Raccolta di problemi interessanti per il sottoscritto

Filippo \mathcal{L} . Troncana A partire dall'A.A. 2024/2025

Indice

1	(AI	PERTO) Dimostrazione più gentile della formula dell'area
	1.1	Teoria astratta della misura indotta
		1.1.1 σ -algebre e misure esterne indotte da funzioni
		1.1.2 Sottospazi misurabili
		1.1.3 Spazi misurabili prodotto
		1.1.4 Spazi misurabili rinforzati
	1.2	Teoria dell'integrazione
		1.2.1 Integrazione indotta
	1.3	Derivata di Radòn-Nikodym
		Il viaggio verso il TFA
2	`	PERTO) Tentativi disperati di mettere una bella misura su Zariski Definizioni preliminari
3	(RI	SOLTO) Congettura di Calabri

Introduzione

Non ha senso che io faccia un IATEX per ciascun problema mi sembri interessante, li raccolgo tutti qui e buona così.

Notazione 0.0.1

Useremo le seguenti convenzioni:

- \bullet Generalmente un insieme X è assunto non vuoto.
- $\bullet\,$ Dato un insieme X, indicheremo con 2^X il suo insieme delle parti.
- Dato un insieme X e un sottoinsieme $E \subset X$, indicheremo con E^c il suo complementare $X \setminus E$.
- Dato un insieme X e una sua famiglia di sottoinsiemi $\mathcal{F} \subset 2^X$, la notazione $\{A_i\}_{i \in I} \subset \mathbb{F}$ rappresenta una funzione $\varphi : I \to \mathbb{F}$ che a ciascun indice mappa un insieme di \mathbb{F} e indichiamo:

$$\cup_I E_i := \bigcup_{i \in I} E_i \qquad , \qquad \cap_I E_i := \bigcap_{i \in I} E_i \qquad \mathrm{e} \qquad \Pi_I E_i := \prod_{i \in I} E_i$$

In particolare, quest'ultimo è definito se I è finito (non ci occuperemo di prodotti cartesiani infiniti) e se $E_i=E_j=E$ per ogni i,j, allora $\Pi_I E_i:=E^{\#I}$

• Dato un campo K e una successione di elementi del campo $\{a_i\}_{i\in I}\subset K$, indichiamo

$$\Sigma_I a_i := \sum_{i \in I} a_i$$
 e $\Pi_I a_i := \prod_{i \in I} a_i$

Almeno a livello formale, indipendentemente dalla loro esistenza o definizione.

Capitolo 1

(APERTO) Dimostrazione più gentile della formula dell'area

Uno dei più importanti risultati della teoria geometrica della misura è la formula dell'area, strumento fondamentale per il calcolo delle misure di sottovarietà regolare di \mathbb{R}^n e degli integrali su di esse.

La dimostrazione classica, ad esempio quella riportata in cite Evans
Gariepy1991 fa uso di diverse stime estremamente tecniche, ma credo¹ che fare un giro leggermente più largo possa portare a una dimostrazione meno traumatica.

Alcune fondamentali idee, come quella di considerare spazi misurabili "migliorati" (che noi chiameremo rinforzati), ovvero dotati di una famiglia di insiemi considerati trascurabili o nulli, per un'idea più "naturale" di equivalenza quasi ovunque vengono da citeFremlin2000.

In questa tesi vengono presentati dei risultati di teoria della misura sviluppati con un approccio simile a quello usato per lo studio della topologia generale e successivamente questi vengono applicati allo studio dell'integrale di funzioni composte e alla formula dell'area.

1.1 Teoria astratta della misura indotta

Le definizioni di teoria della misura usate si riferiscono a quelle date in citeDelladio2023, meno che alcune che riportiamo qui, con opportuna motivazione

Definizione 1.1.1: Funzione misurabile

Siano (X, \mathcal{A}) e (Y, \mathcal{B}) due spazi misurabili e sia $f: X \to Y$ una funzione. f si dice *misurabile* se per ogni $E \in \mathcal{B}$ vale $f^{-1}(B) \in \mathcal{A}$.

In cite Delladio
2023 le funzioni misurabili sono definite analogamente, ma l'ambiente di arrivo è uno spazio topologico e si richie
de che la controimmagine di ogni aperto sia misurabile, in modo da poter usare alcuni strumenti di topologia dotando l'insieme di arrivo della σ -algebra Boreliana.

Tuttavia, ai fini della nostra trattazione sarà meglio usare la definizione più generale riportata qui sopra, che quindi è quella che adottiamo.

