Exhibit D

Process R&D Department

Case 1:19-md-02875-RMB-SAK

Research and development report of Valsartan (SC-1141)

Research and development report of Valsartan (SC-1141)

Molecular Structure of Valsartan:

Exact Mass: 435.23

1. Project target

Optimization of the process of crude product and the purification of the final API with the objective to improve the total yield of the Valsartan and solve the safety problem for quench process.

2. Specification of the Valsartan

(1) Specification of crude Valsartan (SC-1141-A)

App	pearance	White crystal solid, and no visible contaminant		
Iden	tification	By FT-IR: The spectrum of the sample is concordant with that of the reference standard		
	Loss	≤3.0%		
Assa	y(HPLC)	≥80.0% (Anhydrous and solvent-free substance)		
Specif	ic rotation	17.0- 21.5		
D-v	alsartan	≤5.0%		
HPLC purity		≥98.0%		
Impurities(H PLC)	Other unknown impurities	≤0.5%		
ric)	Total impurities	≤2.0%		

(2) Specification of final API (SC-1141)

(SC-1141)

A	ppearance	White crystal solid, and no visible
		contaminant
Ide	entification	By FT-IR: The spectrum of the sample is concordant with that of the reference standard
	Loss	≤2.0%
Ass	say(HPLC)	98.0- 102.0% (Anhydrous and solvent-free substance)
Spec	rotation	17.0- 21.5
D	-valsartan	≤1.0%
Impurities(H PLC)	Other unknown impurities	≤0.1%
TLC)	Total impurities	≤0.3%
Residual Solvents (GC)	Ethyl acetate	≤0.5%

3. ROS of Valsartan

Research and development report of Valsartan 上的世紀初日四次四個公司 Shanghai SynCores Technologies, Inc.

Process R&D Department

4. R&D of the process of Valsartan

(SC-1141)

4.1. Process of SC-1141-A1

4.1.1 Problems in the original process

TEA HCl/Toluene/NaN3 was used in the original process and the reaction time is too long (40h). There are a lot of starting material remained in the reaction system (40.0-50.0% starting material remained). The recovered SM1 from the reaction mixture contained a lot of chiral impurity. Also, there are safety issues for the quench process of the NaN₃.

4.1.2 Process improvement plan

(1) The amount of solvent used, the equivalent of reagents, reaction temperature, and reaction time were optimized in this step. We found that using excess amount of TEA salt and NaN3 could improve the conversion rate from 60.0% to 90.0%, but the overall material cost will be higher. The details are shown below:

(a) Optimization of the mount of solvent and temperature

Table 1 optimization of the solvent and the temperature

-

Process R&D Department

Research and development report of Valsartan

上海兩班至到面及阿里公司 Shanghai SynCores Technologies, Inc.

-							
	Note						
	IPC	90 - 95°C, 20h A1 55.9% Int. 40%	90 - 95°C, 20h A1 28.9% Int. 36.3%	90-95°C, 20h A1 17% Int 71.2%	130- 135°C, 40h Reaction is very disorder	130-135°C, 14h A1 36.5% Int. 48.2%	130-135°C, 20h A1 50.6% Int.29.1%
	Sol.		DMF 6v	NMP	Λ9	Xylene	^9
Materials	Et ₃ NHCl	2.2	2.2	000	7. 1	2.2	
	NaN ₃ eq.	1.9	1.9	6.1		1.9	
	SM1	2.5		2.5		2.5	
Potot MO	Batch NO.		SC-1141-A-415-0 33	SC-1141-A-405-0 41		SC-1141-A-415-0	×
Date/	book	2010/09/2 9 415	2010/09/2 9 415	2010/10/1	405	2010/10/1	415

Research and development report of Valsartan

Process R&D Department

(SC-1141)

上面的ESG 20日本 ESG 20日本 ESG Shenghal SynCores Technologies, Inc.

A lot of foaming appeared in the reaction		
85-90°C (reflux, 20h (added 1V, No TBAC) A1: 10.37%, Int: 88.6% 85-90°C(reflux), 40h (Added H ₂ O 5V, Added TBAC) A1 16.9%, Int: 81.5%	95- 100°C, 20h A1 34.6%, Int. 63.5% 44h A1 39.4%, Int. 58.1% 68h A1 60.7%, Int. 32.1% 82h A1 62.3%, Int. 28.7%	90- 95°C, 20h A1 30.7%, Int. 66.4%
Toluene+H ₂ O 12v (1:1) TBAC(20%mol)	Dioxane 6v	Toluene (6v) NMP (1v)
2.2	2.2	2:2
1.9	1.9	1.9
2.5	2.5	2.5
SC-1141-A-405-0 40	SC-1141-A-405-0 42	SC-1141-GY-011-
2010/10/1 2 405	2010/10/1 4 405	2010/10/1 9 405

(b) Equivalent of SM1 and NaN3 used in the reaction and reaction temperature study

Table 2 Optimization of equivalent of SM1 and NaN3 and reaction temperature

Research and development report of Valsartan

Process R&D Department

Date/			Σ	Materials			
book	Batch NO.	SM1	NaN ₃	Et _s NHCI eq.	Sol.	IPC	Note
2010/10/1 4 4 011	SC-1141-GY-011-	2.5	ω Θ	2,2	Toluene 6v	90- 95°C, 20h A1 58.9%, Int. 31.6% 44h A1 70.3%, Int. 18.0% 96h A1 76.8%, Int. 8.0%	After 96h, more impurities are appeared
2010/10/1 4 4 011	SC-1141-GY-011-	2.5	1.9	4.4	Toluene 6v	90- 95°C, 20h A1 48.9%, Int. 43% 44h A1 61.4%, Int. 26.3% 96h A1 63.1%, Int. 25.3%	

'ea
Janes .
of
report
ment
evelop
ð
and
search

Process R&D Department

Research and development report of Valsartan	(SC-1141)
上面 和民活為國家 (

After 44h, more impurities are appeared	After 44h, more impurities appeared	
90-95°C, 20h A1 82.9%, Int. 10.8% 44h A1 86.1%, Int. 2.4%	90-95°C, 20h A1 73.1%, Int. 17.7% 44h A1 77.0%, Int. 0.4%	90- 95°C, 20h A173.9%, Int. 21.5%
Toluene 6v	Toluene 6v	Toluene 6v
4,4	9.9	3.3
3.00	5.7	2.9
2.5	2.5	2.5
SC-1141-GY-011-	SC-1141-GY-011-	SC-1141-GY-011-
2010/10/1 8 011	2010/10/1 8 011	2010/10/2 0 011

(c) Optimization of the reaction time

ı time		Note	
Table 3 Optimization of the reaction		IPC	
3 Optin		Sol.	٧.
Table	aterials	EtaNHCI	ed.
	Mai	NaN ₃	ed.
		SM1	à
	4040	NO N	5
) oteo	Date,	

Process R&D Department	(1) magnetic stirring (2) After 92h, Imp. raised, But the conversion rate did not increased than 44h.						
alsartan	But the						
Research and development report of Valsartan (SC-1141)	90-95°C, 20h A1 58.8% Int.38.1% 44h A1 77.2% Int.15.6% 92h A1 76.8% Int.8%						
	Tolue ne 6v						
Kesearch a	2.2						
F. Inc.	1.9						
a Technolog	2.5						
上海解跌药類研发槽 医巴西克斯氏细胞 医二二苯甲氏甲基甲氏甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	SC-1141-G Y-011-014						
The second secon	2010/10/2 5 011						

(2) The other catalyst systems were also used in this reaction and the system from Huahai(ZnCl₂/DMF/NaN₃) is the best conditions. The results shown below:

Table 4 Optimization of catalyst systems

) ote0				Materials			
book	Batch NO.	SMI	NaN ₃	Cat.	Sol.	IPC	Note
		oic	ed.	ed:	V.		
2010/09/25				DH.C	Toluene	90- 95°C. 20h. TLC	The section of reacent equivalent
415	SC-1141-A-415-027	2.5	1.9	2.2	09	No reaction	was quoted from
							literature
2010/09/27	SC 1141 A 415 000	ų C	0	NH ₄ Cl	DMF	130-135°C, 20h	
415	20-214-22-1411-06	.,	<i>y</i> :1	2.2	. ev	A1 17.6%, Int. 47.9%	

O

Research and development report of Valsartan

CHANGE STATE TO SHAND STATE SHAND STATE SHAND STATE SHAND STATE ST

Process R&D Department

(SC-1141)

