Ein landwirtschaftliches Unternehmen baut drei verschiedene Getreidesorten an. Als Ressourcen stehen noch 33 Tonnen Düngemittel und 810 offene Arbeitsstunden zur Verfügung.

Zur Bearbeitung eines Hektars (ha) werden benötigt:

	Düngemittel [t]	Arbeitszeit [h]
Sorte A	0,6	9
Sorte B	0,4	12
Sorte C	0,5	15

1. Mit diesen Angaben kann man das folgende lineare Gleichungssystem aufstellen:

(10BE)

$$(1) \qquad 0.6x + 0.4y + 0.5z = 33$$

$$(2) 9x + 12y + 15z = 810$$

- 1.1 Erläutern Sie die Bedeutung der Variablen und der beiden Gleichungen. Berechnen Sie die vollständige Lösung des Gleichungssystems.
- 1.2 Die vorhandenen Ressourcen an Düngemittel und Arbeitsstunden sollen vollständig ausgeschöpft werden.
 - Bestimmen Sie, wie viel Hektar der Sorten *A* und *C* bearbeitet werden können, wenn 40 Hektar der Sorte *B* angebaut werden sollen.
 - Bestimmen Sie die maximale und die minimale Gesamt-Anbaufläche.
- 2. Die Gleichungen (1) und (2) beschreiben je eine Ebene E_1 bzw. E_2 im Raum \mathbb{R}^3 . (8BE)
- 2.1 Bestimmen Sie die Spurgeraden von E_1 und E_2 in der x-z-Ebene sowie deren Schnittpunkt S. Deuten Sie dessen Koordinaten im Sachzusammenhang.
- 2.2 Bestimmen Sie mit Hilfe der Spurgeraden von E_1 , wie viele Hektar der Sorten A und C jeweils maximal angebaut werden können, wenn nur die Düngemittelressourcen berücksichtigt werden.
- 3. Die Spalten der obigen Tabelle sollen als Vektoren \overrightarrow{d} (Düngemittel) und \overrightarrow{d} (Arbeitszeit) aufgefasst werden. Ferner sei der Vektor $\overrightarrow{p} = \begin{pmatrix} 6 \\ 12 \\ 15 \end{pmatrix}$ gegeben, der die jeweils benötigte Menge an

Pflanzenschutzmittel (in $\frac{kg}{ha}$) für die Sorten A, B und C angibt.

3.1 Beschreiben Sie, wie man überprüfen kann, ob die drei Vektoren \overrightarrow{d} , \overrightarrow{a} und \overrightarrow{p} linear unabhängig sind.

Bestätigen Sie, dass gilt: $\overrightarrow{p} = -10 \cdot \overrightarrow{d} + \frac{4}{3} \cdot \overrightarrow{a}$.

3.2 Erklären Sie die Gleichung (A) und die weiteren Umformungsschritte (B) bis (D) im untenstehenden Kasten und interpretieren Sie das Ergebnis im Sachzusammenhang.

Es sei
$$\overrightarrow{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 und $\overrightarrow{p} = -10 \overrightarrow{d} + \frac{4}{3} \overrightarrow{a}$.

Dann gilt:

$$6x + 12y + 15z = \overrightarrow{p} \cdot \overrightarrow{x}$$

$$= \left(-10\overrightarrow{d} + \frac{4}{3}\overrightarrow{a}\right) \cdot \overrightarrow{x}$$

$$= -10\overrightarrow{d} \cdot \overrightarrow{x} + \frac{4}{3}\overrightarrow{a} \cdot \overrightarrow{x}$$
(A)
(B)

$$= -10 \overrightarrow{d} \cdot \overrightarrow{x} + \frac{4}{3} \overrightarrow{a} \cdot \overrightarrow{x}$$
 (C)

$$= -10 \cdot 33 + \frac{4}{3} \cdot 810 = 750 \tag{D}$$