

Bias-Variance trade-off

Polynomial curve fitting

• Data generated by a Qth order polynomial + some noise

- Consider fitting data with a polynomial of order M.
- Data preprocessing:
 - Standardize the inputs.
 - Center the outputs.
- Model can be trained using linear regression with $[x^1, x^2, ..., x^M]$ as features.

• The intercept w_0 can then be ignored.

Polynomial curve fitting

• Data generated by a Qth order polynomial + some noise

• Predictor model:

$$f(x, \mathbf{w}) = w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_M x^M$$
$$= \sum_{i=1}^{M} w_i x^i$$
$$= \mathbf{w}^{\mathrm{T}} \phi$$

where $\mathbf{w} = [w_1, ..., w_M]^{\mathrm{T}}$ and $\phi = [x, ..., x^M]^{\mathrm{T}}$.

Polynomial curve fitting

- Complex hypotheses (richer class of models) lead to overfitting.
- A higher degree polynomial has more degrees of freedom which can lead to overfitting of the training data.
- Need to penalize the complexity in some way in the cost function.

*Figures are just for illustration.

Regularized regression

- Observations:
 - Weights w are unconstrained, and as such can lead to high variance.
 - Need to control the magnitude of the weights in order to control the variance.
- Modified objective:

minimize
$$\sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}^{(i)}))^{2} \quad \text{such that} \quad \sum_{j=1}^{M} w_{j}^{2} \leq p$$

- In vector form:

minimize
$$(\mathbf{y} - \Phi \mathbf{w})^{\mathrm{T}} (\mathbf{y} - \Phi \mathbf{w})$$
 such that $||\mathbf{w}||_2^2 \le p$

• Assumptions:

 Φ is standardized (zero mean and unit variance), and \mathbf{y} is centered.

Regularized regression

Can show that the problem is equivalent to:

minimize
$$(\mathbf{y} - \Phi \mathbf{w})^{\mathrm{T}} (\mathbf{y} - \Phi \mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2}$$

where λ is the regularization coefficient.

- λ tries to balance between the fit to the training data and the model complexity.
- Modified loss function:

$$L(\mathbf{w}) = L_E(\mathbf{w}) + \lambda L_R(\mathbf{w})$$

where

$$L_E(\mathbf{w}) = \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}^{(i)}))^2$$

$$= (\mathbf{y} - \Phi \mathbf{w})^{\mathrm{T}} (\mathbf{y} - \Phi \mathbf{w})$$

$$L_R(\mathbf{w}) = \sum_{j=1}^{M} w_j^2$$

$$= ||\mathbf{w}||_2^2$$

$$L_R(\mathbf{w}) = \sum_{j=1}^{M} w_j^2$$
$$= ||\mathbf{w}||_2^2$$

L₂ regularization

- This is known as L_2 Regularization and also as Ridge Regression.
- Goal is to minimize the loss function $L(\mathbf{w})$. Note, since $L(\mathbf{w})$ is convex it has a unique solution.
- Taking derivative of $L(\mathbf{w})$ with respect to \mathbf{w} and equating it to zero

$$\left(\text{i.e.} \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = 0\right)$$
 yields:

$$\mathbf{w} = (\Phi^{\mathrm{T}}\Phi + \lambda \mathbf{I})^{-1}\Phi^{\mathrm{T}}\mathbf{y}$$

- If $\lambda = 0$, we get the least squares solutions.
- If $\lambda \to \infty$, we get $\mathbf{w} \to 0$.
- So $\lambda > 0$ will give weights of lower magnitudes than that obtained using least squares.

Visualization (L_2)

L₁ regularization

• Use L_1 norm of the weight vector.

minimize
$$(\mathbf{y} - \Phi \mathbf{w})^{\mathrm{T}} (\mathbf{y} - \Phi \mathbf{w})$$
 such that $\sum_{i=1}^{M} |w_i| \leq p$

- Known as the **LASSO** (least absolute shrinkage and selection operator) algorithm (*Tibshirani*, 1996).
- LASSO has no closed form solution unlike ridge regression.
- Can be solved using quadratic programming techniques.
- Often want some of the weights w_j 's to be 0.
- LASSO looks for a sparse solution and so likely to yield some of the weights to be 0. But why?

L₁ regularization

- Consider a problem with two features x_1 and x_2 .
- In this case we are trying to solve a optimization problem with respect to weights w_1 and w_2 :

minimize
$$\sum_{i=1}^{N} (y^{(i)} - w_1 x_1^{(i)} - w_2 x_2^{(i)})^2$$

such that

$$w_1 + w_2 < p$$

$$-w_1 + w_2 \le p$$

$$w_1 - w_2 \le p$$

$$-w_1 - w_2 \le p$$

Visualization (L₁)

• When λ is large, then among the contours satisfying the constraints, the contour with the least value of the objective function is likely to intersect the constraints' boundary at a corner.

K-fold cross validation

- Training data is subdivided into K separate subsets $-\mathcal{D}_1, \mathcal{D}_2,, \mathcal{D}_K$ of equal size (say n_K).
- For k = 1, 2, ..., K
 - Leave out the kth fold data \mathcal{D}_k and train the model on the remaining k-1 folds.
 - Use the trained model to make prediction on the kth fold data \mathcal{D}_k and compute the (cross validation) error for this fold

$$E_k^{(\lambda)} = \frac{1}{n_K} \sum_{i=1}^{n_K} (y_{k,i} - f_{-k}^{(\lambda)}(\mathbf{x}_i))^2$$

where $f_{-k}^{(\lambda)}$ is the model trained excluding the kth fold data with a specific value of λ .

K-fold cross validation

- Estimated generalization error:

$$\mathbf{E}^{(\lambda)} = \frac{1}{K} \sum_{k=1}^{K} E_k^{(\lambda)}$$

- The optimal value of λ (say λ^*) is the one yielding the least value of $\mathbf{E}^{(\lambda)}$.
- Using λ^* train the model on the entire training dataset.
- When K = N (size of the training dataset), the approach is known as leave-one-out cross-validation.