Cvičení 2

Úloha 1. (KMP)

Sestrojte vyhledávací automaty pro řetězce ananas a barbara.

Úloha 2. Jak najít nejdelší vlastní prefix slova, který je zároveň suffixem (vlastní znamená kratší než původní slovo)?

Úloha 3. (Rotace)

Algoritmus dostane dvě stejně dlouhá slova. Jak detekovat, zda je jedno rotací druhého?

Úloha 4. (Perioda)

Jak zjistit, zda je dané slovo α periodické? Tj. zda existuje slovo β a číslo k>1 takové, že $\alpha=\beta^k$ (k kopií řetězce β za sebou)?

Úloha 5. (Palindrom jako prefix)

Jak v řetězci najít *nejdelší prefix*, který je palindrom (popředu i pozpátku se čte stejně)?

Úloha 6. Daný řetězec S zrotujte in place o k znaků doprava v čase $\mathcal{O}(|S|)$ (nezávisle na k). In place znamená, že krom samotného řetězce (pole znaků) smíte použít navíc jen $\mathcal{O}(1)$ proměnných velikosti $\mathcal{O}(\log |S|)$.

Úloha 7. Dostanete konkrétní slovo S délky k a číslo n. Jak efektivně spočítat, kolik existuje slov délky n nad anglickou abecedou $\{a, \ldots, z\}$, která neobsahuji S jako podslovo?

Úloha 8. (Substituční šifra)

Substituční šifra funguje tak, že zpermutujeme znaky abecedy: například permutací abecedy abcdeo na dacebo zašifrujeme slovo abadcode na dadecoeb. Buď dáno seno zašifrované substituční šifrou a nezašifrovaná jehla. Najděte všechny možné výskyty jehly v originálním seně (tedy takové pozice v seně, pro něž existuje permutace abecedy, která přeloží jehlu na příslušný kousek sena).

Úloha 9. Navrhněte algoritmus, který v lineárním čase najde tu z rotací zadaného řetězce, jež je lexikograficky minimální.