Disciplina Dispositivos e Circuitos Eletrônicos - Período 2003.1 Curso de Graduação em Mecatrônica Departamento de Engenharia Elétrica - FT - UnB Professor Geovany Araújo Borges

Nota:	

Nome:	Matrícula:	
-------	------------	--

Observação 1: Exceto quando claramente indicado, usar o modelo bateria-mais-resistência para diodos com parâmetros V_{D0} e r_D . O modelo do diodo Zener inclui também V_{Z0} e r_Z . Quando cabível, esses parâmetros devem aparecer nas fórmulas solicitadas.

Questão 1:

Figura 1.

Para o circuito da Figura 1, considerando os diodos como ideais, determine v(t) para $V_{B1} = V_{B2} = -20$ Volts. (2,5 pontos)

Questão 2:

Para o circuito da Figura 2, considere $v_1(t) = V_{1dc} + v_{1ac}(t)$ e $v_2(t) = V_{2dc}$, sendo V_{1dc} e V_{2dc} constantes e $v_{1ac}(t)$ um pequeno sinal com valor médio zero. Os capacitores possuem capacitância C elevada o suficiente para acoplar os pequenos sinais das fontes $v_1(t)$ e $v_2(t)$ ao diodo, e bloquear qualquer componente DC. Pede-se:

- a) Determine a fórmula da resistência dinâmica r_D do diodo (**0,5 ponto**);
- b) O circuito equivalente DC e fórmula da componente DC de v(t) (1,0 ponto);
- c) O circuito equivalente AC e fórmula da componente AC de v(t) (1,0 ponto);

Questão 3:

Figura 3.

Para o circuito da Fig. 3, considere $r_D = 0\Omega$ apenas para os diodos D_1 , D_2 , D_3 e D_4 . Tem-se ainda que $v_F(t) = A \cdot sen(\omega t)$, com $A > V_{Z0} > 2V_{D0} > 0$, $C_1 = C_2$ e $RC_1 >> 2\pi/\omega$. Pede-se:

- a) Desprezando as variações de tensão sobre os capacitores (*ripple*), determine a fórmula de v_{s1}(t) (1,0 ponto);
- b) Considerando os períodos de condução dos diodos D₁, D₂, D₃ e D₄ desprezíveis com relação a 2π/ω, determine a fórmula da variação de tensão (*ripple*) que se observa em v_{c2}(t) devido à resistência R e o diodo Zener D₆. Suponha que a amplitude dessa variação seja muito menor do que a componente DC de v_{c2}(t) (1,5 ponto);

Questão 4:

Figura 4.

O circuito da Figura 4 emprega um amplificador para compensar a não-linearidade intrínseca do diodo D. Considerando $R_e >> 0$ e $r_D = 0\Omega$, responda:

- a) Para que valores de v_F(t) o diodo D estará em condução direta (*i.e.*, i_D>0)? Não esqueça de considerar V_{D0}. (1,0 ponto);
- b) Considerando agora que $R_e \to \infty$ e $A \to \infty$, determine $v_S(t)$ em função de $v_F(t)$ e trace um esboço claro da curva característica $v_S(t) \times v_F(t)$. (1,5 ponto);