가상현실

(2024.5.7.)

이종원

(jwlee@sejong.ac.kr)

VR Technology

^{*} This lecture is prepared based on the lecture of Prof. Mark Billinghurst at University of South Australia

기술을 이용한 감각 시뮬레이션

Visual

Simulation

- 출력 시뮬레이션
 - 예: 실제 감각을 시뮬레이션 함
- 출력을 장치에 매핑
 - HMD로 그래픽 출력
- 장치를 사용하여 감각 자극
 - HMD는 눈을 자극

가상현실 구현 주요 기술

- 디스플레이
 - 시각 디스플레이: 시각적 감각 자극
 - 오디오/촉각 디스플레이: 청각/촉각 자극
- 추적
 - 시점 변경
 - 사용자 입력
- 입력 장치
 - 사용자 상호작용 지원

시각 디스플레이 (Visual Display)

몰입 경험 생성

- Head Mounted Display (HMD)
 - 시각 몰입
- 프로젝터/대형 스크린
 - 머리/몸 몰입
- 미래 기술 방향
 - 신경 이식
 - 콘택트 렌즈 디스플레이 등

HMD 기본 원리

• 가상 환상을 생성하기 위해 광학장치가 포함된 디스플레이 사용

HMD 주요 속성

- 렌즈
 - 초점 거리, 시야 (FOV)
 - 동공 사이 거리
- 인간공학
 - 크기, 무게
 - 착용성

- 디스플레이
 - 해상도, 대비
 - 파워, 밝기
 - 리프레시 비율

시야 (Field Of View: FOV)

- 단안 FOV: 한쪽 눈의 동공에서 측정된 보여진 이미지의 각 거리 (일반적으로 각도로 표시)
- 양안(or 입체) FOV: 두 눈에 동시에 보여지는 이미지 부분의 각 거리

- 총 FOV: 양 눈에 보여지는 이미지의 각 거리
- FOV는 수평, 수직 또는 대각으로 측정 할 수 있음

안 (Ocularity)

- 단안 (Monocular) HMD 이미지를 한 눈에 보여줌
- Biocular 동일한 이미지를 양 눈에 보여줌

• 양안/입체 (binocular/stereoscopic) – 각각의 눈에 적합한 다른 이미지를

보여줌

보여줌

In the state of the

Monocular Biocular Binocular

동공사이거리 (Interpupillary Distance: IPD)

- IPD는 사용자의 두 눈 사이의 수평 거리
- IPD는 양안 시스템의 두 광축 사이의 거리

Gender	Sample size	Mean	Standard deviation	Minimum	Maximum
Female	1986	61.7	3.6	51.0	74.5
Male	4082	64.0	3.4	53.0	77.0

렌즈 광학 왜곡

• HMD 광학 장치는 이미지를 왜곡 함

왜곡 종류

왜곡 보정 방법

- 이미지를 사전에 왜곡
- 픽셀 기반 왜곡
- 셰이더 프로그래밍 사용

https://m.blog.naver.com/PostView.nhn?blogId=pamtek&logNo=220683130003&proxyReferer=https%3A%2F%2Fwww.google.com%2F

HMD Design Tradeoff

- 해상도 vs. 시야(FOV)
 - 시야가 증가함에 따라 고정 픽셀의 해상도가 감소 함
- 크기, 무게 및 파워와 다른 모든 요소 비교

PC-Based vs. Standalone VR Displays

Google Cardboard

- 2014년 출시 (Google 20% 프로젝트)
- 5백만 개 이상 사용됨
- 사용하기 쉬운 사용자 개발 툴 제공

다양한 HMD

- The best VR Headset for 2024
 - https://www.cnet.com/tech/gaming/best-vr-headsets/

Valve Index

HP Reverb G2

- VR Headset Comparison Table 2023
 - https://www.threesixtycameras.com/vr-headset-comparison-table/

Oculus Quest3

프로젝션/대형 디스플레이 기술

- 방 크기 프로젝션
 - CAVE, 다중 벽 투영 환경
- 돔 프로젝션
 - 반구형/구형 디스플레이
 - 머리/신체 전부

- 차량 시뮬레이터
 - 창에 시뮬레이션 된 이미지 표시

CAVE

- 1992 ELV University of Illinois-Chicago에서 개발
- 다중 벽에 스테레오 프로젝션
 - 머리 움직임 추적

C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon and J. C. Hart. "The CAVE: Audio Visual Experience Automatic Virtual Environment", Communications of the ACM, vol. 35(6), 1992, pp. 64–72.

