Ensayo de Impacto.

Figure 6-23 The impact test: (a) the Charpy and Izod tests, and (b) dimensions of typical specimens.

Figure 6-25

The Charpy V-notch properties for a BCC carbon steel and an FCC stainless steel. The FCC crystal structure typically leads to higher absorbed energies and no transition temperature.

U_T es la Tenacidad

$$U_T = mg(h_0 - h_f)$$

Sensibilidad a las Muescas.

Relación con el Diagrama Esfuerzo vs Deformación.

Tecnología de Materiales

Temperatura de Transición, de Dúctil a Frágil

1 lb ft = 1.356 J

ITESM, Campus Toluca

Tecnología de Materiales

Ensayo de Corte y Torsión.

Estándares de Torsión. ASTM D1043 Plásticos. ASTM E558 Alambre.

> Estándares de Corte. ASTM D143 Madera.

Figure 10.3 Relation between pure shear and normal stresses.

Módulo de Ruptura a Torsión.

50 mm 20 mm (3 d) Shear tool

Figure 10.6 Method of testing wood in direct shear (ASTM D 143).

- (a) Solid bar of ductile material. Fracture on plane right secti
 (b) Solid bar of brittle material. Helicoidal fracture.
- (c) Tubular specimen of ductile material, Failure by buckling.
 (d) Tubular specimen of ductile material; short reduced section.
 Failure on plane right section.

Figure 10.10 Types of failure in torsion. (Report of ASTM Committee E-1, Ref. 76.)

Figure 10.5 Methods of testing metals in direct shear.

Tecnología de Materiales

<u>Tenacidad a la Fractura.</u>

Mide la capacidad de un material que contiene un defecto a resistir una carga aplicada.

$$K = f\sigma\sqrt{\pi a}$$

Donde:

K es el factor de intensidad de esfuerzo.

f es el factor geométrico $f \approx 1$.

σ es el esfuerzo aplicado. a es el tamaño del defecto.

Mecánica a la Fractura.

Disciplina que se enfoca al estudio del comportamiento de materiales con fisuras u otros pequeños defectos.

 $K_c = K$ requerido para que la grieta se propague.

K_c es la tenacidad a la fractura.

K_{IC} es la tenacidad a la fractura de deformación plana.

Figure 7-1 Schematic drawing of fracture toughness specimens with (a) edge and (b) internal flaws. The flaw size is defined differently for the two classes.

TABLE 7-1 The plane strain fracture toughness K_{lc} of selected materials

Material	Fracture Toughness K_{lc} (MPa \sqrt{m})	Yield Strength or Ultimate Strength (for Brittle Solids) (MPa)
Al-Cu alloy	24.2	455.1
	36.3	324.1
Ti-6% AI-4% V	54.9	896.4
	98.9	861.9
Ni-Cr steel	50.3	1641.0
	87.9	1420.4
Al_2O_3	1.8	206.9
Si ₃ N ₄	4.9	551.6
Transformation toughened ZrO ₂	11.0	413.7
Si ₃ N ₄ -SiC composite	56.0	827.4
Polymethyl methacrylate polymer	1.0	27.6
Polycarbonate polymer	3.3	57.9

Mecánica a la Fractura.

Variables a considerar:

 $K = f \sigma \sqrt{\pi a}$

La propiedad del material (K_C o K_{IC}).

El esfuerzo (σ) que debe resistir el material.

El tamaño del defecto (a).

- **Selección de un Material.** Se conoce a y σ , se necesita un material con K_C o K_{IC} mayor.
- **Diseño de un Componente.** Se conoce a y K_C o K_{IC} o sea el material, hay que calcular σ máximo que puede resistir el componente.
- **Diseño de un Método de Manufactura o de Ensayo.** Se conoce σ y K_C o K_{IC} , entonces se calcula el tamaño máximo permisible de los defectos.

cone, and (b) elongated dimples at the shear lip (× 1250).

Figure 7-11 Scanning electron micrographs of fracture surfaces in ceramics. (a) The fracture surface of Al_2O_3 , showing the cleavage faces (\times 1250) and (b) the fracture surface of glass, showing the mirror zone (top) and tear lines characteristic of conchoidal fracture (\times 300). (*Reprinted courtesy of Don Askeland.*)

Ensayo de Fatiga.

Tecnología de Materiales

Rupture

Third

stage

Rupture

 $\Delta \varepsilon \frac{\Delta \varepsilon}{\Delta t}$ = creep rate

Las fallas por fatiga suceden generalmente en tres etapas: Inicia una Grieta, Crecimiento y Falla Catastrófica.

- a_i tamaño inicial del defecto.
- \mathbf{a}_{c} tamaño crítico de la ε_{0} = Elastic grieta para que ocurra falla catastrófica.

$$\frac{da}{dN} = C(\Delta K)^n$$

$$N = \frac{2[(a_c)^{(2-n)/2} - (a_i)^{(2-n)/2}]}{(2-n)Cf^n \Delta \sigma^n \pi^{n/2}}$$

Constant stress

First

stage

Constant temperature

Second stage

(steady state)

Time

$$\Delta K = f \Delta \sigma \sqrt{\pi a}$$

Figure 7-19 The stress-number of cycles to failure (S-N) curves for a tool steel and an aluminum alloy.

$$\Delta \sigma = \sigma_{max} - \sigma_{min}$$

$$K_{IC} = f\sigma_{\max} \sqrt{\pi a_c}$$

Tecnología de Materiales

Para el ensayo de fatiga de viga en voladizo rotatoria.

$$\sigma = \frac{10.18lF}{d^3}$$

Donde:

l es la longitud de la barra. F es la carga aplicada. d es el diámetro de la barra.

