

FCC PART 15B, CLASS B TEST REPORT

For

Compumax Computer S.A.S

Calle 41 N 35-47 Bucaramanga, Santander, Colombia

FCC ID: 2AHF7-TW10

Report Type: **Product Type:** Original Report COMPUMAX BLUE TW10 David Lee **Test Engineer:** David Lee Report Number: RSZ160308003-00A **Report Date:** 2016-03-28 Candy, Li Candy Li **Reviewed By:** RF Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) Prepared By: 6/F, the 3rd Phase of WanLi Industrial Building ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT Exercise Software	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	
FCC §15.107 – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.109 - RADIATED SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
DDODUCT SIMILADITY DECLADATION LETTE	
DDANNIA "I SIMILI ADIT'V INDA'I ADA'I'HAN I D'I'I'D	17

Report No.: RSZ160308003-00A

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Computar S.A.S's product, model number: 6034-802-0000 (FCC ID: 2AHF7-TW10) or the "EUT" in this report was a COMPUMAX BLUE TW10, which was measured approximately: 260 mm (L) × 171 mm (W) × 9 mm (H), rated with input voltage: DC 3.8V rechargeable Li-ion battery or DC 5V from adapter. The highest operational frequency is 2480MHz.

Report No.: RSZ160308003-00A

Adapter Information:

Model: TEKA018-0502500UK Input AC: 100-240V, 50/60Hz, 0.5A

Output: DC 5V, 2.5A

Note: The serial models 6034-802-0000, 6034-100-0000, 6034-100-0001, 6034-200-0000, 6034-200-0001, 6034-300-0000, 6034-300-0001, 6034-400-0000, 6034-400-0001, 6034-500-0000, 6034-500-0001, 6034-500-0001, 6034-500-0001, 6034-801-0000, 6034-801-0001, 6034-801-0001, 6034-801-0001, 6034-801-0001, 6034-801-0001, 6034-805-0001, 6034-805-0001, 6034-805-0001, 6034-805-0001, 6034-805-0001, 6034-806-0000, 6034-806-0001, 6034-807-0001, 6034-807-0001, 6034-808-0000, 6034-808-0001, 6034-809-0000, 6034-809-0001, 6034-900-0001, 6034-809-0001, 6034-808-0001, 6034-809-0001, 6034-809-0001, 6034-808-0001, 6034-808-0001, 6034-809-0000, 6034-809-0001, 6034-809-000

*All measurement and test data in this report was gathered from production sample serial number: 1601552 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2016-03-08.

Objective

This test report is prepared on behalf of *Compumax Computer S.A.S* in accordance with Part 2-Subpart J, Part 15-Subparts A and B of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine the compliance of the EUT with FCC Part 15 B.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DSS & DTS submissions with FCC ID: 2AHF7-TW10.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.81 dB for 30MHz-1GHz, and 4.88 dB for above 1GHz, 1.95dB for conducted measurement.

FCC Part 15B, Class B Page 3 of 17

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Report No.: RSZ160308003-00A

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15B, Class B Page 4 of 17

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a manufacturer testing fashion.

EUT Test Mode: Downloading & HDMI

EUT Exercise Software

"BurnIn test v5.3" exercise software was used.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Mouse	MOC5UO	G1900NKD
Samsung	Monitor	225MS	N/A
Kingston	USB flash disk	N/A	N/A
Kingston	Micro SD card	4 GB	N/A

Report No.: RSZ160308003-00A

External I/O Cable

Cable Description	Length (m)	From/Port	То
Shielding Detachable HDMI Cable with magnetic loop	1.5	EUT	Monitor
Un-shielding Un-Detachable DC Power Cable	1.1	EUT	Adapter

FCC Part 15B, Class B Page 5 of 17

Block Diagram of Test Setup

Test Mode: Downloading & HDMI

Report No.: RSZ160308003-00A

FCC Part 15B, Class B Page 6 of 17

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§15.107	AC Line Conducted Emissions	Compliance
§15.109	Radiated Spurious Emissions	Compliance

Report No.: RSZ160308003-00A

FCC Part 15B, Class B Page 7 of 17

FCC §15.107 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

According to FCC §15.107

Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN/ISN and receiver, LISN/ISN voltage division factor, LISN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

Report No.: RSZ160308003-00A

Port	Measurement uncertainty
AC Mains	3.34 dB (k=2, 95% level of confidence)
CAT 3	3.72 dB (k=2, 95% level of confidence)
CAT 5	3.74 dB (k=2, 95% level of confidence)
CAT 6	4.54 dB (k=2, 95% level of confidence)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with per ANSI C63.4-2014. The related limit was specified in FCC Part 15.107 Class B.

