Volume Rendering

Learn yt workshop 2016 Nathan Goldbaum

(some slides adapted from Cameron Hummels' 2012 volume rendering tutorial)

What is Volume Rendering?

http://yt-project.org/doc/visualizing/volume_rendering.html

What is Volume Rendering?

$$\frac{dI_{\nu}}{ds} = -\kappa_{\nu}I_{\nu} + \epsilon_{\nu}$$

Caveats

- Only grid data are fully supported
- Octree, particle data currently only support off-axis projections
- Unstructured mesh data can produce "hard-surface" VR
- OpenMP parallel
 - Clang (OSX) doesn't support OpenMP until very recently. Must use gcc toolchain or recent clang toolchain to get OpenMP speedups on OSX
- New VR interface in yt 3.3

High Level Ideas

Volume Rendering Components

- Scene container object describing a volume and its contents
 - Sources objects to be rendered
 - VolumeSource simulation volume tied to a dataset
 - TransferFunction mapping of simulation field values to color, brightness, and transparency
 - OpaqueSource Opaque structures like lines, dots, etc.
 - Annotations Annotated structures like grid cells, simulation boundaries, etc.
 - Camera object for rendering; consists of a location, focus, orientation, and resolution
 - Lens object describing method for distributing rays through Sources

Simple volume renderings

\$ yt pastebin_grab 6850 > simple_vr.py

volume_render: create and save a volume rendering in one of line of code

im, sc = yt.volume_render(
 data_source,
 field,
 fname,
 sigma_clip,
 lens_type)

required:

data_source: dataset, data object

field: field to render

optional:

fname: filename of rendering

sigma_clip: adjust contrast

lens_type: ray projection method

http://yt-project.org/doc/reference/api/generated/ yt.visualization.volume_rendering.volume_rendering.volume_render.html

The Scene Object

\$ yt pastebin_grab 6851 > scene.py

create_scene: set up scene object for further customization

Scene objects contain sources of emission and absorption

required:

sc = yt.create_scene(

data_source,

field,

Tens_type)

optional:

field: field to render

lens_type: ray projection method

data_source: dataset, data object

http://yt-project.org/doc/reference/api/generated/ yt.visualization.volume_rendering.volume_rendering.create_scene.html

Volume Sources and Transfer Functions

Volume Source: source for emission from a yt dataset

Transfer functions determines the color and brightness of a field as a function of the field values

Building a Transfer Function

\$ yt pastebin_grab 6853 > transfer_function_helper.py

\$ yt pastebin_grab 6854 > transfer_function_gray.py

```
TransferFunctionHelper helper functions:
set_bounds
set_log
build_transfer_function
gray_opacity
plot
```

http://yt-project.org/doc/visualizing/volume_rendering.html#transferfunctionhelper http://yt-project.org/doc/visualizing/transfer_function_helper.html#transfer-function-helper-tutorial

Ghost Zones?

\$ yt pastebin_grab 6855 > ghost_zones_vr.py

Generating ghost zones can be slow, so it is turned off by default

Turning it on can eliminate artifacts

Customizing Transfer Functions

\$ yt pastebin_grab 6858 > transfer_function_add_layers.py

\$ yt pastebin_grab 6859 > transfer_function_sample_colormap.py

\$ yt pastebin_grab 6860 > transfer_function_add_gaussian.py

\$ yt pastebin_grab 6861 > transfer_function_map_to_colormap.py

Annotating Volume Renderings

\$ yt pastebin_grab 6862 > box_and_grids.py

\$ yt pastebin_grab 6863 > vol_annotated.py

\$ yt pastebin_grab 6865 > vol_points.py

The Camera

Camera object

position: position of the camera in the scene

width: "width" of the camera (plane parallel)

resolution: resolution of the render (# of rays)

focus: The camera's focus (where is it pointed)

north_vector: The "up" direction in the image

lens: Which camera projection to use

http://yt-project.org/doc/visualizing/volume_rendering.html#camera

Position and Orientation

 Moving and rotating the camera pitch, yaw, roll, rotate, iter_rotate
 zoom, iter_zoom
 set_position, iter_move

\$ yt pastebin_grab 6866 > camera_movement.py

Lenses

Plane-parallel

Lenses

Perspective

Lenses

Plane parallel

Fisheye

Perspective

Spherical

Stereo lenses too!

https://www.youtube.com/watch?v=ZYWY53X7UQE

Real-time interactive data visualization

- Prerequisites:
 - glfw3, cyglfw3, pyOpenGL
- yt.interactive_render()