Final Report

Problem Statement:

An organization that has tens of thousands of clients a year, across many product (event) categories, is sitting on a lot of data. I initially was curious to identify what opportunities can be found in analyzing the data that could contribute to the business growth of the business. While the data indeed showed a number of interesting patterns, which will be discussed briefly below, it became apparent that the available data presents an interesting pricing optimization problem. Stated briefly: *Are the event prices that are being charged from attendees revenue maximizing?*

Dataset Description:

The dataset is of orders from a company that organizes dozens of annual B2B conferences of varying sizes and across several industries. While there was a single source - the company's CRM - there were two different data sets that were eventually merged to form the final analysis and model. The two data sets are: 1. Individual orders, this includes ticket price, time, type, etc. and 2. Event performance metrics, this includes metrics like event revenue, number of attendees, number of paid attendees and more.

A number of cleaning and wrangling operations were necessary:

- A few orders included erroneous symbols or currency symbols these were cleaned up
- A small number of negative orders were removed
- A unique 'id' variable was created from first names, last names and emails to eliminate the latter and proceed with the analysis without sensitive user data
- New variable was created to attribute sales source by registration type in the form of a new categorical series
- A new variable was created to denote the number of attendees in a group registration (the value of 1 for an individual registration with no group)
- A new seniority variable was created and populated by keywords from the individual job titles

Before proceeding to EDA, a number of data type conversions took place:

- Variables such as order type and order source were converted to categorical
- Order and event dates were converted to datetime
- Price data was converted to floats

More information on variable definitions and transformations can be found in the <u>Capstone</u> <u>proposal</u>.

Initial Findings:

There are two ways in which attendees can register for the events: 1. passively - online, chat or via customer service or 2. actively - through a consultative phone conversation with a sales rep. Seems the growth in attendee registrations has come mainly through the latter.

I became curious about the motivation behind registrations, while pricing plays a major part in a purchasing decision, there could be other elements at play, such as scarcity, exclusivity and social pressure. In order to try and distill some of the key reasons, I looked at the top registration days for ticket purchases.

Α	II Orders	
	mean	count
Order_Date		97
2018-01-31	1341.435957	141
2018-04-30	1254.289841	126
2017-01-31	1390.507265	117
2018-02-28	1103.890000	103
2017-02-28	1404.298600	100
2017-03-31	1354.684105	95
2017-09-29	1212.224839	93
2016-08-31	1114.764767	86
2015-01-30	1805.966395	86
2017-03-30	1099.386588	85

It became apparent that the last day of the month is a day with many ticket purchases. There could be two reasons for this: 1. Discounting - discounts often end on the last day of the month, which would offer a strong incentive for purchase and 2. Internal commission deadlines - As we previously saw, the majority of sales come through a sales team and their incentives also tended to align with monthly deadlines.

In order to distill which of the two was more likely at play, I ran the numbers based on passive orders only - this allowed us to ignore the commission deadlines as they do not apply to such sales. It became apparent that pricing, perhaps with added messaging about the pricing, is a strong factor in the decision to purchase event tickets.

Pricing and Revenue:

Initial EDA was focused on understanding the correlation between average event prices and event revenue. The assumption was that there could be a point of diminishing return, at which demand would drop and the number of total ticket purchases, even at the higher rate, would not result in as high of an overall revenue.

Looking at all events showed a central tendency of average event prices in the \$1,000-\$2,000 range, while the number of paid attendees varied greatly within this range. There were also a number of outliers in terms of ticket price (<\$700 or >\$2,500) and in terms of paid attendees (events with more than 400 paid attendees).

