(19)

(11) **EP 1 633 865 B1**

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 28.09.2011 Bulletin 2011/39

(21) Application number: 04741841.3

(22) Date of filing: 18.06.2004

(51) Int Cl.: C12N 9/56 (2008.01) C12N 9/64 (2008.01)

C12N 9/50 (2006.01) C12N 9/00 (2006.01)

(86) International application number: PCT/EP2004/051172

(87) International publication number: WO 2004/113521 (29.12.2004 Gazette 2004/53)

(54) **NEW BIOLOGICAL ENTITIES AND THE USE THEREOF**NEUE BIOLOGISCHE EINHEITEN UND DEREN VERWENDUNG

NOUVELLES ENTITÉS BIOLOGIQUES ET LEUR UTILISATION

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PL PT RO SE SI SK TR

(30) Priority: 18.06.2003 EP 03013819 10.11.2003 EP 03025851 11.11.2003 EP 03025871

(43) Date of publication of application: 15.03.2006 Bulletin 2006/11

(73) Proprietor: Bayer Pharma Aktiengesellschaft 13353 Berlin (DE)

(72) Inventors:

HAUPTS, Ulrich
 50829 Köln (DE)

 KOLTERMANN, Andre 50829 Köln (DE)

 SCHEIDIG, Andreas 50829 Köln (DE) VOETSMEIER, Christian 50829 Köln (DE)

 KETTLING, Ulrich 50829 Köln (DE)

(56) References cited: WO-A-02/090300

 FORLANI F ET AL: "Evidence that elongation of the catalytic loop of the Azotobacter vinelandii rhodanese changed selectivity from sulfur- to phosphate-containing substrates." PROTEIN ENGINEERING, vol. 16, no. 7, July 2003 (2003-07), pages 515-519, XP002272632 ISSN: 0269-2139

 ALTAMIRANO M M ET AL: "Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold" NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, vol. 403, no. 6770, 10 February 2000 (2000-02-10), pages 617-622, XP002173865 ISSN: 0028-0836

P 1 633 865 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present disclosure provides engineered enzymes comprised of a protein scaffold and Specificity Determining Regions, the production of such enzymes and the use thereof for therapeutic, research, diagnostic, nutritional care, personal care and industrial purposes.

Background

10

15

25

30

55

[0002] Academic and industrial research continuously searches for functional proteins to be used as therapeutic, research, diagnostic, nutritional, personal care or industrial agents. Today, such functional proteins can be classified mainly into two categories: natural proteins and engineered proteins. Natural proteins, on the one hand, are discovered from nature, e.g. by screening natural isolates or by sequencing genomes from diverse species. Engineered proteins, on the other hand, are typically based on known proteins and are altered in order to acquire modified functionalities. Herein is disclosed engineered proteins with novel functions as compared to the starting components. Such proteins are called NBEs (New Biologic Entities). The NBEs disclosed are engineered enzymes with novel substrate specificities or fusion proteins of such engineered enzymes with other functional components.

[0003] Specificity is an essential element of enzyme function. A cell consists of thousands of different, highly reactive catalysts. Yet the cell is able to maintain a coordinated metabolism and a highly organized three-dimensional structure. This is due in part to the specificity of enzymes, i.e. the selective10 conversion of their respective substrates. Specificity is a qualitative and a quantitative property: the specificity of a particular enzyme can vary widely, ranging from just one particular type of target molecules to all molecular types with certain chemical substructures. In nature, the specificity of an organism's enzymes has been evolved to the particular needs of the organism. Arbitrary specificities with high value for therapeutic, research, diagnostic, nutritional or industrial applications are unlikely to be found in any organism's enzymatic repertoire due to the large space of possible specificities. The only realistic way of obtaining such specificities is their generation de novo.

[0004] When comparing enzymes with binders, a paradigm of specificity is given by antibodies recognizing individual epitopes as small distinct structures within large molecules. The naturally occurring vast range of antibody specificities is attributed to the diversity generated by the immune system combined with natural selection. Several mechanisms contribute to the vast repertoire of antibody specificity and occur at different stages of immune response generation and antibody maturation (Janeway, C et al. (1999) Immunobiology, Elsevier Science Ltd., Garland Publishing, New York). Specifically, antibodies contain complementarity determining regions (CDRs) which interact with the antigen in a highly specific manner and allow discrimination even between very similar epitopes. The light as well as the heavy chain of the antibody each contribute three CDRs to the binding domain. Nature uses recombination of various gene segments combined with further mutagenesis in the generation of CDRs. As a result, the sequences of the six CDR loops are highly variable in composition and length and this forms the basis for the diversity of binding specificities in antibodies. A similar principle for the generation of a diversity of catalytic specificities is not known from nature.

[0005] Catalysis, i.e. the increase of the rate of a specific chemical reaction, is besides binding the most important protein function. Catalytic proteins, i.e. enzymes, are classified according to the chemical reaction they catalyze.

[0006] Transferases are enzymes transferring a group, for example, the methyl group or a glycosyl group, from one compound (generally regarded as donor) to another compound (generally regarded as acceptor). For example, glycosyltransferases (EC 2.4) transfer glycosyl residues from a donor to an acceptor molecule. Some of the glycosyltransferases also catalyze hydrolysis, which can be regarded as transfer of a glycosyl group from the donor to water. The subclass is further subdivided into hexosyltransferases (EC 2.4.1), pentosyltransferases (EC 2.4.2) and those transferring other glycosyl groups (EC 2.4.99, Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB)).

[0007] Oxidoreductases catalyze oxido-reductions. The substrate that is oxidized is regarded as hydrogen or electron donor. Oxidoreductases are classified as dehydrogenases, oxidases, mono- and dioxygenases. Dehydrogenases transfer hydrogen from a hydrogen donor to a hydrogen acceptor molecule. Oxidases react with molecular oxygen as hydrogen acceptor and produce oxidized products as well as either hydrogen peroxide or water. Monooxygenases transfer one oxygen atom from molecular oxygen to the substrate and one is reduced to water. In contrast, dioxygenases catalyze the insert of both oxygen atoms from molecular oxygen into the substrate.

[0008] Lyases calalyze elimination reactions and thereby generate double bonds or, in the reverse direction, catalyze the additions at double bonds. Isomerases catalyze intramolecular rearrangements. Ligases catalyze the formation of chemical bonds at the expense of ATP consumption.

[0009] Finally, hydrolases are enzymes that catalyze the hydrolysis of chemical bonds like C-O or C-N. The E.C..classification for these enzymes generally classifies them by the nature of the bond hydrolysed and by the nature of the substrate. Hydrolases such as lipases and proteases play an important role in nature as well in technical applications of biocatalysts. Proteases hydrolyse a peptide bond within the context of an oligo- or polypeptide. Depending on the

catalytic mechanism proteases are grouped into aspartic, serin, cysteine, metallo- and threonine proteases (Handbook of proteolytic enzymes. (1998) Eds: Barret, A; Rawling, N.; Woessner, J.; Academic Press, London). This classification is based on the amino acid side chains that are responsible for catalysis and which are typically presented in the active site in very similar orientation to each other. The scissile bond of the substrate is brought into register with the catalytic residues due to specific interactions between the amino acid side chains of the substrate and complementary regions of the protease (Perona, J. & Craik, C (1995) Protein Science, 4, 337-360). The residues on the N- and C-terminal side of the scissile bond are usually called P₁, P₂, P₃ etc and P₁', P₂', P₃' and the binding pockets complementary to the substrate S₁, S₂, S₃ and S₁', S₂', S₃', respectively (nomenclature according to Schlechter & Berger, Biochem. Biophys. Res. Commun. 27 (1967) 157-162). The selectivity of proteases can vary widely from being virtually nonselective - e.g. the Subtilisins - over a strict preference at the P₁ position - e.g. Trypsin selectively cutting on the C-terminal side of arginine or lysine residues - to highly specific proteases - e.g. human tissue-type plasminogen activator (t-PA) cleaving at the C-terminal side of the arginine in the sequence CPGRWG (Ding, L et al. (1995) Proc. Natl. Acad. Sci. USA 92, 7627-7631; Coombs, G et al. (1996) J. Biol. Chem. 271, 4461-4467).

10

25

30

45

[0010] The specificity of proteases, i.e. their ability to recognize and hydrolyze preferentially certain peptide substrates, can be expressed qualitatively and quantitatively. Qualitative specificity refers to the kind of amino acid residues that are accepted by a protease at certain positions of the peptide substrate. For example, trypsin and t-PA are related with respect to their qualitative specificity, since both of them require at the P₁ position an arginine or a similar residue. On the other hand, quantitative specificity refers to the relative number of peptide substrates that are accepted as substrates by the protease, or more precisely, to the relative k_{cat}/k_M ratios of the protease for the different peptides that are accepted by the protease. Proteases that accept only a small portion of all possible peptides have a high specificity, whereas the specificity of proteases that, as an extreme, cleave any peptide substrate would theoretically be zero.

[0011] Comparison of the primary, secondary as well as the tertiary structure of proteases (Fersht, A., Enzyme Structure and Mechanism, W. H. Freeman and Company, New York, 1995) allows identification of classes showing a high degree of conservation (Rawlings, N.D. & Barrett, A.J. (1997) In: Proteolysis in Cell Functions Eds. Hopsu-Havu, V.K.; Jarvinen, M.; Kirschke, H., pp. 13-21, IOS Press, Amsterdam). A widely accepted scheme for protease classification has been proposed by Rawlings & Barrett (Handbook of proteolytic enzymes. (1998) Eds: Barret, A; Rawling, N.; Woessner, J.; Academic Press, London). For example, the serine proteases family can be subdivided into structural classes with chymotrypsin (class S1), subtilisin (class S8) and carboxypeptidase (class SC) folds, each of which includes nonspecific as well as specific proteases (Rawlings, N.D. & Barrett, A.J. (1994) Methods Enzymol. 244, 19-61). This applies to other protease families analogously. An additional distinction can be made according to the relative location of the cleaved bond in the substrate. Carboxy- and aminopeptidases cleave amino acids from the C- and N-terminus, respectively, while endopeptidases cut anywhere along the oligopeptide.

[0012] Many applications would be conceivable if enzymes with a basically unlimited spectrum of specificities were available. However, the use of such enzymes with high, low or any defined specificity is currently limited to those which can be isolated from natural sources. The field of application for these enzymes varies from therapeutic, research, diagnostic, nutritional to personal care and industrial purposes.

[0013] Enzyme additives in detergents have come to constitute nearly a third of the whole industrial enzyme market. Detergent enzymes include proteinases for removing organic stains, lipases for removing greasy stains, amylases for removing residues of starchy foods and cellulases for restoring of smooth surface of the fiber. The best known detergent enzyme is probably the nonspecific proteinase subtilisin, isolated from various *Bacillus* species.

[0014] Starch enzymes, such as amylases, occupy the majority of those used in food processing. While starch enzymes include products that are important for textile desizing, alcohol fermentation, paper and pulp processing, and laundry detergent additives, the largest application is for the production of high fructose corn syrup. The production of corn syrup from starch by means of industrial enzymes was a successful alternative to acid hydrolysis.

[0015] Apart from starch processing, enzymes are used for an increasing range of applications in food. Enzymes in food can improve texture, appearance and nutritional value or may generate desirable flavours and aromas. Currently used food enzymes in bakery are amylase, amyloglycosidases, pentosanases for breakdown of pentosan and reduced gluten production or glucose oxidases to increase the stability of dough. Common enzymes for dairy are rennet (protease) as coagulant in cheese production, lactase for hydrolysis of lactose, protease for hydrolysis of whey proteins or catalase for the removel of hydrogen peroxides. Enzymes used in brewing process are the above named amylases, but also cellulases or proteases to clarify the beer from suspended proteins. In wines and fruit juices, cloudiness is more commenly caused by starch and pectins so that amylases and pectinases increase yield and clarification. Papain and other proteinases are used for meat tenderizing.

[0016] Enzymes have also been developed to aid animals in the digestion of feed. In the western hemisphere, com is a major source of food for cattle, swine, and poultry. In order to improve the bioavailability of phosphate from corn, phytase is commonly added (Wyss, M. et al. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): Catalytic properties. Applied & Environmental Microbiology 65, 367-373 (1999)). Moreover, phytate hydrolysis has been shown to bring about improvements in digestibility of protein and absorption of minerals

such as calcium (Bedford, M. R. & Schulze, H. EXOGENOUS ENZYMES FOR PIGS AND POULTRY [Review]. Nutrition Research Reviews 11, 91-114 (1998)). Another major feed enzyme is xylanase. This enzyme is particularly useful as a supplement for feeding stuff comprising more than about 10% of wheat barley or rye, because of their relatively high soluble fiber content. Xylanases cause two important actions: reduction of viscosity of the intestinal contents by hydrolyzing the gel-like high molecular weight arabinoxylans in feed (Murphy, T., C., Bedford, M. R. & McCracken, K. J. Effect of a range of new xylanases on in vitro viscosity and on performance of broiler diets. British Poultry Science 44, S16-S18 (2003)) and break down of polymers in cell wallswhich improve the bioavailability of protein and starch.

10

20

25

30

40

45

50

55

[0017] Biotech research and development laboratories routinely use special enzymes in small quantities along with many other reagents. These enzymes create a significant market for various enzymes. Enzymes like alkaline phosphatase, horseradish peroxidase and luciferase are only some examples. Thermostable DNA polymerases like Taq polymerase or restriction endonucleases revolutionized laboratory work. Therapeutic enzymes are a particular class of drugs, categorized by the FDA as biologicals, with a lot of advantages compared to other, especially non-biological pharmaceuticals. Examples for successful therapeutic enzymes are human clotting factors like factor VIII and factor IX for human treatment. In addition, digestive enzymes are used for various deficiencies in human digestive processes. Other examples are t-PA and streptokinase for the treatment of cardiovascular disease, beta-qlucocerebrosidase for the treatment of Type I Gaucher disease, L-asparaginase for the treatment of acute lymphoblastic leukemia and DNAse for the treatment of cystic fibrosis. An important issue in the application of proteins as therapeutics is their potential immunogenicity. To reduce this risk, one would prefer enzymes of human origin, which narrows down the set of available enzymes. The provision of designed enzymes, preferably of human origin, with novel, tailor-made specificities would allow the specific modification of target substrates at will, while minimizing the risk of immunogenicity. A further advantage of highly specific enzymes as therapeutics would be their lower risk of side effects. Due to the limited possibility of specific interactions between a small molecule and a protein, binding to non-target proteins and therefore side effects are quite common and often cause termination of an otherwise promising lead compound. Specific enzymes, on the other hand, provide many more contact sites and mechanisms for substrate discrimination and therefore enable a higher specificity and thereby less side activities.

[0018] Proteases represent an important class of therapeutic agents (Drugs of today, 33, 641-648 (1997)). However, currently the therapeutic protease is usually a substitute for insufficient activity of the body's own proteases. For example, factor VII can be administered in certain cases of coagulation deficiencies of bleeders or during surgery (Heuer L.; Blumenberg D. (2002) Anaesthesist 51:388). Tissue-type plasminogen activator (t-PA) is applied in acute cardiac infarction, initializing the dissolution of fibrin clots through specific cleavage and activation of plasminogen (Verstraete, M. et al. (1995) Drugs, 50, 29-41). So far a protease with taylor-made specificity is generated to provide a therapeutic agent that specifically activates or inactivates a disease related target protein.

[0019] Monoclonal antibodies represent another important biological class of substances with therapeutic capabilities. One of the main antibody targets are tumor necrosis factors (TNFs) which belong to the family of cytokines. TNFs play a major role in the inflammation process. As homotrimers they could bind to receptors of nearly every cell. They activate a multiplicity of cellular genes, multiple signal transduction mechanisms, kinases and transcription factors. The most important TNFs are TNF-alpha and TNF-beta. TNF-alpha is produced by macrophages, monocytes and other cells. TNF-alpha is an inflammation mediator. Therefore, research of the last decade has been focused on TNF-alpha inhibitors like monoclonal antibodies as possible therapeutics for different therapeutic indications like Rheumatoid Arthritis, Crohn's disease or Psoriasis (Hamilton et al. (2000) Expert Opin Pharmacother, 1 (5): 1041-1052). One of the major disadvantages of monoclonal antibodies are their high costs, so that new biological alternatives are of great importance.

[0020] There are a lot of examples for engineered enzymes in literature. Fulani et al. (Fulani F. et al. (2003) Protein Engineering 16, 515-519) describe a rhodanase (thiosulfat:cyanide sulfurtransferase) from Azotobacter vinelandii which has a catalytic domain structurally related to catalytic subunit of Cdc25 phosphatase enzymes. The difference in catalytic mechanism depends on the different size of the active site. Both rhodanase and phosphatase are highly specific on different substrates (sulfate vs. phosphate). The catalytic mechanism of the rhodanase could be shifted towards serine/ threonine phosphatase by single-residue insertion. Therefore, Fulani et al. give a single example for the change of a catalytic mechanism by structural comparison and sequence alignment of naturally known enzymes from different enzyme classes but lack an indication of how to generate a user-definable substrate specificity while keeping the same catalytic mechanism.

[0021] The thioredoxin reductase described by Briggs et al. (WO 02/090300 A2) has an altered cofactor specificity which preferably binds NADPH compared to NADH. Thus, both enzymes, the starting point as well as the resulting engineered enzyme are highly specific towards different substrates. The methods to achieve such an altered substrate specificity are either computational processing methods or sequence alignments of related proteins to define variable and conserved residues. They all have in common that they are based on the comparison of structures and sequences of proteins with known specificities followed by the transfer of the same to another backbone.

[0022] There are other examples of specificity-engineered enzymes and, in particular, of proteases which have been published in the literature. None of these examples, however, provides a means for generating novel specificites com-

pared to the specificity of the starting material used within the described methods. The methods range from structure-directed single point mutations (Kurth, T. et al. (1998) Biochemistry 37, 11434-11440; Ballinger, M et al. (1996) Biochemistry, 35:13579-13585), exchange of surface loops between two specific proteases (Horrevoets et al. (1993) J. Biol. Chem. 268, 779-782), to random mutagenesis either regio-selectively or across the whole gene combined with invitro or in-vivo selection (Sices, H. & Kristie, T. (1998) Proc. Natl. Acad. Sci. USA, 95, 2828-2833).

[0023] The rational design of protease specificity is limited to very few examples. This approach is severely limited by the insufficient understanding of the complexities that govern folding and dynamics as well as structure-function relationships in proteins (Corey, M.J. & Corey, E. (1996) Proc. Natl. Acad. Sci. USA, 93:11428-11434). It is therefore difficult to alter the primary amino acid sequence of a protease in order to change its activity or specificity in a predictive way. In a successful example, Kurth et al. engineered trypsin to show a preference for a dibasic motive (Kurth, T. et al. (1998) Biochemistry, 37:11434-11440). In another example, Hedstrom et al. converted the S₁ substrate specificity of trypsin to that of chymotrypsin (Hedstrom, L. et al. (1992) Science, 255:1249-1253). This is an example where a known property was transferred from one backbone to another.

10

20

30

40

45

55

[0024] Ballinger et al. (WO 96/27671) describe subtilisin variants with combination mutations (N62D/G166D, and optionally Y104D) having a shift of substrate specificity towards peptide or polypeptide substrates with basic amino acids at the P1, P2 and P4 positions of the substrate. Suitable substrates of the variant subtilisin were revealed by sorting a library of phage particles (substrate phage) containing five contiguous randomized residues. These subtilisin variants are useful for cleaving fusion proteins with basic substrate linkers and processing hormones or other proteins (in vitro or in vivo) that contain basic cleavage sites. The problems associated with rational redesign of enzymes can partially be overcome by directed evolution (as disclosed in PCT/EP03/04864). These studies can be classified by their expression and selection systems. Genetic selection means to produce inside an organism an enzyme, e.g. a protease, which is able to cleave a precursor protein which in turn results in an alteration of the growth behavior of the producing organism. From a population of organisms with different proteases those can be selected which have an altered growth behavior. This principle was for example reported by Davis et al. (US 5258289, WO 96/21009). The production of a phage system is dependent on the cleavage of a phage protein which only can be activated in the presence of a proteolytic enzyme which is able to cleave the phage protein. Other approaches use a reporter system which allows a selection by screening instead of a genetic selection, but also cannot overcome the intrinsic insufficiency of the intracellular characterization of enzymes.

[0025] Systems to generate enzymes with altered sequence specificities with self-secreting enzymes are also reported. Duff et al. (WO 98/11237) describe an expression system for a self-secreting protease. An essential element of the experimental design is that the catalytic reaction acts on the protease itself by an autoproteolytic processing of the membrane-bound precursor molecule to release the matured protease from the cellular membrane into the extracellular environment. Therefore, a fusion protein must be constructed where the target peptide sequence replaces the natural cleavage site for autoproteolysis. Limitations of such a system are that positively identified proteases will have the ability to cleave a certain amino acid sequence but they also may cleave many other peptide sequences. Therefore, high substrate specificity can not be achieved. Additionally, such a system is not able to control that selected proteases cleave at a specific position in a defined amino acid sequence and it does not allow a precise characterization of the kinetic constants of the selected proteases (k_{cat}, K_M).

[0026] A method has been described that aims at the generation of new catalytic activities and specificities within the α/β -barrel proteins (WO 01/42432; Fersht et al, Methods of producing novel enzymes; Altamirano et al. (2000) Nature 403, 617-622). The α/β -barrel proteins comprise a large superfamily of proteins accounting for a large fraction of all known enzymes. The structure of the proteins is made from a/β -barrel surrounded by α -helices. The loops connecting β -strands and helices comprise the so-called lid-structure including the active site residues. The method is based on the classification of α/β -barrel proteins into two classes based on the catalytic lid structure. An extensive comparison of α/β -barrel protein structures led the authors to the conclusion that the substrate binding and specificity is primarily defined by the barrel structure while the specificity of the chemical reaction resides within the loops. It is suggested that barrels and lid structures from different enzymes can be combined to generate new enzymatic activities and to provide a starting point to fine tune the properties by targeted or randomized mutagenesis and selection. The method does not provide for the generation of user-defined specificity.

[0027] In summary, it is clear that there are many possible applications in the fields of therapeutics, research and diagnostics, industrial enzymes, food and feed processing, cosmetics and other areas that would become possible by the availability of enzymes with a novel substrate specificity. However, only a limited number of specific enzymes has been identified from natural sources so far. Methods of rational design to modify, alter, convert or transfer sequence specificity as well as random approaches described above did not enable the generation of a novel and user-definablespecificity that was not present in the employed starting material.

[0028] Therefore, none of the currently available methods can provide enzymes with a novel and user-defined sequence specificity. In contrast, the current invention provides such enzymes as well as methods for generating them.

Summary of the Invention

10

20

25

30

35

40

45

50

55

[0029] The objective is to provide engineered proteins with novel functions that do not exist in the components used for the engineering of such proteins. In particular, the disclosure provides enzymes with user-definable specificities. User-definable specificity means that enzymes are provided with specificities that do not exist in the components used for the engineering of such enzymes. The specificities can be chosen by the user so that one or more intended target substrates are preferentially recognised and converted by the enzymes. Furthermore, the disclosure provides enzymes that possess essentially identical sequences to human proteins but have different specificities. In a particular embodiment, the disclosure provides proteases with user-definable specificities.

[0030] Furthermore, the present disclosure is directed to engineered enzymes which are fused to one or more further functional components. These further components can be proteinacious components which preferably have binding properties and are of the group consisting of substrate binding domains, antibodies, receptors or fragments thereof. Furthermore, these further components can be further functional components, preferably being selected from the group consisting of polyethylenglycols, carbohydrates, lipids, fatty acids, nucleic acids, metals, metal chelates, and fragments or derivatives thereof. The resulting fusion proteins are understood as enzymes with user-definable specificities.

[0031] Besides, the disclosure is directed to the application of such enzymes with novel, user-definable specificities for therapeutic, research, diagnostic, nutritional, personal care or industrial purposes. Moreover, the disclosure is directed to a method for generating engineered enzymes with user-definable specificities. In particular, the disclosure is directed to generate enzymes that possess essentially identical sequences to human enzymes but have different specificities.

[0032] This problem has been solved by the embodiments specified in the description below and in the claims. The present disclosure is thus directed to

- (1) a proteolytic enzyme with catalytic activity of defined specificity not conferred by the protein scaffold and characterized by a combination of the following components:
 - (a) a protein scaffold having at least 90% homology to human trypsin I having the amino acid sequence shown in SEQ ID NO:1, and being capable to catalyze at least one peptide cleavage on at least one target peptide substrate, and
 - (b) one or more specificity determining regions inserted or substituted with the protein scaffold at sites in the protein scaffold that enable the resulting proteolytic enzyme to distinguish the target substrate at as many sites as are necessary to preferentially hydrolyse the target substrate versus one or more other substrates and wherein the specificity determining regions are inserted or substituted at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 18-25, 38-48, 54-63, 73-86, 122-130, 148-156, 165-171 and 194-204 in human trypsin I having the amino acid sequence shown in SEQ ID NO: 1, and wherein the specificity determining regions are peptide sequences having a length of less than 50 amino acid residues;
- (2) the use of a proteolytic enzyme as defined in (1) above for therapeutic, research, diagnostic, nutritional, personal care or industrial purposes;
- (3) a method for generating a proteolytic enzyme as defined in (1) above having defined specificity towards at least one target substrate, such specificity not being present in the individual starting components, comprising at least the following steps:
 - (a) providing a protein scaffold having at least 90% homology to human trypsin I having the amino acid sequence shown in SEQ ID NO:1, which catalyzes at least one chemical reaction on at least one target substrate,
 - (b) generating a library of proteolytic enzymes or isolated proteolytic enzymes by combining a polynucleotide encoding the protein scaffold from step (a) via insertion or substitution with 1 to 11 fully or partially random synthetic oligonucleotide sequences encoding peptide sequences with a length of less than 50 amino acid residues at one or more positions from the group of positions within the polynucleotide encoding protein scaffold that correspond structurally or by amino acid sequence homology to the regions 18-25, 38-48, 54-63, 73-86, 122-130, 148-156, 165-171 and 194-204 in human trypsin I having the amino acid sequence shown in SEQ ID NO:1, expressing said enzymes, and (c) selecting out of the library of proteolytic enzymes generated in step (b) one or more enzymes that have defined specificities not conferred by the protein scaffold provided in step (a) towards at least one target substrate;
- (4) a fusion protein which is comprised of at least one proteolytic enzyme as defined in (1) above and
 - (i) at least one further proteinacious component, preferably being selected from the group consisting of binding

domains, receptors, antibodies, regulation domains, pro-sequences, and fragments thereof, and/or (ii) at least one further functional component, preferably being selected from the group consisting of polyethylenglycols, carbohydrates, lipids, fatty acids, nucleic acids, metals, and metal chelates;

- (5) a composition or pharmaceutical composition comprising one or more proteolytic enzymes as defined in (1) above or a fusion protein as defined in (4) above, said pharmaceutical composition may optionally comprise an acceptable carrier, excipient and/or auxiliary agent;
 - (6) a nucleic acid encoding a proteolytic enzyme as defined in (1) above or a fusion protein as defined in (4) above; (7) a vector comprising the nucleic acid as defined in (6) above;
 - (8) a host cell or transgenic organism being transformed/transfected with a vector as defined in (7) above or comprising the nucleic acid as defined in (6) above; and
 - (9) a method for producing the proteolytic enzyme as defined in (1) above or a fusion protein as defined in (4) above comprising culturing a cell or organism as defined in (8) above, and optionally isolating the enzyme from the culture broth.

Brief description of the Figures

10

15

20

25

35

[0033] The following figures are provided in order to explain further the present invention in supplement to the detailed description:

<u>Figure 1</u> illustrates the three-dimensional structure of human trypsin I with the active site residues shown in "ball-and-stick" representation and with the marked regions indicating potential SDR insertion sites.

<u>Figure 2</u> shows the alignment of the primary amino acid sequence of three members of the serine protease class S1 family: human trypsin I, human alpha-thrombin and human enteropeptidase (see also SEQ ID NOs: 1, 5 and 6).

<u>Figure 3</u> illustrates the three-dimensional structure of subtilisin with the active site residues being shown in "ball-and-stick" representation and with the numbered regions indicating potential SDR insertion sites.

- Figure 4 shows the alignment of the primary amino acid sequences of four members of the serine protease class S8 family: subtilisin E, furin, PC1 and PC5 (see also SEQ ID NOs: 7-10).
 - <u>Figure 5</u> illustrates the three-dimensional structure of pepsin with the active site residues being shown in "ball-and-stick" representation and with the numbered regions indicating potential SDR insertion sites.
 - Figure 6 shows the alignment of the primary amino acid sequences of three members of the A1 aspartic acid protease family: pepsin, β-secretase and cathepsin D (see also SEQ ID NOs: 11-13).
- Figure 7: illustrates the three-dimensional structure of caspase 7 with the active site residues being shown in "balland-stick" representation and with the numbered regions indicating potential SDR insertion sites.
 - <u>Figure 8:</u> shows the primary amino acid sequence of caspase 7 as a member of the cysteine protease class C14 family (see also SEQ ID NO: 14).
- Figure 9 depicts schematically the third aspect of the disclosure.
 - <u>Figure 10</u> shows a Western blot analysis of a culture supernatant of cells expressing variants of human trypsin I with SDR1 and SDR2, compared to negative controls.
- Figure 11 shows the time course of the proteolytic cleavage of a target substrate by human trypsin I.
 - <u>Figure 12</u> shows the relative activities of three variants of engineered proteolytic enzymes in comparison with human trypsin I on two different peptide substrates.
- Figure 13 shows the relative specificities of human trypsin I and variants of engineered proteolytic enzymes with one or two SDRs, respectively.
 - Figure 14: shows the relative specificities of human trypsin I and of variants of engineered proteolytic enzymes

being specific for human TNF-alpha with this scaffold on peptides with a target sequence of human TNF-alpha.

<u>Figure 15:</u> shows the reduction of cytotoxicity induced by TNF-alpha when incubating the TNF-alpha with concentrated supernatant from cultures expressing the engineered proteolytic enzymes being specific for human TNF-alpha.

<u>Figure 16:</u> shows the reduction of cytotoxicity induced by TNF-alpha when incubating the TNF-alpha with purified engineered proteolytic enzyme being specific for human TNF-alpha.

<u>Figure 17:</u> compares the activity of engineered proteolytic enzymes being specific for human TNF-alpha with the activity of human trypsin I on two protein substrates: (a) human TNF-alpha; (b) mixture of human serum proteins.

Figure 18: showes the specific activity of an engineered proteolytic enzyme with specificity for human VEGF.

Definitions

5

10

15

25

30

35

45

50

55

[0034] In the framework of the present invention the following terms and definitions are used.

[0035] The term "protease" means any protein molecule that is capable of hydrolysing peptide bonds. This includes naturally-occurring or artificial proteolytic enzymes, as well as variants thereof obtained by site-directed or random mutagenesis or any other protein engineering method, any active fragment of a proteolytic enzyme, or any molecular complex or fusion protein comprising one of the aforementioned proteins. A "chimera of proteases" means a fusion protein of two or more fragments derived from different parent proteases.

[0036] The term "substrate" means any molecule that can be converted catalytically by an enzyme. The term "peptide substrate" means any peptide, oligopeptide, or protein molecule of any amino acid composition, sequence or length, that contains a peptide bond that can be hydrolyzed catalytically by a protease. The peptide bond that is hydrolyzed is referred to as the "cleavage site". Numbering of positions in the substrate is done according to the system introduced by Schlechter & Berger (Biochem. Biophys. Res. Commun. 27 (1967) 157-162). Amino acid residues adjacent N-terminal to the cleavage site are numbered P₁, P₂, P₃, etc., whereas residues adjacent C-terminal to the cleavage site are numbered P₁', P₂', P₃', etc.

[0037] The term "target substrate" describes a user-defined substrate which is specifically recognized and converted by an enzyme according to the invention. The term "target peptide substrate" describes a user-defined peptide substrate. The term "target specificity" describes the qualitative and quantitative specificity of an enzyme that is capable of recognizing and converting a target substrate. Catalytic properties of enzymes are expressed using the kinetic parameters "K_M" or "Michaelis Menten constant", "k_{cat}" or "catalytic rate constant", and "k_{cat} /K_M" or "catalytic efficiency", according to the definitions of Michaelis and Menten (Fersht, A., Enzyme Structure and Mechanism, W. H. Freeman and Company, New York, 1995). The term "catalytic activity" describes quantitatively the conversion of a given substrate under defined reaction conditions.

[0038] The term "specificity" means the ability of an enzyme to recognize and convert preferentially certain substrates. Specificity can be expressed qualitatively and quantitatively. "Qualitative specificity" refers to the chemical nature of the substrate residues that are recognized by an enzyme. "Quantitative specificity" refers to the number of substrates that are accepted as substrates. Quantitative specificity can be expressed by the term s, which is defined as the negative logarithm of the number of all accepted substrates divided by the number of all possible substrates. Proteases, for example, that accept preferentially a small portion of all possible peptide substrates have a "high specificity". Proteases that accept almost any peptide substrate have a "low specificity". Definitions are made in accordance to WO 03/095670. Proteases with very low specificity are also referred to as "unspecific proteases". The term "defined specificity" refers to a certain type of specificity, i.e. to a certain target subtrate or a set of certain target substrates that are preferentially converted versus other substrates.

[0039] The term "engineered" in combination with the term "enzyme" describes an enzyme that is comprised of different components and that has features not being conferred by the individual components alone.

[0040] The term "protein scaffold" or "scaffold protein" refers to a variety of primary, secondary and tertiary polypeptide structures.

[0041] The term "peptide sequence" indicates any peptide sequence used for insertion or substitution into or combination with a protein scaffold. Peptide sequences are usually obtained by expression from DNA sequences which can be synthesized according to well-established techniques or can be obtained from natural sources. Insertion, substitution or combination of peptide sequences with the protein scaffold are generated by insertion, substitution or combination of oligonucleotides into or with a polynucleotide encoding the protein scaffold. The term "synthetic" in combination with the term "peptide sequence" refers to peptide sequences that are not present in the protein scaffold in which the peptide sequences are inserted or substituted or with which they are combined.

[0042] The term "components" in combination with the term "engineered enzyme" refers to peptide or polypeptide

sequences that are combined in the engineering of such enzymes. Such components may among others comprise one or more protein scaffolds and one or more synthetic peptide sequences. The term "library of engineered enzymes" describes a mixture of engineered enzymes, whereby every single engineered enzyme is encoded by a different polynucleotide sequence. The term "gene library" indicates a library of polynucleotides that encodes the library of engineered enzymes. The term "SDR" or "Specificity determining region" refers to a synthetic peptide sequence that provides the defined specificity when combined with the protein scaffold at sites that enable the resulting enzymes to discriminate between the target substrate and one or more other substrates. Such sites are termed "SDR sites".

[0043] The terms "tertiary structure similar to the structure of" and "similar tertiary structure" in combination with the terms "enzyme" or "protein" refer to proteins in which the type, sequence, connectivity and relative orientation of the typical secondary structural elements of a protein, e.g. alpha-helices, beta-sheets, beta-turns and loops, are similar and the proteins are therefore grouped into the same structural or topological class or fold. This includes proteins that have altered, additional or deleted structural elements of any type but otherwise unchanged topology. Examples of such structural classes are the TNF superfamily, the S1 fold or the S8 fold within the serine proteases, the GPCRs, or the α B-barrel fold.

[0044] The term "positions that correspond structurally" indicates amino acids in proteins of similar tertiary structure that correspond structurally to each other, i.e. they are usually located within the same structural or topological element of the structure. Within the structural element they possess the same relative positions with respect to beginning and end of the structural element. If, e.g. the topological comparison of two proteins reveals two structurally corresponding sequences of different length, then amino acids within, e.g. 20% and 40% of the respective region lengths, correspond to each other structurally.

[0045] The term "library of engineered enzymes" refers to a multiplicity of enzymes or enzyme variants, which may exist as a mixture or in isolated form.

[0046] Amino acids residues are abbreviated according to the following Table 1 either in one- or in three-letter code.

Table 1: Amino acid abbreviations

Abbrevia	itions	Amino acid						
Α	Ala	Alanine						
С	Cys	Cysteine						
D	Asp	Aspartic acid						
E	Glu	Glutamic acid						
F	Phe	Phenylalanine						
G	Gly	Glycine						
Н	His	Histidine						
1	lle	Isoleucine						
К	Lys	Lysine						
L	Leu	Leucine						
М	Met	Methionine						
N	Asn	Asparagine						
Р	Pro	Proline						
Q	Gln	Glutamine						
R	Arg	Arginine						
S	Ser	Serine						
Т	Thr	Threonine						
٧	Val	Valine						
w	Trp	Tryptophane						
Y	Tyr	Tyrosine						

10

25

30

35

40

45

50

Detailed description of the invention

[0047] The present disclosure provides engineered proteins with novel functions. In particular, the disclosure provides enzymes with user-definable specificities. In a particular embodiment, the disclosure provides proteases with user-definable specificities. Besides, the disclosure provides applications of such enzymes with novel, user-definable specificities for therapeutic, research, diagnostic, nutritional, personal care or industrial purposes. Moreover, the disclosure provides a method for generating enzymes with specificities that are not present in the components used for the engineering of such enzymes. In particular, the disclosure is directed to the generation of enzymes that have sequences that are essentially identical to mammalian especially human enzymes but have different specificities. Moreover, the disclosure provides libraries of specific engineered enzymes with corresponding specificities encoded genetically, a method for the generation of libraries of specific engineered enzymes with corresponding specificities encoded genetically, and the application of such libraries for technical, diagnostic, nutritional, personal care or research purposes.

[0048] A first aspect discloses engineered enzymes with defined specificities. These engineered enzymes are characterized by the following components:

15

5

10

- (a) a protein scaffold capable of catalyzing at least one chemical reaction on a substrate, and
- (b) one or more specificity determining regions (SDRs) located at sites in the protein scaffold that enable the resulting engineered protein to discriminate between ar least one target substrate and one or more different substrates, wherein the SDRs are essentially synthetic peptide sequences.

20

25

30

40

45

[0049] Preferably, such defined specificity of the engineered enzymes is not conferred by the protein scaffold.

[0050] In principle, the protein scaffold can have a variety of primary, secondary and tertiary structures. The primary structure, i.e. the amino acid sequence, can be an engineered sequence or can be derived from any viral, prokaryotic or eukaryotic origin. For human therapeutic use, however, the protein scaffold is preferably of mammalian origin, and more preferably, of human origin. Furthermore, the protein scaffold is capable to catalyze one or more chemical reactions and has preferably only a low specificity.

[0051] Preferably, derivatives of the protein scaffold are used that have modified amino acid sequences that confer improved characteristics for the applicability as protein scaffolds. Such improved characteristics comprise, but are not limited to, stability; expression or secretion yield; folding, in particular after combination of the protein scaffold with SDRs; increased or decreased sensitivity to regulators such as activators or inhibitors; immunogenicity; catalytic rate; kM or substrate affinity.

[0052] The engineered enzymes reveal their quantitative specificity from the synthetic peptide sequences that are combined with the protein scaffold. Therefore, the engineered peptide sequences are acting as Specificity Determining Regions or SDRs. The number, the length and the positions of such SDRs can vary over a wide range. The number of SDRs within the scaffold is at least one, preferably more than one, more preferably between two and eleven, most preferably between two and six. The SDRs have a length between one and 50 amino acid residues, preferably a length between one and 15 amino acid residues, more preferably a length between one and six amino acid residues. Alternatively, the SDRs have a length between two and 20 amino acid residues, preferably a length between two and ten amino acid residues, more preferably a length between three and eight amino acid residues.

[0053] The engineered enzymes can further be desribed as antibody-like protein molecules comprising constant and variable regions, but having a non-immunoglogulin backbone and having an active site (catalytic activity) in the constant region, whereby the substrate specificity of the active site is modulated by the variable region. Preferably, as in the immunoglobulin structure, the variable regions are loops of variable length and composition that interact with a target molecule.

[0054] In a particular, the engineered enzymes have hydrolase activity. In a preferred variant, the engineered enzymes have proteolytic activity. Particularly preferred protein scaffolds for this variant are unspecific proteases or are parts from unspecific proteases or are otherwise derived from unspecific proteases. The expressions "derived from" or "a derivative thereof" in this respect and in the following variants and embodiments refer to derivatives of proteins that are mutated at one or more amino acid positions and/or have a homology of at least 70%, preferably 90%, more preferably 95% and most preferably 99% to the original protein, and/or that are proteolytically processed, and/or that have an altered glycosylation pattern, and/or that are covalently linked to non-protein substances, and/or that are fused with further protein domains, and/or that have C-terminal and/or N-terminal truncations, and/or that have specific insertions, substitutions and/or deletions. Alternatively, "derived from" may refer to derivatives that are combinations or chimeras of two or more fragments from two or more proteins, each of which optionally comprises any or all of the aforementioned modifications. The tertiary structure of the protein scaffold can be of any type. Preferably, however, the tertiary structure belongs to one of the following structural classes: class S1 (chymotrypsin fold of the serine proteases family), class S8 (subtilisin fold of the serine proteases family), class A1 (pepsin A fold of the aspartic proteases), or class C14 (caspase-1 fold of the cysteine proteases). Examples of proteases that

can serve as the protein scaffold of engineered proteolytic enzymes for the use as human therapeutics are or are derived from human trypsin, human thrombin, human chymotrypsin, human pepsin, human endothiapepsin, human caspases 1 to 14, and/or human furin.

[0055] The defined specificity of the engineered proteolytic enzymes is a measure of their ability to discriminate between at least one target peptide or protein substrates and one or more further peptide or protein substrates. Preferably, the defined specificity refers to the ability to discriminate peptide or protein substrates that differ in other positions than the P1 site, more preferably, the defined specificity refers to the ability to discriminate peptide or protein substrates that differ in other positions than the P1 site and the P1' site. Most preferably, the engineered proteolytic enzymes distinguish target peptid or protein substrates at as many sites as is necessary to preferentially hydrolyse the target substrate versus other proteins. As an example, a therapeutically useful engineered proteolytic enzyme applied intravenously in the human body should be sufficiently specific to discriminate between the target substrate and any other protein in the human serum. Preferably, such an engineered proteolytic enzyme recognizes and discriminates peptide substrates at three or more amino acid positions, more preferably at four or more positions, and even more preferably at five or more amino acid positions. These positions may either be adjacent or non-adjacent.

10

15

20

25

30

40

45

[0056] In a <u>first embodiment</u>, the protein scaffold has a tertiary structure or fold equal or similar to the tertiary structure or fold of the S1 structural subclass of serine proteases, i. e. the chymotrypsin fold, and/or has at least 70% identity on the amino acid level to a protein of the S1 structural subclass of serine proteases. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 18-25, 38-48, 54-63, 73-86, 122-130, 148-156, 165-171 and 194-204 in human trypsin I, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 20-23, 41-45, 57-60, 76-83, 125-128, 150-153, 167-169 and 197-201 (numbering of amino acids according to SEQ ID NO:1). The number of SDRs to be combined with this type of protein scaffold is preferably between 1 and 10, and more preferably between 2 and 4. Preferably, the protein scaffold is equal to or is a derivative or homologue of one or more of the following proteins: chymotrypsin, granzyme, kallikrein, trypsin, mesotrypsin, neutrophil elastase, pancreatic elastase, enteropeptidase, cathepsin, thrombin, ancrod, coagulation factor IXa, coagulation factor VIIa, coagulation factor Xa, activated protein C, urokinase, tissue-type plasminogen activator, plasmin, Desmodus-type plasminogen activator. More preferably, the protein scaffold is trypsin or thrombin or is a derivative or homologue from trypsin or thrombin. For the use as a human therapeutic, the trypsin or thrombin scaffold is most preferably of human origin in order to minimize the risk of an immune response or an allergenic reaction.

[0057] Preferably, derivatives with improved characteristics derived from human trypsin I or from proteins with similar tertiary structure are used. Preferred examples of such derivatives are derived from human trypsin I (SEQ ID NO:1) and comprise one or more of the following amino acid substitutions E56G; R78W; Y131F; A146T; C183R.

It is preferred that at least one of two SDRs are inserted into human trypsin I, or a derivative thereof, between residues 42 and 43 (SDR 1) and between 123 and 124 (SDR 2), respectively (numbering of amino acids according to SEQ ID NO:1). In addition the SDR 1 has a preferred length of 6 and the SDR 2 has a preferred length of 5 amino acids, respectively. In a preferred variant of this embodiment, the SDR 1 and SDR 2 sequences comprise one of the amino acid sequences listed in table 2. Such engineered proteolytic enzymes have specificity for the target substrate B as exemplified in example IV.

[0058] In a further embodiment the protein scaffold belongs to the S8 structural subclass of serine proteases and/or has a tertiary structure similar to subtilisin E from Bacillus subtilis_and/or has at least 70% identity on the amino acid level to a protein of the S8 structural subclass of serine proteases. Preferably, the scaffold belongs to the subtilisin family or the human pro-protein convertases. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 6-17, 25-29, 47-55, 59-69, 101-111, 117-125, 129-137, 139-154, 158-169, 185-195 and 204-225 in subtilisin E from Bacillus subtilis, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 59-69, 101-111, 129-137, 158-169 and 204-225 (numbering of amino acids according to SEQ ID NO:7). It is preferred that the protein scaffold is equal to or is a derivative or homologue of one or more of the following proteins: subtilisin Carlsberg; B. subtilis subtilisin E; subtilisin BPN'; B. licheniformis subtilisin; B. lentus subtilisin; Bacillus alcalophilus alkaline protease; proteinase K; kexin; human pro-protein convertase; human furin. In a preferred variant, subtilisin BPN' or one of the proteins SPC 1 to 7 is used as the protein scaffold.

[0059] In a further embodiment the protein scaffold belongs to the family of aspartic proteases and/or has a tertiary structure similar to human pepsin. Preferably, the scaffold belongs to the A1 class of proteases and/or has at least 70% identity on the amino acid level to a protein of the A1 class of proteases. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 6-18, 49-55, 74-83, 91-97, 112-120, 126-137, 159-164, 184-194, 242-247, 262-267 and 277-300 in human pepsin, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 10-15, 75-80, 114-118, 130-134, 186-191 and 280-296 (numbering of amino acids according to SEQ ID NO:11). It is preferred that the protein scaffold is equal to or is a derivative

or homologue of one or more of the following proteins: pepsin, chymosin, renin, cathepsin, yapsin. Preferably, pepsin or endothiopepsin or a derivative or homologue thereof is used as the protein scaffold.

[0060] In a further embodiment the protein scaffold belongs to the cysteine protease family and/or has a tertiary structure similar to human caspase 7. Preferably the scaffold belongs to the C14 class of cysteine proteases or has at least 70% identity on the amino acid level to a protein of the C14 class of cysteine proteases. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 78-91, 144-160, 186-198, 226-243 and 271-291 in human caspase 7, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 80-86, 149-157, 190-194 and 233-238 (numbering of amino acids according to SEQ ID NO:14). It is preferred that the protein scaffold is equal to or is a derivative or homologue of one of the caspases 1 to 9.

10

25

30

45

55

[0061] In a further embodiment the protein scaffold belongs to the S11 class of serine proteases or has at least 70% identity on the amino acid level to a protein of the S11 class of serine proteases and/or has a tertiary structure similar to D-alanyl-D-alanine transpeptidase from Streptomyces species K15. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 67-79, 137-150, 191-206, 212-222 and 241-251 in D-alanyl-D-alanine transpeptidase from Streptomyces species K15, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 70-75, 141-147, 195-202 and 216-220 (numbering of amino acids according to SEQ ID NO: 15). It is preferred that the D-alanyl-D-alanine transpeptidase from Streptomyces species K15 or a derivative or homologue thereof is used as the scaffold.

[0062] In a further embodiment the protein scaffold belongs to the S21 class of serine proteases or has at least 70% identity on the amino acid level to a protein of the S21 class of serine proteases and/or has a tertiary structure similar to assemblin from human cytomegalovirus. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 25-33, 64-69, 134-155, 162-169 and 217-244 in assemblin from human cytomegalovirus, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 27-31, 164-168 and 222-239 (numbering of amino acids according to SEQ ID NO:16). It is preferred that the assemblin from human cytomegalovirus or a derivative or homologue thereof is used as the scaffold.

[0063] In a further embodiment the protein scaffold belongs to the S26 class of serine proteases or has at least 70% identity on the amino acid level to a protein of the S26 class of serine proteases and/or has a tertiary structure similar to the signal peptidase from Escherichia coli. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 8-14, 57-68, 125-134, 239-254, 200-211 and 228-239 in signal peptidase from Escherichia coli, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 9-13, 60-67, 127-132 and 203-209 (numbering of amino acids according to SEQ ID NO:17). It is preferred that the signal peptidase from Escherichia coli or a derivative or homologue thereof is used as the scaffold. [0064] In an further embodiment the protein scaffold belongs to the S33 class of serine proteases or has at least 70% identity on the amino acid level to a protein of the S33 class of serine proteases and/or has a tertiary structure similar to the prolyl aminopeptidase from Serratia marcescens. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 47-54, 152-160, 203-212 and 297-302 in prolyl aminopeptidase from Serratia marcescens, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 50-53, 154-158 and 206-210 (numbering of amino acids according to SEQ ID NO:18). It is preferred that the prolyl aminopeptidase from Serratia marcescens or a derivative or homologue thereof is used as the scaffold.

[0065] In a further embodiment the protein scaffold belongs to the S51 class of serine proteases or has at least 70% identity on the amino acid level to a protein of the S5₁ class of serine proteases and/or has a tertiary structure similar to aspartyl dipeptidase from Escherichia coli. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 8-16, 38-46, 85-92, 132-140, 159-170 and 205-211 in aspartyl dipeptidase from Escherichia coli, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 10-14, 87-90, 134-138 and 160-165 (numbering of amino acids according to SEQ ID NO:19). It is preferred that the aspartyl dipeptidase from Escherichia coli or a derivative or homologue thereof is used as the scaffold.

[0066] In a further embodiment the protein scaffold belongs to the A2 class of aspartic proteases or has at least 70% identity on the amino acid level to a protein of the A2 class of aspartic proteases and/or has a tertiary structure similar to the protease from human immunodeficiency virus. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to

the regions 5-12, 17-23, 27-30, 33-38 and 77-83 in protease from human immunodeficiency virus, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 7-10, 18-21, 34-37 and 79-82 (numbering of amino acids according to SEQ ID NO:20). It is preferred that the protease from human immunodeficiency virus, preferably HIV-1 protease, or a derivative or homologue thereof is used as the scaffold.

[0067] In an further embodiment the protein scaffold belongs to the A26 class of aspartic proteases or has at least 70% identity on the amino acid level to a protein of the A26 class of aspartic proteases and/or has a tertiary structure similar to the omptin from Escherichia coli. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 28-40, 86-98, 150-168, 213-219 and 267-278 in omptin from Escherichia coli, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 33-38, 161-168 and 273-277 (numbering of amino acids according to SEQ ID NO:21). It is preferred that the omptin from Escherichia coli or a derivative or homologue thereof is used as the scaffold.

10

25

30

35

45

50

55

[0068] In a further embodiment the protein scaffold belongs to the C1 class of cysteine proteases or has at least 70% identity on the amino acid level to a protein of the C1 class of cysteine proteases and/or has a tertiary structure similar to the papain from Carica papaya. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 17-24, 61-68, 88-95, 135-142, 153-158 and 176-184 in papain from Carica papaya, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 63-66, 136-139 and 177-181 (numbering of amino acids according to SEQ ID NO:22). It is preferred that the papain from Carica papaya or a derivative or homologue thereof is used as the scaffold.

[0069] In a further embodiment the protein scaffold belongs to the C2 class of cysteine proteases or has at least 70% identity on the amino acid level to a protein of the C2 class of cysteine proteases and/or has a tertiary structure similar to human calpain-2. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 90-103, 160-172, 193-199, 243-260, 286-294 and 316-322 in human calpain-2, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence horology to the regions 92-101, 245-250 and 287-291 (numbering of amino acids according to SEQ ID NO:23). It is preferred that the human calpain-2 or a derivative or homologue thereof is used as the scaffold.

[0070] In a further embodiment the protein scaffold belongs to the C4 class of cysteine proteases or has at least 70% identity on the amino acid level to a protein of the C4 class of cysteine proteases and/or has a tertiary structure similar to NIa protease from tobacco etch virus. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 23-31, 112-120, 144-150, 168-176 and 205-218 in NIa protease from tobacco etch virus, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 145-149, 169-174 and 212-218 (numbering of amino acids according to SEQ ID NO:24). It is preferred that the NIa protease from tobacco etch virus (TEV protease) or a derivative or homologue thereof is used as the scaffold.

[0071] In a further embodiment the protein scaffold belongs to the C10 class of cysteine proteases or has at least 70% identity on the amino acid level to a protein of the C10 class of cysteine proteases and/or has a tertiary structure similar to the streptopain from Streptococcus pyogenes. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 81-90, 133-140, 150-164, 191-199, 219-229, 246-256, 306-312 and 330-337 in streptopain from Streptococcus pyogenes, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 82-87, 134-138, 250-254 and 331-335 (numbering of amino acids according to SEQ ID NO:25). It is preferred that the streptopain from Streptococcus pyogenes or a derivative or homologue thereof is used as the scaffold.

[0072] In a further embodiment the protein scaffold belongs to the C19 class of cysteine proteases or has at least 70% identity on the amino acid level to a protein of the C19 class of cysteine proteases and/or has a tertiary structure similar to human ubiquitin specific protease 7. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 3-15, 63-70, 80-86, 248-256, 272-283 and 292-304 in human ubiquitin specific protease 7, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 10-15, 251-255, 277-281 and 298-304 (numbering of amino acids according to SEQ ID NO:26). It is preferred that the human ubiquitin specific protease 7 or a derivative or homologue thereof is used as the scaffold.

[0073] In a further embodiment the protein scaffold belongs to the C47 class of cysteine proteases or has at least 70% identity on the amino acid level to a protein of the C47 class of cysteine proteases and/or has a tertiary structure similar to the staphopain from Staphylococcus aureus. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to

the regions 15-23, 57-66, 108-119, 142-149 and 157-164 in staphopain from Staphylococcus aureus, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 17-22, 111-117, 143-147 and 159-163 (numbering of amino acids according to SEQ ID NO:27). It is preferred that the staphopain from Staphylococcus aureus or a derivative or homologue thereof is used as the scaffold. [0074] In an further embodiment the protein scaffold belongs to the C48 class of cysteine proteases or has at least 70% identity on the amino acid level to a protein of the C48 class of cysteine proteases and/or has a tertiary structure similar to the Ulp1 endopeptidase from Saccharomyces cerevisiae. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 40-51, 108-115, 132-141, 173-179 and 597-605 in Ulp1 endopeptidase from Saccharomyces cerevisiae, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 43-49, 110-113, 133-137 and 175-178 (numbering of amino acids according to SEQ ID NO:28). It is preferred that the Ulp1 endopeptidase from Saccharomyces cerevisiae or a derivative or homologue thereof is used as the scaffold.

10

20

25

30

40

45

55

[0075] In a further embodiment the protein scaffold belongs to the C56 class of cysteine proteases or has at least 70% identity on the amino acid level to a protein of the C56 class of cysteine proteases and/or has a tertiary structure similar to the Pfpl endopeptidase from Pyrococcus horikoshii. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 8-16, 40-47, 66-73, 118-125 and 147-153 in Pfpl endopeptidase from Pyrococcus horikoshii, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 9-14, 68-71, 120-123 and 148-151 (numbering of amino acids according to SEQ ID NO:29). It is preferred that the Pfpl endopeptidase from Pyrococcus horikoshii or a derivative or homologue thereof is used as the scaffold.

[0076] In a further embodiment the protein scaffold belongs to the M4 class of metallo proteases or has at least 70% identity on the amino acid level to a protein of the M4 class of metallo proteases and/or has a tertiary structure similar to thermolysin from Bacillus thermoproteolyticus. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 106-118, 125-130, 152-160, 197-204, 210-213 and 221-229 in thermolysin from Bacillus thermoproteolyticus, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 108-115, 126-129, 199-203 and 223-227 (numbering of amino acids according to SEQ ID NO:30). It is preferred that the thermolysin from Bacillus thermoproteolyticus or a derivative or homologue thereof is used as the scaffold.

[0077] In a further embodiment the protein scaffold belongs to the M10 class of metallo proteases or has at least 70% identity on the amino acid level to a protein of the M10 class of metallo proteases and/or has a tertiary structure similar to human collagenase. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 2-7, 68-79, 85-90, 107-111 and 135-141 in human collagenase, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 3-6, 71-78 and 136-140 (numbering of amino acids according to SEQ ID NO:31). It is preferred that human collagenase or a derivative or homologue thereof is used as the scaffold.

[0078] It is further preferred that the engineered enzymes have glycosidase activity. A particularly suited protein scaffold for this variant is a glycosylase or is derived from a glycosylase. Preferably, the tertiary structure belongs to one of the following structural classes: class GH13, GH7, GH12, GH11, GH10, GH28, GH26, and GH18 (beta/alpha)8 barrel. [0079] In a first embodiment the protein scaffold belongs to the GH13 class of glycosylases or has at least 70% identity on the amino acid level to a protein of the GH13 class of glycosylases and/or has a tertiary structure similar to human pancreatic alpha-amylase. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 50-60, 100-110, 148-167, 235-244, 302-310 and 346-359 in human pancreatic alpha-amylase, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 51-58, 148-155 and 303-309 (numbering of amino acids according to SEQ ID NO:32). It is preferred that human pancreatic alpha-amylase or a derivative or homologue thereof is used as the scaffold.

[0080] In a further embodiment the protein scaffold belongs to the GH7 class of glycosylases or has at least 70% identity on the amino acid level to a protein of the GH7 class of glycosylases and/or has a tertiary structure similar to cellulase from Trichoderma reesei. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 47-56, 93-104, 173-182, 215-223, 229-236 and 322-334 in cellulase from Trichoderma reesei, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 175-180, 218-222 and 324-332 (numbering of amino acids according to SEQ ID NO:33). It is preferred that cellulase from Trichoderma reesei or a derivative or homologue thereof is used as the scaffold.

[0081] In a further embodiment the protein scaffold belongs to the GH12 class of glycosylases or has at least 70% identity on the amino acid level to a protein of the GH12 class of glycosylases and/or has a tertiary structure similar to cellulase from Aspergillus niger. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 18-28, 55-60, 106-113, 126-132 and 149-159 in cellulase from Aspergillus niger, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 20-26, 56-59, 108-112 and 151-156 (numbering of amino acids according to SEQ ID NO:34). It is preferred that cellulase from Aspergillus niger or a derivative or homologue thereof is used as the scaffold.

5

10

20

25

30

35

40

45

55

[0082] In a further embodiment the protein scaffold belongs to the GH11 class of glycosylases or has at least 70% identity on the amino acid level to a protein of the GH11 class of glycosylases and/or has a tertiary structure similar to xylanase from Aspergillus niger. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 7-14, 33-39, 88-97, 114-126 and 158-167 in xylanase from Aspergillus niger, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 20-26, 56-59, 108-112 and 151-156 (numbering of amino acids according to SEQ ID NO:35). It is preferred that xylanase from Aspergillus niger or a derivative or homologue thereof is used as the scaffold.

[0083] In a further embodiment the protein scaffold belongs to the GH10 class of glycosylases or has at least 70% identity on the amino acid level to a protein of the GH10 class of glycosylases and/or has a tertiary structure similar to xylanase from Streptomyces lividans. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 21-29, 42-50, 84-92, 130-136, 206-217 and 269-278 in xylanase from Streptomyces lividans, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 43-49, 86-90, 208-213 and 271-276 (numbering of amino acids according to SEQ ID NO:36). It is preferred that xylanase from Streptomyces lividans or a derivative or homologue thereof is used as the scaffold.

[0084] In a further embodiment the protein scaffold belongs to the GH28 class of glycosylases or has at least 70% identity on the amino acid level to a protein of the GH28 class of glycosylases and/or has a tertiary structure similar to pectinase from Aspergillus niger. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 82-88, 118-126, 171-178, 228-236, 256-264 and 289-299 in pectinase from Aspergillus niger, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 116-124, 174-178 and 291-296 (numbering of amino acids according to SEQ ID NO:37). It is preferred that pectinase from Aspergillus niger or a derivative or homologue thereof is used as the scaffold.

[0085] In a further embodiment the protein scaffold belongs to the GH26 class of glycosylases or has at least 70% identity on the amino acid level to a protein of the GH26 class of glycosylases and/or has a tertiary structure similar to mannanase from Pseudomonas cellulosa. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 75-83, 113-125, 174-182, 217-224, 247-254, 324-332 and 325-340 in mannanase from Pseudomonas cellulosa, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 115-123, 176-180, 286-291 and 328-337 (numbering of amino acids according to SEQ ID NO:38). It is preferred that mannanase from Pseudomonas cellulosa or a derivative or homologue thereof is used as the scaffold.

[0086] In an further embodiment the protein scaffold belongs to the GH18 (beta/alpha)8 barrel class of glycosylases or has at least 70% identity on the amino acid level to a protein of the GH18 class of glycosylases and/or has a tertiary structure similar to chitinase from Bacillus circulans. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 21-29, 57-65, 130-136, 176-183, 221-229, 249-257 and 327-337 in chitinase from Bacillus circulans, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 59-63, 178-181, 250-254 and 330-336 (numbering of amino acids according to SEQ ID NO:39). It is preferred that chitinase from Bacillus circulans or a derivative or homologue thereof is used as the scaffold. [0087] It is further preferred that the engineered enzymes have esterhydrolase activity. Preferably, the protein scaffold for this variant have lipase, phosphatase, phytase, or phosphodiesterase activity.

[0088] In a first embodiment the protein scaffold belongs to the GX class of esterases or has at least 70% identity on the amino acid level to a protein of the GX class of esterases and/or has a tertiary structure similar to the structure of the lipase B from Candida antarctica. Preferably, the scaffold has lipase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 139-148, 188-195, 216-224, 256-266, 272-287 in lipase B from Candida antarctica, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 141-146, 218-222, 259-263 and 275-283 (numbering of amino acids according

to SEQ ID NO:40). It is preferred that lipase B from Candida antarctica or a derivative or homologue thereof is used as the scaffold.

[0089] In a further embodiment the protein scaffold belongs to the GX class of esterases or has at least 70% identity on the amino acid level to a protein of the GX class of esterases and/or has a tertiary structure similar to the pancreatic lipase from guinea pig. Preferably, the scaffold has lipase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 78-90, 91-100, 112-120, 179-186, 207-218, 238-247 and 248-260 in pancreatic lipase from guinea pig, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 80-87, 114-118, 209-215 and 239-246 (numbering of amino acids according to SEQ ID NO:41). It is preferred that pancreatic lipase from guinea pig or a derivative or homologue thereof is used as the scaffold.

10

15

20

30

35

40

50

55

[0090] In a further embodiment the protein scaffold has a tertiary structure similar to the structure of the alkaline phosphatase from Escherichia coli or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the alkaline phosphatase from Escherichia coli. Preferably, the scaffold has phosphatase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 110-122, 187-142, 170-175, 186-193, 280-287 and 425-435 in alkaline phosphatase from Escherichia coli, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 171-174, 187-191, 282-286 and 426-433 (numbering of amino acids according to SEQ ID NO:42). It is preferred that alkaline phosphatase from Escherichia coli or a derivative or homologue thereof is used as the scaffold.

[0091] In a further embodiment the protein scaffold has a tertiary structure similar to the structure of the bovine pancreatic desoxyribonuclease I or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the bovine pancreatic desoxyribonuclease I. Preferably, the scaffold has phosphodiesterase activity. More preferably, a nuclease, and most preferably, an unspecific endonuclease or a derivative thereof is used as the scaffold. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 14-21, 41-47, 72-77, 97-111, 135-143, 171-178, 202-209 and 242-251 in bovine pancreatic desoxyribonuclease I, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 16-19, 42-46, 136-141 and 172-176 (numbering of amino acids according to SEQ ID NO:43). It is preferred that bovine pancreatic desoxyribonuclease I or human desoxyribonuclease I or a derivative or homologue thereof is used as the scaffold.

[0092] It is further preferred that the engineered enzyme has transferase activity. A particularly suited protein scaffold for this variant is a glycosyl-, a phospho- or a methyltransferase, or is a derivative thereof. Particularly preferred protein scaffolds for this variant are glycosyltransferases or are derived from glycosyltransferases. The tertiary structure of the protein scaffold can be of any type. Preferably, however, the tertiary structure belongs to one of the following structural classes: GH13 and GT1.

[0093] In a first embodiment the protein scaffold belongs to the GH13 class of transferases or has at least 70% identity on the amino acid level to a protein of the GH13 class of transferases and/or has a tertiary structure similar to the structure of the cyclomaltodextrin glucanotransferase from Bacillus circulans. Preferably, the scaffold has transferase activity, and more preferably a glycosyltransferase is used as the scaffold. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 38-48, 85-94, 142-154, 178-186, 259-266, 331-340 and 367-377 in cyclomaltodextrin glucanotransferase from Bacillus circulans, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 87-92, 180-185, 261-264 and 269-275 (numbering of amino acids according to SEQ ID NO:44). It is preferred that cyclomaltodextrin glucanotransferase from Bacillus circulans or a derivative or homologue thereof is used as the scaffold.

[0094] In a further embodiment the protein scaffold belongs to the GT1 class of transferases or has at least 70% identity on the amino acid level to a protein of the GT1 class of transferases and/or has a tertiary structure similar to the structure of the glycosyltransferase from Amycolatopsis orientalis A82846. Preferably the scaffold has transferase activity, and more preferably glycosyltransferase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that corresponds structurally or by amino acid sequence homology to the regions 58-74, 130-138, 185-193, 228-236 and 314-323 in glycosyltransferase from Amycolatopsis orientalis A82846, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 61-71, 230-234 and 316-321 (numbering of amino acids according to SEQ ID NO: 45). It is preferred that the glycosyltransferase from Amycolatopsis orientalis A82846 or a derivative or homologue thereof is used as the scaffold.

[0095] It is further preferred that the engineered enzymes have oxidoreductase activity. A particularly suited protein scaffold for this variant is a monooxygenase, a dioxygenase or a alcohol dehydrogenase, or a derivative thereof. The

tertiary structure of the protein scaffold can be of any type.

10

25

30

[0096] In a first embodiment the protein scaffold has a tertiary structure similar to the structure of the 2,3-diphydroxybiphenyl dioxygenase from Pseudomonas sp. or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the 2,3-diphydroxybiphenyl dioxygenase from Pseudomonas sp. Preferably, the scaffold has dioxygenase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 172-185, 198-206, 231-237, 250-259 and 282-287 in 2,3-diphydroxybiphenyl dioxygenase from Pseudomonas sp., and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 175-182, 200-204, 252-257 and 284-287 (numbering of amino acids according to SEQ ID NO:46). It is preferred that the 2,3-diphydroxybiphenyl dioxygenase from Pseudomonas sp or a derivative or homologue thereof is used as the scaffold.

[0097] In a further embodiment the protein scaffold has a tertiary structure similar to the structure of the catechol dioxygenase from Acinetobacter sp. or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the catechol dioxygenase from Acinetobacter sp.. Preferably, the scaffold has dioxygenase activity, and more preferably catechol dioxygenase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 66-72, 105-112, 156-171 and 198-207 in catechol dioxygenase from Acinetobacter sp., and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 107-110, 161-171 and 201-205 (numbering of amino acids according to SEQ ID NO: 47). It is preferred that the catechol dioxygenase from Acinetobacter sp or a derivative or homologue thereof is used as the scaffold.

[0098] In a further embodiment the protein scaffold has a tertiary structure similar to the structure of the camphor-5-monooxygenase from Pseudomonas putida or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the camphor-5-monooxygenase from Pseudomonas putida. Preferably, the scaffold has monooxygenase activity, and more preferably camphor monooxygenase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 26-31, 57-63, 84-98, 182-191, 242-256, 292-299 and 392-399 in camphor-5-monooxygenase from Pseudomonas putida, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 85-96, 183-188, 244-253, 293-298 and 393-398 (numbering of amino acids according to SEQ ID NO:48). It is preferred that the camphor-5-monooxygenase from Pseudomonas putida or a derivative or homologue thereof is used as the scaffold.

[0099] In a further embodiment the protein scaffold has a tertiary structure similar to the structure of the alcohol dehydrogenase from Equus callabus or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the alcohol dehydrogenase from Equus callabus. Preferably, the scaffold has alcohol dehydrogenase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 49-63, 111-112, 294-301 and 361-369 in alcohol dehydrogenase from Equus callabus, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 51-61 and 295-299 (numbering of amino acids according to SEQ ID NO:49). It is preferred that the alcohol dehydrogenase from Equus callabus or a derivative or homologue thereof is used as the scaffold.

[0100] It is further preferred that the engineered enzymes have lyase activity. A particularly suited protein scaffold for this variant is a oxoacid lyase or is a derivative thereof. Particularly preferred protein scaffolds for this variant are aldolases or synthases, or are derived thereof. The tertiary structure of the protein scaffold can be of any type, but a (beta/alpha) 8 barrel structure is preferred.

[0101] In a first embodiment the protein scaffold has a tertiary structure similar to the structure of the N-acetyl-d-neuramic acid aldolase from Escherichia coli or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the N-acetyl-d-neuramic acid aldolase from Escherichia coli. Preferably, the scaffold has aldolase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 45-55, 78-87, 105-113, 137-146, 164-171, 187-193, 205-210, 244-255 and 269-276 in N-acetyl-d-neuramic acid aldolase from Escherichia coli, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 45-52, 138-144, 189-192, 247-253 and 271-275 (numbering of amino acids according to SEQ ID NO:50). It is preferred that the N-acetyl-d-neuramic acid aldolase from Escherichia coli or a derivative or homologue thereof is used as the scaffold.

[0102] In a further embodiment the protein scaffold has a tertiary structure similar to the structure of the tryptophan synthase from Salmonella typhimurium or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the tryptophan synthase from Salmonella typhimurium. Preferably, the scaffold has synthase activity. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group

of positions that correspond structurally or by amino acid sequence homology to the regions 56-63, 127-134, 154-161, 175-193, 209-216 and 230-240 in tryptophan synthase from Salmonella typhimurium, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 57-62, 155-160, 178-190 and 210-215 (numbering of amino acids according to SEQ ID NO:51). It is preferred that the tryptophan synthase from Salmonella typhimurium or a derivative or homologue thereof is used as the scaffold. [0103] It is further preferred that the engineered enzymes have isomerase activity. A particularly suited protein scaffold for this variant is a converting aldose or a converting ketose, or is a derivative thereof.

[0104] In a first embodiment, the protein scaffold has a tertiary structure similar to the structure of the xylose isomerase from Actinoplanes missouriensis or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the xylose isomerase from Actinoplanes missouriensis. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 18-31, 92-103, 136-147, 178-188 and 250-257 in xylose isomerase from Actinoplanes missouriensis, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 20-27, 92-99 and 180-186 (numbering of amino acids according to SEQ ID NO:52). It is preferred that the xylose isomerase from Actinoplanes missouriensis or a derivative or homologue thereof is used as the scaffold.

[0105] It is further preferred that the engineered enzymes have ligase activity. A particularly suited protein scaffold for this variant is a DNA ligase, or is a derivative thereof.

[0106] In a first embodiment, the protein scaffold has a tertiary structure similar to the structure of the DNA ligase from Bacteriophage T7 or has at least 70% identity on the amino acid level to a protein that has a tertiary structure similar to the structure of the DNA-ligase from Bacteriophage T7. It is preferred that SDRs are inserted into the protein scaffold at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 52-60, 94-108, 119-131, 241-248, 255-263 and 302-318 in DNA ligase from Bacteriophage T7, and more preferably at one or more positions from the group of positions that correspond structurally or by amino acid sequence homology to the regions 96-106, 121-129, 256-262 and 304-316 (numbering of amino acids according to SEQ ID NO: 53). It is preferred that the DNA ligase from Bacteriophage T7 or a derivative or homologue thereof is used as the scaffold. [0107] A second aspect is directed to the application of engineered enzymes with specificities for therapeutic, research, diagnostic, nutritional, personal care or industrial purposes. The application comprises at least the following steps:

- (a) identification of a target peptide substrate whose hydrolysis has a positive effect in connection with the intended purpose, such as curing a disease, diagnosing a disease, processing of ingredients for human or animal nutrition, or other technical processes;
- (b) provision of an engineered enzyme, the enzyme being specific for the target peptide identified in step (a); and
- (c) use of the enzyme as provided in step (b) for the intended purpose.

10

30

35

40

[0108] In a first variant of this aspect, the engineered enzyme is used as a therapeutic means to inactivate a disease-related target substrate. This application comprises at least the following steps:

- (a) identification of a target substrate whose function is connected to a disease and whose inactivation has a positive effect in connection with the disease, and determination of a target site within the target substrate characterized by the fact that modification at the target site leads to the inactivation of the target substrate;
- (b) provision of an engineered enzyme, the enzyme being specific for the target site identified in step (a); and
- (c) use of the enzyme for the inactivation of the target substrate inside or outside the human body.

[0109] In a preferred embodiment the scaffold of the engineered enzyme provided in step (c) is of human origin in order to avoid or reduce immunogenicity or allergenic effects associated with the application of the enzyme in the human body. In a more preferred embodiment of this variant, the scaffold is of a human protease and the modification is hydrolysis of a target site in a protein target. Preferably, the hydrolysis leads to the activation or inactivation of the peptide or protein target. Potential peptide or protein targets include: cytokines, growth factors, peptide hormones, interleukins, interferons, enzymes from the coagulation cascade, serpins, immunoglobulins, soluble or membrane-bound receptors, cellular or viral surface proteins, peptide drugs, protein drugs.

[0110] A particularly preferred embodiment is based on the finding that the engineered enzyme is capable for the cleavage of human tumor nekrose factor-alpha (TNF- α). The engineered enzymes or the fusion protein can thus be used for preparing medicaments for the treatment of inflammatory diseases (as well as other diseases connected with TNF- α). Preferably, said engineered enzyme or said fusion protein is capable of specifically inactivating human tumor nekrose factor-alpha (hTNF- α), more preferably said engineered enzyme or said fusion protein is capable of hydrolysing the peptide bond between positions 31/32, 32/33, 44/45, 87/88, 128/129 and/or 141/142 (most preferred between positions 31/32 and 32/33) in hTNF- α (SEQ ID NO:96).

[0111] In further embodiment, the target substrate is a pro-drug which is activated by the engineered enzyme. In a particular embodiment of this variant, the engineered enzyme has proteolytic activity and the target substrate is a protein target which is proteolytically activated. Examples of such pro-drugs are pro-proteins such as the inactivated forms of coagulations factors. In another particular variant, the engineered enzyme is an oxidoreductase and the target substrate is a chemical that can be activated by oxidation.

[0112] In a second variant of this aspect, the engineered enzyme is used as a technical means in order to catalyze an industrially or nutritionally relevant reaction with defined specificity. In a particular embodiment of this variant the engineered enzyme has proteolytic activity, the catalyzed reaction is a proteolytic processing, and the engineered enzyme specifically hydrolyses one or more industrially or nutrionally relevant protein substrates. In a preferred embodiment of this variant the engineered enzyme hydrolyses one or more industrially or nutrionally relevant protein substrates at specific sites, thereby leading to industrially or nutrionally desired product properties such as texture, taste or precipitation characteristics. In a further particular embodiment of this variant, the engineered enzyme catalyzes the hydrolysis of glycosidic bonds (glycosidase or glycosylases activity). Then, preferably, the catalyzed reaction is a polysaccharide processing, and the engineered enzyme specifically hydrolyses one or more industrially, technically or nutrionally relevant polysaccharide substrates. In a further particular embodiment of this variant, the engineered enzyme catalyzes the hydrolysis of triglyceride esters or lipids (lipase activity).

[0113] Then, preferably, the catalyzed reaction is a lipid processing step, and the engineered enzyme specifically hydrolyses one or more industrially, technically or nutrionally relevant lipid substrates. In a further particular variant of this embodiment, the engineered enzyme catalyzes the oxidation or reduction of substrates (oxidoreductase activity). Then, preferably, the engineered enzyme specifically oxidizes or reduces one or more industrially, technically or nutrionally relevant chemical substrates.

[0114] A <u>third aspect</u> is directed to <u>a method for generating engineered enzymes</u> with specificities that are qualitatively and/or quantitatively novel in combination with the protein scaffold. The method comprises at least the following steps:

- (a) providing a protein scaffold capable to catalyze at least one chemical reaction on at least one target substrate,
- (b) generating a library of engineered enzymes or isolated engineered enzymes by combining the protein scaffold from step (a) with one or more fully or partially random peptide sequences at sites in the protein scaffold that enable the resulting engineered enzyme to discriminate between at least one target substrate and one or more different substrates and
- (c) selecting out of the library of engineered enzymes generated in step (b) one or more enzymes that have defined specificities towards at least one target substrate.

[0115] In a first variant of this aspect, the method comprises at least the following steps:

10

25

30

35

- (a) providing a protein scaffold capable to catalyze at least one chemical reaction on at least one target substrate,
- (b) generating a library of engineered enzymes or isolated engineered enzymes by inserting into the protein scaffold from step (a) one or more fully or partially random peptide sequences at sites in the protein scaffold that enable the resulting engineered enzyme to discriminate between at least one target substrate and one or more different substrates and
- 40 (c) selecting out of the library of engineered enzymes generated in step (b) one or more enzymes that have defined specificities towards at least one target substrate.
 - [0116] Preferably, the positions at which the one or more fully or partially random peptide sequences are combined with or inserted into the protein scaffold are identified prior to the combination or insertion.
- 45 [0117] The number of insertions or other combinations of fully or partially random peptide sequences as well as their length may vary over a wide range. The number is at least one, preferably more than one, more preferably between two and eleven, most preferably between two and six. The length of such fully or partially random peptide sequences is usually less than 50 amino acid residues. Preferably, the length is between one and 15 amino acid residues, more preferably between one and six amino acid residues. Alternatively, the length is between two and 20 amino acid residues, preferably between two and ten amino acid residues.
 - [0118] Preferably such insertions or other combinations are performed on the DNA level, using polynucleotides encoding such protein scaffolds and polynucleotides or oligonucleotides encoding such fully or partially random peptide sequences.
 - [0119] Optionally, steps (a) to (c) are repeated cyclically, whereby enzymes selected in step (c) serve as the protein scaffold in step (a) of a further cycle, and randomized peptide sequences are either inserted or, alternatively, substituted for peptide sequences that have been inserted in former cycles. Thereby, the number of inserted peptide sequences is either constant or increases over the cycles. The cycles are repeated until one or more enzymes with the intended specificities are generated.

[0120] Moreover, during or after one or more rounds of steps (a) to (c), the scaffold may be mutated at one or more positions in order to make the scaffold more acceptable for the combination with SDR sequences, and/or to increase catalytic activity at a specific pH and temperature, and/or to change the glycosylation pattern, and/or to decrease sensitivity towards enzyme inhibitors, and/or to change enzyme stability.

- [0121] In a second variant of this aspect, the method comprises at least the following steps:
 - (a) providing a first protein scaffold fragment.

10

15

25

30

45

50

- (b) connecting said protein scaffold fragment via a peptide linkage with a first SDR, and optionally
- (c) connecting the product of step (b) via a peptide linkage with a further SDR peptide or with a further protein scaffold fragment, and optionally
- (d) repeating step (c) for as many cycles as necessary in order to generate a sufficiently specific enzyme, and
- (e) selecting out of the population generated in steps (a) (d) one or more enzymes that have the desired specificities toward the one or more target substrates.
- [0122] Protein scaffold fragment means a part of the sequence of a protein scaffold. A protein scaffold is comprised of at least two protein scaffold fragments.
 - [0123] In a third variant of this aspect, the protein scaffold, the SDRs and the engineered enzyme are encoded by a DNA sequence and an expression system is used in order to produce the protein. In an alternative variant, the protein scaffold, the SDRs and/or the engineered enzyme are chemically synthesized from peptide building blocks.
- 20 [0124] In a fourth variant of this aspect, the method comprises at least the following steps:
 - (a) providing a polynucleotide encoding a protein scaffold capable of catalyzing one or more chemical reactions on one or more target substrates;
 - (b) combining one or more fully or partially random oligonucleotide sequence with the polynucleotide encoding the protein scaffold, the fully or partially random oligonucleotide sequences being located at sites in the polynucleotide that enable the encoded engineered enzyme to discriminate between the one or more target substrates and one or more other substrates; and
 - (c) selecting out of the population generated in step (b) one or more polynucleotides that encode enzymes that have the defined specificities toward the one or more target substrates.
 - [0125] Any enzyme can serve as the protein scaffold in step (a). It can be a naturally occurring enzyme, a variant or a truncated derivate therefore, or an engineered enzyme. For human therapeutic use, the protein scaffold is preferably a mammalian enzyme, and more preferably a human enzyme. In that aspect, the is directed to a method for the generation of essentially mammalian, especially of essentially human enzymes with specificities that are different from specificities of any enzyme encoded in mammalian genomes or in the human genome, respectively.
 - [0126] The protein scaffold provided in step (a) of this aspect requires to be capable of catalyzing one or more chemical reactions on a target substrate. Therefore, a protein scaffold is selected from the group of potential protein scaffolds by its activity on the target substrate.
 - [0127] In a preferred variant of this aspect, a protein scaffold with hydrolase activity is used. Preferably, a protein scaffold with proteolytic activity is used, and more preferably, a protease with very low specificity having basic activity on the target substrate is used as the protein scaffold. Examples of proteases from different structural classes with low substrate specificity are Papain, Trypsin, Chymotrypsin, Subtilisin, SET (trypsin-like serine protease from Streptomyces erythraeus), Elastase, Cathepsin G or Chymase. Before being employed as the protein scaffold, the amino acid sequence of the protease may be modified in order to change protein properties other than specificity, e.g catalytic activity, stability, inhibitor sensitivity, or expression yield, essentially as described in WO 92/18645, or in order to change specificity, essentially as described in EP 02020576.3 and PCT/EP03/04864.
 - [0128] Another option for a feasible protein scaffold are lipases. Hepatic lipase, lipoprotein lipase and pancreatic lipase belong to the "lipoprotein lipase superfamily", which in turn is an example of the GX-class of lipases (M. Fischer, J. Pleiss (2003), Nucl. Acid. Res., 31, 319-321). The substrate specificity of lipases can be characterized by their relative activity towards triglycerol esters of fatty acids and phospholipids, bearing a charged head group. Alternatively, other hydrolases such as esterases, glycosylases, amidases, or nitrilases may be used as scaffolds.
 - [0129] Transferases are also feasible protein scaffolds. Glycoslytransferases are involved in many biological synthesis involving a variety of donors and acceptors.
 - [0130] Alternatively, the protein scaffold may have ligase, lyase, oxidoreductase, or isomerase activity.
 - [0131] In a <u>first embodiment</u>, the one or more fully or partially random peptide sequences are inserted at specific sites in the protein scaffold. These insertion sites are characterized by the fact that the inserted peptide sequences can act as discriminators between different substrates, i.e. as Specificity Determining Regions or SDRs. Such insertion sites can be identified by several approaches. Preferably, insertion sites are identified by analysis of the three-dimensional

structure of the protein scaffolds, by comparative analysis of the primary sequences of the protein scaffold with other enzymes having different quantitative specificities, or experimentally by techniques such as alanine scanning, random mutagenesis, or random deletion, or by any combination thereof.

[0132] A first approach to identify insertion sites for SDRs bases on the three-dimensional structure of the protein scaffold as it can be obtained by x-ray crystallography or by nuclear magnetic resonance studies. Structural alignment of the protein scaffold in comparison with other enzymes of the same structural class but having different quantitative specificities reveals regions of high structural similarity and regions with low structural similarity. Such an analysis can for example be done using public software such as Swiss PDB viewer (Guex, N. and Peitsch, M.C. (1997) Electrophoresis 18, 2714-2723). Regions of low structural similarity are preferred SDR insertion sites.

10

15

25

30

45

[0133] In a second approach to identify insertion sites for SDRs, three-dimensional structures of the scaffold protein in complex with competitive inhibitors or substrate analogs are analysed. It is assumed that the binding site of a competitive inhibitor significantly overlaps with the binding site of the substrate. In that case, atoms of the protein that are within a certain distance of atoms of the inhibitor are likely to be in a similar distance to the substrate as well. Choosing a short distance, e.g. < 5 Å, will result in an ensemble of protein atoms that are in close contact with the substrate. These residues would constitute the first shell contacts and are therefore preferred insertion sites for SDRs. Once first shell contacts have been identified, second shell contacts can be found by repeating the distance analysis starting from first shell atoms. In yet another alternative the distance analysis described above is performed starting from the active site residues.

[0134] In third approach to identify insertion sites for SDRs, the primary sequence of the scaffold protein is aligned with other enzymes of the same structural class but having different quantitative specificities using an alignment algorithm. Examples of such alignment algorithms are published (Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) J. Mol. Biol. 215:403-410; "Statistical methods in Bioinformatics: an introduction" by Ewens, W. & Grant, G.R. 2001, Springer, New York). Such an alignment may reveal conserved and non-conserved regions with varying sequence homology, and, in particular, additional sequence elements in one or more enzymes compared to the scaffold protein. Conserved regions of are more likely to contribute to phenotypes shared among the different proteins, e.g. stabilizing the three-dimensional fold. Non-conserved regions and, in particular, additional sequences in enzymes with quantitatively higher specificity (Turner, R. et al. (2002) J. Biol. Chem., 277, 33068-33074) are preferred insertion sites for SDRs.

[0135] For proteases currently five families are known, namely aspartic-, cysteine-, serine-, metallo- and threonine proteases. Each family includes groups of proteases that share a similar fold. Crystallographic structures of members of these groups have been solved and are accessible through public databases, e.g. the Brookhaven protein database (H.M. Berman et al. Nucleic Acids Research, 28 pp. 235-242 (2000)). Such databases also include structural homologs in other enzyme classes and nonenzymatically active proteins of each class. Several tools are available to search public databases for structural homologues: SCOP - a structural classification of proteins database for the investigation of sequences and structures. (Murzin A. G. et al. (1995) J. Mol. Biol. 247, 536-540); CATH - Class, Architecture, Topology and Homologous superfamily: a hierarchical classification of protein domain structures (Orengo et al. (1997) Structure 5(8) 1093-1108); FSSP - Fold classification based on structure-structure alignment of proteins (Holm and Sander (1998) Nucl. Acids Res. 26 316-319); or VAST - Vector alignment search tool (Gibrat, Madej and Bryant (1996) Current Opinion in Structural Biology 6, 377-385).

[0136] In the above described approaches, members of structural classes are compared in order to identify insertion sites for SDRs.

[0137] In a preferred variant of these approaches serine proteases of the structural class S1 are compared with each other. Trypsin represents a member with low substrate specificity, as it requires only an arginine or lysine residue at the P1 position. On the other hand, thrombin, tissue-type plasminogen activator or enterokinase all have a high specificity towards their substrate sequences, i.e. (L/I/V/F)XPR*NA, CPGR*WGG and DDDK*, respectively (Perona, J. & Craik, C. (1997) J. Biol. Chem., 272, 29987-29990; Perona, J. & Craik, C (1995) Protein Science, 4, 337-360). An alignment of the amino acid sequences of these proteases is described in example 1 (Figure 2) along with the identification of SDRs. [0138] A further example within the family of serine proteases is given by members of the structural class S8 (subtilisin fold). Subtilisin is the type protease for this class and represents an unspecific protease (Ottesen,M. & Svendsen,A. (1998) Methods Enzymol. 19, 199-215). Furin, PC1 and PC5 are proteases of the same structural class involved in the processing of propeptides and have a high substrate specificity (Seidah, N. & Chretien, M. (1997) Curr. Opin. Biotech., 8: 602-607; Bergeron, F. et al. (2000) J. Mol. Endocrin., 24:1-22). In a preferred variant of the approach alignments of the primary amino acids sequences (Figure 4) are used to identify eleven sequence stretches longer than three amino acids which specific proteases have in addition compared to subtilisin and are therefore potential specificity determining regions. In a further variant of the approach information from the three-dimensional structure of subtilisin can be used in order to further narrow down the selection (Figure 3). Out of the eleven inserted sequence stretches, three are especially close to the active site residues, namely stretch number 7, 8 and 11 which are insertions in PC5, PC1 and all three specific proteases, respectively (Figure 3). In a preferred variant, one or several amino acid stretches of variable length and composition can be inserted into the subtilisin sequence at one or several of the eleven positions. In a more preferred

variant of the approach the insertion is performed at regions 7, 8 or 11 or any combination thereof. In another preferred variant of the approach protease scaffolds other than subtilisin from the structural class S8 are used.

[0139] In a further preferred variant of this approach, aspartic acid proteases of the structural class A1 are analyzed (Rawlings, N.D. & Barrett, A.J. (1995). Methods Enzymol. 248, 105-120; Chitpinityol, S. & Crabbe, MJ. (1998), Food Chemistry, 61, 395-418). Examples for the A1 structural class of aspartic proteases are pepsin with a low as well as beta-secretase (Gruninger-Leitch, F., et al. (2002) J. Biol. Chem. 277, 4687-4693) and renin (Wang, W. & Liang, TC. (1994) Biochemistry, 33, 14636-14641) with relatively high substrate specificities. Retroviral proteases also belong to this class, although the active enzyme is a dimer of two identical subunits. The viral proteases are essential for the correct processing of the polyprotein precursor to generate functional proteins which requires a high substrate specificity in each case (Wu, J. et al. (1998) Biochemistry, 37, 4518-4526; Pettit, S. et al. (1991) J. Biol. Chem., 266, 14539-14547). Pepsin is the type protease for this class and represents an unspecific protease (Kageyama, T. (2002) Cell. Mol. Life Sci. 59, 288-306). B-secretase and Cathepsin D (Aguilar, C. F. et al. (1995) Adv. Exp. Med. Biol. 362, 155-166) are proteases of the same structural class and have a high substrate specificity. In a preferred variant of the approach alignments of the primary amino acids sequences (Figure 6) are used to identify six sequence stretches longer than three amino acids which are inserted in the specific proteases compared to pepsin and are therefore potential specificity determining regions. In a further variant of the approach information from the three-dimensional structure of b-secretase can be used in order to further narrow down the selection. Out of the six inserted sequence stretches, three are especially close to the active site residues, namely stretch number 1, 3 and 4 which are insertions in cathepsin D and beta-secretase, respectively (Figure 5). In a preferred variant of the approach, one or several amino acid stretches of variable length and composition can be inserted into the pepsin sequence at one or several of the six positions. In a more preferred embodiment the insertion is performed at the positions 1, 3 or 4 or any combination thereof. In another preferred embodiment protease scaffolds other than pepsin are used.

10

20

25

30

40

45

55

[0140] There are cases where a certain structural class does not include known members of low and high specificity. This is exemplified by the C14 class of caspases which belong to the cysteine protease family (Rawlings, N.D. & Barrett, A.J. (1994) Methods Enzymol. 244, 461-486) and which all show high specificity for P₄ to P₁ positions. For example, caspase-1, caspase-3 and caspase-9 recognize the sequences YVAD^, DEVD^ or LEHD^, respectively. Identification of the regions that differ between the caspases will include the regions responsible for the differences in substrate specificity (Figures 7 and 8).

[0141] Finally, non-enzymatic proteins of the same fold as the enzyme scaffold may also contribute to the identification of insertion sites for SDRs. For example, haptoglobin (Arcoleo, J. & Greer, J.; (1982) J. Biol. Chem. 257, 10063-10068) and azurocidin (Almeida, R. et al. (1991) Biochem. Biophys. Res. Commun. 177, 688-695) share the same chymotrypsin-like fold with all S1 proteases. Due to substitutions in the active site residues these proteins do not posses any proteolytic function, yet they show high homology with active proteases. Differences between these proteins and specific proteases include regions that can serve as insertion sites for SDRs.

In a fourth approach, insertion sites for SDRs are identified experimentally by techniques such as alanine scanning, random mutagenesis, random insertion or random deletion. In contrast to the approach disclosed above, this approach does not require detailed knowledge about the three-dimensional structure of the scaffold protein. In one preferred variant of this approach, random mutagenesis of enzymes with relatively high specificity from the same structural class as the protein scaffold and screening for loss or change of specificity can be used to identify insertion sites for SDRs in the protein scaffold.

Random mutagenesis, alanine scanning, random insertion or random deletion are all done on the level of the polynucleotides encoding the enzymes. There are a variety of protocols known in the literature (e.g. Sambrook, J.F; Fritsch, E.F.; Maniatis,T.; Cold Spring Harbor Laboratory Press, Second Edition, 1989, New York). For example, random mutagenesis can be achieved by the use of a polymerase as described in patent WO 9218645. According to this patent, the one or more genes encoding the one or more proteases are amplified by use of a DNA polymerase with a high error rate or under conditions that increase the rate of misincorporations. For example the method of Cadwell and Joyce can be employed (Cadwell, R.C. and Joyce, G.F., PCR methods. Appl. 2 (1992) 28-33). Other methods of random mutagenesis such as, but not limited to, the use of mutator stains, chemical mutagens or UV-radiation can be employed as well. Alternatively, oligonucleotides can be used for mutagenesis that substitute randomly distributed amino acid residues with an alanine. This method is generally referred to as alanine scanning mutagenesis (Fersht, A.R. Biochemistry (1989) 8031-8036). As a further alternative, modifications of the alanine scanning mutagenesis such as binominal mutagenesis (Gregoret, L.M. and Sauer, R.T. PNAS (1993) 4246-4250) or combinatorial alanine scanning (Weiss et al., PNAS (2000) 8950-8954) can be employed.

[0142] In order to express engineered enzymes, the DNA encoding such engineered proteins is ligated into a suitable expression vector by standard molecular cloning techniques (e.g. Sambrook, J.F; Fritsch, E.F.; Maniatis, T.; Cold Spring Harbor Laboratory Press, Second Edition, 1989, New York). The vector is introduced in a suitable expression host cell, which expresses the corresponding engineered enzyme variant. Particularly suitable expression hosts are bacterial expression hosts such as Escherichia coli or Bacillus subtilis, or yeast expression hosts such as Saccharomyces cerevisae

or Pichia pastoris, or mammalian expression hosts such as Chinese Hamster Ovary (CHO) or Baby Hamster Kidney (BHK) cell lines, or viral expression systems such as bacteriophages like M13 or Lambda, or viruses such as the Baculovirus expression system. As a further alternative, systems for in vitro protein expression can be used. Typically, the DNA is ligated into an expression vector behind a suitable signal sequence that leads to secretion of the enzyme variants into the extracellular space, thereby allowing direct detection of protease activity in the cell supernatant. Particularly suitable signal sequences for Escherichia coli are HlyA, for Bacillus subtilis AprE, NprB, Mpr, AmyA, AmyE, Blac, SacB, and for S. cerevisiae Bar1, Suc2, Matx, Inu1A, Ggplp. Alternatively, the enzyme variants are expressed intracellularly and the substrates are expressed also intracellularly. Preferably, this is done essentially as described in patent application WO 0212543, using a fusion peptide substrate comprising two auto-fluorescent proteins linked by the substrate amino-acid sequence. As a further alternative, after intracellular expression of the enzyme variants, or secretion into the periplasmatic space using signal sequences such as DsbA, PhoA, PelB, OmpA, OmpT or glll for Escherichia coli, a permeabilisation or lysis step releases the enzyme variants into the supernatant. The destruction of the membrane barrier can be forced by the use of mechanical means such as ultrasonic, French press, or the use of membrane-digesting enzymes such as lysozyme. As another, further alternative, the genes encoding the enzyme variants are expressed cell-free by the use of a suitable cell-free expression system. For example, the S30 extract from Escherichia coli cells is used for this purpose as described by Lesly et al. (Methods in Molecular Biology 37 (1995) 265-278).

10

20

25

30

40

45

The ensemble of gene variants generated and expressed by any of the above methods are analyzed with respect to their affinity, substrate specificity or activity by appropriate assay and screening methods as described in detail for example in patent application PCT/EP03/04864. Genes from catalytically active variants having reduced specificity in comparison to the original enzyme are analyzed by sequencing. Sites at which mutations and/or insertions and/or deletions occurred are preferred insertion sites at which SDRs can be inserted site-specifically.

[0143] In a second embodiment, the one or more fully or partially random peptide sequences are inserted at random sites in the protein scaffold. This modification is usually done on the polynucleotide level, i.e. by inserting nucleotide sequences into the gene that encodes the protein scaffold. Several methods are available that enable the random insertion of nucleotide sequences. Systems that can be used for random insertion are for example ligation based systems (Murakami et al. Nature Biotechnology 20 (2002) 76-81), systems based on DNA polymerisation and transposon based systems (e.g. GPS-M™ mutagenesis system, NEB Biolabs; MGS™ mutation generation system, Finnzymes). The transposon-based methods employ a transposase-mediated insertion of a selectable marker gene that contains at its termini recognition sequences for the transposase as well as two sites for a rare cutting restriction endonuclease. Using the latter endonuclease one usually releases the selection marker and after religation obtains an insertion. Instead of performing the religation one can alternatively insert a fragment that has terminal recognition sequences for one or two outside cutting restriction endonuclease as well as a selectable marker. After ligation, one releases this fragment using the one or two outside cutting endonucleases. After creating blunt ends by standard methods one inserts blunt ended random fragments at random positions into the gene.

In a further preferred embodiment, methods for homologous in-vitro recombination are used to combine the mutations introduced by the above mentioned methods to generate enzyme populations. Examples of methods that can be applied are the Recombination Chain Reaction (RCR) according to patent application WO 0134835, the DNA-Shuffling method according to the patent application WO 9522625, the Staggered Extension method according to patent WO 9842728, or the Random Priming recombination according to patent application WO9842728. Furthermore, also methods for non-homologous recombination such as the Itchy method can be applied (Ostermeier, M. et al. Nature Biotechnology 17 (1999) 1205-1209).

Upon random insertion of a nucleotide sequence into the protein scaffold one obtains a library of different genes encoding enzyme variants. The polynucleotide library is subsequently transferred to an appropriate expression vector. Upon expression in a suitable host or by use of an in vitro expression system, a library of enzymes containing randomly inserted stretches of amino acids is obtained.

[0144] According to step (b) of this third aspect, one or more fully or partially random peptide sequences are inserted into the protein scaffold. The actual number of such inserted SDRs is determined by the intended quantitative specificity following the relation: the higher the intended specificity is, the more SDRs are inserted. Whereas a single SDR enables the generation of moderately specific enzymes, two SDRs enable already the generation of significantly specific enzymes. However, up to six and more SDRs can be inserted into a protein scaffold. A similar relation is valid for the length of the SDRs: the higher the intended specificity is, the longer are the SDRs that are to be inserted. SDRs can be as short as one to four amino acid residues. They can, however, also be as long as 50 amino acid residues. Significant specificity can already be generated by the use of SDRs of a length of four to six amino acid residues.

[0145] The peptid sequences that are inserted can be fully or partially random. In this context, fully random means that a set of sequences are inserted in parallel that includes sequences that differ from each other in each and every position. Partially random means that a set of sequences are inserted in parallel that includes sequences that differ from each other in at least one position. This difference can be either pair-wise or with respect to a single sequence. For example, when regarding an insertion of the length of four amino acids, partial random could be a set (i) that includes

AGGG, GVGG, GGLG, GGGI, or (ii) that includes AGGG, VGGG, LGGG and IGGG. Alternatively, random sequences also comprises sequences that differ from each other in length. Randomization of the peptide sequences is achieved by randomization of the nucleotide sequences that are inserted into the gene at the respective sites. Thereby, randomization can be achieved by employing mixtures of nucleobases as monomers during chemical synthesis of the oligonucleotides. A particularly preferred mixture of monomers for a fully random codon that in addition minimizes the probability of stop codons is NN(GTC). Alternatively, random oligonucleotides can be obtained by fragmentation of DNA into short fragments that are inserted into the gene at the respective sites. The source of the DNA to be fragmented may be a synthetic oligonucleotide but alternatively may originate from cloned genes, cDNAs, or genomic DNA. Preferably, the DNA is a gene encoding an enzyme. The fragmentation can, for example, be achieved by random endonucleolytic digestion of DNA. Preferably, an unspecific endonuclease such as DNAse I (e.g. from bovine pancreas) is employed for the endonucleolytic digestion.

[0146] If steps (a) - (c) of the method are repeated cyclically, there are different alternatives for obtaining random peptide sequences that are inserted in consecutive rounds. Preferably, SDRs that were identified in one round as leading to increased specificity of enzyme are used as templates for the random peptide sequences that are inserted in the following round.

10

25

30

45

50

[0147] In a preferred alternative, the sequences selected in one round are analysed and randomized oligonucleotides are generated based on these sequences. This can, for example, be achieved by using in addition to the original nucleotide with a certain percentage mixtures of the other three nucleotides monomers at each position in the oligonucleotide synthesis. If, for example, in a first round an SDRs is identified that has the amino acid sequence ARLT, e.g. encoded by the nucleotide sequence GCG CGC CTT ACC, a random peptide sequence inserted in this SDR site could be encoded by an oligonucleotide with 70% G, 10% A, 10% T and 10% C at the first position, 70% C, 10% G, 10% T and 10% A at the second position, etc. This leads at each position approximately in 1 of 3 cases to the template amino acid and in 2 of 3 cases to another amino acid.

In another preferred alternative, the sequences selected in one round are analyzed and a consensus library is generated based on these sequences. This can, for example, be achieved by using defined mixtures of nucleotides at each position in the oligonucleotide synthesis in a way that leads to mixtures of the amino acid residues that were identified at each position of the SDR selected in the previous round. If, for example, in a first round two SDRs are identified that have the amino acid sequences ARLT and VPGS, a consensus library inserted in this SDR site in the following round could be encoded by an oligonucleotide with the sequence G(C/T)G C(G/C)C (G/T)(G/T)G (A/T)CC. This would correspond to the random peptide sequence (A/V)(R/P)(L/G/V/W)(T/S), thereby allowing all combinations of the amino acid residues identified in the first round, and, due to the degeneracy of the genetic code, allowing in addition to a lower degree alternative amino acid residues at some positions.

[0148] In another preferred alternative, the sequences selected in one round are, without previous analysis, recombined using methods for the in vitro recombination of polynucleotides, such as the methods described in WO 01/34835 (the following also provides details of the eighth and ninth aspect).

[0149] After insertion of the partially or fully random sequences into the gene encoding the scaffold protein, and eventually ligation of the resulting gene into a suitable expression vector using standard molecular cloning techniques (Sambrook, J.F; Fritsch, E.F.; Maniatis, T.; Cold Spring Harbor Laboratory Press, Second Edition, 1989, New York), the vector is introduced in a suitable expression host cell which expresses the corresponding enzyme variant. Particularly suitable expression hosts are bacterial expression hosts such as Escherichia coli or Bacillus subtilis, or yeast expression hosts such as Saccharomyces cerevisae or Pichia pastoris, or mammalian expression hosts such as Chinese Hamster Ovary (CHO) or Baby Hamster Kidney (BHK) cell lines, or viral expression systems such as bacteriophages like M13 T7 phage or Lambda, or viruses such as the Baculovirus expression system. As a further alternative, systems for in vitro protein expression can be used. Typically, the DNA is ligated into an expression vector behind a suitable signal sequence that leads to secretion of the enzyme variants into the extracellular space, thereby allowing direct detection of enzyme activity in the cell supernatant. Particularly suitable signal sequences for Escherichia coli are ompA, pelB, HlyA, for Bacillus subtilis AprE, NprB, Mpr, AmyA, AmyE, Blac, SacB, and for S. cerevisiae Bar1, Suc2, Mata, Inu1A, Ggplp. Alternatively, the enzyme variants are expressed intracellularly and the substrates are expressed also intracellularly. According to protease variants this is done essentially as described in patent application WO 0212543, using a fusion peptide substrate comprising two auto-fluorescent proteins linked by the substrate amino-acid sequence. As a further alternative, after intracellular expression of the enzyme variants, or secretion into the periplasmatic space using signal sequences such as DsbA, PhoA, PelB, OmpA, OmpT or glll for Escherichia coli, a permeabilisation or lysis step releases the enzyme variants into the supernatant. The destruction of the membrane barrier can be forced by the use of mechanical means such as ultrasonic, French press, or the use of membrane-digesting enzymes such as lysozyme. As another, further alternative, the genes encoding the enzyme variants are expressed cell-free by the use of a suitable cell-free expression system. For example, the S30 extract from Escherichia coli cells is used for this purpose as described by Lesly et al. (Methods in Molecular Biology 37 (1995) 265-278).

[0150] After introduction of the vector into host cells, these cells are screened for the expression of enzymes with

specificity for the intended target substrate. Such screening is typically done by separating the cells from each other, in order to enable the correlation of genotype and phenotype, and assaying the activity of each cell clone after a growth and expression period. Such separation can for example be done by distribution of the cells into the compartments of sample carriers, e.g. as described in WO 01/24933. Alternatively, the cells are separated by streaking on agar plates, by enclosing in a polymer such as agarose, by filling into capillaries, or by similar methods.

Identification of variants with the intended specificity can be done by different approaches. In the case of proteases, preferably assays using peptide substrates essentially as described in PCT/EP03/04864 are employed.

[0151] Regardless of the expression format, selection of enzyme variants is done under conditions that allow identification of enzymes that recognize and convert the target sequence preferably. As a first alternative, enzymes that recognize and convert the target sequence preferably are identified by screening for enzymes with a high affinity for the target substrate sequence. High affinity corresponds to a low K_M which is selected by screening at target substrate concentrations substantially below the K_M of the first enzyme. Preferably, the substrates that are used are linked to one or more fluorophores that enable the detection of the modification of the substrate at concentrations below 10 µM, preferably below 1 µM, more preferably below 100 nM, and most preferably below 10 nM.

10

20

25

30

40

45

[0152] As a second alternative, enzymes that recognize and convert the target substrate preferably are identified by employing two or more substrates in the assay and screening for activity on these two or more substrates in comparison. Preferably, the two or more substrates employed are linked to different marker molecules, thereby enabling the detection of the modification of the two or more substrates consecutively or in parallel. In the case of proteases, particularly preferably two peptide substrates are employed, one peptide substrate having an arbitrarily chosen or even partially or fully random amino-acid sequence thereby enabling to monitor the activity on an arbitrary substrate, and the other peptide substrate having an amino-acid sequence identical to or resembling the intended target substrate sequence thereby enabling to monitor the activity on the target substrate. Especially preferably, these two peptide substrates are linked to fluorescent marker molecules, and the fluorescent properties of the two peptide substrates are sufficiently different in order to distinguish both activities when measured consecutively or in parallel. For example, a fusion protein comprising a first autofluorescent protein, a peptide, and a second autofluorescent protein according to patent application WO 0212543 can be used for this purpose. Alternatively, fluorophores such as rhodamines are linked chemically to the peptide substrates.

[0153] As a third alternative, enzymes that recognize and convert the target substrate preferably are identified by employing one or more substrates resembling the target substrate together with competing substrates in high excess. Screening with respect to activity on the substrates resembling the target substrate is then done in the presence of the competing substrates. Enzymes having a specificity which corresponds qualitatively to the target specificity, but having only a low quantitative specificity are identified as negative samples in such a screen. Whereas enzymes having a specificity which corresponds qualitatively and quantitatively to the target specificity are identified positively. Preferably, the one or more substrates resembling the target substrate are linked to marker molecules, thereby enabling the detection of their modifications, whereas the competing substrates do not carry marker molecules. The competing substrates have arbitrarily chosen or random amino-acid sequences, thereby acting as competitive inhibitors for the hydrolysis of the marker-carrying substrates. For example, protein hydrolysates such as Trypton can serve as competing substrates for engineered proteolytic enzymes.

As a fourth alternative, enzymes that recognize and convert the target substrate preferably are identified and selected by an amplification-coupled or growth-coupled selection step. Furthermore, the activity can be measured intracellularily and the selection can be done by a cell sorter, such as a fluorescence-activated cell sorter.

[0154] As a further alternative, enzymes that recognize and convert the target substrate are identified by first selecting enzymes that preferentially bind to the target substrate, and secondly selecting out of this subgroup of enzyme variants those enzymes that convert the target substrate. Selection for enzymes that preferentially bind the target substrate can be either done by selection of binders to the target substrate or by counter-selection of enzymes that bind to other substrates. Methods for the selection of binders or for the counter-selection of non-binders is known in the art. Such methods typically require phenotype-genotype coupling which can be solved by using surface display expression methods. Such methods include, for example, phage or viral display, cell surface display and in vitro display. Phage or viral display typically involves fusion of the protein of interest to a viral/phage protein. Cell surface display, i.e. either bacterial or eukaryotic cell display, typically involves fusion of the protein of interest to a peptide or protein that is located at the cell surface. In in-vitro display, the protein is typically made in vitro and linked directly or indirectly to the mRNA encoding the protein (DE 19646372).

[0155] The disclosure also provides for a composition or pharmaceutical composition comprising one or more engineered enzymes according to the first aspect as defined herein before. The composition may optionally comprise an acceptable carrier, excipient and/or auxiliary agent. Non-pharamceutical compositions as defined herein are research composition, nutritional composition, cleaning composition, desinfection composition, cosmetic composition or composition for personal care. Moreover, DNA sequences coding for the engineered enzyme as defined herein before and vectors containing said DNA sequences are also provided. Finally, transformed host cells (prokaryotic or eukaryotic) or

transgenic organisms containing such DNA sequences and/or vectors, as well as a method utilizing such host cells or transgenic animals for producing the engineered enzyme of the first aspect are also contemplated.

Detailed description of the figures

[0156]

5

10

15

20

25

30

35

40

45

50

55

<u>Figure 1:</u> Three-dimensional structure of human trypsin I with the active site residues shown in "ball-and-stick" representation and with the marked regions indicating potential SDR insertion sites.

<u>Figure 2</u>: Alignment of the primary amino acid sequences of the human proteases trypsin I, alpha-thrombin and enteropeptidase all of which belong to the structural class S1 of the serine protease family. Trypsin represents an unspecific protease of this structural class, while alpha-thrombin and enteropeptidase are proteases with high substrate specificity. Compared to trypsin several regions of insertions of three or more amino acids into the primary sequence of α-thrombin and enterokinase are seen. The region marked with (-1-) and the region marked with (-3-) are preferred SDR insertion sites. In the tertiary structure of alpha-thrombin both regions are in the vicinity of the substrate binding site. These regions therefore fullfil two criteria to be selected as candidates for SDRs: firstly, they represent insertions in the specific proteases compared to the unspecific one and, secondly, they are close to the substrate binding site. A representation of the three-dimensional structure is given in figure 3.

<u>Figure 3:</u> Three-dimensional structure of subtilisin with the active site residues being shown in "ball-and-stick" representation and with the numbered regions indicating potential SDR insertion sites.

<u>Figure 4:</u> Alignment of the primary amino acid sequences of subtilisin E, furin, PC1 and PC5 all of which belong to the structural class S8 of the serine protease family. Subtilisin E represents an unspecific protease of this structural class, while furin, PC1 and PC5 are proteases with high substrate specificity. Compared to subtilisin several regions of insertions of three or more amino acids into the primary sequence of furin, PC1 and PC5 are seen. The regions marked with (-4-), (-5-), (-7-), (-9-) and (-11-) are preferred SDR insertion sites. These regions stretches fulfill two criteria to be selected as candidates for SDRs: firstly, they represent insertions in the specific proteases compared to the unspecific one and, secondly, they are close to the active site residues.

<u>Figure 5:</u> Three-dimensional structure of beta-secretase with the active site residues being shown in "ball-and-stick" representation and with the numbered regions indicating potential SDR insertion sites.

<u>Figure 6:</u> Alignment of the primary amino acid sequences of pepsin, b-secretase and cathepsin D, all of which belong to the structural class A1 of the aspartic protease family. Pepsin represents an unspecific protease of this structural class, while b-secretase and cathepsin D are proteases with high substrate specificity. Compared to pepsin several regions of insertions of three or more amino acids into the primary sequence of b-secretase and cathepsin D are seen. The regions marked with -1- to -11- correspond to possible SDR combining sites and are also marked in Fig. S.

<u>Figure 7:</u> illustrates the three-dimensional structure of caspase 7 with the active site residues being shown in "ball-and-stick" representation and with the numbered regions indicating potential SDR insertion sites.

Figure 8: shows the primary amino acid sequence of caspase 7 as a member of the cysteine protease class C14 family (see also SEQ ID NO: 14).

Figure 9: Schematic representation of method according to the third aspect.

<u>Figure 10:</u> Western blot analysis of trypsin expression. Supernatant of cell cultures expressing variants of trypsin are compared to negative controls. Lane 1: molecular weight standard; lane 2: negative control; lane 3: supernatant of variant a; lane 4: negative control; lane 5: supernatant of variant b. A primary antibody specific to the expressed protein and a secondary antibody for generation of the signal were used.

<u>Figure 11:</u> Time course of the proteolytic cleavage of a target substrate. Supernatant of cells containing the vector with the gene for human trypsin and that of cells containing the vector without the gene was incubated with the peptide substrate described in the text. Cleavage of the peptide results in a decreased read out value. Proteolytic activity is confirmed for the positive clone.

<u>Figure 12:</u> Relative activity of three engineered proteolytic enzymes in comparison with human trypsin I on two different peptide substrates. A time course of the proteolytic digestion of the two substrates was performed and evaluated. Substrate B was used for screening and substrate A is a closely related sequence. Relative activity of the three variants was normalized to the activity of human trypsin I. Variant 1 and 2 clearly show increased specificity towards the target substrate. Variant 3, on the other hand, serves as a negative control with similar activities as the human trypsin I.

<u>Figure 13:</u> Relative specificities of trypsin and variants of engineered proteolytic enzymes with one or two SDRs, respectively. Activity of the proteases was determined in the presence and absence of competitor substrate, i.e. peptone at a concentration of 10mg/ml. Time courses for the proteolytic cleavage were recorded and the time constants k determined. The ratios between the time constants with and without competitor were formed and represent a quantitative measure for the specificity of the protease. The ratios were normalized to trypsin. The specificity of the variant containing two SDRs is 2.5 fold higher than that of the variant with SDR2 alone.

- Figure 14: Shows the relative specificities of protease variants in absence and presence of competitor substrate. The protease variants containing two inserts with different sequences and the non-modified scaffold human trypsin I were expressed in a suitable host. Activity of the protease variants was determined as the cleavage rate of a peptide with the desired target sequence of TNF-alpha in the absence and presence of competitor substrate. Specificity is expressed as the ratio of cleavage rates in the presence and absence of competitor.
- <u>Figure 15:</u> The figure shows the reduction of cytotoxicity induced by human TNF-alpha when incubating the human TNF-alpha with concentrated supernatant from cultures expressing the engineered proteolytic enzymes being specific for human TNF-alpha. This indicates the efficacy of the engineered proteolytic enzymes.
- Figure 16: The figure shows the reduction of cytotoxicity induced by human TNF-alpha when incubating the human TNF-alpha with different concentrations of purified engineered proteolytic enzyme being specific for human TNF-alpha. Variant g comprises Seq ID No:72 as SDR1 and Seq ID No:73 as SDR2. This indicates the efficacy of the engineered proteolytic enzymes.
- Figure 17: The figure compares the activity of engineered proteolytic enzymes being specific for human TNF-alpha with the activity of human trypsin I on two protein substrates: (a) human TNF-alpha; (b) mixture of human serum proteins. This indicates the safety of the engineered proteolytic enzymes. Variant x corresponds to Seq ID No: 75 comprising the SDRs according to Seq ID No. 89 (SDR1) and 95 (SDR2). Variants xi and xii correspond to derivatives thereof comprising the same SDR sequences.
 - Figure 18: Specific hydrolysis of human VEGF by an engineered proteolytic enzyme derived from human trypsin.

Examples

5

10

15

20

35

45

50

55

- 40 [0157] In the following examples, materials and methods of the present invention are provided including the determination of catalytic properties of enzymes obtained by the method. It should be understood that these examples are for illustrative purpose only and are not to be construed as limiting this invention in any manner.
 - [0158] In the experimental examples described below, standard techniques of recombinant DNA technology were used that were described in various publications, e.g. Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, or Ausubel et al. (1987), Current Protocols in Molecular Biology 1987-1988, Wiley Interscience. Unless otherwise indicated, restriction enzymes, polymerases and other enzymes as well as DNA purification kits were used according to the manufacturers specifications.

Example I: Identification of SDR sites in human trypsin

[0159] Insertion sites for SDRs have been identified in the serine protease human trypsin I (structural class S1) by comparison with members of the same structural class having a higher sequence specificity. Trypsin represents a member with low substrate specificity, as it requires only an arginine or lysine residue at the P₁ position. On the other hand, thrombin, tissue-type plasminogen activator or enterokinase all have a high specificity towards their substrate sequences, i.e. (L/I/V/F)XPR^NA, CPGR^VVGG and DDDK^, respectively. The primary sequences and tertiary structures of these and further S1 serine proteases have been aligned in order to determine regions of low and high sequence and structure homology and especially regions that correspond to insertions in the sequences of the more specific proteases (Figure 2). Several regions of insertions equal or longer than 3 amino acids representing potential SDR sites have been

identified as indicated in Figure 1. These regions were chosen as target sites for the insertion of SDRs in the examples below, e.g. SDR1 (region one in figure 2, after amino acid 42 according to SEQ ID NO:1) with a length of six and SDR2 (region three in figure 2, after amino acid 123 according to SEQ ID NO:1) with a length of five amino acids, respectively.

Example II: Molecular cloning of the human trypsine I gene to be used as scaffold protein and expression of the mature protease in B. subtilis

[0160] The gene encoding the unspecific protease human trypsinogen! was cloned into the vector pUC18. Cloning was done as follows: the coding sequence of the protein was amplified by PCR using primers that introduced a Kpnl site at the 5' end and a BamHI site at the 3' end. This PCR fragment was cloned into the appropriate sites of the vector pUC18. Identity was confirmed by sequencing. After sequencing the coding sequence of the mature protein was amplified by PCR using primers that introduced different Bgll sites at the 5' end and the 3' end.

This PCR fragment was cloned into the appropriate sites of an E. coli - B. subtilis shuttle vector. The vector contains a pMB1 origin for amplification in E. coli, a neomycin resistance marker for selection in E. coli, as well as a P43 promoter for the constitutive expression in B. subtilis. A 87 bp fragment that contains the leader sequence encoding the signal peptide from the sacB gene of B. subtilis was introduced behind the P43 promoter. Different Bgll restriction sites serve as insertion sites for heterologous genes to be expressed.

Expression of human trypsin I was confirmed by measurement of the proteolytic aciticity in supernatant of cells containing the vector with the gene in comparison to a negative control. A peptide including an arginine cleavage site was chosen as a substrate. The peptide was N-terminally biotinylated and labeled with a fluorophore at the C-terminus. After incubation of the peptide with culture supernatant streptavidin was added. Uncleaved peptide associate with streptavidin and lead to a high read out value while cleavage results in low read out values. Figure 11 shows the time course of a proteolytic digestion of B. subtilis cells containing the vector with the trypsin I gene in comparison to B. subtilis cells containing the vector without the trypsin I gene (negative control). As a further confirmation of expression of the protease, supernatants of cells containing the vector with the gene and control cells were analyzed by polyacrylamid gel electrophoreses and subsequent western blot using an antibody specific to the target protease. The procedure was performed according to standard methods (Sambrook, J.F; Fritsch, E.F.; Maniatis,T.; Cold Spring Harbor Laboratory Press, Second Edition, 1989, New York). Figure 8 confirms expression of the protein only in the cells harbouring the vector with the gene for trypsin.

Example III: Providing a scaffold protein

10

25

30

35

45

50

55

[0161] In this example, human trypsin I was used as the scaffold protein. The gene was either used in its natural form, or, alternatively, was modified to result in a scaffold protein with increased catalytic activity or further improved characteristics

The modification was done by random modification of the gene, followed by expression of the enzyme and subsequent selection for increased activity. First, the gene was PCR amplified under error-prone conditions, essentially as described by Cadwell, R.C and Joyce, G.F. (PCR Methods Appl. 2 (1992) 28-33). Error-prone PCR was done using 30 pmol of each primer, 20 nmol dGTP and dATP, 100 nmol dCTP and dTTP, 20 fmol template, and 5 U Taq DNA polymerase in 10 mM Tris HCl pH 7.6, 50 mM KCl, 7 mM MgCl2, 0.5 mM MnCl2, 0.01 % gelatin for 20 cycles of 1 min at 94 °C, 1 min at 65 °C and 1 min at 72 °C. The resulting DNA library was purified using the Qiaquick PCR Purification Kit following the suppliers' instructions. The PCR product was digested with the restriction enzyme Bg/l and purified. Afterwards, the PCR product was ligated into the E. coli - B. subtilis shuttle vector described above which was digested with Bgll and dephosphorylated. The ligation products were transformed into E. coli, amplified in LB, and the plasmids were purified using the Qiagen Plasmid Purification Kit following the suppliers' instructions. Resulting plasmids were transformed into B. subtilis cells.

Alternatively, or in addition to random mutagenesis, variants of the gene were statistically recombined at homologous positions by use of the Recombination Chain Reaction, essentially as described in WO 0134835. PCR products of the genes encoding the protease variants were purified using the QIAquick PCR Purification Kit following the suppliers' instructions, checked for correct size by agarose gel electrophoresis and mixed together in equimolar amounts. 80 µg of this PCR mix in 150 mM TrisHCl pH 7.6, 6.6 mM MgCl₂ were heated for 5 min at 94 °C and subsequently cooled down to 37 °C at 0.05 °C/s in order to re-anneal strands and thereby produce heteroduplices in a stochastic manner. Then, 2.5 U Exonuclease III per µg DNA were added and incubated for 20, 40 or 60 min at 37 °C in order to digest different lengths from both 3' ends of the heteroduplices. The partly digested PCR products were refilled with 0.6 U Pfu polymerase per µg DNA by incubating for 15 min at 72 °C in 0.17 mM dNTPs and Pfu polymerase buffer according to the suppliers' instructions. After performing a single PCR cycle, the resulting DNA was purified using the QIAquick PCR Purification Kit following the suppliers' instructions, digested with Bgll and ligated into the linearized vector. The ligation products were transformed into E. coli, amplified in LB containing ampicillin as marker, and the plasmids were purified

using the Qiagen Plasmid Purification Kit following the suppliers' instructions. Resulting plasmids were transformed into B. subtilis cells.

Example IV: Insertion of SDRs into the protein scaffold of human trypsin I and generation of an engineered proteolytic enzyme with specificity for a peptide substrate having the sequence KKWLGRVPGGPV.

[0162] In order to create insertion sites for SDRs in human trypsin I, two pairs of different restriction sites were introduced into the gene at sites that were identified as potential SDR sites (see Example I above) without changing the amino acid sequence. The insertion of the restriction sites was done by overlap extension PCR. Primers restr1 and restr2 were used for the introduction of SacII and BamHI restriction sites, restr3 and restr4 were used for the introduction of KpnI and NheI restriction sites. The sequences of the primers were as follows:

Binding site for restr1 and restr2 and the corresponding amino acid sequence (SEQ ID NO:54):

5'-GGTGGTATCAGCAGGCCACTGCTACAAGTCCCGCATCCAGGT-3'
V V S A G H C Y K S R I Q

Forward primer restr1 (SEQ ID NO:56): 5'-GGTGGTATCCGCGGGCCACTGCTACAAGTCCCGGATCCAGGT-3'

10

15

20

25

30

35

55

Reverse primer restr2 (SEQ ID NO: 57): 5'-ACCTGGATCCGGGACTTGTAGCAGTGGCCCGCGGATACCACC-3'

Binding site for restr3 and restr4 and the corresponding amino acid sequence (SEQ ID NO:58):

5'-CCACTGGCACGAAGTGCCTCATCTCTGGCTGGGGCAACACTGCGAGCTCT-3'
T G T K C L I S G W G N T A S S

Forward primer restr3 (SEQ ID NO:60):

5'-CCACTGGCACGAAGTGCCTCATCTCTGGCTGGGGCAACACTGCGAGCTCT-3'

Reverse primer restr4 (SEQ ID NO:61): 5'-AGAGCTAGCAGTGTTGCCCCAGCCAGAGATGAGGCACTTGGTACCAGTGG-3'

[0163] In a first overlap extension PCR, the Sacll/BamHI sites were introduced, enabling to insert SDR1, and in a second overlap extension PCR the Kpnl/Nhel sites, enabling the insertion of SDR2. The product of the overlap extension PCR was amplified using primers pUC-forward and pUC-reverse. The sequences of pUC-forward and pUC-reverse are as follows:

45 pUC-forward (SEQ ID NO:62): 5'-GGGGTACCCCACCACCATGAATCCACTCCT-3' pUC-reverse (SEQ ID NO:63): 5'-CGGGATCCGGTATAGAGACTGAAGAGATAC-3'

[0164] The restriction sites generated thereby were subsequently used to insert defined or random oligonucleotides into the SDR1 SDR2 insertion sites by standard restriction and ligation methods. Typically, two complementary synthetic 5'-phosphorylated oligonucleotides were annealed and ligated into a vector carrying the modified human trypsin I gene that was cleaved with the respective restriction enzymes. Oligonucleotides encoding SDR1 were inserted via the SacII/BamHI sites whereas oligonucleotides encoding SDR2 were inserted via the KpnI/Nhel sites. For each insertion an oligonucleotide pair according to the following general sequences was used ([P] indicating 5'-phosphorylation, N and X indicating any nucleotide or amino acid residue, respectively):

3'-CGCCCGGTGACGATGNNNNNNNNNNNNNNNNTTCAGGGCCTAG-[P]-5'

oligox-SDR2f (SEQ ID NO: 67):

oligox-SDR2r (SEQ ID NO:69)-.

S G

15

10

5

[0165] As an alternative to the above method, a PCR based method was used for the integration of random-sequences into the SDR1 and SDR2 insertion sites in the modified human trypsin 1. For each SDR, one primer was used where the SDR region is fully randomized. Sequences of the primers were as follows (N = A/C/G/T, B = C/G/T, V = A/C/G):

20

25

30

35

40

Primer SDR1-mutnnb-forward (SEQ ID NO:70): 5'-TGGTATCCGCGGGCCACTGCTACNNBNNBNNBNNBNNBNNBNNBAAGTCCCGGATCCAGGTG-3'

Primer SDR2-mutnnb-reverse (SEQ ID NO:71):

5'-GGCGCCAGAGCTAGCAGTVNNVNNVNNVNNVNNGTTGCCCCAGCCAGAGATG-3'

[0166] The codon NNB, or VNN in the reverse strand, allows all 20 amino acids to made, but reduces the probability of encoding a stop codon from 0.047 to 0.021.

[0167] As a further alternative, after identification of SDRs that lead to increased specificity, these SDRs were used as templates for further randomization.

Thereby, random peptide sequences were inserted that were partially randomized at each position and partially identical at each position to the original sequence.

[0168] As an example, random peptide sequences that have in approximately 1 of 3 cases the template amino acid residue and in approximately 2 of 3 cases any other amino acid residue at each position were inserted into the two SDR insertion sites of the modified human trypsin I. For this purpose, primers that contain at each nucleotide position of the SDR approximately 70% of the template bases and 30% of a mixture of the three other bases were used.

With each primer pair a PCR was performed under standard conditions using the human trypsin I gene as template. The resulting DNA was purified using the QIAquick PCR Purification Kit following the suppliers' instructions and digested with SacII and NheI. After digestion the DNA was purified and ligated into the SacII and NheI digested and dephosphorylayted vector. The ligation products were transformed into E. coli, amplified in LB containing the respective marker, and the plasmids were purified using the Qiagen Plasmid Purification Kit following the suppliers' instructions. Resulting plasmids were transformed into B. subtilis cells. These cells were then separated to single cells, grown to clones, and after expression of the protease gene screened for proteolytic activity.

The following substrates were employed for screening for proteolytic activity (SEQ ID NOs:76 and 77):

45

substrate A			L	G	R	V	V	G	G	Р	٧
substrate B	K. K	8	L	G	R	V	P	G	G	P	>

50

[0169] Protease variants were screened on substrate B at complexities of 106 variants by confocal fluorescence spectroscopy. The substrate was a peptide biotinylated at the N-terminus and fluorescently labeled at the C-terminus. After incubation of the peptide with supernatant of cells expressing different variants of the protease, streptavidin is added and the samples are analysed by confocal fluorimetry. The low concentration of the peptide (20nM) leads to a preferential cleavage by proteases with a high k_{cat}/K_M value, i.e. proteases with high specificity towards the target sequence.

[0170] Variants selected in the screening procedure were further evaluated for their specificity towards substrate 8

and closely related substrate A by measuring time courses of the proteolytic digestion and determining the rate constants which are proportional to the k_{cat}/K_M values. Clearly, compared to the human trypsin that was used as scaffold protein, the specific activity of variants 1 and 2 is shifted (SEQ ID NOs: 2 and 3, respectively) towards substrate B. Variant 3 (SEQ ID NO:4), on the other hand, serves as a negative control with similar activities as the human trypsin 1. Sequencing of the genes of the three variants revealed the following amino acid sequences in the SDRs.

<u>Table 2</u>: Sequences of the two SDRs in three different variants selected for specific hydrolysis of substrate B (SEQ ID NOs:78-83).

	SE)R	1:1				SI)R	2.		
Trypsin; 🖭	-	-	-	-	1	-	-	-	-	-	-
Variant 1	D	Α	V	G	R	D	T	I	T	N	S
Väriant 2a	Z	G	R	D	L	Ε	>	R	G	T	W
Variant 3.	G	F	٧	М	F	2	R	s	Р	L	T

[0171] In a further experiment a pool of variants containing different numbers of SDRs per gene were screened for increased specificity using a mixture of the defined substrate and pepton as a competing substrate. Variants containing one or two SDRs per gene have been analyzed further. As a measure for the specificity the activity in the peptide cleavage assay was compared with and without the presence of the competing substrate. The concentration of the competing substrate was 10 mg/ml. Under these conditions, unspecific proteases show, compared to specific proteases, a stronger decrease in activity with increasing competitor concentrations (range between 0 and 100 mg/ml). The ratio of proteolytic activity with and without substrate is a quantitative measure for the specificity of the proteases. Figure 9 shows the relative activities with and without competing substrate. Human trypsin I that was used as the scaffold protein and two variants, one containing only SDR2, and one containing both SDRs, were compared. The specificity of the variant with both SDRs is by a factor of 2.5 higher than that of the variant with SDR2 only, confirming that there is a direct relation between the number of SDRs and the quantitative specificity of resulting engineered proteolytic enzymes.

35 Example V: Generation of an engineered proteolytic enzyme that specifically inactivates human TNF-alpha

[0172] Human trypsin alpha! or a derivative comprising one or more of the following amino acid substitutions E56G; R78W; Y131F; A146T; C183R was used as protein scaffold for the generation of an engineered proteolytic enzyme with high specificity towards human TNF-alpha. The identification of SDR sites in human trypsin! or derivatives thereof was done as described above. Two insertion sites within the scaffold were choosen for SDRs. The protease variants containing two inserts with different sequences and also the human trypsin! itself with no inserts were expressed in a *Bacillus subtilis* cells. The variant protease cells were separated to single cell clones and the protease expressing variants were screened for proteolytic activity on peptides with the desired target sequence of TNF-alpha. The activity of the protease variants was determined as the cleavage rate of a peptide with the desired target sequence of TNF-alpha in the absence and presence of competitor substrate. The specificity is expressed as the ratio of cleavage rates in the presence and absence of competitor (Fig. 14).

<u>Table 3</u>: Relative specificity of variants of engineered proteolytic enzymes with different SDR sequences in absence and presence of competitor substrate (SEQ ID NOs:84-95).

	k with comp./ k without comp.	Seq. of SDR 1	Seq. of
scaffold (no SDRs)	0.092		
variant a	0.130	RPWDPS	VHPTS
variant ball	0.187	GFVMFN	RSPLT
variant c	0.235	EIANRE	RGART
variant d The hard	0.310	KAVVGT	RTPIS
variantie.	0.374	VNIMAA	TTARK
variant f	0.487	AAFNGD	RKDFW

20

25

30

45

50

55

5

10

15

[0173] The antagonistic effect of three protease variants on human TNF-alpha is shown in Figure 15. By the use of the variants, the induction of apoptosis is almost completely eliminated indicating the anti-inflammatory efficacy of the proteases to initiate TNF-alpha break down. TNF-alpha has been incubated with concentrated supernatant from cultures expressing the variants i to iii for 2 hours. The resulting TNF-alpha has been incubated with non-modified cells for 4 hours. The effect of the remaining TNF-alpha activity was determined as the extent of apoptosis induction by detection of activated caspase-3 as marker for apoptotic cells. For the controls either no protease was added with the human TNF-alpha (dead cells) or buffer instead of human TNF-alpha (live cells) was used, respectively. An analogous experiment is shown in Figure 16 using purified variant xiii. TNF-alpha was incubated with different concentrations of the purified protease variant.

[0174] To demonstrate the specificity of the protease variants, proteins from human blood serum or purified human TNF-alpha have been incubated with human trypsin I or the engineered proteolytic enzyme variants, respectively. Here, variant x corresponds to Seq ID No: 75 comprising the same SDRs as variant f, i.e. SDRs according to Seq ID No. 89 (SDR1) and 95 (SDR2). Variants xi and xii correspond to derivatives thereof comprising the same SDR sequences. Remaining intact protein was was determined as a function of time. While the variants as well as human trypsin I digest human TNF-alpha, only trypsin shows activity on serum protein (Figure 17 a and b). This demonstrates the high TNF-alpha specificity of the proteolytic enzymes and indicates their safety and accordingly their low side effects for therapeutic use.

40 Example VI: Generation of an engineered proteolytic enzyme that specifically hydrolysis human VEGF.

[0175] Human trypsin I was used as protein scaffold for the generation of an engineered proteolytic enzyme with high specificity towards human VEGF. The identification of SDR sites in human trypsin I was done as described above. Two insertion sites within the scaffold were choosen for SDRs. The protease variants containing two inserts with different sequences were expressed in *Bacillus subtilis* cells. The variant protease cells were separated to single cell clones and the protease expressing variants were screened as described above. The activity of the protease variants was determined as the rate of VEGF cleavage. 4µg of recombinant human VEGF165 was incubated with 0.18 µg of purified protease in PBS / pH 7.4 at room temperature. Aliquots were taken at the indicated time points and analysed on a polyacrylamide gel. The extend of cleavage was quantified by densitometric analysis of the bands. The activity is plotted over incubation time in Figure 18. Specific cleavage was controlled by further SDS polyacrylamide gel analyses.

SEQUENCE LISTING

[0176]

ĮO 17

<110> DIREVO Biotech AG

<120> NEW BIOLOGICAL ENTITIES AND USE THEREOF

	<130> 041480wo JH/cw																
	<160> 96																
5	<170> Pate	entin v	ersior	1 3.1													
	<210> 1 <211> 224 <212> PRT																
10	<213> Hom	no sap	iens														
	<400> 1																
15		Ile 1	Val	Gly	Gly	Tyr 5	Asn	Cys	Glu	Glu	Asn 10	Ser	Val	Pro	Tyr	Gln 15	Val
		_	Leu	Asn	Ser	Gly	Tyr	His	Phe	Cys	Gly	Gly	Ser	Leu	Ile	Asn	Glu
					20					25					30		
20		Gln	Trp		Val	Ser	Ala	Gly		Cys	Tyr	Lys	Ser	-	Ile	Gln	Val
		Ara	Leu	35 G1 v	Glu	His	Asn	Ile	40 Glu	Va1	Leu	Glu	Glv	45 Asn	Glu	Gln	Phe
			50	,				55					60				
25		Ile	Asn	Ala	Ala	Lys	Ile	Ile	Arg	His	Pro	Gln	Tyr	Asp	Arg	Lys	Thr
		65					70					75					80
		Leu	Asn	Asn	Asp		Met	Leu	Ile	Lys		Ser	Ser	Arg	Ala		Ile
30			••-	•		85 8	m b .	~ 1.	•	•	90	.		_		95	
		ASN	Ala	Arg	Val 100	ser	TRE	iie	ser	105	PIO	Thr	Ala	Pro	110	Ala	THE
		Gly	Thr	Lys		Leu	Ile	Ser	Gly		Gly	Asn	Thr	Ala		Ser	Gly
35		_		115	-				120		•			125			•
		Ala	Asp	Tyr	Pro	Asp	Glu	Leu	Gln	Cys	Leu	Asp	Ala	Pro	Val	Leu	Ser
			130					135					140				
40			Ala	Lys	Cys	Glu		Ser	Tyr	Pro	Gly	•	Ile	Thr	Ser	Asn	
		145	C	Va1	Gly	Dho	150	C1	C1	C1	T	155	C	S	C) -	C1	160
		rne	Cys	Vai	GIY	165	rea	GIU	GIY	GIY	170	wab	Sei	Cys	GIN	175	ASP
45		Ser	Gly	Gly	Pro		Val	Cys	Asn	Gly		Leu	Gln	Gly	Val		Ser
45																	
50				180)				185	5				19	0		
50	Trp	Gly			Cys	Ala	Glr			Ly	s Pro	G1;	-	_	r Th	r Ly:	5
		m	199		. 17-1	T	. m	200			205 n Thr Ile Ala Ala Asn Ser						
	val	T.A.	. ASI	ı ryı	. val	- nAs	til	. 116	- nys	NSI	i LU	r 11(e Al	a Ali	a AS	11 Se	L

<210> 2

5	<211><212><213><220><223>	PRT artific		•	æ														
	<400>	2																	
10		Ile 1	Val	Gly	Gly	Tyr 5	Asn	Cys	Glu	Glu	Asn 10	Ser	Val	Pro	Tyr	Gln 15	Val		
			Leu	Asn	Ser 20	Gly	Tyr	His	Phe	Cys 25		Gly	Ser	Leu	Ile 30		Glu		
15		Gln	Trp	Val 35		Ser	Ala	Gly	His		Tyr	Asp	Ala	Val		Arg	Asp		
		Lys	Ser 50	Arg	Ile	Gln	Val	Arg 55	Leu	Gly	Glu	His	Asn 60	Ile	Glu	Val	Leu		
20		Glu 65	Gly	Asn	Glu	Gln	Phe 70	Ile	Asn	Ala	Ala	Lys 75	Ile	Ile	Arg	His	Pro 80		
25		Gln	Tyr	Asp	Arg	Lys 85	Thr	Leu	Asn	Asn	Asp 90	Ile	Met	Leu	Ile	Lys 95	Leu		
				_	100	Val				105					110				
30				115		Ala			120					125					
			130			Asn		135					140	_			-		
35		145				Leu	150					155			-	-	160		
	•			_		Gly 165 Lys	-				170			_	,	175			
40				_	180	Gln	-		-	185	_			•	190		•		
45			•	195	_	Lys			200				_	205	-	•	-		
				•		-		-		-		•		•		•			
50	210						215 220												
			ys T: 25	rp I	те р	ys A	sn Thr Ile Ala Ala As 230						235						

<210> 3 <211> 235 <212> PRT

<220> <223> trypsin variant 2 5 <400> 3 Ile Val Gly Gly Tyr Asn Cys Glu Glu Asn Ser Val Pro Tyr Gln Val 10 Ser Leu Asn Ser Gly Tyr His Phe Cys Gly Gly Ser Leu Ile Asn Glu 25 Gln Trp Val Val Ser Ala Gly His Cys Tyr Asn Gly Arg Asp Leu Glu 15 Lys Ser Arg Ile Gln Val Arg Leu Gly Glu His Asn Ile Glu Val Leu 55 Glu Gly Asn Glu Gln Phe Ile Asn Ala Ala Lys Ile Ile Arg His Pro 70 75 20 Gln Tyr Asp Arg Lys Thr Leu Asn Asn Asp Ile Met Leu Ile Lys Leu 85 90 Ser Ser Arg Ala Val Ile Asn Ala Arg Val Ser Thr Ile Ser Leu Pro 25 100 105 Thr Ala Pro Pro Ala Thr Gly Thr Lys Cys Leu Ile Ser Gly Trp Gly 120 Asn Val Arg Gly Thr Trp Thr Ala Ser Ser Gly Ala Asp Tyr Pro Asp 30 135 Glu Leu Gln Cys Leu Asp Ala Pro Val Leu Ser Gln Ala Lys Cys Glu 150 155 Ala Ser Tyr Pro Gly Lys Ile Thr Ser Asn Met Phe Cys Val Gly Phe 35 165 170 Leu Glu Gly Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Val 185 40 Val Cys Asn Gly Gln Leu Gln Gly Val Val Ser Trp Gly Asp Gly Cys 200 205 Ala Gln Lys Asn Lys Pro Gly Val Tyr Thr Lys Val Tyr Asn Tyr Val 215 45 Lys Trp Ile Lys Asn Thr Ile Ala Ala Asn Ser 50 225 230 235

<210> 4 <211> 235 55 <212> PRT <213> artificial sequence <220> <223> trypsin variant 3

<213> artificial sequence

<400> 4

		Ile	Val	Gly	Gly	Tyr	Asn	Cys	Glu	Glu	Asn	Ser	Val	Pro	Tyr	Gln	Val
5		1				5					10					15	
		Ser	Leu	Asn	Ser	Gly	Tyr	His	Phe	Cys	Gly	Gly	Ser	Leu	Ile	Asn	Glu
					20					25					30		
		Gln	Trp	Val	Val	Ser	Ala	Gly	His	Cys	Tyr	Ala	Ala	Thr	Asn	Gly	Asp
10			-	35				-	40	-	•			45		-	•
		1.vs	Ser	Ara	Tle	G) n	Val	Arg	Leu	Glv	Glu	His	Asn	Tle	Glu	Val	T.eu
		-,0	50			U 1		55		0-1		0	60		040		200
		C3			~ 1	C1-	Dh -				31.	7		•1-	•		5
15			GIÀ	ASII	GIU	GIN		Ile	ASII	міа	мта	_	116	TIE	Arg	HIS	
		65					70					75					80
		Gln	Tyr	Asp	Arg		Thr	Leu	Asn	Asn		Ile	Met	Leu	Ile	Lys	Leu
						85					90					95	
20		Ser	Ser	Arg	Ala	Val	Ile	Asn	Ala	Arg	Val	Ser	Thr	Ile	Ser	Leu	Pro
					100					105					110		
		Thr	Ala	Pro	Pro	Ala	Thr	Gly	Thr	Lys	Cys	Leu	Ile	Ser	Gly	Trp	Gly
25				115					120			•		125			
		Asn	Arg	Lys	Asp	Phe	Trp	Thr	Ala	Ser	Ser	Gly	Ala	Asp	Tyr	Pro	Asp
			130					135					140				
		Glu	Leu	Gln	Cys	Leu	Asp	Ala	Pro	Val	Leu	Ser	Gln	Ala	Lys	Cys	Glu
		145					150					155					160
30		Ala	Ser	Tyr	Pro	Gly	Lys	Ile	Thr	Ser	Asn	Met	Phe	Cys	Val	Glv	Phe
				_		165	_				170			•		175	
		Leu	Glu	Glv	Glv	Lvs	asA	Ser	Cvs	* 1		Asp	Ser	Glv	ดาง		Va 1
35				,	180	-,-			-1-	185	,			,	190		
20		V = 1	Cva) en		Gla	Lou	Gln	Glu		Va 1	Sar	Tra	C1		C1	C
		V01	Cy.	195	O.J	U 2	Deu	G1 11	200	Val	491	Jei	пр	205	vah	GIY	Cys
			C1 -		•	•	D	61				•	••- ١			_	
40		MIA		гàг	ASII	rys	PIO	Gly	vaı	ryt	inr	гÀг		Tyr	ASN	Tyr	vaı
		_	210		_	_		215			_	_	220				
•		-	-	116	Lys	Asn		Ile	Ala	Ala	Asn						
		225					230					235					
45																	
	<210> 5																
	<211> 259																
	<212> PR <213> Ho		niens														
50	-210-110	30	פוופוקו				•										
	<400> 5																

55

	Ile	Val	Glu	Gly	Ser	Asp	Ala	Glu	Ile	Gly	Met	Ser	Pro	Trp	Gln	Val
	1				5					10					15	
5	Met	Leu	Phe	Arg	Lys	Ser	Pro	Gln	Glu	Leu	Leu	Cys	Gly	Ala	Ser	Leu
				20					25					30		
	Ile	Ser	Asp	Arg	Trp	Val	Leu	Thr	Ala	Ala	His	Cys	Leu	Leu	Tyr	Pro
			35					40					45			
10	Pro	Trp	Asp	Lys	Asn	Phe	Thr	Glu	Asn	Asp	Leu	Leu	Val	Arg	Ile	Gly
		50					55					60				
	Lys	His	Ser	Arg	Thr	Arg	Tyr	Glu	Arg	Asn	Ile	Glu	Lys	Ile	Ser	Met
15	65					70					75					80
15	Leu	Glu	Lys	Ile	Tyr	Ile	His	Pro	Arg	Tyr	Asn	Trp	Arg	Glu	Asn	Leu
					85					90					95	
	Asp	Arg	Asp		Ala	Leu	Met	Lys	Leu	Lys	Lys	Pro	Val	Ala	Phe	Ser
20				100					105					110		
	Asp	Tyr		His	Pro	Val	Cys		Pro	Asp	Arg	Glu	Thr	Ala	Ala	Ser
			115					120					125			
	Leu		Gln	Ala	Gly	Tyr		Gly	Arg	Val	Thr		Trp	Gly	Asn	Leu
25		130					135					140				
		Glu	Thr	Trp	Thr		Asn	Val	Gly	Lys		Gln	Pro	Ser	Val	
	145			_	_	150					155					160
30	Gln	Val	Val	Asn		Pro	Ile	Val	Glu		Pro	Val	Cys	Lys	-	Ser
		_		_	165		_	_		170	_				175	
	Thr	Arg	He	_	He	Thr	Asp	Asn		Phe	Cys	Ala	Gly	Tyr	Lys	Pro
		~ 1	0 1	180	•	01	•		185			_	_	190		_
35	Asp	GIU	195	rys	Arg	GIY	Asp	200	Cys	GIU	GIA	Asp		Gly	GIY	Pro
	DL a	1701		7	So	D=0	Dha		3	.			205		-1	
	Pne	210	met	Lys	ser		215	ASII	ASN	Arg	Trp		GIN	Met	GIĀ	iie
	v.		T-5	~1	C1			3.00		.	C1	220	.	0 1	5 5.	_
40	225	Set	ILP	GIY	GIU	230	Cys	мзр	Arg	Asp		ràs	Tyr	Gly	Pne	
		44.0	Wa I	Dho	N		T	*	~	*1-	235	.	**- 3	-1-		240
	IIII	ura	401	Ene	245	Tea	n A 2	-ys	1. L.D.	250	GIU	րդջ	vai	Ile	_	GIN
45	Dhe	Gly	Glu		273					230					255	
	E 114	G L y	JIU													

50 <210> 6 <211> 235 <212> PRT <213> Homo sapiens

55 <400> 6

	Ile	Val	Gly	Gly	Ser	Asn	Ala	Lys	Glu	Gly	Ala	Trp	Pro	Trp	Val	Val
	1				5					10					15	
5	Gly	Leu	Tyr	Tyr	Gly	Gly	Arg	Leu	Leu	Cys	Gly	Ala	Ser	Leu	Val	Ser
				20					25					30		
	Ser	Asp	Trp	Leu	Val	Ser	Ala	Ala	His	Cys	Val	Tyr	Gly	Arg	Asn	Leu
			35					40					45			
10	Glu	Pro	Ser	Lys	Trp	Thr	Ala	Ile	Leu	Gly	Leu	His	Met	Lys	Ser	Asn
		50					55					60				
	Leu	Thr	Ser	Pro	Gln	Thr	Val	Pro	Arg	Leu	Ile	Asp	Glu	Ile	Val	Ile
	65					70					75					80
15	Asn	Pro	His	Tyr	Asn	Arg	Arg	Arg	Lys	Asp	Asn	Asp	Ile	Ala	Met	Met
					85					90					95	
	His	Leu	Glu	Phe	Lys	Val	Asn	Tyr	Thr	Asp	Tyr	Ile	Gln	Pro	Ile	Cys
20				100					105					110		
	Leu	Pro	Glu	Glu	Asn	Gln	Val	Phe	Pro	Pro	Gly	Arg	Asn	Cys	Ser	Ile
			115					120					125			
	Ala	Gly	Trp	Gly	Thr	Val	Val	Tyr	Gln	Gly	Thr	Thr	Ala	Asn	Ile	Leu
25		130					135					140				
	Gln	Glu	Ala	Asp	Val	Pro	Leu	Leu	Ser	Asn	Glu	Arg	Cys	Gln	Gln	Gln
	145					150					155					160
	Met	Pro	Glu	Tyr	Asn	Ile	Thr	Glu	Asn	Met	Ile	Суз	Ala	Gly	Tyr	Glu
30					165					170					175	
	Glu	G1 y	Gly	Ile	Asp	Ser	Cys	Gln	Gly	Asp	Ser	Gly	Gly	Pro	Leu	Met
				180					185					190		
35	Cys	Gln	Glu	Asn	Asn	Arg	Trp	Phe	Leu	Ala	Gly	Val	Thr	Ser	Phe	Gly
			195					200					205			
	Tyr	Lys	Cys	Ala	Leu	Pro	Asn	Arg	Pro	Gly	Val	Tyr	Ala	Arg	Val	Ser
		210					215					220				
40	Arg	Phe	Thr	Glu	Trp	Ile	Gln	Ser	Phe	Leu	His					
	225					230					235					

<210> 7 45 <211> 275 <212> PRT

<213> Bacillus subtilis

<400> 7

55

		Ile	Ala	His	Glu	Tyr	Ala	GIn	Ser	Val	Pro	Tyr	Gly	Ile	Ser	Gln	Ile
		1				5					10					15	
5		Lys	Ala	Pro	Ala	Leu	His	Ser	Gln	Gly	Tyr	Thr	Gly	Ser	Asn	Val	Lys
					20					25					30		
		Val	Ala	Val	Ile	Asp	Ser	Gly	Ile	Asp	Ser	Ser	His	Pro	Asp	Leu	Asn
				35					40					45			
10		Val	Arg	Gly	Gly	Ala	Ser	Phe	Val	Pro	Ser	Glu	Thr	Asn	Pro	Tyr	Gln
			50					55					60				
		Asp	Gly	Ser	Ser	His	Gly	Thr	His	Val	Ala	Gly	Thr	Ile	Ala	Ala	Leu
15		65					70					75					80
,,		Asn	Asn	Ser	Ile	Gly	Val	Leu	Gly	Val	Ser	Pro	Ser	Ala	Ser	Leu	Tyr
						85					90					95	
		Ala	Val	Lys	Val	Leu	Asp	Ser	Thr	Gly	Ser	Gly	Gln	Tyr	Ser	Trp	Ile
20					100					105					110		
		Ile	Asn	G1 y	Ile	Glu	Trp	Ala	Ile	Ser	Asn	Asn	Met	Asp	Val	Ile	Asn
				115					120					125			
		Met	Ser	Leu	Gly	Gly	Pro	Thr	Gly	Ser	Thr	Ala	Leu	Lys	Thr	Val	Val
25			130					135					140				
		Asp	Lys	Ala	Val	Ser	Ser	Gly	Ile	Val	Val	Ala	Ala	Ala	Ala	Gly	Asn
		145					150					155					160
		Glu	Gly	Ser	Ser	Gly	Ser	Thr	Ser	Thr	Val	Gly	Tyr	Pro	Ala	Lys	Tyr
30						165					170					175	
		Pro	Ser	Thr	Ile	Ala	Val	G1 y	Ala	Val	Asn	Ser	Ser	Asn	Gln	Arg	Ala
					180					185					190		
35		Ser	Phe	Ser	Ser	Ala	Gly	Ser	Glu	Leu	Asp	Val	Met	Ala	Pro	Gly	Val
				195					200					205			
		Ser	Ile	Gln	Ser	Thr	Leu	Pro	Gly	Gly	Thr	Tyr	Gly	Ala	Tyr	Asn	Gly
			210					215					220				
40		Thr	Ser	Met	Ala	Thr	Pro	His	Val	Ala	Gly	Ala	Ala	Ala	Leu	Ile	Leu
		225					230					235					240
		Ser	Lys	His	Pro	Thr	Trp	Thr	Asn	Ala	Gln	Val	Arg	Asp	Arg	Leu	Glu
						245					250					255	
45		Ser	Thr	Ala	Thr	Tyr	Leu	G1 y	Asn	Ser	Phe	Tyr	Tyr	Gly	Lys	Gly	Leu
					260					265					270		
		Ile	Asn	Val													
50				275													
	<210> 8																
	<211> 320 <212> PRT																
55	<212> PK1		jen. sr) .													•
			•														
	<400> 8																

	Val	Ala	Lys	Arg	Arg 5	Ala	Lys	Arg	Asp	Val	Tyr	Gln	Glu	Pro	Thr 15	Asp
		*	Dho	Dro	_	C1-	т	T	T :0.11	-	C1	Wa 1	Th-	Gln		A c m
5	FIO	гуs	FILE	20	GIII	GIII	пр	ıyı	25	ser	Gry	vaı	1111	30	ALG	vah
	7 011	N = n	Un l		Cl.	A 1 -	T	71 -		C1	Pho	Th =	G1 v	His	C1v	Tlo
	reu	ASII	35	Dys	GIU	uta	11p	40	GIN	Grå	rne	1111	45	nis	GIY	116
	Wa 1	V-1		Tla	I ou	Aen	Acn		T10	C1	Tue	Acn		Pro	A c ~	T AU
10	441	50	Jei	110	Бец	пор	55	GIY	116	GIU	Буз	60	1113	110	лэр	Deu
	Ala		Asn	Tvr	Asp	Pro		Ala	Ser	Phe	Asp		Asn	Asp	Gln	Asp
	65	,		- 4 -		70	,				75			•		80
15	Pro	Asp	Pro	Gln	Pro	Arg	Tyr	Thr	Gln	Met	Asn	Asp	Asn	Arg	His	Gly
		•			85	-	•			90		-		_	95	-
	Thr	Arg	Cys	Ala	Gly	Glu	Val	Ala	Ala	Val	Ala	Asn	Asn	Gly	Val	Cys
				100					105					110		
20	Gly	Val	Gly	Val	Ala	Tyr	Asn	Ala	Arg	Ile	Gly	Gly	Val	Arg	Met	Leu
			115					120					125			
	Asp	Gly	Glu	Val	Thr	Asp	Ala	Val	Glu	Ala	Arg	Ser	Leu	Gly	Leu	Asn
25		130					135					140				
25	Pro	Asn	His	Ile	His	Ile	Tyr	Ser	Ala	Ser	Trp	Gly	Pro	Glu	Asp	Asp
	145					150					155					160
	Gly	Lys	Thr	Val	Asp	Gly	Pro	Ala	Arg	Leu	Ala	Glu	Glu	Ala	Phe	Phe
30					165					170					175	
	Arg	Gly	Val	Ser	Gln	GJ A	Arg	Gly	Gly	Leu	Gly	Ser	lle	Phe	Val	Trp
				180					185					190		
	Ala	Ser	Gly	Asn	Gly	Gly	Arg	Glu	His	Asp	Ser	Cys	Asn	Cys	Asp	Gly
35			195					200					205			
	Tyr	Thr	Asn	Ser	Ile	Tyr	Thr	Leu	Ser	Ile	Ser	Ser	Ala	Thr	Gln	Phe
		210					215					220				
40	Gly	Asn	Val	Pro	Trp	-	Ser	Glu	Ala	Cys		Ser	Thr	Leu	Ala	
	225					230					235					240
	Thr	Tyr	Ser	Ser		Asn	Gln	Asn	Glu		Gln	Ile	Val	Thr		Asp
					245					250					255	
45	Leu	Arg	Gln	-	Cys	Thr	Glu	Ser		Thr	Gly	Thr	Ser	Ala	Ser	Ala
			_	260					265		_			270		_
	Pro	Leu		Ala	Gly	ile	TTE		ren	Thr	ren	Glu		Asn	Lys	Asn
	_		275		•	1405	C1-	280	7.00	17 3	V- 1	٥,	285	Sar	_	.
50	1.011	Th	1177	ATC	ASD	mer	UID	nis	Tet ()	val	val	GILD	יויח זיי	SOF	1.00	PTO

			290		_			295					300				
5		Ala 305	His	Leu	Asn	Ala	310	Asp	Trp	Ala	Thr	Asn 315	Gly	Val	Gly	Arg	Lys 320
10	<210> 9 <211> 3 <212> 1 <213> 1	330 PRT	sapie	ns													
15	<400> 9	Đ															
20																	
25												•					
30																	
35																	
40 45																	
50																	

	-	Glu	Lys	Glu	Arg	Ser	Lys	Arg	Ser	Ala	Leu	Arg	Asp	Ser	Ala	Leu	Asn
		1				5					10					15	
5		Leu	Phe	Asn	Asp	Pro	Met	Trp	Asn	Gln	Gln	Trp	Tyr	Leu	Gln	Asp	Thr
•					20					25					30		
		Arg	Met	Thr	Ala	Ala	Leu	Pro	Lys	Leu	Asp	Leu	His	Val	Ile	Pro	Val
				35					40					45			
10		Trp	Gln	Lys	Gly	Ile	Thr	Gly	Lys	Gly	Val	Val	Ile	Thr	Val	Leu	Asp
			50					55					60				
		Asp	Gly	Leu	Glu	Trp	Asn	His	Thr	Asp	Ile	Tyr	Ala	Asn	Tyr	Asp	Pro
		65					70					75					80
15		Glu	Ala	Ser	Tyr	Asp	Phe	Asn	Asp	Asn	Asp	His	Asp	Pro	Phe	Pro	Arg
						85					90		•			95	
		Tyr	Asp	Pro	Thr	Asn	Glu	Asn	Lys	His	Gly	Thr	Arg	Cys	Ala	Gly	Glu
20					100					105					110		
20		Ile	Ala	Met	Gln	Ala	Asn	Asn	His	Lys	Cys	Gly	Val	Gly	Val	Ala	Tyr
				115					120					125			
		Asn	Ser	Lys	Val	Gly	Gly	Ile	Arg	Met	Leu	Asp	Gly	Ile	Val	Thr	Asp
25			130					135					140				
		Ala	Ile	Glu	Ala	Ser	Ser	Ile	Gly	Phe	Asn	Pro	Gly	His	Val	Asp	Ile
		145					150					155					160
		Tyr	Ser	Ala	Ser	Trp	Gly	Pro	Asn	Asp	Asp	Gly	Lys	Thr	Val	Glu	Gly
30						165					170					175	
		Pro	Gly	Arg	Leu	Ala	Gln	Lys	Ala	Phe	Glu	Tyr	Gly	Val	Lys	Gln	Gly
					180					185					190		
35		Arg	Gln	Gly	Lys	Gly	Ser	Ile	Phe	Val	Trp	Ala	Ser	Gly	Asn	Gly	Gly
35				195					200					205			
		Arg		Gly	Asp	Asn	Cys	_	Cys	Asp	Gly	Tyr		Asp	Ser	Ile	Tyr
			210					215					220				
40		Thr	Ile	Ser	Ile	Ser	Ser	Ala	Ser	Gln	Gln	Gly	Leu	Ser	Pro	Trp	Tyr
		225					230					235					240
		Ala	Glu	Lys	Cys	Ser	Ser	Thr	Leu	Ala	Thr	Ser	Tyr	Ser	Ser	Gly	Asp

					2,45					250					255	
•	Tyr	Thr	Asp	Gln	Arg	Ile	Thr	Ser	Ala	Asp	Leu	His	Asn	Asp	Cys	Thr
5				260					265					270		
	Glu	Thr	His	Thr	Gly	Thr	Ser	Ala	Ser	Ala	Pro	Leu	Ala	Ala	Gly	Ile
			275					280					285			
	Phe	Ala	Leu	Ala	Leu	Glu	Ala	Asn	Pro	Asn	Leu	Thr	Trp	Arg	Asp	Met
10		290					295					300				
	Gln	His	Leu	Val	Val	-	Thr	Ser	Glu	Tyr	_	Pro	Leu	Ala	Asn	Asn
	305					310					315					320
15	Pro	Gly	Trp	Lys	_	Asn	Gly	Ala	Gly							
					325					330						
	<210> 10															
	<211> 297															
20	<212> PRT <213> Homo	cania	20													
	12132 Homo	sapici	13													
	<400> 10															
25																
		Thr	His	Pro	_	Gln	Ser	Asp	Met		Ile	Glu	Gly	Ala	_	Lys
	1	۵.	_	- 1	5	•		- 1 -	••••	10		-, -	_	_	15	
	Arg	GIY	Tyr	Thr	GIÀ	Lys	ASN	iie		vai	Thr	116	Leu	_	Asp	GIA
30	710	C1	3	20 Th=		Dro	7.00	T 0.11	25 Mot	C1-	X	T	N = ==	30	T	21.
	116	GIU	35	Thr	птэ	FIO	ASP	40	Met	GIN	ASII	TAT	45	AIA	Ten	wia
	Ser	Cvs		Val	Asn	Glv	Asn		Len	Asn	Pro	Met		Ara	Tur	Asn
35	561	50				017	55		200			60		9	- , -	тор
	Ala		Asn	Glu	Asn	Lys		Gly	Thr	Arq	Cvs		Glv	Glu	Val	Ala
	65					70				Ī	75		-			80
	Ala	Ala	Ala	Asn	Asn	Ser	His	Cys	Thr	Val	Gly	Ile	Ala	Phe	Asn	Ala
40					85					90					95	
	Lys	Ile	Gly	Gly	Val	Arg	Met	Leu	Asp	Gly	Asp	Val	Thr	Asp	Met	Val
				100					105					110		
45	Glu	Ala	Lys	Ser	Val	Ser	Phe	Asn	Pro	Gln	His	Val	His	Ile	Tyr	Ser
			115					120					125			
	Ala	Ser	Trp	GĮÀ	Pro	Asp	Asp	Asp	Gly	Lys	Thr	Val	Asp	Gly	Pro	Ala
		130					135					140				
50		Leu	Thr	Arg	Gln		Phe	Glu	Asn	Gly		Arg	Met	Gly	Arg	Arg
	145					150					155					160
	Gly	Leu	Gly	Ser		Phe	Val	Trp	Ala		Gly	Asn	Gly	Gly		Ser
55				_	165	_	_		_	170					175	
~	Lys	Asp	His	Cys	Ser	Cys	Asp	Gly	Tyr	Thr	Asn	Ser	Ile	Tyr	Thr	Ile

				180					185					190		
	Ser	Ile	Ser	Ser	Thr	Ala	Glu	Ser	Gly	Lys	Lys	Pro	Trp	Tyr	Leu	Glu
5			195					200					205			
	Glu	Cys	Ser	Ser	Thr	Leu	Ala	Thr	Thr	Tyr	Ser	Ser	Gly	Glu	Ser	Tyr
		210					215					220				
10	Asp	Lys	Lys	Ile	Ile	Thr	Thr	Asp	Leu	Arg	Gln	Arg	Cys	Thr	Asp	Asn
	225					230					235					240
	His	Thr	Gly	Thr	Ser	Ala	Ser	Ala	Pro	Met	Ala	Ala	Gly	Ile	Ile	Ala
					245					250					255	
15	Leu	Ala	Leu	Glu	Ala	Asn	Pro	Phe	Leu	Thr	Trp	Arg	Asp	Val	Gln	His
				260					265					270		
	Val	Ile	Val	Arg	Thr	Ser	Arg		Gly	His	Leu	Asn	Ala	Asn	Asp	Trp
			275					280					285			
20	Lys		Asn	Ala	Ala	Gly		Lys	Val							
		290					295									
25	<210> 11															
	<211> 328															
	<212> PRT															
	<213> Homo	sapie	ns													
30	<400> 11															
35																

	Thr 1	Leu	Val	Asp	Glu 5	Gln	Pro	Leu	Glu	Asn 10	Tyr	Leu	Asp	Met	Glu 15	Tyr
5	Phe	Gly	Thr	Ile 20	Gly	Ile	Gly	Thr	Pro 25	Ala	Gln	Asp	Phe	Thr 30	Val	Val
	Phe	Asp	Thr 35	Gly	Ser	Ser	Asn	Leu 40	Trp	Val	Pro	Ser	Val 45	Tyr	Cys	Ser
10	Ser	Leu 50	Ala	Cys	Thr	Asn	His 55	Asn	Arg	Phe	Asn	Pro 60	Glu	Asp	Ser	Ser
	Thr 65	Tyr	Gln	Ser	Thr	Ser 70	Glu	Thr	Val	Ser	11e 75	Thr	Tyr	Gly	Thr	Gly 80
15	Ser	Met	Thr	Gly	Ile 85	Leu	Gly	Tyr	Asp	Thr 90	Val	Gln	Val	Gly	Gly 95	Ile
20	Ser	Asp	Thr	Asn 100	Gln	Ile	Phe	Gly	Leu 105	Ser	Glu	Thr	Glu	Pro 110	Gly	Ser
20	Phe	Leu	Tyr 115	Tyr	Ala	Pro	Phe	Asp 120	Gly	Ile	Leu	Gly	Leu 125	Ala	Tyr	Pro
25	Ser	Ile 130	Ser	Ser	Ser	Gly	Ala 135	Thr	Pro	Val	Phe	Asp 140	Asn	Ile	Trp	Asn
	Gln	Gly	Leu	Val	Ser	Gln	Asp	Leu	Phe	Ser	Val	Tyr	Leu	Ser	Ala	Asp

		145					150					155					160
		Asp	Lys	Ser	Gly	Ser	Val	Val	Ile	Phe	Gly	Gly	Ile	Asp	Ser	Ser	Tyr
5		_	-			165					170			•		175	
		Tyr	Thr	Gly	Ser	Leu	Asn	Trp	Val	Pro	Val	Thr	Val	Glu	Gly	Tyr	Trp
				_	180					185					190	-	_
10		Gln	Ile	Thr	Val	Asp	Ser	Ile	Thr	Met	Asn	Gly	Glu	Thr	Ile	Ala	Cys
10				.195					200					205			
		Ala	Glu	Gly	Cys	Gln	Ala	Ile	Val	Asp	Thr	Gly	Thr	Ser	Leu	Leu	Thr
	•		210					215					220				
15		Gly	Pro	Thr	Ser	Pro	Ile	Ala	Asn	Ile	Gln	Ser	Asp	Ile	Gly	Ala	Ser
		225					230					235					240
		Glu	Asn	Ser	Asp	Gly	Asp	Met	Val	Val	Ser	Cys	Ser	Ala	Ile	Ser	Ser
						245					250					255	
20		Leu	Pro	Asp	Ile	Val	Phe	Thr	Ile	Asn	Gly	Val	Gln	Tyr	Pro	Val	Pro
					260					265					270		
		Pro	Ser	Ala	Tyr	Ile	Leu	Gln	Ser	Glu	Gly	Ser	Cys	Ile	Ser	Gly	Phe
25				275					280					285			
20		Gln	Gly	Met	Asn	Val	Pro	Thr	Glu	Ser	Gly	Glu	Leu	Trp	Ile	Leu	Gly
			290					295					300				
		Asp	Val	Phe	Ile	Arg	Gln	Tyr	Phe	Thr	Val	Phe	Asp	Arg	Ala	Asn	Asn
30		305					310					315					320
		Gln	Val	Gly	Leu	Ala	Pro	Val	Ala								
						325											
35	<210> 12 <211> 358	٠.															
	<212> PR																
	<213> Ho	mo sa	apiens	3													
40	<400> 12																
		Glu	Met	Val	Asp	Asn	Leu	Ara	Glv	Lvs	Ser	Glv	Gln	Glv	Tur	Tvr	Val
		1				5		3		-,-	10	,			-,-	15	
45			Met	Thr	Val		Ser	Pro	Pro	Gln		Leu	Asn	Ile	Leu		Asp
					20	•				25					30		-•
		Thr	Gly	Ser		Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu
50			•	35					40	-				45			
		His	Arg	Tyr	Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg
			50	-	-			55					60	,	-		-
		Lys	Gly	Val	Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu
55		65					70					75					80
		Gly	Thr	Asp	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg

						85					90					95	
		Ala	Asn	Ile	Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly
5					100					105					110		
		Ser	Asn	Trp	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg
				115		_			120			_		125			•
		Pro	Asp	Asp	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lvs	Gln	Thr
10			130	•				135			- •		140				
		His		Pro	Asn	Leu	Phe		Leu	Gln	Leu	Cvs		Ala	Glv	Phe	Pro
		145					150					155	,		- 1		160
			Asn	Gln	Ser	Glu		ī.en	Δla	Ser	Vel		Glv	Ser	Mot	Tla	
15				01	001	165	val	200		001	170	O. y	ory	361	ne c	175	116
		G1	C1	710	3.55		Ca	T 0	m	Thr		Sa.	7	m	m		D
		GIY	GIY	116	180	птэ	Ser	Leu	IÀT		GIĄ	ser	ren	пр		THE	Pro
		T1-	.	.		m		m	61	185	- 1-	- 11-	••- 1	•	190	•	
20		116	Arg		GIU	Trp	Tyr	Tyr		Val	ııe	116	Val	_	Val	GIu	He
		_		195			_		200					205			
		Asn		Gln	Asp	Leu	Lys		Asp	Cys	Lys	Glu			Tyr	Asp	Lys
25			210					215					220				
23	•	Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val
		225					230					235					240
		Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys
30						245					250					255	
		Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala
					260					265					270		
		Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met
35				275					280					285			
		Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln
			290					295					300				
		Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr
40 ·		305					310					315		-	-	-	320
		Lvs	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Glv		Val	Met.	Glv	Ala	
						325					330				,	335	
		Tle	Met	Glu	Glv		Tur	Val	Val	Phe		Ara	Δla	Ara	T.ve		Tla
45				020	340		-1-			345				nr y	350	ara	116
		C1	Pho	212		Ser	n l a			313					330		
		GIY	rne		ABI	361	WIG										
				355													
50																	
	<210> 13 <211> 351																
	<212> PRT																
	<213> Hom	o sa	piens											•			
55	<400×42																
	<400> 13																

	Pro 1	Ala	Val	Thr	Glu 5	Gly	Pro	Ile	Pro	Glu 10	Val	Leu	Lys	Asn	Tyr 15	Met
		Ala	Gln	Tvr	-	Gly	Glu	Ile	Glv		Glv	Thr	Pro	Pro		Cvs
5				20	•				25		,			30		-,-
	Phe	Thr	Val	Val	Phe	Asp	Thr	Gly	Ser	Ser	Asn	Leu	Trp	Val	Pro	Ser
			35			-		40					45			
	Ile	His	Cys	Lys	Leu	Leu	Asp	Ile	Ala	Cys	Trp	Ile	His	His	Lys	Tyr
10		50					55					60				
	Asn	Ser	Asp	Lys	Ser	Ser	Thr	Tyr	Val	Lys	Asn	Gly	Thr	Ser	Phe	Asp
	65					70					75					80
15	Ile	His	Tyr	Gly	Ser	Gly	Ser	Leu	Ser	Gly	Tyr	Leu	Ser	Gln	Asp	Thr
					85					90					95	
	Val	Ser	Val	Pro	Cys	Gln	Ser	Ala	Ser	Ser	Ala	Ser	Ala	Leu	Gly	Gly
				100					105					110		
20	Val	Lys	Val	Glu	Arg	Gln	Val	Phe	Gly	Glu	Ala	Thr	Lys	Gln	Pro	Gly
			115					120					125			
	Ile		Phe	Ile	Ala	Ala	_	Phe	Asp	Gly	Ile		Gly	Met	Ala	Tyr
25	_	130		_		_	135		_	_		140	_	_	_	
		Arg	He	Ser	Val	Asn	Asn	Val	Leu	Pro		Phe	Asp	Asn	Leu	
	145	G1 -	•	.	W-1	150	C1-		*1-	Db.a	155	Dh.a		• • • •	C	160
	GIN	GIN	Lys	Leu	165	Asp	GIN	ASN	He	170	ser	rne	ryr	rea	3er 175	Arg
30	Aen	Pro	Asn	Δla		Pro	Glu	Glv	Glu		Mat	T.e.u	Glv	GLV		Aen
	лор		ngp	180	0211		017	01,	185	200		DCU	G ₁	190	••••	nsp
	Ser	Lvs	Tvr		Lvs	Gly	Ser	Leu		Tvr	Leu	Asn	Val		Ara	Lvs
35		-,-	195		-,-			200		•			205		3	
35	Ala	Tyr	Trp	Gln	Val	His	Leu	Asp	Gln	Val	Glu	Val	Ala	Ser	Gly	Leu
		210					215					220				
	Thr	Leu	Cys	Lys	Glu	Gly	Cys	Glu	Ala	Ile	Val	Asp	Thr	Gly	Thr	Ser
40	225					230					235					240
	Leu	Met	Val	Gly	Pro	Val	Asp	Glu	Val	Arg	Glu	Leu	Gln	Lys	Ala	Ile
					245					250					255	
	Gly	Ala	Va 1	Pro	Leu	Ile	Gln	Gly	Glu	Tyr	Met	Ile	Pro	Cys	Glu	Lys
45				2 60					265					270		
	Val	Ser	Thr	Leu	Pro	Ala	Ile		Leu	Lys	Leu	Gly	Gly	Lys	Gly	Tyr
			275					280					285			
50	Lys		Ser	Pro	Glu	Asp	-	Thr	Leu	Lys	Val		Gln	Ala	G1 y	Lys
		290	_	_	_		295					300	_	_	_	•
		Leu	Cys	Leu	Ser	Gly	Pne	Met	Gly	Met	•	Ile	Pro	Pro	Pro	
	305	D	1	T	T1-	310	C1	7	U- 1	Dh -	315	61 .	3	m	m	320
55	GIÀ	PFO	ren	ırþ	TIG	Leu	GIÀ	vab	vaı	rne	тте	GIÀ	AIG	Tyr	ıyr	rnr

-	Val	Phe	Asp	-	325 Asp	Asn	Asn	Arg	Val	330 Gly	Phe	Ala	Glu		335 Ala	
5				340					345					350		
10	<210> 14 <211> 305 <212> PRT <213> Homo	sanie	ne													
	1210-1101110	оцріс														
	<400> 14															
15	••				•	_			_		_,			-1		
	Met 1	ren	GIU	Ala	Asp 5	Asp	GIN	GIÀ	Cys	11e	GIU	GIU	Gln	GΙΆ	Val 15	Glu
	_	Ser	Ala	Asn		Asp	Ser	Val	Asp		Lvs	Pro	Asp	Arσ		Ser
20	,			20					25] -			30		-
	Phe	Val	Pro	Ser	Leu	Phe	Ser	Lys	Lys	Lys	Lys	Asn	Val	Thr	Met	Arg
			35					40					45			
25	Ser		Lys	Thr	Thr	Arg	Asp	Arg	Val	Pro	Thr	Tyr	Gln	Tyr	Asn	Met
25	_	50		_	_		55	_				60	_	_		
	Asn 65	Phe	Glu	Lys	Leu	70 70	Lys	Cys	Ile	Ile	11e 75	Asn	Asn	Lys	Asn	
		Lvs	Va l	Thr	Glv		Glv	Val	Ara	Asn	_	Thr	Asp	Lvs	Asp	80 Ala
30	пор	-,-	•••	•	85		01,			90	,			_,,	95	
	Glu	Ala	Leu	Phe	Lys	Cys	Phe	Arg	Ser	Leu	Gly	Phe	Asp	Val	Ile	Val
				100					105					110		
35	Tyr	Asn	Asp	Cys	Ser	Cys	Ala	Lys	Met	Gln	Asp	Leu	Leu	Lys	Lys	Ala
			115					120				_	125			
	Ser		Glu	Asp	His	Thr		Ala	Ala	Суѕ	Phe		Cys	Ile	Leu	Leu
40	Ser	130 His	Glv	Glu	Gln	Aen	135 Val	Tle	Tur	Glv	ī.vs	140 Asp	Gly	V a 1	でわっ	Pro
	145		,	020		150			- , -	0-,	155		- 1	,,,	****	160
	Ile	Lys	Asp	Leu	Thr	Ala	His	Phe	Arg	Gly	Asp	Arg	Ser	Lys	Thr	Leu
45					165					170					175	
45	Leu	Glu	Lys	Pro	Lys	Leu	Phe	Phe		Gln	Ala	Cys	Arg	Gly	Thr	Glu
	_			180				_	185		_		_	190		
	Leu	Asp	Asp 195	Gly	He	Gln	Ala	200	Ser	Gly	Pro	Ile	Asn 205	Asp	Thr	Asp
50	Δla	Asn		Ara	Tvr	Lvs	Tle		Va 1	Glu	Ala	Asn	Phe	1.eu	Phe	Δla
	nzu	210	- • •		- , -	-10	215					220				
	Tyr		Thr	Val	Pro	Gly		Tyr	Ser	Trp	Arg		Pro	Gly	Arg	Gly
55	225					230					235					240
	Ser	Trp	Phe	Val	Gln	Ala	Leu	Cys	Ser	Ile	Leu	Glu	Glu	His	Gly	Lys

					245					250					255	
	Asp	Leu	Glu	Ile	Met	Gln	Ile	Leu	Thr	Arg	Val	Asn	Asp	Arg	Val	Ala
5	•			260					265	-			•	270		
	Arg	His	Phe		Ser	Gln	Ser	Asp		Pro	His	Phe	His		Lvs	Lus
			275					280					285		-,-	-,0
	Gln	Tle		Cvs	Val	Val	Ser		Leu	Thr	1.vs	Glu		Tvr	Phe	Ser
10	02	290		Cys	•••	•••	295		200	****	2,3	300	200	.,.		261
	Gln	2,50					2,5					300				
	305															
	303															
15																
	<210> 15 <211> 262															
	<212> PRT				-											
	<213> Strept	omyce	es sp.	K15												
20	<400> 15															
	\400> 13															
	••-1	mb	•	S	m >	-1.	• • •			6 3						_
25		Thr	Lys	Pro		116	Ala	Ala	vai	_	GIÀ	Tyr	Ala	met		Asn
20	1				5	_	_		_	10		_		_	15	_
	GIÀ	Thr	Gly		Thr	Leu	Tyr	Thr		Ala	Ala	Asp	Thr		Arg	Ser
			_	20		_			25					30		
30	Thr	Gly	Ser	Thr	Thr	Lys	Ile		Thr	Ala	Lys	Val		Leu	Ala	Gln
			35					40					45			
	Ser	Asn	Leu	Asn	Leu	Asp		Lys	Val	Thr	Ile	Gln	Lys	Ala	Tyr	Ser
		50					55					60				
35	Asp	Tyr	Val	Val	Ala	Asn	Asn	Ala	Ser	Gln	Ala	His	Leu	Ile	Val	Gly
	65					70					75					80
	Asp	Lys	Val	Thr	Val	Arg	Gln	Leu	Leu	Tyr	Gly	Leu	Met	Leu	Pro	Ser
					85					90					95	
40	Gly	Cys	Asp	Ala	Ala	Tyr	Ala	Leu	Ala	Asp	Lys	Tyr	Gly	Ser	Gly	Ser
	•			100					105					110		
	Thr	Arg	Ala	Ala	Arg	Val	Lys	Ser	Phe	Ile	Gly	Lys	Met	Asn	Thr	Ala
45			115					120					125			
45	Ala	Thr	Asn	Leu	Gly	Leu	His	Asn	Thr	His	Phe	Asp	Ser	Phe	Asp	Gly
		130					135					140				
	Ile	Gly	Asn	Gly	Ala	Asn	Tyr	Ser	Thr	Pro	Arg	Asp	Leu	Thr	Lys	Ile
50	145					150					155					160
	Ala	Ser	Ser	Ala	Met	Lys	Asn	Ser	Thr	Phe	Arg	Thr	Val	Val	Lys	Thr
					165					170					175	
	Lys	Ala	Tyr	Thr	Ala	Lys	Thr	Val	Thr	Lys	Thr	Gly	Ser	Ile	Arg	Thr
55				180					185					190		
	Met	Asp	Thr	Trp	Lys	Asn	Thr	Asn	Gly	Leu	Leu	Ser	Ser	Tyr	Ser	Gly

			195					200					205			
	A	la Ile	Gly	Val	Lys	Thr	Gly	Ser	Gly	Pro	Glu	Ala	Lys	Tyr	Cys	Leu
5		210			•		215					220				
	V	al Phe	Ala	Ala	Thr	Arg	Gly	Gly	Lys	Thr	Val	Ile	Gly	Thr	Val	Leu
	2:	25				230					235					240
10	A	la Ser	Thr	Ser	Ile	Pro	Ala	Arg	Glu	Ser	Asp	Ala	Thr	Lys	Ile	Met
70					245					250					255	
	A:	sn Tyr	Gly	Phe	Ala	Leu										
				260												
15							•									
	<210> 16															
	<211> 256 <212> PRT															
	<213> Hum		negalo	ovirus												
20	<400> 16															
	400-10															
	Me	et Thr	Met	Asp	Glu	Gln	Gln	Ser	Gln	Ala	Val	Ala	Pro	Val	Tyr	Val
25	1				5					10					15	
	G	ly Gly	Phe	Leu	Ala	Arg	Tyr	Asp	Gln	Ser	Pro	Asp	Glu	Ala	Glu	Leu
				20					25					30		
	L	eu Leu	Pro	Arg	Asp	Val	Val	Glu	His	Trp	Leu	His	Ala	Gln	Gly	Gln
30			35					40					45			
	G	ly Gln	Pro	Ser	Leu	Ser	Val	Ala	Leu	Pro	Leu	Asn	Ile	Asn	His	Asp
		50					55					60				
35	A	sp Thr	Ala	Val	Val	Gly	His	Val	Ala	Ala	Met	Gln	Ser	Val	Arg	Asp
	6					70					75					80
	G	ly Leu	Phe	Cys		Gly	Cys	Val	Thr	Ser	Pro	Arg	Phe	Leu	Glu	Ile
					85					90					95	
40	V	al Arg	Arg		Ser	Glu	Lys	Ser		Leu	Val	Ser	Arg	-	Pro	Val
	_		_	100	_		_		105					110		
	S	er Pro		GIn	Pro	Asp	rys		Val	Glu	Phe	Leu		Gly	Ser	Tyr.
45			115	0	• • • •	C	C	120	•	.	•	•	125			
45	A	la Gly		ser	reu	Ser	135	Arg	Arg	Cys	ASP	•	vaı	GIU	GIN	Ala
	T	130 hr Ser		507	G1 v	Sar		Thr	The	D=0	Dho	140	u: c	Wa l	710	1
		nr ser 45	rea	Jer	GIY	150	GIU	1111	THE	FEO	155	гàя	nis	AGI	WIG	160
50		ys Ser	Va l	C1 v	Ara		Ara	Gly	Th-	Lon		Va l	T	G1	A = ==	
	C	Ja sel	vai	GIÅ	165	ary	ary	Gry	1111	170	uta	val	TAL	GI Å	175	wab
	Þ	ro Glu	Tro	۷a۱		Gln	Ara	Phe	Pro		T.e.s	The	Als	Als		Ara
	•	010	6	180			7		185	٠.٠٠	~~ U			190	بإدد	
55								.		_	-	_		Ala		•

			195					200					205			
	Ala	Ser	Gly	Asp	Pro	Phe	Arg	Ser	Asp	Ser	Tyr	Gly	Leu	Leu	Gly	Asn
5		210					215				_	220			_	
	Ser	Val	Asp	Ala	Leu	Tyr	Ile	Arg	Glu	Arg	Leu	Pro	Lys	Leu	Arg	Tyr
	225					230					235					240
	Asp	Lys	Gln	Leu	Val	Gly	Val	Thr	Glu	Arg	Glu	Ser	Tyr	Val	Lys	Ala
10					245					250					255	
	<210> 17															_
15	<211> 248 <212> PRT															
	<213> Escher	ichia	coli													
	<400> 17															
20	11-3	•	.	Db -	•1.		G1	D	D\-	61	- 1 -			-1	_	
	1	ALG	Ser	Phe	5	ıyı	GIU	PIO	FILE	10	116	Pro	ser	GIY	ser 15	met
		Pro	Thr	Leu		Ile	Glv	Asp	Phe	_	Leu	Val	Glu	Lvs		Ala
05				20			•	•	25	_				30		
25	Tyr	Gly	Ile	Lys	Asp	Pro	Ile	Tyr	Gln	Lys	Thr	Leu	Ile	Glu	Thr	Gly
	_	-	35	_	_			40		-			45			•
	His	Pro	Lys	Arg	Gly	Asp	Ile	Val	Val	Phe	Lys	Tyr	Pro	Glu	Asp	Pro
30		50					55					60				
	Lys	Leu	Asp	Tyr	Ile	Lys	Arg	Ala	Val	Gly	Leu	Pro	Gly	Asp	Lys	Val
	65					70					75					80
0.5	Thr	Tyr	Asp	Pro	Val	Ser	Lys	Glu	Leu	Thr	Ile	Gln	Pro	Gly	Cys	Ser
35					85					90					95	
	Ser	Gly	Gln	Ala	Cys	Glu	Asn	Ala	Leu	Pro	Val	Thr	Tyr	Ser	Asn	Val
				100					105					110		
40	Glu	Pro		Asp	Phe	Val	Gln		Phe	Ser	Arg	Arg		Gly	Gly	Glu
			115					120	_	_			125	_		_
	Ala		ser	Gly	Phe	Pne		Val	Pro	Lys	Asn		Thr	Lys	Glu	Asn
	C)	130	N	T ou	50 -	~1	135	T	C1	Th.	1	140	3	17-1	a b	174 -
45	145	116	ALG	Leu	Ser	150	AIG	rys	GIU	1111	155	GIY	Asp	Val	Int	160
		Tle	Leu	Thr	Val		Tle	Ala	Gln	Asn		Va 1	Glv	Met	Tur	
			200		165					170	J 2	***	O.J	1100	175	-7-
50	Gln	Gln	Pro	Gly		Gln	Leu	Ala	Thr		Ile	Val	Pro	Pro		Gln
				180					185					190	,	
	Tyr	Phe	Met	Met	Gly	Asp	Asn	Arg	Asp	Asn	Ser	Ala	Asp		Arg	Tyr
	-		195		-	-		200	-				205		_	-
55	Trp	Gly	Phe	Val	Pro	Glu	Ala	Asn	Leu	Val	Gly	Arg	Ala	Thr	Ala	Ile

			210					215					220				
		Trn	Met	Ser	Phe	Asn	Lve		Glu	Glv	G) u	Troi		Th-	Gly	Len	7-0
5		225		-			230	01	010	Oly	310	235	110	****	017	Deu	240
3			Ser	Ara	Ile	Glv		Tle	His			233					240
			-			245	O. J										
10	<210> 18 <211> 317 <212> PRT																
	<213> Sen		narces	cens													
15	<400> 18																
			Glu	Gln	Leu	-	Gly	Leu	Tyr	Pro		Leu	Ala	Ala	Tyr	Asp	Ser
20		1				5					10					15	
		Gly	Trp	Leu		Thr	Gly	Asp	Gly		Arg	Ile	Tyr	Trp		Leu	Ser
					20					25					30		
		Gly	Asn		Asn	Gly	Lys	Pro		Val	Phe	Ile	His	-	Gly	Pro	Gly ·
25				35	_	_			40		_			45			
		GIA	Gly	He	Ser	Pro	His		Arg	Gln	Leu	Phe	_	Pro	Glu	Arg	Tyr
		_	50	_	_			55	_		_		60	_	_	_	
20			Val	Leu	Leu	Phe		Gln	Arg	Gly	Cys		Arg	Ser	Arg	Pro	
30		65		•	•	•	70					75			_		80
		Ala	Ser	Leu	Asp		Asn	Thr	Thr	Trp		Leu	Val	Ala	Asp		Glu
		•	•	•	61	85	×1-	63	**- 3	G1	90		•		5 1.	95	
35		Arg	Leu	Arg	100	met	AIA	GIĀ	vai	105	GIN	тгр	ren	vaı		GTÅ	GIY
		50=	Trp	C1		Th-	T an	212	T 011		T	31 5	C) =	ሞኩ	110	D	C1
		361	пр	115	Ser	1112	Leu	nia	120	AIA	ıyı	MIG	GIII	125	uis	PIO	GIU
		A = 0	Val		G1 v	Mat	Val	7.611		Glv	Tle	Pho	ጥኮ ፦		D.r.a	7	Cl n
40		nry	130	361	GIU	Mec	V 0 1	135	arg	Gry	116	rne	140	Deu	nry	БУS	GIN
		Ara	Leu	Hig	Tro	Tur	Tvr		Asp	Glv	Ala	Ser		Phe	Phe	Pro	Glu
		145	200			- 7 -	150	02		UI,		155					160
45			Trp	Glu	Ara	Val		Ser	Ile	Leu	Ser		Asp	Glu	Ara	Lvs	
		-,-		-	9	165					170					175	
		Val	Ile	Ala	Ala		Arq	Gln	Arq	Leu		Ser	Ala	Asp	Pro		Val
					180	- , -	,			185					190		
50		Gln	Leu	Glu		Ala	Lys	Leu	Trp		Val	Trp	Glu	Gly		Thr	Val
				195			-		200		-	•		205			
		Thr	Leu		Pro	Ser	Arg	Glu	Ser	Ala	Ser	Phe	Gly		Asp	Asp	Phe
			210				_	215					220		•	•	
55		Ala	Leu	Ala	Phe	Ala	Arg	Ile	Glu	Asn	His	Tyr	Phe	Thr	His	Leu	Gly

	225					230					235					240
		Leu	Glu	Ser	Asp	Asp	Gln	Leu	Leu	Arg		Val	Pro	Leu	Ile	
5					245	_				250					255	
	His	Ile	Pro	Ala	Val	Ile	Val	His	Gly	Arg	Tyr	Asp	Met	Ala	Суз	Gln
				260					265					270		
	Val	Gln	Asn	Ala	Trp	Asp	Leu	Ala	Lys	Ala	Trp	Pro	Glu	Ala	Glu	Leu
10			275					280					285			
	His	Ile	Val	Glu	Gly	Ala	Gly	His	Ser	Tyr	Asp	Glu	Pro	Gly	Ile	Leu
		290					295					300				
15	His	Gln	Leu	Met	Ile	Ala	Thr	Asp	Arg	Phe	Ala	Gly	Lys			
	305					310					315					
	<210> 19															
20	<211> 229															
	<212> PRT <213> Esche	richia	coli													
25	<400> 19															
20																
	Met	Glu	Leu	Leu		Leu	Ser	Asn	Ser		Leu	Pro	Gly	Lys	Ala	Trp
	1				5	_	_			10					15	
30	Leu	Glu	His		Leu	Pro	Leu	Ile		Asn	Gln	Leu	Asn	-	Arg	Arg
				20		_			25					30		
	Ser	Ala		Phe	Ile	Pro	Phe		Gly	Val	Thr	Gln		Trp	Asp	Glu
	. .	m1	35	•			~ 1	40	•		_		45			
35	Tyr		Asp	rys	THE	Ala		vaı	Leu	ATS	Pro		GIY	Val	Asn	Val
	mh -	50	710	uio	N	W-1	55		D=0	T 0	21-	60	T1-	C1		21-
	65	Gry	116	nis	ALY	70	via	nsp	PIO	rea	75	MIG	116	GIU	Lys	80
40		Tla	Tle	Tle	V=1		Glv	Glv	Aen	The		Gl n	Len	Lau	Lys	
	910	116	110	116	85	GIY	Gry	Gly	ASII	90	rne	GIII	Deu	Leu	95	GIU
	Ser	Ara	Glu	Àrσ		Leu	Leu	Ala	Pro		Ala	Asp	Ara	Val	Lys	Ara
				100	,				105					110	2,0	9
45	Glv	Ala	Leu		Ile	Gly	Trp	Ser		Glv	Ala	Asn	Leu		Cys	Pro
			115	•		-	•	120					125		•	•
	Thr	Ile	Arg	Thr	Thr	Asn	Asp	Met	Pro	Ile	Val	Asp		Asn	Gly	Phe
50		130					135					140			-	
	Asp	Ala	Leu	Asp	Leu	Phe	Pro	Leu	Gln	Ile	Asn	Pro	His	Phe	Thr	Asn
	145					150					i55					160
	Ala	Leu	Pro	Glu	Gly	His	Lys	Gly	Glu	Thr	Arg	Glu	Gln	Arg	Ile	Arg
55					165					170					175	
	Glu	Leu	Leu	Val	Val	Ala	Pro	Glu	Leu	Thr	Val	Ile	Gly	Leu	Pro	Glu

					180					185					190		
		Gly	Asn	Trp	Ile	Gln	Val	Ser	Asn	Gly	Gln	Ala	Val	Leu	Gly	Gly	Pro
5				195					200					205			
		Asn	Thr	Thr	Trp	Val	Phe	Lys	Ala	Gly	Glu	Glu	Ala	Val	Ala	Leu	Glu
		`	210					215					220				
10		Ala	Gly	His	Arg	Phe											
,,,		225															
		_															
	<210> 2 <211> 9																
15	<212> P																
	<213> H	luman	immı	unode	ficien	cy vin	IS										
	<400> 2	0															
20																	
20		Pro	Gln	Ile	Thr	Leu	Trp	Gln	Arg	Pro	Leu	Val	Thr	Val	Lys	Ile	Gly
		1				5					10					15	
		Gly	Gln	Leu	Arg	Glu	Ala	Leu	Leu	Asp	Thr	Gly	Ala	Asp	Asp	Thr	Val
25					20					25					30		
		Leu	Glu	Asp	Ile	Asn	Leu	Pro	Gly	Lys	Trp	Lys	Pro	Lys	Met	Ile	Gly
				35					40					45			
		Gly	Ile	Gly	Gly	Phe	Ile	Lys	Val	Arg	Gln	Tyr	Asp	Gln	Ile	Leu	Ile
30			50					55					60				
		Glu	Ile	Cys	Gly	Lys	Lys	Ala	Ile	Gly	Thr	Val	Leu	Val	Gly	Pro	Thr
		65					70					75					80
		Pro	Val	Asn	Ile	Ile	Gly	Arg	Asn	Met	Leu	Thr	Gln	Ile	Gly	Cys	Thr
35						85					90					95	
		Leu	Asn	Phe													
	<210> 2	1															
40	<211> 2																
	<212> F																
	<213> E	scher	nchia	COII													
	<400> 2	1															
45																	
		Ser	Thr	Glu	Thr	Leu	Ser	Phe	Thr	Pro	Asp	Asn	Ile	Asn	Ala	Asp	Ile
		1				5					10					15	
50		Ser	Leu	Gly	Thr	Leu	Ser	Gly	Lys	Thr	Lys	Glu	Arg	Val	Tyr	Leu	Ala
					20					25					30		
		Glu	Glu	Gly	Gly	Arg	Lys	Val	Ser	Gln	Leu	Asp	Trp	Lys	Phe	Asn	Asn

			35					40					45			
	Ala	Ala	Ile	Ile	Lys	Gly	Ala	Ile	Asn	Trp	Asp	Leu	Met	Pro	Gln	Ile
5		50					55				•	60				
	Ser	Ile	Gly	Ala	Ala	Gly	Trp	Thr	Thr	Leu	Gly	Ser	Arg	Gly	Gly	Asn
	65					70					75					80
	Met	Val	Asp	Gln	Asp	Trp	Met	Asp	Ser	Ser	Asn	Pro	Gly	Thr	Trp	Thr
10					85	_				90					95	
	Asp	Glu	Ala	Arg	His	Pro	Asp	Thr	Gln	Leu	Asn	Tyr	Ala	Asn	Glu	Phe
				100					105					110		
15	Asp	Leu	Asn	Ile	Lys	Gly	Trp	Leu	Leu	Asn	Glu	Pro	Asn	Tyr	Arg	Leu
			115					120					125			
	Gly	Leu	Met	Ala	Gly	Tyr	Gln	Glu	Ser	Arg	Tyr	Ser	Phe	Thr	Ala	Arg
		130					135					140				
20	Gly	Gly	Ser	Tyr	Ile	Tyr	Ser	Ser	Glu	Glu	Gly	Phe	Arg	Asp	Asp	Ile
	145					150					155					160
	Gly	Ser	Phe	Pro		Gly	Glu	Arg	Ala		Gly	Tyr	Lys	Gln	Arg	Phe
0.5					165					170					175	
25	Lys	Met	Pro	-	Ile	Gly	Leu	Thr	-	Ser	Tyr	Arg	Tyr	Glu	Asp	Phe
				180					185					190		
	Glu	Leu	-	Gly	Thr	Phe	Lys	-	Ser	Gly	Trp	Val		Ser	Ser	Asp
30			195					200					205			
	Asn		Glu	His	Tyr	Asp		Lys	Gly	Arg	Ile		Tyr	Arg	Ser	Lys
		210					215	_				220				_
		Lys	Asp	Gln	Asn	-	Tyr	Ser	Val	Ala		Asn	Ala	Gly	Tyr	-
35	225		_	_		230		_		_,	235		_			240
	vai	Thr	Pro	ASN	245	гÀз	vaı	Tyr	vaı		GIÀ	AIA	Trp	Asn		vaı
	m> -		T	*		2	mL	C	T	250	3			3	255	mb
40	Int	ASI	rys	260	GIY	ASII	Int	ser	265	Tyr	ASP	nis	ASN	Asn 270	ASII	Inr
40	c		M		T	***	C1	A 1 -		T10	C1	3	m	Asn	Dha	T1-
	ser	АЗР	275	261	rys	ASII	GIY	280	GIA	116	GIU	ASII	285	ASII	Pne	116
	ጥከ ~	Th ∽		Gly	יום.ז	1.ve	Tur		Pho							
45 .	4412	290	27.0	JLY	264	2,3	295	****	-116							
		2,0														

<210> 22 50 <211> 212 <212> PRT <213> Carica papaya

<400> 22

Ile Pro Glu Tyr Val Asp Trp Arg Gln Lys Gly Ala Val Thr Pro Val

5															
	1			5					10					15	
	Lys	Asn G	n Gly	Ser	Cys	Gly	Ser	Cys	Trp	Ala	Phe	Ser	Ala	Val	Val
10			20					25					30		
	Thr	Ile Gl	u Gly	Ile	Ile	Lys	Ile	Arg	Thr	Gly	Asn	Leu	Asn	Gln	Tyr
		35	•				40					45			
	Ser	Glu Gl	n Glu	Leu	Leu	Asp	Суз	Asp	Arg	Arg	Ser	Tyr	Gly	Cys	Asn
15		50				55					60				
	Gly	Gly Ty	r Pro	Trp	Ser	Ala	Leu	Gln	Leu	Val	Ala	Gln	Tyr	Gly	Ile
	65				70					75					80
20	His	Tyr Ar	g Asn	Thr	Tyr	Pro	Tyr	Glu	Gly	Val	Gln	Arg	Tyr	Cys	Arg
				85					90					95	
	Ser	Arg Gl	_	Gly	Pro	Tyr	Ala		Lys	Thr	Asp	Gly	Val	Arg	Gln
			100					105					110		
25	Val	Gln Pr	-	Asn	Gln	Gly		Leu	Leu	Tyr	Ser		Ala	Asn	Gln
	_	11	_				120					125			
	Pro	Val Se	r Val	Val	Leu		Ala	Ala	Gly	Lys		Phe	Gln	Leu	Tyr
30	_	130				135	_	_		_	140		_		
30		Gly Gl	y Ile	Phe		GIÀ	Pro	Cys	GIA		Lys	Val	Asp	His	
	145		_ ••- •	61	150	~ 1	5	•		155	• -	- 1 -			160
	vai	Ala Al	a vaı	165	Tyr	GIĀ	Pro	ASN	170	116	Leu	11e	rys		Ser
35	Ten	Gly Th	- 61		C1	C1	3.00	C1		Tlo	2	T10	T	175	C1
	Пр	GIY II	180	ILP	GLY	GIU	ASII	185	ıyı	116	ALG	116	190	Arg	GIY
	Thr	Gly As	_	Tur	Gly	Va 1	Cve		T.e.n	Tur	Thr	Sor		Phe	Tur
	****	19		-,-	O.J	•44	200	Q1,	200	- , -	••••	205	561		* 7 *
40	Pro	Val Ly	·=												
		210	•												
45	<210> 23														
	<211> 699														
	<212> PRT <213> Homo sa	aniene													
	_10-1101110 36	20110													
50	<400> 23														

5	l Leu	Gly	Ser	His 20	5 Glu	Lys	Ala	Ile	Lys 25	10 Tyr	Leu	Asn	Gln	Asp 30	15 Tyr	Glu
10			35			Cys		40					45			
15																
20 .																
25																
30																
35																
40																
45																
50																

		50					55					60				
	Tyr	Ser	Ser	Lys	Thr	Arg	Gly	Met	Arg	Trp	Lys	Arg	Pro	Thr	Glu	Ile
5	65					70					75					80
J	Cys	Ala	Asp	Pro	Gln	Phe	Ile	Ile	Gly	Gly	Ala	Thr	Arg	Thr	Asp	Ile
					85					90					95	
	Cys	Gln	Gly	Ala	Leu	Gly	Asp	Суѕ	Trp	Leu	Leu	Ala	Ala	Ile	Ala	Ser
10				100					105					110		
	Leu	Thr	Leu	Asn	Glu	Glu	Ile	Leu	Ala	Arg	Val	Val	Pro	Leu	Asn	Gln
			115					120					125			
•	Ser		Gln	Glu	Asn	Tyr		Gly	Ile	Phe	His		Gln	Phe	Trp	Gln
15	_	130					135					140				
		Gly	Glu	Trp	Val			Val	Val	Asp		Arg	Leu	Pro	Thr	_
	145				•	150					155		_			160
	Asp	GIA	GIU	ren	165	Pne	vaı	nıs	ser		GIU	GIÀ	Ser	GIU		Trp
20	Sa-	212	Tan	7.00		Tue	212	T	212	170	T10	3.00	Gly	C	175	C1
	Ser	AIG	Deu	180	GIU	гуэ	VIG	TYL	185	гуз	116	ASII	GIY	190	Tyr	GIU
	Ala	ī.en	Ser		Glv	Ala	Thr	Thr		Glv	Phe	Glu	Asp		The	G) v
		200	195	01,	01,			200	014	01,		010	205		****	01,
25	Glv	Ile		Glu	Trp	Tvr	Glu		Lvs	Lvs	Pro	Pro	Pro	Asn	Leu	Phe
	,	210				- 2	215		-1-	-1-		220			202	
	Lys	Ile	Ile	Gln	Lys	Ala	Leu	Gln	Lys	Gly	Ser	Leu	Leu	Gly	Cys	Ser
30	225					230					235			•	_	240
50	Ile	Asp	Ile	Thr	Ser	Ala	Ala	Asp	Ser	Glu	Ala	Ile	Thr	Phe	Gln	Lys
					245					250					255	
	Leu	Val	Lys	Gly	His	Ala	Tyr	Ser	Val	Thr	Gly	Ala	Glu	Glu	Val	Glu
35				260					265					270		
	Ser	Asn	Gly	Ser	Leu	Gln	Lys	Leu	Ile	Arg	Ile	Arg	Asn	Pro	Trp	Gly
			275					280					285			
	Glu	Val	Glu	Trp	Thr	Gly	Arg	Trp	Asn	Asp	Asn	Cys	Pro	Ser	Trp	Asn
40		290					295					300				
			Asp	Pro	Glu		Arg	Glu	Arg	Leu		Arg	Arg	His	Glu	-
	305					310	5 1-				315	_		_	_	320
	Gly	Glu	Phe	Trp		Ser	Phe	Ser	Asp		Leu	Arg	His	Tyr		Arg
45	T	C1	T10	C115	325	Lau	Th-	Pro	3.50	330	Lou	mb -	Ser	200	335	т
	rea	GIU	116	340	ASII	nea	1111	FIU	345	1112	Leu	1111	Ser	350	Int	Tyr
	ī.vs	1.09	Trp		Leu	Thr	Lvs	Met		Glv	Asn	Tro	Arg		Glv	Ser
50	2,5	2,3	355	-,-			-,-	360		01,			365	9	u,	JCI
	Thr	Ala		Gly	Суз	Arg	Asn		Pro	Asn	Thr	Phe	Trp	Met	Asn	Pro
		370		•	-	-	375	•				380				-
	Gln			Ile	Lys	Leu	Glu	Glu	Glu	Asp	Glu		Glu	Glu	Asp	Gly
55		-										-			-	-

							200					205					
		385					390					395					400
		Glu	Ser	Gly	Cys	Thr	Phe	Leu	Val	Gly	Leu	Ile	Gln	Lys	His	Arg	Arg
5						405					410					415	
		Arg	Gln	Arg	Lys	Met	Gly	Glu	Asp	Met	His	Thr	Ile	Gly	Phe	Gly	Ile
					420					425					430		
		Tyr	Glu	Val	Pro	Glu	Glu	Leu	Ser	Gly	Gln	Thr	Asn	Ile	His	Leu	Ser
10				435					440					445			
		Lvs	Asn	Phe	Phe	Leu	Thr	Asn	Arg	Ala	Arg	Glu	Arq	Ser	Asp	Thr	Phe
			450					455	-		•		460		•		
		Tla		Leu	Ara	Glu	Val		Asn	Ara	Phe	T.ve		Pro	Pro	Glv	Glu
15		465	HOII	Deu	arg	514	470	DC G		y		475	Deu			Q1 y	480
			7 1 -	•	17- 1	D		mL	Dha	C1	D==		T		C1		
		Tyr	TIE	Leu	vaı		Ser	Int	Pne	GIU		ASn	ьys	ASP	GIĀ	_	rne
						485					490					495	
20		Cys	Ile	Arg	Val	Phe	Ser	Glu	Lys	-	Ala	Asp	Tyr	Gln	Ala	Val	Asp
					500					505					510		
		Asp	Glu	Ile	Glu	Ala	Asn	Leu	Glu	Glu	Phe	Asp	Ile	Ser	Glu	Asp	Asp
				515					520					525			
25		Ile	Asp	Asp	Gly	Val	Arg	Arg	Leu	Phe	Ala	Gln	Leu	Ala	Gly	Glu	Asp
	•		530					535					540				
		Ala	Glu	Ile	Ser	Ala	Phe	Glu	Leu	Gln	Thr	Ile	Leu	Arg	Arg	Val	Leu
		545					550					555					560
30		Ala	Lvs	Ara	Gln	Asp	Ile	Lvs	Ser	Asp	Glv	Phe	Ser	Ile	Glu	Thr	Cvs
			-,-			565				•	570					575	- 4 -
		Tuc	Tla	Mot	บรา		Met	Leu	Acn	Ser		Glv	Ser	Glv	Lve		Glu
		шуэ	116	ne c	580	пор	1100	БСС	изр	585	пор	O ₁	001	O.,	590	Deu	Gr,
35		•	•	G1'			T1-	T	m		T	710	C1-	7		C1 -	T
		Leu	rys		Pne	ryr	Ile	Leu	_	Thr	rys	116	GIN	-	Tyr	GIN	rås
				595					600					605			
		Ile	Tyr	Arg	Glu	Ile	Asp		Asp	Arg	Ser	Gly		Met	Asn	Ser	Tyr
40	•		610					615					620				
		Glu	Met	Arg	Lys	Ala	Leu	Glu	Glu	Ala	Gly	Phe	Lys	Met	Pro	Cys	Gln
		625					630					635					640
		Leu	His	Gln	Val	Ile	Val	Ala	Arg	Phe	Ala	Asp	Asp	Gln	Leu	Ile	Ile
45	i .					645					650					655	
		Asp	Phe	Asp	Asn	Phe	Val	Arg	Cys	Leu	Val	Arg	Leu	Glu	Thr	Leu	Phe
					660					665					670		
		Lys	Ile	Phe	Lys	Gln	Leu	Asp	Pro	Glu	Asn	Thr	Gly	Thr	Ile	Glu	Leu
50	1	-		675	-			,	680				-	685			
		Asp	Len		Ser	Trp	Leu	Cvs		Ser	Val	Lev					
			690					695									
			030														

<210> 24 <211> 221 <212> PRT

<213> Tobacco etch virus

<400> 24

5																	
		Gly	Glu	Ser	Leu	Phe	Lys	Gly	Pro	Arg	Asp	Tyr	Asn	Pro	lle	Ser	Ser
		1				5					10					15	
		Thr	Ile	Cys	His	Leu	Thr	Asn	Glu	Ser	Asp	Gly	His	Thr	Thr	Ser	Leu
10					20					25					30		
		Tyr	Gly	Ile	Gly	Phe	Gly	Pro	Phe	Ile	Ile	Thr	Asn	Lys	His	Leu	Phe
				35					40					45			
		Arg	Arg	Asn	Asn	Gly	Thr	Leu	Leu	Val	Gln	Ser	Leu	His	Gly	Val	Phe
15			50					55					60				
		Lys	Val	Lys	Asn	Thr	Thr	Thr	Leu	Gln	Gln	His	Leu	Ile	Asp	Gly	Arg
		65					70					75					80
20		Asp	Met	Ile	Ile	Ile	Arg	Met	Pro	Lys	Asp	Phe	Pro	Pro	Phe	Pro	Gln
						85					90					95	
•		Lys	Leu	Lys	Phe	Arg	Glu	Pro	Gln	Arg	Glu	Glu	Arg	Ile	Cys	Leu	Val
					100					105					110		
25		Thr	Thr	Asn	Phe	Gln	Thr	Lys	Ser	Met	Ser	Ser	Met	Val	Ser	Asp	Thr
				115					120					125			
		Ser	Cys	Thr	Phe	Pro	Ser	Ser	Asp	Gly	Ile	Phe	Trp	Lys	His	Trp	Ile
			130					135					140				
30		Gln	Thr	Lys	Asp	Gly	Gln	Cys	Gly	Ser	Pro	Leu	Val	Ser	Thr	Arg	Asp
		145					150					155					160
		Gly	Phe	Ile	Val	Gly	Ile	His	Ser	Ala	Ser	Asn	Phe	Thr	Asn	Thr	Asn
35			•			165		•			170					175	
		Asn	Tyr	Phe	Thr	Ser	Val	Pro	Lys	Asn	Phe	Met	Glu	Leu	Leu	Thr	Asn
					180					185					190		
		Gln	Glu	Ala	Gln	Gln	Trp	Val		Gly	Trp	Arg	Leu	Asn	Ala	Asp	Ser
40				195					200					205			
		Val		Trp	Gly	Gly	His	_	Val	Phe	Met	Asp	Lys	Pro			
			210					215					220				
45	<210> 25 <211> 371																
	<212> PR																
	<213> Stre	eptoco	occus	pyoge	enes												
50	<400> 25																
	100- 20																
		Asp	Gln	Asn	Phe	A1a	Ara	Asn	Glu	Lvs	Glu	Ala	Lys	Asp	Ser	A) =	Tle
		1				5	9			-4-	10		2			15	
55		-				-											

	Thr	Phe	Ile	Gln	Lys	Ser	Ala	Ala	Ile	Lys	Ala	Gly	Ala	Arg	Ser	Ala
				20					25					30		
5	Glu	Asp	Ile	Lys	Leu	Asp	Lys	Val	Asn	Leu	Gly	Gly	Glu	Leu	Ser	Gly
			35					40					45			
	Ser	Asn	Met	Tyr	Val	Tyr	Asn	Ile	Ser	Thr	Gly	Gly	Phe	Val	Ile	Val
		50					55					60				
10	Ser	Gly	Asp	Lys	Arg	Ser	Pro	Glu	Ile	Leu	Gly	Tyr	Ser	Thr	Ser	Gly
	65					70					75					80
	Ser	Phe	Asp	Val	Asn	Gly	Lys	Glu	Asn	Ile	Ala	Ser	Phe	Met	Glu	Ser
					85					90					95	
15	Tyr	Val	Glu	Gln	Ile	Lys	Glu	Asn	Lys	Lys	Leu	Asp	Ser	Thr	Tyr	Ala
				100					105					110		
	Gly	Thr	Ala	Glu	Ile	Lys	Gln	Pro	Val	Val	Lys	Ser	Leu	Leu	Asp	Ser
			115			•		120					125			
20	Lys	Gly	Ile	His	Tyr	Asn	Gln	Gly	Asn	Pro	Tyr	Asn	Leu	Leu	Thr	Pro
		130					135					140				
	Val	Ile	Glu	Lys	Val	Lys	Pro	Gly	Glu	Gln	Ser	Phe	Val	Gly	Gln	His
	145					150					155					160
25	Ala	Ala	Thr	Gly	Ser	Val	Ala	Thr	Ala	Thr	Ala	Gln	Ile	Met	Lys	Tyr
					165					170					175	
	His	Asn	Tyr	Pro	Asn	Lys	Gly	Leu	Lys	Asp	Tyr	Thr	Tyr	Thr	Leu	Ser
				180					185					190		
30	Ser	Asn	Asn	Pro	Tyr	Phe	Asn	His	Pro	Lys	Asn	Leu	Phe	Ala	Ala	Ile
			195					200					205			
	Ser	Thr	Arg	Gln	Tyr	Asn	Trp	Asn	Asn	Ile	Leu	Pro	Thr	Tyr	Ser	Gly
		210					215					220				
35	Arg	Glu	Ser	Asn	Val	Gln	Lys	Met	Ala	Ile	Ser	Glu	Leu	Met	Ala	Asp
	225					230					235					240
	Val	Gly	Ile	Ser	Val	Asp	Met	Asp	Tyr	Gly	Pro	Ser	Ser	Gly	Ser	Ala
					245					250					255	
40																
	Gly	Ser	Ser	Arg	Val	Gln	Arg	Ala	Leu	Lys	Glu	Asn	Phe	Gly	Tyr	Asn
	Gly	Ser	Ser	Arg 260	Val	Gln	Arg	Ala	Leu 265	Lys	Glu	Asn	Phe	Gly 270	Tyr	Asn
									265					270		
				260					265					270		
45	Gln	Ser	Val 275	260	Gln	Ile	Asn	Arg 280	265 Gly	Asp	Phe	Ser	Lys 285	270 Gln	Asp	Trp
	Gln	Ser	Val 275	260 His	Gln	Ile	Asn	Arg 280	265 Gly	Asp	Phe	Ser	Lys 285	270 Gln	Asp	Trp
	Gln Glu	Ser Ala 290	Val 275 Gln	260 His	Gln Asp	Ile Lys	Asn Glu 295	Arg 280 Leu	265 Gly Ser	Asp Gln	Phe Asn	Ser Gln 300	Lys 285 Pro	270 Gln Val	Asp Tyr	Trp Tyr
	Gln Glu	Ser Ala 290	Val 275 Gln	260 His	Gln Asp	Ile Lys	Asn Glu 295	Arg 280 Leu	265 Gly Ser	Asp Gln	Phe Asn	Ser Gln 300	Lys 285 Pro	270 Gln Val	Asp Tyr	Trp Tyr
	Gln Glu Gln 305	Ser Ala 290 Gly	Val 275 Gln Val	260 His	Gln Asp Lys	Ile Lys Val 310	Asn Glu 295 Gly	Arg 280 Leu Gly	265 Gly Ser His	Asp Gln Ala	Phe Asn Phe 315	Ser Gln 300 Val	Lys 285 Pro	270 Gln Val Asp	Asp Tyr Gly	Trp Tyr Ala 320
45	Gln Glu Gln 305	Ser Ala 290 Gly	Val 275 Gln Val	260 His Ile Gly	Gln Asp Lys	Ile Lys Val 310	Asn Glu 295 Gly	Arg 280 Leu Gly	265 Gly Ser His	Asp Gln Ala	Phe Asn Phe 315	Ser Gln 300 Val	Lys 285 Pro	270 Gln Val Asp	Asp Tyr Gly	Trp Tyr Ala 320
45	Gln Glu Gln 305 Asp	Ser Ala 290 Gly	Val 275 Gln Val Arg	260 His Ile Gly	Gln Asp Lys Phe 325	Ile Lys Val 310 Tyr	Asn Glu 295 Gly His	Arg 280 Leu Gly Val	265 Gly Ser His	Asp Gln Ala Trp 330	Phe Asn Phe 315 Gly	Ser Gln 300 Val Trp	Lys 285 Pro Ile Gly	270 Gln Val Asp	Asp Tyr Gly Val 335	Trp Tyr Ala 320 Ser

		Gly	Gly	Gly	Ala	Gly	Gly	Phe	Asn	Gly	Tyr	Gln	Ser	Ala	Val	Val	Gly
				355					360					365			
5		Ile	Lys	Pro								•					
			370														
	<210> 26																
10	<211> 35	3															
	<212> PR	tT.															
	<213> Ho	mo sa	piens	;													
	<400> 26																
15																	
20																	
25																	
30																	
30																	
25																	
35																	
40																	
45																	
														•			
50																	
55																	

	Lys	Lys	His	Thr	Gly	Tyr	Val	Gly	Leu	Lys	Asn	Gln	Gly	Ala	Thr	Cys
	1				5					10					15	
5	Tyr	Met	Asn	Ser	Leu	Leu	Gln	Thr	Leu	Phe	Phe	Thr	Asn	Gln	Leu	Arg
				20					25					30		
	Lys	Ala	Val	Tyr	Met	Met	Pro	Thr	Glu	Gly	Asp	Asp	Ser	Ser	Lys	Ser
			35					40					45			
10	Val	Pro	Leu	Ala	Leu	Gln	Arg	Val	Phe	Tyr	Glu	Leu	Gln	His	Ser	Asp
		50					55					60				
	Lys	Pro	Val	Gly	Thr	Lys	Lys	Leu	Thr	Lys	Ser	Phe	Gly	Trp	Glu	Thr
	65					70					75					80
15	Leu	Asp	Ser	Phe	Met	Gln	His	Asp	Val	Gln	Glu	Leu	Cys	Arg	Val	Leu
					85					90					95	
	Leu	Asp	Asn	Val	Glu	Asn	Lys	Met	Lys	Gly	Thr	Cys	Val	Glu	Gly	Thr
20				100					105					110		
-	Ile	Pro	Lys	Leu	Phe	Arg	Gly	Lys	Met	Val	Ser	Tyr	Ile	Gln	Cys	Lys
			115					120					125			
	Glu	Val	Asp	Tyr	Arg	Ser	Asp	Arg	Arg	Glu	Asp	Tyr	Tyr	Asp	Ile	Gln
25		130					135					140				
	Leu	Ser	Ile	Lys	Gly	Lys	Lys	Asn	Ile	Phe	Glu	Ser	Phe	Val	Asp	Tyr
	145					150					155					160
	Val	Ala	Val	Glu	Gln	Leu	Asp	Gly	Asp	Asn	Lys	Tyr	qsA	Ala	Gly	Glu
30					165					170					175	
	His	Gly	Leu	Gln	Glu	Ala	Glu	Lys	Gly	Val	Lys	Phe	Leu	Thr	Leu	Pro
				180					185					190		
35	Pro	Val	Leu	His	Leu	Gln	Leu	Met	Arg	Phe	Met	Tyr	Asp	Pro	Gln	Thr
33			195					200					205			
	Asp	Gln	Asn	Ile	Lys	Ile	Asn	Asp	Arg	Phe	Glu	Phe	Pro	Glu	Gln	Leu
		210					215					220				
40	Pro	Leu	Asp	Glu	Phe	Leu	Gln	Lys	Thr	Asp	Pro	Lys	Asp	Pro	Ala	Asn
	225					230					235					240

	Tyr	Ile	Leu	His	Ala 245	Val	Leu	Val	His	Ser 250	Gly	Asp	Asn	His	Gly 255	Gly
5	His	Tyr	Val	Val 260	Tyr	Leu	Asn	Pro	Lys 265	Gly	Asp	Gly	Lys	Trp 270	Cys	Lys
	Phe	Asp	Asp 275		Val	Val	Ser	Arg 280		Thr	Lys	Glu	Glu 285		Ile	Glu
10	His	Asn 290	Tyr	Gly	Gly	His	Asp 295		Asp	Leu	Ser	Val		His	Cys	Thr
	Asn 305		Tyr	Met	Leu	Val		Ile	Arg	Glu	Ser 315		Leu	Ser	Glu	Val
15		Gln	Ala	Val	Thr 325		His	Asp	Ile	Pro 330		Gln	Leu	Val	Glu 335	
	Leu	Gln	Glu	Glu 340		Arg	Ile	Glu	Ala 345		Lys	Arg	Lys	Glu 350		Gln
20	Glu			340					343					330		
<210> 27 25 <211> 174 <212> PR <213> Sta	4 :T	ococci	us aur	eus												
<400> 27 30																
	m	N = 5	Glu	Gln	Tyr	Val	3		_					_		
	1	ASII		01	5		ASII	Lys	Leu	10	Asn	Phe	Lys	Ile	Arg 15	Glu
35	1		Gly			Gly		_		10			_		15	
35	1 Thr	Gln		Asn 20	Asn	_	Trp	Cys	Ala 25	10 Gly	Tyr	Thr	Met	Ser 30	15 Ala	Leu
35	1 Thr Leu	Gln Asn	Gly Ala	Asn 20 Thr	Asn Tyr	Asn	Trp Thr	Cys Asn 40	Ala 25 Lys	10 Gly Tyr	Tyr His	Thr Ala	Met Glu 45	Ser 30 Ala	15 Ala Val	Leu Met
<i>35</i>	1 Thr Leu Arg	Gln Asn Phe 50	Gly Ala 35	Asn 20 Thr His	Asn Tyr Pro	Asn	Trp Thr Leu 55	Cys Asn 40 Gln	Ala 25 Lys Gly	10 Gly Tyr Gln	Tyr His Gln	Thr Ala Phe 60	Met Glu 45 Gln	Ser 30 Ala Phe	15 Ala Val	Leu Met Gly
35 40	1 Thr Leu Arg Leu 65	Gln Asn Phe 50 Thr	Gly Ala 35 Leu	Asn 20 Thr His	Asn Tyr Pro Glu	Asn Asn Met 70	Trp Thr Leu 55 Ile	Cys Asn 40 Gln Tyr	Ala 25 Lys Gly Phe	10 Gly Tyr Gln	Tyr His Gln Gln 75	Thr Ala Phe 60 Thr	Met Glu 45 Gln Gln	Ser 30 Ala Phe Gly	15 Ala Val Thr	Leu Met Gly Ser 80
35 40 45	1 Thr Leu Arg Leu 65 Pro	Gln Asn Phe 50 Thr	Gly Ala 35 Leu Pro	Asn 20 Thr His Arg	Asn Tyr Pro Glu Asn 85	Asn Asn Met 70 Arg	Trp Thr Leu 55 Ile Met	Cys Asn 40 Gln Tyr	Ala 25 Lys Gly Phe	10 Gly Tyr Gln Gly Tyr 90	Tyr His Gln Gln 75 Asn	Thr Ala Phe 60 Thr	Met Glu 45 Gln Gln Val	Ser 30 Ala Phe Gly Asp	15 Ala Val Thr Arg Asn 95	Leu Met Gly Ser 80 Leu
35 40 45	1 Thr Leu Arg Leu 65 Pro	Gln Asn Phe 50 Thr Gln Lys	Gly Ala 35 Leu Pro	Asn 20 Thr His Arg Leu Asn 100	Asn Tyr Pro Glu Asn 85 Lys	Asn Asn Met 70 Arg	Trp Thr Leu 55 Ile Met	Cys Asn 40 Gln Tyr Thr	Ala 25 Lys Gly Phe Thr	10 Gly Tyr Gln Gly Tyr 90 Leu	Tyr His Gln Gln 75 Asn	Thr Ala Phe 60 Thr Glu Ser	Met Glu 45 Gln Gln Val	Ser 30 Ala Phe Gly Asp Val 110	15 Ala Val Thr Arg Asn 95 Glu	Leu Met Gly Ser 80 Leu Ser

	Asn 145	Gly	Phe	Met	Thr	Gln 150	Asp	Ala	Lys	Asn	Asn 155	Val	Ile	Pro	Val	Ser 160
5	Asn	Gly	Asp	His	Tyr	Gln	Trp	Tyr	Ser	Ser		Tyr	Gly	Tyr		
					165					170						
10	<210> 28 <211> 221 <212> PRT <213> Saccha	romyc	æs ce	revisia	ae											
15	<400> 28															
	Gly	Ser	Leu	Val	Pro	Glu	Leu	Asn	Glu	Lys	Asp	Asp	Asp	Gln	Val	Gln
•	1				5					10					15	
20	Lys	Ala	Leu	Ala 20	Ser	Arg	Glu	Asn		Gln	Leu	Met	Asn	_	Asp	Asn
	Ile	Glu	Ile		Val	Ara	Asp	Phe	25 Lvs	Thr	Leu	Ala	Pro	30 Ara	Ara	Trp
			35			•		40	-,-				45			
25	Leu	Asn	Asp	Thr	Ile	Ile	Glu	Phe	Phe	Met	Lys	Tyr	Ile	Glu	Lys	Ser
		50					55					60				
		Pro	Asn	Thr	Val		Phe	Asn	Ser	Phe		Tyr	Thr	Asn	Leu	
30	65	N	C1	T	Gln	70	Un l	N			75 Maa	7	.	•	•	80
	GIU	nry	GIY	TYL	85	GIY	Val	nrg	ALG	90	met	гåг	AIG	rys	Lys	Int
	Gln	Ile	Asp	Lys	Leu	Asp	Lys	Ile	Phe		Pro	Ile	Asn	Leu		Gln
35				100					105					110		
35	Ser	His	Trp	Ala	Leu	Gly	Ile	Ile	Asp	Leu	Lys	Lys	Lys	Thr	Ile	Gly
	_		115	_	_	_	_	120					125			
	Tyr	Val 130	Asp	Ser	Leu	Ser	135	Gly	Pro	Asn	Ala		Ser	Phe	Ala	Ile
40	Leu		Asp	Leu	Gln	Lvs		Val	Met	Glu	Glu	140 Ser	t.ve	Hic	Thr	Tle
	145		•			150	•				155	-	-,-			160
	Gly	Glu	Asp	Phe	Asp	Leu	Ile	His	Leu	Asp	Cys	Pro	Gln	Gln	Pro	Asn
45					165					170				•	175	
	Gly	Tyr	Asp		Gly	Ile	Tyr	Val		Met	Asn	Thr	Leu	_	Gly	Ser
	310	***	210	180 Pro	t ou	N.c.	Pho	A c n	185	7	3	•1-	•1.	190		•
50	Ala	ASP	195	PIO	Leu	ASP	rne	200	TÄT	rys	Asp	Ala	205	Arg	met	Arg
	Arg	Phe		Ala	His	Leu	Ile		Thr	Asp	Ala	Leu				
		210					215			•		220	. –			
55																

<210> 29 <211> 166

<212>	PRT	
<213>	Pyrococcus	horikoshii

<400> 29

_	-400- 20																
5																	
		Met	Lys	Val	Leu	Phe	Leu	Thr	Ala	Asn	Glu	Phe	Glu	Asp	Val	Glu	Leu
		1				5					10					15	
10		Ile	Tyr	Pro	Tyr	His	Arg	Leu	Lys	Glu	Glu	Gly	His	Glu	Val	Tyr	Ile
					20					25					30		
		Ala	Ser	Phe	Glu	Arg	Gly	Thr	Ile	Thr	Gly	Lys	His	Gly	Tyr	Ser	Val
				35					40					45			
15		Lys	Val	Asp	Leu	Thr	Phe	Asp	Lys	Val	Asn	Pro	Glu	Glu	Phe	Asp	Ala
			50					55					60				
		Leu	Val	Leu	Pro	Gly	Gly	Arg	Ala	Pro	Glu	Arg	Val	Arg	Leu	Asn	Glu
		65					70					75					80
20		Lys	Ala	Val	Ser	Ile	Ala	Arg	Lys	Met	Phe	Ser	Glu	Gly	Lys	Pro	Val
						85					90					95	
		Ala	Ser	Ile	Cys	His	Gly	Pro	Gln	Ile	Leu	Ile	Ser	Ala	Gly	Val	Leu
					100					105					110		
25		Arg	Gly	Arg	Lys	Gly	Thr	Ser	Tyr	Pro	Gly	Ile	Lys	Asp	Asp	Met	Ile
				115					120					125			
		Asn	Ala	Gly	Val	Glu	Trp	Val	Asp	Ala	Glu	Val	Val	Val	Asp	Gly	Asn
30			130					135					140				
		Trp	Val	Ser	Ser	Arg	Val	Pro	Ala	Asp	Leu	Tyr	Ala	Trp	Met	Arg	Glu
		145					150					155					160
		Phe	Val	Lys	Leu	Leu	Lys										
35						165											
	<210> 30																
	<211> 316	6															
40	<212> PR		th		ook die												
	<213> Ba	cilius	uleiii	ioprot	eoiyuc	us											
	<400> 30																
45																	
45		Ile	Thr	Gly	Thr	Ser	Thr	Val	Gly	Val	Gly	Arg	Gly	Val	Leu	Gly	Asp
		1		_		5					10					15	
		Gln	Lys	Asn	Ile	Asn	Thr	Thr	Tyr	Ser	Thr	Tyr	Tyr	Tyr	Leu	Gln	Asp
50			-		20				-	25		=	_	-	30		,

55

Asn Thr Arg Gly Asp Gly Ile Phe Thr Tyr Asp Ala Lys Tyr Arg Thr

	Thr	Leu i	Pro	Gly	Ser	Leu	Trp 55	Ala	Asp	Ala	Asp	Asn 60	Gln	Phe	Phe	Ala
5	Ser 65	Tyr i	Asp	Ala	Pro	Ala 70	Val	Asp	Ala	His	Tyr 75	Tyr	Ala	Gly	Val	Thr 80
	Tyr	Asp '	Tyr	Tyr	Lys 85	Asn	Val	His	Asn	Arg 90	Leu	Ser	Tyr	Asp	Gly 95	Asn
10	Asn	Ala i	Ala	Ile 100	Arg	Ser	Ser	Val	His 105	Tyr	Ser	Gln	Gly	Tyr 110	Asn	Asn
15	Ala	Phe '	Trp 115	Asn	Gly	Ser	Glu	Met 120	Val	Tyr	Gly	Asp	Gly 125	Asp	Gly	Gln
,-	Thr	Phe :	Ile	Pro	Leu	Ser	Gly 135	Gly	Ile	Asp	Val	Val 140	Ala	His	Glu	Leu
20	Thr 145	His i	Ala	Val	Thr	Asp 150	Tyr	Thr	Ala	Gly	Leu 155	Ile	Tyr	Gln	Asn	Glu 160
	Ser	Gly	Ala	Ile	Asn 165	Glu	Ala	Ile	Ser	Asp 170	Ile	Phe	Gly	Thr	Leu 175	Val
25	Glu	Phe '	Tyr	Ala 180	Asn	Lys	Asn	Pro	Asp 185	Trp	Glu	Ile	Gly	Glu 190	Asp	Val
	Tyr	Thr	Pro 195	Gly	Ile	Ser	Gly	Asp 200	Ser	Leu	Arg	Ser	Met 205	Ser	Asp	Pro
30	Ala	Lys '	Tyr	Gly	Asp	Pro	Asp 215	His	Tyr	Ser	Lys	Arg 220	Tyr	Thr	Gly	Thr
	Gln 225	Asp	Asn	Gly	Gly	Val 230	His	Ile	Asn	Ser	Gly 235	Ile	Ile	Asn	Lys	Ala 240
35	Ala	Tyr :	Leu	Ile	Ser 245	Gln	Gly	Gly	Thr	His 250	Tyr	Gly	Val	Ser	Val 255	Val
	Gly	Ile	Gly	Arg 260	Asp	Lys	Leu	Gly	Lys 265	Ile	Phe	Tyr	Arg	Ala 270	Leu	Thr
40			275					280					285			
45		Gln 290				•	295	_	•			300	Gln	Glu	Val	Ala
	Ser 305	Val	Lys	Gln	Ala	Phe 310	Asp	Ala	Val	Gly	Val 315	Lys				
50	<210> 31 <211> 169 <212> PRT <213> Homos	sapiens	s													
55	<400> 31															

		Val	Leu	Thr	Glu	Gly	Asn	Pro	Arg	Trp	Glu	Gln	Thr	His	Leu	Thr	Tyr
_		1				5					10					15	
5		Arg	Ile	Glu		Tyr	Thr	Pro	Asp		Pro	Arg	Ala	Asp		Asp	His
					20				•	25					30		
		Ala	Ile		Lys	Ala	Phe	Gln		Trp	Ser	Asn	Val		Pro	Leu	Thr
10		O.L.		35		_			40		_			45	_		
		Pne		гуs	vaı	Ser	GIU	_	GIN	AIA	Asp	IIe		iie	Ser	Phe	Val
		3	50	3	102 -	.	3	55	C	D	Db	3	60		C1	63	>
		65	GIY	Asp	HIS	Arg	70	ASI	ser	Pro	Pne	75	GIY	PIO	GIA	GIY	ASN 80
15			A 1 -	มเล	Ala	Phe		Bro	G1 v	Bro	C1v		C1	Cl.	y en	212	
		neu	VIG	MIS	Ala	85	GIII	FIO	GIY	FIO	90	116	GIY	GIY	nap	95	птэ
		Phe	Asp	Glu	Asp	Glu	Ara	Tro	Thr	Asn		Phe	Ara	Glu	Tur		ī.en
20			op		100	-	9		••••	105				014	110	7.5	200
		His	Arq	Val		Ala	His	Glu	Leu		His	Ser	Leu	Gly		Ser	His
			•	115					120	•				125			
		Ser	Thr	Asp	Ile	Gly	Ala	Leu	Met	Tyr	Pro	Ser	Tyr	Thr	Phe	Ser	Gly
25			130					135					140				
		Asp	Val	Gln	Leu	Ala	Gln	Asp	Asp	Ile	Asp	Gly	Ile	Gln	Ala	Ile	Tyr
		145					150					155					160
30		Gly	Arg	Ser	Gln	Äsn	Pro	Val	Gln	Pro							
						165											
	<210> 32																
	<211> 32																
35	<212> PR																
	<213> Ho	mo sa	apiens	;													
	<400> 32									•							
40																	
		Gln	Tyr	Ser	Pro	Asn	Thr	Gln	Gln	Gly	Arg	Thr	Ser	Ile	Val	His	Leu
		1				5					10					15	
		Phe	Glu	Trp	-	Trp	Val	Asp	Ile		Leu	Glu	Cys	Glu	Arg	Tyr	Leu
45				_	20					25		<u>.</u>	_	_	30		
		Ala	Pro	-	GIÀ	Phe	Gly	GIA		GIn	Val	Ser	Pro		Asn	Glu	Asn
		1	•••	35		3	D	D b -	40	D	m		6 1	45		6 1 -	D
50		vaı	50	116	ıyr	Asn	FFO	55	wrg	Pro	rtb	rrp	eta Gta	Arg	тàг	GIN	rro
		V=1		Tur	T.ve	Leu	Cve		Ara	Ser	Glv	Aen		Len	Gl:	Ph≏	Δra
		65	261	- 7 "	دلات	J-74	70	4.11	y	J	GI Y	75	JIU	vaħ	31 4	riie	80 80
			Met	Val	Thr	Arg		Asn	Asn	Val	Glv		Ara	I)e	Tvr	Va 1	
55		,,,,,,				85	-,0				90		9	**6	- 7 -	95	ب
																	•

	Ala	Val	Ile	Asn	His	Met	Cys	Gly	Asn	Ala	Val	Ser	Ala	Gly	Thr	Ser
				100					105					110		
5	Ser	Thr	-	G1 A	Ser	Tyr	Phe		Pro	Gly	Ser	Arg	-	Phe	Pro	Ala
			115	_		_	_	120	_	_		_	125	_		
	Val		Tyr	Ser	Gly	Trp	-	Phe	Asn	Asp	Gly	_	Cys	Lys	Thr	Gly
	_	130	_				135	_				140		_	_	_
10		Gly	Asp	He	GIU		Tyr	ASN	Asp	ATA		GIn	Val	Arg	Asp	_
	145	•	6	~ 3	T	150	N	.			155	•			••- •	160
	Arg	ren	THE	GIA		rea	ASP	Leu	Ala			rys	Asp	Tyr		Arg
	S	•	7 1.	21-	165		Man		,,,,	170	•	•	•1	61	175	••-
15	ser	гĀ2	116		GIU	ıyı	ne c	ASN		rea	iie	Asp	Ile	-	vaı	ATA
	61	Dh -	•	180			S	T	185				61	190	- 1 -	-
	GTÀ	Pne	_	rea	Asp	WIG	ser		HIS	мес	тгр	Pro	Gly	ASP	116	Lys
	21.	710	195	3	T	T 0.11	u: -	200	T	3	S	3	205	Dh.a	D==	
20	MIG	210	Leu	ASP	гÀ2	Leu	215	MSII	rea	ASII	ser	220	1rp	Pne	PIO	Ala
	C1		Tuc	D=0	Pho	Tla		Cla	C1	v-1	* 1.0		Leu	C1	C1	C1
	225	Set	гуз	FLO	rne	230	TYL	GIII	GIU	vai	235	ASP	Leu	Gry	GIA	240
		716	Lve	Sor	Ser		Tur	Phe	61.4	Aen		Ara	Val	The	Glu.	
25		116	цуз	361	245	nsp	- 7 -		Gry	250	Gry	ary	V a.	1111	255	rne
	T.us	Tur	Glv	Ala		ī.eu	Glv	Thr	Val		Ara	T.VS	Trp	Asn		Glu
	,	- , -	0.,	260	2,0		,		265		9	2,5		270		014
	I.vs	Met	Ser		Leu	Lvs	Asn	Trp		Glu	ឲាប	Tro	Gly		Va 1	Pro
30	-,-		275	- , -		-,-		280	,		01		285			
	Ser	Asp		Ala	Leu	Val	Phe		Asp	Asn	His	Asp		Gln	Ara	Gly
		290	,				295					300			9	,
35	His		Ala	Glv	Glv	Ala		Ile	Leu	Thr	Phe		Asp	Ala	Ara	Leu
33	305	2		2		310					315				5	320
		Lvs	Met	Ala	Val		Phe	Met	Leu	Ala		Pro	Tyr	Glv	Phe	
	•	•			325	•				330				•	335	
40	Arq	Val	Met	Ser	Ser	Tyr	Arq	Trp	Pro	Arg	Gln	Phe	Gln	Asn	Glv	Asn
	-			340		-	•	•	345	-				350		
	Asp	Val	Asn	Asp	Trp	Val	Gly	Pro	Pro	Asn	Asn	Asn	Gly	Val	Ile	Lys
		:	355				3	360				:	365			-
45	Glu	Val	Thr	Ile	Asn	Pro	Asp	Thr	Thr	Cys	Gly	Asn	Asp	Trp	Val	Cys
		370					375					380				
	Glu	His	Arg	Trp	Arg	Gln	Ile	Arg	Asn	Met	Val	Ile	Phe	Arg	Asn	Val
	385					390					395					400
50	Val	Asp	Gly	Gln	Pro	Phe	Thr	Asn	Trp	Tyr	Asp	Asn	Gly	Ser	Asn	Gln
					405					410					415	
	Val	Ala	Phe	Gly	Arg	Gly	Asn	Arg	Gly	Phe	Ile	Val	Phe	Asn	Asn	Asp
				420					425					430		

	Asp	Trp	Ser 435	Phe	Ser	Leu	Thr	Leu 440	Gln	Thr	Gly	Leu	Pro	Ala	Gly	Thr
5	Tur	Cve		Val	Tle	Ser	Glv		T.ve	Tle	Aen	Glv		Cve	Th.	Gly
•	-11-	450	nop	•••		001	455	nop	ay 3	***	ASH	460	ASII	Cys	1111	GIY
	Ile		Ile	Tvr	Val	Ser		Asp	Glv	Lvs	Ala		Phe	Ser	Ile	Ser
	465			•		470	-•	•			475					480
10	Asn	Ser	Ala	Glu	Asp	Pro	Phe	Ile	Ala	Ile	His	Ala	Glu	Ser	Lys	
					485					490	•				495	
15	<210> 33 <211> 370															
	<212> PRT															
	<213> Tricho	derma	a rees	ei												
	<400> 33															
20										•						
		Pro	Gly	Thr	Ser	Thr	Pro	Glu	Val		Pro	Lys	Leu	Thr		Tyr
	1		-		5			_		10		_		_	15	
25	гуз	Cys	Thr	Lys 20	Ser	GIA	GIY	Cys		Ala	GIN	Asp	Thr		Val	Val
	Len	Asn	Tro	_	Tyr	Ara	Trn	Mat	25 #ie	Aen	λla	Acn	T	30 Asn	Sa-	Cuc
	Dea	лор	35	A3	.,.	n.r.y	11p	40		vah	A10	ASII	45	Noll	261	Cys
20	Thr	Val		Glv	Gly	Val	Asn		Thr	Leu	Cvs	Pro		Glu	Ala	Thr
30		50		-	-		55				•	60	•			
	Cys	Gly	Lys	Asn	Cys	Phe	Ile	Glu	Gly	Val	Asp	Tyr	Ala	Ala	Ser	Gly
	65					70					75					80
35	Val	Thr	Thr	Ser	Gly	Ser	Ser	Leu	Thr	Met	Asn	Gln	Tyr	Met	Pro	Ser
					85					90					95	
	Ser	Ser	Gly	Gly	Tyr	Ser	Ser	Val	Ser	Pro	Arg	Leu	Tyr	Leu	Leu	Asp
40				100					105					110		
	Ser	Asp		Glu	Tyr	Val	Met		Lys	Leu	Asn	Gly		Glu	Leu	Ser
	mt -	•	115	•	•	6		120	D	0	61	6 1	125	~ 1	_	_
	Pne	130	vai	ASP	Leu	Ser	135	rea	PIO	Çys	GIA	140	ASN	GIY	Ser	Leu
45	Tur		Ser	Gln	Met	Asn		Asn	Glv	Glv	Δla		Gln	Tur	Acn	ሞb e
	145	200	001	02		150	020		01,	01,	155		01. .	- 7 -	7311	160
		Gly	Ala	Asn	Tyr		Ser	Gly	Tyr	Cys		Ala	Gln	Cvs	Pro	
50		-			165	-			-	170	•			•	175	
	Gln	Thr	Trp	Arg	Asn	Gly	Thr	Leu	Asn	Thr	Ser	His	Gln	Gly	Phe	Cys
				180					185					190		
	Cys	Asn	Glu	Met	Asp	Ile	Leu	Glu	Gly	Asn	Ser	Arg	Ala	Asn	Ala	Leu
55			195					200					205			

		Thr		His	Ser	Cys	Thr		Thr	Ala	Cys	Asp		Ala	Gly	Cys	Gly
5			210					215		_	_	_	220		_		
			Asn	Pro	Tyr	GŀĀ	Ser	Gly	Tyr	Lys	Ser	-	Tyr	GIA	Pro	GLY	•
		225					230					235				_	240
10		Thr	Val	Asp	Thr		Lys	Thr	Phe	Thr		Ile	Thr	Gln	Phe		Thr
						245					250					255	
		Asp	Asn	Gly	Ser	Pro	Ser	Gly	Asn		Val	Ser	Ile	Thr		Lys	Tyr
					260					265					270		
15		Gln	Gln	Asn	Gly	Val	Asp	Ile	Pro	Ser	Ala	Gln	Pro	Gly	Gly	Asp	Thr
				275					280					285			
	•	Ile	Ser	Ser	Cys	Pro	Ser	Ala	Ser	Ala	Tyr	Gly	Gly	Leu	Ala	Thr	Met
			290					295					300				
20		Gly	Lys	Ala	Leu	Ser	Ser	Gly	Met	Val	Leu	Val	Phe	Ser	Ile	Trp	Asn
		305					310					315				•	320
		Asp	Asn	Ser	Gln	Tyr	Met	Asn	Trp	Leu	Asp	Ser	Gly	Asn	Ala	Gly	Pro
25						325					330					335	
		Cys	Ser	Ser	Thr	Glu	Gly	Asn	Pro	Ser	Asn	Ile	Leu	Ala	Asn	Asn	Pro
					340					345					350		
		Asn	Thr	His	Val	Val	Phe	Ser	Asn	Ile	Arg	Trp	Gly	Asp	Ile	Gly	Ser
30				355					360					365			
		Thr	Thr														
			370														
	<210> 34 <211> 223	,									•				-		
35	<211> 223								*								
	<213> Asp	ergill	us nig	er													
	<400> 34																
	~400> 34																
40									_	_			_			_	_
			Thr	Met	Cys		Gln	Tyr	Asp	Ser		Ser	Ser	Pro	Pro	_	Ser
45		1				5					10					15	
		Val	Asn	Gln		Leu	Trp	Gly	Glu	_	Gln	Gly	Thr	Gly		Gln	Cys
					20					25					30		
		Val	Tyr		Asp	Lys	Leu	Ser		Ser	Gly	Ala	Ser	•	His	Thr	Glu
50				35					40					45.			
		Trp		Trp	Ser	Gly	Gly		Gly	Thr	Val	Lys		Tyr	Ser	Asn	Ser
			50					55	·				60				
		Gly	Val	Thr	Phe	Asn	Lys	Lys	Leu	Val	Ser	Asp	Val	Ser	Ser	Ile	Pro
		65					70					75					80
55		Thr	Ser	Val	Glu	Trp	Lys	Gln	Asp	Asn	Thr	Asn	Val	Asn	Ala	Asp	Val
						85					90					95	

		Ala	Tyr	Asp		Phe	Thr	Ala	Ala		Val	Asp	His	Ala	Thr 110	Ser	Ser
5			_	_	100	_			_	105				6 1		7 1 -	61 -
		GIÀ	Asp	Tyr 115	Glu	Leu	Met	He	120	Leu	Ala	Arg	Tyr	125	ASN	116	GIN
		Pro	Ile	Gly	Lys	Gln	Ile	Ala	Thr	Ala	Thr	Val	Gly	Gly	Lys	Ser	Trp
10			130					135					140				
		Glu	Val	Trp	Tyr	Gly	Ser	Thr	Thr	Gln	Ala	Gly	Ala	Glu	Gln	Arg	Thr
		145					150					155					160
		Tyr	Ser	Phe	Val	Ser	Glu	Ser	Pro	Ile	Asn	Ser	Tyr	Ser	Gly	Asp	Ile
15						165					170					175	
		Asn	Ala	Phe	Phe	Ser	Tyr	Leu	Thr	Gln	Asn	Gln	Gly	Phe	Pro	Ala	Ser
					180				•	185					190		
		Ser	Gln	Tyr	Leu	Ile	Asn	Leu	Gln	Phe	Gly	Thr	Glu	Ala	Phe	Thr	Gly
20				195					200					205			
		Gly	Pro	Ala	Thr	Phe	Thr	Val	Asp	Asn	Trp	Thr	Ala	Ser	Val	Asn	
			210					215					220				
25																	
	<210> 35 <211> 18 <212> PF	4									•						
	<213> As	pergi	llus ni	ger													
30	<400> 35	;								•							
		Ser	Ala	Gly	Ile	Asn	Tyr	Val	Gln	Asn	Tyr	Asn	Gly	Asn	Leu	Gly	Asp
35		Ser 1	Ala	Gly	Ile	Asn 5	Tyr	Val	Gln	Asn	Tyr 10	Asn	Gly	Asn	Leu	Gly 15	Asp
35		1		Gly Tyr		5	-				10					15	
35		1 Phe	Thr	Tyr	Asp 20	5 Glu	Ser	Ala	Gly	Thr 25	10 Phe	Ser	Met	Tyr	Trp	15 Glu	Asp
35		1 Phe	Thr		Asp 20	5 Glu	Ser	Ala	Gly	Thr 25	10 Phe	Ser	Met	Tyr	Trp	15 Glu	Asp
		1 Phe Gly	Thr Val	Tyr	Asp 20 Ser	5 Glu Asp	Ser	Ala Val	Gly Val 40	Thr 25 Gly	10 Phe Leu	Ser	Met Trp	Tyr Thr 45	Trp 30 Thr	15 Glu Gly	Asp
		1 Phe Gly	Thr Val	Tyr Ser 35	Asp 20 Ser	5 Glu Asp	Ser	Ala Val	Gly Val 40	Thr 25 Gly	10 Phe Leu	Ser	Met Trp	Tyr Thr 45	Trp 30 Thr	15 Glu Gly	Asp
40		1 Phe Gly Ser	Thr Val Asn 50	Tyr Ser 35 Ala	Asp 20 Ser Ile	5 Glu Asp Thr	Ser Phe Tyr	Ala Val Ser 55	Gly Val 40 Ala	Thr 25 Gly Glu	10 Phe Leu Tyr	Ser Gly Ser	Met Trp Ala	Tyr Thr 45 Ser	Trp 30 Thr	15 Glu Gly Ser	Asp Ser Ala
		1 Phe Gly Ser	Thr Val Asn 50	Tyr Ser 35	Asp 20 Ser Ile	5 Glu Asp Thr	Ser Phe Tyr	Ala Val Ser 55	Gly Val 40 Ala	Thr 25 Gly Glu	10 Phe Leu Tyr	Ser Gly Ser	Met Trp Ala	Tyr Thr 45 Ser	Trp 30 Thr	15 Glu Gly Ser	Asp Ser Ala
40		1 Phe Gly Ser Ser	Thr Val Asn 50 Tyr	Tyr Ser 35 Ala	Asp 20 Ser Ile	5 Glu Asp Thr	Ser Phe Tyr Tyr	Ala Val Ser 55 Gly	Gly Val 40 Ala Trp	Thr 25 Gly Glu Val	10 Phe Leu Tyr	Ser Gly Ser Tyr 75	Met Trp Ala 60 Pro	Tyr Thr 45 Ser Gln	Trp 30 Thr Gly	15 Glu Gly Ser	Asp Ser Ala Tyr
40		1 Phe Gly Ser Ser	Thr Val Asn 50 Tyr	Tyr Ser 35 Ala	Asp 20 Ser Ile	5 Glu Asp Thr	Ser Phe Tyr Tyr	Ala Val Ser 55 Gly	Gly Val 40 Ala Trp	Thr 25 Gly Glu Val	10 Phe Leu Tyr	Ser Gly Ser Tyr 75	Met Trp Ala 60 Pro	Tyr Thr 45 Ser Gln	Trp 30 Thr Gly	15 Glu Gly Ser	Asp Ser Ala Tyr
40		1 Phe Gly Ser Ser 65 Tyr	Thr Val Asn 50 Tyr	Tyr Ser 35 Ala	Asp 20 Ser Ile Ala Glu	5 Glu Asp Thr Val Asp 85	Ser Phe Tyr Tyr 70	Ala Val Ser 55 Gly	Gly Val 40 Ala Trp	Thr 25 Gly Glu Val	10 Phe Leu Tyr Asn Asn 90	Ser Gly Ser Tyr 75 Pro	Met Trp Ala 60 Pro	Tyr Thr 45 Ser Gln	Trp 30 Thr Gly Ala Ser	15 Glu Gly Ser Glu Ala 95	Asp Ser Ala Tyr 80 Thr
40 45		1 Phe Gly Ser Ser 65 Tyr	Thr Val Asn 50 Tyr	Tyr Ser 35 Ala Leu Val	Asp 20 Ser Ile Ala Glu	5 Glu Asp Thr Val Asp 85 Val	Ser Phe Tyr Tyr 70	Ala Val Ser 55 Gly	Gly Val 40 Ala Trp	Thr 25 Gly Glu Val	10 Phe Leu Tyr Asn Asn 90	Ser Gly Ser Tyr 75 Pro	Met Trp Ala 60 Pro	Tyr Thr 45 Ser Gln	Trp 30 Thr Gly Ala Ser	15 Glu Gly Ser Glu Ala 95	Asp Ser Ala Tyr 80 Thr
40 45		1 Phe Gly Ser 5er 65 Tyr	Thr Val Asn 50 Tyr Ile	Tyr Ser 35 Ala Leu Val	Asp 20 Ser Ile Ala Glu Thr	5 Glu Asp Thr Val Asp 85 Val	Ser Phe Tyr 70 Tyr	Ala Val Ser 55 Gly Gly Ser	Gly Val 40 Ala Trp Asp	Thr 25 Gly Glu Val Tyr Gly 105	10 Phe Leu Tyr Asn Asn 90 Ser	Ser Gly Ser Tyr 75 Pro	Met Trp Ala 60 Pro Cys	Tyr Thr 45 Ser Gln Ser	Trp 30 Thr Gly Ala Ser Val 110	15 Glu Gly Ser Glu Ala 95 Cys	Asp Ser Ala Tyr 80 Thr
40 45		1 Phe Gly Ser 5er 65 Tyr	Thr Val Asn 50 Tyr Ile	Tyr Ser 35 Ala Leu Val	Asp 20 Ser Ile Ala Glu Thr 100	5 Glu Asp Thr Val Asp 85 Val	Ser Phe Tyr 70 Tyr	Ala Val Ser 55 Gly Gly Ser	Gly Val 40 Ala Trp Asp	Thr 25 Gly Glu Val Tyr Gly 105	10 Phe Leu Tyr Asn Asn 90 Ser	Ser Gly Ser Tyr 75 Pro	Met Trp Ala 60 Pro Cys	Tyr Thr 45 Ser Gln Ser	Trp 30 Thr Gly Ala Ser Val 110	15 Glu Gly Ser Glu Ala 95 Cys	Asp Ser Ala Tyr 80 Thr
40 45		1 Phe Gly Ser 65 Tyr Ser	Thr Val Asn 50 Tyr Ile Leu Thr	Tyr Ser 35 Ala Leu Val Gly Arg	Asp 20 Ser Ile Ala Glu Thr 100 Thr	5 Glu Asp Thr Val Asp 85 Val	Ser Phe Tyr 70 Tyr Tyr Glu	Ala Val Ser 55 Gly Gly Ser Pro	Gly Val 40 Ala Trp Asp Asp Ser 120	Thr 25 Gly Glu Val Tyr Gly 105 Ile	10 Phe Leu Tyr Asn Asn 90 Ser	Ser Gly Ser Tyr 75 Pro Thr	Met Trp Ala 60 Pro Cys Tyr	Tyr Thr 45 Ser Gln Ser Gln Ser 125	Trp 30 Thr Gly Ala Ser Val 110 Thr	Glu Gly Ser Glu Ala 95 Cys	Asp Ser Ala Tyr 80 Thr

	Val 145	Ala	Asn	His	Phe	Asn 150	Phe	Trp	Ala	His	His 155	Gly	Phe	Gly	Asn	Ser 160
5		Phe	Asn	Tur	Gln		Val	Ala	Val	Gl »		TED	Ser	Glv	A1 =	
				- ,-	165	· · · ·			701	170	ALG	110	501	Cly	175	Gly
	Ser	Ala	Ser	Val	Thr	Ile	Ser	Ser								
10				180												
	<210> 36 <211> 313 <212> PRT															
15	<213> Streptor	nyces	livida	ıns												
	<400> 36															
20		Glu	Ser	Thr	Leu	Gly	Ala	Ala	Ala	Ala	Gln	Ser	Gly	Arg	Tyr	Phe
	1				5					10					15	
	GIA	Thr	Ala		Ala	Ser	Gly	Arg		Ser	Asp	Ser	Thr		Thr	Ser
25	Tlo	81 a	G1	20	Glu	Pho) en	Mot	25 V-1	ም ኮ =	21-	C1	Sen.	30	Mot	T
	116	nia	35	ALG	GIU	FILE	ASII	40	Vai	1111	ATG	Giu	45	GIU	Mec	Lys
	Ile	Asp		Thr	Glu	Pro	Gln	-	Glv	Gln	Phe	Asn		Ser	Ser	Ala
		50					55			•		60				
30	Asp	Arg	Val	Tyr	Asn	Trp	Ala	Val	Gln	Asn	Gly	Lys	Gln	Val	Arg	Gly
	65					70					75					80
	His	Thr	Leu	Ala	Trp	His	Ser	Gln	Gln	Pro	Gly	Trp	Met	Gln	Ser	Leu
35					85					90					95	
	Ser	Gly	Ser	Ala	Leu	Arg	Gln	Ala	Met	Ile	Asp	His	Ile	Asn	Gly	Val
				100					105					110		
40	Met	Ala		Tyr	Lys	Gly	Lys		Val	Gln	Trp	Asp		Val	Asn	Glu
40	. •	_,	115		.	.		120	•••		•		125	_	_	
	Ala		ATS	Asp	Gly	ser	35 135	GIÀ	Ala	Arg	Arg	140	Ser	ASN	Leu	GIN
	Ara	130	Glv	Asn	Asp	Trn		Glu	Va 1	Δla	Pho		Thr	A1 =	Ara	A 1 =
45	145	561	01		p	150		010	· u =		155	9		n.u	my	160
		Asp	Pro	Ser	Ala		Leu	Cys	Tyr	Asn		Tyr	Asn	Val	Glu	
		-			165	•		_	-	170	-	•			175	
50	Trp	Thr	Trp	Ala	Lys	Thr	Gln	Ala	Met	Tyr	Asn	Met	Val	Arg	Asp	Phe
				180					185					190		
	Lys	Gln	Arg	Gly	Val	Pro	Ile	Asp	Cys	Val	Gly	Phe	Gln	Ser	His	Phe
			195					200					205			
55	Asn	Ser	Gly	Ser	Pro	Tyr	Asn	Ser	Asn	Phe	Arg	Thr	Thr	Leu	Gln	Asn
		210					215					220				

		Ala	Ala	Leu	Gly		Asp	Val	Ala	Ile		Glu	Leu	Asp	lle	
5	225		Dwo.	210	50 -	230	T	210	N = =	**- 1	235		3.00	Cuc	T	240
Ū	Gly	Ala	FIU	VIG	245	Int	ıyı	VIG	ASII	250	Int	non	nsp	Cys	255	WIG
	Val	Ser	1-0	Cue		GI v	Tlo	The	Va 1		G1 17	1/21	Ara	Aco		N c n
	Val	361	ary	260	Leu	GIY	116	1111	265	пр	GIÀ	Val	nry	270	361	nsp
10	Ser	Trp	Ara		Glu	Gln	Thr	Pro		t.en	Phe	Asn	Asn		Glv	Sar
	501		275	001	010	01		280	200	Deu			285	пор	Ory	561
	Lvs	Lys	_	Ala	Tvr	Thr	Ala		Leu	Asp	Ala	Leu		Glv	Glv	Ala
	-,-	290			-,-		295					300		,	,	
15	Ser	Ser	Glu	Pro	Pro	Ala		Glv	Glv							
	305					310	•	-	•							
20	<210> 37															
	<211> 362															
	<212> PRT <213> Aspe	raillue	niger													
	~213/ Aspe	ngillus	niger													
25	<400> 37															
		His	Ser	Phe		Ser	Leu	Leu	Ala	_	Gly	Leu	Val	Ala	-	Ala
20	1				5					10					15	
30	Thr	Phe	Ala		Ala	Ser	Pro	Ile		Ala	Arg	Asp	Ser	_	Thr	Phe
				20				_	25					30		
	Thr	Thr		Ala	Ala	Ala	Lys		Gly	Lys	Ala	Lys	_	Ser	Thr	Ile
35			35	_				40					45			
	Thi	Leu	Asn	Asn	He	Glu		Pro	Ala	GIŸ	Thr		Leu	Asp	Leu	Thr
		50	-				55	••- •			-1	60				
		Leu	Thr	ser	GIÀ		гÀг	vai	116	Pne		GIA	Thr	Thr	Thr	
40	65	. M	C)	C1		70	61	D	T	71.	75 Co	14	.	61	61	80
	ĞII	Tyr	GIU	GIU	_	Ala	GIY	Pro	ren		Ser	met	Ser	GIA		ніѕ
	71.0	. The	W-1	ሞኮ =	85	81-	So	C1	n (-	90	T10	800	Cc	200	95 61	* 1 a
45		Thr	Val	100	GIY	MIA	Ser	GIY	105	rea	116	ASII	Cys	110	GIY	MIG
	Arc	Trp	Trn		Gly	Tue	G1 v	Thr		Gly	Tue	Luc	Tue		Lve	Phe
	VI.	,p	115		GIY	Lys	GIY	120	261	GIY	Lys	DyS	125	110	Dys	rne
	Phe	. Tyr			Glv	T.e.n	Asn		Ser	Ser	Tle	Thr		T.eu	Asn	Tle
50		130			01,		135		-01			140	02,			
	Lus	Asn		Pro	Leu	Met		Phe	Ser	Val	Gln		Asp	Asp	Ile	Thr
	145			- 2 0	~~ u	150			~~1		155					160
		Thr	Asp	Va)	Thr		Asn	Asn	Ala	Asp		Asp	Thr	Gln	Glv	
55					165					170	1				175	- 3
										_						

	His	Asn	Thr	Asp 180	Ala	Phe	Asp	Val	Gly 185	Asn	Ser	Val	Gly	Val 190	Asn	Ile
5	Ile	Lys	Pro 195	Trp	Val	His	Asn	Gln 200	Asp	Asp	Cys	Leu	Ala 205	Val	Asn	Ser
	Gly	Glu 210		Ile	Trp	Phe	Thr 215		Gly	Thr	Cys	Ile 220		Gly	His	Gly
10			Ile	Gly	Ser			Asp	Arg	Ser			Val	Val	Lys	
	225 Val	Thr	Ile	Glu		230 Ser	Thr	Val	Ser		235 Ser	Glu	Asn	Ala		240 Arg
15	Ile	Lys	Thr	Ile	245 Ser	Gly	Ala	Thr	-	250 Ser	Val	Ser	G1 u		255 Thr	Tyr
	Ser	Asn		260 Val	Met	Ser	Gly		265 Ser	Asp	Tyr	Gly		270 Val	Ile	Gln
20	Gln	_	275 Tyr	Glu	Asp	Gly	_	280 Pro	Thr	Gly	Lys		285 Thr	Asn	Gly	Val
	Thr	290 Ile	Gln	Asp	Val	Lys	295 Leu	Glu	Ser	Val	Thr	300 Glv	Ser	Val	Asp	Ser
25	305			•		310					315		- • -			320
	Gly	Ala	Thr	Glu	Ile 325	Tyr	Leu	Leu	Cys	Gly 330	Ser	Gly	Ser	Cys	Ser 335	Asp
<i>30</i>	Trp	Thr	Trp	Asp 340	Asp	Val	Lys	Val	Thr 345	Gly	Gly	Lys	Lys	Ser 350	Thr	Ala
	Cys	Lys	Asn 355	Phe	Pro	Ser	Val	Ala 360	Ser	Cys						
35	<210> 38															
	<211> 383 <212> PRT <213> Pseudo	omona	as cell	ulosa												
40	<400> 38											•				
45	Arg	Ala	Asp	Val	Lys 5	Pro	Val	Thr	Val	Lys 10	Leu	Val	Asp	Ser	Gln 15	Ala
		Met	Glu	Thr 20		Ser	Leu	Phe	Ala 25		Met	Gln	Glu	Gln 30		Arg
50	His	Ser	Ile 35	Met	Phe	Gly	His	Gln 40		Glu	Thr	Thr	G1n 45		Leu	Thr
	Ile	Thr 50		Thr	Asp	Gly	Thr 55		Ser	Asp	Thr	Phe 60	Asn	Ala	Val	Gly
55	Asp 65	Phe	Ala	Ala	Val	Tyr 70	Gly	Trp	Asp	Thr	Leu 75	Ser	Ile	Val	Ala	Pro 80

	Lys	Ala	Glu	Gly	Asp 85	Ile	Val	Ala	Gln	Val 90	Lys	Lys	Ala	Tyr	Ala 95	Arg
5	Gly	Gly	Ile	Ile	Thr	Val	Ser	Ser	His	Phe	Asp	Asn	Pro	Lys	Thr	Asp
				100					105					110		
	Thr	Gln	Lys	Gly	Val	Trp	Pro	Val	Gly	Thr	Ser	Trp	Asp	Gln	Thr	Pro
			115					120					125			
10	Ala	Val	Val	Asp	Ser	Leu	Pro	Gly	Gly	Ala	Tyr	Asn	Pro	Val	Leu	Asn
		130					135					140				
	Gly	Tyr	Leu	Asp	Gln	Val	Ala	Glu	Trp	Ala	Asn	Asn	Leu	Lys	Asp	Glu
15	145					150					155					160
	Gln	Gly	Arg	Leu	Ile	Pro	Val	Ile	Phe	Arg	Leu	Tyr	His	Ala	Asn	Thr
					165					170					175	
	Gly	Ser	Trp		Trp	Trp	Gly	Asp	-	Gln	Ser	Thr	Pro	Glu	Gln	Tyr
20	_		_	180	_	_	_		185	_	_	_	_	190	_	
	Lys	Gin		Phe	Arg	Tyr	Ser		Glu	Tyr	Leu	Arg	-	Val	Lys	Gly
	17- 1	3	195	Dha	T a		21	200	c	D	3	3	205	m	3	**- 1
25	vaı	210	ASI	rne	reu	TYL	215	ıyı	ser	Pro	ASI	220	Pne	Trp	ASP	vaı
	Thr		Ala	Δsn	Tur	ī.e.n		Ara	TVE	Pro	Glv		G) II	Trp	Va1) en
	225	010				230	010	Arg	.,.	110	235	nsp	GIU	11p	Vai	240
		Leu	Glv	Phe	Asp		Tvr	Glv	Pro	Val		Asp	Asn	Ala	Asp	
30					245		•			250					255	
	Phe	Arg	Asn	Val	Val	Ala	Asn	Ala	Ala	Leu	Val	Ala	Arg	Met		Glu
				260					265					270		
<i>35</i>	Ala	Arg	Gly	Lys	Ile	Pro	Val	Ile	Ser	Glu	Ile	Gly	Ile	Arg	Ala	Pro
			275					280					285			
	Asp	Ile	Glu	Ala	Gly	Leu	Tyr	Asp	Asn	Gln	Trp	Tyr	Arg	Lys	Leu	Ile
		290					295					300				
40	Ser	Gly	Leu	Lys	Ala	Asp	Pro	Asp	Ala	Arg	Glu	Ile	Ala	Phe	Leu	Leu
	305					310					315					320
	Val	Trp	Arg	Asn	Ala	Pro	Gln	Gly	Val	Pro	Gly	Pro	Asn	Gly	Thr	Gln
45					325					330					335	
	Val	Pro	His		Trp	Val	Pro	Ala		Arg	Pro	Glu	Asn	Ile	Asn	Asn
				340					345					350		
	Gly	Thr		Glu	Asp	Phe	Gln		Phe	Tyr	Ala	Asp		Phe	Thr	Ala
50	_,	•	355		• > -	~ 1	C)-	360		.	•	_	365	_		
	Phe		Arg	Asp	116	GIU		val	Tyr	GIN	Arg		Thr	Leu	Ile	
		370					375					380				

55 <210> 39 <211> 419 <212> PRT <213> Bacillus circulans

<400> 39

55

	Leu	Gln	Pro	Ala	Thr	Ala	Glu	Ala	Ala	Asp	Ser	Tyr	Lys	Ile	Val	Gly
5	1				5					10					15	
	Tyr	Tyr	Pro	Ser	Trp	Ala	Ala	Tyr	Gly	Arg	Asn	Tyr	Asn	Val	Ala	Asp
				20					25					30		
	Ile	Asp	Pro	Thr	Lys	Val	Thr	His	Ile	Asn	Tyr	Ala	Phe	Ala	Asp	Ile
10			35					40					45			
	Cys	Trp	Asn	Gly	Ile	His	Gly	Asn	Pro	Asp	Pro	Ser	Gly	Pro	Asn	Pro
		50					55					60				
15	Val	Thr	Trp	Thr	Cys	Gln	Asn	Glu	Lys	Ser	Gln	Thr	Ile	Asn	Val	Pro
75	65					70					75					80
	Asn	Gly	Thr	Ile	Val	Leu	Gly	Asp	Pro	Trp	Ile	Asp	Thr	Gly	Lys	Thr
					85					90					95	
20	Phe	Ala	Gly	Asp	Thr	Trp	Asp	Gln	Pro	Ile	Ala	Gly	Asn	Ile	Asn	Gln
				100					105			-		110		
	Leu	Asn	Lys	Leu	Lys	Gln	Thr	Asn	Pro	Asn	Leu	Lys	Thr	Ile	Ile	Ser
			115					120					125			
25	Val	Gly	Gly	Trp	Thr	Trp	Ser	Asn	Arg	Phe	Ser	Asp	Val	Ala	Ala	Thr
		130					135					140				
	Ala	Ala	Thr	Arg	Glu	Val	Phe	Ala	Asn	Ser	Ala	Val	Asp	Phe	Leu	Arg
	145					150					155					160
30	Lys	Tyr	Asn	Phe	Asp	Gly	Val	Asp	Leu	Asp	Trp	Glu	Tyr	Pro	Val	Ser
					165					170					175	
	Gly	Gly	Leu	Asp	Gly	Asn	Ser	Lys	Arg	Pro	Glυ	Asp	Lys	Gln	Asn	Tyr
35				180					185					190		
	Thr	Leu	Leu	Leu	Ser	Lys	Ile	Arg	Glu	Lys	Leu	Asp	Ala	Ala	Gly	Ala
			195					200					205			
	Val	Asp	Gly	Lys	Lys	Tyr	Leu	Leu	Thr	Ile	Ala	Ser	Gly	Ala	Ser	Ala
40		210					215					220				
	Thr	Tyr	Ala	Ala	Asn	Thr	Glu	Leu	Ala	Lys	Ile	Ala	Ala	Ile	Val	Asp
	225					230					235					240
	Trp	Ile	Asn	Ile	Met	Thr	Tyr	Asp	Phe	Asn	Gly	Ala	Trp	Gln	Lys	Ile
45					245					250					255	
	Ser	Ala	His	Asn	Ala	Pro	Leu	Asn	Tyr	Asp	Pro	Ala	Ala	Ser	Ala	Ala
				260					265					270		
50	Gly	Val	Pro	Asp	Ala	Asn	Thr	Phe	Asn	Val	Ala	Ala	Gly	Ala	Gln	Gly
			275					280					285			
	His	Leu	Asp	Ala	Gly	Val	Pro	Ala	Ala	Lys	Leu	Val	Leu	Gly	Val	Pro
		290					295					300				

	Phe	Tyr	Gly	Arg	Gly	Trp	Asp	Gly	Cys	Ala	Gln	Ala	Gly	Asn	Glγ	Gln
	305					310					315					320
5	Tyr	Gln	Thr	Cys	Thr 325	Gly	Gly	Ser	Ser	Val 330	Gly	Thr	Trp	Glu	Ala 335	Gly
	C	Db =	.	nho		B	•	61				*1.		7		61
	Ser	rne	Asp	340	TYL	АЗР	ren	GIU	345	ASII	ıyı	Ile	ASII	350	ASII	GIY
10	T	~~	N		T-0	200	N	ም ኮ ~		T	Wa l	Dro	T		T	
	Tyr	Int	355	IYL	пр	ASII	ASP	360	MIG	rys	Vai	Pro	365	Leu	IYE	ASII
	212	Sar		T.Ve	Ara	Phe	Tle		Tur	Aen	Acn	Ala		Sar	Val	G) v
	nia	370	ASII	БуЗ	ALG	2116	375	Jer	171	vaħ	vab	380	GIU	561	Val	GIĄ
15	ጥ ህ ৮		Thr	11 2	Tur	Tla		Sar	Luc	Glv	T.e.u	Gly	Glv	Δla	Mat	Pho
	385	туз	1111	nia	TYL	390	rys	Ser	цуз	GIY	395	GIY	Gry	via	Met	400
		Gl v	Lau	Sar	Gly		A ra	Acn	Tue	Th =		Gln	Aen	Tue	1.00	
	ırp	GIU	Deu	Jei	405	чэр	vià	A3II	Lys	410	rea	GIII	ASII	μys	415	rys
20	Ala	Asp	T.e.u		405					410					413	
	nia	лор	Dea													
25	<210> 40 <211> 317															
	<212> PRT															
	<213> Candid	da ant	arctic	а												
	<400> 40															
30	100															
30																
30	Leu	Pro	Ser	Glv	Ser	Asp	Pro	Ala	Phe	Ser	Gln	Pro	Lvs	Ser	Val	Leu
30	Leu 1	Pro	Ser	Gly	Ser 5	Asp	Pro	Ala	Phe	Ser 10	Gln	Pro	Lys	Ser	Val 15	Leu
	1			_	5	_				10		Pro Ser	-		15	
35	1			_	5	_				10			-		15	
	l Asp	Ala	Gly	Leu 20	5 Thr	Cys	Gln	Gly	Ala 25	10 Ser	Pro		Ser	Val 30	15 Ser	Lys
	l Asp	Ala	Gly	Leu 20	5 Thr	Cys	Gln	Gly	Ala 25	10 Ser	Pro	Ser	Ser	Val 30	15 Ser	Lys
	1 Asp Pro	Ala Ile	Gly Leu 35	Leu 20 Leu	5 Thr Val	Cys Pro	Gln Gly	Gly Thr 40	Ala 25 Gly	10 Ser Thr	Pro Thr	Ser	Ser Pro 45	Val 30 Gln	15 Ser Ser	Lys Phe
35	1 Asp Pro	Ala Ile	Gly Leu 35	Leu 20 Leu	5 Thr Val	Cys Pro	Gln Gly	Gly Thr 40	Ala 25 Gly	10 Ser Thr	Pro Thr	Ser Gly	Ser Pro 45	Val 30 Gln	15 Ser Ser	Lys Phe
35	l Asp Pro Asp	Ala Ile Ser 50	Gly Leu 35 Asn	Leu 20 Leu Trp	5 Thr Val	Cys Pro	Gln Gly Leu 55	Gly Thr 40 Ser	Ala 25 Gly Thr	10 Ser Thr	Pro Thr Leu	Ser Gly Gly	Ser Pro 45 Tyr	Val 30 Gln Thr	15 Ser Ser Pro	Lys Phe Cys
35	l Asp Pro Asp	Ala Ile Ser 50	Gly Leu 35 Asn	Leu 20 Leu Trp	5 Thr Val	Cys Pro	Gln Gly Leu 55	Gly Thr 40 Ser	Ala 25 Gly Thr	10 Ser Thr	Pro Thr Leu	Ser Gly Gly 60	Ser Pro 45 Tyr	Val 30 Gln Thr	15 Ser Ser Pro	Lys Phe Cys
35	1 Asp Pro Asp Trp 65	Ala Ile Ser 50 Ile	Gly Leu 35 Asn	Leu 20 Leu Trp	5 Thr Val Ile Pro	Cys Pro Pro 70	Gln Gly Leu 55 Phe	Gly Thr 40 Ser Met	Ala 25 Gly Thr	10 Ser Thr Gln	Pro Thr Leu Asp	Ser Gly Gly 60	Ser Pro 45 Tyr	Val 30 Gln Thr	15 Ser Ser Pro	Lys Phe Cys Thr
35 40	1 Asp Pro Asp Trp 65	Ala Ile Ser 50 Ile	Gly Leu 35 Asn	Leu 20 Leu Trp	5 Thr Val Ile Pro	Cys Pro Pro 70	Gln Gly Leu 55 Phe	Gly Thr 40 Ser Met	Ala 25 Gly Thr	10 Ser Thr Gln	Pro Thr Leu Asp	Ser Gly Gly 60 Thr	Ser Pro 45 Tyr	Val 30 Gln Thr	15 Ser Ser Pro	Lys Phe Cys Thr
35 40	1 Asp Pro Asp Trp 65 Glu	Ala Ile Ser 50 Ile	Gly Leu 35 Asn Ser	Leu 20 Leu Trp Pro	5 Thr Val Ile Pro Asn 85	Cys Pro Pro Pro Ala	Gln Gly Leu 55 Phe	Gly Thr 40 Ser Met	Ala 25 Gly Thr Leu	10 Ser Thr Gln Asn Leu 90	Pro Thr Leu Asp 75 Tyr	Ser Gly Gly 60 Thr	Ser Pro 45 Tyr Gln	Val 30 Gln Thr Val	15 Ser Ser Pro Asn Gly 95	Lys Phe Cys Thr 80 Asn
35 40 45	1 Asp Pro Asp Trp 65 Glu	Ala Ile Ser 50 Ile	Gly Leu 35 Asn Ser	Leu 20 Leu Trp Pro	5 Thr Val Ile Pro Asn 85	Cys Pro Pro Pro Ala	Gln Gly Leu 55 Phe	Gly Thr 40 Ser Met	Ala 25 Gly Thr Leu	10 Ser Thr Gln Asn Leu 90	Pro Thr Leu Asp 75 Tyr	Ser Gly Gly 60 Thr	Ser Pro 45 Tyr Gln	Val 30 Gln Thr Val	15 Ser Ser Pro Asn Gly 95	Lys Phe Cys Thr 80 Asn
35 40	l Asp Pro Asp Trp 65 Glu Asn	Ala Ile Ser 50 Ile Tyr	Gly Leu 35 Asn Ser Met	Leu 20 Leu Trp Pro Val Pro 100	5 Thr Val Ile Pro Asn 85 Val	Cys Pro Pro 70 Ala	Gln Gly Leu 55 Phe Ile	Gly Thr 40 Ser Met Thr	Ala 25 Gly Thr Leu Ala Ser 105	10 Ser Thr Gln Asn Leu 90 Gln	Pro Thr Leu Asp 75 Tyr	Ser Gly Gly 60 Thr	Ser Pro 45 Tyr Gln Gly Leu	Val 30 Gln Thr Val Ser Val 110	15 Ser Ser Pro Asn Gly 95 Ala	Lys Phe Cys Thr 80 Asn
35 40 45	l Asp Pro Asp Trp 65 Glu Asn	Ala Ile Ser 50 Ile Tyr	Gly Leu 35 Asn Ser Met	Leu 20 Leu Trp Pro Val Pro 100	5 Thr Val Ile Pro Asn 85 Val	Cys Pro Pro 70 Ala	Gln Gly Leu 55 Phe Ile	Gly Thr 40 Ser Met Thr	Ala 25 Gly Thr Leu Ala Ser 105	10 Ser Thr Gln Asn Leu 90 Gln	Pro Thr Leu Asp 75 Tyr	Ser Gly Gly 60 Thr Ala	Ser Pro 45 Tyr Gln Gly Leu	Val 30 Gln Thr Val Ser Val 110	15 Ser Ser Pro Asn Gly 95 Ala	Lys Phe Cys Thr 80 Asn
35 40 45	1 Asp Pro Asp Trp 65 Glu Asn	Ala Ile Ser 50 Ile Tyr Lys	Gly Leu 35 Asn Ser Met Leu Leu 115	Leu 20 Leu Trp Pro Val Pro 100	5 Thr Val Ile Pro Asn 85 Val	Cys Pro Pro 70 Ala Leu Phe	Gln Gly Leu 55 Phe Ile Thr	Gly Thr 40 Ser Met Thr Trp Ser 120	Ala 25 Gly Thr Leu Ala Ser 105 Ile	10 Ser Thr Gln Asn Leu 90 Gln	Pro Thr Leu Asp 75 Tyr Gly Ser	Ser Gly Gly 60 Thr Ala	Ser Pro 45 Tyr Gln Gly Leu Val 125	Val 30 Gln Thr Val Ser Val 110 Asp	15 Ser Ser Pro Asn Gly 95 Ala	Lys Phe Cys Thr 80 Asn Gln
35 40 45	1 Asp Pro Asp Trp 65 Glu Asn	Ala Ile Ser 50 Ile Tyr Lys	Gly Leu 35 Asn Ser Met Leu Leu 115	Leu 20 Leu Trp Pro Val Pro 100	5 Thr Val Ile Pro Asn 85 Val	Cys Pro Pro 70 Ala Leu Phe	Gln Gly Leu 55 Phe Ile Thr	Gly Thr 40 Ser Met Thr Trp Ser 120	Ala 25 Gly Thr Leu Ala Ser 105 Ile	10 Ser Thr Gln Asn Leu 90 Gln	Pro Thr Leu Asp 75 Tyr Gly Ser	Ser Gly Gly 60 Thr Ala Gly	Ser Pro 45 Tyr Gln Gly Leu Val	Val 30 Gln Thr Val Ser Val 110 Asp	15 Ser Ser Pro Asn Gly 95 Ala	Lys Phe Cys Thr 80 Asn Gln

	Asp	Ala	Leu	Ala	Val	Ser	Ala	Pro	Ser	Val	Trp	Gln	Gln	Thr	Thr	Gly
_	145					150					155					160
5	Ser	Ala	Leu	Thr	Thr	Ala	Leu	Arg	Asn	Ala	Gly	Gly	Leu	Thr	Gln	Ile
					165					170					175	
	Val	Pro	Thr	Thr	Asn	Leu	Tyr	Ser	Ala	Thr	Asp	Glu	Ile	Val	Gln	Pro
10				180					185					190		
	Gln	Val	Ser	Asn	Ser	Pro	Leu	Asp	Ser	Ser	Tyr	Leu	Phe	Asn	Gly	Lys
			195					200					205			
	Asn	Val	Gln	Ala	Gln	Ala	Val	Cys	Gly	Pro	Leu	Phe	Val	Ile	Asp	His
15		210					215					220				
	Ala	Gly	Ser	Leu	Thr	Ser	Gln	Phe	Ser	Tyr	Val	Val	Gly	Arg	Ser	Ala
	225					230					235					240
	Leu	Arg	Ser	Thr	Thr	Gly	Gln	Ala	Arg	Ser	Ala	Asp	Tyr	Gly	Ile	Thr
20					245					250					255	
	Asp	Cys	Asn	Pro	Leu	Pro	Ala	Asn	Asp	Leu	Thr	Pro	Glu	Gln	Lys	Val
				260					265					270		•
25	Ala	Ala	Ala	Ala	Leu	Leu	Ala	Pro	Ala	Ala	Ala	Ala	Ile	Val	Ala	Gly
25			275	•		•		280					285			
	Pro	Lys	Gln	Asn	Cys	Glu	Pro	Asp	Leu	Met	Pro	Tyr	Ala	Arg	Pro	Phe
		290					295					300				
30	Ala	Val	Gly	Lys	Arg	Thr	Cys	Ser	Gly	Ile	Val	Thr	Pro			
	305					310	•			•	315					
	<210> 41															
35	<211> 43	4														
	<212> PF		000116													
	<213> art	unciai	seque	rice												
	<223> ch	imera	of gui	inea p	ig and	l home	o sapi	ens (h	uman	= арр	rox. la	ast 30	am ir	o acio	is)	
40	<400> 41															
	~ 400> 41															
		61	**-1	C		c			61	C	Db -	.		G1	•	D
45		GIU	vai	Cys	Tyr 5	Ser	uis	reu	GIA	_	rne	Ser	ASP	GIU	-	PIO
	1	210	61	Th =		C) -	.	D	71.	10	c	•	D	C	15	D
	Trp	Ala	GIÀ	20	Ser	GIN	Arg	Pro	25	ràa	ser	Leu	PEO		Asp	Pro
		_				•	5 2.	.		_			_,	30		_
50	Lys	Lys		ASN	Thr	Arg	Pne		ren	Tyr	Thr	Asn		Asn	GIn	Asn
		_	35	_				40					45	_		_
	Ser	_	Gln	Leu	Ile	Thr		Thr	Asp	Ile	Ala		Ile	Lys	Ala	Ser
		50			_	_	55		_			60				
55	Asn	Phe	Asn	Leu	Asn	Arg	Lys	Thr	Arg	Phe	Ile	Ile	His	GJÅ	Phe	Thr

	65					70					75					80
	Asp	Ser	Gly	Glu	Asn	Ser	Trp	Leu	Ser	Asp	Met	Cys	Lys	Asn	Met	Phe
					85					90					95	
5	Gln	Val	Glu	Lys	Val	Asn	Cys	Ile	Cys	Val	Asp	Trp	Lys	Gly	Gly	Ser
				100					105					110		
	Lys	Ala	Gln	Tyr	Ser	Gln	Ala	Ser	Gln	Asn	Ile	Arg	Val	Val	Gly	Ala
			115					120					125			
10	Glu	Val	Ala	Tyr	Leu	Val	Gln	Val	Leu	Ser	Thr	Ser	Leu	Asn	Tyr	Ala
		130					135					140				
	Pro	Glu	Asn	Val	His	Ile	Ile	Gly	His	Ser	Leu	Gly	Ala	His	Thr	Ala
	145					150					155					160
15	Gly	Glu	Ala	Gly	Lys	Arg	Leu	Asn	Gly	Leu	Val	Gly	Arg	Ile	Thr	Gly
					165					170					175	
	Leu	Asp	Pro	Ala	Glu	Pro	Tyr	Phe	Gln	Asp	Thr	Pro	Glu	Glu	Val	Arg
20				180					185					190		
20	Leu	Asp	Pro	Ser	Asp	Ala	Lys	Phe	Val	Asp	Val	Ile	His	Thr	Asp	Ile
			195					200					205			•
	Ser	Pro	Ile	Leu	Pro	Ser	Leu	Gly	Phe	Gly	Met	Ser	Gln	Lys	Val	Gly
25		210					215					220	•			
	His	Met	Asp	Phe	Phe	Pro	Asn	Gly	Gly	Lys	Asp	Met	Pro	Gly	Cys	Lys
	225					230					235					240
	Thr	Gly	Ile	Ser	Cys	Asn	His	His	Arg	Ser	Ile	Glu	Tyr	Tyr	His	Ser
30					245					250					255	
	Ser	Ile	Leu	Asn	Pro	Glu	Gly	Phe	Leu	Gly	Tyr	Pro	Cys	Ala	Ser	Tyr
				260					265					270		•
	Asp	Glu	Phe	Gln	Glu	Ser	Gly	Cys	Phe	Pro	Cys	Pro	Ala	Lys	Gly	Cys
35			275					280					285			
	Pro	Lys	Met	Gly	His	Phe	Ala	Asp	Gln	Tyr	Pro	Gly	Lys	Thr	Asn	Ala
		290					295					300				
	Val	Glu	Gln	Thr	Phe	Phe	Leu	Asn	Thr	Gly	Ala	Ser	Asp	Asn	Phe	Thr
40	305					310					315					320
	Arg	Trp	Arg	Tyr	Lys	Val	Thr	Val	Thr	Leu	Ser	Gly	Glu	Lys	Asp	Pro
					325					330					335	
	Ser	Gly	Asn	Ile	Asn	Val	Ala	Leu	Leu	Gly	Lys	Asn	Gly	Asn	Ser	Ala
45				340					345					350		
	Gln	Tyr	Gln	Val	Phe	Lys	Gly	Thr	Leu	Lys	Pro	Asp	Ala	Ser	Tyr	Thr
			355					360					365			
50	Asn	Ser	Ile	Asp	Val	Glu	Leu	Asn	Val	Gly	Thr	Ile	Gln	Lys	Val	Thr
		370					375					380				
	Phe	Leu	Trp	Lys	Arg	Ser	Gly	Ile	Ser	Val	Ser	Lys	Pro	Lys	Met	Gly
	385					390					395					400
55	Ala	Ser	Arg	Ile	Thr	Val	Gln	Ser	Gly	Lys	Asp	Gly	Thr	Lys	Tyr	Asn

					405					410					415	
	Phe	Cys	Ser	S.er	Asp	Ile	Val	Gln	Glu	Asn	Val	Glu	Gln	Thr	Leu	Ser
5				420					425					430		
	Pro	Cys														
	<210> 42															
10	<211> 471 <212> PRT															
	<213> Esche	erichia	coli													
	<400> 42															
15	44002 42															
	Met	Lys	Gln	Ser	Thr	Ile	Ala	Leu	Ala	Leu	Leu	Pro	Leu	Leu	Phe	Thr
	1				5					10					15	
20	Pro	Val	Thr	Lys	Ala	Arg	Thr	Pro	Glu	Met	Pro	Val	Leu	Glu	Asn	Arg
20	_ •			20	_				25			_ •	_	30	_	
	Ala	Ala		Gly	Asp	Ile	Thr		Pro	G1 A	Gly	Ala	-	Arg	Leu	Thr
	C1	1	35	77 k		21-		40		S	7	5	45	7	D==	21-
25	GIÀ	50	GIN	Thr	AIG	MIG	55	ALG	изр	Set	Leu	60	ASP	гуѕ	PIO	HIG
	Lvs		Ile	Ile	Leu	Leu		Glv	Asp	Glv	Met	_	Asp	Ser	Glu	Tle
	65					70		,		1	75	U -J				80
30	Thr	Ala	Ala	Arg	Asn	Tyr	Ala	Glu	Gly	Ala	Gly	Gly	Phe	Phe	Lys	
					85					90					95	
	Ile	Asp	Ala	Leu	Pro	Leu	Thr	Gly	Gln	Tyr	Thr	His	Tyr	Ala	Leu	Asn
				100					105					110		
35	Lys	Lys	Thr	Gly	Lys	Pro	Asp	Tyr	Val	Thr	Asp	Ser	Ala	Ala	Ser	Ala
			115					120					125			
	Thr		Trp	Ser	Thr	Gly	_	Lys	Thr	Tyr	Asn	Gly	Ala	Leu	Gly	Val
40		130			_		135	_				140				
	-		His	Glu	Lys	_	His	Pro	Thr	Ile		Glu	Met	Ala	Lys	
	145		Lon	Ala	Th =	150	Acn	U a l	Sar	Th =	155	C1	7	C1-		160
	VIO	GIY	Deu	770	165	GIY	N911	Val	361	170	wid	GIU	rea	GIII	175	WIG
45	Thr	Pro	Ala	Ala		Val	Ala	His	Val		Ser	Ara	Lvs	Cvs		Glv
				180					185			727.7	-,,	190	-,-	,
	Pro	Ser	Ala	Thr	Ser	Glu	Lys	Cys	Pro	Gly	Asn	Ala	Leu		Lys	Gly
50			195					200		-			205		-	-
	Gly	Lys	Gly	Ser	Ile	Thr	Glu	Gln	Leu	Leu	Asn	Ala	Arg	Ala	Asp	Val
		210					215					220				
ee	Thr	Leu	Gly	Gly	Gly	Ala	Lys	Thr	Phe	Ala	Glu	Thr	Ala	Thr	Ala	Gly
55																

	225					230					235					240
	Glu	Trp	Gln	Gly	Lys	Thr	Leu	Arg	Glu	Gln	Ala	Gln	Ala	Arg	Gly	Tyr
5					245					250					255	
	Gln	Leu	Val	Ser	Asp	Ala	Ala	Ser	Leu	Asn	Ser	Val	Thr	Glu	Ala	Asn
				260					265					270		
10	Gln	Gln	Lys	Pro	Leu	Leu	Gly	Leu	Phe	Ala	Asp	Gly	Asn	Met	Pro	Val
			275					280			-		285			
	Arg	_	Leu	Gly	Pro	Lys		Thr	Tyr	His	Gly		Ile	Asp	Lys	Pro
		290					295					300				
15		Val	Thr	Cys	Thr		Asn	Pro	Gln	Arg		Asp	Ser	Val	Pro	
	305					310					315	_	_	_	_	320
	Leu	Ala	Gln	Met		Asp	Lys	Ala	Ile		Leu	Leu	Ser	Lys		Glu
20	•	~ 3	Db -	D)	325	C) -		C1	61	330	.	71-	•	•	335	•
	гуѕ	GIY	Pne	340	Leu	GIN	vaı	GIU	345	AIG	ser	TIE	Asp	Lys 350	GIH	Asp
	uie	A 1 -	λla		Pro	Cue	Glv	Gla		61v	Glu	Thr	Val	Asp	Lau	A en
	1113	VIO	355	กรูก	110	Cys	Gry	360	116	Gry	GIU	1111	365	nsp	Deu	vab
25	Glu	Ala		Gln	Ara	Ala	Leu		Phe	Ala	Lvs	Lvs		Gly	Asn	Thr
		370			,		375				-3-	380		3		
	Leu	Val	Ile	Val	Thr	Ala	Asp	His	Ala	His	Ala	Ser	Gln	Ile	Val	Ala
30	385					390	_				395					400
30	Pro	Asp	Thr	Lys	Ala	Pro	Gly	Leu	Thr	Gln	Ala	Leu	Asn	Thr	Lys	Asp
					405					410					415	
	Gly	Ala	Val	Met	Val	Met	Ser	Tyr	Gly	Asn	Ser	Glu	Glu	Asp	Ser	Gln
35				420					425					430		
	Glu	His	Thr	Gly	Ser	Gln	Leu	Arg	Ile	Ala	Ala	Tyr	Gly	Pro	His	Ala
			435					440					445			
40	Ala	Asn	Val	Val	Gly	Leu	Thr	Asp	Gln	Thr	Asp	Leu	Phe	Tyr	Thr	Met
40		450					455					460				
	-	Ala	Ala	Leu	Gly		Lys									
	465					470										
45																
	<210> 43 <211> 260															
	<211> 260 <212> PRT															
50	<213> Bovine	l														
50	<400> 43															

Leu Lys Ile Ala Ala Phe Asn Ile Arg Thr Phe Gly Glu Thr Lys Met

Ser Asn Ala Thr Leu Ala Ser Tyr Ile Val Arg Ile Val Arg Arg Tyr

5

10

15

10																
				20					25					30		
	Asp	Ile	Val	Leu	Ile	Gln	Glu	Val	Arg	Asp	Ser	His	Leu	Val	Ala	Val
			35					40					45			
15	Gly	Lys	Leu	Leu	Asp	Tyr	Leu	Asn	Gln	Asp	Asp	Pro	Asn	Thr	Tyr	His
		50					55					60				
	Tyr	Val	Val	Ser	Glu	Pro	Leu	Gly	Arg	Asn	Ser	Tyr	Lys	Glu	Arg	Tyr
20	65					70					75					80
20	Leu	Phe	Leu	Phe	Arg	Pro	Asn	Lys	Val	Ser	Val	Leu	Asp	Thr	Tyr	Gln
					85					90					95	
	Tyr	Asp	Asp	Gly	Cys	Glu	Ser	Cys	-	Asn	Asp	Ser	Phe	Ser	Arg	Glu
25				100					105					110		
	Pro	Ala	Val	Val	Lys	Phe	Ser		His	Ser	Thr	Lys		Lys	Glu	Phe
			115					120					125			
	Ala		Val	Ala	Leu	His		Ala	Pro	Ser	Asp	Ala	Val	Ala	Glu	Ile
30		130					135					140				
		Ser	Leu	Tyr	Asp		Tyr	Leu	Asp	Val		Gln	Lys	Trp	His	
	145					150					155					160
35	Asn	Asp	Val	Met	Leu	Met	Gly	Asp	Phe		Ala	Asp	Cys	Ser	•	Val
33					165					170					175	
	Thr	Ser	Ser		Trp	Ser	Ser	Ile	_	Leu	Arg	Thr	Ser		Thr	Phe
				180					185					190		
40	Gln	Trp		Ile	Pro	Asp	Ser		Asp	Thr	Thr	Ala	Thr	Ser	Thr	Asn
			195					200					205			
	Cys		Tyr	Asp	Arg	Ile		Val	Ala	Gly	Ser	Leu	Leu	Gln	Ser	Ser
		210					215	•				220				

<210> 44 55 <211> 686 <212> PRT

45

50

5

<213> Bacillus circulans

Val Thr Leu Thr

260

Val Val Pro Gly Ser Ala Ala Pro Phe Asp Phe Gln Ala Ala Tyr Gly

Leu Ser Asn Glu Met Ala Leu Ala Ile Ser Asp His Tyr Pro Val Glu

235

255

250

<400> 44

5	1			5			10			Asp 15 Ala	Val Asn
10											
15											
20											
25				•							
30											
35		·									
40											
45											
50											

				20					25		•			30		
	Asn	Pro	Thr	Gly	Ala	Ala	Phe	Asp	Gly	Thr	Cys	Thr	Asn	Leu	Arg	Leu
5			35					40					45			
	Tyr	Cys	Gly	Gly	Asp	Trp	Gln	Gly	Ile	Ile	Asn	Lys	Ile	Asn	Asp	Gly
		50					55					60				
	Tyr	Leu	Thr	Gly	Met	Gly	Val	Thr	Ala	Ile	Trp	Ile	Ser	Gln	Pro	Val
10	65					70					75					80
	Glu	Asn	Ile	Tyr	Ser	Ile	Ile	Asn	Tyr	Ser	Gly	Val	Asn	Asn	Thr	Ala
					85					90					95	
	Tyr	His	Gly	Tyr	Trp	Ala	Arg	Asp	Phe	Lys	Lys	Thr	Asn	Pro	Ala	Tyr
15				100					105					110		
	Gly	Thr	Ile	Ala	Asp	Phe	Gln	Asn	Leu	Ile	Ala	Ala	Ala	His	Ala	Lys
			115					120					125			
	Asn		Lys	Val	Ile	Ile	_	Phe	Ala	Pro	Asn		Thr	Ser	Pro	Ala
20		130					135					140				
		Ser	Asp	Gln	Pro		Phe	Ala	Glu	Asn	-	Arg	Leu	Tyr	Asp	
	145		_	_		150	_			_	155		_	_		160
05	Gly	Thr	Leu	Leu	-	GIY	Tyr	Thr	Asn	-	Thr	GIn	Asn	Leu		
25	•••	•	61	~1	165	•	DL -	6	m b	170	61	•	61	7 1.	175	•
	HIS	Asn	GIA	Gly	Thr	Asp	Pne	Ser		Thr	GIU	ASN	GIY		Tyr	Lys
		1		180	T a	21-	3	T	185			N	c	190		2
30	ASN	ren	19E	Asp	Leu	WIG	ASP	200	ASN	nis	ASN	ASN	205	Inr	vaı	Asp
3	Wa I	T		Lys	a en	A1 =	710		Mat	Tro	Len	Acn		Glu	110	A c n
	Val	210	Deu	пуз	nap	n1a	215	БуЗ		пр	Deu	220	Deu	J.,	110	nap
	Glv		Ara	Met	Asp	Ala		Lvs	His	Met	Pro		Glv	Trp	Gln	Lvs
35	225		9			230		-,-			235		·-,		01	240
		Phe	Met	Ala	Ala		Asn	Asn	Tyr	Lvs		Val	Phe	Thr	Phe	
					245				-	250					255	•
	Glu	Trp	Phe	Leu	Gly	Val	Asn	Glu	Val	Ser	Pro	Glu	Asn	His	Lys	Phe
40				260					265					270	_	
	Ala	Asn	Glu	Ser	Gly	Met	Ser	Leu	Leu	Asp	Phe	Arg	Phe	Ala	Gln	Lys
			275					280					285			
	Val	Arg	Gln	Val	Phe	Arg	Asp	Asn	Thr	Asp	Asn	Met	Tyr	Gly	Leu	Lys
45		290					295					300				
	Ala	Met	Leu	Glu	Gly	Ser	Ala	Ala	Asp	Tyr	Ala	Gln	Val	Asp	Asp	Gln
	305					310					315					320
	Val	Thr	Phe	Ile	Asp	Asn	His	Asp	Met	Glu	Arg	Phe	His	Ala	Ser	Asn
50					325					330					335	
	Ala	Asn	Arg	Arg	Lys	Leu	Glu	Gln	Ala	Leu	Ala	Phe	Thr	Leu	Thr	Ser
				340					345					350		
55	Arg	Gly	Val	Pro	Ala	Ile	Tyr	Tyr	Gly	Thr	Glu	Gln	Tyr	Met	Ser	Gly
~																

			355					360					365			
	Gly	Thr	Asp	Pro	Asp	Asn	Arg	Ala	Arg	Ile	Pro	Ser	Phe	Ser	Thr	Ser
5		370					375					380				
	Thr	Thr	Ala	Tyr	Gln	Val	Ile	Gln	Lys	Leu	Ala	Pro	Leu	Arg	Lys	Cys
	385					390					395					400
	Asn	Pro	Ala	Ile	Ala	Tyr	Gly	Ser	Thr	Gln	Glu	Arg	Trp	Ile	Asn	Asn
10					405					410					415	
	Asp	Val	Leu	Ile	Tyr	Glu	Arg	Lys	Phe	Gly	Ser	Asn	Val	Ala	Val	Val
				420					425					430		
	Ala	Val	Asn	Arg	Asn	Leu	Asn	Ala	Pro	Ala	Ser	Ile	Ser	Gly	Leu	Val
15			435					440					445			
	Thr		Leu	Pro	Gln	GJA		Tyr	Asn	Asp	Val	Leu	Gly	Gly	Leu	Leu
		450					455					460				
		Gly	Asn	Thr	Leu		Val	Gly	Ser	Gly	_	Ala	Ala	Ser	Asn	
20	465	-				470				_	475					480
	Thr	Leu	Ala	Ala	_	GIA	Thr	Ala	Val	•	Gln	Tyr	Thr	Ala		Thr
			_		485					490				_	495	
25	Ala	Thr	Pro	Thr	iie	СТĀ	HIS	vaı	_	Pro	Met	Met	Ala	_	Pro	GIĀ
25		mh	71-	500	71.	>	C)		505	Db -	61	6	.	510	~ 1	m >
	vaı	inr	515	Thr	116	ASP	GIA	520	GIĀ	rne	GIĀ	Ser		гåа	GIĀ	THE
	Val	Tu-		Gly	Thr	The	Ala		Sar	C1	212	A co	525	ሞኮ	So = .	Tro
30	Val	530	rne	GIY	7111	1111	535	vaı	361	GIY	VIO	540	116	IIIL	Ser	пр
	G) u		Thr	Gln	Tla	T.ve		T.vg	Tle	Pro	λla		11 =	Gly	G1 v	Δen
	545			U 2		550		2,0			555	vui	71.14	013	O.J	560
		Asn	Ile	Lys	Val		Asn	Ala	Ala	Glv		Ala	Ser	Asn	Val	
35	-,-			-,-	565					570					575	- 1 -
	Asp	Asn	Phe	Glu	Val	Leu	Ser	Gly			Val	Ser	Val	Ara		Val
	•			580				_	585					590		
	Val	Asn	Asn	Ala	Thr	Thr	Ala	Leu	Gly	Gln	Asn	Val	Tyr	Leu	Thr	Gly
40			595					600					605			
	Ser	Val	Ser	Glu	Leu	Gly	Asn	Trp	Asp	Pro	Ala	Lys	Ala	Ile	Gly	Pro
		610					615					620				
•	Met	Tyr	Asn	Gln	Val	Val	Tyr	Gln	Tyr	Pro	Asn	Trp	Tyr	Tyr	Asp	Val
45	625					630					635					640
	Ser	Val	Pro	Ala	Gly	Lys	Thr	Ile	Glu	Phe	Lys	Phe	Leu	Lys	Lys	Gln
					645					650					655	
50	Gly	Ser	Thr	Val	Thr	Trp	Glu	Gly	Gly	Ser	Asn	His	Thr	Phe	Thr	Ala
50				660					665					670		
	Pro	Ser	Ser	Gly	Thr	Ala	Thr	Ile	Asn	Val	Asn	Trp	Gln	Pro		
			675					680					685			

<210> 45 <211> 404 <212> PRT

5	<213> Amyco	latops	is orie	ntalis												
3	<400> 45															
10	Met 1	Arg	Val	Leu	Ile 5	Thr	Gly	Cys	Gly	Ser 10	Arg	Gly	Asp	Thr	Glu 15	Pro
	Leu	Val	Ala	Leu 20	Ala	Ala	Arg	Lev	Arg 25	Glu	Leu	Gly	Ala	Asp 30	Ala	Arg
15	Met	Cys	Leu 35	Pro	Pro	Asp	Tyr	Val 40	Glu	Arg	Cys	Ala	Glu 45	Val	Gly	Val
	Pro	Met 50	Val	Pro	Val	Gly	Arg 55	Ala	Val	Arg	Ala	Gly 60	Ala	Arg	Glu	Pro
20	Gly 65	Glu	Leu	Pro	Pro	Gly 70	Ala	Ala	Glu	Val	Val 75	Thr	Glu	Val	Val	Ala 80
	Glu	Trp	Phe	Asp	Lys 85	Val	Pro	Ala	Ala	Ile 90	Glu	Gly	Cys	Asp	Ala 95	Val
25	Val	Thr	Thr	Gly 100	Leu	Leu	Pro	Ala	Ala 105	Val	Ala	Val	Arg	Ser 110	Met	Ala
	Glu	Lys	Leu 115	Gly	Ile	Pro	Tyr	Arg 120	Tyr	Thr	Val	Leu	Ser 125	Pro	Asp	His
30	Leu	Pro 130	Ser	Glu	Gln	Ser	Gln 135	Ala	Glu	Arg	Asp	Met 140	Tyr	Asn	Gln	Gly
35	Ala 145	Asp	Arg	Leu	Phe	Gly 150	Asp	Ala	Val	Asn	Ser 155	His	Arg	Ala	Ser	11e 160
	Gly	Leu	Pro	Pro	Val 165	Glu	His	Leu	Tyr	Asp 170	Tyr	Gly	Tyr	Thr	Asp 175	Gln
40		Trp		180		-			185					190		-
		Gly	195					200	•				205			
45		Ser 210					215					220				
	225	Val				230			_		235					240
50 ,	_	Met			245					250			-		255	
		Arg ,		260					265					270		
EE	Phe	Val	Val	Gly	Glu	Val	Asn	Leu	Gln	Glu	Leu	Phe	Gly	Arg	Val	Ala

			275					280					285			
_	Ala	Ala	Ile	His	His	Asp	Ser	Ala	Gly	Thr	Thr	Leu	Leu	Ala	Met	Arg
5		290					295					300				-
	Ala	Gly	Ile	Pro	Gln	Ile	Val	Val	Arg	Arg	Val	Val	Asp	Asn	Val	Val
	305					310					315					320
10	Glu	Gln	Ala	Tyr	His	Ala	Asp	Arg	Val	Ala	Glu	Leu	Gly	Val	Gly	Val
					325					330					335	
	Ala	Val	Asp	Gly	Pro	Val	Pro	Thr	Ile	Asp	Ser	Leu	Ser	Ala	Ala	Leu
		-		340					345					350		
15	Asp	Thr		Leu	Ala	Pro	Glu	Ile	Arg	Ala	Arg	Ala	Thr	Thr	Val	Ala
			355					360					365			
	Asp		Ile	Arg	Ala	Asp	-	Thr	Thr	Val	Ala		Gln	Leu	Leu	Phe
20		370					375					380				
	_	Ala	Val	Ser	Leu		Lys	Pro	Thr	Val		Ala	Leu	Glu	His	
	385					390					395					400
	HIS	HIS	His	HIS												
25																
	<210> 46 <211> 292															
	<212> PRT															
	4040s Daniel															
20	<213> Pseud	omor	nas sp).												
30	<213> Pseud	omor	nas sp).												
30		domor	nas sp).												
30	<400> 46		·		Leu	Gly	Tyr	Leu	Gly	Phe	Ala	Val	Lys	Asp	Val	Pro
30 35	<400> 46		·	Arg	Leu 5	Gly	Tyr	Leu	Gly	Phe 10	Ala	Val	Lys	Asp	Val 15	Pro
	<400>46 Ser	Ile	Glu		5	_				10					15	
	<400>46 Ser	Ile	Glu	Arg	5	_				10					15	
35	<400> 46 Ser 1 Ala	Ile Trp	Glu Asp	Arg His	5 Phe	Leu	Thr	Lys	Ser 25	10 Val	Gly	Leu	Met	Ala 30	15 Ala	Gly
	<400> 46 Ser 1 Ala	Ile Trp	Glu Asp	Arg His 20	5 Phe	Leu	Thr	Lys	Ser 25	10 Val	Gly	Leu	Met	Ala 30	15 Ala	Gly
35	<400>46 Ser 1 Ala	Ile Trp Ala	Glu Asp Gly 35	Arg His 20	5 Phe Ala	Leu	Thr	Lys Tyr 40	Ser 25 Arg	10 Val Ala	Gly Asp	Leu Gln	Met Arg 45	Ala 30 Ala	15 Ala Trp	Gly Arg
35	<400>46 Ser 1 Ala	Ile Trp Ala	Glu Asp Gly 35	Arg His 20 Asp	5 Phe Ala	Leu	Thr	Lys Tyr 40	Ser 25 Arg	10 Val Ala	Gly Asp	Leu Gln	Met Arg 45	Ala 30 Ala	15 Ala Trp	Gly Arg
35	<400>46 Ser 1 Ala Ser Ile	Ile Trp Ala Ala 50	Glu Asp Gly 35 Val	Arg His 20 Asp Gln	5 Phe Ala Pro	Leu Ala Gly	Thr Leu Glu 55	Lys Tyr 40 Leu	Ser 25 Arg Asp	10 Val Ala Asp	Gly Asp Leu	Leu Gln Ala 60	Met Arg 45 Tyr	Ala 30 Ala Ala	15 Ala Trp Gly	Gly Arg
35 40	<400>46 Ser 1 Ala Ser Ile	Ile Trp Ala Ala 50	Glu Asp Gly 35 Val	Arg His 20 Asp Gln	5 Phe Ala Pro	Leu Ala Gly	Thr Leu Glu 55	Lys Tyr 40 Leu	Ser 25 Arg Asp	10 Val Ala Asp	Gly Asp Leu	Leu Gln Ala 60	Met Arg 45 Tyr	Ala 30 Ala Ala	15 Ala Trp Gly	Gly Arg Leu
35 40	<400> 46 Ser 1 Ala Ser Ile G1 65	Ile Trp Ala Ala 50 u Va	Glu Asp Gly 35 Val	Arg His 20 Asp Gln	5 Phe Ala Pro	Leu Ala Gly a Ala 70	Thr Leu Glu 55	Lys Tyr 40 Leu	Ser 25 Arg Asp	10 Val Ala Asp	Gly Asp Leu Met 75	Leu Gln Ala 60 : Ala	Met Arg 45 Tyr	Ala 30 Ala Ala	15 Ala Trp Gly	Gly Arg Leu 1 Arg 80
35 40	<400> 46 Ser 1 Ala Ser Ile G1 65	Ile Trp Ala Ala 50 u Va	Glu Asp Gly 35 Val	Arg His 20 Asp Gln p Asp	5 Phe Ala Pro	Leu Ala Gly a Ala 70	Thr Leu Glu 55	Lys Tyr 40 Leu	Ser 25 Arg Asp	10 Val Ala Asp	Gly Asp Leu Met 75	Leu Gln Ala 60 : Ala	Met Arg 45 Tyr	Ala 30 Ala Ala	15 Ala Trp Gly	Gly Arg Leu 1 Arg 80
35 40	<400>46 Ser 1 Ala Ser Ile G1 65 Gln	Ile Trp Ala Ala 50 u Va	Glu Asp Gly 35 Val l As _l	Arg His 20 Asp Gln p Asp	5 Phe Ala Pro Ala Ala 85	Leu Ala Gly Ala 70 Phe	Thr Leu Glu 55 a Ala	Lys Tyr 40 Leu Arg	Ser 25 Arg Asp Glu	10 Val Ala Asp Asp 90	Gly Asp Leu Met 75 Glu	Leu Gln Ala 60 Ala	Met Arg 45 Tyr Asp	Ala 30 Ala Ala Lys	15 Ala Trp Gly Let Gln 95	Gly Arg Leu Arg 80 Gln
35 40 45	<400>46 Ser 1 Ala Ser Ile G1 65 Gln	Ile Trp Ala Ala 50 u Va	Glu Asp Gly 35 Val l As _l	Arg His 20 Asp Gln p Asp	5 Phe Ala Pro Ala Ala 85	Leu Ala Gly Ala 70 Phe	Thr Leu Glu 55 a Ala	Lys Tyr 40 Leu Arg	Ser 25 Arg Asp Glu	10 Val Ala Asp Asp 90	Gly Asp Leu Met 75 Glu	Leu Gln Ala 60 Ala	Met Arg 45 Tyr Asp	Ala 30 Ala Ala Lys	15 Ala Trp Gly Let Gln 95	Gly Arg Leu Arg 80 Gln
35 40 45	<400>46 Ser 1 Ala Ser Ile G1 65 G1n Arg	Trp Ala Ala 50 u Va. Ala	Glu Asp Gly 35 Val Gly Gly Val	Arg His 20 Asp Gln p Asp Val	5 Phe Ala Pro Ala Ala 85 Gly	Leu Ala Gly 70 Phe	Thr Leu Glu 55 a Ala Thr	Lys Tyr 40 Leu Arg	Ser 25 Arg Asp Gly Leu 105	10 Val Ala Asp Asp 90 Gln	Gly Asp Leu 75 Glu Asp	Leu Gln Ala 60 Ala Pro	Met Arg 45 Tyr Asp	Ala 30 Ala Ala Lys Met Gly 110	15 Ala Trp Gly Leu Gln 95 Leu	Gly Arg Leu 1 Arg 80 Gln Pro
35 40 45	<400>46 Ser 1 Ala Ser Ile G1 65 G1n Arg	Trp Ala Ala 50 u Va. Ala	Glu Asp Gly 35 Val Gly Gly Val	Arg His 20 Asp Gln P Asp Val Met 100	5 Phe Ala Pro Ala Ala 85 Gly	Leu Ala Gly 70 Phe	Thr Leu Glu 55 a Ala Thr	Lys Tyr 40 Leu Arg	Ser 25 Arg Asp Gly Leu 105	10 Val Ala Asp Asp 90 Gln	Gly Asp Leu 75 Glu Asp	Leu Gln Ala 60 Ala Pro	Met Arg 45 Tyr Asp	Ala 30 Ala Ala Lys Met Gly 110	15 Ala Trp Gly Leu Gln 95 Leu	Gly Arg Leu 1 Arg 80 Gln Pro

		130					135					140				
	His	Phe	Val	Arg	Cys	Val		Asp	Thr	Ala	Lys	Ala	Met	Ala	Phe	Tyr
5	145			·	-	150		•			155					160
	Thr	Glu	Val	Leu	Gly	Phe	Val	Leu	Ser	Asp	Ile	Ile	Asp	Ile	Gln	Met
					165					170					175	
	Gly	Pro	Glu	Thr	Ser	Val	Pro	Ala	His	Phe	Leu	His	Cys	Asn	Gly	Arg
10				180					185					190		
	His	His	Thr	Ile	Ala	Leu	Ala	Ala	Phe	Pro	Ile	Pro	Lys	Arg	Ile	His
			195					200					205			
15	His	Phe	Met	Leu	Gln	Ala	Asn	Thr	Ile	Asp	Asp	Val	Gly	Tyr	Ala	Phe
		210					215					220				
	Asp	Arg	Leu	Asp	Ala	Ala	Gly	Arg	Ile	Thr	Ser	Leu	Leu	Gly	Arg	His
	225					230					235					240
20	Thr	Asn	Asp	Gln	Thr	Leu	Ser	Phe	Tyr	Ala	Asp	Thr	Pro	Ser	Pro	Met
					245					250					255	
	Ile	Glu	Val	Glu	Phe	Gly	Trp	Gly	Pro	Arg	Thr	Val	Asp	Ser	Ser	Trp
25				260					265					270		
23	Thr	Val	Ala	Arg	His	Ser	Arg	Thr	Ala	Met	Trp	Gly	His	Lys	Ser	Val
			275					280					285			
	Arg	Gly	Gln	Arg												
30		290														
	-0405 47															
	<210> 47 <211> 311															
	<212> PRT															
35	<213> Aciteno	obacte	r sp.													
	<400> 47															
40	Met	Glu	Val	Lys	Ile	Phe	Asn	Thr	Gln	Asp	Val	Gln	Asp	Phe	Leu	Arg
	1				5					10					15	
	Val	Ala	Ser	Gly	Leu	Glu	Gln	Glu	Gly	Gly	Asn	Pro	Arg	Val	Lys	Gln
				20					25					30		
45	Ile	Ile	His	Arg	Val	Leu	Ser	Asp	Leu	Tyr	Lys	Ala	Ile	Glu	Asp	Leu
		•	35					40					45			
	Asn	Ile	Thr	Ser	Asp	Glu	Tyr	Trp	Ala	Gly	Val	Ala	Tyr	Leu	Asn	Gln
50		50					55					60				•
50	Leu	Gly	Ala	Asn	Gln	Glu	Ala	Gly	Leu	Leu	Ser	Pro	Gly	Leu	G) A	Phe
	65					70					75					80
	Asp	His	Tyr	Leu	-	Met	Arg	Met	Asp		Glu	Asp	Ala	Ala		Gly
55					85					90					95	
	Ile	Glu	Asn	Ala	Thr	Pro	Arg	Thr	Ile	Glu	Gly	Pro	Leu	Tyr	Val	Ala

					100					105	•				110		
	C	Sly	Ala	Pro	Glu	Ser	Val	Gly	Tyr	Ala	Arg	Met	Asp	Asp	Gly	Ser	Asp
5				115					120					125			
	F	Pro	Asn	Gly	His	Thr	Leu	Ile	Leu	His	Gly	Thr	Ile	Phe	Asp	Ala	Asp
			130					135					140				
10	C	Sly	Lys	Pro	Leu	Pro	Asn	Ala	Lys	Val	Glu	Ile	Trp	His	Ala	Asn	Thr
.•	1	145					150					155					160
	I	Lys	Gly	Phe	Tyr	Ser	His	Phe	Asp	Pro	Thr	Gly	Glu	Gln	Gln	Ala	Phe
						165					170			•		175	
15	7	Asn	Met	Arg	Arg	Ser	Ile	Ile	Thr	Asp	Glu	Asn	Gly	Gln	Tyr	Arg	Val
					180					185					190		
٠	,	Arg	Thr	Ile	Leu	Pro	Ala	Gly	Tyr	Gly	Cys	Pro	Pro	Glu	Gly	Pro	Thr
				195					200					205			
20	C	31n	Gln	Leu	Leu	Asn	Gln	Leu	Gly	Arg	His	Gly	Asn	Arg	Pro	Ala	His
			210					215					220				
	1	lle	His	Tyr	Phe	Val	Ser	Ala	Asp	Gly	His	Arg	Lys	Leu	Thr	Thr	Gln
25	2	225					230					235					240
	1	lle	Asn	Val	Ala	Gly	Asp	Pro	Tyr	Thr	Tyr	Asp	Asp	Phe	Ala	Tyr	Ala
						245					250					255	
	7	Thr	Arg	Glu	Gly	Leu	Val	Val	Asp	Ala	Val	Glu	His	Thr	Asp	Pro	Glu
30					260					265					270		
	i	Ala	Ile	•	Ala	Asn	Asp	Val	Glu	Gly	Pro	Phe	Ala	Glu	Met	Val	Phe
				275					280					285			
	ı	Asp	Leu	Lys	Leu	Thr	Arg		Val	Asp	Gly	Val	•	Asn	Gln	Val	Val
35			290					295					300				
		-	Arg	Pro	Arg	Leu		Val									
	;	305					310										
40																	
	<210> 48																
	<211> 414 <212> PR																
	<213> Pse		mona	ıs puti	da												
45	-400- 40																
	<400> 48																

5	1 His	Val	Pro	Glu 20	5 His	Leu	Val	Phe	Asp 25	10 Phe	Asp	Met	Tyr	Asn 30	Pro 15 Pro	Ser
10			35					40					45		Glu Trp	
15																
20																
30	,															
35																
40 ·																
45																
50																

	50					55					60				
Al	Thr	Arg	Gly	Gln	Leu	Ile	Arg	Glu	Ala	Tyr	Glu	Asp	Tyr	Arg	His
₅ 65					70					75					80
Ph	e Ser	Ser	Glu	Cys	Pro	Phe	Ile	Pro	Arg	Glu	Ala	Gly	Glu	Ala	Tyr
				85					90					95	
As	Phe	Ile		Thr	Ser	Met	Asp		Pro	Glu	Gln	Arg		Phe	Arg
10			100					105	_			_	110	_	
Al	a Leu		Asn	Gln	Val	Val	_	Met	Pro	vaı	Val	_	Lys	Leu	GIu
D o	n Ara	115	C) =	C1	T 0	21-	120	Sar	T an	Tla	G1	125	Lan	7	D=0
AS	130		GIII	GIU	Leu	135	Cys	561	Deu	116	140	Jer	Бец	ALG	FIO
15 G1	ı Gly		Cvs	Asn	Phe		Glu	Asp	Tvr	Ala		Pro	Phe	Pro	Ile
14		02	0,0		150				- 3 -	155					160
	; Ile	Phe	Met	Leu	Leu	Ala	Gly	Leu	Pro	Glu	Glu	Asp	Ile	Pro	His
20	-			165					170					175	
	ı Lys	Tyr	Leu	Thr	Asp	Gln	Met	Thr	Arg	Pro	Asp	Gly	Ser	Met	Thr
			180					185					190		
Ph	e Ala	Glu	Ala	Lys	Glu	Ala	Leu	Tyr	Asp	Tyr	Leu	Ile	Pro	Ile	Ile
25		195					200					205			
G1	ı Gln	•	Arg	Gln	Lys		Gly	Thr	Asp	Ala		Ser	Ile	Val	Ala
	210					215					220				
	n Gly -	Gln	Val	Asn	_	Arg	Pro	Ile	Thr		Asp	Glu	Ala	Lys	_
30 22		C1	T	T	230	W-1	C1	C1	1	235	m	3203	U a 1	3	240
Me	t Cys	GIA	rea	245	reu	Val	GTA	GIY	250	Азр	Int	Vai	vai	255	rne
T.e	u Ser	Phe	Ser		Glu	Phe	Leu	Ala		Ser	Pro	Glu	His		Gln
35			260					265	_,_				270		
	u Leu	Ile	Gln	Arg	Pro	Glu	Arg	Ile	Pro	Ala	Ala	Cys	Glu	Glu	Leu
		275					280					285			
Le	u Arg	Arg	Phe	Ser	Leu	Val	Ala	Asp	Gly	Arg	Ile	Leu	Thr	Ser	Asp
40	290	}				295					300				
Ту	r Glu	Phe	His	Gly	Val	Gln	Leu	Lys	Lys	Gly	Asp	Gln	Ile	Leu	Leu
30	5				310					315			•		320
	o Glr	Met	Leu		Gly	Leu	Asp	Glu	-	Glu	Asn	Ala	Cys		Met
45		_		325	_		_		330					335	
Hi	s Val	Asp			Arg	GIn	Lys	Va1 345	Ser	HIS	Thr	Thr		GIŸ	HIS
C 1	y Sei		340		t au	Glv	Cln		T eu	212	Ara	A = 0	350	Tla	Tle
<i>50</i>	y sei	355		Cys	Leu	GIY	360		Dea	719	ALG	365	GIU	116	116
	l Thi			Glu	Trp	Leu			Ile	Pro	Asp		Ser	Ile	Ala
•	370		-,, 0			375	.				380				
Pı	o G1		Gln	Ile	Gln		Lys	Ser	Gly	Ile		Ser	Gly	Val	Gln
55													-		

	•	385					390					395					400
		Ala	Leu	Pro	Leu	Val	Trp	Asp	Pro	Ala	Thr	Thr	Lys	Ala	Val		
5						405					410						
10	<210> 49 <211> 37- <212> PR <213> Eq	4 RT	aballu	ıs													
	<400> 49																
15		Ser 1	Thr	Ala	Gly	Lys 5	Val	Ile	Lys	Cys	Lys 10	Ala	Ala	Val	Leu	Trp 15	Glu
		Glu	Lys	Lys	Pro 20	Phe	Ser	Ile	Glu	Glu 25	Val	Glu	Val	Ala	Pro 30	Pro	Lys
20		Ala	His	Glu 35	Val	Arg	Ile	Lys	Met 40	Val	Ala	Thr	Gly	Ile 45	Cys	Arg	Ser
		Asp	Asp 50	His	Val	Val	Ser	Gly 55	Thr	Leu	Val	Thr	Pro 60	Leu	Pro	Val	Ile
25		Ala 65	Gly	His	Glu	Ala	Ala 70	Gly	Ile	Val	Glu	Ser 75	Ile	Gly	Glu	Gly	Val 80
30		Thr	Thr	Val	Arg	Pro 85	Gly	Asp	Lys	Val	Ile 90	Pro	Leu	Phe	Thr	Pro 95	Gln
		Cys	Gly	Lys	Cys 100	Arg	Val	Cys	Lys	His 105	Pro	Glu	Gly	Asn	Phe 110	Cys	Leu
35		Lys	Asn	Asp 115	Leu	Ser	Met	Pro	Arg 120	Gly	Thr	Met	Gln	Asp 125	Gly	Thr	Ser
		Arg	Phe 130	Thr	Cys	Arg	Gly	Lys 135	Pro	Ile	His	His	Phe 140	Leu	Gly	Thr	Ser
40		Thr 145	Phe	Ser	Gln	Tyr	Thr 150	Val	Val	Asp	Glu	11e 155	Ser	Val	Ala	Lys	11e 160
		Asp	Ala	Ala	Ser	Pro 165	Leu	Glu	Lys	Val	Cys 170	Leu	Ile	Gly	Cys	Gly 175	Phe
45		Ser	Thr	Gly	Туг 180	Gly	Ser	Ala	Val	Lys 185	Val	Ala	Lys	Val	Thr 190	Gln	Gly
		Ser	Thr	Cys 195	Ala	Val	Phe	Gly	Leu 200	Gly	Gly	Val	Gly	Leu 205	Ser	Val	Ile
50		Met	Gly 210	Cys	Lys	Ala	Ala	Gly 215	Ala	Ala	Arg	Ile	11e 220	Gly	Val	Asp	Ile
			Lys	Asp	Lys	Phe		Lys	Ala	Lys	Glu		Gly	Ala	Thr	Glu	Cys ·
55		225 Val	Asn	Pro	Gln	Asp	230 Tyr	Lys	Lys	Pro	Ile	235 Gln	Glu	Val	Leu	Thr	240 Glu

					245					250					255	
	Met	Ser	Asn	Gly	Gly	Val	Asp	Phe	Ser	Phe	Glu	Val	Ile	Gly	Arg	Leu
5				260					265					270		
	Asp	Thr	Met	Val	Thr	Ala	Leu	Ser	Cys	Cys	Gln	Glu	Ala	Tyr	Gly	Val
	_		275					280	_	_			285	_		
	Ser	Val	Ile	Val	Gly	Val	Pro	Pro	Asp	Ser	Gln	Asn	Leu	Ser	Met	Asn
10		290			•		295		-			300				
	Pro	Met	Leu	Leu	Leu	Ser	Glv	Arg	Thr	Trp	Lvs	Glv	Ala	Ile	Phe	Glv
	305					310	•	,		•	315	•				320
	Gly	Phe	Lvs	Ser	Lys	Asp	Ser	Val	Pro	Lys	Leu	Val	Ala	Asp	Phe	Met
15			•		325	•				330					335	
	Ala	Lvs	Lvs	Phe	Ala	Leu	Asp	Pro	Leu	Ile	Thr	His	Val	Leu		Phe
				340			•		345					350		
	Glu	Lvs	Ile	Asn	Glu	Glv	Phe	Asp		Leu	Ara	Ser	Glv		Ser	Ile
20		-,-	355			,		360			,		365			
	Ara	Thr		Leu	Thr	Phe							-			
	9	370														
25		3.0														
	<210> 50															
	<211> 297															
	-212N DDT															
	<212> PRT	richia :	coli													
30	<213> Esche	richia	coli													
30		richia	coli													
30	<213> Esche	richia ·	coli													
30	<213> Eschell			Asn	Leu	Arg	Gly	Val	Met	Ala	Ala	Leu	Leu	Thr	Pro	Phe
30 35	<213> Eschell			Asn	Leu 5	Arg	Gly	Val	Met	Ala 10	Ala	Leu	Leu	Thr	Pro 15	Phe
	<213> Escher <400> 50 Met 1	Ala	Thr	Asn Gln	5	_				10					15	
	<213> Escher <400> 50 Met 1	Ala	Thr		5	_				10					15	
35	<213> Eschel <400> 50 Met 1 Asp	Ala Gln	Thr	Gln	5 Ala	Leu	Asp	Lys	Ala 25	10 Ser	Leu	Arg	Arg	Leu 30	15 Val	Gln
	<213> Eschel <400> 50 Met 1 Asp	Ala Gln	Thr	Gln 20	5 Ala	Leu	Asp	Lys	Ala 25	10 Ser	Leu	Arg	Arg	Leu 30	15 Val	Gln
35	<213> Escher <400> 50 Met 1 Asp	Ala Gln Asn	Thr Gln Ile 35	Gln 20	5 Ala Gln	Leu Gly	Asp	Lys Asp 40	Ala 25 Gly	10 Ser Leu	Leu Tyr	Arg Val	Arg Gly 45	Leu 30 Gly	15 Val Ser	Gln Thr
35	<213> Escher <400> 50 Met 1 Asp	Ala Gln Asn	Thr Gln Ile 35	Gln 20 Gln	5 Ala Gln	Leu Gly	Asp	Lys Asp 40	Ala 25 Gly	10 Ser Leu	Leu Tyr	Arg Val	Arg Gly 45	Leu 30 Gly	15 Val Ser	Gln Thr
35 40	<213> Escher <400> 50 Met 1 Asp Phe	Ala Gln Asn Glu 50	Thr Gln Ile 35	Gln 20 Gln	5 Ala Gln Val	Leu Gly Gln	Asp Ile Ser 55	Lys Asp 40 Leu	Ala 25 Gly Ser	10 Ser Leu Glu	Leu Tyr Arg	Arg Val Glu 60	Arg Gly 45 Gln	Leu 30 Gly Val	15 Val Ser Leu	Gln Thr Glu
35	<213> Escher <400> 50 Met 1 Asp Phe	Ala Gln Asn Glu 50	Thr Gln Ile 35	Gln 20 Gln Phe	5 Ala Gln Val	Leu Gly Gln	Asp Ile Ser 55	Lys Asp 40 Leu	Ala 25 Gly Ser	10 Ser Leu Glu	Leu Tyr Arg	Arg Val Glu 60	Arg Gly 45 Gln	Leu 30 Gly Val	15 Val Ser Leu	Gln Thr Glu
35 40	<213> Escheron Company	Ala Gln Asn Glu 50 Val	Thr Gln Ile 35 Ala	Gln 20 Gln Phe	5 Ala Gln Val	Leu Gly Gln Gly 70	Asp Ile Ser 55 Lys	Lys Asp 40 Leu Gly	Ala 25 Gly Ser Lys	10 Ser Leu Glu Ile	Leu Tyr Arg Lys 75	Arg Val Glu 60 Leu	Arg Gly 45 Gln Ile	Leu 30 Gly Val	15 Val Ser Leu His	Gln Thr Glu Val 80
35 40	<213> Escheron Company	Ala Gln Asn Glu 50 Val	Thr Gln Ile 35 Ala	Gln 20 Gln Phe Glu	5 Ala Gln Val	Leu Gly Gln Gly 70	Asp Ile Ser 55 Lys	Lys Asp 40 Leu Gly	Ala 25 Gly Ser Lys	10 Ser Leu Glu Ile	Leu Tyr Arg Lys 75	Arg Val Glu 60 Leu	Arg Gly 45 Gln Ile	Leu 30 Gly Val	15 Val Ser Leu His	Gln Thr Glu Val 80
35 40	<213> Escheroscher	Ala Gln Asn Glu 50 Val Cys	Thr Gln Ile 35 Ala Ala Val	Gln 20 Gln Phe Glu	5 Ala Gln Val Glu Thr 85	Leu Gly Gln Gly 70 Ala	Asp Ile Ser 55 Lys	Lys Asp 40 Leu Gly Ser	Ala 25 Gly Ser Lys Gln	10 Ser Leu Glu Ile Gln 90	Leu Tyr Arg Lys 75 Leu	Arg Val Glu 60 Leu	Arg Gly 45 Gln Ile Ala	Leu 30 Gly Val Ala Ser	15 Val Ser Leu His Ala 95	Gln Thr Glu Val 80 Lys
35 40 45	<213> Escheroscher	Ala Gln Asn Glu 50 Val Cys	Thr Gln Ile 35 Ala Ala Val	Gln 20 Gln Phe Glu	5 Ala Gln Val Glu Thr 85	Leu Gly Gln Gly 70 Ala	Asp Ile Ser 55 Lys	Lys Asp 40 Leu Gly Ser	Ala 25 Gly Ser Lys Gln	10 Ser Leu Glu Ile Gln 90	Leu Tyr Arg Lys 75 Leu	Arg Val Glu 60 Leu	Arg Gly 45 Gln Ile Ala	Leu 30 Gly Val Ala Ser	15 Val Ser Leu His Ala 95	Gln Thr Glu Val 80 Lys
35 40 45	<213> Escheron control	Ala Gln Asn Glu 50 Val Cys	Thr Gln Ile 35. Ala Ala Val	Gln 20 Gln Phe Glu Thr	5 Ala Gln Val Glu Thr 85 Asp	Leu Gly Gln Gly 70 Ala	Asp Ile Ser 55 Lys Glu Val	Lys Asp 40 Leu Gly Ser	Ala 25 Gly Ser Lys Gln Ala 105	10 Ser Leu Glu Ile Gln 90 Val	Leu Tyr Arg Lys 75 Leu Thr	Arg Val Glu 60 Leu Ala	Arg Gly 45 Gln Ile Ala	Leu 30 Gly Val Ala Ser Tyr	15 Val Ser Leu His Ala 95 Tyr	Gln Thr Glu Val 80 Lys
35 40 45	<213> Escheron control	Ala Gln Asn Glu 50 Val Cys	Thr Gln Ile 35. Ala Ala Val	Gln 20 Gln Phe Glu Thr	5 Ala Gln Val Glu Thr 85 Asp	Leu Gly Gln Gly 70 Ala	Asp Ile Ser 55 Lys Glu Val	Lys Asp 40 Leu Gly Ser	Ala 25 Gly Ser Lys Gln Ala 105	10 Ser Leu Glu Ile Gln 90 Val	Leu Tyr Arg Lys 75 Leu Thr	Arg Val Glu 60 Leu Ala	Arg Gly 45 Gln Ile Ala	Leu 30 Gly Val Ala Ser Tyr	15 Val Ser Leu His Ala 95 Tyr	Gln Thr Glu Val 80 Lys
35 40 45	<213> Escheron Company	Ala Gln Asn Glu 50 Val Cys Tyr	Thr Gln Ile 35 Ala Ala Val Gly Phe 115	Gln 20 Gln Phe Glu Thr	5 Ala Gln Val Glu Thr 85 Asp	Leu Gly Gln Gly 70 Ala Ala	Asp Ile Ser 55 Lys Glu Val	Lys Asp 40 Leu Gly Ser Ser Asp	Ala 25 Gly Ser Lys Gln Ala 105 His	10 Ser Leu Glu Ile Gln 90 Val	Leu Tyr Arg Lys 75 Leu Thr	Arg Val Glu 60 Leu Ala Pro	Arg Gly 45 Gln Ile Ala Phe Ile 125	Leu 30 Gly Val Ala Ser Tyr 110	15 Val Ser Leu His Ala 95 Tyr	Gln Thr Glu Val 80 Lys Pro

		130					135					140				
	Val	Lys	Leu	Thr	Leu	Asp	Gln	Ile	Asn	Thr	Leu	Val	Thr	Leu	Pro	Gly
5	145					150					155					160
	Val	Gly	Ala	Leu	Lys	Gln	Thr	Ser	Gly	Asp	Leu	Tyr	Gln	Met	Glu	Gln
					165					170					175	
10	Ile	Arg	Arg	Glu	His	Pro	Asp	Leu	Val	Leu	Tyr	Asn	Gly	Tyr	Asp	Glu
				180					185					190		
	Ile	Phe	Ala	Ser	Gly	Leu	Leu	Ala	Gly	Ala	Asp	Gly	Gly	Ile	Gly	Ser
			195					200					205			
15	Thr	Tyr	Asn	Ile	Met	Gl y	-	Arg	Tyr	Gln	Gly		Val	Lys	Ala	Leu
		210					215					220				
	_	Glu	Gly	Asp	Ile		Thr	Ala	Gln	Lys		Gln	Thr	Glu	Cys	
20	225			_	_	230		_			235		_		_	240
20	Lys	Val	He	Asp		Leu	He	Lys	Thr		Val	Phe	Arg	Gly		Lys
	mb -	17-1	7		245	Mat	3	17a 1		250	Wa.1	D	*	C	255	7
	Int	Val	reu	260	ıyı	Mec	ASP	vai	265	Ser	vaı	PFO	rea	270	Arg	гÀг
25	Pro	Phe	Glv		Val	Aen	Glu	Luc		Ten	Pro	Glu	Len		A1 =	Leu
	110	rne	275	110	vai	naþ	GIU	280	TYL	Ten	FIU	GIU	285	пуз	ALG	Leu
	Ala	Gln		Len	Met	Gln	Glu	-	Glv				203			
	niu	290	GIII,	D Cu		02	295	****	Ory							
30																
	<210> 51															
35	<211> 268 <212> PRT															
	<213> Salmor															
		ella ty	phimu	ırium												
	<400> 51	ella ty	phimu	ırium												
	<400> 51	ella ty	phimu	ırium												
40		·			Glu	Asn	Leu	Phe	Ala	Gln	Leu	Asn	Asp	Ara	Ara	Glu
40	Met	ella ty			Glu 5	Asn	Leu	Phe	Ala	Gln 10	Leu	Asn	Asp	Arg	•	Glu
40	Met 1	Glu	Arg	Tyr	5					10			•	•	15	
40 45	Met 1	·	Arg	Tyr	5					10			•	•	15	
	Met 1 Gly	Glu	Arg	Tyr Val 20	5 Pro	Phe	Val	Thr	Leu 25	10 Gly	Asp	Pro	Gly	Ile	15 Glu	
	Met 1 Gly	Glu	Arg	Tyr Val 20	5 Pro	Phe	Val	Thr	Leu 25	10 Gly	Asp	Pro	Gly	Ile	15 Glu	Gln
	Met 1 Gly Ser	Glu	Arg Phe Lys 35	Tyr Val 20 Ile	5 Pro Ile	Phe Asp	Val Thr	Thr Leu 40	Leu 25 Ile	10 Gly Asp	Asp Ala	Pro Gly	Gly Ala 45	Ile 30 Asp	15 Glu Ala	Gln Leu
	Met 1 Gly Ser	Glu Ala Leu	Arg Phe Lys 35	Tyr Val 20 Ile	5 Pro Ile	Phe Asp	Val Thr	Thr Leu 40	Leu 25 Ile	10 Gly Asp	Asp Ala	Pro Gly	Gly Ala 45	Ile 30 Asp	15 Glu Ala	Gln Leu
45	Met 1 Gly Ser Glu	Glu Ala Leu	Arg Phe Lys 35 Gly	Tyr Val 20 Ile Val	5 Pro Ile Pro	Phe Asp Phe	Val Thr Ser 55	Thr Leu 40 Asp	Leu 25 Ile Pro	10 Gly Asp Leu	Asp Ala Ala	Pro Gly Asp 60	Gly Ala 45 Gly	Ile 30 Asp	15 Glu Ala Thr	Gln Leu Ile
45	Met 1 Gly Ser Glu	Glu Ala Leu Leu 50	Arg Phe Lys 35 Gly	Tyr Val 20 Ile Val	5 Pro Ile Pro	Phe Asp Phe	Val Thr Ser 55	Thr Leu 40 Asp	Leu 25 Ile Pro	10 Gly Asp Leu	Asp Ala Ala	Pro Gly Asp 60	Gly Ala 45 Gly	Ile 30 Asp	15 Glu Ala Thr	Gln Leu Ile
45 50	Met 1 Gly Ser Glu Gln 65	Glu Ala Leu Leu 50	Arg Phe Lys 35 Gly	Tyr Val 20 Ile Val Asn	5 Pro Ile Pro	Phe Asp Phe Arg	Val Thr Ser 55 Ala	Thr Leu 40 Asp Phe	Leu 25 Ile Pro	10 Gly Asp Leu Ala	Asp Ala Ala Gly 75	Pro Gly Asp 60 Val	Gly Ala 45 Gly Thr	Ile 30 Asp Pro	15 Glu Ala Thr	Gln Leu Ile Gln 80
45	Met 1 Gly Ser Glu Gln 65	Glu Ala Leu Leu 50 Asn	Arg Phe Lys 35 Gly	Tyr Val 20 Ile Val Asn	5 Pro Ile Pro	Phe Asp Phe Arg	Val Thr Ser 55 Ala	Thr Leu 40 Asp Phe	Leu 25 Ile Pro	10 Gly Asp Leu Ala	Asp Ala Ala Gly 75	Pro Gly Asp 60 Val	Gly Ala 45 Gly	Ile 30 Asp Pro	15 Glu Ala Thr	Gln Leu Ile Gln 80

				100					105					110		
	Ala	Phe	Tyr	Ala	Arg	Cys	Glu	Gln	Val	Gly	Val	Asp	Ser	Val	Leu	Val
5			115					120					125			
	Ala	Asp	Val	Pro	Val	Glu	Glu	Ser	Ala	Pro	Phe	Arg	Gln	Ala	Ala	Leu
		130					135					140				
10	Arg	His	Asn	Ile	Ala	Pro	Ile	Phe	Ile	Cys	Pro	Pro	Asn	Ala	Asp	Asp
	145					150					155					160
	Asp	Leu	Leu	Arg	Gln	Val	Ala	Ser	Tyr	Gly	Arg	Gly	Tyr	Thr	Tyr	Leu
					165					170		-			175	
15	Leu	Ser	Arg	Ser	Gly	Val	Thr	Gly	Ala	Glu	Asn	Arg	Gly	Ala	Leu	Pro
				180					185					190		
	Leu	His		Leu	Ile	Glu	Lys	Leu	Lys	Glu	Tyr	His	Ala	Ala	Pro	Ala
20			195					200					205			
20	Leu		Gly	Phe	Gly	Ile		Ser	Pro	Glu	Gln		Ser	Ala	Ala	Val
		210			_		215					220				
	_	Ala	Gly	Ala	Ala	_	Ala	Ile	Ser	Gly		Ala	Ile	Val	Lys	
25	225		_	_	_	230	_	_	_		235	_			_	240
	Ile	Glu	Lys	Asn		Ala	Ser	Pro	Lys		Met	Leu	Ala	Glu		Arg
	0	5 1.			245		•	• • •	• • •	250	•				255	
	Ser	Pne	vaı		Ala	me t	rys	Ala		Ser	Arg	Ala				
30				260					265							
	<210> 52															
35	<211> 393 <212> PRT															
	<213> Actino	plane	s mis	sourie	ensis											
	<400> 52															
	400- 02															
40	Ser	Val	Gln	Ala	Thr	Arg	Glu	Asp	Lys	Phe	Ser	Phe	Gly	Leu	Trp	Thr
	1				5			_	-	10			_		15	
	Val	Gly	Trp	Gln	Ala	Arg	Asp	Ala	Phe	Gly	Asp	Ala	Thr	Arg	Thr	Ala
45				20					25					30		
	Leu	Asp	Pro	Val	Glu	Ala	Val	His	Lys	Leu	Ala	Glu	Ile	Gly	Ala	Tyr
			35					40					45			
	Gly	Ile	Thr	Phe	His	Asp	Asp	Asp	Leu	Val	Pro	Phe	Gly	Ser	Asp	Ala
50		50					55					60				
	Gln	Thr	Arg	Asp	Gly	Ile	Ile	Ala	Gly	Phe	Lys	Lys	Ala	Leu	Asp	Glu
	65					70					75					80
56	Thr	Gly	Leu	Ile	Val	Pro	Met	Val	Thr	Thr	Asn	Leu	Phe	Thr	His	Pro
<i>55</i>		_														
		_			85					90					95	

				100					105					110		
	Tyr	Ala	Ile	Arg	Lys	Val	Leu	Arg	Gln	Met	Asp	Leu	Gly	Ala	Glu	Leu
5			115					120					125			
	Gly	Ala	Lys	Thr	Leu	Val	Leu	Trp	Gly	Gly	Arg	Glu	Gly	Ala	Glu	Tyr
		130					135					140				
	Asp	Ser	Ala	Lys	Asp	Val	Ser	Ala	Ala	Leu	Asp	Arg	Tyr	Arg	Glu	Ala
10	145					150					155					160
	Leu	Asn	Leu	Leu	Ala	Gln	Tyr	Ser	Glu	Asp	Arg	СĵÀ	Tyr	Gly	Leu	Arg
					165					170					175	
15	Phe	Ala	Ile	Glu	Pro	Lys	Pro	Asn	Glu	Pro	Arg	Gly	Asp	Ile	Leu	Leu
				180					185					190		
	Pro	Thr		GJÅ	His	Ala	Ile		Phe	Val	Gln	Glu		Glu	Arg	Pro
			195					200					205			
20	Glu	Leu	Phe	Gly	Ile	Asn		Glu	Thr	Gly	Asn		Gln	Met	Ser	Asn
	_	210					215				_	220		_	_	_
		Asn	Phe	Thr	Gln	_	Ile	Ala	Gln	Ala		Trp	His	Lys	Lys	
25	225			•		230				-1	235	_		_	_,	240
25	Pne	His	116	Asp	245	ASN	GIA	GIN	HIS	250	Pro	rys	Pne	Asp	255	ASP
	T ON	Wa I	Dho	G1		C1	A c n	Tou	7.00		212	Dho	So.=	T		3.00
	rea	Val	FILE	260	nıs	GIY	veb	Leu	265	VOII	AIA	riie	Ser	270	Vai	nsp
30	ī.eu	Leu	Glu		Glv	Pro	Asp	ดาง		Pro	Ala	Tur	Asn		Pro	Ara
	200		275		0-7			280				- , -	285	O.,		9
	His	Phe		Tyr	Lvs	Pro	Ser		Thr	Glu	Asp	Tvr		Glv	Val	Trp
		290	•	-	•		295	_			•	300	•	•		•
35	Glu	Ser	Ala	Lys	Ala	Asn	Ile	Arg	Met	Tyr	Leu	Leu	Leu	Lys	Glu	Arg
	305					310		_		_	315			_		320
	Ala	Lys	Ala	Phe	Arg	Ala	Asp	Pro	Glu	Val	Gln	Glu	Ala	Leu	Ala	Ala
40					325					330					335	
	Ser	Lys	Val	Ala	Glu	Leu	Lys	Thr	Pro	Thr	Leu	Asn	Pro	Gly	Glu	Gly
				340					345					350		
	Tyr	Ala	Glu	Leu	Leu	Ala	Asp	Arg	Ser	Ala	Phe	Glu	Asp	Tyr	Asp	Ala
45			355					360					365			
	Asp	Ala	Val	Gly	Ala	Lys	Gly	Phe	Gly	Phe	Val	Lys	Leu	Asn	Gln	Leu
		370					375					380				
50	Ala	Ile	Glu	His	Leu	Leu	Gly	Ala	Arg							
	385					390										

<210> 53 55 <211> 348 <212> PRT <213> Bacteriophage T7

<400> 53

_		Asn	Ile	Lys		Asn	Pro	Phe	Lys		Val	Ser	Phe	Val		Ser
5	1				5					10					15	
	Ala	Ile	Lys	Lys 20	Ala	Leu	Asp	Asn	Ala 25	Gly	Tyr	Leu	Ile	Ala 30	Glu	Ile
	Lys	Tyr	Asp		Val	Ara	Glv	Asn		Cvs	Val	Asp	Asn		Ala	Asn
10	•	-	35	-		•	_	40		-		-	45			
	Ser	Tyr	Trp	Leu	Ser	Arg	Val	Ser	Lys	Thr	Ile	Pro	Ala	Leu	Glu	His
		50					55					60				
45	Leu	Asn	Gly	Phe	Asp	Val	Arg	Trp	Lys	Arg	Leu	Leu	Asn	Asp	Asp	Arg
15	65					70					75					80
•	Cys	Phe	Tyr	Lys	Asp	Gly	Phe	Met	Leu		Gly	Glu	Leu	Met	Val	Lys
					85					90	*				95	
20	Gly	Val	Asp		Asn	Thr	Gly	Ser	-	Leu	Leu	Arg	Thr	_	Trp	Thr
				100		_			105					110		
	Asp	Thr	Lys	Asn	Gln	Glu	Phe		Glu	Glu	Leu	Phe		Glu	Pro	Ile
25	_	_	115		_		_	120	_	_		-1	125			
20	Arg	-	Lys	Asp	Lys	Val		Phe	Lys	Leu	HIS		GIÀ	HIS	Leu	HIS
	T 1.	130	7	T	21-	*1.	135	D	T	uia	710	140	C1	6	C1	C)
	145	rys	Leu	ıyı	WIG	150	reu	PIO	Leu	uis	155	Val	GIU	Ser	GIY	160
30		Cve	Äsp	Val	Met		T.eu	ī.eu	Met	Gln		Hig	Val	T.ve	Aen	
	nop	0,10	пор		165		200			170				2,0	175	
	Leu	Pro	Leu	Leu		Glu	Tyr	Phe	Pro		Ile	Glu	Trp	Gln		Ala
35				180			-		185				•	190		
~	Glu	Ser	Tyr	Glu	Val	Tyr	Asp	Met	Val	Glu	Leu	Gln	Gln	Leu	Tyr	Glu
			195					200					205			
	Gln	Lys	Arg	Ala	Glu	Gly	His	Glu	Gly	Leu	Ile	Val	Lys	Asp	Pro	Met
40		210					215					220				
	Cys	Ile	Tyr	Lys	Arg	Gly	Lys	Lys	Ser	Gly	Trp	Trp	Lys	Met	Lys	Pro
	225					230					235					240
45	Glu	Asn	Glu	Ala	Asp	Gly	Ile	Ile	Gln	Gly	Leu	Val	Trp	Gly	Thr	Lys
45					245					250					255	
	Gly	Leu	Ala	Asn	Glu	Gly	Lys	Val			Phe	Glu	Val	Leu	Leu	Glu
				260					265					270		
50	Ser	Gly	Arg	Leu	Val	Asn	Ala		Asn	Ile	Ser	Arg	Ala	Leu	Met	Asp
			275					280					285			
	Glu		Thr	Glu	Thr	Val	_	Glu	Ala	Thr	Leu		Gln	Trp	Gly	Phe
		290					295	_	_	_		300			_	_
55	Phe	Ser	Pro	Tyr	Gly	Ile	Gly	Asp	Asn	Asp	Ala	Cys	Thr	Ile	Asn	Pro

```
310
                                                             315
            305
                                                                                     320
            Tyr Asp Gly Trp Ala Cys Gln Ile Ser Tyr Met Glu Glu Thr Pro Asp
5
                                                        330
                                325
            Gly Ser Leu Arg His Pro Ser Phe Val Met Phe Arg
                                                   345
10
        <210> 54
         <211> 42
         <212> DNA
        <213> artificial sequence
15
        <220>
        <223> binding site for restr1 and restr2
         <220>
         <221> CDS
         <222> (2)..(40)
20
         <223>
        <400> 54
                                                                                                 42
            g gtg gta tca gca ggc cac tgc tac aag tcc cgc atc cag gt
25
               Val Val Ser Ala Gly His Cys Tyr Lys Ser Arg Ile Gln
               1
                                  5
                                                           10
30
         <210> 55
         <211> 13
         <212> PRT
         <213> artificial sequence
         <220>
35
         <223> binding site for restr1 and restr2
         <400> 55
                        Val Val Ser Ala Gly His Cys Tyr Lys Ser Arg Ile Gln
40
                                           5
                                                                   10
         <210> 56
45
         <211> 42
         <212> DNA
         <213> artificial sequence
         <220>
         <223> forward primer restr1
50
         <400> 56
                                                       42
         ggtggtatcc gcgggccact gctacaagtc ccggatccag gt
         <210> 57
55
         <211> 42
         <212> DNA
         <213> artificial sequence
         <220>
```

```
<223> reverse primer restr2
         <400> 57
         acctggatcc gggacttgta gcagtggccc gcggatacca cc
                                                          42
5
         <210> 58
         <211> 50
         <212> DNA
         <213> artificial sequence
10
         <220>
         <223> binding site for restr3 and restr4
         <220>
         <221> CDS
         <222> (3)..(50)
         <223>
15
         <400> 58
             cc act ggc acg aag tgc ctc atc tct ggc tgg ggc aac act gcg agc
                                                                                                    47
20
                Thr Gly Thr Lys Cys Leu Ile Ser Gly Trp Gly Asn Thr Ala Ser
                                                              10
                                                                                      15
                1
                                                                                                    50
             tct
25
             Ser
         <210> 59
         <211> 16
30
         <212> PRT
         <213> artificial sequence
         <220>
         <223> binding site for restr3 and restr4
35
         <400> 59
          Thr Gly Thr Lys Cys Leu Ile Ser Gly Trp Gly Asn Thr Ala Ser Ser
                                                       10
                                                                                15
40
         <210> 60
         <211> 50
         <212> DNA
45
         <213> artificial sequence
         <223> forward primer restr3
         <400> 60
50
                                                                 50
         ccactggcac gaagtgcctc atctctggct ggggcaacac tgcgagctct
         <210> 61
         <211> 50
         <212> DNA
55
         <213> artificial sequence
         <220>
         <223> reverse primer restr4
```

```
<400> 61
         agagctagca gtgttgcccc agccagagat gaggcacttg gtaccagtgg
                                                                     50
         <210> 62
5
         <211> 30
         <212> DNA
         <213> artificial sequence
         <220>
         <223> primer puc-forward
10
         <400> 62
         ggggtacccc accaccatga atccactcct
                                               30
         <210> 63
15
         <211> 30
         <212> DNA
         <213> artificial sequence
         <220>
         <223> primer puc-reverse
20
         <400> 63
         cgggatccgg tatagagact gaagagatac
                                                30
         <210> 64
25
         <211> 39
         <212> DNA
         <213> artificial sequence
         <220>
         <223> oligox-SDR1f
30
         <220>
         <221> misc_feature
         <222> (14)..(31)
         <223> any nucleotide
         <220>
35
         <221> misc_feature
         <222> (14)..(31)
         <223> any nucleotide or amino acid residue
         <220>
         <221> CDS
40
         <222> (2)..(37)
          <223>
          <400> 64
45
                                                                                                     39
         g ggc cac tgc tac nnn nnn nnn nnn nnn nnn aag tee eg
            Gly His Cys Tyr Xaa Xaa Xaa Xaa Xaa Xaa Lys Ser
            1
                                 5
                                                           10
50
         <210> 65
         <211> 12
         <212> PRT
         <213> artificial sequence
55
         <220>
          <221> misc_feature
          <222> (5)..(5)
         <223> The 'Xaa' at location 5 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro, Leu,
```

```
a stop codon, T yr, Trp, Cys, or Phe.
          <220>
          <221> misc_feature
5
          <222> (6)..(6)
          <223> The 'Xaa' at location 6 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro, Leu,
          a stop codon, Tyr, Trp, Cys, or Phe.
          <220>
10
          <221> misc_feature
          <222> (7)..(7)
          <223> The 'Xaa' at location 7 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro, Leu,
          a stop codon, Tyr, Trp, Cys, or Phe.
15
          <220>
          <221> misc_feature
          <222> (8)..(8)
          <223> The 'Xaa' at location 8 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro, Leu,
          a stop codon, Tyr, Trp, Cys, or Phe.
20
          <220>
          <221> misc_feature
          <222> (9)..(9)
          <223> The 'Xaa' at location 96 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro,
25
          Leu, a stop codon, Tyr, Trp, Cys, or Phe.
          <220>
          <221> misc_feature
          <222> (10)..(10)
30
          <223> The 'Xaa' at location 10 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro,
          Leu, a stop codon, Tyr, Trp, Cys, or Phe.
          <220>
          <223> oligox-SDR1f
35
          <220>
          <221> misc_feature
          <222> (14) .. (14)
          <223> any nucleotide
40
          <220>
          <221> misc_feature
          <222> (14)..(31)
          <223> any nucleotide or amino acid residue
45
          <400> 65
                            Gly His Cys Tyr Xaa Xaa Xaa Xaa Xaa Lys Ser
                                                                              10
50
          <210> 66
          <211> 45
          <212> DNA
55
          <213> artificial sequence
          <220>
          <223> oligox-SDR1r
          <220>
```

```
<221> misc_feature
         <222> (16)..(33)
         <223> any nucleotide
5
         cgcccggtga cgatgnnnnn nnnnnnnnn nnnttcaggg cctag
                                                                     45
         <210> 67
          <211> 47
10
          <212> DNA
          <213> artificial sequence
          <220>
          <223> oligox-SDR2f
          <220>
15
          <221> CDS
          <222> (2)..(96)
          <223>
          <220>
          <221> misc_feature
20
          <222> (29)..(43)
          <223> any nucleotide or amino acid residue
          <400> 67
25
                                                                                                       47
         c aag tgc ctc atc tct ggc tgg ggc aac nnn nnn nnn nnn nnn act g
           Lys Cys Leu Ile Ser Gly Trp Gly Asn Xaa Xaa Xaa Xaa Xaa Thr
           1
                                                            10
30
          <210> 68
          <211> 15
          <212> PRT
          <213> artificial sequence
35
          <220>
          <221> misc_feature
          <222> (10)..(10)
          <223> The 'Xaa' at location 10 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro,
40
          Leu, a stop codon, Tyr, Trp, Cys, or Phe.
          <220>
          <221> misc_feature
          <222> (11)..(11)
45
          <223> The 'Xaa' at location 11 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro,
          Leu, a stop codon, Tyr, Trp, Cys, or Phe.
          <220>
          <221> misc_feature
50
          <222> (12)..(12)
          <223> The 'Xaa' at location 12 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro,
          Leu, a stop codon, Tyr, Trp, Cys, or Phe.
          <220>
55
          <221> misc_feature
          <222> (13)..(13)
          <223> The 'Xaa' at location 13 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro,
          Leu, a stop codon, Tyr, Trp, Cys, or Phe.
```

```
<220>
         <221> misc_feature
         <222> (14)..(14)
         <223> The 'Xaa' at location 14 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro,
5
         Leu, a stop codon, Tyr, Trp, Cys, or Phe.
         <220>
         <223> oligox-SDR2f
         <220>
10
         <221> misc_feature
         <222> (29)..(43)
         <223> any nucleotide or amino acid residue
         <400> 68
15
                    Lys Cys Leu Ile Ser Gly Trp Gly Asn Xaa Xaa Xaa Xaa Xaa Thr
                                                                   10
                                                                                              15
20
         <210> 69
         <211> 55
         <212> DNA
25
         <213> artificial sequence
         <220>
         <223> oligox-SDR2r
         <220>
         <221> misc_feature
30
         <222> (33)..(47)
         <223> any base
         <220>
          <221> misc_feature
          <222> (33)..(47)
35
          <223> any nucleotide
         <400> 69
         catggttcac ggagtagaga ccgaccccgt tgnnnnnnn nnnnnnntga cgatc
                                                                             55
40
         <210> 70
         <211> 59
         <212> DNA
          <213> artificial sequence
          <220>
45
          <223> primer SDR1-mutnnb-forward
          <220>
          <221> misc_feature
          <222> (24)..(40)
          <223> N=A, C, G, T; B=C, G, T; V=A, C, G
50
          <400> 70
         tggtatccgc gggccactgc tacnnbnnbn nbnnbnnbnn baagtcccgg atccaggtg
                                                                                 59
         <210> 71
55
          <211> 52
          <212> DNA
          <213> artificial sequence
          <220>
```

	<223> primer SDR2-mutnnb-reverse		
	<220>		
	<221> misc_feature		
	<222> (20)(33)		
5	<223> N=A, C, G, T; B=C, G, T; V=A, C, G		
	<400> 71		
	ggcgccagag ctagcagtvn nvnnvnnvnn vnngttgccc	cagccagaga	tg 52
10	<210> 72 <211> 6		
	<212> PRT		
	<213> artificial sequence		
	12132 artificial sequence		
15	<220>		
	<223> variant g SDR1		
	<400> 72		
20	al a ph	- Dha lan	Clu ton
20		e Phe Asn	•
	1		5
	<240 72		
25	<210> 73 <211> 5		
20	<212> PRT		
	<213> artificial sequence		
	215- artificial sequences		
	<220>		
30	<223> variant g SDR2		
	<400> 73		
35	Arg L	ys Asp Pro	Trp
	1		5
40	<210> 74		
40	<211> 234		
	<212> PRT		
	<213> artificial sequence		
	<220>		
45	<223> artificial sequence		
	<400> 74		
50			

		Val	Gly	Gly	•	Asn	Cys	Glu	Glu		Ser	Val	Pro	Tyr		Val
	. 1				5					10					15	
5	Ser	Leu	Asn	Ser	Gly	Tyr	His	Phe	Cys	Gly	Gly	Ser	Leu	Ile	Asn	Glu
				20					25					30		
	Gln	Trp	Val	Val	Ser	Ala	Gly	His	Cys	Tyr	Ala	Ala	Phe	Asn	Gly	Lys
			35					40					45			
10	Ser	Arg	Ile	Gln	Val	Arg	Leu	Gly	Glu	His	Asn	Ile	Glu	Val	Leu	Glu
		50					55					60				
	Gly	Asn	Glu	Gln	Phe	Ile	Asn	Ala	Ala	Lys	Ile	Ile	Arg	His	Pro	Gln
	65			•		70					75					80
15	Tyr	Asp	Arg	Lys	Thr	Leu	Asn	Asn	Asp	Ile	Met	Leu	Ile	Lys	Leu	Ser
					85					90					95	
	Ser	Arg	Ala	Val	Ile	Asn	Ala	Arg	Val	Ser	Thr	Ile	Ser	Leu	Pro	Thr
				100					105					110		
20	Ala	Pro	Pro	Ala	Thr	Gly	Thr	Lys	Cys	Leu	Ile	Ser	Gly	Trp	Gly	Aśn
			115					120					125			
	Arg	Lys	Asp	Phe	Trp	Thr	Ala	Ser	Ser	Gly	Ala	Asp	Tyr	Pro	Asp	Glu
25		130					135					140				
	Leu	Gln	Cys	Leu	Asp	Ala	Pro	Val	Leu	Ser	Gln	Ala	Lys	Cys	Glu	Ala
	145					150					155					160
	Ser	Tyr	Pro	Gly	Lys	Ile	Thr	Ser	Asn	Met	Phe	Суз	Val	Gly	Phe	Leu
30					165					170					175	
	Glu	Gly	Gly	Lys	Asp	Ser	Cys	Gln	Gly	Asp	Ser	Gly	Gly	Pro	Val	Val
				180					185					190		
	Cys	Asn	Gly	Gln	Leu	Gln	Gly	Val	Val	Ser	Trp	Gly	Asp	Gly	Cys	Ala
35			195				•	200					205			
	Gln	Lys	Asn	Lys	Pro	Gly	Val	Tyr	Thr	Lys	Val	Tyr	Asn	Tyr	Val	Lys
		210		_		_	215			_		220		-		-
40	Trp	Ile	Lys	Asn	Thr	Ile	Ala	Ala	Asn	Ser						
40	225		-			230										

<210> 75

<211> 234

<212> PRT

<213> artificial sequence

<220>

< <223> artificial sequence

<400> 75

55

	Ile	Val	Gly	Gly	Tyr	Asn	Cys	Glu	Glu	Asn	Ser	Val	Pro	Tyr	Gln	Val
	1				5					10					15	
_	Ser	Leu	Asn	Ser	Gly	Tyr	His	Phe	Cys	Gly	Gly	Ser	Leu	Ile	Asn	Glu
5				20					25					30		
	Gln	Trp	Val	Val	Ser	Ala	Gly	His	Cys	Tyr	Ala	Ala	Phe	Asn	Gly	Lys
			35					40					45			
10	Ser	Arg	Ile	Gln	Val	Arg	Leu	Gly	Glu	His	Asn	Ile	Gly	Val	Leu	Glu
		50					55					60				
	Gly	Asn	Glu	Gln	Phe	Ile	Asn	Ala	Ala	Lys	Ile	Ile	Arg	His	Pro	Gln
	65					70					75		_			80
15	Tyr	Asp	Trp	Lys	Thr	Leu	Asn	Asn	Asp	Ile	Met	Leu	Ile	Lys	Leu	Ser
	•	_	·	•	85					90				_	95	
	Ser	Arg	Ala	Val	Ile	Asn	Ala	Arg	Val	Ser	Thr	Ile	Ser	Leu	Pro	Thr
				100					105					110		
20	Ala	Pro	Pro	Ala	Thr	Gly	Thr	Lys	Cys	Leu	Ile	Ser	Gly	Trp	Gly	Asn
			115			-		120	-				125	•	-	
	Arq	Lys	Asp	Phe	Trp	Thr	Ala	Ser	Ser	Gly	Ala	Asp	Phe	Pro	Asp	Glu
05	_	130	•		•		135			•		140			•	
25	Leu	Gln	Cys	Leu	Asp	Ala	Pro	Val	Leu	Ser	Gln	Thr	Lys	Cvs	Glu	Ala
	145		•		•	150					155		-	-		160
	Ser	Tyr	Pro	Gly	Lys	Ile	Thr	Ser	Asn	Met	Phe	Cys	Val	Gly	Phe	Leu
30		-		_	165					170		-		-	175	
	Glu	Gly	Gly	Lys	Asp	Ser	Cys	Gln	Gly	Asp	Ser	Gly	Gly	Pro	Val	Val
		_	_	180	-				185	-		_	_	190		
	Arg	Asn	Gly	Gln	Leu	Gln	Gly	Val	Val	Ser	Trp	Gly	Asp	Gly	Cys	Ala
35	•		195				-	200			-		205		_	
	Gln	Lys	Asn	Lys	Pro	Gly	Val	Tyr	Thr	Lys	Val	Tyr	Asn	Tyr	Val	Lys
		210		_		_	215	_		_		220		_		_
	Trp	Ile	Lys	Asn	Thr	Ile	Ala	Ala	Asn	Ser						
40	225		_			230										
	<400> 75												_			
45	ggcgccag	ag cta	agcagi	inn nn	nnnnr	חחח ר	ınngtt	gccc c	agcca	igaga	tg	52	2			
	<210> 76	,														
	<211> 12															
	<212> PR <213> art		seque	nce										•		
50	2.0- 0.0		5044 0													
	<220>	L _ & •	- 4													
	<223> sul	ostrat	e A													
	<400> 76															
55																

Leu Leu Trp Leu Gly Arg Val Val Gly Gly Pro Val

5 <210> 77 <211> 12 <212> PRT <213> artificial sequence 10 <220> <223> substrate B <400> 77 15 Lys Lys Trp Leu Gly Arg Val Pro Gly Gly Pro Val <210> 78 20 <211>6 <212> PRT <213> artificial sequence <220> <223> variant1 SDR1 25 <400> 78 Asp Ala Val Gly Arg Asp i 5 30 <210> 79 <211>6 35 <212> PRT <213> artificial sequence <220> <223> variant2 SDR1 40 <400> 79 Asn Gly Arg Asp Leu Glu 45 <210> 80 <211> 6 <212> PRT <213> artificial sequence 50 <220> <223> variant3 SDR1 <400> 80

55

Gly Phe Val Met Phe Asn

	<210> 81	
	<211> 5	
	<212> PRT	
	<213> artificial sequence	
5	<220>	
	<223> variant1 SDR2	
	<400> 81	
40		
10		Arg Val His Pro Ser
		1 5
		-
	<210> 82	
15	<211> 5	
	<212> PRT	
	<213> artificial sequence	
	<220>	
	<223> variant2 SDR2	
20	.400: 00	
	<400> 82	
		Val Arg Gly Thr Trp
25		1 5
	<210> 83	
	<211> 5	
	<212> PRT	
30	<213> artificial sequence	
	<220>	
	<223> variant3 SDR2	
	<400> 83	
35	-100- 00	
		ham Can Dia Lau Mha
		Arg Ser Pro Leu Thr 1 5
40	<210> 84	
	<211> 6 <212> PRT	
	<213> artificial sequence	
	<220>	
45	<223> variant a SDR1	
	<400> 84	
		Arg Pro Trp Asp Pro Ser
50		1 5
	<210> 85	
	<211> 6	
55	<212> PRT	
	<213> artificial sequence	
	<220>	
	<223> variant b SDR1	

<400> 85 Gly Phe Val Met Phe Asn 5 <210>86 <211>6 <212> PRT 10 <213> artificial sequence <220> <223> variant c SDR1 <400> 86 15 Glu Ile Ala Asn Arg Glu 1 5 20 <210> 87 <211>6 <212> PRT <213> artificial sequence <220> 25 <223> variant d SDR1 <400> 87 Lys Ala Val Val Gly Thr 1 5 30 <210>88 <211>6 35 <212> PRT <213> artificial sequence <220> <223> variant e SDR1 40 <400> 88 Val Asn Ile Met Ala Ala 1 5 45 <210>89 <211>6 <212> PRT <213> artificial sequence

Ala Ala Phe Asn Gly Asp

50

55

<220>

<400> 89

<223> variant f SDR1

	<210> 90	
	<211> 5	
	<212> PRT	
	<213> artificial sequence	
5	<220>	
	<223> variant a SDR2	
	<400> 90	
10		
		Val His Pro Thr Ser
		1 5
15	<210> 91	
	<211> 5	
	<212> PRT	
	<213> artificial sequence	
	<220>	
20	<223> variant b SDR2	
	<400> 91	
25		Arg Ser Pro Leu Thr
25		1 5
	<210> 92	
	<211> 5	
30	<212> PRT	
50		
	<213> artificial sequence <220>	
	<223> variant c SDR2	
	1223 Vallant C SDR2	
35	<400> 92	
		Arg Gly Ala Arg Thr
	•	1 5
40		
	<210> 93	•
	<211> 5	
	<212> PRT	
	<213> artificial sequence	
45	<220>	
	<223> variant d SDR2	
	<400> 93	
50		
		Arg Thr Pro Ile Ser 1 5
		1 5
	<210> 94	
55	<211> 5	
	<212> PRT	
	<213> artificial sequence	
	<220>	

<223> variant e SDR2 <400> 94 5 Thr Thr Ala Arg Lys <210> 95 10 <211> 5 <212> PRT <213> artificial sequence <220> <223> variant f SDR2 15 <400> 95 Arg Lys Asp Phe Trp 20 <210> 96 <211> 157 <212> PRT 25 <213> Homo sapiens <400> 96 Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val 30 10 Val Ala Asn Pro Gin Ala Glu Gly Gin Leu Gin Trp Leu Asn Arg Arg 20 25 Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu 35 40 45 35 Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe 50 60 Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile 40 70 75 Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser Ala 85 90 Ile Lys Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys 100 105 110 45 Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys 120 115 125 Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Leu Phe

135

Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu

150

Claims

50

55

130

1. A method for generating a proteolytic enzyme having defined specificity not conferred by the protein scaffold towards at least one target substrate comprising at least the following steps:

- (a) providing a protein scaffold having at least 70% homology to human trypsin I having the amino acid sequence shown in SEQ ID NO:1, which catalyzes at least one chemical reaction on at least one substrate,
- (b) generating a library of proteolytic enzymes or isolated proteolytic enzymes by combining a polynucleotide encoding the protein scaffold from step (a) via insertion or substitution with 1 to 11 specificity determining regions (SDRs), wherein the SDRs are fully or partially random synthetic oligonucleotide sequences encoding peptide sequences with a length of less than 50 amino acid residues at one or more positions from the group of positions within the polynucleotide encoding protein scaffold that correspond structurally or by amino acid sequence homology to the regions 18-25, 38-48, 54-63, 73-86, 122-130, 148-156, 165-171 and 194-204 in human trypsin I having the amino acid sequence shown in SEQ ID NO:1, expressing said enzymes, and
- (c) selecting out of the library of proteolytic enzymes generated in step (b) one or more enzymes that have defined specificities not conferred by the protein scaffold provided in step (a) towards at least one target substrate,
- The method according to claim 1, wherein the peptide sequences inserted or substituted in step (b) are fully or partially random and/or have a length variation; and/or wherein the selection in step (c) is achieved by screening for enzyme activity and/or enzyme affinity
 - (i) under low target substrate concentrations, or
 - (ii) by using the target substrate and at least one more substrate in comparison, or
 - (iii) by adding in excess other substrates than the target substrate, thereby using the added substrates as competitors, or
 - (iv) by adding enzyme inhibitors, or
 - (v) by selecting enzymes that preferentially bind to the target substrate and selecting out of this subgroup those enzymes that convert the substrate, or
 - (vi) any combination thereof.
 - 3. The method according to claim 1, which comprises at least the following steps:
 - (a) providing a first protein scaffold fragment,
 - (b) connecting said protein scaffold fragment via a peptide linkage with a first specificity determining region, and optionally
 - (c) connecting the product of step (b) via a peptide linkage with a further specificity determining region peptide or with a further protein scaffold fragment, and optionally
 - (d) repeating step (c) for as many cycles as necessary in order to generate a sufficiently specific enzyme, and (e) selecting out of the population generated in steps (a) (d) one or more enzymes that have the desired specificities toward the one or more target substrates which is not conferred by the protein scaffold fragment provided in step (a).

40 Patentansprüche

5

10

15

20

25

30

35

45

50

- Verfahren zur Herstellung eines proteolytischen Enzyms mit definierter Spezifität, die nicht durch das Proteingrundgerüst verliehen wird, gegenüber mindestens einem Zielsubstrat, das mindestens die folgenden Schritte umfasst:
 - (a) Bereitstellen eines Proteingrundgerüsts, das mindestens 70% Homologie zu menschlichem Trypsin I mit der in SEQ ID NR: 1 dargestellten Aminosäuresequenz hat und das mindestens eine chemische Reaktion an mindestens einem Substrat katalysiert,
 - (b) Herstellen einer Bank von proteolytischen Enzymen oder von isolierten proteolytischen Enzymen durch Kombinieren eines Polynukleotids, das das Proteingrundgerüst aus Schritt (a) kodiert, mittels Insertion oder Substitution mit 1 bis 11 spezifitätsbestimmenden Regionen (SDR), wobei die SDR vollständig oder teilweise zufallsgemäße synthetische Oligonukleotidsequenzen sind, die Peptidsequenzen mit einer Länge von weniger als 50 Aminosäureresten kodieren, an einer oder mehreren Positionen aus der Gruppe der Positionen innerhalb des Polynukleotids, das das Proteingrundgerüst kodiert, die strukturell oder anhand von Aminosäuresequenzhomologie den Regionen 18-25, 38-48, 54-63, 73-86, 122-130, 148-156, 165-171 und 194-204 in menschlichem Trypsin I mit der in SEQ ID NR: 1 dargestellten Aminosäuresequenz entsprechen, Exprimieren dieser Enzyme und
 - (c) Selektieren aus der im Schritt (b) hergestellten Bank von proteolytischen Enzymen eines oder mehrerer Enzyme mit definierten Spezifitäten, die nicht durch das im Schritt (a) bereitgestellte Proteingrundgerüst ver-

liehen werden, gegenüber mindestens einem Zielsübstrat.

- Verfahren nach Anspruch 1, wobei die im Schritt (b) inserierten oder substituierten Peptidsequenzen vollständig oder teilweise zufallsgemäß sind und/oder eine Längenvariation aufweisen und/oder wobei die Selektion im Schritt (c) erzielt wird mittels Durchmustern im Hinblick auf Enzymaktivität und/oder Enzymaffinität
 - (i) unter niedrigen Konzentrationen des Zielsubstrats oder
 - (ii) indem man das Zielsubstrat und mindestens ein weiteres Substrat zum Vergleich verwendet, oder
 - (iii) durch Zugabe anderer Substrate als das Zielsubstrat im Überschuss, wobei die zugefügten Substrate als Kompetitoren verwendet werden, oder
 - (iv) durch Zugabe von Enzyminhibitoren oder
 - (v) indem man Enzyme selektiert, die bevorzugt an das Zielsubstrat binden, und aus dieser Untergruppe diejenigen Enzyme selektiert, die das Substrat umwandeln, oder
 - (vi) durch eine beliebige Kombination davon.
- 3. Verfahren nach Anspruch 1, das mindestens die folgenden Schritte umfasst:
 - (a) Bereitstellen eines ersten Proteingrundgerüstfragments,
 - (b) Verbinden des Proteingrundgerüstfragments über eine Peptidverknüpfung mit einer ersten spezifitätsbestimmenden Region und gegebenenfalls
 - (c) Verbinden des Produkts von Schritt (b) über eine Peptidverknüpfung mit einem weiteren spezifitätsbestimmende-Region-Peptid oder mit einem weiteren Proteingrundgerüstfragment und gegebenenfalls
 - (d) wiederholen von Schritt (c) so viele Zyklen lang, wie notwendig sind, um ein genügend spezifisches Enzym herzustellen, und
 - (e) Selektieren aus der in den Schritten (a) (d) hergestellten Population eines oder mehrerer Enzyme, die die gewünschten Spezifitäten gegenüber dem einen oder den mehreren Zielsubstraten, die nicht durch das im Schritt (a) bereitgestellte Proteingrundgerüstfragment verliehen werden, aufweisen.

30 Revendications

5

10

15

20

25

35

40

45

50

- Procédé de production d'une enzyme protéolytique ayant une spécificité définie, qui n'est pas conférée par l'échafaudage protéique, pour au moins un substrat cible, comprenant au moins les étapes suivantes :
 - (a) mise à disposition d'un échafaudage protéique ayant une homologie d'au moins 70 % avec la trypsine humaine l, ayant la séquence d'acides aminés présentée dans SEQ ID N° 1, qui catalyse au moins une réaction chimique sur au moins un substrat,
 - (b) production d'une banque d'enzymes protéolytiques ou d'enzymes protéolytiques isolées, par combinaison d'un polynucléotide codant pour l'échafaudage protéique de l'étape (a), par insertion de 1 à 11 régions déterminant la spécificité (SDR) ou remplacement par ces dernières, les SDR étant des séquences nucléotidiques synthétiques, entièrement ou partiellement aléatoires, codant pour des séquences peptidiques ayant une longueur inférieure à 50 résidus d'acides aminés sur une ou plusieurs positions à partir du groupe de positions, à l'intérieur de la protéine codant pour le polynucléotide, qui correspondent d'un point de vue structurel, ou par une homologie de séquences d'acides aminés, aux régions 18-25, 38-48, 54-63, 73-86, 122-130, 148-156, 165-171 et 194-204 d'une trypsine humaine I ayant la séquence d'acides aminés présentée dans SEQ ID N° 1, expression desdites enzymes, et
 - (c) sélection, dans la banque d'enzymes protéolytiques produite dans l'étape (b) d'une ou plusieurs enzymes qui ont des spécificités définies, qui ne sont pas conférées par l'échafaudage protéique mis à disposition dans l'étape (a) pour au moins un substrat cible.
- 2. Procédé selon la revendication 1, dans lequel les séquences peptidiques insérées ou remplacées dans l'étape (b) sont entièrement ou partiellement aléatoires et/ou présentent une variation de longueur ; et/ou dans lequel la sélection de l'étape (c) est réalisée par criblage pour ce qui est de l'activité et/ou de l'affinité enzymatique,
 - (i) à de faibles concentrations du substrat cible, ou
 - (ii) par utilisation du substrat cible et d'au moins un substrat supplémentaire à titre de comparaison, ou
 - (iii) par addition, en excès, de substrats autres que le substrat cible, de façon à utiliser en tant que compétiteurs les substrats ajoutés, ou

(iv) par addition d'inhibiteurs enzymatiques, ou

5

10

15

20

25

30

35

40

45

50

55

- (v) par sélection d'enzymes qui se lient d'une manière préférentielle au substrat cible, et sélection, dans ce sous-groupe, des enzymes qui convertissent le substrat, ou
- (vi) une combinaison quelconque des points ci-dessus.
- 3. Procédé selon la revendication 1, qui comprend au moins l'une des étapes suivantes :
 - (a) mise à disposition d'un premier fragment d'échafaudage protéique ;
 - (b) connexion dudit fragment d'échafaudage protéique, par l'intermédiaire d'une liaison peptidique, à une première région déterminant la spécificité, et, en option
 - (c) connexion du produit de l'étape (b), par l'intermédiaire d'une liaison peptidique, avec un autre peptide de région déterminant la spécificité ou avec un autre fragment d'échafaudage protéique, et, en option
 - (d) répétition de l'étape (c) pendant autant de cycles que nécessaire pour produire une enzyme suffisamment spécifique, et
 - (e) sélection, parmi la population produite dans les étapes (a)-(d), d'une ou plusieurs enzymes qui présentent les spécificités souhaitées pour le ou les substrats cibles, qui ne sont pas conférées par le fragment d'échafaudage protéique mis à disposition dans l'étape (a).

Fig. 1

Trypsin a-Thrombin Enteropeptidase	IVGGYNCEENSVPYQVSLNSGYHF-CGGSLINEQWVVSAGHCY IVEGSDAEIGMSPWQVMLFRKSPQELL-CGASLISDRWVLTAAHCLLYPP IVGGSNAKEGAWPWVVGLYYGGRLLCGASLVSSDWLVSAAHCVYGRN
Trypsin a-Thrombin Enteropeptidase	KSRIQVRLGEHNIEVLEGN-EQFINAAKIIRHPQYD-RKTL WDKNFTENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWRENL LEPSKWTAILGLHMKSNLTSPQTV-PRLIDEIVINPHYN-RRK -1 * * * * *
Trypsin a-Thrombin Enteropeptidase	NNDIMLIKLSSRAVINARVSTISLPTAPPATGTKCLISGWG DRDIALMKLKKPVAFSDYIHPVCLPDRETAASLLQAGYKGRVTGWG DNDIAMMHLEFKVNYTDYIQPICLPEENQVFPPGRNCSIAGWG ** ** ** ***
Trypsin a-Thrombin Enteropeptidase	NTASSGADYPDELQCLDAPVLSQAKCEASYPG-KITSHMFCVGFL NLKETWTAHVGKGQPSVLQVVNLPIVERPVCKDSTRI-RITDHMFCAGYK TVVYQGIT-ANILQEADVPLLSHERCQQQMPEYNITEHMICAGYE3 *** ** ** ** **
Trypsin a-Thrombin Enteropeptidase	-EGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNKP PDEGKRGDACEGDSGGPFVMKSPFNNRWYQMGIVSWGEGCDRDGKY -EGGIDSCQGDSGGPLMCQENNRWFLAGVTSFGYKCALPNRP * * * ******
Trypsin a-Thrombin Enteropeptidase	GVYTKVYNYVKWIKNTIAANS- GFYTHVFRLKKWIQKVIDQFGE GVYARVSRFTEWIQSFLH

Fig. 2

Fig. 3

sub furin PC_SK1 PC_SK5	IAHEYAQSVPYGISQIKAPALHSQGY
sub furin PC_SK1 PC_SK5	TGSNVKVAVIDSGIDSSHPDL-NVRGGAS-FVPSETNPTGHGIVVSILDDGIEKNHPDLAGNYDPGAS-FDVNDQDPDPQ HVIPVWQKGITGKGVVITVLDDGLEWNHTDIYANYDPEASYDFNDNDHDPTGKNIVVTILDDGIERTHPDLMQNYDA-LASCDVNGNDLDPMP * * *3
sub furin PC_SK1 PC_SK5	YQDGSSHGTHVAGTIAAL-NNSIGVLGVSPSASLYAVKVLDS PRYTQMNDHRHGTRCAGEVAAVANHGVCGVGVAYNARIGGVRMLDFPRYDPTNENKHGTRCAGEIAMQAN-HHKCGV-GVAYNSKVGGIRMLDGRYDASNENKHGTRCAGEVAAAANNSHCTVGIAFNAKIGGVRMLDGDVTD
sub furin PC_SK1 PC_SK5	-TGSGQYSWIINGIE-WAISNNMDVINMSLGGPTGSTALKT
sub furin PC_SK1 PC_SK5	VVDKAVSSGIVVAAAAGNEGSSGSTSTVGYPAKYPSTIAVGAVAFFRGVSQGRGGLGSIFVWASGNGGREHDSCHCDGYTHSI-YTLSISSATQFGHV YGVKQGRQGKGSIFVWASGNGGRQGDNCDCDGYTDSIYTISIAFENGVRMGRRGLGSVFVWASGNGGRSKDHCSCDGYTNSI-YTISISSTAESGKKPWY89
sub furin PC_SK1 PC_SK5	NSSNQRASFSSAG-SELDVMAPGVSIQSTLPGGTYGAYPWYSEACSSTLAESHSSASQQGLSPWYAEKCSSTLATSYSSG-DYTDQRITSADLHNDCTETH LEECSSTLATTYSSG-ESYDKKIITTDLRQRCTDNH10
sub furin PC_SK1 PC_SK5	NGTSMATPHVAGAAALIL-SKHP-TWTNAQVRDRLESTATY-LG-HSFYYGKGLINV TGTSASAPLAAGIIALTLEANKNL-TWRDMQHLVVQTSKPAH-LN-ADDWATNGVGRK TGTSASAPLAAGIFALAL-EANP-NLTWRDMQHLVVWTSEYDPLA-NNPGWKKNGAGL TGTSASAPMAAGIIALAL-EANPFLTWRDVQHVIVRTSRAGH-LNANDWKTNAAGFKV

Fig. 4

Fig.5

Peps. Secr. Cath.	TLVDEQPLENYLDMEYFGTIGIGTPAQDFTVVFDTGSSNLWVPSVYCSSL-ACTN EMVDNLRGKSGQGYYVEMTVGSPPQTLNILVDTGSSNFAVGAAPHPFL PAVTEGPIPEVLKNYMDAQYYGEIGIGTPPQCFTVVFDTGSSNLWVPSIHCKLLDIACWI *2
Peps. Secr. Cath.	HNRFNPEDSSTYQSTSETVSITYGTGSMTGILGYDTVQVGGISDTN HRYYQRQLSSTYRDLRKGVYVPYTQGKWEGELGTDLVSIPHGPNVTVRA HHKYNSDKSSTYVKNGTSFDIHYGSGSLSGYLSQDTVSVPCQSASSASALGGVKVER - ***** * *4
Peps: Secr. Cath.	QIFGLSETEPGSFLYYAPFDGILGLAYPSISSSGATPVFDNIWNQGLVSQDLFSVYLS NIAAITESDK-FFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVP-NLFSLQLC QVFGEATKQPGITFIAAKFDGILGMAYPRISVNNVLPVFDNLMQQKLVDQNIFSFYLS
Peps. Secr. Cath.	ADDKSGSVVIFGGIDSSYYTGSLNWVPVTVEGYWQITVDSITMIGETI GAGFPLNQSEVLASVGGSMIIGGIDHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDL RDPDAQPGGELMLGGTDSKYYKGSLSYLNVTRKAYWQVHLDQVEVASGLT7
Peps. Secr. Cath.	ACAEGCQAIVDTGTSLLTGPTSPIANIQSDIGASENSDGDMVVSCSAI KMDCKEYNYDKSIVDSGTTNLRLPKKVFEAAVKSIKAASSTEKFPDGFWLGEQLV-CWQA LCKEGCEAIVDTGTSLMVGPVDEVRELQKAIGAVPLIQGEYMIPCEKV * * *** ** * * * * * * * * * * * * *
Peps. Secr. Cath.	SSLPDIVFTINGVQYPVPPSAYILQSEGSCISGFQGMNVP-TESG GTTPWNIFPVISLYLMGEVTNQSFRITILPQQYLRPVEDVATSQDDCYKFAISQSS STLPAITLKLGGKGYKLSPEDYTLKVSQAGKTLCLSGFMGMDIP-PPSG *10
Peps. Secr. Cath.	ELWILGDVFIRQYFTVFDRANNQVGLAPVA TGTVMGAVIMEGFYVVFDRARKRIGFAVSA PLWILGDVFIGRYYTVFDRDNNRVGFAEAA

Fig. 6

Fig. 7

- 01 MLEADDQGCI EEQGVEDSAN EDSVDAKPDR SSFVPSLFSK KKKNVTMRSI KTTRDRVPTY
- 61 QYNMNFEKLG KCIIINNKNF DKVTGMGVRN GTDKDAEALF KCFRSLGFDV IVYNDCSCAK
- 121 MQDLLKKASE EDHTNAACFA CILLSHGEEN VIYGKDGVTP IKDLTAHFRG DRSKTLLEKP
- 181 KLFFIQACRG TELDDGIQAD SGPINDTDAN PRYKIPVEAD FLFAYSTVPG YYSWRSPGRG
- 241 SWFVQALCSI LEEHGKDLEI MQILTRVNDR VARHFESQSD DPHFHEKKQI PCVVSMLTKE
- 301 LYFSQ

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17b

Fig. 18

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 02090300 A2, Briggs [0021]
- WO 9627671 A, Ballinger [0024]
- EP 0304864 W [0024] [0127] [0142] [0150]
- US 5258289 A [0024]
- WO 9621009 A [0024]
- WO 9811237 A, Duff [0025]
- WO 0142432 A [0026]
- WO 03095670 A [0038]

- WO 9218645 A [0127] [0141]
- EP 02020576 A [0127]
- WO 0212543 A [0142] [0149] [0152]
- WO 0134835 A [0143] [0148] [0161]
- WO 9522625 A [0143]
- WO 9842728 A [0143]
- WO 0124933 A [0150]
- DE 19646372 [0154]

Non-patent literature cited in the description

- Janeway, C et al. Immunobiology. Elsevier Science Ltd., Garland Publishing, 1999 [0004]
- Handbook of proteolytic enzymes. Academic Press, 1998 [0009]
- Perona, J.; Craik, C. Protein Science, 1995, vol. 4, 337-360 [0009] [0137]
- Schlechter; Berger. Biochem. Biophys. Res. Commun., 1967, vol. 27, 157-162 [0009] [0036]
- Ding, L et al. Proc. Natl. Acad. Sci. USA, 1995, vol. 92, 7627-7631 [0009]
- Coombs, G et al. J. Biol. Chem., 1996, vol. 271, 4461-4467 [0009]
- Fersht, A. Enzyme Structure and Mechanism. W. H. Freeman and Company, 1995 [0011]
- Rawlings, N.D.; Barrett, A.J. Proteolysis in Cell Functions. IOS Press, 1997, 13-21 [0011]
- Rawlings; Barrett. Handbook of proteolytic enzymes. Academic Press, 1998 [0011]
- Rawlings, N.D.; Barrett, A.J. Methods Enzymol., 1994, vol. 244, 19-61 [0011]
- Wyss, M. et al. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): Catalytic properties. Applied & Environmental Microbiology, 1999, vol. 65, 367-373 [0016]
- Bedford, M. R.; Schulze, H. EXOGENOUS EN-ZYMES FOR PIGS AND POULTRY. Nutrition Research Reviews, 1998, vol. 11, 91-114 [0016]
- Murphy, T., C.; Bedford, M. R.; McCracken, K. J. Effect of a range of new xylanases on in vitro viscosity and on performance of broiler diets. *British Poultry* Science, 2003, vol. 44, S16-S18 [0016]
- Drugs of today, 1997, vol. 33, 641-648 [0018]
- Heuer L.; Blumenberg D. Anaesthesist, 2002, vol. 51, 388 [0018]
- Verstraete, M. et al. Drugs, 1995, vol. 50, 29-41
 [0018]

- Hamilton et al. Expert Opin Pharmacother, 2000, vol. 1 (5), 1041-1052 [0019]
- Fulani F. et al. Protein Engineering, 2003, vol. 16, 515-519 [0020]
- Kurth, T. et al. Biochemistry, 1998, vol. 37, 11434-11440 [0022] [0023]
- Ballinger, M et al. Biochemistry, 1996, vol. 35, 13579-13585 [0022]
- Horrevoets et al. J. Biol. Chem., 1993, vol. 268, 779-782 [0022]
- Sices, H.; Kristie, T. Proc. Natl. Acad. Sci. USA, 1998, vol. 95, 2828-2833 [0022]
- Corey, M.J.; Corey, E. Proc. Natl. Acad. Sci. USA, 1996, vol. 93, 11428-11434 [0023]
- Hedstrom, L. et al. Science, 1992, vol. 255, 1249-1253 [0023]
- Fersht et al. Methods of producing novel enzymes [0026]
- Altamirano et al. Nature, 2000, vol. 403, 617-622 [0026]
 Fersht, A. Enzyme Structure and Mechanism, 1995
- [0037] M. Fischer; J. Pleiss. *Nucl. Acid. Res.*, 2003, vol.
- 31, 319-321 [0128]
 Guex, N.; Peitsch, M.C. Electrophoresis, 1997, vol. 18, 2714-2723 [0132]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.;
 Lipman, D.J. J. Mol. Biol., 1990, vol. 215, 403–410
 [0134]
- Ewens, W.; Grant, G.R. Statistical methods in Bioinformatics: an introduction. Springer, 2001 [0134]
- Turner, R. et al. J. Biol. Chem., 2002, vol. 277, 33068-33074 [0134]
- H.M. Berman et al. Nucleic Acids Research, 2000, vol. 28, 235-242 [0135]
- Murzin A. G. et al. J. Mol. Biol., 1995, vol. 247, 536-540 [0135]

- Orengo et al. Structure, 1997, vol. 5 (8), 1093-1108
 [0135]
- Holm; Sander. Nucl. Acids Res., 1998, vol. 26, 316-319 [0135]
- Gibrat; Madej; Bryant. Current Opinion in Structural Biology, 1996, vol. 6, 377-385 [0135]
- Perona, J.; Craik, C. J. Biol. Chem., 1997, vol. 272, 29987-29990 [0137]
- Ottesen,M.; Svendsen,A. Methods Enzymol., 1998, vol. 19, 199-215 [0138]
- Seidah, N.; Chretien, M. Curr. Opin. Biotech., 1997, vol. 8, 602-607 [0138]
- Bergeron, F. et al. J. Mol. Endocrin., 2000, vol. 24, 1-22 [0138]
- Rawlings, N.D.; Barrett, A.J. Methods Enzymol., 1995, vol. 248, 105-120 [0139]
- Chitpinityol, S.; Crabbe, MJ. Food Chemistry, 1998, vol. 61, 395-418 [0139]
- Gruninger-Leitch, F. et al. J. Biol. Chem., 2002, vol. 277, 4687-4693 [0139]
- Wang, W.; Liang, TC. Biochemistry, 1994, vol. 33, 14636-14641 [0139]
- Wu, J. et al. Biochemistry, 1998, vol. 37, 4518-4526
 [0139]
- Pettit, S. et al. J. Biol. Chem., 1991, vol. 266, 14539-14547 [0139]
- Kageyama, T. Cell. Mol. Life Sci., 2002, vol. 59, 288-306 [0139]

- Aguilar, C. F. et al. Adv. Exp. Med. Biol., 1995, vol. 362, 155-166 [0139]
- Rawlings, N.D.; Barrett, A.J. Methods Enzymol., 1994, vol. 244, 461-486 [0140]
- Arcoleo, J.; Greer, J. J. Biol. Chem., 1982, vol. 257, 10063-10068 [0141]
- Almeida, R. et al. Biochem. Biophys. Res. Commun., 1991, vol. 177, 688-695 [0141]
- Cadwell, R.C.; Joyce, G.F. PCR methods. Appl., 1992, vol. 2, 28-33 [0141]
- Fersht, A.R. Biochemistry, 1989, 8031-8036 [0141]
- Gregoret, L.M.; Sauer, R.T. PNAS, 1993, 4246-4250 [0141]
- Weiss et al. PNAS, 2000, 8950-8954 [0141]
- Lesly et al. Methods in Molecular Biology, 1995, vol. 37, 265-278 [0142] [0149]
- Murakami et al. Nature Biotechnology, 2002, vol. 20, 76-81 [0143]
- Ostermeier, M. et al. Nature Biotechnology, 1999, vol. 17, 1205-1209 [0143]
- Sambrook et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, 1989 [0158]
- Ausubel et al. Current Protocols in Molecular Biology. Wiley Interscience, 1987 [0158]
- Cadwell, R.C; Joyce, G.F. PCR Methods Appl., 1992, vol. 2, 28-33 [0161]