MATH 137 Fall 2020: Practice Assignment 9

Q01. Find the intervals over which the following functions are increasing/decreasing.

(a)
$$f(x) = x^4 - 8x^2$$

Solution. We take $f'(x) = 4x^3 - 16x = 4x(x^2 - 4) = 4x(x - 4)(x + 4)$. The critical points are $x = 0, \pm 4$. Since f' is an odd-degree polynomial with a positive leading coefficient and linear factors, we can say that f is decreasing on $(-\infty, -4) \cup (0, 4)$ and increasing on $(-4, 0) \cup (4, \infty)$.

(b)
$$f(x) = \frac{1}{x^2 - 1}$$

Solution. We take $f'(x) = -\frac{2x}{(x^2-1)^2} = -\frac{2x}{(x-1)(x+1)}$ and find critical points $x = 0, \pm 1$. Analyzing the signs of the factors of f':

	$(-\infty, -1)$	(-1,0)	(0,1)	$(1,\infty)$
-2x	+	+	_	_
(x - 1)	_	_	_	+
(x+1)	_	+	+	+
$\overline{f'}$	+	_	+	_

Then, f is decreasing on $(-1,0) \cup (1,\infty)$ and increasing on $(-\infty,-1) \cup (0,1)$.

(c)
$$f(x) = e^x + e^{-x+1}$$

Solution. We have $f'(x) = e^x - e^{-x+1}$. This is defined on \mathbb{R} , so we solve f'(x) = 0:

$$f'(x) = 0$$

$$e^{x} = e^{-x+1}$$

$$x = -x + 1$$

$$x = \frac{1}{2}$$

Therefore, our only critical point is at $x=\frac{1}{2}$. For large positive x, the e^x term dominates and for large negative x, the e^{-x} term dominates. It follows that f is decreasing on $(-\infty,\frac{1}{2})$ and increasing on $(\frac{1}{2},\infty)$.

(d)
$$f(x) = x^4 - 4x^3 + 16x - 7$$

Solution. Taking the derivative, $f'(x) = 4x^3 - 12x^2 + 16 = 4(x+1)(x-2)^2$, and the critical points are x = -1, 2.

Since $(x-2)^2$ is always non-negative, it does not affect the sign of f'. From the sign of (x+1), we can say f is increasing on $(-\infty, -1)$ and increasing on $(-1, \infty)$.

Q02. Show that if f is increasing and differentiable on (a,b) then $f'(x) \geq 0$ for all $x \in (a,b)$.

Hint: You may wish to use the result

If
$$g(x) > 0$$
 for all $x \neq a$ and $\lim_{x \to a} g(x) = L$, then $L \geq 0$.

Proof. Let f be an increasing and differentiable function on (a, b), and let $x \in (a, b)$.

Since f is differentiable, f'(x) exists and is equal to $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.

Since the limit exists, the one-sided limits exist and are equal. Consider the right-handed limit. Then, h > 0 and x + h > x. Because f is increasing, f(x + h) > f(x) and f(x + h) - f(x) > 0. Therefore, the Newton quotient is positive for all h, so the limit, i.e., the derivative, is positive.

Q03. Suppose f is a differentiable function that satisfies f(1) = 3 and $2 \le f'(x) \le 7$. Use the Bounded Derivative Theorem to find an interval for f(3).

Solution. Since the lower bound of f' is 2, over a distance 3-1=2, f can increase by at least 4. Likewise, as the upper bound of f' is 7, over a distance 2, f can increase by at most 14. Therefore, we have the range $f(3) \in [3+4,3+14] = [7,17]$.

Q04. Assume f is a differentiable function on \mathbb{R} .

(a) Prove that if $|f'(x)| \leq M$ for all $x \in \mathbb{R}$, then $|f(x) - f(y)| \leq M|x - y|$ for all $x, y \in \mathbb{R}$. [Functions with this property are called Lipschitz].

