INT201-Ass1 Ruiyang.Wu sID:2257475

Question 1

Given an DFA that recognizes the language $A=\{\epsilon,b,ab\}$ as follows, please present its symbolic description. (20 marks)

Automation: a DIA N={Q	,2,8,2,+}
Set of states: Q=(9,, 12,	
$\Sigma = \{a, b\}$	
F = {91, 83,	$\{s\}$
1 11 1 11 11 11 11 11 11 11 11 11 11 11	ab
transition fination is given:	
	9, 82 83
	92 94 95
	93 96 97
	94 98 28
	25 18 28
	96 98 98
	27 28 28
	98 98 98
	48 48

Question 3

Design an NFA with exactly four states for the language $\{w \in \Sigma^* \mid w \text{ contains the substring } aab\}$, where $\Sigma = \{a, b\}$. You only need to draw the graph. (20 marks)

Question 4

For each of the languages that all strings begin with b and end with a, over the alphabet $\Sigma = \{a, b\}$, give a DFA and a regular expression for it. For the DFA, you only need to draw the graph. (20 marks)

- (a) Draw the DFA graph. (12 marks)
- (b) Give its regular expression. (8 marks)

Question 5
Consider the language $A = \{www w \in \{a,b\}^*\}$, proving that it is not a
regular language through pumping lemma. (20 marks)
(a) Describe pumping lemma for regular languages. (4 marks)
(b) Drove that A is not a namelar language (16 months)
(b) Prove that A is not a regular language. (16 marks)
Proof. (a):
tor regular language L=X/2 there exists P (p>0)
Proof. (a): For regular language L=X/2 there exists P (p>0) that S=XYPz EL Vice. Versa.
(b) Define pumping length of Longider string S = a'b'a'b' a'b' & B length: S = 6P > P, Pumping lemme will be hold,
Louisday chias (= aPhPaPh aPhP CA
1 1/ 1/1 6P 5 2 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
length: 131 = 01 It, tumping lemme will behold,
spire sindo s- 1/2, sausquiz:
(11/1>0
1 1XY1<>
$\begin{cases} y > 0 \\ xy xy^{2} \ge A \text{ for each } i \ge 0.$
=) X mm 4 consist and a(s)
2 will hold all the rest a (s) and b (s).
5- we have X=ai, for some iso
Y=aj, for some j>0.
2 = ablabbaldt, for some k20
S= XYZ = a 4th frat frat fr
=> \(\psi \) + k = P \(\overline{U} \)
From Lemma, xyy2 EA, but xyy2 = a i+ij+b Parbrarbre
From 1 : xyy2 = attistallalle
-1 1 >0,
1. XYY8 ≠ S => XYY8 ≠ A.
Contradiction! A is non-regular.