TD4: Théorèmes de convergence et calcul d'intégrales

Exercice 1. [Début en douceur] Soit (E, \mathcal{E}, μ) un espace mesuré.

- 1. Grâce au théorème de convergence monotone, montrer que si (f_n) est une suite de fonctions mesurables positives, on a $\sum_{n\in\mathbb{N}} \int f_n d\mu = \int_E \sum_{n\in\mathbb{N}} f_n d\mu$.
- 2. Grâce au théorème de convergence dominé, montrer que si (f_n) est une suite de fonctions mesurables, on a

$$\sum_{n\in\mathbb{N}}\int |f_n|\mathrm{d}\mu < \infty \quad \Rightarrow \quad \sum_{n\in\mathbb{N}}\int f_n\mathrm{d}\mu = \int_E \sum_{n\in\mathbb{N}} f_n\mathrm{d}\mu.$$

3. Calculer les intégrales $\int_0^1 \frac{\ln x}{1-x^2} dx$ et $\int_0^\infty \frac{\sin(ax)}{e^x-1} dx$.

Solution de l'exercice 1.

1. La suite $(\sum_{k=1}^n f_j)_n$ est une suite croissante de fonctions positives, on applique donc le théorème de convergence monotone et on a

$$\lim_{n \to \infty} \int \sum_{j=1}^{n} f_j d\mu = \int \lim_{n \to \infty} \sum_{j=1}^{n} f_j d\mu$$
$$\sum_{j=1}^{\infty} \int f_j d\mu = \int \sum_{j=1}^{\infty} f_j d\mu.$$

2. Grâce au résultat précédent, on a $\int \sum_{n\in\mathbb{N}} |f_n| d\mu = \sum_{n\in\mathbb{N}} \int |f_n| d\mu < \infty$. Par conséquent, pour μ -presque tout $x\in E$, on a $\sum_{n\in\mathbb{N}} |f_n(x)| < \infty$ par inégalité de Markov. On en déduit que la suite $(\sum_{j=1}^n f_n)_n$ est une suite convergente presque partout de fonctions. De plus, on a

$$\sup_{n \in \mathbb{N}} \left| \sum_{j=1}^{n} f_j(x) \right| \le \sum_{n \in \mathbb{N}} |f_j(x)| \in \mathcal{L}^1(\mu).$$

Par conséquence, par théorème de convergence dominée, on a

$$\lim_{n \to \infty} \int \sum_{j=1}^{n} f_j d\mu = \int \lim_{n \to \infty} \sum_{j=1}^{n} f_j d\mu$$
$$\sum_{j=1}^{\infty} \int f_j d\mu = \int \sum_{j=1}^{\infty} f_j d\mu.$$

3. On observer que

$$\int_0^1 \frac{\ln x}{1 - x^2} dx = \int_0^1 \sum_{k=0}^\infty x^{2k} \ln x dx.$$

Puisque $(-x^{2n} \ln x)_n$ est une suite de fonctions positives, on a

$$\int_0^1 \sum_{k=0}^\infty -x^{2k} \ln x dx = \sum_{k=0}^\infty \int_0^1 -x^{2k} \ln x dx = \sum_{k=0}^\infty \frac{1}{(2k+1)^2},$$

par théorème de Fubini-Tonelli et intégration par parties. Ensuite, on a

$$\sum_{k=0}^{\infty} \frac{1}{(k+1)^2} = \frac{\pi^2}{6} \quad \text{et} \quad \sum_{k=0}^{\infty} \frac{1}{(2k+2)} = \frac{\pi^2}{24},$$

d'où

$$\int_0^1 \frac{\ln x}{1 - x^2} dx = -\sum_{k=0}^\infty \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

De même, on a

$$\frac{\sin(\alpha x)}{e^x - 1} = e^{-x} \sin(\alpha x) \frac{1}{1 - e^{-x}} = \sum_{n=0}^{\infty} e^{-(n+1)x} \sin(\alpha x),$$

on utilise donc le théorème de Fubini-Lebesgue pour obtenir

$$\int_0^\infty \frac{\sin(\alpha x)}{e^x - 1} = \sum_{n=0}^\infty \int_0^\infty \sin(\alpha x) e^{-(n+1)x} dx = \sum_{n=0}^\infty \frac{a}{(n+1)^2 + a^2}.$$

Exercice 2. Soit (E, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n\geq 1}$ une suite de fonctions mesurables telle que $f_n \to f$ μ -p.p. On suppose que $\sup_{n\geq 1} \int_E |f_n| d\mu < \infty$. Montrer que f est intégrable.

