ИНСТИТУТ ТРАНСПОРТА И СВЯЗИ

ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ НАУК И ТЕЛЕКОММУНИКАЦИЙ

Лабораторная работа №2 По дисциплине «Численные методы и прикладное программирование»

> Тема: «Методы приближения функции. Интерполяция и аппроксимация»

> > Работу выполнили:

Дзенис Ричард Кобелев Денис Якушин Владислав

Содержание

1	Фор	рмулировка задания	2
2		проксимация методом наименьших квадратов Листинги	2
	2.2		3
3	3.1	бическая сплайн интерполяция Листинг	4 5
4	Вы	воды	7

1 Формулировка задания

- Реализовать программным путём аппроксимацию функции по заданным точкам методом наименьших квадратов (МНК);
- Реализовать программным путём интерполяцию функции по заданным точкам с помощью кубических сплайнов;
- Графически сравнить получившиеся результаты;
- Сделать выводы по реализованным методам.

$$y = \sin(5x) \cdot e^x \tag{1}$$

где: $x \in [-2; +2]; \quad \Delta x = 0.5$

2 Аппроксимация методом наименьших квадратов

Аппроксимацию методом МНК можно разбить на 2 этапа:

- 1. Построение матрицы коэффициентов СЛАУ согласно универсальной СЛАУ МНК;
- 2. Решение СЛАУ для нахождения аппроксимирующего полинома.

В силу того, что универсальная СЛАУ для МНК является симметричной, то для экономии памяти можно сохранять только верную или нижнюю треугольную матрицу.

2.1 Листинги

2.1.1 Листинг построения нижней треугольной матрицы коэффициентов для универсальной СЛАУ МНК

```
// Input: points {x, y}, order of approximation
// Output: lower triangular matrix of coefficients
// with right-hand side constants
std::vector<std::vector<double>>
find_coef(std::vector<point> &points, size_t order)
{
    double coef;
    std::vector<std::vector<double>> result;
    result.resize(order + 1);
    for (size_t row = 0; row < order + 1; row++) {</pre>
        // build only lower triangular matrix (because upper == lower)
        result[row].resize(row + 2);
        // left-hand side
        for (size_t col = 0; col < row + 1; col++) {</pre>
            coef = 0.0;
            for (auto &&point : points) {
                coef += pow(point.x, row) * pow(point.x, col);
            result[row][col] = coef;
        // right-hand side
        coef = 0.0;
        for (size_t i = 0; i < points.size(); i++) {</pre>
            coef += points[i].y * pow(points[i].x, row);
        result[row].back() = coef;
```

```
}
return result;
}
```

Для того чтобы воспользоваться уже разработанной программой решения СЛАУ методом исключения Гаусса (в первой лабораторной работе), необходимо вывести всю матрицу целиком, с вектором правой части.

2.1.2 Листинг вывода СЛАУ

```
auto coefficients = find_coef(points, order);
assert(coefficients.size() == order + 1);
std::cout << coefficients.size() << std::endl;
for (size_t row = 0; row < order + 1; row++) {
    for (size_t col = 0; col < row + 1; col++)
        std::cout << coefficients[row][col] << '\t';
    for (size_t col = row + 1; col < order + 1; col++)
        std::cout << coefficients[col][row] << '\t';
    std::cout << coefficients[row].back() << '\n';
}
std::cout.flush();</pre>
```

Далее СЛАУ решается с помощью программы разработанной в ходе первой лабораторной работы.

2.2 Результаты работы метода

3 Кубическая сплайн интерполяция

3.1 Листинг

3.1.1 Листинг функции решения СЛАУ с Зёх диагональными матрицами коэффициентов

```
beta[k] = (b(k) - a(k,k-1) * beta[k-1]) / (a(k,k) - a(k,k-1) * alpha[k-1])
    }
    x[k + offset] = beta[k];
    for (; k >= 0; k--) {
        x[k + offset] = beta[k] - alpha[k] * x[k + offset + 1];
}
3.1.2 Листинг функции нахождения коэффициентов сплайнов
coefficients
interpolate(std::vector<point> &points)
    ssize_t size = points.size() - 1;
    coefficients coefs(size);
    auto h = [&](size_t i) {
        return points[i + 1].x - points[i].x;
    auto a = [&](size_t j, size_t i) -> double {
        if (j > i) return h(j + 1);
        else if (j < i) return h(j + 1);
        else return 2 * (h(j) + h(j + 1));
    };
    auto b = [&](size_t j) {
        return 3 * (
                (points[j + 2].y - points[j + 1].y) / h(j + 1) -
                (points[j + 1].y - points[j + 0].y) / h(j + 0)
    };
    if (size > 0) {
        coefs.c[0] = 0;
    }
    if (size > 1) {
        solveTridiagonal(coefs.c, 1, a, b);
    for (ssize_t i = 0; i < size; i++) {</pre>
        coefs.a[i] = points[i].y;
        coefs.d[i] = (coefs.c[i + 1] - coefs.c[i]) / (3 * h(i));
        coefs.b[i] = (points[i + 1].y - points[i].y) / h(i) - (coefs.c[i + 1] + 2
    }
    return coefs;
}
```

3.2 Результаты работы метода

Рис. 3: График сплайн интерполяции для задания
 №1

Рис. 4: График сплайн интерполяции для задания N2

4 Выводы