

PAPER

The set of maximal points of an ω -domain need not be a G_{δ} -set

Gaolin Li¹, Chong Shen^{2,3}, Kaiyun Wang⁴, Xiaoyong Xi¹ and Dongsheng Zhao⁵

¹School of Mathematics and Statistics, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China, ²School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China, ³Key Laboratory of Mathematics and Information Networks (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing, China, ⁴School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China and ⁵Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore Corresponding author: Xiaoyong Xi; Email: xixy@yctu.edu.cn

(Received 14 July 2023; revised 25 November 2024; accepted 25 November 2024)

Abstract

A topological space has a domain model if it is homeomorphic to the maximal point space $\operatorname{Max}(P)$ of a domain P. Lawson proved that every Polish space X has an ω -domain model P and for such a model P, $\operatorname{Max}(P)$ is a G_δ -set of the Scott space of P. Martin (2003) then asked whether it is true that for every ω -domain Q, $\operatorname{Max}(Q)$ is G_δ -set of the Scott space of Q. In this paper, we give a negative answer to Martin's long-standing open problem by constructing a counterexample. The counterexample here actually shows that the answer is no even for ω -algebraic domains. In addition, we also construct an ω -ideal domain \widetilde{Q} for the constructed Q such that their maximal point spaces are homeomorphic. Therefore, $\operatorname{Max}(Q)$ is a G_δ -set of the Scott space of the new model \widetilde{Q} .

Keywords: maximal point space; Scott topology; ω -continuous dcpo; G_{δ} -subset

1. Introduction

The Scott topology is the most useful topology in domain theory. In general, this topology is just T_0 . However, by taking the sets Max(P) of all maximal points of posets P, with the relative Scott topology, one can obtain all T_1 spaces (every T_1 space is homeomorphic to the subspace Max(P)of some poset P) (Zhao and Xi, 2018). In general, if a space X is homeomorphic to Max(P) of a poset P, then we say that P is a poset model of X. The spaces with a domain model have been studied by many authors. Lawson proved that a space X is a Polish space if and only if it has an ω -domain model satisfying the Lawson condition (Lawson, 1997). Moreover, if P is an ω domain that satisfies the Lawson condition, then the set Max(P) is a G_{δ} -set of the Scott space ΣP of P. As pointed out by Martin, knowing that Max(P) is a G_{δ} -subset of ΣP is often useful in proofs: for instance, Edalat obtained the well-known connection between measure theory and the probabilistic powerdomain (Edalat, 1997) assuming a separable metric space that embedded as a G_{δ} -subset of an ω -domain. Martin has established several results on G_{δ} -subsets $E \subseteq \text{Max}(P)$, including (i) if P is an ω -domain such that Max(P) is regular, then Max(P) is a G_{δ} -set (Martin, 2003b); (ii) if P is an ω -domain that has a countable set $C \subseteq \text{Max}(P)$ such that $\uparrow x \cap C \neq \emptyset$ for each $x \in P \setminus Max(P)$, then Max(P) is a G_{δ} -set (Martin, 2003a); and (iii) for any ω -ideal domain P, Max(P) is a G_{δ} -set (Martin, 2003a).

However, as stated by Martin (2003a) [Section 8(1)], the answer to the following problem is not known:

• Is Max(P) a G_{δ} -set of ΣP for every ω -domain P

In this paper, we construct an ω -algebraic domain P such that $\operatorname{Max}(P)$ is not a G_δ -set, which gives a negative answer to the above problem. In addition, we also construct an ω -ideal domain \widetilde{P} for our constructed P such that their maximal points spaces are homoemorphic. Therefore, $\operatorname{Max}(P)$ is a G_δ -set of the Scott space of the new model \widetilde{P} .

2. Preliminaries

This section is devoted to a brief review of some basic concepts and notations that will be used later. For more details, we refer the readers to Gierz et al. (2003) and Goubault-Larrecq (2013).

Let *P* be a poset. For a subset *A* of *P*, we shall adopt the following standard notations:

$$\uparrow A = \{ y \in P : \exists x \in A, x \le y \}; \ \downarrow A = \{ y \in P : \exists x \in A, y \le x \}.$$

For each $x \in X$, we simply write $\uparrow x$ and $\downarrow x$ for $\uparrow \{x\}$ and $\downarrow \{x\}$, respectively. A subset A of P is called a *lower* (resp., an *upper*) *set* if $A = \downarrow A$ (resp., $A = \uparrow A$). An element x is *maximal* in $A \subseteq P$, if $A \cap \uparrow x = \{x\}$. The set of all maximal elements of A is denoted by MaxA. The set of minimal elements of A, denoted by minA, is defined dually.

A nonempty subset *D* of *P* is *directed* if every two elements in *D* have an upper bound in *D*. For $x, y \in P$, x is *way-below* y, denoted by $x \ll y$, if for each directed subset *D* of *P* with $\bigvee D$ existing, $y \leq \bigvee D$ implies $x \leq d$ for some $d \in D$. Denote $\uparrow x = \{y \in P : x \ll y\}$ and $\not \models x = \{y \in P : y \ll x\}$. A poset *P* is *continuous*, if for each $x \in P$, the set $\not \models x$ is directed and $x = \bigvee \not \models x$.

