Quiz

(!) This is a preview of the draft version of the quiz.

Question 2	5 pts
With the above code and	
A * B	
the result is	
Concatenation of the two lists	
A matrix product matrix([[15, 18], [35, 42]])	
An elementwise product of the matrix elements: array([[5, 12], [15, 24]])	
TypeError: can't multiply sequence by non-int of type 'list'	

Question 5	5 pts
Can deep neural networks be trained in an unsupervised way?	
O Yes	
O No	

☐ Complex problems such as a 1000-category classification.

Question 6	5 nts
Question 6	5 pts

There are exactly six fish tanks in a room of the aquarium. The six tanks contain the following numbers of fish:

 $x_1=5, x_2=5, x_3=8, x_4=12, x_5=15, x_6=18$. The variance of the population is

- 0 10.5
- 24.25
- 29.1
- 0 145.5

Question 7 5 pts

Consider the function $\ L = -u^T S u + \lambda u^T u$, where $\ u \in R^d$ and $\ S \in R^{d imes d}$.

 λ is a constant value. Which of the following is the most accurate expression of $\frac{\partial L}{\partial u}$

Question 8 5 pts

Let $X=\left\{x_i\in R^d\right\}_{1\leq i\leq n}$ be a set of observations, and S is its corresponding scatter matrix. In Principal Component Analysis (PCA), X is projected onto a k dimensional subspace (k< d).

Which of the following is the objective function of PCA for k=1

Question 9 5 pts

Consider the following general objective function of sparse coding

$$\begin{aligned} \min_{\alpha, \phi} J(\theta) &= \sum_{i=1}^n \left(\left\| \boldsymbol{x}_i - \sum_{j=1}^k \alpha_{ij} \phi_j \right\|^2 + \beta \sum_{j=1}^k |\alpha_{ij}| \right) \\ \text{s.t. } \left\| \phi_j \right\|^2 \leq 1, \forall j = 1, \dots, k \end{aligned}$$

Which of the following is most likely to be wrong?

Ougstion 10		Ento

Which of the following is the Sigmoid function

$$f(s)=rac{e^{-s}}{1+e^{-s}}$$

$$f(s) = rac{1}{1+e^{-s}}$$

$$\int f(s) = rac{1}{1-e^{-s}}$$

$$\int f(s) = rac{e^{-s}}{1-e^{-s}}$$

Question 11 10 pts

Given \boldsymbol{s} as the input of Tanh function, when would Tanh function lead to vanishing gradient problem

$$\circ$$
 $s o -\infty$

$$\circ$$
 $s o \epsilon$

Suppose we have trained a neural network (ReLU on the hidden layer) for a 3-category classification problem, in which the weights and bias are

Consider a test example [1, -1, 2, -3]^T

The output $\;\hat{\pmb{y}}\;$ of the network is

- $[0.24, 0.00, 0.69]^T$
- $[0.12, 0.00, 0.99]^T$
- $[0.00, 1.00, 0.00]^T$
- $[0.05, 0.99, 0.00]^T$

Question 13 10 pts

The ground-truth output is $[0, 1, 0]^T$. Given the squared loss function $\frac{1}{2}\|y-\hat{y}\|^2$, the prediction error of this test example is

Question 14 10 pts

Given a softmax layer before $\ m{y}$, the output of the so	oftmax layer is
$[0.0000, 1.000, 0.0000]^T$	
$[0.2378, 0.1947, 0.5675]^T$	
$[0.1358, 0.1289, 0.7353]^T$	
$[0.7823, 0.1502, 0.0675]^T$	
Question 15	10 pts
Given a softmax layer before $m{y}$, the final cross-entr	opy loss of this test example is
9	

Submit Quiz

Saving...