Importing necessary libraries

```
In [2]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
```

Loading Mercedes Benz dataset

Checking the first five rows of data set

	ID	У	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379	X380	X38
0	0	130.81	k	٧	at	а	d	u	j	0	 0	0	1	0	0	0	
1	I 6	88.53	k	t	av	е	d	у	I	0	 1	0	0	0	0	0	
2	2 7	76.26	az	w	n	С	d	х	j	Х	 0	0	0	0	0	0	
3	9	80.62	az	t	n	f	d	x	1	е	 0	0	0	0	0	0	
4	13	78.02	az	٧	n	f	d	h	d	n	 0	0	0	0	0	0	

```
In [5]:
         benz_test.head()
Out[5]:
                X0 X1 X2 X3 X4 X5 X6 X8 X10 ... X375 X376 X377 X378 X379 X380 X382
                                                                  0
                                                                         0
                                                                                           0
                                                                                                 0
          0
             1
                 az
                                  d
                                                   0
                                                            0
                                                                               1
                                                                                     0
          1
              2
                         ai
                              а
                                  d
                                                   0
                                                                         1
                                                                                                 0
          2
             3
                              f
                                  d
                                                   0 ...
                                                            0
                                                                  0
                                                                         0
                                                                               1
                                                                                     0
                                                                                           0
                                                                                                 0
                 az
                                      а
                      ٧
                         as
              4
                 az
                                  d
                                                   0 ...
                                                            0
                                                                  0
                                                                         0
                                                                                           0
                                                                                                 0
                                                            1
                                                                                                 0
              5
                                  d
                                      У
                                          i
                                             m
                                                   0 ...
                 w
                         as
         5 rows × 377 columns
```

Checking for any missing values

Checking for unique values after 10th column

Checking for null values

```
In [9]: train_null= pd.concat([benz_train.isnull().sum()], keys=['Count of Null value
s'], axis=1)
train_null[train_null.sum(axis=1) > 0]
```

Out[9]:

Count of Null values

Out[10]:

Count of Null values

```
In [11]: benz_train['y'].describe()
```

```
Out[11]: count
                   4209.000000
         mean
                    100.669318
          std
                     12.679381
         min
                     72.110000
          25%
                     90.820000
          50%
                     99.150000
          75%
                    109.010000
                    265.320000
         max
         Name: y, dtype: float64
```

```
In [12]: plt.figure(figsize=(12,6))

plt.hist(benz_train.y, bins=50, color='k')
plt.xlabel("testing time")
```

Out[12]: Text(0.5, 0, 'testing time')

Checking for Normality using Shapiro and Anderson tests

Separating numeric and categorical columns in the training dataset

```
In [15]: numerics= ["int16", "int32", "int64", "float16", "float32", "float64"]
         cat= ["0"]
In [16]: | train num= benz train.select dtypes(include= numerics)
         train_cat= benz_train.select_dtypes(include= cat)
         print(train num.shape, train cat.shape)
In [17]:
         print("Numerical columns in training", train_num.columns)
         print("Categorical columns in training", train_cat.columns)
         (4209, 370) (4209, 8)
         Numerical columns in training Index(['ID', 'y', 'X10', 'X11', 'X12', 'X13',
         'X14', 'X15', 'X16', 'X17',
                'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X38
         4',
                'X385'],
               dtype='object', length=370)
         Categorical columns in training Index(['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X
         6', 'X8'], dtype='object')
```

Finding unique values in categorical columns of training dataset

```
In [18]: | for i in train_cat.columns:
             print("The no of unique values in {} are:{}".format(i, train_cat[i].nuniqu
         e()))
             print("Unique values are:", train_cat[i].unique())
             print("-----
                ----")
         The no of unique values in X0 are:47
         Unique values are: ['k' 'az' 't' 'al' 'o' 'w' 'j' 'h' 's' 'n' 'ay' 'f' 'x'
         'y' 'aj' 'ak' 'am'
          'z' 'q' 'at' 'ap' 'v' 'af' 'a' 'e' 'ai' 'd' 'aq' 'c' 'aa' 'ba' 'as' 'i'
          'r' 'b' 'ax' 'bc' 'u' 'ad' 'au' 'm' 'l' 'aw' 'ao' 'ac' 'g' 'ab']
         The no of unique values in X1 are:27
         Unique values are: ['v' 't' 'w' 'b' 'r' 'l' 's' 'aa' 'c' 'a' 'e' 'h' 'z' 'j'
         'o' 'u' 'p' 'n'
          'i' 'y' 'd' 'f' 'm' 'k' 'g' 'q' 'ab']
         The no of unique values in X2 are:44
         Unique values are: ['at' 'av' 'n' 'e' 'as' 'aq' 'r' 'ai' 'ak' 'm' 'a' 'k' 'a
         e' 's' 'f' 'd'
          'ag' 'ay' 'ac' 'ap' 'g' 'i' 'aw' 'y' 'b' 'ao' 'al' 'h' 'x' 'au' 't' 'an'
          'z' 'ah' 'p' 'am' 'j' 'q' 'af' 'l' 'aa' 'c' 'o' 'ar']
         The no of unique values in X3 are:7
         Unique values are: ['a' 'e' 'c' 'f' 'd' 'b' 'g']
         The no of unique values in X4 are:4
         Unique values are: ['d' 'b' 'c' 'a']
         The no of unique values in X5 are:29
         Unique values are: ['u' 'y' 'x' 'h' 'g' 'f' 'j' 'i' 'd' 'c' 'af' 'ag' 'ab' 'a
         c' 'ad' 'ae'
          'ah' 'l' 'k' 'n' 'm' 'p' 'q' 's' 'r' 'v' 'w' 'o' 'aa']
         The no of unique values in X6 are:12
         Unique values are: ['j' 'l' 'd' 'h' 'i' 'a' 'g' 'c' 'k' 'e' 'f' 'b']
         The no of unique values in X8 are:25
         Unique values are: ['o' 'x' 'e' 'n' 's' 'a' 'h' 'p' 'm' 'k' 'd' 'i' 'v' 'j'
         'b' 'q' 'w' 'g'
          'y' 'l' 'f' 'u' 'r' 't' 'c']
```

Separating numeric and categorical columns in testing dataset

Finding the unique values of categorical columns in the testing dataset

```
In [21]: for i in test cat.columns:
             print("The no of unique values in {} are {}".format(i, test_cat[i].nunique
         ()))
             print("Unique values are", test_cat[i].unique())
             print("-----
            -----")
         The no of unique values in X0 are 49
         Unique values are ['az' 't' 'w' 'y' 'x' 'f' 'ap' 'o' 'ay' 'al' 'h' 'z' 'aj'
         'd' 'v' 'ak'
          'ba' 'n' 'j' 's' 'af' 'ax' 'at' 'aq' 'av' 'm' 'k' 'a' 'e' 'ai' 'i' 'ag'
          'b' 'am' 'aw' 'as' 'r' 'ao' 'u' 'l' 'c' 'ad' 'au' 'bc' 'g' 'an' 'ae' 'p'
          'bb']
         The no of unique values in X1 are 27
         Unique values are ['v' 'b' 'l' 's' 'aa' 'r' 'a' 'i' 'p' 'c' 'o' 'm' 'z' 'e'
         'h' 'w' 'g' 'k'
          'y' 't' 'u' 'd' 'j' 'q' 'n' 'f' 'ab']
         The no of unique values in X2 are 45
         Unique values are ['n' 'ai' 'as' 'ae' 's' 'b' 'e' 'ak' 'm' 'a' 'aq' 'ag' 'r'
         'k' 'aj' 'ay'
          'ao' 'an' 'ac' 'af' 'ax' 'h' 'i' 'f' 'ap' 'p' 'au' 't' 'z' 'y' 'aw' 'd'
          'at' 'g' 'am' 'j' 'x' 'ab' 'w' 'q' 'ah' 'ad' 'al' 'av' 'u']
         The no of unique values in X3 are 7
         Unique values are ['f' 'a' 'c' 'e' 'd' 'g' 'b']
         The no of unique values in X4 are 4
         Unique values are ['d' 'b' 'a' 'c']
         The no of unique values in X5 are 32
         Unique values are ['t' 'b' 'a' 'z' 'y' 'x' 'h' 'g' 'f' 'j' 'i' 'd' 'c' 'af'
         'ag' 'ab' 'ac'
          'ad' 'ae' 'ah' 'l' 'k' 'n' 'm' 'p' 'q' 's' 'r' 'v' 'w' 'o' 'aa']
         The no of unique values in X6 are 12
         Unique values are ['a' 'g' 'j' 'l' 'i' 'd' 'f' 'h' 'c' 'k' 'e' 'b']
         The no of unique values in X8 are 25
         Unique values are ['w' 'y' 'j' 'n' 'm' 's' 'a' 'v' 'r' 'o' 't' 'h' 'c' 'k'
         'p' 'u' 'd' 'g'
          'b' 'q' 'e' 'l' 'f' 'i' 'x']
```

Checking for Outliers

```
In [22]: def outlier(data):
    Q1, Q3= np.percentile(data, [25,75])
    IQR= Q3-Q1
    LR= Q1-(1.5*IQR)
    UR= Q3+(1.5*IQR)
    return LR, UR
In [23]: lower,upper= outlier(benz_train.y)
```

In [24]: benz_train[benz_train['y'] > upper]

Out[24]:

	ID	у	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379	X380
43	107	139.20	w	s	as	С	d	j	i	q	 1	0	0	0	0	0
203	416	136.41	w	s	as	С	d	i	i	w	 1	0	0	0	0	0
216	433	146.83	х	i	as	С	d	i	g	I	 0	0	1	0	0	0
253	505	150.43	t	b	as	С	d	i	I	х	 0	0	1	0	0	0
342	681	169.91	aa	I	ak	f	d	i	С	d	 0	0	0	0	0	0
420	822	136.47	х	b	h	С	d	d	j	q	 0	0	1	0	0	0
429	836	154.87	ak	I	ae	f	d	d	g	w	 0	0	0	0	0	0
681	1322	147.72	х	i	ae	С	d	С	g	у	 0	0	1	0	0	0
846	1671	140.49	х	aa	i	С	d	af	I	С	 1	0	0	0	0	0
883	1770	265.32	у	r	ai	f	d	ag	I	t	 0	0	0	0	0	0
889	1784	158.53	aj	I	as	f	d	ag	k	е	 0	0	0	0	0	0
900	1799	141.31	х	aa	as	С	d	ag	j	j	 1	0	0	0	0	0
995	1989	140.15	х	b	m	С	d	ag	j	j	 0	0	1	0	0	0
998	1992	137.44	j	r	ae	С	d	ag	i	0	 1	0	0	0	0	0
1033	2058	140.41	х	aa	n	е	d	ag	I	j	 1	0	0	0	0	0
1036	2065	144.36	х	aa	as	d	d	ag	d	s	 0	1	0	0	0	0
1060	2111	154.43	w	٧	r	С	d	ag	d	q	 1	0	0	0	0	0
1141	2264	149.63	ар	I	s	С	d	ab	j	w	 0	0	0	0	0	0
1203	2396	160.87	j	0	as	f	d	ab	g	р	 1	0	0	0	0	0
1205	2403	150.89	x	b	m	С	d	ab	j	j	 0	0	1	0	0	0
1269	2511	152.32	s	aa	m	С	d	ab	g	g	 1	0	0	0	0	0
1279	2531	139.08	х	b	as	С	d	ac	j	у	 0	0	1	0	0	0
1349	2669	142.71	ak	1	ae	f	d	ac	i	V	 0	0	0	0	0	0
1459	2903	167.45	ai	b	ae	а	d	ac	g	m	 0	0	1	0	0	0
1730	3456	139.61	ak	٧	ak	С	d	ae	а	х	 1	0	0	0	0	0
2240	4481	154.16	w	n	as	f	d	k	j	r	 1	0	0	0	0	0
2263	4530	136.96	ak	s	as	С	d	k	g	i	 1	0	0	0	0	0
2348	4705	140.25	ay	i	as	С	d	n	j	k	 0	0	1	0	0	0
2357	4722	142.71	а	٧	k	С	d	n	j	е	 0	1	0	0	0	0
2376	4762	148.94	w	s	as	С	d	n	h	w	 0	0	1	0	0	0
2414	4847	136.56	ар	1	s	С	d	n	d	h	 0	0	0	0	0	0
2470	4950	137.49	х	aa	as	С	d	n	j	r	 1	0	0	0	0	0
2496	5000	137.09	ak	С	r	С	d	n	i	f	 0	0	1	0	0	0
2735	5471	158.23	х	٧	е	С	d	m	g	s	 0	0	0	0	1	0
2736	5473	153.51	Х	i	as	а	d	m	j	r	 0	0	1	0	0	0

	ID	у	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379	X380
2852	5706	141.39	z	b	m	а	d	р	h	j	 0	0	1	0	0	0
2887	5781	144.56	٧	s	as	С	d	р	j	р	 1	0	0	0	0	0
2888	5785	138.19	ak	s	as	С	d	р	g	m	 1	0	0	0	0	0
2905	5820	147.22	ay	aa	as	С	d	р	j	f	 1	0	0	0	0	0
2983	5979	139.16	j	i	as	С	d	q	I	r	 0	0	1	0	0	0
3028	6078	140.31	ар	I	s	С	d	q	g	h	 0	0	0	0	0	0
3090	6208	146.30	au	b	aa	С	d	q	С	n	 0	0	1	0	0	0
3133	6273	165.52	aj	٧	r	С	d	q	g	а	 0	0	1	0	0	0
3177	6343	137.32	ар	I	s	С	d	q	j	h	 0	0	0	0	0	0
3215	6422	141.09	at	f	ae	С	d	s	b	I	 0	1	0	0	0	0
3442	6873	139.07	f	С	m	С	d	r	j	у	 0	0	1	0	0	0
3744	7500	155.62	х	f	ak	С	d	٧	d	d	 1	0	0	0	0	0
3773	7559	136.75	w	s	as	С	d	٧	g	а	 1	0	0	0	0	0
3980	7980	142.46	w	s	as	а	d	w	j	k	 0	1	0	0	0	0
4176	8344	149.52	ak	1	as	а	d	aa	j	r	 0	0	1	0	0	0
50 row	vs × 37	'8 colum	nns													>

Since the number of unique values in the training and testing dataset are different therefore we need to merge the training and testing dataset and then convert the categorical columns to numeric columns and again separate the two.

Merging the two datasets and converting categorical to numerical columns

```
In [25]: benz2= benz_train.append(benz_test, ignore_index=True)
    benz2= pd.get_dummies(benz2)

    C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py:6692: FutureW
    arning: Sorting because non-concatenation axis is not aligned. A future versi
    on
    of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

    sort=sort)
```

Separating the datasets(training and testing)

```
train, test= benz2[0:len(benz train)], benz2[len(benz test):]
In [26]:
In [27]: train.shape, test.shape
Out[27]: ((4209, 581), (4209, 581))
In [28]:
          train.head()
Out[28]:
              ID X10 X100 X101 X102 X103 X104 X105 X106 X107 ... X8_p X8_q X8_r X8_s X
           0
              0
                   0
                         0
                               0
                                     0
                                           0
                                                0
                                                      0
                                                            0
                                                                  0
                                                                           0
                                                                                 0
                                                                                      0
                                                                                            0
           1
              6
                   0
                         1
                               1
                                     0
                                           0
                                                0
                                                      0
                                                            0
                                                                  0
                                                                           0
                                                                                 0
                                                                                      0
                                                                                            0
                                                                                            0
                         0
                               1
                                     0
                                           0
                                                0
                                                      0
                                                            0
                                                                  0 ...
                                                                           0
                                                                                 0
                                                                                      0
                                                                                            0
           3
              9
                   0
                               1
                                     0
                                           0
                                                0
                                                      0
                                                            0
                                                                                 0
                                                                                      0
                                                                                            0
             13
                                                                  0 ...
                                                                           0
          5 rows × 581 columns
```

Separating features and labels

Random Forest

```
In [32]:
         from sklearn.model selection import cross validate
         scoring={'r2': 'r2',
                  'MSE': 'neg mean squared error'}
         scores= cross validate(estimator= RF,
                                 X= x train1,
                                 y=y_train1,
                                 cv=10,
                                 scoring= scoring,
                                 return train score= True)
         print("Training r2:{}".format(scores['train r2'].mean()))
         print("Testing r2:{}".format(scores['test_r2'].mean()))
         print("Train MSE:{}".format(scores['train_MSE'].mean()))
         print("Test MSE:{}".format(scores['test_MSE'].mean()))
         Training r2:0.893533937656603
         Testing r2:0.5098946542041107
         Train MSE:-17.12054879810878
         Test MSE:-81.46904837941155
         from sklearn.model selection import GridSearchCV
In [33]:
         from sklearn.model_selection import KFold
         scoring={'r2': 'r2',
                  'MSE': 'neg_mean_squared_error'}
         params= {'n_estimators': [5,10,15,20,25],
                  'criterion': ['mse'],
                  'max_depth': [2,4,6],
                  'max features': ['sqrt', 'log2'],
                  'min samples split': [.05]}
         kf= KFold(n_splits=10, random_state=20)
         gs1= GridSearchCV(estimator= RF,
                           param_grid= params,
                           scoring= scoring,
                           refit='MSE',
```

cv= kf,
verbose=2)

In [34]: gs1.fit(x_train1[:100], y_train1[:100])

Fitting 10 folds for each of 30 candidates, totalling 300 fits

- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
- [Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s

- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max depth=2, max features=sqrt, min samples split=0.05,

n estimators=10, total= 0.0s

- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s

- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max depth=2, max features=sqrt, min samples split=0.05, n

estimators=25

- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=2, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n estimators=10

- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max depth=2, max features=log2, min samples split=0.05,

n estimators=15, total= 0.0s

- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s

- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=2, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max depth=4, max features=sqrt, min samples split=0.05, n

estimators=5

- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=10

- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max depth=4, max features=sqrt, min samples split=0.05,

n estimators=20, total= 0.0s

- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s

[CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
estimators=25

- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max depth=4, max features=log2, min samples split=0.05, n

estimators=10

- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n estimators=15

[CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
n_estimators=15, total= 0.0s

- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max depth=4, max features=log2, min samples split=0.05,

n estimators=20, total= 0.0s

- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05, n estimators=25
- [CV] criterion=mse, max_depth=4, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n_estimators=5, total= 0.0s

- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n

estimators=10

- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n estimators=20

- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 _estimators=25
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max depth=6, max features=sqrt, min samples split=0.05,

n estimators=25, total= 0.0s

- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=sqrt, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=5
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=5, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s

- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=10
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=10, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n

estimators=15

- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=15
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=15
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=15, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=20
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n estimators=20
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n estimators=20
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 _estimators=20
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n estimators=20

- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=20, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n_estimators=25, total= 0.0s
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05, n
 estimators=25
- [CV] criterion=mse, max_depth=6, max_features=log2, min_samples_split=0.05,
 n estimators=25, total= 0.0s
- [Parallel(n_jobs=1)]: Done 300 out of 300 | elapsed: 16.7s finished

```
Out[34]: GridSearchCV(cv=KFold(n splits=10, random state=20, shuffle=False),
                error_score='raise-deprecating',
                estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max d
         epth=None,
                    max features='auto', max leaf nodes=None,
                    min_impurity_decrease=0.0, min_impurity_split=None,
                    min samples leaf=1, min samples split=2,
                    min weight fraction leaf=0.0, n estimators=15, n jobs=None,
                    oob_score=False, random_state=None, verbose=0, warm_start=False),
                fit params=None, iid='warn', n jobs=None,
                param grid={'n estimators': [5, 10, 15, 20, 25], 'criterion': ['mse'],
         'max_depth': [2, 4, 6], 'max_features': ['sqrt', 'log2'], 'min_samples_spli
         t': [0.05]},
                pre_dispatch='2*n_jobs', refit='MSE', return_train_score='warn',
                scoring={'r2': 'r2', 'MSE': 'neg_mean_squared_error'}, verbose=2)
In [35]:
         gs1.best estimator
         gs1.best_score_
         gs1.best params
Out[35]: {'criterion': 'mse',
          'max depth': 6,
          'max features': 'sqrt',
          'min samples split': 0.05,
          'n estimators': 25}
```

K-Nearest Neighbor

```
In [89]: from sklearn.neighbors import KNeighborsRegressor
         knn= KNeighborsRegressor(n neighbors=13, metric='hamming', weights= 'distance'
         knn.fit(x train1, y train1)
Out[89]: KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='hamming',
                   metric params=None, n jobs=None, n neighbors=13, p=2,
                   weights='distance')
In [90]:
         neighbors= [3,5,7,9,11,13,15,17,19]
         metric=['hamming']
         weights=['uniform', 'distance']
In [91]: params= dict(n neighbors= neighbors,
                      metric= metric,
                      weights=weights
                      )
         kf= KFold(n splits=10, random state=10)
In [84]:
         gs2= GridSearchCV(estimator= knn,
                           param grid= params,
                           scoring='r2',
                            cv= kf,
                           verbose=2)
```

In [87]: gs2.fit(x_train1[:500], y_train1[:500])

