Tarea 9 Hiram Isaí Torres Espinosa

INDICACIONES. – Contesta brevemente lo que se solicita en cada pregunta, con la información revisada

en la sesión de Clase 10, una vez finalizado digitaliza la hoja de respuesta y genera un archivo extensión

PDF, nombrando tu archivo APELLIDO PATERNO APELLIDO MATERNO NOMBRE_TAREA 9

1. En una reacción reversible, en el momento de equilibrio químico ¿qué ocurre con los reactivos y los

productos?

- Los reactivos y los productos se hacen constantes
- 2. En su forma general ¿cómo se define la K, constante de equilibrio?
 - $\circ~$ Esta definida como $K = rac{Productos}{Reactivos}$
- 3. ¿Qué es el cociente de reacción?
 - o El cociente de reacción es la proporcion relativa de los reactivos y productos definida por:

$$Q = \frac{Productos}{Reactivos}$$

En el estado inicial de la reacción

- 4. En un sistema de reacción química, para los casos Q > K, Q < K y Q = K; ¿qué interpretación tiene?
 - o Tiene que:

Q>K va hacia la **Izquierda** \leftarrow

Q < K va hacia la ${f Derecha}
ightarrow$

 ${\cal Q}={\cal K}$ Esta en **Equilibrio**

5. Si tenemos la siguiente reacción química expresada de forma general: aA + bB ↔cC + dD; ¿cuál sería la

expresión que defina la constante de equilibrio químico?

$$\circ~K=rac{(C^c)(D^d)}{(A^a)(B^b)}$$

Escribe la expresión de la constante de equilibrio para la siguiente reacción: N2(g) + 3H2(g) ↔
 2NH3(g)

$$\circ \ K = rac{(NH_3)^2}{(N_2)(H_2)^3}$$

7. Para la anterior reacción química, determina el valor de la constante de equilibrio, considera los siguientes

datos

	N_2	H_2	NH_3
Concentración en el equilibrio (M)	0.756	0.547	0.325

$$K = rac{(NH_3)^2}{(N_2)(H_2)^3} \ K = rac{0.325^2}{(0.756)(0.547)^3} \ K = 0.854$$

8. En la siguiente reacción química 2NO(g) + 2H2(g) ↔N2(g) + 2H2O(g) Calcula el valor de las incógnitas con los datos proporcionados.

	NO	H_2	N_2	H_2O	
Inicio (M)	0.1	0.05	0	0	Q=0
Cambio(M)	-0.28	-0.028	0.012	0.024	
Equilibrio (M)	0.072	0.022	0.012	0.024	K=2.76

9. Los factores que afectan el equilibrio son la concentración, la presencia o ausencia de reactivos, la presión

y la temperatura ¿cómo afecta en general la temperatura?

 La reacción es constante a menos que la temperatura sea cambiada si la temperatura se ve afectada ya no estará en equilibrio la reacción, por lo que tendremos:

$$T_1
ightarrow K_1$$
 Un equilibrio para cierta temperatura

$$T_2
ightarrow K_2$$
 Otro para otra variación de temperatura

10. ¿Cuál es la expresión de la ecuación de Van't Hoff?

$$\circ ln(\frac{K_2}{K_1}) = \frac{\Delta H}{R}(\frac{1}{T_1} - \frac{1}{T_2})$$

- 11. ¿Qué significa que $\Delta H^{\circ} < 0$ y que $\Delta H^{\circ} > 0$?
 - Que cuando la entalpía es menor que cero la reacción es Exotérmica y cuando sea mayor que cero será Endotérmica
- 12. Complementa la siguiente tabla especificando qué pasa con el equilibrio de la reacción en cada caso:

	$\Delta H < 0$	$\Delta H > 0$
$T_2>T_1$	\leftarrow	\rightarrow
$T_2 < T_1$	\rightarrow	←