

1 Distribuições condicionais completas e implementação Gibbs

Considere $\mathbf{p} = [p_1, ..., p_{14}]^\top$, $\mathbf{x} = [n_1, ..., n_{14}, m_1, ..., m_{14}]^\top$ e $\mathbb{B} = \{0, 1, 2, ..., N\}$, temos que a verosimilhança e as distribuições a priori são dadas por

$$\mathcal{L}(N, \mathbf{p}|\mathbf{x}) \propto \frac{N!}{(N-r)!} \prod_{i=1}^{14} p_i^{n_i} (1-p_i)^{N-n_i} \mathbb{I}(N \in \mathbb{N}) \mathbb{I}(p_i \in [0, 1]) \mathbb{I}(r \in \mathbb{B})$$
(1)

$$\pi(N) = \frac{e^{-\lambda} \lambda^N}{N!} \mathbb{I}(N \in \mathbb{N}) \tag{2}$$

$$\pi(p_i) = \mathbb{I}(p_i \in [0, 1]), i = 1, 2, ..., 14. \tag{3}$$

A seguir vamos derivar a distribuição condicional completa de $N|\mathbf{p}, \mathbf{x}$. Note que $\mathbb{I}(N \in \mathbb{N})\mathbb{I}(p_i \in [0, 1])\mathbb{I}(r \in \mathbb{B}) = \mathbb{I}(N \in r, r+1, ...)\mathbb{I}(p_i \in [0, 1])$, pois $\mathbb{I}(r \in \mathbb{B}) = \mathbb{I}(N \in r, r+1, ...)$.

$$\begin{split} \pi(N|\mathbf{p},\mathbf{x}) &\propto \mathcal{L}(N,\mathbf{p}|\mathbf{x})\pi(N) \\ &= \frac{N!}{(N-r)!} \prod_{i=1}^{14} p_i^{n_i} (1-p_i)^{N-n_i} \mathbb{I}(N \in \{r,r+1,\ldots\}) \mathbb{I}(p_i \in [0,1]) \frac{e^{-\lambda} \lambda^N}{N!} \mathbb{I}(N \in \mathbb{N}) \\ &= \frac{e^{-\lambda} \lambda^N}{(N-r)!} \prod_{i=1}^{14} p_i^{n_i} (1-p_i)^N (1-p_i)^{-n_i} \mathbb{I}(N \in \{r,r+1,\ldots\}) \mathbb{I}(p_i \in [0,1]) \\ &= \frac{e^{-\lambda} \lambda^N}{(N-r)!} \prod_{i=1}^{14} [p_i^{n_i}] \prod_{i=1}^{14} \left[(1-p_i)^N \right] \prod_{i=1}^{14} \left[(1-p_i)^{-n_i} \right] \mathbb{I}(N \in \{r,r+1,\ldots\}) \mathbb{I}(p_i \in [0,1]) \\ &\propto \frac{e^{-\lambda} \lambda^N}{(N-r)!} \left[\prod_{i=1}^{14} (1-p_i) \right]^N \mathbb{I}(N \in \{r,r+1,\ldots\}) \mathbb{I}(p_i \in [0,1]) \\ &= \frac{e^{-\lambda} \left[\lambda \prod_{i=1}^{14} (1-p_i) \right]^N}{(N-r)!} \mathbb{I}(N \in \{r,r+1,\ldots\}) \mathbb{I}(p_i \in [0,1]) \frac{e^{-\lambda \prod_{i=1}^{14} (1-p_i)}}{e^{-\lambda \prod_{i=1}^{14} (1-p_i)}} \\ &\propto \frac{\exp\{-\lambda \prod_{i=1}^{14} (1-p_i)\} \left[\lambda \prod_{i=1}^{14} (1-p_i) \right]^N}{(N-r)!} \mathbb{I}(N \in \{r,r+1,\ldots\}) \mathbb{I}(p_i \in [0,1]) \\ &\propto \frac{\exp\{-\lambda \prod_{i=1}^{14} (1-p_i)\} \left[\lambda \prod_{i=1}^{14} (1-p_i) \right]^{N-r}}{(N-r)!} \mathbb{I}(N \in \{r,r+1,\ldots\}) \mathbb{I}(p_i \in [0,1]) \\ &= \frac{\exp\{-\lambda \prod_{i=1}^{14} (1-p_i)\} \left[\lambda \prod_{i=1}^{14} (1-p_i) \right]^{N-r}}{(N-r)!} \mathbb{I}(N-r \in \mathbb{N}) \mathbb{I}(p_i \in [0,1]) \end{split}$$

