3.hafta.notebook March 13, 2023

Yineleme Gözüm Yöntemleri

- 1. Yerine koyma metodu X
- 2. Master metodu 🗸
- 3. Ymelene organ metodu

$$T(n) = 2T(n/3) + \Theta(n)$$
 $T(n) = 3T(n/4) + \Theta(\sqrt{n})$
 $T(n) = T(n-1) + \Theta(1)$
 $T(n) = T(n/2) + T(n/3) + n$

1. Master metodu

$$T(n) = aT(n/b) + f(n)$$

 $a \ge 1$, $b > 1$ ve f asimptotik pozitif ise
 $f(n)$ i $n \log_b a$ ile karşılaştırın.

Durum 1: Eger $f(n) = O(n^{\log b^{\alpha} - \epsilon})$, $\epsilon > 0$ yani f(n) $n^{\log b^{\alpha}}$ don daha yava büyür

'se Gözüm: $T(n) = \Theta(n^{\log b^{\alpha}})$

Ornek:
$$T(n) = \mu T(n/2) + n = \Theta(n^2)$$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornek: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornex: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornex: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

ornex: $T(n) = \mu T(n/2) + n = \Theta(n^2)$

3.hafta.notebook March 13, 2023

Durum 1: Eger $f(n) = \Theta(n^{\log_b a})$, your f ile $n^{\log_b a}$ aynı oranda büyür ise $G\ddot{o}z\ddot{u}n$: $T(n) = \Theta(n^{\log_b a}\log_a)$

Ornel: $T(n) = \lambda T(n/2) + n^2$ $\int_{0}^{\infty} dx = \int_{0}^{\infty} dx = \int_$

Durum 2 dir.

Gozin: T(n)= O(n lgn)

Durum 3: $f(n) = \Omega(n^{\log_b \alpha + \varepsilon})$, $\varepsilon > 0$ sabit ve f(n) divzenlilik koşulunu sağlıyar ise $\cos \pi \cdot T(n) = \Theta(f(n))$

Düzenlilik koşulu: af(n/b) < cf(n) için c<1 olan bir sabittir

Durum 3 de f(n) nlogo dan daha hizli büyür.

Ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: $T(n) = L(T(n/2) + (n^3) - r + (n)$ ornek: T(n) = L(n)ornek: T(n) = L(n)

dizentilik $(af(n/b) \le cf(n))$ $4f(n/2) \le cf(n)$ $4f(n/2) \le cf(n)$ 5ecilebria

Durum 3 olur. O zamon $T(n) = \Theta(n^3)$

 $T(n) = L(1/2) + n = \Theta(n^2)$ during 1 $T(n) = L(1/2) + n^2 = \Theta(n^2 | g_n)$ during 2 $T(n) = L(1/2) + n^3 = \Theta(n^3)$ during 3 3.hafta.notebook March 13, 2023

2. Vinelene Agaci Metada

$$T(n) = T(n/u) + T(n/2) + n^2$$
 yinelensesini

 $cozelim$
 $T(n/u) = T(n/6) + T(n/u) + \frac{n^2}{16}$
 $T(n/u) = T(n/u) + T(n/u) + \frac{n^2}{16}$
 $T(n) = T(n/u) + \frac{n^2}{16}$
 $T(n/u) = T(n/u) + \frac{n^2}{16}$

3.hafta.notebook March 13, 2023

Exercises

4.5-1

Use the master method to give tight asymptotic bounds for the following recurrences.

a. T(n) = 2T(n/4) + 1.

b. $T(n) = 2T(n/4) + \sqrt{n}$.

To a sum of the following recurrences: $T(n) = 2T(n/4) + \sqrt{n}$.

To a sum of the following recurrences: $T(n) = \Theta(\sqrt{n})$ $T(n) = \Theta(\sqrt{n})$

c. T(n) = 2T(n/4) + n.

d. $T(n) = 2T(n/4) + n^2$.

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n-1) + 1. Use the substitution method to verify your answer.

4.4-5

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = T(n-1) + T(n/2) + n. Use the substitution method to verify your answer.

$$T(n) = 1$$
 = 1
 $T(n-1)$ $T(n-1)$ 1
 $T(n-2)$ $T(n-2)$ $T(n-2)$

$$T(n) = \frac{1}{1 + \frac{1$$