TRAVAUX DIRIGÉS: Courbes et surfaces

On rapporte le plan et l'espace à leur repère orthonormé direct usuel.

Révisions de géométrie

Exercice 1: (Solution)

Soient A(1,4), B(4,1) et C(-1,-2) trois points du plan.

Calculer les coordonnées du centre de gravité G du triangle ABC, de son orthocentre H et du centre Ω du cercle circonscrit.

Exercice 2: (Solution)

- 1. Déterminer l'ensemble des points à égale distance des trois droites d'équations respectives 4x + 3y - 6 = 0, 3x - 4y - 2 = 0 et y = -6.
- 2. Quels sont les cercles tangents à ces trois droites?

Exercice 3: (Solution)

- 1. Déterminer l'intersection du plan P d'équation x-3y+3z-1=0 et de la droite D d'équations $\begin{cases} x+y-10 = 0 \\ y+z-6 = 0 \end{cases}$
- 2. Déterminer le projeté orthogonal de D sur P.

Exercice 4: (Solution)

Soit P le plan passant par le point A(1,2,-3) et dirigé par les vecteurs $\overrightarrow{u}(1,0,-1)$ et $\overrightarrow{v}(2,3,4)$ et P' le plan d'équation 5x+6y+7z+8=0.

- 1. Déterminer une équation cartésienne du plan P.
- 2. Caractériser l'ensemble $P \cap P'$.

Exercice 5: (Solution)

On considère l'ensemble

$$\mathscr{S} = \{ M(x, y, z) : x^2 + y^2 + z^2 - 2x + 2z - 2 = 0 \}.$$

- 1. Montrer que \mathscr{S} est une sphère et déterminer son centre et son ravon.
- 2. Soit \mathscr{P} le plan d'équation : 2x + y + 2z 5 = 0. Déterminer $\mathscr{S} \cap \mathscr{P}$.

Exercice 6: (Solution)

Soit D la droite passant par A(3,2,1) et dirigée par $\overrightarrow{u}(1,-1,3)$ et D' la droite passant par B(2,1,-2) et dirigée par $\overrightarrow{v}(-1,0,2)$. On pose $\overrightarrow{w}=\overrightarrow{u}\wedge\overrightarrow{v}$.

- 1. Les droites D et D' sont-elles coplanaires?
- 2. Déterminer une équation cartésienne du plan $P:(A, \overrightarrow{u}, \overrightarrow{w})$.
- 3. Déterminer l'intersection C de P et D'.
- 4. Soit Δ la droite passant par C et dirigée par \overrightarrow{w} . Montrer que Δ est perpendiculaire à D et D'.

Exercice 7: (Solution)

Soit P_m le plan d'équation $mx - y + (2 - m)z + m = 4 : (m \in \mathbb{R})$ et P' le plan d'équation x + y + z = 1. On pose $\Delta_m = P_m \cap P'$.

Montrer que P_m contient une droite fixe et que Δ_m passe par un point fixe à préciser.

Exercice 8: (Solution)

Déterminer les équations de la droite passant par A(3,2,1) parallèle au plan \mathscr{P} d'équation 2x - 5y + 4z = 1 et coupant la droite Δ : $\begin{cases} 2x - 3y + 1 = 0 \\ z - 1 = 0 \end{cases}$

Exercice 9: (Solution)

- 1. Déterminer l'angle formé par les plans $\mathscr{P}_1: 2x+4y-z+5=0$ et $\mathscr{P}_2:$ x + y + 6z - 8 = 0.
- 2. Soit A(2,1,4). Calculer la distance de A à $\mathcal{P}_1 \cap \mathcal{P}_2$.

Exercice 10: (Solution)

Déterminer la distance du point M à la droite \mathcal{D} dans les cas suivants :

1.
$$M(-1,1,3)$$
 et $\mathscr{D}: \left\{ \begin{array}{l} x = 1+2\lambda \\ y = 2-\lambda \\ z = 2+2\lambda \end{array} \right. (\lambda \in \mathbb{R}).$
2. $M(-1,1,3)$ et $\mathscr{D}: \left\{ \begin{array}{l} x+y-2z-1 = 0 \\ 2x-y+z+1 = 0 \end{array} \right..$

2.
$$M(-1,1,3)$$
 et $\mathscr{D}: \begin{cases} x+y-2z-1 &= 0 \\ 2x-y+z+1 &= 0 \end{cases}$

2 Généralités sur les surfaces

Exercice 11: (Solution)

Montrer que la courbe $\mathscr{C}: \left\{ \begin{array}{ll} x(t) & = & t^2-1 \\ y(t) & = & 2t \\ z(t) & = & t^2+t+1 \end{array} \right.$ est plane et montrer qu'il s'agit d'une parabole.

Exercice 12: (Solution)

Déterminer l'équation du plan tangent en A(1,0,0) de la nappe paramétrée par :

$$\begin{cases} x(u,v) &= u^2 + uv + v^2 \\ y(u,v) &= u + v \\ z(u,v) &= u^3 + v^3 \end{cases}$$

Exercice 13: (Solution)

Déterminer les plans tangents à la surface d'équation x-8zy=0 contenant la droite d'équations $\left\{ \begin{array}{rcl} y&=&1\\ x+4z+2&=&0 \end{array} \right.$

Exercice 14: (Solution)

Soit (\mathscr{S}) la surface d'équation $(x^2 + y^2)z = x + y$.

- 1. Déterminer la projection orthogonale de (\mathscr{S}) sur le plan (xOy).
- 2. Déterminer la projection orthogonale de (\mathcal{S}) sur le plan (xOz).

Exercice 15: (Solution)

Soit \mathscr{S} la surface d'équation $3x^2 + 4xy + 2yz + 4xz = 0$. Donner l'équation du plan tangent en un point régulier.

Exercice 16: (Solution)

Soit ${\mathscr S}$ la nappe paramétrée par :

$$\begin{cases} x(u,v) &= u+v \\ y(u,v) &= u^2+v^2 \\ z(u,v) &= u^2-v^2 \end{cases}$$

1. Pour $a \in \mathbb{R}$, déterminer l'ensemble des points M de \mathscr{S} tels que la droite (M, \overrightarrow{d}) soit tangente à \mathscr{S} en M avec $\overrightarrow{d} = (0, 1, a)$.

2. Pour $a \neq -1$ et $a \neq 0$, déterminer la projection de cet ensemble sur le plan (xOy) suivant la direction \mathbb{R} \overrightarrow{d}

Exercice 17: (Solution)

Soient \mathcal{S}_1 et \mathcal{S}_2 les surfaces d'équations $x^2 + y^2 + xy = 1$ et $y^2 + z^2 + yz = 1$.

- 1. Montrer que $\mathscr{C} = \mathscr{S}_1 \cap \mathscr{S}_2$ est la réunion de deux courbes planes.
- 2. Déterminer en tout point de $\mathscr C$ un vecteur tangent à $\mathscr C$.
- 3. Déterminer la projection orthogonale de \mathscr{C} sur (xOz).

3 Surfaces réglées

Exercice 18: (Solution)

Soit \mathscr{C} la courbe de paramétrage :

$$\begin{cases} x(t) = t \\ y(t) = t^2 \\ z(t) = t^3 \end{cases}$$

On définit la réunion $\mathscr S$ des droites tangentes $\mathscr T_t$ à la courbe $\mathscr C$ au point de paramètre M(t)=f(t).

- 1. Déterminer une paramétrage de la surface ${\mathscr S}.$
- 2. Déterminer les points stationnaires pour le paramétrage obtenu et déterminer pour les points réguliers une équation du plan tangent à la surface.
- 3. Montrer que tous les points réguliers d'une même génératrice \mathscr{T}_t ont le même plan tangent.

Exercice 19: (Solution)

1. Soit \mathscr{C} le cercle contenu dans le plan d'équation y=1 de centre A(0,1,1) et de rayon 1.

Donner une représentation paramétrique de ce cercle.

2. On note \mathscr{S}' la surface réglée engendrée par les droites joignant un point de \mathscr{C} à son projeté orthogonal sur l'axe (Oz).

Donner une équation cartésienne de la surface $\mathscr S$ réunion de $\mathscr S'$ et de l'axe (Oz).

3. Nature de la courbe intersection de ${\mathscr S}$ avec un plan parallèle à $xOz\,?$

Exercice 20: (Solution)

Soit $\mathscr S$ la surface d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ avec a, b, c > 0.

- 1. Soit $A_t(a\cos t, b\sin t, 0)$ avec avec $t \in [0; 2\pi]$. Montrer qu'il existe exactement deux droites passant par A_t et contenus dans \mathscr{S} .
 - On pourra considérer une vecteur unitaire \overrightarrow{u} dirigeant une telle droite et écrire les conditions nécessaires et suffisantes pour que $A_t + \lambda \overrightarrow{u} \subset \mathscr{S}$
- 2. Si $x,y,u,v\in\mathbb{R}$ vérifient $x^2+y^2=u^2+v^2,$ montrer qu'il existe $t\in\mathbb{R}$ tel que :

$$\begin{cases} x = u\cos t - v\sin t \\ y = u\sin t + v\cos t \end{cases}$$

3. En déduire deux familles de droites engendrant $\mathscr S$ puis montrer que toute droite incluse dans $\mathscr S$ est dans l'une des deux familles précédentes.

Exercice 21: (Solution)

Montrer que la surface d'équation cartésienne $z=x^3-3xy$ est réglée.

Exercice 22: (Solution)

Soient $\mathscr S$ la sphère de centre A=(a,0,0) et de rayon $r\in]0;a[$ et $\mathscr S'$ la surface constituée des droites horizontales tangentes à $\mathscr S$ et sécantes à (Oz). Déterminer une équation cartésienne de $\mathscr S'$.

Exercice 23: (Solution)

Soient a > 0. On considère deux droites

$$\mathscr{D}_1: \left\{ \begin{array}{lcl} y & = & a \\ z & = & a \end{array} \right. \quad \text{et } \mathscr{D}_2: \left\{ \begin{array}{lcl} x & = & a \\ z & = & 0 \end{array} \right.$$

Montrer que l'ensemble des points équidistants de \mathcal{D}_1 et \mathcal{D}_2 est une surface dont on déterminera une équation. Préciser la nature de cette surface.

Exercice 24: (Solution)

Soit Γ une courbe de l'espace et \overrightarrow{u} un vecteur non nul.

On appelle cylindre de directrice Γ et de direction \overrightarrow{u} , la surface engendrée par toutes les droites dirigées par \overrightarrow{u} et passant par un point de Γ .

Donner un paramétrage et une équation du cylindre $\mathscr S$ de section droite (=perpendiculaire à la direction \overrightarrow{u}) la courbe $\mathscr C$ définie par le paramétrage suivant

dans le repère orthonormé usuel de l'espace :

$$\begin{cases} x = t^2 \\ y = t+1 \\ z = t^2 - t + 1 \end{cases}$$

Exercice 25: (Solution)

Vérifier que la surface $\mathscr S$ d'équation x(y+z)=1 est un cylindre (au sens de l'exercice précédent) de direction $\overrightarrow{u}=(0,1,-1)$. Donner une section du cylindre et préciser sa nature.

Exercice 26: (Solution)

Soient a, b, c des réels non nuls. On considère la courbe paramétrée par :

$$\mathscr{C}: \left\{ \begin{array}{lcl} x & = & at \\ y & = & bt^3 \\ z & = & c(t^2 + 1) \end{array} \right. \quad (t \in \mathbb{R}).$$

Soit $\mathscr S$ la surface engendrée par les droites parallèles au plan (xOy) et qui rencontrent $\mathscr C$ en deux points.

- 1. Écrire un paramétrage de $\mathscr S$ puis une équation cartésienne.
- 2. Déterminer l'ensemble des points de ${\mathscr S}$ pour les quels le plan tangent contient O (on décrira cet ensemble à l'ai de d'une équation cartésienne).

Exercice 27: (Solution)

Exercice 28: (Solution)

Déterminer une équation du cylindre de direction $\overrightarrow{u}=(1,2,3)$ et de directrice la courbe d'équations cartésiennes :

$$\begin{cases} z = 0 \\ (x-2)^2 + 3y^2 = 1 \end{cases}$$

Exercice 29: (Solution)

Soit Γ une courbe de l'espace et S un point de l'espace.

On appelle cône de directrice Γ et de sommet S la surface engendrée par les droites passant par un point de Γ et le point S.

- 1. Déterminer une équation cartésienne du cône :
 - de directrice Γ: $\begin{cases} y = z \\ x^2 + y^2 2x = 0 \end{cases}$
 - de sommet S(3,0,3).
- 2. Déterminer une équation cartésienne du cône :
 - de directrice Γ : $\begin{cases} x(t) = t \\ y(t) = t^2 \\ z(t) = t+1 \end{cases}$
 - de sommet S(1,1,1).

4 Surfaces de révolution

Exercice 30: (Solution)

Déterminer une équation de la surface $\mathscr S$ engendrée par la rotation autour de l'axe (Oz) de la courbe $\mathscr C$:

$$\begin{cases} x^2 - y^2 - 4x + 2 &= 0 \\ x + z &= 1 \end{cases}$$

Exercice 31: (Solution)

Déterminer une équation de la surface de révolution $\mathscr S$ engendrée par la rotation autour de l'axe (Oz) de la courbe $\mathscr C$ paramétrée par :

$$\begin{cases} x(t) = \cos^3 t \\ y(t) = \sin^3 t \\ z(t) = \cos 2t \end{cases}$$

Exercice 32: (Solution)

Déterminer l'équation de la surface de révolution obtenue par rotation de la parabole d'équation autour de l'axe (Oz):

$$\begin{cases} x = a \\ y = 3z^2 + a^2 \end{cases}, \quad (a > 0).$$

Exercice 33: (Solution)

Montrer que la surface d'équation $(x^2+y^2+z^2)^2=x^2-y^2-z^2$ est de révolution autour de l'axe (Ox). Tracer une méridienne.

Exercice 34: (Solution)

- 1. Montrer que $x^3 + y^3 + z^3 3xyz = (x + y + z)(x^2 + y^2 + z^2 xy yz zx)$.
- 2. Montrer que la surface d'équation $x^3 + y^2 + z^3 3xyz = 1$ est de révolution et préciser son axe et tracer une méridienne.

Exercice 35: (Solution)

- 1. Déterminer une équation cartésienne du cylindre de révolution de rayon R>0 et d'axe D: $\begin{cases} x=z+3\\ y=z-1 \end{cases}$
 - Déterminer R tel que ce cylindre soit tangent à l'axe (Oz).
- 2. Déterminer une équation cartésienne du cône de révolution d'axe D: $\begin{cases} x = y \\ y = z \end{cases}$, de sommet O et de demi-angle au sommet $\frac{\pi}{6}$.

SOLUTIONS TRAVAUX DIRIGÉS: Courbes et surfaces

Solution Exercice 1. Soient A(1,4), B(4,1) et C(-1,-2) trois points du plan.

Calculons les coordonnées des points suivants :

— Centre de gravité G: intersection des trois médianes.

On en détermine deux $(m_1), (m_2)$.

* $(m_1) = (AM_1)$ où $M_1(\frac{3}{2}, -\frac{1}{2})$ est le milieu de (BC)

On note ax + by = c une équation cartésienne de (m_1) .

Un vecteur directeur est $\overrightarrow{AM_1}$ $\begin{pmatrix} \frac{1}{2} \\ -\frac{9}{2} \end{pmatrix}$ ou encore $\begin{pmatrix} 1 \\ -9 \end{pmatrix}$.

Un vecteur normal est donc $\overrightarrow{n} \begin{pmatrix} 9 \\ 1 \end{pmatrix} : (m_1) : 9x + y = c$.

Puisque $A \in (m_1) : 9 + 4 = c \iff c = 13 : (m_1) : 9x + y = 13.$

* $(m_2) = (BM_2)$ où $M_2(0,1)$ est le milieu de (AC)

On note ax + by = c une équation cartésienne de (m_2) .

Un vecteur directeur est $\overrightarrow{BM_2}\begin{pmatrix} -4\\0 \end{pmatrix}$ ou encore $\begin{pmatrix} 1\\0 \end{pmatrix}$.

Un vecteur normal est donc \overrightarrow{n} $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$: (m_2) : y = c.

Puisque $B \in (m_1) : y = 1 : (m_2) : y = 1$.

On en déduit les coordonnées du point d'intersection $G\left(\frac{4}{3},1\right)$.

— Orthocentre H: intersection des hauteurs.

On a donc $(\overrightarrow{AH}|\overrightarrow{BC}) = 0$ et $(\overrightarrow{BH}|\overrightarrow{AC}) = 0$.

En notant (x, y) les coordonnées de H on trouve qu'elles vérifient :

$$\begin{cases} x+3y &= 7 \\ 5x+3y &= 17 \end{cases} \iff \begin{cases} x=\frac{5}{2}y=\frac{3}{2} \end{cases}.$$

Donc H a pour coordonnées $(\frac{5}{2}, \frac{3}{2})$.

