Anotações MC658

Eduardo M. F. de Souza

11 de abril de 2020

Sumário

1	Clas	asses de Complexidade				
	1.1	Características	2			
	1.2	$\mathcal{P}, \mathcal{NP} \in \mathcal{NP}$ -Completo	2			
	1.3	Problemas de Decisão	2			
		1.3.1 Formalização matemática de um problema	3			
		1.3.2 Operações sobre Linguagens	4			
	1.4	Algoritmos	4			
	1.5	Definição da classe \mathcal{P}	4			
	1.6	Verificação	5			
	1.7	Algoritmo Verificador para Ciclo Hamiltoniano	5			
	1.8	Classe NP	5			
	1.9	Classe co-NP	6			
	1.10	Possíveis Relações entre estas Classes	6			
		Reduções Polinomiais	7			
		1.11.1 Lema 34.3	7			
	1.12	NP-Completo (NPC)	7			
		Teorema 34.4	7			
		Teorema de Cook (1971)	8			
		1.14.1 Problema SAT	8			
		1.14.2 Circuit-SAT	8			
		1.14.3 Circuit-SAT \in NP	8			
	1.15	Provas de NP-Completude	8			
		1.15.1 SAT	9			
	1 16		10			

1 Classes de Complexidade

1.1 Características

- São classes que contém problemas, e, problemas que contém determinadas características em comum;
- A maior parte dos algoritmos vistos até então têm tempo polinomial $O(n^k)$ onde k é constante e n é o tamanho da entrada;
- Nem todo problema admite um algoritmo polinomial para resolvê-lo.
 Exemplo: problema da parada, no qual sequer admite um algoritmo, independente do tempo; programa para predizer se um algoritmo pode entrar em deadlock ou não em uma máquina genérica;
 - É tratável se admite um algoritmo polinomial;
 - E intratável se não admitir um algoritmo polinomial (pode admitir um algoritmo exponencial);

1.2 \mathcal{P} , \mathcal{NP} e \mathcal{NP} -Completo

- \bullet \mathcal{P} : Classe em que os problemas que possuem algoritmos que os resolvem em tempo polinomial;
- \mathcal{NP} : Classe em que os problemas admitem um algoritmo polinomial que verifiquem instâncias do problema.

Um exemplo é o Ciclo Hamiltoniano:

Entrada: Grafo simples G = (V, E).

Saída: Existe ou não um ciclo que passa por cada vértice exatamente uma vez.

Verificação:

 $(1,2,3,6,4,5) \rightarrow$ não é uma solução válida; $(1,2,3,4,5,6) \rightarrow$ é uma solução válida;

• NP-Completo: Todo problema desta classe está em NP.Problemas NPC têm a característica de, se algum deles admitir um algoritmo polinomial, então automaticamente todos os problemas de NP possuem um algoritmo polinomial;

1.3 Problemas de Decisão

Resposta deve ser de Sim (1) ou Não (0).

Exemplo: Da versão de decisão do problema do menor caminho em um grafo:

Entrada: G = (V, E) com pesos nas arestas, valor k, e $u, v \in V$

Pergunta: Existe caminho $u \to v$ com custo $\leq k$?

 $\mathcal{P} \leq \mathcal{NP} \mid \mathcal{NP} \in \mathcal{P}$ é uma questão em aberto. Desde 1970 até hoje um importante problema aberto é se $\mathcal{P} = \mathcal{NP}$.

1.3.1 Formalização matemática de um problema

- Um problema será definido como um lingagem sobre um alfabeto Σ ;
- Usaremos $\Sigma = 0, 1$ (binário);
- ullet Dado um problema Q, qualquer instância desse problema será codificada como uma string de 0s e 1s;
- Uma linguagem \underline{L} de Σ é um conjunto de strings formadas com os símbolos de Σ . Notação:
 - E: string vazia
 -
 \emptyset : Uma linguagem vazia
 - Σ^* : Todas as possíveis strings que podem ser escritas com os símbolos de $\Sigma.$ Exemplo: $\Sigma^*=\{E,0,1,00,01,\ \ldots\}$

Observação: Qualquer lingaguem L é tal que L contem em Σ^* .

Um problema de decisão Q será visto como uma linguagem que contém todas as strings de Σ^* que corresponde às instâncias de Q cuja resposta é sim.

