1. FUNDAMENTALS of TRIGONOMETRY

Unit Circle

Equation of Circle

The equation of circle which is centered at $\left(a,b\right)$ with radius r is

$$(x-a)^2 + (y-b)^2 = r^2$$

Unit Circle

Unit circle is a circle which is centered at $\left(0,0\right)$ with radius 1 .

$$x^2 + y^2 = 1$$

Example: $(a-3)x^2 + (b+1)y^2 = 1$ is the equation of unit circle. Find a & b.

Example: Show that $P(\frac{1}{\sqrt{3}}, \frac{\sqrt{6}}{3})$ is on the unit circle.

Example: The point $P(x, \frac{\sqrt{3}}{2})$ is on the unit circle. Find the possible values for x.

Angles and Directions

Anale

Angle is the union of two rays which have a common endpoint.

Directed Angle

The angle whose one side is initial side and the other is terminal side is called directed angle.

Counterclockwise = Positive Clockwise = Negative

Example: Determine initial and terminal side of each angle and their directions.

Central Angle

The angle whose vertex is the center of circle is called **central** angle.

Arc

The segment of a circle between the two sides of a central angle is called an arc.

Longer is called major arc, shorter is minor arc.

Chord

The line segment AB which joins two different points of circle is called chord.

Diameter

The chord which passes through center of circle is called **diameter**.

Semicircle

The equal arcs of a circle which are divided by a diameter are called **semicircles**.

TRIGONOMETRY

Units of Angle Measures

Complete Angle

The central angle which corresponds to one complete revolution around a circle is called **complete angle**.

1) Grad: The complete angle of circle measures 400^{G} .

2) Degree: The complete angle of circle measures 360°.

 $\frac{1}{60}$ of degree is called **minute**. That is, $1^{\circ} = 60'$.

 $\frac{1}{60}$ of minute is called **second**. That is, 1' = 60'' .

Let's consider the angle of 37 degrees, 45 minutes, 30 seconds

It can be written in two ways:

In degree-minute-second form: 37° 45′ 30″

In decimal degree form: $37^{\circ} + (45 \cdot \frac{1}{60}) + (30 \cdot \frac{1}{3600}) = 37.7583^{\circ}$

Example: Write 56° 20′ 15″ in decimal degree form.

Example: Write 17.86° in degree-minute-second form.

Example:

$$x = 202^{\circ} 15' 36''$$
 $x = 202^{\circ} 15' 36''$ $y = 114^{\circ} 57' 58''$ $y = 114^{\circ} 57' 58''$

3) Radian: The complete angle of circle measures 2π radians.

length
$$AB = l = x \cdot r$$

Example: When the small circle makes one full rotation, how many radians will the big circle rotate?

Converting Units of Angle Measures

Conversion Formula

$$\frac{D}{360} = \frac{R}{2\pi} = \frac{G}{400}$$

Example: Convert the angles below.

- 100° to radian :
- $\frac{5\pi}{12}$ to degree :

Primary Directed Angles

Standard Position of an Angle

The angle whose vertex is at the origin and whose initial side lies along positive x-axis is called **standard position of an angle**.

Coterminal Angles

Two or more angles whose terminal sides coincide with each other when they are in standard position are called **coterminal angles**.

Example: For each of the angles below, write set of coterminal angles.

- 175°
- $\frac{5\pi}{4}$

Example: Find the arc length which corresponds to central angle 40° on unit circle. ($\pi=3$)

Primary Directed Angle

Let $\beta \ge 360^{\circ}$ be an angle.

The positive angle $\ \alpha \in [0,360)$ which is coterminal with $\ \beta$ is called **primary directed angle of \ \beta** .

Example: Find primary directed angle of each of the angles below.

- 7320°
- -7320°
- $\frac{75\pi}{8}$
- $\frac{75\pi}{8}$
- $-\frac{75\pi}{8}$
- - 30° 42′ 15″

Exercises 1 – Page 27 in Zambak

RIGHT ANGLE TRIGOMETRY

Trigonometric Ratios

$$\sin \theta = \frac{a}{b}$$

$$\sec \theta = \frac{b}{c} = \frac{1}{\cos \theta}$$

$$\cos\theta = \frac{c}{1}$$

$$\csc\theta = \frac{b}{a} = \frac{1}{\sin\theta}$$

$$\tan \theta = \frac{a}{c}$$

$$\cot \theta = \frac{c}{a} = \frac{1}{\tan \theta}$$

Example: Write six ratios above by using the following triangle.

Note: If triangles are similar then trigonometric ratios of same angles are same.

Calculating the Other Ratios From Given Ratio

Show the given ratio on right triangle and find the others.

Example: Given that $\cos \theta = \frac{2}{3}$, find the other trigonometric ratios.

Example: If $\tan x = \frac{2}{7}\sqrt{6}$, then find $\cos x$ and $\sec x$.

Example: If $\sec x = 0.6$, then |BC| = ?

Example: Find |GF| in the triangle below.

Example: Find |AC| in the triangle below if $\cos a = \frac{9}{16}$ &

$$\cos b = \frac{3}{4}.$$

ctive Note Book

Special Triangles and Ratios

45 Degree

Consider a square whose length is 1.

$$\sin 45 = \frac{1}{\sqrt{2}}$$

$$\cos 45 = \frac{1}{\sqrt{2}}$$

$$\tan 45 = 1$$

$$\cot 45 = 1$$

30 & 60 Degrees

Consider an equilateral triangle whose length is 2.

$$\sin 30 = \frac{1}{2}$$

$$\sin 60 = \frac{\sqrt{3}}{2}$$

$$\cos 30 = \frac{\sqrt{3}}{2} \qquad \cos 60 = \frac{1}{2}$$

$$\tan 30 = \frac{1}{\sqrt{3}} \qquad \tan 60 = \sqrt{3}$$

$$\cot 30 = \sqrt{3}$$

$$\cot 60 = \frac{1}{\sqrt{3}}$$

$$\cos 60 = \frac{1}{2}$$

$$\tan 30 = \frac{1}{\sqrt{3}}$$
$$\cot 30 = \sqrt{3}$$

$$\cot 60 = \frac{1}{\sqrt{3}}$$

0 & 90 Degrees

Consider unit circle.

 $\sin 0 = 0$ $\sin 90 = 1$ $\cos 90 = 0$ $\cos 0 = 1$ $\tan 0 = 0$ $\tan 0 = \infty$ $\cot 0 = \infty$ $\cot 0 = 0$

 $\cos \alpha = x$ $\sin \alpha = y$

Easy way to remember these ratios

- Form the first row by given pattern.
- Write the first row results in reverse order to form second
- Use the identity of $\tan\theta = \frac{\sin\theta}{\cos\theta}$ for third row.
- Use the identity of $\cot \theta = \frac{\cos \theta}{\sin \theta}$ for fourth row.

	0	30	45	60	90
sin	$\frac{1}{2}\sqrt{0} = 0$	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$	$\frac{1}{2}\sqrt{2} = \frac{\sqrt{2}}{2}$	$\frac{1}{2}\sqrt{3} = \frac{\sqrt{3}}{2}$	$\frac{1}{2}\sqrt{4} = 1$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞
cot	∞	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

Example: Find x in the triangle below.

Example: Find |AB| and A(ABC) in the triangle below.

Example: Find |AB| in the triangle below.

Trigonometric Identities

Consider unit circle & a right triangle formed by lpha .

 $\sin^2\alpha + \cos^2\alpha = 1$

Proof:

 $\sin \alpha$ $\tan \alpha =$

Proof:

 $\cos \alpha$ $\cot \alpha =$ $\sin \alpha$

Proof:

 $1 + \tan^2 \alpha = \operatorname{s} e \operatorname{c}^2 \alpha$

Proof:

 $1 + \cot^2 \alpha = \csc^2 \alpha$

Proof:

Example: $\tan x \cdot \cot x =$

Example: $(\cos x + 2\sin x)^2 + (2\cos x - \sin x)^2 =$

Example: $\tan x \cdot \cos x \cdot \csc x =$

Example: $\cos^3 x + \sin^2 x \cdot \cos x =$

TRIGONOMETRY

ctive Note Book

Example:
$$\frac{2 + \tan^2 x}{\sec^2 x} - 1 =$$

Note: For verification problems, it is better to start with the complicated side to get the other side.

Example: Verify the following equalities.

- $\sin x \cdot \cot x = \cos x$
- $\csc x = \cos x \cdot (\tan x + \cot x)$
- $\frac{\left(\sin x + \cos x\right)^2}{\sin x \cdot \cos x} = 2 + \sec x \cdot \csc x$
- $\frac{\tan x}{\csc x} = \sec x \cos x$
- $\frac{\cos x}{\cos x} = \frac{1 + \sin x}{1 + \sin x}$ $1 - \sin x$

Cofunctions

Two angles whose sum is 90 degree are called complementary angles.

a and b are complementary angles.

Observation:

$$\underline{\sin a} = \frac{y}{r} = \underline{\cos a}$$

$$\tan a = \frac{y}{r} = \cot b$$

$$\sin a = \frac{y}{r} = \cos b \qquad \qquad \tan a = \frac{y}{x} = \cot b \qquad \qquad \sec a = \frac{r}{x} = \csc b$$

In other words, a = 90 - b

$$\sin a = \cos b \Leftrightarrow \sin(90-b) = \cos b$$

$$\tan a = \cot b \Leftrightarrow \tan(90-b) = \cot b$$

$$\sec a = \csc b \Leftrightarrow \sec (90 - b) = \csc b$$

Example: $\cot 1 \cdot \cot 89 =$

Example: $\sin^2 27 + \sin^2 63 =$

Example: $tan1 \cdot tan2 \cdot ... \cdot tan88 \cdot tan89 =$

Example: $\sin^2 \frac{\pi}{7} + \left(\tan \frac{7\pi}{18} \cdot \tan \frac{\pi}{9}\right) + \sin^2 \frac{5\pi}{14} =$

Exercises 2 – Page 47 in Zambak

Trigonometric Functions

Sine Function

$$y = f(\alpha) = \sin(\alpha)$$

- $\alpha \in \mathbb{R}$
- $-1 \le \sin \alpha \le 1$
- Increasing in 1st and 4th quadrant. Decreasing in 2nd and 3rd quadrant.
- Positive in 1st and 2nd quadrant. Negative 3rd and 4th quadrant.

Cosine Function

$$y = f(\alpha) = \cos(\alpha)$$

- $\alpha \in \mathbb{R}$
- $-1 \le \cos \alpha \le 1$
- Increasing in 3rd and 4th quadrant. Decreasing in 1st and 2nd quadrant.
- Positive in 1st and 4th quadrant. Negative 3rd and 2nd quadrant.

Example: Find the maximum and minimum values of

$$A = 3\cos x - 1$$
 and $B = 2 - 4\sin x$.

$$y = f(\alpha) = \tan(\alpha)$$

- $a \in \mathbb{R} \{\frac{\pi}{2} + k\pi; \ k \in \mathbb{Z}\}$
- Increasing in all quadrants.
- Positive in 1st and 3rd quadrant. Negative 2nd and 4th quadrant.

Cotangent Function

$$y = f(\alpha) = \cot(\alpha)$$

- $a \in \mathbb{R} \{k\pi; k \in \mathbb{Z}\}$
- $-\infty \le \cot \alpha \le \infty$
- Decreasing in all quadrants.
- Positive in 1st and 3rd quadrant. Negative 2nd and 4th quadrant.

Note: If the angle cannot cut tangent axis or cotangent axis, we consider extension of the angle.

Example: Order following expressions.

Tangent Function

Example: Order following expressions.

$$a = \cos\frac{5\pi}{9}$$

$$b = \cot \frac{2\pi}{2}$$

$$c = \cot \frac{7\pi}{9}$$

Example: Show that $\tan 37 < \sin 37$.

Example: Show that $\cos 57 < \cot 57$.

Example: Show that $\cos 72 = \sin 18$.

Secant Function

In OPC triangle,
$$\underline{\sec \alpha} = \frac{|OC|}{|OP|} = |OC|$$

$$y = f(\alpha) = \sec(\alpha)$$

- $a \in \mathbb{R} \{ \frac{\pi}{2} + k\pi; \ k \in \mathbb{Z} \}$
- $\sec a \in \mathbb{R} (-1,1)$
- Increasing in 1st and 2nd quadrant.
 Decreasing in 3rd and 4th quadrant.
- Positive in 1st and 4th quadrant.
 Negative 3rd and 2nd quadrant.

Cosecant Function

In OPD triangle,
$$x = \alpha \Rightarrow \underline{\csc \alpha} = \frac{|OD|}{|OP|} = |\underline{OD}|$$

$$y = f(\alpha) = \csc(\alpha)$$

- $\alpha \in \mathbb{R} \{k\pi; k \in \mathbb{Z}\}$
- $\csc \alpha \in \mathbb{R} (-1,1)$
- Increasing in 2nd and 3rd quadrant.
 Decreasing in 1st and 4th quadrant.
- Positive in 1st and 2nd quadrant.
 Negative 3rd and 4th quadrant.

Example: Represent |PQ| in terms of trigonometric functions.

