GAUGE AND HIGGS BOSONS

 γ

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 6 \times 10^{-17} \text{ eV}$ Charge $q < 5 \times 10^{-30} \text{ e}$ Mean life $\tau = \text{Stable}$

g or gluon

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

W

$$J=1$$

Charge $= \pm 1~e$ Mass $m = 80.425 \pm 0.038~{\rm GeV}$ $m_Z - m_W = 10.763 \pm 0.038~{\rm GeV}$ $m_{W^+} - m_{W^-} = -0.2 \pm 0.6~{\rm GeV}$ Full width $\Gamma = 2.124 \pm 0.041~{\rm GeV}$ $\langle N_{\pi^\pm} \rangle = 15.70 \pm 0.35$ $\langle N_{K^\pm} \rangle = 2.20 \pm 0.19$ $\langle N_p \rangle = 0.92 \pm 0.14$ $\langle N_{\rm charged} \rangle = 19.41 \pm 0.15$

 W^- modes are charge conjugates of the modes below.

W+ DECAY MODES	Fraction (Γ_i/Γ)	Confide	ence level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[b] (10.68± 0.12	2) %		_
$e^+ \nu$	(10.72 ± 0.16)	%		40212
$\mu^+ \nu$	(10.57 ± 0.22)	2) %		40212
$ au^+ u$	(10.74± 0.27	') %		40193
hadrons	(67.96± 0.35	5) %		_
$\pi^+ \gamma$	< 8	$\times 10^{-5}$	95%	40212
$D_s^+ \gamma$	< 1.3	$\times 10^{-3}$	95%	40188
cX	$(33.6~\pm~2.7$) %		_
<i>c</i> 5	$(31 \begin{array}{cc} +13 \\ -11 \end{array}$) %		_
invisible	[c] (1.4 \pm 2.8) %		_

Z

$$J=1$$

Charge = 0 Mass
$$m = 91.1876 \pm 0.0021$$
 GeV $[d]$ Full width $\Gamma = 2.4952 \pm 0.0023$ GeV $\Gamma(\ell^+\ell^-) = 83.984 \pm 0.086$ MeV $[b]$ $\Gamma(\text{invisible}) = 499.0 \pm 1.5$ MeV $[e]$ $\Gamma(\text{hadrons}) = 1744.4 \pm 2.0$ MeV $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-) = 1.0009 \pm 0.0028$ $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-) = 1.0019 \pm 0.0032$ $[f]$

Average charged multiplicity

$$\langle N_{charged} \rangle = 21.07 \pm 0.11$$

Couplings to leptons

$$g_V^\ell = -0.03783 \pm 0.00041$$
 $g_A^\ell = -0.50123 \pm 0.00026$
 $g_e^{\nu} = 0.53 \pm 0.09$
 $g_\mu^{\nu} = 0.502 \pm 0.017$

Asymmetry parameters [g]

$$A_e = 0.1515 \pm 0.0019$$
 $A_\mu = 0.142 \pm 0.015$
 $A_\tau = 0.143 \pm 0.004$
 $A_s = 0.90 \pm 0.09$
 $A_c = 0.666 \pm 0.036$
 $A_b = 0.926 \pm 0.024$

Charge asymmetry (%) at Z pole

$$A_{FB}^{(0\ell)} = 1.71 \pm 0.10$$
 $A_{FB}^{(0u)} = 4 \pm 7$
 $A_{FB}^{(0s)} = 9.8 \pm 1.1$
 $A_{FB}^{(0c)} = 7.04 \pm 0.36$
 $A_{FB}^{(0b)} = 10.01 \pm 0.17$

Z DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(3.363 \pm 0.004)\%$)	45594
$\mu^+\mu^ \tau^+\tau^-$	(3.366 ± 0.007) %)	45594
	(3.370 ± 0.008) %)	45559
$\ell^+\ell^-$	[b] $(3.3658\pm0.0023)\%$)	_
invisible	(20.00 ± 0.06) %))	_
hadrons	(69.91 ± 0.06) %)	_

