Stars and Galaxies

Mark Swinbank and David Alexander

Michaelmas 2017 - Epiphany 2018

Contents

Obs	servational
Lect	ture 3
Lect	ture 4
	Back to CCDs:
	Photometry
	Basic Data Reduction to Correct for Background in CCD
	Noise Sources
	SNR Approximations
Lect	ture 5
	Spectroscopy
	Grating Equation
	Resolving Power
	CDs, DVDs, and Blu-Rays
Lect	ture 6
LCC.	Measuring Stars
	Interferometry
Loca	ture 7
Lec	
Look	Multi-Wavelength Techniques
Lec	Padias Ctd
	Radios Ctd
	Telescope Tech
	Exoplanets
Sta	rs
	ture 1
	ture 2
LCC.	Excitation Energies
	Ratios of Excitation Levels
	Ionisation Energies
Logi	ture 3
Lec	Binary Star Systems
	· · · · · · · · · · · · · · · · · · ·
	Visual Binary Systems
	Normal Example
	Inclination Example
	Spectroscopic Binaries
	Special Case: Eclipsing Spectroscopic Binaries
	ture 4
Lect	ture 5
	Virial Theorem
	Energy from Gravitational Collapse
Lect	ture 6
	Binding Energies of Fusion

	Coulomb Barrier
	Probability of Nuclear Reactions
Lect	ure 7
	Nuclear Conservation Rules
	Proton-Proton Chains
	CNO Cycle

Chapter 1

Observational

other stuff in notebook

Lecture 3

- Parts of atmosphere are opaque due to water vapour, O_3 , etc
- Correcting for atmospheric absorption:
 - GET IMAGES FROM SLIDES

$$X = 1 \text{ airmass}$$

$$X = \sec(z) \text{ airmasses}$$

$$-\int_{I_C}^{I_O} \frac{dI}{I} = \int_0^X k \, dX$$

$$\ln \frac{I_{obs}}{I_{corr}} = kX + c$$

$$\frac{I_{obs}}{I_{corr}} = e^{-kX}$$

$$m_{obs} - m_{corr} = -2.5 \log \frac{I_{obs}}{I_{corr}}$$

$$m_{obs} - m_{corr} = -2.5 \log e^{-kX}$$

$$= 2.5kX \log e$$

$$m_{corr} = m_o bs - A_{\lambda}(z = 0) \sec z$$

- Atmospheric refraction
 - MATHS AND PICS IN SLIDES
 - plane parallel atmosphere
 - apply laws of refraction
 - basic trig stuff
 - always in small angle approx range
 - $r = (n-1)\tan(z_0)$
- Refractive index also has wavelength dep
- atmos ref turns into an atmos dispersion
- disperses more for smaller wavelength

- 3 or 4 arcsecs
- a lot.
- Every object appears as a spectrum as colors separate
- atmos emission
 - fluorescent emission
 - * air glow
 - emits thermal radiation for TE
 - Most emission is from OH molecules in upper atmos
 - * vibrational and rotational movement
- want to try and stay away from regions with lots of this emission
- Other sources of emission:
 - light pollution
 - * from ground
 - * from satellites and aircraft
 - zodiacal light
 - * light scattered from interplanetery dust
 - * in plane of the Solar System
 - scattered light
 - * e.g. from the moon
 - * telescope scheduling to dark, grat, and bright time
- more diffcult observations at longer wavelengths
 - more background issues
- dust causes lots of interference
 - at longer wavelengths, interaction between dust and photons is smaller
 - interaction cross-section
- easier to see through dust a lot easier and see other galaxies etc at longer wavelengths
- Atmospheric turbulence
 - twinkle twinkle little star
 - Stars twinkle due to light getting bounced around in atmos
- Angular resolution of telescope limited by Fraunhofer Diffraction
 - see last year
 - Airy disk
 - assume stars as point sources
 - large telescope \implies small airy disk
 - small telescope \implies large airy disk
 - how close before two stars are seen as one?
- Characterise resolution with Rayleigh criterion
 - at some point the principle maximum of one star overlays with the principle minimum of the second
 - * diffraction limit
 - $-\theta_{dl} = 1.22\frac{\lambda}{D}$
 - * integrate round a cylinder using Bessel fns to get this
 - * covered sort of later on in other module
- Atmos is constantly moving
 - changing size, density, and temperature causes different path lengths ever dt for stars
 - sum up over lots of dt for observing
 - * causes blurring though
 - no longer airy disk, severely blurry
- for atmost urbulence, the seeing is defined as minimum angle between two stars that can just be resolved
 - typically in arcsec
 - 50x worse than the diffraction limit
- Detectors
 - Charged Coupled Device
 - little silicon micro-circuits

