WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 9/00	A2	(11) International Publication Number: WO 98/54302
		(43) International Publication Date: 3 December 1998 (03.12.98)
(21) International Application Number: PCT/US (22) International Filing Date: 27 May 1998 (BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
(30) Priority Data: 08/863,385 27 May 1997 (27.05.97)	ι	MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
(71) Applicant: ICOS CORPORATION [US/US]; 220 Avenue, S.E., Bothell, WA 98201 (US).	021 20	
(72) Inventors: TJOELKER, Larry, A.; 11731 N.E. 145 Kirkland, WA 98034 (US). EBERHARDT, Chris 1014 221st Street, N.E., Redmond, WA 98053 (US)	stine, I	
(74) Agents: GASS, David, A. et al.; Marshall, O'Toole, Murray & Borun, 6300 Sears Tower, 233 South Drive, Chicago, IL 60606 (US).		
·		

(54) Title: NOVEL LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE

(57) Abstract

DNA and polypeptide sequences of a human lysophosphatidic acid acyltransferase (LPAAT) are disclosed. Methods and materials for production of LPAAT-1 and fragments and analogs thereof, production of antibodies, assays for identifying modulators of LPAAT and pharmaceutical compositions comprising LPAAT, polypeptides or modulators of LPAAT are provided. Also provided are methods for detecting LPAAT and lysophosphatidic acid.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Моласо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	ገግ	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	υG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NOVEL LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE

FIELD OF THE INVENTION

The present invention relates generally to the identification and isolation of a novel acyltransferase and more particularly to the discovery of a novel human lysophosphatidic acid acyltransferase.

Introduction

Lysophosphatidic acid (1-acyl-sn-glycero-3-phosphate, LPA) is a potent bioactive lipid with wide and diverse activities involved in physiologic and pathophysiologic biology. LPA is believed to be involved in natural physiologic functions including mitogenesis, cell differentiation, platelet aggregation, actin cytoskeleton remodeling, monocyte chemotaxis, smooth muscle contraction, and neurite retraction [Moolenaar, W.H., J. Biol. Chem., 270:12949-12952 (1995)]. In the Jurkat T-cell line LPA stimulates proliferation and IL-2 production suggesting that LPA is also involved in immune responses [Xu et al., J. Cell. Physiol., 163:441-450 (1995a)]. The phospholipid may also participate in the pathophysiology of neurodegenerative processes by causing vasoconstriction as well as impairment of glutamate and glucose uptake by astrocytes [Tigyi et al., Am. J. Physiol, 268:H2048-H2055, (1995); Keller et al., J. Neurochem, 67:2300-2305 (1996)]. In addition, LPA is a potent promoter of tumor cell invasion [Imamura et al., Biochem. Biophys. Res. Comm, 193:497-503 (1993)]. LPA exerts its biological effects via at least one, and perhaps multiple specific G protein-coupled receptors [van der Bend et al., EMBO J., 11:2495-2501 (1992a); Hecht et al., J. Cell Biol., 135:1071-1083 (1996), and Guo et al., Proc. Natl. Acad. Sci. USA, 93:14367-14372 (1996)]. LPA binding to the G-protein coupled receptor results in activation of Ras and the Raf/MAP kinase pathway, stimulation of phospholipases C and D, inhibition of adenylyl cyclase, and tyrosine phosphorylation of focal adhesion proteins along with actin cytoskeleton remodeling [Moolenaar, J. Biol. Chem., 270:12949-12952 (1995)].

30

5

10

15

20 |

25

- 2 -

5

10

15

20

25

30

Because of the breadth of its biological impact, LPA metabolism has been a subject of intense study. During membrane phospholipid biosynthesis, LPA is formed by acylation of sn-glycerol-3phosphate or by acylation of dihydroxyacetone phosphate (DHAP) followed by reduction of acyl-DHAP [Bishop and Bell, Ann. Rev. Cell Biol., 4:579-610 (1988)]. In contrast, LPA that is rapidly generated in the plasma membrane of thrombin-activated platelets and growth factor-stimulated fibroblasts [Fukumi and Takenawa, J. Biol. Chem., 267:10988-10993 (1992); Eichholtz et al., J. Biol. Chem. 268:1982-1986 (1993)] appears to be formed from hydrolysis of phosphatidic acid (PA) by a phospholipase A2 [Gerrard and Robinson, Biochim. Biophys. Acta, 1001:282-285 (1989); Billah et al., J. Biol. Chem., 256:5399-5403 (1981); Thomson and Clark, Biochem. J., 306:305-309 (1995)]. Additionally, Fourcade and colleagues [Fourcade et al., Cell, 80:919-927 (1995)] have demonstrated that a secretory phospholipase A₂ acts upon membrane microvesicles shed from activated cells to convert PA to PA is a key intermediate in membrane phospholipid biosynthesis [Bishop and Bell, Ann. Rev. Cell Biol., 4:579-610 (1988)], but can also serve as a second messenger in activated cells [Agwu et al., J. Clin Invest., 88:531-539 (1991)]. PA can be converted to CDP-diacylglycerol or to diacylglycerol by the action of PA phosphatase or back to LPA by the phospholipase A₂.

In normal serum, LPA is present at physiologically active concentrations. Because activated platelets copiously secrete the LPA, it has been suggested that aggregated platelets are the primary source of the serum LPA [Watson et al., Biochem. J, 232:61-66 (1985); Gerrard and Robinson, Biochim. Biophys. Acta, 1001:282-285 (1989)]. The presence of LPA in serum, coupled with the mitogenic and chemotactic properties of LPA, suggests that the phospholipid is an important mediator of wound healing [Eichholtz et al., Biochem. J., 291:677-680 (1993)]. Additionally, several of the known effects of LPA are consistent with a potential pro-inflammatory or pro-immune function. The fact that the LPA is present in serum at functional

- 3 -

concentrations implies the necessary presence of an "anti-LPA" mechanism to preclude inappropriate activation of LPA-sensitive cells. Consistent with this, there are at least three mechanisms whereby LPA bioactivity might be attenuated. First, LPA can be converted to PA in cells by the action of LPA acyltransferase (LPAAT) [Bishop and Bell, Ann. Rev. Cell Biol., 4:579-610 (1988); van der Bend et al., Biochim. Biophys. Acta, 1125:110-112 (1992b)]. Second, Xie and Low, Arch. Biochem. Biophys., 312:254-259 (1994) described an ecto-(lyso) PA phosphatase that prefers as a substrate LPA or PA with a short sn-2 acyl chain. Finally, an LPA-specific lysophospholipase activity has been purified from rat brain [Thomson and Clark, Biochem. J., 300:457-461 (1994)].

5

10

15

20

25

30

Genetic and molecular biological approaches have facilitated cloning of genes encoding the LPAAT from non-mammalian species. However, no cloning of the mammalian counterparts of LPAAT has been reported.

In plants, storage triacylglycerols are synthesized via a four-step pathway that involves acylation of glycerol-3-phosphate at the sn-1 position to form LPA, acylation of LPA by LPAAT to form PA, then conversion of the PA to diacylgycerol by PA phosphatase followed by sn-3 acylation to form triacylglycerol [Browse and Somerville, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42:467-506 (1991)]. Interest in this metabolic pathway with the goal of understanding and manipulating plant oil production has resulted in the cloning of several plant cDNAs that encode enzymes with LPAAT activity [Brown et al., Plant Mol. Biol., 26:211-223 (1994), Brown et al., Plant Mol. Biol., 29:267-278 (1995); Hanke et al., Eur. J. Biochem., 232:806-810 (1995); Knutzon et al., Plant Physiol, 109:999-1006 (1995)]. Interestingly, these cDNAs have extensive sequence homology with each other as well as with LPAAT cDNAs from prokaryotic organisms, yeast, and nematodes.

There thus continues to exist a need in the art for further insights into the nature, function and distribution of LPAATs providing means

- 4 -

for effecting beneficial modulation of these acyltransferases.

