Circuit Theory and Electronics Fundamentals

EXAM PART II = TEST 2

June/22/2021. Duration: 1h30m

	First Name	Last Name:	Number	Room
	scratch paper and calcu		desktop. Checking bool	ks or notes is not allowed. <u>Solve each</u>
sketch thei	r graphs during one peri	od, using a piece-wise line	ar diode model with V_{OI}	e functions $i_1(t)$, $i_2(t)$ and $v_{OUT}(t)$ and $i_1(t)$ and $i_2(t)$ Compute the functions $i_1(t)$
$i_2(t)$ and v_0	UT(t) using the following	g diode model: $i_D = I_S(e)$	$(V_T = 25 mV)$	$I_{S}=1 pA$.
characteris during one	tic and sketch its graph i	In the interval $v_s \in [-10]$ $\sin(\omega t)$ <i>V.</i> c) Compute	,+ $10]V$. b) Sketch th	the LED. a) Derive the $v_O(v_S)$ he graphs of $v_S(t)$, $i_1(t)$, $i_2(t)$ and $v_0(t)$ oltage withstood by the diode D1 and $i_1(t)$
3 Conside	r the circuit in Figure 3	a) Compute the value of R	n that makes Vo=6V at t	the operating point. If you have not

- **3.** Consider the circuit in Figure 3. **a)** Compute the value of R_B that makes $V_O=6V$ at the operating point. If you have not answered a), for the following questions assume $R_B=2M\Omega$. **b)** Draw the incremental circuit in the pass-band, and determine the voltage gain and the input and output impedances (neglecting the impedance of all capacitors). **c)** For $C_I=1\mu F$ and $C_B=C_O=\infty$, determine the 3dB cut-off frequency and indicate the type of filtering realized by the amplifier.
- **4.** Consider the circuit in Figure 4 and assume the 3-way switch is initially in <u>position 1</u>. **a)** Compute V_O for $V_A=2V$, $V_B=0V$ and $V_C=2V$. In the next questions, assume $v_A(t)=2\cos(2\pi \ 513\ t)\ V$. **b)** Compute $v_O(t)$ for $V_B=4V$ e $V_C=2V$. **c)** Compute $v_O(t)$ with the switch in <u>position 2</u>, for $V_B=V_C=0V$. **d)** Compute $v_O(t)$ with the switch in <u>position 3</u>, for $V_B=V_C=0V$.

TRADUÇÃO

Prencha o seu primeiro (First Name) e último nome (Last Name), número de aluno (Number) e sala (Room) no cabeçalho. Apenas a calculadora e folhas brancas de rascunho são permitidos. O teste é sem consulta. Resolva cada grupo de problemas num grupo de folhas separado para facilitar e acelerar a correção. As figuras estão na página seguinte.

- 1. Considere o circuito da Figura 1 onde $i_{\text{IN}}(t) = 10 \sin(\omega t) mA$. a) Calcule as funções $i_1(t)$, $i_2(t)$ e $v_{\text{OUT}}(t)$ e esboce os seus gráficos durante um período, usando para o díodo um modelo linear por troços com $V_{\text{ON}} = 0.7V$. b) Calcule as funções $i_1(t)$, $i_2(t)$ e $v_{\text{OUT}}(t)$ usando para o díodo o seguinte modelo: $i_D = I_S(e^{\frac{v_D}{V_T}} 1)$, $V_T = 25 \, mV$, $I_S = 1 \, pA$.
- **2.** Considere circuito da Figura 2, onde $V_{ON}=0.5V$ para D1, e $V_{ON}=1V$ para o LED. **a)** Determine a característica $v_O(v_S)$ e esboce o seu gráfico no intervalo $v_S \in [-10,+10]V$. **b)** Esboce os gráficos de $v_S(t)$, $i_1(t)$, $i_2(t)$ e $v_O(t)$ durante um período, para $v_S(t)=10\sin(\omega t)$ V. **c)** Calcule a tensão inversa máxima suportada pelo díodo D1 e pelo LED nas mesmas condições de b).

- **3.** Considere o circuito da Figura 3. **a)** Calcule o valor de R_B que faz com que $V_O=6V$ no ponto de funcionamento em repouso. Se não respondeu a a), para as questões seguintes assuma que $R_B=2M\Omega$. **b)** Desenhe o esquema incremental do circuito na banda de passagem, e determine o ganho de tensão e as impedância de entrada e de saída (desprezando as impedâncias de todos os condensadores). **c)** Para $C_I=1\mu F$ e $C_B=C_O=\infty$, determine a frequência de corte a 3dB e indique o tipo de filtragem realizado pelo amplificador.
- **4.** Considere o circuito da Figura 4 e assuma que o interruptor de 3 posições está inicialmente na <u>posição 1</u>. **a)** Calcule V_O para $V_A=2V$, $V_B=0V$ e $V_C=2V$. Nas próximas questões assuma que $v_A(t)=2\cos(2\pi \ 513\ t)\ V$. **b)** Calcule $v_O(t)$ para $V_B=4V$ e $V_C=2V$. **c)** Calcule $v_O(t)$ com o interruptor na <u>posição 2</u>, para $V_B=V_C=0V$. **d)** Calcule $v_O(t)$ com o interruptor na <u>posição 3</u>, para $V_B=V_C=0V$.

Answers' grading / Cotação das perguntas

1-a)	1-b)	2-a)	2-b)	2-c)	3-a)	3-b)	3-c)	4-a)	4-b)	4-c)	4-d)
1.5	2	2	2	1	1.5	3	1	1	2	2	1

Figures / Figuras

 $V_{s} = \frac{VVV}{R_{1}=4k\Omega}$ $V_{s} = \frac{i_{1}}{V_{1}=5V}$ $V_{s} = \frac{i_{2}}{V_{2}=4V}$

Figure 2

