

VECTOR SPACE OF POLYNOMIALS

Definition

Suppose \mathbf{F} is a field. A function $p: \mathbf{F} \to \mathbf{F}$ is called a *polynomial* with coefficients in \mathbf{F} if there exist $a_0, a_1, \ldots, a_m \in \mathbf{F}$ (for some $m \in \mathbf{N}$) such that

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$
 for all $z \in \mathbf{F}$

The set of all polynomials with coefficients in ${\bf F}$ is a subspace of the vector space of all function ${\bf F}^{\bf F}$.

Notation

The set of all polynomials in \mathbf{F} is sometimes denoted by $\mathbf{P}(\mathbf{F})$ or $\mathcal{P}(\mathbf{F})$.

