- 1. Let X_1, \ldots, X_n be iid from Gamma(a, b) where a is known.
 - (a) Express the likelihood function $f(X_1, \dots, X_n | b)$ in terms of $\eta = -\frac{1}{b}$ and find the conjugate prior for η .

The density of a Gamma(a, b) distribution is

$$f(x|\eta) = \frac{1}{\Gamma(a)b^a} x^{a-1} e^{-x/b} = \frac{1}{\Gamma(a)} x^{a-1} (-\eta)^a e^{\eta x} = \frac{1}{\Gamma(a)} x^{a-1} e^{\eta x - (-a)\log(-\eta)}.$$

The likelihood function is thus

$$f(\mathbf{X}|\eta) = \prod_{i=1}^{n} f(X_i|\eta) = \left(\frac{1}{\Gamma(a)}\right)^n \left(\prod_{i=1}^{n} X_i\right)^{a-1} \exp\left(\eta \sum_{i=1}^{n} X_i - n(-a)\log(-\eta)\right).$$

The conjugate prior family is

$$\pi(\eta|k,\mu) = c(k,\mu) \exp(k\eta\mu - k(-a)\log(-\eta))$$

where μ can be thought of as a prior mean and k is proportional to a prior variance.

(b) Using the prior for η in (a), find the Bayes estimator under the losses (i) $L(b,\delta) = (b-\delta)^2$ and (ii) $L(b,\delta) = (1-\delta/b)^2$.

The posterior distribution is

$$\pi(\eta|\mathbf{x}, k, \mu) \propto \exp\left(\eta \sum_{i=1}^{n} x_i - n(-a)\log(-\eta)\right) \exp\left(k\eta\mu - k(-a)\log(-\eta)\right)$$
$$= \exp\left(\eta(n\overline{x} + k\mu) - (n+k)(-a)\log(-\eta)\right),$$

(i) Using the conclusion of Problem 3.9 in Theory of Point Estimation, we know that

$$\mathbb{E}\left(\frac{\partial(-a)\log(-\eta)}{\partial\eta}|\mathbf{x},k,\mu\right) = \mathbb{E}\left(-\frac{a}{\eta}\right) = \frac{n\overline{x} + k\mu}{n+k}.$$

Under $L(b,\delta)=(b-\delta)^2$, using Corollary 1.2, we know the Bayes estimator of b is

$$\delta(\mathbf{x}) = \mathbb{E}(b|\mathbf{x}) = \mathbb{E}\left(-\frac{1}{\eta}|\mathbf{x}\right) = \frac{n\overline{x} + k\mu}{a(n+k)}.$$

(ii) Under $L(b,\delta) = (1-\delta/b)^2 = (b-\delta)^2/b^2$, using Corollary 1.2, we know the Bayes estimator of b is

$$\delta(\mathbf{x}) = \frac{\mathbb{E}(1/b|\mathbf{x})}{\mathbb{E}(1/b^2|\mathbf{x})} = \frac{\mathbb{E}(-\eta|\mathbf{x})}{\mathbb{E}(\eta^2|\mathbf{x})}.$$

Since the posterior distribution of η is proportional to

$$\exp\left(\eta(n\overline{x}+k\mu)-(n+k)(-a)\log(-\eta)\right)$$
,

we know $-\eta | \mathbf{x}$ follows Gamma distribution with shape a(n+k)+1 and scale $1/(n\overline{x}+k\mu)$ so

$$\mathbb{E}(-\eta|\mathbf{x}) = \frac{a(n+k)+1}{n\overline{x}+k\mu},$$

and

$$\operatorname{Var}(-\eta|\mathbf{x}) = \frac{a(n+k)+1}{(n\overline{x}+k\mu)^2} \Longrightarrow \mathbb{E}(\eta^2|\mathbf{x}) = \frac{(a(n+k)+1)+(a(n+k)+1)^2}{(n\overline{x}+k\mu)^2},$$

so

$$\delta(\mathbf{x}) = \frac{\mathbb{E}(-\eta|\mathbf{x})}{\mathbb{E}(\eta^2|\mathbf{x})} = \frac{a(n+k)+1}{n\overline{x}+k\mu} \frac{(n\overline{x}+k\mu)^2}{(a(n+k)+1)+(a(n+k)+1)^2} = \frac{n\overline{x}+k\mu}{a(n+k)+2}.$$

