### Отчет по лабораторной работе №17

Дисциплина: Имитационное моделирование

Лобанова Полина Иннокентьевна

## Содержание

| 1  | Цель работы                    | 5  |
|----|--------------------------------|----|
| 2  | Задание                        | 6  |
| 3  | Выполнение лабораторной работы | 8  |
| 4  | Выводы                         | 16 |
| Сп | исок литературы                | 17 |

# Список иллюстраций

| 3.1  | Модель работы вычислительного центра                           | 8  |
|------|----------------------------------------------------------------|----|
| 3.2  | Отчет по модели работы вычислительного центра                  | 9  |
| 3.3  | Модель работы аэропорта                                        | 10 |
|      | Отчет по модели работы аэропорта                               | 11 |
|      | Модель работы морского порта (Случай 1)                        | 11 |
| 3.6  | Отчет по модели работы морского порта (Случай 1)               | 12 |
| 3.7  | Модель работы морского порта (Случай 1 с 3 причалами)          | 12 |
| 3.8  | Отчет по модели работы морского порта (Случай 1 с 3 причалами) | 13 |
| 3.9  | Модель работы морского порта (Случай 2)                        | 13 |
| 3.10 | Отчет по модели работы морского порта (Случай 2)               | 14 |
| 3.11 | Модель работы морского порта (Случай 2 с 2 причалами)          | 14 |
| 3.12 | Отчет по модели работы морского порта (Случай 2 с 2 причалами) | 15 |

### Список таблиц

### 1 Цель работы

Реализовать модель работы вычислительного центра, модель работы аэропорта и модель работы морского порта.

### 2 Задание

- 1. На вычислительном центре в обработку принимаются три класса заданий А, В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задания класса А поступают через 20 ± 5 мин, класса В через 20 ± 10 мин, класса С через 28 ± 5 мин и требуют для выполнения: класс А 20 ± 5 мин, класс В 21 ± 3 мин, класс С 28 ± 5 мин. Задачи класса С загружаются в ЭВМ, если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче. Смоделировать работу ЭВМ за 80 ч. Определить её загрузку.
- 2. Самолёты прибывают для посадки в район аэропорта каждые  $10 \pm 5$  мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром. В аэропорту через каждые  $10 \pm 2$  мин к взлетно-посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой для взлёта, то полоса предоставляется взлетаюшей машине.

#### Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
  - определить коэффициент загрузки взлетно-посадочной полосы.
  - 3. Морские суда прибывают в порт каждые [а ± б] часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту [b ± e] часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

#### Исходные данные:

1) 
$$a = 20 \text{ y}, 6 = 5 \text{ y}, b = 10 \text{ y}, e = 3 \text{ y}, N = 10, M = 3;$$

2) 
$$a = 30 \text{ y}$$
,  $6 = 10 \text{ y}$ ,  $b = 8 \text{ y}$ ,  $e = 4 \text{ y}$ ,  $N = 6$ ,  $M = 2$ .

### 3 Выполнение лабораторной работы

1. Смоделировала работу ЭВМ за 80 ч. Коэффициент загрузки - 0,994.

```
_ 🗆 🗙
🥌 Untitled Model 1
 ram STORAGE 2
 ; класс А
 GENERATE 20,5
 QUEUE q_1
 ENTER ram, 1
 DEPART q_1
 ADVANCE 20,5
 LEAVE ram, 1
TERMINATE 0
 ; класс В
 GENERATE 20,10
 QUEUE q_1
 ENTER ram, 1
 DEPART q_1
 ADVANCE 21,3
LEAVE ram, 1
TERMINATE 0
 ; класс С
 GENERATE 28,5
 QUEUE q_1
 ENTER ram, 2
DEPART q_1
ADVANCE 28,5
 LEAVE ram, 2
 TERMINATE 0
 ; timer
 GENERATE 4800
 TERMINATE 1
 START 1
```

Рис. 3.1: Модель работы вычислительного центра



Рис. 3.2: Отчет по модели работы вычислительного центра

2. Выполнила моделирование работы аэропорта в течение суток. Количество самолетов, которые взлетели - 142, которые сели - 146, которые были направлены на запасной аэродром - 0. Коэффициент загрузки взлетно-посадочной полосы - 0,4.

```
Untitled Model 1
                                                  _ | X
 GENERATE 10,5,,,1
ASSIGN 1,0
QUEUE q_1
landing GATE NU runway, wait
 SEIZE runway
DEPART q_1
ADVANCE 2
 RELEASE runway
 TERMINATE 0
 wait TEST L pl,5,goaway
ADVANCE 5
 ASSIGN 1+,1
 TRANSFER 0, landing
 goaway SEIZE reserve
 DEPART q_1
 RELEASE reserve
 TERMINATE 0
 GENERATE 10,2,,,2
 QUEUE q_2
 SEIZE runway
 DEPART q_2
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 GENERATE 1440
 TERMINATE 1
 START 1
```

