Lab Exercise Part 1 e 2??

Alexandre Rodrigues (2039952)

January 15, 2022

1 Introduction

. . .

2 Technical Approach

2.1 Instancing

... Class 1 - Random

Class 2 - Domain specific random How...

2.2 part2

Used tabu search or genetic or various.... Used from moodle?? Added: clever initial solution, intesification, diversification, 3 opt instead of 2 opt, alterating ...

3 Results

I tested class 3 only for n=10 with 6 instances, 5 runs each. The class 2 intances are random but slightly domain specific. In this case I simply removed the possiblity to have holes in the borders of the board.

Class 1 is fully random: board as size = N so $x \in 0, N-1$ hole of size 1

Both class 1 and 2 were tested using 30 random instances for $10 \le n \le 70$. Due to the considerable time I reduced it to 10 instances for $80 \le n \le 100$.

The time to drill a hole is constant so we can diregard it. The total cost would be $cost_{real} = cost_{exp} + cN, c \in \mathbb{R}$.

The cost matrix was computed from the hole positions (random or not) using Manhattan distance

n	class1	${ m class2}$
10	0.125s	0.131s
20	0.537s	0.449s
30	1.561s	1.580s
40	5.549s	6.303s
50	14.534s	13.757s
60	29.168s	26.621s
70	47.808s	48.775s
80	91.089s	105.980s
90	142.739s	199.926s
100	257.982s	292.470s

Table 1: Average Time

Assuming a max time as 20 seconds.... we can solve for up to $\ref{eq:conds}$ nodes. Class 1 vs Class 2 . . .

Tested 3,4,5 instance for each n and ...

n	class1	class2
5	0.15	
10	0.25	
20		
30		
50		
70		
100		
150		
200		

Table 2: Average Time

n	sol	optimal	cplex heuristic
5	40	30	N/A
10	100	90	N/A
20			N/A
30			N/A
50			
70			
100			
150			
200			

Table 3: Solution

Assuming a max time as 20 seconds.... we can solve for up to $\ref{1}$ nodes. Class 1 vs Class 2 ... std. deviation of ...

4 Conclusions