TP - Shared-memory programming: OpenMP (III)

ING2-GSI-MI – Architecture et programmation parallèle Academic year 2023–2024

Synchronisation

(1)	Write a program that computes the degree of each vertex in a graph. Write first a sequen-
	tial version using the code 01-graphdegree_skel.c provided in the <i>skeletons.zip</i> file.
	Then, add the parallelism. Measure the execution time for 1, 2 and 6 threads. Use the
	graphs from the following files:
	• https://algs4.cs.princeton.edu/41graph/tinyG.txttotestthatyourcode
	works.

• https://algs4.cs.princeton.edu/41graph/largeG.txt to measure the execution time.

A description of the format of those files can be found on https://algs4.cs.princeton.edu/41graph/. Does the time improve as you increase the number of processors? Why? What could you do to improve the performance?

Tasks

2	Using tasks, write a parallel program in OpenMP to calculate, in a recursive way, sum of the elements of an array of size N . Use 2 threads. For a size of N large enougenerate the execution time with the sequential version.	
3	Write a parallel version of the Mergesort (<i>tri fusion</i>) algorithm, using either tasks or rallel sections.	pa- □