Soluções prova 2

Questão 0.1 (Formulação)

Seja $\varphi(x_1,\ldots,x_n)=\bigwedge_i l_{i1}\vee l_{i2}\vee l_{i3}$ com literais l_{ij} . Define variáveis de decisão $x_i\in\mathbb{B}$ para cada variável proposicional x_i . Define ainda uma variável auxiliar $l_{ij} \in B$ para cada literal e uma variável auxiliar c_i para cada cláusula. (Observe que usamos l_{ij} tanto para o literal de fórmula quanto para o nome da variável de decisão associado.)

$$\mathbf{maximiza} \qquad \sum_{i} c_{i} \tag{1}$$

sujeito a
$$l_{ij} = \begin{cases} x_k & \text{caso } l_{ij} = x_k \\ 1 - x_k & \text{caso } l_{ij} = \neg x_l \end{cases}$$
 $\forall i, j$ (2)

$$c_i \le l_{ij} \tag{3}$$

Questão 0.2 (Formulação)

Define variáveis de decisão $x_i \in \mathbb{B}$ tal que \sqrt{i} faz parte da partição 1, caso $x_i = 0$, e da partição 2 caso $x_i = 1$. Então o soma da primeira partição é $\sum_i x_i \sqrt{i}$ e da segunda $\sum_i (1 - x_i) \sqrt{i}$. O único problema na definição é minimizar a diferença, porque não temos modulo disponível:

minimiza
$$\left| \sum_{i} x_{i} \sqrt{i} - \sum_{i} (1 - x_{i}) \sqrt{i} \right|$$
 (4)

sujeito a
$$x_i \in \mathbb{B}$$
 (5)

Uma solução é definir uma variável $d \in \mathbb{R}$ para a diferença, a garantir usando restrições que d representa a diferença (positiva):

$$minimiza d (6)$$

sujeito a
$$d \ge \sum_{i} x_i \sqrt{i} - \sum_{i} (1 - x_i) \sqrt{i}$$
 (7)

$$d \ge \sum_{i} (1 - x_i)\sqrt{i} - \sum_{i} x_i \sqrt{i} \tag{8}$$

$$d \ge 0, x_i \in \mathbb{B} \tag{9}$$

Outra solução é supor que a primeira partição sempre é menor que a segunda, e maximizar ela (que vai minimizar a diferença):

$$\mathbf{maximiza} \qquad \sum_{i} x_i \sqrt{i} \tag{10}$$

maximiza
$$\sum_{i} x_{i} \sqrt{i}$$
 (10) sujeito a
$$\sum_{i} x_{i} \sqrt{i} \leq \sum_{i} (1 - x_{i}) \sqrt{i}$$
 (11)

$$x_i \in \mathbb{B} \tag{12}$$

Questão 0.3 (Matrizes totalmente unimodulares)

Se a matriz tem ao menos um elemento 0 ela é TU. Isso se aplica para 65 das 81 matrizes. Para os restantes 16 em $\{-1,1\}^{2\times 2}$ a condição para ser TU é que os produtos dos elementos da diagonal principal e secundária são ambas 1 ou ambas -1, porque nesse caso a determinante será 0, enquanto ele é ± 2 nos outros casos. Isso é o caso para 8 das 16 matrizes, que possuem 0, 2 ou 4 elementos -1:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Em total, 73 das 81 matrizes são TU.

1 v2689

Questão 0.4 (Desigualdades válidas)

- (a) O conjunto é vazio, se não existe nenhuma solução que satisfaz a restrição. Como $x_i = 0$ para todos i é um candidato, isso só acontece para b < 0.
- (b) Para $\sum_j a_j x_j \le b$ ser redundante, a restrição não exclui nenhuma solução, nem $x_i=1$ para todo i. Então a condição é $\sum_i a_i \le b$.
- (c) Para $x_j=0$ ser válida, nenhuma solução em X deve ter $x_i=1$. Isso só é possível para $a_j>b$, porque $x_i=1$ e $x_j=0$ para $i\neq j$ é uma solução candidata.
- (d) Para $x_i + x_j \le 1$ ser válida, nenhuma solução em X deve ter $x_i = x_j = 1$. Isso só é possível para $a_i + a_j > b$, porque $x_i = x_j = 1$ e $x_k = 0$ para $k \notin \{i, j\}$ é uma solução candidata.

Questão 0.5 (Branch and bound)

- (a) Encontramos duas soluções 32 e 31. Portanto o menor limite superior é 31. Considerando os limites inferiores, podemos concluir que na sub-arvóre da direita não existe solução menor que 27 (27 é possível explorando vértice 5). Na sub-árvore da esquerda, a menor solução ainda possível é 28 (explorando vértice 3), porque a sub-arvóre com raiz 4 possui limite inferior de 30. Portanto, para toda árvore podemos garantir o limite inferior de 27.
- (b) Podemos cortar 6 por limite e 7 por otimalidade. Temos que explorar 5, 8 e 3 (pode-se encontrar uma solução menor que 31 ainda).

v2689 2