

Processing Signal and **Machine Learning**

1. Statistical Learning

1.1. Definition Statistical Model

Statistical Model: $\{X, \mathbb{F}, P_{\theta}; \theta \in \Theta\}$

Sample Space: Observation Space: \mathbb{X} Sigma Algebra Probability: Null Hypothesis: $H_0: \theta \in \Theta_0$

 $T: \mathbb{X} \mapsto \{\theta_0, \theta_1\}, x \mapsto T(x)$

Alternative Hypothesis: $H_1: \theta \in \Theta_1$

Cost Criterion G_T :

$$G_T : \{\theta_0, \theta_1\} \mapsto [0, 1], \theta \mapsto P(\{T(X) = 1\} | \theta)$$

$$= F[T(X), \theta] = f[T(X), \theta] dx$$

$$=E[T(X);\theta]=\int\limits_{\mathbb{X}}T(x)f_{X}(x|\theta)\,\mathrm{d}x$$

Error Level α : $G_T(\theta_0) \le \alpha$ Two Error Types:

False Alarm: $\theta = \theta_0, T(x) = 1$ $G_T(\theta_0) = P(\{T(X) = 1\} | \theta_0)$

Detection Error: $\theta = \theta_1, T(x) = 0$

 $1 - G_T(\theta_1) = P(\{T(X) = 0\} | \theta_1)$

1.2. Maximum Likelihood Test

ML Ratio Test Statistic:

$$R(x) = \begin{cases} \frac{f_X(x|\theta_0)}{f_X(x|\theta_0)} &; & f_X(x|\theta_0) > 0 \\ \infty &; & f_X(x|\theta_0) = 0 \text{ and } f_X(x|\theta_1) > 0 \end{cases}$$

$$T_{\mathsf{ML}}: \mathbb{X} \mapsto \{0, 1\}, x \mapsto \begin{cases} 1 & ; & R(X) > c \\ 0 & ; & \mathsf{otherwise} \end{cases}$$

if $c \neq 1$ False Alarm Error Probability can be adjusted o Neyman Pear-

1.3. Neyman-Pearson-Test

The best test of P_0 against P_1 is

$$T_{\mathsf{NP}}(x) = \begin{cases} 1 & R(x) > c \\ \gamma & R(x) = c \\ 0 & R(x) < c \end{cases} \qquad \begin{array}{l} \mathsf{Likelihood\text{-Ratio:}} \\ \mathsf{Likelihood\text{-Ratio:}} \\ \mathsf{R}(x) = \frac{f_{\mathsf{X}}(x|\theta_1)}{f_{\mathsf{X}}(x|\theta_0)} \end{cases}$$

 $\gamma = \frac{\alpha - P_0(\{R > c\})}{P_0(\{R = c\})}$ Errorlevel α

Steps: For α calculate x_{α} , then $c = R(x_{\alpha})$

ROC Graphs: plot $G_T(\theta_1)$ as a function of $G_T(\theta_0)$

1.4. Bayes Test (MAP Test)

Prior knowledge about possible hypotheses:

$$P(\{\theta \in \Theta_0\}) + P(\{\theta \in \Theta_1\}) = 1$$

$$T_{\mathsf{Bayes}} = \underset{T}{\operatorname{argmin}} \{ P_{\epsilon} \} = \begin{cases} 1 & ; & \frac{f_{X}(x|\theta_1)}{f_{X}(x|\theta_0)} > c \\ 0 & ; & \mathsf{otherwise} \end{cases}$$

$$= \begin{cases} 1 & ; & \mathsf{P}(\theta_1|x) > \mathsf{P}(\theta_0|x) \\ 0 & ; & \mathsf{otherwise} \end{cases}$$

with:
$$P_{\epsilon} = P(\theta_0)G_T(\theta_0) + P(\theta_1)(1 - G_T(\theta_1)), \quad c = \frac{P(\theta_0)}{P(\theta_1)}$$

if
$$P(\theta_0) = P(\theta_1) \rightarrow T_{\mathsf{Baves}} = T_{\mathsf{ML}}$$

$$\begin{array}{l} \text{Multiple Hypothesis } \{\theta_0,...,\theta_k\}; \mathbb{X}_0,...,\mathbb{X}_k \in \mathbb{X} \\ T_{\text{Bayes}} = \mathop{\mathrm{argmin}}_{k \in 1,...,K} \{P(\theta_k|x)\} \end{array}$$

Loss Function

$$L(T(x),\theta) = \begin{cases} L_0 & ; \quad T(x) = 1, \text{ but } \theta = \theta_0 \quad \text{(FALSE ALARM)} \\ L_1 & ; \quad T(x) = 0, \text{ but } \theta = \theta_1 \quad \text{(DETEC. ERROR)} \\ 0 & ; \quad \text{otherwise} \end{cases}$$

 L_i denotes the Loss Value in cases where the correct decision parameter θ is missed

$$\operatorname{Risk}(T) = \operatorname{E}[L(T(X), \theta)] = \operatorname{E}[\operatorname{E}[L(T(x), \theta)|x = X]]$$

1.5. Linear Alternative Tests

Estimate normal vector \boldsymbol{w}^{\top} and w_0 , which separate \mathbb{X} into \mathbb{X}_0 and \mathbb{X}_1 $\log R(\underline{\boldsymbol{x}}) = -\frac{1}{2} \ln(\frac{\det(\underline{\boldsymbol{C}}_1)}{\det(\underline{\boldsymbol{C}}_0)}) - \frac{1}{2} (\underline{\boldsymbol{x}} - \underline{\boldsymbol{\mu}}_1)^{\top} \underline{\boldsymbol{C}}_1^{-1} (\underline{\boldsymbol{x}} - \underline{\boldsymbol{\mu}}_1) +$ $+\frac{1}{2}(\underline{x}-\underline{\mu}_0)^{\top}\underline{C}_0^{-1}(\underline{x}-\underline{\mu}_0) = \ln(\frac{P(\theta\in\Theta_0)}{P(\theta\in\Theta_1)})$ (seperating surface)

For Gaussian $f_X(x;\mu_k,C_k)$ with θ_0 and θ_1 corresponding to $\{\mu_0,C_0\}$ and $\{\mu_1,C_1\}$, it follows that

- if $C_0 \neq C_1$, log R(x) = 0 is non-linear and the separating surfaces are surfaces of second order: parabolic, hyperbolic, or elliptic
- if $C_0 = C_1$, log R(x) = 0 is affine and thus defines a hyperplane in \mathbb{X} which decomposes \mathbb{X} into \mathbb{X}_0 and \mathbb{X}_1 , i.e.,

$$T: \mathbb{X} \to \mathbb{R}, \underline{\boldsymbol{x}} \mapsto \begin{cases} 1 & \underline{\boldsymbol{w}}^{\top}\underline{\boldsymbol{x}} > w_0 \\ 0 & \text{otherwise} \end{cases}$$

- case 1:
$$\underline{C}_0 = \underline{C}_1 = \sigma^2 \underline{I}_N$$

 $\underline{w}^{\top} = (\underline{\mu}_1 - \underline{\mu}_0)^{\top},$
 $w_0 = \frac{1}{2}(w_1^{\top} w_1 - w_1^{\top} w_1) = \sigma^2 \ln(\frac{P(\theta \in \Theta)}{2})$

 $w_0 = \frac{1}{2} (\underline{\boldsymbol{\mu}}_1^{\top} \underline{\boldsymbol{\mu}}_1 - \underline{\boldsymbol{\mu}}_0^{\top} \underline{\boldsymbol{\mu}}_0) - \sigma^2 \ln(\frac{P(\theta \in \Theta_1)}{P(\theta \in \Theta_0)})$

 $\begin{array}{cccc} \underline{w} & \text{colinear with } (\underline{\mu}_1 - \underline{\mu}_0) \\ \rightarrow & \text{hyperplane orthogonal to } (\underline{\mu}_1 - \underline{\mu}_0) \end{array}$

- case 2:
$$\underline{C}_0 = \underline{C}_1 = \underline{C}$$

 $\underline{w}^\top = (\underline{\mu}_1 - \underline{\mu}_0)^\top \underline{C}^{-1},$
 $w_0 = \frac{1}{2}(\underline{\mu}_1 - \underline{\mu}_0)^\top \underline{C}^{-1}(\underline{\mu}_1 + \underline{\mu}_0) - \ln(\frac{P(\theta \in \Theta_1)}{P(\theta \in \Theta_0)})$
in general \underline{w} not collinear with $(\underline{\mu}_1 - \underline{\mu}_0)$
 \rightarrow hyperplane not orthogonal to $(\mu_1 - \underline{\mu}_0)$

• if $C_0=C_1$ and $\mu_0=-\mu_1$, log R(x)=0 is linear and defines a separating hyperplane in $\mathbb X$ which contains the origin, i.e.,

$$T: \mathbb{X} \to \mathbb{R}, \underline{\boldsymbol{x}} \mapsto \begin{cases} 1 & \underline{\boldsymbol{w}}^{\top}\underline{\boldsymbol{x}} > 0 \\ 0 & \text{otherwise} \end{cases}$$

2. Learning and Generalization

2.1. Empirical Risk Function and Generalization Error

ML scenarios (unknown Stochastical Model) base learning on: $Risk_{emp}(T; \mathbb{S}) = \frac{1}{M} \sum_{i=1}^{M} L(T(\underline{\mathbf{x}}_i), y_i), \quad (\underline{\mathbf{x}}_i, y_i) \in \mathbb{S}$ $\underline{\mathbf{x}} \mapsto T(\underline{\mathbf{x}}; \mathbb{S}) \quad T = \operatorname{argmin} \{ Risk_{emp}(T'; \mathbb{S}) \}$

good Generalization: $Risk_{emp}(T; \mathbb{S}_{test})$ similar to $Risk_{emp}(T; \mathbb{S})$ bad Generalization:

- ullet small $\mathbb T$ that does not cover $T_{opt} o$ cannot be selected by ML ⇒ strong mismatch between the desired and derived Test and refers to a sort of Bias Error Term
- too rich $\mathbb{T} \to \text{fluctuating of the available data (measurement noise)}$ is interpreted as meaningful information
- ⇒ Overfitting: leads to an increased Variance Error Term

2.2. Bias-Variance Decomposition

$$\begin{array}{lll} Risk &=& E_{S,X,Y}[L(T(X;S),Y)] &=& E_{X}[1-P_{Y\,|\,X}(Y=T_{B}(X))] \\ &=& T_{B}(X)) + \underbrace{\left(1-P_{S\,|\,X}(T(X;S)=T_{B}(X))\right)}_{D(X,Y)}(2P_{Y\,|\,X}(Y=T_{B}(X))-1)], \quad T_{B}(X) \text{ is the unknown } Bayes\ Test \end{array}$$

If the potential set $\mathbb S$ would be selected from a distribution such that the derived Test $T(\mathbf{x}; \mathbb{S})$ and the corresponding Bayes Test $T_B(\mathbf{x})$ are identical almost surely, then the Risk Function achieves its minimum value which is equal to the Irreducible Error $E_X[1-P_{Y|X}(Y=T_B(X))]$ (denotes the probability that for a given input x the Bayes Test $T_{R}(X)$ decides for the false label u).

