GATE 2019 MA(14-26)

1

EE24BTECH11030 - J.KEDARANANDA

1) Let

$$u_n = \frac{n!}{1.3.5...(2n-1)}, \quad n \in \mathbb{N}$$
 (the set of all natural numbers).

Then $\lim_{n\to\infty} u_n$ is equal to _____

2) If the differential equation

$$\frac{dy}{dx} = \sqrt{x^2 + y^2}, \quad y(1) = 2$$

is solved using Euler's method with step-size h = 0.1, then y(1.2) is equal to _____ (round off to 2 places of decimal).

3) Let f be any polynomial function of degree at most 2 over \mathbb{R} (the set of all real numbers).

If the constants a and b are such that

$$\frac{df}{dx} = a f(x) + 2 f(x+1) + b f(x+2), \quad \text{for all } x \in \mathbb{R},$$

then 4a + 3b is equal to _____ (round off to 2 places of decimal).

4) Let L denote the value of the line integral

$$\oint_C \left(3x - 4x^2y\right) dx + \left(4xy^2 + 2y\right) dy,$$

where C, a circle of radius 2 with center at origin of the xy-plane, is traversed once in the anti-clockwise direction. Then $\frac{L}{\pi}$ is equal to ______.

- 5) The temperature $T: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}$ at any point P(x,y,z) is inversely proportional to the square of the distance of P from the origin. If the value of the temperature T at the point R(0,0,1) is $\sqrt{3}$, then the rate of change of T at the point Q(1,1,2) in the direction of \overline{QR} is equal to ______ (round off to 2 places of decimal).
- 6) Let f be a continuous function defined on [0,2] such that $f(x) \ge 0$ for all $x \in [0,2]$. If the area bounded by y = f(x), x = 0, y = 0 and x = b is $\sqrt{3 + b^2} \sqrt{3}$, where $b \in (0,2]$, then f(1) is equal to _____ (round off to 1 place of decimal).
- 7) If the characteristic polynomial and minimal polynomial of a square matrix A are $(\lambda 1)(\lambda + 1)^4(\lambda 2)^5$ and $(\lambda 1)(\lambda + 1)(\lambda 2)$, respectively, then the rank of the matrix A + I is _____, where I is the identity matrix of appropriate order.

- 8) Let ω be a primitive complex cube root of unity and $i = \sqrt{-1}$. Then the degree of the field extension $\mathbb{Q}(i, \sqrt{3}, \omega)$ over \mathbb{Q} (the field of rational numbers) is _____.
- 9) Let $\alpha = \int_{C} \frac{e^{i\pi z}}{2z^{2} 5z + 2} dz, \quad C : \cos t + i \sin t, \ 0 \le t \le 2\pi, \ i = \sqrt{-1}.$

Then the greatest integer less than or equal to $|\alpha|$ is _____.

10) Consider the system:

$$\begin{cases} 3x_1 + x_2 + 2x_3 - x_4 = a, \\ x_1 + x_2 + x_3 - 2x_4 = 3, \\ x_1, x_2, x_3, x_4 \ge 0. \end{cases}$$

If $x_1 = 1, x_2 = b, x_3 = 0, x_4 = c$ is a basic feasible solution of the above system (where a, b, and c are real constants), then a + b + c is equal to _____.

- 11) Let $f: \mathbb{C} \to \mathbb{C}$ be a function defined by $f(z) = z^6 5z^4 + 10$. Then the number of zeros of f in $\{z \in \mathbb{C} : |z| < 2\}$ is _____. $(\mathbb{C} \text{ is the set of all complex numbers})$
- 12) Let

$$\ell^2 = \{x = (x_1, x_2, \dots) : x_i \in \mathbb{C}, \sum_{i=1}^{\infty} |x_i|^2 < \infty \}$$

be a normed linear space with the norm

$$||x||_2 = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{\frac{1}{2}}.$$

Let $g: \ell^2 \to \mathbb{C}$ be the bounded linear functional defined by

$$g(x) = \sum_{n=1}^{\infty} \frac{x_n}{3^n}$$
 for all $x = (x_1, x_2, \dots) \in \ell^2$.

Then

$$(\sup\{|g(x)|: ||x||_2 \le 1\})^2$$

is equal to ____ (round off to 3 places of decimal). (\mathbb{C} is the set of all complex numbers)

13) For the linear programming problem (LPP):

Maximize
$$Z = 2x_1 + 4x_2$$

subject to

$$\begin{cases}
-x_1 + 2x_2 \le 4, \\
3x_1 + \beta x_2 \le 6, \\
x_1, x_2 \ge 0, \quad \beta \in \mathbb{R},
\end{cases}$$

(\mathbb{R} is the set of all real numbers) consider the following statements:

- I. The LPP always has a finite optimal value for any $\beta \ge 0$.
- II. The dual of the LPP may be infeasible for some $\beta \ge 0$.
- III. If for some β , the point (1,2) is feasible to the dual of the LPP, then $Z \le 16$, for any feasible solution (x_1, x_2) of the LPP.
- IV. If for some β , x_1 and x_2 are the basic variables in the optimal table of the LPP with $x_1 = \frac{1}{2}$, then the optimal value of dual of the LPP is 10.

Then which of the above statements are TRUE?

- a) (A) I and III only
- b) (B) I, III and IV only
- c) (C) III and IV only
- d) (D) II and IV only