- (c) The problem is misleading, in fact it lies in the Chapter 4 (3.9) of the indicated book.
- 2. Page 242, Corollary 3.3 in Chapter 4, Lehmann and Casella (1998): If $\mathbf{X} = (X_1, \dots, X_p)$ has the density

$$p_{\eta}(\mathbf{x}) = \exp\left(\sum_{i=1}^{p} \eta_i x_i - A(\eta)\right) h(\mathbf{x})$$

and η has prior density $\pi(\eta)$, the Bayes estimator of η under the loss $L(\eta, \delta) = \sum (\eta_i - \delta_i)^2$ is given by

$$\mathbb{E}(\eta_i|\mathbf{x}) = \frac{\partial}{\partial x_i} \log m(\mathbf{x}) - \frac{\partial}{\partial x_i} \log h(\mathbf{x}).$$

We prove Theorem 3.2 first: If X has density

$$p_{\eta}(\mathbf{x}) = \exp\left(\sum_{i=1}^{p} \eta_i T_i(\mathbf{x}) - A(\eta)\right) h(\mathbf{x})$$

and η has prior density $\pi(\eta)$, then for $j = 1, \ldots, n$,

$$\mathbb{E}\left(\sum_{i=1}^{s} \eta_{i} \frac{\partial T_{i}(\mathbf{x})}{\partial x_{j}} | \mathbf{x}\right) = \frac{\partial}{\partial x_{j}} \log m(\mathbf{x}) - \frac{\partial}{\partial x_{j}} \log h(\mathbf{x})$$

where $m(\mathbf{x}) = \int p_{\eta}(\mathbf{x})\pi(\eta)d\eta$ is the marginal distribution of \mathbf{X} .

Proof. Note that

$$\frac{\partial}{\partial x_j} \exp\left(\sum_{i=1}^s \eta_i T_i\right) = \left(\sum_{i=1}^s \eta_i \frac{\partial T_i}{\partial x_j}\right) \exp\left(\sum_{i=1}^s \eta_i T_i\right),$$

we have

$$\mathbb{E}\left(\sum_{i=1}^{s} \eta_{i} \frac{\partial T_{i}(\mathbf{x})}{\partial x_{j}} | \mathbf{x}\right)$$

$$= \int \left(\sum_{i=1}^{s} \eta_{i} \frac{\partial T_{i}(\mathbf{x})}{\partial x_{j}}\right) \pi(\boldsymbol{\eta} | \mathbf{x}) d\boldsymbol{\eta}$$

$$= \frac{1}{m(\mathbf{x})} \int \left(\sum_{i=1}^{s} \eta_{i} \frac{\partial T_{i}(\mathbf{x})}{\partial x_{j}}\right) \exp\left(\sum_{i=1}^{p} \eta_{i} T_{i}(\mathbf{x}) - A(\boldsymbol{\eta})\right) h(\mathbf{x}) \pi(\boldsymbol{\eta}) d\boldsymbol{\eta}$$

$$= \frac{1}{m(\mathbf{x})} \int \left[h(\mathbf{x}) \frac{\partial}{\partial x_{j}} \exp\left(\sum_{i=1}^{s} \eta_{i} T_{i}\right)\right] \exp(-A(\boldsymbol{\eta})) \pi(\boldsymbol{\eta}) d\boldsymbol{\eta}$$

$$= \frac{1}{m(\mathbf{x})} \int \left[\frac{\partial}{\partial x_{j}} \exp\left(\sum_{i=1}^{s} \eta_{i} T_{i}\right) h(\mathbf{x}) - \exp\left(\sum_{i=1}^{s} \eta_{i} T_{i}\right) \frac{\partial}{\partial x_{j}} h(\mathbf{x})\right] \exp(-A(\boldsymbol{\eta})) \pi(\boldsymbol{\eta}) d\boldsymbol{\eta}$$

$$= \frac{1}{m(\mathbf{x})} \frac{\partial}{\partial x_{j}} \int p_{\boldsymbol{\eta}}(\mathbf{x}) \pi(\boldsymbol{\eta}) d\boldsymbol{\eta} - \frac{1}{m(\mathbf{x})h(\mathbf{x})} \frac{\partial}{\partial x_{j}} h(\mathbf{x}) \int p_{\boldsymbol{\eta}}(\mathbf{x}) \pi(\boldsymbol{\eta}) d\boldsymbol{\eta}$$

$$= \frac{\partial}{\partial x_{j}} \log m(\mathbf{x}) - \frac{\partial}{\partial x_{j}} \log h(\mathbf{x}).$$

