Fachrichtung Mathematik

Institut für Analysis

Prof. Dr. S. Siegmund

PD Dr. A. Kalauch

Übungen 21.11. bis 25.11.2022

Analysis I

7. Übungsblatt: Grenzwerte von Folgen, Teilfolgen, Häufungspunkte

Aufgabe 7.1

Find the limits of the sequences

(a)
$$\left(\sqrt{1+\frac{1}{n}}\right)$$
,

(b)
$$(\sqrt{n^2 + 1} - n)$$
, (c) $(\sqrt{n^2 + n} - n)$,

(c)
$$\left(\sqrt{n^2+n}-n\right)$$

(d)
$$(\sqrt[3]{n+1} - \sqrt[3]{n})$$
, (e) $(\sqrt[3]{n^3 + n^2} - n)$.

(e)
$$(\sqrt[3]{n^3 + n^2} - n)$$

Aufgabe 7.2

Show that the sequence (a_n) with

(a)
$$a_n = (1 + \frac{1}{n})^n$$
 is increasing,

(b)
$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}$$
 is convergent.

Aufgabe 7.3

Die Folge (a_n) in \mathbb{R} sei definiert durch

$$a_n := (-1)^n \frac{n}{n+1} \qquad (n \in \mathbb{N}).$$

Bestimmen Sie die Häufungspunkte von (a_n) .

Aufgabe 7.4

Sei (a_n) eine Folge in \mathbb{R} und $a \in \mathbb{R}$. Beweisen Sie:

 (a_n) konvergiert gegen $a \iff (a_n)$ ist beschränkt und hat a als einzigen Häufungspunkt.

Aufgabe 7.5

Seien $a, b \in \mathbb{R}$, $a, b \ge 0$, fixiert. Untersuchen Sie die Folge $(a_n)_{n \in \mathbb{N}}$ auf Konvergenz, wobei

$$a_n := \sqrt[n]{a^n + b^n},$$

und bestimmen Sie den Grenzwert. Welche Verallgemeinerung ergibt sich für k Summanden unter der Wurzel?

Hinweis: Hier dürfen Sie verwenden, dass für jedes $k \in \mathbb{R}, k > 0$, gilt dass $\sqrt[n]{k} \to 1$ für $n \to \infty$.

<u>Aufgabe 7.6</u> (H) [5] Sei (a_n) eine Folge in \mathbb{R} mit $a_n \geq 0$ für alle $n \in \mathbb{N}$. Zeigen Sie: Wenn $\lim_{n\to\infty} a_n = a$, dann gilt $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}$.

Hinweis: Um die Grenzwertdefinition für die Wurzel zu zeigen, können Sie eine binomische Formel verwenden und zuerst feststellen, dass

$$\underbrace{(\sqrt{a_n} + \sqrt{a})}_{>\sqrt{a}} \cdot |\sqrt{a_n} - \sqrt{a}| = |a_n - a|.$$

<u>Aufgabe 7.7</u> (H) [5] Es sei c > 0 fixiert und die Folge (a_n) gegeben durch

$$a_1 = \sqrt{c}, \quad a_2 = \sqrt{c + \sqrt{c}}, \quad a_3 = \sqrt{c + \sqrt{c + \sqrt{c}}}, \text{ usw.},$$

d.h. (a_n) ist rekursiv definiert mittels $a_1 = \sqrt{c}$, $a_{n+1} = \sqrt{c + a_n}$ für $n \ge 1$. Untersuchen Sie (a_n) auf Konvergenz und ermitteln Sie gegebenenfalls den Grenzwert.

Hinweis: Zeigen Sie zuerst, dass (a_n) monoton wächst und von oben beschränkt ist.