Ingegneria dei software

kanopo

11 aprile 2022

Indice

1	T1 - Software Development Process						
	1.1 Cos'è l'ingegneria del software?						
	1.1.1 Processo del software						
	1.2 Modelli di sviluppo del software						
	1.2.1 Modello a cascata						
	1.2.2 Modello a spirale						
	1.2.3 Sviluppo incrementale						
	1.2.4 Sviluppo guidato dai test						
	1.2.5 Sviluppo agile						
	1.2.6 Extrem programming						
	1.3 Software riusabile						
2	T2 - Coding, Debugging, Testing 2.1 Legge di Ambler per gli standard						
	2.1 Legge di Ambler per gli standard						
	2.2 Coding practices						
	2.3 Gestione degli errori						
	2.4 Testing						
	2.4.1 Unit testing						
	2.4.2 Integration testing						
	2.4.3 System testing						
	2.4.4 Functional testing						
	2.4.5 Performance testing						
	2.4.6 Acceptance testing						
3	T3 - System Modelling and UML						
U	3.1 UML						
	UNID CINE						
4	T4 - Requirements engineering						
	4.1 Classificazione dei requirements						
	4.1.1 Requisiti funzionali(features di sistema)						
	4.1.2 Requisiti non funzionali(features di sistema)						
	4.1.3 Requisiti del dominio(features di sistema)						
	4.1.4 Requisiti volatili(natura statica/dinamica)						
	4.2 Rischi						
	4.3 Documento di specifica dei requirements						
_							
5	T5 - Requirements ecgineering and UML						
	5.1 Use case diagram						
	5.2 Class diagram						
	5.2.1 Associazione						
	5.2.2 Gneralizzazione e nesting						
	5.2.3 Dipendenza e realizzazione						
	5.2.4 Aggregazione e composizione						
	5.3 Sequence diagram						
	5.4 Activity diagram						
	5.5 Robustnes diagram						

6			bility and requirements elicitation		ę
	6.1	Tecnic	he di elicitation		
		6.1.1	Document analysis		
		6.1.2	Observation of the work environment		10
		6.1.3	Questionario		10
		6.1.4	Interviste		10
		6.1.5	Scenari e casi di utilizzo		10
	6.2	Attivit	tà di supporto all'elicitation		10
		6.2.1	Brainstorming		10
		6.2.2	Focus group		
		6.2.3	Prototipi		
			1		
7	T7 -	Use c	cases		10
	7.1	Compo	onenti principali		10
8			irements		11
			sis classes		
	8.2	Classes	s discovering techniques		
		8.2.1	Noun verb analysis		
		8.2.2	Use case driven approch		11
		8.2.3	Common class patterns		11
		8.2.4	CRC cards		11
		8.2.5	Mixed approch		12
		_			
9		_	irement validation and managment		12
			ion		
		_	rements managment		
		9.2.1	Case tool support		
		9.2.2	Stati dei requirement		
		9.2.3	Tracciabilità		12
		9.2.4	Traciability planning		13
10	TT 1.0	01.			
12			ect constraint lenguage		13
			type		
	12.2	Operaz	zioni, espressioni, constraint		15
10	Т19	Dag	town man and		13
19			ign process guida		
		,			
			del design process		
			as series of decisions		
			Approcci		
		13.3.2	Attività, rischi e obiettivi	• •	14
14	T14	- Desi	ign concepts		14
1-1	111	- D C31			1.
	_	_			
\mathbf{E}	lenc	co de	elle figure		
			•		
			lo a cascata		
			lo a spirale		
			lo a incrementale		
			lo a extrem programming		
			azioni		
			lizzazione e nesting		
			gazione e composizione		
	8	Tampl	ate per i casi di utilizzo		11

Elenco delle tabelle

1 T1 - Software Development Process

L'Ingegneria del Software non è solo scrivere codice è piuttosto un concetto di risoluzione dei problemi del mondo reale sfruttando il software.