— Centre du cercle circonscrit : intersection des médiatrices.

On a $\Omega A = \Omega B = \Omega C$.

En traduisant ces égalités avec les coordonnées des points, il vient $x=y=\frac{3}{4}$. Donc Ω a pour coordonnées $(\frac{3}{4},\frac{3}{4})$.

Solution Exercice 2.

1. La distance d'un point $M(x_0,y_0)$ à une droite (D):ax+by+c=0 est donnée par :

$$d(M,D) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

En effet, notons $\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$ et H la projection orthogonale de M sur D.

On a $d(M, \mathcal{D}) = HM$.

On a:

$$\overrightarrow{n} \cdot \overrightarrow{HM} = \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} x_0 - x_H \\ y_0 - y_H \end{pmatrix}$$

$$= a(x_0 - x_H) + b(y_0 - y_H)$$

$$= ax_0 + by_0 - (ax_H + by_H)$$

$$= ax_0 + by_0 - (-c)$$

$$= ax_0 + by_0 + c \operatorname{car} H \in \mathscr{D}.$$

D'autre part, $|\overrightarrow{n} \cdot \overrightarrow{HM}| = ||\overrightarrow{n}|| ||\overrightarrow{HM}|| |\cos(\overrightarrow{n}, \overrightarrow{HM})| |\sin(\overrightarrow{n}, \overrightarrow{HM})| |\cos(\overrightarrow{n}, \overrightarrow{H$

On en déduit que :

$$|ax_0 + by_0 + c| = |\overrightarrow{n} \cdot \overrightarrow{HM}| = ||\overrightarrow{n}|| ||\overrightarrow{HM}|| = \sqrt{a^2 + b^2} HM$$

Il vient : $d(M, D) = HM = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$ comme annoncé.

On note $D_1: 4x + 3y - 6 = 0$, $D_2: 3x - 4y - 2 = 0$, $D_3: y = -6$.

Les points équidistants aux droites D_1, D_2, D_3 sont les points M tels que :

$$d(M, D_1) = d(M, D_3)$$
 et $d(M, D_2) = d(M, D_3)$.

On note (x, y) les coordonnées de M.

— $d(M, D_1) = \frac{|4x+3y-6|}{\sqrt{4^2+3^2}} = \frac{|4x+3y-6|}{5}$ et $d(M, D_3) = |y+6|$. Ainsi, $d(M, D_1) = d(M, D_3)$ si et seulement si :

$$4x + 3y - 6 = 5(y + 6)$$
 ou $4x + 3y - 6 = -5(y + 6)$
 $\iff 2x - y = 18$ ou $x + 2y = -6$

— $d(M,D_2)=\frac{|3x-4y-2|}{5}$ donc $d(M,D_2)=d(M,D_3)$ si et seulement si :

$$3x - 9y = 32$$
 ou $3x + y = -28$.

On a obtenu les équations des bissectrices des droites D_1, D_3 et D_2, D_3 .

Les points équidistants aux trois droites sont les points d'intersection de ces deux bissectrices.

On obtient quatre points d'intersection donc les coordonnées respectives sont solutions des systèmes :

$$S_1: \left\{ \begin{array}{cccc} 2x & - & y & = & 18 \\ 3x & - & 9y & = & 32 \end{array} \right. \iff \left\{ \begin{array}{ccc} x = \frac{26}{3} \\ y = -\frac{2}{3} \end{array} \right.$$

$$S_2: \begin{cases} 2x - y = 18 \\ 3x + y = -28 \end{cases} \iff \begin{cases} x = -2 \\ y = -22 \end{cases}$$

$$S_3: \begin{cases} x + 2y = -6 \\ 3x - 9y = 32 \end{cases} \iff \begin{cases} x = \frac{2}{3} \\ y = -\frac{10}{3} \end{cases}$$

$$S_4: \begin{cases} x + 2y = -6 \\ 3x + y = -28 \end{cases} \iff \begin{cases} x = -10 \\ y = 2 \end{cases}$$

2. Le centre d'un cercle tangent aux trois droites est équidistant des trois droites D_1, D_2, D_3 .

Les points d'intersection de ce cercle et des trois droites sont les projections orthogonales du centre sur les droites (et situés sur un rayon).

On a donc déterminé les centres $\Omega_i, i \in [1, 4]$ des quatre cercles tangents aux trois droites à la question précédente.

Les rayons de ces cercles sont donnés par la distance $d(\Omega_i, D_3)$.

On trouve $R_1 = 16/3$, $R_2 = 16$, $R_3 = 8/3$, $R_4 = 8$.

Solution Exercice 3.

1. Déterminons l'intersection du plan P d'équation x-3y+3z-1=0 et de la droite D d'équations $\left\{ \begin{array}{ll} x+y-10&=&0\\ y+z-6&=&0 \end{array} \right.$

L'intersection de D et P est l'ensemble des points $(x,y,z)\in\mathbb{R}^3$ dont les coordonnées vérifient le système linéaire :

$$\begin{cases} x - 3y + 3z &= 1 \\ x + y &= 10 \\ y + z &= 6 \end{cases} \iff \begin{cases} x &= \frac{43}{7} \\ y &= \frac{27}{7} \\ z &= \frac{15}{7} \end{cases}$$

2. Déterminons le projeté orthogonal de D sur P.

Soit $M(x, y, z) \in \mathbb{R}^3$ un point de l'espace.

Déterminons son projeté orthogonal M'(x', y', z') sur P.

Notons $\overrightarrow{n} = \begin{pmatrix} 1 \\ -3 \\ 3 \end{pmatrix}$ un vecteur normal à P.

Le point M' est déterminé par :

$$\left\{ \begin{array}{l} \underline{M' \in P} \\ \overline{MM'} \text{ colin\'eaire } \overrightarrow{n} \end{array} \right. \iff \left\{ \begin{array}{l} x' - 3y' + 3z' = 1 \quad (1) \\ (2) \, \exists \lambda \in \mathbb{R}, \left\{ \begin{array}{l} x' = x + \lambda \\ y' = y - 3\lambda \\ z' = z + 3\lambda \end{array} \right. \right.$$

En injectant les relations (2) dans (1) on trouve :

$$\lambda = \frac{1}{19} (1 - (x - 3y + 3z)).$$

Le projeté orthogonal de $M(x, y, z) \in \mathbb{R}^3$ sur P a pour coordonnées :

(3):
$$\begin{cases} x' = x + \frac{1}{19} \left(1 - (x - 3y + 3z) \right) \\ y' = y - \frac{3}{19} \left(1 - (x - 3y + 3z) \right) \\ z' = z + \frac{3}{19} \left(1 - (x - 3y + 3z) \right) \end{cases}$$

On se donne maintenant $M(x, y, z) \in D$:

$$\begin{cases} x+y=10 \\ y+z=6 \end{cases} \iff \begin{cases} x=10-(6-z)=4+z \\ y=6-z \end{cases}$$

On en déduit une paramétrisation de D puis en injectant dans (3) on trouve une paramétrisation du projeté orthogonal D' sur P:

$$D: \left\{ \begin{array}{l} x = 4 + t \\ y = 6 - t \\ z = t \end{array} \right. \quad (t \in \mathbb{R})$$

$$D': \begin{cases} x' = \frac{91}{19} + \frac{12}{19}t \\ y' = \frac{69}{19} + \frac{2}{19}t \\ z' = \frac{45}{19} - \frac{2}{19}t \end{cases} (t \in \mathbb{R}).$$

Solution Exercice 4. Soit P le plan passant par le point A(1,2,-3) et dirigé par les vecteurs $\overrightarrow{u}(1,0,-1)$ et $\overrightarrow{v}(2,3,4)$ et P' le plan d'équation 5x+6y+7z+8=0.

1. Déterminons une équation cartésienne du plan P. Un vecteur normal à P est donné par

$$\overrightarrow{u} \wedge \overrightarrow{v} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \wedge \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}.$$

Un vecteur normal à P est également $\overrightarrow{n} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

Une équation de P est donc x-2y+z=d avec d à déterminer en utilisant $A\in P$:

$$d = 1 - 2(2) - 3 = -6$$
. Conclusion $P: x - 2y + z = -6$.

2. Soit $(x, y, z) \in P \cap P'$:

$$\begin{cases} x - 2y + z = -6 \\ 5x + 6y + 7z = -8 \end{cases} \iff \begin{cases} x - 2y + z = -6 \\ 16y + 2z = 22 \end{cases}$$
$$\iff \begin{cases} x - 2y + z = -6 \\ 8y + z = 11 \end{cases}$$

Par conséquent $P \cap P'$ est une droite D.

Cette droite passe par le point (-7,1,3) et est dirigée par le vecteur (10, 1, -8) (solution du système homogène associé).

Une paramétrisation de D est donc :

$$\begin{cases} x = -7 + 10t \\ y = 1 + t \\ z = 3 - 8t \end{cases} (t \in t)$$

Solution Exercice 5. On considère l'ensemble

$$\mathscr{S} = \{ M(x, y, z) : x^2 + y^2 + z^2 - 2x + 2z - 2 = 0 \}.$$

1. Montrons que \mathscr{S} est une sphère et déterminer son centre et son rayon. Soit $(x, y, z) \in \mathscr{S}$:

$$x^{2} + y^{2} + z^{2} - 2x + 2z - 2 = 0 \iff (x - 1)^{2} - 1 + y^{2} + (z + 1)^{2} - 1 - 2 = 0$$
$$\iff (x - 1)^{2} + y^{2} + (z + 1)^{2} = 2^{2}$$

Ainsi, \mathcal{S} est la sphère de centre $\Omega(1,0,-1)$ et de rayon R=2.

- 2. Soit \mathscr{P} le plan d'équation : 2x + y + 2z 5 = 0. Déterminons $\mathscr{S} \cap \mathscr{P}$.
 - Cette intersection est: — vide si $d(\Omega, \mathscr{P}) > 2$.
 - réduite à un point si $d(\Omega, \mathcal{P}) = 2$.

— un cercle si
$$d(\Omega, \mathcal{P}) < 2$$
.
On a $d(\Omega, \mathcal{P}) = \frac{|2 \times 1 + 0 + 2 \times (-1) - 5|}{\sqrt{2^2 + 1^2 + 2^2}} = \frac{5}{3} < 2 = R$.

Ainsi $\mathscr{S} \cap \mathscr{P}$ est un cercle.

Notons que :

- $\overrightarrow{n} = (2,1,2)$ est un vecteur normal à \mathscr{P}
- $\vec{u} = (-1, 2, 0), \vec{v} = (-1, 0, 1) \text{ dirigent } \mathscr{P}$

Le centre Ω' est le projeté orthogonal de Ω sur \mathscr{P} :

$$\begin{cases} \Omega'(x', y', z') \in \mathscr{P} \\ (\overline{\Omega\Omega'} | \overrightarrow{u}) = 0 \\ (\overline{\Omega\Omega'} | \overrightarrow{v}) = 0 \end{cases} \iff \begin{cases} 2x' + y' + 2z' - 5 = 0 \\ -(x' - 1) + 2y' = 0 \\ -(x' - 1) + (z' + 1) = 0 \end{cases}$$

On trouve : $\Omega'\left(\frac{19}{9}, \frac{5}{9}, \frac{1}{9}\right)$.

Le cercle $\mathscr{S} \cap \mathscr{P}$ a pour rayon r > 0 vérifiant :

$$r^2 = R^2 - d(\Omega, \mathscr{P})^2 = 4 - \left(\frac{5}{3}\right)^2 = \frac{11}{9}.$$

Solution Exercice 6. Soit D la droite passant par A(3,2,1) et dirigée par $\overrightarrow{u}(1,-1,3)$ et D' la droite passant par B(2,1,-2) et dirigée par $\overrightarrow{v}(-1,0,2)$. On pose $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$.

1. Les droites D et D' ne sont pas parallèles car leurs vecteurs directeurs \overrightarrow{u} , \overrightarrow{v} ne sont pas colinéaires.

Par ailleurs, les droites D et D' ne sont pas sécantes.

Une représentation paramétrique de D et un système d'équations cartésiennes:

$$\begin{cases} x = 3+t \\ y = 2-t \\ z = 1+3t \end{cases} (t \in \mathbb{R}) \Longleftrightarrow \begin{cases} x+y = 5 \\ 3x-z = 8 \end{cases}$$

Une représentation paramétrique de D' et un système d'équations cartésiennes:

$$\begin{cases} x = 2-t \\ y = 1 \\ z = -2+2t \end{cases} \quad (t \in \mathbb{R}) \Longleftrightarrow \begin{cases} 2x+z = 2 \\ y = 1 \end{cases}$$

En reportant les conditions y=1 et z=2(1-x) dans le système définissant D, on obtient:

$$\begin{cases} x+1 &= 5 \\ 3x-2(1-x) &= 8 \end{cases} \iff \begin{cases} x &= 4 \\ x &= 2 \end{cases}$$

Ce système est impossible $D \cap D' = \emptyset$.

Conclusion : les droites D et D' n'étant ni sécantes ni parallèles, elles ne sont pas coplanaires.

2. Le plan P est dirigé par les vecteurs \overrightarrow{u} et $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$ avec :

$$\overrightarrow{w} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \land \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ -5 \\ -1 \end{pmatrix}$$

Le plan P admet pour vecteur normal:

$$\overrightarrow{u} \wedge \overrightarrow{w} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \wedge \begin{pmatrix} -2 \\ -5 \\ -1 \end{pmatrix} = \begin{pmatrix} 16 \\ -5 \\ -7 \end{pmatrix}$$

Une équation est de la forme 16x - 5y - 7z = d et on détermine d en utilisant le fait que $A(3,2,1) \in P: 48-10-7=d \iff d=32$.

Ainsi, P: 16x - 5y - 7z = 31.

3. Soit $(x, y, z) \in \mathbb{R}^3$ un point d'intersection de D' et P. Ses coordonnées vérifient :

$$\begin{cases}
16x - 5y - 7z = 31 \\
\exists t \in \mathbb{R}, \begin{cases}
x = 2 - t \\
y = 1 \\
z = -2 + 2t
\end{cases}$$

On trouve $t = \frac{1}{3}$ puis $C(x, y, z) = (\frac{5}{3}, 1, -\frac{4}{3})$. $\mathscr{P} \cap \mathscr{D}' = \{(\frac{5}{3}, 1, -\frac{4}{3})\}.$

4. Soit Δ la droite passant par C et dirigée par \overrightarrow{w} .

Montrons que Δ est perpendiculaire à D et D'.

La droite Δ est dirigée par le vecteur $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$.

Ce vecteur est par définition orthogonal à \overrightarrow{u} et à \overrightarrow{v} .

Ces deux derniers vecteurs dirigeant respectivement D et D' on en déduit que $\Delta \perp D$ et $\Delta \perp D'$.

Solution Exercice 7. Soit P_m le plan d'équation :

$$P_m: mx - y + (2 - m)z + m = 4: (m \in \mathbb{R}).$$

Soit P' le plan d'équation x + y + z = 1. On pose $\Delta_m = P_m \cap P'$.

Montrons que P_m contient une droite fixe et que Δ_m passe par un point fixe.

• Déterminons l'intersection des plans P_m .

Soit (α, β, γ) un point dans l'intersection $\bigcap P_m$.

Alors $\forall m \in \mathbb{R}, m\alpha - \beta + (2-m)\gamma + m = 4$.

En particulier pour m=0, m=2 et m=1 on obtient :

$$\begin{cases}
 - \beta + 2\gamma & = 4 \\
 2\alpha - \beta + & 2 = 4 \\
 \alpha - \beta + \gamma + 1 = 4
\end{cases} \iff \begin{cases}
 - \beta + 2\gamma = 4 \\
 2\alpha - \beta + & = 2 \\
 \alpha - \beta + \gamma = 3
\end{cases}$$

$$\iff \begin{cases}
 \alpha - \beta + \gamma = 3 \\
 - \beta + 2\gamma = 4 \\
 2\alpha - \beta + 2\gamma = 4
\end{cases} \iff \begin{cases}
 \alpha - \beta + \gamma = 3 \\
 - \beta + 2\gamma = 4
\end{cases}$$

$$\iff \begin{cases}
 \alpha - \beta + \gamma = 3 \\
 - \beta + 2\gamma = 4
\end{cases}$$

L'ensemble obtenu est une droite dont une paramétrisation est :

$$D: \left\{ \begin{array}{lcl} x & = & -1+t \\ y & = & -4+2t \\ z & = & t \end{array} \right.$$

Par conséquent la droite D appartient aux plans P_0, P_1, P_2 . Cette droite est en fait incluse dans tous les plans P_m . En effet, pour tout $m \in \mathbb{R}$:

$$\forall t \in \mathbb{R}, m(-1+t) - (-4+2t) + (2-m)t + m = 4.$$

• $\Delta_m = P_m \cap P'$ est une droite car les plans P_m et P' ne sont pas parallèles : les vecteurs normaux (m, -1, 2-m) et (1, 1, 1) ne sont pas colinéaires.

