WHAT IS CLAIMED IS:

5	1.	A method for gasification of a carbonaceous material to
6		a substantially nitrogen-free product gas, comprising
7		the steps of:
8		providing a source of oxygen-enriched gas containing
9		less than about 20 mole percent nitrogen;
10		providing a source of water vapor;
1		pre-mixing said oxygen-enriched gas and water vapor to
111		form a substantially homogeneous mixture;
123 123		contacting said substantially homogeneous mixture with
:14 23		a substantially ash-free carbonaceous fuel at
15		substantially stoichiometric ratio in a high
116		turbulence burner having one of an aerodynamic and
1 7		a bluff body flame holder to promote the formation
18		of free radical species of the combustion products
19		at an adiabatic flame temperature exceeding about
20		2400°C (1316°C);
21		wherein an ultra-superheated steam (USS) composition is
22		produced comprising a mixture of superheated water
23		vapor, carbon dioxide and free radicals with less
24		than about 3.0 mole percent free oxygen;

A method in accordance with claim 1, wherein the 6.

2

3

1

product gas produced in said gasification reactor.

<u>.</u>...

1

2

3

4

1

2

2

3

- quantity of oxygen in said substantially homogeneous mixture is substantially stoichiometric with respect to the quantity of substantially ash-free fuel.
- 7. A method in accordance with claim 1, wherein at least one of said water vapor and oxygen is pre-heated prior to contact with said carbonaceous material.
 - 8. A method in accordance with claim 1, wherein said ultra-superheated steam (USS) composition has a temperature of about 2400°F (1316°C) to about 5000°F (2760°C).
 - 9. A method in accordance with claim 1, wherein said ultra-superheated steam (USS) is essentially clear and colorless.
 - 10. A method in accordance with claim 1, wherein said carbonaceous material is gasified at a reactor temperature of about 1200°F (649°C) to about 2200°F (1204°C).
 - 11. A method in accordance with claim 1, wherein said carbonaceous material comprises one of coal, coke,

3	biomass,	liquid petroleum fraction, liquid cracking
4	product,	gaseous hydrocarbon and a refinery waste
5	material	

1 12. A method in accordance with claim 1, wherein said produced fuel gas is substantially nitrogen-free.

1

2

the first first that the second of the the second

12

£...3

4

1

2

3

4

- 13. A method in accordance with claim 1, wherein said carbonaceous material gasified by said ultrasuperheated steam comprises a mixture of a first carbonaceous material containing substantially no oxygen with a second carbonaceous material containing substantial oxygen.
- 14. A method in accordance with claim 13, wherein said first carbonaceous material comprises less than about 10 w/w % oxygen, and said second carbonaceous material comprises at least about 20 w/w % oxygen.
- 15. A method in accordance with claim 13, wherein said quantity of said second carbonaceous material to be mixed with said first carbonaceous material is determined by:
 - (a) initiating and maintaining gasification in at least

6	one ratio of second carbonaceous material to said
7	first carbonaceous material;
8	(b) determining the carbon dioxide content of the
9	outlet gas at each ratio of second carbonaceous
10	material to said first carbonaceous material;
11	(c) comparing each determined carbon dioxide content
12	with a minimum controllable positive preset value
13	thereof; and
14	(d) iterating steps (a) through (c) with increasing
15	ratios of said second carbonaceous material to
Some of the state	said first carbonaceous material until said
17	desired minimum controllable positive preset value
18	of carbon dioxide content is substantially
19	attained.
19 has my all the grap 2.	16. A method in accordance with claim 15, wherein said
2	ratio of second carbonaceous material to said first
3	carbonaceous material is adjusted to maintain a
4	continuous gasification process at substantially said
5	minimum controllable positive preset value of carbon
6	dioxide content in said product gas.

1

2

17. A method in accordance with claim 15, wherein the mole

percent of carbon dioxide in said product gas is

3		maintained at a value less than about 1-10 mole
4		percent.
1	18.	A method in accordance with claim 13, wherein said
2		quantity of said second carbonaceous material to be
3		mixed with said first carbonaceous material is
4		determined by:
5		(a) initiating and maintaining gasification in at least
6		one ratio of second carbonaceous material to said
7 8 9 0 10 10 10 10 10 0 0		first carbonaceous material;
8		(b) determining the free water content of the outlet
<u></u> 9		gas at each ratio of second carbonaceous material
10		to said first carbonaceous material;
11		(c) comparing each determined free water content with a
12		minimum controllable positive preset value
113		thereof; and
14		(d) iterating steps (a) through (c) with increasing
15		ratios of said second carbonaceous material to
16		said first carbonaceous material until said
17		minimum controllable positive preset value of free
18		water content is substantially attained.

1

13

į.

