "conv⟨receptive field size⟩-⟨number of channels⟩". The ReLU activation function is not shown for brevity.

ConvNet Configuration											
Α	A-LRN	В	C	(D)	(E)						
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight						
layers	layers	layers	layers	layers	layers						
	input (224×224 RGB image)										
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64						
	LRN	conv3-64	conv3-64	conv3-64	conv3-64						
	maxpool										
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128						
		conv3-128	conv3-128	conv3-128	conv3-128						
		max									
	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256						
			conv1-256	conv3-256	conv3-256						
					conv3-256						
		max	pool								
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
			conv1-512	conv3-512	conv3-512						
					conv3-512						
		max									
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
			conv1-512	conv3-512	conv3-512						
					conv3-512						
		max									
			1096	·							
		FC-4									
	·		1000								
		soft-	max								

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

of parameters 약 1억 4천만 개 (parameters 90% 이상이 FC layer)

Max pooling

1	3	5	5
4	1	4	9
3	2	0	1
5	2	4	6

AlexNet♀ Overlapping max pooling (pooling size > stride)

1	3	5	5
4	1	4	9
3	2	0	1
5	2	4	6

VGGNet의 max pooling (pooling size = stride)

1	3	5	5	3
4	1	4	9	6
3	2	0	1	2
5	2	4	6	1
4	7	8	5	0

Conv filter size < stride

How downsampling?

Filter size = 3, padding =1

→ Conv layer 거쳐도 input_dim = output_dim

$$\frac{N-F+2P}{1}+1=\frac{N-3+2}{1}+1=N$$

Max pooling으로 downsampling

→ VGG 팀의 연구 목적이

"네트워크 깊이에 따른 성능 " 이었음

1	3	5	5
4	1	4	9
3	2	0	1
5	2	4	6

VGGNet♀| max pooling (pooling size = stride)

Performance

Table 4: ConvNet performance at multiple test scales.

			o manapie test seare	
ConvNet config. (Table 1)	smallest	image side	top-1 val. error (%)	top-5 val. error (%)
	train(S)	test(Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
C	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
E	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

D: VGG16, E: VGG19

- → layer가 깊어져도 성능이 별로 다르지 않거나 오히려 저하하는 경우도 발생
- → 무작정 깊은 네트워크를 만든다고 error가 내려가는 것은 아님을 발견
- → 네트워크 깊어지면 # of parameter 많아지니까 Overfitting이 발생했기 때문인가? (라고 당시에는 생각했지만… 나중에 알고 보니 아니었음)

convolution pooling softmax concat/normalize

3. GoogleNet

Architecture

"Inception-v1"

9 Inception Modules (22 layer)

Stem Network: 7*7 conv filter

Inception Modules: 1*1 conv filter

Auxiliary Classifier: increase the gradient signal

Global Average Pooling: fewer parameter

3. GoogleNet

Stem Network

Network 초반에 큰 filter 하나를 통과시켜 빠르게 downsampling!

그러면 VGG가 3*3 conv 여러 번 써가면서 뽑은 Good Feature를 GoogleNet은 어떻게 뽑을까? → Inception module!

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution		112×112×64	1		reduce		reduce		proj	2.7K	34M
	7×7/2	<u> </u>								2./K	34101
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56\times56\times192$	2		64	192				112K	360M
max pool	3×3/2	$28\!\times\!28\!\times\!192$	0								
inception (3a)		$28\!\times\!28\!\times\!256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28\!\times\!28\!\times\!480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		$1\times1\times1000$	1							1000K	1M
softmax		$1\times1\times1000$	0								

Table 1: GoogLeNet incarnation of the Inception architecture

YONSEI DATA SCIENCE LAB | DSL

3. GoogleNet

Inception Modules

(a) Inception module, naïve version

다양한 size의 filter를 씌워서 나온 결과를 Ensemble (다양한 종류의 feature를 extract)

Stem Network Output Classifier Convolution pooling softmax concat/normalize

(b) Inception module with dimension reductions

다양한 size의 filter를 씌우려면 parameters가 너무 많아지지 않나?

→ 1*1 conv filter로 해결!

1*1 Conv filter가 뭘 할 수 있지?

