Enoncés : V. Mayer Corrections : A. Bodin

Compacité

Exercice 1

Soit X un espace métrique.

- 1. Soit *A* et *B* deux compacts disjoints dans *X*. Montrer qu'ils possèdent des voisinages ouverts disjoints (commencer par le cas où *B* est réduit à un point).
- 2. Soit K un compact non vide de X et U un ouvert de X contenant K. Montrer qu'il existe r > 0 tel que pour tout $x \in X$, on ait l'implication :

$$d(x,K) < r \Rightarrow x \in U$$
.

Indication ▼ Correction ▼

[002370]

Exercice 2

Montrer qu'une suite convergente et sa limite forment un ensemble compact.

 [002371]

Exercice 3

Soient $K, F \subset \mathbb{R}^n$ des parties non vides, K compact et F fermé. Montrer qu'il existe $a \in K$ et $b \in F$ tel que $||a-b|| = \operatorname{dist}(K,F)$.

Indication \blacktriangledown

Correction ▼

[002372]

Exercice 4

Soit E un espace compact et soit (F,d) un espace métrique. Soit $f: E \to F$ une application localement bornée, ce qui signifie que, pour tout $y \in E$, il existe un voisinage V_y de y sur lequel f est bornée. Montrer que f est bornée sur E.

Correction ▼ [002373]

Exercice 5

Soit *X* un espace métrique.

1. Soit $(F_n)_n$ une suite décroissante de fermés de X et soit $(x_n)_n$ une suite convergente telle que $x_n \in F_n$ pour tout $n \ge 0$. Montrer que

$$\lim_{n\to\infty}x_n\in\bigcap_{n>0}F_n.$$

Donner un exemple pour lequel $\bigcap_{n>0} F_n = \emptyset$.

2. Soit maintenant $(K_n)_n$ une suite décroissante de *compacts* non vides de X. Vérifier que $K = \bigcap_{n \ge 0} K_n$ est non vide et que tout ouvert Ω qui contient K contient tous les K_n à partir d'un certain rang.

Correction ▼ [002374]

Exercice 6

Soit *X* un espace topologique et $f: X \times [0,1] \to \mathbb{R}$ continue. Montrer que l'application $g: x \in X \to \int_0^1 f(x,y) \, dy$ est continue.

Correction ▼ [002375]

Exercice 7

Soit *E* un espace normé. Si *A* et *B* sont deux parties de *E*, on note A + B l'ensemble $\{a + b ; a \in A \text{ et } b \in B\}$.

- 1. Montrer que si A est compact et B est fermé, alors A + B est fermé.
- 2. Donner un exemple de deux fermés de \mathbb{R}^2 dont la somme n'est pas fermé.

Indication ▼ Correction ▼ [002376]

Exercice 8

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application continue. Elle est dite *propre* si pour tout compact $K \subset \mathbb{R}^n$, l'image réciproque $f^{-1}(K)$ est compact.

- 1. Montrer que, si f est propre, alors l'image par f de tout fermé de \mathbb{R}^n est un fermé.
- 2. Établir l'équivalence suivante : l'application f est propre si et seulement si elle a la propriété :

$$||f(x)|| \to \infty$$
 quand $||x|| \to \infty$.

Indication ▼ Correction ▼ [002377]

Exercice 9

Soit $E = \{f : [0,1] \to \mathbb{R} \text{ continue}\}$. On munit E de la métrique $d_{\infty}(f,g) = \sup_{t \in [0,1]} |f(t) - g(t)|$. Montrer que la boule unité fermée de E n'est pas compact (on pourra construire une suite dont aucune sous suite n'est de Cauchy).

Que peut-on dire de la boule unité fermée de l^{∞} (l'espace des suites bornées muni de la norme sup)?

Correction ▼ [002378]

Exercice 10

Soit (X,d) un espace métrique, soit (Y,δ) un espace métrique compact et soit $f:X\to Y$ une application dont le graphe

$$G = \{(x, f(x)) \mid x \in X\} \subset X \times Y$$

est fermé dans $X \times Y$. Notons $p: G \to X$ et $q: G \to Y$ les restrictions des deux projections p(x,y) = x et q(x,y) = y. Montrer que p est un homéomorphisme de G sur X. En déduire que f est continue. [002379]

Exercice 11

Soit (X,d) un espace métrique compact et $f: X \to X$ une application vérifiant

$$d(f(x), f(y)) < d(x, y)$$
 pour tout $x, y \in X, x \neq y$.

