MIPI規格動向と測定ソリューション

テクトロニクス・イノベーション・フォーラム2012 宮崎 強

www.tektronix.com/ja

はじめに MIPI®技術の概要

- MIPI AllianceはMobile Industry Processor Interface Allianceを意味する
- 特にMIPI D-PHY規格ではカメラやディスプレイとのインタフェースの物理層を規定
 - ディスプレイとのインタフェース・プロトコルはDSI規格(Display Serial Interface)にて規定
 - カメラとのインタフェース・プロトコルはCSI-2規格(Camera Serial Interface-2)にて規定
- MIPI M-PHY規格ではRF、フラッシュ・メモリ、モデム、ブリッジ・チップとのインタフェースも視野に入れた物理層を規定
 - プロトコルはDigRF、UniPro(Unified Protocol)、UFS(Universal Flash Storage)、LLI(Low Latency Interface)、CSI-3 など
- TektronixはMIPI AllianceのContributorメンバー

1. MIPI D-PHYの概要

- MIPI D-PHYは、電気仕様を定めた物理レイヤで、その上位に Display Serial Interface(DSI)やCamera Serial Interface(CSI-2) などのプロトコルが位置する。
- クロック 1レーン + 1レーン以上のデータ・レーン

2Data Lane PHYの構成例

MIPI D-PHY概要

- クロックとデータによる伝送でクロックはDDR動作
- 2つの伝送モード、Low Powerモード(LP)とHigh Speedモード(HS)があり、 LPモードとHSモードがダイナミックに遷移

MIPI D-PHY概要

- 最大4データ・レーン + 1クロック・レーンによる伝送
- 各レーンの最大データ・レート
 - HSモードは80 Mbps ~ 1.5Gbps (D-PHY規格V.1.1)
 (UIの変動は±10%以下、1Gbps超では±5%以下)
 - LPモードは10 Mbps以下(主にコマンドの伝送用だがデータ伝送もあり)
- HS信号のTr/Tf(20-80%立上り時間/立下り時間)は最小150psと規定
 1Gbps超のシステムでは最小100ps (D-PHY規格V.1.1)、最大0.35UI
- 信号方式は、HSとLPの各モードで異なる
 - HSモードはLVDSでCを介してGNDに50Ω終端(差動100Ω)
 - LPモードは終端抵抗無しのシングルエンド動作
- 双方向伝送または片方向伝送

最近の高分解能ディスプレイや高分解能カメラの採用により 4Dataレーン+ 1Clockレーン構成の採用が増えています。 また、将来の高分解能化に向けた模索が行われています。

D-PHY Tx信号レベル

D-PHY Rx信号レベル

Tx Data Lane の HS/LP遷移タイミング

TREOT (30% to 85% のTr/Tf)は35ns以下

Tx Clock Lane の HS/LP遷移タイミング

HSのDataとClock間のタイミング

TSETUP は、Txでは0.35UI以上、Rxでは0.15UI以上 THOLD は、Txでは0.35UI以上、Rxでは0.15UI以上

1Gbps超では TSETUP は、Txでは0.30UI以上、Rxでは0.20UI以上
THOLD は、Txでは0.30UI以上、Rxでは0.20UI以上

LPDT

- LPDT(Low Power Data Transmission)では、レシーバがDpとDnの EXORでクロックを再生
- TRLP/TFLP (Tx LP Dataの15% to 85% Tr/Tf)は25ns以下

MIPI DSIの論理層

Multi Data Lane 伝送

LPS - Low Power State

EoT – End of Transmission

4データ・レーン構成時の伝送

MIPI DSIの論理層

DSI ロング・パケット・フォーマット

PACKET HEADER (PH)

MIPI DSIの論理層

MIPI CSI-2の論理層

• CSI-2 ロング・パケット・フォーマット

• CSI-2 ショート・パケット・フォーマット

32-bit SHORT PACKET (SH)
Data Type (DT) = 0x00 - 0x0F

MIPI CSI-2の論理層

複数パケットのHS伝送

LPSでは差動100Ω終端が 切り離され、低消費電力となる

2. MIPI D-PHY測定ソリューション 必要なオシロスコープの周波数帯域は?

- 高速デジタル信号は一般的に方形波
- 周波数領域で見ると、方形波は基本波と奇数高調波により構成
- 方形波の基本波周波数(最高) = ビット・レート(NRZ) / 2例: 1Gbpsの場合500MHz

- 実際は立上り時間Tr(20-80%)がキー
 - 二一周波数(fKnee)*=0.4/Tr
 - 3%誤差内での立上り時間測定には、 周波数帯域=1.4 × fKnee が目安

• 基本波 : 500MHz

• 第3高調波 : 1.5GHz

• 第5高調波 : 2.5GHz

• fKnee=2.67GHz

推奨周波数帯域=3.74GHz

(5%測定確度ならfKnee × 1.2で 3.2GHz)

1.0ns(1Gbps)

2.0ns (500MHz)

$$H(s) = \omega_{P2} \frac{s + \omega_{P1} * A_{DC}}{(s + \omega_{P1}) * (s + \omega_{P2})}$$

 ω_{P1} = pole 1 = $2\pi*2$ GHz ω_{P2} = pole 2 = $2\pi*8$ GHz Δ_{P2} = do gain

A_{DC} = dc gain **Tektronix***

^{*}高調波成分が急速に減衰する点。引用: Howard Johnson and Martin Graham,「High-Speed Digital Design: A Handbook of Black Magic」, p.2. Prentice Hall, 1993

TEKEXP D-PHYTX 規格適合性自動テスト

- TEKEXP(自動コンプライアンス・テスト・ソフトウェア)
- TEKEXP Opt.D-PHYTX (D-PHY 自動測定機能)
 - D-PHY規格適合性を全自動測定
 - 使用にはTEKEXP(自動コンプライアンス・テスト・ソフトウェア TekExpress)が必要
 - DPO7000(C), MSO/DPO/DSA70000(B/C)シリーズ上で動作

TEKEXP D-PHYTXの特長

- カーソル設定、測定範囲指定も含め全自動
- D-PHY規格に準拠
- CTS に適合
 - UNH Conformance Test Suiteに準拠
- ツリー構造による測定項目、測定グループ選択
- カスタム・リミット/ リミット値の設定可能
- テスト・レポート
 - 測定部分の波形イメージ
 - Pass/Fail サマリ(マージンの詳細付)
- 高精度テスト用最小構成は 3.5GHz(DPO7354C)から可能 (インストールは、DPO7254C(2.5GHz)以上で可能)

D-PHYTX の測定結果レポート画面

- 詳細なテスト・レポート
 - Pass/Failサマリ表
 - 各テストにおけるマージンの 詳細
 - 各テスト箇所の波形画面を リンク
 - 全レーンの全テストについて 統合レポート生成

機器接続

または

D-PHY Essentials 規格適合性テスト用セットアップ・ライブラリ

- DPOJETジッタ&アイ・ダイアグラム解析 ソフトウェア
 - クロック・リカバリとアイ・ダイアグラム測定、 ジッタ/タイミング測定、周波数/周期、振幅、 各種タイミング測定
 - クロック、データ、クロックとデータ間
 - エンベデッド・クロックと外部クロックの両方に対応 (逓倍クロックにも対応)
 - ・ 同時に99項目まで測定
 - アイ・ダイアグラム、ヒストグラム、スペクトラム、 バス・タブ、サイクル・トレンド・プロット表示
 - Arb Filterによるディエンベデッド波形の解析
 - 以前に保存した波形での測定も可能
 - Pass/Fail自動判定とレポート生成機能
- D-PHY Essentials (Opt. DPHY)により MIPI D-PHY規格適合性試験が可能
 - D-PHY base spec に準拠
 - UNH Conformance Test Suiteに準拠

ジッタとアイダイアグラムの測定例

ソフトウェア・イコライズ前後の波形を用いた アイダイアグラムとバスタブ・カーブによるBER予測

Data Lane HS TX Single-Ended Output High Voltage (VOHHS)

Data Lane LP-TX Slew Rate vs. C-LOAD (δV/δtSR)

MIPI D-PHY HS信号 マスクテストの例

■ 振幅、ジッタ、セットアップ時間、ホールド時間、立上り時間などの 仕様からマスクを作成し、マスク・テストを行うことが可能

MIPI D-PHY TX テスト用推奨機器 規格適合性自動テスト/解析

- TEKEXP(自動コンプライアンス・テスト・ソフトウェア)
- TEKEXP Opt. D-PHYTX
 - D-PHYTX自動テスト・ソフトウェア
 - MIPI D-PHYの規格適合性、特性評価用ソフトウェア
 - 動作には、TEKEXPが必要
 - DPO7000(C)、DSA/DPO/MSO70000(B/C)シリーズ上で動作

- D-PHYテスト用セットアップ・ライブラリおよびMOI
- MIPI D-PHYの特性評価、デバッグ、コンプライアンス・テスト用ライブラリ
- 動作にはDPOJET Advancedが必要 (Opt. DJA)
- 推奨オシロスコープ: DPO7254C型以上
 - DPO7254C/DPO7354C型
 - MSO/DSA/DPO70000CシリーズRise Time 150psの測定にはDPO7354C型、DSA70404C型以上を推奨
- 推奨プローブ
 - DPO7000Cシリーズ: TAP3500×4本またはTDP3500型×3本(または4本)
 - DSA/DPO/MSO70000Cシリーズ:

P7240×4本またはP73xx×3本(または4本)

DPO7000Cシリーズ

MIPI D-PHY Rxテスト用 CSI-2/DSI 信号発生器 PG3A シリーズ・デジタル・パターン・ジェネレータ

	PG3AMOD	PG3ACAB			
最大クロック・レート	300 MHz (SDR) / 600MHz (DDR)				
出力チャンネル数	64 (SDR) / 32 (DDR)				
メモリ長	32M Vectors				
使用形態	TLA7000へのインストール	スタンドアローン・キャビネット			
アプリケーション専用のGUI	MIPI – DSI, MIPI - CSI				

P332型 MIPI DPhy 出力プローブ (PG3A用)

- MIPI D-PHY規格に準拠
- 業界唯一、4レーン同時出力をサポート: 1.5Gbps/レーン
 - D-PHY規格V.1.1に対応
- レーン毎に独立した遅延調整、信号レベル調整
- ビデオ、動画、オン・ザ・フライでのビデオへのコマンド挿入をサポート

P332型 プローブ

CSI-2/DSI 信号発生ソフトウェア

PGRemote-CSI-DSI

- ボタン操作により MIPI CSI-2 または MIPI DSI信号を自動生成
- ユーザによる0、1のベクタ設定は 不要
- カスタム・コマンド、マクロ、リモート・コントロール、オフライン・サポート
- TLAまたはPCのWindows上で動作
- ビットマップ画像ファイルからMIPI信号に自動変換可能
- RPCScriptのテキスト・ファイルにより 複数の一連のコマンドを送出可能 (パワーアップ・シーケンスなど)

CSI-2/DSI 信号発生用推奨機器

- PG3ACAB A6型
 - キャビネット付デジタル・パターン・ジェネレータ (TLA7000で使用する場合は、PG3AMOD型)
 - P332型と組み合わせて1.5Gbpsまでサポート
- P332 LA6型
 - MIPI D-PHY プローブ (PG3A用)
 - 1.5Gbps/レーンで4レーン同時出力をサポート (Data 4レーン + Clock 1レーン)
- PGRemote-CSI-DSI型
 - CSI-2/DSI信号発生ソフトウェア

プロトコル解析 オシロスコープによるDSI-1/CSI-2のデコード

- バス・デコード表示とイベント・テーブル表示
 - Start of Transmission (SoT)
 - Data Type (Packed Pixel RGB888、RAW10など)
 - Pixel値(Red-255,Green-216,Blue-000など)
 - DCSコマンドやカスタム・コマンド(マニュファクチャラ・コマンド)
 - Virtual Channel
 - Word Count
 - Checksum
 - End of Transmission (EoT)
 - 問題箇所のエラー/警告表示
 - リストをCSVで保存

プロトコル解析 オシロスコープによるCSI-2のデコード

▶ Data Typeとペイロードの内容をデコード表示

バス・デコード表示 (カテゴリに応じた 色分け表示のため 視認性が良い)

イベント・テーブル表示 (波形のZoom箇所を 黄色で表示)

Data Typeを表示 (RAW10)

ペイロードの内容を デコード表示 (各ピクセルの値)

プロトコル解析 ロジック・アナライザによるCSI-2/DSIのデコード

D-PHY プリプロセッサ

- 最大4レーン同時取り込み、各レーン1.5Gbps まで対応
- CSI-2/DSIプロトコルをデコード
- LPとHSデータを一括取り込み
- パケット・レベル・トリガ機能
- リアルタイム・フィルタリング
- レーン・アクティビティとエラー・ステータス表示
- ソルダイン・プローブ(カラーコード付き)
- 画像ファイル出力(保存)

MIPI D-PHYプロトコル解析用推奨機器

オシロスコープによるプロトコル解析

- DPO7000CシリーズまたはDPO/DSA/MSO70000Cシリーズ
 - Opt.SR-DPHY (DSI/CSI-2シリアル解析機能)(Windows7 搭載オシロスコープでサポート)
 - プローブ
 - TDP3500型、TAP3500型など(DPO7000C用)
 - P7340Aなど(DPO/DSA/MSO70000C用)

ロジック・アナライザによるプロトコル解析

- TLA6202型
 - 68chロジック・アナライザ
 - P6982型 ×2本
 - ロジック・アナライザ用D-Maxプローブ
- DPHYPRE
 - D-PHYプリプロセッサおよびソフトウェア

3. M-PHYの概要

- 高速シリアル通信
 - M-PHY TxとM-PHY Rx 間の通信(dual-simplex)
 - 1レーンまたは複数レーンをサポート
 - 8b10b
 - CSI、DSI、UniPro、UFS、DigRF、LLIなどのプロトコル

M-PHY のデータ・レート

- High Speedモード
 - 2つのシリーズ、A-seriesとB-series
 - それぞれ3つのGear、G1、G2、G3
 - 50Ω終端(差動100Ω)されている
- Low Speedモード
 - 2つのType、TYPE- I (PWM)、TYPE- II (SYS)
 - PWMには8つのGear
 - 差動100ΩまたはSE 10kΩ以上

Signaling Mode	Max.Speed	Level (V)	Impedance	
HS	5.83Gbps	200e-3/ 120e-3	50 ohms (差動100 ohm)	
PWM	576Mbps	400e-3/ 240e-3	10k/50 ohms	
(TYPE-I)		200e-3/ 120e-3	(差動100 ohm)	
SYS	576Mbps	400e-3/ 240e-3	10k/50 ohms	
(TYPE-II)		200e-3/ 120e-3	(差動100 ohm)	

		Data rates				
		Gears	A (Gbps)	B (Gbps)		
-	HS	G1	1.25	1.45		
		G2	2.5	2.91		
		G3	5	5.83		
	PWM	Gears	Min (Mb/s)	Max (Mb/s)		
		G0	0.01	3		
		G1	3	9		
		G2	6	18		
		G3	12	36		
		G4	24	72		
		G5	48	144		
		G6	96	288		
		G7	192	576		

M-PHYのシグナリング

- HSモード
 - Embedded Clock
 - NRZ
- TYPE- I PWM

- TYPE- II SYS
 - Reference Clockを共有
 - NRZ

M-PHYの信号レベル

M-TX

M-PHYの信号レベル

M-RX

HS Tx アイ・ダイアグラム

-2000ppm<foffset_tx<+2000ppm

4. MIPI M-PHY測定ソリューション M-PHY EssentialsによるTx物理層テスト/解析

M-PHY Tx 物理層の自動測定ソリューション

- M-PHY Tx自動測定ソフトウェア(Opt. M-PHYTX)
 - 6GHz以上のMSO/DSA/DPO70000B/Cシリーズ上で動作 (DPOJET Advancedが必要)
 - HSモード・テスト項目の95%をカバー
 - PWMモード・テスト項目の75%をカバー
 - Power-Spectral-Density(PSD)測定も対応 (スペクトラム・アナライザは不要)
 - 測定結果レポートを自動生成
 - 以前に保存した波形に対しても 自動測定可能
 - DPOJETによるデバッグが可能

