

Logika Proposisi (2)

Ekuivalensi Logikal

Notasi: proposisi a dan b adalah ekuivalen

$$a \equiv b$$

 $a \Leftrightarrow b$

- a dan b adalah ekuivalen iff a ↔ b adalah tautologi.
- Dengan ekuivalensi logikal, pengecekan operasi logika dapat terbantu dibanding membuat tabel kebenaran.
 - Contoh: Anda harus memeriksa proposisi majemuk yang terbuat dari 10 proposisi atomik.
 Maka ada berapa interpretasi (kombinasi nilai) yang harus diperiksa? 2¹⁰

Ekuivalensi Logikal (1)

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \vee \mathbf{T} \equiv \mathbf{T}$ $p \wedge \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

Equivalence	Name
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws

Ekuivalensi Logikal (3)

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p o q \equiv \neg p \lor q$$
 $p o q \equiv \neg q o \neg p$ kontrapositif
 $p \lor q \equiv \neg p o q$
 $p \land q \equiv \neg (p o \neg q)$
 $p \land q \equiv \neg (p o \neg q)$
 $\neg (p o q) \equiv p \land \neg q$
 $(p o q) \land (p o r) \equiv p o (q \land r)$
 $(p o r) \land (q o r) \equiv (p \lor q) o r$
 $(p o q) \lor (p o r) \equiv p o (q \lor r)$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \quad \text{kontrapositif}$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Disebut juga Definisi Bi-implikasi

Disebut juga Definisi Implikasi

• Exclusive Middle: $p \lor \neg p \equiv \mathbf{T}$

 $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

• Golden Rule: $p \land q \leftrightarrow p \equiv q \leftrightarrow p \lor q$

Latihan

Apakah proposisi berikut ini ekivalen?

• $\neg(p \rightarrow q)$ dengan $p \land \neg q$

Contoh Penerapan Ekuivalensi

Tunjukkan bahwa $\neg(p \lor (\neg p \land q))$ ekuivalen logical dengan $\neg p \land \neg q$. **Solusi**:

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q) \qquad \text{by the second De Morgan law}$$

$$\equiv \neg p \land [\neg(\neg p) \lor \neg q] \qquad \text{by the first De Morgan law}$$

$$\equiv \neg p \land (p \lor \neg q) \qquad \text{by the double negation law}$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{by the second distributive law}$$

$$\equiv \mathbf{F} \lor (\neg p \land \neg q) \qquad \text{because } \neg p \land p \equiv \mathbf{F}$$

$$\equiv (\neg p \land \neg q) \lor \mathbf{F} \qquad \text{by the commutative law for disjunction}$$

$$\equiv \neg p \land \neg q \qquad \text{by the identity law for } \mathbf{F}$$

$$\neg (p \land q) \equiv \neg p \lor \neg q \qquad \text{(first)}$$

$$\neg (p \lor q) \equiv \neg p \land \neg q \qquad \text{(second)}$$

De Morgan's laws

Contoh Penerapan Ekuivalensi

Tunjukkan bahwa $(p \land q) \rightarrow (p \lor q)$ adalah tautologi.

Solusi:

$$(p \land q) \rightarrow (p \lor q) \equiv \neg (p \land q) \lor (p \lor q)$$
 Ekuivalensi implikasi
$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv (\neg p \lor p) \lor (\neg q \lor q)$$

$$\equiv \mathbf{T} \lor \mathbf{T}$$

$$\equiv \mathbf{T}$$

Contoh Penerapan Ekuivalensi

Terapkan aturan De Morgan untuk menyatakan negasi dari kalimat berikut:

- a. "Miguel punya handphone dan laptop."
- b. "Heather akan pergi ke konser atau Steve akan pergi ke konser."

Solusi untuk (a):

p: "Miguel punya handphone"

q: "Miguel punya laptop"

FLP dari (a) adalah $p \wedge q$.

Dengan aturan De Morgan: $\neg(p \land q)$ ekuivalen dengan $(\neg p \lor \neg q)$:

"Miguel tidak punya handphone atau Miguel tidak punya laptop."

Solusi untuk (b): ...?

Latihan

Apakah proposisi berikut ini tautologi, kontradiksi, ataukah bersifat *satisfiable*? Gunakanlah ekuivalensi logikal!

- $(p \lor q) \land (\neg p \land \neg q)$
- $(p \oplus q) \lor (p \oplus \neg q)$
- $(p \rightarrow q) \land (p \land \neg q)$
- $(p \lor q) \land \neg r$
- $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p) \land (p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$

Latihan

•
$$p \vee \neg (p \vee q) \equiv p \vee \neg q$$
?

•
$$\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (\neg p \rightarrow r)$$
?

Apa yang sudah kita pelajari...

Logika Proposisi

- Proposisi
- Operator Logika
- Tabel Kebenaran
- FLP
- Aplikasi dari Logika Proposisi
- Tautologi, Kontradiksi, Kontingensi, Satisfiability
- Ekuivalensi Logikal

Topik selanjutnya: Logika Predikat