An element $a \in P$ is called *compact*, if $a \ll a$. The set of all compact elements of P will be denoted by K(P). Then, P is called *algebraic* if for each $x \in P$, the set $\{a \in K(P) : a \le x\}$ is directed and $x = \bigvee \{a \in K(P) : a \le x\}$. A continuous (resp., algebraic) dcpo is also called a *domain* (resp., an *algebraic domain*). A subset $B \subseteq P$ is a *base* of P if for each $x \in P$, $B \cap \div x$ is directed and $\bigvee (B \cap \div x) = x$. If P has a countable base, then P is called an ω -continuous dcpo or ω -domain.

Remark 1.1.

- (1) A dcpo is a domain if and only if it has a base.
- (2) For each base *B* of a domain *P*, $K(P) \subseteq B$. As a consequence, every algebraic domain *P* has the smallest base, namely K(P).

A subset U of P is *Scott open* if (i) $U = \uparrow U$ and (ii) for each directed subset D of P for which $\bigvee D$ exists, $\bigvee D \in U$ implies $D \cap U \neq \emptyset$. All Scott open subsets of P form a topology on P, called the *Scott topology* and denoted by $\sigma(P)$. The space $\Sigma P = (P, \sigma(P))$ is called the *Scott space* of P.

Let *X* be a topological space. A subset $G \subseteq X$ is called a G_{δ} -set, if there exists a countable family $\{U_n : n \in \mathbb{N}\}$ of open sets such that $G = \bigcap_{n \in \mathbb{N}} U_n$.

3. A Counterexample for Martin's Problem

We shall use the following notations:

 \mathbb{N} := the set of all nonzero natural numbers;

 $\omega :=$ the ordinal (also the cardinal) of natural numbers;

 ω_1 := the ordinal (also the cardinal) of real numbers;

Figure 1. The subdcpo Σ_k .

 $\Sigma := \bigcup \{ \mathbb{N}^k : k \in \mathbb{N} \cup \{\omega\} \}$. In other words, Σ is the set of all nonempty finite or countably infinite sequences of \mathbb{N} ;

 $\Sigma^* := \{a^* : a \in \Sigma\}, \text{ which is a copy of } \Sigma.$

Each element $a \in \Sigma$ can be represented as $\langle a_1, a_2, a_3, \dots, a_k \rangle$ if it is a finite sequence, or $\langle a_n \rangle_{n \in \mathbb{N}}$ if it is an infinite sequence. We use the notation $\ell(a)$ to denote the length of a, which is defined as follows:

$$\ell(a) = \begin{cases} k, & a = \langle a_1, a_2, a_3, \cdots, a_k \rangle; \\ \omega, & a = \langle a_n \rangle_{n \in \mathbb{N}}. \end{cases}$$

We can also define $\ell(a^*) := \ell(a)$, as the lengths of a and a^* are clearly equal.

For any $a \in \Sigma$, we use a_k (resp., $(a^*)_k$), if it exists, to denote the k-th element in the sequence a (resp., a^*). For example, if $a := \langle 1, 2, 3, 5, \dots, n, n+1, \dots \rangle$, it follows that $\ell(a) = \omega$ and $a = \langle a_n \rangle_{n \in \mathbb{N}}$, where $a_n = n$ for all $n \in \mathbb{N}$.

Definition 2.1. For each $a, b \in \Sigma$, a is said to be a substring of b, denoted by $a \sqsubseteq b$, if any of the following cases holds:

- (s1) $\ell(a) \in \mathbb{N}$, and $a_k = b_k$ for all $1 \le k \le \ell(a)$, that is a is a prefix of b;
- (s2) $\ell(a) = \omega$, and a = b (in other words, $a_k = b_k$ for all $k \in \mathbb{N}$).

It is straightforward to verify that the relation \sqsubseteq defined on Σ is a partial order, and some of its properties needed for understanding the main example are listed below.

Remark 2.2.

(1) (Σ, \sqsubseteq) is an algebraic domain. In fact, for each $k \in \mathbb{N}$, the set $\Sigma_k := \{a \in \Sigma : a_1 = k\}$ together with the substring order \sqsubseteq form a tree-like dcpo, as shown in Figure 1. In addition, the poset

4 G. Li et al.

Figure 2. The algebraic domain (Σ, \sqsubseteq) .

 (Σ, \sqsubseteq) is the countable disjoint union of these Σ_k , where $k \in \mathbb{N}$. That is, for any $x, y \in \Sigma$, $x \sqsubseteq y$ in Σ iff there exists some $k_0 \in \mathbb{N}$ such that $x, y \in \Sigma_{k_0}$ and $x \sqsubseteq y$ in Σ_{k_0} , as shown in Figure 2.

- (2) $\operatorname{Max}\Sigma = \{a \in \Sigma : \ell(a) = \omega\}, |\Sigma| = |\operatorname{Max}\Sigma| = \omega_1 \text{ and } |\Sigma \setminus \operatorname{Max}\Sigma| = \omega.$
- (3) The compact elements of Σ are the nonempty finite sequences of \mathbb{N} . In other words,

$$K(\Sigma) = \{a \in \Sigma : \ell(a) \in \mathbb{N}\}.$$

(4) For any two elements $a, b \in \Sigma$, $\{a, b\}$ has upper bounds iff a and b are comparable (i.e., either $a \le b$ or $b \le a$).

We can also define a partial order \sqsubseteq^* on Σ^* as follows: $\forall a, b \in \Sigma$,

$$a^* \sqsubseteq^* b^*$$
 iff $a \sqsubseteq b$.

It is clear that the posets (Σ, \sqsubseteq) and $(\Sigma^*, \sqsubseteq^*)$ are order-isomorphic. Furthermore, the properties of (Σ, \sqsubseteq) listed in Remark 2.2 also hold for $(\Sigma^*, \sqsubseteq^*)$.

Example 2.3. Let $X := \{x_{m,n} : m \in \mathbb{N}, n \in \mathbb{N} \cup \{\omega\}\}$ with the partial order \leq_X defined as follows: $\forall m_1, m_2 \in \mathbb{N} \text{ and } n_1, n_2 \in \mathbb{N} \cup \{\omega\},$

$$x_{m_1,n_1} \leq_X x_{m_2,n_2} \Leftrightarrow m_1 = m_2 \text{ and } n_1 \leq n_2.$$

Then, X is an ω -algebraic domain, as shown in Figure 3. In fact, one easily sees that $\bigvee_{n \in \mathbb{N}} x_{k,n} = x_{k,\omega}$ for all $n \in \mathbb{N}$. Moreover, we have that

$$MaxX = \{x_{m,n} : m \in \mathbb{N}\}\ and\ K(X) = X \setminus MaxX = \{x_{m,n} : m, n \in \mathbb{N}\}.$$

It then follows that $|K(X)| = |\text{Max}X| = |X| = \omega$.

Before presenting the counterexample, let us briefly discuss the order structure defined by combining two ordered structures, which will be helpful to understand the order relationship of our main counterexample.

Figure 3. The algebraic domain (X, \leq_X) .

Figure 4. The posets (P, \leq_1) and (P, \leq_2) .

Remark 2.4. Let $P = \{x_n : n \in \mathbb{N} \cup \{\omega\}\} \cup \{y_n : n \in \mathbb{N} \cup \{\omega\}\}\}$. We define two relations \leq_1 and \leq_2 on P.

- (1) The relation \leq_1 is given as follows:
 - (P1) $x_1 \leq_1 x_2 \leq_1 x_3 \leq_1 \cdots \leq_1 x_n \leq_1 x_{n+1} \leq_1 \cdots \leq_1 x_{\omega}$;
 - (P2) $y_1 \le_1 y_2 \le_1 y_3 \le_1 \cdots \le_1 y_n \le_1 y_{n+1} \le_1 \cdots \le_1 y_\omega$;
 - (P3) $\forall m, n \in \mathbb{N}, x_m \leq_1 y_n \Leftrightarrow m \leq n$.

Then, we define $\leq_2 := \leq_1 \cup \{(x_\omega, y_\omega)\}$. It is easy to verify that both \leq_1 and \leq_2 are partial orders on P, as shown in Figure 4.

(2) In the poset (P, \leq_1) , the chain $C := \{x_n : n \in \mathbb{N}\}$ has two incomparable upper bounds, namely x_ω and y_ω . Hence, the supremum of C in (P, \leq_1) does not exist, and consequently $\bigvee_{(P, \leq_1)} C \neq x_\omega$. However, since $x_\omega \leq_2 y_\omega$, it is clear that the supremum of C in (P, \leq_2) exists and equals x_ω , that is, $\bigvee_{(P, \leq_2)} C = x_\omega$.

Example 2.5. Let $L := X \cup \Sigma \cup \Sigma^*$, where X is the poset defined in Example 2.3. For any $u, v \in L$, define $u \le v$ if any of the following conditions holds:

- (i) $u \sqsubseteq v$ in Σ ;
- (ii) $u \sqsubseteq^* v$ in Σ^* ;
- (iii) $u \leq_X v \text{ in } X$;

Figure 5. The relations between Σ and Σ^* .

- (iv) $u \in \Sigma$, $v = b^* \in \Sigma^*$ and $u \sqsubseteq b$. The order is illustrated in Figure 5.
- (v) $\exists k, m \in \mathbb{N}, u = x_{k,m}, \ell(v) \ge k \text{ and } v_k \ge m \text{ (refer to Figure 6, where the black lines in the figure represent the relationship between the points in <math>X$ and Σ , while the dotted red lines represent the relations between the points in Σ).

