AN INVESTIGATION OF THE INFLUENCE OF TEMPERATURE ON THE ADSORPTION OF IODIDE ON COPPER

JOSEPH H. PIRKL

I ibrary U. S. Naval Postgraduate School Monterey, California

Artisan Gold Lettering & Smith Bindery 593 - 15th Street Oakland, Calif. GLencourt 1-9827

DIRECTIONS FOR BINDING

BINDIN

(CIRCLE ONE)

LETTERING ON BACK TO BE EXACTLY AS PRINTED HERE.

BUCKRAM

8854

PIRKL

COLOR NO ._

FABRIKOID

COLOR____

1954

LEATHER

COLOR____

Thesis P55

N COPPER

OTHER INSTRUCTIONS

Letter on the front cover:

AN INVESTIGATION OF THE INFLUENCE OF TEMPERATURE ON THE ADSCRPTION OF IODIDE ON COPPER

JOSEPH R. PIRKL

AN INVESTIGATION OF THE INFLUENCE

OF

TEMPERATURE ON THE ADSORPTION OF IODIDE ON COPPER

by

Joseph R. Pirkl

1st Lieutenant, United States Army

Submitted in partial fulfillment
of the requirements
for the degree of
MASTER OF SCIENCE
IN
PHYSICS

United States Naval Postgraduate School
Monterey, California

1954

Thesis 55

-

Library
U. S. Naval Postgraduate School
Monterey, California

This work is accepted as fulfilling the thesis requirements for the degree of

MASTER OF SCIENCE

IN

PHYSICS

from the

United States Naval Postgraduate School

PREFACE

This investigation of the influence of temperature on the adsorption of iodide on copper was conducted at the United States Naval Postgraduate School during the last half of the academic year 1953-54.

The investigation was largely exploratory, designed to uncover any large effects over a convenient temperature interval, and involved a relatively new approach which necessitated the development of new experimental techniques and procedures. The experimental data, techniques, and procedures presented in this paper will serve as a basis and aid for future continuance of this investigation at this institution.

The writer would like to express his appreciation to Professors W.W. Hawes and G. F. Kinney of the United States Postgraduate School Staff for their suggestions and guidance.

TABLE OF CONTENTS

Page

Certificate of	Approval
Preface	
Table of Conten	ts
Chapter I	Introduction
	1. General
Chapter II	Experimental Procedures and Results
	1. General Procedures
Bibliography .	
Appendix I	Radio-autographs
Appendix II	Equipment Calibration Data

CHAPTER I

INTRODUCTION

1. General

The property known as adsorption was described first by the Swedish chemist Scheele who observed that gases were taken up by charcoal. He showed that a piece of charcoal, heated to drive out air and then allowed to rise through a column of mercury which was enclosing some air in a tube, took up air so strongly that the level of the mercury rose substantially in the tube.* The fact that charcoal removes organic colors from solutions also has been known a long time. Although this property of adsorption is fundamentally involved in many chemical processes, its importance has only been fully realized in the recent years.

Adsorption is a property of surfaces. A surface exists whenever two phases such as solid and liquid, solid and gas, liquid and liquid, or liquid and gas are in contact. The "interface" is the layer of matter which forms a surface to each of the two phases. Adsorption results in either an increase or decrease of some constituent of this interfacial layer.

The two main types of adsorption are Chemisorption-in which the adsorbed substance is held to the adsorbent by chemical bonds and Physical-which is a physical bonding of adsorptive to the surface of the adsorbent by van der Waal's forces. The two types of adsorption just mentioned can be dealt with from energy considerations also, using the magnitude of adsorption energy as a classification basis. In relation to adsorption at

solid surfaces, processes which involve large energy changes are called "chemisorptions".

There is also the term "Activated Adsorption" which is applied to adsorptions on solid surfaces which proceed slowly and at reasonable temperatures. In this case, it has been theorized that this reaction has a certain energy threshold and only those molecules possessing sufficient energy will be adsorbed. The rate of reaction for this process is increased by a rise in temperature.

Let us examine the general process of adsorption at a solution—
solid interface. Here we have the invariable feature of competition be—
tween solvent and solute molecules for the surface. Upon the introduction
of a solid adsorbent into the solution, there is an immediate struggle
between solvent and solute molecules for the surface.*

Studies with adsorbents and mixtures have shown that at the ends of the concentration ranges, the component present in smaller amount was most always preferentially adsorbed.** In general, adsorption from solution is like adsorption of gases; it is however selective. Either the solvent or solute is adsorbed, but not both, and if several solutes are present one will usually be more adsorbed than another.

