6.

(a) (5pts) Give an example to show that if V and W are subspaces of \mathbb{R}^n , the set $V \cup W$ need not be a subspace.

Let $V\subseteq\mathbb{R}^2$ be $\operatorname{span}\{\vec{e}_1\}$ and $W\subseteq\mathbb{R}^2$ be $\operatorname{span}\{\vec{e}_2\}$. Since V and W are both spans, they are subspaces.

Let $X=V\cup W$. The vector $\vec{e}_1,\vec{e}_2\in V\cup W$ since $\vec{e}_1\in V$ and $\vec{e}_2\in W$. However, $\vec{e}_1+\vec{e}_2$ is neither in V nor W since it cannot be written as a linear combination of \vec{e}_1 nor as a linear combination of \vec{e}_2 . Thus X is not closed under addition and so cannot be a subspace.

(b) (5pts) Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove that the range of \mathcal{T} is a subspace.

By definition, $\operatorname{range}(T)=\{\vec{y}:\vec{y}=T\vec{x} \text{ for some } \vec{x}\in\mathbb{R}^n\}$. Let $\vec{a},\vec{b}\in\operatorname{range}(T)$. By definition there exists $\vec{a}',\vec{b}'\in\mathbb{R}^n$ so that $\vec{a}=T(\vec{a}')$ and $\vec{b}=T(\vec{b}')$. Now,

$$\vec{a} + \vec{b} = T(\vec{a}') + T(\vec{b}') = T(\vec{a}' + \vec{b}')$$

with the last equality following from the linearity of T. Thus, $\vec{a} + \vec{b} \in \operatorname{rage}(T)$.

Similarly,

$$k\vec{a} = kT(\vec{a}') = T(k\vec{a}')$$

with the last equality following from the linearity of T. Thus, $k\vec{a} \in \operatorname{rage}(T)$, and so $\operatorname{range}(T)$ is a subspace.

- 7. Let $\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects vectors across the line span $\{\vec{\mathbf{e}}_1\}$, let $\mathcal{R}: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation counter-clockwise by 90°, and let $\mathcal{P}: \mathbb{R}^2 \to \mathbb{R}^2$ be projection onto the vector $\vec{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.
- (a) (6pts) Find matrices F, R, and P corresponding to \mathcal{F} , \mathcal{R} , and \mathcal{P} .

For
$$F$$
, note that $\mathcal F$ takes $\begin{bmatrix}1\\0\end{bmatrix}$ to $\begin{bmatrix}1\\0\end{bmatrix}$ and $\begin{bmatrix}0\\1\end{bmatrix}$ to $\begin{bmatrix}0\\-1\end{bmatrix}$. Thus $F=\begin{bmatrix}1&0\\0&-1\end{bmatrix}$.

For
$$R$$
, \mathcal{R} takes $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, respectively. Thus $R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

For
$$P$$
, we'll be a little more creative. \mathcal{P} takes $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ to itself and $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (since

$$\begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
 is perpendicular to the vector we're projecting onto). Thus if $P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

we should have
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, and $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. From this, we get four equations:

$$3a + 2b = 3$$

$$3c + 2d = 2$$

$$2a - 3b = 0$$

$$2c - 3d = 0$$

Adding three times the first equation to twice the third equation gives 13a=9, and thus $a=\frac{9}{13}$; plugging this into either of those equations then gives $b=\frac{6}{13}$. Similarly, the second and fourth equations give 13c=6, so $c=\frac{6}{13}$ and $d=\frac{4}{13}$.

Thus
$$P = \begin{bmatrix} \frac{9}{13} & \frac{6}{13} \\ \frac{6}{13} & \frac{4}{13} \end{bmatrix}$$
.

(b) (6pts) Classify the transformations \mathcal{F} , \mathcal{R} , and \mathcal{P} as invertible or not. Explain your reasoning.

The transformation \mathcal{F} is invertible, since \mathcal{F} is its own inverse; reflecting a second time across $\mathrm{span}\{\vec{e_1}\}$ reverses the effect of \mathcal{F} .

The transformation $\mathcal R$ is also invertible; its inverse is a clockwise rotation by 90° around the origin.

The transformation $\mathcal P$ is not invertible. It is not one-to-one, since $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$

both map to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. A transformation that is not one-to-one cannot be invertible.

(c) (4pts) Let M be the matrix corresponding to $\mathcal{F} \circ \mathcal{P}$. Explain two ways to compute M. Clearly label your methods "Method 1" and "Method 2." There is no need to actually compute M.

Method 1:

As we know, composition of transformations corresponds to matrix multiplication. Thus M=FP, using the matrices we computed before.

Method 2:

We could also compute M by finding the effect of $\mathcal{F} \circ \mathcal{P}$ on two chosen vectors (as long as the chosen vectors are linearly indenpendent). For example, $\mathcal{F} \circ \mathcal{P}$ takes $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ to $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. As in the method for computing P, let $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$; this will give four equations with a,b,c,d as the variables. We can solve this system and thus obtain M.

