Ein topologischer Raum ist ein Paar (X, \mathfrak{T}) bestehend aus einer Menge X und $\mathfrak{T} \subseteq \mathcal{P}(X)$ mit folgenden Eigenschaften

- (i) $\emptyset, X \in \mathfrak{T}$
- (ii) Sind $U_1, U_2 \in \mathfrak{T}$, so ist $U_1 \cap U_2 \in \mathfrak{T}$
- (iii) Ist I eine Menge und $U_i \in \mathfrak{T}$ für jedes $i \in I$, so ist

$$\bigcup_{i\in I} U_i \in \mathfrak{T}$$

Die Elemente von $\mathfrak T$ heißen **offene Teilmengen** von X.

 $A \subseteq X$ heißt **abgeschlossen**, wenn $X \setminus A$ offen ist.

Sei (X, \mathfrak{T}) ein topologischer Raum und $x \in X$.

Eine Teilmenge $U \subseteq X$ heißt **Umgebung** von x, wenn es ein $U_0 \in \mathfrak{T}$ gibt mit $x \in U_0$ und $U_0 \subseteq U$.

Sei (X,\mathfrak{T}) ein topologischer Raum und $M\subseteq X$ eine Teilmenge.

a) $M^{\circ} := \{ x \in M \mid M \text{ ist Umgebung von } x \} = \bigcup_{\substack{U \subseteq M \\ U \in \mathfrak{T}}} U$

heißt Inneres oder offener Kern von M.

b) $\overline{M}:=\bigcap_{\substack{M\subseteq A\\A\text{ abgeschlossen}}}A$ heißt abgeschlossene Hülle oder

Abschluss von M.

- c) $\partial M := \overline{M} \setminus M^{\circ}$ heißt **Rand** von M.
- d) M heißt **dicht** in X, wenn $\overline{M} = X$ ist.

Sei (X,\mathfrak{T}) ein topologischer Raum.

- a) $\mathfrak{B} \subseteq \mathfrak{T}$ heißt **Basis** der Topologie \mathfrak{T} , wenn jedes $U \in \mathfrak{T}$ Vereinigung von Elementen aus \mathfrak{B} ist.
 - b) $S \subseteq \mathfrak{T}$ heißt **Subbasis** der Topologie \mathfrak{T} , wenn jedes $U \in \mathfrak{T}$ Vereinigung von endlichen Durchschnitten von Elementen aus S ist.

Definition 5 Sei (X, \mathfrak{T}) ein topologischer Raum und $Y \subseteq X$.

 $\mathfrak{T}_Y := \{ U \cap Y \mid U \in \mathfrak{T} \}$ ist eine Topologie auf Y.

Teilraum von (X,\mathfrak{T})

 \mathfrak{T}_Y heißt **Teilraumtopologie** und (Y,\mathfrak{T}_Y) heißt ein

 $U_2 \subseteq U$ gilt.

ist eine Basis von \mathfrak{T} .

U Umgebungen U_i um x_i mit i = 1, 2 gibt, sodass $U_1 \times$

 $\mathfrak{T} = \{ U \subset X_1 \times X_2 \mid U \text{ offen } \} \text{ ist eine Topologie auf }$ $X_1 \times X_2$. Sie heißt **Produkttopologie**. $\mathfrak{B} = \{ U_1 \times U_2 \mid U_i \text{ offer} \}$

Seien X_1, X_2 topologische Räume.

 $U \subseteq X_1 \times X_2$ sei offen, wenn es zu jedem $x = (x_1, x_2) \in$

Sei X ein topologischer Raum, \sim eine Äquivalenzrelation auf $X, \overline{X} = X/_{\sim}$ sei die Menge der Äquivalenzklas-

$$\mathfrak{T}_{\overline{X}} := \{ U \subseteq \overline{X} \mid \pi^{-1}(U) \in \mathfrak{T}_X \}$$

 $(\overline{X}, \mathfrak{T}_{\overline{X}})$ heißt Quotiententopologie.

sen, $\pi: x \to \overline{x}, \quad x \mapsto [x]_{\sim}$.

Sei X eine Menge. Eine Abbildung $d: X \times X \to \mathbb{R}^+$

Das Paar (X, d) heißt ein **metrischer Raum**.

heißt Metrik, wenn gilt: $d(x,y) = 0 \Leftrightarrow x =$

 $y \quad \forall x, y \in X$

(ii) Symmetrie:

(i) Definitheit:

(iii) Dreiecksungleichung:

 $d(x,y) = d(y,x) \quad \forall x, y \in$

 $d(x,z) \le d(x,y) + d(y,z) \quad \forall x$

Seien (X, d_X) und (Y, d_Y) metrische Räume und φ :

$$X \to Y$$
 eine Abbildung mit

 $\forall x_1, x_2 \in X : d_X(x_1, x_2) = d_Y(\varphi(x_1), \varphi(x_2))$

Dann heißt φ eine **Isometrie** von X nach Y.

Ein topologischer Raum X heißt **hausdorffsch**, wenn es für je zwei Punkte $x \neq y$ in X Umgebungen U_x um x und U_y um y gibt, sodass $U_x \cap U_y = \emptyset$.

Sei X ein topologischer Raum und $(x)_{n\in\mathbb{N}}$ eine Folge in $X. x \in X$ heißt **Grenzwert** oder **Limes** von (x_n) ,

wenn es für jede Umgebung U von x ein n_0 gibt, sodass $x_n \in U$ für alle $n > n_0$.

Seien X, Y topologische Räume und $f: X \to Y$ eine Abbildung.

a) f heißt **stetig**, wenn für jedes offene $U \subseteq Y$ auch $f^{-1}(U) \subseteq X$ offen ist.

sodass $g \circ f = \mathrm{id}_X$ und $f \circ g = \mathrm{id}_Y$.

f⁻¹(U) ⊆ X offen ist.
b) f heißt Homöomorphismus, wenn f stetig ist und es eine stetige Abbildung q : Y → X gibt,

Ein Raum X heißt **zusammenhängend**, wenn es keine offenen, nichtleeren Teilmengen U_1, U_2 von X gibt mit $U_1 \cap U_2 = \emptyset$ und $U_1 \cup U_2 = X$.

Sei X ein topologischer Raum.

Für $x \in X$ sei $Z(x) \subseteq X$ definiert durch

$$Z(x) := \bigcup_{\substack{A \subseteq X \text{zhgd.} \\ x \in A}} A$$

Z(x) heißt **Zusammenhangskomponente**.

Sei X eine Menge und $\mathfrak{U} \subseteq \mathcal{P}(X)$.

 \mathfrak{U} heißt eine **Überdeckung** von X, wenn gilt:

$$\alpha \subseteq r(\alpha)$$

 $\forall x \in X : \exists M \in \mathfrak{U} : x \in M$

Ein topologischer Raum X heißt **kompakt**, wenn jede offene Überdeckung von X

$$\mathfrak{U} = \{ U_i \}_{i \in I} \text{ mit } U_i \text{ offen in } X$$

eine endliche Teilüberdeckung

$$\bigcup_{i \in J \subset I} U_i = X \text{ mit } |J| \in \mathbb{N}$$

besitzt.

nition 17

- Sei X ein topologischer Raum. a) Ein **Weg** in X ist eine stetige Abbildung γ :
 - $[0,1] \to X$. b) γ heißt **geschlossen**, wenn $\gamma(1) = \gamma(0)$ gilt.

c) γ heißt **einfach**, wenn $\gamma|_{[0,1)}$ injektiv ist.

Ein topologischer Raum X heißt **wegzusammenhängend**, wenn es zu je zwei Punkten $x, y \in X$ einen Weg $\gamma : [0,1] \to X$ gibt mit $\gamma(0) = x$ und $\gamma(1) = y$.

Sei X ein topologischer Raum. Eine (geschlossene) **Jordankurve** in X ist ein Homöomorphismus $\gamma:[0,1]\to C\subset X$ ($\gamma:S^1\to C\subset X$)

Definition 20 Eine geschlossene Jordankurve in \mathbb{R}^3 heißt **Knoten**.

Zwei Knoten $\gamma_1, \gamma_2 : S^1 \to \mathbb{R}^3$ heißen **äquivalent**, wenn es eine stetige Abbildung

$$H: S^1 \times [0,1] \Rightarrow \mathbb{R}^3$$

gibt mit

$$H(z,0) = \gamma_1(z)$$

$$H(z,1) = \gamma_2(z)$$

und für jedes feste $t \in [0, 1]$ ist

$$H_z: S^1 \to \mathbb{R}^2, z \mapsto H(z,t)$$

ein Knoten. Die Abbildung H heißt **Isotopie** zwischen γ_1 und γ_2 .

Ein Knotendiagramm eines Knotens γ ist eine Projektion $\pi: \mathbb{R}^3 \to E$ auf eine Ebene E, sodass $|(\pi|C)^{-1}(x)| <$

2 für jedes $x \in D$.