Solution de l'exercice 2. Par le lemme de Fatou, on a

$$\int_{E} |f| d\mu = \int_{E} \liminf |f_n| d\mu \le \liminf \int_{E} |f_n| d\mu < \infty.$$

Exercice 3. [Théorème d'Egoroff] Soit (E, \mathcal{A}, μ) un espace mesuré tel que $\mu(E) < \infty$. Soit $(f_n)_n$ une suite de fonctions de (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ telles que $f_n \to f$ μ -p.p. quand $n \to \infty$.

1. Montrer que pour tout $k \geq 1$ et tout $\eta > 0$ il existe $n \geq 1$ tel que

$$\mu\Big(\bigcup_{j>n} \{x \in E : |f_j(x) - f(x)| > \frac{1}{k}\}\Big) \le \eta.$$

- 2. En déduire que pour tout $\epsilon > 0$, il existe $A \in \mathcal{A}$ tel que $\mu(A) \leq \epsilon$ et $f_n \to f$ uniformément sur $E \setminus A$.
- 3. Que se passe-t-il lorsque $\mu(E) = \infty$?

Solution de l'exercice 3.

1. Soit $k \ge 1$. On introduit $A_n = \{x \in E : |f_n(x) - f(x)| > \frac{1}{k}\}$. Tout point appartenant à $\limsup_n A_n$ est un point x pour lequel $f_n(x)$ ne converge pas vers f(x). Ainsi

$$\mu(\limsup_{n\to\infty} A_n) = 0 .$$

On rappelle que $\limsup_{n\to\infty} A_n$ est la limite décroissante pour l'inclusion de la suite d'ensembles $(\bigcup_{j\geq n} A_j)_{n\geq 1}$. Comme $\mu(E)<\infty$ on a

$$\mu(\limsup_{n\to\infty} A_n) = \lim_{n\to\infty} \mu(\cup_{j\geq n} A_j) .$$

On peut alors conclure.

2. On fixe $\epsilon > 0$. Pour tout $k \ge 1$, il existe $n_k \ge$ tel que $\mu(\cup_{j \ge n_k} A_j) \le \epsilon 2^{-k}$. On pose alors $A := \cup_{k \ge 1} \cup_{j \ge n_k} A_j$. On a $\mu(A) \le \sum_{k \ge 1} \epsilon 2^{-k} \le \epsilon$. On remarque alors que pour tout $x \in E \setminus A$ on a

$$|f_n(x) - f(x)| \le 1/k$$
, $\forall n \ge n_k$.

Ainsi (f_n) converge uniformément vers f sur cet ensemble.

3. Le résultat devient faux. Par exemple sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ on prend $f_n = \mathbb{1}_{[n,\infty)}$.

Exercice 4. [Fonction Γ] Soit Γ la fonction définie par $t \in (0, +\infty) \mapsto \int_0^\infty x^{t-1} e^{-x} dx$. Grâces aux fonctions définies par $f_n : x \in (0, +\infty) \mapsto \mathbb{1}_{\{(0,n)\}}(x) \left(1 - \frac{x}{n}\right)^n x^{t-1}$, montrer la formule d'Euler : pour tout t > 0, $\Gamma(t) = \lim_{n \to \infty} \frac{n^t n!}{t(t+1)\cdots(t+n)}$.

Solution de l'exercice 4. On applique ici le théorème de convergence dominée, on a

$$0 \le f_n(x) \le x^{t-1}e^{-x} \in \mathcal{L}^1(\mathrm{d}x),$$

par conséquent

$$\Gamma(t) = \lim_{n \to \infty} \int_0^\infty f_n(x) dx = \lim_{n \to \infty} \int_0^n (1 - x/n)^n x^{t-1} dx$$
$$= \lim_{n \to \infty} n^t \int_0^1 (1 - y)^n y^{t-1} dy.$$

Posons $I_n(t) = \int_0^1 y^{t-1} (1-y)^n dy$, on montre par récurrence que $I_n(t) = \frac{nI_{n-1}(t+1)}{t}$, d'où l'on obtient par une récurrence immédiate

$$I_n(t) = \frac{n!}{t(t+1)\cdots(t+n)}$$

Exercice D. Soit \mathcal{C} l'ensemble des fonctions continues de [0,1] dans \mathbb{R} muni de la topologie de la convergence uniforme. On note \mathcal{A} la tribu borélienne de cette ensemble et \mathcal{B} la plus petite tribu rendant les applications $\pi_x : f \mapsto f(x)$ mesurables. Montrer que $\mathcal{A} = \mathcal{B}$.

Exercice 5. [Ensemble de Cantor] Soit $(d_n, n \ge 0)$ une suite d'éléments de]0, 1[et soit $K_0 := [0, 1]$. On définit une suite $(K_n, n \ge 0)$ de la façon suivante : connaissant K_n , qui est une réunion d'intervalles fermés disjoints, on définit K_{n+1} en retirant de chacun des intervalles de K_n un intervalle ouvert centré au centre de l'intervalle en question et de longueur d_n fois celle de l'intervalle. On pose $K := \bigcap_{n \ge 0} K_n$.

- 1. Montrer que K est un compact non dénombrable d'intérieur vide dont tous les points sont d'accumulation.
- 2. Calculer la mesure de Lebesgue de K.

Solution de l'exercice 5.

1. K est une intersection de fermés, c'est donc un fermé. Par ailleurs K est inclus dans l'intervalle borné [0,1], on en déduit donc qu'il est compact.

Soit $\varphi: K \to \{0,1\}^{\mathbb{N}}$ l'application construite de la façon suivante. Soit $x \in K$. Si x appartient à l'intervalle de gauche de K_1 alors on pose $\varphi(x)_1 := 0$, s'il appartient à l'intervalle de droite on pose $\varphi(x)_1 := 1$. En répétant ce procédé on obtient une suite $(\varphi(x)_n)_{n\geq 1}$. Il est clair que φ est une bijection. On en déduit que K n'est pas dénombrable. Montrons par contradiction que K est d'intérieur vide. Supposons qu'il existe deux points $x \neq y$ tels que $[x,y] \subset K$. Nécessairement [x,y] est entièrement inclus dans l'un des intervalles fermés qui constitue K_n , pour tout $n \geq 1$. Ainsi $\varphi(x)_n = \varphi(y)_n$ pour tout $n \geq 1$, ce qui implique que $\varphi(x) = \varphi(y)$ et donc x = y. On en conclut que K ne contient aucun intervalle non trivial, et est donc d'intérieur vide.

Soit x un point de K. Soit $n \ge 1$. Tout point $y \in K$ tel que $\varphi(y)_k = \varphi(x)_k$ pour tout $k \le n$ est tel que x et y appartiennent au même intervalle de K_n . La longueur des intervalles de K_n est donnée par

$$\epsilon_n := \prod_{k=0}^{n-1} \frac{1 - d_k}{2} .$$

Cette quantité tend vers 0 quand $n \to \infty$. On en déduit donc que la distance entre x et y tend vers 0 quand $n \to \infty$.

2. Comme K est la limite décroissante de K_n , et que les K_n sont inclus dans $K_0 = [0, 1]$ on a

$$\lambda(K) = \lim_{n \to \infty} \lambda(K_n) .$$

On remarque alors que

$$\lambda(K_{n+1}) = (1 - d_n)\lambda(K_n) = \prod_{i=0}^{n} (1 - d_k) = \exp(\sum_{i=0}^{n} \log(1 - d_k)).$$

Ainsi $\lambda(K_n)$ tend vers une limite non nulle si et seulement si

$$\sum_{n>0} d_n < \infty .$$

Exercice 6. [Mesure atomique] Soit (X, \mathcal{F}, μ) un espace mesuré. Un ensemble $A \in \mathcal{F}$ est un atome pour μ si $0 < \mu(A) < \infty$ et pour tout $B \subset A$ mesurable, on a $\mu(B) = 0$ ou $\mu(B) = \mu(A)$.

- 1. Donner un exemple de mesure possédant des atomes.
- 2. Montrer que la mesure de Lebesgue n'a pas d'atomes.
- 3. Donner un exemple de mesure possédant des atomes qui ne sont pas des singletons.

Une mesure est appelée purement atomique s'il existe une collection \mathcal{C} d'atomes de μ telle que pour tout $A \in \mathcal{F}$, on a $\mu(A) = \sum_{C \in \mathcal{C}} \mu(A \cap C)$.

4. Montrer qu'une mesure sur un ensemble dénombrable muni de la tribu des parties est purement atomique.

Une mesure est appelée diffuse si elle n'a pas d'atome.

- 5. (*) Montrer que si μ est diffuse et que $\mu(X) = 1$, alors l'image de \mathcal{F} par μ est [0,1]. On pourra commencer par montrer que si $\mu(A) > 0$, il existe $B \subset A$ mesurable tel que $\mu(A)/3 \le \mu(B) \le 2\mu(A)/3$.
- 6. Nous allons maintenant montrer que toute mesure finie se décompose en une mesure atomique et une mesure diffuse. On suppose $\mu(X) < \infty$.
 - (a) Si A et B sont deux atomes de μ , on pose $A \equiv B$ si $\mu(A \cap B) = \mu(A)$. Montrer que \equiv est une relation d'équivalence sur l'ensemble des atomes de μ .
 - (b) Montrer que si A et B sont deux atomes dans des classes d'équivalences différentes, alors $\mu(A \cap B) = 0$.
 - (c) Soit $(C_i)_{i \in I}$ une collection d'atomes contenant exactement un représentant de chaque classe d'équivalence pour \equiv . Montrer que la mesure définie par

$$\nu(A) = \sum_{i \in I} \mu(A \cap C_i),$$

est une mesure purement atomique, et que $\mu = \nu + \rho$ avec ρ une mesure sans atomes.

Solution de l'exercice 6.

- 1. La mesure de comptage sur $\mathbb N$ possède des atomes.
- 2. Supposons par l'absurde que A soit un atome de la mesure de Lebesgue. Alors la fonction croissante $f: x \mapsto \lambda(A \cap (-\infty, x))$ prend les valeurs 0 ou $\lambda(A)$, avec $\lim_{x \to -\infty} f(x) = 0$ et $\lim_{x \to \infty} f(x) = \lambda(A)$. Fixons x^* tel que $f(x^*-) = 0$ et $f(x^*+) = \lambda(A)$. On obtient aisément que pour tout $\epsilon > 0$,

$$\lambda(A) = \lambda(A \cap (x^* - \epsilon, x^* + \epsilon]) \le 2\epsilon.$$

On en déduit que $\lambda(A) = 0$, c'est une contradiction.

- 3. On pose E = [0, 1], \mathcal{F} est la tribu engendrée par [0, 1/2] et l'ensemble des singletons, et μ la restriction de la mesure de Lebesgue à \mathcal{F} . On observe que [0, 1/2] est un atome de μ .
- 4. On a immédiatement, par σ -additivité

$$\mu(A) = \sum_{x \in A} \mu(\{x\}) = \sum_{x \in E} \mu(\{x\} \cap A)$$

5. Soit μ une mesure diffuse. On va montrer quel que soit l'ensemble mesurable A avec $\mu(A)>0$, il existe un sous-ensemble B de A tel que $\frac{\mu(A)}{3}\leq \mu(B)\leq \frac{2\mu(A)}{3}$, le résultat général s'en déduit.

Soit A un ensemble mesurable de mesure non-nulle. On pose

$$I = \inf \left\{ \mu(B_{\infty}), B_{\infty} := \bigcap_{n \ge 0} B_n \text{ avec pour tout } n \ B_n \subset B_{n-1} \subset A \text{ et } \mu(B_n) \ge \mu(A)/3 \right\}.$$

On a par définition $I \ge \mu(A)/3$. Supposons par l'absurde que $I \ge 2\mu(A)/3$, dans ce cas on peut construire une suite $(B_{\infty}^n, n \ge 0)$ telle que $\mu(B_{\infty}^n) \to I$, on a alors $\mu(\cap_{n \ge 0} B_{\infty}^n) = I$.

Puisque $B_{\infty}^{\infty} = \bigcap_{n \in \mathbb{N}} B_{\infty}^n$ n'est pas un atome, il existe $C \subset B_{\infty}^{\infty}$ avec $\mu(C) < \mu(B_{\infty}^{\infty}) = I$. On a alors $\mu(A)/3 \leq I/2 < \max(\mu(C), \mu(B_{\infty}^{\infty} \setminus C)) < I$, on obtient donc une contradiction, puisque l'une des suites constantes C ou $B_{\infty}^{\infty} \setminus C$ appartient à l'ensemble des suites décroissantes mesurables de mesure supérieure à $\mu(A)/3$.

