CLAIMS

1. A method of forming an ion of formula (I):

$$(Ar^2)_n - C - [Ar^1 - (L_M\{M' - B_P'\}_p)_q]_m$$
(I)

comprising the steps of:

5 (i) reacting a compound of the formula (IIa):

$$(Ar^{2})_{n}$$
— C — $[Ar^{1}$ — $(L_{M}\{M\}_{p})_{q}]_{m}$
 X
(IIa

with a biopolymer, B_P, having at least one group capable of reacting with M to form a covalent linkage, to provide a biopolymer derivative of the formula (IIIa):

$$(Ar^{2})_{n}$$
— C — $[Ar^{1}$ — $(L_{M}\{M'-B_{P'}\}_{p})_{q}]_{m}$
 X (IIIa); and

10 (ii) cleaving the C—X bond between X and the α-carbon atom of the derivative of formula (IIIa) to form the ion of formula (I);

where:

20

C★ is a carbon atom bearing a single positive charge or a single negative charge;

X is a group capable of being cleaved from the α-carbon atom to form an ion of formula (I);

15 M is independently a group capable of reacting with B_P to form the covalent linkage;

 B_P ' is independently the biopolymer residue of B_P produced on formation of the covalent linkage;

M' is independently the residue of M produced on formation of the covalent linkage;

Ar¹ is independently an aromatic group or an aromatic group substituted with one or more A;

Ar² is independently an aromatic group or an aromatic group substituted with one or more A;

optionally wherein (a) two or three of the groups Ar¹ and Ar² are linked together by one or more L⁵, where L⁵ is independently a single bond or a linker atom or group; and/or (b) two or three of the groups Ar¹ and Ar² together form an aromatic group or an aromatic group substituted with one or more A;

A is independently a substituent;

L_M is independently a single bond or a linker atom or group;

n = 0, 1 or 2 and m = 1, 2, or 3, provided the sum of n+m = 3;

p independently = 1 or more; and

q independently = 1 or more.

- 2. A method of forming an ion of formula (I), comprising the steps of:
 - (i) reacting a compound of the formula (IIb):

$$(Ar^2)_n$$
— C — $[Ar^1$ — $(L_M\{M\}_p)_q]_m$
 $X \bigstar$ (IIb);

with a biopolymer, B_P, having at least one group capable of reacting with M to form a covalent linkage, to provide a biopolymer derivative of the formula (IIIb):

$$(Ar^2)_n$$
— C — $[Ar^1$ — $(L_M\{M'-B_P'\}_p)_q]_m$
 $X \bigstar$ (IIIb); and

dissociating X * from the derivative of formula (IIIb), to form the ion of formula (I);

10 where:

15

5

 $X \star is$ a counter-ion to $C \star$; and $C \star$, M, B_P', M', Ar¹, Ar², L_M, n, m, p and q are as defined in claim 1.

- 3. A biopolymer derivative of the formula (IIIa).
- 4. A biopolymer derivative of the formula (IIIb).
- 5. An ion of formula (I).
- 20 6. A compound of the formula (IIa).
 - 7. A compound of the formula (IIb).
 - 8. A method of forming an ion of formula (I) comprising the steps of:
- 25 (i) reacting a solid support of formula (TVai), (TVaii), or (TVaiii):

$$(Ar^{2})_{n} - C - [Ar^{1} - (L_{M}\{M\}_{p})_{q}]_{m}$$

$$(S_{S})$$

$$(IVai);$$

$$Ar^{1} - (L_{M}\{M\}_{p})_{q}$$

$$(Ar^{2})_{n} - C - [Ar^{1} - (L_{M}\{M\}_{p})_{q}]_{m-1}$$

$$X$$

$$(IVaii);$$

$$(S_{S})$$

$$Ar^{2}$$

$$(Ar^{2})_{n-1} - C - [Ar^{1} - (L_{M}\{M\}_{p})_{q}]_{m}$$

$$X$$

$$(IVaiii);$$

with a biopolymer, B_P, having at least one group capable of reacting with M to form a covalent linkage, to provide a modified solid support of the formula (Vai), (Vaii), or (Vaiii), respectively:

$$(Ar^{2})_{n}-C-[Ar^{1}-(L_{M}\{M'-B_{P'}\}_{p})_{q}]_{m}$$

$$S_{S}$$

$$(Vai));$$

$$Ar^{1}-(L_{M}\{M'-B_{P'}\}_{p})_{q}$$

$$(Ar^{2})_{n}-C-[Ar^{1}-(L_{M}\{M'-B_{P'}\}_{p})_{q}]_{m-1}$$

$$X$$

$$(Vaii);$$

$$S_{S}$$

$$Ar^{2}$$

$$(Ar^{2})_{n-1}-C-[Ar^{1}-(L_{M}\{M'-B_{P'}\}_{p})_{q}]_{m}$$

$$X$$

$$(Vaiii);$$

and either:

10 (iia) for modified solid supports of formula (Vai) cleaving the C-S_S bond between the α-carbon atom of the modified solid support of formula (Vai) and the solid support S_S to form the ion of formula (I);

(iib) for modified solid supports of formula (Vaii), either simultaneously or sequentially, cleaving the C-X bond between X and the α-carbon atom and cleaving the SS- - -Ar1 bond between the solid support and the Ar1 group to form the ion of formula (I); or

(iic) for modified solid supports of formula (Vaiii), either simultaneously or 5 sequentially, cleaving the C-X bond between X and the α-carbon atom and cleaving the SS- - -Ar2 bond between the solid support and the Ar2 group to form the ion of formula (I);

where:

X, Ar^1 , Ar^2 , $B_{P'}$, L_M , M, M', n, m, p and q are as defined in claim 1; S_S is a solid support;

10 C---S_S comprises a cleavable bond between C and S_S;

S_S---Ar¹ comprises a cleavable bond between Ar¹ and S_S; and

 $S_{S^{-}}$ --Ar² comprises a cleavable bond between Ar² and $S_{S^{-}}$

- 9. A method of forming an ion of formula (I) comprising the steps of:
- 15 (i) reacting a solid support of formula (IVbii) or (IVbiii):

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}\end{array} & \begin{array}{c} \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\$$

with a biopolymer, B_P, having at least one group capable of reacting with M to form a covalent linkage, to provide a modified solid support of the formula (Vbii) or (Vbiii), respectively:

$$(Ar^{2})_{n} - (L_{M}\{M' - B_{P'}\}_{p})_{q}$$

$$(Ar^{2})_{n} - (L_{M}\{M' - B_{P'}\}_{p})_{q}]_{m-1}$$

$$X \star \qquad (Vbii);$$

20

$$(Ar^{2})_{n-1} - C - [Ar^{1} - (L_{M}\{M'-B_{P'}\}_{p})_{q}]_{m}$$

$$X \star \qquad (Vbiii);$$

and either:

15

(iia) for modified solid supports of formula (Vbii), either simultaneously or sequentially, dissociating $X \star$ from the derivative of formula (Vbii) and cleaving the S_{S^-} --Ar¹ bond between the solid support and the Ar¹ group to form an ion of formula (I); or

(iib) for modified solid supports of formula (Vbiii), either simultaneously or sequentially, dissociating $X \star$ from the derivative of formula (Vbiii) and cleaving the $S_{S^{-}}$ --Ar² bond between the solid support and the Ar² group to form an ion of formula (I);

where: $X \star$, Ar^1 , Ar^2 , B_P , L_M , M, M, m, m, p, q, S_S , C--- S_S , S_S --- Ar^1 and S_S --- Ar^2 are as defined in claim 8.

