Lecture 18: Deep Generative Models IV: Generative Adversarial Network (GAN)

Lan Xu SIST, ShanghaiTech Fall, 2021

Outline

- Generative Adversarial Networks
 - Implicit generative models
 - Adversarial learning
 - Evaluation metrics

Acknowledgement: Feifei Li et al's cs231n notes

м

Taxonomy of Generative Models

- Working with explicit model p(x) could be expensive
 - □ Variational Autoencoder (variational inference)
 - □ Boltzmann Machines (MCMC, not discussed)
- Representation learning may not require p(x)
 - Sometimes we are more interested in taking samples from p(x) instead of p itself

- Implicitly define a probability distribution
- Start by sampling the code vector z from a fixed, simple distribution
- A generator network computes a differentiable function G mapping z to an x in data space

Intuition: 1D example

Intuition

advocate/penalize samples within the blue/white region.

Learning by comparison

Basic idea

For some models, we only have access to an unnormalised probability, partial knowledge of the distribution, or a simulator of data.

We compare the estimated distribution q(x) to the true distribution $p^*(x)$ using samples.

Outline

- Generative Adversarial Networks
 - □ Implicit generative models
 - Adversarial learning
 - Evaluation metrics

Acknowledgement: Feifei Li et al's cs231n notes

Generative Adversarial Networks

Using a neural network to generate data

Output: Sample from training distribution Generator Network Z

Input: Random noise

Generative Adversarial Networks

 Using another neural network to determine if the data is real or not

Typical generator architecture

For images

- ▶ Unit Gaussian distribution on z, typically 10-100 dim.
- Up-convolutional deep network (reverse recognition CNN)

Typical discriminator architecture

For images

- Recognition CNN model
- ▶ Binary classification output: real / synthetic

Adversarial learning

- GAN objective for the generator is some complicated objective function defined by a neural network.
 - This means a new way of thinking about "distance".
 - We are training networks to minimize the "distance" or "divergence" between generated images and real images.
 - Instead of some hand-crafted distance metric like L1 or L2, we can make something completely new.
 - □ A neural network, with the right architecture, is arguably the definition of perceptual similarity (assuming our visual system is some sort of neural network).

Adversarial Learning

Adversarial loss

Adversarial Learning

- Let D denote the discriminator's predicted probability of being real data
- Discriminator's cost function: cross-entropy loss for task of classifying real vs. fake images

$$\mathcal{J}_D = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[-\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z}}[-\log(1 - D(G(\mathbf{z})))]$$

 One possible cost function for the generator: the opposite of the discriminator's

$$\mathcal{J}_G = -\mathcal{J}_D$$

= const + $\mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$

Two-player game

Minimax formulation

 The generator and discriminator are playing a zero-sum game against each other

$$\min_{G} \max_{D} \mathcal{J}_{D}$$

Using parametric models

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
Discriminator output for for real data x generated fake data G(z)

Learning procedure

Minimax objective function

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Learning procedure

Updating the discriminator

Learning procedure

Updating the generator

A better cost function

The minimax cost function for the generator

$$\mathcal{J}_G = \mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$$

One problem is saturation

A better cost function

Changing the generator cost

Original minimax cost:

$$\mathcal{J}_G = \mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$$

• Modified generator cost:

$$\mathcal{J}_G = \mathbb{E}_{\mathbf{z}}[-\log D(G(\mathbf{z}))]$$

This fixes the saturation problem.

modified cost

minimax

cost

(how well it fooled the discriminator)

Theoretical property

Adversarial loss

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{x \sim data} \log D(x) - \frac{1}{2} \mathbb{E}_{z} \log(1 - D(G(z)))$$
 (1)
$$J^{(G)} = -J^{(D)}$$
 (2)

- ▶ The optimal discriminator $D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)}$.
- ▶ In this case, $J^{(G)} = 2D_{JS}(p_{data}||p_{model}) + const.$
- ▶ Jenson-Shannon divergence: $D_{JS}(p||q) = \frac{1}{2}D_{KL}(p||\frac{p+q}{2}) + \frac{1}{2}D_{KL}(q||\frac{p+q}{2}).$

Theoretical property

Stationary point

There is a theoretical point in this game at which the game will be stable and both players will stop changing.

- If the generated data exactly matches the distribution of the real data, the generator should output 0.5 for all points (argmax of loss function)
- If the discriminator is outputting a constant value for all inputs, then there is no gradient that should cause the generator to update

We rarely reach a completely stable point in practice due to practical issues

Theoretical property

Convergence

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

- Theoretical properties (assuming infinite data, infinite model capacity, direct updating of generator's distribution):
 - Unique global optimum.
 - Optimum corresponds to data distribution.
 - Convergence to optimum guaranteed.

