Limbaje Formale, Automate și Compilatoare

Curs 2

2017-18

Curs 2

- $lue{1}$ Proprietăți de închidere pentru \mathcal{L}_3
- Automate finite deterministe
- Automate finite nedeterministe
- 4 Automate finite cu ϵ -tranziţii

Fie L, L_1, L_2 limbaje regulate: există gramaticile G, G_1, G_2 de tip 3 astfel ca $L = L(G), L_1 = L(G_1)$ și $L_2 = L(G_2)$.

Atunci, următoarele limbaje sunt de asemenea regulate:

- 0 $L_1 \cup L_2$
- $2 L_1 \cdot L_2$
- 6 L*
- [♠] L^R
- $L_1 \cap L_2$

Închiderea la reununiune

Fie L, L_1, L_2 limbaje de tip 3 (regulate).

Fie
$$G_1 = (N_1, T_1, S_1, P_1)$$
 si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3 cu $L_1 = L(G_1)$, $L_2 = L(G_2)$.

Presupunem $N_1 \cap N2 = \emptyset$ si gramaticile in forma normala.

Închiderea la reuniune: se arata ca $L_1 \cup L_2 \in \mathcal{L}_3$:

Gramatica
$$G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$$
 este de tip 3 si genereaza limbajul $L_1 \cup L_2$

Închiderea la operația de produs

Fie L_1 , L_2 limbaje de tip 3 (regulate).

Fie
$$G_1 = (N_1, T_1, S_1, P_1)$$
 si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3 cu $L_1 = L(G_1)$, $L_2 = L(G_2)$.

Presupunem $N_1 \cap N2 = \emptyset$ si gramaticile in forma normala.

Gramatica $G = (N_1 \cup N_2, T_1 \cup T_2, S_1, P)$ unde P consta din:

- regulile de forma $A \rightarrow aB \dim P_1$
- reguli $A \rightarrow aS_2$ pentru orice regula de forma $A \rightarrow a$ din P_1
- toate regulile din P₂

este de tip 3 si genereaza limbajul L_1L_2 .

Închiderea la operația de iterație

Fie *L* limbaj de tip 3 (regulat).

Fie G = (N, T, S, P) de tip 3, în formă normală, care genereaza L (L = L(G)).

Presupunem ca simbolul de start S nu apare in partea dreaptă a vreunei reguli.

Gramatica G' = (N, T, S, P') unde P' consta din

- reguli A → aB din P
- reguli $A \rightarrow aS$, pentru orice regula $A \rightarrow a$ din P
- ullet regula ${f S}
 ightarrow \epsilon$

este de tip 3 si generează L*

Închiderea la intersecție

Fie L_1 , L_2 limbaje de tip 3 (regulate).

Fie $G_1 = (N_1, T_1, S_1, P_1)$ si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3, în formă normală, cu $L_1 = L(G_1)$, $L_2 = L(G_2)$.

Gramatica $G = (N_1 \times N_2, T_1 \cap T_2, (S_1, S_2), P)$, unde P constă din:

- $(S_1, S_2) \rightarrow \epsilon$, dacă $S_1 \rightarrow \epsilon \in P_1$ și $S_2 \rightarrow \epsilon \in P_2$
- ullet $(A_1,B_1)
 ightarrow a(A_2,B_2)$, dacă $A_1
 ightarrow aA_2 \in P_1$ și $B_1
 ightarrow aB_2 \in P_2$
- ullet $(A_1,A_2)
 ightarrow a$, dacă $A_1
 ightarrow a \in P_1$ și $A_2
 ightarrow a \in P_2$

este de tip 3 şi generează limbajul $L_1 \cap L_2$

Închiderea la operația de oglindire

Fie *L* limbaj de tip 3 (regulat).

Fie G = (N, T, S, P) de tip 3, în formă normală, care generează L (L = L(G))

Presupunem ca simbolul de start S nu apare in partea dreaptă a vreunei reguli.

Gramatica G' = (N, T, S', P') unde P' constă din

- ullet reguli $\mathcal{S}' o aA$, pentru orice regulă A o a din P
- reguli $B \rightarrow aA$ pentru orice regulă $A \rightarrow aB$ din P
- ullet regula ${\sf S}
 ightarrow \epsilon$
- regula $S' \to a$, pentru orice regulă $S \to a$ din P $(a \in T \cup \{\epsilon\})$ este de tip 3 și generează L^R

Curs 2

- \bigcirc Proprietăți de închidere pentru \mathcal{L}_3
- Automate finite deterministe
- 3 Automate finite nedeterministe
- 4 Automate finite cu ϵ -tranziţii

Automate finite

- Mecanism de recunoaştere (acceptare) pentru limbaje
- Limbaje de tip 3
- Mulţime finită de stări

Automate finite

Definiție 1

Un automat finit determinist este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q şi Σ sunt mulţimi finite, nevide, numite mulţimea stărilor respectiv alfabetul de intrare
- $q_0 \in Q$ este starea iniţială
- F ⊆ Q este mulţimea stărilor finale
- δ este o funcție , $\delta: \mathsf{Q} \times \mathsf{\Sigma} \to \mathsf{Q}$, numită funcția de tranziție

Reprezentare prin diagrame(grafuri) de tranziție

Stări:

s

Stare iniţială:

0

Stări finale:

1

Funcția de tranziție:

Reprezentare prin matricea de tranziție

$$A = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$$

Intrare	а	b
Stare δ		
q0	q0	q1
q1	q1	q1

Limbajul acceptat

- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to Q$
 - $\hat{\delta}(q,\epsilon) = q, \forall q \in \mathsf{Q};$
 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a)), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$
- Observaţii:
 - $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$
 - $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v), \forall q \in Q, \forall u, v \in \Sigma^*$

Limbajul acceptat

Definiție 2

Limbajul acceptat (recunoscut) de automatul $A = (Q, \delta, \Sigma, q_0, F)$ este multimea :

$$L(A) = \{w | w \in \Sigma^*, \hat{\delta}(q_0, w) \in F\}.$$

- Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) ajunge într-o stare finală.
- $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$. Din acest motiv, $\hat{\delta}$ va fi notată de asemenea cu δ .
- Două automate A și A' sunt echivalente, dacă L(A) = L(A')

$$L(A) = \{a^n b^m | n \ge 0, m \ge 1\}$$

$$L(A) = \{a^n b^m | n \ge 0, m \ge 1\}$$

Automate deterministe pentru:

- $L = \{w \in \{0,1\}^* | w \text{ conține un număr par de } 0\}$
- $L = \{w \in \{0,1\}^* | w \text{ se termina cu } 11\}$

Curs 2

- \bigcirc Proprietăți de închidere pentru \mathcal{L}_3
- 2 Automate finite deterministe
- Automate finite nedeterministe
- 4 Automate finite cu ε-tranziţii

Automate finite nedeterministe

Definiție 3

Un automat finit nedeterminist este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q, Σ, q₀ şi F sunt definite ca în cazul automatelor finite deterministe
- δ este o funcție, $\delta: \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$, numită funcția de tranziție

Observaţie:

A este automat determinist, dacă

$$|\delta(q, a)| = 1, \forall q \in Q, \forall a \in \Sigma$$

Intrare	а	b	С
Stare			
0	{0}	{1,3}	Φ
1	Φ	{2}	Φ
2	Φ	{4}	Φ
3	Φ	{4}	Φ
4	Φ	Φ	{4}

Extensia lui δ la cuvinte

- Fie S mulţime de stări. Notăm $\delta(S, a) = \bigcup_{q \in S} \delta(q, a)$.
- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to 2^Q$

 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$

Extensia lui δ la cuvinte

- Fie S mulţime de stări. Notăm $\delta(S, a) = \bigcup_{q \in S} \delta(q, a)$.
- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to 2^Q$
 - $\hat{\delta}(q,\epsilon) = \{q\}, \forall q \in \mathsf{Q};$
 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$
- Observaţii:
 - $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$
 - $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v), \forall q \in Q, \forall u, v \in \Sigma^*.$

Limbajul acceptat

Definiție 4

Limbajul acceptat (recunoscut) de automatul finit nedeterminist $A = (Q, \Sigma, \delta, q_0, F)$ este mulţimea :

$$L(A) = \{ w | w \in \Sigma^*, \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

 Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) poate să ajungă într-o stare finală.

Teorema 1

Pentru orice automat nedeterminist A, există unul determinist A' echivalent.

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{S \in S} \delta(S, a) (= \delta(S, a)), \forall S \in 2^{Q}$
- Pentru aplicaţii se construiesc doar stările accesibile din starea iniţială

Exemplu

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a) = \delta(S, a)$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a) = \delta(S, a)$

•
$$\delta'(S, w) = \bigcup_{s \in S} \delta(s, w) = \delta(S, w), \forall w \in \Sigma^*$$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a) = \delta(S, a)$

- $\delta'(S, w) = \bigcup_{s \in S} \delta(s, w) = \delta(S, w), \forall w \in \Sigma^*$
- $\delta'(Q_0, w) = \delta'(\{q_0\}, w) = \delta(q_0, w)$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a) = \delta(S, a)$

- $\delta'(S, w) = \bigcup_{s \in S} \delta(s, w) = \delta(S, w), \forall w \in \Sigma^*$
- $\delta'(Q_0, w) = \delta'(\{q_0\}, w) = \delta(q_0, w)$
- $w \in L(A') \Leftrightarrow \delta'(Q_0, w) \cap F \neq \emptyset \Leftrightarrow \delta(q_0, w) \cap F \neq \emptyset \Leftrightarrow w \in L(A)$

Curs 2

- \bigcirc Proprietăți de închidere pentru \mathcal{L}_3
- 2 Automate finite deterministe
- Automate finite nedeterministe
- 4 Automate finite cu ϵ -tranziţii

Automate finite cu ϵ -tranziţii

Definiție 5

Un automat finit cu ϵ -tranziții este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q, Σ, q₀ şi F sunt definite ca în cazul automatelor finite deterministe
- δ este o funcție , $\delta: \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \to 2^{\mathbb{Q}}$, numită funcția de tranziție

Observaţie:

- A este automat nedeterminist, dacă $\delta(q, \epsilon) = \emptyset, \forall q \in Q$
- A este automat determinist, dacă, în plus:

$$|\delta(q, a)| = 1, \forall q \in Q, \forall a \in \Sigma$$

Exemplu

Intrare	a	b	С	3
Stare				
0	{0}	Φ	Φ	{1}
1	Φ	{1}	Φ	{2}
2	Φ	Φ	{2}	Φ