1.1.1 σ -algebre e misure esterne indotte da funzioni

Analogamente alle costruzioni di topologia iniziale e finale, definiamo

Definizione 1.1.2: σ -algebre indotte

Siano X e Y due insiemi, sia $f: X \to Y$ una funzione, sia \mathcal{A} una σ -algebra su X e sia \mathcal{B} una σ -algebra su Y. Definiamo le seguenti famiglie:

$$f_{\sharp}\mathcal{A} := \{ E \in 2^{Y} : f^{-1}(E) \in \mathcal{A} \}$$
 e $f_{\flat}\mathcal{B} := \{ f^{-1}(E) \in 2^{X} : E \in \mathcal{B} \}$

Esse si dicono rispettivamente σ -algebra finale e iniziale di f rispetto a \mathcal{A} e \mathcal{B} .

Dimostrazione

La dimostrazione che queste siano effettivamente delle σ -algebre segue banalmente dalla commutatività tra operatori insiemistici, immagine e preimmagine.

¹o meglio, spero

Valgono questi risultati che ci permettono di calcolare in modi più agevoli le nostre σ -algebre

La σ -algebra finale di f rispetto a \mathcal{A} è la più grande σ -algebra Ω tale che $f:(X,\mathcal{A})\to (Y,\Sigma)$ sia misurabile. La σ -algebra iniziale di f rispetto a \mathcal{B} è la più piccola σ -algebra Σ tale che $f:(X,\Sigma)\to (Y,\mathcal{B})$ sia misurabile.

Dimostrazione

Sia $\Omega \subset 2^Y$ tale che $f:(X,\mathcal{A}) \to (Y,\Omega)$ sia misurabile. Per definizione di funzione misurabile, abbiamo che per ogni $E \in \Omega$, abbiamo che $f^{-1}(E) \in \mathcal{A}$, dunque $\Omega \subset f_{\sharp}\mathcal{A}$.

Sia $\Sigma \subset 2^X$ tale che $f:(X,\Sigma) \to (Y,\mathcal{B})$ sia misurabile. Per definizione di funzione misurabile, abbiamo che per ogni $E \in f_b \mathcal{B}$ si ha che $E = f^{-1}(F)$ con $F \in \mathcal{B}$ e quindi che $E \in \Sigma$, dunque $f_b \mathcal{B} \subset \Sigma$.

Definizione 1.1.3: Misure esterne indotte

Siano X e Y due insiemi, siano μ e ν due misure esterne rispettivamente su X e su Y e sia $f: X \to Y$ una funzione.

La *misura esterna finale* di f rispetto a μ è la funzione

$$f_{\sharp}\mu: 2^Y \to [0, +\infty] \quad \text{con} \quad f_{\sharp}\mu(E) := \mu(f^{-1}(E))$$

La $misura\ esterna\ iniziale$ di f rispetto a ν è la funzione

$$f_{\flat}\nu: 2^X \to [0, +\infty] \quad \text{con} \quad f_{\flat}\nu(E) := \nu(f(E))$$

Dimostrazione

Dimostriamo che queste sono effettivamente misure esterne.

Verifichiamo i tre assiomi di misura esterna per $f_{\sharp}\mu$:

- 1. $f^{-1}(\varnothing) = \varnothing \Rightarrow f_{\dagger}\mu(\varnothing) = 0$.
- 2. Siano $E \subset F \subset Y$, allora $f^{-1}(E) \subset f^{-1}(F)$, dunque la monotonia di $f_{\sharp}\mu$ segue dalla monotonia di μ .
- 3. Siano $A, B \subset Y$, allora $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ e la subaddittività segue da quella di μ

Ora per $f_{\flat}\nu$:

- 1. $f(\emptyset) = \emptyset \Rightarrow f_{\flat}(\emptyset) = 0$.
- 2. Siano $E \subset F \subset X$, allora $f(E) \subset f(F)$, dunque la monotonia di $f_b \nu$ segue dalla monotonia di ν .
- 3. Siano $A, B \subset X$, allora $f(A \cup B) = f(A) \cup f(B)$ e la subaddittività segue da quella di ν .

Proposizione 1.1.2: Bidualità delle misure esterne indotte

Nella situazione della definizione 1.1.3, $f_{\flat}f_{\sharp}\mu \geq \mu$ e $f_{\sharp}f_{\flat}\nu \leq \nu$. In particolare, se f è iniettiva vale $f_{\flat}f_{\sharp}\mu = \mu$ e se f è suriettiva vale $f_{\sharp}f_{\flat}\nu=\nu$ e se f è biettiva valgono entrambe le uguaglianze.

