Algoritmos de Agrupamento - Aprendizado Não Supervisionado

Fabrício Jailson Barth

fabricio.barth@gmail.com

Sumário

- Introdução e Definições
- Aplicações
- Algoritmos de Agrupamento
 - * Agrupamento Plano
 - * Agrupamento Hierárquico
- Considerações Finais

Introdução

Introdução e Definições

- Os algoritmos de agrupamento particionam um conjunto de objetos em agrupamentos.
- Normalmente, objetos são descritos e agrupados usando um conjunto de atributos e valores.
- Não existe nenhuma informação sobre a classe ou categoria dos objetos.

- Os algoritmos de agrupamento manipulam um conjunto de objetos. Este conjunto de objetos é chamado de bags.
- As bags permitem o aparecimento de múltiplos objetos com a mesma representação.
- O objetivo dos algoritmos de agrupamento é colocar os objetos similares em um mesmo grupo e objetos não similares em grupos diferentes.

Exemplo de dataset

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.10	3.50	1.40	0.20
2	4.90	3.00	1.40	0.20
3	4.70	3.20	1.30	0.20
4	4.60	3.10	1.50	0.20
5	5.00	3.60	1.40	0.20
6	5.40	3.90	1.70	0.40

Aplicações

- Agrupamento de objetos similares, onde "objetos" podem ser:
 - ★ agrupamento de documentos (textos) similares
 - * identificação de grupos em redes sociais
 - ★ segmentação de clientes
 - * pessoas sistemas de recomendação
 - * palavras processamento de linguagem natural
 - * identificação de plantas com características comuns
 - * entre outras coisas · · ·

ALGORITMOS

Algoritmos de Agrupamento

Existem dois tipos de estruturas produzidas por algoritmos de agrupamento:

- não hierárquicos ou planos
- agrupamentos hierárquicos

Agrupamento Plano

- Agrupamentos planos simplesmente contêm um certo número de agrupamentos e a relação entre os agrupamentos e geralmente não-determinada.
- A maioria dos algoritmos que produzem agrupamentos planos são iterativos.
- Eles iniciam com um conjunto inicial de agrupamentos e realocam os objetos em cada agrupamento de maneira iterativa.
- Até uma determinada condição de parada.

Agrupamentos soft e hard

Além da divisão entre os algoritmos hierárquicos e planos, tem-se a divisão entre os algoritmos soft e hard.

- Na abordagem hard cada objeto é inserido em um e somente um agrupamento.
- Na abordagem soft um objeto pode ser inserido em vários agrupamentos com diferentes níveis de pertinência.

Em agrupamentos hierárquicos, geralmente a abordagem é hard. Em agrupamentos planos, ambos os tipos de abordagens são comuns.

Agrupamento Plano hard (Exemplo)

Agrupamento Hierárquico

- Um agrupamento hierárquico é representado por uma árvore.
- Os nós folhas são os objetos.
- Cada nó intermediário representa o agrupamento que contêm todos os objetos de seus descendentes.

Agrupamento Hierárquico (Exemplo)

Cluster Dendrogram

dist(iris) hclust (*, "complete")

Agrupamento Hierárquico (Exemplo)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
108	7.30	2.90	6.30	1.80
131	7.40	2.80	6.10	1.90
42	4.50	2.30	1.30	0.30

ALGORITMOS PARA AGRUPAMENTO PLANO

Algoritmos para agrupamento plano

- Utiliza diversas iterações para realocar os objetos nos melhores agrupamentos.
- Critério de parada é baseado na qualidade dos agrupamentos (similaridade média e cálculo para informação comum entre agrupamentos).
- É necessário determinar o número de agrupamentos:
 - * usando conhecimento à priori
 - \star k, k-1 aumento significativo da qualidade, k+1 aumento reduzido da qualidade. Procurar por um k com este comportamento.

K-means

- Algoritmo de agrupamento hard
- Define o agrupamento pelo centro de massa dos seus membros.
- É necessário um conjunto inicial de agrupamentos.
- Seqüência de ações iterativas.
- Usualmente, diversas iterações são necessárias para o algoritmo convergir.

Iteração do algoritmo K-means

(2) Definição do centro do agrupamento

Algoritmo K-means

entrada: um conjunto $X = \{\overrightarrow{x_1}, \cdots, \overrightarrow{x_n}\} \subset \Re^m$ {conjunto inicial de agrupamentos} uma medida de distância: $d \colon \Re^m \times \Re^m \to \Re$ uma função para computar o ponto central: $\mu \colon P(\Re) \to \Re^m$ selecionar k centros iniciais $\overrightarrow{f_1}, \cdots, \overrightarrow{f_k}$

while o critério de parada não for verdadeiro do for todos os agrupamentos c_j do $c_j = \{\overrightarrow{x_i} \mid \forall \overrightarrow{f_l} d(\overrightarrow{x_i}, \overrightarrow{f_j}) \leq d(\overrightarrow{x_i}, \overrightarrow{f_l})\}$ {os agrupamentos c_j recebem objetos levando-se em consideração o seu centro f_j } end for for todos os pontos centrais $\overrightarrow{f_j}$ do

 $\overrightarrow{f_j} = \mu(c_j)$

end for

end while

Algoritmo K-means

• A medida de distância pode ser a distância Euclidiana:

$$|\overrightarrow{x} - \overrightarrow{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (1)

• a função para computar o ponto central pode ser:

$$\overrightarrow{\mu} = \frac{1}{M} \sum_{\overrightarrow{x} \in C} \overrightarrow{x} \tag{2}$$

onde M é igual ao número de pontos no agrupamento C.

Problema...

Iris Problem

- Considere uma base de dados sobre flores do gênero Iris.
- Esta base de dados possui informações sobre o comprimento e largura das sépalas e das pétalas das flores.

Problema... — Iris Problem 25

Blue Flag Iris - Dados

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.10	3.50	1.40	0.20
2	4.90	3.00	1.40	0.20
3	4.70	3.20	1.30	0.20
4	4.60	3.10	1.50	0.20
5	5.00	3.60	1.40	0.20
6	5.40	3.90	1.70	0.40

Todas as medidas são em cm.

Pergunta

Será que as plantas deste gênero podem ser dividas em espécies?

Problema... — Pergunta

Aplicando o algoritmo K-means

```
> model <- kmeans(iris, centers = 3)</pre>
> model
K-means clustering with 3 clusters of sizes 50, 62, 38
Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
     5.006000
                 3.428000
                              1.462000
                                         0.246000
     5.901613 2.748387 4.393548
                                         1.433871
3
     6.850000 3.073684 5.742105
                                         2.071053
> model$withinss
[1] 15.15100 39.82097 23.87947
```


Heatmap

```
set.seed(143)
dataMatrix <- as.matrix(iris)
heatmap(dataMatrix)</pre>
```

Problema... — Heatmap

Problema... — Heatmap

Dúvida...

Qual é o melhor número de clusters (k)?

Problema... — Dúvida...

35

Como determinar o melhor k?

A medida de distribuição dos pontos normalmente empregada é sum of squared errors.

Exercícios

- Usando o dataset survey da biblioteca UsingR, identifique clusters de pessoas com base apenas nos atributos Wr.Hnd e NW.Hnd.
- Fazendo uso dos dados coletados em ^a, agrupe os abalos sísmicos levando-se em consideração a magnitude e profundidade do abalo.

Problema... — Exercícios 37

 $^{^{\}tt a} {\rm http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_month.csv}$

Clusters com dados em escalas diferentes

Cluster de abalos sísmicos

Cluster de abalos sísmicos

Rescaling data

Feature scaling:

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}} \tag{3}$$

Standardization:

$$x_{new} = \frac{x - mean(x)}{x_{max} - x_{min}} \tag{4}$$

$$x_{new} = \frac{x - \mu}{\sigma} = \frac{x - mean(x)}{sd(x)} \tag{5}$$

Cluster com dados normalizados

```
standardization <- function(x){</pre>
  return ((x - mean(x)) / sd(x))
filtrados$depthR <- standardization(filtrados$depth)
filtrados$magR <- standardization(filtrados$mag)</pre>
elbow(filtrados[,c('depthR', 'magR')])
model <- kmeans(filtrados[,c('depthR', 'magR')], centers = 6)</pre>
plot(filtrados$depthR, filtrados$magR,
     col=model$cluster,
     pch=11, main="Cluster de abalos sísmicos",
     xlab="Profundidade (rescaled)", ylab="Magnitude (rescaled)")
points(model$centers, col = "yellow", pch=19,cex=2,lwd=3)
```

Cluster com dados normalizados

Cluster de abalos sísmicos

Diagnóstico

- Os clusters estão bem separados uns dos outros?
- Os centroides dos clusters estão bem separados uns dos outros?
- Existe algum cluster com poucos pontos?
- Os pontos de cada cluster estão bem agrupados?

