Grundlagen der Regelungstechnik Kapitel 5: Regler

Tom P. Huck

Externer Dozent DHBW Karlsruhe

November 16, 2022

Was Sie bisher gelernt haben:

- Systeme mittels verschiedener Beschreibungsformen beschreiben:
 - ► DGI
 - Sprungantwort
 - Übertragungsfunktion
 - Bode-Diagramm
 - Ortskurve
- Parameter von Systemen bestimmen.
- Systemeigenschaften (insbes. Stabilität) analysieren

In diesem Kapitel lernen Sie:

- ► Welche Arten von Reglern es gibt
- ▶ Wie man einen geeigneten Regler auswählt
- ▶ Wie man die Parameter eines Reglers bestimmt

Wiederholung: Was ist ein Regler?

- ► Ein Regler hat die Aufgabe, über ein sog. Stellglied ein dynamisches System so zu beeinflussen, dass es ein gewünschtes Verhalten erfüllt.
- Ein Regler implementiert eine Berechnungsvorschrift, die auf Basis der aktuellen Soll- und Istwerte (bzw. auch vergangener Soll- und Istwerte) eine geeignete Stellgröße berechnet.
- ► Ein Regler kann auf verschiedenste Arten (mechanisch, elektronisch analog, elektronisch digital) realisiert werden. Die konkrete Realisierung ist für uns aber unerheblich, da wir nur die abstrakte Berechnungsvorschrift betrachten.

Reglerarten

Es existieren verschiedenste Arten von Reglern:

- Proportionalregler (P-Regler)
- Integralregler (I-Regler)
- Differentialregler (D-Regler)
- Kombinationen aus P-, I- und D-Regler (PID-Regler)
- Zustandsregler
- Adaptive Regler
- Modellprädiktive Regler
- u.v.m.

In diesem Kapitel der Vorlesung werden zunächst P-, I- und D-Regler bzw. Kombinationen davon behandelt. Die Übrigen Regler werden Sie in Kapitel 7 (fortgeschrittene Regelverfahren) kennenlernen.

P-Regler

Der Proportionalregler (P-Regler) ist der einfachste Reglertyp. Er gibt eine Stellgröße aus, die aktuellen Regeldifferenz e(t) proportional ist:

$$u(t) = K_P \cdot e(t)$$

mit: $e(t) = y_{soll} - y(t)$ (Regeldifferenz)

I-Regler

Der Integralregler (I-Regler) integriert den Regelfehler über die Zeit auf und gibt den Wert des Integrals als Stellgröße aus:

$$u(t) = \frac{1}{T_n} \int_0^t e(\tau) d\tau$$

 T_V ist ein Parameter, über den eingestellt werden kann, wie schnell die Integration erfolgt. Je kleiner T_V , desto schneller (und stärker) reagiert der Regler.

D-Regler

Der Differentialregler (D-Regler) berechnet die Ableitung des Regelfehlers über die Zeit auf und gibt den Wert der Ableitung als Stellgröße aus:

$$u(t) = T_{v} \cdot \frac{e(t)}{dt}$$

 T_D ist ein Parameter, über den eingestellt werden kann, wie stark die Differentiation erfolgt. Je größer T_D , desto stärker reagiert der Regler.

PID-Regler (1)

Kombiniert man P-, I-, und D-Regler, erhält man einen sog. PID-Regler:

$$u(t) = K_P \cdot \left(e(t) + \frac{1}{T_n} \int_0^t e(\tau) d\tau + T_v \cdot \frac{d}{dt} e(t) \right)$$

Je nach Anwendungsfall müssen nicht immer alle drei Anteile des PID-Reglers vorhanden sein (es gibt z.B. auch PD- oder PI-Regler).

Aufgabe: Skizzieren Sie das Strukturbild des PID-Reglers!

PID-Regler (2)

Lösung:

Übertragungsfunktionen der Regler

Sie haben auf den vorigen Folien die Berechnungsvorschrichten für P-, I-, D- und PID-Regler kennengelernt:

- $\triangleright \ \mathsf{P} \colon u(t) = K_P \cdot e(t)$
- $l: u(t) = \frac{1}{T_V} \int_0^t e(\tau) d\tau$
- ▶ PID: $u(t) = K_P \cdot \left(e(t) + \frac{1}{T_V} \int_0^t e(\tau) d\tau + T_D \cdot \frac{d}{dt} e(t) \right)$

Frage: Wie lauten die zugehörigen Ubertragungsfunktionen in der Form?

Hinweis: Die Übertragungsform eines Reglers in der Form $R(s) = \frac{U(s)}{E(s)}$ angegeben, wobei U(s) die Laplace-Transformierte der Stellgröße und E(s) die Laplace-Transformierte des Regelfehlers ist.

