- 20. The composition of claim 19 which has a softening point of greater than 750°C.
- 21. The composition of claim 19 which has a thermal expansion coefficient \approx_{20-300} of between 60 and 88 x 10^{-7} °C⁻¹.
 - 22. The composition of cam 19 which has a strain point of greater than 570°C.
- The composition of claim 19 wherein the working point is less than 1190°C, the softening point is at least 805°C, the thermal expansion coefficient is between 75.6 and 86 X 10⁻⁷°C⁻¹, and the strain point is between 580 and 590°C.

relationship

The composition of claim 19 wherein the φ coefficient satisfies the

$$0.7\text{MPa}^2 / ^{\circ}\text{C}^2 < \varphi^2.\text{c/a} < 2\text{MPa}^2 / ^{\circ}\text{C}^2$$

800 J 5

The composition of claim 19, comprising the following components:

SiO ₂	55-75%
Na ₂ O	5-10%
CaO	8-12%
Al_2O_3	0-7%
ZrO_2	0-8%
K_2O	0-8%
	/

The composition of claim 19 comprising the following components:

27. The composition of claim 19 comprising the following components:

SiO ₂	55-75%
ZrO_2	3-8%
Na ₂ O	4.5-8%
K_2O	3.5-7.5%
CaO	7-11%
Al_2O_3	0-5%
	, ,

28. The composition of claim 19, comprising the following components:

SiO ₂	64.\$-75%
ZrO_2	3-7 5%
Na ₂ O	5-9%
K_2O	3.5-7.5%
CaO	5-11%
SrO	3-9%
Al_2O_3	0-1%
MgO	0-2%
BaO	0-1.5%

- The composition of claim 19, wherein φ is between 0.75 and 0.84, and having a strain point of greater than 507°C and an electrical resistivity such that $\log \rho_{(250^\circ)}$ is greater than 6.6.
- 30. The composition of claim 29 wherein the strain point is between 530 and 590°C and the electrical resistivity is such that $\log \rho_{(250^\circ)}$ is greater than 8.
 - 31. An article comprising the glass composition of claim 19.
- 32. The article of claim 31 in the form of a monolithic glazing panel, a plasmascheen substrate, an electroluminescent-screen substrate; an electroluminescent-screen substrate or a cold-cathode-screen substrate.