La droite Δ_m a pour équations : Δ_m : $\begin{cases} mx - y + (2 - m)z + m &= 4 \\ x + y + z &= 1 \end{cases}$

Avec m = 0 m = 2 et l'équation de P', on obtient le système

$$\begin{cases} -y+2z &= 4 \\ 2x-y+2 &= 4 \\ x+y+z &= 1 \end{cases} \iff \begin{cases} x &= \frac{1}{2} \\ y &= -1 \\ z &= \frac{3}{2} \end{cases}$$

On vérifie que le point $(\frac{1}{2}, -1, \frac{3}{2})$ appartient à toutes les droites Δ_m c'est-à-dire à P' et à tous les plans P_m .

Solution Exercice 8. Déterminons les équations de la droite D passant par A(3,2,1) parallèle au plan \mathscr{P} d'équation 2x-5y+4z=1 et coupant la droite

- La droite D est contenue dans un plan \mathscr{P}' parallèle à \mathscr{P} . Une équation de \mathscr{P}' est donc $\mathscr{P}': 2x - 5y + 4z = d$ avec d à déterminer. On utilise le fait que $A \in \Delta \subset \mathcal{P}$: $d = 3 \times 2 - 5 \times 2 + 4 \times 1 = 0$. Ainsi $\mathcal{P}' : 2x - 5y + 4z = 0$.
 - Pour déterminer un vecteur directeur on cherche un point $I \in D$ distinct de A. On utilise la seconde hypothèse : les droites D et Δ sont sécantes. La droite Δ coupe le plan \mathscr{P}' , précisément en $I:\{I\}=\Delta\cap D=\Delta\cap \mathscr{P}'$.

On note (x, y, z) les coordonnées du point d'intersection de \mathscr{P}' et Δ :

$$\begin{cases} 2x - 5y + 4z &= 0 \\ 2x - 3y &= -1 \\ z &= 1 \end{cases} \iff \begin{cases} x &= \frac{7}{4} \\ y &= \frac{3}{2} \\ z &= 1 \end{cases}$$

Un vecteur directeur de D est donc $\overrightarrow{AI} = (-\frac{5}{4}, -\frac{1}{2}, 0)$ ou plus simplement $\vec{u} = (5, 2, 0).$

Ainsi, la droite D admet la représentation paramétrique :

$$\begin{cases} x = 3 + 5t \\ y = 2 + 2t \\ z = 1 \end{cases} (t \in \mathbb{R}).$$

La droite D est également donnée par les équations cartésiennes :

$$\left\{ \begin{array}{rcl} 2x - 5y & = & -4 \\ z & = & 1 \end{array} \right.$$

Solution Exercice 9.

- 1. Déterminons l'angle formé par les plans $\mathscr{P}_1: 2x+4y-z+5=0$ et $\mathscr{P}_2: x+y+6z-8=0$.
 - Il s'agit de déterminer l'angle entre deux vecteurs normaux aux plans \mathscr{P}_1 et \mathscr{P}_2 .
 - On note $\overrightarrow{n}_1=(2,4,-1)$ et $\overrightarrow{n}_2=(1,1,6)$ des vecteurs respectivement normaux à \mathscr{P}_1 et \mathscr{P}_2 .
 - On constate que $(\overrightarrow{n}_1|\overrightarrow{n}_2) = 0$ donc les plans sont orthogonaux.
 - Avec le produit scalaire on retrouve :

$$(\overrightarrow{n}_1|\overrightarrow{n}_2) = ||\overrightarrow{n}_1|| ||\overrightarrow{n}_2|| \cos(\overrightarrow{n}_1, \overrightarrow{n}_2)$$
$$0 = ||\overrightarrow{n}_1|| ||\overrightarrow{n}_2|| \cos(\overrightarrow{n}_1, \overrightarrow{n}_2)$$

- Il vient $\cos(\overrightarrow{n}_1|\overrightarrow{n}_2) = 0$ soit $(\overrightarrow{n}_1|\overrightarrow{n}_2) = \frac{\pi}{2}[\pi]$.
- Avec le produit vectoriel :

$$||\overrightarrow{n}_1 \wedge \overrightarrow{n}_2|| = ||\overrightarrow{n}_1|| ||\overrightarrow{n}_2|| |\sin(\overrightarrow{n}_1, \overrightarrow{n}_2)|$$

- Après calcul on trouve $||\overrightarrow{n}_1 \wedge \overrightarrow{n}_2|| = ||\overrightarrow{n}_1|| ||\overrightarrow{n}_2||$.
- Il vient $|\sin(\overrightarrow{n}_1, \overrightarrow{n}_2)| = 1$ et la même conclusion suit.
- 2. Soit A(2,1,4). Calculer la distance de A à $\mathcal{P}_1 \cap \mathcal{P}_2$.
 - L'intersection des plans $\mathscr{P}_1\cap \mathscr{P}_2$ est une droite D donc les équations sont :

$$D: \begin{cases} 2x + 4y - z = -5 \\ x + y + 6z = 8 \end{cases}$$

On obtient une représentation paramétrique :

$$\begin{cases} x = \frac{37}{2} - \frac{25}{2}t \\ y = -\frac{21}{2} + \frac{13}{2}t \\ z = t \end{cases} (t \in \mathbb{R}) \text{ soit } \begin{cases} x = \frac{37}{2} - 25u \\ y = -\frac{21}{2} + 13u \\ z = 2u \end{cases} (u \in \mathbb{R})$$

Avec $u = \frac{1}{2}$ on obtient un point sur la droite D : B(6, -4, 1).

Un vecteur directeur de $\mathscr{P}_1 \cap \mathscr{P}_2$ est donné par $\overrightarrow{u} = \overrightarrow{n}_1 \wedge \overrightarrow{n}_2 = (25, -13, -2)$ (on peut lire un vecteur directeur également sur les représentations paramétriques obtenues ci-dessus).

Le projeté orthogonal H de A sur D vérifie :

$$AH \times ||\overrightarrow{u}|| = ||\overrightarrow{u} \wedge \overrightarrow{BA}||$$

(il s'agit de l'aire du parallélogramme engendré par \overrightarrow{u} et \overrightarrow{BA})

On en déduit :

$$d(A, \mathscr{P}_1 \cap \mathscr{P}_2) = AH = \frac{||\overrightarrow{u} \wedge \overrightarrow{BA}||}{||\overrightarrow{u}||}.$$

 $\pmb{Solution}$ $\pmb{Exercice}$ 10. Déterminer la distance du point M à la droite $\mathcal D$ dans les cas suivants :

1.
$$M(-1,1,3)$$
 et $\mathscr{D}: \begin{cases} x = 1+2\lambda \\ y = 2-\lambda \\ z = 2+2\lambda \end{cases} \quad (\lambda \in \mathbb{R}).$

La droite \mathscr{D} est dirigée par le vecteur $\overrightarrow{u}=(2,-1,2)$ et passe par le point A=(1,2,2).

On obtient la distance $d(M, \mathcal{D})$ en interprétant l'aire \mathcal{A} du parallélogramme engendré par \overrightarrow{u} et \overrightarrow{AM} de deux manières.

Notons H le projeté orthogonal de M sur D:d(M,D)=MH.

On a

$$\mathscr{A} = MH \times ||\overrightarrow{u}|| = ||u \wedge \overrightarrow{AM}||$$

avec

$$\overrightarrow{AM} = (2, 1, -1)$$

 $_{
m et}$

$$\overrightarrow{u} \wedge \overrightarrow{AM} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \wedge \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 6 \\ 4 \end{pmatrix}$$

On obtient:

$$MH = \frac{||\overrightarrow{u} \wedge \overrightarrow{AM}||}{||\overrightarrow{u}||} = \frac{\sqrt{53}}{3}$$

2.
$$M(-1,1,3)$$
 et $\mathscr{D}: \left\{ \begin{array}{ll} x+y-2z-1 & = & 0 \\ 2x-y+z+1 & = & 0 \end{array} \right.$

On procède de même en déterminant un point sur \mathscr{D} et un vecteur directeur (on peut déterminer une paramétrisation analogue à celle de la question 1 par exemple).

Solution Exercice 11. Montrons que la courbe \mathscr{C} : $\begin{cases} x(t) = t^2 - 1 \\ y(t) = 2t \\ z(t) = t^2 + t + 1 \end{cases}$ est plane et que c'est une parabole. Pour tout $t \in \mathbb{R}$:

$$x(t) + \frac{1}{2}y(t) - z(t) = (t^2 - 1) + \frac{1}{2}(2t) - (t^2 + t + 1)$$
$$= -2$$

Par conséquent la courbe $\mathscr C$ est plane car contenue dans le plan d'équation

$$\mathscr{P}: x + \frac{1}{2}y - z = -2.$$

Le vecteur $\overrightarrow{n} = \frac{1}{3}(2,1,-2)$ est normal à \mathscr{P} . Ainsi $\overrightarrow{u} = \frac{1}{\sqrt{5}}(1,-2,0)$ et $\overrightarrow{v} = \overrightarrow{u} \wedge \overrightarrow{n} = \frac{1}{3\sqrt{5}}(4,2,5)$ sont directeurs de \mathscr{P} . On pose $\Omega = (-1,0,1) \in \mathscr{C}$ (pour t=0). Dans le repère orthonormé $\mathscr{R}' = (\Omega, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{n})$, les coordonnées (X(t),Y(t),Z(t)) des points de \mathscr{C} vérifient

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} & \frac{2}{3} \\ -\frac{2}{\sqrt{5}} & \frac{2}{3\sqrt{5}} & \frac{1}{3} \\ 0 & \frac{5}{3\sqrt{5}} & -\frac{2}{3} \end{pmatrix}}_{\in O_3(\mathbb{R})} \begin{pmatrix} X(t) \\ Y(t) \\ Z(t) \end{pmatrix}$$

soit

$$\begin{pmatrix} X(t) \\ Y(t) \\ Z(t) \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} & 0 \\ \frac{4}{3\sqrt{5}} & \frac{2}{3\sqrt{5}} & \frac{5}{3\sqrt{5}} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix} \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} & 0 \\ \frac{4}{3\sqrt{5}} & \frac{2}{3\sqrt{5}} & \frac{5}{3\sqrt{5}} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} t^2 \\ 2t \\ t^2 + t \end{pmatrix}$$
$$= \begin{pmatrix} \frac{t^2 - 4t}{\sqrt{5}} \\ \frac{3t^2 + 3t}{\sqrt{5}} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{t(t - 4)}{\sqrt{5}} \\ \frac{3t(t + 1)}{\sqrt{5}} \\ 0 \end{pmatrix}$$

Pour $t \neq 0, 4$, on a $\frac{Y}{X} = \frac{3(t+1)}{t-4}$ et il vient :

$$t\left(\frac{Y}{X}-3\right)=4\frac{Y}{X}+3\Longleftrightarrow t=\frac{4Y+3X}{Y-3X}.$$

On injecte cette relation dans l'égalité $Y = \frac{t(t-4)}{\sqrt{5}}$, il vient :

$$\sqrt{5}X = t(t-4) \Longleftrightarrow \sqrt{5}X = \frac{4Y+3X}{Y-3X} \left(\frac{4Y+3X}{Y-3X} - 4\right)$$

$$\iff \sqrt{5}X(Y-3X)^2 = (4Y+3X)(15X)$$

$$\iff X(\sqrt{5}(Y-3X)^2 - 15(4Y+3X)) = 0$$

- Pour t = 0, on a (X, Y) = (0, 0), solution de l'équation $\sqrt{5}(Y 3X)^2 15(4Y + 3X) = 0$.
- Pour t=4, on a $(X,Y)=(0,12\sqrt{5})$, solution de l'équation $\sqrt{5}(Y-3X)^2-15(4Y+3X)=0$ est vérifiée.

Ainsi, la courbe (\mathscr{C}) a pour équations cartésiennes dans \mathscr{R}' :

$$Z = 0 \text{ et } \sqrt{5}(Y - 3X)^2 - 15(4Y + 3X) = 0 (\mathscr{C}').$$

On réduit l'équation (\mathscr{C}') :

$$(\mathscr{C}'): 9X^2 - 6XY + Y^2 - 9\sqrt{5}X - 12\sqrt{5}Y = 0 \iff {}^{t}HAH + LH = 0$$

avec
$$A = \begin{pmatrix} 9 & -3 \\ -3 & 1 \end{pmatrix}$$
; $H = \begin{pmatrix} X \\ Y \end{pmatrix}$; $L = \begin{pmatrix} -9\sqrt{5} & -12\sqrt{5} \end{pmatrix}$.

On trouve $Sp(A) = \{0, 10\} : \mathscr{C}$ est du type parabole.

$$E_0(A) = \text{Vect}\left(\frac{1}{\sqrt{10}}(1,3)\right) \text{ et } E_{10}(A) = \text{Vect}\left(\frac{1}{\sqrt{10}}(-3,1)\right).$$

On pose
$$P = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix} \in SO_2(\mathbb{R}) \text{ et } D = \begin{pmatrix} 0 & 0 \\ 0 & 10 \end{pmatrix}.$$

L'équation (\mathscr{C}') devient :

$${}^{t}HPD {}^{t}PH + LH = 0 \iff {}^{t}({}^{t}PH)D\underbrace{({}^{t}PH)}_{H'} + LPH' = 0$$
$$\iff 10Y_{1}^{2} + \frac{15}{\sqrt{2}}(-3X_{1} + Y_{1}) = 0.$$

Par conséquent $\mathscr C$ est une hyperbole. La forme réduite permet de déterminer le sommet. On dispose déjà des axes de symétries. \Box

Solution Exercice 12. Déterminons l'équation du plan tangent en A(1,0,0) de la nappe paramétrée par :

$$\begin{cases} x(u,v) &= u^2 + uv + v^2 \\ y(u,v) &= u + v \\ z(u,v) &= u^3 + v^3 \end{cases}$$

Première version

On note
$$f(u,v) = \begin{pmatrix} u^2 + uv + v^2 \\ u + v \\ u^3 + v^3 \end{pmatrix}$$
. La fonction f est de classe \mathscr{C}^1 sur \mathbb{R}^2 .

On a:

$$\frac{\partial f}{\partial u}(u,v) = \begin{pmatrix} 2u+v\\1\\3u^2 \end{pmatrix} \quad ; \quad \frac{\partial f}{\partial v}(u,v) = \begin{pmatrix} u+2v\\1\\3v^2 \end{pmatrix}$$

Le point A(1,0,0) appartient à la nappe paramétrée par f: il s'agit du point de paramètres $(u_0, v_0) = (1, -1)$ (ou (-1, 1)) est dirigé par les vecteurs :

$$\frac{\partial f}{\partial u}(1,-1) = \begin{pmatrix} 1\\1\\3 \end{pmatrix} \quad ; \quad \frac{\partial f}{\partial v}(1,-1) = \begin{pmatrix} -1\\1\\3 \end{pmatrix}$$

formant une famille libre.

Le vecteur : $\frac{\partial f}{\partial u}(1,-1) \wedge \frac{\partial f}{\partial u}(1,-1)$ est normal au plan tangent :

$$\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} \land \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \\ 2 \end{pmatrix}.$$

Le plan tangent Π a pour équation -6y + 2z = d avec $d \in \mathbb{R}$ à déterminer. Le point A(1,0,0) appartient au plan tangent donc $d=0:\Pi:3y=z$.

Deuxième version

Le point M(x,y,z) appartient au plan tangent si et seulement si les vecteurs

$$\overrightarrow{AM}, \frac{\partial f}{\partial u}(1, -1), \frac{\partial f}{\partial v}(1, -1)$$

sont coplanaires:

$$\begin{vmatrix} x-1 & 1 & -1 \\ y & 1 & 1 \\ z & 3 & 3 \end{vmatrix} = 0 \iff \begin{vmatrix} x-1 & 1 & 0 \\ y & 1 & 2 \\ z & 3 & 6 \end{vmatrix} = 0 \iff \begin{vmatrix} x-1 & 1 & 0 \\ y & 1 & 1 \\ z & 3 & 3 \end{vmatrix} = 0$$
$$\iff \begin{vmatrix} x-1 & 1 & 0 \\ y & 0 & 1 \\ z & 0 & 3 \end{vmatrix} = 0$$
$$\iff 3y - z = 0.$$

Solution Exercice 13. Déterminons les plans tangents à la surface d'équation $\mathscr{S}: x-8zy=0$ contenant la droite d'équations $\mathscr{D}: \left\{ \begin{array}{cc} y &=& 1 \\ x+4z+2 &=& 0 \end{array} \right.$

Soit $(x_0, y_0, z_0) \in \mathcal{S}$ un point de la surface $x_0 - 8z_0y_0 = 0$.

Soit \mathcal{P}_0 le plan tangent à la surface en ce point.

La fonction $f:(x,y,z)\longmapsto x-8zy$ est de classe \mathscr{C}^1 sur \mathbb{R}^3 .

On calcule les dérivées partielles premières :

$$\frac{\partial f}{\partial x} = 1$$
 ; $\frac{\partial f}{\partial y} = -8z$; $\frac{\partial f}{\partial z} = -8y : \nabla f = \begin{pmatrix} 1 \\ -8z \\ -8y \end{pmatrix}$.

Le plan tangent au point (x_0, y_0, z_0) a donc pour équation cartésienne :

$$\mathscr{P}_0: (x-x_0)-8z_0(y-y_0)-8y_0(z-z_0)=0.$$

La droite \mathscr{D} est dirigée par le vecteur $\overrightarrow{u} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$:

Dest en effet l'intersection des deux plans de vecteurs normaux respectifs

Cette droite passe (par exemple) par le point B de coordonnées $\begin{pmatrix} -2\\1\\0 \end{pmatrix}$.

Par conséquent, \mathcal{P}_0 contient la droite \mathcal{D} si et seulement si

 $-\overrightarrow{u}$ et $\nabla f(x_0,y_0,z_0)$ sont orthogonaux et

 $-B \in \mathscr{P}_0$

П

c'est-à-dire:

$$\begin{cases} (\overrightarrow{u}|\nabla f(x_0, y_0, z_0)) &= 0\\ (-2 - x_0) - 8z_0(1 - y_0) - 8y_0(0 - z_0) &= 0 \end{cases}$$

$$\iff \begin{cases} 4 + 8y_0 &= 0\\ (-2 - x_0) - 8z_0(1 - y_0) + 8y_0z_0 &= 0 \end{cases}$$

$$\iff \begin{cases} y_0 &= -\frac{1}{2}\\ (-2 - x_0) - 12z_0 - 4z_0 &= 0 \end{cases}$$

Puisque le point $A(x_0,y_0,z_0)=(x_0,-\frac{1}{2},z_0)$ appartient à la surface ${\mathscr S}$ on a $x_0 - 8z_0y_0 = 0 \iff x_0 + 4z_0 = 0.$

Le système suivant est de Cramer :

$$\begin{cases} y_0 = -\frac{1}{2} \\ (-2 - x_0) - 12z_0 - 4z_0 = 0 \\ x_0 + 4z_0 = 0 \end{cases} \iff \begin{cases} x_0 = \frac{2}{3} \\ y_0 = -\frac{1}{2} \\ z_0 = -\frac{1}{6} \end{cases}$$

Et on obtient un unique plan tangent \mathcal{P}_0 contenant la droite \mathcal{D} : une équation cartésienne de $\mathscr{P}_0: (x-\frac{2}{3})+\frac{8}{6}(y+\frac{1}{2})+\frac{8}{2}(z+\frac{1}{6})=0.$

Solution Exercice 14. Soit (\mathscr{S}) la surface d'équation $(x^2 + y^2)z = x + y$.

- 1. Soit $(x, y, 0) \in (xOz)$.
 - Si x = y = 0 alors (0,0,0) est le projeté orthogonal du point $(0,0,0) \in \mathcal{S}$.
 - Si x ou y est non nul (voire les deux), alors on pose $z = \frac{x+y}{x^2+y^2}$.

Le point M(x,y,z) est un point de $\mathscr S$ et H(x,y,0) est le projeté orthogonal de M sur (xOy).

Finalement, la surface se projette orthogonalement sur la totalité du plan (xOy).

2. Soit $H(x, 0, z) \in (xOz)$.

Ce point H est le projeté orthogonal d'un point $M(x,y,z) \in \mathscr{S}$ si et seulement s'il existe $y \in \mathbb{R}$ tel que $(x^2+y^2)z=x+y$ autrement dit si l'équation d'inconnue $y:y^2z-y+(x^2z-x)=0$ possède une solution réelle au moins c'est-à-dire si et seulement si :

$$\Delta = 1 - 4z(x^2z - x) \geqslant 0 \Longleftrightarrow 4xz(xz - 1) \leqslant 1.$$

La fonction trinôme $f:u\longmapsto 4u(u-1)-1$ est négative entre ses zéros : $u_1=\frac{1+\sqrt{2}}{2}$ et $u_2=\frac{1-\sqrt{2}}{2}$.

Finalement, la projection orthogonale de $\mathscr S$ sur (xOz) est l'ensemble :

$$\left\{(x,0,z)\in\mathbb{R}^3:\frac{1-\sqrt{2}}{2}\leqslant xz\leqslant\frac{1+\sqrt{2}}{2}\right\}.$$

Cette projection est la partie du plan y=0 délimitée par les hyperboles $xz=\frac{1\pm\sqrt{2}}{2}.$

Solution Exercice 15. Soit \mathcal{S} la surface d'équation $3x^2 + 4xy + 2yz + 4xz = 0$. Donnons l'équation du plan tangent en un point régulier.

La fonction $f:(x,y,z)\longmapsto 3x^2+4xy+2yz+4xz$ est de classe \mathscr{C}^1 sur \mathbb{R}^3 car polynomiale.

On calcule le gradient :

$$\nabla f(x, y, z) = \begin{pmatrix} 6x + 4y + 4z \\ 4x + 2z \\ 2y + 4x \end{pmatrix}.$$

Le seul point critique de f est le point (0,0,0) car le système linéaire homogène suivant est de Cramer :

$$\begin{cases} 6x + 4y + 4z &= 0\\ 4x + 2z &= 0\\ 4x + 2y &= 0 \end{cases}$$

Soit $(x_0, y_0, z_0) \neq (0, 0, 0)$ un point régulier de \mathscr{S} .

L'équation du plan tangent à $\mathscr S$ en ce point peut s'écrire :

$$(6x_0 + 4y_0 + 4z_0)(x - x_0) + (4x_0 + 2z_0)(y - y_0) + (4x_0 + 2y_0)(z - z_0) = 0$$

Solution Exercice 16. Soit $\mathcal S$ la nappe paramétrée par :

$$\begin{cases} x(u,v) &= u+v \\ y(u,v) &= u^2+v^2 \\ z(u,v) &= u^2-v^2 \end{cases}$$

1. Pour $a \in \mathbb{R}$, déterminons l'ensemble \mathscr{E}_a des points M de \mathscr{S} tels que la droite (M, \overrightarrow{d}) soit tangente à \mathscr{S} en M avec $\overrightarrow{d} = (0, 1, a)$.

On détermine le plan tangent en un point $M\begin{pmatrix} u+v\\u^2+v^2\\u^2-v^2\end{pmatrix}\in\mathscr{S}.$

On calcule les dérivées partielles premières

$$\frac{\partial f}{\partial u}(u,v) = \begin{pmatrix} 1\\ 2u\\ 2u \end{pmatrix} \quad \text{et} \quad \frac{\partial f}{\partial v}(u,v) = \begin{pmatrix} 1\\ 2v\\ -2v \end{pmatrix}.$$

La famille $(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v})$ est liée si et seulement si (u, v) = (0, 0).

Dans le cas où $(u,v) \neq (0,0)$, le plan tangent en $M\begin{pmatrix} u+v\\ u^2+v^2\\ u^2-v^2 \end{pmatrix}$ est engendré

par les vecteurs
$$\frac{\partial f}{\partial u}(u,v) = \begin{pmatrix} 1\\ 2u\\ 2u \end{pmatrix}$$
 et $\frac{\partial f}{\partial v}(u,v) = \begin{pmatrix} 1\\ 2v\\ -2v \end{pmatrix}$.

Un vecteur normal est donc:

$$\begin{pmatrix} 1 \\ 2u \\ 2u \end{pmatrix} \wedge \begin{pmatrix} 1 \\ 2v \\ -2v \end{pmatrix} = \begin{pmatrix} -8uv \\ 2(u+v) \\ 2(v-u) \end{pmatrix}.$$

La droite (M, \overrightarrow{d}) est tangente à $\mathscr S$ en M si et seulement si :

$$\begin{pmatrix} -8uv \\ 2(u+v) \\ 2(v-u) \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ a \end{pmatrix} = 0 \Longleftrightarrow u(1-a) + v(1+a) = 0$$

L'ensemble cherché est donc

$$\mathscr{E}_a = \left\{ \begin{pmatrix} u+v \\ u^2+v^2 \\ u^2-v^2 \end{pmatrix} : u(1-a) + v(1+a) = 0. \right\}$$

— Si a = -1 il vient u = 0 et $\mathscr{E}_{-1} = \left\{ \begin{pmatrix} v \\ v^2 \\ -v^2 \end{pmatrix} : v \in \mathbb{R} \right\}$: c'est une

parabole contenue dans le plan d'équation y + z = 0.

— Si $a \neq -1$, alors $v = \frac{a-1}{a+1}u$ et l'ensemble \mathcal{E}_a alors composé des triplets :

$$\mathscr{E}_a = \left\{ (u+v; u^2 + v^2, u^2 - v^2) : v = \frac{a-1}{a+1} u \right\}$$
$$= \left\{ \left(\frac{2a}{a+1} u; \frac{2(a^2+1)}{(a+1)^2} u^2; \frac{4a}{(a+1)^2} u^2 \right) : u \in \mathbb{R} \right\}.$$

C'est également une parabole contenue dans le plan $4ay - 2(a^2 + 1)z = 0$.

2. Pour $a \neq -1$ et $a \neq 0$, déterminons la projection de cet ensemble sur le plan (xOy) suivant la direction $\mathbb{R} d$.

Soit M un point de \mathscr{E}_a . On cherche $\lambda \in \mathbb{R}$ tel que :

$$M + \lambda \overrightarrow{d} = \begin{pmatrix} \frac{2a}{a+1}u \\ \frac{2(a^2+1)}{(a+1)^2}u^2 \\ \frac{4a}{(a+1)^2}u^2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ a \end{pmatrix} \in \Pi_{(xOy)} \Longleftrightarrow \frac{4a}{(a+1)^2}u^2 + \lambda a = 0$$
$$\iff \lambda = -\frac{4u^2}{(a+1)^2}$$

La projection sur $\Pi_{(xOy)}$ suivant \mathbb{R} \overrightarrow{d} est donc l'ensemble des points paramétrés par :

$$u \longmapsto \begin{pmatrix} \frac{2a}{a+1}u\\ \frac{2(a^2-1)}{(a+1)^2}u^2\\ 0 \end{pmatrix}.$$

C'est une parabole.

Solution Exercice 17. Soient \mathcal{S}_1 et \mathcal{S}_2 les deux surfaces d'équations $x^2 +$ $y^2 + xy = 1$ et $y^2 + z^2 + yz = 1$ et $\mathscr{C} = \mathscr{S}_1 \cap \mathscr{S}_2$.

1. Montrons que \mathscr{C} est la réunion de deux courbes planes.

Soit $(x, y, z) \in \mathscr{C} = \mathscr{S}_1 \cap \mathscr{S}_2$:

$$\begin{cases} x^2 + y^2 + xy - 1 &= 0 \\ y^2 + z^2 + yz - 1 &= 0 \end{cases} \xrightarrow{L_2 \leftarrow L_1 - L_2} \begin{cases} x^2 + y^2 + xy - 1 &= 0 \\ x^2 - z^2 + y(x - z) &= 0 \end{cases}$$

$$\iff \begin{cases} x^2 + y^2 + xy - 1 &= 0 \\ (x - z)(x + y + z) &= 0 \end{cases}$$

$$\iff \begin{cases} x^2 + y^2 + xy - 1 &= 0 \\ x - z &= 0 \end{cases} \text{ ou } \begin{cases} x^2 + y^2 + xy - 1 &= 0 \\ x + y + z &= 0 \end{cases}$$

On obtient la réunion de deux ellipses :

— La première ellipse \mathcal{E}_1 tracée dans le plan $\mathcal{P}_1: x-z=0$. On pose $\overrightarrow{w} = \frac{1}{\sqrt{2}}(1,0,-1) \in \mathscr{P}_1^{\perp}$ et $\overrightarrow{u} = \frac{1}{\sqrt{2}}(1,0,1)$ puis $\overrightarrow{v} = (0,1,0)$ En posant P la matrice de passage de la base canonique à la base (u, v, w)on obtient le système d'équations :

$$\begin{cases} \frac{1}{2}X^2 + \frac{1}{\sqrt{2}}XY + Y^2 & = & 1\\ Z & = & 0 \end{cases}$$

avec

$$\left(\begin{array}{c} x \\ y \\ z \end{array}\right) = P \left(\begin{array}{c} X \\ Y \\ Z \end{array}\right).$$

La matrice $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2\sqrt{2}} \\ \frac{1}{2\sqrt{2}} & 1 \end{pmatrix}$ possède deux valeurs propres strictement

positives : $\lambda = \frac{3+\sqrt{3}}{4}$ et $\mu = \frac{3-\sqrt{3}}{4}$. Une rotation d'axe $\text{Vect}(\overrightarrow{w})$ perpendiculaire au plan Vect(u,v) permet d'obtenir un système d'équations d'une ellipse dans le plan $Z_1=0$:

$$\mathscr{E}_1: \left\{ \begin{array}{rcl} \lambda X_1^2 + \mu Y_1^2 & = & 1 \\ Z_1 & = & 0 \end{array} \right.$$

- La seconde ellipse \mathcal{E}_2 est tracée dans le plan x+y+z=0.
- 2. On a vu que \mathscr{C} est la réunion de ellipses \mathscr{E}_1 et \mathscr{E}_2 .

Il existe deux points appartenant simultanément à ces deux courbes. En effet les coordonnées (x, y, z) d'un tel point vérifient les équations :

$$\mathscr{E}_{1}: \left\{ \begin{array}{rcl} x^{2}+y^{2}+xy-1 & = & 0 \\ x-z & = & 0 \end{array} \right. \quad \mathbf{ET} \quad \mathscr{E}_{2}: \left\{ \begin{array}{rcl} x^{2}+y^{2}+xy-1 & = & 0 \\ x+y+z & = & 0 \end{array} \right.$$

$$\iff \left\{ \begin{array}{rcl} x^{2}+y^{2}+xy-1 & = & 0 \\ x-z & = & 0 \\ x-z & = & 0 \end{array} \right.$$

$$\iff \left\{ \begin{array}{rcl} x^{2}+(-2x)^{2}+x(-2x)-1 & = & 0 \\ x & = & z \\ y & = & -2x \end{array} \right.$$

$$\iff \left\{ \begin{array}{rcl} x & = & \frac{1}{\sqrt{3}} \\ y & = & -\frac{2}{\sqrt{3}} \\ z & = & -\frac{1}{\sqrt{3}} \end{array} \right. \quad \mathbf{v} \quad \left\{ \begin{array}{rcl} x & = & -\frac{1}{\sqrt{3}} \\ y & = & \frac{2}{\sqrt{3}} \\ z & = & -\frac{1}{\sqrt{3}} \end{array} \right.$$

Vecteur tangent en un point de \mathcal{E}_1

Soit $(x, y, z) \in \mathcal{E}_1$.

On note $f_1(x, y, z) = x^2 + y^2 + xy - 1$ et $g_1(x, y, z) = x - z$.

Le point (x,y,z) est régulier pour les surfaces $\mathscr{S}_1':f_1=0$ et $\mathscr{S}_2':g_1=0$ car :

$$\nabla f_1(x, y, z) = \begin{pmatrix} 2x + y \\ 2y + x \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} \notin \mathscr{S}'_1$$

 et

$$\nabla g_1(x, y, z) = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Les vecteurs normaux aux plans tangents étant distincts, les plans tangents sont également distincts.

Un vecteur directeur de la tangente à \mathcal{E}_1 au point (x,y,z) est alors donné par le produit vectoriel :

$$\nabla f_1(x, y, z) \wedge \nabla g_1(x, y, z) = \begin{pmatrix} -(x+2y) \\ 2x+y \\ -(x+2y) \end{pmatrix}$$

Vecteur tangent en un point de \mathscr{E}_2

On trouve de même un vecteur directeur de la tangente en un point de \mathcal{E}_2 :

$$\left(\begin{array}{c} 2y+x\\ -(2x+y)\\ x-y \end{array}\right).$$

Les deux vecteurs conviennent aux points $(\frac{1}{\sqrt{3}}, -\frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ et $(-\frac{1}{\sqrt{3}}, +\frac{2}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$

3. Déterminons la projection orthogonale de $\mathscr C$ sur (xOz).

Un point H(x,0,z) est la projection orthogonale de $\mathscr C$ sur le plan xOz si et seulement s'il existe $y_0\in\mathbb R$ tel que :

$$\begin{cases} x^2 + y_0^2 + xy_0 - 1 &= 0 \\ x &= z \end{cases} \text{ ou } \begin{cases} x^2 + y_0^2 + xy_0 - 1 &= 0 \\ y_0 &= -(x+z) \end{cases}$$

$$\iff \begin{cases} x^2 + y_0^2 + xy_0 - 1 &= 0 \\ x &= z \end{cases} \text{ ou } \begin{cases} x^2 + y_0^2 + xy_0 - 1 &= 0 \\ y_0 &= -(x+z) \end{cases}$$

— Il vient du premier système une courbe contenue dans la droite d'équations $\begin{cases} x-z = 0 \\ y = 0 \end{cases}$

Cette projection est formée des points (x,0,x) tels que l'équation : $x^2 + y_0^2 + xy_0 - 1 = 0$ admette une solution :

$$\Delta = x^2 - 4(x^2 - 1) = 4 - 3x_0^2 \geqslant 0 \iff |x| \leqslant \frac{2}{\sqrt{3}}.$$

Il s'agit donc d'un segment de droite.

