Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

# Разработка системы автоматизированной проверки наиболее частых ошибок в научных текстах

Выполнил: Блеес Эдуард Игоревич, гр. 3304

Руководитель: Заславский Марк Маркович, ассистент

# Актуальность

Процесс проверки статей изданиями в текущем виде:

- Долгая переписка с рецензентом и редакторами;
- Повторные отправки после малейших исправлений.

Существует курс по написанию научных статей на Stepik, для которого необходима частичная автоматизация проверки статей.

### Цель и задачи

**Цель**: Разработать программу для проверки статьи на соответствие научному стилю и поиску наиболее частых ошибок в ней.

### Задачи:

- Исследовать возможность автоматизации проверки научных статей на соответствие научному стилю;
- Построить математическую модель проверки статьи;
- Провести экспериментальное исследование для определения допустимых значений критериев;
- Реализовать программный прототип решения.

**Исследование.** Научный стиль. Применимость решения.

Научный стиль - наиболее строгий стиль речи в русском языке. Собственно-научный подстиль — академическое изложение, адресованное специалистам. Морфологические ограничения.

Разработка модели направлена на проверку необходимых, но не достаточных условий соответствия текста научному стилю. Автоматическая оценка научной ценности статьи — не решенная на данный момент задача. Над подобной задачей работают Google и другие компании.

# **Исследование** возможности автоматизации проверки статей на соответствие научному стилю

Проверка качества текста или соответствие информационному стилю. SEO-анализ.

### Вводимые термины:

- Плотность текста это показатель повторений в текстовом документе ключевых слов и фраз. Используется и другое название «тошнота» текста.
- **Стоп-слова** это слова в тексте, которые не несут смысловой нагрузки (предлоги, союзы, частицы и т.п.)
- **Вода** процентное соотношение стоп-слов и общего количества слов в тексте
- Эмпирическая закономерность распределения частоты слов естественного языка - Закон Ципфа

# **Исследование** возможности автоматизации проверки статей на соответствие научному стилю

Обзор аналогов

| Аналог   | Многокритери | Нет         | Проверка | Возможность |
|----------|--------------|-------------|----------|-------------|
|          | альная       | ограничения | стиля    | загрузки    |
|          | проверка     | на длину    |          | файлов для  |
|          |              | текста      |          | проверки    |
|          |              |             |          |             |
| 1y.ru    | -            | +           | -        | _           |
| text.ru  | +            | _           | _        | -           |
| content  | +            | +           | _        | -           |
| monster  |              |             |          |             |
| .ru      |              |             |          |             |
| glvrd.ru | +            | +           | +        | -           |

### Экспериментальное исследование

Выборка из 2500 статей опубликованных в источниках ВАК или РИНЦ.

### Проверяемая гипотеза:

Качество научной статьи влияет на значения определенных числовых критериев, а также полученная выборка значений критериев соответствует нормальному распределению.

# Результаты экспериментального исследования

# Числовые критерии:

- Тошнота/Плотность текста  $\alpha$ ;
- Уровень воды в тексте  $\beta$ ;
- Значение отклонения текста статьи от идеальной кривой по Ципфу – λ.

### Экспериментально установленные интервалы:

| Критерий | Интервал   |
|----------|------------|
| α        | [6, 14]    |
| β        | [14, 20]   |
| λ        | [5.5, 9.5] |

### Математическая модель проверки статьи

В результате исследования было выделено:

- 3 рассчитываемых числовых критерия;
- 5 типов проверяемых стилистических ошибок;
- 6 типов проверяемых структурных ошибок.

### Оценка статьи:

$$K = B - \Phi$$

Где К – оценка статьи, В – базовое значение К, Ф – штраф.

### Математическая модель проверки статьи

$$E(\alpha) = \begin{cases} 1, \alpha \in [6; 14] \\ 0, \alpha \notin [6; 14] \end{cases}$$

$$B = C_1 \times E(\alpha) + C_2 \times E(\beta) + C_3 \times E(\lambda)$$

$$\Phi = C_4 \times N_1 + C_5 \times N_2$$

Где Е – попадание критерия в установленный промежуток,  $N_1$  – количество структурных ошибок,  $N_2$  – количество стилистических ошибок,  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ ,  $C_5$  – коэффициенты.

# Разработанное решение

- Платформа .NET Core;
- Фреймворк ASP.NET Core MVC;
- Web API (REST) Controllers;
- SQL Server + ORM EF Core (реализован паттерн Repository, легко поддержать другую, в том числе не реляционную БД);
- Развернутое решение использует в среднем 450 Мбайт оперативной памяти, зафиксированная пиковая нагрузка не превышала 524 Мбайт;
- Среднее время обработки статьи на превышает 1 - 2 секунды.

# Разработанное решение. Архитектура



# Разработанное решение. Алгоритм обработки



### Заключение

- Было проведено исследование возможности автоматизации проверки научных статей, была построена и настроена математическая модель проверки статьи;
- Было разработано решение в виде веб-сервиса.