Рис. 3.3: Модель работы аэропорта

| Untitled M | odel 1.15.1    | - REPOR | Т            |            |        |          |       |          |       |  |
|------------|----------------|---------|--------------|------------|--------|----------|-------|----------|-------|--|
|            | RUNWAY<br>WAIT |         |              | 10001.0    |        |          |       |          |       |  |
| LABEL      |                | T.OC    | BLOCK TYPE   | ENTRY      | COUNT  | CURRENT  | COUNT | RETRY    |       |  |
|            |                | 1       | GENERATE     |            | 46     |          | 0     | 0        |       |  |
|            |                | 2       |              |            | 46     |          | 0     | 0        |       |  |
|            |                | 3       | QUEUE        | 1          | 46     |          | 0     | 0        |       |  |
| LANDING    |                |         | GATE         |            | 84     |          | 0     | 0        |       |  |
|            |                | 5       | SEIZE        | 1.         | 46     |          | 0     | 0        |       |  |
|            |                | 6       | DEPART       |            | 46     |          | 0     | 0        |       |  |
|            |                | 7       | ADVANCE      |            | 46     |          | 0     | 0        |       |  |
|            |                | 8       | RELEASE      |            | 46     |          | 0     | 0        |       |  |
|            |                | 9       | TERMINATE    |            | 46     |          | 0     | 0        |       |  |
| WAIT       |                | 10      | TEST         |            | 38     |          | 0     | 0        |       |  |
|            |                | 11      | ADVANCE      |            | 38     |          | 0     | 0        |       |  |
|            |                | 12      | ASSIGN       |            | 38     |          | 0     | 0        |       |  |
|            |                | 13      | TRANSFER     |            | 38     |          | 0     | 0        |       |  |
| GOAWAY     |                |         | SEIZE        |            | 0      |          | 0     | 0        |       |  |
| GOAWAI     |                | 15      | DEPART       |            | 0      |          | 0     | 0        |       |  |
|            |                |         | RELEASE      |            | 0      |          | 0     | 0        |       |  |
|            |                | 17      | TERMINATE    |            | 0      |          | 0     | 0        |       |  |
|            |                |         | GENERATE     |            | 42     |          | 0     | 0        |       |  |
|            |                | 19      | OUEUE        |            |        |          | 0     | 0        |       |  |
|            |                |         | SEIZE        |            | 42     |          | 0     | -        |       |  |
|            |                | 20      |              |            | 42     |          | -     | 0        |       |  |
|            |                | 21      | DEPART       |            | 42     |          | 0     | 0        |       |  |
|            |                |         | ADVANCE      | _          | 42     |          | 0     | 0        |       |  |
|            |                |         | RELEASE      |            | 42     |          | 0     | 0        |       |  |
|            |                | 24      | TERMINATE    | _          | 42     |          | 0     | 0        |       |  |
|            |                | 25      | GENERATE     |            | 1      |          | 0     | 0        |       |  |
|            |                | 26      | TERMINATE    |            | 1      |          | 0     | 0        |       |  |
| FACILITY   |                |         | UTIL. A      |            |        |          |       |          |       |  |
| RUNWAY     |                | 288     | 0.400        | 2.000      | 1      | 0        | 0 (   | 0 0      | 0     |  |
| QUEUE      |                | MAX C   | ONT. ENTRY I | ENTRY(0) A | VE.CON | I. AVE.T | IME I | AVE.(-0) | RETRY |  |
| Q 2        |                | 1       | 0 142        | 114        | 0.017  | 0.:      | 173   | 0.880    | 0     |  |
| Q 1        |                | 2       | 0 146        | 114        | 0.132  | 1.3      | 301   | 5.937    | 0     |  |
| _          |                |         |              |            |        |          |       |          |       |  |
| FEC XN     | PRI            | BDT     | ASSEM        | CURRENT    | NEXT   | PARAMETI | ER 1  | VALUE    |       |  |
| 290        | 2              | 1440.   | 749 290      | 0          | 18     |          |       |          |       |  |
| 291        | 1              | 1445.   | 367 291      | 0          | 1      |          |       |          |       |  |
| 292        | 0              |         | 000 292      | 0          | 25     |          |       |          |       |  |

Рис. 3.4: Отчет по модели работы аэропорта

3. Построила GPSS-модель для анализа работы морского порта в течение полугода для первого случая.