Proof. Let f be differentiable and let x, y, and $M \ge 0$ be real numbers. Suppose $|f'(n)| \le M$, that is, $-M \le f'(n) \le M$ for all n.

Then, f(y) is at most f(x) + M|x - y| and at least f(x) - M|x - y|.

That is,
$$f(y) - f(x) \le \pm M|x - y|$$
, or, $|f(x) - f(y)| \le M|x - y|$.

(b) Is the converse of part (a) true? Prove it or give a counterexample.

Solution. Yes. Suppose $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in \mathbb{R}$. Then,

$$|f'(x)| = \lim_{h \to 0} \frac{|f(x+h) - f(x)|}{|h|} \le \frac{M|x+h-x|}{|h|} = M$$

since |x| is continuous.

Q05. Let $f(x) = \sqrt{x}$ and let $g(x) = 1 + \ln x$.

(a) Show that there is at least one point of intersection of f and g between e^2 and e^4 .

Proof. Consider the function h(x) = f(x) - g(x). Since h is composed of continuous functions, it is continuous on its domain (x > 0). Then, $h(e^2) = \sqrt{e^2 - 1} - \ln e^2 = e - 3$ and $h(e^4) = \sqrt{e^4 - 1} - \ln e^4 = e^2 - 5$.

As
$$e-3 < 0$$
 and $e^2-5 > 0$, by the IVT, there exists a $c \in (e^2, e^4)$ where $h(c) = 0$, that is, $f(c) = g(c)$.

(b) Show that there is exactly one point of intersection of f and g between e^2 and e^4 . Call this point x = b.

Proof. Let $b_0, b_1 \in (e^2, e^4)$. Suppose for a contradiction that $h(b_0) = 0$ and $h(b_1) = 0$. Then, by the MVT, there exists some $c \in (b_0, b_1) \subsetneq (e^2, e^4)$ where h'(c) = 0. Now,

$$h'(c) = f'(c) - g'(c)$$
$$0 = \frac{1}{2\sqrt{c}} - \frac{1}{c}$$
$$0 = \frac{\sqrt{c} - 2}{2c}$$
$$c = 4$$

(since $0 \notin (b_0, b_1)$) but $4 \notin (e^2, e^4)$. Therefore, there cannot be a second point of intersection.

(c) Show that for all x > b we have f(x) > g(x). That is, there are no more intersection points after x = b.

Proof. Notice from above that h'(x) = 0 only when x = 4. When x > 4, h'(c) < 0, and as h' is continuous on its domain, h is decreasing.

Since
$$b \in (e^2, e^4)$$
, we have $4 < e^2 < b$, h is decreasing for all $x > b$. Then, $h(b) > h(x) = f(x) - g(x)$, so $f(x) > g(x)$ for all $x > b$.

Q06. Evaluate the following limits, you may use any method.

(a)
$$\lim_{x \to 0} \frac{\tan x + x^2 - x}{\sin^2 x}$$
.

Solution. We evaluate the fraction and find that it is of the form $\frac{\tan 0 + 0^2 - 0}{\sin^2 0} = \frac{0}{0}$. Repeatedly applying l'Hôpital's rule:

$$\lim_{x \to 0} \frac{\tan x + x^2 - x}{\sin^2 x} = \frac{\frac{d}{dx} (\tan x + x^2 - x)}{\frac{d}{dx} (\sin^2 x)} \Big|_{x=0}$$

$$= \lim_{x \to 0} \frac{\sec^2 x + 2x - 1}{2 \sin 2x}$$

$$= \frac{\frac{d}{dx} (\sec^2 x + 2x - 1)}{\frac{d}{dx} (\sin 2x)} \Big|_{x=0}$$

$$= \lim_{x \to 0} \frac{2 \sec^2 x \tan x + 2}{2 \cos 2x}$$

$$= \frac{0 + 2}{2(1)}$$

$$= 1$$

(b)
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right).$$

Solution. Simplify the fraction and apply l'Hôpital's Rule to forms $\frac{0}{0}$:

$$\lim_{x \to 1} \left(\frac{x}{x - 1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{x \ln x - (x - 1)}{\ln x (x - 1)}$$

$$= \frac{\frac{d}{dx} (x \ln x - x + 1)}{\frac{d}{dx} (\ln x (x - 1))} \Big|_{x = 1}$$

$$= \lim_{x \to 1} \frac{\ln x}{\ln x + \frac{x - 1}{x}}$$

$$= \frac{\frac{d}{dx} (\ln x)}{\frac{d}{dx} (\ln x + \frac{x - 1}{x})} \Big|_{x = 1}$$

$$= \lim_{x \to 1} \frac{1}{x \frac{1}{x} + \frac{1}{x^2}}$$

$$= \frac{1}{2}$$

(c)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{2x}$$
.

Solution. This is of the form 1^{∞} so we take the logarithm:

$$\lim_{x \to \infty} \ln\left(1 + \frac{1}{x}\right)^{2x} = \lim_{x \to \infty} 2x \ln\left(1 + \frac{1}{x}\right)$$

$$= \lim_{x \to \infty} \frac{2\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}}$$

$$= \frac{\frac{d}{dx}\left(2\ln\left(1 + \frac{1}{x}\right)\right)}{\frac{d}{dx}\frac{1}{x}} \Big|_{x = \infty}$$

$$= \lim_{x \to \infty} \frac{-2\frac{1}{1 + \frac{1}{x}}\frac{1}{x^2}}{-\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} 2\frac{1}{1 + \frac{1}{x}}$$

$$= 2$$

Q07. Let $f(x) = x + \sin x \cos x$ and let $g(x) = f(x)e^{\sin x}$.

(a) Argue why $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ does not exist.

Proof. Note that $\frac{f(x)}{g(x)} = \frac{f(x)}{f(x)e^{\sin x}} = \frac{1}{e^{\sin x}}$. Since $\sin x$ is periodic and has no infinite limit, $\frac{1}{e^{\sin x}}$ oscillates between the values $\frac{1}{e}$ for $x = \frac{\pi + 4k}{2}$ and e for $x = \frac{3\pi + 4k}{2}$, $k \in \mathbb{Z}$, which are not equal.

Therefore, picking some sequence with those values, limit cannot exist. \Box

(b) Prove that $\lim_{x\to\infty} f(x) = \infty$ and $\lim_{x\to\infty} g(x) = \infty$.

Proof. Note that $\sin x \cos x \ge -1$ for all x. Then, $f(x) \ge x - 1$ for all x, but x - 1 diverges to infinity. Therefore, $\lim_{x \to \infty} f(x) = \infty$.

Now, $\sin x$ has range [-1,1], so $e^{\sin x}$ has range $[e^{-1},e]$. Then, $g(x) \geq f(x)e^{-1}$, but we established that f(x) diveres, so $\lim_{x \to \infty} g(x) = \infty$.

(c) Prove that
$$\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = 0$$
.

Proof. Take some derivatives to get $f'(x) = 1 + \cos 2x$ and

$$g'(x) = f'(x)e^{\sin x} + f(x)e^{\sin x}\cos x$$

= $(1 + \cos 2x)e^{\sin x} + (x + \sin x \cos x)e^{\sin x}\cos x$
= $e^{\sin x}(1 + \cos x + \frac{\sin 2x}{2}) + (e^{\sin x}\cos x)x$

Note that $0 \le f'(x) \le 2$ for all x, so $0 \le \left| \frac{f'(x)}{g'(x)} \right| \le 2$. The first term in g'(x) is also clearly bounded. However, the second term is a bounded term multiplied by x, so it is unbounded. Therefore, |g'(x)| can be made arbitrarily large. It follows by some squeeze theorem bullshit that $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = 0$.

(d) Why is the above not a contradiction to l'Hôpital's Rule?

Answer. f'(x) does not go to 0 or ∞ , so the limit not of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$.