Cryptology Exercise Week 11

Zijun Yu 202203581

Octobor 2023

Hash functions from Factoring

We first prove that there exists an element in \mathbb{Z}_n^* of order 2p'q'.

Let α and β be a generator of Z_p^* and Z_q^* respectively, i.e. 2p' is the smallest i that satisfies $\alpha^i \mod p = 1$ and 2q' is the smallest i that satisfies $\beta^i \mod q = 1$.

By the Chinese remainder theorem, Z_n^* is isomorphic to $Z_p^* \times Z_q^*$, Z_p^* . Let f be the isomorphism from Z_n^* to $Z_p^* \times Z_q^*$, we prove that the order of $g = f^{-1}(\alpha, \beta)$ is 2p'q'.

We are going to prove that on the right side, $g^{2p'q'}$ is the first one that is equal to 1. By Chinese remainder theorem, it is equivalent to prove that on the left side, $(\alpha^{2p'q'}, \beta^{2p'q'})$ is the first pair that is equal to (1,1), which is true because $\alpha^{2p'} \equiv 1 \mod p$ and $\beta^{2q'} \equiv 1 \mod q$ and 2p'q' is the least common multiple of 2p' and 2q'.

Then we show that given a collision for h defined by $h(m) = g^m \mod n$, one easily factor n.

Let m_1 and m_2 be two messages such that $h(m_1) = h(m_2)$, then $g^{m_1} \equiv g^{m_2} \mod n$, which is equivalent to $g^{m_1-m_2} \equiv 1 \mod n$. This means that m_1-m_2 is a multiple of 2p'q'. Since (p-1)(q-1)=4p'q', by multiplying m_1-m_2 by any even number, we get a multiple of (p-1)(q-1). Then by Lemma 7.9, we can easily factor n.