

Report No: CCIS15120092904

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 21.5"Quad Core Media Player Standard Housing

Model No.: DT215-AC4-1080, 502-2159ATATM

FCC ID: 2AB6Z-DT215-AC4

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 04 Dec., 2015

Date of Test: 04 Dec., to 10 Dec., 2015

Date of report issued: 10 Dec., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	10 Dec., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Viki zhul Test Engineer Tested by: 10 Dec., 2015 Date:

Reviewed by: Date: 10 Dec., 2015

Project Engineer

3 Contents

			Page
1	COV	VER PAGE	1
2	VEF	RSION	2
3	CON	NTENTS	3
4	TES	ST SUMMARY	4
5		NERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1		
		ANTENNA REQUIREMENT	9
	6.2	ANTENNA REQUIREMENTCONDUCTED EMISSION	
	•		10
	6.2	CONDUCTED EMISSION	10
	6.2 6.3	CONDUCTED EMISSION	10 13 14
	6.2 6.3 6.4	CONDUCTED EMISSION	
	6.2 6.3 6.4 6.5	CONDUCTED EMISSION	
	6.2 6.3 6.4 6.5 6.6	CONDUCTED EMISSION	
	6.2 6.3 6.4 6.5 6.6 6.7 6.7.2	CONDUCTED EMISSION CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE SPURIOUS EMISSION 1 Restricted Band 2 Unwanted Emissions in the Restricted Bands	
	6.2 6.3 6.4 6.5 6.6 6.7	CONDUCTED EMISSION CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE SPURIOUS EMISSION 1 Restricted Band	
7	6.2 6.3 6.4 6.5 6.6 6.7 6.7.2 6.7.2	CONDUCTED EMISSION CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE SPURIOUS EMISSION 1 Restricted Band 2 Unwanted Emissions in the Restricted Bands	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass*
26dB Occupied Bandwidth	15.407 (a)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4:2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

<u> </u>	
Product Name:	21.5"Quad Core Media Player Standard Housing
Model No.:	DT215-AC4-1080, 502-2159ATATM
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Operation mode:	Indoor used
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2 Band 4: 802.11a/802.11n20: 5, 802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
AC Adapter:	MODEL: PS36IBCAY3000S Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 3000mA
Remark:	Model No.: DT215-AC4-1080, 502-2159ATATM are electrically identical, only model number is different for customer and for HUNG WAI.

Operation Frequency each of channel

Band 1				
802.11a/802.11n20		802.11n40		
Channel	Frequency	Channel	Frequency	
36	5180MHz	39	5190MHz	
40	5200MHz	45	5230MHz	
44	5220MHz			
48	5240MHz			
	Bai	nd 4		
802.11a/	802.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
149	5745MHz	151	5755MHz	
153	5765MHz	159	5795MHz	
157	5785MHz			
161	5805MHz			
165	5825MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802	2.11n20	802.11n	40		
Channel	Frequency	Channel	Frequency		
The lowest channel	5180MHz	The lowest channel	5190MHz		
The middle channel	5200MHz	The highest channel	5230MHz		
The highest channel	nel 5240MHz				
	Bar	nd 4			
802.11a/802	2.11n20	802.11n40			
Channel	Frequency	Channel	Frequency		
The lowest channel	5745MHz	The lowest channel	5755MHz		
The middle channel	5785MHz	The highest channel	5795MHz		
The highest channel	5825MHz				

Report No: CCIS15120092904

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n20	6.5 Mbps
802.11n40	13 Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2013	11-09-2016	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

T 15 1				
Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10: 2009			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kHz			
Limit:	Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
Test procedure	* Decreases with the logarithm			
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Referen	nce Plane		
	AUX Equipment E.U Test table/Insulation plan Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	r — AC power	
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details.			
Test results:	Passed			
	1 3300			

Measurement Data

Trace: 9

Site

Model

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 21.5 "Quad Core Media Player : Standard 10000 Condition EUT