Filter (5*5*480) 487∦ → # of operation = (5*5*480)*(14*14*48) = 112.9M

Filter (1*1*480) Filter (5*5*16) 167# 487#

 \rightarrow # of operation = (1*1*480)*(14*14*16) + (5*5*16)*(14*14*48) = 5.3M

3. GoogleNet

Auxiliary Classifier

모델의 layer가 깊어지면, backpropagation 할 때 Input쪽에는 vanishing gradient 발생

- → 지금까지 학습한 정보에 기반한 softmax classifier 붙여놓고 backpropagation 중간에 gradient를 보충!
- → vanishing gradient 방지
- → Auxiliary classifier는 train에서만 사용하고, 모델을 사용할 땐 제거

YONSEI DATA SCIENCE LAB | DS

3. GoogleNet

Global Average Pooling

FC 방식 **Flatten** 50176 1024 1 # of parameters = 7 * 7 * 1024 * 1024 = 51,380,224

Global average pooling

(Params, M)

Background

ResNet 팀 "VGGNet은 layer가 깊을수록 test error 뿐만 아니라 training error도 이 더 높다"

→ overfitting이 아니라, underfitting이었다?

→ 오히려 "더 깊은 네트워크"가 "덜 깊은 네트워크"를 emulate(모방) 하더라!

Architecture

Architecture

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer							
conv1	112×112	7×7, 64, stride 2											
conv2_x	56×56	3×3 max pool, stride 2											
		$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$							
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$ \left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $							
conv4_x	14×14	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2 $	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $							
conv5_x	7×7	$ \begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 2 $	$ \begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $							
	1×1	average pool, 1000-d fc, softmax											
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10 ⁹							

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

처음에 64개의 7*7 conv filter로 downsampling 해주고 (GoogleNet처럼)
2~3개의 3*3 conv filter를 Residual block로 묶어서 conv2_x, conv3_x, ···라 하고 conv_x 사이사이 BN & ReLU
마지막에는 Global Average Pooling → FC layer → Softmax

YONSEI DATA SCIENCE LAB | DSL

4. ResNet

Residual Block

기존 CNN 모델처럼 conv layer를 거친 결과 H(x)를 학습하기보다는 학습 결과 H(x)에서 input된 x를 제외한 residual F(x)=H(x)-x를 학습하자 !

H(x)를 학습할 때에는

- \rightarrow 지금까지 학습된 feature인 x를 기반으로 H(x)를 새롭게 학습해야 함 F(x)를 학습할 때에는
- → Input되는 x가 optimal이 되도록
 - =가중치가 더 이상 업데이트 되지 않도록
 - = F(x)가 0이 되도록 학습
- → 추가적인 parameter가 없기 때문에 학습 난이도가 쉽고 (easy to optimize) 네트워크가 깊어질수록 높은 accuracy

Bottleneck residual block

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

ResNet의 네트워크가 깊어지면(ResNet-50), operation을 줄이기 위해 residual block 변형 Input의 channel이 256이면 1*1*256 conv filter 64개 사용해서 channel을 64로 만들어준 뒤 3*3*64 conv filter를 64개만 사용 (256개 안 써도 됨)

그리고 다시 1*1*64 conv filter 256개 사용해서 channel을 256으로 되돌려준 뒤 skip-connection

MSRA @ ILSVRC & COCO 2015 Competitions

• 1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

ResNet은 Image classification 뿐만 아니라 Detection, Segmentation에서도 압도적인 1위를 기록

Comparing model complexity

VGGNet : Accuracy에서는 우수하지만 parameter가 많아 큰 메모리 요구, operation이 많아 학습 느림 GoogleNet : Accuracy는 VGG보다 살짝 낮지만, parameter와 operation이 적은 efficient한 모델

ResNet: Accuracy가 굉장히 높은데도 GAP로 fewer parameter를, residual block으로 fewer operation 유지

2016: ResNet era

2016년에는 VGG(2014), GoogleNet(2014), ResNet(2015)처럼 새로운 아이디어가 등장하거나, 성능이 크게 향상된 모델은 없었음 하지만 Inception-v2, v3를 내던 Google팀이 Inception-v4에서

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning를 발표하면서 Inception에 ResNet을 도입

ILSVRC 2016 우승도 Inception, ResNet 등을 앙상블한 팀이었음

2017 : SENet

Fig. 1. A Squeeze-and-Excitation block.

