Aufgaben: Quaternionen

1. Zeige, dass im Generellen die Lipschitz Quaternionen $\mathbb{Z}[1,i,j,k]$ keinen grössten gemeinsamen Rechtsteiler besitzen. Betrachte dazu alle Rechtsteiler von 2 und 1+i+j+k.

Lösung:

Alle Rechtsteiler (in $\mathbb{Z}[1, i, j, k]$) von 2 sind bis auf Linksmultiplikation mit einer Einheit (hier $\pm 1, \pm i, \pm j, \pm k$) gegeben durch

$$1, \quad 1+i, \quad 1+j, \quad 1+k, \quad 2.$$

Alle Rechtsteiler von 1 + i + j + k sind bis auf Linksmultiplikation mit einer Einheit gegeben durch

$$1, 1+i, 1+j, 1+k, 1+i+j+k.$$

Nun ist es aber so, dass keiner der gemeinsamen Rechtsteiler (1, 1+i, 1+j, 1+k) erfüllt die Eigenschaft, dass alle anderen ein Rechtsteiler davon sind. 1 ist ausgeschlossen, da 1+i kein Linksteiler von 1 ist, da N(1+i)=2>1=N(1). Alle anderen sind ausgeschlossen, da sie dieselbe Norm 2 besitzen, d.h. sie müssten sich durch eine Linksmultiplikation mit einer Einheit unterscheiden, das tun sie aber nicht.

In den Hurwitz Quaternionen $\mathbb{Z}[i,j,k,\xi]$ ist dies behoben, denn es gilt z.B.

$$(\frac{1}{2} - \frac{1}{2}i + \frac{1}{2}j + \frac{1}{2}k)(1+i) = (1+j).$$

2. Seien $\alpha, \beta \in \mathbb{Z}[i, j, k, \xi]$ zwei Hurwitz Quaternionen, sodass $N(\alpha)$ und $N(\beta)$ nicht teilerfremd in \mathbb{Z} sind. Besitzt dann α, β notwendigerweise einen gemeinsamen Rechtsteiler, welcher keine Einheit ist?

Lösung:

Dies ist nicht der Fall. Betrachte dazu 1+2i und 1+2j. Beide haben die Norm 5. Einen gemeinsamen Rechtsteiler muss also die Norm 1 oder 5 haben. Im ersten Fall wäre also jener eine Einheit. Im zweiten Fall folgt, dass 1+2i und 1+2j sich durch Linksmultiplikation mit einer Einheit unterscheiden müssen. Dies ist aber nicht der Fall, wie eine kleine Rechnung zeigt.

3. Das Produkt PQ eines Polynomes $P \in \mathbb{Q}[X]$, welches sich als Summe von drei Quadraten von Polynomen in $\mathbb{Q}[X]$ schreiben lässt, mit einem Polynom $Q \in \mathbb{Q}[X]$, welches sich als Summe von fünf Quadraten von Polynomen in $\mathbb{Q}[X]$ schreiben lässt, lässt sich als Summe von 15 Quadraten von Polynomen in $\mathbb{Q}[X]$ schreiben. Zeige, dass PQ sich sogar als Summe von sieben Quadraten von Polynomen in $\mathbb{Q}[X]$ schreiben lässt.

Lösung:

Schreibe $P(X) = P_1(X)^2 + P_2(X)^2 + P_3(X)^2$ und $Q(X) = Q_1(X)^2 + Q_2(X)^2 + Q_3(X)^2 + Q_4(X)^2 + Q_5(X)^2$. Wir können nun die Identität von Euler benutzen um

$$(P_1(X)^2 + P_2(X)^2 + P_3(X)^2 + 0^2) (Q_1(X)^2 + Q_2(X)^2 + Q_3(X)^2 + Q_4(X)^2)$$

= $R_1(X)^2 + R_2(X)^2 + R_3(X)^2 + R_4(X)^2$

als Summe von vier Quadraten von Polynomen in $\mathbb{Q}[X]$ zu schreiben. Es gilt dann

$$P(X)Q(X) = R_1(X)^2 + R_2(X)^2 + R_3(X)^2 + R_4(X)^2 + (P_1(X)Q_5(X))^2 + (P_2(X)Q_5(X))^2 + (P_3(X)Q_5(X))^2.$$