HACETTEPE UNIVERSITY Department of Computer Engineering

Fuzzy Modelling Laboratory

Furkan Simsekli 5th Semester Turkey

Academic Year 2023/2024

Exercise 3

Write a script to draw the sigmoidal membership functions, which are described by the following mathematical relations:

$$\mu_{A}(x) = \frac{1}{1 + e^{-4(x-3)}} \quad \mu_{B}(x) = \frac{1}{1 + e^{-2(x-5)}} \quad \mu_{C}(x) = \frac{1}{1 + e^{-8(x-5)}}$$
C1 – red
Z1 – line character "*"
DS = 0.25
$$C2 - \text{green}$$
Z2 – line character "+"
$$C3 - \text{blue}$$
Z3 – line character "d"
$$R = [-1, 9]$$

Draw the membership functions $\mu A(x)$, $\mu B(x)$ and $\mu C(x)$ on one graph in the range of R. Use the following colors $\mu A(x) - C1$, $\mu B(x) - C2$, $\mu C(x) - C3$, a continuous line for each function and line characters Z1, Z2, Z3.

Sign the membership functions in the following way $\mu A(x) - MFA$, $\mu B(x) - MFB$ and $\mu C(x) - MFC$. Use a DS discretization step.

Write the equation describing the α -cut of a fuzzy set. Determine the α -cut of the fuzzy sets: α -cut(A) for α =0.3 and α -cut(B) for α =0.6.

Solution

```
% Sigmoidal membership functions
xa=[-1:0.25:9]
ya=1./(1+exp(-4*(xa-3)))

xb=[-1:0.25:9]
yb=1./(1+exp(-2*(xb-5)))

xc=[-1:0.25:9]
yc=1./(1+exp(-8*(xc-5)))

% plot the curves
plot(xa,ya,'r-*',xb,yb,'g-+',xc,yc,'b-d')
grid on
```

% axis, line width, font size
set(gca,'fontsize',16)

```
% add descriptions to the drawn graphs text(2.2,0.9,'MFA','fontsize',16) text(6.5,0.9,'MFB','fontsize',16) text(4,0.9,'MFC','fontsize',16)
```


Figure 3.1: The sigmoidal membership functions MFA, MFB and MFC

```
\alpha-cut(A) for \alpha=0.3 \alpha-cut(A) = {3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9}
```

 α -cut(B) for α =0.6 α -cut(B) = {5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9}

```
% Sigmoidal membership functions
xa=[-1:0.25:9]
ya=1./(1+exp(-4*(xa-3)))
xb = [-1:0.25:9]
yb=1./(1+exp(-2*(xb-5)))
xc = [-1:0.25:9]
yc=1./(1+exp(-8*(xc-5)))
103 = xa*0+0.3
106=xb*0+0.6
% plot the curves
plot(xa,ya,'r-*',xb,yb,'g-+',xc,yc,'b-
d', xa, l03, 'm', xb, l06, 'c')
grid on
% axis, line width, font size
set(gca, 'fontsize', 16)
% add descriptions to the drawn graphs
text(2.2,0.9, 'MFA', 'fontsize', 16)
text(6.5,0.9, 'MFB', 'fontsize', 16)
text(4,0.9, 'MFC', 'fontsize', 16)
```


Figure 2.2: The sigmoidal membership functions MFA, MFB and MFC with α -cut lines.