Econ 6190 Problem Set 6

Fall 2024

- 1. [Hansen 7.12] Take a random variable Z such that $\mathbb{E}[Z] = 0$ and var[Z] = 1. Use Chebyshev's inequality to find a δ such that $P[|Z| > \delta] \leq 0.05$. Contrast this with the exact δ which solves $P[|Z| > \delta] = 0.05$ when $Z \sim \text{N}(0, 1)$. Comment on the difference.
- 2. [Second exam, 2022] Let X be a random variable following a normal distribution with mean μ and variance $\sigma^2 > 0$. We draw a random sample $\{X_1, X_2, \dots X_n\}$ from X and construct a sample mean statistic $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
 - (a) Fix $\delta > 0$. Find an upper bound of $P\{|\bar{X} \mu| > \delta\}$ by using Markov inequality with r = 2.
 - (b) Repeat the exercise (a) but using Markov inequality with r=4.
 - (c) Compare the two bounds in (a) and (b) above when $\delta = \sigma$ and when n is at least 2. Which one of them gives you a tighter bound of $P\{|\bar{X} \mu| > \delta\}$?
 - (d) Since we know X is normal, find the exact value of $P\{|\bar{X} \mu| > \delta\}$.
 - (e) From (d), we see that the tail probability of a normal sample mean is much thinner than what Markov inequality predicts. In fact, we can show that if $Z \sim N(\mu, \sigma^2)$, then

$$P\{|Z - \mu| > \delta\} \le 2 \exp\left(-\frac{\delta^2}{2\sigma^2}\right). \tag{1}$$

Given (1), find a constant c such that

$$P\{|\bar{X} - \mu| \le c\} > 0.95.$$

That is, we can predict that with a probability of at least 0.95, sample average is within c-distance of its true mean. What is the prediction of c if you only use Chebyshev's inequality?

(f) Given your answer to (e), how much more data do we have to collect if we want the prediction of c based on Chebyshev's inequality to be the same as that based on (1)

3. Consider a sample of data $\{X_1, \ldots X_n\}$, where

$$X_i = \mu + \sigma_i e_i, i = 1 \dots n,$$

where $\{e_i\}_{i=1}^n$ are iid and $\mathbb{E}[e_i] = 0$, $\operatorname{var}(e_i) = 1$, $\{\sigma_i\}_{i=1}^n$ are *n* finite and positive constants, and $\mu \in \mathbb{R}$ is the parameter of interest.

(a) Let

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$

be the sample mean estimator. Under what condition is $\hat{\mu}_1$ a consistent estimator of μ ? Under what condition is $\hat{\mu}_1 - \mu = O_p(\frac{1}{\sqrt{n}})$?

(b) Let

$$\hat{\mu}_2 = \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{X_i}{\sigma_i^2}}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sigma_i^2}}$$

be an alternative estimator of μ . Under what condition is $\hat{\mu}_2$ a consistent estimator of μ ? Under what condition is $\hat{\mu}_2 - \mu = O_p(\frac{1}{\sqrt{n}})$?

- (c) Compare the MSE of $\hat{\mu}_1$ and $\hat{\mu}_2$. Which one is more efficient and why?
- 4. Suppose that $X_n Y_n \stackrel{d}{\to} Y$ and $Y_n \stackrel{p}{\to} 0$. Suppose a function f is continuously differentiable at 0, show that $X_n(f(Y_n) f(0)) \stackrel{d}{\to} f'(0)Y$, where f'(0) is the first derivative of f at 0.
- 5. Let $\{X_1 \dots X_n\}$ be a sequence of i.i.d random variables with mean μ and and variance σ^2 . Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$.
 - (a) If $\mu \neq 0$, how would you approximate the distribution of $(\bar{X})^2$ in large samples as $n \to \infty$?
 - (b) If $\mu = 0$, how would you approximate the distribution of $(\bar{X})^2$ in large samples as $n \to \infty$?

1. Note since $\mathbb{E}Z = 0$, $\mathbb{E}Z^2 = \text{var}(Z)$. Hence by Chebyshev's inequality,

$$P[|Z| > \delta] \le \frac{\mathbb{E}[Z^2]}{\delta^2} = \frac{\operatorname{var}(Z)}{\delta^2} = \frac{1}{\delta^2}.$$

Let $\frac{1}{\delta^2} = 0.05$, we find $\delta = \sqrt{20} \approx 4.47$

On the other hand, if we know Z is standard normal, let $\Phi(\cdot)$ be the cdf of a standard normal. It follows

$$P[|Z| > \delta] = P\{Z > \delta\} + P\{Z < -\delta\}$$
$$= 1 - \Phi(\delta) + \Phi(-\delta)$$
$$= 2(1 - \Phi(\delta))$$

Setting $2(1 - \Phi(\delta)) = 0.05$, we get $\Phi(\delta) = 1 - 0.025 = 0.975$. That is, δ is the 97.5 percent quantile of a standard normal. Looking from the statistical tables, $\delta \approx 1.96$.

If we do not know the distribution of Z, we get

$$P[|Z| > 4.47] \le 0.05,\tag{1}$$

which holds for all distributions with mean 0 and variance 1. On the other hand, if we know the distribution of Z (say standard normal), we can get a much sharper bound:

$$P[|Z| > 1.96] = 0.05 \tag{2}$$

which only holds for this specific distribution. Note even when Z is standard normal, (1) is still a correct statement. It is just less sharp than (2).

(a) **[5 pts]** Fix $\delta > 0$. Find an upper bound of $P\{|\bar{X} - \mu| > \delta\}$ by using Markov inequality when r = 2.

Answer: $P\{\left|\bar{X} - \mu\right| > \delta\} \le \frac{\mathbb{E}[\bar{X} - \mu]^2}{\delta^2} = \frac{bias(\bar{X}) + var(\bar{X})}{\delta^2}$. Since \bar{X} is unbiased, $bias(\bar{X}) = 0$. Also, $var(\bar{X}) = \frac{\sigma^2}{n}$. Thus, $P\{\left|\bar{X} - \mu\right| > \delta\} \le \frac{\mathbb{E}[\bar{X} - \mu]^2}{\delta^2} = \frac{\sigma^2}{\delta^2 n}$.

- (b) **[5 pts]** Repeat the exercise (b) but using Markov inequality when r=4. $Answer:P\{|\bar{X}-\mu|>\delta\} \leq \frac{\mathbb{E}[\bar{X}-\mu]^4}{\delta^4}$. Notice since X is normal, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$. Therefore, $\mathbb{E}[\bar{X}-\mu]^4 = \mathbb{E}[\bar{X}-\mathbb{E}[\bar{X}]]^4$, which is the fourth-th centralized moment of \bar{X} , equalling $3\frac{\sigma^4}{n^2}$. It follows $P\{|\bar{X}-\mu|>\delta\} \leq \frac{3\sigma^4}{\delta^4n^2}$
- (c) [5 pts] Compare the two bounds in (a) and (b) above when $\delta = \sigma$ and when n is at least 2. Which one of them gives you a tighter bound of $P\{|\bar{X} \mu| > \sigma\}$.

Answer: When $\delta = \sigma$, using r = 2 yields $P\{|\bar{X} - \mu| > \delta\} \leq \frac{1}{n}$, while using r = 4 yields $P\{|\bar{X} - \mu| > \delta\} \leq \frac{3}{n^2}$.

Therefore, when n > 3, $\frac{3}{n^2} < \frac{1}{n}$, applying r = 4 gives a tighter bound; if n = 3, they give the same bound. If n = 2, then applying r = 2 gives a tighter bound.

- (d) **[5 pts]** Since we know X is normal, find the exact value of $P\{|\bar{X} \mu| > \delta\}$. Answer: $P\{|\bar{X} \mu| > \delta\} = P\{\left|\frac{\bar{X} \mu}{\frac{\sigma}{\sqrt{n}}}\right| > \frac{\delta}{\frac{\sigma}{\sqrt{n}}}\right\} = 2\left(1 \Phi\left(\frac{\delta\sqrt{n}}{\sigma}\right)\right)$
- (e) [10 pts] From (d) we see that the tail probability of a normal sample mean is much thinner than what Markov inequality predicts. In fact, we can show that if $Z \sim N(\mu, \sigma^2)$, then

$$P\{|Z - \mu| > \delta\} \le 2 \exp\left(-\frac{\delta^2}{2\sigma^2}\right). \tag{1}$$

Given (1), find a constant c such that

$$P\{|\bar{X} - \mu| \le c\} > 0.95.$$

That is, we can predict that with a probability of at least 0.95, sample average is within c-distance of its true mean. What is the prediction of c if you only use Chebyshev's inequality?

Answer: It suffices to find c such that $P\{|\bar{X} - \mu| > c\} \le 0.05$. Note again $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$. Therefore, to use (1), set $c = 2 \exp\left(-\frac{c^2n}{2\sigma^2}\right) = 0.05$. It follows $c = \frac{\sigma}{\sqrt{n}}\sqrt{2\log 40} \approx 2.72\frac{\sigma}{\sqrt{n}}$. If Chebyshev's inequality were used, then we need to set $\frac{\sigma^2}{c^2n} = 0.05$, i.e., $c = \sqrt{20}\frac{\sigma}{\sqrt{n}} \approx 4.47\frac{\sigma}{\sqrt{n}}$.

(f) [5 pts] Given your answer to (e), how much more data do we have to collect if we want the prediction of c based on Chebyshev's inequality to be the same as that based on (1)? Answer: let n_c be the sample size based on Chebyshev's prediction, and let n_1 be the sample size based on (1). Setting $4.47 \frac{\sigma}{\sqrt{n_c}} = 2.72 \frac{\sigma}{\sqrt{n_1}}$ implies $\frac{\sqrt{n_c}}{\sqrt{n_1}} = \frac{4.47}{2.72}$. That is, $n_c \approx \left(\frac{4.47}{2.72}\right)^2 n_1$, i.e., we have to collect around 1.7 times more data if we only uses Chebyshev's inequality.

(a) **[5 pts]** Let

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$

be the sample mean estimator. Under what condition is $\hat{\mu}_1$ a consistent estimator of μ ? Under what conditions is $\hat{\mu}_1 - \mu = O_p(\frac{1}{\sqrt{\rho}})$?

Answer: Clearly $\mathbb{E}[X_i] = \mu$, i.e., $\hat{\mu}_1$ is unbiased. Also, $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n (\mu + \sigma_i e_i) = \mu + \frac{1}{n} \sum_{i=1}^n \sigma_i e_i$. Thus, $var(\hat{\mu}_1) = var(\frac{1}{n} \sum_{i=1}^n \sigma_i e_i) = \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2$ (by iid assumption of $\{e_i\}_{i=1}^n$). Thus, by Chebyshev's inequality, $\hat{\mu}_1$ is consistent if $\frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 = o(1)$, and $\hat{\mu}_1 - \mu = O_p(\frac{1}{\sqrt{n}})$ if $\frac{1}{n} \sum_{i=1}^n \sigma_i^2 = O(1)$ (or equivalently, $\frac{1}{n} \sum_{i=1}^n \sigma_i^2$ is asymptotically bounded). [an answer of i.i.d leads to consistency gets 0 points.]

(b) **[10 pts]** Let

$$\hat{\mu}_2 = \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{X_i}{\sigma_i^2}}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sigma_i^2}}$$

be an alternative estimator of μ . Under what condition is $\hat{\mu}_2$ a consistent estimator of μ ? Under what conditions is $\hat{\mu}_2 - \mu = O_p(\frac{1}{\sqrt{n}})$?

Answer: First, note $\hat{\mu}_2$ is also unbiased. Also, $\hat{\mu}_2 = \frac{\frac{1}{n}\sum_{i=1}^n \frac{X_i}{\sigma_i^2}}{\frac{1}{n}\sum_{i=1}^n \frac{1}{\sigma_i^2}} = \mu + \frac{\frac{1}{n}\sum_{i=1}^n \frac{e_i}{\sigma_i^2}}{\frac{1}{n}\sum_{i=1}^n \frac{1}{\sigma_i^2}}$. Thus,

 $var(\hat{\mu}_{2}) = var\left(\frac{\frac{1}{n}\sum_{i=1}^{n}\frac{e_{i}}{\sigma_{i}^{2}}}{\frac{1}{n}\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}}\right) = \frac{1}{\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}\right)^{2}}\frac{1}{n^{2}}\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}} = \frac{1}{n}\frac{1}{\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}\right)} = \frac{1}{\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}}. Thus,$ $\hat{\mu}_{2} \text{ is consistent if } \sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}\to\infty \text{ as } n\to\infty \text{ (or equivalently, } \frac{1}{\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}} = o(1)). And$ $\hat{\mu}_{2}-\mu=O_{p}(\frac{1}{\sqrt{n}}) \text{ if } \frac{n}{\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}} \text{ is asymptotically bounded.}$

(c) [10 pts] Compare the MSE of $\hat{\mu}_1$ and $\hat{\mu}_2$. Which one is more efficient?

Answer: Both of them are unbiased. The one with a smaller variance is more efficient.

$$var(\hat{\mu}_1) = \frac{1}{n} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \sigma_i^2}_{arithmetic\ mean}$$
$$var(\hat{\mu}_2) = \frac{1}{n} \underbrace{\frac{1}{\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sigma_i^2}\right)}_{barmonic\ mean}}_{barmonic\ mean}$$

Since harmonic mean is always no bigger than arithmetic mean for positive numbers, it follows $var(\hat{\mu}_2) \leq var(\hat{\mu}_1)$, i.e., $\hat{\mu}_2$ is at least as efficient as $\hat{\mu}_1$. In fact, as long as there is some $\sigma_i \neq \sigma_j$ for $i \neq j$, then $var(\hat{\mu}_2) < var(\hat{\mu}_1)$.

4.

By mean value theorem or Taylor expansion:

 $f(Y_n) - f(0) = f'(\bar{Y})(Y_n - 0) = f'(\bar{Y})Y_n$, where \bar{Y} lies on the line between Y_n and 0. Therefore we have:

$$X_n [f(Y_n) - f(0)] = f'(\bar{Y}) X_n Y_n$$

Note:

- $X_n Y_n \stackrel{d}{\to} Y$ as given.
- $f'(\bar{Y}) \xrightarrow{p} f'(0)$ $(Y_n \xrightarrow{p} 0$. Therefore, as \bar{Y} lies on the line between Y_n and 0, it implies $\bar{Y} \xrightarrow{p} 0$ too. The claim follows by continuous mapping theorem.)

Conclusion follows by continuous mapping theorem.

5.

(a)

Let $f(x) = x^2$. So we are required to derive the asymptotic distribution of $f(\bar{x})$ using delta method.

Step 1 Do the expansion(of $f(\bar{x})$ around f(u))

- $f(\bar{x}) f(u) = f'(\tilde{x})(\bar{x} u)$, where \tilde{x} lies on the line between \bar{x} and u.
- Therefore we have:

$$\sqrt{n} \left[f(\bar{x}) - f(u) \right] = f'(\tilde{x}) \sqrt{n} (\bar{x} - u)$$

- $\sqrt{n}(\bar{x}-u) \stackrel{d}{\to} N(0,\sigma^2)$ by central limit theorem for i.i.d. data.
- $f'(\bar{x}) \stackrel{p}{\to} f'(u)$ ($\bar{x} \stackrel{p}{\to} u$ by Khintchine Law of large numbers. Therefore, as \tilde{x} lies on the line between \bar{x} and u, it implies $\tilde{x} \stackrel{p}{\to} u$ too. The claim follows by continuous mapping theorem.)

Step 2 Therefore we have form