Consistency Enforcement and Constraint Propagation

Chapter 3 @ Constraint Processing by Rina Dechter

Constraint propagation

- Inference methods used in everyday life that can be imitated by computers
- Party example (Boolean constraint propagation)
 - Invite Alex, Bill and Chris to a party
 - (A) Alex comes, (B) Bill comes, (C) Chris comes
 - If Alex comes, Bill will come as well (A \rightarrow B)
 - If Chris comes, Alex will come as well ($C \rightarrow A$)
 - Fact: Chris will come to the party; Inference: Alex and Bill will come too
 - Fact: Bill did not go to the party; Inference: Alex and Chris did not go!

Why propagate constraints?

- Inference narrows the search space of possible partial solutions
 - By creating equivalent, yet more explicit, networks
- Another constraint network
 - Variables x, y, z with domains {red, blue}
 - Constraints (1) x=y, (2) y=z, (3) x≠z
 - Infer (4) x=z from (1) and (2)
 - Since (4) conflicts with (3) the constraint network is inconsistent
- Constraints can become explicit enough to go directly to the solution!
 - In general this is too hard, requiring exponential number of constraints

Another example

- Set of constraints R = {x=y, y=z}
- Infer x=z, resulting in R' = $\{x=y, y=z, x=z\}$
- R and R' are equivalent
 - Have the same set of solutions
 - But R' is more explicit / tighter than R
- Assignment {x=red, z=blue} is partial solution to R but not to R'

Limited constraint inference

- Algorithms that perform a bounded amount of constraint inference
 - Local consistency enforcing
 - Bounded consistency inference
 - Constraint propagation algorithms
- Consistency enforcing algorithms assist search
 - By extending a solution by one more variable
 - i.e. a partial solution of a subnetwork is extended to surrounding network

Consistency enforcing algorithms

- Characterized by size of the subnetwork
 - Either number of variables or number of constraints
- Arc-consistency algorithms
 - Infer constraints based on pairs of variables
 - Ensures that any legal value in the domain of a variable has a legal match in the domain of any other variable
- Path consistency algorithms
 - Infer constraints based on trios of variables
 - Ensure that any consistent solution to a 2-variable subnetwork is extendible to any 3rd variable
 - In general, i-consistency algorithms extend solutions to i-1 variables

Consistency vs search

- Time and space cost of enforcing i-consistency is exponential in i
 - So there is a trade-off

(partial solution)

Given a constraint network \mathcal{R} , we say that an assignment of values to a subset of the variables $S = \{x_1, \ldots, x_j\}$ given by $\bar{a} = (\langle x_1, a_1 \rangle, \langle x_2, a_2 \rangle, \ldots, \langle x_j, a_j \rangle)$ is consistent relative to \mathcal{R} iff it satisfies every constraint R_{S_i} such that $S_i \subseteq S$. The assignment \bar{a} is also called a partial solution of \mathcal{R} . The set of all partial solutions of a subset of variables S is denoted by ρ_S or $\rho(S)$.

Arc-consistency

- A constraint is arc-consistency (or not) relative to a given variable
- A variable is arc-consistency (or not) relative to other variables

Arc-consistency: example

- Variables x, y with domains {1,2,3}; constraint R_{xy} = {x<y}
- Matching diagram (a): domains are sets of points; arcs connect consistent pairs of variables
 - R_{xy} is not arc-consistent relative to x: value $3 \in D_x$ has no consistent matching value in D_y
 - R_{xy} is not arc-consistent relative to y: value $1 \in D_y$ has no consistent matching value in D_x
- Shrink domains to achieve arc consistency (b)

Arc-consistency: definition

(arc-consistency)

Given a constraint network $\mathcal{R} = (X, D, C)$, with $R_{ij} \in C$, a variable x_i is arc-consistent relative to x_j if and only if for every value $a_i \in D_i$ there exists a value $a_j \in D_j$ such that $(a_i, a_j) \in R_{ij}$. The subnetwork (alternatively, the arc) defined by $\{x_i, x_j\}$ is arc-consistent if and only if x_i is arc-consistent relative to x_j and x_j is arc-consistent relative to x_i . A network of constraints is called arc-consistent iff all of its arcs (e.g., subnetworks of size 2) are arc-consistent.

