Performance Insues:
=> Longest delay determines clock perziod.
Lo we execute one improvedon per clock cycle.
=) Typically Load imptruction takes the longest time to execute
Sub = 8 P0
Mul = 10 PD Clock perziod = 15 PD
la = 15pp γ : Total time to execute this sequence
sw = 13 pn = 15+15+15 = 60pn
$\bigvee_{\mathcal{O}}$
Actual time to execute thin bequence
= 8+10+15+13 = 46pm
Time Wastage = (60-46) ps = 14 ps
to overcome this wastage we move on to
pipelining.
(panallel execution of imptruction)

Pipelining Analogy

- Pipelined laundry: overlapping execution
 - Parallelism improves performance

imptrevetion: | aund rzy

1. Wash

2. Dry

3. Fold

4. Store
you can
[at a time, only
Dry | Wash | fold | Store
1 eloth 7

RISC-V Pipeline

- Five stages, one step per stage
 - 1. IF: Instruction fetch from memory
 - ID: Instruction decode & register read
 - EX: Execute operation or calculate address
 - 4. MEM: Access memory operand
 - 5. WB: Write result back to register

Pipeline Performance

- Assume time for stages is
 - 100ps for register read or write
 - 200ps for other stages
- Compare pipelined datapath with single-cycle datapath

Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time
ld	200ps	100 ps	200ps	200ps	100 ps	800ps
sd	200ps	100 ps	200ps	200ps		700ps
R-format	200ps	100 ps	200ps		100 ps	600ps
beq	200ps	100 ps	200ps			500ps

Pipelined Datapath

Data Hazard

Add (X21), X22, X23 (X20) (X24), X21, X20) (X21)

001				. 00		
	cez	ce3	ccy	ce5	Ce6	
Add IF	ID	EX	MEM)	WB		
Gub C	IF	ID	EX	WEM	WB	

721, X20

	The state of the s
Structural	Hazard
7 7 7 5 5 6 5 6 7 6 6 7 6 6 7 6 6 7 6 7	1,0,0,100

						_					
	0e1	eer	ec3	eeu	CC5	ee 6	@e7	CCB	ec Ø	CC 10	
	IF	ID	Ex	MEM	WB						
2		IF	ID	Ε×	MEM	WB					
9			IF	ID	Ex	MEM	WB				
9				IF	ID	Ex	MEM	WB			
5				\int	IF	ID9	EX	MEA	WB	Le	
6					-IF	ID)	Ex	MEM			
						1					