전형적인 CAVE 설정

- 4면
- 후면 투사 스테레오이미지

다양한 CAVE

Wisconsin CAVE

https://youtu.be/mBs-OGDoPDY

Caterpillar's CAVE VR System

https://youtu.be/r9N1w8PmD1E

스테레오투영

- 액티브 스테레오
 - 액티브 셔터 안경
 - 시간 동기화된 신호
 - 더 밝은 이미지
 - 고가
- 패시브 스테레오
 - 편광 이미지
 - 두 대의 프로젝터 (한 대/눈)
 - 저렴한 안경 (파워 필요 없음)
 - 저해상도/ 어둡게 보임
 - 저가

차량시뮬레이터

- 가상현실 디스플레이와 차량 결합
 - 창에 디스플레이 함
 - 햅틱 피드백을 위한 모션베이스
 - 오디오 피드백
- 물리적 차량 제어
 - 핸들, 비행 제어 스틱 등
- 통합적인 차량 시뮬레이션
 - 비상 상황, 일반적인 조작 등
 - 무기 조작
 - 교육 시나리오

Boeing 787 Flight Simulator

https://youtu.be/3iah-blsw_U

햅틱/촉각디스플레이 (Haptic/Tactile Displays)

햅틱피드백

- 사실성 대폭 향상
- 손과 손목이 매우 중요함
 - 고밀도 터치 감각

• 두 종류의 피드백

- 터치 피드백
 - 질감, 온도 등의 정보
 - 사용자 저항에 저항하지 않음
- 힘 피드백
 - 무게, 관성 등의 정보
 - 사용자의 동작에 적극적으로 저항

Active Haptic

- 적극적으로 움직임에 저항
- 주요 속성
 - 힘에 대한 저항력
 - 응답률
 - 자유도(DOF)
 - 지연시간

Phantom Omni

- 스타일러스 입력과 햅틱 출력 결합
- 6 DOF 햅틱 피드백

Haptic Device

Haptic Glove

- 다양한 햅틱 글로브가 존재함
- 일반적으로 햅틱 피드백을 제공하기 위해 기계 장치가 사용됨

Haptic Gloves: Fluid Reality

Passive Haptics

- 시스템에 의해 제어되지 않음
 - 실제 소품 사용

- 장점
 - 저렴함
 - 정확함
- 단점
 - 역동적이지 않음
 - 제한된 사용

UNC Being There Project

http://www.cs.unc.edu/Research/stc/Projects/beingthere.html

Haptic Feedback Interface

- 목표: 피부 촉각 수용체 자극
- 다양한 기술 사용
 - Air bellows
 - Jets
 - Actuators (commercial)
 - Micropin arrays
 - Electrical (research)
 - Neuromuscular stimulation (research)

진동 촉발 장치

• 진동 촉각 피드백은 많은 기기에 통합되어 있음

진동 촉각 피드백 프로젝트

Navy TSAS Project

TactaVest with Tactor Locations

VIRTE Immersive VR System

Lindeman, R. W., Page, R., Yanagida, Y., Sibert, J.L. (2004). Towards Full-body Haptic Feedback: The Design and Deployment of a Spatialized Vibrotactile Feedback System, Proc. of ACM Virtual Reality Software and Technology (VRST) 2004, pp. 146-149

HaptX Glove

https://youtu.be/4K-MLVqD1_A

촉각 사진기

https://youtu.be/6wJ9Aakddng

오디오 디스플레이 (Audio Displays)

Audio Display

- Spatialization vs. Localization
- Spatialization: 공간의 한 지점에서 나오게 처리하는 기술
 - 기술 관점
- Localization: 사람이 사운드 소스의 위치를 식별할 수 있는 능력
 - 사람 관점
 - 사람에 따라 차이가 존재함

Audio Display 특징

표현 방식 특징

- 채널수
- 사운드 스테이지
- 마스킹
- 증폭

논리적 특징

- 소음 공해
- 사용자 이동성
- 추적 장치와 상호작용
- 통합
- 이식성
- 처리량
- 안전
- 비용

Audio Displays: Head-worn

Head-Related Transfer Functions (HRTFs)

• 알려진 위치에 있는 소리가 고막에 도달하는 방식을 정리한 함수

HRTFs 측정

- 마네킹 또는 사람의 귀에 마이크 삽입
- 정해진 위치에서 사운드 재생
- 반응 기록

How 3D Audio Work?

https://youtu.be/fpcDXdkJ7vU?si=8ibQKc09rnCswliG (21. 05, 05:03)

Q/A