Thống kê suy diễn

Đỗ Trọng Hợp Khoa Khoa Học và Kỹ Thuật Thông Tin Đại Học Công Nghệ Thông Tin TP. Hồ Chí Minh

Ví dụ về phân tích kết quả thực nghiệm

- So sánh 2 sản phẩm nước ngọt (cũ và mới).
- Đối tượng thí nghiệm gồm 10 máy bán hàng tự động.

• Kết quả (response) được ghi nhận là sản phẩm được bán nhiều hơn ở mỗi máy.

hay chỉ là tình cờ?

có thể kết luận cho tất cả máy bán tự động?

2 - 8

Ví dụ về phân tích kết quả thực nghiệm

Thuốc có tác dụng thật không?

Thống kê suy diễn

Thống kê suy diễn

- Ước lượng khoảng tin cậy số trung bình
- So sánh 2 số trung bình (t-test)
- Tính kích cỡ mẫu (để ước lượng số trung bình)
- Tính kích cỡ mẫu (để so sánh 2 số trung bình)
- Trắc nghiệm tính phù hợp (chi-square test)
- Phân tích phương sai (ANOVA)

Kiểm định giả thuyết

• Giả thuyết không H_0 :

không có sự khác biệt giữa các nhóm

• Giả thuyết đảo H_1 : (giả thiết cần kiểm định)

có sự khác biệt giữa các nhóm

ullet Chứng minh H_1 đúng bằng cách bác bỏ H_0

Kiểm định giả thuyết

NULL HYPOTHESIS EXAMPLES

THE NULL HYPOTHESIS ASSUMES THERE IS NO RELATIONSHIP BETWEEN TWO VARIABLES AND THAT CONTROLLING ONE VARIABLE HAS NO EFFECT ON THE OTHER.

- Giả sử H0 đúng. Kết quả thí nghiệm thu được chỉ là do ngẫu nhiên.
- So sánh kết quả thu được với kết quả có thể thu được khi H0 đúng. Ước lượng khả năng thu được kết quả thí nghiệm như vậy khi H0 đúng.
- Nếu khả năng rất thấp → Bác bỏ H0
- Ví dụ:
 - Giả sử mèo không chọn thức ăn theo hình dáng. Ước lượng khả năng thu được kết quả như hiện có nếu giả thuyết này đúng.
 - Giả sử tốc độ phát triển cây không phụ thuộc vào màu ánh sáng. Ước lượng khả năng thu được kết quả như hiện có nếu giả thuyết này đúng.
 - Giả sử tuổi không ảnh hưởng đến khả năng âm nhạc. Ước lượng khả năng thu được kêt quả như hiện có nếu giả thuyết này đúng.

 $P \le 0.05 \rightarrow \text{reject Null Hypothesis}$

 $P > 0.05 \rightarrow \text{fail to reject Null Hypothesis}$

Ví dụ phân tích kết quả thí nghiệm nước ngọt

- Thí nghiệm
 - Thử nghiệm tại 10 máy bán tự động
 - Loại B được mua nhiều hơn ở 8 máy
- Kiểm định
 - H0: Cả 2 loại được yêu thích như nhau (kết quả loại B được mua nhiều hơn ở 8 máy chỉ là ngẫu nhiên)
 - H1: sức mua B > sức mua A
 - Nếu H0 đúng → xs loại B được mua nhiều hơn ở mỗi máy là 0.5
 - Xác suất B được mua nhiều hơn ở x máy trong 10 máy là B(x:10,0.5)

Figure 3.4 Binomial Distribution. B(x:10, .5) denotes the probability of x heads in 10 fair tosses of a fair coin.

Ví dụ phân tích kết quả thí nghiệm nước ngọt

Nếu H0 đúng thì xác suất để thu được kết quả như hiện có là 0.044

Giá trị P (right-tailed test)

- In null hypothesis significance testing, the p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct.
- Giá trị P là xác suất đạt được kết quả những kết quả mà ít nhất là như kết quả đã thu được trong thí nghiệm nếu giả sử H0 là đúng.

$$P = 0.044 + 0.010 + 0.001 = 0.055$$

Nếu H0 đúng (2 loại nước ngọt như nhau) \rightarrow xs loại B được mua nhiều hơn ở 8 máy **trở lên** là 0.055 \rightarrow quá nhỏ để tin H0 là đúng \rightarrow H0 sai \rightarrow H1 đúng (Sức mua B > sức mua A)

Ví dụ về giá trị P (left-tailed test)

- Thí nghiệm
 - Thử nghiệm tại 10 máy bán tự động
 - Loại A được mua nhiều hơn ở 2 máy
- Kiểm định
 - H1: sức mua A < sức mua B
 - H0: Cả 2 loại được yêu thích như nhau (kết quả loại A được mua nhiều hơn ở 2 máy chỉ là ngẫu nhiên)
 - Nếu H0 đúng → xs A được mua nhiều hơn ở mỗi máy là 0.5
 - Xác suất A được mua nhiều hơn ở 2 máy trong 10 máy là B(2:10,0.5)

Binomial distribution: n = 10, p = .5

$$P = 0.044 + 0.010 + 0.001 = 0.055$$

Nếu H0 đúng (2 loại nước ngọt như nhau) \rightarrow xs loại A được mua nhiều hơn ở 2 máy **trở xuống** là 0.055 \rightarrow quá nhỏ để tin H0 là đúng \rightarrow H0 sai \rightarrow H1 đúng (Sức mua A < sức mua B)

Ví dụ về giá trị P (two-tailed test)

- Thí nghiệm
 - Thử nghiệm tại 10 máy bán tự động
 - Loại A được mua nhiều hơn ở 2 máy
- Kiểm định
 - H1: sức mua A ≠ sức mua B (không quan tâm loại nào nhiều hơn)
 - H0: Cả 2 loại được yêu thích như nhau (kết quả 2-8 chỉ là ngẫu nhiên)
 - Nếu H0 đúng → xs mỗi loại được mua nhiều hơn ở mỗi máy là 0.5
 - Xác suất một loại được mua nhiều hơn ở 2 máy trong 10 máy là B(2:10,0.5)

Binomial distribution: n = 10, p = .5

$$P = 2*(0.044 + 0.010 + 0.001) = 0.11$$

Nếu H0 đúng (2 loại nước ngọt như nhau) \rightarrow xs cho 1 kết quả cách biệt ít nhất là 2-8 là 0.11 \rightarrow quá nhỏ để tin H0 là đúng \rightarrow H0 sai \rightarrow H1 đúng (Sức mua A < sức mua B)

Ví dụ về giá trị P (two-tailed test)

- Thí nghiệm
 - Thử nghiệm tung đồng xu 20 lần
 - Kết quả mặt hình xuất hiện 5 lần
- Kiểm định
 - H1: mặt hình ≠ mặt số (không quan tâm mặt nào nhiều hơn)
 - H0: Cả 2 mặt đều nhau (kết quả cách biệt 5-15 chỉ là ngẫu nhiên)
 - Nếu H0 đúng → xs mỗi mặt xuất hiện là 0.5

$$P = 0.21 + 0.021 = 0.042$$

Nếu H0 đúng (2 mặt đều nhau) \rightarrow xs cho 1 kết quả cách biệt ít nhất là 5-15 là 0.042 \rightarrow quá nhỏ để tin H0 là đúng \rightarrow H0 sai \rightarrow H1 đúng (mặt hình \neq mặt số)

Nhắc lại về Probability Density Function

Ví dụ về giá trị P (right-tailed test)

- Thí nghiệm
 - Thử nghiệm thuốc tăng cân trên 1 nhóm người
 - Kết quả cân nặng trung bình của nhóm tăng 5kg sau thời gian thử nghiệm
- Kiểm định
 - H1: cân nặng nhóm thử nghiệm thật sự tăng (after > before)
 - H0: thuốc không tác dụng, cân nặng trung bình sau khi uống vẫn như cũ, kết quả tăng 5kg chỉ là ngẫu nhiên
 - Tính xs đạt được kết quả tăng 5kg trở lên nếu H0 là đúng
 - Nếu P(gain≥5) rất nhỏ → H0 sai → H1 đúng

Ví dụ về giá trị P (left-tailed test)

- Thí nghiệm
 - Thử nghiệm thuốc giảm cân trên 1 nhóm người
 - Kết quả cân nặng trung bình của nhóm giảm 5kg sau thời gian thử nghiệm
- Kiểm định
 - H1: cân nặng nhóm thử nghiệm thật sự giảm (after < before)
 - H0: thuốc không tác dụng, cân nặng trung bình sau khi uống vẫn như cũ, kết quả giảm 5kg chỉ là ngẫu nhiên
 - Tính xs đạt được kết quả giảm 5kg trở xuống lên nếu H0 là đúng
 - Nếu P(gain≤-5) rất nhỏ → H0 sai → H1 đúng

Ví dụ về giá trị P (two-tailed test)

- Thí nghiệm
 - Kiểm tra kích thước của 100 con ốc được sản xuất
 - Nhà sx thông báo đường kính trung bình là 20mm
 - Kết quả đường kính trung bình dbar của 100 mẫu thử là 25mm
- Kiểm định
 - H1: kích thước trung bình thật sự ≠ 20mm
 - H0: kích thước trung bình là 20, kết quả thu được chỉ là ngẫu nhiên
 - Tính xs đạt được kết quả trung bình sai khác nhiều hơn 5mm (nghĩa là dbar≥25 hoặc dbar≤15) nếu H0 là đúng
 - Nếu P(dbar≥25 hoặc dbar≤15) rất nhỏ → H0 sai → H1 đúng

 $P = P(dbar \le 15) + P(dbar \ge 25)$

Trong trường hợp kết quả đường kính trung bình của 100 mẫu thử là 15cm thì cách tính P có thay đổi không?

 If the alternative hypothesis H_a contains the less-than inequality symbol (<), the hypothesis test is a left-tailed test.

 If the alternative hypothesis H_a contains the greater-than inequality symbol (>), the hypothesis test is a right-tailed test.

 If the alternative hypothesis H_a contains the not-equal-to symbol (≠), the hypothesis test is a two-tailed test. In a two-tailed test, each tail has an area of ½P.

Mức ý nghĩa α

• Mức ý nghĩa là xác suất bác bỏ H0 khi H0 đúng (false positive error)

Mức ý nghĩa α

- P = 0.055 là nhỏ hay lớn?
- Đặt $\alpha = 0.172$
- P=0.055 < $\alpha \rightarrow \text{nhỏ} \rightarrow \text{bác bỏ H0}$
- Trong trường hợp H0 đúng, có 0.172 cơ hội cho ra kết quả mà P < α, nghĩa là có 0.172 cơ hội bác bỏ H0 khi H0 đúng

Mức ý nghĩa α

- Nếu P < $\alpha \rightarrow$ bác bỏ H0
- Trường hợp H0 đúng, vẫn có α cơ hội xảy ra kết quả làm P< α , tức là có α cơ hội bác bỏ H0 khi H0 đúng

Normal distribution

Standard normal distribution

LESS THAN Cumulative

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
*				*	*					
				- :					- :	
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952

William Sealy Gosset

Tính P(X < x) khi ta chỉ biết được s ?

T-distribution

$$z = \frac{x - \mu}{\sigma}$$

$$t = \frac{x - \mu}{s}$$

Standard normal

Khi df của s rất lớn thì $P(t < 2) \sim P(z < 2)$

Distribution of the mean

• Mean và variance của $ar{X}$

mean variance standard deviation*
$$\mu_{\bar{X}} = \mu \qquad \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} \qquad \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

$$X \sim N(\mu, \sigma) \rightarrow \overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

$$z = \frac{x - \mu}{\sigma}$$

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

Ứng dụng: so sánh một giá trị với giá trị mean (giả thuyết)

- Dùng để so sánh mean thu được từ 1 mẫu thí nghiệm với 1 mean của giả thuyết H0
- H0: μ là mean của toàn bộ quần thể
- Tính P
 - Right-tailed test: P(≥ t)
 - Left-tailed test: P(≤ t)
 - Two-tailed test: P(≥ |t|) + P(≤ -|t|)
- Nếu P< $\alpha \rightarrow$ bác bỏ H0

Student t-distribution

William Sealy Gosset

$$t = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$
 tuân theo phân phối t

H0: μ là mean của toàn bộ quần thể

Nếu H0 đúng, mu là mean thật sự, thì xác suất nhận thu được giá trị trung bình của sample là p(t)

t-distribution

$$t = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$
 tuân theo phân phối t

Thí nghiệm 2 loại nước ngọt

Máy	Loại A	Loại B	d=B-A
1	132	140	8
2	82	88	6
3	109	112	3
4	143	142	-1
5	107	118	11
6	66	64	-2
7	95	98	3
8	108	113	5
9	88	93	5
10	133	136	3

H0: không có sự khác biệt giữa B và A

H1: B-A>0

Đặt µ là mean của toàn bộ quần thể B-A

$$s = \sqrt{\left[\frac{\sum (d_i - dbar)^2}{n-1}\right]}, \qquad t = \frac{dbar - \mu}{s/\sqrt{n}}$$

H0 đúng $\rightarrow \mu$ =0

n=10, dbar=4.1, s=3.9,
$$t = \frac{4.1-0}{3.9/\sqrt{10}} = 3.4$$

H0 đúng
$$\rightarrow \mu = 0$$

$$dbar = 0 \rightarrow t = 0$$

$$dbar = 4.1 \rightarrow t = 3.4$$

$$P(dbar \ge 4.1) = P(t \ge 3.4)$$

Đặt
$$\alpha = 0.05$$

$$t = \frac{4.1 - 0}{3.9 / \sqrt{10}} = 3.4$$

$$P(t \ge 3.4) = 0.004$$

Comparison of the Observed t-Value (3.4) to the t-Distribution with 9 df.

Nếu H0 đúng thì P(dbar ≥ 4.1) = 0.004 < α, suy ra có thể bác bỏ H0

- Dùng để so sánh mean thu được từ 1 mẫu thí nghiệm với 1 mean của giả thuyết H0
- H0: μ là mean của toàn bộ quần thể
- Tính t_ex (ex là viết tắt cho experiment)
- Tính P
 - Right-tailed test: P(t ≥ t_ex)
 - Left-tailed test: P(t ≤ t_ex)
 - Two-tailed test: $P(t \ge |t_ex|) + P(t \le |t_ex|)$
- Nếu P< $\alpha \rightarrow$ bác bỏ H0

$$t = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

- Bộ phận phát triển sản phẩm tuyên bố số lon B sẽ được mua nhiều hơn là 5 lon/tuần (µ=5)
- Thí nghiệm cho thấy loại B được mua nhiều hơn trung bình 4.1 lon/tuần
- Có thể bác bỏ tuyên bố của bộ phận phát triển đưa ra hay không?

H0:
$$\mu = 5$$

$$t = \frac{dbar - \mu}{s/\sqrt{n}}$$
 $t_{ex} = \frac{4.1 - 5}{3.9/\sqrt{10}} = -0.73$

Đặt
$$\alpha = 0.05$$

$$P(t \le -0.73) = 0.24 > \alpha$$

Không thể bác bỏ H0

- Bộ phận kinh doanh tuyên bố B chỉ đầu tư sản phẩm B nếu B được mua nhiều hơn là 10 lon/tuần
- Thí nghiệm cho thấy loại B được mua nhiều hơn trung bình 4.1 lon/tuần
- Có cần đầu tư cho B hay không?

H0:
$$\mu = 10$$

$$t = \frac{dbar - \mu}{s/\sqrt{n}}$$
 $t_{ex} = \frac{4.1 - 10}{3.9/\sqrt{10}} = -4.8$

Đặt
$$\alpha = 0.05$$

$$P(t \le -4.8) = P(dbar \le 4.1) < 0.001 < \alpha$$

Bác bỏ H0 → không đáng đầu tư

Ước lượng khoảng tin cậy (confidence interval)

Ước lượng khoảng tin cậy

- Thí nghiệm cho thấy loại B được mua nhiều hơn trung bình 4.1 lon/tuần
- Ước lượng khoảng tin cậy 95% của số lượng B được mua nhiều hơn

$$dbar - t_{.025}s / \sqrt{n} < \mu < dbar + t_{.025}s / \sqrt{n}$$
.

- n=10, dbar=4.1, s=3.9,
- Với df=9, $t_{0.025}$ = 2.26

$$\left(4.1 - 2.262 \left(\frac{3.9}{\sqrt{10}}\right), \quad 4.1 + 2.262 \left(\frac{3.9}{\sqrt{10}}\right)\right)$$
$$= (4.1 - 2.8, \quad 4.1 + 2.8) = (1.3, 6.9).$$

• Tất cả các giá trị từ 1.3 đến 6.9 đều đáng tin cậy, nghĩa là phù hợp với kết quả thực nghiệm trung bình 4.1 ở mức ý nghĩa α =0.05

Dùng khoảng tin cậy để kiểm định giả thuyết

- Giả thuyết H_0 : chiều cao trung bình của nam giới là 1.63m
 - Đo 100 người ra được $\bar{h} = 1.65$

• Đo 100 người ra được $\bar{h} = 1.70$

Tính kích cỡ mẫu để ước lượng số trung bình

 $n = ? d\vec{e} \mu dat d\hat{o} chính xác L ở mức ý nghĩa <math>\alpha$

nghĩa là đạt
$$\overline{X}-L \leq \mu \leq \overline{X}+L$$
 với xs $1-lpha$

$$\overline{X} - t_{\alpha;v} \times \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + t_{\alpha;v} \times \frac{S}{\sqrt{n}}$$

$$L = t_{\alpha;v} \times \frac{S}{\sqrt{n}} \to n = t_{\alpha;v}^2 \times \frac{S^2}{L^2}$$

Tính kích cỡ mẫu

- Thí nghiệm 2 loại nước ngọt A và B trên n=10 máy
- Kết quả B bán được nhiều hơn trung bình 4.1 lon
- Khoảng tin cậy 95% là (1.3, 6.9)
- Cần thí nghiệm trên bao nhiêu máy để đạt độ chính xác là 1 lon

$$n = t_{\alpha;v}^2 \times \frac{S^2}{L^2}$$

- $t_{0.025;9} = 2.26$ (two-tail); S=3.9; L=1
- $n = 2.26^2 * 3.9^2 / 1^2 = 78$
- Tính lại $t_{0.025:77} = 1.99$
- $n = 1.99^2*3.9^2/1^2 = 60$
- Tính lại t_{0.025;59} = 2 ≈ 1.99 (không cần tính lại)

Giới thiệu ngôn ngữ R

Tính P ứng với t và bậc tự do df
 > pt(t,df)

• Ví dụ: t=-2.262 ; df=9 > pt(-2.262,9) [1] 0.02500642

- Tính t ứng với α
 - One-tailed test

 $> qt(\alpha,df)$ (one-tailed test)

• Ví dụ: (α=0.025)
> qt(0.025,9)
[1] -2.262157

- Two-tailed test $> qt(\alpha/2,df)$ hoặc $> qt(c(\alpha/2,1-\alpha/2),df)$ (two-tailed test)
- Ví dụ (α=0.05) > qt(c(.025, .975),df=9) [1] -2.262157 2.262157