Introduction to Database Systems CSE 414

Lecture 20: Design Theory

CSE 414 - Spring 2018

Class Overview

- Unit 1: Intro
- · Unit 2: Relational Data Models and Query Languages
- · Unit 3: Non-relational data
- · Unit 4: RDMBS internals and query optimization
- · Unit 5: Parallel query processing
- Unit 6: DBMS usability, conceptual design
 - E/R diagrams
 - Schema normalization
- Unit 7: Transactions

2

Constraints in SQL

Constraints in SQL:

- · Keys, foreign keys
- simplest
- Attribute-level constraints
- · Tuple-level constraints
- · Global constraints: assertions

Most complex

 The more complex the constraint, the harder it is to check and to enforce

CSE 414 - Spring 2018

8

What happens when data changes?

- SQL has three policies for maintaining referential integrity:
- NO ACTION reject violating modifications (default)
- <u>CASCADE</u> after delete/update do delete/update
- SET NULL set foreign-key field to NULL
- <u>SET DEFAULT</u> set foreign-key field to default value
 - need to be declared with column, e.g.,
 CREATE TABLE Product (pid INT DEFAULT 42)

CSE 414 - Spring 2018

What makes good schemas?

CSE 414 - Spring 2018

15

Relational Schema Design

Name	<u>SSN</u>	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

CSE 414 - Spring 2018

Relational Schema Design

Name	<u>SSN</u>	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
.lne	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy
- = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

CSE 414 - Spring 2018

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
	Fred	123-45-6789	206-555-6543	Seattle
/	Joe	987-65-4321	908-555-2121	Westfield
				$\overline{}$

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN	<u>PhoneNumber</u>	
123-45-6789	206-555-1234	
123-45-6789	206-555-6543	
087-65-4321	908-555-2121	

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

18

Relational Schema Design (or Logical Design)

How do we do this systematically?

- · Start with some relational schema
- Find out its functional dependencies (FDs)
- · Use FDs to normalize the relational schema

CSE 414 - Spring 2018

Functional Dependencies (FDs) Definition $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if: $\begin{cases} \circ, & \forall \\ g, & \forall \end{cases}$ $f, & f \in \mathbb{R}, f \in \mathbb{R} \end{cases}$ $f, & f \in \mathbb{R}, f \in \mathbb{R}, f \in \mathbb{R} \end{cases}$ $f, & f \in \mathbb{R}, f \in \mathbb{R}, f \in \mathbb{R} \end{cases}$ $f, & f \in \mathbb{R}, f \in \mathbb{R}, f \in \mathbb{R} \end{cases}$ $f, & f \in \mathbb{R}, f \in \mathbb{R}, f \in \mathbb{R}, f \in \mathbb{R} \end{cases}$ $f, & f \in \mathbb{R}, f \in \mathbb{R}, f \in \mathbb{R}, f \in \mathbb{R} \end{cases}$ $f, & f \in \mathbb{R}, f \in$

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Do all the FDs hold on this instance?

CSE 414 - Spring 2018

Example name → color category → department color, category → price name category color department price Gadget Toys 49 Gizmo Green Tweaker Gadget Green Toys 49 Green Office-supp. 59 Gizmo Stationary What about this one ? CSE 414 - Spring 2018 26

Buzzwords

- · FD holds or does not hold on an instance
- If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD
- · If we say that R satisfies an FD, we are stating a constraint on R

CSE 414 - Spring 2018

25

Why bother with FDs?

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

CSE 414 - Spring 2018

An Interesting Observation

If all these FDs are true:

name → color category -> department color, category → price

Then this FD also holds: name, category → price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.

