```
from google.colab import drive
drive.mount('/content/drive')
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force remount=True)
import pandas as pd
content = """Date
Location ISO Code
Location
New Cases
New Deaths
New Recovered
New Active Cases
Total Cases
Total_Deaths
Total Recovered
Total Active Cases
Location Level
City_or_Regency
Province
Country
Continent
Island
Time Zone
Special_Status
Total_Regencies
Total_Cities
Total_Districts
Total_Urban_Villages
Total_Rural_Villages
Area_(km2)
Danulation
```

11/28/21, 7:20 AM

горитастоп

Population_Density

Longitude

Latitude

New_Cases_per_Million

Total_Cases_per_Million

New_Deaths_per_Million

Total_Deaths_per_Million

Case_Fatality_Rate

Case_Recovered_Rate

Growth_Factor_of_New_Cases

Growth Factor of New Deaths"""

columns_list = content.split("\n")

df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/covid_19_indonesia_time_series_all.csv", header=0, names=columns_list, index
df.head()

	Date	Location_ISO_Code	Location	New_Cases	New_Deaths	New_Recovered	New_Act
0	3/1/2020	ID-JK	DKI Jakarta	2	0	0	
1	3/2/2020	ID-JK	DKI Jakarta	2	0	0	
2	3/2/2020	IDN	Indonesia	2	0	0	
3	3/2/2020	ID-RI	Riau	1	0	0	
4	3/3/2020	ID-JK	DKI Jakarta	2	0	0	

df = df.set_index('Location')
df.head()

Date	Location_ISO_Code	New_Cases	New_Deaths	New_Recovered	New_Activ

Location					
DKI Jakarta	3/1/2020	ID-JK	2	0	0
DKI Jakarta	3/2/2020	ID-JK	2	0	0
Indonesia	3/2/2020	IDN	2	0	0
Riau	3/2/2020	ID-RI	1	0	0
DKI Jakarta	3/3/2020	ID-JK	2	0	0

df.info()

<class 'pandas.core.frame.DataFrame'>

Index: 20816 entries, DKI Jakarta to Sumatera Utara

Data columns (total 36 columns):

#	Column	Non-Null Count	Dtype
0	Date	20816 non-null	object
1	Location_ISO_Code	20816 non-null	object
2	New_Cases	20816 non-null	int64
3	New_Deaths	20816 non-null	int64
4	New_Recovered	20816 non-null	int64
5	New_Active_Cases	20816 non-null	int64
6	Total_Cases	20816 non-null	int64
7	Total_Deaths	20816 non-null	int64
8	Total_Recovered	20816 non-null	int64
9	Total_Active_Cases	20816 non-null	int64
10	Location_Level	20816 non-null	object
11	City_or_Regency	0 non-null	float64
12	Province	20202 non-null	object
13	Country	20816 non-null	object
14	Continent	20816 non-null	object
15	Island	20202 non-null	object
16	Time_Zone	20202 non-null	object

```
17 Special Status
                                 2988 non-null
                                                obiect
18 Total Regencies
                                 20816 non-null int64
19 Total Cities
                                 20228 non-null float64
20 Total Districts
                                 20816 non-null int64
21 Total Urban Villages
                                 20226 non-null float64
22 Total Rural Villages
                                 20201 non-null float64
23 Area (km2)
                                 20816 non-null int64
24 Population
                                 20816 non-null int64
25 Population Density
                                20816 non-null float64
26 Longitude
                                 20816 non-null float64
                                20816 non-null float64
 27 Latitude
28 New Cases per Million
                                 20816 non-null float64
29 Total Cases_per_Million
                                20816 non-null float64
30 New Deaths per Million
                                20816 non-null float64
31 Total Deaths per Million
                                 20816 non-null float64
32 Case Fatality Rate
                                 20816 non-null float64
33 Case Recovered Rate
                                20816 non-null object
34 Growth Factor of New Cases
                                20816 non-null object
35 Growth Factor of New Deaths 19709 non-null float64
dtypes: float64(13), int64(12), object(11)
memory usage: 5.9+ MB
```

Get a view feature

```
df = df[['Date', 'Location_ISO_Code', 'New_Cases', 'New_Deaths', 'Total_Cases', 'Total_Deaths', 'Total_Recovered', 'New_Active_Cases'
df.head()
```

```
Date Location_ISO_Code New_Cases New_Deaths Total_Cases Total_Deaths

!ocation

# convert Date column to date type

df["Date"] = pd.to_datetime(df["Date"])
```

