Lab Assignment 1

Charlie Lock

2023-03-28

Setup

```
library(GGally)
```

```
## Loading required package: ggplot2
```

```
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
```

library(car)

```
## Loading required package: carData
```

Question 1

```
BikeLanes <- data.frame(RoadWidth = c(12.8, 12.9, 12.9, 13.6, 14.5, 14.6, 15.1, 17.5, 19.5, 20.8),

Separation = c(5.5, 6.2, 6.3, 7.0, 7.8, 8.3, 7.1, 10.9, 10.8, 11.0))
```

1.1.

plot(BikeLanes\$RoadWidth, BikeLanes\$Separation, main = "Road Width against separation
between bike and car", xlab = "Road Width", ylab = "Separation between Bike and passi
ng Car")

Road Width against separation between bike and car

ggpairs(data = BikeLanes)

Warning in geom_point(): All aesthetics have length 1, but the data has 4 rows.
i Please consider using `annotate()` or provide this layer with data containing
a single row.

Plot suggests a strong linear relationship between y and x and a large correlation coefficient of 0.941 supports that so it is definitely reasonable to use simple linear regression as a model when relating y to x.

1.2.

```
LOBestFit <- lm(BikeLanes$Separation~BikeLanes$RoadWidth)
LOBestFit
```

```
##
## Call:
## lm(formula = BikeLanes$Separation ~ BikeLanes$RoadWidth)
##
## Coefficients:
## (Intercept) BikeLanes$RoadWidth
## -2.4804 0.6855
```

The output is -2.4804 for the constant and 0.6855 for the slope which means the least squared line of best fit is 'y = 0.6855 * x - 2.4804' where x is the road width and y is the separation between bike and car.

1.3.

```
anova(LOBestFit)
```

The p-value is less than 0.05 which suggests that a relationship between road width and gap between car and bike does in fact exist.

1.4.

```
stats::confint(LOBestFit)
```

```
## 2.5 % 97.5 %
## (Intercept) -5.6270076 0.6662572
## BikeLanes$RoadWidth 0.4845561 0.8864393
```

95% confidence interval for β0 is (-5.6270, 0.6663) and the 95% confidence interval for β1 is (0.4846, 0.8864)

1.5.

```
BikeLanes_residuals = resid(LOBestFit)
plot(BikeLanes$RoadWidth, BikeLanes_residuals, ylab = "Residuals", xlab = "Road Width", main = "Residuals")
abline(0,0)
```

Residuals

Question 2

lab.data <- read.csv("/Users/charlielock/Documents/R/Datasets/DataLab.csv")
head(lab.data)</pre>

```
##
     Femoral.Neck X.Fat Weight.kg Activity
## 1
            0.934
                   25.3
                          52.16313
                                     3508.44
## 2
            0.888
                    29.3
                          61.80196
                                     2773.54
## 3
            0.933
                    37.7
                          93.44003
                                     1738.97
## 4
            0.757
                    32.8
                          59.87420
                                     1665.29
## 5
            1.031
                    24.6
                          50.34876
                                     3982.95
## 6
            0.883
                    26.5
                          57.60623
                                     2985.74
```

2.1. Multicollinearity

```
ggpairs(data = lab.data, columns = c(1,2,3,4))
```

Warning in geom_point(): All aesthetics have length 1, but the data has 16 rows.
i Please consider using `annotate()` or provide this layer with data containing
a single row.

Using the output from the ggpairs() function we can see that the variables Weight.kg (weight) and X.Fat (body fat) are very strongly correlated by 0.827. This indicates multicollinearity.

