预习报告	实验记录	分析讨论	总成绩

年级、专业:	2017 级 物理学	组号:	实验班 2
姓名:	高寒	学号:	17353019
日期:		教师签名:	

【实验报告注意事项】

- 1. 实验报告由三部分组成:
 - 1) 预习报告:(提前一周)认真研读<u>实验讲义</u>,弄清实验原理;实验所需的仪器设备、用具及其使用(强烈建议到实验室预习),完成讲义中的预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(由学生自己在实验前设计好,可以打印)。预习成绩低于10分(共20分)者不能做实验。
 - 2) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可扫描手记后打印扫描件);离开前请实验教师检查记录并签名。
 - 3) 分析讨论:处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。

实验报告就是预习报告、实验记录、和数据处理与分析合起来,加上本页封面。

- 2. 每次完成实验后的一周内交实验报告。
- 3. 除实验记录外,实验报告其他部分建议双面打印。

【实验目的】

- 1. 观察等倾、等厚干涉现象及调节白光干涉条纹;
- 2. 学习用迈克尔逊干涉仪测量钠光谱波长差的方法;
- 3. 学习用白光干涉测量透明薄片折射率的方法:
- 4. 用迈克尔逊干涉仪测量多种光源的相干长度

【仪器用具】

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)
1	精密干涉仪	1	SGM-3
2	He-Ne 激光器	1	
3	透明薄片	1	
4	螺旋测微计	1	

【原理概述】

该实验观察复色光的等倾干涉现象。在迈克尔逊干涉仪中,等倾干涉的光程 差为

$$L = \sqrt{(Z+2d)^2 + R^2} - \sqrt{Z^2 + R^2} = \sqrt{Z^2 + R^2} \left(\sqrt{1 + \frac{4d(Z+d)}{Z^2 + R^2}} - 1\right) \simeq 2d\cos\theta$$
(1)

当光程差为波长的整数倍时,出现明纹;半奇数倍时,出现暗纹。明纹条件是

$$\theta = \arccos \frac{m\lambda}{2d} \tag{2}$$

但对于复色光来说,波长非单一,因此,干涉仪会将不同波长的光分开,形成彩色条纹。但彩色条纹中间依然存在一个暗纹,称为中心暗纹。观察到中心暗纹后,移动 M_1 镜使得中心暗纹移到视场中央,在 M_1 镜和分束镜 P_1 间放上折射率为 n,厚度为 t 的透明薄片,且让薄片和 M_1 镜平行,光程差就相应地扩大了 $\Delta L = 2t(n-1)$ 。这个光程差使得彩色条纹移出视场范围,此时再调整 M_1 镜的位置 $\Delta d = \frac{1}{2}\Delta L$,就可以使得彩色条纹重新出现。折射率于是为

$$n = \frac{\Delta d}{t} + 1 \tag{3}$$

该实验的另外一部分是测量钠双线的波长差。钠黄光含有两种波长相近的 光($\lambda_1 = 589.0 \text{ nm}$, $\lambda_2 = 589.6 \text{ nm}$)。采用钠灯作光源时,两条谱线形成各自 的干涉条纹,在视场中的两套干涉条纹相互叠加。由于波长不同,同级条纹之间 会产生错位(λ_1)的某一级的暗条纹可能会和 2 的另一级的亮条纹重合)。在移 动反射镜 M_1 (光程差发生变化)过程中,干涉条纹会出现清晰与模糊的周期性变化,称为"光拍现象"。其原理见讲义。

当条纹发生"清晰-模糊-清晰"变化现象时,反射镜移动 Δd 的距离,波长差就是

$$\Delta \lambda = \frac{\bar{\lambda}^2}{2\Delta d} \tag{4}$$

该实验的最后一部分是测量汞灯的相干长度。我们知道,一束光的相干长度 是它能够保持相干性的最大长度,于是有

$$l_c \sim \frac{c}{\Delta f} = \frac{\lambda^2}{\Delta \lambda} \tag{5}$$

为了测量相干长度,我们从 0 开始改变光程差,直到干涉条纹变得十分模糊,便是相干长度的测量值

$$l_c \sim 2\Delta d \tag{6}$$

【实验前思考题】

- 1. (问题 1)
- 2. (问题 2)

专业:	2017 级 物理学	年级:	实验班 2
姓名:	高寒	学号:	17353019
室温:		实验地点:	珠海教学楼 A5
学生签名:	高寒	评分:	
日期:		教师签名:	

【实验内容、步骤、结果】 1. 测量钠双黄线的波长差

记录出现"模糊-清晰-模糊"现象的测微头读数如表 1

表 1: 钠双黄线波长差的测量

第一次模糊时的测微头位置 d_1/mm		
第二次模糊时的测微头位置 d_2/mm		

2. 透明薄片的折射率

先测量薄片的厚度,数据记录入表2

表 2. 蓮片厚度的测量

t_1	t_2	t_3		

调节测微头出现全黑条纹,记下此时的读数 d_1 ,再加上薄片,调节测微头使得全黑条纹重现,记下此时的读数 d_2 。数据记入表 3,重复 3 次。

表 3: 测微头移动距离的测量

d_1/mm		
d_2/mm		

3. 测量汞灯的相干长度

从 0 开始改变光程差,直到干涉条纹完全模糊,记录下此时测微头的读数,如表 4

表 4: 汞灯干涉长度的测量

d_1	d_2	d_3

【实验过程中遇到问题记录】

专业:	物理学	年级:	2017 级
姓名:	高寒	学号:	17353019
日期:			
评分:		教师签名:	

【分析与讨论】

(Content)

【实验思考题】

(Content)