Homework 6: Due Wednesday 23rd of March

Note: Please do all calculations by hand. You should not need R to do any of these calculations.

1. Jeff wishes to test his ability to his ability to hunt deadly drop bears under varying levels of intoxication. Over 9 nights, at 3 differing levels of intoxication: 'drunk', 'very drunk' and 'plastered' Jeff goes out hunting and notes down how many drop bears he managed to 'snag'. Assume that our observations come from a normal distribution with equal variance σ^2 .

'drunk'	7	4	9
'very drunk'	3	2	4
'plastered'	2	3	2

- (a) Construct the ANOVA table.
- (b) Give an estimate for the variance σ^2 .
- (c) Test whether there is a difference between Jeff's ability to hunt when he is 'very drunk' compared to 'plastered'.
- (d) Stating clearly the hypotheses, test whether or not Jeff's intoxication level has an impact on his ability to hunt.
- 2. Independent samples of X_1, X_2 and X_3 were obtained. We assume that $X_i \stackrel{d}{=} N(\mu_i, \sigma^2)$ and the data is as follows:

	number in each group	average of group
$\overline{X_1}$	10	4.23
X_2	5	4.42
X_3	5	4.94

- (a) Given the total SS is 4.07, construct the ANOVA table.
- (b) Test the hypothesis $H_0: \mu_1 = \mu_2 = \mu_3$.
- (c) Give an estimate for μ_3 and a 95% confidence interval for it.
- 3. Problems from the textbook: 7.3.1, 7.4.3, 7.4.4, 7.4.9, 7.5.1, 7.5.3, 7.5.5.