LIQUID CRYSTAL DISPLAY DEVICE

Patent Number:

JP5297412

Publication date:

1993-11-12

inventor(s):

OTA YASUMITSU; others: 02

Applicant(s)::

NIPPON STEEL CORP

Requested Patent:

__ JP5297412

Application Number: JP19920129624 19920422

Priority Number(s):

IPC Classification:

G02F1/136; G02F1/1343; G09F9/30

EC Classification:

Equivalents:

Abstract

PURPOSE:To obtain the liquid crystal display device where electrodes for auxiliary capacitances can be formed without greatly decreasing the aperture rate.

CONSTITUTION:An auxiliary electrode (hatched part) 18 for forming a storage capacity or additional capacity is formed of chromium which is the same material with a gate electrode 12 on a lower glass substrate along the outer periphery of a pixel electrode 16. Therefore, the gate electrode 12 and auxiliary electrode 18 can be formed in the same process at the same time only by slightly altering a conventional mask for etching for forming the gate electrode 12. The auxiliary electrode 18 is in a rectangular frame shape having an opening part in the center and the specific storage capacitance or additional capacitance is obtained by an overlap with the pixel electrode 16.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-297412

(43)公開日 平成5年(1993)11月12日

(51) Int.CI.5		識別記号	庁内整理番号	FI	技術表示箇所
G02F	1/136	·5 0 0	9018-2K		
	1/1343		9018-2K		
G09F	9/30	338	6447-5G		

審査請求 未請求 請求項の数4(全 6 頁)

(21)出願番号	特願平4-129624	(71)出願人 000006655
		新日本製織株式会社
(22)出願日	平成4年(1992)4月22日	東京都千代田区大手町2丁目6番3号
		(72)発明者 太田 泰光
		神奈川県川崎市中原区井田1618番地 新日
		本製鐵株式会社先端技術研究所内
		(72)発明者 三村 秀典
		神奈川県川崎市中原区井田1618番地 新日
		本製鐵株式会社先端技術研究所内
		(72)発明者 勝野 正和
		神奈川県川崎市中原区井田1618番地 新日
		本製鐵株式会社先端技術研究所内
		(74)代理人 弁理士 半田 昌男

(54) 【発明の名称】 液晶表示装置

(57) 【要約】

【目的】 本発明は、開口率を大幅に低下させることなく、補助容量用電極を形成することができる液晶表示装置を提供する。

【構成】 蓄積容量又は付加容量を形成するための補助電極(図1で斜線を施した部分)18を、画素電極16の外周に沿ってゲート電極と同じ材料のクロムによって下側ガラス基板の上に形成する。したがって、ゲート電極を形成するための従来のエッチング用マスクに僅かな変更を加えるだけでゲート電極と補助電極を同一工程で同時に形成できる。補助電極は中央に開口部がある長方形の枠形で、画素電極との重なりによって所定の蓄積容量又は付加容量が得られる。

【特許請求の範囲】

【請求項1】 薄膜トランジスタを形成した透明基板上 に静電容量を追加するための補助電極を形成した液晶表 示装置において、

前記補助電極を画素電極の外周に沿って枠形に形成した ことを特徴とする薄膜トランジスタ。

【請求項2】 薄膜トランジスタを形成した透明基板上 に静電容量を増加するための補助電極を形成するととも に、対向電極の表面にプラックマトリックスを形成した 液晶表示装置において、

前記補助電極を前記プラックマトリックスの1つの穴の 周囲に沿った枠形に形成したことを特徴とする薄膜トラ ンジスタ。

【請求項3】 前記補助電極を前記薄膜トランジスタの ゲート電極と同じ材料によって形成したことを特徴とす る請求項1又は2記載の液晶表示装置。

【請求項4】 前記補助電極は付加容量又は蓄積容量を 得るものであることを特徴とする請求項1、2、又は3 記載の液晶表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、薄膜トランジスタ(T FT)によって各画素ごとに液晶を駆動するアクティブ マトリックス型の液晶表示装置に関するものである。

[0002]

