Clase 14

En la sesión anterior introducimos el concepto de sucesión y la definición de cuándo una sucesión converge a un número:

Definición 1 Sean $\{a_n\}$ una sucesión y $l \in \mathbb{R}$. Diremos que $\{a_n\}$ converge a l, denotado por $\lim_{n\to\infty} a_n = l$ o por $a_n \longrightarrow l$, si para cada número $\varepsilon > 0$ existe un número natural N tal que para todos los números naturales $n \geq N$ se tiene que

$$|a_n - l| < \varepsilon$$
.

Además vimos los siguientes ejemplos:

Ejemplo 2 Demuestre que la sucesión $\{1/n\}$ converge a cero.

Ejemplo 3 Muestre que para cualquier $l \in \mathbb{R}$ la sucesión $\{(-1)^n\}$ no converge a l.

En esta sesión estudiaremos, como consecuencia de las operaciones que se pueden realizar con las sucesiones, las operaciones entre los límites de sucesiones convergentes.

Aritmética de los límites de sucesiones

Antes de comenzar con el material de esta sesión es necesario precisar el lenguaje que ocuparemos en esta sección: Diremos que una sucesión $\{a_n\}$ converge si existe $l \in \mathbb{R}$ tal que $\lim_{n\to\infty} a_n = l$. En este caso, diremos que l es el **límite de la sucesión** $\{a_n\}$ y en cualquier otro caso, diremos que la sucesión $\{a_n\}$ diverge. Por ejemplo, la sucesión $\{1/n\}$ converge y su límite es 0 mientras que la sucesión $\{(-1)^n\}$ diverge.

Consideremos la siguiente "frase": Para todo $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que Si esta "frase" es una hipótesis, entonces podemos elegir el épsilon que queramos y automáticamente podemos asumir la existencia de un $N \in \mathbb{N}$ tal que.... Por otro lado, si esta "frase" es algo que debemos demostrar entonces debemos ver que para un épsilon positivo cualquiera existe $N \in \mathbb{N}$ tal que... En la demostración del siguiente lema pueden poner en práctica esto.

Lema 4 Sean $a, b \in \mathbb{R}$. Se tiene que a = b si y sólo si para todo $\varepsilon > 0$ se cumple que $|a - b| < \varepsilon$.

Teorema 5 (El límite de una sucesión es único) $Sea \{a_n\}$ una sucesión. Si

$$\lim_{n \to \infty} a_n = l \qquad y \qquad \lim_{n \to \infty} a_n = m,$$

entonces l = m.

Demostración. Utilizaremos el Lema 4 para demostrar que l=m, es decir, mostraremos que para todo $\varepsilon > 0$ ocurre que $|l-m| < \varepsilon$.

Sea $\varepsilon > 0$. Como $\lim_{n \to \infty} a_n = l$ y $\lim_{n \to \infty} a_n = m$, para el número positivo $\varepsilon/2$, existen $N_1, N_2 \in \mathbb{N}$ tales que:

(I) para todo número natural $n \geq N_1$ se tiene que $|a_n - l| < \varepsilon/2$.

(II) para todo número natural $n \geq N_2$ se tiene que $|a_n - m| < \varepsilon/2$.

Entonces, si n es un número natural mayor que N_1 y mayor que N_2 , se tiene que

$$|a_n - l| < \varepsilon/2$$
 y $|a_n - m| < \varepsilon/2$.

Así, si $N = \max\{N_1, N_2\}$, se tiene que $N \in \mathbb{N}$ y para $n \geq N$ se cumple que

$$|l-m| = |l-a_n + a_n - m| \le |l-a_n| + |a_n - m| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Es decir, $|l - m| < \varepsilon$.

Definición 6 Sea $\{a_n\}$ una sucesión. Diremos que $\{a_n\}$ es:

- (1) una sucesión acotada inferiormente si existe $m \in \mathbb{R}$ tal que $m \leq a_n$, para todo $n \in \mathbb{N}$.
- (2) una sucesión acotada superiormente si existe $M \in \mathbb{R}$ tal que $a_n \leq M$, para todo $n \in \mathbb{N}$.
- (3) una sucesión acotada si existe $M \in \mathbb{R}$ tal que $|a_n| \leq M$, para todo $n \in \mathbb{N}$.

Lema 7 Toda sucesión convergente es acotada.

Demostración. Sea $\{a_n\}$ una sucesión convergente, digamos a l, es decir,

$$\lim_{n\to\infty} a_n = l.$$

Para el número positivo 1, existe $N \in \mathbb{N}$ tal que para todo número natural $n \geq N$ se tiene que $|a_n - l| < 1$. Ahora, como $|a_n| - |l| \leq |a_n - 1|$, se sigue que, para todo número natural $n \geq N$,

$$|a_n| < 1 + |l|$$
.

Así, si $M = \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, 1+|l|\}$, entonces

$$|a_n| \leq M$$
,

para toda $n \in \mathbb{N}$. Es decir, $\{a_n\}$ es una sucesión acotada.

¿Vale el "regreso" de este lema? La respuesta es NO, por ejemplo, la sucesión $\{(-1)^n\}$ es una sucesión acotada (considere M=2), pero ya vimos que esta sucesión diverge.

Teorema 8 (Aritmética de los límites de sucesiones) Sean $\{a_n\}$ y $\{b_n\}$ dos sucesiones y $l, m \in \mathbb{R}$ tales que $\lim_{n \to \infty} a_n = l$ y $\lim_{n \to \infty} b_n = m$. Se tiene que:

(a) La sucesión $\{a_n + b_n\}$ converge, más aún,

$$\lim_{n \to \infty} (a_n + b_n) = l + m.$$

(b) Para $k \in \mathbb{R}$ la sucesión $\{ka_n\}$ converge, de hecho,

$$\lim_{n \to \infty} k a_n = kl.$$

(c) La sucesión $\{a_n - b_n\}$ converge, más aún,

$$\lim_{n \to \infty} (a_n - b_n) = l - m.$$

(d) La sucesión $\{a_nb_n\}$ converge y

$$\lim_{n \to \infty} a_n b_n = lm.$$

(e) Si $m \neq 0$, entonces existe $N \in \mathbb{N}$ tal que $b_n \neq 0$ para todo $n \geq N$ y la sucesión $\{d_n\}$ definida como sigue

$$d_n = \begin{cases} 1 & \text{si } n < N, \\ \frac{1}{b_n} & \text{si } n \ge N, \end{cases}$$

es convergente. De hecho, $\lim_{n\to\infty} d_n = \frac{1}{m}$, pero esto se suele escribir como

$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{m}.$$

(f) Si $m \neq 0$, entonces existe $N \in \mathbb{N}$ tal que $b_n \neq 0$ para todo $n \geq N$ y la sucesión $\{d_n\}$ definida como sigue

$$d_n = \begin{cases} 1 & \text{si } n < N, \\ \frac{a_n}{b_n} & \text{si } n \ge N, \end{cases}$$

es convergente. De hecho, $\lim_{n\to\infty} d_n = \frac{l}{m}$, pero esto se suele escribir como sigue

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{l}{m}.$$

Demostración. Sea $\varepsilon > 0$.

- (a) Para el número positivo $\varepsilon/2$, existen $N_1,N_2\in\mathbb{N}$ tales que:
 - (I) para todo número natural $n \geq N_1$ se tiene que $|a_n l| < \varepsilon/2$.
 - (II) para todo número natural $n \geq N_2$ se tiene que $|a_n m| < \varepsilon/2$.

