

MICROCOPY RESOLUTION TEST CHART
MATIONAL BUREAU OF STANDARDS-1988-A

AFWAL-TR-87-2025

MTK FILE COPY

LUBRICANT PERFORMANCE AND EVALUATION

Costandy S. Saba Hoover A. Smith Michael A. Keller Vinod K. Jain Robert E. Kauffman

University of Dayton Research Institute Dayton, Ohio 45469

June 1987

Interim Technical Report For Period 17 June 1985 - 17 January 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

87 8 18 088

		REPORT (OCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188	
	ECURITY CLASS	SIFICATION		1b. RESTRICTIVE MARKINGS None				
	CLASSIFICATIO	N AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT				
	FICATION / DOW	VNGRADING SCHEDU	LE		for Publication Unlimi		e;	
	ig organizat 'R-87-24	ION REPORT NUMBE	R(S)	5. MONITORING AFWAL-TR	ORGANIZATION -87-2025	REPORT NU	MBER(S)	
Unive	PERFORMING rsity of l rch Instit		6b. OFFICE SYMBOL (If applicable)		ulsion Labo	ratory	(AFWAL/POSL)	
300 C	(City, State, an College Pai In, Ohio 4!	rk		7b. ADDRESS (Ch Wright-Pa	ty, State, and Zif tterson AFE		45433	
8a. NAME OF ORGANIZA	FUNDING/SPO ATION	NSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN F33615-85		DENTIFICATI	ON NUMBER	
Sc. ADDRESS (City, State, and	ZIP Code)	L	10. SOURCE OF I	UNDING NUMBE	RS		
	·			PROGRAM ELEMENT NO. 62203F	PROJECT NO. 3048	TASK NO 06	WORK UNIT ACCESSION NO. 41	
Lubri 12. PERSONAL	AUTHOR(S)	uation and Per		ichael A. J	ain. Vinod	K. Kau	ffman, Robert E.	
13a. TYPE OF Interim		13b. TIME CO		14. DATE OF REPO			PAGE COUNT	
	NTARY NOTAT		\ \ \	duite 1307	· · · · · · · · · · · · · · · · · · ·			
17.	COSATI	CODES	SUBJECT TERMS (Continue on revers	e if necessary ar	d identify l	by block number)	
FIELD	GROUP	SUB-GROUP	Lubricant Degr					
	08		Capacity, Lubr					
14	02							
An investigation was conducted in order to develop and improve methods for defining and predicting lubricant performance. This investigation was performed in seven tasks. In Task I, Arrhenius plots were developed to describe the effective lives of six MIL-L-7808 lubricants as a function of temperature for selected limiting values of changes in total acid numbers, viscosities and weight losses. Relative ranking of lubricants with respect to their stability depends to some degree on defining maximum permissible limiting values. The static coker deposition tester was used to study the coking characteristics of lubricants. Ranking lubricants with respect to their deposit levels using the static coker was in general similar to the MCRT and coking propensity								
station metal	e foaming spargers.	test. Parame Foaming dat	ics of MIL-L-780 ters studied inc a shows the 25	cluded sampl nl volume te	e volume, a st using th	irflow, ie 13/16	ASTM stone and	
**		LITY OF ABSTRACT ED SAME AS R	PT DTIC USERS	21 ABSTRACT SE UNCLASSIF	CURITY CLASSIFIC	ATION		
	f RESPONSIBLE Centers	INDIVIDUAL		226 TELEPHONE (513)255-6	Include Area Cod	e) 22c Of AFWA	FICE SYMBOL L/POSL	

18. (Concluded)

Wear metal Analysis, Atomic Emission Spectroscopy, Atomic Absorption Spectroscopy, Spectrometric Oil Analysis (SOAP), Gas Chromatography, Remaining Useful Lubricant Life.

19. (Concluded)

5 micron rated pore size sparger correlates the best with the 200 ml volume Test Method 3213. Chromatographic methods developed for analysis of antioxidants in MIL-L-7808 resulted in isolation and identification of the major intermediates produced during oxidation of PANA and DODPA containing lubricants Key with

In Task II, significant improvement in AE spectrometer sensitivity was obtained when using air as stabilizing gas, optimizing preburn and exposure times, and profiling refractor plates. The capability of the Wear Particle Analyzer was evaluated for the analysis of metallic iron in lubricants. Even though the instrument suffers from a lack of accuracy in the analysis of metal powders, it responds to changes in concentration of ferromagnetic wear debris. A 5-gallon capacity microfiltration test rig was constructed to simulate fine filtration in turbine engine lubrication systems. A wear test machine was used to generate wear particles in order to study the impact of fine filtration on spectrometric oil analysis.

In Task III, COBRA, conductivity meter and an oil maintenance tester (OMT) were evaluated as lubricant monitoring devices. Even though OMT compared favorably with COBRA it was somewhat less sensitive. Relationships between electrochemical properties and specific chemical changes in stressed lubricants were investigated.

In Tasks IV and V, an assessment of the literature on lubricant load carrying capacity (LCC) test methods was made. The four ball wear test configuration was investigated as a possible technique for determining the LCC of MIL-L-7808 and MIL-L-23699. Effects of load, speed and lubricant formulations containing various concentrations of TCP on wear scar size were determined.

In Task VI, a software system was developed and implemented on the Zenith Z-100 microcomputer for storage, retrieval and correlation of MIL-L-7808 lubricant qualification data.

In Task VII, the remaining useful life of MIL-L-7808 and MIL-L-23699 lubricants evaluation rig (RULLER) was developed based on reductive cyclic voltammetry. A single board voltammograph was developed to reduce the size and cost of the RULLER.

FOREWORD

This report describes the research conducted by personnel of the University of Dayton Research Institute on Contract No. F33615-85-C-2507. The work was conducted at the Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio.

The work was accomplished under Project 3048, Task, 304806, Work Unit 30480641, Lubricant Evaluation and Performance, with Dr. Phillip W. Centers as the project monitor.

The work reported herein was performed during 17 June 1985 to 17 January 1987.

TABLE OF CONTENTS

SECTION			1	PAGE
I	INTR	ODUCT	CON	1
II		NT OF IMPROVED METHODS FOR MEASURING PERFORMANCE	5	
	1.	Lubr	icant Oxidative Stability	5
		a.	Introduction	5
		b.	Test Apparatus	5
		c.	Test Procedure	7
		d.	Test Lubricants and Test Conditions	9
		e.	Results and Discussion	10
		f.	Summary	32
		g.	Future Effort	32
	2.	Lubr	icant Confined Heat Stability	33
		a.	Introduction	33
		b.	Test Apparatus	33
		c.	Test Procedure	33
		d.	Test Lubricants and Test Conditions	35
		e.	Results and Discussion	35
		ſ.	Summary	46
		g.	Future Effort	46
	3.	Corr	osiveness and Oxidative Stability	47
		a.	Introduction	47
		b.	Test Apparatus	47
		c.	Test Procedure	47
		d.	Results and Discussion	47
		e.	Summary	53
		f.	Future Effort	56

SECTION			PAGE
II	4.	Corrosion Inhibiting Properties of Lubricants	56
		a. Introduction	56
		b. Test Apparatus and Materials	56
		c. Test Procedure	57
		d. Description of Test Fluids	59
		e. Results and Discussion	59
		f. Summary	63
	5.	Additive Analysis	64
		a. Introduction	64
		b. Experimental	64
		c. Results and Discussion	66
		(1) Antioxidant Concentrations in Stressed MIL-L-7808 Lubricants	66
		(2) Intermediate Antioxidant Species of PANA and DODPA	66
		d. Summary	84
		e. Future Effort	84
	6.	Investigation of Refractive Indices of Lubricants	84
		a. Introduction	84
		b. Test Apparatus	85
		c. Test Procedure	85
		d. Results and Discussion	85
		e. Summary	88
		f. Future Effort	88
	7.	Lubricant Deposition Studies	89
		a. AFAPL Static Coker Study	89

Section					PAGE
II		(1)	Intro	duction	89
		(2)	Appar	atus and Procedure	90
		(3)	Test	Lubricants	95
		(4)	Resul	ts and Discussion	95
			(a)	Test Repeatability	95
			(b)	Effects of Test Surface Material on Lubricant Coking	97
			(c)	Coking Deposits Versus Molecular Weight of Ester	97
			(d)	Effect of Antioxidants on Coking Deposits	99
•			(e)	Effect of Temperature on Lubricant Coking	102
			(f)	Effect of Lubricant Thermal and Oxidative Stressing on Coking Deposits	105
			(g)	Effect of Wear Debris on Lubricant Coking	108
			(h)	Effect of Lubricant Filtering on Coking Deposits	111
			(i)	Comparison of the Static Coker with Other Deposition Tests	116
		(5)	Summa	ary	118
		(6)	Futu	re Effort	121
	b.	Coki	ng Pro	pensity	121
		(1)	Intr	oduction	121
		(2)	Test	Apparatus	121
		(3)	Test	Procedure	124
		(4)	Test	Lubricants and Test Conditions	125

SECTION					PAGE
II			(5)	Results and Discussion	125
			(6)	Summary	131
			(7)	Future Effort	131
	8.	Lubr	icant	Foaming Study	131
		a.	Intro	oduction	131
		b.	Test	Apparatus	132
		c.	Test	Procedure	132
		d.	Test	Lubricants	132
		e.	Resu	lts and Discussion	134
			(1)	Physical Properties of the Air Diffusers and Spargers Used for the Standard and Small Volume Foam Testing	134
			(2)	Effect of Diffuser Pore Size and Small Volume on Foaming	142
			(3)	Lubricant Foaming Due to Silicones	146
			(4)	Sealed Frit Foaming Tube Studies	152
			(5)	Effects of Various Diameter 5 Micron Rated Spargers and ASTM Stone on Foam Values	154
			(6)	Effect of Pore Size on Bubble Size	161
			(7)	Correlation of Test Method 3213 Foam Test Data with 25 ml Volume Foam Test Data	169
		f.	Summ	ary	175
		g.	Futu	re Effort	177
III				IMPROVED LUBRICATION SYSTEM HEALTH HNIQUES	178
	1.	Intr	oduct	ion	178

BECTION	ĭ				PAGE
III	2.	Backs	ground		179
	3.	Atomi	le Emi:	ssion Spectrometer	181
		a.	Profi	ling and Optical Alignment	181
		b.	Refra	ctor Plates	182
		c.	Optim	izing Gas Flow	184
			(1)	Background Signal for Ester and Hydrocarbon Oils	184
			(2)	Optimizing Signal-to-Background Ratio for Conostan Standard	184
		d.	Expos	ure Time	202
		e.	Spect	rometer Calibration	202
		f.	Analy	sis of Used Oil Samples	202
			(1)	J57 Test Engine Stand and Engine Simulator Samples	202
			(2)	Correlation Samples	202
		g.	Summa	ry	206
		h.	Futur	e Effort	206
	4.	Wear	Parti	cle Analyzer	207
		a.	Intro	duction	207
		b.	Princ	iple of Operation	207
		c.	Appar	atus and Procedure	209
		d.	Resul	ts and Discussion	211
			(1)	Effect of Particle Size and Filter Fiber Size	211
			(2)	Effect of Sample Volume	213
			(3)	Analysis of Used Oils	215
			(4)	Sample Introduction System	215

SECTION				PAGE
III		e.	Conclusion	219
		f.	Future Effort	219
	5.	Micr	rofiltration	220
		a.	Introduction	220
		b.	Background	220
		c.	Apparatus	222
			(1) Test Rig Assembly	222
			(2) Filter Element and Filter Housing	222
			(3) Test Rig Lubricant Flow	225
			(4) Wear Metal Generator	227
		d.	Efficiency of the APM Filter Element	227
		e.	Conclusion	229
		f.	Future Effort	232
IV	INVE	STIG	ATION OF LUBRICANT MONITORING TECHNIQUES	233
	1.	Intr	roduction	233
	2.	Comp	plete Oil Breakdown Rate Analyzer	233
		a.	Electronic Circuitry Analysis	233
		b.	Analysis of Degraded Lubricants	236
		c.	Structure/Property Relationships	246
			(1) Peroxide Number	247
			(2) Basestock Ester Analysis	250
			(3) Contribution of Basestock Degradation Products to COBRA Reading	251
	3.	Conc	ductivity Measurements	256
	4.	011	Maintenance Tester	266

SECTION			PAGE
IV	5.	Conclusions	267
	6.	Future Effort	272
V	LUBR	ICANT LOAD CARRYING CAPABILITY TEST ASSESSMENT	273
	1.	Introduction	273
	2.	Literature Search	275
	3.	Development of Load Carrying Capacity Test	276
	4.	Conclusions	276
	5.	Future Effort	277
VI	DEVE	ELOPMENT OF SPECIFICATION WEAR TEST	278
	1.	Introduction	278
	2.	Experimental Procedures	280
	3.	Results and Discussion	283
		a. Wear Scar Diameter as a Function of Time	283
		b. Transition Period	284
		c. Precision	284
		d. Effect of Spindle Speed	288
		e. Testing with Other Lubricants	288
	4.	Conclusions	295
	5.	Future Effort	295
VII	DEVE	ELOPMENT OF LUBE STORAGE AND RETRIEVAL SYSTEM	297
VIII	RULL	LER DEVELOPMENT	299
	1.	Introduction	299
	2.	Experimental	309

SECTION					PAGE
VIII	a.	Instr	rumenta	ation	309
		(1)	CV-1E	3 Voltammograph	309
		(2)	Miero	ocomputer System	309
	b.	Suppl	lies		310
		(1)	Chemi	cals	310
		(2)	Antic	oxidants	310
		(3)	Lubri	cating Oils	310
		(4)	Polye	ester/Polyethylene Sample Tubes	310
	c.	Seal	ing Pro	ocedure of Sample Tubes	311
	d.	Reduc	ctive (Cyclic Voltammetric Technique	312
	e.	Syste	ems to	Perform the RCV Technique	312
		(1)		B Voltammograph/Apple IIe ocomputer System	312
		(2)	_	le Board Voltammograph/Apple IIe ocomputer System	312
			(a)	Single Board Voltammograph	312
			(b)	Active Filtering and Gain Control Systems of the Single Board Voltammograph	314
			(c)	Apple IIe Microcomputer Hardware	314
			(b)	Apple IIe Microcomputer Software	316
3.	Res	ults an	nd Disc	eussion	318
	a.	Intro	oductio	on	318
	b.	Syste	em for	of a Data Acquisition Use in the RCV	
		_		on Studies	319
		(1)	Intro	oduction	319

SECTION			PAGE
VIII	(2)	Development of Data Acquisition Software	320
	(3)	Summary	324
c.		ects of Voltage Scan Parameters RUL Evaluations of RCV Technique	324
	(1)	Introduction	324
	(2)	Effects of Voltage Scan Rate	324
	(3)	Effects of Voltage Scan Range	327
	(4)	Effects of Electrooxidation Time	329
	(5)	Summary	332
d.		relopment of Single Board tammograph	332
	(1)	Introduction	332
	(2)	Unfiltered Single Board Voltammograph	334
	(3)	Single Board Voltammagraph with RC Filtered Output	334
	(4)	Single Board Voltammograph with RC Filtered Input	337
	(5)	Single Board Voltammograph with Active Filtered Input	339
	(6)	Summary	348
е	App	ngle Board Voltammograph - ble IIe Microcomputer RULLER adidate	211.0
4 DDDWN			348
APPEND		LUBRICANT PERFORMANCE TEST DATA	351
APPEND	TX B	LUBRICANT ADDITIVE ANALYSIS BY GAS CHROMATOGRAPHY WITH THERMIONIC SPECIFIC DETECTOR	501

一、日子のことと、 いれをちれなる。 のれのはのはのはの

TABLE OF CONTENTS (CONCLUDED)

		PAGE
APPENDIX C	LUBRICANT QUALIFICATION DATA FORM	513
APPENDIX D	COMPUTER PROGRAMS TO OPERATE THE CV-1B AND SINGLE BOARD VOLTAMMOGRAPH BASE RULLER CANDIDATES	519
REFERENCES		529

LIST OF ILLUSTRATIONS

IGUR	E.	PAGE
1	Oxidation Tube for DERD Test Method No. 9	6
2	Oxidation Stability Test Unit	6
3	Oxidation Stability Test Unit Showing Oxidation Tubes and Confined Heat Assemblies in Place.	6
4	Effect of Temperature on Lubricant Life Using DERD Method No. 9, Total Acid Number Increase Limit of 1.0	13
5	Effect of Temperature on Lubricant Life Using DERD Method No. 9, Total Acid Number Increase Limit of 1.5	14
6	Effect of Temperature on Lubricant Life Using DERD Method No. 9, Total Acid Number Increase Limit of 3.0	15
7	Effect of Temperature on Lubricant Life Using DERD Method No. 9, Viscosity Increase Limit of 15%	16
8	Effect of Temperature on Lubricant Life Using DERD Method No. 9, Viscosity Increase Limit of 25%	17
9	Effect of Temperature on Lubricant Life Using DERD Method No. 9, Viscosity Increase Limit of 35%	18
10	Effect of Temperature on Lubricant Life Using DERD Method No. 9, Volatilization Loss Limit of 15%	22
11	Effect of Temperature on Lubricant Life Using DERD Method No. 9, Volatilization Loss Limit of 25%	23
12	Effect of Temperature on Lubricant Life Using DERD Method No. 9, Volatilization Loss Limit of 35%	24
13	Oil Phase-Out Rate in Turbine Engines	26
14	Confined Heat Test Assembly	34
15	Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Total Acid Number Increase Limit of 2.0	37
16	Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Total Acid Number Increase Limit of 4.0	38
17	Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Viscosity Increase Limit of 15	30

FIGUR	E	PAGE
18	Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Viscosity Increase Limit of 3%	40
19	Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Viscosity Increase Limit of 5%	41
20	Antioxidant Concentration in 0-79-16 During the Squires Oxidative Test at 190°C	67
21	Antioxidant Concentration in 0-79-17 During the Squires Oxidative Test at 190°C	68
22	Antioxidant Concentration in 0-79-20 During the Squires Oxidative Test at 190°C	69
23	Antioxidant Concentration in 0-82-2 During the Squires Oxidative Test at 190°C	70
24	Antioxidant Concentration in $0-82-3$ During the Squires Oxidative Test at 190°C	71
25	Antioxidant Concentration in 0-82-14 During the Squires Oxidative Test at 190°C	72
26	RPLC Chromatogram of 0-76-5A + 2% PANA from Squires Oxidative Test at 205°C after 24 Hours	74
27	RPLC Chromatogram of 0-76-5A + 2\$ DODPA from Squires Oxidative Test at 205°C after 24 Hours	75
28	RPLC Chromatogram of 0-79-17E from Squires Oxidative Test at 205°C after 24 Hours	76
29	Log Molecular Weight of Compounds I, II, III, and PANA vs Gel Permeation Chromatography Retention Times	78
30	Concentration of Intermediate Antioxidant Species in 0-77-1 with 1% PANA and 1% DODPA from the Squires Oxidative Test at 190°C	81
31	Concentration of Intermediate Antioxidant Species in 0-79-20 from the Squires Oxidative Test at 190°C	82
32	Concentration of Intermediate Antioxidant Species in 0-77-1 with 1% PANA and 1% DODPA from the Squires Confined Heat Test at 190°C	83
33	Refractive Indices of Oxidatively Stressed Oils	87

FIGUE	RE	PAGE
34	Static Coker Deposition Tester; (A) Base Section, (B) Test Coking Surface, (C) PTFE Seal, (D) Steel Sleeve Retainer, (E) Convection Shield, (F) Brass Sealing Ring, (G) Insulation	91
35	Schematic of the Static Coker Unit	92
36	Coking Deposit versus Molecular Weight of Ester; (A) di-2-ethylhexyl adipate, (B) 2, 2-dimethyltrimethylene nonanoate, (c) di-2-ethylhexyl azelate, (d) di-2-ethylhexyl sebacate, (E) trimethylolpropane triheptanoate. (F) pentaerythritol tetraheptanoate	100
37	Particle Size Distribution of Wear Metal Generated from the Pin-on-Disk and Gear Wear Tests	109
38	High Temperature Oven Used for Coking Propensity Test	122
39	Photographs of Coking Propensity Test Dishes with Deposits	123
40	Small Volume Foam Test Equipment, (A) Metal Sparger, (B) Sealed Frit Foaming Tube	133
41	Air Sparger Rated Pore Size versus Calculated Pore Size	139
42	Microphotographs of Various Pore Size Metal Spargers and a ASTM Stone	140
43	Effects of Sample Volume on Foam Volume (Fed. Test Method 3213)	144
44	Effects of Sample Volume on Foam Volume (Fed. Test Method 3213)	145
45	Effects of Sparger Pore Size on Foaming (500 ml Cylinder, 200 ml Sample, 1000 cc/min Airflow)	147
46	Effects of Sparger Pore Size on Foaming (500 ml Cylinder, 200 ml Sample, 500 cc/min Airflow)	148
47	Effects of Sparger Pore Size on Foaming (250 ml Cylinder, 25 ml Sample, 1000 cc/min Airflow)	149
48	Effects of Sparger Pore Size on Foaming (250 ml Cylinder, 25 ml Sample, 500 cc/min Airflow)	150
49	Effects of Various Diameter 5 Micron Spargers and ASTM Stone on Foaming Using 200 ml Sample Size. Data Grouped for Each Lubricant	155

FIGU	RE	PAGE
50	Effects of Various Diameter 5 Micron Sparger and ASTM Stone on Foaming Using 200 ml Sample Size. Data Grouped for Each Size Sparger	156
51	Effects of Various Diameter 5 Micron Spargers and ASTM Stone on Foaming Using 25 ml Sample Size. Data Grouped for Each Lubricant	157
52	Effects of Various Diameter 5 Micron Spargers and ASTM Stone on Foaming Using 25 ml Sample Size. Data Grouped for Each Size Sparger	158
53	Effect of Lubricant Formulation on the Ratio of Foam Volume at 1000 cc/min Airflow to Foam Volume at 500 cc/min Airflow Using Various Diameter and Micron Rated Air Dispersers, 200 ml Sample Size, Non-Silicone Containing Fluids	159
54	Effect of Lubricant Formulation on the Ratio of Foam Volume at 1000 cc/min Airflow to Foam Volume at 500 cc/min Airflow Using Various Diameter and Micron Rated Air Dispersers, 200 ml Sample Size, Silicone Containing Fluids	160
55	Photographs of an ASTM Diffuser Stone and a 1/2 inch Diameter Sparger without Air Flow (4X Magnification)	162
56	Photographs of Air Bubbles Using Non-Foaming Fluid 0-76-8 and 1000 cc/min Airflow with ASTM Diffuser Stone and 40 Micron 1/2 inch Diameter Sparger (4X Magnification)	163
57	Photographs of Air Bubbles Using Non-Foaming Fluid 0-76-8 1000 cc/min Airflow with 1/2 inch Diameter 20 Micron and 10 Micron Pore Size Spargers (4X Magnification)	164
5ძ	Photographs of Air Bubbles Using Non-Foaming Fluid 0-76-8 and 1000 cc/min Airflow with 1/2 inch Diameter 5 Micron and 2 Micron Pore Size Spargers (4X Magnification).	165
59	Photographs of Air Bubbles Using Foaming Fluid 5K3L6 and 1000 cc/min Airflow with ASTM Diffuser Stone and 40 Micron 1/2 inch Diameter Sparger (4X Magnification)	166
60	Photographs of Air Bubbles Using Foaming Fluid 5K3L6 and 1000 cc/min Airflow with 1/2 inch Diameter 20 Micron and 10 Micron Pore Size Spargers (4X Magnification)	167
61	Photographs of Air Bubbles Using Foaming Fluid 5K3L6 and 1000 cc/min Airflow with 1/2 inch Diameter 5 Micron and 2 Micron Pore Size Spargers (4K Magnification)	169

FIGUR	E	PAGE
62	Comparison of Foaming Data Obtained from Test Method 3213 and 200 ml Samples Using Various Diameters 5 Micron Spargers	170
63	Comparison of Foaming Data Obtained from Test Method 3213 and 25 ml Volume Samples Using ASTM Stone and Various 5 Micron Spargers	171
64	Comparison of Foaming Data Obtained from 200 ml and 25 ml Volume Samples Using the Same Air Diffuser	172
65	Comparison of Foaming Data Obtained from Test Method 3213 and 25 for ml Volume Samples Using ASTM Stone and Showing Standard Deviation Test Method 3213 Foaming Data	173
66	Comparison of Foaming Data Obtained from Test Method 3213 and 25 ml Volume Samples Using 13/16" Diameter 5 Micron Sparger	174
67	Gas Flow Rate Effect on Background Emission Signal for Fe in MIL-L-7808 and 245 Basestock	185
68	Gas Flow Rate Effect on Background Emission Signal for Cr in MIL-L-7808 and 245 Basestock	186
69	Gas Flow Rate Effect on Background Emission Signal for Cu in MIL-L-7808 and 245 Basestock	187
70	Gas Flow Rate Effect on Background Emission Signal for Mg in MIL-L-7808 and 245 Basestock	188
71	Gas Flow Rate Effect on Background Emission Signal for Mo in MIL-L-7808 and 245 Basestock	189
72	Gas Flow Rate Effect on Background Emission Signal for Ti in MIL-L-7808 and 245 Basestock	190
73	Gas Flow Rate Effect on Emission for Fe in (a) MIL-L-7808 and (b) 245 Basestock	192
74	Gas Flow Rate Effect on Emission for Ag in a) MIL-L-7808 and b) 245 Basestock	193
75	Gas Flow Rate Effect on Emission for Al in a) MIL-L-7808 and b) 245 Basestock	194
76	Gas Flow Rate Effect on Emission for Cr in a) MIL-L-7808 and b) 245 Basestock	195

FIGUR	RE .	PAGE
77	Gas Flow Rate Effect on Emission for Cu in a) MIL-L-7808 and b) 245 Basestock	196
78	Gas Flow Rate Effect on Emission for Mg in a) MIL-L-7808 and b) 245 Basestock	197
79	Gas Flow Rate Effect on Emission for Ni in a) MIL-L-7808 and b) 245 Basestock	198
80	Gas Flow Rate Effect on Emission for Si in a) MI1-L-7808 and b) 245 Basestock	19 9
81	Gas Flow Rate Effect on Emission for Ti in a) MIL-L-7808 and b) 245 Basestock	200
82	Gas Flow Rate Effect on Emission for Mo in a) MIL-L-7808 and b) 245 Basestock	201
83	Wear Particle Analyzer	208
84	Schematic of the Wear Particle Analyzer	210
85	Microfiltration Test Rig Assembly	223
86	Schematic of the Microfiltration Test Rig	224
87	Photomicrograph of the Small Pore Size APM Graded Filter Medium (1000 X)	226
88	Photomicrograph of the Large Pore Size APM Graded Filter Medium (60 X)	226
89	Particle Size Distribution of Fe Particles Generated from Four Ball, Gear and Pin-on-Disk Wear Tests	228
90	Ferrographic Micrographs of the Pin-on-Disk Wear Debris; (A) Stock Solution; (B) After the First Pass thru the APM Filter; (C) After Third Pass	
	thru the APM Filter	231
91	Complete Oil Breakdown Rate Analyzer (COBRA)	234
92	COBRA Readings of MIL-L-7808 Lubricants from the Squires Oxidative Test at 175°C	238
93	COBRA Readings of MIL-L-7808 Lubricants from the Squires Oxidative Test at 190°C	239

FIGUR	E	PAGE
94	COBRA Readings of MIL-L-7808 Lubricants from the Squires Oxidative Test at 205°C	240
95	COBRA Readings of MIL-L-7808 Lubricants from the Squires Confined Heat Test at $175^{\circ}\mathrm{C}$	241
96	COBRA Readings of MIL-L-7808 Lubricants from the Squires Confined Heat Test at 190°C	242
97	COBRA Readings of MIL-L-7808 Lubricants from the Squires Confined Heat Test at 205°C	243
98	Peroxide Numbers of MIL-L-7808 Lubricants from the Squires Oxidative Test at 190°C	248
99	Peroxide Numbers (Adjusted for Volatility Loss) of MIL-L-7808 Lubricants from the Squires Oxidative Test at 190°C	249
100	COBRA Reading vs. Ester Depletion for 0-77-1 + 1% PANA + 1% DODPA from the Squires Oxidative Heat Test at 205°C	2 52
101	COBRA Reading vs. Ester Depletion for 0-76-5A + 1% PANA + 1% DODPA from the Squires Oxidative Test at 205°C	253
102	COBRA Reading vs. Ester Depletion for 0-77-1 + 1% PANA + 1% DODPA from the Squires Confined Heat Test at 205°C	254
103	COBRA Reading vs. Ester Depletion for 0-76-5A + 1% PANA + 1% DODPA from the Squires Confined Heat Test at 205°C	255
104	Conductance of MIL-L-7808 Lubricants from the Squires Oxidative Test at 190°C	258
105	Conductance of MIL-L-7808 Lubricants from the Squires Oxidative Test at 205°C	259
106	Conductance of MIL-L-7808 Lubricants from the Squires Confined Heat Test at 190°C	260
107	Conductance of MIL-L-7808 Lubricants from the Squires Confined Heat Test at $205^{\circ}\mathrm{C}$	261
108	Conductance vs. COBRA Readings for Lubricants from Squires Oxidative Test at 190°C	262
109	Conductance vs. COBRA Readings for Lubricants from Squires Oxidative Test at 205°C	262

FIGUR	3	PAGE
110	Conductance vs. COBRA Readings for Lubricants from Squires Confined Heat Test at 190°C	264
111	Conductance vs. COBRA Readings for Lubricants from Squires Confined Heat Test at 205°C	265
112	Oil Maintenance Tester 12 Second Current Readings of MIL-L-7808 Lubricants from the Squires Oxidative Test at 190°C	268
113	Three Regimes of Friction and Wear (Reproduced from Reference 67)	279
114	Four Ball Wear Test Machine Housing with LVDT (a), Resistance Heater and Three Ball Specimen Cup (b)	281
115	Variation of Wear Scar Diameter and LVDT Output with Time in 0-79-20 Oil	285
116	Variation of LVDT Output with Time for 0-79-20 0il at 1200 RPM and Loads of 147, 245 and 392 N.	286
117	Variation of LVDT Output with Time for 0-79-20 0il at 147 N Load and at Spindle Speeds of 200, 1200 and 2000 RPM	287
118	Effect of Load on Wear Scar Diameter (WSD) in One Oil, 0-79-20, at One Speed, 1200 RPM for a Test Duration of One Hour	289
119	Effect of Spindle Speed on Wear Scar Diameter (WSD) in Oil 0-79-20 for 20 Hour Test Duration	290
120	Effect of Load on Final Scar Diameter for Various MIL-L-7808 Type Lubricants	291
121	Effect of Spindle Speed on Final Scar Diameter for Various MIL-L-7808 Type Lubricants	292
122	LVDT Output During a 68 Hour Test of 0-76-1, Using 147 N Load 2000 RPM Spindle Speed	294
123	Determination of Useful Life by Plotting Physical Properties Versus Stressing Time for Long Term Stability Test	300
124	Plots of the ln of the Reduction Wave Height and Percent Remaining Useful Life of the RCV Technique Versus Hours of Remaining Useful Life at 370°F for the Fresh and Stressed MIL-L-7808 Oils	301

FIGUR	E	PAGE
125	Plots of the ln of the Reduction Wave Height and the Fe Concentration (ppm) Versus Flight Time (Hours) for Used MIL-L-23699 Oil Samples	306
126	Plots of the ln of the Reduction Wave Height and the Fe Concentration (ppm) Versus Flight Time (Hours) for Used MIL-L-7808 and MIL-L-23699 Oil Samples	307
127	Schematic of Single Board Voltammograph	313
128	Schematic of Single Board Voltammograph Equipped with Active Filtering and Gain Control Systems	315
129	Flow Chart of the Machine Code Program Used to Operate the Single Board Voltammograph	317
130	Raw Data Plots (3000 Points: 8.8 msec per Point) of the Voltammograms Produced by the RCV Technique Using a 1V/Sec Scan Rate for the Fresh TEL-4001 Oil (a) the Stressed TEL-4001 Oil with 50% RUL (b) and the Blank Solution (c)	321
131	Raw Data Plots (3000 Points: 1.8 msec per Point) of the Voltammograms Produced by the RCV Technique Using a 5V/Sec Scan Rate for the Fresh TEL-4001 Oil (a) the Stressed TEL-4001 Oil with 50% RUL (b) and the Blank Solution (c)	322
132	Raw Data Plots (3000 Points: 0.88 msec per point) of the Voltammograms Produced by the RCV Technique Using a 10V/Sec Scan Rate for the Fresh TEL-4001 Oil (a) the Stressed TEL-4001 Oil with 50% RUL (b) and the Blank (c)	323
133	Plots of the ln of the Reduction Wave Height of the RCV Technique Versus Hours of Remaining Useful Life at 370°F for the Fresh and Stressed TEL-4001 Oils Using 1, 5, 10V/Sec Scan Rates	326
134	Plots of the ln of the Reduction Wave Height of the RCV Technique Versus Hours of Remaining Useful Life at 370°F for the Fresh and Stressed TEL-4001 and TEL-4004 Oils Using a 10V/Sec Scan Rate and -0.2 to 1.0V and -0.2 to 1.2V Scan Ranges	328
135	Plots of the ln of the Reduction Wave Height of the RCV Technique Versus Stressing Time (Hours) at 370°F for the Fresh and Stressed TEL-4004 Oils Using Electrooxidation Times of 0, 1, 2 and 5 Seconds, at 1.1V, a 1V/Sec Scan Rate,	
	and a 1.1 V to -0.15V Scan Range.	221

FIGUR	E	PAGE
136	Reduction Voltammograms Produced by the Single Board Voltammograph for the Fresh TEL-4001 Oil and the Blank	335
137	Reduction Voltammograms Produced by the Single Board Voltammograph with the RC Filtered Output for the Fresh TEL-4001 Oil and the Blank	336
138	Effects of Successive Analyses on the Reduction Voltammogram Produced by the Single Board Voltammograph for the Fresh TEL-4004 011	338
139	Reduction Voltammograms Produced by the Single Board Voltammograph with and without RC Filtered Input for the Fresh TEL-4004 Oil	340
140	Effects of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with RC Filtered Input for the Fresh TEL-4004 Oil Using a 1 V/Sec Scan Rate and a -0.1 to 1.15 V Scan Range	341
141	Effects of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with RC Filtered Input for the Fresh TEL-4004 Oil Using a 2 V/Sec Scan Rate and a -0.î to 1.15 V Scan Range	342
142	Effects of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with RC Filtered Input for the Fresh TEL-4004 Oil Using a 4 V/Sec Scan Rate and a -0.1 to 1.15 V Scan Range	343
143	Effects of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with RC Filtered Input for the Fresh TEL-4004 Oil Using a 4 V/Sec Scan Rate and a -0.2 to 1.05 V Scan Range	344
144	RCV Technique Voltage Waveform Before and After Filtering	346
145	Effects of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with Active Filtered Input for the Fresh TEL-4004 0il Using a 2 V/Sec Scan Rate and a -0.1 to 1.15 V Scan Range	347
146	Reduction Voltammograms Produced by the Single Board Voltammograph with Active Filtered Input for the Fresh TEL-4004 Oil Using 4, 10, and 20 V/Sec Scan Rates and a -0.1 to 1.15 V Scan Range.	349

FIGURE	PAGE
B-1 VISTA 402 METHOD TSD	506
B-2 Vista 402 Method TSD1	508
B-3 Gas Chromatographic Analysis of 0-79-16J	510
D-1 Basic Language Program Used to Operate the CV-1B Based RULLER Candidate	520
D-2 Machine Code Program Used to Operate the Single Board Voltammograph	523
D-3 Basic Language Program to Operate the Single Board Voltammograph Based RULLER Candidate	52 5
D-4 Apple IIe Microcomputer Basic Variables and Locations	527
D-5 Apple IIe Micromputer Memory Map	528

LIST OF TABLES

TABLE		PAGE
1	Description of Test Lubricants	11
2	Effective Lubricant Life, DERD Method No. 9 (No Dilution) Acidity Increase Limits	19
3	Effective Lubricant Life, DERD Method No. 9 (No Dilution), Viscosity Increase Limits	20
4	Effective Lubricant Life, DERD Method No. 9 (No Dilution), Volatilization Loss Limits	25
5	Effect of Additive Content on Lubricant Life at 205°C	28
6	Effect of 1.0% PANA Plus 1.0% DODPA on Ester Stability at 190°C and 205°C	30
7	Effect of Identified Impurities in 0-76-8 on Ester Stability	31
8	Effective Lubricant Life, DERD Method No. 1 (No Dilution) Acidity Increase Limits	42
9	Effective Lubricant Life, DERD Method No. 1 (No Dilution) Viscosity Increase Limits	43
10	Effective Ester Life, DERD Method No. 1	44
11	Effects of Antioxidants on Ester Lubricant Life, DERD Method No. 1, 205 °C Test Temperature.	45
12	Results of Reflux Corrosion/Oxidation Test, Lubricant 0-79-16, Test A	48
13	Results of Reflux Corrosion/Oxidation Test, Lubricant 0-79-16, Test B	49
14	Results of Reflux Corrosion/Oxidation Test, Lubricant 0-79-17, Test A	50
15	Results of Reflux Corrosion/Oxidation Test, Lubricant 0-79-17, Test B	51
16	Summary of Corrosion and Oxidation Test Data	52
17	Results of Reflux Corrosion/Oxidation Test, Lubricant 0-71-6	54
18	Results of Reflux Corrosion/Oxidation Test, Lubricant	r c

LIST OF TABLES (CONTINUED)

TABLE		PAGE
19	Liquid Chromatography Conditions for Antioxidant Analysis	65
20	Ultraviolet Spectroscopy and Mass Spectrometry Data of Antioxidant Intermediate Species	77
21	Refractive Indices at 25°C of Stressed Lubricants	86
22	Refractive Indices for Various Esters	88
23	Repeatability of Static Coker Deposits Using MIL-L-7808 Lubricant, 315°C Test Temperature and Shim Stock Surface	96
24	Effect of Test Surface Material on Lubricant Coking Deposits at 315°C	98
25	Effect of Antioxidants on Coking Deposits at 315°C Test Temperature and Shim Stock Surface	101
26	Effect of Temperature on Lubricant Coking Deposits Using Shim Stock Test Surface	103
27	Effect of 205°C Confined Heat Stressing on Lubricant Coking at 315°C on Shim Stock Surface	106
28	Effect of 205°C Oxidative Stressing on Lubricant Coking at 315°C on Shim Stock Surface	107
29	Effects of Wear Debris on Lubricant Coking at 315°C on Shim Stock Surface	110
30	Properties of Stressed Esters Containing Antioxidants Used for Coking Studies at 315°C and Shim Stock Surface	112
31	Effect of Filtering Prestressed Esters Containing Antioxidants on Lubricant Coking at 315°C and Shim Stock Surface	115
32	Lubricant Coking Tendencies with Various Deposition Tests.	117
3 3	Summary of Coking Propensity Test Data.	126
34	Effect of Test Dish Material on Coking Propensity at 300°C Test Temperature	127
35	Coking Propensity Versus Lubricant Type	127
36	Repeatability of Lubricant Coking Propensity Test	120

LIST OF TABLES (CONTINUED)

TABLE		PAGE
37	Repeatability of Lubricant Coking Propensity Test Data, 260°C	130
38	Lubricants and Fluids Used for Foaming Study	134
39	Comparison of Lubricant Diffuser Stones and Air Spargers.	135
40	Porosity and Permeability of Foam Test Air Diffusers	138
41	Changes in Porosity and Permeability of Foam Test Air Diffusers	141
42	Pressure Versus Flowrate of Foam Test Air Diffusers	143
43	Comparison of Test Method 3213 Foaming Data with the Sealed Frit 25 ml Sample Foaming Data	153
44	Exposure Time Effect on Emission Readout	203
45	Engine Simulator Test No. 47-A1-WF Wear Metal Analyses	204
46	Engine Test Stand Wear Metal Analyses	205
47	Efficiency of Filters Using Various Particle Sizes of Fe Powders	212
48	Effect of Sample Volume on WPA Readout Using Pin-on-Disk Wear Sample and Various Size WPA Filters	214
49	Effect of Sample Volume on WPA Readout Using Used Engine Oil Sample and Various Size WPA Filters	214
50	Repeatability of the Wear Particle Analyzer for Different Sample Volumes and Filters Using Pin-on-Disk Oil Sample	214
51	Comparative Results Using the Wear Particle Analyzer and a Solvent Extraction Method for Iron in Used Turbine Jet Engine Oils	2 16
52	Comparative Results of AE, ADM and WPA for Fe in Engine Simulator Test Samples	217
53	Results of Modified Sample Introduction System in the WPA	218
54	Efficiency of APM Filters for Single Pass of Pin-on-Disk Samples	230

PROCEEDINGS OF SECOND SECOND SECOND PROPERTY OF SECOND PROCESS SECOND SE

LIST OF TABLES (CONTINUED)

TABLE		PAGE
55	Effect of Electrode Combinations on COBRA Readings	236
56	COBRA Readings of MIL-L-7808 Lubricants from the Squires Oxidative Test at Points of Equal TAN and Viscosity Increases	244
57	COBRA Readings of MIL-L-7808 Lubricants from the Squires Confined Heat Test at Points of Equal TAN and Viscosity Increases	245
58	Chromatographic Conditions for Ester Analysis	250
59	Effect of Added Degradation Products to 0-77-1 on COBRA Reading	256
60	Effect of Bottom Electrode on Conductance Measurements	257
61	Oil Maintenance Tester Data from Squires Oxidatively Stressed Lubricants at 190°C	269
62	Comparison of Ryder, IAE and FZG Test Parameters	274
63	TCP Concentrations in Various MIL-L-7808 Type Lubricants	282
64	Variation of Wear Scar Size with Oil	293
65	Summary of Analytical Techniques with RUL Evaluation Capabilities	303
66	Comparison of the Analytical Techniques' Potentials for Development into a RULLER	304
67	Comparison of the Single Board and CV-1B Voltammographs	333
A-1	Squires Oxidative Test Data	352
A-2	Squires Confined Heat Test Data	381
A- 3	AFAPL Static Coker Test Data	406
A-4	Lubricant Coking Propensity Test Data	468
A- 5	Description of Coking Propensity Test Deposits	478
A-6	Lubricant Foaming Test Data	1183

LIST OF TABLES (CONCLUDED)

TABLE		PAGE
B-1	Calibration of Antioxidants	511
B-2	TCP Content of 0-79-16J	512
C-1	Lubricant Qualification Data Sheet	514

SECTION I

INTRODUCTION

This work was conducted to develop improved methods for defining and predicting lubrication performance in gas turbine engines. This includes development of lubrication system health monitoring techniques; techniques for lubricant condition monitoring; efficient storage, correlation, and display of current and historical lubricant performance data and development of remaining useful life of a lubricant evaluation rig. Methods development in this program to better define and predict lubricant performance was designed to provide more cost effective methods for lubrication evaluation and the prediction of lubricant performance. The methods are applicable to all types of turbine engine lubricant systems and various lubricating fluids, including the currently used ester based fluids (MIL-L-7808 and MIL-L-23699 oils), mineral oils, polyphenyl ethers, and other high temperature lubricating fluids.

Task I, "The Development of Improved Methods for Measuring Lubricant Performance," was concerned with determining lubricant stability, lubricant coking and lubricant foaming characteristics. The lubricant stability was determined using various high temperature lubricant degradation testing techniques including oxidation, confined heat and corrosion/oxidation. The different testing techniques were used to study the stabilities of all lubricants at temperatures of 215°C or below and at test times between 24 and 768 hours, depending upon test temperatures and other test conditions. Evaluation and correlation of test results were based on changes in composition, acidity, viscosity, volatility and electrochemical

characteristics of the stressed lubricants. The data obtained for each stressed lubricant were used to produce Arrhenius plots. The plots were used to express the stabilities of each lubricant under various thermal and oxidative conditions as maximum temperature capabilities. The prediction capability of each method will then evaluated and refined to develop models which can accurately predict lubricant performance based on required parameters.

Postocol (Salada) Postocol (Postocol)

The lubricant coking characteristics were investigated with respect to the effects of time, temperature, sample volume, lubricant composition, and test specimen material on the deposition tendencies of various basestock and additive package combinations. The effects of wear debris and lubricant degradation on lubricant deposition characteristics were also studied. The AFAPL Static Coker and Rolls-Royce Coking Propensity Tests were used. The physical properties of the coke deposits produced by the above tests were evaluated and the deposit values were compared with other techniques such as the microcarbon residue tester, bearing deposition rig and tube deposition test.

The third area of Task I was concerned with the study of different size spargers and the development of a lubricant static foaming test which requires 25 ml or less of sample. The results of the developed test were evaluated by comparing them with data obtained from the ASTM static foaming 200-ml sample test.

Task II, "Development of Improved Lubrication System Health Monitoring Techniques," was concerned with determining the morphology of wear debris present in used oil samples taken from turbine engines undergoing normal and severe wear. The particle size detection capabilities of different analytical techniques such as the wear particle analyzer, atomic absorption

spectrophotometry, and atomic emission spectrometry were determined for wear debris of various composition and morphology. The impact of using fine filtration (3-10 micron) in aircraft lubrication systems was evaluated with regard to continued use of present Air Force SOAP wear metal monitors. Requirements for future systems will be defined if current methods prove inadequate.

Task III, "Investigation of Lubricant Monitoring Techniques," involved an investigation into the electrochemical properties of synthetic turbine lubricants. The investigation included a systematic study involving the effects of various basestock and additive package combinations and of different degrees of thermal and oxidative stressing on the electrochemical properties of synthetic turbine lubricants. The Complete Oil Breakdown Rate Analyzer and other applicable instruments for measuring conductivity and dielectric breakdown voltage were used to measure and study the changes in the lubricants' electrochemical properties.

Task IV, "Lubricant Load Carrying Capability Test Assessment," involved an investigation of alternative techniques for measuring load carrying capacity for the Ryder gear test which suffers from a lack of precision.

Specifically, the FZG-Ryder (Forschungsstelle fur Zahnrader and Getriebebau) and IAE were assessed as alternatives to replace the Ryder gear test.

Factors included in the assessment were test conditions and materials for testing lubricants. The four ball wear test was investigated for determining the load carrying capacity of lubricants. The most promising load carrying assessment procedure will be developed into a test for inclusion into lubricant specifications if appropriate.

Task V, "Development of Specification Wear Test," began with a review of existing techniques and test rigs used for measuring wear. The techniques

and test rigs with the potential of being developed into a specification test for measuring wear prevention characteristics of synthetic turbine lubricants are being ranked according to cost, test time, and repeatability. The ability of each test rig or technique to detect changes in the wear prevention characteristics of different lubricants produced by minor formulation changes is being determined. A recommendation of these techniques will be made for evaluating the wear characteristics of MIL-L-7808 and MIL-L-23699 lubricants. If appropriate, the best technique will be proposed for inclusion in the lubricant specifications.

Task VI, "Development of Lube Data Storage and Retrieval System," will result in the implementation and demonstration of a microcomputer system for lubricant test data storage, retrieval, correlation, and evaluation. The developed system incorporates generated data for MIL-L-7808, MIL-L-23699, and other laboratory formulated lubricants and will incorporate all currently used test data for determining and defining lubricant performance and uses a Zenitn 4-100 microcomputer.

Finally, Task VII, "RULLER DEVELOPMENT" was conducted to develop a reductive cyclic voltammetric technique (RCV) for the determination of the remaining useful life of a lubricant. Optimizing experimental parameters of the RCV for determining the remaining useful life of used MIL-L-7808 and MIL-L-23699 was completed. Work is progressing towards miniaturizing the data management system.

SECTION II

DEVELOPMENT OF IMPROVED METHODS FOR MEASURING LUBRICANT PERFORMANCE

1. LUBRICANT OXIDATIVE STABILITY

a. Introduction

The objective of this phase of the program was to investigate the oxidative stability of selected turbine engine lubricants under various temperature conditions, and define stability in terms of their effective lubricant life based upon selected limiting values of various physical and chemical properties. Properties monitored during lubricant stressing included volatility, acidity, viscosity, toluene insolubles, electrochemical characteristics and composition. Arrhenius curves describing effective lubricant life as a function of temperature were developed using only the changes in total acid number (TAN), viscosity and lubricant loss (volatility).

b. Test Apparatus

The oxidation test apparatus is described by DERD Test Method No. 9 prepared by the Ministry of Defence, Directorate of Engine Technology, United Kingdom. This test method is based on Rolls-Royce Ltd. lubricant test development. The test apparatus consists primarily of an oxidation tube shown in Figure 1, a heating bath containing polyphenyl ether as the heat medium and an air flow system including an air filter for removal of oil and large debris and a 5 micron membrane filter for removing fine debris, a pressure regulator, calibrated flow meter and air saturation assemblies. Test assembly is shown in Figures 2 and 3. This test is essentially an oxidation test similar in some respects to many other oxidation tests. To avoid confusion this oxidation test and oxidative test data using this test

Figure 1. Oxidation Tube for DERD Test Method No. 9

Figure 2. Oxidation Stability Test Unit

Figure 3. Oxidation Stability Test Unit Showing Oxidation Tubes and Confined Heat Assemblies in Place

will be referred to as the Squires oxidation test or Squires oxidative test data as opposed to other corrosion and oxidation testing discussed in this report.

Two variations were made in using the DERD Test Method No. 9 with the first involving the air blowing tubes. Initial tests indicated a small difference in the degree of lubricant stressing between the six air blowing tube assemblies supplied by Rolls-Royce Ltd. having ground glass tapers of 24/29 and those obtained from SGA Inc. having a taper of 29/42. The SGA manufactured tubes gave a slightly lower test severity for all measured properties. Since this difference in severity was small all subsequent testing was to be conducted using SGA manufactured tubes. However, contact with SGA for additional tube assemblies showed they would no longer supply the tubes. Upon request Ace Glass Inc. supplied an air blowing tube of similar dimensions and having a 29/42 taper for evaluation and comparison with the tubes provided by Rolls-Royce Ltd and SGA Inc. Testing of lubricant 0-79-16 at 205°C for 168 hours using the different tube assemblies was conducted and a comparison of test data obtained is shown below:

Assembly Manufacturer	R.R.	SGA	Ace Glass Inc.
Weight Loss, % wt	72.2	73.2	71.2
COBRA Reading (Final)	82	84	80
TAN (Final)	1.90	1.84	2.08
Viscosity (Final cSt)	5.66	5.72	5.54

Based upon this data, all subsequent testing was conducted using air blowing assemblies having glass tapers of 29/42 manufactured by either SGA or Ace Glass Inc.

The second variation involved measuring of the TAN and viscosity of the stressed fluids without oil makeup and is discussed in Section II.1.e.

c. Test Procedure

The oxidation tube assemblies were cleaned using the following

stepwise procedure:

- Step 1. Washing the assemblies with V.M.P. naphtha and air drying.
- Step 2. Soaking the assemblies in carbon remover (Citrikleen, Type HD) for 24 hours or longer if required.
- Step 3. Rinsing the assemblies with tap water.
- Step 4. Washing the assemblies with Alconox detergent and rinsing with tap water.
- Step 5. Rinsing the assemblies with distilled water and drying at about 50°C using a forced air oven.

Steps 1 thru 3 were eliminated for new oxidation tube assemblies since no carbonaceous material existed within the assemblies. The test baths were adjusted to correct temperature and checked with a calibrated Type J thermocouple. Air saturation units (air bubblers) were filled with distilled water and were replenished as necessary during the test to ensure air saturation throughout the duration of the test. Air flow was initiated with the air flow rates being slightly below the required limit of 250 cc/min. Oxidation test assemblies were weighed to the nearest 0.01 gram. Fifty milliliters of the test lubricant was added to the assembly which was then reweighed for providing initial sample weight. The weighed assembly containing the test oil was then placed in the oil bath and the air tube from the saturator was immediately connected to the air inlet tube of the test assembly. Air flow was adjusted to 250 cc/min and was considered starting test time. Testing continued for a specified time period depending upon test temperature and degradation level of previous sample. Test assemblies were then removed from the bath, wiped with a lint free towel, and cooled to room

temperature. Outside of tube assembly was then washed with V.M.P. naphtha to remove any residual bath oil, air dried and then reweighed for determining lubricant loss due to volatility. The lubricants were then poured into an amber vial containing a polyseal cap and used for subsequent testing.

Testing conducted on the stressed lubricant consisted of total acid number (TAN) measurements, viscosity determinations, COBRA measurements, toluene insolubles and for some samples gas chromatography (GC) and high performance liquid chromatography (HPLC). TAN measurements were conducted in accordance with method ASTM D 664 using 1 to 5 gram samples depending upon remaining sample volume.

Kinematic viscosity measurements were conducted in accordance with method ASTM D 445 using semi-micro viscometers.

The COBRA (Complete Oil Breakdown Rate Analyzer) instrument measures changes in the electrochemical characteristics of the lubricant. The COBRA instrument has been previously described² and a detailed discussion of its operation and development of calibration standards for this instrument will not be repeated in this report.

Toluene insolubles were determined by heating and sonicating the samples to suspend particulates, weighing 1 to 10 grams of the test lubricant into a glass stoppered flask and then adding 100 ml of pre-filtered (5 micron) reagent grade toluene. The flask was stoppered, swirled for 30 seconds and then placed in dark storage for seven days. The contents of the flask were then filtered through a 5 micron teflon membrane filter. The filter was washed with toluene, dried in an oven at 100°C for 30 minutes and then allowed to equilibrate to room temperature. The filter was weighed and percent toluene insolubles calculated from any increase in filter weight.

d. Test Lubricants and Test Conditions

A total of 11 lubricants, three esters and 38 ester-additive blends containing various percentages and combinations of additives were examined in this study. Oxidative testing of many ester-additive mixtures was conducted for providing stressed samples for deposition studies. Table 1 presents a listing of the lubricants and ester-additive mixtures including a description of each fluid.

Particular Percentage Breezes

Lubricants were stressed at temperatures ranging from 175°C (347°F) to 215°C (419°F). Test durations ranged from 24 hours to 768 hours depending upon the test temperature and the specific fluid being tested. Testing was discontinued for each test fluid after severe degradation or very high lubricant loss had occurred. Lubricant make-up due to volatility oil loss during test was not made prior to analysis of stressed samples.

Total acid numbers and COBRA measurement were conducted on the same day the samples were removed from the test bath since these properties can change with time after being stressed and stored at room temperature.

e. Results and Discussion

COCCASAS SASSASS POLICION

The rate of degradation can be expressed by the Arrhenius equation $K = Ae^{-E/RT}$ where

K = rate constant

A = pre-exponential factor (constant)

E = activation energy (cal/mole)

R = gas constant (cal/deg mole)

T = absolute temperature (OK)

Lubricant life is inversely proportional to the rate of degradation and can be expressed as $D = (1/A)e^{-E/RT}$. Representing E/R log e by C, the following logarithmic form to base 10 of this equation is log $D = C/T \log A$. Using this equation and plotting effective lubricant life against reciprocal

TABLE 1

DESCRIPTION OF TEST FLUIDS

TEST FLUID	DESCRIPTION
0-71-6	MIL-L-23699 Lubricant
0-76-5	Trimethylolpropane triheptanoate
0-76-8	Di-2-ethylhexyl adipate
0-77-1	Di-2-ethylhexyl adipate
0-77-1 + I	90.2% wt. 0-77-1, Plus 8.3% wt. trimethylolpropane triheptanoate, and 1.5% wt. 2-ethylhexanol (Impurities)
0-77-1 + P	0-77-1, plus 1% wt. phenyl-alpha napthyl amine (PANA)
0-77-1 + IP	0-77-1, plus 9.8% wt. Impurities and 1% wt. PANA
0-77-15	MIL-L-23699 Lubricant
0-79-16	MIL-L-7808 Lubricant
0-79-17	MIL-L-7808 Lubricant
0-79-20	MIL-L-7808 Lubricant
0-82-2	MIL-L-7808 Lubricant
0-82-3	MIL-L-7808 Lubricant
0-82-14	MIL-L-7808 Type Lubricant
0-85-1	4 cSt Candidate Lubricant
TEL 6031	7.5 cSt Fluid
TEL 6032	7.5 cSt Fluid

degrees Kelvin using semilogarithmic graph paper provides a linear relationship between temperature and lubricant life. Appendix A Table A-1 provides all the Squires Oxidative test data developed during the study and from which Arrhenius plots were developed.

Lubricant life must be defined in terms of limiting values for selected properties. For the MIL-L-7808 lubricants, Arrhenius plots were developed using the following criteria as limiting values.

Total Acid Number Changes of 1, 1.5 and 3

Viscosity Increases at 100°C of 15%, 25% and 35%

Volatilization Losses of 15%, 25% and 35%

Figures 4 thru 6 show Arrhenius plots for six MIL-L-7808 type lubricants using TAN increase as the limiting life criteria. For all levels of TAN increase limiting values, two of the six lubricants showed much lower lubricant stability, especially at temperature of 200°C and lower.

Differences in effective life of the six lubricants are also shown in Table 2 for test temperatures of 175°C, 200°C, and 225°C for the three limiting TAN values. This table shows lubricants 0-82-2 and 0-82-14 to have much lower lubricant stability than the other lubricants. The data in Table 2 also shows the ranking of the lubricants with respect to lubricant life depends to some extent on the selected TAN increase limit.

Figures 7 thru 9 show Arrhenius plots for the six MIL-L-7808 type lubricants using viscosity increase as the limiting life criteria. Less difference in effective life is shown for the six oils than the difference in effective life based on TAN increase. This would be expected since most of the viscosity increase is due to volatilization of lighter esters. Table 3 shows the difference in effective life for these lubricants at test temperatures of 175°C, 200°C, and 225°C. The data in this table shows

Figure 4. Effect of Temperature on Lubricant Life Using DERD Method No. 9, Total Acid Number Increase Limit of 1.0

Figure 5. Effect of Temperature on Lubricant Life Using DERD Method No. 9, Total Acid Number Increase Limit of 1.5

ESSECTION NAMED IN CONTRACTOR

Figure 6. Effect of Temperature on Lubricant Life Using DERD Method No. 9, Total Acid Number Increase of 3.0

KKESTAL BREEZEN LEGEKKEL KKESSSTEFEGGGG FORKKES FORKERS FORKERS FOR FOR FORKERS FOR FORKERS FOR FORKERS FOR F

Figure 7. Effect of Temperature on Lubricant Life Using DERD Method No. 9, Viscosity Increase Limit of 15%

Figure 8. Effect of Temperature on Lubricant Life Using DERD Method No. 9, Viscosity Increase Limit of 25%

Figure 9. Effect of Temperature on Lubricant Life Using DERD Method No. 9, Viscosity Increase Limit of 35%

TABLE 2

EFFECTIVE LUBRICANT LIFE DERD METHOD NO. 9 (NO DILUTION) ACIDITY INCREASE LIMITS

TAN Increase Limit of 1.0 Lubricant Life, Hours

Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175 ⁰ C 200 ⁰ C 225 ⁰ C	2500 100 7	1100 140 26	1500 72 10	55 16 6	1400 79 7	140 24 6
			ncrease Lim ricant Life			
Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175°C 200°C 225°C	2800 149 15	2600 211 26	4000 131 8	79 26 11	1500 102 12	215 40 10
			ncrease Lim ricant Life			
Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175°C 200°C 225°C	3300 278 35	4400 334 39	11,000 196 7	105 55 32	1600 202 39	312 73 22

TABLE 3

EFFECTIVE LUBRICANT LIFE
DERD METHOD NO. 9 (NO DILUTION)
VISCOSITY INCREASE LIMITS

Viscosity Increase Limit of 15% Lubricant Life, Hours

		Lubi	ricant Life,	, nours		
Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175 ⁰ C	162	98	292	181	143	196
200°C	51	34	80	59	38	49
225°C	20	14	27	23	12	16
			y Increase ricant Life		5 %	
Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175°C	268	436	569	237	236	293
200 ⁰ C	82	108	125	92	60	83
225°C	31	34	35	42	19	29
			y Increase ricant Life		5 %	
Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175°C	376	749	885	303	324	364
200°C	112	180	163	112	80	104
225°C	41	55	40	49	25	37

relative ranking of the lubricants with respect to effective life depends upon the selected limiting value of viscosity increase as was shown for different limiting values of TAN.

Figures 10 thru 12 show Arrhenius plots for the six MIL-L-7808 type lubricants using volatilization loss as the limiting life criteria. These curves show less difference in effective life than that based on TAN increase values. Table 4 shows the difference in effective life for these lubricants at the test temperature of 175°C, 200°C, and 225°C. The data shown in Table 4 is similar to the data in Table 3 which is based on viscosity change except in most cases, the volatility loss provides slightly lower effective life values for all temperatures. It must be remembered that the Arrhenius data provided in Figures 4 to 12 are test method dependent and different values would be obtained for other types of oxidation testing. Data obtained using condensate return would tend to decrease volatility loss and increase TAN values. The use of metal corrosion test specimens could also affect lubricant stability.

In turbine engine operation periodic oil addition due to consumption would increase the effective life of the lubricant. The portion, O_T of original oil remaining after engine running time, T, is given by $O_T = e^{-CT/V}$

where C = average oil consumption

V = oil system capacity

T = time

Figure 13 shows the oil phase-out rate in turbine engines when the time (T) is expressed in terms of V/C. For example, a turbine engine lubricant system having a consumption of 0.3 pints per hour and a system capacity of 3 gallons would have a V/C value of 80. From Figure 13, 1% of

Figure 10. Effect of Temperature on Lubricant Life Using DERD Method N. 9, Volatilization Loss Limit of 15%

Figure 11. Effect of Temperature on Lubricant Life Using DERD Method No. 9, Volatilization Loss Limit Of 25%

Figure 12. Effect of Temperature on Lubricant Life Using DERD Method No. 9, Volatilization Loss Limit of 35%

TABLE 4

EFFECTIVE LUBRICANT LIFE
DERD METHOD NO. 9 (NO DILUTION)
VOLATILIZATION LOSS LIMITS

Volatilization Loss Limit of 15% Lubricant Life, Hours

Lubricant	0-79-16	0-79-17	0-70-20	0-82-2	0-82-3	0-82-14
175 ⁰ C	78	81	144	144	87	151
200°C	28	27	36	35	23	34
225°C	12	10	11	11	7	10
			ation Loss ricant Life		5%	
Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175°C	142	190	250	227	153	253
200°C	47	57	61	64	39	60
225 ⁰ C	19	21	19	22	13	18
			ation Loss ricant Life	_	5%	
Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175°C	219	342	369	290	221	371
200°C	67	100	89	93	57	86
225 ⁰ C	25	36	27	36	19	26

Figure 13. Oil Phase-out Rate in Turbine Engines

the original oil will remain after 4.5 V/C or 360 hours. This shows that oil consumption in turbine engines and volatility loss in oxidation testing can have very large effects on lubricant life.

Arrhenius plots from the Squires oxidative test data given in Appendix A Table A-1 could be developed considering volatility loss. Effect of volatility on TAN changes would be revised by dilution calculations while the viscosity increase values would be revised using ASTM method D 341 using viscosity-temperature charts for petroleum products.

Only small amounts of toluene insolubles were found for any of the six MIL-L-7808 lubricants even after severe lubricant degradation. As shown in Appendix A, Table A-1, 97% of the toluene insoluble measurements were below 0.04% weight and all values were below 0.1% weight.

The effect of additive content on lubricant stability is shown in Table 5 for 0.5, 1.0, 1.5 and 2.0% mixtures of phenyl-alpha-naphthylamine (PANA) and dioctyldiphenylamine (DODPA) and 2.0% mixtures of phenothiazine (PTZ) and dioctylphenothiazine (DOPTZ) in 0-76-5 (trimethylolpropane heptanoate) ester and 0-76-8 (di-2-ethylhexyl adipate). For the polyol ester 0-76-5, PANA provided more improvement in effective lubricant life than any other antioxidant investigated. This additive also provided improved lubricant stability at 0.5 and 1.0% concentrations while 1.5% of DODPA was required before increased stability was obtained. Two factors can influence the effectiveness of these two antioxidants. The first is the 55.7% effective antioxidant property of DODPA relative to PANA based upon the amine radical and the molecular weight of 219 for PANA and 393 for DODPA. This should provide PANA with the better antioxidant capability compared to DODPA. The second factor is the higher volatility of PANA which would reduce its effectiveness compared to DODPA which remains longer in the stressed

TABLE 5

EFFECT OF ADDITIVE CONTENT ON LUBRICANT LIFE AT 205°C

Additive Content, % Wt

	0.	0 s to	0.5 Hours		1.0 Hours		1.! Hour		2.0 Hour	
Ester	TAN 1.5	Vis 15%	TAN 1.5	Vis 15%	TAN 1.5	Vis 15%	TAN 1.5	Vis 15%	TAN 1.5	Vis 15%
0-76-5 PANA	2	1	70	60	136	130	220	156	226	130
DODPA	2	1	2	2	3	3	72	78	180	96
PTZ	2	1	-	-	-	-	-	-	48	48
DOPTZ	2	1	-	-	-	-	-	-	36	40
50/50 PANA DODPA	2	1	-	-	-	~	-	-	240	110
0-76-8 PANA	1	1	2	36	3	36	3	36	9	36
DODPA	1	1	2	26	3	26	3	26	2	24
PTZ	1	1	-	-	-	-	-	-	2	25
DOPTZ	1	1	-	-	-	-	-	-	2	28
50/50 PANA										
DODPA	1	1	-		-	~	-	-	3	24

lubricant. The data in Table 5 does not show that maximum oxidative stability has been achieved with 2.0% concentrations. Table 5 also shows that 1% PANA plus 1% DODPA in 0-76-5 provides about the same increase in ester stability as was obtained with either 2.0% of PANA or 2.0% DODPA.

PTZ showed greater improvement in stability compared to DOPTZ which again may be caused by the difference in the effective concentration due to the lower molecular weight of the PTZ which functions as the antioxidant.

The diester 0-76-8 shows much less stability with either antioxidant compared to ester 0-76-5. However, two differences are noted in the effects of antioxidants for this ester. First, very little increase in stability was obtained using any additive based upon the hours required to reach a TAN value of 1.5. Secondly, both PANA and DODPA increased the stability at 0.5% concentration based upon the hours required to reach a viscosity increase of 15%. Above this concentration, no improvement in stability was obtained and at 2.0% levels, all the various antioxidants gave about the same improvement in ester stability based on viscosity increase.

Evaluation of a second di-2-ethylhexyl adipate ester, 0-77-1 showed considerable differences when compared to the di-2-ethylhexyl adipate 0-76-8 in stability studies. Analysis of the polyol ester and the two diesters by gas chromatography showed the following compositions:

0-76-5: 89% Trimethylolpropane heptanoate (TMPH) with the remaining 11% being other mixed esters of trimethylolpropane.

0-76-8: 90% Di-2-ethylhexyl adipate, 8.3% TMPH ester, 1.5% 2-ethyl hexanol and other unidentified trace impurities.

0-77-1: 99% Di-2-ethylhexyl adipate, with trace amounts of other esters and 2-ethylhexanol.

Table 6 shows the effect of 1.0% PANA plus 1.0% DODPA on ester stability at

190°C and 205°C for the three esters with each containing 1.0% PANA and 1.0% DODPA. This data shows ester 0-76-5 to have much better oxidative stability than either diester at 205°C. At 190°C much less difference is seen between 0-76-5 and 0-77-1 than between 0-76-5 and 0-76-8. A large difference is seen in the stability of the two diesters at both temperatures.

TABLE 6

EFFECT OF 1.0% PANA PLUS 1.0 % DODPA
ON ESTER STABILITY AT 190°C AND 205°C

Temperature

	19	90 ⁰ c	205 ⁰ C		
	Hours to TAN 1.5	Hours to Vis change 15%	Hours to TAN 1.5	Hours to Vis change 15%	
0-76-5	120 +	120 +	240	110	
0-76-8	2	48	3	24	
0-77-1	96	108	24	40	

The effect of the impurities identified in ester 0-76-8 was investigated by adding 8.3% wt 0-76-5 (TMPH ester), 1.5% 2-ethylhexanol and 1.0% wt PANA to 0-77-1 and conducting a 24 hour 205°C oxidation test on the mixture. A comparison of test data obtained on this ester blend with 0-76-8 plus 1.0% PANA and 0-77-1 with 1.0% PANA is given in Table 7.

TABLE 7

EFFECT OF IDENTIFIED IMPURITIES IN 0-76-8 ON ESTER STABILITY (24 HOUR, 205°C TEST)

	0-76-8 PLUS 1.0% PANA	0-77-1 PLUS 1.0% PANA	0-77-1 Plus Impurities and 1.0≸ PANA
Weight Loss, %	23.4	12.4	14.4
COBRA Value	78	48	16
TAN Increase	9.55	1.18	1.08
Viscosity at 100°C, ≸ Increase	12.7	-0.8	6.4

This data shows that the identified impurities in 0-76-8 are not the cause for its much reduced oxidative stability and that very small quantities of unknown impurities in esters can greatly affect the improvement in ester stability using antioxidants. This is shown by the difference in TAN and viscosity increases between 0-76-8 plus 1.0% PANA and 0-77-1 plus impurities (identified in 0-76-8) and containing 1.0% PANA.

Toluene insoluble content of the esters and ester-additive mixtures was generally slightly higher than that found for the six MIL-L-7808 lubricants with 80% being 0.05% wt or below and 98% being below 0.13%. The highest toluene insoluble value was 0.34% wt for diester 0-76-8 containing 2.0% PANA after 48 hours at 205°C test temperature. Tube deposits varied from tacky material to hard coke. These deposits did not appear to be related to test time, test temperature or degree of lubricant degradation. Ester-additive combination appeared to be the main factor in the formation of tube deposits. All esters containing PANA, PTZ and DOPTZ produced various types of tube deposits while the same esters blended with DODPA did not produce tube deposits under any condition including severe lubricant degradation.

f. Summary

established using different levels of limiting values for changes in TAN, viscosity or weight loss as the maximum permissible degree of degradation. Arrhenius plots were developed describing effective life as a function of temperature for each selected limiting value of degradation. Four of the six lubricants studied were found to have similar lubricant effective lives while the remaining two had much lower effective lives. Relative ranking of the lubricants within each group depended to some degree on the criteria for defining maximum permissible degradation.

The oxidative stability study of the polyol ester trimethylolpropane heptanoate (TMPH) and two diesters (both di-2-ethylhexyl adipate esters) when blended with various antioxidants showed the TMPH ester to have superior oxidative stability when compared to either of the di-2-ethylhexyl adipate esters using the specified test procedures and evaluation criteria. A significant difference was observed between the two diesters which was shown to be due to trace impurities in one diester which could not be identified through various analyses. This shows that a formulated lubricant's oxidative stability can be decreased significantly due to trace amounts of impurities.

g. Future Effort

Oxidative stability studies of selected MIL-L-7808 lubricants,
MIL-L-23699 lubricants and 4 cSt candidate lubricants will be continued using air and nitrogen without condensate return. Studies will also include stability testing using air and condensate return. Evaluation of this data will be made and compared with corrosion-oxidation data obtained for these fluids using Federal Test Method Standard 791, Method 5307. Oxidative stability studies will also be made on higher temperature fluids such as polyphenyl ethers and perfluoro polyethers.

2. LUBRICANT CONFINED HEAT STABILITY

a. Introduction

The purpose of this study was to determine the confined heat stability of selected turbine engine lubricants under various temperatures, and to provide a measure of their stability in terms of effective lubricant life. The effective life was determined by selecting limiting values for various physical and chemical properties, and monitoring these properties during lubricant stressing. Properties monitored included weight loss due to volatility, acidity increase, viscosity increase, toluene insolubles, electrochemical properties, and composition. Only the acidity increases and viscosity increases were significant enough to provide data required for the development of Arrhenius plots, which graphically depict the effective life of a lubricant as a function of temperature.

b. Test Apparatus

The thermal or confined heat stability test apparatus consists of a stainless steel vessel shown in Figure 14 and a heating bath containing polyphenyl ether as the heat medium.

Prior to each test the vessels were degreased with V.M.P. naphtha. The vessels were then polished with a cotton pad which had been dampened in heptane and dipped into 3 micron size corundum powder. The condenser tube, aluminum washer and vessel cover were cleaned in the same manner. A small brush with the scouring mixture was used to clean inside the vent tube. The entire vessel was then rinsed and washed with Alconox detergent. Using distilled water and isopropanol as final rinses, the vessels were then blown dry with clean dry air.

c. Test Procedure

The vessel was filled to approximately two-thirds of its volume with

Figure 14. Confined Heat Test Assembly

85 ml of the sample fluid. The lid, aluminum washer, and condenser tube was assembled, screwed firmly into place, and weighed to the nearest 0.1 gram. The apparatus was placed into the heating bath which had been heated to the required test temperature. At the end of the specified test period, the vessels were removed and allowed to cool to room temperature.

The vessels were then wiped with a lint-free towel, washed with V.M.-P. naphtha and reweighed. The percent weight loss was calculated and the test assembly was opened and inspected for deposits. The test fluid was poured into an amber bottle and sealed with a Polyseal cap.

The total acid number, viscosity, toluene insolubles and electrochemical properties were determined as described in Section II.1.C.

d. Test Lubricants and Test Conditions

A total of 12 lubricants, three esters and 32 ester-additive blends containing various percentages and combinations of additives were evaluated in this study. Thermal stressing of some of the ester-additive mixtures was conducted for providing stressed samples for deposition studies. Table 1, Section II.1.d presents a listing of the lubricants including a description of each fluid with the exception of 0-79-18 which is a MIL-L-23699 lubricant.

Lubricants were stressed at temperatures ranging from 175°C to 215°C with test durations ranging from 24 hours to 577 hours depending upon the test temperature and the specific fluid being tested. Testing of each fluid was discontinued after severe degradation had occurred. Total acid numbers and COBRA measurements were conducted on the same day the samples were removed from the test bath since these properties can change with time after being stressed.

e. Results and Discussion

Lubricant life of the thermally stressed MIL-L-7808 lubricants were

developed using the following criteria as limiting values.

Total Acid Number increases of 2.0 and 4.0

Viscosity Increases at 100°C of 1%, 3% and 5%

No volatility loss criteria for effective lubricant life of the stressed

lubricants were considered since very little lubricant loss occurs. Appendix

A, Table A-2 provides all the Squires Confined Heat test data developed

during this study and from which the Arrhenius plots shown in this report

were developed.

Figures 15 and 16 show Arrhenius plots for six MIL-L-7808 type lubricants using TAN increases as the limiting life criteria. For both levels of TAN increase limiting values, significant differences exist between the lubricants. Figures 17 through 19 show Arrhenius plots of the six lubricants using viscosity increases as the limiting life criteria. For all three levels of viscosity increase limiting values, significant differences exist between the lubricants even to a greater degree than that observed using TAN increase limiting values.

Differences in effective life of the six lubricants are also shown in Table 8 for test temperatures of 175°C, 200°C and 225°C for two limiting TAN increase values. This data shows that lubricants 0-82-2 and 0-82-14 have much lower thermal stability than the other lubricants. No difference occurred in relative ranking of the lubricants between the two limiting TAN values which occurred with oxidative stressing.

Differences in effective life of the six lubricants based upon viscosity change is shown in Table 9 for test temperatures of 175°C, 200°C and 225°C for three limiting viscosity increase values. This data shows that the thermal stability varies significantly among the six lubricants and relative ranking of the lubricants depends to some extent upon the level of

Figure 15. Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Total Acid Number Increase Limit of 2.0

Figure 16. Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Total Acid Number Increase Limit of 4.0

Figure 17. Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Viscosity Increase Limit of 1%

S. Charles

Figure 18. Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Viscosity Increase Limit of 3%

Figure 19. Effect of Temperature on Lubricant Life Using DERD Method No. 1 (Confined Heat Stability), Viscosity Increase Limit of 5%

TABLE 8

EFFECTIVE LUBRICANT LIFE
DERD METHOD NO.1 (NO DILUTION)
ACIDITY INCREASE LIMITS

TAN Increase Limit of 2.0 Lubricant Life, Hours

Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175°C 200°C 225°C	282 55 14	186 33 8	288 89 33	148 35 11	460 113 35	101 18 4
			Increase Li ricant Life			
Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
175°C 200°C 225°C	450 97 27	363 71 18	658 123 30	339 70 19	844 196 58	214 33 7

TABLE 9

EFFECTIVE LUBRICANT LIFE
DERD METHOD NO. 1 (NO DILUTION)
VISCOSITY INCREASE LIMITS

Viscosity Increase Limit of 1% Lubricant Life, Hours

			,		
0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
33	79	39	74	27	19
13	29	17	21	5	13
1	12	8	7	1	10
		-		\$	
0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
194	223	198	223	77	57
76	88	43	63	20	29
35	40	12	22	7	16
		-		\$	
0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
390	447	426	413	281	130
132	154	171	99	100	41
53	63	80	30	42	16
	33 13 1 1 0-79-16 194 76 35 0-79-16 390 132	33 79 13 29 1 12 Viscosit Lub: 0-79-16 0-79-17 194 223 76 88 35 40 Viscosit Lub: 0-79-16 0-79-17 390 447 132 154	33 79 39 13 29 17 1 12 8 Viscosity Increase Lubricant Life 0-79-16 0-79-17 0-79-20 194 223 198 76 88 43 35 40 12 Viscosity Increase Lubricant Life 0-79-16 0-79-17 0-79-20 390 447 426 132 154 171	33 79 39 74 13 29 17 21 1 12 8 7 Viscosity Increase Limit of 3 Lubricant Life, Hours 0-79-16 0-79-17 0-79-20 0-82-2 194 223 198 223 76 88 43 63 35 40 12 22 Viscosity Increase Limit of 5 Lubricant Life, Hours 0-79-16 0-79-17 0-79-20 0-82-2 390 447 426 413 132 154 171 99	33

viscosity increase. The increases in viscosity must be due mostly to degradation since only very little weight loss occurred during testing.

Very small amounts of toluene insolubles were found for any of the six MIL-L-7808 lubricants even after severe degradation. As shown in Appendix A, Table A-2, 98% of the toluene insoluble measurements were below 0.03% weight and the maximum value being 0.05% weight.

The effect of confined heat testing of the esters 0-76-5 (TMPH), 0-76-8 (D2EHA) and 0-77-1 (D2EHA) is shown in Table 10 below.

TABLE 10

EFFECTIVE ESTER LIFE, DERD METHOD NO 1.

(LUBRICANT LIFE, HOURS)

TAN Increase Limit of 4.0

	175 ⁰ C	190°C	205 ° €
0-76-5	नेत	34	32
0-76-8	41	23	19
0-77-1	-	-	>72

Viscosity Increase Limit of 5%

	175°C	190°C	205°C
0-76-5	>72	48	21
0-76-7	>72	57	53
0-77-1	-	-	72

The data in Table 10 shows that the di-2-ethylhexyl adipate ester 0-77-1 has much better confined heat stability than either of the other two esters for both effective lubricant life limiting values of changes in TAN and viscosity.

Table 11 shows the effects of additives on the confined heat stability of the three esters when blended with 2% PANA, 2% DODPA and 1% PANA plus 1% DODPA.

TABLE 11

EFFECTS OF ANTIOXIDANTS ON ESTER LUBRICANT LIFE
DERD METHOD NO. 1, 205°C TEST TEMPERATURE

TAN Increase Limit of 4.0 Lubricant Life, Hours

Ester	No Additive	2\$ PANA	2% DODPA	1% PANA 1% DODPA
0-76-5	32	50	55	72
0-76-8	19	26	22	22
0-77-1	>72	-	-	166
	V1	scosity Increas	e Limit of 5%	
0-76-5	21	>96	>72	>96
0-76-8	53	48	60	60
0-77-1	72	-	-	178

The data shown in Table 1's not what would be expected especially between the polyol ester 0-76-5 and the diester 0-77-1. This data appears to show that not only ester purity but the breakdown and subsequent reactions of these materials can greatly affect the ester stability.

The toluene insoluble content of some ester-additive mixtures was much higher than the amounts found in the six MIL-L-7808 lubricants, especially with ester 0-76-8 and PANA and 0-76-5 and PTZ. All mixtures of 0-76-8 plus PANA gave toluene insoluble values ranging from 0.05 to 1.25% weight. All mixtures of 0-76-5 with PANA gave values below 0.03%. Both esters 0-76-5 and 0-76-8 gave values below 0.03% with all percentages of

DODPA. Ester 0-76-5 with 2% PTZ gave a toluene insoluble content of 0.66% after 48 test hours while 0-76-8 gave a value 0.10% after 48 test hours.

DOPTZ gave much less toluene insolubles for both 0-76-5 (0.06%) and 0-76-8 (0.03%). This would be expected due to the increased solubility of the additive breakdown products due to the octyl groups. Test chamber deposits varied from none to black coke and in most cases followed the pattern of toluene insoluble content with the various ester-additive mixtures.

f. Summary

Effective lubricant lives of six MIL-L-7808 lubricants under confined heat (thermal) conditions were determined using different levels of limiting values for changes in TAN and viscosity as the maximum permissible degree of degradation. Arrhenius plots were developed describing effective life as a function of temperature. Both limiting values of TAN increase and viscosity increase showed significant differences between the confined heat stability of the six lubricants. The difference in effective life of the lubricants was greater based upon viscosity change and relative ranking of the lubricants with respect to effective life depended to some extent upon the selected viscosity increase limiting value.

Confined heat stability testing of ester-additive mixtures showed unexpected higher confined heat stability for the diester 0-77-1 (di-2-ethylhexyl adipate) than the polyol ester 0-76-5 (trimethylolpropane heptanoate) with and without antioxidants.

g. Future Effort

Confined heat study of the MIL-L-23699 lubricants and the 4 cSt candidate lubricant will be continued providing data for developing Arrhenius plots describing lubricant effective life as a function of temperature.

3. CORROSIVENESS AND OXIDATION STABILITY

a. Introduction

Corrosion and oxidation testing of selected lubricants was conducted to establish correlation with other laboratories and for providing stressed lubricants for other studies.

b. Test Apparatus.

Test apparatus is described by Federal Test Method Std. 791, Method 5307 and will not be repeated in this report.

c. Test Procedure

Test Method 5307, basic method, requiring intermediate sampling was used for MIL-L-7808 lubricant testing. Modification of Test Method 5307 was made when stressing the lubricants required for other studies. This modification consisted of using 350 ml samples instead of the normal 200 ml samples and not determining metal test specimen loss although metal test specimens were used during the test. A change in sampling frequency was also made for all tests.

d. Results and Discussion

Corrosion and oxidation testing was conducted on two MIL-L-7808 lubricants 0-79-16 and 0-79-17 using Method 5307.1 with intermediate sampling. Duplicate tests were conducted for each lubricant with the data obtained from the four tests being given in Tables 12 through 15. A summary of this data is given in Table 16.

Good test repeatability was obtained for each lubricant including both the intermediate and final sampling data. Both lubricants showed good oxidative stability and conform to MIL-L-7808J. Although no corrosion-oxidation test data generated by another laboratory is available for these specific lots of lubricants, comparison of the test data with the manufacturers' data for several other lots of the same lubricant formulations

RESULTS OF REFLUX CORROSION/OXIDATION TEST LUBRICANT 0-79-16 TEST A

⋖	
\vdash	
≤	۱
\Box	
w	١
پ	
يھ	
3	ı
5	
S	Į

COBRA	3 13 20 42 47 47 65 100 104	0.0 3.6 None None	200 ml 10 1/hr. 200°C
Neut. No. Increase	0.13 0.37 0.73 0.74 1.22 1.41	TEST CELL DATA Sludge, Vol. % Wt. Loss, % Tube deposits Condenser Deposits	Sample Vol. Air Rate Test Temp.
Neut. No. mg KOH/g	0.20	SI SI TES	Sam Air Tes
100°C Visc. Increase, %	111111166		blue
Viscosity, cSt/100°C	3.16	Color and Appearance (visual/20X mag.) To change/no change tarnish/tarnish	/blue ish-blue/purplish-blue stain/sl. stain stain/sl. stain
40°C Visc. Increase, %	6.0 6.9 9.2 9.6 11.6 13.4	0 110.	blue/blue purplish-b' sl. stain/s
Viscosity, cSt/40°C	12.35 13.09 13.20 13.48 13.54 13.70 14.00	₹	-0.1
	Initial 18 hr. 24 hr. 42 hr. 48 hr. 66 hr. 72 hr. 90 hr.	METAL SPECIMEN DATA Metal Type Aluminum Silver Bronze	Mild Steel M-50 Steel Magnesium Titanium

ዘመዘመዘው አውሃው አውሃው አንድ አውሃው አውሃው አውሃው አው አውሃው አውፈር አው ተመፈር ተመፈር መስፈር መፈር መስፈር መስፈር ተመፈር መስፈር መስፈር መስፈር መስፈር መስፈር

TABLE 13

RESULTS OF REFLUX CORROSION/OXIDATION TEST LUBRICANT 0-79-16 TEST B

•	•
\vdash	,
Z	•
	1
\equiv	į
0	•
3	
2	

COBRA	3 12 19 42 47 67 69 101 105	0.0 1.6 None None 200 ml 10 1/hr 200 c
Neut. No. Increase	0.09 0.30 0.78 0.75 1.12 1.21 1.47	Sludge, Vol. % Wt. Loss, % Tube Deposits Condenser Deposits TEST CONDITIONS Sample Vol. Air Rate Test Temp.
Neut. No. mg KOH/g	0.20	San TES San Test
100°C Visc. Increase, %	11111116	purple
Viscosity, cst/100°C	3.16	Color and Appearance (visual/20X mag.) no change/no change no change/no change tarnish/tarnish blue/blue bluish-purple/bluish-purple sl. stain/sl. stain
40°C Visc. Increase, %	6.6 6.6 9.5 11.2 13.5 14.9	
Viscosity, cSt/40°C	12.35 13.01 13.17 13.40 13.51 13.77 14.02	Mt. Chagge mg/cm ² 0.0 -0.1 +0.1 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1
	Initial 18 hr. 24 hr. 42 hr. 48 hr. 66 hr. 72 hr. 90 hr.	METAL SPECIMEN DATA Metal Type Aluminum Silver Bronze Mild Steel M-50 Steel Magnesium Titanium

TABLE 14

RESULTS OF REFLUX CORROSION/OXIDATION TEST LUBRICANT 0-79-17 TEST A

SAMPLE DATA

COBRA	312	42	99	74	06	92	114	119
Neut. No. Increase	- 0	0.42	0.92	0.82	1.05	1.06	1.26	1.30
Neut. No. mg KOH/g	0.08		•	•	•	•	•	1,38
100°C Visc. Increase, %	ı		•	•	•	•	•	9.5
Viscosity, cSt/100 ⁰ C	3.35		•	1	•	•	•	3.66
40°C Visc. Increase, %	1 0	9.6	11.6	12.4	14.0	14.2	16.0	16.9
Viscosity, cSt/40 C	13.40	14.66	14.96	15.06	15.27	15.30	15.54	15.66
	Initial	24 hr.	42 hr.	48 hr.	66 hr.	72 hr.	90 hr.	96 hr.

