Работа 3.2.6

Исследование гальванометра

Цель работы: изучение работы высокочувствительного магнитозеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

Оборудование: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключ, линейка.

1. Теоретическая справка

Устройство. Баллистический гальванометр - электроизмерительный прибор магнитоэлектрической системы, отличающийся высокой чувствительностью и сравнительно большим периодом колебаний подвижной части. Он представляет собой скрепленную с полым цилиндром проводящую рамку, подвешенную на нити в радиально направленном постоянном магнитном поле (см. рис. 1). На рамке закреплено зеркало, служащее для измерения угла поворота.

Уравнение движения. Введем следующие обозначения: φ - угол поворота рамки, D - модуль кручения, S - площадь рамки, N - число витков, I - сила тока в рамке при отсутствии ЭДС индукции, B - индукция магнитного поля, R_{Σ} - общее сопротивление цепи, J - момент

Рис. 1: Рамка с током в магнитном поле

инерции подвижной системы. Если пренебречь сопротивлением воздуха, то уравнение движения записывается в виде

$$J\ddot{\varphi} + \frac{(BSN)^2}{R_{\Sigma}}\dot{\varphi} + D\varphi = BSNI. \tag{1}$$

Введем обозначения

$$\begin{cases}
2\gamma = \frac{(BSN)^2}{JR_{\Sigma}}, \\
\omega_0^2 = \frac{D}{J}, \\
K = \frac{BSN}{J}.
\end{cases} \tag{2}$$

Таким образом, уравнение (1) примет вид

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = KI. \tag{3}$$

Заметим, что данное уравнения является уравнением затухающих колебаний с коэффициентом затухания γ и собственной частотой ω_0 .

Режим измерения постоянного тока. Если I=const, то по прошествии некоторого времени колебания затухнут, и можно принять $\varphi=const$. Тогда из уравнения (3) легко получить

$$\varphi = \frac{K}{\omega_0^2} I = \frac{BSN}{D} I = \frac{I}{C_I}.$$
 (4)

 C_I называется ∂u намической постоянной гальванометра и определяется выражением

$$C_I = \frac{I}{\varphi} = \frac{D}{BSN}. (5)$$

Свободные колебания рамки. Пусть I=0 и выполнены следующие начальные условия:

$$\begin{cases} \varphi(t=0) = 0, \\ \dot{\varphi}(t=0) = \dot{\varphi}_0. \end{cases}$$

$$(6)$$

Тогда в зависимости от γ и ω_0 решение уравнения (3) имеет вид

$$\begin{cases} \varphi = \frac{\dot{\varphi}_0}{\omega} e^{-\gamma t} \sin \omega t, & \gamma < \omega_0 \text{ (колебательный режим);} \\ \varphi = \dot{\varphi}_0 t e^{-\gamma t}, & \gamma = \omega_0 \text{ (критический режим);} \\ \varphi = \frac{\dot{\varphi}_0}{\varkappa} e^{-\gamma t} \text{ sh } \varkappa t, & \gamma > \omega_0 \text{ (апериодический режим).} \end{cases}$$
(7)

Здесь \varkappa и ω определяются соотношениями

$$\begin{cases}
\omega^2 = \omega_0^2 - \gamma^2, \\
\varkappa^2 = \gamma^2 - \omega_0^2.
\end{cases}$$
(8)

В случае колебательного режима можно ввести логарифмический декремент затухания Θ :

$$\Theta = \ln \frac{\varphi_n}{\varphi_{n+1}},\tag{9}$$

где φ_n и φ_{n+1} - углы последовательных отклонений в одну сторону с номерами n и n+1. Из (7) в случае малого затухания ($\gamma \ll \omega$) легко получить выражение для Θ :

$$\Theta = \gamma T, \tag{10}$$

где T - период колебаний:

$$T = \frac{2\pi}{\omega}. (11)$$

Заметим, что при приближении к критическому режиму $\Theta \to \infty$.