Рис. 3.5: Модель работы морского порта (Случай 1)



Рис. 3.6: Отчет по модели работы морского порта (Случай 1)

4. Построила GPSS-модель для анализа работы морского порта в течение полугода для первого случая с 3 причалами, в результате видно, что это оптимальное количество причалов.

```
Untitled Model 1

prich STORAGE 3

GENERATE 20,5

QUEUE q_1

ENTER prich,3

DEPART q_1

ADVANCE 10,3

LEAVE prich,3

TERMINATE 0

GENERATE 24

TERMINATE 1

START 180
```

Рис. 3.7: Модель работы морского порта (Случай 1 с 3 причалами)



Рис. 3.8: Отчет по модели работы морского порта (Случай 1 с 3 причалами)

5. Построила GPSS-модель для анализа работы морского порта в течение полугода для второго случая.



Рис. 3.9: Модель работы морского порта (Случай 2)



Рис. 3.10: Отчет по модели работы морского порта (Случай 2)

6. Построила GPSS-модель для анализа работы морского порта в течение полугода для второго случая с 2 причалами, в результате видно, что это оптимальное количество причалов.



Рис. 3.11: Модель работы морского порта (Случай 2 с 2 причалами)

| Untitled I | 1odel 1.22.1 - | REPORT |                |       |         |         |          |        |          |       | _ 0 |
|------------|----------------|--------|----------------|-------|---------|---------|----------|--------|----------|-------|-----|
|            |                |        |                |       |         |         |          |        |          |       |     |
|            | GPSS           | World  | Simula         | tion  | Report  | - Untit | led Mode | 1 1.22 | .1       |       |     |
|            |                | пятниц | ца, мая        | 16,   | 2025 12 | :29:45  |          |        |          |       |     |
|            | START T        | IME    |                | END   | TIME B  | LOCKS   | FACILITI | ES ST  | ORAGES   |       |     |
|            | 0.0            | 000    | 4320.000 9 0 1 |       |         |         |          |        |          |       |     |
|            | NAME           |        |                |       | VA      | LUE     |          |        |          |       |     |
|            | PRICH          |        |                |       | 10000   | .000    |          |        |          |       |     |
|            | Q_1            |        |                |       | 10001   | .000    |          |        |          |       |     |
| LABEL      |                | LOC    | BLOCK          | TYPE  | ENT     | RY COUN | I CURREN | T COUN | T RETRY  |       |     |
|            |                | 1      | GENERA         | TE    |         | 143     |          | 0      | 0        |       |     |
|            |                | 2      | QUEUE          |       |         | 143     |          | 0      | 0        |       |     |
|            |                | 3      | ENTER          |       |         | 143     |          | 0      | 0        |       |     |
|            |                | 4      | DEPART         |       |         | 143     |          | 0      | 0        |       |     |
|            |                | 5      | ADVANC         | E     |         | 143     |          | 1      | 0        |       |     |
|            |                | _      | TENTE          |       |         | 142     |          | 0      |          |       |     |
|            |                | 7      | TERMIN         | ATE   |         | 142     |          | 0      | 0        |       |     |
|            |                | •      | GENERA         | 15    |         | 180     |          | 0      | 0        |       |     |
|            |                | 9      | TERMIN         | ATE   |         | 180     |          | 0      | 0        |       |     |
| QUEUE      |                | MAX CO | ONT. EN        | TRY E | NTRY(0) | AVE.CO  | NT. AVE. | TIME   | AVE.(-0) | RETRY |     |
| Q_1        |                | 1      | 0              | 143   | 143     | 0.00    | 0 0      | .000   | 0.000    | 0     |     |
| STORAGE    |                | CAP. F | REM. MI        | N. MA | X. ENT  | RIES AV | L. AVE.  | c. UTI | L. RETRY | DELAY |     |
| PRICH      |                | 2      | 0 0            |       | 2       | 286 1   | 0.52     | 4 0.2  | 62 0     | 0     |     |
| FEC XN     | PRI            | BDT    | A              | SSEM  | CURREN  | T NEXT  | PARAME   | TER    | VALUE    |       |     |
| 322        | 0              |        |                |       |         |         |          |        |          |       |     |
| 324        |                |        |                |       | 0       |         |          |        |          |       |     |
| 325        | 0              | 4344.0 | 000            | 325   | 0       | 8       |          |        |          |       |     |
|            |                |        |                |       |         |         |          |        |          |       |     |

Рис. 3.12: Отчет по модели работы морского порта (Случай 2 с 2 причалами)

### 4 Выводы

Я реализовала модель работы вычислительного центра, модель работы аэропорта и модель работы морского порта.

# Список литературы