Unless different sites are involved, it would be expected that the adsorption of one molecule would eliminate the adsorption of another since the surface area is limited. One molecule of adsorptive may prevent adsorption of several other molecules of solvent (for example) if the adsorbed molecule situates itself in such a way on the surface "checkerboard"

^{*} Cassidy, (4), p. 35
** Bartell & Sloan; Jones & Outridge; Patrick & Jones; Williams: (1), (8), (10), (12)

so as to block access to neighboring sites. A further influence on adsorption would be the lateral attraction between neighboring adsorbed molecules which may aid the accumulation of adsorptive on the surface.

The nature of the surface of the solid adsorbent plays a tremendous role in adsorption. In this connection the following direct quotation from Cassidy (4) will be pertinent:

On a plane, crystalline, chemically homogeneous surface the disposal of sites at which adsorption can occur will, as Langmuir has pointed out, be in a regular pattern. In an amorphous surface a certain regularity may or may not be still present... The spaces available on a plane crystal surface may be of several kinds, but the regularity of the surface may lead to some sort of stoichiometric relation in the adsorption of different substances......At edges and corners of the adsorbent certain molecules will be in a somewhat exposed condition-perhaps in a strongly curved region of the surface--which may leave them with more capability for interaction than their less exposed neighbors. Such molecules might be more active in adsorbing than others, since the lowering of free energy that would occur in the process would be greater for them than for their neighbors..... If the surface were rough, then more of the surface molecules would be in an exposed condition, such as that described above, and the roughness might be conducive to an increase in adsorption of small molecules per unit number of surface molecules over the plane surface. With large molecules, the effect might be of the opposite kind......If the surface contains capillaries and fissures, then the adsorption may be favored for small molecules than can enter the capillarieslarger molecules might not be able to enter the capillaries and have, because of their size, considerable adsorption surface excluded to them......If the surface is not homogeneous, then the resultant effects can be very complicated indeed The area occupied by the melecules in the interface will play a role in the adsorption because a molecule that covers many active spots; for example, a chain molecule, will be more adsorbable than a monomer. This is because of the tendency of molecules to remain in the adsorbed state diminishes with increasing chain length. Here, also, not only size, but shape plays a role.... A large molecule may displace several small ones; or a large molecule may block off, without occupying, several sites where adsorption might otherwise occur. The adsorption of small molecules may not be appreciably affected by the presence of large ones if the small can reach areas of the surface inaccessible to the large.... The mutual interactions between adsorbed molecules which may cause them to adhere laterally may influence the quantity adsorbed by allowing

the adsorbed film to bridge roughness and fissures in the adsorbent.

Smooth surfaces for adsorption studies are very difficult to obtain. Frazer, Patrick, and Smith (5) noted that the properties of a glass surface are much different after the glass was cleaned in an acid bath. Brown and Uhlig (3) made surface studies of chrome plated nickel strips before and after an etching with hydrochleric acid. Photenicrographs showed numerous cracks and fissures. Another reference to the acid treatment of surface area and its effects is given by Heymann and Boye (7) who carried out adsorption experiments with fatty acids from water solution on gold and noted that the amount of adsorption was decreased when the gold was first treated with hot nitric acid.

Measurements of adsorption from a solution onto a solid surface has usually been based on the measurement of the concentration of the solution before the adsorbent is introduced and after equilibrium is established. It must be assumed that the solvent is not adsorbed to any appreciable extent and that the components of the liquid phase do not dissolve in the adsorbent. Thus when working with quite dilute solutions, the adsorption of the solvent is usually neglected, as the solute is preferentially adsorbed.

The field of adsorption is extremely vast and complicated and there are many related phenomena whose examination constitute a considerable problem; such as reversibility of the process, typing of bonding, accompanying energy changes, area occupied by the adsorbed molecules, surface effects, and the influence of conentration and temperature.

2. Experimental

The basic research problem was to conduct an investigation of the effect of temperature on adsorption from solution to a solid surface.

Very little has been reported in the literature on the influence of temperature on adsorption of a solute from liquid phase, though numerout studies have been made on gas adsorption. This is due, at least in part, to the limited temperature range available in a liquid and the insensitivity of measurements of concentration changes on which amounts adsorbed have been based. By use of a radioactive adsorptive, it is possible to directly measure quantities adsorbed and thus markedly increase the ability to detect small changes in adsorption. Study of temperature effects then becomes practical with restricted temperature ranges.

