## CHAPTER 9 IDEAL AND REAL SOLUTIONS

- Raoult's law: ideal solution
- Henry's law: real solution
- Activity: correlation with chemical potential and chemical equilibrium

### **Ideal Solution**

 Raoult's law: The partial pressure (P<sub>i</sub>) of each component in a solution is directly proportional to the vapor pressure of the corresponding pure substance (P<sub>i</sub>\*) and that the proportionality constant is the mole fraction (x<sub>i</sub>) of the component in the liquid

$$P_i = x_i P_i^* \quad i = 1, 2$$

- Ideal solution
  - any liquid that obeys Raoult's law
  - In a binary liquid, A-A, A-B, and B-B interactions are equally strong



### Chemical Potential of a Component in the Gas and Solution Phases

· If the liquid and vapor phases of a solution are in equilibrium

$$\mu_{i}^{solution} = \mu_{i}^{vapor}$$

$$\mu_{i}^{vapor} = \mu_{i}^{\circ} + RT \ln \frac{P_{i}}{P^{\circ}}$$

$$\mu_{i}^{solution} = \mu_{i}^{\circ} + RT \ln \frac{P_{i}}{P^{\circ}}$$





### Example 9.2

• An ideal solution is made from 5 mole of benzene and 3.25 mole of toluene. (a) Calculate  $\Delta G_{\text{mixing}}$  and  $\Delta S_{\text{mixing}}$  at 298 K and 1 bar. (b) Is mixing a spontaneous process?

$$\Delta G_{mixing} = nRT \sum_{i} x_i ln x_i$$
  
$$\Delta S_{mixing} = -nR \sum_{i} x_i ln x_i$$

### Ideal Solution Model for Binary Solutions

· Both components obey Rault's law

$$P_{total} = P_1 + P_2 = x_1 P_1^* + (1 - x_1) P_2^* = P_2^* + (P_1^* - P_2^*) x_1$$

Mole fractions in the vapor phase (y<sub>i</sub>)

$$y_1 = \frac{P_1}{P_{total}} = \frac{x_1 P_1^*}{P_2^* + (P_1^* - P_2^*) x_1}$$



Benzene + DCE

Ideal Solution
$$y_{1} = \frac{P_{1}}{P_{total}} = \frac{x_{1}P_{1}^{*}}{P_{2}^{*} + (P_{1}^{*} - P_{2}^{*})x_{1}}$$

$$x_{1} = \frac{y_{1}P_{2}^{*}}{P_{1}^{*} + (P_{2}^{*} - P_{1}^{*})y_{1}}$$

$$P_{total} = \frac{P_{1}^{*}P_{2}^{*}}{P_{1}^{*} + (P_{2}^{*} - P_{1}^{*})y_{1}}$$

$$y_{1} = \frac{P_{1}^{*}P_{total} - P_{1}^{*}P_{2}^{*}}{P_{total}(P_{1}^{*} - P_{2}^{*})}$$
Mole fraction in the vapor phase



# Average Composition (z) • $z_{benzene} = \frac{n_{benzene,liquid} + n_{benzene,vapor}}{n_{benzene,liquid} + n_{benzene,vapor} + n_{toluene,vapor} + n_{toluene,liquid}} = \frac{n_{benzene}}{n_{total}}$ • In the liquid phase, $z_{benzene} = x_{benzene}$ • In the vapor phase, $z_{benzene} = y_{benzene}$



### Example 9.3

- An ideal solution of 5 mole of benzene and 3.25 mole of toluene is placed in a piston and cylinder assembly. At 298 K, the vapor pressure of the pure substances are 96.4 torr for benzene and 28.9 torr for toluene.
  - a. The pressure above this solution is reduced from 760 torr. At what pressure does the vapor phase first appear?
  - b. What is the composition of the vapor at this point?



### Lever Rule

 To calculate the relative amount of material in each of the two phases in a coexistence region

$$lb = Z_B - x_B = \frac{n_B^{tot}}{n^{tot}} - \frac{n_B^{liq}}{n_{liq}^{tot}}$$

$$bv = y_B - Z_B = \frac{n_B^{vapor}}{n_{vapor}^{tot}} - \frac{n_B^{tot}}{n^{tot}}$$



Liquid + vapor

$$lb \ n_{liq}^{tot} - bv \ n_{vapor}^{tot} = \frac{n_B^{tot}}{n^{tot}} \left( n_{liq}^{tot} + n_{vapor}^{tot} \right) - \left( n_B^{liq} + n_B^{vapor} \right) = n_B^{tot} - n_B^{tot} = 0$$

We conclude that 
$$\frac{n_{liq}^{tot}}{n_{vap}^{tot}} = \frac{b\nu}{lb} \left[ n_{liq}^{tot}(Z_B - x_B) = n_{vapor}^{tot}(y_B - Z_B) \right]$$



### Gibbs-Duhem Equation

 The chemical potentials of the two components in a binary solution is not independent

$$dG = -S \, dT \, + \, V \, dP \, + \, \sum_{i} \mu_{i} dn_{i}$$
 
$$\text{const T and P}$$
 
$$\int_{0}^{G} dG' = \mu_{1} \int_{0}^{n_{1}} dn'_{1} + \mu_{2} \int_{0}^{n_{2}} dn'_{2} \text{ or }$$
 
$$G = \mu_{1} n_{1} + \mu_{2} n_{2}$$

$$d\mu_2 = -\frac{n_1 d\mu_1}{n_2}$$

$$dG = \mu_1 dn_1 + \mu_2 dn_2 + n_1 d\mu_1 + n_2 d\mu_2$$

$$n_1 d\mu_1 + n_2 d\mu_2 = 0 \text{ or } x_1 d\mu_1 + x_2 d\mu_2 = 0$$

### **Colligative Properties**

- Freezing point depression (with nonvolatile solute)
- · Boiling point elevation





## Freezing Point Depression $\mu_{solution} = \mu_{solid}^* \qquad \ln x_{solvent} = \frac{\mu_{solid}^* - \mu_{solvent}^*}{RT} \qquad \ln x_{solvent} = \frac{-\Delta G_{fusion}}{RT}$ $\mu_{solvent}^* + RT \ln x_{solvent} = \mu_{solid}^*$ $\left(\frac{\partial \ln x_{solvent}}{\partial x_{solvent}}\right)_P = \frac{1}{x_{solvent}} = -\frac{1}{R} \left(\frac{\partial \frac{\Delta G_{fusion}}{T}}{\partial T}\right)_P \left(\frac{\partial T}{\partial x_{solvent}}\right)_P$ $\frac{1}{x_{solvent}} = \frac{\Delta H_{fusion}}{RT^2} \left(\frac{\partial T}{\partial x_{solvent}}\right)_P \text{ or } \Delta \frac{\partial T}{\partial x_{solvent}} = \frac{\Delta H_{fusion}}{RT} \left(\frac{\partial T}{\partial x_{solvent}}\right)_P$ $\frac{dx_{solvent}}{x_{solvent}} = d \ln x_{solvent} = \frac{\Delta H_{fusion}}{R} \frac{dT}{T^2} \left(\text{constant } P\right) \qquad \int_{1}^{x_{solvent}} \frac{dx}{x} = \int_{T_{fusion}}^{T} \frac{\Delta H_{fusion}}{R} \frac{dT'}{T'^2}$ $\frac{1}{T} = \frac{1}{T_{fusion}} - \frac{R \ln x_{solvent}}{\Delta H_{fusion}}$ $\Delta T_f = -\frac{RM_{solvent}T_{fusion}^2}{\Delta H_{fusion}} m_{solute} = -K_f m_{solute}$

### **Boiling Point Elevation**

$$\left(\frac{\partial T}{\partial m_{solute}}\right)_{P,\;m\rightarrow0}=\frac{RM_{solvent}\,T_{vaporization}^{2}}{\Delta H_{vaporization}}$$

$$\Delta T_b = \frac{RM_{solvent} T_{vaporization}^2}{\Delta H_{vaporization}} m_{solute} = K_b m_{solute}$$