50

METAL SPECIMEN DATA			TEST CELL DATA	
Metal Type	Wt. Chagge mg/cm ²	Color and Appearance (visual/20X mag.)	Sludge, Vol. % Wt. Loss, %	2.9
Aluminum	0.0	no change/no change	iube Deposits Condenser Deposits	None None
Silver Bronze	0.0	no change/no change tarnish + purple stain/	11000	
Mild Steel	+0.1	tarnisn + purpie stain blue green/blue green	LEST CONDITIONS	
M-50 Steel	0.0	purplish blue/purplish-blue	Sample Vol.	200 mJ
Magnesium	0.0	no change/no change	Air Rate	10]/hr.
Titanium	0.0	no change/no change	Test Temp.	200 ₀ C

TABLE 15

RESULTS OF REFLUX CORROSION/OXIDATION TEST LUBRICANT 0-79-17 TEST B

SAMPLE DATA

COBRA	2	33	44	64	73	88	97	121	126
Neut. No. Increase	ı	0.40	0.53	0.96	0.98	1.09	1.30	1,34	1.32
Neut. No. mg KOH/g	0.08		•	•	•	ı	•	•	1.40
100°C Visc. Increase, %	•	•	1	1	1	•			9.5
Viscosity, cSt/100°C	3.35	•	1	1	•	•		1	3.67
40°C Visc. Increase, %	•	7.2	9.6	12.0	12.5	13.9	14.4	15.6	16.1
Viscosity, cSt/40°C	13.40	14.36	14.69	15.01	15.08	15.26	15.33	15.49	15.56
	Initial	18 hr.	24 hr.	42 hr.	48 hr.	66 hr.	72 hr.	90 hr.	96 hr.

METAL SPECIMEN DATA

TEST CELL DATA

			-	
Metal Type	wt. Unange mg/cm ²	color and Appearance (visual/20% mag.)	Sludge, Vol. % Wt. Loss, %	1.7
			Tube Deposits	
Aluminum	0.0	no change/no change	Condenser Deposits	
Silver	0.0	no change/no change		
Bronze	0.0	tarnish + purple stain/	TEST CONDITIONS	
		tarnish + purple stain		
Mild Steel	0.0	blue/blue	Sample Vol.	200 mJ
M-50 Steel	0.0	purplish blue/purplish blue	Air Rate	10 1/hr.
Magnesium	0.0	no change/no change	Test Temp.	200 _C
Titanium	0.0	no change/no change	-	

TABLE 16

SUMMARY OF CORROSION AND OXIDATION TEST DATA

(Fed-STD-791 Method 5307.1, Intermediate Sampling)

Lubricant 0-79-16

	Test A	Test B	Average
Neut. No. Change	1.96	1.78	1.87
Viscosity, 40°C (Initial) cSt	12.35	12.35	12.35
Viscosity, 40°C, % Change	15.3	14.9	15.1
Viscosity, 100°C, (Initial), cSt	3.16	3.16	3.16
Viscosity, 100°C, \$ Change	9.8	9.8	9.8
COBRA Reading (Final)	104	105	105
Oil Loss, \$ Weight	3.6	1.6	2.6
Sludge, % Volume	0.0	0.0	0.0
Tube Deposits	None	None	None
Corrosion of Metals, mg/cm ²	<0.2	<0.2	<0.2
	Lub	ricant 0-79-17	
Neut. No. Change	1.30	1.32	1.31
Viscosity, 40°C (Initial) eSt	13.40	13.40	13.40
Viscosity, 40°C, % Change	16.9	16.1	16.5
Viscosity, 100°C, (Initial), cSt	3.35	3.35	3.35
Viscosity, 100°C, \$ Change	9.2	9.5	9.3
COBRA Reading (Final)	119	126	123
Oil Loss, \$ Weight	2.9	1.7	2.3
Sludge, % Volume	0.0	0.0	0.0
Tube Deposits	None	None	None
Corrosion of Metals, mg/cm ²	<0.2	<0.2	< 0.2

showed good test reproducibility. As shown in Tables 12 through 15 intermediate sampling was accomplished at 18, 24, 42, 48, 66, 72, 90 and 96 test hours instead of 16, 24, 40, 48, 64, 72, 88 and 96 test hours. This change of 2 test hours for every other sampling period permits sufficient time to conduct the total acid number (TAN) on the same day the samples are taken during a normal 8 hour work period. This change in the sampling schedule should be considered for Method 5307.1 since the TAN can change with time especially after lubricant stressing. Trace metal analysis was conducted on all intermediate and final samples using rotating disk emission spectroscopy. The concentrations of aluminum, silver, copper (bronze), iron (mild steel, M-50), magnesium and titanium were below 1 ppm in all samples and were equivalent to the new lubricant.

Corrosion and oxidation testing of two MIL-L-23699 fluids (0-71-6 and 0-77-15) was completed at a test temperature of 188°C. Testing was continued until the breakpoint was reached for both TAN and viscosity. Two tests for each lubricant were used to provide a total of 13 intermediate samples taken between 24 and 432 test hours. Test data for all the intermediate samples consisting of viscosity and viscosity increase at 40°C, TAN and TAN increase, and COBRA readings are given in Tables 17 and 18. The breakpoint for each lubricant occurred between 408 and 432 test hours for both TAN increase and viscosity change. The COBRA reading did not show the expected increase between 408 and 432 test hours for either oil.

e. Summary

Corrosion and oxidation testing using Federal Test Method Standard No. 791, Method 5307.1 with modified intermediate sampling frequencies has been completed for two MIL-L-7808 lubricants using the normal 96 hour test period and for two MIL-L-23699 lubricants for extended test time of 432

TABLE 17

RESULTS OF REFLUX CORROSION/OXIDATION TEST LUBRICANT 0-71-6

Sample	Initial 24 48 48 96 144 192 264 288 312 336 360 384 408	METAL SPECIMEN DATA Metal Type Aluminum Silver Bronze Mild Steel	M-50 Steel Magnesium Titanium
Viscosity cSt/40°C	25.71 27.06 28.07 28.91 30.94 31.27 31.66 32.04 33.54 34.49		bluing no change sl. tarnish
40°C Viscosity Increase, %	5.2 9.2 12.4 14.9 20.3 23.1 26.6 86.6	ance	
Neut. No. mg KOH/g	0.06 0.22 0.28 0.49 0.54 0.68 0.66 0.97 1.19 1.71	TEST CELL DATA Tube Deposits Condenser Deposits TEST CONDITIONS	Sample Vol. Air Rate Test Temp.
Neut. No. Increase	0.16 0.22 0.43 0.48 0.62 0.58 0.91 1.13 1.65	slight streaks of above oil level none	250 ml per 2 tubes 10 l/hr. 188 ⁰ C (370 ⁰ F)
COBRA	2 9 1 1 8 8 9 8 9 8 9 8 9 9 8 9 9 9 9 9 9	f varnish 1	es

TABLE 18

RESULTS OF REFLUX CORROSION/OXIDATION TEST LUBRICANT 0-77-15

Neut. No. Increase COBRA	- 2 0.13 10 0.06 20 0.27 40 0.38 71 0.80 78 0.72 78 0.69 76 1.13 71 1.02 66 1.58 64 2.22 55	slight varnish streaks above oil level none	250 ml per 2 tubes 10 1/hr. 188 ⁰ C (370 ⁰ F)
Neut. No. mg KOH/g	0.43 0.30 0.70 1.01 1.12 1.15 2.01 2.65 8.65	TEST CELL DATA Tube Deposits Condenser Deposits TEST CONDITIONS	Sample Vol. Air Rate Test Temp.
40°C Viscosity Increase, %	6.1 13.0 15.6 18.1 22.1 27.1 30.5 32.4 40.7	ppearance e oloration ish	
Viscosity cSt/40°C	24.04 25.50 26.28 27.16 29.36 29.77 30.08 31.37 31.84 41.56	Visual A no chang sl. disc sl. tarn bluing	bluing no change sl. tarnish
Sample	Initial 24 48 48 96 144 192 264 288 312 336 360 384 408	METAL SPECIMEN DATA Metal Type Aluminum Silver Bronze Mild Steel	M-50 Steel Magnesium Titanium

hours. Good test repeatability was obtained between duplicate testing and with the lubricant manufacturers' data.

E-----

f. Future Effort

Corrosion oxidation testing using Federal Test Method 791, Method 5307.1 will be conducted to the extent necessary to provide stressed lubricants required for study by other test areas such as deposition and development of lubricant monitoring techniques.

4. CORROSION INHIBITING PROPERTIES OF LUBRICANTS

a. Introduction

DERD Test Method No. 18, "Corrosion-Inhibiting Properties" developed by the Ministry of Defence, United Kingdom was investigated for determining differences in the corrosion inhibiting properties of ester base gas turbine lubricants under conditions of high humidity and temperature cycling from 40°C to 5°C and using a high and a low corrosion-inhibiting reference oil.

b. Test Apparatus and Materials

The corrosion test specimens consisted of 0.5 inch bearing balls made of SKF Grade 1 steel normally used for IP239 and IP300 Four Ball Wear Testing.

The humidity chamber consisted of a glass tank having general dimensions of 300 mm in length, 150 mm in width and 230 mm high and being similar to a thin layer chromatography developing tank. The glass tank is fitted with a ground glass lid and has a high ledge to support the drip control paper. The glass tank lid has an opening for inserting a thermocouple into the glass chamber for measuring and recording cycling temperatures. A pyrex tray having general dimensions of 225 mm in length, 65 mm in width and two inches high was used for supporting the test balls above the water in the tank. The top part of the tray was drilled to provide

counter sunk ball bearing seats and oil drainage from the seats. The tray contained 18 seats with each being numbered for identification of test specimens. An underneath drip tray prevents the drippings from covering the water layer and preventing vaporization of the water to provide 100% relative humidity. The tray was fitted with legs to provide a standard elevation of the test specimens in the humidity chamber.

A laboratory oven was used to elevate the internal air temperature to 40°C from 5°C within 3 hours and maintaining a constant temperature of $40 \pm 1^{\circ}\text{C}$. Cooling the chamber to 5°C from 40°C within 12 hours and maintaining a constant internal air temperature of $5 \pm 1^{\circ}\text{C}$ was accomplished using a refrigerator. Temperature recording throughout the complete test was made using a calibrated type J thermocouple and strip chart recorder. Whatman Number 1 filter paper cut to fit the top of the humidity chamber was used as the condensate drip control paper. Handling of the test specimens prior to cleaning was done using polyethylene gloves. A test specimen handling device (wire loop) was used to handle the test specimens after cleaning and soaking in the test lubricant, and for placing them on the support tray. Test specimen inspection was accomplished using a dynazoom binocular microscope with 10X magnification.

c. Test Procedures

The humidity chamber, lid and sample handling device were cleaned with acetone followed by petroleum ether and air dried. The specimen tray was cleaned with petroleum ether and air dried. Test specimens were inspected prior to cleaning for signs of rust, staining or surface damage. Specimens showing imperfections were rejected. The test specimens were first degreased by placing them in boiling acetone for 10 minutes and then washed with boiling petroleum ether for ten minutes. Residual solvent was then

removed by air drying.

each of the low and high reference oils. The test specimens were soaked in the appropriate test fluid for 30 minutes at a temperature of 40°C. During the 30 minute soaking period, distilled water was added to the humidity chamber to a depth of 2 cm (one test was conducted using de-ionized water). The test specimens were removed from the test fluid using the wire loop and removing excess oil from the test specimens by touching the specimen on the rim of the beaker used for soaking and then onto a clean flat tissue. The prepared specimen was placed in a seat of the support tray and its position recorded. A clean specimen handling device was used for the three test specimens for each test fluid.

The condensation drip control paper was placed above the support tray supported by the chamber ledge and by glass rods being placed across the width of the tank. Silicone stop cock grease was used to seal the chamber lid. A thermocouple was inserted into the lid opening with its junction being below the drip paper and above the specimen tray.

The humidity test chamber containing the specimens was placed in the oven preheated to 40°C with a temperature recorder being attached to the thermocouple. After 3 hours in the oven, the chamber was transferred to the refrigerator pre-set at 5°C for a period of 12 hours with the temperature being monitored throughout the test. The chamber was removed from the refrigerator after the 12 hour test period and returned to the 40°C oven for a 3 hour test period. Cycling from 40°C to 5°C is repeated for a total of seven cycles. At the end of the seventh cycle, the chamber was removed from the refrigerator and allowed to obtain room temperature. Since one week-end was involved during the testing, the test was initiated on a Tuesday with the

week-end occurring during the 4th and 5th cycle. The test chamber was kept in the refrigerator at 5°C over the week-end.

After the 7th cycle the test specimens were removed from the support tray after reaching room temperature and washed with acetone followed by boiling petroleum ether. The test specimens were then air dried on lint free towels.

Test specimens were examined under 10% magnification with each specimen below assessed according to the following criteria:

Number of Corrosion Centers	Corrosion Category
0	Zero
1 to 5	Low
Greater than 5	High

d. Description of Test Fluids

A total of 6 test fluids and uncoated test specimens were examined in this study. These test fluids are described below:

Test Fluid	Description		
0-79-16	MIL-L-7808 Lubricant		
0-79-20	MIL-L-7808 Lubricant		
0-82-2	MIL-L-7808 Lubricant		
TEL-7002	MIL-L-23699 Lubricant		
Н	High Reference Oil		
L	Low Reference 011		

e. Results and Discussion

The first test was conducted using distilled water in the humidity chamber. For this first test continuous recording of temperature was not made although periodic checks of temperature were made. Data obtained from this test is as follows.

Lubricant 0-79-16

Test Ball #1: No corrosion centers.

n n #2: n n n

Lubricant 0-82-2

Test Ball #1: No corrosion centers.

n n #2: n n

" #3: Two small corrosion centers.

Lubricant 0-79-20

Test Ball #1: No corrosion centers.

n n #2: n n

n n #3: n n

Lubricant H (High Corrosion Reference Oil)

Test Ball #1: One small corrosion center.

" #2: Three small corrosion centers.

" #3: No corrosion centers.

Lubricant L (Low Corrosion Reference Oil)

Test Ball # 1: No corrosion centers.

2: One corrosion center.

" # 3: No corrosion centers.

Uncoated Test Balls

Test Ball #1: Over 15 corrosion test centers.

n n #2: n n n n

n n #3. n n n n

Although this test showed some corrosion, no significant difference was seen between the low and high reference oils. These two oils were examined by gas chromatography and were identified as two completely different ester base lubricants.

The test was repeated with distilled water but with the cooling cycle temperatures being recorded and the heating cycle temperature being monitored with a Doric Temperature Indicator. Data obtained from this second test is

as follows:

Lubricant 0-79-16

Test Ball #1: One corrosion center.

" #2: Two corrosion centers.

" #3: One corrosion center.

Lubricant 0-79-20

Test Ball #1: No corrosion centers.

" Ball #2: " " "

" Ball #3: " " "

Lubricant TEL-7002

Test Ball #1: No corrosion centers.

n n #2: n n

n n #3: n n

Lubricant H (High Reference Oil)

Test Ball #1: No corrosion centers.

n n #2: n n

n n #3: n n

Lubricant L (Low Reference 0il)

Test Ball #1: No corrosion centers.

n n #2: n n

n n #3: n n

Uncoated Test Balls

Test Ball #1: No corrosion centers.

n n #2: n n

" #3: Two corrosion centers.

Again, this test showed no corrosion for the high corrosion reference oil and very little corrosion for the uncoated balls in comparison with high

corrosion for the uncoated balls in the first test.

A third test was conducted using de-ionized water having a pH value of 3.8. The following test data was obtained:

Lubricant 0-79-16

Test Ball #1: No corrosion centers.

n n #2: n n

и и #3: и и и

Lubricant 0-79-20

Test Ball #1: No corrosion centers.

#2: One corrosion center.

" #3: Eight corrosion centers.

Lubricant TEL-7002

Test Ball #1: Over five corrosion centers.

n n #2: n n n

и и #3: и и и

Lubricant H (High Reference Oil)

Test Ball #1: No corrosion centers.

n n #2: n n

n n #3; n n n

Lubricant L (Low Reference 0il)

Test Ball #1: No corrosion centers.

" #2: One corrosion center.

n n #3: n n

Uncoated Test Balls

Test Ball #1: Very much corrosion.

n n #2: n n

n n #2: n n

The use of de-ionized water gave much more corrosion for lubricants 0-79-20 and TEL-7001 but gave no corrosion for lubricant 0-79-16 or lubricant H (high corrosion reference oil). A summary of the three tests is given below using the previously described rating procedure. The rating shown is the highest rating assigned to any one of the three balls for each lubricant.

	Test 1	Test 2	Test 3
Test Lubricant	Distilled Water	Distilled Water	De-ionized Water
0-79-16	Zero	Low	Zero
0-79-20	Zero	Zero	High
TEL-7002	-	Zero	High
0-82-2	Low	-	-
H Reference Oil	Low	Zero	Zero
L Reference Oil	Low	Zero	Low
Uncoated Balls	High	Low	High

f. Summary

The following conclusions can be made based upon the data obtained from the three tests:

- a. Poor repeatability was obtained between tests.
- b. No difference in the corrosion inhibiting propensity of the low and high reference oils was obtained.
- c. Use of de-ionized water appears to make a big difference for some lubricants and no difference for other lubricants.

5. ADDITIVE ANALYSIS

a. Introduction

In order to characterize lubricants stressed in the Squires oxidative test, chromatographic methods were used for analysis of additives in MIL-L-7808 and laboratory formulated lubricants. In addition, identification of some of the intermediate antioxidant products was made in order to gain insight into the mechanism of oxidative depletion of the aromatic amine antioxidants.

b. Experimental

A procedure was developed for analysis of volatile nitrogen and phosphorous containing additives by gas chromatography with a thermionic specific detector (GC-TSD). The procedure was specifically developed for the analysis of PANA, Octyl-PANA, DODPA and TCP. Details of this method are listed in Appendix B. The selectivity of the TSD allowed this analytical procedure to be relatively free of interferences and was shown to be linear over a range of 0.05 to 2.5 weight percent with good accuracy and precision.

The reverse phase liquid chromatography (RPLC) procedure used was adapted from a method by Klenke. ⁴ The conditions of this method are listed in Table 19.

TABLE 19
LIQUID CHROMATOGRAPHY CONDITIONS FOR ANTIOXIDANT ANALYSIS

Instrument: Hewlett Packard 1084B

Detector: Ultraviolet Variable wavelength at 254 nm

Column: Hi-Chrom 4.6 mm X 25 cm 5 micron ODS (Regis)

Solvent: Acetonitrile : water (A:B)

Flow Rate: 1.0 ml/min

0.0 10

5.0

22.0

Intermediate antioxidant species produced in 0-77-1 with 2\$ PANA, 2\$ DODPA or 1\$ PANA and 1\$ DODPA after 24 hours of the Squires oxidative test at 190°C were collected preparatively by this RPLC procedure. An ultraviolet (UV) spectrometric scan over the range of 225 to 540 nm was done on these species by using the stopped flow scan accessory of the ultraviolet detector of the liquid chromatograph, although extinction coefficients could not be measured with this equipment. The isolated samples were submitted to AFWAL/MLSA for mass spectrometric (MS) analysis. These samples were also analyzed by gel permeation chromatography using 50 and 100 angstrom pore size 30 cm X 7.5 mm ID, 5 micron PL-GEL columns (Polymer Laboratories LTD) and using THF at a flow rate of 1.0 ml/minute with UV detection at 254 nm. The isolated species that were of sufficient volatility were analyzed by GC-TSD by modifying the method in Appendix B to allow a final column temperature of 325°C with a 5 minute final hold. Quantitative analysis of these species was accomplished by calculating response factors relative to PANA assuming the same per

nitrogen response. However, since a compounds' response is also somewhat dependent on structure these concentrations must be considered to be semiquantitative although the similarity in structures of all these compounds should make the results approximately correct.

1.00

c. Results and Discussion

- The concentrations of antioxidants (PANA, Octyl-PANA and DODPA) during the Squires oxidative test at 190°C for six MIL-L-7808 lubricants were measured by GC-TSD and are plotted in Figures 20 to 25. The lubricant 0-82-3 contained small amounts of other nitrogen or phosphorous containing compounds which may have antioxidant properties. In general the plots show that the more active antioxidant (PANA or Octyl-PANA) depletes very rapidly, usually by 48 hours, though the PANA is at least partially lost by evaporation due to its relatively high volatility. The other antioxidant (DODPA) depletes more slowly. The physical properties of the lubricants seem to degrade rapidly at the point where the DODPA depletes to a concentration between 0.05 to 0.10 weight percent.
- In assessing the ability of secondary aromatic amine antioxidants to inhibit the autoxidation of ester basestocks it is necessary to consider the intermediate species that form from the oxidation of the primary antioxidants. Previous research 5-10 has identified some of these species and has demonstrated their autoxidation inhibiting properties. An investigation into some of these species produced during the oxidation of PANA and DODPA containing MIL-L-7808 lubricants was made. Individual intermediate antioxidant species were preparatively isolated by RPLC and identified and their concentration during an oxidative test was measured.

LUBRICANT PERFORMANCE AND EVALUATION(U) DAYTON UNIV ON RESEARCH INST C \$ SABA ET AL. JUN 87 UDR-TR-97-24 AFME-TR-87-2825 F33615-85-C-2587 MO-0183 881 2/6 UNCLASSIFIED F/G 11/8

INCROCOPY RESOLUTION TEST CHANTS
MATIONAL BUREAU OF STANDARDS-1988-A

Figure 21. Antioxidant Concentration in 0-79-17 during the Squires Oxidative Test at $190^{\circ}\mathrm{C}$

Figure 23. Antioxidant Concentration in 0-82-2 during the Squires Oxidative Test at $190^{
m O}{
m C}$

Figure 24. Antioxidant Concentration in 0-82-3 during the Squires Oxidative Test at $190^{
m O}{
m C}$

Figure 25. Antioxidant Concentration in 0-82-14 during the Squires Oxidative Test at $190^{
m O}{
m C}$

The RPLC chromatograms of the 24 hour Squires oxidative tested lubricants with 25 PANA, 25 DODPA or 15 PANA and 15 DODPA are shown in Figures 26, 27 and 28 respectively. Compounds I through V were isolated by RPLC. Compounds I, IV and V were submitted for MS analysis. In addition, compounds I, II and III were analyzed by GPC. The MS and UV data for these compounds and their identification from this data is shown in Table 20. Compounds II and III were identified as the PANA trimer and PANA tetramer respectively based on the similarity of their UV structure to the PANA dimer (I) and the linearity of the plot (Figure 29) of the log of the molecular weight of PANA, I, II and III vs. their respective GPC retention times (corr. coeff. = 0.99996). Identification of compound IV could not be made and is assigned the structure C₂₈H₃₀NO₂ based on its MS molecular ion peak.

The formation and transitory nature of these intermediate antioxidant species can be explained given the present stage of knowledge of the mechanism of oxidation inhibition by aromatic amine antioxidants. These antioxidants are presumed to be effective inhibitors of oxidation by interrupting the peroxy radical chain transfer process by offering an easily extractable hydrogen. The resulting antioxidant radicals have too low an activity to continue the chain transfer process and will form inactive species by radical combination or dispropertionation. Compound I is probably formed by dimerization of two hydrogen abstracted PANA radicals. Similarly, compounds II and III (trimer and tetramer respectively) are formed by continuation of this same process and doubtlessly smaller amounts of higher oligomeric compounds are formed. A likely structure for these three compounds would involve a nitrogen to carbon bond repeating link through the 4 position of the naphthyl ring although this is not certain. A similar type compound was found to be produced by the oxidation of phenyl-2-naphthylamine

Figure 26. RPLC Chromatogram of 0-76-5A + 2% PANA From Squires Oxidative Test at 205°C After 24 Hours.

Figure 27. RPLC Chromatogram of 0-76-5A + 2% DODPA from Squires Oxidative Test at 205°C After 24 Hours.

Figure 28. RPLC Chromatogram of 0-79-17E From Squires Oxidative Test at 205°C After 24 Hours.

TABLE 20

ULTRAVIOLET SPECTROSCOPY AND MASS SPECTROMETRY DATA FOR INTERMEDIATE ANTIOXIDANT SPECIES

219(100),218(46),217(32),55(11),43(11)	•	436(100),359(18),344(19),217(14),216(15),77(10)	1	•	421(9),350(100),250(10),210(3),135(14),57(8)	610(100),539(98),467(50),270(26),234(28),217(19),57(93),43(70)
256,341	295	267,365	268,375	271,382	251,286(s h)	303,378
PANA	DODPA	PANA Dimer	PANA Trimer	PANA Tetramer	C28H39NO2	PANA/DODPA Dimer
•	•	I	II	III	ΙΛ	^
	256,341	256,341 A 295	256,341 295 267,365	PANA 256,341 DODPA 295 PANA Dimer 267,365 PANA Trimer 268,375	PANA 256,341 DODPA 295 PANA Dimer 267,365 PANA Trimer 268,375 PANA Tetramer 271,382	PANA 256,341 DODPA 295 PANA Dimer 267,365 PANA Trimer 268,375 PANA Tetramer 271,382 C28H39NO2 251,286(sh)

Log Molecular Weight of Compounds I, II, III and PANA vs Gel Premeation Chromatography Retention Times Figure 29.

KENNY BEET BEET BEET KINGER BEEKEN BEEKEN BEEKEN

(PBNA) by alkylperoxy radicals⁸ and was shown to be an effective inhibitor of the AIBN initiated oxidation of styrene. Compound V is likely formed in a similar way by dimerization of a PANA and DODPA radical with a probable nitrogen to carbon link. The identity of compound IV is not known and if the MS derived formula of C₂₈H₃₉NO₂ (a bi-oxidation product of DODPA) is correct it is difficult to assign a structure or conceive of this compound as a primary intermediate DODPA species. Other research has indicated that diphenylamine and substituted diphenylamines tend to form nitroxide radicals during oxidation^{6,7} which are products of the reaction of peroxy radicals with the aminyl radicals:

This nitroxide radical has not been observed in any system analyzed and is probably not stable under the conditions of chromatographic analysis. The presence of such species are generally detected by electron spin resonance. It is possible that compound IV is an oxidation product of a nitroxide radical.

Since compounds I, II, III and V all contain an amine hydrogen they can function as a radical trap much as the primary antioxidants that formed them. The transitory nature of compounds I and V as well as IV can be seen in their concentrations in 0-77-1 with 1% PANA and 1% DODPA during the Squires oxidative test at 190°C (Figure 30). While PANA and DODPA undergo depletion typically observed in MIL-L-7808 lubricants (Figures 20-25), compounds I and V reach a maximum near the point of PANA depletion and then are rapidly depleted. Compound IV may possess some radical scavenging

ability.

The lubricant in Figure 30 reaches its breakpoint fairly close to the point of depletion of the intermediate antioxidant species. However, this is generally not true of the MIL-L-7808 lubricants analyzed. Figure 31 shows the concentration of intermediate antioxidant species in 0-79-20 during the Squires oxidative test of 190°C. Despite the fact that PANA and compounds I and V are depleted by 120 hours test time, the lubricant does not show its breakpoint until a point between 456 and 552 hours. The 0.23% DODPA level at 120 hours could not sufficiently protect the lubricant from oxidation over this length of time. Therefore, there must be other intermediate antioxidants species present in the lubricant that are not detected by the present chromatographic methods due to lack of volatility, low polarity, or lack of stability under the conditions of analysis. Also, it would be expected that since the intermediate antioxidant species formed initially are the result of radical processes they would eventually lead in time to a large number and variety of compounds. Such a complexity of species would make chromatographic analysis difficult. Nevertheless, it can be seen that the major pathway for the production of intermediate antioxidant species that possess considerable oxidation inhibition properties lies, at least initially, through the coupling of antioxidant radicals that are produced by the initial radical hydrogen abstraction.

SOUND SOUND DESIGNATION SOUND SOUND BOOKER BOOKER

The concentration of intermediate antioxidant species in 0-77-1 with 1\$ PANA and 1\$ DODPA stressed in the Squires confined heat test at 205°C is shown in Figure 32. Though this is an oxygen limited test compounds I and V are produced and seem to exhibit behavior similar to that seen in the oxidative test. PANA depletes more slowly in this test probably due to much smaller volatility losses. Because of the limited oxygen availability in

Concentration of Intermediate Antioxidant Species in 0-77-1 with 1% PANA and 1% D0DPA from the Squires Oxidative Test at $190^{\circ}\mathrm{C}$ Figure 30.

Concentration of Intermediate Antioxidant Species in 0-79-20 from the Squires Oxidative Test at 190°C Figure 31.

1

Concentration of Intermediate Antioxidant Species in 0-77-1 with 1% PANA and 1% DODPA from the Squires Confined Heat Test at $205^{\circ}\mathrm{C}$ Figure 32.

this test Compound IV is formed in much smaller concentrations due to its being an oxygenated compound.

d. Summary

Chromatographic methods have been developed for analysis of antioxidants in MIL-L-7808 lubricants. Analysis of these lubricants stressed in the Squires oxidative test reveal a rapid depletion of the primary antioxidant (PANA or Octyl-PANA) and a much slower loss of the secondary antioxidant (DODPA). The physical properties of these lubricants in general degraded rapidly when the DODPA concentration depleted to a level of between 0.05 and 0.10%. Preparative isolation by RPLC and subsequent chromatographic and mass spectroscopic analysis of various compounds from these stressed lubricants has resulted in the identification of the major intermediate antioxidant species produced during oxidation of PANA and DODPA containing lubricants. Semiquantitative analyses of these species from lubricants stressed in the Squires oxidative test indicate that while they are of importance early in the test the lack of a breakpoint at the point of their depletion means that there are other species present to provide oxidation inhibition. Similar behavior was observed in Squires confined heat tested lubricants.

CONTRACTOR DESCRIPTION OF THE PERSON OF THE

e. Future Effort

Method development for analysis of new additives will be completed as required. Investigation into intermediate antioxidant species will continue.

6. INVESTIGATION OF REFRACTIVE INDICES OF LUBRICANTS

a. Introduction

Refractive indices of various new and stressed oils were measured for identifying changes due to lubricant formulations and degradation produced by oxidative and thermal stressing.

b. Test Apparatus

An Abbe Model Fisher Refractometer, capable of measuring refractive indices with an accuracy of 0.0001 refractive unit, was used for the refractive index measurements.

c. Test Procedure

The instrument was allowed to warm up for 30 minutes prior to use and calibration was conducted according to the manufacturer's instructions. A drop of sample was applied to the prism, the refractive index reading was taken and the temperature recorded.

d. Results and Discussion

The samples were tested at measured room temperature (20-22°C) and values adjusted to a standard temperature of 25°C. The adjustments were made using an experimentally determined value of 0.00035 as the increment of change in refractive index per degree Celcius.

Table 21 and Figure 33 illustrate that a change in refractive index occurs when a lubricant experiences volatility loss. Samples which showed significant degradation but negligible volatility loss showed no change in refractive index.

A relationship exists between the molecular weight of an ester and its refractive index, which is shown in Table 22.

TABLE 21

REFRACTIVE INDICES at 25°C OF STRESSED LUBRICANTS

		C	xidatively	Stressed		
Test Hours	0-79-16J	0-79-17E	0-79-20	0-82-2	0-82-3	0-82-14
0	1.4515	1.4520	1.4517	1.4525	1.4521	1.4545
24	1.4527	1.4537	1.4527	1.4534	1.4538	1.4563
48	1.4537	1.4542	1.4527	1.4542	1.4554	1.4575
120	1.4583	1.4554	1.4561	1.4579	1.4633	1.4632
168	1.4599	-	1.4585	1.4643	1.4678	1.4709
216	1.4618	1.4607	1.4614	1.4709	-	1.4741
264	1.4643	-	1.4672	-	-	-
		•	Thermally S	tressed		
Test Hours	0-79-16J	0-79-17E	0-79-20	0-82-2	0-82-3	0-82-14
0	1.4515	1.4520	1.4517	1.4525	1.4521	1.4545
24	1.4519	1.4517	1.4520	1.4527	1.4522	1.4545
48	1.4519	1.4521	1.4523	1.4527	1.4522	1.4548
72	1.4519	1.4521	1.4523	1.4527	1.4522	1.4548
	1.4313	1.4761	111723			

1.4519

1.4519

144

192

1.4521

1.4521

1.4523

1.4523

1.4548

1.4548

1.4531

1.4531

1.4523

1.4523

Figure 33. Refractive Indices of Oxidatively Stressed Oils.

TABLE 22
REFRACTIVE INDICES FOR VARIOUS ESTERS

	Ester	M.W.	n _D ²⁵
E-105	(di-2-ethylhexyladipate)	371	1.4460
0-77-1	(di-2-ethylhexyladipate)	371	1.4456
0-76-8	(di-2-ethylhexyladipate)	371	1.4461
E-120	(2,2-dimethyltrimethylenenonanoate)	384	1.4434
E-129	(trimethylolpropane triheptanoate)	470	1.4485
0-76-5	(trimethylolpropane triheptanoate)	470	1.4490
E-149	(pentaerythritol tetraheptanoate)	584	1.4513

This data shows the refractive index increases as the molecular weights of the esters increase.

e. Summary

Based on the results of this study, the increase in refractive index of oxidatively stressed lubricants is attributed to the volatilization of lower molecular weight esters, rather than degradation of the lubricant. This conclusion is supported by the fact that the same oils, which were thermally stressed and did not experience weight loss, showed no change in refractive index even after considerable degradation had occurred.

f. Future Effort

Investigation will be made using refractive index measurements for identifying changes in oxidatively and thermally stressed high temperature lubricants such as polyphenyl ethers and perflouroalkylethers.

7. LUBRICANT DEPOSITION STUDIES

a. AFAPL Static Coker Study

(1) Introduction

Many requirements must be met by a lubricant for satisfactory performance in turbine engines. This performance has generally been obtained through upgrading of specifications requirements which resulted in lubricant formulations with improved performance characteristics and through engine designs which have reduced the severity of lubricant stressing. However, with increased emphasis on higher engine performance resulting in smaller oil capacities and higher operating temperatures, the need for defining and measuring lubricant properties continues. Lubricant deposition has been and is continuing to be an extremely important lubricant property. A variety of tests have been developed for measuring and describing lubricant deposition. These include bearing deposition tests (11-13), a tube deposition test (14), a panel coker test (15), a hot wall deposition test (16), a rotating cylinder deposition test (17) and an engine simulator test (18). These tests have provided information relative to deposit formation and have been used for measuring deposition characteristics of ester type lubricants. Since test parameters are quite varied, correlation among tests and with actual engine performance is marginal. Most of these tests require large sample volumes and are time consuming and expensive.

The initial effort involving the static coker (19) was directed toward developing a small volume, short time test which would permit good control over test variables and provide for determining weight of deposits along with deposit description. The effort herein describes further development of the static coker and its use for investigating the effects of test specimen material, test temperatures, lubricant prestressing, ester

volatility, antioxidants, and wear metals on lubricant deposition.

(2) Apparatus and Procedure

The configuration of the static coker is illustrated in Figures 34 and 35. The base section is heated by a controlled hot plate and is fabricated from brass for efficient heat transfer. A thermocouple (Type J) is positioned dead center just below the surface and is used for recording and adjusting the test temperature. The base top is machined to provide a vacuum plenum for holding down the metal test specimen. A second thermocouple (Type J) is positioned near the bottom of the base and used for controlling temperature by replacing the hot plate temperature controls with fully adjustable electronic controllers.

A polytetrafluoroethylene (PTFE) seal is used to confine the lubricant to the test specimen and reduce oil creep up the walls of the coker. Small vent holes in the seal serve to maintain a small steady updraft of air over the surface of the test lubricant. The PTFE seal is supported with a stainless steel sleeve which aids in sealing. The test specimen, PTFE seal and seal sleeve are surrounded with a metal convection shield. A brass sealing ring (retainer ring) is placed around and on the ferruled convection shield to prevent leakage of oil between the metal test specimen and the PTFE seal.

The coker base and the hot plate are positioned on a leveling table to provide more uniform layers of deposits. The coking unit is assembled on the hot plate and is then surrounded by two sections of machined calcium silicate insulation. The complete unit including leveling table is surrounded with a metal shield to provide better temperature control.

Initially a series of surface temperature measurements were made at five positions using shim stock test specimens on four coking units for

Static Coker Deposition Tester; (A) Base Section (B) Test Coking Surface (C) PTFE Seal (D) Steel Sleeve Retainer (E) Convection Shield (F) Brass Sealing Ring (G) Insulation Figure 34.

Figure 35. Schematic of the Static Coker Unit

determining temperature uniformity of the test specimens and for identifying any temperature differences between the four test units. Positions measured were the center and at 12, 3, 6, and 9 o'clock (18 mm from the center). Those measurements were made at six temperature settings ranging from 245°C to 330°C. The average of each five measurements obtained on the four cokers at six temperatures were within 2°C of each individual measurement which shows a good uniformity of surface temperature. The average surface temperature measured with a thermocouple surface probe was 15+2°C lower than the recorded base temperature of 330°C obtained with the thermocouple just below the top of the base surface. Between recorder readings of 245°C to 315°C, the surface temperature was 19+2°C below the recorder temperature. Surface temperature measurements made on stainless steel and aluminum surfaces showed the same temperature uniformity and difference between recorder temperature and surface temperature. Test temperatures in this study are test specimen surface temperatures and not recorded coker base temperatures.

The metal test specimens (shim stock, stainless steel and aluminum) were cleaned with petroleum ether and cotton swabs, rinsed with petroleum ether, dried with lint free towels, heated at 50°C and then cooled before weighing. The weighed test specimens were placed on the coker base using forceps and vacuum was applied. The PTFE seal and seal sleeve were centered on the test specimen and the convection shield was placed over the test specimen, seal and seal sleeve. The insulation blocks were put around the shield and the sealing ring was placed on the ferruled shield. After the test temperature was obtained, a one-gram sample was added to to the test specimen using a preweighed syringe containing the sample. This was accomplished by holding the tip of the syringe needle approximately 5 mm

above the center of the test specimen. The syringe was then reweighed for determining exact sample weight. At the conclusion of each test, the coker was disassembled and the test specimen was removed, cooled, and reweighed.

Deposits were reported in milligrams per gram of oil along with a description of the deposits.

The purity of the esters used in this study was determined using gas chromatography. These analyses utilized a flame ionization detector, a 25-meter capillary column coated with SE-52 (phenyl methyl silicone) with a temperature program of 100°C to 325°C and a heating rate of 8°C/minute with a final five minute hold. Purity was calculated from peak area using a unity response factor.

The effects of lubricant thermal and oxidative stressing on coking were investigated using the Ministry of Defence (United Kingdom) Test Method DERD NO. 9, "Volatility and Oxidative Stability, High Temperature" (without oil make-up) and DERD NO. 1 "Confined Heating Stability" for stressing the lubricant prior to coking studies. Test Method DERD NO. 9 is essentially an oxidation test utilizing 50 ml test samples with no intermediate sampling, and 250 cc/minute flow of saturated air. This method does not require metal test specimens and water condenser for condensate return. Test Method DERD NO. 1 is a thermal stressing test utilizing a 100 ml stainless steel test chamber fitted with a 190 mm long, 6 mm inside diameter air condenser and a test sample size of 85 ml. Wear metal generation in the oil was accomplished using a multi-specimen friction and wear test machine (20). The pin-on-disk wear tests utilized AISI 1018 mild steel discs and AISI 440C stainless steel pins having a hardness of R 55 to 60, 1078 N (110 kgf) and a speed of 0.63 m/s. The gear simulation wear configuration consisted of two AISI 8620 steel pins (R $_{
m c}$ 56) and two annular

rings of AISI 8620 steel having the same hardness. The pins roll and slide simultaneously on the two rings. A drive velocity of 0.51 m/s and a load of 1078 N (110 kgf) were used for these studies.

The iron content of the lubricant used for investigating the effect of wear on coking was accomplished using the acid dissolution method (21) and flame atomic absorption analysis. Particle size distribution was determined by filtering the lubricant containing the wear debris through various pore size membrane filters and subsequent analysis for iron concentration.

(3) Test Lubricants

Lubricants, esters and ester-additive mixtures used in the AFAPL Static Coker Study are described in Table 1, Section II.1.d

(4) Results and Discussion

(a) Test Repeatability

An ester base MIL-L-7808 lubricant was selected for determining test repeatability using four static coker units. Four coking tests were conducted on each unit and the results are given in Table 23.

This data along with all static coking test data is given in Table A-3. A test temperature of 315°C and a standard test time of 180 minutes using shim stock test surface were used for this test repeatability study. A mean deposit value of 14.1 mg/g oil was obtained with the standard deviation being 1.1. This standard deviation is typical for lubricant deposition testing and was considered satisfactory for these studies. The evaluation of this lubricant nine months later using the same four coking units gave a mean deposit value of 14.3 mg/g and a standard deviation of 1.7. Data generated during the course of this study has shown that test repeatability can vary for different lubricant formulations. All test values reported are the mean

TABLE 23

REPEATABILITY OF STATIC COKER DEPOSITS USING MIL-L-7808 LUBRICANT,
315°C TEST TEMPERATURE AND SHIM STOCK SURFACE

Coking Deposit, mg/g (Static Coker Number)

Test No	1	2	3	4
1	13.6	14.9	15.4	15.0
2	12.2	13.3	12.8	15.0
3	13.5	15.9	13.0	13.2
4	13.0	14.7	14.0	15.3
Mean	13.1	14.7	13.8	14.6
Std. Dev.	0.6	1.1	1.2	1.0

Mean Value, All Data - 14.1 mg/g oil

Std. Dev. - 1.1

<u>የውስያውያለውያቸው እንደረጃ እንደረጃ አስተለው ሲፈ ፈርያው የውስር የርፈር የውዕያው የዕለ</u>ተው የሚፈርር የርፈር የውስር የርፈርር የመፈርር የርፈርር የመፈርር የርፈርር የርፈርር

of two or more tests. The number of tests conducted for obtaining each test value depended on the deviation obtained for the initial two tests.

(b) Effects of Test Surface Material on Lubricant Coking Table 24 gives the coking values obtained using aluminum, stainless steel, quartz and shim stock coking surfaces for two classes of ester base fluids. Shim stock gave the highest deposit levels for all six MIL-L-7808 (specification for 3 cSt ester base lubricants) fluids and two of the MIL-L-23699 (specification for 5 cSt ester base lubricants) fluids. Quartz gave the second highest values for four of the MIL-L-7808 fluids. two MIL-L-7808 fluids (0-82-3 and 0-79-17) not giving the second highest deposit with quartz showed very small differences in the deposit levels between the aluminum, stainless steel and quartz test surfaces. The effect of test surface was less for the MIL-L-23699 fluids than the MIL-L-7808 fluids with the MIL-L-23699 differences being marginal when considering test repeatability. Shim stock was selected as the coking surface for most of this study due to its superior test repeatability, low cost, uniformity of material, and ease in cutting 50.8 mm diameter test surfaces. Aluminum provided the worst coking surface due to poor wettability of the oil on aluminum at coking temperatures which can contribute to poor test repeatability.

(c) Coking Deposits Versus Molecular Weight of Ester

Lubricant volatility is an important factor in lubricant
deposition testing, especially for those tests involving very low to no
lubricant flow during testing. This condition is typical of many engines
having areas of low oil flow and trapped pockets of lubricant due to fog or
mist lubrication in high temperature regions. Temperature rise due to heat
soak-back on engine shut-down also contributes to coking under these

EFFECT OF TEST SURFACE MATERIAL ON LUBRICANT COKING DEPOSITS AT 315°C

TABLE 24

Lubricant	Aluminum AMS-4037F (0.032 in)	Stainless Steel AISI 302 (0.019 in)	Quartz - (0.052 in)	Shim Stock AMS 5045 (0.005 in)
MIL-L-7808 Type	,			
	mg/g	mg/g	mg/g	mg/g
0-79-16	9.6	11.2	12.3	14.1
0-79-17	11.8	9.8	11.2	13.2
0-79-20	9.3	11.8	12.2	14.7
0-82-2	13.9	11.1	13.9	14.6
0-82-3	9.8	8.6	8.6	14.7
0-82-14	11.9	13.8	16.1	16.9
MIL-L-23699 Typ) e			
0-71-6	28.9	29.2	-	32.0
TEL-6021	35.6	32.0	-	33.4
TEL-6022	36.3	37.7	-	39.9

conditions.

Two competing mechanisms involving the rate of volatility and the rate of degradation with subsequent deposition determine the coking characteristic of the lubricant under these conditions. If the volatility is sufficiently high, very low deposits will be formed. Volatility is a function of vapor pressure and for esters used in turbine lubricants, the vapor pressure varies with molecular weight according to Log

P=2.48318-0.00539M (22). Figure 36 shows the relationship between coking deposits for six technical grade basestock esters and their respective theoretical molecular weights. The purity of these esters determined by GC is also shown. As expected, coking deposits increased as the molecular weight increased. The impurities could increase or decrease the deposit level depending upon the type of contaminants.

(d) Effect of Antioxidants on Coking Deposits

investigated using two diesters, one polyol ester and commonly used antioxidants. The esters consisted of commercial grade trimethylolpropane triheptanoate (TMPH) having a 93 percent purity and two di-2-ethylhexyl adipate esters (D2EHA) with one having a relatively low purity of 89 percent and one having a high purity of 99 percent. Each ester was blended with 0.5, 1.0, 1.5 and 2.0 percent weight of phenyl-alpha-naphthylamine (PANA) and dioctyldiphenylamine (DODPA). The antioxidants were commercial grade and were not purified prior to use.

Table 25 shows the coking deposits obtained for the various esters and ester-additive mixtures. The addition of 0.5 percent of both antioxidants reduced the quantity of deposits for the polyol ester TMPH.

Increasing the concentration of both antioxidants from 0.5 to 2.0 percent in

Figure 36. Coking Deposit Versus Molecular Weight of Ester; (A) di-2-ethylhexyl adipate (B), 2, 2-dimethyltrimethylene nonanoate (C) di-2-ethylhexyl azelate, (D) di-2-ethylhexyl sebacate, (E) trimethylolpropane triheptanoate, (F) pentaerythritol tetraheptanoate

TABLE 25

EFFECT OF ANTIOXIDANTS ON COKING DEPOSITS AT 315°C TEST TEMPERATURE AND SHIM STOCK SURFACE

5	Wt	Pheny	/l-al	pha-na	phth	ylamine
---	----	-------	-------	--------	------	---------

	0.0	0.5	1.0	1.5	2.0
	mg/g	mg/g	mg/g	mg/g	mg/g
0-76-5	21.2	17.0	16.8	17.3	16.3
0-76-8#	5.9	6.2	8.8	12.0	12.0
0-77-1+	3.7	6.5	6.4	7.8	7.6
		\$ Wt D	ioctyldiphen	ylamine	
	0.0	0.5	1.0	1.5	2.0
	mg/g	mg/g	mg/g	mg/g	mg/g
0-76-5	21.2	16.0	14.8	13.6	14.2
0-76-8	5.9	6.4	7.6	11.2	12.8
0-77-1	3.7	3.8	4.2	4.3	5.1

^{*} Trimethylolpropane triheptanoate, 93% purity

Di-2-ethylhexyl adipate, 89% purity
 Di-2-ethylhexyl adipate, 99% purity

this ester did not significantly increase deposits. GC analysis of the TMPH ester showed the 7 percent impurities to be primarily trimethylolpropane esters other than TMPH. The lowering of deposits using 0.5 percent antioxidant in the TMPH could be due to reactions between the antioxidant and some undetected impurity giving rise to a more volatile material and/or reducing the rate of degradation of the ester.

The addition of the two antioxidants to both of the two diesters increased the quantity of deposits as the additive concentration increased, with the lower purity ester deposits increasing to twice the deposit level of the purer ester at 2 percent additive concentration. GC analysis of the lower purity ester showed the impurities to be 8.3 percent TMPH, 1.5 percent 2-ethylhexanol and 1.5 percent unidentified components. The TMPH impurity would increase the deposit level slightly due to its lower volatility and as shown by Table 25, the lower purity ester does have the highest deposit level between the two diesters without additives. The data indicates the increase in deposits for the diesters with antioxidants is due mostly to reactions between the antioxidants and ester impurities. No significant difference was found between the two antioxidants with respect to their effect on lubricant coking.

No differences were seen in the physical appearance of deposits formed by the three esters or the ester/additive mixtures. All tests gave hard, brown to black, glossy smooth deposits.

(e) Effect of Temperature on Lubricant Coking

Coking characteristics of four classes of ester base lubricants representing 13 different formulations and three esters were studied at 245, 260, 300 and 315°C using shim stock test surfaces. Table 26 shows the deposit values of each fluid at the various test temperatures with

EFFECT OF TEMPERATURE ON LUBRICANT COKING DEPOSITS
USING SHIM STOCK TEST SURFACE

TABLE 26

Lubricant	245°C	Test Temperatu 260°C	are 300°C	315°C
MIL-L-7808 Type	mg/g	mg/g	mg/g	mg/g
0-79-16	16.0	16.4	13.4	14.1
0-79-17	13.9	13.4	12.8	13.2
0-79-20	22.2	22.6	15.3	14.7
0-82-2	22.6	24.0	15.6	14.6
0-82-3	23.8	17.7	14.7	14.7
0-82-14	12.9	15.0	16.2	16.9
TEL-6034	5.3	5.6	8.4	8.2
MIL-L-23699 Type				
0-71-6	82.2	58.2	34.5	32.0
TEL-6021	98.2	68.1	35.7	33.4
TEL-6022	116.6	64.1	36.1	39.9
4 Centistoke Candida	te Fluid			
0-85-1	33.5		27.6	27.7
7.5 Centistoke Fluid	ls			
TEL-6031	57.8	41.4	30.1	30.5
TEL-6032	24.2	20.5	12.8	10.4
Basestock Esters				
0-76-5	28.2	23.4	19.9	21.2
0-76-8	12.5	12.5	13.0	5.9
0-77-1	9.7	6.9	7.9	3.7

each value being the mean of two or more determinations.

Each of the seven MIL-L-7808 lubricants showed no coking differences between 300°C and 315°C. Below 300°C, three of the lubricants showed a significant increase in deposits, one showed no difference and two lubricants showed a slight decrease. The mean of the deposit values for the MIL-L-7808 fluids was 13.8 mg/g oil at 315°C and 17.4 mg/g oil at 245°C. All of the oils produced hard brown to black deposits at 260°C and above. Three of the lubricants (0-79-17, 0-82-3 and TEL-6034) had tacky deposits at 245°C.

The three MIL-L-23699 lubricants showed a decrease in deposits with increasing temperature throughout the range of 245°C to 315°C. Their deposit values were much greater than the deposit values for the MIL-L-7808 fluids with the mean deposit value being 34.4 mg/g oil at 315°C and 99.0 at 245°C. All three lubricants produced hard brown to black deposits at 300°C and 315°C. Lubricant 0-79-18 produced a tacky deposit at 260°C and at 245°C. Lubricant 0-77-15 produced a tacky deposit at 245°C.

The 4 cSt candidate fluid produced a deposit value at 315°C close to the values of MIL-L-23699 fluids. Only a very small increase in deposit occurred with a decrease in temperature. At 245°C, the deposit value was near the values for the MIL-L-7808 fluids. The deposits of this fluid were hard and brown to black for all test temperatures except 245°C. At this temperature the deposit was tacky.

The two 7.5 cSt lubricants did not give the amount of deposits expected for higher viscosity fluids. This is partially due to the narrow molecular weight range of the esters used for the basestocks.

However, this does not explain the vast difference between the two 7.5 cSt fluids since TEL-6031 has a lower apparent molecular weight than TEL-6032 based on GC retention times. The 7.5 cSt fluid TEL-6032 very closely

resembles MIL-L-7808 fluids with respect to coking. The deposits formed from these lubricants were hard and brownish black at all test temperatures.

The basestock esters, identified in Table 25, resembled MIL-L-7808 fluids producing about the same level of deposits and with all deposits being hard and brownish black. One difference found between the deposits of formulated lubricants and basestock esters was the tendency of the ester deposits to be flaky, especially if the test specimen cooled too fast. No flaky deposits were observed for any of the formulated lubricants.

(f) Effect of Lubricant Thermal and Oxidative Stressing on Coking Deposits

Table 27 shows the effect of 205°C, 48 hour confined heat stressing on lubricant coking at 315°C using shim stock surface. The degree of stressing is shown by the increase in total acid number (TAN) and viscosity from new fluid. The MIL-L-7808 lubricants showed moderate to high increases in TAN (1 to 6) and small increases in viscosity (2 to 6 percent). All of these lubricants had significant increases in coking deposits which cannot be attributed to volatility. The MIL-L-23699 fluids showed moderate increases in TAN (1 to 3) and small increases in viscosity (1 to 4 percent). The coking values increased only slightly for two of the fluids while the third fluid showed a slightly lower (within test repeatability) coking value. No correlation exists between the increase in coking deposits and changes in TAN or viscosity.

Table 28 shows the effect of 205°C, 24 hour and 48 hour oxidative stressing using the same coking test conditions. The 24 hour stressed MIL-L-7808 lubricants had low to moderate TAN increases, moderate viscosity increases and moderate deposit increases which were slightly higher than that obtained after 48 hours thermal (confined heat) stressing. The

TABLE 27
EFFECT OF 205°C CONFINED HEAT STRESSING ON LUBRICANT COKING
AT 315°C ON SHIM STOCK SURFACE

		NEW LUBRICANT	CANT		48 HOUR ST	48 HOUR STRESSED LUBRICANT	BRICANT
6 6 6 6 6	Total	Viscosity	Deposit	Total	Viscosity	Viscosity Coking Deposits	eposits
Lubricants	ON DION	cSt	mg/g oil	Increase		mg/g oil	
		Σ.	MIL-L-7808 Type Fluid	Fluid			
0-79-16	0.20	3.16	14.1	2.49	2.2	18.2	29.1
0-79-17	0.08	3.35	13.2	5.66	2.4	19.2	45.5
0-79-20	0.20	3.47	14.7	1.38	0.4	24.6	67.3
0-82-2	0.08	3.33	14.6	3.45	2.7	18.4	26.0
0-82-3	0.12	3.45	14.7	1.11	3.5	17.9	21.8
0-82-14	0.15	3.40	16.9	6.05	6.5	76.4	56.2
		Σ	MIL-L-23699 Type Fluid	Fluid			
0-71-6	90.0	4.95	32.0	2.67	7.7	35.7	11.6
0-77-15	0.43	4.95	33.4	2.99	0.4	39.0	16.8
0-79-18	0.07	5.29	39.9	0.76	6.0	39.0	-2.3

TABLE 28

EFFECT OF 205°C OXIDATIVE STRESSING ON LUBRICANT COKING AT 315°C ON SHIM STOCK SURFACE

ICANT	Coking Deposits Increase g/g oil %		77.3	77.3	97.3	79.5	127.2	108.9		42.5	43.1	11.0
SSED LUBR	8 1		25.0	23.4	29.0	26.2	33.4	35.3		45.6	47.8	44.3
48 HOUR STRESSED LUBRICANT	Viscosity Increase		17.7	20.3	14.4	14.7	26.1	17.9		14.1	11.1	5.3
817	Total Acid No Increase		0.58	0.69	0.55	3.12	1.18	2.62	ъ	0.68	0.09	0.83
ICANT	Deposits Increase	MIL-L-7808 Type Fluid	56.7	9.09	81.0	38.3	80.2	81.1	MIL-L-23699 Type Fluid	10.0	12.6	2.0
SED LUBR	Coking mg/g oil	MIL-L-7	22.1	21.2	26.6	20.2	26.5	30.6	MIL-L-2	35.2	37.6	40.7
24 HOUR STRESSED LUBRICANT	Viscosity Coking Deposits Increase Increa		8.5	13.1	7.5	7.8	13.3	11.5		10.3	7.5	2.8
₩Z	Total Acid No Increase		0.31	77.0	0.35	1.82	0.56	1.43		0.29	0.31	0.30
	Ester Base Lubricants		0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14		0-71-6	0-77-15	0-79-18

higher viscosity change caused by the oxidation test would contribute to an increase in deposits. Very little change occurred for the MIL-L-23699 lubricants for either TAN, viscosity or deposits. The 48 hour stressed MIL-L-7808 lubricants showed low to moderate TAN increases not too different from the 24 hour stressed samples and a large viscosity change. Deposit levels increased for all the lubricants but not proportional to changes in TAN or viscosity. The MIL-L-23699 fluids showed only slight changes in TAN or viscosity after 48 hour oxidative stressing but deposits increased significantly and showed a much greater percentage increase between the 24 hour and 48 hour stressed samples than the MIL-L-7808 lubricants.

** SOCOOL BOXCECO BOXCECO BOXCEOU BOXCE

(g) Effect of Wear Debris on Lubricant Coking

The particle size distribution of the nascent wear debris (wear particles generated within the lubricant) and the effect of the wear debris on lubricant coking are given in Figure 37 and Table 29. The data in Figure 37 shows the wear debris from the pin-on-disk wear test generates particles of which 9% percent weight have sizes below 8 microns. As expected the gear simulation test produces larger size particles with approximately 90 percent weight of the particles being above 3 microns. The pin-on-disk test produces more of the smaller particles with approximately 67 percent being below 3 microns. These particles sizes are typical of normal wear particles generated in aircraft turbine engines.

Table 29. Coking deposits for two MIL-L-7808 lubricants and trimethylolpropane triheptanoate, with and without wear debris are given using both quartz and shim stock coking surfaces. All fluids show the same effect in coking deposits. No difference was seen between the coking values conducted on fluids containing wear debris using quartz and shim stock test

Particle Size Distribution of Wear Metal Generated from the Pin-on-Disk and Gear Wear Tests Figure 37.

EFFECTS OF WEAR DEBRIS ON LUBRICANT COKING AT 315°C ON SHIM STOCK SURFACE

TABLE 29

Lubricant	Type of Wear Test	Iron Content ppm	Coking De Quartz Surface	posits, mg/g Shim Stock Surface
MIL-L-7808 Type			Surface	Surrace
0-79-16	None	0	12.3	14.1
0-79-16	Pin-on-Disk	136	14.5	14.8
0-79-16	Gear Simulation	510	14.8	14.0
0-82-3	None	0	8.6	14.7
0-82-3	Gear Simulation	271	14.2	14.8
Ester*				
0-76-5	None	0	16.9	21.2
0-76-5	Gear Simulation	532	20.7	21.3

^{*}Trimethylolpropane triheptanoate, 93% purity

surfaces. A difference is seen between the new fluid and corresponding wear containing fluid when coking is done with quartz specimen. This difference is of the same order of magnitude as that seen between new lubricant using quartz and shim stock test surfaces. This data indicates that in this test, iron has a limited effect on lubricant coking and this effect occurs with wear debris or iron shim stock to the same degree.

(h) Effect of Lubricant Filtering on Coking Deposits

The effect of filtration on the coking characteristics of thermally and oxidatively stressed ester-additive mixtures was investigated using three esters and two antioxidants with each being blended at 2.0% concentrations. The three esters were 0-76-5 (TMPH) 0-76-8 and 0-77-1 (both D2EHA esters) and the two antioxidants were phenothiazine (PTZ) and dioctylphenothiazine (DOPTZ). These additives were selected for determining the effect of the two octyl groups on solubilizing lubricant additive breakdown products. Table 30 shows the properties of the stressed esters after 48 hours confined heat testing and after 24 hours and 48 hours oxidative stressing at 205°C. The 48 hour confined heat stressing caused a significant increase in TAN for all ester-additive mixtures. COBRA values increased for the ester-additive mixtures but not in the same order of magnitude as the TAN values. Only moderate increases occurred for changes in viscosity. The esters containing PTZ gave more visual deposits in the test oil and higher toluene insoluble contents, especially for 0-76-5 plus 2% PTZ. Each ester blended with 2% DOPTZ showed the equivalent degree of degradation to that of 2% PTZ in each ester. However, the level of visual deposits and toluene insolubles were much lower with the DOPTZ additive.

The 24 hour oxidative stressed lubricant test data given in Table 30 shows moderate degradation for esters 0-76-5 and 0-77-1 containing

TABLE 30

PROPERTIES OF STRESSED ESTERS CONTAINING ANTIOXIDANTS USED FOR COKING STUDIES AT 315°C AND SHIM STOCK SURFACE

48 Hour Confined Heat Stressing at 205°C

	Lubricant	Weight Loss, %	TAN Increase	COBRA	Viscosity at 100°C % Increase	Visual Deposits in Oil	Toluene Insolubles, % wt
	0-76-5/2% PTZ ⁽¹⁾	0.0	3.89	7	2.8	large amount	99.0
	0-76-8/2% PTZ	0.3	5.71	120	7.5	large amount	0.10
	0-77-1/2% PTZ	0.0	1.78	100	9.7	moderate amount	0.02
	0-76-5/2% DOPTZ ⁽²⁾	0.0	4.80	28	2.8	None	90.0
_	0-76-8/2% DOPTZ	0.4	6.12	200 +	4.5	slight amount	0.03
	0-77-1/2% 00212	9.0	2.81	46	8.0	slight amount	0.03

(1) Phenothiazine

⁽²⁾ Dioctylphenothiazine

TABLE 30 (CONCLUDED)

PROPERTIES OF STRESSED ESTERS CONTAINING ANTIOXIDANTS USED FOR COKING STUDIES AT 315°C AND SHIM STOCK SURFACE

$24\ \mathrm{Hr}\ \mathrm{Oxidative}\ \mathrm{Stressing}\ \mathrm{at}\ \mathrm{205^{0}C}$

Lubricant	Weight Loss, %	Increase	COBRA	Viscosity @ 100 ⁰ C % Increase	Visual Deposits In Tube	Toluene Insolubles, % Wt	¥
	7.0	0.34	2	4.3	Heavy Coke	90.0	
	21.1	11.88	25	14.2	=	0.04	
	18.4	0.74	4	2.1	=	0.05	
0-76-5/2% DOPT2	7.2	0.28	4	2.2	=	0.05	
0-76-8/2% DOPTZ	22.3	9.90	24	12.2	=	0.05	
0-77-1/2% DOPTZ	14.9	0.82	7	0.0	=	0.02	
		48	Hr Oxidat	48 Hr Oxidative Stressing at 205 ⁰ C	ပ		
	13.8	0.40	9	5.7	Heavy Coke	0.01	
	•	r	ı	1	•	,	
	34.1	η.90	ø	3.0	Heavy Coke	0.02	
0-76-5/2% DOPTZ	18.2	5.33	110	32.3	Slight Varnish	h 0.00	
0-76-8/2% DOPTZ	ı	t	•	ı	·	ı	
0-77-1/2% DOPTZ	33.7	9.10	200 +	6.6	Slight Varnish	h 0.01	

either antioxidants but severe degradation for diester 0-76-8. Heavy coke deposits existed on all tubes usually just above the oil level. Toluene insoluble content was low for all 24 hour samples. After 48 hours of oxidative stressing, neither 0-76-5 nor 0-77-1 ester showed significant degradation with the antioxidant PTZ. Both esters showed much greater degradation when containing the same concentration of DOPTZ. Although the weight percent of each antioxidant blend was 2.0%, the amount of active antioxidant would be less due to the octyl groups which may explain the difference seen between PTZ and DOPTZ. The two esters with PTZ gave heavy coke deposits on the oxidation tubes while the DOPTZ/ester mixtures had only slight varnish deposits. The toluene insoluble content was very low for both antioxidants in each ester.

The data given in Table 31 shows the effect of 0.45 micron filtering on coking deposits for both the thermally and oxidatively stressed esters (0-76-5, 0-76-8 and 0-77-1) containing the antioxidants PTZ and DOPTZ. The addition of PTZ and DOPTZ changed the coking level of the three esters as shown below:

Ester	No Additive	2.0% PTZ	2.0% DOPTZ
	(Depo	sit values, mg/g oil	.)
0-76-5	21.2	21.0	21.8
0-76-8	5.9	10.7	14.8
0-77-1	3.7	6.6	6.8

The polyol ester 0-76-5 showed no change in coking values using either PTZ or DOPTZ. This is different with respect to the addition of both PANA and DODPA to 0-76-5 which decreased the deposit level. The increase in deposit levels for 0-76-8 and 0-77-1 containing either PTZ or DOPTZ was the same as that obtained by the addition of PANA or DODPA to the

TABLE 31

EFFECT OF FILTERING PRESTRESSED ESTERS CONTAINING ANTIOXIDANTS ON LUBRICANT COKING AT 315°C AND SHIM STOCK SURFACE

	New	ŏ	Oxidative Stressing at 205°C mg Deposits/g oil	ng at 205 ⁰ C g oil		Thermal Stre mg Depos	Thermal Stressing at 205 ⁰ (mg Deposits/g oil
	Oil Deposits mg/g oil	24 hr Unfiltered	24 hr 48 hr $Filtered^{(1)}$ Unfiltered	48 hr Unfiltered	48 hr Filtered	48 hr Unfiltered	48 hr Filtered
0-76-5/2% PTZ(2)	21.0	26.8	21.3	28.6	26.7	29.8	26.2
0-76-8/2% PTZ	10.7	18.8	14.6	ı	•	14.2	15.3
0-77-1/2% PTZ	6.6	8.0	7.2	12.2	6.3	8.3	8.3
0-76-5/2% DOPTZ	21.8	25.2	20.4	0.69	9.89	25.8	21.3
0-76-8/2% DOPTZ	14.8	18.2	15.6	ı	1	13.6	15.0
0-77-1/2% DOPTZ	6 .8	9.3	9.2	17.2	16.8	16.4	13.8

Dioctylphenothiazine

0.45 Micron Filter

(1)

Phenothiazine

esters with the increase being twice as great as for 0-76-8 as for 0-77-1. As expected the unfiltered thermally and oxidatively stressed samples had increased deposit levels ranging from 16 to 76% for 24 hour oxidatively stressing, 36 to 216% for 48 hour oxidatively stressing and 0 to 141 % for the 48 hour thermally stressed ester additive mixtures. Ester 0-76-5 gave a lower deposit increase with PTZ than 0-77-1 with PTZ. With DOPTZ, 0-76-5 showed the greatest increase (216%) in deposits compared to 0-77-1 (153%). For thermal stressing, ester 0-77-1 with 2.0% DOPTZ gave a very high deposit increase of 141%. This high increase was not obtained with any other ester-additive mixture as shown in Table 31. For the esters containing PTZ, filtering decreased the deposit values with the decrease ranging from 10 to 26% for 24 hour oxidative stressing, 7 and 24% for 48 hour oxidative stressing and 0 to 12% for 48 hour thermal stressing. For the esters containing DOPTZ, filtering also decreased the deposit values with the decrease ranging from 1 to 19% for 24 hour oxidative stressing, 1 and 2 % for 48 hour oxidative stressing and 16 to 17% for 48 hour thermal stressing. Fluid 0-76-8 plus 2% DOPTZ gave a 10% increase after filtering which is probably within test repeatability.

(i) Comparison of the Static Coker with Other Deposition Tests

Data in Table 32 shows the static coker, the coking

propensity test and the microcarbon residue tester (MCRT) which has

previously been described (23) differentiate between the MIL-L-7808 and

MIL-L-23699 lubricants in a similar manner relative to deposits. This is

probably due to the similarity of tests.

Repeatability of each test must be considered in the ranking of the lubricants within each class of fluids. The repeatability of the tube deposition test deposit rating (weight of sludge plus 10 times the

LUBRICANT COKING TENDENCIES WITH VARIOUS DEPOSITION TESTS

TABLE 32

Ester Base Lubricants	Static Coker side static Coker side side side side side side side side	Coking Propensity [‡] 260°C Residue mg/20 cycles	MCRT ⁺ 300 ^O C/15h Residue % wt	TUBE DEP Rating	BEARING DEP Rating
MIL-L-7808 Type					
0-79-16	14.1	9.6	12.57	0.7	49
0-79-17	13.2	7.8	12.56	0.1	30
0-79-20	14.7	14.0	-	0.8	27
0-82-2	14.6	10.8	13.01	0.4	35
0-82-3	14.7	8.8	8.49	0.2	40
0-82-14	16.9	9.0	13.70	0.2	38
MIL-L-23699 Type					
0-71-6	32.0	113.4	24.15	-	37
TEL-6021	33.4	126.6	24.17	-	20
TEL-6022	39.9	136.2	-	-	
4 Centistoke Candi	date Fluid				
0-85-1	27.7	-	-	0.1	33
7.5 Centistoke Flu	ids				
TEL-6031	30.5	97.0	10.04	-	-
TEL-6032	10.4	50.4	7.38	-	-

^{*} Shim Stock Surface

^{# 316} SS Cups

⁺ Microcarbon Residue Tester

weight of coke) is plus or minus 0.75 of the mean of two or more values (15). Therefore, the merit of ranking the six MIL-L-7808 fluids having deposition ratings ranging from 0.1 to 0.8 is questionable. The mean of the overall deposit demerit rating using the bearing deposition test for the six MIL-L-7808 fluids is 37 with a standard deviation of 8. The test repeatability of the bearing deposition test, assuming each value is the mean of four tests, is plus or minus 8 with a 90 percent confidence limit (24). Thus considering test repeatability, only one MIL-L-7808 lubricant (0-82-3) showed a difference in coking characteristics using the five different tests (Table 32). With this lubricant, the coking propensity test and the MCRT gave lower deposit levels.

EXACTOR REPORTS A DECEMBER DESC

1555555

The bearing deposition test did not show the increased deposit levels for the MIL-L-23699 fluids as did the static coker, MCRT or coking propensity test. This is probably due to these tests being more affected by lubricant volatility.

The two 7.5 cSt lubricants were ranked in the same order with the static coker, MCRT, and coking propensity tests, with each test giving approximately twice the deposits for one oil compared to the other. However, levels of deposits are not what would be expected when comparing the data obtained from the MIL-L-7808 and MIL-L-23699 lubricants using the same three tests. The coking propensity values would be expected to be lower when compared to the deposit levels shown by the other two tests.

(5) Summary

This study has shown the static coker deposition tester to be a good low cost, short time laboratory test for studying the coking characteristics of lubricants under high temperature static oil conditions.

The test has shown good repeatability and permits the measurement of the true

coking surface temperature.

Different deposit values were obtained for some of the lubricants when using different coking surfaces such as aluminum, stainless steel, quartz and shim stock. The shim stock gave the highest deposit values for all MIL-L-7808 and MIL-L-23699 lubricants and provided the best test repeatability.

The static coker was used to examine the effects of two antioxidants on deposit quantity when used with various esters.

Phenyl-alpha-naphthylamine and dioctyldiphenylamine (antioxidants) produced the same effects on deposits for three different esters. Deposits decreased for one ester and increased for the other two esters with the addition of either additive. This study has shown the type and quantity of ester impurity have a very large effect on deposits when antioxidants are present. This emphasizes the importance of knowing ester purity and composition in any lubricant degradation study.

Thermal and oxidative stressing were found to also influence the quantity of coking deposits produced in the static coker. Four classes of ester base lubricants displayed very little change in coking deposits between temperatures of 300°C and 315°C. Between 245°C and 300°C major increases in the quantity and type of deposits occurred for some lubricants while the deposit level for other lubricants remained the same. The effects of oxidative and thermal stressing of the lubricant prior to deposit testing varied from 0 to 100 percent increase in deposits. These increases are partially due to lowering of volatility during the oxidation stressing but the deposit increase for the thermally stressed lubricants cannot be attributed to volatility loss.

The influence of wear debris on coking deposits was investigated

by generating metallic wear debris in the test oil and observing changes in coking deposits produced in the static coker. The wear debris study showed small increases in deposits between the new and wear debris containing lubricant if quartz coking surfaces were used. No difference was observed when using shim stock test surface. This indicates that the effect of iron is limited with respect to coking using the static coker and the effect occurs to the same degree with either wear debris or the shim stock test surface.

The effect of 0.45 micron filtration decreases the deposit values for the esters and antioxidants studied. The degree of decrease depended upon the specific ester-additive mixture, stressing time and type (thermal or oxidative) stressing.

Ranking of the MIL-L-7808 and MIL-L-23699 lubricants with respect to deposit levels was similar for the static coking test, MCRT and the coking propensity test with exception of one lubricant. This MIL-L-7808 lubricant (0-82-3) gave much lower deposits for the MCRT and coking propensity test. Considering test repeatability, the tube deposition test and the bearing deposition test show no significant difference between the lubricants studied. The 7.5 cSt fluids had lower deposits than would be expected for a heavier fluid when compared to the MIL-L-7808 or MIL-L-23699 fluids. This is apparently due in part to the relatively low and narrow range of molecular weight esters used for the lubricant basestocks. Although the static coker has demonstrated good capability in studying lubricant deposition, it must be remembered that other conditions exist (lubricant flow, varying oil residence times and environmental conditions) for lubricant coking within turbine engines' lubrication systems. Under these conditions, the static coker along with all other deposition tests which are influenced

by lubricant volatility should not be expected to provide correlative data with other dynamic deposition tests.

(6) Future Effort

Investigation of coking characteristics using the AFAPL Static Coker will be continued for other test conditions, test times and advanced high temperature ester base lubricants. Evaluation of the AFAPL Static Coker will be made with respect to its value as a specification test.

b. Coking Propensity Test

(1) Introduction

The coking characteristics of lubricants were investigated using the Coking Propensity test developed by Rolls-Royce Ltd. ¹ This test measures the deposits formed by a lubricant under static conditions where lubricant volatility is an important factor. These conditions exist in areas of turbine engines where there is low or no oil flow and trapped pockets of lubricants are present due to fog or mist lubrication. Temperature rise due to heat soak-back on engine shut-down also contributes to coking under these conditions.

(2) Test Apparatus

The test apparatus consists of cylindrical metal dishes with the procedure requiring sandblasted aluminum dishes. Stainless steel (302) and polished aluminum test dishes were also used in this study for investigating the effect of metal and surface type on deposit levels. Coking of the test lubricants was conducted using a Blue M, Class A, Batch oven, Model No. PDM-106A-GHP having horizontal forced air circulation. A baffle was used to prevent the air flowing directly over the test dishes. Figure 38 shows the high temperature oven used for these studies. Coking propensity dishes are shown in Figure 39.

Figure 38. High Temperature Oven Used for Coking Propensity Test

Figure 39. Photographs of Coking Propensity Test Dishes with Deposits

(3) Test Procedure

The stainless steel and aluminum dishes were polished using 400 grit silicon carbide paper to remove surface roughness and 600 grit silicon carbide paper for finer polishing. The test area of the aluminum sandblasted dishes was sandblasted by the base machine shop using 80 grit sandblasting material. Prior to each test using polished dishes, each dish was polished using a cotton pad dampened with reagent grade heptane, and dipped into 3 micron size corundum powder to form a scouring paste. The test surface was rubbed with a circular motion including the test walls. The dishes were rinsed with hot water, distilled water and then with isopropanol. Each dish was then treated with clean dry air to ensure removal of the scouring particles and for drying the dish. Sandblasted dishes were treated with clean dry air prior to use.

PARTICULAR PROPERTY PROPERTY

All dishes were heated to several degrees higher than the test temperature for a minimum of two hours and allowed to cool to room temperature prior to initiation of test.

The test dish was weighed to the nearest 0.1 mg and approximately 0.4 ml of test fluid was added to the dish. The dish was rotated and tilted to ensure coverage of the test surface. The dish containing the sample was re-weighed and then arranged on an aluminum tray for placing into the preheated oven set at the selected test temperature. Normally 10 to 12 test dishes were used during a test run. The dish (or dishes) was heated at the test temperature for 22 hours. The dish was then removed and placed in a large metal desiccator and allowed to equilibrate to room temperature which occurred within 1 to 1 1/2 hours. The test dish was then weighed for determining the amount of deposits. The test was repeated for 9 additional cycles.

After completion of the 10 test cycles, the total weight of the residue was divided by the weight of test fluid for providing a value expressing the residue in terms of milligrams of residue per gram of test fluid. This value was determined in two ways; one using the average milligrams per cycle and the second using the difference in dish weight between the final and initial dish weight. The expectant residue for 20 test cycles was determined statistically from the 10 test cycles.

(4) Test Lubricants and Test Conditions

A total of 12 lubricants consisting of 6 MIL-L-7808 type fluids, 3 MIL-L-23699 type fluids, a 4 cSt candidate lubricant and two 7.5 cSt lubricants were investigated. A description of these lubricants is given in Table 1, Section II.1.d with exception of 0-79-18 which is a MIL-L-23699 type lubricant.

Testing was conducted at temperatures of 210, 235, 260 and 300°C .

(5) Results and Discussion

All coking propensity test data is given in Appendix A, Table A-4 with a summary of this data being given in Table 33. The data in Table 33 shows that the amount of deposits varies with the type of test dish. Stainless steel gives the highest coking values while sandblasted dishes produce the lowest coking values. This effect occurs for all the lubricants but is more pronounced for the higher viscosity fluids such as the MIL-L-23699 fluids, the 4 cSt candidate lubricant and the two 7.5 cSt lubricants. The effect of test dish material on coking propensity at 300°C test temperature is shown in Table 34 for these higher viscosity fluids.

TABLE 33

SUMMARY OF COKING PROPENSITY TEST DATA

DEPOSITS, mg/g Oil

	Type	Sta	Stainless Steel	Steel Dis	Dishes	Polis	shed Alum	Polished Aluminum Dishes	hes	Sandbl	Sandblasted Dishes	shes
	Fluid	210 ⁰ C	210 ⁰ C 235 ⁰ C	260°	300c	210 ₀ c	235 ^ი	260 <mark>0</mark> C	3 ₀ 00£	235°C	ე ₀ 092	ე ₀ 00£
	MIL-L-7808											
	0-79-16	6.0	1.7	1.2	•	9.0	1.4	1.7	•	9.0	6.0	•
	0-79-17	•	1.8	6.0	ı	•	1.4	6.0	•	0.8	0.2	•
	0-79-20	2.1	1.4	1.7	,	2.1	1.0	1.6	ı	ı	0.1	1
	0-82-2	•	3.2	1.4	•	•	2.4	1.6	•	1	4.0	•
	0-82-3	•	2.0	1.0	•	•	2.1	9.0	1	•	•	1
126	0-82-14	3.7	1.7	1.c	•	3.1	1.4	0.7	•	0.7	4.0	ı
	MIL-L-23699											
	0-71-6	ı	15.6	14.0	11.1	•	ı	12.4	9.6	•	i	6.0
	0-77-15	,	12.2	15.2	9.1	ı	1	10.3	7.5	•	ı	1.0
	0-79-18	•	16.7	15.8	10.1	1	1	14.9	9.7	•	1	3.1
	4 cSt											
	0-85-1	•	12.6	8.6	6.2	1	•	8.6	5.9	•	•	1.8
	7.5 cSt											
	TEL-6031	•	9.4	10.2	6.3	•	•	10.5	6.2	i	•	2.0
	TEL-6032	1	3.5	5.9	3.2	1	•	4.4	2.9	•	•	0.3

TABLE 34

EFFECT OF TEST DISH MATERIAL ON COKING PROPENSITY AT 300°C TEST TEMPERATURE

Deposit, mg/g oil

Test Lubricant	Sandblasted Aluminum Dish	Polished Aluminum Dish	Polished Stainless Steel Dish
0-71-6	0.9	9.6	11.1
0-77-15	1.0	7.5	9.1
0-79-18	3.1	9.7	10.1
0-85-1	1.8	5.9	6.2
TEL-6031	2.0	6.2	6.3
TEL-6032	0.8	2.9	3.2

The data in Table 33 also shows that the level of deposits varies more with the class of lubricants than between different lubricants of the same class. Table 35 more clearly illustrates this difference.

TABLE 35

COKING PROPENSITY VERSUS LUBRICANT TYPE
(Stainless Steel Dishes, 260°C Test Temperature)

		Mean Deposit	Deposit	Value Range
Type Fluid	Number Tested	Value mg/gm	Lowest mg/gm	Highest mg/gm
M11-L-7808	6	1.2	0.9	1.7
4 cSt Candidate	1	8.6	8.6	8.6
MIL-L-23699	3	15.0	14.0	15.8
7.5 cSt Lubricants	2	8.0	5.9	10.2

In general, the higher the viscosity the higher the deposit level. This would be expected since the higher viscosity oils usually have lower volatility. However, the two 7.5 cSt fluids do not give the amount of deposits expected for the higher viscosity. This is partially due to the narrow molecular weight range of the esters used for the basestocks of these lubricants. However, this does not explain the vast difference between the two 7.5 cSt fluids since lubricant TEL-6031 has lower apparent molecular weight than TEL-6032 based on gas chromatography retention times, but gives about twice the amount of deposits as TEL-6032.

As shown by the data in Tables A-4 and A-5 some of the lubricants had a tendency to creep up the sides of the test dishes which appeared to be slightly worse with the sandblasted dishes.

VERTICE OF STREET OF STREET OF STREET OF STREET STREET OF STREET OF STREET OF STREET OF STREET OF STREET

Good correlation was usually obtained between the deposit values calculated from the mean value for 10 cycles and the value calculated from the final and initial weight of the test dishes and is shown in Table A-4.

Ranking of the MIL-L-7808 and MIL-L-23699 relative to deposit levels varied to a small degree depending upon the test dish being stainless steel or polished aluminum but the overall ranking of the 12 lubricant was the same as for the AFAPL Static Coker shown in Table 32. Varying the test temperature also changed the relative ranking of the lubricants (within each class) with respect to deposit levels. Part of these differences in ranking of the lubricants could be due to test repeatability and very low deposit values. Tables 36 and 37 show test repeatability using polished aluminum and stainless steel dishes at a test temperature of 235°C and aluminum test dishes at 260°C. Repeatability was determined for both deposit values calculated from the mean and from the final and initial weight of the test dish. All lubricants used in the repeatability study were MIL-L-7808 type

TABLE 36

REPEATABILITY OF LUBRICANT COKING PROPENSITY TEST DATA 235° TEST TEMPERATURE

ALUMINUM TEST DISHES

	RESIDUE,	mg/gm oil	a		RESID	UE, mg/gm	oilb	
	Test 1	Test 2	X	σ	Test 1	Test 2	X	σ
0-79-16	1.9	0.9	1.4	0.7	1.7	0.8	1.2	0.6
0-79-17	1.6	1.2	1.4	0.3	1.4	1.4	1.4	0.0
0-79-20	1.1	0.9	1.0	0.1	0.9	0.7	0.8	0.1
0-82-2	2.4	2.5	2.4	0.1	2.4	2.4	2.4	0.0
0-82-3	2.2	2.0	2.1	0.1	2.2	2.0	2.1	0.1
0-82-14	1.6	1.3	1.4	0.2	1.50	1.3	1.4	0.1

STAINLESS STEEL TEST DISHES

	RESIDUE,	mg/gm oil	a		RESII	OUE, mg/gm	oil ^b	
	Test 1	Test 2	$\overline{\mathbf{x}}$	σ	Test 1	Test 2	X	σ
0-79-16	2.2	1.2	1.7	0.7	2.0	0.3	1.1	1.2
0-79-17	2.0	1.7	1.8	0.2	2.0	1.2	1.6	0.6
0-79-20	1.8	0.9	1.4	0.6	1.6	0.6	1.1	0.7
0-82-2	3.5	2.8	3.2	0.5	3.5	2.9	3.2	0.4
0-82-3	2.0	1.9	2.0	0.1	2.1	2.1	2.1	0.0
0-82-14	1.8	1.5	1.6	0.2	1.9	1.6	1.8	0.2

a - Calculated from the mean for 10 cycles

b - Calculated from final and initial weight for 10 cycles

fluids. This data showed fair to poor repeatability which is probably due to the very low amounts of deposits formed. Test repeatability was about the same for both stainless steel and polished aluminum dishes.

TABLE 37
REPEATABILITY OF LUBRICANT COKING PROPENSITY TEST DATA
260°C TEST TEMPERATURE

Aluminum Test Dishes

	Res:	idue, mg/g	m oil ^a		Resi	due, mg/g	gm oil ^b	
	Test 1	Test 2	$\overline{\mathbf{X}}$	σ	Test 1	Test 2	$\overline{\mathbf{x}}$	σ
0-79-16	1.7	1.6	1.6	0.1	1.7	1.2	1.4	0.4
0-79-17	0.8	1.1	0.9	0.2	0.7	0.5	0.6	0.1
0-79-20	1.5	1.6	1.6	0.1	1.4	1.4	1.4	0.0
0-82-2	1.7	1.5	1.6	0.1	1.7	1.2	1.4	0.4
0-82-3	0.5	0.7	0.6	0.1	0.4	0.0	0.2	0.3
0-82-14	0.6	0.8	0.7	0.1	0.4	0.2	0.3	0.1

a - Calculated from the mean for 10 cycles

The MIL-L-7808 lubricants showed very little differences in deposits when tested at 210, 235 or 260°C. Testing of the MIL-L-7808 lubricants at 300°C was initiated but was discontinued after four test cycles due to the lack of deposits. The MIL-L-23699 fluids showed a general increase in deposits with decreasing temperatures.

A description of coking propensity test deposits is given in Appendix A, Table A-5. Coking propensity test deposits for lubricants 0-71-6, 0-77-15, 0-79-18, TEL-6031 and TEL-6032 and 0-85-1 are shown in Figure 39. For these fluids, deposits varied from hard brown varnish to hard black deposits depending upon the temperature and type of test dish. The

b - Calculated from the final and initial weight for 10 cycles

texture of the deposits also varied and consisted of smooth, flaky or wrinkled deposits, again depending upon the temperature and type of test dish. The MIL-L-7808 lubricants varied from sticky brown varnish to hard dark brown to black deposits. These deposits were usually smooth for all three types of test dishes.

(6) Summary

Coking propensity testing conducted on the various lubricants gave very low levels of deposits for the MIL-L-7808 fluids and much higher deposit levels for the MIL-L-23699 fluids. The two 7.5 cSt fluids and the 4 cSt fluid had intermediate deposit levels. Rating of the 12 fluids with respect to deposit formation was the same as for the AFAPL Static Coker for all test temperatures investigated, although the deposit levels for all fluids were much lower with the coking propensity test. This is probably due to each test having a different effect on lubricant volatility.

(7) Future Effort

Coking propensity testing will be conducted on the higher viscosity lubricants at lower test temperatures along with coking studies of new ester base lubricants at high test temperatures.

8. LUBRICANT FOAMING STUDY

a. Introduction

The foaming characteristics of turbine lubricants are normally determined using both static and dynamic testing described in AFAPL-TR-75-91, ASTM Method D 892 and Federal Test Method Standards 3213 and 3214. A limitation of these foam tests is the large quantity of sample required which prevents determining the foaming characteristics of small samples of used lubricating fluids.

The objective of this study was the development of a static foaming

test requiring 25 ml or less sample and which correlates with Federal Test Method 3213.

b. Test Apparatus

The test apparatus for conducting the standard foam test requiring 200 ml of sample is described in Federal Test Method 3213(25). The test consists of passing air through a 25.4 mm diameter spherical air diffusion stone which is immersed in 200 ml of the test fluid being contained in a 500 cc graduated cylinder immersed in a constant temperature bath of 80°C.

