Lab10: 최대 전력 전달 조건

학번: 22200034 이름: 곽도현

## 1. 다음 회로에서 R<sub>2</sub>의 저항 값을 x라고 하고 R<sub>2</sub>에서 소모되는 전력을 P<sub>2</sub>라고 할 때,

(1)  $R_2$ 에서 소모되는 전력  $P_2$  대한 식으로 구하고  $P_2$ 의 최대 값과 이 때  $R_2$ 의 저항 값 x를 구하시오 (1점)

$$P_{load}=i^2R_L=\left(rac{v}{R+R_L}
ight)^2R_L$$
 이므로  $P_2=i^2x=\left(rac{9}{2.7k+x}
ight)^2 imes x$ 

위 식에 대해 미분하면  $18(x-2.7k)(x+2.7k)/(x+2.7k)^3$ 

- $\rightarrow$  18(x-2.7k)(x+2.7k) = 0
- → x=2.7k or x=-2.7k

$$x = 2.7k\Omega$$
 ,  $P_2 = 7.5mW$ 

(2)  $R_2$ 에서 소모하는 전력이 최대가 될 때,  $R_1$ 이 소모하는 전력을 구하고 그 크기를  $R_2$ 가 소모하는 전력과 비교하시오 (1점)



 $P_2 = 7.5mW$  (위 1 번에서 구함.)

$$I = \frac{v}{R_1 + R_2}$$
 이므로  $I = \frac{9}{2.7k + 2.7k} = \frac{9}{5.4k} = \frac{5}{3}mA$ 

$$P_1 = VI = I^2 R_1 = (\frac{3}{5}m)^2 \times 2.7k = 7.5mW$$

두 크기 $(P_1$ 과  $P_2$ )가 동일함을 알 수 있다.

2. LTspice를 이용하여 아래 회로를 설계하고,  $R_2$ 의 저항 값이  $0.5k\Omega$ 에서  $10k\Omega$ 까지  $0.1k\Omega$  간격으로 변할 때, Simulation을 통해 각 저항  $R_1$ ,  $R_2$  양단에 인가되는 전압을 구하고, 각 저항  $R_1$ ,  $R_2$ 에 흐르는 전류 값을 이용하여, 각 저항에서 소모하는 전력  $P_1(R_1$ 이 소모),  $P_2(R_2$ 가 소모)을 구하여 아래의 표를 채우시오 (3점)



| R <sub>2</sub> | Simulation 값 |          |                |                |
|----------------|--------------|----------|----------------|----------------|
|                | $V_{R1}$     | $V_{R2}$ | P <sub>1</sub> | P <sub>2</sub> |
| 0.5 kΩ         | 7.59         | 1.40     | 2.14           | 3.96           |
| 1.0 kΩ         | 6.57         | 2.43     | 1.60           | 5.92           |
| 2.0 kΩ         | 5.17         | 3.83     | 9.90           | 7.33           |
| 3.0 kΩ         | 4.26         | 4.74     | 6.73           | 7.48           |
| 4.0 kΩ         | 3.63         | 5.37     | 4.87           | 7.22           |
| 5.0 kΩ         | 3.16         | 5.84     | 3.69           | 6.83           |
| 7.5 kΩ         | 2.38         | 6.62     | 2.10           | 5.84           |
| 10.0 kΩ        | 1.91         | 7.09     | 1.36           | 5.02           |