Visualization

```
import matplotlib.pyplot as plt
%matplotlib inline

#IDN

ConfirmedCases_date_IDN= df[df['Location_ISO_Code']=='IDN'].groupby(['Date']).agg({'Total_Cases':['sum']})
fatalities_date_IDN = df[df['Location_ISO_Code']=='IDN'].groupby(['Date']).agg({'Total_Deaths':['sum']})
total_date_IDN= ConfirmedCases_date_IDN.join(fatalities_date_IDN)

plt.figure(figsize=(15,10))
plt.subplot(2, 2, 1)
total_date_IDN.plot(ax=plt.gca(), title='Indonesia')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f03f58e3210>

Preprocessing

data1 = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/covid_19_indonesia_time_series_all.csv", header=0, names=columns_list, in
data1 = data1.set index('Location')

0

data1.head()

Location					
DKI Jakarta	3/1/2020	ID-JK	2	0	0
DKI Jakarta	3/2/2020	ID-JK	2	0	0
Indonesia	3/2/2020	IDN	2	0	0
Riau	3/2/2020	ID-RI	1	0	0

ID-JK

Date Location ISO Code New Cases New Deaths New Recovered New Activo

import numpy as np

DKI

Jakarta

preprocessing replace the nan data
data1= data1.replace([np.inf, -np.inf], np.nan)

3/3/2020

preprocessig fill the nan data
data1 = data1.fillna(0)
data1

	Date	Location_ISO_Code	New_Cases	New_Deaths	New_Recovered	New_Activ
Location						
DKI Jakarta	3/1/2020	ID-JK	2	0	0	
DKI Jakarta	3/2/2020	ID-JK	2	0	0	
Indonesia	3/2/2020	IDN	2	0	0	
Riau	3/2/2020	ID-RI	1	0	0	
DKI Jakarta	3/3/2020	ID-JK	2	0	0	
Sulawesi Tengah	11/5/2021	ID-ST	11	0	0	
Sulawesi Utara	11/5/2021	ID-SA	3	1	1	
Sumatera Barat	11/5/2021	ID-SB	1	0	3	
Sumatera Selatan	11/5/2021	ID-SS	1	0	0	
Sumatera Utara	11/5/2021	ID-SU	7	1	3	

20816 rows × 36 columns

```
# Convert sting to numeric LabelEncoder
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
def FunLabelEncoder(df):
    for c in df.columns:
        if df.dtypes[c] == object:
           le.fit(df[c].astvpe(str))
           df[c] = le.transform(df[c].astvpe(str))
    return df
data1 = FunLabelEncoder(data1)
data1.info()
# df1.iloc[235:300,:]
     <class 'pandas.core.frame.DataFrame'>
     Index: 20816 entries, DKI Jakarta to Sumatera Utara
     Data columns (total 36 columns):
         Column
      #
                                      Non-Null Count Dtype
        _____
                                       _____
                                      20816 non-null int64
      0
         Date
      1
         Location ISO Code
                                      20816 non-null int64
                                      20816 non-null int64
         New Cases
         New Deaths
                                      20816 non-null int64
                                      20816 non-null int64
      4
         New Recovered
         New Active Cases
                                      20816 non-null int64
         Total Cases
                                      20816 non-null int64
      7
         Total Deaths
                                      20816 non-null int64
         Total Recovered
                                      20816 non-null int64
         Total Active Cases
      9
                                      20816 non-null int64
      10 Location Level
                                      20816 non-null int64
      11 City_or_Regency
                                      20816 non-null float64
      12 Province
                                      20816 non-null int64
                                      20816 non-null int64
      13 Country
      14 Continent
                                      20816 non-null int64
      15 Island
                                      20816 non-null int64
      16 Time Zone
                                      20816 non-null int64
      17 Special Status
                                      20816 non-null int64
      18 Total_Regencies
                                      20816 non-null int64
```

```
19 Total Cities
                                 20816 non-null float64
20 Total Districts
                                 20816 non-null int64
21 Total Urban Villages
                                 20816 non-null float64
22 Total Rural Villages
                                 20816 non-null float64
23 Area (km2)
                                 20816 non-null int64
 24 Population
                                 20816 non-null int64
25 Population Density
                                 20816 non-null float64
 26 Longitude
                                 20816 non-null float64
 27 Latitude
                                 20816 non-null float64
28 New Cases per Million
                                 20816 non-null float64
29 Total Cases per Million
                                 20816 non-null float64
30 New Deaths per Million
                                 20816 non-null float64
31 Total Deaths per Million
                                 20816 non-null float64
32 Case Fatality Rate
                                 20816 non-null float64
33 Case Recovered Rate
                                 20816 non-null int64
34 Growth Factor of New Cases
                                 20816 non-null int64
35 Growth Factor of New Deaths
                                20816 non-null float64
dtypes: float64(13), int64(23)
memory usage: 5.9+ MB
```

Splitting Data

```
from sklearn.model_selection import train_test_split

Y = data1['New_Cases']
X = data1.drop(columns=['New_Cases'])

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=9)

print('X train shape: ', X_train.shape)
print('Y train shape: ', Y_train.shape)
print('Y test shape: ', X_test.shape)
print('Y test shape: ', Y_test.shape)
```

```
X train shape: (16652, 35)
Y train shape: (16652,)
X test shape: (4164, 35)
Y test shape: (4164,)
```

Modellig