The test apparatus used for developing the small volume foam test consisted of various pore size and various diameter metal spargers and a sealed frit foaming tube, both of which are shown in Figure 40. The 25 ml volume foam testing using the air spargers and standard ASTM Stones was conducted in a 250 cc graduated cylinder immersed in an 80°C constant temperature bath. The sealed frit foaming tube was placed directly in the constant temperature bath.

c. Test Procedure

Aeration of the test lubricant was continued at a rate of 1000 cc/min for 30 minutes for both the standard and small volume testing. The maximum volume of foam occurring during the 30 minute test period was reported as the foaming value of the test fluid at that airflow rate. Aeration was then stopped and the time required for the foam to collapse was recorded. The test fluid was then aerated at 500 cc/min and the foam volume recorded at the end of 5 minutes. Foam collapse time was also recorded after the 5 minute aeration period.

Pore size and permeability of the ASTM air diffuser and the metal spargers were determined in accordance with ASTM Methods D 892 and E 128.

d. Test Lubricants

Figure 40. Small Volume Foam Tost [quipment, A Metal Spangers, (B) Sealed Frit Foaming Tule

Nine fluids having varied foaming characteristics were examined in this study and are described in Table 38.

TABLE 38

LUBRICANTS AND FLUIDS USED FOR FOAMING STUDY

Lubricant or Fluid	Description
0-76-1 plus 3 ppm DC-200-20 cSt	MIL-L-7808 Lubricant with Silicone
0-76-1 plus 6 ppm DC-200-20 eSt	MIL-L-7808 Lubricant with Silicone
0-76-5	Trimethylolpropane Heptanoate Ester
0-76-8 plus 3 ppm DC-200-20 cSt	Di-2-Ethylhexyl Adipate with Silicone
0-76-8 plus 6 ppm DC-200-20 eSt	Di-2-Ethylhexyl Adipate with Silicone
0-79-17	MIL-L-7808 Lubricant
0-79-17 plus 3 ppm DC-200-500 cSt	MIL-L-7808 Lubricant with Silicone
0-76-5 plus 2.0\$ TCP and 2.0\$ PANA	As Described
Fluid 5K3L6	MIL-L-7808 Lubricant

Dow Corning Methyl Silicone DC-200 with 20 cSt Viscosity at 25°C
 Dow Corning Methyl Silicone DC-200 with 500 cSt Viscosity at 25°C

The fluids containing the DC-200 methyl silicone were prepared by blending the required amount of a 1.00% silicone concentration in toluene with the base fluid using mechanical agitation.

e. Results and Discussion

(1) Physical Properties of the Air Diffusers and Spargers Used for the Standard and Small Volume Foam Testing

Initial efforts involved determining the physical characteristics of the various physical size and pore size rating of the diffusers and spargers used in the foaming study. Table 39 gives a

TABLE 39

COMPARISON OF LUBRICANT DIFFUSER STONES AND AIR SPARGERS

Type of Diffuser	Shape	Size	Surface Area ₂	Maximum Porosity microns(a)	Perme- ability cm ³ /min(b)	Flgw Rate cm ² /min/ cm ² Surface(c)	Equiv Flow Rate/cm Area to Diffuser 182
ASTM Stone lA	Sphere	2.54 dia	14.74	09	3188	89	1.0
ASTM Stone 2A	Sphere	2.54 dia	14.74	48	3249	99	1.0
Glass Frit # 1	Cylinder	1.20 dia 2.20 lgth	9.42	41	4242	106	1.6
Glass Frit # 2	Cylinder	1.20 dia 2.20 lgth	9.45	40	3442	106	1.6
1/2" Dia. Sparger # 1 (40 Micron) (Rating)	Cylinder	1.25 dia 2.54 lgth	11.40	94	2489	88	1.3
1/2" Dia. Sparger # 2 (40 Micron) (Rating)	Cylinder	1.25 dia 2.54 lgth	11.40	84	2550	88	1.3
3/8" Dia. Sparger # 1 (10 Micron) (Rating)	Cylinder	0.95 dia 2.54 lgth	8.23	109	1947	121	1.8
3/8" Dia. Sparger # 2 (10 Micron) (Rating)	Cylinder	0.95 2.54 lgth	8.23	67	1918	121	1.8

TABLE 39 (Cont'd)

COMPARISON OF LUBRICANT DIFFUSER STONES AND AIR SPARGERS

Type of Diffuser	Simpe	S126	Surface Area ₂	Porosity microns (1)	Perme- absity cm /min(2)	Figur Rate cm/min/ cm/surface(3)	Equiv Flow Mate/Cm Area to Diffuser 162
1/4" Dia Sparger e 1 (2 Micron) (Rating)	Cylinder	0 64 dia 2 54 19th	€ •	65	3	ĭ	7.5
ASTM Stone 6A	Sphere	2 SA dia	14 74	251	3 %	3	1.0
Glass Stone	Sphere	25 ds 42	14.74	28	3422	3	0.1
2 13/16" Dia Sparror e 3 5 Micron Rating	A Pour (A)	. 06 die . 54 lgth 16 43	16 43	54	2713	•	6.0

a. As Determined by Astra (899)

At 150 mm All pressure

Total flow rate of 1000 im lmin

alges and for the sample comes value for 25 cm sample

comparison of diffuser stones and spargers showing dimensions, surface area, maximum pore size, permeability and relative flow rates.

Initial foam testing using both 200 ml and 25 ml sample sizes and various pore size air diffusers and spargers showed no correlation between foam volumes and pore size as determined by ASTM D 892. An additional study of porosity and permeability was made with the data obtained being shown in Table 39. In addition to determining maximum pore size, the "mean" pore size was determined from the pressure required for giving visual uniform airflow (bubbles) all around the diffuser. Duplicate measurements, each by a different technician were made. As shown by Table 40, much less difference exists between the "mean" porosities than the maximum porosities for the various diffusers. The metal spargers show a characteristic decrease in pore size based upon airflow when compared to their micron ratings based upon spherical particle retention. This relationship is shown in Figure 41. Table 40 also shows good agreement between determining the maximum pore size of the 1/2" 2 micron sparger calculated using water (ASTM D 892) and a MIL-L-7808 lubricant (ASTM E 128). Pore size shown by microphotographs of various metal spargers obtained from an SEM (Scanning Electron Microscope) correlates closely with the calculated mean pore size as shown in Figure 42.

This study also showed changes in the porosity and permeability of the air diffusers occurring during the last six months. These changes are shown in Table 41. Four of the five air diffusers showed an increase in maximum pore size while one diffuser showed a decrease in maximum pore size. Four of the diffusers also showed an increase in permeability. These changes may be due to handling and continuous heating and cooling of the diffusers.

Pressure versus flow rate of the air diffusers was determined for characterizing the air diffusers and spargers. This data is shown in

TABLE 40

POROSITY AND PERMEABILITY OF FOAM TEST AIR DIFFUSERS (Measurements made with 100 mm H₂0 head pressure)

	Pressure For First Bubbles	Maxi Poro	Maximum ⁽¹⁾ Porosity	Pressure For Uniform Bubbles Around Diffuser	Equit (Near	Equivalent (1) (Mean) Porosity	Permeability At 250 mm H20 Pressure
Diffuser	(mm H ₂ 0)	a ic	rons)	(mm H20)		ous)	(B) (Btn atr)
ASTN-1A	491	75	$(82)^{(2)}$	648	53	(55)(5)	3546
ASTH-2A	368	109	(114)	630	22	(99)	4352
ASTH-6A	423	8	(62)	622	26	(99)	4571
1/2" Sparger # 1 40 Micron	321	132	(127)	525	69	(22)	2094
1/2" Sparger # 2 40 Micron	325	130	•	200	73	(82)	1089
1/2" Sparger # 12 20 Micron	432	88	(26)	989	20	(52)	1357
1/2" Sparger # 13 10 Micron	618	26	(25)	940	35	(38)	1276
1/2" Sparger # 14 5 Micron	940	32	(46)	1575	20	(52)	1112
1/2" Sparger # 15 2 Micron	1151	28	(27)	2324	13	(19)	915

(Measurements made with 100 mm MIL-L-7808 (0-82-3) head pressure)

1194
=
26(3)
7
610 mm oil
1/2" Sparger # 14 5 Micron

- (1) Calculated according to ASTM 892
 - (2) Repeat test by second operator
- (3) Calculated according to ASTM E 128

Figure 42. Microphotographs of Various Pore Size Metal spanger and an Astm. Stone: (A) 2 Micron Spanger. (b) 5 Micron parger. (c) 1 Micros spanger and (E) ASTM trace

TABLE 41

CHANGES IN POROSITY AND PERMEABILITY
OF FOAM TEST AIR DIFFUSERS

Type Diffuser	(1	um Pore S microns) e of Test		Permeat (cc/min at 2	-
		27/3/86		10/10/85	27/3/86
ASTM-1A	60	80	78	3188	3909
ASTM-2A	48	114	116	3249	4466
astm-6a	152	95	92	3621	4475
1/2" Sparger # 1 (40 micron)	94	127	132	2489	2332
1/2" Sparger # 2 (40 micron)	84	115	130	2250	2366

Table 42. The pressures ranged from 406 mm H₂O (0.575 psi) at an airflow of 500 cc/min to 2108 mm H₂O (2.988 psi) at an airflow of 1000 cc/min. As expected this data shows that less pressure is required to provide a given air flow rate when reaching the required flowrate from a higher pressure due to reduced surface tension effects. This data also shows a much reduced pressure required for a given flowrate when using a head pressure of 100 mm of oil instead of 100 mm of water. The difference in densities (1.000 for H₂O versus 0.925 for the lubricant) is insufficient to account for the differences in pressure. However, the great difference in surface tensions (72 for water and 30 for the lubricant) would account for the large differences in pressures.

(2) Effect of Diffuser Pore Size and Sample Volume on Foaming

Initial foam testing involved various sample sizes of lubricants 5K3L6 and 0-79-17 containing 3 ppm DC-200 500 cSt fluid using Test Method 3213 and a ASTM diffuser stone. Figures 43 and 44 show the effects of sample volume on foam volume for airflows of 1000 cc/min and 500 cc/min. For 1000 cc/min the change in foam volume with respect to change in sample volume is linear for both fluids. At an airflow of 500 cc/min using Federal Test Method 3213, a reversal in the foaming characteristics occurred between the two lubricants with a maximum foam volume occurring at approximately 40 ml sample volume for lubricant 5K3L6. The test data in Table A-5 (which includes all foaming test data), tests 3 through 8 shows that the maximum pore size determined in accordance with ASTM method D 892 is not related to foam volumes. For example, ASTM Stone 1A having a maximum porosity of 60 microns gave a foam volume of 450 ml while ASTM Stone 6A had a maximum porosity of 152 microns and gave a foam volume of 470 ml.

As shown by the data in Table A-6, tests 15 through 22, doubling

TABLE 42
PRESSURE VERSUS FLOWRATE OF FOAM TEST AIR DIFFUSERS
(Pressures in mm H20. Includes 100 mm H20 head pressure)

Pressure Required for Flowrates of

Diffuser	500 cc/mi Increasing Pressure	500 cc/min airflow easing Decreasing	700 cc/ Increasing Pressure	700 cc/min airflow ing Decreasing re Pressure	1000 cc/min airflowing Increasing Decre	n airflow Decreasing Pressure
ASTH-1A		463	584	484	910	533
ASTH-2A	457	432	483	483	125	521
ASTM-6A		. 233	989	659	737	229
1/2" Sparger # 1 A Microns	457	. 457	483	•	533	•
1/2" Sparger # 2 A Microns			432	. :	470	•
1/2" Sparger # 12 20 Microns	572	848	989	•	749	•
1/2" Sparger # 13	1067	1067	1118	914	1219	1118
1/2" Sparger # 14 5 Microns	1410	1410	. 1499	1168	1626	1397
1/2" Sparger # 15 2 Microns	1905	1905	1984	1613	2108	1880
1/2" Sparger		(Measurements	(Measurements made using 100 mm	MIL-L-7808	MIL-L-7808 (0-82-3) head pressure)	-
# 14 5 Microns	876	762	940	808	1041	*

Minimum pressure: 406 mm H_2^0 = 0.575 ps1; Maximum pressure: 2108 mm H_2^0 = 2.988 ps1

Figure 43. Effects of Sample Volume on Foam Volume. (Fed. Test Method 3213)

Figure 44. Effects of Sample Volume on Foam Volume. (Fed. Test Method 3213)

same total airflow, sample size and test cylinders increases the foam volume only slightly. However, doubling the surface area of the glass frits increases the foam volume fourfold and approaches the foam volume obtained using a standard ASTM diffuser stone.

The effect of air diffuser pore size on lubricant foaming was investigated using 1/2" metal spargers having porosity ratings of 2, 5, 12, 20 and 40 microns. These ratings are based upon particle retention and not upon bubble point determinations. Three lubricants were studied which has various foaming levels and which foam for different reasons.

- (a) Lubricant 5K3L6 Previously qualified MIL-L-7808 lubricant
- (b) 0-79-17 plus DC-200 Foaming due to soluble silicone.
- (c) Basestock 0-76-5 plus 2\$ TCP and 2\$ PANA Synergistic effect of additives.

Pigures 45 through 48. The effects on foaming due to air spanger pore size were the same for tests using 200 ml of sample and for tests using 200 ml of sample and for tests using 200 ml of sample. For the 0-79-17 plus DC-200 lubricant and the basestock plus 25 ml and 25 PANA, foaming increased greatly for air spanger sizes below 1 minimal and 25 ml sample sizes. Lubricant 5K3L6 had the highest foaming level where using a 10 micron spanger and a sample size of 25 ml. For 200 ml size samples, lubricants 0-79-17 plus DC-200 and 0-76-5 plus the safi tives showed increased foaming for air spangers of pore sizes below 10 minimal while the foaming characteristics changed very little for lubricant 5K3L5 for plant sizes below 10 microns.

(3) Lubricant Foaming Due to Silicones

Foaming tests conducted on lubricant SK3L5 showed maximum

The state of the second of the

- Lubricant 5K3L6
- △ Lubricant: 0=79-17
 Plus DC-200
- Basestock 0-76-5
 Plus 2% TCP & 2% PAHA

Sparger Pore Size, Microns

Figure 4h. Effects of SpargerPore Size on Foaming 500 ml Sylinder, 200 ml Sample, 500 cc/min Airflow)

The same of the sa

- O Lubricant SY3L6
- A Lubricant 0-79-17 Plus DC-200
- ☐ Basestock 9-76-5 PTus 2% TCP & 2% PAMA

Sparger Pore Size, Microns

Figure 48. Effects of Sparger Pore Size on Foaming (250 ml Cylinder, 25 ml Sample, 500 cc/min Airflow)

foaming to occur during the first few minutes of testing while 20 to 25 minutes of testing was required for lubricant 0-79-17 containing 3 ppm DC-200-500 cSt to approach maximum foaming level. Also, during the testing of 0-79-17 containing the mail solutions the air bubbles changed from large to small bubbles prior to jubricant foaming.

Lubricant 0-79-17 plus the 3 ppm DC-206-500 cSt was examined using phase contrast microscopy. A very small quantity (less than 1 ppm) of dispersed silicone two microns or less in size was present in this lubricant. This may explain the 20 to 25 minute delay in foaming of this lubricant

Lubricant 5-79-17 containing 5 ppm DC-200-506 cSt fluid was tested without shaking the container using the standard test method 500 accylinder and 200 m. of sample: Foaming did not reach its maximum foam value of 225 mi until 25 minutes of aeration. Aeration was stopped and the foam collapsed in 49 seconds. After waiting hainutes, the test was repeated with the Submirant reaching maximum foam volume of 230 ms well before t minutes of agration. This is probably due to the loss of the trace amounts of insoluble silicone. After completing the second test, the ASTM TA diffuser stone was removed and cleaned according to Method 3213. The test was again repeated using the original sample and the cleaned diffuser stone. A foaming value of 210 mi was obtained almost immediately. Subricant 0-79-17 containing the 4 pps DC-200-500 ASE fruid was then sechanically shaken for hour submirant was then tested using the standard test method with the rest of, being instrumented with a thermocouple to ensure 80% or, respective during aeration. Maximum forming did not occur until 25 to 40 minutes of aeration had been achieved. A maximum forming value of 19% mi of form was about the same as previous testing. Test jubricant temperature remained 80° throughout the test. After the test was completed, the labricant, diffuser

and test cylinder remained in the bath for 15 minutes. The standard test was repeated and again, maximum foaming occurred during the first few minutes of testing.

bue to this problem of trace quantities of insoluble silicones when blending with the 500 cSt DC-200 fluid with other lubricants, a formulated lubricant 0-76-1 and a di-2-ethylhexyl adipate ester 0-76-8 were blended with 3 ppm DC-200-20 cSt to improve the silicone solubility. Lubricant 0-76-1 plus the 3 ppm silicone gave a foaming value of about 150 using test method 3213 which was expected based on prior testing. However, contrary to past experience with the DC-200-20 cSt fluid causing lubricant foaming in formulated oils, the diester (0-76-8) plus the 3 ppm of DC-200-20 cSt fluid did not foam when using either the ASTM stones or the metal spargers. This is most likely due to an increase in the solubility of the DC-200 fluids when other additives are not present. The diester did not foam with concentrations of 6 ppm DC-200-20 cSt fluid.

Foaming values obtained on lubricant 0-76-1 containing the 3 ppm DC-200 (cSt) fluid using metal spargers were much lower than expected because of equivalent foaming values being obtained with all other foaming lubricants when using the ASTM stones and the 5 and 2 micron metal spargers.

(4) Sealed Frit Foaming Tube Studies

During foaming testing with the ASTM stones and the metal spargers using either 200 or 25 ml samples, only part of the sample was being acrated for either 25 or 200 ml volume samples. The sealed frit foaming tube (Figure 40) was made to permit acration of the complete 25 ml volume samples. Foaming test data obtained using the sealed frit tube 's compared with foaming data using Tes! Method 3215 in Table 45. The sealed frit apparatus shows a reversal in the ranking of some of the lubricants compared to Test

TABLE 43

COMPARISON OF TEST METHOD 3213 FOAMING DATA WITH THE SEALED FRIT 25 ml SAMPLE FOAMING DATA

LUBRICANT	TEST METHOD 3213 ml foam	SEALED FRIT TEST
0-79-16	45 ^a (20) ^b	50 (29)
0-79-17	10 (5)	50 (12)
0-79-20	15 (10)	70 (14)
0-82-2	10 (10)	50 (14)
0-82-3	10 (10)	15 (10)
0-82-14	75 (20)	188 (64)
0-79-17 plus 3 ppm DC-200-500cs	200 (80)	105 (34)
0-76-5 plus 2\$ TCP + 2\$ PANA	480 (35)	134 (79)
0-76-8 plus 3 ppm DC-200-20 cs	10 (10)	10 (6)
0-76-8 plus 6 ppm DC-200-20 cs	10 (10)	16 (10)
0-76-1 plus 3 ppm DC-200-20 cs	148 (50)	22 (14)
0-76-1 plus 6 ppm DC-200-20 cs	290 (128)	88 (52)
5K 3L6	15 (33)	148 (76)

a - Airflow of 1000 cc/min.

b - Airflow of 500 cc/min.

Method 3213. This reversal in ranking is less using a 500 cc/min airflow rate. With the 1000 cc/min airflow rate, the sealed frit tube is more sensitive to oil aeration and contributes to higher foaming values for some very low foaming lubricants

(5) Effects of Various Diameter 5 Micron Rated Spargers and ASTM Stone on Foam Values

ASTM stone on foam values were investigated using four lubricants having varying foaming characteristics with the data being shown in Figures 49 through 52. This data shows that no correlation exists between foaming values of the lubricants and various diameter spargers or the ASTM stone for either the 200 ml or 25 ml sample volume tests. The data does show that the 13/16 inch diameter sparger provides the best correlation with the ASTM air disperser for both sample volumes.

Lubricant foaming test data has been studied relative to the effects of airflow using different micron rated air spargers, different diameter air spargers, and ASTM stone and four different "foaming"

lubricants. Figure 53 shows the effect of lubricant formulation on the ratio of foam volume at 1000 cc/min airflow to the foam volume at 500 cc/min using 2, 5 and 10 micron rated spargers having sixes of 1/4, 3/8, 1/2, 11/16 and 13/16 inch diameter and an ASTM stone for two lubricants. These lubricants (5K3L6 and 0-76-5 TMPH containing 25 TCP and 25 PANA) foam due to synergistic effects of the lubricant components other than silicone material. This figure shows that for these fluids, this ratio increases as the level of foaming increases at a constant rate regardless of the type, size or micron rating of the air diffuser. In comparison, Figure 54 shows the effect of lubricant formulation on the foam ratio for two lubricants which foam due to

Figure 49. Efficts on Various Diameter 5 Micron Spargers and ASTM Stone on Foaming Using 200 ml Sample Size. Data Grouped for Each Lubricant

Effects of Various Diameter 5 Micron Spargers and ASTM Stone on Foaming Using 200 ml Sample Size. Data Grouped for Each Size Sparger Figure 50.

Effects of Various Diameter 5 Micron Spargers and ASTM Stone on Foaming Using 25 ml Sample Size. Data Grouped for Each Lubricant Figure 51.

Effects of Various Diameter 5 Micron Spargers and ASTM Stone on Foaming Data Grouped for Each Size Sparger Using 25 ml Sample Size. Figure 52

Effect of Lubricant Formulation on the Ratio of Foam Volume at 1000 cc/min Airflow to Foam Volume at 500 cc/min Airflow Using Various Diameter and Micron Rated Air Dispersers, 200 ml Sample Size, Non-Silicone Containing Fluids. Figure 53

Effect of Lubricant Formulation on the Ratio of Foam Volune at 1000 cc/mir Airfiow to Foam Volume at 500 cc/min Airflow Using Various Diameter and Micron Rated Air Dispersers, 200 ml Sample Size, Silicone Containing Fluids. Figure 54.

figure shows that no correlation exists between the foam volumes at 1000 cc/min and 500 cc/min airflow for these fluids. For tests involving 25 ml sample sizes, no correlation existed between the foam volume ratios at the two airflow rates for any of the four lubricants. The above data shows that changing the airflow in the small sample volume test being developed would not provide correlation between the ASTM test and a small volume test for all "types" of foaming lubricants.

(6) Effect of Pore Size on Bubble Size

The effects of various pore size (micron rated) 1/2 inch diameter spargers and an ASTM stone on air bubble size are shown in Figures 55 through 61. Figure 55 displays photographs of an air sparger and an ASTM stone with no airflow and shows a magnification of 4X which applies to all the figures showing foaming at 1000 cc/min airflow. This magnification means that a bubble measuring one millimeter is 250 microns in size and is about the smallest bubble distinguishable. Figures 56 through 58 show the pore size effects for a non-foaming lubricant. For this lubricant only a very small decrease is seen in bubble size as the rated pore size decreases. The bubble size of the ASTM diffuser stone is the same as for the 40, 20, 10, 5 and 2 micron pore size spargers. In all cases the spargers show almost complete coverage of bubbles (airflow through most of the sparger surface). Figures 59 through 61 show the pore size effects for a high foaming lubricant. These figures show that as the pore size decreases, the bubble size decreases, except that the 5 micron sparger shows more small bubbles than the 2 micron sparger. However, the measured micron rating (Method ASTM D 892) and also the pressure required for developing uniform flow of bubbles around the diffusers and calculating apparent bubble size (ASTM E 128) show

ASTM Diffuser Stone

NOW THE PROPERTY OF THE PROPER

170 Inch Crameter (parae)

Figure 55. Photographs of an AltMoster Communication Communication with the communication of the Communication of

MICROCOPY RESOLUTION TEST CHART
MATIONAL BUREAU OF STANDARDS-1988-A

ASTM Diffuser Stone

40 Micron Pore Size Sparger

Figure 56. Photographs of Air Bubbles Using Non-foaming Fluid 0-76-8 and 1000 cc/min Airflow with ASTM Diffuser Stone and 40 Micron 1/2 Inch Diameter Sparger (4X Magnification)

20 Micron Pore Size Sparger

10 Micron Pore Size Sparger

Figure 57. Photographs of Air Bubbles Using Non-foaming Fluid 0-76-8 and 1000 cc/min Airflow with 1/2 Inch Diameter 20 Micron and 10 Micron Pore Size Spargers (4X Magnification)

5 Micron Pore Size Sparger

2 Micron Pore Size Sparger

Figure 58. Photographs of Air Bubbles Using Non-foaming Fluid 0-76-8 and 1000 cc/min Airflow with 1/2 Inch Diameter 5 Micron and 2 Micron Pore Size Spargers (4X Magnification)

ASTM Diffuser Stone

Figure 59. Photographs of Air Bubbles Using Foaming Fluid 5K3L6 and 1000 cc/min Airflow with ASTM Diffuser Stone and 40 Micron 1/2 Inch Diameter Sparger (4X Magnification)

20 Micron Pore Size Sparger

10 Micron Pore Size Sparger

Figure 60. Photographs of Air Bubbles Using Foaming Fluid 5K3L6 and 1000 cc/min Airflow with 1/2 Inch Diameter 20 Micron and 10 Micron Pore Size Spargers (4X Magnification)

5 Micron Pore Size Sparger

2 Micron Pore Size Sparger

Figure 61. Photographs of Air Bubbles Using Foaming Fluid 5K3L6 and 1000 cc/min Airflow with 1/2 Inch Diameter 5 Micron and 2 Micron Pore Size Spargers (4X Magnification)

the 2 micron sparger to be of smaller pore size than the 5 micron sparger. Figures 59 through 61 also show that for the foaming fluid decreasing the pore size increases the area of the sparger having airflow which was not the effect for the non-foaming fluid. The 5 micron rated pore size 11/16 inch and 13/16 inch diameter spargers used in the foaming study have complete bubble coverages (1000 cc/min airflow) using both the non-foaming and foaming fluids although photographs have not been taken for these diffusers.

(7) Correlation of Test Method 3213 Foam Test Data with 25 ml Volume Foam Test Data

Test data used for determining the correlation between the Test Method 3213 foam data and the 25 ml volume foam test data is in most cases the average of 2 to 4 individual foam tests being conducted on the same fluid with the same ASTM Stone or air sparger. Repeat testing was not conducted immediately after first testing and as much as one year could have occurred between some repeat tests. The number of repeat tests depended upon the variation on the foam test data, time between repeat testing and level of expected foaming.

The effects of air diffuser type, diameter and pore size on different lubricants are shown graphically in Figures 62 through 66. Figure 62 shows the comparison of foaming data obtained from Test Method 3213 and 200 ml samples using various diameter 5 micron pore size spargers. This data shows good correlation between the 13/16" sparger and the ASTM diffuser stone with very little bias (16) for the ASTM stone and a correlation slope of 0.903. The 11/16" sparger gave a much larger bias (128) for the ASTM stone and a much lower correlation slope of 0.754. The 1/2" sparger gave a larger bias(148) than either of the other two diffusers but a slope more equal to the 13/16" sparger. Figure 63 shows the comparison of foaming data obtained

☐ 13/16 INCH SPARGER

△ 11/16 INCH SPARGER

♦ 1/2 INCH SPARGER

Figure 62. Comparison of Foaming Data Obtained from Test Method
3213 and 200 ml Samples Using Various Diameters 5
Micron Spargers:

500 400 Y = 85 + 2.87X O ASTM Stone 🖸 13/16" 5 Micron Sparger A 11/16" 5 Midron Sparger 100 200 25 m. Volume Sample, m. Foam Figure 63 Comparison of Foaming Data Obtained from Test Method
3213 and 25 ml Volume Samples Using ASTM Stone and Various 5 Micron Sparcers

500 400 Y = 3 + 3.64X200 0 O ASTM Stone 0 13/16" 5 Micron Sparger 100 A: 11/16" 5 Micron Sparger Q 1/2" 5 Micron Sparger 120 200 160 25 ml Volume Sample, ml Foam Comparison of Foaming Data Obtained from 200 ml and 25 ml Volume Samples Using the Same Air 172:

500 400 Έ: 300 ¥ = 45 + 3.20x 100 40 80 120 160 200 25 ml Volume Sample, ml Foam Figure 66. Comparison of Foaming Data Obtained from Test Method 3213 and 25 ml Wolume Samples Using 13/16" Diameter 5 Micron Spanger 174

from Test Method 3213 and 25 ml volume samples using the ASTM stone and various diameter 5 micron spargers. This data shows a poorer correlation than the data in Figure 62, especially for the 11/16" diameter sparger data. Figure 64 shows the comparison of foaming data obtained from 200 ml and 25 ml samples using the same air diffuser. Here the correlation was much better than the data given in Figure 63 showing that the type of air diffuser and nominal porosity (not maximum porosity) has a great effect on foaming. Figure 65 gives the comparison of foaming data obtaining from Test Method 3213 and 25 ml volume samples using the ASTM stone along with the standard deviation obtained with Test Method 3213. Although foam testing normally gives poor repeatability²⁶, two factors are believed to have contributed to the large variation shown by Figures 62 through 66. First, lubricant foaming can change with time. These foaming studies have been conducted over a one year period. Secondly, preparing duplicate blends of lubricants using DC-200 silicone fluids having identical foaming values offers another variable affecting test repeatability. Figure 66 shows the comparison of foaming data obtained from Test Method 3213 and 25 ml samples using a 13/16" diameter sparger. This data shows about the same variation as that in Figure 65 and the same degree of correlation. This equivalent correlation is shown by the two linear regression equations of Y = 52 + 3.15X and Y = 45 + 3.20X.

f. Summary

This study has shown that many physical properties of foam test equipment, test conditions and synergistic effects of some lubricants and test equipment affect foaming values obtained during testing. Specifically, this study has shown the following:

(1) The maximum pore size of ASTM diffuser stones and metal spargers does not correlate with foaming values and shows little value in controlling

the "mean" pore size based on uniform flow of air bubbles all around the stone or sparger appears to be a better measurement, although having the disadvantage of being somewhat subjective.

- (2) The effect of sample volume on foaming varies for different foaming lubricants when airflow rates are changed.
- (3) Foaming increased greatly for air sparger pore sizes below 10 microns for both 200 ml samples and 25 ml samples for all fluids except the lubricant 5K3L6. This lubricant showed increased foaming for air spargers below 20 microns.
- (4) Trace quantities of silicones which settle during storage or plate out on the test cylinder wall during foam testing can affect foaming values and test repeatability.
- (5) The effect of soluble silicone on lubricant foaming depends on the lubricant's formulation.
- (6) No correlation existed between foaming values of the lubricants and various diameter spargers or the ASTM stones for either the 200 ml or 25 ml sample volume tests.
- (7) No correlation existed between foam volume ratios of two airflow rates for any of the fluids studied using 25 ml samples. When testing 200 ml volume samples, this ratio increased for the two non-silicone containing fluids but not for silicone containing fluids.
- (8) Air bubble sizes of ASTM stones or metal spargers depends upon the foaming characteristics of the fluid as well as pore size of the stones or diffusers.
- (9) The best correlation between the Test Method 3213 foaming data and the 25 ml volume foaming data was obtained using the 13/16 inch diameter

5 micron rated pore size metal sparger and a 250 cc graduated cylinder.

g. Future Effort

Future effort in the area of development of a small test volume foam test will be directed towards improving correlation between the two tests. This will involve foam testing of 4 specific fluids using the ASTM diffuser, 11/16" and 13/16" 5 micron spargers for both the standard test and small volume test. Testing will be scheduled such that each oil will be tested with all three tests being conducted on the same day. This will eliminate changes in the foaming characteristics of silicone containing fluids due to time.

SECTION III

DEVELOPMENT OF IMPROVED LUBRICATION SYSTEM HEALTH MONITORING TECHNIQUES

1. INTRODUCTION

Diagnostic methods for determining the health of gas turbine engines include the use of oil contamination monitors as important indicators of the condition of lubricant-wetted components. The primary engine health monitoring technique used extensively by the United States Air Force is the Spectrometric Oil Analysis Program (SOAP). Health monitoring devices used by SOAP are specifically designed to monitor the change in specific wear metal concentration with time. Atomic emission (AE) and atomic absorption (AA) spectrometric analysis involves the measuring and trending of contamination levels while in-line magnetic plugs and chip detectors are used to detect a rapidly progressing component failure before it becomes catastrophic.

Emission and absorption spectrometers have been shown to be effective in detecting wear particles smaller than 3-10 micron. ²⁷ Chip detectors generally monitor particles larger than 100 micron. Wear particles with sizes above the SOAP spectrometers' and below the chip detectors' detection limits can be determined using Ferrographic techniques. ²⁸ The Ferrograph has been developed to magnetically precipitate wear particles according to their sizes onto a glass slide. Individual particles may be observed and studied by using a bichromatic microscope or a scanning electron microscope.

Since all currently used monitoring techniques are particle size dependent, costly, and not specific for all wear mechanisms, the particle detection capability of engine health monitoring techniques is being investigated. During the evaluation period, techniques that can improve

particle detection and improve the diagnostic capabilities of wear metal analysis methods are being considered. The impact of using of fine filters of pore sizes 3-10 micron in the engine lubrication system is being evaluated with regard to continued use of present Air Force engine health monitoring techniques. A microfiltration test rig was built to simulate fine filtration in lubrication systems, to determine the effect of fine filtration on engine wear debris and determine the impact of fine filtration on SOAP.

Requirements for future health monitoring systems will be defined if current SOAP methods prove inadequate.

2. BACKGROUND

During the past 15 years, increasing costs of materials and labor have focused attention on the problems generated from the wear of oil-wetted components. The detection and identification of wear particles is of critical importance since their presence is indicative of component wear. Another critical factor is that these particles can often accelerate more complex wear mechanisms which further degrade component surfaces. Several cases have been documented where large metallic wear particles produced by severe wear mechanisms are not being quantitatively analyzed. The inability to detect large wear particles has led to engine component failure without prior indication of wear as determined by spectrometric analysis techniques. The failure of SOAP to predict impending engine failure is directly related to the particle detection limitations of currently used SOAP wear monitors.

Corrosion, fluid breakdown, fatigue, adhesion, and abrasion are primary wear mechanisms which produce wear metal particles of different types and morphology. Normal rubbing wear produces small particles which are readily detected by SOAP spectrometers while the large particles produced by abrasion and erosion are not readily detected and their presence can rapidly degrade

component surfaces in the oil-wetted system.

Filtration constantly removes the large particles of wear and other debris suspended in the fluid. This process should maintain a relatively clean lubricant within the system. If wear particles are not removed, they can generate secondary wear modes which may further degrade component surfaces. However, if wear debris is removed by filtration, valuable information about the health of the engine can be lost. Because wear particles carry within them important information about the mechanisms of wear, and because their size is directly proportional to severity of wear, it may be important that these particles be captured and analyzed.

The analysis of wear particles is an important tool for diagnosing wear regimes and predicting life expectancy of oil-wetted components. The study of particle morphology can reveal a wealth of detailed and important information about the health of an engine. Information which can be determined by analyzing wear debris includes particle shapes, composition, size distribution, concentration, and rate of wear. If obtained, this information can be used to identify engine components experiencing wear so that appropriate maintenance action can be taken to replace abnormally wearing engine components.

The effectiveness of two rotating disk plasma emission spectrometers and one atomic absorption spectrometer was previously evaluated for analyzing metallic particles. None of these instruments quantitatively analyzed particles larger than 3-10 microns. The rotating disk electrode (RDE) emission spectrometer utilized by SOAP can detect 10 m particles but cannot quantitatively analyze particles larger than 1-3 μ m. $^{28},^{29}$

The poor particle detection capability of the various spectrometric methods is primarily the result of the limitations inherent in their sample

introduction systems and source energy. Although the present sample introduction systems are designed to transport homogeneous solutions, these systems can be improved to transport nonhomogeneous samples and thereby improve the particle detection capabilities of the spectrometer. 28

Complete characterization of wear particles as to their size, shape, and chemical nature is not possible by SOAP. Clearly, supplementary methods of independently measuring the size, shape, and chemistry of particles are required.

3. ATOMIC EMISSION SPECTROMETER

The operational performance of the Jarrell-Ash Model 750 AtomComp was examined by analyzing several oil standards in the concentration range of u-100 ppm. It became immediately evident that most of the analytical channels were not sensitive enough for the analysis of trace metals in oils.

a. Profiling and Optical Alignment

In order to solve the sensitivity problems of the Jarrell-Ash, Model 97-750, atomic emission spectrometer, it was examined first for profiling and alignment. Profiling is usually performed by measuring the peak response of the Mercury Monitor Lamp or the profile of an analytical line. Using the mercury lamp as a stable source, the micrometer reading was measured at 60-80% of the peak meter reading on one side of the maximum and a second reading was taken at the same meter reading on the other side. The average of the two readings is the best position of centration of the mercury line in the slit. However, to profile all the exit slits as accurately as possible, it was necessary to do the following technique:

With a D13-500 Conostan Standard containing 500 ppm of 13 elements, were taken at different micrometer settings. The measurements were taken at -25, -20, -15, -10, -5, 0, 5, 10, 15, 20 and 25 μ profile

setting with 0 being the standard setting. Plotting the integrated reading vs the profile setting for each spectral line will determine the contours of the lines. The maximum reading of the peak is the profile reading and is expected to be within 2-5 microns. Several refractor plate positions were found incorrect and fine adjustments of the refractor plates were made to obtain exact centration.

Intensity measurements were taken for the D20-100 standard with and without the splash protection window. Since the readings with the window in position were higher than the readings taken without the window, it was suspected that the spectrometer might be out of optical alignment. After checking the optical alignment with a laser, it was discovered that the arc stand was out of alignment because a large crack had developed close to its base. A new stand was installed. As a result, the sensitivity of ten elements out of fourteen was substantially improved. The remaining four elements still suffered from a low signal to noise ratio. In spite of these problems, the spectrometer was calibrated using 0, 3, 10, 30, 50 and 100 ppm D14 standards obtained from the Joint Oil Analysis Program. The spectrometer was also standardized with a high (D14-100) and a low (D14-0) standard in order to examine the accuracy and repeatability of the analytical data. Unfortunately the accuracy and precision were best for most of the elements only at concentration levels greater than 30 ppm. Even though the original problem of the spectrometer's sensitivity was greatly minimized, still a solution had to be found before the spectrometer could produce reliable analyses.

b. Refractor Plates

During profiling, it was discovered that most of the refractor plates were frosted and some were pitted. Cleaning the surface with a cotton swab

thoroughly examined for any malfunction which could be in the rotation of the disk electrode, elevation setting of the sample stand, setting of the analytical gap, or bad discharge. The sample stand was found to be free from any malfunction. The flow of CO_2 which stabilizes the discharge and improves the line-to-background ratio was also checked. In addition to the sample stand and gas flow of CO_2 the effect of other gases (Ar, air), the preburn and exposure times on the accuracy and precision of the analyses was determined.

c. Optimizing Gas Flow

- Signals from blank MIL-L-7808 and 245 basestock (heavy hydrocarbon cil) were also examined for the three gases under different flow rates. Except for Mg and Zn, the background signals of MIL-L-7808 were lower than those of 245 basestock for corresponding elements, gases and flows. Figures 67-72 graphically show the effects of flow rates of Ar, air, and CO₂ on the background signal, for Fe, Cr, Cu, Mg, Mo and Ti. Based on the above findings air flowing at 5 LPM should produce optimum signals and lowest backgrounds for all elements, except for Mg. Since the Mg signal is approximately an order of magnitude higher than all elements considered at the 90 ppm level, using air for Mg instead of Ar should be as effective.
- One parameter that might influence the signal-to-background ratio of the Jarrell-Ash atomic emission spectrometer was optimized. The gas jet flowing through the boron nitride cone that surrounds the counter-electrode (top electrode) stabilizes the discharge and should improve the signal-to-background ratio. Carbon dioxide has been used as the gas and its flow was optimized earlier. However, analytical results for some

was in vain. Jarrell-Ash engineers explained that fungus activity could have damaged the surfaces of these Cortex plates. This could happen in a high humidity environment. The refractor plates permit fine adjustment of the spectral line with respect to its exit slit. Damaged surfaces will not refract the light efficiently and therefore reduce the intensities of the desired spectral lines. A replacement of the damaged plate of the iron channel with a new one increased the sensitivity of the iron line threefold. As a result all the damaged refractor plates were replaced with new ones and their respective channels were profiled. The spectrometer was recalibrated and standardized using Conostan standards. Concentrations of 900, 600, 300, 100, 50, 30, 10, and 0 ppm were used to establish calibration curves for fourteen elements. Calibration curves were obtained by plotting the intensity ratios versus concentrations. These values were also entered in the Data Base Manager software under group 5. Entries in this group must be made for every element that is to be read out in concentrations. Two point standardization was accomplishment restoring the intensity ratio for each element in a "high" and "low" standard. The two point standardization introduces a "gain" change and "offset" which correct for any change in the background not compensated for by the background corrections. The 100 and 0 ppm were chosen to be the high and low standards, respectively. In the normal operation of the spectrometer, these standards will be used to standardize the instrument periodically prior to analyzing samples. The instrument was then tested for accuracy and precision. Accuracy was dramatically improved. Ten out of fourteen elements gave accuracies within five percent. However, precision was not as good as expected and it ranged from less than one percent for Mg to ten percent for Si at the 100 ppm level. Since achieving reproducible results was difficult, the sample stand was

Gas Flow Rate Effect on Background Emission Signal for Fe in MIL-L-7808 and 245 Basestock Figure 67.

Gas Flow Rate Effect on Background Emission Signal for Cr in MIL-L-7808 and 245 Basestock Figure 68.

Gas Flow Rate Effect on Background Emission Signal for Cu in MIL-L-7808 and 245 Basestock **F1**gure 69.

Gas Flow Rate Effect on Background Emission Signal for Mg in MIL-L-7808 and 245 Basestock Figure 70.

Figure $^{71}\cdot$ Gas Flow Rate Effect on Background Emission Signal for Mo in MIL-L-7808 and 245 Basestock

Gas Flow Rate Effect on Background Emission Signal for Ti in MIL-L-7808 and 245 Basestock Figure 72.

elements have been questionable and therefore other gases were studied. Argon and air along with carbon dioxide were used in order to determine which gas and at what flow the signal-to-background ratio is optimum for fourteen elements. A 900-ppm Conostan concentrate containing 19 elements (D19-900) was diluted with 245 basestock and MIL-L-7808 oils to prepare two 90 ppm standards (D19-90). The results reported are the averages of duplicate readings of the emission signal at several gas flow rates. The emission signal plotted is the emission signal in counts minus the background signal. The results are graphically shown in Figures 73-82 for only 10 elements. These figures compare the effect of Ar, air and CO₂ flow rates on the emission signal for Fe, Ag, Al, Cr, Cu, Mg, Ni, Si, Ti and Mo. Even though 14 elements were studied, only the data for the above 10 elements was considered, because the correlation program at TSC considers the same 10 elements.

According to Jarrell-Ash, it is desirable to analyze for trace metals with the gas jet on in order to minimize signal fluctuation.

Therefore, only optimum gas flow rates greater than zero will be considered. It is clearly shown that CO₂ suppresses the emission signal for all elements at higher flow rates. Except for Mg, air enhances the signal for elements in 245 basestock at 5.1 LPM. The optimum gas for Mg in 245 oil is Ar at 5.1 LPM.

Since all samples analyzed by emission are normally used MIL-L-7808, optimum flow rates of Ar, air, and CO₂ for standards in MIL-L-7808 were also determined. Based on the curves shown in Figures 73-82, elements in MIL-L-7808 behave differently than the same elements in 245 basestock for the three gases studied. At a gas flow rate of 5.1 LPM or higher, air was the optimum gas for Ag, Al, Cu, Mo, Ni and Ti while Ar was

Figure /3. Gas Flow Rate Effect on Emission for Fe in a) MIL-L-7808 and b) 245 Basestock.

Gas Flow Rate Effect on Emission for Ag in a) MIL-L-7808 and b) 245 Basestock. Figure 74.

Gas Flow Rate Effect on Emission for Al in a) MIL-L-7808 and b) 245 Basestock. Figure 75.

Gas Flow Rate Effect on Emission for Cr in a) MIL-L-7808 and b) 245 Basestock. Figure 76.

Figure 77. Gas Flow Rate Effect on Emission for Cu in a) MIL-L-7808 and b) 245 Basestock.

Gas Flow Rate Effect on Emission for Mg in a) MIL-L-7808 and b) 245 Basestock. Figure 78.

Figure 79. Gas Flow Rate Effect on Emission for Ni in a) MIL-L-7808 and b) 245 Basestock.

Gas Flow Rate Effect on Emission for Si in a) MIL-L-7808 and b) 245 Basestock. Figure 80.

Gas Flow Rate Effect on Emission for Ti in a) MIL-L-7808 and b) 245 Basestock. Figure 81.

Gas Flow Rate Effect on Emission for Mo in a) MIL-L-7808 and b) 245 Basestock. Figure 82.

optimum for Fe, Cr, Mg, and Si.

d. Exposure Time

Exposure time study was performed at the optimum CO₂ flow of 1.7 LPM. Three burns were obtained for each exposure time setting using a 30 ppm Conostan standard. Exposure times of 20, 25, and 30 seconds were studied at a constant preburn time of 5 seconds. The results shown in Table 44 reveal that the longer exposure times, 25 or 30 seconds, yield better precision than the shorter time.

e. Spectrometer Calibration

After optimum conditions were established for the analytical gap gas flow (Ar), sample stand argon flow and exposure time, the spectrometer was then calibrated using standards in the range of 0 to 900 ppm. A new matrix was created under the file name "SOAP" for fourteen elements (Fe, Ag, Al, Cr, Cu, Mg, Na, Ni, Pb, Si, Sn, Ti, Mo, Zn).

f. Analysis of Used Oil Samples

(1) J57 Test Engine Stand and Engine Simulator Samples.

Samples from the J57 test engine stand and engine simulator were submitted for atomic emission analysis. The corresponding analytical results are shown in Tables 45 and 46. It is clearly seen that the spectrometer was responding to changes in wear metal concentration. As sample time increases the concentration of Fe increases.

(2) Correlation Samples

Four correlation samples are being received, monthly, from the Technical Support Center (TSC) to be analyzed on the Jarrell-Ash spectrometer. The results reported to TSC do not agree with the average in mean values of other labs using Baird Atomic A/E35U-3 rotating disk spectrometer. The average score for six months was 72%. Mainly, Cr failed

TABLE 44

EXPOSURE TIME EFFECT ON EMISSION READOUT^a

	20 Sec (ppm)	25 Sec (ppm)	30 Sec (ppm)
Fe	26.77 <u>+</u> 0.74	31.49 <u>+</u> 0.79	30.14 <u>+</u> 6.2
Ag	24.19 <u>+</u> 3.53	26.97 <u>+</u> 6.79	26.28 <u>+</u> 5.36
Αl	30.30+1.00	32.28 <u>+</u> 0.86	31.52 <u>+</u> 0.85
Cr	27.35 <u>+</u> 6.20	35.05 <u>+</u> 0.63	33.08 <u>+</u> 1.73
Cu	25.34 <u>+</u> 1.51	23.20 <u>+</u> 5.32	22.82 <u>+</u> 3.73
Mg	27.04 <u>+</u> 0.98	31.58 <u>+</u> 0.89	30.47 <u>+</u> 0.82
Ng	14.76 <u>+</u> 1.18	13.41 <u>+</u> 2.43	14.62 <u>+</u> 1.06
Ni	28.49 <u>+</u> 1.25	31.44 <u>+</u> 0.75	30.05 <u>+</u> 0.46
Pb	29.89 <u>+</u> 2.48	36.35 <u>+</u> 1.13	33.30 <u>+</u> 0.80
Si	24.37 <u>+</u> 3.56	31.17 <u>+</u> 0.45	27.00 <u>+</u> 5.68
Sn	27.09 <u>+</u> 1.89	31.09 <u>+</u> 2.07	31.33 <u>+</u> 0.97
Ti	26.16 <u>+</u> 5.07	31.42 <u>+</u> 1.02	31.04 <u>+</u> 0.71
Мо	29.66 <u>+</u> 1.95	33.48 <u>+</u> 0.19	31.33 <u>+</u> 1.42
Zn	26.83 <u>+</u> 1.13	25.98 <u>+</u> 4.94	31.24 <u>+</u> 3.88

⁽a) 5-second preburn time and D20-30 standard were used.

THE PROPERTY OF THE PROPERTY O

TABLE 45
ENGINE SIMULATOR TEST NO. 47-A1-WF WEAR METAL ANALYSES

SAMPLE NUMBER	SAMPLE TIME HOURS	Fe	Ag	Cr	Cu	Na	Pb	Zn
CAN	0							.1
SUMP	0							
OP-361-5	5	22.5				.1		1.6
OP-361-10	10	17.3	. 4					1.3
OP-361-15	15	19.1	.8	1.1			7.0	1.5
OP-361-20	20	23.4	.9				4.4	1.3
OP-361-25	25	37.2	1.2				3.5	1.0
OP-361-30	30	39.6	1.5					. 4
OP-361-35	35	51.3	2.1				4.7	1.2
OP-361-40	40	57.6	2.3				3.8	1.0
OP-361-45	45	64.2	2.8	.2		.2	5.8	1.5
OP-361-50	50	64.5	2.5					.7
OP-361-55	55	66.5	2.5					.5
OP-361-60	60	66.2	2.8	•3	.6			1.6
OP-361-68	65	81.0	2.7	.8	.7			1.7
OP-361-70	70	89.8	3.0	1.3	.8	.1		1.6
OP-361-75	75	84.2	2.6	.5	.6			.9
OP-361-80	80	92.7	2.9	.8	.8	.1		1.2
OP-361-85	85	94.1	2.6	.7	.8			1.1
OP-361-90	90	111.0	2.8	1.5	.8			1.6
OP-361-95	95	115.4	2.8	2.2	1.0	.1		1.7
OP-361-100	100	127.4	2.6	2.2	1.0	.1		1.2

TABLE 46
ENGINE TEST STAND WEAR METAL ANALYSES

SAMPLE NUMBER	SAMPLE T HOURS	IME Fe	Ag	Cr	Cu	Mg	Na	Pb	Si	Zn
OP-360-1	0	28.1	.1	1.1	1.3	8.8	2.0	283.5		25.9
OP-360-3	5	9.6		1.9	.5	1.1	.1	53.6		7.2
OP-360-5	10	12.0	.2	1.0	.4	2.0	.6	53.4		10.6
OP-360-7	15	13.4	.2	2.2	.8	2.0	1.3	53.7		11.4
OP-360-9	20	12.8	.3	2.2	1.0	1.9	1.0	48.4	16.1	11.0 (1.9)
OP-360-11	25	13.5	.4	2.6	1.1	1.9	.69	48.1		14.2
OP-360-13	30	14.5	.6	4.2	2.0	2.4	1.5	46.1	3.0	15.7
OP-360-15	35	14.9	.4	3.4	1.2	2.0	.7	44.2	3.4	13.3
OP-360-17	40	11.8	.1	1.6	1.3	1.6	1.8	28.2	2.8	9.0
OP-360-19	45	13.7	.2	2.5	1.3	1.7	1.7	31.7	4.1	9.6
OP-360-21	50	14.9	.2	1.9	1.2	1.7	.6	29.7	4.1	9.5
OP-360-23	55	14.9	.2	2.1	1.2	1.9	2.4	29.6	4.6	10.8
OP-360-25	60	14.7	.3	1.7	1.1	1.9	1.9	28.1	5.1	9.5
OP-360-27	65	16.3	.2	2.4	1.2	1.9	2.4	27.1	5.1	10.1 (1.3)
OP-360-29	70	16.4	.5	1.8	.8	3.3	1.0	24.0	5.6	31.4 (6.1)
OP-360-31	75	12.9	.3	.9	.5	6.1	2.4	11.1	2.8	31.1
OP-360-33	80	23.1	.8	2.1	1.2	15.7	2.0	18.2	8.4	75

^() AA values

the accuracy criteria in the synthesized oil and Mg, Si and Ni failed the accuracy criteria in the used oils. An investigation was conducted in order to determine the reason for these accuracy failures. It has to be noted that the AFWAL/POSL spectrometer is the only Jarrell-Ash instrument entered in the correlation program. All others are Baird Atomic A/E35U-3. Therefore, factors that may differently influence the emission response of these two spectrometers include source energy, choice of spectral lines and matrix effect. Since Baird Atomic does not have a gas jet flowing on the analytical gap, the Jarrell-Ash may or may not produce results similar to Baird Atomic. It was also found that the wavelengths of half of the elements used in Jarrell-Ash are different from Baird Atomic. Since wavelengths of the same elements have different intensities, it is conceivable that spectrometers measuring the same elements but using different spectral lines produce different results.

g. Summary

Like the A/E35U-3 spectrometer (Baird-Atomic) the Jarrell-Ash spectrometer suffers from poor particle detection capability. Significant improvement in sensitivity was obtained when using air as the stabilizing gas, replacing and profiling the refractor plates and optimizing preburn (5 sec) and exposure (25 sec) times. The Jarrell-Ash spectrometer results did not correlate with Baird Atomic when analyzing JOAP TSC correlation samples.

h. Future Effort

Since the present rotating disk atomic emission spectrometer sample introduction system is particle size dependent, plans are being made to implement an ashing technique developed by UDRI. 29 Ashing technique allows the sample to be deposited directly on the disk and ashed in a muffle furnace prior to analysis. Plans are being made to use coated graphite disks and

higher density graphite disks than presently used to prevent permeation and adsorption of trace metals beyond the disk surface.

DC are is another capability that will be used. Jarrell-Ash is equipped with a DC are stand which allows the analysis for trace metals in powders. The DC are allows for a total consumption of the sample at higher temperature than the spark source. Therefore, the capability of this source to analyze for wear metal particles will be investigated.

4. WEAR PARTICLE ANALYZER

a. Introduction

The Spectrometric Oil Analysis Program (SOAP) is used primarily by the USAF to monitor changes in specific wear metal concentrations using atomic emission and atomic absorption spectroscopy. Magnetic plugs and chip detectors are also used as on-line engine health monitoring techniques. However, the sensitivity of these techniques is limited by particle sizes. The particle size sensitivity of SOAP is limited to 3-10 microns, depending upon the metal being analyzed, and the on-line monitoring devices are limited to large size particles. Therefore, a need exists for a technique to monitor wear metal debris having particle size sensitivity above SOAP and below the particles captured by magnetic plugs and chip detectors.

One of the techniques being considered is the Wear Particle Analyzer (WPA) manufactured by Tribometrics Inc., Berkeley, CA (Figure 83). Particle capture efficiency, particle size detection limit and filter fiber size effect are among the parameters which were evaluated.

b. Principle of Operation

The wear particle analyzer (WPA) is a technique which complements the spectrometric oil analysis by providing a measure of metallic iron, the form of iron most often associated with abnormal wear condition. The WPA is an

Figure 83. Wear Particle Analyzer

easy to use portable instrument for measuring the amount of ferromagnetic particles in fluids such as metallic iron or steel wear particles in a sample of used lubricating oil. It does not detect non-magnetic metals such as Cu, Ag, Sn, Pb or non-magnetic forms of iron such as ferric oxide and other corrosion products.

The WPA captures the particles in a filter consisting of a magnetic bed of ferromagnetic fibers using the principle of High Gradient Magnetic Separation (HGMS). This type of separation makes use of the very strong magnetic attractive forces, due to the high field gradients, around a magnetized ferromagnetic fiber. The amount of iron captured is determined from the increase in magnetic flux which is converted into ppm of iron by calibration with a 50 ppm standard. Even though the HGMS filter is efficient in capturing magnetic particles, it allows the fluid to pass readily through the filter.

Particle size distribution can be obtained by making use of the capturing efficiency in HGMS. For example, to capture the majority of the magnetic particles, the filter containing the finest fibers (grade 0000) should be used. However, if only larger particles are desired, a coarser grade filter should be used. Captured particles can be recovered for microscopic examination by removing the filter from the analyzer head and flushing with solvent in the reverse direction.

c. Apparatus and Procedure

A schematic of the Wear Particle Analyzer is shown in Figure 84. The sample is poured into the one ounce funnel. Sufficient vacuum is applied to allow the sample to flow through the ferromagnetic fiber which is placed in a brass tube. The tube is positioned in a way such that the fiber is aligned with the magnet N-S and the flux sensor.

Figure 84. Schematic of the Wear Particle Analyzer

The capturing efficiency in HGMS decreases for particles whose diameter is less than half the fiber size. 30 The filters used in the WPA contain compressed steel wool which is available in several grades. Filter tubes provided with the WPA kit contain the following grades:

Grade	Nominal fiber size
	(micron)
0000	15-25
0	41-58
2	102-152

The pore size of the opening between fibers is determined by the compressive force used to pack the tubes. Larger openings are produced when a lower compressive force (3.5 lbs) is used. This type of filter is useful for fluids with high viscosity or when large sizes of non-magnetic debris is present. On the other hand higher compressive force (20 lbs) produces smaller openings. The currently used compressive force of 20 lbs is suitable for a viscosity of 2.2 cSt and the 3.5 lbs is suitable for a viscosity of 22 cSt for filters containing grade 0000 steel wool. Therefore, the magnetic filter or Firon will be referred to as "fiber grade:compressive force in lb". So the fiber grade 0000 with compressive force of 20 lb is termed as 0000:20.

d. Results and Discussion

(1) Effect of Particle Size and Filter Fiber Size

The efficiency of filters using various particle sizes of Fe powders and pin-on-disk used oil samples were studied and the results are shown in Table 47. This Table shows the filter type used, the stock concentration of the sample, the WPA results and the concentration of Fe in the filtrate. Except for the pin-on-disk sample (POD), the filtrates of all samples contained less than 2% Fe. The low Fe concentration indicates that

TABLE 47 EFFICIENCY OF FILTERS USING VARIOUS PARTICLE SIZES OF FE POWDERS

Size (um)	Fe Conc. (ppm)	WPA (ppm) ^a	Filter Type	Filtrate Fe Conc.(ppm)
0-5	39	8 <u>+</u> 1	0000:20	0.5 <u>+</u> 0.1
0-5	39	17 <u>+</u> 0	0000:3.5	0.4 <u>+</u> 0.1
0-5	39	11 <u>+</u> 1	0:20	0.4 ± 0.0
0-5	39	18 <u>+</u> 2	2:20	0.5 <u>+</u> 0.1
5-10	44	12 <u>+</u> 1	0000:20	0.6 <u>+</u> 0.2
5-10 5-10	44	25 + 1	0000:3.5	0.5 + 0.1
5-10 5-10	44	17 + 0	0:20	0.5 + 0.1
5-10	44	20 + 2	2:20	0.3 <u>+</u> 0.1
10-20	45	8 <u>+</u> 1	0000:20	0.5 <u>+</u> 0
10-20	45	31 <u>+</u> 6	0000:3.5	0.6 <u>+</u> 0
10-20	45	11 <u>+</u> 1	0:20	0.9 <u>+</u> 0
10-20	45	20 <u>+</u> 2	2:20	0.6 <u>+</u> 0
325 mesh	85	39 + 5	0000:20	1.3 + 0.1
325 mesh	85	48 <u>+</u> 6	0000:3.5	1.6 <u>+</u> 0.1
325 mesh	85	43 + 3	0:20	1.3 <u>+</u> 0
325 mesh	85	46 <u>+</u> 3	2:20	1.4 <u>+</u> 0.1
POD ^b	140	77 <u>+</u> 2	0000:20	52.8 + 0.3
POD	140	62 + 4	0000:3.5	52.3 ± 0.7
POD	140	55 + 8	0:20	54.4 ± 0
POD	140	40 <u>+</u> 1	2:20	88.4 <u>+</u> 0.8

 $^{^{\}rm a}_{\rm b}$ WPA Concentration is the average of two runs $^{\rm c}_{\rm c}$ POD Wear metal generated from pin-on-disk wear test ADM concentrations

the filters' capturing efficiency of ferromagnetic debris is better than 98%. However, the same filters exhibited much lower efficiency for the POD sample with less than 63% of Fe being captured. Table 47 also indicates that the WPA results are not accurate and do not correspond to the actual values of Fe being captured. For the 0-5 micron sample, the WPA results were less than 50%.

The preliminary results shown in Table 47 indicate that for metal powder samples, as the particle size increases in the order of

0-5 < 5-10 < 10-20 micron,

the WPA readout does not significantly change for any size filter. Also, for any particle size i.e. 0-5 micron, the WPA readout does not appreciably increase with a decrease in the fiber size of the filter. However, for the pin-on-disk sample, the WPA readout increased in the order of decreasing filter fiber size as follows:

2:20 > 0:20 > 0000:20

(steelwool grade : compressive force, lb) with the 0000:20 (15-25 micron) giving the highest WPA reading

(2) Effect of Sample Volume

Sample volume effect on the WPA readout was also studied using two oil samples containing Fe wear debris. Tables 48 and 49 show the WPA results for various sample volumes and different WPA filters. The results of the pin-on-disk sample reveal that WPA readouts were optimum for smaller sample volumes (less than 2.5 ml). Similar results were obtained for the TF39 used engine oil sample where the optimum sample volume for all filters considered was less than 1.5 ml (Table 49). The pin-on-disk sample was analyzed without dilution. Results in Table 50 indicate that the 0000:20 filter gave the highest readout and gave the best repeatability for volumes

TABLE 48

EFFECT OF SAMPLE VOLUME ON WPA READOUT USING PIN-ON-DISK
WEAR SAMPLE AND VARIOUS SIZE WPA FILTERS

Sample Vol ^a (ml)	Filter ^b 0000:20	Sample Vol (ml)	Filter 0:20	Sample Vol (ml)	Filter 2:20
5 .7	15.0	6.2	15.4	5.8	16.9
2.5	21.0	2.4	19.0	2.4	21.8
1.7	23.2	1.5	15.0	1.4	23.3

- a. 1:2 pin-on-disk diluted 1:1 with kerosene
- b. WPA results in ppm

TABLE 49

EFFECT OF SAMPLE VOLUME ON WPA READOUT USING USED ENGINE OIL SAMPLE AND VARIOUS SIZE WPA FILTERS

Sample Vol ^a (ml)	Filter ^b 0000:20	Sample Vol (ml)	Filter 0:20	Sample Vol (ml)	Filter 2:20
40.5	2.4	47.4	1.7	45.2	1.1
8.0	2.4	8.8	2.4	8.7	1.4
4.9	2.9	4.8	1.8	6.3	1.6
1.5	6.6	1.5	3.9	1.6	3.2

- a. TF39 used engine oil, 50 ppm Fe, diluted 1:1 with hexane
- b. WPA results in ppm

TABLE 50

REPEATABILITY OF THE WEAR PARTICLE ANALYZER FOR DIFFERENT SAMPLE VOLUMES AND FILTERS USING PIN-ON-DISK OIL SAMPLE

Filter Type

Sample Size ^a (ml)	0000:20 (ppm)	0000:35 (ppm)	0:20 (ppm)	2:20 (ppm)
2.0	$22.7 + 0.7^{b}$	20.7 + 0.9	9.9 + 1.3	9.8 + 0.6
1.5	20.5 + 1.2	16.5 + 1.3	10.6 + 0.3	8.8 + 0.7
1.0	20.3 ± 4.1	18.8 $\frac{-}{\pm}$ 1.1	12.4 ± 2.0	8.4 ± 1.3

- a. Pin-on-disk sample contained 53 ppm Fe
- b. All samples were run 3 times

above 1.0 ml.

(3) Analysis of Used Oils

Fifteen samples from different operational engines, previously analyzed for metallic iron using a solvent extraction technique³¹ were analyzed by the WPA. The results of these two techniques are reported in Table 51. In general, the two techniques gave comparable results. However, for samples where the WPA gave lower results than the solvent extraction method for total metal, one should consider that smaller particles (approximately less than one micron) are not captured by the WPA filter. Therefore, if the WPA results were compared with the solvent extraction results for iron particles greater than 0.6 micron, a better comparison will be realized for sample F. The WPA gave higher results for samples H and P containing particles greater than 0.6 micron.

Comparative results of atomic emission (AE), acid dissolution method (ADM) and WPA for Fe in Engine Simulator test samples are shown in Table 52. Even though the WPA results were much lower than either AE or AD, they exhibited similar trends in the increase of iron concentration in the 0 to 100 hour samples.

(4) Sample Introduction System

The sample introduction system of the WPA was modified in order to provide comparative data with the manufacturer's FIRON filters. Samples were filtered through a 13 mm diameter 0.22 micron Millipore filter. The filter containing the captured debris was then compressed and inserted in a brass tube similar to the FIRON tube.

The results of the WPA readouts for the modified filter and the 0000:20 FIRON filter are reported in Table 53. The data clearly shows that the Millipore filter gave much higher WPA results than the FIRON 0000:20

TABLE 51

COMPARATIVE RESULTS USING THE WEAR PARTICLE ANALYZER AND A SOLVENT EXTRACTION METHOD FOR IRON IN USED TURBINE JET ENGINE OILS

Sample ^a	WPA Fe Conc.b (ppm)	Solvent Ext Total Fe (ppm)	raction ^d >0.6μm (ppm)
H-1 H-23 H-47 H-49	2.4 ± 0.2 23.8 ± 0.8 3.4 ± 0.2 5.5 ± 0.2	2.3 28.8 3.7 7.9	1.0 15.7 0.9 5.8
P-7 P-48 P-58 P-61 P-83 P-97	3.0 ± 0.6 2.7 ± 0.5 20.3 ± 1.2 3.7 ± 0.4 2.7 ± 0.3 4.3 ± 0.7	1.1 4.5 19.0 7.2 5.7 7.7	11.0
R-5 R-445	$\frac{4.3}{5.5} \pm \frac{0.5}{4}$	1.4 1.3	-
F-19 F-22 F-39	$\begin{array}{c} 6.5 \pm 0.7 \\ 4.9 \pm 0.2^{c} \\ 17.7 \pm 0.6^{c} \end{array}$	19.0 14.1 22.5	12.0 6.5 20.0

a. Sample size used was 2.0 ml through 0000:20 filter type

b. Each sample was run 3 times

c. Sample was run 2 times

d. Method reported by Kauffman, Saba, Rhine and Eisentraut, ASLE Trans., 28, 400 (1985)

TABLE 52

COMPARATIVE RESULTS OF AE, ADM AND WPA FOR FE IN ENGINE SIMULATOR TEST SAMPLES

Sample (hours)	AE	ADM	WPA ^C
0 ^a	0	0	0
$o_{oldsymbol{ ho}}$	0	0	0
5	22.5	35.9	10 <u>+</u> 1
10	17.5	12.0	6 <u>+</u> 1
15	19.1	14.3	5 <u>+</u> 1
20	23.4	22.0	8 <u>+</u> 1
25	37.2	44.6	9 <u>+</u> 1
30	39.6	32.8	10 <u>+</u> 1
35	51.3	33.7	14 <u>+</u> 3
40	57.6	42.5	11 <u>+</u> 1
45	64.2	48.0	11 <u>+</u> 1
50	64.5	54.3	13 <u>+</u> 1
55	66.5	52.4	12 <u>+</u> 0
60	66.2	72.1	14 <u>+</u> 1
65	81.0	65.1	12 <u>+</u> 1
70	89.8	74.8	17 <u>+</u> 1
75	84.2	72.7	15 <u>+</u> 1
80	92.7	87.7	18 <u>+</u> 1
85	94.1	85.5	17 <u>+</u> 3
90	111.0	90.7	19 <u>+</u> 1
95	115.4	109.4	18 <u>+</u> 1
100	127.4	111.1	18 <u>+</u> 2

b Can

^{1/2} ml sample was used, each sample run twice through 0:20 filter

TABLE 53

RESULTS OF MODIFIED SAMPLE INTRODUCTION SYSTEM IN THE WPA

Fe Sample	Stock Conc. (ppm)	Sample Size (m1)	Modified ^a Filter (ppm)	0000/20 Filter (ppm)
325 mesh	340	4.0	202 <u>+</u> 14 ^b	91 <u>+</u> 28
325 mesh	340	1.0	180	157 <u>+</u> 11
325 mesh	85	1.0	52 <u>+</u> 7°	39 <u>+</u> 5
POD #1d	35 ppm	1.0	18	20

a. Modified filter = 13 mm 0.22 μ m millipore filter

b. Result of 4 runs

c. Result of 9 runs

d. POD sample was diluted 4 times

filter for the 325 mesh Fe powder. This is due to the higher particle capturing efficiency of the 0.22 micron Millipore filter. However, difficulty was experienced when pin-on-disk wear test sample and TF39 used engine oil sample were filtered through the Millipore filter. The filter was clogged and therefore, samples could not be filtered effectively. Filtering smaller volumes of these samples did not clog the filter but decreased the WPA sensitivity. The method has proven to be efficient provided that a different method of filtration is found which will allow all types of oil samples to be filtered without difficulty.

e. Conclusion

The Wear Particle Analyzer is a technique sensitive to metallic iron, the form of iron most often associated with abnormal wear in lubrication systems. Even though the instrument suffers from a lack of accuracy in the analysis of metal powders, it responds to changes in concentration of ferromagnetic wear debris. The WPA results for used turbine jet engine oils were comparable to those obtained using a solvent extraction technique.

f. Future Effort

The manufacturer has supplied only one standard (50 ppm) to calibrate the instrument only at the highest range. Other standards are needed to calibrate the instrument at lower ranges. Therefore, new standards for different ranges of the instrument are being developed and a calibration curve will be established for the 1, 30 and 100 ppm ranges.

Tribometrics will be providing a newly developed addition to the electronics of the WPA that should greatly improve the zero stability with changes in ambient temperature. Six samples were shipped to Tribometrics to be analyzed on their WPA. Their findings will be reported along with ours in a future report.

Plans are being made to manufacture filters with smaller size fibers in order to increase the efficiency of capturing the smaller sizes of metallic iron wear debris. Included also in future plans is the determination of the particle size detection limit of the instrument.

5. MICROFILTRATION

a. Introduction

The impact of using fine filtration (3-10 μ m) in aircraft lubrication systems is of primary concern. Present Air Force wear metal monitoring techniques will be evaluated with respect to their capability in analyzing particles less than 3-10 μ m. Another factor of concern is the effect of fine filtration on the threshold values already established in SOAP. The Air Force relies on these values as guidelines to determine the health of their operating engines. Any change within the lubrication system such as filtration might have an impact on the analytical results and the present threshold values and guidelines may have to be revised.

b. Background

Within the last decade ultrafine filtration has been introduced into several new engines by retrofitting micron size filters into these engines. The primary objective is to extend component life by reducing the amount and size of wear debris in the lubrication system. References obtained to date 32-47 are limited to the development, use and advantages of microfiltration in the oil system. The development of the first known 3-micron absolute oil filter for the development of the T53 gas turbine lubrication system is described by Lynch and Cooper. 46 The filter ran for approximately 300 hours without clogging. Its use provided cleaner lubrication environment and decreased the frequency of filter inspection and oil drains. As a result one of the major benefits immediately realized was

the prevention of abrasive wear caused by 1-5 micron particles. The result of this project provided the background data for the more extensive testing program at Fort Rucker which was established in 1978. The Army established a research and development effort to develop an advanced oil debris discrimination and filtration system for the Bell UH-1/AH-1 helicopters. Thirty-eight UH-1's were fitted with 3 micron (β_3 >200) filters on the engine and transmission lubrication systems in conjunction with full-flow debris monitoring chip detectors. A flight test program was run with more than 70,000 flight hours logged. The major results of this program were as follows:

- (1) Engine oil and transmission oil change intervals increased by tenfold and threefold, respectively.
- (2) The average filter life was over 1000 hours.
- (3) Reduced seal wear and very clean oil wetted component conditions were realized.
- (4) "Nuisance" chip lights were greatly reduced.

Wansong 47 deals with the maintainability benefits of 3 micron filtration on the General Electric T700 engine. The T700 engine powers the H-60 series and AH-64 Helicopters. This is the first production engine that incorporates 3 micron lube oil filters from its inception.

Since analysis for wear debris has proven to be a valuable diagnostic tool of the health of an engine, the use of fine filtration would raise an important question as to the effectiveness of spectrometric oil analysis due to the filter's "removal" of debris detectable by the spectrometer.

Therefore, it is the requirement of this task to determine the impact of microfiltration on Spectrometric Oil Analysis Program (SOAP). For this effort a microfiltration test rig was developed in order to simulate wear debris generation and the engine filtration system.

c. Apparatus

(1) Test Rig Assembly

The microfiltration test rig was built on a rolling bench assembly. The bench was built from steel bench legs and a wooden top made of solid, kiln-dried wood core surface with high density tempered pressed wood. Several holes were made in the bench top to accommodate a stainless steel 5-gallon oil reservoir, 3/4" and 1/4" tubings. The high pressure gear pump with constant speed drive motor and the scavenger pump were installed at the lower level of the rolling bench assembly (Figure 85). The schematic in Figure 86 shows the configuration (not exact dimensions) of the actual construction of the rig including valves, flowmeters, pumps, thermocouples, pressure transducers, test filter and reservoirs. The Falex wear test device will be considered as one possible technique for generating wear metals. It was used to generate different types of wear metals using the pin-on-disk, gear and four ball wear test configurations.

(2) Filter Element and Filter Housing

Filter element and housing are made by the Aircraft Porous Media (APM). The filter element is made of Ultipor resin impregnated organic and inorganic fibers and is capable of withstanding temperatures in the range of -65°F to +350°F. The maximum clean pressure drop at the rated flow of 4 GPM is 4 psi at 100°F. The minimum element collapse differential pressure is 100 psi. Minimum dirt capacity at rated flow at 100°F is still to be determined using AC fine test contaminant to 14 psid when tested per MIL-F-8815. The filter element is a non-cleanable depth type filter whose effective filtration area is approximately 2.3 square feet. It is constructed of multi-layer graded filter media (4 layers) and rated as 3 micron absolute

Figure 85. Microfiltration Test Rig Assembly

Figure 86. Schematic of the Microfiltration Test Rig

through the filter. The filter element is protected by an inner wire mesh support and a mesh outer wire. The element is optimized to meet system requirements of dirt capacity, pressure drop, fluid compatibility and wear particle removal. The protective wire mesh supports were removed from one of the filters and the filter layers were separated and examined using an optical microscope and SEM. The layers are constructed from fibrous type material integrally bonded to form a porous material. Microscopic examination revealed that the porosities of the layers were different.

Layers 1 and 3 were identical, made of glass type fibers (Figure 87) and have much larger pore sizes than layers 2 and 4. The mesh sizes of layers 1 and 3 seem to be approximately between 35 and 40 micron (optical microscope).

Layers 2 and 4 were also identical but the mesh size could not readily be determined from SEM (Figure 88).

Filter housing parts are made of anodized aluminum and its rated pressure is 60 psi, proof pressure of 90 psi and a burst pressure of 150 psi. The temperature range, rate flow capacity and clean pressure drop are the same as the filter element specifications. The relief valve cracking minimum and maximum (full flow) differential pressures are 14.0 psi and 18.0 psi, respectively, at 4 GPM of oil port to port.

(3) Test Rig Lubricant Flow

In order to simulate the lubricant flow in a real jet engine lubrication system we obtained information about the lubricant flow in several GE and Pratt and Whitney engines used by the Air Force. In general, GE engines operate at about 10 GPM while Pratt and Whitney's operate at least at twice this flow. Plans are to operate the test rig at lubricant flow of approximately 20 GPM or less.

Figure 88. Photomicrograph of the Large Pore Size APM Graded Filter Medium (60X)

(4) Wear Metal Generator

The Falex wear test machine is considered as one possible technique for generating wear metals. Wear metals were generated using the pin-on-disk, gear and four ball wear test configurations. The particle size distributions were determined for the above wear debris from the three different tests using a filtration technique. Aliquots of the oil sample containing the wear debris were filtered through 0.4, 1-, 2-, 3-, 5-, 8-, 12- μm Nuclepore membranes. A 2-g aliquot of the oil sample was diluted with pentane prior to filtration. A total of 10 grams were filtered for each filter pore size. Pentane was allowed to evaporate and the remaining oil (filtrate) was analyzed for total Fe content using AA and the acid dissolution method. The particle size distribution of particles generated from the above wear tests are graphically shown in Figure 89. The bar graph shows that among the three types of wear the pin-on-disk wear test produced the smallest size particles while the gear test produced the largest particles. Initial filtration using the microfiltration test rig will be performed using the wear debris generated from the pin-on-disk wear test.

d. Efficiency of the APM Filter Element

Evaluation of the APM 3-micron absolute filter element was initially performed by determining its efficiency of capturing wear debris. The filter element removed from its protective wire mesh supports was cut into 47-mm diameter filters. The small filters were fitted in a Millipore stainless screen glass filter holder for vacuum filtration of oil samples containing metallic wear debris. Samples from the pin-on-disk (POD) wear tests containing various amounts of brass and steel wear particles were allowed to pass once through the APM filter. The results of this experiment reveal that the efficiency of filtration for brass ranged from 53.5 to 83.7 percent, and

IKON

PERCENT

228

Figure 89. Particle size Distribution of Fe Particles Generated from Four Ball, Gear and Pin-On-Disk Wear Tests.

(4) Wear Metal Generator

The Falex wear test machine is considered as one possible technique for generating wear metals. Wear metals were generated using the pin-on-disk, gear and four ball wear test configurations. The particle size distributions were determined for the above wear debris from the three different tests using a filtration technique. Aliquots of the oil sample containing the wear debris were filtered through 0.4, 1-, 2-, 3-, 5-, 8-, 12- µm Nuclepore membranes. A 2-g aliquot of the oil sample was diluted with pentane prior to filtration. A total of 10 grams were filtered for each filter pore size. Pentane was allowed to evaporate and the remaining oil (filtrate) was analyzed for total Fe content using AA and the acid dissolution method. The particle size distribution of particles generated from the above wear tests are graphically shown in Figure 89. The bar graph shows that among the three types of wear the pin-on-disk wear test produced the smallest size particles while the gear test produced the largest particles. Initial filtration using the microfiltration test rig will be performed using the wear debris generated from the pin-on-disk wear test.

d. Efficiency of the APM Filter Element

Evaluation of the APM 3-micron absolute filter element was initially performed by determining its efficiency of capturing wear debris. The filter element removed from its protective wire mesh supports was cut into 47-mm diameter filters. The small filters were fitted in a Millipore stainless screen glass filter holder for vacuum filtration of oil samples containing metallic wear debris. Samples from the pin-on-disk (POD) wear tests containing various amounts of brass and steel wear particles were allowed to pass once through the APM filter. The results of this experiment reveal that the efficiency of filtration for brass ranged from 53.5 to 83.7 percent, and

IKON

PERCENT

228

Figure 89. Particle size Distribution of Fe Particles Generated from Four Ball, Gear and Pin-On-Disk Wear Tests.

(4) Wear Metal Generator

The Falex wear test machine is considered as one possible technique for generating wear metals. Wear metals were generated using the pin-on-disk, gear and four ball wear test configurations. The particle size distributions were determined for the above wear debris from the three different tests using a filtration technique. Aliquots of the oil sample containing the wear debris were filtered through 0.4, 1-, 2-, 3-, 5-, 8-, 12- µm Nuclepore membranes. A 2-g aliquot of the oil sample was diluted with pentane prior to filtration. A total of 10 grams were filtered for each filter pore size. Pentane was allowed to evaporate and the remaining oil (filtrate) was analyzed for total Fe content using AA and the acid dissolution method. The particle size distribution of particles generated from the above wear tests are graphically shown in Figure 89. The bar graph shows that among the three types of wear the pin-on-disk wear test produced the smallest size particles while the gear test produced the largest particles. Initial filtration using the microfiltration test rig will be performed using the wear debris generated from the pin-on-disk wear test.

d. Efficiency of the APM Filter Element

Evaluation of the APM 3-micron absolute filter element was initially performed by determining its efficiency of capturing wear debris. The filter element removed from its protective wire mesh supports was cut into 47-mm diameter filters. The small filters were fitted in a Millipore stainless screen glass filter holder for vacuum filtration of oil samples containing metallic wear debris. Samples from the pin-on-disk (POD) wear tests containing various amounts of brass and steel wear particles were allowed to pass once through the APM filter. The results of this experiment reveal that the efficiency of filtration for brass ranged from 53.5 to 83.7 percent, and

Figure 89. Particle size Distribution of Fe Particles Generated from Four Ball, Gear and Pin-On-Disk Wear Tests.

PERCENT

IRON

zero for Fe (Table 54). Microscopic examination of these samples revealed that the brass particles were much larger than the Fe particles and the Fe particles were less than 2 micron in size. The efficiency of the APM filter element was determined for a TF 39 used oil sample. A single pass of the sample through the filter yielded 31.7% capturing efficiency (Table 54).

The efficiency of the APM filter was also determined as a function of the number of passes of a POD sample through the filter. After the first pass, the filter element was replaced by a new one and the filtrate was passed through the new filter. The filter from the second pass was also replaced by a new one and the filtrate from the second pass was filtered through the third filter. The stock solution and aliquots of the filtrates from the first, second and third pass filtrations were analyzed for Fe using atomic emission spectrometry. The analytical data revealed that the capturing efficiency of the filter for the first, second and third pass were 27, 52 and 66%, respectively. Ferrographic micrographs of the stock solution and filtrates revealed that the quantity and size of wear debris decreased with each filtration pass (Figure 90).

Work is continuing towards the determination of the APM capturing efficiency as a function of the number of passes through the filter for turbine engine used oil samples and other wear debris as generated from the wear test machine.

e. Conclusion

A 5-gallon capacity microfiltration test rig was constructed in order to simulate fine filtration in turbine engine lubrication systems. The test rig allows the determination of the filtration efficiency of different micron size filters at ambient or elevated temperatures (175°F). The gear pump with a constant drive allows the oil to circulate at 20 GPM through the test

TABLE 54

EFFICIENCY OF APM FILTERS FOR SINGLE
PASS OF PIN-ON DISK SAMPLES

Sample ^a	Fe Conc. ^b (ppm)	Cu Conc. b (ppm)	% Efficiency
POD 20 Stock	7.0	177.2	53.5
POD 20 Filtra	te 6.4	82.4	
POD 13 Stock	8.4	174.8	54.6
POD 13 Filtra	ite 10.7	79.4	
POD 19 Stock	5.8	144.8	83.2
POD 19 Filtra	ite 5.3	24.3	
POD 22 Stock	6.1	56.4	73.4
POD 22 Filtra	5.3	14.7	
POD 14 Stock	4.0	43.6	83.7
POD 14 Filtra	5.2	7.1	
POD 23 Stock	13.3	106.8	57.2
POD 23 Filtra	ate 12.6	45.7	
TF 39 Stock TF 39 Filtra	75.9 ite 51.8	-	31.7

a. POD = Pin-on-disk sample with brass pin on 52100 steel disk with 30-150 lb load and 1 m/sec speed except POD 23 which was run at 0.5 m/sec

b. Determined by acid dissolution method

Figure 90. Ferrographic Micrographs of the Pin-on-Disk Wear Debris; (A) Stock Solution; (B) After the First Pass Through the APM Filter; (C) After the Third Pass Through the APM Filter

filter and less than 20 GPM with the aid of bypass valves. The Falex wear test machine was found to generate wear particles in an acceptable range (less than 20 micron) using the pin-on-disk wear test configuration.

f. Future Effort

A three-micron filter was obtained from another supplier UCC Amfac Fluid Power. This filter will be evaluated for its capturing efficiency. Plans are being made to determine the efficiency of filtration of larger pore size filter media (5,10,25, and 45 micron absolute). The results from these experiments will be compared with those determined for the 3 micron filter. Comparative results will also be established for various size filters using the microfiltration test rig. The test rig initial operation and testing will be performed during the second phase of this effort. Test results should reveal the impact of fine filtration on the Air Force Oil Analysis Program.

SECTION IV

INVESTIGATION OF LUBRICANT MONITORING TECHNIQUES

1. INTRODUCTION

The main purpose of this study was to investigate the electrochemical properties of degraded synthetic turbine lubricants and to relate these properties to specific chemical changes in the lubricant. To this end, the electrochemical properties of MIL-L-7808 lubricants and various laboratory formulations stressed in the Squires oxidative and confined heat tests at various temperatures were measured by several different methods. Also, an initial investigation into the specific degradation chemistry of these lubricants was made. Summarization of these efforts is as follows.

2. COMPLETE OIL BREAKDOWN RATE ANALYZER

The Complete Oil Breakdown Rate Analyzer (COBRA) is a portable electrochemical device that had been studied by the Air Force as a lubricant monitoring device and demonstrated success in identifying abnormally operating engines in aircraft. In order to further evaluate this device, its electronic circuity was analyzed, measurements of degraded lubricants were made, and some preliminary investigations into the specific degradation chemistry of the various lubricants made.

a. Electronic Circuitry Analysis

A COBRA instrument was submitted to University of Dayton Research Institute for analysis of its electronic circuitry. The objective of this analysis was to gain an understanding of how the COBRA functions in order to determine what physical property of the lubricant is being measured. An illurstration of the COBRA instrument is shown in Figure 91. With no sample present, a situation in which the electrodes are isolated from each other,

Figure 91. Complete Oil Breakdown Rate Analyzer (COBRA)

NEWSCHOOL BESCHOOL

pushing the analysis button results in the application of a square wave with an amplitude of 0 to 0.4 volts. When a fluid is present between the electrodes that causes an off-scale (>200) reading (such as a badly degraded oil) the a.c. (square wave) voltage component becomes 0 and a d.c. voltage component becomes 0.3 volts. This d.c. offset is presumably due to voltage developing from the dissimiliar metals used in the electrodes (stainless steel and cadmium, top and bottom respectively). Any fluid present between the electrodes that gives a reading greater than 0 but less than off-scale causes a reduction in the square wave amplitude but an increase in the d.c. offset. The electrical equivalent of an oil between the electrodes would be a variable resistor (representing the buildup of conductive species in the oil) in series with a capacitor (representing the dielectric strength of the oil). It is interesting to note that application of resistance alone is not sufficient to obtain a COBRA reading. It appears also that the d.c. voltage offset is important in obtaining a COBRA reading as application of a voltage to the electrodes will also cause a reading. The importance of this voltage offset to the actual instrument reading is shown by the effect of changing the bottom electrode. The bottom electrode, which is cadmium, was replaced with a flat piece of metal that was grounded to the instrument. A standard degraded oil sample, that produces a COBRA reading of 83, was analyzed on this modified instrument using various metals for the bottom electrode and the results are summarized in Table 55.

TABLE 55

EFFECT OF ELECTRODE COMBINATIONS ON COBRA READINGS

Bottom Electrode Metal	COBRA Reading	Standard Reduction Potential E ^O (volts)
Cadmium (Original Electrode)	83	-0.403
Cadmium	85	-0.403
Copper	10	+0.342
Stainless Steel	20	-0.447 ^a
Nickel	40	-0.257
Zinc	95	-0.762
Magnesium	140	-2.372
a Fe ⁺² + 2e ⁻ > Fe ⁰		

As expected, the cadmium plate gave a reading very close to the original bottom electrode. Other metals gave COBRA readings that varied considerably and there appears to be rough correlation between the standard reduction potential E^O of the metal and the COBRA reading obtained, that is more negative E^O produced higher readings. It may be that the particular metal combination affects the previously discussed d.c. zero offset. It would appear then that the most important property of the oil sample is its resistance (or conductivity) which controls the extent to which the cell (capacitor) can charge, the final result being a change in the D.C. offset

b. Analysis of Degraded Lubricants

voltage to which the instrument is sensitive.

