Cálculo Infinitesimal

Hoja 1.

1. Demostrar las siguientes afirmaciones:

- (a) Si a^2 es un número par, también lo es $a, a \in \mathbb{N}$.
- (b) $\sqrt{5}$ es un número irracional.

2. Resolver las siguientes desigualdades:

(a)
$$\frac{2x-1}{3x+2} \le 1$$

(g)
$$|x-3| < 8$$

(m)
$$\frac{x-1}{x+1} > 0$$

(b)
$$x - |x| > 2$$

(h)
$$|x+5| \ge 4$$

(n)
$$x^2 + x + 1 > 0$$
.

$$|x^2 - x| + x > 1$$

(i)
$$|x^2 - x| + x > 1$$
 (i) $1 - \frac{x}{2} > \frac{1}{1+x}$

(o)
$$\frac{x^2 - x - 2}{x - 3} \le 0$$

(d)
$$x + |x| < 1$$

(j)
$$|3 - x^{-1}| < 1$$

(e)
$$\frac{x-1}{x+1} > 2$$

$$(k) |x+4| \ge 7$$

(p)
$$x^3 - 1 \ge 0$$

(q) $\frac{2x - 3}{x^2 - 1} \ge 0$.

(f)
$$\frac{a|x|+1}{x} < 1$$

(l)
$$\frac{1}{x} + \frac{1}{1-x} > 0$$

(r)
$$|3x+5|+x<0$$
.

3. Calcular el supremo y el ínfimo, si existen, de los siguientes conjuntos, indicando si son máximo o mínimo respectivamente:

(a)
$$(1,2]$$
, $(0,\infty)$.

(g)
$$\{x \in \mathbb{Q} | 0 < x < 1\}.$$

(b)
$$\left\{\frac{1}{n} | n \in \mathbb{N}\right\}$$
.

$$\left. \left\{ \frac{1}{n^2} | n \in \mathbb{N} \right\}.$$

(c)
$$\left\{ \frac{n+1}{n+2} | n \in \mathbb{N} \right\}$$
.

(i)
$$\left\{ n \pm \frac{1}{n} | n \in \mathbb{N} \right\}$$
.

(d)
$$\{x \in \mathbb{R} | x^2 + x - 1 < 0\}.$$

(j)
$$\{x \in \mathbb{R}; x^2 + x + 1 \ge 0\}.$$

(e)
$$\{x \in \mathbb{R} | x^2 - 5x + 6 < 0\}.$$

(k)
$$\{x \in \mathbb{R} | x < 0, x^2 + x - 1 < 0\}.$$

(f)
$$\bigcup \left(-\frac{1}{n}, \frac{1}{n}\right)$$
.

(l)
$$\bigcap \left(-\frac{1}{n}, \frac{1}{n}\right)$$
.

- 4. Sea el conjunto $A = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$. Encontrar tres cotas superiores y tres cotas inferiores del conjunto A. Determinar si tiene supremo y máximo, e ínfimo y mínimo.
- 5. Demostrar que si $a \ge 1$, b + c < a + 1 y $b \le c$, entonces b < a.
- 6. Sean a, b > 0. Probar que si $\frac{a}{b} < \sqrt{2}$ entonces $\sqrt{2} < \frac{a+2b}{a+b}$, y que si $\frac{a}{b} > \sqrt{2}$ entonces $\sqrt{2} > \frac{a+2b}{a+2b}$.
- 7. Probar aplicando inducción las siguientes igualdades:

(a)
$$1+2+\cdots+n=\frac{n(n+1)}{2}$$
.

b
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

c)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$
.

- 8. Probar que para todo número natural $n, n^5 n$ es divisible por 5.
- 9. Probar que para todo número natural $n \ge 2$

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}.$$

- 10. Probar la fórmula binomial $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.
- 11. Probar la fórmula del binomio de Newton

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

12. Resolver las ecuaciones:

(a)
$$x^2 + 4x + 5 = 0$$
;

(b)
$$x^4 + 3x^2 - 10 = 0;$$

(a)
$$x^2 + 4x + 5 = 0$$
; (b) $x^4 + 3x^2 - 10 = 0$; (c) $x^3 + 5x^2 + 6x = 0$.

- 13. Dados los números complejos $z_1=2+i$ y $z_2=3-2i$, hallar:
- a) $z_1 + z_2$. b) $z_1 z_2$. c) $z_1 \cdot z_2$.
- **d)** z_1/z_2 .
- 14. Dados $z_1 = -3 + 4i, z_2 = 5 2i, z_3 = 3/2$ y $z_4 = 7i$, hallar:
- (a) $(z_1 z_2)z_3$; (d) $z_1 + z_3^{-1}$; (g) $(\overline{z_1 + z_2})^{-1}$; (i) $\frac{z_2}{z_1}$; (b) $z_1z_4 + z_3z_4$; (e) z_2^{-1} ; (f) $\overline{z_1z_2}$; (h) $z_1^2z_3$; (j) $\frac{z_2}{2z_2}$

- (h) $z_1^2 z_3$; (j) $\frac{z_1}{2z_3 + z_4}$.

15.	Dados los números complejos $z_1=2-i$ y $z_2=3+6i$, determinar el número x que verifica cada una de las igualdades siguientes:
	(a) $z_1 + x = z_2$; (b) $z_1^2 x = 1$; (c) $z_1 + z_2 + x = 1$; (d) $z_2 x = z_1$.
16	Determinar un polinomio con coeficientes reales cuyas raíces sean -3 , $1+i$, $1-i$.
<u>17</u> .	Sea ${\cal P}$ un polinomio de grado 4 con coeficientes reales.
	(a) Si 1 es raíz de P , ¿cuántas raíces complejas puede tener? (b) Si $3i$ y $2-3i$ son raíces complejas de P , ¿cuáles son las otras dos raíces?
18.	Dado el número complejo $z = 1 - i$, escribirlo en forma trigonométrica y exponencial.

(a)
$$2+2i;$$
 (c) $2-2i;$ (e) $-\sqrt{2};$ (g) $\sqrt{3}+i.$ (b) $-2+2i;$ (d) $-2-2i;$ (f) $3i;$

- 20. Escribir en la forma $\Re z + i \operatorname{Im} z$ el número $(1+i)^{2000}$.
- 21. La suma de dos números complejos z_1 y z_2 es 2+4i. La parte real de z_2 es -1 y el cociente z_1/z_2 es imaginario puro. Hallarlos.
- 22. Resolver la ecuación $\frac{1}{x} + \frac{2}{1+i} = 2 + 3i$.
- 23. Determinar las figuras en el plano que definen las siguientes relaciones:

(a)
$$\text{Im } z < 1;$$

(b) $|z| = 9;$
(c) $|z - 3| \le 5;$
(d) $z \cdot \bar{z} > 4;$
(e) $|z - 1| = |z + 1|;$
(f) $z - \bar{z} = i;$
(g) $|z| = 9.$

24. Resolver las ecuaciones

(a)
$$z^3 + 8i = 0$$
; (d) $z^6 - 1 = 0$; (g) $(\bar{z})^3 + i\bar{z} = 0$;
(b) $z^4 + 1 = 0$; (e) $z^5 + 32 = 0$; (h) $|z - 4| = |z + 4|$;
(c) $z^4 - 2z^2 + 2 = 0$; (f) $z^3 - 4\sqrt{2}(-1+i) = 0$; (i) $z^3 + \frac{1-i}{1+i} = 0$.

25. Factorizar los polinomios

(a)
$$z^4 + 81$$
; (b) $z^6 + 1$; (c) $z^5 - 1$.