Body image in Patients with Cancers

Model applied: One-way ANOVA, Turkey
Test, Kruskal-Wallis H-test, Wilcoxon test
Chi Nguyen

Background

With approximately 19.3 millions new cancer diagnoses and an estimated 9.9 millions of deaths from cancer in 2020, cancer is currently a leading to the global health concern.

Cancer can cause physical changes and affect the satisfaction with patient's physical appearance, which would strongly impact the quality of life in general.

Study compares **satisfaction** with **body image** of patients with different types of cancer with the general population and across sexes and identifies risk factors for diminished body image.

Dataset

- acquired from PLOS ONE, published in 2021.
- dataset: n= 531, using German Image Scale, with patients voluntarily recruited from 2002 to 2016

Data adjustment:

Compute the **means** for the indicator variables.

Convert Age, Cancer duration, Relationship duration

Delete value of Cancer and Cancer Type Variables

Variables:

Age group. Sex, Family Status. Relationship duration group. Cancer duration group. Work Status, Education Year

& German Scale (means) to for measurement, including SIS (self image scale for body image satisfaction), GAD (General Anxiety Disorder), PHQ (Depression Scale), etc. This project focus on compare different groups of **Work Status** with the **SIS Mean** (the self image scale for body image satisfaction) of patients with cancers.

education_ye c	ancer_dura age	sex	family_status relation	nship_relationship_	work_status dataset	cancer_grou	ı cancer	sis1	sis2	sis3	sis4	sis5	sis6	sis7	sis8	sis9	sis10	si
less_nine	13	58	1 in_a_relation	1 38	unemployed	1 other	bone_marro	v	1	3	3	2	1	1	1	1	1	3
less_nine	3	56	1 divorced	0	employed	1 prostate_an	cprostate		1	5		4	2				2	
ten	16	58	1 in_a_relation	1 36	employed	1 visceral	colon		4	4	5	5	4	4	5	5	4	5
ten	14	67	1 in_a_relation	1 41	retired	1 prostate_an	cprostate		3	4	4	4	3	3	2	3	3	4
more_ten	9	61	1 in_a_relation	1 35	employed	1 visceral	gallbladder		5	5	5	5	3	5	4	4	5	5
less_nine	10	62	1 in_a_relation	1	employed	1 other	bladder		4	4	4	5	4	3	3	4	5	4
ten	5	64	1 in_a_relation	1	retired	1 visceral	esophagus		2	2	4	4	2	1	1	2	4	2
more_ten	19	62	1 in_a_relation	1 38	employed	1 prostate_an	cprostate		3	3	4	5	3	4	4	4	4	4
less_nine	69	58	1 in_a_relation	1 30	employed	1 prostate_an	c prostate		2	4	4	5	3	2	2	2	4	2
less_nine	81	79	1 in_a_relation	1 60	retired	1 prostate_an	c prostate		4	4	4	5	4		3	3	3	3
less_nine	12	61	1 divorced	1 33	employed	1 visceral	esophagus		3	5	5	5	4	5	4	4	5	5
less_nine	20	54	1 in_a_relation	1 26	employed	1 other	kidney		2	3	4	5	3	4	3	4	4	4
less_nine	4	23	1 single	1	employed	1 prostate_an	c testicle		4	4	1	5	4	4	4	4	5	4
less_nine	20	44	1 in_a_relation	1 24	employed	1 other	leukemia		3	4	4	4	2	3	2	3	4	3
ten	91	55	1 in_a_relation	1 36	employed	1 other	lymphatic_g	ι	5	5	5	5	3	4	4	4	5	4
less_nine	87	60	1 in_a_relation	1 44	employed	1 other	leukemia		1				4	5	4			5
more_ten	30	69	1 in_a_relation	1 30	retired	1 visceral	colon		3	2	4	5	3	4	4	4	4	4
ten	5	30	1 single	0	employed	1 prostate_an	ctesticle		4	4		5	4		4		5	
ten	1	40	1 in_a_relation	1 10	employed	1 other	kidney		3	4	4	5	4	4	3	4	5	4
less_nine	8	46	1 divorced	1 1.5	unemployed	1 visceral	esophagus		3	3	4	3	3	4	3	5	3	5
ten	12	57	1 in_a_relation	1	employed	1 prostate_an	cprostate		4	4	4	5	3	1	3	3	5	4
less_nine	2	66	1 in_a_relation	1 46	retired	1 prostate_an	cprostate		5	5	5	5	4	5	4	5	5	5
more_ten	3	72	1 in_a_relation	1 49	retired	1 other	leukemia		3	3	4	4	3	3	3	3	4	4
less_nine	58	52	1 single	1	employed	1 visceral	esophagus		3	3	5	3	3	5	3	5	3	5
less_nine	2	57	1 in_a_relation	1 30	employed	1 other	kidney		4	4	4	2	4	4	4	4	5	4
ten	8	53	1 in_a_relation	1 12	employed	1			4	4	4	4	3	4	3	4	5	4
ten	4	46	1 in_a_relation	1 27	employed	1 other	skin		4	4	4	4	3	4	4	4	4	4
ten	7	48	1 in_a_relation	1 28	employed	1 visceral	stomach		2	4	4	4	3	5	4	4	5	4
more_ten	35	23	1 single		employed	1 prostate_an			3	3	4	4	3	4	3	4	4	3
ten	11	41	1 in_a_relation	1 17	employed	1 visceral	colon		1	1	3	5	3	1	2	1	2	3
ten	10	60	1 in_a_relation	1 39	employed	1 prostate_an	cprostate		3	2	5	5	2	2	3	4	4	5

