Trajectory Planning

Grasping Object Based on 3D Image for Healthcare robotic

Fungsi

- Trajectory planning digunakan untuk menggerakkan visualisasi tangan robot 7 dof dan menggunakan work position based trajectory regeneration
- Dikarenakan untuk tangan robot 7 dof kami masih belum terdapat persamaan inverse kinematic sehingga Trajectory planning ini, saya terapkan sementara dalam planar 3 dof yang sudah terdapat persamaan inverse kinematic dan forward kinematic

Work-Position Based Trajectory Generation

Work-Position Based Trajectory Generation

$$q(t) = q_{init} + \frac{q_{final} - q_{init}}{t_{maks}}t$$

if
$$t_{maks} = 5$$
, then:

Position equation:

$$q(t) = a_1 t + a_0 \tag{1}$$

 Subs (1) into initial time t = 0 and final time t_f

$$t = 0 \rightarrow q(0) = a_1 0 + a_0$$

 $t = t_f \rightarrow q(t_f) = a_1 t_f + a_0$ (2)

Initial and final position

$$t = 0 \rightarrow q(0) = q_s$$

$$t = t_f \rightarrow q(t_f) = q_f$$
 (3)

• From (2) and (3) then

$$a_0 = q_s \quad (4)$$

$$q_f = a_1 t_f + q_s \rightarrow a_1 = \frac{q_f - q_s}{t_f}$$
 (4)

• so

$$q(t) = \frac{q_f - q_s}{t_f} t + q_s \qquad (5)$$

 Dari work position ini dapat dilihat bahwa trajectory planning yaitu menggerakkan tangan robot berdasarkan pergeseran tiap koordinatnya dengan iterasi yang kita inginkan

Trajectory Planning

 Untuk Trajectory yang saya coba adalah menulis huruf 'N' dengan 3 dof planar pada matlab dengan Work-Position Based Trajectory Generation

Berikut link untuk program matlab dan video hasil

https://drive.google.com/drive/folders/14KSsucjQpzFWrMqghjzegWG8NkN2j52M?usp=sharing