1.a)
$$\frac{13}{C_4 \cdot C_1}$$
 $\frac{13}{C_5}$ $\frac{13}{5^2C_5}$ $\frac{715.13}{3.598960}$

= 0.003576430572

b)
$$\frac{13}{93} + \frac{37}{52} + \frac{13}{52} + \frac{37}{52} + \frac{13}{52} + \frac{39}{52} + \frac$$

-0.081542617 + 0.010729291 + 0.0004951980792 =0.092767106

$$\frac{C_{1} + \frac{48}{C_{5}} + \frac{48}{C_{4}}}{\frac{52}{C_{5}}} + \frac{4}{\frac{52}{C_{5}}} + \frac{4}{\frac{52}{C_{5}}} + \frac{4}{\frac{52}{C_{5}}}$$

0.658841998 + 0.299473635+0.039929818

$$3.0)$$
 #NI = Sex
 $+N2 = 15C2$
 $P = 5C2 \times 15C2$
 $20C4$
 $D = 0.2167$
b) $+N1 = 5C4 = 5$

b)
$$\#N1 = 54 = 5$$

 $P = \frac{5}{2004} = 0.0011$

c) Page
$$P = \frac{1}{4} \times \frac{1}{3}$$
 Tp= 0.0316 x 0.0833
 $P = 0.0833$ Tp= 0.0026

$$P(F) = 0.47, P(T) = 0.58$$

$$P(F \cap W) = 0.31, P(F \wedge T) = 0.33$$

$$P(N \wedge T) = 0.36, P(F \wedge W \wedge T) = 0.08$$

$$P(W) = 0.33$$

b)
$$i$$
 $p(T_{NF}) = p(T) - p(T_{NF})$ $= 0.58 - 0.33$

$$\begin{aligned} ii) & P(T_{\Lambda}W_{\Lambda}F) \stackrel{?}{=} P(T) + P(W) - P(T_{\Lambda}F) - P(W_{\Lambda}F) \\ & - P(T_{\Lambda}W_{\Lambda}F) \end{aligned}$$

$$&= 0.58 + 0.53 - 0.33 - 0.35 - 0.08$$

$$&= 1.11 - 0.72$$

$$&= 0.39$$

(ii)
$$P(TVFUN) = P(T) + P(F) + P(W) - P(FNW) - P(FNW) - P(FNW) - P(FNW) + P(FNW) + P(FNW) - P(FNW) -$$