Sets

Defn: A set is a collection of distinct objects; these objects are then called elements of the set. A set can have a finite (even zero) or an infinite number of elements. Conventionally we use capital letters to denote sets. To express that an element x is in a set A, we write $x \in A$.

The elements of a set can be numbers, functions, and pretty much anything else.

Examples:

A = { elephant, monkey, chipmunk, Aras}

set of numbers

Important sets of numbers: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}^-, \mathbb{Z}^+ \longrightarrow \text{positive}$ numbers

There are two common ways of denoting sets:

(i) list notation

Natural numbers

Set of integers

**There are two common ways of denoting sets:

Set of reals

Numbers

Example: $S = \{8, 12, 16, 20\}$

(ii) set-builder notation

Example: $S = \{4i | i \in \mathbb{Z}, 2 \le i \le 5\}$ or $S = \{4i : i \in \mathbb{Z}, 2 \le i \le 5\}$

" such that"

Defns: The set that has no elements is called the **empty set**, denoted by \emptyset or $\{\}$.

XEA => XEB

A set A is called a subset of a set B, denoted by $A \subseteq B$, if $(x \in A \Rightarrow x \in B)$ for all x.

Note that a subset A of a set B can possibly be equal to B.

In fact, two sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$.

A subset A of a set B is called a **proper subset**, denoted by $A \subset B$ (or $A \subsetneq B$), if $A \subseteq B$ and $A \neq B$.

ASB

Examples:

$$A = \{1, 2, 3\}$$

$$B = \{1, 2, 3\}$$

$$B = \{1, 2, 3\}$$

$$C = \{1, 2\}$$

$$B = C$$

$$A = \{1, 2, 3\}$$

$$B = C$$

$$B = C$$

$$A = \{1, 2, 3\}$$

$$B = C$$

$$B = C$$

$$A = \{1, 2, 3\}$$

$$A = \{1, 2, 3\}$$

$$B = C$$

$$A = \{1, 2, 3\}$$

$$A = \{1, 2, 3\}$$

$$B = C$$

$$A = \{1, 2, 3\}$$

$$A = \{1, 3, 3\}$$

$$A = \{1,$$

If a set is finite, then we can count its elements. The number of elements in a finite set A is referred to as the **cardinality** of A, denoted by |A|.

The set of subsets of a set A is called the **power set** of A, denoted by $\mathcal{P}(A)$.

$$\mathcal{P}(A) = \{B : B \subseteq A\}$$
If $|A| = n$, then $|\mathcal{P}(A)| = 2^n$. (WHY?)

Example:
$$A = \{a, b, c\}$$

$$P(A) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

$$|P(A)| = 8$$

$$|P(A)| = 8$$

$$|P(A)| = 8$$

$$|P(A)| = 2^{n}$$

|P(A)|=2"

The Cartesian product of a set A with a set B, denoted by $A \times B$, is defined as:

$$A \times B = \{(a,b) : a \in A, b \in B\}$$

The cardinality of a Cartesian product can be found as follows:

$$|A \times B| = |A| \cdot |B|$$

Example:

$$A = \{\{1,1\}\}\$$
 $A \times B = \{(p,x), (p,y), (p,z), (q,z)\}\$
 $B = \{\{x,y,z\}\}\$
 $(q,x), (q,y), (q,z)\}\$
 $(A \times B) = \{(p,x), (q,y), (q,z)\}\$

Prove :	Table of Set Identities $(A-B) \land (A-C) = A \cup (C-B)$		
Prove: (use set identities)		Identity	Name
, 6	(1)	$A - B = A \cap \overline{B}$	Set Difference
	(2)	$A \cup \overline{A} = \mathcal{U}$	Complement Laws
	(3)	$A \cap \overline{A} = \emptyset$	
	(4)	$A \cup \emptyset = A$	Identity Laws
	(5)	$A \cap \mathcal{U} = A$	
	(6)	$A \cup \mathcal{U} = \mathcal{U}$	Domination Laws
	(7)	$A \cap \emptyset = \emptyset$	
	(8)	$A \cup A = A$	Idempotent Laws
	(9)	$A \cap A = A$	
	(10)	$\overline{\overline{A}} = A$	Complementation Law
	(11)	$A \cup B = B \cup A$	Commutative Laws
	(12)	$A \cap B = B \cap A$	
	(13)	$A \cup (B \cup C) = (A \cup B) \cup C$	Associative Laws
	(14)	$A \cap (B \cap C) = (A \cap B) \cap C$	
	loves in h	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive Laws
->	(16)	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
	(17)	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's Laws
	(18)	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	

Proofs with Sets, Functions

Let us prove *rigorously* that identity (17) is indeed correct.

Example: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

To prove equality we need to prove:

(i) $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$, and

(ii) $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$

(i): Let $x \in AUB$. Then $x \notin AUB$. So $x \notin \overline{A}$ and $x \notin B$. Then $x \in \overline{A}$ and $x \in \overline{B}$. Therefore, $x \in \overline{A} \cap \overline{B}$.

(ii) Let $x \in \overline{A} \wedge \overline{B}$. Then $x \in \overline{A}$ and $x \in \overline{B}$.

So, $x \notin A$ and $x \notin B$. Then $x \notin AUB$. Therefore, $x \in \overline{AUB}$.

By (i) & (ii), we showed that AUB = ANB.

Example: Prove rigorously: $A \subseteq B \leftrightarrow A \cap B = A$

We want to show an equivalence. Therefore we need to prove:

(i) $A \subseteq B \rightarrow A \cap B = A$ and

 $(ii) A \cap B = A \rightarrow A \subseteq B$

(i): To prove (i) we need to assume $A \subseteq B$, and show that $A \cap B = A$ follows.

Assume $A \subseteq B$. To show $A \cap B = A$ we need to prove:

 \longrightarrow (ia) $A \cap \overline{B} \subseteq A$, and

(ib) $A \subseteq A \cap B$

Proof of (ia): Let $x \in A \cap B$. So $x \in A$ and $x \in B$. So we showed that if $x \in A \cap B$, then $x \in A$. Hence $A \cap B \subseteq A$.

Proof of (ib): Let $x \in A$. From the assumption $A \subseteq B$, we have that $x \in B$. Then $x \in A \cap B$.

So we showed that $A \subseteq A \cap B$.

Prove

(ii): To prove (ii) we need to assume $A \cap B = A$, and show that $A \subseteq B$ follows.

Let $x \in A$. Since $A \cap B = A$, $x \in A \cap B$. Then $x \in A$ and $x \in B$. So we showed that $x \in A$ implies $x \in B$; therefore $A \subseteq B$.

By parts (i) and (ii) we proved that $A \subseteq B \iff A \cap B = A$.

A-B = AAB

Example: Let A, B, C be some subsets of a universal set. Use set identities to prove that

Our goal is to start with
$$(A-B) \cap (A-C)$$
 and apply set identities to it to get $\overline{AU}(C-B)$.

$$(\overline{A-B}) \cap (\overline{A-C}) = \overline{AU}(C-B).$$

$$(\overline{A-B}) \cap (\overline{A-C})$$

$$= (A \cap \overline{B}) \cap (A-C)$$

$$= (A \cap B) \cap (A-C)$$

$$= (A \cap B) \cap (A-C)$$

$$= (A \cup B) \cap (A \cup C)$$

$$= (A \cup B) \cap (\overline{AUC})$$

$$= (B \cap C)$$

$$= (B \cap C)$$