Diagnóstico

Exemplo de clusters distintos

Exemplo não tão claro de clusters

Trabalhando com dados qualitativos

- O algoritmo k-means trabalha apenas com dados numéricos, pois utiliza a distância euclidiana como função para calcular a distância entre objetos.
- Para trabalhar com dados qualitativos é necessário fazer uso de outra função de distância, por exemplo a distância de Hamming.

Distância de Hamming

$$d(x_i, x_j) = \sum_{q=1}^d \alpha(x_i^q, x_j^q) \tag{6}$$

$$\alpha(x_i^q, x_j^q) = \begin{cases} 1 & \text{if } x_i^q \neq x_j^q \\ 0 & \text{otherwise} \end{cases}$$
 (7)

Cluster de valores categóricos no R

- Função kmodes do pacote klaR
- Exemplo na conta https://github.com/fbarth, projeto posGraducao, código ExemplosClustering/script/clusteringValoresCategoricos.R

Alguns cuidados

- Que atributos devem ser incluídos na análise?
- Que unidades de medida (por exemplo, milhas, kilômetros, metros) devem ser utilizados em cada atributo?
- Os atributos precisam ser normalizados?
- Que outras considerações devem ser aplicadas?

Considerações adicionais

- O algoritmo k-means é sensível com relação aos pontos iniciais escolhidos para os centroides.
- Por isso, é importante executar várias vezes o algoritmo k-means para o mesmo K e escolher o resultado de cluster com menor WSS (Within sum of squares).
- No R isto é feito com o parâmetro nstart da função k-means.

ALGORITMOS PARA AGRUPAMENTO HIERÁRQUICO

Algoritmos para agrupamento hierárquico

Os algoritmos que utilizam a abordagem de agrupamento hierárquico podem implementar abordagens:

- bottom-up (agglomerative clustering)
- top-down (divisive clustering)

Agrupamento hierárquico

- Uma abordagem bottom-up:
 - * Escolhe os dois pontos mais próximos;
 - ⋆ Coloca eles juntos;
 - Encontra o próximo ponto mais próximo.
- Requer:
 - ⋆ Uma equação para calcular a distância entre os pontos;
 - ⋆ Uma aborgadem de união (single link, complete link, group-average).
- Gera: uma árvore que mostra o quanto os itens estão próximos uns dos outros.

Agrupamento hierárquico bottom-up

```
Entrada: um conjunto x=\{x_1,\cdots,x_n\} de objetos e uma função sim\colon P(X)\times P(X)\to\Re for i:=1 até n do c_i:=\{x_i\} {Inicia com um agrupamento para cada objeto} end for
```

```
i := n + 1
while |C| > 1 do
   (c_{n1}, c_{n2}) := \operatorname{arg} \max_{c_u, c_v \in C \times C} sim(c_u, c_v) \{ \mathsf{Em} \}
   cada passo, os dois agrupamentos mais similares são
   determinados}
   c_i := c_{n1} \cup c_{n2} \{ \text{Unidos em um novo agrupamento} \}
   C := C \setminus \{c_{n1}, c_{n2}\} \cup \{c_i\} {Elimina-se os dois
   agrupamentos mais similares e adiciona-se o novo
   agrupamento ao conjunto de agrupamentos}
   j := j + 1
end while
```

Agrupamento hierárquico **bottom-up** - Função de similaridade

 A função de similaridade pode ser a distância Euclidiana:

$$|\overrightarrow{x} - \overrightarrow{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (8)

Funcionamento do algoritmo

1 2 3 4 5 6 7 8 9 10 1 0.00 0.31 0.46 0.25 1.85 1.72 1.50 1.45 2.13 2.14 2 0.31 0.00 0.17 0.57 1.73 1.57 1.38 1.32 1.83 1.89 3 0.46 0.17 0.00 0.71 1.60 1.44 1.25 1.18 1.67 1.73 4 0.25 0.57 0.71 0.00 1.95 1.84 1.62 1.58 2.36 2.34 5 1.85 1.73 1.60 1.95 0.00 0.21 0.36 0.42 1.58 1.02 6 1.72 1.57 1.44 1.84 0.21 0.00 0.23 0.26 1.39 0.87 7 1.50 1.38 1.25 1.62 0.36 0.23 0.00 0.08 1.46 1.02 8											
2 0.31 0.00 0.17 0.57 1.73 1.57 1.38 1.32 1.83 1.89 3 0.46 0.17 0.00 0.71 1.60 1.44 1.25 1.18 1.67 1.73 4 0.25 0.57 0.71 0.00 1.95 1.84 1.62 1.58 2.36 2.34 5 1.85 1.73 1.60 1.95 0.00 0.21 0.36 0.42 1.58 1.02 6 1.72 1.57 1.44 1.84 0.21 0.00 0.23 0.26 1.39 0.87 7 1.50 1.38 1.25 1.62 0.36 0.23 0.00 0.08 1.46 1.02 8 1.45 1.32 1.18 1.58 0.42 0.26 0.08 0.00 1.40 0.99 9 2.13 1.83 1.67 2.36 1.58 1.39 1.46 1.40 0.00 0.65		1	2	3	4	5	6	7	8	9	10
3 0.46 0.17 0.00 0.71 1.60 1.44 1.25 1.18 1.67 1.73 4 0.25 0.57 0.71 0.00 1.95 1.84 1.62 1.58 2.36 2.34 5 1.85 1.73 1.60 1.95 0.00 0.21 0.36 0.42 1.58 1.02 6 1.72 1.57 1.44 1.84 0.21 0.00 0.23 0.26 1.39 0.87 7 1.50 1.38 1.25 1.62 0.36 0.23 0.00 0.08 1.46 1.02 8 1.45 1.32 1.18 1.58 0.42 0.26 0.08 0.00 1.40 0.99 9 2.13 1.83 1.67 2.36 1.58 1.39 1.46 1.40 0.00 0.65	1	0.00	0.31	0.46	0.25	1.85	1.72	1.50	1.45	2.13	2.14
4 0.25 0.57 0.71 0.00 1.95 1.84 1.62 1.58 2.36 2.34 5 1.85 1.73 1.60 1.95 0.00 0.21 0.36 0.42 1.58 1.02 6 1.72 1.57 1.44 1.84 0.21 0.00 0.23 0.26 1.39 0.87 7 1.50 1.38 1.25 1.62 0.36 0.23 0.00 0.08 1.46 1.02 8 1.45 1.32 1.18 1.58 0.42 0.26 0.08 0.00 1.40 0.99 9 2.13 1.83 1.67 2.36 1.58 1.39 1.46 1.40 0.00 0.65	2	0.31	0.00	0.17	0.57	1.73	1.57	1.38	1.32	1.83	1.89
5 1.85 1.73 1.60 1.95 0.00 0.21 0.36 0.42 1.58 1.02 6 1.72 1.57 1.44 1.84 0.21 0.00 0.23 0.26 1.39 0.87 7 1.50 1.38 1.25 1.62 0.36 0.23 0.00 0.08 1.46 1.02 8 1.45 1.32 1.18 1.58 0.42 0.26 0.08 0.00 1.40 0.99 9 2.13 1.83 1.67 2.36 1.58 1.39 1.46 1.40 0.00 0.65	3	0.46	0.17	0.00	0.71	1.60	1.44	1.25	1.18	1.67	1.73
6 1.72 1.57 1.44 1.84 0.21 0.00 0.23 0.26 1.39 0.87 7 1.50 1.38 1.25 1.62 0.36 0.23 0.00 0.08 1.46 1.02 8 1.45 1.32 1.18 1.58 0.42 0.26 0.08 0.00 1.40 0.99 9 2.13 1.83 1.67 2.36 1.58 1.39 1.46 1.40 0.00 0.65	4	0.25	0.57	0.71	0.00	1.95	1.84	1.62	1.58	2.36	2.34
7 1.50 1.38 1.25 1.62 0.36 0.23 0.00 0.08 1.46 1.02 8 1.45 1.32 1.18 1.58 0.42 0.26 0.08 0.00 1.40 0.99 9 2.13 1.83 1.67 2.36 1.58 1.39 1.46 1.40 0.00 0.65	5	1.85	1.73	1.60	1.95	0.00	0.21	0.36	0.42	1.58	1.02
8 1.45 1.32 1.18 1.58 0.42 0.26 0.08 0.00 1.40 0.99 9 2.13 1.83 1.67 2.36 1.58 1.39 1.46 1.40 0.00 0.65	6	1.72	1.57	1.44	1.84	0.21	0.00	0.23	0.26	1.39	0.87
9 2.13 1.83 1.67 2.36 1.58 1.39 1.46 1.40 0.00 0.65	7	1.50	1.38	1.25	1.62	0.36	0.23	0.00	0.08	1.46	1.02
	8	1.45	1.32	1.18	1.58	0.42	0.26	0.08	0.00	1.40	0.99
10 2.14 1.89 1.73 2.34 1.02 0.87 1.02 0.99 0.65 0.00	9	2.13	1.83	1.67	2.36	1.58	1.39	1.46	1.40	0.00	0.65
	10	2.14	1.89	1.73	2.34	1.02	0.87	1.02	0.99	0.65	0.00

