MLOPS

Etienne KOA

4 mars 2024

Figure 1 – Codons pour toujours

Table des matières

1	Prei	requis	10
	1.1	Aide Mémoie	10
	1.2	AutoNLP	1(
	1.3	AutoEDA	10
	1.4	AutoML	1(
	1.5	EDA Python AI	1(
	1.6	Feature Engineering	1(
	1.7	Feature Selection	1(
	1.8	Hyperparameter Tuning	1(
	1.9	Interpretable Machine Learining	1(
	1.10	Object Oriented Programming Project	1(
	1.11	Github Foundations	10
	1.12	Mémoire M2	10
2	Défi	s et évolution du Machine Learning	11
	2.1	Introduction à l'apprentissage automatique	1
	2.2	Avantages de l'apprentissage automatique	1
	2.3	Principes fondamentaux du MLOps	1
	2.4	Principes fondamentaux de DevOps et DataOps	1
3	Fone	dements du MLOps	12
	3.1	Problèmes résolus par MLOps	1:
	3.2	Composants MLOps	12
	3.3	Boîte à outils MLOps	12
	3.4	Étapes MLOps	1:
4	Inst	allation des outils et bibliothèques	13
	4.1	Comment installer des bibliothèques et préparer	
		l'environnement	1:
	4.2	Principes de base de Jupyter Notebook	13

	4.3	Installation de Docker et Ubuntu	13
5	Pro	ductivisation et structuration des projets ML	1 4
	5.1	Cookiecutter pour gérer la structure du modèle	
	5.2	Machine Learning	14
		début à la fin	14
	5.3	Poetry pour la gestion des dépendances	14
	5.4	Makefile pour l'exécution automatisée des tâches	14
	5.5	Hydra pour gérer les fichiers de configuration	
		YAML	14
	5.6	Hydra appliqué à un projet de Machine Learning	14
	5.7	Vérifiez et corrigez automatiquement le code avant	
		la validation dans Git	14
	5.8	Révision du code avec Black et Flake8 dans le	
		pré-commit	14
	5.9	Révision du code avec Isort et Iterrogate dans l'intégration Pre-commit et Git	14
	5.10	Générer automatiquement de la documentation	14
		pour le projet ML	14
6	ML	Ops Phase 1 : Conception de solutions	15
	6.1	Conception et mise en œuvre de Volere	15
7	ML	Ops Phase 2 : Automatisation du cycle du	
	mod	lèle ML	16
	7.1	Principes de base d'AutoML	16
	7.2	Construire une maquette du début à la fin avec	
		Pycaret	16
	7.3	EDA et prétraitement avancé avec Pycaret	16
	7.4	Développement de modèles avancés (XGBoost,	
		CatBoost, LightGBM) avec Pycaret)	16

	7.5	Déploiement en production avec Pycaret	16
8		Ops phase 2 : Versionnement et enregistre-	
	men	t du modèle avec MLFlow	17
	8.1	Enregistrement et versioning des modèles avec	
		MFlow	17
	8.2	Enregistrement d'un modèle Scikit-Learn avec	
		MLFlow	17
	8.3	Enregistrement du modèle Pycaret auprès de ML-	
		Flow	17
9	Vers	sionnement de l'ensemble de données avec DV	C 18
	9.1	Introduction au DVC	18
	9.2	Commandes et processus DVC	18
	9.3	Laboratoire pratique avec DVC	18
	9.4	Pipelines DVC	18
10	Dép	ôt de code avec DagsHub, DVC, Git et ML-	
	Flov	${f v}$	19
	10.1	Introduction à DagsHub pour le référentiel de code	19
	10.2	EDA et prétraitement des données	19
	10.3	Formation et évaluation du prototype du modèle	
		ML	19
	10.4	Création de compte DagsHub	19
		Création de l'environnement Python et de l'en-	
		semble de données	19
	10.6	Hydra appliqué à un projet de Machine Learning	19
		Déploiement du modèle dans DagsHub	19
		Formation et versionnage du modèle ML	19
		Utiliser DVC pour versionner les données et les	
		modèles	19