【従来の技術】TFTを用いたアクティブマトリックス 型の液晶表示装置では、ともに透明導電膜(ITO)か らなる画素電極と対向電極とが等価的にコンデンサの極 板としての役割を果たし、この極板間に電荷が蓄積され ているか否かによって画素電極と対向電極との間にある 30 液晶がオン又はオフとされる。しかし、液晶表示装置を 高精細化するために各画素の面積を小さくするに従っ て、上下の透明導電膜の静電容量は小さくなり、僅かな 量の電荷が漏れるだけでも液晶のオン・オフ動作が不確 実となる。このため、液晶と並列に新たな容量を追加す ることによって静電容量を増加させ、蓄積電荷を保持す ることが行われている。この新たな容量は、下側の画素 電極の下部に別の電極を設け、これを上側の対向電極と 電気的に接続することによって画素電極と対向電極とか らなる容量と並列に接続する。一般に、液晶と並列に設 40 けられる容量には付加容量と蓄積容量の2種類があり、 ここでは、これらの容量を追加するための電極を総称し て補助電極と呼ぶ。

【0003】図7は付加容量型液晶表示装置の一つの画 素であって、付加容量Cadd を追加するための補助電極 を設けた例を示す平面図である。一つの画素には、2本 のデータ電極50と2本のゲート電極52とで囲まれる 領域の中にアモルファスシリコン (a-Si) TFT5 4及びITOからなる画素電極56がある。付加容量C add を設けるには、図7に示すように隣の画素のゲート 50 【0009】

電極52を広げて画素電極56とオーパーラップするよ うにして補助電極58を形成する。したがって補助電極 58を形成するための特別の工程は必要としない。

【0004】一方、図8は蓄積容量型液晶表示装置の一 つの画素の平面図であるが、この場合には隣のゲート電 極と画素電極をオーバーラップさせるかわりに別に補助 電極60を形成することによって蓄積容量Cstを設けて いる。この補助電極60はゲート電極52と同じクロム などで、ゲート電極52を形成する工程と同時にTFT 10 を形成するガラス基板上に形成することができるので、 前述した付加容量型の液晶表示装置の場合と同様に補助 電極を形成するための特別の工程が不要だという利点が

【0005】付加容量、蓄積容量いずれの場合も新たに 設けた電極は画素電極との間隔がかなり狭いので、比較 的小さい面積でも大きな容量を得ることができる。この ように付加容量Cadd 又は蓄積容量Cstを設けて静電容 量を高めることによって、より多くの電荷を蓄積するこ とができる。

20 [0006]

> 【発明が解決しようとする課題】ところで、液晶表示装 置を髙精細化すると一つ一つの画素が小さくなるので、 開口率すなわち画素のうちの表示に寄与する面積の割合 が問題となる。特にカラー液晶表示装置の場合には輝度 の低下が大きく、この開口率を大きくすることが重要で ある。しかし、上で述べたように、付加容量Cadd 又は 蓄積容量Cstを設けるために補助電極58,60を形成 すると、補助電極の部分は光が透過できないので、開口 率は低下する。付加容量や蓄積容量は液晶表示装置を高 精細化する過程で必要な容量を補うために設けられたも のであるにも拘らず、その付加容量や蓄積容量を設ける ための補助電極によって、開口率が低下し、逆に高精細 化が損なわれることとなる。

> 【0007】これを防ぐために、クロムの代わりにIT 〇を用いて蓄積容量Cstのための補助電極を形成する方 法がある。画素電極の材料でもあるITOは透明であ り、これを用いて補助電極を作れば補助電極によって光 が遮断されることはなく、したがって開口率も低下しな い。しかし、補助電極としてITOを使用するとゲート 電極と補助電極をガラス基板上に同時に形成することは できない。すなわち、ゲート電極形成工程とは別にガラ ス基板上にITOを堆積させ、これを所定のマスクを用 いてエッチングするという工程が、更に必要となり、こ の方法では、製造工程が複雑化し、製造コストを押し上 げることとなる。

> 【0008】本発明は上記事情に基づいてなされたもの であり、開口率を大幅に低下させることなく、補助電極 を形成することができる液晶表示装置を提供することを 目的とするものである。

【課題を解決するための手段】前記の課題を解決するた めの請求項1記載の本発明に係る液晶表示装置は、薄膜 トランジスタを形成した透明基板上に静電容量を追加す るための補助電極を形成した液晶表示装置において、前 記補助電極を画素電極の外周に沿って枠形に形成したこ とを特徴とするものである。

【0010】前記の課題を解決するための請求項2記載 の本発明に係る液晶表示装置は、薄膜トランジスタを形 成した透明基板上に静電容量を増加するための補助電極 を形成するとともに、対向電極の表面にプラックマトリ ックスを形成した液晶表示装置において、前記補助電極 を前記プラックマトリックスの外周に沿った枠形に形成 したことを特徴とするものである。

【0011】前記補助電極は、前記薄膜トランジスタの ゲート電極と同じ材料によって形成することが望まし

[0012]

