Branched & Looped Systems

Consider a system of multiple, interconnected pipes

Each pipe is called a link (arc) (pipe)

Each junction is called a node

Continunity at the node will require $0 = -9Q_1 + 9Q_2 + 9Q_3$ $\Rightarrow \Sigma Q = 0$

Energy at He node is unique Conly one value)

These two rules are used to analyze a branched system like He one shown

Continunity $Q_1 = Q_2 + Q_3$

 $h_{i} - f_{i} = f_{i} = h_{i}$

 $h_2 + f_2 \frac{L_2 V_2}{D_2 2g} = h_i$ Sign from 2 ny assumed from $h_3 + f_3 \frac{L_3}{D_3} \frac{V_3^2}{2g} = h_j$

Odve each branch for head loss:

$$h_{1} - h_{j} = f_{1} \frac{L_{1}}{D_{1}} \frac{V_{1}^{2}}{2g} = f_{1} K_{1} Q_{1}^{2}$$

$$h_{1} - h_{2} = f_{2} \frac{L_{2}}{D_{2}} \frac{V_{2}^{2}}{2g} = f_{2} K_{2} Q_{2}^{2}$$

$$h_{1} - h_{3} = f_{3} \frac{L_{3}}{D_{3}} \frac{V_{3}^{2}}{2g} = f_{3} K_{3} Q_{3}^{2}$$

$$Q_i = \sqrt{\frac{h_i - h_j}{f_i K_i}}$$

$$Q_2 = \sqrt{\frac{h_i - h_2}{f_2 K_2}}$$

$$Q_3 = \sqrt{\frac{h_i - h_3}{f_3 K_3}}$$

Example

Find flow in each pipe

1 Assure How directions.

$$0 = +Q_1 + Q_2 - Q_3 \Rightarrow Q_3 = Q_1 + Q_2$$
 (Continunity)

3 Evergy Equations from l'eservoir to garaction

$$h_{i} - 70m = f_{i} \frac{L_{i}}{D_{i}} \frac{Q_{i}^{2}}{A_{i}} \frac{1}{2g} = \frac{8f_{i}L_{i}}{\pi^{2}g} \frac{Q_{i}^{2}}{D_{i}^{5}} Q_{i}^{2}$$

$$h_1 - 80m = \frac{8f_2L_2}{\pi^2 g D_2^5} Q_2^2$$

(3) Evaluate constants

$$\frac{8f_{1}L_{1}}{\Pi^{2}gD_{1}^{3}} = \frac{(8\chi_{0.015})(5000)}{\Pi^{2}(9.8)(0.6)^{5}} = 79.7$$

$$\frac{8f_{2}L_{2}}{\Pi^{2}gD_{2}^{5}} = \frac{(8)(0.015)(4000)}{\Pi^{2}(9.8)(1.2)^{5}} = 1.99$$

$$\frac{8f_3L_3}{\pi^2 a D^5} = \frac{(8)(0.015)(3000)}{\pi^2 (9.8)(0.8)^5} = 11.35$$

$$h_{j} - 70 = 79.7 Q_{i}^{2}$$
 $Q_{i}^{2} = \frac{h_{j} - 70}{79.7}$
 $h_{j} - 80 = 1.99 Q_{2}^{2}$
 $Q_{2}^{2} = \frac{h_{j} - 80}{1.99}$
 $Q_{3}^{2} = \frac{h_{j} - 80}{1.99}$
 $Q_{3}^{2} = \frac{100 - h_{j}}{11.35}$