	10.10	Envoi de code, de données et de modèles à Dag-	
		sHub	19
	10.11	Expérimentation et enregistrement des expériences	
		dans DagsHub	19
	10.12	Utiliser DagsHub pour analyser et comparer des	
		expériences et des modèles	19
11	Enre	egistrement et versioning automatisés avec	
	Pyca	aret et DagsHub	20
	11.1	Intégration Pycaret et Dagshub	20
	11.2	Laboratoire pratique d'enregistrement d'un mo-	
		dèle et d'un ensemble de données avec Pycaret	
		et DagsHub	20
	11.3	Exercice pratique. Développement d'un modèle	
		avec Pycaret et enregistrement dans MLFlow .	20
	11.4	Solution. Développement d'un modèle avec Py-	
		caret et inscription dans MLFlow	20
	11.5	Exercice pratique. Générer un référentiel avec	
		DagsHub	20
		Solution. Générer un référentiel avec DagsHub.	20
	11.7	Exercice pratique. Versionnement des données	
		avec DVC	20
		Solution. Versionnement des données avec DVC	20
	11.9	Exercice pratique. Enregistrement du modèle sur	0.0
		un MLFlow partagé	20
	11.10	Solution. Enregistrement du modèle sur un ser-	0.0
		veur MLFlow partagé	20
12	Inte	rprétabilité du modèle	21
	12.1	Bases de l'interprétabilité avec SHAP	21
	12.2	Interprétation des modèles Scikit Learn avec SHAP	21

	12.3	Interprétation de modèles avec SHAP dans Pycaret	21
13	Mis	e en production des modèles	22
	13.1	Déploiement de modèles en production	22
14	ML	Ops phase 3 : Modèle servi via des API	23
	14.1	Fondamentaux des API et FastAPI	23
	14.2	Fonctions, méthodes et paramètres dans FastAPI	23
	14.3	Méthode POST, Swagger et Pydantic dans Fas-	
		tAPI	23
	14.4	Développement d'API pour le modèle Scikit-learn	
		avec FastAPI	23
	14.5	Développement d'API automatisé avec Pycaret	23
15	ML	Ops phase 3 : Service de modèles avec des	
	app]	lications Web	24
	15.1	Servir le modèle via une application Web	24
	15.2	Commandes Gradio de base	24
	15.3	Développement d'une application web Gradio pour	
		le Machine Learning	24
	15.4	Développement d'applications Web automatisées	
		avec Pycaret	24
	15.5	Développement d'applications Web avec Streamlit	24
	15.6	Laboratoire Développement d'applications Web	
		avec Streamlit et Altair	24
	15.7	Laboratory Streamlit et Pycaret pour dévelop-	
		per un service web ML	24
16	Flas	k pour le développement d'applications	25
	16.1	Fondamentaux de Flask	25
	16.2	Construire un projet du début à la fin avec Flask	25

	16.3	Développement back-end avec Flask et développement front-end avec HTML et CSS	25
17	Doc	ker et conteneurs en Machine Learning	26
	17.1	Fondamentaux de Flask	26
		Construire un projet du début à la fin avec Flask Développement back-end avec Flask et dévelop-	26
		pement front-end avec HTML et CSS	26
18	Ben	toML pour le développement automatisé de	
	serv	ices ML	27
	18.1	Introduction à BentoML pour générer des ser-	
		vices ML	27
	18.2	Générer un service ML avec BentoML	27
	18.3	Mettre le service en production avec BentoML et Docker	27
	18.4	Introduction à BentoML pour générer des services ML	27
	18.5	GPU, prétraitement, validation des données et modèles multiples dans BentoML	27
	18.6	Différents outils pour développer des services ML	27
		Exercice: Utiliser BentoML pour développer un service ML	27
	18.8	Solution de l'exercice : Utiliser BentoML pour	
		développer un service ML	27
19	Dép	loyer sur Azure Cloud avec Azure Container	
	et A	Azure SDK	28
	19.1	Introduction à l'apprentissage automatique dans le cloud	28
	19.2	Mettre l'application ML en production dans Azure	
		Container avec Docker	28