In fact, Condition (v) describes the relations between X and $\Sigma \cup \Sigma^*$, which can be characterized as follows: for any $k, m \in \mathbb{N}$, $v \in \Sigma \cup \Sigma^*$,

$$x_{k,m} \le v \text{ iff } \exists n_1, n_2, \cdots, n_k \in \mathbb{N} \text{ such that } n_k \ge m \text{ and } \langle n_1, n_2, \cdots, n_k \rangle \le v.$$

For example, we have the following facts:

$$x_{4,11} \leq \langle 1, 5, 7, 11 \rangle \leq \langle 1, 5, 7, 11, 11 \rangle^* \leq \langle 1, 5, 7, 11, 11, 22, 22 \rangle^*;$$

 $x_{4,11} \leq \langle 1, 5, 7, 111 \rangle \leq \langle 1, 5, 7, 111 \rangle \leq \langle 1, 5, 7, 111, 11 \rangle^* \leq \langle 1, 5, 7, 111, 11, 22, 22 \rangle^*;$
 $x_{3,3} \leq \langle 1, 2, 3 \rangle \leq \langle 1, 2, 3, \dots, n, n+1, \dots \rangle \leq \langle 1, 2, 3, \dots, n, n+1, \dots \rangle^*;$
 $x_{3,3} \leq \langle 2, 3, 4 \rangle \leq \langle 2, 3, 4, \dots, n, n+1, \dots \rangle \leq \langle 2, 3, 4, \dots, n, n+1, \dots \rangle^*.$

Next, we prove that L is an ω -algebraic dcpo such that MaxL is not a G_δ -set in the Scott space of L. We achieve this in a few steps.

(1) The relation \leq is a partial order on L.

The reflexivity and antisymmetry are almost trivial. For showing the transitivity, we need the following:

Claim 1: $\forall k, m \in \mathbb{N}, \forall a \in \Sigma, x_{k,m} \leq a \Leftrightarrow x_{k,m} \leq a^*$.

By the definition of a^* , it holds that $\ell(a^*) = \ell(a)$ and $(a^*)_k = a_k$. Therefore, Claim 1 follows from the following facts:

$$x_{k,m} \le a \text{ iff } \ell(a^*) = \ell(a) \ge k \text{ and } (a^*)_k = a_k \ge m \text{ iff } x_{k,m} \le a^*.$$

Claim 2: $\forall a, b \in \Sigma, a < b \Leftrightarrow a < b^* \Leftrightarrow a^* < b^* \Leftrightarrow a \sqsubseteq b$.

Figure 6. The subset $X \cup \Sigma$ of L.

Claim 2 follows from the following facts:

$$a \le b \overset{(i)}{\Leftrightarrow} a \sqsubseteq b \text{ in } \Sigma \overset{(iv)}{\Leftrightarrow} a \le b^* \overset{(iv)}{\Leftrightarrow} a \sqsubseteq b \text{ in } \Sigma \Leftrightarrow a^* \sqsubseteq^* b^* \text{ in } \Sigma^* \overset{(ii)}{\Leftrightarrow} a^* \le b^*.$$

We now verify the transitivity only by considering the following cases: for any k, m, k', $m' \in \mathbb{N}$ and a, b, $c \in \Sigma$,

- (c1) $x_{k,m} \le x_{k',m'} \le a \le b$. Then, as $x_{k,m} \le x_{k',m'}$, we have that k = k' and $m \le m'$. Also, since $x_{k',m'} \le a \le b$, we have that $\ell(b) \ge \ell(a) \ge k' = k$ and $b_k = b_{k'} = a_k = a_{k'} \ge m' \ge m$, and by (v), it follows that $x_{k,m} \le b$;
- (c2) $x_{k,m} \le a \le b$. Then, $\ell(b) \ge \ell(a) \ge k$ and $b_k = a_k \ge m$, which implies that $x_{k,m} \le b$;
- (c3) By Claims 1 and 2, both cases $x_{k,m} \le a \le b^*$ and $x_{k,m} \le a^* \le b^*$ are equivalent to $x_{k,m} \le a \le b$. Then by (c2), one can imply that $x_{k,m} \le b$, and this is equivalent to $x_{k,m} \le b^*$ by Claim 1;
- (c4) By Claim 2, both cases $a \le b^* \le c^*$ and $a \le b \le c^*$ are equivalent to $a \le b \le c$, which means $a \sqsubseteq b \sqsubseteq c$ in Σ . This implies $a \sqsubseteq c$, which is equivalent to $a \le c^*$.
- (2) $\text{Max}L = \text{Max}\Sigma^* \cup \text{Max}X$ and $|\text{Max}L| = \omega_1$. First, one easily observes that

$$\begin{aligned} & \operatorname{Max} \Sigma &= \mathbb{N}^{\omega}; \\ & \operatorname{Max} \Sigma^* = \{a^* : a \in \mathbb{N}^{\omega}\}; \\ & \operatorname{Max} X &= \{x_{m,\omega} : m \in \mathbb{N}\}, \end{aligned}$$

and

$$|\text{Max}\Sigma| = |\text{Max}\Sigma^*| = \omega_1, |\text{Max}X| = \omega.$$

In addition, by the definition of the order \leq on L, we have that $\uparrow x_{m,\omega} \cap L = x_{m,\omega}$, and therefore, $\text{Max} X \subseteq \text{Max} L$. Then, we conclude that $\text{Max} L = \text{Max} \Sigma^* \cup \text{Max} X$, and $|\text{Max} L| = \omega_1$.

