IAML: Support Vector Machines II

Nigel Goddard School of Informatics

Semester 1

In SMV I

We saw:

- Max margin trick
- Geometry of the margin and how to compute it
- Finding the max margin hyperplane using a constrained optimization problem
- ► Max margin = Min norm

This Time

- ► Non separable data
- ► The kernel trick

The SVM optimization problem

Last time: the max margin weights can be computed by solving a constrained optimization problem

$$\min_{\mathbf{w}} \ ||\mathbf{w}||^2$$
 s.t. $y_i(\mathbf{w}^{\top}\mathbf{x}_i + w_0) \ge +1$ for all i

Many algorithms have been proposed to solve this. One of the earliest efficient algorithms is called SMO [Platt, 1998]. This is outside the scope of the course, but it does explain the name of the SVM method in Weka.

Finding the optimum

If you go through some advanced maths (Lagrange multipliers, etc.), it turns out that you can show something remarkable. Optimal parameters look like

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

 Furthermore, solution is sparse. Optimal hyperplane is determined by just a few examples: call these support vectors

Why a solution of this form?

If you move the points not on the marginal hyperplanes, solution doesn't change - therefore those points don't matter.

Finding the optimum

If you go through some advanced maths (Lagrange multipliers, etc.), it turns out that you can show something remarkable. Optimal parameters look like

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

- Furthermore, solution is sparse. Optimal hyperplane is determined by just a few examples: call these support vectors
- $ightharpoonup \alpha_i = 0$ for non-support patterns
- ▶ Optimization problem to find α_i has no local minima (like logistic regression)
- Prediction on new data point x

$$f(\mathbf{x}) = \operatorname{sign}((\mathbf{w}^{\top}\mathbf{x}) + w_0)$$
$$= \operatorname{sign}(\sum_{i=1}^{n} \alpha_i y_i(\mathbf{x}_i^{\top}\mathbf{x}) + w_0)$$

Non-separable training sets

If data set is not linearly separable, the optimization problem that we have given has no solution.

$$\min_{\mathbf{w}} \ ||\mathbf{w}||^2$$
s.t. $y_i(\mathbf{w}^{\top}\mathbf{x}_i + w_0) \ge +1$ for all i

▶ Why?

Non-separable training sets

► If data set is not linearly separable, the optimization problem that we have given has no solution.

$$\min_{\mathbf{w}} \ ||\mathbf{w}||^2$$
s.t. $y_i(\mathbf{w}^{\top}\mathbf{x}_i + w_0) \ge +1$ for all i

- ► Why?
- Solution: Don't require that we classify all points correctly. Allow the algorithm to choose to ignore some of the points.
- ► This is obviously dangerous (why not ignore all of them?) so we need to give it a penalty for doing so.

Slack

- ▶ Solution: Add a "slack" variable $\xi_i \ge 0$ for each training example.
- If the slack variable is high, we get to relax the constraint, but we pay a price
- New optimization problem is to minimize

$$||\mathbf{w}||^2 + C(\sum_{i=1}^n \xi_i^k)$$

subject to the constraints

$$\mathbf{w}^{\top}\mathbf{x}_i + w_0 \ge 1 - \xi_i$$
 for $y_i = +1$
 $\mathbf{w}^{\top}\mathbf{x}_i + w_0 \le -1 + \xi_i$ for $y_i = -1$

- ► Usually set k = 1. C is a trade-off parameter. Large C gives a large penalty to errors.
- Solution has same form, but support vectors also include all where ξ_i ≠ 0. Why?

Think about ridge regression again

Our max margin + slack optimization problem is to minimize:

$$||\mathbf{w}||^2 + C(\sum_{i=1}^n \xi_i)^k$$

subject to the constraints

$$\mathbf{w}^{\top}\mathbf{x}_i + w_0 \ge 1 - \xi_i$$
 for $y_i = +1$
 $\mathbf{w}^{\top}\mathbf{x}_i + w_0 \le -1 + \xi_i$ for $y_i = -1$

- This looks a even more like ridge regression than the non-slack problem:
 - $C(\sum_{i=1}^{n} \xi_i)^k$ measures how well we fit the data
 - ▶ ||**w**||² penalizes weight vectors with a large norm
- So C can be viewed as a regularization parameters, like λ in ridge regression or regularized logistic regression
- You're allowed to make this tradeoff even when the data set is separable!

