Disc HA - Slow-Pared Notes
Announcements . HW 3 self-grades + resubmissions due tomorrow
· OH are continuing, HW party on Tues/Thurs 4-6 PM
· Lab lite: expected to go to one OH to receive support! Lab Lite 2 due tonight!
· HW 4 released, due Friday 2/12
· Grading lite opt-in due Fr'day 2/2 Mini-Le dure: Vector Differential Equations (Note 3A for more info: In general, manipulate circuit diff eqs to have this Given a differential equations of form: The properties of the equations of the equat
Given a differential equations of form: $\frac{\partial}{\partial t} x_i(t) = a_{i1} x_i(t) + a_{i2} x_2(t) + b$, form.
$\frac{d}{dt} \chi_2(t) = \alpha_{21} \chi_1(t) + \alpha_{22} \chi_2(t) + b_2$
Set up a linear algebraic expression: $\begin{bmatrix} \frac{d}{dt} & x_1 \\ \frac{d}{dt} & x_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$
$\Rightarrow \frac{d\vec{x}(t)}{dt} = A\vec{x} + \vec{b}$
No. Hat was a disease and a
Now that we have a linear expression, can manipulate with linear algebra's In today's discussion: eigenbasis of a matrix A We have kis define V: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
4 Eigenbasis: Set of vectors V, where each $v \in V$ satisfies $\frac{Av = \lambda v}{\text{for some } \lambda \in \mathbb{R}}$
Knowing the definitive property of an eigenvector/eigenvalue pair lets us figure out how to find them:
$A_{v} = \lambda_{v}$ $\Rightarrow A_{v} - \lambda_{v} = 0$ $\Rightarrow (A - \lambda I)_{v} = 0 \Rightarrow v \text{ is in the null space of } A - \lambda I .$
=> 16 find vectors v in the eigenbasis, solve for the null space of A-71
Note on eigenspace — for any vector $v' \in Span(V) \Rightarrow v'$ can be expressed as $V' = V \times V \times V = V \times V \times V = V \times V \times V = V \times V \times$
⇒ any v' ∈ span (V) can be expressed as AVX' Visa change of

1. Changing Coordinates and Systems of Differential Equations, II

In the previous discussion we analyzed and solved a pair of differential equations where the variables of interest were coupled.

$$\frac{d}{dt}z_1(t) = -5z_1(t) + 2z_2(t)$$
$$\frac{d}{dt}z_2(t) = 6z_1(t) - 6z_2(t).$$

We solved this system by using a coordinate transformation that gave us a decoupled system of equations. In the last discussion we were simply handed this transformation, but in this discussion we will construct the transformation for ourselves.

We will focus our explorations on the voltages across the capacitors in the following circuit.

Figure 1: Two dimensional system: a circuit with two capacitors, like the one in lecture.

(a) Write the system of differential equations governing the voltages across the capacitors V_{C_1}, V_{C_2} . Use the following values: $C_1 = 1\mu F, C_2 = \frac{1}{3}\mu F, R_1 = \frac{1}{3}M\Omega, R_2 = \frac{1}{2}M\Omega$.

$$\frac{3}{4} \left(\frac{d}{dt} V_{c_1}(t) \right) = \begin{bmatrix} -\left(\frac{1}{R_1 c_1} + \frac{1}{R_2 c_1} \right) & \frac{1}{R_2 c_1} \\ \frac{1}{R_2 c_2} & -\frac{1}{R_2 c_2} \end{bmatrix} \left(\frac{V_{c_1}(t)}{V_{c_2}(t)} \right) + \left(\frac{1}{R_1 c_1} \right) \cdot V_{in}(t) \\
Now, plug in values: C_1 = IMF, C_2 = \frac{1}{3} MF, R_1 = \frac{1}{3} M\Omega, R_2 = \frac{1}{2} M\Omega$$

$$= -\left(\frac{1}{R_1 c_1} + \frac{1}{R_2 c_2} \right) = -\left(\frac{1}{2 \cdot 1} + \frac{1}{2 \cdot 1} \right) = -\left(\frac{3}{4} \lambda \right) = -5$$

Units nate!

IF = | Sec

Ó

(since I= (old at

=> Amps=F. Amps sec -> F = sec

Now, plug in values!
$$C_1 = |MF|, C_2 = \frac{1}{3}MF, R_1 = \frac{1}{3}M\Omega$$
, $R_2 = \frac{1}{2}MS$

$$= -\left(\frac{1}{R_1C_1} + \frac{1}{R_2C_1}\right) = -\left(\frac{1}{3} \cdot 1\right) = -\left(3 + \lambda\right) = -5$$

$$= \frac{1}{R_2C_1} = 2$$

$$= \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_2} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_3} = -6$$

$$= \frac{1}{R_2C_4} = -6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = -\frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

$$= \frac{1}{R_2C_4} \cdot \frac{1}{R_2C_4} = \frac{1}{2} \cdot \frac{1}{3} = 6$$

(b) Suppose also that V_{in} was at 7 Volts for a long time, and then transitioned to be 0 Volts at time t = 0. This "new" system of differential equations (valid for $t \ge 0$)

$$\frac{d}{dt}y_1(t) = -5y_1(t) + 2y_2(t) \tag{1}$$

$$\frac{d}{dt}y_2(t) = 6y_1(t) - 6y_2(t) \tag{2}$$

with initial conditions $y_1(0) = 7$ and $y_2(0) = 7$.

Write out the differential equations and initial conditions in matrix/vector form.

(c) Find the eigenvalues λ_1 , λ_2 and eigenspaces for the matrix corresponding to the differential equation matrix above.

4) How do we usually find eigenvalues for some matrix A?

Values 1 that solve
$$\det(A - \lambda I) = 0$$
 (since \vec{v} corresponding to λ has property $A\vec{v} = \lambda \vec{v}$)

 $\det([-5 - \lambda 2]) = 0$ \Rightarrow $(5 + \lambda)(6 + \lambda) - 2 - 6 = 0$
 $\det([-5 - \lambda 2]) = 0$ \Rightarrow $(5 + \lambda)(6 + \lambda) - 2 - 6 = 0$

=>
$$30 + || 1 + 1^{2} - | 2 = 0$$

=> $30 + || 1 + 1^{2} - | 2 = 0$
 $30 + || 1 + 1^{2} - | 2 = 0$
 $30 + || 1 + 1^{2} - | 2 = 0$

$$\rightarrow \lambda_1 = -9$$
, $\lambda_2 = -2$ solve our eigenvalue equation!

For
$$\lambda_1$$
: $(A - \lambda_1 I) \vec{v}_1 = 0$ \Rightarrow $\begin{bmatrix} 4 & 2 \\ 6 & 3 \end{bmatrix} \vec{v}_1 = 0 \Rightarrow$ $\vec{v}_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \vec{v}_2 = 0$ \Rightarrow $\vec{v}_2 = \begin{pmatrix} 2 \\ 3 \end{bmatrix} \vec{v}_2 = 0$

eigenvectors:

$$\vec{y}$$
 can be written in terms of the eigenvectors of \vec{A} .

$$\vec{y} = \vec{z}_1 \vec{v}_1 + \vec{z}_2 \vec{v}_2$$

$$\vec{y} = \vec{z}_1 \vec{v}_1 + \vec{z}_2 \vec{v}_2$$

$$\vec{z}_1 \vec{v}_2 \vec{v}_3 \vec{v}_4 \vec{v}_4 \vec{v}_5 \vec{v}_6 \vec{v}_6$$

eigenvectors
$$\sqrt{=\begin{bmatrix} -1 & 2 \\ 2 & 3 \end{bmatrix}}$$

$$V^{-1} = \frac{1}{-7} \begin{bmatrix} 3 & -2 \\ -2 & -1 \end{bmatrix} = \begin{bmatrix} -3/7 & 2/7 \\ 2/7 & 2/7 \end{bmatrix}$$

$$\frac{d\vec{\gamma}}{dt} = A\vec{\gamma} = AV\vec{z}$$

$$V^{-1}\frac{d\vec{\gamma}}{dt} = V^{-1}AV\vec{z}$$

(e) Solve the differential equation for $z_{\lambda_i}(t)$ in the eigenbasis.

$$V^{-1}\vec{y} = \vec{z}$$

$$\vec{z} = \vec{z}$$

(f) Convert your solution back into the original coordinates to find $y_i(t)$.

$$\frac{1}{3}(t) = \sqrt{2}(t) = \begin{bmatrix} -1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -e^{-9t} \\ 3e^{-2t} \end{bmatrix} = \begin{bmatrix} e^{-9t} + 6e^{-2t} \\ -2e^{-9t} + 9e^{-2t} \end{bmatrix}$$
original eigenbasis coordinates