Estiramiento y estrechamiento de un cable de cobre que sufre tensión

Sensores y actuadores Grado en Ingeniería en Robótica Software GSyC, Universidad Rey Juan Carlos

1. Descripción

Tenemos un cable de cobre, cuyo diámetro es de 4mm, y tiene 1m de largo. Si consultamos en la tablas de propiedades de los materiales, obtenemos que el módulo de Young del cobre es de 110GN, y que su coeficiente de Poisson es de 0.34. Se pide calcular el estiramiento en longitud y estrechamiento en diámetro que sufre el alambre cuando se le cuelga un peso de 100kqf.

2. Solución

2.1. Conversión de unidades al SI

Primeramente, vamos a pasar las cantidades que tenemos expresadas en unidades del sistema técnico al sistema internacional.

El módulo de Young se expresa en pascales (Pa). Hacemos la conversión:

$$1GN(GigaNewton) = 10^9N = 1000000000N \implies 110GN = 11000000000N = 110E9N$$
 (1)

$$P = \frac{F}{S} \implies 1Pa = \frac{1N}{1m^2} \implies 110E9Pa = \frac{110E9N}{1m^2} \tag{2}$$

$$110GN = 110E9N = 110E9Pa \cdot m^2 = 110000MPa \cdot m^2 \tag{3}$$

Por otro lado, en el SI, el peso se expresa en newtons (N). El Kilogramo Fuerza o Kilopondio es la unidad de fuerza en el antiguo Sistema Técnico de Unidades (STU), y expresa la fuerza ejercida sobre una masa de 1kg por la gravedad terrestre $(9,80665\frac{m}{s^2})$. Hacemos la conversión:

$$1kgf = 1kp = 1kg \cdot 9,80665 \frac{m}{s^2} = 9,80665 \frac{kg \cdot m}{s^2} = 9,80665N \tag{4}$$

$$1kgf = 9,80665N \implies 100kgf = 100 \cdot 9,80665N = 980,665N \approx 980,7N$$
 (5)

Por último, pasamos el diámetro a metros:

$$\emptyset = 4mm = 0.004m \tag{6}$$

2.2. Esfuerzo de tracción que ejerce el peso

En segundo lugar, vamos a calcular el esfuerzo de tracción que ejerce el peso sobre el alambre. Para ello, recordemos la fórmula que hemos estudiado en clase:

$$\sigma = \frac{F}{A} \tag{7}$$

La fuerza que ejerce el peso, F, ya lo teníamos: F = 980,7N. Nos falta calcular el área o sección del alambre, cuyo diámetro ya conocemos (d = 0,004m).

$$A = \pi r^2 = \pi 0,002^2 \approx 0,000012566 \approx 1,2566 \cdot 10^{-5} m^2$$
(8)

Volviendo a la Ecuación 7, y sustituyendo los valores ya conocidos, F y A, nos queda que el esfuerzo de tracción es:

$$\sigma = \frac{980.7}{1.2566E - 5} \approx 78043928Pa \cong 78.043928MPa \tag{9}$$

2.3. Deformación longitudinal que sufre el alambre

Para calcular la deformación longitudinal (L), hemos de usar la ecuación que ya hemos visto en teoría y que relaciona el módulo de elasticididad o de Young de un material con el esfuerzo y deformación que sufre este.

$$E = \frac{\sigma_L}{\varepsilon_L} \implies \varepsilon_L = \frac{\sigma_L}{E} = \frac{78,043928MPa}{110000MPa} = 0,00070949 \approx 71E - 5 \tag{10}$$

2.4. Deformación transversal o de sección que sufre el alambre

Para conocer la deformación que sufre el alambre en su sección, se aplica el coeficiente de Poisson (ν) , cuya relación recordamos es la que vemos en la siguiente ecuación. Aplicando el valor de deformación longitudinal (ε_L) obtenido en la Ecuación 10, y sabiendo el coeficiente de Poisson del cobre (0,34, recordemos que es un valor característico de cada material), ya podemos calcular la deformación transversal (ε_T) . Veamos:

$$\nu = -\frac{\varepsilon_T}{\varepsilon_L} \implies \varepsilon_T = -\nu \varepsilon_L = -0.34 \cdot 71E - 5 = -24.14E - 5 \tag{11}$$

2.5. Estiramiento que sufre el alambre

Para conocer la variación longitudinal que sufre el alambre, tomamos el valor de deformación longitudinal (ε_L) calculado en la Ecuación 10, y le aplicamos la siguiente ecuación, que relaciona el esfuerzo con la longitud inicial del alambre (dado en el enunciado) y variación de esta:

$$\varepsilon_L = \frac{\Delta L}{L} \implies \Delta L = 1m \cdot 71E - 5 = 71E - 5m = 0,71mm$$
 (12)

El alambre se ha estirado un total de 0.71mm debido al peso que se le ha colgado.

2.6. Disminución en diámetro que sufre el alambre

Por último, para estimar cuánto ha disminuido el diámetro o sección del alambre, aplicamos la misma fórmula anterior, Ecuación , pero en este caso aplicándola al diámetro del alambre; esto es, considerando la deformación transversal (ε_T) obtenida en la Ecuación 11:

$$\varepsilon_T = \frac{\Delta \varnothing}{\varnothing} \implies \Delta \varnothing = 0.004m \cdot -24.14E - 5 = -9.66E - 7m = -0.966\mu m \cong -1\mu m \tag{13}$$