Order Of Growth 1

Tom Bohbot

September 2020

1 Introduction

The goal of this assignment is to understand how to prove runtimes and to understand the formal definitions of Big-O, Ω , and Θ .

```
NOTE 1: iff means if and only if.
NOTE 2: s.t. means such that.
```

2 Pick Your Constants: Big-O

2.1

```
Prove by selecting the appropriate constants and the definition used in lecture that f(n) is O(n^2) Given: f(n) = 32n^2 + 17n + 1 Claim: f(n) is O(n^2) Formal Definition of Big-O: T(n) = O(f(n)) iff there exists positive constants, c and n_0 s.t. T(n) \le c \times f(n) for all n \ge n_0 Proof: f(n) has a O(n^2) runtime if, and only if, f(n) \le c^*n^2. 1) 32n^2 + 17n + 1 \le c * n^2 2) let c = 50 and n = 1. 3) 32n^2 + 17n + 1 \le 50 * n^2, plug in 50 for c 4) \frac{32n^2 + 17n + 1}{n^2} \le 21 5) \frac{32(1)^2 + 17(1) + 1}{(1)^2} \le 50, plug in 1 for n 6) 50 \le 50 7) If any nisins erted larger than one, the result will be come increasingly smaller, and will always be less than 21. The n_0 cannot disprove this, and that f(n) has a runtime of O(n^2).
```

2.2

```
Conversely: show, using counter-examples, that f(n) is neither O(n) nor O(nlogn) Given: f(n) = 32n^2 + 17n + 1
```

General Claim: f(n) is not O(n) not O(nlogn)

Formal Definition of Big-O: T(n) = O(f(n)) iff there exists positive constants, c

and n_0 s.t. $T(n) \le c \times f(n)$ for all $n \ge n_0$

Claim 1: f(n) is not O(n).

Proof:

Prove by contradiction.

Assume f(n) is O(n).

If f(n) is O(n) then there is some equation that satisfies $f(n) \le c * n$

 $1)32n^2 + 17n + 1 \le c * n$

- $2)\frac{32n^2 + 17n + 1}{n} \le c$ $3)32n + 17 + \frac{1}{n} \le c$
- 4) Since the first term in the fraction was reduced to 32n, this can never be less than some constant factor. Since n can be any number multiplied by 32, it does not satisfy a number less than c. Therefore, this function cannot have a runtime of O(n).

Claim 2: f(n) is not O(nlogn).

Proof:

Prove by contradiction.

Assume f(n) is O(nlogn).

If f(n) is $O(n\log n)$ then there is some equation that satisfies $f(n) \le c * n\log n$

 $1)32n^2 + 17n + 1 \le c*nlogn$

- 2) $\frac{32n^2+17n+1}{n\log n} \le c$
- 2) 32n +1(n+1) / nlogn ≤ c
 3) 32n / logn + 17 / logn + 1 / nlogn ≤ c
 4) Since the first term in the fraction was reduced to 32n / logn, this can never be less than some constant factor. Since n can be any number multiplied by 32, it does not satisfy a number less than c. Therefore, this function cannot have a runtime of O(nlogn).

It has now been proved that f(n) is neither O(n) nor $O(n\log n)$.

3 Pick Your Constants: Ω

3.1

Prove by selecting the appropriate constants and the definition used in lecture that f(n) is both $\Omega(n^2)$ and $\Omega(n)$.

Given: $f(n) = 32n^2 + 17n + 1$

General Claim: f(n) is both $\Omega(n^2)$ and $\Omega(n)$

Formal Definition of Ω runtime: $f(n) = \Omega(g(n))$ iff there exists positive constants c and n_0 s.t. $f(n) \ge c * g(n)$ for all $n \ge n_0$

Proof: f(n) has an $\Omega(n^2)$ and $\Omega(n)$ runtime iff there exist positive consants c and n_0 s.t. $T(n) > c \times f(n)$ for all $n > n_0$.

Proving f(n) has an $\Omega(n^2)$ runtime: 1) $f(n) \ge c \times n^2$

```
2) 32n^2 + 17n + 1 \ge c \times n^2
```

- 3) let c = 50 and n = 1
- 4) $32n^2 + 17n + 1 \ge 50 \times n^2$, plug in 50 for c 5) $32(n)^2 + 17(n) + 1_{(n)^2} \ge 50$
- 6) 5) $32(1)^2 + 17(1) + 1_{(1)^2} \le 21$, plug in 1 for n
- 7) $50 \ge 50$
- 8) If any n is inserted larger than one, the result will become increasingly smaller, and will always be less than 50. This proves that any $n \ge n_0$ cannot disprove this, and that f(n) has a runtime of $\Omega(n^2)$.

Proving f(n) has an $\Omega(n)$ runtime:

- 1) $f(n) \ge c \times n$
- 2) $32n^2 + 17n + 1 \ge c \times n$
- 3) let c = 50 and n = 1
- 4) $32n^2 + 17n + 1 \ge 50 \times n$, plug in 50 for c
- 5) $32(n)^2 + 17(n) + 1_{\overline{n}} \ge 50$ 6) 5) $32(1)^2 + 17(1) + 1_{\overline{(1)}} \le 21$, plug in 1 for n
- 8) If any n is inserted larger than one, the result will become increasingly smaller, and will always be less than 50. This proves that any $n \ge n_0$ cannot disprove this, and that f(n) has a runtime of $\Omega(n)$.