1

2

3

4

5

6

3

- carbonaceous material is adjusted to maintain a continuous gasification process at substantially said minimum controllable positive preset value of free water content in said product gas.
- 20. A method in accordance with claim 18, wherein the mole percent of free water in said product gas is maintained at a value less than about 1-10 mole percent.
- 21. A method in accordance with claim 13, wherein said first carbonaceous material comprises one of coal and a hydrocarbon.
- 22. A method in accordance with claim 13, wherein said second carbonaceous material comprises a cellulosic material.
- 23. A method in accordance with claim 13, wherein the first carbonaceous material comprises coal at about 85 w/w % to about 98 w/w % concentration, and the second carbonaceous material comprises a cellulosic material at about 2 w/w percent to about 15 w/w percent concentration.

1	24.	A method in accordance with claim 13, wherein the first
2		carbonaceous material comprises coal at about 10 w/w %
3		to about 60 w/w % concentration, and the second
4		carbonaceous material comprises a cellulosic material
5		at about 40 w/w percent to about 90 w/w percent
6		concentration.
1	25.	A method for producing an ultra-superheated steam
2		composition, comprising the steps of:
[] []3		providing a source of oxygen-enriched gas;
44 45 5		providing a source of water vapor;
		pre-mixing said oxygen-enriched gas and water vapor
016		from said sources to form a substantially
= 7		homogeneous mixture; and
[] []8		contacting said substantially homogeneous mixture with
- 9		a substantially ash-free fuel in a high turbulence
10		burner with one of an aerodynamic and bluff body
11		flame holder to promote the formation of free
12		radical species of burner combustion products at
13		an adiabatic flame temperature of at least about
14		2400°F (1316°C);
15		whereby an ultra-superheated steam composition is
16		produced in said burner comprising a mixture of
17		superheated water vapor, carbon dioxide and free

18		radicals with less than about 3.0 mole percent
19		free oxygen;
20		wherein said ultra-superheated steam composition has a
21		temperature of at least about 2400°F (1316°C).
1	26.	A method in accordance with claim 25, wherein said
2		oxygen-enriched gas comprises at least about 80 mole
3		percent oxygen.
1 1 1 2	27.	A method in accordance with claim 25, wherein the homogeneous mixture of steam and oxygen-enriched gas
		comprises about 15 to about 40 mole percent oxygen.
= 1	28.	A method in accordance with claim 25, wherein the
112 113		substantially ash-free fuel comprises one of a
113		petroleum-based liquid, hydrocarbon containing gas, and
≟.≟ 4		a produced fuel gas from a gasification process.
1	29.	A method in accordance with claim 25, wherein the
2		quantity of oxygen in said substantially homogeneous
3		mixture is substantially stoichiometric with respect to
4		the quantity of substantially ash-free fuel.
1	30.	A method in accordance with claim 25, wherein at least

2

3

3

4

one of said water vapor and oxygen is pre-heated prior

to contacting with said substantially ash-free fuel.

gas containing substantially CO and H_2 .

which a carbonaceous material is converted to a fuel

1	36.	A method in accordance with claim 35, wherein said
2		substantially ash-free fuel comprises a portion of the
3		fuel gas produced by said gasification process.
1	37.	In a gasification apparatus for gasifying a
2		carbonaceous material to a product gas with an ultra-
3		superheated steam (USS) composition in a reactor, the
4		ultra-superheated steam formed in a high turbulence
5		burner with an aerodynamic flame holder at an adiabatic
1 6		flame temperature of between about 2400°F (1316°C) and
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		about 5000°F (2760°C) by combustion of a substantially
18		ash-free fuel with a pre-mixture of oxygen and water
9		vapor; wherein a method for controlling the temperature
* 10		of the gasification product gas comprises:
11		controlling the ratio of (a) oxygen in said pre-mixture
12		to (b) said carbonaceous fuel fed to the burner at
1 3		a near-stoichiometric value to limit free oxygen
14		in the ultra-superheated steam composition to a
15		value generally less than about 3.0 mole percent;
16		and

17

18

19

21 and about 2200°F (1204°C).

38.	In a gasification apparatus for gasifying a
	carbonaceous material to a product gas with an ultra-
	superheated steam (USS) composition in a reactor, the
	ultra-superheated steam formed in a high turbulence
	burner with an aerodynamic flame holder at a an
	adiabatic flame temperature of between about 2400°F
	(1316°C) and about 5000°F (2760°C) by combustion of a
	substantially ash-free carbonaceous fuel with a pre-
	mixture of oxygen and water vapor; wherein a method for
	controlling the temperature of the gasification product
	gas comprises:
	controlling the ratio of (a) oxygen in said pre-mixture
	to (b) said carbonaceous fuel fed to the burner at
	a near-stoichiometric value to limit free oxygen
	in the ultra-superheated steam composition at a
	value generally less than about 3.0 mole percent;
	controlling the rate of ultra-superheated steam
	composition at a substantially constant value; and
	controlling the rate of carbonaceous material fed to

