

decomposing multistate models

Tim Riffe

11 Nov, 2021 CED Seminari

Consider parameterizing in terms of conditional probabilities when decomposing discrete time multistate models

Tim Riffe

11 Nov, 2021 CED Seminari

What is a multistate model?

https://temery86.github.io/FullHistory/

A typical multistate model

A typical multistate model

$$=f(\theta)$$

is any synthetic index calculated from θ

Decomposition asbtract

$$\Delta = 2 - 1$$

$$=f(\theta^2)-f(\theta^1)$$

$$\Delta = \sum c_i$$

$$c = \mathcal{D}(f, \theta^2, \theta^1)$$

Decomposition, $\mathcal{D}()$

- ▶ difference-scaled partial derivatives a.k.a *LTRE* (Caswell 1989)
- ► Stepwise parameter swapping (Andreev et al 2002)
- ► Pseudo continuous (Horiuchi et al 2008)

Let's talk about θ

Pick two colors to make θ

Example

DFLE increased from 30.75 in 2006 to 32.33 in 2014. That's $\Delta = 1.58$ years

(HRS, age 50 women with secondary education)

Example

Same result, whether we omit:

- self-transitions
- mortality transitions
- health transitions

But very different stories if we decompose:

θ omits	$DF \!\! o \!\! DF$	$DF \!\! o Dis$	DF mort	$Dis \!\! o \!\! D \!\! F$	Dis→ <i>Dis</i>	Dis mort
self		-0.01	1.32	-0.28		0.54
mort	1.28	0.04		-1.86	2.13	
health	0.21		1.10		-0.41	0.67

"Thank you" intermission

We would like a solution that gives consistent interpretable results

Solution

Make θ consist in conditional probabilities

For standard calcs compose θ from (two of)

$$[p^{stay}, p^{switch}, p^{die}]$$

Transform this into two multiplicative probabilities

$$[p^{stay}|survive, p^{survive}]$$

Complementarity (or *Symmetry*?)

DF mort	Dis. mort	$DF \!\! o Dis$	$Dis \!\! o \!\! Df$
1.29	0.58	0.02	-0.31

Transitions can be framed in terms of mortality or survival, in terms of staying in the state of transfering out of it. Results *identical*

Complementarity (or *Symmetry*?)

DF mort Dis. mort DF
$$\rightarrow$$
 Dis Dis \rightarrow Df 1.29 0.58 0.02 -0.31

Transitions can be framed in terms of mortality or survival, in terms of staying in the state of transfering out of it. Results *identical*

Really, IDENTICAL

Complementarity (or *Symmetry*?)

DF mort Dis. mort DF
$$\rightarrow$$
 Dis Dis \rightarrow Df 1.29 0.58 0.02 -0.31

Transitions can be framed in terms of mortality or survival, in terms of staying in the state of transfering out of it. Results *identical*

Really, IDENTICAL Thanks