5

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention provides novel purified and isolated polynucleotides (i.e., DNA and RNA both sense and antisense strands) encoding a human lysophosphatidic acid acyltransferase (LPAAT). LPAAT catalyzes the conversion of LPA to PA. LPA's biological functions, for example, include roles in mitogenesis, cell differentiation and platelet aggregation. LPA may also be involved in various disease states including neurodegenerative diseases and tumor cell invasion. LPAAT thus abrogates the activity of LPA by catalyzing its conversion to PA. Preferred LPAAT DNA sequences of the invention include genomic and cDNA sequences as well as wholly or partially chemically synthesized DNA sequences. The DNA sequence encoding LPAAT-1 that is set out in SEQ ID NO: 1 and DNA sequences which hybridize to a noncoding strand thereof under standard stringent conditions (or which would hybridize but for the redundancy of the genetic code) are contemplated by the invention. Exemplary stringent hybridization conditions are as follows: hybridization at 65°C in 3X SSC, 20mM NaPO₄ pH 6.8 and washing at 65°C in 0.2X SSC. It is understood by those skilled in the art that variation in these conditions occurs based on the length and GC nucleotide base content of the sequences to be hybridized. Formulas standard in the art are appropriate for determining exact hybridization conditions. See Sambrook et al., 9.47-9.51 in Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). DNA/DNA hybridization procedures carried out with DNA sequences of the invention under stringent conditions are expected to allow the isolation of DNAs encoding allelic variants of LPAAT-1; non-human species enzymes homologous to LPAAT-1; and other structurally related proteins sharing one or more of the enzymatic activities, or abilities to interact with members or regulators, of the cellular pathways in which LPAAT-1

- 5 -

participates.

5

10

15

20

25

30

Also contemplated by the invention are biological replicas (i.e., copies of isolated DNA sequences made in vivo or in vitro) of DNA sequences of the invention. Autonomously replicating recombinant constructions such as plasmid and viral DNA vectors incorporating LPAAT sequences and especially vectors wherein DNA encoding LPAAT is operatively linked to an endogenous or exogenous expression control DNA sequence and a transcription terminator are also provided. The skilled worker understands the various components of vectors [e.g. promoter(s), selectable marker(s), origin of replication(s), multiple cloning site(s), etc.], methods for manipulating vectors and the uses of vectors in transforming or transfecting host cells (prokaryotic and eukaryotic) and expressing LPAAT of the present invention.

The DNA sequence information provided by the present invention also makes possible the development, by homologous recombination or "knockout" strategies [see e.g. Capecchi, Science 244:1288-1292 (1989)] of mammals that fail to express a functional LPAAT or that express a variant analog of LPAAT. The mammals of the present invention comprise a disrupted LPAAT gene or a disrupted homolog of the LPAAT gene. The general strategy utilized to produce the mammals of the present invention involves the preparation of a targeting construct comprising DNA sequences homologous to the endogenous gene to be disrupted. The targeting construct is then introduced into embryonic stem cells (ES cells) whereby it integrates into and disrupts the endogenous gene or homolog thereof. After selecting cells which include the desired disruption, the selected ES cells are implanted into an embryo at the blastocyst stage. Exemplary mammals include rabbits and rodent species.

Knowledge of DNA sequences encoding LPAAT-1 makes possible determination of the chromosomal location of LPAAT-1 coding sequences, as well as identification and isolation by DNA/DNA hybridization of genomic DNA sequences encoding the LPAAT-1 expression control regulatory

- 6 -

sequences such as promoters, operators, and the like. The chromosomal localization of these sequences may be useful in detection of inappropriate and/or over-expression of LPAAT-1 in various cell types.

5

10

15

20

25

30

The polynucleotides described herein are also useful for gene therapy. Gene therapy is described in U.S. Patent No. 5,399,346 hereby incorporated by reference. Briefly, gene therapy is the treatment of human diseases by transferring and expressing a gene encoding a therapeutic polypeptide in primary human cells. One aspect of this invention contemplates gene therapy utilizing LPAAT-1 encoding polynucleotides. Typically, the LPAAT-1 encoding polynucleotides are transferred to primary cells by viral vectors, through liposome mediated gene delivery or as naked DNA understood by the skilled worker. The genetically engineered primary cells are then introduced into the patient in need of gene therapy.

Also made available by the invention are antisense polynucleotides relevant to regulating expression of LPAAT by those cells which ordinarily express the same.

According to another aspect of the invention, prokaryotic or eukaryotic host cells are stably or transiently transformed with DNA sequences of the invention in a manner allowing the expression of LPAAT-1. Host cells expressing LPAAT-1 serve a variety of useful purposes. Such cells constitute a valuable source of immunogen for the development of antibody substances specifically immunoreactive with LPAAT-1. Host cells of the invention are also useful in methods for the large scale production of LPAAT-1 wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the cells or from the medium in which the cells are grown by, for example, immunoaffinity purification.

Alternatively, host cells may be modified by activating an endogenous LPAAT-1 gene that is not normally expressed in the host cells or that is expressed at a lower rate than is desired. Such host cells are modified (e.g., by homologous recombination) to express LPAAT-1 by replacing, in

-7-

whole or in part, the naturally-occurring LPAAT-1 promoter with part or all of a heterologous promoter so that the host cells express LPAAT-1. In such host cells, the heterologous promoter DNA is operatively linked to the LPAAT-1 coding sequences, *i.e.*, controls transcription of the LPAAT-1 coding sequences. See, for example, PCT International Publication No. WO 94/12650; PCT International Publication No. WO 92/20808; and PCT International Publication No. WO 91/09955. The invention also contemplates that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydro-orotase) and/or intron DNA may be recombined along with the heterologous promoter DNA into the host cells. If linked to the LPAAT-1 coding sequences, amplification of the marker DNA by standard selection methods results in co-amplification of the LPAAT-1 coding sequences in such host cells.

5

10

15

20

25

30

As described herein, LPAAT-1 is an enzyme which possesses acyltransferase activity.

In one aspect, the present invention provides human LPAAT-1 polypeptides. Preferably, the human LPAAT-1 polypeptide sequences comprise the amino acid residues according to SEQ ID NO: 2.

The invention also contemplates polypeptide fragments and polypeptide analogs of LPAAT. As discussed in example 1 and in Figure 1, LPAAT-1 comprises four putative hydrophobic (transmembrane) domains and possibly four or five hydrophilic (cytosolic or extracellular) domains. LPAAT fragments comprising each of these domains or any combination thereof are an aspect of this invention. Alternatively, fragments comprising amino acid residues conserved among LPAATs (Figure 1) are contemplated. LPAAT analogs comprise additions, substitutions, including conservative substitutions, or deletions of amino acid residues which increase or decrease the acyltransferase activity of LPAAT, modify the solubility of LPAAT or an LPAAT fragment in aqueous and/or non-aqueous (e.g. liposomes) media.

- 8 -

5

10

15

20

25

30

The LPAATs of this invention (including fragments and analogs) may be modified to facilitate passage into the cell, such as by conjugation to a lipid soluble moiety. For example, LPAAT (or fragments or analogs thereof) may be conjugated to myristic acid. The LPAATs may be myristoylated by standard techniques as described in Eichholtz et al., Biochem. J., 291:677-680 (1993), incorporated herein by reference. Alternatively, the LPAATs may be packaged in liposomes that may fuse with cell membranes and deliver the peptides into the cells. Encapsulation of the peptides in liposomes may also be performed by standard techniques as generally described in U.S. Patent Nos. 4,766,046; 5,169,637; 5,180,713; 5,185,154; 5,204,112; and 5,252,263 and PCT Patent Application No. 92/02244, each of which is incorporated herein by reference. Alternatively, LPAATs may be encapsulated in sterically stabilized liposomes (SSL). SSLs are liposomes wherein the lipids are covalently conjugated to water soluble (hydrophilic) polymers including polyethylene glycol and other well known polymers including for example, polyvinyl alcohol, polyglycolic acid, polyvinylpyrrolidone, and polyglycerol. It is believed that the presence of the hydrophilic polymer allows the SSL to remain in circulation longer than conventional liposomes thereby increasing the pharmacological efficacy of the SSLs are described in Lasic and Martin, Stealth encapsulated agent. Liposomes, CRC press, Inc., Boca Raton, FL (1995) which is hereby incorporated by reference.