The spacing between the peripherals was 10 cm.

FCC Part 15B, Class B Page 8 of 17

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: RSZ160308003-00A

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN and the other relevant equipments were connected to the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2015-06-01	2016-05-31
Rohde & Schwarz	LISN 1	ENV216	3560.6650.12- 101613-Yb	2015-12-15	2016-12-14
COM-POWER	LISN 2	LI-200	12208	2015-12-15	2016-12-14
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2015-05-14	2016-05-14
Rohde & Schwarz	CE Test software	EMC 32	V8.53	NCR	NCR
Ducommun technologies	Conducted Emission Cable	RG-214	CB031	2015-06-15	2016-06-15

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15B, Class B Page 9 of 17

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.107</u>, the worst margin as below:

Report No.: RSZ160308003-00A

3.0 dB at 0.493290 MHz in the Line conducted mode

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{\rm (Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL., $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by David Lee on 2016-03-25.

FCC Part 15B, Class B Page 10 of 17

EUT Test Mode: Downloading & HDMI

AC 120V/60 Hz, Line:

EMI Auto Test L

Report No.: RSZ160308003-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.493290	53.1	19.9	56.1	3.0	QP
0.493290	43.0	19.9	46.1	3.1	Ave.
0.514170	48.8	19.9	56.0	7.2	QP
0.514170	37.8	19.9	46.0	8.2	Ave.
0.561510	48.1	19.9	56.0	7.9	QP
0.561510	37.1	19.9	46.0	8.9	Ave.
0.585150	48.9	19.9	56.0	7.1	QP
0.585150	38.4	19.9	46.0	7.6	Ave.
0.935750	46.1	20.0	56.0	9.9	QP
0.935750	35.3	20.0	46.0	10.7	Ave.
1.412970	44.9	20.0	56.0	11.1	QP
1.412970	34.4	20.0	46.0	11.6	Ave.

FCC Part 15B, Class B Page 11 of 17

AC 120V/60 Hz, Neutral:

EMI Auto Test N

Report No.: RSZ160308003-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.497350	49.3	19.9	56.0	6.7	QP
0.497350	34.0	19.9	46.0	12.0	Ave.
0.561450	49.5	19.9	56.0	6.5	QP
0.561450	34.0	19.9	46.0	12.0	Ave.
1.002790	46.4	20.0	56.0	9.6	QP
1.002790	30.9	20.0	46.0	15.1	Ave.
1.385090	47.1	20.0	56.0	8.9	QP
1.385090	30.7	20.0	46.0	15.3	Ave.
1.759570	46.6	20.0	56.0	9.4	QP
1.759570	29.8	20.0	46.0	16.2	Ave.
2.977090	45.4	20.0	56.0	10.6	QP
2.977090	28.1	20.0	46.0	17.9	Ave.

- 1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
- 2) Corrected Amplitude = Reading + Correction Factor
 3) Margin = Limit Corrected Amplitude

FCC Part 15B, Class B Page 12 of 17

FCC §15.109 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §15.109

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: RSZ160308003-00A

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.81 dB for 30MHz-1GHz and 4.88 dB for above 1GHz, 1.95dB for conducted measurement at antenna port. And the uncertainty will not be taken into consideration for the test data recorded in the report

Frequency	Frequency Polarity	
30 MHz~200 MHz	Horizontal	4.04 dB (k=2, 95% level of confidence)
30 MHZ~200 MHZ	Vertical	4.52 dB (k=2, 95% level of confidence)
200 MHz~1 GHz	Horizontal	4.72 dB (k=2, 95% level of confidence)
200 MHZ~1 GHZ	Vertical	5.81 dB (k=2, 95% level of confidence)
1 GHz~6 GHz	Horizontal/Vertical	4.64 dB (k=2, 95% level of confidence)
Above 6 GHz	Horizontal/Vertical	4.88 dB (k=2, 95% level of confidence)

