21AIE201-INTRODUCTION TO ROBOTICS

Lecture 7

Important concepts, symbols, and equations (cont.)

- mechanism dof = Σ (body freedoms) Σ (independent constraints from joints)
- joint types:

		Constraints c	Constraints c
		between two	between two
Joint type	$\operatorname{dof} f$	planar	spatial
		rigid bodies	rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	$\overline{2}$	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S)	3	N/A	3

• Grübler's formula: $dof = m(N-1-J) + \sum_{i=1}^{s} f_i$

2-DOF Planar Robot

4-Bar Linkage

Stewart Platform

$$m = 6$$

 $N = 1 + 1 + 6(2) = 14$

$$J = 6 \times 3 = 18$$

$$\sum_{i=1}^{16} f_i = 12 \times 3 + 6 \times 1 = 42$$

$$dof = 6(14 - 1 - 18) + 42 = 12$$

EXERCISE 1

Determine the degrees of freedom for the golfer of Figure: Assume that both feet are always firmly planted to the ground and that the two \hands" are rigidly attached to the golf club.

EXERCISE 2

The Delta robot in Figure consists of two platforms – the lower one mobile, and the upper one stationary – connected by three legs. Each leg contains a parallelogram closed chain and consists of three revolute joints, four spherical joints, and five links.

EXERCISE 3

How many dof does the human arm have?

EXERCISE 3-Solution

Time for Discussions

Thank You!