Dimostrazione

Abbiamo che $f_{\flat}f_{\sharp}\mu(E)=f_{\sharp}\mu(f(E))=\mu(f^{-1}(f(E)))\geq\mu(E)$ per monotonia di μ . Allo stesso modo, $f_{\sharp}f_{\flat}\nu(E)=f_{\flat}\nu(f^{-1}(E))=\nu(f(f^{-1}(E)))\leq\nu(E)$

L'uguaglianza nei casi particolari segue banalmente.

1.1.2 Sottospazi misurabili

Definizione 1.1.4: Sottospazio misurabile

Sia (X, A) uno spazio misurabile e $Z \subset X$. Allora, definita la famiglia $A|_Z := \{E \cap Z \in 2^X : E \in A\}, (Z, A|_Z)$ si dice **sottospazio misurabile** di X.

Dimostrazione

Banalmente è uno spazio misurabile.

Proposizione 1.1.3: Misurabili iniziali rispetto all'inclusione

Sia (X, \mathcal{A}) uno spazio misurabile, sia $Z \subset X$ un suo sottoinsieme e sia $i: Z \to X$ l'inclusione canonica. Allora $\mathcal{A}|_{Z} = i_{\flat}\mathcal{A}$.

Dimostrazione

Per $E \in i_{\flat} \mathcal{A}$ vale se e solo se $E = i^{-1}(F)$ per qualche $F \in \mathcal{A}$, ma per ogni $F \in 2^X$ vale $i^{-1}(F) = F \cap Z$, dunque $E = F \cap Z$ per qualche $F \in \mathcal{A}$ e quindi $E \in \mathcal{A}|_{Z}$.

Definizione 1.1.5: Sottomisura esterna

Sia X un insieme, $Z \subset X$ un suo sottoinsieme, $i: Z \to X$ l'inclusione canonica e sia $\mu: 2^X \to [0, +\infty]$ una misura esterna su X.

Allora $i_{\flat}\mu$ si dice **sottomisura esterna** su Z rispetto a X.

Notiamo che è effettivamente una misura esterna come visto in 1.1.3, adesso curiamoci di trovare un modo di calcolarla magari

Proposizione 1.1.4: Sottomisura esterna e restrizione

Nella situazione della definizione 1.1.5, vale $i_b \mu = \mu|_{2^Z} = \mu \cdot \chi_Z$.

Dimostrazione

Per definizione, per ogni $E \subset X$ si ha $i_b \mu(E) = \mu(i^{-1}(E)) = \mu(E \cap Z) = \mu(E) = \mu|_{2^{\mathbb{Z}}}(E)$.

1.1.3 Spazi misurabili prodotto

A onor di completezza, sarebbe possibile trattare anche i prodotti da questo punto di vista, ma si tratta di costruzioni complesse e

Definizione 1.1.6: Spazio misurabile prodotto

Siano (X, \mathcal{A}) e (Y, \mathcal{B}) due spazi misurabili, $X \times Y$ il prodotto cartesiano dei due insiemi e $\pi_X : X \times Y \to X$ e $\pi_Y : X \times Y \to Y$ le proiezioni canoniche.

Lo *spazio misurabile prodotto* $(X, A) \otimes (X, B)$ è lo spazio $(X \times Y, A \otimes B)$ dove $A \otimes B$ è la più piccola σ -algebra che contenga gli insiemi della forma $A \times B$ con $A \in A$ e $B \in \mathcal{B}$, in altre parole, definiamo in questo modo $A \otimes \mathcal{B} := \langle \{A \times B \in 2^{X \times Y} : A \in A, B \in \mathcal{B}\} \rangle$.

Osservazione 1.1.1

Siano (X, \mathcal{A}) e (Y, \mathcal{B}) due spazi misurabili, $X \times Y$ il prodotto cartesiano dei due insiemi e $\pi_X : X \times Y \to X$ e $\pi_Y : X \times Y \to Y$ le proiezioni canoniche.

 $\mathcal{A} \otimes \mathcal{B}$ è la più piccola σ -algebra che renda misurabili sia π_X che π_Y .

Dimostrazione

Notiamo che la tesi può essere riscritta come $\mathcal{A} \otimes \mathcal{B} \subset \langle \pi_{X\flat} \mathcal{A} \cup \pi_{Y\flat} \mathcal{B} \rangle$, in quanto una σ -algebra che renda misurabili le proiezioni deve necessariamente contenere l'unione delle σ -algebre iniziali^a, ma quindi per l'ipotesi di minimalità di $\mathcal{A} \otimes \mathcal{B}$ possiamo semplicemente richiedere $\{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\} \subset \langle \pi_{X\flat} \mathcal{A} \cup \pi_{Y\flat} \mathcal{B} \rangle$. Notiamo che in generale, $A \times B = (A \times Y) \cap (X \times B)$, rispettivamente elementi di $\pi_{X\flat} \mathcal{A}$ e $\pi_{Y\flat} \mathcal{B}$, quindi deve appartenere alla σ -algebra generata dalla loro unione.

