IMAGE TRANSFORMATIONS - ROTATION

JAIPRAKASH S 2023510027 Rotation is a process in which a image is simply rotated around the origin or an image center by a given angle. This rotates the image or changes the orientation of an image depending on the angle it has been set to.

Its equation is:

$$egin{bmatrix} x' \ y' \end{bmatrix} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix}$$

Consider rotation about the origin by θ degrees

 ullet radius stays the same, angle increases by heta

Rotation about arbitrary point

Translation:

$$x' = x - p$$

Rotation:

$$x'' = R(x') = Rx - Rp$$

Translation Back:

$$x''' = x'' + p = Rx - Rp + p$$

Translation:

$$x' = x - p$$

Translate the center of rotation to the origin

Rotation:

$$x'' = R(x') = Rx - Rp$$

Rotate the object

Translation Back:

$$x''' = x'' + p = Rx - Rp + p$$

Translate back to original location

Rotation about x axis:

$$R_x(heta) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & \cos heta & -\sin heta & 0 \ 0 & \sin heta & \cos heta & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about y axis:

$$R_y(heta) = egin{bmatrix} \cos heta & 0 & \sin heta & 0 \ 0 & 1 & 0 & 0 \ -\sin heta & 0 & \cos heta & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

For about the axis, axis = 1

Rotation about z axis:

$$R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 & 0 \ \sin heta & \cos heta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

ROTATION AND OTHER TRANFORMATIONS

$$R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$T = egin{bmatrix} \cos heta & -\sin heta & t_x \ \sin heta & \cos heta & t_y \ 0 & 0 & 1 \end{bmatrix}$$

$$R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 & 0 \ \sin heta & \cos heta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = egin{bmatrix} \cos heta & -\sin heta & 0 & t_x \ \sin heta & \cos heta & 0 & t_y \ 0 & 0 & 1 & t_z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotate a Point in 2D Using a Rotation Matrix

Rotate the point

$$P = (2, 1)$$

by 90° counter-clockwise around the origin (0,0).

Step 1: Write the Rotation Matrix

For rotation by angle $heta=90^\circ=rac{\pi}{2}$, the rotation matrix is:

$$R(heta) = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix} = egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}$$

Step 2: Multiply Matrix with Point

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} (0 \cdot 2 + -1 \cdot 1) \\ (1 \cdot 2 + 0 \cdot 1) \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Final Answer:

$$P'=(-1,2)$$

Rotate a Point in 3D Using a Rotation Matrix

Rotate the point

$$P = (2, 1, 0)$$

by 90° counter-clockwise around the Z-axis.

Step 1: Write the 3×3 Z-axis Rotation Matrix

The rotation matrix for rotating around the **Z-axis** by an angle $heta=90^\circ=rac{\pi}{2}$ is:

$$R_z(90^\circ) = egin{bmatrix} \cos(90^\circ) & -\sin(90^\circ) & 0 \ \sin(90^\circ) & \cos(90^\circ) & 0 \ 0 & 0 & 1 \end{bmatrix} = egin{bmatrix} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Step 2: Multiply the Matrix by the Point

Now perform the matrix multiplication:

$$R_z \cdot P = egin{bmatrix} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix} \cdot egin{bmatrix} 2 \ 1 \ 0 \end{bmatrix} = egin{bmatrix} (0 \cdot 2 + -1 \cdot 1 + 0 \cdot 0) \ (1 \cdot 2 + 0 \cdot 1 + 0 \cdot 0) \ (0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0) \end{bmatrix} = egin{bmatrix} -1 \ 2 \ 0 \end{bmatrix}$$

Final Answer:

The rotated point is

$$P^\prime=(-1,2,0)$$

Thank you!