- little ray of capacitors
- discrete energy bands
 - * conduction band and valence band
 - * difference of $\approx 1.1 \text{eV}$
- upper cut-off wavelengths governed by band gap voltage difference
- lower wavelengths cut-off by absorption of photons into the silion
- excellent Quantum efficiency
 - * > 90%
- high dynamic range
- excellent linearity
- excellent stability
- still not enough pixels

Back to CCDs:

- Well Depth
 - how many electrons can be stored in the upper state, usually 100s of thousands
- use binary for how many levels for the signal
 - i.e. 8 bit = $2^8 = 256$ levels
- System Gain
 - how many photo-electrons are required for digital output of 1
 - small gain means reduced saturation signal

Photometry

- Process of obtaining quatative (numerical) values of the birghtness of celestial objects
- CCD gives output prop to number of photons incident on each pixel
- Photometry takes raw data and corrects for noise from other sources
- Noise is just any interference for the image
- SNR (signal to noise ratio) defined as ratio of useful to non-useful data
- Poisson stats
 - arrival of photons governed by this
 - studied for how cameras observe sky stuff
 - see stats last year
 - Hughes and Hase and labs stuff

$$P(n,N) = \frac{\exp(-N)N^n}{n!}$$

- High means approximates Gaussian stats
- mean is N
 - also Variance
 - std dev is \sqrt{N}
- Telescope experiments can take eight hours or so
 - so use Poisson errors for easy error in counts
- Small error associated with read out

Basic Data Reduction to Correct for Background in CCD

- Bias
 - a zero second readout while results in a constant offset

- allows for understanding of the "noise" quantity
- Dark
 - CCD band stuff
 - CCD will be in TE so will promote thermal photons
 - thermal photons can hit detector and skew results
 - this will increase in time
- Flat Field
 - variations in sensitivity
 - varied energy ever so slightly across CCD
 - quantum efficiency
 - slight changes across the CCD in efficiency causes a non-uniform field across CCD
- Also have sky background counts
 - these are often the most significant contributor

$$\begin{aligned} & \operatorname{Final Frame} = \frac{\operatorname{Object Frame} - (\operatorname{dark} + \operatorname{bias})}{\operatorname{Flat Field} - (\operatorname{dark} + \operatorname{bias})} \\ & \operatorname{Final Frame} = \frac{\operatorname{Object Frame} - (\operatorname{dark} + \operatorname{bias})}{\operatorname{Flat Field} - (\operatorname{dark} + \operatorname{bias})} - \frac{\operatorname{Sky Frame} - (\operatorname{dark} + \operatorname{bias})}{\operatorname{Flat Field} - (\operatorname{dark} + \operatorname{bias})} \\ & \Longrightarrow \operatorname{Final Frame} = \frac{\operatorname{Object Frame} - \operatorname{Sky Frame}}{\operatorname{Flat Field} - (\operatorname{dark} + \operatorname{bias})} \end{aligned}$$

Noise Sources

- Basic sources of noise are:
 - 1. Readout noise, σ_{rd} electrons (Gaussian)
 - 2. Photon noise on the signl from the object (Poisson)

$$-=\sqrt{f_{abj}t}$$

3. Photon noise on the signal from the sky background (Poisson)

$$-=\sqrt{f_{bq}t}$$

4. Photon noise on the dark current (Poisson)

$$-\sqrt{dt}$$

• Uncorrelated noise sources can be added in quadrature

$$-\sigma_{\rm total} = \sqrt{\sigma_1^2 + \sigma_2^2}$$

• Signal/Noise

$$SNR = \frac{S}{\sqrt{S + D + B + \sigma_{rd}^2}}$$

- S signal
- B background
- D dark
- σ_{rd} read error
- Prev equation assumes all the terms are in photo-electrons
- Will need to be accounted for if in ADU
- counts in number of photons
- gain can be set to more than 1
 - confuses simple SNR eqn and changes what you plug in

SNR Approximations

- Common approximations:
 - 1. Photon noise limited on the object

- signal dominates so can ignore other terms for SNR
- 2. Sky Limited
 - sky background dominates, only count background
- 3. Read Noise Limited
 - read background dominates, only count read term

Spectroscopy

- Most useful tool in astro
- measurement of intensity of a light source
 - function of wavelength
- Different specta:
 - 1. light from source straight to detector
 - continous spectrum
 - 2. light from source travels through a cloud of gas straight to detector
 - continuous spectrum with dark lines
 - 3. light from source travels into cloud and scatters through it to detector
 - bright line spectrum on black background
- Types of spectrograph
 - 1. Refraction (prisms)
 - 2. Diffraction gratings
 - 3. Interference (Fabry-Perot interferometer)
 - focus on diffraction grating
- Diffraction grating
 - 1. Slit
 - need this to focus light from source of interest and block everything else
 - 2. Collimating lens
 - make sure light lands parallel to diffraction grating
 - 3. Diffraction grating
 - 4. Camera
- Condition for constructive interference:

$$n\lambda = d\sin\theta$$
$$\frac{d\theta}{d\lambda} = \frac{n}{d\cos\theta}$$

- $\frac{d\theta}{d\lambda}$ is known as angular dispersion (rad/nm)
 - higher dispersions from higher spectral orders and smaller line spacings
 - more convenient for Reciprocal Linear dispersion $\left(\frac{d\lambda}{dx}\right)$

 - measuring wavelength per unit x at detector (nm/mm) multiply $\frac{d\theta}{d\lambda}$ by plate scale $\frac{d\theta}{dx} = \frac{1}{f_{cam}}$

$$\frac{d\lambda}{dx} = \frac{d\lambda}{d\theta} \frac{d\theta}{dx} = \frac{d}{f_{cam} n} \cos \theta$$

Grating Equation

- For angles of incidence to grating
- For diffraction grating or reflection

$$n\lambda = d(\sin\alpha + \sin\beta)$$

$$n\lambda\rho = \sin\alpha + \sin\beta \; ; \; \rho = \frac{1}{d}$$

Resolving Power

• Recall angle for blurred star

$$\theta = 1.22 \frac{\lambda}{D}$$

- Resolving power of a spectrograph is wavelength over band pass:
 - $-\lambda$ is the wavelength
 - $-\Delta\lambda$ is the minimum discernible difference in λ

$$R = \frac{\lambda}{\Delta \lambda} = nN$$

$$R = \frac{n\rho\lambda W}{\chi D_T}$$

- Where
 - − n is diffraction order#
 - N is number of lines
 - $-\rho$ is the ruling density (lines/mm)
 - $-\lambda$ is the wavelength
 - W is the grating size
 - χ is the angular size of the image of a star on slit
 - $-D_T$ is the telescope size
- Don't want too narrow a slit
 - optimise width of slit for photons from star
 - spectral resolution gets blurred
- Second equation above is for a practical spectrograph
 - At most wavelengths, this value of R is much less than that given by nN

CDs, DVDs, and Blu-Rays

- basically diffractions gratings
- DVDs store more info than CDs based on diffraction types
- Blu-Rays need UV light to make sense

Lecture 6

Measuring Stars

• Black body radiation

$$E(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

• Characteristic temperature is where $\frac{dE}{d\lambda}=0$, bump at top of curve

• Colours of stars depends on plot, nearest colour to peak is visible colour

$$L = 4\pi R^2 \sigma T^4$$

- Calc distance to star?
 - use parallax
 - define 1 parsec as distance corresponding to parallax of $\theta = 1$ "
 - -1 psc = 206265 AU

Interferometry

- Combines light from two telescopes
 - makes it possible to measure stars
 - interfere the light and measure phase difference
 - diffraction limit: $1.22\frac{\lambda}{D}$
- As star tracks across sky, path length changes
 - phase will shift in and out of phase with movement
 - more complicated for two light sources
 - get a more complex fringe pattern
 - * modulated by $\frac{\lambda}{D}$ for each telescope
- Moving telescopes apart changes fringe pattern
 - at some point apart, the fringe pattern will disappear and will resolve the star
 - can then use maths to find θ and find the radius using that and the distance away
 - VLT uses more than two telescopes
- Aperture synthesis
 - a trick we need for observations
 - path length will not change between two telescopes, if they come over parallel
 - Will have a 'y' pattern of telescope arrays so that path length will always be changing no matter
 what way it is passing over the sky

Lecture 7

- Zero-point mag gives one count
- See example sheet from Lecture 6 for some good notes

Multi-Wavelength Techniques

- Missing a huge fraction of images outside visual
 - how do we see the rest of it?
- X-ray radiations
 - electrons wizzing around
 - Accelerated to high energies in plasma state
 - effectively in about a million K
 - protons will make electrons change path, and emit energy
 - accretion disks generate some of this
- Difficulties
 - X-rays have too high energies
 - mirrors absorb it and don't work
 - very shallow angle mirrors focus instead
 - Grazing incidence

- UV radiation
 - temperatures of around $50 \, kK$
 - massive stars
 - clumpy as all around clumps of new big stars forming in groups
- Difficulties
 - CCDs have lower QE for these lower energies
 - hard to move energy level difference in CCDs to measure UV accurately
 - swamped by other photons
 - use a blocking filter to try and filter visual photons away and just get UV
- Infra-red radiation
 - begin to suffer from sky background here
 - to do it accurately, you need to be in space
 - see a 'fuzz' tracing spiral arms on galaxies
 - * hot dust in the interstellar medium being heated by stars
 - * emission from cooler stars
 - * globular clusters of old stars
- Sub-millimeter radiation
 - looking at $T = 3 \rightarrow 10 \, K$
 - challenging to detect such low energies
 - very sensitive thermometers
 - liquid helium at a few micro-Kelvin
 - changes resistance and allows current to flow for a second
- Why
 - Pillars of Creation
 - lots of dusty regions
 - * actively forming stars in the dust clouds
 - * carbonaceous material graphite, diamonds etc
 - * silicates
 - * ices
 - optical photons increases dust temperature slightly, still around 10 K though
 - * emits 100 micron wavelength photons to lose temperature
 - looking at Pillars in sub-millimeter shows clouds glowing now
 - can observe nebulae very differently in sub-millimeter
- Radio radiation
 - 3 components
 - * local thunderstorms
 - st distant thunderstorms radio waves bounce round atmosphere
 - st constant hiss with period of 23 hours 56 minutes and 4.1 seconds
 - * sidereal day
 - This hiss is the galactic emission
 - surface of telescopes need to be 'smooth'
 - smoothness isn't as necessary for radios
 - * easy to build big telescopes for radio without this concern
 - very difficult to get a high resolution radio telescope

Radios Ctd

- Biggest telescope is FAST
 - 500m diameter
- Why observe in radio?

- 21cm
 - * Neutral H emission
- electron can have parallel or anti-parallel spin
 - * two sub ground states
- anti-parallel is lower energy than parallel so will eventually flip to this one
 - * very small energy difference
 - * hyper-fine energy splitting
 - * this takes a few millions years though
- lots of H in galaxies
 - * probability adds up to observe this
 - * pointing radio telescopes sees this

Telescope Tech

- 'Twinkling star'
 - caused by atmosphere moving around and bumping image around
 - break it up into sub-images
 - * speckles
 - whole image will also move around
- Fried parameter
 - $-r_0 \approx 10 \, cm$
 - size of turbulent cells
 - coherence time
 - $* t_0 = \frac{r_0}{v}$
 - * v is wind speed
 - * this means that a star will only be stable for about $10 \, ms$
- Correcting this
 - light comes in normally
 - hits third mirror that can change angle with actuators
 - then hits a beam splitter
 - * 50% to computer analyser
 - * 50% to somewhere else
 - computer constantly measures image and changes actuators to correct image for turbulence
 - * uses fast Fourier transforms to get back to real image
 - * happens every millisecond or so
 - this requires bright star though
 - shine lasers up to $15 \, km$ into atmosphere to focus
 - * this creates a fake star for corrections 'natural guide star'

Exoplanets

- How do we observe planets against photon noise of stars?
 - observe stellar spectrum and planet spectrum for comparison
 - heavier molecules are more difficult to observe as they're lower down
 - * refraction issues
 - detecting O_3 would be a key trigger for life
 - * not able to do it yet

Chapter 2

Stars

see DUO for pdf slides

Lecture 1

- Black body emission curve
 - LHS from peak lambda is Rayleigh Jeans tail
 - RHS from peak is Wien tail

$$\lambda_{max} = \frac{2.9 \times 10^{-3}}{T} m$$

$$\lambda_{max.\,Bet} = 8.3 \times 10^{-7} m \implies T \approx 3500 \, K$$

$$\lambda_{max,Sun} = 5.5 \times 10^{-7} m \implies T \approx 5300 \, K$$

$$\lambda_{max,Bel} = 3.0 \times 10^{-7} m \implies T \approx 9400 \, K$$

Lecture 2

Excitation Energies

- Bohr model
- page 8 on slides
- n denotes the orbitals/electron shells
- n=1 is the ground state

$$E = E_{high} - E_{low} = \frac{hc}{\lambda} = -13.6 \left(\frac{1}{n_{high}^2} - \frac{1}{n_{low}^2} \right)$$
$$n = 2 \to 4$$
$$E = 2.55 \, eV \implies \lambda = 486.1 \, nm \implies H\beta$$

- this was absorption
- $H\beta$ is shorthand for Balmer series β
 - Optical light

$$n = 2 \rightarrow 1$$

$$E = 10.2 \, eV \implies \lambda = 121.6 \, nm \implies Ly\alpha$$

- this was emission
- $Ly\alpha$ is shorthand for Lyman series α
 - UV light
- Photons emitted from de-excitation in random direction
 - statistics means we probably won't see this

Ratios of Excitation Levels

$$n = 2 \to 1$$

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} e^{-\frac{(E_2 - E_1)}{kT}}$$

$$g_1 = 2 \; ; \; g_2 = 8 \; ; \; T = 5800 \, K$$

$$\frac{N_2}{N_1} = 5.1 \times 10^{-9}$$

• 1 billionth of H atoms in first excited state, negligible

Ionisation Energies

• χ is the ionisation energy

$$\frac{N_{i+1}}{N_i} = \frac{2Z_{i+1}}{n_e Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{\frac{3}{2}} e^{-\frac{\chi}{kT}}$$

$$E > -13.6 \left(\frac{1}{\infty^2} - \frac{1}{n_{low}^2}\right) eV$$

$$n = 1 \to \infty \implies E > 13.6 eV$$

$$n = 2 \to \infty \implies E > 3.4 eV$$

Lecture 3

Binary Star Systems

- slide 8, binary system
- \bullet look at the semi-major axes of the orbits of the two stars around the centre of mass of the system
 - a_1 and a_2 for m_1 and m_2

$$P^{2} = \frac{4\pi^{2}a^{3}}{G(m_{1} + m_{2})}$$
$$a = a_{1} + a_{2}$$

- Smaller semi-major axis means larger mass
- similar to see-saw

$$m_1 a_1 = m_2 a_2 \implies \frac{m_1}{m_2} = \frac{a_2}{a_1}$$

- ratio of the semi-major axes gives ratio of masses
- actually measure α , angle of separation:
 - for d, distance from us

$$\alpha_n = \frac{a_n}{d} \implies \frac{m_1}{m_2} = \frac{\alpha_2}{\alpha_1}$$

Visual Binary Systems

Normal Example

- d = 10 pc; P = 200 days
- $\alpha_1 = 0.02$ "; $\alpha_2 = 0.08$ "

$$a_1 = \alpha_1 d = 0.2 \, Au \; ; \; a_2 = a_2 = \alpha_2 d = 0.8 \, Au$$

$$a = a_1 + a_2 = 1 \, Au$$

$$m_1 + m_2 = \frac{4\pi^2 a^3}{GP^2} = 3.4 M_{\odot} = M_{tot}$$

$$\frac{m_1}{m_2} = \frac{\alpha_2}{\alpha_1} = \frac{a_2}{a_1} = 4.0 = M_{rot}$$

$$m_1 = \left[\frac{M_{rot}}{1 + M_{rot}}\right] M_{tot} = 2.72 M_{\odot}$$

$$m_2 = \left[\frac{1}{1 + M_{rot}}\right] M_{tot} = 0.68 M_{\odot}$$

Inclination Example

• For angled systems that aren't flat against our observations:

$$\hat{\alpha}_n = \alpha_n \cos i$$

$$m_1 + m_2 = \frac{4\pi^2}{G} \left(\frac{d}{\cos i}\right) \frac{\hat{\alpha}^3}{P^2}$$

$$\hat{\alpha} = \hat{\alpha}_1 + \hat{\alpha}_2$$

- $\bullet\,$ Has no effect on mass ratios observed cos cancels
- Above equation means the actual masses will be affected by the inclination

Spectroscopic Binaries

• Correcting for inclination:

$$v_{nr}^{max} = v_n \sin i$$

• Assume e << 1

$$v_n = \frac{2\pi a_n}{P}$$
$$\frac{m_1}{m_2} = \frac{v_2}{v_1}$$

• Same sort of stuff as visual binaries, but sin instead of cos basically

Special Case: Eclipsing Spectroscopic Binaries

- $i \approx 90^{\circ}$
- don't need any corrections etc

Lecture 4

$$P = \underbrace{\frac{\rho kT}{\mu m_H}}_{\text{ideal gas law}} + \frac{1}{3}aT^4$$

- Hydrostatic Equilibrium:
 - Pressure force = Gravitational force

$$P on dA = [P(r + dr) - P(r)]dA$$

$$= dP dA$$

$$Gravitational = g \underbrace{dA dr}_{volume} \rho, g = \frac{GM_r}{r^2}$$

$$dP dA = -g\rho dA dr$$

$$\frac{dP}{dr} = -\frac{GM_r\rho}{r^2}$$

$$\frac{dM_r}{dr} = 4\pi r^2 \rho$$

$$M_r = \frac{4}{3}\pi r^2 \rho$$

$$\frac{dP}{dr} = -G\frac{4}{3}\pi r \rho^2$$

$$\int_{P_s}^{P_c} dP = -\frac{4}{3}\pi G\rho^2 \int_R^0 r dr$$

$$P_c = \frac{2}{3}\pi G\rho^2 r^2, P_s = 0 \text{ at } r = R$$

$$= \frac{2}{3}\pi Gr^2 \left[\frac{3}{4}\frac{M}{\pi r^3}\right]^2$$

$$= \frac{3}{8\pi} \frac{GM^2}{R^4}$$

• Example for our sun:

$$M = 2 \times 10^{30} kg \; ; \; R \approx 7 \times 10^8 m$$

$$P_c \approx 10^{14} N \, m^{-2}$$

$$P_{c, \, true} \approx 2 \times 10^{16} N \, m^{-2}$$

• out as assumed uniform density

Virial Theorem

$$\frac{dP}{dr} = -\frac{GM\rho}{r^2} \times V = \frac{4}{3}\pi r^3$$

$$V\frac{dP}{dr} = -\frac{GM\rho}{r^2} \frac{4}{3}\pi r^3$$

$$- \text{plug in } \frac{dm}{dr} = 4\pi r^2 \rho$$

$$V\frac{dP}{dr} = \frac{1}{3}\frac{GM}{r}\frac{dm}{dr}$$

$$\int_0^{P(R)} V \, dP = -\frac{1}{3}\int_0^M \frac{GM}{r} \, dm$$

$$\int_0^{P(R)} V \, dP = \underbrace{[PV]_0^{R_0}}_{=0} - \int_0^{V(R)} P \, dV = -\frac{1}{3}U$$

$$-3\int_0^{V(R)} P \, dV = U, \, dV = \frac{dm}{\rho} \Longrightarrow$$

$$-3\int_0^M \frac{P}{\rho} \, dm = U \quad \text{generalised form of Virial Theorem}$$

$$\text{Ideal Gas: } P = nkT = \frac{\rho kT}{\mu m_H}$$

$$\text{Average KE: } = \frac{3}{2}kT$$

$$\text{KE per kilo: } = \frac{3}{2}\frac{kT}{\mu m_H}$$

$$E_{KE} = \frac{3}{2}\frac{kT}{\mu m_H} = \frac{3}{2}\frac{P}{\rho}$$

$$-3\int_0^M \frac{P}{\rho} \, dm = U, \, \frac{P}{\rho} = \frac{2}{3}E_{KE}$$

$$\int_0^M E_{KE} \, dm = -\frac{1}{2}U$$

$$\text{KE, assume ideal gas}$$

$$\Longrightarrow K = -\frac{1}{2}U$$

Energy from Gravitational Collapse

$$dU_{g,i} = -\frac{GM_r dm_i}{r} - \text{GPE of point mass}$$
 Consider shells of material
$$dm = 4\pi r^2 \rho dr$$

$$dU_g = -\frac{GM_r 4\pi r^2 \rho}{r} dr - \text{GPE of a shell}$$

$$U_g = -4\pi G \int_0^R M_r \rho_r dr$$

$$M_r = \frac{4}{3}\pi r^3 \bar{\rho} - \text{avg density isn't too bad here}$$

$$U_g = -\frac{16}{3}\pi^2 G \bar{\rho}^2 \int_0^R r^4 dr$$

$$= -\frac{16}{15}\pi^2 G \bar{\rho}^2 R^5$$

Convert back to mass

$$U = -\frac{9}{15} \frac{GM^2}{R} - \text{GPE of the star}$$

$$K = -\frac{1}{2}U$$

$$\implies E = \frac{3}{10} \frac{GM^2}{R}$$

$$E \approx \frac{3}{10} GM^2 \left[\frac{1}{R} - \frac{1}{R_{initial}} \right]$$

$$= \frac{3}{10} \frac{GM^2}{R} \iff R << R_{initial}$$

Lecture 6

Binding Energies of Fusion

$$\begin{split} E_b(Z,N) &= \Delta m c^2 = [Zm_p + Nm_n - m(Z,N)]c^2 \\ E_b(4,0) &= [4m_p - m_{He,4}]c^2 = 26.731 \, MeV \\ \frac{4m_p}{m_{He,4}} &= 1.007 \implies e = 0.7\% \\ E_\odot &= (0.1 \times M_\odot) \times 0.007 \times c^2 \\ &= 1.3 \times 10^{44} J \\ t \approx \frac{E_\odot}{L_\odot} &= 10^{10} yr \end{split}$$

Coulomb Barrier

- $\bullet\,$ looking at probability that two particles are close enough for nuclear force to be important
- see figure on page 7 of slides
- using classical physics, we get

$$E = \frac{1}{2}mv^2 = \frac{3}{2}kT = \frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{r}$$
$$T = \frac{1}{6\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{rk} = \underbrace{1.1 \times 10^{10} K}_{r=10^{-15}m : Z_1 = Z_2 = 1}$$

- too high for our Sun
- use deBroglie wavelength and consider quantum effects

$$\lambda = \frac{h}{p}, \ p = mv \ [m = \mu_m]$$

$$E = \frac{1}{2}mv^2 \ ; \ v^2 = \frac{p^2}{m^2}$$

$$E = \frac{p^2}{2m}$$

$$p^2 = \left(\frac{h}{\lambda}\right)^2$$

$$E = \frac{\left(\frac{h}{\lambda}\right)^2}{2m} = \frac{h^2}{\lambda^2} \frac{1}{2m}$$

$$= \frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{\lambda} = \frac{h^2}{\lambda^2} \frac{1}{2m}$$

$$\frac{1}{\lambda} = \frac{2}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2 m}{h^2}$$

$$\text{replace } \frac{1}{r} \text{ with } \frac{1}{\lambda}$$

$$T = \frac{1}{12\pi^2 \epsilon_0^2} \frac{Z_1^2 Z_2^2 e^4 m}{kh^2} = 9.8 \times 10^6 K$$

• this happens due to quantum tunneling

Probability of Nuclear Reactions

- see graph on page 13 of slides
- nuclear reaction probability is the product of Maxwell-Boltzmann and Tunneling Probability

Lecture 7

Nuclear Conservation Rules

- 1. electric charge must be conserved
- 2. nucleon umber must be conserved
 - p, n = +1
- 3. lepton number must be conserved
 - $e^{\mp} = \pm 1$
 - $\nu_e^{\mp} = \pm 1$

 $_{Z}^{A}X$

- A atomic number for element X (nucleon number)
- Z number of protons (electric charge)

Proton-Proton Chains

$${}_{1}^{1}H + {}_{1}^{1}H \to {}_{1}^{2}H + e^{+} + \nu_{e}$$

$${}_{2}^{1}H + {}_{1}^{1}H \to {}_{2}^{3}He + \gamma$$

$${}_{2}^{3}He + {}_{2}^{3}He \to {}_{2}^{4}He + {}_{1}^{1}H + {}_{1}^{1}H$$

$$\implies 4{}_{1}^{1}H \to {}_{2}^{4}He + \underbrace{2e^{+} + 2\nu_{e} + 2\gamma}_{26.7 \, MeV}$$

CNO Cycle

$$\begin{array}{c} {}^{12}C + {}^{1}_{1}H \rightarrow {}^{13}_{7}N + \gamma \\ {}^{13}N \rightarrow {}^{13}C + e^{+} + \nu_{e} \\ \hline {}^{\beta} \operatorname{decay} \\ \\ {}^{13}C + {}^{1}_{1}H \rightarrow {}^{14}_{7}N + \gamma \\ {}^{14}N + {}^{1}_{1}H \rightarrow {}^{15}_{8}O + \gamma \\ {}^{15}O \rightarrow {}^{15}N + e^{+}\nu_{e} \\ \hline {}^{\beta} \operatorname{decay} \\ {}^{15}N + {}^{1}_{1}H \rightarrow {}^{12}C + {}^{4}_{2}He \\ \\ \text{Total: } {}^{4}{}^{1}H \rightarrow {}^{4}_{2}He + \underbrace{2e^{+} + 2\nu_{e} + 3\gamma}_{E=26.7\,MeV} \end{array}$$