Задача 1. Даны два отрезка: AB и CD. Найдите множество точек, в которые может попасть середина отрезка, один конец которого P лежит на AB, а другой конец Q – на CD.

Определение 1. Пусть заданы две фигуры F и G (два множества точек на плоскости или в пространстве). Назовём *полусуммой* этих фигур множество всех середин отрезков, один конец которых принадлежит F, а другой – G. Обозначим это множество так: F * G.

Задача 2. Вычислите F * G в случаях: **a)** F и G состоят из одной точки; **б)** F – отрезок, G – одна точка; **в)** F и G – прямоугольники с параллельными соответственными сторонами.

Задача 3. Докажите, что если F и G – выпуклые фигуры, то и F*G выпукла.

Задача 4. Докажите, что количество сторон полусуммы n-угольника и m-угольника может быть любым числом от $\max(m,n)$ до m+n.

Задача 5. Вычислите F * G в случаях: **a)** двух непараллельно расположенных прямоугольников; **b)** правильного треугольника и его стороны; **b)** двух окружностей разного радиуса;

г) полуокружности с самой собой; д) полуокружностей, составляющих вместе окружность.

Задача 6. Найдите полусумму фигур в пространстве: а) двух параллельно расположенных прямоугольных параллелепипедов; б) отрезка и многоугольника, не лежащих в параллельных плоскостях; в) окружности и шара; г) двух противоположных граней правильного октаэдра; д) двух половинок шара, разрезанного диаметральной плоскостью; е) двух скрещивающихся прямых.

Определение 2. Зафиксируем некоторую точку O (начало отсчёта). Множество всех концов M векторов OM = OP + OQ, где P и Q – произвольные точки фигур F и G, называется cymmoй (или cymmoй Muhkoeckofo) фигур F и G. Сумма F и G обозначается F+G.

Определение 3. Множество всех концов M векторов $OM = \lambda OP$, где P – любая точка фигуры F, а λ – данное положительное число, называют *произведением* F на λ и обозначают λF .

Задача 7. Как выразить F * G через операции суммы и произведения?

Задача 8. Докажите следующие свойства введённых операций:

- F + G = G + F:
- (F+G)+H=F+(G+H);
- $\lambda(\mu F) = (\lambda \mu) F$;
- $\lambda(F+G) = \lambda F + \lambda G$;
- Если $F \subset G$, $F' \subset G'$, то $\lambda F + \mu G \subset \lambda F' + \mu G'$;
- $\lambda F + \mu F \supset (\lambda + \mu) F$, если F выпукло, то имеет место равенство;
- $\lambda(F \cup G) = \lambda F \cup \lambda G$, $H + (F \cup G) = (H + F) \cup (H + G)$;
- $\lambda(F \cap G) = \lambda F \cap \lambda G$, $H + (F \cap G) \subset (H + F) \cap (H + G)$.

Значит ли это, что множество выпуклых фигур образует векторное пространство относительно операций суммы и произведения?

Задача 9. Докажите, что если F и G – выпуклые многоугольники, а p() обозначает периметр, то $p(\lambda F + \mu G) = \lambda p(F) + \mu p(G)$.

Задача 10. Докажите, что если $\lambda + \mu = 1$, то множество $\lambda F + \mu G$ не зависит от выбора точки O.

Задача 11. Из точки O, лежащей на границе полуплоскости, внутрь полуплоскости направлено n векторов длины 1. Докажите, что если n нечётно, то длина их суммы не меньше 1.

Задача 12. Пусть F – выпуклый многоугольник площади S и периметра p, и пусть K – круг радиуса 1 с центром в O. Докажите, что площадь фигуры F + tK равна $S + tp + t^2\pi$.

Задача 13. Докажите, что следующие свойства выпуклого многоугольника F эквивалентны:

- *F* имеет центр симметрии;
- F можно разрезать на параллелограммы;
- F есть сумма нескольких отрезков.

Задача 14. а) Докажите, что следующие свойства выпуклого многогранника F эквивалентны:

- \bullet Все грани F параллелограммы;
- \bullet F есть сумма конечного набора отрезков, никакие три из которых не параллельны одной плоскости.
- **б)** Сколько граней может иметь такой многогранник, если число отрезков (во втором свойстве) равно k?

Задача 15. От незагашенного окурка в одной точке загорелся лес. Ветер дул в течение времени t_1 со скоростью v_1 , затем t_2 – со скоростью v_2 , . . . , t_n – со скоростью v_n . Пожар распространяется от загоревшихся участков со скоростью ветра (причём эти участки продолжают гореть).

- а) Какой участок выгорел за это время?
- **б)** А если пожар, кроме того, распространяется равномерно по всем направлениями со скоростью u?

Задача 16. (*Теорема Брунна-Минковского*) Для любых выпуклых фигур F и G и для любых положительных чисел λ, μ выполнено неравенство

$$S(\lambda F + \mu G) \geqslant (\lambda \sqrt{S(F)} + \mu \sqrt{S(G)})^2.$$

Докажите эту теорему:

- а) для прямоугольников с попарно параллельными сторонами;
- **б)** для любых многоугольников площади 1 при условии $\lambda + \mu = 1$;
- в) Для многоугольников любой площади и любых λ, μ .
- г) Для случая, когда одна из фигур является многоугольником, а другая кругом.

Задача 17. Докажите *изопериметрическое неравенство*: для любой выпуклой фигуры площади S и периметра p выполнено неравенство $S \leqslant \frac{p^2}{4\pi}$.

Задача 18. Пусть F и G – многоугольники.

а) Докажите формулу

$$S(\lambda F + \mu G) = \lambda^2 S(F) + 2\lambda \mu S(F, G) + \mu^2 S(G),$$

где число S(F,G) не зависит от λ и μ . Его называют *смешанной площадью* многоугольников F и G. **б**) Докажите неравенство $S(F,G)^2 \geqslant S(F)S(G)$. В каком случае имеет место равенство?

1	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	3	4	5 a	56	5 B	5 Г	5 д	6 a	6	6 B	6 Г	6 Д	6 e	7	8	9	10	11	12	13	14 a	14 б	15 a	15 6	16 a	16 6	16 B	16 Г	17	18 a	18 6