Home assignment

Obtain slip at maximum torque s_{max} by setting dTm / ds = 0?

$$T_{m} = \frac{1}{\omega_{s} / P} \times \frac{3V_{s}^{2}}{(R_{s} + R_{r} / s + R_{eq} / s)^{2} + (X_{ls} + X_{lr} + X_{eq} / s)^{2}} \times \frac{R_{r} + R_{eq}}{s}$$

$$s_{T\max} = \pm \sqrt{\frac{(R_r + R_{eq})^2 + X_{eq}^2}{R_s^2 + (X_{ls} + X_{lr})^2}}$$

8-4 (Solved Problem) Consider a 1.0MW/575V/60Hz/2160rpm DFIG WECS. The parameters of the generator are given in Table B-6 of Appendix B. Generator operates with an MPPT scheme & its stator power factor is unity. At a given wind & generator speed, equivalent resistance Req & reactance Xeq for rotor side converter & maximum torque to mechanical torque ratio Tmax/Tm are found to be 0.03778Ω , 0.02165Ω & 4.4123 respectively.

Calculate following:

- a)maximum torque & corresponding slip,
- b) generator mechanical torque & power,
- c) rotor mechanical & electrical speeds & slip,
- d) rms stator current &
- e) rms rotor current and voltage.

Generator Type	DFIG, 1.0MW/575V/60Hz	
Rated Mechanical Power	1.0 MW	1.0 pu
Rated Stator Line-to-line Voltage	575 V (rms)	
Rated Stator Phase Voltage	331.98 V (rms)	1.0 pu
Rated Rotor Phase Voltage	67.97 V (rms)	0.2047 pu
Rated Stator Current	829.2 A (rms)	0.8258 pu
Rated Rotor Current	882.2 A (rms)	0.8786 pu
Rated Stator Frequency	60 Hz	1.0 pu
Rated Rotor Speed	2160 rpm	1.0 pu
Nominal Rotor Speed Range	1350–2160 rpm	0.625-1.0pu
Rated Slip	-0.2	
Number of Pole Pairs	2	
Rated Mechanical Torque	4.421 kN.m	1.0 pu
Stator Winding Resistance R_s	$3.654~\mathrm{m}\Omega$	0.0111 pu
Rotor Winding Resistance R_r	$3.569 \text{ m}\Omega$	0.0108 pu
Stator Leakage Inductance L_{ls}	0.1304 mH	0.1487 pu
Rotor Leakage Inductance L_{lr}	0.1198 mH	0.1366 pu
Magnetizing Inductance L_m	4.12 mH	4.6978 pu
Base Current $I_B = 1 \text{MW} / (\sqrt{3} \times 575 \text{V})$	1004.1 A (rms)	1.0 pu
Base Flux Linkage Λ_B	0.8806 Wb (rms)	1.0 pu
Base Impedance Z_B	0.3306 Ω	1.0 pu
Base Inductance L_B	0.877 mH	1.0 pu
Base Capacitance C_B	8022.93 μF	1.0 pu

Solution:

- a) +ve values for $Req = 0.03778\Omega$ & $Xeq = 0.02165\Omega$ indicate super-synchronous mode of operation.
- •-ve values indicate sub-synchronous operation.
- •0 value for *Xeq* indicate synchronous operation.

Slip at which the maximum torque occurs can be obtained

Stator Leakage Inductance L_{ls}	0.1304 mH
Rotor Leakage Inductance L_{lr}	0.1198 mH

 $Req = 0.03778\Omega \& Xeq = 0.02165\Omega$

$$s_{T \max} = \pm \sqrt{\frac{(R_r + R_{eq})^2 + X_{eq}^2}{R_s^2 + (X_{ls} + X_{lr})^2}} = -0.4944$$

(s = +0.4944 is omitted because of the super-synchronous mode of operation)

The maximum torque:

$$T_{\text{max}} = \frac{1}{2\omega_s / P} \times \frac{3V_s^2}{R_s + \frac{(X_{ls} + X_{lr})X_{eq}}{R_r + R_{eq}} - \sqrt{((X_{ls} + X_{lr})^2 + R_s^2) \times \left(1 + \frac{X_{eq}^2}{(R_r + R_{eq})^2}\right)}} = -16391 \,\text{N.m} \quad (3.708 \,\text{pu})$$

b) The generator mechanical torque:

$$T$$
max/ T $m = 4.4124 \Omega$

$$T_{\text{max}} = -16391 \,\text{N.m}$$

$$T_m = \frac{T_{\text{max}}}{T_{\text{max}}/T_m} = \frac{-16391}{4.4124} = -3714.8 \text{ N.m}$$

Generator mechanical torque can be related to pure rotor speed as

$$T_m = T_{m,R} \times (\omega_{m,pu})^2 \text{ N.m}$$

From which pu rotor speed can be calculated by

$$\omega_{m,\mathrm{pu}} = \sqrt{rac{T_m}{T_{m,R}}}$$

$$T_m = -3714.8 \text{ N.m}$$

Rated Mechanical Torque=4.421kN.m

$$\omega_{m,pu} = \sqrt{\frac{-3714.8}{-4421}} = 0.9167$$

Rated mechanical power:

Rated Mechanical Torque=4.421kN.m

$$P_{m,R} = \omega_{m,R} \times T_{m,R} = 2160(2\pi)/60 \times (-4421) = -1000 \times 10^3 \text{ W}$$

Generator mechanical power at 0.91667 purotor speed:

$$P_m = P_{m,R} \times (\omega_{m,pu})^3 = -1000 \times 10^3 \times (0.9167)^3 = -770.26 \times 10^3 \text{ W}$$

c) Rotor mechanical & electrical speeds:

$$\omega_m = \omega_{m,R} \times \omega_{m,pu} = 2160(2\pi)/60 \times 0.9167 = 207.35 \text{ rad/sec}$$
 (1980 rpm)

$$\omega_r = \omega_m \times P = 207.35 \times 2 = 414.7 \text{ rad/sec}$$

The slip can be obtained as:

$$s = (\omega_{\rm s} - \omega_{\rm r})/\omega_{\rm s} = (376.99 - 414.7)/376.99 = -0.1$$

d) The stator current:

$$I_{s} = \frac{V_{s} \pm \sqrt{V_{s}^{2} - \frac{4R_{s}T_{m}\omega_{s}}{3P}}}{2R_{s}} = -697.74 \text{ A (rms)} \quad (I_{s} = 91.55 \times 10^{3} \text{ A omitted)}$$

where
$$V_s = 575/\sqrt{3} \text{ V}$$
, $T_m = -3714.8 \text{ N.m}$, $\omega_s = 376.99 \text{ rad/sec}$, $R_s = 3.654 \text{ m}\Omega$ and $P = 2$

e) Find Ir?

e)Rotor current(Ir) can be calculated by

$$\bar{I}_r = \frac{jX_m \bar{I}_s}{jX_m + \left(\frac{R_r}{s} + jX_{lr}\right) + \left(\frac{R_{eq}}{s} + j\frac{X_{eq}}{s}\right)} = 751.35 \angle 163.34^{\circ} \text{ A (rms)}$$

Alternatively, rms rotor current can be found from mechanical torque equation:

$$T_m = \frac{1}{\omega_s/P} \times 3I_r^2 \left(R_{eq} + R_r \right) / s \text{ N.m}$$

From above

$$I_r = \sqrt{\frac{T_m \times (\omega_s / P)}{3(R_{eq} + R_r)/s}} = 751.35 \text{ A (rms)}$$

Equivalent impedance for the rotor side converter:

$$\overline{Z}_{eq} = \overline{V}_r / \overline{I}_r = 0.0378 + j0.02165 = 0.04354 \angle 29.82^{\circ} \Omega$$
 (given)

The rotor voltage can be obtained f $\overline{Z}_{eq} = V_r / I_r$

$$\overline{V_r} = \overline{Z_{eq}} \times \overline{I_r} = 32.72 \angle -166.84^{\circ} \text{ V (rms)}$$

Cross Check:

$$T_m = \frac{1}{\omega_s/P} \times 3I_r^2 \left(R_{eq} + R_r \right) / s = \frac{1}{2\pi \times 60/2} \times 3 \times 751.35^2 \left(0.0378 + 3.569 \times 10^{-3} \right) / \left(-0.1 \right) = -3714.87 \text{ N.m., verified.}$$

$$P_m = 3I_r^2 \left(R_{eq} + R_r \right) (1-s)/s = 3 \times 751.35^2 \left(0.0378 + 3.569 \times 10^{-3} \right) (1+0.1)/(-0.1) = -770.26 \times 10^3$$
 W, verified.

8-5 Repeat Problem 8-4 if the R_{eq} , X_{eq} and T_{max}/T_m are -0.0295Ω , -0.0150Ω and 6.227, respectively.

Answers:

- a) $s_{T \text{max}} = 0.3175$, $T_{\text{max}} = -17254 \text{ N.m}$ (3.903 pu) b) $T_m = -2770.8 \text{ N.m}$, $P_m = -496.18 \times 10^3 \text{ W}$
- c) $\omega_m = 179.07 \text{ rad/sec}$ (1710 rpm), $\omega_r = 358.14 \text{ rad/sec}$, s = 0.05 d) $I_s = -521.43 \text{ A (rms)}$
- e) $\bar{I}_r = 579.9 \angle 158.22^{\circ} \text{ A (rms)}, \ \bar{V}_r = 19.18 \angle 5.17^{\circ} \text{ V (rms)}$

8-6 Repeat Problem 8-4 if the R_{eq} , X_{eq} & T_{max}/T_m are -0.0937Ω , -0.05887Ω & 8.322, respectively.

Answers:

a)
$$s_{T \max} = 1.14$$
, $T_{\max} = -18459 \text{ N.m } (4.1754 \text{ pu})$

b)
$$T_m = -2218 \text{ N.m.}, P_m = -355.4 \times 10^3 \text{ W}$$

c)
$$\omega_m = 160.22 \text{ rad/sec}$$
 (1530 rpm), $\omega_r = 320.44 \text{ rad/sec}$, $s = 0.15$ d) $I_s = -417.9 \text{ A (rms)}$

e)
$$\overline{I}_r = 481.64 \angle 153.5^\circ \text{ A (rms)}, \ \overline{V}_r = 53.28 \angle 5.64^\circ \text{ V (rms)}$$