M-PHY Tx による測定例

Tektronix Oscilloscope

M-PHY Rx テスト

DPO/DSA/MSO 70000 Series

aaaa

P73XX SMA

Digital Oscilloscope

Positive

M-PHY Rx: ジッタ耐性テスト

- Rx ジッタ耐性
- Rx アイ開口、差動入力振幅耐性
- コモン・モード入力耐性
- 入力パルス幅耐性

M-PHY Rx: ビット・エラー検出テスト

オシロスコープ内蔵 BER測定機能Opt.ERRDT

M-PHY UniPro/LLI プロトコル・デコード

- PGY-UPRO/PGY-LLI プロトコル・デコード・ソフトウェア
 - MSO/DSA/DPO70000B/C/Dシリーズ上で動作(6GHz以上必要)
 - Opt. ST6GによりUniPro、LLIの特定のイベントでトリガ UniPro: Link Startup Sequence、Phy Adapter Layer Content、 Data Layer Link Contentなど
 - LLI: PAM Frame、DL Message、TL SVC Packet、TL IC Packetな
 - 4レーン自動デコード
 - CRCエラー検証

M-PHY Tx &Rx テスト用推奨機器

オシロスコープ

- HS-GEAR1: DPO/DSA70604C 型
- HS-GEAR2: DPO/DSA70804C 型
- HS-GEAR3: Rxの場合はDPO/DSA71254C型、Txの場合はDPO/DSA72004C型

プローブ

- P73xxSMA ×2本 またはP73xx型あるいはP75xx型 ×2本

Rxテスト用信号発生器

- HS-GEAR1 または HS-GEAR2: AWG7082/ AWG7102 以上
- HS-GEAR3: AWG7122C -06

ソフトウェア

- Opt.M-PHYTX (DPOJET Advancedが必要)
- Opt.M-PHYRX (DPOJET Advancedが必要)
- Opt.M-PHY (DPOJET Advancedが必要)
- Opt.ERRDT (Scope Error Detector)
- Opt.ST6G (6.25Gbps 8B-10B プロトコル・トリガノデコード)
- PGY-UPRO(UniPro Protocol Decode), PGY-LLI (LLI Protocol Decode)
- Opt.MPHYVIEW (DigRFv4 Protocol Decode)
- SerialXpress(AWG用カスタム・パターンを作成の場合)

MIPI 規格関連の動向

- D-PHY
 - 2011年11月にD-PHY規格V1.1が公開に
- プロトコル
 - 2011年2月にCSI-2規格V1.0.1.00が公開に
 - 2012年3月にDSI規格V1.1が公開に
- M-PHY
 - 2011年4月にM-PHY規格V1.0.0が公開に
- プロトコル
 - 2011年4月にUniPro規格V1.40.00が公開に
 - 2011年2月にUFS規格 JEDEC STANDARD JESD220が公開に
 - 8月にJESD223が公開に
 - 2011年12月にDigRF V4規格V1.10が公開に
 - 2012年3月にCSI-3規格V0.8が公開に
 - 2012年3月にDCS規格(Display Comand Set)V1.1が公開に
 - 2012年4月にLLI規格V1.0が公開に

テクトロニクスのMIPI評価ソリューションの特長

- MIPI D-PHYとMIPI M-PHYをトータルでサポート
 - Tx評価、Rx評価
 - 物理層、論理層
- MIPI D-PHY
 - Data 4レーン、各レーン1.5Gbpsまでのサポートにより高分解能カメラ、 高分解能ディスプレイに対応 (最新のD-PHY規格V1.1に対応)
 - コンパクトな信号発生器のため、持ち運びが容易(キャビネット・タイプ)
 - 全自動測定と解析の両方をサポート
- MIPI M-PHY
 - 解析と規格適合性試験の両方に対応
 - PWMもサポート
 - ジッタ耐性試験もサポート
 - オシロスコープによるRxのエラー検出/ビット・エラー・レート測定
- テクトロニクスはMIPI Alliance のContributorメンバー

ご清聴ありがとうございました。

本テキストの無断複製・転載を禁じますテクトロニクス社 Copyright Tektronix

Twitter @tektronix_jp

Facebook http://www.facebook.com/tektronix.jp