^aNotiamo che $\pi_{Xb}\mathcal{A} = \{A \times Y \in 2^{X \times Y} : A \in \mathcal{A}\}$

Definizione 1.1.7: Misura esterna prodotto

Siano X,Y due insiemi rispettivamente con misure esterne $\mu:X\to [0,+\infty]$ e $\nu:Y\to [0,+\infty]$. Una **misura prodotto** di μ e ν è una misura esterna $\mu\otimes\nu$ su $X\times Y$ tale che $(\mu\otimes\nu)(A\times B)=\mu(A)\nu(B)$

1.1.4 Spazi misurabili rinforzati

Un concetto fondamentale in teoria della misura è quello proprietà valide μ -quasi ovunque, ma sorge il problema della scelta di una misura. In realtà è possibile "indebolire" questo requisito, specificando la famiglia degli insiemi nulli di uno spazio misurabile e imponendo un requisito di "fedeltà" per le misure che vorremo definire su di esso.

Definizione 1.1.8: σ -ideale

Sia X un insieme e $I \subset 2^X$ una famiglia di insiemi tale che:

- 1. $\emptyset \in I$.
- 2. Se $N \in I$ e $M \subset N$ allora $M \in I$.
- 3. Se $\{N_i\}_{i\in\mathbb{N}}\subset I$ allora $\cup_{\mathbb{N}}N_i\in I$.

Allora I si dice σ -ideale su X. In particolare, se $X \notin I$, allora I si dice σ -ideale proprio, altrimenti improprio^a.

Definizione 1.1.9: Spazio fortemente misurabile

Sia X un insieme, \mathcal{M} un
a σ -algebra su X e \mathcal{N} un σ -ideale su X tale che $\mathbb{N}\subset\mathcal{M}$.

Allora $(X, \mathcal{M}, \mathcal{N})$ si dice *spazio fortemente misurabile* e gli insiemi di \mathcal{N} si dicono *nulli* o trascurabili. La coppia $(\mathcal{M}, \mathcal{N})$ è detta *struttura fortemente misurabile*.

Ovviamente ogni spazio misurabile rinforzato è uno spazio misurabile e una misura esterna μ su un insieme X induce su di esso una struttura fortemente misurabile allo stesso modo in cui induce una normale struttura misurabile, con la coppia $(\mathcal{M}_{\mu}, \mathcal{N}_{\mu})$ dove $\mathcal{N}_{\mu} := \{E \in \mathcal{M} : \mu(E) = 0\}$.

Definizione 1.1.10: Validità quasi ovunque

Sia $(X, \mathcal{M}, \mathcal{N})$ uno spazio fortemente misurabile.

Una proprietà P sugli elementi di X si dice **valida quasi ovunque** se $\{x \in X : \neg P(x)\} \in \mathcal{N}$ e scriviamo $\forall_{\mathcal{N}} x \in X, P(x)$.

Notiamo che se $\mathcal{N} = \mathcal{N}_{\mu}$ per una misura μ , questa diventa la definizione di validità μ -quasi ovunque

Notazione 1.1.1

Sia $(X, \mathcal{M}, \mathcal{N})$ uno spazio fortemente misurabile e siano $f, g: X \to \mathbb{R}$. Allora $=_{\mathbb{N}}, \geq_{\mathcal{N}}, >_{\mathcal{N}}, \leq_{\mathcal{N}}$ e $<_{\mathcal{N}}$ si riferiscono alle stesse relazioni intese quasi ovunque.

Se $\mathcal{N} = \mathcal{N}_{\mu}$ per qualche misura esterna, invece di scrivere \mathcal{N} al pedice scriveremo μ .

1.2 Teoria dell'integrazione

1.2.1 Integrazione indotta

La situazione che studiamo in questa sezione è la seguente

 $[\]overline{{}^{a}}$ In quanto avremmo $I=2^{X}$, non particolarmente utile nel migliore dei casi.

Dove \mathcal{L} è la misura di Lebesgue sui numeri reali.

Teorema 1.2.1: Integrazione indotta

Sia (X, \mathcal{A}, μ) uno spazio con misura, sia Y un insieme, sia $f: X \to Y$ una funzione biettiva e sia $g: (Y, f\mathcal{A}, f\mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{L}^1)$ una funzione $f\mathcal{A}$ -misurabile.