Bernard, Davoine, and Hertz (2) report the use of tritolyl phosphate solution containing P³² in adsorption studies with glass disks. Initial layers formed at room temperature rapidly reached 12 Angstroms and increased in thickness slowly over a period of weeks. Layers initially formed and saturated at 220°C rapidly made an equilibrium layer of about 50 Angstroms.

King and Schochet (9) have studied the adsorption of silver salts on silver, using Ag tracer. When the silver surface was untreated, it adsorbed less than a monolayer; yet when the metal was cleaned with dilute nitric acid, large amounts of Ag were adsorbed.

Rydberg and Rydberg (11) performed work on adsorption on glass and polyethylene from solutions of thorium and thorium complexes. Adsorption was measured with a G-M liquid counter as the difference between reference and test sample.

5

The system copper—iodide ion was chosen for investigation. Copper in the form of thin disks served as the adsorbent. Iodide ion was present in an aqueous sodium iodide solution. I was chosen because it was readily available, had a sufficiently long half life (8 days) to adequately span the period of observations at a single temperature and yet not long enough to cause a serious contamination hazard, and possessed a convenient energy of disintegration (0.6 MeV, Beta emitter).

The results of the present investigation indicate that a rise in temperature is accompanied by an increase in the adsorption of iodide ion on a copper surface. The adsorbed activity at any total immersion time and at a given temperature and concentration can be represented by a function of the form:

$$\alpha = k \left(Ae^{-a/t} + Be^{-b/t} \right)$$

where "A", "B", and "a" are constants independent of temperature, "k", "b" are constants for a given temperature and concentration, and "t" is the total time of immersion.

For the present data the function becomes:

$$\alpha = k (19.1 e^{-0.102/t} + 146 e^{-b/t})$$

where "a" is measured adsorbed activity expressed as $d/min \times 10^{-3}$ and "t" is in hours.

1. General procedure

Acid cleansed copper disks are suspended in a glass beaker containing an aqueous solution of I at a known concentration and temperature. A temperature bath serves as a means of temperature control. After an arbitrarily chosen immersion time, the disks are removed from the solution, dried with tissue, and their activity measured. The process is repeated over successive time intervals, so that each measured activity is intrapolated back to "zero" time—time at which that particular temperature run was begun.

The copper disks are roughly the size and shape of a quarter. To facilitate their suspension in solution a small hole is drilled near the edge of each disk in order to permit the attachment of a thin copper wire. The other end of the wire is hooked over the rim of the glass beaker and serves to suspend the disk in the radioactive solution. In order to assure the uniformity of surface the disks are treated to a three minute immersion in 6 N HNO₃, followed by 4 washings with distilled water before they are marked for use. It was further determined that the thickness of each disk was sufficient to shield out the radiation from the adsorbed activity on the reverse side.

The radioactive solution is prepared using I as furnished by the AEC in 3 cc. vials containing approximately 100 micro-curies per vial as of make-up date. Since temperature was to be the only variable desired, the concentrations of the solutions made up for each separate temperature

run were maintained as nearly constant as possible and furthermore a level of concentration was chosen (approximately 0.280 u.c./ml) which would give a reasonable initial counting rate on the G-M counter. A total solution volume of 250 ml. was found to be most convenient to work with. The specific activity of the solution was determined prior to, and at the end of each temperature run. This was done as a check to see if any abnormal losses of activity had occurred.

The measuring equipment consisted of a CP-370 D Radiac Computer

Indicator with a TGC-1 G-M tube of the thin mica (2.3 mg/cm²) end window

type, which was provided with a shielded holder giving a choice of counting positions. The G-M tube was carefully calibrated before any experimentation was begun. Calibration data is attached as Part 2 of the

Appendix. Use of this calibration data permits the expression and
tabulation of all measurements of adsorbed activities in terms of d/min.

2. Tabulation of Data:

RUN # 1

Temperature 23°C, "Zero time"—0930, 3/8/54, Solution volume—250 ml.

Determination of initial solution concentration:

Sample	Vol.	(ml)	Counts	Sec.	Corr.	Conc. in u.c./ml	Avg.			
1	0.1	.06	81.92	57.5	142.5	0.286	0.284			
2	0.1	.03	8192	58.0	141.2	0.282	0,204			
Data on 3/8/54: (Avg. bkgrd. 30 cpm.)										
Time	Sample	1/t (hr	Count	s Sec.	for b		d/min as of 0930 3/8/54			
0930	1	12	81.92	865.5	54	0				
n	2	n	4096	381	ब	6				
11	3	n	n	472.7	49	2 512	5,660			
11	4	n	11	562	40	8				
1000	5	n	n	427.5	54	6				
n	6	11	22	491.2	47	2				
1230	1	7.5	4096	281.5	84	7				
tt .	2	n	11	259	92	1				
1245	3	n	11	367.6	64	0 767	8,480			
n	4	11	n	369.5	63	7				
1300	5	n	11	288.4	. 83	7				
11	6	17	Ħ	328	72	1				

RUN # 1 (Cont.)