| <b>TABLE 9.2</b> Freezing Point Depression and Boiling Point Elevation Constants |                                   |                              |                                  |                              |
|----------------------------------------------------------------------------------|-----------------------------------|------------------------------|----------------------------------|------------------------------|
| Substance                                                                        | Standard<br>Freezing<br>Point (K) | $K_f(K \text{ kg mol}^{-1})$ | Standard<br>Boiling<br>Point (K) | $K_b(K \text{ kg mol}^{-1})$ |
| Acetic acid                                                                      | 289.6                             | 3.59                         | 391.2                            | 3.08                         |
| Benzene                                                                          | 278.6                             | 5.12                         | 353.3                            | 2.53                         |
| Camphor                                                                          | 449                               | 40.                          | 482.3                            | 5.95                         |
| Carbon disulfide                                                                 | 161                               | 3.8                          | 319.2                            | 2.40                         |
| Carbon tetrachloride                                                             | 250.3                             | 30.                          | 349.8                            | 4.95                         |
| Cyclohexane                                                                      | 279.6                             | 20.0                         | 353.9                            | 2.79                         |
| Ethanol                                                                          | 158.8                             | 2.0                          | 351.5                            | 1.07                         |
| Phenol                                                                           | 314                               | 7.27                         | 455.0                            | 3.04                         |
| Water                                                                            | 273.15                            | 1.86                         | 373.15                           | 0.51                         |

Osmotic Pressure (
$$\pi$$
)

$$\mu_{solvent}^{solution}(T, P + \pi, x_{solvent}) = \mu_{solvent}^{*}(T, P)$$

$$\mu_{solvent}^{solution}(T, P + \pi, x_{solvent}) = \mu_{solvent}^{*}(T, P + \pi) + RT \ln x_{solvent}$$

$$\mu_{solvent}^{*}(T, P + \pi, x_{solvent}) - \mu_{solvent}^{*}(T, P) = \int_{P}^{P + \pi} V_{m}^{*} dP'$$

$$\pi V_{m}^{*} + RT \ln x_{solvent} = 0$$

$$\ln x_{solvent} = \ln(1 - x_{solute}) \approx -x_{solute} = -\frac{n_{solute}}{n_{solvent}} \approx -\frac{n_{solute}}{n_{solvent}}$$
Semipermeable membrane



### **Real Solution**

- Deviation from Raoult's law
- Real solution: A-A, B-B and A-B interactions are distinctly different
- $\Delta G_{mixing} < 0$   $\Delta S_{mixing} > 0$   $\Delta V_{mixing} \neq 0$   $\Delta H_{mixing} \neq 0$



### **Real Solution**

•  $\Delta V_{mixing}$  and  $\Delta H_{mixing}$  can be positive or negative

$$V_m^{ideal} = x_A V_{m,A}^* + (1 - x_A) V_{m,B}^*$$

$$\Delta V_m = V_{m,real} - V_{m,ideal}$$

- Partial molar quantity (any extensive variable, U, H, S, A, G, etc)
  - partial molar volume

$$\overline{V}_1(P, T, n_1, n_2) = \left(\frac{\partial V}{\partial n_1}\right)_{P, T, n_2}$$

$$V = n_1 \overline{V}_1(P, T, n_1, n_2) + n_2 \overline{V}_2(P, T, n_1, n_2)$$



### Gibbs-Duhem Equation

· Applicable to both real and ideal solutions

$$x_1 d\overline{V}_1 + x_2 d\overline{V}_2 = 0$$
 or  $d\overline{V}_1 = -\frac{x_2}{x_1} d\overline{V}_2$ 



### Ideal Dilute Solution

- In a real solution,  $\mu_i^{solution} = \mu_i^* + RT \ln \frac{P_i}{P_i^*}$  just like in an ideal solution, but  $P_i \neq x_i P_i^*$
- Activity  $a_{solvent} = \frac{P_{solvent}}{P_{solvent}^*}$   $\mu_i^{solution} = \mu_i^* + RT \ln a_i$

$$\mu_i^{solution} = \mu_i^* + RT \ln a_i$$

· Activity coefficient: quantify the degree to which the solution is nonideal (similar to fugacity plays in real gas)

