Clase 2 de Web Semántica

Libreta: Curso Web Semántica - Mag

Creado: 14/02/2019 8:51 p. m. Actualizado: 15/02/2019 12:01 a. m.

Autor: Miguel Angel Niño Zambrano

 $\textbf{URLOrigen:} \qquad \text{https://www.google.com/search?rlz=1C1AWFC_enCO811C0811\&biw=1536\&bih=754\&ei=0t9lXLW4Nsj4_Abnzq_gDQ\&q=t...}$

Clase 14/02/2019 - Introduction to Semantic Web

• I hope you have read "El futuro de la Web".

- In the previous session, we were working in basic concepts of Semantic Web.
- We were looking the problems at the current Web
- Those problems were related to semantic interoperability.

Questions to resolve in the session:

- What is the problems of the current Web?
- What is the Semantic Web for you?
- What tools the semantic web provides us to solve the problem of the current web?
- If the semantic web were a reality. What would it be like to live in that world?

Next Topic:

- Current Web Problems
 - Large amount of loose redundant information of dubious quality
 - Interoperability problems (heterogeneity and formats)
 - Cost of time in the search
 - Rapid change of information an link structures
- Semantic Web
 - Extended Web with greater meaning
 - Any user can find answers to their questions
 - Better defined information
- What is the Semantic Web for?
 - It allows to organize the large amount of information and loose data existing on the web
 - Allows you to use a method to integrate resources with different formats

- Allows interoperability between different devices and platforms
- How the semantic web works?
 - The web builds a **knowledge base** about its users
 - It has related data and information with its meaning
 - He is able to understand exactly what he is being asked to look for
 - well-defined problems through well-defined operations that were carried out on well-defined existing data.
- What is the cornerstone of the semantic web?
 - The metadata
 - information about internet resource
 - Internet resource
 - html, images, videos and different documents
 - Purpose of the metadata
 - Describe, identify and locate
 - Metadata requirements
 - Contain structured information
 - Understandable for machines
- What is metadata made of?
 - resource property value
 - subject predicate object
 - Recursivity is that the three concepts can be resources too
- Where can we store the metadata?
 - Office documents
 - In pdf, images, sound o video documents.
 - Folksonomies (tags)
 - https://del.icio.us/manzamb/
 - Microformats (hidden tangs in marked language)
 - http://microformats.org/wiki/code-tools
 - http://gmpg.org/xfn/creator-es (XFN (XHTML Friends Network))
- Metadata coding
 - XHTML (<meta name="property" content="value">)
 - Schema (Document with tags that can be used as metadata).
 Example: dublinCore
 - Profiles (URL with Specification). Example: FOAF
 - Relational Links (use profiles in tags: <a> a> <link>)
 - Custom definition of metadata (several profiles)
 - RDF files (external file with metadata)

- Technologies to define resources
 - XML (eXtensible Markup Language)
 - RDF (Resource Description Framework)
 - SPARQL (Simple Protocol and RDF Query Language)
 - OWL (Web Ontology Language)
 - RDFa (different areas)
- Explain the related technologies of the Semantic Web.

- XML
 - Define he grammar of a language
 - DTD (Document Type Definition)
 - XMLS (XML Schema)
 - https://www.w3schools.com/xml/default.asp
 - https://sites.google.com/site/todoxmldtd/ejercicios/enunciados/ejerciciosxml-basicos
- RDF
 - Allows describe web resources.
 - Can process metadata
 - Give interoperability
 - Automatized process

- Validator: https://validator.w3.org
- SPARQL
 - Allows to search the resources of the Semantic Web using different data sources.
 - Examples tools:
 - file RDF: http://www.dajobe.org/foaf.rdf
 - SPARQL By Example: https://www.w3.org/2009/Talks/0615-gbe/
 - General purpose processor: http://sparql.org/sparql.html
 - OpenLink Virtuoso SPARQL Query
 Editor: http://demo.openlinksw.com/sparql
 - Redland Rasqal RDF Query
 Demonstration: http://librdf.org/query/
- Other Web Semantic elements
 - Controlled vocabularies: closed list of terms
 - Example: http://www.wikipedia.com
 - Taxonomies Thesaurus: controlled vocabulary nested
 - Examples:
 - taxonomic search engine: http://www.dmoz.org
 - https://www.visualthesaurus.com
 - http://wiki.dbpedia.org/
 - SKOS: Simple Knowledge Organization System
 - Ontologies: Encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains
 - RDFa OWL

WebServices