1310	1	5	4096	235.5	1015		
Ħ	2	18	n	21.8	1102		
1320	3	Ħ	n	255	932	1012	11,200
Ħ	4	n	n	319	740		
1335	5	n	'n	183.5	1317		
n	6	п	H	253.6	942		
			100/	30/	3.00/		
1345	1	3	4096	186	1296		
п	2	11	п	166	1458		
1355	3	n	n	201.8	1195	1323	14,650
11	4	n	n	227	1055		
1410	5	n	n	156.5	1549		
n	6	n	п	174	1389		
			OT 00	200	1612		
1435	1	2	81.92	301			
n	2	n	n	265	1840		
1445	3	11	Ħ	314.2	1542	1745	19,300
n	4	11	11	339.5	1427		
1455	5	n	n	230	21.26		
n	6	n	11	254	1921		
170	,	,	81.92	130.2	3800		
1510	1	1			3085		
Ħ	2	п	n	159.4		2/2/	10 000
1520	3	11	n	155.8	31.65	3686	40,750
Ħ	4	п	11	133.8	3690		
1530	5	π	n	129.5	381.5		
11	6	11	11	108.5	4565		
			10				

Following da	ta on	3/10/54,	0930:	(Avg.	bkgrd.	38 cpm.))
--------------	-------	----------	-------	-------	--------	----------	---

Time	Sample	1/t (hr ⁻¹)	Counts	Sec.	Cpm. corr. for bkgrd. & dead time	Avg.	d/min as of 0930 3/8/54
0930	1	0.5	12,288	101	7460		
п	2	п	Ħ	107.5	7000		
N	3	Ħ	11	131	5690	6407	84,500
11	4	п	И	161.8	4580		
n	5	п	п	109	6880		
n	6	п	11	110	6830		
Follow	ing data	on 3/12/54:	(Avg. b	kgrd. 42	epm.)		
1430	1	0.125	12,288	55.2	13,960		
11	2	n	n	57.1	13,380		
n	3	η	11	65	11,750	12,380	189,000
n	4	π	Ħ	80	9,460		
11	5	η	п	60	12,800		
บ	6	n	N	59.5	12,930		
Follow	ing data	on 3/15/54:	(Avg. bk	grd. 38	cpm.)		
1000	1	0.0133	16,384	37	29,380		
n	2	n	п	41	26,300		
n	3	n	n	41.5	25,800	24,455	496,000
Ħ	4	n	n	67.5	15,350		
н	5	Ħ	n	44	24,300		
n	6	11	11	42	25,600		
			11				

RUN # 1 (Cont.)

Determination of final solution concentration: (0900, 3/15/54)

Sample	Vol. (ml)	Counts	Sec.	Corr.	Conc. in u.e./ml	Avg.
1	0.100	81.92	106	77.3	0.155	0.154
2	0102	81.92	110	74.5	0.153	U # 14

RUN # 2

Temperature 65°C, "Zero-time"--1000, 3/26/54, Salution valume--250 ml.

Determination of initial solution concentration:

Sample	Vol. (m	1) Court	ts S	ec.	Corr. Cps Conc.	in u.c.	./ml. Ayg.
1	0.110	81.9	2 8	5.6	96.6	0.262	0.260
2	0.102	81.9	2 9	4	88.4	0.258	0.200
Data or	3/26/54:	(Avg. bkgr	d. 42 cp	m)			
Time	Sample	1/t (hr ⁻¹)	Counts	Sec.	Cpm corr. for bkgrd. & dead time	Avg.	d/min as of 1000 3/26/54
1000	1	12	4096	417	550		
11	2	n	1024	81.8	712		
n	3	ii .	11	93	622	617	6,820
11	4	I)	n	84.8	687		
19	5	n	11	113	506		
п	6	n	n	92.8	624		
1045	ı	7.5	2048	101.5	1176		
tt	2	η	11	108	1102		
Ħ	3	11	n	126.5	936	980	10,830
ii	4	17	n	103	1158		
††	5	11	II	185	627		
11	6	11	11	152	772		

RUN # 2 (Cont.)

