Sydney Technical High School

Mathematics

YEAR 10 ASSESSMENT TASK 1

JUNE 2013

Instructions

- Time allowed 70 minutes
- Show necessary working.
- Use a pen only and a ruler for straight lines.
- Marks shown are a guide and may need to be adjusted.
- Full marks may <u>not</u> be awarded for <u>careless</u> work or <u>illegible</u> answers.

Name_		

Teacher

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	TOTAL
Trig.	Sim. Eqns.	Quad. Eqns.	Prob.	Consumer	No. Plane	
/14	/10	/17	/11	/10	/18	/80

QUESTION 1 (14 marks)

a)

Find the value of:

- i) $\tan \theta$ _____ ii) $\sin(90^{\circ} \theta)$ _____
- b) Evaluate tan 36°15′ ______(2 dec. places)

1

c) Find θ , correct to the <u>nearest minute</u>, given that $\cos \theta = 0.4$

1

- d) In ΔPQR , $\angle R=90^{\circ}$ and $\cos P={}^{1}/_{2}$. Draw a diagram and find:
 - i) sin *P* _____

1

ii) the size of angle Q_____

1

e) Find x, correct to <u>1 decimal place</u>:

$$i) \sin 42^\circ = \frac{6.5}{x}$$

Answer _____ 1

ii)

Answer _____ 1

iii)

Answer _____ 3 (care with rounding)

f) A boat travels from its harbour at H on a bearing of $310^{\circ}\,$

to its fishing grounds at F, 200 km away.

i) How far west of H is F? (nearest km) 2

ii) What is the bearing of H from F?

Answer	

1

QUESTION 2 - SIMULTANEOUS EQUATIONS (10 marks)

a) Find the simultaneous solution to y=2x and y=-x-3 using their graphs.

b) Solve simultaneously 3x - 2y = 4 and x - y = 3 using the <u>substitution</u> method.

c) Solve simultaneously 3x - 5y + 5 = 0 and 5x - 6y - 8 = 0 using the <u>elimination</u> method.

- d) For tickets to a <u>maths concert</u>, x adults pay \$23 each and y children pay \$7 each. A total of \$1866 is collected from ticket sales and 150 tickets are sold.
 - Write and solve two equations in x and y to find the number of adults and the number of children attending the concert.

QUESTION 3 – QUADRATIC EQUATIONS (17 marks)

a) Solve each quadratic equation. Leave all answers in exact form.

10

i)
$$2x^2 = 50$$

ii)
$$x^2 - 2x = 0$$

iii)
$$x^2 - 2x - 8 = 0$$

iv)
$$(2x-5)^2 = 47$$

$$v) \quad \frac{3}{4-x} = x$$

b) Use the quadratic formula to solve $2x^2 - x - 4 = 0$. Give your answer correct to 2 decimal places.

2

- c) A son's age is x and his father's age is (x + 30). The product of their ages is eight times the sum of their ages.
 - i) Write an equation in \boldsymbol{x} to represent the above information.

2

ii) Solve this equation to find the son's age.

2

d) A quadratic equation $ax^2 + bx + c = 0$ has solution $x = \frac{3 \mp \sqrt{29}}{2}$. Find the value of c .

a) Two regular dice are tossed and the <u>sum</u> of their scores is noted. Use a lattice,	
grid, diagram (or otherwise) to find:	
i) the number of elements in the sample space? 1	
ii) the probability of obtaining a sum of 7 or 12? 1	
b) Two dice, numbered <u>0 to 5 on the faces</u> , are tossed and the <u>product</u> of the two scores is	
recorded. What is the probability of recording a score of zero?	
Answer1	1
c) A family has 3 children. By considering all possible arrangements, or a tree diagram,	
what is the probability of having: i) exactly 1 boy? Answer 1	
ii) at least 1 boy? Answer 1	
d) Four cards are marked with a 6, 7, 8 or 9 and placed in a hat. One card is drawn at random to give the <u>tens-digit</u> of a 2-digit number. The card is not returned to the hat. A second card is drawn to give the <u>units-digit</u> for the 2-digit number.	
i) List all 2-digit numbers possible.	

ii) What is the probability that a number formed is larger than 70?	_ 1
e) We say, with certainty, that the probability of obtaining Heads in a coin toss is $\frac{1}{2}$.	
However, you may toss a coin 100 times and obtain 77 Heads. Briefly explain the	
apparent contradiction.	1
f) In a class of 30 students, it is found that 17 students love K-POP, 20 love HIP-HOP,	
9 love both and 2 love neither (they prefer Coco-Pops!)	
i) Complete the Venn diagram with the appropriate	1
numbers.	
ii) One student is selected at random. What is the probability that the student loves	К-РОР
or HIP-HOP, but not both?	1
g) A drawer contains 5 pairs of socks, each pair a different colour, and arranged as 10 socks. Two socks are withdrawn at random. What is the probability that a matching of socks is withdrawn?	
or socks is withdrawn:	

