摘要

我自学使用的教材为谭小江, 伍胜健的《复变函数简明教程》, 在此笔记中主要记录书中的核心内容, 配以心得体会。

目录

1	Cauchy 定理和 Cauchy 公式	2
2	利用幂级数研究解析函数	2
3	Cauchy不等式	3
4	Laurent 级数	3
5	留数	6

1 Cauchy 定理和 Cauchy 公式

定理 1.1 (Cauchy 定理). 设 Ω 是 $\mathbb C$ 中以有限条逐段光滑曲线为边界的有界区域, 函数 f(z) 在 $\overline{\Omega}$ 上连续, 在 Ω 内解析, 则

$$\int_{\partial\Omega} f(z) \mathrm{d}z = 0$$

定理 1.2 (Cauchy 公式). 设 Ω 是由有限条逐段光滑曲线为边界的有界区域, f(z) 在 $\overline{\Omega}$ 上连续, 在 Ω 内解析, 则 $\forall z \in \Omega$,

$$f(z) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(\omega)}{\omega - z} d\omega$$

定理 1.3. 函数 f(z) 在区域 Ω 上解析的充分必要条件是 $\forall z_0 \in \Omega$, f(z) 可在 z_0 的邻域上展开为 $(z-z_0)$ 的幂级数. 其中在 z_0 的邻域幂级数展开的形式为:

$$f(z) = \sum_{n=0}^{+\infty} \left[\frac{1}{2\pi i} \int_{|\omega - z_0| = r} \frac{f(\omega)}{(\omega - z_0)^{n+1}} d\omega \right] (z - z_0)^n$$

定理 1.4 (Morera 定理). 设 $\Omega \subset \mathbb{C}$ 为一个区域, f(z) 在 Ω 内连续. 则 f(z) 在 Ω 内解析的充分必要条件是对 Ω 中任意由逐段光滑曲线为边界围成的有界区域 D, 如果 $\overline{D} \subset \Omega$, 则

$$\int_{\partial D} f(\omega) d\omega = 0$$

2 利用幂级数研究解析函数

定理 2.1. 设 f(z) 在区域 Ω 内解析, 如果存在 $z_0 \in \Omega$, 使得

$$f(z_0) = f'(z_0) = f''(z_0) = \dots = f^n(z_0) = \dots = 0$$

则 f(z) 在 Ω 上恒为零.

推论 2.1. 设 f(z) 是区域 Ω 上不为常数的解析函数, 则 $\forall z_0 \in \Omega$, 存在正整数 m, 使得

$$f'(z_0) = f''(z_0) = \dots = f^{m-1}(z_0) = 0$$
, for $f^m(z_0) \neq 0$

这时存在 z_0 的邻域 O, 使得 f(z) 在 O 上可表示为

$$f(z) - f(z_0) = (z - z_0)^m g(z)$$

其中 g(z) 在 O 上解析, 且 $g(z_0) \neq 0$.

定理 2.2 (开映射定理). 如果 f(z) 是区域 Ω 山不为常数的解析函数, 则 f(z) 将 Ω 中的开集映为开集.

定理 2.3. 如果 f(z) 是区域 Ω 上的单叶解析函数, 则 $f(\Omega)$ 是 $\mathbb C$ 中的开集, 因而是区域; f'(z) 在 Ω 上处处不为零. 因此 $f^{-1}: f(\Omega) \to \Omega$ 是解析的; $f: \Omega \to f(\Omega)$ 是解析同胚.

定理 2.4 (最大模原理). 如果 f(z) 是区域 Ω 上不为常数的解析函数,则 |f(z)| 在 Ω 内无极大值点.

定理 2.5 (代数学基本定理). 设

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$$

是一 n 次多项式, 其中 $n \ge 1$, $a_n \ne 0$, 则方程 P(z) = 0 在 \mathbb{C} 中有解.