# Апробация работы

- Блеес Э.И., Заславский М.М. Автоматизация процесса проверки текста на соответствие научному стилю //
  Современные технологии в теории и практике программирования: материалы научно-практической конференции студентов, аспирантов и молодых ученых 2018. С. 118-121;
- Блеес Э.И., Заславский М.М. Исследование критериев соответствия текста научному стилю // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 2. С. 299–305. doi: 10.17586/2226-1494-2019-19-2-299-305;
- Репозиторий проекта https://github.com/EduardBlees/Master-sthesis.

# Дополнительный слайд №1. Дальнейшее развитие

Развертывание с помощью docker и использование на кафедре для проверки статей из курса на Stepik

# Дополнительный слайд №2. Почему не использовалось машинное обучение

Отсутствие корпуса для обучения.

Причина – политика изданий. Не был найден источник научных статей не прошедших рецензирование.

# Дополнительный слайд №3. Поддержка английского языка

Морфологический анализ английского готов. Необходимо:

- Провести исследование научного стиля английского языка;
- Выделить морфологические особенности научного стиля английского языка;
- Получить выборку опубликованных статей на английском языке и провести анализ числовых критериев для настройки модели проверки.

# Дополнительный слайд №4. Примеры анализа текстов других жанров

| Текст           | α     | $\alpha \in [6;14]$ | β     | $\beta \in [14, 20]$ | λ      | $\lambda \in [5.5, 9.5]$ |
|-----------------|-------|---------------------|-------|----------------------|--------|--------------------------|
| Псевдонаучная   | 10.38 | Да                  | 18.50 | Да                   | 6.84   | Да                       |
| статья          |       |                     |       |                      |        |                          |
| «Корчеватель»   |       |                     |       |                      |        |                          |
| Интернет-статья | 3.66  | Нет                 | 31.68 | Нет                  | 5.35   | Нет                      |
| «Moë            |       |                     |       |                      |        |                          |
| разочарование в |       |                     |       |                      |        |                          |
| софте»          |       |                     |       |                      |        |                          |
| «Капитал» Карла | 5.84  | Нет                 | 28.94 | Нет                  | 138.22 | Нет                      |
| Маркса          |       |                     |       |                      |        |                          |
| «Идиот» Фёдора  | 6.65  | Да                  | 45.65 | Нет                  | 53.12  | Нет                      |
| Достоевского    |       |                     |       |                      |        |                          |

# Дополнительный слайд №5. Проверяемые ошибки

### Стилистические:

- Использование личных местоимений;
- Использование обобщений;
- Необъективная оценка;
- Использование усилителей;
- Использование риторических вопросов.

### Структурные:

- Отсутствие ссылки на указанный источник;
- Использование устаревшего источника;
- Отсутствие ссылки на рисунок;
- Отсутствие ссылки на таблицу;
- Наличие коротких разделов разделов, состоящих менее чем из трёх предложений.
- Использование указанных ключевых слов в тексте.

# Дополнительный слайд №6. Экран настройки анализа

Сервис помогает улучшить научную статью, проверяя её на соответствие научному стилю и указывая на допущенные ошибки, предоставляя советы по их исправлению.

#### Начать анализ статьи

春 Выберите файл статьи

paper\_short.pdf

#### Настройки анализа статьи:

Названия статьи и разделов необходимы для удобного, интерактивного отображения статьи и ошибок в ней. Перечисление ключевых слов позволит оценить их использование к тексте.

#### Названия разделов на отдельной строке

Проблема и её актуальность Обзор предметной области Выбор метода решения Описание метода решения Исследование решения

Результаты исследования

Заключение

#### Название статьи

АВТОМАТИЗАЦИЯ ПРОЦЕССА ПРОВЕРКИ ТЕКСТА НА СООТВЕТСТВИЕ НАУЧНОМУ СТИЛЮ

#### Название раздела со списком источников

Список использованных источников

#### Ключевые слова

Научные статьи Автоматизация

Сохранить настройки

春 Загрузите настройки из файла

# Дополнительный слайд №7. Экран результата анализа статьи

#### Оценка стиля статьи:

**39**<sub>из 100</sub>

#### Критерии:

#### Уровень водности



Процентное соотношение стоп-слов и общего количества слов в тексте

Значение: 23,820

Требования: Значение критерия должно находиться в интервале [14, 20]

Совет: Постарайтесь снизить количество используемых стоп-слов. Часто употребляемые стоп-слова в

статье: в: 47 раз на: 23 раз и: 22 раз с: 15 раз

с: 15 раз для: 14 раз этот: 13 раз он: 10 раз который: 8 раз к: 8 раз Это тестовое предложение  $\underline{\mathsf{s}}$  добавил специально ,  $\underline{\mathsf{oнo}}$  содержит ошибки , которые точно должны быть выделены .

### АВТОМАТИЗАЦИЯ ПРОЦЕССА ПРОВЕРКИ ТЕКСТА НА СООТВЕТСТВИЕ НАУЧНОМУ СТИЛЮ

#### Проблема и её актуальность

Соответствие статьи научному стилю является одним из основных критериев принятия статьи к публикации . В текущем виде , процесс проверки представляет собой отправку статьи на обзор третьим лицам , ожидание ответа , исправление недочетов и отправка на повторную проверку — это очень долго . В связи с этим , автоматизация данного процесса является актуальной задачей , позволяющей значительно ускорить процесс выявления ошибок для исправления , и в следствие этого ускорить сам процесс публикации статьи . В соответствие с этим возникает задача исследования возможности автоматизации процесса проверки научных статей на соответствие научному стилю . Также возникает необходимость предложить решение , позволяющее проверить научную статью по нескольким критериям , основываясь на проведенном исследовании .

#### Обзор предметной области

Научный стиль - наиболее строгий стиль речи , используемый для написания научных статей . Характеризуется использованием научной терминологии , исключая жаргонизмы . Научный стиль не допускает личного изложения [ 1 ] . Проверяя текст на соответствие научному стилю есть смысл реализовать и базовую проверку на качество текста . К такого рода анализу можно отнести SEO-анализ . SEO ( search engine optimization ) анализ [ 2-3 ] популярен и актуален в связи с необходимостью продвижения своих ресурсов , товаров и услуг в интернете . Основные термины SEO-анализа : Тошнота — это показатель повторений в текстовом документе ключевых слов и фраз . Синонимом тошноты является термин плотность [ 3 ] ; Стоп-слова — это слова в тексте , которые не несут смысловой нагрузки . Иначе их называют также шумовые слова [ 3 ] ; Вода - процентное соотношение стоп-слов и общего количества слов в тексте [ 3 ] . Уровень " воды " в тексте , его " тошнотность " и подсчет других числовых показателей , очевидно , можно автоматизировать . Но также важными показателями научной статьи являются её экспертность и полезность . На данный

### **Использование личного** местоимения

Найдено ошибок: 11

Использование личных местоимений запрещено. Проверьте, можно ли удалить это местоимение без потери смысла.

#### Нет ссылки на источник

Найдено ошибок: 1

Необходимо хотя бы раз сослаться на каждый из перечисленных источников.

#### Короткий раздел

Найдено ошибок: 1

В разделе меньше трёх предложений. Постарайтесь расширить раздел, либо уберите его.

# Дополнительный слайд №8. Пример отображения критерия проверки

### Тошнота



Показатель повторений в текстовом документе ключевых слов и фраз

Значение: 6,037

Требования: Значение критерия должно

находиться в интервале [6, 14]

# Дополнительный слайд №9. Пример отображения ошибки

### Нет ссылки на источник

Найдено ошибок: 1

Необходимо хотя бы раз сослаться на каждый из перечисленных источников.

Источник №12

# Дополнительный слайд №10. Пример отображения выделения типа ошибки по слову

, оно содержит ошибки , которые точно

#### **ТЕКСТА НА СООТВЕТСТВИЕ**

ним из основных критериев принятия статьи представляет собой отправку статьи на ние недочетов и отправка на повторную натизация данного процесса является жорить процесс выявления ошибок для оцесс публикации статьи . В соответствие с автоматизации процесса проверки Также возникает необходимость

### Использование личного местоимения

Найдено ошибок: 11

Использование личных местоимений запрещено. Проверьте, можно ли удалить это местоимение без потери смысла.

#### Нет ссылки на источник

Найдено ошибок: 1

Необходимо хотя бы раз сослаться на

# Дополнительный слайд №11. Полученные значения $\alpha$ по выборке



| Выборка  | Мат. ожидание | Дисперсия |
|----------|---------------|-----------|
| $\alpha$ | 9.822         | 3.902     |

# Дополнительный слайд №12. Полученные значения $\beta$ по выборке



| Выборка | Мат. ожидание | Дисперсия |
|---------|---------------|-----------|
| β       | 17.145        | 3.082     |

# Дополнительный слайд №13. Полученные значения $\lambda$ по выборке



| Выборка   | Мат. ожидание | Дисперсия |
|-----------|---------------|-----------|
| $\lambda$ | 7.396         | 2.069     |

# Дополнительный слайд №14. Зависимость времени извлечения текста из pdf файла от его размера



# Дополнительный слайд №15. Зависимость времени анализа текста от количества символов



# Дополнительный слайд №16



# Дополнительный слайд №17. Оценка времени анализа статьи

$$T_E(x) = 0.1673x + 201.65$$

Где  $T_E$  – время извлечения текста в миллисекундах, x – размер файла в килобайтах.

$$T_A(y) = 0.0021y + 33.782$$

Где  $T_A$  – время анализа текста в миллисекундах, y – количество символов.

$$T(z) = 7.5639z + 194.49$$

Где T – время обработки файла в миллисекундах, z – количество страниц.

# Дополнительный слайд №16. Потребление оперативной памяти приложением

