The Second Law of thermodynamics

$$\Delta S_{\text{Universe}} = \Delta S_{\text{System}} + \Delta S_{\text{Surroundings}} \ge 0$$

The net entropy will increase or stay the same. It will never decrease.

$$\Delta S_{Surr} > 0$$

$$\Delta S_{Surr} \geq \frac{q}{T}$$

 $\Delta S_{Univ} = 0$ only for a reversible process

 $\Delta S_{Univ} > 0$ for all other processes

Atkins: The entropy of the universe tends to increase

The Gibbs free enthalpy ("Gibbs energy")

To judge whether a chemical reaction is spontaneous, we need to consider entropy changes in both system and surroundings

$$\Delta S_{Univ} = \Delta S_{Sys} + \Delta S_{Surr} = \Delta S_{Sys} - \frac{\Delta H}{T}$$
 (@ constant p, T)

⇒ Josiah Willard Gibbs (1839-1903; theoretician @ Yale):

Definition:
$$G = H - TS$$

H, S are extensive

 \Rightarrow G is extensive

(increases with n)

 \Rightarrow G is a state function

(no memory of path)

 \Rightarrow change in G: $\Delta G = \Delta H - T \Delta S = -T \Delta S_{Univ}$ (@ constant p, T)

⇒ The Gibbs free enthalpy calculates changes in entropy of both system and surroundings from system parameters alone

Principles of chemical equilibrium

Atkins, Chapter 7

At constant T and p a reaction mixture tends to adjust its composition until its Gibbs energy is at a minimum

Coupled reactions can overcome an unfavorable Δ_r G

$$\Delta_r G^{\bullet} = -RT \ln K$$

equilibrium:
$$\Delta_r G^{\bullet} = -RT \ln K \qquad K = \frac{a_C^c \times a_D^d}{a_A^a \times a_B^b}$$

$$aA + bB \rightleftharpoons cC + dD$$

exergonic:

$$\Delta_r G^{\bullet} < 0 \Rightarrow K > 1 \Rightarrow a_C^{\ c} \times a_D^{\ d} > a_A^{\ a} \times a_B^{\ b} \Rightarrow \text{products will}$$
 endergonic: dominate in equilibrium

$$\Delta_r G^{\bullet} > 0 \Rightarrow K < 1 \Rightarrow a_C^{\ c} \times a_D^{\ d} < a_A^{\ a} \times a_B^{\ b} \Rightarrow \text{reactants will}$$

dominate in equilibrium

BUT: If an endergonic reaction $(\Delta_r G^{\bullet} > 0)$ is coupled with a strongly exergonic one ($\Delta_r G^{\Theta_r} < 0$): $\nabla^{r}\mathbf{G}_{\Theta} + \nabla^{r}\mathbf{G}_{\Theta}$, < 0

Chapter 3: What have we learned?

Example 2 Review of the first and second laws of thermodynamics

Second Law of Thermodynamics:

Chaos will reign

Review of the state functions of internal energy, enthalpy,

and free energy

© Entropy

 \odot ΔG as a driving force towards equilibrium that includes both enthalpic and entropic forces

Introduction to Metabolism

Voet & Voet, Chapter 16

Metabolism =
Catabolism (degradation) +
Anabolism (biosynthesis)

Metabolism: Food processing

- ➤ Metabolic pathways are irreversible (and highly exergonic)
- > Catabolic and anabolic pathways must differ
- > Every metabolic pathway has a first committed (irreversible) step
- ➤ All metabolic pathways are regulated
- ➤ In eukaryotic cells, metabolic pathways occur in specific cellular locations

It's all chemistry, of course!

(a) Nucleophiles

ROH

RSH

RNH₃⁺

Nucleophilic form

RO:

+ H⁺ Hydroxyl group

RS: + H⁺ Sulfhydryl group

RNH₂ + H⁺ Amino group

+ H⁺ Imidazole group

H⁺ **Protons**

Metal ions

Carbonyl carbon atom

Homolytic:

$$-\frac{1}{C} + \frac{\text{homolytic}}{\text{cleavage}} - \frac{1}{C} + H$$

Heterolytic:

$$(i) \quad -\stackrel{\downarrow}{c} \stackrel{\vdots}{\rightleftharpoons} H \longrightarrow \qquad -\stackrel{\downarrow}{c} \stackrel{\vdots}{=} \qquad + \quad H^{\dagger}$$

Hydride Carbocation ion

Metabolism: Group transfer reactions

