王正明 易泰河

系统工程学院 军事建模与仿真系

2019年11月15日

例

为了提高某化工产品的转化率, 考虑 3 个三水平因子:

- 反应温度 A, $A_1 = 80$ °C, $A_2 = 85$ °C, $A_3 = 90$ °C;
- 反应时间 B, $B_1 = 90$ min, $B_2 = 120$ min, $B_3 = 150$ min;
- 用碱量 C, $C_1 = 5\%$, $C_2 = 6\%$, $C_3 = 7\%$.

如何安排这一试验?

- 因子设计或析因设计:同时考虑多个试验因子,每个因子设定为若干个水平.
- 试验目的: 处理比较、因子筛选和系统优化.

- 部分实施: 挑选一部分有代表性的处理组成试验方案;
- 如何挑选有代表性的点? 如何分析数据?

- 部分实施: 挑选一部分有代表性的处理组成试验方案;
- 如何挑选有代表性的点? 如何分析数据?

例 (手枪工艺)

制造某新型手枪共有 A_1 , A_2 , A_3 , A_4 四种不同工艺, 为研究它们之间的差异, 命 a, b, c, d, e 五个战士打靶, 每人提供 400 发子弹. 如何安排试验? 命中频率数据如下。四种工艺是否有差异?

例 (手枪工艺)

制造某新型手枪共有 A_1 , A_2 , A_3 , A_4 四种不同工艺, 为研究它们之间的差异, 命 a, b, c, d, e 五个战士打靶, 每人提供 400 发子弹. 如何安排试验? 命中频率数据如下, 四种工艺是否有差异?

	A_1	A_2	A_3	A_4
\overline{a}	0.60	0.59	0.71	0.72
b	0.80	0.81	0.88	0.86
c	0.68	0.64	0.80	0.79
d	0.68	0.70	0.81	0.82
e	0.59	0.60	0.73	0.72
和	3.36	3.34	3.93	3.91
平均	0.672	0.668	0.786	0.782

第二章 因子设计

2.1 方差分析法

- 2.1.1 单因子试验的方差分析
- 2.1.2 双因子试验的方差分析
- 2.1.3 三因子试验的方差分析
- 2.1.4 多重比较与对照
- 2.2 2 因子设计及其部分实施
- $2.3 3^k$ 因子设计及其部分实施
- 2.4 正交设计的一般讨论

本节教学目的

- 理解方差分析的基本思想;
- ② 学会单因子、二因子试验的方差分析;
- 能够利用 R 进行方差分析.

2.1.1 单因子试验的方差分析

- (1) 固定效应模型
- (2) 方差分析
- (3) 参数估计

2.1.2 双因子试验与交互效应

- (1) 固定效应模型及其参数估计
- (2) 交互效应
- (3) 方差分析

水平	观察值			
A_1	y_{11}	y_{12}	• • •	y_{1n_1}
A_2	y_{21}	y_{22}	• • •	y_{2n_2}
÷	:	÷	٠.	:
A_a	y_{a1}	y_{a2}		y_{an_a}

- 问题: A 的变动是否会带来响应的波动?
- 假设:不同处理下响应值来自于方差相同的正态总体,且每次试验结果都互相独立.
- 思路:若不同处理下正态总体均值相等,则响应的波动完全由噪声因子引起,否则响应的波动还包含试验因子的效应.
- 总波动统计量 = 不同因子效应统计量 + 误差效应统计量.

2.1.1 单因子试验的方差分析

- (1) 固定效应模型
- (2) 方差分析
- (3) 参数估计

2.1.2 双因子试验与交互效应

- (1) 固定效应模型及其参数估计
- (2) 交互效应
- (3) 方差分析

• 将 y_{ij} 分解为处理 A_i 的影响部分 μ_i 和误差 ε_{ij}

$$\begin{cases} y_{ij} = \mu_i + \varepsilon_{ij}, & \varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2), \\ i = 1, \dots, a, & j = 1, \dots, n_i. \end{cases}$$

• 一般平均 $\mu:=\frac{1}{n}\sum_{i=1}^a n_i\mu_i;\ A_i$ 的效应 $\tau_i:=\mu_i-\mu_i$ 得

到单因子试验的固定效应模型:

$$\begin{cases} y_{ij} = \mu + \tau_i + \varepsilon_{ij}, & \varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2), \\ \sum_{i=1}^{a} n_i \tau_i = 0, & i = 1, \cdots, a, j = 1, \cdots, n_i. \end{cases}$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q ()