— Il vient du second système une courbe contenue dans le plan y = 0: $x^2 + (-(x+z))^2 + x(-(x+z)) - 1 = 0 \iff x^2 + xz + z^2 - 1 = 0$. Il s'agit d'une ellipse contenue dans le plan y = 0.

Solution Exercice 18. Soit $\mathscr C$ la courbe de paramétrage :

$$\begin{cases} x(t) = t \\ y(t) = t^2 \\ z(t) = t^3 \end{cases}$$

On définit la réunion $\mathscr S$ des droites tangentes $\mathscr T_t$ à la courbe $\mathscr C$ au point de paramètre M(t).

1. Un paramétrage de la surface $\mathscr S$ est :

$$\varphi: (t,\lambda) \longmapsto f(t) + \lambda u(t)$$

avec u(t) un vecteur directeur de la tangente à la courbe $\mathscr C$ au point f(t).

Le vecteur $u(t) = f'(t) = \begin{pmatrix} 1 \\ 2t \\ 3t^2 \end{pmatrix}$ est non nul donc dirige cette tangente.

Ainsi :
$$\varphi(t,\lambda) \longmapsto \begin{pmatrix} t+\lambda \\ t^2+2\lambda t \\ t^3+3\lambda t^2 \end{pmatrix}$$
.

2. Déterminons les points stationnaires pour le paramétrage obtenu. Un point $\varphi(\lambda, t)$ est stationnaire si et seulement si la famille

$$\left(\frac{\partial \varphi}{\partial t}; \frac{\partial \varphi}{\partial \lambda}\right) = \left(\begin{pmatrix} 1\\ 2t + 2\lambda\\ 3t^2 + 6\lambda t \end{pmatrix} \right) ; \begin{pmatrix} 1\\ 2t\\ 3t^2 \end{pmatrix} \text{ est li\'ee.}$$

Cette famille est liée si et seulement si $\lambda = 0$.

On se place maintenant en un point régulier de paramètre (t, λ) c'est-à-dire tel que $\lambda \neq 0$.

Les vecteurs $\frac{\partial \varphi}{\partial t} = \begin{pmatrix} 1\\ 2t + 2\lambda\\ 3t^2 + 6\lambda t \end{pmatrix}$ et $\frac{\partial \varphi}{\partial \lambda} = \begin{pmatrix} 1\\ 2t\\ 3t^2 \end{pmatrix}$ engendrent le plan tangent au point $\varphi(t,\lambda)$.

Le produit vectoriel est normal au plan tangent $\Pi_{(t,\lambda)}$:

$$\begin{pmatrix} 1 \\ 2t + 2\lambda \\ 3t^2 + 6\lambda t \end{pmatrix} \wedge \begin{pmatrix} 1 \\ 2t \\ 3t^2 \end{pmatrix} = \begin{pmatrix} 6t^2(t+\lambda) - 6t^2(t+2\lambda) \\ 3t^2 + 6\lambda t - 3t^2 \\ 2t - (2t+2\lambda) \end{pmatrix} = \begin{pmatrix} -6\lambda t^2 \\ 6\lambda t \\ -2\lambda \end{pmatrix}.$$

Ainsi, $\Pi_{(t,\lambda)} : -6\lambda t^2 x + 6\lambda ty - 2\lambda z = d$.

On déterminer d en le fait que $\varphi(t,\lambda)=M(t,\lambda)$ appartient au plan tangent. On trouve $d=-6\lambda t^2(t+\lambda)+6\lambda t(t^2+2\lambda t)-2\lambda(t^3+3\lambda t^2)=-2\lambda t^3$.

- 3. Montrons que tous les points réguliers d'une même génératrice \mathcal{T}_t ont le même plan tangent.
 - On rappelle que le plan tangent en un point régulier contient la génératrice passant par ce point : en deux points réguliers de paramètres (t, λ_1) et (t, λ_2) le plan tangent est engendré par deux vecteurs dont l'un est u(t).
 - Attention : cela ne suffit pas à prouver que le plan tangent est le même aux deux points de paramètres (t, λ_1) et (t, λ_2) (que dire du second vecteur directeur).
 - En revanche, puisqu'on se place en deux points réguliers, on a $\lambda_1 \neq 0$ et $\lambda_2 \neq 0$:

$$\Pi_{(\lambda_1,t)} : -6\lambda_1 t^2 x + 6\lambda_1 ty - 2\lambda_1 z = -2\lambda_1 t^3 \iff -6t^2 x + 6ty - 2z = -2t^3$$

$$\Pi_{(\lambda_2,t)} : -6\lambda_2 t^2 x + 6\lambda_2 ty - 2\lambda_2 z = -2\lambda_2 t^3 \iff -6t^2 x + 6ty - 2z = -2t^3.$$

Les deux plans tangents aux points de paramètres (t, λ_1) et (t, λ_2) sont donc identiques.

Solution Exercice 19.

- 1. Soit $\mathscr C$ le cercle contenu dans le plan d'équation y=1 de centre A(0,1,1) et de rayon 1.
 - Une représentation paramétrique de ce cercle est donnée par :

$$f(t) = \begin{pmatrix} \cos(t) \\ 1 \\ 1 + \sin(t) \end{pmatrix}.$$

2. On note \mathscr{S}' la surface réglée engendrée par les droites joignant un point de \mathscr{C} à son projeté orthogonal sur l'axe (Oz).

Soit
$$f(t) = \begin{pmatrix} \cos(t) \\ 1 \\ 1 + \sin(t) \end{pmatrix}$$
 un point de ce cercle. Son projeté orthogonal sur

l'axe
$$(Oz)$$
 est le point $g(t) = \begin{pmatrix} 0 \\ 0 \\ 1 + \sin(t) \end{pmatrix}$.

Le vecteur
$$u(t) = \begin{pmatrix} \cos(t) \\ 1 \\ 0 \end{pmatrix}$$
 est donc un vecteur directeur de la génératrice

de la surface réglée \mathscr{S}' :

$$\varphi(t,\lambda) = \begin{pmatrix} \cos(t) \\ 1 \\ 1 + \sin(t) \end{pmatrix} + \lambda \begin{pmatrix} \cos(t) \\ 1 \\ 0 \end{pmatrix}$$

Soit (x, y, z) un point de \mathcal{S}' : il existe λ, t tels que

$$x = (1 + \lambda)\cos t$$
, $y = 1 + \lambda$, $z = 1 + \sin t$.

Il vient $\lambda = y - 1$ puis $x = y \cos t$. On a d'autre part $z - 1 = \sin t$. Si $\lambda \neq -1$ alors $y \neq 0$ et par conséquent, on a :

$$\left(\frac{x}{y}\right)^2 + (z-1)^2 = \cos(t)^2 + \sin(t)^2 = 1 \Longrightarrow x^2 + y^2(z-1)^2 = y^2.$$

Si $\lambda=-1$ alors x=y=0 et le point (0,0,z) vérifie également l'équation $x^2+y^2(z-1)^2=y^2$.

Réciproquement, si un point (x,y,z) de l'espace vérifie l'équation $x^2+y^2(z-1)^2=y^2$ alors :

- Si y = 0, alors x = 0 et (x, y, z) = (0, 0, z) est un point de l'axe (Oz)
- Si $y \neq 0$, on pose $\lambda = y 1$ et on a $(x/y)^2 + (z 1)^2 = 1$ c'est-à-dire qu'il existe $t \in \mathbb{R}$ tel que $\frac{x}{y} = \cos t$ et $z 1 = \sin t$: autrement dit (x, y, z) est un point de la surface \mathscr{S}' .
- 3. Soit $\Pi: y = a$ un plan parallèle à xOz.
 - Si a=0, l'intersection du plan Π et de la surface $\mathscr S$ est l'ensemble des points (x,0,z) tels que $x^2+0^2(z-1)^2=0$ c'est-à-dire z=0: il s'agit de l'axe (Oz).
 - Si $a \neq 0$, l'intersection du plan Π est l'ensemble des points (x,y,z) tels que :

$$x^{2} + a^{2}(z-1)^{2} = a^{2} \Longleftrightarrow \left(\frac{x}{a}\right)^{2} + (z-1)^{2} = 1.$$

C'est une ellipse de centre $\Omega(0, a, 1)$ et demi-axes a et 1.

Solution Exercice 20. Soit $\mathscr S$ la surface d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ avec a, b, c > 0.

1. Soit $A_t(a\cos t, b\sin t, 0)$ avec avec $t \in [0; 2\pi]$. Montrons qu'il existe exactement deux droites passant par A_t et contenues dans \mathscr{S} .

Une droite $D_{\overrightarrow{u}}$ passant par A_t est complètement déterminée par un vecteur unitaire $\overrightarrow{u} = (\alpha, \beta, \gamma)$ la dirigeant.

On détermine les valeurs de α, β, γ telles que $D_{\overrightarrow{\eta}} \subset \mathscr{S}$.

On a $\alpha^2 + \beta^2 + \gamma^2 = 1$ car \overrightarrow{u} est unitaire.

De plus $D_{\overrightarrow{u}} \subset \mathscr{S}$ si et seulement si pour tout $\lambda \in \mathbb{R}$ $A_t + \lambda \overrightarrow{u} \in \mathscr{S}$ c'est-à-dire pour tout $\lambda \in \mathbb{R}$:

$$\frac{(a\cos t + \lambda\alpha)^2}{a^2} + \frac{(b\sin t + \lambda\beta)^2}{b^2} - \frac{(\lambda\gamma)^2}{c^2} = 1$$

$$\iff \frac{2a\lambda\alpha\cos(t)}{a^2} + \frac{2b\lambda\beta\sin(t)}{b^2} + \lambda^2\left(\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} - \frac{\gamma^2}{c^2}\right) = 0$$

Il vient pour tout $\lambda \neq 0$:

$$\frac{2a\alpha\cos(t)}{a^2} + \frac{2b\beta\sin(t)}{b^2} + \lambda\left(\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} - \frac{\gamma^2}{c^2}\right) = 0 \quad (*).$$

Il vient nécessairement

$$\underbrace{\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} - \frac{\gamma^2}{c^2}}_{K} = 0$$

sinon le membre de gauche dans (*) est équivalent à λK et celui de droite est nul : absurde.

Il vient enfin : $\frac{2a\alpha\cos(t)}{a^2} + \frac{2b\beta\sin(t)}{b^2} = 0.$

On a montré que si $D_{\overrightarrow{u}}$ est incluse dans $\mathscr S$ alors (α,β,γ) est solution du système :

$$(\mathcal{S}): \begin{cases} \alpha^2 + \beta^2 + \gamma^2 &= 1\\ \frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} - \frac{\gamma^2}{c^2} &= 0\\ b\alpha \cos t + a\beta \sin(t) &= 0 \end{cases}$$

La réciproque est vraie en remontant les calculs précédents.

Les nombres $\cos(t)$ et $\sin(t)$ ne peuvent pas être tous les deux nuls, on peut donc exprimer β en fonction de α ou l'inverse. On traite le premier cas $(\sin(t) \neq 0)$:

$$\beta = -\frac{b\cos(t)}{a\sin(t)}\alpha$$

$$\alpha^{2} \underbrace{\left(1 + \frac{b^{2}\cos^{2}t}{a^{2}\sin^{2}t}\right)}_{K_{1}} + \gamma^{2} = 1$$

$$\alpha^{2} \underbrace{\left(\frac{1}{a^{2}} + \frac{b^{2}\cos^{2}t}{b^{2}(a^{2}\sin^{2}t)}\right)}_{K_{2}} - \frac{\gamma^{2}}{c^{2}} = 0$$

$$\iff \begin{cases} \beta = -\frac{b\cos(t)}{a\sin(t)}\alpha \\ K_{1}\alpha^{2} + \gamma^{2} = 1 \\ K_{2}\alpha^{2} - \frac{\gamma^{2}}{c^{2}} = 0 \end{cases}$$

$$\iff \begin{cases} \beta = -\frac{b\cos(t)}{a\sin(t)}\alpha \\ \left(\frac{K_{1}}{c^{2}} + K_{2}\right)\alpha^{2} = \frac{1}{c^{2}} \\ \gamma^{2} = c^{2}K_{2}\alpha^{2} \end{cases}$$

$$\iff \begin{cases} \beta = -\frac{b\cos(t)}{a\sin(t)}\alpha \\ \alpha^{2} = \frac{1}{K_{1} + c^{2}K_{2}} \\ \gamma^{2} = c^{2}K_{2}\alpha^{2} \end{cases}$$

On obtient quatre vecteurs unitaires \overrightarrow{u}_i tels que $D_{\overrightarrow{u}} \subset \mathscr{S}$:

$$\overrightarrow{u_1} = \left(\sqrt{\frac{1}{K_1 + c^2 K_2}}, -\frac{b \cos t}{a \sin t} \sqrt{\frac{1}{K_1 + c^2 K_2}}, \sqrt{\frac{c^2 K_2}{K_1 + c^2 K_2}}\right)$$

$$\overrightarrow{u_2} = \left(-\sqrt{\frac{1}{K_1 + c^2 K_2}}, \frac{b \cos t}{a \sin t} \sqrt{\frac{1}{K_1 + c^2 K_2}}, \sqrt{\frac{c^2 K_2}{K_1 + c^2 K_2}}\right)$$

$$\overrightarrow{u_3} = \left(\sqrt{\frac{1}{K_1 + c^2 K_2}}, -\frac{b \cos t}{a \sin t} \sqrt{\frac{1}{K_1 + c^2 K_2}}, -\sqrt{\frac{c^2 K_2}{K_1 + c^2 K_2}}\right)$$

$$\overrightarrow{u_4} = \left(-\sqrt{\frac{1}{K_1 + c^2 K_2}}, \frac{b \cos t}{a \sin t} \sqrt{\frac{1}{K_1 + c^2 K_2}}, -\sqrt{\frac{c^2 K_2}{K_1 + c^2 K_2}}\right)$$

On observe que $\overrightarrow{u_4} = -\overrightarrow{u_1}$ et $\overrightarrow{u_3} = -\overrightarrow{u_2}$: il y a donc deux (pas plus) droites incluses dans $\mathscr S$ passant par A_t .

2. On considère quatre réels $x,y,u,v\in\mathbb{R}$ vérifiant $x^2+y^2=u^2+v^2$. Les points (x,y) et $(u,v)\in\mathbb{R}^2$ sont donc situés sur le même cercle de rayon $R=\sqrt{x^2+y^2}=\sqrt{u^2+v^2}$. Il existe donc une rotation du plan r telle que (x,y)=r(u,v). On note t l'angle de cette rotation, il vient :

$$\begin{cases} x = u\cos t - v\sin t \\ y = u\sin t + v\cos t \end{cases}$$

- 3. On en déduit deux familles de droites engendrant ${\mathscr S}$:
 - En effet, soit $(x, y, z) \in \mathscr{S}$: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{z^2}{c^2} = 1^2 + \frac{z^2}{c^2}$. D'après la question précédente, il existe un réel t tel que :

$$\begin{pmatrix} \frac{x}{a} \\ \frac{y}{b} \end{pmatrix} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} 1 \\ \frac{z}{c} \end{pmatrix} \iff \begin{cases} x = a\cos t - \frac{a}{c}\sin(t)z \\ y = b\sin t + \frac{b}{c}\cos(t)z \end{cases}$$

On en déduit que le point $(x, y, z) \in \mathscr{S}$ est sur la droite passant par le point $A_t(a\cos t, b\sin t, 0) \in \mathscr{S}$ et dirigée par le vecteur $\overrightarrow{u}_t = (-\frac{a}{c}\sin t, \frac{b}{c}\cos t, 1)$. Cette droite admet le paramétrage :

$$\begin{cases} x = a\cos t - \frac{a}{c}\sin(t)\lambda \\ y = b\sin t + \frac{b}{c}\cos(t)\lambda \\ z = 0 + \lambda \end{cases}, \quad \lambda \in \mathbb{R}$$

ce qui montre que la surface ${\mathscr S}$ est réglée, et admet le paramétrage :

$$\varphi: (t,\lambda) \longmapsto \left(\begin{array}{c} a\cos t - \frac{a}{c}\sin(t)\lambda \\ b\sin t + \frac{b}{c}\cos(t)\lambda \\ \lambda \end{array}\right)$$

- En tout point $A_t = (a \cos t, b \sin t, 0) \in \mathscr{S}$ passe une autre droite contenue dans \mathscr{S} .
 - Cette droite est dirigée par le vecteur $\overrightarrow{v_t} = (\frac{a}{c}\cos t, -\frac{a}{c}\cos t, 1)$ d'après la question 1. (on a permuté les signes sur les premières composantes).