EUT Setup

Below 1GHz:

FCC Part 15B, Class B Page 13 of 17

Above 1GHz:

Report No.: RSZ160308003-00A

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15.109 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 12.4 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

FCC Part 15B, Class B Page 14 of 17

Test Equipment List and Details

Manufacturer	Description	Model	Model Serial Number		Calibration Due Date	
HP	Amplifier	HP8447E	1937A01046	2015-05-06	2016-05-06	
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2015-12-15	2016-12-14	
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-07	2017-12-06	
Mini	Amplifier	ZVA-183-S+	5969001149	2015-04-23	2016-04-23	
A.H. System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17	
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11	
TDK	Chamber	Chamber A	2#	2013-10-15	2016-10-15	
TDK	Chamber	Chamber B	1#	2015-07-23	2016-07-22	
R&S	Auto test Software	EMC32	V9.10	NCR	NCR	
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	104PEA	218124002	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	RG-214	1	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	RG-214	2	2015-06-15	2016-06-15	

Report No.: RSZ160308003-00A

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.109 Class B, the worst margin reading as below:

6.31 dB at **74.17 MHz** in the **Vertical** polarization

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

FCC Part 15B, Class B Page 15 of 17

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23 ℃			
Relative Humidity:	50 %			
ATM Pressure:	101.0 kPa			

The testing was performed by David Lee on 2016-03-25.

EUT Test Mode: Downloading & HDMI

30 MHz – 12.4 GHz:

Frequency (MHz)	Receiver			Rx Antenna		Corrected	Corrected	FCC Part 15B	
	Reading (dBµV)	Detector (PK/QP/Ave.)	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
34.44	36.84	QP	295	1.1	V	-3.6	33.24	40	6.76
35.53	37.17	QP	308	1.1	V	-4.5	32.67	40	7.33
74.17	46.99	QP	213	1.0	V	-13.3	33.69	40	6.31
148.34	41.04	QP	242	1.1	V	-7.8	33.24	43.5	10.26
387.66	40.23	QP	81	1.2	V	-5.0	35.23	46	10.77
452.43	41.82	QP	0	1.0	V	-3.5	38.32	46	7.68
1864.35	44.71	PK	15	2.4	Н	-9.8	34.91	74	39.09
1864.35	32.97	Ave.	15	2.4	Н	-9.8	23.17	54	30.83
1864.35	43.79	PK	13	2.4	V	-9.8	33.99	74	40.01
1864.35	32.79	Ave.	13	2.4	V	-9.8	22.99	54	31.01

Report No.: RSZ160308003-00A

Note

- 1) Correction Factor=Antenna factor (RX) + cable loss amplifier factor
- 2) Corrected Amplitude = Correction Factor + Reading
- 3) Margin = Limit Corrected Amplitude

FCC Part 15B, Class B Page 16 of 17

PRODUCT SIMILARITY DECLARATION LETTE

Compumax Computer S.A.S Address: Calle 41 N 35-47 Bucaramanga, Santander, Colombia Tel: (057)14013333 ext 209 Fax: 5776917000

Report No.: RSZ160308003-00A

Product Similarity Declaration

March 24, 2016

To Whom It May Concern,

We, Compumax Computer S.A.S. hereby declare that we have a product named as COMPUMAX BLUE TW10 (Model number: 6034-802-0000) was tested by BACL, meanwhile, for our marketing purpose, we would like to list a series models (6034-100-0000, 6034-100-0001, 6034-200-0000, 6034-200-0001, 6034-300-0000, 6034-300-0001, 6034-400-0000, 6034-400-0001, 6034-500-0000, 6034-500-0001, 6034-500-0001, 6034-800-0001, 6034-800-0001, 6034-800-0001, 6034-801-0000, 6034-801-0001, 6034-802-0001, 6034-803-0001, 6034-803-0001, 6034-804-0000, 6034-804-0001, 6034-805-

We confirm that all information above is true, and we'll be responsible for all the consequences. Please contact me if you have any question.

Angela P. Jurado

Sincerely,

Signature

Angela Patricia Jurado Arenales

Business Development Manager

***** END OF REPORT *****

FCC Part 15B, Class B Page 17 of 17