Le but ici est de montrer que f a un unique point fixe $p \in X$.

- 1. Justifier que f peut avoir au plus un point fixe.
- 2. Montrer que les ensembles $X_n = f^n(X)$, $n \in \mathbb{N}$, forment une suite décroissante de compacts et que $Y = \bigcap_{n>0} X_n$ n'est pas vide.
- 3. Montrer que Y est un ensemble invariant, i.e. f(Y) = Y, et en déduire que le diamètre de cet ensemble est zero.
- 4. Conclure que f a un unique point fixe $p \in X$ et que pour tout $x_0 \in X$ la suite $x_n = f^n(x_0) \to p$, lorsque $n \to \infty$.

Indication ▼ Correction ▼ [002380]

Exercice 12

Soient (E,d) un espace métrique compact et $f: E \to E$ une application vérifiant

$$d(f(x), f(y)) \ge d(x, y)$$
 pour tout $x, y \in E$.

On se propose de montrer que f est une isométrie surjective. Soient $a, b \in E$ et posons, pour $n \ge 1$, $a_n = f^n(a) = f \circ f^{n-1}(a)$ et $b_n = f^n(b)$.

- 1. Montrer que pour tout $\varepsilon > 0$, il existe $k \ge 1$ tel que $d(a,a_k) < \varepsilon$ et $d(b,b_k) < \varepsilon$ (Considérer une valeur d'adhérence de la suite $z_n = (a_n,b_n)$).
- 2. En déduire que f(E) est dense dans E et que d(f(a), f(b)) = d(a, b) (Considérer la suite $u_n = d(a_n, b_n)$).

Correction ▼ [002381]

Exercice 13

On se donne une métrique d sur X = [0,1] telle que l'identité $i:(X,|.|) \to (X,d)$ soit continue (i.e. la topologie définie par d est moins fine que la topologie usuelle de X).

- 1. Montrer que tout sous-ensemble de *X* compact pour la topologie usuelle est aussi compact pour la topologie définie par *d* ; puis montrer cette propriété pour les fermés.
- 2. En déduire que la topologie définie par d est la topologie usuelle.

Correction ▼ [002382]

Indication pour l'exercice 1 A

- 1. Remarquer si U_a est un voisinage de a, alors $A \subset \bigcup_{a \in A} U_a$.
- 2. Raisonner par l'absurde et construire une suite (x_n) dont aucun élément n'est dans U et une suite (y_n) de K. Quitte à extraire une sous-suite se débrouiller pour qu'elle converge vers la même limite.

Indication pour l'exercice 2 A

Utiliser qu'un ensemble K est compact si et seulement si de toute suite d'éléments de K on peut extraire une sous-suite convergente vers un élément de K.

Indication pour l'exercice 3 A

Extraire des sous-suites...

Indication pour l'exercice 7 ▲

On pourra utiliser la caractérisation de la fermeture par des suites.

Indication pour l'exercice 8 ▲

- 1. Utiliser la caractérisation de la fermeture par des suites.
- 2. Remarquer que " $||f(x)|| \to \infty$ quand $||x|| \to \infty$ " est équivalent à

"
$$\forall M > 0 \quad \exists m > 0 \forall x \in \mathbb{R}^n \qquad (x \notin B(0, m) \Rightarrow f(x) \notin B(0, M)).$$
"

Indication pour l'exercice 11 ▲

- 1. ...
- 2. Utiliser l'exercice 4.
- 3. Montrer $f(Y) \subset Y$ puis $Y \subset f(Y)$.
- 4. Diamètre zéro implique ensemble réduit à un singleton.