【作用】請求項1記載の本発明は前記の構成によって、 補助電極を画素電極の外周に沿って形成したので、従来 のものに比べて補助電極による開口率の低下を抑えるこ 20

【0013】請求項2記載の本発明は前記の構成によっ て、補助電極を前記プラックマトリックスの外周に沿っ た枠形に形成したので、従来のものに比べて補助電極に よる開口率の低下を抑えることができる。

【0014】また、補助電極をゲート電極と同じ材料に よって形成することにより、補助電極とゲート電極とを 同一の工程において同時に形成することができる。した がって、補助電極を形成するために、特別の工程を設け る必要はない。

[0015]

【実施例】以下に図面を参照して本発明の実施例につい て説明する。図1は本発明の第1実施例である液晶表示 装置の一つの画素の平面図、図2は本発明の第2実施例 である液晶表示装置の一つの画素の平面図、図3は図1 の線A-A′に沿った断面図、図4は図1の線B-B′ に沿った断面図、図5及び図6は本発明になる液晶表示 装置の一つの画素の開口部分を示した平面図である。な お、図1に示す第1実施例は、図8に示す従来の蓄積容 **量型液晶表示装置に対応させたものであり、第2実施例** は、図7に示す従来の付加容量型液晶表示装置に対応さ せたものである。

【0016】図1に示す第1実施例では、2本のデータ 電極10と2本のゲート電極12に囲まれた領域が一つ の画素であり、この中に薄膜トランジスタ(TFT)1 4と画素電極16が含まれている。後述するように、下 側ガラス基板の上には蓄積容量Cstを形成するための補 助電極(図1で斜線を施した部分)18が、この画素電 極16の外周に沿って形成されている。この補助電極1 8は中央に開口部がある長方形の枠形に形成されてお 50 めに透過する光を遮断して黒色を強調するためのもの

り、且つその内周の縁と外周の縁のほぼ中央に画素電極 16の外周の縁がくるような位置関係で形成されてい る。補助電極18の側方から延びるリードは外側で対向 電極(後述する)に接続されて対向電極と同電位になっ ている。

[0017] 図2に示す第2実施例でも、図1と同じよ うに補助電極(図2で斜線を施した部分)18aが設け られているが、これは付加容量Cadd を形成するための 補助電極であり、隣の(図2の下側の)画案のゲート電 10 極12aと一体的に同じ材料、すなわちクロムで形成さ れている。その他の構成は、第1実施例と略同様である ので、図1に示す第1実施例と同一の機能を有するもの には同一の符号又は対応する符号を付することにより、 第2実施例についての詳細な説明は省略する。

【0018】図3は図1の線A-A′に沿った断面図、 図4は図1の線B-B'に沿った断面図であり、補助電 極18は下側ガラス基板20の上に形成されている。補 助電極18の外周は画素電極16の外周よりも更に外側 となるよう形成し、補助電極18の内周は画素電極16 の外周よりも内側となるよう形成する。すなわち、画素 電板16と補助電板18は一部が重なり、この重なる部 分の面積によって所定の蓄積容量が得られるよう設計す る。補助電極18の材料はTFT14のゲート電極12 と同様にクロムであり、しかも共に下側ガラス基板20 上に形成されるので、ゲート電極を形成するための従来 のエッチング用マスクに僅かな変更を加えるだけでゲー ト電極12と補助電極18とを同一工程において同時に 形成することができ、補助電極18のための特別の工程 は必要としない。

【0019】ゲート電極12と補助電極18を形成した 30 後の工程は従来の液晶表示装置の製造工程と同じであ り、まず全体に絶縁膜22を堆積する。そして、ゲート 電極12の上部には、CVD連続成膜等によりTFT1 4 が形成され、その横にはITOからなる画素電極16 が形成され、TFT14のドレインと画素電極16とが 接続される。この上には更に保護膜26と配向膜28が 積層され、配向膜28の上は液晶層30となる。液晶層 30の上の上側ガラス基板32の下部には、配向層3 4、 I T O からなる対向電極36が形成され、最上部に は光を遮断するプラックマトリックス38とカラーフィ ルター40よりなる層が形成される。プラックマトリッ クス38は画素電極16の外周よりも内側へ約5μm程 度のところまで形成され、更にTFT14の上部も覆う よう形成される。以上の製造工程は、図2に示す第2実 施例において付加容量Cadd を形成する場合も同様であ