On en déduit un second paramétrage de la surface :

$$\psi: (t,\lambda) \longmapsto \left(\begin{array}{c} a\cos t + \frac{a}{c}\sin(t)\lambda \\ b\sin t - \frac{b}{c}\cos(t)\lambda \\ \lambda \end{array}\right)$$

Enfin, si D est une droite incluse dans \mathscr{S} alors elle passe par un point $A_t(a\cos t, b\sin t, 0)$ du plan z = 0 et est donc l'une des deux droites passant par ce point et dirigée par $\overrightarrow{u_t}$ ou $\overrightarrow{v_t}$.

Solution Exercice 21. Montrons que la surface d'équation cartésienne $z = x^3 - 3xy$ est réglée.

Soit $(x, y, z) \in \mathscr{S}$. On pose t = x et $\lambda = y$.

On a donc $z = x^3 - 3xy = t^3 - 3\lambda t$.

Il vient un paramétrage de \mathscr{S} :

$$\varphi:(t,\lambda)\longmapsto\left(egin{array}{c}t\\0\\t^3\end{array}
ight)+\lambda\left(egin{array}{c}0\\1\\3t\end{array}
ight)=A(t)+\lambda\overrightarrow{u(t)}.$$

Solution Exercice 22. Soient $\mathscr S$ la sphère de centre A=(a,0,0) et de rayon $r\in]0;a[$ et $\mathscr S'$ la surface constituée des droites horizontales tangentes à $\mathscr S$ et sécantes à (Oz).

Déterminons une équation cartésienne de \mathscr{S}' .

L'intersection de la sphère et d'un plan horizontal d'équation $\mathscr{P}: z=k$ est :

- vide si |k| > r,
- réduite à un point si |k| = r,
- un cercle de rayon $r^2 k^2$ si $k \in]-r; r[: \begin{cases} (x-a)^2 + y^2 = r^2 k^2 \\ z = k \end{cases}$

On se place dans le cas $k \in]-r; r[$. Soit $(x_0, y_0, z_0) \in \mathscr{S} \cap \mathscr{P}_k : z_0 = k.$

On a
$$\left(\frac{x_0-a}{\sqrt{r^2-k^2}}\right)^2+\left(\frac{y_0}{\sqrt{r^2-k^2}}\right)^2=1$$
: il existe donc $t_0\in[-\pi;\pi]$ tel que:

$$x_0 = a + \sqrt{r^2 - k^2} \cos t_0$$
 ; $y_0 = \sqrt{r^2 - k^2} \sin t_0$.

La tangente à la sphère au point (x_0, y_0, z_0) est dirigée par le vecteur $(-\sin t_0, \cos t_0, 0)$. Une tangente horizontale à la sphère, située dans le plan z = k avec $k \in]-r; r[$, a pour représentation paramétrique :

$$\begin{cases} x = a + \sqrt{r^2 - k^2} \cos(t_0) - \lambda \sin(t_0) \\ y = \sqrt{r^2 - k^2} \sin(t_0) + \lambda \cos(t_0) \\ z = k \end{cases}$$

Cette tangente intersecte l'axe (O_z) en un point (0,0,z) si et seulement s'il existe λ tel que :

$$\begin{cases} 0 = a + \sqrt{r^2 - k^2} \cos(t_0) - \lambda \sin(t_0) \\ 0 = \sqrt{r^2 - k^2} \sin(t_0) + \lambda \cos(t_0) \end{cases}$$

Notons que $\cos(t_0) \neq 0$ car sinon $\cos(t_0) = 0$ et la seconde équation donnerait $\sin(t_0) = 0$ ce qui est absurde.

Si $\sin(t_0) = 0$, on obtiendrait nécessairement $\lambda = 0$ auquel cas $\cos(t_0) = -\frac{a}{\sqrt{r^2 - k^2}}$ ce qui est absurde car :

$$\left| \frac{a}{\sqrt{r^2 - k^2}} \right| > 1 \iff a^2 > r^2 - k^2 \quad (r \in]0; a[).$$

On reprend. La tangente intersecte l'axe (O_z) en un point (0,0,z) si et seulement s'il existe λ_0 tel que :

$$\begin{cases} \lambda_0 &= \frac{a}{\sin t_0} + \sqrt{r^2 - k^2} \frac{\cos(t_0)}{\sin(t_0)} \\ \lambda_0 &= -\sqrt{r^2 - k^2} \tan(t_0) \end{cases}$$

$$\iff \sqrt{r^2 - k^2} \left(\frac{\cos t_0}{\sin t_0} + \frac{\sin t_0}{\cos t_0} \right) = -\frac{a}{\sin t_0}$$

$$\iff \sqrt{r^2 - k^2} = -\frac{a \cos t_0 \sin t_0}{\sin t_0}$$

$$\iff \cos t_0 = -\frac{\sqrt{r^2 - k^2}}{a}$$

$$\iff t_0 = + \arccos\left(\underbrace{-\frac{\sqrt{r^2 - k^2}}{a}}_{\in]-1;0[} \right) \in \left] \frac{\pi}{2}; \pi \right[$$
ou $t_0 = -\arccos\left(\underbrace{-\frac{\sqrt{r^2 - k^2}}{a}}_{\in]-1;0[} \right) \in \left] -\pi; -\frac{\pi}{2} \right[.$

Par conséquent il existe deux tangentes d'altitude z=k à la sphère D_{θ_0} et $D_{\theta_0'}$ intersectant l'axe (Oz):

$$D_{\theta_0}: \begin{cases} x = a + \sqrt{r^2 - k^2} \cos\left(\arccos\left(-\frac{\sqrt{r^2 - k^2}}{a}\right)\right) - \lambda \sin\left(\arccos\left(-\frac{\sqrt{r^2 - k^2}}{a}\right)\right) \\ y = \sqrt{r^2 - k^2} \sin\left(\arccos\left(-\frac{\sqrt{r^2 - k^2}}{a}\right)\right) + \lambda \cos\left(\arccos\left(-\frac{\sqrt{r^2 - k^2}}{a}\right)\right) \\ z = k \end{cases}$$

$$\iff \begin{cases} x = a - \frac{r^2 - k^2}{a} - \lambda \sqrt{1 - \frac{r^2 - k^2}{a^2}} \\ y = \sqrt{r^2 - k^2} \sqrt{1 - \frac{r^2 - k^2}{a^2}} - \lambda \frac{\sqrt{r^2 - k^2}}{a} \end{cases}, \quad \lambda \in \mathbb{R}$$

$$z = k$$

$$D_{\theta_0'}: \begin{cases} x = a + \sqrt{r^2 - k^2} \cos\left(-\arccos\left(\frac{\sqrt{r^2 - k^2}}{a}\right)\right) - \lambda \sin\left(-\arccos\left(\frac{\sqrt{r^2 - k^2}}{a}\right)\right) \\ y = \sqrt{r^2 - k^2} \sin\left(-\arccos\left(\frac{\sqrt{r^2 - k^2}}{a}\right)\right) + \lambda \cos\left(-\arccos\left(\frac{\sqrt{r^2 - k^2}}{a}\right)\right) \\ z = k \end{cases}$$

$$\iff \begin{cases} x = a - \frac{r^2 - k^2}{a} + \lambda \sqrt{1 - \frac{r^2 - k^2}{a^2}} \\ y = -\sqrt{r^2 - k^2} \sqrt{1 - \frac{r^2 - k^2}{a^2}} - \lambda \frac{\sqrt{r^2 - k^2}}{a} \end{cases}, \quad \lambda \in \mathbb{R}$$

$$z = k$$

En posant $\mu=-\lambda$ on obtient une autre paramétrisation de la seconde tangente :

$$\begin{cases} x = a - \frac{r^2 - k^2}{a} - \mu \sqrt{1 - \frac{r^2 - k^2}{a^2}} \\ y = -\sqrt{r^2 - k^2} \sqrt{1 - \frac{r^2 - k^2}{a^2}} + \mu \frac{\sqrt{r^2 - k^2}}{a} \\ z = k \end{cases} , \quad \mu \in \mathbb{R}$$

Les points de cette tangente $D_{\theta'}$ sont les symétriques de ceux de la tangente D_{θ} par rapport au plan d'équation y = 0.

Notons que pour |k| = r les paramétrisations sont encore valables (droite dans le plan $z = \pm r$ passant par $(\pm a, 0, 0)$ et coupant l'axe (Oz)).

On en déduit une paramétrisation d'une partie de la surface \mathcal{S}' pour y>0

$$\varphi_1: (k, \lambda) \longmapsto \left(\begin{array}{c} \frac{a^2 - (r^2 - k^2)}{a} \\ \sqrt{r^2 - k^2} \sqrt{1 - \frac{r^2 - k^2}{a^2}} \\ k \end{array} \right) + \lambda \left(\begin{array}{c} -\sqrt{1 - \frac{r^2 - k^2}{a^2}} \\ -\frac{\sqrt{r^2 - k^2}}{a} \\ 0 \end{array} \right)$$

ou plus simple:

$$\varphi: (k, \lambda) \longmapsto \left(\begin{array}{c} \frac{a^2 - (r^2 - k^2)}{a} \\ \sqrt{r^2 - k^2} \sqrt{1 - \frac{r^2 - k^2}{a^2}} \\ k \end{array} \right) + \lambda \left(\begin{array}{c} \sqrt{a^2 - (r^2 - k^2)} \\ \sqrt{r^2 - k^2} \\ 0 \end{array} \right)$$

On obtient une équation cartésienne de \mathscr{S}' en remarquant que tout point $(x,y,z)\in\mathscr{S}'$ avec y>0 vérifie k=z et :

$$\frac{x - \frac{a^2 - (r^2 - k^2)}{a}}{\sqrt{a^2 - (r^2 - k^2)}} = \lambda = \frac{y - \sqrt{r^2 - k^2}\sqrt{1 - \frac{r^2 - k^2}{a^2}}}{\sqrt{r^2 - k^2}}$$

c'est-à-dire :

$$(ax - a^2 + (r^2 - z^2))\sqrt{r^2 - z^2} = \left(y - \sqrt{r^2 - z^2}\sqrt{1 - \frac{r^2 - z^2}{a^2}}\right)\sqrt{a^2 - (r^2 - z^2)}$$

Le point de \mathscr{S}' symétrique par rapport au plan d'équation y=0 vérifie l'équation :

$$(ax-a^2+(r^2-z^2))\sqrt{r^2-z^2} = \left(-y-\sqrt{r^2-z^2}\sqrt{1-\frac{r^2-z^2}{a^2}}\right)\sqrt{a^2-(r^2-z^2)}.$$

Finalement, une équation de la surface \mathscr{S}' est donnée par :

$$(ax-a^2+(r^2-z^2))\sqrt{r^2-z^2} = \left(|y| - \sqrt{r^2-z^2}\sqrt{1-\frac{r^2-z^2}{a^2}}\right)\sqrt{a^2-(r^2-z^2)}$$

Solution Exercice 23.

Soient a > 0. On considère deux droites

$$\mathscr{D}_1: \left\{ \begin{array}{ccc} y & = & a \\ z & = & a \end{array} \right. \quad \text{et } \mathscr{D}_2: \left\{ \begin{array}{ccc} x & = & a \\ z & = & 0 \end{array} \right.$$

Montrons que l'ensemble des points équidistants de \mathcal{D}_1 et \mathcal{D}_2 est une surface et donnons une équation de cette surface.

Soit $M(\alpha, \beta, \gamma)$ un point de l'espace.

• Calculons $d(M, \mathcal{D}_1)$.

La droite \mathcal{D}_1 est dirigée par le vecteur $\overrightarrow{u} = (1, 0, 0)$.

On note H le projeté orthogonal de M sur \mathcal{D}_1 . On a $d(M, \mathcal{D}_1) = ||\overrightarrow{MH}||$. On considère le point $A(0, a, a) \in \mathcal{D}_1$.

On note $\mathscr A$ l'aire du parallélogramme engendré par \overrightarrow{u} et \overrightarrow{AM} . L'aire de ce parallélogramme est égale à :

$$\begin{split} \mathscr{A} &= ||\overrightarrow{u} \wedge \overrightarrow{AM}|| \\ &= ||\overrightarrow{u} \wedge \overrightarrow{AH} + \overrightarrow{HM}|| \\ &= ||\overrightarrow{u} \wedge \overrightarrow{HM}|| \\ &= ||\overrightarrow{u}|| ||\overrightarrow{HM}|| \end{split}$$

 \overrightarrow{u} et \overrightarrow{AH} sont colinéaires et car \overrightarrow{u} et \overrightarrow{HM} sont orthogonaux. Ainsi:

$$d(M, \mathscr{D}_1) = ||\overrightarrow{HM}|| = \frac{||\overrightarrow{u} \wedge \overrightarrow{AM}||}{||\overrightarrow{u}||} = \sqrt{(a-\gamma)^2 + (a-\beta)^2}.$$

car

$$\overrightarrow{u} \wedge \overrightarrow{AM} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} \alpha \\ \beta - a \\ \gamma - a \end{pmatrix} = \begin{pmatrix} 0 \\ a - \gamma \\ \beta - a \end{pmatrix}.$$

• Calculons $d(M, \mathcal{D}_2)$.

La droite \mathcal{D}_2 est dirigée par le vecteur $\overrightarrow{v} = (0, 1, 0)$.

On note K le projeté orthogonal de M sur \mathscr{D}_2 . On a $d(M, \mathscr{D}_2) = ||\overrightarrow{MK}||$. On considère le point $B(a,0,0) \in \mathcal{D}_2$.

On note \mathscr{A} l'aire du parallélogramme engendré par \overrightarrow{v} et \overrightarrow{BM} . L'aire de ce parallélogramme est égale à :

$$\mathcal{A} = ||\overrightarrow{v} \wedge \overrightarrow{BM}||$$

$$= ||\overrightarrow{v} \wedge \overrightarrow{BK} + \overrightarrow{KM}||$$

$$= ||\overrightarrow{v} \wedge \overrightarrow{KM}||$$

$$= ||\overrightarrow{v}|| ||\overrightarrow{KM}||$$

car \overrightarrow{v} et \overrightarrow{BK} sont colinéaires et car \overrightarrow{v} et \overrightarrow{KM} sont orthogonaux. Ainsi:

$$d(M, \mathcal{D}_2) = ||\overrightarrow{KM}|| = \frac{||\overrightarrow{v} \wedge \overrightarrow{BM}||}{||\overrightarrow{v}||} = \sqrt{\gamma^2 + (a - \alpha)^2}.$$

car

$$\overrightarrow{v} \wedge \overrightarrow{BM} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} \alpha - a \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \gamma \\ 0 \\ a - \alpha \end{pmatrix}.$$

Le point $M(\alpha, \beta, \gamma)$ est donc équidistant à \mathcal{D}_1 et \mathcal{D}_2 si et seulement si :

$$\gamma^{2} + (a - \alpha)^{2} = (a - \gamma)^{2} + (a - \beta)^{2}$$

$$\iff \gamma = (\alpha - \beta) - \frac{(\alpha - \beta)(\alpha + \beta)}{2a} + \frac{a}{2}$$

On pose:

$$\left\{ \begin{array}{lll} t & = & \alpha - \beta \\ \lambda & = & \alpha + \beta \end{array} \right. \iff \left\{ \begin{array}{lll} \alpha & = & \frac{t + \lambda}{2} \\ \beta & = & \frac{\lambda - t}{2} \end{array} \right.$$

On obtient une paramétrisation de la surface constitués des points équidistants à \mathcal{D}_1 et \mathcal{D}_2 :

$$\varphi: (t,\lambda) \longmapsto \begin{pmatrix} \frac{t}{2} \\ -\frac{t}{2} \\ t + \frac{a}{2} \end{pmatrix} + \lambda \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{t}{2a} \end{pmatrix}$$

et l'on reconnait la paramétrisation d'une surface réglée.

Solution Exercice 24.

On considère le cylindre $(\Gamma, \overrightarrow{u})$ l'ensemble des points de l'espace sur les droites passant par un point $A(t) \in \Gamma$ et dirigées par le même vecteur \overrightarrow{u} .

La courbe suivante est contenue dans le plan $\Pi: -x + y + z = 2$:

$$\begin{cases} x = t^2 \\ y = t+1 \\ z = t^2 - t + 1 \end{cases}$$

Ce plan est perpendiculaire aux génératrices du cylindre par hypothèse ce qui signifie que le vecteur $\overrightarrow{u} = (-1, 1, 1)$, normal à Π , est directeur des génératrices.

On en déduit une paramétrisation du cylindre :

$$\varphi: (t, \lambda) = \begin{pmatrix} t^2 \\ t+1 \\ t^2-t+1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}.$$

Déterminons une équation cartésienne de ce cylindre.

Soit (x, y, z) un point de ce cylindre. Il existe donc $\lambda, t \in \mathbb{R}$ tels que :

$$\begin{cases} x = t^2 - \lambda \\ y = t + 1 + \lambda \\ z = t^2 - t + 1 + \lambda \end{cases}$$

On a
$$-x + y + z = 2 + 3\lambda$$
 donc $\lambda = \frac{-x + y + z - 2}{3}$.
On a $t = y - 1 - \lambda = y - 1 - \frac{-x + y + z - 2}{3} = \frac{x + 2y - z - 1}{3}$.

On obtient:

$$z = t^{2} - t + 1 + \lambda = \left(\frac{x + 2y - z - 1}{3}\right)^{2} - \frac{x + 2y - z - 1}{3} + 1 + \frac{-x + y + z - 2}{3}.$$

Solution Exercice 25.

Vérifions que la surface \mathcal{S} d'équation x(y+z)=1 est un cylindre (au sens de l'exercice précédent) de direction. $\overrightarrow{u} = (0, 1, -1)$

Pour cela, on déterminer un paramétrage de cette surface.

L'équation de $\mathscr S$ se réécrit $z=\frac{1}{x}-y$ car x ne peut être nul puisque x(y+z)=1. On pose $x = \frac{1}{t}, t \neq 0$ et $y = \lambda$.

On obtient alors directement une paramétrisation de \mathscr{S} :

$$\varphi: (t,\lambda) \in \mathbb{R}^* \times \mathbb{R} \longmapsto \begin{pmatrix} \frac{1}{t} \\ 0 \\ t \end{pmatrix} + \lambda \underbrace{\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}}_{il}$$

car tout point (x, y, z) paramétré comme ci-dessus appartient bien à la surface :

$$x(y+z) = \frac{1}{t}(\lambda + t - \lambda) = 1.$$

Par conséquent \mathscr{S} est effectivement un cylindre de direction \overrightarrow{u} .

On détermine une directrice en intersectant $\mathscr S$ avec un plan orthogonal à sa direction, c'est-à-dire au vecteur $\vec{u} = (0, 1, -1)$. Un tel plan a une équation y-z=d. On choisit d=0 et on obtient la courbe :

$$\left\{ \begin{array}{ccc} x(y+z) & = & 1 \\ y & = & z \end{array} \right. \iff \left\{ \begin{array}{ccc} 2xy & = & 1 \\ y & = & z \end{array} \right.$$

La courbe directrice est donc une hyperbole.

Solution Exercice 26. Soient a, b, c des réels non nuls. On considère la courbe paramétrée par :

$$\mathscr{C}: \left\{ \begin{array}{lcl} x & = & at \\ y & = & bt^3 \\ z & = & c(t^2+1) \end{array} \right. \quad (t \in \mathbb{R}).$$

Soit \mathcal{S} la surface engendrée par les droites parallèles au plan (xOy) et qui rencontrent \mathscr{C} en deux points.

1. Déterminons un paramétrage de \mathscr{S} .

On cherche l'intersection de la courbe \mathscr{C} et du plan d'équation z=k avec $k \in \mathbb{R}$ fixé.

Un point (x, y, z) appartient à cette intersection si et seulement s'il existe t tel que le système suivant possède au moins une solution :

$$\begin{cases} x = at \\ y = bt^{3} \\ z = c(t^{2} + 1) \\ z = k \end{cases} \iff \begin{cases} x = at \\ y = bt^{3} \\ z = c(t^{2} + 1) \\ t^{2} = \frac{k}{c} - 1 \end{cases}$$

Ce système admet des solutions si et seulement si $|k| \ge |c|$ auquel cas on obtient:

$$\begin{cases} x = a\sqrt{\frac{k}{c}-1} \\ y = b\sqrt{\frac{k}{c}-1} \left(\frac{k}{c}-1\right) \\ z = k \end{cases}$$
 ou
$$\begin{cases} x = -a\sqrt{\frac{k}{c}-1} \\ y = -b\sqrt{\frac{k}{c}-1} \left(\frac{k}{c}-1\right) \\ z = k \end{cases}$$

puis un paramétrage de \mathscr{S} (on obtient un vecteur directeur par différence des coordonnées des deux points obtenus ci-dessus et en simplifiant par 2):

$$\varphi:(t,\lambda)\longmapsto\left(\begin{array}{c}a\sqrt{\frac{t}{c}}-1\\b\sqrt{\frac{t}{c}}-1\left(\frac{t}{c}-1\right)\\t\end{array}\right)+\lambda\left(\begin{array}{c}a\sqrt{\frac{t}{c}}-1\\b\sqrt{\frac{t}{c}}-1\left(\frac{t}{c}-1\right)\\0\end{array}\right),\ |t|\geqslant|c|,\lambda\in\mathbb{R}$$

On obtient une équation cartésienne (en remarquant que z = t et en exprimant λ en fonction de x, y et t = z):

$$b\sqrt{\frac{z}{c}-1}\left(\frac{z}{c}-1\right)\left(x-a\sqrt{\frac{z}{c}-1}\right) = a\sqrt{\frac{z}{c}-1}\left(y-b\sqrt{\frac{z}{c}-1}\left(\frac{z}{c}-1\right)\right)$$

c'est-à-dire :

$$b\left(\frac{z}{c} - 1\right)^{3/2} x - a\left(\frac{z}{c} - 1\right)^{1/2} y = 0.$$

2. Déterminons l'ensemble des points de ${\mathscr S}$ pour lesquels le plan tangent contient O.

On note
$$f:(x,y,z)\longmapsto b\left(\frac{z}{c}-1\right)^{3/2}x-a\left(\frac{z}{c}-1\right)^{1/2}y$$
.

La fonction f est de classe \mathscr{C}^1 sur $\mathbb{R} \times \mathbb{R} \times] - |c|$; |c|[.

Le plan tangent à \mathscr{S} au point (x_0, y_0, z_0) admet pour vecteur normal le vecteur gradient (s'il est non nul) :

$$\nabla f(x,y,z) = \begin{pmatrix} b(\frac{z_0}{c} - 1)^{3/2} \\ -a(\frac{z_0}{c} - 1)^{1/2} \\ \frac{3b(z_0 - c)x_0 - acy_0}{2c^2\sqrt{\frac{z_0}{c} - 1}} \end{pmatrix}$$

ou plus simple (en divisant par $\sqrt{\frac{z_0}{c}-1}$):

$$\overrightarrow{n} = \begin{pmatrix} b(\frac{z_0}{c} - 1) \\ -a \\ \frac{3b(z_0 - c)x_0 - acy_0}{2c^2(\frac{z_0}{c} - 1)} \end{pmatrix}$$

D'où une équation du plan tangent à \mathscr{S} en (x_0, y_0, z_0) :

$$b\left(\frac{z_0}{c}-1\right)(x-x_0)-a(y-y_0)+\frac{3b(z_0-c)x_0-acy_0}{2c^2(\frac{z_0}{c}-1)}(z-z_0)=0.$$

Ce plan contient l'origine O si et seulement si :

$$-b\left(\frac{z_0}{c}-1\right)x_0+a-y_0-\frac{3b(z_0-c)x_0-acy_0}{2c^2(\frac{z_0}{c}-1)}z_0=0.$$

Solution Exercice 27. Déterminons une équation cartésienne du cylindre de directrice $\Gamma: \left\{ \begin{array}{ccc} x^2+y^2 & = & 1 \\ y+z & = & 1 \end{array} \right.$ et de direction $\overrightarrow{u}(0,1,1)$.

Un point (X,Y,Z) appartient au cylindre si et seulement s'il existe $(x,y,z) \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$ tels que :

$$\begin{cases} X = x \\ Y = y + \lambda \\ Z = z + \lambda \iff \begin{cases} y = Y - \lambda \\ z = Z - \lambda \\ x^2 + y^2 = 1 \\ y + z = 1 \end{cases}$$

$$(X)^2 + (Y - \lambda)^2 = 1 \\ (Y - \lambda) + (Z - \lambda) = 1$$

$$\iff X^2 + \left(Y - \frac{(Y + Z - 1)}{2}\right)^2 = 1$$

$$\iff 4x^2 + (Y + Z - 1)^2 = 4.$$

Solution Exercice 28. Déterminons une équation cartésienne du cylindre de directrice $\Gamma: \left\{ \begin{array}{rcl} z &= 0 \\ (x-2)^2 + 3y^2 &= 1 \end{array} \right.$ et de direction $\overrightarrow{u}(1,2,3)$.

Un point (X,Y,Z) appartient au cylindre si et seulement s'il existe $(x,y,z)\in\mathbb{R}^3$ et $\lambda\in\mathbb{R}$ tels que :

$$\begin{cases} X = x + \lambda \\ Y = y + 2\lambda \\ Z = z + 3\lambda \iff \begin{cases} x = X - \lambda \\ y = \frac{1}{2}(Y - \lambda) \\ z = \frac{1}{3}(Z - \lambda) \end{cases} \\ (x - 2)^2 + 3y^2 = 1 \\ z = 0 \end{cases} \qquad (X - \lambda - 2)^2 + \frac{3}{4}(Y - \lambda)^2 = 1 \\ \iff (X - Z - 2)^2 + \frac{3}{4}(Y - Z)^2 = 1$$

Solution Exercice 29. Soit Γ une courbe de l'espace et S un point de l'espace. On appelle cône de directrice Γ et de sommet S la surface engendrée par les droites passant par un point de Γ et le point S.

1. Déterminons une équation cartésienne du cône :

— de directrice
$$\Gamma$$
:
$$\begin{cases} y = z \\ x^2 + y^2 - 2x = 0 \end{cases}$$

— de sommet S(3, 0, 3).

Un point M=(X,Y,Z), différent de S, appartient au cône si et seulement s'il existe $\lambda \in \mathbb{R}^*$ tel que $S+\lambda \overrightarrow{SM}=(3+\lambda(X-3),\lambda Y,3+\lambda(Z-3))\in \Gamma$ c'est-à-dire :

$$\begin{cases} \lambda Y &= 3 + \lambda (Z - 3) \\ (3 + \lambda (X - 3))^2 + (\lambda Y)^2 - 2(3 + \lambda (X - 3)) &= 0 \end{cases}$$

$$\iff \begin{cases} \lambda = \frac{3}{Y - Z + 3} \\ (3 + \frac{3}{Y - Z + 3}(X - 3))^2 + (\frac{3}{Y - Z + 3}Y)^2 - 2(3 + \frac{3}{Y - Z + 3}(X - 3)) &= 0 \end{cases}$$

$$\iff (3X + 3Y - 3Z)^2 + 9Y^2 - 2(3X + 3Y - 3Z)(Y - Z + 3) &= 0$$

Un point M(X,Y,Z) appartient au cône ${\mathscr S}$ si et seulement si :

$$M = S(3, 0, 3)$$

ou

$$3(X+Y-Z)^2 + 3Y^2 - 2(X+Y-Z)(Y-Z+3) = 0$$
 et $Y-Z+3 \neq 0$.

Le point S(3,0,3) appartient au plan d'équation $\Pi: Y-Z+3=0$ et la courbe Γ n'a aucun point dans ce plan car les points de Γ vérifient, en particulier, Y=Z équation incompatible avec celle de $\Pi: Y-Z+3=0$.

La surface $\mathscr S$ contient donc un unique point (son sommet) dans le plan Π . La surface $\mathscr S'$ d'équation $3(X+Y-Z)^2+3Y^2-2(X+Y-Z)=0$ contient la surface $\mathscr S$, le point S(3,0,3) et son intersection avec le plan d'équation Y-Z+3 est réduite au sommet S(3,0,3):

$$\begin{cases} Y - Z &= -3 \\ 3(X - 3)^2 + 3Y^2 &= 0 \end{cases} \iff \begin{cases} X &= 3 \\ Y &= 0 \\ Z &= 3. \end{cases}$$

Ainsi, $\mathscr{S}' = \mathscr{S}$ et l'équation cherchée est celle de \mathscr{S}' :

$$\mathcal{S}: 3(X+Y-Z)^2 + 3Y^2 - 2(X+Y-Z)(Y-Z+3) = 0$$

2. Déterminer une équation cartésienne du cône :

— de directrice Γ :
$$\begin{cases} x(t) = t \\ y(t) = t^2 \\ z(t) = t+1 \end{cases}$$

— de sommet S(1,1,1).

Un point M(X,Y,Z) différent de S(1,1,1) appartient au cône si et seulement s'il existe $\lambda \in \mathbb{R}^*$ tel que $S + \lambda \overrightarrow{SM} = (1 + \lambda(X-1), 1 + \lambda(Y-1), 1 + \lambda(Z-1)) \in \Gamma$ c'est-à-dire si et seulement si :

$$\exists \lambda \neq 0, \exists t \in \mathbb{R} : \begin{cases} 1 + \lambda(X - 1) &= t \\ 1 + \lambda(Y - 1) &= t^2 \\ 1 + \lambda(Z - 1) &= t + 1 \end{cases}$$

$$\iff \begin{cases} t - 1 &= \lambda(X - 1) \\ \lambda(Y - 1) &= t^2 - 1 \\ \lambda(Z - 1) &= t \end{cases}$$

$$\iff \begin{cases} t - 1 &= \lambda(X - 1) \\ \lambda(Y - 1) &= (t - 1)(t + 1) = (\lambda(X - 1))(\lambda(Z - 1) + 1) \\ \lambda(Z - 1) &= \lambda(X - 1) + 1 \end{cases}$$

$$\iff \begin{cases} \frac{Y - 1}{X - 1} - \frac{1}{Z - 1} &= \lambda \\ \lambda(Z - 1) &= \lambda(X - 1) + 1 \end{cases}$$

$$\iff \begin{cases} t - 1 &= \lambda(X - 1) \\ \lambda(Z - 1) &= \lambda(X - 1) + 1 \end{cases}$$

$$\iff \begin{cases} t - 1 &= \lambda(X - 1) \\ \lambda &= \frac{Y - X}{(X - 1)(Z - 1)} \\ \lambda(Z - 1) &= \lambda(X - 1) + 1 \end{cases}$$

$$\iff (Z - X)(Y - X) = (X - 1)(Z - 1) \text{ avec } (X, Y, Z) \neq (1, 1, 1).$$

Le sommet S(1,1,1) vérifie également l'équation (Z-X)(Y-X)=(X-1)(Z-1) qui est donc une équation cartésienne du cône.

Solution Exercice 30.

Déterminons une équation de la surface $\mathscr S$ engendrée par la rotation autour de l'axe (Oz) de la courbe $\mathscr C$:

$$\begin{cases} x^2 - y^2 - 4x + 2 &= 0 \\ x + z &= 1 \end{cases}$$

Notons que l'origine O(0,0,0) appartient à l'axe de la révolution. Soit $M(x,y,z) \in \mathbb{R}^3$.

Ce point M appartient à \mathcal{S} si et seulement s'il existe $M_0 \in \Gamma$ tel que :

$$||\overrightarrow{OM_0}|| = ||\overrightarrow{OM}|| \text{ et } M \in \mathscr{P}_k \quad (*)$$

où $\mathscr{P}_k: z=k$ est le plan orthogonal à (Oz) contenant $M_0(x_0,y_0,k)$. Les coordonnées de M_0 vérifient donc :

$$\begin{cases} x_0^2 - y_0^2 - 4x_0 + 2 &= 0 \\ x_0 &= 1 - k \end{cases}$$

$$\iff \begin{cases} (1 - k)^2 - y_0^2 - 4x_0 + 2 &= 0 \\ x_0 &= 1 - k \end{cases}$$

$$\iff \begin{cases} (1 - k)^2 - 4(1 - k) + 2 &= y_0^2 \\ x_0 &= 1 - k \end{cases}.$$

Le trinôme:

$$(1-k)^{2} - 4(1-k) + 2 = 1 - 2k + k^{2} - 4 + 4k + 2$$
$$= k^{2} + 2k - 1$$
$$= \left(k - (-1 - \sqrt{2})\left(k - (\sqrt{2} - 1)\right)\right)$$

est positif ou nul pour $k \leq -1 - \sqrt{2}$ et $k \geq \sqrt{2} - 1$.

Dans ce cas, la courbe \mathscr{C} et le plan \mathscr{P}_k se rencontrent en deux points, en particulier au point $(1-k,\sqrt{k^2+2k-1},k)$.

On utilise maintenant les CNS (*) d'appartenance à \mathscr{S} .

Le plan \mathscr{P}_k contient $M(x,y,z)\in\mathscr{S}$ si et seulement si z=k.