Another aspect of this invention provides antibody substances (e.g., polyclonal and monoclonal antibodies, antibody fragments, single chain antibodies, chimeric antibodies, CDR-grafted antibodies, humanized antibodies and the like) specifically immunoreactive with LPAAT. Antibody substances can be prepared by standard techniques using isolated naturally-occurring or recombinant LPAAT. The antibody substances are useful in modulating (i.e., blocking, inhibiting, or stimulating) the acyltransferase activity of LPAAT. Antibody substances are also useful for purification of LPAAT and are also

- 9 -

useful for detecting and quantifying LPAAT in biological samples by known immunological procedures. In addition, cell lines (e.g., hybridomas) or cell lines transformed with recombinant expression constructs which produce antibody substances of the invention are contemplated.

5

10

15

20

25

30

biological sample.

This invention further provides a method of detecting the presence of LPAAT-1 in a biological sample. The method comprises exposing an LPAAT specific antibody to a biological sample to be tested. The binding of the LPAAT specific antibody to LPAAT in the biological sample is detected by well-known means. For example, a second antibody conjugated to horseradish peroxidase (HRP) that specifically recognizes anti-LPAAT antibody is used to detect the presence of LPAAT. A positive color reaction catalyzed by HRP indicates that LPAAT is present in the

Yet another aspect of this invention provides a method of detecting the presence of LPA in a biological sample. The presence of LPA is detected by exposing the biological sample to LPAAT and to a detectably labeled acyl donor (e.g., radiolabeled acyl coenzyme A). The acyl transferase reaction is carried out under conditions similar to those described in Example 2 and the formation of detectably labeled PA is determined and quantitated. The amount of detectably labeled acyl chain transferred to the LPA present in the biological sample to form PA indicates the concentration of LPA. The generation of standard curves using known concentrations of LPA and LPAAT are understood by the skilled artisan.

In another aspect, methods of identifying a modulator that inhibits or stimulates the acyltransferase activity of LPAAT are contemplated. In a preferred method, the acyltransferase activity of LPAAT in the presence and absence of a potential modulator compound is determined and compared. A reduction in the acyltransferase activity observed in the presence of the test compound indicates that the test compound is an inhibitor. An increase in the acyltransferase activity observed in the presence of the test compound

- 10 -

indicates that the test compound is an activator. Modulators contemplated by the invention include organic and inorganic chemical compounds (including analogs of LPA and PA and polypeptides).

5

10

15

20

25

30

therapeutic/pharmaceutical addition. In compositions contemplated by the invention include LPAAT, a fragment or analog of LPAAT or a modulator of LPAAT and a physiologically acceptable diluent, carrier, or adjuvant and may also include other agents. In one aspect, dosage amounts indicated would be sufficient to supplement endogenous LPAAT activity and to inactivate pathological amounts of LPA. In another aspect, a sufficient dosage amount is that amount of LPAAT, fragment or analog of LPAAT or a modulator of LPAAT sufficient to supplement endogenous LPAAT activity. For general dosage considerations see Remmington's Pharmaceutical Sciences, 18th Edition, Mack Publishing Co., Easton, PA (1990). Dosages will vary between about 0.1 to about 1000 µg LPAAT or LPAAT modulator/kg body weight. Therapeutic compositions of the invention may be administered by various routes depending on the pathological condition to be treated. For example, administration may be by intravenous, subcutaneous, oral, suppository, topical and/or pulmonary routes.

Administration of LPAATs including LPAAT fragments or analogs thereof and modulators of LPAAT of the invention to mammalian subjects, especially humans, for the purpose of ameliorating pathological conditions is contemplated. LPAATs or LPAAT modulator compositions are useful in treating a mammal susceptible to or suffering from LPA-mediated pathological conditions including intracranial hemorrhage, tumorigenesis, fibrosis and restenosis. Such methods comprise administering the LPAAT modulator to the mammal in an amount sufficient to modulate LPAAT activity.

Numerous additional aspects and advantages of the present invention will be apparent from the following detailed description of illustrative embodiments thereof.

- 11 -

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows a comparison of the amino acid sequences of human LPAAT-1 with LPAATs from the listed species. The predicted hydrophobic transmembrane domains of human LPAAT-1 are underlined. The amino acids conserved in all eight LPAATs are blocked.

Figure 2 shows bar graphs indicating the acyltransferase activity of recombinant human LPAAT-1 from transfected COS 7 cell lysates. The figure is further described in Example 2.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is illustrated by the following examples. Example 1 describes the cloning and characterization of a cDNA encoding LPAAT-1. Example 2 describes the expression and acyltransferase activity of recombinant LPAAT-1. In Example 3, tissue expression patterns of LPAAT are described and in Example 4, the genomic structure and organization of LPAAT-1 is described. Example 5 discusses the role of LPAATs in various disease states.

Example 1

20

25

30

5

10

15

A TBLASTN search of the Genbank dbest database using the coconut LPAAT sequence [Knutzon, et al., Plant Physiol. 109:999-1006, (1995)] identified two human ESTs deposited having the accession numbers H39628 and H44282. Based upon the EST sequences, two oligonucleotide primers (Forward: 5'-GGG CCT CAT CAT GTA CCT CGG GGG CG-3' (SEQ ID NO: 3); Reverse: 5'-CTG CCC TCC CCC AGG TC-3' (SEQ ID NO: 4) were designed and used in polymerase chain reactions (PCR) to identify a clone (#82910123) in a human macrophage cDNA library [Tjoelker et al., Nature, 374:549-553 (1995)] that contained sequence identical to the ESTs. The cDNA insert of clone #82910123 was used to generate a radiolabeled probe by random priming [Random Primed labeling kit

- 12 -

(Boehringer Mannheim, Indianapolis, IN)]. This probe was used to screen a human heart muscle cDNA library in Lambda Zap II and a genomic DNA library in Lambda Fix II (both from Stratagene, La Jolla, CA). Approximately 5x10⁵ to 1x10⁶ phage were blotted onto nitrocellulose and screened in 50% formamide, 0.75 M sodium chloride, 75 mM sodium citrate, 50 mM sodium phosphate (pH 6.5), 1% polyvinyl pyrolidine, 1% Ficoll, 1% bovine serum albumin (BSA), and 100 μg/ml sonicated salmon sperm DNA. After overnight hybridization at 42°C, blots were washed extensively in 3 mM sodium chloride, 0.3 mM sodium citrate, 0.1% SDS at 50°C. Following a secondary screen under identical conditions, individual hybridizing plaques were selected for DNA purification. The nucleotide sequence of both strands of the positively hybridizing heart cDNA clone 211-2 was determined.

5

10

15

20

25

30

The nucleotide sequence of LPAAT-1 (clone 211-2) obtained from the heart cDNA library comprises an open reading frame encoding a polypeptide of 278 amino acids with a predicted molecular mass of 30.9 kDa (Figure 1). The cDNA and the deduced amino acid sequences of human LPAAT-1 are provided in SEQ ID NOs.: 1 and 2, respectively. The predicted protein sequence exhibits approximately 23% identity with the coconut LPAAT but its identity with other members of the LPAAT family ranges up to approximately 33% (Table 1). While complete sequence identity at any given amino acid position between all members of the family is relatively infrequent, a core region of highly conserved amino acids is found from positions 167-205 of the human LPAAT-1 sequence (Figure 1).

Nucleotide sequences were analyzed with Geneworks (IntelliGenetics, Mountain View, CA). Amino acid sequence alignments were conducted using the ClustalW1 algorithm as found in the BCM Search Launcher - Multiple Sequence Alignments (http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html).Individual pairwise alignments were conducted using Align Query (http://vega.crbm.cnrs-mop.fr/bin/align-guess.cgi). Transmembrane domain

PAGES 13 - 26

NOT FURNISHED UPON FILING

5

10

15

20

25

30

wound healing by its mitogenic effects on fibroblasts, smooth muscle cells and endothelial cells. However, in local or temporal excess, LPA may participate in propagating an inflammatory response. For example, LPA mediates platelet aggregation and monocyte chemotaxis [Moolenaar, W.H., J. Biol. Chem., 270:12949-12952 (1995)]. In addition, in vitro experiments suggest that LPA can also impact immune cell functions such as proliferation and IL-2 production (Xu et al., J. Cell. Physiol., 163:441-450 (1995a)]. requirement for physiological homeostasis predicts that there must be a mechanism to resolve the biological effects of LPA. One possible mechanism is to catabolize LPA via a phosphatase or lysophospholipase to produce a simple glycerolipid that is subject to rapid recycling into membrane phospholipids. In contrast, the product of LPA acylation by LPAAT is PA. A number of recent reports have suggested that PA may be a key intracellular messenger common to signalling pathways activated by pro-inflammatory mediators such as IL-1 β , TNF- α , platelet-activating factor, and Lipid A [Bursten et al., J. Biol. Chem., 266:20732-20743 (1991), Bursten et al., Am. J. Physiol., 262:C328-C338 (1992), and Kester, M., J. Cell. Physiol., 156:317-325 (1993)] In these reports, it was demonstrated that PA was generated by the action of LPAAT.

