LEC016 Knapsack Problem

VG441 SS2021

Cong Shi Industrial & Operations Engineering University of Michigan

Knapsack

- $n \text{ items } \{1, ..., n\}$
- Each item i has a value v_i and size s_i
- A capacity *B* (for sizes)

Objective: We wish to pick a maximium-value subset S from n items (without exceeding the capacity constraint).

MILP Formulation

- $n \text{ items } \{1, ..., n\}$
- Each item i has a value v_i and size s_i
- A capacity *B* (for sizes)
- Find a max-value subset *S* from *n* items

Let x_i be a binary decision variable of whether to include the item i

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} s_i x_i \leq B$$

$$x_i \in \{0, 1\}, \forall i$$

LP Relaxation (Fractional Knapsack)

- $n \text{ items } \{1, ..., n\}$
- Each item i has a value v_i and size s_i
- A capacity *B* (for sizes)
- Find a max-value subset *S* from *n* items

Let x_i be a binary decision variable of whether to include the item i

$$\max \quad \sum_{i=1}^{n} v_i x_i \qquad \max \quad \sum_{i=1}^{n} v_i x_i$$

$$\text{s.t.} \quad \sum_{i=1}^{n} s_i x_i \leq B \qquad \Longrightarrow \quad \text{s.t.} \quad \sum_{i=1}^{n} s_i x_i \leq B$$

$$x_i \in \{0, 1\}, \forall i \qquad 0 \leq x_i \leq 1, \forall i$$

LP Relaxation: allowing for fractional allocation

LP Relaxation (Fractional Knapsack)

- $n \text{ items } \{1, ..., n\}$
- Each item i has a value v_i and size s_i
- A capacity B (for sizes)
- Find a max-value subset *S* from *n* items

Let x_i be a fraction of item i to be included

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} s_i x_i \leq B$$

$$0 \leq x_i \leq 1, \forall i$$

This is easy: greedy would suffice!

Re-index
$$\frac{v_1}{s_1} \ge \frac{v_2}{s_2} \ge \ldots \ge \frac{v_n}{s_n}$$

The solution would be $(1,1,...,1, \alpha,0,...,0,0)$ with $0 \le \alpha < 1$

Back to (Integer Knapsack)

- $n \text{ items } \{1, ..., n\}$
- Each item i has a value v_i and size s_i
- A capacity B (for sizes) Assume $B \ge s_i$ for each i
- Find a max-value subset *S* from *n* items

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} s_i x_i \leq B$$

$$x_i \in \{0, 1\}, \forall i$$

Re-index
$$\frac{v_1}{s_1} \ge \frac{v_2}{s_2} \ge \ldots \ge \frac{v_n}{s_n}$$

The solution would be $(1,1,...,1, \alpha,0,...,0,0)$

Trim

Greedy solution is (1,1,...,1,0,0,...,0,0)

However, this can be arbitrarily bad!

A Bad Example

• Greedy can be arbitrarily bad for 0-1 Knapsack

Capacity B = 10000

Item 1:
$$s_1 = 1$$
, $v_1 = 100$

A 2-Approximation Algorithm

- $n \text{ items } \{1, ..., n\}$
- Each item i has a value v_i and size s_i
- A capacity B (for sizes) Assume $B \ge s_i$ for each i
- Find a max-value subset *S* from *n* items

$$\begin{array}{ll}
\mathbf{max} & \sum_{i=1}^{n} v_i x_i \\
\mathbf{s.t.} & \sum_{i=1}^{n} s_i x_i \leq B \\
 & x_i \in \{0, 1\}, \forall i
\end{array}$$

$$\frac{\text{Re-index}}{s_1} \ge \frac{v_1}{s_2} \ge \dots \ge \frac{v_n}{s_n}$$

The solution would be $(1,1,...,1, \alpha,0,...,0,0)$

Choose the better of the two:

$$SOL1 = (1,1,...,1,0,0,...,0,0)$$

$$SOL2 = (0,0,...,0,1,0,...,0,0)$$

A 2-Approximation Algorithm

$$\begin{array}{ll}
\mathbf{max} & \sum_{i=1}^{n} v_i x_i \\
\mathbf{s.t.} & \sum_{i=1}^{n} s_i x_i \leq B \\
x_i \in \{0, 1\}, \forall i
\end{array}$$

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} s_i x_i \leq B$$

$$0 \leq x_i \leq 1, \forall i$$

Re-index
$$\frac{v_1}{s_1} \ge \frac{v_2}{s_2} \ge \ldots \ge \frac{v_n}{s_n}$$

The greedy solution would be (1,1,...,1, α ,0,...,0,0) So $OPT(MILP) \leq OPT(LP) \leq v_1 + v_2 + \cdots + v_{k-1} + v_k$

Choose the better of the two:

$$SOL1 = (1,1,...,1,0,0,...,0,0)$$

$$SOL2 = (0,0,...,0,1,0,...,0,0)$$

So we are getting

$$\max(v_1 + v_2 + \dots + v_{k-1}, v_k) \ge 0.50PT(LP) \ge 0.50PT(MILP)$$

Is there a better solution?

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} s_i x_i \leq B$$

$$x_i \in \{0, 1\}, \forall i$$

Our goal (FPTAS – fully polynomial time approximation scheme):

That is, for any $\epsilon > 0$, we can get a $(1 - \epsilon)$ approximation in time polynomial in N and $\frac{1}{\epsilon}$ where $N = n \times \log (\max_{i \in [n]} \{v_i, s_i\})$.

Look at a related problem (KS)

Consider a target value u, we find the min-size subset

$$\mathbf{min}_{S\subseteq[n]} \quad \sum_{i\in S} s_i \\
\mathbf{s.t.} \quad \sum_{i\in S} v_i \ge u$$

Let T[i, w] be the min-size of subset $S \subseteq \{1, \ldots, i\}$ such that $\sum_{k \in S} v_k = w$

Let
$$v_{\max} = \max_{i \in [n]} v_i$$
.
1. For $w = 0, ..., nv_{\max}$:
$$Set $T[1, w] = \begin{cases}
0 & w = 0 \\
s_1 & w = v_1 \\
\infty & \text{otherwise}
\end{cases}$
2. For $i = 2, ..., n$:
$$For $w = 0, ..., nv_{\max}$:
$$\rightarrow \text{Set } T[i, w] = \min \{T[i - 1, w], T[i - 1, w - v_i] + s_i\}$$$$$$

To find the optimal solution to 0-1 knapsack, it suffices to find

$$w^* = \max\{w : T[n, w] \le B\}$$

Look at a related problem (KS)

Consider a target value u, we find the min-size subset

$$\mathbf{min}_{S\subseteq[n]} \quad \sum_{i\in S} s_i \\
\mathbf{s.t.} \quad \sum_{i\in S} v_i \ge u$$

Let T[i, w] be the min-size of subset $S \subseteq \{1, \ldots, i\}$ such that $\sum_{k \in S} v_k = w$

Let
$$v_{\max} = \max_{i \in [n]} v_i$$
.
1. For $w = 0, \dots, nv_{\max}$:
$$\begin{cases} 0 & w = 0 \\ s_1 & w = v_1 \\ \infty & \text{otherwise} \end{cases}$$
2. For $i = 2, \dots, n$:
$$\text{For } w = 0, \dots, nv_{\max}$$
:
$$\rightarrow \text{Set } T[i, w] = \min \{ T[i-1, w], T[i-1, w-v_i] + s_i \}$$

Find $w^* = \max\{w : T[n, w] \le B\}$

Polynomial time in n and v_{max} (but exponential in $\log v_{\text{max}}$)!

FPTAS

We know how to solve it exactly via DP:

ExactKS
$$(s_1, \ldots, s_n, v_1, \ldots, v_n, B)$$
 requires $poly(n, \sum v_i)$

Goal is FPTAS: Need an algorithm that runs in $poly(n,1/\epsilon)$ but you can relax the solution to be within $(1-\epsilon)\mathbf{OPT}$

```
Algorithm: (s_1, ..., s_n, v_1, ..., v_n, B, \epsilon)
1: M \leftarrow \max_i v_i
2: v'_i \leftarrow \left\lfloor \frac{v_i}{\epsilon M/n} \right\rfloor
3: A \leftarrow \text{ExactKnapsack}(s_1, ..., s_n, v'_1, ..., v'_n, B)
4: \text{ return solution } A
```

FPTAS

We know how to solve it exactly via DP:

ExactKS
$$(s_1, \ldots, s_n, v_1, \ldots, v_n, B)$$
 requires $poly(n, \sum v_i)$

Goal is FPTAS: Need an algorithm that runs in $poly(n,1/\epsilon)$ but you can relax the solution to be within $(1-\epsilon)\mathbf{OPT}$

Algorithm: $(s_1,\ldots,s_n,v_1,\ldots,v_n,B,\epsilon)$

 $1: M \leftarrow \max_i v_i$

 $2: v_i' \leftarrow \left| \frac{v_i}{\epsilon M/n} \right|$

 $3: A \leftarrow \bar{\text{ExactKnapsack}}(s_1, \dots, s_n, v_1', \dots, v_n', B)$

4: return solution A

Running time analysis:

$$\sum_{i=1}^{n} v_i' = \sum_{i=1}^{n} \left| \frac{v_i}{\epsilon M/n} \right| \le \sum_{i=1}^{n} \frac{n}{\epsilon} \le \frac{n^2}{\epsilon}$$

So the running time of ExactKS is poly $\left(\frac{n^2}{\epsilon}\right) = \text{poly}\left(n, \frac{1}{\epsilon}\right)$

FPTAS

We know how to solve it exactly via DP:

ExactKS
$$(s_1, \ldots, s_n, v_1, \ldots, v_n, B)$$
 requires $poly(n, \sum v_i)$

Goal is FPTAS: Need an algorithm that runs in $poly(n,1/\epsilon)$ but you can relax the solution to be within $(1 - \epsilon)\mathbf{OPT}$

Algorithm: $(s_1,\ldots,s_n,v_1,\ldots,v_n,B,\epsilon)$

 $1: M \leftarrow \max_i v_i$

 $2: v_i' \leftarrow \left| \frac{v_i}{\epsilon M/n} \right|$

 $3: A \leftarrow \text{ExactKnapsack}(s_1, \dots, s_n, v_1', \dots, v_n', B)$

4: return solution A

Optimality analysis: Shall show $\overline{OPT} \geq (1 - \epsilon) \frac{n}{\epsilon M} \cdot OPT$. Then, we are done:

"scaled" optimal set
$$\sum_{i\in A} v_i \geq \frac{\epsilon M}{n} \sum_{i\in A} v_i' = \frac{\epsilon M}{n} \overline{OPT} \geq (1-\epsilon)OPT.$$

$$OPT = \sum_{i \in S} v_i = \sum_{i \in S} \frac{v_i}{\frac{\epsilon M}{n}} \frac{\epsilon M}{n} \le \sum_{i \in S} (v_i' + 1) \frac{\epsilon M}{n} \le \left(\sum_{i \in S} v_i'\right) \frac{\epsilon M}{n} + \epsilon M \le \frac{\epsilon M}{n} \overline{OPT} + \epsilon OPT$$

true original optimal set