Cluster Dendrogram

distxy hclust (*, "complete")

Tipos de funções de similaridade

- ligação simples (single link): a similaridade entre dois agrupamentos é o melhor resultado retornado da similaridade entre os seus membros mais similares.
- ligação completa (complete link): a similaridade entre dois agrupamentos é o melhor resultado retornado da similaridade entre os seus membros menos similares.
- média do grupo (group-average): a similaridade entre dois agrupamentos é a média da similaridade entre os membros dos agrupamentos.

(1) Pontos em um plano

(3) Agrupamentos de ligação simples para os pontos da figura 1

(2) Agrupamentos intermediários dos pontos da figura 1

(4) Agrupamentos de ligação completa para os pontos da figura 1

Exemplos

 Vamos utilizar um dataset sobre carros com medidas de velocidades e distância de parada. Este dataset foi gerado em 1920. As velocidades foram medidas em mph e a distância em ft.

Plot dos pontos com valores normalizados

Dendograma com ligação completa

m hclust (*, "complete")

Dendograma com ligação simples

m hclust (*, "single")

Dendograma com ligação média do grupo

m hclust (*, "average")

Agrupamento hierárquico top-down

```
Entrada: um conjunto x = \{x_1, \dots, x_n\} de objetos,
uma funcao de coesao coh : P(X) \to \Re
e uma funcao de divisao split \colon P(X) \to P(X) \times P(X)
C := \{X\} (= \{c_1\}) {Inicia com um agrupamento com todos os
objetos}
j := 1
while \{\exists c_i \in C \mid |c_i| > 1\} do
   c_u := \arg\min_{c_v \in C} coh(c_v) {Determina que agrupamento eh o
   menos coerente}
   (c_{i+1}, c_{i+2}) := split(c_u) {Divide o agrupamento}
   C := C \setminus \{c_u\} \cup \{c_{i+1}, c_{i+2}\}
   i := i + 2
end while
```

Restrição sobre os agrupamentos hierárquicos

Agrupamento hierárquico só faz sentido se a função de similaridade é monotônica decrescente das folhas para a raiz da árvore:

$$\forall c, c', c'' \subseteq S : \min(sim(c, c'), sim(c, c'')) \ge sim(c, c' \cup c'')$$
(9)

Considerações Finais

Algumas considerações sobre agrupamentos

- Um agrupamento é um grupo de objetos centrados em torno de um ponto central.
- Os agrupamentos mais compactos são os preferidos.

Sumário dos atributos dos algoritmos

Agrupamento hierárquico:

- É a melhor abordagem para análise exploratória de dados.
- Fornece mais informação que agrupamento plano.
- Menos eficiente que agrupamento plano (tempo e memória gastos).

Sumário dos atributos dos algoritmos

Agrupamento plano:

- É preferível se a eficiência é um atributo importante e se o conjunto de dados é muito grande.
- O algoritmo K-means é o método mais simples e deve ser usado sobre novos conjuntos de dados porque os resultados são geralmente suficientes.
- K-means assume um espaço de representação
 Euclidiano, e não pode ser usado para muitos
 conjuntos de dados, por exemplo, dados nominais.

Referências

- Capítulo 4 do livro EMC Education Services, editor.
 Data Science and Big Data Analytics: Discovering,
 Analysing, Visualizing and Presenting Data. John
 Wiley & Sons, 2015.
- Capítulo 10 do livro Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning with Applications in R.
 Springer, 4th edition, 2014.

Próximas etapas

- Exercícios, e;
- Projeto!