Allora g è $f\mu$ -integrabile se e solo se $g\circ f$ è μ -integrabile, e vale l'identità

$$\int g \, \mathrm{d}f \mu = \int g \circ f \, \mathrm{d}\mu$$

Dimostrazione

Assumiamo che g sia $f\mu$ -integrabile. Allora vale

$$\int g \, \mathrm{d}f\mu = \int_{*} g \, \mathrm{d}f\mu = \sup \left\{ I_{f\mu}(\varphi) : \varphi \in \Sigma_{-}(g) \right\} = \sup \left\{ \sum_{i} a_{i} f\mu(\varphi^{-1}(\{a_{i}\})) : \varphi \in \Sigma_{-}(g) \right\} =$$

$$= \sup \left\{ \sum_{i} a_{i} \mu(f^{-1}(\varphi^{-1}(\{a_{i}\}))) : \varphi \in \Sigma_{-}(g) \right\} = \sup \left\{ \sum_{i} a_{i} \mu((\varphi \circ f)^{-1}(\{a_{i}\})) : \varphi \circ f \in \Sigma_{-}(g \circ f) \right\}$$

$$\operatorname{con} \psi := \varphi \circ f, \quad \int_{*} g \, \mathrm{d}f\mu = \sup \left\{ I_{\mu}(\psi) : \psi \in \Sigma_{-}(g \circ f) \right\} = \int_{*} g \circ f \, \mathrm{d}\mu$$

La dimostrazione è assolutamente analoga per l'integrale superiore e nella direzione opposta assumendo l'integrabilità di $q \circ f$. Le varie uguaglianze seguono dalla biettività di f.

Osservazione 1.2.1: Girotondone per il TFA

L'obiettivo di questo scherzetto è dimostrare il TFA per cambiamenti di coordinate, ovvero

$$\int g \, \mathrm{d}\mathcal{L}^n = \int (g \circ f) \cdot J_f \, \mathrm{d}\mathcal{L}^n$$

Ma c'è un problema: noi abbiamo dimostrato un risultato dalla forma leggermente diversa, ovvero

$$\int g \, \mathrm{d}f \mu = \int g \circ f \, \mathrm{d}\mu$$

Osservando il TFA ci aspettiamo che la nostra d $f\mu$ corrisponda a J_f d \mathcal{L}^n , dunque dobbiamo fare un piccolo giretto usando la biettività di f:

$$\int g \, d\lambda = \int g \circ f \circ f^{-1} \, d\lambda = \int g \circ f \, df^{-1} \lambda$$

In questo modo ci basta riuscire a far corrispondere $J_f d\mathcal{L}^n$ a $df^{-1}\mathcal{L}^n$

1.3 Derivata di Radòn-Nikodym

Teorema 1.3.1: Teorema di Radòn-Nikodym

Sia (X, \mathcal{A}) uno spazio misurabile e siano ν, μ misure su (X, \mathcal{A}) tali che μ sia σ -finita e ν sia assolutamente continua rispetto a μ . Allora esiste una funzione \mathcal{A} -misurabile $f: X \to [0, +\infty[$ tale che per ogni $E \in \mathcal{A}$ si

abbia

$$\nu(A) = \int_A f \, \mathrm{d}\mu$$

E per una funzione ν -integrabile $g:(X,\mathcal{A},\nu)\to\mathbb{R}$ vale

$$\int g \, \mathrm{d}\nu = \int g \cdot f \, \mathrm{d}\mu$$

Definizione 1.3.1: Derivata di Radòn-Nikodym

Nella situazione precedente, la funzione f si dice derivata~di~Radòn-Nikodym di ν rispetto a μ e si indica con

 $f = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}$

Definizione 1.3.2: Funzioni R-N

Siano (X, \mathcal{A}, μ) e (Y, \mathcal{B}, ν) due spazi con misure σ -finite. Una funzione $f: (X, \mathcal{A}, \mu) \to (Y, \mathcal{B}, \nu)$ si dice **funzione** R-N se:

- 1. f è misurabile
- 2. Per ogni $E \in \mathcal{B}$ tale che $\nu(E) = 0$ si ha $\mu(f^{-1}(E)) = 0$

Osservazione 1.3.1: Categoria degli spazi con misure σ -finite e delle funzioni R-N

La classe degli spazi con misure σ -finite con la classe delle funzioni R-N e l'usuale composizione di funzioni è una categoria, che chiamiamo \mathbf{Mea}_{R-N} .

Dimostrazione

Controlliamo le varie proprietà:

- Sia (X, \mathcal{A}, μ) uno spazio con misura σ -finita. La funzione identità id X è evidentemente una funzione R-N
- Siano $f:(X,\mathcal{A},\lambda)\to (Y,\mathcal{B},\mu)$ e $g:(Y,\mathcal{B},\mu)\to (Z,\mathcal{C},\nu)$ due funzioni R-N. Notiamo che per ogni $E\in\mathcal{C}$ tale che $\nu(E)=0$ si ha $(g\circ f)^{-1}=f^{-1}(g^{-1}(E))$ e $\mu(g^{-1}(E))=0$, dunque $\lambda((g\circ f)^{-1}(E))=0$.
- La composizione eredita l'associatività dalla composizione di funzioni in Set.