- 10. A method of forming an ion of formula (I) comprising the steps of:
 - (i) reacting a solid support of formula (IVaiv) or (IVbiv):

$$\{M\}_{p-1}L_{M}M''^{1}-\cdots(S_{S})$$

$$Ar^{1}-\cdots(L_{M}\{M\}_{p})_{q-1}$$

$$(Ar^{2})_{n}-\cdots(Ar^{1}-\cdots(L_{M}\{M\}_{p})_{q}]_{m-1}$$

$$X$$

$$\{M\}_{p-1}L_{M}M''^{1}-\cdots(S_{S})$$

$$Ar^{1}-\cdots(L_{M}\{M\}_{p})_{q-1}$$

$$(Ar^{2})_{n'}-\cdots(Ar^{1}-\cdots(L_{M}\{M\}_{p})_{q}]_{m'}$$

$$X \bigstar$$

$$(IVbiv);$$

with a biopolymer, B_P, having at least one group capable of reacting with M to form a covalent linkage, to provide a modified solid support of the formula (Vaiv) or (Vbiv), respectively:

and either:

- (iia) for modified solid supports of formula (Vaiv), cleaving the C-X bond between X and the α-carbon atom to form the ion of formula (I); or
 - (iib) for modified solid supports of formula (Vbiv), dissociating $X \star$ from the derivative of formula (Vbiv) to form the ion of formula (I);

where:

10

15

X, X \(\dagger, Ar\), Ar\, Ar\, Bp', LM, M, M', p, q, n, m, and Ss are as defined in claims 8 and 9;

M"---S_s comprises a bond between M" and S_s; and

M" is the same as M except that S_S is bound to a portion of M which does not form part of M'.

- 11. A solid support of the formula (IVai), (IVaii), (IVaii), (IVaiv), (IVbii), (IVbiii) or (IVbiv).
- 12. A modified solid support of the formula (Vai), (Vaii), (Vaii), (Vaii), (Vbii), (Vbiii) or (Vbiv).
- 13. A method of any of claims 8-10 or a product of claim 11 or 12 wherein the biopolymer is a 20 synthetic biopolymer.
 - 14. A method or product of claim 13 wherein the synthetic biopolymer is an oligonucleotide, a peptide or a carbohydrate.

- 15. A method for analysing a biopolymer, B_P, comprising the steps of:
- (i) reacting the biopolymer B_P with a compound of formula (IIa) or (IIb) or a solid support of formula (IVai), (IVaii), (IVaii), (IVbii), (IVbiii) or (IVbiv);
 - (ii) providing an ion of formula (I); and
- 5 (iii) analysing the ion of formula (I) by mass spectrometry.
- 16. In a method for analysing a biopolymer, B_P, the improvement consisting of: (i) reacting a biopolymer, B_P with a compound of formula (IIa) or (IIb) or a solid support of formula (IVai), (IVaii), (IVaii), (IVbii), (IVbiii) or (IVbiv); (ii) providing an ion of formula (I); and (iii) analysing the ion by mass spectrometry.
 - 17. A method of claim 15 or claim 16 wherein the analysis by mass spectrometry is carried out in a spectrometer which is suitable for MALDI-TOF spectrometry.
- 18. A method of any of claims 1, 2, 8-10 or 13-17 or a product of any of claims 3-7, 11 or 12, wherein C★ bears a single positive charge, such that the ions of formulae (I), (IIb) and (IIIb) have the structures:

Formula (I)	$(Ar^2)_n - C - [Ar^1 - (L_M - \{M' - B_{P'}\}_p)_q]_m$
Formula (IIb)	$(Ar^2)_{ri} - \underset{\bigoplus}{C} - [Ar^1 - (L_M - \{M\}_p)_q]_m$
	X O
Formula (IIIb)	$(Ar^2)_n - C - [Ar^1 - (L_M - \{M' - B_{P'}\}_p)_q]_m$
	хө

- 19. A method of any of claims 1, 2, 8-10 or 13-18 or a product of any of claims 3-7, 11, 12 or 18 wherein n = 2 and m = 1.
 - 20. A method of any of claims 1, 2, 8-10 or 13-19 or a product of any of claims 3-7, 11, 12, 18 or 19 wherein p = 1, 2 or 3.
- 25 21. A method of any of claims 1, 2, 8-10 or 13-20 or a product of any of claims 3-7, 11, 12 or 18-20 wherein p=1.

22. A method of any of claims 1, 2, 8-10 or 13-21 or a product of any of claims 3-7, 11, 12 or 18-21 wherein q = 1, 2 or 3.

- 5 23. A method of any of claims 1, 2, 8-10 or 13-22 or a product of any of claims 3-7, 11, 12 or 18-22 wherein q=1.
 - 24. A method of any of claims 1, 2, 8-10 or 13-23 or a product of any of claims 3-7, 11, 12 or 18-23 wherein n = 2, m = 1, p = 1 and q = 1, such that the ion of formula (I) has the structure:

10

- 25. A method of any of claims 1, 2, 8-10 or 13-24 or a product of any of claims 3-7, 11, 12 or 18-24 wherein the biopolymer is a polymer found in biological samples.
- 26. A method or product of claim 25 wherein the biopolymer is a polypeptide, polysaccharide, or polynucleotide.
 - 27. A method or product of claim 26 wherein the biopolymer is a polypeptide.
- 28. A method or product of any of claims 25-27 wherein the biopolymer does not readily form a molecular ion on illumination of laser light at 340 nm.
 - 29. A method of any of claims 1, 2, 8-10 or 13-28 or a product of any of claims 3-7, 11, 12 or 18-28 wherein the ratio $m(B_P) / m(IX)$ is more than 2, where m(IX) is the mass of the fragment (IX)

$$(Ar^2)_n - C - [Ar^1 - (L_M\{M'\}_p)_q]_m$$
(IX)

- 25 of the cation of formula (I) and m(B_P') is the mass of the biopolymer residue B_P'.
 - 30. A method of any of claims 1, 2, 8-10 or 13-29 or a product of any of claims 3-7, 11, 12 or 18-29 wherein M is: -NR₂; -SR; -OR; -B(R)Y; -BY₂; -C(R)₂Y; -C(R)Y₂; -CY₃; -C(=Z)Y;

-Z-C(=Z)Y; -C(=Z)R; -C(R)(OH)OR; -C(R)(OR)₂; -S(=O)Y; -Z-S(=O)Y; -S(=O)₂Y; -Z-S(=O)₂Y; -S(=O)₃Y; -Z-S(=O)₃Y; -P(=Z)(ZR)Y; -P(=Z)Y₂; -Z-P(=Z)(ZR)Y; -Z-P(=Z)Y₂; -P(=Z)(R)Y; -Z-P(=Z)(R)Y; or -N=C(=Z), where Y is independently a leaving group, Z is independently O, S or N(R) and R is independently H, C_{1-8} hydrocarbyl or C_{1-8} hydrocarbyl substituted with one or more A.

5

31. A method of any of claims 1, 2, 8-10 or 13-29 or a product of any of claims 3-7, 11, 12 or 18-29 wherein M is: -N(R)-; -S-; -O-; -B(Y)-; -C(R)(Y)-; -CY₂-; -C(=O)-; -C(OH)(OR)-; or -C(OR)₂-, where Y is independently a leaving group and R is independently H, C_{1-8} hydrocarbyl or C_{1-8} hydrocarbyl substituted with one or more A.

10

- 33. A method of any of claims 1, 2, 8-10 or 13-29 or a product of any of claims 3-7, 11, 12 or 18-29 wherein the covalent linkage is selected from those produced through the reaction of one the

following groups: -CO-NH-; biotin-(strept)avidin;

34. A method of any of claims 1, 2, 8-10 or 13-33 or a product of any of claims 3-7, 11, 12 or 18-33 wherein L_M is O or S.

20

35. A method of any of claims 1, 2, 8-10 or 13-33 or a product of any of claims 3-7, 11, 12 or 18-33 wherein L_M is $-E^M$ -, $-(D^M)_{t^-}$, $-(E^M-D^M)_{t^-}$, $-(D^M-E^M)_{t^-}$, $-E^M-(D^M-E^M)_{t^-}$ or $-D^M-(E^M-D^M)_{t^-}$ (in the orientation Ar^1 -($L_M\{M\}_p$)_q or Ar^1 -($L_M\{M'\}_p$)_q, as appropriate),

where:

a sufficient number of linking covalent bonds, in addition to the covalent bonds at the chain termini shown, are provided on groups E^M and D^M for linking the p instances of M (or M') groups;