QUESTION 5 – CONSUMER (10 marks)

а) ;	\$2000 is invested for 15 years	and earns 5%	p.a. interest. Find the total interest ear	ned
	1	(to the nearest dollar), if the i	interest is:		
		i) simple interest	1	ii) compound interest (annually)	2
b)) T	he formula for depreciation is	s A = P(1 -	$r)^n$.	
	Δ	car, worth \$30 000 when nev	w, depreciate	s to \$10 000 after 4 years. Find the ann	ual
	p	ercentage rate of depreciatio	n.		2
				Answer	
c)	Αl	oan of \$50 000 is repaid to th	ne bank over	number of years. The bank charges	
	red	ducible interest at the rate of	9% p.a.		
	Αt	the end of each year, interest	t is first charg	ed on the balance owing and then a	
	rep	payment of \$9935 is paid to the	he bank. Wha	t is the loan amount (balance) still owe	d
1	to	the bank after:			
	i)	1 year	1	ii) 3 years	2

iii) After 7 annual repayments, the loan is fully repaid. Find the equivalent annual percentage rate of flat (simple) interest for this loan (1 dec. place).

2

Answer _____

QUESTION 6 - NUMBER PLANE GRAPHS (18 marks)

a) Each parabola shown is a result of shifting the basic $y=x^2$ parabola. Write the equation for each new parabola.

i)

ii)

Answers _____

b) Find the equation of this parabola:

Answer _____

2

c) Sketch each parabola. Clearly show intercepts on the axes and the coordinates of the

vertex.

i)
$$y = (x+2)^2$$

2

ii)
$$y = 3x - x^2$$

2

d) Find the maximum value of $6 + 2x - x^2$

Answer

2

e) Match each curve or line with the appropriate equation from A – J below:

2

ii)

iii)

iv)

v)

vi)

vii)

$$A. \ y = \frac{x}{2}$$

$$B. \ y = \frac{2}{x}$$

$$C. \ x^2 - y^2 = 2$$

A.
$$y = \frac{x}{2}$$
 B. $y = \frac{2}{x}$ C. $x^2 - y^2 = 2$ D. $x + y - 2 = 0$ E. $y = 2^x$

E.
$$y = 2^x$$

$$F. \ y = \underbrace{x^3}_{2}$$

F.
$$y = x^3$$
 G. $x - y + 2 = 0$ H. $x^2 + y^2 = 2$ I. $x + 2 = 0$ J. $x^2 = y + 1$

$$H. x^2 + y^2 = 2$$

$$I. x + 2 = 0$$

$$J. \ x^2 = y + 1$$

f) The trapezium ABCD has vertices as shown, with $AB \parallel DC$. AD is perpendicular to both AB and DC.

i) Find the gradient of AD.

ii) Find the length of *DC* (in exact form) 1

iii) Find the area of *ABCD*. 3

iv) What are the coordinates of a new point M so that MBCD forms a parallelogram?

END OF TEST (yay)

Sydney Technical High School

Mathematics

YEAR 10 ASSESSMENT TASK 1

JUNE 2013

Instructions

- Time allowed 70 minutes
- Show necessary working.
- Use a pen only and a ruler for straight lines.
- Marks shown are a guide and may need to be adjusted.
- Full marks may not be awarded for careless work or illegible answers.

Name	
Teacher	

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	TOTAL
Trig.	Sim. Eqns.	Quad. Eqns.	Prob.	Consumer	No. Plane	
/14	/10	/17	/11	/10	/18	/80

QUESTION 1 (14 marks)

a)

Find the value of:

i)
$$\tan \theta$$
 $\frac{34}{4}$ ii) $\sin(90^{\circ} - \theta)$

ii)
$$\sin(90^{\circ} - \theta)$$

2

b) Evaluate tan 36°15′ O · 73 (2 dec. places)

c) Find θ , correct to the <u>nearest minute</u>, given that $\cos \theta = 0.4$ 66°25'

d) In ΔPQR , $\angle R = 90^{\circ}$ and $\cos P = \frac{1}{2}$. Draw a diagram and find: i) $\sin P$

i)
$$\sin P$$
 $\sqrt{3}$

1

1

ii) the size of angle Q 30°

1

e) Find x, correct to 1 decimal place:

i)
$$\sin 42^{\circ} = \frac{6.5}{x}$$

$$x = \frac{6.5}{\sin 42^{\circ}}$$

ii)

Answer 6.(

iii)

(care with rounding)
(2 maks for 46.1

fan 50 = m fan x = 7 tan 50

f) A boat travels from its harbour at H on a bearing of 310°

i) How far west of H is F? (nearest km)

$$\sin 50 = \frac{2}{200}$$

$$z = 200 \sin^2 3$$

ii) What is the bearing of H from F?

