# 计算流体力学大作业报告

廖紫默 (SA21005043)

近代力学系,中国科学技术大学

zimoliao@mail.ustc.edu.cn

2022年5月25日

# 目录

| 1 | Poisson equation         |                                               |   |  |  |  |  |  |
|---|--------------------------|-----------------------------------------------|---|--|--|--|--|--|
|   | 1.1                      | Discretization                                |   |  |  |  |  |  |
|   | 1.2                      | Explicit methods                              |   |  |  |  |  |  |
|   |                          | 1.2.1 Jacobi method                           | 2 |  |  |  |  |  |
|   |                          | 1.2.2 Gauss-Seidel (GS) method                | 2 |  |  |  |  |  |
|   |                          | 1.2.3 Successive over-relaxation (SOR) method | 2 |  |  |  |  |  |
|   | 1.3                      | Semi-implicit methods                         | 2 |  |  |  |  |  |
|   |                          | 1.3.1 TDMA                                    | 2 |  |  |  |  |  |
|   |                          | 1.3.2 Line successive over-relaxation (LSOR)  | 3 |  |  |  |  |  |
|   | 1.4                      | Acceleration techniques                       | 3 |  |  |  |  |  |
|   |                          | 1.4.1 Multi-grid method                       | 3 |  |  |  |  |  |
|   | 1.5                      | Results and discussion                        |   |  |  |  |  |  |
| 2 | Sod shock tube problem 8 |                                               |   |  |  |  |  |  |
|   | 2.1                      | The Riemann problem of Euler equations        |   |  |  |  |  |  |
|   | 2.2                      | Lax-Wendroff scheme                           |   |  |  |  |  |  |
|   | 2.3                      | Flux vector splitting methods                 | 8 |  |  |  |  |  |
|   |                          | 2.3.1 Steger-Warming splitting                | 8 |  |  |  |  |  |
|   |                          | 2.3.2 van Leer splitting                      | 8 |  |  |  |  |  |
|   | 2.4                      | Flux difference splitting methods             | 8 |  |  |  |  |  |

|   |      | 2.4.1   | Roe-Pike method        | 8 |
|---|------|---------|------------------------|---|
|   | 2.5  | High o  | order methods          | 8 |
|   |      | 2.5.1   | WENO reconstruction    | 8 |
|   |      | 2.5.2   | Finite volume WENO     | 8 |
|   |      | 2.5.3   | Finite difference WENO | 8 |
|   | 2.6  | Results | s and discussion       | 8 |
| 3 | 2D c | ompres  | ssion ramp             | 9 |
|   | 3.1  | Coordi  | inate transformation   | 9 |
|   | 3.2  | Dimen   | sional splitting       | 9 |
|   | 3.3  | Numer   | rical methods          | 9 |
|   | 3 4  | Regulto | s and discussion       | Q |

### 1 Poisson equation

求解 Poisson 方程并绘制等值线  $\phi = (0.05, 0.2, 0.5, 0.75, 1)$ :

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \sin x \cos y, \quad 0 \le x \le 1, \ 0 \le y \le 1, \tag{1}$$

BCs: 
$$\begin{cases} \phi(0,y) = 0, & \phi(1,y) = y - \frac{\sin 1 \cos y}{2}, \\ \phi(x,0) = -\frac{\sin x}{2}, & \phi(1,y) = x - \frac{\sin x \cos 1}{2} \end{cases}$$
 (2)

要求采用方法:

- (1) Jacobi、G-S 选一; SOR、线 SOR、块 SOR 选一。迭代法要求误差  $10^{-6}$ 。
- (2) CG 方法、MG 方法选一。

#### 1.1 Discretization

采用二阶精度的中心差分格式近似二阶导数项:

$$\left(\frac{\partial^2 \phi}{\partial x^2}\right)_i \simeq \frac{\phi_{i+1} + \phi_{i-1} - 2\phi_i}{(\Delta x)^2} \tag{3}$$

Poisson 方程转化为五点离散的代数方程组:

$$A_P \phi_P + A_W \phi_W + A_E \phi_E + A_S \phi_S + A_N \phi_N = Q_P \tag{4}$$

其中  $A_K$ , K = (P, W, E, S, N) 为插值系数, $Q_P$  为右端项。

### 1.2 Explicit methods

对于一般的线性代数方程组:

$$A\phi = Q \tag{5}$$

其数值解法通常分为直接方法和迭代方法两大类。虽然前者(Gauss 消去、LU 分解)可以直接得到精确解(计算机精度下),但在一般的 PDE 问题中,离散误差远大于计算精度 (Ferziger et al., 2020),采用低效的直接解法是不明智的选择。由此,代数方程组(特别是大型稀疏系统)的迭代求解方法在 CFD 中取得了广泛应用 (Saad, 2003)。

迭代方法的基本思想在于将式5转化为下述迭代方程:

$$M\phi^{n+1} = N\phi^n + B \tag{6}$$

令 A = M - N, B = Q, 那么当迭代收敛时, $\phi^{n+1} = \phi^n = \phi$ , 上式等价于原始方程组。后续介绍的几类迭代方法,其本质区别就在于M、N 采用不同的构造形式。

#### 1.2.1 Jacobi method

Jacobi 方法将 M 选为系数矩阵 A 的对角部分,N 为非对角部分,迭代式中 M 的 逆可以由对角元素分之一直接得到,非常容易构造与求解。离散形式的迭代方程为:

$$\phi_P^{n+1} = \frac{Q_P - A_S \phi_S^n - A_W \phi_W^n - A_N \phi_N^n - A_E \phi_E^n}{A_P}$$
 (7)

若记 A = L + D + U,分别表示其下三角、对角、上三角部分,那么 Jacobi 方法可以写为矩阵形式 (Sauer, 2018):

$$\phi^{n+1} = D^{-1} \left[ \mathbf{B} - (L+U)\phi^n \right] \tag{8}$$

### 1.2.2 Gauss-Seidel (GS) method

Gauss-Seidel 方法在 Jacobi 方法的基础上做了细微的优化,即将每个网格点上迭代更新的值立即用于下一点的迭代。

$$\phi_P^{n+1} = \frac{Q_P - A_S \phi_S^{n+1} - A_W \phi_W^{n+1} - A_N \phi_N^n - A_E \phi_E^n}{A_P}$$
(9)

矩阵形式写为 (从左下,即西南角开始迭代):

$$\phi^{n+1} = D^{-1} \left( \mathbf{B} - U \phi^n - L \phi^{n+1} \right) \tag{10}$$

### 1.2.3 Successive over-relaxation (SOR) method

SOR 的思路是在 GS 方法基础上引入超松弛因子  $2 > \omega > 1$  来加速迭代,实现快速收敛。

$$\phi_P^{n+1} = \omega \frac{Q_P - A_S \phi_S^{n+1} - A_W \phi_W^{n+1} - A_N \phi_N^n - A_E \phi_E^n}{A_P} + (1 - \omega) \phi_P^n$$
 (11)

对于椭圆型 PDE,矩形几何,Dirichlet 边界条件的情况,可选取  $\omega=2/[1+\sin{(\pi/N)}]$ ,N 为网格数 (Ferziger et al., 2020; Brazier, 1974)。

### 1.3 Semi-implicit methods

#### 1.3.1 TDMA

虽然 Gauss 消去与 LU 分解两种直接解法时间复杂度很高,前者为  $\mathcal{O}(N^3)$ 。但在系数矩阵为三对角矩阵这一特殊情况下,追赶法,也称 Thomas 算法、Tridiagonal Matrix Algorithm (TDMA),可以实现其高效精确求解。考虑如下方程组:

$$A_W^i \phi_{i-1} + A_P^i \phi_i + A_E^i \phi_{i+1} = Q_i$$
 (12)

首先从上到下消去对角元左侧一列元素:

$$A_P^i = A_P^i - \frac{A_W^i A_E^{i-1}}{A_P^{i-1}}, \quad Q_i^* = Q_i - \frac{A_W^i Q_{i-1}^*}{A_P^{i-1}}$$
(13)

随后自下而上回代即可得到精确解:

$$\phi_i = \frac{Q_i^* - A_E^i \phi_{i+1}}{A_P^i} \tag{14}$$

该方法的时间复杂度仅为 O(N)。

### 1.3.2 Line successive over-relaxation (LSOR)

LSOR 方法(包括 LGS)属于 splitting 方法(或称 approximate factorization (AF),近似因子法)的一种。该类方法的思想在于引入高阶导项,在不影响离散格式阶数的条件下,把原始多维问题(差分算子)拆分为多个一维问题,进而可以在单一维度上采用优化的隐式方法直接求解(如前文所述的 TDMA)。

LSOR 方法在迭代过程中,逐列(行)构造三对角矩阵隐式求解,进而实现加速。 以逐列隐式为例(记为 LSOR-Y),在原 SOR 迭代方程中用  $\phi_N^{n+1}$  替代  $\phi_N^n$ ,得到:

$$\phi_P^{n+1} = \omega \frac{Q_P - A_S \phi_S^{n+1} - A_W \phi_W^{n+1} - A_N \phi_N^{n+1} - A_E \phi_E^n}{A_P} + (1 - \omega) \phi_P^n$$
 (15)

继而转化为三对角矩阵问题:

$$\frac{\omega A_S}{A_P} \phi_S^{n+1} + \phi_P^{n+1} + \frac{\omega A_N}{A_P} \phi_N^{n+1} = \omega \frac{Q_P - A_W \phi_W^{n+1} - A_E \phi_E^n}{A_P} + (1 - \omega) \phi_P^n$$
 (16)

其中  $\phi_W^{n+1}$  为前一列已经计算得到的值,所以右端项均为已知量,该方程采用  $\mathsf{TDMA}$  求解即可。

### 1.4 Acceleration techniques

### 1.4.1 Multi-grid method

采用 Fourier 级数对均匀网格上误差方程进行分析,可以发现(相对网格尺寸): 误差的短波分量收敛快、长波分量收敛较慢。一般的迭代方法初始收敛快,对应误差的短波分量快速衰减,而后收敛显著减缓,对应长波分量的缓慢衰减。

基于这一认识,Multi-grid采用了分而治之的思想,构造多套逐步粗化的网格,在每套网格上利用初始迭代步迅速衰减掉当前网格对应的短波分量,将误差长波分量的

部分交给更粗一级的网格迭代,如此递归下去。实际求解时,由于误差在粗、细网格间传递(restriction、interpolation)时也会引入额外的误差,所以需要重复前述递归过程,直至原始网格上解的精度达到收敛准则。

#### 1.5 Results and discussion

采用前述各类方法编写 C++ 代码求解 Poisson 方程,网格尺寸选取为  $128 \times 128$ 。其中 SOR 与 MG-SOR 方法中  $\omega$  选取为 1.5,MG 方法采用 4 层网格 V 循环,单次 V 循环中每层在向下、向上路径上各迭代 2 次。

图 2与图 3分别展示了 Jacobi、GS、LGS-Y、SOR、MG-GS、MG-SOR 等方法求解 前述五点离散 Poisson 方程边值问题的结果与残差分布。图 1绘制了收敛曲线,其中 Jacobi、GS、LGS-Y、SOR 方法达到 10<sup>-6</sup> 误差所需步数及计算耗时见表 1。<sup>1</sup>

表 1: 各方法求解 Poisson 方程迭代步数与时间。方括号中给出超松弛因子  $\omega$  取Brazier (1974) 的推荐值时 SOR 方法的结果: 圆括号中给出了 MG 方法的等价迭代步数

|         | Jacobi | GS    | LGS-Y | SOR           | MG-GS      | MG-SOR     |
|---------|--------|-------|-------|---------------|------------|------------|
| step    | 3555   | 2427  | 1658  | 1148 [258]    | 2656 (876) | 1440 (475) |
| time(s) | 1.856  | 1.167 | 0.807 | 0.622 [0.144] | 0.541      | 0.308      |

对比各方法的测试结果,上表各方法从左至右效率逐渐提高,即达到收敛所需的迭代步数减小、计算时间减小。MG-SOR 方法可以实现 6 倍于 Jacobi 方法的提速。

¹为确保计算时间直接反应不同算法本身的效率(而非计算机底层逻辑优化的结果),编译时未开启自动优化-Ox 选项。事实上,若开启编译优化指令,那么 Jacobi 方法将会显著快于 GS、LGS-Y 等方法,个人认为这是算法本身的可并行性导致的,编译器优化对于 Jacobi 算法会自动开启底层向量化运算,而 GS、SOR、LGS-Y 等方法中每步计算是具有依赖关系的,无法并行。特别的,开启优化后,MG 加速方法仍然有效。





(b) 多重网格加速方法(含粗网格迭代)

图 1: 误差随迭代步的收敛曲线



图 2: 各种迭代法求解 Poisson 方程的结果与残差



图 3: 各种迭代法求解 Poisson 方程的结果与残差

# 2 Sod shock tube problem

针对如下 Sod 激波管问题:

$$\begin{cases}
\frac{\partial \rho}{\partial t} + \frac{\partial(\rho u)}{\partial x} = 0 \\
\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u^2 + p)}{\partial x} = 0 , \quad x \in [0, 1] \\
\frac{\partial(\rho E)}{\partial t} + \frac{\partial(\rho E u + p u)}{\partial x} = 0
\end{cases}$$
(17)

IC: 
$$(\rho, u, p)|_{t=0} = \begin{cases} (1, 0, 1) & x < 0.5\\ (0.125, 0, 0.1) & x \ge 0.5 \end{cases}$$
 (18)

分别采用 Lax-Wendroff 格式、van Leer 格式、Roe 格式、5 阶 WENO 格式计算其数值解。

- 2.1 The Riemann problem of Euler equations
- 2.2 Lax-Wendroff scheme
- 2.3 Flux vector splitting methods
- 2.3.1 Steger-Warming splitting
- 2.3.2 van Leer splitting
- 2.4 Flux difference splitting methods
- 2.4.1 Roe-Pike method
- 2.5 High order methods
- 2.5.1 WENO reconstruction
- 2.5.2 Finite volume WENO
- 2.5.3 Finite difference WENO
- 2.6 Results and discussion

# 3 2D compression ramp

针对如下二维超声速来流入射压缩拐角问题,选用合适的离散格式计算其数值解。



图 4: 压缩拐角

控制方程(二维 Euler 方程)如下:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0\\ \frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u^2 + p)}{\partial x} + \frac{\partial(\rho uv)}{\partial y} = 0\\ \frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho uv)}{\partial x} + \frac{\partial(\rho v^2 + p)}{\partial y} = 0\\ \frac{\partial(\rho E)}{\partial t} + \frac{\partial(\rho E u + pu)}{\partial x} + \frac{\partial(\rho E v + pv)}{\partial y} = 0\\ \rho E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho(u^2 + v^2), \quad p = \rho RT \end{cases}$$
(19)

来流条件为:  $Ma_{\infty}=3$ ,  $T_{\infty}=288.16$  K, p=101.325 kPa。此外,H=10 m,气体参数 R=287 J/(kg·K),  $\gamma=1.4$ 。

- 3.1 Coordinate transformation
- 3.2 Dimensional splitting
- 3.3 Numerical methods
- 3.4 Results and discussion

# 参考文献

- Joel H. Ferziger, Milovan Perić, and Robert L. Street. Computational Methods for Fluid Dynamics. Springer International Publishing, Cham, 2020. ISBN 978-3-319-99691-2 978-3-319-99693-6. doi: 10.1007/978-3-319-99693-6. URL http://link.springer.com/10.1007/978-3-319-99693-6.
- Y. Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, 2nd ed edition, 2003. ISBN 978-0-89871-534-7.
- Tim Sauer. *Numerical analysis*. Pearson, Hoboken, NJ?, third edition edition, 2018. ISBN 978-0-13-469645-4.
- P.H. Brazier. An optimum SOR procedure for the solution of elliptic partial differential equations with any domain or coefficient set. *Computer Methods in Applied Mechanics and Engineering*, 3(3):335–347, May 1974. ISSN 00457825. doi: 10.1016/0045-7825(74)90018-8. URL https://linkinghub.elsevier.com/retrieve/pii/0045782574900188.