Construct a table

=	$\sqrt{\frac{h_{j}-70}{79.7}}$ if	h;>70
/	- $\sqrt{\frac{70-h_j}{79.7}}$ if	

				K				
hj	Q1^2	Q2^2	Q3^2	Q1	Q2	Q3	Q1+Q2	2-Q3
79	0.113	-0.503	1.85	0.336	-0.709	1.36	-1.733	
79.25	0.116	-0.377	1.828	0.341	-0.614	1.352	-1.625	
79.75	0.122	-0.126	1.784	0.35	-0.354	1.336	-1.34	
80.25	0.129	0.126	1.74	0.359	0.354	1.319	-0.606	
80.75	0.135	0.377	1.696	0.367	0.614	1.302	0.321	
81.25	0.141	0.628	1.652	0.376	0.793	1.285	-0,117	
81.75	0.147	0.879	1.608	0.384	0.938	1.268	0.054	
82.25	0.154	1.131	1.564	0.392	1.063	1.251	0.203	
82.75	0.16	1.382	1.52	0.4	1.176	1.233	0.343	
83.25	0.166	1.633	1.476	0.408	1.278	1.215	0.471	
83.75	0.173	1.884	1.432	0.415	1.373	1.197	0.592	
84.25	0.179	2.136	1.388	0.423	1.461	1.178	0.706	
		Thi	ree Reserv	ior Proble	m			
	1							
(0.5				NA A			
	0		di	MA	-		4	
·02-03	78 0.5	8	0	82	84		86	

$$\begin{cases} = \sqrt{\frac{h_{j}-80}{1.99}} & \text{if } h_{j} > 80 \\ = -\sqrt{\frac{80-h_{j}}{1.99}} & \text{if } h_{j} < 80 \end{cases}$$

 $\begin{cases} = \sqrt{\frac{100 - h_{i}}{11.35}} & \text{if } h_{i} < 100 \\ = \sqrt{\frac{h_{i} - 100}{11.35}} & \text{if } h_{i} > 100 \end{cases}$

Q, = 0.384 m3/s Q2 = 0.938 m3/s Q3 = 1.268 m3/s

Looped Systems

Branched system where links define closed loops is called a pipe returner.

$$\frac{Rvles}{=}$$
 0 $\geq Q = 0$ at each node.

- @ head is unique at each node
- 3) From 3), He head loss around a dosed loop is zero.

$$\int_{Loss} \frac{h_{Loss}}{link#2} = \frac{h_{Loss}}{link#1}$$
or
$$h_{0=0} = \frac{f_{,L_{1}}V_{,2}^{2}}{D_{,2}} = \frac{f_{2}L_{2}V_{2}^{2}}{D_{2}2g}$$

Looped Systems

- O ZQ = 0 at each node
- (2) he around a closed loop is zero

2 - Parallel Pipes

(2)
$$h_A - 8f_L, Q_1^2 = h_B$$

$$\frac{17^2 g D_1^5}{77^2 g D_2^5}$$

$$\frac{R_{1}^{2}L_{1}Q_{1}^{2}}{R_{2}^{2}Q_{2}^{2}} = \frac{R_{2}L_{2}Q_{2}^{2}}{R_{2}^{2}Q_{2}^{2}}$$

$$\frac{Q_{1}^{2}}{Q_{2}^{2}} = \frac{f_{2}L_{2}D_{1}^{5}}{f_{1}L_{1}D_{2}^{5}}$$

$$\frac{q_{1}^{2}}{q_{2}^{2}} = \frac{f_{2}L_{2}D_{1}^{5}}{f_{1}L_{1}D_{2}^{5}}$$

$$\frac{Q_1^2}{Q_2^2} = \frac{D_1^5}{D_2^5} = \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$Q_{1}^{2} = \frac{1}{32} Q_{2}^{2}$$
 or $Q_{1} = \sqrt{\frac{1}{32}} Q_{2}$

Now substitute into continunity:

$$\sqrt{\frac{1}{32}} Q_2 + Q_2 = 20$$
 Solve for Q_2

Several parallel pipes

Find head loss & flow distribution in system shown below

Solution 11 2'12 (1

1 label all pipes & nodes

@find losses in O&B; both have flow Q = 20cts

$$h_{L} = \frac{8 f L_{1}}{\pi^{2} g D_{5}^{5}} = \frac{(8)(0.03)(2000)(20)^{2}}{\pi^{2}(32.2)(\frac{24}{12})^{5}} = 19.0 ft$$

$$h_{L} = \frac{8 f L}{\pi^{2} g D_{5}^{5}} = \frac{(8)(0.03)(4000)(20)^{2}}{\pi^{2}(32.2)(\frac{30}{12})^{5}} = 12.0 ft$$

Energy:
$$h_{2} = h_{23} = h_{24}$$

 $h_{L_{2}} = \frac{8fL_{2}}{\pi^{2}gD_{2}^{5}}Q_{2}^{2} = 1.05Q_{2}^{2}$
 $h_{L_{3}} = \frac{8fL_{3}}{\pi^{2}gD_{3}^{5}}Q_{3}^{2} = 1.51Q_{3}^{2}$
 $h_{L_{4}} = \frac{8fL_{4}}{\pi^{2}gD_{4}^{5}}Q_{4}^{2} = 0.54Q_{4}^{2}$