- Answer ___ 130° 1

QUESTION 2 - SIMULTANEOUS EQUATIONS (10 marks)

a) Find the simultaneous solution to y = 2xand y = -x - 3 using their graphs.

$$z = -1$$
, $y = -2$
or $(-1, -2)$

b) Solve simultaneously 3x - 2y = 4 and x - y = 3 using the <u>substitution</u> method.

$$3x-2y=4-0$$
 $x-y=3-0$

$$3y+9-2y=4$$

I mark method

c) Solve simultaneously
$$3x - 5y + 5 = 0$$
 and $5x - 6y - 8 = 0$ using the elimination method.

$$3x-5y+5=0$$
 — 0
 $5x-6y-8=0$ — 2

I made correct method

2

I work answers

$$(3-0): -7y+49=0$$

 $y=7$ Sub i $0:32-35+5=0$

d) For tickets to a <u>maths concert</u>, x adults pay \$23 each and y children pay \$7 each. A total of \$1866 is collected from ticket sales and 150 tickets are sold.

Write and solve two equations in x and y to find the number of adults and the number of children attending the concert.

From
$$②: y=150-x$$

Sub in $0: 23x+7(150-x)=1866$
 $16x=8(6)$

I mak equations I make wethod I make arswer

3

$$x = 51 \text{ (and } y = 99)$$

: 51 adults, 99 children

QUESTION 3 – QUADRATIC EQUATIONS (17 marks)

a) Solve each quadratic equation. Leave all answers in exact form.

10

i)
$$2x^2 = 50$$

$$x = 25$$

$$x = \pm 5$$

ii)
$$x^2 - 2x = 0$$

$$7(72 - 2) = 0$$

iii)
$$x^2 - 2x - 8 = 0$$

 $(\nu - 4)(\nu + 2) = 0$
 $\nu = 4, -2$

(2 marks each)

iv)
$$(2x-5)^2 = 47$$

 $2x-5 = \pm 547$
 $2x = 5 \pm 547$
 $x = 5 \pm 547$
2 marks each

v)
$$\frac{3}{4-x} = x$$

$$3 = \varkappa(4-\varkappa)$$

$$3 = 4 \varkappa - \varkappa^{2}$$

$$\varkappa^{2} - 4 \varkappa + 3 = 0$$

$$(\varkappa - 1)(\varkappa - 3) = 0$$

$$\therefore \varkappa = 1, 3$$

b) Use the quadratic formula to solve $2x^2 - x - 4 = 0$. Give your answer correct to 2 decimal places.

$$2 = \frac{1 \pm \sqrt{1 - 4 \times 2 \times (-4)}}{4}$$
 | mark ensurers
= $1 \pm \sqrt{33}$ = $(.69 \text{ or } -1.19)$

c) A son's age is x and his father's age is (x+30). The product of their ages is eight times

the sum of their ages.

i) Write an equation in x to represent the above information. $\times (x + 30) = 8(x + x + 30)$ 2

ii) Solve this equation to find the son's age.

$$x^{2} + 14x - 240 = 0$$

$$(x - 10)(x + 24) = 0$$

$$\therefore x = 10 \text{ or } -24(\text{no solution})$$

$$\therefore \text{ Son is } 10 \text{ y.o.}$$

d) A quadratic equation $ax^2 + bx + c = 0$ has solution $x = \frac{3 \pm \sqrt{29}}{2}$. Find the value of c. b=-3, a=1, b2-4ac=29 9 - 4c = 29

$$4c = -20$$

· · c = -5 = 0

1

2

QUESTION 4 - PROBABILITY (11 marks)

- a) Two regular dice are tossed and the <u>sum</u> of their scores is noted. Use a lattice, grid, diagram (or otherwise) to find:
 - i) the number of elements in the sample space? 36 1
 - ii) the probability of obtaining a sum of 7 or 12? $\frac{736}{36}$ 1 $\frac{3}{3}$ 16 $\frac{7}{3}$ 66
- b) Two dice, numbered <u>0 to 5 on the faces</u>, are tossed and the <u>product</u> of the two scores is recorded. What is the probability of recording a score of zero?
 - 00 (0 20 30 40 50
 01
 02
 Answer 36
 1
 04
- c) A family has 3 children. By considering all possible arrangements, or a tree diagram, what is the probability of having:

 i) exactly 1 boy?

 Answer
 - ii) at least 1 boy? Answer _______ 1
- d) Four cards are marked with a 6, 7, 8 or 9 and placed in a hat. One card is drawn at random to give the <u>tens-digit</u> of a 2-digit number. The card is not returned to the hat.

