Reţele de calculatoare

Partea a 3-a

Sebastian Fuicu

- Tehnici de transmisie a datelor
- Transmisia digitală a datelor digitale
- Transmisia digitală a datelor analogice
- Transmisia analogică a datelor digitale
- Boud rate vs. Bit rate

- Datele se propagă prin legături fizice.
- Sunt necesare metode de codificare pentru datele care vor fi transmise.

- Date: entităţi care conţin informaţie.
- Semnale: privite ca purtătoare de date.
- Transmisia: definită prin comunicarea datelor folosind propagarea şi procesarea semnalelor.

- Date analogice: iau valori continue intr-un anumit interval.
- Date digitale: iau valori discrete dintr-o anumită mulțime finită.
- Semnal analogic: definit ca o undă electromagnetică continuă.
- Semnal digital: definit ca o secvenţă de impulsuri de tensiune sau curent cu valori dintr-o multime finita.

- Semnal discret în timp vs. semnal digital
- Semnal discret în timp: ia valori doar la momemente discrete de timp, între aceste momente el nefiind definit.
- Semnal digital: poate lua doar anumite valori dintr-o anumită mulţime finită.
- Un semnal digital care poate lua doar două valori se numeşte semnal binar.
- Un semnal binar este un caz particular al unui semnal digital.
- Un semnal digital este un caz particular al unui semnal discret in timp.

- Moduri de transmisie a informaţiei
 - 1) Transmisie digitală a datelor digitale
 - se folosesc tehnici de codificare a datelor.
 - 2) Transmisia digitală a datelor analogice
 - se realizează mai intâi conversia A/D a datelor.
 - 3) Transmisia analogică a datelor digitale sau analogice
 - se folosesc procedee de modulare şi demodulare a semnalului transmis.

- Există diverse metode de codificare a datelor:
 - NRZ (Non-Return to Zero)
 - NRZI (Non-Return to Zero Inverted)
 - Manchester
 - 4B/5B

- Codificarea NRZ

- Dezavantajele codificării NRZ
 - O secvenţă prelungită de valori 1 sau 0, va determina rămânerea semnalului pe un anumit nivel de tensiune pentru un interval lung de timp.
 - Un nivel scăzut al tensiunii pe o durată mai lungă de timp poate să corespundă şi absenţei semnalului.
 - Lipsa tranziţiile repetate ale semnaului determină imposibilitatea refacerii semnalului de tact la receptor.

PLL (Phase Locked Loop)

Clock recovery

PLL - Clock recovery

- Codificarea Manchester

- Dezavantajele codificării Manchester
 - Codificara Manchester duce la o creştere a numărului de tranziţii.
 - În medie, numărul tranziţiilor se dublează faţă de codificarea NRZ.
 - Aceiaşi cantitate de informaţia va necesita un număr dublu de tranziţii.
 - Spunem că eficienţa codificării Manchester este de 50%.

- Codificarea 4B/5B
- Încearcă să rezolve ineficienţa metodei Manchester
- Ideea este de a insera biţi de 1 într-o sevenţă mai lungă de biţi de 0.
- Fiecare 4 biţi de date sunt codaţi într-o sevenţă de 5 biţi, de aici numele de 4B/5B.
- În interiorul unei secvenţe de 5 biţi nu trebuie să existe mai mult de două zerorui consecutive.
- Codurile nou formate sunt transmise folosind metoda NRZI, care a rezolvat deja problema biţilor de 1 consecutivi.
- Eficienţa metodei este de 80%

- Codificarea 4B/5B

4-Bit Data Symbol	5-Bit Code
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

2) Transmisia digitală a datelor analogice

- Semnalul analogic trebuie convertit mai intai in semnal digital.
- Teorema esantionarii: Un semnal de bandă limitată poate fi recuperat din esantioanele sale daca acestea sunt luate cu o frecvenţă mai mare sau egală cu dublul celei mai mari frecvenţe din spectrul semnalului initial.
- Procesele prin care trece semnalul analogic sunt: aşantionarea şi cuantizarea.

2) Transmisia digitală a datelor analogice

- Tehnica cea mai folosită pentru transmiterea semnalului vocal este PCM (Pluse Code Modulation).
- O altă metodă este DM (Delta Modulation)

2) Transmisia digitală a datelor analogice

3) Transmisia analogică a datelor digitale

- Există 3 tipuri fundamentale de modulaţie:
 - Modulaţie în amplitudine
 - Modulaţie în frecvenţă
 - Modulaţie în fază
- Spunem că semnalul util, cel care conţine informaţia, modulează un alt doilea semnal, pe care îl vom numi semnal purtător.

3) Transmisia analogică a datelor digitale

 Pentru transmiterea datelor digitale cele trei tipuri de modulaţii au primit următoarele denumiri:

- ASK (Amplitude Shift Keying)
- FSK (Frequency Shift Keying)
- PSK (Phase Shif Keying)

3) Transmisia analogică a datelor digitale

- Boud rate: frecvenţa cu care un semnal işi schimbă starea pe un canal de comunicaţie.
- Bit rate: numărul de biţi care sunt transmişi în unitate de timp (bps) pe un canal de comunicaţie.
- Să luăm ca exemplu nişte tipuri mai speciale de modulaţii, obţinute combinând modulaţia în amplitudine cu modulaţia în fază. Acestea sunt redate pe următoarele două slide-uri. Reprezentarea semnalului analogic se face sub forma unor "constelaţii" de puncte. Distanţa punctului faţă de origine arată amplitudinea semnalului, iar poziţia faţă de cele două axe reprezintă valoarea în grade a defazajului.
- Fiecare punct reprezintă o stare în care se poate afla semnalul analogic. Fiecărei stări i se poate asocia un cod binar numit si simbol.

- a) QPSK (Quadrature Phase Shif Keying)
- b) QAM-16 (Quadrature Amplitude Modulation)
- c) QAM-64 (Quadrature Amplitude Modulation)

- (d) V.32 for 9600 bps.
- (e) V32 bis for 14,400 bps.

- Pentru modulaţia QPSK, semnalul analogic se poate găsi în 4 stări (cele patru puncte).
- Cele patru stări pot fi codificate folosind 2 biţi. Deci celor 4 stări li se vor asocia 4 simboluri binare. Astfel boud-ul mai poate fi definit ca numărul de simboluri transmise în unitate de timp.
- Dacă semnalul analogic îşi schimbă starea cu o frecvenţă de 2 KHz, spunem că boud-ul pentru acel semnal este 2K.
- În acest caz, bit rate-ul, are valoare 4Kbps, pentru că la fiecare schimbare a stării semnalului vor fi transmişi 2 biţi, deci se înmulţeşte valoarea boud-ului cu numărul de biţi folosiţi pentru codificarea stărilor semnalului analogic sau altfel spus, cu numărul de biţi care intră în componenţa unui simbol binar.
- Un alt exemplu, în cazul lui QAM-16, dacă boud-ul este de 2 KHz, bit rate-ul are valoarea 8Kbps.