HTTP://PDG.LBL.GOV

Page 2

$(u\overline{u}+c\overline{c})/2$		(10.1	± 1.1) %		_
$(d\overline{d} + s\overline{s} + b\overline{b})/3$		(16.6	\pm 0.6) %		_
$c\overline{c}$		(11.81) %		_
$b\overline{b}$		(15.13) %		_
b b b b		(3.6	± 1.3	$) \times 10^{-4}$		_
ggg		< 1.1		%	CL=95%	_
$\pi^0\gamma$		< 5.2			CL=95%	45594
$\eta \gamma^{'}$		< 5.1			CL=95%	45592
$\omega\gamma$		< 6.5			CL=95%	45590
$\eta'(958)\gamma$		< 4.2		$\times10^{-5}$	CL=95%	45589
$\gamma \gamma$		< 5.2		$\times10^{-5}$	CL=95%	45594
$\gamma\gamma\gamma$		< 1.0		$\times10^{-5}$	CL=95%	45594
$\pi^{\pm}W^{\mp}$		[h] < 7		$\times10^{-5}$	CL=95%	10127
$ ho^\pm W^\mp$		[h] < 8.3		$\times10^{-5}$	CL=95%	10101
$J/\psi(1S)X$		(3.51	$+0.23 \\ -0.25$	$) \times 10^{-3}$	S=1.1	_
ψ (2 S)X		(1.60	±0.29	$) \times 10^{-3}$		_
$\chi_{c1}(1P)X$		(2.9	± 0.7	$) \times 10^{-3}$		_
$\chi_{c2}(1P)X$		< 3.2		$\times 10^{-3}$	CL=90%	_
$\Upsilon(1S) \times + \Upsilon(2S) \times$		(1.0	± 0.5	$) \times 10^{-4}$		_
$+\Upsilon(3S) X$						
$\Upsilon(1S)X$		< 4.4		$\times 10^{-5}$	CL=95%	_
$\Upsilon(2S)X$		< 1.39)	$\times 10^{-4}$	CL=95%	_
$\Upsilon(3S)X$		< 9.4		$\times 10^{-5}$	CL=95%	- - - -
$(D_{\cdot}^{0}/\overline{D}^{0})$ X		(20.7	± 2.0) %		_
$D^{\pm}X$		(12.2	± 1.7) %		_
$D^*(2010)^{\pm}X$		[h] (11.4	± 1.3) %		_
$D_{s1}(2536)^{\pm}X$		(3.6	± 0.8	$) \times 10^{-3}$		_
$D_{sJ}(2573)^{\pm}$ X		(5.8	± 2.2	$) \times 10^{-3}$		_
$D^{*'}(2629)^{\pm}X$		searched	for			_
$B_s^0 X$		seen				_
$B_c^+ X$		searched	for			_
anomalous $\gamma+$ hadrons		[i] < 3.2		$\times 10^{-3}$	CL=95%	_
$e^+e^-\gamma$		[i] < 5.2		$\times 10^{-4}$	CL=95%	45594
$\mu^+\mu^-\gamma$		[i] < 5.6		$\times 10^{-4}$	CL=95%	45594
$\tau^+\tau^-\gamma$		[i] < 7.3		$\times 10^{-4}$	CL=95%	45559
$\ell^+\ell^-\gamma\gamma$		[j] < 6.8		$\times 10^{-6}$	CL=95%	_
$q \overline{q} \gamma \gamma$		[j] < 5.5			CL=95%	_
$ u \overline{\nu} \gamma \gamma$		[j] < 3.1			CL=95%	45594
$e^\pm\mu^\mp$	LF	[h] < 1.7			CL=95%	45594
$\mathrm{e}^{\pm} au^{\mp}$	LF	[h] < 9.8		$\times 10^{-6}$	CL=95%	45576

Higgs Bosons — H^0 and H^{\pm} , Searches for

 H^0 Mass m > 114.4 GeV, CL = 95%

 H_1^0 in Supersymmetric Models $(m_{H_1^0} < m_{H_2^0})$

Mass m > 89.8 GeV, CL = 95%

A⁰ Pseudoscalar Higgs Boson in Supersymmetric Models [k]

Mass m > 90.4 GeV, CL = 95% $tan \beta > 1$

 H^{\pm} Mass m > 79.3 GeV, CL = 95%

See the Particle Listings for a Note giving details of Higgs Bosons.

