Topic 1 – Quadratics (Week 2)

- 1. Find the range of values of p for which the equation
 - (a) $x^2 + 3 = 2x + p$ has real roots,
 - (b) $2x^2 + 2x\sqrt{3} + p = p(x^2 + 2)$ has distinct real roots.
- $\mathbf{\hat{z}}$ Find the range of values of x for which
 - (a) $(1+x)(6-x) \le -8$,
- (b) 2x(x+2) < (x+1)(x+3).
- 3. Calculate the smallest positive integer k for which the equation $2x^2 + 2kx + 7 = 0$ has two distinct real roots.
- 4. The line x + y = a and the curve $x^2 + y^2 = b^2$ meet each other. If b > 0, show that $-\sqrt{2}b \le a \le \sqrt{2}b$.
- 5. Given that $3px^2 7qx + 3p = 0$ has equal roots and p and q are positive, find the ratio p:q and solve the equation.
- 6. Sketch the curve y = (x 3)(x + 1). Hence find the value of p if (x 3)(x + 1) = p has equal real roots and state the value of these roots.
- 7. If x is real and $(x + 1)^2 = k(x + 2)$, show that k cannot lie between -4 and 0.
- 8. Given $y = k + 5x 2x^2$, find the range of values of k for which y is always negative. When k = -4, find the coordinates of the turning point and sketch the curve.
- 9. Show that the line y = 5x 4 is a tangent to the curve $y = x^2 + x$. Find also the condition for y = mx c to be a tangent to the curve.
- 10. A quadratic curve is symmetrical about the line x = 3 and passes through the points (2, 13) and (-1, -2). Find its equation and sketch this curve.
- 11. The equation $\frac{1}{2} + \frac{1}{x+k} = \frac{1}{x}$ has no real roots, find the range of values of k.
- 12. Show that $x-3=k(2x-x^2+3)$ has real roots for all non-zero values of k.

- *13. If the x-axis is tangential to the curve $y = a^2x^2 + 6abx + ac + 8b^2$, where a, b and c are constants, show that it is also tangential to the curve $y = ac(x + 1)^2 - 4b^2x$.
 - 14. Find the range of values of h for which $3x^2 + hx + 1 = x 2hx^2$ has two distinct real roots.
 - 15. Solve for x if $x 3 < x(x 3) \le 4$.
 - 16. Find the minimum value of $2x^2 + 3x + 4$ and the corresponding value of x. Sketch the curve $y = 2x^2 + 3x + 4$. Hence, or otherwise, find the range of values of k for which $2x^2 + 3x + 4 \ge k$ for all real values of x.
- 17. Given that the curve whose equation is $y = p (x q)^2$ crosses the x-axis at the points (-1, 0) and (5, 0), find the maximum value of y.
- 18. The line (k-2)y = 3x meets the curve xy = 1 x at two distinct points. Find the range of values of k. State also the values of k if the line is a tangent to the curve.
- 19. Find the range of values of k if $kx^2 + 8x > 6 k$ for all real values of x.
- Express x in terms of y when $x^2 + 2xy + 5y^2 = 1$. Deduce that x is real only when y lies between certain values (inclusive) and find these values.
- 21. Sketch the curve $y = 2x^2 4x + 1$, indicating the coordinates of the turning point and the exact values of the x-intercepts. Hence, find
 - (a) the range of values of x for which $2x^2 + 1 \le 4x$,
 - (b) the range of values of p if $2x^2 4x + 1 + p = 0$ has no real roots.

Answers

1. (a)
$$p \ge 2$$
 (b) $-1 , $p \ne 2$ 2. (a) $x \le -2$ or $x \ge 7$ (b) $-\sqrt{3} < x < \sqrt{3}$
3. 4

5. 7: 6; 1

6. $p = -4$, $x = 1$

9. $(m-1)^2 = 4c$

10. $y = 5 + 6x - x^2$$

8.
$$k < -\frac{25}{8}$$
; $(\frac{5}{4}, -\frac{7}{8})$ 9. $(m-1)^2 = 4c$ 6. $p = -4, x = 1$ 10. $y = 5 + 6x - x^2$

11.
$$-8 < k < 0$$
 14. $h < -1$ or $h > 11$, $h \ne -\frac{3}{2}$ 15. $-1 < x < 1$ or $3 < x < 4$
16. $2^{\frac{7}{2}}$, $x = -\frac{3}{2}$, $k < 2^{\frac{7}{2}}$

16.
$$2\frac{7}{8}$$
, $x = -\frac{3}{4}$; $k \le 2\frac{7}{8}$ 17. 9 18. $k < -10$ or $k > 2$; $k = -10$, 2

11.
$$-8 < k < 0$$
 14. $h < -1$ or $h > 11$, $h \ne -\frac{3}{2}$ 15. $-1 \le x < 1$ or 3

16. $2\frac{7}{8}$, $x = -\frac{3}{4}$; $k \le 2\frac{7}{8}$ 17. 9 18. $k < -10$ or $k > 2$

19. $k > 8$ 20. $x = -y \pm \sqrt{1 - 4y^2}$; $-\frac{1}{2} \le y \le \frac{1}{2}$; $-\frac{1}{2}$, $\frac{1}{2}$

21. (a) $1 - \frac{1}{\sqrt{2}} \le x \le 1 + \frac{1}{\sqrt{2}}$ (b) $p > 1$

21. (a)
$$1 - \frac{1}{\sqrt{2}} \le x \le 1 + \frac{1}{\sqrt{2}}$$
 (b) $p > 1$