

An overview of meta-analysis in Stata Part II: multivariate meta-analysis

Ian White MRC Biostatistics Unit, Cambridge

Stata Users' Group London, 10th September 2010

Plan

- Example 1: Berkey data
- Multivariate random-effects meta-analysis model
- Situations where it could be used
- Software: mvmeta
- A problem: unknown within-study correlation
- Example 2: fibrinogen
 - software: mvmeta make
- Multivariate vs. univariate

Example from Berkey et al (1998)

- 5 trials comparing a surgical with a non-surgical procedure for treating periodontal disease
- 2 outcomes:
 - "probing depth" (PD)
 - "attachment level" (AL)

trial	y1	s1	y2	s2	corr
1	0.47	0.09	-0.32	0.09	0.39
2	0.20	0.08	-0.60	0.03	0.42
3	0.40	0.05	-0.12	0.04	0.41
4	0.26	0.05	-0.31	0.04	0.43
5	0.56	0.12	-0.39	0.17	0.34

y1,y2 - treatment effects for PD, AL; s1,s2 - standard errors

Berkey data (1)

Could analyse the outcomes one by one

Berkey data (2)

- Dots mark the point estimates for the 5 studies
- Bubbles show 50% confidence regions
- Note the positive within-study correlation (0.3-0.4 for all studies)
- bubble.ado, available on my website

One or two stages?

- I'm assuming a two-stage meta-analysis (as in the Berkey data):
 - 1st stage: compute results for each study
 - 2nd stage: use these results as "data"
 - makes a Normal approximation to the within-study log-likelihoods
- One-stage meta-analysis is possible if we have individual participant data (IPD), but can be computationally horrible (Smith et al 2005)
 - we'll use the two-stage method even with IPD

Bivariate meta-analysis: data

- Data from ith study:
 - y_{i1} , y_{i2} estimates for 1st, 2nd outcomes
 - s_{i1} , s_{i2} their standard errors
 - but we also need the correlation ρ_{Wi} of y_{i1} and y_{i2}
- It's often most convenient to use matrix notation:

estimate
$$y_i = \begin{pmatrix} y_{i1} \\ y_{i2} \end{pmatrix}$$

with within-study variance

$$S_i = \text{var} \begin{pmatrix} \mathbf{y}_{i1} \\ \mathbf{y}_{i2} \end{pmatrix} = \begin{pmatrix} \mathbf{s}_{i1}^2 & \rho_{Wi} \mathbf{s}_{i1} \mathbf{s}_{i2} \\ \rho_{Wi} \mathbf{s}_{i1} \mathbf{s}_{i2} & \mathbf{s}_{i2}^2 \end{pmatrix}$$

• NB y_{i1} or y_{i2} can be missing.

Bivariate meta-analysis: the model

- Data from ith study:
 - y_i vector of estimates
 - S_i variance-covariance matrix
- Model is $y_i \sim N(\mu, S_i + \Sigma)$
- Total variance = within + between variance:

$$\operatorname{var} \begin{pmatrix} \mathbf{y}_{i1} \\ \mathbf{y}_{i2} \end{pmatrix} = \begin{pmatrix} \mathbf{s}_{i1}^2 & \rho_{Wi} \mathbf{s}_{i1} \mathbf{s}_{i2} \\ \rho_{Wi} \mathbf{s}_{i1} \mathbf{s}_{i2} & \mathbf{s}_{i2}^2 \end{pmatrix} + \begin{pmatrix} \tau_1^2 & \rho_B \tau_1 \tau_2 \\ \rho_B \tau_1 \tau_2 & \tau_2^2 \end{pmatrix}$$

known

to be estimated

Bivariate meta-analysis: 2 correlations

$$\operatorname{var} \begin{pmatrix} \mathbf{y}_{i1} \\ \mathbf{y}_{i2} \end{pmatrix} = \begin{pmatrix} \mathbf{s}_{i1}^2 & \rho_{Wi} \mathbf{s}_{i1} \mathbf{s}_{i2} \\ \rho_{Wi} \mathbf{s}_{i1} \mathbf{s}_{i2} & \mathbf{s}_{i2}^2 \end{pmatrix} + \begin{pmatrix} \tau_1^2 & \rho_B \tau_1 \tau_2 \\ \rho_B \tau_1 \tau_2 & \tau_2^2 \end{pmatrix}$$

- Within-study correlation ρ_{Wi}
 - one per study
 - should be known from 1st stage of meta-analysis
 - but often unknown: discussed later
- Between-study correlation ρ_B
 - overall parameter
 - to be estimated

Multivariate meta-analysis: the model

- Data from ith study:
 - $-y_i$ vector of estimates (p-dimensional)
 - S_i variance-covariance matrix (pxp)
- Model is again $y_i \sim N(\mu, S_i + \Sigma)$
- Can also extend to meta-regression: e.g. $y_i \sim N(\beta x_i, S_i + \Sigma)$
 - $-x_i$ is a q-dimensional vector of explanatory variables
 - $-\beta$ is a pxq matrix containing the regression coefficients for each of the p outcomes
 - more generally, can allow different x's for different outcomes

When could multivariate meta-analysis be used? (1)

- Original applications: meta-analysis of randomised controlled trials (RCTs)
 - several outcomes of interest
 - some trials report more than one outcome
 - "data" are treatment effects on each outcome in each study (some may be missing)
 - data are correlated within studies because outcomes are correlated
 - also used in health economics for cost and effect (Pinto et al, 2005)

When could multivariate meta-analysis be used? (2)

- Meta-analysis of diagnostic accuracy studies
 - "data" are sensitivity and specificity in each study
 - data are uncorrelated within studies because they refer to different subgroups
 - still likely to be correlated between studies
- See Roger's talk
 - sparse data often invalidates Normal approximation
 - best to use metandi

When could multivariate meta-analysis be used? (3)

- Meta-analysis of RCTs comparing more than two treatments
 - "data" are treatment effects for each treatment compared to same control
 - data are correlated within studies because they use same control group
- Similarly multiple treatments meta-analysis
 - my current area of research

When could multivariate meta-analysis be used? (4)

- Meta-analysis of observational studies exploring shape of exposure-disease relationship
 - if exposure is categorised, "data" could be contrasts between categories
 - if fractional polynomial model is used, "data" would be coefficients of different model terms

Stata software for multivariate randomeffects meta-analysis

- Can almost use xtmixed
 - but you need to constrain the level 1 (co)variances
 - not possible in xtmixed
- So I wrote mvmeta (White, 2009)

My program: mvmeta

- Analyses a data set containing point estimates with their (within-study) variances and covariances
- Utility mvmeta_make creates a data set in the correct format (demo later)
- Fits random-effects model
 - uses m1 to maximise the (restricted) likelihood using numerical derivatives
 - between-studies variance-covariance matrix is parameterised via its Cholesky decomposition
 - CIs are based on Normal distribution
 - also offers method of moments estimation (Jackson et al, 2009)

Data format for mvmeta: Berkey data

trial	y1	y2	V11	V22	V12
1	0.47	-0.32	0.0075	0.0077	0.003
2	0.2	-0.6	0.0057	0.0008	0.0009
3	0.4	-0.12	0.0021	0.0014	0.0007
4	0.26	-0.31	0.0029	0.0015	0.0009
5	0.56	-0.39	0.0148	0.0304	0.0072

y1, y2 treatment effects for PD, AL
v11, v22 squared standard errors
$$(s_{i1}^2, s_{i2}^2)$$

v12 covariance $(\rho_{Wi}s_{i1}s_{i2})$

Running mvmeta: Berkey data

```
. mvmeta y V
Note: using method reml
Note: using variables y1 y2
Note: 5 observations on 2 variables
[5 iterations]
                                         Number of obs = 5
                                         Wald chi2(2) = 93.15
                                         Prob > chi2 = 0.0000
Log likelihood = 2.0823296
          | Coef. Std. Err. z P>|z| [95% Conf. Interval]
Overall mean |
        y1 | .3534282 .061272 5.77 0.000 .2333372 .4735191
        y2 | -.3392152 .08927 -3.80 0.000 -.5141811 -.1642493
Estimated between-studies SDs and correlation matrix:
         SD
                y1
             1 .60879876
y1 .1083191
y2 .1806968 .60879876 1
```

Running mvmeta: method of moments

Estimated between-studies SDs and correlation matrix:

y1 y2

y1 .10102601 1 .74742532 y2 .23937024 .74742532 1

Running mvmeta: I²

• I² measures the impact of heterogeneity (Higgins & Thompson, 2002)

```
. mvmeta1 y V, i2
```

[output omitted]

I-squared statistics:

 	_	•	 	

Variable	I-squared	[95% Conf.	Interval]
y1	72%	-45%	94%
y2	94 %	76%	98%

(computed from estimated between and typical within variances)

Requires updated mvmeta1

Running mvmeta: meta-regression

```
. mvmeta1 y V publication year, reml dof(n-2)
Note: using method reml
Note: using variables y1 y2
Note: 5 observations on 2 variables
Variance-covariance matrix: unstructured
[4 iterations]
Multivariate meta-analysis
Method = reml
                                       Number of dimensions = 2
Restricted log likelihood = -5.3778317
                                       Number of observations =
                                       Degrees of freedom =
           Coef. Std. Err. z P>|z| [95% Conf. Interval]
y1
publicatio~r | .0048615 .0222347 0.22 0.841 -.0658992 .0756221
     cons | .3587569 .0740749 4.84 0.017 .1230175 .5944963
y2 I
publicatio~r | -.0115367 .0303001 -0.38 0.729 -.107965 .0848917
     cons | -.3357368 .0985988 -3.41 0.042 -.6495222 -.0219513
```

mvmeta: programming

- Basic parameters: Cholesky decomposition of the between-studies variance Σ
- Eliminate fixed parameters from (restricted) likelihood
- Maximise using m1, method d0 (can't use 1f for REML)
- Likelihood now coded in Mata
 - Stata creates matrices y_i , S_i for each study & sends them to Mata

Estimating the within-study correlation ρ_{wi}

- Sometimes known to be 0
 - e.g. in diagnostic test studies where sens and spec are estimated on different subgroups
- Estimation usually requires IPD
 - even then, not always trivial: e.g. for 2 outcomes in RCTs, can fit seemingly unrelated regressions, or observe ρ_{wi} = correlation of the outcomes
- Published literature never (?) reports ρ_{wi}
 - not the objective of the original study
 - difficult to estimate from summary data
- What do we do in a published literature meta-analysis if ρ_{wi} values are missing?

Unknown ρ_{wi} : possible solutions

- Ignore within-study correlation (set $\rho_{wi} = 0$)
 - not advisable (Riley, 2009)
- Sensitivity analysis using a range of values
 - can be time-consuming & confusing
- Use external evidence (e.g. IPD on one study)
- Bayesian approach (Nam et al., 2004)
 - e.g. $\rho_{wi} \sim U(0,1)$
- Some special cases where it can be done
 - % survival at multiple time-points
 - nested binary outcomes?
- Use an alternative model that models the 'overall' correlation (Riley et al., 2008)

Alternative bivariate model

$$\begin{pmatrix} Y_{i1} \\ Y_{i2} \end{pmatrix} \sim N \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, V_i \end{pmatrix}$$

Standard model with overall ρ_B and one ρ_{Wi} per study:

$$V_{i} = \begin{pmatrix} S_{i1}^{2} + \tau_{1}^{2} & \rho_{Wi}S_{i1}S_{i2} + \rho_{B}\tau_{1}\tau_{2} \\ \rho_{Wi}S_{i1}S_{i2} + \rho_{B}\tau_{1}\tau_{2} & S_{i2}^{2} + \tau_{2}^{2} \end{pmatrix}$$

Alternative model with one 'overall' correlation ρ :

$$V_{i} = \begin{pmatrix} S_{i1}^{2} + \tau_{1}^{2} & \rho \sqrt{(S_{i1}^{2} + \tau_{1}^{2})(S_{i2}^{2} + \tau_{2}^{2})} \\ \rho \sqrt{(S_{i1}^{2} + \tau_{1}^{2})(S_{i2}^{2} + \tau_{2}^{2})} & S_{i2}^{2} + \tau_{2}^{2} \end{pmatrix}$$

Example: Fibrinogen

- Fibrinogen Studies Collaboration (2005)
 - assembled IPD from 31 observational studies
 - 154211 participants
 - to explore the association between fibrinogen levels (measured in blood) and coronary heart disease
- We focus on exploring the shape of the association using grouped fibrinogen
- Data (IPD):
 - Variable fg contains fibrinogen in 5 groups
 - Studies are identified by variable cohort
 - Time to CHD has been stset
 - In each cohort, I want to run the Cox model
 xi: stcox age i.fg, strata(sex tr)

1st stage of meta-analysis: mvmeta_make

- Getting IPD into the right format can be the hardest bit
- I wrote mvmeta_make to do this
- It assumes the 1st stage of meta-analysis involves fitting a regression model

Fibrinogen data: using mvmeta_make

- Stata command within each study:
 - xi: stcox age i.fg, strata(sex tr)
- Create meta-analysis data set:
 - xi: mvmeta_make stcox age i.fg, strata(sex tr) by(cohort) usevars(i.fg) name(b V) saving(FSC2)
- Creates file FSC2.dta containing
 - coefficients: b_Ifg_2, b_Ifg_3, b_Ifg_4, b_Ifg_5
 - variances and covariances: V_Ifg_2_Ifg_2,V_Ifg_2_Ifg_3 etc.
- We then run mymeta b V on file FSC2.dta.

A problem: perfect prediction

. tab fg allchd if cohort=="KORA_S3"

Fibrinogen		Any CHD event?		
groups	 -	0	1	Total
1		546	0	546
2		697	3	700
3	1	715	2	717
4	1	677	4	681
5		482	8	490
Total	+- 	3,117	17	3,134

- No events in the reference category
- Fit Cox model: HR for 2 vs 1 is 21.36 (se 0.91) wrong

mvmeta_make: handling perfect prediction

Recall:

- no events in fg=1 (reference) group
- stcox's "fix" can yield large hazard ratios with small standard errors - and disaster for mymeta!
- mvmeta_make implements a different "fix" in any study with perfect prediction:
 - add a few observations, with very small weight, that "break" the perfect prediction
 - all contrasts with fg=1 are large with large s.e.
 - all other contrasts (e.g. fg=3 vs. fg=2) are correct
- Works fine for likelihood-based procedures (REML, ML, fixed-effect model) but not for method of moments

FSC: partial results of mvmeta_make

. 1 c b* V Ifg 2 Ifg 2 V Ifg 3 Ifg 3 , clean noo ~3 Ifg 3 V Ifg ~2 cohort b Ifg 2 b Ifg 3 b Ifg 4 b Ifg 5 0.252 0.532 0.946 1.401 0.036 0.033 ARIC **BRUN** -0.184-0.0320.119 0.567 0.348 0.344 CAER 0.001 -0.529-0.3390.416 0.375 0.323 CHS 0.066 0.184 0.407 0.645 0.058 0.053 COPEN 0.078 0.406 0.544 1.088 0.101 0.083 0.456 -0.1130.456 0.875 0.065 0.054 EAS **FINRISKI** -2.149-0.264-0.4940.169 1.336 0.421 -0.0390.170 0.420 1.053 0.042 0.038 FRAM 0.443 GOTO 0.595 0.922 0.797 0.202 0.175 GOTO33 0.356 1.312 0.628 2.133 1.500 1.170 1.052 1.421 1.752 **GRIPS** 1.297 0.559 0.542 0.323 0.545 0.681 0.132 0.122 0.540 HONOL -0.0420.509 0.560 0.998 0.088 0.072 KIHD -2.667 -2.524-1.7671.337 KORA S2 -2.0100.584 KORA S3 5.946 5.420 6.088 7.057 189.088 189.271 0.371 0.123 0.506 0.936 0.071 0.058 MALMO

Study with no events in fg=1 group: "perfect prediction"

FSC: results of mymeta

```
. mvmeta b V
                                   Number of obs =
                                                          31
                                   Wald chi2(4) = 142.62
Log likelihood = -79.129029
                                 Prob > chi2 = 0.0000
           | Coef. Std. Err. z P>|z| [95% Conf. Int.]
Overall mean |
    b_Ifg_2 | .1646353 .0787025 2.09 0.036 .0103813 .3188894
    b_Ifg_3 | .3905063 .088062 4.43 0.000 .2179080 .5631047
    b Ifg 4 | .5612908 .0904966 6.20 0.000 .3839206 .7386609
    b Ifg 5 | .8998468 .0932989 9.64 0.000 .7169843 1.082709
Estimated between-studies variance matrix Sigma:
         b Ifg 2 b Ifg 3 b Ifg 4 b Ifg 5
b Ifg 2 .04945818
b_Ifg_3 .06355581 .0836853
b_Ifg_4 .06689067 .08920553 .09570788
b Ifg 5 .0506146 .07530983 .08501967 .1041611
```

FSC: graphical results

Other choices of reference category give the same results.

Example 2: borrowing strength

Study	Log hazard ratio (mutant vs. normal p53 gene)				
	Disea free su	ase-	Overall survival		
	y_1 s_1		y ₂	s ₂	
1	-0.58	0.56	-0.18	0.56	
2			0.79	0.24	
3			0.21	0.66	
4	-1.02	0.39	-0.63	0.29	
5			1.01	0.48	
6	-0.69	0.40	-0.64	0.40	

- $y_2 > 0 \Rightarrow y_1$ missing
- $y_2 < 0 \Rightarrow y_1$ observed
- Pooling the observed y₁ can't be a good way to estimate μ₁
- Bivariate model helps:
 - assumes a linear regression of μ_1 on μ_2
 - assumes data are missing at random
- Bivariate model can avoid bias & increase precision ("Borrowing strength")

Multivariate vs. univariate meta-analysis

Advantages:

- "borrowing strength"
- avoiding bias from selective outcome reporting
- Joint confidence / prediction intervals
- Functions of estimates
- Longitudinal data
- Coherence

Disadvantages:

- more computationally complex
- boundary solutions for $\rho_{\!\scriptscriptstyle B}$
- unknown within-study correlations
- more assumptions

Getting mvmeta

- mvmeta is in the SJ
- Current update mvmeta1 is available on my website (includes meta-regression, I^2 , structured Σ , speed & other improvements)
 - net from
 http://www.mrc-bsu.cam.ac.uk/IW_Stata
 - bubble is also available

References

- Berkey CS et al. Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine 1998;17:2537-2550.
- Fibrinogen Studies Collaboration. Plasma fibrinogen and the risk of major cardiovascular diseases and non-vascular mortality. JAMA 2005; 294: 1799-1809.
- Higgins J, Thompson S. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 2002;21:1539-58.
- Jackson D, White I, Thompson S. Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses. Statistics in Medicine 2009;28:1218-1237.
- Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997; 53: 983-997.
- Nam IS, Mengersen K, Garthwaite P. Multivariate meta-analysis. Statistics in Medicine 2003; 22: 2309-2333.
- Pinto E, Willan A, O'Brien B. Cost-effectiveness analysis for multinational clinical trials. Statistics in Medicine 2005;24:1965-82.
- Riley RD. Multivariate meta-analysis: the effect of ignoring within-study correlation. JRSSA 2009;172:789-811.
- Riley RD, Thompson JR, Abrams KR. An alternative model for bivariate random-effects metaanalysis when the within-study correlations are unknown. Biostatistics 2008; 9: 172-186
- Smith CT, Williamson PR, Marson AG. Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes. Statistics In Medicine 2005;24:1307–1319.
- White IR. Multivariate random-effects meta-analysis. Stata Journal 2009;9:40–56.