Fitting 10 folds for each of 18 candidates, totalling 180 fits [CV] metric=hamming, n_neighbors=3, weights=uniform
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workrs.
<pre>[CV] metric=hamming, n_neighbors=3, weights=uniform, total= 0.0s [CV] metric=hamming, n_neighbors=3, weights=uniform</pre>
[Parallel(n_jobs=1)]: Done

```
[CV] ... metric=hamming, n neighbors=3, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=uniform ...........
[CV] ... metric=hamming, n_neighbors=3, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=uniform ......
[CV] ... metric=hamming, n neighbors=3, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=uniform ......
[CV] ... metric=hamming, n_neighbors=3, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=uniform ......
[CV] ... metric=hamming, n_neighbors=3, weights=uniform, total=
[CV] metric=hamming, n neighbors=3, weights=uniform ...........
[CV] ... metric=hamming, n neighbors=3, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=uniform ......
[CV] ... metric=hamming, n neighbors=3, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=uniform ......
[CV] ... metric=hamming, n_neighbors=3, weights=uniform, total= 0.0s
[CV] metric=hamming, n neighbors=3, weights=uniform ..........
[CV] ... metric=hamming, n neighbors=3, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=distance ..............
[CV] .. metric=hamming, n neighbors=3, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=distance ..............
[CV] .. metric=hamming, n_neighbors=3, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=distance ..............
[CV] .. metric=hamming, n neighbors=3, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=3, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=distance ..............
[CV] .. metric=hamming, n_neighbors=3, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=distance ......
[CV] .. metric=hamming, n neighbors=3, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=distance ..............
[CV] .. metric=hamming, n_neighbors=3, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=distance ......
[CV] .. metric=hamming, n_neighbors=3, weights=distance, total=
[CV] metric=hamming, n_neighbors=3, weights=distance ..............
[CV] .. metric=hamming, n neighbors=3, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=3, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=3, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=uniform ..........
[CV] ... metric=hamming, n neighbors=5, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=uniform ..........
[CV] ... metric=hamming, n neighbors=5, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=uniform .....
[CV] ... metric=hamming, n_neighbors=5, weights=uniform, total=
[CV] metric=hamming, n_neighbors=5, weights=uniform ..........
[CV] ... metric=hamming, n neighbors=5, weights=uniform, total= 0.0s
[CV] metric=hamming, n neighbors=5, weights=uniform ...........
[CV] ... metric=hamming, n_neighbors=5, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=uniform ...........
[CV] ... metric=hamming, n_neighbors=5, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=uniform ..........
[CV] ... metric=hamming, n neighbors=5, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=uniform ..........
[CV] ... metric=hamming, n_neighbors=5, weights=uniform, total= 0.0s
[CV] metric=hamming, n neighbors=5, weights=uniform ..........
[CV] ... metric=hamming, n_neighbors=5, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=uniform ..........
[CV] ... metric=hamming, n neighbors=5, weights=uniform, total=
```

```
[CV] metric=hamming, n_neighbors=5, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total=
[CV] metric=hamming, n_neighbors=5, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=distance ...........
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=distance ...........
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total=
[CV] metric=hamming, n_neighbors=5, weights=distance ...........
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=distance ......
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=5, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=5, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform ......
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform ...........
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform ...........
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform .............
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform ...........
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform ...........
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform .............
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform ......
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform ......
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=uniform .............
[CV] ... metric=hamming, n_neighbors=7, weights=uniform, total= 0.0s
[CV] metric=hamming, n neighbors=7, weights=distance ...........
[CV] .. metric=hamming, n_neighbors=7, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=distance ......
[CV] .. metric=hamming, n_neighbors=7, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=distance ............
[CV] .. metric=hamming, n_neighbors=7, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=7, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=7, weights=distance, total=
[CV] metric=hamming, n_neighbors=7, weights=distance ......
[CV] .. metric=hamming, n_neighbors=7, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=7, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=distance ...............
[CV] .. metric=hamming, n_neighbors=7, weights=distance, total= 0.0s
[CV] metric=hamming, n_neighbors=7, weights=distance ...............
```

[CV]	<pre> metric=hamming, n_neighbors=7, weights=distance, total=</pre>	0.0s
[CV]	<pre>metric=hamming, n_neighbors=7, weights=distance</pre>	
[CV]	<pre> metric=hamming, n_neighbors=7, weights=distance, total=</pre>	0.0s
[CV]	<pre>metric=hamming, n_neighbors=9, weights=uniform</pre>	
[CV]	<pre> metric=hamming, n_neighbors=9, weights=uniform, total=</pre>	0.0s
[CV]	<pre>metric=hamming, n_neighbors=9, weights=uniform</pre>	
[CV]	<pre> metric=hamming, n_neighbors=9, weights=uniform, total=</pre>	0.0s
[CV]	metric=hamming, n_neighbors=9, weights=uniform	
[CV]	metric=hamming, n_neighbors=9, weights=uniform, total=	0.0s
[CV]	metric=hamming, n_neighbors=9, weights=uniform	
	metric=hamming, n_neighbors=9, weights=uniform, total=	
	metric=hamming, n_neighbors=9, weights=uniform	
[CV]	metric=hamming, n_neighbors=9, weights=uniform, total=	0.0s
	metric=hamming, n_neighbors=9, weights=uniform	
	metric=hamming, n_neighbors=9, weights=uniform, total=	
	metric=hamming, n_neighbors=9, weights=uniform	
	metric=hamming, n_neighbors=9, weights=uniform, total=	0.0s
	metric=hamming, n_neighbors=9, weights=uniform	
	metric=hamming, n_neighbors=9, weights=uniform, total=	
	metric=hamming, n_neighbors=9, weights=uniform	
	metric=hamming, n_neighbors=9, weights=uniform, total=	
	metric=hamming, n_neighbors=9, weights=uniform	
	metric=hamming, n_neighbors=9, weights=uniform, total=	
	metric=hamming, n_neighbors=9, weights=distance	
	metric=hamming, n_neighbors=9, weights=distance, total=	
	metric=hamming, n_neighbors=9, weights=distance	
		0.0s
	metric=hamming, n_neighbors=9, weights=distance	
	metric=hamming, n_neighbors=9, weights=distance, total=	
	metric=hamming, n_neighbors=9, weights=distance	
	metric=hamming, n_neighbors=9, weights=distance, total=	
[CV]	metric=hamming, n_neighbors=9, weights=distance	
[CV]	metric=hamming, n_neighbors=9, weights=distance, total=	0.0s
[CV]	<pre>metric=hamming, n_neighbors=9, weights=distance</pre>	
[CV]	<pre> metric=hamming, n_neighbors=9, weights=distance, total=</pre>	0.0s
[CV]	<pre>metric=hamming, n_neighbors=9, weights=distance</pre>	
[CV]	<pre> metric=hamming, n_neighbors=9, weights=distance, total=</pre>	0.0s
[CV]	<pre>metric=hamming, n_neighbors=9, weights=distance</pre>	
[CV]	<pre> metric=hamming, n_neighbors=9, weights=distance, total=</pre>	0.0s
[CV]	<pre>metric=hamming, n_neighbors=9, weights=distance</pre>	
[CV]	<pre> metric=hamming, n_neighbors=9, weights=distance, total=</pre>	0.0s
[CV]	<pre>metric=hamming, n_neighbors=9, weights=distance</pre>	
[CV]	<pre> metric=hamming, n_neighbors=9, weights=distance, total=</pre>	0.0s
[CV]	<pre>metric=hamming, n_neighbors=11, weights=uniform</pre>	
[CV]	metric=hamming, n_neighbors=11, weights=uniform, total=	0.0s
[CV]	<pre>metric=hamming, n_neighbors=11, weights=uniform</pre>	
[CV]	metric=hamming, n_neighbors=11, weights=uniform, total=	0.0s
[CV]	<pre>metric=hamming, n_neighbors=11, weights=uniform</pre>	
[CV]	metric=hamming, n_neighbors=11, weights=uniform, total=	0.0s
	metric=hamming, n_neighbors=11, weights=uniform	
	metric=hamming, n_neighbors=11, weights=uniform, total=	
	metric=hamming, n_neighbors=11, weights=uniform	
	metric=hamming, n_neighbors=11, weights=uniform, total=	
	metric=hamming, n_neighbors=11, weights=uniform	
	metric=hamming, n_neighbors=11, weights=uniform, total=	
	metric=hamming, n_neighbors=11, weights=uniform	
[CV]	metric=hamming, n neighbors=11, weights=uniform, total=	0.05

[CV]	<pre>metric=hamming, n_neighbors=11, weights=uniform</pre>	
	metric=hamming, n_neighbors=11, weights=uniform, total=	
	metric=hamming, n_neighbors=11, weights=uniform	
	metric=hamming, n_neighbors=11, weights=uniform, total=	
	metric=hamming, n_neighbors=11, weights=uniform	
	metric=hamming, n_neighbors=11, weights=uniform, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=11, weights=distance	
	. metric=hamming, n_neighbors=11, weights=distance, total=	
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	0.0s
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	
	metric=hamming, n_neighbors=13, weights=uniform	
	metric=hamming, n_neighbors=13, weights=uniform, total=	
	metric=hamming, n_neighbors=13, weights=distance	
	. metric=hamming, n_neighbors=13, weights=distance, total=	
	metric=hamming, n_neighbors=13, weights=distance	
	. metric=hamming, n_neighbors=13, weights=distance, total=	
	metric=hamming, n_neighbors=13, weights=distance	
	. metric=hamming, n_neighbors=13, weights=distance, total=	
	metric=hamming, n_neighbors=13, weights=distance	
	. metric=hamming, n_neighbors=13, weights=distance, total=	
	metric=hamming, n_neighbors=13, weights=distance	
	. metric=hamming, n_neighbors=13, weights=distance, total=	
	metric=hamming, n_neighbors=13, weights=distance	

	<pre>. metric=hamming, n_neighbors=13, weights=distance, total=</pre>	
	<pre>metric=hamming, n_neighbors=13, weights=distance</pre>	
	<pre>. metric=hamming, n_neighbors=13, weights=distance, total=</pre>	
[CV]	<pre>metric=hamming, n_neighbors=13, weights=distance</pre>	
	<pre>. metric=hamming, n_neighbors=13, weights=distance, total=</pre>	
	<pre>metric=hamming, n_neighbors=13, weights=distance</pre>	
	<pre>. metric=hamming, n_neighbors=13, weights=distance, total=</pre>	
	<pre>metric=hamming, n_neighbors=13, weights=distance</pre>	
[CV]	<pre>. metric=hamming, n_neighbors=13, weights=distance, total=</pre>	0.0s
	metric=hamming, n_neighbors=15, weights=uniform	
	<pre> metric=hamming, n_neighbors=15, weights=uniform, total=</pre>	
	metric=hamming, n_neighbors=15, weights=uniform	
	metric=hamming, n_neighbors=15, weights=uniform, total=	
	metric=hamming, n_neighbors=15, weights=uniform	
	metric=hamming, n_neighbors=15, weights=uniform, total=	
	metric=hamming, n_neighbors=15, weights=uniform	
	<pre> metric=hamming, n_neighbors=15, weights=uniform, total=</pre>	
	metric=hamming, n_neighbors=15, weights=uniform	
	metric=hamming, n_neighbors=15, weights=uniform, total=	
	metric=hamming, n_neighbors=15, weights=uniform	
	metric=hamming, n_neighbors=15, weights=uniform, total=	
	metric=hamming, n_neighbors=15, weights=uniform	
	metric=hamming, n_neighbors=15, weights=uniform, total=	
	metric=hamming, n_neighbors=15, weights=uniform	
	metric=hamming, n_neighbors=15, weights=uniform, total=	
	metric=hamming, n_neighbors=15, weights=uniform	
	metric=hamming, n_neighbors=15, weights=uniform, total=	
	metric=hamming, n_neighbors=15, weights=uniform	
	metric=hamming, n_neighbors=15, weights=uniform, total=	
	metric=hamming, n_neighbors=15, weights=distance	
	. metric=hamming, n_neighbors=15, weights=distance, total=	0.05
	metric=hamming, n_neighbors=15, weights=distance	• • • • •
	. metric=hamming, n_neighbors=15, weights=distance, total=	
	metric=hamming, n_neighbors=15, weights=distance	
	. metric=hamming, n_neighbors=15, weights=distance, total=	
	metric=hamming, n_neighbors=15, weights=distance	
	. metric=hamming, n_neighbors=15, weights=distance, total=	
	metric=hamming, n_neighbors=15, weights=distance	
	. metric=hamming, n_neighbors=15, weights=distance, total=	
	metric=hamming, n_neighbors=15, weights=distance	
	. metric=hamming, n_neighbors=15, weights=distance, total=	
	<pre>metric=hamming, n_neighbors=15, weights=distance</pre>	
	metric=hamming, n_neighbors=15, weights=distance metric=hamming, n_neighbors=15, weights=distance, total=	
	metric=hamming, n_neighbors=15, weights=distance	
	. metric=hamming, n_neighbors=15, weights=distance, total=	
	metric=hamming, n_neighbors=15, weights=distance	
	. metric=hamming, n_neighbors=15, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=uniform	
	metric=hamming, n_neighbors=17, weights=uniform, total=	
	metric=hamming, n_neighbors=17, weights=uniform	
	metric=hamming, n_neighbors=17, weights=uniform, total=	
	metric=hamming, n_neighbors=17, weights=uniform	
	metric=hamming, n_neighbors=17, weights=uniform, total=	
	metric=hamming, n_neighbors=17, weights=uniform	
	metric=hamming, n neighbors=17, weights=uniform, total=	

[CV]	<pre>metric=hamming, n_neighbors=17, weights=uniform</pre>	
	metric=hamming, n_neighbors=17, weights=uniform, total=	
	metric=hamming, n_neighbors=17, weights=uniform	
	metric=hamming, n_neighbors=17, weights=uniform, total=	
	metric=hamming, n_neighbors=17, weights=uniform	
	metric=hamming, n_neighbors=17, weights=uniform, total=	
	metric=hamming, n_neighbors=17, weights=uniform	
	metric=hamming, n_neighbors=17, weights=uniform, total=	
	metric=hamming, n_neighbors=17, weights=uniform	
	metric=hamming, n_neighbors=17, weights=uniform, total=	
	metric=hamming, n_neighbors=17, weights=uniform	
	metric=hamming, n_neighbors=17, weights=uniform, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	
	metric=hamming, n_neighbors=17, weights=distance	
	. metric=hamming, n_neighbors=17, weights=distance, total=	0.0s
	metric=hamming, n_neighbors=19, weights=uniform	
	metric=hamming, n_neighbors=19, weights=uniform, total=	
	metric=hamming, n_neighbors=19, weights=uniform	
	metric=hamming, n_neighbors=19, weights=uniform, total=	
	metric=hamming, n_neighbors=19, weights=uniform	
	metric=hamming, n_neighbors=19, weights=uniform, total=	
	metric=hamming, n_neighbors=19, weights=uniform	
[CV]	metric=hamming, n_neighbors=19, weights=uniform, total=	0.0s
[CV]	<pre>metric=hamming, n_neighbors=19, weights=uniform</pre>	
[CV]	metric=hamming, n_neighbors=19, weights=uniform, total=	0.0s
[CV]	<pre>metric=hamming, n_neighbors=19, weights=uniform</pre>	
[CV]	<pre> metric=hamming, n_neighbors=19, weights=uniform, total=</pre>	0.0s
[CV]	<pre>metric=hamming, n_neighbors=19, weights=uniform</pre>	
[CV]	metric=hamming, n_neighbors=19, weights=uniform, total=	0.0s
[CV]	<pre>metric=hamming, n_neighbors=19, weights=uniform</pre>	
[CV]	metric=hamming, n_neighbors=19, weights=uniform, total=	0.0s
[CV]	<pre>metric=hamming, n_neighbors=19, weights=uniform</pre>	
[CV]	metric=hamming, n_neighbors=19, weights=uniform, total=	0.0s
	<pre>metric=hamming, n_neighbors=19, weights=uniform</pre>	
	metric=hamming, n_neighbors=19, weights=uniform, total=	
	metric=hamming, n_neighbors=19, weights=distance	
	<pre>. metric=hamming, n_neighbors=19, weights=distance, total=</pre>	
	metric=hamming, n_neighbors=19, weights=distance	
	<pre>. metric=hamming, n_neighbors=19, weights=distance, total=</pre>	
[CV]	<pre>metric=hamming, n_neighbors=19, weights=distance</pre>	

```
[CV] . metric=hamming, n_neighbors=19, weights=distance, total= 0.0s
         [CV] metric=hamming, n_neighbors=19, weights=distance ...........
         [CV] . metric=hamming, n_neighbors=19, weights=distance, total= 0.0s
         [CV] metric=hamming, n neighbors=19, weights=distance .....
         [CV] . metric=hamming, n neighbors=19, weights=distance, total= 0.0s
         [CV] metric=hamming, n_neighbors=19, weights=distance ......
         [CV] . metric=hamming, n_neighbors=19, weights=distance, total= 0.0s
         [CV] metric=hamming, n_neighbors=19, weights=distance .....
         [CV] . metric=hamming, n_neighbors=19, weights=distance, total= 0.0s
         [CV] metric=hamming, n neighbors=19, weights=distance .....
         [CV] . metric=hamming, n neighbors=19, weights=distance, total= 0.0s
         [CV] metric=hamming, n_neighbors=19, weights=distance ......
         [CV] . metric=hamming, n_neighbors=19, weights=distance, total= 0.0s
         [CV] metric=hamming, n_neighbors=19, weights=distance ...........
         [CV] . metric=hamming, n_neighbors=19, weights=distance, total= 0.0s
         [Parallel(n_jobs=1)]: Done 180 out of 180 | elapsed: 1.8min finished
Out[87]: GridSearchCV(cv=KFold(n_splits=10, random_state=10, shuffle=False),
                error score='raise-deprecating',
                estimator=KNeighborsRegressor(algorithm='auto', leaf size=30, metric
         ='hamming',
                   metric_params=None, n_jobs=None, n_neighbors=5, p=2,
                  weights='uniform'),
                fit_params=None, iid='warn', n_jobs=None,
                param_grid={'n_neighbors': [3, 5, 7, 9, 11, 13, 15, 17, 19], 'metric':
         ['hamming'], 'weights': ['uniform', 'distance']},
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='r2', verbose=2)
In [88]: gs2.best estimator
         gs2.best_score_
         gs2.best_params_
Out[88]: {'metric': 'hamming', 'n_neighbors': 13, 'weights': 'distance'}
In [92]: y pred= knn.predict(X train)
         print("Train r2:", metrics.r2_score(y_train, y_pred))
         print("Train mse:", metrics.mean squared error(y train, y pred))
         y_pred= knn.predict(X_test)
         print("\n")
         print("Test r2:", metrics.r2_score(y_test, y_pred))
         print("Test mse:", metrics.mean_squared_error(y_test, y_pred))
         Train r2: 0.9692400425176216
         Train mse: 5.008564558525219
         Test r2: 0.9783220832423499
         Test mse: 3.3478110869556015
```