 D^{M} is independently C_{1-8} hydrocarbylene or C_{1-8} hydrocarbylene substituted with one or more A;

 E^M (in the orientation Ar^1 -($L_M\{M\}_p$)_q or Ar^1 -($L_M\{M'\}_p$)_q, as appropriate) is independently $-Z^M$ -, $-C(=Z^M)$ -, $-Z^MC(=Z^M)$ -, $-Z^MC(=Z^M)Z^M$

 $-Z^MS(=O)Z^M$ -, $-S(=O)_2$ -, $-Z^MS(=O)_2$ -, $-S(=O)_2Z^M$ -, $-Z^MS(=O)_2Z^M$ -, where Z^M is independently O, S or $N(R^M)$ and where R^M is independently H, C_{1-8} hydrocarbyl (e.g. C_{1-8} alkyl) or C_{1-8} hydrocarbyl substituted with one or more A; and

t = 1 or more.

5

36. A method of any of claims 1, 8, 10 or 13-35 or a product of any of claims 3, 6, 11, 12 or 18-35 wherein the group X is halogen, hydroxy, C₁₋₈hydrocarbyloxy, C₁₋₈hydrocarbyloxy substituted with one or more A, C₁₋₈heterohydrocarbyloxy, C₁₋₈heterohydrocarbyloxy substituted with one or more A, mesyl, tosyl, pentafluorophenyl, -O-succinimidyl -S-succinimidyl, or phenyloxy substituted with one or more A.

10

37. A method of any of claims 1, 2, 8-10 or 13-36 or a product of any of claims 3-7, 11, 12 or 18-36 wherein Ar² is independently cyclopropyl, cyclopropyl substituted with one or more A, aryl, aryl substituted with one or more A, heteroaryl, or heteroaryl substituted with one or more A.

15

38. A method of any of claims 1, 2, 8-10 or 13-37 or a product of any of claims 3-7, 11, 12 or 18-37 wherein Ar^2 is

MeO
$$\longrightarrow$$
 $\stackrel{\bullet}{\underbrace{\$}}$ MeO $\stackrel{\bullet}{\underbrace{\hspace{1cm}}}$ $\stackrel{\bullet}{\underbrace{\hspace{1cm}}}$

20

or

39. A method of any of claims 1, 2, 8-10 or 13-38 or a product of any of claims 3-7, 11, 12 or 18-38 wherein Ar¹ is independently cyclopropylene, cyclopropylene substituted with one or more A, arylene, arylene substituted with one or more A, heteroarylene, or heteroarylene substituted with one or more A.

5

40. A method of any of claims 1, 2, 8-10 or 13-39 or a product of any of claims 3-7, 11, 12 or

18-39 wherein
$$Ar^1$$
 is $rac{1}{2}$ or $rac{1}{2}$

41. A method of any of claims 1, 2, 8-10 or 13-40 or a product of any of claims 3-7, 11, 12 or 18-40 wherein L⁵ is O or S.

42. A method of any of claims 1, 2, 8-10 or 13-40 or a product of any of claims 3-7, 11, 12 or 18-40 wherein L⁵ is -E⁵-, -(D⁵)_{t'}-, -(E⁵-D⁵)_{t'}-, -(D⁵-E⁵)_{t'}-, -E⁵-(D⁵-E⁵)_{t'}- or -D⁵-(E⁵-D⁵)_{t'}-,

where:

20

D⁵ is independently C_{1-8} hydrocarbylene or C_{1-8} hydrocarbylene substituted with one or more A;

E⁵ is independently $-Z^5$ -, $-C(=Z^5)$ -, $-Z^5C(=Z^5)$ -, $-C(=Z^5)Z^5$ -, $-Z^5C(=Z^5)Z^5$ -, -S(=O)-, $-Z^5S(=O)$ -, $-S(=O)Z^5$ -, where Z^5 is independently O, S or N(R⁵) and where R⁵ is independently H, C₁₋₈hydrocarbyl or C₁₋₈hydrocarbyl substituted with one or more A; and

t' = 1 or more.