0.1 R3 数学選択

 $\boxed{\mathbf{A}}$ $(1)\varphi\colon k[x,y]\to k; x\mapsto a,y\mapsto b$ とする. φ は全射環準同型である. $\ker\varphi\supset (x-a,y-b)$ である. $f\in\ker\varphi$ とする. $f(x,y)=(x-a)g(x,y)+(y-b)h(y)+c\quad (g\in k[x,y],h\in k[y],c\in k)$ とできる. $\varphi(f)=0$ より c=0 である. よって $\ker\varphi=(x-a,y-b)$ である.

すなわち $k[x,y]/(x-a,y-b) \cong k$ である. k は体であるから (x-a,y-b) は極大イデアルである.

 $(2)x^2+y^2-1\in (x-a,y-b)$ なら $\varphi(x^2+y^2-1)=0$ より $a^2+b^2=1$ である. $a^2+b^2-1=0$ なら $\varphi(x^2+y^2-1)=0$ より $x^2+y^2-1\in (x-a,y-b)$ である.

(3) J を $I=(xy,x^2+y^2-1)$ を含む極大イデアルとする. $(x+J)(y+J)=0\in k[x,y]/J$ より x+J=0 または y+J=0 である. すなわち $x\in J$ または $y\in J$ である.

 $x\in J$ なら $y^2-1\in J$ であるから $y-1\in J$ または $y+1\in J$ である. ここで $\langle x,y-1\rangle\subset J$ とすると,左辺 は極大イデアルであるから $J=\langle x,y-1\rangle$ である.

同様にして J の候補は $\langle x, y+1 \rangle$, $\langle x, y-1 \rangle$, $\langle x+1, y \rangle$, $\langle x-1, y \rangle$ でつくされるとわかる.

B (1)