Lecture 14

Regression using Linear Algebra

EECS 398: Practical Data Science, Spring 2025

practicaldsc.org • github.com/practicaldsc/sp25 • See latest announcements here on Ed

Agenda 📅

- Recap: Simple linear regression.
- Interpreting the formulas.
- Regression and linear algebra.

Recap: Simple linear regression

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

In Lecture 12, we said that the line in **red** is the regression line.

But how did we find this line?

Recap: Simple linear regression

- Goal: Use the modeling recipe to find the "best" simple linear hypothesis function.
 - 1. Model: $H(x_i) = w_0 + w_1 x_i$.
 - 2. Loss function: $L_{\mathrm{sq}}(y_i,H(x_i))=(y_i-H(x_i))^2$.
 - 3. Minimize empirical risk: $R_{ ext{sq}}(w_0,w_1)=rac{1}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
 ight)^2.$

$$\Rightarrow w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

• The resulting line, $H^*(x_i) = w_0^* + w_1^* x_i$, is the unique line that minimizes MSE.

Code demo

• Before we go any further, let's test out our formulas in code.

• The supplementary notebook is posted in the usual place on GitHub and the course website.

Interpreting the formulas

Causality

• Can we conclude that leaving later causes you to get to school earlier?

Interpreting the slope

$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

- The units of the slope are units of y per units of x.
- In our commute times example, in $H^*(x_i)=142.25-8.19x_i$, our predicted commute time decreases by 8.19 minutes per hour.

Interpreting the slope

$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

- Since $\sigma_x \geq 0$ and $\sigma_y \geq 0$, the slope's sign is r's sign.
- ullet As the y values get more spread out, σ_y increases, so the slope gets steeper.
- ullet As the x values get more spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

$$w_0^*=ar{y}-w_1^*ar{x}$$

What are the units of the intercept?

• What is the value of $H^*(\bar{x})$?

Question 🤔

Answer at practicaldsc.org/q

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
- C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.

Regression and linear algebra

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and the day of the month.
- Thinking about linear regression in terms of matrices and vectors will allow us to find hypothesis functions that:
 - Use multiple features (input variables).
 - \circ Are non-linear in the features, e.g. $H(x_i) = w_0 + w_1 x_i + w_2 x_i^2$.

Simple linear regression, revisited

- ullet Model: $H(x_i)=w_0+w_1x_i.$
- Loss function: $(y_i H(x_i))^2$.
- To find w_0^* and w_1^* , we minimized empirical risk, i.e. average loss:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

ullet Observation: $R_{
m sq}(w_0,w_1)$ kind of looks like the formula for the norm of a vector,

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$$

Regression and linear algebra

Let's define a few new terms:

- The **observation vector** is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- The **hypothesis vector** is the vector $ec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The **error vector** is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$e_i = y_i - H(x_i)$$

Example

Consider
$$H(x_i) = 2 + \frac{1}{2}x_i$$
.

$$ec{ec{h}}=$$
 $ec{h}=$

$$ec{e} = ec{y} - ec{h} =$$

$$egin{aligned} R_{ ext{sq}}(H) &= rac{1}{n} \sum_{i=1}^n \left(oldsymbol{y_i} - H(x_i)
ight)^2 \ &= \end{aligned}$$

Regression and linear algebra

Let's define a few new terms:

- The **observation vector** is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- The **hypothesis vector** is the vector $ec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The **error vector** is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$e_i = y_i - H(x_i)$$

ullet Key idea: We can rewrite the mean squared error of H as:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(rac{m{y_i}}{n} - H(x_i)
ight)^2 = rac{1}{n} \| ec{m{e}} \|^2 = rac{1}{n} \| ec{m{y}} - ec{h} \|^2$$

The hypothesis vector

- The **hypothesis vector** is the vector $ec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- ullet For the linear hypothesis function $H(x_i)=w_0+w_1x_i$, the hypothesis vector can be written:

$$ec{h} = egin{bmatrix} w_0 + w_1 x_1 \ w_0 + w_1 x_2 \ dots \ w_0 + w_1 x_n \end{bmatrix} = egin{bmatrix} w_0 + w_1 x_n \ \end{bmatrix}$$

Rewriting the mean squared error

• Define the **design matrix** $X \in \mathbb{R}^{n \times 2}$ as:

$$X = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ 1 & x_n \end{bmatrix}$$

- ullet Define the **parameter vector** $ec{w} \in \mathbb{R}^2$ to be $ec{w} = egin{bmatrix} w_0 \ w_1 \end{bmatrix}$.
- Then, $\vec{h} = X\vec{w}$, so the mean squared error becomes:

$$R_{ ext{sq}}(\pmb{H}) = rac{1}{n} \| ec{\pmb{y}} - ec{h} \|^2 \implies \left| R_{ ext{sq}}(ec{w}) = rac{1}{n} \| ec{\pmb{y}} - \pmb{X} ec{w} \|^2
ight|$$

Minimizing mean squared error, again

• To find the optimal model parameters for simple linear regression, w_0^{st} and w_1^{st} , we previously minimized:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (extbf{ extit{y}}_i - (w_0 + w_1 extbf{ extit{x}}_i))^2$$

• Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_0^* and w_1^* by finding the $\vec{w}^* = \begin{bmatrix} w_0^* \\ w_1^* \end{bmatrix}$ that minimizes:

$$\left|R_{ ext{sq}}(ec{w}) = rac{1}{n} \| ec{oldsymbol{y}} - oldsymbol{X} ec{w} \|^2
ight|$$

• Do we already know the $ec{w}^*$ that minimizes $R_{
m sq}(ec{w})$?