• 将 y_{ij} 分解为处理 A_i 的影响部分 μ_i 和误差 ε_{ij}

$$\begin{cases} y_{ij} = \mu_i + \varepsilon_{ij}, & \varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2), \\ i = 1, \dots, a, & j = 1, \dots, n_i. \end{cases}$$

• 一般平均 $\mu := \frac{1}{n} \sum_{i=1}^{a} n_i \mu_i$; A_i 的效应 $\tau_i := \mu_i - \mu$, 得到单因子试验的固定效应模型:

$$\begin{cases} y_{ij} = \mu + \tau_i + \varepsilon_{ij}, & \varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2), \\ \sum_{i=1}^{a} n_i \tau_i = 0, & i = 1, \dots, a, j = 1, \dots, n_i. \end{cases}$$

2.1.1 单因子试验的方差分析

- (1) 固定效应模型
- (2) 方差分析
- (3) 参数估计

2.1.2 双因子试验与交互效应

- (1) 固定效应模型及其参数估计
- (2) 交互效应
- (3) 方差分析

方差分析:

$$H_0: (\tau_1, \tau_2, \cdots, \tau_a) = \mathbf{0} \text{ vs } H_1: (\tau_1, \tau_2, \cdots, \tau_a) \neq \mathbf{0}.$$

- 什么是 p 值?
- ❷ 什么是统计显著性 (statistical significance)?
- 两类错误分别是什么?

•
$$i \exists y_{\cdot \cdot} := \sum_{i=1}^{a} \sum_{j=1}^{n_i} y_{ij}, \ \bar{y}_{\cdot \cdot} := \frac{y_{\cdot \cdot}}{n}, \ y_{i \cdot} := \sum_{j=1}^{n_i} y_{ij}, \ \bar{y}_{i \cdot} := \frac{y_{i \cdot}}{n_i}.$$

• 响应的波动用总偏差平方和表示

$$SS_T := \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 = \sum_{i=1}^a \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{..}^2}{n}$$
$$= \sum_{i=1}^a n_i (\bar{y}_{i\cdot} - \bar{y}_{..})^2 + \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\cdot})^2$$

- 因子平方和 $SS_A:=\sum_{i=1}^a n_i(\bar{y}_{i\cdot}-\bar{y}_{\cdot\cdot})^2=\sum_{i=1}^a rac{y_{i\cdot}^2}{n_i}-rac{y_{\cdot\cdot}^2}{n};$
- 误差平方和 $SS_E := \sum_{i=1}^a \sum_{i=1}^{n_i} (y_{ij} \bar{y}_{i\cdot})^2 = SS_T SS_A$.

◆ロト ◆問ト ◆意ト ◆意ト · 意 · めなで

•
$$i \exists y_{\cdot \cdot} := \sum_{i=1}^{a} \sum_{j=1}^{n_i} y_{ij}, \ \bar{y}_{\cdot \cdot} := \frac{y_{\cdot \cdot}}{n}, \ y_{i \cdot} := \sum_{j=1}^{n_i} y_{ij}, \ \bar{y}_{i \cdot} := \frac{y_{i \cdot}}{n_i}.$$

响应的波动用总偏差平方和表示:

$$SS_T := \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 = \sum_{i=1}^a \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{..}^2}{n}$$
$$= \sum_{i=1}^a n_i (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

- **② 因子平方和** $SS_A:=\sum_{i=1}^a n_i(\bar{y}_{i\cdot}-\bar{y}_{\cdot\cdot})^2=\sum_{i=1}^a rac{y_{i\cdot}^2}{n_i}-rac{y_{\cdot\cdot}^2}{n};$
- 误差平方和 $SS_E := \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} \bar{y}_{i\cdot})^2 = SS_T SS_A$.