 A second card is drawn to give the <u>units-digit</u> for the 2-digit number.
 - i) List all 2-digit numbers possible.

67 76 86 96 68 78 87 97 69 79 89 98

٠	ii) What is the probability that a number formed is larger than 70? $\frac{9}{12}$ or $\frac{3}{4}$
	e) We say, with certainty, that the probability of obtaining Heads in a coin toss is $^1\!/_2$. However, you may toss a coin 100 times and obtain 77 Heads. Briefly explain the
	apparent contradiction.
OR OR	In is brased on very many tosses 100 tosses is far too small as the no of tosses increases, prob. gets closer to h
	f) in a class of 30 students, it is found that 17 students love K-POP, 20 love HIP-HOP,
	9 love both and 2 love neither (they prefer Coco-Pops!) i) Complete the Venn diagram with the appropriate
	numbers. 30 K H 2
)	ii) One student is selected at random. What is the probability that the student loves K-POI or HIP-HOP, but not both?
,	g) A drawer contains 5 pairs of socks, each pair a different colour, and arranged as 10 loose socks. Two socks are withdrawn at random. What is the probability that a matching pair
Circl.	of socks is withdrawn? any I sock is drawn out

P.7

QUESTION 5 - CONSUMER (10 marks)

- a) \$2000 is invested for 15 years and earns 5% p.a. interest. Find the total interest earned (to the nearest dollar), if the interest is:
 - i) simple interest

2

$$A = 2000(1.05)^{15}$$
= 4157

b) The formula for depreciation is $A = P(1-r)^n$.

A car, worth \$30 000 when new, depreciates to \$10 000 after 4 years. Find the annual percentage rate of depreciation.

c) A loan of \$50 000 is repaid to the bank over a number of years. The bank charges reducible interest at the rate of 9% p.a.

At the end of each year, interest is first charged on the balance owing and then a repayment of \$9935 is paid to the bank. What is the loan amount (balance) still owed to the bank after:

$$0 \rightarrow = \frac{432183.53}{}$$

annual percentage rate of flat (simple) interest for this loan (1 dec. place).

Using
$$PRN = 19545$$

$$50000 \times R \times 7 = 19545$$

$$R = 19545$$

$$350,000$$

$$= 0.056$$

QUESTION 6 - NUMBER PLANE GRAPHS (18 marks)

a) Each parabola shown is a result of shifting the basic $y=x^2$ parabola.

Write the equation for each new parabola.

i)

ii

Answers $y = -x^2$

y=(x-2)2+1

2

b) Find the equation of this parabola:

Answer $y = 3(\nu - 1)(\nu - 2)$

or y = 3x2-9x+6

c) Sketch each parabola. Clearly show intercepts on the axes and the coordinates of the

vertex.

i)
$$y = (x+2)^2$$

2

ii)
$$y = 3x - x^2$$

d) Find the maximum value of $6 + 2x - x^2$

max = 6 + 2 - 1

1 mark for (1,7)

e) Match each curve or line with the appropriate equation from A-J below:

2

2

i)

ii)

iv)

v)

vi)

$$A. \ y = \frac{x}{2}$$

B.
$$y = \frac{2}{x}$$

$$C. x^2 - y^2 = 1$$

A.
$$y = \frac{x}{2}$$
 B. $y = \frac{2}{x}$ C. $x^2 - y^2 = 2$ D. $x + y - 2 = 0$ E. $y = 2^x$

E.
$$y = 2^x$$

$$F. \ y = \underline{x^3}$$

F.
$$y = x^3$$
 G. $x - y + 2 = 0$ H. $x^2 + y^2 = 2$ I. $x + 2 = 0$ J. $x^2 = y + 1$

$$H. x^2 + y^2 = 2$$

$$I. \ x + 2 = 0$$

$$J. \ x^2 = y + 1$$

f) The trapezium ABCD has vertices as shown, with $AB \parallel DC$. AD is perpendicular to both AB and DC.

i) Find the gradient of AD.

$$M_{AD} = \frac{2-1}{0-3}$$
 $= -\frac{1}{3}$

ii) Find the length of DC (in exact form)

$$DC = \sqrt{4 + 36}$$

= $\sqrt{40}$ or $2\sqrt{10}$

iii) Find the area of ABCD. 3

Need
$$AB = \sqrt{10}$$
 $AD = \sqrt{10}$

area $ABCD = \frac{1}{2} \times \sqrt{10} \left(\sqrt{10} + 2\sqrt{10} \right)$

$$= \sqrt{10} \left(3\sqrt{10} \right)$$

$$= 15 u^{2}$$

iv) What are the coordinates of a new point M so that MBCD forms a parallelogram?

END OF TEST (yay)

