

YouTube VIDEO INFORMATION EVALUATION WEB APP

Chien Yuan Chang, Data Scientist

5 BILLION VIDEOS

are watched on Youtube every single day

300 HOURS

\$3-\$5

of video are uploaded every minute

are earned per 1000 video views

MORE VIEWS MORE REVENUE

Building a Web App to Estimate the Views can help YouTube Creators optimize Thumbnails and Titles

WORKFLOW

WORKFLOW

YOUTUBE DATA - FIVE BRANCHES

Image Data: Thumbnail

Numerical and Categorical Data:

View Count, Published Time, Duration, Category, Definition, Dimension, Made for kids, Subscriber Count, Channel Country and Channel video Count

Target:

Log₁₀ of Daily Views of the Video

Text Data: Title Text Data: Tags Text Data: Description

DATA FLOW DIAGRAM - LOCAL

1. Request the list, detailed information of the videos and channels of 4,200 videos among YouTube 14 categories by YouTube Data API once a Local MongoDB day due to the api quota Data 2. Store the information videos and channels Python 4. Store images into **Thumbnails** 3. Request the images of thumbnails by url and video id on **Local Drive** i.ytimg.com

DATA FLOW DIAGRAM - CLOUD

AMAZON LAMBDA - SUCCESS RATE

MONGODB ATLAS

Data Size 211.4 MB

0

Last 8 days

512.0 MB

Stable Accumulation

Uploaded and combined with local data

WORKFLOW

DATA FOR MODEL TRAINING

BASELINE MODEL - LINEAR REGRESSION

Feature Branches

Numerical and Categorical Video Information

→ One-hot Encoding and Standardization

Thumbnails

 \rightarrow Resize, Rescale and SVD

Title

→ NLP, Tokenizer and PCA

Tag

→ NLP, Tokenizer and PCA

Description

→ NLP, Tokenizer and PCA

Target:
Log₁₀ of Daily Views
of the Video

Validation Data MSE > 1.57 MAE > 0.96

FINAL MODEL - NEURAL NETWORK

FINAL RESULT FOR THE USERS COMPARISON BETWEEN USER INPUTS AND BLANK INPUTS

How many percentage of views can increase when compared with blank image, title, tag and description

FINAL RESULT FOR THE USERS COMPARISON BETWEEN TWO USER INPUTS

		Description	Tags	Title	Thumbnail	Numerical and Categorical Data Fixed
Comparison	Example A	User Input				
Companison	Example B	User Input				

The increasing percentage of views when comparing Example A with Example B.

WORKFLOW

COMPARE THE TEXT

COMPARE THE THUMBNAILS

CONCLUSION

- Not precise enough to provide the number of prediction to the users
- A reference for users to compare their inputs, especially thumbnails

Welcome to try it:

https://share.streamlit.io/koscew/metis-module7 data engineering project/main

FUTURE WORK

More data

- Increase layers and neurons
- More preprocessing (NLP)
- Time Series

UI Optimization

THANK YOU!

DO YOU HAVE ANY QUESTIONS?

Credits: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**.

Please keep this slide for attribution

APPENDIX

RESOURCES

- YouTube Data API
 - https://developers.google.com/youtube/v3/docs/
- Amazon Lambda
 - https://aws.amazon.com/lambda/
- MongoDB Atlas
 - https://www.mongodb.com/
- Google Colab
 - https://colab.research.google.com

YOUTUBE DATA API

Search

```
"kind": "youtube#searchResult".
"etag": etag /,
"id": {
 "kind": string /.
  "videoId": string /,
  "channelId": string /
  "playlistId": string /
'snippet": {
  "publishedAt": datetime /,
  "channelId": string /.
  "title": string /,
  "description": string /,
  "thumbnails": {
    (key) /: {
      "url": string / .
     "width": unsigned integer /,
     "height": unsigned integer /
  "channelTitle": string /,
  "liveBroadcastContent": string /
```

Videos

```
"kind": "youtube#video",
"etag": etag /,
"id": string / .
"snippet": {
 "publishedAt": datetime /,
  "channelId": string /,
  title : string / ,
 "description": string /,
 "thumbnails": {
   (key) /: {
      "url": string /.
      "width": unsigned integer /,
      "height": unsigned integer /
  "channelTitle": string /,
  "tags": [
   string /
  "categoryId": string /,
  "liveBroadcastContent": string /,
  "defaultLanguage": string /,
 "localized": {
   "title": string /.
```

Channels

```
"kind": "youtube#channel",
"etag": etag /,
"id": string /,
"snippet": {
  "title": string /.
  "description": string /,
  "customUrl": string /.
  "publishedAt": datetime /.
 "thumbnails": {
    (key) /: {
      "url": string /,
     "width": unsigned integer /,
     "height": unsigned integer /
  "defaultLanguage": string /,
  "localized": {
   "title": string /,
   "description": string /
  "country": string /
"contentDetails": {
 "relatedPlaylists": {
```

AMAZON LAMBDA - DURATION

MODELING - NEURAL NETWORK

Feature Branches

Numerical and Categorical Video Information

→ One-hot Encoding and Standardization

Thumbnails

→ Resize, Rescale and Transfer Learning

Title

→ NLP, Tokenizer and Embedding

Tag

 \rightarrow NLP, Tokenizer and Embedding

Description

→ NLP, Tokenizer, Embedding, CNN and Bidirectional LSTM

Target:
Log 10 of Daily
Views of the Video

Neural Network Model

> Validation Data MSE: 1.08

MAE: 0.79

Test Data MSE: 1.08 MAE: 0.78

IT CAN BE A REFERENCE

DEPLOY ON STREAMLIT

- Scaler
- Tokenizers
- Model

Streamlit code on local machine

- Push to Github
- Deploy on streamlit.io