I requisiti sono sempre più stringenti: tempi brevi, sistemi complessi, molte features.

Un buon software deve avere ottime maintenability, dependability, efficiency, acceptability.

I problemi e le soluzioni sono sempre complesse ma il software permette massima flessibilità. È un sistema discreto.

Le sfide principali sono rappresentate da eterogeneità, delivery, trust.

La fase di problem solving si suddivide in analisi e sitesi.

1.1 Cos'è l'ingegneria del software?

L'Ingegneria del software è un **insieme di tecniche**, **metodologie**, **strumenti** che aiutano nella produzione di software di alta qualità dati un budget, una scadenza, e delle modifiche continue.

La sfida principale è quelli di aver a che fare con complessità elevate e ad un aumento delle responsabilità, dato che un ingegnere del software non deve solo scrivere codice, ma piuttosto lavorare con competenza e confidenzialità, attenendosi ad un'etica.

1.1.1 Processo del software

Dopo una rappresentazione astratta, si procede con un set di attività strutturate: specifiche dei requirements, design, implementazione, validazione, evoluzione.

1.2 Modelli di sviluppo del software

Distinguiamo tra **plan-driven** e **agile** development. Nel primo si pianificano i requisiti e solo in seguito si sviluppa il software. Nel secondo si sviluppa il software un pezzo alla volta, a stretto contatto con il cliente per dei feedback.

1.2.1 Modello a cascata

Modello plan-driven, le specifiche e lo sviluppo sono separati. I pro:

- ottima documentazione
- manutenzione semplice

I cons:

- specifiche congelate dopo la pianificazione iniziale
- cliente poco coninvolto
- tempi lunghi

Figura 1: Modello a cascata

1.2.2 Modello a spirale

Diverse fasi che susseguono a spirale, la gestione del rischio viene gestita tramite prototipazione che permette di testare i prodotti.

I pro:

- prevenzione dei rischi
- completezza della documentazione
- flessibilità
- elevata usabilità
- buon design
- facilità di manutenzione
- ridotto costo di sviluppo

I cons:

- modello costoso
- riservato ad esperti e a progetti costosi

Il prototipo è un'implementazione limitata del sistema, rappresentanti solo alcuni aspetti alla volta.

Figura 2: Modello a spirale

1.2.3 Sviluppo incrementale

Modello che si suddivide in fasi:

- 1. raccolta dei requisiti
- 2. versione iniziale
- 3. fase di design
- 4. fase di implementazione
- 5. produzione di versione finale

I pro:

- naturale presenza di prototipi ad ogni aggiunta di features
- basso rischio di fallimento
- qualità di testing in base alla priorità

I cons:

- scarsa visibilità d'insieme
- sistemi mal strutturati
- skill speciali necessarie

Adatto a progetti piccoli o parti di progetti grandi.

Figura 3: Modello a incrementale

1.2.4 Sviluppo guidato dai test

Vengono prima scritti i test e poi l'implementazione mettendo le difficolta in primo piano.

Rende il debug più semplice.

Si aggiunte il nuovo test e poi la features così da veriicare che tutti i test precedenti siano validi.

1.2.5 Sviluppo agile

Questo modello di sviluppo è basato sul concetto di delivery del prodotto continuo avendo delle features in continua evoluzione.

Il cliente è al centro dello sviluppo, il team si autoorganizza e le features vengono aggiunte man mano.

Essendoci la mancanza di planning il team deve essere esperto per non perdersi.

Spesso si creano documentazioni sbagliate o incomplete.

1.2.6 Extrem programming

L'XP viene scelte quado i requisiti cambiano velocemente, i team sono ridotti e affiatati(pair programming per esempio).

Tipo di programmazione agile, basato sul design semplice, release minori, refactoring continuo, alta semplicità.

Figura 4: Modello a extrem programming

1.3 Software riusabile

È comodo lavorare per **microservizi atomici**, di modo da usarli in seguito se si affronta un problema simile, un'esempio sono le API, è sempre meglio riusare qualcosa che riscriverlo da zero.