Looking at individual event subject areas showed varying demand distributions. *Additional breakdown can be found in appendix B.*

In looking at the retail events in more detail, I tried to identify a correlation between the average price increase and the overall association to increased revenue

44.20399685876672 199656.7614655343
For Retail Events - On average, a pricepoint increase of \$100 is associated with added revenue of 4420.4 dollars

There are a number of outlier events, however, such as those that have a greater natural demand. Those were removed to see what a more typical event correlation might be:

37.405379663222256 87172.44871670128
After removing the outlier events - for Retail Events - on average, a pricepoint increase of \$100 is associated with added revenue of 3740.54 dollars

Lastly, a number of events had a very low average price-point, which means that they were driven mostly by comps. Removing these shows an even lower association:

26.491319779672047 104210.4962551559
After removing the outlier events - for Retail Events - on average, a pricepoint increase of \$100 is associated with added revenue of 2649.13 dollars

Machine Learning:

After cleaning up the data for a linear regression and creating dummy variables for event types and seniority of registrant, an initial linear regression model gave a baseline model, which we've subsequently attempted to improve:

OLS Regression Results

Dep. Variable: To	tal_Net_Price	R-squared:			0.599	
Model:	OLS	Adj. R-squ	ared:		0.598	
Method:	Least Squares	F-statisti	ic:		594.7	
Date: Mon	, 04 Mar 2019	Prob (F-st	catistic):		0.00	
Time:	17:51:22	Log-Likeli	hood:	-1.3	463e+05	
No. Observations:	17997	AIC:		2.	694e+05	
Df Residuals:	17951	BIC:		2.	697e+05	
Df Model:	45					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
const	68.8719	50.950	1.352	0.176	-30.996	168.740
Group Size	-34.7636	1.564	-22.228	0.000		-31.698
Days Ahead of Event	-1.4576	0.070	-20.724	0.000	-1.595	-1.320
Total Dels	0.7192			0.002		1.179
Total Rev	-13.8399	7.255	-1.908	0.056		0.381
Booking Pattern Comparis		0.087	3.499	0.000	0.133	0.473
Total Guests	-0.6846	0.067	-10.197	0.000	-0.816	-0.553
Avg_Cost_of_Acquisition		0.082	-3.383	0.001	-0.439	-0.117
Mktg Dels	2.4522	0.693	3.539	0.000	1.094	3.810
Mktg Rev	13.8355	7.255	1.907	0.057	-0.385	28.056
Mktg Price Point	0.1263	0.018	7.209	0.000	0.092	0.161
PP act	0.0027	0.000	5.475	0.000	0.002	0.004
Sales Dels	-0.2905	0.498	-0.583	0.560	-1.268	0.686
Sales Rev	13.8405	7.255	1.908	0.056	-0.380	28.061
Sales perc of ttl rev	3.6173	0.858	4.215	0.000	1.935	5.300
Sales Price Point	0.1158	0.042	2.728	0.006	0.033	0.199
Num Active Inq	0.0002	0.076	0.002	0.998	-0.150	0.150
Active Ing Del	-0.7710	0.486	-1.585	0.113	-1.724	0.182
Num Passive PDF	0.0845	0.014	5.920	0.000	0.057	0.112
Passive_PDF_Del	-0.6714	0.355	-1.891	0.059	-1.367	0.025
Total EQ Rev	13.8402	7.255	1.908	0.056	-0.380	28.061
EQ Price Point	0.2573	0.041	6.226	0.000	0.176	0.338
						4.563
EQ_perc_of_ttl_Rev	2.9773 -6.557e-05	0.809	3.681 -2.318	0.000	1.392	
Spex_Rev		2.83e-05 1.61e-05		0.020	-0.000 -9.42e-05	-1.01e-05 -3.12e-05
Spex_Last_Year	-6.268e-05 0.0222	0.019	-3.904 1.165	0.000	-0.015	0.059
Num_Spex_EQs		0.019	0.350	0.726		0.039
Num_Spex_Props	0.0746 0.3274	0.213			-0.343	0.492
Props_Last_Year			1.795	0.073	-0.030	
Num_TMs	0.0081	0.013 0.299	0.637	0.524	-0.017	0.033
Num_SPKRs	1.1335		3.787	0.000	0.547	1.720
Avg_Pricepoint	0.3799	0.085	4.449	0.000	0.213	0.547
CX	25.6570	16.031	1.600	0.110	-5.766	57.080
Finance	41.0102	16.004	2.563	0.010	9.641	72.379
HR	-131.0859	21.712	-6.038	0.000	-173.643	-88.529
Logistics	28.9191	11.716	2.468	0.014	5.955	51.884
Pharma	78.7483	23.122	3.406	0.001	33.427	124.069
Procurement	83.9195	13.178	6.368	0.000	58.090	109.749
Retail	-58.2963	11.560	-5.043	0.000	-80.956	-35.637
C-Level	26.8527	14.440	1.860	0.063	-1.451	55.156
Consultant	-24.8530	37.816	-0.657	0.511	-98.975	49.269
Director	20.6079	12.298	1.676	0.094	-3.498	44.714
Manager	4.2354	12.027	0.352	0.725	-19.339	27.810
Other	-8.3233	12.341	-0.674	0.500	-32.513	15.867
VP	50.3522	13.731	3.667	0.000	23.438	77.266
Delegate_Sales	-185.8159	27.289	-6.809	0.000	-239.306	-132.326
ACD Conversion	-241.6378	35.301	-6.845	0.000	-310.832	-172.444

The root mean square error of this initial model was \$429, which is nearly 25% of the average, or baseline, conference passes. Subsequent models were created to attempt to improve the RMSE.

Before evaluating the VIFs and addressing collinearity, there was an attempt to look at a model solely with some of the key features which would logically have the largest effects on the price paid:

OLS Regression Results

OLS Regression Results								
Model:	OLS			0.438				
Method:	Least Squares				739.8			
	on, 04 Mar 2019				0.00			
Time:	17:51:29	*			765e+05			
No. Observations:	17.31.29	AIC:	inoou:		753e+05			
Df Residuals:	17977	BIC:			755e+05			
Df Model:	17977	BIC:		۷.	733E+03			
Covariance Type:	nonrobust							
covariance Type:								
	coef	std err		P> t		0.9751		
					[0.025	0.575]		
const	1660.6272	16.554	100.316	0.000	1628.180	1693.074		
Group Size	-42.6307	1.815	-23.491	0.000	-46.188	-39.073		
Total Dels	0.5481	0.080	6.821	0.000	0.391	0.706		
Days_Ahead_of_Event	-1.0273	0.082	-12.500	0.000	-1.188	-0.866		
сх — — —	256.0893		13.716		219.491	292.687		
Finance	315.2602		16.431	0.000	277.651			
Pharma	1351.5533	19.678	68.682	0.000	1312.982	1390.125		
Logistics	260.5486	12.860	20.261	0.000	235.342	285.755		
HR	260.5486 -387.3481 110.5695	25.355	-15.277	0.000	-437.046			
Procurement	110.5695	15.004	7.370	0.000	81.161	139.978		
Delegate Sales	-153.7055	5.514	-27.877	0.000	-164.513	-142.898		
Full Delegate Sale	-93.3789		-11.294	0.000	-109.585	-77.173		
Booking Pattern Compar	ison -0.6910	0.052	-13.362	0.000	-0.792	-0.590		
Total Guests	-2.0744	0.048	-43.442	0.000	-2.168	-1.981		
Mktg Dels	-2.2637	0.300	-7.536	0.000	-2.852	-1.675		
Num Active Inq	0.3499	0.057	6.164		0.239	0.461		
Spex Rev	0.0005	1.7e-05	27.728	0.000	0.000	0.001		
Director		10.322	5.058	0.000	31.981	72.446		
Manager	13.2002	9.587	1.377		-5.592			
VP	125.7505	13.479	9.330	0.000	99.331	152.170		
Delegate_Sales	-153.7055	5.514	-27.877	0.000	-164.513			
0								
Omnibus:	3724.419	Durbin-Wat			1.033			
Prob(Omnibus):	0.000		ra (JB):	18				
Skew:	0.913	Prob(JB):		-	0.00			
Kurtosis:	7.660	Cond. No.			.48e+21			

While it is interesting to see that nearly all of the features had a statistically significant effect on the final price and that the baseline (constant) was close to the average price-point, the explanatory strength of this model decreased and do did the RMSE. The RMSE of this model went up to \$507, meaning our error took us even further from the actual price paid.

