

Comparatively Ordered Crack Algorithm in Nominal Elements

Damon Chow and Vishal Shah

Crack Propagation

 Will a crack propagate from one plane of a material to another?

Modeling

- Create a matrix containing N sites
- Have a percentage of faulty sites (ρ)
- Each ρ represents a different compound
- Test whether a faulty site on one plane of the matrix connects to a faulty site on the opposite plane

Algorithms

- Hoshen-Kopelman
 - J. Hoshen and R. Kopelman, 1996
 - Cluster labeling
- Newman-Ziff
 - M.E.J. Newman and R.M. Ziff, 2001
 - "Fast" Monte Carlo Algorithm

Hoshen-Kopelman (HK)

Newman-Ziff (NZ)

Experimental Configuration

- ρ ranging from 0 to 1
- N ranging from 10⁴ to 10⁶
- 10^4 trials for each combination of ρ and N
- Same configuration used for both algorithms

Hoshen-Kopelman Rho vs Time vs Size

Hoshen-Kopelman Size vs Time vs Rho

Hoshen-Kopelman Log-Log

Hoshen-Kopelman Rho vs Size vs Percolation Rate

Percentage of Percolating Sites (%)

Newman-Ziff Rho vs Time vs Size

Newman-Ziff Size vs Time vs Rho

Newman-Ziff Log-Log

Newman-Ziff Rho vs Size vs Percolation Rate

Percentage of Percolating Sites (%)

Small Rho

Large Rho

Overall

- Time Complexity
 - HK: O(N)
 - NZ: O(N)
- Memory Complexity
 - It's complicated
 - HK less than NZ
 - HK better for very large lattices
 - NZ better for smaller lattices (faster)

Findings

- Best material to use?
 - $\rho < 0.55$
 - Probability of percolation small
 - Fault-tolerance
- Applications
 - Fracture Mechanics

Questions?

References

- http://www.physics.buffalo.edu/phy410-505-2010/
- http://www.neurofractal.org/felix/publications/percolation/code.html
- http://www.hiskp.uni-bonn.de/uploads/media/percolation.pdf
- https://www.tu-chemnitz.de/physik/THUS/lehre/CSM2/NewmanZiff.pdf
- http://web.eecs.utk.edu/~berry/aldridge/slides.pdf
- http://www.compphys.unioldenburg.de/en/download/Alexander/dpg_school/ZiffTalkPart3.pdf
- http://www-personal.umich.edu/~mejn/percolation/index.html