Proposizione 1.3.1: Derivata di R-N per Lipschitziane

Sia (X, d, μ) uno spazio metrico di dimensione $n \in \mathbb{Z}_+$ con una misura μ di Radòn (rispetto alla σ -algebra Boreliana indotta dalla metrica) invariante per traslazioni (ovvero, $\mu(B_r(x)) = \mu(B_r(y))$ per ogni x, y in $X)^a$ e sia $F: X \to X$ una funzione biettiva di Lipschitz con costante di Lipschitz L > 0.

Allora $F^{-1}\mu \ll \mu$ e L^n e la derivata di Radòn-Nikodym di $F^{-1}\mu$ rispetto a μ è maggiorata μ -quasi ovunque da L^n .

Dimostrazione

È sufficiente dimostrarlo sulle palle aperte, dato che queste costituiscono una base della topologia e dunque della σ -algebra Boreliana.

Per ogni r > 0 e ogni $x \in X$ abbiamo che $F(B_r(x)) \subset B_{Lr}(F(x))$ che implica $\mu(F(B_r(x))) \leq \mu(B_{Lr}(F(x))) = L^n \mu(B_r(F(x)))$ il che implica che per ogni insieme, $F^{-1}(E) \leq \mu(E)$, dunque sappiamo che deve esistere $g: (X, d, \mu) \to [0, +\infty[$ tale che

$$F^{-1}\mu(E) = \int_E g \, \mathrm{d}\mu$$

Ancora una volta lavoriamo sulle palle

$$\forall r > 0, \forall x \in X, 0 \le \int_{B_r(x)} g(y) \, d\mu(y) \le \int_{B_r(x)} L^n \, d\mu(y) \Rightarrow g \le_{\mu} L^n$$

^aOnestamente non so se questa "uniformità" vada codificata come una proprietà dello spazio o della misura, dato che il nostro fine è quello di applicarlo alla misura di Lebesgue su \mathbb{R}^n non ci poniamo troppi problemi in quanto \mathbb{R}^n è tutto piatto e \mathcal{L}^n è invariante per traslazioni.

1.4 Il viaggio verso il TFA

Cercheremo di dimostrare il TFA per cambiamenti di coordinate *lineari* con la speranza di estendere questo ragionamento a cambiamenti di coordinate *differenziabili*, ovvero localmente lineari. Per fare questo, ci permetteremo di sostituire i plurirettangoli nella definizione della misura di Lebesgue ai pluriparallelogrammi

Lemma 1.4.1: Misura indotta da un cambiamento di coordinate lineare

Sia $F: (\mathbb{R}^n, \mathcal{M}_{\mathcal{L}}, \mathcal{L}^n) \to \mathbb{R}^n$ una mappa lineare invertibile. Allora $F^{-1}\mathcal{L}^n = |\det F| \cdot \mathcal{L}^n$ e dunque

$$F^{-1}\mathcal{L}^n(E) = \int_E |\det F| \, \mathrm{d}\mathcal{L}^n$$

Dimostrazione

Sia $E \in F\mathcal{M}_{\mathcal{L}}$. Per definizione di misura indotta, abbiamo che $F^{-1}\mathcal{L}^n(E) = \mathcal{L}^n(F(E))$ e che, come visto nel corso di Geometria A è uguale a $|\det F| \cdot \mathcal{L}^n(E)$.

Teorema 1.4.1: TFA per cambiamenti di coordinate lineari

Sia $F: \mathbb{R}^n \to \mathbb{R}^n$ una mappa lineare invertibile e sia $g: \mathbb{R}^n \to \mathbb{R}$ una funzione \mathcal{L}^n -integrabile. Vale il seguente fatto:

 $\int g \, d\mathcal{L}^n = \int (g \circ F) \cdot |\det F| \, d\mathcal{L}^n$

Teorema 1.4.2: Derivata R-N di una misura finale di diffeomorfismi

Sia $\varphi: (\mathbb{R}^n, \mathcal{M}_{\mathcal{L}}, \mathcal{L}^n) \to \mathbb{R}^n$ un diffeomorfismo locale e sia $E \subset \mathbb{R}^n$ un aperto. Allora

$$\varphi^{-1}\mathcal{L}^n(E) = \int_E |\det D_{\varphi}| \, d\mathcal{L}^n$$

Equivalentemente

$$\frac{\mathrm{d}\varphi^{-1}\mathcal{L}^n}{\mathrm{d}\mathcal{L}^n} = |\det D_{\varphi}|$$

Nel senso della definizione 1.3.1 della derivata di Radòn-Nikodym.