Since f(n) has both a $\Omega(n)$ and $\Omega(n^2)$ runtime, the original claim above has now been proved. The original claim being that f(n) is both $\Omega(n)$ and $\Omega(n^2)$.

3.2

Conversely, show using counter-examples, that f(n) is not $\Omega(n^3)$.

Given: $f(n) = 32n^2 + 17n + 1$

Claim: f(n) is not $\Omega(n^3)$.

Formal Definition of Ω runtime: $f(n) = \Omega(g(n))$ iff there exists positive constants c and n_0 s.t. $f(n) \geq c$ * g(n) for all $n \geq n_0$

Proof:

Prove through contradiction.

Assume f(n) has a $\Omega(n^3)$ runtime.

If this is true then there is some equation that satisfies $f(n) \ge c * n^3$

- 1) $f(n) \ge c \times n^3$

- 1) $1(n) \ge c \times n$ 2) $32n^2 + 17n + 1 \ge c \times n^3$ 3) $\frac{32(n)^2 + 17(n) + 1}{n^2} \ge c$ 4) $\frac{32}{n} + \frac{7^2}{n^2} + \frac{1}{n^3} \ge c$ 5) Since there are terms that have n as a denominator, f(n) can never be greater than some constant factor. Since n can be any number, namely infinity, it does not satisfy a number greater than c, as any number divided by infinity is zero. Therefore, this function cannot have a runtime of $\Omega(n^3)$.

4 Pick Your Constants: Θ

```
Claim: f(n) is \Theta(n^2). Formal Definition of \Theta runtime: f(n) = \Theta(g(n)) iff there exist positive constants c_1, c_2, and n_0 s.t. c_1 \times g(n) \leq f(n) \leq c_2 \times g(n) for all n \geq n_0 Given: f(n) = 32n^2 + 17n + 1 Proof: Proving c_1 \times g(n) \leq f(n): let g(n) = n^2, since that is our claim. 1) c_1 \times g(n) \leq f(n) 2) c_1 \times n^2 \leq f(n) 3) c_1 \times n^2 \leq 32n^2 + 17n + 1 4) let c = 50 and n = 1 5) 50 \times (1)^2 \leq 32(1)^2 + 17(1) + 1 6) 50 \leq 50 7) So far we have determined that c_1 \times g(n) \leq f(n) since we have found some constant and n_0 that satisfy the above equation.
```

```
Proving f(n) \le c_1 \times g(n):
let g(n) = n^2, since that is our claim.
1) f(n) \le c_1 \times g(n)
2) c_1 \times n^2 \ge f(n)
3) c_1 \times n^2 \ge 32n^2 + 17n + 1
4) let c = 50 and n = 1
5) 50 \times (1)^2 \ge 32(1)^2 + 17(1) + 1
6) 50 \ge 50
7) So far we have determined that c_1 \times g(n) \ge f(n) since we have found some constant and n_0 that satisfy the above equation.
```

Since we have determined that both $c_1 \times g(n) \leq f(n)$ and $f(n) \leq c_1 \times g(n)$, this means that $c_1 \times g(n) \leq f(n) \leq c_2 \times g(n)$ is true which satisfies the original definition of Θ runtime, which means that this function is $\Theta(n^2)$.

4.1

```
Conversely, show using counter-examples, that f(n) is neither \Theta(n) nor \Theta(n^3). Given: f(n) = 32n^2 + 17n + 1 General Claim: f(n) is neither \Theta(n) nor \Theta(n^3). Formal Definition of \Theta runtime: f(n) = \Theta(g(n)) iff there exist positive constants c_1, c_2, and n_0 s.t. c_1 \times g(n) \le f(n) \le c_2 \times g(n) for all n \ge n_0 Proof: Prove through contradiction: Proving f(n) is not \Theta(n). Assume f(n) is O(n) s.t. O(n) s.t. O(n) s.t. O(n) c.t. O(n) s.t. O(n)
```

- 2) $32n^2+17n+1\leq c_2*n$ 3) $\frac{32n^2+17n+1}{n}\leq c_2$ 4) 32n+17 $\frac{1}{n}\leq c_2$ 5) Since the first term is still in terms of n, this equation can never be true. If n were to be substituted with infinity it would surely be larger than c_2 , meaning that it is impossible for f(n) to be $\Theta(n)$.

Proving f(n) is not $\Theta(n^3)$.

Assume f(n) is $\Theta(n)$ s.t. $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ for all $n \ge n_0$ Proving $f(n) \ge c_2 \times g(n)$: 1) $f(n) \ge c_2^* n^3$, let g(n) be n^3 as this is the claim.

- Frowing $f(n) \ge c_2 \times g(n)$. 1) $f(n) \ge c_2 \cdot n$, let g(n) be it as this is the claim.

 2) $32n^2 + 17n + 1 \ge c_2 \cdot n^3$ 3) $\frac{32n^2 + 17n + 1}{n^3} \ge c_2$ 4) $\frac{32}{n} + \frac{7}{n^2} + \frac{1}{n^3} \ge c_2$ 5) Since the first term, and the other terms, are still in terms of n, this equation can never be true. If n were to be substituted with infinity it would surely be smaller than c₂. It would be smaller because anything divided by infinity is zero. This means that it is impossible for f(n) to be $\Theta(n^3)$.