Correction de l'exercice 1

- (a) Si A est compact et B = {b} avec b ∉ A. Soit a ∈ A alors a ≠ b donc il existe un voisinage ouvert de a, Ua et un voisinage ouvert de b, Va tels que Ua ∩ Va = Ø. Bien évidemment A ⊂ ∪a∈A Ua. Comme A est compact on peut extraire un ensemble fini Ø ⊂ A tel que A ⊂ ∪a∈Ø Ua =: U^b. Notons alors V^b := ⋂a∈Ø Va. U^b est ouvert comme union d'ouverts et V^b est ouvert comme intersection finie d'ouverts. De plus U^b ∩ V^b = Ø.
 - (b) Maintenant B est compact. Pour chaque $b \in B$ le point précédent nous fournit U^b et V^b disjoints qui sont des voisinages ouverts respectifs de A et b. On a $B \subset \bigcup_{b \in B} V^b$. On extrait un ensemble fini \mathcal{B} de telle sorte que $B \subset \bigcup_{b \in \mathcal{B}} V^b =: V'$. V' est un voisinage ouvert de B. Et si $U' := \bigcap_{b \in \mathcal{B}} U^b$ alors U' est un ouvert contenant A, et $U' \cap V' = \emptyset$.
- 2. Supposons que ce ne soit pas vrai alors

$$\forall r > 0 \quad \exists x \in X \qquad (d(x, K) < r) \text{ et } x \notin U.$$

En prenant $r = \frac{1}{n}$, $n \in \mathbb{N}^*$ nous obtenons une suite (x_n) tel que $d(x_n, K) < \frac{1}{n}$ et $x_n \notin U$. Comme $d(x_n, K) < \frac{1}{n}$ alors il existe $y_n \in K$ tel que $d(x_n, y_n) < \frac{1}{n}$. Nous avons une suite (y_n) dans K compact donc on peut en extraire une sous-suite $y_{\phi(n)}$ qui converge; notons ℓ sa limite, alors $\ell \in K$ car K est compact.

Regardons la suite extraite $(x_{\phi(n)})$, montrons quelle converge également vers ℓ :

$$d(x_{\phi(n)}, \ell) \le d(x_{\phi(n)}, y_{\phi(n)}) + d(y_{\phi(n)}, \ell)$$

Les deux termes à droite de l'inégalité tendent vers 0, donc $(x_{\phi(n)})$ tend vers ℓ . Soit $F = X \setminus U$ alors F est une fermé (car U est ouvert) et $(x_{\phi(n)}) \in F$ donc la limite ℓ est dans F également. Donc $\ell \notin U$ et comme $K \subset U$ alors $\ell \notin K$. Nous avons montrer deux choses contradictoires $\ell \in K$ et $\ell \notin K$ ce qui prouve le résultat demandé.

Correction de l'exercice 2 A

Nous allons utiliser le fait qu'un ensemble K est compact si et seulement si de toute suite d'éléments de K on peut extraire une sous-suite convergente vers un élément de K.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente et soit ℓ sa limite. Notons

$$K = \{u_n \mid n \in \mathbb{N}\} \cup \{\ell\}.$$

Soit (v_n) une suite d'éléments de K. Si (v_n) ne prend qu'un nombre fini de valeurs, on peut extraire une soussuite constante, donc convergente. Sinon (v_n) prend une infinité de valeurs. Nous allons construire une suite convergente (w_n) extraite de (v_n) . Soit w_0 le premier des $(v_0, v_1, v_2, ...)$ qui appartient à $\{u_0, u_1, ...\}$. Soit w_1 le premier des $(v_1, v_2, ...)$ qui appartient à $\{u_1, u_2, ...\}$.. Soit w_n le premier des $(v_n, v_{n+1}, ...)$ qui appartient à $\{u_n, u_{n+1}, ...\}$. Alors (w_n) est une suite-extraite de (v_n) et par construction (w_n) converge vers la limite de (u_n) , donc vers $\ell \in K$.