Questo "mindset" riduce i temi e i costi di sviluppo nel luno periodo.

Il contro è il fatto che i microservizi non sono fatti espressamente per una task specifica e si va a sacrificare qualche requisito.

2 T2 - Coding, Debugging, Testing

Lo stile di coding è importante perchè un programma viene scritto una volta e letto spesso da altri! Stare a ttenti ai layout, nomi, commenti, ecc...

2.1 Legge di Ambler per gli standard

Più uno standard è adottato e più sarà facile farlo usare al proprio team.

Non perdere tempo adietro a standard scemi.

Se hai dei dubbi usa gli standaard di google che sicuramente ne sanno più di me e te. standard di google

Solitamente si hanno degli standard aziendali e questi standard vanno a chiarire aspetti come:

- \bullet nomenclatura
- formattazione
- formato
- contenuto

2.2 Coding practices

- indentazione
- whitespaces
- naming, commenting

Fondaentale è spiegare i compiti delle classi, funzioni e processi complessi.

Utilizzare uno standard permette ai collechi di non dover riscrivere il codice. Rendendo più semplice le iterazioni del codice successive.

2.3 Gestione degli errori

Si fa un distinguo fra il prima, durante e dopo:

- prrevenzione
- rilevamento
- recupero

Per debuggare, bisogna riconoscere l'errore, isolare la fonte, identificarne la causa, trovare un fix, applicarlo e testarlo.

2.4 Testing

Permette di trovare errori ma non la loro assenza, il tester non dovrebbe essere il programmatore.

2.4.1 Unit testing

Test di singoli componenti.

2.4.2 Integration testing

L'intero sistema è visto come insieme di sottositemi, l'obbiettivo è quello di testare tutte le interfacce e le interazioni fra i sottositemi.

2.4.3 System testing

test dell'intero sistema per vedere se rispetta i requisiti funzionali.

2.4.4 Functional testing

Verifica delle funzionalità del sistema, test basati sui requisiti del progetto.

2.4.5 Performance testing

Test in situazioni estreme(stress testing, volume testing, recovery testing, penetration testing).

2.4.6 Acceptance testing

Il sistema è pronto per la produzione??

Test scelti ed effettuati dal cliente.(alpha e beta test)

3 T3 - System Modelling and UML

Rappresentazione astratta del sistema e dei problemi, si dedvono introdurre i componenti essenziali mediante una noazione consistente.

Il system modelling deve essere **predictive**(prima del development), **extracted**(da un sistema esistente) e **prescriptive**(definire regole per l'evoluzione del software).

3.1 UML

UML è semplice, espressivo, utile, consistent, estensibile.

4 T4 - Requirements engineering

Gli scopi dell'ingegnerizzazione dei requisiti è **identificare** i servizi necessari e i constrait, **definire** offerta e contratto, **ottenere** tutte le informazioni necessarie al design. Si cerca di ottenere requirements:

- validi(reali necessità)
- non ambigui
- completi
- comprensibili
- consistenti
- prioritizzati
- verificabili
- modificabili
- tracciabili

4.1 Classificazione dei requirements

4.1.1 Requisiti funzionali(features di sistema)

Descrivono funzionalità di sistema o di servizio, come input di dati, output, operazioni svolte, workflow, autorizzazioni.

4.1.2 Requisiti non funzionali(features di sistema)

Descrivono i limitti di parti del sistema e del suo sviluppo. Specificano criteri per giudicare l'operato del sistema.

4.1.3 Requisiti del dominio(features di sistema)

Derivato dal campo di utilizzo del software.

4.1.4 Requisiti volatili(natura statica/dinamica)

- mutable requirements = cambiano nel tempo(tasse, nomative, ecc)
- emergent requirements = cambiano quando il cliente capisce di più il sistema
- consequential requirements = emergono con l'informatizzazione del sistema che non lo era
- compatibility requirements = emergono dal dover interfacciare il sistema con altri sistemi

4.2 Rischi

I rischi della stesura dei requisiti possono essere:

- imprecisioni
- conflitti tra requisiti

4.3 Documento di specifica dei requirements

Questo documento specifica i requisiti del sistema, includendo una definizione e una specifica.

Prende il nome di system specification se include direttive su harware e software.

Software Requirements Specification (SRS) se include solo specifiche software.

Un **SRS** deve includere:

- introduzione
- descrizione generale
- features
- requirements

Il linguaggio naturale usato per stilare questo documento implica ambiguità, per questo si ricorre a una struttura ben definita per evitare ambiguità.

5 T5 - Requirements ecgineering and UML

5.1 Use case diagram

In questo diagramm vengono inclusi tutti i casi di utilizzo del sistema, da parte dei vari attori che rappresentano gli utenti.

Il System boundary divide l'interno dall'esterno del sistema.

5.2 Class diagram

Diagramma che rappresenta le classi tramite:

- gli attributi(pubblici con +, privati con e # per i protetti)
- le funzioni delle classi

5.2.1 Associazione

Quando una classe svolge il ruole di variabile all'interno di un'altra classe, questa connessione deve essere rappresentata, si usano:

- cardinalità
- direzione
- constraint
- ruoli

Figura 5: Associazioni

5.2.2 Gneralizzazione e nesting

La generalizzazione indica **eretidarietà**, nesting indica che una classe è nestata nella classe dove arriva l'operatore.

Figura 6: generalizzazione e nesting

5.2.3 Dipendenza e realizzazione

- dipendenza = relazione debole tra client e supplier
- realizzazione = relazione tra specifica e implementazione

5.2.4 Aggregazione e composizione

L'aggregazione rappresenta un elemento composto da altri elementi minori.

Figura 7: Aggregazione e composizione

5.3 Sequence diagram

Usa un timeline verticale per rappresentare l'interazione tra le classi. Ci possono essere comunicazioni sincrone e asincorne.

5.4 Activity diagram

Diagramma che rappresenta un'operazione eseguita nel sistemasa con rappresentazione dell risorse utilizzate(io, disk, banda, ecc)

5.5 Robustnes diagram

Diagramma UML semplificato che appresena gli use cases verificandone la corretteza, completezza e requisiti.

6 T6 - Feasability and requirements elicitation

Per ottenere le informazioni necessarie dobbiamo identificare le fonti, acquisire i dati, verificarli e sintetizzarli. Le varie persone interessate al progetto possono essere suddivise cosi:

- stakeholder: interessato nel progetto
- developer: produce con pochi errori
- project managment: budget, scadenze

• investor: velocizzazione del progetto

• cliente e utente: usabilità e workflow

6.1 Tecniche di elicitation

(elicitation = tirare fuori le informazioni)

6.1.1 Document analysis

Analizzare i documenti e insieme agli stakeholder verificare la correttezza dei dati.

6.1.2 Observation of the work environment

Apprendere informazioni importanti osservando il lavoratore.

6.1.3 Questionario

Determinare i fatti e leopinioni con un questionario.

6.1.4 Interviste

Decidere chi intervistare e acquisire i dati.

6.1.5 Scenari e casi di utilizzo

Esempi IRL(In Real Life) di come il sistema verrà usato.

6.2 Attività di supporto all'elicitation

6.2.1 Brainstorming

composto dalle fasi storm(spara idee) e calm(analizza idee)

6.2.2 Focus group

simile al brainstorming

6.2.3 Prototipi

Esecuzone di una task e si analizza lasituazione facendo emergere problemi e soluzioni.

7 T7 - Use cases

Gli use cases sono scenari plausibili che sfruttano i diagrammi UML. Ogni requirements deve essere mappato da almeno un use case.