```
from sklearn.tree import DecisionTreeClassifier

# We define the model
dtcla = DecisionTreeClassifier(random_state=None)

# We train model
dtcla.fit(X_train, Y_train)

# We predict target values
Y_predict = dtcla.predict(X_test)

#Test
X test
```

	Date	Location_ISO_Code	New_Deaths	New_Recovered	New_Active_Cases	Tota
Location						
Indonesia	177	34	268	7261	703	
Sulawesi Utara	611	25	0	18	3	
Riau	251	24	0	1	0	
DKI Jakarta	511	9	19	589	-95	
Bali	423	1	0	1	32	
DKI Jakarta	34	9	3	69	68	
Sulawesi Selatan	132	28	4	96	212	

Predict and Evaluation

```
from sklearn.model_selection import train_test_split

Y1 = data1['New_Deaths']
X1 = data1.drop(columns=['New_Deaths'])

X1_train, X1_test, Y1_train, Y1_test = train_test_split(X1, Y1, test_size=0.2, random_state=9)

print('X1 train shape: ', X1_train.shape)
print('Y1 train shape: ', Y1_train.shape)
```

0.1

```
print('X1 test shape: ', X1_test.shape)
print('Y1 test shape: ', Y1_test.shape)
    X1 train shape: (16652, 35)
    Y1 train shape: (16652,)
    X1 test shape: (4164, 35)
    Y1 test shape: (4164,)
from sklearn.tree import DecisionTreeClassifier
# We define the model
dtcla = DecisionTreeClassifier(random state=None)
# We train model
dtcla.fit(X1 train, Y1 train)
# We predict target values
Y1 predict = dtcla.predict(X1 test)
#Test
data1=X1_test
data1
```

	Date	Location_ISO_Code	New_Cases	New_Recovered	New_Active_Cases	Total
Location						
Indonesia	177	34	8232	7261	703	1
Sulawesi Utara	611	25	21	18	3	
Riau	251	24	1	1	0	
DKI Jakarta	511	9	513	589	-95	
Bali	423	1	33	1	32	
DKI Jakarta	34	9	140	69	68	

#Create a DataFrame
submission = pd.DataFrame({'New_Cases':Y_predict,'New_Deaths':Y1_predict})

#Visualize the first 100 rows
submission.head(100)

	New_Cases	New_Deaths
0	6412	267
1	16	0
2	1	0
3	551	19
4	33	0

#Convert DataFrame to a csv file that can be uploaded
#This is saved in the same directory as your notebook
filename = 'submission.csv'

submission.to_csv(filename,index=False)

print('Saved file: ' + filename)

	precision	recall	f1-score	support
0	0.20	0.93	0.33	374
1	0.02	0.08	0.03	141
2	0.01	0.03	0.02	116
3	0.00	0.01	0.01	85
4	0.00	0.00	0.00	63
5	0.01	0.02	0.01	60
6	0.00	0.00	0.00	78
7	0.00	0.00	0.00	46
8	0.00	0.00	0.00	59
9	0.00	0.00	0.00	48
10	0.00	0.00	0.00	44
11	0.00	0.00	0.00	54
12	0.00	0.00	0.00	44
13	0.00	0.00	0.00	43
14	0.00	0.00	0.00	44
15	0.00	0.00	0.00	43
16	0.00	0.00	0.00	32
17	0.00	0.00	0.00	36

18	0.00	0.00	0.00	26
19	0.00	0.00	0.00	28
20	0.00	0.00	0.00	38
21	0.00	0.00	0.00	37
22	0.00	0.00	0.00	31
23	0.00	0.00	0.00	35
24	0.00	0.00	0.00	24
25	0.00	0.00	0.00	22
26	0.00	0.00	0.00	25
27	0.00	0.00	0.00	28
28	0.00	0.00	0.00	29
29	0.00	0.00	0.00	16
30	0.00	0.00	0.00	23
31	0.00	0.00	0.00	19
32	0.00	0.00	0.00	19
33	0.00	0.00	0.00	35
34	0.00	0.00	0.00	20
35	0.00	0.00	0.00	16
36	0.00	0.00	0.00	15
37	0.00	0.00	0.00	19
38	0.00	0.00	0.00	12
39	0.00	0.00	0.00	24
40	0.00	0.00	0.00	18
41	0.00	0.00	0.00	14
42	0.00	0.00	0.00	12
43	0.00	0.00	0.00	14
44	0.00	0.00	0.00	14
45	0.00	0.00	0.00	22
46	0.00	0.00	0.00	13
47	0.00	0.00	0.00	15
48	0.00	0.00	0.00	16
49	0.00	0.00	0.00	13
50	0.00	0.00	0.00	16
51	0.00	0.00	0.00	9
52	0.00	0.00	0.00	14
53	0.00	0.00	0.00	5
54	0.00	0.00	0.00	17