1145	1	5	2048	93.8	1277		
13	2	n	11	102	1178		
11	3	77	11	89	1347	1298	14,370
п	4	n	· n	75	1610		
n	5	11	11	102	1178		
n	6	11	n	99.8	1198		
Following	data on 3	3/27/54: (avg. bkgr	rd 42 cpm)			
1000	1	3	2048	70.6	1710		
17	2	17	Π	71.8	1678		
n	3	n	n	64	1890	1806	21,800
n	4	11	n	65.8	1839		
11	5	п	11	69.2	1748		
п	6	11	n	61.5	1972		
1100	1	2	4096	81.4	3008		
n	2	11	11	85.2	2860		
11	3	11	n	78.2	31.28	3023	36,400
n	4	n	Ħ	76.6	3210		
н	5	n	11	89	2740		
n	6	11	Ħ	77.0	3190		
1200	1	ı	81.92	88.8	5600		
η	2	, W	11	88.4	5630		
17	3	n	n	76.4	6540	5780	70,000
п	4	n	п	85	5860		
n	5	11	t1	104	4770		
n	6	11	11	79.5	6220		

RUN # 2 (Cont.)

Fallowing	data	on	3/2	9/	54: (Avg.	bkgrd.	40	com)	
-----------	------	----	-----	----	-------	------	--------	----	------	--

0955	1	0.5	12,288	96	7850		
n	2	11	n	107.8	6970		
Ħ	3	п	II	82.6	9150	7675	110,000
n	4	11	11	102.4	7330		
11	5	11	TT .	123.6	6050		
11	6	11	11	87	8700		
1500	1	.167	16,384	74.6	13,820		
11	2	tt	n	93.8	10,900		
n	3	π	11	96.8	10,500	12,000	175,000
· n	4	n	n	87.6	11,650		
н	5	n	n	100	10,150		
17	6	· n	11	69	14,970		

Determination of final solution concentration: (0900, 3/30/54)

Sample	Vol. (ml)	Counts	Sec.	Corr.	Cone. in u.e./ml.
1	0.100	81.92	130	63.2	0.188

Applying decay factor gives a value of 0.204 u.c./ml as of 1500, 3/29/54

RUN # 3 Temperature 45°C, "Zero time"—1500, 3/30/54, Solution volume—250 ml.

Corr.

Determination of initial	solution	concentration:
--------------------------	----------	----------------

Sample	Val. (m7) Con	nts	Sec.	Corr.	Conc. in u.	c /ml
1	0.10		.92	86	96.6	0.275	
Dota en	2/20/51	(ham blem					
		(Avg. bkg					
Time	Sample	1/t (hr ⁻¹)	Counts	Sec.	Cpm corr. for bkgrd & dead ti		d/min as of 1500 3/30/54
1500	1	12	4096	72.6	3380		2139134
11	2	n	11	69.4	3540		
tt	3	11	11	93.8	2610	2,750	30,400
11	4	11	II	95.8	2558		
11	5	11	Ħ	115	2118		
11	6	11	п	106.2	2290		
1545	1	7.5	81.92	89.5	5570		
Ħ	2	11	II	82.6	6675		
n	3	n	11	123	4010	4,177	46,200
11	4	n	t1	154.2	3180		
11	5	11	н	176.5	2770		
n	6	n	11	171.4	2855		
1630	1	5	81.92	64	7850		
n	2	n	Ħ	57	8850		
n	3	n	11	93	5340	5,655	62,500
n	4	n	tf	117	4220		
п	5	n	11	130	3790		
n	6	11	п	127	3880		
			7/				

RUN # 3 (Cont)

Following	data on l	4/1/54:	(Avg. bkgr	ed. 37 cpm)			
1000	1	3	16,384	135.4	7415		
††	2	n	и	135.4	7415		
n	3	n	п	197	5030	5,780	74,700
n	4	11	11	178	5600		
n	5	17	12,288	157.2	4730		
п	6	n	11	166	4480		
1015	1	2	12,288	87	8700		
n	2	11	11	87.6	8630		
11	3	11	1 1	125	5985	6,784	87,400
11	4	n	n	117.2	6450		
π	5	ff	π	129	5800		
n	6	11	II	135	5540		
1100	1	1	12,288	68	11,250		
11	2	11	n	73	10,450		
n	3	17	11	95	7,860	8,646	112,000
n	4	11	η	99.4	7,580		
п	5	11	п	103	7,310		
ΙΤ	6	n	11	101.6	7,415		
1200	1	0.5	12,288	61.8	12,400		
n	2	n	n	62	12,390		
n	3	11	n	73.8	10,340	10,473	136,000
11	4	11	n	85	8,920		
n	5	11	11	81.6	9,280		
n	6	11	п	79.8	9,510		

RUN # 3 (Cont.)

