

SChain: A Scalable Consortium Blockchain Exploiting Intra- and Inter-Block Concurrency

Zhihao Chen, Haizhen Zhuo, Quanqing Xu, Xiaodong Qi, Chengyu Zhu, Zhao Zhang, Cheqing Jin, Aoying Zhou, Ying Yan, Hui Zhang

chenzh@stu.ecnu.edu.cn Presented at VLDB 2021

Introduction

 Blockchain provides data integrity, traceability and immutability to tackle trust problems among mutually distrusting parties

 Consortium blockchain is being widely applied to support large-scale businesses in enterprise collaborations

Introduction

- As users and applications of blockchain proliferate, the system has to scale to provide more transaction processing
 - 1. exploit the parallelism of network, i.e sharding
 - 2. enhance the capability of every single participant

Fig.1: Sharding technique

Fig.2: Enhance single participant

Cross-shard txn incurs a large number of intra- and cross-shard communications

Scale the consortium blockchain in terms of each participant based on trust domain

Background

To empower the individual participant

- Fabric incorporate concurrency
 - High abort rates for hotspot workloads
 - Enhanced works still inherits the limitations of serial validation

Fig.3: execute-order-validate paradigm

- ParBlockchain and BlockchainDB parallelize the execution
 - Allow non-conflicting transactions to execute in parallel

Fig.4: order-execute paradigm

- 1. Limited to single peer
- 2. Overlook transaction parallelism across multiple blocks

SChain Overview

- System Architecture
 - Scalable order-execute-finalize (SOEF) paradigm
 - Hybrid trust and fault assumptions
 - Exploit Intra- and Inter-Block concurrency

Fig.5: Scalable order-execute-finalize paradigm

SChain's Intra-Block Concurrency

- Multiple executors
 - Deterministic concurrency control
 - Early read/write keys acquisition for Turingcomplete smart contract
 - Guarantee the **merge** of execution result is **equivalent** to the predetermined serial order

defined by ordering phase

Transactions are executed <

Fig.6: Intra-Block Concurrency

in parallel among all executors

concurrently within a single executor

SChain's Inter-Block Concurrency

- Pipelined workflow
 - Interleave workflows for different blocks
 - -> no longer block-by-block quiescently
 - Explore the inter-block concurrency
 - -> allow txns in later blocks to be executed earlier

Execution Finalization Update Consensus Block N-1 Records Dispatch Concurrent Update Commit Block N Update Commit Consensus Records Inter-block Transaction Streaming next stage Executor E₁ Executor E-Executor Ek Executor E

Fig.7: Inter-Block Concurrency

Non-quiescent workflow

Inter-Block concurrency (

Fully-utilized resources

(async commit: keep consistent among participants by reaching consensus on checkpoint periodically)

SChain's Scalability

- Ordering
 - Merely order the transactions
 - Concurrent instances (easily get a global(total) order due to trust domain)

global order -

follow rules

- Execution
 - Devote more executors on demand
- Finalization
 - Complexity of state partition
 - Expect to design a scalable storage

Fig.8: SOEF paradigm

Conclusion and discussion

 We introduce SChain, a scalable consortium blockchain that scales transaction processing by exploiting intra- and inter-block concurrency

- Future works
 - Design efficient cache maintenance to leverage data locality
 - Explore the scalable state storage

THANKS!