Support Vector Machines

INDRAPRASTHA INSTITUTE *of*INFORMATION TECHNOLOGY **DELHI**

Optimum Separation Hyperplane

- Optimum separation hyperplane (OSH) is the linear classifier with the maximum margin for a given finite set of learning patterns.
- Better generalization!

Optimum Separation Hyperplane

- *Margin of separation*: distance to the closest example
- For the optimal hyperplane
 - distance to the closest negative example = distance to the closest positive example
- The goal of SVM is to find the particular hyperplane for which the *margin of separation* is maximized.

Support Vectors

- Support vectors are the samples closest to the separating hyperplane
 - They are the most difficult patterns to classify.
- Optimal separation hyper-plane is completely defined by support vectors

Optimal Hyperplane: Problem Formulation

- Training Set: D = $\{(x_i, d_i); i = 1, 2, ..., n\}$
- Linearly Separable:
 - The Decision Boundary [Hyperplane]

$$\sum_{i=1}^{m} w_i x_i + b = W^T x + b = 0$$

Correct Classification

$$w^T x_i + b \ge 0; \forall y_i = +1$$

 $w^T x_i + b < 0; \forall y_i = -1$

- Infinitely many hyperplanes exist
 - Which is the optimal?

Margin of Separation

- NO training patterns exist between the two hyperplanes:
 - \circ H₁: wx + b = 1, y = 1
 - \circ H₂: wx + b = -1, y = -1
- The points on the planes H₁ and H₂ are the Support Vectors
- d+ = the shortest distance to the closest positive point
- d- = the shortest distance to the closest negative point
- The margin m of a separating hyperplane is (d+) + (d-)

Maximizing the margin

- We want a classifier (linear separator) with as big a margin as possible.
- Distance from a point(x_o,y_o) to a
 Line Ax+By+c = o is
 - $\circ |Ax_0 + By_0 + c|/sqrt(A^2 + B^2)$
- The distance between H_o and H_1 $\circ |w \cdot x + b|/||w|| = 1/||w||$
- The total distance *m* between H₁ and H₂:
 - \circ $2/\overline{||w||}$

Quadratic Programming Problem

- When $/\!/$ w $/\!/$ =1 then m=2
- When $/\!/ w/\!/ = 2$ then m=1
- When $/\!/$ w $/\!/$ =4 then m=1/2
- The bigger the norm is, the smaller the margin become.
- Maximize 2/ || w || Minimize || w || /2
 - $\circ = Minimize \frac{1}{2} \| \mathbf{w} \|^2$
- Minimize $f: \frac{1}{2}||w||^2$ s.t. $g: y_i[w \cdot x_i + b] > = 1$
- This is a constrained optimization problem
- It can be solved by the Lagrangian multiplier method
 - o Because it is quadratic, the surface is a paraboloid, with just a single global minimum

SVM: Constrained Optimization Problem

- Given the training sample $\{(x_i, y_i)\}_{i=1}^n$, find the optimum values of the weight vector **w** and bias **b** such that they satisfy the constraints
 - $0 \quad y_i^*(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) >= 1, \ \forall \ i=1,2,...n$
 - Equality is true for support vector points and greater than condition holds true for non-support vector points.

and the weight vector **w** minimizes the cost function:

- $\Phi(\mathbf{w}) = \frac{1}{2} \| \mathbf{w} \|^2 = \mathbf{1}/2\mathbf{w}^T\mathbf{w}$
- Constraints are linear
- Cost function is convex

Constrained Optimization

- Lagrangian function: Constrained optimization can be solved through unconstrained optimization
 - $L(x,y,\alpha) = f(x,y) \alpha g(x,y)$
 - a: Lagrange multipliers
- *Solution:* $\nabla L(x,y,\alpha) = o$
 - $\circ \quad \partial L(x,y,\alpha)/\partial x = 0$
 - $\circ \ \partial L(x,y,\alpha)/\partial y = 0$
 - $\circ \quad \partial L(x,y,\alpha)/\partial a = 0$

Lagrange Multiplier: Primal Form

- $J(w,b,\alpha) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} \mathbf{\Sigma}_{i=1}^{\mathsf{n}} \alpha_{i} [y_{i}^{\mathsf{*}} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b)]$
 - Inequality constraints -> equality constraints
 - $0 \quad J(w,b,\alpha) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} \sum_{i=1}^{n} \alpha_{i} [y_{i}^{*} (\mathbf{w}^{T} \mathbf{x}_{i} + b) 1]$
- Karush-Kuhn-Tucker Condition
- \circ Multipliers that can assume non-zero values ($\alpha > 0$), must satisfy following conditions:

Lagrange Multiplier

- *Solution:* $\nabla L(x,y,\alpha) = o$
 - Conditions of optimality

 - \blacksquare $\partial J(\mathbf{w}, b, \alpha)/\partial b = o$
- $J(w,b,\alpha) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} \mathbf{\Sigma}_{i=1}^{n} \alpha_{i} [y_{i}^{*} (\mathbf{w}^{T} \mathbf{x}_{i} + b) 1]$
- $0 \quad \frac{1}{2} \mathbf{w.w} \mathbf{\Sigma}^{n}_{i=1} \alpha_{i} y_{i} \mathbf{w.x}_{i} \mathbf{\Sigma}^{n}_{i=1} \alpha_{i} y_{i} b + \mathbf{\Sigma}^{N}_{i=1} \alpha_{i}$
- $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x_i} \dots (\mathbf{A})$
- $\sum_{i=1}^{n} \alpha_i y_i = 0$ (B)

Duality theorem (Bertsekas, 1995)

- If the primal problem has an optimal solution, the dual problem also has an optimal solution, and the corresponding optimal values are equal.
 - $\Phi(\mathbf{w}_{\alpha}) = J(\mathbf{w}_{\alpha}, b_{\alpha}, \alpha_{\alpha}) = \min J(\mathbf{w}, \mathbf{b}, \alpha)$
- Applying (B) and then (A) to Lagrangian equation:
 - $0 \quad J(w,b,\alpha) = \frac{1}{2} \mathbf{w.w} \mathbf{\Sigma}_{i=1}^{n} \alpha_i y_i \mathbf{w.x}_i + \mathbf{\Sigma}_{i=1}^{n} \alpha_i$
 - $O J(w,b,\alpha) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x_i x_j} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x_i x_j} + \sum_{i=1}^{n} \alpha_i \alpha_i \mathbf{x_i y_i y_i x_i x_j}$
 - $O(\alpha) = \sum_{i=1}^{N} \alpha_i \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i x_j$

Dual Problem

- Given the training sample $\{(x_i, y_i\}_{i=1}^n$, find the Lagrange multipliers that maximize the objective function
 - $Q(\alpha) = \sum_{i=1}^{N} \alpha_i 1/2 \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_j \alpha_j y_j y_j x_i x_j S.T.$

 - $\sum_{i=1}^{n} \alpha_i y_i = 0$
- Primal vs Dual
 - The dual problem is cast entirely in terms of the training data
- Objective: To find the lagrangian multipliers which maximizes the $Q(\alpha)$
 - Some of the lagrangian multipliers will become zero
 - Some of the lagrangian multipliers will have high value

Interpretation

- Some of the lagrangian multipliers will have high value
 - Corresponding input training sample is a support vector
- Some of the lagrangian multipliers will become zero
 - Corresponding input training sample is not a support vector
- Some of the lagrangian multipliers might have very high value
 - Corresponding input training sample is an outlier

Optimal weight and bias: Decision boundary

- Having determined the optimum Lagrangian multipliers, the optimum weight vector may be computed
 - \circ $\mathbf{w}_{o} = \sum_{i=1}^{n_{s}} \alpha_{o,i} y_{i} \mathbf{x}_{i}$ \circ n_{s} is the number of support vectors for which the Lagrange multipliers are all non-zero
- Having obtained \mathbf{w}_{o} , the bias \mathbf{b}_{o} may be computed

 $\mathbf{b}_{o} = \mathbf{1} \mathbf{w}_{o}^{\mathsf{T}} \mathbf{x}^{(\mathbf{s})}$, $\forall \mathbf{y}^{(\mathbf{s})} = \mathbf{1}$ $\mathbf{1} \sum_{i=1}^{N_{s}} \alpha_{o,i} \mathbf{y}_{i} \mathbf{x}_{i} \mathbf{x}^{(\mathbf{s})}$
- For a new sample z, calculate $\mathbf{w}_{o}z + \mathbf{b}_{o}$ • $\Sigma^{\text{Ns}} = \alpha_{o,i} y_{i} \mathbf{x}_{i} \mathbf{z}_{j} + (1 - \Sigma^{\text{ns}} = \alpha_{o,i} y_{i} \mathbf{x}_{i} \mathbf{x}^{(s)})$
- If the sign is positive, the sample z will belong the positive class, else the sample z will belong to the negative class.

Breakout Room Activity

i	x_i	y_i	$lpha_i$	i	x_i	y_i	α_i
1	(4,2.9)	1	0.414	6	(1.9,1.9)	-1	0
2	(4,4)	1	0	7	(3.5, 4)	1	0.018
3	(1,2.5)	-1	0	8	(0.5, 1.5)	-1	0
4	(2.5,1)	-1	1.18	9	(2,2.1)	-1	0.414
5	(4.9, 2.5)	1	0	10	(4.5, 2.5)	1	0

Consider the training data samples and the corresponding Lagrange multipliers learned from them, as given in the following table.

From the given table above, answer the following questions?

- What is the b for the SVM?
- 2. Identify the support vectors.
- 3. Compute w and classify the point (3,3).

References

- 1. https://www.svm-tutorial.com/2017/02/svms-overview-support-vector-machines/
- 2. https://www.syncfusion.com/ebooks/support_vector_machines_succin ctly/introduction
- 3. https://www.youtube.com/watch?v=b-Su6aVh5yo
- 4. Chapter 6, Neural Networks: A Comprehensive Foundation (2nd Edition) 2nd Edition by Simon Haykin

Supplement: Scaling of weight vectors

- Distance from a point (x_0, y_0) to a Line Ax + By + c = 0 is
- $\circ |Ax_0 + By_0 + c|/sqrt(A^2 + B^2)$
- The distance between support vector point and H_o
- $om = |\mathbf{w} \cdot \mathbf{x}_0 + \mathbf{b}| / ||\mathbf{w}||$
- III = |w•x₀+b|/||w||
 The geometric margin is clearly invariant to scaling of weight parameters because it is inherently normalized by the length of ||w||
- This means that we can impose any scaling constraint we wish on ||w|| without affecting the geometric margin.
- $\bullet \quad |\mathbf{w} \bullet \mathbf{x}_0 + \mathbf{b}| = \mathbf{m}^* ||\mathbf{w}||$
- By applying a proper scaling to the weights, the factor m*
 ||w|| can always be made = 1