度量空间

ZetaWang

October 30, 2024

Abstract

本文旨在通过介绍度量空间及其拓扑性质,为将来拓扑学的学习进行铺 垫。

Contents

 1 度量空间的介绍
 1

 2 度量空间的拓扑结构
 2

1 度量空间的介绍

给定一个集合 X, 把他的元素称为点 (point), 如果存在一个映射 $d: X \times X \to \mathbb{R}$, 对任意 $x,y,z \in X$,满足:

- 1. $d(x,y) \ge 0$, 且 d(x,y) = 0 当且仅当 x = y;
- 2. d(x,y) = d(y,x);
- 3. $d(x,y) + d(y,z) \ge d(x,z)$.

则称 X 为度量空间 (metric space),d 为距离 (distance).

以下为一些度量空间的例子:

例 1 验证欧氏空间及其度量构成一个度量空间。(即 $d(x,y) = (\sum_{k=1}^n (x_k - y_k)^2)^{\frac{1}{2}}$)

Proof. 1. $d(x,y) = (\sum_{k=1}^{n} (x_k - y_k)^2)^{\frac{1}{2}} \ge 0$, $\exists d(x,y) = 0 \preceq \exists \exists \forall x = y;$ 2. d(x,y) = d(y,x); 3. 由 Minkowski 不等式,

$$= \left(\sum_{k=1}^{n} (x_k - y_k)^2\right)^{\frac{1}{2}} + \left(\sum_{k=1}^{n} (y_k - z_k)^2\right)^{\frac{1}{2}}$$

$$\geq \left(\sum_{k=1}^{n} (x_k - z_k)^2\right)^{\frac{1}{2}}$$

$$= d(x, z)$$

因此, 欧氏空间及其度量构成一个度量空间。

例 2 设 E 是一个非空集合,对任意的 $x,y \in E$, 定义

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

证明 $d \in E$ 上的度量。拥有这种度量的集合 E 称为离散度量空间 (discrete metric space).

2 度量空间的拓扑结构

参考文献