Process sheet for **stf_res_01**

Physics and Hardware for Intelligence project

Physical Measurement Laboratory, NIST Boulder

Dated Thursday 27th February, 2020

Abstract

Fabrication flow for the SPD/JJ integration process. WSi SNSPDs are integrated with Nb/Si/Nb, externally shunted JJs. This process includes the superconducting thin-film layer and associated Nb wiring and Au resistors, a ground plane, the JJ tri-layer stack and associated PdAu shunt resistor layer, and an upper Nb wiring layer.

The process starts with a thermally oxidized Si wafer with 160 nm SiO₂.

The entire wafer is clad with oxide, and openings are etched to the bond pads ($\mathbf{v4}$). A Nb ground plane is deposited, and alignment marks are etched in this layer. Features are then etched in the ground plane ($\mathbf{m0}$).

Insert screen shot of die and image distribution from stepper:

Contents			4	4 STF (superconducting thin film)		5	
1	Deposit M1 (lower Nb wiring)	2	$egin{array}{cccc} 2 & & & & & & & & & & & & & & & & & & $	R1 (Au resistors)		6	
2	PM (alignment marks)	3					
3	Pattern and Etch M1 (lower Nb wiring)	4	6	R2 (PdAu resistors)		7	

1 Deposit M1 (lower Nb wiring)

- Begin with oxidized Si substrate
- $\bullet\,$ Deposit $120\,\mathrm{nm}$ Nb with the Lesker SNS tool
- \bullet Instructions for tool use: One Note/a4/fab/SNS
- Recipe: Nb_wire_js.rcp
- Rate: 80 nm/min; check log book for latest rate
- Insert picture of log book entry

2 PM (alignment marks)

• Expose: $220 \,\mathrm{mJ/cm^2}$

 $\bullet\,$ Develop: double puddle, $30\,\mathrm{s},\,30\,\mathrm{s}$

• Run through spin rinse dry

• Inspect with microscope

• Etch with Oxford fluorine ICP RIE

- Recipe: Nb PM He

 $* SF_6: 30 sccm$ * RF: 25 W* ICP: 800 W

* Pressure: $15\,\mathrm{mTorr}$

* He: 5 Torr

- Etch: 70 s

- Typical DC bias: $60\,\mathrm{V}$ @ $25\,\mathrm{W}$ RF

- No endpoint monitoring

• Ash: $2 \min$

3 Pattern and Etch M1 (lower Nb wiring)

Figure 1: Typical endpoint signal of Nb etch. The small peak after the dip is interpreted as the end of the etch. Endpoint is called $10 \, \text{s-} 20 \, \text{s}$ after that.

- Spin: SPR600 @ 3000 rpm
- Expose: $220 \,\mathrm{mJ/cm^2}$
- Develop: double puddle, 30 s, 30 s
- Run through spin rinse dry
- Inspect with microscope
- Etch with PlasmaTherm
 - Recipe: 150mm_Nb_sloped_ManEP
 - * SF₆: $40 \operatorname{sccm}$
 - * O₂: $16 \, sccm$
 - * RF: cut after strikie
 - * ICP: 500 W
 - * Pressure: 6.5 mTorr
 - * He: 4 Torr
 - * Rate: $\sim 0.51 \, \text{nm/s}$; $\sim 31 \, \text{nm/min}$
 - * Note: Selectivity over resist is poor; limit to 300 nm Nb to be etched
 - Etch: $\sim 230 \,\mathrm{s}$
 - No DC bias
 - Use endpoint; typical signal shown in Fig. 1
 - Insert picture of endpoint signal and log book entry
- Ash: 2 min
- Clean: acetone dirty 2 min, acetone clean 2 min, IPA, spin rinse dry
- Inspect with microscope
- Measure thickness with profilometer

4 STF (superconducting thin film)

Figure 2: Typical endpoint signal of MoSi etch. The small peak after the dip is interpreted as the end of the etch. Overetch by 10 s- 20 s after that peak.

- Ash $5 \min$
- Deposit MoSi in AJA

- Recipe: MoSi _ jms
 - RF plasma clean for $150\,\mathrm{s}$ at $80\,\mathrm{W}$
 - Typical DC voltage: $100\,\mathrm{V}$
 - Deposit MoSi: $50\,\mathrm{s}$
 - Voltage: $460\,\mathrm{V}$
 - Current: 440 mA
 - Deposit a-Si: 66 s
 - Voltage: 183 V