(d) (4pts) A linear transformation $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ is said to have finite order if $\mathcal{T}^k = \mathrm{id}$ for some $k \geq 1$. (Here, $\mathcal{T}^k = \mathcal{T} \circ \mathcal{T} \circ \cdots \circ \mathcal{T}$ repeated k times, and id is the identity function.) Out of \mathcal{F} , \mathcal{R} , and \mathcal{P} , which transformations have finite order? Explain.

> \mathcal{F} and \mathcal{R} have finite order, since $\mathcal{F}^2 = \mathcal{R}^4 = \mathrm{id}$. However, \mathcal{P} does not have finite order. A transformation \mathcal{T} that has finite order k is also invertible, since then \mathcal{T}^{k-1} is the inverse of \mathcal{T} . But \mathcal{P} is not invertible, so it cannot have finite order.

(e) (3pts) Give an example of a transformation that is invertible, but does not have finite order.

Let $\mathcal T$ be the transformation that multiplies the first component (or x-coordinate) of an input vector by 2. This is a linear transformation, since it corresponds to the matrix $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Its inverse is the transformation corresponding to the matrix $\begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix}$, which divides the first component of an input vector by 2. However, \mathcal{T}^k

has the effect of multiplying the first component of input vectors by 2^k , and this will never be the identity function for k > 0.

8. Let $X = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : x + y = 1 \right\}$ and $Y = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : x - 2y = 0 \right\}$.

(a) (2pts) Draw X.

- (b) (3pts) Is X a subspace of \mathbb{R}^2 ? Prove your answer directly from the definition of a subspace. X is not a subspace. The vector \vec{e}_1 is in X, but $0\vec{e}_1 = \vec{0} \notin X$, so X fails to be closed under scalar multiplication.
- (c) (2pts) Draw Y.

(d) (3pts) Is Y a subspace of \mathbb{R}^2 ? Prove your answer directly from the definition of a subspace.

Y is a subspace. Let $A=\begin{bmatrix}1 & -2\end{bmatrix}$. Now $\vec{x}\in Y$ if and only if $A\vec{x}=\vec{0}$.

Consider $\vec{x}, \vec{y} \in Y$. We now have

$$A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = \vec{0} + \vec{0} = \vec{0},$$

and so $(\vec{x} + \vec{y}) \in Y$. Similarly,

$$A(k\vec{x}) = kA\vec{x} = k\vec{0} = \vec{0},$$

and so $k\vec{x}\in Y.$ Since $Y\subseteq\mathbb{R}^2$ satisfies both conditions for being a subspace, it is a subspace of $\mathbb{R}^2.$

- 9. Suppose $\{\vec{u}, \vec{v}, \vec{w}\}$ is a basis for \mathbb{R}^3 .
- (a) (5pts) Is $\{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\}$ a basis for \mathbb{R}^3 ? Explain.

Yet. Let $V=[\vec{u}|\vec{v}|\vec{w}]$ be the matrix whose columns are \vec{u}, \vec{v} , and \vec{w} , let $W=[\vec{u}+\vec{v}|\vec{u}+\vec{w}|\vec{v}+\vec{w}]$ be the matrix whose columns are $\vec{u}+\vec{v}, \vec{u}+\vec{w}$, and $\vec{v}+\vec{w}$, and

let
$$X = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
. By the definition of matrix multiplication we see

$$W = XV$$
.

Notice that X is invertible and since the columns of V are linearly independent and V is a square matrix V is invertible. Therefore, W, as the product of two invertible matrices is invertible.

By the invertible matrix theorem, the columns of W are linearly independent and the column space of W is \mathbb{R}^3 . Thus the columns of W (that is, the vectors $\vec{u} + \vec{v}$, $\vec{u} + \vec{w}$, and $\vec{v} + \vec{w}$) form a basis for \mathbb{R}^3 .

(b) (5pts) Suppose A is a 3-by-3 matrix, and $\{A\vec{u}, A\vec{v}, A\vec{w}\}$ is a linearly independent set. Show that A is invertible. (You may reference the Invertible Matrix Theorem.)

Let $V = [\vec{u}|\vec{v}|\vec{w}]$ be the matrix whose columns are \vec{u} , \vec{v} , and \vec{w} , and let $W = [A\vec{u}|A\vec{v}|A\vec{w}]$ be the matrix whose columns are $A\vec{u}$, $A\vec{v}$, and $A\vec{w}$.

From the definition of matrix multiplication, W=AV. By the invertible matrix theorem, V^{-1} exists and so $A=WV^{-1}$. Further, by the invertible matrix theorem, W^{-1} exists and so

$$B = (WV^{-1})^{-1} = VW^{-1}$$

is a well defined matrix. Computing, we see that

$$AB = A(VW^{-1}) = WV^{-1}(VW^{-1}) = I$$

and

$$BA = VW^{-1}A = VW^{-1}(WV^{-1}) = I,$$

and so $B = A^{-1}$. In particular, A is invertible.