	19.3	SDK et Azure Blob Storage pour le déploiement de modèles sur Azure	28
	19.4	Formation de modèles et déploiement en produc-	20
	10.1	tion dans Azure Blob Storage	28
	19.5	Téléchargez le modèle Azure Blob Storage et ob-	
		tenez des prédictions	28
20	Dép	loiement des services ML sur Heroku	29
	20.1	Fondamentaux d'Heroku	29
	20.2	Laboratoire pratique : déploiement d'un service	
		ML sur Heroku	29
21	Sect	ion 21 : Intégration et livraison continues	
	(CI/	(CD) avec Github Action et CML	30
	21.1	Introduction aux actions GitHub	30
	21.2	Flux de travail de base des actions GitHub	30
		Atelier pratique sur les actions GitHub	30
		CI avec apprentissage automatique continu (CML) Atelier pratique : Application des actions Gi-	30
		tHub et du CML aux MLOps	30
	21.6	Laboratoire pratique : suivi des performances avec	
		les actions GitHub et CML	30
22	Surv	veillance des modèles et des services avec Evi-	
	dent	sly AI	30
	22.1	Introduction à la surveillance des modèles et ser-	
		vices ML	30
	22.2	Dérive des données, dérive des concepts et per-	
		formances du modèle	30
	22.3	es fondamentaux de Evidently AI	30
	22.4	Dérive et qualité des données, dérive de la cible	
		et qualité du modèle	30

	22.5	Laboratoire pratique : Surveillance d'un modèle avec Evidently AI
	22.6	Laboratoire pratique : Suivi du modèle en pro-
		duction
	22.7	Exercice : Utiliser BentoML pour développer un
		service ML
	22.8	Laboratoire pratique : Identification des dérives
		de données en production
23	Pro	jet MLOps de bout en bout
	23.1	Projet MLOps de bout en boutProjet MLOps de
		bout en bout
	23.2	Développement du modèle ML
	23.3	Validation de la qualité du code, du modèle et
		du prétraitement
	23.4	Versionnement de projet avec MLFlow et DVC
	23.5	Dépôt partagé avec DagsHub et MLFlow
	23.6	Développement d'API avec BentoML
	23.7	Développement d'applications avec Streamlit .
	23.8	CI-CD : workflow de validation des données avec
		GitHub Actions
	23.9	CI/CD : validation des fonctionnalités de l'ap-
		plication avec les actions GitHub
	23.10	OCI/CD : déploiement automatisé d'applications
		avec GitHub Actions et Heroku

1 Prerequis

- 1.1 Aide Mémoie
- 1.2 AutoNLP
- 1.3 AutoEDA
- 1.4 AutoML
- 1.5 EDA Python AI
- 1.6 Feature Engineering
- 1.7 Feature Selection
- 1.8 Hyperparameter Tuning
- 1.9 Interpretable Machine Learining
- 1.10 Object Oriented Programming Project
- 1.11 Github Foundations
- 1.12 Mémoire M2

- 2 Défis et évolution du Machine Learning
- 2.1 Introduction à l'apprentissage automatique
- 2.2 Avantages de l'apprentissage automatique
- 2.3 Principes fondamentaux du MLOps
- 2.4 Principes fondamentaux de DevOps et DataOps

- 3 Fondements du MLOps
- 3.1 Problèmes résolus par MLOps
- 3.2 Composants MLOps
- 3.3 Boîte à outils MLOps
- 3.4 Étapes MLOps

- 4 Installation des outils et bibliothèques
- 4.1 Comment installer des bibliothèques et préparer l'environnement
- 4.2 Principes de base de Jupyter Notebook
- 4.3 Installation de Docker et Ubuntu

