PARTE 4d

LIVELLO IP (La "dorsale" di Internet)

Parte 4d

Modulo 13: uno sguardo a IPv6

Notazione Indirizzi IPv6

- Uso di numeri in notazione esadecimale
- 8 blocchi di 16 bit (4 cifre) ciascuno
- Esempio:

2001:cdba:0000:0000:0000:0000:3257:9652

- Regola: gruppi di 4 cifre di valore 0 possono:
 - Essere ridotti a un solo 0
 - Essere omessi
- I seguenti indirizzi sono tutti equivalenti
 - 2001:cdba:0000:0000:0000:0000:3257:9652
 - 2001:cdba:0:0:0:0:3257:9652
 - 2001:cdba::3257:9652

Indirizzi IPv6 speciali

Compatibilità con IPv4

 - ::/96 Il prefisso di 96 zeri trasforma un indirizzo IPv4 in uno IPv6

Indirizzo non specificato

- ::/128 indirizzo composto solo da 0

Loopback address

- ::1/128 come 127.0.0.1 per IPv4

Indirizzo di esempio

 2001:db8::/32 prefisso usato per indicare un indirizzo di esempio

Indirizzi IPv6 speciali

Indirizzo locale

- fec0::/10 indirizzo considerato valido solo nell'ambito di una organizzazione.
- L'uso di questa notazione è deprecato

Unique Local Address (ULA)

 fc00::/7 sostituisce l'indirizzo locale precedentemente illustrato

Multicast

- ff00::/8 indirizzo multicast

Link-local prefix

 fe80::/10 l'indirizzo è valido solo sul link locale

Version	Traffic Class	Flow Label			
Payload Length		Next Header	Hop Limit		
Source Address					
Destination Address					

- Versione (4 bit)
 - Versione de protocollo. Per IPv6 vale 6
- Classe di traffico (8 bit)
 - Analogo a campo ToS IPv4
 - Indica la priorità del datagramma

Etichetta di flusso (20 bit)

- Impostato da una sorgente per identificare più datagrammi come appartenenti a un unico flusso di traffico
- I router possono usare questo campo per instradare allo stesso modo tutti i datagrammi di uno stesso flusso
- Può essere usato insieme a RSVP
- Se non usato ha valore nullo

Lunghezza del payload (16 bit)

 Numero di byte nel datagram che seguono l'intestazione

Intestazione successiva

- Tipo di protocollo usato per il payload
- Usa le stesse designazioni di IPv4 per il campo Protocol
 - TCP=6
 - UDP=17

Limite di hop

Come TTL in IPv4

Frammentazione

- IPv6 parte dal presupposto che frammentare è <u>Male</u>
- La frammentazione non è gestita a livello di singoli router intermedi
- Solo la sorgente può frammentare (ovvero creare datagrammi più piccoli)
- Solo il destinatario può riassemblare
- In caso di datagram troppo grande per il livello H2N,
 - Il datagram viene scartato
 - Si genera un messaggio ICMP di errore
- Non serve quindi supporto per questo task nell'header

Calcolo di checksum

- La corruzione di header è estremamente rara
- L'aggiornamento del checksum (es. quando cambia TTL o in caso di NAT) è estremamente onerosa per il router
- IPv6 decide di non gestire questa operazione
- Ci si affida al livello H2N

Dimensione dell'header

- L'header IP è di esattamente 40 byte
- Il campo opzioni di lunghezza variabile non è previsto
- È possibile avere delle opzioni come payload del datagram IP

Parte 4d

Modulo 14: Neighbor Discovery Protocol

Funzioni del protocollo

- Parameter Discovery: Apprendimento di parametri come MTU e hop limit
- Address Auto-configuration:
 Configurazione automatica di indirizzi

Funzioni del protocollo

- Address resolution: Ottenere indirizzo MAC a partire da indirizzo IP
- Neighbor Unreachability Detection: Identificare quando un vicino non è più raggiungibile

Funzioni del protocollo

- Duplicate Address Detection: Identificazione di un nodo che usa il medesimo indirizzo IP di un'altro
- Redirect: Informare un router di una destinazione migliore per raggiungere una destinazione

Overview protocollo

- Neighbor Discovery: 5 tipi di pacchetto ICMPv6
- Router Solicitation: Inviato quando un'interfaccia viene attivata. Serve per chiedere ai router presenti nella rete di mandare messaggi di tipo Router Advertisement immediatamente

Overview protocollo

- Router Advertisement: I router inviano periodicamente un messaggio che informa la rete della loro presenza. Il messaggio può essere mandato anche in risposta a una Router Solicitation
- Neighbor Solicitation: Mandato da un nodo per ottenere l'indirizzo MAC di di un vicino. Può essere usato anche per determinare se il vicino è ancora raggiungibile (tipo arping).

Principi di funzionamento

Estensione del protocollo ICMPv6

 I messaggi NDP sono a tutti gli effetti messaggi ICMP

Uso di indirizzi multicast

- Solicited node multicast address prefix ff02::1:ff00:0/104
- Al prefisso si aggiungono i bit meno significativi dell'IP destinazione

Router advertisement

Contenuto del messaggio

- Lista di prefissi usati per decidere il routing, configurazione indirizzi AS.
- Flag che indicano usi specifici di alcuni prefissi.
- Parametri come MTU o numero di hop che sono associati a una destinazione

Address resolution

Overview protocollo

- Neighbor Advertisement: Risposta a messaggio di tipo Neighbor Solicitation
- Redirect: Inviato da un router per informare un nodo di una possibile strada migliore per una destinazione.

Altre funzioni di NDP

- Link-layer address change: Un nodo che sa di aver cambiato indirizzo MAC può mandare un messaggio di tipo Neighbor Advertisement agli altri nodi per aggiornare la loro cache.
- Inbound load balancing: I router possono non comunicare i loro MAC address per consentire una risposta selettiva quando più router possono gestire lo stesso percorso (e.g., round robin policy).

Message Formats

Router Solicitation Message Format

Hop limit: 255 Options: could be valid link-layer address

Type: 133

Code: 0

Router Advertisement

Туре	Code		Checksum		
Cur Hop Limit	m o	Reserved	Router Lifetime		
Reachable Time					
Retrans timer					
Options					

Parameters

- Type: 134 Code: 0
- Cur Hop Limit: 8-bit unsigned integer.
- M: 1-bit "Managed address configuration" flag. When set, hosts use the administered (stateful) protocol for address autoconfiguration in addition to any addresses autoconfigured using stateless address autoconfiguration.
- O: 1-bit "Other stateful configuration" flag. When set, hosts use the administered (stateful) protocol for autoconfiguration of other information.
- Router Lifetime: 16-bit unsigned integer. Max value is 18.2 hours.
 When 0, router is not a default router.
- Reachable Time: 32-bit unsigned integer. The time, in milliseconds, that a node assumes a neighbor is reachable after having received a reachability confirmation.
- Retransmit Timer: Time for retransmitting reachability information to other routers

Neighbor Solicitation

Type	Code	Checksum				
Reserved						
Target Address						
Options						

Neighbor Advertisement

R: Router Flag. When set, indicates that sender is a router.

S: Solicited Flag. When set, indicates that advertisement was sent in response to Neighbor Solicitation from destination address.

O: Override flag. Indicates that the advertisement should override an existing cache entry and update the cached link-layer address.

Redirect Message

Туре	Code	Checksum			
Reserved					
Target Address					
Destination Address					
Options					

Parte 4d

Modulo 15: Transizione IPv4 → IPv6

Transizione IPv4 → IPv6

- La transizione non può avvenire improvvisamente
- L'ultimo "reboot" di Internet è stato fatto per introdurre TCP svariate decine di anni fa
- Oggi non sarebbe possibile
- Si assume la co-esistenza dei due protocolli per un lungo periodo

Transizione IPv4 → IPv6: dual stack

- Si prevede una progressiva diffusione di sistemi dual-stack
 - Possono gestire sia IPv4 sia IPv6
 - Devono avere sia indirizzi IPv4 che IPv6
- Un sistema dual-stack può instradare traffico IPv6 su un link IPv4
- Note e requisiti
 - I nodi mittente e destinatario devono essere dual stack
 - Nei passaggi su IPv4 si perdono informazioni su flow label

Transizione IPv4 → IPv6: tunneling

- Invece che tradurre il datagramma IPv6 in uno IPv4 si può operare diversamente
- Si incapsula il datagramma IPv6 come payload di un datagramma IPv4
- Il tunnel trasporta IPv6 usando il "link" IPv4 come se fosse un livello H2N tra due router IPv6

Fasi dell'adozione IPv6

Prima fase: IPv4 dominante

- Il core della rete è IPv4
- Esistono isole (e.g., AS) IPv6-enabled
- Si usano tunnel per connettere queste isole
- Protocolli usati: 6over4, 6to4, DS-lite

Seconda fase: IPv6 ben presente

- Core dual stack
- Molti AS vogliono eliminare ridondanza IPv4+IPv6
- Molti apparati vogliono ancora lavorare con IPv4
- Si usano tunnel per far passare il traffico IPv4 su IPv6
- Protocolli usati: 6rd

Tunnel automatici

- 6over4 richiede IPv4 multicast, poco usato
- DS-lite usa indirizzi IPv4 privati e NAT a livello di ISP
- 6to4 and 6rd richiedono indirizzi IPv4 pubblici, molto usati
- Sistemi NAT complicano le cose (non trattati)

DS-lite

6over4 Protocol

- Caso d'uso: singola organizzazione con rete IPv4 che comprende anche "isole" con host e router abilitati all'utilizzo di IPv6
- Idea di base: Utilizzo di IPv4 come se fosse livello 2
- Proposta molto semplice e datata, attualmente poco utilizzato
- Basata su IPv4 multicast per supportare NDP
- Gli host usano il loro indirizzo IPv4 come ID dell'interfaccia
- Tutti gli host devono supportare 6over4

6over4 Example

Network: 2001:5c0:1000:b::/64

Gateway: 2001:5c0:1000:b::1

Host Addresses:

IPv4 (dotted-decimal): 192.168.1.101

- IPv4 (hex): c0 a8 01 65

- Public IPv6: 2001:5c0:1000:b::c0a8:165

Link-Local IPv6: fe80::c0a8:165

6to4 Protocol

6to4

- Progettato per connetere reti IPv6 attraverso reti geografiche IPv4
- Si inserisce l'indirizzo IPv4 in un prefisso IPv6, un singolo indirizzo IPv4 pubblico diventa gateway per una rete IPv6
- Utile se l'ISP non offre indirizzo IPv6

Esempio di conversione indirizzi

- Per ogni indirizzo IPv4 pubblico di un gateway si costruisce un prefisso IPv6 a 48 bit per i nodi della rete interna
- Es: $\underline{192.0.2.4}$ → $2002:\underline{c0}$ $\underline{00:02}$ $\underline{04}::/48$

Esempio 6to4

6rd (Rapid Deployment)

- Consente agli ISP di offrire semplicemente un indirizzo IPv6
- Si usa lo stesso approccio di 6to4 ma si lavora con indirizzi IPv6 pubblici (non si usa il prefisso speciale 2002::/16 previsto per 6to4)
- Pensato per essere utilizzato all'interno della rete di un singolo ISP (o AS)
 - Host e gateway sono configurati mediante
 DHCP