Dimostrazione

Il fatto che $\varphi^{-1}\mathcal{L}^n \ll \mathcal{L}^n$ segue dalla proposizione 1.3.1, infatti se φ è un diffeomorfismo è almeno localmente lipschitziana e in ogni insieme limitato V ha costante di Lipschitz $\sup_V |\det D_{\varphi}|$. Poniamo $|\det D_{\varphi}(x)| =: J(x)$.

Sia $E \subset \mathbb{R}^n$ un aperto. Localmente la trasformazione φ agisce come una trasformazione lineare D_{φ} , dunque in intorni V_i sufficientemente piccoli di punti $x_i \in E$ indicizzati su un insieme numerabile I applichiamo il lemma ?? e abbiamo $\varphi^{-1}\mathcal{L}^n \sim D_{\varphi}\mathcal{L}^n = J(x) \cdot \mathcal{L}^n$. Dunque posti possiamo scrivere

$$\varphi^{-1}\mathcal{L}^n(E) = \sum_{i \in I} \int_{V_i} J(x_i) \, d\mathcal{L}^n = \sum_{i \in I} \int_{E} J(x_i) \chi_{V_i}(y) \, d\mathcal{L}^n(y)$$

Facendo una mossa alla Gottinga riconosciamo una regolarità sufficiente ad applicare uno strano genere di integrale di Riemann rendendo sempre più piccoli i nostri intorni aumentando il loro numero e otteniamo

$$\varphi^{-1}\mathcal{L}^n(E) = \int_E J \, d\mathcal{L}^n = \int_E |\det D_{\varphi}| \, d\mathcal{L}^n$$

Teorema 1.4.3: TFA

Sia $\varphi:\mathbb{R}^n\to\mathbb{R}^n$ un diffeomorfismo locale e $g:\mathbb{R}^n\to\mathbb{R}$ una funzione \mathcal{L}^n -integrabile. Vale

$$\int g \, d\mathcal{L}^n = \int (g \circ \varphi) \cdot |\det D_{\varphi}| \, d\mathcal{L}^n$$

Dimostrazione

La dimostrazione è banale combinando i non banali teoremi 1.2.1, 1.3.1 e ??.

Capitolo 2

(APERTO) Tentativi disperati di mettere una bella misura su Zariski

2.1 Definizioni preliminari

Definizione 2.1.1: Misura esterna

Sia X un insieme e sia 2^X il suo insieme delle parti. Una *misura esterna* su X è una funzione $\mu: 2^X \to [0, +\infty]$ tale che:

- 1. $\mu(\emptyset) = 0$
- 2. Se $E \subset F$ allora $\mu(E) \leq \mu(F)$
- 3. Per ogni $\{E_i\}_{i\in\mathbb{N}}$ vale

$$\mu\left(\bigcup_{i\in\mathbb{N}}E_i\right)\leq\sum_{i\in\mathbb{N}}\mu(E_i)$$

Teorema 2.1.1: Le misure di Radòn funzionano male su Zariski

Sia (X, τ) uno spazio topologico Noetheriano, sia \mathcal{B} la famiglia dei suoi boreliani e sia $\mu : \mathcal{B} \to [0, +\infty]$ una misura di Radòn su X. Valgono i seguenti

- 1. $\mu(X) < +\infty$
- 2. Se V è un chiuso irriducibile, $\mu(V) = 0$
- 3. Se A è un aperto, $\mu(A) = \mu(X)$

Dimostrazione

1. Dato che in uno spazio topologico Noetheriano tutti i sottoinsiemi sono compatti, vale banalmente.

Capitolo 3

(RISOLTO) Congettura di Calabri

Qualche tempo fa, Matilde mi ha presentato un'interessante congettura:

Proposizione 3.0.1: Calabri 1

Gli unici numeri della forma $a_0 + 10a_1 + 100a_2 + ...$ con $a_i \in \{0, 1\}$ che sono quadrati perfetti sono della forma 10^{2k} per qualche $k \in \mathbb{N}$.

Dopo un infruttuoso attacco a forza di congurenze modulari, ho deciso di utilizzare tecniche a me più familiari, ovvero provare a ragionare in termini di polinomi. Stabiliamo un pochino di linguaggio:

Definizione 3.0.1: Numeri e polinomi binari

Un numero binario in base β , o numero β -binario è un numero della forma

$$\sum_{i=0}^{n} a_i \beta^i \qquad \text{con } a_i \in \{0, 1\}$$

Analogamente, un polinomio binario è un polinomio della forma

$$\sum_{i=0}^{n} a_i x^i \qquad \text{con } a_i \in \{0, 1\}$$

Definiremo 2[x] l'insieme dei polinomi binari nella variabile x.