• Pattern

- Spin: SPR600 @ $3000\,\mathrm{rpm}$
- Expose: $220 \,\mathrm{mJ/cm^2}$
- Develop: double puddle, $30\,\mathrm{s}$, $30\,\mathrm{s}$
- Run through spin rinse dry
- Inspect with microscope
- Etch with Oxford Fl
 - * Recipe: opto-WSi-v2-lowHeForCarrier
 - SF_6 : 1 sccm
 - · Ar: 80 sccm
 - · RF: strike at 30 W, cut to 10 W as quickly as possible
 - · ICP: 600 W
 - Pressure: 10 mTorr
 - · He: 5 Torr
 - Rate: $\sim 8 \, \text{nm/min}$
 - * Etch: $\sim 60 \,\mathrm{s}\text{-}70 \,\mathrm{s}$
 - * DC bias: 67 V
 - * Use endpoint; typical signal shown in Fig. ??
 - * Insert picture of endpoint signal and log book entry
- Ash: $2 \min$
- Clean: acetone dirty 2 min, acetone clean 2 min, IPA, spin rinse dry
- Inspect with microscope

5 R1 (Au resistors)

- Pattern for liftoff
 - Ash: 3 min
 - Spin: LOR3A @ $2000\,\mathrm{rpm}$
 - Clean wafer backside if necessary with EBR
 - Bake: $150\,^{\circ}$ C for $5\,\mathrm{min}$
 - Spin: SPR660 @ 3000 rpm, no P20 (recipe: OPTO/3IN-SPR660-NO-3000-LOR IDI)
 - Expose: $220 \,\mathrm{mJ/cm^2}$
 - Bake: 110°C
 - Develop: double puddle, $30 \,\mathrm{s}$, $30 \,\mathrm{s}$
 - Run through spin rinse dry
 - Inspect with microscope
- Deposit Au in Lesker Lab18
 - Load wafer in load lock
 - Pump down
 - Run Plasma clean from vacuum fast
 - Record DC voltage in log book (typical: 245 V)
 - Plasma clean runs in load lock
 - Transfer wafer to process chamber
 - Deposit: 4 nm Ti
 - Typical dep params: 0.2 nm/s; 78 mA
 - Deposit: 120 nm Au
 - Typical dep params: 1 nm/s; 58 mA
 - Deposit: 4 nm Ti
 - Transfer wafer to load lock
 - Vent load lock
 - Insert picture of log book entry
- Perform liftoff
 - Begin heating NMP (PG remover) to 150°C
 - Soak in acetone as long as possible
 - Transfer wafer to dirty acetone beaker
 - Sonicate in dirty for 5 min
 - Exchange acetone
 - Sonicate in dirty for 5 min
 - Exchange acetone
 - If all material is visibly lifted off, move to clean acetone beaker
 - If not, repeat until removed, but at least $10\,\mathrm{min}$ sonics in dirty acetone with acetone exchange at $5\,\mathrm{min}$
 - Sonicate in clean for 5 min
 - Spray wafer with acetone spray bottle into sink
 - Place wafer in hot NMP
 - Soak wafer in hot NMP for $20\,\mathrm{min}$
 - Spray wafer with IPA into sink
 - Rinse wafer in beaker with IPA
 - Run through spin rinse dry

6 R2 (PdAu resistors)

- Pattern for liftoff
 - Ash: 3 min
 - Spin: LOR3A @ $2000\,\mathrm{rpm}$
 - Clean wafer backside if necessary with EBR
 - Bake: 150 °C for 5 min
 - Spin: SPR660 @ 3000 rpm, no P20 (recipe: OPTO/3IN-SPR660-NO-3000-LOR IDI)
 - Expose: $220 \,\mathrm{mJ/cm^2}$
 - Bake: 110°C
 - Develop: double puddle, 30 s, 30 s
 - Run through spin rinse dry
 - Inspect with microscope
- Deposit PdAu in Lesker Lab18
 - Load wafer in load lock
 - Pump down
 - Run Plasma clean from vacuum fast
 - Record DC voltage in log book (typical: 245 V)
 - Plasma clean runs in load lock
 - Transfer wafer to process chamber
 - Deposit: 4 nm Ti
 - Typical dep params: $0.2\,\mathrm{nm/s}$; $78\,\mathrm{mA}$
 - Deposit: 135 nm PdAu
 - Typical dep params: 1 nm/s; 79 mA
 - Deposit: 4 nm Ti
 - Transfer wafer to load lock
 - Vent load lock
 - Insert picture of log book entry
- Perform liftoff
 - Begin heating NMP (PG remover) to 150°C
 - Soak in acetone as long as possible
 - Transfer wafer to dirty acetone beaker
 - Sonicate in dirty for 5 min
 - Exchange acetone
 - Sonicate in dirty for 5 min
 - Exchange acetone
 - If all material is visibly lifted off, move to clean acetone beaker
 - If not, repeat until removed, but at least $10\,\mathrm{min}$ sonics in dirty acetone with acetone exchange at $5\,\mathrm{min}$
 - Sonicate in clean for 5 min
 - Spray wafer with acetone spray bottle into sink
 - Place wafer in hot NMP
 - Soak wafer in hot NMP for $20\,\mathrm{min}$
 - Spray wafer with IPA into sink
 - Rinse wafer in beaker with IPA
 - Run through spin rinse dry