The REVISE procedure

```
REVISE((x_i), x_j)
input: a subnetwork defined by two variables X = \{x_i, x_j\}, a distinguished variable x_i, domains: D_i and D_j, and constraint R_{ij}
output: D_i, such that, x_i arc-consistent relative to x_j

1. for each a_i \in D_i

2. if there is no a_j \in D_j such that (a_i, a_j) \in R_{ij}

3. then delete a_i from D_i

4. endif

5. endfor
```

- 1+2+3 = $D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j)$
- REVISE has complexity O(k²) where k bounds the domain size

Arc-consistency: exercise

- Variables X, Y, Z, T
- Domains {1,2,3}
- Constraints X < Y Y = ZT < Z

X < T

You have 5 minutes!

Original constraint network

Revised constraint network

Arc-consistency & REVISE procedure

Applying Revise just once to all pairs of variables may not be enough...

• Consider the 3-variable constraint network

You have

• X and Y are initially arc-consistent

3 minutes!

• But later making {X,Z} arc-consistency makes {X,Y} inconsistent!

AC-1: a brute-force algorithm

```
input: a network of constraints \mathcal{R} = (X, D, C)

output: \mathcal{R}' which is the loosest arc-consistent network equivalent to \mathcal{R}

1. repeat

2. for every pair \{x_i, x_j\} that participates in a constraint

3. Revise((x_i), x_j) (or D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j))

4. Revise((x_j), x_i) (or D_j \leftarrow D_j \cap \pi_j(R_{ij} \bowtie D_i))

5. endfor

6. until no domain is changed
```

• AC-1 has complexity $O(nek^3)$ for n variables, e binary constraints and domain sizes bounded by k

AC-1: example

Another example

- Variables x,y,z with domains {1,2,3}
- Constraints x<y, y<z, z<x

You have 3 minutes!

- Revise R_{xy} in both directions... $D_x=\{1,2\}$ and $D_y=\{2,3\}$
- Revise R_{vz} ... $D_v = \{2\}$ and $D_z = \{3\}$
- Revise R_{7x} ... $D_7 = \{\}$... the network is inconsistent!

Is AC-1 efficient?

- No need to (re)process ALL the constraints...
- Solution: Implement a queue of constraints to be processed!
 - Initially, each pair of variables in a binary constraint is placed twice in the queue (one for each ordering)
 - A pair is removed from the list after being processed
 - A pair is placed back in the queue if the domain of its second variable is modified

AC-3: an efficient algorithm

```
AC-3(\mathcal{R})
input: a network of constraints \mathcal{R} = (X, D, C)
output: \mathcal{R}' which is the largest arc-consistent network equivalent to \mathcal{R}
1. for every pair \{x_i, x_i\} that participates in a constraint R_{ii} \in \mathcal{R}
          queue \leftarrow queue \cup \{(x_i, x_i), (x_i, x_i)\}
3. endfor
4. while queue \neq \{\}
          select and delete (x_i, x_i) from queue
5.
6.
          Revise((x_i), x_i)
7.
          if Revise((x_i), x_i) causes a change in D_i
                 then queue \leftarrow queue \cup \{(x_k, x_i), i \neq k\}
9.
          endif
10. endwhile
```

- AC-3 has *time* complexity $O(ek^3)$ for e binary constraints and domain sizes bounded by k
 - And processes each constraint at most 2k times

AC-3: example (I)

- 3-variable network X,Y,Z
- $D_x=\{2,5\}$, $D_y=\{2,4\}$, $D_z=\{2,5\}$
- $R_{zx} = \{z \text{ evenly divides } x\}, R_{zy} = \{z \text{ evenly divides } y\}$

You have 5 minutes!

• Evenly divides = no remainder!

AC-3: example (II)

- Put {z,x}, {x,z}, {z,y}, {y,z} onto the queue
- No changes processing {z,x} and {x,z}
- Process {z,y}... Delete 5 from D_z... place {x,z} on the queue
- Process {y,z}... No changes
- Process {x,z}... Delete 5 from D_x... place {z,x} on the queue
- Process {z,x}... No changes

AC-4: time and space complexity O(ek³)

- Space can be further reduced!
- Each value a_i in domain of x_i is associated with the amount of support from variable x_j , that is, the number of values in the domain of x_j that are consistent with a_i
 - A value is removed when it has no support from a neighboring variable
- Required data structures
 - List of currently unsupported variable-value pairs
 - Counter array (x_i,a_i,x_i) of supports
 - Array $S(x_j,a_j)$ that points to all values in other variables supported by $\langle x_j,a_j \rangle$

AC-4: algorithm

```
AC-4(\mathcal{R})
input: a network of constraints \mathcal{R}
output: An arc-consistent network equivalent to \mathcal{R}
    Initialization: M \leftarrow \emptyset,
2.
           initialize S_{(x_i,c_i)}, counter(i,a_i,j) for all R_{ij}
3.
           for all counters
                  if counter(x_i, a_i, x_j) = 0 (if \langle x_i, a_i \rangle is unsupported by x_j)
4.
                          then add \langle x_i, a_i \rangle to LIST
5.
                  endif
6.
7.
           endfor
     while LIST is not empty
9.
          choose \langle x_i, a_i \rangle from LIST, remove it, and add it to M
          for each \langle x_j, a_j \rangle in S_{(x_i, a_i)}
10.
11.
                  decrement counter(x_i, a_i, x_i)
                  if counter(x_i, a_i, x_i) = 0
12.
13.
                          then add \langle x_i, a_i \rangle to LIST
14.
                  endif
           endfor
15.
16. endwhile
```

AC-4: example

Supporting arrays

$$S_{(z,2)} = \{\langle x, 2 \rangle, \langle y, 2 \rangle, \langle y, 4 \rangle\}, S_{(z,5)} = \{\langle x, 5 \rangle\}, S_{(x,2)} = \{\langle z, 2 \rangle\}, S_{(x,5)} = \{\langle z, 5 \rangle\}, S_{(y,2)} = \{\langle z, 2 \rangle\}, S_{(y,4)} = \{\langle z, 2 \rangle\}.$$

- $M = \emptyset$, Counters:
 - Counter(x,2,z) = 1, Counter(x,5,z) = 1
 - Counter(z,2,x) = 1, Counter(z,5,y) = 0 (implies LIST = {(z,5)})
 - Counter(y,2,z) = 1, Counter(y,4,z) = 1
- Move (z,5) from LIST to M... Counter(x,5,z) = 0... Add (x,5) to LIST
- Move (x,5) from LIST to M...
 - The only value it supports is (z,5) that is in M
 - LIST remains empty and the process stops

Path consistency

- Arc-consistency can sometimes decide inconsistency
 - By discovering an empty domain
 - But it is not complete for deciding consistency... only unary and binary constraints are taken into account!
- Path consistency addresses 3-ary constraints

Arc-consistency vs path consistency

- Variables x, y, z with domains {red, blue}
- Constraints (1) $x \neq y$, (2) $y \neq z$, (3) $x \neq z$
- Arc-consistency reduces no domains...
 - Although with domain size 2, $x \neq y$ and $y \neq z$ allow inferring x=z
- Path consistency finds inconsistency
 - Relating 3 variables: x, y and z

Path consistency: definition

(path-consistency)

Given a constraint network $\mathcal{R} = (X, D, C)$, a two-variable set $\{x_i, x_j\}$ is path-consistent relative to variable x_k if and only if for every consistent assignment $(\langle x_i, a_i \rangle, \langle x_j, a_j \rangle)$ there is a value $a_k \in D_k$ such that the assignment $(\langle x_i, a_i \rangle, \langle x_k, a_k \rangle)$ is consistent and $(\langle x_k, a_k \rangle, \langle x_j, a_j \rangle)$ is consistent. Alternatively, a binary constraint R_{ij} is path-consistent relative to x_k iff for every pair $(a_i, a_j) \in R_{ij}$, where a_i and a_j are from their respective domains, there is a value $a_k \in D_k$ such that $(a_i, a_k) \in R_{ik}$ and $(a_k, a_j) \in R_{kj}$. A subnetwork over three variables $\{x_i, x_j, x_k\}$ is path-consistent iff for any permutation of (i, j, k), R_{ij} is path-consistent relative to x_k . A network is path-consistent iff for every R_{ij} (including universal binary relations) and for every $k \neq i, j R_{ij}$ is path-consistent relative to x_k .