证明. 容易推出

$$\lim_{z \to \infty} |P(z)| = +\infty$$

取 R 充分大, 使得

$$\min\{|P(z)|||z|=R\}>|P(0)|$$

设 z_0 是 |P(z)| 在闭圆盘 $\overline{D(0,R)}$ 内的最小值点, 由假设知 $z_0 \in D(0,R)$. 因为 P(z) 解析且不为常数, 所以 P(D(0,R)) 是 \mathbb{C} 中的开集. 从而 $P(z_0)$ 是 P(D(0,R)) 的内点, 如果 $P(z_0) \neq 0$, 则 $|P(z_0)|$ 不能是最小, 此矛盾说明 $P(z_0) = 0$.

3 Cauchy不等式

定理 3.1 (Cauchy 不等式). 设 f(z) 在区域 Ω 上解析, 且在 Ω 上 $|f(z)| \leq M$, 则 $\forall z_0 \in \Omega, 0 < r \leq \operatorname{dist}(z_0, \partial\Omega)$, 恒有

$$|f^{(n)}(z_0)| \le \frac{n!M}{r^n}$$

4 Laurent 级数

定理 4.1. 函数 f(z) 在圆环区域 $D(z_0, r, R)$ 内解析的充分必要条件是 f(z) 可在 $D(z_0, r, R)$ 上展开为关于 $z-z_0$ 的 Laurent 级数.

定义 4.1. 如果函数 f(z) 在 z_0 的空心邻域上解析, 即存在 $\epsilon > 0$, 使 f(z) 在 $D_0(z_0, \epsilon)$ 上解析, 则 z_0 称为 f(z) 的孤立奇点. 如果存在 $R_0 > 0$, 使得 f(z) 在 $\mathbb{C} - \overline{D(0, R_0)}$ 上解析, 则称 ∞ 是 f(z) 的一个孤立奇点. 例如任何整函数都以 ∞ 为孤立奇点.

定义 4.2. 设 z_0 是 f(z) 的孤立零点.

(1) 如果存在 $c \in \mathbb{C}$ 使得函数

$$g(z) = \begin{cases} f(z) & z \neq z_0 \\ c & z = z_0 \end{cases}$$

在 z_0 的邻域上解析, 则称 f(z) 可解析开拓到 z_0 处, 并称 z_0 为 f(z) 的可去奇点.

- (2) 如果 f(z) 不能解析开拓到 z_0 处, 但 $\frac{1}{f(z)}$ 可解析开拓到 z_0 , 则 z_0 称为 f(z) 的极点.
- (3) 如果 z_0 既不是 f(z) 的可去奇点, 也不是 f(z) 的极点, 则称 z_0 为 f(z) 的本性奇点.

下面写点对于上述定义的刻画:

定理 4.2. 设 z_0 是 f(z) 的孤立零点,则下面的条件等价:

- (1) z_0 是 f(z) 的可去奇点
- (2) $\lim_{z\to z_0} f(z)$ 在 \mathbb{C} 中存在
- (3) f(z) 在 f(z) 的邻域上有界
- (4) f(z) 在 z_0 的 Larurent 展式的主部为零

定理 4.3. 设 z_0 是 f(z) 的孤立奇点,则下面条件等价:

- (1) z_0 是 f(z) 的极点
- (2) z_0 是 $\frac{1}{f(z)}$ 的孤立零点
- (3) $\lim_{z\to z_0} f(z) = \infty$
- (4) f(z) 在 z_0 处 Laurent 展式的主部中有且仅有有限项不为零

证明. $(1) \Rightarrow (2)$: 由于 $\frac{1}{f(z)}$ 可解析开拓到 z_0 , 从而由前面一个定理可知 $\lim_{z\to z_0} \frac{1}{f(z)}$ 在 $\mathbb C$ 中存在, 但由于 f(z) 不能解析开拓到 z_0 , 因此必有

$$\lim_{z \to z_0} \frac{1}{f(z)} = 0$$

- $(2) \Rightarrow (3)$: 显然
- $(3) \Rightarrow (4)$: 由 $\lim_{z\to z_0} f(z) = \infty$, 我们得到 z_0 是 $\frac{1}{f(z)}$ 的孤立零点. 设其是 m 阶零点, 则 $\frac{1}{f(z)}$ 在 z_0 邻域可展开为

$$\frac{1}{f(z)} = (z - z_0)^m \sum_{n=0}^{+\infty} b_n (z - z_0)^n = (z - z_0)^m g(z)$$

其中 g(z) 在 z_0 的邻域内解析且处处不为零. 因此

$$f(z) = \frac{1}{(z - z_0)^m} \cdot \frac{1}{g(z)}$$

由于 $\frac{1}{g(z)}$ 在 z_0 的邻域内解析, 我们有

$$\frac{1}{g(z)} = c_0 + c_1(z - z_0) + \cdots$$

其中 $c_0 \neq 0$, 从而推出

$$f(z) = \frac{c_0}{(z - z_0)^m} + \frac{c_1}{(z - z_0)^{m-1}} + \cdots$$

 $(4) \Rightarrow (1)$: 设 f(z) 在 z_0 处 Laurent 展式的主部为

$$\frac{a_{-m}}{(z-z_0)^m} + \frac{a_{-m+1}}{(z-z_0)^{m-1}} + \dots + \frac{a_{-1}}{(z-z_0)}$$

其中 $a_{-m} \neq 0$, 则

$$(z-z_0)^m f(z) \stackrel{\mathrm{id}}{=} g(z)$$

在 z_0 处解析, 且 $g(z_0) \neq 0$, 因此

$$f(z) = \frac{1}{(z - z_0)^m} \cdot g(z)$$

不能解析开拓到 z_0 , 但

$$\frac{1}{f(z)} = \frac{(z-z_0)^m}{g(z)}$$

可解析开拓到 z_0 , 即 z_0 是 f(z) 的极点.

定理 4.4. 设 z_0 是 f(z) 的孤立奇点, 则下面的条件等价:

- (1) z_0 是 f(z) 的本性奇点
- (2) $\lim_{z\to z_0} f(z)$ 在 $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ 中不存在
- (3) f(z) 在 z_0 的 Laurent 展式中主部有无穷多项不为零

定理 4.5 (Weierstrass 定理). 如果 z_0 是 f(z) 的本性奇点,则 $\forall \epsilon > 0$, $f(D_0(z_0, \epsilon))$ 都是 \mathbb{C} 中的稠密子集.

证明. 若结论不成立, 则存在 $z^* \in \mathbb{C} - \overline{f(D_0(z_0,\epsilon))}$, 使得

$$D(z^*, \delta) \cap \overline{f(D_0(z_0, \epsilon))} = \varnothing$$

令

$$g(z) = \frac{1}{f(z) - z^*}$$

则

$$|g(z)| = \frac{1}{|f(z) - z^*|} \le \frac{1}{\delta}$$

因此 g(z) 在 z_0 的邻域上有界, 由上面定理得 z_0 是 g(z) 的可去奇点, 而由于

$$f(z) = z^* + \frac{1}{g(z)}$$

所以 z_0 只能是 f(z) 的可去奇点或者极点, 矛盾!

5 留数

定义 5.1 (留数). 设 f(z) 在 $D_0(z_0,R)$ 内解析, 即 z_0 是 f(z) 的一个孤立奇点, 函数 f(z) 在 z_0 处的**留数**, 记作 $\mathrm{Res}(f,z_0)$, 定义为

$$\operatorname{Res}(f, z_0) = \frac{1}{2\pi i} \int_{|z-z_0|=\rho} f(z) dz$$

其中 $0 < \rho < R$.

当 ∞ 为 f(z) 的孤立奇点,即存在 R>0,使得 f(z) 在 $\mathbb{C}-\overline{D(0,R)}$ 上解析,则 f(z) 在 ∞ 处的留数记作 $\mathrm{Res}(f,\infty)$,定义为

$$\operatorname{Res}(f, \infty) = -\frac{1}{2\pi i} \int_{|z|=\rho} f(z) dz$$

其中 $R < \rho < +\infty$

定理 5.1 (留数定理). 设 Ω 是 $\overline{\mathbb{C}}$ 中以有限条逐段光滑曲线为边界的区域, $\infty \notin \partial \Omega$, z_1, \dots, z_n 位于 Ω 的内部, 再设 f(z) 在 Ω 内除去 z_1, \dots, z_n 外解析, 在 $\overline{\Omega}$ 上除去 z_1, \dots, z_n 外连续, 则

$$\int_{\partial\Omega} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, z_k)$$