Il teorema di Fermat

Teorema di Fermat. Sia $f:(a,b)\to IR$ una funzione continua, e derivabile e supponiamo che $x_0\in(a,b)$ sia un punto di minimo o massimo locale. Allora $f'(x_0)=0$.

Tutti i punti a tangente orizzontale verranno detti punti stazionari o critici.

Non tutti i punti critici sono massimi o minimi locali!

$$f(x) = x^3$$

Il teorema di Rolle

Teorema di Rolle. Sia $f : [a,b] \rightarrow \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato, derivabile nell'intervallo aperto (a,b) e che verifica

$$f(a) = f(b)$$

allora esiste $x_0 \in (a, b)$ tale che $f'(x_0) = 0$.

• altrimenti almeno uno tra massimo e minimo di f,

Il teorema di Lagrange

Teorema di Lagrange. Sia $f : [a,b] \to IR$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a,b). Allora esiste $x_0 \in (a,b)$ tale che

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Alcuni corollari

Corollario.

Sia $f:[a,b] \to \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a,b) tale che

$$f'(x) = 0$$
 $\forall x \in (a, b)$

allora f(x) = c per ogni $x \in [a, b]$.

$$\exists x_j y \in [a_i b] t x i du f(x) = f(y) (x \neq y)$$

$$\exists x, y \in [a_1b] txi due f(x) = f(y) (x + y)$$

$$O \neq \frac{f(x) - f(y)}{x - y} = f(p) = 0 \text{ pe}[x, y] \subseteq [a_1b].$$

Alcuni corollari

Corollario.

Sia $f : [a, b] \to \mathbb{R}$ una funzione continua su un intervallo chiuso e limitato e derivabile nell'intervallo aperto (a, b) e tale che f'(x) > 0 per ogni $x \in (a, b)$. Allora se $x_1 < x_2$ segue

$$f(x_1) < f(x_2)$$

$$\forall x_1, x_2 \in [a,b], \quad x_1 < x_2, \Rightarrow \qquad f(x_1) - f(x_1) = f'(a) > 0 \quad p \in (x_1, x_2) \subseteq [a,b]$$

$$\xrightarrow{X_2 - X_1} 0 \quad \Rightarrow f(x_2) - f(x_1) > 0$$