One-Way ANOVA & Turkey Test

Turkey Test:

There is a statistically **significant difference** between the **"Employed"** and **"Retired"** group (the confidence interval (0.01671 to 0.36091) does not include zero)

One-way ANOVA

Conclusion:

At 5% significant level, p-value < alpha, there are significant differences between the Work Status groups being compared with the mean of SIS

Comparisons significant at the 0.05 level are indicated by ***.								
work_status Comparison	Difference Between Means	Between Simultaneous 95% Confidence						
employed - other	0.01194	-0.35138	0.37526					
employed - unemployed	0.17964	-0.06918	0.42847					
employed - retired	0.18881	0.01671	0.36091	***				
other - employed	-0.01194	-0.37526	0.35138					
other - unemployed	0.16771	-0.24289	0.57830					
other - retired	0.17687	-0.19230	0.54605					
unemployed - employed	-0.17964	-0.42847	0.06918					
unemployed - other	-0.16771	-0.57830	0.24289					
unemployed - retired	0.00917	-0.24814	0.26647					
retired - employed	-0.18881	-0.36091	-0.01671	***				
retired - other	-0.17687	-0.54605	0.19230					

Fit: aov(formula = sis_mean ~ work_status, data = mydata)

<pre>\$work_status</pre>				
	diff	lwr	upr	p adj
other-employed	-0.04112230	-0.4199332	0.33768856	0.9923292
retired-employed	-0.21714338	-0.4071067	-0.02718005	0.0176835
unemployed-employed	-0.18582293	-0.4494572	0.07781131	0.2661943
retired-other	-0.17602108	-0.5638048	0.21176268	0.6455964
unemployed-other	-0.14470063	-0.5734117	0.28401045	0.8200371
unemployed-retired	0.03132045	-0.2450517	0.30769263	0.9912958

Kruskal Wallis H-test & Wilcoxon Rank Sum Test

The NPAR1WAY Procedure									
Wilcoxon Scores (Rank Sums) for Variable sis_mean Classified by Variable work_status									
work_status N		Sum of Scores			Std Dev Under H0		Mean Score		
unemployed	mployed 63 15301.50 16317.0		7.0	1110.54840		242.880952			
employed	245	68197.50	63455.0		1695.14473		278.357143		
retired	183	43379.00	47397.0		1623.44682		237.043716		
other	26 7025.00 6734		4.0	74	1.93645	270.192308			
Average scores were used for ties.									
	Kruskal-Wallis								
	Chi-Square		8.9556						
		DF		3					
		Pr > Chi-Square		0.0299					

Kruskal-Wallis rank sum test

data: sis_mean by work_status
Kruskal-wallis chi-squared = 9.5575, df = 3, p-value = 0.02273

Kruskal-Wallis H-test

P-value = 0.0299 < alpha At 5% significant level, reject H0, and can conclude that all for groups of WORK STATUS (Employed, Unemployed, Retired and Other) have a **different** SIS mean.

Work group	P-value vs $\alpha = 0.05$
Employed – Unemployed	0.0908 < alpha
Employed - Retired	$0.0049 \le \text{alpha}$
Employed - Other	0.7640 > alpha
Unemployed - Retired	0.7823 > alpha
Unemployed - Other	0.4481 > alpha
Retired - Other	0.2664 > alpha

Wilcoxon Rank Sum Test

At 5% significant level, "Employed" & "Retired" have a **different mean** SIS, whereas the rest of compared pairs have the **same** mean SIS.

SAS code

```
proc import out=mydata datafile="//vdi-fileshare02/UEMprofiles/028631185/Desktop/Stat495/Cancee.csv"
 dbms=csv replace;
∃data mydata;
     set mydata;
     sis_mean = mean(of sisl sis2
                                                                                           sisl0
                                                                                                  sisll);
                                            sis4
                                                    sis5
                                                           sis6
     paf mean = mean(of paf1 paf2
                                    paf3
                                            paf4
                                                           paf6
                                                                           paf8
                                                                                  paf9
                                                                                          paf10
                                                                                                  pafll pafl2);
     qsc mean = mean(of qscl qsc2
                                    qsc3
                                            gsc4
                                                   qsc5
                                                           qsc6
                                                                                                  qscll qscl2
     qmi mean = mean(of qmil qmi2
                                    qmi3
                                            qmi4
                                                    qmi5
                                                           qmi6);
     hads mean = mean(of hadsl hads2 hads3
                                                                                      hads9
                                                                                              hads10 hads11 hads12 hads13 hads14);
     phq mean = mean(of phql phq2
                                                    phq5
                                                           phq6
                                                                   phq7
                                                                                   phq9);
                                    gad3
                                                                   gad7);
     gad mean = mean(of gadl gad2
                                            gad4
                                                    gad5
                                                           gad6
 select;
         when (age >= 50 and age < 60) age group = '50s';
         when (age >= 60 and age < 70) age group = '60s';
         when (age >= 70) age group = '70s';
         otherwise age group = 'Other';
     end:
 select:
         when (cancer duration months < 12) cancer duration group = '> 1 year';
         when (cancer duration months >= 12 and cancer duration months < 36) cancer duration group = '1-3 years';
         when (cancer duration months >= 36 and cancer duration months < 60) cancer duration group = '3-5 years';
         when (cancer duration months >= 60 and cancer duration months < 120) cancer duration group = '5-10 years';
         otherwise cancer duration group = 'More than 10 years';
     end:
 select;
         when (relationship duration years < 3) relationship duration group = 'Below 3 years';
         when (relationship duration years >= 3 and relationship duration years < 10) relationship duration group = '3-10 years';
         when (relationship duration years >= 10 and relationship duration years < 50) relationship duration group = '10-49 years';
         otherwise relationship duration group = 'More than 50 years';
     end:
 run;
                                                                             /*KRUSKAL WALLIS H-TEST*/
                                                                           ∃proc npar1way data=mydata Wilcoxon;
  - proc anova;
                                                                               class work status;
   class work status ;
                                                                               var sis mean;
   model sis mean=work status;
                                                                               exact;
   /*means work status/tukey;*/
                                                                               where work status in ("employed", "unemployed");
   run;
                                                                             Kruskal-Wallis H-test
      ANOVA & Turkey
      Test
                                                                             & Wilcoxon test
```

R code

```
2 # Read the CSV file
   3 mydata <- read_csv("//vdi-fileshare02/UEMprofiles/028631185/Desktop/Stat495/Cancee.csv")</p>
   5 # Check summary statistics of age variable
   6 summary(mydata$age)
   8 # Calculate means for each set of variables
   9 mydata$sis_mean <- rowMeans(mydata[, c("sis1", "sis2", "sis3", "sis4", "sis5", "sis6", "sis7", "sis8", "sis9", "sis1")])
 10 mydata$paf_mean <- rowMeans(mydata[, c("paf1", "paf2", "paf3", "paf4", "paf5", "paf6", "paf7", "paf8", "paf9", "paf1", "paf11", "paf12")])
11 mydata$qsc_mean <- rowMeans(mydata[, c("qsc1", "qsc2", "qsc3", "qsc4", "qsc5", "qsc6", "qsc6", "qsc9", "qsc9", "qsc10", "qsc11", "qsc12", "qsc13", "qsc14", "qsc15", "qsc15", "qsc12", "qsc14", "qsc15", "qsc15", "qsc10", "qsc10", "qsc11", "qsc12", "qsc13", "qsc14", "qsc15", "qsc15", "qsc15", "qsc10", "qsc10", "qsc11", "qsc12", "qsc13", "qsc14", "qsc15", "qsc15", "qsc10", "qsc10", "qsc10", "qsc11", "qsc12", "qsc13", "qsc14", "qsc15", "qsc15", "qsc10", "qsc10", "qsc10", "qsc11", "qsc12", "qsc13", "qsc14", "qsc15", "qsc15", "qsc10", "qsc10
13 mydata$hads_mean <- rowMeans(mydata[, c("hads1", "hads2", "hads3", "hads4", "hads5", "hads6", "hads7", "hads8", "hads9", "hads10", "hads11", "hads12", "hads13", "hads1
14 mydata$phq_mean <- rowMeans(mydata[, c("phq1", "phq2", "phq3", "phq4", "phq5", "phq6", "phq7", "phq8", "phq9")])
15 mydata$gad_mean <- rowMeans(mydata[, c("gad1", "gad2", "gad3", "gad4", "gad5", "gad6", "gad7")])
17 # Create age group variable
18 mydata$aqe_group <- cut(mydata$aqe, breaks = c(0, 50, 60, 70, max(mydata$aqe)), include.lowest = TRUE)
20 # Create labels for the age group variable
21 mydata$aqe_group <- factor(mydata$aqe_group, labels = c("0-49", "50s", "60s", "70s"))
22
23 # Create cancer duration group variable
24 mydata$cancer_duration_group <- cut(mydata$cancer_duration_months, breaks = c(0, 12, 36, 60, 120, Inf), labels = c("> 1 year", "1-3 years", "3-5 years", "5-10 years",
26 # Create relationship duration group variable
 27 mydata$relationship_duration_group <- cut(mydata$relationship_duration_years, breaks = c(0, 3, 10, 50, Inf), labels = c("Below 3 years", "3-10 years", "10-49 years",
28
29 # Perform ANOVA
30 anova_result <- aov(sis_mean ~ work_status, data = mydata)
31 tukey_result <- TukeyHSD(anova_result)</pre>
32
33 # Perform Kruskal-Wallis test
34 kruskal_result <- kruskal.test(sis_mean ~ work_status, data = filter(mydata, work_status %in% c("employed", "unemployed")))
35
36 # Display results
37 summary(anova_result)
38 print(tukev_result)
39 print(kruskal_result)
```

Reference

Brederecke, J., Heise, A., & Zimmermann, T. (2021). Body image in patients with different types of cancer. *PLOS ONE*, 16(11), e0260602. https://doi.org/10.1371/journal.pone.0260602

THANK YOU DR.OLGA & STAT495 CLASSMATES