Model-theoretic aspects of relativised cylindric set algebras

Daniel Rogozin

1 Intro

... It is known that the equational theory of \mathbf{RCA}_{ω} for $\alpha \leq \omega$ is decidable [6]. ...

2 The problems themselves

- 1. Suppose $\mathcal{C} \in \mathbf{RCA}_{\omega}$, whether \mathcal{C}^+ has a complete, ω -dimensional representation? [3]
- 2. Is the class \mathbf{IG}_{ω} (the isomorphism-closure of the ω -dimensional cylindric relativised set algebras in which the unit is closed under substitutions and permutations) a variety, or even a pseudo-elementary class? Is it closed under ultraproducts? [3]

3 Boolean algebras with operators and cylindric algebras Definition 1.

- 1. Let $\mathcal{B} = \langle B, +, -, 0, 1 \rangle$ be a Boolean algebra. An operator is an n-ary function $\Omega : B^n \to B$ satisfying the following conditions:
 - Normality: for all $b_0, \ldots, b_{n-1} \in B$, if $b_1 = 0$ for some i < n, then

$$\Omega(b_0,\ldots,b_{i-1},0,b_{i+1},\ldots,b_{n-1})=0$$

• Additivity: for all $b_0, \ldots, b_{n-1}, b, b' \in B$ we have

$$\Omega(b_0,\ldots,b_{i-1},(b+b'),b_{i+1},\ldots,b_{n-1}) = \Omega(b_0,\ldots,b_{i-1},b,b_{i+1},\ldots,b_{n-1}) + \Omega(b_0,\ldots,b_{i-1},b',b_{i+1},\ldots,b_{n-1})$$

2. Let I be an index set, a Boolean algebra with operators (BAO) is an algebra $\langle B, +, -, 0, 1, \{\Omega_i\}_{i \in I}\rangle$ such that $\langle B, +, -, 0, 1 \rangle$ is a Boolean algebra and for each $i \in I$ Ω_i is an operator.

Definition 2. Let $\mathcal{B} = \langle B, +, -, 0, 1, \{\Omega_i\}_{i \in I} \rangle$ be a BAO, then

1. An operator Ω is completely additive, if for each $b_0, \ldots, b_{n-1} \in B$ and $X \subseteq B$, one has

$$\Omega(b_0, \dots, b_{i-1}, \sum X, b_{i+1}, \dots, b_{n-1}) = \sum_{x \in X} \Omega(b_0, \dots, b_{i-1}, x, b_{i+1}, \dots, b_{n-1})$$

- 2. \mathcal{B} is completely additive, if for each $i \in I$ Ω_i is additive,
- 3. A class K of BAOs is completely additive, if every $B \in K$ is completely additive.

3.1 Atom structures and canonical extensions

Definition 3. Let I be an index set and $\{\Omega_i\}_{i\in I}$ a set of function symbols

- 1. An atom structure is a relational structrure $\mathcal{F} = \langle W, \{R_i\}_{i \in I} \rangle$ such that R_i is a n+1-ary relation symbol, if $\Omega_{i \in I}$ is an n-ary function symbol,
- 2. Let \mathcal{B} be an atomic BAO of the signature I, the atom structure of \mathcal{B} , written as $\mathbf{At}\mathcal{B}$, is an atom structure $\langle \operatorname{At}(\mathcal{B}), \{R_i\}_{i \in I} \rangle$ such that for each $a, b_0, \ldots, b_{n+1} \in \operatorname{At}(\mathcal{B})$ and for each $i \in I$

$$\mathbf{At}\mathcal{B} \models R_i(a, b_0, \dots, b_{n+1}) \text{ iff } \mathcal{B} \models a \leqslant \Omega_i(b_0, \dots, b_{n+1})$$

3. Let $\mathcal{F} = \langle W, \{R_i\}_{i \in I} \rangle$ be an atom structure, the complex algebra of \mathcal{F} , written as $\mathbf{Cm}\mathcal{F}$, is a $BAO \langle \mathcal{P}(W), \cup, -, \emptyset, W, \{\Omega_{R_i}\}_{i \in I} \rangle$ such that for all $X_0, \dots, X_{n-1} \subseteq W$ and for each $i \in I$

$$\Omega_{R_i}(X_0,\ldots,X_{n-1}) = \{a \in W \mid \exists b_0 \in X_0 \ldots \exists b_{n-1} \in X_{n-1} \mathcal{F} \models R_i(a,b_0,\ldots,b_{n-1})\}$$

The following duality is due to Thomason [7].

Fact 1.

- 1. Let \mathcal{B} be a complete atomic BAO, then $\mathcal{B} \cong \mathbf{Cm}(\mathbf{At}(\mathcal{B}))$,
- 2. Let \mathcal{F} be an atom structure, then $\mathcal{F} \cong \mathbf{At}(\mathbf{Cm}(\mathcal{B}))$.

Let A be a non-empty subset of a Boolean algebra \mathcal{B} , A is a *filter*, if A is closed under finite infima and upwardly closed. A is an ultrafilter, if it has no non-trivial extensions. That is, if $A \subseteq A'$, then $A' = \mathcal{B}$.

Definition 4. Let $\mathcal{B} = \langle B, +, -, 0, 1, \{\Omega_i\}_{i \in I}\rangle$ be a BAO and $\mathbf{Uf}(\mathcal{B})$ the set of its ultrafilters. The ultrafilter frame of \mathcal{B} (or canonical frame) is a relational structure $\mathcal{F}_{\mathcal{B}} = \langle \mathbf{Uf}(\mathcal{B}), R_{\Omega_i} \rangle$ such that for each ultrafilters $\beta_0, \ldots, \beta_{n-1}, \gamma$ one has

$$\mathbf{Uf}(\mathcal{B}) \models R_{\Omega_i}(\beta_0, \dots, \beta_{n-1}, \gamma) \text{ iff } \{\Omega(b_0, \dots, b_{n-1}) \mid b_0 \in \beta_0, \dots, b_{n-1} \in \beta_{n-1}\} \subseteq \gamma.$$

Definition 5. Let \mathcal{B} be a BAO, then

- 1. The canonical extension of \mathcal{B} is a complex algebra of the canonical frame $\mathbf{Cm}(\mathcal{F}_{\mathcal{B}})$ denoted as \mathcal{B}^+ ,
- 2. The class of BAOs is canonical, if it is closed under canonical extensions.

Theorem 1. Let A, B be BAOs,

- 1. There exists $\iota : \mathcal{A} \hookrightarrow \mathcal{A}^+$ such that $\iota : a \mapsto \{\gamma \in \mathbf{Uf}(\mathcal{A}) \mid a \in \gamma\}$.
- 2. If $i: A \hookrightarrow B$, then this embedding might be extented to the embedding $i^+: A^+ \hookrightarrow B^+$

Fact 2.

3.2 (Representable) cylindric algebras and cylindric set algebras

Let α be an ordinal. Let αU be the set of all functions mapping α to a non-empty set U. We denote $x(i) = x_i$ for $x \in {}^{\alpha}U$ and $i < \alpha$.

Definition 6.

- 1. A subset of ${}^{\alpha}U$ is an α -ry relation on U. For $i, j < \alpha$, the i, j-diagonal D_{ij} is the set of all elements of U such that $y_i = y_j$.
 - If $i < \alpha$ and X is an α -ry relation on U, then the i-th cylindrification C_iX is the set of all elements of U that agree with some element of X on each coordinate except the i-th one. To be more precise, $C_iX = \{y \in {}^{\alpha}U \mid \exists x \in X \forall i < \alpha \ (i \neq j \Rightarrow y_j = x_j)\}.$
- 2. A cylindic set algebra of dimension α is an algebra consisting of a set S of α -ry relation on some base set U with the constants and operations $0 = \emptyset$, $1 = {}^{\alpha}U$, \cap , -, the diagonal elements $\{D_{ij}\}_{i,j<\alpha}$, the cylindrifications $\{C\}_{i<\alpha}$.

A generalised cylindric set algebra of dimension α is a subdirect of cylindric algebras that have dimension α

- 3. A cylindric algebra of dimension α is an algebra $\mathcal{C} = \langle \mathcal{B}, \{c_i\}_{i < \alpha}, \{d_{ij}\}_{i,j < \alpha} \rangle$ such that
 - \mathcal{B} is a Boolean algebra, for each $i, j < \alpha$ c_i is an operator and $d_{ij} \in \mathcal{B}$
 - For each $i < \alpha$, $a \le c_i a$, $c_i(a \land c_i b) = c_i a \land c_i b$ and $d_{ii} = 1$
 - For every $i, j < \alpha$, $c_i c_j a = c_j c_i a$
 - If $k \neq i, j < \alpha$, then $d_{ij} = c_k(d_{ij} \wedge d_{jk})$
 - If $i \neq j$, then $c_i(d_{ij} \wedge a) \wedge c_i(d_{ij} \wedge -a) = 0$

 $\mathbf{C}\mathbf{A}_{\alpha}$ is the class of all cylindric algebras of dimension α

4. An α -dimensional cylindric algebra C is representable, if it is isomorphic to a generalised cylindric set algebra of dimension α . Such is isomorphism is a representation of C.

 \mathbf{RCA}_{α} is the class of all representable cylindric algebras that have dimension α . In particular, we are interested in the case when $\alpha = \omega$.

It is well known that \mathbf{RCA}_{α} is a variety, \mathbf{RCA}_{α} ($\alpha \leq 2$) is finitely axiomatisable and \mathbf{RCA}_{α} ($2 < \alpha < \omega$) has no finite axiomatisation, see [2].

Let $A \in \mathbf{C}_{\omega}$, then A has a *complete representation*, if this representation preserves all existing suprema.

Let us concretise the definition of a canonical extension for α -dimensional cylindric algebras:

Definition 7. Let $C = \langle C, +, -, 0, 1, \{d_{ij}\}_{i,j < \alpha}, \{c_i\}_{i < \omega} \rangle$ A be a BAO of type \mathbf{CA}_{α} Let $\mathbf{Uf}(C)$ be the set of all ultrafilters of \mathfrak{BC} , the Boolean part of C.

Let us define $C_i : Uf(C) \to Uf(C)$ for each $i, j < \alpha$ as

- 1. $\mathbf{C}_i \mathcal{X} = \{ \mathcal{F} \in \mathbf{Uf}(\mathcal{C}) \mid \exists \mathcal{F}' \in \mathbf{Uf}(\mathcal{C}) \ (a \in \mathcal{F} \Rightarrow c_i a \in \mathcal{F}'R) \},$
- 2. $D_{ij} = \{ \mathcal{F} \in \mathbf{Uf}(\mathcal{C}) \mid d_{ij} \in \mathcal{F} \}.$

The structure $C^+ = \langle \mathbf{Uf}(C), \cup, -, \emptyset, C, \mathbf{C}_{i < \alpha}, \{D_{ij}\}_{i,j < \alpha} \rangle$ is called the canonical extension of C.

Let us discuss the connection between representability and canonical extensions.

The following definitions and facts are due to Henkin, Monk, and Tarski [1].

Let $A \in \mathbf{CA}_{\alpha}$ and $x \in A$. Recall that the dimension of x is the set of all ordinals $\gamma < \alpha$ such that $c_{\gamma}x \neq x$. More formally,

$$\Delta x = \{ \gamma \mid \gamma < \alpha \& c_{\gamma} x \neq x \}$$

Let us discuss some metamathematical intuitions standing behind the notion of a dimension. Let Θ be a first-order theory and $\mathcal{C}/\equiv_{\Theta}$ its Lindenbaum-Tarski algebra. Let φ be a formula in the signature of Θ . Then $\Delta(\varphi/\Theta)$ consists of all $\kappa < \alpha$ such that $\exists x_{\kappa}\varphi \leftrightarrow \varphi$ is not valid in Θ . That is, $\Delta(\varphi/\Theta)$ contains ordinals κ for which x_{κ} is free in φ . Moreover, $\Delta(\varphi/\Theta)$ consists only of those ordinals for which x_{κ} is free in every $\psi \in \varphi/\Theta$.

In particular, an element x is called zero-dimensional if $\Delta x = 0$. Zero-dimensional elements reflect equivalence classes of sentences in the Lindenbaum-Tarski algebra of a given first-order theory. Thus, the set of zero-dimensional elements form a Boolean algebras of sentences associated with Θ .

Definition 8. Let \mathcal{A} be an α -dimensional cylindric algebra. Let α be an ordinal and Γ a subset α , then an element $x \in \mathcal{A}$ is Γ -closed if $\Delta x \cdot \Gamma = \emptyset$. Alternatively, x is a Γ -cylinder.

 $\operatorname{Cl}_{\Gamma} \mathcal{A}$ is the set of all Γ -closed elements.

Metamathematically, Γ -closed elements reflect universal closures (is it correct?).

Let $C = \langle C, +, -, 0, 1, \{d_{ij}\}_{i,j<\beta}, \{c\}_{c<\beta} \rangle$ be a β -dimensional cylindic algebra and $\alpha \leq \beta$ an ordinal. The α -th reduct of C, denoted as $\mathfrak{Ro}_{\alpha}C$, is an algebra having the form

$$\mathfrak{Ro}_{\alpha}\mathcal{C} = \langle C, +, -, 0, 1, \{d_{ij}\}_{i,j < \alpha}, \{c\}_{c < \alpha} \rangle$$

 \mathcal{B} is a subreduct of \mathcal{C} , denoted as $\mathcal{B} \subseteq^r \mathcal{C}$, if $\mathcal{B} \subseteq \mathfrak{Rd}_{\gamma}\mathcal{C}$ for some $\gamma \leqslant \beta$.

Definition 9. Let C be a β -dimensional cylindic algebra and α an ordinal such that $\alpha \leq \beta$. The neat α -reduct of C, denoted as $\mathfrak{Nr}_{\alpha}C$, is the subalgebra A of $\mathfrak{Rd}_{\alpha}C$ with $A = \operatorname{Cl}_{\kappa}C$ where $\alpha + \kappa = \beta$.

Let $\mathbb K$ be a class of β -dimensional cylindic algebras, then we put

$$\mathbf{Nr}_{\alpha}\mathbb{K} = \{\mathfrak{Mr}_{\alpha}\mathcal{C} \mid \mathcal{C} \in \mathbb{K}\}$$

An algebra \mathcal{B} is a neat subreduct of \mathcal{C} , or \mathcal{B} is neatly embeddable to \mathcal{C} if there exists an ordinal $\gamma \leqslant \alpha$ such that $\mathcal{C} \subseteq \mathfrak{Rd}_{\gamma}\mathcal{B}$.

One may define neat reducts alternatively as follows. Let \mathcal{C} be a β -dimensional cylindic algebra and α an ordinal such that $\alpha \leq \beta$. The neat α -reduct of \mathcal{C} is the α -dimensional cylindric algebra having the form

$$\mathfrak{Nr}_{\alpha}\mathcal{C} = \langle \{a \in \mathcal{C} \mid \forall j (\alpha \leqslant j \& j < \beta \Rightarrow c_j a = a)\}, +, -, 0, 1, \{d_{ij}\}_{i,j < \alpha}, \{c_{\gamma}\}_{\gamma} \rangle$$

We will adapting the following proof of the fact that **RRA** is canonical ¹ to our case. This proof is due to Monk, but that was describe in McKenzie's thesis [5].

- 1. A relation algebra \mathcal{A} is representable iff \mathcal{A} neatly embeds to some omege-dimensional cylinric algebra,
- 2. If \mathcal{A} neatly embeds in \mathcal{A} then \mathcal{A}^+ neatly embeds in \mathcal{B}^+ ,

¹This idea is by Ian Hodkinson

- 3. $\mathbf{C}\mathbf{A}_{\alpha}$ is closed under canonical extensions,
- 4. Voilá.

We descibe the following sketch of that proof published by Maddux in [4].

Theorem 2. RRA is closed under canonical extensions.

Proof. Lemma 1 (Henkin, Monk, Tarski). Let A be a BAO of type CA_{α} and B be a β -dimensional cylindric algebra such that $\beta \leq \alpha$ and A neatly embeds to \mathcal{B} by a complete embedding. Then \mathcal{A}^+ neatly embeds to \mathcal{B}^+ by a complete embedding.Proof. **Theorem 3** (This assumption is by Ian Hodkinson). Let A be a BAO of type $\mathbf{C}\mathbf{A}_{\omega}$ such that A neatly embeds into $\mathbf{C}\mathbf{A}_{\omega+\omega}$ by a complete embedding. Then \mathcal{A} is completely representable as $\mathbf{C}\mathbf{A}_{\omega}$. Proof. Hmmmm, I believe so. Lemma 1 and Theorem 2 imply the following theorem. **Theorem 4.** Let $C \in \mathbf{RCA}_{\omega}$, then $C^+ \in \mathbf{RCA}_{\omega}$. That is, \mathbf{RCA}_{ω} is closed under canonical extensions. *Proof.* :monkahmm:

References

- [1] L Henkin, J D Monk, and A Tarski. Cylindric Algebras Part I. North-Holland, 1971.
- [2] Leon Henkin, J. Donald Monk, and Alfred Tarski. Cylindric algebras. part ii. *Journal of Symbolic Logic*, 53(2):651–653, 1988.
- [3] Robin Hirsch and Ian Hodkinson. Relation algebras by games. Elsevier, 2002.
- [4] Roger D Maddux. Relation algebras, volume 13. Elsevier Science Limited, 2006.
- [5] Ralph McKenzie. The representation of relation algebras. PhD Thesis, University of Colorado, 1968.
- [6] Istvan Németi. A fine-structure analysis of first-order logic. Arrow Logic and Multimodal Logics, Studies in Logic, Language and Information, pages 221–247, 1996.
- [7] Steven K Thomason. Categories of frames for modal logic. *The journal of symbolic logic*, 40(3):439–442, 1975.