2.2 ANOVA

```
lm.femoral <- lm(Femoral.Neck ~ X.Fat + Weight.kg + Activity + Weight.kg * X.Fat, la
b.data)
anova(lm.femoral)</pre>
```

```
## Analysis of Variance Table
##
## Response: Femoral.Neck
##
                      Sum Sq Mean Sq F value
                                                  Pr(>F)
## X.Fat
                    1 0.20514 0.205137 41.2591 6.835e-09 ***
## Weight.kg
                    1 0.24506 0.245059 49.2886 4.610e-10 ***
                    1 0.06384 0.063843 12.8408 0.0005585 ***
## Activity
## X.Fat:Weight.kg
                   1 0.04175 0.041745 8.3962 0.0047565 **
## Residuals
                   87 0.43256 0.004972
## ---
## Signif. codes:
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

p-value is >0.05 for all 3 predictor variables as well as for the interaction between body fat and weight. This suggests that they all have a relationship with the bone density of the femoral neck.

2.3. Significant Variables

```
summary(lm.femoral)
```

```
##
## Call:
## lm(formula = Femoral.Neck ~ X.Fat + Weight.kg + Activity + Weight.kg *
##
      X.Fat, data = lab.data)
##
## Residuals:
##
        Min
                   10
                         Median
                                       30
                                                Max
## -0.178453 -0.042754 -0.006129 0.033937 0.186795
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   1.549e-01 1.317e-01
                                          1.176 0.24274
## X.Fat
                   5.571e-03 4.087e-03
                                          1.363 0.17632
## Weight.kg
                   1.447e-02 2.852e-03
                                          5.073 2.19e-06 ***
                   2.238e-05 7.276e-06
                                          3.075 0.00281 **
## Activity
## X.Fat:Weight.kg -2.142e-04 7.394e-05 -2.898 0.00476 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07051 on 87 degrees of freedom
## Multiple R-squared: 0.5623, Adjusted R-squared: 0.5422
## F-statistic: 27.95 on 4 and 87 DF, p-value: 6.242e-15
```

Using the p-value again, since it is more than 0.05 for body fat it is implied that body fat is not a significant variable. Weight, physical activity and the interaction between body fat and weight are considered significant variables as they all output a p-value < 0.05.

2.4. Residual Plots and Tests

```
par(mfrow = c(2,2))
plot(lm.femoral)
```


ncvTest(lm.femoral)

```
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 3.927862, Df = 1, p = 0.047492
```

H0: Errors have constant variance H1: Errors do not have constant variance

The p-value is just < 0.05 so H0 is rejected which implies that the assumption of constant error variance is violated.

shapiro.test(lm.femoral\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: lm.femoral$residuals
## W = 0.97758, p-value = 0.1138
```

H0: Errors are normally distributed H1: Errors are not normally distributed

The p-value is >0.05 so H0 cannot be rejected and the assumption of normality error is not violated.

durbinWatsonTest(lm.femoral)

```
## lag Autocorrelation D-W Statistic p-value
## 1 -0.02873784 2.035368 0.916
## Alternative hypothesis: rho != 0
```

H0: Errors are not correlated H1: Errors are correlated

2.5. Comparing results using different methods

```
full=lm(Femoral.Neck~., data = lab.data)
null=lm(Femoral.Neck~1, data = lab.data)
```

Stepwise Regression Method

```
step(null, scope = list(upper = full), direction = "both")
```

```
## Start: AIC=-415.08
## Femoral.Neck ~ 1
##
              Df Sum of Sq
##
                                RSS
                                        AIC
## + Weight.kg 1
                   0.42635 0.56199 -465.02
## + X.Fat
                1
                    0.20514 0.78320 -434.49
## + Activity 1
                   0.02588 0.96246 -415.52
                            0.98834 -415.08
## <none>
##
## Step: AIC=-465.02
## Femoral.Neck ~ Weight.kg
##
##
              Df Sum of Sq
                                RSS
                                       AIC
                    0.05407 0.50793 -472.33
## + Activity
## + X.Fat
                    0.02385 0.53815 -467.01
## <none>
                            0.56199 -465.02
## - Weight.kg 1 0.42635 0.98834 -415.08
##
## Step: AIC=-472.33
## Femoral.Neck ~ Weight.kg + Activity
##
              Df Sum of Sq
                                RSS
                                        AIC
## + X.Fat
                    0.03362 0.47430 -476.63
## <none>
                            0.50793 -472.33
## - Activity 1
                   0.05407 0.56199 -465.02
## - Weight.kg 1
                    0.45454 0.96246 -415.52
##
## Step: AIC=-476.63
## Femoral.Neck ~ Weight.kg + Activity + X.Fat
##
##
              Df Sum of Sq
                                RSS
                                        AIC
## <none>
                            0.47430 -476.63
## - X.Fat
                1 0.033623 0.50793 -472.33
## - Activity 1 0.063843 0.53815 -467.01
## - Weight.kg 1 0.279621 0.75392 -435.99
```

```
##
## Call:
## lm(formula = Femoral.Neck ~ Weight.kg + Activity + X.Fat, data = lab.data)
##
## Coefficients:
## (Intercept) Weight.kg Activity X.Fat
## 5.214e-01 6.608e-03 2.574e-05 -4.923e-03
```