			,	,			
Mechanical stirring was used	It is very thickness in the bottle. And it is hard to stirring						Hydrolysis of A1 was observed
130-135°C, 6h A1 14.0%, Int. 78.9% 130-135°C, 20h A1 30.8%, Int. 50.4% 130-135°C, 40h A1 40.6%, Int. 25.7%	90- 95°C, 20h A1<2% Int. 91.6%	90-95°C, 20h A1 28.9% Int. 36.3%	90- 95°C, 20h A1 55.9% Int. 40.0%	90- 95°C, 20h A1 57.1% Int. 40.5%	90- 95°C, 20h No reaction	90- 95°C, 20h A1 35.3% Int. 52.0%	90- 95°C, 20h A1 67.2% Int. 27.4%
DMF 6v	Toluene 6v	DMF 6v	Toluene 6v	Toluene 6v	Toluene 6v	DMF 6v	DMF 6v
ZnCl ₂	ZnCl ₂ 2.2	Et ₃ NHCI 2.2	EtsNHCi 2.2	Et ₃ NHCl 2.2 TBAI 0.05	Pyridine/ p-toluenesulfo nic acid 2.2	Anhydrous ZnCl ₂ 2.2	ZnS 2.2
1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9
2,5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
SC-1141-A-415-031	SC-1141-A-415-031	SC-1141-A-415-033	SC-1141-A-415-032	SC-1141-GY-011-017	SC-1141-GY-011-019	SC-1141-GY-011-020	SC-1141-GY-011-021
2010/09/28	2010/09/28	2010/09/29	2010/09/29	2010/10/26	2010/10/27	2010/10/28	2010/10/29

Document 988-4 PageID: 22073

上編版表寫個間沒有概念已 Shanghai SynCows Technologies, inc.

Research and development report of Valsartan

Process R&D Department

(SC-1141)

ahai	of A1	1 was	
From Huahai	Hydrolysis of A1	A lot of SM1 was	
130-135°C, 20h A1 77.0% Int. 4.1%	130- 135°C, 20h A1 2.81% Int. 51.9%	80-83°C, 20h Int.57.3%	130- 135°C, 20h No A1 was observed in the reaction mixture
DMF 1v	DMF 6v	ACN 6v	N-Methyli midazole 6v
Anhydrous ZnCl ₂ 3.0	Fe ₂ O ₃	SiC14 2.2	Et ₃ NHCI 2.2
1.5	1.9	1.9	1.9
2.5	2.5	2.5	2.5
SC-1141-GY-011-028	SC-1141-GY-011-025	SC-1141-GY-011-024	SC-1141-GY-011-026
2010/11/02	2010/11/01 011	2010/11/01 011	2010/11/01

(3) Try to hydrolyze the SM1 first, and then react with NaN3 to increase conversation rate and reduce isomer. But the conversion rate of ring formation at acid condition is lower than before, so this propose is fail. The results shown below:

Table 5 Tetrazole Reaction of Hydrolysis Acid of SM1

Date/			Σ	Materials			
book	Batch NO.	SM1	NaN ₃	NaN ₃ Et ₃ NHCl	Sol.	IPC	Note
		ක්	eď.	ed.	,		
2010/10/1	000000000000000000000000000000000000000						
7	SC-1141-A-413-0	2.5	0	22	Toluene	90- 95°C, 20h	
415	39	i	}	1	0v	A1 33.4% Int.53.7%	
2010/10/1	SQ 1141 OX 011					95- 100°C, 20h	
∞	007	2.5	1.9	2.2	H ₂ O	No reaction, a lot of SM1	
011						remained.	

 \Box

Process R&D Department	The isomer has no difference between this batch with material
Research and development report of Valsartan P1 (SC-1141)	130-135°C, 20h A1 77.9%
lopment repor (SC-1141)	DMF 1v
nd developr	Anhydrous ZnCl ₂
search a	1.5
V (1111)	2.5
上海製胜药類組灰存觀及 Shanghai SymCores Technologies, Inc.	SC-1141-GY-011- 029
H A Shang	2010/11/0 3 011

also there are some products lost during the filtration process. In order to resolve the safety issue, we tried to using the NaNO2 to (4) ZnCl₂/DMF/NaN₃ system provided by Huahai, work up at 80-100°C and filtered out the unreacted NaN₃ has safety issues; quench the process, the results are as follows:

Note Table 6 Optimization of Post-processing of ZnCl₂ Process IPC Sol. ZnCl2 Materials NaN3 ęġ. SM1 å Batch NO. Date/ book

CONFIDENTIAL INFORMATION

Research and development report of Valsartan

Process R&D Department

Post-processing process: (1) Add toluene(5v) and 10%NaNO ₂ solution, Temp at 20-30°C. Slowly add HCl, Adjust pH to 1-2, NaN ₃ was confirmed to be quenched completely, layered, the organic phase is hydrolyzed by alkali. (2) Adjust pH=1-2, filter the	product. (3) EA used for crystallization of	crude product.
130 - 135°C, 20h A1 68.0% API 23.7% Int. 2.0% Stereo isomer match the specification Crude yield: 74.0%		
DMF 1.5v	•	
1.5 H ₂ O (2.0eq)		
3.0		
10.0		
SC-1141-ZJ-010-		
2010/11/2 9 010		

H

上海戰胜初類研疫階級公司 R Shanghai SynCoys Technologies, Inc.

Research and development report of Valsartan

Process R&D Department

(SC-1141)

4	70						
EA use for crystallization of	crude product, the Yield is	70.0%, The yield of	re-crystallization by EA is	60.0% (relative to the SM1),	Content of stereoisomer within	the specifications of the final	product.
		130- 135°C 20b	A173.0% API 18.0%	Int 3.3%	O / per		
			DMF	1.5v			
			1.5				
			3.0				
			50.0				
			SC-1141-GY-011-	/90			
		2010/12/0	7	011			

4.1.3 Process Stability Study

ZnCl₂/DMF/NaN₃ stress tests study

			Table 7:	ZnCl ₂ and othe	r Zn catalys	Table 7: ZnCl ₂ and other Zn catalyst – stress test study	
Date/				Materials			
book	Batch NO.	SM1	SM1 NaN3	Cat.	Sol.	IPC	Note
		oio	ed.	ed.	'		
						100 10101	1 1 1 4 5 1
2010/11/17	2010/11/17 SC-1141-GY-011-0	(4	ZnO	DMF	130-135 C, 20h	Using ZnO as catalyst
011	41	2.5	3.0	5.	Α.	No reaction. Partial SM1 is	since ZnCl ₂ contained
						hydrolyzed	some ZnO

14

上海製胜药加朗灰制服公司 Shanghai SynCores Technologias, Inc.

Research and development report of Valsartan

Process R&D Department

(SC-1141)

		-	-				
2010/11/1 8 011	SC-1141-GY-011-	2.5	3.0	ZnCl ₂ 1.5 H ₂ O 2.0	DMF 1v	130-135°C, 20h A1 68.8% API 22.2% Some SM1 hydrolyzed	The hydrolyzed product to form the Valsartan increased, there are no change for the other
2010/11/1	SC-1141-ZJ-010-0 16	25.55	3.0	ZnCl ₂	DMF 1v	140-145°C, 20h A1 57.3% API 28.1% 26h A1 53.5% API 30.4%	Stress test of temperature 140-145°C. The degree of hydrolysis of product is increase, continue reaction, the impurities
2010/12/1 0 011	SC-1141-GY-011-	2.5	3.0	ZnCl ₂	DMF 1v	130-135°C, 20h A1 72.6% API 16.6% Int. 3%	Stop stirring

4.1.4 Optimized process

(1)Equivalent of SM used in the process

	urity
	e B
	Source
	ss Eq.
	Mole
	Amount
	Mw
7	punoduo

15

上海關底的類形 医囊膜 公司 Research and development report of Valsartan Shanghai SynCores Technologies, Inc.

(SC-1141)

Process R&D Department

	1111					
SM1	406.52	26.0g	0.064mol	1.00	Prepared in Huahai	>95.0%
NaN ₃	65.01	12.4g	0.191mol	3.00	domestic supplier	≥95.0%
ZnCl ₂	136.30	13.0g	0.095mol	1.50	Prepared in Huahai	>95.0%
DMF	N/A	39mL	N/A	1.5v	domestic supplier	>95.0%
NaNO ₂	N/A	13.0g	N/A	N/A	domestic supplier	>95.0%
MTBE	N/A	65mL	N/A	N/A	domestic supplier	>95.0%

(2)Operation procedure

上海與底钙湖研放韓麗宏門 Shanghai SynCores Technologies, inc.