Figure 7. The set $\{x_{3,k}: k \in \mathbb{N} \cup \{\omega\}\} \cup A_3$.

In view of Remark 2.4, we need to check the following fact.

(3) *L* is a dcpo.

Before proving this, we need the following remark about the characteristics of the relations of points $X \cup \Sigma$.

Remark. For any $m \in \mathbb{N}$, the set A_m of all elements $a \in \Sigma$ that satisfy $x_{m,k} \leq a$ and $\ell(a) = m$ for some $k \in \mathbb{N}$ is an antichain. That is, $A_m = \mathbb{N}^m = \bigcup_{k \in \mathbb{N}} \min\left(\uparrow x_{m,k} \cap \Sigma\right)$ is an antichain. For example, A_3 is the antichain of all black points (on the right side) in Figure 7.

By Remark 2.2(4), we see that any two distinct elements of A_m have no upper bound in L. Thus, for any $a \in \Sigma$ and $k, l \in \mathbb{N}$, we have that $a \ge x_{m,k}$ iff there exists a unique element $b \in A_m$ such that $a \ge b$. This fact plays a crucial role in guaranteeing that the supremum of the chain $\{x_{m,k} : k \in \omega\}$ exists and is equal to $x_{m,\omega}$ (comparable to Remark 2.4). The convergence of all such chains in X to their respective maximal points is the key to proving that L is a dcpo, as shown below in Claim 1.

Now *L* being a dcpo can be confirmed by the following four claims.

Claim 3: For any $m \in \mathbb{N}$ and any infinite subset $\{n_k : k \in \mathbb{N}\}$ of \mathbb{N} , $\bigvee_{k \in \mathbb{N}} x_{m,n_k} = x_{m,\omega}$. Comparing to Remark 2.4, it is not obvious.

First, note that $x_{m,\omega}$ is an upper bound of $\{x_{m,n_k}: k \in \mathbb{N}\}$ in L. It remains to verify that $x_{m,\omega}$ is the unique upper bound. We show this by considering the two cases below:

(i) Assume $\{x_{m,n_k}: k \in \mathbb{N}\}$ has an upper bound in Σ . Then, as $\Sigma \subseteq \bigcup \operatorname{Max} \Sigma$, there must exist an element $a := \langle a_k \rangle_{k \in \mathbb{N}} \in \operatorname{Max} \Sigma$ such that $x_{m,n_k} \leq a$ for all $k \in \mathbb{N}$. On the one hand, as $\{n_k : k \in \mathbb{N}\}$ is

Figure 8. Order relations of x_{m,a_m} , $x_{m,n_{k_0}}$, and a.

infinite, it follows that $\bigvee_{k \in \mathbb{N}} n_k = \omega > a_m \in \mathbb{N}$, so there exists $k_0 \in \mathbb{N}$ such that $n_{k_0} > a_m$. On the other hand, as $x_{m,n_{k_0}} \leq a$, we have that $a_m \geq n_{k_0} > a_m$, a contradiction, as shown in Figure 8.

Therefore, $\{x_{m,n_k}: k \in \mathbb{N}\}$ has no upper bound in Σ .

(ii) Assume that there exists $a^* \in \Sigma^*$ that is an upper bound of $\{x_{m,n_k} : k \in \mathbb{N}\}$. Then, by Claim 1 in (1), $a \in \Sigma$ is also an upper bound of $\{x_{m,n_k} : k \in \mathbb{N}\}$, which contradicts (i).

Then (i) and (ii) together show that $\{x_{m,n_k}: k \in \mathbb{N}\}$ has no upper bound in $\Sigma \cup \Sigma^*$, and as it is clear that the only upper bound in X is $x_{m,\omega}$, we deduce that $x_{m,\omega}$ is the unique upper bound of $\{x_{m,n_k}: k \in \mathbb{N}\}$ in L. Therefore, $\bigvee_{k \in \mathbb{N}} x_{m,n_k} = x_{m,\omega}$.

Claim 4: All sets X, Σ and Σ^* are subdepos of L.

Clearly both Σ and Σ^* are subdopos of L. We now check that X is a subdopos of L. Note that X with the restriction order \leq is exactly \leq_X defined in Example 2.3. Note that all infinite directed subsets of X are of the form $\{x_{m,n_k}: k \in \mathbb{N}\}$, where $m \in \mathbb{N}$ and $\{n_k: k \in \mathbb{N}\}$ is an infinite subset of \mathbb{N} ; hence, we only need to prove that $\bigvee_{k \in \mathbb{N}} x_{m,n_k} = x_{m,\omega}$.