Correction de l'exercice 3

1. Notons $\ell = \operatorname{dist}(K, F)$. Alors il existe (x_n) suite d'éléments de K et (y_n) suite d'éléments de F telles que $||x_n - y_n|| \to \ell$. Comme K est compact alors on peut extraire de (x_n) une sous-suite $(x_{\phi(n)})$ qui converge dans K. Notons $a \in K$ cette limite Alors la suite extraite $(y_{\phi(n)})$ est bornée car

$$||y_{\phi(n)}|| \le ||y_{\phi(n)} - x_{\phi(n)}|| + ||x_{\phi(n)}||.$$

La suite $(x_{\phi(n)})$ qui converge est donc bornée, et la suite $(\|y_{\phi(n)} - x_{\phi(n)}\|)$ qui converge dans \mathbb{R} (vers ℓ) est bornée également. Donc la suite $(y_{\phi(n)})$ est bornée on peut donc en extraire une sous-suite convergente $(y_{\phi\circ\psi(n)})$. De plus comme F est fermé alors cette suite converge vers $b\in F$. La suite $(x_{\phi\circ\psi(n)})$ extraite de $(x_{\phi(n)})$ converge vers $a\in K$. Et comme nous avons extrait deux suites (x_n) et (y_n) on a toujours $\|x_{\phi\circ\psi(n)} - y_{\phi\circ\psi(n)}\| \to \ell$. A la limite nous obtenons $\|a-b\| = \ell$ avec $a\in K$ et $b\in F$.

2. Remarque : si K était supposé fermé mais pas compact alors le résultat précédent pourrait être faux. Par exemple pour $K = \{(x,y) \in \mathbb{R}^2 \mid xy \ge 1 \text{ et } y \ge 0\}$ et $F = \{(x,y) \in \mathbb{R}^2 \mid y \le 0\}$ nous avons d(K,F) = 0 mais $K \cap F = \emptyset$.

Correction de l'exercice 4 A

Comme E est compact et $E \subset \bigcup_{y \in E} V_y$ il existe un ensemble fini $\mathscr{Y} \subset E$ tel que $E \subset \bigcup_{y \in \mathscr{Y}} V_y$. Sur chaque voisinage V_y , f est bornée par une constante M_y . Notons $M = \max_{y \in \mathscr{Y}} M_y$. Alors f est bornée sur E par M. En effet pour un élément quelconque $x \in E$, il existe $y \in \mathscr{Y}$ tel que $y \subset V_y$ donc f(x) est bornée par M_y donc par M.

Correction de l'exercice 5

- 1. Soit $x = \lim x_n$. Soit $N \in \mathbb{N}$; montrons que x est dans F_N . On a $x_N \in F_N$, $x_{N+1} \in F_{N+1} \subset F_N$, $x_{N+2} \in F_{N+2} \subset F_{N+1} \subset F_N$, etc. Donc pour tout $n \ge N$ alors $x_n \in F_N$. Comme F_N est fermé, alors la limite x est aussi dans F_N . Ceci étant vrai quelque soit N, alors $x \in \bigcap_N F_N$.
 - Pour construire un exemple comme demandé il est nécessaire que de toute suite on ne puisse pas extraire de sous-suite convergente. Prenons par exemple dans \mathbb{R} , $F_n = [n, +\infty[$, alors $\bigcap_n F_n = \emptyset$.
- 2. (a) Pour chaque n on prend $x_n \in K_n$, alors pour tout n, $x_n \in K_0$ qui est compact donc on peut extraire une sous-suite convergente. Si x est la limite de cette sous-suite alors $x \in K$. Donc K est non vide.
 - (b) Par l'absurde supposons que c'est faux, alors

$$\forall N \in \mathbb{N} \quad \exists n \geq N \quad \exists x_n \in K_n \text{ tel que } x_n \notin \Omega.$$

De la suite (x_n) , on peut extraire une sous-suite $x_{\phi(n)}$ qui converge vers $x \in K$. Or $x_n \in X \setminus \Omega$ qui est fermé donc $x \in X \setminus \Omega$. Comme $K \subset \Omega$ alors $x \notin K$ ce qui est contradictoire.

Correction de l'exercice 6 ▲

Soit $x \in X$ et $\varepsilon > 0$.