Research and development report of Valsartan

Process R&D Department

4.2.1 The issues of original process

The stereoisomer content of the original process reaction mixture was high, about 8.0-10.0%. Also, the usage of base KOH was about 8 equivalent. Also, it has the viscosity problem for the crystallization reaction mixture with EtOAc.

4.2.2 The improvement plan to address about issues

Screening different base, acid for hydrolysis, optimization of equivalent of reagent selected for the hydrolysis conditions, including the Furthermore, in consideration of minimization of the stereoisomer content and control the cost, the NaOH will be selected for the hydrolysis process reactant equivalent, reaction temperature and final crystallization conditions.

16

上海轉在西坡田灰樓膜公司 Shanghal SynCoves Techinologies, Inc.

Research and development report of Valsartan

Process R&D Department

			Ľ	able 8 Optimize th	Table 8 Optimize the hydrolysis conditions	
Doto!			Mat	Materials		
Date/ hook	Batch NO.	A1	Cat.	Sol.	IPC	Note
NO.		sio	ed.	٧.		
2010/11/1				Tol.	40- 45°C. 2h	
×	SC-1141-GY-011-	5.0	Lioh	10v	Stereoisomer: 4.8%	Stereoisomer: 2.9%
011	039		2.0	H_2O	Partial A1 was un-reacted	
				10v		
2010/11/1				Tol.		
0 0	SC-1141-GY-011-	Q V	LiOH	10v	40-45°C, 3h	
0 17	046	0:0	2.5	H_2O	Stereoisomer: 6.8%	
011				10v		
2010/11/1				Tol.		
0.10/11/1	SC-1141-GY-011-	ý	ГіОН	10v	40-45°C, 3h	
7 10	045); ;	3.0	H_2O	Stereoisomer: 6.7%	
110				10v		
2010/11/1				Tol.		Amount of stereoisomer was
0 0	SC-1141-GY-011-	v	LiOH	10v	20-25°C, 18h	lower, lower temperature could
۷ 1	044	0.0	2.0	H ₂ O.	Stereoisomer: 5.7%	help reduce the formation of
110				10v		Stereoisomer
2010/11/2				ToI.		
2/11/2	SC-1141-GY-011-	· ·	LiOH	10v	0-5°C, 60h	Standoloman 2 60/
. i	048	2.5	2.0	H_2O	Stereoisomer: 4.9%	Section of the sectio
110				10v		

Research and development report of Valsartan 上海以底药300次四层交回 Shanghai SynCones Technologies, Inc.

Process R&D Department

(SC-1141)

2010/11/22	SC-1141-GY-011-0	5.0	K ₂ CO ₃	H ₂ O 10v	80- 85°C, 60h Stereoisomer: 12.6%	Stereoisomer: 3.54% Stereoisomer content increased
2010/11/24	SC-1141-GY-011-0 51	5.0	CaCl ₂ (10.0) NaOH (2.0)	IPA/H ₂ O(7:3) 10v	20- 25°C, 48h Most of the material A1 was not hydrolyzed	
2010/11/25	SC-1141-GY-011-0 52	5.0	HCI 8.0	PA/H ₂ O(5:1) 10v	80- 85°C, 20h Most of the A1 was not hydrolyzed, an unknown impurity was formed	
725	2010/11/25 SC-1141-GY-011-0 011 53	5.0	ZnS 2.5	DMF/H ₂ O(10:1) 10 v	130- 135°C, 20h Most of the A1 was not hydrolyzed, more impurities was found	
2010/11/25	SC-1141-GY-011-0 54	5.0	H2SO4 5.0	DMF/H ₂ O(3:2) 10 v	80- 85°C, 72h 95- 100°C	
2010/11/30	SC-1141-GY-011-0 57	2.0	NaOH 2.0	H ₂ O/Tol.	-10 to 0°C,72h A: 75.9% A1: 20.7%	
/30	2010/11/30 SC-1141-GY-011-0 011 58	3.0	LiOH 3.0	H ₂ O/Tol.	0-5°C,72h A: 90.2% A1: 1.2% Stereoisomer: 4.0%	

Document 988-4 PageID: 22082

Document 988-4	
PageID: 22083	
PageID: 22083	

19

Research and development report of Valsartan	(SC-1141)
上海與胜药須爾及合服公司 Shanghai SynCores Technologies, bu.	

