0/1 Knapsack Problem (Dynamic Programming $m = 6 \qquad (w_1, w_2, w_3) = (2, 3, 4)$ $(P_1, P_2, P_3) = (1/2, 5)$ Solution: optimal soin 1) (n, 2/2, tuple =) (P, w) State $S_{1} = \{(1,2)^{2}\}$

nege State 1 $S_{1} = \left\{ (2,3), (3,5) \right\}$ $S' = \{(o,o)\}$ (1,2)addin 9 2nd obj merged State (2,3) (3,5) (0,0) $S^{2} = \{ (5,4), (6,6), (7,7), (8,9) \}$ 37 2061

State 3 merge 213 object S= { (2) (3) (1,2) (4,3) (5,4) (6,6) (7,7) (7,7) (1,0) (1,1) (1,1) (1,2) (8,8) (7,7) (1,1) (D) Discard the triples that has wt > m (2) Apply the purging rule (se discard the tuble giving more ut & less brotit) ie (Pj, Wj) & (Pk, Wk)? then

if Pj \(PK \(S \) \(Wj \) \(Pj, Wj) is dis anded \(S \) \(Cocide \)

if \(Pj \) \(Pj \) \(S \) \ (3) Consider the objects from Un to include into bag (ie the last tuple)

The last tuple from s belongs to si-1 than the entry is 3000 otherwise the entry is lone fire we doing the choice of objects to Note: - if last tuple is not there in si-1, then find from which tuple it got generated Final Sort (21, 22, 23)
Vector = (21, 22, 23) Since (1,2) (6,6) not in SZ (1,2) was not there
in so in St

(2)
$$n=3$$
, $m=4$ (w_1, w_2, w_3) = (1,2,2)
(p_1, p_2, p_3) = (18, 16, 16)
Soll =) (p_1, p_2, p_3) = (18, 16, 16)
both are p_1, p_2, p_3 = (18, 16, 16)
both are p_1, p_2, p_3 = (18, 16, 16)
the consider of p_1, p_2, p_3 = (18, 16, 16)
the Combination which gives maximal profit to p_1, p_2, p_3 = (18, 16, 16)

Purging sulp =) (P_j, W_j) & (P_k, W_k) $(P_j \leq P_k)$ & $(W_j \geq W_k)$ then (P_j, W_j) gets discarded