Portanto

$$\pi(N|\mathbf{p}, \mathbf{x}) \propto \frac{\exp\{-\lambda \prod_{i=1}^{14} (1 - p_i)\} \left[\lambda \prod_{i=1}^{14} (1 - p_i)\right]^{N-r}}{(N - r)!} \mathbb{I}(N - r \in \mathbb{N}) \mathbb{I}(p_i \in [0, 1])$$
(4)

Temos que $(N-r)|(\mathbf{p},\mathbf{x}) \sim Poisson(\lambda \prod_{i=1}^{14} (1-p_i))$, identificado pelo kernel apresentado em 4.

Agora vamos derivar a distribuição condicional completa de $p_i|N, \mathbf{x}, i = 1, 2, ..., 14$. Considere $\mathbf{p_{(i)}} = (p_1, p_2, ..., p_{i-1}, p_{i+1}, ..., p_{14}, \text{ isto \'e, o vetor de parâmetros } \mathbf{p} \text{ sem o i-\'esimo elemento.}$

$$\pi(p_{i}|N, \mathbf{p_{(i)}}, \mathbf{x}) \propto \mathcal{L}(N, \mathbf{p}|\mathbf{x})\pi(\mathbf{p_{(i)}})$$

$$= \frac{N!}{(N-r)!} \prod_{l=1}^{14} p_{i}^{n_{l}} (1-p_{l})^{N-n_{l}} \mathbb{I}(N \in \{r, r+1, ...\}) \mathbb{I}(p_{l} \in [0, 1]) \left[\prod_{j \neq i} \mathbb{I}(p_{j} \in [0, 1]) \right]$$

$$= \frac{N!}{(N-r)!} \prod_{l=1}^{14} p_{l}^{n_{l}} (1-p_{l})^{N-n_{l}} \mathbb{I}(N \in \{r, r+1, ...\}) \mathbb{I}(p_{l} \in [0, 1])$$

$$\propto p_{i}^{n_{i}} (1-p_{i})^{N-n_{i}} \mathbb{I}(p_{i} \in [0, 1])$$

$$= p_{i}^{(n_{i}-1)+1} (1-p_{i})^{(N-n_{i}-1)+1} \mathbb{I}(p_{i} \in [0, 1])$$

Podemos então identificar que $p_i|N, \mathbf{x} \sim \text{Beta}(n_i+1, N-n_i+1), i=1, 2, ..., 14$ pelo kernel que apresentado acima. Chegamos a conclusão que

$$(N-r)|(\mathbf{p}, \mathbf{x}) \sim Poisson(\lambda \prod_{i=1}^{14} (1-p_i))$$
(5)

$$p_i|N, \mathbf{x} \sim Beta(n_i + 1, N - n_i + 1), i = 1, 2, ..., 14$$
 (6)

Para avaliar a convergência para a distribuição estacionária, vamos gerar as 4 cadeias com diferentes pontos iniciais e avaliar visualmente se elas se misturam.

Figura 1:

Figura 2:

Figura 3:

Podemos ver que as cadeias para todos os parâmetros se misturaram, trazendo indícios da convergência para a distribuição estacionária. Além disso vemos pelo gráfico da autocorrelação da cadeia do parâmetro N que não precisamos realizar o processo de decorrelation para garantir uma amostra pseudo-independente. Os gráficos de autocorrelação dos parâmetros $p_i, i=1,2,...,14$. apresentaram um comportamento similar.

Parâmetro	Média	Mediana	intervalo de credibilidade 95%
N	12.140	12.000	[12;13]
p1	0.211	0.196	[0.051; 0.452]
p2	0.352	0.346	[0.136; 0.608]
p3	0.212	0.197	[0.052; 0.446]
p4	0.355	0.348	[0.139; 0.604]
p5	0.356	0.349	[0.139; 0.613]
p6	0.213	0.199	[0.05; 0.456]
p7	0.284	0.277	[0.088; 0.531]
p8	0.356	0.347	[0.137; 0.614]
p9	0.214	0.200	[0.051; 0.452]
p10	0.285	0.276	[0.091; 0.531]
p11	0.426	0.419	[0.187; 0.684]
p12	0.778	0.791	[0.538; 0.946]
p13	0.213	0.199	[0.051; 0.458]
p14	0.427	0.425	[0.188; 0.678]

2 Implementação Hamiltonian Monte Carlo

Como bem sabemos, o HMC sampler não comporta suportes discretos pela fato de que a função que descreve a energia cinética há de ser derivável em relação a "trajetória" da cadeia. Por esse fato, optei por procurar uma solução na própria documentação do stan e acabei encontrando a opção de marginalização do parâmetro discreto.

Para realizar a implementação no R, procurei artigos na web que tratassem desse assunto e encontrei uma extensão do HMC chamado de *Discontinuous Hamiltonian* Monte Carlo (NISHI-MURA; DUNSON; LU, 2020). Nele é discutido também o porquê o HMC falha quando temos interesse em densidades alvo descontínuas, resumidamente a etapa da solução das equações diferenciais via *leapfroq* apresenta uma instabilidade levando ao erro.

Outra ideia que tive foi utilizar a aproximação da distribuição poisson pela Normal, da seguinte maneira $Poisson(\lambda) \approx Normal(\mu = \lambda, \sigma^2 = \lambda)$. Como essa última foi a solução mais simples que achei, vou implementar primeiro e se tiver tempo hábil tentarei implementar as outras.

2.1 HMC via aproximação Poisson-Normal

No gráfico a seguir podemos ver que a aproximação é realmente razoável.

Figura 4: Aproximação da distribuição $Poisson(\lambda=50)$ pela distribuição $Normal(\mu=50,\sigma^2=50)$.

A partir da verosimilhança apresentada em 1 e as distribuições a priori $\pi(N) \sim Normal(50, 50)$ e $\pi(p_i) \sim U(0, 1), i = 1, 2, ..., 14$. Obtemos a seguinte função proporcional a distribuição a posteriori.

$$\pi(N, \mathbf{p} | \mathbf{x}) \propto \left[\frac{N!}{(N-r)!} \prod_{i=1}^{14} p_i^{n_i} (1 - p_i)^{N-n_i} \mathbb{I}(p_i \in [0, 1]) \mathbb{I}(r \in [0, N]) \right] \times \pi(N) \times \pi(\mathbf{p})$$

Precisamos então das quantidade referentes a "força cinética" $K(\rho)$ e "força potencial" $U(\theta)$. Definimos, para $p_i \in [0, 1], i = 1, 2, ..., 14$, sendo $\theta = [N, p_1, ..., p_1 4]$.

$$\begin{split} &U(\boldsymbol{\theta}) = -\log(\pi(N, \mathbf{p}|\mathbf{x})) \\ &- \left[\log(\Gamma(N+1)) - \log(\Gamma(N-r+1)) + \sum_{i=1}^{14} n_i \log(p_i) + (N-n_i) \log(1-p_i) \right] + \\ &- \left[\frac{-1}{2} \left(\frac{N-50}{\sqrt{50}} \right)^2 \right] \\ &K(\boldsymbol{\rho}) = -\log(\pi(\boldsymbol{\rho}|N, \mathbf{p})) = \frac{-1}{2} \boldsymbol{\rho}^\top M^{-1} \boldsymbol{\rho} \end{split}$$

Agora precisamos encontrar o vetor gradiente do função $U(\theta)$

$$\nabla_{\boldsymbol{\theta}} U(\boldsymbol{\theta}) = \left(\frac{\partial}{\partial N} U(\boldsymbol{\theta}); \frac{\partial}{\partial p_1} U(\boldsymbol{\theta}); \frac{\partial}{\partial p_2} U(\boldsymbol{\theta}); ...; \frac{\partial}{\partial p_{14}} U(\boldsymbol{\theta}) \right)$$

Em que

$$\frac{\partial}{\partial p_i} U(\boldsymbol{\theta}) = \frac{Np_i - n_i}{p_i (1 - p_i)}$$

$$\frac{\partial}{\partial N} U(\boldsymbol{\theta}) = -\left[\frac{\psi(N+1)}{\Gamma(N+1)} - \frac{\psi(N-r+1)}{\Gamma(N-r+1)} + \sum_{i=1}^{14} \log(1 - p_i) - \frac{1}{50}(N - 50) \right]$$

A seguir são apresentados os resultados obtidos.