From energy: hiz=hi3=hi4

 $1.5/Q_3^2 = 1.05Q_2^2 \Rightarrow Q_3^2 = \frac{1.05}{1.5/Q_2^2} \Rightarrow Q_3^2 = \sqrt{\frac{1.05}{1.5/Q_2^2}}$

0.54 Qy=1.05 Q2 = Qy= 1.05 Q2 = P4 = V 1.05 Q2

So: $Q_3 = 0.834 Q_2$ $\neq Q_4 = 1.394 Q_2$

Now use continunity

P2 + 0. 834 P2 + 1.394 P2 = 20

Solve for 92

 $3.23 \, \varphi_2 = 20 \Rightarrow \varphi_2 = 6.2 \, cfs$

P3 = (0.834) 6.2 = 5.2cfs

Py=(1.394)6.2 = 8.6cfs

Now find head loss from A' to B'

h_2 = 1.05 P2 = 1.05 (6.2) = 40 ft

: Total system loss is

h_1, + h_2 + h_5 = 19 + 40 + 12 = 7/ ft.

NETWORK ANALYSIS (NEWTON-RAPHSON)

- 1) Sketch network
 - a) label pipes
- b) label nodes
- c) label loops
- d) show assumed flow directions

2) Check geometry:

The relationship # nodes + #/oops = # pipes

must be satisfied to find a unique

Solution

Current example: 8+3 = 11
but only show 10 pipes.

Add a pipe at a supply or demand node to satisfy geometry criterian

LAD unimportent.

At correct soln. $Q_{ij} = 0$. PO A_{our}

3) Prepare K, f, Re tables for use in head loss equations

$$K = \frac{8L}{\pi^2 g D^5} \qquad r = \frac{4\beta}{N\pi D}$$

 $h_2 = f K Q^2$; Re = rQ $= FK 191Q \leftarrow direction is carried by sign(Q)$

4) Now write continunity for each node

Flow into a node is + / Flow out of a node is - 1

5) Loss equations for each loop

 $f_{4}K_{4}|Q_{4}|Q_{4} + f_{5}K_{5}|Q_{5}|Q_{5} - f_{6}K_{6}|Q_{6}|Q_{6}| = 0$ $f_{2}K_{2}|Q_{2}|Q_{2} + f_{5}K_{3}|Q_{3}|Q_{3} - f_{4}K_{4}|Q_{4}|Q_{4} - f_{5}K_{6}|Q_{5}|Q_{6} + f_{5}K_{6}|Q_{6}|Q_{6} = 0$ $f_{5}K_{5}|Q_{5}|Q_{5} - f_{5}K_{4}|Q_{5}|Q_{5} - f_{5}K_{8}|Q_{5}|Q_{8} + f_{5}K_{6}|Q_{6}|Q_{6}| = 0$

Sign in loop equations is based on assured flow directions

f.K,10,10,+ f4K4104104+ F5K5/05/05-FK6/06/06 = 0

6) Use some initial (quesses) values for 19:1 in the head loss equations.
When this is done the loop + node equations are a system of linear equations

At the cornect solution:

het \bar{A}_{m} , \bar{g}_{m} be current quess of \bar{A}_{T} t \bar{g}_{T} ; $\bar{r}hs_{m}$ is current result of the matrix multiplication $\bar{A}_{m}\bar{g}_{m}$

 $g_{q}(\bar{q}) = f_{1}K_{1}/q_{1}/q_{1} + \cdots$ $\frac{dg_{q}}{dg_{1}} = 2f_{1}K_{1}/q_{1}/q_{1}$

in the loop matrix is the jacobien of the head loss equations

Newton's method gives a formula to update the \vec{q} vector to try to solve $\vec{g}(\vec{q}) = 0$ $\Delta \vec{q} = \left[\vec{\mathcal{F}}(\vec{q}) \right] \vec{g}(\vec{q})$