(SC-1141)

Process R&D Department

20-25°C,60h A: 71.2% A1: 19.4%	80-85 °C,4h A: 58.5% A1: 21.3% Amide hydrolyzed byproduct: 10.0%	80- 85 °C,4h A: 56.4% · A1: 30.5% Amide hydrolyzed byproduct: 4.9%	60- 65 °C,20h A: 54.6% A1: 34.1% Amide hydrolyzed byproduct: 2.8% 60- 650C,48h A: 70.6% A1: 10.2% Amide hydrolyzed byproduct: 11.2%	-10 to 0 °C,24h A: 82.6% A1: 11.4% 72h A: 96.8% A1: 0.2%
H ₂ O/THF	07Н	H ₂ O/dixane	H ₂ O/dixane	H ₂ O/Acetone
LiOH 2.0	3N HCI 6.0	3N HCI 6.0	3N HCl 6.0	LiOH 3.0
2.0	6.0	6.0	6.0	3.0
SC-1141-GY-011- 059	SC-1141-GY-011-	SC-1141-GY-011-	SC-1141-GY-011- 062	SC-1141-GY-011-
2010/11/3 0 011	2010/12/0 1 011	2010/12/0 1 011	2010/12/0 1 011	2010/12/0 6 011

		Note	
process		Yield	
ı of crystallizatior	ials	Sol	٧.
Table 9 Optimization of crystalli	Material	J ₀ L	>
Pable 9		A	où.
i		Batch NO.	
	77.00	Date/	4000

上級戰民可報研及管腦公司 Shanghal SynCores Technologies, ho.

Research and development report of Valsartan

Process R&D Department

			·····	,
Viscous but could be stirred	Viscous but could be stirred	Not viscous, stirred easily	Viscous but could be stirred	Viscous, difficult to stir
Yield: 79.3%	Yield: 74.3%	Yield: 72.1%	Yield: 80.6%	Yield: 82.7%
7V EA	9V EA	7V EA	7V EA	7V EA
s°C	5°C	10°C	-10°C	-15°C
S	'n	S.	5	5
2010/12/08 SC-1141-A-415-04 415 1	2010/12/09 SC-1141-A-415-04 415 2	2010/12/10 SC-1141-A-415-04 415 3	2010/12/10 SC-1141-A-415-04 415 4	2010/12/10 SC-1141-A-415-04 415 \$
2010/12/08	2010/12/09	2010/12/10 415	2010/12/10 415	2010/12/10

4.2.3 Optimized process

(1)Ratio of reagents used in the process

Compound	Mw	Amount	Moles	Eq.	Source	Purity
A1	449.55	28.8g	0.064mol	1.00	prepared in house	N/A
NaOH	40.00	7.7g	0.192mol	3.00	domestic supplier	>95.0%
6N HCI	N/A	40mL	N/A	N/A	prepared in house	>95.0%
EA	N/A	580mL	N/A	N/A	domestic supplier	>95.0%

21

上海縣群药線研菸海縣公司 Reseal Shanghal Synthones Fachmologies, Inc.

Research and development report of Valsartan

Process R&D Department

(SC-1141)

>95.0%	>95.0%
domestic supplier	domestic supplier
N/A	N/A
N/A	N/A
65mL	13.0g
N/A	N/A
MTBE	Anhydrous MgSO4