As mentioned, the next step was to address collinearity. Firstly, the dummy variables were removed and subsequently by looking at a correlative heatmap (below) and the Variance Inflation Factors, some of the highly collinear variables were removed from the model.

The outcome of this exercise was a model in which all variables had low VIFs, although the explanatory strength of the model was lower than the baseline linear regression model:

OLS Regression Results

Dep. Variable: Total_Net_Price		R-squared:		0.170			
Model:		OLS Adj. R-squared:		0.169			
Method:	Least Squares	s F-statistic:		282.5			
	n, 04 Mar 2019				0.00		
Time:	17:52:44	Log-Li	kelihood:	-1	.4117e+05		
No. Observations:	17997	AIC:			2.824e+05		
Df Residuals:	17983	BIC:			2.825e+05		
Df Model:	13						
Covariance Type:	nonrobust						
	coef	std err		P> t	[0.025	0.975]	
const	1983.2474	17.022	116.510	0.000	1949.882	2016.612	
Group Size	-60.9438	2.197	-27.736	0.000	-65.251	-56.637	
Days Ahead of Event	-0.6802		-6.853		-0.875		
Avg_Cost_of_Acquisition	-0.7263	0.087	-8.362	0.000	-0.897	-0.556	
	-1.6651		-21.703				
Active Inq Del	3.2628	0.235	13.910	0.000	2.803	3.723	
Num Spex EQs	-0.0659	0.009	-7.392	0.000	-0.083	-0.048	
Num Spex Props	0.9358	0.228	4.100	0.000	0.488		
Props Last Year			-8.703		-1.544	-0.977	
Num TMs	0.0167	0.015	1.087	0.277	-0.013	0.047	
ACD Conversion	-251.5956	33.310	-7.553	0.000	-316.886	-186.305	
Full_Delegate_Sale	-358.4752	13.707	-26.152	0.000	-385.343	-331.608	
Inquiry Conversion	-217.8789	16.965	-12.843	0.000	-251.133	-184.625	
PDF_Conversion	-334.9936	15.076	-22.220	0.000	-364.545	-305.442	
Omnibus:	4184.018	Durbin	-Watson:		0.699		
Prob(Omnibus):	0.000	Jarque	-Bera (JB):		15244.757		
Skew:	1.137	Prob(J	B):		0.00		
Kurtosis:	6.894	Cond.	No.		1.02e+04		

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.02e+04. This might indicate that there are strong multicollinearity or other numerical problems.

RMSE went further up as well, to over \$600.

There would be one more attempt to improve the linear regression models by looking only at the data of registrants through the marketing (online) channels, this in order to remove the human discounting bias of sales representatives over the phone. The resulting RMSE of \$552 showed that this discounting bias might not have been a major issue and unfortunately an improvement on the base linear model did not happen through these adjustments.

Random Forest:

Initial regressions using an out-of-the-box Random Forest gave similar results to the a linear model, with a score of .53 - very similar to the R-squared of the linear model. Hyperparameter tuning ensued using GridSearch. Finally, it seemed that a deeper tree (depth of 15) and more trees as part of the forest (100 estimators), gave a model that had a close fit with the test data:

```
from sklearn import tree
from sklearn.model selection import GridSearchCV
parameters = {'max depth':range(3,20), 'n estimators':[50,100]}
clf = GridSearchCV(RandomForestRegressor(random_state=1), parameters, n_jobs=4)
clf.fit(X=X_train, y=y_train)
tree_model = clf.best_estimator_
print (clf.best_score_, clf.best_params_)
print (tree model.score(X test, y test))
0.6942490063407305 {'max_depth': 15, 'n_estimators': 100}
0.7045193845165232
y = orders_merged_delegate_primary['Total_Net_Price']
X = orders merged delegate primary.drop('Total Net Price', 1)
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=1)
regr = RandomForestRegressor(max_depth=15, n_estimators=100, random_state=1)
regr.fit(X_train, y_train)
y pred = regr.predict(X test)
```

377.47535356025656

y_true = y_test.values

rms = np.sqrt(mean_squared_error(y_true, y_pred))

Indeed, this model also had a lower RMSE than any of the previous linear models or the initial attempts to model using a RandomForest.

