Bit Manipulation - 2

Jul 19, 2023

AGENDA

- Left Shift and Right shift operator
 Bit marking and related problems
 Negative nos:
 Ranges and overflows

Revision

$$11 \begin{vmatrix} 1 \end{vmatrix} = 11$$

$$a & 1 \end{vmatrix} = 1 \quad \text{if } \alpha \text{ is odd}$$

$$(\text{for Some no. a}) \quad \text{O if } a \text{ is even.}$$

$$a | a \end{vmatrix} = a$$

$$a \wedge a = 0$$

Left shift

14

It left-shifts all the bits.

00101011 2× 1 : left shift all bit by 1.

Olololle [O is put in LSB, all other bib one snighted to left by one].

00001010 223: left shift all bit by 3.

Consider & bits

$$5 < < 1$$
 | $3 < < 1$ | $15 < < 1$ | $= 10$ | $= 26$ | $= 30$

00000001 000011010 000011110

(MSB) This is always O.

0001011

6 5 43210

- 0*21 + 0*25 + 0*24 + 1*2° + 1*2°

0 + 2 1 + 0 + 2 5 + 1 + 2 4 + 0 + 2 3 + 1 + 2 +

$$\star$$
 $a < < 1 = & \star a$

*
$$a << \lambda = (a \times 2) \times \alpha$$

$$a << \beta = (a \times 2) \times \alpha$$

$$a << \beta = (a \times 2) \times \alpha$$

$$a << \beta = (a \times 2) \times \alpha$$

*
$$a < < m = a * a^m \rightarrow O(1)$$
 operation

Right Shiff

77

= 00000101

(All bib sight shift by 2, LSB disappears).

$$5771$$
 13771 12771 14771 $= 2$ $= 2$ $= 3$ $= 4$

$$101 > 7L$$
 $1101 > 72$ $1100 > 71$ $110 > 71$ $= 10$ $= 111$

*
$$\alpha > 7! = \alpha/2$$
 [Integer division]

* $\alpha > 7m = \alpha/2m$

Q. given a no. N, check if it bit is set or not-

Set bit: 1

Unset bit : 0


```
Code
```

```
check [th bit (int N, int i)

{

mask = 1 << i

res = N & mask

If (res = 20)

return false // Bit was unset.

else

return Tone // Bit was set.

}
```

Q. Given a no. N, set the ith bit.

: Make ith bit 1.

(no change if it is already one), N=24, i=2set Ith bit (int N, int i)

S

Set Ith bit (int N, int i) $\begin{cases}
0000100 \\
majk = 1 << i;
\end{cases}$ ruhun N | mask; 7.c. -> 0(1)

Q given a no. N, clear the ith bit.

(Make the ith bit 0.)

N=27, i=3

clear [thbit (int N, int i) {

musk = or (1 << i);

return N&mack;

Q. given a no. N, toggle ith bit.

-) 1-0
0-1

N=27 , i=a

000000 100 00011 2 11

toggle [thbit (int N, int i)

{

musk = I < i

return N ^ mack;

N= 11011 ^ 00100

3

```
Q. Count no. of set bits in N.
                         N=27
   if int > 32 bib
long - 64 bib.
                         cnt=0
                         for (int i=0; i<32;1+4)

if ( check [#bit (N, i))

cnt++;
                     N=27
11011 00000 Geece 060
         cnt=0

while (N>0)

if (N+1==1)

cnt++

N=N>>1

refurn ont.
```

Negative nos.

& bit nos.

How to represent negative no.? "2's complement" To get binary represent of -N 1. Get Binary repreh of N. 2. Invert the no. (flip all bib) 3. Add 1.

Painan rep. 06-5

00000101 = 5

Binary to Decimal

$$-128 + 32 + 8 + 4 + 3$$

$$= -128 + 32 + 14$$

$$= -(28 + 46)$$

= -82

imit
$$a=5$$
; [mt no. \Rightarrow 32 bits]

compiler disum that it is signed.

Max: $a^{32}-1$

Mim: $-a^{32}$

unsigned int $a=6$;

 $1=-3$; 1×1

Max: $a^{32}-1$

No Hyn bits.

 $1=-3$; 1×1

Min: 0

Range of Data types

int (32 bits)	Signed. unsigned	<u>Min</u> 31 -2	$\frac{Max}{2^{31}-1}$ $2^{32}-1$
long (64 b.h)	Signed.	- 2 ⁶³ O	2 ⁶³ -1 2 ⁶⁴ -1

Constaint

int
$$a = 10^5$$

int $b = 10^6$

(32bib)

int c = a+b

: Overflow

long c = a +b xxx

long c = (long) axb

1<= N <= 105 1<= Arrli7 <= 106

Sum of nos. in the averay,

rchun sum

Max possible sun valu
= 10"

10" cannot be stored in into

Party of Data types & Constraints.

Prit musking: $= \left(\frac{10^{1}}{2} \log_{2} 10\right)^{11}$ $= \left(\frac{10^{2}}{2} \log_{2} 10\right)^{11}$ $= \left(\frac{10^{2}}{2} \log_{2} 10\right)^{11}$ $= 2^{31 \times 11}$ $= 2^{31 \times 11}$ $= 2^{31 \times 11}$ $\Rightarrow prituri operator$

intacs;

CI = Alminist of Commist of