7.1 Componenti principali

Lo use case deve definire lo stato precedente del sistema, l'ordine degli eventi, le alternative, situazioni eccezionali e i risulati. Deve menzionare gli attori che prendono parte al sistema, i problemi di design, i diagrammi di relazione. Ecco delel guidelines:

- non pensare all'implementazione
- ullet essere pessimistici
- elencae gli scenari funzionanti
- elencare tutti i possibili use cases
- utilizzare un formaato standard
- utilizzare verbi appropriati
- documentare bene le situazioni eccezionali
- non rappresentare singoli step come use cases

Name	The Use Case name. Typically the name is of the format <action> + <object>.</object></action>				
ID	An identifier that is unique to each Use Case.				
Description	A brief sentence that states what the user wants to be able to do and what benefit he will derive.				
Actors	The type of user who interacts with the system to accomplish the task. Actors are identified by ro name.				
Organizational Benefits	The value the organization expects to receive from having the functionality described. Ideally the is a link directly to a Business Objective.				
Frequency of Use	How often the Use Case is executed.				
Triggers	Concrete actions made by the user within the system to start the Use Case.				
Preconditions	Any states that the system must be in or conditions that must be met before the Use Case is started.				
Postconditions	Any states that the system must be in or conditions that must be met after the Use Case is completed successfully. These will be met if the Main Course or any Afternate Courses are followed. Some Exceptions may result in failure to meet the Postconditions.				
Main Course	The most common path of interactions between the user and the system. 1. Step 1 2. Step 2				
Alternate Courses	Alternate paths through the system. AC1: <condition alternate="" be="" called="" for="" the="" to=""> 1. Step 1 2. Step 2 AC2: <condition alternate="" be="" called="" for="" the="" to=""> 1. Step 1</condition></condition>				
Exceptions	Exception handling by the system. EX1: <pre><condition be="" called="" exception="" for="" the="" to=""> 1. Step 1 2. Step 2 EX2 <pre><condition be="" called="" exception="" for="" the="" to=""> 1. Step 1</condition></pre></condition></pre>				

Figura 8: Tamplate per i casi di utilizzo

8 T8 - Requirements

L'analisi dei requisiti permette di raffinare e strutturare i requisiti in modo da renderli più chiari, precisi e formali.

8.1 Analysis classes

Il concetto è quello di astrarre le entità del problema.

8.2 Classes discovering techniques

8.2.1 Noun verb analysis

Analisi che sfrutta i contenuti delle specifiche del progetto. Necessita di completezza del documento molto alta.

8.2.2 Use case driven approch

Approccio che sfrutta fli scenari degli use cases.

8.2.3 Common class patterns

Analisi basata sulla teoria della classificazione generica degli oggetti.

Fornisce linee guida, ma non un processo sistematico per ottenere le classi.

Introduce errori di mal'interpretazioni.

8.2.4 CRC cards

Sono usate in specifiche sessioni di brainstorming, generalmente si parte dagli use cases e s icreano delle card con:

- class name
- responsabilities
- collaborators

Non è un metodo sistematico, si usano le CRC cards come validazione. Gli achievement di questo metodo sono:

- Verifica la corretteza dello use case
- verifica la correttezza delle associazioni
- $\bullet\,$ verifica la corretteza delle generalizzazioni

- trovare le classi omesse
- scovare opportunità di refactoring

8.2.5 Mixed approch

Migliore:

- 1. Le classi iniziali provengono dalla conoscenza del dominio
- 2. si sfrutta come guida il common class pattern
- 3. per aggiungere altre classi si usa la noun verb analysis
- 4. per verificare il lavoro si usano gli use cases
- 5. per il brainstorming si usano le CRC cards

9 T9 - Requirement validation and managment

9.1 Valdation

La validazione consiste nella verifica della correttezza dei requisiti, con obbiettivi la completezza e i costi.

- consistenza
- realismo
- verificabilità

9.2 Requirements managment

Si verificano gli errori, conflitti e inconsitenze. Soddisfare il cliente e mantenere i costi bassi:

- identificazione dei requisiti
- processo di modifica
- policy di tracciabilità
- supporto del case tool

9.2.1 Case tool support

non ho voglia di spiegarlo.

9.2.2 Stati dei requirement

tutto questo ambaradam è molto simil ad un issue tracker come git.

- proposal
- approved
- rejected
- implementation
- verified
- deleted

Si fanno sostanzialemnte dei test con un version control e si fa il roll back in caso di problemi.

9.2.3 Tracciabilità

Anche questo discorso viene gestito bene da un software tipo git.

9.2.4 Traciability planning

Elemeti fondamentali del planning:

- tipi di stakeholder
- informazioni richieste
- dove e da chi raccogniere info
- dove e come mantenere le info
- dove e come cercare le info

Ci sono delle limitazioni per il plannign:

- numero di requirements
- lifetime stimato
- livello di maturità dell'azienda
- dimensione progetto
- altri vincoli dell'utente

12 T12 - Object constraint lenguage

Fa parte delle specifiche UML, e segue uno standard di IBM, è un linguaggio formale usato per descrivere i modelli Object oriented.

12.1 Model type

sono classi, subclasses, classi di associazione, interfacce ed enumerazioni. Hanno proprietà e attributi.

12.2 Operazioni, espressioni, constraint

I constraint sono dei valori booleani che veificano una condizioni, servono a porre limitazioni sul tipo di valore che può avere una classe.

- Migliorano la documentazione
- più precisione
- $\bullet\,$ comunicazione senza ambiguità

Vari tipi di constraint:

- invarianti(quando l'istanza è a riposo)
- precondizionali
- postcondizionali
- guard(vera prima e dopo)

13 T13 - Design process

Processo che permette di capire come implementare il sistema. Si parte dai requirements e si tiene conto dei design general princilas.

13.1 Linee guida

- esibire organizzazione modulare che fa uso intelligente di controllo tra componenti
- partizione in componenti logici
- descrivere sia dati che procedure
- arrivare ad interfacce che riducono la complessità

Un buon design deve implementare tutti i requirement espliciti del modello di analisi, e tutti quelli impliciti desiderati dal cliente. Dev'essere leggibile e comprensibile, sia per chi scrive codice, sia per chi lo testa e supporta. In generale, dovrebbe dare un'immagine generale del software, indicandone i dati, i domini funzionali e behavioral dal punto di vista dell'implementazione.

13.2 Stadi del design process

- 1. comprendere il problema
- 2. identificare una o più soluzioni
- 3. processo iterativo ed incrementale

13.3 Design as series of decisions

Alcuni tradeoff possono essere:

- funzionalità vs usabilità
- costo vs robustezza
- efficienza vs portabilità
- velocità di sviluppo vs funzionalità
- costo vs riutilizzabilità

Gli step per una decisione pesata sulle priorità sono:

- 1. Elencare le alternative possibili
- 2. elencare i pro e i contro di ogni alternativa(rispetto agli obiettivi e alle priorità)
- 3. determinare se alcune alternative impediscono altri obiettivi
- 4. scegliere l'alternativa che permette di raggiungere più obiettivi
- 5. aggiustare la priorità per decisioni future

13.3.1 Approcci

Approccio **top-down**: prima si fa il design ad alto livello del sistema, poi si prendono le decisioni man mano che si sviluppa il sistema.

Approccio **botton-up**: prima si decidono le utilities di basso livello riutilizzabili, poi il modo di integrarle insieme. Approccio **mixed**: si usa top-down per scegliere la struttura ed il bottom-up per i componenti riutilizzabili.

13.3.2 Attività, rischi e obiettivi

La fase di design ha tre fasi:

- design dell'architettura
- user interface
- class design

Un buon design è flessibile, dettagliato, ben documentato e buona possibilità di managment.

14 T14 - Design concepts