Parâmetros	Média	Mediana	Intervalo de credibilidade 95%
N	13.820	13.794	[12.84;15.242]
p_1	0.216	0.200	[0.048; 0.484]
p_2	0.323	0.318	[0.118; 0.581]
p_3	0.200	0.187	[0.045; 0.411]
p_4	0.327	0.307	[0.124; 0.589]
p_5	0.307	0.297	[0.119; 0.569]
p_6	0.188	0.173	[0.044; 0.414]
p_7	0.243	0.233	[0.072; 0.468]
p_8	0.315	0.301	[0.109; 0.576]
p_9	0.189	0.171	[0.041; 0.424]
p_{10}	0.275	0.262	[0.083; 0.507]
p_{11}	0.362	0.353	[0.149; 0.612]
p_{12}	0.679	0.685	[0.425; 0.893]
p_{13}	0.190	0.177	[0.046; 0.399]
p_{14}	0.376	0.366	[0.168;0.658]

3 Implementação Hamiltonian Monte Carlo no STAN

Consegui fazer a implementação do modelo de captura-marcação-recaptura no STAN com as prioris de interesse usando a aproximação da poisson-Normal sugerida anteriormente. A seguir são apresentados os resultados, notamos que foram coerente com os métodos implementados no R.

Parâmetro	Média	Mediana	Intervalo de Credibilidade 95%
N	12.361	12.255	[12.009;13.28]
p_1	0.210	0.196	[0.05; 0.446]
p_2	0.349	0.340	[0.136; 0.6]
p_3	0.209	0.196	[0.048; 0.444]
p_4	0.349	0.342	[0.136; 0.599]
p_5	0.348	0.341	[0.134; 0.602]
p_6	0.208	0.193	[0.049; 0.444]
p_7	0.279	0.270	[0.09; 0.526]
p_8	0.347	0.341	[0.134; 0.597]
p_9	0.208	0.193	[0.049; 0.444]
p_{10}	0.280	0.269	[0.09; 0.524]
p_{11}	0.417	0.413	[0.193; 0.664]
p_{12}	0.767	0.779	[0.522; 0.944]
p_{13}	0.209	0.196	[0.05; 0.441]
p_{14}	0.417	0.410	[0.187; 0.67]

Figura 5: Cadeias geradas pelo código implementado em STAN.

Comentários 8

4 Comentários

Foi muito interessante realizar esse trabalho, a etapa de gibbs foi relativamente tranquila de se realizar, grande parte do foco ficou em achar uma solução na implementação. troquei ideias com a Aurora e Yohana sobre possíveis soluções e acabei chegando na solução de usar a aproximação Poisson-Normal. Após encontrar essa possível solução optei por implementar primeiramente no STAN pois achei que seria mais fácil e de fato foi, durante a implementação no R tive alguns problemas principalmente com o espaço paramétrico de **p**.

9 Referências

Referências

NISHIMURA, A.; DUNSON, D. B.; LU, J. Discontinuous hamiltonian monte carlo for discrete parameters and discontinuous likelihoods. *Biometrika*, Oxford University Press, v. 107, n. 2, p. 365–380, 2020.

STAN Modeling Language Users Guide and Reference Manual, VERSION. https://mcstan.org. 2022.

Apêndice A

A.1 Implementação Gibbs Sampler

```
library (readr)
1
   library (tidyverse)
   dados <- read_table ("./Atividade1/resolucao/dados.txt",
                        col_names = FALSE)
   colnames(dados) <- c('onca', paste0('armadilha', 1:14))</pre>
  nj ← dados%>%
     pivot_longer(-onca, values_to = "capturada",
                   names_to = "armadilha", names_prefix = 'armadilha'
                   names_transform = list(armadilha = as.numeric))%>%
9
10
     group_by(armadilha)%>%
11
     summarise (nj=sum (capturada))
12 mj <- dados%>%
13
     pivot_longer(-onca, values_to = "capturada", names_to = "armadilha",
                   names_prefix = 'armadilha',
14
                   names_transform = list(armadilha = as.numeric))%>%
15
16
     group_by(onca)%>%
     mutate(mj\!=\!case\_when(cumsum(capturada)*capturada>1~~1~,~TRUE~~0))\%\%
17
18
     group_by(armadilha)%%
     summarise (mj=sum (mj))
19
20 Ngibbs=10e4
21 iter0 < c(rpois(1,50), runif(14))
22 chain <- matrix (0, ncol = Ngibbs, nrow=length(iter0))
23 chain[,1] <- iter0
24 rownames(chain) <- c("N", paste0("p",1:14))
25 lambda=50
26 r <- sum(nj$nj)-sum(mj$mj)
27
  nj <- nj $ nj
28 for (i in 2: Ngibbs) {
29
     lambda_pos \leftarrow lambda * prod(1-chain[-1,i-1])
30
     N_i - plus_1 \leftarrow pois(n=1, lambda = lambda_pos) + r
     chain [1, i] <- N_i_plus_1
31
32
     for (j in 1: length(nj)) {
33
       aux \leftarrow rbeta(n = 1, shape1 = nj[j]+1, shape2 = N_i-plus_1-nj[j]+1)
34
       chain [j+1,i] <- aux
35
36 }
```