 $(y_1 - x) = \lambda(y_2 - x)$ für ein $\lambda > 1$ ist.

Ist $(\pi | C)^{-1}(x) = \{ y_1, y_2 \}$, so **liegt** y_1 **über** y_2 , wenn

Ein Knotendiagramm heißt **3-färbbar**, wenn jeder Bogen von *D* so mit einer Farbe gefärbt werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben auftreten.

 $V \subseteq \mathbb{R}^n$.

Sei X ein topologischer Raum und $n \in \mathbb{N}$.

- a) Eine n-dimensionale **Karte** auf X ist ein Paar (U, φ) , wobei $U \subseteq X$ offen und $\varphi : U \to V$ Homöomorphismus von U auf eine offene Teilmenge
 - b) Ein *n*-dimensionaler **Atlas** \mathcal{A} auf X ist eine Familie $(U_i, \varphi_i)_{i \in I}$ von Karten auf X, sodass $\bigcup_{i \in I} U_i = X$.

c) X heißt (topologische) n-dimensionale Mannigfaltigkeit, wenn X hausdorffsch ist, eine abzählbare Basis der Topologie hat und ein n-dimensionalen Atlas besitzt.

tentopologie.

Seien X,Y n-dimensionale Mannigfaltigkeiten, $U\subseteq X$ und $V\subseteq Y$ offen, $\Phi:U\to V$ ein Homöomorphismus $Z=(X\dot{\cup}Y)/_{\sim}$ mit der von $u\sim\Phi(u)$ $\forall u\in U$ erzeugten Äquivalenzrelation und der von \sim induzierten Quotien-

Z heißt **Verklebung** von X und Y längs U und V. Z besitzt einen Atlas aus n-dimensionalen Karten. Falls Z hausdorffsch ist, ist Z eine n-dimensionale Mannigfaltigkeit.

D 0 1.1 0

Definition 26 Sei X ein Hausdorffraum mit abzählbarer Basis der Topologie. X heißt n-dimensionale **Mannigfaltigkeit mit Rand**, wenn es einen Atlas (U_i, φ_i) gibt, wobei $U_i \subseteq X_i$ offen und φ_i ein Homöomorphismus auf eine

$$R_{+,0}^n := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_m \ge 0 \}$$

ist. $R_{+,0}^n$ ist ein "Halbraum".

offene Teilmenge von

Sei X eine n-dimensionale Mannigfaltigkeit mit Rand und Atlas (U_i, φ_i) . Dann heißt

$$\partial X := \bigcup \left\{ x \in U_i \mid \varphi_i(x)_n = 0 \right\}$$

Rand von X.

Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas $(U_i, \varphi_i)_{i \in I}$

Für
$$i, j \in I$$
 mit $U_i, U_j \neq \emptyset$ heißt

$$\varphi_{ij} := \varphi_j \circ \varphi_i^{-1}$$
$$\varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$$

Kartenwechsel oder Übergangsfunktion.

Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas $(U_i, \varphi_i)_{i \in I}$.

- a) X heißt differenzierbare Mannigfaltigkeit der Klasse C^k , wenn jede Kartenwechselabbildung $\varphi_{ij},\ i,j\in I$ k-mal stetig differenzierbar ist.
- b) X heißt differenzierbare Mannigfaltigkeit, wenn X eine differenzierbare Mannigfaltigkeit der Klasse C^{∞} ist.

Sei X eine differenzierbare Mannigfaltigkeit der Klasse C^k $(k \in \mathbb{N} \cup \{\infty\})$ mit Atlas $(U_i, \varphi_i)_{i \in I}$.

- a) Eine Karte (U, φ) auf X heißt **verträglich** mit \mathcal{A} , wenn alle Kartenwechsel $\varphi \circ \varphi_i^{-1}$ und $\varphi_i \circ \varphi^{-1}$ $(i \in I \text{ mit } U_i \cap U \neq \emptyset)$ differenzierbar von Klasse C^k sind.
 - b) Die Menge aller mit \mathcal{A} verträglichen Karten auf X bildet einen maximalen Atlas der Klasse C^k . Er heißt C^k -Struktur auf X.

Eine C^{∞} -Struktur heißt auch differenzierbare Struktur auf X.

Seien X, Y differenzierbare Mannigfaltigkeiten der Dimension n bzw. $m, x \in X$.