Así, si $N = \max\{N_1, N_2\}$, se tiene que $N \in \mathbb{N}$ y para $n \geq N$ se cumple que

$$|(a_n + b_n) - (l + m)| = |(a_n - l) + (b_n - m)| \le |a_n - l| + |b_n - m| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

(b) Si k=0, el resultado se sigue trivialmente (¿por qué?). Supongamos entonces que $k\neq 0$. Para el número positivo $\varepsilon/|k|$, existe $N\in\mathbb{N}$ tal que para todo número natural $n\geq N$ se tiene que $|a_n-l|<\varepsilon/|k|$. Así, si $n\geq N$, se tiene que

$$|ka_n - kl| = |k||a_n - l| < |k| \frac{\varepsilon}{|k|} = \varepsilon.$$

- (c) El resultado se sigue de los incisos (a) y (b).
- (d) Note que, para todo $n \in \mathbb{N}$,

$$|a_n b_n - lm| = |a_n b_n - b_n l + b_n l - lm| \le |b_n| |a_n - l| + |b_n - m| |l|. \tag{1}$$

у

$$|a_n b_n - lm| = |a_n b_n - a_n m + a_n m - lm| \le |a_n| |b_n - m| + |a_n - l| |m|$$
(2)

Así, si l = 0, o m = 0, usando el Lema 7 y la convergencia de $\{a_n\}$ en (1), o el Lema 7 y la convergencia de $\{b_n\}$ en (2), podemos conluir (¿cómo?) lo deseado.

Supongamos entonces que $l, m \neq 0$. Como $\{a_n\}$ es una sucesión convergente, por el Lema 7, existe $M \in \mathbb{R}$ tal que $|a_n| \leq M$, para toda $n \in \mathbb{N}$. Por otro lado, para los números positivos $\varepsilon/(2|m|)$ y $\varepsilon/(2M)$, existen números naturales N_1 y N_2 , respectivamente, tales que :

- (I) para todo número natural $n \ge N_1$ se tiene que $|a_n l| < \varepsilon/(2|m|)$.
- (II) para todo número natural $n \geq N_2$ se tiene que $|b_n m| < \varepsilon/(2M)$.

Por lo que, si $N = \max\{N_1, N_2\}$, se tiene que $N \in \mathbb{N}$ y para $n \geq N$ que

$$|a_n b_n - lm| \le |a_n||b_n - m| + |a_n - l||m| < M\left(\frac{\varepsilon}{2M}\right) + \left(\frac{\varepsilon}{2|m|}\right)|m| = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

- (e) Para los números positivos $\frac{|m|}{2}$ y $\frac{\varepsilon |m|^2}{2}$, existen números naturales N_1 y N_2 , respectivamente, tales que:
 - (I) para todo número natural $n \ge N_1$ se tiene que $|b_n m| < \frac{|m|}{2}$.
 - (II) para todo número natural $n \ge N_2$ se tiene que $|b_n m| < \frac{\varepsilon |m|^2}{2}$.

De (eI), se tiene que $|m|-|b_n|<|m|/2$, para todo $n\geq N_1$ y de aquí que

$$0<\frac{|m|}{2}<|b_n|,$$

para todo $n \geq N_1$. De donde $b_n \neq 0$, para todo $n \geq N_1$. Note también que

$$\frac{1}{|b_n|} < \frac{2}{|m|},\tag{3}$$

para todo $n \geq N_1$.

Así, si $N = \max\{N_1, N_2\}$, se tiene que $N \in \mathbb{N}$ y para $n \geq N$

$$\left| \frac{1}{b_n} - \frac{1}{m} \right| = \left| \frac{b_n - m}{b_n m} \right| \tag{4}$$

$$=\frac{|b_n - m|}{|b_n||m|}\tag{5}$$

$$<\frac{\varepsilon |m|^2}{2|b_n||m|}\tag{6}$$

$$=\frac{\varepsilon|m|}{2|b_n|}\tag{7}$$

$$<\frac{2\varepsilon|m|}{2|m|}\tag{8}$$

$$=\varepsilon,$$
 (9)

donde (6) se da por (eII) y (8) se da por (3).

(f) Se sigue de los incisos (d) y (e).