COMP 330 - Assignment 2

Denis R

03/02/21

Question 1

- 1) b* (a b* a)* b*
- 2) (a* (b a* b)*)* b a*
- 3) b* a*
- 4) b* (a* b b b*)* a* b*

Question 2

Proof by induction on the length of the word.

Proof by induction on the length of the word.

Barl (a)

lot
$$w = ab$$
 at $a,b \in \Sigma$

$$\begin{cases} *(a,ab) = (*(a2,ab)) \\ f(f(a,a),b) = (f(a2,ab)) \\ f(a,ab) = f(a2,ab) \\ f(aa) = f(aa) \\ f(aa)$$

I.A: Assume $\int_{-\infty}^{\infty} works$ for words of length=K (We'll pone it for l=K+1)

Let w_k be a word of length KLet $w_{k+1} = aw_k$ 2.t $a \in \Sigma$ By I.A. $\int_{-\infty}^{\infty} (a_1, w_k) = \int_{-\infty}^{\infty} (a_2, w_k) kolds$ true.

I. H $\delta^*(z_1, aw_k) = \delta^*(p_2, aw_k)$ $\rightarrow Ayyly dy of \delta^*$ $\delta^*(d(z_1, a), w_k) = \delta^*(\delta(z_2, a), w_k)$ By I) $\delta(z_1, a) = \delta(z_2, a) = q$ $\delta^*(q, w_k) = \delta^*(q, w_k)$ trivially true in a DFA \square

Question 3

I)

- 1) Demon picks p.
- 2) I choose $a^p b^p a^{2p}$.
- 3) Demon has to pick x, y, z but $|xy| \le p$ so this part must consist only of a's.
- 4) I pick l = 2 s.t. w = |xyyz| = (p + l) + 3p = 4p + lThere are 3p + l a's in w. There are p b's in w.

Se that $a^{p+l}b^pa^{2p}$ is not in L. Therefore, L is not regular.

II)

- 1) Demon picks p.
- 2) I pick $a^p b a^p$.
- 3) Demon picks y consisting only of a's. $y = a^{l}$ s.t. |xy| <= p; say |y| = l > 0
- 4) I pick i = 0 s.t. $|xy^0z| = |xz| = a^{p-l}ba^p$ which is clearly not in L. Therefore, L is not regular.

Question 4

I)

- 1) Demon picks p.
- 2) I pick a^{p*p} .
- 3) Demon picks y consisting only of a's. $y = a^{l}$ s.t. |xy| <= p; say |y| = l > 0
- 4) I pick i = 2 s.t. $|xyyz| = a^{p-l} a^{2l} a^{p*p-p} = a^{p*p+l}$ $(p+1)^2 = p^2 + 2p + 1 > p^2 + l$ because l < pSee that $p^2 + 2p + 1 > p^2 + p$ Thus $p^2 + l$ is not a square number.

Therefore $a^{p^*p + l}$ is not in L and L is not regular.

II)

- 1) Demon picks p.
- 2) I choose $a^{2p} b^p$.
- 3) Demon must pick x, y, z but |xy| <= p so this part must consist only of a's |y| > 0; let |y| = l > 0
- 4) I pick i = 0 s.t. $|xy^0z| = |xz| = 2p l + p = 3p l$ Thus $a^{2p-l}b^p$ is not in L. Therefore, L is not regular.

Question 5

Step 0: Note that s3 is unreachable thus we will not take it into account in the table.

Step 1: Define an SxS array. s0 is an accept state, fill the rest of the row with 0s.

s4				Х
s2			Х	
s1		Х		
s0	Х	0	0	0
	s0	s1	s2	s4

Step 2: For every pair (p,q) in the array s.t. $p \in F$ and $q \not\in F$ put a 0 in the corresponding entry. Repeat until a zero is filled or all the letters in Σ are tried.

s4				X
s2			X	0
s1		Х	0	
s0	Х	0	0	0
	s0	s1	s2	s4

$$\left(\delta(a_{1}, 1), \delta(a_{2}, 1) \right) = (a_{2}, a_{0})$$

$$\left(\delta(a_{1}, 1), \delta(a_{1}, 1) \right) = (a_{2}, a_{0})$$

$$\left(\delta(a_{1}, 1), \delta(a_{1}, 1) \right) = (a_{2}, a_{2})$$

$$\left(\delta(a_{1}, 0), \delta(a_{1}, 0) \right) = (a_{1}, a_{1})$$

$$\left(\delta(a_{2}, 1), \delta(a_{1}, 0) \right) = (a_{2}, a_{2})$$

Step 3: Fill the remaining entries with 1s.

s4				Х
s2			Х	0
s1		Х	0	1
s0	Х	0	0	0
	s0	s1	s2	s4

s1 is equivalent to s4.

Minimum automaton:

