

Eng. Msc. Bruno Lima Wanderley

- 7 anos ministrando cursos na área de redes de computadores para empresas
- Instrutor na área de Redes/Segurança para empresas
- Professor da Faculdade de Tecnologia do Senac RJ
- Professor Convidado Universidade Federal Fluminense
- Mestre em Engenharia de Telecomunicações UFF
- Especialista em Tecnologia da Informação UCAM
- Engenheiro de Telecomunicações IESAM
- Cisco CCNA/ CompTIA Network+, Security+, NETCracker, CWNA

Parte 1 – Modelo OSI e Conceitos

Parte 2 – Breve Histórico e Nomenclaturas

Parte 3 – Inteconectando Redes de Computadores

Redes De Computadores- Começando

Parte 1 – Modelo OSI

Professor: Bruno Wanderley

Modelo OSI e Conceitos

f/UNISATTELECOM

- Para que os dados trafeguem de uma origem para seu destino em uma rede, é necessário que os artefatos da rede falem a mesma língua, ou PROTOCOLO.
- **PROTOCOLO** é uma série de regras que fazem com que as comunicações em uma rede seja mais eficiente.
- **Definição técnica:** Série de regras ou acordos, que determina o formato das transmissões dos dados. Camada N de uma máquina se comunica com a camada N da outra máquina. As regras e convenções utilizadas nessas comunicações são comumente conhecidas como Protocolo da camada N.

Conceitos Iniciais

- 7 Aplicação
- 6 Apresentação
- 5 Sessão
- 4 Transporte
- Rede
- 2 Enlace
- 1 Física

- Um sistema é dividido em sete níveis/camadas funcionais.
- Os elementos da rede ao se enquadrarem no modelo OSI, permitem que os dados sejam transmitidos transparentemente de um nó da rede para o outro.
- O processo de comunicação começa na camada de aplicação e atravessa as diversas camadas sob a forma de uma unidade de informação PDU(Protocol Data Unit).

Modelo OSI

Serviço: é um conjunto de primitivas (operações) que uma camada oferece à camada superior a ela.

Interface: informa como os processos acima dela podem acessá-la, especificando os parâmetros e os retornos esperados, mas não fala sobre o funcionamento interno da camada.

Protocolo: é um conjunto de regras que controlam o formato e o significado das informações trocadas pelas entidades pares (entidades da mesma camada localizada em máquinas diferentes) contidas em uma camada.

Comunicação ponto a ponto: Cada camada do modelo OSI na origem deve se comunicar com sua camada (PDU) correspondente no destino.

Durante esse processo, o protocolo de cada camada troca informações (PDUs) entre camadas pares.

PDU – Unidades de Dados de Protocolo. São as informações adicionadas de cada camada.

Aplicação

Apresentação

Sessão

Provê serviços de rede p/ aplicação do usuário, não provê serviços p/ nenhuma camada, somente p/ aplicações (word, excell, etc...)

Garante que informação seja corretamente interpretada pela aplicação

Estabelece, gerência troca de dados e termina conexão entre dois Hosts. Provê classe de serviço

- Fronteira entre Protocolos de aplicação e controle de fluxo de dados -

Segmenta dados no envio, remonta no recebimento. Estabelece, mantém e termina -Qualidade de serviço e circuitos (virtuais). Detecção e correção de erros. Controle de fluxo (fim a fim). Qualidade de serviço e confiabilidade. Comunicação confiável entre nós da rede.

Exemplo:

- Browser -

- Padronização Formato de Dados -

- Diálogo, conversa -

confiabilidade -

Exemplo:

3 Rede

- Conectividade, escolha/seleção do melhor caminho, roteamento, endereçamento lógico
- Escolha do
 Caminho, routing e endereçamento

2 Enlace

- Frame, acesso ao meio, endereçamento físico, notificação de erro, entrega ordenada dos frames, controle de fluxo
- Frame e controle de acesso ao meio

1 Física

- Especificações elétricas e mecânicas. Níveis de voltagem, timing, velocidade, distância máxima de transmissão e conectores
- Sinais e Meios

O encapsulamento empacota as informações de protocolo necessárias antes do trânsito pela rede. Assim, à medida que o pacote de dados desce pelas camadas do modelo OSI, ele recebe cabeçalhos, trailers e outras informações.

Ordem do encapsulamento: Mensagem (ou dados), Segmento (Camada 4), Pacote (Camada 3), Quadros (Camada 2) e Bits (Camada 1)

A palavra "cabeçalho" significa que informações de endereçamento foram adicionadas.

Redes De Computadores- Começando

Parte 2 – Histórico

Professor: Bruno Wanderley

Histórico e Nomenclaturas

f/UNISATTELECOM

Conceito de Redes de Computadores

Rede é uma estrutura que serve a vários terminais, permitindo que eles se comuniquem entre si;

No mundo da computação, as redes permitem:

Compartilhamento de dispositivos (economia de hardware);

Compartilhamento de aplicativos (economia de software);

Compartilhamento de meios;

Distribuição geográfica de informação.

Evolução do Ambiente de Processamento

Década de 1960

Todo o ambiente de computação (computador + entrada + saída) no mesmo lugar;

Pequena capacidade – sistemas monoprogramados;

Intervenção frequente do operador;

Poucos usuários, mas experts em computação.

Década de 1970

Aumenta a capacidade e surgem sistemas multiprogramados;

Torna-se possível o uso simultâneo e compartilhado por vários usuários;

Processamento centralizado, mas vários terminais;

Surgem o teleprocessamento e as redes clássicas;

Majoritariamente aplicações com batch.

Evolução do Ambiente de Processamento

Surgem os microprocessadores e as redes locais;

Grande difusão de processamento distribuído;

As técnicas de processamento e de computação se tornam acessíveis ao público em geral.

Low barriers to entry: *Microcomputer ecology*

Evolução do Ambiente de Processamento

Grande difusão de computadores pessoais, com unidades portáteis e palmtops;

Grande difusão de LANs, com interligação por MANs e WANs

Tecnologia favorecendo inteerconexão de sistemas, interoperabilidade, comunicações móveis e em grupos.

Década de 2000 – Tempos atuais

Convergência e integração em redes;

Busca de conectividade total e acesso móvel;

Difusão de redes de fibras ópticas garantindo faixa larga.

	CLÁSSICA	MODERNA
Período de desenvolvimento	1960 – 1980	1980 até hoje
Terminais	Burros ou semi-burros	Inteligente (micros)
Processadores	Mainframe, processamento central	Ambiente totalmente distribuído
Arquiteturas	Master/Slave Peer-to-peer	Peer-to-peer Cliente/servidor
Características	Topologia padronizada Protocolos desvinculados da topologia	Topologia variada Protocolos e topologia integrados

SIGLA	NOME COMPLETO	COBERTURA TÍPICA
LAN	Local Area Network	Conjunto de salas vizinhas num prédio
DAN	Departmental Area Network	Prédios vizinhos num mesmo campus
MAN	Metropolitan Area Network	Área limitada dentro de um cidade
WAN	Wide Area Network	Conjunto de cidades
GAN	Global Area Network	Cobertura global terrestre

Redes De Computadores- Começando

Parte 3 – Interconexão de Redes

Professor: Bruno Wanderley

Interconectando Redes de Computadores

f/UNISATTELECOM

Ampliação do Alcance das LANs

Uma LAN ocupa apenas uma área reduzida de espaço e serve a poucos usuários;

Havendo muitos usuários, é preciso montar diversas LANs:

Havendo usuários muito afastados, eles podem estar em LANs separadas:

É possível que o usuário de uma Lan deseje se conectar com o usuário de outra LAN:

Para atender esta necessidade é necessário interconectar as LANs.

Interconexão por dispositivos de interconexão

²³ por redes (backbones).

Dispositivos (Hardware)

Funcionalidades:

- Repetidor (repeater) L1;
- Ponte (bridge) L2;
- Switch L2;
- Roteador (router) L3;
- Gateway L7.

Router

Dispositivos (Hardware)

Hub/Repetidor

- Criadas com a evolução cabos de pares trançados de alta capacidade de banda e com suas restrições de comprimento.
- A rede física é hoje em dia estruturada em uma estrela com uma hub no centro.
- As hubs são utilizadas em LAN's do tipo Token Ring ou Ethernet, dessa forma o Controle de Acesso ao Meio (MAC) não muda.
- Uma hub tem tipicamente 24 ou 32 portas.
- As hubs são conectadas em cascata para aumentar o número de terminais "stackable hubs".
- Ainda é uma rede simples e somente um terminal pode transmitir a cada tempo

Hub/Repetidor

- >- Filtra, regenera e retransmite o sinal.
 - Aumenta o alcance de um enlace.
- Número máximo de repetidores (IEEE 802.3): 4.
- Atua na camada 1 do modelo OSI.
- Não efetua nenhum controle nos dados transmitidos.

Hub/Repetidor

- Repetidor de múltiplas portas
- "Simula" um Barramento compartilhado
- Isola falhas do meio físico
- Comum nas LANs Ethernet
- Topologia Física: Estrela
- Topologia Lógica: Barramento

- Solução alternativa, que fisicamente parece ser idêntica, mas na prática melhora a performance da rede.
- O endereço do destino está no início do frame, permitindo que o switch o leia e o encaminhe para o terminal endereçado, dessa forma os outros terminais não recebem o dado.
- Frames de diversas fontes podem ser comutados simultaneamente.
- É um "upgrade" da tecnologia de hub para switch.

Migration to Ethernet Switches

- São pontes de alta velocidade e com muitas portas
- Funciona como uma matriz de comutação.
- Segmenta o tráfego, evitando colisões.
- Atua na camada 2 do modelo OSI.
- Possui um barramento interno (Back-Plane) de alta velocidade.
- Acréscimo significativo de performance.
- Conexão dedicada por porta.
- Podem ser gerenciados remotamente

- Switches também fornecem compatibilidade entre portas de diferentes velocidades.
- Dessa forma algumas portas podem operar a 10
 Mbps e outras a 100Mbps e até 1000Mbps
 (1Gbps)
- A maioria dos switches automaticamente irá detectar a velocidade do terminal conectado na porta e ajustar adequadamente.
- Switches também permitem operação full duplex eliminando a necessidade de CSMA/CD.
 Isso também remove muitas restrições no
 tamanho da rede.

HAUS AT COMAR

- Utilizadas para suprir deficiências técnicas em LANs:
 - ✓ Número máximo de terminais que podem ser conectados.
 - ✓ Retardos de tempo devido ao excesso de terminais.
- Dividir a rede em duas partes conectando-as através de uma ponte (bridge).
- Uma bridge somente permitirá tráfego através dela se o tráfego precisar cruzá-la.

Roteador

Realiza a conexão entre tipos de LANs similares/diferentes

- Mais caros e complexos que os switches
- >Atua na camada 3 do modelo OSI.
- > Acessa o destino através de caminhos alternativos.
 - > Uso de uma tabela de rotas para diferentes destinos.

Consegue interligar redes de topologias diferentes.

Faz a conversão de quadros de camada 2

- Atua na camada de Aplicação (camada 7 do modelo OSI).
 - Tem capacidade para converter diferentes protocolos de redes (Ex. SNA e TCP/IP).
 - Exige muito processamento.

JNISAT