Probability and Statistics Review Econometrics discussion section 1

John Green

Spring 2025

Housekeeping

- Introductions: name, major, thoughts about econometrics
- For now, office hour in Brody Cafe, Tuesdays, 3-4PM
 - May change to Wyman Park 601A
 - Timing poll: bit.ly/metricsOH
- What will we do in sections?
 - Cover important topics
 - Practice problems
 - Stata practice

John Green

- Slides and resources in GitHub repo: github.com/JohnRGreen/EconometricsSpring25
- Sign in for attendance each week

Recap

What have we covered so far?

- Review of probability and statistics (Stock & Watson chapters 2 and 3)
- Random variables and their first 2 moments
- Marginal, joint and conditional distributions
- Independence
- Covariance and correlation
- Law of Iterated Expectations

Recap

Still to come (probably):

- Normal, Fisher (F), χ^2 distributions
- LLN and CLT
- Estimators and their properties: consistency, unbiasedness, normal approximation
- One variable t-test
- Two variable t-test

Random variables

- A random variable is a function from a space of possible outcomes to (usually) some subset of real numbers.
- May be discrete or continuous
- Roll two dice and add up the numbers (discrete)
 - Sample space is all the possible rolls of the two dice (how many?)
 - Outcome space is all the possible sums of those rolls (how many?)
 - The sum is a random variable
- Height of a person (continuous, but bounded)
 - Sample space is all people; might think about characterizing them by some covariates such as weight, age, etc.
 - Outcome space is all possible heights (what would this be?)
- Thinking about probability is different for discrete and continuous cases

	FIRST DICE						
		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
SECOND	3	4	5	6	7	8	9
DICE	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

Mean

- The first moment of a random variable is its mean, aka average or expected value
- What is the mean value of the result from rolling one die?
- What is the mean value of the sum of rolling both dice?

Mean

- The first moment of a random variable is its mean, aka average, aka expected value
- What is the mean value of the result from rolling one die?

•
$$E[X] = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4 + \frac{1}{6} \times 5 + \frac{1}{6} \times 6 = 3.5$$

- What is the mean value of the sum of rolling both dice?
 - $E[X] = \frac{1}{36} \times 2 + \frac{2}{36} \times 3 + \frac{3}{36} \times 4 + \frac{4}{36} \times 5 + \frac{5}{36} \times 6 + \frac{6}{36} \times 7 + \frac{5}{36} \times 8 + \frac{4}{36} \times 9 + \frac{3}{36} \times 10 + \frac{2}{36} \times 11 + \frac{1}{36} \times 12 = 7$
 - (Could also write out using $\frac{1}{36}$ weight everywhere but easier to consolidate terms)

Variance

- The second moment of a random variable is its variance
 - Think of this as the mean distance from the mean: it measures the spread of our data
 - $Var(X) = E[(X E[X])^2]$
 - Why do we need to square the spread?
- What is the variance of rolling one die?
- What is the variance of the sum of rolling both dice?

Variance

- The second moment of a random variable is its variance
 - Think of this as the mean distance from the mean: it measures the spread of our data
 - $Var(X) = E[(X E[X])^2]$
 - Why do we need to square the spread?
- What is the variance of rolling one die?

•
$$Var(X) = \frac{1}{6} \times (1 - 3.5)^2 + \frac{1}{6} \times (2 - 3.5)^2 + \dots + \frac{1}{6} \times (6 - 3.5)^2 = \frac{35}{12} \approx 2.92$$

- Similar idea for the sum of 2 dice.
- Often we will work with the *standard deviation* which is the square of the variance since the units are more interpretable.

Higher moments

- Third moment is skewness and tells us how symmetric our distribution is
 - What is the skewness of our example?
- Fourth moment is the kurtosis which measures the mass of the tails
 - Gives us an idea of the likelihood of large values

John Green

Covariance

- The covariance of two random variables tells us the strength of their *linear* (careful!) relationship
- If two random variables are independent, covariance is 0 (though the reverse is not true)
 - What is the covariance in our example?
- Often we will look at the *correlation* instead of the covariance, $\frac{cov(X,Y)}{(var(X)var(Y))^{1/2}}$
 - Unlike covariance, correlation is scaled between -1 and 1 and so is easily interpretable

Rules on joint distributions

- If two variables are independent, P(X = x, Y = y) = P(X = x) * P(Y = y)
- Conditional probability: $P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$
 - What happens if the events are independent?
- Law of iterated expectations says the mean of Y can be written as a weighted average of the mean of Y|X: E[Y] = E[E[Y|X=x]]
 - $E[Y] = \sum_{x} E[Y|X = x]P(X = x)$ in discrete case
 - $E[Y] = \int_X E[Y|X = x] f_X(x) dx$ for continuous case
- Other topics in textbook: Bayes' law, law of total probability, etc.