Режим измерения заряда. Теперь рассмотрим ситуацию, когда через гальванометр проходит короткий импульс тока. Будем считать, что продолжительность импульса τ достаточно мала ($\tau \ll T$), и отклонением рамки можно пренебречь. Пусть через рамку протекал ток с момента времени t=0 до момента времени $t=\tau$. Проинтегрировав уравнение (3) с учетом приближения $\varphi \approx 0$, получим

$$\dot{\varphi}(\tau) = K \int_{0}^{\tau} I dt. \tag{12}$$

Заряд, прошедший через гальванометр выражается формулой

$$q = \int_{0}^{\tau} I dt + \int_{0}^{\tau} I_{\text{инд}} dt, \tag{13}$$

где $I_{\text{инд}}$ - индукционный ток. Заметим, что $I_{\text{инд}} \sim \dot{\varphi}$, а значит

$$\int_{0}^{\tau} I_{\text{инд}} dt \sim \int_{0}^{\tau} \dot{\varphi} dt = \varphi(\tau) \approx 0. \tag{14}$$

Поэтому зарядом, протекшим в результате индукционного тока, можно пренебречь, и выражение (13) примет вид

$$q = \int_{0}^{\tau} I dt. \tag{15}$$

Отсюда и из выражения (12) получим

$$\dot{\varphi}(\tau) = Kq. \tag{16}$$

Из выражения (7) легко видеть, что при любом режиме максимальное отклонение от положения равновесия $\varphi_{\text{max}} \sim \dot{\varphi}_0 \stackrel{(16)}{\sim} q$. Таким образом, величина

$$C_q = \frac{q}{\varphi_{\text{max}}},\tag{17}$$

называемая баллистической постоянной, зависит только от параметров цепи.

Можно показать, что при неизменном q максимальное отклонение достигается при отсутствии затухания и определяется выражением

$$\varphi_{\text{max cB}} = \frac{\dot{\varphi}(\tau)}{\omega_0} = \frac{Kq}{\omega_0}.$$
 (18)

В критическом режиме, когда система быстрее всего приходит в равновесие, максимальное отклонение в e раз меньше:

$$\varphi_{\text{max } \kappa p} = \frac{Kq}{\omega_0 e}.\tag{19}$$

Отсюда следует выражение для баллистических констант:

$$\frac{C_{Q \text{ Kp}}}{C_{Q \text{ CB}}} = e. \tag{20}$$

2. Определение динамической постоянной

Экспериментальная установка. Схема для измерений в стационарном режиме приведена на рис. 2. Значение входного напряжения $U=1,32\pm0,02$ В, сопротивления гальванометра $R_0=475\pm1$ Ом. Сопротивление R можно изменять.

Угол отклонения рамки от положения равновесия измеряется с помощью осветителя, зеркала, закрепленного на рамке, и шкалы, на которую отражается свет. Если обозначить координату светового пятна за x и считать

Рис. 2: Схема установки для работы в стационарном режиме

 $x \ll a$, то выражение для угла отклонения примет вид

$$\varphi = \frac{x}{2a},\tag{21}$$

где $a=128\pm1$ см - расстояние от шкалы до зеркала. Таким образом, из выражения (5) легко получить формулу для динамической постоянной:

$$C_I = \frac{2aI}{x} \tag{22}$$

Отсюда следует выражение для зависимости I(x):

$$I = x \frac{C_I}{2a}. (23)$$

При $R_1 \ll R + R_0$ сила тока, протекающего через гальванометр, выражается формулой

$$I = U \frac{R_1}{R_2} \frac{1}{R + R_0}. (24)$$

По этой формуле мы можем рассчитать токи по значениям сопротивления R, и, таким образом, получить экспериментальную зависимость I(x). Согласно (23), она должна быть линейной, и по ее коэффициенту наклона k мы сможем вычислить C_I :

$$C_I = 2ka. (25)$$

Обработка результатов. Экспериментальные данные вместе с пересчитанными значениями занесены в таблицу 1.

R, кОм	90	80	70	60	50	40	30	25	23
x, cm	5,6	6,3	7,2	8,3	10	12,6	16,9	20,3	22,2
I, н A	7,3	8,2	9,4	10,9	13,1	16,3	21,7	25,9	28,1
ΔI , н A	0,1	0,1	0,1	0,2	0,2	0,2	0,3	0,4	0,4

Таблица 1: Данные для измерения C_I

Здесь ΔI - погрешность силы тока, вычисляемая по формуле

$$\Delta I = \frac{\Delta U}{U},\tag{26}$$

т,к, сопротивление R_0 мало по сравнению с R, и мы считаем, что сопротивление магазина измеряется точно. За погрешность измерения x принимается $\Delta x = 0,05$ см.