- 5 Productivisation et structuration des projets ML
- 5.1 Cookiecutter pour gérer la structure du modèle Machine Learning
- 5.2 Bibliothèques et outils de gestion de projet du début à la fin
- 5.3 Poetry pour la gestion des dépendances
- 5.4 Makefile pour l'exécution automatisée des tâches
- 5.5 Hydra pour gérer les fichiers de configuration YAML
- 5.6 Hydra appliqué à un projet de Machine Learning
- 5.7 Vérifiez et corrigez automatiquement le code avant la validation dans Git
- 5.8 Révision du code avec Black et Flake8 dans le pré-commit
- 5.9 Révision du code avec Isort et Iterrogate dans l'intégration Pre-commit et Git
- 5.10 Générer automatiquement de la documentation pour le projet ML

- 6 MLOps Phase 1 : Conception de solutions
- 6.1 Conception et mise en œuvre de Volere

- 7 MLOps Phase 2 : Automatisation du cycle du modèle ML
- 7.1 Principes de base d'AutoML
- 7.2 Construire une maquette du début à la fin avec Pycaret
- 7.3 EDA et prétraitement avancé avec Pycaret
- 7.4 Développement de modèles avancés (XGBoost, CatBoost, LightGBM) avec Pycaret)
- 7.5 Déploiement en production avec Pycaret

- 8 MLOps phase 2 : Versionnement et enregistrement du modèle avec MLFlow
- 8.1 Enregistrement et versioning des modèles avec MFlow
- 8.2 Enregistrement d'un modèle Scikit-Learn avec MLFlow
- 8.3 Enregistrement du modèle Pycaret auprès de MLFlow

- 9 Versionnement de l'ensemble de données avec DVC
- 9.1 Introduction au DVC
- 9.2 Commandes et processus DVC
- 9.3 Laboratoire pratique avec DVC
- 9.4 Pipelines DVC

- 10 Dépôt de code avec DagsHub, DVC, Git et ML-Flow
- 10.1 Introduction à DagsHub pour le référentiel de code
- 10.2 EDA et prétraitement des données
- 10.3 Formation et évaluation du prototype du modèle ML
- 10.4 Création de compte DagsHub
- 10.5 Création de l'environnement Python et de l'ensemble de données
- 10.6 Hydra appliqué à un projet de Machine Learning
- 10.7 Déploiement du modèle dans DagsHub
- 10.8 Formation et versionnage du modèle ML
- 10.9 Utiliser DVC pour versionner les données et les modèles
- 10.10 Envoi de code, de données et de modèles à DagsHub
- 10.11 Expérimentation et enregistrement des expériences dans DagsHub
- 10.12 Utiliser DagsHub pour analyser et comparer des expériences et des modèles

- 11 Enregistrement et versioning automatisés avec Pycaret et DagsHub
- 11.1 Intégration Pycaret et Dagshub
- 11.2 Laboratoire pratique d'enregistrement d'un modèle et d'un ensemble de données avec Pycaret et DagsHub
- 11.3 Exercice pratique. Développement d'un modèle avec Pycaret et enregistrement dans MLFlow
- 11.4 Solution. Développement d'un modèle avec Pycaret et inscription dans MLFlow
- 11.5 Exercice pratique. Générer un référentiel avec DagsHub
- 11.6 Solution. Générer un référentiel avec DagsHub
- 11.7 Exercice pratique. Versionnement des données avec DVC
- 11.8 Solution. Versionnement des données avec DVC
- 11.9 Exercice pratique. Enregistrement du modèle sur un ML-Flow partagé
- 11.10 Solution. Enregistrement du modèle sur un serveur ML-Flow partagé

- 12 Interprétabilité du modèle
- 12.1 Bases de l'interprétabilité avec SHAP
- 12.2 Interprétation des modèles Scikit Learn avec SHAP
- 12.3 Interprétation de modèles avec SHAP dans Pycaret

- 13 Mise en production des modèles
- 13.1 Déploiement de modèles en production

- 14 MLOps phase 3 : Modèle servi via des API
- 14.1 Fondamentaux des API et FastAPI
- 14.2 Fonctions, méthodes et paramètres dans FastAPI
- 14.3 Méthode POST, Swagger et Pydantic dans FastAPI
- 14.4 Développement d'API pour le modèle Scikit-learn avec FastAPI
- 14.5 Développement d'API automatisé avec Pycaret