Adaboost

```
In [76]: from sklearn.ensemble import AdaBoostRegressor
         ABR= AdaBoostRegressor(n estimators=500,
                                learning rate=.01)
In [77]: | ABR.fit(X_train, y_train)
Out[77]: AdaBoostRegressor(base estimator=None, learning rate=0.01, loss='linear',
                  n estimators=500, random state=None)
In [78]:
         from sklearn import metrics
         y pred= ABR.predict(X train)
         print("Train r2:", metrics.r2_score(y_train, y_pred))
         print("Train mse:", metrics.mean_squared_error(y_train, y_pred))
         y pred= ABR.predict(X test)
         print("\n")
         print("Test r2:", metrics.r2 score(y test, y pred))
         print("Test mse:", metrics.mean_squared_error(y_test, y_pred))
         Train r2: 0.607669286860829
         Train mse: 63.88219834749393
         Test r2: 0.5462656503921461
         Test mse: 70.07208779015666
```

Gradient Boosting

```
In [69]: y_pred= GBR.predict(X_train)
    print("Train mse:", metrics.mean_squared_error(y_train, y_pred))
    print("Train r2:", metrics.r2_score(y_train, y_pred))

y_pred= GBR.predict(X_test)
    print("\n")
    print("Test mse:", metrics.mean_squared_error(y_test, y_pred))
    print("Test r2:", metrics.r2_score(y_test, y_pred))

Train mse: 40.11874414289443
    Train r2: 0.7536118682984057
Test mse: 69.75828176328316
Test r2: 0.5482976231504413
```

Xg boost

```
In [44]: import xgboost as xgb
btrain= xgb.DMatrix(X_train, y_train)
btest= xgb.DMatrix(X_test)

C:\ProgramData\Anaconda3\lib\site-packages\xgboost\core.py:587: FutureWarnin
g: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \

In [45]: 
    xgb_params={'n_trees': 500,
        'eta': .01,
        'learning_rate': .01,
        'max_depth': 4,
        'subsample': 0.5,
        'objective': 'reg:squarederror',
        'eval_metric': 'rmse',
        'silent':1
    }
}
```

```
In [46]: cv results= xgb.cv(xgb params,
                            btrain,
                             num boost round= 500,
                            verbose eval=50,
                            show stdv= False)
         [0]
                 train-rmse:99.9976
                                          test-rmse:99.996
         [50]
                 train-rmse:61.0124
                                          test-rmse:61.0445
                 train-rmse:37.6058
                                          test-rmse:37.6417
         [100]
         [150]
                 train-rmse:23.7622
                                          test-rmse:23.8258
         [200]
                 train-rmse:15.8105
                                          test-rmse:16.0004
                 train-rmse:11.4676
                                          test-rmse:11.8719
         [250]
         [300]
                 train-rmse:9.28282
                                          test-rmse:9.93559
                 train-rmse:8.24186
                                          test-rmse:9.14331
         [350]
         [400]
                 train-rmse:7.74004
                                          test-rmse:8.87874
                 train-rmse:7.47607
                                          test-rmse:8.80487
         [450]
         [499]
                 train-rmse:7.31012
                                          test-rmse:8.80651
In [47]: | model= xgb.train(dict(xgb_params, silent=0),
                          btrain,
                          num boost round= len(cv results))
In [48]:
         from sklearn import metrics
         y pred= model.predict(btrain)
         print("Train mse:", metrics.mean_squared_error(y_train, y_pred))
         print("Train r2:", metrics.r2_score(y_train, y_pred))
         y pred= model.predict(btest)
         print("\n")
         print("Test mse:", metrics.mean squared error(y test, y pred))
         print("Test r2:", metrics.r2_score(y_test, y_pred))
         Train mse: 58.77134180119759
         Train r2: 0.639057467691007
         Test mse: 66.70954459351108
         Test r2: 0.5680389612563419
In [ ]:
```