שעור 6 תת מרחב

הגדרה 6.1 תת מרחב

 $.\mathbb{F}$,מרחב מעל מעל מרחב עניח כי V

- $.ar{0}\in W$ (1)
- $u, \mathbf{v}, \in W$ לכל (2)

$$u + v \in W$$
.

מתקיים $\alpha \in \mathbb{F}$ ולכל ולכל (3)

$$\alpha \cdot u \in W$$
.

דוגמה 6.1

$$\mathbb{R}^2$$
 נגדיר $W = \{egin{aligned} \mathbb{R}^2 & W = \{egin{aligned} \mathbb{R}^2 \\ 2 \end{pmatrix} \}$ נגדיר נגדיר

פתרון:

לא. דוגמה נגדית:

$$3 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} \notin W .$$

 \mathbb{R}^2 לכן של מרחב אל W לכן

דוגמה 6.2

$$W = \left\{ \begin{pmatrix} k \\ 2k \end{pmatrix} \middle| k \in \mathbb{R} \right\} .$$

 \mathbb{R}^2 של מרחב את $W\subseteq\mathbb{R}^2$.

פתרון:

,
$$v=inom{t}{2t}\in W$$
 , $u=inom{k}{2k}\in W$ לכל

$$u+v = \binom{k+t}{2(k+t)} \in W ,$$

$$t\in\mathbb{R}$$
 לכל $u=inom{k}{2k}\in W$ לכל (2

$$tu = \begin{pmatrix} tk \\ 2(tk) \end{pmatrix} \in W ,$$

$$\bar{0} = \begin{pmatrix} 0 \\ 2 \cdot 0 \end{pmatrix} \in W \ .$$

 \mathbb{R}^2 לכן השלושה התנאים של תת מרחב בהגדרה 6.1 מתקיימים. לכן של תת מרחב של

דוגמה 6.3

$$W = \left\{ \begin{pmatrix} a \\ a+2 \end{pmatrix} \middle| a \in \mathbb{R} \right\} .$$

 \mathbb{R}^2 תת מרחב של W האם

פתרון:

$$\mathbb{R}^2$$
 לכן W לא תת מרחב של $ar{0} = egin{pmatrix} 0 \\ 0 \end{pmatrix}
otin W$

דוגמה 6.4

$$W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \middle| x \ge 0, x, y \in \mathbb{R} \right\} .$$

 $: \mathbb{R}^2$ תת מרחב של W

פתרון:

לא. דוגמה נגדית:

$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} \in W , \qquad (-1) \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \end{pmatrix} \notin W .$$

דוגמה 6.5

$$W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \middle| x^2 - y^2 = 0 \right\} .$$

 ${}^{2}\mathbb{R}^{2}$ האם W תת מרחב של

פתרון:

לא. דוגמה נגדית:

$$u = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \in W$$
, $\mathbf{v} = \begin{pmatrix} 3 \\ -3 \end{pmatrix} \in W$, $u + \mathbf{v} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} \notin W$.

דוגמה 6.6

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{cc} x - 2y + z & = 0 \\ y - z & = 0 \end{array} \right\} .$$

 ${}^{\circ}\mathbb{R}^3$ האם W תת מרחב של

פתרון:

$$ar{0}=egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}\in W$$
 צריך להוכיח כי (1

$$\left\{ \begin{array}{rcl} 0-2\cdot 0+0 &=0 \\ 0-0 &=0 \end{array} \right. \Rightarrow \bar{0} \in W \ .$$

$$.ku\in W$$
 : גניח סקלר $.k$ צריך להוכיח: $.ku\in W$ ז"א מתקיים או"ז $.u=\begin{pmatrix}x\\y\\z\end{pmatrix}\in W$ נניח נניח (2)

$$ku = \begin{pmatrix} kx \\ ky \\ kz \end{pmatrix} \quad \Rightarrow \quad \begin{cases} kx - 2ky + kz &= k(x - 2y + z) &= 0 \\ ky - kz &= k(y - z) &= 0 \end{cases}$$

 $.ku \in W$ לכן

נקח א"ג .v
$$=egin{pmatrix} x_2\\y_2\\z_2 \end{pmatrix}\in W$$
 , $u=egin{pmatrix} x_1\\y_1\\z_1 \end{pmatrix}\in W$ נקח (3)

$$\left\{ \begin{array}{ccc} x_2-2y_2+z_2&=0\\ y_2-z_2&=0 \end{array} \right. \text{ i.i.} \left\{ \begin{array}{ccc} x_1-2y_1+z_1&=0\\ y_1-z_1&=0 \end{array} \right.$$

XI

$$u + \mathbf{v} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix} .$$

 $.u+\mathbf{v}\in W$ נבדוק אם

$$(x_1 + x_2) - 2(y_1 + y_2) + (z_1 + z_2) = (x_1 - 2y_1 + z_1) + (x_2 - 2y_2 + z_2) = 0,$$

$$(y_1 + y_2) - (z_1 + z_2) = (y_1 - z_1) + (y_2 - z_2) = 0,$$

 \mathbb{R}^3 לכן $w + \mathrm{v} \in W$ מתקיימים. לכן של תת מרחב של תת מרחב של $u + \mathrm{v} \in W$

דוגמה 6.7

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a + b + c = d \right\} .$$

 $\mathbb{F}^{2 imes 2}$ תת מרחב של W האם W

פתרון:

(1

$$\bar{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in W$$

c**·** 0 = 0 + 0 + 0 + 0.

2) נקח

$$u = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in W .$$

a+b+c=d נקח סקלר. אז

$$ku = \begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix} \in W .$$

 $.ku \in W$ לכן .ka + kb + kc = k(a+b+c) = kd

(3

$$u = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in W$$
, $\mathbf{v} = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in W$.

 $.u+\mathbf{v}\in W$ צריך להוכיח

$$.a_1 + b_1 + c_1 = d_1 \Leftarrow u \in W$$

$$a_2 + b_2 + c_2 = d_2 \Leftarrow \mathbf{v} \in W$$

$$u + \mathbf{v} = \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{pmatrix}$$

$$.u+\mathbf{v}\in W \text{ N"T } (a_1+a_2)+(b_1+b_2)+(c_1+c_2)=(a_1+b_1+c_1)+(a_2+b_2+c_2)=d_1+d_2$$

 $\mathbb{F}^{2 imes 2}$ של תת מרחב לכן לכן מתקיימים. לכן מרחב בהגדרה מרחב של תת מרחב של לכן השלושה התנאים של

דוגמה 8.8

תהי

$$W = \{p(x)|\deg(p(x)) = 2, p(x) \in \mathbb{F}[x]\}$$

 $\mathbb{F}[x]$ עם מרחב של W תת הפולינומים מתוך שדה בדיוק עם מקדמים במעלה בדיוק עם במעלה בדיוק עם מקדמים מתוך בדיוק עם מקדמים במעלה בדיוק עם מקדמים מתוך שדה W

פתרון:

לי. הסבר: הסבר מרחב של W

 $.\bar{0}\notin W$

דוגמה 6.9

נסמן

$$\mathbb{F}_2[x] = \big\{ p(x) \in \mathbb{F}[x] \big| \mathrm{deg}(p(x)) \le 2 \big\}$$

. קבוצת כל הפולינומים של $\mathbb{F}[x]$ מסדר 2 לכל היותר

 $\mathbb{F}[x]$ תת מרחב של $\mathbb{F}_2[x]$

דוגמה 6.10

$$W = \left\{ f : \mathbb{R} \mapsto \mathbb{R} \middle| f(3) = 0 \right\}$$

 $F(\mathbb{R})$ של מרחב של . $W\subseteq F(\mathbb{R})$

פתרון:

$$.ar{0} \in W \Leftarrow ar{0}(3) = 0$$
 לכן $.f(x) = 0$ הינו הפונקציה להינו הפונקציה לכן לכן הינו הפונקציה לחינו

לכן
$$f(3)=0$$
 אז $k\in\mathbb{R}$ -ו $f\in W$ אם (2

$$(kf)(3) = k(f(3)) = k \cdot 0 = 0$$
.

 $.kf \in W$ א"ז

אז
$$g(3)=0$$
 , $f(3)=0$ ז"א $f,g\in W$ ננית (3)

$$(f+g)(3) = f(3) + g(3) = 0 + 0 = 0$$
,

 $f+q\in W$ כלומר

 $F(\mathbb{R})$ אכן השלושה התנאים של תת מרחב בהגדרה 6.1 מתקיימים. לכן של תת מרחב של

דוגמה 6.11

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{rrr} 3x + y - z & = 1 \\ 2x + 5y & = 0 \\ -x + 10y - z & = 5 \end{array} \right\}$$

 \mathbb{R}^3 קבעו האם W תת מרחב של

פתרון:

 $ar{0}
otin W$, \mathbb{R}^3 לא תת מרחב של W

משפט 6.1 מרחב האפס הוא תת מרחב

 \mathbb{F}^n לכל מטריצה $A \cdot X = 0$, אוסף הפתרונות של מערכת הומוגנית אוסף הפתרונות של לכל מטריצה אוסף הפתרונות של

הוכחה: נסמן

$$\mathrm{Nul}(A) = \left\{ X \middle| A \cdot X = 0, X \in \mathbb{F}^n \right\}$$

. $\mathrm{Nul}(A)$ נוכיח כי מתחב מתקיימים עבור ע"י להוכיח כי כל השלושה ענאים של תת מרחב של \mathbb{F}^n ע"י להוכיח נוכיח כי

. מטריצה $\bar{0}$ מטריצה $\bar{0} \in \mathrm{Nul}(A)$ בריך להוכיח נריך (1

$$A \cdot \bar{0} = 0 ,$$

 $ar{.0} \in \mathrm{Nul}(A)$ לכן

 $.u+{
m v}\in {
m Nul}(A)$ נניח $.u,{
m v}\in {
m Nul}(A)$ נניח (2

$$.A \cdot u = 0 \, \Leftarrow \, u \in \mathrm{Nul}(A)$$

$$A \cdot \mathbf{v} = 0 \Leftarrow \mathbf{v} \in \mathrm{Nul}(A)$$

לכן

$$A(u+\mathbf{v})=Au+A\mathbf{v}=0+0=0\quad\Rightarrow\quad u+\mathbf{v}\in \mathrm{Nul}(A)$$

 $.ku\in \mathrm{Nul}(A)$ נקח $.k\in \mathbb{F}$ וסקלר וסקלר וסקל נקח (3

אז
$$A \cdot u = 0 \Leftarrow u \in \text{Nul}(A)$$

$$A(ku) = k(Au) = k \cdot 0 = 0 \quad \Rightarrow \quad ku \in \operatorname{Nul}(A) \ .$$

מש"ל.