: DT215-AC4-1080

Test Mode : 5G-Wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Viki Remark

Kemark	•	Read	LISN	Cable		Limit	Over	
	Freq		Factor	Loss	Level	Line		Remark
5,50	MHz	dBu∀	dB	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.151	52.60	0.27	10.78	63.65	65.96	-2.31	QP
2	0.180	27.12	0.28	10.77	38.17	54.50	-16.33	Average
3	0.226	20.59	0.27	10.75	31.61	52.61	-21.00	Average
4	0.270	35.09	0.27	10.75	46.11	61.12	-15.01	QP
1 2 3 4 5 6 7 8 9	0.320	19.21	0.26	10.74	30.21	49.71	-19.50	Average
6	0.624	26.70	0.24	10.77	37.71	56.00	-18.29	QP
7	0.634	17.71	0.24	10.77	28.72	46.00	-17.28	Average
8	0.690	25.81	0.22	10.77	36.80	56.00	-19.20	QP
	0.694	17.66	0.22	10.77	28.65	46.00	-17.35	Average
10	0.994	22.41	0.25	10.87	33.53	56.00	-22.47	QP
11	3.224	10.33	0.27	10.91	21.51	46.00	-24.49	Average
12	20.270	29.95	0.35	10.93	41.23	60.00	-18.77	QP
13	20.377	22.74	0.35	10.93	34.02	50.00	-15.98	Average

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 21.5 Quad Core Media Player Condition EUT

Standard Housing : DT215-AC4-1080

Test Mode : 5G-Wifi mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Viki

Remark

Model

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	dBu∜	dBu∇	<u>dB</u>	
1	0.150	52.75	0.25	10.78	63.78	66.00	-2.22	QP
1 2 3	0.195	27.16	0.25	10.76	38.17	53.80	-15.63	Average
3	0.226	21.91	0.25	10.75	32.91	52.61	-19.70	Average
4 5 6 7 8 9	0.396	30.21	0.25	10.72	41.18	57.95	-16.77	QP
5	0.541	20.78	0.26	10.76	31.80	46.00	-14.20	Average
6	0.624	31.12	0.22	10.77	42.11	56.00	-13.89	QP
7	0.624	22.69	0.22	10.77	33.68	46.00	-12.32	Average
8	0.958	23.15	0.21	10.86	34.22	56.00	-21.78	QP
9	14.440	26.80	0.25	10.91	37.96	60.00	-22.04	QP
10	14.672	17.77	0.25	10.90	28.92	50.00	-21.08	Average
11	20.486	16.57	0.23	10.93	27.73	50.00	-22.27	Average
12	20.594	23.98	0.24	10.92	35.14	60.00	-24.86	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)					
Test Method:	ANSI C63.10: 2009, KDB 789033					
Limit:	Band 1: 1 W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.); Band 4: 1W.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.4 Occupy Bandwidth

FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)						
ANSI C63.10:2009 and KDB 789033						
Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)						
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Refer to section 5.6 for details						
Refer to section 5.3 for details						
Refer to FCC ID: 2AB6Z-1859ATMB						

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)					
Test Method:	ANSI C63.10:2009, KDB 789033					
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.6 Band Edge

6.6 Band Edge							
Test Requirement:	FCC Part15 E Section 15.407 (b)						
Test Method:	ANSI C63.10:20	09 , KDB 7	89033				
Receiver setup:	Detector Quasi-peak RMS	RBW 120kHz 1MHz	VBW 300kHz 3MHz	z Quasi-peak Value			
Limit:	Band Band Remark:			BuV/m @3m) 68.20 54.00 78.20 54.00	Remark Peak Value Average Value Peak Value Average Value		
	 Band 1 limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]= -27 Band 4 limit: E[dBμV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m, for EIPR[dBm]= -17 						
Test Procedure:	the ground to determine 2. The EUT was antenna, who tower. 3. The antennathe ground Both horizon make the make the make the make and to find the nate of the EUT have 10dB.	at a 3 meters the position as set 3 meters as set 3 meters as set 3 meters and the position and the position as the position and the position as the position	r camber. Ton of the highesters away founted on towaried from the maximum of the	The table was roghest radiation. From the interfer he top of a variation one meter to formum value of the zations of the arresponding to Peak Detect of the peak mode was all do be stopped an erwise the emissisted one by one	our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Analyzer Amplifier						
Test Instruments:	Refer to section	5.6 for deta	ils				
Test mode:	Refer to section	5.3 for deta	ils				
Test results:	Passed						