Ekgrd was 60 cpm for the following:

1630	1	0.167	16,384	52.8	19,800		
11	2	Ħ	Ħ	59.8	17,400		
11	3	n	11	67.2	15,350	15,723	208,000
11	4	n	11	78.8	13,070		
n	5	n	n	74.6	13,800		
II	6	11	11	69	14,920		

Determination of final solution concentration: (1630, 4/1/54)

Sample	Vol. (ml)	Counts	Sec.	Corr.	Concentration in u.c./ml
1	0.100	81.92	111.4	73.8	0.220

RUN # 4

Temperature 35°C, "Zero-time"--1400, 4/5/54, Salution valume--250 ml.

Determination of	initial	solution	concentration:
------------------	---------	----------	----------------

Sample	Vol. (ml)	Counts	Sec.	Corr.	Concentration in u.c./ml	Avg.
1	0.100	81.92	93.2	88.9	0.266	0.000
2	0.104	81.92	88	94.4	0.272	0.269

Data	on	4/5	5/1	54: (AVE.	bkgrd,	40 c	(mo
200	980	P91 /	"	/		~ 24/72 44 1	40	

Data O	1 4/5/54.	(wag, pugid,	40 chm)				
Time	Sample	1/t (hr ⁻¹)	Counts	Sec.	Cpm corr. for bkgrd. & dead time	Avg.	d/min as of 1400
1400	1	12	1024	103	557		4/5/54
11	2	tt	11	85.8	672		
π	3	11	n	149	373	542	6000
11	4	71	11	101.2	568		
Ħ	5	17	11	106	541		
1430	1	7.5	2048	120	988		
11	2	n	Ħ	124.2	953		
п	3	11	н	172	677	853	9,430
n	4	11	n	122.2	968		
n	5	n	n	170.8	682		
1455	1.	5	2048	98.8	1210		
11	2	11	11	91.8	1307		
Ħ	3	11	Ħ	114.8	1035	1100	12,150
n	4	11	н	113.5	1045		
π	5	tt	19	131	901		

RUN # 4 (Cont.)

1540	1	3	2048	70.8	1710		
п.	2	11	n	65.4	1851		
n	3	n	n	76	1587	1625	17,950
н	4	n	н	79.6	1514		
н	5	n	n	82.2	1462		
1600	1	2	4096	114.8	2118		
п	2	n	n	85.6	2858		
11	3 .	п	n	112	21.69	2,246	24,800
н	4	11	n	121.5	1994		
н	5	11	Ħ	11.6	2095		
Followin	g data on l	4/6/54: (A	rg. bkgr	i., 45 cpm)			
1000	1	1	81.92	109	4520		
н	2	n	n	94.5	5250		
п	3	n	11	*** 4			
n				113.8	4330	4,542	53,950
	4	н	Ħ	104	4330 4772	4,542	53,950
H	4 5	H H				4,542	53,950
1110			н	1.04	4772	4,542	53,950
	5	n .	n	104	4772 3840	4,542	53,950
1110	5	n 0.5	n n 81.92	104 128.2 61.5	4772 3840 8200		53,950 95,400
1110	5 1 2	n 0.5	n n 81.92	104 128.2 61.5 52.2	4772 3840 8200 9670		

RUN # 4 (Cont.)

Following data on 4/7/54: (Ave. bkgrd. 45 cpm)

1000	1	0.167	20,480	95.8	13,440		
n	2	н	29	69.8	18,700		
11	3	n	19	92.2	13,970	15,846	206,000
n	4	Ħ	п	68.6	19,100		
н	5	n	11	91.6	14,020		

Determination of final solution concentration: (4/7/54)

Sample	Val. (ml)	Counts	Sec.	Corr.	Conc. in u.c./ml	Avg.
1	0.100	81.92	114.2	71	0.216	0 271
2	0.100	81.92	115.6	70.3	0.212	0.214

3. Summary and discussion of results

The previously tabled experimental data is presented graphically as Figures 1-5. Here the adsorbed activities at the different temperatures are plotted against reciprocal time. The composite graph (Fig. 1) reveals that the initially adsorbed activities follow the same regular increase for some time (i.e. -- early portions of all curves have the same slope), and then deviate substantially in rate of increase as one approaches the value of 1/t = 0. As the temperature increases this deviation also increases. The initial straight line portion of any one of the curves can be expressed by a function of the form Ae-a/t, where "A" is the intercept with the line 1/t = 0, "a" is the slope, and "t" is the total immersion time in hours. A similar function Be-b/t, where "b" is a constant characteristic for a particular temperature, will give another straight line which when summed graphically with the first will give substantial agreement with the experimental curve over a sufficient range of time (to 1/t = 0.5). For this latter function, "B" is the intercept and "b" is the slope.

In order to provide for the difference in initially adsorbed activity at the different temperatures, a constant multiplier "k" is introduced; this is a characteristic constant of a given temperature. The general expression for adsorbed activity at any particular temperature and total immersion time is given by the following:

$$\alpha = k \left(Ae^{-a/t} + Be^{-b/t}\right)$$

where " α " is given as d/min x 10^{-3} .

Choosing 23°C as the reference temperature, and arbitrarily setting

k = 1, the values of "A" (19.1), "a" (-0.102), "B" (146), and "b" (-1.835) are readily determined. It follows that at a different temperature "kA" and "kB" will be the values of the new intercepts and "b" will be the new slope of the second straight line. The value of "a" we have already mentioned to be independent of the temperature change and will remain constant in value.

From the short table below it will be noted that the value of "k" shows a systematic increase with temperature, while the value of "b" shows a systematic decrease with increasing temperature.

Temperature	k	<u>b</u>	<u>k</u> A	kB
23°C	1	-1.835	19.1	146
35	1.07	-1.480	20.4	156
45	1.12	-1.410	21.4	164
65	1.23	-1.297	23.5	180

In the foregoing table, values for 45°C are based on an arbitrary correction for an unusual surface effect. This is discussed at more length in the last two pages of this summary.

In addition to the composite graph mentioned earlier, there are also attached as Figs. 2-5 the single plots for each temperature run. Both calculated and experimental points are shown in order to demonstrate the agreement between experimental data and the data as calculated from the expression:

$$\alpha = k (19.1 e^{-0.102/t} + 146 e^{-1.835/t})$$

It is of no great concern here that the theoretical expression does not give agreeable results beyond 1/t = 0.5. It was developed specifically to substantially hold up to this point and this range is sufficient to demonstrate the influence of temperature.

The calculated α 's and experimental α 's are presented in tabular form on the pages immediately following, along with the % deviation.

 $\alpha - k (19.1e^{-.102/t} + 146e^{-b/t})$ Basic formula: 19.1 = a constant derived as intercept of initial where A straight line portion of 23°C run with line 1/t = 0slope of the initial straight line portion = - 102 = a temperature dependent coefficient, may k also involve surface effects a constant derived as intercept of the B 146 second "fitting" straight line for 23°C with line 1/t = 0a temperature dependent coefficient, value b of which is the slope of the second straight line accumulated immersion time, hr 1/t H Exp Temp % deviation α 23°C 1 1.835 12 5.62 5.66 -0.71 7.5 8.90 8.48 44.95 5 11.46 11.20 +2.32 14.68 14.65 3 +0.20 19.30 2 19.35 +0.29 1' 40.72 40.75 -0.07 76.88 84.50 -9.02 0.5 35°C 1.07 1.480 12 5.98 6.00 -0.33 7.5 9.48 9.43 +0.53 5 12.31 12.15 +1.32 16.05 17.95 -0.56 3 2 24.75 24.80 -0.201 54.12 53.95 40.31 0.5 94.08 95.40 -1.38

Temp	kl _	b	1 E	calc a	eale a x k2	exp a	% deviation
45°C	1.12	1.410	12	6.29	29.40	30.40	-3.30
$k = k_1$	k ₂		7.5	9.97	46.56	47.50	-1.98
where	$k_2 = 4.6$	7	5	13.02	60.80	61.00	33
is a th	heorized		3	18.20	84.80	74.70	+13.40
surface	effect	factor	2	27.31	127.5	87.4	
			1	59.52	278	112	
			0.5	101.55	474	136	
Temp	<u>k</u>	<u>b</u>		cale a	στρ α	% devis	tion
65°C	1.23	1.297	12	6.91	6.82	+ 1.3	32
			7.5	10.95	10.83	+ 1.1	.0
			5	14.37	14.37	0.0	00
			3	21.02	21.60	- 2.8	30
			2	32.68	33.50	- 2.4	5
			1	70.50	70,00	+ 0.7	1
			0.5	116.65	110.00	+ 6.0)4

Despite the higher activity of the 45°C run, so evident on the graphs, it is notable that the initial slope of the growth curve is still the same as for the others. Evidently some surface effect must be held accountable, but there is considerable latitude for conjecture as to its exact nature. The effect becomes further compounded with the passage of time so that the later portion of the curve does not follow the general pattern of the others.