Under the sum of square loss, the Bayesian estimator of η is given by the posterior means $\mathbb{E}(\eta_i|\mathbf{x})$ for $i = 1, \ldots, s$. To see this, note that the value $\delta(\mathbf{x})$ minimizing

$$\mathbb{E}[L(\boldsymbol{\eta}, \delta(\mathbf{x}))|\mathbf{x}] = \mathbb{E}[\mathbb{E}[L(\boldsymbol{\eta}, \delta(\mathbf{x}))|\eta_{[-1]}]|\mathbf{x}]$$

must have $\mathbb{E}(\eta_1|\mathbf{x})$ as its first component since the squared loss is used. Similar arguments can be applied on

$$\mathbb{E}[\mathbb{E}[L(\boldsymbol{\eta}, \delta(\mathbf{x}))|\eta_{[-1]}])|\mathbf{x}] = \mathbb{E}[\mathbb{E}[\mathbb{E}[L(\boldsymbol{\eta}, \delta(\mathbf{x}))||\eta_{[-2]}]|\eta_{[-1]}])|\mathbf{x}]$$

and so on to reach the conclusion.

Use Theorem 3.2, we know

$$\mathbb{E}\left(\sum_{i=1}^{s} \eta_{i} \frac{\partial T_{i}(\mathbf{x})}{\partial x_{j}} | \mathbf{x}\right) = \frac{\partial}{\partial x_{j}} \log m(\mathbf{x}) - \frac{\partial}{\partial x_{j}} \log h(\mathbf{x}),$$

and since $T_i(\mathbf{x}) = x_i$, we have $\partial T_i/\partial x_j = x_i \mathbb{1}(j=i)$ so

$$\mathbb{E}(\eta_i|\mathbf{x}) = \frac{\partial}{\partial x_j} \log m(\mathbf{x}) - \frac{\partial}{\partial x_j} \log h(\mathbf{x}).$$

3. Example 3.4 in Chapter 4, Lehmann and Casella (1998): Multiple normal model. For

$$X_i | \theta_i \sim \mathcal{N}(\theta_i, \sigma^2), \qquad i = 1, \dots, p, \text{ independent},$$

$$\Theta_i \sim \mathcal{N}(\mu, \tau^2), \qquad i = 1, \dots, p, \text{ independent},$$

where σ^2 , τ^2 , and μ are known, $\eta_i = \theta_i/\sigma^2$ and the Bayes estimator of θ_i is

$$\mathbb{E}(\Theta_i|x) = \sigma^2 \,\mathbb{E}(\eta_i|x) = \sigma^2 \left[\frac{\partial}{\partial x_i} \log m(\mathbf{x}) - \frac{\partial}{\partial x_i} \log h(\mathbf{x}) \right] = \frac{\tau^2}{\sigma^2 + \tau^2} x_i + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu.$$

Example 3.6 in Chapter 4, Lehmann and Casella (1998): **Continuation of Example 3.4**. To evaluate the risk of the Bayes estimator, we also calculate

$$\frac{\partial^2}{\partial x_i^2} \log m(x) = -\frac{1}{\sigma^2 + \tau^2}.$$

and hence by Theorem 3.5,

$$R[\boldsymbol{\eta}, \mathbb{E}(\boldsymbol{\eta}|\mathbf{X})] = R[\boldsymbol{\eta}, -\nabla \log h(\mathbf{X})] - \frac{2p}{\sigma^2 + \tau^2} + \sum_{i} \mathbb{E}_{\boldsymbol{\eta}} \left(\frac{X_i - \mu}{\sigma^2 + \tau^2} \right)^2.$$

The best unbiased estimator of $\eta_i = \theta_i/\sigma^2$ is

$$-\frac{\partial}{\partial X_i} \log h(\mathbf{X}) = \frac{X_i}{\sigma^2}$$

with risk $R[\boldsymbol{\eta}, -\nabla \log h(\mathbf{X})] = p/\sigma^2$.

