Q2a.

 $Y_{analytical}$ and $Y_{numerical}$ vs X for n = 25

 $Y_{analytical}$ and $Y_{numerical}$ vs X for n = 25

As Y_analytical and Y_numerical values are almost identical both plots are overlapping.

Q2b.

$Y_{analytical}$ and $Y_{numerical}$ vs X for n = 100

time vs thread count for n = 1000

Q3a.
Serial Gauss Seidel program for delta = 0.1 has taken 94 iterations

phi numerical and phi analytical vs X

ID5130 Parallel Scientific Computing | Assignment 1 | RUTHWIK CHIVUKULA ME21B166

Q3c.

diagonal, serial and red-black results for delta = 0.1

diagonal, serial and red-black results for delta = 0.1

ID5130 Parallel Scientific Computing | Assignment 1 | RUTHWIK CHIVUKULA ME21B166

Red-Black coloring approach has given the fastest results out of the three.

Red-Black coloring is the best approach with p = 4 threads