- a) Eine stetige Abbildung $f: X \to Y$ heißt **differenzierbar** in x (von Klasse C^k), wenn es Karten (U, φ) von X mit $x \in U$ und (V, ψ) von Y mit $f(U) \subseteq V$ gibt, sodass $\psi \circ f \circ \varphi^{-1}$ stetig differen
 - zierbar von Klasse C^k in φ(x) ist.
 b) f heißt differenzierbar (von Klasse C^k), wenn f in jedem x ∈ X differenzierbar ist.

c) f heißt **Diffeomorphismus**, wenn f differenzierbar von Klasse C^{∞} ist und es eine differenzierbare Abbildung $g: Y \to X$ von Klasse C^{∞} gibt mit $g \circ f = \mathrm{id}_X$ und $f \circ g = \mathrm{id}_Y$.

 $S \subseteq \mathbb{R}^3$ heißt **reguläre Fläche** : $\Leftrightarrow \forall s \in S \exists \text{ Umgebung}$

$$V(s) \subseteq \mathbb{R}^3 \exists U \subseteq \mathbb{R}^2$$
 offen: \exists differenzierbare Abbildung $F: U \to V \cap S: \operatorname{Rg}(J_F(u)) = 2 \quad \forall u \in U.$

F heißt (lokale) reguläre Parametrisierung von S.

$$F(u,v) = (x(u,v), y(u,v), z(u,v))$$

$$J_F(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u}(p) & \frac{\partial x}{\partial v}(p) \\ \frac{\partial y}{\partial u}(p) & \frac{\partial y}{\partial v}(p) \\ \frac{\partial z}{\partial u}(p) & \frac{\partial z}{\partial v}(p) \end{pmatrix}$$

Sei G eine Mannigfaltigkeit, $\circ: G \times G \to G$ eine Abbildung, $(q,h) \mapsto q \cdot h$, sodass (G, \circ) eine Gruppe ist.

a) G heißt **topologische Gruppe**, wenn die Abbildungen $\circ: G \times G \to G$ und $\iota: G \to G$.

$$(g,h) \mapsto g \cdot h \quad g \mapsto g^{-1}$$

stetig sind.

b) Ist G eine differenzierbare Mannigfaltigkeit, so heißt G Lie-Gruppe, wenn (G, \circ) und (G, ι) differenzierbar sind.

Seien $v_0, \ldots, v_k \in \mathbb{R}^n$ Punkte.

a) v_0, \ldots, v_k sind in allgemeiner Lage \Leftrightarrow es gibt keinen (k-1)-dimensionalen affinen Untervektorraum, der v_0, \ldots, v_k enthält $\Leftrightarrow v_1 - v_0, \ldots, v_k - v_0$ sind linear unabhängig.

b) $\operatorname{conv}(v_0, \dots, v_k) := \left\{ \sum_{i=0}^k \lambda_i v_i \mid \lambda_i \ge 0, \sum_{i=0}^k \lambda_i = 1 \right\}$

a) Sei $\Delta^k = \text{conv}(e_0, \dots, e_k) \subseteq \mathbb{R}^{n+1}$ die konvexe Hülle der Standard-Basisvektoren e_0, \dots, e_k .

Dann heißt Δ^k Standard-Simplex und k die Dimension des Simplex.

- b) Für Punkte v_0, \ldots, v_k im \mathbb{R}^n in allgemeiner Lage heißt $\delta(v_0, \ldots, v_k) = \operatorname{conv}(v_0, \ldots, v_k)$ ein k-
- Simplex in \mathbb{R}^n .
- c) Ist $\Delta(v_0, \ldots, v_k)$ ein k-Simplex und $I = \{i_0, \ldots, i_r\} \subseteq \{0, \ldots, k\}$, so heißt $s_{i_0, \ldots, i_r} := \operatorname{conv}(v_{i_0}, \ldots, v_{i_r})$ Teilsimplex oder Seite von Δ .

 $s_{i_0,...,i_r}$ ist r-Simplex.

- a) Eine endliche Menge K von Simplizes im \mathbb{R}^n heißt (endlicher) **Simplizialkomplex**, wenn gilt:
- (i) Für $\Delta \in K$ und $S \subseteq \Delta$ Teilsimplex ist $S \in K$ (ii) Für $\Delta_1, \Delta_2 \in K$ ist $\Delta_1 \cap \Delta_2$ leer oder ein
- Teilsimplex von Δ_1 und von Δ_2 b) $|K| := \bigcup_{\Delta \in K} \Delta$ (mit Teilraumtopologie) heißt geometrische Realisierung von K.
- c) Ist $d = \max \{ k \mid K \text{ enthält } k \text{Simplex } \}$, so heißt d **Dimension** von K.

Seien K,L Simplizialkomplexe. Eine stetige Abbildung

$$f:|K|\to |L|$$

heißt **simplizial**, wenn für jedes $\Delta \in K$ gilt:

- a) $f(\Delta) \in L$
- b) $f|_{\Delta}: \Delta \to f(\Delta)$ ist eine affine Abbildung.

Sei K ein endlicher Simplizialkomplex. Für $n \geq 0$ sei $a_n(K)$ die Anzahl der n-Simplizes in K.

Dann heißt

$$\chi(K) := \sum_{n=1}^{\dim K} (-1)^n a_n(K)$$

Eulerzahl (oder Euler-Charakteristik) von K.

- a) Ein 1D-Simplizialkomplex heißt **Graph**.
 - b) Ein Graph, der homö
omorph zu S^1 ist, heißt **Kreis**.
 - c) Ein zusammenhängender Graph heißt **Baum**, wenn er keinen Kreis enthält.

on 40

- Sei $Z_n := \operatorname{Kern}(d_n) \subseteq C_n$ und $B_n := \operatorname{Bild}(d_{n+1}) \subseteq C_n$. a) $H_n = H_n(K, \mathbb{R}) := Z_n/B_n$ heißt n-te **Homoto**
 - **piegruppe** von K.

b) $b_n(K) := \dim_{\mathbb{R}} H_n$ heißt n-te **Belti-Zahl** von K.

Sei X ein topologischer Raum, $a, b \in X$, $\gamma_1, \gamma_2 : [0, 1] \rightarrow X$ Wege von a nach b, d. h. $\gamma_1(0) = \gamma_2(0) = a$, $\gamma_1(1) = \gamma_2(1) = b$

a) γ_1 und γ_2 heißen **homotop**, wenn es eine stetige Abbildung $H:I\times I\to X$ mit

$$H(t,0) = \gamma_1(t) \ \forall t \in [0,1] =: I$$

 $H(t,1) = \gamma_2(t) \ \forall t \in [0,1] =: I$

und H(0,s) = a und H(1,s) = b für alle $s \in I$ gibt. Dann schreibt man: $\gamma_1 \sim \gamma_2$

H heißt **Homotopie** zwischen γ_1 und γ_2 .

- b) $\gamma_s: I \to X, \gamma_s(t) = H(t,s)$ ist Weg in X von a nach b für jedes $s \in I$.

Seien
$$\gamma_1, \gamma_2$$
 Wege in X mit $\gamma_1(1) = \gamma_2(0)$. Dann ist

 $\gamma(t) = \begin{cases} \gamma_1(2t) & \text{falls } 0 \le t < \frac{1}{2} \\ \gamma_2(2t-1) & \text{falls } \frac{1}{2} \le t \le 1 \end{cases}$

ein Weg in X. Er heißt **zusammengesetzter Weg** und man schreibt $\gamma = \gamma_1 * \gamma_2$.

von X im Basispunkt x.

Sei X ein topologischer Raum und $x \in X$. Sei außerdem

$$\pi_1(X,x) := \{ [\gamma] \mid \gamma \text{ ist Weg in } X \text{ mit } \gamma(0) = \gamma(1) = x \}$$

 $\pi_1(X,x) := \{ [\gamma] \mid \gamma \text{ ist Weg in } X \text{ mit } \gamma(0) = \gamma(1) = x \}$ Durch $[\gamma_1] *_G [\gamma_2] := [\gamma_1 * \gamma_2]$ wird $\pi_1(X, x)$ zu ei-

ner Gruppe. Diese Gruppe heißt Fundamentalgruppe

für ein $x \in X$.

Ein wegzusammenhängender topologischer Raum X heißt einfach zusammenhängend, wenn $\pi_1(X,x) = \{e\}$

gibt.

Seien X, Y topologische Räume, $x_0 \in X, y_0 \in Y, f, g$:

 $X \to Y$ stetig mit $f(x_0) = y_0 = g(x_0)$.

$$f$$
 und g heißen **homotop** $(f \sim g)$, wenn es eine stetige Abbildung $H: X \times I \to Y$ mit
$$H(x,0) = f(x) \ \forall x \in X$$

 $H(x,1) = q(x) \ \forall x \in X$ $H(x_0,s) = y_0 \ \forall s \in I$

 $H(x,0) = f(x) \ \forall x \in X$

Es seien X, Y zusammenhängende topologische Räume

und $p: Y \to X$ eine stetige Abbildung. p heißt Überlagerung, wenn jedes $x \in X$ eine offene Umgebung $U = U(x) \subseteq X$ besitzt, sodass $p^{-1}(U)$ dis-

junkte Vereinigung von offenen Teilmengen $V_i \subseteq Y$ ist $(j \in I)$ und $p|_{V_i}: V_j \to U$ ein Homöomorphismus ist.

Definition 47 Seien X, Y topologische Räume und $f: X \to Y$ eine

Abbildung.

f heißt **offen** : $\Leftrightarrow \forall V \subseteq X$ offen: f(V) ist offen in Y.

Sei X ein topologischer Raum und $M \subseteq X$.

M heißt **diskret** in X, wenn M in X keinen Häufungspunkt hat.

f, wenn $p \circ \tilde{f} = f$ ist.

Definition 49 Sei $p: Y \to X$ Überlagerung, Z ein weiterer topologischer Raum, $f: Z \to X$ stetig.

Eine stetige Abbildung $\tilde{f}:Z\to Y$ heißt **Liftung** von

Eine Überlagerung $p: \tilde{X} \to X$ heißt **universell**, wenn \tilde{X} einfach zusammenhängend ist.

so heißt p regulär.

Es sei $p: Y \to X$ eine Überlagerung und $f: Y \to Y$ ein

Ist p eine Decktransformation und $|\operatorname{Deck}(Y/X)| = \deg p$,

Homöomorphismus.

f heißt **Decktransformation** von $p : \Leftrightarrow p \circ f = p$.

Sei (G, \cdot) eine Gruppe und X eine Menge.

Eine **Gruppenoperation** von G auf X ist eine Abbildung \circ :

$$\circ: G \times X \to X, \quad (g, x) \mapsto g \cdot x,$$

für die gilt:

a)
$$1_G \circ x = x \quad \forall x \in X$$

b)
$$(g \cdot h) \circ x = g \circ (h \circ x) \quad \forall g, h \in G \forall x \in X$$

Sei G eine Gruppe, X ein topologischer Raum und \circ : $G \times X \to X$ eine Gruppenoperation.

a) G operiert durch Homomorphismen, wenn für jedes $g \in G$ die Abbildung

$$m_g: X \to X, x \mapsto g \cdot X$$

ein Homöomorphismus ist.

b) Ist G eine topologische Gruppe, so heißt die Gruppenoperation \circ **stetig**, wenn $\circ : G \times X \to X$ stetig ist.

Das Tripel (X, d, G) heißt genau dann eine **Geometrie**, wenn (X, d) ein metrischer Raum und $\emptyset \neq G \subseteq \mathcal{P}(X)$

die Menge aller **Geraden** ist.

Eine euklidische Ebene ist ein metrischer Raum (X, d) zusammen mit einer Teilmenge $\emptyset \neq G \subseteq \mathcal{P}(X)$, sodass die Axiome §1 - §5 erfüllt sind:

(i) Zu $P \neq Q \in X$ gibt es genau ein $q \in G$ mit

§1) Inzidenzaxiome:

- $\{P,Q\}\subseteq g.$
- (ii) $|g| \ge 2 \quad \forall g \in G$
- (iii) $X \notin G$
- §2) **Abstandsaxiom**: Zu $P, Q, R \in X$ gibt es genau dann ein $g \in G$ mit $\{P, Q, R\} \subseteq g$, wenn gilt:

- d(P,R) = d(P,Q) + d(Q,R) oder
 d(P,Q) = d(P,R) + d(R,Q) oder
 d(Q,R) = d(Q,P) + d(P,R)

- a) P, Q, R liegen **kollinear**, wenn es $g \in G$ gibt mit
 - $\{P,Q,R\}\subseteq a.$
 - d(P,Q) + d(Q,R)

 - c) Strecke $\overline{PR} := \{ Q \in X \mid Q \text{ liegt zwischen } P \text{ und } R \}$

d) Halbgeraden:

- b) Q liegt zwischen P und R, wenn d(P,R) =

 $PR^- := \{ Q \in X \mid P \text{ liegt zwischen } Q \text{ und } R \}$

- $PR^+ := \{ Q \in X \mid Q \text{ liegt zwischen } P \text{ und } R \text{ oder } R \text{ liegt zwischen } P \text{ oder } R \text{ liegt z$

- §3) Anordnungsaxiome
 - (i) Zu jedem $P \in X$ jeder Halbgerade H mit Anfangspunkt P und jedem $r \in \mathbb{R}_{\geq 0}$ gibt es genau ein $Q \in H$ mit d(P,Q) = r.
 - genau ein Q ∈ H mit d(P,Q) = r.
 (ii) Jede Gerade zerlegt X \ g = H₁ ∪ H₂ in zwei nichtleere Teilmengen H₁ H₂, sodass für al-
 - (ii) Jede Gerade zerlegt $X \setminus g = H_1 \cup H_2$ in zwei nichtleere Teilmengen H_1, H_2 , sodass für alle $A \in H_i$, $B \in H_j$ mit $i, j \in \{1, 2\}$ gilt:
 - $\overline{AB} \cap g \neq \emptyset \Leftrightarrow i \neq j.$ Diese Teilmengen H_i heißen **Halbebenen** bzgl. q.

- §4) Bewegungsaxiom: Zu $P, Q, P', Q' \in X$ mit d(P, Q) = d(P', Q') gibt es Isometrien φ_1, φ_2 mit $\varphi_i(P) = P'$ und $\varphi_i(Q) = Q', i = 1, 2^1$
- §5) **Parallelenaxiom**: Für jedes $g \in G$ und jedes $P \in X \setminus g$ gibt es höchstens ein $h \in G$ mit $h \cap g = \emptyset$.

 $^{^1}$ Die "Verschiebung" von P'Q'nach PQund die Isometrie, die zusätzlich an der Gerade durch Pund Qspiegelt.

satzlich an der Gerade durch P und Q spiegelt. ^{2}h heißt "Parallele zu q durch P".

a) Ein **Winkel** ist ein Punkt $P \in X$ zusammen mit

Man schreibt: $\angle R_1 P R_2$ bzw. $\angle R_2 P R_1^3$

- 2 Halbgeraden mit Anfangspunkt P.
- b) Zwei Winkel sind **gleich**, wenn es eine Isometrie gibt, die den einen Winkel auf den anderen abbildet.

 $^{^3}$ Für dieses Skript gilt: $\angle R_1PR_2=\angle R_2PR_1.$ Also sind insbesondere alle Winkel $<180^\circ.$

Isometrie φ gibt, mit $\varphi(P) = P'$, $\varphi(PR'_1+) =$ $P'R_1 + \text{und } \varphi(R'_2)$ liegt in der gleichen Halbebene bzgl. PR_1 wie R_2 und in der gleichen Halbebene bzgl. PR_2 wie R_1

c) $\angle R_1'P'R_2'$ heißt **kleiner** als $\angle R_1PR_2$, wenn es eine

d) Im Dreieck $\triangle PQR$ gibt es Innenwinkel und Au-

ßenwinkel.

"Simplizialkomplexe" in euklidischer Ebene (X, d) heißen **flächengleich**, wenn sie sich in kongruente Dreiecke zerlegen lassen.

Sei

$$\mathbb{H} := \{ \ z \in \mathbb{C} \mid \Im(z) > 0 \ \} = \{ \ (x,y) \in \mathbb{R}^2 \mid y > 0 \ \}$$
die obere Halbebene bzw. Poincaré-Halbebene und $G = G_1 \cup G_2$ mit

$$G_{1} = \{ g_{1} \subseteq \mathbb{H} \mid \exists m \in \mathbb{R}, r \in \mathbb{R}_{>0} : g_{1} = \{ z \in \mathbb{H} : |z - m| = r \} \}$$

$$G_{2} = \{ g_{2} \subseteq \mathbb{H} \mid \exists x \in \mathbb{R} : g_{2} = \{ z \in \mathbb{H} : \Re(z) = x \} \}$$

Die Elemente von H heißen hyperbolische Geraden.

Es seine $a, b, c, d \in \mathbb{C}$ mit $ad - bc \neq 0$ und $\sigma : \mathbb{C} \to \mathbb{C}$

eine Abbildung definiert durch
$$\sigma(z) := \frac{az+b}{cz+d}$$

 σ heißt Möbiustransformation.

Seien $z_1, z_2, z_3, z_4 \in \mathbb{C}$ paarweise verschieden.

Doppelverhältnis von z_1, \ldots, z_4 .

Dann heißt

$$DV(z_1, z_2, z_3, z_4) := \frac{\frac{z_1 - z_4}{z_1 - z_2}}{\frac{z_3 - z_4}{z_3 - z_4}} = \frac{(z_1 - z_4) \cdot (z_3 - z_2)}{(z_1 - z_2) \cdot (z_3 - z_4)}$$

 $\frac{z_3-z_4}{z_3-z_2}$ $(z_1-z_2)\cdot(z_3-z_4)$

Für $z_1, z_2 \in \mathbb{H}$ sei g_{z_1, z_2} die eindeutige hyperbolische Gerade durch z_1 und z_2 und a_1, a_2 die "Schnittpunkte" von q_{z_1,z_2} mit $\mathbb{R} \cup \{\infty\}$.

Dann sei $d(z_1, z_2) := \frac{1}{2} \ln | DV(a_1, z_4, a_2, z_2) |$ und heiße

hyperbolische Metrik.

Sei $\gamma: I = [a, b] \to \mathbb{R}^n$ eine C^{∞} -Funktion.

b) $l(\gamma) = \int_a^b ||\gamma'(t)|| dt$ heißt **Länge von** γ

- a) γ heißt durch Bogenlänge parametrisiert, wenn
 - $\|\gamma'(t)\|_2 = 1$ für alle $t \in I$. Dabei ist $\gamma'(t) =$
 - $(\gamma_1'(t), \gamma_2'(t), \ldots, \gamma_n'(t))$

Sei $\gamma: I \to \mathbb{R}^2$ eine durch Bogenlänge parametrisierte Kurve.

a) Für $t \in I$ sei n(t) Normalenvektor an γ in t, d. h.

$$\langle n(t), \gamma'(t) \rangle = 0, \quad ||n(t)|| = 1$$

und $\det((\gamma_1(t), n(t))) = +1$

b) Nach ?? sind n(t) und $\gamma''(t)$ linear abhängig, d. h. es gibt $\kappa(t) \in \mathbb{R}$ mit

$$\gamma''(t) = \kappa(t) \cdot n(t)$$

 $\kappa(t)$ heißt **Krümmung** von γ in t.

Sei $\gamma:I\to\mathbb{R}^3$ durch Bogenlänge parametrisierte Kurve.

- a) Für $t \in I$ heißt $\kappa(t) := \|\gamma''(t)\|$ die **Krümmung** von γ in t.
- b) Ist für $t \in I$ die Ableitung $\gamma''(t) \neq 0$, so heißt $\gamma''(t)$ Normalenvektor an γ in t.
- c) b(t) sei ein Vektor, der $\gamma'(t), n(t)$ zu einer orientierten Orthonormalbasis von \mathbb{R}^3 ergänzt. Also $\det(\gamma'(t), n(t), b(t)) = 1$; b(t) heißt **Binormalenvektor**, die Orthonormalbasis { $\gamma'(t), n(t), b(t)$ }

heißt begleitendes Dreibein.

Sei $S \subseteq \mathbb{R}^3$ eine reguläre Fläche, $s \in S$, $F: U \to V \cap S$ eine lokale Parametrisierung um s (d. h. $s \in V$)

$$(u,v) \mapsto (x(u,v),y(u,v),z(u,v))$$

Für $p = F^{-1}(s) \in U$ sei

$$J_F(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u}(p) & \frac{\partial x}{\partial v}(p) \\ \frac{\partial y}{\partial u}(p) & \frac{\partial y}{\partial v}(p) \\ \frac{\partial z}{\partial u}(p) & \frac{\partial z}{\partial v}(p) \end{pmatrix}$$

und $D_P F : \mathbb{R}^2 \to \mathbb{R}^3$ die durch $J_F(p)$ definierte lineare Abbildung.

Dann heißt $T_sS := \text{Bild}(D_pF)$ die **Tangentialebene** an $S \in s$.

- a) Ein **Normalenfeld** auf der Fläche S ist eine Abbildung $n: S \to S^2 \subseteq \mathbb{R}^3$ mit $n(s) \in T_s S^{\perp}$ für
- bildung n: S → S² ⊆ R³ mit n(s) ∈ T_sS¹ für jedes s ∈ S.
 b) S heißt **orientierbar**, wenn es ein stetiges Nor-

malenfeld auf S gibt.

In der Situation aus ?? heißt die Krümmung $\kappa_{\gamma}(0)$ der Kurve γ in der Ebene (s+E) im Punkt s die **Norma**-

lenkrümmung⁴von S in S in Richtung $x = \gamma'(0)$.

Man scheibt: $\kappa_{\gamma}(0) := \kappa_{Nor}(s, x)$