Histogram Equalization Numericals

Exercise -01: Perform the histogram equalization in given image.

Gray levels	D	1	2	3	4	5	6	7
No of Pixels	. 1	8	12	10	6	2	4	1

Solution:

, //	Plot	the his	togram of	inpution	nage:	
11 -						
<u> </u>	•					
7 -			9			
5				•		
2 -			•			
27	1	2 3	4 5	6 7	\rightarrow l_{χ}	

Step2: Colculate the histogram equalization values,
Gray No 01 PCLR)=nt/n SK SKX7 Histogram
Levels(Skx Pixels(nk) PDF CDF Equalization

0	12	0.203	0.203	1.421	1	
	2	0.148		2.457	2	
2	12	0.222	0.573		4	
3	10	0,185	0.758		5	
4	6	0.111	0.869	_	6	
5	2	0.037	0,906	6.342	6	
6	4	0.074	0.98	6.86	7 7	
Z		0.018	0,998	6.986	7	
')		0.010	9 338	0.790	7	

Step3-	Plot	the	egualized	histogram

Gray levels	1	2	4	5	6	7
No of Pixels	11	8	12	10	8	5

Exercise-02: Perform histogram equalization in given image.

2	1	1	2	2
2	5	0	0	0
2	2	1	1	0
1	2	1	2	2
5	5	2	1	1

Solution:

Gray levels	O	1	2	3	4	5	6	7
No of Pixels	4	8	10	Ó	Ö	3	Ó	\mathcal{D}

Step 2: Calculate Histogram equalization values

_	Gray	Noon	$f(r_k) = n \xi / n$	SK	SKXF	ltistogram	-
	levels (lex	Pixels(nk)	PDF	CDF		Equalization	
	0	4	0.16	0.16	1.12	1	
		8	0.32	0.48	3-36	4	
	2	10	0.4	0.88	6-16	6	
	3 ,	0		0.88	6.16	6	
	4	0	\bigcirc	0,88	6.16	6	
	5	3	O. <u>12</u>	1	7	7	
	6	\mathbb{O}	Q	1	7	7	
	7	\bigcirc		1	7	F	

7=25

Step 3 - The calculated equal red histogram values are

Gray levels	D	<u></u>	2	3	4	5	6	7
NoofPixels		4	0	Ô	8	0	İO	3

From calculated equalization can	l Vali be	ne th	e enh ented	onced as:	Portage	e after histogram
	6	4	4	6	6	
	6	7	1	1	1	
	6	6	4	4	1	
	4	6	4	6	6	
	7	7	6	4	4	