

Remind: Insertion Loss Method: Example 1

Design a filter with $\omega_c=6$ GHz, 15 dB attenuation at 8 GHz, $Z_o=50$ Ω , 3 dB equal ripple

$$Z_0 = 4.35 * 50 = 217.5 \Omega$$

 $Z_0 = 1.299 * 50 = 64.9 \Omega$
 $Z_0 = 1.405 * 50 = 70.3 \Omega$

Remind: Insertion Loss Method: Example 1

• $\omega_c = 6$ GHz, 3rd order, $Z_o = 50$ Ω , 3 dB equal ripple, 15 dB attenuation at 8 GHz

$$g_1 = 3.3487 = L_1$$

 $g_2 = 0.7117 = c_2$
 $g_3 = 3.3487 = L_3$
 $g_4 = 1 = R_L$

Convert L's and C's to stubs: using Richard's transformation

Add unit elements at end of filter: use Kuroda Identities

Replace with identity or using symmetry

Impedance scale

$$Z_0 = 4.35 * 50 = 217.5 \Omega$$

 $Z_0 = 1.299 * 50 = 64.9 \Omega$
 $Z_0 = 1.405 * 50 = 70.3 \Omega$

Insertion Loss Method LPF Sonnet Assignment

• Using the geometry obtained from the insertion loss LPF example 1,

Х

0.1

30.0

300

Υ

Lock

Lock

Lock

0.1

30.0

300

Sizes

Cell Size

Box Size

Num. Cells

plot S11 and S22

- Cell size = 0.1×0.1

- Box size = 30×30

Use Rogers 5880 (Er=2.2 d=1.5 mm)

Geometry

Insertion Loss Method LPF Assignment
(Due April 20th Midnight Online Submission)

□ Simulation Results (S11)

and **S21**)

Discuss the simulation results

- 1
- 2.
- 3.