M3 - Jeux Le dilenne des traders: parisités offenter à chacun: i) ni la personne internoção dihona ()) l'antre: - mit l'autre l'a dénoncé et amende de son E pan les dues - mit l'autre ne l'a jan dihonier et par d'ema de jour le jouver, emende de 1000 E pour l'autre; ii) Symétriquement dans le cas me la produce internoção ne demuse par (70) I antre: - mit l'autre me l'a jap mon plus dénonce et amende de 100 € pnn le drum - sit l'autré l'a déhoncé et a mu de de 1000 € (0€ pour l'autre) De Listigies des brecht vo. 2) (-5.0, -500) (0, -1000) 7) (-1000, 0) (-100, -100)

Déf.: (forme nonwale) en per à deux joneurs (génindipation immédiate à n > 2 joneurs) et dit sons forme normale si on connaît: — l'ensembre des statégies l, l'2 prin chaque jonein; ex.: $\int_{a} = d1,704$ (déhonein m mm) [2 = 51 les fonctions de goin pour chaque meun: $g_1: \int_{\Lambda} \times f_2 \longrightarrow IR$ S2: In x I2 - 1/R ex.: g,(),)) = -500, etc. (et symitique jan 52) Retour sur le dilemm: dans tre le ces, J1 (= le tialen 2), marinise son çain en déhonceut $\sqrt{2}$,
quel que sit la stratique chisie par
celui-ci; et symittiquement par $\sqrt{2}$. Def.: (équilibre) en ensemble de statiques a l'équilibre si: (+ An Esa): 9n (An T2) 5 g, (TA 1 T2) { (+ 12652): S2 (1,12) ES2 (1,12)

Remarque: équilibre pour on joueurs: S:: 1, x ... x 1, --- 172 (5,1..., 5n) a l'équilibre mi: (ti Eln,..., ~ b) (tp; Es;): g; (5,,..., A;,..., 5,...) € 9: (5, 1..., 1i, ..., 5m) Er. du dillenm: (),)) est un iquilibre. Ero 1. Mettre sous fonne monuale le jen

pienne - feu: lle - eseaus :

Si = Si = IP, F, C 4 nègle: P<F<C<Ppnéfirmen... $\frac{1}{\sqrt{1-\frac{1}{2}}} \left(\frac{1}{\sqrt{1-\frac{1}{2}}} + \frac{1}{\sqrt{1-\frac{1}{2}}} + \frac{1}{\sqrt{$ -, mettre le ju sny forme mortiet donnen la matice de gains: 1 (Sn(ni, nj), SL (ni, nj)) EIR²

: (de...) équilibres? Remanque: dans le cas d'un jen à dlier joneurs

som forme normale dont les

ensemble de statiques s, et so somt fins,

on pent résumen le jen par la matrice de

gains (et. schéma ci-avant): e'est la

matrice ((5,(si,sj), 5,2 (si,sj));=1, m

on s, = ds, ..., som le

son s, = ds, ..., son le

- matice des gans:

52 51	P	F		
P	(0,07	(011)	(1,0)	
	(1)07	(0,0)	(0,1)	
	(0,1)	(1,0)	(0,0)	

(P,P) n'oit par un équilibre: en effet $S_1(F,P) = 1 > 0 = S_1(1,P) = S(\overline{M_1},\overline{L})$

On voit de même que mi (F,F), mi (c,c) ore hout des êquilibres; (P, F) n'est pas non plu un équilibre, par plus que (P,C) foil que: S2 (I, = P, F) = 1 > 0 = S1 (I, 172=c) Par symitie de problème, on on clus que ce problème ne possède par d'équilibre. - Newarte (que biars): le 12 derine quand le s'a priste à jonner C; forme monurele du jon dans ce cos!? Équilibres? (.2. P-F-C "biaisé": son forme extensive, or peut proposer le midile nivant:

- le biass, sasá men l'observation de So par J2, introduit le temps dans le jeu P (Jz) 0 6 les états (1) et (2) sont indiscennable, par Jz Le bon modèle rendant compte de l'obsenvation Cinformation...) de Si est le mivant:

J2 J1	PP	PF	PC	FP	FF	FC	CP	CF	c c
P	(0,0)	(0,0)	(0,0)	(0,0)	(011)	(010)	(107	(1/2)	(1/2)
F	(10)	(1,0)	(1107)	رورها	(0,0)	(0,0)	(0,0)	(0,1)	(0,1)
0	(011)	(1,0)	ره, ٥)	(0 (A)	(1,0)	(0,0)	(010)	(111)	(0,0)

 $p_1 = PF : J_1 \text{ jone } P \text{ on annive dans}$ l'state, auguel can $J_1 \text{ jone } P \text{ auni} :$ $J_2 = PF : J_1 \text{ jone } P \text{ on annive dans}$ $J_2 = PF : J_2 \text{ jone } P \text{ on annive dans}$ $J_3 = PF : J_4 \text{ jone } P \text{ on annive dans}$ $J_3 = PF : J_4 \text{ jone } P \text{ on annive dans}$ $J_3 = PF : J_4 \text{ jone } P \text{ on annive dans}$ $J_3 = PF : J_4 \text{ jone } P \text{ on annive dans}$ $J_3 = PF : J_4 \text{ jone } P \text{ on annive dans}$ $J_3 = PF : J_4 \text{ jone } P \text{ on annive dans}$ $J_4 = PF : J_4 \text{ jone } P \text{ on annive dans}$

 $\frac{\mathbb{R}_{a} \operatorname{ppal}: (\bar{p}_{1}, \bar{p}_{2}) \in S_{1} \times S_{2} \operatorname{dequilibre}(\operatorname{de} \operatorname{Naple})_{mi}}{(\operatorname{H}_{p_{1}} \in S_{1}): S_{1}(\bar{p}_{1}, \bar{p}_{2}) \in S_{1}(\bar{p}_{1}, \bar{p}_{2})}$

Dans la mesure in chaanne des tris lignes contient trajours une paire de gains de le forme (..., 1), un équilibre (5,52) doit être tq 52 (7,172) = (..., 4).

De plus, puis (ne si on a un équilibre il connespond mé cenainement à une paine de fair (o,1) (cf. pap de (1/1) dans le teblean!), né cenainement en doit avoir une colonne de zénos pour les gains de Js.

7	es de	tactific	don: nû	ban S. Gr	, and to one
v	rême q	we;		pnn J. Gr ne: vante p	
	_ pa	s de stra	tégie de	neivante p	mr Jz,
			•		<u> </u>
				_	
E	n partic	ulier, la	- statis	is FP et	Fc de Jz
	qui in	tennienne	at dans J	les squili	bus me
	Sont p	as domi	u ar tep,	pas plus q	ne P pron
5	· · · · ·			1	•
		Pany	.		
Ex	co 2.	form	e ex luniv	e du jen	_
					main = (3,1)
	Joueur 1	Joueur 2	Joueur 1	Pot	=) 9 = 2
				meilleure mair	2 ·
	mise —	voit —— passe ——		meilleure main	
		passe —		joueur l	Soh we
0		passe —	→	meilleure main	n mille!
Y	(2000)	沙 (*)	- Urroit	meilleure main	91(51,52)
	passe —	mise	Voit -	memeure man	=-52 (50, 52)
		'	$\langle \text{ passe} \longrightarrow$	joueur 2 LEL	elend 174)
					,
7	loun les	main	on a dx	2 = 6 = 3 !	$(=A^2\dots)$
	posi hil	stis:		-	
	•	1			
	1	< 3			
		1	6 pombi	lités de n	nains:
	2	- 3			
	3	/	(1,27	,, (3,2)	
	$\widehat{\mathbf{r}}$	- 2	J 7 7		
	5,	52	J _A J ₂		

J2: une statiefre ouziste à prévir ce que 12 fore, connaigsent sa main, dans chacun des éters possible (ic: (1) et (2) En 1, V on 1 (2 chair 2 P, UY) En @, P n M (2 chia L1, Mt) =) 2x2=4 pom hilitip = sevoin: LU, E { x LP, M } = 2(V, P), (V, M), (1, p), (p, M) 4 er (1) = LVP, VM, PP, PM Y VE = V, E Au firel, comme se doit chizir pa stactifie pour chaque des 3 mais posibles, = LUE, UM, PP, PM Y X LVE, VM, PP, PM F x Luz, um, ex, PM } neu 1 man 3 12 = (PM, VM, VM) =) cand \(\int_2 = 4 \) = 64 herff =) tableau des gains 27 764 (et dans chaque cesa on met mon pas (S, (S, 52) , S2 (P1, 12)) maix simplement S, (P1,12) puisque O2 (P1, D2) = - S1(P1, D2) 14. for a sonne mulle).

2.2.-balcul de ça: M: An = (PP), M, PV) - si main = 3 ni man = 1 =) g, (s, s) = ! a maine 2 12 = (PM, VM, (VM)) herft file main pour Sout Sout connuer, M = (main de So, mais de So) () € ((1,2), (1,5), (4,1), (3,1), (3,1), (3,2) f (= L1,266 x 21, 2,66 \ 2 (1,11, (20, (3,1)) clon, la valeur du gair de Jn, S, (1,5 m M), est isolement conne; J.a. $g(p_{1}, p_{1}) = E(g_{1}(J_{1}, J_{2}, M))$ scalant que Mest une v.c. (= variable
aliatine, diserile à valeurs dans en

(cand en = 1!=6)

probeque M=m ie: g, (s, s2) = 2 6, (s, s2, m). [(M=m) On fait ic' l'hoppothèpe que toutes les mains sout équi probably, ie que: P(M=m) = 1/6, Um e us;

```
2 6 25
(1,2): p, = (PT, M, PV), p2 = ((PM), VM, VM)
    La séquence de jen est: P-> M-> P:g_=-1
      Joueur 1 Joueur 2 Joueur 1 | Pot

\begin{array}{cccc}
\text{mise} & \longrightarrow & \\
\text{voit} & \longrightarrow & \\
\text{passe} & \longrightarrow & \\
\end{array}

\begin{array}{ccccc}
\text{meilleure main} \\
\text{passe} & \longrightarrow & \\
\text{joueur l}
\end{array}

    2.1
(1,3): PA - PP, P2 - VM: 3x = -1
```

$$(1,3): p_{1} \rightarrow PP, p_{2} \rightarrow VM: S_{1} = -1$$

 $(24): p_{1} \rightarrow M, p_{2} \rightarrow PM, M \rightarrow P: G_{1} = -2 + 3 = 1$
 $(23): p_{1} \rightarrow M, p_{2} \rightarrow VM, M \rightarrow U: G_{1} = -2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow PM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$
 $(3,1): p_{1} \rightarrow PV, p_{2} \rightarrow VM, P \rightarrow M \rightarrow V: G_{1} = 2$