Referências 10

A.1 Implementação HMC no R

```
library (mvtnorm)
 2 U <- function(theta, r=12, ni){
 3
      N <- theta[1]
      \begin{array}{l} pi <- \ theta \ [2:length (theta)] \\ Ux <- \ log \ (gamma (N+1)) - log \ (gamma (N-r+1)) \ + \ sum \ (ni*log \ (pi) + (N-ni)*log \ (1-pi)) \ - \ .01*(N-50)^2 \end{array}
 5
 6
      return(-Ux)
 7
 8 K <- function (M, rho) {
 9
      .5 * t (rho)%*%%%*%rho
10
   dUdt <- function (theta, r=12, ni) {
11
      N <- theta[1]
12
13
      pi <- theta[2:length(theta)]
      14
15
         -50)
16
      grad <- c(dUdN,dUdp)
17
      return(grad)
18 }
19
20 iter = 2000
21 sample \leftarrow matrix (0, nrow = iter, ncol=15)
22 colnames(sample) <- c("N", paste0("p",1:14))
23 sample [1,] \leftarrow c(15, runif(14))
24 M <- cor (gbs%>%select (N,p1:p14))
25 L=50; delta=.001
   for (i in 2:iter) {
26
27
      rho0 \leftarrow theta0 \leftarrow matrix(0, nrow = L, ncol = 15)
28
      {\rm rho0}\left[\,1\;,\right]\;\leftarrow\;{\rm rmvnorm}\left(\,1\;,\;\;{\rm mean}\;=\;{\rm rep}\left(\,0\;,15\,\right)\;,\;\;{\rm sigma}\;=\,{\rm M}\right)
      theta0[1,] \leftarrow sample[i-1,]
29
30
      #leapfrog
31
      for (j in 2:L) {
          \begin{array}{lll} \text{rhotemp} & \leftarrow & \text{rho0}\left[j-1,\right] - \left(\left. \text{delta/2}\right) * \text{dUdt}\left(\left. \text{theta} = \right. \text{theta0}\left[j-1,\right], \text{ni=nj}\right) \\ \text{theta0}\left[j,\right] & \leftarrow & \text{theta0}\left[j-1,\right] + \left. \text{delta*rhotemp} \right. \end{array} 
32
33
34
         rho0[j,] \leftarrow rhotemp - (delta/2)*dUdt(theta = theta0[j,], ni=nj)
35
      36
          K(M, rho0 [1,])))
37
       if (runif(1)<alpha){
38
         sample[i,] \leftarrow theta0[L,]
39
       } else {
40
         sample[i,] \leftarrow sample[i-1,]
41
42
```

11 Referências

A.1 Implementação STAN

```
1 data{
 2
3
       int j;
        vector[j] ni;
 4
        vector[j]mi;
 5
 6 transformed data{
        real r;
        r \; = \; \operatorname{sum} \left( \; \operatorname{n} \, i \; \right) \; - \; \operatorname{sum} \left( \; \operatorname{m} \, i \; \right) \; ;
 8
 9 }
10 parameters {
       vector < lower = 0.00001, upper = .9999 > [j] p;
11
12
        real < lower = r > N;
13 }
14
15 transformed parameters {
16
       real Nt;
17
       Nt = N-r;
18 }
19
20 model {
      target+= normal_lpdf(Nt|50, sqrt(50));
       \begin{array}{l} target+=uniform\_lpdf(p|0,1)\,;\\ target\ +=\ log\left(tgamma(N+1)\right)\ -\ log\left(tgamma(N-\ r\ +\ 1)\right)\ +\ sum(ni\ .*\ log\left(p\right)\ +\ (N-ni)\,.*log\left(1-p\right)\right); \end{array}
22
24 }
```