Calculating Trigonometric Values with Reference Angle

TRIGONOMETRY

(Let 0 < a < 90)

Angles of the form (180 $-\alpha$)

$$\sin(180 - \alpha) = \sin \alpha$$

$$\cos(180 - \alpha) = -\cos\alpha$$

Example:

- $\sin(120) =$
- $\cos(135) =$
- tan(150) =

Angles of the form $(180 + \alpha)$

$$\sin(180 + \alpha) = -\sin \alpha$$

$$\cos(180 + \alpha) = -\cos\alpha$$

Example:

- $\sin(210) =$
- cos(240) =
- tan(225) =

Angles of the form $(360 - \alpha)$

$$\sin(360 - \alpha) = -\sin \alpha$$

$$\cos(360 - \alpha) = \cos \alpha$$

Example:

- $\sin(315) =$
- $\cos(330) =$
- tan(300) =

Example: $\cot 240 + \tan 150 + \cos 315 + \sin 750 =$

Example:

$$\cos(49\pi - \alpha) + \cot(-100\pi + \alpha) + \sin\left(\frac{71\pi}{2} + \alpha\right) + \tan\left(\frac{-37\pi}{2} - \alpha\right) =$$

Exercises 3 – Page 73 in Zambak

4. GRAPHS of TRIGONOMETRIC FUNCTIONS

Example: Sketch the graph of $f(x) = 2\sin x$.

Observation:

$$y = f(x) \rightarrow y = a \cdot f(x)$$

Means multiply $\ y$ values of your function with a .

So, if a is negative, it means that take the symmetry of function graph with respect to x -axis.

Example: Sketch the graph of $f(x) = -3\sin x$.

Example: Sketch the graph of $f(x) = \cos 2x$ where $-\pi \le x \le 0$.

Observation:

ctive Note Boo

$$y = f(x) \rightarrow y = f(a \cdot x)$$

Means multiply x values of your function with $\frac{1}{a}$.

So, if a is negative, it means that take the symmetry of function graph with respect to y -axis.

Example: Sketch the graph of $f(x) = \cos(-4x)$ where $-2\pi \le x \le 2\pi$.

Example: Sketch the graph of $f(x) = 2\tan 2x$ where $0 \le x \le \pi$.

$f(x) = \cot x$

Example: Sketch the graph of $f(x) = \cot 3x$ where $0 \le x \le \pi$.

5. TRIGONOMETRIC EQUATIONS

Equations of the Form $\sin x = a$, $\cos x = a$, $\tan x = a$, $\cot x = a$

Let's solve the equation of $\sin x = \frac{1}{2}$.

• We know that $\sin x = \frac{1}{2}$ when $x = \frac{\pi}{6}$. Since sine is periodic with 2π .

$$x = \frac{\pi}{6} + 2\pi k, k \in \mathbb{Z}$$
 is a solution set for $\sin x = \frac{1}{2}$.

• We also know that $\sin \alpha = \sin(\pi - \alpha)$.

So
$$\sin x = \sin(\pi - x) = \frac{1}{2}$$
.

That is,
$$\pi - x = \frac{\pi}{6}$$
.

Since sine is periodic with 2π .

$$\pi - x = \frac{\pi}{6} + 2\pi k, \ k \in \mathbb{Z} .$$

$$x = \pi - \frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$ is also solution set for $\sin x = \frac{1}{2}$.

$\sin x = a$

If $\alpha \in [0,2\pi)$ satisfies the equation of $\sin x = a$, then

$$x = \alpha + 2\pi k, \ k \in \mathbb{Z}$$
 or $x = (\pi - \alpha) + 2\pi k, \ k \in \mathbb{Z}$

Example: Solve the following equations.

• $\sin x = 1$

$$\sin x = -\frac{\sqrt{3}}{2}$$

 $\sin 2x = 0$

$\cos x = a$

If $\alpha \in [0,2\pi)$ satisfies the equation of $\cos x = a$, then

$$x = \alpha + 2\pi k, \ k \in \mathbb{Z}$$
 or $x = -\alpha + 2\pi k, \ k \in \mathbb{Z}$

Example: Solve the following equations.

$$\cos x = \frac{1}{2}$$

• $\cos x = 0$

 $\cos 3x = \frac{1}{2}$

Observation:

What about the solutions of $\cos x = \frac{3}{2} \text{ or } \sin x = -2$?

$\tan x = a$ or $\cot x = a$

If $\,\alpha\in\bigl[0,2\pi\bigr)$ satisfies the equation of $\tan x=a\,\operatorname{or}\cot x=a$, then

$$x = \alpha + \pi k, \ k \in \mathbb{Z}$$

Example: Solve the following equations.

•
$$\tan x = \sqrt{3}$$

• $\tan x = 1$

 $\cot x = -1$

Active Note Book

Generalization

- 1. If $\sin(f(x)) = \sin(g(x))$, then $f(x) = g(x) + 2\pi k$ or $f(x) = \pi g(x) + 2\pi k$
- 2. If $\cos(f(x)) = \cos(g(x))$, then $f(x) = g(x) + 2\pi k \text{ or } f(x) = -g(x) + 2\pi k$
- 3. If $\tan(f(x)) = \tan(g(x)) \operatorname{or} \cot(f(x)) = \cot(g(x))$, then $f(x) = g(x) + \pi k$

Example: Solve the following equations.

 $\cos x = \cos \frac{\pi}{3}$

• (UN 2011 PAKET 12) $\cos 2x + \cos x = 0$ where $0^{\circ} \le x \le 180^{\circ}$

•
$$\tan(2x-\pi) = \cot\left(x+\frac{\pi}{2}\right)$$

$$\cos\left(3x - \frac{\pi}{3}\right) + \sin\left(x - \frac{2\pi}{3}\right) = 0 \text{ where } x \in [0, 2\pi)$$

 $\sin x - 2 \cdot \cos x \cdot \sin x = 0$

(UN 2012/C37) $\cos 2x - 2 \cdot \cos x = -1$ where $0 \le x \le 2\pi$

• (UN 2012/D49) $\cos 4x + 3\sin 2x = -1$ where $0^{\circ} \le x \le 180^{\circ}$

Active Note Book

 $\sin 5x + \sin x - 2\sin 3x = 0$ where $x \in [0, 2\pi)$

 $\tan x - \cot x = 2\sqrt{3}$

Equations of the Form $a \cdot \cos x + b \cdot \sin x = c$

1st Way:

$$\frac{1}{a} \left(a \cdot \cos x + b \cdot \sin x = c \right)$$

$$\Leftrightarrow \cos x + \frac{b}{a} \cdot \sin x = \frac{c}{a}$$
 (Let $\frac{b}{a} = \tan \alpha$)

$$(\operatorname{Let} \frac{b}{-} = \tan \alpha)$$

$$\Leftrightarrow \cos x + \tan \alpha \cdot \sin x = \frac{c}{a}$$

$$\Leftrightarrow \cos x + \frac{\sin \alpha}{\cos \alpha} \cdot \sin x = \frac{c}{a}$$

$$\Leftrightarrow \frac{\cos\alpha \cdot \cos x + \sin\alpha \cdot \sin x}{\cos\alpha} = \frac{c}{a}$$

$$\Leftrightarrow \frac{\cos(x-\alpha)}{\cos\alpha} = \frac{c}{a}$$

$$\Leftrightarrow \cos(x-\alpha) = \frac{c}{a} \cdot \cos\alpha$$

And above equation can be solved as in previous case.