COBRA readings have been recorded on the six MIL-L-7808 lubricants stressed in the Squires oxidative and confined heat tests at 175, 190 and 205°C. The plots of these COBRA readings vs. test hours are shown in Figures

92 to 97. It is apparent from the oxidative data (Figures 92 to 94) that four of the lubricants (0-79-16, 0-79-17, 0-79-20 and 0-82-3) have similar rises in COBRA readings vs. test time while the other two lubricants (0-82-2 and 0-82-14) show very rapid rises in COBRA reading. As the test temperature rises this relationship starts to breakdown probably due to large volatilization weight losses since this test does not use condensate return. The confined heat test data (Figures 95 to 97) show similar correlations except that the COBRA response of 0-82-2 is more in line with the other four lubricants. In general the COBRA response vs. time (slope) of the confined heat test data is less than that of the the oxidative test data probably due to its limited oxygen availability and subsequent lesser formation of oxygenated degradation products. These trends would be meaningful only if all six lubricants degraded at the same rate. The fact that they do not degrade at equal rates emphasizes the importance of comparing COBRA values for different lubricants at points of equal deteriorative changes in the oils. Since the break point of the lubricant (where the physical properties rapidly deteriorate) is not easily calculable, due to the lack of a breakpoint for some oils and a limited number of sampling points, COBRA readings are compared at equal changes in total acid number (TAN) and viscosity. For the oxidative test, TAN changes of 1.5 and viscosity changes of 35% will be used while the confined heat test will use TAN changes of 4.0 and viscosity changes of 5%. The test hours required to reach these values had been calculated previously in preparation of the Arrhenius plots. The data for these comparisons are shown in Tables 56 and 57. The interpretation of these comparisons is somewhat dependent on which physical property is used. For the oxidative data (Table 56), examination of the COBRA readings for viscosity changes of 35% yield the same interpretation as that shown in

COBRA Readings of MIL-L-7808 Lubricants from the Squires Oxidative Test at 175°C Figure 92.

COBRA Readings of MIL-L-7808 Lubricants from the Squires Oxidative Test at $190^{\rm o}{
m C}$ Figure 93.

COBRA Readings of MIL-L-7808 Lubricants from the Squires Confined Heat Test at $175^{
m O}_{
m C}$ Figure 95.

COBRA Readings of MIL-L-7808 Lubricants from the Squires Confined Heat Test at 190°C Figure 96.

COBRA Readings of MIL-L-7808 Lubricants from the Squires Confined Heat Test at 205°C Figure 97.

TABLE 56

COBRA READINGS OF MIL-L-7608 LUBRICANTS FROM THE SQUIRES OXIDATIVE TEST AT POINTS OF EQUAL TAN AND VISCOSITY INCREASES

	17:	175°C	19(190 <mark>0</mark> c	50.	20غ ^o c
Lubricant	TAN Inc. of 1.5	Viscosity Inc. of 35%	TAN Inc. of 1.5	Viscosity Inc. of 35%	TAN Inc. of 1.5	Viscosity Inc. of 35%
0-79-16	ď	62	146	63	101	79
0-79-17	rd	๗	100	80	7.1	11
0-19-50	œ	๙	80	63	51	7 5
0-82-2	126	200	78	186	85	153
0-82-3	ď	Zħ	ħ8	51	80	81
0-82-14	200	500	200	200	200	200

a Oil did not reach value by end of test

TABLE 57

COBRA READINGS OF MIL-L-7808 LUBRICANTS FROM THE SQUIRES CONFINED HEAT TEST AT POINTS OF EQUAL TAN AND VISCOSITY INCREASES

	17	175°C	19	190°C	20	205°c
Lubricant	TAN Inc. of 4.0	Viscosity Inc. of 5%	TAN Inc. of 4.0	Viscosity Inc. of 5%	TAN Inc. of 4.0	Viscosity Inc. of 5%
0-79-16	62	911	27	£4t	37	911
71-61-0	99	82	52	2 tr	34b	73 ^b
0-79-20	24	ή£	57	53	54	31
3-82-2	₩9	. 75	41	80	28	24
0-82-3	ત્ત	59	₩8	. 27	22	16
0-82-14	200	500	178	200	153	167

[.] Oil did not reach value by end of test

b Test run at 201°C

Figures 92 to 94. That is, two lubricants (0-82-2 and 0-82-14) show disproportionately large rises in COBRA reading relative to the other four. For TAN changes of 1.5, the 0-82-2 lubricant is more in line with the other four lubricants. The difficulty in interpretation arises from the influence of volatilization losses in this test on the physical properties. Such losses would be expected to increase viscosity changes and decrease TAN changes but not consistently for all six lubricants since their formulations, and thus degradation products, are different from one another. The confined heat tested lubricants do not undergo large volatilization weight losses and the interpretation of the results (Table 57) is more straightforward. Of the six lubricants only 0-82-14 shows a very high COBRA rise relative to the standard increases of TAN and viscosity.

c. Structure/Property Relationships

It is of primary interest to investigate the relationship between the COBRA reading of a degraded lubricant and specific changes in its chemical composition. The chemical degradation of synthetic formulated ester basestock lubricants has been thoroughly investigated by a number of researchers using a variety of analytical techniques. 48-56 Such investigations have shown that oxidative degradation of the basestock proceeds via hydroperoxide intermediates to form various low molecular weight oxygenated compounds, such as ketones, aldehydes and carboxylic acids, which can polymerize to form high molecular weight compounds which increase the viscosity of the lubricant and can form insoluble deposits. To what extent these degradation products, as well as any additives and their degradation products, contribute to the COBRA reading of a stressed lubricant is not known. To investigate this relationship several methods were used to characterize degraded lubricants.

(1) Peroxide Number

Since hydroperoxides are intermediates in the oxidative degradation of ester lubricants their concentration in the six MIL-L-7808 lubricants stressed in the Squires oxidative test at 190°C was measured. method used was ASTM D 3703-83, an iodine reduction method which is sensitive to easily reduced peroxides such as hydroperoxides and diacyl peroxides but is not sensitive to the more difficult to reduce peroxides such as dialkyl peroxides. Results are reported in units of peroxide number with a value of 1 equal to 8 meq peroxide/gram oil. Also, in order to allow for volatilization weight loss of the degraded lubricant an adjusted peroxide number was calculated which is equal to the peroxide number times the weight fraction of the lubricant remaining. The peroxide number plot (Figure 98) vs. test hours shows an initial rapid rise for each lubricant followed by a smaller, consistent rise. This secondary rise is greatly influenced by volatilization weight loss, as shown in the plot of the adjusted peroxide number (Figure 99) which reveals that after a sharp initial rise, the peroxides reach a steady state concentration (between 48 and 120 hours) for the remainder of the test. Previous antioxidant analysis by gas chromatography of these samples had shown that the leveling off phenomena generally occurred at the point where the primary antioxidant (PANA or Octyl-PANA) was depleted. The fact that the two Octyl-PANA containing lubricants (0-82-3 and 0-82-14) show much larger initial rise in peroxide concentration is probably due to the lower volatility of this additive relative to PANA. Regardless, comparison of either plot to its corresponding COBRA reading plot (Figure 93) does not show any particular correlation between peroxide number and COBRA reading except that they both increase with time for all lubricants. This data does not explain the unusually high COBRA

Peroxide Numbers (Adjusted for Volatility Loss) of MIL-L-7808 Lubricants from the Squires Oxidative Test at 190°C Figure 99.

readings that are seen in the 0-82-2 and 0-82-14 lubricants.

(2) Basestock Ester Analysis

Since it is expected that the oxidative and thermal degradation of the basestock esters of the MIL-L-7808 lubricants would yield products that would contribute to a rising COBRA reading, a measurement of the degree of ester breakdown in a degraded lubricant may reveal some correlation with COBRA readings. Because of the great complexity of the basestocks of MIL-L-7808 lubricants, initial efforts were concentrated on analysis of laboratory formulated lubricants containing either di-2-ethylhexyl adipate (D2EHA) or trimethylolpropane triheptanoate (TMP-777). A method was developed for quantitative analysis of these two esters by gas chromatography by an internal standard method. The conditions of analysis are listed in Table 58.

TABLE 58

CHROMATOGRAPHIC CONDITIONS FOR ESTER ANALYSIS

Instrument: Varian 6000

Detector: Flame Ionization

Column: 25 m X 0.53 mm ID Fused Silica Capillary (Quadrex)

Liquid Phase: DB-5, 0.25 Micron Film Thickness

Injector Temp: 300°C

Detector Temp: 325°C

Oven Temp: 150-325°C at 8°C/minute, 5 minutes final hold

Formulations of these two esters with 1% PANA and 1% DODPA that had been stressed in both the Squires oxidative and confined heat tests at 205°C were analyzed for the percent of ester remaining in the sample. The plots of the percent ester and COBRA readings vs. test hours for the two formulations from

the Squires oxidative test at 205°C (Figures 100 and 101) reveal that at 24 test hours the basestock consumption is minimal. Likewise the physical properties and antioxidant levels were found to be very similar. But there is a considerable difference in the COBKA readings (20 for TMP-777 and 78 for the D2EHA). After this, comparison of the two is complicated by the rapid degradation (or volatilization loss) of the D2EHA basestock (and a resultant COBRA rise to 200). Similar results are seen with the corresponding confined heat test data (Figures 102 and 103). After 96 hours, percent basestock loss is much more for the TMP-777 lubricant than for the D2EHA lubricant (8.9 vs. 1.9% respectively) but the COBRA reading is less (15 vs. 51). This data seems to indicate that oxidative and thermal degradation of a dibasic ester produces decomposition products that contribute greatly to COBRA readings relative to that of a hindered triester. This implies that the disproportionately high COBRA rise of 0-82-2 and 0-82-14 is due to the fact that they both contain significant amounts of diesters. Exactly what role the antioxidants (PANA/DODPA) play in affecting the COBRA reading is not known but it may be that their oxidation products are of importance.

(3) Contribution of Basestock Degradation Products to COBRA Reading.

Since carboxylic acids and aliphatic alcohols are known decomposition products from oxidatively and thermally stressed ester lubricants it is of interest to determine their individual and combinative contributions to COBRA readings. The basestock oil 0-77-1 (D2EHA) was formulated with certain degradation products including carboxylic acids and alcohols in order to determine their contribution to the COBRA readings. The half acid ester of D2EHA was not available so lauric acid (n-C₁₂) was used in its place. The COBRA readings of various combinations of added degradation products is shown in Table 59.

COBRA Reading vs. Ester Depletion for 0-77-1+1% PANA + 1% DODPA from the Squires Oxidative Test at 205% C. Figure 100.

COBRA Reading vs. Ester Depletion for 0-76-5A + 1% PANA + 1% DODPA from the Squires Oxidative Test at 2050C. Figure 101.

EXXXXX EXXXXX EXXXXXI EXXX

254

LUBRICANT PERFORMANCE AND EVALUATION(U) DAYTON UNIV OH RESEARCH INST C 5 SABA ET AL. JUN 87 UDR-TR-87-24 AFMAL-TR-87-2025 F33615-85-C-2507 MO-M183 881 4/6 UNCLASSIFIED F/G 11/8

MICROCOPY RESOLUTION TEST CHART
MATCHAL BUREAU OF STANDARDS-1988-A

STATE OF THE PARTY OF THE PARTY

COBRA Reading vs. Ester Depletion for 0-76-5A + 1% PANA + 1% DODPA from the Squires Confined Heat Test at $205^{\circ}\mathrm{C}$ Figure 103.

TABLE 59

EFFECT OF ADDED DEGRADATION PRODUCTS TO 0-77-1 ON COBRA READING

CORPA PEADINGS

	SAMPLE	CODER READINGS
(1)	0-77-1 basestock	4
(2)	above plus lauric acid (TAN = 9.9)	5.5
(3)	above (2) plus 2\$ 2-ethylhexanol	5
(4)	O-77-1 plus 1% PANA and 1% DODPA	6
(5)	above plus lauric acid (TAN = 9.7)	13
(6)	above (5) plus 2\$ 2-ethylhexanol	11.5
(7)	0-77-1 with 1 \sharp PANA and 1 \sharp DODPA Squires oxidative test at 190°C, 48 hrs. (TAN = 0.50) 56
(8)	above plus lauric acid (TAN = 3.0)	53

As the data shows, none of the added materials affected the COBRA reading significantly. It is interesting to note that the addition of either the acid (2) or the antioxidants (4) separately has no effect on the COBRA reading but if combined (5) they more than double the reading. This may be due to ion pair formation (the antioxidants being weak bases) with a subsequent increase in conductive species. It does not seem to be a very significant effect since addition of acid to a degraded oil (8) produces no measurable COBRA reading change. The addition of 2-ethylhexanol produces no measurable effect on COBRA reading.

3. CONDUCTIVITY MEASUREMENTS

Conductivity measurements on degraded lubricants were made using a YSI Model 34 conductivity meter (Yellow Springs Instrument Co.). No commercially available conductivity cell proved to be adequate due to lack of sensitivity and large sample requirements. Instead, an electrode cell assembly from a COBRA instrument was wired to the conductivity meter. Because of the COBRA

cell's small electrode gap (low cell constant) the sensitivity of this system for the analysis of degraded lubricants proved to be excellent and gave very stable readings. And unlike the COBRA instrument itself, the conductance readings showed no great dependence on the composition of the lower electrode as shown in Table 60.

TABLE 60
EFFECT OF BOTTOM ELECTRODE ON CONDUCTANCE MEASUREMENTS

Bottom Electrode	Conductance (µMHOs)*
Cadmium	0.140
Magnesium	0.133
Nickel	0.122
Copper	0.131
Zinc	0.130
Stainless Steel	0.138

^{*}Using a standard degraded lubricant

The lowest range of the meter $(0-2 \mu mhos)$ was used for all measurements and all were made on the same uncalibrated electrode cell assembly.

Conductance measurements were made on six MIL-L-7808 lubricants that had been stressed in the Squires oxidative and confined heat tests at either 190°C or 205°C. The results (Figures 104 to 107) show trending that is virtually identical to what was seen in the COBRA readings of these same oils (see Figures 93, 94, 96 and 97). This is clearly shown in plots of all COBRA readings vs. their conductance readings for a given test and temperature (Figures 108 to 111). These plots reveal the basically linear relationship between conductance and COBRA readings. Some of the data scatter can be explained by the fact that the COBRA readings are subject to considerable

Figure 104. Conductance of MIL-L-7808 Lubricants from the Squires Oxidative Test at $190^{\rm o}{\rm C}$

Figure 105. Conductance of MIL-L-7808 Lubricants from the Squires Oxidative Test at $205^{0}\mathrm{C}$

Figure 106. Conductance of MIL-L-7808 Lubricants from the Squires Confined Heat Test at 190°C

Figure 107. Conductance of MIL-L-7808 Lubricants from the Squires Confined Heat Test at 205°C

Figure 108. Conductance vs. COBRA Readings for Lubricants from Squires Oxidative Test at $190^{\circ}\mathrm{C}$.

Figure 110. Conductance vs. COBRA Readings for Lubricants from Squires Confined Heat Test at $190^{\circ}\mathrm{C}$.

Figure 111, Conductance vs. COBRA Readings for Lubricants from Squires Confined Heat Test at $205^{\circ}\mathrm{C}$.

265

drift and that the actual COBRA readings may have changed somewhat in time since they were not remeasured at the time of the conductance measurements. Despite the relationships found here, it is not claimed that the COBRA readings are equivalent to conductivity but that both methods yield essentially the same type of information, at least for the degraded oils that were measured. While the conductance measurements may offer a greater range of sensitivity and more stable readings relative to the COBRA, the response of both instruments to oxidatively and thermally stressed MIL-L-7808 lubricants show a large formulation dependence.

4. OIL MAINTENANCE TESTER

A device had been recently described 57 that was developed for determination of the degradation level of automotive engine oils. This oil maintenance tester measures the steady state current decay in the lubricant after application of a DC step voltage of 300 volts through nickel electrodes. Changes in the current and current decay parameters were related to the presence of contaminants and charged particles. A device similar to this was constructed in order to determine its usefulness as a lubricant degradation level device for laboratory stressed MIL-L-7808 lubricants. device itself consisted of a simple electrical loop containing a 300 volt DC power supply, a 100K resistor and a test cell containing the lubricant. The current is determined by using a millivolt recorder to measure the voltage drop across the calibrated resistor. Initial results using a nickel electrode assembly, consisting of two 3 x 1/2 inch plates separated by 1 mm, were inconsistent and non-reproducible. Instead, a YSI model 3417 conductivity cell (Yellow Springs Instrument Co.), containing platinized platinum-iridium electrodes, was used and yielded much more reproducible data although sensitivity was reduced. In addition to the 0.5 second current and

the current decay between 0.5 and 3.5 seconds normally measured⁵⁷, the stable current after 12 seconds was also measured. The results of the analyses of the six MIL-L-7808 lubricants stressed in the Squires oxidative test at 190°C are shown in Table 61. In general it is observed that the 0.5 second current increases and the 3 second current decay decreases with stressing time though only slightly and somewhat erratically. The 12 second current however shows a very definite and consistent increase vs. stress time (Figure 112). Furthermore, the latter current shows an excellent correlation with the COBRA readings (Figure 93).

5. CONCLUSIONS

The COBRA device has been evaluated with respect to six MIL-L-7808 lubricants stressed in the Squires oxidative and confined heat tests. The COBRA readings of these stressed lubricants show, in general, a constant rise in value vs. stressing time. When the data is compared at equal values of physical deterioration (TAN and viscosity) for each lubricant, four of the lubricants (0-79-16, 0-79-17, 0-79-20 and 0-82-3) give comparable COBRA readings in the oxidative test while the other two (0-82-2 and 0-82-14) show disproportionately large rises in COBRA readings. For the confined heat tested lubricants, only 0-82-14 gave unusually large rises in COBRA readings relative to physical property deterioration. Attempts to relate this formulation dependence to the level of peroxides, basestock ester consumption or the contribution of certain known ester basestock degradation products did not reveal a definite relationship. However, analysis of the data of stressed laboratory formulated lubricants containing di-2-ethylhexyl adipate (diester) basestock indicates that this formulation dependence may be related to the presence of large amounts of diesters in 0-82-2 and 0-82-14.

Two alternative electrochemical devices were evaluated as lubricant

Oil Maintenance Tester 12 Second Current Readings of MIL-L-7808 Lubricants from the Squires Oxidative test at $190\,^\circ\mathrm{C}$ Figure 112.

TABLE 61
OIL MAINTENANCE FESTER DATA FROM SQUIRES OXIDATIVELY
STRESSED LUBRICANTS AT 190°C

0-	7	9_	1	6.	J

Time (hrs)	1/2 Second Current (µA)	Current Decay (#A)	12 Second Current (μA)	COBRA
24	5.56	4.14	0.19	6
48	5.56	4.14	0.20	20
120	5.56	4.07	0.26	51
168	5.64	4.15	0.30	59
216	5.64	4.09	0.31	85
264	5.72	4.07	0.33	84

0-79-17E

Time (hrs)	1/2 Second Current (μA)	Current Decay	12 Second Current (μA)	COBRA
24	5.51	4.19	0.14	22
48	5.50	4.12	0.17	32
120	5.56	4.12	0.21	64
168	5.61	4.16	0.22	62
216	5.56	4.12	0.23	74
264	5.61	4.10	0.24	64
288	5.71	4.20	0.27	79
312	5.53	4.06	0.26	88
360	5.56	4.10	0.25	76
457	5.63	4.12	0.25	91

TABLE 61 (CONT'D)

0-79-20A

Time (hrs)	1/2 Second Current (μA)	Current Decay (µA)	12 Second Current (μA)	COBRA
24	5.59	4.19	0.16	22
48	5.58	4.17	0.18	32
120	5.64	4.17	0.21	64
168	5.67	4.20	0.22	62
216	5.59	4.11	0.24	74
264	5.58	4.10	0.24	64
288	5.64	4.16	0.25	79
312	5.67	4.16	0.26	88
360	5.69	4.17	0.28	76
457	5.59	4.10	0.28	91

0-82-2

Time (hrs)	1/2 Second Current (μA)	Current Decay	12 Second Current (μA)	COBRA
24	5.59	4.20	0.21	37
48	5.61	4.10	0.29	83
120	5.69	4.06	0.45	183
168	5.67	4.15	0.50	187
216	5.61	3.93	0.52	184
264	5.71	3.99	0.53	182

TABLE 61 (CONCLUDED)

0-82-3

Time (hrs)	1/2 Second Current (µA)	Current Decay	12 Second Current (µA)	COBRA
24	5.46	4.08	0.17	10
48	5.54	4.12	0.23	22
120	5.67	4.20	0.26	50
168	5.67	4.17	0.28	49
216	5.67	4.15	0.28	61
264	5.67	4.14	0.29	79

0-82-14D

Time (hrs)	1/2 Second Current (μA)	Current Decay	12 Second Current (μA)	COBRA
24	5.69	3.96	0.57	185
48	5.69	3.82	0.73	200
120	5.67	3.66	0.91	200
168	5.67	3.63	0.97	200
216	5.77	3.75	0.91	200
264	5.74	3.72	0.92	200

monitoring devices. A device used to measure the conductance of the lubricants proved to be stable, sensitive and reproducible although it gave the same formulation dependence as the COBRA instrument. An oil maintenance tester, which measures the current decay in an oil after application of a DC step voltage at 300 volts, yielded similar data although it was somewhat less sensitive.

6. FUTURE EFFORT

The effect of condensate return in the Squires oxidative test on COBRA readings for MIL-L-7808 lubricants will be determined. COBRA readings on new classes of stressed lubricants, such as 4 cSt ester lubricants, polyphenyl ethers and perfluoroalkylethers, will be measured. Investigation into the formulation dependence of MIL-L-7808 lubricants on COBRA readings will continue. Initial efforts to isolate and concentrate species from stressed lubricants that produce the COBRA readings by adsorption chromatography has been successful and will be used in conjunction with chromatographic and spectroscopic analysis to identify these components. A device that measures the dielectric breakdown strength of fluids will be investigated as a potential lubricant monitoring device.

SECTION V

LUBRICANT LOAD CARRYING CAPABILITY TEST ASSESSMENT

1. INTRODUCTION

Three variations of gear test methods are available for determining load carrying capability of lubricants with the basic principles involved in each case being similar. These tests are the FZG test used in Germany, the IAE test used in England, and the Ryder gear test used in the United States. Of the three, the Ryder test is run under the severest conditions, i.e. highest load and speed. The FZG test machine has been chosen by the CEC (Coordinating European Council) for the development of performance tests for lubricants for use as it's standard test rig. A comparison has been made between the IAE and FZG test data obtained under their respective recommended operating conditions. No correlation in test results were observed. When each test is operated under similar conditions, there seems to be good agreement in test results. A problem with this correlation is that the FZG rig is incapable of running at higher loads which are possible with the IAE rig.

Load carrying capacity (LCC) of a test fluid, determined by the Ryder gear test method, is defined as the tooth load, in 1b/inch of face width, which results in an average tooth face scuffing of 22.5%. The ASTM test D-1947-83 outlines the procedure for the determination of LCC using the Ryder gear test rig. A set of test gears is run under a constant load and speed for 10 minutes. The test is stopped and the operator examines, through a microscope probe, each face of the 28 tooth test gear for percent area scuffed and records the observation. The load is increased, and the test is

run for 10 minutes and the gear faces are examined again. This process continues until the operator determines that 40% of the tooth surfaces are scuffed. A graph of load versus percent area scuffed is plotted and the load corresponding to 22.5% scuffed area is obtained. The Ryder gear tests have several shortcomings. They are expensive, time consuming, and several tests must be conducted in order to get a representative value of load carrying capacity. These ratings involve a great deal of subjectivity on the part of the operator to determine the percentage of scuffed area of each tooth face. The tests are sensitive to factors which are difficult to control such as gear tooth tip relief, variation in surface finish and hardness, and alignment of gear driveshafts not to mention the operator's skill. It has been noted that the test results are not reproducible between operators and labs. 58 Some of the differences between the various gear tests are listed in Table 62.59

TABLE 62

COMPARISON OF RYDER, IAE AND FZG TEST PARAMETERS

Parameters	Ryder	IAE	FZG
Pinion speed, rpm	10 K	6K	4.4K
Test oil temp, ^b C	74	110	90
Failure criteria	22.5%	60≴	Wt. loss and
	Scuff	Scuff	wear rate
Time at load, min	10	5	15
Lube system	Jet	Jet	Dip
No. of teeth	28	16	24
Gear width, mm	6.4	4.8	20.1
Tooth tip sliding Velocity, m s ⁻¹	13.2	11.8	11.3

The primary failure mode of gears in this type of testing is scuffing.

Scuffing is caused by localized welding of the surface of the gear caused by local breakdown of the lubricant boundary layer. The scuffing load has been found to be proportional to the sliding speed at the gear tooth tip and is

related by the function WNX=C where: W=load on tooth, N=rpm, C=constant, and x=scuffing index. Scuffing load has been found to be proportional to the square root of lubricant viscosity and inversely proportional to the square root of surface roughness. EP additives in the lubricant have helped to increase LCC by forming mono-layers of sacrificial metal compounds when surfaces of the gears reach operating temperatures.

2. LITERATURE SEARCH

There are several reported studies of efforts to correlate results obtained on the Ryder, IAE and FZG test rigs. All have been relatively unsuccessful for various reasons. Benzing reported correlations between the Ryder and the IAE machines. 60 Good correlations have been difficult to obtain since all rigs operate under different loads and speeds. Good correlation of test results using the IAE and FZG machines was obtained when using similar sliding velocities and oil temperatures. 61 The gear geometries in the various tests are also different as well as the gear materials. A correlation of results between the FZG, IAE, and Ryder tests was also reported by Niemann. 59 The scuffing loads of the three test methods were related by a quantity termed "Almen factor". This factor is a function of sliding speed, load, and tooth geometry. Finally, criteria of what constitutes failure with each rig is different. As mentioned earlier, the IAE rig is limited in speed (6000 rpm) and is more appropriate for evaluating the high viscosity oils used in British turboprop gearing. Criteria for failure is a decrease in motor speed with the formation of vapors from the oil. The FZG rig offers promise in that it is a scaled down rig which can be less expensive. It is capable of varied speeds and loads. Failure can be observed visually, as in the case of the Ryder test, or from the weight loss of the gears. Determination of weight loss is difficult since the weight

lost through wear is rather insignificant compared to the total gear weight.

Recent literature indicates other factors which could have influence on the selection of a test alternative to the Ryder apparatus. Researchers in Japan have been very active in studies of the scoring of gear teeth.

Terauchi has reported studies of factors influencing the scoring of spur gear teeth including the effects of gear geometry, tooth material, and lubricants on scoring. Voitik and Heerdt have reported the use of a commercially available Falex machine to evaluate gear lubricants. The particular geometry of the test specimens used by the Falex test provides promise for an alternate gear test. The specimens are inexpensive, small, and are assessed by weight loss. Only a small amount of oil is required per test.

3. DEVELOPMENT OF LOAD CARRYING CAPACITY TEST

Development of a repeatable, objective, and inexpensive test method to determine the tribological characteristics of oils is desirable due to the problems and costs of the Ryder, IAE, and FZG gear tests. Several methods including pin-on-disk, pin-on-ring, disk-on-washer, rotating crossed cylinders, the Falex gear simulator, the rolling four ball, and the sliding four ball test can be used for investigating tribological properties. The use of the sliding four ball test to determine the LCC of oils is currently being considered. The major advantage of this test is that the real area of contact between the balls during sliding can be accurately determined resulting in the calculation of average pressure on the oil film in real time. The development of the four ball test for determining LCC is covered in Task V along with development of specification wear test.

4. CONCLUSIONS

Time and experience with gear rig testing (Ryder, IAE and FZG) have shown that gear test rigs do not provide satisfactory test methods for determining

lubricant load carrying capacity. Factors contributing to the problems of gear rig testing include lack of precision due to uncontrollable parameters, supply of identical test gears, and the high and continuing increasing cost of conducting gear rig testing.

The sliding four ball geometry has been used in tribological testing for over forty years. The wealth of papers on the subject provide added assistance in understanding the processes that occur in four ball tests. The simplicity of the test rig and the availability of low cost test balls contribute to make this a very economical test. The objective nature of recording the test results (measuring the scars) combined with the ability to monitor wear in real time are very significant advantages to this method.

5. FUTURE EFFORT

Future work calls for examining closer the repeatability of the tests using four ball geometry. Other oils will be tested such as MIL-L-23699 oils. If time permits, the bulk oil temperature will be varied. Efforts will be made to correlate the results of the four ball tests with Ryder tests results using the Hertzian stresses as the basis for correlation. This includes trying combinations of higher speeds and temperatures in an effort to simulate conditions in the gear tests.

In addition, the Falex gear simulation test will be investigated more closely. This test produces a combination of sliding and rolling of the surfaces being tested to simulate the motion of meshing gear teeth. This method does not have the four ball test's advantage of a constantly increasing real contact area.

SECTION VI

DEVELOPMENT OF SPECIFICATION WEAR TEST

1. INTRODUCTION

This study was directed towards developing a repeatable, objective, and inexpensive test method for determining the tribological characteristics of oils. Several methods including pin-on-disk, pin-on-ring, disk-on-washer, rotating crossed cylinders, the Falex gear simulator, the rolling four ball, and the sliding four ball test can be used for investigating tribological properties.

Historically, researchers have used different types of wear tests to determine the tribological characteristics of lubricants. Begelinger and de Gee⁶⁴⁻⁶⁷ used a pin-on-ring machine in their investigations of lubrication of concentrated contacts between E-52100 steel members in oils. They stopped the tests when the coefficient of friction reached a steady value (around 0.1). This usually occurred after five minutes although some of their tests ran for up to one hour. They observed three wear regimes (Figure 113); the region of low wear and friction (Region I), the region of low wear and high friction (Region III), and the region of high wear (two orders of magnitude greater) and high friction (Region III). The transition from the region II to I is dependent on lube viscosity and contact pressure. The transition from Region III to II is associated with a particular conjunction temperature. Even at speeds as low as 0.7 mm s⁻¹ load carrying capacity was strongly dependent on lubricant viscosity.

 $Czichos^{68-69}$, who performed tests using both a four ball and a ball on

Figure 113. Three Regimes of Frictign and Wear (Reproduced from Ref. 67). k is mm /Nm; f is Coefficient of Friction

three pegs configuration to investigate the load carrying capacity of oils, observed that there was a combination of speed, load, temperature, and time required for an oil to fail. He used the concept of a "failure surface" to predict lubricant failure. He also noted the presence of three wear regimes similar to Begelinger, et al. 70

Smith⁷¹ utilized a ball-on-disk machine using castor oil and 52100 steel. He concluded that the frictional force is transmitted through a film of lubricant acting as a plastic solid whose shear strength decreases with increasing temperature. The coefficient of friction was essentially a measure of the temperature rise in this zone. At high sliding speeds (140 cm s^{-1}), the scatter in wear data was large. At lower sliding speeds (17 cm s^{-1}) it was found that the scar diameter on the balls was the same after six hours of sliding as it was after 4 minutes of sliding.

During the course of this study, work was performed to determine the effect of load, speed and lubricant formulation on the tribological characteristics of MIL-L-7808 type lubricants. Wear parameters such as wear scar size and linear variable differential transformer (LVDT) outputs were determined to study the above effects. The use of the sliding four ball test was initially investigated. The major advantage of this test is that the real area of contact between the balls during sliding can be determined, resulting in the determination of average pressure of the oil film.

2. EXPERIMENTAL PROCEDURES

Testing was performed using a four ball test machine shown in Figure 114. Load is applied using dead weights on a lever with a 10:1 ratio. The coefficient of friction was calculated from the torque measured by a load cell attached to the stationary shaft of the machine. Wear of balls during the test was monitored with a spring loaded linear variable differential

Four Ball Wear Test Machine with LVDT (a), Resistance Heater and Three Balls Specimen Cup (b) Figure 114.

- (a)

(Q) -

transformer attached to the lever arm. Friction, wear, and temperature data were collected using a data acquisition system based on an IBM PC/XT microcomputer. The system uses a 12-bit analog to digital converter supplied by Data Translation. The signal conditioning was performed, to minimize the effect of noise, by averaging the data. The data was stored on a floppy disk.

ASTM Method D-4172-82 was modified in order to study the tribological characteristics of MIL-L-7808 lubricants. The effect of load and spindle speed on wear scar size and the LVDT output were investigated for developing a wear test that is reliable, easy to perform, inexpensive, repeatable and suitable for incorporating into a lubricant specification wear test.

Seven MIL-L-7808 type oils were used in this work. These were synthetic ester base lubricants with tricresyl phosphate (TCP, antiwear additive) as determined by GC with concentration being shown in Table 63.

TABLE 63

TCP CONCENTRATIONS IN VARIOUS MIL-L-7808 TYPE LUBRICANTS

Fluid Type	TCP(wt.\$)
0-72-9	1.5
0-76-1	0.0
0-79-16	5.4
0-79-20	0.5
0-82-2	2.3
0-82-3	0.0
0-82-14	2.2

The ASTM D 4172-82 test procedure was modified and used to perform the sliding four ball wear tests. The sliding between the balls was performed at 145, 245, and 392 N Load and 200, 1200, and 2000 rpm spindle speed to obtain a spectrum of lubricant performance. All the tests were conducted at a bulk lubricant temperature of 75°C. For lubricant 0-79-20, tests were repeated at loads varying from 22 to 400 N and speeds from 200 to 2000 rpm to verify the LVDT data.

Steel balls (AISI E-52100) 1/2 inch in diameter (tolerance ± 0.00005), case hardened to R_c 64-66, grade 25 (extra polish) were used in the tests. The balls were cleaned using a low boiling point petroleum solvent (pentane, pet. ether, etc.) in an ultrasonic bath and allowed to air dry for about 15 minutes. The balls were covered with 35 cm³ of the test lubricant. After the test was completed the balls were cleaned in the solvent. The wear scars were measured on the three stationary balls using an optical microscope as per ASTM D 4172-82 test method. This involved measuring the diameter along and normal to the direction of sliding on each of the three stationary balls. The average of the six measurements is reported as the wear scar diameter.

3. RESULTS AND DISCUSSION

In order to develop a methodology for determining the wear characteristics of MIL-L-7808 type lubricants, oil 0-79-20 was extensively investigated. A series of tests were run on this oil using various combinations of load, speed, and duration.

a. Wear Scar Diameter as a Function of Time

Figure 115 shows a plot between wear scar size obtained by measurement and LVDT output with time. The test was run at 245 N load and

1200 rpm spindle speed. The increase in LVDT output with time indicates an increase in wear scar size. Initially the rate of increase is rapid and then the rate decreases with time. The curve levels off at around 10 hours, indicating that the wear scar size increase was negligible and could not be measured after this time. This phenomenon is termed in this report as "leveling-off", and the time it takes to reach this condition is termed "transition period". Since LVDT output and measurement of wear scar diameter give similar results it was concluded that the LVDT data is reliable and can be used to accurately determine the transition period.

b. Transition Period

In order to verify the above behavior, tests were run at other loads and speeds. Figures 116 and 117 show the variation of LVDT output with time, at different loads and speeds, respectively, for the same oil. Here, again the same trend can be noted where the LVDT output leveled off after approximately 10 hours. In addition, the transition period was found to be a function of load and speed and decreases as load or speed or both increase. This behavior may not be justified by a hydrodynamic action because of the relatively high coefficient of friction (0.1) but rather could be explained based on the chemical reaction of TCP or materials acting similar to TCP with the metal surface in the contact zone. Furthermore, of the oils tested, those without TCP did not exhibit similar behavior.

c. Precision

The repeatability of the wear scar size was verified by running several four ball tests at 1200 rpm and 75°C for one hour and at various loads. In each test a new set of four balls was used. Even though one hour is not sufficient for the scar size to level off (see Figure 115), the data shows the scar diameter is reproducible. The effect of load on scar size is

Figure 115. Variation of Wear Scar Diameter and LVDT Output with Time in 0-79-20 Oil. Test Conditions: Load 245 N; Speed 1200 RPM

Figure 116. Variation of LVDT Output with Time for 0-79-20 0il at 1200 RPM and Loads of 145, 245, and 392 N

Figure 117. Variation of LVDT Output with Time for 0-79-20 0il at 145 N Load and Spindle Speeds of 200, 1200, and 2000 RPM

more pronounced below 110 N than above this value (Figure 118).

d. Effect of Spindle Speed

The variation of wear scar size with spindle speed is shown in Figure 119. The scar size as a function of speed is shown for two different loads (145 and 245 N). The two curves overlap indicating the scar size diameter for both loads is similar over the speed range tested. The data shows that the wear scar diameter does not change over spindle speeds of 1000 to 1400 rpm. However, it tends to significantly decrease with increasing speed above 1400 rpm. No conclusive remark can be at this time for the small scar diameter produced at 200 rpm. More data is needed to establish the shape of the curve below 1000 rpm.

e. Testing with Other Lubricants

In order to learn if the above wear behavior is peculiar to 0-79-20, or if this is the general behavior for formulated lubricants, six other oils (Table 63) were tested. Of the total seven oils studied, two oils did not contain TCP. The oils with TCP exhibited behavior similar to 0-79-20 oil. The tests were run for 20 hours at three speeds and three loads only, unlike the previous case of 0-79-20 where roughly forty different tests were run. The wear scar size as a function of load and speed is shown in Figures 120 and 121. These figures show that after the transition period, scar size does not vary significantly with either load or speed.

Boundary film lubrication is the most likely action occurring as a result of TCP chemical reactivity in the contact zone. TCP reacts with the metal surface under high temperature to form a deformable boundary film that can be replenished quickly to prevent metal to metal contact.

In the case of oils without TCP a different behavior was observed.

Wear in oil 0-76-1, as shown by the LVDT output curve, did not level off with

Figure 118. Effect of Load on Wear Scar Diameter (WSD) in 0-79-20, at One Speed, 1200 RPM, for a Test Duration of One Hour

Figure 119. Effect of Spindle Speed on Wear Scar Diameter (WSD) in 0il 0-79-20, for 20 Hour Test Duration

Figure 120. Effect of Load on Final Scar Diameter for Various MIL-L-7808 Type Lubricants

Figure 121. Effect of Spindle Speed on Final Scar Diameter for Various MIL-L-7808 Type Lubricants

time (Figure 122). The tests were extended for longer periods in an effort to determine if the leveling off phenomenon would occur. After 68 hours, leveling in LVDT output was not attained. Therefore the wear rate did not significantly decrease during this testing period.

Table 64 shows the wear scar diameters determined for all MIL-L-7808 lubricants after 20 test hours. Percent TCP as determined by GC is also shown. Oils containing approximately 2% TCP produced scar size diameter smaller than scars produced by oils having 0 to 0.5% TCP. However, oils with little or no TCP may contain other antiwear additives. Even though a limited number of lubricants were tested, the wear scar diameter data which is generated as the average result of five independent tests shows that lubricants containing 2% TCP had significantly reduced the wear scar size and that TCP plays an important role in the leveling off phenomenon when wear scar size is studied as a function of load and speed. Therefore, the resulting wear scar size produced after the transition period may be used to evaluate wear characteristics of lubricants in the test geometry and under these test conditions.

TABLE 64
VARIATION OF WEAR SCAR SIZE WITH OIL

		Scar Size 💆 , mm
011	TCP, %Wt	(after 20 test hours)
0-72-9	1.5	1.02 + 0.20
0-76-1	0.0	1.70 ± 0.50
0-79-16	2.4	0.45 + 0.15
0-79-20	0.5	1.34 + 0.29
0-82-2	2.3	0.37 ± 0.09
0-82-3	0.0	1.14 + 0.11
0-82-14	2.2	0.50 ± 0.11

Average of 5 tests

10000000

Obviously, an oil producing a smaller scar would be rated higher as compared

Figure 122. LVDT Output During a 68 Hour Test of 0-76-1, Using 145 N Load and 2000 RPM Spindle Speed

to the one producing larger scar. Lubricants evaluated on this basis may produce results that could be used for ranking of lubricants based on their wear prevention characteristics.

4. CONCLUSIONS

Based on the above work, the following conclusions can be drawn regarding the use of the four ball test as a method to determine the tribological properties of lubricants.

- a. Under certain load and speed conditions, the wear scar size produced after the transition period was significantly smaller for oils containing an appreciable amount of TCP (2%).
- b. The concentration of TCP plays a major role in limiting the wear scar size.
- c. The size of wear scar after the transition period is almost independent of the load and speed for oils containing higher concentrations of TCP.
- d. The wear scar diameters produced after the transition periods may be used to help rank the oils with respect to their wear characteristics.
- e. The use of the four ball test for evaluating lubricants is warranted since it is inexpensive and the results are reproducible.

5. FUTURE EFFORT

Future studies with the four ball wear test will include testing to determine the precision of the method. Since small increases in wear scar size may not be totally detected by LVDT, ferrographic analysis will be performed on oils after the transition periods in order to determine the extent of wear with time in the region of "constant wear". Statistical analysis will be conducted to determine a reliable parameter to evaluate oils by this type of test. If proven reliable, this method will be recommended

for inclusion as a specification wear test. Other MIL-L-7808 and MIL-L-23699 type oils will be tested. If possible, modifications will be made to the test equipment to enable testing oils at much higher temperatures. Attempts will be made to develop an analytical model of the wear process in an effort to predict wear based on operating conditions.

SECTION VII

DEVELOPMENT OF LUBE STORAGE AND RETRIEVAL SYSTEM

The purpose of this effort is to implement a software system on the Zenith Z-100 microcomputer for storage, retrieval and correlation of MIL-L-7808 lubricant qualification data. Of the software available for the Z-100 microcomputer, dBASE II (Ashton-Tate) was easily the most suitable data base management software for this application. Its general data file handling capabilities plus its programmability allows for the development of a menu driven software package that should be user friendly. The software programs that were written for this application allow the user to:

- (1) Enter new records
- (2) Correct or add to old records
- (3) Conditionally search data
- (4) Print reports
- (5) Print selected data

At the present time data for six lubricants selected by AFWAL/POSL have been entered into the computer. Format of the oil data sheet obtained from the microcomputer storage is shown in Appendix C.

Software programs for the storage and retrieval of contractually generated lubricant data including the Squires oxidative and confined heat test data, foaming data and coking data. The software programs developed for these data sets are similar in function to those described above for the lubricant qualification data.

As part of future work, more lubricant qualification data sets will be entered as they become available. A manual for using the lubricant

qualification software will be written. Development of any additional features for existing software packages will be done as needed.

SECTION VIII

RULLER DEVELOPMENT

1. INTRODUCTION

While lubricating and cooling the oil-wetted components of the turbine engine, the lubricating oil experiences various environmental stresses which cause the oil's basestock to undergo thermal and oxidative degradation. As long as the lubricant is adequately protected by an antioxidant system, the oxidative degradation of the oil's basestock and the changes in the lubricating oil's properties are minimal. Since the antioxidants are depleted with engine operating time, they eventually become ineffective allowing large changes to occur in the physical properties of the lubricant's basestock. As the physical properties change, the useful life of the lubricant ends resulting in excessive component wear and eventual failure of the engine. The length of engine operating time from the time a lubricant is sampled until the large changes in the basestock's physical properties occur is referred to as the "Remaining Useful Life" of the lubricant (Figure 123).

To ensure that a lubricant is not used past the end of its useful life, the Air Force uses scheduled oil changes. Because the scheduled oil changes are inherently conservative, lubricants with remaining useful lives (RUL) are discarded. Therefore, the ability to predict the RUL of lubricants would eliminate the need for scheduled oil changes providing savings in material and labor costs to the Air Force.

However, the only tests currently available to the Air Force for determining the RUL of a lubricant are long term stability tests. The analytical techniques used to detect changes in the physical properties (viscosity, total acid number, color, etc.) of a lubricant are incapable of

Figure 123. Determination of Useful Life by Plotting Physical Properties Versus Stressing Time for Long Term Stability Test

Plots of the In of the Reduction Wave Height and Percent Remaining Useful Life of the RCV Technique Versus Hours of Remaining Useful Life at 370^oF for the Fresh 0118 and Stressed MIL-L-7808 Figure 124.

determining the lubricant's RUL.

Therefore, the University of Dayton Research Institute conducted research to develop techniques (Table 65) capable of determining the RUL of different lubricants(Reference 74). The RUL determining capabilities of numerous analytical techniques were evaluated using fresh and stressed (Federal Test Method Standard 791B Method 5307.1 at 370° and 392°F) MIL-L-7808 oil samples. In addition to determining the RUL of a lubricant, the remaining useful life of a lubricant evaluation rig (RULLER) candidate must be low cost, rapid, and base-level in operation and in interpretation of the results. The techniques developed for evaluation as a RULLER candidate could be categorized into three main groups (Table 65) and were ranked for development into a RULLER in the following order: voltammetric > thermal stressing > chemical stressing. The experimental parameters used to rank the potential of each analytical technique for development into a RULLER candidate are listed in (Table 66).

of the techniques studied during this investigation, the cyclic voltammetric (CV) techniques are the lowest in cost, easiest to operate, and require the shortest analytical time (Table 66). The CV techniques also produce the most accurate and precise RUL determinations for fresh and used MIL-L-7808J oil samples. Examples of the reductive-CV (RCV) result versus RUL plots are shown in Figure 124 for the different MIL-L-7808 oils stressed at 370°F. The CV techniques can also be used to identify the type of antioxidants used in the MIL-L-7808 oil formulation, differentiate fresh or slightly stressed oil samples from moderately stressed oil samples, and estimate the total concentration of hydroperoxides in the oil sample.

Therefore, the CV techniques, in particular the RCV technique, were determined to be the best candidates for development into a RULLER.

To increase the potential of the RCV technique for development into a

SUMMARY OF ANALYTICAL TECHNIQUES WITH RUL EVALUATION CAPABILITIES

Type of Technique	Specific Technique	Basis of Technique	Oil Property Measured by Technique
Voltammetric	Voltammetry-reduction only Scan from +1.0V to 0.0V	Quantify generated antioxidant apecies and oil's potential to generate new antioxidant apecies	Measures concentration of antioxidant species thought to be responsible for lubricant's oxidative stability.
	Cyclic Voltammetry Scan between 0.0V and +1.0V	Detect and approximate concentration of original antioxidant and generated antioxidant apecies	Estimates degree of antioxidant depletion
	Scan between 0.0V and and -1.0V	Approximate concentration of hydroperoxide	Estimates degree of lubricant degradation
Thermal Stressing	High Pressure-Differential Scanning Calorimetry (HP-DSC)	Uses thermal-oxidative stressing to rapidly degrade oil samples then quantifies energy and time of exothermic reaction that occurs at the end of the oil's induction period	Measures total oxidative stability of lubricant. Energy of exothermic reaction may also be related to oxidative stability
	High Pressure-Differential Thermal Analyzer(HP-DTA)	Uses thermal-oxidative atressing to rapidly degrade oil samples then detects time of exothermic reaction that occurs at the end of the oil's induction period	Measures total oxidative stability of lubricant
Chemical Stressing	Colorimetric Method	Uses cumene hydroperoxide to deplete antioxidant species and then detects decoloration of reaction system that occurs at the end of the oil's induction period.	Measures hydroperoxide decomposing capacity of antioxidant apecies
	Modified Ford Method	Uses generated free radicals to deplete antioxidant species and then detects rapid pressure decrease of reaction system that occur's at the end of the oil's induction period.	Messures radical trapping capacity of antioxident apecies

COMPARISON OF THE ANALYTICAL TECHNIQUES' POTENTIALS FOR DEVELOPMENT INTO A RULLER

Type of Technique	Advantages	Disadvantages
VOICE BROOK CTT C	- Analysis time: 2 to 10 seconds - Easy to operate - Low cost - less than \$2000 - Obtain supplemental information to aid in prediction of lubricant life	- Requires sample dilution - Relationship between lubricant life and technique not fully established - Dependent on antioxidants used
Thermal Stressing	- No sample preparation - Relationship between lubricant life and technique established for MIL-L- 7808 oils by other researchers - DTA: easy to operate low cost-less than \$3000	- Analysis Time - 1 to 20 minutes - DSC: Hard to operate : High cost-greater than \$15-20,000
Chemical Stressing	- Low cost-less than \$3000 - Relationship between lubricant life and technique established for various lubricants by other researchers	- Requires extensive sample preparation - Requires use of unstable, toxic chemicals - Hard to operate - Analysis time - 1 to 20 minutes - Degree of oil degradation affects results
Other Methods	- Low cost-less than \$3000	- Unable to predict lubricant life
Feasible Methods	 Used by other researchers in long and short term oxidation tests 	- Offer no apparent advantage over thermal streasing techniques

RULLER, an Apple IIe microcomputer with associated hardware and software was used to control the voltammograph, acquire the voltammetric data, and then calculate the percent RUL of the oil sample. The Apple IIe data management system made the RCV technique a "one-step, push-button" technique. In the present setup of the RCV-Apple IIe data management system, the total analysis time (the time from when the start button is pushed until the percent RUL of the oil sample is printed) is approximately 30 seconds. Thus, the incorporation of a data management system makes the RCV technique rapid and base-level in operation and in interpretation of the results.

To further evaluate the RCV technique for development into a RULLER candidate, the RCV technique was used to determine the RUL of used MIL-L-23699 oil samples taken from abnormally operating turbine engines. The RCV result versus flight time plots shown in Figure 125 indicate that when the engine is operating normally (low Fe concentrations in Figure 125), the RUL of the used oil samples reach a steady state value or decrease slowly with engine operation time. However, when severe wear begins (large increases in Fe concentrations in Figure 125), the RUL of the oil samples decrease rapidly prior to engine failure. Similar results were obtained for a series of used MIL-L-7808 oil samples taken from an abnormally operating engine (Figure 126). Thus, the RCV results can be used to detect abnormally operating engines to supplement the SOAP of the Air Force.

In contrast to the RCV result versus flight time plots for the used MIL-L-23699 oils in Figure 125 and for the used MIL-L-7808 oils in Figure 126, the RCV plots of the used MIL-L-23699 oils in Figure 126 indicate that the oil samples have 0% RUL several hours prior to the initiation of severe wear. Therefore, it appears that the severe wear modes experienced by the turbine engines in Figure 126 were a result of the MIL-L-23699 lubricating

Plots of the 1n of the Reduction Wave Height and the Fe Concentration (ppm) Versus Flight Time (Hours) for Used MIL-L-23699 Oil Samples Figure 125.

Plots of the ln of the Reduction Wave Height and the Fe Concentration (ppm) Versus Flight Time (Hours) for Used MIL-L-7808 and MIL-L-23699 Oil Samples Figure 126.

oils being used past the ends of their useful lives. Used MIL-L-7808 oil samples with 0% RUL were not observed during the investigation.

The results of the RULLER candidate based on RCV indicate that a RULLER could be used to significantly reduce the number of the engines that fail without prior detection by the Air Force SOAP as well as eliminating the need for scheduled oil changes. In fact, the results of the RCV candidate indicate that the scheduled oil change intervals are incorrect for these particular MIL-L-23699 oil systems resulting in severe component wear caused by degraded lubricating oil. Therefore, a RULLER could be used to increase fleet reliability and decrease labor and equipment costs by lowering the number of engines that fail without SOAP detection, by lowering the number of engines experiencing severe wear modes caused by lubricant degradation, and by lowering the number of premature oil changes which discard lubricating oils with RUL.

Although the previous investigation showed that the RCV technique with a data management system was suitable for development into a RULLER, the experimental parameters of the RCV technique were not optimized for use by the Air Force and the bulkiness of the data management system limited the suitability of the RCV technique for development into a RULLER. Also, only preliminary RUL results were obtained for the authentic used MIL-L-7808 and MIL-L-23699 oil samples.

Therefore, a follow-on effort is being conducted to develop a RULLER candidate from the RCV technique. The first part of the research is concentrating on optimizing the experimental parameters of the RCV technique, on optimizing the RUL determinations of the RCV technique for authentic used MIL-L-7808 and MIL-L-23699 oil samples, and on miniaturizing the data management system. The second part of the research will be concerned with

field testing the developed RULLER candidate.

The work reported herein discusses the preliminary results of the research to optimize the experimental parameters of the RCV technique and to optimize the data acquisition and handling techniques of the data management system.

2. EXPERIMENTAL

a. Instrumentation

(1) CV-1B Voltammograph

The initial reductive-cyclic voltammetry studies were performed on a CV-1B Voltammetry Electronics Control Module [Bioanalytical Systems, Inc. (BAS), West Lafayette, Indiana]. The auxiliary electrode was a platinum wire electrode and the reported potentials were referenced to a RE-1 Ag/AgC1 reference electrode (BAS). The working electrode was a glassy carbon (GCE) voltammetry electrode (BAS).

(2) Microcomputer System

The microcomputer system used in Task VII was an Apple IIe microcomputer (Apple Computer, Inc., Cupertino, California). The output of the CV-1B module was converted to digital form by a 16 channel, 12 byte analog/digital converter, Model AI13 (Interactive Structures, Malvern, PA), which was interfaced with the Apple IIe microcomputer. The sampling rate was controlled by a Speed-Demon card (Microcomputer Technologies, Santa Monica, California). The reductive-cyclic voltammograms and the results of the data analyses were displayed on the Apple IIe monitor and printed on a µ92 Microline Printer (Okidata, Mt. Laurel, New Jersey).

b. Supplies

(1) Chemicals

The pyridazine (97% purity) was obtained from Aldrich Chemical Corporation, Milwaukee, Wisconsin. The acetone (ACS certified) and lithium perchlorate [LiClO $_{\mu}$ (ACS certified)] were obtained from Fisher Scientific, Cincinnati, Ohio.

(2) Antioxidants

The generic samples of the N-phenyl-a-naphthylamine (PANA) and dioctyl diphenylamine (DODPA) antioxidants were obtained from AFWAL/POSL.

(3) Lubricating Oils

The fresh MIL-L-7808 lubricating oils (TEL-4001 and TEL-4004) were obtained from AFWAL/POSL.

The stressed MIL-L-7808 lubricating oils (TEL-4001 and TEL-4004) were prepared during the previous contract (Reference 74) using Federal Test Method Standard No. 791B Method 5307.1 at a test temperature of 370°F. Oil samples (30-40 ml) were withdrawn at 16-48 hour intervals to establish a well defined useful life for each MIL-L-7808 lubricating oil. Each withdrawn oil sample was characterized by COBRA, viscosity (40°C), and total acid number (ASTM Method 664) measurements and by magnesium concentrations (atomic emission spectrometry).

The values obtained for the COBRA, viscosity, and total acid number measurements and the Mg concentrations were then plotted versus stressing time to determine the useful lives of the MIL-L-7808 oils at 370°F as shown in Figure 123.

(4) Polyester/Polyethylene Sample Tubes

The sample container used in this research was a 3-ml tube and is manufactured by Nalgene Company, Rochester, N.Y. The tube is sealed on

one end and is made from a two-ply composite film, a polyester outer layer and a meltable polyethylene inside layer.

The heat sealer used in this research is also manufactured by Nalgene. The jaws of the heat sealer are spring-loaded and serrated to produce a seal in 2 to 3 seconds. The operating temperature of 177°C is well below the autoignition temperature of acetone (537°C).

The dialyzer tubing closures used in this research are one piece polypropylene clamps with a 37 mm gripping width manufactured by Spectrum Medical Industries. Los Angeles. California.

c. Sealing Procedure of Sample Tubes

222200

The appropriate amount of voltammetric solution (3 ml) is pipetted into the tube through its open end. The open end of the tube is then heat sealed for 2-3 seconds with the ribbed edge of the tube laying parallel with the jaws and the ribbed closed end of the tube perpendicular to the jaws.

When ready for analysis the sealed end of the tube is cut off and the appropriate amount of oil sample (50 μ 1) is pipetted into the tube through the reopened end. The dialyzer tubing closure is then used to form a liquid tight closure of the tube so that the oil sample can be dissolved in the voltammetric solution through agitation (hand shaken). To obtain the liquid tight closure, the tube must be laid in the dialyzer tubing closure so that the ribbed closed end of the tube is perpendicular to the jaws of the closure and the ribbed edge of the tube is parallel with the jaws.

The dialyzer tubing closure is opened and removed from the tube. The tube is then opened and the electrode system inserted through the opened end into the solution for RCV analysis. After analysis the solution is immediately disposed of or the tube is resealed for later disposal.

d. Reductive-Cyclic Voltammetric Technique

All of the RCV analyses were performed on a 50 μl oil sample diluted with 3 ml of acetone containing 0.05M LiClO_μ and 375 pm of pyridazine. The RCV voltammograms were produced by cycling in a voltage range of -0.2 V to 1.2 V at voltage scan rates of 1.0 to 20.0 V/sec. The reduction linear sweep voltammograms were produced by applying a potential of 1.1 V to the working electrode for 0-5 seconds and decreasing the potential of the working electrode at a scan rate of 1 V/sec.

e. Systems to Perform the RCV Technique

(1) CV-1B Voltammograph/Apple IIe Microcomputer System

To record the RCV voltammograms on the CV-1B Voltammograph/Apple IIe microcomputer system, the Apple IIe microcomputer was programmed to obtain 3000 samples of the CV-1B output at rates of 0.88 to 8.8 milliseconds per sample. The signal of the oxidation wave was nullified by having the computer set its gain to zero. The computer recorded data was obtained by pushing the "A" key of the Apple IIe keyboard. The Apple IIe was programmed to simultaneously start the data acquisition procedure and close the scan switch (start scanning) of the CV-1B Module when the "A" key was pushed. The data acquisition was performed for eleven cycles at scan rates of 1.0 to 10.0 V/sec. The maximum height of each reduction wave was calculated and printed out on the µ92 Microline Printer. The computer program used to control the data acquisition and data handling of the Apple IIe microcomputer system was written in Basic language and is listed in Appendix D.

(2) Single Board Voltammograph/Apple IIe Microcomputer System

(a) Single Board Voltammograph

The schematic of the developed single board voltammograph is depicted in Figure 127. The design of the single board voltammograph was based on the CV-1B voltammograph and on single board voltammographs described

SW = Working Electrode Switch
OA1, OA2 = Op Amp 1 and 2 on LF347N
R_g = Gain Control Selected for Specific Application
D1, D2 = Signal Diodes

Figure 127. Schematic of Single Board Voltammograph

in the literature (References 75-77). The analog signal from the Apple IIe microcomputer is applied at the D/A input (Figure 127) and the output of the working electrode is applied at the A/D output (Figure 127) of the single board voltammograph. The working electrode switch (SW in Figure 127) is controlled by a relay which is driven by a TTL signal from the Apple IIe microcomputer.

(b) Active Filtering and Gain Control Systems of the Single
Board Voltammograph

To provide the single board voltammograph with independently variable maximum and minimum voltage scan limits, the components designated gain and offset in Figure 128 were added to the single board voltammograph. To provide the single board voltammograph with an active filtered input, the timing clock and associated electronics (designated filter in Figure 128) were added to the single board voltammograph. To obtain the oxidation or reduction waves of the cyclic voltammograms, negative and positive outputs, respectively, were added to the single board voltammograph as shown in Figure 128.

(c) Apple IIe Microcomputer Hardware

The voltage scan rate, voltage scan range, and output of the single board voltammograph were managed and displayed by the Apple IIe microcomputer. The analog output of the working electrode (applied to A/D output in Figure 128) was converted to digital form by a 16 channel, 12 bit analog/digital converter, Model AI13, which was interfaced with the Apple IIe microcomputer. The output of the Apple IIe microcomputer used to control the voltage ramp of the single board voltammograph (applied at D/A input in Figure 128) was converted from digital to analog form by a 8 channel, 12 bit digital/analog converter, Model Apple Digital to Analog Converter Board

Figure 128. Schematic of Single Board Voltammograph Equipped with Active Filtering and Gain Control Systems

(Tecmar Inc., Cleveland, Ohio), which was interfaced with the Apple IIe microcomputer. The TTL signal used to control the relay of the working electrode switch (SW in Figure 128) was produced by the game paddle port of the Apple IIe microcomputer. The reductive-cyclic voltammograms and results of the data analyses were displayed on the Apple IIe monitor and printed on a 92 Microline Printer.

(d) Apple IIe Microcomputer Software

The computer program used to control the voltage ramp of the single board voltammograph and to sample the output of the working electrode was written in a machine code due to the speed requirements of the RCV technique. The machine code is listed in Appendix D and a flow diagram of the machine code program is listed in Figure 129.

As the flow diagram in Figure 129 delineates, the machine code program consists of two loops. The first loop increases the voltage ramp of the single board voltammograph by 5 mV increments, delays a few milliseconds, and then checks the voltage of the ramp after the 5 mV increment. If the voltage of the ramp is below the maximum limit of the ramp, the program returns to the first statement of the loop to continue the incremental increasing of the voltage ramp. Thus, the first loop performs the oxidation sweep of the cyclic voltammetric analysis.

Once the voltage of the ramp reaches the maximum limit of the ramp, the program proceeds to the first statement of the second loop which decreases the voltage ramp of the single board voltammograph by 5 mV decrements. After each 5 mV decrement, the output of the working electrode is sampled and the obtained data is stored after a few millisecond delay. Thus, the second loop performs the reduction sweep of the cyclic voltammetric analysis and records the data points produced by the reduction wave.

Figure 129. Flow Chart of the Machine Code Program Used to Operate the Single Board Voltammograph

The program then checks to see if the stored data point is the last data point to be obtained, i.e., last data point of the 10th cycle. If the answer is yes, the loop is ended and the machine code program returns to the data analysis portion of the data management program (Appendix D).

If the answer is no, the program then checks to see if the voltage is above the minimum limit of the ramp. If the voltage of the ramp is above the minimum limit of the ramp, the program returns to the first statement of the second loop to continue the incremental decreasing of the voltage ramp. Once the voltage of the ramp is equal to the minimum limit of the ramp, the cycle is complete and the program returns to the first statement of the first loop to begin the incremental increasing of the voltage ramp for the next cycle.

The RCV voltammograms were produced by cycling in a voltage range of -0.2V to 1.2V at voltage scan rates of 1 to 20 V/sec.

The data management program was written in BASIC language to facilitate the numerous changes that may be made in the program during future development. The data analysis program, variables and locations, and memory map of the Apple IIe microcomputer are listed in Appendix D.

3. RESULTS AND DISCUSSION

a. Introduction

During the previous investigation (Reference 74), a data management system was developed for use with the reductive-cyclic voltammetric (RCV) technique. Although the data management system was capable of acquiring and handling the data produced by the RCV technique, the bulkiness of the data management system limited its suitability for use in the RULLER. Also the experimental parameters of the RCV technique and of the voltammograph used to perform the RCV technique were not optimized for the different type gas

turbine engine lubricating oils used by the Air Force.

Therefore, research was performed to develop RULLER candidates based on miniaturized data management systems and voltammographs. The developmental research of the RULLER candidates was performed in two parts. In the first part of the research, the experimental parameters of the RCV technique were optimized for use by the Air Force. Single board voltammographs were then developed based on the optimized RCV technique. In the second part of the RULLER development, the developed single board voltammographs were incorporated into miniaturized data management systems based on microcomputers and microprocessors.

- b. Development of a Data Acquisition System for Use in the RCV Optimization Studies
 - (1) Introduction

During the previous investigation (Reference 74), a data acquisition system based on an Apple IIe microcomputer was developed to monitor the output of the CV-1B voltammograph for the RCV technique. The data acquisition software was designed to take 279 samples at a rate of 70 msec per sample. The 70 msec sampling rate was capable of accurately monitoring the output of the CV-1B voltammograph for voltage scan rates of less than 1.0V per second. However, voltage scan rates of up to 20 V per second will be investigated during the RCV optimization studies.

Therefore, research was conducted to develop data acquisition software capable of taking up to 3000 samples at rates of 0.1 to 70 msec per sample to accurately monitor the CV-1B output for scanning rates of less than 10 V/second. The 10 V/second scanning rate is the maximum scanning rate of the CV-1B voltammograph. A voltage scan range of -0.2 to 1.0 V was used in this study.

(2) Development of Data Acquisition Software

In order to perform accurate analyses of the CV-1B voltammograph's output at voltage scan rates of 1,5, and 10 V/sec for the RCV technique, data acquisition software (Appendix D) capable of taking and storing 3000 samples at rates of 8.8, 1.8, and 0.88 msec per sample, respectively, was developed.

To demonstrate the capability of the developed software to accurately monitor the CV-1B voltammograph output at different voltage scan rates for the RCV technique, fresh TEL-4001 MIL-L-7808 oil, a stressed TEL-4001 oil with 50% RUL, and the blank solution were analyzed at 1,5 and 10 V/sec scan rates. The voltammograms produced by the 1, 5, and 10 V/sec scan rates are shown in Figures 130, 131, and 132 respectively.

The voltammograms in Figures 130-132 show that the developed data acquisition software is capable of accurately monitoring the output of the CV-1B voltammograph for voltage scan rates of up to 10 V/sec. The voltammograms in Figures 130-132 also show that the shape of the waves produced by the 1,5 and 10 V/sec scan rates of the RCV technique are similar. For the fresh TEL-4001 oil, the heights of the waves increase during the initial cycles of the RCV technique and then level off at a steady state height, regardless of the voltage scan rate (Figures 130-132). Whereas, the heights of the waves produced by the RCV technique for the stressed TEL-4001 oil (Figures 130-132) and the blank (Figures 130-132) remain fairly constant as the number of cycles increases regardless of the voltage scan rate.

However, the heights of the waves in Figures 130-132 are dependent on the voltage scan rate of the RCV technique. The steady state wave heights of the fresh TEL-4001 oil increase from 15 to 61 μ A as the voltage scan rate increases from 1 to 10 V/sec. Also, the (fresh TEL-4001

» MMMMMM

Figure 130. Raw Data Plots (3000 points: 8.8 msec per point) of the Voltammograms Produced by the RCV Technique Using a lV/Sec Scan Rate for the Fresh TEL-4001 Oil (a), the Stressed TEL-4001 Oil with 50% RUL (b), and the Blank Solution (c)

Figure 131. Raw Data Plots (3000 points: 1.8 msec per point) of the Voltammograms Produced by the RCV Technique Using a 5V/Sec Scan Rate for the Fresh TEL-4001 Oil (a), the Stressed TEL-4001 Oil with 50% RUL (b), and the Blank Solution (c)

Figure 132. Raw Data Plots (3000 points: 0.88 msec per point) of the Voltammograms Produced by the RCV Technique Using a 10V/Sec Scan Rate for the Fresh TEL-4001 Oil (a), the Stressed TEL-4001 Oil with 50% RUL (b), and the Blank Solution (c)

oil/stressed TEL-4001 oil) ratio of the steady state wave heights is 6.4 for the 1 V/sec scan rate but decreases to 2.5 for the 10 V/sec scan rate.

(3) Summary

The initial results of the data acquisition software developed for the RCV technique demonstrate that the software is capable of accurately monitoring the output of the CV-1B voltammograph for voltage scan rates less than 10 V/sec. Therefore, the differences in the voltammograms produced by the 1-10 V/sec voltage scan rates in Figures 130-132 are due to voltage scan rate effects and not data acquisition software inefficiencies.

c. Effects of Voltage Scan Parameters on RUL Evaluations of RCV Technique

(1) Introduction

During the development of the data acquisition software, it was shown that the voltammograms produced by the RCV technique at 1,5, and 10 V/sec scan rates (Figures 130-132) are similar in shape, but differ in height. The increased sensitivity and decreased analysis time of the 10 V/sec scan rate in comparison to the 1 V/sec scan rate, make the 10 V/sec scan rate more suitable for use in the RULLER. However, the relationship between the maximum height of the reduction wave and the RUL of the TEL-4001 oil was different for each scan rate (Figures 130-132).

Therefore, a study was performed to study the effects of the voltage scan parameters on the RUL evaluations of the RCV technique. The parameters studied during this investigation were the voltage scan rate, the voltage scan range, and the electrochemical oxidation time of the RCV technique.

(2) Effects of Voltage Scan Rate

A study was performed to determine the effects of the voltage

scan rate on the RUL evaluations of fresh and stressed TEL-4001 oils by the RCV technique. Voltage scan rates of 1, 5, and 10 V/sec were used to analyze the series of fresh and stressed (Method 5307.1 at 370°F) TEL-4001 oils prepared in Reference 74. The maximum heights of the reduction waves (minus the maximum height of the blank wave) produced by the seventh through tenth cycles of the RCV technique were determined by the data management program listed in Appendix D. The average maximum height of the seventh through tenth reduction waves was then calculated for each TEL-4001 oil. The ln of the average maximum height of the reduction wave was plotted versus the hours of RUL of the oil sample at 370°F for the fresh and stressed TEL-4001 oils using voltage scan rates of 1, 5, and 10 V/sec as shown in Figure 133.

The ln plots of the reduction wave height versus the hours of RUL of the oil sample for the 1,5, and 10 V/sec scan rates in Figure 133 show that the voltage scan rate affects the RUL evaluations of the RCV technique for the TEL-4001 oils. For the 1 and 5 V/sec scan rates, the ln plots were linear after the first 24 hours of stressing. These plots are similar to those produced during the previous investigation (Reference 74) as shown in Figure 124. In contrast to the 1 and 5 V scan rates, the ln plot of the 10 V/sec scan rate is linear during the first 48 hours of stressing and is linear during the last 48 hours of stressing containing an inflection point at 48 hours of stressing (Figure 133).

The main difference between the 1n plots of the 1 and 5 V/sec scan rates and of the 10 V/sec scan rate occurs during the first 24 hours of stressing. The ratio of (the new TEL-4001 oil wave height/the 24 hour stressed TEL-4001 oil wave height) is 4.3 for the 1 V/sec scan rate, but is only 1.7 for the 10 V/sec scan rate. Similar results were seen in Figures 130-132.

The second second second second

Figure 133. Plots of the ln of the Reduction Wave Height of the RCV Technique Versus Hours of Remaining Useful Life at 370°F for the Fresh and Stressed TEL-4001 Oils Using 1, 5, 10V/Sec Scan Rates

These results indicate that the 10 V/sec scan rate is less efficient at electrooxidatively generating the species which produce the reduction wave used in the RCV technique than the 1 and 5 V/sec scan rates.

(3) Effects of Voltage Scan Range

Since the results in Figure 133 indicate that the 10 V/sec scan rate is inefficient at electrooxidatively generating the species which produce the reduction wave used in the RCV technique, the effects of the voltage scan range on the RUL evaluations of the 10 V/sec scan rate were studied. To study the effects of the voltage scan range on the RUL evaluations of the 10 V/sec scan rate, the voltage scan range was increased from a range of -0.2 to 1.0V to a range of -0.2 to 1.2V. By increasing the positive limit of the voltage scan from 1.0 to 1.2 V, the potential of the working electrode remains above the oxidation potential of the antioxidants for a longer period of time. Thus, the -0.2 to 1.2 V scan range increases the ability of the working electrode to generate the species which produce the reduction wave used in the RCV technique.

To determine the effects of the voltage scan range on the RUL evaluations of the 10 V/sec scan rate, the ln of the maximum height of the reduction wave was plotted versus the hours of RUL of the oil sample at 370°F for the fresh and stressed TEL-4001 oils using the -0.2 to 1.0V and -0.2 to 1.2 V scan ranges as shown in Figure 134.

The ln plots of the reduction wave height versus the hours of RUL of the TEL-4001 oil sample using the -0.2 to 1.0 V and -0.2 to 1.2 V scan ranges in Figure 134 show that increasing the positive limit of the voltage scan shifts the inflection point to a lower hours of RUL. The ln plot of the -0.2 to 1.2 V scan range is linear after the first 24 hours of stressing (90 hours of RUL) which is in full agreement with the 1 and 5 v/sec scan rates

Figure 134. Plots of the ln of the Reduction Wave Height of the RCV Technique Versus Hours of Remaining Useful Life at 370°F for the Fresh and Stressed TEL-4001 and TEL-4004 Oils Using a 10V/Sec Scan Rate and -0.2 to 1.0V and -0.2 to 1.2V Scan Ranges

(Figure 133) and the previous investigation (Figure 124).

To ensure that the linearity of the 10 V/sec scan rate was not dependent on the antioxidant system of the MIL-L-7808 oil, fresh and stressed TEL-4004 oils were also analyzed by the RCV technique using a 10 V/sec scan rate and a -0.2 to 1.2 V scan range. The antioxidant system of the TEL-4001 oil contains octyl-PANA, DODPA, and an unknown antioxidant; while the antioxidant system of the TEL-4004 oil contains PANA and DODPA. The ln plot of the reduction wave height versus the hours of RUL of the oil sample at 370°F for the fresh and stressed TEL-4004 oils is included in Figure 134.

The ln plot of the reduction wave height versus the hours of RUL of the oil sample for the fresh and stressed TEL-4004 oils in Figure 134 is linear after the first 48 hours of stressing (160 hours of RUL) in full agreement with the previous investigation (Figure 124). Also, the ln values of the reduction wave heights of the stressed TEL-4001 and TEL-4004 oils with 0% RUL are 1.7-1.8, i.e., the RUL evaluations of the RCV technique using a 10 V/sec scan rate and a voltage scan range of -0.2 to 1.2V are formula independent.

(4) Effects of Electrooxidation Time

2000000000

Since the results in Figure 134 show that increasing the positive limit of the voltage scan range from 1.0 to 1.2 V affects the RUL evaluations of the RCV technique, the effects of the electrooxidation time on the RUL evaluation of the RCV technique were studied. The electrooxidation time is the length of time the potential of the working electrode is greater than or equal to the oxidation potential (1.0 V) of the antioxidant species in the lubricating oil sample. It was postulated that the length of the electrooxidation time would affect the RUL evaluations of the RCV technique. The use of an electrooxidation time would also reduce the number of

voltammetric cycles from 10 to 0.5 (1.1 to -0.15V) shortening the voltammetric scanning time (1 V/sec scanning rate) from 25 to 1 seconds, respectively, and would simplify the design and software of the developed voltammograph.

evaluations of the RCV technique, a voltage of 1.1 V was applied to the working electrode prior to the voltammetric scan. After an electrooxidation time of 0, 1, 2, or 5 seconds, a linear voltage scan was performed from 1.1 to -0.15 V at a 1 V/sec rate and the height of the produced reduction wave, determined. The ln plots of the reduction wave height versus the RUL of the oil sample are shown in Figure 135 for the fresh and stressed TEL-4004 MIL-L-7808 lubricating oil samples using the 0, 1, 2, and 5 second electrooxidation times.

The ln plots of the reduction wave height versus the RUL of the oil sample in Figure 135 demonstrate that the length of the electrooxidation time affects the linearity of the plots, and consequently, the RUL evaluations of the RCV technique. The O second electrooxidation time produces a plot which goes off scale after 168 hours of stressing (40 hours of RUL). The 1, 2 and 5 second electrooxidation times produce smaller inflection points after 48 hours of stressing (Figure 135). As expected, the reduction wave heights produced by the TEL-4004 oil samples increase as the electrooxidation time increases, i.e., the species which produce the reduction wave are produced during the electrooxidation time.

These initial results indicate that the electrooxidation time can be used to affect the RUL evaluations of the RCV technique and to increase the heights of the produced reduction waves. However, the electrooxidation time was unable to eliminate the inflection point from the

Figure 135. Plots of the 1n of the Reduction Wave Height of the RCV Technique Versus Stressing Time (Hours) at 370°F for the Fresh and Stressed TEL-4004 Oils Using Electrooxidation Times of 0, 1, 2 and 5 Sceconds at 1.1V, a 1 V/Sec Scan Rate, and a 1.1V to -0.15V Scan Range

In plots of the RCV results (Figure 135) and the electrooxidation time (2 to 5 seconds plus voltammetric scan time) increases the analysis time in comparison to the 10 V/sec scanning rate (2.5 second analysis time). Thus, the electrooxidation time does not have any apparent advantages in comparison to the cyclic scanning procedure for use in the RCV technique.

(5) Summary

The initial results of the voltammetric parameter study indicate that the linearity of the ln plot of the reduction wave height versus the RUL of the oil sample is affected by the voltammetric scanning rate, scanning range, and electrooxidation time. The results indicate that a voltage scan rate of at least 10 V/sec and the correct voltage scan range would enable the RCV technique to produce accurate RUL evaluations using analysis times of less than 2.5 seconds. The exact voltammetric parameters will be determined using the developed RULLER candidate and actual used MIL-L-7808 and MIL-L-23699 lubricating oils.

d. Development of Single Board Voltammograph

(1) Introduction

In order to miniaturize, to lower susceptibility to supplier product changes, and to lower the instrumental cost of the RULLER candidate, a single board voltammograph was developed to replace the CV-1B voltammograph. The characteristics of a single board voltammograph and the CV-1B voltammograph are listed in Table 67. As the characteristics in Table 65 delineate, a single board voltammograph has numerous advantages over the CV-1B voltammograph.

Therefore, a single board voltammograph was developed and incorporated into the hardware of the Apple IIe data management system of the RULLER candidate. The single board voltammograph equipped with different

TABLE 67

COMPARISON OF SINGLE BOARD AND CV-1B VOLTAMMOGRAPHS

	Single Board	CV-1B
Size (1 x w x d) (in.)	5.75 X 4.75 X 0.75	7 X 5 X 3
COST	\$100	\$675
Maximum Scan Rate 100	100 V/Sec	10 V/Sec
Long Term Availability	Unlimited	Limited, Manufacturer Considering Ending Production in Next Five Years
Rugged	Yes, Single Board No Moving Parts	No, Multicomponent Moving Parts
Relationship with Data Acquisition	Completely Interactive (Data Acquisition Accurate Regardless of Sampling Rate)	Independent (Accuracy of Data Acquisition Decreases as Sample Rate Decreases)

filtering systems was then used to analyze fresh MIL-L-7808 oils and the blank to evaluate the performance of the single board voltammograph-Apple IIe microcomputer system. The results of the developmental research of the single board voltammograph are described herein.

- (2) Unfiltered Single Board Voltammograph

 To initially evaluate the performance of the unfiltered single board

 voltammograph (Figure 127), fresh TEL-4001 MIL-L-7808 lubricating oil and the

 blank were analyzed using a 1 V/sec scan rate and a -0.1 V to 1.15 V scan

 ran-e. The voltammograms produced by the reduction sweep are shown in Figure

 136. Although the overall shapes of the reduction voltammograms produced by

 the unfiltered single board voltammograph for the fresh TEL-4001 oil and the

 blank in Figure 136 are as expected, the noise in the voltammograms is

 unacceptable. The noise in the voltammograms would greatly limit the

 accuracy of the reduction wave height or area determination, and

 consequently, limit the accuracy of the RUL determinations of the developed

 RULLER candidate.
 - (3) Single Board Voltammograph with RC Filtered Output

In an attempt to eliminate the noise from the reduction voltammograms, a capacitor (0.1 μ f) was placed in parallel with resistor Rg (Figure 127) in the output of the single board voltammograph. The reduction voltammograms produced by the modified single board voltammograph for the fresh TEL-4004 oil and the blank in Figure 137 show that the addition of the capacitor to the output circuitry of the working electrode effectively eliminated the noise from the output of the voltammograph.

However, when successive RCV analyses of the fresh TEL-4004 oil were performed, the reduction waves produced by the voltammograph decreased in height and shifted to a lower voltage (Figure 138). In fact, by the

Figure 136. Reduction Voltammograms Produced by the Single Board Voltammograph for the Fresh TEL-4001 Oil and the Blank

Figure 137. Reduction Voltammograms Produced by the Single Board Voltammograph with the RC Filtered Output for the Fresh TEL-4001 Oil and the Blank

fourth successive analysis, the RCV technique became nonresponsive to the fresh TEL-4004 oil (RCV technique analyses using the CV-1B voltammograph performed directly before and after the single board voltammograph analyses did not show any response decrease with successive analyses).

(4) Single Board Voltammograph with RC Filtered Input

The initial results of the single board voltammograph with and without RC filtered output demonstrate that, although the developed voltammograph has potential for use in the RCV technique of the RULLER candidate, the response of the developed voltammograph decreases with successive analyses. The decreased response of the single board voltammograph is indicative of film formation on the surface of the working electrode.

The circuitries of the CV-1B and single board voltammographs are very similar. The only main difference between the voltammographs is that the CV-1B uses a linear voltage ramp and the single board voltammograph uses a staircase (5 mV) voltage ramp. The noise observed in Figure 136 may be a product of the staircase voltage ramp.

Therefore, to determine if the staircase voltage ramp is responsible for the decrease in the single board voltammograph's response with successive analyses and for the noise in Figure 136, a RC system was placed into the circuitry of the D/A input of the single board voltammograph (Figure 127).

To evaluate the performance of the RC system (capacitor = 0.4 μ f and resistor = 65 Kohms) used to filter the staircase voltage ramp of the single board voltammograph, fresh TEL-4004 MIL-L-7808 lubricating oil was analyzed with and without a filtered staircase voltage ramp. The RCV analyses were performed using a 1 V/sec scan rate and a -0.1 V to 1.15 v scan

Figure 138. Effects of Successive Analyses on the Reduction Voltammogram Produced by the Single Board Voltammograph for the Fresh TEL-4004 0il

range. Examples of the reduction waves produced by the filtered and non-filtered staircase voltage ramps for fresh TEL-4004 oil are shown in Figure 139. The reduction voltammograms in Figure 139 show that the RC filtering system effectively reduces the noise of the single board voltammograph.

To further evaluate the performance of the single board voltammograph with a RC filtered input, triplicate RCV analyses of the fresh TEL-4004 oil were performed using 1, 2, and 4 V/sec scan rates and a -0.1 V to 1.15 V scan range. The first two reduction waves produced by the triplicate RCV analyses using 1, 2, and 4 V/sec scan rates are shown in Figures 140-142, respectively.

The series of reduction waves in Figures 140 and 141 show that the RC filtering system eliminates film formation at the surface of the working electrode for the 1 and 2 V/sec scan rates, i.e., reduction waves' heights and shapes not affected by successive analyses.

However, the series of voltammograms in Figures 140-142 show that the reduction waves shift to lower voltages as the voltage scan rate is increased from 1 to 4 V/sec. In fact, the reduction waves for the 4 V/sec scan rate are incomplete. By shifting the voltage scan range of -0.1 to 1.15 V to a range of -0.2 to 1.05 V, complete reduction waves were produced at the 4 V/sec scan rate as shown in Figure 143. The positive voltage limit had to be reduced from 1.15 to 1.05 V when the negative voltage limit was decreased from -0.1 to -0.2 V because the total voltage range of the single board voltammograph is constant (1.25 V).

(5) Single Board Voltammograph with Active Filtered Input

The initial results of the single board voltammograph with RC filtered input demonstrate that the RC filtering system effectively

Figure 139. Reduction Voltammograms Produced by the Single Board Voltammograph with and without RC Filtered Input for the Fresh TEL-4004 Oil

Figure 140. Effect of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with RC Filtered Input for the Fresh TEL-4004 Oil Using a 1 V/Sec Scan Rate and a -0.1 to 1.15 V Scan Range

Figure 141. Effects of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with RC Filtered Input for the Fresh TEL-4004 Oil Using a 2 V/Sec Scan Rate and a -0.1 to 1.15 V Scan Range

Figure 142. Effects of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with RC Filtered Input for the Fresh TEL-4004 Oil Using a 4 V/Sec Scan Rate and a -0.1 to 1.15 V Scan Range

Figure 143. Effects of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with RC Filtered Input for the Fresh TEL-4004 Oil Using a 4 V/Sec Scan Rate and a -0.2 to 1.05 V Scan Range

eliminates film formation at the surface of the working electrode and reduces the noise of the voltammograph's output. However, the RC filtering system causes the reduction waves to shift to lower voltages as the voltage scan rate is increased. It is believed that the RC filtering system is "rounding" (Figure 144) the triangular waveform of the single board voltammograph.

Thus, the potential of the voltammetric electrode does not reach the limits of the voltage scan range causing the reduction wave to be incomplete.

Therefore, a more efficient filtering system, an active filtering system (Figure 128), was used to filter the staircase voltage ramp without affecting the shape of the triangular waveform of the single board voltammograph. Also, operational amplifiers with adjustable gains were added to the circuitry of the single board voltammograph to provide it with independently adjustable voltage limits (Figure 128).

To initially evaluate the performance of the active filter system (Figure 128), duplicate RCV analyses of the fresh TEL-4004 MIL-L-7808 lubricating oil were performed using a 2 V/sec scan rate and -0.1 V to 1.15 V scan range. The first two reduction waves produced by the duplicate RCV analyses of the fresh TEL-4004 oil are shown in Figure 145 and indicate that the active filtering system eliminates film formation at the surface of the working electrode, i.e., reduction wave heights and shapes are not affected by successive analyses.

To further evaluate the performance of the single board voltammograph with an active filtered input, the fresh TEL-4004 oil was analyzed using 4, 10, and 20 V/sec scan rates and a -0.1 V to 1.15 V scan range. The first three reduction waves produced by the 4, 10, and 20 V/sec scan rates are shown in Figure 146 and indicate that the active filtering system does not round (Figure 144) the triangular waveform of the the single

Figure 144. RCV Technique Voltage Waveform Before and After Filtering

Figure 145. Effects of Successive Analyses on the Reduction Voltammograms Produced by the Single Board Voltammograph with Active Filtered Input for the Fresh TEL-4004 Oil Using a 2 V/Sec Scan Rate and a -0.1 to 1.15 V Scan Range

board voltammogram, i.e., complete reduction waves produced for scan rates up to 20 V/sec. Thus, the active filtering system is a more efficient filtering system than the RC filtering system because the RC filtering system produces incomplete reduction waves for voltage scan rates greater than 4 V/sec (Figure 142), while the active filtering system produces complete reduction waveform voltage scan rates greater than 20 v/sec.

(6) Summary

A single board voltammograph (Figure 128) has been developed which is suitable for use in the RULLER candidate. The active filtering system used to eliminate the noise of the voltage ramp input from the Apple IIe microcomputer is highly efficient and enables the RCV technique to be performed at scan rates of up to 20 V/sec in the -0.1 V to 1.15 V scan range. The single board voltammograph is also equipped with independently adjustable maximum and minimum range limits so that the voltage scan range can be adjusted to produce accurate RUL evaluations. Also, the negative limit can be lowered to 0.4 V to enable the voltammograph to produce complete reduction waves at voltage scan rates greater than 20 V/sec.

e. Single Board Voltammograph-Apple IIe Microcomputer RULLER Candidate

A RULLER candidate based on the single board voltammograph with an active filtered voltage ramp and independently adjustable voltage scan limits (Figure 128) and the Apple IIe microcomputer system has been developed. The computer programs to perform the voltage ramp and acquire RCV data (machine code) and to perform the data analysis and prompting of the user (Basic language) are listed in Appendix D. To further miniaturize the Apple IIe microcomputer system, the full size monitor is replaced by a flat screen monitor or a single line display. A printer could be used in place or in addition to the visual displays.

