Лабораторная работа 1.3.1

"Определение модуля Юнга на основе исследования деформаций растяжения и изгиба"

Белов Михаил Б01-302 3 ноября 2023 г.

Аннотация:

Цель лабораторной работы заключается в экспериментальном получении зависимости между напряжением и деформацией (закон Гука) для простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; вычислении модуля Юнга.

Теоретические сведения:

Закон Гука:

 $\delta = E \cdot \epsilon,$

где E – модуль Юнга, δ – механическое напряжение, ϵ – относительное удиннение упругой деформации.

Механическое напряжение рассчитывается по формуле:

 $\delta = \frac{F}{S},$ где S – поперчное сечение тела.

Методика измерений:

Лабораторная работа состоит из двух частей: в первой используется прибор Лермантова:

А во втором используется установка для измерения изгиба балки:

Результаты измерений:

Первый эксперимент:

В первом эксперименте трижды повторяется измерения растяжения провлоки при последовательном увеличении и уменьшении давления.

Результаты замеров:

N эксп.	1	2	3	4	5	6	7	8	9	10
m	455,3	700,5	945,3	1190,6	1436,1	1681	1926,7	2172,5	2417,8	2663,7
n	15,1	17,4	19,4	21,2	23,2	24,8	26,5	28,2	29,7	31,3
N эксп.	11	12	13	14	15	16	17	18	19	20
N эксп. п	11 2663,7	12 2417,8	13 2172,5	14 1926,7	15 1681	16 1436,1	17 1190,6	18 945,3	19 700,5	20 455,3

N эксп.	1	2	3	4	5	6	7	8	9	10
m	455,3	700,5	945,3	1190,6	1436,1	1681	1926,7	2172,5	2417,8	2663,7
n	15,1	17,4	19,3	21,3	23,1	24,7	26,4	28,2	29,8	31,4
N эксп.	11	12	13	14	15	16	17	18	19	20
N эксп.	11 2663,7	12 2417,8	13 2172,5	14 1926,7	15 1681	16 1436,1	17 1190,6	18 945,3	19 700,5	20 455,3

N эксп.	1	2	3	4	5	6	7	8	9	10
m	455,3	700,5	945,5	1190,6	1436,1	1681	1926,7	2172,5	2417,8	2663,7
n	15,3	17,5	19,4	21,4	23,2	25,0	26,7	28,4	29,8	31,4
N эксп.	11	12	13	14	15	16	17	18	19	20
N эксп. n	11 2663,7	12 2417,8	13 2172,5	14 1926,7	15 1681	16 1436,1	17 1190,6	18 945,3	19 700,5	20 455,3

Из закона Гука:

$$k = \frac{P}{\delta l} \approx 120000 \frac{H}{m}$$

$$E = \frac{l \cdot k}{S} \approx 850 \cdot 10^9 \frac{H}{m^2}$$

Погрешности можно посчитать по формулам:

$$\begin{split} \delta k &= \sqrt{\frac{1}{n-1} \cdot \left(\frac{<\Delta l^2>}{< P^2>} - k^2\right)} \approx 17000 \\ \delta E &= E \cdot \sqrt{\frac{\delta k}{k} + \frac{\delta l}{l} + \frac{\delta S}{S}} \approx 2 \cdot 10^9 \end{split}$$

Второй эксперимент:

Трижды повторим измерения при послдедовательном увеличении и уменьшении давления на балку на обеих сторонахи составим графики зависимости прогиба балки от нагрузки:

На этих графиках синим и ораньжевым цветом обозначены полученный результаты для разных сторон балки.

Модуль Юнга материала можно рассчитать по формуле:

$$E = \frac{k \cdot l^3}{4 \cdot a \cdot b^3},$$

где
$$k = \frac{P}{\delta y} = \operatorname{tg} \alpha$$

Погрешности можно посчитать по формулам:

$$\begin{split} \delta k &= \sqrt{\frac{1}{n-1} \cdot (\frac{<\Delta l^2>}{< P^2>} - k^2)} \\ \delta E &= E \cdot \sqrt{\frac{\delta k}{k} + 3 \cdot \frac{\delta l}{l} + \frac{\delta a}{a} + 3 \cdot \frac{\delta b}{b}} \text{ Таким образом получим значения:} \end{split}$$

Латунная балка											
k_1	k_2	E_1	E_2	δk_1	δk_2	δE_1	δE_2				
4140	4000	$379 \cdot 10^9$	$366 \cdot 10^9$	1150	1110	$102 \cdot 10^9$	$102 \cdot 10^9$				
			Деревянн	ная бал	ка						
k_1	k_2	E_1	E_2	δk_1	δk_2	δE_1	δE_2				
7700	8100	$47 \cdot 10^9$	$50 \cdot 10^9$	2100	2300	$15 \cdot 10^9$	$16 \cdot 10^9$				
	Стальная балка										
k_1	k_2	E_1	E_2	δk_1	δk_2	δE_1	δE_2				
7000	7000	$733 \cdot 10^9$	$708 \cdot 10^9$	2000	2000	$14 \cdot 10^9$	$14 \cdot 10^9$				

Обсуждение результатов и вывод:

Таким образом мы экспериментально измерили модуль Юнга нити в первом эксперименте и модуль юнга трёх балок из различных материалов во втором. А так же проверили закон Гука.

В первом эксперименте мы получили значение модуля Юнга $E \approx 850 \cdot 10^9 \frac{H}{m^2}$ при этом погрешность составила порядка 0,2%. Что можно назвать очень хорошей точностью.

Во втором эксперименте мы получили значения закона Γ ука для латуни, дерева и стали. Погрешность в этом эскперименте составила от 2% в случае стали до 32% для дерева.

Во всех экспериметах значения модуля Юнга превысило табличные значения в 3-4 раза.