1)Logic circuit with Mux

2) Implement 4-bit adder using addition operator

3) Implement 2-to-4 Decoder using conditional operator

4) Implement an even parity generator module.

5) Implement a comparator

```
C:/questasim64_2021.1/examples/FIVE_CODE.v (/comparator) - Default ===
1
    module comparator(A,B,A_graeterthan_B,A_equals_B,A_lessthan_B);
2
      input [3:0]A;
3
      input [3:0]B;
4
      output A_graeterthan_B,A_equals_B,A_lessthan_B;
5
      assign A graeterthan B=(A>B)?1'b1:1'b0;
     assign A_equals_B=(A==B)?1'b1:1'b0;
6
     assign A lessthan B= (A<B) ?1'b1:1'b0;
7
8
    - endmodule
9
```


Wave - Default					VIIII		
\$1 √	Msgs						
	4'hf	(f		8	5	0	
- - ↓ /comparator/B	4'h9	9		f	5	0	
.	1'h1						
/comparator/A_equ	1'h0						
/comparator/A_less	1'h0						