【0020】プラックマトリックス38は、表側からT FT14に光が当たってリーク電流が生じるのを防ぐと ともに画素電極16と対向電極36の有効部分以外の斜 で、これを設けることによって画質を向上させることが できる。このブラックマトリックス38は光を遮断する ので、付加容量や蓄積容量のための補助電極を設けない 場合には、このプラックマトリックスにより画素の閉口 率が規制される。

【0021】そこで本実施例では、補助電極18を図3 及び図4に示すようにプラックマトリックス38の開口 部の縁に沿って、すなわち出来るだけプラックマトリッ クス38の影に隠れるよう形成する。このため、画素電 率を従来のものに比べて減ずることができ、したがって 従来は補助電極18を設けたために開口率が大幅に低下 したが、本実施例によれば、開口率が大幅に低下するこ とはない。なお、図3及び図4に示すように画素電極1 6の開口部周辺に約10 μm程度の重なりで補助電極1 8を設けるだけで、従来の付加容量や蓄積容量と同程度 の十分な容量を得ることができる。

[0022] ところで補助電極18はゲート電極12と 同一のマスクパターンで形成されるので、そのアライメ ントの精度はブラックマトリックスの場合よりも高い。 このため画素電極の開口部分の周縁部をプラックマトリ ックスではなく補助電極で緑どる方が高い精度が得られ る。このためブラックマトリックス38は、補助電極1 8の内側の縁から約5μm程度外側にその縁が来るよう 形成することが望ましい。図5及び図6は図1及び図2 と同様の平面図に斜線でブラックマトリックス38で覆 われる領域を示したもので、この斜線の内側の点線が補 助電極18の内側の縁となる。したがって、この点線の 内側が光を透過する開口部となり、プラックマトリック スのアライメントの冗長性を若干大きくすることができ 30 面図である。

【0023】「フラットパネル・ディスプレイ′92」 (152ページ) において、塚田他が2重遮光構造の液 晶表示装置を開示している。これによれば、ブラックマ トリックスの他にTFT側のガラス基板上に、更に遮光 層を設けることによって関口率を向上させることができ る。但し、この遮光層は単に光を遮ることを目的とする にとどまるのに対し、本発明では、画素電極と対向電極 の間の容量を増やすための補助電極18に上記の遮光層 と同様の役割をもたせることができるという点が大きな 40 特徴となっている。

【0024】本発明は、上記の実施例に限定されるもの ではなく、その要旨の範囲内において種々の変形が可能 である。

[0025]

【発明の効果】以上説明したように請求項1記載の本発 明によれば、補助電極を画素電極の外周に沿って枠形に 形成したことにより、開口率を低下させることなく、画

素電極と対向電極との間の静電容量を大きくすることが できるので、蓄積された電荷のリークによる画質の低下 を防ぐことができ、したがって特に高精細化したカラー 表示に好適な液晶表示装置を提供することができる。

6

[0026] また、請求項2記載の本発明によれば、補 助電極を前記プラックマトリックスの外周に沿った枠形 に形成したことにより、開口率を低下させることなく、 画素電極と対向電極との間の静電容量を大きくすること ができるので、蓄積された電荷のリークによる画質の低 極の開口部において光が補助電極18によって遮られる 10 下を防ぐことができ、したがって特に高精細化したカラ 一表示に好適な液晶表示装置を提供することができる。

> 【0027】また、請求項3記載の本発明によれば、補 助電極を前記薄膜トランジスタのゲート電極と同じ材料 によって形成したことにより、同一工程で両者を形成す ることができるので、補助電極を形成するための特別の 工程を必要としない液晶表示装置を提供することができ る。

【図面の簡単な説明】

【図1】本発明の第1実施例である液晶表示装置の一つ の画素の平面図である。

【図2】本発明の第2実施例である液晶表示装置の一つ の画素の平面図である。

【図3】図1の線A-A'に沿った断面図である。

【図4】図1の線B-B'に沿った断面図である。

【図5】図1に示した液晶表示装置の一つの画素の開口 部分を示した平面図である。

【図6】図2に示した液晶表示装置の一つの画素の開口 部分を示した平面図である。

【図7】付加容量型液晶表示装置の一つの画素を示す平

【図8】蓄積容量型液晶表示装置の一つの画素を示す平 面図である。

【符号の説明】

データ電極 10, 10a

12. 12a ゲート電極

薄膜トランジスタ (TFT) 14, 14a

16, 16a 画素電極

18, 18a 補助電極

20 下側ガラス基板

22 統級随

> 26 保護層

28, 34 配向膜

30 液晶層

3 2 上側ガラス基板

3.6 対向電板

38 プラックマトリックス

40 カラーフィルター

【図4】