$$\gamma_{solvent} = \frac{a_{solvent}}{x_{solvent}}$$



| Substance       | $k_H$ (Torr)         | $k_H$ (bar)          |
|-----------------|----------------------|----------------------|
| Ar              | $2.80 \times 10^{7}$ | $3.72 \times 10^{4}$ |
| $C_2H_6$        | $2.30 \times 10^{7}$ | $3.06 \times 10^4$   |
| CH <sub>4</sub> | $3.07 \times 10^{7}$ | $4.08 \times 10^{4}$ |
| СО              | $4.40 \times 10^{6}$ | $5.84 \times 10^{3}$ |
| CO <sub>2</sub> | $1.24 \times 10^{6}$ | $1.65 \times 10^{3}$ |
| $H_2S$          | $4.27 \times 10^{5}$ | $5.68 \times 10^{2}$ |
| Не              | $1.12 \times 10^{8}$ | $1.49 \times 10^{6}$ |
| $N_2$           | $6.80 \times 10^{7}$ | $9.04 \times 10^{4}$ |
| $O_2$           | $3.27 \times 10^{7}$ | $4.95 \times 10^{4}$ |

### **Activity and Activity Coefficient**

- Raoult's law standard state  $a_i = \frac{P_i}{P_i^*}$  and  $\gamma_i = \frac{a_i}{x_i}$
- · Henry's law standard state

$$\begin{split} &\mu_{solute}^{solution} = \mu_{solute}^* + RT \ln \frac{k_H^{solute}}{P_{solute}^*} = \mu_{solute}^{*H} + RT \ln x_{solute} \text{ as } x_{solute} \rightarrow 0 \\ &\mu_{solute}^{*H} = \mu_{solute}^* + RT \ln \frac{k_S^{solute}}{P_{solute}^*} \\ &a_i = \frac{P_i^H}{k_i^H} \text{ and } \gamma_i = \frac{a_i}{x_i} \end{split}$$

### Colligative Properties of Ideal Dilute Solution

A useful way to determine the activity coefficient

$$\Delta T_f = -K_f \gamma m_{solute}$$

$$\Delta T_b = K_b \gamma m_{solute}$$

$$\pi = \gamma c_{solute} RT$$

 Example 9.11: in 500 g of water, 24 g of a nonvolatile solute of MW 241 g/mol is dissolved. The observed freezing point depression is 0.359 °C. Calculate the activity coefficient of the solute.

### Chemical Equilibrium in Solution

$$\left(\sum_{j} \nu_{j} \mu_{j}(\text{solution})\right)_{equilibrium} = 0$$
Henry's law standard state for each component

$$\sum_{j} \nu_{j} \mu_{j}^{*H}(\text{solution}) + RT \sum_{j} \ln(a_{i}^{eq})^{\nu_{j}} = 0$$

$$\Delta G_{reaction}^{\circ} = -RT \sum_{i} \ln (a_{i}^{eq})^{\nu_{j}} = -RT \ln K$$

$$K = \prod_{i} (a_i^{eq})^{\nu_j} = \prod_{i} (\gamma_i^{eq})^{\nu_j} \left(\frac{c_i^{eq}}{c^{\circ}}\right)^{\nu_j}$$

### Binding Equilibrium (Adsorption)

$$R + M \Longrightarrow RM \gg K = \frac{c_{RM}}{c_R \times c_M}$$

 Assuming a single binding site for the molecule, the average number of bound molecules per species

$$\overline{\nu} = \frac{c_{RM}}{c_M + c_{RM}}$$

$$\overline{\nu} = \frac{c_{RM}}{c_M + c_{RM}} \left( \frac{1/(c_R c_M)}{1/(c_R c_M)} \right) = \frac{K}{1/c_R + K} = \frac{K c_R}{1 + K c_R}$$

### Multiple Binding Sites

· Independent site binding



$$\overline{\nu}_i = \frac{K_i c_R}{1 + K_i c_R}$$

$$\overline{\nu}_i = \frac{K_i c_R}{1 + K_i c_R}$$

$$\overline{\nu} = \sum_{i=1}^N \overline{\nu}_i = \sum_{i=1}^N \frac{K_i c_R}{1 + K_i c_R}$$

$$\overline{\nu} = \sum_{i=1}^{N} \frac{K_i c_R}{1 + K_i c_R} = \frac{NK c_R}{1 + K c_R}$$

$$\overline{\nu} = \frac{NKc_R}{1 + Kc_R}$$
Scatchard equation

$$\frac{\overline{\nu}}{c_R} = -K\overline{\nu} + NK$$