$s^2=rac{\sum{(x-ar{x})^2}}{n-1}$

$rac{s^2}{n}=rac{\sum{(x-ar{x})^2}}{n-1}$

$$s^2 = rac{\sum (x - ar{x})^2}{n - 1}$$

$$\sigma^2 = rac{\sum (x-\mu)^2}{N}$$

Генеральная Дисперсия

$$s^2=rac{\sum (x-ar{x})^2}{n-1}$$

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

 $oldsymbol{\eta}$ - Размер выборки

 $s^2=rac{\sum{(x-ar{x})^2}}{ar{z}}$

Генеральная Дисперсия

 $x^2=rac{\sum{(x-\mu)^2}}{N}$

 $oldsymbol{\eta}$ - Размер выборки

Генеральная Дисперсия

$$s^2 = rac{\sum (x - ar{x})^2}{n - 1}$$

$$\sigma^2 = rac{\sum (x-\mu)^2}{N}$$

 $oldsymbol{\eta}$ - Размер выборки

Генеральная Дисперсия

$$s^2=rac{\sum (x-ar{x})^2}{n-1}$$

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

 $oldsymbol{\eta}$ - Размер выборки

Генеральная Дисперсия

$$s^2=rac{\sum (x-ar{x})^2}{n-1}$$

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

 $oldsymbol{\eta}$ - Размер выборки

Генеральная Дисперсия

 $s^2=rac{\sum (x-ar{x})^2}{n-1}$

 $\sigma^2 = rac{\sum (x-\mu)^2}{N}$

 $oldsymbol{\eta}$ - Размер выборки

Генеральная Дисперсия

$$s^2=rac{\sum (x-ar{x})^2}{n-1}$$

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

 $oldsymbol{\eta}$ - Размер выборки

$$s^2=rac{\sum (x-ar{x})^2}{n-1}$$

 $oldsymbol{n}$ - Размер выборки

$$s = \sqrt{s^2} = \frac{\sum (x - x)^2}{n - 1}$$

 $oldsymbol{n}$ - Размер выборки

Выборочное Стандартное Отклонение Выборочная Дисперсия

$$s' = \sqrt{s^2} = rac{\sum (x - ar{x})^2}{n - 1}$$

 $oldsymbol{\eta}$ - Размер выборки

 μ

 μ σ

Параметры Совокупности

 $rac{\mu}{\sigma}$

Параметры Совокупности

 μ

 $ar{x}$ Параметры Совокупности $ar{x}$ $ar{\omega}$

 $ar{x} \ S$

Статистики Параметры Совокупности $ar{x}$

Считаем

Статистики $ar{x}$ μ σ

Считаем Чтобы оценить

Статистики Параметры Совокупности $ar{x}$ $ar{s}$ $ar{\sigma}$

Статистики Параметры Совокупности
Тараметры Совокупности

Генеральная Совокупность

Параметры Совокупности

 $rac{\mu}{\sigma}$

Статистики

 $ar{x}$

5

Выборка

Генеральная Совокупность

Статистики

Параметры Совокупности

 $ar{x}$

 μ

S

O

Генеральная Совокупность

Параметры Совокупности

 σ

Выборка

Статистики

 $ar{x}$

S

Генеральная Совокупность

Параметры Совокупности

 σ

Выборка

Генеральная Совокупность

Статистики

Параметры Совокупности

 $ar{x}$

 μ

S

O

Выборка

Генеральная Совокупность

Статистики

Параметры Совокупности

 $ar{x}$

μ

5

 σ

$$s^2 = rac{\sum (x - ar{x})^2}{n - 1}$$

$$\sigma^2 = rac{\sum (x-\mu)^2}{N}$$

$$s^2 = rac{\sum (x - ar{x})^2}{n - 1}$$

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

$$s^2=rac{\sum{(x-ar{x})^2}}{n-1}$$

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

Несмещенная оценка дисперсии

Генеральная Дисперсия

$$D = \frac{\sum (x - \mu)^2}{N}$$

Стандартное Отклонение

 σ

Генеральная Дисперсия

$$\sigma^2 = D = rac{\sum (x-\mu)^2}{N}$$

Data Science

У них также, видишь?:)

Генеральная Совокупность VS Выборка

Генеральная Совокупность VS Выборка
Параметры Совокупности VS Статистики

Генеральная Совокупность VS Выборка Параметры Совокупности VS Статистики Оценка Параметров с помощью Статистик Intro - Unno (ссылка в описании)