Band 1:

	802.11a								
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	38.56	32.07	9.13	40.06	39.70	68.20	-28.50	Horizontal	
5150.00	37.25	32.07	9.13	40.06	38.39	68.20	-29.81	Vertical	
				802.11a					
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	28.99	32.07	9.13	40.06	30.13	54.00	-23.87	Horizontal	
5150.00	28.36	32.07	9.13	40.06	29.50	54.00	-24.50	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	38.66	31.78	9.15	40.18	39.41	68.20	-28.79	Horizontal	
5350.00	38.25	31.78	9.15	40.18	39.00	68.20	-29.20	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	28.99	31.78	9.15	40.18	29.74	54.00	-24.26	Horizontal	
5350.00	28.45	31.78	9.15	40.18	29.20	54.00	-24.80	Vertical	

802.11n-HT20									
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	38.55	32.07	9.13	40.06	39.69	68.20	-28.51	Horizontal	
5150.00	38.26	32.07	9.13	40.06	39.40	68.20	-28.80	Vertical	
			8	302.11n-HT20					
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	28.14	32.07	9.13	40.06	29.28	54.00	-24.72	Horizontal	
5150.00	28.04	32.07	9.13	40.06	29.18	54.00	-24.82	Vertical	
			8	302.11n-HT20					
Test c	hannel		Highest		Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.82	31.78	9.15	40.18	38.57	68.20	-29.63	Horizontal	
5350.00	37.66	31.78	9.15	40.18	38.41	68.20	-29.79	Vertical	
			8	302.11n-HT20					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	29.66	31.78	9.15	40.18	30.41	54.00	-23.59	Horizontal	
5350.00	29.36	31.78	9.15	40.18	30.11	54.00	-23.89	Vertical	

	802.11n-HT40								
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.84	32.07	9.13	40.06	38.98	68.20	-29.22	Horizontal	
5150.00	37.12	32.07	9.13	40.06	38.26	68.20	-29.94	Vertical	
			8	02.11n-HT40					
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	27.88	32.07	9.13	40.06	29.02	54.00	-24.98	Horizontal	
5150.00	27.36	32.07	9.13	40.06	28.50	54.00	-25.50	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.94	31.78	9.15	40.18	38.69	68.20	-29.51	Horizontal	
5350.00	37.28	31.78	9.15	40.18	38.03	68.20	-30.17	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	27.25	31.78	9.15	40.18	28.00	54.00	-26.00	Horizontal	
5350.00	27.36	31.78	9.15	40.18	28.11	54.00	-25.89	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a									
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.22	32.27	9.30	40.54	42.25	78.20	-35.95	Horizontal		
5725.00	41.03	32.27	9.30	40.54	42.06	78.20	-36.14	Vertical		
				802.11a						
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	31.22	32.27	9.30	40.54	32.25	54.00	-21.75	Horizontal		
5725.00	31.66	32.27	9.30	40.54	32.69	54.00	-21.31	Vertical		
				802.11a						
Test c	hannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.22	32.71	9.37	40.69	42.61	78.20	-35.59	Horizontal		
5850.00	41.07	32.71	9.37	40.69	42.46	78.20	-35.74	Vertical		
				802.11a						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	31.26	32.71	9.37	40.69	32.65	54.00	-21.35	Horizontal		
5850.00	30.88	32.71	9.37	40.69	32.27	54.00	-21.73	Vertical		

	802.11n-HT20									
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.22	32.27	9.30	40.54	42.25	78.20	-35.95	Horizontal		
5725.00	41.36	32.27	9.30	40.54	42.39	78.20	-35.81	Vertical		
			8	02.11n-HT20						
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	31.88	32.27	9.30	40.54	32.91	54.00	-21.09	Horizontal		
5725.00	31.06	32.27	9.30	40.54	32.09	54.00	-21.91	Vertical		
802.11n-HT20										
Test c	hannel		Highest		Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.57	32.71	9.37	40.69	42.96	78.20	-35.24	Horizontal		
5850.00	41.34	32.71	9.37	40.69	42.73	78.20	-35.47	Vertical		
			8	02.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	32.22	32.71	9.37	40.69	33.61	54.00	-20.39	Horizontal		
5850.00	31.58	32.71	9.37	40.69	32.97	54.00	-21.03	Vertical		

	802.11n-HT40									
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.22	32.27	9.30	40.54	42.25	78.20	-35.95	Horizontal		
5725.00	41.74	32.27	9.30	40.54	42.77	78.20	-35.43	Vertical		
			8	02.11n-HT40						
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	31.26	32.27	9.30	40.54	32.29	54.00	-21.71	Horizontal		
5725.00	31.87	32.27	9.30	40.54	32.90	54.00	-21.10	Vertical		
			8	02.11n-HT40						
Test c	hannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.55	32.71	9.37	40.69	42.94	78.20	-35.26	Horizontal		
5850.00	41.02	32.71	9.37	40.69	42.41	78.20	-35.79	Vertical		
			8	02.11n-HT40						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	31.74	32.71	9.37	40.69	33.13	54.00	-20.87	Horizontal		
5850.00	31.97	32.71	9.37	40.69	33.36	54.00	-20.64	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	.1 Restricted Band										
	Test Requirement:	FCC Part15 E S	Section 15.407	7(b)							
	Test Method:	ANSI C63.10: 2	2009								
	Test Frequency Range:	Band 1: 4.5 GH Band 4: 5.35 G			z to 5.46Gł	-lz					
	Test site:	Measurement [Distance: 3m								
	Receiver setup:			1	I						
		Frequency	Peak 1MHz 3MHz Peak Value								
		Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value									
	Limit:		RMS 1MHz 3MHz Average								
		Freque	ncy	Limit (dBuV		Remark					
		Above 1	GHz	74.0		Peak Value					
				54.0	0	Average Value					
	Test Procedure:	the ground to determine to determine to determine antenna, we tower. 9. The antenna the ground Both horizon make their 10. For each so case and to find the 11. The test-results Specified Education of the Euthern to determine the limit specified Education of the Euthern to determine the specified Education of the Edu	at a 3 meter ne the position was set 3 meter which was mount and height is value to determine ontal and vertime asurement. Uspected emishen the antened the rota table maximum reaspected emishen the leceiver system and width with sion level of the recified, then the would be reparagin would	camber. The of the highers away from unted on the taried from one the maximum cal polarizations was turned was turned ding. In was set to Fin Maximum Fine EUT in peace ting could lorted. Otherwal be re-tested.	table was rest radiation. In the interfectop of a variation of a variation of the authors of the	rence-receiving lable-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 rees to 360 degrees					
	Test setup.	Antenna Tower Horn Antenna Spectrum Analyzer Amplifier									
	Test Instruments:	Refer to section	5.6 for detail	S							
	Test mode:	Refer to section	5.3 for detail	s							
	Test results:	Passed									
· · · · · · · · · · · · · · · · · · ·		·			·	·					

Band 1:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	35.23	30.72	8.54	40.67	33.82	74.00	-40.18	Horizontal		
4500.00	35.12	30.72	8.54	40.67	33.71	74.00	-40.29	Vertical		
Test c	hannel		Lowest		Level		Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	24.36	30.72	8.54	40.67	22.95	54.00	-31.05	Horizontal		
4500.00	24.15	30.72	8.54	40.67	22.74	54.00	-31.26	Vertical		
Test c	hannel		Highest		Le	vel	F	Limit (dB) -31.05 Horizontal -31.26 Vertical Peak Over Polarization		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	35.36	31.99	9.16	40.23	36.28	74.00	-37.72	Horizontal		
5460.00	35.12	31.99	9.16	40.23	36.04	74.00	-37.96	Vertical		
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	26.89	31.99	9.16	40.23	27.81	54.00	-26.19	Horizontal		
5460.00	25.78	31.99	9.16	40.23	26.70	54.00	-27.30	Vertical		

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	36.87	30.72	8.54	40.67	35.46	74.00	-38.54	Horizontal	
4500.00	35.66	30.72	8.54	40.67	34.25	74.00	-39.75	Vertical	
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	26.54	30.72	8.54	40.67	25.13	54.00	-28.87	Horizontal	
4500.00	26.36	30.72	8.54	40.67	24.95	54.00	-29.05	Vertical	
Test c	hannel		Highest		Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	37.28	31.99	9.16	40.23	38.20	74.00	-35.80	Horizontal	
5460.00	37.89	31.99	9.16	40.23	38.81	74.00	-35.20	Vertical	
Test c	hannel		Highest		Level		Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	27.52	31.99	9.16	40.23	28.44	54.00	-25.56	Horizontal	
5460.00	27.18	31.99	9.16	40.23	28.10	54.00	-25.90	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	37.50	30.72	8.54	40.67	36.09	74.00	-37.91	Horizontal		
4500.00	37.55	30.72	8.54	40.67	36.14	74.00	-37.86	Vertical		
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	27.55	30.72	8.54	40.67	26.14	54.00	-27.86	Horizontal		
4500.00	27.36	30.72	8.54	40.67	25.95	54.00	-28.05	Vertical		
Test channel								Limit (dB) -27.86 Horizontal -28.05 Vertical Peak Over Limit (dB) -36.80 Horizontal -35.80 Vertical		
Test c	hannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)				
Frequency	Read Level		Cable		Level	Limit Line	Over Limit (dB)	Polarization		
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Cable Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB) -36.80	Polarization Horizontal		
Frequency (MHz) 5460.00 5460.00	Read Level (dBuV/m) 36.28	Factor (dB) 31.99	Cable Loss (dB) 9.16	Factor (dB) 40.23	Level (dBuV/m) 37.20 38.21	Limit Line (dBuV/m) 74.00	Over Limit (dB) -36.80 -35.80	Polarization Horizontal		
Frequency (MHz) 5460.00 5460.00	Read Level (dBuV/m) 36.28 37.29	Factor (dB) 31.99	Cable Loss (dB) 9.16 9.16	Factor (dB) 40.23	Level (dBuV/m) 37.20 38.21	Limit Line (dBuV/m) 74.00 74.00	Over Limit (dB) -36.80 -35.80	Polarization Horizontal Vertical		
Frequency (MHz) 5460.00 5460.00 Test cl	Read Level (dBuV/m) 36.28 37.29 hannel Read Level	31.99 31.99 Antenna	Cable Loss (dB) 9.16 9.16 Highest Cable	Factor (dB) 40.23 40.23 Preamp	Level (dBuV/m) 37.20 38.21 Le	Limit Line (dBuV/m) 74.00 74.00 vel Limit Line	Over Limit (dB) -36.80 -35.80 Av	Polarization Horizontal Vertical erage		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