Exemplo:

Ciclo-Hamiltoniano = { $\langle G = (V, E) \rangle$ tal que G possui um Ciclo Hamiltoniano}

(): Notação que corresponde à codificação da instância como uma string.

1.3.2 Operações sobre Linguagens

- União: $L_1 \cup L_2 = \{s : s \in L_1 \text{ ou } s \in L_2\}$
- Concatenação: $L_1L_2 = \{x, y : x \in L_1 \text{ ou } y \in L_2\}$
- União: $L_1 \cap L_2 = \{s : s \in L_1 \text{ ou } s \in L_2\}$

1.4 Algoritmos

- Uma entrada para um algoritmo A é qualquer string de Σ^* ;
- Um algoritmo aceita $s \in \Sigma^*$ se A(s) = 1;
- Um algoritmo rejeita $s \in \Sigma^*$ se A(s) = 0;
- Um algoritmo aceita uma linguagem L se $\forall s \in L \Rightarrow A(s) = 1$. Para strings $s \notin L \Rightarrow A(s) \neq 1$ o algoritmo pode não parar entra em loop infinito;
- A é um algoritmo que decide uma linguagem L se $\begin{cases} \forall s \in L \Rightarrow A(s) = 1 \\ \forall s \notin L \Rightarrow A(s) = 0 \end{cases}$
- Uma linguagem é **aceita** em tempo polinomial se existe um algoritmo polinomial A que **aceita** L:
- Uma linguagem é **decidida** em tempo polinomial se existe um algoritmo polinomial que **decide** L;

1.5 Definição da classe \mathcal{P}

$$\mathcal{P} = \{ L \in \Sigma^* \mid L \text{ \'e decidido em tempo polinomial} \}$$

Teorema: \mathcal{P} é o conjunto de todas as linguagens decididas em tempo polinomial.

$$\mathcal{P} = L \in \Sigma^* \mid L$$
 é aceita em tempo polinomial = \mathcal{P}'

Prova:

Contido:

Seja
$$L$$
 decidida em tempo polinomial \Rightarrow
 \Rightarrow \exists um algoritmo A polinomial que decide L \Rightarrow
 \Rightarrow A aceita L em tempo polinomial;

Contrário de contido:

Seja
$$L$$
 aceita em tempo polinomial \Rightarrow \Rightarrow \exists um algoritmo $A: s \in L \mid A(s) = 1$ em tempo $c \times |s|^k$ (polinomial) onde c e k são constantes;

Existe um algoritmo A' que simula A por $c \times |s|^k$ passos. Se A(s) = 1, então A'(s) = 1 e caso A(s) não responda nada (ou zero) então $A'(s) = 0 \Rightarrow L$ é decidida em tempo polinomial.

Problema de Decisão

$$\Sigma = \{0, 1\}$$

$$\Sigma^* = \{E, 0, 1, 00, 01, \ldots\}$$

Problema $Q\subseteq \Sigma^*\mid x\in Q\iff$ a resposta para instância x é sim. Algoritmo A que decide uma linguagem $L\subseteq \Sigma^*$:

$$A(x) = \begin{cases} 1, \ \forall x \in L \\ 0, \ \forall x \notin L \end{cases}$$

 $P = \{L \subseteq \Sigma^* \mid \exists \text{ um algoritmo } A \text{ que decide } L \text{ em tempo polinomial}\}\$

1.6 Verificação

Ciclo Hamiltoniano = $\{ < G = (V, E) > \text{ onde G \'e um grafo simples e G possu um ciclo que passa por cada vértice exatamente uma vez$

Algoritmo Verificador para uma linguagem $L \subseteq \Sigma^*$. A(x,y) onde x é uma instância de L e y é outra string que chamamos de certificado.