Рис. 3: График зависимости I(x)

По этим данным построим график зависимости I(x), он изображен на рис. 3. Из графика находим значение коэффициента наклона:

$$k = (1, 28 \pm 0, 01) \cdot 10^{-7} \text{ A/M}.$$
 (27)

Отсюда по формуле (25) находим значение C_I :

$$C_I = (3, 28 \pm 0, 04) \cdot 10^{-7} \text{ A},$$
 (28)

погрешность C_I была вычислена по формуле

$$\Delta C_I = C_I \sqrt{\left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta k}{k}\right)^2}.$$
 (29)

3. Определение критического сопротивления гальванометра

Экспериментальная установка. В этой части измерения проводятся на той же схеме, что и в предыдущей, но при свободных колебаниях рамки.

При достаточно больших R из (2) следует, что $\gamma < \omega_0$ и, согласно (7), наблюдается колебательный режим. С уменьшением R затухание увеличивается, и при $R = R_{\rm kp}$ движение рамки переходит в критический режим. При $R > R_{\rm kp}$ движение апериодическое.

Выразим логарифмический декремент затухания через параметры цепи. Подставляя в (10) выражения для периода из (11), ω из (8), γ и ω_0 из (2), находим:

$$\Theta = \frac{2\pi R_3}{\sqrt{(R+R_0)^2 - R_3^2}},\tag{30}$$

где R_3 определяется выражением

$$R_3 = \frac{(BSN)^2}{2\sqrt{JD}}. (31)$$

Для измерения Θ мы будем измерять начальное отклонение луча x_0 и отклонение после одного колебания x_1 . Тогда логарифмический декремент затухания определяется выражением

$$\Theta = \ln \frac{x_0}{x_1}.\tag{32}$$

Теперь преобразуем равенство (30):

$$\frac{1}{\Theta^2} = \frac{(R_0 + R)^2}{4\pi^2 R_3^2} - \frac{1}{4\pi^2}.$$
 (33)

Отсюда график зависимости $\frac{1}{\Theta^2}\left(\left(R_0+R\right)^2\right)$ должен быть линеен, и его коэффициент наклона определяется выражением

$$k = \frac{1}{4\pi^2 R_3^2}. (34)$$

Нам осталось выразить R_3 через известные параметры схемы и $R_{\rm kp}$. Для этого вспомним, что при приближении к критическому режиму, то есть при $R \to R_{\rm kp}$, $\Theta \to \infty$. Отсюда и из выражения (30) легко получить формулу для R_3 :

$$R_3 = R_0 + R_{\rm Kp}.$$
 (35)

Окочательно, подставив результат в (34), получим выражение для $R_{\rm kp}$:

$$R_{\rm kp} = \frac{1}{2\pi\sqrt{k}} - R_0. \tag{36}$$

Обработка результатов. Сначала оценим $R_{\rm kp}$. Для этого подберем наибольшее значение $R_{\rm kp}$, при котором колебаний еще не наблюдается. Получим

$$R_{\rm kp} \approx 9.1 \pm 0.2 \text{ kOm.}$$
 (37)

<i>R</i> , кОм	30	33	36	39	42	45	48
x_0 , cm	16,9	15,4	15,4	17,0	24,0	22,1	20,7
x_1 , cm	2,1	2,5	3,2	3,9	5,7	6,2	6,3
$\frac{1}{\Theta^2}$	0,23	0,30	0,41	0,46	0,48	0,62	0,71
$\Delta\Theta^2$	0,02	0,02	0,03	0,02	0,02	0,02	0,02
$(R+R_0)^2$, $Om^2 \cdot 10^8$	9,29	11,21	13,30	15,58	18,04	20,68	23,50
R, кОм	51	54	60	70	80	90	-
x_0 , cm	20,5	18,3	16,5	23,2	20,3	18,0	_
x_1 , cm	6,7	6,1	6,3	10,3	9,5	9,7	-
$\frac{1}{\Theta^2}$	0,80	0,83	1,08	1,52	1,73	2,62	-
$\Delta\Theta^2$	0,03	0,03	0,04	0,03	0,04	0,06	-
$(R+R_0)^2$, $Om^2 \cdot 10^8$	26,50	29,68	36,57	49,67	64,76	81,86	-

Таблица 2: Данные для измерения $R_{\rm kp}$

Погрешность была оценена по минимальному изменению сопротивления, при котором заметно отличие в характере колебаний.

