Bioinformatika 1 Heurističko poravnavanje. BLAST

Mirjana Domazet-Lošo FER, 2021./2022.

Zašto pretraživati baze podataka sljedova?

Usporedbe gene, genoma, proteina, proteoma

- novi genom
 - sličnost s prethodno sekvenciranim genomima
 - identifikacija gena

- kada je pronađen gen u genomu
 - postoji li taj gen u nekom drugom organizmu?
 - je li poznata funkcija tog gena u drugom organizmu?
 - za novootkriveni protein odrediti funkciju na temelju sličnosti s proteinima kojima je poznata funkcija

Pretraživanje baza podataka sljedova

Osnovna ideja

- baza podataka se pretražuje kako bi se pronašli slični sljedovi
- određivanje sličnosti između sljedova
 - → poravnavanjem

(najčešći postupak u bioinformatici)

Usporedbe velikih količina podataka (1)

- exhaustive search
 - ispitivanje svih mogućih rješenja kako bi se pronašlo optimalno rješenje

- dinamičko programiranje
 - poravnanje 2 niza duljine *n* i *m*:

Smith-Watermanov, Needleman-Wunschov algoritam

- vremenska složenost: O(nm)
- → presporo?

Usporedbe velikih količina podataka (2)

Primjer:

Usporedba (i) gena (ii) genoma

- s bazom podataka nukleotida, npr. *GenBank*
 - duljina gena (čovjek) ≈ 10³bp
 - duljina ljudskog genoma ≈ 3 · 10⁹bp
 - veličina GenBank (NCBI-GenBank, 2./2022.): 1.1 · 10¹²bp
 - veličina WGS (NCBI-GenBank, 2./2022.): 15 · 10¹²bp
 - http://www.ncbi.nlm.nih.gov/genbank/statistics
 - http://www.ncbi.nlm.nih.gov/genbank/wgs

NCBI (National Center for Biotechnology Information) http://www.ncbi.nlm.nih.gov/genbank/statistics

Heuristički pristup

- pronalazak optimalnog rješenja nije zajamčen, koristi se heuristika
- odvagivanje između osjetljivosti i brzine (eng. sensitivity vs speed)

- metode temeljene na pronalasku identičnih ili skoro identičnih riječi (eng. words) ili k-torki (eng. k-tuples) između parova sljedova:
 - BLAST (Altschul et al., 1990. Basic local alignment search tool)
 - FASTA (Lipman & Pearson, 1985. Rapid and sensitive protein similarity searches)

BLAST - citiranost

- Citiranost (Web of Knowledge, ožujak 2021.)
 - BLAST (Basic Local Alignment Search Tool; Altschul et al., 1990):
 61 934 citata
 - Gapped BLAST & PSI-BLAST (Altschul et al., 1997):

54 299 citata

usporedba:

48 911 citata (10./2019.)

44 061 citata (10./2017.)

40 016 citata (10./2015.)

Pretraživanje baze podataka

Program BLAST

- BLAST (Basic Local Alignment Search Tool)
 - glavni alat NCBI-a za usporedbe proteinskih i nukleotidnih sljedova NCBI-a (National Center for Biotechnology Information)

- Lokalno poravnanje
 - upitni slijed (ili njegovi dijelovi) se poravnavaju sa sljedovima u bazi podataka (Altschul et al., 1990; 1997)

BLAST – ideja

• <u>Ideja</u>

- uspoređivanje upitnog slijeda (eng. query) s bazom podataka sljedova (eng. target)
- rezultat:

lista najboljih podudaranja (eng. matches)

BLAST – postupak pretraživanja BP

- 1. odabir BLAST programa
 - blastp, blastn, blastx, tblastn
- 2. odabir upitnog slijeda (eng. *query*)
 - accession number, gi identifikator, fasta format
- 3. odabir baze podataka za pretraživanje
 - najčešće: nonredundant database (nr)
- 4. odabir parametara za pretraživanje
 - pregled prikazanih rezultata

BLAST - programi

Program	Upit	Baza podataka
blastp	Protein	Protein
blastn	DNA DNA	
blastx	DNA* (6 mogućih čitanja) Protein	
tblastn	Protein	DNA* (6 mogućih čitanja)
tblastx**	DNA* (6 mogućih čitanja)	DNA* (6 mogućih čitanja)

- **P** → protein
- N → nukleotid
- X → DNA dinamički translatirana u 6 proteinskih sljedova
- **T** → DNA bazu podataka se pretražuje prema 6 okvira čitanja
- **tblastx 36 mogućih protein-protein kombinacija

6 okvira čitanja

• Primjer: AAACCCGGG
TTTGGGCCC

Gornji lanac - 3 okvira čitanja:

AAA CCC GGG → Lys Pro Gly

AAC CCG → Asn Pro

ACC CGG → Thr Arg

Donji lanac - 3 okvira čitanja:

CCC GGG TTT → Pro Gly Phe

CCG GGT → Pro Gly

CGG GTT → Arg Val

Npr. za standardni genetički kod vidjeti: http://en.wikipedia.org/wiki/Genetic_code

Choose a type of specialized search (or database name in parentheses)

BLAST – primjer (1)

BLAST – primjer (2)

BLAST – primjer (3)

BLAST – primjer (4)

BLAST – parametri pretraživanja (1)

BLAST – parametri pretraživanja (2)

- očekivani prag (eng. expect threshold): E-value
 - broj pogodaka (zapisa) čiji je rezultat ≥ S (eng. score) za koji se očekuju da će biti pronađen u bazi podataka slučajnim putem
 - npr. rezultat S = 18 uz E = 0.025 znači da se, pretraživanjem baze podataka uz zadane parametre, očekuje 0.025 pojavljivanja rezultata $S \ge 18$
 - obično se kao statistički pouzdano uzima *E* ≤ 0.05, ali ...

BLAST – parametri pretraživanja (3)

- duljina riječi (eng. word size)
 - kod pretraživanja, upitni slijed se dijeli u kraće sljedove/riječi (eng. words) zadane duljine (eng. word size), prema kojima se onda određuje sličnost sa sljedovima u bazi podataka
 - inicijalne vrijednosti:

za amino kiseline: 3 (2 za vrlo kratke peptide)

za nukleotidne sljedove: 11 (7 - 15)

- kratki upiti (eng. short queries)
 - ako se odabere ova opcija, onda su duljina riječi i prag očekivanja automatski postavljeni

BLAST - parametri pretraživanja (4)

- <u>supstitucijska matrica</u> (eng. *substitution matrix*) za proteinske sljedove
 - inicijalno: BLOSUM 62
 - može se izabrati:
 PAM30, PAM70, PAM250, BLOSUM45, BLOSUM80, itd.

- kazne za uvođenje procijepa (praznina) (eng. gap costs)
 - tipično: pojava (otvaranje) procijepa kažnjava se više od proširenja procijepa
 - linearni model (Ln)
 - afini model (G + L(n-1))

BLAST - parametri pretraživanja (5)

- statistika temeljena na <u>nukleotidnom/aminokiselinskom sastavu</u> sljedova (eng. *composition-based statistics*)
 - neki proteini imaju atipičan sastav nukleotida ili aminokiselina, koji se onda kompenzira uključivanjem ove opcije

Primjer:

- Plasmodium falciparum ima 80.6% AT nukleotida
- neki proteini sadrže visok postotak hidrofobnih dijelova
- popravlja *E* statistiku

BLAST - parametri pretraživanja (6)

- <u>filtri i maske</u> (eng. *filters and masking*)
 - filtriranje se primijenjuje na upit, a ne na cijelu bazu podataka
 - filtriraju se dijelovi niske složenosti (eng. *low complexity*), npr. dinukleotidna ponavljanja (npr. (AT)_n)
 - za nukleotide: program DUST
 - za aminokiseline: program SEG
 - filtriranje ponavljanja kako bi se izbjegla lažna podudaranja
 - maskiranje malih slova
 - samo se velika slova koriste za pretraživanje baze podataka

BLAST – parametri ispisa

- identifikator slijeda
 - npr. slijed iz RefSeq (npr. ref | NP_006735.1), GenBank (npr. gb | AAF69622.1)
- kratki opis slijeda
- maksimalan rezultat poravnanja (Max bit-score)
- ukupan rezultat (*Total bit-score*) >= maksimalan rezultat poravnanja
- *E*-vrijednost

BLAST – evaluacija dobivenih rezultata

- Kako evaluirati rezultate?
 - Kako odrediti značaj rezultata?
 - Što napraviti kada je puno rezultata?
 - Što napraviti kada je malo rezultata?

BLAST – statistika (1)

• rezultat poravnanja (eng. score) S:

$$S = (\sum M_{ij}) - cP_{postojanje} - dP_{pojedinačno}$$

 M_{ii} – rezultat prema matrici sličnosti

 $P_{postojanje}$ – kazna za postojanje/otvaranje procijepa (BLAST: 11)

 $P_{pojedinačno}$ – kazna za pojedinačnu prazninu (proširenje procijepa) (BLAST: 1)

d – ukupna duljina procijepa

c – broj procijepa

- E-vrijednost (eng. E-value) određivanje statističkog značaja poravnanja
 - ima li poravnanje biološko značenje (homologija) ili je samo rezultat slučajnosti?

BLAST – statistika (2)

- statistički temelji: Altschul et al. (1990, 1994, 1997)
- neka su zadana sljedovi duljine m (upitni slijed) i n (slijed ili baza podataka sljedova s kojim se upitni slijed uspoređuje) te konstanta K
- neka je rezultat poravnanja ta dva slijeda jednak S
- vrijedi:

$$P(S < x) = \exp(-e^{-\lambda(x-u)})$$

$$u = \ln Kmn / \lambda$$

λ, K – Karlin-Altschulovi statistički parametri

(konstante ovisne o odabranoj supstitucijskoj matrici)

BLAST – statistika (3)

• vjerojatnost da rezultat poravnanja S bude $\geq x$ za neka 2 slučajna slijeda je:

$$P(S \ge x) = 1 - \exp(-Kmne^{-\lambda x})$$

• *K* i λ su Karlin-Altschulovi statistički parametri

BLAST – statistika (4)

Pitanje:

Kolika je vjerojatnost da će se pretraživanjem baze podataka duljine n za upitni slijed duljine m pronaći slijed koji će samo zbog slučajnosti, a ne stvarne homologije, imati rezultat poravnanja s upitnim slijedom $\geq S$?

→ Procijeniti broj lažnih pozitivnih rezultata (eng. false positives)

BLAST – E i p vrijednosti (1)

Povezanost između *E*-vrijednosti i vjerojatnosti *p*

- rezultat poravnanja: S
- bitovni rezultat poravnanja: $S' = (\lambda S \ln K) / \ln 2$
- očekivanje: $E = mn \cdot 2^{-S'}$
- vjerojatnost *p* da je dobiveni rezultat *S* slučajan:

$$p = 1 - e^{-E}$$

E		p	
10		0.99995460	
5		0.99326205	
1		0.63212056	
0.1		0.09516258	
0.05		0.04877058	
0.00	1	0.00099950	

BLAST – *E* i *p* vrijednosti (2)

- Koliki je *E* značajan?
 - $E \approx 0.05$
 - vrlo srodni sljedovi mogu imati $E \le 10^{-20}$ i manje
 - npr. $E \le 10^{-100}$ za homologe ili identične gene
 - analize genoma mikrorganizama pokazuju da su značajne vrijednosti oko 10⁻⁴ (10⁻⁵ i manje)

BLAST – ideja

List, Scan, Extend

BLAST – algoritam (1)

Predkorak:

Isključiti područja niske složenosti (eng. low-complexity regions)

- Iz upitnog slijeda odrediti listu riječi L, gdje su riječi unaprijed zadane duljine
 - obično 3 aminokiseline ili 11 nukleotida

- 2. Za svaku riječ W iz L pronaći slične riječi, tj. izgraditi listu riječi L' čije poravnanje s W daje rezultat $\geq T$
 - rezultat poravnanja računa se korištenjem supstitucijskih matrica ili bodovanjem podudaranja/nepodudaranja nukleotida

BLAST – algoritam (2)

- 3. Pretražiti bazu podataka kako bi se pronašle sljedovi koji sadrže riječi (eng. hits) iz L'
- 4. Proširiti poravnanje oko pogodaka ulijevo i udesno, sve dok rezultat poravnanja ne počne padati ispod zadanog praga
 - → područja zvana *HSP* (eng. high-scoring segment pair)
 - oduzima 90% vremena!
 - prag (rezultat poravnanja) npr. 22 za proteine i 20 za nukleotide

5. Odabrati *HSP*-ove s najvišim rezultatom te odrediti njihov statistički značaj (*E* i *p* vrijednosti)

BLAST – algoritam (3)

Gapped BLAST

(Gapped Extension)

6. Povezati 2 ili više inicijalnih pogodaka koji se nalaze na istoj dijagonali i međusobno su udaljeni < A

7. Statistički značajna podudaranja se ponovno poravnavaju korištenjem SW algoritma

Supstitucijske matrice (1)

- supstitucijska matrica S: matrica 20 x 20 koja sadrži brojeve koji predstavljaju stope mutacija aminokiselina u nekom vremenu
 - temelji se na vjerojatnosti
 - ocrtava svojstva aminokiselina
 - Primjer:

veća je vjerojatnost da će hidrofilna aminokiselina mutirati u drugu hidrofilnu aminokiselinu, a manja da će mutirati u hidrofobnu

Supstitucijske matrice (2)

- PAM matrice (Dayhoff et al. 1978)
 - PAM/APM (Accepted Point Mutation)
 - temeljene na promatranju globalnog poravnanja blisko srodnih vrsta (što uključuje i očuvana područja i područja veće mutacije)
 - filogenetski pristup: promatranje zajedničkog pretka poravnatih aminokiselina
- PAM 1 promijenjeno je 1% aminokiselina
 - ostale PAM matrice se računaju iz PAM1 (sve do PAM250)
- $M_{ij} = 10 \cdot \log (q_{ij}/p_i)$
 - q_{ii} promatrana frekvencija supstitucije, tj. promjene $j \rightarrow i$
 - p_i očekivana frekvencija pojave i-te aminokiseline

Supstitucijske matrice (3)

- BLOSUM matrice (Henikoff & Henikoff, 1992)
 - BLOSUM (*BLOck Substitution Matrix*)
 - poravnanje vrlo očuvanih područja u poravnanjima; nema eksplicitnog evolucijskog modela
 - bolje za usporedbe udaljenijih proteina; obično se koristi BLOSUM62

BLOSUM62

Hung et al. BMC Genomics 2010 11 (Suppl 3):S14

BLAST – izgradnja liste sličnih riječi

Koraci 1 & 2:

Konstruirati listu riječi duljine n čiji zbroj daje vrijednost $\geq T$.

blastp: $n = 3 (2 - 3) \rightarrow za 20$ aminokiselina: $20^3 = 8000$ mogućih riječi

blastn: n = 11 (7 - 11)

Primjer:

upit = GEIIGCT

- rastavlja se na riječi GEI EII IIG IGC GCT
- za svaku od riječi r generirati listu riječi čiji je rezultat poravnanja s r ≥ T = 12 (prema BLOSUM62)

Riječ	Zbroj (riječ GEI)			
GEI	6 + 5 + 4 = 15			
GEE	6 + 5 - 3 = 8			
EEE	-2 + 5 + (-3) = 0			
GEL	6 + 5 + 2 = 13			

BLAST – pretraživanje baze podataka (1)

Korak 3:

- konstruira se automat s konačnim brojem stanja (eng. *finite state automaton*; FSA) na temelju liste riječi L' (čiji je zbroj $\geq T$)
 - → automat omogućuje prepoznavanje riječi iz L'

- Ulaz: sljedovi iz baze podataka
 - u slijedu se promatra znak po znak (svaki ulazni znak inicira prijelaz u neko od stanja automata)
- Izlaz: dojava o pronađenim riječima ili odbacivanje ulaznog slijeda

BLAST – pretraživanje baze podataka (2)

Primjer:

Zadana je riječ CHH i T = 19.

Lista riječi (prema BLOSUM62) za koje je T \geq 19 je L' = {CHH, CHY, CYH}.

Automat izgrađen na temelju L':

¶ ₁ :	INPUT	OUTPUT		
	~CHY	none		
	Н	СНН		
¶ ₂ :	Υ	CHY		
	~CH	none		
	Н	CYH		

Zvelebil & Marketa, 2008

(Understanding Bioinformatics, Ch.5, Fig. 5.23)

BLAST – High-Scoring Segment Pairs

Korak 4:

- pronalaženje pogodaka (eng. hit) u bazi podataka i njihovo proširenje
 - → generiranje HSP (*High-scoring Segment Pair*)
- <u>Primjer:</u>

Ε	Е	\vdash	P	Q	_	Α	>	Ε
L	1	Т	P	Q	Е	L	>	С

- pogodak se proširuje sve dok trenutno najbolji rezultat ne padne za $\geq X = 3$
- koristi se supstitucijska matrica BLOSUM62

```
PQI || PQE \rightarrow 7 + 5 - 3 = 9 (pronađen je "pogodak" za PQI)

TPQIA || TPQEL = 5 + 7 + 5 - 3 - 1 = 13

ETPQIAV || ITPQELV = -3 + 5 + 7 + 5 - 3 - 1 + 4 = 14

EETPQIAVE || LITPQELVC = -3 - 3 + 5 + 7 + 5 - 3 - 1 - 4 = 7
```

BLAST – odabir supstitucijskih matrica

za blisko srodne proteine:
 PAM1, BLOSUM80

• za *srednje* srodne proteine: PAM120, BLOSUM62

za udaljene proteine:
 PAM250, BLOSUM45

Napomena:

Kod vrlo udaljenih homologa, kojima je inicijalni rezultat poravnanja malen, ali imaju vrlo sličnu 3D strukturu, koristiti PSI-BLAST.

PSI-BLAST (1)

Position-Specific Iterated BLAST (Altschul et al., 1997; Schäffer et al. 2001)

- 1. Osnovno blastp pretraživanje
- 2. PSI-BLAST gradi MSA prema inicijalnom rezultatu blastp korištenjem statistike temeljene na aminokiselinskom sastavu sljedova (eng. *composition-based statistics*) → izgraditi profil **PSSM** (*Position-Specific Score Matrix*)
- 3. PSSM (L x 20) postaje upitni slijed i onda se koristi za daljnje pretraživanje baze podataka (umjesto supstitucijske matrice)
- 4. PSI-BLAST procjenjuje statistički značajne rezultate (*E*-vrijednost)
 → novi profil se koristi kao novi upit

Koraci 3-4 se ponavljaju više puta (obično 5 puta); novi se profil koristi kao upit.

L = duljina upita, 20 – broj aminokiselina

MSA (*Multiple Sequence Alignment*) = poravnanje više sljedova odjednom

MSA (Multiple Sequence Alignment)

J. Pevsner, 2009. Bioinformatics and Functional Genomics

PSI-BLAST (2)

PSSM (Position-Specific Score Matrix)

Algoritam:

Odredi PSSM na temelju upitnog slijeda

Ponavljaj dok ima novih homologa ili je broj pretraživanja < n

PSSM' := PSSM uz informacije dobivene pronalaskom homologa

Pretraži bazu korištenjem PSSM' matrice

Kraj

Ispiši homologe

PSI-BLAST (3)

- Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (Altschul et al. 1997.)
- 2. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements (Schäffer *et al.* 2001)
- \rightarrow Najveće poboljšanje (2) u odnosu na (1): izračun λ ovisno o sastavu upitnog slijeda i baze podataka, a ne temeljem prethodno izračunatih vrijednosti za λ

MegaBLAST

- uspoređivanje jako dugih upitnih sljedova
- usporedbe vrlo sličnih sljedova (unutar vrste ili između blisko srodnih vrsta)

Primjer:

usporedba cijelog ljudskog kromosoma s drugim dugačkim kromosomima (npr. kromosomom miša)

Popis literature

- 1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J., 1990. Basic local alignment search tool, J. Mol. Biol. 215:403-410.
- 2. Altschul S.F. *et al.* 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389-3402.
- 3. Lipman & Pearson, 1988. Improved Tools for Biological Sequence Comparison. Proc Natl Acad Sci USA. 1988 Apr;85(8):2444-8.
- 4. Kerfeld CA, Scott KM (2011) Using BLAST to Teach "E-value-tionary" Concepts. PLoS Biol 9(2): e1001014. doi: 10.1371/journal.pbio.1001014
- 5. Pevsner J., 2009. Bioinformatics and Functional Genomics, 2nd Ed., Ch. 4 & 5
- 6. Zvelebil & Baum. 2008. Understanding Bioinformatics, Ch.5
- 7. http://petang.cgu.edu.tw/Bioinfomatics/MANUALS/NCBIblast/psi1.html