As discussed above, LPA is a very potent mitogen, stimulating fibroblasts, smooth muscle cells, endothelial cells, keratinocytes, and early embryo cells to proliferate [Moolenaar, J. Biol. Chem., 270:12949-12952 (1995)]. There are a number of diseases, particularly of the lung, that are characterized by formation of fibrotic lesions that arise from extensive fibroblast proliferation. In conditions in which fibrosis can be anticipated (e.g., acute respiratory distress syndrome, radiation therapy, aspiration pneumonia, chronic bronchitis, liver cirrhosis), administration of LPAAT, fragments or analogs of LPAAT or a modulator that increases the acyltransferase activity of LPAAT may serve to reduce fibroblast proliferation and the resultant fibrosis by converting LPA to PA.

Restenosis is a common outcome in angioplasty patients. The postulated mechanisms of restenosis include elastic recoil, smooth muscle cell proliferation with deposition of extracellular matrix, and remodeling (see Moreno et al., Circulation, 94(12):3098-3102 (1996) for review). Macrophages and smooth muscle cells are the primary cell types involved in the formation, progression and rupture of the atherosclerotic plaque. Given the mitogenic and chemotactic properties of LPA, administration of LPAAT, fragments or analogs of LPAAT or a modulator that increases the acyltransferase activity of LPAAT immediately before and in the weeks following an angioplasty procedure may reduce monocyte migration into the new lesion as well as limit smooth muscle cell proliferation.

5

10

15

20

LPA appears to play a role in brain physiology. The brain has the highest observed concentration of LPA [Das and Hajra, Lipids, 24:329-333 (1989)] and LPA receptors [van der Bend et al., EMBO J., 11:2495-2501 (1992a); Hecht et al., J. Cell Biol., 135:1071-1083 (1996)]. In vitro studies have demonstrated that a number of brain cell types, including cerebral cortical neurons, neuroblastomas, PC12 cells, and glial cells respond to LPA treatment. Keller, et al., J. Neurochem., 67:2300-2305 (1996) demonstrated that LPA impaired glutamate uptake by astrocytes resulted in increased lipid peroxidation and decreased glucose uptake. Keller, et al. J. Neurochem., 67:2300-2305 (1996) noted that these effects can contribute to increased neuronal vulnerability during pathological conditions in which LPA levels are elevated.

An example of brain pathology in which LPA is elevated is described by Tigyi, et al., Am. J. Physiol., 268:H2048-H2055 (1995). It was demonstrated that LPA is not normally present in cerebrospinal fluid. During intracranial hemorrhage, however, the concentration of LPA rapidly increased to very high levels. In this context, LPA functioned as a vasoconstrictor and inhibited vascular reactivity of cAMP by inhibiting adenylyl cyclase. Tigyi, et al. Am. J. Physiol., 268:H2048-H2055 (1995) concluded that platelet-

- 29 -

derived LPA may play an important role in the pathophysiology of altered vascular responsiveness seen after intracranial hemorrhage. Thus, administration of LPAAT activity or a modulator that increases LPAAT activity may reduce tissue damage occurring as a result of intracranial hemorrhage.

5

10

15

20

25

30

LPA has also been implicated in tumor biology. In an in vitro model of tumor cell invasion, Imamura et al., Biochem. Biophys. Res. Comm., 193:497-503 (1993) demonstrated that certain tumor cell types (rat hepatoma and human small cell lung cancer) require LPA for penetration of endothelial or mesothelial cell layers. Furthermore, LPA was shown to stimulate calcium flux and proliferation in ovarian and breast cancer cell lines (Xu et al., Biochem. J., 309:933-940 (1995b)]. Thus treatment with LPAAT, fragment or analog of LPAAT or a modulator that increases acyltransferase activity of LPAAT may prevent metastasizing tumors from invading healthy tissues by removal of LPA.

Alternatively, where there is systemic elevation of LPAAT, inhibition of LPAAT activity is indicated. Numerous reports have examined the biological consequences of preventing PA formation by inhibiting LPAAT. A small molecule inhibitor of the enzyme, lisofylline [(R)-1-(5-hydroxyhexyl)-3,7-dimethylxanthine] (LSF), blocks LPA metabolism and PA accumulation. Both in vitro and in vivo studies have demonstrated the anti-inflammatory For example, Abraham et al., J. Exp. Med, properties of lisofylline. 181:569-575 (1995) demonstrated that treatment with lisofylline prevented hypoxia-induced PA production as well as adherence and chemotaxis in human neutrophils. In cultured rat islet cells, IL-1 β -induced cell dysfunction, measured by insulin secretion, was reduced in the presence of lisofylline [Bleich et al., Endocrinology, 137(11):4871-4877 (1996)]. In vivo studies further define the protective benefits of lisofylline: (1) Survival rates of 50-70% were achieved in mice treated with a lethal dose of endotoxin followed with intraperitoneal lisofylline administration [Rice et al., Proc. Natl. Acad.

5

10

15

20

25

30

Sci. USA, 91:3857-3861 (1994)]. (2) Lisofylline blocked the development of interstitial lung edema and intra-alveolar hemorrhage, and reduced neutrophil accumulation in the lungs of mice subjected to hemorrhage and resuscitation. These effects may be due to the reduced TNF- α , IL-1 β , and γ IFN message levels found in mononuclear cells from the animals [Abraham et al., J. Exp. Med., 181:569-575 (1995)]. (3) Pretreatment and one hour post-challenge treatment of septic pigs with lisofylline significantly reduced acute lung injury [Hasegawa et al., Am. J. Respir. Crit. Care Med., 155:928-936 (1997)]. (4) Lisofylline reduced leakage of fluid into lungs of rats given IL-1 intratracheally, but did not affect neutrophil accumulation [Hybertson et al., J. Appl. Physiol., 82(1):226-232 (1997)]. Taken together, these data support the hypothesis that PA is an important pro-inflammatory intracellular messenger. In addition, many reports implicate PA as an extracellular agonist. The phospholipid purportedly stimulates monocyte migration [Zhou et al., J Biol. Chem., 270:25549-25556 (1995)], is mitogenic to Balb-c/3T3 cells, causes superoxide generation in neutrophils, activates protein phosphorylation and stimulates phosphatidyl inositol-4-phosphate kinase, inactivates ras GTPase-activating protein and inhibits ras GTPase activity [reviewed in Martin et al., J. Biol. Chem., 268:23924-23932 (1993)]. All of these observations suggest that PA is an important intercellular signaling molecule. Therefore, LPAAT may be involved in intercellular communication not only by its LPA metabolizing function but also by virtue of the PA it These observations suggest that inhibition of LPAAT may be produces. beneficial where there is systemic elevation of LPAAT under certain pathophysiological conditions.

The foregoing illustrative examples relate to presently preferred embodiments of the invention. Numerous modifications and variations thereof are expected to occur to those skilled in the art. Thus only such limitations as appear in the appended claims should be placed upon the scope of the present invention.

-31-

SEQUENCE LISTING

- (i) APPLICANT: ICOS Corporation
- (ii) TITLE OF INVENTION: Novel Lysophosphatidic Acid Acyltransferase
- (iii) NUMBER OF SEQUENCES: 19
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Marshall, O'Toole, Gerstein, Murray & Borun
 - (B) STREET: 233 South Wacker Drive/6300 Sears Tower
 - (C) CITY: Chicago
 - (D) STATE: Illinois
 - (E) COUNTRY: United States of America (F) ZIP: 60606

 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Gass, David A.
 - (B) REGISTRATION NUMBER: 38,153
 - (C) REFERENCE/DOCKET NUMBER: 27866/33878
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (312)474-6300 (B) TELEFAX: (312)474-0448
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1639 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 184..1017
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGTAGGCTCC CTTCCCCTAC TCATCGCACT AATTTACACT CACAACACCC TAGGCTCACT 60

AAACATTCTA CTACTCACTC TCACTGCCCA AGAGCTATCA AACTCCCGGC CTGTGCGCGC 120

180

GCC	ATG Met											CTG Leu				228
	CTG Leu															276
CTG Leu	TAC Tyr	TGC Cys	GCG Ala 35	CTG Leu	TGC Cys	TTC Phe	ACG Thr	GTG Val 40	TCC Ser	GCC Ala	GTG Val	GCC Ala	TCG Ser 45	CTC Leu	GTC Val	324
	CTG Leu															372
	TGG Trp 65															420
	CGG Arg															468
	AAC Asn															516
	GAG Glu								Arg					Leu		564
	GTG Val															612
	CGC Arg 145															660
	GTC Val															708
	GAC Asp															756
	GTC Val			Gln					Pro							804
	TCC Ser		Tyr					Lys								852
		Gln					Ile					Leu			GCG Ala	900
GAC Asp 240	val	CCT	GCG Ala	CTC Leu	GTG Val 245	Asp	ACC Thr	TGC Cys	CAC His	CGG Arg 250	Ala	ATG Met	AGG Arg	ACC Thr	ACC Thr 255	948

-33-

				GGG GCC ACT Gly Ala Thr		996
	G CAG CCG G l Gln Pro A 275		CCAGAC CACGO	GCAGGG CATGA	CCTGG	1047
GGAGGGCAGG	TGGAAGCCGA	TGGCTGGAGG	ATGGGCAGAG	GGGACTCCTC	CCGGCTTCCA	1107
AATACCACTC	TGTCCGGCTC	CCCCAGCTCT	CACTCAGCCC	GGGAAGCAGG	AAGCCCCTTC	1167
TGTCACTGGT	CTCAGACACA	GGCCCCTGGT	GTCCCCTGCA	GGGGGCTCAG	CTGGACCCTC	1227
CCCGGGCTCG	AGGGCAGGGA	CTCGCGCCCA	CGGCACCTCT	GGGAGCTGGG	ATGATAAAGA	1287
TGAGGCTTGC	GGCTGTGGCC	CGCTGGTGGG	CTGAGCCACA	AGGCCCCGA	TGGCCCAGGA	1347
GCAGATGGGA	GGACCCCGAG	GCCAGACGCA	CACTGTCCGA	GCCCTCTGCT	CAGCCGCCTG	1407
GGACCCACCA	GGGTGCAGCT	GGGCTCCAGG	GTCCAGCCCA	CAAGCTGCAT	CAGGGTCTCT	1467
GGGAGAGGAG	GGGCCTCCAG	GGCCAGGAGT	CCCAGACTCA	CGCACCCTGG	GCCACAGGGA	1527
GCCGGGAATC	GGGGCCTGCT	GCTCCTGCTG	GCCTGGAAGA	CTCTGTGGGG	TCAGCACTGT	1587
ACTCCGTTGC	TGTTTTTTA	TAAACACACT	CTTGGAAGTG	GAAAAAAAA	AA	1639

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 278 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Glu Leu Trp Pro Cys Leu Ala Ala Leu Leu Leu Leu Leu Leu

Leu Val Gln Leu Ser Arg Ala Ala Glu Phe Tyr Ala Lys Val Ala Leu

Tyr Cys Ala Leu Cys Phe Thr Val Ser Ala Val Ala Ser Leu Val Cys

Leu Leu Arg His Gly Gly Arg Thr Val Glu Asn Met Ser Ile Ile Gly

Trp Phe Val Arg Ser Phe Lys Tyr Phe Tyr Gly Leu Arg Phe Glu Val

Arg Asp Pro Arg Arg Leu Gln Glu Ala Arg Pro Cys Val Ile Val Ser

Asn His Gln Ser Ile Leu Asp Met Met Gly Leu Met Glu Val Leu Pro 105

Glu Arg Cys Val Gln Ile Ala Lys Arg Glu Leu Leu Phe Leu Gly Pro

PCT/US98/10733 WO 98/54302

-	3	4	

•															
Val	Gly 130	Leu	Ile	Met	Tyr	Leu 135	Gly	Gly	Val	Phe	Phe 140	Ile	Asn	Arg	Gln
Arg 145	Ser	Ser	Thr	Ala	Met 150	Thr	Val	Met	Ala	Asp 155	Leu	Gly	Glu	Arg	Met 160
Val	Arg	Glu	Asn	Leu 165	Lys	Val	Trp	Ile	Tyr 170	Pro	Glu	Gly	Thr	Arg 175	Asn
Asp	Asn	Gly	Asp 180	Leu	Leu	Pro	Phe	Lys 185	Lys	Gly	Ala	Phe	Tyr 190	Leu	Ala
Val	Gln	Ala 195	Gln	Val	Pro	Île	Val 200	Pro	Val	Val	Туr	Ser 205	Ser	Phe	Se'z
Ser	Phe 210	Tyr	Asn	Thr	Lys	Lys 215	Lys	Phe	Phe	Thr	Ser 220	Gly	Thr	Val	Thr
Val 225	Gln	Val	Leu	Glu	Ala 230	Ile	Pro	Thr	Ser	Gly 235	Leu	Thr	Ala	Ala	Asp 240
Val	Pro	Ala	Leu	Val 245	Asp	Thr	Cys	His	Arg 250	Ala	Met	Arg	Thr	Thr 255	Phe
Leu	His	Ile	Ser 260	Lys	Thr	Pro	Gln	Glu 265	Asn	Gly	Ala	Thr	Ala 270	Gly	Sei
Gly	Val	Gln 275	Pro	Ala	Gln										

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGGCCTCATC ATGTACCTCG GGGGCG

26

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CTGCCCTCCC CCAGGTC

WO 98/54302

(2)	INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "primer" .</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
AAG	GAATTC GTGCCGTGCG AGGACGCAAC GTCGAGAAC	39
(2)	INFORMATION FOR SEQ ID NO:6:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "primer"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
AAT	TCTAGA AGCATGGAGT GCCCGGACTC TGTCAG	36
(2)	INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 539 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "primer"</pre>	
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2539	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
C T	G CGT CTA ATG CTG CTC CAC ATC AAA TAC CTG TAC GGG ATC CGA u Arg Leu Met Leu Leu His Ile Lys Tyr Leu Tyr Gly Ile Arg 1 5 10 15	46
GTG Val	GAG GTG CGA GGG GCT CAC CAC TTC CCT CCC TCG CAG CCC TAT GTT Glu Val Arg Gly Ala His His Phe Pro Pro Ser Gln Pro Tyr Val 20 25 30	94
GTT	GTC TCC AAC CAC CAG AGC TCT CTC GAT CTG CTT GGG ATG ATG GAG	142

Val	Val	Ser	Asn 35	His	Gln	Ser	Ser	Leu 40	Asp	Leu	Leu	Gly	Met 45	Met	Glu	
						GTG Val										 190
						GCC Ala 70										238
						GAT Asp									GCC Ala 95	286
						GAC Asp										334
						TCC Ser										382
						CAG Gln										430
						TGC Cys 150										478
						CTG Leu										526
	GAT Asp			C												539

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 179 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Leu Arg Leu Met Leu Leu His Ile Lys Tyr Leu Tyr Gly Ile Arg Val

