Esercizi

Esame di Elementi di Logica e Strutture Discrete

Corso di Laurea in Informatica

Appello del 31·01·2023

Nome:	
Cognome:	
Matricola:	

Esercizio 1. (4 punti) Sia R una relazione di equivalenza su un insieme A. Tale insieme contiene almeno tre elementi $a, b, c \in A$ e inoltre

$$\neg R(a,b) \land \neg R(a,c) \land \neg R(b,c)$$

cioè a, b e c non sono in relazione tra loro.

Si supponga che R abbia tre classi di equivalenza, definite in questo modo:

$$A_1 = \{x \in A : R(a, x)\}$$
 $A_2 = \{x \in A : R(b, x)\}$ $A_3 = \{x \in A : R(c, x)\}$

e inoltre $A = A_1 \cup A_2 \cup A_3$.

Dimostrare che $A_1 \cap A_2 = \emptyset$, $A_2 \cap A_3 = \emptyset$, $A_1 \cap A_3 = \emptyset$

Esercizio 2. (5 punti) Sia $P \subseteq \mathbb{N}$ l'insieme dei numeri naturali pari, ovvero i multipli di 2. Supponiamo di applicare a P la relazione R così definita:

$$\forall x, y \in \mathbf{P} : R(x, y) \Leftrightarrow x|y$$

si ricorda che x|y si legge "x divide y", ovvero $\exists m \in \mathbb{Z} : y = mx$.

- R su \mathbf{P} è una relazione di ordine? Se sì, è parziale o totale?
- R su \mathbf{P} ha elementi minimali e massimali? Se sì, quali?

Esercizio 3. (5 punti) Calcolare il valore della seguente somma:

$$\sum_{i=1}^{n} (2i+6)$$

Poi dimostrarlo per induzione.

Esercizio 4. (5 punti) Usando la definizione di interpretazione $v: X \to \{0,1\}$ per la logica proposizionale, dimostrare che:

$$\models (a \land \neg a) \Rightarrow \neg (p \land (p \Rightarrow \neg q))$$

Successivamente, scrivere la tavola di verità della formula $(p \Rightarrow q) \Leftrightarrow (\neg(p \land (p \Rightarrow \neg q)))$.

Esercizio 5. (4 punti) Usando il metodo di deduzione naturale, dimostrare che:

$$\vdash a \Rightarrow (a \lor b) \land (a \lor c)$$

Esercizio 6. (4 punti) Dare la definizione di struttura $\mathcal{A} = (D_{\mathcal{A}}, I_{\mathcal{A}})$ e di ambiente per la logica del I ordine.