Non convex optimisation convex envelopes and Fenchel Conjugates

Andrew Wu

February 2, 2021

1 Convex Envelopes

Definition 1. Let V be a vector space. The functional $g: V \to \mathbb{R}$ is affine if there exists linear functional $l: V \to \mathbb{R}$ and $b \in V$ such that for all $v \in V$,

$$g(v) = l(v) + b$$

Proposition 1. Let V be a vector space. Suppose $f, g: V \to \mathbb{R}$ are arbitrary functionals. Then,

$$\operatorname{conv}(f) + \operatorname{conv}(g) \le \operatorname{conv}(f+g).$$

If g is affine, then

$$conv(f) + conv(g) = conv(f + g)$$

Proof. Observe that conv(f) + conv(g) is a convex underestimator of f + g. Hence, by definition,

$$\operatorname{conv}(f) + \operatorname{conv}(g) \le \operatorname{conv}(f+g).$$

Suppose g is affine, then both g and -g are convex. Thus, conv(g) = g and conv(-g) = g. Hence,

$$\operatorname{conv}(f+g) - g = \operatorname{conv}(f+g) + \operatorname{conv}(-g) \le \operatorname{conv}(f),$$

SO

$$conv(f) + conv(q) > conv(f + q).$$

Combining this with the first part of the proposition yields the desired equality.

Note: Ensure V is a vector space, not a subset of a vector space when applying proposition 1. This ensures V is a convex set, otherwise the domain of f needs to be extended to the convex hull of the set.

2 Separable Additivity of Biconjugates

Definition 2. Let X be some space. The function $f: X \to [-\infty, \infty]$ is proper if $f(x) \neq -\infty$ for all $x \in X$ and there exists $x \in X$ such that $f(x) < +\infty$.

Definition 3. Let (X, \langle, \rangle) be a real Hilbert space. The functional $f: X \to [-\infty, \infty]$ has a continuous affine minorant if there exists $a \in X$ and $b \in \mathbb{R}$ such that for all $x \in X$:

$$f(x) \ge \langle a, x \rangle + b$$

Lemma 1. Let (X, \langle, \rangle) be a real Hilbert space and suppose $f: X \to [-\infty, \infty]$ is proper and has a continuous affine minorant. Then, both $f^*, f^{**}: X \to [-\infty, \infty]$ are also proper and have affine minorants.

 $page \ 6-https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.1198 \& rep=rep1 \& type=pdf$

Theorem 1. Let $X_1, X_2, ... X_n$ be real Hilbert spaces with inner products $\langle , \rangle_{i=1,2...n}$ respectively and $X = X_1 \times X_2 \times ... X_n$. Suppose $g: X \to (-\infty, \infty]$ is a proper separable function defined by

$$g(x) = \sum_{i=1}^{n} g_i(x_i), \text{ for any } x = (x_1, x_2, \dots, x_n) \in X,$$

where $g: X := g_i: X_i \to (-\infty, \infty]$, i = 1, 2, ... n are proper functions with continuous affine minorants. Then, g^{**} is proper and for all $x \in X$,

$$g^{**}(x) = \sum_{i=1}^{n} g_i^{**}(x_i),$$

where g_i^{**} are proper functions.

Proof. Let $x = (x_1, \dots x_n)$ and $y = (y_1, \dots y_n)$ be elements of X. Observe that X equipped with the inner product

$$\langle x, y \rangle := \sum_{i=1}^{n} \langle x_i, y_i \rangle_i$$

defines a Hilbert space. Computing the Fenchel conjugate, we obtain:

$$g^{*}(x^{*}) = \sup_{x \in X} \{ \langle x^{*}, x \rangle - g(x) \}$$

$$= \sup_{x_{1}, x_{2} \dots x_{n}} \left\{ \sum_{i=1}^{n} \langle x_{i}^{*}, x_{i} \rangle - g_{i}(x_{i}) \right\}$$

$$= \sum_{i=1}^{n} \sup_{x_{i} \in X_{i}} \{ \langle x_{i}^{*}, x_{i} \rangle - g_{i}(x_{i}) \}$$

$$= \sum_{i=1}^{n} g_{i}^{*}(x_{i})$$

Observe that g^* is separable and $g_i^*: X_i \to [-\infty, \infty]$ are proper with continuous affine minorants by 1. Thus, reapplying the above line of reasoning yields

$$g^{**}(x) = \sum_{i=1}^{n} g_i^{**}(x_i),$$

where again, g_i^{**} are proper by 1. Finally, if g_i , i = 1, 2 ... n have continuous affine minorants $\langle a_i, x \rangle + b_i$, then $\langle \sum_{i=1}^n a_i, x_i \rangle + \sum_{i=1}^n b_i$ is a continuous affine minorant of the proper function g, so g^{**} is proper by 1.

Notes:

- 1. Proof of separability of g^* is adapted from Proposition 13.30 of Bauschke "Convex analysis and monotone operator theory in Hilbert Spaces."
- 2. We allow $\sup = +\infty$ since we are dealing with functions on the extended reals. This also means we do not need to worry about the sets $\{\langle x_i^*, x_i \rangle g_i(x_i)\}$ being bounded above, hence additivity of the sup should always hold.