- 1. Pour tout $y \in [0,1]$ f est continue en (x,y) donc il existe un U(y) voisinage de x et [a(y),b(y)] voisinage de y tel que pour $(x',y') \in U(y) \times [a(y),b(y)]$ on ait $|f(x,y)-f(x',y')| \le \varepsilon$.
- 2. Comme $[0,1] \subset \bigcup_{y \in [0,1]} [a(y),b(y)]$ et que [0,1] est un compact de $\mathbb R$ il existe un ensemble fini $\mathscr Y$ tel que $[0,1] \subset \bigcup_{y \in \mathscr Y} [a(y),b(y)]$. De plus quitte à réduire les intervalles ont peut supposer qu'il sont disjoints et quitte à les réordonner on peut supposer que ce recouvrement s'écrit :

$$[0,1] = [0,t_1] \cup [t_1,t_2] \cup \dots [t_k,1].$$

3. Notons $U = \bigcap_{y \in \mathscr{Y}} U(y)$, c'est un voisinage de x car l'intersection est finie. Pour $x' \in U$ nous avons

$$|g(x) - g(x')| = \left| \int_0^1 f(x, y) dy - \int_0^1 f(x', y) dy \right|$$

$$\leq \int_0^1 |f(x, y) - f(x', y)| dy$$

$$\leq \int_0^{t_1} |f(x, y) - f(x', y)| dy + \int_{t_1}^{t_2} \dots + \int_{t_k}^1 |f(x, y) - f(x', y)| dy$$

$$\leq \varepsilon (t_1 - 0) + \varepsilon (t_2 - t_1) + \dots + \varepsilon (1 - t_k)$$

$$\leq \varepsilon$$

Donc *g* est continue.

Correction de l'exercice 7 ▲

- 1. Pour montrer que A+B est fermé, nous allons montrer que toute suite de A+B qui converge, converge vers un élément de A+B. Soit (x_n) un suite de A+B qui converge vers $x \in E$. Alors il existe $a_n \in A$ et $b_n \in B$ tel que $x_n = a_n + b_n$. Comme A est compact on peut extraire une sous-suite $(a_{\phi(n)})$ qui converge vers $a \in A$. Alors $b_{\phi(n)} = x_{\phi(n)} a_{\phi(n)}$ est convergente vers x-a. Notons b=x-a comme B est fermé alors $b \in B$. Maintenant x = a+b donc $x \in A+B$.
- 2. Soit $F = \{(x,y) \in \mathbb{R}^2 \mid xy \ge 1 \text{ et } x \ge 0\}$, soit $G = \{(x,y) \in \mathbb{R}^2 \mid y \le 0 \text{ et } x \ge 0\}$. Alors $F + G = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0\} \cup \{0\} \times [0,+\infty[$ qui n'est pas un fermé (ni un ouvert).

Correction de l'exercice 8

- 1. Supposons f propre et soit F un fermé. Montrons que f(F) est un fermé. Soit (y_n) une suite de f(F) qui converge vers $y \in \mathbb{R}^n$. Notons K l'union de $\{y_n\}_{n \in \mathbb{N}}$ et de $\{y\}$. Alors K est compact. Comme $y_n \in f(F)$, il existe $x_n \in F$ tel que $f(x_n) = y_n$. En fait $x_n \in f^{-1}(K)$ qui est compact car f est propre. Donc de (x_n) on peut extraire une sous-suite convergente $(x_{\phi(n)})$, on note x la limite de cette sous-suite. Comme $x_{\phi(n)} \in F$ et que F est fermé alors $x \in F$. Comme f est continue alors $y_{\phi(n)} = f(x_{\phi(n)})$ tend vers f(x), or $y_{\phi(n)}$ tend aussi vers g. Par unicité de la limite g alors g est fermé.
- 2. Dire $||f(x)|| \to \infty$ quand $||x|| \to \infty$ est équivalent à

$$\forall M > 0 \quad \exists m > 0 \quad \forall x \in \mathbb{R}^n \quad (x \notin B(0, m) \Rightarrow f(x) \notin B(0, M)).$$

