\$ Supplement Note 7: Aerodynamic Drag

1. Energy and Power

The kinetic energy of a particle is defined as

$$E_{\rm kin} \equiv \frac{1}{2} \, m \, v^2 = \frac{1}{2} \, m \, \mathbf{v} \cdot \mathbf{v} \,. \tag{1}$$

The unit of energy is *joul* in MKS system and *erg* in cgs system.

1 joul = 1 kg m²/s², 1 erg = 1 g cm²/s²
$$\Rightarrow$$
 1 joul = 10⁷ erg

The time rate of change of the kinetic energy of a body $\frac{dE_{kin}}{dt} \equiv P$ is called power. Its unit in MKS system is watt

$$1$$
watt = 1 joul/s.

The motion of a particle is governed by *Newton's Second law*:

$$\mathbf{F} = \frac{d\mathbf{p}}{dt} = m \, \frac{d\mathbf{v}}{dt} = m \, \mathbf{a} \tag{2}$$

where $\mathbf{p} \equiv m \mathbf{v}$ is the *momentum* and $\mathbf{a} \equiv \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2}$ is the *acceleration* of the particle. A direct differentiation of (1) with respect to t leads to

$$P \equiv \frac{dE_{\rm kin}}{dt} = \frac{d}{dv} \left(\frac{1}{2}mv^2\right) \frac{dv}{dt} = mv \frac{dv}{dt} = Fv \tag{3}$$

Notice that when the directions of \mathbf{v} and \mathbf{F} differ, Eq.(3) should be replaced by

$$P \equiv \frac{dE_{\text{kin}}}{dt} = m\mathbf{v} \cdot \frac{d\mathbf{v}}{dt} = \mathbf{v} \cdot \mathbf{F}$$
 (4)

Eq.(4) states that the *rate of change of* E_{kin} (the *power* acting on the particle) is equal to the dot product of the force acting on it and its velocity. By integrating Eq.(4) with respect to t, we obtain

$$\int_{t_1}^{t_2} \frac{dE_{\text{kin}}}{dt} = E_{\text{kin}}(t_2) - E_{\text{kin}}(t_1) = \int_{t_1}^{t_2} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt = \int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F} \cdot d\mathbf{r}$$
 (5)

The dot product $\mathbf{F} \cdot d\mathbf{r}$ between the force acting on the particle and the displacement of the particle is known as the *work* done on the particle. Eq.(5) states that *the total work done on the particle is equal to the increment of the total kinetic energy*. This is an important implication of Newton's second law of motion.

2. The Effect of Air Drag

As a body moving through air, it experiences a drag force in the direction opposite to its motion. In general, this force is given by

$$F_{\rm drag} \approx -B_1 v - B_2 v^2 \tag{6}$$

At extremely low velocities the first term dominates, and its coefficient B_1 can be calculated for objects with simple shapes. This is known as *Stokes' law*. In particular, the drag force for a sphere with radius R moving through a viscous flow with a dynamic *viscosity* of η is given by

$$F_{\rm drag} = 6\pi \eta R v \tag{7}$$

At any reasonable velocity the second term in (6) dominates for most objects. The exact value of the coefficient B_2 is a difficult problem. However, an approximate estimate can be made as follows. In a duration of time Δt , an object with a frontal area A and velocity v moves through the atmosphere must push an amount of air with a volume equal to $V = A \cdot v \Delta t$ out of the way with velocities close to v. If the density of air is ρ , the total mass m is equal to

$$m = \rho V = \rho A v \Delta t$$

The rate of energy gain of the air is then given by

$$Fv = \frac{dE_{\text{air}}}{dt} \approx \frac{\frac{1}{2}mv^2}{\Delta t} = \frac{1}{2}\rho A \ v \ v^2$$
 (8)

From (3), this implies that the force acting on the air (by the object) is equal to

$$F = \frac{1}{2}\rho A v^2$$

The reaction force from Newton's third law of motion then yields the drag force on the object is given by

$$F_{\text{drag}} = -\frac{1}{2} C\rho A v^2 \tag{9}$$

where C, which is known as the drag coefficient, is a dimensionless factor related to the geometry of the body.

Example 1 A 70kg sky diver free-falls from an altitude of 1400 m high. For the air drag, assume that $C \approx 0.5$, $A \approx 1 \text{ m}^2$ and the air density is $\rho \approx 1 \text{ kg/m}^3$.

In this case, Newton's second law (2) becomes

$$\frac{dv}{dt} = -g + \frac{C\rho A}{2m} v^2 \tag{10}$$

The Euler's approximation now takes the form

$$y_{i+1} = y_i + v_i \delta t$$

$$v_{i+1} = v_i + \left(-g + \frac{C\rho A}{2m} v_i^2\right) \delta t$$

This is coded in *Skydiver.py* where the case without friction is also included. With the effect of airdrag, the velocity of the skydiver reaches a *terminal velocity* which may be obtained by setting $\frac{dv}{dt} = 0$ in Eq.(10):

$$v_{terminal} = -\sqrt{\frac{2gm}{C\rho A}} \approx -52 \text{ m/sec}$$

As can be seen in the figure, the sky diver approaches this limit in about 11 minutes.

Skydiver.py

simulation of freely falling skydiver using Euler's method import numpy as np

import matplotlib.pyplot as plt

t , y2 , v2 = 0 , 1400, 0 #initial condition

C, rho, A, m = 0.5, 1, 1, 70

Cdrag = 0.5 * C * rho * A/m

Figure 1: Skydiver

```
print(Cdrag)
dt = 0.05 # time step used
g = 9.8
          # m/s^2 acceleration due to gravity
T2, Y2, V2 = [],[],[]
while y2 > 0:
    T2.append(t)
    Y2.append(y2)
    V2.append(v2)
   v2 = v2 - g*dt + Cdrag*v2*v2*dt
    y2 = y2 + v2*dt
    t = t + dt
# neglect air friction
t , y , v = 0 , 1400, 0 #initial condition
T1, Y1, V1 = [],[],[]
#print(V2)
while y > 0:
    T1.append(t)
    Y1.append(y)
    V1.append(v)
```

```
v = v - g*dt
    y = y + v*dt
    t = t + dt
tmax = T1[-1]
vlim = - np.sqrt(g/Cdrag)
plt.figure()
plt.subplot(2,1,1)
plt.title('Skydiver')
plt.ylabel('altitude m')
plt.plot(T2,Y2, label= 'altitude with friction')
plt.plot(T1,Y1, label= 'altitude without fraction')
plt.legend()
plt.subplot(2,1,2)
plt.xlabel('time')
plt.ylabel('velocity m/sec')
plt.hlines(vlim,0,tmax, linestyles='dotted')
plt.plot(T2, V2, label = 'velocity with friction')
plt.plot(T1, V1, label = 'velocity without fraction')
plt.legend()
fig = plt.gcf()
fig.savefig('Skydiver.eps', format='eps')
plt.show()
```