

Estudo do átomo de carbono: características, hibridização e tipos de ligações

Vanize Caldeira da Costa

Uruguaiana, 15 de março de 2024

6 Carbono 12.0107

Forma <u>quatro</u> ligações químicas

Capaz de formar cadeias longas e estáveis com átomos ligados por ligações simples, duplas ou triplas

4 ligações simples

1 ligação dupla e 2 ligações simples

1 ligação tripla e 1 ligação simples Estrutura de Lewis

Ligação covalente Interação de orbitais atômicos incompletos

Fonte: USBERCO, J.; SALVADOR, E. Química — 5. ed. reform. São Paulo : Saraiva, 2002.

Ligação covalente

Quando entre dois átomos ocorrer <u>mais de uma ligação</u>, a primeira será sempre <u>uma ligação sigma</u> e as <u>demais corresponderão a ligações pi</u>

Ligação pi (π)

Interpenetração de orbitais "p" contidos em eixos paralelos (interação lateral)

Fonte: USBERCO, J.; SALVADOR, E. Química — 5. ed. reform. São Paulo : Saraiva, 2002.

Ligação covalente

gás nitrogênio (N₂)

$$N \equiv N \longrightarrow \begin{cases} 1\sigma_{p-p} \\ 2\pi_{p-p} \end{cases}$$

$$7N-1s^22s^2 2p^3$$

$$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$$

Resumo

$$A - B$$
 ligação σ ligação simples

—
$$B$$
 ligação σ A $=$ B 1 ligação σ ação simples ligação dupla

$$A \equiv B^{1 ext{ ligação } \sigma}$$
 2 ligações π

Quais os tipos de ligações covalentes presentes nas moléculas mostradas abaixo?

No estado fundamental, o carbono possui somente 2 elétrons desemparelhados, o que sugere que ele poderia fazer apenas duas ligações

O número de elétrons desemparelhados (orbitais incompletos) indica a quantidade de ligações covalentes que podem ser realizadas

Possível explicar a tetravalência do carbono

Não explica a geometria das compostos de carbono

X Ângulo de ligação: 109°28';

Todas as ligações têm o mesmo comprimento.

Metano

Ângulo entre os orbitais p é de 90°

Comprimentos das ligações C-H não seriam todos iguais, pois o orbital 2s possui raio diferente dos orbitais 2p

Orbitais atômicos do carbono

Hibridização sp³

- O que acontece, na verdade, é a combinação dos orbitais s e p, dando origem a quatro novos orbitais denominados híbridos sp³;
- Esses orbitais são todos iguais, e o ângulo entre eles é de 109,47°.

Todo o carbono que se encontrar ligado a quatro outros átomos ou grupos de átomos apenas por meio de ligações simples, terá hibridação *sp*³, ou seja, geometria tetraédrica

Hibridização sp²

Em muitos compostos orgânicos importantes os átomos de carbono compartilham mais que dois elétrons com outro átomo

Como existe uma ligação π, um dos orbitais p do carbono não participará da hibridização

Interação frontal com outros orbitais forma ligações simples (σ - sigma)

Os três orbitais *sp*², resultantes da hibridização, são direcionados para os cantos de um triângulo regular (com ângulos de 120° entre si)

Os orbitais *p* não-hibridizados se aproximam com uma geometria correta para que ocorra uma sobreposição lateral, originando a formação de um ligação pi (π)

Os grupos unidos pelas ligações duplas não giram livremente em torno da ligação

Hibridização sp

O carbono também pode formar uma ligação *tripla* pelo compartilhamento de seis elétrons

Para que ocorram as duas ligações pi, será necessário que dois orbitais p do carbono não participem da hibridização

Hibridização sp

Geometria linear

Dois orbitais p do carbono (não hibridizados) são utilizados para formar as duas ligações π

A hibridização sp não se restringe à formação da ligação tripla carbono-carbono

Todo o carbono que se liga a outros dois átomos de carbono por meio de duas ligações duplas também é sp

Resumo - hibridização

Ligações no C	Tipos de ligação	Hibridização	Ângulos adjacentes	Geometria
-c-	4 σ	sp ³	109° 28'	tetraédrica
c=	3 σ 1 π	sp ²	120°	trigonal
- C≡ = C=	2 σ 2 π	sp	180°	linear

Fonte: USBERCO, J.; SALVADOR, E. Química — 5. ed. reform. São Paulo : Saraiva, 2002.