Fundamental Network Concepts

Building Blocks of Network Analysis

SMM638 Network Analytics

What is a Graph?

Mathematical Foundation:

A graph G is defined as: $G = \{V, E\}$

Where:

In Plain Language:

- Vertices (Nodes): The entities or objects
- Edges (Links/Ties): The connections or relationships
- Graph: The complete structure of nodes and edges

Vertices (Nodes)

Vertices represent the fundamental units in a network

Examples across domains:

- Social networks: People, organizations, groups
- Biological networks: Proteins, genes, organisms
- Technological networks: Computers, routers, devices
- Economic networks: Companies, banks, countries

Node Attributes:

- Demographic characteristics (age, location)
- Type or category (customer, supplier, partner)
- Performance metrics (revenue, citations, activity)
- Temporal information (founding date, tenure)

Edges (Links/Ties)

Edges encode relationships between nodes

Key Properties:

- 1. Direction
 - Directed: One-way relationships $(A \rightarrow B)$
 - Undirected: Mutual relationships (A B)
- 2. Weight
 - Weighted: Strength or frequency of connection
 - Unweighted: Binary presence/absence
- 3. Sign
 - Positive: Friendship, cooperation, support
 - Negative: Conflict, competition, animosity
- 4. Type
 - Multiple relationship types (multiplex networks)

Network Relationships

What Constitutes a Connection?

The definition of a relationship determines:

- What edges mean and how to interpret them
- Whether relationships are symmetric or asymmetric
- How to measure or identify connections
- The substantive interpretation of patterns

Examples:

- Social: Friendship, advice-seeking, collaboration
- Economic: Trade, investment, supply relationships
- Information: Email exchange, citations, hyperlinks
- Biological: Protein interactions, predator-prey

One-Mode Networks

Unipartite Networks: One Type of Node

All nodes are of the same type; connections occur between similar entities

Common Examples:

• Friendship networks: People People

• Citation networks: Papers \rightarrow Papers

• Trade networks: Countries Countries

• Collaboration networks: Scientists Scientists

Characteristics:

- Adjacency matrix is square $(n \times n)$
- Can calculate standard network metrics
- Direct interpretation of connection patterns

Adjacency Matrix:

Node	A	В	\mathbf{C}	D	Е
$\overline{\mathbf{A}}$	0	1	1	0	0
\mathbf{B}	1	0	1	1	0
${f C}$	1	1	0	0	1
D	0	1	0	0	1
${f E}$	0	0	1	1	0

Two-Mode Networks

Bipartite Networks: Two Types of Nodes

Edges only connect nodes of different types

Common Examples:

• Actor-Movie: Actors Movies

• Author-Paper: Authors Publications

Customer-Product: Buyers Items purchased
Student-Course: Students Classes enrolled

Analytical Approaches:

- 1. Analyze the bipartite structure directly
- 2. Project onto one-mode networks (actors actors who shared movies)
- 3. Examine affiliation patterns

Incidence Matrix:

Actor	M1	M2	М3	M4
A1	1	1	0	0
$\mathbf{A2}$	1	0	1	0
A3	0	1	1	1

Directed Networks

Asymmetric Relationships with Direction

Edges have a source and target: $A \to B$

Key Examples:

• Email networks: Sender \rightarrow Receiver

• Citation networks: Citing paper \rightarrow Cited paper

• Food webs: $Predator \rightarrow Prey$

Important Distinctions:

• In-degree: Incoming connections (popularity, citations received)

- Out-degree: Outgoing connections (activity, citations made)
- Reciprocity: Do ties go both ways?

Adjacency Matrix:

Node	A	В	С	D	E
$\overline{\mathbf{A}}$	0	1	1	0	0
\mathbf{B}	0	0	0	1	0
${f C}$	1	0	0	0	0
\mathbf{D}	0	0	0	0	1
\mathbf{E}	0	0	1	0	0

Undirected Networks

Symmetric Relationships Without Direction

Edges represent mutual connections: A-B

Key Examples:

• Friendship networks: Mutual friendships

• Co-authorship: Joint publications

• Protein interactions: Molecular binding

Characteristics:

- Connection implies reciprocal relationship
- Single degree measure (not in/out)
- Simpler mathematical properties
- Adjacency matrix is symmetric

Adjacency Matrix:

Node	A	В	С	D	E
$\overline{\mathbf{A}}$	0	1	1	0	0
${f B}$	1	0	1	1	0
\mathbf{C}	1	1	0	0	1
D	0	1	0	0	1
${f E}$	0	0	1	1	0

Signed Networks

Edges Carry Positive or Negative Valence

Relationships can be friendly or hostile

Positive Edges (+):

- Friendship, alliance, cooperation
- Support, endorsement, trust

Negative Edges (-):

- Animosity, conflict, competition
- Opposition, distrust, rivalry

Applications:

- Social balance theory (enemy of my enemy is my friend)
- Coalition formation in politics
- Opinion polarization dynamics
- Organizational conflict analysis

Signed Adjacency Matrix:

Node	A	В	С	D	Е
\mathbf{A}	0	1	-1	0	0
${f B}$	1	0	0	1	0
${f C}$	-1	0	0	-1	0
\mathbf{D}	0	1	-1	0	1
${f E}$	0	0	0	1	0

Weighted Networks

Edge Strength Varies Continuously

Weights represent connection intensity, frequency, or capacity

Examples:

- Communication: Number of messages exchanged
- Transportation: Traffic volume, distance, capacity
- Financial: Transaction amounts, investment size
- Neural: Synaptic strength between neurons

Analytical Implications:

- Can identify strong vs. weak ties
- Weighted centrality measures
- Flow and capacity analysis
- $\bullet\,$ More nuanced than binary networks

Weighted Adjacency Matrix:

Node	A	В	С	D	E
$\overline{\mathbf{A}}$	0	5	2	0	0
${f B}$	5	0	0	8	0
\mathbf{C}	2	0	0	3	0
\mathbf{D}	0	8	3	0	6
${f E}$	0	0	0	6	0

Unweighted Networks

Binary: Connection Present or Absent

All edges treated equally (0 or 1)

Characteristics:

- Simpler to collect and analyze
- Focus on topology, not intensity
- May lose important information
- Standard network metrics apply directly

When Appropriate:

- Relationship strength unclear or unmeasurable
- Presence/absence is the key question
- Simplification aids interpretation
- Preliminary exploratory analysis

Adjacency Matrix:

Node	A	В	С	D	E
$\overline{\mathbf{A}}$	0	1	1	0	0
\mathbf{B}	1	0	1	1	0
${f C}$	1	1	0	0	1
\mathbf{D}	0	1	0	0	1
${f E}$	0	0	1	1	0

Dyads

The Simplest Network Substructure

A dyad consists of two nodes and potential edge(s) between them

Types in Directed Networks:

- 1. Null dyad: No connection (0 edges)
- 2. **Asymmetric dyad**: One-way connection (1 edge)
- 3. Mutual/Reciprocal dyad: Two-way connection (2 edges)

Analytical Value:

- Foundation for reciprocity analysis
- Building block of larger structures
- Pairwise relationship dynamics
- Simplest unit of social interaction

Adjacency Matrix (Binary, Dyad Highlighted):

Node

A

В

 \mathbf{C}

D

Е

A

В

С

D

 \mathbf{E}

00110

Triads

Three Nodes and Their Connections

Triads are fundamental for understanding:

Key Concepts:

- Transitivity: "Friend of friend is friend" $(A \rightarrow B, B \rightarrow C, A \rightarrow C)$
- Structural balance: Stability of positive/negative relationships
- Clustering: Local cohesion patterns
- Network motifs: Recurring small-scale patterns

Example Patterns:

- Open triad: $A \rightarrow B$, $B \rightarrow C$ (no $A \rightarrow C$)
- Closed triad: $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$ (triangle)
- Balanced triad: Signs follow balance theory rules

We'll explore these deeply in Weeks 4-5

Adjacency Matrix (Binary, Triad Highlighted):

Node

A

В

 \mathbf{C}

D

 \mathbf{E}

A

0

1

В

 \mathbf{C}

D

Е

Key Takeaways

Caution

Core Building Blocks:

- 1. Networks = Nodes + Edges + Relationships
- 2. Direction matters: Symmetric vs. Asymmetric
- 3. Weights capture relationship intensity
- 4. Signs represent positive/negative ties
- 5. Mode determines what connects to what

? Tip

Analytical Foundation:

- Choice of representation affects analysis
- Different network types require different methods
- Substructures (dyads, triads) reveal patterns
- Complex networks require sophisticated approaches

Next: We'll use these concepts to measure and analyze real networks