Ladavie 1.				
{[x]=4x				
g (x)= 3>; 14				
odp. g(x)=4x-3-4				
Lactanie 2.				
a) {(x)= 36	b) $f(x) = (\frac{1}{3})^{2x+3}$			
g(x) = 62x-4	g(x)= 24 x-2			
36 4x+4 = 62x-4				
$36^{4x+4} = 6^{2x-4}$ $(6^{2})^{4x+4} = 6^{2x-4}$	$\left(\frac{1}{3}\right)^{2\times +3} = 211^{\times -2}$			
6 2 = 6 2 x - 4	2-2x-3 = (25)x-2			
8 x + 2 = 2x-4				
8 x - 2x = -4-2	-2x-3 = 3x-6			
6x = -6/:6	-2x - 3x = -6 + 3			
cdg. X = -/	-5 x = -3/:-5			
	ody: X = 3			
Ladarie 4				
g x+3 = 24 x+1				
(3e)x+5 = (53)x+1				
32x+6 = 38x+3				
2x+6=8x+3				
2x-3x= 3-6				
-x = -3/(-1)				
x=3				
Lodaie 5 a) $0, 2^{2+x} > 0, 2^{-x}$ podsta	wa mniejsza od 1 amieniamy sagk			
	amulniamy suak			
2+x <-x				
X + χ ζ - 2				
2×4-2/2				
х<-л				
colp. x6 (-00, -1)				
6) 5 x2+4x 5 1	1×+3 ≤ 0			
$ \begin{array}{c cccc} cdp & x & (-\infty, -1) \\ \hline b) & 5 & \sqrt{2} + 4x & \sqrt{2} \\ \hline 5 & x^2 + 4x & 5 & 5^{-3} \end{array} $	X+1/20	-3 -1		
211. 6 2	X ****	/ > - 2		
x ² +4x ≤ -3	1 x + 3 > 0 1 x + 1 > 0	1 x > -3 1 x \(\) -1		
x2+4x+350	1 × +1 > 0	1 x = 1 '		
x2+3x+x+360	$\begin{cases} x \leq -3 \\ x \geqslant -4 \end{cases}$ $\begin{cases} x \geq -3 \\ x \leq -4 \end{cases}$			
x(x+3) + x + 3 \le 0	7 7	colp. x6 <-3,-1>		
(x+3) · (x+1) & 0	\[\frac{1}{2} > -3 \]			
	$ d _{\chi \leq -1} $			

94.1				
Indaine 6 a) $3^{*} + 3^{*+4} + 3^{*+3} = 93$ $3^{*} (1 + 3 + 3^{3}) = 93$ $3^{*} (1 + 3 + 2 + 3) = 93$ $3^{*} (3 + 3 + 2 + 3) = 93$ $3^{*} (3 + 3 + 2 + 3) = 93$ $3^{*} = 3$ $3^{*} = 3$ $3^{*} = 3$ $3^{*} = 3^{*}$ where $x = 1$	$\frac{1}{2}$	9-2x-3/	χίρ. χ6 (~½,0)	
$3^{x} (1 + 3 + 2^{3}) = 93$	19-2×	(-3 > 1	up. x6 (2,0)	
3*(112,28)=93	7 - 2×	-3 / 1		
3 (21) = 93 /31	12-2×	·-3 7/2-3		
3* = 3	2-2×-	-3 (2 °		
3× = 31	/-2x -	3 2 -3		
colm $\lambda = 1$	7-2x-	-3 <0		
S-04	/-2 >,	· O		
)-2x	<3/:-2		
	/ x < (0		
	/ x>	2 2 x 3 / () () () () () () () () () (
Zadavie				