•
$$i \exists y_{\cdot \cdot} := \sum_{i=1}^{a} \sum_{j=1}^{n_i} y_{ij}, \ \bar{y}_{\cdot \cdot} := \frac{y_{\cdot \cdot}}{n}, \ y_{i \cdot} := \sum_{j=1}^{n_i} y_{ij}, \ \bar{y}_{i \cdot} := \frac{y_{i \cdot}}{n_i}.$$

响应的波动用总偏差平方和表示:

$$SS_T := \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 = \sum_{i=1}^a \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{..}^2}{n}$$
$$= \sum_{i=1}^a n_i (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

- 因子平方和 $SS_A := \sum_{i=1}^a n_i (\bar{y}_{i\cdot} \bar{y}_{\cdot\cdot})^2 = \sum_{i=1}^a \frac{y_{i\cdot}^2}{n_i} \frac{y_{\cdot\cdot}^2}{n};$
- 误差平方和 $SS_E := \sum_{i=1}^a \sum_{i=1}^{n_i} (y_{ij} \bar{y}_{i\cdot})^2 = SS_T SS_A$.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か Q (^)

- $\mathbb{E}(SS_A) = \sum_{i=1}^a n_i \tau_i^2 + (a-1)\sigma^2$,当 H_0 成立时,因子 A 的均方和 $MS_A := SS_A/(a-1)$ 是 σ^2 的无偏估计.
- $\mathbb{E}(SS_E) = (n-a)\sigma^2$, 误差均方和 $MS_E := SS_E/(n-a)$ 是 σ^2 的无偏估计.
- 当检验统计量

$$F := \frac{MS_A}{MS_E} = \frac{SS_A/(a-1)}{SS_E/(n-a)}.$$

大到一定程度时, 拒绝 H_0 .

定理

如果原假设 $H_0: \tau_1 = \cdots = \tau_a = 0$ 成立, 则

$$F := \frac{MS_A}{MS_E} = \frac{SS_A/(a-1)}{SS_E/(n-a)} \sim F(a-1, n-a).$$

来源	平方和	自由度	均方和	F 值
因子 A	$SS_A = \sum_{i=1}^a \frac{y_{i\cdot}^2}{n_i} - \frac{y_{\cdot\cdot}^2}{n}$	$f_A = a - 1$	$MS_A = \frac{SS_A}{f_A}$	$F = \frac{MS_A}{MS_E}$
误差	$SS_E = SS_T - SS_A$		$MS_E = \frac{\mathring{SS}_E}{f_E}$	
总	$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{}^2}{n}$	$f_T = n - 1$		

• 自由度是诸平方和所对应的 χ^2 分布的自由度, 满足 $f_T = f_A + f_E$.

◆□▶◆圖▶◆臺▶◆臺▶
臺
•

例 (cont. I)

制造某新型手枪共有 A_1 , A_2 , A_3 , A_4 四种不同工艺, 为研究它们之间的差异, 命 a, b, c, d, e 五个战士打靶, 命中频率数据如下:

	A_1	A_2	A_3	A_4
a	0.60	0.59	0.71	0.72
b	0.80	0.81	0.88	0.86
c	0.68	0.64	0.80	0.79
d	0.68	0.70	0.81	0.82
e	0.59	0.60	0.73	0.72
和	3.36	3.34	3.93	3.91
平均	0.672	0.668	0.786	0.782

试对本例进行方差分析.

(1) 手动计算:

$$SS_T = \sum_{i=1}^{a} \sum_{i=1}^{n_i} y_{ij}^2 - \frac{y_{..}^2}{n} = 0.16106,$$

$$SS_A = \sum_{i=1}^{a} \frac{y_i^2}{n_i} - \frac{y_{..}^2}{n} = 0.06618,$$

$$F = \frac{SS_A/(4-1)}{(SS_T - SS_A)/(20-4)} = 3.72 > F_{0.05}(3, 16) = 2.67.$$

(2) R 添加包 stats 提供了方差分析函数 aov():

aov(formula, data = NULL, projections = FALSE,
 contrasts = NULL, ...)

4 0 1 4 4 4 4 4 4 4 4 4 4

(1) 手动计算:

$$SS_T = \sum_{i=1}^{a} \sum_{i=1}^{n_i} y_{ij}^2 - \frac{y_{..}^2}{n} = 0.16106,$$

$$SS_A = \sum_{i=1}^{a} \frac{y_i^2}{n_i} - \frac{y_{..}^2}{n} = 0.06618,$$

$$F = \frac{SS_A/(4-1)}{(SS_T - SS_A)/(20-4)} = 3.72 > F_{0.05}(3, 16) = 2.67.$$

(2) R 添加包 stats 提供了方差分析函数 aov():

aov(formula, data = NULL, projections = FALSE,
 contrasts = NULL, ...)

2.1.1 单因子试验的方差分析

- (1) 固定效应模型
- (2) 方差分析
- (3) 参数估计

2.1.2 双因子试验与交互效应

- (1) 固定效应模型及其参数估计
- (2) 交互效应
- (3) 方差分析

- 未知参数 $(\mu, \tau_1, \cdots, \tau_a, \sigma^2)$, 共 $\frac{a}{1}$ +1个.
- ullet 当诸 $arepsilon_{ij}$ 互相独立, 且满足 $\mathbb{E}(arepsilon_{ij})=0$ 时

$$\widehat{\sigma^2} = \frac{SS_E}{n-a}$$

是 σ^2 的无偏估计.

- 未知参数 $(\mu, \tau_1, \cdots, \tau_a, \sigma^2)$, 共 $\frac{a}{1}$ +1个.
- 当诸 ε_{ij} 互相独立, 且满足 $\mathbb{E}(\varepsilon_{ij})=0$ 时,

$$\widehat{\sigma^2} = \frac{SS_E}{n-a}$$

是 σ^2 的无偏估计.

(1) 最小二乘估计:

• 使

$$Q(\mu, \tau_1, \cdots, \tau_a) := \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \mu - \tau_i)^2$$

达到最小的 $\hat{\mu}$ 与 $\hat{\tau}_i$.

• 对参数求导, 并令导数为 0, 得到

$$\begin{cases} \widehat{\mu} = \overline{y}.. \\ \widehat{\tau}_1 = \overline{y}_1. - \overline{y}.. \\ \vdots \\ \widehat{\tau}_a = \overline{y}_a. - \overline{y}.. \end{cases}$$

(2) 极大似然估计:

• 当假设 $\varepsilon_{ij}\stackrel{\text{i.i.d.}}{\sim}N(0,\sigma^2)$ 成立时, 诸参数的似然函数为

$$L(\mu_1, \dots, \mu_a, \sigma^2) = \left(\sqrt{2\pi}\sigma\right)^{-n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \mu_i)^2\right\}$$

负对数似然函数:

$$\ell(\mu_1, \cdots, \mu_a, \sigma^2) = \frac{n}{2} \ln(2\pi) + \frac{n}{2} \ln(\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^a \sum_{i=1}^{n_i} (y_{ij} - \mu_i)^2.$$

• 对参数求导并令导数为 0, 得到

$$\begin{cases} \widehat{\mu}_i = \bar{y}_{i\cdot}, & i = 1, \dots, a, \\ \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\cdot})^2. \end{cases}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ り Q ○

(3) 最小二乘估计与极大似然估计的区别:

- 最小二乘估计只需假定诸 ε_{ij} 独立同分布, 均值为 0, 方差有
 限. 而极大似然估计需要知道误差的具体分布.
- 设 $\hat{\theta}$ 是参数 θ 的极大似然估计, $f(\theta)$ 是 θ 的连续函数, 则 $f(\hat{\theta})$ 是 $f(\theta)$ 的极大似然估计. 根据这一性质, 可得到总体均值 μ 和效应 τ_i 的极大似然估计为:

$$\hat{\mu} = \bar{y}_{..}, \qquad \hat{\tau}_i = \bar{y}_{i.} - \bar{y}_{..}, i = 1, \cdots, a.$$

• 极大似然估计同时给出所有参数的估计,最小二乘估计分别处理 τ_i 和 σ^2 .

例 (cont. II)

制造某新型手枪共有 A_1 , A_2 , A_3 , A_4 四种不同工艺, 为研究它们之间的差异, 命 a, b, c, d, e 五个战士打靶, 命中频率数据如下:

	A_1	A_2	A_3	A_4
\overline{a}	0.60	0.59	0.71	0.72
b	0.80	0.81	0.88	0.86
c	0.68	0.64	0.80	0.79
d	0.68	0.70	0.81	0.82
e	0.59	0.60	0.73	0.72
$y_{i\cdot}$	3.36	3.34	3.93	3.91
$\bar{y}_{i\cdot}$	0.672	0.668	0.786	0.782

例 (cont. II)

固定效应模型:

$$\begin{cases} y_{ij} = \mu + \tau_i + \varepsilon_{ij}, \ \varepsilon_{ij} \overset{\text{i.i.d.}}{\sim} N(0, \sigma^2), \\ i = 1, \cdots, 4, \quad j = 1, \cdots, 5, \\ \tau_1 + \tau_2 + \tau_3 + \tau_4 = 0. \end{cases}$$

诸参数的估计为

$$\widehat{\mu} = \bar{y}_{\cdot \cdot} = 0.727,$$

$$\widehat{\tau}_{1} = \bar{y}_{1} - \bar{y}_{\cdot \cdot} = -0.055,$$

$$\widehat{\tau}_{2} = \bar{y}_{2} - \bar{y}_{\cdot \cdot} = -0.057,$$

$$\widehat{\tau}_{3} = \bar{y}_{3} - \bar{y}_{\cdot \cdot} = 0.059,$$

$$\widehat{\tau}_{4} = \bar{y}_{4} - \bar{y}_{\cdot \cdot} = 0.055.$$

$$SS_{E} = 0.09488$$

2.1.1 单因子试验的方差分析

- (1) 固定效应模型
- (2) 方差分析
- (3) 参数估计

2.1.2 双因子试验与交互效应

- (1) 固定效应模型及其参数估计
- (2) 交互效应
- (3) 方差分析

二因子试验等重复情形:

$$\begin{cases} y_{ijl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijl}, & \varepsilon_{ijl} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2), \\ i = 1, \dots, a, & j = 1, \dots, b, & l = 1, \dots, m. \end{cases}$$

- $\alpha_i \not\equiv A_i$ 的主效应, $\beta_j \not\equiv B_j$ 的主效应, $(\alpha\beta)_{ij}$ 表示处理 (A_i, B_j) 对 y 的交互效应或交互作用.
- 将 yil 分解为:

$$y_{ijl} = \bar{y}_{...} + (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}) + (y_{ikl} - \bar{y}_{ij.}),$$

• 猜测应有估计: $\hat{\mu} = \bar{y}_{...}$, $\hat{\alpha}_i = \bar{y}_{i..} - \bar{y}_{...}$, $\hat{\beta}_j = \bar{y}_{.j.} - \bar{y}_{...}$, $\widehat{(\alpha\beta)}_{ij} = \bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}$, $\hat{\varepsilon}_{ijl} = y_{ikl} - \bar{y}_{ij.}$

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 0 0 0

$$\begin{cases} y_{ijl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijl}, & \varepsilon_{ijl} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2), \\ i = 1, \cdots, a, & j = 1, \cdots, b, & l = 1, \cdots, m. \end{cases}$$

- $\alpha_i \neq A_i$ 的主效应, $\beta_i \neq B_i$ 的主效应, $(\alpha\beta)_{ii}$ 表示处理 (A_i, B_i) 对 y 的交互效应或交互作用.
- 将 y_{iil} 分解为:

$$\begin{aligned} y_{ijl} &= \bar{y}_{\cdots} + (\bar{y}_{i\cdots} - \bar{y}_{\cdots}) + (\bar{y}_{\cdot j\cdot} - \bar{y}_{\cdots}) \\ &+ (\bar{y}_{ij\cdot} - \bar{y}_{i\cdot} - \bar{y}_{\cdot j\cdot} + \bar{y}_{\cdots}) + (y_{ikl} - \bar{y}_{ij\cdot}), \end{aligned}$$

• 猜测应有估计: $\hat{\mu} = \bar{y}_{...}$, $\hat{\alpha}_i = \bar{y}_{i..} - \bar{y}_{...}$, $\hat{\beta}_i = \bar{y}_{i.i} - \bar{y}_{...}$ $(\alpha\beta)_{ii} = \bar{y}_{ii} - \bar{y}_{i..} - \bar{y}_{.i.} + \bar{y}_{...}, \ \hat{\varepsilon}_{iil} = y_{ikl} - \bar{y}_{ij..}$

26 / 42

• 双因子试验的固定效应模型

$$\begin{cases} y_{ijl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijl}, & \varepsilon_{ijl} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2), \\ i = 1, \cdots, a, j = 1, \cdots, b, l = 1, \cdots, m. \end{cases}$$

$$\sum_{i=1}^{a} \alpha_i = \sum_{j=1}^{b} \beta_j = 0,$$

$$\sum_{i=1}^{a} (\alpha\beta)_{ij} = 0, \quad j = 1, \cdots, b,$$

$$\sum_{j=1}^{b} (\alpha\beta)_{ij} = 0, \quad i = 1, \cdots, a.$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

2.1.1 单因子试验的方差分析

- (1) 固定效应模型
- (2) 方差分析
- (3) 参数估计

2.1.2 双因子试验与交互效应

- (1) 固定效应模型及其参数估计
- (2) 交互效应
- (3) 方差分析

例

设有两个二水平因子 A 和 B, 它们的两个水平分别为 A_1 , A_2 和 B_1 , B_2 . 每个组合试验一次, 试验结果如下

A 与 B 之间有无交互效应?

- 计算法: 交互效应的估计值为 0 说明无交互效应;
- 画图法: 利用 R 函数 interaction.plot() 得到 交互效应图

(a) 中两因子无交互效应

(b) 中两因子有交互效应

• 两种方法都缺乏定量依据!

- 2.1.2 双因子试验与交互效应
- 计算法: 交互效应的估计值为 0 说明无交互效应:
- 画图法: 利用 R 函数 interaction.plot() 得到 交互效应图

- (a) 中两因子无交互效应
- (b) 中两因子有交互效应
- 两种方法都缺乏定量依据!

2.1 方差分析法

2.1.1 单因子试验的方差分析

- (1) 固定效应模型
- (2) 方差分析
- (3) 参数估计

2.1.2 双因子试验与交互效应

- (1) 固定效应模型及其参数估计
- (2) 交互效应
- (3) 方差分析

两因子方差分析: 检验主效应及交互效应是否显著.

• 响应的离差平方和 SS_T 分解

$$SS_T = \sum_{i=1}^a \sum_{j=1}^b \sum_{l=1}^m (y_{ijl} - \bar{y}_{...})^2 = SS_A + SS_B + SS_{A \times B} + SS_E,$$

•
$$SS_A = mb \sum_{i=1}^{a} (\bar{y}_{i..} - \bar{y}_{...})^2$$
, $SS_B = ma \sum_{j=1}^{b} (\bar{y}_{.j.} - \bar{y}_{...})^2$

•
$$SS_{A \times B} = m \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{y}_{ij\cdot} - \bar{y}_{i\cdot\cdot} - \bar{y}_{\cdot j\cdot} + \bar{y}_{\cdot\cdot\cdot})^2$$

•
$$SS_E = \sum_{i=1}^a \sum_{j=1}^b \sum_{l=1}^m (\bar{y}_{ijl} - \bar{y}_{ij\cdot})^2$$
.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

两因子方差分析: 检验主效应及交互效应是否显著.

响应的离差平方和 SST 分解:

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{l=1}^{m} (y_{ijl} - \bar{y}_{...})^2 = SS_A + SS_B + SS_{A \times B} + SS_E,$$

- $SS_A = mb \sum_{i=1}^{a} (\bar{y}_{i..} \bar{y}_{...})^2$, $SS_B = ma \sum_{i=1}^{b} (\bar{y}_{.j.} \bar{y}_{...})^2$,
- $SS_{A \times B} = m \sum_{i=1}^{a} \sum_{i=1}^{b} (\bar{y}_{ij\cdot} \bar{y}_{i\cdot\cdot} \bar{y}_{\cdot\cdot j\cdot} + \bar{y}_{\cdot\cdot\cdot})^2$,
- $SS_E = \sum_{i=1}^a \sum_{i=1}^b \sum_{l=1}^m (\bar{y}_{ijl} \bar{y}_{ij.})^2$.

- SS_E 服从自由度为 ab(m-1) 的 χ^2 分布.
- 当假设 $H_{A_0}: \alpha_1 = \cdots = \alpha_a = 0$ 成立时, $SS_A \sim \chi^2(a-1)$;
- 当假设 $H_{B_0}: \beta_1 = \cdots = \beta_b = 0$ 成立时, $SS_B \sim \chi^2(b-1)$;
- 当假设 $H_{(A \times B)_0}: (\alpha \beta)_{ij} = 0, i = 1, \dots, a, j = 1, \dots, b$ 成立 时, $SS_{A \times B} \sim \chi^2 ((a-1)(b-1))$;
- 诸平方和的均方为

