Examen

	Sujet de partiel
Intitulé	EPITA_ING2_S8_Promo 2024
MAJEURES	IMAGE/SCIA
Code cours	PBS2
Intervenant	Noé Biheng
Durée	2h
Droit ou pas aux documents	Aucun document n'est autorisé.
	Calculatrice non programmable autorisée.

Les exercices suivants sont indépendants. Une attention toute particulière sera accordée à la rédaction et à la clarté des raisonnements.

Exercice 1

- 1. Soit X une variable aléatoire suivant une loi uniforme sur $[\theta; 2\theta]$. Déterminer E(X) et V(X).
- 2. Montrer que la loi géométrique est sans mémoire.
- 3. La variable aléatoire $U_n:=\sum_{i=1}^n X_i^2$ suit une loi du Khi-deux à n degrés de liberté notée $\chi^2(n)$.

Rappelons que sa fonction caractéristique est : $\phi_{U_n}(t) = \frac{1}{(1-2it)^{\frac{n}{2}}}$. Montrer que :

- (a) $E(U_n) = n$,
- (b) $V(U_n) = 2n$,
- (c) En déduire deux estimateurs du paramètre n à l'aide la méthode des moments.

- 4. Soient X et Y deux variables aléatoires indépendantes et suivant toutes deux une loi normale centrée réduite.
 - Considérons les variables aléatoires U = 2X + Y et V = X 2Y.
 - (a) Montrer que le vecteur aléatoire $(U, V)^T$ est un vecteur gaussien.
 - (b) Les variables aléatoires U et V sont-elles indépendantes?
- 5. Déterminer l'information de Fischer $I(\lambda)$ pour la loi exponentielle de paramètre $\lambda > 0$.
- 6. Considérons les observations suivantes issues d'un échantillon d'une loi normale de moyenne m et de variance 4 dont nous connaissons les observations suivantes : 3; 10; 6; 7; 8 et 2. En détaillant précisément les calculs, déterminer un intervalle de confiance
- au niveau 0,90 pour la moyenne m.

 7. Supposons maintenant que les observations de la question précédente.
- 7. Supposons maintenant que les observations de la question précédente sont issues d'un échantillon d'une loi normale de moyenne et de variance inconnues.
 - En détaillant précisément les calculs, déterminer un intervalle de confiance au niveau 0,99 pour la variance σ^2 .

Exercice 2

La variable aléatoire Y suit une loi normale de moyenne 2000 et d'écart-type 100.

- 1. Déterminer les probabilités suivantes à l'aide de résultats du cours :
 - (a) $\mathbb{P}(Y \le 2000)$,
 - (b) $\mathbb{P}(Y = 1000)$,
 - (c) $\mathbb{P}(1900 \le Y \le 2000)$.
- 2. Déterminer les probabilités suivantes à l'aide de la table de la loi normale centrée réduite :
 - (a) $\mathbb{P}(Y \ge 2150)$,
 - (b) $\mathbb{P}(Y \le 1940)$.

Exercice 3

Rappelons qu'une variable aléatoire X suit une loi de Rayleigh de paramètre $\sigma>0$ si sa densité est donnée par :

$$f(x,\sigma) = 0$$
 si $x < 0$ et $f(x,\sigma) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)$ sinon.

Considérons n variables aléatoires indépendantes X_1, \ldots, X_n suivant une loi de Rayleigh. Elles forment un échantillon de taille n qui nous sera utile pour estimer le paramètre σ .

Rappelons que la fonction caractéristique de la loi **Khi-deux** à n degrés de libertés est : $\phi_{U_n}(t) = \frac{1}{(1-2it)^{\frac{n}{2}}}$.

Rappelons également que la densité de la loi **Khi-deux** à n degrés de libertés est : $f_{U_n}(x) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}e^{-\frac{x}{2}}x^{\frac{n}{2}-1}$.

Nous avons également vu que la fonction Γ vérifie, pour les entiers naturels $n:\Gamma(n)=(n-1)!$ pour $n\geq 1$ et $\Gamma(1)=0$.

- 1. Montrer que la fonction $f(.,\sigma)$ définit bien une densité pour tout réel $\sigma > 0$.
- 2. En détaillant les calculs et, en justifiant précisément, déterminer l'estimateur du maximum de vraisemblance du paramètre σ .
- 3. Considérons la variable aléatoire $T_n = \sum_{k=1}^n X_k^2$.

Nous admettrons que la variable aléatoire T_n suit une loi Gamma de paramètres n et $2\sigma^2$.

- (a) Exprimer l'estimateur du maximum de vraisemblance du paramètre σ en fonction de T_n .
- (b) Pourquoi est-il impossible d'utiliser directement la variable aléatoire T_n pour déterminer un intervalle de confiance pour le paramètre σ ?
- 4. Montrer que, si X_k suit une loi de Rayleigh de paramètre σ , alors $Y_k=\frac{X_k^2}{\sigma^2}$ suit une loi Khi-deux à deux degrés de liberté.
- 5. Déterminer la fonction caractéristique de $\frac{T_n}{\sigma^2}$ puis en déduire la loi de $\frac{T_n}{\sigma^2}$.

- 6. En déduire un intervalle de confiance au niveau de confiance $1-\alpha$ pour le paramètre σ (en fonction de fractiles de la loi Khi-deux dont vous préciserez le nombre de degrés de liberté).
- 7. Application numérique : (n = 5)Considérons les cinq observations suivantes issues de l'échantillon précédent : 1, 2, 3, 4 et 6.

Déterminer un intervalle de confiance au niveau de confiance 0,95 pour le paramètre σ .

Tableau N [1]

Aire sous la courbe normale à gauche de z, c'est à dire $P[Z \leq z]$, ou $Z \sim N(0;1)$.

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.00	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.10	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.20	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.30	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.40	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.50	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.60	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.70	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.80	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.90	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09

F.L. 2006 \bigodot Tableau construit avec SAS, Metapost et ConTeX

5

Tableau T1 [1/2]

Tableau de t^* tel qu'une variable de Student à dl degrés de liberté ait probabilité p d'être supérieure à t^*

	$P[T \geq t^*] = p$											
dl	0.25	0.2	0.15	0.1	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.8165	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.7649	.9785	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.7407	.9410	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.7267	.9195	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.7176	.9057	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.7111	.8960	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.7064	.8889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.7027	.8834	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.6998	.8791	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.6974	.8755	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.6955	.8726	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.6938	.8702	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.6924	.8681	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.6912	.8662	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.6901	.8647	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.6892	.8633	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.6884	.8620	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.610	3.922
	0.25	0.2	0.15	0.1	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005

F.L. 2006 C Tableau construit avec SAS, Metapost et ConTEX

6

Tableau C [1/2]

Percentiles de la distribution du $\chi^2.$ Valeurs de χ^2_P correspondant à P

dl	$\chi^2_{0.005}$	$\chi^{2}_{0.01}$	$\chi^2_{0.025}$	$\chi^{2}_{0.05}$	$\chi^{2}_{0.1}$	$\chi^{2}_{0.9}$	$\chi^{2}_{0.95}$	$\chi^2_{0.975}$	$\chi^{2}_{0.99}$	$\chi^2_{0.995}$
1	.0000	.0002	.0010	.0039	.0158	2.706	3.841	5.024	6.635	7.879
2	.0100	.0201	.0506	.1026	.2107	4.605	5.991	7.378	9.210	10.60
3	.0717	.1148	.2158	.3518	.5844	6.251	7.815	9.348	11.34	12.84
4	.2070	.2971	.4844	.7107	1.064	7.779	9.488	11.14	13.28	14.86
5	.4117	.5543	.8312	1.145	1.610	9.236	11.07	12.83	15.09	16.75
6	.6757	.8721	1.237	1.635	2.204	10.64	12.59	14.45	16.81	18.55
7	.9893	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48	20.28
8	1.344	1.646	2.180	2.733	3.490	13.36	15.51	17.53	20.09	21.95
9	1.735	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67	23.59
10	2.156	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21	25.19
11	2.603	3.053	3.816	4.575	5.578	17.28	19.68	21.92	24.72	26.76
12	3.074	3.571	4.404	5.226	6.304	18.55	21.03	23.34	26.22	28.30
13	3.565	4.107	5.009	5.892	7.042	19.81	22.36	24.74	27.69	29.82
14	4.075	4.660	5.629	6.571	7.790	21.06	23.68	26.12	29.14	31.32
15	4.601	5.229	6.262	7.261	8.547	22.31	25.00	27.49	30.58	32.80
16	5.142	5.812	6.908	7.962	9.312	23.54	26.30	28.85	32.00	34.27
17	5.697	6.408	7.564	8.672	10.09	24.77	27.59	30.19	33.41	35.72
18	6.265	7.015	8.231	9.390	10.86	25.99	28.87	31.53	34.81	37.16
dl	$\chi^{2}_{0.005}$	$\chi^{2}_{0.01}$	$\chi^{2}_{0.025}$	$\chi^{2}_{0.05}$	$\chi^{2}_{0.1}$	$\chi^{2}_{0.9}$	$\chi^{2}_{0.95}$	$\chi^{2}_{0.975}$	$\chi^{2}_{0.99}$	$\chi^{2}_{0.995}$

F.L. 2006 \bigcirc Tableau construit avec SAS, Metapost et ConT_EX