For purposes of calculation, however, an extrapolated value of "k" was derived and this then arbitrarily broken down into two factors;

"k"—the expected value of "k" by extrapolation of the other temperature run "k" values, and "k"—a theoretical surface effect factor which when incorporated would at least give fair agreement over the early straight line portion of the curve.

It is interesting to note that the calculated results for the 45° "a"'s (if no unusual surface effect were present) would give a properly aligned curve located between those of 35°C and 65°C.

In order to show more vividly the problem of surface effects met in this work, sample radio-autographs are attached as Part 1 of the Appendix. The evident contrast is an indication of the surface roughness, cracks, or fissures which play an important role in producing the variation between individual samples of the same temperature run, to say nothing of other complex phenomena which might arise and cause a wide deviation from a general pattern such as happened in the 45°C run.

BIHLIOCRAPHY

- 1. Bartell and Sloan, J. Am. Chem Soc., 51, 1643, (1929) 53, 2501, (1931)
- 2. Bernard, Davoine, and Hertz, compt. rend., 232, 1826-8, (1951)
- 3. Brown and Uhlig, J. Am. Chem. Soc., 68, 1342, (1946)
- 4. H. G. Cassidy, "Adsorption and Chromatography", Interscience
 Publishers, N. Y., 1951, p. 35, 43-44
- 5. Frazer, Patrick, and Smith, J. Phys. Chem., 31, 897, (1927)
- 6. Gucker and Maldrum, "Physical Chemistry", American Book Co., 1942
- 7. Heymarm and Boye, Z. Physik Chem., Al50, 219, (1930)
- 8. Jones and Outridge, J. Chem. Soc., 1930, 1574
- 9. King and Schochet, J. Phys. Chem., 57, 895-8, (1953)
- 10. Patrick and Jones, J. Phys, Chem., 29, 1, (1925)
- 11. Rydberg and Rydberg, Svensk Kem. Tidskr, 64, 200-11, (1952)
- 12. Williams, Trans. Faraday Soc., 10, 155, (1914)

General References:

- 1. J. H. de Boer, "The Dynamical Character of Adsorption", Oxford
 University Press, London, 1953
- 2. Hleuler and Goldschmidt, "Experimental Nucleonics" Rinehart and co.,
 N. Y. 1952

1. Radio-autographs

APPENDIX

2. Equipment Calibration Data:

G-M tube was a Tracerlab TGC-1 with 2.3 mg/cm² mica end window; serial 2-BV72, and operating voltage 1400 volts.

Standard calibration procedures were followed throughout. In this connection, Eleuler and Goldsch midt's text on "Experimental Nucleonics" (ref. bibliography) proved to be of considerable aid.

Dead time: Dead time was determined by the two source method, and found to be 220.8 micro-seconds.

Counter Efficiency: 00^{60} (0.31 mev β) and 000^{234} (2.32 mev β) sources were used to provide the data from which the counter efficiency for 1^{131} (0.6 mev β) could be obtained by linear extrapolation.

Shelf Position	Efficiency (for I ¹³¹)
1	0.114
2	0.080
3	0.034
4	0.018
Using the equati	on, $\mu/\rho = \frac{0.02}{1.33}$. μ/ρ for $1^{131} = 0.0394$ cm ² /mg E max

and computing the f factor for the various shelf positions, knowing the density of air and the linear distance from the window of the G-M tube

gave:

Shelf Position	fw
1	0.871
2	0.852
3	0.790
4	0.733

The above were combined in the equation for counting rate:

and fb = back scattering factor.

To sum up then, the observed sample counts are first corrected for background and dead time, averaged, and the result divided by the proper value of "F", depending on the shelf used. Values of "F" for the first four shelves are listed below:

Shelf	F
1	0.132
2	0.0905
3	0.0358
4	0.0175

The value of d/min which results from the computation is then further corrected by the proper decay factor back to the chosen "zero time".

All experimental counting rates listed in the data sheets were measured from the # 2 shelf position; except for the initial and final solution concentrations of the 23°C run where # 1 shelf was used.

25269 Thesis Pirkl P55 An investigation of the influence of temperature on the adscrption of iopdide on copper. MAY 18 DISPLAY 38230 17 448 91 0 25269

Thesis P55

Firkl

An investigation of the influence of temperature on the ad-. sorption of iodide on copper.

thesP55
An investigation of the influence of tem

3 2768 001 92427 7
DUDLEY KNOX LIBRARY