1 10 15

Glu Val Arg Gly Ala His His Phe Pro Pro Ser Gln Pro Tyr Val Val
20 25 30

Val Ser Asn His Gln Ser Ser Leu Asp Leu Gly Met Met Glu Val 35 40 45

Leu Pro Gly Arg Cys Val Pro Ile Ala Lys Arg Glu Leu Leu Trp Ala
50 55 60

Gly Ser Ala Gly Leu Ala Cys Trp Leu Ala Gly Val Ile Phe Ile Asp 65 70 75 80

_	$\overline{}$	

Arg	Lys	Arg	Thr	Gly 85	Asp	Ala	Ile	Ser	Val 90	Met	Ser	Glu	Val	Ala 95	Glr
Thr	Leu	Leu	Thr 100	Gln	Asp	Val	Arg	Val 105	Trp	Val	Phe	Pro	Glu 110	Gly	Thi
Arg	Asn	His 115	Asn	Gly	Ser	Met	Leu 120	Pro	Phe	Lys	Arg	Gly 125	Ala	Phe	His
Leu	Ala 130	Val	Gln	Ala		Val 135	Pro	Ile	Val	Pro	Ile 140	Val	Met	Ser	Sei
Tyr 145	Gln	Asp	Phe	Tyr	Cys 150	Lys	Lys	Glu	Arg	Arg 155	Phe	Thr	Ser	Gly	Glr 160
Cys	Gln	Val	Arg	Val 165	Leu	Pro	Pro	Val	Pro 170	Thr	Glu	Gly	Leu	Thr 175	Pro
Asp	Asp	Val													

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 828 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 1..826
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

	CTG Leu															48
	TGG Trp															96
	AAT Asn														-	144
	GTG Val 50															192
	CTC Leu	_														240
	CAC His															288
CAG	AGC	TCT	CTC	GAT	CTG	CTT	GGG	ATG	ATG	GAG	GTA	CTG	CCA	GGC	CGC	336

-38-

Gln	Ser	Ser	Leu 100	Asp	Leu	Leu	Gly	Met 105	Met	Glu	Val	Leu	Pro 110	Gly	Arg		
	GTG Val															. 3	384
	GCC Ala 130															4	132
	GAT Asp															4	180
	GAC Asp																528
	TCC Ser															5	576
	CAG Gln															6	524
	TGC Cys 210															•	672
	CTG Leu															•	720
	CTG Leu																768
	TCC Ser															;	816
	GGT Gly		T	GA												,	828

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 275 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Leu Leu Leu Leu Phe Leu Leu Leu Phe Leu Leu Pro Thr 10

-39-

Tyr Asn Gly Trp Ile Leu Phe Leu Ala Val Leu Ala Ile Pro Val Cys

Ala Val Arg Gly Arg Asn Val Glu Asn Met Lys Ile Leu Arg Leu Met

Leu Leu His Ile Lys Tyr Leu Tyr Gly Ile Arg Val Glu Val Arg Gly

Ala His His Phe Pro Pro Ser Gln Pro Tyr Val Val Ser Asn His

Gln Ser Ser Leu Asp Leu Leu Gly Met Met Glu Val Leu Pro Gly Arg

Cys Val Pro Ile Ala Lys Arg Glu Leu Leu Trp Ala Gly Ser Ala Gly

Leu Ala Cys Trp Leu Ala Gly Val Ile Phe Ile Asp Arg Lys Arg Thr

Gly Asp Ala Ile Ser Val Met Ser Glu Val Ala Gln Thr Leu Leu Thr

Gln Asp Val Arg Val Trp Val Phe Pro Glu Gly Thr Arg Asn His Asn

Gly Ser Met Leu Pro Phe Lys Arg Gly Ala Phe His Leu Ala Val Gln 185

Ala Gln Val Pro Ile Val Pro Ile Val Met Ser Ser Tyr Gln Asp Phe

Tyr Cys Lys Lys Glu Arg Arg Phe Thr Ser Gly Gln Cys Gln Val Arg 215

Val Leu Pro Pro Val Pro Thr Glu Gly Leu Thr Pro Asp Asp Val Pro

Ala Leu Ala Asp Arg Val Arg His Ser Met Leu Thr Val Phe Arg Glu

Ile Ser Thr Asp Gly Arg Gly Gly Asp Tyr Leu Lys Lys Pro Gly

42

Gly Gly Gly

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATCAGAATTC CGGGAGCGGG AGCGGGAGCG AGCTGGCGGC GC

WO 98/54302

-40-

PCT/US98/10733

(2)	INFORMATION FOR SEQ ID NO:12:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 77 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "primer"</pre>	
ļ i		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
ATTO	CTCTAGA CTACTTGTCA TCGTCGTCCT TGTAGTCCTG GGCCGGCTGC ACGCCAGACC	60
CCG	CAGTGGC CCCGTTC	77
(2)	INFORMATION FOR SEQ ID NO:13:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 115 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
4	(ix) FEATURE: (A) NAME/KEY: EXON 1 (B) LOCATION: 1115	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
CGT	AGGCTCC CTTCCCCTAC TCATCGCACT AATTTACACT CACAACACCC TAGGCTCACT	60
AAA	CATTCTA CTACTCACTC TCACTGCCCA AGAGCTATCA AACTCCCGGC CTGTG	115
(2)	INFORMATION FOR SEQ ID NO:14:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 572 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	-
	(ii) MOLECULE TYPE: DNA (genomic)	
	(ix) FEATURE: (A) NAME/KEY: EXON 2 (B) LOCATION: 46295	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
CCC	CGCCCCG CCCAGCCCCG CCGCCTTCGC AATAAGGGGC CTGAGCGCGC GGGGGAGAAG	60

		_	
_	4	7	_

TGTGGCCGTG	TCTGGCCGCG	GCGCTGCTGT	TGCTGCTGCT	GCTGGTGCAG	CTGAGCCGCG	180
CGGCCGAGTT	CTACGCCAAG	GTCGCCCTGT	ACTGCGCGCT	GTGCTTCACG	GTGTCCGCCG	240
TGGCCTCGCT	CGTCTGCCTG	CTGCGCCACG	GCGGCCGGAC	GGTGGAGAAC	ATGAGGCAAG	300
GCCGGGGGCC	GCCGGGAGGG	GCCGGGGAAC	CGCCGCGCCG	CTTCCGCTTC	CCTAACTTTC	360
TTCTGGGCTT	CCCTCCTTCC	TGCCCCGCCC	GTCCCGCCCC	GCTCCGGGGC	TCCGGGGAGA	420
GCGCGCCTGG	GCCGGCGGCA	GGCACAGGAG	GGGGTCCCGG	AGTCAGGGGG	TCCCGGAGTC	480
ACGGGGTCAA	GGAGCCGGCG	TCACAGTGCC	CAGCACCCCA	CCCCCGCCC	TGGCCCCGGG	540
CGTCTACACC	GGTTTCGGCC	TCCGCCGCGT	CC			572

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 383 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: EXON 3
 - (B) LOCATION: 224..357
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CTCTGTTGCT GGGGAGACGG AGGCAGGCA GCCGTCCAGG TGGGTGAGCC GGGCCCGGGA 60

CTCTGTCCGC TCCAGGGGCT CCCTCCCCTG TGTCTCCCGG TCTCCTGCCC CGTGCCAGGA 120

GGGCCCCTCC CCAGCCTCCT CCACACCCCA CCCCCAGGCC TTCCCGCCCC AGCCTCGGCT 180

GCGGGATCTG TGGGACCCGT GTTCATGGTG GCCTCCCCTG CAGCATCATC GGCTGGTTCG 240

TGCGAAGCTT CAAGTACTTT TACGGGCTCC GCTTCGAGGT GCGGGACCCG CGCAGGCTGC 300

AGGAGGCCCG TCCCTGTGTC ATCGTCTCA ACCACCAGAG CATCCTGGAC ATGATGGGTA 360

GGCCGGGCCT CGGGGTGGCT TCT 383

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 974 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: EXON 4
 - (B) LOCATION: 504..679
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CCACACCCCA	CCCGCAGGCT	TTCCCGCCCC	AGCTTGGGGT	GCGGGATCTG	TGGGACCGGT	60
GTTCATGGTG	GCCTCCCCTG	CAGCATCATC	GGGTGGTTCG	TGCGAAGCTT	CAAGTACTTT	120
TACGGGCTCC	GCTTCGAGGT	GCGGGACCCG	CGCAGGCTGC	AGGAGGCCCG	TCCCTGTGTC	180
ATGGTCTCCA	ACCACCAGAG	CATCCTGGAC	ATGATGGGTA	GGCCGGGCCT	CGGGGGTGGC	240
TTCTGGGGTT	TGAGTGGGGC	CGGCTGAGCT	GGGGCTGTGT	GGGGCTGGGT	CCCGGGGACG	300
AGGACACAGG	GCTGCCTGTG	CCTGGGCGAG	CTCGGCCTCA	GTACCTCCCT	CAGGGCCAGA	360
CACAGAGGCT	CGGAGGCCAC	ACGACCCGTC	CAGGTAGCCA	GGGAGAAGGC	AGGGTGCCAG	420
GCAGGCCTGT	GGGTGCTCAG	CAGCTGTCTT	CCAGCGCACG	CTGTCTCCCC	CTCTCTCTCT	480
GTCTCTGTCT	CTCTGTCTCC	CAGGCCTCAT	GGAGGTCCTT	CCGGAGCGCT	GCGTGCAGAT	540
CGCCAAGCGG	GAGCTGCTCT	TCCTGGGGCC	CGTGGGCCTC	ATCATGTACC	TCGGGGGCGT	600
CTTCTTCATC	AACCGGCAGC	GCTCTAGCAC	TGCCATGACA	GTGATGGCCG	ACCTGGGCGA	660
GCGCATGGTC	AGGGAGAACG	TGAGTTAGCA	AGGCCGGGCT	CGGTGGGGTT	AGGGTGGGGC	720
CTAGGGCGGG	GCCAAGCAGG	GGCCAGCTTG	TGACTTGGTT	TTGGCACAAA	AAACAAGACC	780
CCCACATCAT	CCATGCTCCG	CAGGTGGGGT	CCCACGCCAG	ACCCCTACAT	CATCCATGGC	840
TCCGCATATG	GGGTCCCATG	CCAGCTGCTT	TGCGAAATGG	GGCTTCTTAA	GAGGCGAGGC	900
GGTGTGGCCT	TTCTGGGGTG	GCCTGGGCGT	GAGGTCAATC	CAAGCTCTCC	TCTCCCTGCA	960
GCTCAAAGTG	TGGA			•		974

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 351 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: EXON 5 (B) LOCATION: 77..172
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CTTAGGAGGC GAGGCGGCGT GGCCTTCTG GGGTGGCCTG GGCGTGAGGT CAGTCCAGGC 60

TCTCCTCTCC CTGCAGCTCA AAGTGTGGAT CTATCCCGAG GGTACTCGCA ACGACAATGG 120

GGACCTGCTG CCTTTTAAGA AGGGCGCCTT CTACCTGGCA GTCCAGGCAC AGGTAGGCTG 180

AGCCCACCCC TCCCTGGCGT GGGTGCAGGC TGGGGAGGCG GGGTCAGGCT GGCTTAAGGC 240

AGCATGTGAC CACCACCGA GCTGAGGACC CTTGACACAC AAGGGACTCC TCCCACTGAG 300

TTGGGGACAG GGCCTCCTTG CCCCTTCCTG CACTTGCCCC CTGACCGACC A 351

(2) INFORMATION FOR SEQ ID NO:18:

-43-

(i)	SEQUI	ENCE CHARACTERISTICS:
	(A)	LENGTH: 713 base pairs
	(B)	TYPE: nucleic acid
	(C)	STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: EXON 6
(B) LOCATION: 299..371

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CTGGCTAGGT GCAGACCCAA TATGGGGACA GGTGTGAACC AGGCAAACAG GTGCTAGCTC 60 AGGAGGGCTT CCTAGAGGAG ATGAGTAAAA ATTTGCAGGA TGAGCTTATG GAACTGTGGG 120 CCAACCAGAG CAGGACACAT ATCCCAGGTC CCAGGGGCAG GACAGCCACA AGGACCCATG 180 GCAGCAGCGA AGGCAGGGGT GGGTGGGCCG CAGGACAGGG TTCCCCAACC ACATGCAGCC 240 TGGGGTGTGC CTGGCCTGTC CCCAGGGCTG CTTCAGCTGT GCGTCTCCCT GCCTGCAGGT 300 GCCCATCGTC CCCGTGGTGT ACTCTTCCTT CTCCTCCTTC TACAACACCA AGAAGAAGTT 360 CTTCACTTCA GGTACCCCCA CATGTGTGCA CCCGGGGTGT AGGCCCCGCC TGACCCTACA 420 GTCACGGAGC CCCGGGCCCC TCATCGTTCC CATTTCCGGG TGGCACCCGT GGCGTGGCCA 480 CACGGTGACC ACGTGGCGAA TGAGTGACTC ACGCTGGAGT CCCACCTGTG GGCTTCATGG 540 CCTCATGGCC CTTCCAGCCA GTTCCCAGAA CGTGGGCACC TGGTGCCCAC GCAGGACAGT 600 GGGGTCAAAG TTGGACAGCA GTGGGGGAAC CCACCTCCAT CTCTCCCACA GCCCCTCGCC 660 CCGTATGGAG GGCAGAGGCC ACGCAGTGAG GTACGGGCTG ATCAAGAACT GGG 713

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1088 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: EXON 7 (B) LOCATION: 141..924

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

AGGGAGTCCA GGGGAAGAGC CCGGCCTCGG GCTTCCCAGG GAGGGGCTGT GGGGGGCTGG 60
GGAGAGGCGA GGCCAGGGCA GCAGGCTGAG GTGGGCCCCA GCTCCCCACA GGCCACTGAG 120
GTCTGTTGCT TCCCCCACAG GAACAGTCAC AGTGCAGGTG CTGGAAGCCA TCCCCACCAG 180
CGGCCTCACT GCGGCGGACG TCCCTGCGCT CGTGGACACC TGCCACCGGG CCATGAGGAC 240

-44-

CACCTTCCTC	CACATCTCCA	AGACCCCCCA	GGAGAACGGG	GCCACTGCGG	GGTCTGGCGT	300
GCAGCCGGCC	CAGTAGCCCA	GACCACGGCA	GGGCATGACC	TGGGGAGGGC	AGGTGGAAGC	. 360
CGATGGCTGG	AGGATGGGCA	GAGGGGACTC	CTCCCGGCTT	CCAAATACCA	CTCTGTCCGG	420
CTCCCCCAGC	TCTCACTCAG	CCCGGGAAGC	AGGAAGCCCC	TTCTGTCACT	GGTCTCAGAC	480
ACAGGCCCCT	GGTGTCCCCT	GCAGGGGGCT	CAGCTGGACC	CTCCCCGGGC	TCGAGGGCAG	540
GGACTCGCGC	CCACGGCACC	TCTGGGAGCT	GGGATGATAA	AGATGAGGCT	TGCGGCTGTG	600
GCCCGCTGGT	GGGCTGAGCC	ACAAGGCCCC	CGATGGCCCA	GGAGCAGATG	GGAGGACCCC	660
GAGGCCAGAC	GCACACTGTC	CGAGCCCTCT	GCTCAGCCGC	CTGGGACCCA	CCAGGGTGCA	720
GCTGGGCTCC	AGGGTCCAGC	CCACAAGCTG	CATCAGGGTC	TCTGGGAGAG	GAGGGGCCTG	780
GAGGGCCAGG	AGTCCCAGAC	TCACGCACCC	TGGGCCACAG	GGAGCCGGGA	ATCGGGGCCT	840
GCTGCTCCTG	CTGGCCTGGA	AGACTCTGTG	GGGTCAGCAC	TGTACTCCGT	TGCTGTTTTT	900
TTATAAACAC	ACTCTTGGAA	GTGGCTGGGG	AGCTGTGGTC	ACTCACAGGG	CGGGCAGGTG	960
ACCAGGGCGG	TGGAAGCGAC	GCTGTGTCTT	CCCAGCTGCC	CTGCCTAGAG	GCCCAGGGTG	1020
CAGGCACCGC	CACCCACCCG	TGTTCCCTAT	CCAGGAGTGG	ACCCACATCA	CCCTATACTA	1080
CTTCCATC					i	1088

- 45 -

What is claimed:

1. A purified and isolated polynucleotide encoding human lysophosphatidic acid acyltransferase-1.

- 2. The polynucleotide of claim 1 wherein said polynucleotide is a DNA.
- 3. The polynucleotide of claim 1 wherein said polynucleotide is selected from the group consisting of a genomic DNA, a cDNA, and a chemically synthesized DNA.
- 4. The polynucleotide of claim 2 comprising the DNA sequence set out in SEQ ID NO: 1.
- 5. A polynucleotide encoding a polypeptide having lysophosphatidic acid acyltransferase-1 activity wherein said polynucleotide hybridizes under stringent hybridization conditions to the polynucleotide of SEQ ID NO: 1.
- 6. The polynucleotide of claim 1 wherein said polynucleotide is an RNA.
 - 7. A vector comprising a DNA according to claim 2.
- 8. The vector of claim 7 wherein said DNA is operatively linked to an expression control DNA sequence.
- 9. A host cell stably transformed or transfected with a DNA according to claim 2.

- 10. A method for producing human lysophosphatidic acid acyltransferase-1 comprising the steps of growing a host cell according to claim 9 in a suitable nutrient medium and isolating the expressed polypeptide from the cell or the nutrient medium.
- 11. A purified and isolated polypeptide comprising the human lysophosphatidic acid acyltransferase-1 amino acid sequence of SEQ ID NO: 2.
- 12. An antibody substance specifically immunoreactive with human lysophosphatidic acid acyltransferase-1.
- 13. The antibody substance of claim 12 wherein said antibody is a monoclonal antibody.
- 14. A hybridoma cell line producing the monoclonal antibody of claim 13.
 - 15. A humanized antibody according to claim 12.
- 16. A method of identifying a compound that is a modulator of human lysophosphatidic acid acyltransferase-1 comprising the steps of:
- a) determining the acyl transferase activity of lysophosphatidic acid acyltransferase in the absence and presence of the compound;
- b) comparing the acyl transferase activities observed in step (a); and
- c) identifying the compound as a modulator of lysophosphatidic acid acyltransferase wherein a difference in acyl transferase activity is observed in the presence and absence of said compound.

- 47 -

- 17. A method for determining the presence of lysophosphatidic acid acyltransferase in a biological sample comprising the steps of:
- a) exposing a human lysophosphatidic acid acyltransferase specific antibody to a biological sample; and
- b) detecting the binding of the antibody to lysophosphatidic acid acyltransferase in the biological sample.
- 18. A method for detecting the presence of lysophosphatidic acid in a biological sample comprising the steps of exposing said biological sample to LPAAT-1 and radiolabeled acyl chain donor and detecting the formation of radiolabeled phosphatidic acid.
- 19. A diagnostic reagent comprising a detectably labeled polynucleotide encoding part or all of the human lysophosphatidic acid acyltransferase-1 amino acid sequences set out in SEQ ID NO: 2.
- 20. A composition comprising human lysophosphatidic acid acyltransferase-1 and a diluent, adjuvant or carrier.

8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	145 145 120 129 120 120 177	232 233 205 205 205 205 243 264	278 282 240 303 303 245 245 281 308
SAV ASLVCLLRHGGRTVE TIL LHGMEVCYTMIPSWL CVL GTIYSFIRFKNPS GVI ASILCTLIGKQHL CVF GSIYCLFSPRNPK CVF GSIYCLFSPRNPK AVA WGLIMVLLLPWPY TIV WNMIMLILLPWPY	PVG LIMYLGGVFFINEOR FFN LGAYFSNTIFIDRYN FFG ILYWYTGNIFLDREN FLG WFMALSGTYFLLDRSK FFG QLYWLTGNLLIDRNN FFG QLYWLTGNLLIDRNN LLG QLYVLANHQRIDRSN LFG QLYVLANHQRIDRSN	-KF FTSGTVTVQVLEAIP RYF KNDGEVVIRVLDAIPR WDNGKVICEIMDPIDGV FNRGCMIVRILKPISR LHNGLVIVEMLPPIDR LNNGLVIVEMLPPVDFR VRPVPITVKYLPPINLR VRPAPITVKYESPIK	NTH NEGSSVKKYH
KVALYCALCFTVSAV CHYYMRISFYYFTIL RIFLVLICCILICVL LVVLALAGCGFYGVI RLITTVIYSILVCVF RLITTVIYSILVCVF KIFVCFAVVLITAVA RIAACFLSMYVTTIV	VQIARRELLFLGPVG VVMMRRILAYVPFFN VSVGKKSLIMIPFFG TVTAKKSLKYVPFLG VTVGKKSLLMIPFFG VTVGKKSLLMIPFFG VTVGKKSLLMIPFFG VTVGKKEVIWYPLLG	YSSFSSFYNTKK-KF FSDYRDFYSKPGRYF CSSTHNKINLNR VSNTSTLVSPKY-GV VSTTSNKINLNR VSNTSNKVNLNR LTGTHLAWRKGT-FR LTGTHLAWRKGT-FR	VQPAQ
LLLLVQLSRAAEFYA FLLSILFILYNISTVMLKLL -MSVIGRFLYYLRSVMLYIF DDDKDGVFMVLLSCF VDD-DRMITVILSVV	SLCILSMASIWPENC NYLMYTISYMVQPRT TLLIFMLGRIFPPGC NYCHYTASNIVQPPT NYCHYTAANIVQPPT NYCHYTAANIVQPPT PILAFFVYMLAPIGT LVLIFLIMWLIPKGT	FYLPVQAQVPINEVV FNIPVRAQIPINEVV FHLPQQGKIPINEVV FHLPQQGKIPINEVV FHARITAAGVPINEVC FHARITAAGVPINEVC VHLPLQSHLPINEVI	QENGATAGSGQRNATRRGETDEEIAKGN AALQHDKKVNKKIKNDKEVAEREAAQKPLGSTNRS
MELWPCLAAALLLMENFWSIVVF	LQEARPCVIVSNIDS TQVEGPAVVICNIDS QKQISRAIYIGNIQN NLAKKPYIMIANIDS AESYGNAIYIANIDN AENYGNAIYIANIDN EHTKKRAIYISNIPAS	NDNGDLLEFKGA NREGGFIPFKGA NR-GRG-LLEFKIGA SYTSELTMLPFKGA SR-GRG-LLPFKIGA SR-GRG-LLPFKIGA SGDGRLLPFKIGA SGDGRLLPFKIGF	AQ
MAKTRTSS ESCFKASFGMSQPKD	FYGLRFEVRDPRR CKWTGVHTTVYGYEKLFGLKVEHRIPQD -LMLGLDVKVVGE-ELFGLKVECRKPTDLFGLKVECRKPAD LVIWIYGIPIKIQGS MLAWILGNPITIEGS	VRENLKVWI YPEGTR NEDNLSIWMFPEGTR KKNKRALWVFPEGTR KKRRISIWMFPEGTR KKRRISIWMFPEGTR TEKNLSLIMFPEGTR	CHRAMRTTFLHISKT CRDVMLAAYKEVTLE CHDLMEKRIAEL VRDQMVDTLKEIGYS CRSIMEQKIAEL CRALMEQKIAEL IHDIYVRNLPAS IHALYVDHLPES
MDASGASSFLRGRCL	NMSIIGMEVRSFKY- NGKGADYVFHSFFYW NVGIVARWFGRLYP- AQWITARCFYHVMK- HVATFGHWFGRLAP- HVATFGHWFGRLAP- MRIRLGNLYGHIGG	SSTATTVAADLGERH RTKAHNTHSQLARRI RQEAIDTLUKGLENV RTKAHGTIAEVVNHF RAKAHSTIAAVVNHF PAAAIQSKKEAVRVI PSAAIESIKEVARAV	TSGLTAADVPALVDT TKGLTLDDVSELSDM VSGYTKDNYRDLAAY TENLTKDKIGEFAEK VSGYGKDQVRELAAH VSEYGKDQVRELAAH TDDWTYDKIDDVVKH TDDWEEKINHYVEM
Human C. elegans H. influenza S. cerevisiae E. coli S. typhimurium L. douglasii C. nucifera	Human C. elegans H. influenza S. cerevisiae E. coli S. typhimurium L. douglasii	Human C. elegans H. influenza S. cerevisiae E. coli S. typhimurium L. douglasii	Human C. elegans H. influenza S. cerevisiae E. coli S. typhimurium L. douglasii C. nucifera

FIGURE 2

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox

THIS PAGE BLANK (USPTO)