FIG. I

DNA sequence for human preproparathyroid hormone.

10 30 50 ATGATHCCNGCNAARGAYATGGCNAARGTNATGATHGTNATGYTNGCNATHTGYTTYYTN

70 90 110 ACNAARWSNGAYGGNAARWSNGTNAARAARMGNWSNGTNWSNGARATHCARYTNATGCAY

130 150 170 AAYYTNGGNAARCAYYTNAAYWSNATGGARMGNGTNGARTGGYTNMGNAARAARYTNCAR

190 210 230
GAYGTNCAYAAYTTYGTNGCNYTNGGNGCNCCNYTNGCNCCNMGNGAYGCNGGNWSNCAR

250 270 290
MGNCCNMGNAARAARGARGAYAAYGTNYTNGTNGARWSNCAYGARAARWSNYTNGGNGAR

310 330 GCNGAYAARGCNGAYGTNAAYGTNYTHACNAARGCNAARWSNCARTRR

M = A or C

 $R = \lambda$ or G

W = A OF T

S = C or G

Y = C or T

H = A or C or T

N = A or G or C or T.

DNA	sequence for human				
preproparathyroid hormone in plasmid pSSHPTH-10.					
10	30	50			
ATGATGATACCTGCAAAAG	ACATGGCTAAAGTTATGAT	TGTCATGTTGGCAATTTGTTTT			
70	90	110			
CTTACAAAATCGGATGGGA	AATCTGTTAAGAAGAGATC	TGTGAGTGAAATACAGCTTATG			
130	150	170			
CATAACCTGGGAAAACATG	TGAACTCGATGGAGAGAGT	AGAATGGCTGCGTAAGAAGCTG			
190	210	230			
CAGGATGTGCACAATTTTGT	TTGCCCTTGGAGCTCCTCTA	GCTCCCAGAGATGCTGGTTCC			
250	270	290			
CAGAGGCCCCGAAAAAAGGA	NAGACAATGTCTTGGTTGAG	AGCCATGAAAAAAGTCTTGGA			

Portion of DNA sequence of the plasmid for insertion into E. coli, coding for human preproparathyroid hormone with flanking sequences.

10 30 50
TATGATGATHCCNGCNAARGAYATGGCNAARGTNATGATHGTNATGYTNGCNATHTGYTT

70 90 110 YYTNACNAARHSNGAYGGNAARWSNGTNAARAARMGNWSNGTNWSNGARATHCARYTNAT

130 150 170 GCAYAAYYTHGGHAARCAYYTHAAYWSHATGGARMGHGTHGARTGGYTHMGHAARAARYT

190 210 230 HCARGAYGTHCAYAAYTTYGTHGCHYTHGGHGCHCCHYTHGCHCCHMGHGAYGCHGGHWS

250 270 290 NCARMGNCCNMGNAARAARGARGAYAAYGTNYTNGTNGARWSNCAYGARAARWSNYTNGG

310 330 350 NGARGCNGAYAARGCNGAYGTNAAYGTNYTNACNAARGCNAARWSNCARTRRAAATGAAA

370 390 410 ACAGATATTGTCAGAGTTCTGCTCTAGACAGTGTAGGGCAACAATACATGCTGCTAATTC

430 AAAGCTCTATTA

H = A OF C

R = A or G

W = Y or I

s = C or T

Y = C or T

H = A or C or T

N = A or G or C or T.

DNA sequence for numan preproparathyroid hormone in plasmid pSSHPTH-10 with flanking sequences.

10 30 50
TATGATGATACCTGCAAAAGACATGGCTAAAGTTATGATTGTCATGTTGGCAATTTGTTT

130 150 170 GCATAACCTGGGAAAACATCTGAACTCGATGGAGAGAGTAGAATGGCTGCGTAAGAAGCT

190 210 230 GCAGGATGTGCACAATTTTGTTGCCCTTGGAGCTCCTCTAGCTCCCAGAGATGCTGGTTC

250 270 290 CCAGAGGCCCCGAAAAAAGGAAGACAATGTCTTGGTTGAGAGCCATGAAAAAAAGTCTTGG

310 330 350 AGAGGCAGACAAAGCTGAATGTGAATGTAATTAACTAAAGCTAAATCCCAGTGAAAATGAAA

370 390 410 ACAGATATTGTCAGAGTTCTGCTCTAGACAGTGTAGGGCAACAATACATGCTGCTAATTC

430 AAAGCTCTATTA.

DNA sequence coding for preproparathyroid hormone in pSSHPTH-10 with flanking sequences, showing the corresponding amino acid sequence of preproparathyroid hormone.

- 10 30 50
 TATGATGATACCTGCAAAAGACATGGCTAAAGTTATGATTGTCATGTTGGCAATTTGTTT
 MetlleProAlaLysAspMetAlaLysValMetlleValMetLeuAlaileCysPh
- 130 150 170
 GCATAACCTGGGAAAACATCTGAACTCGATGGAGAGAGTAGAATGGCTGCGTAAGAAGCT
 tHisAsnLeuGlyLysHisLeuAsnSerMetGluArgValGluTrpLeuArgLysLysLe
- 190 210 230
 GCAGGATGTGCACAATTTTGTTGCCCTTGGAGCTCCTCTAGCTCCCAGAGATGCTGGTTC
 uGlnAspValHisAsnPheValAlaLeuGlyAlaProLeuAlaProArgAspAlaGlySe
- 250 270 290 CCAGAGGCCCCGAAAAAAGGAAGACAATGTCTTGGTTGAGAGCCATGAAAAAAAGTCTTGG rGlnArgProArgLysGluAspAsnValLeuValGluSerHisGluLysSerLeuGl
- 310 330 350 AGAGGCAGACAAAGCTGATGTGAATGTATTAACTAAAGCTAAATCCCAGTGAAAATGAAA YGluAlaAspLysAlaAspValAsnValLeuThrLysAlaLysSerGlnEnd
- 370 390 410 ACAGATATTGTCAGAGTTCTGCTCTAGACAGTGTAGGGCAACAATACATGCTGCTAATTC

430 AAAGCTCTATTA.

	हं gure 6. Nucle	otide se empe of	the MF 1-HPTH		
	fusioner from pS LX5-HPTH1. Electide nos. 1-173				
	makeup the MF 1 promot				
	•	the MF 1 N-termina	_		
5	sequence. 441-695 is		•		
,			•		
•	pSSHPTH-10. 696-726 i				
	fr m pSSHPTH-10. 727-				
	3' noncoding sequence	and transcriptions	l termination		
•	signal.	,			
10	10 AGTGCAAGAAAACCAAAAAGCA	30 ACAACAGGTTTTGGATAA	50 GTACATATAAGAGGGCCT		
٠	70	90	110		
	TTTGTTCCCATCAAAAATGTTA		TACGATTCAAGAATAGTTCA		
15	130	150	170		
	AACAAGAAGATTACAAACTATC		170 AACGACCAAAAGAATGAGAT		
	190 TTCCTTCAATTTTTACTGCAGT	210 TTTATTCGCAGCATCCTC	230 CGCATTAGCTGCTCCAGTCA		
	250	270	290		
	ACACTACAACAGAAGATGAAAC	GGCACAAATTCCGGCTGA	AGCTGTCATCGGTTAĈ TCAG		
20	310	330	350		
	ATTTAGAAGGGGATTTCGATGT	TGCTGTTTTTGCCATTTTC	CAACAGCACAAATAACGGGT		
	370	390	410		
	TATTGTTTATAAATACTACTAT	· · · · · · · · · · · · · · · ·			
	430	450	470		
25	ATAAAAGAGAGGCTGAAGCTTC				
	490	510	530		
•	ATCTGAACTCGATGGAGAGAGT				
	550	570	590		
·	TTGTTGCCCTTGGAGCTCCTCT		TTCCCAGAGGCCCCGAAAAA		
	610	630	650		
	AGGAAGACAATGTCTTGGTTGA				
	670	690	710		
5	ATGTGAATGTATTAACTAAAGC				

730 750 770
TC1 TCAGAGTCGACTTTGTTCCCACTG TTAGCTCGTACAAAATACAATATAC
90 810 830
TTTTCATTTCTCCGTAAACAACCTGTTTTCCCATGTAATATCCTTTTCTATTTTTCGTTT
850 870

CGTTACCAACTTTACACATACTTTATATAGCTAT

	figur '· Partia	il DNA siquence fo	or the plasmid for
	in on into yeast in	which: cleot:	ide nos. 1-173
	maket the MF 1 promote		
	sequence. 174-440 is t		
5	sequence. 441-695 is a		_
	HPTH 3' noncoding sequ		
	from pUC19. 733-874 is		
	transcriptional termina		.a acdacuce and
10 50	10		30
30	AGTGCAAGAAAACCAAAAAGCAA	CAACAGGTTTTGGATA	AGTACATATATAAGAGGGCCT
	70	90	110
	TTTGTTCCCATCAAAAATGTTAC	TGTTCTTACGATTCATT	TACGATTCAAGAATAGTTCA
15	130	150	170
	AACAAGAAGATTACAAACTATCA	ATTTCATACACAATATA	AACGACCAAAAGAATGAGAT
	190 TTCCTTCA A TTTTTTA CTCCA CTT	210	230
	TTCCTTCAATTTTTACTGCAGTT	TIATICGCAGCATCCTC	CGCATTAGCTGCTCCAGTCA
	250	270 CCACAAATTCCCCCCTCA	290
	ACACTACAACAGAAGATGAAACG	GCACAAATTCCGGCTGA	AGCTGTCATCGGTTACTCAG
20	310	330	350
	ATTTAGAAGGGGATTTCGATGTT	GCIGITITGCCATTTTC	CAACAGCACAAATAACGGGT
	370 TATTGTTTATA AATA CTA CTA	390 CCC) CC) TTCCTCCT)	410
	TATTGTTTATAAATACTACTATT	GCCMGCWIIGCIGCIMA	AGAAGAAGGGGTATCTTTGG
25	430 ATAAAAGAGAGGCTGAAGCTWSN	450	470
		GINNSNGARAINCARII	NAIGCAIAAIIINGGNAARC
	490 Ayytnaaywsnatggarmgngtn	· 510	530
		OARIGGIINMONAARAA	RIINCARGAIGINCAIAAII
	550 TYGTNGCNYTNGGNGCNCCNYTN	570	590
	- 101110CM1 INGGROCACCM1 IN	GUNCUMBRIGUNGG	nmancakmeneenmenaara
•	610 ARGARGAYAAYGTNYTNGTNGAR	630 Wencayca da a dwenne	650
		moncaigaraarwsnyT	NGGNGARGCNGAYAARGCNG
	670	690	710

15

730 750 GAGTCGACTTTGTTCCCACTG1 810 830 TTTTCATTTCTCCGTAAACAACCTGTTTTCCCATGTAATATCCTTTTCTATTTTTCGTTT 870 CGTTACCAACTTTACACATACTTTATATAGCTAT, wherein

M = A or C R = A or G

A or C or T

or G or C or T

FIG. 9

FIG. 10

FIG. 11

DOSSESSES DOSSES

<u>b</u>______c

-=

P 1 8

1 P 1 F

FIG. 8

W1111ABSORBANCE UNITS

DOSSEIST OGESOO

FIG. 13

FIG. 14

FIG. 15