Claim 5: For any directed subset D of L, if $\bigvee D \in \Sigma^*$, then $D \cap \Sigma^*$ is a directed set such that $\bigvee D = \bigvee (D \cap \Sigma^*)$.

It suffices to prove $D \subseteq \downarrow (D \cap \Sigma^*)$. Note that $X \cup \Sigma$ is both a lower set and a subdcpo of L, thus Scott closed. Then, $\Sigma^* = L \setminus (X \cup \Sigma)$ is a Scott open subset of L, so there exists $d_0 \in D \cap \Sigma^*$, it follows that $\uparrow d_0 \subseteq \uparrow \Sigma^* = \Sigma^*$. Hence, $D \subseteq \downarrow (D \cap \uparrow d_0) \subseteq \downarrow (D \cap \Sigma^*)$. This shows that $D \cap \Sigma^*$ is cofinal in D, and so $D \cap \Sigma^*$ is a directed set whose supremum equals $\bigvee D$ (see pp.61 in Goubault-Larrecq (2013)).

Claim 6: For any directed subset D of L, if $\bigvee D \in \Sigma$, then $D \cap \Sigma$ is a directed set such that $\bigvee D = \bigvee (D \cap \Sigma)$.

For this, we only need to prove $D \subseteq \bigcup (D \cap \Sigma)$. By the definition of \leq on L, we have that $D \subseteq \bigcup D \subseteq \bigcup \Sigma = \Sigma \cup (X \setminus \text{Max}X)$, and hence $D = (D \cap \Sigma) \cup (D \cap (X \setminus \text{Max}X))$. Thus, to show $D \subseteq \bigcup (D \cap \Sigma)$, it suffices to prove $D \cap (X \setminus \text{Max}X) \subseteq \bigcup (D \cap \Sigma)$. Let $x_{m,n} \in D \cap (X \setminus \text{Max}X)$. Note that $D \cap \Sigma \neq \emptyset$ (if $D \cap \Sigma = \emptyset$, then $D \subseteq X$, and since X is a subdopo of L, $\bigvee D \in X$, a contradiction), so we choose an arbitrary point $b \in D \cap \Sigma$. Since D is directed, there exists $e \in D$ such that $b \leq e$ and $x_{m,n} \leq e$. Recall that $D \subseteq \bigcup \Sigma$ and $b \cap \bigcup \Sigma \subseteq \Sigma$ (as $b \in \Sigma$), so $b \in b \cap D \subseteq (b \cap b \cap b) \cap D \subseteq \Sigma \cap D$, which implies that $b \cap D \subseteq \bigcup (\Sigma \cap D)$. Thus, $b \cap C \subseteq \bigcup (D \cap \Sigma)$. Therefore, $b \subseteq \bigcup (D \cap \Sigma)$. This shows that $b \cap \Sigma$ is cofinal in D, so $b \cap \Sigma$ is a directed set such that $b \cap D \subseteq \bigcup (D \cap \Sigma)$ (see pp.61 in Goubault-Larrecq (2013)).

(5) *L* is an ω -algebraic domain and $K(L) = L \setminus (\text{Max}(\Sigma) \cup \text{Max}(\Sigma^*) \cup \text{Max}X)$.

Let $B := L \setminus (\text{Max}(\Sigma) \cup \text{Max}(\Sigma^*) \cup \text{Max}X)$. Then, $B = \{x_{m,n} : m, n \in \mathbb{N}\} \cup \{a \in \Sigma : \ell(a) \in \mathbb{N}\} \cup \{a^* : a \in \Sigma, \ell(a) \in \mathbb{N}\}$. Suppose $m \in \mathbb{N}$ and $a = \langle a_1, a_2, \cdots, a_m \rangle \in \Sigma$.

Step 1: We prove $a^* \in K(L)$.

Suppose D is a directed subset of L such that $a^* \leq \bigvee D$. Then, $\bigvee D \in \uparrow a^* \subseteq \Sigma^*$, so by Claim 3 of (3), $D \cap \Sigma^*$ is a directed subset of L and $a^* \leq \bigvee D = \bigvee (D \cap \Sigma^*)$. It follows that $D \cap \Sigma^*$ is a directed subset of Σ^* and $a^* \sqsubseteq \bigvee D = \bigvee (D \cap \Sigma^*)$. Note that a^* is a finite sequence of Σ^* , so it is compact in $(\Sigma^*, \sqsubseteq^*)$, and then there exists $b^* \in D \cap \Sigma^*$ such that $a^* \sqsubseteq^* b^*$. This implies that $a \leq b^*$ in L. Therefore, $a^* \in K(L)$.

Step 2: We prove $a \in K(L)$.

