

ORION GN&C DETECTION AND MITIGATION OF PARACHUTE PENDULOSITY

Mark Kane Roger Wacker

American Astronautical Society 39th Annual GN&C Conference February 2016

Pendulosity

Orion Project

Late in the Orion parachute development program, Capsule Parachute Assembly System (CPAS) drop tests exhibited pendulous swing mode of the crew module (CM).

- Increases touchdown impact loading to the structure and crew
- Can saturate the reaction control system (RCS) during final alignment of the CM
- A multidisciplinary team was created to mitigate risk for future Orion missions.

Pendulous motion is present with three chutes but only grows to large swing amplitudes in twochute scenarios (single failure)

Final Alignment: Touchdown Heading Control

Orion Project

Pendulosity Effects

Impact Polar

Orion Project

Disturbs horizontal velocity:

- Control Saturation
 - Control is unable to track the rapid changes in heading
- Improper alignment at touchdown
- Heading sensitivity to pendulum increases as horizontal velocity magnitude decreases

Modifies CM attitude:

 Increased distribution of impact angle

 $0.5T << t_{180}$

T: Pendulum Period

 t_{180} : Time for RCS to manuver 180 degrees

Impact loading increases with:

- Misalignment to velocity
- Low impact angles

Observing Pendulum Motion

Orion Project

Swing angle is found geometrically:

$$\theta_{Swing} = \sin^{-1} \left(\sqrt{\sin^2(\theta_{ND}) + \sin^2(\theta_{ED})} \right)$$

Pendulum energy is found algebraically:

$$E_{Pend} = \frac{1}{2} mL^2 \left(\dot{\theta}_{ND}^2 + \dot{\theta}_{ED}^2 \right) + mgL \left(1 - \cos(\theta_{Swing}) \right)$$

 Swing plane angle is found geometrically and limited to be within +/- 90 degrees:

$$\psi_{Swing} = \tan^{-1} \left(\frac{sign(\theta_{ND}) \sin(\theta_{ED})}{\left| \sin(\theta_{ND}) \right|} \right)$$

 Pendulum swing is highly elliptical (not planar) requiring that the geometric swing plane angle be filtered

Desired Outputs:

- Attach Point (Chute Cluster/Wind) Velocity
- Pendulum energy
- Swing plane angle

Two Luenberger observers are used independently to obtain state estimates in the N-D and E-D planes

Observing Pendulum Motion (2D)

m

Orion Project

State Definitions:

$$\begin{aligned} \boldsymbol{x} &= \begin{bmatrix} \boldsymbol{\theta} & \dot{\boldsymbol{\theta}} & \boldsymbol{V}_{Attach} \end{bmatrix}^T \\ \dot{\boldsymbol{x}} &= \begin{bmatrix} \dot{\boldsymbol{\theta}} & \ddot{\boldsymbol{\theta}} & \boldsymbol{a}_{Attach} \end{bmatrix}^T \end{aligned}$$

Control Input:

$$u = F_{RCS}$$

Equations of Motion:

$$\ddot{\theta} = \frac{1}{L} \left(-g \sin(\theta) - a_{Attach} \cos(\theta) + \frac{F_{RCS}}{m} \right)$$

Measurement Equation:

$$y = V_{CM} = V_{Attach} + L\dot{\theta}\cos(\theta)$$

Total velocity is assumed to be a combination of the underlying wind velocity and the pendulum induced velocity.

Swing is modeled as a simple gravity pendulum. In flight the system is forced by parachute aerodynamic forces.

Luenberger Observer:

$$\dot{x} = Ax + Bu + G(y - Cx)$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ -g & 0 & 0 \\ L & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \frac{1}{L^2 m} \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & -L & 1 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}$$

Observer Estimate Quality Check

Orion Project

A convergence check is performed to output an indication that the observer estimate is valid

- Prevents undesirable behavior during observer initialization
- Protects against erroneous measurements
 - Filtered swing plane estimates are only updated if the estimate is indicated as valid
- Protects against unknown errors that result in a diverging estimate

 ΔV_{Dh}

Time

: Parameter indicating the maximum residual when converged

nCycles_{ConvergedDb}: Parameter indicating the number of cycles required before declaring convergence

Pendulum Damping

Orion Project

Pendulum damping abandoned due to

- Limited time
- Limited control authority
 - Non-ideal jet location
 - Undersized jets for this application
- Addition of a swing angle rate estimate
 - Phasing of thruster firings
 - Complicated by non-planar swing
- Pendulum swing plane may not be coincident with velocity
 - Reserve time to reorient the CM prior to touchdown impact
- Algorithm Complexity

- reserve threshold
 - Requires an estimate of remaining propellant
- Alignment to the swing plane
 - Accuracy of the swing plane angle estimate
 - Active alignment Large propellant cost
 - Passive alignment Limited opportunity for damping to occur

Alternate Heading

Orion Project

Aligning the vehicle so that it is pointed out-of-plane with respect to the swing plane reduces the probability of a low impact angle at touchdown

Align the CM to be perpendicular to the swing plane

- The swing plane and velocity direction may not be coincident
- Choose perpendicular direction that minimizes the angle to the direction of velocity

Pointing Mode Selection

Orion Project

Pointing Modes:

Pendulum

- Point perpendicular to the swing plane nearest the direction of horizontal velocity if:
 - Detected Pendulum Energy is above a specified threshold
 - Horizontal velocity magnitude is below a specified threshold
- Stay in this mode (latch) if:
 - Landing reorientation has begun

Velocity

- Point in the direction of horizontal velocity
- Default mode

Hold

- Hold the previous pointing direction if:
 - Horizontal velocity magnitude falls below a specified threshold
 - Pendulum pointing has been latched and the observer diverges

Wind alignment becomes the driver to structural loading at higher velocities

Conclusions and Acknowledgements

Orion Project

- Pendulum induced dynamic increase loading to the crew and CM structure
 - Pendulum motion is driven by parachute aerodynamics
 - Energy can be input, or removed, from the system at any time by the parachutes
- Pendulum observer is able to produce accurate estimates of the pendulum state
 - Models pendulosity as a simple gravity pendulum
- Pendulum damping did not show significant improvement in loading success probability
 - Insufficient control force available from CM RCS
 - High propellant cost
 - Significant algorithm complexity
 - Able to reduce peak swing amplitudes in some situations
- Pointing the vehicle in a direction perpendicular to the swing plane reduces probability of low impact angles at touchdown

GN&C has successfully developed an algorithm to mitigate the effects of pendulosity for the Orion spacecraft.

- Software solution avoids costly parachute or vehicle structure design changes
- Monte Carlo analysis with high-fidelity GN&C simulations have demonstrated a 35% improvement in load success probability

The authors wish to acknowledge the technical contributions of the entire Orion GN&C team at NASA, Lockheed Martin, and respective contractors.

QUESTIONS?