• Un **couplage** de G = (V, E) est un ensemble d'arêtes $M \subseteq E$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M:

$$\forall e_1, e_2 \in M, e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

Un sommet $v \in V$ est **couvert** par M s'il appartient à une arête de M. Sinon, v est **libre** pour M.

• Exercice : Écrire une fonction est_couplage : (int*int) list -> int > bool déterminant si une liste d'arêtes (chaque arête étant un couple) forme un couplage.

• La **taille** de M, notée |M|, est son nombre d'arêtes.

M est un couplage **maximum** s'il n'existe pas d'autre couplage de taille strictement supérieure.

M est un couplage **maximal** s'Il n'existe pas de couplage M' tel que $M \subseteq M'$.

M est un couplage **parfait** si tout sommet de G appartient à une arête de M.

Un chemin est **élémentaire** s'il ne passe pas deux fois par le même sommet.

Un chemin élémentaire de G est M-alternant si ses arêtes sont alternativement dans M et dans $E \setminus M$.

Un chemin de G est M-augmentant s'il est M-alternant et si ses extrémités sont libres pour M.

• Soit M un couplage de G et P un chemin M-augmentant. Alors $M\Delta P$ est un couplage de G et $|M\Delta P|=|M|+1$.

Un couplage M

 $M\Delta P$, où P = 3 - 0 - 1 - 2 - 5 - 4

• M est un couplage maximum de $G \iff$ Il n'existe pas de chemin M-augmentant dans G.

Preuve:

- \Longrightarrow Soit M un couplage maximum. Supposons qu'il existe un chemin M-augmentant P. Alors $M\Delta P$ est un couplage de G et $|M\Delta P|>|M|$: absurde.
- \Leftarrow Supposons qu'il existe un couplage M^* vérifiant $|M^*| > |M|$. Considérons $G^* = (V, M\Delta M^*)$.

Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.

Chacun de ces cycles et chemins alternent entre des arêtes de M et des arêtes de M^* .

Comme $|M^*| > |M|$, un de ces chemins contient plus d'arêtes de M^* que de M: c'est un chemin M-augmentant.

• On en déduit l'algorithme :

Couplage maximum par chemin augmentant

Remarques:

- On peut aussi partir d'un couplage initialement non vide, et on obtiendra quand même un couplage maximum à la fin.
- Il est difficile de trouver un chemin M-augmentant dans un graphe quelconque : c'est pour cela qu'on s'intéresse aux graphes bipartis dans la suite.
- Un graphe G = (V, E) est **biparti** s'il existe V_1 et V_2 tels que $V = V_1 \sqcup V_2$ et toute arête de E ait une extremité dans V_1 et l'autre dans V_2 .

Remarque : cela revient à donner une couleur à chaque sommet de façon à ce que les extrémités de chaque arête soient de couleurs différentes.

• Exercice : Écrire une fonction

est_biparti : int list array -> bool pour déterminer si un graphe (représenté par liste d'adjacence) est biparti, en complexité linéaire.

<u>Solution</u>: On fait un parcours en profondeur depuis un sommet quelconque en alternant les couleurs 0 et 1.

```
let est_biparti g =
let n = Array.length g in
let couleurs = Array.make n (-1) in
let rec aux u c = (* on donne la couleur c à u *)
  if couleurs.(u) = -1 then begin
      couleurs.(u) <- c;
      List.for_all (fun v -> aux v (1 - c)) g.(u)
  end else couleurs.(u) = c
in aux 0 0
```

- Il est facile de trouver un chemin M-augmentant dans un graphe biparti $G = V_1 \sqcup V_2$:
- Partir d'un sommet $v \in V_1$ libre.
- Se déplacer (DFS) en alternant entre des arêtes de M et des arêtes de $G \setminus M$, sans revenir sur un sommet visité.
- Si on arrive à un sommet libre de V_2 , alors on a trouvé un chemin M-augmentant.

Exemple de recherche d'un couplage maximum par chemin augmentant dans un graphe biparti :

 $\begin{aligned} M &\leftarrow M \Delta P, \, \text{où} \\ P &= 2 - 7 - 4 - 8 \end{aligned}$

 $\begin{aligned} M \leftarrow M \Delta P, \, \text{où} \\ P = 3 - 5 - 1 - 6 \end{aligned}$