(2)Process description

Ī.	1. Add A1 on	Add A1 organic phase to the 3 neck round bottom flask (RBF)
61	2. Add 4.6%	Add 4.6% aqueous NaOH (7.7 g of NaOH dissolved into 150 mL water)
ĸ,	3. Stir for 15	Stir for 15 min, while maintain the temperature between 20-30 °C
4	4. Settle for 3	Settle for 30 min. and maintain the temperature between 20-30 °C
5.	5. Separate th	Separate the aqueous phases and combine the rag layer to the aqueous phases
6.	6. Add aqueo	Add aqueous phase to the 3 neck RBF,
7.	7. Add MTB	Add MTBE <u>65 mL</u> to the RBF
× ×	8. Stir for 15	Stir for 15 min, and maintain the temperature between 20-30 °C
9.	9. All the rea	All the reaction mixture to settle for 30 min. and maintain the temperature between 20-30 °C
Ĕ	10. Separate th	Separate the aqueous phases and combine the rag layer to the organic phases
	11. Wash the o	Wash the organic phase with 26 ml 4.6% NaOH solution.
17	12. Combine ti	12. Combine the aqueous phase, discard the organic phase
=	13. Add the aq	13. Add the aqueous phase to a clean 3 necked RBF
17	14. Stir for 24	Stir for 24 hours and maintain the temperature between 20-25 °C
17	15. In process control, until the A1≤0.5%	In process control, test the remaining A1 to A1≤0.5%(if not, continue the reaction extra hour and test the remaining A1, repeat the process until the A1≤0.5%
<u> </u>	16. Slowly add	Slowly adding the 6N HCl 40 mL to the reaction and maintain the temperature between 20-25 °C
<u> </u>	17. Add EA 16	17. Add EA 160 mL to the reaction mixture
18	18. Stir for 15	Stir for 15 min. and maintain the temperature between 20-30 °C
15	19. All the rea	19. All the reaction mixture to settle for 30 min, and maintain the temperature between 20-30 °C
7	20. Separated	20. Separated out the aqueous phase, and washed the aqueous phase with 100 mL EA once

22

广播製 胜 码 播研 灰 每 服 公司 Shanghai SynCores Technologies, Inc.

Research and development report of Valsartan

Process R&D Department

(SC-1141)

21.	21. Combine the organic phase
22.	22. Add anhydrous MgSO4 13.0 g to the organic phase
23.	23. Stir for the 30 min maintain the temperature between 20-30 °C
24.	24. Filter out the MgSO4
25.	25. Rotovap the filtrate at 40-45 C, vacuum at -0.098Mpa, Obtained the dried Valsartan 26.5 g, external assay, 85.0-90.0%, yield is about
	80.0-85.0%
26.	26. Re-crystallization of the dry Valsartan using 185 mL of EA at the following condition, dissolved at 40-48 °C, crystallize the -5 °C to 0 °C.
	Filtered out the solid
27.	27. Dry the wet solid at (40-45 °C), obtained the crude valsartan 23.0 g, external standard assay showed 85.0-90.0%, Yield is about 70.0-75.0%
28.	28. Re-crystallize the crude valsartan using 185 ML EA at the condition of (40-48 °C dissolve, -5 to 0 °C crystallization)
29.	29. Dry the product Valsartan at (40-45 °C), obtained the product 17.9g, external assay show the content is 97.0- 100.0%, Yield 60.0-65.0%

5 Process verification with 3 lab batches to study the process stability

Posts (Mate	Materials				·
Date/	Batch NO.	SMI	NaN ₃	ZuCl2	DME.	IPC	Note	
DOOR		si o	ed.	ed.	Λ.			
						Yield for crude Valsatan: 62.5%	Stereoisomer in the crude:	,
2010/12/30	2010/12/30 SC-1141-GY-011-0	0 46	·	•4	7	Purity of the crude Valsartan	1.27%	
011	82	0.02	3.0	C.I	C.1	99.02%	Stereoisomer in the final	
						Final product purity: 99.73%	product: 0.43%	
						Yield for crude Valsatan: 65.7%	Stereoisomer in the crude:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2010/12/31	2010/12/31 SC-1141-GY-011-0	Ç.	c	Ų	-	Purity of the crude valsartan:	1.06%	
011	84	0.07	3.0	CI	C:1	99.02%	Stereoisomer in the final	
						Final product purity: 99.80%	product: 0.31%	

23

Document 988-4
PageID: 22087

Jan. 20, 2011

Stereoisomer in the crude: 2.36% Stereoisomer in the final product: 0.56%
Yield for crude Valsatan: 64.9% Purity of the crude valsartan: 98.89% Final product purity: 99.73%
2.5
1.5
3.0
25.0
SC-1141-GY-011-0 88

2010/12/31

Process R&D Department

Research and development report of Valsartan (SC-1141)

上面以底版個明次開展公司 Shanghai SynCores Technologies, Inc.

6 Future improvement

(1) The synthesis process of crude valsartan and the purification process including the solvent system need to be further optimized at the pilot scale.

Shanghai SynCore Technologies, Inc.