- 1. Se $x \in L$ então $\exists y \in \Sigma^*/A(x,y) = 1$
- 2. Se $x \notin L$ então $\forall y \in \Sigma^* / A(x,y) \neq 1$

1.7 Algoritmo Verificador para Ciclo Hamiltoniano

A(G, sequência vertical (v_1, v_2, \ldots, v_n)) -> Verificar que correspondem a todos os vértices do grafo exatamente uma vez. For $\mathbf{v} \in (v_1, v_2, \ldots, v_n) If \mathbf{v} \notin Greturn 0 Fori = 1 ton - 1 if (v_i, v_{i+1}) \notin Greturn 0 if (v_1, v_n)$ in Greturn 0 return 1

Se $G \in Ciclo-Hamiltoniano$, ento existe uma sequncia de vriticas que corresponde a ociclo e usa mosisto como certificado. Se G in Ciclo-Hamiltoniano ento na checa gem da sa restas, para qual que requncia de vritices, uma aresta estar faltano. Um algoritmo <math>A(x,y) verifica $L \subseteq \Sigma^*$ em tempo polino miale A executa em tempo polino miale A is A and A in A and A is A and A is A and A is A and A is A and A in A and A in A is A and A in A and A in A

Se $\mathbf{x} \in L$, $ento \exists y \in \Sigma^*/|y| = O(|x|^k) parakconstante. \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque \\ A(x,y) = 1 \\ Sex \notin Lento \forall y \in \Sigma^*/|y| \ in O(|x|^k) temosque$

1.8 Classe NP

 $NP = \{L \subseteq \Sigma^* / \exists A(x, y) polinomial queverificaL\}$

Questão em aberto: P = NP?

Exercício> P $\subseteq NP$

Seja $L \in P(mostrarqueL \in NP)ExistealgoritmoA(x)quedecideLemtempopolinomial.$

A1(x,y) return A(x)

- 1. $x \in L$, então usando y = E temos que A'(x,y) = 1 e $|y| \in O(|x|^k)$
- 2. $x \notin L$, então $A(x) = 0 \rightarrow A1(x,y) = 0$ independente do y.

1.9 Classe co-NP

Dado $L \subseteq \Sigma^*$ definimos o complemento de l como

$$\overline{L} = \Sigma^* \backslash L$$

$$co-NP = \{ L \subset \Sigma^* / \overline{L} \in NP \}$$

Instintivamente, co-NP contém as lingaguens para as quais existe algoritmo verificador polinomial para instâncias "não"do problema. $L \in \text{co-NP}$ se existe um algoritmo polinomial A(x,y), dois quais x é instância e y é um certificado, onde:

1.
$$x / nL, \exists y \in \Sigma^* / |y| = O(|x|^k)$$
 e $A(x, y) = 1$

2.
$$x \in L, \forall y \in \Sigma^*/|y| = O(|x|^k)$$
 e $A(x,y) \neq 1$

Primos { <n> N é um inteiro positivo e é primo}

 $\label{eq:primos} \begin{aligned} &\text{Primos} \in co-NP pois podemos criarum algoritmo que para cadan \neq Primos \rightarrow \exists um divisor d den que serve como certificace \\ &\text{Questão em aberto} > \text{NP} = \text{co-NP} \ ? \end{aligned}$

Exercício: p $\subseteq NP \cap co - NP(Acabamos deverqieP \subseteq NP)Mos trarP \subseteq co - NP!SejaL \in P \rightarrow existe umal goritmo polinomial A(x) que decideL.$

$$A'(x,y)$$
 if $A(x) == 1$ return 0 if $A(x) == 0$ return 1

- 1. $x \notin L$ então A(x,E) = 1 em tempo polinomial
- 2. $x \in L$ então A(x,y)=0 independe do y.

1.10 Possíveis Relações entre estas Classes

$$P = NP \rightarrow P = NP = co - NPP \neq NP \rightarrow P \in NP = co - NPP \neq NP \rightarrow P = NP \cap co - NP, NP \neq co - NPp \neq NP \rightarrow P \subset NP \cap co - NP, NP \neq co - NP$$

 $n=p_1^{j_1}\times p_2^{j_2}\times\ldots\times p_q^{j_q}$ Qualquer $n\in {}^+$ possui uma fatoração única em primos distintos.

RSA (ninguém consegue achar um fator de n em tempo polinomial)

Fatoração: Dado n e m $\leq nexisteum fatorp dental que p \leq m$

Fatoração $\in P?Ningumsabe$.

Fatoração $\in co - NPeFatorao \in NP$.