- (a) Supposons f propre, soit M > 0. Alors B(0,M) est un compact (nous sommes dans \mathbb{R}^n) donc $f^{-1}(B(0,M))$ est compact donc borné, c'est-à-dire qu'il existe m > 0 tel que $f^{-1}(B(0,M)) \subset B(0,m)$. Donc si $x \notin B(0,m)$ alors $f(x) \notin B(0,M)$.
- (b) Réciproquement, soit K un compact de \mathbb{R}^n . Comme f est continue et que K est fermé alors $f^{-1}(K)$ est un fermé. Reste à montrer que $f^{-1}(K)$ est borné. Comme K est compact alors il existe M>0 tel que $K\subset B(0,M)$, par hypothèse il existe m>0 tel que si $x\notin B(0,m)$ alors $f(x)\notin B(0,M)$, ce qui s'écrit aussi par contraposition : "si $f(x)\in B(0,M)$ alors $x\in B(0,m)$ ", donc $f^{-1}(B(0,M))\subset B(0,m)$. Or $K\subset B(0,M)$ donc $f^{-1}(K)\subset f^{-1}(B(0,M))\subset B(0,m)$. Donc $f^{-1}(K)$ est borné donc compact.

Correction de l'exercice 9 A

- 1. Soit f_n la fonction affine suivante $f_n(t)=0$ pour $t\in[0,\frac{1}{n+1}]$ et pour $t\in[\frac{1}{n},1]$. Sur $[\frac{1}{n+1},\frac{1}{n}]$ on définit une "dent" qui vaut 0 aux extrémités et 1 au milieu du segment. Alors si B dénote la boule unité fermée (centrée en la fonction nulle), nous avons $d_\infty(f_n,0)=\sup|f_n(t)|=1$ donc $f_n\in B$. Par contre si $p\neq q$ alors $d(f_p,f_q)=1$ donc la suite (f_n) et toute sous-suite ne sont pas de Cauchy. Si B était compact alors on pourrait extraire une sous-suite convergente donc de Cauchy. Contradiction.
- 2. Notons $x^n = (0,0,\ldots,0,1,0,0,\ldots)$ la suite de l^∞ (le 1 est à la n-ième place). Alors x^n est dans la boule unité fermée B centrée en 0. De plus si $p \neq q$, alors $d_\infty(x^p, x^q) = 1$. Donc toute sous-suite extraite de (x_n) n'est pas de Cauchy donc ne peut pas converger. Donc B n'est pas compact.

Correction de l'exercice 11 ▲

- 1. Si f a deux points fixes $x \neq y$, alors d(x,y) = d(f(x),f(y)) < d(x,y). Ce qui est absurde. Donc f a au plus un point fixe.
- 2. f est continue et X compact donc $X_1 = f(X)$ est compact, par récurrence si X_{n-1} est compact alors $X_n = f(X_{n-1})$ est compact. De plus $f: X \to X$, donc $f(X) \subset X$ soit $X_1 \subset X$, puis $f(X_1) \subset f(X)$ soit $X_2 \subset X_1$, etc. Par récurrence $X_n \subset X_{n-1} \subset \cdots \subset X_1 \subset X$. Comme chaque X_n est non vide alors Y n'est pas vide (voir l'exercice 4).
- 3. Montrons d'abord que $f(Y) \subset Y$. Si $y \in Y$, alors pour tout $n \ge 0$ on a $y \in X_n$ donc $f(y) \in f(X_n) = X_{n+1}$ pour tout $n \ge 0$. Donc pour tout n > 0, $f(y) \in X_n$, or $f(y) \in X_0 = X$. Donc $f(y) \in Y$.

Réciproquement montrons $Y \subset f(Y)$. Soit $y \in Y$, pour chaque $n \ge 0$, $y \in X_{n+1} = f(X_n)$. Donc il existe $x_n \in X_n$ tel que $y = f(x_n)$. Nous avons construit (x_n) une suite d'élément de X compact, on peut donc en extraire une sous-suite convergente $(x_{\phi(n)})$. Notons x la limite, par l'exercice 4, $x \in Y$. Alors $y = f(x_{\phi(n)})$ pour tout n et f est continue donc à la limite y = f(x). Donc $y \in f(Y)$.

Soit $y \neq y' \in Y$ tel que $d(y,y') = \operatorname{diam} Y > 0$. Comme Y = f(Y) alors il existe $x,x' \in Y$ tel que y = f(x) et y' = f(x'). Or d(y,y') = d(f(x),f(x')) < d(x,x'). On a trouvé deux élements de Y tel d(x,x') est strictement plus grand que le diamètre de Y ce qui est absurde. Donc y = y' et le diamètre est zéro.