Minimizing mean squared error, using projections?

- X and \vec{y} are fixed: they come from our data.
- Our goal is to pick the \vec{w}^* that minimizes:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \| ec{oldsymbol{y}} - oldsymbol{X} ec{w} \|^2$$

• This is equivalent to picking the \vec{w}^* that minimizes:

$$\|ec{\pmb{y}} - \pmb{X}ec{\pmb{w}}\|^2$$

- This is equivalent to finding the w_0^* and w_1^* so that $X\vec{w}^*$ is as "close" to \vec{y} as possible.
- Solution: Find the orthogonal projection of \vec{y} onto $\mathrm{span}(X)!$
- We already did this in Linear Algebra Guide 4, which you're reviewing in Homework 6, Question 5!

An optimization problem we've seen before

ullet The optimal parameter vector, $ec{w}^* = \begin{bmatrix} w_0^* & w_1^* \end{bmatrix}^T$, is the one that minimizes:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \| ec{oldsymbol{y}} - oldsymbol{X} ec{w} \|^2$$

• In the Linear Algebra Guide (and your linear algebra class), we showed that the \vec{w}^* that minimizes the length of the error vector, $||\vec{e}|| = ||\vec{y} - X\vec{w}||$, is the one that satisifes the **normal equations**:

$$X^T X \vec{w}^* = X^T \vec{y}$$

ullet The minimizer of $\|ec{m{e}}\|$ is the same as the minimizer of $R_{
m sq}(ec{w})$.

$$\|rac{1}{n}\|ec{m{e}}\|^2 = rac{1}{n}\|ec{m{y}} - m{X}ec{m{w}}\|^2$$

• **Key idea**: The \vec{w}^* that solves the normal equations also **minimizes** $R_{\rm sq}(\vec{w})!$

The normal equations

• The normal equations are the system of 2 equations and 2 unknowns defined by:

$$oxed{X^T X ec{w}^* = X^T ec{y}}$$

- Why are they called the normal equations?
- If X^TX is invertible, there is a unique solution to the normal equations:

$$ec{w}^* = (X^TX)^{-1}X^Tec{y}$$

• If X^TX is not invertible, then there are infinitely many solutions to the normal equations. We will explore this idea as the semester progresses.

The optimal parameter vector, $ec{w}^*$

- To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized $R_{\rm sq}(w_0,w_1)=\frac{1}{n}\sum_{i=1}^n(y_i-(w_0+w_1x_i))^2$.
 - We found, using calculus, that:

$$ullet oxedsymbol{w}_1^* = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x} igg|.$$

- $ullet \left| w_0^* = ar{y} w_1^* ar{x}
 ight|.$
- Another way of finding optimal model parameters for simple linear regression is to find the \vec{w}^* that minimizes $R_{\rm sq}(\vec{w}) = \frac{1}{n} ||\vec{y} \vec{X}\vec{w}||^2$.
 - \circ The minimizer, if X^TX is invertible, is the vector $ec{w}^* = (X^TX)^{-1}X^Tec{y}ert$.
- These formulas are equivalent!

Code demo

- To give us a break from math, we'll switch to a notebook, showing that both formulas that is, (1) the formulas for w_1^* and w_0^* we found using calculus, and (2) the formula for \vec{w}^* we found using linear algebra give the same results.
 - You'll prove this in Homework 7 \(\opi \).
- We'll use the same supplementary notebook as earlier, posted in the usual place on GitHub and the course website.
- Then, in Lecture 15, we'll use our new linear algebraic formulation of regression to incorporate **multiple features** in our prediction process.

Summary: Regression and linear algebra

• Define the **design matrix** $X \in \mathbb{R}^{n \times 2}$, **observation vector** $\vec{y} \in \mathbb{R}^n$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$egin{aligned} oldsymbol{X} &= egin{bmatrix} 1 & oldsymbol{x}_1 \ 1 & oldsymbol{x}_2 \ dots & dots \ 1 & oldsymbol{x}_n \end{bmatrix} & oldsymbol{ec{y}} &= egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix} & oldsymbol{ec{w}} &= egin{bmatrix} w_0 \ w_1 \end{bmatrix} \end{aligned}$$

• Which \vec{w} makes the hypothesis vector, $\vec{h}=X\vec{w}$, as close to \vec{y} as possible? Use the solution to the normal equations, \vec{w}^* :

$$ec{w}^* = (X^TX)^{-1}X^Tec{y}$$

• We chose \vec{w}^* so that $\vec{h}^* = X\vec{w}^*$ is the projection of \vec{y} onto the span of the columns of the design matrix, X.