CSE 414 - Spring 2018

Closure of a set of Attributes

Given a set of attributes A₁, ..., A_n

The **closure** is the set of attributes B, notated $\{A_1, ..., A_n\}$ s.t. $A_1, ..., A_n \rightarrow B$

Example:

1. name → color 2. category → department3. color, category → price

Closures:

name+ = {name, color}

{name, category}+ = {name, category, color, department, price} color+ = {color}

```
Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn't change do:
    if B_1, ..., B_n \to C is a FD and
    B_1, ..., B_n are all in X
    then add C to X.

{name, category}^+ =
    { name, category, color, department, price }

Hence: name, category \to color, department, price
```

```
Example
In class:
R(A,B,C,D,E,F)
A,B \rightarrow C
A,D \rightarrow E
B \rightarrow D
A,F \rightarrow B
Compute \{A,B\}^{+} \quad X = \{A,B, \qquad \}
Compute \{A,F\}^{+} \quad X = \{A,F, \qquad \}
CSE 414 - Spring 2018 \qquad 32
```

```
Example
In class:
R(A,B,C,D,E,F)
A,B \to C
A,D \to E
B \to D
A,F \to B
Compute \{A,B\}^+ \quad X = \{A,B,C,D,E\}
Compute \{A,F\}^+ \quad X = \{A,F,\}
CSE 414 - Spring 2018
```

```
Example
In class:
R(A,B,C,D,E,F)
A,B \rightarrow C
A,D \rightarrow E
B \rightarrow D
A,F \rightarrow B
Compute \{A,B\}^+ \quad X = \{A,B,C,D,E\}
Compute \{A,F\}^+ \quad X = \{A,F,B,C,D,E\}
CSE 414 - Spring 2018
34
```

```
Example
In class:
R(A,B,C,D,E,F)
A,B \to C
A,D \to E
B \to D
A,F \to B
Compute \{A,B\}^+ \quad X = \{A,B,C,D,E\}
Compute \{A,F\}^+ \quad X = \{A,F,B,C,D,E\}
CSE 414 - Spring 2018
What is the key of R?
```

Keys

R(A,,...A,,B)

- A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$
- · A key is a minimal superkey
 - A superkey and for which no subset is a superkey

CSE 414 - Spring 2018

37

Computing (Super)Keys

- For all sets X, compute X+
- If X⁺ = [all attributes], then X is a superkey
- · Try reducing to the minimal X's to get the key

CSE 414 - Spring 2018

a 2018

38

Example

Product(name, price, category, color)

name, category → price category → color

What is the key?

CSE 414 - Spring 2018

Example

Product(name, price, category, color)

name, category → price category → color

What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key

CSE 414 - Spring 2018

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more distinct keys

CSE 414 - Spring 2018

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more distinct keys

 $A \rightarrow B$ $B \rightarrow C$ $C \rightarrow A$

or

AB→C BC→A

or

A→BC B→AC

what are the keys here?

CSE 414 - Spring 2018

42

Eliminating Anomalies

Main idea:

- X → A is OK if X is a (super)key
- X → A is not OK otherwise
 - Need to decompose the table, but how?

Boyce-Codd Normal Form

CSE 414 - Spring 2018

Boyce-Codd Normal Form

Dr. Raymond F. Boyce

CSE 414 - Spring 2018

Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation R is in BCNF if:

Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Equivalently: **Definition**. A relation R is in BCNF if:

 \forall X, either X⁺ = X or X⁺ = [all attributes]

CSE 414 - Spring 2018

BCNF Decomposition Algorithm

Normalize(R)

find X s.t.: $X \neq X^+$ and $X^+ \neq [all attributes]$ if (not found) then "R is in BCNF" <u>let</u> $Y = X^+ - X$; $Z = [all attributes] - X^+$ decompose R into R1(X \cup Y) and R2(X \cup Z) Normalize(R1); Normalize(R2);

CSE 414 - Spring 2018

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
loe	987-65-4321	908-555-1234	Westfield

Name, SSN

SSN → Name, City

The only key is: {SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency

In other words:

SSN+ = SSN, Name, City and is neither SSN nor All Attributes