 $\begin{aligned} & \operatorname{Fatorao}_i \in NP: Dado(n,m) \in Fatorao, bastaus ar como certificado um fato p \leq m! Fatorao \in co - \\ & NP: (n,m) \notin Fatorao \rightarrow fator primo p \leq mt alque p dividan. Meucertificado um a fatora o de nemprimo s p_1^{j_1}, p_2^{j_2}, \ldots, p_q^{j_q}, p_q^{j_q}, \ldots, p_q^{j_q}, p_q^{j_q}, \ldots, p_q^{j_q}, \ldots$

- 1. Verificar que a multiplicação do valor n n = ppp
- 2. Verificar que cada p_jumnmeroprimo(feitoemtempopolinomialcomAKSde2006) Verificar
quecadap_j $\geq m$

1.11 Reduções Polinomiais

Definição: sejam $L_1, L_2 \subseteq \Sigma^*$ duas linguagens. Dizemos qye L_1 se reduz para L_2 em tempo polinomial se:

- **3.** Existe um algoritmo F que tranforma a instância x_1 de L_1 em instâncias $x_2 = F(x_1)$ de L_2 em tempo $O(|x_1|^k)$, k constante;
- 2. $x_1 \in L_1 \iff F(x_1) = x_2 \in L_2;$

Pergunta: Dado $x_1 \notin L_1$, é possível $F(x_1) = x_2 \in L_2$? **R:** Não é possível!

1.11.1 Lema 34.3

Sejam $L_1, L_2 \subseteq^*$ tal que $L_1 \leq_p L_2$. Se $L_2 \in P$, então $L_1 \in P$

Como $L_2 \in P \to \exists$ algoritmo polinomial A_2 que decide L_2 . Podemos construir: $A_1(x_1) : x_2 = F(x_1) return A_2(x+2)$

Como $L_1 \leq_p L_2$ existe o algoritmo de redução F de L_1 pra L_2 .

- A_1 executa em tempo polinomial (tanto A_2 quanto F têm tempo polinomial)
- 1. Dado $x_1 \in L_1 \to F(X_1) = x_2 \in L_2 \in A_2(x_2) = 1 \to A_1(x_1) = 1$
 - 2. Dado $x_1 \notin L_1 \to F(x_1) = x_2 \notin L_2 \in A_2(x_2) = 0 \to A_1(x_1) = 0$

1.12 NP-Completo (NPC)

Uma linguagem $L \in NPC$ se ela satisfizer:

- 1. $L \in NP$
- 2. $\forall L' \in NP$ então existe redução polinomial de L' para L, $L1 \leq_p L$

Obs: As linguagens (problemas) que só satisfazem a condição (2) pertencem à classe NP_Difcil .

1.13 Teorema 34.4

Seja $L \in NPC$. Se $L \in P$, então $\forall L' \in NPC$. Temos que $L' \in P$

Prova: Seja $L' \in NP$ um problema qualquer. Sabemos que $L \in NPC \to L' \leq_p L$. Sabemos que $L \in P$, então, pelo lema anterior, $L' \in P$!

$$P_1 \in \text{NPC}$$

$$\forall L \in \text{NP}, \ L \leq_p P_1$$

$$P_2, \ P_1 \leq_p P_2$$

Ao mostrarmos que um problema $L_1 \in NPC$, estamos dando fortes indícios que L_1 não admite um algoritmo polinomial. Melhor resolver L_1 com técnicas para lidar com problemas NP-Difíceis.

1.14 Teorema de Cook (1971)

1.14.1 Problema SAT

Dadas variáveis booleanas x_1, \ldots, x_n e uma fórmula sobre elas com operadores $\vee, \wedge, \neq, \rightarrow, \iff$, existe uma atribuição para x_1, \ldots, x_n tal que f fica verdadeira?

1.14.2 Circuit-SAT

Portas lógicas: not, or, and (podem ter mais entradas).

Dado um circuito lógico com entradas x_1, \ldots, x_n e uma única saída, existe uma atribuição para x_1, \ldots, x_n tal que a saída do circuito é verdadeira?

Os circuitos considerados não possuem loop?

1.14.3 Circuit-SAT \in NP

Vamos mostrar que Circuit-SAT é NP-Difícil.

Uma máquina é construída com vários circuitos lógicos.

Seja $L \in NP$, queremos mostrar que existe $L \leq_p$ Circuit-SAT. Sabemos que existe um algoritmo A(x,y) verificador polinomial para L.