Squeeze : Feature map \rightarrow (Global Average Pooling) \rightarrow 1*1*C

$$z_c = \mathbf{F}_{sq}(\mathbf{u}_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i, j).$$

Excitation : squeezed $1*1*C \rightarrow FC$ layer \rightarrow ReLU \rightarrow FC layer \rightarrow Sigmoid

$$\mathbf{s} = \mathbf{F}_{ex}(\mathbf{z}, \mathbf{W}) = \sigma(g(\mathbf{z}, \mathbf{W})) = \sigma(\mathbf{W}_2 \delta(\mathbf{W}_1 \mathbf{z})),$$

Scale: channel-wise multiplication

$$\widetilde{\mathbf{x}}_c = \mathbf{F}_{scale}(\mathbf{u}_c, s_c) = s_c \, \mathbf{u}_c,$$

2017 : SENet

W*H*C feature map을 input으로 받아, squeeze – excitation – scale 해서 W*H*C feature map이 output 으로 나온다

→ 기존CNN architecture (VGGNet, GoogleNet, ResNet, …)에 붙여서 사용할 수 있다

Fig. 2. The schema of the original Inception module (left) and the SE-Inception module (right).

Fig. 3. The schema of the original Residual module (left) and the SE-ResNet module (right).

	original		re-implementation			SENet		
	top-1 err.	top-5 err.	top-1 err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs
ResNet-50 [13]	24.7	7.8	24.80	7.48	3.86	23.29(1.51)	6.62(0.86)	3.87
ResNet-101 [13]	23.6	7.1	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60
ResNet-152 [13]	23.0	6.7	22.42	6.34	11.30	$21.57_{(0.85)}$	$5.73_{(0.61)}$	11.32
ResNeXt-50 [19]	22.2	-	22.11	5.90	4.24	21.10(1.01)	5.49(0.41)	4.25
ResNeXt-101 [19]	21.2	5.6	21.18	5.57	7.99	$20.70_{(0.48)}$	5.01 _(0.56)	8.00
VGG-16 [11]	-	-	27.02	8.81	15.47	25.22(1.80)	7.70(1.11)	15.48
BN-Inception [6]	25.2	7.82	25.38	7.89	2.03	$24.23_{(1.15)}$	$7.14_{(0.75)}$	2.04
Inception-ResNet-v2 [21]	19.9 [†]	4.9^{\dagger}	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76

6. Summary

- 1. ReLU를 처음 사용한 AlexNet (2012)을 시작으로 CNN에 많은 관심이 집중되기 시작했다.
- 2. VGGNet은 3*3 conv filter를 사용하여 네트워크의 깊이 깊어질수록 성능이 좋아지는지 확인하였다.
 - → 네트워크가 깊다고 해서 항상 error가 낮아지는 것은 아니었다.
- 3. GoogleNet은 Inception module을 통해 다양한 feature를 extract 하였고, 1*1 conv filter와 Global Average Pooling으로 Complexity(parameters, operation)를 완화하였다.
- 4. ResNet은 Residual block에서 x를 입력 받아 H(x)를 출력하는 함수 H를 학습하는 대신, F(x) = H(x)-x를 학습하였다. VGGNet의 3*3 conv filter, 그리고 GoogleNet의 1*1 conv filter와 GAP를 적절히 활용하여 성능을 크게 향상시켰다.
- 5. ResNet이 등장한 이후, ResNet을 기반으로 한 다양한 모델들이 등장했고, 좋은 성능을 보여주었다. Ex. ResNext, DenseNet, Residual Attention Network, ···
- 6. 2018년 이후에는 CNN 모델의 경량화를 다룬 많은 연구가 이루어졌다. Ex. ShuffleNet, MobileNet, ···

6. Summary

Reference

Michigan Univ. <Deep Learning for Computer Vision>

-Lecture 7: Convolutional Networks

-Lecture 8: CNN Architectures

Stanford Univ. <Convolutional Neural Networks for Visual Recognition>

-Lecture 9: CNN Architectures

https://hoya012.github.io/blog/deeplearning-classification-guidebook-1/

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner (1998) Gradient-Based Learning Applied to Document Recognition

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton (2017) ImageNet Classification with Deep Convolutional Neural Networks

Visual Geometry Group, Department of Engineering Science, University of Oxford (2015) VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and Andrew Rabinovich (2015) Going deeper with convolutions

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun (2015) Deep Residual Learning for Image Recognition

Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke (2016) Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu (2018) Squeeze-and-Excitation Networks

DATA SCIENCE LAB

발표자 정건우 010-6473-3938 E-mail: wjdrjsdn3938@naver.com