This problem further discusses Example 3.6 in Chapter 4, Lehmann and Casella (1998).

(a) Show that if δ is a Bayes estimator of θ , then $\delta' = \delta/\sigma^2$ is a Bayes estimator of η , and hence $R(\theta, \delta) = \sigma^4 R(\eta, \delta')$.

If δ is a Bayes estimator of θ for the loss function $L(\theta,d) = \sum_{i=1}^{p} (\theta_i - d_i)^2$, then

$$\delta_i(\mathbf{x}) = \mathbb{E}[\theta_i|\mathbf{x}], \qquad i = 1, 2, \dots, p.$$

Divide the equalities by σ^2 , we have

$$\frac{\delta_i(\mathbf{x})}{\sigma^2} = \mathbb{E}[\eta_i|\mathbf{x}], \qquad i = 1, 2, \dots, p.$$

Hence under the loss function $L(\eta, d) = \sum_{i=1}^{p} (\eta_i - d_i)^2$, the Bayes estimator of η is given by $\delta' = \delta/\sigma^2$. Knowing that $\delta' = \delta/\sigma^2$, we have

$$\mathbb{E}[L(\theta, \delta(X))|\theta] = \mathbb{E}\left[\sum_{i=1}^{p} (\theta_i - \delta_i(X))^2 |\theta] = \sigma^4 \mathbb{E}\left[\sum_{i=1}^{p} \left(\eta_i - \frac{\delta_i(X)}{\sigma^2}\right)^2 |\theta\right] = \sigma^4 \mathbb{E}[L(\eta, \delta'(X))|\theta],$$

which is equivalent to

$$R(\theta, \delta) = \sigma^4 R(\eta, \delta').$$

(b) Show that the risk of the Bayes estimator of η is given by

$$\frac{p\tau^4}{\sigma^2(\sigma^2+\tau^2)^2} + \left(\frac{\sigma^2}{\sigma^2+\tau^2}\right)^2 \sum_i a_i^2,$$

with $a_i = \eta_i - \mu/\sigma^2$.

Using the results of Example 3.6,

$$R[\boldsymbol{\eta}, \mathbb{E}(\boldsymbol{\eta}|\mathbf{X})] = R[\boldsymbol{\eta}, -\nabla \log h(\mathbf{X})] - \frac{2p}{\sigma^2 + \tau^2} + \sum_{i} \mathbb{E}_{\boldsymbol{\eta}} \left(\frac{X_i - \mu}{\sigma^2 + \tau^2}\right)^2$$
$$= \frac{p}{\sigma^2} - \frac{2p}{\sigma^2 + \tau^2} + \sum_{i} \mathbb{E}_{\boldsymbol{\eta}} \left(\frac{X_i - \mu}{\sigma^2 + \tau^2}\right)^2$$

$$\begin{split} &= \frac{p(\tau^2 - \sigma^2)}{\sigma^2(\sigma^2 + \tau^2)} + \frac{1}{(\sigma^2 + \tau^2)^2} \sum_i \mathbb{E}_{\pmb{\eta}} (X_i^2 - 2\mu X_i + \mu^2) \\ &= \frac{p(\tau^4 - \sigma^4)}{\sigma^2(\sigma^2 + \tau^2)^2} + \frac{1}{(\sigma^2 + \tau^2)^2} \sum_i \left[\sigma^4 \left(\eta_i - \frac{\mu}{\sigma^2} \right)^2 + \sigma^2 \right] \\ &= \frac{p(\tau^4 - \sigma^4)}{\sigma^2(\sigma^2 + \tau^2)^2} + \frac{p\sigma^2}{(\sigma^2 + \tau^2)^2} + \frac{\sigma^4}{(\sigma^2 + \tau^2)^2} \sum_i \left(\eta_i - \frac{\mu}{\sigma^2} \right)^2 \\ &= \frac{p\tau^4}{\sigma^2(\sigma^2 + \tau^2)^2} + \left(\frac{\sigma^2}{\sigma^2 + \tau^2} \right)^2 \sum_i a_i^2, \end{split}$$

with $a_i = \eta_i - \mu/\sigma^2$.

(c) If $\sum_i a_i^2 = k$, a fixed constant, then the minimum risk is attained at $\eta_i = \mu/\sigma^2 + \sqrt{k/p}$.

If $\sum_i a_i^2 = k$, a fixed constant, then $R[\eta, \mathbb{E}(\eta | \mathbf{X})]$ is fixed. Hence the minimum risk is attained at $\eta_i = \mu/\sigma^2 + \sqrt{k/p}$ by the usual math trick.

- 4. If X_1, \ldots, X_n are iid from a one-parameter exponential family, the Bayes estimator of the mean, under squared error loss using a conjugate prior, is of the form $a\overline{X} + b$ for constants a and b. Prove the followings:
 - (a) If $\mathbb{E}(X_i) = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$, then no matter what the distribution of the X_i 's, the mean squared error is $\mathbb{E}\{(a\overline{X} + b) \mu\}^2 = a^2 \operatorname{Var}(\overline{X}) + \{(a-1)\mu + b\}^2$.

We have

$$\begin{split} \mathbb{E}\{(a\overline{X}+b) - \mu\}^2 &= \mathbb{E}((a\overline{X}+b)^2 - 2\mu(a\overline{X}+b) + \mu^2) \\ &= \mathrm{Var}(a\overline{X}+b) + [\mathbb{E}(a\overline{X}+b)]^2 - 2\mu \, \mathbb{E}(a\overline{X}+b) + \mu^2 \\ &= a^2 \, \mathrm{Var}(\overline{X}) + (a\mu+b)^2 - 2\mu(a\mu+b) + \mu^2 \\ &= a^2 \, \mathrm{Var}(\overline{X}) + (a^2 - 2a + 1)\mu^2 + 2(a - 1)b\mu + b^2 \\ &= a^2 \, \mathrm{Var}(\overline{X}) + \{(a - 1)\mu + b\}^2, \end{split}$$

regardless of the distribution of X.

(b) If μ is unbounded, then no estimator of the form $a\overline{X} + b$ can have finite squared error for $a \neq 1$.

Since $\mathbb{E}\{(a\overline{X}+b)-\mu\}^2=a^2\operatorname{Var}(\overline{X})+\{(a-1)\mu+b\}^2$, if $\underline{\mu}$ is unbounded, the squared error of $a\overline{X}+b$ will be unbounded for $a\neq 1$, so no estimator of the form $a\overline{X}+b$ can have finite squared error for $a\neq 1$.

(c) Can a conjugate-prior Bayes estimator in an exponential family have finite squared error?

Yes. Consider $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} Binomial(n, p)$ with p unknown and of interest, then the Bayes estimator of p, under squared error loss using a conjugate prior $Beta(a_0, b_0)$, is of the form $a\overline{X} + b$ for constants a and b and the mean squared error is finite.

- 5. Suppose that Θ follows a log-normal distribution with known hyperparameters $\mu_0 \in \mathbb{R}$ and $\sigma_0^2 > 0$ and that, given $\Theta = \theta$, (X_1, \ldots, X_n) is an iid sample from Uniform $(0, \theta)$.
 - (a) What is the posterior distribution of $\log(\Theta)$?

We are given that

$$\eta := \log(\Theta) \sim \mathcal{N}(\mu_0, \sigma_0^2)$$

and

$$\begin{split} f(\mathbf{X}|\eta) &= f(\mathbf{X}|\theta) \\ &= \frac{1}{\theta^n} \, \mathbb{1}(X_{(0)} \ge 0) \, \mathbb{1}(X_{(n)} \le \theta) \\ &= e^{-n \log \theta} \, \mathbb{1}(\log X_{(n)} \le \log \theta) \, \mathbb{1}(X_{(0)} \ge 0) \\ &= e^{-n\eta} \, \mathbb{1}(\log X_{(n)} \le \eta) \, \mathbb{1}(X_{(0)} \ge 0). \end{split}$$