- 1. Se $x \in L$, $\exists y$ tamanho polinomial tal que A(x,y) = 1;
- 2. Se $s \notin L$, $\forall y$ tamanho polinomial tal que $A(x,y) \neq 1$;

Dado x, assumimo que A executa no máximo $c_1|x|^{k_1}$ passos $(c_1, k_1 \text{ são constantes})$ e $|y| \leq c_2|x|^{k_2}$, onde c_2 e k_2 são constantes.

Podemos üsarö computador para executar o algoritmo A

Dado x uma instância de L. Montamos um circuito l[ogico com $c_1|x|^{k_1}A$ cópias do computadorque faz a simulação do algoritmo verificador A; Tamanho dos circuitos representando, A, PC, Mem e Controle são constantes. Assumimos que x é setado fixo com seu próprio valor. A única entrada deste circuito é o y; Dado $x \in \Sigma^*$ instância de L, construímos um circuito C em tempo polinomial!

- 1. Se $x \in L$ então $\exists y$ polinomial tal que A(x,y) = 1. Este mesmo y serve como entrada para o circuito C, deixando ele satisfazível $\to C \in \text{Circuit-SAT}$
- 2. Se $x \not lnL$ então $\forall y$ de tamanho polinomial, $A(x,y) \neq 1 \forall$ entrada y de $C \rightarrow Cnuncasersatis fazvel <math>\rightarrow C \notin Circuit$ -SAT.

1.15 Provas de NP-Completude

Mostramos que o Circuit-SAT é NP-Completo:

- 1. Circuit-SAT \in NP;
- 2. $\forall L \in \text{NP}$ existe redução em tempo polinomail de L/leq_{pol} Circuit-SAT. $x \in L \iff C \in \text{Circuit-SAT}$

Vale a transitividade para \leq_{pol} : $P_1 \leq_p olP_2$ e $P_2 \leq_p olP_3 \to P_1 \leq_p olP_3$

x_1	x_2	$x_1 \to x - 2$	$x_1 \iff x_2$
0	0	1	1
0	1	1	0
1	0	0	0
1	1	1	1

1.15.1 SAT

Fórmula booleana f com variáveis x_1, \ldots, x_n e operadores $\neg, \lor, \land, \rightarrow, \iff$. Existe atribuição para x_1, \ldots, x_n tal que f fica verdadeiro.

$$f = (x_1 \to x_2) \lor \neg((\neg x_1 \iff x_3) \lor x_4) \land \neg x - 2$$

 $SAT = \{ \langle f \rangle \text{ onde } f \text{ \'e uma f\'ormula l\'ogica que possui atribuição verdadeira} \}$

Para mostrar que SAT é NP-Difícil (condição 2 de NPc) faremos Circuit-SAT \leq_{pol} SAT $\forall L \in \text{NP}$, sabemos que $L \leq_{pol}$ Circuit-SAT e, por transitividade, teremos $L \leq_{pol}$ SAT.

Teorema 34.9: SAT \in NP-Completo. Prova:

- 1. SAT ∈ NP (fica como exercício);
- 2. Mostrar que Circuit-SAT \leq_{pol} SAT:

 $C \in \text{Circuit-SAT} \iff f \in \text{SAT}.$

Dado um circuito C qualquer, vamos construir a fórmula f em tempo polinomial onde vale o item anterior.

Dado c além das variáveis de entrada, criamos uma nova variável para saíde de uma porta lógica do circuito.

Escreveremos uma cláusula para cada porta lógica.

Exemplo:
$$(x_5 \iff (x_1 \lor x_2))$$

Cada cláusula só pode ser verdadeira quando o valor de variável de saída da porta lógica correspondem ao que é computado pela porta lógica.

A formula f será um and de todas as cláusulas correspondentes a cada uma das portas lógicas mais a última variável de saída do circuito.

$$f = x_{10} \land (x_4 \iff (\neg x_3))$$

$$\land (x_5 \iff (x_1 \lor x_2))$$

$$\land (x_6 \iff \neg x_4)$$

$$\land (x_7 \iff (x_1 \land x_2 \land x_4))$$

$$\land (x_8 \iff (x_5 \lor x_6))$$

$$\land (x_9 \iff (x_6 \lor x_7))$$

$$\land (x_{10} \iff (x_7 \land x_8 \land x_9))$$

Dado C qualquer podemos construir f em tempo proporcional ao número de portas lógicas em C e, portanto, em tempo polinomial.