	V-2.1.1.0										
Test c	hannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	45.66	31.78	9.15	40.18	46.41	74.00	-27.59	Horizontal			
5460.00	44.32	31.99	9.16	40.23	45.24	74.00	-28.76	Horizontal			
5350.00	44.98	31.78	9.15	40.18	45.73	74.00	-28.27	Vertical			
5460.00	43.25	31.99	9.16	40.23	44.17	74.00	-29.83	Vertical			
Test c	hannel		Lowest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	34.99	31.78	9.15	40.18	35.74	54.00	-18.26	Horizontal			
5460.00	34.65	31.99	9.16	40.23	35.57	54.00	-18.43	Horizontal			
5350.00	34.54	31.78	9.15	40.18	35.29	54.00	-18.71	Vertical			
5460.00	34.05	31.99	9.16	40.23	34.97	54.00	-19.03	Vertical			

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	44.87	31.78	9.15	40.18	45.62	74.00	-28.38	Horizontal
5460.00	44.57	31.99	9.16	40.23	45.49	74.00	-28.51	Horizontal
5350.00	44.25	31.78	9.15	40.18	45.00	74.00	-29.00	Vertical
5460.00	44.16	31.99	9.16	40.23	45.08	74.00	-28.92	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	34.51	31.78	9.15	40.18	35.26	54.00	-18.74	Horizontal
5460.00	34.28	31.99	9.16	40.23	35.20	54.00	-18.80	Horizontal
5350.00	34.06	31.78	9.15	40.18	34.81	54.00	-19.19	Vertical
5460.00	34.71	31.99	9.16	40.23	35.63	54.00	-18.37	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	eak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	44.55	31.78	9.15	40.18	45.30	74.00	-28.70	Horizontal	
5460.00	44.23	31.99	9.16	40.23	45.15	74.00	-28.85	Horizontal	
5350.00	44.18	31.78	9.15	40.18	44.93	74.00	-29.07	Vertical	
5460.00	44.40	31.99	9.16	40.23	45.32	74.00	-28.68	Vertical	
Test c	hannel		Lowest		Le	vel	Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	35.66	31.78	9.15	40.18	36.41	54.00	-17.59	Horizontal	
5460.00	35.26	31.99	9.16	40.23	36.18	54.00	-17.82	Horizontal	
5350.00	35.12	31.78	9.15	40.18	35.87	54.00	-18.13	Vertical	
5460.00	35.45	31.99	9.16	40.23	36.37	54.00	-17.63	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:20	009							
Test Frequency Range:	30MHz to 40GH	z							
Test site:	Measurement D	istance: 3m							
Receiver setup:									
·	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
Limit:									
	Freque	ncy	Limit (dBuV/	/m @3m)	Remark				
	30MHz-8	8MHz	40.0)	Quasi-peak Value				
	88MHz-21	6MHz	43.5	5	Quasi-peak Value				
	216MHz-9	60MHz	46.0		Quasi-peak Value				
	960MHz-	1GHz	54.0)	Quasi-peak Value				
	Freque	ncv	Limit (dBn	n/MHz)	Remark				
	Treque	Ticy	68.2		Peak Value				
	Above 1	GHz	54.0		Average Value				
Test Procedure:	1. The EUT we the ground determine of the EUT we antenna, we tower. 3. The antenna ground to defend the contract of the end of the	ras placed on that a 3 meter cathe position of the ras set 3 meters hich was mountained height is varialletermine the mand vertical polarit.	ne top of a romber. The fine highest residued in the top of the to	otating table able was readiation. the interferop of a variation are meter to foue of the first the antenn	e 0.8 meters above obtated 360 degrees to rence-receiving able-height antenna our meters above the eld strength. Both is are set to make the				
	 For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: 21.5"Quad Core Media Player EUT

: Standard Housing : DT215-AC4-1080 : 5G-Wifi mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C
Test Engineer: Viki
REMARK : Huni:55% 101KPa

Model Test mode

THUTTLE									
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	₫B	dB	dBuV/m	dBuV/m	dB	
1	99.878	41.32	13.16	0.96	29.53	25.91	43.50	-17.59	QP
2	140.342	51.01	8.19	1.26	29.27	31.19	43.50	-12.31	QP
2	211.527	53.15	10.93	1.44	28.76	36.76	43.50	-6.74	QP
4	281.995	55.19	12.70	1.72	28.48	41.13	46.00	-4.87	QP
4 5	423.540	47.81	15.49	2.18	28.82	36.66	46.00	-9.34	QP
6	480.528	44.48	16.07	2.35	28.92	33.98	46.00	-12.02	QP

