VEDIANO ORA ALCUME DEMSITÀ MOTEVOLÎ

· DEMSITA UMIFORME

Diciano one una v.a. X ha diensità uniformie niell'intere vallo [a,b] se la sua diensità è

$$f(x) = \frac{p-\alpha}{1} \times (a^{\prime}p)$$

Indichiano con il sinbolo U([a,b]) LA DENSITÀ UNIFORNE. Per ochi intervallo (t,t2) ABBIANO CHE

Wunding Funzione di Ritartizione È

$$F(+) = \begin{cases} 0 & S \in F \neq \alpha \\ \frac{1}{b-\alpha} & S \in F \in (\alpha,b) \\ 1 & S \in F \neq b \end{cases}$$

INOUTRE

$$E[X] = \int_{a}^{b} \frac{x}{b-a} dx = \frac{b+a}{2}$$

$$V_{AR} X = \int_{a}^{b} \frac{x^{2}}{b-a} dx - \left(\frac{b+a}{2}\right)^{2} = \frac{\left(\frac{b-a}{2}\right)^{2}}{12}$$

· DEUSITA ESPONEMZIALE

Diciano CHE UNA V.A. X HA DENSITÀ ESTONIENZIALE DI PARANE TRO 200 SE AMMETTE COME DENSITÀ LA FUNZIONE

$$f(x) = \begin{cases} \sqrt{-\gamma} x & \text{ver } x < 0 \\ \sqrt{-\gamma} x & \text{ver } x < 0 \end{cases}$$

LA MOICHIAMO COM IL SINBOLO E(X). SI VEDE FACILNEMTE

CHE É INTECRABILE SU IR E CHE STORE 1.

LA FUNZIONE DI RIVARTIZIONE VALE

$$F(t) = \begin{cases} 1 - 2^{t} & r \in \mathbb{R} & t > 0 \\ 0 & p \in \mathbb{R} & t < 0 \end{cases}$$

IN WUANTO $\int_{0}^{t} \lambda e^{-\lambda x} dx = -e^{-\lambda x}|_{0}^{t} = 1-e^{-\lambda t}$

ABBIANO INDUTRE INTEGNANDO PER PARTI

$$E[X] = \int_{\mathbb{R}} x f(x) dx = \int_{+\infty}^{+\infty} \frac{-\lambda x}{-\lambda x} = -xe \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\left[\mathbb{E}\left[X^{2}\right] = \int_{\mathbb{R}} x^{2} + (x) dx = \int_{0}^{+\infty} \lambda x^{2} = -x^{2} - \lambda x \Big|_{0}^{+\infty} + \int_{0}^{+\infty} 2 \times e dx = \frac{2}{\lambda^{2}}$$

DA cui

$$V_{AR}X = E[x^2] - E[X] = \frac{1}{x^2}$$

Proposizione LE V.A. Di TIPO ESPONENZIALE "MOM HAMMO MEMONIA", CIOÈ

PROOF

ABBIANO

$$P\{X>T+t|X>T\} = P\{X>T+t, X>T\} = P\{X>T+t\}$$

$$P\{X>T\} = P\{X>T\}$$

$$P\{X>T\} = P\{X>T\}$$

$$P\{X>T\} = P\{X>T\}$$

MOTARE CHE É LA STESSA PROPRIETÀ DI CUI GODE LA V.A. GEORETRICA.

Si PUÒ D'INOSTRARE CHE SE UMA V.A. ASS. CONTINUA GODE DELLA PROPRIETÀ D'ASSENZA D'I REMORLA, ALLORA È D'I TIPO ESPONENZIALE.

· DEMSITÀ GAMMA

DEFINIANO INNANZI TOTTO LA FUNZIONE <u>CANTA DI EULERO</u> $\Gamma(\lambda) := \int_{0}^{+\infty} x^{d-1} e^{-x} dx \qquad de(0,+\infty)$

VEDIANO ALCUME DELLE SUE PROPRIETA BASE.

 $\bullet \quad \mathcal{C}(\alpha+1) = \alpha \mathcal{C}(\alpha)$

BASTA INTECRAME PER PART:

$$\Gamma(\alpha+1) = \int_{0}^{+\infty} x^{\alpha} e^{-x} dx = -x^{\alpha} e^{-x} \Big|_{0}^{+\infty} + a \int_{0}^{+\infty} x^{\alpha-1} - x dx = a \Gamma(a)$$

· ((m) = (m-1)!

PER IMBUZIONE.

• $\Gamma(\alpha)\Gamma(1-\alpha) = \overline{\Pi}$ SE $\alpha \notin \mathbb{Z}$ [FORMULA DI RIPLESSIONE] Sim $(\alpha \pi)$

ORETIANO LA DINOSTRAZIONIE. OSSERVIANO CHE IM PARTICO LA RE LA FORNULA FORMISCE $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, E QUINDI DAL PRINO PUNTO

$$\Gamma\left(M+\frac{1}{2}\right) = \sqrt{\pi} \frac{\pi}{1!} \left(K+\frac{1}{2}\right)$$
[SUI SEMI-INTERI]

Diciano Che una V.A. X HA DENSITÀ GARMA DI PARAMETRI ADO, 200 SE ANNIETTE COME BENSITÀ LA FUNZIONE

$$f(x) = \begin{cases} \frac{\lambda}{\lambda} & \lambda^{-1} - \lambda x \\ \frac{\lambda}{\Gamma(\lambda)} & \lambda \neq 0 \end{cases}$$

$$P \in \mathbb{R} \times 0$$

LA INDICHIAND CON IL SINDOLD ((d, X). MOTARE CHE PER

d=1 ritroviano LA DENSITA ESPONENZIALE. ABBIANO,

TRANITE CANBIO DI VARIABILE Y= Xx,

$$\int_{-\alpha}^{\infty} f(x)dx = \int_{0}^{\infty} \frac{\lambda^{d}}{\Gamma(a)} \times \int_{0}^{\infty} \frac{1}{\Gamma(a)} = \int_{0}^{\infty} \frac{1}{\Gamma(a)$$

E WOUNDI + É EFFETTIVANEME UNA DEMISITA.

LENDA PER OGNIKEIN $E[X^n] = \frac{(d+k-1)(d+k-2)...d}{x^n}$ enoof

$$E[X_{x}] = \sum_{-\infty}^{\infty} x_{x} + (x) qx = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} \times \frac{y_{x} + y_{x} - y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x} + y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x} + y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x}} = \sum_{-\infty}^{\infty} \frac{y_{x}}{y_{x$$

$$= \frac{(d+\kappa-1)(d+\kappa-2)...d}{\lambda^{\kappa}} \int_{0}^{\infty} \frac{\lambda^{d+\kappa}}{\Gamma(d+\kappa)} \times \frac{d+\kappa-1}{2} - \lambda^{\kappa} dx$$

DONE PER L'ULTIMA UGUAGLIAMZA SI É USATO IL FATTO CHE

 $\Gamma(a+k) = (a+k-1)\Gamma(a+k-1) = (a+k-1)(a+k-2) \dots \alpha \Gamma(a)$.

POICHÉ L'INTEGRALE DI DESTRA É ULUALE AD 1, ESSENDO L'INTEGRANDO ((d+K, X), ABBIARO FATTO.

IN PARTICOLARIE ABBIANO

$$E[X] = \frac{\lambda}{\lambda}, \quad E[X^2] = \frac{(\lambda + 1)\lambda}{\lambda^2}$$

$$V_{AR} X = E[X^2] - E[X]^2 = \frac{d}{x^2}$$

FACCIAMO UMA PAREMIRSI GEMERALE.

LENTA SIANO X, ED X2 DUE V.A. ASS. CONTINUE COM DENSITÀ f_1 ED f_2 RISPETTIVANENTE. SUPPONIANO SIANO INDIPENDENTI. ALLORA X,+X2 È ASS. CONTINUA CON DENSITÀ $f(x) = \int f_1(y) f_2(x-y) dy$

 $f(x) = \int f'(\lambda) f'(x-\lambda) d\lambda$

PROOF ONESSA: SERVONO GLI MREGRALI DOPPI...

Proposizione Siano $X_{A,...,} X_{m}$ m variabili alieatorie indirendenti, ochuma con densità (α_{K}, λ) , $K=A_{I...,M}$.

Allora $X = \sum_{k=1}^{m} X_{K} \in U_{MA} V.A. Ditto Ganna, con densità <math display="block"> (\sum_{k=1}^{m} \alpha_{K}, \lambda)$

PROOF DINOSTRIAND IL CASO K=2, QUELLO GEMERALIS SECUE PER INDUZIONE. PER IL LENMA, QUANDO X>0

$$f(x) = \int_{0}^{\infty} f'(x) f'(x-x) dx = \frac{\int_{0}^{\infty} f'(x-x) dx}{\int_{0}^{\infty} f'(x-x)} \int_{0}^{\infty} f'(x-x) dx$$

When sto prova the
$$f(x) = \begin{cases} c \times d_1 + d_2 - 1 - \lambda x \\ c \times d \end{cases}$$
 so $s \in x \leq 0$

ESSENDO F PROPORZIONALE A $\Gamma(a_1+a_2,\lambda)$, MECESSARIA_

NENTE DEVONO COINCIDERE (VISTO IL VINCOLO St=1)

IR

COROLLARIO SE $X_{1,...,}X_{n}$ somo v.A. Indipendenti con Densità $E(\lambda)$, Allora $X=\sum_{n=1}^{\infty}X_{n}$ ha densità $\Gamma(m,\lambda)$

MOTA IN GENERALE SE DUE V.A. DI TIPO GAMMA MON SONO INDIPENDENTI, MON SI PUÓ CONCLUDIENE CHE LA LORO SONOA SIA UMA V.A. DI TIPO GAMMA.

· DEMSITÀ CAUSSIAMA O MORMALE

Diciano che una v.A. X ha densità <u>Gaussiama Standard</u> Se la sua densità è

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

LA IMBICHIANO COM IL SINBOLO N(OII). SI PUÓ IM EFFETTI BINDSTRARE CHE FÉ INTEGRABILE SU IR E CHE SFOR=1. IR LA FUNZIONE DI RIPARTIZIONE VALE

$$F(H) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^{2}} dx$$

ESSENDO UNA FUNZIONE PARI ABBIANO

$$E[X] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x e^{-x^2} dx = 0$$

MOLTRE, INTEGRANDO PER PARTI

$$E[X^{2}] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^{2} e^{-x^{2}/2} dx = -\frac{x}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-x^{2}/2} dx = 1$$

DA cui

DICIANO INVIECE CHE UNA V.A. Y HA DEMSITÀ GAUSSIANA DI PARAMETRI MEIR E 570 SE LA SUA DEMSITÀ È

$$g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} \left(\frac{x-w}{\sigma}\right)^2$$

LA MOICHIAND COM M SINBOLD N(W, 52).

Ricordo che se X è una v.A. Assolutanente continua con densità f, e a,bell con axo, Allora a X+b è una v.A. Assolutanente continua con densità

$$S(x) = f\left(\frac{x-b}{a}\right) \frac{1}{|a|}$$

WULHER YE WHA V.A. CAUSSIANA DI PARANETRI WIJ WUAHDO PUO ESSERE SCRITTA NELLA FORMA

$$Y = \sigma X + \omega \qquad (*)$$

CON X AVENTE DENSITÀ CAUSSIANA STANDARD. LA SUA FUNZIONE DI RIPARTIZIONE VALE

$$G(H) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{F} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = F(\frac{F-\mu}{\sigma})$$

CON F FUNZIONE DI RIPARTIZIONE RELATIVA ALLA CAUS SIANA STANDARD. DA (*) ABBIANO AMCHE

E[Y] = o E[X] + w = w VARY = or VARX = or Warx = or Warx

ESENPI DI BENSITÀ CAUSSIANA CER ALCUNI VALORI

DI NO E S. MOTARE CHE PIÙ S²= VAR X E

PICCOLD, PIÙ LA CURVA SI CONCENTRA INTORNO AL

VALORE REDIO NO.

Proposizione Siano X,,..., X, m variabili aleatorie indirechorie indirechorie, obnuma con densità baussiana $N(w_k, \sigma_k)$ K=1,..., M. Allora $X=\sum_{k=1}^{\infty} X_k$ \in una v.a. Gaussiana con densità $N(\sum_{k=1}^{\infty} w_k, \sum_{k=1}^{\infty} \sigma_k^2)$

PROOF

SECUR DAL CALCOLO DIRETTO DELLA DEMSITÀ, CHE ESISTE PER IL LENNA CEMERALE VISTO PRINA.

CONUMBUE, SE X È DI TIPO CAUSSIAMO, MECESSA RIANEME I PARAMETRI DELLA DENSITÀ SONO $w = \sum_{N=1}^{\infty} W_{N}$ E $S = \sqrt{\sum_{N=1}^{\infty} S_{N}^{2}}$ IN WUANTO

MOTA IN GENERALE SE DUE V.A. GAUSSIAME MOM
SOND INDIPENDENTI, MON SI PUÓ CONCLUDERE CHE LA
LOND SONNA SIA UMA V.A. GAUSSIAMA.

Rizpicolo DECLE Principali DEMSITÀ

	SinBoco	DRUSITA
DiscreTe	B(m, q) 1 pier (m, a, b) (ieo (q) 3(x)	Binonialia IPERGEONETRICA GEONETRICA POISSON
少つないけんのつ	U([a,b]) E(X) M(u,o²)	UMIFORME ESPONEMZIALE GANNA GAUSSIAMA

WULHDO UMA V.A. X HA DENSITÀ UMA DI QUELLE
SCRITTE SOPRA, DICIANO "D", LO INDICHERENO CON
X~D

VEDIANO ORA UMA TECNICA PRATICA PER RICAVARE LA DENSITÀ DI UMA V.A. DEL TIPO Y = U·X, DOVE X È UMA V.A. ASSOLUTANENTE CONTINUA E U: IR -> IR E UMA TRASFORMAZIONE DATA.

ABBIANO VISTO COME FARE SE Y É REGOLARE E STRETTAMENT TE NOMOTOMA, MA IN CIENERALE?

PONIENDO A = { x ∈ M: W(x) < +) ABBIANO

AVENDO INDICATO CON + LA DENSITÀ DI X. <u>ANNESSO</u> CHE
Y SIA ASSOLUTANIENTE CONTINUA, E DETTA Y LA SUA DEN<u>e</u>
SITÀ, DEVE RISULTARE

SAPENDO A PRIORI CHE O È CONTINUA, AVRENDO PER IL
TEDRENA FONDAMENTALE DEL CALCOLO CHE (È DERI
VABILE E ('= y.

SPESSO PERÒ LE DEMSITÀ MON SOMO COMTIMUE! PAZIENZA, DERIVIANO G DOVE POSSIBILE. SE LO E SU TUTTO IR, AD ECCEZIONE DI UN MUNERO FINITO DI PUNTI, POSSIANO

DEFINICE
$$g(x) = \begin{cases} G'(x) & S \in G' \in SiS \cap E \\ 0 & ALTRINEMTI$$

E PRENDERE QUESTA COME CANDIDATA PER LA DRUSITÀ DI Y.

ANDREBBE POI VERIFICATA LA (*), MA IN GENERALE SI TRALASCIA:

LE COSE VANNO MALE IN CASI CHE MELLE APPLICAZIONI RAMA

MENTE SI INCONTRANO.

ESENPIO SIA XNN(0,1). ALLORA $Y = X^2 N \Gamma(\frac{1}{2}, \frac{1}{2})$ ESSENDO YZO RISULTA PHYZHJ=0 PER OGNI H=0.
PER HZO INVECE $A_{+} = [-VF, VF] = 0$

$$PhY \leq H = Pl-VH \leq X \leq VH = \frac{1}{\sqrt{2\pi}} \int_{-\sqrt{2}}^{\sqrt{2\pi}} \frac{\sqrt{H}}{\sqrt{2\pi}} \int_{-\sqrt{2}}^{2\pi} \frac{\sqrt{H}}$$

Wo mo?

$$G(H) = \begin{cases} \frac{2}{2\pi} & \text{of } -x^2 = x \text{ for } t =$$

NE SEGUE CHE
$$G'(F) = \begin{cases} \frac{1}{\sqrt{2\pi t}} e^{-t/2} & \text{perto} \\ 0 & \text{perto} \end{cases}$$

NE SEGUE CHE $G'(F) = \begin{cases} \frac{1}{\sqrt{2\pi t}} e^{-t/2} & \text{perto} \\ 0 & \text{perto} \end{cases}$

NE SEGUE CHE $G'(F) = \begin{cases} \frac{1}{\sqrt{2\pi t}} e^{-t/2} & \text{perto} \\ 0 & \text{perto} \end{cases}$

NE SEGUE CHE $G'(F) = \begin{cases} \frac{1}{\sqrt{2\pi t}} e^{-t/2} & \text{perto} \\ 0 & \text{perto} \end{cases}$

NE SEGUE CHE $G'(F) = \begin{cases} \frac{1}{\sqrt{2\pi t}} e^{-t/2} & \text{perto} \\ 0 & \text{perto} \end{cases}$

NE SEGUE CHE $G'(F) = \begin{cases} \frac{1}{\sqrt{2\pi t}} e^{-t/2} & \text{perto} \\ 0 & \text{perto} \end{cases}$

NE SEGUE CHE $G'(F) = \begin{cases} \frac{1}{\sqrt{2\pi t}} e^{-t/2} & \text{perto} \\ 0 & \text{perto} \end{cases}$