Suppose *D* is a directed subset of *L* such that $a \leq \bigvee D$. Then, $\bigvee D \in \uparrow a \subseteq \Sigma \cup \Sigma^*$. We consider the following two cases:

(e1) $\bigvee D \in \Sigma^*$.

Then, by Claim 2 of (1), $a^* \le \bigvee D$, and as we have proved in Step 1 that $a^* \in K(L)$, there exists $e \in D$ such that $a \le a^* \le e$, so $a \le e$.

(e2) $\bigvee D \in \Sigma$.

Then, by Claim 2 of (3), $D \cap \Sigma$ is a directed subset of L and $a \leq \bigvee D = \bigvee (D \cap \Sigma)$. It follows that $D \cap \Sigma$ is a directed subset of Σ and $a \sqsubseteq \bigvee D = \bigvee (D \cap \Sigma)$. Note that a is a finite sequence of Σ , so it is compact in (Σ, \sqsubseteq) , and then there exists $e \in D \cap \Sigma$ such that $a \sqsubseteq e$. This implies that $a \leq e$ in L.

By (e1) and (e2), we conclude that $a \in K(L)$.

Step 3: $\forall k, m \in \mathbb{N}, x_{k,m} \in K(L)$.

As a matter of fact, assume that *D* is a directed subset of *L* such that $x_{k,m} \leq \bigvee D$.

- (i) Let $\bigvee D \in X$. Then, $D \subseteq \bigcup X = X$. Note that $x_{k,m} \leq \bigvee D$ in L implies $x_{k,m} \leq_X \bigvee D$ in X, and it is clear that $x_{k,m} \in K(X)$. Then, there exists $e \in D$ such that $x_{k,m} \leq_X e$, and hence $x \leq e$ in L.
- (ii) Let $\bigvee D \in \Sigma \cup \Sigma^*$. Then, as $x_{k,m} \leq \bigvee D$, there exist $n_1, n_2, \dots, n_k \in \mathbb{N}$ such that $n_k \geq m$ and $x_{k,m} \leq \langle n_1, n_2, \dots, n_k \rangle \leq \bigvee D$. As we have proved in Step 2, $\langle n_1, n_2, \dots, n_k \rangle \in K(L)$, there exists $e \in D$ such that $\langle n_1, n_2, \dots, n_k \rangle \leq e$. Thus, $x_{k,m} \leq e$.

Therefore, by above (i)–(ii), $x_{k,m}$ is compact.

From Steps 1–3, we deuce that $B \subseteq K(L)$. Clearly, every element of L can be represented as the supremum of some directed subset of B, which means that B is a base of L. Note that K(L) is included in any base of L, so $K(L) \subseteq B$. Therefore B = K(L). Also, one easily see that $|B| = |K(L)| = \omega$. Hence, L is an ω -algebraic domain.

(6) Max*L* is not a G_{δ} -set in ΣL .

Suppose, on the contrary, that MaxL is a G_δ -set. Then, there exists a countable family $\{U_k : k \in \mathbb{N}\} \subseteq \sigma(L)$ such that Max $L = \bigcap_{k \in \mathbb{N}} U_k$. Recall that Max $L = \operatorname{Max}(\Sigma^*) \cup \operatorname{Max}X$.

Procedure 1: Since $x_{1,\omega} = \bigvee_{n \in \mathbb{N}} x_{1,n} \in \text{Max} X \subseteq \text{Max} L \subseteq U_1 \in \sigma(L)$, there exists $n_1 \in \mathbb{N}$ such that $x_{1,n_1} \in U_1$. Note that $\langle n_1 \rangle \geq x_{1,n_1} \in U_1 = \uparrow U_1$, so

 $\langle n_1 \rangle \in U_1$.

Procedure 2: Since $x_{2,\omega} = \bigvee_{n \in \mathbb{N}} x_{2,n} \in \text{Max} X \subseteq \text{Max} L \subseteq U_2 \in \sigma(L)$, there exists $n_2 \in \mathbb{N}$ such that $x_{2,n_2} \in U_2$. Note that $\langle n_1, n_2 \rangle \geq x_{2,n_2} \in U_2 = \uparrow U_2$, so $\langle n_1, n_2 \rangle \in U_2$. Since $\langle n_1, n_2 \rangle \geq \langle n_1 \rangle \in U_1 = \uparrow U_1$, we have that $\langle n_1, n_2 \rangle \in U_1$, which follows that

$$\langle n_1, n_2 \rangle \in U_1 \cap U_2$$
.

Procedure 3: Since $x_{3,\omega} = \bigvee_{n \in \mathbb{N}} x_{3,n} \in \operatorname{Max} X \subseteq \operatorname{Max} L \subseteq U_3 \in \sigma(L)$, there exists $n_3 \in \mathbb{N}$ such that $x_{3,n_3} \in U_3$. Note that $\langle n_1, n_2, n_3 \rangle \geq x_{3,n_3} \in U_3 = \uparrow U_3$, so $\langle n_1, n_2, n_3 \rangle \in U_3$. Since $\langle n_1, n_2, n_3 \rangle \geq \langle n_1, n_2 \rangle \in U_1 \cap U_2 = \uparrow(U_1 \cap U_2)$, we have that $\langle n_1, n_2, n_3 \rangle \in U_1 \cap U_2$, which follows that

$$\langle n_1, n_2, n_3 \rangle \in U_1 \cap U_2 \cap U_3$$
.