9 = 1-19

Basis of all pipeline network models (including Hardy Cross method) Sheet3

	Pipe Netwo	Pipe Network Model - Iterative Method	tive Method												
Reset		-													
Iterations	100	0													
	Pipes		2	8	4	5	9	7	80	σ	10	**			
	Diameters		-		1	1		-		, -					
	Length	300	300	300	150	300	15	15	30	150	300				
	K-factors	7.55188946	5 7.55188946	7.55188946	3.77594473	7.55188946	3.77594473	3.77594	7 55188	3 77594473	7 55188	0.02517298			
	f-factors	0.015	5 0.015	0.015	0	0.015	-	+			1	_			
	r-factor	117674.634	117674.634	117674.634	117674.634	117674.634	117674.634	11767	11767	11767	11767	11767			
	Q-initial	-		-	-	1	-	+	-		_			7100C110	7116
	4-0	4.62079511	4.29767158	4.29767158	0.32312353	-2.6336342	5.37920489	2 74557067	2 74557067	2 95675775	-5 7023284	-1 128E-15	1	ZECN!	5
	Re-guess	5.4E+5	5.1E+5	5.1E+5	3.8E+4	3.1E+5	-	+	+	3.5E+5	\perp		1		
	KIQ	0.52343601	0.48683311	0.48683311	0.01830145	0.29833372	0.30467371	0.15	0.31	0.16746831	0.64595031	4 2588E-19			
		ō	075	03	24	05	90	70		60	010	011	RHS(mod)	RHS/frue)	(0)5
Nodes	FUNC(Q)												,	(2001)	3
/'						0	1-			0	0	0	-10	-10	
			•	0	•	0	0	0		0	0	0	-1.11E		-1.11E-16
		0				0	0 .	0	0	0	0	0	0	0	
					0	-	-	7-	0	0	0	0	0	0	
					1	۲-	0	0	0	-	0	0	0		
		0			0	0	0	1	-	0	0	0	0	0	
		0	0	0	0	0	0		-	1	1	0	0	0	
,	1					0	0		0	0	1-	1-	10	10	1.7764E-15
Loops	1	0.52343601	\sim	-	0.01830145	0.29833372	-0.3046737		0	0	0	d	1.7764E-15	0	1.7764E-15
			0.4606331	0.4868331	-0.0183014	0	0	_	0	-0.1674683	0.64595031	b/	1.3323E-15	0	1.3323E-15
			2	0		2983337	0	-0.1555068	-0.3110137	0.16746831	0	0	-4 996E-16	0	-4.996E-16
Nodes	JACOB(Q)	3	3			3	3	à	80	60	010	011	g	ž	Q-k+1
		77	0	0	C	0	7	C	C	0					
		2	'		7	0	- C		0 0				7.9229E-16	4.62079517	4.62079511
	60	3	-	-	0	0 0	0		0	0 0	0 0		4.3216E-16	4.29/6/158	4.29767158
	4			C	0	7		7		0 0	3	0	4.3216E-16	4.29767158	4.29767158
					7	- -	- 0	- 0	0	0	9	0	4.7115E-16	0.32312353	0.32312353
	9				- 0	7 0	0	0	0	7	0	0	7.4901E-16	-2.6336342	-2.6336342
	7				0	0	0 0	- (-	0	0	0	-7.923E-16	5.37920489	5.37920489
	α			0 4	0	0	0	0	-	-	1	0	-4.328E-17	2.74557067	2.74557067
loope		1 0468720		- 0			0	0	0	0	-1	-1	-4.328E-17	2.74557067	2.74557067
	C	200	0 073666	0 00000000		0.59666/44	-0.6093474	0	0	0	0	0	-2.779E-16	2.95675775	2.95675775
	4 6		\perp	0.97.300022	-0.0366029	0	0	0	0	-0.3349366	/1.29190062	0	3.2114E-16	-5.7023284	-5.7023284
				D.	0	-0.5966674	0	-0.3110137	-0.6220274	0.33493667	0	0	-1.665E-15	-1.128E-15	5.3746E-16
	O-k+1	4 62079511	A 20767158	A 20767450	0 20040050	0,00000	000000	1							
	5		_			-2.00000-	- KUBI / K / C	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000000000000000000000000000000000000000	7000000	LOTEC			

RHSM = HMULT ([] TRANSPOSE (CURRENT GUESS))

| *Z = | |

Page 1