Quiz 3 (Module 7)	Class:]	Name:	Student #:			
Translate English into	Chinese	4.	reinforcement 增强		界纤维长度		
1. ceramic matrix	composites	5.	pyrolysis <mark>热解</mark>	10.	filament 单丝		
陶瓷基复合材料	料	6.	preimpregnation 预浸	11.	aramid fiber 芳纶纤维		
2. nanocomposites		7.	boron fiber 硼纤维	12.	aspect ratio 长径比		
纳米复合材料		8.	coupling agent 偶联剂				
3. interphase 界面	相	9.	critical length of a fiber 临				
(注: 1-12, 0.5pt/题,	17-32, 2pt/题)						
13. Which statement is NOT true about Matrix Materials:							
A. A discontinuous phase B. Acting as a Binder material							
C. Distribute load among fibers or particles D. Protecting Fibers or particles							
14. (T or F) In short fiber composites, the length of short fiber must be over its Critical length (lc) in order to							
provide efficient load transfer from polymer matrix to the fibers.							
15 is NOT the used to produce carbon fibers.							
A. Rayon, B. Polyacrylonitrile, C. Pitch, D. Prepreg							
16. Which of the following statements is NOT true for describing an interphase in a fiber-reinforced composite.							
A. It is a region between two interfaces.							
B. It is a distinct phase.							
C. It does not have its own identity.							
D. It plays an important role in contributing to the properties of composites.							
17. (T or F) Specific stiffness is also called specific modulus.							
18. Which of the following is not a requirement for Matrix used in composites?							
A. Ability to wet fibers							
			pared to reinforcement				
	C. Thermochemical compatibility between fibers and matrix						
2	D. No significant chemical reaction between the two phases						
19. Which of the following statement is not true for describing Kevlar fiber.							
_	A. It is a liquid-crystalline polymer;						
B. It is an aromatic polyamide fiber;							
	C. It has low thermal stability; D. It is an instruming with high strangth and tangile modulus in the fiber lengitudinal direction.						
D. It is anisotropic with high strength and tensile modulus in the fiber-longitudinal direction							
20. Plywood and safety glass are examples of A. laminar composites B. sandwich composites							
C. particulate co	_		D. foam com	-			
_	_		D. Toam comp	posites			
21. Which fiber has A. Glass Fiber,	s the highest Modul B. Kevlar Fibe		C. Carbon Fiber, D. G1	raphite Fiber			
22. Which fiber is the toughest one?							
A. Glass Fiber	_	er,	C. Boron, D. Graphite Fibe	er			
23. In terms of density, which order (from low to high) is correct as far as glass, carbon, and Kevlar fibers are							
concerned?							

A. Kevlar fiber, carbon fiber, glass fiber;

Qui	iz 3 (Module 7) Class:	Name:	Student #:				
	B. Glass fiber, Kevlar fiber, carb	on fiber;					
	C. Carbon fiber, glass fiber, Kev	lar fiber.					
24.	4. Which statement about fiber loading is not correct?						
	A. Fiber loading is the amount of	-	osite material				
	B. Fiber loading can be expressed		s when the fibers are arranged parallel to each other				
	-	-	al to the volume fraction of fiber present				
25.	Which of the following statement						
	A. The process uses a matched	_	Ç				
]	B. Can accommodate high fiber	volume fractions and lor	ng fiber lengths.				
	C. This process can produce a	• •	nitation.				
]	D. Pressure and heat are require	•					
26.		_	ngth and stiffness than in bulk form.				
27.	•	•	by a wise selection of different constituent layer.				
28.	Which Composite fabrication tec						
	A. Spay up, D. Resin Transfer Molding,	B. Compression Molding E. Filament Winding	ng, C. Pultrusion,				
	· ·	9	2 mus 2222222				
29.	Which composite fabrication tech A. Spay up,	B. Compression Moldin					
	C. Resin Transfer Molding,	D. Hand Layup	161				
30.		• 1	ading, the occurrence of fiber pullout may be caused				
	by	<i>J</i>					
	A. Low Matrix strength	B. Low Fiber strength	C. Poor matrix-fiber adhesion				
31.	(T or F) Compared to injection	molding, compression mo	olding can accommodate high fiber volume fractions				
	and long fiber lengths.						
32.	(T or F) The reasons why carbon blacks have good reinforcement effects on rubber are mainly due to their good						
	adhesive bonding with rubber mol	ecules, and their uniforml	y well-dispersion in rubber.				
33.	. Hybrid composites combine two or more different fibers in a common matrix. The four basic types of hybrids						
	are A) Interply hybrid compos	siteB) Intraply hybrid co	ompositeC) Interply/Intraply hybrid composite				
	and superhybrids. (8pt)						
34.	There are two stages involved in	the processing of most f	iber composites: A) layup 铺放 or combining of the				
	reinforcement & matrix and	B) cure or solidification	of resin. (4pt)				
35.	Write down the full names for the	e following abbreviations	and translate them into Chinese. (6pt)				
	(1) PMC		Resin Transfer Molding 树脂传递模塑				
	Polymer matrix Composite 聚台	物基复合材料	(5) SRIM				
	(2) SMC	no fullication duck	Structural Reaction Injection Molding 结				
	Sheet Molding Compounds 片状	大模型料	构反应注射成型				
	(3) BMC Bulk Molding Compounds 团状	岩朔 朝	(6) GRP Glass-reinforced Plastics or Glass fiber				
	(4) RTM	4大坐作	reinforced Plastics 玻璃纤维增强塑料				
	(),		= 2000000 0000 = 20000000 NV-L4-L4 VM-E4 VM-E4-L4				

36. List the factors which affect the properties of fiber-reinforced composites. (12pt)

The intrinsic properties of fiber, for example the types of fibers, amount (or loading, volume fraction), orientation, aspect ratio etc.

The properties of matrix: for example, the toughness, heat resistance etc

Interfacial compatibility (or adhesion) between reinforcement and matrix;

The processing method (or the mode of fabrication)

Class:

- 37. The following figure is the graphical plot of the tensile modulus of a unidirectional composite material loaded under isostrain and isostress conditions as a function of volume fraction of reinforcing fiber. (20pt)
 - (a) Which curve is for isostrain condition? (4pt) a
 - (b) For a given volume fraction of fiber, which condition is more efficient in increasing the modulus? (4pt) **A (isostrain condition)**
 - (c) Write out the equations expressing the Rule of Mixture (ROM) and Inverse ROM in terms of the elastic modulus for the isostrain and isostress condition. (12pt)

Isostrain:
$$E_c = V_f E_f + V_m E_m$$

Isostress:

$$\frac{1}{E_C} = \frac{V_m}{E_m} + \frac{V_f}{E_f}$$

where: E is Modulus of elasticity, V is Volume fraction c refers to composite, m refers to matrix, f refers to fiber

38. Indicate how the hoop strength and axial strength change with wind angle (θ) in filament winding? (4pt) 画出示意图,或者文字叙述

As θ increases to 90° , the hoop tensile strength increases and the axial tensile strength decrease.

θ (Degree)