Теперь определим $R_{\rm \kappa p}$ из графика. Для того, чтобы можно было вычислять Θ с достаточной точностью, будем проводить измерения при $R \geq 3R_{\rm \kappa p}$. Экспериментальные данные вместе с пересчитанными значениями занесены в таблицу 2. По эти данным построим график требуемой зависимости (рис. 4)

Рис. 4: График зависимости $\frac{1}{\Theta^2}\left(\left(R_0+R\right)^2\right)$

Из графика по МНК определим коэффициент наклона:

$$k \approx (0, 31 \pm 0, 01) \cdot 10^{-9} \text{ Om}^{-2}.$$
 (38)

Таким образом, по формуле (36) получаем искомое значение:

$$R_{\rm KD} \approx (8, 6 \pm 0, 3) \, \text{KOM}.$$
 (39)

Здесь в таблице 2 погрешности x_0 и x_1 принимались

$$\Delta x_0 = \Delta x_1 = \Delta x = 0, 2 \text{ cm}, \tag{40}$$

погрешность $\frac{1}{\Theta^2}$ вычислялась по формуле

$$\Delta \frac{1}{\Theta^2} = \frac{\Delta x \sqrt{\frac{1}{x_0^2} + \frac{1}{x_1^2}}}{\Theta} \frac{1}{\Theta^2},\tag{41}$$

погрешность измерения сопротивления считалась малой, а погрешность $R_{\rm \kappa p}$ вычислялась по формуле

 $\Delta R_{\rm \kappa p} = \frac{\Delta k}{k} R_{\rm \kappa p}.\tag{42}$

4. Определение баллистической постоянной и критического сопротивления гальванометра.

Экспериментальная установка. Схема для измерений в баллистическом режиме представлена на рис. 5. В корбке с выводами находится сложная схема с кнопками для обеспечения правильных измерений. Емкость конденсатора C=2 мк Φ , $\frac{R_1}{R_2}=\frac{1}{40}$, и это отношение остается постоянным.

Заряд на конденсаторе выражается формулой

$$q = CU_C = \frac{R_1}{R_2}UC \tag{43}$$

Рис. 5: Схема установки для работы в баллистическом режиме

При нажатии на кнопку этот заряд быстро проходит через гальванометр и сопротивление R, таким образом достигается баллистический режим. Если измерят угол отклонения так же, как и в части 2, то из (17) выражение для C_q примет вид

$$C_Q = 2a \frac{R_1}{R_2} \frac{UC}{l_{\text{max}}},\tag{44}$$

где $l_{\rm max}$ - максимальное отклонение луча. Таким образом, в критическом режиме

$$C_{Q_{\rm KP}} = 2a \frac{R_1}{R_2} \frac{UC}{l_{\rm max_{KP}}} \tag{45}$$

Из (20) в критическом режиме угол отклонения, а значит и l_{max} , в e раз меньше, чем при отсутствии трения. Чтобы измерить l_{max} в этом режиме ($l_{\text{max}0}$), измерим максимальное отклонение при отключенном от цепи гальванометре $l_{\text{max}1}$ и декремент затухания Θ_1 . Тогда из определения декремента затухания следует, что

$$l_{\max 0} = l_{\max 1} \cdot e^{\frac{\Theta_1}{4}}.\tag{46}$$

После этого остается снять зависимость $l_{\max}(R)$, и с помощью экстраполяции найти точку, в которой

$$l_{\max} = \frac{l_{\max 0}}{e}.\tag{47}$$

Это удобно делать в координатах $l_{\max}\left(\frac{1}{R+R_0}\right)$, т.к. несложно показать, что при $\gamma\ll\omega_0$, то есть при достаточно больших R, график в них линеен.