Why you might want slack in a separable data set

Non-linear SVMs

- ➤ SVMs can be made nonlinear just like any other linear algorithm we've seen (i.e., using a basis expansion)
- But in an SVM, the basis expansion is implemented in a very special way, using something called a kernel
- ► The reason for this is that kernels can be faster to compute with if the expanded feature space is very high dimensional (even infinite)!
- This is a fairly advanced topic mathematically, so we will just go through a high-level version

Kernel

- ► A kernel is in some sense an alternate "API" for specifying to the classifier what your expanded feature space is.
- ▶ Up to now, we have always given the classifier a new set of training vectors $\phi(\mathbf{x}_i)$ for all i, e.g., just as a list of numbers. $\phi: \mathbb{R}^d \to \mathbb{R}^D$
- ▶ If *D* is large, this will be expensive; if *D* is infinite, this will be impossible

Non-linear SVMs

- ▶ Transform **x** to ϕ (**x**)
- Linear algorithm depends only on $\mathbf{x}^{\top}\mathbf{x}_{i}$. Hence transformed algorithm depends only on $\phi(\mathbf{x})^{\top}\phi(\mathbf{x}_{i})$
- ▶ Use a kernel function $k(\mathbf{x}_i, \mathbf{x}_i)$ such that

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j)$$

► (This is called the "kernel trick", and can be used with a wide variety of learning algorithms, not just max margin.)

Example of kernel

Example 1: for 2-d input space

$$\phi(\mathbf{x}_i) = \left(egin{array}{c} x_{i,1}^2 \ \sqrt{2}x_{i,1}x_{i,2} \ x_{i,2}^2 \end{array}
ight)$$

then

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^{\top} \mathbf{x}_j)^2$$

Kernels, dot products, and distance

The Euclidean distance squared between two vectors can be computed using dot products

$$d(\mathbf{x}_{1}, \mathbf{x}_{2}) = (\mathbf{x}_{1} - \mathbf{x}_{2})^{T} (\mathbf{x}_{1} - \mathbf{x}_{2})$$
$$= \mathbf{x}_{1}^{T} \mathbf{x}_{1} - 2 \mathbf{x}_{1}^{T} \mathbf{x}_{2} + \mathbf{x}_{2}^{T} \mathbf{x}_{2}$$

▶ Using a linear kernel $k(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^T \mathbf{x}_2$ we can rewrite this as

$$d(\mathbf{x}_1, \mathbf{x}_2) = k(\mathbf{x}_1, \mathbf{x}_1) - 2k(\mathbf{x}_1, \mathbf{x}_2) + k(\mathbf{x}_2, \mathbf{x}_2)$$

Any kernel gives you an associated distance measure this way. Think of a kernel as an indirect way of specifying distances.

Support Vector Machine

- A support vector machine is a kernelized maximum margin classifier.
- For max margin remember that we had the magic property

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

This means we would predict the label of a test example x as

$$\hat{y} = \operatorname{sign}[\mathbf{w}^T \mathbf{x} + w_0] = \operatorname{sign}[\sum_i \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + w_0]$$

Kernelizing this we get

$$\hat{y} = \operatorname{sign}[\sum_{i} \alpha_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b]$$

Prediction on new example

Figure Credit: Bernhard Schoelkopf

Figure Credit: Bernhard Schoelkopf

Example 2

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp -||\mathbf{x}_i - \mathbf{x}_j||^2/\alpha^2$$

In this case the dimension of ϕ is infinite. i.e., It can be shown that no ϕ that maps into a finite-dimensional space will give you this kernel.

▶ We can *never* calculate $\phi(\mathbf{x})$, but the algorithm only needs us to calculate k for different pairs of points.

Choosing ϕ , C

- ► There are theoretical results, but we will not cover them. (If you want to look them up, there are actually upper bounds on the generalization error: look for VC-dimension and structural risk minimization.)
- However, in practice cross-validation methods are commonly used

Example application

- ► US Postal Service digit data (7291 examples, 16 × 16 images). Three SVMs using polynomial, RBF and MLP-type kernels were used (see Schölkopf and Smola, Learning with Kernels, 2002 for details)
- ▶ Use almost the same (\simeq 90%) small sets (4% of data base) of SVs
- ► All systems perform well (≃ 4% error)
- Many other applications, e.g.
 - Text categorization
 - Face detection
 - DNA analysis

Comparison with linear and logistic regression

- Underlying basic idea of linear prediction is the same, but error functions differ
- Logistic regression (non-sparse) vs SVM ("hinge loss", sparse solution)
- ▶ Linear regression (squared error) vs ϵ -insensitive error
- Linear regression and logistic regression can be "kernelized" too

SVM summary

- SVMs are the combination of max-margin and the kernel trick
- Learn linear decision boundaries (like logistic regression, perceptrons)
 - Pick hyperplane that maximizes margin
 - Use slack variables to deal with non-separable data
 - Optimal hyperplane can be written in terms of support patterns
- Transform to higher-dimensional space using kernel functions
- Good empirical results on many problems
- Appears to avoid overfitting in high dimensional spaces (cf regularization)
- Sorry for all the maths!