<u>Sommaire</u>

F(onctions	. 2
	Image	
	Antécédent	
	Ensemble de définition	
	Représentation graphique	
	Point appartenant à une courbe représentative	

Fonctions

Image

Données :

On considère une fonction :

$$f(x) = 2x + 5$$

Calcul d'images :

$$\forall x = 0 \rightarrow f(0) = 2 * 0 + 5 \rightarrow f(0) = 5$$

$$\forall x = 1 \rightarrow f(1) = 2 * 1 + 5 \rightarrow f(1) = 7$$

$$\forall x = 2 \rightarrow f(2) = 2 * 2 + 5 \rightarrow f(2) = 9$$

$$\forall x = 3 \rightarrow f(3) = 2 * 3 + 5 \rightarrow f(3) = 11$$

Antécédent

Données :

On considère une fonction :

$$f(x) = 2x + 5$$

Calcul d'antécédents :

$$y = 2x + 5$$

$$x = \frac{y - 5}{2}$$

$$\forall y = 5 \to x = \frac{5-5}{2} \to x = 0$$

$$\forall y = 7 \to x = \frac{7-5}{2} \to x = 1$$

$$\forall y = 9 \to x = \frac{9-5}{2} \to x = 2$$

$$\forall y = 11 \to x = \frac{11 - 5}{2} \to x = 3$$

Ensemble de définition

Données :

On considère une fonction :

$$f_1(x) = 2x + 5$$

$$f_2(x) = \frac{1}{2x+5}$$

$$f_3(x) = \sqrt{2x + 5}$$

$$f_4(x) = \frac{1}{\sqrt{2x+5}-4}$$

Calcul d'ensemble de définition :

$$f(x) = 2x + 5$$

 $\forall x \in \mathbb{R}$; f(x) existe si:

 $x \in \mathbb{R}$

 $D_f =]+\infty \; ; \; +\infty[$

Calcul d'ensemble de définition :

$$f(x) = \sqrt{2x + 5}$$

 $\forall x \in \mathbb{R} ; f(x) \text{ existe si} :$

$$2x + 5 \ge 0$$

$$x \ge -\frac{5}{2}$$

$$D_f = \left[-\frac{5}{2} ; + \infty \right]$$

Calcul d'ensemble de définition :

$$f(x) = \frac{1}{2x+5}$$

 $\forall x \in \mathbb{R} ; f(x) \text{ existe si} :$

$$2x + 5 \neq 0$$

$$x \neq -\frac{5}{2}$$

$$D_f = \mathbb{R} \setminus \left\{ -\frac{5}{2} \right\}$$

$$D_f = \left[-\infty ; -\frac{5}{2} \right] \cup \left[-\frac{5}{2} ; +\infty \right]$$

Calcul d'ensemble de définition :

$$f(x) = \frac{1}{\sqrt{2x+5}-4}$$

$$f(x) = \frac{\sqrt{2x+5}+4}{(\sqrt{2x+5}-4)(\sqrt{2x+5}+4)}$$

$$f(x) = \frac{\sqrt{2x+5}+4}{\sqrt{2x+5}^2-4^2}$$

$$f(x) = \frac{\sqrt{2x+5}+4}{2x+5-16}$$

$$f(x) = \frac{\sqrt{2x+5}+4}{2x-11}$$

 $\forall x \in \mathbb{R}$; f(x) existe si:

$$2x + 5 \ge 0$$
; $2x - 11 \ne 0$

$$x \ge -\frac{5}{2} \; ; \; x \ne \frac{11}{2}$$

$$D_f = \left[-\frac{5}{2} ; +\infty \right] \setminus \left\{ \frac{11}{2} \right\}$$

$$D_f = \left[-\frac{5}{2} ; \frac{11}{2} \right] \cup \left[\frac{11}{2} ; +\infty \right]$$

Représentation graphique

Données :

On considère une fonction :

$$f(x) = \sqrt{2x + 5}$$

Calcul d'ensemble de définition :

$$f(x) = \sqrt{2x + 5}$$

 $\forall x \in \mathbb{R} ; f(x) \text{ existe si} :$

$$2x + 5 \ge 0$$

$$x \ge -\frac{5}{2}$$

$$D_f = \left[-\frac{5}{2} \; ; \; +\infty \right[$$

Calcul d'images:

$$f(x) = \sqrt{2x + 5}$$

x	-2.5	- 2	-1	0	1	2	3	4	5	6
f(x)	0	1	1.73	2.23	2.64	3	3.31	3.60	3.87	4.12

Représentation graphique :

Point appartenant à une courbe représentative

Données :

On considère une fonction :

$$f(x) = \sqrt{2x + 5}$$

On considère deux points :

$$A(-2;1)$$
; $B(2;4)$

Point appartenant à la courbe :

$$f(x) = \sqrt{2x + 5}$$

$$A(-2;1)$$

$$f(-2) = \sqrt{2 * (-2) + 5}$$

$$f(-2) = 1$$

$$A(-2;1) \in C_f$$

Point appartenant à la courbe :

$$f(x) = \sqrt{2x + 5}$$

$$f(2) = \sqrt{2 * (2) + 5}$$

$$f(2) = 3$$

$$B(2;4) \notin C_f$$