Método de la Secante

Alumno: Ronald Wilder Incacutipa Muñuico Docente: Ing. Torres Cruz Fred

> Programación Numérica – FINESI Universidad Nacional del Altiplano 15 de octubre de 2025

Definición del Método de la Secante

El **método de la secante** es un procedimiento numérico para encontrar raíces de ecuaciones no lineales de la forma:

$$f(x) = 0$$

Se basa en aproximar la derivada mediante una recta secante que pasa por dos puntos de la función:

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

Sustituyendo en la fórmula de Newton-Raphson se obtiene:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Procedimiento

- 1. Elegir dos valores iniciales x_0 y x_1 cercanos a la raíz.
- 2. Calcular $f(x_0)$ y $f(x_1)$.
- 3. Aplicar la fórmula:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

4. Calcular el error:

$$e = |x_{n+1} - x_n|$$

5. Repetir hasta que e < tolerancia.

Ejemplo: Método de la Secante aplicado a una función cuadrática

Se desea resolver:

$$f(x) = x^2 - 4 = 0$$

con valores iniciales $x_0 = 1$, $x_1 = 3$ y una tolerancia $e < 10^{-6}$.

Código en Python

```
# Método de la Secante
   # f(x) = x^2 - 4
   import math
5
   def f(x):
6
       return x**2 - 4
   x0 = 1
9
   x1 = 3
10
   tolerancia = 1e-6
11
  iteracion = 0
12
   max_iter = 100
13
14
   print(f"{'Iter':<6}{'x_n-1':<12}{'x_n':<12}{'x_{n+1}}':<12}{'Error':<12}")
   print("-"*55)
16
17
   while True:
18
        iteracion += 1
19
        f0 = f(x0)
20
        f1 = f(x1)
21
        x2 = x1 - f1 * (x1 - x0) / (f1 - f0)
22
        error = abs(x2 - x1)
23
24
        print(f"\{iteracion: <6\} \{x0: <12.6f\} \{x1: <12.6f\} \{x2: <12.6f\} \{error: <12.6f\}")
25
26
        if error < tolerancia or iteracion >= max_iter:
27
            break
28
29
        x0, x1 = x1, x2
30
31
   print("\nRaiz aproximada:", round(x2, 6))
   print("Iteraciones realizadas:", iteracion)
```

Ejemplo de Ejecución

Iter	x_n-1	x_n	x_{n+1}	Error	_
1	1.000000	3.000000	1.750000	1.250000	
2	3.000000	1.750000	2.000000	0.250000	
3	1.750000	2.000000	2.000000	0.000000	

Raíz aproximada: 2.0 Iteraciones realizadas: 3

Resultado Final

La raíz aproximada de:

$$f(x) = x^2 - 4$$

es:

$$x \approx 2.0$$

con un error menor a 10^{-6} , cumpliendo la tolerancia establecida.

Conclusión

El método de la secante permite encontrar raíces sin necesidad de derivar la función, utilizando solo dos puntos iniciales. Converge más rápido que el método de bisección y resulta útil cuando no se dispone de la derivada analítica. El ejemplo muestra que la secante converge a la raíz verdadera x=2 en solo tres iteraciones.