CUDA Memory

Advanced Aspects

Albert García García

agarcia @ dtic.ua.es

Contents

Coalesced Access

Atomics

Unified Memory

Shared Memory

Coalesced Access

Memory bursting

Burst section				Burst section				Burst section				Burst section			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

- Each address space is partitioned into burst sections
 - Whenever a location is accessed, all other locations in the same section are also delivered to the processor.
- Basic example: a 16-byte address space, 4-byte burst sections
 - In practice, we have at least 4GB address space, burst section sizes of 128-bytes or more.

Memory bursting: Uncoalesced access

- When the accessed locations spread across burst section boundaries:
 - Coalescing fails
 - Multiple DRAM requests are made
 - The access is not fully coalesced.
- Some of the bytes accessed and transferred are not used by the threads

Memory bursting: Coalesced access

 When all threads of a warp execute a load instruction, if all accessed locations fall into the same burst section, only one DRAM request will be made and the access is fully coalesced.

Colaesced access example

```
__global__ coalesced_access(float*x)
{
  int tid= threadIdx.x+ blockDim.x*blockIdx.x;
  x[tid] = threadIdx.x;
}
```

Non-colaesced access example

```
__global__ non_coalesced_access(float*x)
{
  int tid= threadIdx.x+ blockDim.x*blockIdx.x;
  x[tid*100] = threadIdx.x;
}
```

An image (2D array) is linear in memory space

linearized order in increasing address

One thread per row or one thread per column?

i is the loop counter in the inner product loop of the kernel code

For A: row = blockIdx.x*blockDim.x + threadIdx.x For B: col = blockIdx.x*blockDim.x + threadIdx.x

(A) Accesses are not coalesced

(B) Accesses are coalesced

What's the value of result[0]?

```
x = {3, 5, 2, 1}
result = {0}

__global__ guesswhat(float *x, float *result)
{
  int tid= threadIdx.x+ blockDim.x*blockIdx.x;
  result[0] += x[tid];
}
```

Race Conditions on Memory Accesses

Race condition definition

 Race Condition: A computational hazard that arises when the results of a program depend on the timing of uncontrollable events (e.g., the execution order of the threads):

Race condition definition

- Race Condition: A computational hazard that arises when the results of a program depend on the timing of uncontrollable events (e.g., the execution order of the threads)
 - For instance, when more than one thread try to access the same memory location concurrently and at least one of them writes to it.

What are atomic operations?

- An operation that is capable of reading, modifying, and writing a value back to memory without any other threads interfering it.
 - Guarantee that no race conditions may occur.
 - Impact on performance.
 - Parallel threads (memory access) are forced into a bottleneck in a lock-like fashion so each memory operation is executed one at a time.
 - CUDA provides various atomic functions:
 - atomicAdd()
 - atomicSub()
 - atomicMin()
 - atomicMax()
 - atomicInc()
 - atomicDec()
 - atomicAdd()
 - atomicExch()
 - atomicCAS()
 - atomicAnd(
 - atomicOr()
 - atomicXor()

What's the value of result[0]?

```
x = {3, 5, 2, 1}
result = {0}

__global__ guesswhat(float *x, float *result)
{
  int tid= threadIdx.x+ blockDim.x*blockIdx.x;
  atomicAdd(result[0], x[tid]);
}
```

Unified Memory

Unified Memory Revisited

Since CUDA 6.0 (and supported GPUs)!

Unified Memory Revisited

UVA (Unified Virtual Addressing)

No UVA: Multiple Memory Spaces

UVA: Single Address Space

Unified Memory

What is unified memory?

- A single memory address space accessible from any processor in a system. UVA allows allocating data only once and making it accessible to any GPUs and CPUs at any given time.
 - Replace cudaMalloc calls by cudaMallocManaged.
 - No need for explicit cudaMemcpy calls.
 - Memory is paged so GPU/CPU page faults trigger memory transfers on-demand.
 - GPUs prior to Pascal generation can't page fault! All data is migrated before a kernel launch just in case it is needed.

Unified Memory

Performance

- Depends on GPU generation:
 - Significant impact on GPUs before Pascal due to lack of page-fault mechanism.
 - Page Migration Engine on Pascal + Prefetching:
 - http://www.acceleware.com/blog/Unified-Memory-on-Tesla-P100-with-CUDA-8.0
 - "With Pascal GPUs and new CUDA 8.0 APIs, Unified Memory offers simplified programming AND matches performance of explicit memory management".
- Not comparable to well-crafted application that makes uses of asynchronous copies to overlap computation and data transfer.

Shared Memory

Shared Memory Revisited

Hierarchy

Each SM has a limited amount of Shared memory

Shared across threads in a block

Low latency

Useful for data re-use

Can be allocated from the GPU (_shared__)

Manual management from CUDA Kernels

Shared Memory Revisited

Zoom on SM

- Serves a way of communicating or synchronizing threads in a block.
- Takes advantage of data reuse to reduce global/local memory accesses.
- Potentially reduces the number of registers needed for each thread.

Shared Memory Revisited

Limitations on GTX1080 Pascal

For each SM:
64 K registers
96 KiB shared memory
48 KiB L1 cache
16 KiB constant cache
2048 threads

Shared Memory

Matrix multiplication

Shared Memory

Matrix multiplication

```
global void matrix mul kernel(float* Md, float* Nd, float* Pd, const int cWidth) {
  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
  shared float Nds[TILE WIDTH][TILE WIDTH];
  int bx_ = blockIdx.x; int by_ = blockIdx.y;
  int tx_ = threadIdx.x; int ty_ = threadIdx.y;
  int row_ = by_ * TILE_WIDTH + ty;
  int col_ = bx_ * TILE_WIDTH + tx;
  float p value = 0.0f;
  for (int m = 0; m < cWidth / TILE_WIDTH; ++m) {
     Mds[ty ][tx ] = Md[row * cWidth + (m * TILE WIDTH + tx )];
     Nds[ty_{]}[tx_{]} = Nd[(m * TILE_WIDTH + ty_{]} * cWidth + col_{]};
     syncthreads():
    for (int k = 0; k < TILE WIDTH; ++k)
        p_value_ += Mds[ty_][k] * Nds[k][tx_];
     __syncthreads();
  Pd[row * cWidth + col ] = p value ;
```

CUDA Memory

Advanced Aspects

Thanks for your attention!

These slides have been modified/remixed using the TeachingKit licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.

Slides created in collaboration with Sergio Orts-Escolano!

Albert García García

agarcia @ dtic.ua.es