

Description

The VSM140N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 140A$ $R_{DS(ON)} < 5.5mΩ @ V_{GS} = 10V$ (Typ:4.9mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-263

Schematic Diagram

100% UIS TESTED!

100% ∆Vds TESTED!

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM140N10-T3	VSM140N10	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	140	А
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	97	Α
Pulsed Drain Current	I _{DM}	550	А
Maximum Power Dissipation	P _D	330	W
Derating factor		2.2	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	1200	mJ
Operating Junction and Storage Temperature Range	T_J, T_{STG}	-55 To 175	$^{\circ}\mathbb{C}$

Thermal Characteristic

Thermal Resistance, Junction-to-Case(Note 2)	R _{eJC}	0.45	°C/W	ĺ
--	------------------	------	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	2	3.2	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	4.9	5.5	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =40A	170	-	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,	-	10500	-	PF
Output Capacitance	C _{oss}		-	914	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	695	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	25	-	nS
Turn-on Rise Time	t _r	V_{DD} =65V, I_D =40A V_{GS} =10V, R_{GEN} =2.5 Ω	-	100	-	nS
Turn-Off Delay Time	t _{d(off)}		-	65	-	nS
Turn-Off Fall Time	t _f		-	77	-	nS
Total Gate Charge	Qg	\/ A4\/ A0A	-	120	-	nC
Gate-Source Charge	Q_{gs}	V _{DS} =44V,I _D =40A,	-	30	-	nC
Gate-Drain Charge	Q_{gd}	- V _{GS} =10V	-	35	-	nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =40A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	40	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	45	70	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	80	120	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition:Tj=25 $^{\circ}$ C,VDD=50V,VG=10V,L=1mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance