An empirical study on computing consensus translations from multiple machine translation systems

Author: Wolfgang Macherey, Franz Josef Och

Professor: 陳嘉平

Reporter: 陳逸昌

Outline

- Introduction
- Methods for system combination
- Experimental results
- Conclusion

Introduction

- Three questions?
 - To what extent can translation quality benefit from combining systems developed by multiple research labs?
 - OHow can a set of diverse translation systems be built from a single translation engine?
 - OHow can an ensemble of translation outputs be selected from a large pool of translation?

Methods for systems combination

- Systems combination via candidate selection
- ROVER-Like combination schemes
- A Two-pass search algorithm

Systems combination via candidate selection

 Simply returns one of the original candidate translation.

 Typically, this selection is made based on translation scores, confidence estimations, language and other models.

The BLEU correlation matrix

Id	01	02	03	04	05	•••	14	15	16
01	1.00	0.27	0.26	0.23	0.26	• • •	0.15	0.15	0.12
02	0.27	1.00	0.27	0.22	0.25	• • •	0.15	0.15	0.12
03	0.26	0.27	1.00	0.21	0.28	• • •	0.15	0.15	0.10
04	0.23	0.22	0.21	1.00	0.19		0.14	0.12	0.12
05	0.26	0.25	0.28	0.19	1.00		0.16	0.17	0.11
06	0.27	0.24	0.25	0.21	0.26	• • •	0.16	0.18	0.13
;						٠.,			;
14	0.15	0.15	0.15	0.14	0.16	• • •	1.00	0.12	0.08
15	0.15	0.15	0.15	0.12	0.17	• • •	0.12	1.00	0.09
16	0.12	0.12	0.10	0.12	0.11	•••	0.08	0.09	1.00

- (B_{ij}) is defined as the sentence-based BLEU score between a candidate translation e_i and a pseudo-reference translation e_i.
- e_i and e_j is the output of translation systems.
- For example: (B₁₂) use the output from 2nd system as reference to score the output from 1st system.

- Each translation system m is assigned to a system prior weight ω_m .
- use ω and B to chose the best sentence.
- Two useful properties:
 - Doesn't depend on score translation outputs.
 - The system prior weights ω can easily be trained using the Minimum Error Rate Training.
- Call the combination scheme MBR-like system combination.

ROVER-like combination schemes

 Computing a composite translation by voting on confusion networks .

 Use TER to construct the confusion network.

ROVER-like combination schemes

$$\omega_{m}^{'} = \frac{\left(\omega^{T} \cdot b_{m}\right)^{l}}{\sum_{\tilde{m}} \left(\omega^{T} \cdot b_{\tilde{m}}\right)^{l}}, l \in \left[0, +\infty\right)$$

- $\bullet \omega_{m}$: the system prior weight
- b_m: the BLEU matrix m_{th} row vector
- The system which refined system prior weights are denoted by word sausages+.

A two-pass search algorithm

- First pass
 - Ouses a greedy strategy to determine a bag of words which minimizes the positionindependent word error rate (PER).
 - The first pass finishes when putting further constituents into the bag of words does not improve the PER.

A two-pass search algorithm

Second pass

- Starts with the empty string and then expends all active hypotheses by systematically inserting the next unused word.
- The resulting hypotheses are scored with respect to the TER measure with pseudo references.
- The second pass will finish if either no unused word are left or if expending the set of hypotheses does not improve TER.

Experimental results

- On two corpora for Chinese-English
 - Random selected from MT evaluations up to the year 2005
 - ONIST MT evaluations 2006
 - Broadcast news articles(565 sentences)
 - Newswire texts(616 sentences)
 - News group texts(483 sentences)
- 4 reference translation

Table 1: Corpus statistics for two Chinese-English text translation sets: ZHEN-05 is a random selection of test data used in NIST evaluations prior to 2006; ZHEN-06 comprises the NIST portion of the Chinese-English evaluation data used in the 2006 NIST machine translation evaluation.

corpus		Chinese	English			
ZHEN-05	sentences	2390				
	chars / words	110647	67737			
ZHEN-06	sentences	16	64			
	chars / words	64292	41845			

Combining multiple research systems

system	BLEU score
1	32.1
2	31.71
3	29.59
4	27.7
5	27.05
6	27.02
7	26.75
8	26.41
9	25.05
10	23.48
11	23.26
12	22.38
13	22.13
14	17.42
15	17.2
16	15.21

 The consensus translation results for the MBR-like candidate selection method (select best).

Combining multiple research systems

combination	primary system	consens	us					
	BLEU CI 95%	BP	BLEU	$oldsymbol{\Delta}$	BP	pair-CI 95%	BLEU	BP
01, 02, 03	$32.10 \ (\pm 0.88)$	0.93	32.97	(+0.87)	0.92	[+0.29, +1.46]	38.54	0.94
01, 15, 16*	$32.10 \ (\pm 0.88)$	0.93	23.55	(-8.54)	0.92	[-9.29, -7.80]	33.55	0.95
02, 03, 04	$31.71 \ (\pm 0.90)$	0.96	31.55	(-0.16)	0.92	[-0.65, +0.29]	37.23	0.95
03, 04, 05	29.59 (± 0.88)	0.87	29.55	(-0.04)	0.88	[-0.53, +0.41]	35.55	0.92
03, 04, 06*	29.59 (± 0.88)	0.87	29.83	(+0.24)	0.90	[-0.29, +0.71]	35.69	0.93
04, 05, 06	$27.70 \ (\pm 0.87)$	0.94	28.52	(+0.82)	0.91	[+0.15, +1.49]	34.67	0.94
05, 06, 07	27.05 (± 0.81)	0.88	28.21	(+1.16)	0.92	[+0.63, +1.66]	33.89	0.94
05, 06, 08*	27.05 (± 0.81)	0.88	28.47	(+1.42)	0.91	[+0.95, +1.95]	34.18	0.93
06, 07, 08	27.02 (± 0.76)	0.92	28.12	(+1.10)	0.94	[+0.59, +1.59]	33.87	0.95
07, 08, 09	$26.75 \ (\pm 0.79)$	0.97	27.79	(+1.04)	0.94	[+0.52, +1.51]	33.54	0.95
08, 09, 10	26.41 (± 0.81)	0.92	26.78	(+0.37)	0.94	[-0.07, +0.86]	32.47	0.96
09, 10, 11	25.05 (± 0.84)	0.90	24.96	(-0.09)	0.94	[-0.59, +0.46]	30.92	0.97
10, 11, 12	23.48 (± 0.68)	1.00	24.24	(+0.76)	0.94	[+0.27, +1.30]	30.08	0.96
11, 12, 13	23.26 (± 0.74)	0.95	24.05	(+0.79)	0.92	[+0.40, +1.23]	29.56	0.93
12, 13, 14	22.38 (± 0.78)	0.87	22.68	(+0.30)	0.89	[-0.28, +0.95]	28.58	0.91
13, 14, 15	22.13 (± 0.72)	0.89	21.29	(-0.84)	0.90	[-1.33, -0.33]	26.61	0.92
14, 15, 16	17.42 (± 0.66)	0.93	18.45	(+1.03)	0.92	[+0.45, +1.56]	23.30	0.95
15	17.20 (± 0.64)	0.91	· —	_	-	_	-	(
16	15.21 (± 0.63)	0.96	-	-	_	=	-	_

Combining multiple research systems

 All translation systems achieve nearly equal quality.

 Combing high-performing systems with low-quality translation typically results in clear performance losses.

Non-uniform system prior weights

 Investigate the effect of using non-uniform system weights for the combination.

 Split oracle test set into five random partitions of almost equal size.

# systems	combination	uniforn	1	ω opt. (on dev.	ω opt. on test		
		BLEU	BP	BLEU	BP	pair-CI 95%	BLEU	BP
3	01 - 03	32.98	0.92	33.03	0.93	[-0.23, +0.34]	33.60	0.93
4	01 - 04	33.44	0.93	33.46	0.93	[-0.26, +0.29]	34.97	0.94
5	01 - 05	33.07	0.92	33.14	0.93	[-0.29, +0.43]	34.33	0.93
6	01 - 06	32.86	0.92	33.53	0.93	[+0.26, +1.08]	34.43	0.93
7	01 - 07	33.08	0.93	33.51	0.93	[+0.04, +0.82]	34.49	0.93
8	01 - 08	33.12	0.93	33.47	0.93	[-0.06, +0.75]	34.50	0.94
9	01 - 09	33.15	0.93	33.22	0.93	[-0.35, +0.51]	34.68	0.93
10	01 - 10	33.01	0.93	33.59	0.94	[+0.18, +0.96]	34.79	0.94
11	01 - 11	32.84	0.94	33.40	0.94	[+0.13, +0.98]	34.76	0.94
12	01 - 12	32.73	0.93	33.49	0.94	[+0.34, +1.18]	34.83	0.94
13	01 - 13	32.71	0.93	33.54	0.94	[+0.39, +1.26]	34.91	0.94
14	01 - 14	32.66	0.93	33.69	0.94	[+0.58, +1.47]	34.97	0.94
15	01 - 15	32.47	0.93	33.57	0.94	[+0.63, +1.57]	34.99	0.94
16	01 - 16	32.51	0.93	33.62	0.94	[+0.62, +1.59]	35.00	0.94

 The best combined system obtained with trained system weights(01-14)

 Not significantly better than the best combined system using uniform weights(01-04)

Effect of correlation on system combination

- The correlation is a key factor which decides the overall system performance improves.
- If the correlation is too large, there will be insufficient diversity among the input.
- If the correlation is too low, there might be no consensus among the input.

- Built a large number of systems trained on randomly sampled portion of the training data.
- Sample sizes ranged between 5% and 10 % with each larger data set doubling the size of the next smaller collection.
- Created 10 data sets for each sample size, thus resulting in a total of 6X10 training corpora.

sampling primary				mbr-lil	кe	sausages		sausages+		two-pass		two-pass+	
[%]	BLEU	CI 95%	BP	BLEU	BP								
5	27.82	(± 0.65)	1.00	29.51	1.00	29.00	0.97	30.25	0.99	29.58	0.94	29.93	0.96
10	29.70	(± 0.69)	1.00	31.42	1.00	30.74	0.98	31.99	0.99	31.30	0.95	31.75	0.97
20	31.37	(± 0.69)	1.00	32.56	1.00	32.64	1.00	33.17	0.99	32.60	0.96	32.76	0.98
40	32.66	(± 0.66)	1.00	33.52	1.00	33.23	0.99	33.98	1.00	33.65	0.97	33.88	0.99
80	33.67	(± 0.66)	1.00	34.17	1.00	33.93	0.99	34.38	1.00	34.20	0.99	34.35	1.00
100	33.90	(± 0.67)	1.00	34.03	1.00	33.98	1.00	34.02	1.00	33.90	1.00	34.08	1.00

Effect of correlation on system combination

 Increasing the correlation substantially reduces the potential of a consensus system to outperform the primary translation system.

 For two-pass and sausage, as soon as the correlation increases and their outputs produced by the individual systems become more similar.

Toward automatic system generation and selection

- A method to reduce correlation without sacrificing system performance.
- Change few parameters may have a strong impact on system correlation.
- Parameters that were changed include
 - the maximum jump width in word re-ordering
 - The choice of feature function weights for the log-linear translation models.
 - The set of language models.

Toward automatic system generation and selection

- Used a greedy strategy to rank the systems with respect to their ability to improve system combination.
- Adding those systems, which gave the highest gain in terms of BLEU score according to the MBR-like method.

Conclusion

 Trained a large pool of translation systems from a single translation engine with low correlation.