- 6. On observe que si A et B sont deux atomes de μ , alors $A \cap B \subset A$ et $A \cap B \subset B$. Donc soit $\mu(A \cap B) = \mu(A) = \mu(B)$ soit $\mu(A \cap B) = 0$. Cela montre que \equiv est symétrique, elle est également transitive puisque si $A \equiv B$, alors $A \cap B \equiv B$.
- 7. Soit A et B deux atomes de μ . Si $\mu(A \cap B) \neq \mu(A)$ alors $\mu(A \cap B) = 0$ par définition des atomes.
- 8. On vérifie aisément que ν est purement atomique. De plus puisque $\nu(A) \leq \mu(A)$ pour tout $A \in \mathcal{F}$, la fonction $\rho: A \mapsto \mu(A) \nu(A)$ définit bien une mesure finie sur X. De plus, si C est un atome de ρ , c'est un atome de μ qui n'est pas un atome de ν , on obtient une contradiction.

Exercice 7. [Escalier du diable] On considère $(F_n)_{n\geq 0}$ la suite de fonctions continues de [0,1] dans [0,1] définie par :

- Pour $x \in [0, 1], F_0(x) = x$;
- La fonction F_1 est la fonction qui envoie $0, \frac{1}{3}, \frac{2}{3}, 1$ sur $0, \frac{1}{2}, \frac{1}{2}, 1$ respectivement, et qui est affine entre chacun de ces points;
- De même on passe de F_n à F_{n+1} en remplaçant F_n sur chacun des intervalles maximaux [a,b] où elle est affine par la fonction qui envoie a, (2a+b)/3, (a+2b)/3, b sur F(a), (F(a)+F(b))/2, (F(a)+F(b))/2, F(b) respectivement et qui est affine entre chacun de ces points.
- 1. Montrer que la suite de fonctions $(F_n)_{n\geq 0}$ converge uniformément sur [0,1]. On appelle F la limite. Montrer que F est continue sur [0,1] et croît de 0 à 1.
- 2. Montrer que F est dérivable presque partout (par rapport à la mesure de Lebesgue) et que sa dérivée est identiquement nulle.
- 3. Soit μ la mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ dont F est la fonction de répartition. Montrer que μ est à la fois diffuse et portée par un ensemble négligeable pour la mesure de Lebesgue.

Solution de l'exercice 7.

FIGURE 1 – L'escalier de Cantor

- 1. On peut vérifier que F_n prend les valeurs $0, 2^{-n}, 2.2^{-n}, \dots, 2^{n-1}2^{-n}, 1$ et alterne entre des intervalles où elle est affine entre deux tels points et où elle constante. Ainsi lors d'un passage de F_{n+1} à F_n on a : sup $|F_{n+1} F_n| \le 2^{-n}$.
- 2. La fonction F est constante sur chaque composante connexe de l'ensemble ouvert K^c où K est l'ensemble de Kantor associé à la suite $d_n = 1/3$ (voir l'exercice précédent). Comme $\sum_{n\geq 0} d_n = \infty$, la mesure de Lebesgue de K est nulle. Rappelons que K^c est une réunion d'intervalles ouverts non triviaux. Ainsi F est de dérivée nulle presque partout.
- 3. La fonction F étant continue, μ ne peut avoir d'atome. Par ailleurs, le support de μ est contenu dans le fermé K de mesure de Lebesgue nulle.

Exercice 8. Trouver $A, B \in \mathcal{B}(\mathbb{R})$ tels que $\lambda(A) = \lambda(B) = 0$ mais $A + B = \mathbb{R}$.

Solution de l'exercice 8. Considérons la décomposition dyadique des réels dans [0,1]. On note A l'ensemble des réels de [0,1] dont la décomposition vaut 0 aux rangs pairs, et B l'ensemble de ceux dont la décomposition vaut 0 aux rangs impairs.

On remarque que pour tout $n \geq 1$ on a $\lambda(A) \leq 2^{-n}$, $\lambda(B) \leq 2^{-n}$. Ainsi $\lambda(A) = \lambda(B) = 0$. Par ailleurs, la somme des éléments de A et B génère tous les réels de [0,1]. Pour conclure, il suffit de remplacer A par l'union sur les $z \in \mathbb{Z}$ de z + A, et idem pour B.