Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

Разработка инструмента для построения трёхмерных изображений, ориентированного на микроконтроллеры STM32

Студент: Сапожков Андрей Максимович ИУ7-53Б

Научный руководитель: Строганов Юрий Владимирович

Цель и задачи

Цель – реализовать программный инструмент для построения моделей трехмерных объектов, ориентированный на микроконтроллеры семейства STM32.

Задачи:

- 1) анализ предметной области;
- 2) разработка алгоритмов визуализации трехмерной сцены для STM32;
- 3) реализация разработанных алгоритмов визуализации трехмерной сцены;
- 4) исследование разработанного ПО для использования на микроконтроллерах семейства STM32.

Распространённость микроконтроллеров STM32

Микроконтроллеры семейства STM32:

- низкая стоимость;
- гибкая и масштабируемая экосистема;
- большой выбор сред разработки;
- высокая производительность;
- наличие инструментов для отладки микроконтроллера.

Миландр – отечественный аналог. Применяется в следующих сферах:

- производственное оборудование;
- системы повышенной надёжности;
- измерительные приборы.

Использование компьютерной графики на микроконтроллерах

Сферы применения:

- 1. Вспомогательные инструменты производственного оборудования;
- 2. Потребительская электроника;
- 3. Устройства интернета вещей.

Недостатки существующих решений:

- 1. Отсутствие низкоуровневых оптимизаций для работы с компьютерной графикой;
- 2. Отсутствие единого стандарта разработки ПО;
- 3. Отсутствует переносимость.

Визуализация трёхмерной сцены

Алгоритмы удаления невидимых линий и поверхностей

Алгоритм	Компактность	Лаконичность	Быстродействие
Робертса	-	-	-
Варнока	+	+	+
Вейлера-Азертона	-	-	-
Z -буфер	-	+	+
Построчного сканирования, использующий Z-буфер	+	+	-
Со списком приоритетов	+	-	-
Трассировка лучей	_	_	-

Алгоритм Варнока

Алгоритмы закрашивания

Алгоритм	Компактность	Лаконичность	Быстродействие	Пример
Простая закраска	+	+	+	
Закраска по Гуро	-	-	-	
Закраска по Фонгу	-	-	-	

Структура хранения трёхмерных моделей

Название	obj	mtl	lgt
формата			
Пример	o Cube v $0.205056 -0.942683 -1.438507$ v $0.896998 -1.434100 0.372495$ v $0.861082 0.929069 -1.181257$ vn $0.8790 -0.2525 -0.4044$ vn $-0.3280 -0.9359 -0.1286$ usemtl Material s off f $1/1/1 \ 5/2/1 \ 7/3/1 \ 3/4/1$ f $4/5/2 \ 3/4/2 \ 7/6/2 \ 8/7/2$	newmtl Material Ns 359.999993 Ka 1.000000 1.000000 1.000000 Kd 0.038252 0.050353 0.800000 Ks 0.500000 0.500000 0.500000 Ke 0.000000 0.0000000 Ni 1.450000	$1000 \ 1000 \ 1000$ $-1000 \ -1000$
Описание	Задание геометрии трёхмерных моделей	Задание характеристик материалов	Задание характеристик источников света

Развёртывание программного комплекса

Измерения времени работы программы

Были произведены замеры времени при визуализации трёх моделей, содержащих 312, 1172 и 6228 полигонов. В самом начале был произведён замер времени визуализации небольшой части модели, а затем к ней постепенно добавлялись новые полигоны до тех пор, пока модель не будет полностью изображена.

Измерения объёма памяти, необходимого программе

Замеры объёма памяти, необходимого работы программы, были ДЛЯ произведены аналогично замерам времени, то есть путём исследования визуализации процесса отдельных фрагментов изображения. В процессе фрагмента визуализации каждого фиксировался максимальный задействованной оперативной памяти.

Заключение

В рамках курсового проекта был реализован программный инструмент для построения моделей трехмерных объектов, ориентированный на микроконтроллеры семейства STM32. Для достижения этой цели были решены следующие задачи:

- 1) проанализирована предметная область;
- 2) разработаны алгоритмы визуализации трехмерной сцены для STM32;
- 3) реализованы разработанные алгоритмов визуализации трехмерной сцены;
- 4) исследовано разработанное ПО для использования на микроконтроллерах семейства STM32.