Figure 146. Reduction Voltammograms Produced by the Single Board Voltammograph with Active Filtered Input for the Fresh TEL-4004 Oil Using 4, 10, and 20 V/Sec Scan Rates and a -0.1 to 1.15V Scan Range

The developed single board voltammograph-Apple IIe microcomputer based RULLER candidate is more compact and less expensive than the CV-1B voltammograph-Apple IIe microcomputer based system developed in the previous investigation (Reference 74). The use of the Apple IIe microcomputer or any other suitable microcomputer system provides the RULLER candidate with permanent memory and flexibility through the use of a floppy disk system. The developed RULLER could be used to store the RUL and other pertinent information of previously analyzed oil samples so that operator independent trending analyses can be performed. The developed RULLER could also be used to study the antioxidant systems of new oil formulation or oil samples of unknown formulation which produce inaccurate RUL evaluations.

However, the main purpose of the developed single board voltammograph-Apple IIe microcomputer based RULLER candidate is to determine the optimum voltammetric parameters and other experimental conditions to be used for the development of the single board voltammograph-microprocessor based RULLER candidate. The single board voltammograph-Apple IIe microcomputer based RULLER candidate will also be used by UDRI personnel during the field testing program of the selected RULLER candidate.

MICROCOPY RESOLUTION TEST CHART
MATIONAL BUREAU OF STANDARDS 1988-A

APPENDIX A

LUBRICANT PERFORMANCE TEST DATA

Appendix A contains lubricant test data obtained during the development of improved methods for measuring lubricant performance and presented in Section III of this report. This test data is tabulated as follows:

TABLE A-1. SQUIRES OXIDATIVE TEST DATA

Table A-1 contains all the Squires Oxidative test data arranged as follows:

- Lubricants listed in order of specification and lubricant code number sequence.
- b. Each lubricant's test data listed in order of increasing temperatures.
- c. Esters listed in sample code sequence.
- d. Esters containing antioxidants listed in order of increasing additive concentration.

TABLE A-2. SQUIRES CONFINED HEAT TEST DATA

Table A-2 contains all the Squires Confined Heat test data and is arranged in the same order as described for Table A-1.

TABLE A-3 AFAPL STATIC COKER TEST DATA

Table A-3 contains all the AFAPL Static Coker test data arranged in test number sequence.

TABLE A-4. LUBRICANT COKING PROPENSITY TEST DATA

Table A-4 contains all the Coking Propensity test data and is arranged in order of increasing test temperature.

TABLE A-5. DESCRIPTION OF COKING PROPENSITY TEST DATA

Table A-5 contains the description of Coking Propensity deposits arranged in the order of type test dish, type fluid, increasing code sequence and increasing test temperature.

TABLE A-6. LUBRICANT FOAMING TEST DATA

Table A-6 contains all Lubricant Foaming test data arranged in test number sequence.

TABLE A-1

SQUIRES OXIDATIVE TEST DATA

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	120	168	312	360	456	577
	Weight Loss, %		22.2	28.1	1 46.3	1 50.4	58.6	67.2
10-79-163	COBRA Reading	3	22	29	52	1 57	177	110
(a)	Total Acid No.	0.20	0.16	0.23	0.48	0.53	0.55	0.55
175°C	Viscosity @100°C, cs		3.55	3.65	1 4.05	1 4.16	t 4.47	4.81
	Chang		12.3	15.5	28.2	31.6	41.4	52.2
	nsol, % w	00.00	ND	I ND	ND .	ON -	QN	0.01
							· · · · · · · · · · · · · · · · · · ·	
	Visual Appearance		None	None	None	Slight	Slight	Slight
	of Deposits					Varnish	Varnish	Varnish
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	672			••		
	Weight Loss, %		ΩN					
10-79-16Jex COBRA	COBRA Reading	3	117			••		
		0.20	09.0					
175°C	sity		5.06					
	Chang		60.1					
	nsol,	00.00	00.0					
	ı							
	Visual Appearance		None					
	of Deposits							
LUBRICANT								-
AND	: LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	48	120	168	216	264
	Weight Loss, 🕻		9.3	17.9	39.2	51.2	58.6	63.9
10-79-163	COBRA Reading	2	9	1 20	1 51	59	35	#8
	Total Acid No.	0.20	0.23	0.23	0.65	0.86	0.00	0.93
190°C	Viscosity @100°C, cs	3.16	3.35	3.48	3.89	h.24	4.54	4.83
	Viscosity Change, %		0.9	10.1	1 23.1	34.2	1 43.7	52.8
	Toluene Insol, % wt	00.00	QN	UN .	UD :	ND I	QN	0.00
						Slight		Slight
	Visual Appearance		None	None	None	Varnish	None	Varnish
	of Deposits							-
(a) - see (see 0-79-16Jex for extended	led testing	g results.					

(a) - see 0-79-10Jex for extended testing results.(b) - See 0-79-16Jex for extended testing results.

SQUIRES OXIDATIVE TEST DATA

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	288	312	80#	505		
	Weight Loss, \$		8.99	68.7	76.5	81.4		
10-79-16Jex	COBRA Reading	2	91	114	148	139		
	Total Acid No.	0.20	1.11	1.01	1.58	2.19		
190°C	Viscosity @100°C, cs	3.16	14.97	5.08	00.9	6.71		
	Viscosity Change, %!		57.3	8.09	89.9	112.3		
	3	00.00	QN	QN	ND	0.02		
	ł		Slight	Slight	Slight	Slight		
	Visual Appearance		Varnish	Varnish	Varnish	Varnish		
	of Deposits							<u> </u>
LUBRICANT				•	דבפד טסווסט			
TEST TEMP.	PROPERTY	New Oil	24	48	120	168	216	264
	Weight Loss. &		15.1	29.8	59.0	0.69	76.0	4 80.4
0-79-163	٦	3	26	45	95	106	108	1112
	Total Acid No.	0.20	0.51	0.78	1.49	1.79	1.98	1 2.36
1 205°C	Viscosity @100°C,cs	3.16	3.43	3.72	4.63	5.23	5.94	6.77
	Viscosity Change, %		8.5	17.7	46.5	65.5	88.0	114.2
	Toluene Insol, % wt	00.0	0.01	0.00	00.00	00.0	00.00	0.00
	Visual Appearance		None	None	None	None	None	None
	of Deposits							-
LUBRICANT				•	TEST HOUSE			
TEST TEMP	PROPERTY	New Oil	100	811	96			-
	Weight Loss, %		22.4	34.2	70.8			
10-79-16	COBRA Reading	3	30	51	70			
	Act	0.20	1.00	1.84	7.83			
1 210°C	ity @100	3.16	3.59	3.89	17.14			
	Change,		13.6	23.1	442.4			
	Toluene Insol, % wt	00.0	QN :	QN	QN			
				;	Slight			
	Visual Appearance		None	None	varnish			
	ioi Deposits			_	-			-

SQUIRES OXIDATIVE TEST DATA

LUBRICANT								
: AND	: LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	48	12		•	
	Weight Loss, %		23.2	32.4	53.1			
10-79-16	COBRA Reading	2	7.2	163	85			
	Total Acid No.	. 20	6.57	13.40	8.60			
1 215°C	Viscosity @100°C, cs	3.16	to • tr	8.22	16.44			
	Viscosity Change, %		27.8	160.1	1 420.2			
	3	00.0	ΩN	ND	ħ0°0 ¦			
	-		-					'
			None	None	None			•••
	of Deposits							
LUBRICANT					TEST UNIDE			·• =·
AND	LUBRICANI		00,	976	1E31 00003	036	1166	E77
IESI IEMP.	PROPERTY	New OIL	120	108	32 2	26.0	#20 #0 3	776
10 70 175	CODDA DOCALOR	,	25.3	52.3	25.56	67	202	86
10=(3=1/E	DE PU	200	200	35	170	0 25	200	0 27
			0.50	0.50	- 0-0	0.35	10.02	000
ري در در	e100 C.c	3.35	3.36	3.97	4.00	-100	0	7.63
			17.0	18.5	21.8	22.7	24.8	28.1
	Toluene Insol, % wt	0.01	NΩ	ΝΩ	QN	Q.	QN	0.02
			None	None	Slight	Varnish	Varnish	Varnish
- 1	of Deposits				Varnish			
ANT								-
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY :	New Oil	969					
	Weight Loss, \$		53.8					
10-79-17Eex	O-79-17Eex; COBRA Reading	2	151					
	Total Acid No.	0.08	0.41					
175°C	C, c	3.35	4.39					
	8		31.0					
	Toluene Insol, % wt	0.01	0.03					
	Visual Appearance		Varnish		~~ .			
-	of Deposits		1		-			
(a) - see (0-79-17Eex for extended	led testing	g results.					

Parties and the second of the second second

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	124	817	120	168	216	1 264
	Weight Loss, &		11.3	18.8	1 29.4	35.9	42.1	45.5
10-79-17E	COBRA Reading	2	22	32	179	- 62	77	179
(n)		0.08	0.23	0.33	69.0	0.81	99.0	19.0
190°C	Viscosity @100°C, cs	3.35	3.66	3.87	4.08	4.18	1 4.27	4.37
	Viscosity Change, \$		9.3	15.5	21.8	24.8	27.5	30.4
	sol,	0.01	ND	QN	QN	Q.	€	0.00
						Tacky	Tacky	Tacky
	Visual Appearance		None	None	None	Crystals	Crystals	Crystals
LUBRICANT						-		
AND	LUBRICANT				TROT HOLLBS			-
TEST TEMP.	PROPERTY	New Oil	288	312	360	1 1157	1 576	
	Weight Loss, \$		48.6	52.5	55,3	65.0	76.1	
10-79-17Eex	0-79-17Eex COBRA Reading	2	79	88	76	91	101	
·	Total Acid No.	0.08	0.89	1.08	0.93	1.03	1.52	
190°C	Viscosity @100°C, cs	3.35	4.42	74.47	4.58	5.05	6.22	
.			31.9	33.4	36.7	50.7	85.7	
	Toluene Insol, % wt	0.01	ND	QN :	QN	QN	10.04	
					Tacky	Tacky	Tacky	
·	Visual Appearance		Tacky	Tacky	Varnish	Varnish	Varnish	
TNACTORIL	or Deposits							
AND	LUBRICANT			•	TEST HOUSE			-
TEST TEMP.	PROPERTY	New Oil	168	216	792			
	Weight Loss, \$		56.8	4.99	69.3			
10-79-17E	COBRA Reading	2	77	74	81			
	Total Acid No.	0.08	2.02	3.91	2.47	-		
201°C	ن	3.35	4.80	5.40	5.60			
	nge,		43.3	61.2	67.2			
	Toluene Insol, % wti	0.01	00.0	0.01	QN			
							-	
	Visual Appearance		None	None	None			
(a) - See (0-79-17Eex for extended	1001	70011				_	
)		נמ	34103.					

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New 011	77	817	120	168	216	1 264
	Weight Loss, \$		14.9	25.2	42.0	61.5	70.2	8.64
10-79-17E	COBRA Reading	2	36	52	7.1	89	72	89
	Total Acid No.	80.	.52	.77	1.05	2.43	2.90	†10 ° fi
205°C	Viscosity @100°C, cs	3.35	3.79	1 4.03	4.31	5.11	6.21	8.29
	Viscosity Change, \$,	13.1	20.3	28.7	52.5	85.4	147.5
	Toluene Insol, % wt	0.01	0.00	00.0	00.0	0.00	00.0	00.0
					Slight	Slight	Slight	Slight
	Visual Appearance		None	None	Varnish	Varnish	Varnish	Varnish
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	817	144			-
	Weight Loss, \$		22.1	30.0	0.49			
10-79-17	COBRA Reading	2	77	trtr i	52			
	Total Acid No.	0.08	1.22	1.05	4.17			
1 210°C	Viscosity @100°C, cs	3.35	00.4	4.22	6.33			
	Viscosity Change, \$		19.4	25.5	6.88		1	-
	Toluene Insol, \$ wt	0.01	QN	QN .	QN		•	
	Visual Appearance		None	None	None			
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	48	72			
	Weight Loss, %		23.2	8.64	63.5			
10-79-17	COBRA Reading	2	89	108	89		-	
	Total Acid No.	.08	1.65	10.55	8.14			
1 215°C	Viscosity @100°C, cs	3.35	70. tl	1 8.7 ⁴	12.09			-
	Viscosity Change, \$		21.5	160.9	260.9			
	Toluene Insol, % wt	0.01	QN	QN :	†0°0			
	Wie in Appropriate		C S C N					
	of Deposits		aore	e conse				

LUBRICANT					1			
AND	LUBRICANT			1	TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	120	168	288	383	480	768
	Weight Loss, \$		12.9	17.2	28.8	36.0	41.9	53.9
10-79-20C	COBRA Reading	2	25	56	617	58	42	62
	Total Acid No.	0.20	0.22	0.30	0.48	0.42	0.50	19.0
175°C	Viscosity @100°C, cs	3.47	3.74	3.81	3.99	4.11	4.23	4.50
	Viscosity Change, \$		7.8	9.8	15.0	18.4	21.9	29.7
	Toluene Insol, % wt	00.0	QN	QN	ND	QN	QN	0.01
			None	None	None	Varnish	Varnish	Varnish
	Visual Appearance					on tube	on tube	on tube
	of Deposits					head	head	head
LUBRICANT				•	0011011 8008			
TEST TEMP	I DECONTANT :	New Off	70	187	120	168	216	797
	Weight Loss 4	110	19	11.7	26.6	36.3	42.2	48.8
0-79-20A	15	2	11	21	34	41	51	57
(a)	Total Acid No.	0.20	0.10	0.28	0.61	0.93	0.93	1.40
190°C	Viscosity @100°C, cs	3.47	3.64	3.75	3.97	4.12	1.36	4.24
	Viscosity Change, \$		6.4	8.1	14.4	18.7	25.6	22.2
	Toluene Insol, \$ wt	00.0	ND	QN	QN	QN	00.00	0.04
			: !				· :	
	Visual Appearance		None	None	None	None	None	None
	of Deposits							
LUBRICANT				•				
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	288	312	360	457	553	
	Weight Loss, \$		49.0	53.5	58.3	69.8	9.92	
10-79-20Aex	0-79-20Aex COBRA Reading	2	6 9	75	63	74	84	
	۱.'	0.20	1.24	1.37	1.33	1.41	1.99	
190°C	@100°C,	3.47	4.45	4.58	4.75	5.37	6.20	
	hang		28.2	32.0	36.9	54.8	78.7	
	Toluene Insol, % wt	00.0	ND	ND	QN	QN O	0.02	
			Slight	Slight		1		
	Visual Appearance		Varnish	Varnish	Varnish	Varnish	Varnish	<u>.</u>
	ior Deposits							

(a) - See 0-79-20Aex for extended testing results.

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	84 !	120	168	216	1 264
	Weight Loss, \$		11.2	23.0	47.0	61.9	6.07	70.3
10-79-20A	COBRA Reading	2	56	547	1 57	65	124	62
•	Total Acid No.	0.20	0.50	1.10	2.29	3.07	3.83	3.50
1 201°C	õ	3.47	3.72	3.92	4.55	5.14	60.9	5.87
	Viscosity Change, \$		+7.2	+13.0	+31.1	+48.1	+75.5	+69.2
	Toluene Insol, % wt	00.0	0.01	00.0	0.00	00.0	0.00	0.00
	Visual Appearance		None	None	None	None	None	None
THRETCANT	To to to to to	-		-	-			_
AND	I LIBRICANT				TEST HOIRS			
TEST TEMP.	PROPERTY	New Oil	24	847		168	216	797
	Weight Loss, %		12.8	24.9	51.1	61.4	72.5	80.7
10-79-20A	COBRA Reading	2	25	38	24	- 62	52	817
•	Total Acid No.	0.20	0.55	0.75	2.08	4.38	4.65	5.88
1 205°C	sity	3.47	3.73	3.97	69.₩	19.67	7.12	18.6
			7.5	ተ. ተ ι !	35.2	h.€9	105.2	184.4
	Toluene Insol, % wt	00.0	0.01	0.00	00.0	0.01	10.01	0.01
	Visual Appearance		None	None	Slight	Slight	Slight	Slight
	of Deposits				Varnish	Varnish	Varnish	Varnish
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	54	847				
	Weight Loss, %	-	16.5	30.2				
0-19-50	COBRA Reading	2	37	14				
		0.20	1.01	8.92				
1 210°C	Viscosity @100°C, cs	3.47	3.83	4.85				
			10.4	39.8				
	Toluene Insol, % wt	00.0	ΩN	QN :				
		 .						
	Visual Appearance of Deposits		None	None			-	
							-	_

		 			 		 			- -				 	 	 															
								-		_														797	55.1	182	10.1	6.35	1 90.7	†0°0	None
																								216	45.7	184	8.32	4.98	49.5	0.02	None
				-								288	33.9	200	10.20	4.48	34.5	0.01	Tacky dep	on tube	head			168	35.5	187	6.36	4.28	28.5	ΩN	None
TEST HOURS	72	45.1	69	12.80	22.20	539.8	60.0		None		TEST HOURS	168	17.6	174	19.4	3.76	12.9	ND	Tacky dep	on tube	head		TEST HOURS	120	27.0	183	14.27	3.96	18.9	QN	None
	817	52.3	99	11.46	15.52	360.5	ND		None			120	12.8	157	3.16	3.70	11.1	QN	Tacky dep	on tube	head			81 1	11.1	83	1.63	3.56	6.9	QN -	None
	77	20.1	92	6.35	4.42	27.4	UD		None			84	4.5	23	0.98	3.41	2.4	QN	None					177	5.8	37	0.73	3.46	3.9	ΩN	None
	New Oil		2	.20	3.47		00.0					New Oil		3	0.08	3.33		QN						New Oil		3	0.08	3.33		ND	
LUBRICANT	PROPERTY	Weight Loss, %	COBRA Reading	Total Acid No.	Viscosity @100°C, cs!	/iscosity Change, \$!	Toluene Insol, % wt		Visual Appearance	of Deposits	LIBRICANT	PROPERTY	Weight Loss. %	COBRA Reading	Total Acid No.	1ty	Viscosity Change, \$	Toluene Insol, % wt		Visual Appearance	of Deposits		LUBRICANT	PROPERTY	Weight Loss, %	COBRA Reading	Total Acid No.	itty	Viscosity Change, %	Toluene Insol, % wt	Visual Appearance
LUBRICANT	TEST TEMP.		0-79-20		215°C 1		<u></u>	' <u></u>	<i>></i>		LUBRICANT	TEST TEMP.		10-82-2 10	`	175°C			'			ANT	AND	TEST TEMP.		10-82-2 10		190°C 1			

AND TEST TEMB								
- TOOL TOOL	LUBALCANI				TEST HOURS			
i rest rear.	PROPERTY	New Oil	24	8#	120	168	216	264
	Weight Loss, \$		13.1	24.4	55.4	72.3	1 79.1	84.4
0-82-2	COBRA Reading	m	66	148	130	89	32	4
	Total Acid No.	0.08	1.90	3.20	1 5.47	6.29	5.89	5.35
1 205°C 1	9100 C	3.33	3.59	3.82	5.22	10.02	27.63	UD
	Viscosity Change, \$		7.8	14.7	56.8	201	730	N/A
	Toluene Insol, % wt	QN	QN	QN	GN	0.00	0.04	10.0
·						Light	Dark	Very
	Visual Appearance		None	None	None	Thick	Thick	Thick
	of Deposits					011	011	1 011
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	120	168	288	383	180	925
	Weight Loss, \$		20.8	27.4	15.0	52.8	4.19	62.2
10-82-3	COBRA Reading	80	23	30	38	1 70	1 59	62
	Total Acid No.	0.12	0.22	0.29	0,40	0.53	0.55	0.54
175°C 1	Viscosity @100°C, cs	3.45	3.91	to.t	4.53	18.4	1 5.41	5.51
	Change		13.3	17.1	31.3	41.2	1 56.8	59.7
	Toluene Insol, % wt	QN	QN	CN	QN	QN	QN	0.00
			None	None	None	None	None	None
	Visual Appearance							
	of Deposits							
INT								
AND	LUBRICANT				TEST HOURS	-		1,50
TEST TEMP.	PROPERTY	New Oil	24	48	120	801	017	107
:			8.9	17.6	40.8	54.4	200	0.70
0-82-3D	COBRA Reading	80	10	25	20	64	61	79
(a)	Total Acid No.	0.12	0.18	0.15	99.0	0.89	1.10	0.99
	Viscosity @100°C, cs	3.45	3.71	3.86	4.43	4.90	5.49	6.23
	Change		7.5	11.9	1 28.4	45.0	59.1	80.6
	Toluene Insol, % wt	Q.	QN	QN .	UN	ND I	0.00	0.03
			Clear	Clear	Clear	Clear	Clear	Clear
	Visual Appearance		Hard	Hard	Hard	Hard	Hard	Hard
	of Deposits							

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New C 1	288					
	Weight Loss, \$		71.3					
10-82-3Dex	COBRA Reading	8	81					
	Total Acid No.	0.12	1.28		•			
1 190°C	Viscosity @100°C, cs	3.45	62.9		•			
	Viscosity Change, \$		8.96		- 1			
	Toluene Insol, % wt	ND	0.03		-			
			Hard					
	Visual Appearance		Clear					
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New 011	77	817	120	168	216	56 ⁴ l
	Weight Loss, \$		19.1	36.9	71.5	18.4	83.3	ND
0-82-3	COBRA Reading	∞	33	99	102	75	73	ND
,	Total Acid No.	. 12	. 68	1.30	1 2.44	2.73	1 4.77	ND
205°C	ပ	3.45	3.91	4.35	7.25	9.88	13.13	ND
	Viscosity Change, \$		13.3	26.1	110	186	281	N/A
	Toluene Insol, % wt	QN	ND	QN	I ND	0.00	0.00	ND ND
					Sticky	Grainy	Sticky	N/A
	Visual Appearance		None	None	Varnish	Varnish	Varnish	
	of Deposits				Deposits	Deposits	Deposits	
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	-	New Oil	24	847	96			
	Weight Loss, \$		21.8	39.1	1.99			
0-85-3	COBRA Reading	80	37	21	80			
	Total Acid No.	0.12	0.87	1.72	3.46			
; 210°C	Viscosity @100 C, cs	3.45	3.67	84.4	96.9		•	
	Viscosity Change, %		15.4	29.8	101.7			
	Toluene Insol, % wt	QN	ΩN	UD	ND			
	Wiend Appropries		o no N	N N	Tacky			
_ ==	of Deposits		N OIL	alou I	sl. varn.			

TEST TEMP. PI	-							
	LUBRICANT				TEST HOURS			
`_	PROPERTY	New Oil	24	8#	72			
-	Weight Loss, %		25.8	1 54.4	37.9			-
-	COBRA Reading	8	58	06	160			•
	Total Acid No.	. 12	1.72	8.76	19.29			
215°C V1.	Viscosity @100°C, cs!	3.45	4.14	8.01	11.30			
VI	Viscosity Change, \$		20.0	132.2	227.5			
	luene Insol, 🕻 wt	QN	QN	QN	90.0			
					 			 - -
V1	Visual Appearance		None	None	None	••		
	of Deposits							
LUBRICANT								1
AND ! LI	LUBRICANT				TEST HOURS			
TEST TEMP. PI	PROPERTY	New Oil	120	216	312	804		
We	Weight Loss, \$		12.0	22.1	32.5	38.9		-
0-82-14D CO	COBRA Reading	3	200	200	200	200		
- -	Total Acid No.	0.15	1.04	2.08	3.47	4.18		
175°C (VI	Viscosity @100°C, cs!	3.40	3.75	3.94	1 4.35	4.82		
IVI:	Viscosity Change, \$	-	10.3	15.9	27.9	41.8		
10	Foluene Insol, 🕻 wt	ND	QN	QN	QN:	0.01		
'V1:	Visual Appearance		None	None	None	None		
	of Deposits							
ANT								
	LUBRICANT				TEST HOURS			
TEST TEMP. PI	PROPERTY	New Oil	24	87	120	168	216	792
	Weight Loss, \$	-	6.1	11.6	1.75	37.3	45.4	56.5
0-82-14D COI	COBRA Reading	3	185	200	500	200	200	200
	Total Acid No.	0.15	0.88	1.04	2.75	3.78	4.03	4.82
190°C VI	0	3.40	3.66	1 3.74	1.10	Ln . tr	5.00	6.36
<u> V1 </u>	اندا		7.6	10.0	20.6	31.5	47.1	87.1
10	Foluene Insol, 💃 wt	QN	QN	QN	QN :	ND	0.01	0.03
				Varnish	Varnish	Varnish	Clear	Clear
A C	Visual Appearance		None	at 011	at Oil	at 011	Hard	Hard
10	or Deposits			Level	Level	Level		

TEST TEMP. PENDERSTY New Oil 24 48 120 168 168 169 168 169 168 169 168 169 1	LUBRICANT								
PROPERTY	AND	LUBRICANT				TEST HOURS			
Weight Loss, \$ 14.0 25.2 56.9 70.9 COBRA Reading 3 200 200 200 COBRA Reading 3 200 200 200 Viscosity Change, \$ 1.56 4.05 5.69 9.03 Viscosity Change, \$ 11.5 17.9 67.4 155.6 Toluene Insol, \$ wt ND 0.00 0.01 0.01 0.01 Visual Appearance Crystals	TEST TEMP.	PROPERTY	1	75	84	120	168	216	
COBRA Reading 3 200 200 200 200 200 201 20				14.0	25.2	6.95	70.9	75.0	
Total Acid No. 0.15 1.58 2.87 4.85 7.43 Wiscosity Change, \$ 4.01 5.69 9.03 Wiscosity Change, \$ 4.01 0.01 0.01 0.01 Toluene Insol, \$ 4.01 0.00 0.01 0.01 0.01 Total Appearance Crystals	10-82-14D	COBRA Reading	6	200	200	200	200	197	
Wiscosity @100°C,cs 3.40 3.79 4.01 5.69 9.03 Wiscosity Change, \$		Total Acid No.	۱ • ۱	1.58	1 2.87	4.85	7.43		
Wiscosity Change, \$ 11.5 17.9 67.4 165.6 Toluene Insol, \$ wt ND 0.00 0.01 0.01 Visual Appearance Light L	1 205°C	ပ္ 00	3.40	3.79	4.01	69.5	6.03	14.01	
Toluene Insol, % wt ND 0.00 0.01 0.01	*-			11.5	17.9	1 67.4	165.6	312.1	
Visual Appearance Light Varnish LUBRICANT New Oil			QN	00.0	10.01	0.01	0.01	0.03	
Visual Appearance Crystals Cr				Light	Light	Light	Light	Light	
LUBRICANT LUBRICANT Redght Loss, \$\frac{1}{8}\$ New Oil Weight Loss, \$\frac{1}{8}\$ New Oil Total Acid No. Viscosity Change, \$\frac{1}{8}\$ New Oil Visual Appearance LUBRICANT LUBRICANT LUBRICANT Weight Loss, \$\frac{1}{8}\$ New Oil COBRA Reading LUBRICANT Weight Loss, \$\frac{1}{8}\$ New Oil Total Acid No. LUBRICANT Weight Loss, \$\frac{1}{8}\$ New Oil Total Acid No. Viscosity @loO'C, cs Viscosity @loO'C, cs Viscosity EnloC, cs Viscosity Change, \$\frac{1}{8}\$ New Oil Viscosity Change Change, \$\frac{1}{8}\$ New Oil Viscosity Change Change, \$\frac{1}{8}\$ New Oil Viscosity Change Change Change Change Change Change Change C		aranc		Crystals	Crystals	Crystals	Crystals	Crystals	•
LUBRICANT PROPERTY Weight Loss, \$ COBRA Reading Total Acid No. Viscosity @100°C,cs Viscosity Change, \$ Toluene Insol, \$ wt Visual Appearance of Deposits LUBRICANT Weight Loss, \$ COBRA Reading Total Acid No. Viscosity @100°C,cs Viscosity @100°C,cs Viscosity Change, \$ Total Acid No. Viscosity Change, \$ Total Appearance Visual Appearance of Deposits		of Deposits					Varnish	Varnish	
LUBRICANT New Oil TEST COBRA Reading Total Acid No.	LUBRICANT								
PROPERTY New Oil	AND	LUBRICANT				TEST HOURS			
Weight Loss, \$\mathbb{E}\$ COBRA Reading COBRA Reading Total Acid No. Viscosity \$\mathred{e}\$ Viscosity Change, \$\mathred{E}\$ Toluene Insol, \$\mathred{E}\$ wt Visual Appearance DEBRICANT Weight Loss, \$\mathred{E}\$ Total Acid No. Viscosity Change, \$\mathred{E}\$ Toluene Insol, \$\mathred{E}\$ wt Visual Appearance Vis	TEST TEMP.	PROPERTY	, ,			-			
COBRA Reading Total Acid No. Viscosity @100°C,cs Viscosity Change, % Toluene Insol, % wt Visual Appearance Of Deposits LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Toluene Insol, % wt Visual Appearance Visual Appeara		Weight Loss, \$							
Total Acid No. Viscosity @100°C,cs Viscosity Change, % Toluene Insol, % wt Of Deposits LUBRICANT PROPERTY Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Viscosity Cha		COBRA Reading					1		
Viscosity @100°C, cs		Total Acid No.							
Viscosity Change, %		Viscosity @100°C, cs							
Toluene Insol, % wt) Visual Appearance of Deposits LUBRICANT PROPERTY Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Toluene Insol, % wt Visual Appearance of Deposits		_							
Visual Appearance of Deposits LUBRICANT PROPERTY Weight Loss, \$ COBRA Reading Total Acid No. Viscosity Change, \$ Toluene Insol, \$ wt Visual Appearance of Deposits		l							
Visual Appearance of Deposits LUBRICANT PROPERTY Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Toluene Insol, % wt Visual Appearance of Deposits									
LUBRICANT PROPERTY Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Toluene Insol, % wt Visual Appearance of Deposits		Visual Appearance							
LUBRICANT PROPERTY Weight Loss, % COBRA Reading Total Acid No. Viscosity @100°C, cs Viscosity Change, % Toluene Insol, % wt Visual Appearance Visual Appeara		of Deposits							
LUBRICANT PROPERTY Weight Loss, \$	LUBRICANT				}				
Weight Loss, % COBRA Reading Total Acid No. Viscosity @100°C, cs Viscosity Change, % Toluene Insol, % wt Visual Appearance of Deposits	AND	LUBRICANT				TEST HOURS			
RA Reading al Acid No. cosity 6100°C cosity Change uene Insol, % ual Appearanc	TEST TEMP.	PROPERTY							
A Reading al Acid No. cosity @100°C cosity Change uene Insol, % ual Appearanc Deposits		Weight Loss, %							
cosity 6100°C cosity Change uene Insol, gual Appearanc Deposits		COBRA Reading	-						
cosity @100°C cosity Change uene Insol, gual Appearanc Deposits		Total Acid No.							
cosity Change, uene Insol, % w ual Appearance Deposits		@100 _C		-					
uene Insol, % ual Appearance Deposits		Change			-				
ual Appearanc Deposits		nsol, 💃		-					
ual Appearanc Deposits									
of Deposits		ual Appearanc		 .					
		of Deposits							

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	54	817	120	168	1	
	Weight Loss, \$		8.4	8.7	19.8	27.9		
10-71-6	COBRA Reading	2	20	30	39	53		
	Total Acid No.	90.0	0.35	10.74	1.21	7.84		
1 205°C	Viscosity @100°C, cs	4.95	5.46	5.65	6.07	7.80		
	Wiscosity Change, \$1		10.3	14.1	22.6	57.6		
	Toluene Insol, % wt	ND	QN	QN ;	ND	0.03		
						 -	-	
	Visual Appearance		None	None	None	Varnish		
	of Deposits							
LUBRICANT								
AND	LUBRICANT			•	TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	77	8#	168	216	1 264	
	Weight Loss, \$		4.1	7.3	22.5	50.6	58.2	
0-77-15	COBRA Reading	2	32	1 59	63	124	27	
(B)	Total Acid No.	.43	0.74	0.52	2.21	5.96	6.29	
205°C	Viscosity @100°C, cs	4.95	5.32	5.50	917.9	1 20.64	QN	
	Viscosity Change, \$		7.5	11.1	30.5	417.0	N/A	
	Toluene Insol, % wt	ND	QN	QN	QN	QN -	90.0	
				White	White +	Slight	Clear	
	Visual Appearance		None	Crystals	Brown	Coke	Deposit	
	of Deposits				Crystals			
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	77	84	120	168	216	360
 	Weight Loss, \$		7.1	13.8	32.7	42.8	51.6	ND
0-85-1	COBRA Reading	8	36	1 63	109	119	110	110
•	Total Acid No.	0.02	0.12	0.33	19.0	96.0	1.53	2.54
205°C	Viscosity @100°C, cs	₩.04	ηι. η	1 4.23	4.55	5.03	5.22	9.94
	ge,		2.5	1 4.7	12.6	24.5	29.5	146.0
	Toluene Insol, % wt	ND CN	QN	QN :	ND	ND	ND	CN
			:	Tacky	White			Crystals
	Visual Appearance		None	Crystals	Crystals	Crystals	Crystals	variateh
(a) - (TEL	(TEL 6021)					-		10111

AND AND THE PROPERTY OF THE PR

SQUIRES OXIDATIVE TEST DATA

TEST TEMP LUBRICANT New Oil 24 48	LUBRICANT !					1
Weight Loss, \$ New 011 24 Weight Loss, \$ COBRA Reading 1 20 COBRA Reading 1 20 COBRA Reading 1 20 COBRA Reading 1 20 Viscosity @100°C, cs 3.46 6.87 Viscosity Change, \$ None Viscosity Change, \$ None Viscosity Change, \$ 141.6 Viscosity Change, \$ 142.8 Viscosity @100°C, cs 3.46 8.36 Viscosity Change, \$ 141.6 Viscosity Change, \$ 141.6 Viscosity @100°C, cs 3.46 42.8 Viscosity @100°C, cs 3.46 14.08 Viscosity Change, \$ 14.08 Viscosit	AND	LUBRICANT				TEST HOURS
Weight Loss, \$ 1 2.0 COBRA Reading	ST TEMP.	PROPERTY	New Oil !	24	817	
COBRA Reading 1 20 Total Acid No. 0.25 19.85 1		Weight Loss, \$		22.6	37.1	
Total Acid No. 0.25 19.85 Viscosity @100°C, cs 3.46 6.87 Viscosity Change, \$ 3.46 6.87 Viscosity Change, \$ 98.6 Foluene Insol, \$ wt ND ND ND ND Of Deposits New Oil 29.8 Viscosity @100°C, cs 3.46 8.36 Viscosity Change, \$ None None Of Deposits New Oil 24 Viscosity @100°C, cs 3.46 42.8 COBRA Reading 1 21 COBRA Reading 1 21 Cobrosity @100°C, cs 3.46 14.08 Viscosity Change, \$ 14.00		COBRA Reading		20	25	
Viscosity @100°C,cs 3.46 6.87 Viscosity Change, \$ 98.6 Toluene Insol, \$ wt ND ND Visual Appearance New Oil 24 Viscosity Change, \$ 141.6 Viscosity Change, \$ 141.6 Viscosity Change, \$ 141.6 Viscosity Change, \$ 142.8 Viscosity Change, \$ 142.8 Viscosity Change, \$ 142.8 Viscosity Change, \$ 16.54 Viscosity Change, \$ 14.08 Viscosity Change,		Total Acid No.		19.85	20.24	
Viscosity Change, \$ 98.6 Toluene Insol, \$ wt ND ND Visual Appearance None Of Deposits New Oil 24 Veight Loss, \$ 29.8 COBRA Reading 1 31 Total Acid No. .25 13.99 Viscosity Change, \$ 141.6 Toluene Insol, \$ wt ND ND Visual Appearance None Of Deposits New Oil 24 LUBRICANT New Oil 24 LUBRICANT New Oil 24 COBRA Reading 1 21 Total Acid No. 0.25 16.54 Total Acid No. 0.25 16.54 Total Acid No. 0.25 16.54 Viscosity Change, \$ 346 14.08 Viscosity Change, \$ 306.9 Toluene Insol, \$ wt ND 0.04 Visual Appearance None Visual Appearance No		Viscosity @100°C, cs	3.46	6.87	12.87	
Toluene Insol, % wt ND ND Visual Appearance None Of Deposits New Oil 24 LUBRICANT New Oil 29.8 COBRA Reading 1 31 Total Acid No. .25 13.99 Visual Appearance None None Visual Appearance None 141.6 Visual Appearance New Oil 24 Visual Appearance None None Visual Appearance New Oil 24 Weight Loss, % New Oil 24 Weight Loss, % 16.54 Total Acid No. 0.25 16.54 Viscosity Change, % 3.46 14.08 Visual Appearance None Visual				98.6	272.0	
Visual Appearance None of Deposits NT LUBRICANT New Oil 24 Weight Loss, % 25 13.99 Viscosity Change, % 141.6 Viscosity Change, % 141.6 Visual Appearance None of Deposits NT LUBRICANT New Oil 24 Weight Loss, % 25 Weight Loss, % 16.54 Viscosity Change, % 3.46 Viscosity Change, % 3.46 Viscosity Change, % 3.66 Viscosity Change, % 3.46 Viscosity Change, % 3.00.9		Toluene Insol, 🖇 wt	QN	QN	QN	
Visual Appearance None Visual Appearance Of Deposits LUBRICANT New Oil 24 Weight Loss, \$ 13.99 COBRA Reading 1 31 Total Acid No. .25 13.99 Viscosity Change, \$ 141.6 Visual Appearance None Visual Appearance New Oil 24 Weight Loss, \$ 16.54 Viscosity Change, \$ 306.9 Visual Appearance 0.25 16.54 Visual Appearance None 14.08 Visual Appearance None 14.08 Visual Appearance None Visual Appearance None Visual Appearance Visual Appearance None Visual Appearance Visual Appe			•		:	
CUBRICANT New Oil 24		Visual Appearance		None	None	
LUBRICANT New Oil 24	- -	n Deposites				
Weight Loss, \$ New Oil 24	JBRICANT :	LIBRICANT				TEST HOURS
Weight Loss, \$ 29.8	ST TEMP.	PROPERTY		24		
COBRA Reading	-	Weight Loss, \$		1	52.8	
Total Acid No25 13.99 Viscosity @100°C, cs 3.46 8.36 Viscosity Change, \$ 141.6 Toluene Insol, \$ wt ND ND Visual Appearance None Of Deposits New Oil 24 Weight Loss, \$ 42.8 COBRA Reading 1 21 Total Acid No. 0.25 16.54 Viscosity @100°C, cs 3.46 14.08 Viscosity Change, \$ 306.9 Toluene Insol, \$ wt ND 0.04 Visual Appearance None Visual Appearance Visual App	`	COBRA Reading	-	31	74	
Viscosity #100°C,cs 3.46 8.36 Viscosity Change, \$\mathbb{x}\$ 141.6 Toluene Insol, \$\mathbb{x}\$ wt ND ND ND NO NO NO NO NO	'	Total Acid No.	.25	13.99	16.52	
Viscosity Change, % 141.6 456 Toluene Insol, % wt ND ND 0.00 Visual Appearance None None None None Of Deposits New Oil 24 48 Weight Loss, % 121 7 COBRA Reading 1 21 7 COBRA Reading 1 21 7 Total Acid No. 0.25 16.54 14.08 52.000 Viscosity Change, % 306.9 156 Toluene Insol, % wt ND 0.04 0.00 Visual Appearance None	'	ပ	•	8.36	19.25	
Toluene Insol, \$ wt ND ND Visual Appearance None Of Deposits New Oil 24 NE PROPERTY New Oil 24 Neight Loss, \$ 42.8 COBRA Reading 1 21 Total Acid No. 0.25 16.54 Viscosity @100°C, cs 3.46 14.08 Viscosity Change, \$ 306.9 Toluene Insol, \$ wt ND 0.04 Visual Appearance None				•	456.4	
Visual Appearance None Of Deposits None LUBRICANT New Oil 24 Weight Loss, \$ 42.8 COBRA Reading 1 21 Total Acid No. 0.25 16.54 Viscosity @100°C, cs 3.46 14.08 Viscosity Change, \$ 306.9 Toluene Insol, \$ wt ND 0.04 Visual Appearance None	-		ND	ND	0.05	
Visual Appearance None Of Deposits Of Deposits None Of Deposits Of Depo	`					
NT LUBRICANT MP. PROPERTY Meight Loss, \$ 1 42.8 Weight Loss, \$ 1 24 Weight Loss, \$ 1 24 COBRA Reading 1 24 Total Acid No. 0.25 16.54 Viscosity @100°C, cs 3.46 14.08 Viscosity Change, \$ 306.9 Toluene Insol, \$ wt ND 0.04 Visual Appearance None		Visual Appearance		None	None	
MP. LUBRICANT MP. PROPERTY Meight Loss, \$ New Oil 24 Meight Loss, \$ 12.8 COBRA Reading 1 21 COBRA Reading 1 24 COBRA Reading 1 21 COBRA Reading 1 24 COBRA READING 1		of Deposits				
LUBRICANT MP. PROPERTY Netght Loss, \$ 142.8 COBRA Reading 1 21 Total Acid No. 0.25 16.54 Total Acid No. 0.25 14.08 Viscosity Change, \$ 3.46 14.08 Toluene Insol, \$ wt ND 0.04 Visual Appearance None	JBRICANT !					
Weight Loss, \$ New Oil 24 Weight Loss, \$ 42.8 COBRA Reading 1 21 21 Total Acid No. 0.25 16.54 Viscosity Change, \$ 3.46 14.08 Toluene Insol, \$ wt ND 0.04 Visual Appearance None Visual Appearance Visual Appearance None Visual Appearance Vi	AND	LUBRICANT				TEST HOURS
Weight Loss, \$ 1 42.8 COBRA Reading 1 21 Total Acid No. 0.25 16.54 Viscosity @100°C, cs 3.46 14.08 Viscosity Change, \$ 3.46 14.08 Toluene Insol, \$ wt ND 0.04 Visual Appearance None		PROPERTY		→ \	84	
COBRA Reading 1 21 Total Acid No. 0.25 16.54 Viscosity @100°C,cs 3.46 14.08 Viscosity Change, \$ 306.9 Toluene Insol, \$ wt ND 0.04 Visual Appearance None		Weight Loss, \$		٠.١	⁻∙ I	
Total Acid No. 0.25 16.54 Viscosity #100°C, cs 3.46 14.08 Viscosity Change, \$ 3.46 14.08 Toluene Insol, \$ wt ND 0.04 Visual Appearance None		COBRA Reading	1	~ 1	7	
Viscosity Change, \$ 3.46 14.08 Viscosity Change, \$ 306.9 Toluene Insol, \$ wt ND 0.04 Visual Appearance None		Total Acid No.	0.25	16.54	14.81	
#1 ND 0.04		Viscosity @100°C, cs	3.46	14.08	52.71	
wt! ND 0.04	` 			306.9	1568	
None	 `	Toluene Insol, % wt	QN	0.04	0.01	
arance i none i			 		2	
	- -	aranc	- -	None	None	
1 of Deposites	-	of Deposits				

(a) - Basestock Oil(b) - Basestock Oil(c) - Basestock Oil

LUBRICANT					
AND	LUBRICANT				TEST HOURS
TEST TEMP.	PROPERTY	New Oil	5₫	811	
	Weight Loss, \$		74.4	38.0	
10-76-8	COBRA Reading	9	200	200	
(a)	Total Acid No.	0.09	50.17	62.50	
175°C	Viscosity @100°C, cs	2.36	4.71	6.26	
	Viscosity Change, \$		9.66	165.2	
	Toluene Insol, % wt	ND	QN	QN	
			Clear	Clear	
	Visual Appearance		Crystals	Crystals	
	of Deposits			-	-
LUBRICANT					
AND	LUBRICANT			•	TEST HOURS
TEST TEMP.	PROPERTY	New Oil	77	817	
	Weight Loss, \$		26.9	41.5	
8-91-0	COBRA Reading	9	200	200	
(<u>a</u>)	Total Acid No.	60.	70. 44	18.22	
190°C	Viscosity @100°C, cs	2.36	4.68	6.42	
	Viscosity Change, \$		98.3	172.0	1
	Toluene Insol, % wt	ND	QN	0.12	
	Visual Appearance		None	None	
	of Deposits				
LUBRICANT				'	
AND	LUBRICANT				TEST HOURS
TEST TEMP.	PROPERTY	New Oil	24	84	
	Weight Loss, %		18.7	37.4	
	COBRA Reading	9	200	QN	
<u>ૄ</u>	Total Acid No.	0.09	49.03	1 56.70	
205°C	Viscosity @100°C, cs	2.36	4.95	QN I	
_	Viscosity Change, \$		109.7	N/A	
	Toluene Insol, % wt	ND	90.0	QN	
			Thick	Black	
•	Visual Appearance		dark	Deposits	
	of Deposits		ofl		

⁽a) - Basestock 011(b) - Basestock 011(c) - Basestock 011

I HEDT CANT				
PODUTOWN				
AND	LUBRICANT			TEST HOURS
TEST TEMP.	PROPERTY	New Oil	24	
	Weight Loss, \$		26.6	
10-77-1	COBRA Reading	#	182	
	Total Acid No.	0.03	58.82	
205°C	ပ	2.33	7.04	
			202.1	
	Toluene Insol, % wt	QN	QN	
			None	
	Visual Appearance			
	of Deposits			
LUBRICANT				
AND	LUBRICANT			TEST HOURS
TEST TEMP.	PROPERTY	New Oil	54	
	Weight Loss, \$		25.5	
10-77-1+I	COBRA Reading	2	115	
; (a)	Total Acid No.	0.03	54.20	
1 205°C	Viscosity @100 C, cs	2.34	6.85	
	Viscosity Change, \$		192.7	
	Toluene Insol, % wt	QN.	ND .	
			White	
	Visual Appearance		Crystals !	
	of Deposits		on Tube	
LUBRICANT				
AND	LUBRICANT			TEST HOURS
TEST TEMP.	PROPERTY	New Oil	24	
	Weight Loss, \$		12.4	
10-77-1+P	COBRA Reading	6	817	
(<u>a</u>)	Total Acid No.	.03	1.18	
1 205°C	Viscosity @100°C, cs	2.44	2,42	
	Viscosity Change, \$		-0.8	
	Toluene Insol, % wt	ND	QN	
	Visual Appearance		None	
	or Deposits			
(a) = 0-77	- 0-77-1 plus impurities			

⁽a)

LUBRICANT						
AND	LUBRICANT				TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	77			
	Weight Loss, \$		14.4			
	COBRA Reading	10	16			
(a)	Total Acid No.	.02	1.08			
	Viscosity @100°C, cs	2.34	2.49			
	Viscosity Change, \$		р. 9			
	Toluene Insol, % wt	ΩN	ND			
· · · · ·	Visual Appearance of Deposits		None			
LUBRICANT						
AND	LUBRICANT			•	TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	77	817	120	
	Weight Loss, \$		5.3	7.5	18.2	
_	COBRA Reading	7	5	6	29	
<u> </u>	Total Acid No.	. 10	0.24	0.30	0.38	
	Viscosity @100°C, cs	3.51	3.61	3.70	3.80	
	Viscosity Change, \$	-	2.9	1.5	8.3	
	Toluene Insol, % wt		ND	QN :	ND ;	
			None	Tacky	Varnish	
	Visual Appearance			Deposit		
	of Deposits					
LUBRICANT						
	LUBRICANT			•	TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	24	817		
	Weight Loss, \$	-	39.4	61.0		
UDRI 09	COBRA Reading	2	27	9		
	Total Acid No.	0.14	14.93	15.66		
	ပို	3.47	11.76	N.		
	•		238.9	N/A		
	Toluene Insol, % wt	ND C	0.01	0.05		
- - -						
	Visual Appearance	•	None	Slight		
	of Deposits			Varnish		

⁽a) - 0-77-1 plus impurities and 1% PANA (b) - 0-76-5A w/2% PANA (c) - 0-76-5 w/0.05% PANA

LUBRICANT				TEST HOITES		
PROPERTY	New Oil	77	817	120		
Weight Loss, \$		36.7	61.8	73.4		
COBRA Reading	2	33	10	QN !		
Total Acid No.	0.06	14.42	16.09	ND		
Viscosity #100°C, cs	3.46	9.77	QN I	QN .		
Viscosity Change, \$		182.4	N/A	N/N		
Toluene Insol, 🕻 wt	ND	00.0	QN	QN .		
Visual Appearance		None	None	Rubbery		
of Deposits						
LIBRICANT			•	TEST HOURS		
PROPERTY	New 011	24	84	120	168	
Weight Loss, \$		32.7	59.5	76.3	78.1	
COBRA Reading	3	33	17	QN.	ND !	
Total Acid No.	0.15	13.4	15.9	ND	ND :	
1 ty	3.46	8.31	QN	ND I	NO CN	
Viscosity Change, \$		140.2	N/A	N/A	N/A	
Toluene Insol, % wt	ND	00.0	QN .	QN	S	
			Varnish			
Visual Appearance		None	at Oil	Rubbery	Rubbery	
of Deposits			Level			
						-
LUBRICANT				TEST HOURS		
PROPERTY	New Oil	24	84	120	168	
Weight Loss, \$		26.0	57.0	75.5	77.5	
OBRA Reading	7	77	QN	QN	EN CE	
Total Acid No.	0.16	12.07	16.11	QN	ND -	
Viscosity @100 C, cs	3.47	6.63	QN	UD	 Q	
Change		91.1	N/A	N/A	N/A	
Toluene Insol, % wt	ND	0.00	QN .	QN I	QN QN	
Visual Appearance		None	N orc	Rubberv	Rubberv	
) !) 		•	
1000 00						

(a) - 0-76-5 w/0.1% PANA (b) - 0-76-5 w/0.15% PANA (c) - 0-76-5 w/0.2% PANA

᠉

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	54	817	96	168		
	Weight Loss, \$		8.6	16.4	64.1	79.5		
UDRI 17	COBRA Reading	3	9	12	48	UD		
	Total Acid No.	60.	0.29	0.55	60.6	UND		
1 205°C	Viscosity @100°C, cs	3.46	3.56	3.60	30.52	QN :		
	Viscosity Change, \$		2.9	0.4	782.1	NA NA		
	Toluene Insol, & wt	QN	QN	0.02	QN	QN .		
			None	None	None	Solid		
	Visual Appearance					Rubbery		
THEFT	20.420.40			-				
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	77	84	120	168		
	Weight Loss, \$		9.8	15.8	35.7	81.5		
UDRI 18	COBRA Reading	3	9	15	32	QN		
(a)	Total Acid No.	0.10	0.31	0.41	99.0	13.52		
1 205°C	Viscosity @100°C, cs	3.47	3.61	3.65	3.79	QN !		
	Chang		0.4	5.2	9.5	N/A		
	Toluene Insol, & wt	QN	QN	QN	ħ0.	QN		
			None	None	Slightly	Very		
	Visual Appearance				Sticky	Thick Oil		
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New 011	77	817	120	168	216	264
	Weight Loss, \$		8.6	17.5	35.1	52.6	64.5	79.9
UDRI 19	COBRA Reading	=	L	1 21	42	1 64	74	126
(၁)	Total Acid No.	0.10	0.36	91.0	69.0	0.88	1.35	2.38
1 205°C	Viscosity @100°C, cs	3.50	3.66	3.73	3.88	4.11	4.52	5.68
	y Change		9.4	9.9	10.9	17.4	29.1	62.3
	Toluene Insol, % wt	ND	QN	QN !	UD	QN	Q.	.03
			None	Tacky	Tacky	Tacky	Tacky	Varnish
	Visual Appearance			Deposits	Deposits	Deposits	Deposits	
	of Deposits							

⁽a) - 0-76-5A w/0.5% PANA (b) - 0-76-5A 1.0% PANA (c) - 0-76-5A 1.5% PANA

SQUIRES OXIDATIVE TEST DATA

LUBRICANT	- NACT MAIL				TEST HOURS			
TEST TEMP	PROPERTY	New 011	24	84	168	216	264	
	Weight Loss. &		8.4	16.1	28.8	9.99	80.2	
11DRT 20	COBRA Reading	7	6	23	29	86	132	
	Total Acid No.	.10	0.41	19.0	1.0	1.45	2.30	
205°C	Viscosity @100°C.cs	3.51	3.71	3.80	1.26	4.82	6.28	
	Viscosity Change, \$		5.7	8.3	1 21.4	37.3	78.9	
	Toluene Insol, % wt	QN.	S	QN	QN	QN	0.05	
		 	None	Tacky	Tacky	Tacky	Varnish	
	Visual Appearance			Deposits	Deposits	Deposits		
	of Deposits					-	-	
LUBRICANT		ı						
AND	LUBRICANT	Mo.: 041	24	817	1531 nouns	-		
IESI IEMP.	FROFERIT	TTO MON	200	α	10.7	-		
	Weight Loss, &		3:3		23	- -		
_	COBRA Reading	2	71		67 6		-	
	Total Acid No.	.15	0.65	0.42	0.00			
190°C		3.61	3.66	3.72	3.80			
	Viscosity Change, \$		1.4	3.0	6.9			
	Toluene Insol, % wt	QN	ND	QN :	QN CN		[-	
			None	None	White			
	Visual Appearance				Crystals	·		
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	54	48				
	Weight Loss, \$		25.8	56.8				
UDRI 13	COBRA Reading	•	20	20				
(o) 	Total Acid No.	0.17	18.35	14.76				
1 205°C	Viscosity @100 C, cs	3.48	8.06	36.38				
	Viscosity Change, \$		131.6	945.4				
	Toluene Insol, % wt	QN	UD	1 0.03				
			None	None	 -			
	Visual Appearance							
	of Deposits						-	
$\frac{1}{2}$	O-76-54 W/2 OF PANA							

(a) - 0-76-5A w/2.0% PANA (b) - 0-76-5A w/2% DODPA (c) - 0-76-5A w/0.5% DODPA

SQUIRES OXIDATIVE TEST DATA

LUBRICANT					
AND	LUBRICANT			TE	TEST HOURS
TEST TEMP.	PROPERTY	New Oil	240		
	Weight Loss, \$		92.4	!	
UDRI 16ex	COBRA Reading	0	QN		
	Total Acid No.	0.15	ND		
205°C	Viscosity @100°C, cs	3.61	ND		
	Viscosity Change, \$		QN		
	Toluene Insol, % wti	MD	ND		
	Visual Appearance		None		
	of Deposits				
LUBRICANT	TIME CTOOL I			Ē	HOIIBS
TEST TEMP.		New Oil	24	8017	
	3		7.0	13.8	
UDRI 24	COBRA Reading	3	2	9	
(P)	Total Acid No.	0.13	24.0	0.53	
205°C	Viscosity @100°C, cs	3.52	3.67	3.72	
	Viscosity Change, \$		4.3	5.7	
	Toluene Insol, % wt	0.01	0.06	0.01	
			<u>~</u>		
	Visual Appearance		~	Coke, 011	
	of Deposits		Reddish	Reddish	
LUBRICANT			!		
AND	LUBRICANT				TEST HOURS
TEST TEMP.	PROPERTY	New Oil	24	84	
	Weight Loss, \$		7.2	18.2	
UDRI 25	COBRA Reading	ħ	7	110	
(၀)	Total Acid No.	0.10	0.38	5.43	
205°C	Viscosity @100°C, cs	3.59	3.67	5.43	
	Viscosity Change, \$		2.2	32.3	
	Toluene Insol, % wt	0.03	0.05	0.01	
			Heavy	Slight	
	Visual Appearance		Coke Pur-	Varnish	
	of Deposits		ple Stain		

(a) - 0-76-54 w/2.0% DODPA (b) - 0-76-5 w/2% PTZ (c) - 0-76-5 w/2% DOPTZ

SQUIRES OXIDATIVE TEST DATA

LUBRICANT New Oil 24 48 48 48 48 48 48 48	LUBRICANT							
Weight Loss, \$ New 011 24 48 48 48 48 40 40 40 4	AND	LUBRICANT				EST HOURS		
Weight Loss, \$ 15.4 31.9 COBRA Reading	TEST TEMP.		New Oil	24	† 8 1			
COBRA Reading		Weight Loss, \$		15.4	31.9			
Total Acid No. .07 5.00 10.76	UDRI 04	COBRA Reading	14	163	157			
Viscosity @100°C,cs 2.38 2.64 2.69 13.0 10.90 13.0 13.0 10.90 13.0 10.90 13.0 10.90 13.0 10.90 13.0 10.90 13.0 10.90 13.0 10.90 13.0 10.90 13.0 10.90	(a)	Total Acid No.	.07	5.00	10.76			
Viscosity Change, \$ 10.9 13.0 Toluene Insol, \$ wt ND ND ND Visual Appearance Coke Coke Of Deposits New Oil 24 48 Cobra Reading Coke 11.89 16.93 Toluene Insol, \$ wt ND 0.06 0.02 Viscosity Change, \$ 11.0 19.8 Viscosity Change, \$ 11.0 19.8 Viscosity El00°C, cs 2.37 2.63 2.84 Viscosity El00°C, cs 2.37 2.63 2.84 Viscosity El00°C, cs 2.37 2.63 2.84 Viscosity Change, \$ 11.0 19.8 Viscosity El00°C, cs 2.37 2.63 2.84 Viscosity El00°C, cs 2.37 2.63 2.80 Viscosity El00°C, cs 2.37 2.67 2.80 Viscosity Change, \$ 1.0 0.05 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ 12.7 12.80 T	190°င	Viscosity @100°C, cs	2.38	2.64	2.69			
Toluene Insol, \$ wt ND ND ND		Viscosity Change, \$		10.9	13.0			
Visual Appearance Coke Coke Visual Appearance Coke Coke Of Deposits New Oil 24 48 Weight Loss, \$ New Oil 24 48 Weight Loss, \$ 0.05 11.89 16.93 Viscosity Change, \$ 11.0 19.8 Weight Loss, \$ Coke on Coke on Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt 12.1 Toluene Insol, \$ wt		1 1	UD	QN	QN			
Visual Appearance Coke Coke Of Deposits				Black	Black			 .
CUBRICANT New Oil 24 48 48 48 48 48 48 48				Coke	Coke			
LUBRICANT New Oil 24 48 18 19 19 18 18 18 18 1		of Deposits		Particles	Particles!	-		
LUBRICANT New Oil 24 48 48 60 76 62 62 62 62 76 62 62	LUBRICANT							
Weight Loss, \$ New Oil 24 48 48	AND					EST HOURS		
Weight Loss, \$ 19.3 35.8 COBRA Reading 6 76 62 Total Acid No. 0.05 11.89 16.93 Viscosity @100°C,cs 2.37 2.63 2.84 Viscosity Change, \$ 11.0 19.8 Toluene Insol, \$ wt ND 0.06 0.02 Visual Appearance samp. and samp. and of Deposits 12.7 18.1 COBRA Reading 6 78 55 Total Acid No. 0.06 9.55 9.75 Viscosity @100°C,cs 2.37 2.67 2.80 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Visual Appearance samp. and samp. and of Deposits 2 2 Visual Appearance samp. and samp. and of Deposits 2 2 Visual Appearance samp. and samp. and of Deposits 2 2 Visual Appearance samp. and samp. and of Deposits 2 2 Visual Appearance samp. and samp. and of Deposits 2 2 Visual Appearance samp. and sam	TEST TEMP.		New Oil	54	817			
COBRA Reading 6 76 62 Total Acid No. 0.05 11.89 16.93 Viscosity @100°C, cs 2.37 2.63 2.84 Viscosity Change, \$ 11.0 19.8 Toluene Insol, \$ wt ND 0.06 0.02 Of Deposits		Weight Loss, \$		19.3	35.8			
Total Acid No. 0.05 11.89 16.93 Viscosity @100°C, cs 2.37 2.63 2.84 Viscosity Change, % 11.0 19.8 Toluene Insol, % wt ND 0.06 0.02 Visual Appearance samp. and samp. and of Deposits New Oil 24 48 Viscosity Change, % 12.7 18.1 Toluene Insol, % wt ND 0.01 0.05 Visual Appearance samp. and of Deposits 12.7 14.1	UDRI 01	COBRA Reading	9	92	62			
Viscosity @100°C, cs 2.37 2.63 2.84 Viscosity Change, \$ 11.0 19.8 Toluene Insol, \$ wt ND 0.06 0.02 Visual Appearance samp. and samp. and of Deposits 12.7 18.1 LUBRICANT New Oil 24 48 Weight Loss, \$ 6 78 55 Total Acid No. 0.06 9.55 9.75 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Visual Appearance samp. and samp. and of Deposits 12.7 14.1 Visual Appearance samp. and samp. and of Deposits 12.7 14.1 Visual Appearance samp. and samp. and of Deposits 14.1 Viscosity Change 14.1 16.1 Visual Appearance samp. and samp. and of Deposits 14.1 Visual Appearance 14.1	(a)	Total Acid No.	0.05	11.89	16.93			
Viscosity Change, \$ 11.0 19.8 Toluene Insol, \$ wt ND 0.06 0.02 Visual Appearance samp. and samp. and of Deposits air tubes air tubes Weight Loss, \$ 0.06 9.55 9.75 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Visual Appearance samp. and samp. and of Deposits air tubes air tubes Visual Appearance samp. and samp. and of Deposits visual Appearance air tubes air tubes Toluene Insol, \$ wt ND 0.01 0.05 Visual Appearance samp. and samp. and of Deposits visual Appearance air tubes air tubes Visual Appearance visual	502 ວ		2.37	2.63	2.84			
Toluene Insol, % wt ND 0.06 0.02 Visual Appearance samp, and samp, and of Deposits air tubes air tubes air tubes NT				11.0	19.8			
Visual Appearance Coke on Coke on Coke on Visual Appearance samp. and samp. and samp. and samp. and samp. and LUBRICANT New Oil 24 48 Weight Loss, \$ 6 78 55 COBRA Reading 6 78 55			ND	0.06	0.02			
Visual Appearance samp, and samp, and of Deposits NT LUBRICANT Weight Loss, \$\mathbb{K}\$ New Oil 24 48 10 100 10 10 10 10 10				Coke on	Coke			
Of Deposits air tubes air tubes Air tubes Air tubes		Visual Appearance		and	samb.		 ·	
LUBRICANT		of Deposits						
LUBRICANT	LUBRICANT							
Weight Loss, \$ New Oil 24 48 48 48 49 40 40 40 40 40 40 40	AND	LUBRICANT				EST HOURS		
Weight Loss, \$ 6 78 41.0 COBRA Reading 6 78 55 COBRA Reading 6 78 55 Total Acid No. 0.06 9.55 9.75 Viscosity @100°C,cs 2.37 2.67 2.80 Viscosity Change, \$ 12.7 18.1 Toluene Insol, \$ wt ND 0.01 0.05 Visual Appearance samp. and samp. and of Deposits air tubes air tubes	TEST TEMP.	PROPERTY	New Oil	24	748	120	168	
COBRA Reading 6 78 55 Total Acid No. 0.06 9.55 9.75 Viscosity @100°C,cs 2.37 2.67 2.80 Viscosity Change, \$\mathbb{K}\$ 12.7 18.1 Toluene Insol, \$\mathbb{K}\$ wt ND 0.01 0.05 Visual Appearance samp, and samp, and of Deposits		Weight Loss, %		23.4	41.0	89.4	95.3	
Total Acid No. 0.06 9.55 9.75 Viscosity @100°C,cs 2.37 2.67 2.80 Viscosity Change, \$\frac{\pi}{N}\$ 12.7 18.1 Toluene Insol, \$\frac{\pi}{N}\$ wt	UDRI 02	COBRA Reading	9	78	55	142	ND .	
Viscosity @100°C, cs 2.37 2.67 2.80 Viscosity Change, % 12.7 18.1 Toluene Insol, % wt ND 0.01 0.05 Toluene Insol, % wt ND 0.01 0.05 Visual Appearance samp, and samp, and of Deposits	(၁)	Total Acid No.	90.0	9.55	9.75	7.82	ND	
ol, % wt ND 0.01 0.05 Coke on Coke on arance samp, and samp, and samp, and samp, and samp, and samp, and	205°C	•	2.37	2.67	2.80	UD	ND I	
ol, % wt ND 0.01 0.05 Coke on Coke on arance samp, and samp, and samp, and samp, and samp, and samp, and		•		12.7	18.1	N/A	N/A	
arance Coke on Coke on arance samp. and and and arance air tubes air tubes air tubes		1	ND	0.01	0.05	ND	QN	
arance samp. and samp. and v.					uo	ch coke	2	
air tubes air tubes oil		aranc		o. and	samp. and	•	no oil	 ·
		of Deposits		air tubes	air tubes			

⁽a) - 0-76-8 w/2% PANA (b) - 0-76-8 w/0.5% PANA (c) - 0-76-8 w/1.0% PANA

LUBRICANT							
AND	LUBRICANT				TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	24	48	120	168	
	Weight Loss, \$		18.8	36.9	91.7	92.7	
	COBRA Reading	10	80	9	53	57	
(a)	Total Acid No.	0.05	9.16	8.56	ND	ND CN	
	Viscosity @100°C, cs	2.38	2.68	2.77	ND	Q.	
	8		12.6	16.4	N/A	N/A	
	Toluene Insol, \$ wt	QN	0.10	0.08	ND	ND .	
			Coke on	Coke on	Coke on	Coke on	
	Visual Appearance		samp. and	samp. and	samp. and	samb. and	·
	of Deposits		air tubes!	air tubes	air tubes air tubes air tubes air tubes	air tubes	
LUBRICANT					1		
AND	LUBRICANT				TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	h2	84	120	168	
	Weight Loss, \$		20.9	51.1	92.9	94.46	
UDRI 04	COBRA Reading	14	95	1 17	73	UN	
	Total Acid No.	70.	5.74	4.06	ND	Q.	
1 205°C	Viscosity @100 C, cs	2.38	2.63	2.81	QN -	S.	
	Viscosity Change, \$		10.5	18.1	N/A	N/A	
~-	Toluene Insol, % wt	QN	0.02	0.34	ND	QN .	
			Coke on	Coke on	Much Coke	Much Coke	
	Visual Appearance		samp. and	samp. and	and V. Little	No Oil	
	of Deposits		air tubes	air tubesioil Left	011 Left		
LUBRICANT							
AND	LUBRICANT				TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	24	48			
	Weight Loss, \$		14.2	30.2			
UDRI 08	COBRA Reading	3	200	200			-
	Total Acid No.	.05	4.56	10.06			
190°C	Viscosity @100°C, cs	2.43	2.63	2.81			
	Viscosity Change, \$1		8.2	15.6			
	Toluene Insol, \$ wt	ΩN	QN QN	2			
			None	None			
	Visual Appearance of Deposits						

(a) - 0-76-8 W/ 1.5% PANA (b) - 0-76-8 W/ 2.0% PANA (c) - 0-76-8 W/2% DODPA

LUBRICANT					
AND			1		TEST HOURS
TEST TEMP.	PROPERTY	New Oil	54	84	
	Weight Loss, \$		16.1	37.0	
	COBRA Reading	2	200	200	
(r)	Total Acid No.	.01	15.68	26.97	
	Viscosity @100°C, cs	2.37	2.69	3.02	
	Viscosity Change, \$		13.5	27.4	
	Toluene Insol, % wt	QN	0.01	0.01	
	Visual Appearance		None	None	
TIRETONE	COTTON OF TO				
AND	LUBRICANT				TEST HOURS
TEST TEMP.		New Oil	24	84	
			16.8	34.8	
UDRI 06	COBRA Reading	3	200	200	
	Total Acid No.	.02	13.46	22.12	
	Viscosity @100°C, cs	2.37	2.70	3.00	
	Viscosity Change, \$		13.9	26.6	
	Toluene Insol, % wt	QN	00.0	0.00	
	Visual Appearance		None	None	
	of Deposits				
LUBRICANT					
AND	LUBRICANT				TEST HOURS
TEST TEMP.	PROPERTY	New Oil	177	84	
	Weight Loss, %		16.8	56.9	
	COBRA Reading	5	200	200	
်ပ 	Total Acid No.	ħ0.	12.43	24.18	
	Viscosity @100°C, cs	2.41	2.74	3.01	
	Viscosity Change, \$		13.7	24.9	
	Toluene Insol, 🕻 wt	QΝ	0.02	0.02	
			:		
	Visual Appearance		None	None	
76 0 (2)	27 8 8 6 6 6 6				

⁽a) - 0-76-8 w/0.5 \$ DODPA (b) - 0-75-8 w/ 1.0\$ DODPA (c) - 0-76-8 w/1.5\$ DODPA

SQUIRES OXIDATIVE TEST DATA

CONTRACTOR CONTRACTOR CONTRACTOR

LUBRICANT					
AND	LUBRICANT				TEST HOURS
TEST TEMP.	PROPERTY	New Oil	7 47	84	
	Weight Loss, %		19.4	29.7	
UDRI 08	COBRA Reading	3	200	200	
(a)	Total Acid No.	.05	11.58	17.72	
1 205°C	Viscosity @100°C, cs	2.43	2.78	3.00	
	Viscosity Change, %		14.4	23.5	
	Toluene Insol, \$ wt	ND	0.01	00.0	
'	Visual Appearance		None	None	
-	of Deposits				
LUBRICANT	-				
AND	LUBRICANT				TEST HOURS
TEST TEMP.	PROPERTY	New Oil	54		
	Weight Loss, %		21.1		
UDRI 26	COBRA Reading	6	25		
	Total Acid No.	0.04	11.92		
1 205°C	Viscosity @100°C, cs	2.39	2.73		
	Viscosity Change, %!		14.2		
	Toluene Insol, % wt	0.01	0.04		
	-		Heavy		
	Visual Appearance		Coke, 011;		
	of Deposits		Reddish		
LUBRICANT					
AND	LUBRICANT	- 1			TEST HOURS
TEST TEMP.	PROPERTY	New Oil	24		
	Weight Loss, \$		22.3		
UDRI 27	COBRA Reading	9	5#		
<u></u> છ	Total Acid No.	0.03	9.93		
1 205°C	Viscosity @100°C, cs	2.45	2.75		
	Viscosity Change, \$		12.2		
	Toluene Insol, % wt	0.02	0.05		
			Heavy		
	Visual Appearance		Coke, 011 (
	of Deposits		Very Red		
(a) - 0-76	-8 w/2.0% DODPA				

⁽a) - 0-76-8 w/2.0% DUDPA (b) - 0-76-8 w/2% PTZ (c) - 0-76-8 w/2% DOPTZ

SQUIRES OXIDATIVE TEST DATA

LUBRICANT					
AND	LUBRICANT				TEST HOURS
TEST TEMP.		New Oil	24	817	
	Weight Loss, \$		18.4	34.1	
_	COBRA Reading	11	ħ	9	1
	Total Acid No.	0.04	0.78	η 6. 0	
		2.37	2,42	2.44	
	Viscosity Change, \$		2.1	3.0	
	Toluene Insol, % wt	0.02	0.02	0.02	
			Heavy	Heavy	
	Visual Appearance		Coke, 011	Coke, 011	
	of Deposits		Reddish	Reddish	
LUBRICANT					
AND					TEST HOURS
TEST TEMP.	PROPERTY	New Oil	77	817	
	Weight Loss, \$		14.9	33.7	
UDRI 29	COBRA Reading	2	7	200	
@	Total Acid No.	0.03	0.85	9.13	-
1 205°C	Viscosity @100°C, cs!	2,42	2,42	2.66	
	Viscosity Change, %		0.0	6.6	
	Toluene Insol, % wt	0.01	0.02	0.01	
			Heavy	Slight	
- -	Visual Appearance		Coke, 011	Varnish	
	of Deposits		Reddish		
LUBRICANT					
AND	LUBRICANT				TEST HOURS
TEST TEMP.	PROPERTY	New Oil	24	8#	120 ;
	Weight Loss, \$		6.4	7.3	17.1
UDRI 22	COBRA Reading	3	10	22	52
(ပို 	Total Acid No.	. 08	0.15	0.58	0.61
190°C	၀, ၁	3.51	3.62	3.70	3.80
	Change		3.1	5.4	8.3
	Toluene Insol, % wt	ΩN	QN	ND	- QN
	, ,		None	Tacky	Slight
	Visual Appearance			Deposit	Varnish
	of Deposits				
(2) - (2)	4 / Je Dr./				

⁽a) - 0-77-1 w/2% PTZ (b) - 0-77-1 w/2% DOPTZ (c) - 0-76-5A w/ 1% PANA + 1% DODPA

AND TEST TEMP.								
TEST TEMP.	LUBRICANT			•	TEST HOURS			
	PROPERTY	New Oil	24	72	120	168	192	1 264
	Weight Loss, \$		9.6	25.5	41.6	7.6th	57.1	1.87
UDRI 22	COBRA Reading	3	20	1 59	ħĹ	104	1 87	123
(B)	Total Acid No.	80.	1110	0.57	0.72	0.72	0.93	1 2.41
205°C	$^{\circ}$ C	3.51	3.75	3.90	4.10	4.25	4.43	5.96
	Viscosity Change, \$		6.8	11.1	16.8	21.1	26.2	69.8
	Toluene Insol, % wt	QN	ΩN	QN	ND	QN.	QN.	0.03
			None	Slight	Slight	Slight	Slight	Slight
	of Deposits			Varnisn	Varnish	Varnisn	varnisn !	i varnisn
LUBRICANT								
AND	LUBRICANT			••	TEST HOURS			
TEST TEMP.	PROPERTY	New 011	77	84				
	Weight Loss, \$		15.2	27.8				
UDRI 21	COBRA Reading	6	200	200				
<u>a</u>	Total Acid No.	0.02	4.95	6.26			-	
190°C	$^{\circ}$ C, c	2.41	2.65	1 2.76				
	90		6.6	14.5			•	
	Toluene Insol, % wt	ND	ND	QN		-		-
- -			Black	Black				
	Visual Appearance		Coke	Coke				
	of Deposits		Particles	Particles			-	
LUBRICANT								
AND	LUBRICANT			• -	TEST HOURS		·	
TEST TEMP.	PROPERTY	New Oil	24	96				
	Weight Loss, 🐒		15.5	145.8				
UDRI 21	COBRA Reading	6	200	200				
<u>(၁</u>	Total Acid No.	.02	8.17	14.39				
205 ₀ c	@1000C, c	2.41	2.76	3.14				
	y Change,		14.5	30.3				
	Toluene Insol, % wt!	ND	ND	.07			-	
			Black	Black			•	
	Visual Appearance		Coke	Coke				
	of Deposits							

⁽a) - 0-76-5 w/1% PANA + 1% DODPA (b) - 0-76-8 w/1% PANA + 1% DODPA (c) - 0-76-8 w/1% PANA + 1% DODPA

LUBRICANT						
AND	LUBRICANT				TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	24	84		
	Weight Loss, \$		11.8	1 24.3	,	-
UDRI 23	COBRA Reading	9	50	86	-	
(a)	Total Acid No.	.03	0.39	0.50		
190°C	Viscosity @100°C, cs	2.35	2,42	2.50	1	
	Viscosity Change, \$		3.0	h.9		
	Toluene Insol, % wt	UD	QN	ND		
			None	None		
	Visual Appearance					-
	of Deposits					
LUBRICANT						
AND	LUBRICANT			_	TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	54	8#	120	
	Weight Loss, \$		14.3	24.7	1 76.4	
UDRI 23	COBRA Reading	9	78	200	200	
(<u>a</u>)	Total Acid No.	.03	1.64	33.8	35.7	
205 <mark>°</mark> ເ	Wiscosity @100°C, cs	2.35	5.49	2.80	10.23	
	Viscosity Change, \$		0.9	19.1	335.3	
	Toluene Insol, % wt	ON	QN	QN	0.10	
			None	White dep	White dep	
	Visual Appearance			on tube	on tube !	
	of Deposits			head	head !	
LUBRICANT						
AND	LUBRICANT				TEST HOURS	;
TEST TEMP.	PROPERTY	New Oil				
	Weight Loss, \$					
	COBRA Reading					
	Total Acid No.					
	Viscosity @100°C, cs			 		
	Viscosity Change, \$]]		
	Toluene Insol, % wt					
	Visual Appearance					
	of Deposits					
77 0 77	1 / 14 DAWA . 44 DOND					

(a) - 0-77-1 w/1% PANA + 1% DODPA (b) - 0-77-1 w/1% PANA + 1% DODPA

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	96	192	1 288	384	180	1 577
	Weight Loss, %		0.0	0.1	0.0	0.0	1.8	1.0
10-79-163	COBRA Reading	3	10	13	1 28	017	1 62	101
	Total Acid No.	0.20	0.34	0.51	2.28	2.03	4.18	1 4.58
175°C	၁	•	3.24	3.25	3.29	3.30	3.37	3.34
	Viscosity Change, %		2.5	2.8	1 4.1	ከ * ከ	9*9	1 5.7
	Toluene Insol, % wt	0.01	QN	QN -	UN (QN	- ND	1 0.01
	Visual Appearance		None	None	None	None	Slight	None
LUBRICANT							SCOTI	
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	7₫	84	_	96	144	192
	Weight Loss, %		6.0	0.1	10.1	0.1	0.0	0.7
10-79-163	COBRA Reading	5	3	10	13	17	25	36
(a)	Total Acid No.	0.20	QN	07.0	1.13	1.83	3.52	5.34
190°C	2	3.16	3.21	3.26	3.26	3.29	1 3.28	3.32
	Viscosity Change, %		1.6	3.2	3.2	1.4	3.8	1.5.1
	Toluene Insol, % wt	00.00	QN	QN :	ON :	QN	UN !	00.00
	Visual Appearance		None	None	None	None	None	None
	of Deposits							
LUBRICANT								
AND	LUBRICANT		0.10		TEST HOURS			
1EST LEMF.	rrorenii	New Oll	240					
1 70 70 16 1	Weight Loss, A	,	7					
	U-/9-10Jex;CUBKA Reading	7	48					
(Total Acid No.	0.20	5.05					
190°C	Viscosity @100°C,cs	3.16	3.31					
	Viscosity Change, 🕻	-	4.8					
	Toluene Insol, % wt	00.0	0.02					
				••				
	Visual Appearance of Deposits		None					
508 - (P)	3-(3-10.lex for extended	led tacting	rosm)+6				-	-
2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							

SQUIRES CONFINED HEAT TEST DATA

このできない。 これは、これには、これをはなられる。 これのはないできない。 これのはないできる

LUBRICANT					1			
AND	LUBRICANT		ē	811	1EST HOURS	90	144	192
IEST LEMP.	- 1	New Oll	*2	9	20			000
	Weight Loss, A		0.0	C:-	7.00		56	200
0-79-163	COBRA Reading	~	14	13	53	7	0)	901
	Total Acid No.	0.20	0.88	2.69	3.31	4.73	0.40	8.77
1 205°C	Viscosity @100°C, cs!	3.16	3.23	3.23	3.27	3.29	3.35	3.38
	Viscosity Change, \$1		2.2	2.2	3.5	4.1	0.9	7.0
	Toluene Insol, % wt	0.00	00.00	00.00	00.0	00.00	0.00	0.00
	<u> </u>						Slight	Slight
	Visual Appearance		None	None	None	None	Varnish	Varnish
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	96	192	288	188	0817	577
	Weight Loss. \$		0.5	0.1	0.0	0.1	0.5	0.5
10-79-17E	COBRA Reading	2	16	31	52	71	19	83
	Total Acid No.	0.08	1.36	2.19	2.04	1.16	5.28	5.55
175°C	Viscosity 6100°C.cs	3.35	3.39	3.43	3.49	3.49	3.52	3.52
	Change		1.2	2.4	4.2	1.2	5.1	5.1
	nscl, % w	0.01	ND I	QN :	QN .	QN	QN	0.01
	1							
**	Visual Appearance		None	None	None	None	None	None
	of Deposits			-				
LUBRICANT								•••
: AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	48	1 72	96	144	192
	Weight Loss, \$		1.0	1.5	0.0	0.2	1.9	6.0
10-79-17E	COBRA Reading	2	10	18	20	23	31	35
	Total Acid No.	80.0	0.82	1.17	2.08	3.02	4.62	5.71
190°C	S S	3.35	3.36	3.36	3.41	3.43	3.46	3.50
	Viscosity Change, %		0.3	0.3	1.8	2.4	3.3	4.5
	Toluene Insol, % wt	0.01	ND	QN .	QN .	QN	00.00	0.03
	Visual Appearance		None	None	None	None	None	None
	- 1	ŀ				-	-	-
(a) - See	O-79-17Eex for extended	ded testing	g results.					

SQUIRES CONFINED HEAT TEST DATA

LUBRICANT					our di			
AND	LUBRICANI			T	IESI HUUKS			
TEST TEMP.	PROPERTY	New Oil	240					
	Weight Loss, \$		0.0					
10-79-17Eex	0-79-17Eex COBRA Reading	7	99					
	Total Acid No.	0.08	7.30					
190°C	Viscosity @100°C, cs	3.35	3.48					
	Viscosity Change, %		3.9					
	Toluene Insol, % wt	0.01	0.03					
	Visual Appearance of Deposits		None					
LUBRICANT								
AND	LUBRICANT			T	TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	17	87	72	96	144	192
	Weight Loss, %		0.0	0.0	0.0	0.0	0.0	9.0
10-79-17E	COBRA Reading	2	6	28	23	39	09	86
	Total Acid No.	0.08	1.81	1 2.74	3.96	5.56	7.61	9.20
1 201°C	Į O	3.35	3.35	3.43	3.43	3.46	3.44	3.54
	Viscosity Change, %		0.0	2.4	2.4	3.3	1 2.7	5.7
	35	0.01	00.00	0.01	00.00	00.00	0.01	0.01
						Trace of	Stain	Stain
	Visual Appearance		None	None	None	Coke	Oil Level Oil Level	Oil Level;
	of Deposits					Particles	in Cup	in Cup
LUBRICANT						 		
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	96	192	288	384	480	576
	Weight Loss, \$		0.3	0.0	2.6	0.0	0.0	0.3
10-79-20C	COBRA Reading	2	5	13	21	32	35	41
	Total Acid No.	0.20	0.43	1.13	2.38	3.10	2.60	3.49
175°C	Viscosity @100°C, cs	3.47	3.54	3.57	3.62	3.63	3.65	3.65
	Chang		2.0	2.9	4.3	9.4	5.6	5.6
	Toluene Insol, % wt	00.0	QN	QN	QN	ND	QN -	Q.
			None	Clear,	None	None	Clear,	None
	Visual Appearance			77			-	
	of Deposits			on 11d			dno uo i	_

LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	969					
	Weight Loss, \$		0.1	1				
10-79-20Cex	0-79-20Cex; COBRA Reading	2	95		••			
	Total Acid No.	0.02	5.34		-1			
175°C	0100°C, c	3.47	3.63					
	Viscosity Change, \$		9.4					
	Toluene Insol, \$ wt	00.00	0.03				 -	
			None					
••	Visual Appearance							
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	817	12	96	144	192
	Weight Loss, \$		0.0	0.8	2.8	6.0	0.0	9.0
10-79-20C	COBRA Reading	2	3	10	13	22	39	t 43
(a)	Total Acid No.	0.20	0.31	0.45	1.11	1.05	2.00	2.59
190°C	Viscosity @100°C, cs	3.47	3.52	3.66	3.56	3.69	3.65	3.63
	Viscosity Change, 💲		1.4	5.5	2.6	6.3	1 5.2	9.4
	Toluene Insol, % wt	00.0	QN	QN	QN	QN	QN	00.00
	Visual Appearance		None	None	None	None	None	None
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	240	360				
	Weight Loss, %		0.1	0.5				
10-79-20Cex	0-79-20Cex COBRA Reading	2	50	71	•			
	Total Acid No.	0.20	3.41	6.20	-			
190 _° c	ပ	3.47	3.65	3.67				
	-		5.2	5.8				
	Toluene Insol, % wt	00.0	ND	00.00				
			Faint	Faint				
	Visual Appearance		011	110				
	of Deposits		Ring	Ring				
(a) - See (0-79-20Cex for extended	led testing	results.	ļ	!			

N N N N N N N N N N N N N N N N N N N							
Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Viscosity Change, % Toluene Insol, % wt 0.0 Visual Appearance of Deposits COBRA Reading Total Acid No. Viscosity Change, % Viscosity Change, % Viscosity Change, % Total Acid No. Viscosity Change, %				TEST HOURS			
Weight Loss, % COBRA Reading 2 Total Acid No. Viscosity 6100°C, cs 3.4 Viscosity Change, % COBRA Reading 2 Total Acid No. Viscosity 6100°C, cs 3.4 Viscosity 6100°C, cs 3.3 Total Acid No. Viscosity 6100°C, cs 3.3 Viscosity 6100°C, cs 3.3 Viscosity Change, % Total Acid No. Viscosity Change, %	New Oil	24	1 48	12	96 !	144	192
Total Acid No. Viscosity @100°C,cs 3.4 Viscosity Change, % Visual Appearance of Deposits LUBRICANT Viscosity Change, % Viscosity Change, % Viscosity Change, % Viscosity Change, % Viscosity @100°C,cs 3.4 Viscosity @100°C,cs 3.4 Viscosity @100°C,cs 3.4 Viscosity @100°C,cs 3.4 Viscosity @100°C,cs 3.3 Viscosity @100°C,cs 3.3 Viscosity @100°C,cs 3.3 Viscosity @100°C,cs 3.3 Viscosity Change, % Total Acid No. 0.0 Viscosity Change, % Total Acid No. 0.0 Viscosity Change, % Total Acid No. 0.0		0.0	0.0	0.0	, 0.1	ħ•0 - ¹	1.5
Total Acid No. Viscosity 6100°C, cs 3.4 Viscosity Change, \$\mathbb{x}\$ Visual Appearance of Deposits LUBRICANT Weight Loss, \$\mathbb{x}\$ COBRA Reading Viscosity Change, \$\mathbb{x}\$ Viscosity Change, \$\mathbb{x}\$ Viscosity Change, \$\mathbb{x}\$ LUBRICANT LUBRICANT LUBRICANT COBRA Reading of Deposits COBRA Reading Total Acid No. Viscosity 6100°C, cs 3.3 Viscosity 6100°C, cs 3.3 Viscosity Change, \$\mathbb{x}\$ Total Acid No. Viscosity Change, \$\mathbb{x}\$ Toluene Insol, \$\mathbb{x}\$ wt ND	- 2	7	127	1 21	25	45	titi :
Viscosity Change, % Viscosity Change, % Toluene Insol, % wt 0.0 Visual Appearance of Deposits LUBRICANT Weight Loss, % COBRA Reading Toluene Insol, % wt 0.0 Viscosity Change, % Toluene Insol, % wt 0.0 Visual Appearance of Deposits LUBRICANT LUBRICANT COBRA Reading Total Acid No. Viscosity 6100°C, cs 3.3 Viscosity Change, % Total Acid No. Viscosity Change, % Toluene Insol, % wt ND	0.20	1.12	1.83	3.37	6.11	1 6.76	7.47
Viscosity Change, % Visual Appearance of Deposits LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Viscosity Change, % LUBRICANT Visual Appearance of Deposits LUBRICANT LUBRICANT COBRA Reading Total Acid No. Viscosity 6100°C, cs 3.3 Viscosity 6100°C, cs 3.3 Viscosity 6100°C, cs 3.3 Viscosity Change, % Total Acid No. Viscosity Change, % Toluene Insol, % wt ND	_	3.51	3.58	3.59	3.57	3.65	3.68
Toluene Insol, % wt 0.0 Visual Appearance of Deposits LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Viscosity Change, % Visual Appearance of Deposits LUBRICANT Visual Appearance of Deposits LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity @100°C, cs 3.3 Viscosity @100°C, cs 3.3 Viscosity Change, % Toluene Insol, % wt ND		1.2	3.2	3.5	2.9	5.2	1 6.1
Visual Appearance of Deposits LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity @100°C, cs 3.4 Viscosity @100°C, cs 3.4 Viscosity Change, % COBRA Reading LUBRICANT LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity @100°C, cs 3.3 Viscosity @100°C, cs 3.3 Viscosity Change, % Toluene Insol, % wt ND		QN	ND I	QN .	00.00	00.00	0.00
Visual Appearance of Deposits LUBRICANT Weight Loss, % COBRA Reading Total Acid No. 0.2 Viscosity 6100°C, cs 3.4 Viscosity Change, % Toluene Insol, % wt 0.0 Visual Appearance of Deposits LUBRICANT LUBRICANT Weight Loss, % COBRA Reading Total Acid No. 0.0 Viscosity 6100°C, cs 3.3 Viscosity Change, % Total Acid No. 0.0 Viscosity Change, % Toluene Insol, % wt ND	-						
LUBRICANT PROPERTY Weight Loss, \$ COBRA Reading Total Acid No. Viscosity Change, \$ Viscosity Change, \$ Visual Appearance of Deposits LUBRICANT PROPERTY Weight Loss, \$ COBRA Reading Total Acid No. Viscosity Change, \$ Toluene Insol, \$ wt ND		None	None	None	None	None	None
LUBRICANT Weight Loss, \$\mathbb{E}\$ COBRA Reading Total Acid No. Viscosity Change, \$\mathbe{E}\$ Visual Appearance of Deposits LUBRICANT PROPERTY Weight Loss, \$\mathbe{E}\$ COBRA Reading Total Acid No. Viscosity Change, \$\mathbe{E}\$ Total Acid No. Viscosity Change, \$\mathbe{E}\$ Total Acid No. Viscosity Change, \$\mathbe{E}\$ Toluene Insol, \$\mathbe{E}\$ wt ND					-		
LUBRICANT Weight Loss, % COBRA Reading 2 Total Acid No. Viscosity @100°C, cs 3.4 Viscosity Change, % Toluene Insol, % wt 0.0 Visual Appearance of Deposits LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Viscosity Change, % Toluene Insol, % wt ND							
Weight Loss, % COBRA Reading 2 COBRA Reading 0.2 Viscosity #100°C, cs 3.4 Viscosity Change, % Toluene Insol, % wt 0.0 Visual Appearance of Deposits LUBRICANT Weight Loss, % COBRA Reading 3.2 Total Acid No. 0.0 Viscosity Change, % Toluene Insol, % wt ND				TEST HOURS			
Weight Loss, % COBRA Reading 2 Total Acid No. 0.2 Viscosity @100°C, cs 3.4 Viscosity Change, % Toluene Insol, % wt 0.0 Visual Appearance of Deposits T LUBRICANT Weight Loss, % COBRA Reading Total Acid No. 0.0 Viscosity Change, % Viscosity Change, % Toluene Insol, % wt ND	New Oil	54	817	72	96	144	192
COBRA Reading 2 Total Acid No. 0.2 Viscosity @100°C,cs 3.4 Viscosity Change, % 0.0 Visual Appearance of Deposits T LUBRICANT Weight Loss, % COBRA Reading 3.3 Total Acid No. 0.0 Viscosity Change, % 101cal Acid No. 0.0 Viscosity Change		0.0	1.9	0.0	2.2	1.8	1.2
Total Acid No. Viscosity Change, %; Viscosity Change, %; Toluene Insol, % wt; 0.0 Visual Appearance of Deposits LUBRICANT LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, %; Viscosity Change, %; Toluene Insol, % wt; ND	2	စ	1 21	50	1 23	1 26	84
Viscosity @100°C,cs 3.4 Viscosity Change, % Toluene Insol, % wt 0.0 Visual Appearance of Deposits ANT LUBRICANT EMP. PROPERTY Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Totalene Insol, % wt ND	0.20	0.94	1.58	1 2.46	5.11	6.90	6.57
Viscosity Change, % Toluene Insol, % wt 0.0 Visual Appearance of Deposits ANT LUBRICANT EMP. PROPERTY Weight Loss, % COBRA Reading Total Acid No. 0.0 Viscosity Change, % Toluene Insol, % wt ND		3.52	3.61	3.42	3.59	3.64	3.69
Toluene Insol, % wt 0.0 Visual Appearance of Deposits ANT LUBRICANT EMP. PROPERTY Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Toluene Insol, % wt NE		1.4	0.4 ;	1 -1.4	3.5	4.9	6.3
Visual Appearance of Deposits ANT LUBRICANT EMP. PROPERTY Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Toluene Insol, % wt.		QN	QN	QN	QN !	0.00	0.03
Visual Appearance of Deposits ANT LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Toluene Insol, % wt. ND						Faint	
ANT LUBRICANT LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity Change, % Toluene Insol, % wt.		None	None	None	None	; Oil	None
EMP. LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity @100°C, cs; 3.3 Viscosity Change, % Toluene Insol, % wt; ND						Ring	
LUBRICANT Weight Loss, % COBRA Reading Total Acid No. Viscosity @100°C, cs 3.2 Viscosity Change, % Toluene Insol, % wt ND							
Weight Loss, % Weight Loss, % COBRA Reading Total Acid No. Viscosity @100°C,cs 3.2 Viscosity Change, % Toluene Insol, % wt NE				TEST HOURS			1.00
Weight Loss, & COBRA Reading Total Acid No. Viscosity @100°C,cs Viscosity Change, & Toluene Insol, & Wt	New OIL	8	777	76.	040	007	100
Total Acid No. Viscosity Change, % Toluene Insol, % wt	· ·	5.0		- 00		200	
Total Acid No. Viscosity @100°C,cs Viscosity Change, % Toluene Insol, % wt	`	5	77	07	39	25	2
Viscosity @100°C,cs; 3 Viscosity Change, %; Toluene Insol, % wt;	0.08	1.31	1.42	2.36	3.74	3.90	4.21
se, se	\sim	3.37	3.40	3.41	3.44	3.46	3.49
M Wt		1.2	2.1	1 2.4	3.3	3.9	æ ====================================
		ND	I ND	ND	UD :	QN 	00.00
		None	None	None	None	None	None
Visual Appearance			••				
of Deposits							-

LUBRICANT								
: AND	! LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	84	172	96	777	192
	Weight Loss, \$		0.0	0.0	0.0	0.0	4.3	0.1
0-85-2	COBRA Reading	3	12	13	, 20	33	2n 1	1 87
(a)	cio	80.0	0.99	1.74	2.39	12.24	1 4.56	1 4.79
190°C	ty @100°C, c	3.33	3.36	3.44	3.38	3.42	3.40	3.51
	Viscosity Change, %		0.9	3.3	1.5	2.7	1.2.1	5.4
		ND	QN	ND ND	ON :	UD :	UN :	1 0.01
	Visual Appearance		None	None	None	None	None	None
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	240		-			
	Weight Loss, %		0.3					
0-82-2ex	COBRA Reading	3	156					
	Acio	0.08	6.22					
190°C	ity	3.33	3.58					-
	Viscosity Change, %		7.5					
	Toluene Insol, % wt	ND	0.01					
	Visual Appearance		None					
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS		:	
TEST TEMP.	PROPERTY	New Oil	54	817	1 72	96	ከተቤ	192
	Weight Loss, %		0.0	0.0	1 0.5	0.8	0.5	1.9
0-82-2	COBRA Reading	3	14	32	38	55	66	200
(Total Acid No.	0.08	1.66	3.53	5.30	6.14	7.92	9.13
205°C	0	3.33	3.34	3.42	3.47	3.56	3.77	4,30
	Viscosity Change, %		0.3	2.7	4.2	6.9	13.2	29.1
	Toluene Insol, % wt	ND	QN	ND :	ND I	00.00	00.00	0.01
	Visual Appearance of Deposits		None	None	None	None	None	None
(a) - See (0-82-2ex for extended	testing	results.					

SQUIRES CONFINED HEAT TEST DATA

	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	96	192	288	384	180	925
	Weight Loss. %		0.0	0.0	0.0	0.0	1 0 4	0.3
0-82-3	COBRA Reading	8	9	11	1 27	33	क्तं ।	ħħ ;
	Total Acid No.	0.12	0.19	0.45	0.90	1.45	1.74	1.70
175°C	Viscosity @100°C.cs	3.45	3.56	3.62	3.62	3.63	3.65	3.67
•	Viscosity Change, 5		3.2	4.9	4.9	5.5	5.8	1 6.4
	Toluene Insol. % wt	QN	QN	QN	UN !	QN	UND	0.01
	1		None	None	None	None	None	None
	Visual Appearance							
	ioi Depositus					-		-
LUBKICANI	TIRRICANT	_			TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	48	72	96	ከተነ	192
	Weight Loss. &		3.6	7.0	0.0	0.1	0.0	0.1
0-82-3D		80	5	6	12	1 21	33	35
(a)	Acio	0.12	0.11	0.14	0.41	1 0.85	1.24	1.81
190°C	sity @		3.55	3.60	3.62	3.61	3.64	3.64
	Chang		2.9	1 4.3	1 4.9	4.6	5.5	5.5
		ND	QN	ND .	QN -	Q	ΩN	0.00
						; ·		;
	m		None	None	None	None	None	None
	of Deposits				<u> </u>	-		-
LUBRICANT					TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	240	384				
	Weight Loss, %		7.0	1.0				
0-82-3ex	COBRA Reading	ω	52	58				
	Total Acid No.	0.12	2.66	1 4.16				
190°C	Viscosity @100°C,cs	3.45	3.65	3.71				
	Viscosity Change, %		5.8	7.5				
	Toluene Insol, % wt	ND	QN	, 0.01				
				Varnish				
	Visual Appearance		None	in Vent				
	of Deposits			Tube				

LUBRICAN Weight Lo COBRA Rea Total Act Viscosity Viscosity Viscosity Viscosity Weight Lo COBRA Rea Total Act Viscosity V	New Oil New Oi	24 0.3 12 0.63 3.57 3.57 3.57 None	48 0.9 10 1.23 3.57 3.57 ND	TEST HOURS	96	th L	192
EMP.	N S S S S S S S S S S S S S S S S S S S	24 0.3 12 0.63 3.57 3.57 3.57 None	48 0.9 10 1.23 3.57 3.5 ND	72 0.5	96	144	192
ANT ANT EMP.	New	0.3 12 0.63 3.57 3.57 3.5 None	0.9 10 1.23 3.57 3.57 3.5 ND	5.0	c		
ANT ANT EMP.	New	12 0.63 3.57 3.5 NOne None	10 1.23 3.57 3.57 3.5 ND	-	0.0	0.4	0.3
H a H a	New	0.63 3.57 3.57 3.5 None	1.23 3.57 3.5 ND None	13	17	31	55
H a H a	New	3.57 3.5 NO None	3.57 3.5 ND None	1.97	3.04	1 4.77	5.86
H 0.	New	3.5 ND None	3.5 ND None	3.60	3.63	3.66	3.70
H a H a	New	None None	None	4.3	5.2	6.1	1.2
H 0.	N N N N N N N N N N N N N N N N N N N	None	None	QN :	00.00	0.05	0.01
H 0	Se S	84		Q Q	a co		Q C N
H a	New	87		y 2			
a. ⊢ a.	New S	48					
a. H a.	Z Z	48		TEST HOURS			
H 0		0	144	192			
H 0	~	0.0	0.1	0.3			
H a.	~	15	23	31			
H @	~	1.08	4.23	5.82			
H a	?	3.64	3.67	ND !			
(H a.	9-Q	5.5	6.4	N/A			-
H a	wt ND ;	QN	QN	QN			
H a.							
of Deposi LUBRICAN' P. PROPERTY Weight Lo		None	None	None			
LUBRICAN P. PROPERTY Weight Lo							
LUBRICAN P. PROPERTY Weight Lo COBRA Read							
P. PROPERTY Weight Lo COBRA Read				TEST HOURS			
Weight Lo COBRA Rea Total Aci	New Oil	24	72	120	192	1 288	336
COBRA Rea		0.2	0.0	0.0	0.3	0.0	1 0.1
Total Aci	3	30	119	187	200	200	200
	0.15	0.37	1.45	1 4.81	3.24	4.91	7.21
175°C Viscosity @100°C,	cs 3.40	3.52	3.54	3.55	3.72	1 3.77	3.74
Viscosity Change,		3.5	4.1	ተ ተ ተ	h.6	10.9	10.0
Toluene Insol,	wt; ND ;	ND	QN :	ND :	QN	QN :	10.01
		None	None	None	None	None	None
D							
of Deposits							

SQUIRES CONFINED HEAT TEST DATA

AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	74	8#	72	96	144	192
	:3		1.3	0.0	0.0	0.0	0.0	9.0
0-82-14D	COBRA Reading	3	65	163	200	200	500	200
·	Total Acid No.	0.15	1.98	3.85	3.35	5.72	6.80	9.33
190°C	Viscosity @100°C, cs.		3.45	3.51	3.59	3.61	3.69	3.86
1	Viscosity Change, %		1.5	3.2	5.6	6.2	8.5	13.5
	3	QN	QN	QN	QN	QN	QN :	00.00
	1							
	Visual Appearance		None	Oil Ring	Oil Ring	Oil Ring	Oil Ring	None
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	54	1 48	1 72	96	144	216
	Weight Loss, %		0.1	6.0	0.0	2.2	1.7	8.9
0-82-14D	COBRA Reading	3	143	200	200	200	1 200	200
	Total Acid No.	0.15	3.40	6.20	6.81	7.80	12.10	12.71
205°C	Viscosity @100°C, cs	3.40	3.50	3.62	3.65	3.76	η . 3μ	5.75
	Viscosity Change, \$1		2.9	5*9	1.4	10.6	1 27.6	144.7
	Toluene Insol, % wt	ND	0.01	00.00	0000	0.01	0.01	0.01
			Stain	Stain	Stain	Stain	Stain	Stain
	Visual Appearance	-	in	Globs of	Globs of	Globs of	Globs of	Globs of
	of Deposits		cnb	; oil	; 0il	110	011	011
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil		•••				
	Weight Loss, %							
	COBRA Reading							
	Total Acid No.							
	Viscosity @100°C, cs							
	Viscosity Change, %							
	Toluene Insol, % Wt							
	Visual Appearance							
	of Deposits					-	_	_

LUBRICANT							
AND	LUBRICANT				TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	177	817	72	1 96	
	Weight Loss, %		0.0	0.0	0.0	0.0	-
10-71-6	COBRA Reading	2	ħ	9 !	11	25	•
	Total Acid No.	0.06	1.23	1 2.73	3.86	6.62	
1 205°C	Viscosity @100°C, cs	4.95	5.12	5.17	5.22	5.21	
-+	Viscosity Change, 💈		3.4	h*h	5.4	5.2	
	Toluene Insol, % wt	ND	QN :	QN	QN	0.04	
				Slight			
	Visual Appearance		None	Sediment	None	None	
	of Deposits						
LUBRICANT							
AND	LUBRICANT				TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	77	817	72		
	Weight Loss, %		0.0	0.0	0.0		
10-77-15	COBRA Reading	5	12	1 24	017		
¦ (a)	Total Acid No.	0.43	1.63	3.42	5.72		
: 202 c		4.95	5.22	5.15	5.32		
	Viscosity Change, %		5.4	0*1	5.6		
	Toluene Insol, % wt	ND	UN !	QN	0.05		
					Slight		
	Visual Appearance		None	None	Stain		
	of Deposits						
LUBRICANT							
AND	: LUBRICANT				TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	24	84	72	120	
	Weight Loss, %		0.0	0.1	10.4	0.2	
10-79-18	COBRA Reading	3	15	22	37	73	
و و	Total Acid No.	.07	0.38	0.83	2,25	5.01	
; 505°C	ວ່າ	5.29	5.28	5.34	5.33	5.33	
	Change		-0.2	6.0	7.0	1 2.0	
	Toluene Insol, % wt	ND	ND .	UN !	UD !	00.00	
	Visual Appearance		None	None	None	None	
	of Deposits						
(a) - (TEL (b) - (TEL	(TEL 6021) (TEL 6022)						

SQUIRES CONFINED HEAT TEST DATA

LUBRICANT	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	5₫	48	96	192	288	
	Weight Loss, %		0.0	0.0	0.8	0.5	1.0	
10-85-1	COBRA Reading	ဂ	32	31	53	76	140	
	Total Acid No.	0.02	0.08	0.00	2.41	t . 47	10.01	
205°C	Viscosity @100°C, cs	†0 †	†0°†	3.87	₩°0 0	4.10	4.08	
			0.0	1.2	0.0	1.5	1.0	
	Toluene Insol, % wt	ND	I ND	QN .	QN	ΩN	QN	
	Vient Annance		N ON	S S S S S S S S S S S S S S S S S S S	e co	None	None	
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS	100		
TEST TEMP.	PROPERTY	New Oil	54	48	oS S	192		
	Weight Loss, %		0.0	0.3	0.3	0.3		
TEL 6031	COBRA Reading	14	07	20	97	163		
	Total Acid No.	90.0	0.13	0.30	0.97	2.46		
2050c	Viscosity @100°C,cs	7.53	7.48	7.41	7.38	7.62		
	Viscosity Change, %		-0.7	1 -1.6	-2.0	1.2		
	Toluene Insol, % wt	ND	ND	QN	ΩN	0.01		
			Slight					
	Visual Appearance		Sediment	Q.	Sediment	Sediment		
	of Deposits							
LUBRICANT								·• -
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	96	192			
			0	0.7	0.0			
TEL 6032	COBRA Reading	ۍ	14	23	23			-
	Total Acid No.	0.02	0.00	0.62	1.32			
; 205°c	Viscosity @100°C,cs	7.50	7.48	7.49	7.47			
	Viscosity Change, %		0.3	0.1	h.0			
	Toluene Insol, % wt	ND	ND	0.02	QN			
	Winite Accordance		Slight	Moderate	Moderate			
	of Deposits		3 15 11 5 5 5	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				

SQUIRES CONFINED HEAT TEST DATA

LUBRICANT								
; AND	: LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	1 24	8 11 1	1 72			
	Weight Loss, \$		0.1	0.0	0.5			
10-76-5A	COBRA Reading		-1		1	•		
	Total Acid No.	0.25	1 2.07	4.43	6.62		-	
	Viscosity @100°C, cs		3.48	3.57	3.59			
	Viscosity Change, \$		9.0	3.2	3.7			
	Toluene Insol, % wt	QN :	Ωħ	ON :	I ND			
	Visual Appearance		None	None	None			
	or Deposits			·	·			
LUBRICANT								
: AND					TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	54	8†	72	96	1011	192
	Weight Loss, \$		0.0	0.0	1.0	0.1	9.0	0.5
10-76-5A	COBRA Reading	1	1	-	2		2	5
(<u>a</u>)	Total Acid No.	0.25	2.99	5.21	8.00	1.54	90.6	9.36
190°C	Viscosity @100°C, cs	3.46	3.55	3.64	1 3.71	3.64	3.80	3.72
	Viscosity Change, %		2.6	5.5	7.2	5.2	9.8	7.5
	Toluene Insol, % wt	ΩN	QN	QN .	QN	QN	ND	0.01
	Visual Appearance		None	None	None	None	None	None
	of Deposits					-		
LUBRICANT		••						
; AND	: LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	74	8 # 1	72	96	144	192
	Weight Loss, %		0.0	0.2	0.8	0.8	0.0	1.9
	COBRA Reading	1	2	2	ħ	2	2	2
() 	Total Acid No.	0.25	2.44	5.68	6.91	8.85	89.8	8.82
	Viscosity @100°C, cs;	3.51	3.71	3.80	3.99	4.82	6.28	QN
••	Viscosity Change, %		5.7	8.3	13.7	37.3	78.9	ND
	Toluene Insol, % wt	QN	QN	ON .	QN	QN	• 05	ND
			None	Tacky	Tacky	Tacky	Varnish	
	Visual Appearance			Deposits	Deposits	Deposits		QN
	of Deposits							
(")	1.0.1							

⁽a) - Basestock Oil(b) - Basestock Oil(c) - Basestock Oil

TOTAL STATE

CONTRACTOR CONTRACTOR CONTRACTOR

LUBRICANT								
: AND	LUBRICANT				TEST HOURS			
TEST TEMP.		New Oil	24	48	12			
	Weight Loss, %		0.0	0.0	1 0.1			
10-76-8	COBRA Reading	9	91	† 3 4	95			
; (a)	Total Acid No.	0.09	1.98	4.79	8.70			
175°C	Viscosity @100°C, cs	2.36	2.36	2.38	1 2.43			
	Viscosity Change, %		0.0	0.8	3.0			
	Toluene Insol, 5 wt	QN	QN :	GN :	QN			
			Slight	Slight	Slight			
	Visual Appearance		Brown	Brown	Brown			
	of Deposits		Sediment	Sediment	Sediment			
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	54	84	72	96	144	192
	Weight Loss, %		0.0	0.0	0.3	† 0 †	1.7	1.7
10-76-8	COBRA Reading	9	Lħ ;	112	500	168	200	200
(q)	Total Acid No.	60.	4.19	1.2.9	10.16	8.78	13.71	15.74
190°C	Viscosity @100°C,cs	2.36	2.38	2.45	1 2.53	2.51	2.68	2.64
	Viscosity Change, %		8 0 8	3.8	7.2	₩ * 9	13.6	11.9
	Toluene Insol, % wt	ND	QN	QN	QN	QN	QN	0.02
	Visual Appearance		Coke	Coke	Coke	Coke	Coke	Coke
	of Deposits		Particles	Particles	articles Particles Particles Particles Particles	Particles	Particles	Particles
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	54	8 7 1	72	96	144	192
	Weight Loss, %		0.3	0.0	1.2	2.6	3.4	0.5
	COBRA Reading	2	184	168	200	177	157	124
(၁) 	Total Acid No.	0.09	4.98	5.92	99.8	9.14	12.48	13.86
	ပ	2.36	2.36	1 2.45	2.56	2.60	2.68	2.86
	Viscosity Change, %		0.0	3.8	8.5	10.2	13.6	21.2
	Toluene Insol, % wt	ND	0.01	10.01	0.01	0.01	0.01	0.03
~~			Black			in	Coke	Coke
,	Visual Appearance		particles	part	part	Tube	Vent Tube	Vent
	of Deposits		in oil	in oil	in Oil	and Oil	and Oil	and Oil
(a) L Raspe	Rospetoni Oil					!		

⁽a) - Basestock Oil(b) - Basestock Oil(c) - Basestock Oil

SQUIRES CONFINED HEAT TEST DATA

LUBRICANT				
AND	LUBRICANT			TEST HOURS
TEST TEMP.		New Oil	72	
	Weight Loss, %		h.0	
10-77-1	COBRA Reading	⊅	1	
	Total Acid No.	0.03	2.49	
1 205°C	Viscosity @100°C,cs	2,33	2.35	
***	Viscosity Change, %		0.8	
	Toluene Insol, % wt	QN	ND I	
			None	
	Visual Appearance			
	of Deposits			
LUBRICANT				
AND	LUBRICANT			TEST HOURS
TEST TEMP.	PROPERTY	New Oil	72	
	Weight Loss, %		0.3	
10-77-1+I	COBRA Reading	2	3	
(a)	Total Acid No.	0.03	5.44	
1 205°C	ŧσ	2.34	2.37	
	Chang		1.3	
	Toluene Insol, % wt	ND	, QN	
	Visual Appearance		None	
	of Deposits			
LUBRICANT				
; AND	LUBRICANT			TEST HOURS
TEST TEMP.	PROPERTY	New Oil	72	
	Weight Loss, %		1.8	
10-77-1+IW	COBRA Reading	3	3	
(q) 	Total Acid No.	0.13	5.33	
1 205°C	2 $^{\circ}$	2.33	2.42	
	Chang		3.9	
	Toluene Insol, % wt	ND	ND ;	
	Visual Appearance		None	
	of Deposits			
7. C				

LUBRICANI	LUBRICANT		:	TEST HOURS	
TEST TEMP	. PROPERTY	New Oil	72		
	Weight Loss, %		0.0		
10-77-1+IP	14.	10	16		
; (a)	Total Acid No.	0.02	1.20		
1 205°C		2.34	2.41		
	Viscosity Change, %		3.0		
	Toluene Insol, % wt	ND	, QN		
	Visual Appearance		none		
	sits				
LUBRICANT					
AND	LUBRICANT			TEST HOURS	
TEST TEMP	. !	New Oil	72		
	Weight Loss, %		0.2		
10-77-1+IPW		15	20		
(q)	Acio	00.00	1.85		
1 205°c	Viscosity @100°C,cs	2.46	2.39		
	Change		-2.8		
	Toluene Insol, % wt	ND	ND -		
	of Deposits		Sone Sone		
LUBRICANT					
AND	LUBRICANT			TEST HOURS	
TEST TEMP.	. PROPERTY	New Oil	72		
	Weight Loss, %		0.3		
10-77-1+P	COBRA Reading	6	27		
(°)	Total Acid No.	0.03	1.53		
1 205°C	Viscosity @100°C, cs	2.44	2,42		
	Change		-0.8		
	Toluene Insol, % wt	ND	ND !		
	•		s. s.		
	VINIAL DOCUMENT DOCUMENT	-	000	-	

⁽a) -0-77-1 plus impurities and 1% PANA (b) -0-77-1 plus impurities, 1% PANA, and water. (c) -0-77-1 plus 1% PANA

LUBRICANT	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	84	11~	96	144	192
	Weight Loss, %		7.0	0.0	9.0	0.0	0.5	1.1
UDRI 09	COBRA Reading	2	5	2	3	2	9	7
; (a)	Total Acid No.	0.14	2,16	2.93	4.18	5.92	10.27	11.05
: 205°C	Viscosity @100°C, cs	3.47	3.55	3.50	3.51	3.56	3.78	3.81
	y Change		2.3	6.0	1.2	2.6	8.9	9.8
**	Toluene Insol, % wt	ΩN	QN	QN :	QN !	QN	QN .	QN .
•••								
	Visual Appearance		None	None	None	None	None	None
LUBRICANT	STEEDER TO						-	
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	74	48		96	144	192
	Weight Loss, %		2.4	0.0	0.0	1.1	0.2	1.3
UDRI 10	COBRA Reading	2	2	77	5	5	7	10
<u>@</u>	Total Acid No.	90.0	1.56	4.15	16.97	8.28	8.89	1 9.84
1 205°C	9	3.46	3.49	3.56	3.65	3.78	3.66	3.81
	4.7		6.0	1 2.9	5.5	9.5	5.8	10.1
	Toluene Insol, % wt	ND	QN :	UD :	ND	QN I	QN -	00.00
				-				
	Visual Appearance		None	None	None	None	None	None
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	18	72	96	144	192
	Weight Loss, %		0.0	0.0	9.0	10.4	10.4	h.0
UDRI 11	COBRA Reading	3	3	5	9 !	8	10	, 26
<u> (၂</u>	Total Acid No.	0.15	1.02	2.06	4.48	6.95	9.40	10.20
1 205°C	9	3.46	3.48	3.48	3.51	3.68	3.71	3.71
	Viscosity Change, %		9.0	9.0	1.4	6.3	7.2	7.2
	Toluene Insol, % wt	QN	QN	QN	QN :	QN	QN	00.00
	Visual Appearance		None	None	None	None	None	None
•••								
(3) = 0-76	(a) - 0-76-5 w/0 054 PANA							

⁽a) - 0-76-5 w/0.05% PANA (b) - 0-76-5 w/0.1% PANA (c) - 0-76-5 w/0.15% PANA

SQUIRES CONFINED HEAT TEST DATA

LUBRICANT								
AND					TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	54	48	72	96	144	192
	Weight Loss, %		0.0	0.0	0.0	ħ*0	0.0	0.5
UDRI 12	COBRA Reading	2	3	5	5	5	7	16
(a)	Total Acid No.	0.16	0.62	1.71	1 2.42	3.62	5.45	8.10
	Viscosity @100°C,cs	3.	3.49	3.49	3.49	3.47	3.51	3.63
	Viscosity Change, 🕉		3.6	3.6	3.6	3.0	2.4	9.4
	Toluene Insol, % wt	ND	ND .	QN :	UN .:	QN :	ND .	00.00
·• .								
	Visual Appearance of Denosits		None	None	None	None	None	None
LUBRICANT						-		
AND	LUBRICANT				TEST HOURS			
TEST TEMP.		New Oil	24	847	72	96	144	192
	Weight Loss, %		0.0	0.0	0.0	0.1	7.0	1.1
UDRI 17	COBRA Reading	3	2	; 3	9 !	7	11	QN
(Q)	Total Acid No.	0.09	2.41	1 2.87	3.25	3.48	5.00	QN
. 205°C	익	3. 46	3.50	3.50	3.53	3.53	3.55	QN
	Viscosity Change, %		1.2	1.2	1 2.0	2.0	2.6	QN
•••	Toluene Insol, % wt	QN	QN	QN :	QN :	QN	90.0	QN
			None	None	None	None	None	ND
	Visual Appearance							
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.		New Oil	24	1 48	72	96		
	Weight Loss, %		0.0	0.0	0.0	0.0		
UDRI 18	COBRA Reading	3	3	1 3	7	6		
<u></u> (၁)	Total Acid No.	. 10	1.41	3.21	4.28	5.38		
; 505°C	Viscosity @100°C, cs	3.47	3.50	3.53	3.56	•		
	Viscosity Change, %		6.0	1.7	2.6	2.6		
	Toluene Insol, % wt	ND	QN	QN ;	QN !	0.01		
			None	None	None	None		
	Visual Appearance	-						
١	of Deposits							
(a) = 0.75	ANAG 20 0/4 A.							

⁽a) - 3-75-5 w/0.2% PANA (b) - 3-76-5A 0.5% PANA (c) - 3-75-5A 1.0% PANA

SQUIRES CONFINED HEAT TEST DATA

LUBRICANT							
AND	LUBRICANT				TEST HOURS		
MP.	PROPERTY	New Oil	54	\$ # t	72	144	
	Weight Loss, \$		0.3	0.0	0.0	0.5	→ 4-
_	COBRA Reading	⇉	3	9	15	29	
	Total Acid No.	. 10	1.64	1 3.64	; ₩.62	6.86	
	Viscosity @100°C, cs	3.50	3.57	3.58	3.66	3.69	
	Viscosity Change, %		2.0	2.3	9.4	2.4	
	Toluene Insol, % wt	ND	QN	QN .	QN :	0.02	
			None	None	Slight	Coke	-
	Visual Appearance				Coke	Particles	
	of Deposits						
LUBRICANT							
AND	LUBRICANT				TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	ħ2	817	12		
	Weight Loss, \$		0.0	0.0	₩.O		
UDRI 20	COBRA Reading	ħ	ħ	12	12		
	Total Acid No.	. 10	1.67	3.78	99*5		
	Viscosity @100°C, cs!	3.51	3.58	1 3.67	3.61		
	Viscosity Change, %		2.0	9*#	2.8		
	Toluene Insol, % wt	QN	ND	ND	0.02		
			None	None	Slight		
	Visual Appearance				Sediment		
	of Deposits						
LUBRICANT							
AND	LUBRICANT				TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	24	8 #	72	168	
	Weight Loss, %		0.0	ħ*0 ¦	5.0	0.0	
UDRI 13	COBRA Reading	1	5	5	9	11	
<u>ق</u> 	Total Acid No.	. 17	2.09	3.23	4.07	7.09	
; 205°C	Viscosity @100°C, cs	3.48	3.53	3.54	3.51	3.51	
	Viscosity Change, \$		1.4	1.7	6.0	6.0	
	Toluene Insol, % wt	ND	ND	QN +	ND !	ND !	
			None	None	None	None	
 .	Visual Appearance						
	of Deposits						
` '	******			i			

⁽a) - 0-76-5A 1.5% PANA (b) - 0-76-5A 2.0% PANA (c) - 0-76-5A W/0.5% DODPA

SQUIRES CONFINED HEAT TEST DATA

LUBRICANT						
H AND	LUBRICANT				TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	24	48	12 1	
	Weight Loss, \$		1.0	0.0	1 0.0	
UDRI 14	COBRA Reading	1	5	8	8	
; (a)	Total Acid No.	0.18	1.60	3.29	1 4.67	
1 205°C	Viscosity @100°C,cs	3.51	3.52	3.53	3.55	
	Viscosity Change, \$		0.3	9.0	1.1	
	Toluene Insol, % wt	ND	ND	ND !	0.02	
			None	None	None !	
 -	Visual Appearance					
TINDOTORIL	ioi peposites			-		
LUBRICANI SAND	LUBRICANT				TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	24	48	72	
	Weight Loss, %		0.0	0.1	0.2	
UDRI 15	COBRA Reading	0	8	11	11	
(q)	Total Acid No.	0.23	1.84	3.39	η.76	
1 205°C	O	3.55	3.59	3.61	3.60	
	Viscosity Change, \$		1.1	1.7	1.4	
	Toluene Insol, 8 wt	QN	QN	ND	0.02	
	Visual Appearance		None	None	None	
	of Deposits		***************************************			
LUBRICANT						
AND	LUBRICANT				TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	54	817	72	
	Weight Loss, \$		0.0	0.0	0.1	
UDRI 16	COBRA Reading	0	8	6	† † † † † † † † † † † † † † † † † † †	
(၁) 	Total Acid No.	0.15	1.78	3.58	5.57	
1 205°C	Viscosity @100°C,cs	3.61	3.59	3.62	3.65	
	90		9.0-	0.3	1.1	
	Toluene Insol, % wt	ND	ND	QN	0.03	
		-				
	Visual Appearance		None	None	None	
	of Deposits					

⁽a) - 0-76-5A w/1% DODPA (b) - 0-76-5A w/1.5% DODPA (c) - 0-76-5A w/2% DODPA

LUBRICANI	LUBRICANT			F-	TEST HOURS		!	
TEST TEMP.		New Oil	48					
	Weight Loss, \$		0.0					
UDRI 24	COBRA Reading	3	7					
(a)	Total Acid No.	0.13	4.02					
205°C	Viscosity @100°C, cs	3.52	3.62					
	Viscosity Change, \$		2.8					
	Toluene Insol, % wt	0.01	99.0					
			Heavy					
	Visual Appearance		Coke,					
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	81					
	Weight Loss, %		0.0					
UDRI 25	COBRA Reading	ħ	28					
(a)	Total Acid No.	0.10	4.90					
205 ₀ c	Viscosity @100°C,cs	3.59	3.69					
	Viscosity Change, %		2.8					
	Toluene Insol, % Wt	0.03	90.0					
	Visual Appearance		None					
	of Deposits							
LUBRICANT								
AND	LUBRICANT				TEST HOURS			
TEST TEMP.	PROPERTY	New Oil	24	48	72	96	144	192
	Weight Loss, %		0.0	0.1	9.0	1.6	1.9	7
IDRI 01	COBRA Reading	9	79	95	85	88	87	76
(o)	Total Acid No.	0.05	2.95	4.79	5.61	6.02	7.05	10.06
202°c	Viscosity @100°C, cs	2.37	2.41	1 2.44	2.47	2.51	2.52	2.54
	>		1.7	2.9	4.2	5.9	6.3	7.2
	Toluene Insol, % wt	ND	0.05	90.0	0.17	0.29	0.41	0.32
			Coke in	Coke in	Coke in	Coke in	Coke in	Coke in
	Visual Appearance		cup and	cup and	Cup and	Cup and	Cup and	Cup and
	י ישני השונים		777	770	117		7.50	

⁽a) - 0-76-5 w/2% PTZ (b) - 0-76-5 w/2% DOPTZ (c) - 0-76-8 W/0.5% PANA

SQUIRES CONFINED HEAT TEST DATA

LUBALCANI	LIBRICANT				TEST HOURS			
AND TEST TEMP	ALGUMA :	New Oil	77	48	72	96	144	192
1531 15411	Weight Loss &		0.0	0.0	0.4	0.3	1.5	1.0
CO TOOL	10	9	112	108	143	140	107	Q)
20 TUDO (a)	Total Acid No.	0.06	3.67	5.30	6.16	7.66	8.58	10.82
2000	Viscosity 8100 C. cal	2.37	2.43	2.46	2.50	2.52	2.52	2.55
202	Wiscosity Change 4:		2.5	3.8	5.5	6.3	6.3	7.6
		N.D.	60 C	0.17	0.34	0.48	0.56	0.21
	TOSUT AUGUTOTO	7.1	Coke in	Coke in	Coke in	Coke in	Coke in	Coke in
	Visual Appearance		cup and	cup and	Cup and	Cup and	Cup and	Cup and
	of Deposits		oil	oil	Oil	011	011	011
LUBRICANT					TEST HOURS			
AND	LUBRICANI	Not Oil	100	817	72	96	th L	192
IEST TEMP.	TROPERTY		0	6.0	0.3	9.0	6.0	2.0
001	Mergac Coss, A	10	138	126	142	145	109	111
כט זעמט	TOTAL MODEL	0.05	3.64	5.52	5.51	7.78	7.90	11.28
20500	Vienaity 8100°C. cs	2.38	2.45	2.48	2.51	2.55	2.53	2.56
2			2.9	4.2	5.5	1.1	6.3	7.6
] 3	QN	0.14	0.11	0.50	0.67	0.86	0.30
			Coke in	Coke in	Coke in	Coke in	Coke in	Coke in
	Visual Appearance		cup and	cup and	Cup and	cup and	Cup and	Cup and
	of Deposits		; oil	l oil	Oil	Oil	011	110
LUBRICANT								
AND	LUBRICANT			Ì	TEST HOURS		1111	00,
TEST TEMP.	PROPERTY	New Oil	24	48	72	8	- 44	132
	Weight Loss, %		0.0	0.0	8.0	7.7	7	127
UDRI 04	COBRA Reading	†	174	159	197	109	0+-	3
(e)	Total Acid No.	70.0	3.86	5.68	6.38	8.27	7.71	9.11
205°C	Viscosity @100°C, cs	2.38	1 2.45	2.50	2.52	2.54	2.58	2.61
; ;	Change.		2.9	5.0	5.9	6.7	Σ	9.
	nsol. %	ND	0.10	0.33	0.58	0.58	0.87	••
		-	Dk. Brn.	Dk. Brn.	Dk. Brn.	Dk. Brn.	Dk. Brn.	Dk. Brn.
	Visual Appearance		to Black	to Black	to Black	to Black	Coke	
	Long Donosite		3 3			2	1	

(a) - 0-75-8 4/12 PANA (b) - 0-76-8 W/1.5% PANA (c) - 0-76-8 W/2.0% PANA

SQUIRES CONFINED HEAT TEST DATA

LUBRICANT						
AND	LUBRICANT				TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	24	48	72 1	
	Weight Loss, %		0.3	0.3	ነ ተ 0	
UDRI 05	COBRA Reading	2	200	200	500 1	
(a)	Total Acid No.	.01	3.95	5.24	7.08	
1 205°C	Viscosity @100°C, cs	2.37	2,42	1 2.45	2.51	
	Change,		2.1	3.4	5.9	
	usol, % w	ΩN	0.02	10.01	1 0.01	
			Coke	Coke	Coke	
	Visual Appearance		Particles	Particles Particles Particles	Particles	
	of Deposits					
LUBRICANT						
AND	LUBRICANT :				TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	77	84	72	
	Weight Loss, \$		0.1	9.0	1 0.3	
UDRI 06	COBRA Reading	3	200	200	200	
(a)	Total Acid No.	.02	3.84	5.83	1.08	
1 205°C	Viscosity @100°C, cs	2.37	2.44	1 2.51	2.56	
	Viscosity Change, %		2.9	5.9	8.0 1	
	Toluene Insol, % wt	ND	00.00	0.16	1 0.00	
** **			Coke	Coke	Coke ! !	
	Visual Appearance		Particles	Particles Particles Particles	'Particles'	
	of Deposits					
LUBRICANT					,	
AND	LUBRICANT				TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	54	C 78	72 ;	
	Weight Loss, %		0.0	0.8	; h*0;	
UDRI 07	COBRA Reading	5	200	200	200	
(၁)	Total Acid No.	ή0.	4.03	5.55	1.38 ; ;	
1 205°C	Viscosity @100°C,cs	2.41	2.45	2.53	2.56	
	hange		1.6	5.0	6.2	
		ND	00.00	0.02	0.01	
				Coke	Coke	
	Visual Appearance		None	Particles	Particles Particles	
	of Deposits					
(a) - 0-76 (b) - 0-76	0-76-8 w/0.5% DODPA 0-76-8 w/1.0% DODPA					
1						

SQUIRES CONFINED HEAT TEST DATA

LUBRICANT						
AND	LUBRICANT			•	TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	74	48	72	
	Weight Loss, %		0.1	0.1	↑ n°0	
	COBRA Reading	3	200	200	200	
(a)	Total Acid No.	• 05	4.31	5.66	7.32	
	וניו	2.43	2.50	2.54	2.59	,
	Viscosity Change, %		2.9	4.5	9.9	
	Toluene Insol, % wt	ND	00.00	0.00	0.00	
				Coke	Coke	
	Visual Appearance		None	Particles	Particles Particles	
	oi Deposits					
LUBRICANT						
AND					TEST HOURS	
TEST TEMP.	PROPERTY	New Oil	817			
	Weight Loss, \$		0.3			
UDRI 26	COBRA Reading	6	120			
(q) 	Total Acid No.	0°0	5.75			
1 205°C	Viscosity @100°C,cs	2.39	1 2.47			
	Viscosity Change, %		3.3			
	Toluene Insol, % wt	0.01	0.10			
			Purple			
	Visual Appearance		Oil, Much			
	of Deposits		Coke			
LUBRICANT						
AND	LUBRICANT				TEST HOURS	
TEST TEMP.	PROPERTY	Ner Oil	48			
	Weight Loss, %		h*0			
	COBRA Reading	9	200			
(o)	Total Acid No.	0.03	6.15			
	Viscosity @100°C, cs	2,45	2.56			
	Viscosity Change, %		4.5			
		0.02	0.03			
			Slight			
	Visual Appearance		Sediment			
	of Deposits					
41. ((c)	A CANDA					

⁽a) - 3-76-8 w/2.0% DODPA (b) - 3-76-8 w/2% PTZ (c) - 3-76-8 w/2% DOPTZ

LUBRICANT							
CNA					TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	48				
	Weight Loss, %		0.0				
UDRI 28	COBRA Reading	11	100				
(a)	Total Acid No.	0.04	1.82				
ე ₂ 92 :	Viscosity @100°C, cs	2.37	2.60				
			9.7				
	Toluene Insol, % wt	0.02	0.02				
			Coke, 0il				
	Visual Appearance		Brownish-				
	of Deposits		Red				
LUBRICANT							
AND	LUBRICANT			Ì	TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	817				
	Weight Loss, %		9.0				
UDRI 29	COBRA Reading	5	917				
(a)	Total Acid No.	0.03	2.84				
205°C	್ಷ	2,42	2.44				
	Viscosity Change, %		0.8				
	Toluene Insol, % wt	0.01	0.03				
			Slight				
	Visual Appearance		Sediment				
	of Deposits						
LUBRICANT							
AND	LUBRICANT				TEST HOURS		
TEST TEMP.	PROPERTY	New Oil	25	48	72	96	
	Weight Loss, %		0.0	0.0	0.0	0.0	
UDRI 22	COBRA Reading	3	† †	10	11	15	
(o)	Total Acid No.	80.	2,42	3.96	5.09	6.28	
502c		5.51	3.57	3.64	3.64	3.57	
	Change		1.7	3.7	3.7	1.7	
	Toluene Insol, % wt	ND	I QN	ND	ON :	0.03	
			None	None	None	None	
	Visual Appearance						
	or Deposits				-		-

⁽a) - 0-77-1 w/2% PTZ (b) - 0-77-1 w/2% D0PTZ (c) - 0-75-5A w/ 1% PANA + 1% D0DPA

LUBRICANT	CANT								
	5	LUBRICANT				TEST HOURS			
TEST	TEMP.		New Oil	54	48	1 72			
		ப		0.1	0.1	9.0			
INDRI	21	Read	6	200	200	200			
(a)	~	Total Acid No.	.02	01 7	5.54	6.56			
1 205°	ပ	@100°C, c	7	2.46	1 2.51	2.56			
		Viscosity Change, %		2.1	t.4	6.2		-	
		nsol, % w	ND	UN :	QN 	0.13	 		
				Black	Black	Black	-	-	
		Visual Appearance		Coke	Coke	Coke			
) Jagil I	TWA	ioi peposita		•	<u>-</u> -				
LUBALCANI	CANI	T.I.BRICANT				TECT HOLLDS			
TEST	TEMP	**************************************		30	011			100	ľ
		Weight Loss &	TTO MON	60	700	2)	900	801	240
LIDEL	23	100	6	13	21-	82		2.6	- -
_) ~		200	20 30	78 0	, 2 211	2 -1	90	-
	، د	91000	35.5			2.5.7		4.13	0
002 -	د	0 1 00 l a	2.35	2.40	2.40	2.50	2.45	2.46	2.51
· • •		cy Change,		2.1	2.1	ħ.9	4.3	7.4	0.8
••••		Toluene Insol, % wt	ΩN	ΩN	QN	Q 	QN 	QN	0.02
		•		None	None	None	None	Slight	Slight
•		Visual Appearance						Stain	Stain
LUBRICANT	CANT					-	-		
AND	Ω	LUBRICANT				TEST HOURS			
TEST TEMP	TEMP.	PROPERTY	New Oil						
-~ .		Weight Loss, %							
		Read							
 .		o Po					!		
		0100°C,							
		cy Change					-		
		Toluene Insol, % wt							
· • -		•			 -				
	-	Visual Appearance		•••					

AFAPL STATIC COKER TEST DATA

Test								
NO.	Sample	Coker No.	Test Temp.	Test Time min.	Type Test Specimen	Sample Size	Deposit mg/gm Oil	Description of Deposit
1	0-79-163	-	315	180	Shia Stock	8696.0	11.9	Hard black smooth wavy deposit
2	0-79-16J	2	315	180	Shi# Stock	0.9820	14.3	Hard black smooth wavy deposit. Small area of flaky residue
3	0-79-16J	3	315	180	Shim Stock	0.8399	13.0	Hard black smooth wavy deposit
•	0-79-16J	4	315	180	Shim Stock	0.9320	13.2	Hard black smooth wavy deposit
26	0-79-16J	1	315	180	Shim Stock	0.9514	13.6	Hard black smooth wavy deposit
9	0-79-16J	2	315	180	Shim Stock	0.9880	14.9	Hard black smooth wavy deposit
7	0-79-163	3	315	180	Shim Stock	0.9784	11.7	Hard black smooth wavy deposit
8	0-79-16J	4	315	180	Shim Stock	0.9229	t	Seal leaked. Much less residue
6	0-79-16J	1	315	180	Shim Stock	0.9193	12.2	Hard black smooth wavy deposit
10	0-79-163	2	315	180	Shim Stock	0.9326	13.3	Hard black smooth wavy deposit
1.1	0-79-163	3	315	180	Shim Stock	0.9761	15.4	Hard black smooth wavy deposit
1.2	0-79-16J	•	315	180	Shim Stock	0.9517	15.0	Hard black smooth wavy deposit

AFAPL STATIC COKER TEST DATA

ACCOUNT TO SOME THE PROPERTY OF THE PARTY OF

Test No.	Sample	Coker No.	Test Temp.	Test Time min.	Type Test Specimen	Sample Size	Deposit mg/gm Oil	Description of Deposit
13	0-79-163	1	315	180	Shim Stock	9606.0	13.5	Hard glossy black smooth wavy deposit
14	0-79-163	2	315	180	Shim Stock	9696.0	15.9	Hard glossy black smooth wavy deposit
15	0-79-163	æ	315	180	Shim Stock	0.9657	12.8	Hard glossy black smooth mavy deposit
16	0-79-16J	•	315	180	Shim Stock	0.9290	15.0	Hard glossy black smooth wavy deposit
17	0-79-16J		315	180	Shim Stock	0.4898	10.0	Hard glossy black smooth deposit uniform coverage
18	0-79-163	2	315	180	Shi# Stock	0.4415	9.7	Hard glossy black smooth deposit, not uniform coverage
19	0-79-163	М	315	180	Shim Stock	0.4724	9.3	Hard glossy black smooth deposit
20	0-79-163	4	315	180	Shim Stock	0.4969	15.3	Hard glossy black smooth deposit. Specimen weight suspect
21	0-79-163	1	315	180	Shi m Stock	0.7343	13.4	Hard glossy black smooth deposit
22	0-79-163	2	315	180	Shi m Stock	0.6916	11.7	Hard glossy black smooth deposit
23	0-79-16J	м	315	180	Shim Stock	0.7306	11.2	Hard glossy black smooth deposit
24	0-79-16J	4	315	180	Shim Stock	0.7046	12.5	Hard glossy black smooth deposit

AFAPL STATIC COKER TEST DATA

Test Test Type Sample Deposit Description of Deposit Test Size mg/gm Oil Description of Deposit OC min. Specimen on	180 Shim 0.	315 180 Shim 0.7462 16.4 wavy deposit. Seal not cleaned	315 180 Shim 0.7453 16.9 wavy deposit. Seal not cleaned	315 180 Shim 0.7241 19.1 Wavy deposit. Seal not cleaned	315 180 Stock 0.7424 13.3 Hard glossy black smooth wavy deposit	315 180 Stock 0.7178 15.3 Hard glossy black smooth wavy deposit	315 180 Stock 0.7501 14.5 Hard glossy black smooth wavy deposit	315 180 Shim 0.7425 14.5 Hard glossy black smooth mavy deposit	315 180 Stock 0.5099 10.6 Hard glossy black smooth Hard glossy black smooth	315 180 Stock 0.5025 12.5 Hard glossy black smooth Mavy deposit	315 180 Stock 0.4579 12.2 Hard glossy black smooth May deposit	The Shift of the Control of the Cont
Test Time min.	180											15 180
Coker Ter	1 3	2 3	ю	φ Σ	3.	2 31	3 31	4 35	1 3	2 35	3 3	4
Sample	0-79-16J	0-79-163	0-79-163	0-79-163	0-79-163	0-79-16J	0-79-163	0-79-16J	0-79-163	0-79-163	0-79-163	0-79-16.1
Test No.	25	26	27	28	29	30	31	32	33	3.4	35	36

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard glossy black smooth wavy depsoit. Sum on seal	Hard glossy black smooth wavy deposit. Gum on seal	Hard glossy black smooth wavy deposit. Gum on seal	Hard glossy black smooth wavy deposit. Bum on seal	Hard glossy black smooth wavy deposit. Gum on seal	Hard glossy black smooth wavy deposit. Gum on seal	Hard glossy black smooth wavy deposit. Gum on seal	Hard glossy black smooth wavy deposit. Sum on seal	Hard glossy black smooth wavy deposit. Gum on seal	Hard glossy black smooth wavy deposit. Bum on seal	Mard glossy black smooth wavy deposit. Gum on seal	Hard glossy black smooth wavy deposit. Seal had oil in vent holes
Deposit mg/gm Oil	13.7	11.2	10.8	13.2	16.4	18.6	12.9	17.3	11.6	17.5	17.6	17.7
Si 2 & C	0.4662	0.4632	0.4623	0.4333	1.4817	1.4772	1.4589	1.4135	1.4534	1.4492	1.4466	1.3722
Type Test Specimen	Shim Stock	Shim Stock	Shi a Stock	Shim Stock	Shim Stock	Shi s Stock	Shia Stock	Shim Stock	Shi m Stock	Shi s Stock	Shim Stock	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Test Oc	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	-	2	м	4	1	2	м	4		2	м	4
Sample	0-79-16J	0-79-163	0-79-163	0-79-163	0-79-163	0-79-163	0-79-16J	0-79-163	0-79-16J	0-79-163	0-79-16J	0-79-163
Test No.	37	38	39	04	14	42	43	44	45	46	47	88

AFAPL STATIC COKER TEST DATA

	Description of Deposit	Hard black glossy deposit. Seal "Carb-N-clean"	ם ו	Hard black glossy deposit. Seal "Carb-N-clean"	Hard black glossy deposit. Seal "Carb-N-clean"	Hard black glossy wavy deposit	Hard glossy black wavy deposit.	Hard glossy black wavy deposit	Hard glossy black wavy deposit	Hard glossy black wavy deposit			
E	Deposit mg/gm Dil	4.7	16.1	13.2	15.2	17.1	18.5	16.7	16.5	12.5	16.7	15.4	16.9
ו בפו השום	Sample Size	0.9818	0.9851	0.9685	0.9431	0.9779	0.9232	0.9708	0.9291	0.9512	0.9551	0.9596	0.9403
SIMILE CONEN	Type Test Specimen	Shim Stock	Shi a Stock	Shim Stock	Shi m Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shi m Stock	Shim Stock	Shim Stock
	Test Time	180	180	180	180	180	180	180	180	180	180	180	180
	Test Temp.	315	315	315	315	315	315	315	315	315	315	315	315
	Coker No.	1	2	2	4	1	2	ы	4	1	2	ы	4
	Sample	0-79-163	0-79-163	0-79-163	0-79-163	0-82-14	0-82-14	0-82-14	0-82-14	0-82-3	0-82-3	0-82-3	0-82-3
	Test No.	49	50	51	52	53	54	55	56	57	58	29	09

AFAPL STATIC COKER TEST DATA

180 Shim 1.2133 17.7 Hard Stock 1.2096 14.9 Hard 180 Shim 1.1654 16.9 Hard 5tock 1.2699 16.1 Hard 5tock 1.2699 16.1 Hard 5tock 1.2681 14.5 Hard 5tock 1.2681 14.5 Hard 120 Shim 0.7477 14.4 depo 6tock 5tock 0.7477 14.4 depo 6tock 5tock 0.7477 14.4 depo 6tock 5tock 0.7143 12.5 depo 6tock 5tock 0.7143 12.5 depo	Coker No.		Type	Sample Size	Deposit mg/gm Dil	
180 Shim 1.2096 14.9 Hard glossy black deposit 180 Shim 1.2699 16.1 Hard glossy black deposit deposit 180 Shim 1.2699 16.1 Hard glossy black deposit 180 Shim 1.2162 15.7 Hard glossy black deposit 180 Shim 1.2162 15.7 Hard glossy black deposit 180 Shim 0.8415 9.5 Hard glossy black deposit 180 Shim 0.7477 14.4 deposit. Small 180 Shim 0.7688 13.0 deposit. Small 180 Shim 0.7143 12.5 deposit.	- ,	315 180		1.2227	9.7	glossy black deposit
180 Shim 1.1654 16.9 Hard glossy black deposit 250ck 1.2699 16.1 Hard glossy black deposit 350ck 1.2761 17.2 Hard glossy black deposit 350ck 1.2162 15.7 Hard glossy black deposit 350ck 0.8415 9.5 deposit 5eal cle 350ck 0.7477 14.4 deposit 5eal cle 350ck 0.7477 14.4 deposit 5eal cle 350ck 0.7487 15.0 deposit 5eal cle 350ck 0.7488 13.0 deposit 5eal cle 350ck 0.7483 12.5 deposit 5eal cle				1.2096	14.9	glossy black glossy black
180 Shim 1.2699 16.1 Hard glossy black deposit 180 Shim 1.2761 17.2 Hard glossy black deposit 180 Shim 1.2162 15.7 Hard glossy black deposit 180 Shim 0.8415 9.5 Hard glossy black deposit 120 Shim 0.7477 14.4 deposit Seal cle with VM&P 120 Shim 0.7688 13.0 deposit Seal cle with VM&P 120 Shim 0.7688 13.0 deposit Seal cle with VM&P 120 Shim 0.7688 13.0 deposit Seal cle with VM&P 120 Shim 0.7477 14.4 deposit Seal cle with VM&P 120 Shim 0.7488 13.0 deposit Seal cle with VM&P 120 Shim 0.7443 12.5 deposit Seal cle with VM&P 120 Shim 0.7443 12.5 deposit Seal cle with VM&P 120 Stock 0.7443	4 K	315 180		1.1654	16.9	glossy black deposit
180 Shim stock 1.2761 17.2 Hard glossy black deposit 180 Shim stock 1.2162 15.7 Hard glossy black deposit 120 Shim stock 0.8415 9.5 deposit Seal cle with VM&P Hard glossy black deposit 120 Shim stock 0.7477 14.4 deposit Seal cle with VM&P Hard glossy black deposit 120 Shim stock 0.7688 13.0 deposit Seal cle with VM&P Hard glossy black deposit 120 Shim stock 0.7143 12.5 deposit Seal cle with VM&P Hard glossy black deposit	1 3)	315 180		1.2699	16.1	glossy black deposit
180 Shim 1.2681 14.5 Hard glossy black deposit 180 Shim 0.8415 15.7 Hard glossy black deposit. Seal cle with VM&P Hard glossy bla cle stock 0.7477 14.4 deposit. Seal cle with VM&P Hard glossy bla stock 0.7477 14.4 deposit. Seal cle with VM&P Hard glossy bla stock 0.7143 12.5 deposit. Seal cle with VM&P Hard glossy bla stock 0.7143 12.5 deposit. Seal cle with VM&P Hard glossy bla stock 0.7143 12.5 deposit. Seal cle with VM&P Hard glossy bla with VM&P Hard glossy bla stock 0.7143 12.5 deposit. Seal cle	2 315			1.2761	17.2	glossy black deposit
180 Shim 1.2162 15.7 Hard glossy black deposit. Seal cle with VM&P Hard glossy black Stock 0.7477 14.4 deposit. Seal cle with VM&P Hard glossy black Stock 0.7488 13.0 deposit. Seal cle with VM&P Hard glossy black Stock 0.7143 12.5 deposit. Seal cle with VM&P Hard glossy black Stock 0.7143 12.5 deposit. Seal cle with VM&P Hard glossy black stock 0.7143 12.5 deposit. Seal cle	3 315			1.2681	14.5	glossy black deposit
120 Shim 0.8415 9.5 deposit. Seal with VMs 120 Shim 0.7477 14.4 deposit. Seal with VMs 120 Shim 0.7688 13.0 deposit. Seal stock 0.7143 12.5 deposit. Seal with VMs Hard glossy 120 Shim 0.7143 12.5 deposit. Seal with VMs Hard glossy 120 Shim 0.7143 12.5 deposit. Seal with VMs 120 Stock 0.7143 12.5 deposit. Seal	4 315			1,2162	15.7	glossy black deposit
120 Shim 0.7477 14.4 deposit. Seal mith yMa	1 315			0.8415	9.5	
120 Shim 0.7688 13.0 deposit. Seal cleane with VM&P 120 Shim 0.7143 12.5 deposit. Seal cleane with VM&P Hard glossy black with VM&P	2 315			0.7477	14.4	Seal Seal
120 Shim 0.7143 12.5 deposit. Seal cleane with VM&P	3 315			0.7688	13.0	lossy black Seal cleane th VM&P
	4 315			0.7143	12.5	lossy black Seal cleane th vm&P

AFAPL STATIC COKER TEST DATA

Test No.	Sample	Coker No.	Test Tesp.	Test Time min.	Type Test Specimen	Sample Size ga	Deposit mg/gm Oil	Description of Deposit
73	0-79-16J	1	315	120	Shim Stock	0.7761	12.5	Hard black smooth wavy deposit, Seal sticky
7.4	0-79-163	2	315	120	Shim Stock	0.7957	13.4	Seal
75	0-79-163	ы	315	120	Shim	0.7890	14.1	~ co
76	0-79-163	+	315	120	Shim Stock	0.7168	•	Problem with seal
77	0-79-163	1	315	09	Shim Stock	0.9814	12.5	Hard black smooth wavy deposit. Seal very sticky
78	0-79-16J	2	315	09	Shim Stock	0.9943	15.0	Mard black smooth wavy deposit. Seal very sticky
79	0-79-16J	3	315	09	Shim Stock	0.9878	12.6	Hard black smooth wavy deposit. Seal very sticky
80	0-79-163	4	315	09	Shim Stock	0.9622	17.7	Hard black smooth wavy deposit. Seal very sticky
81	0-82-3	1	315	180	Shi m Stock	0.9622	12.7	Hard Black smooth wavy deposit.
82	0-82-3	2	315	180	Shim Stock	0.9586	17.0	Hard black smooth wavy deposit.
83	0-82-3	3	315	180	Shim Stock	0.9570	13.3	Hard black smooth wavy deposit.
84	0-82-3	4	315	180	Shim Stock	0.9079	13.4	Hard black smooth wavy deposit.

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard glossy black smooth wavy deposit.	Hard glossy black smooth wavy deposit.	Hard glossy black smooth wavy deposit.	Hard glossy black smooth wavy deposit.	Incomplete coverage. Hard black glossy deposit.	Incomplete coverage. Hard black glossy deposit,	Incomplete coverage. Hard black glossy deposit.	Incomplete coverage. Hard black glossy deposit.	Hard semiglossy black wavy deposit.	Hard semiglossy black wavy deposit.	Hard semiglossy black wavy deposit.	Hard semiglossy black wavy deposit.
Deposit mg/gm Dil	11.4	14.0	11.0	12.3	9.5	12.1	7.0	14.6	11.3	13.4	8.2	11.3
Sample Size	0,9613	0.9715	0.9750	0.9221	0.9828	0.9871	0.9900	0.9540	0.9795	0.9821	0.9915	0.9485
Type Test Sperieen	Shis Stock	Shim Stock	Shim Stock	Shim Stock	Aluminum	Aluminum	Aluminum	Aluminum	SS	SS	SS	SS
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Tesp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	1	2	ъ	4	1	2	м	4	1	2	м	4
Samp]e	0-82-2	0-82-2	0-82-2	0-82-2	0-79-163	0-79-163	0-79-163	0-79-163	0-79-163	0-79-163	0-79-16J	0-79-163
Test No.	82	98	28	88	68	06	91	62	93	9.4	95	96

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard semiglossy wavy deposit.	Hard black non-uniform coverage deposit,	Hard black wavy glossy deposit.	Hard black wavy glossy deposit.	Hard black wavy glossy deposit.	Hard black wavy glossy deposit.						
Deposit mg/gm Oil	10.8	14.0	10.4	10.2	5.7	11.7	8.3	8.2	7.5	13.7	9.0	13.7
Sample Size	0.9910	1.0067	1.0135	0.9772	0.9993	0.9995	0.9950	0.9632	1.0158	1.0071	1.0173	0.9707
Type Test Specimen	SS	SS	SS	SS	Aluminum	Aluminum	Aluminum	Aluminum	Shim Stock	Shim Stock	Shis Stock	Shim Stock
Test Time min.	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.		2	м	•	-	2	٣	4	1	2	٤	4
Sample	0-79-163	0-79-163	0-79-163	0-79-163	0-79-163	0-79-163	0-79-163	0-79-163	0-79-17E	0-79-17E	0-79-17E	0-79-17E
Test No.	46	86	66	100	101	102	103	104	105	106	107	108

AFAPL STATIC COKER TEST DATA

Deposit	glossy											
Description of Dep	Hard black wavy gl deposit.											
Deposit mg/gm Dil	7.8	16.2	12.3	15.7	14.0	16.3	14.3	16.2	13.8	16.9	14.0	16.3
Sample Size	0,9853	0.9910	0.9371	0.9826	0.9875	0.9794	0.9793	0.9556	1.0092	1.0004	0.9872	1.0136
Type Test Specimen	Stock Stock	Stim	Shi. Stock	Shim Stock	Shim Stock	Shim Stock	Shis	Shim Stock	Shim Stork	Shim Stock	Shim Stock	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	1	2	r	4	1	2	٤	þ	1	2	٤	4
Sample	0-79-20	0-79-20	0-79-20	0-79-20	0-82-2	0-82-2	0-82-2	0-82-2	0-82-2	0-82-2	0-82-2	0-82-2
Test No.	109	110	111	112	113	114	115	116	117	118	119	120

AFAPL STATIC COKER TEST DATA

ب ا	<u>></u>	> us	<u>></u>	<u>></u>	<u>></u>	>						
Description of Deposit	Hard black wavy glossy deposit.	Hard black wavy gloss deposit.	Hard black wavy glossy Deposit									
Deposit mg/gm Oil	13.8	16.3	13.7	14.7	11.9	15.6	12.0	13.6	10.8	12.8	10.1	11.7
Sample Size	1.0144	0.9775	0.9962	0.9718	1.0266	6666.0	0.9917	0.9750	0.9978	0.9993	0.9975	0.9687
Type Test Specimen	Shim Stock	Shim Stock	Shi# Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shia Stock	Shi a Stock	Shim Stock	Shim Stock	Shim Stock
Test Time min.	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	300	300	300	300
Coker No.	1	7	ы	4		2	м	4	-	2	м	4
Sample	0-79-20C	0-79-200	0-79-200	0-79-200	079-17E	0-79-17E	0-79-17E	0-79-17E	0-79-163	0-79-163	0-79-16J	0-79-163
Test No.	121	122	123	124	125	126	127	128	129	130	131	132

AFAPL STATIC COKER TEST DATA

						F .		
Test No.	Sample	Coker No.	Test Temp. Oc.	Test Time	Type Test Specimen	Size Size	Deposit mg/gm Dil	Description of Deposit
133	0-79-163		300	180	Shim Stock	0.9923	11.8	Hard black wavy glossy Deposit
134	0-79-163	2	300	180	Shi a Stock	0.9805	13.3	Hard black wavy glossy Deposit
135	0-79-163	м	300	180	Shis	0.9881	12.3	Hard black wavy glossy Deposit
136	0-79-163	4	300	180	Shia Stock	1.0039	13.8	Hard black wavy glossy Deposit
137	0-79-16J	-	300	180	Shia Stock	0.9786	13.1	Hard black wavy glossy Deposit
138	0-79-163	2	300	180	Shi s Stork	0.9852	15.9	Hard black wavy glossy Deposit
139	0-79-163	ы	300	180	Shia Stock	0.9885	13.6	Hard black wavy glossy Deposit
140	0-79-16J	4	300	180	Shi s Stock	0.9855	13.5	Hard black wavy glossy Deposit
141	0-79-17E	1	300	180	Shi s Stork	9866.0	13.0	Hard black wavy glossy Deposit
142	0-79-17E	2	300	180	Shim Stock	1.0330	14.0	Hard black wavy glossy Deposit
143	0-79-17E	м	300	180	Shim Stock	1.0034	10.7	Hard black wavy glossy Deposit
144	0-79-17E	4	300	180	Shim Stock	1.0065	13.4	Hard black wavy glossy Deposit

AFAPL STATIC COKER TEST DATA

Test No.	Samp le	0.05 0.05 0.05		Test Time	Something Someth	Size Size	Deposit mg/gm Oil	Description of Deposit
145	0-79-200	-	300	180	Shim Stock	0.9733	13.8	Hard black wavy glossy Deposit
146	0-79-200	2	300	180	Shi n Stock	0.9948	17.0	Hard black wavy glossy Deposit
147	0-79-200	п	300	180	Shim Stock	0.9629	14.8	Hard black wavy glossy Deposit
148	0-79-200	*	300	180	Shim Stock	1.0064	15.6	Hard black wavy glossy Deposit
149	0-82-2		300	180	Shi# Stock	0.9974	14.4	Hard black wavy glossy Deposit
150	0-82-2	2	300	180	Shi a Stock	0.9965	16.9	Hard black wavy glossy Deposit
151	0-82-3	м	300	180	Shim Stock	0.9644	13.3	Hard black wavy glossy Deposit
152	0-82-3	*	300	180	Shim Stock	0.9905	16.1	Hard black glossy wavy Deposit
153	0-82-140		300	180	Shi a Stock	0.9703	12.1	Hard black wavy glossy Deposit
154	0-82-140	2	300	180	Shim Stock	0.9875	15.8	Hard black wavy glossy Deposit
155	0-82-140	2	300	180	Shim Stock	0.9252	17.3	Hard black wavy glossy Deposit
156	0-82-140	4	300	180	Shim Stock	0.9799	16.6	Hard black wavy glossy Deposit

AFAPL STATIC COKER TEST DATA

				:				
Test No.	Sample	Coker No.	Test Temp.	Test Time Min.	Type Test Specimen	Sample Size	Deposit mg/gm Oil	Description of Deposit
157	0-79-163	1	260	180	Shim Stock	1.0350	16.6	Mavy glossy brown varnish
158	0-79-163	2	260	180	Shim	1.0109	16.2	Mavy glossy brown varnish
159	0-79-17E	n	260	180	Shim Stock	1.0183	14.4	Mavy glossy brown varnish
160	0-79-17E	•	260	180	Shim Stock	1.0483	12.4	Mavy glossy brown varnish
161	0-79-20	1	260	180	Shim Stock	1.0276	22.1	Mavy glossy brown varnish to black deposit
162	0-79-20	2	260	180	Shim Stock	1.0353	23.2	Mavy glossy brown varnish to black deposit
163	0-82-2	3	260	180	Shin Stock	1.0062	23.2	Mavy glossy brown varnish
164	0-82-2	*	260	180	Shi# Stock	1.0352	24.8	Mavy glossy brown varnish
165	0-82-3	-	260	180	Shim Stock	0.9573	14.9	Smooth glossy dark brown deposit
166	0-82-3	2	260	180	Shim Stock	0.9685	20.5	Smooth glossy dark brown deposit
107	0-82-14	3	260	180	Shim Stock	1626.0	14.8	Flaky black coke to light dark brown varnish
168	0-82-14	•	092	180	Shi# Stock	0.9158	15.1	Flaky black coke to light dark brown varnish

AFAPL STATIC COKER TEST DATA

		Coker	Test	•	Type	ļ	Deposit	
9 1 de 9 5		No.	- 20 C	910.	Specioen	9126	mg/gm Dil	
0-79-16 24 hrs. 0x 205 C			315	180	Shim Stock	0.9647	20.5	Hard black smooth mavy deposit
24 hrs. 0x 205 C	<u></u>	2	315	180	Shim Stock	0.9669	23.7	Hard black smooth mavy deposit
0-82-14 24 hrs. 0x 205 C		~	315	001	Shi a Stock	0.9334	28.2	Mard black flaky deposit
0-82-14 24 hrs. 0x 205 C		-	315	180	Shi a Stock	0.9014	29.1	Hard black flaky deposit
0-79-16 48 hrs. 0x 205 C		1	315	180	Shim	1.0606	24.3	Mard black glossy deposit
0-79-16 48 hrs. Ox 205 C		2	315	087	Shi a Stock	1.0572	30.9	Hard black glossy deposit
0-82-14 48 hrs. 0x 205 C		3	315	180	Shi s Stock	0.9531	34.8	Mard black flaky deposit
0-82-14 48 hrs. 0x 205 C		•	315	180	Shim	0.9642	35.7	Hard black flaky deposit
0-79-16 48 hrs. 0x 205 C			315	180	Shi a Stock	0.9504	25.6	Hard black glossy deposit
0-79-16 48 hrs. 0x 205 C		2	315	180	Shim	1.0512	25.0	Hard black glossy deposit
0-79-17 24 hrs. 0x 205 C		3	315	180	Shim Stock	1.0734	21.2	Hard black glossy wavy deposit
0-79-17 24 hrs. 0x 205 C		-	315	180	Shim Stock	0.9979	21.1	Hard black glossy mavy deposit

AFAPL STATIC COKER TEST DATA

				<u> </u>	1		T	<u> </u>		<u> </u>	Γ	
Description of Deposit	Hard black smooth glossy mavy deposit	Hard black smoothh glossy mavy deposit	Hard black smooth glossy wavy deopsit	Hard black smooth glossy wavy deposit. Thinner at edges	Hard black smooth glossy wavy deposit. Thinner at edges	₹ <u>₹</u>	Hard black smooth glossy wavy deposit	Hard black smooth glossy mavy deposit	Hard black smooth glossy wavy deposit			
Deposit mg/gm Oil	24.6	28.7	19.6	20.6	23.9	24.8	31.9	33.0	18.3	22.0	25.2	27.6
Sample Size	0.9764	0.9495	0.9644	0.9286	0.9534	0.9845	0.8786	0.9180	0.9544	0.9558	0.9638	0.9152
Type Test Specimen	Shim Stock	Shi e Stock	Shi# Stock	Shia Stock	Shie Stock	Shie	Shim Stock	Shim Stock	Shim Stock	Shim	Shim Stock	Shim
105t	240	240	240	240	180	18 0	180	180	180	081	180	081
Test Tesp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	1	2	m	•	-	2	m	*	,	C4	M	•
Sasp] e	0-79-20 24 hrs. 0x 201 C	0-79-20 24 hrs. Ox 201 C	0-82-2 24 hrs. 0x 205 C	0-82-2 24 hrs. 0x 205 C	0-79-20 24 hrs. 0x 201 C	0-79-20 24 hrs. 0x 201 C	0-82-14 24 hrs. 0x 205 C	0-82-14 24 hrs. 0x 205 C	0-82-2 24 hrs. 0x 205 C	0-82-2 24 hrs. 0x 205 C	1 .	0-82-3 24 hrs. 0x 205 C
Test No.	181	182	183	184	185	186	187	188	189	061	191	192

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black smooth glossy wavy deposit	Hard black smooth glossy wavy deposit	Hard black smooth glossy wavy deposit	Hard black smooth glossy mavy deposit	Hard black smooth glossy wavy deposit	Hard black smooth glossy wavy deposit	Hard black smooth wavy deposit. Flaky on one edge.	Hard black smooth wavy deposit. Flaky on one edge.
Deposit mg/gm Oil	24.2	28.4	27.1	30.8	23.8	28.7	23.8	23.0	24.8	27.5	31.7	35.1
Sample Size	0.9890	0.9524	0.9770	0.9349	1.0504	1.0478	1.0331	9058.0	08/6.0	0.9350	0.9442	0.9595
Type Test Species	Shi# Stock	Shim Stock	Shi s Stock	Shim Stock	Shi s	Shi s Stock	Shim	Shim Stock	Shim Stock	Shim Stock	Shim Stork	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
4 6 00 00 00 00 00 00 00 00 00 00 00 00 0	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	_	2	м	•	-	2	3	4	-	2	۲	4
Sample.	0-79-20 24 hrs. 0x 205 C		0-79-20 48 hrs. 0x 205 C	0-79-20 48 hrs. 0x 205 C			0-79-17 48 hrs. 0x 205 C	11.		0-82-2 48 hrs. 0x 205 C	0-82-3 48 hrs. 0x 205 C	
Test No.	193	194	195	196	197	198	661	200	201	202	203	204

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard dull black thin smooth deposit	Hard dull black thin smooth deposit	Hard black glossy wavy "orange peel" deposit	Hard black glossy wavy "orange peel" deposit	Hard black glossy smooth deposit	Hard black glossy smooth deposit	Hard black shiny savy "orange peel" deposit	Hard black shiny wavy orange peel" deposit	Slight shine matte grainy toward edges non-wavy debosit	Slight Shine matte grainy toward edges non-wavy deposit
Deposit ng/gm Oil	21.6	26.7	ы. Б.	, d	20.4	17.4	6.3	6.2 H	18.9	15.9	11.9	12.2
Sample Size	0.9977	0.9927	0.9566	0.9723	0.9853	1.0013	0.9663	0.9685	0.9780	0.9790	0.9678	0.9700
Type Test Specimen	Shim	Shim	Shim Stock	Shim	Shis	Shi s Stock	Shi a Stock	Shi a Stock	Shia	Shi s Stock	Shim Stock	Shim Stock
Test Time Min.	180	180	180	180	180	180	180	180	180	180	180	180
Test Tesp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	1	2	3	•	1	2	-	2		2	r	4
Saaple	0-76-5A Basestock 011	0-76-5A Basestock Oil	0-76-8 Basestock 011	0-76-8 Basestock 0il	0-76-5A 0.05% PANA	0-76-5A 0.05% PANA	0-76-8 0.5% PANA	0-76-8 0.5% PANA	0-76-5A 0.2% PANA	0-76-5A 0.2% PANA	0-76-8 2.0% PANA	0-76-8 2.0% PANA
Test No.	205	206	207	208	209	210	211	212	213	214	215	216

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black shiny wavy "orange peel" deposit	Hard black shiny wavy "orange peel" deposit	Slight shine eatte grainy toward edges smooth black deposit	: shine / tower black	Hard black wavy semi- glossy deposit	Hard black wavy semi- glossy deposit	Hard black mavy semi- glossy deposit	Hard black wavy sesi- glossy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy mavy deposit
Deposit mg/gm Oil	19.3	16.8	8.6	8.9	15.5	18.4	13.9	19.7	15.4	19.1	15.3	17.2
Sample Size	0.9890	0.9915	0.9361	0.9909	1.0172	1.0072	1.0306	1.0548	1.0401	1.0516	1.0404	1.0896
Type	Shim Stock	Shia Stock	Shim Stock	Shim Stock	Shie Stock	Shi s Stock	Shi.	Shi.	Shi a Stock	Shi.	Shim Stock	Shim Stock
Test Time	180	180	180	180	081	180	180	180	160	180	180	180
100 100 100	315	315	318	315	315	315	315	315	315	315	315	315
Coker No.	1	2	3	+	1	2	E .	•	1	2	3	4
Sasple	0-76-5A 0.12 PANA	0-76-5A 0.1% PANA	0-76-8 1.01 PANA	0-76-8 1.0% PAWA	0-76-5A 0.52 PANA	0-76-5A 0.51 PANA	0-76-5A 1.0% PANA	0-76-5A 1.02 PANA	0-76-5A 1.5% PANA	0-76-5A 1.5% PANA	0-76-5A 2.0% PANA	0-76-5A 2.0% PANA
Test No.	217	218	219	220	122	222	223	224	225	226	722	228

AFAPL STATIC COKER TEST DATA

Description of Deposit	Non-uniform light brown stain to hard sticky dark deposit	Non-uniform light brown stain to hard sticky dark brown deposit	ifore and bl	Non-uniform hard derk brown and black coke deposits	Hard black coke brown stain non-uniform semi- nlossy deposit	Hard black coke brown stain non-uniform semiolossy deposit	Harde black glossy and semiglossy deposits No stained areas		sck gle Jeposit	Hard black glossy mavy deposit	Hard black glossy mavy deposit	Hard black glossy mavy deposit
Deposit mg/gm Oil	14.7	9.71	1111	13.8	21.4	23.5	17.4	23.2	16.4	20.0	19.4	19.1
Sample Size	0.9775	0.9885	0.9874	1.0108	0.9876	1.0014	8966.0	1.0946	0.9844	0.9951	0.9631	1,0161
Type Test Specimen	Aluainus	Alusinus	88	88	Aluainus	Alusinus	SS	SS	Shim Stock	Shim Stock	Shi e Stock	Shim Stock
Test Time Bin.	180	180	0.8	180	081	091	180	180	180	160	180	180
Test Tgep.	260	260	260	260	315	315	315	315	315	315	315	315
Coker No.	1	2	S	•	1	2	3	•	1	2	3	•
Seep 1 e	0-79-163	0-79-163	0-79-163	0-79-163	0-79-16J 24 hrs. 0x 205 C	0-79-16J 24 hrs. 0x 205 C	0-79-16J 24 hrs. 0x 205 C	0-79-163 24 hrs. 0x 205 C	0-79-16J 48 hrs. CH 205 C	0-79-16J 48 hrs. CH 205 C	0-79-17E 48 hrs. CH 201 C	0-79-17E 48 hrs. CH 201 C
Test No.	220	230	231	232	233	234	235	236	237	238	239	24:

AFAPL STATIC COKER TEST DATA

it Description of Deposit	Hard black grainy non- savy glossy middle matte edges	Mard black gravy gloss	D Drait	Hard black shiny wavy deposit	Hard black shiny wavy deposit	Mard black shiny wavy deposit	Hard black shiny wavy deposit	Mard black shiny wavy deposit	Hard black shiny wavy deposit	Hard black shiny wavy deposit	Hard black shiny wavy deposit	Hard black shiny wavy deposit
Deposit mg/gm Gil	12.6	1.1.	23.7	25.6	17.5	19.8	16.5	19.9	16.4	19.4	25.6	27.2
200	0.960	0.9574	0.9922	1.0135	0.9586	0.9238	0.9679	0.9843	0.9750	0.9096	0.9454	0.9859
140	Shis Stock	Shis Stock	Shie Stock	Shie Stock	Shi = Stock	Shia Stock	Shi a Stock	Shi e Stock	Shim Stock	Shim Stock	Shi s Stock	Shim Stock
- 1	180	180	180	180	180	180	180	180	180	180	180	180
1 = 0 t	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	_	2	n	•	1	2	r	4	1	2	n	4
Saple	0-76-8 1.51 PASA	0-76-8 1.5% PARA	0-79-20C 48 hrs. CH 20S C	0-79-20C 48 hrs. CH 205 C	0-82-2 40 hrs. CH 205 C	0-02-2 48 hrs. CH 205 C	0-82-2 48 hrs. CH 205 C	0-82-2 48 hrs. CH 205 C	0-62-3 48 hrs. CH 205 C	0-82-3 48 hrs. CH 205 C	0-62-14D 48 hrs. CH 205 C	C-82-14D 48 hrs. CH
700 t	241	242	243	244	245	246	247	248	249	250	251	252

AFAPL STATIC COKER TEST DATA

Description of Deposit	Thin hard black sacoth glossy deposit	Thin hard black smooth glossy deposit	Thin hard black smooth glossy deposit	Thin hard black smooth glossy deposit	Thin hard black smooth glossy deposit concentrated in center		Thin hard black smooth glossy deposit	Thin hard black smooth glossy deposit	Hard brown uneven deposit	Hard black mavy thin deposit in center	Hard black smooth thin deposit	Hard black smooth thin deposit
Deposit mg/gm Oil	6.9	9.9	6.4	8.9	5.3	3.7	6.1	6.9	11.7	13.2	6.5	7.4
Sample Size	0.9543	9196.0	0.9721	0.9800	1456.0	0.9627	0.9655	0.9762	6086.0	\$266.0	1686.0	1.0019
Type Test Specimen	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shi a Stock	Shi a Stock	Shim Stock	Shim Stock	Shim Stock	Shi e Stock
Test Time Bin.	180	180	180	180	180	180	180	180	180	180	180	180
Test Tgep.	315	315	315	315	315	315	315	315	092	092	092	260
Coker No.	1	2	3	*	1	2	ы	•	•	2	3	•
Sample	1.02 PANA	0-77-1 1.0 % PANA	0-77-1 2.0% PANA	0-77-1 2.0% PANA	0-77-1 Basestock 0il	0-77-1 Basestock 011	0-77-1 0.5% PANA	0-77-1 0.5% PANA	0-76-8 Basestock 0:1	0-76-8 Basestock Oil	0-77-1 Basestock Dil	0-77-1 Basestock 011
Test No.	253	254	255	256	257	258	259	260	261	292	263	264

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black mavy glossy deposit	Hard black smooth deposit	Hard black wavy deposit	Hard black wavy deposit	Hard dark brown spotty smooth non- uniform deposit	Hard dark brown smooth non-uniform deposit	Light brown non-uniform sticky with hard black coke on edges		Hard dark brown smooth wavy glossy deposit	Hard dark brown smooth wavy glossy deposit	Sticky smeary brown varnish with shiny non-uniform deposit	Hard dark brown smooth wavy glossy deposit
Deposit mg/gm Oil	16.1	7.1	10.6	14.9	12.2	15.5	10.3	11.6	20.9	12.9#	22.6	22.6
Sample Size	0.9641	1.0001	0.9954	1.0079	0.9783	0.9847	1.0030	1.0202	0.9883	0.9800	0.9873	0.9873
Type Test Specieen	Shim Stock	Shin	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shi a Stock	Shim Stock	Shia Stock	Shim Stock	Shi a Stock
Test Time Min.	081	180	180	180	180	180	180	180	180	180	180	180
Test Tgmp.	315	315	315	315	245	245	245	245	245	245	245	245
Coker No.	1	2	n	•	1	2	3	4	1	2	3	•
Sasple	0-76-8 1.0% DODPA	0-76-8 1.0x DODPA	0-76-8 2.0% DODPA	0-76-8 2.0% DODPA	0-79-163	0-79-163	0-79-17E	0-79-17E	0-79-20C	0-79-200	0-82-2	0-82-2
Test No.	265	266	267	268	692	270	172	272	273	₽/2	275	276

AFAPL STATIC COKER TEST DATA

Deposit	dark Shiny Seits	derk shiny ssits	own flaky deposit n center	own flaky deposit in center	dark	, dark ii t	, black	black	oke on y wavy middle	coke on ny wavy middle	smooth	smooth
Description of I	Soft semi-solid dar brown spotty shiny tar-like deposits	Soft semi-solid dar brown spotty shiny tar-like deposits	Hard dark brown flaky smooth shiny deposit concentrated in center	Hard dark brown flaky smooth shiny deposit concentrated in center	Hard shiny wavy d brown deposit	Hard shiny wavy brown deposi	Hard shiny wavy deposit	Hard shiny wavy deposit	Hard black coke on edges, shiny wavy varnish in middle	* <u> </u>	Hard black shiny deposit	Hard black shiny deposit
Deposit mg/gm Dil	24.7	22.9	12.7	13.5	22.2	23.2	14.9	15.9	25.2	21.6	8.3	6.9
Sample Size	0.9643	0.9701	0.9745	1.0004	0.9744	0.9917	0.9834	1.0102	0.9901	0.9935	0.9617	0.9828
Type Test Specimen	Shia Stock	Shi s Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shi# Stock	Shi Stock	Shi# Stock	Shi a Stock	Shim Stock	Shim Stock
Test Time min.	180	180	180	180	180	180	180	180	180	180	180	180
Test Tgap.	245	245	245	245	245	245	330	330	260	260	315	315
Coker No.	1	7	S	ŧ	1	2	٤	•	1	2	ы	4
Sample	0-82-3	0-82-3	0-82-140	0-82-140	0-79-200	0-79-200	0-82-140	0-82-140	0-76-5A	0-76-5A	0-76-8 1.0% DODPA	0-76-8 1.0% DODPA
Test No.	277	278	279	280	281	282	283	284	285	286	287	288