3. Classification Trees and Random Forests

3.1. CART Algorithms

Generate Binary Trees by splitting X at each (internal/root) node: $\mathbb{X}_{i,left} = \{\underline{\mathbf{x}} \in \mathbb{X}_i | x_{j_i} < \tau_i\} \quad \mathbb{X}_{i,right} = \mathbb{X}_i \setminus \mathbb{X}_{i,left}$

Root/Internal node: Binary decision based on chosen threshold $\tau_i \in \mathbb{R}$, feature $x_{j_i} = [\underline{\mathbf{x}}]_{j_i}$ with $j_i \in \mathbb{J} = \{1, ..., dim[\mathbb{X}]\}$ aims at minimiz $ing\ Risk_{emp}(T_{CART})$

Terminal node: n_i corresponds to subset $X_i \in X \to has$ no more children; outputs a decision

 $\Rightarrow x \mapsto n_i(x)$

Empirical Impurity Measure: choose j_i and τ_i at n_i by: $I_{CART}(\mathbb{S}_i) = \sum_{k=1}^{K} (1 - \hat{P}_{Y|X}(Y) = \theta_k | \{\underline{\mathbf{x}} \in \mathbb{S}_i\} \}$ X_i ; S_i)) $\hat{P}_{Y|X}(Y = \theta_k | \{\underline{\mathbf{x}} \in X_i\}; S_i)$

 $\hat{P}_{Y|X}(Y = \theta_k | \{\underline{\mathbf{x}} \in \mathbb{X}_i\}; \mathbb{S}_i) = \frac{M_k(\mathbb{S}_i)}{M(\mathbb{S}_i)} = \frac{|\{(\underline{\mathbf{x}}, y) \in \mathbb{S}_i | y = \theta_k\}|}{|\mathbb{S}_i|}$

 $\Rightarrow \qquad \{j_i, \tau_i\} \qquad = \underset{j \in \mathbb{J}, \tau \in \mathbb{R}}{\operatorname{argmin}} \Big\{ \sum_{k=1}^K \Big(1 - \frac{M_k(\mathbb{S}_i, left)}{M(\mathbb{S}_i, left)} \Big) \frac{M_k(\mathbb{S}_i, left)}{M(\mathbb{S}_i)} + \Big(1 - \frac{M_k(\mathbb{S}_i, right)}{M(\mathbb{S}_i, right)} \Big) \frac{M_k(\mathbb{S}_i, right)}{M(\mathbb{S}_i)} \Big)$ **Overfitting**(comes with high purity) can be controlled by a *Test Set*

Decision Rule: At terminal node n_i , input $\underline{\mathbf{x}}$ is assigned to $T_{CART}(\underline{\mathbf{x}}; \mathbb{S}) : \mathbb{X} \mapsto \{1, ..., K\}, \underline{\mathbf{x}} \mapsto \operatorname{argmax}\{\overline{M}_k(\mathbb{S}_i)\}$

Gini Impurity Index: I_{CART}

$$\sum_{k=1}^K (1 - P_Y|_X(\underline{\boldsymbol{y}} = \theta_k | \{\underline{\mathbf{x}} \in \mathbb{X}\})) P_Y|_X(\underline{\boldsymbol{y}} = \theta_k | \{\underline{\mathbf{x}} \in \mathbb{X}\}) \right| =$$

$$\sum_{k=1}^K \sum_{j=1, j \neq k}^K P_{Y \mid X}(\underline{\boldsymbol{y}} = \boldsymbol{\theta}_j | \{\underline{\mathbf{x}} \in \mathbb{X}\}) P_{Y \mid X}(\underline{\boldsymbol{y}} = \boldsymbol{\theta}_k | \{\underline{\mathbf{x}} \in \mathbb{X}\})$$

3.2. Random Forests

Avoid Overfitting (here: CART) \Rightarrow combine independent Hypothesis Tests: e.g. by Majority Vote

 $T_{maj}(\underline{\mathbf{x}}) = majority\{T_{CART}(\underline{\mathbf{x}}; \mathbb{S}^{(t)}, \nu^{(t)})\}_{t=1}^{t_{max}}$

Randomization Parameter ν_t controls an additionally introduced Randomness between the individual Tests.

 \Rightarrow Variance of $T_{ava}(\mathbf{x})$ is reduced by $1/t_{max}$ with respect to the Vari ance of the individual test.

Random Forest Method:

- $T_{RF}(\underline{\mathbf{x}}) = majority\{T_{CART}(\underline{\mathbf{x}}; \mathbb{S}^{(t)}, \mathbb{J}^{(t)})\}_{t=1}^{t_{max}}$
- Stochastic Independence by Bootstrapping of training samples (random sampling from $\mathbb S$ with replacement) \Rightarrow large t_{max} guarantees excellent performance (yet Tests are still correlated)
- Overfitting not considered (maximum purity) ⇒ small bias of RF

4. Hypothesis Testing

making a decision based on the observations

4.1. Definition

Null hypothesis $H_0: \theta \in \Theta_0$ (Assumed first to be true) Alternate hypothesis $H_1: \theta \in \Theta_1$ (The one to proof)

Descision rule $\varphi: \mathbb{X} \to [0,1]$ with

 $\varphi(x)=1$: decide for H_1 , $\varphi(x)=0$: decide for H_0 Error level α with $E[d(X)|\theta] \le \alpha, \forall \theta \in \Theta_0$

Error Type	Decision Reality	H_1 false (H_0 true)	H_1 true (H_0 false
1 (FA) False	H_1 rejected	True Negative	False Negativ (Type 2)
Alarm	$(H_0 \; {\it accepted})$	$P = 1 - \alpha$	$P = \beta$

2 (DE) H_1 accepted False Positive (Type 1) True Positive Detection (H_0 rejected)

Power: Sensitivity/Recall/Hit Rate: $\frac{TP}{TP+FN} = 1 - \beta$ Specificity/True negative rate: $\frac{TN}{FP \perp TN} = 1 - \alpha$ Precision/Positive Prediciton rate: TP Accuracy: $\frac{TP+TN}{P+N} = \frac{2-\alpha-\beta}{2}$

4.1.1. Design of a test Cost criterion $G_{\varphi}:\Theta \to [0,1], \theta \mapsto \mathrm{E}[d(X)|\theta]$ False Positive lower than α : $G_d(\theta)|_{\theta \in \Theta_0} \leq \alpha, \forall \theta \in \Theta_0$ False Negative small as possible: $\max\{G_d(\theta)|_{\theta\in\Theta_1}\}, \forall \theta\in\Theta_1$

4.2. Sufficient Statistics

Sufficiency for a test T(X) means that no other test statistic, i.e., function of the observations \underline{x} , contains additional information about the parameter θ to be estimated:

 $f_{X|T}(x|T(x) = t, \theta) = f_{X|T}(x|T(x) = t)$

5. Math

$\pi \approx 3.14159$	$e\approx 2.71828$	$\sqrt{2} \approx 1.414$	$\sqrt{3} \approx 1.732$	
Binome, Trinome				
$(a \pm b)^2 = a^2$	$\pm 2ab + b^2$	$a^2 - b^2 =$	(a-b)(a+b)	
$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$				
$(a+b+c)^2 =$	$a^2 + b^2 + c^2 + c^2$	2ab + 2ac + 2bc		

$$\sum_{k=1}^n k = \frac{n(n+1)}{2} \qquad \sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q} \qquad \sum_{n=0}^\infty \frac{\mathbf{z}^n}{n!} = e^{\mathbf{z}}$$
 Intrinsetrische Summenformel Geometrische Summenformel Exponentialreihe

 $\begin{array}{lll} \textbf{Mittelwerte} & (\sum \text{ von } i \text{ bis } N) & (\text{Median: Mitte einer geordneten Liste}) \\ \overline{x}_{\text{ar}} = \frac{1}{N} \sum x_i & \geq & \overline{x}_{\text{geo}} = \sqrt[N]{\prod x_i} & \geq & \overline{x}_{\text{hm}} = \frac{N}{\sum \frac{1}{x_i}} \\ \text{Arithmetisches} & & \text{Geometrisches Mittel} \end{array}$

Bernoulli-Ungleichung: $(1+x)^n > 1 + nx$ Ungleichungen: $\left|\underline{\boldsymbol{x}}^{\top}\cdot\boldsymbol{y}\right|\leq\left\|\underline{\boldsymbol{x}}\right\|\cdot\left\|\boldsymbol{y}\right\|$ $||x| - |y|| \le |x \pm y| \le |x| + |y|$ Dreiecksungleichung **Mengen:** De Morgan: $\overline{A \cap B} = \overline{A} \uplus \overline{B}$ $\overline{A \uplus B} = \overline{A} \cap \overline{B}$