Обработка данных. Сначала проведем измерения при отключенном от цепи гальванометре. Для периода таких колебаний получим значение

$$T_0 \approx (6, 43 \pm 0, 02) \text{ c},$$
 (48)

этот результат получен из измерения времени 13 колебаний, время реакции принималось равным 0,2 с. Значение максимального отклонения

$$l_{\text{max}1} \approx (21, 3 \pm 0, 2) \text{ cm},$$
 (49)

значение следующего отклонения

$$l_1 \approx (15, 4 \pm 0, 2) \text{ cm}.$$
 (50)

Отсюда по определению

$$\Theta_1 = \ln \frac{l_1}{l_{\text{max}1}} \approx 0,32 \pm 0,02.$$
(51)

Таким образом, из (46) получим

$$l_{\text{max}0} \approx (23, 1 \pm 0, 2) \text{ cm.}$$
 (52)

Погрешность была вычислена по формуле

$$\Delta l_{\text{max}0} = l_{\text{max}0} \frac{\Delta l_{\text{max}1}}{l_{\text{max}1}},\tag{53}$$

T.K.

$$\Delta e^{\frac{\Theta_1}{4}} = \frac{\Delta \Theta_1}{4} e^{\frac{\Theta_1}{4}},\tag{54}$$

а эта величина мала (относительная погрешность получится на порядок меньше $\frac{\Delta l_{\max 1}}{l_{\max 1}}$). Также теперь несложно найти $l_{\max \text{KD}}$:

$$l_{\text{max}_{\text{KP}}} = \frac{l_{\text{max}0}}{e} \approx (8, 5 \pm 0, 1) \text{ cm.}$$
 (55)

Теперь снимем зависимость $l_{max}(R)$. Экспериментальные данные вместе с пересчитанными значениями занесены в таблицу 3.

R, кОм	50	40	35	30	25	20	15	10	5
$l_{ m max},{ m cm}$	17.1	16.4	15.9	15.3	15	14	12.3	10.4	7.1
$\frac{1}{R+R_0}$, $Om^{-1} \cdot 10^{-5}$	1.98	2.47	2.82	3.28	3.93	4.88	6.46	9.55	18.26

Таблица 3: Данные для измерения $R_{\rm kp}$

Погрешность измерения l_{max} принята

$$\Delta l_{\text{max}} = 0, 2 \text{ cm}, \tag{56}$$

погрешность измерения сопротивления считаем малой. По этим данным построим график зависимости $l_{\text{max}}\left(\frac{1}{R+R_0}\right)$, он изображен на рис. 6.

Хотя при больших R зависимость действительно линейна, на всем измеренном диапазоне она хорошо аппроксимируется зависимостью вида $a\sqrt{x} + bx + c$ (такое фитирование и представлено на рис. 6). Зная l_{maxkp} , находим точку, которая соответствует такому отклонению, это точка

$$G = \frac{1}{R + R_0} \approx (11, 1 \pm 0, 3) \text{ Om}^{-1} \cdot 10^{-5},$$
 (57)

погрешность была оценена по крайним значениям. Отсюда, т.к. эта точка критическая, находим $R_{\rm kp}$:

$$R_{\rm kp} = \frac{1}{G} - R_0 \approx 8,5 \pm 0,3 \text{ kOm},$$
 (58)

погрешность была надена по формуле

$$\Delta R_{\rm kp} = R_{\rm kp} \frac{\Delta G}{G}.\tag{59}$$

Осталось найти $C_{Q_{KP}}$ из выражения (45), получим

$$C_{Q_{\text{KD}}} = (1,98 \pm 0,04) \cdot 10^{-6} \text{ K}\pi,$$
 (60)

выражение для погрешности:

$$\Delta C_{Q_{\rm KP}} = C_{Q_{\rm KP}} \sqrt{\left(\frac{\Delta U}{U}\right)^2 + \left(\frac{\Delta l_{\rm max KP}}{l_{\rm max KP}}\right)^2 + \left(\frac{\Delta a}{a}\right)^2}$$
 (61)

Ранее в этой части был измерен T_0 . Сравним его с величиной R_0C :

$$R_0C \approx 1 \text{ MC} \ll T_0.$$
 (62)

5. Заключение

Мы измерили постоянные гальванометра, и, тремя разными способам, критическое сопротивление. Все они дали довольно близкие значения, но наибольшее отклонение от остальных у метода подбора (у двух оставшихся почти одинаковы результаты). Кроме того, мы сравнили характерное время разрядки с периодом колебаний, и получили, что его можно действительно считать малым.