

/	Please write clearly in	ı block capitals.	
	Centre number	Candidate number	
	Surname		
	Forename(s)		
	Candidate signature		
		I declare this is my own work.	/

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Tuesday 12 January 2021 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
TOTAL			

FM03

Answer all questions in the spaces provided.

A plane transformation is represented by the m	ıatrix
--	--------

$$\mathbf{M} = \begin{bmatrix} 25 & 8 \\ t & 3 \end{bmatrix}$$

where t is a constant.

The eigenvalues of M are 27 and 1

1	(a)	Find the value of	t
•	(∽/	i ilia tilo valao ol	ι

[2 marks]

+	_
L	_

1 (b) An eigenvector corresponding to the eigenvalue 27 is $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$

An eigenvector corresponding to the eigenvalue 1 is $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

1 (b) (i) State the equations of the invariant lines of the transformation.

[1 mark]

Answer	and

1 (b) (ii) State, with a brief reason, which one of the invariant lines found in **part** (b)(i) is also a line of invariant points.

[2 marks]

2	Evaluate the improper integral		
	$\int_{-1}^{\infty} (1+x) e^{-2x} dx$		
	showing the limiting process used. [6 mar	ʻks]	
		_	
	Answer		

3	(a)	By direct expansion, or otherwise, show that

$$\begin{vmatrix} 3 & -1 & 1 \\ 5 & k & 3 \\ k+2 & 1 & 2 \end{vmatrix} = k - k^2$$

[2 marks]

3 (b) A set of three planes is given by the system of equations

$$3x - y + z = 11$$

 $5x + ky + 3z = k + 9$
 $(k+2)x + y + 2z = -2$

where k is a real constant.

3	(b) (i)	Determine the number of solutions of the given system of equations when	<i>k</i> = 1
			[3 marks]

 Answer		
AH 19WCI		

3 **(b) (ii) Hence** give a geometrical interpretation of the significance of the result in **part (b)(i)** in relation to the three planes when k = 1

[1 mark]

Find	d the general solution of the	ne differential equation	
		$\frac{\mathrm{d}y}{\mathrm{d}x} + \left(\tanh x\right)y = \cosh^2 x + 2\mathrm{e}^x$	[7 marks]
			[/ marks]
_			
	Answer		

5		The cubic equation			
		$4z^3 + cz^2$	2+dz-12=0		
		where c and d are real numbers, has c	omplex roots α	and eta and a real	root γ
		It is given that $\alpha = 3 - \sqrt{3}i$			
5	(a) (i)	Write down the value of eta			
					[1 mark]
			0		
			β =		
5	(a) (ii)	Find the value of γ			
	(α) (ιι)	Tilla the value of y			[2 marks]
					-
			$\gamma = $		
5	(a) (iii)	Find the value of c and the value of d			[3 marks]
		c =		_ d =	

5	(b) (i)	Express $3-\sqrt{3}i$ in the form $re^{i\theta}$ where $r>0$ and $-\pi<\theta\leq\pi$	
			[2 marks]
		Answer	
5	(b) (ii)	Given that n is a positive integer, express $\alpha^n + \beta^n$ as a single trigonometric t	erm
J	(D) (II)	Given that n is a positive integer, express $\alpha + p$ as a single ingonometric t	
			[4 marks]
		Answer	
5	(b) (iii)	Hence find the complete set of positive integer values of n for which	
	- •		
		$\alpha^n + \beta^n = 0$	
			[2 marks]
		·	
			_
		Answer	

6	(a) (i)	Use the method of differences to sh	now that
---	---------	-------------------------------------	----------

$$\sum_{r=1}^{n} \frac{1}{(r+2)(r+3)} = \frac{1}{3} - \frac{1}{n+3}$$

[4 marks]

-	

6 (a) (ii) Prove by induction that, for all integers $n \ge 1$

$$\sum_{r=1}^{n} \frac{2}{(r+1)(r+2)(r+3)} = \frac{1}{6} - \frac{1}{(n+2)(n+3)}$$

[4 marks]

·	·

11

Turn over ▶

6 (b)

7	It is given that y satisfies the differential equation			
	$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 9e^{-3x} + 18$			
7 (a)	Find the values of the constants a and b for which			
	$ax^2e^{-3x}+b$			
	is a particular integral of this differential equation.	[5 marks]		

7	(b)	Hence solve the differential equation, expressing y in terms of x					
		given that $y = 3$ and	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \text{ when } x = 0$	[6 marks]			
			<i>y</i> =				
				_			

8	(a)	The non-singular matrix $\mathbf{M} = \begin{bmatrix} 2 & k+1 & -2 \\ k & 4 & -2 \\ -1 & 3 & 0 \end{bmatrix}$	
		where k is an integer.	
		Find \mathbf{M}^{-1} in terms of k	_
		[6 marks]	İ
			-
			-
			-
			_
			_
			_
			_
			-
			-
			-
			-
			-
			-
			-
			-
			-
			_
		Answer	-

			Do not write
8	(b)	The 3×3 matrix A represents a rotation through an angle of 90° about the z -axis.	outside the
		Write down the matrix A ⁻¹ [2 marks]	
		Answer	8
		Turn over for the next question	

9	(a)	Given that			
			$\tan y = \frac{1+x}{1-x}$	and $x \neq 1$	
		show that	1-x		
		Show that	d <i>y</i> 1		
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2}$		
					[3 marks]
		-			

9	(b)	Hence, by expressing	$\tan^{-1}\left(\frac{1+x}{1-x}\right)$	in terms of	$\tan^{-1}x$	describe the single geometrical
		transformation by whic				

$$y = \tan^{-1}x$$
 where $x < 1$

can be transformed onto the graph of

$$y = \tan^{-1} \left(\frac{1+x}{1-x} \right) \text{ where } x < 1$$

[4 marks]

_

Turn over for the next question

10	A curve has Cartesian equation					
	$y = 1 + 0.5 \sinh^2 2x$					
	The arc of the curve from $x=0$ to $x=0.5$ is rotated through 2π radians about the x -axis.					
10 (a)	Show that S , the area of the curved surface generated, is given by					
	$S = \frac{\pi}{2} \int_0^{0.5} (3 + \cosh 4x) \cosh 4x dx$					
	[6 marks]					

Do not write outside the box

)	Hence find the exact value of S leaving your answer in terms of hyperbolic fund I						
•							
	Answer						
	Turn over for the next question						

11	The line	L	has	equation
----	----------	---	-----	----------

$$\begin{pmatrix} \mathbf{r} - \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} 3 \\ -2 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

11	(a)	Find th	e direction	cosines	of	L
----	-----	---------	-------------	---------	----	---

[3 marks]

-		

Answer____

11 (b) The plane Π has equation

$$\mathbf{r} \cdot \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} = 37$$

The point A has coordinates (-2, 2, -4)

11	(b) (i)	Verify that	Α	lies on the line	L	but does not lie on the plane	П
----	---------	-------------	---	------------------	---	-------------------------------	---

[2 marks]

11 (b) (ii) The point D is the image of A after reflection in the plane Π	
	Find the coordinates of D	
		[5 marks]
		-
	Answer_	

The diagram shows a sketch of a curve C_1 , the pole O and the initial line. The curve C_1 intersects the initial line at the point D

The polar equation of C_1 is $r = (3 - \tan^2 \theta) \sec \theta$ where $-\frac{\pi}{3} \le \theta \le \frac{\pi}{3}$

12 (a)	Show that the area of the region bounded by the curve	C.	ic	$24\sqrt{3}$
12 (0.)	of the area of the region bounded by the curve	O 1	13	5

[5 marks]

12	(b)	A circle C_2 has Cartesian equation $x^2 + y^2 = 8$	
12	(b) (i)	By forming and solving a cubic equation, prove that C_1 and C_2 only intersect points, A and B , and find the Cartesian coordinates of A and B	at two [5 marks]
		Answer	
12	(b) (ii)	Find the area of the region bounded by the arc ADB of C_1 and the minor arc the circle C_2 giving your answer in an exact form.	AB of [3 marks]
		Answer	

- 13 A curve C has equation $y = \sinh^{-1} x$
- **13 (a)** Sketch the curve *C* on the axes below.

[2 marks]

13 (b) Prove that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(1 + x^2\right)^{-\frac{1}{2}}$$

[3 marks]

-		

13 (c)	It is given that for $ x < 1$ the first three non-zero terms in the Maclaurin series expansion						
	in ascending powers of x of $\sinh^{-1}x$ are						
	$x + ax^3 + bx^5$						
	Show that $a = -\frac{1}{6}$ and find the value of b						
	[4 marks]						
	ь —						
	$b = \underline{\hspace{1cm}}$						
	Question 13 continues on the next page						

13 (d)	Hence show that	
	$\lim_{x \to 0} \left[\frac{x^2 - x \sinh^{-1} x}{\left(1 - \cos 3x\right)^2} \right]$	
	exists and find its value.	[4 marks]
		[:
		-
	Anguar	
	Answer	
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	
	Copyright information	
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.	
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.	
	Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.	

