Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters	Posterior predictive ^[note 4]
Normal with known variance σ^2	μ (mean)	Normal	μ_0,σ_0^2	$ \left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n x_i}{\sigma^2}\right) \middle/ \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right), \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1} $	mean was estimated from observations with total precision (sum of all individual precisions)1/ σ_0^2 and with sample mean μ_0	$\mathcal{N}(ilde{x} \mu_0',\sigma_0^{2'}+\sigma^2)^{[5]}$
Normal with known precision τ	μ (mean)	Normal	μ_0, au_0	$\left(\tau_0 \mu_0 + \tau \sum_{i=1}^n x_i\right) / (\tau_0 + n\tau), \tau_0 + n\tau$	mean was estimated from observations with total precision (sum of all individual precisions) $ au_0$ and with sample mean $ au_0$	$\mathcal{N}\left(ilde{x} \mu_0',rac{1}{ au_0'}+rac{1}{ au} ight)^{[5]}$
Normal with known mean μ	σ^2 (variance)	Inverse gamma	lpha,eta [note 5]	$\alpha + \frac{n}{2}, \ \beta + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$	variance was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(\tilde{x} \mu,\sigma^2=eta'/lpha')^{[5]}$
Normal with known mean μ	σ^2 (variance)	Scaled inverse chi-squared	$ u, \sigma_0^2 $	$\nu + n, \frac{\nu \sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{\nu + n}$	variance was estimated from $ u$ observations with sample variance σ_0^2	$t_{ u'}(\tilde{x} \mu,\sigma_0^{2'})^{[5]}$
Normal with known mean μ	au (precision)	Gamma	$\alpha, eta^{[ext{note 3}]}$	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$	precision was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(ilde{x} \mu,\sigma^2=eta'/lpha')^{[5]}$
	μ and σ^2 Assuming exchangeability	Normal-inverse gamma	$\mu_0, u,lpha,eta$	$\begin{split} &\frac{\nu\mu_0+n\bar{x}}{\nu+n_n},\nu+n,\alpha+\frac{n}{2},\\ &\beta+\frac{1}{2}\sum_{i=1}(x_i-\bar{x})^2+\frac{n\nu}{\nu+n}\frac{(\bar{x}-\mu_0)^2}{2} \end{split}$ $\bullet \ \bar{x} \text{ is the sample mean}$	mean was estimated from ν observations with sample mean μ_0 ; variance was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2\alpha'}\left(\tilde{x} \mu', \frac{\beta'(\nu'+1)}{\alpha'\nu'}\right)$ [5]
	μ and $ au$ Assuming exchangeability	Normal-gamma	$\mu_0, \nu, \alpha, \beta$	$\frac{\nu\mu_0 + n\bar{x}}{\nu + n_n}, \nu + n, \alpha + \frac{n}{2},$ $\beta + \frac{1}{2}\sum_{i=1}^{n}(x_i - \bar{x})^2 + \frac{n\nu}{\nu + n}\frac{(\bar{x} - \mu_0)^2}{2}$ $\bar{x} \text{ is the sample mean}$	mean was estimated from ν observations with sample mean μ_0 , and precision was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(ilde{x} \mu',rac{eta'(u'+1)}{lpha' u'} ight)$ [5]
Multivariate normal with known covariance matrix Σ	μ (mean vector)	Multivariate normal	$oldsymbol{\mu}_0, oldsymbol{\Sigma}_0$	$\begin{split} & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \left(\boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0 + n\boldsymbol{\Sigma}^{-1}\bar{\mathbf{x}}\right), \\ & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \end{split}$ $ \bullet \ \ \bar{\mathbf{x}} \text{ is the sample mean}$	mean was estimated from observations with total precision (sum of all individual precisions) $\mathbf{\Sigma}_0^{-1}$ and with sample mean $\boldsymbol{\mu}_0$	$\mathcal{N}(ilde{\mathbf{x}} oldsymbol{\mu}_0',oldsymbol{\Sigma}_0'+oldsymbol{\Sigma})^{[5]}$