САНКТ-ПЕТЕРБУРГСКИЙ

ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ПЕТРА ВЕЛИКОГО

Институт компьютерных наук и технологий

Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе №6 на тему: "Цифровая модуляция"

выполнила: Шевченко А.С. группа: 33501/1 преподаватель: Богач Н.В.

1. Цель работы

Изучение методов модуляции цифровых сигналов.

2. Постановка задачи

- 1. Получить сигналы BPSK, PSK, OQPSK, genQAM, MSK, MFSK модуляторов;
- 2. Построить их сигнальные созвездия;
- 3. Провести сравнение изученных методов модуляции цифровых сигналов.

3. Теоретическая часть: Цифровая модуляция

В настоящее время все большая чать информации, передаваемой по разнообразным каналам связи, существует в цифровом виде. Это означает, что передаче подлежит не непрерывный модулирующий сигнал, а последовательность целых чисел, которые могут принимать значения из некоторого фиксированного конечного множества. Эти числа, называемые символами, поступают от источника информации с периодом Т, а частота, соответствующая этому периоду, называется символьной скоростью.

Типичный подход при осуществлении передачи дискретной последовательности символов состоит в следующем. Каждому из возможных значений символа сопоставляется некоторый набор параметров несущего колебания. Эти параметры поддерживаются постояннымив течение интервала T, то есть до прихода следующего символа. Фактически это означает преобразование последовательности чисел n_k в ступенчатый сигнал $s_n(t)$ с использованием кусочно-постоянной интерполяции:

$$s_n(t) = f(n_k), \quad kT \le t < (k+1)T.$$

Здесь f - некоторая функция преобразования. Полученный сигнал $s_n(t)$ делее используется в качестве модулирующего сигнала обычным способом.

Такой способ модуляции, когда параметры несущего колебания меняются скачкообразно, называется манипуляцией. В зависимости от того, какие именно параметры изменяются, различают:

- 1. Амплитудную манипуляцию (ASK);
- 2. Фазовую манипуляцию (PSK);
- 3. Частотную манипуляцию (FSK);
- 4. Квадратурную манипуляцю (QASK).
 - 3.1 Частотная манипуляция

При частотной манипуляции каждому возможному значению передаваемого символа сопоставляется своя частота. В течение каждого символьного интервала передается гармоническое колебание с частотой, соответствующей текущему символу.

Существует вид FSK, называемый минимальной частотной манипуляцией (MSK), в котором частоты манипуляции выбраны по следующим законам:

$$\Delta\omega_{min} = \pi/T$$

$$\Delta f_{min} = 1/2T = f_T/2$$

 Γ де f_T - символьная скорость. Эти выражения соответствуют определению минимального значения расстояния между частотами манипуляции, при котором посылки, соответствующие разным символам, оказываются некоррелированными, что повышает помехоустойчивость манипуляции.

3.2 Фазовая манипуляция

При фазовой манипуляции скачкообразно меняется фаза несущего колебания. На практике фазовая манипуляция используется при небольшом числе возможных значений начальной фазы - как правило 2 (BPSK), 4 (QPSK), 8.

3.3 Квадратурная манипуляция

При квадратурной манипуляции каждому из возможных значений дискретного символа C_k ставится в соответствие пара величин - амплитуда и начальная фаза несущего колебания:

$$C_k \to (a_k, b_k), \quad s(t) = A_k cos(\omega_0 t + \phi_k), \quad kT \le t < (k+1)T$$

3.4 Амплитудная манипуляция

Амплитудная манипуляция, при которой скачкообразно меняется амплитуда несущего колебания, является частным случаем квадратурной манипуляции. Амплитудно-манипулированный сигнал простейшего типа представляет собой послежовательность импульсов, разделенную паузами.

4. Ход работы

Продемонстрируем несколько методов цифровой модуляции и получим сигнальные созвездия манипулированных сигналов.

1. BPSK

```
%BPSK
       M = 2;
       signal = randi([0, M-1], 1000, 1);
       sig mod = pskmod(signal, M);
6 -
       scatterplot(sig mod);
7
8 -
       sig_noise = awgn(sig_mod, 20);
9 -
       scatterplot(sig noise);
10
11 -
       sig_demod = pskdemod(sig_noise, M);
12 -
       [num_err, rat_err] = symerr(signal, sig_demod)
13
14
15
```

Рис. 1: Код для BPSK

Рис. 2: Сигнальное созвездие маниппулированного сигнала

Рис. 3: Сигнальное созвездие зашумленного манипулированного сигнала

2. **QPSK**

```
%QPSK
       M = 4;
3
       signal = randi([0, M-1], 1000, 1);
4
       sig_mod = pskmod(signal, M);
5
       scatterplot(sig mod);
8
       sig noise = awgn(sig mod, 20);
9
       scatterplot(sig_noise);
10
11 -
       sig demod = pskdemod(sig noise, M);
       [num_err, rat_err] = symerr(signal, sig_demod)
12 -
```

Рис. 4: Код для QPSK

Рис. 5: Сигнальное созвездие маниппулированного сигнала

Рис. 6: Сигнальное созвездие зашумленного манипулированного сигнала

```
1 -
        figure;
2 -
3 -
4 -
5 -
        hold on
        plot color = ['r' 'b' 'g' 'c' 'k' 'm'];
      \neg for i = 0:5
            A = [];
 6 -
            B = [];
7 -
8 -
            for j = -50:0.1:50
                signal = randi([0, 2^i - 1], 1000, 1);
9 -
                sig_mod = pskmod(signal, 2^i);
10 -
                sig_noise = awgn(sig_mod, j);
11 -
                sig_demod = pskdemod(sig_noise, 2^i);
12 -
                [num_err, rat_err] = symerr(signal, sig_demod);
13 -
                A = [A, j];
                B = [B, rat_err]
14 -
15 -
            end
16 -
            plot (A, B, plot_color(i+1));
17 -
```

Рис. 7: Код для построения водопадных кривых для различных значений порядка модуляции

Рис. 8: Водопадные кривые PSK для разных значений M

$3. \mathbf{OQPSK}$

```
1 - INI_PHASE = 3; %0..3
2 - signal = randi([0 INI_PHASE], 1000, 1);
3
4 - sig_mod = oqpskmod(signal);
5 - scatterplot(sig_mod);
6
7 - sig_noise = awgn(sig_mod, 20);
8 - scatterplot(sig_noise);
9
10 - sig_demod = oqpskdemod(sig_noise);
11 - [num_err, rat_err] = symerr(signal, sig_demod)
```

Рис. 9: Код для OQPSK

Рис. 10: Сигнальное созвездие маниппулированного сигнала

Рис. 11: Сигнальное созвездие зашумленного манипулированного сигнала

4. **MSK**

```
1 - M = 1;
2 - NSAMP = 2;
3 - signal = randi([0 M], 1000, 1);
4
5 - sig_mod = mskmod(signal, NSAMP);
6 - scatterplot(sig_mod);
7
8 - sig_noise = awgn(sig_mod, 20);
9 - scatterplot(sig_noise);
10
11 - sig_demod = mskdemod(sig_noise, NSAMP);
12 - [num_err, rat_err] = symerr(signal, sig_demod)
```

Рис. 12: Код для MSK

Рис. 13: Сигнальное созвездие маниппулированного сигнала

Рис. 14: Сигнальное созвездие зашумленного манипулированного сигнала

$5. \mathbf{genQAM}$

```
inphase = [1/2 1 1 1/2 1/2 2 2 5/2];
       quadr = [0 1 -1 2 -2 1 -1 0];
       inphase = [inphase; -inphase]; inphase = inphase(:);
       quadr = [quadr; quadr]; quadr = quadr(:);
 5
 6 -
       const =inphase + li*quadr;
7 -
       M = 15;
8
       signal = randi([0 M], 1000, 1);
9
10 -
       sig_mod = genqammod(signal, const);
11 -
       scatterplot(sig_mod);
12
13 -
       sig_noise = awgn(sig_mod, 20);
14 -
       scatterplot(sig noise);
15
16 -
       sig_demod = genqamdemod(sig_noise, M);
17 -
       [num err, rat err] = symerr(signal, sig demod)
```

Рис. 15: Код для genQAM

Рис. 16: Сигнальное созвездие маниппулированного сигнала

Рис. 17: Сигнальное созвездие зашумленного манипулированного сигнала

6. **FSK**

```
1 -
       M = 4;
       FS = 64;
2 -
3 -
       FREQ_SEP = 8;
4 -
       NSAMP = 4;
5
6
7 -
       signal = randi([0, M-1], 1000, 1);
8
9 -
       sig_mod = fskmod(signal, M, FREQ_SEP, NSAMP, FS);
10 -
       scatterplot(sig_mod);
11
12 -
       sig_noise = awgn(sig_mod, 20);
13 -
       scatterplot(sig_noise);
14
15 -
       sig_demod = fskdemod(sig_noise, M, FREQ_SEP, NSAMP, FS);
16 -
       [num_err, rat_err] = symerr(signal, sig_demod)
```

Рис. 18: Код для FSK

Рис. 19: Сигнальное созвездие маниппулированного сигнала

Рис. 20: Сигнальное созвездие зашумленного манипулированного сигнала

5. Выводы

Все методы цифровой манипуляции отличаются по уровню помехоустойчивости. Так, амплитудная маннипуляция по помехоустойчивости существенно уступает частотной и фазовой, поэтому в современных системах радиосвязи используют их.

Преимуществом ΦM является постоянство амплитуды модулированного сигнала и, а недостатком - скачки фазы на границах тактовых интервалов, приводят к расширению спектра.