The Stepwise Regression method suggests that the model with the best fit includes all 3 predictor variables (weight, body fat and physical activity) as this has the minimum AIC value of -476.63.

The model is E(y) = 0.5214 + (-0.0049 * X.Fat) + (0.0066 * Weight.kg) + (0.00002 * Activity)

Backwards elimination

```
step(full, data = lab.data, direction = "backward")
```

The Backwards elimination method suggests that based off the minimum AIC value of -476.63 all 3 predictor variables should be used in the best fitted model.

The model is E(y) = 0.5214 + (-0.0049 * X.Fat) + (0.0066 * Weight.kg) + (0.00002 * Activity)

Forward selection

```
step(null, scope = list(lower = null, upper = full, direction = "forward"))
```

```
## Start: AIC=-415.08
## Femoral.Neck ~ 1
##
##
               Df Sum of Sq
                                RSS
                                        AIC
               1
                    0.42635 0.56199 -465.02
## + Weight.kg
                    0.20514 0.78320 -434.49
## + X.Fat
                1
## + Activity
                    0.02588 0.96246 -415.52
                1
## <none>
                            0.98834 -415.08
##
## Step: AIC=-465.02
## Femoral.Neck ~ Weight.kg
##
##
               Df Sum of Sq
                                RSS
                                        AIC
## + Activity
                1
                    0.05407 0.50793 -472.33
## + X.Fat
                1
                    0.02385 0.53815 -467.01
## <none>
                            0.56199 - 465.02
## - Weight.kg 1
                    0.42635 0.98834 -415.08
##
## Step: AIC=-472.33
## Femoral.Neck ~ Weight.kg + Activity
##
##
               Df Sum of Sq
                                RSS
                                        AIC
## + X.Fat
                    0.03362 0.47430 -476.63
                            0.50793 -472.33
## <none>
## - Activity
                    0.05407 0.56199 -465.02
## - Weight.kg 1
                    0.45454 0.96246 -415.52
##
## Step: AIC=-476.63
## Femoral.Neck ~ Weight.kg + Activity + X.Fat
##
##
               Df Sum of Sq
                                RSS
                                        AIC
                            0.47430 -476.63
## <none>
## - X.Fat
                   0.033623 0.50793 -472.33
## - Activity
                1 0.063843 0.53815 -467.01
## - Weight.kg 1 0.279621 0.75392 -435.99
##
## Call:
```

```
##
## Call:
## lm(formula = Femoral.Neck ~ Weight.kg + Activity + X.Fat, data = lab.data)
##
## Coefficients:
## (Intercept) Weight.kg Activity X.Fat
## 5.214e-01 6.608e-03 2.574e-05 -4.923e-03
```

The results of the forward selection method suggests that all 3 predictor variables should be used in the best fitted model as the minimum AIC is -476.63 when all 3 variables are included.

The model is E(y) = 0.5214 + (-0.0049 * X.Fat) + (0.0066 * Weight.kg) + (0.00002 * Activity)