If discriminator is finite and modest-sized, this message is incorrect. (regardless of training time, # samples, training objective etc..) See Sanjeev Arora, CVPR 2018 Tutorial

Poorly fit model

- Since GANs were introduced in 2014, there have been hundreds of papers introducing various architectures and training methods
- GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo
- In general, training a GAN is tricky and unstable
- Many tricks:
 - □ S. Chintala, How to train a GAN, ICCV 2017 tutorial
 - □ https://github.com/soumith/talks/blob/master/2017- ICCV Venice/How To Train a GAN.pdf

Generated Samples

Celebrities:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation

Generated Samples

Objects:

DCGAN

- GAN with convolutional architetures
 - Generator is an upsampling convolutional network
 - Discriminator is a convolutional network

Deep Convolutional GAN [Radford et al., 2015]

Generated Samples

Generated Bad Samples

Problems with Global Structure and Counting

Walk Around Data Manifold

Interpolating between random points in laten space

Radford et al, ICLR 2016

Walk Around Data Manifold

Vector Arithmetic

Outline

- Generative Adversarial Networks
 - □ Implicit generative models
 - □ Adversarial learning
 - Evaluation metrics

Acknowledgement: Feifei Li et al's cs231n notes

- What makes a good generative model?
 - □ Each generated sample is indistinguishable from a real sample

Generated samples should have variety

Images from Karras et al., 2017

39

- How to evaluate the generated samples?
 - □ Cannot rely on the models' loss :-(
 - ☐ Human evaluation :-/
 - □ Use a pre-trained model :-)

"Good" Training Curves

"Bad" Training Curves

- Inception Score (IS) [Salimans et al., 2016]
 - □ Inception model p trained on ImageNet
 - Given generated image x, assigned the label y by model p

$$p(y|x) \rightarrow \text{low entropy (one class)}$$

The distribution over all generated images should be spread

$$\int p(y|\boldsymbol{x} = G(z))dz \implies \text{high entropy (many classes)}$$

Combining the above, we get the final metric:

$$\exp(\mathbb{E}_{\boldsymbol{x}} \text{KL}(p(y|\boldsymbol{x})||p(y)))$$

- Frechet Inception Distance (FID) [Heusel et al. 2017]
 - Calculates the distance between real and fake data (lower the better)
 - □ Uses the embeddings of the real and fake data from the last pooling layer of Inception v3.
 - □ Converts the embeddings into continuous distributions and uses the *mean* and *covariance* of each to calculate their distance.

$$FID(r,g) = ||\mu_r - \mu_g||_2^2 + Tr(cov(r) + cov(g) - 2(cov(r)cov(g))^{\frac{1}{2}})$$

Comparisons

- IS vs FID
- ✓ FID considers the real dataset
- ✓ FID requires less sampling (faster) (~10k instead of 50k in IS)
- FID more robust to noise and human judgement
- ✓ FID also sensitive to mode collapse

Images from Lucic et al., 2017 and Heusel et al., 2017

The GAN Zoo

https://github.com/hindupuravinash/the-gan-zoo

- 3D-ED-GAN Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks
- 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)
- 3D-IWGAN Improved Adversarial Systems for 3D Object Generation and Reconstruction (github)
- 3D-PhysNet 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations
- 3D-RecGAN 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)
- ABC-GAN ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks (github)
- ABC-GAN GANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- acGAN Face Aging With Conditional Generative Adversarial Networks
- ACGAN Coverless Information Hiding Based on Generative adversarial networks
- acGAN On-line Adaptative Curriculum Learning for GANs
- ACtuAL ACtuAL: Actor-Critic Under Adversarial Learning
- AdaGAN AdaGAN: Boosting Generative Models
- Adaptive GAN Customizing an Adversarial Example Generator with Class-Conditional GANs
- AdvEntuRe AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
- AdvGAN Generating adversarial examples with adversarial networks
- AE-GAN AE-GAN: adversarial eliminating with GAN
- AE-OT Latent Space Optimal Transport for Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AF-DCGAN AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization System
- AffGAN Amortised MAP Inference for Image Super-resolution
- AIM Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization

GAN Hacks

- https://github.com/soumith/ganhacks
- Normalize the inputs: [-1, 1], Tanh
- Use a spherical z; Use Batch Norm

One-sided Label Smoothing

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z})\right)\right)$$

Some value smaller than 1; e.g., 0.9

Avoid Sparse Gradients: no ReLU and MaxPooling LeakyReLU → good in both G and D Downsample → use average pool, conv+stride Upsample → deconv+stride, PixelShuffle

Summary of GANs

Don't work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:

Beautiful, state-of-the-art samples!

Cons:

- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

The GAN Zoo

□ https://github.com/hindupuravinash/the-gan-zoo