- 1. Suponha que $C \in \text{Circuit-SAT}$:
 - $\rightarrow Existe uma atribui o para as varive is de entra da que deixa Cverda deiro. Simulando es sa entra da no circuito, cada clusula corresponde a uma portal gica fica verda deira.$

Além disso, a saída de C é verdadeira $\to avarivel desada final verdadeira <math>\to fficaverdadeiro.f \in SAT$

 $f \in SAT$ (temos que mostrar que C que deu origem a f é tal que $C \in Circuit-SAT$)

 $f \in \mathrm{SAT} \rightarrow existe a tribuio para varive k def que deixa fiver da deiro. Usamos os valores das varive is de entra da em fecomo a entre Para cada porta porta ficade C, os euvalor des adaigual a ovalor da varive l des adada clusula correspondente a essaporta ficado a ovalor des adade cada clausula igual a porta ficacor respondente quando da mos essa entra da.$

 $Comoem fasada final verda deira e ela de deve serigua la sada dal tima portalgica \rightarrow Asada do circuito 1 \rightarrow \mathbb{C} \\ \in \text{Circuit-SAT}.$

1.16 3 CNF-SAT

Uma fórmula que é uma conjunção (and) de cláusulas e cada cláusula é uma disjunção (or) de exatamente três literais $(x_i \text{ ou } \overline{x_i})$.

Existe atribuição verdadeira? A

Exemplo: $f = (x_1 \vee \overline{x_2}x_3) \wedge (x_4 \vee \overline{x_5} \vee x_1) \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4})$

 $\boxed{Teorema: 3CNF - SATNP - Completo}$ Prova:

- 1. 3CNF-SAT ∈ NP (exercício)
- 2. $3\text{CNF-SAT} \in \text{NP-Diffcil}$.

Faremos SAT \leq_{pol} 3CNF-SAT. A partir de f_1 de SAT, construiremos um f_2 do 3CNF-SAT.

$$f_1 - ((x_1 \rightarrow) \land \neg ((\neg x_1 \iff x_3) \land \neg x_2))$$

Construímos uma árvore de avaliação da fórmula onde as folhas são os literais da fórmula, nós são os operadores lógicos da fórmula.

Criamos f'_1 equivalente a f_1 que corresponde à avaliação da árvore construída.

$$f_1' = y_1 \land (y_1 \iff (y_2 \land \neg x_2))$$

$$\land (y_2 \iff (y_3y_4))$$

$$\land (y_3 \iff (x_1 \to x_2))$$

$$\vdots$$

$$\land (y_5 \iff \neg x_6)$$

Cada cláusula em f_1 tem no máximo 3 literais (cada operador lógico tem no máximo 2 entradas e tem uma saída);

 f_1' pode ser computado em tempo polinomial.

Deixar cada cláusula na CNF

Para cad cláusula f_i' de f_1 , construímos uma tabela verdade.

Exemplo:
$$(y_1 \iff (y_2 \wedge \overline{x_2})) = f_i'$$

P Odemos escrever fórmulas na DNF (forma normal disjuntiva equivalente à f_1^\prime

$$f_i'' = (\overline{y_1} \wedge \overline{y_2} \wedge \overline{x_2}) \vee (\overline{y_1} \wedge \overline{y_2} \wedge x_2) \vee \dots$$

 $\overline{Criar}\overline{f_i''}$ na DNF que corresponde a f_i

$$\overline{f_i'} \approx \overline{f_i''} = (\overline{y_1} \wedge y_2 \wedge \overline{x_2}) \vee (y_1 \wedge \overline{y_2} \wedge \overline{x_2}) \vee (y_1 \wedge \overline{y_2} \wedge x_2) \vee (y_1 \wedge y_2 \wedge x_2))$$

Aplicando De'Morgen, obtemos:

A partir de f_1' , construímos f_1'' equivalente e que está na CNF e isso em tempo polinomial. Cada cláusula de f_1' temos no máximo 3 variáveis \rightarrow tabelaverdadecomnomximo8entradas. \rightarrow nmerodeclusulasnomximo8vezesonmerooriginaldeclusulasem f_1'

Deixar cada cláusula de f_1'' com 3 literais. Suponha uma cláusula de 2 literais $(l_1 \vee l_2) \iff (l_1 \vee l_2 \vee z) \wedge (l_1 \vee l_2 \wedge \overline{z})$