$$MS_A = SS_A/(a-1), \quad MS_B = SS_B/(b-1),$$

$$MS_{A \times B} = SS_{A \times B}/[(a-1)(b-1)], \quad MS_E = SS_E/[ab(m-1)].$$

方差来源	自由度	平方和	均方	 F 值
A	a-1	SS_A	MS_A	MS_A/MS_E
B	b-1	SS_B	MS_B	MS_B/MS_E
$A \times B$	(a-1)(b-1)	$SS_{A \times B}$	$MS_{A \times B}$	$MS_{A \times B}/MS_E$
误差	ab(m-1)	SS_E	MS_E	
总和	n-1	SS_T		

例

考察电池的最大输出电压受极板材料 A 与环境温度 B 的影响,两个因子均取 3 个水平,每个处理重复 4 次,试验数据如下:

				因子	- B			ar
		15	S°C	25	S°C	35	5℃	$y_{i\cdots}$
		130	155	34	40	20	70	
	1	174	180	80	75	82	58	1098
		(639) (229)		(230)				
		150	188	136	122	25	70	
因子 A	2	159	126	106	115	58	45	1300
		(623)		(479)		(198)		
		138	110	174	120	96	104	
	3	168	160	150	139	82	60	1501
		(57	76)	(58	83)	(3	42)	
$y_{\cdot j \cdot}$		18	38	12	91	7	70	y = 3899

来源	平方和	自由度	均方和	F 值
A	6767.06	2	3383.53	6.73
B	4753509	2	23767.70	47.25
$A \times B$	13180.44	4	3295.11	6.55
误差	13580.75	27	520.99	
总和	81063.64	35		

由于 $F_{0.95}(2,27)=3.35$, $F_{0.95}(4,27)=2.73$, 所以因子 A、因子 B和交互效应 $A\times B$ 当 $\alpha=0.05$ 时都是显著的.

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

利用 R 进行两因子方差分析:

```
_{1} | x <- c(130, 155, 174, 180, 150, 188, 159, 126, 138,
     110, 168, 160, 34, 40, 80, 75, 136, 122, 106,
     115, 174, 120, 150, 139, 20, 70, 82, 58, 25, 70,
     58, 45, 96, 104, 82, 60);
_{2} | A <- factor(c(rep(1:3, each = 4), rep(1:3, each=4),
     rep(1:3,each=4)));
  B \leftarrow factor(rep(1:3, each = 12));
  aov Data <- data.frame(A, B, x);</pre>
  aov_Result <- aov(x ~ A * B, data = aov_Data);</pre>
  # aov Result <- aov(x ~ A+B+A:B, data = aov Data);
  summary(aov Result)
  #>
               Df Sum Sq Mean Sq F value Pr(>F)
  #> A
              2 6767 3384 6.727 0.004261 **
10 #> B
             2 47535 23768 47.253 1.52e-09 ***
  #> A:B 4 13180 3295 6.551 0.000807 ***
11
  #> Residuals 27 13581 503
12
  #> ---
13
14 | #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
     0.05 '.' 0.1 ' ' 1
```

R 提供多种方式展示两因子之间的交互效应.

interaction.plot(A, B, x, type = "b", col = c("red"
 , "green", "black"), pch = c(15, 17, 19), main =
 "Interacion Plot")

Interacion Plot


```
2
```

```
library(gplots);
plotmeans(x~interaction(A, B, sep = " "), connect =
    list(c(1, 4, 7), c(2, 5, 8), c(3, 6, 9)), col =
    c("red", "darkgreen", "black"), main = "
    Interaction Plot with 95% CI", xlab = "A and B
    Combination")
```

Interaction Plot with 95% CI


```
library(HH);
interaction2wt(x ~ A*B);
```

x: main effects and 2-way interactions

总结

- 多因子试验与因子设计
- 方差分析的基本思想
- 偏差平方和的分解
- 检验统计量的构造

习题

- 利用最小二乘法获得双因子线性可加模型中参数的估计。
- ② 证明双因子试验的离差平方和分解式.
- 利用最小二乘法获得三因子线性可加模型中参数的估计。
- 手枪工艺例中,如果将五个战士当作一个五水平的因子,则它是一个双因子试验,能否对其进行方差分析检验是否存在交互效应,并利用 R 绘制交互效应图.