Sztuczna inteligencja i systemy ekspertowe Prowadzący: dr inż. Krzysztof Lichy

2013/2014 sobota, 15:30

Data oddania:	Ocena:

Łukasz Ochmański 183566 Przemysław Szwajkowski 173524

Zadanie 1 - przeszukiwanie przestrzeni stanów*

1. Wprowadzenie

Celem niniejszego zadania jest napisanie dwóch programów. Pierwszy z nich ma za zadanie odnaleźć rozwiązanie łamigłówki zwanej "Piętnastką", a drugi ma na celu wizualizację rozwiązywania łamigłówki.

2. Uruchamianie programu

Program można uruchomić z lini poleceń w systemie z zainstalowaną wirtualną maszyną Java'y wersji 7 lub nowszej. Program przyjmuje jeden parametr:

- alogorytm

a do wyboru: dfs, bfs, a1, a2, a3

Przed uruchomieniem należy spakować projekt wraz z bibliotekami do formatu *.jar. Metoda main() znajduje się w pliku Solver.java

Następnie uruchomić polecenie:

java -jar Zadanie1.jar bfs 0 2 3 4 1 6 7 8 5 13 10 11 14 9 15 12

^{*} SVN: https://sise-lukasz-ochmanski.googlecode.com/svn/trunk/

Rysunek 1. Breadth-First Search

Rysunek 2. Breadth-First Search

Rysunek 3. Breadth-First Search

Rysunek 4. Breadth-First Search

Rysunek 5. Breadth-First Search

Rysunek 6. Breadth-First Search

Rysunek 7. A* Odleglosc Hamminga

Rysunek 8. A* Odleglosc Hamminga

Rysunek 9. A* Odleglosc Hamminga

Rysunek 10. A* Odleglosc Hamminga

Rysunek 11. A* Odleglosc Hamminga

Rysunek 12. A* Odleglosc Hamminga

Rysunek 13. A* Suma odleglosci taksowkowych

Rysunek 14. A* Suma odleglosci taksowkowych

Rysunek 15. A* Suma odleglosci taksowkowych

Rysunek 16. A* Suma odleglosci taksowkowych

Rysunek 17. A* Suma odleglosci taksowkowych

Rysunek 18. A* Suma odleglosci taksowkowych

Rysunek 19. Depth-First Search

Po wyciągnięciu średniej z każdego przedziału otrzymujemy:

Rysunek 20. Depth-First Search

Rysunek 21. Depth-First Search

Rysunek 22. Depth-First Search

Rysunek 23. Depth-First Search

Rysunek 24. Depth-First Search

Rysunek 25. Depth-First Search

Rysunek 26. Depth-First Search

Rysunek 27. Depth-First Search

3. Wnioski

Najwydajniejszymi algorytmami okazały się, zgodnie z oczekiwaniami, algorytmy wykorzystujące heurystykę. Spowodowane jest to tym, że wybierane są tutaj drogi, które są najbliżej rozwiązania porzucając pozostałe. Funkcjonalności tej pozbawione są algorytmy nie wykorzystujące heurystyk, przez co rośnie czas poszukiwania. Najmniej wydajnym algorytmem okazał się DFS, ponieważ liczba iteracji jest tutaj największa.

Literatura

- [1] T. Oetiker, H. Partl, I. Hyna, E. Schlegl. Nie za krótkie wprowadzenie do systemu LaTeX2e, 2007, dostępny online.
- [2] Przemysław Klęsk. Algorytmy przeszukiwania grafów i drzew dla gier i łamigłówek, http://wikizmsi.zut.edu.pl/uploads/b/be/2_search.pdf
- [3] Wikipedia, wolna encykolpedia Breadth-first search, http://en.wikipedia.org/wiki/Breadth-first_search
- [4] Wikipedia, wolna encyklopedia Algorytm A*, http://pl.wikipedia.org/wiki/Algorytm_A*