Repeating the above procedures, we obtain a countably infinite sequence $a := \langle n_k \rangle_{k \in \mathbb{N}} \in \mathbb{N}$ U_k . Note that $a \notin \operatorname{MaxL}$ (as $a < a^*$), which contradicts our assumption $\operatorname{MaxL} = \bigcap_{k \in \mathbb{N}} U_k$. Therefore, MaxL is not a G_δ -set in ΣL .

From the preceding example, we obtain our main result as follows, which gives a negative answer to Martin's problem.

Corollary 2.6. There exists an ω -algebraic domain P such that Max(P) is not a G_{δ} -set of the Scott space ΣP .

4. Max(L) Has an ω -Ideal Model

A poset model of a topological space X is a poset P such that Max(P), the set of maximal elements of P, with the relative Scott topology, is homeomorphic to X. Clearly, every space having a poset model is T_1 .

Definition 3.1 (Martin (2003a)). A continuous dcpo is called ideal if every element is either compact or maximal. It is called ω -ideal if it is ideal and has a countable basis.

If *P* is a poset model of *X* such that *P* is an ω -ideal domain, then we say that *X* has an ω -ideal domain model, or equivalently, and *X* can be modeled by an ω -ideal domain.

In this section, we construct an ω -ideal domain model of Max(L), which shows that Max(L) can be modeled by an ω -ideal domain model. Therefore, Max(L) is a G_{δ} -set in this model.

Let $\tilde{L} = X \cup \Sigma$. We project L onto \tilde{L} and define a mapping $f : L \to L$ as follows:

$$f(x) = \bigvee \{ y \in K(\tilde{L}) : y \le x \}, \forall x \in L.$$

It is easy to observe the follows facts.

Fact 1: i)
$$\forall x \in X \cap K(L), f(x) = x$$
; ii) $\forall x \in \Sigma \cap K(L), f(x) = x$; iii) $\forall x^* \in \Sigma^* \cap K(L), f(x^*) = x$.

Fact 2: f preserves the supremum of directed subsets of *L* and then is Scott-continuous.

Fact 3: The image of f is \tilde{L} , and Max(L) are $Max(\tilde{L})$ are bijective.

By the definition of f, we have that: i) $\forall x \in X \cap \text{Max}(L), f(x) = x \in X \cap \text{Max}(\tilde{L}); ii) \forall x \in \Sigma \cap \text{Max}(L), f(x) = x \in \Sigma \cap \text{Max}(\tilde{L}); and iii) \forall x^* \in X \cap \text{Max}(L^*), f(x^*) = x \in X \cap \text{Max}(\tilde{L}).$

Fact 4: The restriction of f to the maximal point space is an open mapping.

This can be seen from the results:

- (i) $\forall x \in K(L) \cap X, f(\uparrow x \cap \text{Max}(L)) = \uparrow x \cap \text{Max}(\tilde{L});$
- (ii) $\forall x \in K(L) \cap \Sigma, f(\uparrow x \cap \text{Max}(L)) = \uparrow x \cap \text{Max}(\tilde{L});$
- (iii) $\forall x^* \in K(L) \cap \Sigma^*, f(\uparrow x^* \cap \text{Max}(L)) = \uparrow x \cap \text{Max}(\tilde{L}).$

From these facts, we obtain the following results:

Theorem 3.2. Max(L) can be modeled by an ω -ideal domain and therefore the maximal point space is a G_δ -set of the Scott space of the model.

The results here naturally lead to the following problems for further study on this topic:

Problem 1 Is there a T_1 space which has an algebraic domain model and does not have any ideal model?

Problem 2 Which spaces have an ideal domain model?

Acknowledgments. This work was supported by the National Natural Science Foundation of China (12331016, 12471438, 12071188, and 12101313).

Declaration of interests. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Edalat, A. (1997). When Scott is weak on the top. Mathematical Structures in Computer Science 7 (5) 401-417.

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W. and Scott, D. S. (2003). *Continuous Lattices and Domains*, Cambridge University Press.

Goubault-Larrecq, J. (2013). Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology, Cambridge University Press.

Lawson, J. (1997). Spaces of maximal points. Mathematical Structures in Computer Science 7 (5) 543-555.

Martin, K. (2003a). Ideal models of spaces. Theoretical Computer Science 305 (1-3) 277-297.

Martin, K. (2003b). The regular spaces with countably based model. Theoretical Computer Science 305 (1-3) 299-310.

Zhao, D. and Xi, X. (2018). Directed complete poset models of T_1 spaces. Mathematical Proceedings of the Cambridge Philosophical Society 164 (1) 125–134.