said gasification reactor to control the

temperature of said product gas at a preset

temperature between about 1200°F (649°C) and about

23	2200°F (1204°C).
4	39. A method for increasing the efficiency of a thermal
1	
2	gasification of a first carbonaceous material
3	substantially comprising elemental carbon in a
4	gasification reactor, said method comprising the steps
5	of:
6	determining a quantity of a second carbonaceous
7	material containing oxygen to be combined with
8 9 0 1 11 11 11 11 11 11 11 11 11 11 11 11 1	said first carbonaceous material for optimal
<u> </u>	gasification; and
10	combining said determined quantity of said second
11	carbonaceous material with said first carbonaceous
12	material; and
13	gasifying said combined first carbonaceous material and
14	second carbonaceous material containing oxygen in
15 15	said reactor to produce a product gas.
1	40. A method in accordance with claim 39, wherein said
2	quantity of said second carbonaceous material to be
3	combined with said first carbonaceous material is
4	determined by:
5	(a) initiating and maintaining gasification in at leas
6	one ratio of second carbonaceous material to said

7		first carbonaceous material to produce a product
8		gas;
9		(b) determining the carbon dioxide content of the
10		reactor outlet gas at each ratio of said second
11		carbonaceous material to said first carbonaceous
12		material;
13		(c) predetermining a desirable controllable minimally
14		positive value of carbon dioxide in said reactor
15		outlet gas;
16		(d) comparing each determined carbon dioxide content
17		with said predetermined minimally positive value
18		of carbon dioxide; and
19		(e) iterating steps (a) through (c) with increasing
2 0		ratios of said second carbonaceous material to
21		said first carbonaceous material until said
21 22		predetermined controllable minimally positive
23		value is substantially attained.
1	41.	A method in accordance with claim 40, wherein the
2		desired quantity of second carbonaceous material added
3		to said first carbonaceous material at said
4		predetermined controllable minimally positive value of
5		carbon dioxide is between about 5 percent and about 25

 $A_{-2} = \frac{1}{2} (-1) \cdot (-1)$

percent by weight.

1	42.	A method for increasing the efficiency of a thermal
2		gasification of a second carbonaceous material
3		containing substantial oxygen in a gasification
4		reactor, comprising the steps of:
5		determining a quantity of a first carbonaceous material
6		substantially comprising elemental carbon to be
7		combined with said second carbonaceous material
8		for optimal gasification; and
[] _9		gasifying said quantity of second carbonaceous material
10		and said first carbonaceous material in said
		reactor.
= 1	43.	A method in accordance with claim 42, wherein said
1.2 1.5 1.5 1.5		quantity of first carbonaceous material to be combined
113		with said second carbonaceous material is determined
[] -4		by:
5		(a) initiating and maintaining gasification in at least
6		one ratio of first carbonaceous material to said
7		second carbonaceous material;
8		(b) determining the carbon dioxide content of the
9		reactor outlet gas at each ratio of first
10		carbonaceous material to said second carbonaceous

material;

12		(c) predetermining a desirable controllable minimally
13		positive value of carbon dioxide in said reactor
14		outlet gas;
15		(d) comparing each determined carbon dioxide content
16		with said predetermined minimally positive value
17		of carbon dioxide; and
18		(e) iterating steps (a) through (c) with increasing
19		ratios of said first carbonaceous material to said
20		second carbonaceous material until said
21		predetermined controllable minimally positive
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		value is substantially attained.
<u>1</u>	44.	A method in accordance with claim 43, wherein the
10 = 2		desired quantity of first carbonaceous material added
3		to said second carbonaceous material at said
4		predetermined controllable minimally positive value of
5		carbon dioxide is between about 5 percent and about 50
6		percent by weight.
1	45.	A method for reducing oxygen consumption per unit
2		produced fuel gas in an oxygen-blown gasification

process gasifying a first carbonaceous material

substantially comprising elemental carbon to a

substantially nitrogen-free product gas, said method

3

4

6		comprising:
7		adding a second carbonaceous material substantially
8		comprising cellulose to said first carbonaceous
9		material at about 5 w/w percent to about 25 w/w
10		percent thereof; and
11		gasifying the mixture of elemental carbon and
12		cellulosic material at an elevated temperature.
1	46.	A method for reducing oxygen consumption per unit
12		produced fuel gas in an oxygen-blown gasification
		process gasifying a first carbonaceous material
[] [: 4		containing cellulose to a substantially nitrogen-free
÷		product gas, said method comprising:
4 5 6		adding a second carbonaceous material substantially
7		comprising elemental carbon to said first
7		carbonaceous material at about 5 w/w percent to
119		about 50 w/w percent; and
10		gasifying the mixture of elemental carbon and
11		cellulosic material at an elevated temperature.