Vertical:

: 3m chamber Site

: FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

21.5 Quad Core Media Player Standard Housing EUT

: DT215-AC4-1080 Test mode : 5G-Wifi mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5 C Huni: 55% 101KPa

Test Engineer: Viki REMARK

Model

AAAMB										
	Freq		Antenna Factor				Limit Line		Remark	
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB		-
1	73.359	43.79	8.06	0.81	29.69	22.97	40.00	-17.03	QP	
2	121.123	42.21	10.29	1.13	29.38	24.25	43.50	-19.25	QP	
	210.048	45.31	10.87	1.43	28.77	28.84	43.50	-14.66	QP	
4 5	280.024	53.21	12.67	1.71	28.48	39.11	46.00	-6.89	QP	
5	420.580	42.67	15.47	2.18	28.82	31.50	46.00	-14.50	QP	
6	633.907	42.59	18.58	2.74	28.83	35.08	46.00	-10.92	QP	

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	46.55	39.23	13.84	41.34	58.28	68.20	-9.92	Vertical			
10360.00	46.28	39.23	13.84	41.34	58.01	68.20	-10.19	Horizontal			
		802.11	a mode Lowe	est channe	l (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	34.51	39.23	13.84	41.34	46.24	54.00	-7.76	Vertical			
10360.00	34.25	39.23	13.84	41.34	45.98	54.00	-8.02	Horizontal			

	802.11a mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	45.81	39.36	13.85	41.27	57.75	68.20	-10.45	Vertical		
10400.00	45.27	39.36	13.85	41.27	57.21	68.20	-10.99	Horizontal		
		802.11	a mode Mido	lle channe	l (Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	36.92	39.36	13.85	41.27	48.86	54.00	-5.14	Vertical		
10400.00	36.28	39.36	13.85	41.27	48.22	54.00	-5.78	Horizontal		

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	44.52	39.56	13.90	41.06	56.92	68.20	-11.28	Vertical			
10480.00	44.17	39.56	13.90	41.06	56.57	68.20	-11.63	Horizontal			
		802.11a	a mode High	est channe	I (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	34.53	39.56	13.90	41.06	46.93	54.00	-7.07	Vertical			
10480.00	34.18	39.56	13.90	41.06	46.58	54.00	-7.42	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	46.81	39.23	13.84	41.34	58.54	68.20	-9.66	Vertical			
10360.00	46.28	39.23	13.84	41.34	58.01	68.20	-10.19	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	36.99	39.23	13.84	41.34	48.72	54.00	-5.28	Vertical			
10360.00	36.97	39.23	13.84	41.34	48.70	54.00	-5.30	Horizontal			

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	46.15	39.36	13.85	41.27	58.09	68.20	-10.11	Vertical			
10400.00	46.39	39.36	13.85	41.27	58.33	68.20	-9.87	Horizontal			
		802.11n	20 mode Mic	ldle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	36.82	39.36	13.85	41.27	48.76	54.00	-5.24	Vertical			
10400.00	36.98	39.36	13.85	41.27	48.92	54.00	-5.08	Horizontal			

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	45.17	39.56	13.90	41.06	57.57	68.20	-10.63	Vertical			
10480.00	45.08	39.56	13.90	41.06	57.48	68.20	-10.72	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	33.66	39.56	13.90	41.06	46.06	54.00	-7.94	Vertical			
10480.00	33.25	39.56	13.90	41.06	45.65	54.00	-8.35	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n40 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	43.25	39.29	13.84	41.31	55.07	68.20	-13.13	Vertical			
10380.00	44.57	39.29	13.84	41.31	56.39	68.20	-11.81	Horizontal			
		802.11n ²	40 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	31.47	39.29	13.84	41.31	43.29	54.00	-10.71	Vertical			
10380.00	32.20	39.29	13.84	41.31	44.02	54.00	-9.98	Horizontal			