Second example

- New example:
 - Roll the first dice
 - If first roll > 4 then we roll the second die and observe its value
 - ullet If first roll ≤ 3 then the second value is simply set to 1
- What is the joint probability distribution?
- What is the covariance of the 2 rolls?
- What is the correlation?
- What is the marginal distribution of the two r.v.? What is the first moment of each?

FIRST DICE								
			2	3	4	5	6	Marginal:
	1	0.17	0.17	0.17	0.03	0.03	0.03	0.58
	2	0	0	0	0.03	0.03	0.03	0.08
SECOND	3	0	0	0	0.03	0.03	0.03	0.08
DICE	4	0	0	0	0.03	0.03	0.03	0.08
	5	0	0	0	0.03	0.03	0.03	0.08
	6	0	0	0	0.03	0.03	0.03	0.08
Marginal:		0.17	0.17	0.17	0.17	0.17	0.17	

John Green

Second example

- New example:
 - Roll the first dice
 - If first roll > 4 then we roll the second die and observe its value
 - If first roll \leq 3 then the second value is simply set to 1
- What is the marginal distribution of the two r.v.? What are the first two moments of each? $E[X_1] = 3.5$, $var(X_1) = 2.92$, $E[X_2] = 2.25$, $var(X_1) = 3.02$
- What is the covariance of the 2 rolls? $cov(X_1, X_2) = 1.875$
- What is the correlation? $corr(X_1, X_2) = \rho_{X_1, X_2} = 0.63$

Normal distribution

- Two parameters: mean μ and variance σ^2
 - μ tells us about the location of the distribution (where is it centered?)
 - σ tells us about the shape of the distribution (what is the spread? what do the tails look like?)
- We can standardize a normal random variable X:
 - $Z = \frac{X-\mu}{\sigma}$ so $Z \sim N(0,1)$
 - Careful to divide by standard deviation and not by variance!
- This will be helpful in hypothesis testing because we can consider how unlikely a given value z is to be drawn from a N(0,1) distribution

Estimation

- So far we have been in the world of probability theory, dealing with random variables and their distributions
- Statistics is all about using actual data to make inferences about the world, and so we will often try to find estimators for probabilistic objects
- For example, we will often be interested in estimating the mean (average, first moment) of a distribution

Estimation

- Example: wait time for a coffee at Brody Cafe
- A natural estimator for the population mean is the sample mean:
 - Take a survey of people as they walk out of Brody and ask how long they waited
 - Average the responses
- \bullet Sample mean \bar{Y} is a random variable since we taking a random sample and thus \bar{Y} has a sampling distribution
 - What can we say about it?

Unbiased

• First, \bar{Y} is an **unbiased** estimator of μ_Y :

$$E[\bar{Y}] = \mu_{Y}$$

• In expectation, we get the thing we want!

Law of Large Numbers

- ullet Second, $ar{Y}$ is a **consistent** estimator of μ_Y
- ullet Mathematically, this means that for any number ϵ we choose, we know that

$$\lim_{n\to\inf}P(|\bar{Y}-\mu_Y|>\epsilon)=0$$

- ullet In plain English: the larger our sample size, the better our guess for μ_Y
- As our sample gets infinitely large, we get infinitesimally close
- This follows from the Law of Large Numbers

Efficiency

- Lastly, we can think about the *efficiency* of the estimator: what is its variance?
- In this case, $var(\bar{Y}) = \frac{\sigma_Y^2}{r}$
- In other words, the variance decreases as the sample gets larger, at a rate of $\frac{1}{2}$
- We can use this to compare the efficiency of two estimators, for example if we had another estimator with variance $\frac{\sigma_Y^2}{\sqrt{n}}$ we can say that the sample mean is more efficient

Now let's look at the most remarkable result about the sample mean.