D'autre part,

$$||\overrightarrow{OM_0}||^2 = ||\overrightarrow{OM}||^2$$

 $\iff x^2 + y^2 = (1 - k)^2 + (k^2 + 2k - 1) = 2k^2.$

La surface de révolution est donc contenue dans la surface d'équation $x^2 + y^2 = 2z^2$ (les points (x, y, z) de la surface de révolution $\mathscr S$ ont des altitudes $z \le -1 - \sqrt{2}$ et $z \ge -1 + \sqrt{2}$).

Solution Exercice 31. Déterminons une équation de la surface de révolution \mathscr{S} engendrée par la rotation autour de l'axe (Oz) de la courbe \mathscr{C} paramétrée par:

$$\begin{cases} x(t) = \cos^3 t \\ y(t) = \sin^3 t \\ z(t) = \cos 2t \end{cases}$$

Première solution:

On note $\vec{u} = (0, 0, 1)$ un vecteur directeur de l'axe $\Delta = (Oz)$ de la révolution. Un point M(x, y, z) appartient à \mathcal{S} si et seulement si :

$$M \in \mathscr{S} \iff \exists B \in (Oz), \exists M_0 \in \Gamma, \begin{cases} ||\overrightarrow{BM}|| &= ||\overrightarrow{BM_0}|| \\ (\overrightarrow{u}|\overrightarrow{BM_0}) &= 0 \\ (\overrightarrow{u}|\overrightarrow{BM_0}) &= 0 \end{cases}$$

$$\iff \exists \lambda \in \mathbb{R}, \exists t_0 \in \mathbb{R}, \begin{cases} ||(x, y, z - \lambda)|| &= ||(\cos^3 t_0, \sin^3 t_0, \cos 2t_0 - \lambda)|| \\ z - \lambda &= 0 \\ \cos 2t_0 - \lambda &= 0 \end{cases}$$

$$\iff \exists \lambda \in \mathbb{R}, \exists t_0 \in \mathbb{R}, \begin{cases} x^2 + y^2 &= \cos^6 t_0 + \sin^6 t_0 \\ z &= \lambda \\ \cos 2t_0 &= \lambda \end{cases}$$

$$\iff \exists \lambda \in \mathbb{R}, \exists t_0 \in \mathbb{R}, \begin{cases} x^2 + y^2 &= \left(\frac{1 + \cos 2t_0}{2}\right)^3 + \left(\frac{1 - \cos 2t_0}{2}\right)^3 \\ z &= \lambda \\ \cos 2t_0 &= \lambda \end{cases}$$

$$\iff \exists \lambda \in \mathbb{R}, \exists t_0 \in \mathbb{R}, \begin{cases} 8x^2 + 8y^2 &= (1 + z)^3 + (1 - z)^3 \\ z &= \lambda \\ \cos 2t_0 &= \lambda \end{cases}$$

$$\iff \exists \lambda \in \mathbb{R}, \exists t_0 \in \mathbb{R}, \begin{cases} 8x^2 + 8y^2 &= (1 + z)^3 + (1 - z)^3 \\ z &= \lambda \\ \cos 2t_0 &= \lambda \end{cases}$$
On obtient une équation cartésienne de la surface de révolution of the surface of the contraction of the surface described in the contraction of the

Deuxième solution

Un point M(x, y, z) appartient à \mathscr{S} si et seulement si c'est l'image d'un point $(\cos^3 t_0, \sin^3 t_0, \cos 2t_0) \in \Gamma$ par la rotation d'axe (Oz) et d'un certain angle $\theta \in [0; 2\pi].$

Une paramétrisation de \mathscr{S} est donc donnée par :

$$\begin{cases} x = \cos\theta \cos^3 t_0 - \sin\theta \sin^2 t_0 \\ y = \sin\theta \cos^3 t_0 + \cos\theta \sin^3 t_0 \\ z = \cos 2t_0 \end{cases}, \quad t_0 \in \mathbb{R}, \theta \in [0; 2\pi].$$

On en déduit que les coordonnées de $M(x,y,z) \in \mathscr{S}$ vérifient l'équation :

$$x^2 + y^2 = \cos^6 t_0 + \sin^6 t_0 = 6z^2 + 2$$
 avec $z \in [-1; 1]$.

Solution Exercice 32. Soit a un réel strictement positif.

Déterminer l'équation de la surface de révolution $\mathcal S$ obtenue par rotation, autour de l'axe (Oz), de la parabole d'équation :

$$\mathscr{P}: \left\{ \begin{array}{rcl} x & = & a \\ y & = & 3z^2 + a^2 \end{array} \right.$$

Notons que O(0,0,0) appartient à l'axe de la révolution. M(x,y,z) appartient à la surface de révolution $\mathscr S$ si et seulement si :

 $\exists M_0(x_0,y_0,z_0) \in \mathscr{P}, \left\{ \begin{array}{l} M,M_0 \text{ appartiennent au même plan orthogonal à } (Oz) \\ ||\overrightarrow{OM}|| = ||\overrightarrow{OM_0}|| \end{array} \right.$

$$\iff \exists (x_0, y_0, z_0), \exists k \in \mathbb{R}, \begin{cases} z_0 &= k \\ z &= k \\ x^2 + y^2 + k^2 &= x_0^2 + y_0^2 + k^2 \\ x_0 &= a \\ y_0 &= 3k^2 + a^2 \end{cases}$$

$$\iff \exists (x_0, y_0, z_0), \exists k \in \mathbb{R}, \begin{cases} z_0 &= k \\ z &= k \\ x^2 + y^2 &= a^2 + (3k^2 + a^2)^2 \\ x_0 &= a \\ y_0 &= 3k^2 + a^2 \end{cases}$$

On obtient une équation cartésienne de la surface de révolution :

$$x^2 + y^2 = a^2 + (3z^2 + a^2)^2.$$

Solution Exercice 33.

Montrons que la surface $\mathscr S$ d'équation $(x^2+y^2+z^2)^2=x^2-y^2-z^2$ est de révolution.

L'intersection de \mathscr{S} et du plan d'équation z=0 est la courbe :

$$\mathscr{C}: \left\{ \begin{array}{rcl} (x^2 + y^2)^2 & = & x^2 - y^2 \\ z & = & 0 \end{array} \right.$$

Montrons que la surface \mathscr{S}' de révolution de \mathscr{C} autour de l'axe (Ox) est \mathscr{S} . Notons que (Ox) contient le point O(0,0,0).

Un point M(x, y, z) appartient à \mathcal{S}' et seulement si :

$$\exists M_0 \in \mathscr{C}: \left\{ \begin{array}{l} M, M_0 \text{ appartienment au même plan orthogonal à } (Ox) \\ ||\overrightarrow{OM}|| = ||\overrightarrow{OM_0}|| \end{array} \right.$$

$$\iff \exists (x_0, y_0, z_0), \exists k \in \mathbb{R}, \begin{cases} x_0 &= k \\ x &= k \\ (x_0^2 + y_0^2)^2 &= x_0^2 - y_0^2 \\ z_0 &= 0 \\ x^2 + y^2 + z^2 &= x_0^2 + y_0^2 + z_0^2 \end{cases}$$

$$\iff \exists (x_0, y_0, z_0), \exists k \in \mathbb{R}, \begin{cases} x_0 &= k \\ x &= k \\ (k^2 + y_0^2)^2 &= k^2 - y_0^2 \\ z_0 &= 0 \\ k^2 + y^2 + z^2 &= k^2 + y_0^2 \end{cases}$$

$$\iff \exists (x_0, y_0, z_0), \exists |k| \leqslant |x_0|, \begin{cases} x_0 &= k \\ x &= k \\ (k^2 + y_0^2)^2 &= k^2 - y_0^2 \\ z_0 &= 0 \\ y^2 + z^2 &= y_0^2 \end{cases}$$

L'équation $(k^2 + y_0^2)^2 = k^2 - y_0^2$ d'inconnue y_0^2 est équivalente à :

$$k^{4} + 2k^{2}y_{0}^{2} + y_{0}^{4} - k^{2} + y_{0}^{2} = 0 \iff y_{0}^{4} + y_{0}^{2}(2k^{2} + 1) + k^{2}(k^{2} - 1) = 0$$
$$\iff y_{0}^{2} = -k^{2} - \frac{1}{2} + \frac{1}{2}\sqrt{8k^{2} + 1} \geqslant 0$$

On obtient une équation de la surface \mathscr{S}' :

$$\underbrace{y^2 + z^2}_{y_0^2} = -x^2 - \frac{1}{2} + \frac{1}{2}\sqrt{8x^2 + 1}$$

$$\iff (x^2 + y^2 + z^2)^2 = \frac{1}{2} - \frac{\sqrt{8x^2 + 1}}{2} + 2x^2$$

$$\iff (x^2 + y^2 + z^2)^2 = \underbrace{\left(x^2 + \frac{1}{2} - \frac{\sqrt{8x^2 + 1}}{2}\right)}_{-y_0^2 = -y^2 - z^2} + x^2$$

$$\iff (x^2 + y^2 + z^2)^2 = x^2 - y^2 - z^2.$$

Ainsi, $\mathscr{S} = \mathscr{S}'$ est une surface de révolution d'axe (Ox) et une méridienne, obtenue par intersection de \mathscr{S} et du plan d'équation z=0 est la courbe :

$$\mathscr{C}: \left\{ \begin{array}{rcl} (x^2 + y^2)^2 & = & x^2 - y^2 \\ z & = 0 \end{array} \right.$$

On passe aux coordonnées polaires dans le plan xOy, $x = r\cos t$ et $y = r\sin t$ et il on obtient le paramètre r en fonction de t:

$$r^4 = r^2(\cos^2 t - \sin^2 t) = r^2 \cos 2t \iff r^2 = \cos(2t).$$

D'où une paramétrisation de la lemniscate de Bernoulli :

$$x(t) = \cos t \sqrt{\cos 2t}$$
 ; $y(t) = \sin t \sqrt{\cos 2t}$.

Solution Exercice 34.

- 1. Il suffit de développer : $x^3 + y^3 + z^3 3xyz = (x + y + z)(x^2 + y^2 + z^2 xy yz zx)$.
- 2. Montrons que la surface $\mathscr S$ d'équation $x^3+y^3+z^3-3xyz=1$ est de révolution.

La question précédente nous invite à considérer le plan d'équation

$$x + y + z = 0.$$

Un vecteur normal à ce plan est $\overrightarrow{u} = (1, 1, 1)$.

On se propose de montrer que $\mathscr S$ est une surface de révolution autour de l'axe $\Delta = \operatorname{Vect}(1,1,1)$. Notons que $O(0,0,0) \in \Delta$.

On intersecte $\mathcal S$ avec le plan $\Pi: x-y=0$ contenant Δ et on obtient (future méridienne) la courbe :

$$\mathscr{C}: \left\{ \begin{array}{rcl} x^3 + y^3 + z^3 - 3xyz & = & 1 \\ x & = & y \end{array} \right. \iff \left\{ \begin{array}{rcl} 2x^3 + z^3 - 3x^2z & = & 1 \\ x & = & y \end{array} \right.$$

On note \mathscr{S}' la surface obtenue par révolution de \mathscr{C} autour de l'axe Δ . Un point M(x,y,z) appartient à \mathscr{S} si et seulement si :

 $\exists M_0 \in \mathscr{C}: \left\{ \begin{array}{l} M, M_0 \text{ appartiennent au même plan orthogonal à } (\Delta) \\ ||\overrightarrow{OM}|| = ||\overrightarrow{OM_0}|| \end{array} \right.$

$$\iff \exists (x_0, y_0, z_0), \exists k \in \mathbb{R}, \begin{cases} x + y + z &= k \\ x_0 + y_0 + z_0 &= k \\ 2x_0^3 + z_0^3 - 3x_0^2 z_0 &= 1 \\ x_0 &= y_0 \\ x^2 + y^2 + z^2 &= x_0^2 + y_0^2 + z_0^2 \end{cases}$$

On cherche à déterminer $x_0^2 + y_0^2 + z_0^2$ en fonction de x, y, z. On note $A = x_0^2 + y_0^2 + z_0^2$ et $B = x_0y_0 + x_0z_0 + y_0z_0$.

On a montré à a question 1. que :

$$x_0^3 + y_0^3 + z_0^3 - 3x_0y_0z_0 = (x_0 + y_0 + z_0)(x_0^2 + y_0^2 + z_0^2 - x_0y_0 - y_0z_0 - z_0x_0)$$
$$= k(x_0^2 + y_0^2 + z_0^2 - x_0y_0 - y_0z_0 - z_0x_0)$$

Puisque $(x_0, y_0, z_0) \in \mathcal{S}$, on a :

$$x_0^3 + y_0^3 + z_0^3 - 3x_0y_0z_0 = \underbrace{(x_0 + y_0 + z_0)}_{=k} \underbrace{(x_0^2 + y_0^2 + z_0^2)}_{=A} - x_0y_0 - y_0z_0 - z_0x_0) = 1$$

donc $k = x_0 + y_0 = z_0 \neq 0$.

On en déduit que :

$$x_0^2 + y_0^2 + z_0^2 - x_0 y_0 - y_0 z_0 - z_0 x_0 = \frac{1}{k}$$

$$\iff A - B = \frac{1}{k}.$$

D'autre part, $k^2 = (x_0 + y_0 + z_0)^2 = (x_0^2 + y_0^2 + z_0^2) + 2(x_0y_0 + x_0z_0 + y_0z_0)$:

$$A + 2B = k^2.$$

On obtient $3B = k^2 - \frac{1}{k} \iff B = \frac{1}{3} \left(k^2 - \frac{1}{k} \right)$ et $A = B + \frac{1}{k} = \frac{2}{3k} + \frac{k^2}{3}$. Une équation de \mathscr{S} :

$$x^{2} + y^{2} + z^{2} = A = \frac{2}{3(x+y+z)} + \frac{(x+y+z)^{2}}{3}$$

$$\iff x^{3} + y^{3} + z^{3} - 3xyz = 1.$$

Solution Exercice 35.

1. Déterminons une équation cartésienne du cylindre de révolution de rayon R>0 et d'axe $D: \left\{ \begin{array}{ll} x=z+3\\ y=z-1 \end{array} \right.$

L'axe D est dirigé par le vecteur $\overrightarrow{u}=(1,1,1)$ et passe par le point A(3,-1,0). Soit M(x,y,z) un point du cylindre. La distance de M à l'axe D est constante, égale au rayon R. On note H le projeté orthogonal de M sur R. On a donc $||\overrightarrow{HM}|| = R$. La norme de $||\overrightarrow{HM}||$ est la distance du point M à l'axe D. On peut exprimer cette distance à l'aide du produit vectoriel :

$$||\overrightarrow{HM}|| = R = d(M, D) = \frac{||\overrightarrow{u} \wedge \overrightarrow{AM}||}{||\overrightarrow{u}||}$$

On calcule:

$$\overrightarrow{u} \wedge \overrightarrow{AM} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \wedge \begin{pmatrix} x-3 \\ y+1 \\ z \end{pmatrix} = \begin{pmatrix} z-(y+1) \\ (x-3)-z \\ (y+1)-(x-3) \end{pmatrix}$$
$$= \begin{pmatrix} z-y-1 \\ x-z-3 \\ -x+y+4 \end{pmatrix}.$$

On en déduit que :

$$R^{2} = \frac{||\overrightarrow{u} \wedge \overrightarrow{AM}||^{2}}{||\overrightarrow{u}||^{2}}$$

$$\iff R^{2} = \frac{1}{3} \left((z - y - 1)^{2} + (x - z - 3)^{2} + (-x + y + 4)^{2} \right).$$

Déterminons R tel que ce cylindre soit tangent à l'axe (Oz).

Le cylindre $\mathscr S$ est tangent à l'axe (Oz) en un point (0,0,z) appartenant au cylindre si et seulement si l'intersection $\mathscr S\cap (Oz)$ et réduite à un point (0,0,z) vérifiant :

$$3R^2 = (z-1)^2 + (z+3)^2 + 16.$$

Ce trinôme possède une racine double si et seulement si son discriminant $\Delta=6R^2-48$ est nul i.e. $R=2\sqrt{2}>0$ (et le point de contact $\mathscr{S}\cap(Oz)$ est le point (0,0,-1).)

2. Déterminons une équation cartésienne du cône de révolution d'axe D: $\begin{cases} x = y \\ y = z \end{cases}, \text{ de sommet } O \text{ et de demi-angle au sommet } \frac{\pi}{6}.$

On note $\overrightarrow{u} = (1, 1, 1)$ un vecteur directeur de D.

On peut utiliser le produit vectoriel comme à la question précédente (voir le cours) ou utiliser le produit scalaire :

$$(\overrightarrow{u}|\overrightarrow{OM})^2 = ||\overrightarrow{u}||^2 ||OM||^2 \underbrace{\cos(\overrightarrow{u}, \overrightarrow{SM})^2}_{\cos^2(\frac{\pi}{6}) = \cos^2(\pi - \frac{\pi}{6}) = \frac{3}{4}}$$

$$\iff (x + y + z)^2 = \frac{3}{4} \times 3 \times (x^2 + y^2 + z^2)$$