Example: Solve the equation of $3\sin x + \sqrt{3}\cos x = \sqrt{3}$.

2nd Way:

Let
$$u = \tan \frac{x}{2}$$
 then

$$\sin x = 2 \cdot \sin \frac{x}{2} \cdot \cos \frac{x}{2}$$

$$= 2 \cdot \frac{u}{\sqrt{1 + u^2}} \cdot \frac{1}{\sqrt{1 + u^2}}$$

$$= 2u$$

$$\cos x = 1 - 2 \cdot \sin^2 \frac{x}{2}$$

$$= 1 - 2 \cdot \left(\frac{u}{\sqrt{1 + u^2}}\right)^2$$

$$= \frac{1 - u^2}{1 + u^2}$$

$$a \cdot \cos x + b \cdot \sin x = c$$

$$\Leftrightarrow a \cdot \frac{1 - u^2}{1 + u^2} + b \cdot \frac{2u}{1 + u^2} = c$$

$$\Leftrightarrow (a+c)u^2 - 2bu - (a-c) = 0$$

 $\sin x - 3\cos x = 1$

• $2\cos^2 x + \sqrt{3}\sin 2x = 1 + \sqrt{3}$ where $0 < x < \frac{\pi}{2}$ (UN 2006)

Note: If c = 0, then $a \cdot \cos x + b \cdot \sin x = 0$

So, we can use 1st way or 2^{nd} way or $a \cdot \cos x + b \cdot \sin x = 0$

$$\Leftrightarrow \frac{a \cdot \cos x + b \cdot \sin x = 0}{\cos x} \Leftrightarrow \tan x = -\frac{b}{a}$$

Example: Solve the equation of $\sqrt{3}\cos x - \sin x = 0$.

Equations of the Form $a \cdot \cos^2 x + b \cdot \cos x \cdot \sin x + c \cdot \sin^2 x = 0$

Divide either by $\cos^2 x$ or $\sin^2 x$.

Example: Solve the equation of $\sin^2 x + 2 \cdot \sin x \cdot \cos x - 3\cos^2 x = 0$.

Active Note Book

$$1. \sin 3x = 0$$

$$2. \quad \cot\left(\frac{\pi}{3} - 2x\right) = \sqrt{3}$$

$$3. \quad \cos\left(\frac{\pi}{3} - x\right) = \frac{1}{2}$$

$$4. \quad -\tan\left(x - \frac{\pi}{5}\right) = 1$$

$$\tan 2x = \tan \frac{5\pi}{6}$$

Solve each over real numbers.

$$1. \quad \cos\left(x - \frac{\pi}{3}\right) = \cos\left(2x - \frac{\pi}{2}\right)$$

 $3. \quad \sin\left(2x - \frac{\pi}{4}\right) = \cos\left(x + \frac{\pi}{2}\right)$

Solve for
$$0 \le x \le 2\pi$$

 $2\cos x \sin x + \cos x = 0$

2. $2\cos^2 x - \sin x - 1 = 0$

3. $\sin(20-x) + \cos(2x-10) = 0$

 $\tan 2x = \cot(x - \pi)$

Review Test

- 1) What is the principle measure of $\frac{35\pi}{6}$?

 - A) $\frac{5\pi}{6}$ B) $\frac{11\pi}{6}$ C) $\frac{\pi}{4}$ D) $\frac{\pi}{2}$ E) $\frac{\pi}{6}$
- 2) What is the value of the angle $\left(-\frac{57\pi}{6}\right)$ in $(0, 2\pi)$?

 - A) $\frac{\pi}{4}$ B) $\frac{\pi}{2}$ C) $\frac{3\pi}{4}$ D) $\frac{3\pi}{2}$ E) $\frac{\pi}{6}$

- If $\tan \alpha = 1$ then find $\sin \alpha$.
- A) 1 B) $\sqrt{2}$ C) $\frac{1}{2}$ D) $\frac{\sqrt{3}}{2}$ E) $\frac{\sqrt{2}}{2}$
- 4) If $\tan 60^\circ = \sqrt{3}$, find $\cot 30^\circ$.
- A) $\sqrt{2}$ B) 1 C) $\sqrt{3}$ D) $\frac{1}{\sqrt{3}}$
- 5) If $\sin x = \frac{7}{25}$ evaluate $\tan x \cdot \cos x$.

 - A) $\frac{7}{24}$ B) $\frac{49}{576}$ C) $\frac{24}{25}$ D) $\frac{16}{25}$
- Evaluate $\sin 45 \cdot \cos 30 \cdot \sin 60 \cdot \cot 60 \cdot \tan 30 \cdot \tan 60$.

 - A) $\frac{2\sqrt{3}}{4}$ B) $\frac{4\sqrt{3}}{7}$ C) 16 D) -16 E) $\frac{\sqrt{6}}{8}$

- 7) Evaluate $\frac{\sin 30^{\circ}.\cos 60^{\circ}}{2\tan 45^{\circ}}$

 - A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) $\frac{1}{8}$
- D) $\frac{1}{16}$

ABC is an isosceles triangle. If $m(\angle A) = 120^{\circ}$ and |BC| = 10 cm then find A(ABC).

- A) $\frac{50}{\sqrt{3}}$ B) $\frac{25}{\sqrt{3}}$ C) $25\sqrt{3}$ D) $50\sqrt{3}$ E) 60

In the given figure; ABCD is a square. |DC| = 3|CE| . What is $\cot x$?

A) $\sqrt{3}$ B) $\frac{4}{3}$ C) 1 D) $\frac{3}{4}$

10) In the figure,

|AC| = 12 cmFind $\tan \alpha$.

 $m(B\hat{A}C) = 90^{\circ}$, |AB| = |BD| = 5 cm,

- A) $\frac{1}{2}$ B) $\frac{1}{3}$ C) $\frac{2}{3}$ D) $\frac{3}{4}$

11) Find the value of x according to the figure.

A) 9

- B) $2\sqrt{3} + 6$
- c) $2\sqrt{2} + 6$
- D) $6\sqrt{3} + 6$
- E) $6\sqrt{2} + 6$

12) In a triangle ABC, $m(\angle B) = 30^{\circ}$, |BC| = 9and |AB| = 8 cm then find Area of triangle (ABC).

- A) 45
- B) 36
- C) 27
- D) 18
- E) 9

13) In the given figure If $|CD| = 10\sqrt{3}$ cm then Find the distance between tree A and tree B.

- A) $10\sqrt{3}$
- B) $15\sqrt{3}$
- C) 15
- D) 30
- E) 45

- 14) Evaluate $(10.\sin 30^\circ + 20.\cos 60^\circ) (10.\cos 60^\circ + 20.\sin 30^\circ)$.
 - A) 1
- B) $\frac{1}{2}$

- C) 0 D) -1 E) $\frac{3}{2}$

- 15) Which of the following is false?
 - A) $\sin 45^{\circ} \cdot \cos 45^{\circ} = 1$
 - B) $\sin^2 30^\circ + \cos^2 30^\circ = 1$
 - C) $\cos x \cdot \tan x = \sin x$
 - D) $(\sin x + \cos x)^2 = 1 + 2\sin x \cdot \cos x$
 - E) $\tan x \cdot \cot x = 1$
- 16) Which one of the followings is equal to $\sin(35^\circ)$?
 - A) sin 215°
- B) cos145°
- C) sin65°
- D) $\sin(-35^{\circ})$
- D) $\cos(-55^\circ)$
- 17) Simplify $\frac{\sin 35^{\circ} \cdot \cos 35^{\circ}}{\sin 55^{\circ} \cdot \cos 55^{\circ}}$
 - A) 0 B) $\frac{1}{3}$ C) $\frac{1}{2}$
- E) -1

D) 1

- $18) \cot x \cdot (\sec x \frac{\cos x}{1 + \sin x}) = ?$
 - A) tan x B) sin x C) cos x D) cot x E) 1
- 19) If $\frac{4\sin 47^{\circ} \cos 43^{\circ}}{3\cos 43^{\circ} 2\sin 47^{\circ}} 1 = a$ then find a.
 - A) -1
- B) 0
- C) 1
- D) 1.5 E) 2
- 20) Calculate $\frac{\cos 42^{\circ} + \sin 48^{\circ}}{2 \sin 48^{\circ}}$
 - A) $\frac{1}{2}$ B) $\sin 42^{\circ}$ C) $\sin 48^{\circ}$
- D) 1
- E) -1

tive Note Book

- 21) Evaluate $\frac{\sin^2 x \cdot \cot^2 x 1}{\sin^2 x}$

 - A) 1 B) $\frac{1}{2}$ C) 0 D) -1
- E) -2

E) 3

- 22) Calculate $\frac{3\cos 70^{\circ}.\cos 50^{\circ}}{\sin 20^{\circ}.\sin 40^{\circ}} 4\cos 60^{\circ}.\sin 30^{\circ}$.
 - A) -1
- B) 0
- C) 1
- D) 2
- 23) What is the simplest form of $\frac{\sin^4 x \cos^4 x}{\sin x \cos x}$?

 - A) $\sin x$ B) $1 + \sin x$ C) $\cos x$

 - D) $1 + \cos x$ E) $\sin x + \cos x$

- 24) $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = ?$
- - A) $\sec \theta 1$ B) $2 \csc \theta$ C) $2 \tan \theta$
- - D) $\sec\theta \cdot \cot\theta$ E) $\sec\theta + 1$

- 25) If $\sin \alpha + \cos \alpha = \frac{1}{3}$, then $\sin \alpha \cdot \cos \alpha = ?$
- A) $\frac{11}{18}$ B) $-\frac{4}{9}$ C) $-\frac{3}{4}$ D) $\frac{5}{2}$ E) $\frac{5}{8}$

- 26) What is the greatest value of $\frac{\sin x 1}{2}$?
 - A) -2
- B) -1
- C) 0
- D) 1
- E) 2
- 27) What is the greatest value of $\frac{\cos x 2}{2}$?
- A) $\frac{11}{18}$ B) $-\frac{4}{9}$ C) $-\frac{1}{2}$ D) $\frac{5}{2}$ E) $\frac{5}{8}$

- 28) Find the order of the signs of the given functions. $\sin 179^{\circ}$, $\cos 269^{\circ}$, $\tan 271^{\circ}$, $\cot 359^{\circ}$
 - A) + -- B) + - + C) - - D) + + E) + +

29) What is the sign of the angles

$$\sin\frac{2\pi}{5}$$
, $\cos\frac{\pi}{7}$, $\tan\frac{3\pi}{5}$, $\cot\frac{18\pi}{5}$ respectively?

A) + - + - B) + + - + C) + + - - D) - + + - E) - + + -

- 30) Calculate $\tan 3630^{\circ}$.

- A) 1 B) $\sqrt{3}$ C) $-\sqrt{3}$ D) -1 E) $\frac{1}{\sqrt{3}}$

ctive Note Boo

- 31) $\sin(-\frac{\pi}{2}) \cdot \tan(225^\circ) + \cos(-\frac{\pi}{3}) \cdot \cot(315^\circ) = ?$
 - A) 2
- B) 1
- C) -3/2 D) -1
- E)-2
- 32) $\cos(\frac{\pi}{5}) + \cos(\frac{2\pi}{5}) + \cos(\frac{3\pi}{5}) + \cos(\frac{4\pi}{5}) = ?$

 - A) -1 B) -1/2 C) 0 D) 2
- 33) $\frac{\sin(410^\circ) \cdot \tan(-15^\circ) \cdot \sin(210^\circ)}{\cot(105^\circ) \cdot \cos(220^\circ)} = ?$

- A) 1 B) 2 C) $\frac{1}{2}$ D) $-\frac{1}{2}$ E) $\frac{\sqrt{3}}{2}$
- 34) $\frac{\sin(\frac{17\pi}{2} + \alpha) \cdot \cos(\alpha 5\pi)}{\sin(-\frac{5\pi}{2} + \alpha)} = ?$
 - A) $\cos \alpha$ B) $-\cos \alpha$ C) $\sin \alpha$ D) $-\sin \alpha$ E) 1

- 35) $\frac{\sin(-33\pi x) \cdot \cos(-\frac{13\pi}{2} + x)}{\sin(\frac{39\pi}{2} + x) \cdot \cos(45\pi + x)} = ?$
 - A) $\sin^2 x$
- B) $\sin x \cdot \tan x$ D) $\tan^2 x$ E) $-\tan x$
- C) $\cot^2 x$

- E) $-\tan^2 x$
- **36)** In $\triangle ABC$, if $a=\sqrt{5}$, $b=\sqrt{2}+1$ and $c=\sqrt{2}-1$, what is $m(\angle A)$?
 - A)15⁰ B) 30⁰ C) 45⁰
- D) 60°
- E)75°

- 37) $\frac{\tan\frac{7\pi}{4} + \sin\left(\frac{3\pi}{2} + \frac{\pi}{6}\right)}{\cot\left(-\pi + \frac{\pi}{4}\right) + \cos\left(\frac{\pi}{3}\right)} = ?$
 - A) $\frac{-2-\sqrt{3}}{3}$ B) $\frac{-1-\sqrt{3}}{2}$ C) $\frac{1+\sqrt{3}}{3}$

- 38) Which one of the following is the simplest form of

$$\frac{\sin(-\alpha)\cdot\cos(\pi+\alpha)}{2\cdot\sin(\pi-\alpha)} + \frac{\sin(\frac{3\pi}{2}-\alpha)\cdot\cos(\frac{\pi}{2}-\alpha)}{2\cdot\cos(\frac{\pi}{2}+\alpha)}?$$

- A) $\sin(2\alpha)$
- B) $cos(2\alpha)$
- C) $\sin(\alpha)$
- D) $tan(\alpha)$
- E) $cos(\alpha)$
- 39) In the given triangle

$$m(ABC) = 120^{\circ}$$
,

$$|BC| = 3 \text{ cm}$$

$$|AB| = 4 \text{ cm}$$

find |AC|.

- A) √5
- B) 5
- c) $\sqrt{37}$
- D) $\sqrt{47}$
- E) $\sqrt{52}$

40) In the figure,

$$|AB| = 3 cm$$

$$|BC| = 6 cm$$

$$|AC| = 4 cm$$

What is $\cos A$?

- A) $-\frac{11}{24}$ B) $\frac{7}{6}$ C) $\frac{15}{26}$ D) $\frac{21}{32}$

41) In the given figure.

$$|AD| = 4 \text{ cm}$$

$$|AB| = 6 \text{ cm}$$

$$|BD| = 5 \text{ cm}$$

$$[AB] \perp [AC]$$

Find
$$|CD| = x$$
.

- A) 2

- B) 3
 - C) 4
- D) 5
- E) 6

42) In the given figure;

$$|AB| = 7$$

$$|BC| = 3$$

$$|CD| = 6$$

$$|CE| = 4$$

$$|AC| = 5$$

$$|DE| = x$$

Find the value of x.

B) √74

- D) 4
- E) 3

43) In the given figure, $m(\angle BCA) = 120^{\circ}$, $m(\angle BAC) = 30^{\circ}$, $|AB| = 8 \,\mathrm{cm}$ then

- D) $8\sqrt{3}$

44) In a triangle ABC, If |AB| = 6 cm, |BC| = 4cm, $A(ABC) = 6\sqrt{3}$ cm² then what is the value of angle B?

- A) 30 B) 45
- C) 60

В

- D) 75
- E) 90

45) ABC is an isosceles triangle.

$$m(\angle A) = 120^{\circ}$$

$$|AB| = |AC| = 5 \text{ cm}$$

Find
$$A(\triangle ABC)$$
.

A) 12

- B) $9\sqrt{3}$ C) 15
- D) $\frac{25\sqrt{3}}{4}$ E) $12\sqrt{3}$
- **46)** In a triangle ABC, $|AC| = 20\sqrt{2}$ cm, |BC| = 6 cm and $m(\angle C) = 45^{\circ}$ find A(ABC).
 - A) 45
- B) 60
- C) 75
- D) 85
- E) 90
- 47) Find the area of triangle \triangle ABC if a = 2, b = 3, c = 4.

$$(\frac{7}{6})$$

B)
$$\frac{4}{3}$$

c)
$$\frac{3}{4}\sqrt{15}$$

A)
$$\frac{7}{8}$$
 B) $\frac{4}{3}$ C) $\frac{3}{4}\sqrt{15}$ D) $\frac{3}{4}\sqrt{5}$ E) 12

- 48) Triangle ABC is given with a = 13 cm, b = 14 cm, dan c = 15 cm. Find the height of AC side.
 - A) 6
- B) 8
- C) 10
- D) 11
- E) 12

A)
$$\sqrt{2}$$

- B) $2\sqrt{2}$

- E) $-2\sqrt{6}$
- - A) tanx
- B) cot2x
- C) 2cos2x
- D) 2cot2x
- E) 2sin2x

- 51) If $\cos 22^0 = k$ then $\sin 56^0 + \sin 146^0 = ?$

 - A) $2\sqrt{k}$ B) $\sqrt{2+k}$
- D) $\sqrt{k+1}$ E) $1+\sqrt{k}$
- 52) Given the diagram; [AD] is the median $m(\angle C) = 60^{\circ}$ then what is $tan(\angle DAC)$?

- A) $\frac{\sqrt{3}}{7}$ B) $\frac{1}{3}$ C) $\frac{\sqrt{3}}{3}$ D) $\frac{\sqrt{3}}{2}$ E) √3
- $\sin^2 20 \cos^2 20 + 2\sin 25\cos 25 = ?$
- A) -1 B) $-\frac{\sqrt{3}}{2}$ C) 0 D) $\frac{\sqrt{3}-\sqrt{2}}{6}$
- E) 1

- 54) Simplify $\frac{1+\cos 2x}{\sin 2x}$.
 - A) $\tan x$ B) $\cot x$ C) $-\tan x$ D) 1 E) $\sin 2x$
- 55) If $\tan 65^\circ = a$, then find $\tan 40^\circ$ in terms of a.
- A) $\frac{1-a^2}{a}$ B) $\frac{1-a^2}{2a}$ C) $\frac{a^2-1}{2a}$

 - D) $\frac{a^2 + 1}{a}$ E) $\frac{a^2 + 1}{2a}$

- 56) $2\cos(140) \cdot \sin(-40) = ?$
 - A) $-\sin 10^{\circ}$
- B) $-\cos 10^{\circ}$ C) $\cos 10^{\circ}$
- D) sin 40°
- E) cos 20°
- 57) Given that; ABCD is a rectangle. |AB| = 2.|BC||BE| = |EC|

What is $tan(\angle CAE)$?

- A) $\frac{2}{9}$ B) $\frac{1}{2}$

- C) $\frac{1}{4}$ D) $\frac{3}{5}$ E) $\frac{2}{3}$
- 58) If $\cos^2 \frac{\pi}{8} = \frac{a+1}{4}$, what is a ?
 - A) $\frac{1}{\sqrt{2}}$ B) 1 C) $\sqrt{2} + 1$ D) 2 E) $2 + \sqrt{2}$

- 59) If $10x = \pi$, then $\frac{\cos 7x + \cos 5x}{\cos 5x + \cos 3x} = ?$

- A) 1 B) -1 C) 2 D) -2 E) $\frac{1}{2}$
- 60) In a right triangle $\tan x = \frac{4}{3}$ then find $\cot \frac{x}{2}$

 - A) $\frac{1}{3}$ B) $\frac{3}{5}$ C) $\frac{4}{3}$ D) 2 E) $\frac{5}{2}$

- **61)** $\tan \frac{A}{2} + \cot \frac{A}{2} = ?$

 - A) 2sinA B) 2cosA
- C) 2secA
- D) 2cosecA

- **62)** Evaluate $(\sin 25^{\circ} + \cos 25^{\circ})^2 + (\sin 25^{\circ} \cos 25^{\circ})^2$.
 - A) 1
- B) 2
- c) $2\cos 50^{\circ}$
- D) $\sin 50^{\circ}$ E) $\sin^2 25^{\circ}$

- 63) If $\tan 2x = 0.75$ then find $\tan x$.

- A) 1 B) $\frac{3}{5}$ C) $\frac{1}{3}$ D) $\frac{\sqrt{10}}{3}$ E) $\frac{1}{\sqrt{3}}$
- **64)** Calculate $\sin 45^\circ .\cos 45^\circ \tan 45^\circ .\cot 45^\circ .$

- A) -2 B) -1 C) 1 D) $-\frac{1}{2}$ E) 2
- 65) If $\cos x + \sin x = \frac{1}{4}$, what is $\cos 4x$?

 - A) $-\frac{97}{128}$ B) $-\frac{3}{16}$ C) $\frac{4}{25}$ D) $\frac{1}{2}$ E) 1

- $\frac{\sin 10^{\circ} + \sqrt{3} \cdot \cos 10^{\circ}}{\cos 20^{\circ}} = ?$
 - A) 1
- B) 2
- C) 3
- D) 4
- E) 5

- 67) If $\frac{\cos 2x 3\sin x + 1}{2 + \sin x} = -\frac{1}{5}$, then find $\cot 2x$.
 - A) $\frac{24}{7}$ B) $\frac{7}{24}$ C) $\frac{4}{3}$ D) $\frac{3}{4}$ E) 1

- **68)** If $\cos 6^{\circ} = a$ then $\sin 78^{\circ} = ?$
 - A) 2a + 1 B) $2a^2 1$ C) 2a D) $\frac{a}{2}$ E) $\frac{a+1}{2}$
- **69)** If $\sin x = \frac{2}{3}$ then $\sin(45^{\circ} + x) \times \sin(45^{\circ} x) = ?$

 - A) $\frac{-5}{9}$ B) $\frac{-4}{9}$ C) $\frac{1}{18}$ D) $\frac{4}{9}$ E) $\frac{5}{9}$

- 70) Given that; ABCD is a square. If |CE| = 4|AE| then what is $\cot x$?
 - A) $-\frac{5}{3}$ B) $\frac{3}{5}$
- **c**) 1
- D) $\frac{5}{3}$
- E) √3

71) ABCD is a square. If |DE| = |EC| and

what is $\tan x$?

D) $\frac{1}{2}$

- A) $\frac{21}{13}$ B) $\frac{-1}{\sqrt{2}}$
- c) $\frac{1}{\sqrt{3}}$

- 72) Find the period of the function $f(x) = 2 \cos^2 6x$.

 - A) $\frac{\pi}{6}$ B) $\frac{\pi}{3}$ C) $\frac{\pi}{4}$ D) π

- 73) Find the fundamental period of $f(x) = 2 \cot^6 3x$.
- A) $\frac{\pi}{3}$ B) $\frac{\pi}{2}$ C) $\frac{2\pi}{3}$
- D) π
- E) 2π
- 74) What is the fundamental period of the function $f(x) = 3 + 2\sin^3(4x - 3)$?

- A) $\frac{\pi}{4}$ B) $\frac{\pi}{3}$ C) $\frac{\pi}{2}$ D) π E) 2π
- 75) What is the fundamental period of $y = 3Sin^3 2x + cos^2 (3x - 1)$?
 - A) $\frac{\pi}{2}$ B) $\frac{\pi}{3}$ C) $\frac{\pi}{6}$
- D) π
- E) 2π

- 76) What is the fundemental period of the function $y = \sin^4(4x-5) - \cos^3(2x+3) + \cot^6(3x+3) ?$
 - A) 45
- B) 60
- C) 90
- - D) 180 E) 360

- 77) $\arcsin\left(-\frac{1}{2}\right) = ?$
 - A) -60 B) 120 C) -30 D) 150

- E) 180

- 78) $\frac{12}{\pi} \left| \arccos\left(-\frac{\sqrt{3}}{2}\right) + \arcsin\left(-\frac{\sqrt{3}}{2}\right) + \arctan\left(-\sqrt{3}\right) \right| = ?$
- B) 2
- D) 3
- E) 5

- **79)** $\cos\left(2\arcsin\frac{5}{13}\right) = ?$

- A)1 B) $\frac{12}{13}$ C) $\frac{10}{13}$ D) $\frac{69}{65}$ E) $\frac{119}{169}$
- **80)** $\arccos\left(\sin\frac{27\pi}{7}\right) = ?$

- A) $\frac{8\pi}{7}$ B) $\frac{9\pi}{14}$ C) $\frac{6\pi}{7}$ D) $-\frac{47\pi}{14}$ E) $\frac{4\pi}{7}$

- **81)** $\sin(2\operatorname{arccot}\frac{2}{3}) = ?$

- A) $\frac{12}{13}$ B) $\frac{4}{13}$ C) $\frac{6}{13}$ D) $\frac{12}{\sqrt{13}}$ E) $\frac{9}{\sqrt{13}}$

- **82)** cos(arcsin($-\frac{\sqrt{3}}{2}$))=?

 - A) $\frac{\sqrt{3}}{2}$ B) $-\frac{\pi}{6}$ C) $\frac{1}{3}$ D) $\frac{1}{2}$ E) $-\frac{\sqrt{3}}{2}$
- sin(arctan $\frac{3}{4}$ +arccot $\frac{4}{3}$)=?

- A) $\frac{3}{5}$ B) $\frac{6}{25}$ C) $\frac{9}{25}$ D) $\frac{16}{25}$

- 84) $\sin \left[\arcsin \frac{12}{13} + \arccos \left(\frac{4}{5} \right) \right] = ?$

- A)1 B) $\frac{63}{65}$ C) $\frac{9}{13}$ D) $\frac{5}{13}$ E) $\frac{-33}{65}$
- 85) Find the smallest acute angle x that satisfies the equality $\sin(5x) = \cos(35^{\circ})$.
 - A) 7°
- B) 11°
- C) 18°
- D) 24°
- E) 35°

86) The solution set of the equation $2 + \cos 2x = 3\cos x$ in the interval $[0,2\pi]$ is ...

