Matrix Multiplication

Adapted from the CLRS book slides

MULTIPLYING SQUARE MATRICES

Input: Three $n \times n$ (square) matrices, $A = (a_{ij}), B = (b_{ij}), \text{ and } C = (c_{ij}).$

Result: The matrix product $A \cdot B$ is added into C, so that

$$c_{ij} = c_{ij} + \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

for i, j = 1, 2, ..., n.

If only the product $A \cdot B$ is needed, then zero out all entries of C beforehand.

Straightforward method

MATRIX-MULTIPLY (A, B, C, n)

```
for i=1 to n // compute entries in each of n rows
for j=1 to n // compute n entries in row i

for k=1 to n

c_{ij}=c_{ij}+a_{ik}\cdot b_{kj} // add in one more term of equation (4.1)
```

Time: $\Theta(n^3)$ because of triply nested loops.

SIMPLE DIVIDE-AND-CONQUER ALGORITHM

Simple divide-and-conquer algorithm

For simplicity, assume that C is initialized to 0, so computing $C = A \cdot B$.

If n > 1, partition each of A, B, C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Rewrite $C = A \cdot B$ as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix},$$

giving the four equations

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} ,$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} ,$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$
.

Each of these equations multiplies two $n/2 \times n/2$ matrices and then adds their $n/2 \times n/2$ products. Assume that n is an exact power of 2, so that submatrix dimensions are always integer.

SIMPLE DIVIDE-AND-CONQUER ALGORITHM (continued)

Use these equations to get a divide-and-conquer algorithm:

```
MATRIX-MULTIPLY-RECURSIVE (A, B, C, n)
```

```
1 if n == 1
   // Base case.
        c_{11} = c_{11} + a_{11} \cdot b_{11}
        return
   // Divide.
   partition A, B, and C into n/2 \times n/2 submatrices
        A_{11}, A_{12}, A_{21}, A_{22}; B_{11}, B_{12}, B_{21}, B_{22};
        and C_{11}, C_{12}, C_{21}, C_{22}; respectively
   // Conquer.
   MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{11}, C_{11}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{12}, C_{12}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{11}, C_{21}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{12}, C_{22}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21}, C_{11}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22}, C_{12}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21}, C_{21}, n/2)
   MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22}, C_{22}, n/2)
```

The book briefly discusses the question of how to avoid copying entries when partitioning matrices. Can partition matrices without copying entries by instead using index calculations.

ANALYSIS

Let T(n) be the time to multiply two $n \times n$ matrices.

Base case: n=1. Perform one scalar multiplication: $\Theta(1)$.

Recursive case: n > 1.

- Dividing takes $\Theta(1)$ time, using index calculations. [Otherwise, $\Theta(n^2)$ time.]
- Conquering makes 8 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 8T(n/2)$.
- No combine step, because C is updated in place.

Recurrence (omitting the base case) is $T(n) = 8T(n/2) + \Theta(1)$. Can use master method to show that it has solution $T(n) = \Theta(n^3)$.

ANALYSIS (continued)

Bushiness of recursion trees:

Compare this recurrence with the merge-sort recurrence $T(n)=2T(n/2)+\Theta(n)$. If we draw out the recursion trees, the factor of 2 in the merge-sort recurrence says that each non-leaf node has 2 children. But the factor of 8 in the recurrence for MATRIX-MULTIPLY-RECURSIVE says that each non-leaf node has 8 children. Get a bushier tree with many more leaves, even though internal nodes have a smaller cost.

STRASSEN'S ALGORITHM (1969)

Idea: Make the recursion tree less bushy. Perform only 7 recursive multiplications of $n/2 \times n/2$ matrices, rather than 8. Will cost several additions/subtractions of $n/2 \times n/2$ matrices.

Since a subtraction is a "negative addition," just refer to all additions and subtractions as additions.

