RESUMEN DE ECUACIONES

Relaciones trigonométricas

$$\cos(\alpha \pm \beta) = \cos(\alpha) \cdot \cos(\beta) \mp \sin(\alpha) \cdot \sin(\beta)$$

$$\sin(\alpha \pm \beta) = \sin(\alpha) \cdot \cos(\beta) \pm \cos(\alpha) \cdot \sin(\beta)$$

$$\sin(\alpha) \cdot \sin(\beta) = \frac{1}{2} \cdot [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos(\alpha) \cdot \cos(\beta) = \frac{1}{2} \cdot [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin(\alpha) \cdot \cos(\beta) = \frac{1}{2} \cdot [\sin(\alpha - \beta) + \sin(\alpha + \beta)]$$

$$\cos(2\alpha) = \cos^{2}(\alpha) - \sin^{2}(\alpha)$$

$$\sin(2\alpha) = 2 \cdot \sin(\alpha) \cdot \cos(\alpha)$$

$$\sin^{2}(\alpha) = \frac{1}{2} \cdot (1 - \cos(2\alpha))$$

$$\cos^{2}(\alpha) = \frac{1}{2} \cdot (1 + \cos(2\alpha))$$

Pares básicos de la Transformada de Fourier

$\mathbf{x}(\mathbf{t})$	$\mathbf{X}(\omega)$		
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$		
$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$		
$\operatorname{sen}(\omega_0 t)$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$		
1	$2\pi\delta(\omega)$		
$ \prod \left(\frac{t}{2T_1}\right) = \begin{cases} 1 & t < T_1 \\ 0 & t > T_1 \end{cases} $	$2T_1 \operatorname{sinc}\left(\frac{\omega T_1}{\pi}\right) = \frac{2\operatorname{sen}(\omega T_1)}{\omega}$		
$\frac{W}{\pi}\operatorname{sinc}\left(\frac{Wt}{\pi}\right) = \frac{\operatorname{sen}(Wt)}{\pi t}$	$X(\omega) = \begin{cases} 1 & \omega < W \\ 0 & \omega > W \end{cases}$		
$\delta(t)$	1		
$\delta(t-t_0)$	$e^{-j\omega t_0}$		

Propiedades de la Transformada de Fourier

Señal	Transformada de Fourier
x(t)	$X(\omega)$
y(t)	$Y(\omega)$
ax(t) + by(t)	$aX(\omega) + bY(\omega)$
$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$
$e^{-j\omega_0 t}x(t)$	$X(\omega-\omega_0)$
x(at)	$\frac{1}{ a }X\left(\frac{\omega}{A}\right)$
x(t) * y(t)	$X(\omega)\cdot Y(\omega)$
$x(t) \cdot y(t)$	$\frac{1}{2\pi}X(\omega)*Y(\omega)$

MODULACIONES LINEALES

	Modulación AM	Modulación DBL
$x_p(t)$	$A_p \cdot [1 + mx_n(t)] \cdot \cos(\omega_p t)$	$A_p \cdot x(t) \cdot \cos(\omega_p t)$
P_m	$\frac{A_p^2}{2} + \frac{m^2 A_p^2}{2} S_{xn} = P_p + 2P_{BL}$	$\frac{A_p^2}{2}S_x = 2P_{BL}$
P_{CRESTA}	$\frac{1}{2}A_p^2(1+m)^2$	$\frac{1}{2}[A_p \cdot x(t) _{max}]^2$
B_T	$2 \cdot W_x$	

RUIDO EN MODULACIONES LINEALES

Ruido en modul	ación de amplitud	Ruido en demodulación (detector síncrono)		
Señal banda base		Modulación AM	Modulación DBL	
$\gamma = \frac{P_R}{N_0 W_x}$	$\left(\frac{S}{N}\right)_{R} = \frac{W_x}{B_T} \cdot \gamma$	$\left(\frac{S}{N}\right)_{D} = \frac{m^{2}S_{xn}}{1 + m^{2}S_{xn}} \cdot \gamma$	$\left(\frac{S}{N}\right)_D = \gamma$	

Ruido en modulación AM (detector de envolvente)

$$\boxed{ \left(\frac{S}{N} \right)_D = \frac{m^2 S_{xn}}{1 + m^2 S_{xn}} \gamma \quad \text{si} \quad \left(\frac{S}{N} \right)_R \geq \left(\frac{S}{N} \right)_{RTh} } \quad \text{No hay señal si} \quad \left(\frac{S}{N} \right)_R < \left(\frac{S}{N} \right)_{RTh} }$$

MODULACIONES ANGULARES

	Modulación FM			
Señal	$x(t) = A_p \cdot \cos\left(\omega_p t + \omega_d \int_0^t x(\lambda) d\lambda\right)$			
Desviación máxima de fase	$D = \frac{\omega_d x(t) _{max}}{W_x}$			
Ancho de banda	$B_T \approx 2(D+a)W_x$ $a = \begin{cases} 2 & 2 \le D \le 10 \\ 1 & c.c. \end{cases}$			

Ruido en demodulación angular

	\mathbf{FM}	FM deénfasis $(B_{de} \ll W_x)$
$\left(\frac{S}{N}\right)_D$	$3D^2S_{xn}\gamma$	$\left(rac{\omega_d}{B_{de}} ight)^2 S_x \gamma$

Sistema M-ario unidimensional	Cota de la unión	Cota de la unión simplificada		
$P_e = \frac{2(M-1)}{M}Q\left(\frac{d}{\sqrt{2N_0}}\right)$	$P_e \le \frac{1}{M} \sum_{i=1}^{M} \sum_{\substack{k=1\\k \ne i}}^{M} Q\left(\frac{d_{ik}}{\sqrt{2N_0}}\right)$	$P_e \le (M-1) \cdot Q\left(\frac{d_{min}}{\sqrt{2N_0}}\right)$		

Modulaciones paso banda

PSK	M=2	$P_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$
	$M \ge 4$	$P_e = 2 \cdot Q\left(\sqrt{\frac{2E_s}{N_0}} \operatorname{sen}\left(\frac{\pi}{M}\right)\right)$
FSK	M = 2	$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$
	$M \ge 4$	$P_e = (M-1) \cdot Q\left(\sqrt{\frac{E_s}{N_0}}\right)$
QAM	$log_2(M)$ par	$P_e = 4\left(1 - \frac{1}{\sqrt{M}}\right) \cdot Q\left(\sqrt{\frac{3 \cdot E_s}{(M-1) \cdot N_0}}\right)$

Función de densidad de probabilidad normal
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Función de densidad de probabilidad uniforme (a,b) $f(x) = \frac{1}{b-a}$

	Codificación Gray (ASK, QAM, PSK)	FSK
Probabilidad de error de bit	$P_b = \frac{1}{log_2(M)} P_e$	$P_b = \frac{2^{\log_2(M) - 1}}{2^{\log_2(M)} - 1} P_e$

$$H(\omega) = \left\{ \begin{array}{ll} 1 & |\omega| \leq \pi \frac{1-\alpha}{T} \\ \frac{1}{2} \left[1 + \cos \left(\frac{T}{2\alpha} \cdot \left(|\omega| - \pi \frac{1-\alpha}{T} \right) \right) \right] & \pi \frac{1-\alpha}{T} \leq |\omega| \leq \pi \frac{1+\alpha}{T} \\ 0 & c.c. \end{array} \right.$$

Densidad espectral de potencia de la PAM (banda base)
$$\boxed{x(t) = \sum_{n=-\infty}^{\infty} a_n h(t-nT) \quad S_x(\omega) = \frac{1}{T} |H(\omega)|^2 S_a(\omega) \quad S_a(\omega) = \sum_{m=-\infty}^{\infty} R_a[m] \cdot e^{-j\omega mT}}$$

Ancho de banda (Hz) de las modulaciones paso banda

Modulación	Valores nominales*	Valores óptimos**	
Wiodulacion	В	В	
M-PSK y M-QAM	$\frac{2R_b}{log_2(M)} = \frac{2}{T}$	$\frac{R_b}{log_2(M)} = \frac{1}{T}$	
M-FSK	$\frac{(M+3)R_b}{2 \cdot log_2(M)} = \frac{(M+3)}{2 \cdot T}$	$\frac{(M+1)R_b}{2 \cdot log_2(M)} = \frac{(M+1)}{2 \cdot T}$	
	$^* \Rightarrow h(t) = \begin{cases} \frac{1}{\sqrt{T}} & 0 \le t < T \\ 0 & \text{c.c.} \end{cases}$	$** \Rightarrow h(t) = \frac{\operatorname{sen}\left(\frac{\pi}{T}t\right)}{\frac{\pi}{T}t}$	

Tabla de valores de Q(x)

					• ()		
x	$\mathbf{Q}(\mathbf{x})$	x	$\mathbf{Q}(\mathbf{x})$	x	$\mathbf{Q}(\mathbf{x})$	x	Q(x)
0,0	5,000000e-01	1,8	3,593032e-02	3,6	1,591086e-04	5,4	3,332043e-08
0,1	4,601722e- 01	1,9	2,871656e-02	3,7	1,077997e-04	5,5	1,898956e-08
0,2	4,207403e- 01	2,0	2,275013e-02	3,8	7,234806e-05	5,6	1,071760e-08
0,3	3,820886e-01	2,1	1,786442e-02	3,9	4,809633e-05	5,7	5,990378e-09
0,4	3,445783e-01	2,2	1,390345e-02	4,0	3,167124e-05	5,8	3,315742e-09
0,5	3,085375e-01	2,3	1,072411e-02	4,1	2,065752e-05	5,9	1,817507e-09
0,6	2,742531e-01	2,4	8,197534e-03	4,2	1,334576e-05	6,0	9,865876e-10
0,7	2,419637e-01	2,5	6,209665e- 03	4,3	8,539898e-06	6,1	5,303426e-10
0,8	2,118554e-01	2,6	4,661189e-03	4,4	5,412542e-06	6,2	2,823161e-10
0,9	1,840601e-01	2,7	3,466973e-03	4,5	3,397673e-06	6,3	1,488226e-10
1,0	1,586553e-01	2,8	2,555131e-03	4,6	2,112456e-06	6,4	7,768843e-11
1,1	1,356661e-01	2,9	1,865812e-03	4,7	1,300809e-06	6,5	4,016001e-11
1,2	1,150697e-01	3,0	1,349898e-03	4,8	7,933274e-07	6,6	2,055790e-11
1,3	9,680049e-02	3,1	9,676035e-04	4,9	4,791830e-07	6,7	1,042099e-11
1,4	8,075666e-02	3,2	6,871378e-04	5,0	2,866516e-07	6,8	5,230951e-12
1,5	6,680720 e-02	3,3	4,834242e-04	5,1	1,698268e-07	6,9	2,600125e-12
1,6	5,479929e-02	3,4	3,369291e-04	5,2	9,964437e-08	7,0	1,279813e-12
1,7	4,456546e-02	3,5	2,326291e-04	5,3	5,790128e-08		