LARSON AND TUBRO STOCK PRICE PREDICTION

In [1]:

```
import pandas as pd
import numpy as np
import scipy
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.statespace.sarimax import SARIMAX
from arch import arch_model
from pmdarima.arima import auto_arima
import yfinance
import statsmodels.graphics.tsaplots as sgt
import warnings
warnings.filterwarnings("ignore")
sns.set()
```

Importing the data

```
In [95]:
tickers= "LT.NS", interval= "1d", start = "2013-01-18", end = "2023-02-06", group_by= "tic
[******** 100%******** 1 of 1 completed
In [96]:
df = raw_data[["Close"]].copy()
In [97]:
df['Return'] = df.Close.div(df.Close[1])*100
In [98]:
start date = "2013-01-18"
end_date = "2023-01-18"
In [99]:
df = df.asfreq('b')
df = df.fillna(method='bfill')
```

In [100]:

```
size = int(len(df)*0.9)
training_data = df[0:size]
testing_data = df[size:]
```

In [101]:

```
df.head()
```

Out[101]:

	Close	Return
Date		
2013-01-18	580.318481	98.076368
2013-01-21	591.700623	100.000000
2013-01-22	586.434387	99.109983
2013-01-23	589.341187	99.601245
2013-01-24	598.363831	101.126111

In [102]:

```
df.isnull().sum()
```

Out[102]:

0 Close Return dtype: int64

In [103]:

```
training_data.head()
```

Out[103]:

	Close	Return
Date		
2013-01-18	580.318481	98.076368
2013-01-21	591.700623	100.000000
2013-01-22	586.434387	99.109983
2013-01-23	589.341187	99.601245
2013-01-24	598.363831	101.126111

In [104]:

```
testing_data.tail()
```

Out[104]:

	Close	Return
Date		
2023-01-30	2112.899902	357.089349
2023-01-31	2124.399902	359.032900
2023-02-01	2145.550049	362.607367
2023-02-02	2144.899902	362.497490
2023-02-03	2166.550049	366.156459

Plotting the data

In [105]:

```
plt.figure(figsize=(20,10))
plt.grid(True)
plt.xlabel("Date")
plt.ylabel("Price")
plt.plot(df[0:size]["Close"],'green', label = "Train data")
plt.plot(df[size:]["Close"], 'blue', label = "Test data")
plt.legend()
plt.show()
```


AdFuller

In [106]:

```
from statsmodels.tsa.stattools import adfuller
```

In [107]:

```
result = adfuller(df.Close.dropna())
print("ADF Statistics:",result[0])
print("p-value =",result[1])
```

ADF Statistics: -0.13556733014594946 p-value = 0.9457786243823475

Decompose the ETS

In [108]:

```
from statsmodels.tsa.seasonal import seasonal_decompose
```

In [109]:

```
decompose_data = seasonal_decompose(training_data.Return, model= 'multiplicative')
```

In [110]:

```
decompose_data.plot();
```


Autocorrelation ACF

In [111]:

```
fig, (axis1, axis2) = plt.subplots(1, 2, figsize = (16,4))
axis1.plot(training_data.Close)
axis1.set_title("Orignal")
sgt.plot_acf(df.Return, ax= axis2);
```


In [112]:

```
diff = training_data['Close'].diff().dropna()
fig, (axis1, axis2) = plt.subplots(1, 2, figsize = (16,4))
axis1.plot(diff)
axis1.set_title("Orignal")
sgt.plot_acf(diff, ax= axis2);
```


In [113]:

```
diff = training_data["Close"].diff().diff().dropna()

fig, (axis1, axis2) = plt.subplots(1, 2, figsize = (16,4))

axis1.plot(diff)
axis1.set_title("Orignal")

sgt.plot_acf(diff, ax= axis2);
```


In [114]:

from pmdarima.arima.utils import ndiffs

In [115]:

```
ndiffs(training_data['Close'], test='adf')
```

Out[115]:

1

Plotting the Partial AutoCorrelation

In [116]:

from statsmodels.graphics.tsaplots import plot_pacf

In [117]:

```
diff = training_data["Close"].diff().dropna()
fig, (ax1,ax2) = plt.subplots(1, 2, figsize = (16, 4))
ax1.plot(diff)
ax1.set_title("Difference Once")
ax2.set_ylim(0, 1)
plot_pacf(diff, ax = ax2);
```


Fitting the ARIMA model

In [118]:

```
# ARIMA MODEL
model = ARIMA(training_data['Close'], order = (3, 1, 3))
result = model.fit()
```

In [119]:

print(result.summary())

SARIMAX Results						
=======================================	=======	:=======	:=======	=========	=======	=======
Dep. Variable	e:	C	lose No.	Observations	:	23
Model: 20		ARIMA(3, 1	., 3) Log	g Likelihood		-10080.2
Date:	ī	ue, 07 Feb	2023 AIC			20174.4
Time:		00:1	4:49 BIC			20214.7
Sample: 35		01-18-	2013 HQI	CC .		20189.1
		- 02-01-	2022			
Covariance Ty	-	:=======	opg	:========	=======	=======
==						
	coef	std err	Z	: P> z	[0.025	0.97
5]						
ar.L1 12	-0.4897	0.091	-5.394	0.000	-0.668	-0.3
ar.L2 79	-0.7881	0.056	-14.154	0.000	-0.897	-0.6
ar.L3 66	-0.7216	0.079	-9.115	0.000	-0.877	-0.5
ma.L1 15	0.5449	0.087	6.288	0.000	0.375	0.7
ma.L2 89	0.7705	0.060	12.742	0.000	0.652	0.8
ma.L3 13	0.7673	0.074	10.313	0.000	0.621	0.9
sigma2 22	303.4678	4.518	67.175	0.000	294.614	312.3
=========	=======	:=======	=======	=========	=======	=======
====== Ljung-Box (Li	1) (Q):		0.38	Jarque-Bera	(JB):	
3467.29 Prob(Q): 0.00			0.54	Prob(JB):		
Heteroskedast 0.30	ticity (H)	:	2.65	Skew:		
Prob(H) (two- 8.91	-sided):		0.00	Kurtosis:		
			=======	:========	=======	=======
======						
Warnings: [1] Covariance matrix calculated using the outer product of gradients (compl						
ex-step).			-52116 CITC	Jacc. product	J. B. GUICH	13 (COMP1

In [120]:

```
training_data.tail()
```

Out[120]:

	Close	Return
Date		
2022-01-26	1886.689087	318.858729
2022-01-27	1886.689087	318.858729
2022-01-28	1873.557373	316.639412
2022-01-31	1885.059937	318.583396
2022-02-01	1965.332031	332.149732

In [121]:

```
end_date_train = '2022-01-17'
```

In [122]:

```
df_pred = result.predict(start = start_date, end = end_date_train)
df_pred[start_date:end_date_train].plot(figsize = (20,5), color = "red")
df.Close[start_date:end_date_train].plot(color = "blue")
plt.title("Predictions vs Actual", size = 24)
plt.show()
```


In [53]:

```
df_pred, training_data
```

```
Out[53]:
```

```
(Date
2013-01-18
                   0.000000
                580.330039
2013-01-21
2013-01-22
                592.442470
2013-01-23
                585.568575
2013-01-24
                 589.768374
2022-01-11
               1930.762984
2022-01-12
               1934.968528
2022-01-13
               1950.378425
2022-01-14
               1994.992399
2022-01-17
               2019.964924
Freq: B, Name: predicted_mean, Length: 2347, dtype: float64,
                    Close
                               Return
Date
2013-01-18
              580.318542
                            98.076379
2013-01-21
              591.700623
                           100.000000
              586.434204
2013-01-22
                            99.109952
2013-01-23
              589.341187
                            99.601245
2013-01-24
              598.363892
                           101.126122
2022-01-11
                           327.252174
             1936.353149
2022-01-12
             1949.238037
                           329,429776
2022-01-13
             1992.879272
                           336.805336
2022-01-14
             2018.896118
                           341.202297
2022-01-17
             2043.234253
                           345.315549
 [2347 \text{ rows } x \text{ 2 columns}])
```

In [123]:

```
fig, (axis1, axis2) = plt.subplots(1, 2, figsize = (16,4))
axis1.plot(training_data.Close, color = "Black")
axis1.set_title("Close")
axis2.plot(df_pred, color = "Red")
axis2.set title("Pred")
```

Out[123]:

Text(0.5, 1.0, 'Pred')

Fitting the model with the help of Return

In [124]:

```
model_ret = ARIMA(training_data.Return[1:], order = (3,1,3))
results_ret = model_ret.fit()
df_pred_ar = results_ret.predict(start_date = start_date, end = end_date_train)
df_pred_ar[start_date:end_date_train].plot(figsize = (20,5), color = "red")
df['Return'][start_date:end_date_train].plot(color = "blue")
plt.title("Predictions vs Actual (Returns)", size = 24)
plt.show()
```


In [125]:

```
fig, (axis1, axis2) = plt.subplots(1, 2, figsize = (16,4))
axis1.plot(training_data.Return, color = "Blue")
axis1.set_title("Return")
axis2.plot(df_pred_ar, color = "Red")
axis2.set_title("Predicted")
```

Out[125]:

Text(0.5, 1.0, 'Predicted')


```
In [141]:
df_pred_ar.tail(), training_data['Return'][:-10]
Out[141]:
(Date
               326.348336
 2022-01-11
 2022-01-12
               326.678815
 2022-01-13 329.648008
               337.319585
 2022-01-14
 2022-01-17
               341.413065
 Freq: B, Name: predicted_mean, dtype: float64,
Date
 2013-01-18
                98.076368
 2013-01-21
               100.000000
              99.109983
 2013-01-22
 2013-01-23
                99.601245
 2013-01-24
               101.126111
 2022-01-12
               329.429776
 2022-01-13
               336.805336
 2022-01-14
               341.202297
               345.315549
 2022-01-17
 2022-01-18
               337.439412
 Freq: B, Name: Return, Length: 2348, dtype: float64)
Mean Absolute Error
In [142]:
from sklearn.metrics import mean_absolute_error
In [153]:
mean_absolute_error(df_pred, training_data['Close'][:-11])
Out[153]:
12.211602708983543
In [159]:
mean_absolute_error(df_pred_ar, training_data['Return'][:-12])
Out[159]:
0.22757514010962202
Analysing the residual plot
In [160]:
df['residual'] = result.resid.iloc[:]
```

```
In [161]:
```

```
df.residual.mean()
```

Out[161]:

0.8183479228415355

In [162]:

```
result = adfuller(df.residual.dropna())
print(result[0])
print("p-value =",result[1])
```

```
-57.82269464208276
p-value = 0.0
```

In [163]:

```
fig, (axis1, axis2) = plt.subplots(1, 2, figsize = (16,4))
axis1.plot(df.residual)
axis1.set_title("Residual")
sgt.plot_acf(df.residual, ax= axis2);
```


Auto ARIMA

In [164]:

```
model_auto = auto_arima(training_data.Return[1:], m = 5, max_p = 5, max_q = 5, max_P = 5,
```

In [165]:

model auto

Out[165]:

ARIMA(order=(0, 1, 2), scoring_args={}, seasonal_order=(0, 0, 1, 5), suppress_warnings=True)

In [166]:

```
model_auto.summary()
```

Out[166]:

SARIMAX Results

2357	No. Observations:	У	Dep. Variable:
-5885.283	Log Likelihood	SARIMAX(0, 1, 2)x(0, 0, [1], 5)	Model:
11780.566	AIC	Tue, 07 Feb 2023	Date:
11809.390	BIC	00:25:28	Time:
11791.062	HQIC	01-21-2013	Sample:

- 02-01-2022

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
intercept	0.0989	0.068	1.465	0.143	-0.033	0.231
ma.L1	0.0682	0.015	4.614	0.000	0.039	0.097
ma.L2	-0.0393	0.016	-2.457	0.014	-0.071	-0.008
ma.S.L5	0.0484	0.016	3.085	0.002	0.018	0.079
sigma2	8.6547	0.134	64.515	0.000	8.392	8.918

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 3388.49

Prob(Q): 1.00 Prob(JB): 0.00

Heteroskedasticity (H): 2.64 Skew: 0.30

Prob(H) (two-sided): 0.00 **Kurtosis:** 8.84

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

SARIMAX

In [167]:

```
SAR_model= SARIMAX(training_data['Return'],order=(3, 1, 3),seasonal_order=(0,0,1,5))
results= SAR_model.fit()
```

In [168]:

```
training_data['forecast']= results.predict(start= start_date,end= end_date_train)
```

In [169]:

```
training_data['forecast'][start_date:end_date_train].plot(figsize = (10,5), color = "red")
training_data.Return[start_date:end_date_train].plot(color = "Black")
plt.title("Predictions vs Actual", size = 24)
plt.show()
```


In [94]:

training_data.forecast

Out[94]:

```
Date
2013-01-18
                0.000000
2013-01-21
               98.076434
2013-01-22
              100.127092
2013-01-23
               98.959355
2013-01-24
               99.682036
2022-01-11
              326.436076
2022-01-12
              327.016823
2022-01-13
              329.500388
2022-01-14
              337.126755
2022-01-17
              341.558877
Freq: B, Name: forecast, Length: 2347, dtype: float64
```

In [170]:

```
fig, (axis1, axis2) = plt.subplots(1, 2, figsize = (16,4))
axis1.plot(training_data.Return, color = "Black")
axis1.set_title("Return")
axis2.plot(training_data.forecast, color = "Red")
axis2.set_title("Forecast")
```

Out[170]:

Text(0.5, 1.0, 'Forecast')

Predicting for Future

In [185]:

```
s_date_for = '2023-02-07'
e_date_for = '2023-02-28'
```

In [172]:

```
future_date = pd.DataFrame(pd.date_range(start= '2023-02-07', end= '2023-02-28'), columns=[
#future_date.set_index("Dates", inplace= True)
future_date
```

Out[172]:

Dates

- 0 2023-02-07
- 1 2023-02-08
- 2 2023-02-09
- 3 2023-02-10
- 4 2023-02-11
- **5** 2023-02-12
- 6 2023-02-13
- **7** 2023-02-14
- 8 2023-02-15
- 9 2023-02-16
- 10 2023-02-17
- **11** 2023-02-18
- **12** 2023-02-19
- **13** 2023-02-20
- 14 2023-02-21
- **15** 2023-02-22
- **16** 2023-02-23
- **17** 2023-02-24
- **18** 2023-02-25
- **19** 2023-02-26
- 20 2023-02-27
- **21** 2023-02-28

In [184]:

```
results.predict(start= future_date.Dates[0],end= future_date.Dates[21])
```

Out[184]:

```
2023-02-07
             332.191949
2023-02-08
             332.245119
2023-02-09
             332.318916
2023-02-10
             332.268893
             332.193876
2023-02-13
2023-02-14
             332.240733
2023-02-15 332.316845
2023-02-16 332.273167
2023-02-17 332.196087
2023-02-20
            332.236576
2023-02-21 332.314499
2023-02-22
             332.277204
2023-02-23
             332.198561
2023-02-24
             332.232663
2023-02-27 332.311903
2023-02-28 332.280989
```