AFAPL STATIC COKER TEST DATA

-77-1 5x PANA 1 315 180 -76-8 x DODPA 2 315 180 -76-8 x DODPA 3 315 180 -76-5A 1 315 180 -76-5A 2 315 180 -76-8 x DODPA 4 315 180 -76-8 x DODPA 1 315 180 -76-8 x DODPA 3 315 180 -76-8 x DODPA 3 315 180 -76-8 x DODPA 3 315 180	Test Type	Sample Size		Description of Deposit
7-1 PANA 1 315 180 bodpa 3 315 180 bodpa 4 315 180 b-5A 1 315 180 bodpa 3 315 180 bodpa 3 315 180 bodpa 1 315 180 bodpa 2 215 180 bodpa 2 215 180	5.0	-	00/80 OII	
6-8 6-8 6-5A 6-5A 6-5A 6-5A 1 315 180 6-5A 1 315 180 6-8 1 315 180 6-8 1 315 180 6-8 1 315 180 6-8 1 315 180 6-8 6-8 1 315 180 6-8 6-8 6-8 6-8 6-8 6-8 6-8 6-8	80 Stock	0.9623	9.6	Hard black smooth shiny wavy deposit, concen- trated in middle.
6-8 bodpe 3 315 180 bodpe 4 315 180 6-5A 1 315 180 bodpe 3 315 180 6-8 bodpe 2 215 180 bodpe 2 215 180 bodpe 3 315 180	80 Shim Stock	0.9408	7.0	Hard black smooth shiny wavy deposit, concen- trated in middle.
6-5A 1 315 180 6-5A 2 315 180 6-5A 2 315 180 6-5A 4 315 180 6-8 1 315 180 6-8 2 215 180 6-5A 3 315 180		0.9521	12.3	Hard black smooth slightly wavy shiny deposit
6-5A 1 315 180 6-5A 2 315 180 6-5A 3 315 180 6-8 1 315 180 6-8 1 315 180 6-8 2 215 180 6-5A 3 315 180	80 Shim	0.9759	10.2	Hard black smooth slightly wavy shiny deposit
6-5A 2 315 180 6-5A 3 315 180 6-8 1 315 180 6-8 1 315 180 6-8 2 215 180 6-5A 2 215 180	80 Shim Stock	0.9930	19.6	Hard black shiny wavy smooth deposit
6-5A 3 315 180 6-5A 4 315 180 6-8 1 315 180 6-8 2 215 180 6-5A 2 215 180 6-5A 3 315 180	80 Shim Stock	0.9844	22.9	Hard black thin very smooth deposit
6-5A 6-8 6-8 DODPA 1 315 180 6-8 DODPA 2 215 180 6-5A DODPA 3 315 180	80 Shim Stock	1.0005	ες. α.	Hard Black thin very smooth deposit
1 315 180 2 215 180 3 315 180	80 Shia Stock	0.9646	7.0	Mard black thin very smooth deposit
6-8 000PA 2 215 180 6-5A 3 315 180		0.9594	*16.3	Hard black glossy thick slightly wavy deposit
DODPA 3 315 180	80 Stock	0.9508	7.0	Hard black low gloss thin flat non-wavy deposit
V# 74 V	80 Stock	1.0105	12.6	Hard black glossy thick areas on top of flat thin areas
1.0% DODPA 4 315 180 Shim	80 Stock	0.9945	15.6	Hard black glossy thick areas on top of flat thin areas

AFAPL STATIC COKER TEST DATA

	 1	1							<u> </u>		Γ	
Description of Deposit	Hard black shiny smooth deposit	Hard black shiny smooth deposit	Hard black shiny mavy deposit	Hard black shiny mavy deposit	Hard black shiny wavy deposit	Hard black shiny mavy deposit	Hard black shiny mavy deposit	Hard black shiny wavy deposit				
Deposit mg/gm Oil	8.9	0.9	13.9	15.6	15.2	16.7	12.5	14.6	14.1	14.4	32.4	36.5
Sample Size	0.9581	0.9563	0.9962	1.0009	0.9931	0.9897	0.9868	1.0061	0.9876	0.9817	1.0024	1.0356
Type Test Specimen	Shia Stock	Shi# Stock	Shi a Stock	Shim Stock	Shi e Stock	Shie	Shim Stock	Shis Stock	Shi s Stock	Shim	Shim	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Test Tesp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	-	2	m	•	-	2	ы	-	1	2	۲	+
Sasple	0-76-8 0.5% DODPA	0.5% 000PA	0-76-5A 1.0% DODPA	0-76-5A 1.0% DODPA	0-76-5A 0.5% DODPA	0.5% DODPA	0-76-5A 1.5% DODPA	0-76-5A 1.5% DODPA	0-76-5A 2.0% DODPA	0-76-5A	0-71-6	0-71-6
Test No.	301	302	303	304	305	306	307	308	309	7.		29 21

AFAPL STATIC COKER TEST DATA

of Deposit	ack shiny deposit	ack shiny deposit	black shiny non-wavy deposit	black shiny non-wavy deposit	black smooth deposit -	black secoth deposit -	ack smooth deposit	ack smooth deposit	shiny wavy	shiny wavy	K shiny wavy with cracks	ick shiny wavy cracked flaky rittle edges
Description of	Hard black mavy depo	Hard black mavy depo	Hard black sacoth non-way	Hard black shiny smooth non-wavy dep	Hard black smooth thin deposit - Contaminated Sample	Mard black smooth thin deposit - Contaminated Samole	Hard black thin depo	Hard black thin depo	Hard black shiny deposit	Hard black shiny deposit	Hard black shiny wav deposit with cracks in edges	× 2 4
Deposit eg/ge Dil	33.6	33.1	38.0	41.8	ر. د.	6.7	٠.	6.4	20.1	21.5	13.5	18.4
Sample Size	1.0081	0.9770	1.0279	0.9812	0.9420	0.9396	0.9198	0.9421	0.9941	0.9785	0.9179	0.9494
Type Test Specieen	Shie Stock	Shia Stock	Shie Stock	Shie Stock	Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shi e Stock	Shim	Shim Stock
708t 7100	0 91	0	0	180	081	180	180	180	180	180	180	180
7 0 0 f	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	1	2	n	•		2	m	-	-	2	ь	4
Saeple	9-77-15A	0-77-15A	0-79-100	0-79-18	E - 109	E - 109	E-120	E-120	E-129	E-129	E-139	E-139
Test No.	313	21.	315	316	317	318	319	320	321	322	323	324

:

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black shiny wavy cracked brittle thick deposit	Hard black shiny wavy, cracked brittle thick deposit	Hard black shiny wavy thick deposit	Hard black shiny wavy thick deposit	Hard black shiny wavy deposit	Hard black shiny wavy deposit	Hard black shiny mavy deposit	Hard black shiny mavy deposit	Hard black shiny brittle flaky cracked desemit	Mard black shiny brittle flaky cracked desemit	Mard black shiny mavy deposit	Herd Black shiny mary deposit
Deposit mg/gm Oil	73.6	77.3	40.4	40.7	33.3	37.1	42.6	43.3	21.7	16.5	35.3	39.8
Sample Size	1.0142	1.0068	0.9958	1.0227	1.0123	1.0259	0.9659	1.0250	. 9327	5006.	8474.	1.0042
Type Test Species	Shi s Stock	Shim Stock	Shim Stock	Shi a Stock	Shim Stock	Shim Stock	Shi a Stock	Shi a Stock	Shia Stock	Shi a Stock	Shie Stock	Shia Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test One B	315	315	315	315	315	315	315	215	315	315	315	315
Coker No.	1	2	м	•	1	2	ь	•	1	2	n	+
Sasple	E-149	E-149	0-71-6 24 0x 205 C	0-71-6 24 Dx 205 C	0-71-6 24 CH 205 C	0-71-6 24 CH 205 C	0-77-15 24 Dx 205 C	0-77-15 24 0x 205 C	E-139	E-139	0-77-15 24 CH 205 C	0-77-15 24 CH 205 C
Z S O O O	325	326	327	328	329	330	331	332	333	334	335	336

AFAPL STATIC COKEN TEST DATA

ı			1					
Saspl	p]•	Coker No.	19.	1	Took	3118	90001 t	Description of Deposit
0-79 24 (205	9-18 0x 5 C	-	318	•• 1	6h10 8tock	1.0052	• :	Hord black shiny savy deposit
24 205	9-18 0x 5 C	2	315	100	8A1 e 8t oc t	1.0703		Mard Black shiny sory deposit
0-79 24 205	-79-18 24 CH 205 C	n	315	190	5710 840ch	1.0207	37.0	Mer & Black shin, savy
0-79- 24 (205	9-18 CH C	•	315	001	\$5.0 \$7.0 \$7.0 \$7.0 \$7.0 \$7.0 \$7.0 \$7.0 \$7	1.0200	-	Mard black shiny savy deposit
0-77 48 205	48 0x 205 C	~	315	1 00	6410 840ch	0. 0020	•	Mard Black shiny savy deposit
0-77 48 205	7-15 0x 5 C	2	315	001	\$\$1.0 \$\$00.00	o. ••••		Mard black shiny mavy deposit
0-77 48 205	-77-15 48 CH 205 C	r	315	1 00	841e	0. •••1	30.2	Mard Black Shiny savy deposit
0-77 48 205	77-15 8 CH 05 C	•	315	100	991 e 84 ec	1.0000	, 2	Mard Black shiny savy
0-7 48 20	71-6 8 0x 05 C	1	315	180	8410 840ck	1.0003	•	Mard Black shiny savy
0-7 48 20	71-6 8 0x 05 C	2	315	001	841e 810c	0. •••\$		Merd black shiny savy deposit
0-7 48 20	71-6 8 CH 05 C	r	318	001	5 to c t	1.020	33.3	Mard Black shiny savy deposit
0-71 48 205	71-6 8 CH 05 C	•	315	0	5410 640c2	1.0165		Mard black shiny save deposit
	ı							

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black shiny mavy deposit	Herd black shiny savy deposit	Hard black shiny nen- mavy deposit	Hard black shiny non- mavy deposit	Merd black thin dull seceth deposit	Merd black thin dell spooth deposit	Mard Black thin dull speeth deposit	Mard Black thin dell secoth deposit	Mard black sacoth dull deposit	Seal leaked	Seal leaked	Mard black secoth dull deposit
Deposit eq.60 011	42.6	• ·	34. 6	37.2	3.4	• •	3.	7.4	•	3.0	2.2	15.0
\$1 2 0 \$1 2 0	1.0289	1.0030	0.6781	♦486.0	0.9128	0.9557	0.964	0.9651	0.9841	0.0070	0.960	0.9983
Type Test	Shia Stack	Shie Stock	5h1 e 5t eck	Shi s Stock	Shie Stock	Shie Stock	Shie Stock	Shie Stock	Alueinue	Alueraun	A) ue 1 au 6	Alueinue
Test 7100	0	0	0	100	001	0	001	180	100	00-1	0.01	180
Test Tee.	315	315	315	318	315	315	315	315	315	315	315	315
Coker No.	1	2	n	•	1	2	3	•	1	2	ь	•
			ſ				IP	<u>a</u>	ξ	W		u
Sample	0-79-18 48 0x 205 C	0-79-18 48 0x 205 C	0-79-18 48 CH 205 C	0-79-18 48 сн 205 с	0-77-1+1	0-77-1+1	0-77-1+IP	0-77-1+IP	0-79-176	0-79-17E	0-79-20C	D-79-20C

AFAPL STATIC COKER TEST BATA

Description of Deposit	Hard black socoth dull deposit	Mard black secoth dull deposit	Hard black secoth	Mard black secoth dull deposit	Mard black seceth glossy deposit	Mard black secoth glossy deposit	Hard black smooth glossy deposit	Mard black smooth glossy deposit	Herd brown to black smooth deposit	Mard brown to black mavy deposit	Hard brown to black deposit. Non-uniform	Hard brown to black deposit. Non-unifora Goverage
Deposit ag/ge Oil	1.4	15.5	12.9	14.1	14.2	16.9	19.8	21.9	15.8	4.7	13.9	22.1
Sample Size	0.9809	0.9907	0.9923	0.9912	1.0497	1.0385	1.0340	1.0574	1.0057	0.975	0.9731	0.9757
Type Test Secimen		Alusinus	Aluainua	Alueinus	Shie Stock	Shi = Stock	Shim Stock	Shi a Stock	Alubinus	Aluainus	Aluainus	Aluminum
Test Tiee Bin.	180	180	180	091	180	180	180	180	180	180	180	180
Test Tgep.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	1	2	ы	•	-	2	e	þ	1	. 2	n	•
Sample	0-79-17E	0-79-17E	0-79-200	0-79-200	Sia Test 48	Sia Test 48	Sia Test 36	Sim Test 36	0-79-17E	0-79-17E	0-82-2	0-82-2
Test No.	361	362	363	364	365	366	367	368	369	370	371	372

AFAPL STATIC COKER TEST DATA

Description of Deposit	Mard brown to black smooth low gloss deposit	Mard brown to black secoth low gloss deposit	Mard brown to black glossy mavy deposit	Hard brown to black glossy mavy deposit	Hard black glossy mavy deposit	Hard black glossy savy deposit	Mard black glossy savy deposit	Hard black glossy mavy deposit	Hard black seenth seal- glossy deposit	Hard black secoth seal- glossy deposit	Mard black mavy glossy deposit	Mard black mavy glossy deposit
Deposit ag/ga Oil	6.7	10.8	12.5	11.3	40.2	38.5	36.1	34.5	4.5	0.0	13.9	16.6
Sample Size	0.9651	0.9852	0.9840	0.9710	1.0313	1.0373	1.0710	1.0413	0.9219	0.9898	0.8543	0.9869
Type Test Specimen	Alusinus	Aluminum	Aluainua	Aluainus	Aluminum	Aluainus	Aluainus	Aluainua	Shim Stock	Shia	Shi e Stock	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	1	2	n	4	-	2	м	4	1	2	ь	+
Sample	0-82-3	0-82-3	0-82-14	0-82-14	0-77-15	0-77-15	0-79-18	0-79-18	E-109	E-109	E-139	E-139
Test No.	373	374	375	376	377	378	379	380	381	382	383	384

AFAPL STATIC COKER TEST DATA

Description of Deposit	Oil seeped under seal around entire seal cir.	Oil seeped under seal around entire seal cir.	Hard black seaiglossy mavy deposit	Hard black semiglossy mavy deposit	Flaky mavy black deposits	Flaky mavy black deposits	Flaky savy black deposits	Flaky mavy black deposits	Hard black mavy seas- glossy deposit	Hard Black mavy seat- glossy deposit	Hard black secoth glossy deposit	Mard black secoth glossy deposit
Deposit mg/gm 011	10.3	. e	12.2	13.5	10.9	18.3	10.9	12.4	28.4	32.7	10.3	10.5
Sample Size	1.0432	1.0732	1.0298	1.0482	0.9857	0.9655	0.9486	0.9778	0.9884	1.0062	1.0137	1.0077
Type	Alusinus	Aluainua	A) uai nua	Aluainua	Shie Stock	Shi a Stock	Sh1 • Stock	Shie	Shie Stock	Shia	Shie Stock	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Test Co	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.		2	2	4	1	2	۳	+	1	2	ы	4
Sample	0-71-6	0-71-6	0-79-17	0-79-17	E-139	E-139	E-139	E-139	TEL 6031	TEL 6031	TEL 6032	TEL 6032
L												

AFAPL STATIC COKER TEST BATA

	STREET ON OF PERSON	Hard black mavy glossy deposit	Hard black mavy glossy deposit	Hard black many glossy deposit	Hard black mavy glossy deposit	Mard black seesth deposit	Hard Black sooth deposit	Mard Black seedth deposit	Mard black secoth deposit	Mard Black cracked non-unitera deposit	Hard black cracked (laky non-unifora desest	Hard Black Cracked	Hard Black Cracked Flaky non-unitera
Depos: t	84/98 011	10.00	12.7•	•	0.5	2.2•	1.	5.3•	5. 2•	13.1	15.4	1 1	20.5
-	9212	0.9278	0. 9635	0.9602	0.9592	0.9734	0.9786	1.0073	1.0015	0.8063	0.9398	0.9365	0.8398
Type	Specioen	Shie Stock	Shin	Shin	Shi e Stock	Shie Stock	Shie	Shie Stock	Shie Stock	Shie Stock	Shi e Stock	Shie Stock	Shie Stock
	1100 010.	180	180	160	180	180	180	0	2	<u>.</u>	0	100	180
Test	. 50 0	212	315	315	315	315	315	315	315	315	315	315	315
Coker	No.	1	2	ы	*	1	2	n	•		2	n	4
	Sample	E-139	E-139	E-139	E-139	0-77-1+1	0-77-1+1	0-77-1+IP	0-77-1+IP	E-139	E-139	E-139	E-139
Test	No.	297	398	399	400	401	402	403	404	405	904	407	408

AFAPL STATIC COKER TEST BATA

Description of Deposit	Mard black many sameth low glass deposit	Mard black very seesth low gloss deposit raised edaes	Mard black seesth los gloss slightly grainy desesit	Mard black sameth low gloss slightly grainy desest	Hard black mavy glossy uniform coverage	Mard Black mavy glossy unifere coverage	Mard Black mavy glossy uniform coverage	glossy entions coverage	Mard black los gloss slightly savy deposit	Hard black los gloss mary deposit	Mard Wlack los gloss savy deposit thick edges	Mard Black low gloss mavy deposit thick edges
Deposit eg/ge 0il	5.3	6.7	5.3	7.2	13.0	14.7	10.4	15.3	7.7	12.6	, •	13.4
\$000 le \$1.20	0. •35	0. 9366	0. 0114	0.9340	0. •••1	0.9912	0.937	0.9270	1.0162	1.0231	0.9991	1.0117
Type Test Section	Sh: a Stock	Sh: B Stock	Shie Steck	Shi e Stock	Shi e Stock	Shie Stock	Shie	Shie	Shia Stock	Shi e Stock	Shia Stock	Shim Stock
7est 7100	180	180	9	180	180	0001	180	081	081	180	180	180
Test Tesp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	n	1	2	+	1	2	3	•	1	2	3	•
Sample	1+1-44-0	0-77-1+1	0-77-1+IP	0-77-1+IP	0-79-163	0-79-163	0-79-163	0-79-163	0-79-17E	D-79-17E	0-79-206	0-79-200
Test No.	604	410	411	412	413	414	415	416	417	418	419	420

AFAPL STATIC COKER TEST DATA

Test No.	Sample	Coker No.	Test Tesp.	Test Tine	Type Test Specimen	540p1e 512e	Deposit	Description of Deposit
421	0-79-18 48 CH 205 C	-	315	180	Shia Stock	1.0168	37.2	Mard black shiny savy deposit
422	0-79-182 48 CH 205 C	2	315	180	Shie Stock	1.0116	9 °0 7	Mard Black shiny savy deposit
423		۲	315	180	Shie Stock	0.9734	6 .0	Hard black low gloss slightly wavy deposit thick edges
424	0-82-2	*	315	180	Shia Stock	0.9436	13.2	Hard black low gloss slightly many deposit thick edges
425	0-79-16J Pin-on- disk	1	315	180	Shia Stock	1.0134	5.40	Mard Black low gloss slightly mavy deposit thick edges
426	0-79-16J Pin-on- disk	2	315	180	Shia	1.0088	16.4	
427	0-79-16J Gear. Sim.	ю	315	180	Shi e Stock	0.7686	12.1	
428	0-79-16J Gear. Sim.	•	315	180	Shi e Stock	0.8642	15.0	Mard black low gloss slightly wavy deposit thick addes
429	0-85-1	1	315	180	Shi e Stock	0.9976	26.1	, -
430	0-85-1	2	315	180	Shi a Stock	1.0048	29.3	Slossy hard black mavy deposit
431	0-82-3	to	315	160	Shi e Stock	0.9759	7.8	Hard black flat deposit with glossy areas non-unifore cov.
432	0-82-3	4	315	180	Shie Stock	0.9606	9.5	Hard black fl posit mith gl s non-unifore

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black shiny wavy dep. incomplete coverage	Mard black shiny wavy dep. incomplete	Hard black flat deposit with glossy maves	Hard black flat deposit with glossy waves	Black wavy glossy hard deposit	Black mavy glossy hard deposit	Black wavy glossy hard deposit	Black mavy glossy hard deposit	Mard black seasglossy slightly grainy deposit	Hard black semiglossy slightly grainy deposit	Hard gray to black seas- glossy wavy deposit	Hard gray to black semi- glossy wavy deposit
Deposit mg/gm Oil	11.6	15.9	31.4	32.6	34.8	40.5	27.2	31.2	12.5	17.1	13.2	16.6
Sample Size	1.0299	1.0207	1.0603	1.0599	0.9969	1.0447	1.0534	i.0405	1.0210	1,0199	1.0053	1.0199
Type Test Specieen	Shie Stock	Shi e Stock	Shi a Stock	Shi a Stock	88	SS	SS	88	Shi = Stock	Shi e Stock	Shim Stock	Shim Stock
Test Tine	180	180	180	180	081	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	1	2	м	+		2	м	4	-	2	3	4
Sample	0-82-14	0-82-14	0-77-15	0-77-15	0-79-18	0-79-18	9-92-0	0-71-6	0-79-16J Pin-on- disk	0-79-16J Pin-on- disk	0-82-3 Gear Sim	0-82-3 Gear Sim
Test No.	433	434	435	436	437	438	439	440	441	442	443	444

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black seeiglossy deposit	Hard black seaiglossy deposit	Mard black semiglossy deposit	Mard black semiglossy deposit	Secoth hard black seei- glossy deposit	Smooth hard black semi- glossy deposit	Smooth hard black semi- glossy deposit	Smooth hard black semi- glossy deposit	Hard flat black deposit	Hard flat black deposit	Hard black wavy deposit	Hard black wavy deposit
Deposit mg/gm Oil	4.1	3.5	4.2	4.2	4.2	4.5	4.5	8.4	4.6	4.7	20.5	22.2
Sample Size	0.9578	0.9680	0.9734	0.9758	0.9563	0.9801	0.9556	0.9612	0.9569	0.9752	1.0038	0.9858
Type Test Specieen	Shia Stock	Shim Stock	Shim Stock	Shim Stock	Shi e Stock	Shi# Stock	Shim	Shim Stock	Shim Stock	Shim Stock	Shi e Stock	Shim Stock
Test Time min.	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	-	2	က	+	1	2	ю	•	1	2	2	ŧ
Sample	0-77-1 0.5% DODPA	0-77-1 0.5% DODPA	0-77-1 1.0% DODPA	0-77-1 1.0% DODPA	0-77-1 1.5% DODPA	0-77-1 1.5% DODPA	0-77-1 2.0% DODPA	0-77-1 2.0% DODPA	0-76-8 Gear Sim	0-76-8 Gear Sim	0-76-5 Bear Sim	0-76-5 Gear Sim
Test No.	445	944	447	844	644	450	451	452	453	454	455	456

AFAPL STATIC COKER TEST DATA

4	<u>></u>	<u> </u>	<u>></u>	,	>	>	>	>	נָּ	į.	1	2
Description of Deposit	Hard dark brown glossy wavy deposit	Hard dark brown glossy mavy deposit	Hard black seal-glossy grainy deposit	Hard black semi-glossy grainy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard secoth glossy black deposit	Hard sacoth glossy black deposit	Hard smooth glossy black deposit	Hard smooth glossy blac
Deposit mg/gm Oil	10.9	13.8	4.3	4.7	35.8	35.6	35.6	36.6	59.9	56.5	36.2	32.8
Semple Size	0.9947	0.9873	0.9529	0.9632	1.0063	1.0124	1.0231	0.9912	1.0228	1.0323	1.0678	1.0012
Type Test Specieen	Quartz	Ouartz	Shia	Shin Stock	Shim Stock	Shi Stock	Shim Stock	Shi =	Shim Stock	Shim Stock	Shim Stock	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	300	300	300	300	260	260	300	300
Coker No.	1	2	ы	4	~	2	м	4		2	ю	4
Sample	0-79-163	0-79-163	0-77-1 2.0% DODPA	0-77-1 2.0% DODPA	0-77-15	0-77-15	0-79-18	0-79-18	0-71-6	0-71-6	0-71-6	0-71-6
Test No.	457	458	459	460	461	462	463	464	465	466	467	468

IFAPL STATIC COKER TEST DATA

Description of Deposit	Hard mavy black deposit	Hard mavy black deposit	Stacky deposit. Glossy black in Center. Vernish tosards sopes	Sticky deposit. Blossy black in center. Varnish towards edges	Blossy black deposit in center. Varnish towards	Blossy black deposit in center. Varnish towards	Hard seat-glossy black deposit	19.0 0001 - 01000 P. D.	Mard bross to black	Mard bross to black	Aerd Bross 10 5.00.	
Deposit	72.1	64.1	0.10	67.1	13.1	1.5.1	•) •/-	•	• ;			
Sample Saze	1.0034	1.0040	1.0303	1.6111	1.0124	1,0439	1.0076	0.9467	6886.0	1.0361	\$ 8 2 5	
Type Type Test	Shia Stock	Shia Stock	Shi a Stock	Shia Stock	Buartz	Quartz	Shie Stock	Shin	Shie Stock	Shie Stock	5h1 = 5toc+	Sh. # 50.58
Test Time	180	180	180	180	180	180	180	180	180	3 8 1	186	186
Test On p.	260	260	260	260	315	315	315	315	245	245	245	245
COX NO.	-	2	m	4	1	2	ы	-	1	2	m	4
Sample	0-77-15	0-77-15	0-79-18	0-79-18	0-79-16J Pin-on- disk	0-79-16J Pin-on- disk	TEL 6034	TEL 6034	0-79-163	0-79-163	0-79-17E	0-79-17E
No.	469	470	471	472	473	474	475	476	477	478	479	480

AFAPL STATIC COKER TEST DATA

Description of Deposit	4 4 0 0 0 1 1	#814 0180 # 6000** 680081	Merd bleck secort	Hard black sacoth deposit	Hard black secoth deposit	Hard black smooth deposit	Hard black flaky deposit	Hard black flaky deposit	Hard smooth glossy black deposit	Hard smooth glossy black deposit	Hard smooth glossy black deposit	Hard smooth glossy black deposit
Deposit eg/ge Oil	6.7	10.7	e	12.1	⊌7 •	بر بر	13.7	.8.6	4.9	4.9	5.2	4.5
Sample Size	0.9536	0.9500	0.9551	0.9567	0.9759	0.9714	0.9774	1.0022	0.9479	0.9589	0.9388	0.9655
Type Test Speciesn	Shim Stock	Shim Stock	Shin	Shia Stock	Shi m Stock	Shim	Shim Stock	Stim	Shim	Shim Stock	Shim Stock	Shim Stock
Test Tine	180	180	180	180	180	180	180	180	180	180	180	180
Test Tesp.	315	315	315	315	315	315	3.5	315	315	315	315	315
Coker No.	1	2	۲	4	1	2	м	4	1	2	м	4
Sample	E-120	E-120	E-120	E-120	E-109	E-109	E-1090	E-1090	E-120	E-120	E-120	E-120
Test No.	481	482	483	484	485	486	487	488	489	490	491	492

MICROCOPY RESOLUTION TEST CHART
MATIONAL BUREAU OF STANDARDS-1988-A

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard smooth glossy black deposit	Hard smooth glossy black deposit	Hard smooth glossy black deposit	Hard smooth glossy black deposit	Hard black smooth deposit	Hard black smooth deposit	Hard black smooth deposit	Hard black smooth deposit	Slightly sticky dark brown deposit	Dark brown shiny deposit	Hard black deposit and brown stain	Hard black deposit and brown stain
Deposit mg/gm Oil	2.0	1.7	1.6	1.6	3.5	3.1	3.1	3.2	12.0	12.7	12.1	13.2
Sample Size	0.9953	0.9850	1.0002	0.9615	0.8950	0.9693	0.9587	0.9545	1.0054	1.0069	0.9776	0.96.0
Type Test Specimen	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shia Stock	Shim Stock	Shim Stock	Shim Stock	Shi a Stock	Shim Stock	Shim Stock	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	245	245	245	245
Coker No.	~	2	м	4		2	n	4	1	2	r	4
Sample	E-105	E-105	E-105	E-105	0-77-1	0-77-1	0-77-1	0-77-1	0-79-17	0-79-17	0-82-14	0-82-14
Test No.	493	464	495	466	497	864	466	200	501	502	503	504

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard brown smooth varnish	Hard brown smooth varnish	Sticky dark brown deposit	Sticky dark brown deposit	Brown to black tacky deposits	Brown to black tacky deposits	Oil and sludge residue	Oil and sludge residue	Brownish black deposit	Seal Leaked	Hard glossy black deposit	Hard glossy black deposit
Deposit mg/gm Oil	5.1	J. 55	32.3	34.7	104.5	91.9	114.6	118.7	80.3	49.5	62.9	52.6
Sample Size	0.8679	0.9774	0.9868	1.0105	1.0419	1.0476	1.0694	1.0869	1.0978	1.0962	1.0237	0.9991
Type Test Specimen	Shi m Stock	Shis	Shim Stock	Shi m Stock	Shim Stock	Shia	Shim	Shim Stock	Shim Stock	Shim Stock	Shi# Stock	Shi# Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test One of	245	245	245	245	245	245	245	245	245	245	245	245
Coker No.	1	2	2	+	1	2	м	4	-	2	м	4
Saple	TEL-6034	TEL-6034	0-85-1	0-85-1	0-77-15	0-77-15	0-79-18	0-79-18	0-71-6	0-71-6	TEL-6031	TEL-6031
Test No.	505	506	507	508	209	510	511	512	513	514	515	516

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard brown to black coke and varnish	Hard brown to black coke and varnish	Smooth hard black coke	Smooth hard black coke	Brown tacky wavy deposits	Brown tacky wavy deposits	Hard brown wavy deposit	Hard black glossy smooth deposit	Hard black glossy smooth deposit			
Deposit mg/gm Oil	4.2	6.4	23.5	24.7	4.3	6.9	28.3	28.1	14.5	19.2	41.7	41.1
Sample Size	0.9763	0.9710	1.0236	1.0138	1.0011	0.9739	1.0146	1.0164	1.0224	1.0358	0.9695	1.0329
Type Test Specimen	Buartz	Quartz	Shim Stock	Shim Stock	Shis Stock	Shim Stock	Shim	Shim Stock	Quartz	Quartz	Shia	Shim Stock
Test Times	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	245	245	260	260	245	245	315	315	260	260
Coker No.	-	2	ъ	4		2	м	4	1	2	м	4
Samp le	8-92-0	0-76-8	TEL-6032	TEL-6032	TEL-6034	TEL-6034	0-76-5	0-76-5	0-76-5	0-76-5	TEL-6031	TEL-6031
Test No.	517	518	519	520	521	522	523	524	525	526	527	528

AFAPL STATIC COKER TEST DATA

						- 1		
Test No.	Sample	Coker No.	rest Tgep.	Test Time Bin.	Type Test Specieen	Seeple Size	Deposit mg/gm Oil	Description of Deposit
	0-71-6	-	245	180	Shim Stock	1.0753	84.4	Hard black glossy deposit
<u> </u>	0-71-6	2	245	180	Shim Stock	1.0628	83.9	Hard black glossy deposit
	TEL-6032	ю	260	180	Shi m Stock	1.0271	19.9	Hard black glossy wavy deposit
	TEL-6032	•	260	180	Shim Stock	0.9879	21.2	Hard black glossy wavy deposit
	0-82-3	~	315	180	Quartz	0.9805	4.4	Hard black wavy coke and varnish
t Total	0-82-3	2	315	180	Buartz	0.9994	7.9	Hard black wavy coke and varnish
	TEL-6031	м	300	180	Shi.	1.0171	30.3	Hard black wavy deposit
	TEL-6031	•	300	180	Shi m Stock	1.0119	29.9	Hard black wavy deposit
	0-79-16		315	180	Quartz	1.2223	12.3	Hard dark brown wavy deposit
	0-79-16	2	315	180	Quartz	1.0062	19.6	Hard dark brown wavy deposit
	TEL-6032	٤	200	180	Shim Stock	0.9937	12.2	Hard black smooth deposit
	TEL-6032	4	300	180	Shim Stock	1.0143	13.3	Hard black smooth deposit

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black smooth glossy deposit	Hard black smooth glossy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black flat wavy flaky deposit	Hard black flat wavy flaky deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hood mirflow and temperature variable	Hood mirflow and temperature variable	Hood airflow and temperature variable	Hood airflow and temperature variable
Deposit mg/gm Oil	6.2	8.5	25.7	29.4	12.1	16.2	19.3	22.1	16.5	19.2	13.5	18.9
Sample	0.9822	1.0105	1.0510	1.0536	1.0132	0.9728	1.0148	1.0390	1.0399	1.0314	8666.0	0.9979
Type	Shim Stock	Shim Stock	Shim	Shim Stock	Guartz	Buartz	Quartz	Quartz	Shim Stock	Shim Stock	Shi a Stock	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Test Of	315	315	300	300	315	315	315	315	300	300	300	300
Coker No.		2	۲	þ	1	2	m	4	1	2	ы	4
Sample	TEL-6034	TEL-6034	0-85-1	0-85-1	0-82-3 Gear Sia	0-82-3 Gear Sia	0-76-5 Gear Sim	0-76-5 Gear Sim	0-76-5	0-76-5	0-76-8	8-92-0
Test No.	541	542	543	544	545	546	547	548	549	550	551	552

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hood airflow and temperature variable	Smooth hard black glossy deposit	Smooth hard black glossy deposit	Sample suspect	Sample suspect	Hard dark brown flaky deposit	Hard dark brown flaky deposit	Hard dark brown glossy wavy deposit	Hard dark brown glossy wavy deposit			
Deposit mg/gm Oil	8.6	14.8	10.0	15.0	89.69	10.2	26.1	21.9	11.4	19.2	16.8	14.9
Sample Size	0.8792	0.7352	0.9830	1.0082	1.0024	0.9395	1.0021	1.0202	1.0472	1.0533	1.0134	1.0186
Type Test Species	Duartz	Duartz	Quartz	Buartz	Shi a Stock	Shim Stock	Shim Stock	Shi a Stock	Quartz	Quartz	Quartz	Quartz
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Tesp.	315	315	315	315	300	300	300	300	315	315	315	315
Coker No.	-	2	ы	4	-	2	ы	*	1	2	۳	4
Sample	0-79-16 Gear Sim	0-79-16 Sear Sim	0-76-8 Gear Sim	0-76-8 Gear Sia	TEL-6034	TEL-6034	0-77-1	0-77-1	0-79-17	0-79-17	0-79-20	0-79-20
Test No.	553	554	555	556	557	558	559	260	561	562	293	564

AFAPL STATIC COKER TEST DATA

	Description of Deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy slightly wavy deposit	Hard black glossy slightly mavy deposit	Hard black glossy deposit	Contained external contamination	Hard black glossy deposit	Hard black glossy deposit	Hard smooth glossy black deposit	Controller problem	Hard smooth glossy black wavy deposit	Hard smooth glossy black wavy deposit
	Deposit mg/gm Oil	16.0	22.5	10.5	15.0	13.3	16.7	12.5	14.5	7.2	15.6	10.6	16.3
ine lost items	Sample Size	9966.0	1.0092	0.9735	0.9691	1.0456	1.0195	1.0072	1.0057	\$066.0	0.9845	0.9871	0.9903
	Type Test Specimen	Shi m Stock	Shim Stock	Shim Stock	Shi# Stock	Shia Stock	Shi m Stock	Shi a	Shim Stock	Shim Stock	Shi m Stock	Shi s Stock	Shim Stock
- 1	Test Time Ain.	180	180	180	180	180	180	180	180	180	180	180	180
	Test Temp.	300	300	300	300	K.	315	315	315	300	300	300	300
	Coker No.	1	2	м	4	-	2	ы	4	~ 4	2	ь	4
	Sample	0-76-5	0-76-5	0-76-8	0-76-8	0-79-16	0-79-16	0-79-16	0-79-16	0-77-1	0-77-1	0-76-8	0-76-8
	Test No.	565	266	267	268	569	570	571	572	573	574	575	576

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black glossy flaky deposits	Hard black glossy flaky deposits	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black semiglossy deposit	Hard black semiglossy deposit	Hard black shiny wavy deposit	Seal leaked	Hard black smooth shiny deposit	Hard black smooth shiny deposit
Deposit mg/gm Oil	4.7	16.7	12.8	19.4	17.6	23.4	11.4	15.0	37.0	29.2	7.4	9.4
Sample Size	0.9795	0.9636	0.9877	0.9985	1.0214	1.0326	0.9992	0.9985	0.9732	1.0131	0.9500	0.9594
Type Test Specieen	Quartz	Quartz	Quartz	Quartz	Shia Stock	Shim Stock	Shi a Stock	Shim Stock	Shim Stock	Shim	Shim Stock	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Cest	315	315	315	315	300	300	300	300	260	092	300	300
Coker No.	1	2	۳	4	-	2	3	4	-	2	ю	4
Sample	0-76-8 Gear Sia	0-76-8 6ear Sim	0-82-14	0-82-14	0-76-5	0-76-5	0-76-8	8-92-0	0-85-1	0-85-1	TEL-6034	TEL-6034
Test No.	577	578	579	580	581	582	583	584	585	286	587	588

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Hard black glossy wavy deposit	Suspect test data	Hard dark brown to black mavy deposit	Hard dark brown to black wavy deposit	Hard dark brown to black mavy deposit	Hard dark brown to black mavy deposit	Hard black smooth deposit	Hard black smooth deposit	Mard black smooth deposit	Hard black smooth deposit
Deposit mg/gm Oil	28.9	35.4	8.7	16.1	7.2	11.3	10.3	14.3	6.5	6.6	29.5	34.7
Sample Size	1.0452	1.0196	0.9494	0.9548	0.9655	0.9896	0.9842	0.9789	0.8959	0.9748	1.0058	1.0249
Type Test Specimen	Alusinum	Aluminum	Shim Stock	Shim Stock	Quartz	Quartz	Quartz	Quartz	Shie Stock	Shim Stock	Aluminum	Aluminum
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Test Test	315	315	300	300	315	315	315	315	245	245	315	315
Coker No.	1	2	3	4	-	2	м	-	-	4	ы	2
Sample	0-71-6	0-71-6	0-77-1	0-77-1	0-79-17	0-79-17	0-79-20	0-79-20	0-77-1	0-77-1	0-77-15	0-77-15
Test No.	589	290	591	292	593	594	595	965	297	845	299	009

AFAPL STATIC COKER TEST DATA

Z B C C	Sample	Coker No.	Test Temp.	Test Time Bin.	Type Test Specieen	Sample Size On	Deposit mg/gm Oil	iption of Dep	
	0-76-8 1.0% PANA 1.0% DODPA	1	315	180	Shi m Stock	0.9656	15.4	Hard black shiny wavy deposit	
	0-76-8 1.0% PANA 1.0% DODPA	٤	315	180	Shim Stock	0.9621	11.9	Hard black shiny wavy deposit	
	1.0% PANA 1.0% PANA 1.0% DODPA	2	315	180	Shi m Stock	0.9637	6.6	Hard black low gloss smooth thin depost	
	1.0% PANA 1.0% DODPA	4	315	180	Shim Stock	0.9662	10.4	Hard black low gloss smooth thin deposit	
	0-76-5 1.0% PANA 1.0% DODPA	1	315	180	Shim Stock	1.2139	14.3	Hard black shiny wavy dull in spots	
	0-76-5 1.0% PANA 1.0% DODPA	2	315	180	Shim Stock	1.0109	12.6	Hard black shiny wavy dull in spots	
	0-76-5 0.5% PT2	2	315	180	Shim Stock	0.9994	24.4	Hard black shiny wavy deposit	
	0-76-5 0.5% PTZ	4	315	180	Shim Stock	1.0055	21.6	Hard black shiny wavy deposit	
	0-76-5 1.0% PTZ	1	315	180	Shim Stock	1.0116	17.9	Hard black shiny wavy deposit. Dull in spots	
·	0-76-5 1.0% PTZ	2	315	180	Shim	1.0018	17.2	Hard black shiny wavy deposit. Dull in spots	
	0-76-5 1.5% PTZ	2	315	180	Shim Stock	1.0098	21.7	Hard black shiny wavy deposit. Dull in spots	
	0-76-5 1.5% PTZ	đ	315	180	Shia Stock	1.0064	18.3	Hard black shiny wavy deposit. Dull in spots	

PEAPL STATIC COKER TEST DATA

Description of Deposit	Hard black very smooth dull deposit. Conc. in center	Hard black very smooth dull deposit. Conc. in center	Hard black shiny wavy deposit	Hard black shiny wavy deposit	Hard black low gloss very smooth deposit	Hard black glossy smooth deposit	Hard black glossy smooth deposit	Hard black flat deposit	Hard black flat deposit			
Deposit mg/gm Oil	5.2	3.8	22.0	20.0	5.7	0.0	6.2	5.9	7.0	6.2	10.9	10.6
Sample Size	0.9610	0.9689	0.9925	1,0035	0.9821	0.9321	0.9719	0.9603	0.9641	0.9763	0.9565	0.9757
Type Test	Shia Stork	Shim Stock	Shim	Shim Stock	Shim	Shim	Shim Stock	Shia Stock	Shim	Shim	Shi s Stock	Shim Stock
Test Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Tesp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.		м	2	4		м	2	4	-	м	2	4
Sample	0-76-5 2.0% PT2	0-76-5 2.0% PT2	0-77-1 0.5% PTZ	0-77-1 0.5% PT2	0-77-1 1.0% PTZ	0-77-1 1.0% PTZ	0-77-1 1.5% PTZ	0-77-1 1.5% PTZ	0-77-1 2.0% PTZ	0-77-1 2.0% PT2	0-76-8 2.0% PTZ	0-76-8 2.0% PT2
Test No.	613	614	615	616	617	618	619	620	621	622	623	624

AFAPL STATIC COKER TEST DATA

	e [uer5	Coker	Test Teen	Test	Type	Sample	Deposit	Description of Deposit
	o a mino	No.		min.	Specimen	C B	mg/gm Oil	;
<u> </u>	0-76-8 0.5% PTZ	1	315	180	Shim Stock	0.9142	6.9	Hard black partially glossy flat deposit
	0-76-8 0.5% PT2	м	315	180	Shim Stock	0.9296	بى بى	Hard black partially glossy flat deposit
<u> </u>	0-76-8 1.0% PTZ	2	315	180	Shia	0.9103	7.1	Hard grayish black non-glossy smooth grainy deposit
	0-76-8 1.0% PTZ	4	315	180	Shi a Stock	0.9462	10.6	Hard grayish black non-glossy smooth grainy deposit
	0-76-8 1.5% PT2	1	315	180	Shim Stock	0.9914	10.0	Mard grayish black non-glossy smooth grainy deposit
	0-76-8 1.5% PT2	3	315	180	Shim Stock	0.9878	8.7	Hard grayish black non-glossy smooth grainy deposit
	0-76-5 2.0% DOPTZ	2	315	180	Shim Stock	1.0556	21.7	Hard black glossy wavy deposit
	0-76-5 2.0% DOPT2	4	315	180	Shis Stock	1.0371	22.0	Hard black glossy mavy deposit
	0-77-1 2% PTZ 24 0x 205		315	180	Shim Stock	0.9203	0.8	Hard black non-glossy grainy deposit
	0-77-1 2% PTZ 24 0x 205	ю	315	180	Shim Stock	0.9513	7.9	Hard black non-glossy deposit
	0-77-1 2% PTZ 24 0x 205 Fil	2	315	180	Shim Stock	0.7490	7.6	Hard black partially glossy smooth deposit
L I	0-77-1 2% PTZ 24 0x 205 Fil	4	315	180	Shim Stock	0.8700	6.7	Hard black partially glossy smooth deposit

AFAPL STATIC COKER TEST DATA

Deposit Description of Deposit	Hard black shiny smooth 8.0 deposit. Conc. in center	Hard black shiny smooth 7.6 deposit. Conc. in center	Hard black shiny smooth deposit	11.1 Hard black shiny smooth deposit	Hard black shiny smooth deposit	15.5 Hard black shiny smooth deposit	15.7 Hard black shiny smooth deposit	16.2 Hard black shiny smooth deposit	Hard black shiny wavy grainy deposit	Hard black shiny wavy 27.3 grainy deposit	Hard grayish black flat 17.3 dull grainy deposit	Hard grayish black flat
Sample Size	0.9612	10153	0.9472	0.9515	0.9654	0.9638	0.9628	0.9628	0.9774	0.9640	0.9462	
Type Test Specimen	Shim Stock	Shim Stock	Shim	Shim Stock	Shim	Shim Stock	Shi a Stock	Shim	Shim Stock	Shim Stock	Shim Stock	Shis
Test Time	180	180	180	180	180	180	180	180	180	180	180	
Test Temp.	315	315	315	315	315	315	315	315	315	315	315	
Coker No.		ы	2	4		2	ы	4		2	n	•
Sample	D-77-1 2X PTZ 48 CH 205	0-77-1 2X PTZ 48 CH 205	0-77-1 2% PTZ 48 CH 205 Fil	0-77-1 2% PTZ 48 CH 205 Fil	0-77-1 2.0% DOPT2	0-77-1 2.0% DOPT2	0-76-8 2.0% DOPT2	0-76-8 2.0% DOPTZ	0-76-5 2% PTZ 24 0x 205	0-76-5 2% PTZ 24 0x 205	0-76-8 2% PTZ 24 0x 205	0-76-8 2%
Test No.	637	638	639	049	641	642	643	644	645	646	647	9

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black shiny very smooth deposit	Hard black shiny very smooth deposit	Hard black flat slightly grainy deposit	Hard black flat slightly grainy deposit	Hard grayish black flat grainy deposit	Hard grayish black flat grainy deposit	Hard black shiny wavy grainy deposit	Hard black shiny wavy grainy deposit	Hard black flat grainy deposit	Hard black flat slightly grainy deposit	Hard black shiny wavy deposit	Hard black shiny wavy deposit
Deposit	20.2	22.4	15.3	14.0	18.2	18.2	24.4	25.2	16.0	15.1	20.1	20.8
Sample	0.9600	1.0040	0.9642	0.9552	0.9507	0.9615	0.9904	0.9916	0.9531	0.9552	0.9759	0.9430
Type	Specimen Shim Stock	Shi a Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shi m Stock	Shi m Stock	Shi a Stock	Shim Stock	Shim Stock
	180	180	180	180	081	180	180	180	180	180	180	180
Test Test	315	315	315	315	315	315	315	315	315	315	315	315
Coker	-	2	n	4	1	2	м	4		2	٣	4
Sample	0-76-5 2X PTZ 24 0x 205 Fil	0-76-5 2% PT2 24 0x 205 Fil	0-76-8 2% PTZ 24 0x 205 Fil	0-76-8 2% PTZ 24 0x 205 Fil	8- 75 202	0-76-8 2% DOPTZ 24 0x 205	0-76-5 2% DOPTZ 24 0x 205		0-76-8 2% DDPTZ 24 0x 205 Fil	0-76-8 2% DOPTZ 24 0x 205 Fil	0-76-5 2% DOPTZ 24 Dx 205 Fil	0-76-5 2% DOPTZ 24 Ox 205 Fil
Test	649	920	651	652	653	654	655	656	657	628	629	099

AFAPL SIATIC COKER TEST DATA

76 Pp. 76	18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0	Specimen Shim Shim Shim Shim Shim Shim Stock Shim Stock	0.9435 0.9435 0.9496 0.9764	11.8 11.8 8.0 9.4 9.1	dep
1 2	08 18 18 08 18 08 1	Shia Stork Stork Stork Stork Stork	0.9435 0.9462 0.9496 0.9764	11.8 8.0 9.4 9.1	black shiny deposit black shiny deposit deposit deposit
1 2 x 2 2 2 2 2 2 4 2 2 4 4 4 4 4 4 5 2 x 4 8 2 2 2 2 2 2 2 4 4 8 3 3 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	180 180 180	Shia Stock Stock Stock	0.9462 0.9328 0.9496 0.9764	9.4	black shiny deposit black shiny deposit black shiny deposit
1 2 x 3	180	Shim Shim Shim Stock	0.9496	9.4	black shiny deposit black shiny deposit
1 2% 4 Fil 52 2% 1	180	Shim Stock Shim Stock	0.9496	9.1	black shiny deposit
5 2 x 1	180	Shim Stock	0.9764	28.4	
5 2 x 2 48 2 5 48 3 48 3 05					Hard black shiny very grainy deposit
1 2% 3 48 3 05	180	Shia	0.9772	31.3	Hard black shiny very grainy deposit
	180	Shim Stock	0.9710	16.0	Hard gray-black partially shiny grainy deposit
DOPTZ 48 4 315 CH 205	180	Shim Stock	0.9626	16.7	Hard gray-black partially shiny grainy flaky deposit
0-76-8 2x 00PT2 48 1 315 CH 205	180	Shim Stock	0.9671	22.1	Hard black shiny wavy deposit
	180	Shim Stock	0.9567	25.4	Hard black shiny wavy deposit
0-76-8 2% PTZ 48 CH 3 315 205	180	Shim Stock	0.9783	15.0	Hard grayish black flat very grainy deposit
0-76-8 2X PTZ 48 CH 4 315 205	180	Shim Stock	0.8939	13.4	Hard grayish black flat very grainy deposit

AFAPL STATIC COKER TEST DATA

	>	_	_	_				Ţ			<u></u>	<u></u>
Description of Deposit	Hard black shiny wavy deposit. Controller problem	Hard black shiny wavy deposit. Controller problem	Mard black shiny wavy deposit. Controller problem	Hard black shiny wavy deposit, Controller problem	Hard black shiny wavy deposit	Hard black wavy glossy deposit	Hard black wavy glossy deposit	Hard black thin deposit	Hard black thin deposit			
Deposit mg/gm Oil	19.0	11.0	14.3	22.4	20.7	19.4	17.2	20.4	16.4	22.0	3.7	8.9
Sample Size	0.9922	0.9822	1.0811	0.9843	1.0106	1.0196	1.0186	1.0235	0.9785	0.9701	0.9259	0.9352
Type Test Specieen	Shi s Stock	Shi s Stock	Shi m Stock	Shi a Stock	Shim Stock	Shim Stock	Shim Stock	Shi a Stock	Shi a Stock	Shim Stock	Shim Stock	Shim
Test Time Min.	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.	1	2	3	•	1	2	ы	4	1	2	n	4
Sample	0-76-5 0.5% DOPTZ	0-76-5 0.5% DOPTZ	0-76-5 1.0% DOPT2	0-76-5 1.0% DOPT2	0-76-5 0.5% DOPT2	0-76-5 0.5% DOPTZ	0-76-5 1.0% DOPT2	0-76-5 1.0% DOPT2	0-76-5 1.5% DOPT2	0-76-5 1.5% DOPT2	0.5% DOPTZ	0-77-1 0.5% DOPTZ
Test No.	673	674	675	676	677	878	629	089	681	682	683	684

AFAPL STATIC COKER TEST DATA

Description of Deposit	Hard black wavy glossy deposit	Hard black wavy glossy deposit	Hard black wavy glossy deposit	Hard black wavy glossy deposit	Hard black shiny slightly wavy deposit	Hard black shiny smooth deposit	Hard black shiny smooth deposit	Hard black shiny slightly wavy deposit	Hard black shiny wavy deposit. Seal seepage	Hard black shiny wavy deposit	Hard black smooth shiny deposit	Hard black smooth shiny deposit
Deposit mg/gm Oil	5.2	7.7	6.3	6.6	7.3	6.9	5.7	9.6	44.4	36.4	9.2	11.4
Sample Size om	0.9488	0.9733	0.9446	0.9468	0.9116	0.9658	0.9130	0.9174	0.9184	1.0153	0.9644	0.8922
Type Test Specimen	Shim Stock	Shi# Stock	Shi# Stock	Shim Stock	Shim Stock	Shi a Stock	Shi Stock	Shi a Stock	Shi s Stock	Shi a Stock	Shim Stock	Shim Stock
Test Time min.	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	092	260	315	315
Coker No.	ī	2	2	+		2	۳	4	1	2	ю	4
Sample	1.0% DOPTZ	0-77-1 1.0% DOPT2	0-77-1 1.5% DOPT2	0-77-1 1.5% DOPTZ	0.5% DOPT2	0.5% DOPT2	0-76-8 1.0% DOPT2	0-76-8 1.0% DOPT2	0-85-1	0-85-1	0-76-8 1.5% DOPT2	0-76-8 1.5% DOPTZ
Test No.	982	989	289	889	689	069	691	692	269	169	269	969

AFAPL STATIC COKER TEST DATA

) 40N 4NN 4HN 4HN	315 315 315 315 315 315 315 315 315 315	Bin.	Specimen		mg/gm 0il	
5 2 2 4 8 5 2 2 4 8 6 5 2 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	315 315				T	
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	315	180	Stock	0.9790	26.5	Hard black shiny wavy deposit
- 2% - 48 - 2% - 48 - 51 - 72 - 73	315	180	Shim Stock	0.9669	25.1	Hard black shiny wavy deposit
ᅵᅟᆖᄬᄔᅴᇎ		180	Shim Stock	0.9295	13.0	Hard black shiny wavy grainy deposit
۔.ا	315	180	Shim Stock	0.9545	14.5	Hard black shiny flaky mavy grainy deposit
PTZ 48 CH 1 205 Fil	315	180	Shim Stork	0.9934	26.0	Hard black shiny wavy deposit
0-76-5 2% PTZ 48 CH 2 205 Fil	315	180	Stork	0.9621	26.4	Hard black shiny wavy deposit
2 - 2 4 - 2	315	180	Shim Stock	0.9657	18.3	Hard black shiny wavy deposit
0-76-5 2% 00PT2 48 4	315	180	Shim Stock	0.9286	24.2	Hard black shiny wavy deposit
0-77-1 2% PTZ 48 0× 1 205	315	180	Shim Stock	9986.0	10.5	Hard black shiny flaky deposit
0-77-1 2% PTZ 48 0x 2 205	315	180	Shim Stock	0.9526	13.8	Hard black shiny slightly grainy deposit
0-76-5 2% PTZ 48 0x 3 205	315	180	Shim Stock	0.9753	24.0	Hard black shiny wavy grainy deposit
0-76-5 2% PTZ 48 0x 4 205	315	180	Shim Stock	0.9548	17.9	Hard black shiny wavy deposit (seal leak)

AFAPL STATIC COKER TEST DATA

					Γ		I		<u> </u>		<u> </u>	
Description of Deposit	Hard black very flaky deposit	Hard black very flaky deposit	Hard black shiny wavy very thick deposit	Hard black shiny wavy very thick deposit	Hard black thin slightly mavy deposit	Hard black thin slightly wavy deposit	Hard black shiny wavy deposit	Hard black shiny wavy deposit	Hard black shiny very flaky deposit	Hard black shiny very flaky deposit	Hard black shiny wavy very thick deposit	Hard black shiny wavy very thick deposit
Deposit mg/gm Oil	17.2	17.3	65.3	72.7	8.5	10.1	25.2	30.4	17.4	16.2	68.6	71.5
Size Size	0.8791	0.9720	1.0001	1.0196	0.9191	0.8884	0.9995	0.9496	0.9439	0.9330	0.9800	1.0096
Type Test Specimen	Shim Stock	Shim Stock	Shi a Stock	Shim Stock	Shi a Stock	Shi.	Shi a Stock	Shi a Stock	Shia Stock	Shi m Stock	Shim Stock	Shim Stock
768t Time Time	180	180	180	180	180	180	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315	315	315	315	315	315	315
Coker No.		2	ы	4		2	ь	+	-	2	м	4
Sample	0-77-1 2X DDPTZ 48 0x 205	~ -	6-5 12 4 205	6- 12 2	48 48 5 F	0-77-1 2X PTZ 48 0X 205 Fil	0-76-5 2X PTZ 48 0X 205 Fil	λ. 8 .r.	0-77-1 2X DOPTZ 48 Ox 205 Fil	0-77-1 2% DOPTZ 48 Ox 205 Fil	10 4 r	0-76-5 2% DOPTZ 48 205 Fil
Test No.	709	710	711	712	713	714	715	716	717	718	719	720

AFAPL STATIC COKER TEST DATA

Coker Temp. Time Test 2x					1 4 5 5 5		1		
0-76-5 2% 1 315 180 Shim 205 2 315 180 Shim 205 2 315 180 Shim 205 51	Test No.	Samp le	Coker No.		Tine.	Specimen	Size	Deposit mg/gm Oil	Description of Deposit
0-76-5 2% 2 315 180 Shim Stock 205 Fil 3 315 180 Shim Stock 205 Fil 3 315 Shim Stock 205	721	ည်ဆည်	-	315	180	Shi s Stock	9066.0	27.8	Hard black shiny wavy grainy deposit
0-76-5 2% 3 315 180 Shim 205 Fil 3 315 180 Shim 205 Fil 4 315 180 Shim 205 Fil 1 315 180 Shim 205 Fil 1 315 180 Shim 205 Fil 2 315 180 Shim 205 Fil 3 315 180 Shim 205 Fil 3 315 180 Shim 205 Fil 4 315 180 Shim 205 Fil 1 315 180 Shim 205 Fil 2 315 315 315 Shim	722	•	2	315	180	Shi s Stock	0.9544	34.0	Hard black shiny wavy grainy deposit
0-76-5 27 4 315 180 Shim 205 Fil 205 Fil 1 315 180 Shim 205 Fil 2 315 180 Shim 205 2 315 180 Stock 205 2 315 180 Stock 205 2 315 315 Stock	723	ت م ما	£	315	180	Shim Stock	0.9734	22.5	Hard black shiny wavy deposit
0-77-1 2%	724	6-5 48 5 Fi	•	315	180	Shim Stock	0.9420	28.8	Hard black shiny wavy deposit
0-77-1 2% 2 315 180 Shim stock 205 205 205 205 205 205 205 Fil 3 315 180 Shim stock 205 Fil 3 315 180 Shim stock 205 Fil 3 315 180 Shim stock 205 Fil 2 315 180 Shim stock 205 Fil 2 315 180 Shim stock 205 Fil 2 315 180 Shim stock 205 Fil 3 315 315 315 315 315 315 315 315 315 3	725	-1 48 05	1	315	180	Shim Stock	0996.0	9.4	Hard black shiny thin slightly grainy deposit
0-77-1 2% PTZ 48 CH 205 Fil 205 Fil 205 Fil PTZ 48 CH 205 Fil PTZ 48 CH 205 Fil D-76-8 2% PTZ 48 CH 205 Fil PTZ 48 CH 205 Fil D-76-8 2% PTZ 48 CH 205 Fil D-76-8 2% D-	726		2	315	180	Shi a Stock	0.9601	8.3	Hard black shiny thin slightly grainy deposit
0-77-1 2% 4 315 180 Shim PTZ 48 CH 4 315 180 Stock 205 Fil 315 180 Shim PTZ 48 CH 1 315 180 Stock 205 Fil 205 Fil 205 Fil 205 Fil 205 Fil 315 180 Stock CH 205 Fil 3 315	727	7-1 48 5 Fi	ъ	315	180	Shim Stock	0.9593	7.8	Hard black shiny thin slightly grainy deposit
0-76-8 2% 180 Shim PTZ 48 CH 1 315 180 Stock 205 Fil Stock 205 Fil 2 315 180 Stock 205 Fil 2 315 180 Stock 50-76-8 2% 3 315 180 Stock 50-76-8 2% 3 315 180 Stock 50-76-8 2%	728		4	315	180	Shi a Stock	0.9519	9.1	Hard black shiny thin slightly grainy deposit
0-76-8 2% PTZ 48 CH 2 315 180 Shim 205 Fil 0-76-8 2% CH 205 Fil CH 205 Fil 3 315 180 Shim 5tock	729	5-8 48 5 Fi	1	315	180	Shim Stock	0.9184	15.4	Hard black dull grainy flat deposit
1 DOPTZ 48 3 315 180 Shim CH 205 Fil Stock D-76-8 2%	730	-8 48 Fi	2	315	180	Shi a Stock	9126-0	15.2	Hard black dull grainy flat deposit
7.7	731	76-8 PT2 4 205 F	ဗ	315	180	Shim Stock	0.9190	15.8	Hard black shiny flaky deposit
48 4 315 180 Stock	732	76-8 3P12 4 205 F	4	315	180	Shim Stock	0.8820	14.2	Hard black shiny flaky deposit

AFAPL STATIC COKER TEST DATA

Description of Deposit	Mard black shiny flaky deposit	Hard black shiny flaky deposit	Hard black shiny smooth deposit	Hard black shiny smooth deposit	Hard black semi-shiny wavy grainy deposit	Hard black semi-shiny wavy grainy deposit
Deposit mg/gm Oil D	14.5	12.7	± 4.6	7.2	8.9	10.4
Sample Size	0.9441	0.9452	0.9674	0.9645	0.9405	0.9560
Type Test Specimen	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock	Shim Stock
Test Tine Bin.	180	180	180	180	180	180
Test Temp.	315	315	315	315	315	315
Coker No.	1	2		2	2	•
Sample	0-76-8 2x DOPT2 48 CH 205	0-76-8 2x DOP12 48 CH 205	0-77-1 2x DOPT2	0-77-1 2x DOPT2	0-77-1 2% DOPT2 24 0% 205	0-77-1 2% DOPT2 24 0% 205
Test No.	733	734	735	736	737	738

TABLE A-4

LUBRICANT COKING PROPENSITY TEST DATA 210°C TEST TEMPERATURE

DEPOSIT MEASUREMENT

Test Lubricant	Type Test Oish	Avg/Test Cycle (mg)	Total/10 ^a Cycles (mg)	Total/10 ^b Cycles (mg)	Total/20 ^C Cycles (mg)	Total/20 ^d Cycles (mg)	Residue ^C mg/gm oil	Residue mg/gm oil
0-79-16	Polished Aluminum	0.3	2.7	2.7	5.4	5.4	0.7	0.7
0-79-17	=	Lubricant	t crept out o	Lubricant crept out of test dish onto dish holder.	onto dish hol	lder.		
0-79-20	=	6.0	9.8	9.2	17.2	18.4	2.1	2.2
0-82-2	=	Lubricant	t crept out o	Lubricant crept out of test dish onto dish holder.	onto dish hol	lder.		
0-82-3	=	Lubricant	t crept out c	Lubricant crept out of test dish onto dish holder.	onto dish hol	lder.		
0-82-14	=	1.3	12.9	13.5	25.8	27.0	3.1	3.2
0-79-16	Stainless Steel	4.0	3.8	2.9	7.6	5.8	6.0	0.7
0-79-17	±	Lubricant	t crept out a	Lubricant crept out of test dish onto dish holder.	onto dish hol	der.		
0-79-20	=	6.0	8.6	6.6	17.2	19.8	2.1	2.4
0-82-2	=	Lubricant	t crept out o	Lubricant crept out of test dish onto dish holder.	onto dish hol	lder.		
0-83-3	=	Lubricant	t crept out o	Lubricant crept out of test dish onto dish holder.	onto dish hol	lder.		
0-82-14	=	1.5	15.4	16.5	30.8	33.0	3.7	4.0
^a Mean Value								

Mean Value

^bFinal test d**is**h weight minus initial weight for 10 cycles

^CCalculated from the mean for 10 cycles

dCalculated from final & initial weight for 10 cycles

LUBRICANT COKING PROPENSITY TEST DATA 235°C TEST TEMPERATURE

Lubi	0-7	0-7		869	9-8	0-8
Test Lubricant	0-79-16	0-79-17	0-79-20	0-82-2	0-82-3	0-82-14
Test Test Oish	Sandblasted Aluminum	=	=	=	=	=
Avg/Test Cycle (mg)	0.3	0.4	Oil not tested.	Oil crept	Oil crept	0.3
Total/10 ^a Cycles (mg)	2.5	3.6	sted.	from test di	from test dish.	3.1
Total/10 ^b Cycles (mg)	0.0	1.5		from test dish. Test discontinued		9.0
Total/20 ^c Cycles (mg)	5.0	7.2		continued	Test discontinued	6.2
Total/20 ^d Cycles (mg)	0.0	3.0				1.6
Residue ^C mg/gm oil	9.0	0.8				0.7
Residue mg/gm oil	0.0	0.3				0.2

^aMean Value X 10

^bFinal test dish weight minus initial weight for 10 cycles

^CCalculated from the mean for 10 cycles

d_{Calculated} from final & initial weight for 10 cycles

LUBRICANT COKING PROPENSITY TEST DATA 235°C TEST TEMPERATURE, TEST NO. 1

Test Lubricant	Test Test Dish	Avg/Test Cycle (mg)	Total/10 ^a Cycles (mg)	Total/10 ^b Cycles (mg)	Total/20 ^C Cycles (mg)	Total/20 ^d Cycles (mg)	Residue ^C mg/gm oil	Residue ^d mg/gm oil
0-79-16	Polished Aluminum	8.0	8.3	7.4	16.6	14.8	1.9	1.7
0-79-17	z	0.7	9.9	5.7	13.2	11.4	1.6	1.4
0-79-20	=	0.5	4.6	4.0	9.5	8.0	1.1	6.0
0-82-2	Ξ	1.0	10.3	10.6	20.6	21.2	2.4	2.4
0-85-3	=	6.0	9.4	9.7	18.8	19.4	2.2	2.2
0-82-14	2	9.0	6.4	6.1	12.8	12.2	1.6	1.5
0-79-16.	Stainless Steel	6.0	9.1	8.1	18.2	16.2	2.2	2.0
0-79-17	Ξ	8.0	8.3	8.2	16.6	16.4	2.0	2.0
0-79-20	=	8.0	7.6	6.9	15.2	13.8	1.8	1.6
0-82-2	Ξ	1.5	14.7	14.6	29.4	29.5	3.5	3.5
0-85-3	=	0.8	8.3	8.4	16.6	16.8	2.0	2.1
0-82-14	=	0.7	7.3	7.7	14.6	15.4	1.8	1.9
^a Mean Value X 10	x 10			روع)	^C Calculated from the mean for 10 cycles	the mean for	10 cycles	
^b Final test for 10 cycl	^b Final test dish w e ight minus initial for 10 cycles	inus initial	weight	^d Cal for	^d Calculated from final & initial weight for 10 cycles	final & init	ial weight	

LUBRICANT COKING PROPENSITY TEST DATA 235°C TEST TEMPERATURE, TEST NO. 2 DEPOSIT MEASUREMENTS

Test Lubricant	Type Test Dish	Avg/Test Cycle (mg)	Total/10 ^a Cycles (mg)	Total/10 ^b Cycles (mg)	Total/20 ^C Cycles (mg)	Total/20 ^d Cycles (mg)	Residue ^C mg/gm oil	Residue mg/gm oil
0-79-16	Polished Aluminum	0.4	3.9	3.4	7.8	6.8	6.0	0.8
0-79-17	=	0.5	5.0	5,9	10.0	11.2	1.2	1.4
0-79-20	Ξ	0.4	3.7	2.9	7.4	5.8	6.0	0.7
0-82-2	=	1.0	10.2	10.1	20.4	20.2	2.5	2.4
0-82-3	=	6.0	8.5	8.6	17.0	17.2	2.0	2.0
3-82-14	Ξ	0.5	5.3	5.2	10.6	10.4	1.3	1.3
0-79-16	Stainless Steel	0.5	5.3	1.4	10.6	2.8	1.2	0.3
0-79-17	=	0.7	6.9	5.2	13.8	10.4	1.7	1.2
0-79-20	=	0.4	3.6	2.4	7.2	4.8	6.0	9.0
0-85-2	z	1.1	11.1	11.6	22.2	23.2	2.8	2.9
0-82-3	=	0.7	7.4	8.3	14.8	16.6	1.9	2.1
0-82-14	Ξ	9.0	6.3	9.9	12.6	13.2	1.5	1.6
^a Mean Value X 10	X 10			Calc	Calculated from the mean for 10	he mean for]	10 cycles	
^b Final test 10 cycles	^b Final test dish weight minus initial 10 cycles	us initial	weight for	d _{Calc} for	^d Calculated from final & initial weight for 10 cycles	inal & initia	al weight	

LUBRICANT COKING PROPENSITY TEST DATA 235°C TEST TEMPERATURE

Lubricant	Type Test Dish	Avg Test Cycle (mg)	Total/10 ^a Cycles (mg)	Total/10 ^D Cycles (mg)	Total/20 ^C Cycles (mg)	Total/20 ⁴ Cycles (mg)	Residue ^C (mg/g oil)	Residue ^d (mg/g oil)
0-71-6	Stainless Steel	7.2	72.2	72.2	144.4	144.4	15.6	15.6
0-77-15	=	5.7	56.6	9.99	113.2	113.2	12.2	12.2
0-79-18	=	8.1	90.6	90.6	161.2	161.2	16.7	16.7
0-85-1	=	5.8	58.5	58.5	117.0	117.0	12.6	12.6
TEL 6031	Ξ	4.7	47.0	47.0	94.0	94.0	9.4	9.4
TEL 6032	=	1.7	16.6	16.5	33.2	33.0	3.5	3.4

^aMean Value

BECCESS PROPERTY AND COMPANY OF THE

^bFinal test dish weight minus initial weight for 10 cycles

^CCalculated from the mean for 10 cycles

^dCalculated from final & initial weight for 10 cycles

LUBRICANT COKING PROPENSITY TEST DATA 260°C TEST TEMPERATURE, TEST NO. 1

DEPOSIT MEASUREMENTS

	Test Lubricant	Type Test Dish	Avg/Test Cycle (mg)	Total/10 ^a Cycles (mg)	Total/10 ^b Cycles (mg)	Total/20 ^C Cycles (mg)	Total/20 ^d Cycles (mg)	Residue ^C (mg/gm oil)	Residue ^d (mg/gm oil)
	0-79-16	Polished Aluminum	0.7	7.2	7.1	14.4	14.2	1.7	1.7
	0-79-17	2	0.3	3.2	3.0	6.4	6.0	0.8	0.7
	0-79-20	=	0.7	9.9	6.1	13.2	12.2	1.5	1.4
	0-82-2	2	0.7	7.1	7.2	14.2	14.4	1.7	1.7
473	0-82-3	=	0.2	2.2	1.5	4.4	3.0	0.5	0.4
}	0-82-14	=	0.2	2.4	1.9	4.8	3.8	9.0	0.5
	0-79-16	Sand Blasted Aluminum	0.4	3.8	2.6	7.6	5.2	6.0	9.0
	0-79-17	=	0.1	1.0	1.0	2.0	2.0	0.3	0.3
	0-79-20	Ξ	0.1	1.0	0.2	1.0	0.4	0.1	0.1
	0-82-2	=	0.2	1.7	1.7	3.4	3.4	0.4	0.4
	0-82-14	2	0.2	1.8	0.7	3.6	1.4	0.4	0.2
	^a Mean Value X 10	X 10			ű	alculated fr	om the mean	^C Calculated from the mean for 10 cycles	s
	^b Final test for 10 cycl	^b Final test dish weight minus initial weight for 10 cycles	nus initia	l weight	₽,	Calculated fr for 10 cycles	om final & i	^d Calculated from final & initial weight for 10 cycles	₩

LUBRICANT COKING PROPENSITY TEST DATA 260°C TEST TEMPERATURE, TEST NO. 2

DEPOSIT MEASUREMENTS

Test Lubricant	Type Test Dish	Avg/Test Cycle (mg)	Total/10 ^a Cycles (mg)	Total/10 ^b Cycles (mg)	Total/20 ^C Cycles (mg)	Total/20 ^d Cycles (mg)	Residue ^C (mg/gm oil)	Residue ^d (mg/gm oil)
0-79-16	Polished Aluminum	0.7	6.9	5.2	13.8	10.2	1.6	1.2
0-79-17	=	0.4	4.5	2.1	9.0	4.2	1.1	0.5
0-79-20	=	0.7	6.5	5.8	13.0	11.6	1.6	1.4
0-82-2	=	9.0	6.3	4.8	12.6	9.6	1.5	1.2
0-82-3	=	0.3	3.1	0.0	6.2	0.0	0.7	0.0
0-82-14	=	0.3	3.3	1.0	9.9	2.0	8.0	0.2
0-79-16	Stainless Steel	0.5	8.	3.6	9.6	7.2	1.2	6.0
0-79-17	±	0.4	3.9	(-0.1)	7.8	(-0.2)	6.0	0.0
0-79-20	=	0.7	7.0	5.8	14.0	11.6	1.7	1.4
0-82-2	=	0.5	5.4	1.8	10.8	3.6	1.4	0.5
0-83-3	Ξ	0.4	4.4	(-0.4)	8.8	(-0.8)	1.0	0.0
0-82-14	=	0.5	4.5	0.7	0.6	1.4	1.0	0.2
^a Mean Value X 10	x 10			3	alculated fr	om the mean	^C Calculated from the mean for 10 cycles	S
^b Final test for 10 cycl	^b Final test dish weight minus ini for 10 cycles	inus initia	tial weight		Calculated fr for 10 cycles	om final &	^d Calculated from final & initial weight for 10 cycles	ję.

474

LUBRICANT COKING PROPENSITY TEST DATA 260°C TEST TEMPERATURE

DEPOSIT MEASUREMENTS

Test Lubricant	Type Test Dish	Avg/Test Cycle (mg)	Total/10 ^a Cycles (mg)	Total/10 ^b Cycles (mg)	Total/20 ^C Cycles (mg)	Total/20 ^d Cycles (mg)	Residue ^C Residue ^d (mg/gm oil)(mg/gm oil)	Residued (mg/gm oil)
0-71-6	Aluminum	5.0	50.4	48.1	100.8	96.2	12.4	11.8
0-77-15 (TEL 6021)	=	4.2	42.3	42.3	84.6	84.6	10.3	10.3
0-79-18 (TEL 6022)	=	6.2	62.3	62.3	124.6	124.6	14.9	14.9
TEL-6032	=	1.9	19.1	19.0	38.2	38.0	4.4	4.4
TEL-6031	=	4.7	46.6	46.6	93.2	93.2	10.5	10.5
0-71-6	Stainless Steel	5.7	56.7	9.95	113.4	113.2	14.0	13.9
0-77-15 (TEL 6021)	=	6.3	63.3	63.3	126.6	126.6	15.2	15.2
0-79-18 (TEL 6022)	z.	6.8	68.1	68.1	136.2	136.2	15.8	15.8
TEL-6032	=	2.5	25.2	22.7	50.4	45.4	5.9	5.3
TEL-6031	=	4.8	48.5	48.1	97.0	96.2	10.2	10.1
0-85-1		4.1	40.8	41.1	81.6	82.2	8.6	8.7
^a Mean Value	Ð							

^bFinal test dish weight minus initial weight for 10 cycles

^CCalculated from the mean for 10 cycles

d_{Calculated} from final & initial weight for 10 cycles

LUBRICANT COKING PROPENSITY TEST DATA 300^oc test temperature

DEPOSIT MEASUREMENTS

Residued (mg/g oil	5.9	9.0	2.8	6.2	1.6	10.1 6.3	3.0
Residue ^C (mg/g oil) 9.6	5.9	9.7	2.9	11.1 6.2	9.1	10.1 6.3	3.2
c Total/20 ^d Cycles (mg)	50.2 67.4	75.6 54.6	24.2	54.8	78.4	58.8	56.6
b Total/20 ^C Cycles (mg) 81.4	50.2 63.8	81.6 54.6	25.0	54.8	78.4	58.8	28.0
oa Total/10 ^b Cycles (mg) 40.7	33.7	37.8 27.3	12.1	27.4	39.2	29.4	13.3
Cycles (mg)	31.9	27.3	12.5	27.4	39.2 44.7	29.4	14.0
Avg/Test Cycle (mg)	2. S. 5.	2.7	1.3 6.8	2.7	ນ 4. ນີ້ຕິ	2.9	1.4
Type Test Dish Aluminum	: = =	= =	Stainless Steel	= =	: =	= :	:
Test Lubricant 0-71-6	0-77-15 0-79-18	TEL 6031	0-71-6	0-85-1	0-79-18	TEL 6031	151-0032

^aMean Value

^bFinal test dish weight minus initial weight for 10 cycles

^CCalculated from the mean for 10 cycles

dCalculated from final & initial weight for 10 cycles

LUBRICANT COKING PROPENSITY TEST DATA 300°C TEST TEMPERATURE

		Avg Test	Total/10a	Total/10 ^D		Total/20		7
Test Lubricant	Type Test Dish	Cycle (mg)	Cycles (mg)	Cycles (mg)	Cycles (mg)	Cycles (mg)	Residue ^c (mg/g oil) (Residue ^d (mg/g oil)
0-71-6	Sandblasted	0.5	5.1	4.8	10.2	9.6	6.0	6.0
0-77-15		0.5	4.8	3.6	9.6	7.2	1.0	8.0
0-79-18	=	1.5	15.2	15.2	30.4	30.4	3.1	3.1
0-85-1	:	0.9	9.0	9.0	18.0	18.0	1.8	1.8
TEL-6031	=	1.1	10.7	10.3	21.4	20.6	2.0	2.0
TEL-6032	=	0.4	4.1	2.8	8.2	5.6	0.8	9.0

^aMean Value

^bFinal test dish weight minus initial weight for 10 cycles

Calculated from the mean for 10 cycles

dcalculated from final & initial weight for 10 cycles

TABLE A-5

DESCRIPTION OF COKING PROPENSITY TEST DEPOSITS

ALUMINUM TEST DISH

MIL-L-7808	Type Fluids	
0-79-16	(210°C Test) (235°C Test) (260°C Test)	Hard dark brown deposit on rim of test dish Hard dark brown deposit, nonuniform coverage Hard dark brown to black deposit, nonuniform coverage
0-79-17	(210°C Test) (235°C Test) (260°C Test)	Oil crept from dish. Test discontinued Hard brown to black deposits, nonuniform coverage Hard brown to black deposits, nonuniform coverage
0-79-20	(210°C Test) (235°C Test) (260°C Test)	Spots of sticky brown varnish Light brown uniform varnish Hard brown to black deposits, nonuniform coverage
0-82-2	(210°C Test) (235°C Test)	Oil crept from dish. Test discontinued Sticky light to dark brown varnish, nonuniform coverage
	(260°C Test)	Few areas of hard dark brown deposits, slight varnish over remaining test area
0-82-3	(210°C Test) (235°C Test) (260°C Test)	Oil crept from dish. Test discontinued Sticky light to dark brown varnish, nonuniform coverage Light brown uniform stain, and a few black deposits
0-82-14	(210 ^O C Test) (235 ^O C Test) (260 ^O C Test)	Hard dark brown deposit and brown stain Hard dark brown uniform varnish Uniform brown varnish deposit
MIL-L-23699	9 Type Fluids	
0-71-6	(260°C Test)	Hard, glossy, very smooth, dark brown uniform deposit
	(300°C Test)	Hard black smooth deposit, peeling in center and slight amount of hard dark brown deposit creeping up test cup lip
0-77-15	(260°C Test)	Hard, glossy, very smooth uniform black deposit with brownish coke on lip Hard, black, cracked brittle deposit with hard brown flaky deposit on cup lip

0-79-18	(260°C Test)	Hard, glossy, flaky, reddish brown uniform deposit
	(300°C Test)	Hard, brown to black, wrinkled, flaky deposit
4 eSt Flui	d	
0-85-1	(300°C Test)	Hard, brittle, flaky brown to black deposit, slight stain on cup lip
7.5 cSt F1	uids	
TEL-6031	(260°C Test)	Hard, flaky, dark brown deposit with light brown stain
	(300°C Test)	Hard, dark brown, very flaky cracked deposit
TEL-6032	(260°C Test) (300°C Test)	Hard, dark brown, slightly flaky uniform deposit. Hard, dark brown, semi-smooth, slightly flaky deposit
		STAINLESS STEEL DISH
MIL-L-7808	Fluids	
0-79-16	(210 ^O C Test) (235 ^O C Test)	Light brown nonuniform varnish Hard dark brown varnish and deposit, nonuniform coverage
	(260°C Test)	Hard, flaky, dark brown deposit, nonuniform coverage
0-79-17	(210°C Test) (235°C Test)	Oil crept from dish. Test discontinued Hard dark brown varnish, uniform light brown
	(260°C Test)	stain Brown stain, dark brown deposits in edge of test dish
0-79-20	(210°C Test) (235°C Test)	Spots of sticky brown varnish Hard dark brown varnish, uniform light brown
	(260°C Test)	stain Hard, dark brown, nonuniform deposit
0-82-2	(210°C Test)	Oil crept from dish. Test discontinued
	(235°C Test) (260°C Test)	Sticky, light to dark brown varnish, nonuniform coverage
	(200 C 183t)	Hard, dark brown, flaky nonuniform deposit

COLUMN TERROR COLUMN TERROR

0-82-3	(210°C Test) (235°C Test)	Oil crept from dish. Test discontinued Sticky, dark brown varnish, light brown stain, nonuniform coverage
	(260°C Test)	Uniform light brown varnish deposit
0-82-14	(210°C Test)	Heavy hard brown flaky deposit and light brown stain
	(235°C Test) (260°C Test)	Hard dark brown stain/varnish, uniform coverage Uniform brown varnish deposit
MIL-L-2369	9 Type Fluids	
0-71-6	(235°C Test) (260°C Test)	Hard brown to black, flaky, nonuniform deposit Hard, black, very flaky deposit with lighter brown smooth deposits
	(300°C Test)	Hard, black deposit, very flaky and cracked, with slight hard deposit on cup lip
0-77-15	(235°C Test) (260°C Test)	Hard brown to black, flaky, nonuniform deposit Hard, flaky, black deposit with smooth dark brown deposit extending over lip of test cup
	(300°C Test)	Hard, black, very flaky and cracked deposit with some hard deposit on cup lip
0-79-18	(235°C Test) (260°C Test) (300°C Test)	Hard brown to black uniform deposit Hard, dark brown, flaky uniform deposit Hard, brown to black deposit, with areas of thin, flexible, film-like peeling deposits
4 cSt Flui	d	
0-85-1	(235 ^O C Test)	Hard brown to black uniform deposit extending over lip of test dish
	(260°C Test) (300°C Test)	Hard, dark brown, flaky uniform deposit Hard light to dark brown deposit, very flaky with areas of flexible, thin, film-like
deposits		peeling up and away from test cup surface
7.5 cSt F1	uids	
TEL-6031	(235°C Test)	Hard brown to black, uniform, slightly flaky deposit
	(260°C Test)	Hard, black, uniform deposit with soft flaky areas

TEL-6032	(235°C Test)	Hard brown to black uniform slightly flaky
		deposit.
	(260°C Test)	Hard, black, slightly flaky uniform deposit
	(300 ⁰ C Test)	Hard dark brown, semi-smooth flaky deposit

	s	ANDBLASTED ALUMINUM TEST DISH
MIL-L-7808	Type Fluids	
0-79-16	(235°C Test) (260°C Test)	No visible deposits Small amount of brown to black residue over test area
0-79-17	(235°C Test) (260°C Test)	No visible deposits Light to dark brown stain over part of test area
0-79-20	(235°C Test) (260°C Test)	Not tested Hard brown to black deposit, nonuniform coverage
0-82-2	(235°C Test) (260°C Test)	Oil crept from dish. Test discontinued No visual deposits on staining
0-82-3	(235°C Test) (260°C Test)	Oil crept from dish. Test discontinued Not tested
0-82-14	(235°C Test) (260°C Test)	No visible deposits. Stain on lip of test dish Light brown stain over test area
MIL-L-2369	9	
0-71-6	(300°C Test)	Dark brown to black nonuniform deposit on test surface and cup rim
0-77-15	(300°C Test)	Slight coke on test surface with hard black heavier deposit on rim of cup
0-79-18	(300°C Test)	Dark brown uniform deposit with brown deposit on rim of cup
4 cSt Flui	đ	

0-85-1 (300°C Test) Brown uniform deposit with heavier coke on test cup rim

TOTAL CONTRACT CONTRA

7.5 cSt Fluids

TEL-6031 (300°C Test) Uniform dark brown deposit

TEL-6032 (300°C Test) Slight brown deposit

LUBRICANT FOAMING TEST DATA

			Test		Oil Volume		FOAB	
X o t	Test Lubricant	Type Air Diffuser	Cylinder Size (ml)	Volume (ml)	E 6	Volume (m1)	Collapse Time (sec)	
-	0-67-210	AI # MT2A	200	200	25 ^a (245) ^b	525 ⁸ (40)	37 ⁸ (44) ^b	
7	0-71-10	AI # MT8A	200	200	-	overfm 1 min	•	
ь	90AL 5K3-L6	ASTM # 1A	200	200	25 (245)	450 (25)	52 (43)	
*	9K3-L6	AI # MT2A	200	134	20 (160)	295	21 (20)	
SC C	90AL 5K3-L6	AI # MT&A	200	67	20 (80)	180 (35)	24 (30)	
9	QUAL 5K3-L6	AI # MTRA	500	36	15 (35)	120 (40)	11 (12)	
7	BUAL 5K3-L6	A1 # MT2A	500	20	15 (20)	75 (35)	13 (16)	
60	90AL 5K3-L6	H9 # MISH	200	200	30 (240)	470 (30)	31 (39)	
6	9UAL 5K3-L6	1/4" Sparger (2 micron)	200	200	220 (225)	85 (25)	37 (32)	
10	QUAL SK3-L6	3/8" Sparger #1 (10 micron)	500	200	225 (225)	85 (15)	11 (8)	
11	BUAL SK3-L6	3/8" Sparger #2 (10 micron)	500	200	225 (225)	85 (20)	33 (24)	
12	80AL 5K3-L6	1/2" Sparger #1 (40 micron)	200	200	225 (220)	80 (20)	36 (26)	
	ellaso	4						

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

				FURNING LEST				
	Test No	Test	Type Air Diffuser	Test Cylinder Size (ml)	Sample Volume (m)	Oil Volume at Maximum Foam Height (ml)	Foss Volume (ml)	Foam Collapse Time (sec)
	13	90AL 5K3-L6	1/2 " Sparger, #2 (40 micron)	200	200	220°b (220)b	80 ⁸ (15) ^b	36 ⁸ (36)
	14	BUAL 5K3-L6		200	200	35 (245)	455 (25)	25 (26)
	15	QUAL 5K3-L6	61ass Frit #1 (Cylinder) (40 to 60 micron nominal)	200	200	230 (230)	130 (30)	32 (20)
	16	QUAL 5K3-L6	Frit 60	500	200	225 (230)	105 (25)	46 (22)
	17	BUAL 5K3-L6	ss Frit S minal Po	200	200	235 (230)	65 (15)	39 (28)
484	18	QUAL SK3-L6	pargers (4 iin airflo	200	200	235	26	31
,	19	90AL 5K3-L6	2 Glass Frits (Cylinder) (500 cc/min airflow/sparger)	200	200	0#	435	37
	20	QUAL SK3-L6	TWO CC/M	500	200	235	135	38
	21	BUAL 5K3-L6	ASTM #18	1000	200	230	70	15
	22	90AL 583-L6	2 ASTM Stones (1A&2A) (500 cc/min mirflow/stone)	1000	200	240	100	12
	23	QUAL 5K3-L6	1/2" Sparger #3 (2 micron)	500	200	40	450 (30)	45 (28)
	24	QUAL SK3-L6	1/2" Sparger #3 (2 micron)	250	25	12 (20)	115	25 (40)

- Airflow of 1000 cc/minute - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

Test No	Test Lubricant	Type Air Diffuser	Test Cylinder Size (ml)	Sample Volume (ml)	Dil Volume at Maximum Foam Height (ml)	Foam Volume (ml)	Foam Collapse Time (sec)
25	0-79-17E	ASTM #1A	200	200	255 ^a (235) ^b	15 ² (5)	5 a (4)
26	0-79-17E	ASTM #1A	250	25	40)	10 (5)	1 (2)
27	0-79-17E	1/2" Sparger (2 micron)	250	25	25 (25)	20 (10)	(1)
28	0-79-17E	1/4 "Sparger (2 micron)	250	25	25 (25)	10 (5)	1 (1)
29	5K3-L6	1/4" Sparger (2 micron)	250	25	15 (20)	75 (40)	7 (25)
30	5K3-L6	ASTM #11A	250	25	8 (10)	104 (64)	10 (15)
31	5K3-L6	Glass Frit #2 (40-60 microns)	500	200	235 (235)	100 (25)	25 (25)
32	5K3-L6	13/16" Sparger (3 micron)	250	25	8 (12)	120 (72)	14 (10)
33	5K3-L6	3/8" Sparger #1 (10 migron)	250	25	12 (18)	78 (40)	20 (8)
34	0-79-17 (3 ppm DC-200)	ASTM #1A	500	200	215 (225)	195 (80)	24 (18)
35	(3 ppm (5 ppm DC-200)	AI# MT2A	200	100	105 (115)	105	(11)
36	(3 ppm (5 ppm (5-200)	ASTR #11A	500	50	55 (65)	55 (15)	7 (2)
	- 11-11-						

a - Airflow of 1000 cc/minute or - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

Test	ا الله ا	Type Air Diffuser	Test Cylinder Size (ml)	Sample Volume (ml)	Oil Volume at Maximum Foam Height (ml)	Foam Volume (ml)	Foam Collapse Time (sec)
37	(3 ppm (5 ppm (5-200)	ASTM #11A	250	25	10 ² (34) ^b	80 ⁸ (12) b	8 q (2)
38	0-79-17 (3 ppm DC-200)	1/2" Sparger #3 (2 micron)	250	25	18 (24)	24 (10)	5 (4)
39	0-79-17 (3 ppm DC-200)	13/16" Sparger #1 (5 micron)	250	25	10 (22)	94 (38)	40 (19)
40	5K3-L6	61ass Frit #2 (40-60 microns)	250	25	16 (20)	72 (38)	10 (20)
41	0-79-17 (3 ppm DC-200)	1/2" Sparger #3 (2 micron)	250	25	20 (2 6)	30 (15)	18 (25)
42	0-79-17 (3 ppm DC-200)	ASTM #1A	250	25	10 (34)	74 (18)	25 (6)
43	0-79-17 (3 ppm DC-200)	1/2" Sparger #3 (2 micron)	200	200	200 (215)	200 (40)	22 (14)
44	0-79-17E (3 ppm DC-200)	ASTM 1A	200	002	215	225	64
45	0-79-17E (3 ppm DC-200)	ASTM 1A	500	200	220	225	30
46	(3 ppm (5 ppm DC-200)	ASTM 1A	200	200	210	215	43
47	5K3-L6	ASTM 1A	200	200	20	425	21
48	0-79-17 (3 ppm DC-200)	ASTM 1A	500	200	220	195	20

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

SO THE SECOND SE

Test	Test	İ	Test Cylinder	Sample		Fores	Collapse
2	Lubricant	Air Diffuser	Size (ml)	(m1)	Foam Meight (ml)	(m1)	Time (sec)
49	(3 ppm (5 ppm DC-200)	ASTM 1A	500	200	220ª (-)	230 ⁸ (-) ^b	29ª (-)
50	5K3-L6	1/2" Sparger #15 (2 micron)	250	25	12 (22)	102 (36)	17 (12)
51	5K3-L6	1/2" Sparger #14 (5 micron)	250	25	12 (20)	104 (40)	21 (30)
52	5K3-L6	1/2" Sparger #13 (10 micron)	250	25	10 (16)	108	17 (18)
53	5K3-L6	1/2" Sparger #12 (20 micron)	250	25	16 (22)	66 (26)	21 (27)
54	5K3-L6	" Sparger 40 micron)	250	25	14 (24)	56 (24)	41 (15)
55	0-79-17 (3 ppm DC-200)	1/2"Sparger # 15 (2 micron)	250	25	16 (26)	46 (14)	49 (12)
56	0-79-17 (3 ppm DC-200)	1/2" Sparger # 14 (5 micron)	250	25	24 (28)	16 (12)	10 (8)
57	(3ppm (3ppm (DC-200)	1/2" Sparger #13 (10 micron)	250	25	22 (30)	20 (8)	29 (8)
58	0-79-17 (3ppm DC-200)	1/2" Sparger # 12 (20 micron)	250	25	22 (29)	16 (7)	11 (8)
99	0-79-17 (3ppm DC-200)	1/2" Sparger # 1 (40 micron)	250	25	18 (30)	20 (6)	36 (26)
09	2K3L6	1/2" Sparger #14 (5 micron)	TUBE A	25	S	105	28

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

T So t	Test	Type Air Diffuser	Test Cylinder Size (ml)	Sample Volume (ml)	Dil Volume at Maximum Foam Height (ml)	Fosm Volume (ml)	Form Collapse Time (sec)
61	SK3L6	1/2" Sparger #14 (5 micron)	TUBE B	25	Excess ^a aerat.	٠.	۰,۵
95	5K3L6	1/2" Sparger #15 (2 micron)	200	200	45 (230)	400 35	41 (43)
63	5K3L6	"Sparger # (5 micron)	500	200	55 (225)	330 (35)	49 (55)
99	5K3L6	1/2"Sparger #13 (10 micron)	200	200	22 5 (225)	105	38 (37)
92	5K3L6	1/2" Sparger #12 (20 micron)	500	200	230 (225)	60 (20)	33 (33)
99	5K3L6	1/2" Sparger # 12 (20 micron)	200	200	230 (225)	75 (25)	42 (35)
67	0-76-5 2% TCP 2% PANA	STM Stone 1A	200	200	25 (245)	460	19 (12)
89	0-76-5 2% TCP 2% PANA	1/2" Sparger # 15 (2 micron)	200	200	30 (195)	570+ (75)	35 (25)
69	0-76-5 2% TCP 2% PANA	"Sparger # (5 micron)	200	200	45 (235)	360	16 (15)
70	0-76-5 2x TCP 2x Pana	1/2" Sparger # 13 (10 micron)	200	200	220 (225)	105	12 (12)
7.1	0-76-5 2% TCP 2% PANA	1/2" Sparger #12 (20 micron)	500	200	230 (225)	45 15	10 (9)
72	0-76-5 2x TCP 2x Pana	1/2" Sparger (40 micron)	200	200	230 (220)	45 (20)	8 (9)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

Test	Test	Type Air Diffuser	Test Cylinder Size (el)	Sample Volume (ml)	Oil Volume at Maximum Foam Height	Foam Volume (ml)	Foam Collapse Time (sec)
73	0-76-5 2x TCP 2x Pana	ASTM Stone 1A	250	25	6 b	140 ⁸ (74)	16 ^a (15) ^b
74	0-76-5 2x TCP 2x Pana	1/2" Sparger #15 (2 micron)	250	25	12 (18)	92 (50)	11 (12)
75	0-76-5 2x TCP 2x Pana	Sparger 5 micron)	250	25	14 (20)	80 (44)	11 (9)
7.6	0-76-5 2% TCP 2% PANA	1/2" Sparger #13 (10 micron)	250	25	10 (14)	88 (62)	11 (14)
7.7	0-76-5 2% TCP 2% PANA	1/2" Sparger # 12 (20 Micron)	250	25	18 (22)	58 (36)	11 (10)
78	28316	1/2" Sparger (40 micron)	200	200	225 (220)	75 (20)	36 (42)
79	0-79-17 (3 ppm DC-200)	Sparger # 2 micron)	200	200	205 (215)	160	24 (19)
80	0-79-17 (3ppm DC-200)	1/2" Sparger #15 (5 micron)	200	200	220 (215)	65 (30)	50 (18)
81	0-79-17 (3ppm DC-200)	1/2" Sparger # 13 (10 micron)	200	200	225 (220)	60 (25)	20 (17)
82	0~79~17 (3ppm DC-200)	1/2" Sparger # 12 (20 micron)	500	200	225 (220)	25 (20)	23 (15)
83	0-79-17 (3ppm DC-200)	1/2 Sparger # 1 (40 micron)	500	200	225 (215)	20 (20)	10 (13)
48	0-76-5 2% TCP 2% PANA	1/2" Sparger # 1 (40 micron)	200	25	18 (26)	78 (30)	10 (9)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

Test No	Test Lubricant	Type Air Diffuser	Test Cylinder Size (ml)	Sample Volume (ml)	Dil Volume at Maximum Foam Height (ml)	Foam Volume (ml)	Foam Collapse Time (sec)
83	0-79-17 (3ppm DC-200)	1/2" Sparger (5 micron)	200	25	22ª (26) ^b	20 ⁸ (10) ^b	10 ^a (10)
98	0-76-5 2x TCP 2x Pana	1/2" Sparger (20 Micron)	200	25	16 (27)	78 (40)	15 (13)
87	0-76-8 (3ppm DC- 200-20)	ASTM 1A	200	200	225 (215)	10 (10)	-
88	0-76-8 (3ppm DC 200-20)	1/2" Sparger # 14 (5 micron)	250	25	26	12 (6)	•
89	0-76-8 (3ppm DC- 200-20)	1/2" Sparger #14 (5 micron)	500	200	215	ა (გ)	•
06	0-76-8 (6ppm DC- 200-20)	ASTM 1A	500	200	230	10 (10)	-
91	(3ppm DC- 200-20)	ASTM 1A	200	200	220	135 (60)	52 (50)
92	0-76-1 (3ppm DC- 200-20)	1/2" Sparger # 14 (5 micron)	200	200	225	15 (10)	29 (34)
93	0-76-1 (3ppm DC- 200-20)	ASTM 1A	250	25	38	12 (8)	35 (33)
9.4	0-76-1 (3ppm DC- 200-20)	1/2" Sparger # 14 (5 micron)	250	25	24	16 (10)	, (8)
95	0-76-1 (3ppm DC- 200-20)	13/16" Sparger (5 micron)	500	200	235	20 (15)	27 (40)
96	0-76-1 (6ppm DC- 200-20)	ASTN 1A	200	200	185	330 (115)	50 (50)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

A. C. C. C.

Test	Test Lubricant	Type Air Diffuser	Test Cylinder Size (ml)	Sample Volume (ml)	Dil Volume at Maximum Foam Height (ml)	Foam Volume (ml)	Foam Collapse Time (sec)
97	0-76-1 (6ppm DC- 200-20)	13/16" Sparger (5 micron)	200	200	190 ⁸ b	245 ⁸ (125) ^b	909 (90)
86	0-76-1 (3ppm DC- 200-20)	13/16" Sparger (5 micron)	200	200	230	75 (25)	45 (48)
66	0-76-1 (3ppm DC- 200-20)	13/16" Sparger (5 micron)	250	22	49 (48)	31 (12)	_ (-)
100	0-79-17	Sealed Frit Tube A (4 to 8 micross)	250	25	(01)	68 (32)	17 (-)
101	0-79-17 3ppm DC- 200-500cs	Sealed Frit Tube A (4 to 8 microns)	250	25	2 (24)	94 (26)	24 (27)
102	2K3L6	Sealed Frit Tube A (4 to 8 microns)	250	22	2 (4)	148 (76)	33 (-)
103	0-76-5 2% TCP 2% PANA	Sealed Frit Tube A (4 to 8 microns)	250	22	2 (4)	122 (76)	20 (22)
104	0-76-1 (3ppm DC- 200-20cs)	13/16" Sparger (5 micron)	200	002	22 5 (220)	95 (28)	55 (63)
105	0-76-1 (6ppm DC- 200-20cs)	13/16" Sparger (5 micron)	250	22	16 (28)	42 (16)	33 (66)
106	0-76-1 (6ppm DC- 200-20cs)	ASTH 1A	250	25	10 (32)	52 (12)	37 (37)
107	0-76-1 (6ppm DC- 200-20cs)	1/2 Sparger # 14 (5 micron)	250	25	24 (26)	18 (12)	49 (57)
108	0-76-1 (6ppm DC- 200-20cs)	1/2" Sparger #14 (5 micron)	500	200	205 (205)	165 (80)	57 (62)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

			Test	1 7	Oil Volume	2.63	FOAM
Test	Test	Type Air Diffuser	Cylinder	VO 1 C 3 P	at Maximum Foam Height	Volume Volume	Collapse
			(m])	(16)	-	/ T III /	(sec)
109	21-62-0	Sealed Frit Tube B (4 to 8 micron)	250	25	8 p	38 ^a (26)	18 ² (18)
110	3 ppm DC- 200-500	Sealed Frit Tube B (4 to 8 micron)	250	25	24	14	21
111	0-76-5 2% TCP 2% PANA	Sealed Frit Tube B (4 to 8 micron)	250	25	2 (4)	146 (82)	23 (27)
112	21-62-0	Sealed Firt Tube B (4 to 8 micron)	250	20	(75)	14 (8)	13 (15)
113	3 ppm DC- 200-20 cs	ASTM 1A	500	200	225 (225)	160	56 (54)
114	3 ppm DC- 200-20cs	13/16" Sparger (5 micron)	200	002	210 (220)	130 (25)	64 (61)
115	3 ppm DC- 200-20cs	Two 1/2" Spargers (Each 5 micron)	200	200	(220)	(75)	(44)
116	3 ppm DC- 200-20cs	1/2" Sparger (5 aicron)	500	200	225 (215)	15 (15)	47 (47)
117	0-76-8 3 ppm DC- 200-20cs	Sealed Frit Tube A (4 to 8 micron)	250	25	30 (28)	10 (9)	31 (28)
118	0-76-1 6 ppm DC- 200-20cs	Sealed Frit Tube A (4 to 8 micron)	250	25	10 (22)	88 (52)	74 (82)
119	3 ppm DC- 200-20cs	Sealed Frit Tube A 4 to 8 micron)	250	25	30 (28)	22 (14)	(100)
120	0-76-8 3 ppm DC- 200-20cs	ASTM 1A	250	25	36 (34)	10 (5)	, ,

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

MANAGE MANAGES BANAGES (SECONDS) BANAGES

LUBRICANT FOAMING TEST DATA

122555 1255555 125555000

Test	Test	1.0	Test Cylinder Size (ml)	Sample Volume (ml)	Oil Volume at Maximum Foam Height (ml)	Foas Volume (ml)	Foam Collapse Time (sec)
121	0-76-5 2x TCP 2x PANA	13/16" Sparger #1 (5 airron)	200	200	10 ⁸ (250) ^b	> 508 (45)	24 ^a (20) ^b
122	0-76-5 2x TCP 2x Pana	13/16" Sparger #1 (5 micron)	250	25	16 (10)	116 (85)	13 (10)
123	2K3L6	3/8" Sparger #18 (2 micron)	500	200	5 0 (230)	385 (35)	38 (34)
124	5K3L6	11/16" Sparger #21 (2 micron)	200	200	45 (240)	430	34 (25)
125	5K3L6	3/8" Sparger #18 (2 micron)	250	25	108 (68)	96 (30)	14 (10)
126	2K3L6	11/16" Sparger #21 (2 micron)	250	25	126 (84)	118 (72)	25 (13)
127	0-76-8 3 ppm DC- 200-20cs	13/16" Sparger #1 (5 micron	200	200	215 (215)	(0)	-
128	3 ppm DC- 200-20cs	13/16" Sparger #1 (5 micron)	250	25	34 (34)	(0)	(-)
129	0-76-5 2% TCP 2% PANA	11/16" Sparger #23 (5 micron)	250	25	10 (12)	82 (64)	10 (10)
130	0-76-5 2% TCP 2% PANA	11/16" Sparger #23 (5 micron)	200	200	220 (235)	145	25 (13)
131	0-79-17E	Sealed Glass Frit (A)	250	25	5 (10)	45	10 (7)
132	0-79-17E 3ppm DC- 200-500cs	Sealed Glass Frit (A)	250	25	120 (28)	118 (42)	28 (32)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

	100	a C >	Test	Sample	Oil Volume	Foam	Foam Collapse
2	Lubricant	Air Diffuser	Size (ml)	Volume (ml)		Volume (ml)	Tine (sec)
133	0-79-17E 3 ppm DC- 200-500cs	1/4" Spanger #1 (2 micron)	250	25	20 ^a (26) ^b	20ª (10) ^b	54 ² (18) ^b
134	0-79-17E 3 ppm DC- 200-500cs	1/4" Spanger #1 (2 Binno)	200	200	220 (215)	55 (25)	35 (22)
135	0-79-17E 3 ppm DC- 200-500cs	13/16" Sparger #1 (5 micron)	200	200	220 (225)	240 (80)	47 (41)
136	0-76-5 2x TCP 2x Pana	1/2" Sparger #14 (5 micron) 1/2" Sparger #20 (5 micron)	200	200	40 (250)	445	15 (12)
137	3 ppm DC- 200-20cs	1/2" Sparger #14 (5 micron) 1/2" Sparger #20(5 micron)	500	200		1 1	
138	0-79-17 3 ppm DC- 200-500cs	1/2" Sparger #14 (5 micron) 1/2" Sparger #20 (5 micron)	200	200	225 (225)	190	60 (28)
139	0-76-1 6 ppm DC- 200-20cs	1/2" Sparger #14 (5 micron) 1/2" Sparger #20 (5 micron)	200	200	225 (205)	230 (150)	56 (64)
140	0-76-1 3 ppm DC- 200-500cs	1/2" Sparger #21 (2 micron)	200	200	230 (220)	290 (135)	72 (77)
141	3 ppm DC- 200-500cs	3/8" Sparger #18 (2 micron)	250	25	18 (24)	26 (16)	99 (40)
142	3 ppm DC- 200-500cs	11/16" Sparger #21 (2 micron)	250	25	10 (28)	74 (18)	40 (24)
143	0-76-5 2% TCP 2% PANA	11/16" Sparger #21 (2 micron)	200	200	500 (245)	500 (35)	(17)
144	0-76-5 2% TCP 2% PANA	11/16" Sparger # 21 (2 micron)	250	25	9 (10)	166 (100)	10 (11)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

Test	Test	Type Air Diffuser	Test Cylinder Size (#1)	Sample Volume (ml)	Oil Volume at Maximum Foam Height	Foam Volume (ml)	Foam Collapse Time (sec)
145		1/4" Sparger # 1 (2 aicron)	500	200	225 ^a (220) ^b	65 ² (35) ^b	12 ^a (11) ^b
146	0-76-5 2% TCP 2% PANA	1/4" Sparger # 1 (2 micron)	250	25	14 (16)	88 (58)	12 (11)
147	0-76-5 2% TCP 2% PANA	3/8" Sparger # 18 (2 (micron)	500	200	150 (230)	310 (35)	11 (15)
148	0-76-5 2% TCP 2% PANA	3/8" Sparger # 18 (2 micron)	250	25	10 (16)	116 (72)	14 (12)
149	3 ppm DC- 200-500cs	13/16" Sparger # 1 (5 micron)	250	25	14 (26)	78 (40)	34 (9)
150	0-76-1 3 ppm DC- 200-20cs	ASTM Stone 2A-1	250	25	36 (44)	14 (8)	41 (44)
151	0-76-1 6 ppm DC- 200-20cs	ASTM Stone 2A-1	200	200	205 (210)	250 (140)	49 (47)
152	0-76-5 2% TCP 2% PANA	1/2" Sparger # 14 (5 micron) 1/2" Sparger # 20 (5 micron)	200	200	(-)	overfm (-)	(-)
153	0-76-1 3 ppm DC- 200-20cs	1/2" Sparger # 14 (5 micron) 1/2" Sparger # 20 (5 micron)	200	200	250 (-)	105	45 (-)
154	0-79-17 3 ppm DC- 200-500cs	6" Sparger (5 micron)	250	25	34 (34)	22 (8)	23 (21)
155	5K3L6		250	25	8 (12)	146 (78)	20 (17)
156	5K3L6	11/16" Sparger #23 (5 micron)	500	200	140 (235)	345 (40)	68 (70)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

Test	Test Lubricant	Type Air Diffuser	Test Cylinder Size (ml)	Sample Volume (ml)	Oil Volume at Maximum Foam Height (ml)	Foam Volume (ml)	Foam Collapse Time (sec)
157	0-76-1 6 ppm DC- 200-20cs	11/16" Sparger # 23 (5 micron)	250	25	34 ² (30) ^b	10 ⁸ (8) b	38 ⁸ (34) ^b
158	0-79-17 3 ppm DC- 200-500cs	11/16" Sparger # 23 (5 micron)	200	200	220 (225)	130	70 (63)
159	2K3L6	3/8" Sparger # 19 (5 Bicron)	250	25	14 (20)	106 (52)	13 (11)
160	0-76-5 2x TCP 2x Pana	3/8" Sparger #1 (10 micron)	200	200	230 (225)	40 (20)	14 (14)
161		3/8" Sparger # 19 (5 micron)	250	25	14 (18)	94 (58)	12 (12)
162	0-76-5 2% TCP 2% PANA	3/8" Sparger # 19 (5 aicros)	500	200	240 (230)	40 (20)	15 (14)
163	0-76-5 2% TCP 2% PANA	3/8" Sparger # 1 (10 micron)	250	25	12 (16)	96 (56)	13 (11)
164	0-79-17 3 ppm DC- 200-500cs	3/8" Sparger # 19 (5 micron)	250	25	24 (26)	16 (12)	11 (11)
165	0-79-17 3 ppm DC- 200-500cs	3/8" Sparger # 19 (5 micron)	500	200	230 (220)	70 (20)	67 (48)
166	0-76-1 6 ppm DC- 200-20cs	1/2" Sparger # 14 (5 micron)	250	25	25 (26)	16 (12)	58 (46)
167	0-76-1 6 ppm DC- 200-20cs	s" Sparger # (5 micron)	200	200	230 (205)	270 (135)	(09)
168	5K3L6	3/8" Sparger # 19 (5 micron)	500	200	230 (225)	70 (35)	25 (22)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

			LOBATCHAL CHILLING LEST				
Test	Test Test No Lubricant	Type Air Diffuser	Test Cylinder Size (91)	Sasple Volume (ml)	Oil Volume at Maximum Foam Height	Foam Volume (ml)	Fown Collapse Time (sec)
169	0-82-2	ASTM 1A	200	200	245 ^a (230) ^b	10 ^a (10) ^b	₽C (4)
170	0-82-2	Sealed Frit Tube A	250	25	(28)	50 (14)	9 (7)
171	0-79-20A	AST# 1A	200	200	250 (232)	15 (10)	4.9
172	0-79-20	Sealed Frit Tube A	250	25	(28)	70 (14)	111
173	0-79-16F	ASTM 1A	000	200	260 (235)	45 (20)	87)
174	0-79-16F	Sealed Frit Tube A	250	25	2 (6)	142 (54)	15 (10)
175	0-82-3	ASTM 1A	200	200	240 (230)	10 (10)	4 10
176	0-82-3	Sealed Frit Tube A	250	25	35 (28)	15 (10)	01.0
177	0-79-17	ASTM 1A	200	200	255 (235)	10 (3)	no nū
178	0-79-17	Sealed Frit Tube A	250	25	(30)	46 (12)	6(7)
179	0-76-8 6 ppm DC- 200-20cs	Sealed Frit Tube A	250	25	28 (26)	16 (10)	7 (7)
180	0-82-140	ASTM 1A	200	200	250	75 (20)	11

- Airflow of 1000 cc/minute - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

Test	Test Lubricant	Type Air Diffuser	Test Cylinder Size (91)	Sample Volume (ml)	Oil Volume at Maximum Foam Height (ml)	Foam Volume (ml)	Foam Collapse Time (sec)
181	0-82-140	Sealed Frit Tube A	250	25	q (9)	188 ² (64)	44ª (42)b
182	2 K3L6	11/16" Sparger # 23 (5 micron)	250	25	8 (91)	108 (52)	8 (5)
183	0-76-5 2x TCP 2x Pana	11/16" Sparger # 23 (5 aicron)	250	25	(01)	124 (80)	14 (12)
184	0-76-1 6 ppm DC- 200-500cs	11/16" Sparger # 23 (5 micron)	250	25	30 (30)	20 (10)	50 (49)
185	3 ppm DC- 200-500cs	11/16" Sparger # 23 (5 micron)	250	25	32 (32)	18 (8)	25 (19)
186	0-76-1 3 ppm DC- 200-20cs	ASTM Stone 1A	250	25	(9£) 8£	14 (8)	35 (38)
187	3 ppm DC- 200-20 cs	11/16" Sparger # 23 (5 micron)	200	200	235 (225)	15 (15)	39 (41)
188	0-76-5 2% TCP 2% PANA	11/16" Sparger #23 (5 Bicron)	200	200	220 (235)	155 (40)	20 (40)
189	0-76-1 6 ppm DC- 200-20cs	13/16" Sparger #1 (5 micron)	200	200	185 (200)	340 (200)	52 (58)
190	0-76-1 6 ppm DC- 200-20 cs	11/16" Sparger #23 (5 micron)	200	200	200 (205)	230 (115)	47 (53)
191	0-76-5 2% TCP 2% PANA	13/16" Sparger #1 (5 micron)	250	25	8 (12)	130 (88)	11 (11)
192	0-76-5 2% TCP 2% PANA	13/16" Sparger #1 (5 micron)	200	200	30 (250)	500 (35)	22 (15)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

LUBRICANT FOAMING TEST DATA

ASSESSED BESTON BESTON

Test	Test Lubricant	Type Air Diffuser	Test Cylinder Size	Sample Volume	Orl Volume at Maximum Fowm Height	Foam Volume	Collana Tians
193	0-76-1 6 ppm DC-	11/16" Sparger #24 (5 micron)	200	200	200° (205) b	225 ^a (110) ^b	40°b (50)b
194	0-76-1 6 ppm DC- 200-20 cs	13/16" Sparger #1 (5 micron)	250	25	28 (32)	40 (18)	35 (39)
195	0-76-5 2x TCP 2x PANA	11/16" Sparger #23 (5 micron)	200	200	190 (230)	230 (35)	12 (8)
196	0-76-5 2x TCP 2x Pana	13/16" Sparger #1 (5 micron)	200	200	ovrfm (240)	ovrfm (40)	18 (9)
197	0-76-5 2% TCP 2% PANA	ASTM Stone 1A	500	002	20 (245)	500 (40)	17 (19)
198	0-76-5 2% TCP 2% PANA	11/16" Sparger #24 (5 micron)	200	002	180 (230)	250 (40)	13 (9)
661	0-76-1 3 ppm DC- 200-20 cm	13/16" Sparger #1 (5 aic, on)	500	200	20 5 (-)	165	31
200	0-76-1 3 ppm DC- 200-20 cs	11/16" Sparger #24 (5 micron)	200	002	235	15 (-)	40 (-)
201	0-76-5 2% TCP 2% PANA	11/16" Sparger #24 (5 micron)	200	25	8 (12)	124 (84)	(8)

a - Airflow of 1000 cc/minute b - Airflow of 500 cc/minute

APPENDIX B

LUBRICANT ADDITIVE ANALYSIS BY GAS CHROMOTOGRAPHY WITH THERMIONIC SPECIFIC DETECTION

1. INTRODUCTION

Gas chromatography with thermionic specific detection is a sensitive and selective method for the detection of volatile nitrogen and phosphorous containing compounds. Specificities of 7 x 10⁴ g C/g N and 10⁵ g C/g P, linear responses of 10⁴ to 10⁵, and sensitivities at the picogram level have been reported ^{78,79}. This combination of selectivity and sensitivity makes this technique a very useful method for the analysis of nitrogen and phosphorous containing additives in lubricants while avoiding the basestock interferences that may plague other methods. A method is then described here for analysis of three antioxidants and tricresyl phosphate (TCP) in MIL-L-7808 lubricants using an internal standard method. The method can be used to quantitatively analyze these antioxidants in the range of 0.05 to 2.5\$ (and lower with minor modifications). Since TCP is a mixture of isomers and can vary in composition considerably from one supplier to the next, it is reported as weight fraction with a fresh sample containing, by definition, 1.00.

2. MATERIALS AND METHODS

a. Apparatus

CALLES COCCES NUCLSON VERSION

A Varian 6000 gas chromatograph, fitted with a large bore capillary column adaptor kit (capillary mode) and a thermionic specific detector accessory, and a Vista 402 chromatography data system were used. The column was a 25 meter x 0.53 mm ID fused silica glass capillary column with a 0.25 micron film thickness of methylphenyl silicone (Quadrex Corp.). Injections were made on-column with a Hamilton #7001 1 µL syringe with a 26S gauge

needle.

b. Reagents

Three antioxidants, phenyl-1-naphthylamine (PANA), p-octylphenyl-1-naphthylamine (Octyl-PANA), and di(p-octylphenyl)amine (DODPA) were recrystallized in 70/30, 80/20, and 95/5 methanol/water, respectively, (the latter 3 times) and dried under 22 mm Hg vacuum at 50°C for 48 hours. Reagent grade diphenyl amine (Aldrich) was used without purification. Four tricresyl phosphate samples were obtained from the following suppliers: two from Stauffer Chemicals, one from FMC and one from Mobil. Di-2-ethylhexyl azelate was used as an unformulated ester basestock. Toluene was certified ACS from Fisher Scientific.

c. Calibration Solutions

The internal standard solution consisted of a 1% solution of diphenyl amine in the di-2-ethylhexyl azelate basestock, although any unformulated basestock could be used. Calibration solutions containing about 50 ng/0.1 μ L and 200 ng/0.1 μ L of each recrystallized antioxidant in toluene were made, and the former was used to calculate response factors for this method. Diluting the above solutions gave standard solutions of 200, 100, 5, and 1 ng/0.1 μ L which were used for checking linearity, accuracy, and precision.

d. Gas Chromatographic Conditions

Flow Rates (ml/min) Temperatures (°C)

Carrier Gas: Helium Injector : 170

Column : 3.0 Detector : 325

Makeup Gas: 27.0 Oven (Initial): 150

Hydrogen : 4.0 (20 mm Hg) Oven (Final) : 300

Air : 175 Heating Rate : 6^OC/min

Detector : Thermionic specific Final Hold : 5.0 minutes

Attenuation: 64×10^{-12}

Injection

-0000

Volume : 0.1 µL

The bead current to the detector should be adjusted to give a stable background level of about 5 mV.

e. Method Calibratrion

Calibration for antioxidant determination is made by analysis of a sample prepared from one drop of the internal standard solution (analytically weighed) and 1.0 mL of the 50 ng/0.1 μ L calibration solution. Response factors for each antioxidant are calculated using the standard formula:

The results of the average of three runs are shown in the peak table of method TSD (Figure B-1). Also analyzed in this way were the 200, 100, 5, and 1 ng/0.1 uL solutions. Percent antioxidant can be determined by:

The results of these analyses are shown in Table B-1.

Tricresyl phosphate (TCP) is not calibrated. However, a range of retention times (12 to 20 minutes) were obtained by analyzing the four different samples which were obtained from three different suppliers.

f. Sample Preparation

One drop each of the internal standard solution and lubricant sample are weighed analytically into a small vial and about 0.25 ml of toluene is added.

g. Sample Analysis

The Vista 402 data system is prepared using method TSD (Figure B-1). Also, method TSD1 (Figure B-2), which is linked to method TSD and is used for analysis of TCP, must exist in the system. The weight of the internal standard solution is entered at AMT STD and the weight of the lubricant is entered at DIVISOR. 100 is placed in the MULTIPLIER. Once the gas chromatograph has equillibrated (about 30 minutes after reaching temperature), a 0.1 μ L injection is made.

h. Calculations

The TSD method will calculate and report the antioxidant concentration. The content and weight fraction of TCP must be calculated by method TSD1 which reports the total summed peak area for TCP from 12 to 20 minutes. But since the retention times of both DODPA and O-PANA fall in this range, their peak areas (from TSD report) must be subtracted from the summed TCP area of if these compounds are present. Once the adjusted summed peak area TCP is known, TCP content is calculated by:

and the weight fraction is then calculated by:

Weight Fraction = $\frac{\text{(Content of Sample)}}{\text{(Content of Fresh Sample)}}$

3. RESULTS AND DISCUSSION

The results of the calibration check are in Table B-1. The data shows that accuracy and precision are fairly good until the 1 ng sample. Using this method as it exists, the 1 ng sample represents about 0.01% antioxidant in the lubricant. So, values below about 0.05% may not be accurate. The lower range of course can be extended by increasing the total sample load on the column by either using more sample in the sample preparation, less toluene diluent, or a higher injection volume up to the point preceding column overload. In this way, percent antioxidant levels much less than 0.05 can be accurately determined if required.

There is some overlap of TCP with Octyl-PANA and DODPA, the degree of which is determined by the source of the TCP. A gas chromatograph capable of more complex thermal gradients, which the present system cannot do, would allow better separation of these compounds. A chromatogram of a typical analysis for 0-79-16J lubricant is shown in Figure B-3. The TCP content from this sample together with two other replicates are shown in Table B-2. Precision is very good.

SINGLE CHANNEL METHOD: TSD SECTION 1: BASIC PAGE 1 ANALYSIS PARAMETERS CHANNEL: 2 CALCULATION: IS AREA/HT: A STOP TIME: 22.00 NUMB EXPECTED PKS: 60 EQUILIBRATION TIME: UNRETAINED PK TIME: 0 0.00 UNIDENT PK FACTOR: 0.000000 SLICE WIDTH: 10 PAGE 2 SAMPLE PARAMETERS RUN TYPE: A SAMPLE ID: 0-79-16J DIVISOR: 1.00000 AMT STD: 1.00000 MLTPLR: 100.0000 PAGE 3 REPORT INSTRUCTIONS WHERE TO REPORT: L COPIES: 1 TITLE: FORMAT: N DECIMAL PLACE: 4 RESULT UNITS: REPORT UNIDENT PKS: N REPORT INSTRUMENT CONDITIONS: N PAGE 4 PLOT INSTRUCTIONS PLOT: Y ZERO OFFSET: ANNOTATION RETENTION TIME: Y PLOT CONTROL: TIME TICKS: Y TIME EVENTS: Y PK START/END: Y PAGE 5 CHART SPEED PAGES OR CM/MIN: C INIT VALUE: 0.5 PAGE 6 PLOT ATTEN INIT PLOT ATTEN: 64 SECTION 2: TIME EVENTS

LINE# TIME EVENT VALUE 0.00 PR 1000 1 2 SN 0.00 5 3 0.00 5.0 T % 4 0.00 WI 5 0.01 ΙI 3.00

PAGE 1

6 0.10 WI 3 7 4.00 II 8.50 8 9.50 II 12.00

Figure B-1

Vista 402 Method TSD

```
SECTION 3: PEAK TABLE
PAGE 1
  STD PK#:
  RELATIVE RETEN PK#:
RESOLUTION PK#: 0
  RESOLUTION MINIMUM:
            5.0
  IDENTIFICATION TIME WINDOWS +/-
  REF
    %: 10
    MIN:
            0.00
  HON REF
    MIN:
            0.00
PAGE 2
                            FACTOR
   PK# TIME
                                      AMOUNT REF GR# MUST LO
                                                                  MUST HI
            NAME
         3.43 INT STD
                           1.000000 1.000000 R
                                                      0.000000 0.000000
   1
   2
         9.00 PANA
                           0.015470 1.000000
                                                      0.000000 0.000000
       17.22 O-PANA
   3
                           0.026670 1.000000
                                                      0.000000 0.000000
        18.56 DODPA
                           0.029960 1.000000
                                                      0.000000 0.000000
SECTION 7: POST RUN
PAGE 1
  FILE NAME:
SAVE INSTRUCTIONS
TYPE:
    WHERE TO SAVE: M
  TRANSMIT/REPLOT INSTRUCTIONS
    TRANSMIT RAW DATA: N
    REPLOT WITH BASELINES: N
    RAW DATA LOCATION: U
TRANSMIT REPORT: N
PAGE 2
  METHOD LINKING INSTRUCTIONS
    METHOD: TSD1
    LINK CALC RESULTS: N
  PROGRAM EXECUTION
    PROGRAM:
    PARAMETERS:
    RESERVE PRINTER: Y
```

SECTION 1: BASIC PAGE 1 ANALYSIS PARAMETERS CHANNEL: 2 CALCULATION: A% AREAGHT: A STOP TIME: 20.00 NUMB EXPECTED PKS: EQUILIBRATION TIME: UNRETAINED PK TIME: 0.00 UNIDENT PK FACTOR: 0.00000 SLICE WIDTH: PAGE 2 SAMPLE PARAMETERS RUN TYPE: A SAMPLE ID: DIVISOR: 1.00000 AMT STD: 1.00000 MLTPLR: 1.000000 PAGE 3 REPORT INSTRUCTIONS WHERE TO REPORT: L COPIES: 1 TITLE: FORMAT: N DECIMAL PLACE: 4
RESULT UNITS:
REPORT UNIDENT PKS: N
REPORT INSTRUMENT CONDITIONS: N PAGE 4 PLOT INSTRUCTIONS PLOT: Y ZERO OFFSET: ANNOTATION RETENTION TIME: Y PLOT CONTROL: TIME TICKS: Y TIME EVENTS: N PK START/END: Y PAGE 5 CHART SPEED PAGES OR CM/MIN: C INIT VALUE: 0.5 PAGE 6 PLOT ATTEN INIT PLOT ATTEN: 64

SINGLE CHANNEL METHOD: TSD1

Figure B-2 Vista 402 Method TSD1

```
SECTION 2: TIME EVENTS
PAGE 1
           TIME
                 EVENT
                          VALUE
   LINE#
            0.00
                  PR
                              100
   2
            0.00
                  SN
            0.00
                   T%
                              5.0
            0.00
   4
                  WI
                                3
   5
            0.01
                  WI
            0.01
                           12.00
                   ΙI
           12.00
                  GR
                           20.00
SECTION 3: PEAK TABLE
PAGE 1
  STD PK#:
  RELATIVE RETEN PK#:
  RESOLUTION PK#: 0
  RESOLUTION MINIMUM:
           5.0
  FACT%:
  IDENTIFICATION TIME WINDOWS +/-
  REF
    %: 10
    MIN:
            0.00
  NON REF
    MIN:
            0.00
PAGE 2
   PK# TIME
              NAME
                           FACTOR
                                     AMOUNT REF GR# MUST LO
                                                                 MUST HI
       3.42 IS
16.00 TCP
                          1.000000 1.000000 R
                                                     0.000000 0.000000
   2
                          1.000000 1.000000
                                                     0.000000 0.000000
```


Figure 8-3
Gas Chromatographic Analysis of 0-79-16J
510

TABLE B-1

CALIBRATION OF ANTIOXIDANTS

Representative % ** in Lubricant Sample	2.5	1.2	9.0	0.06	0.01	2.7	1.3	9.0	90.0	0.01	2.5	1.2	0.6	0.06	0.01
Precision Runs RSD (%)	2.0	2.4	0.5	0.5	10.2	3.0	4.1	1.7	9.0	5.8	3.2	4.1	2.0	0.3	3.0
Precis No. Runs	ო	ო	က	ო	m	ო	က	က	ო	m	ო	က	က	က	က
racy % Deviation	+6.0	+3.2	*	+1.4	+7.8	6.0+	-1.7	*	-4.0	+1.7	+0.4	6.0-	*	-8.1	-10.5
Accuracy Found	229	111	+ x	5.11	1.087	236	115	*	5.45	1.155	225	111	*	4.67	0.909
ng/0.1 µL	216	108	50.4	5.04	1.008	234	117	56.8	5.68	1.136	224	112	50.8	5.08	1.016
Antioxidant	PANA					O-PANA	511				DODPA				

^{*}Calibration solution

^{**} Based on 0.022 g oil diluted to 0.25 mL, 0.1 μL injection

TABLE B-2

TCP CONTENT OF 0-79-16J

Adjusted

Run #	Area Int. Std.	Area TCP#	Content	Average	RSD (%)
1	1,524,360	4,667,733	2.93		
2	1,529,460	4,769,225	2.98	2.98	1.7
3	1,641,530	5,200,241	3.03		

^{*(}Summed Area TCP - Area DODPA)

APPENDIX C

LUBRICANT QUALIFICATION DATA FORM

Table C-1 shows the format of the oil qualification data form obtained from the Lube Data Storage and Retrieval System. Qualification data for the six lubricants having qualification test data entered into the Lube Data Storage and Retrieval System are not shown due to the proprietary nature of the test data.

STATES OF THE PROPERTY OF THE

TABLE C-1

Page 1 of 4 LUBRICANT QUALIFICATION DATA SHEET LIMITS Change at 3 hours, 2 Change at 72 hours, 2 Change at 72 hours, 2 FLASH POINT, deg C (deg F) After 35 minutes, max After 3 hours, max Capacity, ppi/determinations Filtering Time, min/qt Filtering Time, min/7.5 cz F), cSt F), cSt F), cSt F), cst GEAR LOAD CARRYING CAPACITY Al; Fe; Cr; Ag
Cu; Sn; Mg; Ni
Ti; Si; ;
PARTICULATE CONTAMINATION IYPE AIRCRAFT AIRCRAFT SERIAL NUMBER Contiminant, mg/L ENGINE SERIAL NUMBER TIME SINCE OVERHAUL TIME SINCE OIL CHANGE QUALIFICATION NUMBER RACE ELEMENTS: ppm SOURCE DESIGNATION IAN, mg KOH/g oil NATE OF SAMPLING YPE OF SAMPLE SOURCE OF SAMPLE IIR FORCE CODE COBRA READING ACKAGE DATE VISCOSIY: YPE ENGINE OT NUMBER

2 1227 ESSERIES

TOTAL PROSPERS

2 of 4		<i>-</i>					-	-		-	-		 			-	-								- -					-	
Page 2													 -			-	-	-						-					-	 -	
																							-								
	-														-																
	-	, <u> </u>	-			- -	-					-	 -	- -		-			-	-	- -									-	-
	NEW OIL!					- 					-	-	 					-								.				-	-
	LIMITS		-			 ,								-	• #•			-							 •						
	CE CODE	FOAMING CHARACTERISTICS (STATIC)	m Volume at 1000 cc/min air, mi	am Volume at cc/min air, ml	Collapse Time, sec	oam Volume, 80 C, 1000 cc/min air, ml	Collapse Time, sec	coam Volume, 80 C, 1500 cc/min air, ml	Foam Volume, 80 C. 2000 cc/min air, ml	Collapse Time, sec	Foam Volume, 110 C, 1000 cc/min air, ml:	Foam Volume, 110 C, 1500 cc/min air, ml!	100	Collapse Time, sec	Deposit Rating		Viscosity at 40 C. & change	Filter Screen Deposits, grams		LEAD CORROSION, g/m2 (mg/in2)		Weight change, g/m2 (mg/in2)	(TURBIDITY)	COMPATABILITY (INTERMIXING)	AFAPL ENGINE SIMULATOR	Test Temperature Act	Deposit Rating	COBRA Reading at End of Test	Tan change	sity at 40 C, % (Iron Content (final), ppm

						-	
AIR FORCE CODE .	LIMITS	NEW OIL				- -	
ELASTOHER COMPATABILITY				-	•- •		• •
NRB-H, Swell, & Vol				·- -			
~ 1						-[-	
th							
Elongation, \$ Change				-			
Hardness Change	•••						
FS. Swell, % Vol	••	•					
117							
124							
Hardness Change							
OVI. Swell. \$ Vol			•				
I. Streng							
			1				
ם ו							
BEARING DEPOSITION TEST						•••	
Deposit Rating							
Number of Tests						-	
TAN Change							
Viscosity at 40 C, % Change							
Oil Consumption, ml	-						
Aluminum Mt. Change, mg/cm2							
Silver Mt. Change, mg/cm2							
Bronze Wt. Change, mg/cm2					•		
Iron Wt. Change, mg/cm2							
M-50 Steel Wt. Change, mg/cm2							
Change, mg/cm2							
F),					:		
TAN Change							
Viscosity at 40 C, % Change							
Viscosity at 100 C, % Change							
					-		
Oil Loss, % Wt.							
! Aluminum Wt. Change, mg/cm2							
Silver Wt. Change, mg/cm2		-					
Bronze Mt. Change, mg/cm2							
Iron Wt. Change. mg/cm2							
M-50 Wt. Change, mg/cm2							
Magnesium Wt. Change, mg/cm2							
Titanium Ut. Change. Mg/cm2							

	- 00	1.20		-	<u> </u>	
AIR FORCE CODE	LIMIIS	NEW OIL:		-	-	
CAO, C (F), HOURS (BASIC)	-				•= •	
TAN Change						
Viscosity at 40 C, \$ Change						
ပ်	••		•			
Volume		•	-		**	
:						
סו			•			
Breakpoint to TAN of 4.0, Hours			•			
to Viscosity Chang			•			
			į			
Silver Wt. Change, mg/cm2		-	-			
Bronze Wt. Change, mg/cm2	••	•	•			
Iron Mt. Change, mg/cm2	••	-	•			
M-50 Wt. Change, mg/cm2			••			
Magnesium Wt. Change, mg/cm2	**	•		~-		
Titanium Wt. Change, mg/cm2			••			
F),						
	•	•				
Viscosity at 40 C, % Change	•	•				
at 100 C.						
Vclume						
5	•	•	• •			
COBRA Reading		•				
Aluminum Wt. Change, mg/cm2		• •				
Silver Wt. Change, mg/cm2	•	-	••			
Bronze Wt. Change, mg/cm2		•				
Iron Wt. Change, mg/cm2		••				
M-50 Wt. Change, mg/cm2						
Hagnesium Wt. Change, mg/cm2		***				
Titanium Wt. Change, mg/cm2			••			
BILITY			-			
: Lead At Change (48 hrs), g/m2 (mg/in2);						
e (168 hrs), g/m2						
rest						
EXTENDED STORAGE STABILITY	•					
			••			
NOTES:						

APPENDIX D

COMPUTER PROGRAMS TO OPERATE THE CV-1B AND SINGLE BOARD VOLTAMMOGRAPH BASED RULLER CANDIDATES

Basic Language Program Used to Operate the CV-1B Based RULLER Candidate

CONTRACTOR REPORT | PROPERTY | PROPERTY |

```
18 POKE 432.252: POKE 433.49
    POKE 7676.1: POKE 7677.0: POKE 7678.4: FOKE 7679.0: POKE 7680.34: FOKE
     7681.36: POKE 7582.0
100
     REM 2/22/85
    LOMEM: 24576
110
130 IMAX = 2560
160 Ds = CHRS (4):IS = CHRS (9)
170 DIM NP(9)
175 SA = 16 + 1024
     SOLE DIES SASO
:80
    PRINT DS: "BLOAD CYCLO. OBJ"
:90
200
     REM COMMAND *****
320
     PRINT : GET AS
225
     IF AS = "A" THEN GOSUB 1310
     IF AS = "C" THEN PRINT : PRINT DS: "CATALOG"
£30
                       GQSUB 1130
240
     IF AS = "L" THEN
    IF AS = "Q" THEN
£45
                       END
250
     IF AS = "S" THEN
                       GOSUB 1000
     IF AS = "D" THEN
                       GOSUB 1860
iea
     IF AS = "H" THEN GCSUB 320
270
    IF AS = "V" THEN GOSUB 500
312
315 GOTO 220
220 PRINT "A- AQUIRE DATA"
    PRINT "C- CATALOG"
330
335 PRINT "D- DERIVATIVE "
336 PRINT "H- HELP"
340 PRINT "L- LOAD FROM DISK"
350
    PRINT "Q- QUIT"
    PRINT "S- SAVE TO DISK"
370
430
   PRINT "V- VIEW GRAPHICS"
450 PRINT "CTRL S- STOP START"
    PRINT "CTRL X- ABORT ROUTINE"
460
430
    RETURN
500 REM
            VIEW GRAPHICS *****
505 TO - 50
510 YTAB 24
515 I = 0: HGR :X = 0
520 C2 = 1:4DD = SA: HCOLOR= 3
530 SF = 191 / (DMAX - D0)
535 INPUT "DO YOU WISH TO CHANGE THE SCALE FACTOR? ":AS
   IF LEFTS (AS.1) = "Y" THEN INPUT "INPUT THE NEW SCALE FACTOR. ":3x
     :SF = SX + SF
545
     INFUT "DO YOU WANT A PRINT OUT? ":AS
558
     IF LEFTS (As.1) = "Y" THEN PRINT DS: "PR# 1": PRINT IDS: FRINT "LE...
     REE/DIV ":SS / 2: PRINT "RADIATION ":Rs: PRINT DTs: PRINT TABL LEVE
552 POKE 49234.0
225
    FOR N = @ TO 191 STEP 9.54: HPLOT X.N: NEXT N: HPLOT X.191 - Y
560
    FOR J = 1 TO 20
TES Y = PEEK (ADD + 1) + 256 + PEEK (ADD)
570 ADD = ADD + 2
575 Y = (Y - DØ) + SF
    IF Y ) 191 THEN Y = 191
E83
    IF Y ( & THEN Y = &
535
    HPLOT TO X, 191 - Y
590
595 CNT = CNT - 1
600 \times = \times + 1
662 1 = 1 + 1
```

```
E. J IF . = IMAX THEN 665
    NEXT J
420 F = FEEK (49152); FCKE +3168.0
430 IF P = 152 GOTO 702
...5 IF P = 147 THEN GET PS
116 IF P = 155 THEN (0509 704
THE STORY OF X ( 284 THEN GOTO 744
to? Is = CHRs (3)
SEE SEINT IST"K"
ETA PRINT 19:"8H"
171 TO = TO + (7 + 55)
- 35
    -GR : FOKE 49234.0
6 = x 263
.22 IF 1 ( IMAX THEN SES
702 PRINT IS: "IK": PRINT DS: "FREE": TEXT : RETURN
TO4 SCALE= 1:XP = X - 1:P = 0
718 IF P = 202 THEN XP = XP - 1: FOR D = 1 TO 30: NEXT D
    IF P = 203 THEN XP = XP + 1: FOR D = 1 TO 50: NEXT D
7:3
7:3
    IF P = 141 THEN 800
-:4
    IF P = 155 THEN RETURN
720 IF P = 70 THEN XP = XP + 3
    IF P = 68 THEN XP = XP - 3
731
738 IF XP ( 8 OR XP ) 279 THEN 765
'50 YI = PEEK (SA + 1 + (XP + I - X) + 2) + 256 + PEEK (SA + (XP + I -
     X) + 2)
755 YP = 191 - (YP - DØ) + SF
757 IF YP ( 0 THEN YP = 0
    XDRAW 1 AT XF. YF
765 IF XP ( @ THEN XP = @
770 IF XP ) 279 THEN XP = 279
772 P = PEEK (49152): PUKE 49168.0
775 XDRAW 1 AT XP. YP
760 GOTO 710
623 F = F + 1
±10 TE = 50 + (XP + I - X) + SS / 40
532 IF F = 1 THEN HT = YP:P = 0: PRINT CHR$ (7): GOTO 710
S-2 PRINT Ds:"PR01": PRINT HT - YF: PRINT Ds:"PR00":P = 0:F = 0: GOTO 71
1000 REM
           SAVE *******
1010 INPUT "FILE NAME ? ":NS
1828 PRINT DS; "OPEN "INS
1030 PRINT DS: "WRITE " INS
.250 FRINT IDS: PRINT DTS .270 FRINT IMAX: PRINT DMAX
1260 PRINT DO
:290 FRINT DS;"CLOSE ":NS
.: 4 (IMAX) + 2
1110 PFINT DS: "PSAVE ":NS: ". DAT. A16384. L":L
1120 RETURN
1:33 REM LOAD ********
1140 ADD = SA: I = 0:DMAX = 0
1150 INPUT "FILE NAME ":NS
:150
     PRINT DS: "OPEN ":NS
.178 FRINT DS;"READ ":NS
1200 INPUT IDS: INPUT DIS
.2:0 INPUT IMAX: INPUT DMHX
1223 INPLT DO
1230 PRINT DS:"CLOSE ":NS
1240 PRINT DS:"BLOAD ":NS:".DAT"
1250 PRINT "SAMPLE ID ":10%
1298 PRINT "DATE ":DTS
:300 RETURN
1310 REM A
1320 VTAB 24
           AQUIRE DATA .....
:228 SF = 279 / 1288
```

<u>ዸቒጜኯጟቒቜኯቒዸጜ፞ፙጜፙጜፙጜጜጜጜፙፙጜጜቔቔጜፙኯዹጜቔቔጜዄ</u>

```
1348 SEM = 8:4 = 0:ACD = SA
1400 CNT = 1:1 = 0
1460 PRINT "SAMPLE ID ":IDS:" ":: INFUT 48: IF 48 ( ) "" THEN IDS = 48
     PRINT "DATE ":DTS:" ":: INFUT AS: IF AS ( ) "" THEN DTS = AS
1470
     INPUT "GRE YOU HEADY TO START ? ":AS: FRINT
1490 IF LEFTS (AS.:) ( ) "Y" THEN RETLAN
1500 CALL 7EB
1510 IMAX = (256 + ( FEEK (255) + 4 + 16) + PEEK (254)) / 2
1520 DMAX = 0:00 = 10000
1698 FOR ADD = SA TO SA + (1MAX + 2) - 2 STEP 2
1613 S = FEEK (ACD) + 256 + FEEK (ACD + 1)
1688 IF S ) DMAX THEN DMAX = S
     IF S ( DØ THEN DØ = S
1639
:720
     NEXT ADD
1829
     TEXT : RETURN
1860 9E4
            DERVATIVE ....
1978 M = IMAX - 6
1880 FOR I = 2 TO 7
1890 J = I - 1
1900 NP(I) = PEEK (SA - 1 + 2 + J) + 256 + PEEK (SA - 2 + 2 + J)
1910 NEXT I
1920 FOR I = 1 TO M
1 TAIRS :55 BATV 6EE1
1940 J = I + 6
1950 FGR K = 1 TO 6
1960 KA = K + 1
1970 NP(K) = NP(KA)
1980 NEXT K
1990 NP(7) = PEEK (SA - 1 + 2 + J) + 256 + FEEK (SA - 2 + 2 + J)
2000 NSUM = -1 + (NP(3) - NP(5)) - 2 + (NP(2) - NP(6)) - 3 + (NP(1) - NP(6))
    P(7))
2010 YS = NSUM / 28 + 10 + 5 + 10
     IF YS ( 0 THEN 2050
2020
2030 FORE SA - 1 + 2 + (1 + 3), YS - 256 + INT (YS / 256)
2040 POKE SA - 2 + 2 + (1 + 3), INT (YS / 256)
2050 NEXT I:00 = 0:0MAX = 45 + 10: RETURN
             ERROR -----
2260
     REM
     PRINT "ERROR": FRINT FEEK (222)
370
2080 GOTO 220
```

Machine Code Program Used to Operate the Single Board Voltammograph

```
SOURCE FILE: CYCLO. ASM
 9999:
                   1 *CYCLOVOLTAMETRY CODE FOR APPLE
 99993:
                   2 #A/D IN SLOT 5
 99991
                   3 *D/A IN SLOT 6
 ---- NEXT OBJECT FILE NAME IS CYCLO. ASM. OBJ0
 0300:
                             ORG
                                   $300
                                            ORIGIN OF PROGRAM
 000F:
                   5
                     RMPSTHI EQU
                                   $0F
                                             RAMP START HIGH BYTE
 00FF:
                     RMPSTLO EQU
                   6
                                   $FF
                                             RAMP START LOW BYTE
 00FD:
                   7 RMPADHI EQU
                                            RAMP ADD HIGH BYTE
                                   $FD
 00FC:
                   8 RMPADLO EQU
                                   $FC
                                             RAMP ADD LOW BYTE
 0040:
                   9 DATSTHI EQU
                                   $40
                                             ;DATA START HIGH BYTE
 2222:
                  10 DATSTLO EQU
                                  $00
                                             IDATA START LOW BYTE
 00FF:
                  11 DATADHI EQU
                                  $FF
                                             ; DATA ADD HIGH BYTE
 00FE:
                 12 DATADLO EQU
                                  SFE
                                             ;DATA ADD LOW BYTE
 C0F0:
                 13 DAHI
                             EQU
                                  $C0F0
                                             ;D/A HIGH BYTE
 CØF1:
                 14 DALO
                             EQU
                                  $C0F1
                                             ; D/A LOW BYTE
 CØD1:
                 15 ADHI
                             EQU
                                  $C0D1
                                             ;A/D HIGH BYTE
 CØDØ:
                 16 ADLO
                             EQU
                                  $C0D0
                                             ;A/D LOW BYTE
 0054:
                 17 DATENDHI EQU $54
                                             DATA END HIGH BYTE
 15500
                 18 SPEED
                             EQU
                                  $22
                                             JUSED IN DELAY ROUTINE
 0010:
                  19 GAIN
                             EQU
                                             GAIN
                                  $10
 0300:
                 20 *PROGRAM START
 0300:A9 0F
                 21 INIT
                             LDA
                                  #RMPSTHI
                                             BEGIN RAMP START
 0302:85 FD
                 22
                             STA
                                  RMPADHI
 0304:A9 FF
                 23
                             LDA
                                  #RMPSTLO
 0306:85 FC
                 24
                             STA
                                  RMPADLO
 0308:A9 40
                 25
                             LDA
                                  *DATSTHI
                                             :BEGIN DATA START
 030A:85 FF
                 26
                             STA
                                  DATADHI
 030C:A9 00
                 27
                             LDA
                                  #DATSTLO
 030E:85 FE
                 28
                             STA
                                  DATADLO
 0310:A0 00
                 29
                             LDY
                                             SET Y=0. RAMP DOWN (NO DATA TAKEN)
                                  #$00
 0312:A5 FD
                 30 RAMPDOWN LDA RMPADHI
                                             SET RAMP
 0314:8D F0 C0
                 31
                            STA
                                  DAHI
 0317:A5 FC
                 32
                             LDA
                                  RMPADLO
 0319:8D F1 C0
                 33
                             STA
                                  DALO
031C:C6 FC
                 34
                             DEC
                                  RMPADLO
                                             : DECREMENT RAMP
031E:A9 22
                 35
                             LDA
                                  #SPEED
                                             : DELAY
0320:20 63 03
                 36
                             JSR
                                  DELAY
0323:A5 FC
                 37
                             LDA
                                  RMPADLO
0325:D0 EB
                 3A
                             BNE
                                  RAMPDOWN
0327:F0 02
                 39
                             BEO
                                  NOINC
0329:E6 FC
                 40 RAMPUP
                             INC
                                  RMPADLO
                                             ; INCREASE RAMP
032B:A5 FD
                 41 NOINC
                             LDA
                                  RMPADHI
032D:8D F0 C0
                             STA
                 42
                                  DAHI
0330:A5 FC
                 43
                             LDA
                                  RMPADLO
0332:8D F1
                 44
                            STA
                                  DALO
0335:A9 10
                 45
                            LDA
                                  #GAIN
                                            START SAMPLE
0337:8D D0 C0
                 46
                            STA
                                  ADLO
033A:A9 22
                 47
                            LDA
                                  #SPEED
                                            ; DELAY
033C:20 63 03
                 48
                            JSR
                                  DELAY
033F:AD D1 C0
                 49
                            LDA
                                  ADHI
                                            BEGIN TO STORE DATA
0342:29 OF
                 50
                            AND
                                  #$0F
0344:91 FE
                 51
                            STA
                                  (DATADLO), Y
0346:E6 FE
                 52
                            INC
                                  DATADLO
0348:AD D0 C0
                 53
                            LDA
                                  ADLO
034B:91 FE
                 54
                            STA
                                  (DATADLO), Y
034D:E6 FE
                                  DATADLO
                 55
                            INC
                                            BEGIN TO CHECK FOR LAST DATA POINT
034F:D0 09
                 56
                            BNE
                                  RAMPCONT
0351:E6 FF
                 57
                            INC
                                  DATADHI
```

10. Carried 1

D-2 (Concluded)

Ø353:A9 54	58	LDA	#DATENDHI			
0355:C5 FF	59	CMP	DATADHI			
0357:D0 01	60 .	BNE	RAMPCONT			
0359:60	61	RTS				
035A:A5 FC	62 RAMPCONT	T LDA	RMPADLO	; BEGIN	DELAY	SUBROUTINE
035C:C2 FF	63	CMP	#RMPSTLO	•		
035E:D0 C9	64	BNE	RAMPUP			
0360:4C 12 03	65	JMP	RAMPDOWN			
0363:38	66 DELAY	SEC				
0364:48	67 BRANCH2	PHA				
0365:E9 01	68 BRANCHI	SBC	#\$01			
0367:D0 FC	69	BNE	BRANCH1			
Ø363:68	70	PLA				
036A:E9 01	71	SBC	#\$01			
0360:D0 F6	72	BNE	BRANCH2			
Ø36E:60	73	RTS				

*** SUCCESSFUL ASSEMBLY: NO ERRORS

Basic Language Program to Operate the Single Board Voltammograph Based RULLER Candidate

```
550 IF LEFTS (AS. 1) = "Y" THEN
                                                                   PRINT DS;"PRO 1": PRINT IDS
18 POKE 232, 252: POKE 233, 29
28 POKE 7676, 1: POKE 7677, 0: POKE 7678, 4: POKE 7679, 0: POKE 7689, 34: POKE 7681, 36: POKE 76
                                                                   PRINT "DEGREE/DIV ":88 / 2
                                                                   : PRINT "RADIATION . ": RS: PRINT
                                                                   DTS: PRINT TAB( 26)80
                                                           552 POKE 49234,0
555 FOR N = 0 TO 191 STEP 9.54: MPLOT
X,N: NEXT N: MPLOT X,191 - Y
        82.8
30 POKE - 16296.1: REM WORKING
       ELECTRODE OFF
                                                           560 FOR J = 1 TO 20
565 Y = PEEK (ADD + 1) + 256 + PEEK
(ADD)
       REM 2/22/85
110 LOMEM: 24576
130 IMAX = 2560
160 Ds = CHRS (4):15 = CHRS (9)
                                                           578 ADD = ADD + 2
575 Y = (Y - D8) + SF
                                                           584 IF Y > 191 THEN Y = 191
585 IF Y ( 0 THEN Y = 6
590 MPLOT 10 X,191 - Y
       DIM NP(9)
175 SA = 16 + 1024
180 ONERR GOTO 2060
                                                           590
      PRINT Det"BLOAD CYCLO. OBJ"
                                                           195 CNT = CNT + 1
                                                           600 x = x + 1
200
      PRINT : GET AS
IF AS = "A" THEN GOSUB 1310
                                                           605 1 = 1 + 1
220
                                                           610 IF I - IMAX THEN 665
225
                                                           615 NEXT J
238 IF 48 = "C" THEN PRINT : PRINT
                                                           628 P - PEEK (49152); POKE 49168
       DS: "CATALOG"
                                                           630 IF P = 152 GOTO 702
635 IF P = 147 THEN GET AS
636 IF P = 155 THEN GOSUB 704
640 IF X ( 280 THEN GOTO 700
       IF As = "L" THEN GOSUB 1130
245 IF As = "Q" THEN END
250 IF As = "5" THEN GOSUB 1888
                                                                                            GOSUB 704
                                                           660 18 - CHR$ (9)
665 PRINT 18:"K"
260 IF As = "D" THEN GOSUB 1860
                                                           570
                                                                 PRINT IS 1"8H"
                                                           675 TW = T0 + (7 + S$)
680 PRINT TAB( 26) TW
685 HGR 1 PDKE 49234,0
     IF As = "H" THEN GOSUB 328
278
310 IF AS = "V" THEN GOSUB 500
      GOTO 220
315
       PRINT "A- AQUIRE DATA"
320
                                                           695 x = 0
     PRINT "C- CATALOG"
PRINT "D- DERIVATIVE "
                                                          700 IF I ( IMAX THEN 555
702 PRINT 18;"1K"; PRINT D8;"PRO
335
     PRINT "H- HELP"
336
                                                                  0"1 TEXT : RETURN
       PRINT "L- LOAD FROM DISK"
                                                           704 SCALE= 1:XP = X - 1:P = 0
344
                                                          7:0 IF P = 202 THEN XP = XP - 1:
FOR D = 1 TO 50: NEXT D
      PRINT "Q- QUIT"
350
       PRINT "S- SAVE TO DISK"
370
       PRINT "V- VIEW GRAPHICS"
PRINT "CTRL S- STOP START"
PRINT "CTRL X- ABORT ROUTINE
                                                           712 IF P = 203 THEN XP = XP + 11
430
                                                                    FOR D = 1 TO Se: NEXT D
                                                           713 IF 0 = 141 THEN 800
                                                          714 IF P = 155 THEN RETURN
720 IF P = 70 THEN XP = XP + 3
721 IF P = 66 THEN XP = XP - 3
730 IF XP ( 0 DR XP ) 279 THEN 7
     RETURN
REM VIEW GRAPHICS *******
498
500 REM
505 TO - 50
                                                                  65
      VTAB 24
                                                           750 YP - PEEK (SA + 1 + (XP + I -
518
                                                          X) + 2) + 256 + PEEK (SA +
515 I- 0: HGR :X = 0
513 1-0: HGH 1X = 0
520 C2 = 1:ADD = SA: HCOLOR= 3
530 SF = 191 / (DMAX - D0)
535 INPUT "DO YOU WISH TO CHANGE
THE SCALE FACTOR? ":AB

540 IF LEFTS (AB: 1) = "Y" THEN
INPUT "INPUT THE NEW SCALE
FACTOR, ":SX:SF = SX + SF
                                                                   (XP + 1 - X) + 2)
                                                           725 YP = 191 - (YP - De) + SF
                                                           757 IF YP ( @ THEN YP = 8
                                                          760 XDRAW 1 AT XP, YP
765 IF XP ( 0 THEN XP = 0
770 IF XP ) 279 THEN XP = 279
                                                           772 P = PEEK (49152): POKE 49168
545 INPUT "DO YOU WANT A PRINT O
       UT? ";AS
                                                           775
                                                                  XDRAW 1 AT XP. YP
                                                           780 GOTO 710
600 F = F + 1
                                                                 "2 = 50 + (XD + 1 - X) + 58 /
                                                           810
                                                           830 IF F = 1 THEN HT = YPIP = 81
                                                                   PRINT CHRS (7): GUTU 710
```

<u>መመን የሚያው እንደሚያው ያው ያው ያው ያው ነው እንደ አው እን</u>

D-3 (Concluded)

እኔ ነገብት ነገር ነገርም ነገር ችናን ነገር አለም ነገር ነገር እንደነገለች የሚያስከተለ እንደነገለች የሚያስከተለ እንደነገለች የሚያስከተለ ነገር ነገር ነገር ነገር ነገር ነ

```
848 PRINT DS:"PRO1": PRINT HT -
      YP: PRINT DS;"PROO" IP = GIF =
PRINT DO: "OPEN ":NS
PRINT DO: "WRITE ":NS
1020
1 (4 3 (4)
      PRINT IDE: PRINT DTS
PRINT IMAX: PRINT DMAX
1060
1070
      PRINT DO PRINT DO: "CLOSE "ING
1080
10.30
1100 = (IMAX) + 2
1110 PRINT De: "BSAVE "; Ne: ". DAT.
      A16384. L" 1L
      RETURN
1:20
1150
      INPUT "FILE NAME ":NS
1:60
      PRINT DS: "DPEN ":NS
     PRINT DS: UPEN "INS
PRINT DS: "READ "INS
INPUT IDS: INPUT DTS
: 200
1240 PRINT De: "BLORD ":Ne:".DAT"
1280 PRINT "SAMPLE ID ":156
1290 PRINT "DATE ":DTS
       HETURN
. 3.34
       HEM AQUIRE DATA .....
1310
1320 VTAB 24

1140 SUM = 0:X = 0:ADD = SA

1400 CNT = 1:I = 0

1460 FRINT "SAMPLE ID ":ID9;" ":

1 INPUT A9: IF A9 ( ) "" THEN
       IDS = 98
1478 PRINT "DATE ":DTS:" ":: INPUT
      96
 1488 INPUT "ARE YOU READY TO STA
RT 7 ";AS: PRINT
1498 IF LEFTS (AS,1) ( ) "Y" THEN
RETURN
1495 PONE - 16295, 8
1580 CALL 768
1585 PCKE - 16296,1
1585 PCKE - 26296,1
1518 PMAX = (256 + (PEEK (255) - 4 + 16) + PEEK (254)) / 2
                                                 1998 NP(7) = PEEK (SA + 1 + 4 +
                                                   J) + 256 + PEEK (SA - 2 + 2
                                                 + J)
2000 NSUM = - 1 + (NF(3) - NF(5)
 :520 DMAX = 4096:00 = 0
                                                      ) - 2 + (NP(2) - NP(6)) - 3 + (NP(1) - NP(7))
 1850 TEXT : RETURN
1860 REM DERVATIVE
 2010 YS = NSUM / 28 + 10 + 5 + 10
                                                  SMED IF YS ( @ THEN EDSO
                                                 2030 POKE SA - 1 + 2 + (1 + 3), Y
S - 256 + INT (YS / 256)
2040 POKE SA - 2 + 2 + (1 + 3), INT
        + J)
                                                 (YS / 256)
2050 NEXT I:D0 = 0:DMAX = 45 = 1
 1910 NEXT I
 1920 FOR 1 = 1 TQ M
 1930 VTAB 23: PRINT I
                                                        W: RETURN
 1940 J = I + 6
                                                  2060
                                                         REM
                                                                   ERROR******
                                                  2070 PRINT "ERROR": PRINT PEEK
 1958 FOR K = 1 TO 6
 1960 KA . K + 1
                                                        (232)
                                                 2080 GOTO 220
 1978 NP(K) = NP(KA)
                                                  4496 : DV = V
```

Apple IIe Microcomputer Basic Variables and Locations

```
4
      220, 225, 230, 240, 245, 250, 260, 270, 310, 535, 540, 545, 550, 635, 1460
 1470, 1480, 1490
AD
      520, 565, 570, 1140, 1340
C2
      520
      595, 1400
710, 712
CN
D
D$
      160, 190, 230, 550, 702, 640, 1020, 1030, 1090, 1110, 1160, 1170, 1230, 12
40
DØ
      530, 575, 755, 1080, 1220, 1520, 2050, 4096
      530, 1070, 1140, 1210, 1520, 2050
550, 1060, 1200, 1290, 1470
800, 830, 840
DM
DTS
E
нТ
      830, 840
      515, 605, 610, 700, 750, 810, 1140, 1400, 1880, 1890, 1900, 1910, 1920, 19
30.
    1940, 2030, 2040, 2050
      160, 660, 665, 670, 702
[ 3
ID$
      550. 1060, 1200. 1280. 1460
      130, 510, 700, 1070, 1100, 1210, 1510, 1870
. *
      560, 615, 1890, 1900, 1940, 1990
      1950, 1960, 1970, 1980
KA
      1960, 1970
      1120, 1110
      1970, 1920
M
      555
VS
      1010, 1020, 1030, 1090, 1110, 1150, 1160, 1170, 1230, 1240
NP (
      170, 1900, 1970, 1990, 2000
      2000, 2010
45
      620, 630, 635, 636, 704, 710, 712, 713, 714, 720, 721, 772, 830, 840
RS
      622
52
      505, 550, 810
SA
      175, 520, 750, 1140, 1340, 1900, 1990, 2030, 2040
SF
      530, 540, 575, 755
SS
      550, 675, 810
SU
      1340
5 X
      540
TO
      505, 675, 680
- <u>:</u>
      610
      515, 555, 590, 600, 640, 695, 704, 750, 810, 1340
XP
      704, 710, 712, 720, 721, 730, 750, 760, 765, 770, 775, 810
      555, 565, 575, 580, 585, 590
750, 755, 757, 760, 775, 830, 840
YD
15
      2010, 2020, 2030, 2040
```

D-5

Apple IIe Microcomputer Memory Map

Loca	tion	
Hex	Decimal	Description
\$4000		lst Cycle Data
\$4200		2nd Cycle Data
\$4400		3rd Cycle Data
\$4600		4th Cycle Data
\$4800		5th Cycle Data
\$4A00		6th Cycle Data
\$ 4 C00	19456	7th Cycle Data (1/2 way point 197/2)
\$4E00	19968	8th Cycle Data
\$5000		9th Cycle Data
\$5200		10th Cycle Data
\$		A/D
\$CODO		Start A/D Poke Gain Code \$10
		0-1V f.s SLOT=5
\$COD1		READ MSB (AND SOF)
\$CODO		READ LSB Data=MSB*256+LSB
\$COFO	-16144	MSB D/A SLOT=7
\$COF1	-16143	LSB D/A Write Data to Port
	-16295	l bit TTL ON
	-16296	l bit TTL OFF

REFERENCES

- 1. Edge, R.G. and Squires, A.T.B.P., "Lubricant Evaluation and Systems Design for Aircraft Gas Turbine Engines," Society of Automotive Engineers, Inc., National Air Transportation Meeting, New York, April 21-24, 1969.
- Smith, H.A., "Lubricant Monitoring Using the Complete Oil Breakdown Rate Analyzer (COBRA)," Report No. AFAPL-TR-82-2109, DDC No. AD B073132, March 1983.
- 3. Barrow, G.M., "Physical Chemistry," McGraw-Hill Book Co., NY, (1973), p 458.
- 4. Klenke, C.J., "HPLC Analysis of Synthetic Turbine Engine Lubricant Additives," Report No. AFWAL-TR-85-2040. DDC No. AD B096129. March 1985.
- 5. Bennett, J.E., Brunton, G., Forrester, A.R. and Fullerton, J.D., "Reactivity and Structure of N-phenylnaphth-1-ylamines and Related Compounds. Part 1. Reactions with Alkylproxyl Radicals," J. Chem. Soc. Perkin Trans. II, p 1477 p (1983).
- 6. Thomas, J.R. and Tolman, C.A., "Oxidation Inhibition by Diphenylamine," JACS, 84, p 2930 (1962).
- 7. Brownlie, I.T. and Ingold, K.U., "The Inhibited Autoxidation of Styrene. Part V. The Kinetics and Deuterium Isotope Effect for Inhibition by Diphenylamine, Phenyl-1-Naphthylamine and Phenyl 2-Naphthylamine," Can. J. Chem., 44, p 861 (1966).
- 8. Bowman, D.F., Middleton, B.S. and Ingold, K.U., The Oxidation of Amines with Peroxy Radicals. N-Phenyl-2-naphthylamine, J. Org. Chem., 34, 11, p 3456 (1969).
- 9. Forrester, A.R., Fullerton, J.D. and McConnachie, G., "Nitroxide Radicals. Part 21. Spontaneous Decomposition of N-Aryl 1- and 2-Naphthyl Nitroxides," J. Chem. Soc. Perkin Trans. I, p 1759 (1983).
- 10. Parker, C.A., "Oxidation Products of N-Phenyl-1-Napthylamine in Lubricating Oils A Review," DDC No. AD B021441, April 1977.
- 11. Military Specification, MIL-L-7808J Lubricating Oil, Aircraft Turbine Engine, Synthetic Base, (May 1982).
- 12. Military Specification, MIL-L-23699C Lubricating Oil, Aircraft Turbine Engine, Synthetic Base (June 1981).
- 13. Baber, B.B., Cuellar, J.P., and Montalvo, D.A., "Deposition and Degradation Characteristics of Aircraft Turbine Engine Lubricants," Report No. AFAPL-TR-70-8 (Vol 1), June 1970.

- 14. Federal Test Method Standard No. 791B, Method 5003.1, "Deposit Forming Tendencies of Aircraft Turbine Lubricants."
- 15. Entwistle, R.C., "RTD Panel Coker Test Technique and Apparatus, (TR Configuration)," Report No. AFAPL-TR-67-56, October 1967.
- 16. Cuellar, J.P., Montalvo, D.A., and Baber, B.B., "Studies with Synthetic Lubricants in the Hot-Wall Deposition Rig," Report No. AFAPL-TR-72-25, June 1972.
- 17. Cuellar, J.P., and Baber, B.B. "Development of a Rotating Cylinder Deposition Test," Report No. AFAPL-TR-75-37, NTIS No. AD-A012296, June 1975.
- 18. Baber, B.B., Valtiena, M.L., and Eichelberger, J.E., "Development of the Automated AFAPL Engine Simulator Test for Lubricant Evaluation" Report No. AFWAL-TR-81-2022, June 1982.
- 19. Butler, R.D., and Hopkins, V., "Research for Lubrication Evaluation Techniques, Lubricant-Bearing Evaluation," Midwest Research Institute Report No. MRI 3271-E, February 1972.
- 20. Voitik, R.M. and Heerdt, L.R., "Wear and Friction Evaluation of Gear Lubricants by Bench Test," Lubr. Eng., 40, pp 719-724 (1984).
- 21. Kauffman, R.E., Saba, C.S., and Rhine, W.E., "Quantitative Multielement Determination of Metallic Wear Species in Lubricating Oils and Hydraulic Fluids," J. Anal. Chem., 54, pp 975-979 (1982).
- 22. Smith, H.A., and Centers, P.W., "Volatility Characteristics of MIL-L-7808 Turbine Lubricants," Report No. AFAPL-TR-75-17, NTIS No. AD-A015034, June 1975.
- 23. Bochartz, W., "Carbon Residue Studies with a Microcarbon Residue Tester," presented at the 41st Annual ASLE Meeting, May 12-14, 1986. Preprint No. 86-AM-7A-1.
- 24. Cuellar, J.P., Baber, B.B., and Ku, P.M., "Bearing Deposition Test-Analysis of 48 Hour Test Results," Report No. AFAPL-TR-67-85, NTIS No. AD-818428, July 1967
- 25. Federal Test Method Standard No. 791B, Method 3213, "Foaming Characteristics of Aircraft Turbine Lubricating Oils (Static Foam Test)."
- 26. Smith, H.A., Centers, P.W. and Craig, W.R., "Foaming Characteristics of MIL-L-7808 Turbine Lubricants," Report No. AFAPL-TR-75-91, November 1975.
- 27. Rhine, W.E., Saba, C.S., Kauffman, R.E., Brown, J.R., and Fair, P.S., "Evaluation of Plasma Source Spectrometers for the Air Force Oil Analysis Program," Report No. AFWAL-TR-82-4017, February 1982.

- 28. Jones, Jr., W.R. and Lowenthal, S.H., "Analysis of Wear Debris from Full-Scale Bearing Fatigue Tests Using the Ferrograph," ASLE Trans., 24, 3, p 323 (1980).
- 29. Rhine, W.E., Saba, C.S., and Kauffman, R.E., "Spectrometer Sensitivity Investigations on the Spectrometric Oil Analysis Program," Report No. NAEC-92-169, April 1983.
- 30. Lewis, R. T., "The Wear Particle Analyzer," 41st Annual Meeting of the MFPG, Naval Air Test Center-Patuxent River, MD., October 28-30, 1986.
- 31. Kauffman, R.E., Saba, C.S., Rhine, W.E., and Eisentraut, K.J., "Chemical Nature of Wear Debris," ASLE Trans., 28, 3, p 400 (1985).
- 32. McPherson, P.B., "Fine Filtration-an Attractive Route Towards Lower Helicopter Operating Costs," AGARD Conference Proceeding No. 369, January 1985.
- 33. Hudgins, W.A., "Oil Debris Detection System (ODDS)," USAASCOM TR-84-D-7, May 1984.
- 34. Waggoner, C.A. and Dominique, H.P., "Application of a Microfiltration Technique in Wear Debris Analysis as an Aid to Machinery Health Diagnosis." AD-B089390, DREP TM 84-5, Defence Research Establishment Pacific FMO, Victoria, B.C. VOS 1BO, Canada, August 1984.
- 35. Tyler, J.C., Cuellar Jr., J.P. and Mason, R.L., "Effects of Wear Metal on Lubricant Deposition," Report No. AFWAL-TR-83-2078, November 1983.
- 36. Tyler, J.C., Cuellar Jr., J.P. and Mason, R.L., "Effects of Micronic Filtration on Turbine Engine Lubricant Deposition," Report No. AFWAL-TR-83-2065, October 1983.
- 37. Tauber, T., Hudgins, W.A. and Lee, R.S., "Oil Debris Assessment and Fine Filtration in Helicopter Propulsion Systems," Oil Analysis Workshop/Symposium, Pensacola, Florida, May 1983.
- 38. Woessner, F.G., "Evaluation of Lubrication Oil Performance and Establishment of Oil Drain Intervals for UH-1H Aircraft," Naval Air Propulsion Center, Report No. Number NAPC-PE-86, September 1938.
- 39. Lowenthal, S.H., Moyer, D.W. and Needelman, W.M., "Effects of Ultra-Clean and Centrifugal Filtration on Rolling-Element Bearing Life," Report No. NASA TM-8266C, October 1981.
- 40. Needelman, W.M., "Filtration for Wear Control," Wear Control Handbook, The American Society of Mechanical Engineers, 1980.

- 41. Tichy, J.A., "The Control of Contamination in Circulating Engine Lubricating Oil," AD A080458, Office of Naval Research, Report No. ONR CR-169-615-4F, October 1979.
- 42. Lowenthal, S.H. and Moyer, D.W., "Filtration Effects on Ball Bearing Life and Condition in a Contaminated Lubricant," Report No. NASA TM-78907, October 1978.
- 43. Lowenthal, S.H., Moyer, D.W. and Sherlock, J.J., "Effect of Filtration on Rolling-Element-Bearing Life in a Contaminated Lubricant Environment," Report No. NASA TP-1272, July 1978.
- 44. Hollinger, R.H., "Oil Filter Analysis Technique Research Program," Report No. USA RTL-TR-78-18, AD A058241 July 1978.
- 45. McGrew, J.M. "Helicopter Transmission Improvement Study," Interim Report Aeronautical Analytical Rework Facility, Naval Air Development Center, AD A088197, September 1976.
- 46. Lynch, C.W., and Cooper, R.B., "The Development of a Three-Micron Absolute Main Oil Filter for the T53 Gas Turbine," ASME Journal of Lubrication Technology, 93, 3, p 430 (1971).
- 47. J.F. Wansong, T 700 Engine-Designed for the Pilot and Mechanic Presented at the 39th Annual Forum of the American Helicopter Society, May 9-11, 1983.
- 48. Hamilton, E.J., Korcek, S., Mahoney, L.R. and Zinbo, M., "Kinetics and Mechanism of the Autoxidation of Pentaerythityl Tetraheptanoate at 180-220°C," International Journal of Chemical Kinetics, XI, pp 577-603 (1980).
- 49. Klaus, E.E. and Lockwood, F.E., "Ester Oxidation Under Simulated Boundary-Lubrication Conditions," ASLE Trans., 24, 2, pp 276-284 (1980).
- 50. Ali, A., Lockwood, F., Klaus, E.E., Duda, J.L. and Tewksbury, E.J., "The Chemical Degradation of Ester Lubricants," ASLE Trans., 22, 3, pp 267-276 (1978).
- 51. Sniegoski, P.J., "Selectivity of the Oxidative Attack on a Model Ester Lubricant, ASLE Trans., 20, 4, pp 282-286 (1976).
- 52. Klaus, E.E. Tewksbury, E.J. and Feitelson, S.S., "Thermal Characteristics of Some Organic Esters," ASLE Trans., 13, pp 11-20 (1969).
- 53. Cvitkovic, E., Klaus, E.E., and Lockwood, F.E., "A Thin-Film Test for Measurement of the Cxidation and Evaporation of Ester-Type Lubricants," ASLE Trans., 22, 4, pp 395-401 (1978)
- 54. Coates, J.P. and Setti, L.C., "Infrared Spectroscopic Methods for the Study of Lubricant Oxidation Products," ASLE Trans., 29, 3, pp 394-401 (1985).

- 55. Cuellar, J.P., "Degradation Studies of Trimethylolpropane Triheptanoate Report No. AFAPL-TR-77-87, DDC No. AD A056825, December 1977.
- 56. Cuellar, J.P., "Degradation Studies of Di(2-ethylhexyl) Adipate," Report No. AFAPL-TR-78-46, June 1978.
- 57. Kato, T. and Kawamura, M., "Oil Maintenance Tester: A New Device to Detect the Degradation Level of Oil," Lubri. Eng., 42, 11, pp 694-699 (1986).
- 58. Rao, N., Maciejewski, A., Senholzi P., "Precision Measurement of Gear Lubricant Load-Carrying Capacity (Feasibility Study)", Report No. AFWAL, TR-81-2107, DTIC AD A110289, November 1981
- 59. Niemann, G., et al., "Scuffing Tests on Gear Oils in the FZG Apparatus," ASLE Trans. 4, pp 71-86 (1961).
- 60. Benzing, R., WADC Technical Report 59-244, Vol. 1. (1959).
- 61. IP Gear Lubricant Rig Tests Sub-Panel, "An Investigation into the Correlation Between the IAE and FZG Gear Type Lubricant Test Machine "J. Ins. Petrol., 52, 507, p 98 (1966).
- 62. Terauchi, Y., Lubr. Eng. 40, 1, p 13 (1984).
- 63. Voitik, R., Heerdt, L., "Wear and Friction Evaluation of Gear Lubricants by Bench Test," Lubr. Eng. 40, 12, p 719 (1984).
- 64. Begelinger, A. and de Gee, A.W.J., "Boundary Lubrication of Sliding Concentrated Steel Contacts," Wear, 22, pp 337-357 (1972).
- 65. Begelinger, A. and de Gee, A.W.J., "Thin Film Lubrication of Sliding Point Contacts of AISI 52100 Steel," Wear, 28, pp 103-114 (1974).
- 66. Begelinger, A. and de Gee, A.W.J., "Lubrication of Sliding Point Contacts of AISI 52100 Steel the Influence of Curvature," Wear, 36, pp 7-11 (1976).
- 67. Begelinger, A. and de Gee, A.W.J., "On the Mechanism of Lubricant Film Failure in Sliding Concentrated Steel Contacts," Journal of Lubrication Technology, pp 575-579 (Oct 1976).
- 68. Czichos, H., "Failure Criteria in Thin Film Lubrication The Concept of a Failure Surface," Tribology, pp 13-20 (Feb 1974).
- 69. Czichos, H., "Influence of Asperity Contact Conditions on the Failure of Sliding Elastohydrodynamic Contacts," Wear, 41, pp 1-4 (1977).
- 70. Salomon, G., "Failure Criteria in Thin Film Lubrication The IRG Program," Wear, 36, pp 1-6 (1976).
- 71. Smith, F.W., "Lubricant Behavior in Concentrated Contact Systems -

- The Castor Oil-Steel System, Wear, 2, pp 250-263 (1958/1959).
- 72. Shigley, J. and Mitchell, L., "Mechanical Engineering Design," McGraw-Hill Fourth ed., p 85 (1983).
- 73. Fein, R.S., "Transition Temperatures with Four Ball Machine," ASLE Trans., 3, pp 34-39 (1960).
- 74. Kauffman, R.E., and Rhine, W.E., "Assessment of Remaining Lubricant Life," Report No. AFWAL-TR-86-2024, November 1986.
- 75. Anderson, J.E., et al., "Inexpensive Microprocessor-Based Technology," American Laboratory, 13, 2, p 21 (1981).
- 76. Anderson, J.E. and Bond, A.M., "Microprocessor-Controlled Instrument for the Simultaneous Generation of Square Wave, Alternating Current Direct Current, and Pulse Polarograms," Anal. Chem. 55, 12, p 1934 (1983).
- 77. Myers, R.L. and Shain, I., "A Solid-State Signal Generator for Electroanalytical Experiments," Chem. Instrumentation, 2, 2, p 203 (1969).
- 78. Patterson, P.L. and Howe, R.L., "Thermionic nitrogen-phosphorous detection with an alkali-ceramic bead," J. Chromatogr., 134, pp 57-64 (1977).
- 79. Patterson, P.L., "Selective Responses of a Flameless Thermionic Detector," J. Chromatogr., 167, pp 381-97 (1978).