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	43.25	39.54	13.88	41.17	55.50	68.20	-12.70	Vertical			
10460.00	42.28	39.54	13.88	41.17	54.53	68.20	-13.67	Horizontal			
		802.11n4	10 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	33.25	39.54	13.88	41.17	45.50	54.00	-8.50	Vertical			
10460.00	32.28	39.54	13.88	41.17	44.53	54.00	-9.47	Horizontal			

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	44.28	40.25	13.82	40.75	57.60	68.20	-10.60	Vertical			
11490.00	44.36	40.25	13.82	40.75	57.68	68.20	-10.52	Horizontal			
		802.11	a mode Lowe	est channe	l (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	31.29	40.25	13.82	40.75	44.61	54.00	-9.39	Vertical			
11490.00	31.09	40.25	13.82	40.75	44.41	54.00	-9.59	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	44.56	40.17	13.78	40.91	57.60	68.20	-10.60	Vertical			
11570.00	44.28	40.17	13.78	40.91	57.32	68.20	-10.88	Horizontal			
		802.11	a mode Mido	dle channe	(Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	32.98	40.17	13.78	40.91	46.02	54.00	-7.98	Vertical			
11570.00	32.69	40.17	13.78	40.91	45.73	54.00	-8.27	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	45.78	39.89	13.74	41.06	58.35	68.20	-9.85	Vertical			
11650.00	45.36	39.89	13.74	41.06	57.93	68.20	-10.27	Horizontal			
		802.11a	a mode High	est channe	l (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	34.92	39.89	13.74	41.06	47.49	54.00	-6.51	Vertical			
11650.00	34.26	39.89	13.74	41.06	46.83	54.00	-7.17	Horizontal			

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	44.55	40.25	13.82	40.75	57.87	68.20	-10.33	Vertical			
11490.00	44.23	40.25	13.82	40.75	57.55	68.20	-10.65	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	31.52	40.25	13.82	40.75	44.84	54.00	-9.16	Vertical			
11490.00	31.29	40.25	13.82	40.75	44.61	54.00	-9.39	Horizontal			

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	44.79	40.17	13.78	40.91	57.83	68.20	-10.37	Vertical		
11570.00	44.32	40.17	13.78	40.91	57.36	68.20	-10.84	Horizontal		
		802.11n	20 mode Mic	dle chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	31.21	40.17	13.78	40.91	44.25	54.00	-9.75	Vertical		
11570.00	31.07	40.17	13.78	40.91	44.11	54.00	-9.89	Horizontal		

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	43.22	39.89	13.74	41.06	55.79	68.20	-12.41	Vertical			
11650.00	43.09	39.89	13.74	41.06	55.66	68.20	-12.54	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	33.64	39.89	13.74	41.06	46.21	54.00	-7.79	Vertical			
11650.00	33.26	39.89	13.74	41.06	45.83	54.00	-8.17	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	43.55	40.26	13.83	40.77	56.87	68.20	-11.33	Vertical
11510.00	43.02	40.26	13.83	40.77	56.34	68.20	-11.86	Horizontal
	802.11n40 mode Lowest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	30.09	40.26	13.83	40.77	43.41	54.00	-10.59	Vertical
11510.00	30.19	40.26	13.83	40.77	43.51	54.00	-10.49	Horizontal

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	43.67	40.08	13.77	40.95	56.57	68.20	-11.63	Vertical
11590.00	43.09	40.08	13.77	40.95	55.99	68.20	-12.21	Horizontal
802.11n40 mode Highest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	30.12	40.08	13.77	40.95	43.02	54.00	-10.98	Vertical
11590.00	30.71	40.08	13.77	40.95	43.61	54.00	-10.39	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)			
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.			
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector			
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.			
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB			