

Technology X10 for Home Automation

Prof. Renato Nunes

renato.nunes@ist.utl.pt

AI - Prof. Renato Nunes, IST

1

Technology X10

- Developed in the 70's
- Big commercial success (specially in the USA)
- Low cost

 (at least, less expensive than other technologies)
- Uses the power-line as the communication medium
- Is simple and easy to install

Power Line Signaling

- A 120KHz burst is sent when voltage crosses zero
- To support three-phase electrical installations, two more bursts are sent as depicted (when the other two phases cross zero). A phase coupler can be used to allow signals to travel between different phases
- Each burst lasts for 1ms

AI - Prof. Renato Nunes, IST

3

Sending Information

- Sending information "1" corresponds to send a 1 (120KHz burst) followed by nothing (0 = absence of 120KHz)
- Sending information "0" corresponds to do nothing (0 = absence of 120KHz) followed by 1 (120KHz burst)
- Each information bit is coded by two bits (the own bit and its complement: 1 → 1, 0 and 0 → 0, 1)

X10 Frame Format

Start flag	House Code	Device Code or Function Code	Device (0) / Function (1)
1 1 1 0	4 information bits (a total of 8 bits)	4 information bits (a total of 8 bits)	1 information bit (a total of 2 bits)

- Start flag = 1 1 1 0 (note: breaks the rule that each bit is followed by its complement; objective: univocally identify the start of a new frame)
- Every message includes a House Code $(2^4 = 16 \text{ different houses possible})$
- A frame can include a Device Code (2⁴ = 16 different devices)
 or can include a Function Code (2⁴ = 16 different functions)
- The last field (Device/Function) has 1 information bit that specifies if the previous field identifies a device (if bit is 0) or a function (if bit is 1)
- Maximum number of devices that can be addressed: 2⁸ = 256 (if all house codes are used in a single house; some functional restrictions apply!)

Al - Prof. Renato Nunes, IST

5

X10 Frame Format

Start flag	House Code	Device Code or Function Code	Device (0) / Function (1)
1 1 1 0	4 information bits (a total of 8 bits)	4 information bits (a total of 8 bits)	1 information bit (a total of 2 bits)

- Commanding a device implies sending <u>two</u> frames:
 - One that selects the device (specifies its address = house code + device code)
 - Another that specifies the function to be performed (must use same house code as previous frame)
- It is possible to select several devices and then send a command that will be executed by all of them (works if they share the same house code!)

Sending a Frame

- All frames are sent twice (<u>except</u> Dim and Bright see next slide because these two functions are sent multiple times to incrementally reduce/increase light intensity)
- Between two <u>different</u> frames a silence of 3 cycles must occur (corresponds to six, low-level, zeros).
- Sending a command is very slow: it takes around 1 second.

AI - Prof. Renato Nunes, IST

7

X10 Function Codes

Code	Function	Description
0000	All Units Off	Switch off all devices with the house code indicated in the message
0001	All Lights On	Switches on all lamp devices with the house code indicated
0010	On	Switches on a device
0 0 1 1	Off	Switches off a device
0100	Dim	Reduces the light intensity
0 1 0 1	Bright	Increases the light intensity
0110	All lights Off	Switches off all lamp devices with the house code indicated
0 1 1 1	Extended Code	Extension code
1000	Hail Request	Requests a response from a device with the house code indicated
1001	Hail Acknowledge	Response to the previous command
101x	Pre-Set Dim	Allows the selection of two predefined levels of light intensity $(x = 0, 1)$
1100	Extended Data	Extended data (8 bytes)
1 1 0 1	Status is On	Response to Status Request indicating that the device is switched on
1110	Status is Off	Response to Status Request indicating that the device is switched off
1111	Status Request	Request the status of a device

Setting a Module's Address

AI - Prof. Renato Nunes, IST

9

X10 Encoding Scheme

House Code	Device Code	Value (bin)
A	1	0110
В	2	1110
C	3	0010
D	4	1010
Е	5	0001
F	6	1001
G	7	0101
Н	8	1101
I	9	0111
J	10	1111
K	11	0011
L	12	1011
M	13	0000
N	14	1000
О	15	0100
P	16	1100

Value (bin)	Function	
0000	All Units Off	
0001	All Lights On	
0010	On	
0011	Off	
0100	Dim	
0101	Bright	
0110	All Lights Off	
0111	Extended Code	
1000	Hail Request	
1001	Hail Acknowledge	
1010	Pre-set Dim (1)	
1011	Pre-set Dim (2)	
1100	Extended Data Transfer	
1101	Status On	
1110	Status Off	
1111	Status Request	

Types of Modules

- Lamp Module
 - Works only with incandescent lamps
 - Can turn on, turn off, dim (reduce intensity)
 and bright (increase intensity)
 - May implement two pre-set intensity levels
- Appliance Module
 - Works with different types of loads
 - Can turn on and turn off

AI - Prof. Renato Nunes, IST

11

Mounting Variants

Connects to powers sockets (external unit)

DIN rail mounted (inside an electrical enclosure)

Wall mounted (flush mounted)

Examples of X10 Modules

Lamp Module

Lamp Module

Receives commands (on, off, dim, bright)

Pressing the buttons controls the module directly

Wall mounted (Flush mounted)

AI - Prof. Renato Nunes, IST

13

Special Modules

- These modules issue commands
 - Send on/off commands to a specified address (house code + device code)

Thermostat

Temperature changes triggers sending an on/off command

Interface module

Applying a signal or closing an electric contact triggers sending an on/off command

Contact becomes closed → send ON Contact becomes open → send OFF

Radio Frequency Devices

AI - Prof. Renato Nunes, IST

15

X10 Controllers

X10 Timer

Allows manual commands and automated time programming.

X10 Controller and PC interface

Ref.: **CM11** (see also CM15)

Example of a X10 System

17

Controlling a X10 System

Controlling a X10 System

AI - Prof. Renato Nunes, IST

19

Controlling a X10 System

20

Conclusion

- Main advantages
 - Simplicity and ease of installation
 - Low cost
 - Can be used in an already existing house
- Main disadvantages
 - Very low communication bandwidth
 - Low protocol reliability
 - Low number of possible devices

AI - Prof. Renato Nunes, IST

21

Questions?