Central Limit Theorem

• The central limit theorem tells us that \bar{Y} is asymptotically normal:

$$\sqrt{n}(\bar{Y} - \mu_Y) \xrightarrow{d} N(0, \sigma_Y^2)$$

- In other words, as $n \to \infty$, \bar{Y} follows a normal distribution, $\bar{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{2})$
- This means we can use the normal distribution to make inferences about sample mean
- To make it easy, we can standardize the sample mean: $Z = \frac{\bar{Y} \mu_Y}{\sigma_Y / \sqrt{n}} \sim N(0, 1)$
- We will use the sample variance as an estimator for the population variance, just like we do for mean (but we will need to correct a small bias)

Hypothesis testing

- We can use the normal approximation to perform a hypothesis test
 - Set a null hypothesis, eg $\mu_Y = \mu_{Y,0}$
 - Usually we make the null the thing we "want" to disprove; if we reject the null, then we have evidence for our alternative hypothesis, eg $\mu_Y \neq \mu_{Y,0}$
- Intuition: assuming the true mean is some value $\mu_{Y,0}$, how likely is it that we would observe the sample mean \bar{Y} ?
 - If it is "very" unlikely, we will reject the null
 - If it is "reasonably likely" then we fail to reject the null
- Alternative perspective: what would I have to see to convince myself that my hypothesis is wrong?
- Usually, we standardize everything and create a t-statistic
 - We test t under the null that $t \sim N(0,1)$ rather than work directly with the sample mean

Hypothesis testing (cont.)

- Set a given significance α and find the *critical value(s)*
 - ullet ie the value(s) such that the sum in the tails (or tail) of the standard normal distribution is lpha
- ullet A common value is lpha=0.05, with critical values $c_1=-1.96$ and $c_2=1.96$)
- In this test, the probability of getting a t less than -1.96 or greater than 1.96 is 0.05

2-tailed test with $\alpha = 0.05$

Hypothesis testing (cont.)

- Set a given significance α and find the *critical value(s)*
 - ullet ie the value(s) such that the sum in the tails (or tail) of the standard normal distribution is lpha
- A common value is $\alpha = 0.05$, with critical values $c_1 = -1.96$ and $c_2 = 1.96$)
- In this test, the probability of getting a t less than -1.96 or greater than 1.96 is 0.05
- ullet Our decision procedure is that we reject (fail to accept) the null hypothesis if |t|>1.96
 - Intuition: under the null, it is very unlikely we observe a t in the tails. Thus we reject the null if we do so.
- ullet Alternatively, if |t| < 1.96 then we fail to reject H_0

John Green

Standard Normal Distribution

Spring 2025

Calculating p-value

• Alternatively we might focus on the p-value: probability of a test statistic at least as unlikely as the one you observe (under the null)

- So, the **p-value** tells us how unlikely the null hypothesis is:
 - $P_{H_0}(|\frac{\bar{Y}-\mu_{Y,0}}{\sigma_{Y/2}/n}| \geq |\frac{\bar{Y}_{data}-\mu_{Y,0}}{\sigma_{Y/2}/n}|)$
 - RHS is just a number! LHS is RV with known distribution under null
 - CLT tells us this **t-statistic** is N(0.1) so probability in tails is easy to look up
- If observed t-statistic is very large or very small, then p-value is very small and we reject the null
 - If the null had been true, it is very unlikely that we would have observed the t-statistic

John Green

Confidence interval

- Comparing p-value to α is equivalent to comparing t to c
- In either case, more rigorous to pre-set our rejection region
- We can also construct a confidence interval for μ_X based on our data: the set of all possible μ_X values which would not be rejected by a two-sided t-test with size α

$$\bar{X} \pm c(\alpha) \frac{\sigma_X}{\sqrt{n}} = \left(-c(\alpha) \frac{\sigma_X}{\sqrt{n}}, c(\alpha) \frac{\sigma_X}{\sqrt{n}} \right)$$

- Under the null. 95% of the time we draw a value in this interval
- What would this look like for a one-sided test?

Some terminology

- Type-1 error: reject a true null hypothesis
 - Size is probability of a type-1 error
- Type-2 error: fail to reject a false hypothesis
 - Power is probability of a type-2 error
- Which of these two mistakes is worse?
- What is the relationship between the size and the power?

Significance Level (α) and Power (1- β)

	H_0 is True	H_0 is False
Test Rejects H_0	α	1-β
Test Doesn't Reject H_0	1-α	β

Hypothesis about difference in means

• What if we want to perform a hypothesis on the difference in means between two random variables? For example:

$$H_0: \mu_1 = \mu_2$$

- Simple: combine them to one!
 - $\mu^* = \mu_1 = \mu_2$
 - This is just a difference of two normal random variables so we can use the normal approximation, t-statistic is:

$$t = rac{ar{X}_1 - ar{X}_2}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}}$$

• What if we want to test hypothesis that the difference is 2?