A)
$$\left\{0, \frac{\pi}{3}, \frac{5\pi}{3}, 2\pi\right\}$$
 B) $\left\{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{5\pi}{3}\right\}$ C) $\left\{0, \frac{2\pi}{3}, \frac{4\pi}{3}, 2\pi\right\}$ D) $\left\{\frac{\pi}{2}, \frac{5\pi}{4}, \frac{7\pi}{6}\right\}$ E) $\left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$

- 87) If $0 < x < 90^{\circ}$, then the number of the roots of the equation sin6x - cos3x = 0 is ...
 - A) 1
- B) 2
- C) 3
- D) 4

E) 5

- 88) Which one of the following is the number of the roots of the equation $\cos 2x + \sin x = 0$ in the interval $[0, 3\pi]$?
 - A) 1

ctive Note Book

- B) 2
- C) 3
- D) 4

E) 5

- 89) Find the solution set of the equation $3\tan(3x) = 3$ in the interval of $[0,\pi]$.
 - A) $\{60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}, 180^{\circ}\}$
 - B) {30°,150°}
 - c) $\{45^{\circ}, 105^{\circ}, 165^{\circ}\}$
 - D) $\{15^{\circ}, 75^{\circ}, 135^{\circ}\}$
 - E) $\{0^{\circ}, 180^{\circ}\}$
- 90) Get the solution set of the equation 2Cos²x-5Cosx=-3 in the interval $[0,2\pi]$.
- A) $\{\pi\}$ B) $\{0,2\pi\}$ C) $\{0,\pi,2\pi\}$
 - D) $\left\{\frac{\pi}{2}, \pi, \frac{3\pi}{2}\right\}$ E) $\left\{\frac{\pi}{3}, \frac{2\pi}{3}, \pi\right\}$

Vote Book

A)
$$x = \frac{\pi}{2} - \frac{\pi}{12} + \pi k$$
 B) $x = -\frac{\pi}{12} + \pi k$ C) $x = 75 + \pi k$

B)
$$x = -\frac{\pi}{12} + \pi k$$

D)
$$x = -\frac{\pi}{12} + 2 \pi k$$
 E) $x = -\frac{\pi}{6} + \pi k$

E)
$$x = -\frac{\pi}{6} + \pi$$

92) Solve
$$\frac{\sin 2x}{2} - \cos^2 x = 0$$

A)
$$\frac{\pi}{4} + 2k\pi; \frac{\pi}{2} + k\pi$$
 B) $\frac{\pi}{6} + k\pi; \frac{\pi}{4} + k\pi$ C) $\frac{\pi}{2} + 2k\pi$

B)
$$\frac{\pi}{6} + k\pi; \frac{\pi}{4} + k$$

C)
$$\frac{\pi}{2} + 2i$$

D)
$$\frac{\pi}{3} + k\pi; \frac{\pi}{2} + k$$

D)
$$\frac{\pi}{3} + k\pi; \frac{\pi}{2} + k\pi$$
 E) $\frac{\pi}{2} + k\pi; \frac{\pi}{4} + \frac{k\pi}{2}$

93) Get the solution set of the equation (Cosx+2)(tg2x+1)=0 in $[0,2\pi]$

A)
$$\left\{ \frac{\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2} \right\}$$

B)
$$\left\{ \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$$

c)
$$\left\{ \frac{5\pi}{6}, \frac{11\pi}{6} \right\}$$

D)
$$\left\{ \frac{3\pi}{8}, \frac{11\pi}{8}, \frac{15\pi}{8} \right\}$$

$$\mathsf{E}) \left\{ \frac{7\pi}{8}, \frac{15\pi}{8} \right\}$$

94) Solve $(\tan x - 1) \cdot (2 \cdot \sin^2 x + 3) = 0$

A)
$$\frac{\pi}{4} + k\pi$$

B)
$$\frac{\pi}{4} + 2k\pi$$

A)
$$\frac{\pi}{4} + k\pi$$
 B) $\frac{\pi}{4} + 2k\pi$ C) $\frac{\pi}{6} + 2k\pi$

D)
$$\pm \frac{\pi}{3} + k\pi$$
 E) $\pm \frac{\pi}{6} + k\pi$

95) If
$$\sin\left(\frac{x}{2} - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
, then find $x \in \left[0^{\circ}, 360^{\circ}\right]$.

A)
$$\{0^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}\}$$
 B) $\{0^{\circ}, 120^{\circ}, 210^{\circ}\}$

B)
$$\{0^{\circ}, 120^{\circ}, 210^{\circ}\}$$

c)
$$\{180^{\circ}, 360^{\circ}\}$$

D)
$$\{135^{\circ}, 270^{\circ}\}$$

96) Solve
$$2\cos\left(x - \frac{\pi}{6}\right) = \sqrt{3}$$
 for x.

A)
$$\pm \frac{\pi}{6} + \frac{\pi}{6} + \pi k$$
 B) $\pm \frac{\pi}{3} + 2\pi k$

B)
$$\pm \frac{\pi}{3} + 2\pi k$$

C)
$$\pm \frac{5\pi}{6} + \frac{\pi}{6} + 2\pi k$$
 D) $\pm \frac{\pi}{6} + \frac{\pi}{6} + 2\pi k$

D)
$$\pm \frac{\pi}{6} + \frac{\pi}{6} + 2\pi k$$

$$E) \pm \frac{\pi}{3} + \frac{\pi}{6} + \pi k$$

97) Solve $2\sin^2 x + 2\sin x = \sqrt{3} + \sqrt{3} \sin x$ where $0 \le x \le 2\pi$.

A)
$$\left\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{3\pi}{2}\right\}$$

B)
$$\left\{ \frac{\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3} \right\}$$

c)
$$\left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{3} \right\}$$

D)
$$\left\{\frac{\pi}{3}, \frac{2\pi}{3}\right\}$$

E) No Solution

98) Solve $\tan\left(\frac{x}{2} - \pi\right) = 1$

A)
$$\frac{\pi}{2} + k\pi$$

3)
$$\frac{\pi}{2} + 2k\pi$$

A)
$$\frac{\pi}{2} + k\pi$$
 B) $\frac{\pi}{2} + 2k\pi$ C) $\frac{5\pi}{2} + 2k\pi$

D)
$$\frac{\pi}{4} + k \frac{\pi}{2}$$
 E) $4\pi + \frac{\pi}{2}k$

E)
$$4\pi + \frac{\pi}{2}k$$

99) Find the solution set of
$$\cos 2x + 3\sin x = 2$$
 for $0^{\circ} \le x \le 360^{\circ}$.

100) Find the solution set of $\cos 2x + 7\sin x + 3 = 0$ for $0^{\circ} < x < 360^{\circ}$.