Path consistency: graphical picture

- Matching diagram should be extended to a triangle!
- Not possible with constraints (1) $x \neq y$, (2) $y \neq z$, (3) $x \neq z$

REVISE-3: analogous to REVISE in AC-1

```
REVISE-3((x,y),z)
input: a three-variable subnetwork over (x,y,z), R_{xy}, R_{yz}, R_{xz}.
output: revised R_{xy} path-consistent with z.

1. for each pair (a,b) \in R_{xy}

2. if no value c \in D_z exists such that (a,c) \in R_{xz} and (b,c) \in R_{yz}

3. then delete (a,b) from R_{xy}.
4. endif
5. endfor
```

• Can be summarized with $R_{xy} \leftarrow R_{xy} \cap \pi_{xy}(R_{xz} \bowtie D_z \bowtie R_{zy})$

PC-1: algorithm

```
PC-1(\mathcal{R})
input: a network \mathcal{R} = (X, D, C).
output: a path consistent network equivalent to \mathcal{R}.

1. repeat
2. for k \leftarrow 1 to n
3. for i, j \leftarrow 1 to n
4. R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj})/* (Revise - 3((i, j), k))
5. endfor
6. endfor
7. until no constraint is changed.
```

• Resembles AC-1

PC-2: algorithm

```
PC-2(\mathcal{R})

input: a network \mathcal{R} = (X, D, C).

output: \mathcal{R}' a path consistent network equivalent to \mathcal{R}.

1. Q \leftarrow \{(i, k, j) \mid 1 \leq i < j \leq n, 1 \leq k \leq n, k \neq i, k \neq j \}

2. while Q is not empty

3. select and delete a 3-tuple (i, k, j) from Q

4. R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj}) /* (Revise-3((i, j), k))

5. if R_{ij} changed then

6. Q \leftarrow Q \cup \{(l, i, j)(l, j, i) \mid 1 \leq l \leq n, l \neq i, l \neq j\}

7. endwhile
```

- Resembles AC-3
- Maintains a queue of ordered triplets to be (re)processed

Path consistency: example (I)

Consider the following example

You have 3 minutes!

Path consistency: example (II)

Path consistency constraint: definition

(path-consistent constraint)

A constraint R_{ij} is path-consistent, relative to the path of length m through the nodes $(i = i_0, i_1, \ldots, i_m = j)$, if for any pair $(a_i, a_j) \in R_{ij}$ there is a sequence of values $a_{il} \in D_{i_l}$ such that $(a_i = a_{i_0}, a_{i_1}) \in R_{i_0i_1}$, $(a_{i_0}, a_{i_1}) \in R_{i_0i_1}$, and $(a_{i_{m-1}}, a_{i_m} = a_j) \in R_{i_{m-1}i_m}$.

Higher levels of i-consistency

(i-consistency, global consistency)

Given a general network of constraints $\mathcal{R}=(X,D,C)$, a relation $R_S\in C$ where |S|=i-1 is *i*-consistent relative to a variable y not in S iff for every $t\in R_S$, there exists a value $a\in D_y$, such that (t,a) is consistent. A network is *i*-consistent iff given any consistent instantiation of any i-1 distinct variables, there exists an instantiation of any *i*th variable such that the i values taken together satisfy all of the constraints among the i variables. A network is strongly i-consistent iff it is j-consistent for all $j \leq i$. A strongly n-consistent network, where n is the number of variables in the network, is called globally consistent.

i-consistency: example

• 3-consistency? 4-consistency?

You have 3 minutes!

• (a) is not 3-consistent; (b) is not 4-consistent

Observation: queens are placed sequentially by column

Summary

- (a) arc-consistency
- (b) path consistency
- (c) i-consistency