- 15 MLOps phase 3 : Service de modèles avec des applications Web
- 15.1 Servir le modèle via une application Web
- 15.2 Commandes Gradio de base
- 15.3 Développement d'une application web Gradio pour le Machine Learning
- 15.4 Développement d'applications Web automatisées avec Pycaret
- 15.5 Développement d'applications Web avec Streamlit
- 15.6 Laboratoire Développement d'applications Web avec Streamlit et Altair
- 15.7 Laboratory Streamlit et Pycaret pour développer un service web ML

- 16 Flask pour le développement d'applications
- 16.1 Fondamentaux de Flask
- 16.2 Construire un projet du début à la fin avec Flask
- 16.3 Développement back-end avec Flask et développement frontend avec HTML et CSS

- 17 Docker et conteneurs en Machine Learning
- 17.1 Fondamentaux de Flask
- 17.2 Construire un projet du début à la fin avec Flask
- 17.3 Développement back-end avec Flask et développement frontend avec HTML et CSS

- 18 BentoML pour le développement automatisé de services ML
- 18.1 Introduction à BentoML pour générer des services ML
- 18.2 Générer un service ML avec BentoML
- 18.3 Mettre le service en production avec BentoML et Docker
- 18.4 Introduction à BentoML pour générer des services ML
- 18.5 GPU, prétraitement, validation des données et modèles multiples dans BentoML
- 18.6 Différents outils pour développer des services ML
- 18.7 Exercice : Utiliser BentoML pour développer un service ML
- 18.8 Solution de l'exercice : Utiliser BentoML pour développer un service ML

- 19 Déployer sur Azure Cloud avec Azure Container et Azure SDK
- 19.1 Introduction à l'apprentissage automatique dans le cloud
- 19.2 Mettre l'application ML en production dans Azure Container avec Docker
- 19.3 SDK et Azure Blob Storage pour le déploiement de modèles sur Azure
- 19.4 Formation de modèles et déploiement en production dans Azure Blob Storage
- 19.5 Téléchargez le modèle Azure Blob Storage et obtenez des prédictions

- 20 Déploiement des services ML sur Heroku
- 20.1 Fondamentaux d'Heroku
- 20.2 Laboratoire pratique : déploiement d'un service ML sur Heroku

- 21 Section 21 : Intégration et livraison continues (CI/CD) avec Github Action et CML
- 21.1 Introduction aux actions GitHub
- 21.2 Flux de travail de base des actions GitHub
- 21.3 Atelier pratique sur les actions GitHub
- 21.4 CI avec apprentissage automatique continu (CML)
- 21.5 Atelier pratique : Application des actions GitHub et du CML aux MLOps
- 21.6 Laboratoire pratique : suivi des performances avec les actions GitHub et CML.
- 22 Surveillance des modèles et des services avec Evidently AI
- 22.1 Introduction à la surveillance des modèles et services ML
- 22.2 Dérive des données, dérive des concepts et performances du modèle
- 22.3 es fondamentaux de Evidently AI
- 22.4 Dérive et qualité des données, dérive de la cible et qualité du modèle
- 22.5 Laboratoire pratique : Surveillance d'un modèle avec Evidently AI
- 22.6 Laboratoire pratique : Suivi du modèle en production
- 22.7 Exercice : Utiliser BentoML pour développer un service ML
- 22.8 Laboratoire pratique : Identification des dérives de données en production

- 23 Projet MLOps de bout en bout
- 23.1 Projet MLOps de bout en bout bout
- 23.2 Développement du modèle ML
- 23.3 Validation de la qualité du code, du modèle et du prétraitement
- 23.4 Versionnement de projet avec MLFlow et DVC
- 23.5 Dépôt partagé avec DagsHub et MLFlow
- 23.6 Développement d'API avec BentoML
- 23.7 Développement d'applications avec Streamlit
- 23.8 CI-CD : workflow de validation des données avec GitHub Actions
- 23.9 CI/CD: validation des fonctionnalités de l'application avec les actions GitHub
- 23.10 CI/CD: déploiement automatisé d'applications avec GitHub Actions et Heroku