Vorgehensweise beim Reglerentwurf

- Auswahl eines geeigneten Reglertyps (z.B. P-, PD, oder PID-Regler).
- 2. Bestimmung geeigneter Reglerparameter (z.B. Anhand von Einstellregeln \rightarrow dazu später mehr!)
- 3. Berechnung des offenen $(F_O(s))$ und geschlossenen $(F_G(s))$ Regelkreises.
- 4. Analyse des geregelten Systems (Stabilität, Schnelligkeit, etc...). Dies ist auf versch. Arten möglich:
 - ► Rechnerisch,
 - In Simulation,
 - Durch realen Versuch.
- Zurück zu Schritt 1 oder 2, sofern die gewünschten Eigenschaften nicht erfüllt sind (Iterativer Prozess).

Auswahl des Reglertyps

Für die Auswahl eines geeigneten Reglertyps gibt es kein Patentrezept. Oft geschieht die Auswahl auf Basis von Erfahrungen und Erprobung in Simulation/Realität ("Trial and Error"). Es gibt allerdings für grundlegende Charakteristiken, an denen man sich orientieren kann.

Charakteristik P-Anteil

- Das P-Glied verändert das Stellsignal proportional zur Regeldifferenz. Die P-Reglerstrategie ist: Je größer die Regelabweichung ist, umso größer muss die Stellgröße sein.
- Durch den Verstärkungsfaktor K_P kann die Regelgeschwindigkeit eingestellt werden (je höher, desto schneller).
- ► Ein hoher Verstärkungsfaktor kann zur Instabilität des Regelkreises und/oder zu Schwingungen führen.
- Ein P-Glied allein kann die Regeldifferenz nicht vollständig auf 0 ausregeln¹.

Charakteristik I-Anteil

- Das I-Glied integriert die Regeldifferenz, so dass bei konstanter Regeldifferenz das Ausgangssignal des Reglers stetig ansteigt. Die I-Reglerstrategie ist: Solange eine Regelabweichung auftritt, muss die Stellgröße verändert werden.
- Bei einem I-Glied wird deshalb die Regeldifferenz immer ausgeregelt.
- ► I-Glieder führen bei Regelkreisen leicht zu Instabilitäten.

Charakteristik D-Anteil

- ▶ Das D-Glied differenziert die Regeldifferenz.
- ▶ Durch die Betrachtung der Änderung des Signals wird ein zukünftiger Trend berücksichtigt. Die D- Reglerstrategie ist: Je stärker die Änderung der Regelabweichung ist, desto stärker muss das Stellsignal verändert werden.
- ▶ D-Glieder verbessern gewöhnlich die Regelgeschwindigkeit und die dynamische Regelabweichung.
- D-Glieder verstärken besonders hochfrequente (verrauschte)
 Anteile des Eingangssignals. Dies erhöht die Neigung zu Schwingungen.

Wahl der Reglerparameter

Für die Wahl der Reglerparameter gibt es verschiedene Vorgehensweisen:

- Anhand mathematischer Einstellregeln (z.B. Betragsoptimum, Symmetrisches Optimum).
- Experimentell (anhand heuristischer Einstellregeln).
- Numerisch (in Simulation).

Es folgen einige Beispiele für jeden der drei Ansätze.

Mathematische Einstellregeln

Einige Arten von Regelstrecken kommen in der Regelungstechnik immer wieder vor. Zu den häufig vorkommenden Streckentypen zählen z.B.:

- ► *PT*₁-Glied
- \triangleright PT_2 -Glied
- etc.

Für diese Typen von Regelstrecken gibt es bereits bekannte Einstellregeln, die mathematisch als Formel angegeben werden. Man findet diese in Tabellen in der Fachliteratur (z.B. O. Föllinger, "Regelungstechnik").

PT_1 -Glied (1)

Das PT_1 -Glied (auch "Verzögerungsglied erster Ordnung" oder VZ_1 -Glied genannt) beschreibt ein Streckenverhalten, bei der die Regelstrecke der Stellgröße mit Verzögerung folgt. Das Systemverhalten wird durch eine DGL 1. Ordnung beschrieben:

$$T \cdot \dot{y}(t) = -y(t) + k \cdot u(t)$$

 PT_1 Glieder kommen in der Praxis häufig vor, wenn Energiespeichernde Elemente (z.B. mech. Masse, el. Spule, etc.) in Kombination mit dissipierenden Elementen (z.B. Reibungsverluste, el. Widerstand) auftreten.

Aufgabe: Geben Sie die Übertragungsfunktion des PT₁-Glieds an!

PT_1 -Glied (2)

Übertragungsfunktion des PT_1 -Glieds:

$$G(s) = \frac{k}{s \cdot T + 1}$$

Dabei nennt man T die **Zeitkonstante**. Sie gibt an, bis zu welcher Zeit der Ausgang des PT_1 -Glieds $1-\frac{1}{e}\approx 63\%$ der Eingangsgröße erreicht hat.

Der Faktor k ist die sog. **stationäre Verstärkung**. Er gibt an, welcher Anteil der Eingangsgröße dauerhaft erreicht wird (z.B. k = 0.8: Am Ausgang stellen sich 80% der Eingansgröße ein)

PT_2 -Glied (1)

Das PT_2 -Glied ("Verzögerungsglied zweiter Ordnung" oder VZ_1 -Glied) beschreibt ebenfalls ein Streckenverhalten, bei der die Regelstrecke der Stellgröße mit Verzögerung folgt. Im Unterschied zum PT_1 -Glied sind beim PT_2 -Glied jedoch u.U. auch Schwingungen möglich. Die allgemeine DGL eines PT_2 -Glieds lautet:

$$T^2\ddot{y}(t) + 2dT\dot{y}(t) + y(t) = k \cdot u$$

Hierbei gibt k, wie auch beim PT_1 -Glied, die stationäre Verstärkung an.

PT_2 -Glied (2)

 PT_2 Glieder kommen in der Praxis z.B. dann vor, wenn mehrere Energiespeichernde Elemente (z.B. Kondensator und Spule) in Kombination auftreten. Die Energie kann dann zwischen den Speicherlementen hin- und her pendeln, wodurch Schwingungen entstehen können (z.B. el. Schwingkreis).

Die Sprungantwort eines PT_2 -Glieds enthält Schwingungen, wenn d<1 ist.

PT_2 -Glied (3)

Aufgabe: Geben Sie die Übertragungsfunktion des PT_2 -Glieds an!

Mathematische Einstellregeln

Im folgenden werden beispielhaft zwei Einstellregeln gezeigt. Diese können sowohl auf PT_1 , also auch auf PT_2 -Regelstrecken (sowie auch Verzögerungsglieder höherer Ordnung) angewendet werden.

- ▶ Betragsoptimum
- Symmetrisches Optimum

Betragsoptimum

s. Beiblatt 1

Symmetrisches Optimum

s. Beiblatt 2

Heuristische Einstellregeln (1)

Einstellregeln nach Ziegler und Nichols

 $\label{lem:bildquelle:https://www.inf.tu-dresden.de/content/institutes/iai/tis-neu/lehre/archiv/folien.ws_2011/Vortrag_Postel.pdf \ Ablesen \ von \ T_u, \ T_g.$

Heuristische Einstellregeln (2)

Einstellung der Reglerparameter auf Basis von T_u , T_g

Reglertyp	K_P	T_n	T_{ν}
Р	$\frac{T_g}{k \cdot T_{II}}$	-	-
PI	$0.9 \frac{T_g}{k \cdot T_{\prime\prime}}$	$3.33T_u$	-
PID	$1.2 \frac{T_g}{k \cdot T_u}$	$2T_u$	$0.5 T_u$

Numerisch (in Simulation)

Sei $\underline{\theta}$ der Vektor der Reglerparameter und $J(\underline{\theta})$ ein vom Anwender bestimmtes Kriterium J, welches minimiert werden soll (z.B. Stellaufwand, Regelabweichung, Überschwingweite, etc., s. Kapitel 4).

Die Wahl der Parameter erfolgt dann wie folgt:

$$\underline{\theta} = \operatorname{argmin} J(\underline{\theta})$$

Da $J(\theta)$ in diesem Fall keine mathematische Funktion ist, sondern aus der Simulation gewonnen wird, muss ein Such- bzw. Optimierungsalgorithmus verwendet werden, der iterativ das Minimum bestimmt².

²Für bestimmte Arten von Systemen und Gütekritierien ist auch eine direkte mathematische Lösung möglich (LQR-Regler). Dies wird in Kapitel 7 behandelt.

Numerisch (in Simulation)

Vorgehensweise zur iterativen Parameterbestimmung:

- 1. Wähle initiale Parameterkombination $\underline{\theta}$
- 2. Simuliere Systemverhalten mit gewählter Parameterkombination
- 3. Berechne $J(\underline{\theta})$ aus der Simulation
- 4. Gebe J an Suchalgorithmus und erhalte neues θ
- 5. Solange Abbruchkriterium nicht erfüllt: Weiter bei Schritt 2

Abbruchkriterium kann z.B. die Konvergenz des Algorithmus oder das Erreichen einer festgelegten Anzahl von Iterationen sein.