Heavy Bosons Other Than Higgs Bosons, Searches for

Additional W Bosons

W' with standard couplings decaying to $e\nu,\,\mu\nu$ Mass m>786 GeV, CL =95% W_R — right-handed W Mass m>715 GeV, CL =90% (electroweak fit)

Additional Z Bosons

```
Z'_{SM} with standard couplings
   Mass m > 690 \text{ GeV}, CL = 95\%
                                                  (p\overline{p} \text{ direct search})
   Mass m > 1500 \text{ GeV}, CL = 95\%
                                                    (electroweak fit)
Z_{LR} of SU(2)_L \times SU(2)_R \times U(1)
   (with g_I = g_R)
   Mass m > 630 \text{ GeV}, CL = 95\%
                                                  (p\overline{p} \text{ direct search})
   Mass m > 860 GeV, CL = 95\%
                                                  (electroweak fit)
Z_{\scriptscriptstyle Y} of SO(10) \to SU(5)\timesU(1)_{\scriptscriptstyle X} (with g_{\scriptscriptstyle X} = e/{\cos}\theta_W)
   Mass m > 595 GeV. CL = 95\%
                                                  (p\overline{p} \text{ direct search})
   Mass m > 680 GeV, CL = 95\%
                                                  (electroweak fit)
Z_{\psi} of E_6 \rightarrow SO(10) \times U(1)_{\psi} (with g_{\psi} = e/\cos\theta_W)
   Mass m > 590 \text{ GeV}, CL = 95\%
                                                  (p\overline{p} \text{ direct search})
   Mass m > 350 \text{ GeV}, CL = 95\%
                                                  (electroweak fit)
Z_n of E_6 \rightarrow SU(3)\times SU(2)\times U(1)\times U(1)_n (with g_n=e/\cos\theta_W)
   Mass m > 620 GeV. CL = 95\%
                                                (p\overline{p} \text{ direct search})
   Mass m > 619 GeV, CL = 95\%
                                                  (electroweak fit)
```

Scalar Leptoquarks

```
Mass m>242 GeV, CL = 95% (1st generation, pair prod.)
Mass m>298 GeV, CL = 95% (1st gener., single prod.)
Mass m>202 GeV, CL = 95% (2nd gener., pair prod.)
Mass m>73 GeV, CL = 95% (2nd gener., single prod.)
Mass m>148 GeV, CL = 95% (3rd gener., pair prod.)
(See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)
```

Axions (A⁰) and Other Very Light Bosons, Searches for

The standard Peccei-Quinn axion is ruled out. Variants with reduced couplings or much smaller masses are constrained by various data. The Particle Listings in the full *Review* contain a Note discussing axion searches.

The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $> 7.2 \times 10^{24}$ years (CL = 90%).

NOTES

- [a] Theoretical value. A mass as large as a few MeV may not be precluded.
- [b] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [c] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.
- [d] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
- [e] This partial width takes into account Z decays into $\nu\overline{\nu}$ and any other possible undetected modes.
- [f] This ratio has not been corrected for the τ mass.
- [g] Here $A \equiv 2g_V g_A / (g_V^2 + g_A^2)$.
- [h] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [i] See the Z Particle Listings for the γ energy range used in this measurement
- [j] For $m_{\gamma\,\gamma}=$ (60 \pm 5) GeV.
- [k] The limits assume no invisible decays.