4. Comme le diamètre est zéro alors Y est composé d'un seul point $\{p\}$ et comme f(Y) = Y alors f(p) = p. Donc p a un point fixe et nous savons que c'est le seul. Par la construction de Y pour tout point $x_0 \in X$ la suite $x_n = f^n(x_0)$ converge vers p.

Correction de l'exercice 12 ▲

- 1. Comme $E \times E$ est compact alors de la suite (a_n,b_n) on peut extraire une sous-suite $(a_{\phi(n)},b_{\phi(n)})$ qui converge vers (a_{∞},b_{∞}) . Soit $\varepsilon>0$ il existe $n\in\mathbb{N}$ tel que si $k\geq n$ alors $d(a_{\phi(k)},a_{\infty})<\frac{\varepsilon}{2}$ et $d(b_{\phi(k)},b_{\infty})<\frac{\varepsilon}{2}$. Donc en particulier $d(a_{\phi(n+1)},a_{\phi(n)})\leq d(a_{\phi(n+1)},a_{\infty})+d(a_{\infty},a_{\phi(n)})<\varepsilon$. La propriété pour f s'écrit ici $d(a_k,b_{k'})\leq d(a_{k+1},b_{k'+1})\geq$. Donc $d(a_{\phi(n+1)-\phi(n)},a_0)\leq d(a_{\phi(n+1)-\phi(n)+1},a_1)\leq\ldots\leq d(a_{\phi(n+1)-1},a_{\phi(n)-1})\leq d(a_{\phi(n+1)},a_{\phi(n)})<\varepsilon$. Donc pour $k=\phi(n+1)-\phi(n)$, sachant que $a_0=a$ alors $d(a_k,a)<\varepsilon$. Même chose avec (b_n) .
- 2. (a) Soit $a \in E$ et $\varepsilon > 0$ alors il existe $k \ge 1$ tel que $a_k = f^k(a) \in f(E)$ avec $d(a, a_k) < \varepsilon$. Donc f(E) est dense dans E.
 - (b) Soit $u_n = d(a_n, b_n)$. Alors par la propriété pour f, (u_n) est une suite croissante de \mathbb{R} . Comme E est compact alors son diamètre est borné, donc (u_n) est majorée. La suite (u_n) est croissante et majorée donc converge vers u.

Maintenant $u_n - u_0 \ge 0$ et

$$0 \le u_n - u_0 = d(a_n, b_n) - d(a, b) \le d(a_n, a) + d(a, b) + d(b, b_n) - d(a, b) = d(a_n, a) + d(b_n, b).$$

Donc u_n tend vers u_0 . Comme (u_n) est croissante alors $u_n = u_0$ pour tout n. En particulier $u_1 = u_0$ donc $d(a_1, b_1) = d(a_0, b_0)$ soit d(f(a), f(b)) = d(a, b). Donc f est une isométrie.

(c) f est une isométrie donc continue (elle est 1 lipschitziènne!). E est compact donc f(E) est compact donc fermé or f(E) est dense donc f(E) = E. Donc f est surjective

Correction de l'exercice 13 A

Dire que $i:(X,|.|) \to (X,d)$ est continue c'est exactement dire que tout ensemble U ouvert pour d est ouvert pour |.| (car $i^{-1}(U) = U$).

- 1. Soit K un compact pour |.|. Soit U_i , $i \in I$ tels que $K \subset \bigcup_{i \in I} U_i$ et tels que U_i soient des ouverts pour d. Alors les U_i sont aussi des ouverts pour la topologie définie par |.|. Comme K est compact pour |.| alors on peut extraire un ensemble fini $J \subset I$ tel que $K \subset \bigcup_{i \in J} U_i$. Donc K est aussi compact pour d.
 - Si F est un fermé pour |.| alors $F \subset [0,1]$ est compact pour |.| Donc compact pour d, donc fermé pour d.
- 2. Si U est un ouvert pour d alors U est un ouvert pour |.|. Car i est continue. Réciproquement si U est un ouvert pour |.| alors $F = X \setminus U$ est un fermé pour |.| donc F est un fermé pour d par la question précédente, donc $U = X \setminus F$ est un ouvert pour d. Conclusion les ouverts pour |.| et d sont les mêmes donc |.| et d définissent la même topologie.