 $\begin{array}{lll} \textbf{5.1. Exp. und Log.} & e^x := \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n & e \approx 2,71828 \\ a^x = e^{x \ln a} & \log_a x = \frac{\ln x}{\ln a} & \ln x \leq x - 1 \\ \ln(x^a) = a \ln(x) & \ln(\frac{x}{a}) = \ln x - \ln a & \log(1) = 0 \end{array}$

5.2. Matrizen $oldsymbol{A} \in \mathbb{K}^{m imes n}$

 $A = (a_{ij}) \in \mathbb{K}^{m \times n}$ hat m Zeilen (Index i) und n Spalten (Index j) $(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top} \qquad (\mathbf{A} \cdot \mathbf{B})^{\top} = \mathbf{B}^{\top} \cdot \mathbf{A}^{\top}$ $(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$ $(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$ $\dim \mathbb{K} = n = \operatorname{rang} \mathbf{A} + \dim \ker \mathbf{A} \quad \operatorname{rang} \mathbf{A} = \operatorname{rang} \mathbf{A}^{\top}$

5.2.1. Quadratische Matrizen $A \in \mathbb{K}^{n \times n}$ regulär/invertierbar/nicht-singulär $\Leftrightarrow \det(\mathbf{A}) \neq 0 \Leftrightarrow \operatorname{rang} \mathbf{A} = n$ singulär/nicht-invertierbar $\Leftrightarrow \det(\mathbf{A}) = 0 \Leftrightarrow \operatorname{rang} \mathbf{A} \neq n$ orthogonal $\Leftrightarrow \mathbf{A}^{\top} = \mathbf{A}^{-1} \Rightarrow \det(\mathbf{A}) = \pm 1$ symmetrisch: $\mathbf{A} = \mathbf{A}^{\top}$ schiefsymmetrisch: $\mathbf{A} = -\mathbf{A}^{\top}$

5.2.2. Determinante von $\widetilde{A} \in \mathbb{K}^{n \times n} \colon \det(\widetilde{A}) = |\widetilde{A}|$ $\det \begin{bmatrix} \boldsymbol{A} & \boldsymbol{0} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix} = \det \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{0} & \boldsymbol{D} \end{bmatrix} = \det (\underline{\boldsymbol{A}}) \det (\underline{\boldsymbol{D}})$ $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B}) = \det(\mathbf{B})\det(\mathbf{A}) = \det(\mathbf{B}\mathbf{A})$

Hat \widetilde{A} $\widetilde{2}$ linear abhang. Zeilen/Spalten $\Rightarrow |A| = 0$ 5.2.3. Eigenwerte (EW) λ und Eigenvektoren (EV) v

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
 det $\mathbf{A} = \prod \lambda_i$ Sp $\mathbf{A} = \sum a_{ii} = \sum \lambda_i$

Eigenwerte: $det(\mathbf{A} - \lambda \mathbf{1}) = 0$ Eigenvektoren: $ker(\mathbf{A} - \lambda_i \mathbf{1}) = \mathbf{v}_i$ EW von Dreieck/Diagonal Matrizen sind die Elem. der Hauptdiagonale. 5.2.4. Spezialfall 2×2 Matrix A

5.2.5. Differentiation
$$\frac{\partial \underline{w}^{\top} \underline{y}}{\partial \underline{x}} = \frac{\partial \underline{y}^{\top} \underline{x}}{\partial \underline{x}} = \underline{y} \qquad \frac{\partial \underline{w}^{\top} \underline{A} \underline{x}}{\partial \underline{x}} = (\underline{A} + \underline{A}^{\top}) \underline{x}$$
$$\frac{\partial \underline{w}^{\top} \underline{A} \underline{y}}{\partial \underline{A}} = \underline{x} \underline{y}^{\top} \qquad \frac{\partial \det(\underline{B} \underline{A} \underline{C})}{\partial \underline{A}} = \det(\underline{B} \underline{A} \underline{C}) \left(\underline{A}^{-1}\right)^{\top}$$

5.2.6. Ableitungsregeln ($\forall \lambda, \mu \in \mathbb{R}$)

 $(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x_0)$ Linearität: Produkt: $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$ $\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2} \quad \left(\frac{\text{NAZ-ZAN}}{\text{N}^2}\right)$ Kettenregel (f(g(x)))' = f'(g(x))g'(x)

5.3. Integrale $\int e^x dx = e^x = (e^x)'$

Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(g(x))g'(x) dx = \int f(t) dt$

F(x) - C	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{\frac{a}{2\sqrt{ax}}}{\frac{1}{x}}$
$x \ln(ax) - x$	ln(ax)	$\frac{1}{x}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$$

$$\int \frac{dt}{\sqrt{at + b}} = \frac{2\sqrt{at + b}}{a} \qquad \int t^2 e^{at} dt = \frac{(ax - 1)^2 + 1}{a^3} e^{at}$$

$$\int te^{at} dt = \frac{at - 1}{a^2} e^{at} \qquad \int xe^{ax^2} dx = \frac{1}{2a} e^{ax^2}$$

5.3.1. Volumen und Oberfläche von Rotationskörpern um x-Achse $V=\pi\int_a^bf(x)^2\mathrm{d}x$ $O=2\pi\int_a^bf(x)\sqrt{1+f'(x)^2}\mathrm{d}x$

6. Support Vector Machines

Motivation and Background

6.1. Kernel Methods

Kernel Methods is non-parametic estimation, these make no assumption on statistical model → purely Data-Based.

$$\text{Test Statistic} \boxed{ \mathbb{X} \to \mathbb{R}, \underline{\mathbf{x}} \mapsto S(\underline{\mathbf{x}}) = \sum_{k=1}^{M} \lambda_k g(\underline{\mathbf{x}}, \underline{\boldsymbol{\mu}_{\underline{k}}}) }$$

linear combination of Kernel Function $g(., \mu_k)$, g() generally non-linear pos. definite

 μ_k : representative for Sample Set $\mathbb{S} = \{x_1, ..., x_M\}$

 λ_k : weight coefficient determined by learning

Sample Set S is Empirical Characterization of Unknown Statistical Model Infernce of λ_k based on Sample Set or Training Set is called **Learning**

6.2. Kernel Tests

Statistical Hypothesis Test decomposes sample space X into two disjoint subsets, the relative postion of a sample x_i to the separating surface determines choice of hypothesis

$$\mathbb{S} = \{(x_1, y_1), ..., (x_M, y_M)\}\$$
$$x_i \in \mathbb{R}^N, y_i \in \{\Theta_0, \Theta_1\}$$

Inference of Hypothesis Test based on a Sample Set that includes Labeling y_i of the elements x_i is called Supervised Learning M > dim(X)

6.3. Linear Kernels

Test Statistic for linear test

$$S(x) = \sum_{i=1}^{M} \lambda_i \underline{x_i}^T \underline{x} + wo = \underline{w}^T \underline{x} + wo \quad \underline{w} = \sum_{i=1}^{M} \lambda_i x_i$$

Hyperplane defined by \underline{w} (normal vector or weight vector) and wo approximates seperating surface between X_{\perp} and X_{\perp} , therefor

$$T(\underline{\mathbf{x}}) = sign(S(\underline{\mathbf{x}})) = \begin{cases} +1 & ; & \underline{\mathbf{w}}^T\underline{\mathbf{x}} + wo \ge 0 \\ -1 & ; & otherwise \end{cases}$$

7. Probability Theory Basics

7.1. Kombinatorik

Mögliche Variationen/Kombinationen um k Elemente von maximal n Elementen zu wählen bzw. k Elemente auf n Felder zu verteilen:

	Mit Reihenfolge	Reihenfolge egal
Mit Wiederholung	n^k	$\binom{n+k-1}{k}$
Ohne Wiederholung	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

Permutation von n mit jeweils k gleichen Elementen: $\frac{n!}{k_1! \cdot k_2!}$

Binomialkoeffizient
$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! \cdot (n-k)!}$$
 $\binom{n}{0} = 1$ $\binom{n}{1} = n$ $\binom{4}{2} = 6$ $\binom{5}{2} = 10$ $\binom{6}{2} = 15$

7.2. Der Wahrscheinlichkeitsraum (Ω. F. P)

Ergebnismenge	$\Omega = \left\{\omega_1, \omega_2, \ldots\right\}$	Ergebnis $\omega_j\in\Omega$
Ereignisalgebra	$\mathbb{F} = \left\{A_1, A_2, \ldots\right\}$	Ereignis $A_i \subseteq \Omega$
Wahrscheinlichkeitsmaß	$P:\mathbb{F}\to [0,1]$	$P(A) = \frac{ A }{ \Omega }$

7.3. Wahrscheinlichkeitsmaß P

$$P(A) = \frac{|A|}{|\Omega|} \qquad P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

7.3.1. Axiome von Kolmogorow

 $P(A) > 0 \Rightarrow P : \mathbb{F} \mapsto [0, 1]$ Nichtnegativität: Normiertheit: $P(\Omega) = 1$
$$\begin{split} \mathbf{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right) &= \sum_{i=1}^{\infty}\mathbf{P}(A_{i}),\\ \text{wenn } A_{i} \cap A_{j} &= \emptyset, \, \forall i \neq j \end{split}$$

7.4. Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

7.4.1. Totale Wahrscheinlichkeit und Satz von Bayes Es muss gelten: $\bigcup\limits_{i\in I}B_i=\Omega$ für $B_i\cap B_j=\emptyset,\, \forall i\neq j$

 $\begin{array}{ll} \text{Totale Wahrscheinlichkeit:} & \mathsf{P}(A) = \sum\limits_{i \in I} \mathsf{P}(A|B_i) \, \mathsf{P}(B_i) \\ \\ \text{Satz von Bayes:} & \mathsf{P}(B_k|A) = \sum\limits_{i \in I} \mathsf{P}(A|B_k) \, \mathsf{P}(B_k) \\ \\ & \sum\limits_{i \in I} \mathsf{P}(A|B_i) \, \mathsf{P}(B_i) \end{array}$

Multiplikationssatz: $P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$

7.5. Zufallsvariable

 $X:\Omega\mapsto\Omega'$ ist Zufallsvariable, wenn für jedes Ereignis $A'\in\mathbb{F}'$ im Bildraum ein Ereignis A im Urbildraum \mathbb{F} existiert, sodass $\{\omega \in \Omega | X(\omega) \in A'\} \in \mathbb{F}$

7.6. Distribution

Bezeichnung	Abk.	Zusammenhang
Wahrscheinlichkeitsdichte	pdf	$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}$
Kumulative Verteilungsfkt.	cdf	$F_X(x) = \int_{-\infty}^{x} f_X(\xi) dx$
		$-\infty$

Joint CDF: $F_{X,Y}(x,y) = P(\{X \le x, Y \le y\})$

7.7. Relations between $f_{\mathbf{X}}(x), f_{\mathbf{X},\mathbf{Y}}(x,y), f_{\mathbf{X}+\mathbf{Y}}(x|y)$

$$\begin{split} f_{X,Y}(x,y) &= f_{X\mid Y}(x,y) f_Y(y) = f_{Y\mid X}(y,x) f_X(x) \\ \int\limits_{-\infty}^{\infty} f_{X,Y}(x,\xi) \, \mathrm{d}\xi &= \int\limits_{-\infty}^{\infty} f_{X\mid Y}(x,\xi) f_Y(\xi) \, \mathrm{d}\xi = f_X(x) \\ \\ &\underbrace{-\infty}_{\text{Marginalization}} \end{split}$$

7.8. Bedingte Zufallsvariablen

Ereignis A gegeben: $F_{X|A}(x|A) = P(\{X \le x\}|A)$ ZV Y gegeben: $F_{X | Y}(x|y) = P(\{X \le x\} | \{Y = y\})$ $p_{X\mid Y}(x|y) = \frac{p_{X\mid Y}(x,y)}{p_{Y\mid Y}(x)}$ $f_{X\mid Y}(x|y) = \frac{f_{X\mid Y}(x,y)}{f_{Y\mid Y}(y)} = \frac{\mathrm{d}F_{X\mid Y}(x|y)}{\mathrm{d}x}$

7.9. Unabhängigkeit von Zufallsvariablen

 X_1, \dots, X_n sind stochastisch unabhängig, wenn für jedes $x \in \mathbb{R}^n$ gilt

$$\begin{split} F_{X_1,\cdots,X_n}(x_1,\cdots,x_n) &= \prod\limits_{i=1}^n F_{X_i}(x_i) \\ p_{X_1,\cdots,X_n}(x_1,\cdots,x_n) &= \prod\limits_{i=1}^n p_{X_i}(x_i) \\ f_{X_1,\cdots,X_n}(x_1,\cdots,x_n) &= \prod\limits_{i=1}^n f_{X_i}(x_i) \end{split}$$

8. Common Distributions

8.1. Binomial verteilung $\mathcal{B}(n,p)$ mit $p \in [0,1], n \in \mathbb{N}$ Folge von n Bernoulli-Experimenten

p: Wahrscheinlichkeit für Erfolg k: Anzahl der Erfolge

$$p_{X}(k) = B_{n,p}(k) = \begin{cases} \binom{n}{k} p^{k} (1-p)^{n-k} & k \in \{0,\dots,n\} \\ 0 & \text{sonst} \end{cases}$$

$$\begin{array}{ll} \mathsf{E}[X] = np & \mathsf{Var}[X] = np(1-p) & G_X(z) = \left(pz+1-p\right)^n \\ \mathsf{Erwartungswert} & \mathsf{Varianz} & \mathsf{Wahrscheinlichkeitserz. \ Funktion} \end{array}$$

8.2. Normalverteilung

8.3. Sonstiges

 $E(X) = \mu$

Frwartungswert

Gammadistribution $\Gamma(\alpha, \beta)$: $E[X] = \frac{\alpha}{\beta}$

 $\operatorname{Var}(X) = \sigma^2$ $\operatorname{Varianz}$

Exponential: $f(x, \lambda) = \lambda e^{-\lambda x}$ $E[X] = \lambda^{-1}$ $Var[X] = \lambda^{-2}$

Charakt. Funktion

9. Wichtige Parameter

9.1. Erwartungswert (1. zentrales Moment)

gibt den mittleren Wert einer Zufallsvariablen an

$$\begin{array}{ccc} \mu_X = \mathsf{E}[X] = \sum\limits_{x \in \Omega'} x \cdot \mathsf{P}_X(x) & \stackrel{\wedge}{=} & \int\limits_{\mathbb{R}} x \cdot f_X(x) \, \mathrm{d}x \\ & \text{diskrete } X : \Omega \! \to \! \Omega' & \text{stetige } X : \Omega \! \to \! \mathbb{R} \end{array}$$

 $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$ $X \le Y \Rightarrow E[X] \le E[Y]$ $E[X^2] = Var[X] + E[X]^2$

E[X Y] = E[X] E[Y], falls X und Y stochastisch unabhängig

9.1.1. Für Funktionen von Zufallsvariablen g(x)

$$\mathsf{E}[g(\mathsf{X})] = \sum_{x \in \Omega'} g(x) \, \mathsf{P}_{\mathsf{X}}(x) \quad \stackrel{\wedge}{=} \quad \int\limits_{\mathbb{R}} g(x) f_X(x) \, \mathrm{d}x$$

9.2. Varianz (2. zentrales Moment)

ist ein Maß für die Stärke der Abweichung vom Erwartungswert

$$\sigma_X^2 = \mathsf{Var}[X] = \mathsf{E}\left[(X - \mathsf{E}[X])^2 \right] = \mathsf{E}[X^2] - \mathsf{E}[X]^2$$

$$\operatorname{Var}[\alpha X + \beta] = \alpha^2 \operatorname{Var}[X]$$
 $\operatorname{Var}[X] = \operatorname{Cov}[X, X]$

 $\operatorname{Var}\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \operatorname{Var}[X_i] + \sum_{j \neq i} \operatorname{Cov}[X_i, X_j]$ Standard Abweichung: $\sigma = \sqrt{Var[X]}$

9.3. Kovarianz

Maß für den linearen Zusammenhang zweier Variablen

$$Cov[X, Y] = E[(X - E[X])(Y - E[Y])^{\top}] =$$

= $E[X Y^{\top}] - E[X] E[Y]^{\top} = Cov[Y, X]$

 $Cov[\alpha X + \beta, \gamma Y + \delta] = \alpha \gamma Cov[X, Y]$ Cov[X + U, Y + V] = Cov[X, Y] + Cov[X, V] + Cov[U, Y] + Cov[U, V]

9.3.1. Korrelation = standardisierte Kovarianz

$$\rho(X,Y) = \frac{\text{Cov}[X,Y]}{\sqrt{\text{Var}[X] \cdot \text{Var}[Y]}} = \frac{C_{X},y}{\sigma_{X} \cdot \sigma_{Y}} \qquad \rho(X,Y) \in [-1;1]$$

9.3.2. Kovarianzmatrix für $\underline{z} = (\underline{x}, y)$

$$\mathsf{Cov}[\underline{\boldsymbol{z}}] = \underline{\boldsymbol{C}}_{\underline{\boldsymbol{z}}} = \begin{bmatrix} \boldsymbol{C}_X & \boldsymbol{C}_{XY} \\ \boldsymbol{C}_{XY} & \boldsymbol{C}_Y \end{bmatrix} = \begin{bmatrix} \mathsf{Cov}[X,X] & \mathsf{Cov}[X,Y] \\ \mathsf{Cov}[Y,X] & \mathsf{Cov}[Y,Y] \end{bmatrix}$$

Immer symmetrisch: $C_{xy} = C_{yx}!$ Für Matrizen: $C_{xy} = C$

10. Estimation

10.1. Estimation

Statistic Estimation treats the problem of inferring underlying characteristics of unknown random variables on the basis of observations of outputs of those random variables.

Sample Space Ω Sigma Algebra $\mathbb{F} \subset 2^{\Omega}$ Probability $P : \mathbb{F} \mapsto [0, 1]$ nonempty set of outputs of experiment set of subsets of outputs (events)

Random Variable $X: \Omega \mapsto X$ Observations: x_1, \ldots, x_N

mapped subsets of Ω single values of X

Observation Space X Unknown parameter $\theta \in \Theta$ Estimator $O \longrightarrow : X \mapsto \Theta$

possible observations of Xparameter of propability function $0 \longrightarrow (X) = \hat{\theta}$, finds $\hat{\theta}$ from X

unknown parm. θ

RV of param (A)

estimation of param. $\hat{\theta}$ estim. of R.V. of parm $T(X) = \hat{\Theta}$

10.2. Quality Properties of Estimators

Consistent: If $\lim_{N\to\infty} \bigcirc - \bullet (x_1,\ldots,x_N) = \theta$

Bias Bias $(\bigcirc \bullet) := \mathsf{E} [\bigcirc \bullet (X_1, \ldots, X_N)] - \theta$ unbiased if $Bias(O - \bullet) = 0$ (biased estimators can provide better estimates than unbiased estimators.)

Variance Var $[\bigcirc \bullet] := E [(\bigcirc \bullet - E [\bigcirc \bullet])^2]$

10.3. Mean Square Error (MSE)

The MSE is an extension of the Variance Var[0----] := $E\left[\left(\bigcirc - E\left[\bigcirc -\right]\right)^2\right]$:

$$\begin{array}{l} \varepsilon[\ \bigcirc \hspace{-0.4cm}\bullet \] = \mathsf{E} \left[(\ \bigcirc \hspace{-0.4cm}\bullet \ -\theta)^2 \right]^{\hspace{-0.4cm}\mathsf{MSE:}} = \mathsf{Var}(\ \bigcirc \hspace{-0.4cm}\bullet \) + (\mathrm{Bias}[\ \bigcirc \hspace{-0.4cm}\bullet \])^2 \end{array}$$

If Θ is also r.v. \Rightarrow mean over both (e.g. Bayes est.):

MSE: $E[(\bigcirc \bullet (X) - \Theta)^2]$ $\mathsf{E}\left[\mathsf{E}\left[(\bigcirc (X) - \Theta)^2 | \Theta = \theta\right]\right]$

10.3.1. Minimum Mean Square Error (MMSE)

Minimizes mean square error: $\arg\min \mathsf{E}\left[(\hat{\theta}-\theta)^2\right]$

$$\mathsf{E}\left[(\hat{\theta} - \theta)^2\right] = \mathsf{E}[\theta^2] - 2\hat{\theta}\,\mathsf{E}[\theta] + \hat{\theta}^2$$

Solution: $\frac{d}{d\theta} E \left[(\hat{\theta} - \theta)^2 \right] \stackrel{!}{=} 0 = -2 E[\theta] + 2\hat{\theta} \Rightarrow \hat{\theta}_{MMSE} = E[\theta]$

10.4. Maximum Likelihood

Given model $\{X, F, P_{\theta}; \theta \in \Theta\}$, assume $P_{\theta}(\underline{x})$ or $f_X(\underline{x}, \theta)$ for observed data x. Estimate parameter θ so that the likelihood $L(x, \theta)$ or $L(\theta | X = x)$ to obtain x is maximized.

Likelihood Function: (Prob. for θ given x)

 $L(x_1,\ldots,x_N;\theta) = P_{\theta}(x_1,\ldots,x_N)$ Continuous: $L(x_1, \ldots, x_N; \theta) = f_{X_1, \ldots, X_N}(x_1, \ldots, x_N, \theta)$

If N observations are Identically Independently Distributed (i.i.d.):

$$L(\underline{\boldsymbol{x}}, \theta) = \prod_{i=1}^{N} \mathsf{P}_{\theta}(x_i) = \prod_{i=1}^{N} f_{X_i}(x_i)$$

ML Estimator (Picks θ): $\circ \longrightarrow {}_{\mathsf{ML}} : X \mapsto \operatorname*{argmax}\{L(X, \theta)\} =$

 $= \underset{\theta \in \Theta}{\operatorname{argmax}} \{ \log L(\underline{X}, \theta) \} \stackrel{\text{i.i.d.}}{=} \underset{\theta \in \Theta}{\operatorname{argmax}} \big\{ \sum \log L(x_i, \theta) \big\}$

Find Maximum: $\frac{\partial L(\underline{x},\theta)}{\partial \theta} = \frac{\mathrm{d}}{\mathrm{d}\theta} \log L(x;\theta) \Big|_{\hat{x} = \hat{x}} \stackrel{!}{=} 0$

Solve for θ to obtain ML estimator function $\hat{\theta}_{MI}$

Check quality of estimator with MSE

Maximum-Likelihood Estimator is Asymptotically Efficient. However, there might be not enough samples and the likelihood function is often

10.5. Uniformly Minimum Variance Unbiased (UMVU) Estimators (Best unbiased estimators)

Best unbiased estimator: Lowest Variance of all estimators. Fisher's Information Inequality: Estimate lower bound of variance if

- $L(x,\theta) > 0, \forall x, \theta$
- $L(x, \theta)$ is diffable for θ
- $\bullet \ \int_{\mathbb{X}} \frac{\partial}{\partial \theta} L(x,\theta) \, \mathrm{d}x = \frac{\partial}{\partial \theta} \int_{\mathbb{X}} L(x,\theta) \, \mathrm{d}x$ Score Function:

$$g(x,\theta) = \frac{\partial}{\partial \theta} \log L(x,\theta) = \frac{\frac{\partial}{\partial \theta} L(x,\theta)}{L(x,\theta)} \qquad \mathsf{E}[g(x,\theta)] = 0$$
 Fischer Information:

 $I_{\mathsf{F}}(\theta) := \mathsf{Var}[g(X, \theta)] = \mathsf{E}[g(X, \theta)^{2}] = - \mathsf{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log L(X, \theta)\right]$

Cramér-Rao Lower Bound (CRB): (if ○ is unbiased)

For N i.i.d. observations: $I_{\rm E}^{\left(N\right)}(x,\theta)=N\cdot I_{\rm E}^{\left(1\right)}(x,\theta)$

10.5.1. Exponential Models

If
$$f_X(x) = \frac{h(x) \exp\left(a(\theta)t(x)\right)}{\exp\left(b(\theta)\right)}$$
 then $I_F(\theta) = \frac{\partial a(\theta)}{\partial \theta} \frac{\partial E[t(X)]}{\partial \theta}$

Some Derivations: (check in exam)

Uniformly: Not diffable \Rightarrow no $I_{\mathcal{F}}(\theta)$

$$\begin{array}{l} \text{Normal } \mathcal{N}(\theta,\sigma^2) \colon g(x,\theta) = \frac{(x-\theta)}{\sigma^2} \quad I_{\mathsf{F}}(\theta) = \frac{1}{\sigma^2} \\ \text{Binomial } \mathcal{B}(\theta,K) \colon g(x,\theta) = \frac{x}{\theta} - \frac{K-x}{1-\theta} \quad I_{\mathsf{F}}(\theta) = \frac{K}{\theta(1-\theta)} \end{array}$$

Conditional Mean Estimator. $T_{\text{CM}}: x \mapsto \mathbb{E}[\Theta \mid X = x] = \int_{\Theta} \theta \cdot f_{\Theta \mid X}(\theta \mid x) \, \mathrm{d}\theta$ Posterior $f_{\Theta \mid \underline{X}}(\theta \mid \underline{x}) = \frac{f_{\underline{X}} \mid_{\Theta} (\underline{x}) f_{\theta}(\theta)}{\int_{\Theta} f_{\underline{X}, \xi}(\underline{x}, \xi) \, \mathrm{d}\xi} = \frac{f_{\underline{X}} \mid_{\Theta} (\underline{x}) f_{\theta}(\theta)}{f_{\underline{X}}(x)}$

10.6. Bayes Estimation (Conditional Mean)

Mean MSE for Θ : $\mathbb{E}\left[\mathbb{E}[(T(X) - \Theta)^2 | \Theta = \theta]\right]$

Hint: to calculate $f_{\Theta|X}(\theta|\underline{x})$: Replace every factor not containing θ such as $\frac{1}{f_{Y}(x)}$ with a factor γ and determine γ at the end such that $\int_{\Theta} f_{\Theta|X}(\dot{\theta}|\underline{x}) d\theta = 1$

A Priori information about θ is known as probability $f_{\Theta}(\theta;\sigma)$ with ran-

dom variable Θ and parameter σ . Now the conditional pdf $f_{X \mid \Theta}(x, \theta)$

is used to find θ by minimizing the mean MSE instead of uniformly MSE.

Multivariate Gaussian: $X, \Theta \sim \mathcal{N} \quad \Rightarrow \sigma_X^2 = \sigma_{X \mid \Theta - \theta}^2 + \sigma_{\Theta}$ $\bigcirc \hspace{-3mm} \bullet_{\mathsf{CM}} : x \mapsto \mathsf{E}[\Theta | \, X = x] = \underline{\mu}_{\Theta} + \underline{C}_{\Theta, X} \underline{C}_{X}^{-1} (\underline{x} - \underline{\mu}_{X})$ $\begin{bmatrix} |\mathbf{E}| \| \mathbf{O} - \mathbf{E} \|_{2}^{2} \end{bmatrix} = \operatorname{tr}(\mathbf{C}_{\theta \mid X}) = \operatorname{tr}(\mathbf{C}_{\Theta} - \mathbf{C}_{\Theta, X} \mathbf{C}_{X}^{-1} \mathbf{C}_{X, \Theta})$

Orthogonality Principle:

MMSE: $E[Var[X | \Theta = \theta]]$

Conditional Mean Estimator:

 $\circ - \bullet_{\mathsf{CM}}(X) - \Theta \perp h(X) \Rightarrow \mathsf{E}[(T_{\mathsf{CM}}(X) - \Theta)h(X)] = 0$

MMSE Estimator: $\hat{\theta}_{MMSE} = \arg \min MSE$

minimizes the MSE for all estimators

10.7. Example:

Estimate mean θ of X with prior knowledge $\theta \in \Theta \sim \mathcal{N}$: $X \sim \mathcal{N}(\theta, \sigma_{X \mid \Theta = \theta}^2) \text{ and } \Theta \sim \mathcal{N}(m, \sigma_{\Theta}^2)$

$$\hat{\theta}_{\mathsf{CM}} = \mathsf{E}[\Theta | \underline{X} = \underline{x}] = \frac{N \sigma_{\Theta}^2}{\sigma_{X}^2 | \Theta = \theta + N \sigma_{\Theta}^2} \hat{\theta}_{\mathsf{ML}} + \frac{\sigma_{X}^2 | \Theta = \theta}{\sigma_{X}^2 | \Theta = \theta + N \sigma_{\Theta}^2} m_{\mathsf{ML}}$$

For N independent observations $x_i\colon \hat{\theta}_{\text{ML}} = \frac{1}{N} \sum x_i$ Large $N \Rightarrow \text{ML}$ better, small $N \Rightarrow \text{CM}$ better

11. Linear Estimation

t is now the unknown parameter θ , we want to estimate u and \underline{x} is the input vector... review regression problem $y=A\underline{x}$ (we solve for \underline{x}), here we solve for \underline{t} , because \underline{x} is known (measured)! Confusing... 1. Training → 2. Estimation

Training: We observe y and x (knowing both) and then based on that we try to estimate y given x (only observe x) with a linear model $\hat{y} = \boldsymbol{x}^{\top} \boldsymbol{t}$

Estimation:
$$\hat{y} = \boldsymbol{x}^{\top} \boldsymbol{t} + m$$
 or $\hat{y} = \boldsymbol{x}^{\top} \boldsymbol{t}$

Given: N observations (y_i, \underline{x}_i) , unknown parameters \underline{t} , noise m

$$\underline{\boldsymbol{y}} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \quad \underline{\boldsymbol{X}} = \begin{bmatrix} \underline{\boldsymbol{x}}_1^\top \\ \vdots \\ \underline{\boldsymbol{x}}_n^\top \end{bmatrix} \qquad \text{Note: } \hat{y} \neq y!!$$

Problem: Estimate y based on given (known) observations \underline{x} and unknown parameter t with assumed linear Model: $\hat{y} = x^{\top} t$

Note
$$y = \underline{\boldsymbol{x}}^{\top}\underline{\boldsymbol{t}} + m \to y = \underline{\boldsymbol{x}}'^{\top}\underline{\boldsymbol{t}}'$$
 with $\underline{\boldsymbol{x}}' = \begin{pmatrix} \underline{\boldsymbol{x}} \\ 1 \end{pmatrix}$, $t' = \begin{pmatrix} \underline{\boldsymbol{t}} \\ m \end{pmatrix}$

Sometimes in Exams: $\hat{y} = \underline{x}^{\top}\underline{t} \Leftrightarrow \hat{\underline{x}} = \underline{T}^{\top}y$ estimate \underline{x} given \underline{y} and unknown T

11.1. Least Square Estimation (LSE)

Tries to minimize the square error for linear Model: $\hat{y}_{1S} = \underline{x}^{\top} \underline{t}_{1S}$

Least Square Error:
$$\min \left[\sum\limits_{i=1}^{N}(y_i-\underline{x}_i^{\top}\underline{t})^2\right] = \min_{\underline{t}}\left\|\underline{y}-\underline{\chi}\underline{t}\right\|$$

$$\underline{\boldsymbol{t}}_{\mathrm{LS}} = (\underline{\boldsymbol{X}}^{\top}\underline{\boldsymbol{X}})^{-1}\underline{\boldsymbol{X}}^{\top}\underline{\boldsymbol{y}}$$

$$\underline{\hat{y}}_{lS} = \underline{X}\underline{t}_{LS} \in span(X)$$

Orthogonality Principle: N observations $\underline{\boldsymbol{x}}_i \in \mathbb{R}^d$ $Y - XT_{1S} \perp \operatorname{span}[X] \Leftrightarrow Y - XT_{1S} \in \operatorname{null}[X^{\top}], \text{ thus}$ $\boldsymbol{X}^{\top}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{T}_{1S}) = 0$ and if $N > d \wedge \operatorname{rang}[\boldsymbol{X}] = d$: $T_{\mathsf{LS}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$

11.2. Linear Minimum Mean Square Estimator (LMMSE)

Estimate y with linear estimator t, such that $\hat{y} = t^{\top}x + m$ Note: the Model does not need to be linear! The estimator is linear!

$$\hat{y}_{\mathsf{LMMSE}} = \mathop{\arg\min}_{t,\,m} \mathsf{E} \left[\left\| \underline{\boldsymbol{y}} - (\underline{\boldsymbol{t}}^{\top}\underline{\boldsymbol{x}} + m) \right\|_2^2 \right]$$

If Random joint variable
$$\underline{z} = \begin{pmatrix} \underline{w} \\ y \end{pmatrix}$$
 with
$$\underline{\mu}_{\underline{z}} = \begin{pmatrix} \underline{\mu}_{\underline{w}} \\ \mu_y \end{pmatrix} \text{ and } \underline{C}_{\underline{z}} = \begin{bmatrix} \underline{C}_{\underline{w}} & \underline{c}_{\underline{w}y} \\ c_{y\underline{w}} & c_y \end{bmatrix} \text{ then }$$
 LMMSE Estimation of y given x is
$$\hat{y} = \mu_y + \underline{c}_{y\underline{w}} \underline{C}_{\underline{w}}^{-1} (\underline{w} - \underline{\mu}_{\underline{w}}) = \underbrace{\underline{c}_{y\underline{w}} \underline{C}_{\underline{w}}^{-1} \underline{x} - \underline{\mu}_y + \underline{c}_{y\underline{w}} \underline{C}_{\underline{w}}^{-1} \underline{\mu}_{\underline{w}}}_{=\underline{t}^{\top}} = \underline{m}$$
 Minimum MSE: $\mathbf{E} \begin{bmatrix} \|\underline{y} - (\underline{w}^{\top}\underline{t} + m)\|_2^2 \end{bmatrix} = c_y - c_{y\underline{w}} \underline{C}_{\underline{w}}^{-1} \underline{c}_{\underline{w}y}$

Hint: First calculate \hat{y} in general and then set variables according to system equation.

Multivariate: $\hat{\underline{y}} = \underline{T}_{LMMSE}^{\top} \underline{x}$ $\underline{T}_{LMMSE}^{\top} = \underline{C}_{y\underline{x}}\underline{C}_{x}^{-1}$

If
$$\underline{\mu}_{\underline{x}} = \underline{0}$$
 then
$$\text{Estimator } \hat{y} = \underline{c}_{y,\underline{w}} \underline{C}_{\underline{w}}^{-1} \underline{x}$$

$$\text{Minimum MSE: } \mathbf{E}[\underline{c}_{y,\underline{w}}] = c_y - \underline{t}^{\top} \underline{c}_{x,y}$$

11.3. Matched Filter Estimator (MF)

For channel y = hx + v, Filtered: $t^{\top}y = t^{\top}hx + t^{\top}v$ Find Filter \underline{t}^{\top} that maximizes SNR = $\frac{\|\underline{h}x\|}{\|x\|}$

$$\underline{\boldsymbol{t}}_{\mathsf{MF}} = \max_{t} \left\{ \frac{\mathbf{E}\left[\left(\underline{\boldsymbol{t}}^{\top}\underline{\boldsymbol{h}}\boldsymbol{x}\right)^{2}\right]}{\mathbf{E}\left[\left(\underline{\boldsymbol{t}}^{\top}\underline{\boldsymbol{v}}\right)^{2}\right]} \right\}$$

In the lecture (estimate $\underline{\boldsymbol{h}}$)

$$T_{\mathsf{MF}} = \max_{T} \left\{ \frac{\left| \mathsf{E} \left[\underline{\hat{\boldsymbol{h}}}^{H} \underline{\boldsymbol{h}} \right] \right|^{2}}{\operatorname{tr} \left[\mathsf{Var} \left[\underline{\boldsymbol{T}} \underline{\boldsymbol{n}} \right] \right]} \right\}$$

$$\hat{\underline{h}}_{\mathsf{MF}} = \underline{T}_{\mathsf{MF}}\underline{y}$$
 $\underline{T}_{\mathsf{MF}} \propto \underline{C}_{\underline{h}}\underline{S}^H\underline{C}_{m{n}}^{-1}$

11.4. Example

System Model: $\boldsymbol{y}_n = \boldsymbol{H} \boldsymbol{\underline{s}}_n + \eta_n$

 $\begin{array}{ll} & \underbrace{-n} & \underbrace{-n} & \underbrace{-n} & \\ & \text{with } \underline{H} = (h_{m,k}) \in \mathbb{C}^{M \times K} & (m \in [1,M], k \in [1,K]) \\ \text{Linear Channel Model } \underline{y} = \underline{S}\underline{h} + \underline{n} \text{ with} \end{array}$ $h \sim \mathcal{N}(0, C_h)$ and $\overline{n} \sim \widetilde{\mathcal{N}(0, C_n)}$

Linear Estimator T estimates $\hat{h} = Ty \in \mathbb{C}^{MK}$

$$\begin{split} & \mathcal{I}_{\text{MMSE}} = \mathcal{C}_{\underline{h}\underline{y}} \mathcal{C}_{\underline{y}}^{-1} = \mathcal{C}_{\underline{h}} \mathcal{S}^{\text{H}} (\mathcal{S} \mathcal{C}_{\underline{h}} \mathcal{S}^{\text{H}} + \mathcal{C}_{\underline{n}})^{-1} \\ & \mathcal{I}_{\text{ML}} = \mathcal{I}_{\text{Cor}} = (\mathcal{S}^{\text{H}} \mathcal{C}_{\underline{n}}^{-1} \mathcal{S})^{-1} \mathcal{S}^{\text{H}} \mathcal{C}_{\underline{n}}^{-1} \end{split}$$

For Assumption $S^H S = N \sigma^2 1 \kappa \vee M$ and $C_D = \sigma^2 1 N \vee M$

For Assumption \mathfrak{Z} $\mathfrak{Z} = N \sigma_s \mathfrak{1}_{K \times M}$ and $\mathfrak{C}_{\underline{n}} = \sigma_\eta \mathfrak{1}_{N \times M}$		
Estimator	Averaged Squared Bias	Variance
ML/Correlator	0	$KM \; \frac{\sigma_{\eta}^2}{N\sigma_s^2}$
Matched Filter	$\sum\limits_{i=1}^{KM} \lambda_i \left(rac{\lambda_i}{\lambda_1} - 1 ight)^2$	$\sum_{i=1}^{KM} \left(\frac{\lambda_i}{\lambda_1}\right)^2 \frac{\sigma_{\eta}^2}{N\sigma_s^2}$
MMSE	$\sum_{i=1}^{KM} \lambda_i \left(\frac{1}{1 + \frac{\sigma_\eta^2}{\lambda_i N \sigma_s^2}} - 1 \right)^2$	$\sum_{i=1}^{KM} \frac{1}{\left(1 + \frac{\sigma_{\eta}^2}{\lambda_i N \sigma_{s}^2}\right)^2} \; \frac{\sigma_{\eta}^2}{N \sigma_{s}^2}$

11.5. Estimators

Upper Bound: Uniform in $[0;\theta]:\hat{\theta}_{\mathsf{ML}}=\frac{2}{N}\sum x_i$ Probability p for $\mathcal{B}(p, N)$: $\hat{p}_{\mathsf{ML}} = \frac{x}{N}$ $\hat{p}_{\mathsf{CM}} = \frac{x+1}{N+2}$

Mean μ for $\mathcal{N}(\mu,\sigma^2):\hat{\mu}_{\mathsf{ML}}^2=\frac{1}{N}\sum\limits_{i=1}^{N}x_i$

Variance σ^2 for $\mathcal{N}(\mu, \sigma^2)$: $\hat{\sigma}_{\mathsf{ML}}^2 = \frac{1}{N} \sum\limits_{i=1}^{N} (x_i - \mu)^2$

12. Gaussian Stuff

12.1. Gaussian Channel

Channel: $Y = hs_i + N$ with $h \sim \mathcal{N}, N \sim \mathcal{N}$

$$L(y_1, ..., y_N) = \prod_{i=1}^{n} f_{Y_i}(y_i, h)$$

$$\begin{split} & f_{\boldsymbol{Y}_i}(y_i, h) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(y_i - hs_i)^2\right) \\ & \hat{h}_{ML} = \operatorname{argmin}\{\left\|\underline{\boldsymbol{y}} - h\underline{\boldsymbol{s}}\right\|^2\} = \frac{\underline{\mathbf{s}}^\top \underline{\boldsymbol{y}}}{\mathbf{s}^\top \underline{\boldsymbol{s}}} \end{split}$$

If multidimensional channel: $\underline{y} = \underline{\widetilde{S}}\underline{h} + \underline{n}$:

$$L(\underline{\boldsymbol{y}},\underline{\boldsymbol{h}}) = \frac{1}{\sqrt{\det(2\pi\boldsymbol{C})}} \exp\left(-\frac{1}{2}(\underline{\boldsymbol{y}} - \underline{\boldsymbol{S}}\underline{\boldsymbol{h}})^{\top} \underline{\boldsymbol{C}}^{-1}(\underline{\boldsymbol{y}} - \underline{\boldsymbol{S}}\underline{\boldsymbol{h}})\right)$$

$$-\frac{\sqrt{\det(2\pi C)}}{l(\boldsymbol{y},\boldsymbol{h})} = \frac{1}{2} \left(\log(\det(2\pi C) - (\boldsymbol{y} - \boldsymbol{S}\underline{\boldsymbol{h}})^{\top} C^{-1}(\boldsymbol{y} - \boldsymbol{S}\underline{\boldsymbol{h}}) \right)$$

$$\frac{\mathrm{d}}{\mathrm{d}h}(\underline{\boldsymbol{y}} - \underline{\boldsymbol{S}}\underline{\boldsymbol{h}})^{\top}\underline{\boldsymbol{C}}^{-1}(\underline{\boldsymbol{y}} - \underline{\boldsymbol{S}}\underline{\boldsymbol{h}}) = -2\underline{\boldsymbol{S}}^{\top}\underline{\boldsymbol{C}}^{-1}(\underline{\boldsymbol{y}} - \underline{\boldsymbol{S}}\underline{\boldsymbol{h}})$$

Gaussian Covariance: if
$$Y \sim \mathcal{N}(0, \sigma^2)$$
, $N \sim \mathcal{N}(0, \sigma^2)$: $C_Y = \text{Cov}[Y, Y] = \text{E}[(Y - \mu)(Y - \mu)^\top] = \text{E}[Y Y^\top]$

For Channel Y = Sh + N: $E[YY^{\top}] = SE[hh^{\top}]S^{\top} + E[NN^{\top}]$

12.2. Multivariate Gaussian Distributions

A vector \mathbf{x} of n independent Gaussian random variables x_i is jointly Gaussian. If $\underline{\mathbf{x}} \sim \mathcal{N}(\underline{\boldsymbol{\mu}}_{\mathbf{x}}, \underline{\boldsymbol{C}}_{\underline{\mathbf{x}}})$:

$$\begin{split} f_{\underline{\mathbf{x}}}(\underline{\boldsymbol{x}}) &= f_{x_1,...,x_n}(x_1,...,x_n) = \\ &= \frac{1}{\sqrt{\det(2\pi\underline{\boldsymbol{C}}_{\underline{\mathbf{x}}})}} \exp\left(-\frac{1}{2}\left(\underline{\boldsymbol{x}} - \underline{\boldsymbol{\mu}}_{\underline{\mathbf{x}}}\right)^{\top}\underline{\boldsymbol{C}}_{\underline{\mathbf{x}}}^{-1}\left(\underline{\boldsymbol{x}} - \underline{\boldsymbol{\mu}}_{\underline{\mathbf{x}}}\right)\right) \end{split}$$

Affine transformations $\mathbf{y} = \mathbf{\underline{A}}\mathbf{\underline{x}} + \mathbf{\underline{b}}$ are jointly Gaussian with

$$\underline{\mathbf{y}} \sim \mathcal{N}(\underline{\underline{\mathbf{A}}}\underline{\mu}_{\mathbf{y}} + \underline{\mathbf{b}}, \underline{\underline{\mathbf{A}}}\underline{\underline{\mathbf{C}}}_{\underline{\mathbf{x}}}\underline{\underline{\mathbf{A}}}^{\top})$$

All marginal PDFs are Gaussian as well

Ellipsoid with central point E[y] and main axis are the eigenvectors of

12.3. Conditional Gaussian

$$\begin{vmatrix} \underline{A} \sim \mathcal{N}(\underline{\mu}_{\underline{A}}, \underline{C}_{\underline{A}}), \underline{B} \sim \mathcal{N}(\underline{\mu}_{\underline{B}}, \underline{C}_{\underline{B}}) \\ \Rightarrow (\underline{A} | \underline{B} = b) \sim \mathcal{N}(\underline{\mu}_{A|B}, \underline{C}_{\underline{A}|\underline{B}}) \end{vmatrix}$$

$$\begin{array}{l} \text{Conditional Mean:} \\ \mathbf{E}[\underline{A}|\underline{B}=\underline{b}] = \underline{\mu}_{\underline{A}|\underline{B}=\underline{b}} = \underline{\mu}_{\underline{A}} + \underline{\mathcal{C}}_{\underline{A}\underline{B}} \ \underline{\mathcal{C}}_{\underline{B}\underline{B}}^{-1} \ \Big(\underline{b} - \underline{\mu}_{\underline{B}}\Big) \end{array}$$

Conditional Variance:
$$C_{\underline{A}|\underline{B}} = C_{\underline{A}\underline{A}} - C_{\underline{A}\underline{B}} C_{\underline{B}\underline{B}}^{-1} C_{\underline{B}\underline{A}}$$

If CDF of gaussian distribution given $\Phi(z) \sim \mathcal{N}(0,1)$ then for $X \sim$ $\mathcal{N}(1,1)$ the CDF is given as $\Phi(x-\mu_x)$

13. Sequences

13.1. Random Sequences

Sequence of a random variable. Example: result of a dice is RV, roll a dice several times is a random sequence.

13.2. Markov Sequence $X_n:\Omega \to X_n$

Sequence of memoryless state transitions with certain probabilities.

state: f_{X1} (x₁)

2. state: $f_{X_2 | X_1}(x_2 | x_1)$

n. state: $f_{X_n \mid X_{n-1}}(x_n \mid x_{n-1})$

13.3. Hidden Markov Chains

Problem: states X_i are not visible and can only be guessed indirectly as a random variable Y_i .

Conditional pdf $f_{\mathbf{X}_n \mid \mathbf{Y}_n}$ State-transision pdf $f_{X_n \mid X_{n-1}}$

 $f_{\underline{\mathbf{X}}_n|\underline{\mathbf{Y}}_n} \propto f_{\underline{\mathbf{Y}}_n|\underline{\mathbf{X}}_n} \cdot \int_{\mathbb{X}} f_{\underline{\mathbf{X}}_n|\underline{\mathbf{X}}_{n-1}} \cdot f_{\underline{\mathbf{X}}_{n-1}|\underline{\mathbf{Y}}_{n-1}} \, \mathrm{d}\underline{\boldsymbol{x}}_{n-1}$

14. Recursive Estimation

14.1. Kalman-Filter

recursively calculates the most likely state from previous state estimates and current observation. Shows optimum performance for Gauss-Markov Sequences.

State space:

$$\underline{\underline{x}}_{n} = \underline{\underline{G}}_{n}\underline{\underline{x}}_{n-1} + \underline{\underline{B}}\underline{\underline{u}}_{n} + \underline{\underline{v}}_{n}$$

$$\underline{\underline{y}}_{n} = \underbrace{\underline{\underline{H}}_{n}\underline{x}_{n} + \underline{\underline{w}}_{n}}$$

With gaussian process/measurement noise $\underline{v}_n/\underline{w}_n$ Short notation: $\mathrm{E}[\underline{x}_n|\underline{y}_{n-1}] = \hat{\underline{x}}_{n|n-1}$ $\mathrm{E}[\underline{x}_n|\underline{y}_n] = \hat{\underline{x}}_{n|n}$ $\mathsf{E}[\underline{\boldsymbol{y}}_n|\underline{\boldsymbol{y}}_{n-1}] = \underline{\hat{\boldsymbol{y}}}_{n|n-1} \quad \mathsf{E}[\underline{\boldsymbol{y}}_n|\underline{\boldsymbol{y}}_n] = \underline{\hat{\boldsymbol{y}}}_{n|n}$

1. step: Prediction

$$\begin{split} & \text{Mean: } \underline{\hat{x}}_{n\mid n-1} = \underline{\tilde{G}}_{n}\underline{\hat{x}}_{n-1\mid n-1} \\ & \text{Covariance: } \underline{\tilde{C}}_{\underline{x}_{n\mid n-1}} = \underline{\tilde{G}}_{n}\underline{\tilde{C}}_{\underline{x}_{n-1\mid n-1}}\underline{\tilde{G}}_{n}^\top + \underline{\tilde{C}}_{\underline{v}} \end{split}$$

$$\begin{array}{l} \text{Mean: } \hat{\underline{x}}_{n|n} = \hat{\underline{x}}_{n|n-1} + \underline{K}_n \left(\underline{y}_n - \underline{H}_n \hat{\underline{x}}_{n|n-1}\right) \\ \text{Covariance: } \hat{\underline{C}}_{\underline{x}_n|n} = \hat{\underline{C}}_{\underline{x}_n|n-1} + \underline{K}_n \underline{H}_n \hat{\underline{C}}_{\underline{x}_n|n-1} \end{array}$$

correction:
$$E[X_n \mid \Delta Y_n = y_n]$$

$$\underline{\hat{\boldsymbol{x}}}_{n\mid n} = \underbrace{\hat{\boldsymbol{x}}_{n\mid n-1}}_{\text{estimation E}[X_n\mid Y_{n-1} = y_{n-1}]} + \underbrace{K_n\left(\underline{\boldsymbol{y}}_n - \underline{H}_n\hat{\underline{\boldsymbol{x}}}_{n\mid n-1}\right)}_{\text{innovation:}\Delta y_n}$$

With optimal Kalman-gain (prediction for $\underline{\boldsymbol{x}}_n$ based on Δy_n):

$$\underbrace{K_n = \underbrace{C_{\underline{\boldsymbol{w}}_n|_{n-1}}}_{\boldsymbol{H}_n} \underbrace{H_n^\top (\underbrace{H_n C_{\underline{\boldsymbol{w}}_n|_{n-1}}}_{\boldsymbol{H}_n^\top + \underbrace{C_{\underline{\boldsymbol{w}}_n}}_{\boldsymbol{h}})^{-1}})^{-1}}$$

Innovation: closeness of the estimated mean value to the real value $\Delta \underline{\underline{y}}_n = \underline{\underline{y}}_n - \underline{\hat{y}}_{n|n-1} = \underline{\underline{y}}_n - \underline{\hat{H}}_n \underline{\hat{x}}_{n|n-1}$

$$\label{eq:linear_problem} \text{Init: } \underline{\hat{\boldsymbol{x}}}_{0|-1} = \mathrm{E}[X_0] \qquad \sigma_{0|-1}^2 = \mathrm{Var}[X_0]$$

MMSE Estimator:
$$\underline{\hat{x}} = \int \underline{x}_n f_{X_n \mid Y_{(n)}} (\underline{x}_n | \underline{y}_{(n)}) d\underline{x}_n$$

For non linear problems: Suboptimum nonlinear Filters: Extended KF, Unscented KF, ParticleFilter

14.2. Extended Kalman (EKF)

Linear approximation of non-linear $\overset{.}{g},h$

14.3. Unscented Kalman (UKF)

Approximation of desired PDF $f_{X_n|Y_n}(x_n|y_n)$ by Gaussian PDF.

14.4. Particle-Filter

For non linear state space and non-gaussian noise

Non-linear State space:

$$\underline{\boldsymbol{x}}_n = g_n(\underline{\boldsymbol{x}}_{n-1}, \underline{\boldsymbol{v}}_n)$$

$$\boldsymbol{y}_n = h_n(\underline{\boldsymbol{x}}_{n-1}, \underline{\boldsymbol{w}}_n)$$

$$\begin{aligned} & \textbf{Posterior Conditional PDF:} \ f_{X_n|Y_n}(x_n|y_n) \propto \overbrace{f_{Y_n|X_n}(y_n|x_n)}^{\text{likelihood}} \\ & \cdot \int\limits_{\mathbb{X}} \underbrace{f_{X_n|X_{n-1}}(x_n|x_{n-1})}_{\text{state transition}} \underbrace{f_{X_{n-1}|Y_{n-1}}(x_{n-1}|y_{n-1})}_{\text{last conditional PDF}} \mathrm{d}x_{n-1} \end{aligned}$$

N random Particles with particle weight \boldsymbol{w}_n^i at time n

| Monte-Carlo-Integration:
$$I = \mathsf{E}[g(\mathsf{X})] \approx I_N = \frac{1}{N} \sum\limits_{i=1}^N \tilde{g}(x^i)$$

Importance Sampling: Instead of $f_X(x)$ use Importance Density $q_X(x)$ $I_N = \frac{1}{N} \sum_{i=1}^{N} \tilde{w}^i g(x^i)$ with weights $\tilde{w}^i = \frac{f_X(x^i)}{g_Y(x^i)}$

If
$$\int f_{X_n}(x) dx \neq 1$$
 then $I_N = \sum_{i=1}^N \tilde{w}^i g(x^i)$

14.5. Conditional Stochastical Independence

 $P(A \cap B|E) = P(A|E) \cdot P(B|E)$

Given Y, X and Z are independent if

$$f_{Z|Y,X}(z|y,x) = f_{Z|Y}(z|y)$$
 or

$$f_{X,Z\mid Y}(x,z|y) = f_{Z\mid Y}(z|y) \cdot f_{X\mid Y}(x|y)$$

$$\begin{aligned} f_{Z\mid X,Y}(z|y) &= f_{Z\mid Y}(z|y) \cdot f_{X\mid Y}(x|y) \\ f_{Z\mid X,Y}(z|x,y) &= f_{Z\mid Y}(z|y) \text{ or } f_{X\mid Z,Y}(x|z,y) = f_{X\mid Y}(x|y) \end{aligned}$$

15. Hypothesis Testing

making a decision based on the observations

15.1. Definition

Null hypothesis $H_0:\theta\in\Theta_0$ (Assumed first to be true) Alternate hypothesis $H_1: \theta \in \Theta_1$ (The one to proof) Descision rule $\varphi: \mathbb{X} \to [0,1]$ with $\varphi(x)=1$: decide for H_1 , $\varphi(x)=0$: decide for H_0 Error level α with $E[d(X)|\theta] \le \alpha, \forall \theta \in \Theta_0$

Error Type	Decision Reality	H_1 false (H_0 true)	H_1 true (H_0 false)
1 (FA) False	H_1 rejected	True Negative	False Negative (Type 2)
Alarm	$(H_0 \; {\it accepted})$	$P = 1 - \alpha$	$P = \beta$
2 (DE)	H_1 accepted	False Positive (Type 1)	True Positive

Power: Sensitivity/Recall/Hit Rate: $\frac{\text{TP}}{\text{TP+FN}} = 1 - \beta$ Specificity/True negative rate: $\frac{TN}{FP+TN}=1-\alpha$ Precision/Positive Prediciton rate: TP

Accuracy: $\frac{TP+TN}{P+N} = \frac{2-\alpha-\beta}{2}$

Detection (H_0 rejected)

15.1.1. Design of a test Cost criterion $G_{\varphi}:\Theta \to [0,1], \theta \mapsto \mathrm{E}[d(X)|\theta]$

False Positive lower than α : $G_d(\theta)|_{\theta \in \Theta_0} \leq \alpha, \forall \theta \in \Theta_0$ False Negative small as possible: $\max\{G_d(\theta)|_{\theta\in\Theta_1}\}, \forall \theta\in\Theta_1$

15.2. Sufficient Statistics

Sufficiency for a test T(X) means that no other test statistic, i.e., function of the observations x, contains additional information about the parameter θ to be estimated:

$$f_{X|T}(x|T(x) = t, \theta) = f_{X|T}(x|T(x) = t)$$

16. Tests

16.1. Nevman-Pearson-Test

The best test of
$$P_0$$
 against P_1 is

$$d_{\mathsf{NP}}(x) = \begin{cases} 1 & R(x) > c \\ \gamma & R(x) = c \\ 0 & R(x) < c \end{cases} \qquad \begin{array}{l} \mathsf{Likelihood\text{-}Ratio:} \\ R(x) = \frac{f_{\mathsf{X}}(x;\theta_1)}{f_{\mathsf{X}}(x;\theta_0)} \end{array}$$

$$\gamma = \frac{\alpha - P_0(\{R > c\})}{P_0(\{R = c\})}$$
 Errorlevel α

Steps: For α calculate x_{α} , then $c=R(x_{\alpha})$

 $\text{Maximum Likelihood Detector:} \quad d_{\mathsf{ML}}(x) = \begin{cases} 1 & R(x) > 1 \\ 0 & \mathsf{otherwise} \end{cases}$

ROC Graphs: plot $G_d(\theta_1)$ as a function of $G_d(\theta_0)$

16.2. Bayes Test (MAP Detector)

Prior knowledge on possible hypotheses: $P(\{\theta \in \Theta_0\}) + P(\{\theta \in \Theta_0\})$ Θ_1 $\}$) = 1, minimizes the probability of a wrong decision.

$$d_{\mathsf{Bayes}} = \begin{cases} 1 & \frac{f_X(x|\theta_1)}{f_X(x|\theta_0)} > \frac{c_0 \operatorname{P}(\theta_0|x)}{c_1 \operatorname{P}(\theta_1|x)} \\ 0 & \mathsf{otherwise} \end{cases} = \begin{cases} 1 & \operatorname{P}(\theta_1|x) > \operatorname{P}(\theta_0|x) \\ 0 & \mathsf{otherwise} \end{cases}$$

Risk weights c_0, c_1 are 1 by default.

If $P(\theta_0) = P(\theta_1)$, the Bayes test is equivalent to the ML test

16.3. Linear Alternative Tests

$$d: \mathbb{X} \to \mathbb{R}, \underline{\boldsymbol{x}} \mapsto \begin{cases} 1 & \underline{\boldsymbol{w}}^{\top}\underline{\boldsymbol{x}} - w_0 > 0 \\ 0 & \text{otherwise} \end{cases}$$

Estimate normal vector $\underline{\underline{w}}^{\top}$, which separates $\mathbb X$ into $\mathbb X_0$ and $\mathbb X_1$ $\log R(\underline{x}) = \frac{\ln(\det(\underline{C}_0))}{\ln(\det(\underline{C}_1))} + \frac{1}{2}(\underline{x} - \underline{\mu}_0)^{\top}\underline{C}_0^{-1}(\underline{x} - \underline{\mu}_0) -$

$$-\frac{1}{2}(\underline{x} - \mu_1)^{\top} \underline{C}_1^{-1}(\underline{x} - \mu_1) = 0$$

$$\begin{split} &-\frac{1}{2}(\underline{x}-\underline{\mu}_1)^{\top}\underline{C}_1^{-1}(\underline{x}-\underline{\mu}_1)=0\\ \text{For 2 Gaussians, with }\underline{C}_0=\underline{C}_1=\underline{C}\colon\underline{w}^{\top}=(\underline{\mu}_1-\underline{\mu}_0)^{\top}\underline{C} \end{split}$$

and constant translation $w_0 = \frac{(\underline{\mu}_1 - \underline{\mu}_0)^\top \underline{C}(\underline{\mu}_1 - \underline{\mu}_0)}{2}$