Example of reducing multiplications: Given x and y, compute $x^2 - y^2$. Obvious way uses 2 multiplications and one subtraction. But observe:

$$x^{2} - y^{2} = x^{2} - xy + xy - y^{2}$$

$$= x(x - y) + y(x - y)$$

$$= (x + y)(x - y),$$

so at the expense of one extra addition, can get by with only 1 multiplication. Not a big deal if x, y are scalars, but can make a difference if they are matrices.

The algorithm:

- 1. Same base case as before, when n = 1.
- 2. When n > 1, then as in the recursive method, partition each of the matrices into four $n/2 \times n/2$ submatrices. Time: $\Theta(1)$, using index calculations.
- 3. Create 10 matrices S_1, S_2, \ldots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in previous step. Time: $\Theta(n^2)$ to create all 10 matrices.
- 4. Create and zero the entries of 7 matrices P_1, P_2, \ldots, P_7 , each $n/2 \times n/2$. Time: $\Theta(n^2)$.
- 5. Using the submatrices of A and B and the matrices S_1, S_2, \ldots, S_{10} , recursively compute P_1, P_2, \ldots, P_7 . Time: 7T(n/2).
- 6. Update the four $n/2 \times n/2$ submatrices C_{11} , C_{12} , C_{21} , C_{22} of C by adding and subtracting various combinations of the P_i . Time: $\Theta(n^2)$.

Analysis

Recurrence will be $T(n) = 7T(n/2) + \Theta(n^2)$. By the master method, solution is $T(n) = \Theta(n^{\lg 7})$. Since $\lg 7 < 2.81$, the running time is $O(n^{2.81})$, beating the $\Theta(n^3)$ -time methods.

Details

Step 2: Create the 10 matrices

$$S_{1} = B_{12} - B_{22}$$
,
 $S_{2} = A_{11} + A_{12}$,
 $S_{3} = A_{21} + A_{22}$,
 $S_{4} = B_{21} - B_{11}$,
 $S_{5} = A_{11} + A_{22}$,
 $S_{6} = B_{11} + B_{22}$,
 $S_{7} = A_{12} - A_{22}$,
 $S_{8} = B_{21} + B_{22}$,
 $S_{9} = A_{11} - A_{21}$,

 $S_{10} = B_{11} + B_{12}$.

Add or subtract $n/2 \times n/2$ matrices 10 times \Rightarrow time is $\Theta(n^2)$.

Step 5: Compute the 7 matrices

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot B_{12} - A_{11} \cdot B_{22} ,$$

$$P_{2} = S_{2} \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22} ,$$

$$P_{3} = S_{3} \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11} ,$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot B_{21} - A_{22} \cdot B_{11} ,$$

$$P_{5} = S_{5} \cdot S_{6} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} ,$$

$$P_{6} = S_{7} \cdot S_{8} = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} ,$$

$$P_{7} = S_{9} \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12} .$$

The only multiplications needed are in the middle column; right-hand column just shows the products in terms of the original submatrices of A and B.

Step 6: Add and subtract the P_i to construct submatrices of C:

$$C_{11} = P_5 + P_4 - P_2 + P_6$$
,
 $C_{12} = P_1 + P_2$,
 $C_{21} = P_3 + P_4$,
 $C_{22} = P_5 + P_1 - P_3 - P_7$.

EXAMPLE

Example of how C_{11} is reconstructed using additions and the previously defined P and S matrices.

$$A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ - A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\ - A_{11} \cdot B_{22} - A_{22} \cdot B_{22} - A_{22} \cdot B_{21} + A_{12} \cdot B_{22} + A_{12} \cdot B_{21} \\ A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

All four examples are fully worked out in the text.

THEORETICAL AND PRACTICAL NOTES

Strassen's algorithm was the first to beat $\Theta(n^3)$ time, but it's not the asymptotically fastest known. A method by Coppersmith and Winograd runs in $O(n^{2.376})$ time. Current best asymptotic bound (not practical) is $O(n^{2.37286})$.

Practical issues against Strassen's algorithm:

Higher constant factor than the obvious $\Theta(n^3)$ -time method.

Not good for sparse matrices.

Not numerically stable: larger errors accumulate than in the obvious method.

Submatrices consume space, especially if copying.