Estimating Parking Capacity in Somerville

The team

Infrastructure

Additional Data Support

Problem statement

Big picture:

Inventory of all parking available in Somerville

What we contribute:

Inventory of residential driveways in Somerville

= Location of driveways + estimate of driveway capacity

Scope of work

- 1. Where are the driveways in Somerville?
 - a. By Ward & Precinct
 - b. By Street Block
 - c. Exact location
- 2. What is the driveway capacity?
 - a. Citywide
 - b. By Ward/Precinct
 - c. By Street Block
 - d. By Driveway

Learning goals

- Computer vision
- Image segmentation
- Labelled versus unlabelled
- Working with noisy labels

Things we need to learn more about

- Quirks of satellite data
- Image segmentation
- Semi-supervised/unsupervised learning

Initial ideas

- Use tabular data to back out parking capacity
 - Use number of parking permits or registered vehicles
- Hand-label images
 - Draw boxes around driveways
- Create masks from Somerville GIS data and then train a classifier on those messy labels
- Object recognition/detection
 - PoolNet

Literature Example

Learning to Detect Roads in High-Resolution Aerial Images

- Use labelled data to predict road versus non-road
- To get labelled data:

"use synthetic road/non-road labels that we generate from readily available vector road maps"

- What's applicable to our problem
 - Use street layers from GIS data to have "labels" for roads
 - Build a model to predict roads in images of Somerville
 - Subtract roads from map image layers
 - Hopefully what is left is other polygons that will contain driveways and parking areas

State of Data

