Olympiades Nationales de Mathématiques 2018

Sélections régionales 1^{er} tour Niveau 7C

28 janvier 2018 Durée 3 h

L'épreuve est notée sur 100 points. Elle est composée de cinq exercices indépendants ; Toute réponse doit être justifiée et les solutions partielles seront examinées ;

Calculatrice non autorisée

Exercice 1: (20 points)

ABCD est un carré direct de coté 1, (Q) est un quart de cercle de centre C et passant par B et D.

M est un point variable du segment [AB] distinct de A et B. Par le point M on trace la tangente à (Q) qui coupe le coté [AD] en N. Le point de contact de la tangente avec (Q) est nommé T.

On pose AM = x et AN = y avec 0 < x < 1 et 0 < y < 1

- 1. a) Faire une figure et démontrer que : MN = 2-x-y
- b) En déduire que $y = 2 + \frac{2}{x-2}$
- 2) Déterminer la valeur de X pour la quelle la distance MN est minimale. Calculer cette distance.
- 3) Déterminer la valeur de X pour la quelle l'aire du triangle AMN est maximale. Calculer cette aire.

Exercice 2; (20 points)

Pour tout réel $a \neq 0$, on considère les matrices $M_a = \begin{pmatrix} a & \frac{1}{\sqrt{3}} \left(a - \frac{1}{a} \right) \\ 0 & \frac{1}{a} \end{pmatrix}$ et $N_a = \begin{pmatrix} a & \frac{1}{\sqrt{3}} \left(a - \frac{1}{a} \right) \\ -a\sqrt{3} & -a \end{pmatrix}$

- 1) Montrer que $\forall a \in \mathbb{R}^*$ et $\forall b \in \mathbb{R}^*$ on a: $M_a \times M_b = M_{ab}$, $N_a \times N_b = M_{\underline{b}}$, $M_a \times N_b = N_{\underline{b}}$ et $N_b \times M_a = N_{ab}$.
- 2) Que peut-on dire de $(M_a)^n$? $(N_a)^n$ où $n \in \mathbb{N}^*$?

Exercice 3: (20 points)

- 1) Resoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) : 3x 2y = 1.
- 2.a) Montrer que, pour tout entier naturel n, le couple (14n+3,21n+4) est solution de (E).
- b) En déduire que $\forall n \in \mathbb{N}$ les deux nombres 14n+3 et 21n+4 sont premiers entre eux.
- 3.a) Soit $d = p \gcd(21n+4,2n+1)$. Justifier que d = 1 ou d = 13.
- b) Montrer que $d=13 \Leftrightarrow n \equiv 6[13]$.
- 4) Pour tout entier nature $n \ge 2$, on note $A = 21n^2 17n 4$ et $B = 28n^3 8n^2 17n 3$.
- a) Montrer que les deux nombres A et B sont divisibles par n-1.
- b) Déterminer, suivant les valeurs de n, le pgcd(A,B).

Exercice 4: (20 points)

Soit mun nombre complexe différent de 1. On considère dans Cl'équation (E) d'inconnue z :

(E):
$$z^2 - (1-i)(m+1)z - i(m^2+1) = 0$$
.

- 1. a) Montrer que le discriminant Δ de (E) s'écrit sous la forme $\Delta = \lceil (1+i)(m-1) \rceil^2$.
- b) Résoudre dans Cl'équation (E).
- c) Déterminer, sous forme algébrique, m tel que le produit des solutions de (E) soit égal à 1.
- 2) Ecrire la forme trigonométrique des complexes $z_1 = 1 im et z_2 = m i$, pour $m = e^{i\theta}$ ($\frac{\pi}{2} < \theta < \pi$).

Exercice 5: (20 points)

Soit f la fonction définie sur]1,+ ∞ [par : $f(x) = \frac{2x+1}{x-1}$

- 1) Calculer les dérivées première, seconde et troisième de f.
- 2) Détermine l'expression de la dérivée f⁽ⁿ⁾ d'ordre n de f en fonction de n.

Fin.