Business Case:

Getting attendees to pay a price that is closer to the price paid by others with similar characteristics to them could offer a significant financial opportunity. While charging each person a different price for attendance might not be feasible, making some pricing decision can indeed have a large impact.

Just how large of an impact?

Calculating the RMSE from the average price paid per event instance as compared to the price paid for the ticket results in a price difference of \$542 on average. Comparing this to our models RMSE of \$377 shows a potential improvement of up to 30% from a pricing optimization that taken into account the models features.

Some immediate business recommendations include:

- Tickets sold offline show strong discounting incentivizing attendees to purchase passes online can result in an increase of over \$150 per ticket holding all else constant.
- There is a significant variation in pricing between events in different industries. For example, some models have shown that HR events charge \$360 less than a similar

purchased in a different vertical. It would be important to evaluate the opportunities in this market and test how they would impact the demand.

Future Scope of Work:

One of the downsides of these models is that they looked at passes purchased without considering the full demand equation and taking into consideration those people that inquires about events and did not purchase. Doing demand analysis using such data would be good next step in identifying what markets might have pricing power and could do with a price increase.

If time and resources would allow, considerations for continued work include:

- Monitoring the prices that are coming through by the utilization of the model. Are they
 improving the average prices and overall revenue?
- Increased data set that would include inquiries, to get a better idea of the demand model
- More quantitative data to be included in the model from other analytics sources for example Google Analytics (visits, page conversions, etc...) and company analytics (size, emploress, resources, etc...) as these would contribute to a greater demand and ability to pay.
- The biggest return for such analysis might be on the sponsorship side. A pricing
 optimization/demand analysis would be fruitful to understand optimal sponsorship
 behavior on events given company and event characteristics.
 - Some questions to be answered:
 - Do more speakers at an event contribute to greater sponsorships?
 - Does seniority of attendees have a major impact?
 - What type of inquiry behavior contribute to sponsoring an event (downloading brochure, attendee list, etc..)

Appendix A: Attendee types and purchase source

Bar chart of attendee seniority by type of attendee:

Attendee seniority by source of purchase:

	index	Sales_Source_Cat	job_title	Registration_Type	as_percentage
0	0	Delegate Sales	C-Level	3871	9.68
1	1	Delegate Sales	Consultant	270	0.68
2	2	Delegate Sales	Director	9582	23.96
3	3	Delegate Sales	Manager	12307	30.78
4	4	Delegate Sales	Other	9213	23.04
5	5	Delegate Sales	VP	4741	11.86
6	6	Marketing	C-Level	1214	9.60
7	7	Marketing	Consultant	166	1.31
8	8	Marketing	Director	3184	25.18
9	9	Marketing	Manager	2769	21.90
10	10	Marketing	Other	3474	27.48
11	11	Marketing	VP	1837	14.53
12	12	Production	C-Level	4192	21.11
13	13	Production	Consultant	139	0.70
14	14	Production	Director	5614	28.27
15	15	Production	Manager	2383	12.00
16	16	Production	Other	3151	15.86
17	17	Production	VP	4383	22.07
18	18	Sponsorship	C-Level	3072	9.72
19	19	Sponsorship	Consultant	508	1.61
20	20	Sponsorship	Director	7417	23.48
21	21	Sponsorship	Manager	7101	22.48
22	22	Sponsorship	Other	8236	26.07
23	23	Sponsorship	VP	5257	16.64

Appendix B: Attendee types and purchase source

Box plot of average price-point by topic area:

Box plot of delegate revenue by topic area:

