Examen partiel

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés

Le 28 février 2012

Documentation permise : 1 feuille de notes recto verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (10h30 – 12h20).

1. (40 points) Questions à courts développements

Répondez aux questions suivantes :

- (a) Donnez l'impédance d'entrée Z_{II} , du circuit montré à la Figure **1** pour $Z_I = Z_4 = 1/(sC)$ et $Z_2 = Z_3 = Z_5 = R$.
- (b) Nommer 2 avantages et 1 inconvénient des filtres actifs.
- (c) Donnez le produit gain-bande passante de l'ampli-op correspondant à la courbe montrée à la Figure 2.
- (d) La Figure **3** présente la réponse temporelle grand signal d'un ampli-op à un échelon de tension de 5V. Quel est le slew rate de cet ampli-op?
- (e) Dessinez le schéma d'un circuit dont l'impédance d'entrée est $Z_{in} = -4 / (sC)$
- (f) Donnez l'ordre et la valeur des zéros de la fonction de transfert suivante :

$$T(s) = \frac{Ks(s^2 + \omega_{11}^2)}{s^5 + b_4 s^4 + b_3 s^3 + b_2 s^2 + b_1 s + b_0}$$

- (g) La Figure 4 présente le schéma d'un amplificateur différentiel pour lequel $R_1=R_3=10 \text{ k}\Omega$, et $R_2=R_4=100 \text{ k}\Omega$. Calculez le taux de rejet du mode commun de cet amplificateur, sachant que le mode commun est atténué de 26 dB à la sortie.
- (h) Calculer l'ordre minimum de la réponse Butterworth rencontrant les spécifications suivantes : $\omega_p = 2\pi \times 2 \text{ kHz}$, $\omega_s = 2\pi \times 20 \text{ kHz}$, $A_{max} = 0.1 \text{ dB}$, $A_{min} = 80 \text{ dB}$.

1

Figure 1.

Figure 2.

Figure 3.

Figure 4.

2. (30 points) Analyse de circuits

Soit les circuits suivants :

Figure 5.

Répondez aux questions suivantes en prenant soin d'expliquer toutes les étapes de vos démarches.

- (a) Pour ces deux circuits, montrez que le courant i_O est indépendant de la valeur de Z_L . Pour ce faire, exprimez i_O en fonction de $v_1 v_2$.
- (b) Donnez l'expression de $v_{OI} v_{O2}$ en fonction de $v_I v_2$, R et de Z_L pour le circuit de la Figure **5**a.

Note : considérez les amplis-op idéaux $(A_{\theta I} = A_{\theta 2} = \infty \text{ et } Z_{in} = \infty).$

- 3. (30 points) *Conception d'un filtre passe-bande cascadé*Concevez un filtre passe-bande constitué de deux filtres actifs cascadés ayant les spécifications suivantes :
 - Filtre passe-haut : Une section passe-haut d'ordre 3 constituée d'une section d'ordre 1 cascadée avec une section d'ordre 2 de type Sallen-Key. Le filtre passe-haut complet possède une fréquence de coupure ω_{0hp} de 2π ×1 kHz. La section d'ordre 1 possède un gain haute fréquence de 1 V/V (de signe arbitraire), alors que la section d'ordre 2 possède un gain haute fréquence de 2 V/V.
 - Filtre passe-bas : Une section passe-bas d'ordre 2 réalisée à l'aide d'un filtre RLC actif à inductance simulée. Ce filtre possède une fréquence de coupure ω_{0lp} de 2π ×50 kHz, un gain total en bande unitaire et une réponse sans dépassement (utilisez Q = 0.707).
 - a) Donnez la fonction de transfert totale du filtre, calculez les valeurs de tous ses éléments passifs et dessinez son schéma complet.
 - b) Quel doit être le produit gain-bande passante (ω_t) minium de l'ampli-op utilisé pour réaliser la section passe-haut d'ordre 1? Indice : considérez que $\omega_{0hp} \ll \omega_{0lp}$. Laissez-toutes les traces de votre démarche.

Bonne chance et bonne semaine de lecture!

Benoit Gosselin

Aide mémoire

Équations pour la conception de filtres :

Fonctions d'ordre 1

Fonctions d'ordre 2