Possiamo vedere che quindi la congettura di Matilde riguarda i numeri 10-binari; procediamo a dimostrare il

Teorema 3.0.1: Teorema del treno per polinomi

Sia $p \in \mathbb{N}[x]$ di grado d tale che $p^2 \in 2[x]$. Allora $p = x^d$ se $d \ge 0$, altrimenti p = 0.

Dimostrazione

I casi $d \in \{-\infty, 0\}$ sono banali, assumiamo $d \ge 1$ e scriviamo per esteso $p \in p^2$:

$$p = \sum_{i=0}^{d} a_i x^i$$
, $p^2 = \sum_{k=0}^{2d} b_k x^k$ dove $b_k = \sum_{i=0}^{k} a_i a_{k-i}$ e $\forall j > d, a_j = 0$

Dimostriamo prima che $p \in 2[x]$ (lemma della locomotiva) e successivamente che $p = x^d$ (lemma della ferrovia):

- Dato che abbiamo assunto la binarietà di p^2 , per ogni k bisogna avere $b_k \in \{0, 1\}$, dunque deve esistere al più un i tale che $a_i a_{k-i} > 0$, poichè altrimenti b_k sarebbe maggiore di 1; inoltre, dato che l'unico caso in cui il prodotto di due numeri naturali è uguale a 1 è quello in cui questi sono entrambi uno, deve valere $a_i = a_{k-i} = 1$, dunque per ogni j deve valere $a_j \in \{0, 1\}$ e dunque $p \in 2[x]$.
- Per l'unicità di i vista nel punto precedente, deve valere anche i = k i, ovvero k = 2i e quindi b_k può

essere uguale a 1 soltanto per k pari. Scriviamo quindi

$$p^2 = \sum_{k=0}^{d} b_{2k} x^{2k}$$
 con $b_{2k} = \sum_{i=0}^{2k} a_i a_{2k-i}$

Notiamo che abbiamo "gratis" $b_{2d} = 1$ e $b_0 = a_0^2$ e supponiamo per assurdo che per un qualche 0 < k' < d si abbia $b_{2k'} = 1$; questo significherebbe che $a_{k'} = 1$ e che quindi $b_{d+k'} \neq 0$, e in particolare

$$b_{d+k'} = \sum_{i=0}^{d+k'} a_i a_{d+k'-i} = \underbrace{\sum_{i=0}^{k'-1} a_i a_{d+k'-i}}_{=0} + \underbrace{\underbrace{\sum_{i=k'+1}^{d-1} a_i a_{d+k'-i}}_{\geq 0}}_{\geq 0} + \underbrace{\underbrace{\sum_{i=d+1}^{d-1} a_i a_{d+k'-i}}_{\geq 0}}_{\geq 0} + \underbrace{\underbrace{\sum_{i=d+1}^{d+k'+1} a_i a_{d+k'-i}}_{\geq 0}}_{\geq 0} \geq 2$$

assurdo per ipotesi di binarietà di p^2 , dunque dobbiamo concludere che $b_{2k'}=0$ per ogni 0 < k' < d e perciò $p^2=x^{2d}+a_0$, ma dato che $x^{2d}+1$ è irriducibile in $\mathbb{R}[x]$ chiaramente lo è anche in $\mathbb{N}[x]$ e ovviamente in 2[x] e quindi $a_0=0$.

Corollario 3.0.1: Teorema del treno per numeri β -binari

Sia p un quadrato perfetto β -binario.

Allora p è della forma β^{2n} per qualche $n \in \mathbb{N}$ oppure p = 0.

Dimostrazione

Scriviamo p in base β , vediamo le sue cifre come coefficienti di un polinomio $p(x) \in 2[x]$ e applichiamo il teorema del treno per polinomi, ottenendo che $p(x) = x^{2n}$ per qualche $n \in \mathbb{N}$ oppure $p(x) \equiv 0$. Valutiamo $p(\beta)$ per ottenere $p = \beta^{2n}$ oppure p = 0.

Corollario 3.0.2: Calabri I

Gli unici numeri della forma $a_0 + 10a_1 + 100a_2 + ...$ con $a_i \in \{0, 1\}$ che sono quadrati perfetti sono della forma 10^{2k} per qualche $k \in \mathbb{N}$.

Dimostrazione

Applichiamo il teorema del treno per numeri β -binari nel caso $\beta = 10$.