Burning-Ship Fraktal (A217)

Implementierung eines optimierten Fraktal-Generators.

Was sind Fraktale?

- ➤ Eine (Zahlen-) Menge
- > Feinstruktur auf beliebigen Skalen
- > Erzeugt durch Rekursion
- ➤ Meistens selbstähnlich
- > Besitzen eine *fraktale* Dimension
- Begriff ist geprägt von Benoit B. Mandelbrot

Wie wird ein Fraktal auf dem Computer generiert?

> Darstellung hängt von Eigenschaften des Fraktals ab.

> Methoden:

- Iterated Function Systems (IFS)
- ➤ Lindenmayer-System
- ➤ Differenzialgleichungen (Strange Attractors)
- > Escape-Time

Definition der Mandelbrotmenge

$$z_0 = 0, \mathbf{z}_{n+1} = \mathbf{z}_n^2 + \mathbf{c}$$
 $c \in \mathbb{M} \iff \lim_{n \to \infty} \sup |z_n| \le 2$

- Eine **kompakte** Menge der Komplexen Zahlen.
- Beobachtung:Es gibt zwei Klassen von Zahlen.

Divergente und Beschränkte.

z1	z2	z3	z4
1	2	5	26
-1	0	-1	0
-2	2	2	2

Burning-Ship vs. Mandelbrot

$$z_{n+1} = (|Re(z_n)| + i * |Im(z_n)|)^2 + c$$

$$z_{n+1} = z_n^2 + c$$

Iterationsvorschrift des Burning-Ship Fraktals (1)

$$z_{n+1} = (|\Re(z_n)| + i * |\Im(z_n)|)^2 + c$$

$$z_{n+1} = |\Re(z_n)|^2 + 2i|\Re(z_n)||\Im(z_n)| + i^2|\Im(z_n)|^2 + c$$

$$z_{n+1} = \Re(z_n)^2 - \Im(z_n)^2 + i * 2|\Re(z_n) * \Im(z_n)| + c$$

$$z_{n+1} = (\Re(z_n)^2 - \Im(z_n)^2 + \Re(c)) + i * (2|\Re(z_n) * \Im(z_n)| + \Im(c))$$

Iterationsvorschrift des Burning-Ship Fraktals (2)

```
Require: x \in [-2, 2] \land y \in [-2, 2]
 1: function BURNING SHIP(x, y, width, height, res, n, p)
         for h \in [0, height] do
             for w \in [0, width] do
 3:
                  \Im(c) \leftarrow (h \rightarrow [-1,1] \times res) + (y \times res)
 4:
                  \Re(c) \leftarrow (w \rightarrow [-1,1] \times res) + (x \times res)
 5:
                  p_{wh} \leftarrow escape(c, n)
 6:
              end for
 7:
         end for
 9: end function
```

```
1: procedure ESCAPE(c, n)
```

2:
$$\Re(z_0) \leftarrow 0$$

3:
$$\Im(z_0) \leftarrow 0$$

$$i \leftarrow 0$$

5: while
$$i < n \text{ do}$$

6:
$$\Re(z_{n+1}) \leftarrow \Re(z_n)^2 - \Im(z_n)^2 + \Re(c)$$

7:
$$\Im(z_{n+1}) \leftarrow 2 | \Re(z_n) * \Im(z_n) | + \Im(c)$$

8: if
$$||z_{n+1}|| > 2$$
 then break

9: end if

10:
$$i \leftarrow i + 1$$

11: end while

return $i \times n$

12: end procedure

Implementierungen

- **≻**V0 (1 Pixel)
- >V1 (SIMD) (4 Pixel)
- **≻V2 (AVX) (8 Pixel)**

Färbung

- ➤ Vordefinierte Farben Tabelle
- ➤ Skalierung des Iterationsschrittes zu [0,15]
 - > 0=Weiß
 - ➤ 15=Schwarz

Genaugkeit

d	r	S	n	SIMD	AVX
800,800	1.0	0,0	40	14.116094%	14.116094%
800,800	1.0	0,0	30	0.270625%	0.270625%
800,800	1.0	0,0	50	12.767344%	12.767344%
1000,1000	1.0	0.0	40	13.974400%	13.974400%
800,800	4.0	0,0	40	16.977344%	16.977969%
800,800	0.1	0,0	40	0%	0%
800,800	0.009	-1.77001035,-0.05000005	40	48.806250%	48.881719%

Tabelle 1: Fehlerquotioent der Implementierungen

Performanzanalyse