Hence,

$$f(\eta|\mathbf{X}) \propto f(\mathbf{X}|\eta)\pi(\eta)$$

$$\propto e^{-n\eta} \mathbb{1}(\log X_{(n)} \leq \eta) \exp\left(-\frac{(\eta - \mu_0)^2}{2\sigma_0^2}\right)$$

$$\propto \exp\left(-\frac{(\eta - (\mu_0 - n\sigma_0^2))^2}{2\sigma_0^2}\right) \mathbb{1}(\eta \geq \log X_{(n)}).$$

The posterior distribution of $\log(\Theta)$ is, therefore, a truncated normal distribution with mean $\mu_0 - n\sigma_0^2$ and variance σ_0^2 and truncated below by $\log X_{(n)}$.

(b) Let δ_{τ} represent the Bayes estimator of θ under the loss

$$L(\theta, d) = \begin{cases} 0 & \text{if } \frac{1}{\tau} \le \frac{\theta}{d} \le \tau \\ 1 & \text{otherwise} \end{cases}$$

for fixed $\tau > 1$. Find a simple, closed-form expression for the limit of δ_{τ} as $\tau \to 1$.

The loss function can be equivalently expressed by

$$L(\theta, d) = \begin{cases} 0 & \text{if } |\log \theta - \log d| \le \log \tau \\ 1 & \text{if } |\log \theta - \log d| > \log \tau \end{cases}.$$

By Corollary 1.2, the Bayes estimator $\delta_{\tau}(X)$ of θ is given by

$$\delta_{\tau}(X) = \arg\max_{d} \Pr(|\log \theta - \log d| \le \log \tau).$$

We have the following two situations:

- i. If $\log X_{(n)} \leq \mu_0 n\sigma_0^2 \log \tau$, then we should choose $\log \delta_\tau(X) = \mu_0 n\sigma_0^2$;
- ii. If $\log X_{(n)} > \mu_0 n\sigma_0^2 \log \tau$, then we should choose $\log \delta_{\tau}(X) = \log X_{(n)} + \log \tau$.

As $\tau \to 1$, we obtain that

$$\delta_{\tau}(X) \to \delta(X) = \exp\left(\max(\log X_{(n)}, \mu_0 - n\sigma_0^2)\right).$$

6. Consider a Bayesian inference setting in which the prior is continuous and the posterior mean $\mathbb{E}(\Theta|X=x)$ is finite for each x. Show that under the loss function

$$L(\theta, a) = \begin{cases} k_1 |\theta - a| & \text{if } a \le \theta \\ k_2 |\theta - a| & \text{otherwise} \end{cases}$$

with $k_1, k_2 > 0$ constant and for p an appropriate function of k_1 and k_2 , every p-th quantile of the posterior distribution is a Bayes estimator.

Denote the p-th quantile of the posterior distribution by τ_p , with

$$\Pr(\theta \le \tau_p | \mathbf{x}) = p.$$

The loss function $L(\theta, a)$ can be rewritten as

$$L(\theta, a) = k_1(\theta - a) \mathbb{1}(\theta > a) + k_2(a - \theta) \mathbb{1}(\theta < a),$$

so

$$\mathbb{E}(L(\theta, a)|\mathbf{x}) = \int_{a}^{\infty} k_1(\theta - a)dF(\theta|\mathbf{x}) + \int_{-\infty}^{a} k_2(a - \theta)dF(\theta|\mathbf{x}).$$

To find the Bayes estimator, take derivatives with respect to a:

$$\frac{\partial}{\partial a} \mathbb{E}(L(\theta, a) | \mathbf{x}) = -k_1 \Pr(\theta > a | \mathbf{x}) + k_2 \Pr(\theta \le a | \mathbf{x}) = (k_1 + k_2) \Pr(\theta \le a | \mathbf{x}) - k_1.$$

For p-th quantile of the posterior distribution to be a Bayes estimator, we must have

$$\frac{\partial}{\partial a} \mathbb{E}(L(\theta, a) | \mathbf{x}) \Big|_{a=\tau_n} = 0,$$

$$\Pr(\theta \le \tau_p | \mathbf{x}) = \frac{k_1}{k_1 + k_2},$$

hence $p = k_1/(k_1 + k_2)$.