In terms of this outline, P_k is the identity with the k-th and ℓ -th rows interchanged and L_k is the identity with $m_{i,k}$, $i=k+1,\ldots,n$ inserted below the diagonal. The upper triangular matrix U is stored in the upper triangle of A , including the diagonal, when the algorithm has been completed. The quantity $a_{\ell,k}$ which is moved into $a_{k,k}$, is called the pivot. If it is zero, then at the k-th step of the elimination, the entire k-th column must be zero below the diagonal and $P_k = L_k = I$. A zero pivot does not indicate failure of the factorization, but simply that the factor U is singular and cannot be used for solving linear systems.

The only modification necessary for complex arithmetic is to define |z| = |real(z)| + |imag(z)|. This can be computed more rapidly than the conventional modulus and has all the necessary numerical properties.

<u>The condition estimate</u>. The condition number of A is

$$\kappa(A) = \|A\| \|A^{-1}\|$$

using the $\,\ell_1^{}\,$ norm, that is

$$\|x\| = \sum_{i=1}^{n} |x_i|$$
 $\|A\| = \max_{x} \|Ax\|/\|x\|$
 $\|A^{-1}\| = \max_{z} \|z\|/\|Az\|$

The ℓ_1 vector norm is chosen because it can be computed rapidly and because the subordinate matrix norm can be computed directly from the columns \mathbf{a}_i by

$$||A|| = \max_{i} ||a_{i}||$$
.

The basic task of the condition estimator is to obtain a good approximation for $\|A^{-1}\|$ without computing all the columns of A^{-1} . This is accomplished by choosing a certain vector y, solving a single system Az = y, and then estimating

$$||A^{-1}|| \approx ||z||/||y||$$
.

In order to avoid overflow, an estimate of $1/\kappa(A)$ is computed, namely

$$RCOND = \frac{\|y\|}{\|A\| \|z\|}.$$

Since $\|A^{-1}\| \ge \|z\|/\|y\|$, the estimate actually satisfies

$$1/RCOND \leq \kappa(A)$$
.

If this estimate is to be reasonably accurate, it is necessary that y be chosen in such a way that $\|z\|/\|y\|$ is nearly as large as possible. The technique used is described in a paper by Cline, Moler, Stewart and Wilkinson.

In the condition estimation subroutines, y is obtained by solving $A^Ty = e$ where e is a scalar multiple of a vector with components ± 1 . Using the factorization A = LU this involves solving $U^Tw = e$ and then solving $L^Ty = w$. The components of e are determined during the calculation of w so that $\|w\|$ is large. Suppose that e_1, \dots, e_{k-1} and w_1, \dots, w_{k-1} have already been obtained. In the process, the quantities

$$t_{j} = \sum_{i=1}^{k-1} u_{ij} w_{j}, j = k,...,n$$

are also computed. The equation determining $\mathbf{w}_{\mathbf{k}}$ is

$$u_{kk}w_k = e_k - t_k$$
.

The two possible choices for e_k are

$$e_k^+ = sign(-t_k)$$
 and $e_k^- = -e_k^+$

which give

$$w_k^+ = (e_k^+ - t_k^-)/u_{kk}$$
 and $w_k^- = (e_k^- - t_k^-)/u_{kk}^-$.

The t_i 's are temporarily updated, $t_k^+ = e_k^+ - t_k$, $t_k^- = e_k^- - t_k$,

$$t_{j}^{+} = t_{j} + u_{kj} w_{k}^{+}$$
 and $t_{j}^{-} = t_{j} + u_{kj} w_{k}^{-}$, $j = k+1,...,n$.

The probable growth in $\|\mathbf{w}\|$ is then predicted by comparing $\sum\limits_{j=k}^{n}|t_{j}^{+}|$ with $\sum\limits_{j=k}^{n}|t_{j}^{-}|$ and choosing the larger. The resulting + or - is used to specify the choice of \mathbf{e}_{k} and hence \mathbf{w}_{k} . These steps are repeated for $k=1,\ldots,n$.

The algorithm may produce overflow during division by u_{kk} if it is small and breaks down completely if any u_{kk} is zero. This indicates that $\kappa(A)$ is large or possibly that A is singular. The overflows and divisions by zero are avoided by rescaling e so that $|w_k^+| \leq 1$ and $|z_k^-| \leq 1$. The resulting value of RCOND may underflow and be set to zero. With this scaling it is not necessary to handle exact singularity as a special case. A singular A will merely produce a small, possibly zero, value of RCOND.

The vector z satisfies

$$\|Az\| = RCOND \cdot \|A\| \cdot \|z\|$$
.

Consequently, if RCOND is small, then z is an approximate null vector of the nearly singular matrix A.

The general outline of the entire process is

compute
$$\|A\|$$
factor $A = LU$
solve $U^Tw = e$, choosing e_k as described solve $L^Ty = w$
solve $Lv = y$
solve $Uz = v$
 $RCOND = \|y\|/(\|A\|\|z\|)$.

<u>Solving linear systems</u>. With the factorization A = LU the linear system Ax = b is equivalent to the two triangular systems, Ly = b and Ux = y. The algorithm thus involves two stages. The first stage, the forward elimination, produces $y = L^{-1}b$ by applying the same permutation and elimination operations to b that were applied to the columns of A during the factorization. The second stage, the back substitution, consists of solving the upper triangular system Ux = y. To obtain an algorithm which involves operations on the columns of U, this system can be written

$$x_{1} \begin{bmatrix} u_{11} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_{2} \begin{bmatrix} u_{12} \\ u_{22} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \cdots + x_{n} \begin{bmatrix} u_{1n} \\ u_{2n} \\ \vdots \\ u_{nn} \end{bmatrix} = y .$$