Final

(June 15, 2000)

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise marked.

Problems

- 1. Draw the state diagram of a pushdown automaton that recognizes the set of strings over $\{a,b\}$ with twice as many a's as b's. Explain the intuition behind the automaton by showing how it accepts the input string abaaab. Is the automaton deterministic or nondeterministic?
- 2. Give the implementation-level description of a (single-tape) Turing machine that decides the language in Problem 1.
- 3. Show that the collection of Turing-recognizable languages is closed under the operations of union and concatenation. Note that a recognizer may never halt when it does not accept the input.
- 4. Prove that, for any countable set A, there cannot exist a (one-to-one) correspondence between A and 2^A (the power set of A).
- 5. Let $SUBSET_{DFA} = \{\langle M, N \rangle \mid M \text{ and } N \text{ are DFAs and } L(M) \subseteq L(N)\}$. Show that $SUBSET_{DFA}$ is decidable.
- 6. Show that if A is Turing-recognizable and $A \leq_m \overline{A}$, then A is decidable.
- 7. Let $ZERO_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \{0\}\}$. Show that $ZERO_{TM}$ is undecidable. (Hint: reduction from A_{TM} .)
- 8. In the proof of the Cook-Levin theorem, which states that SAT is NP-complete, we used 2×3 windows of cells to formulate the constraint that the configuration of each row (except the first one) in the $n^k \times n^k$ tableau follows legally from the configuration of the preceding row. Why couldn't we use an entire row of cells directly?

- 9. Let $DOUBLE_SAT = \{\langle \phi \rangle \mid \phi \text{ has at least two satisfying assignments} \}$. Prove that $DOUBLE_SAT$ is NP-complete.
- 10. What's wrong with the following arguments?

Consider an algorithm for SAT: "On input ϕ , try all possible assignments to the variables. Accept if any satisfies ϕ ." This algorithm clearly requires exponential time. Thus SAT has exponential time complexity. Therefore SAT is not in P. Because SAT is in NP, it must be true that P is not equal to NP.

Appendix

- $E_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}$. E_{DFA} is decidable.
- $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$. A_{TM} is undecidable.
- $A \leq_m B$ is equivalent to $\overline{A} \leq_m \overline{B}$.
- $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$. SAT is NP-complete.