

MG32F103xx

基于高性能 32 位 ARMCortexTM-M3 内核的 MCU, 最高 128KBFlash 空间和 28KBSRAM,

1 个全速 USB, 7 个定时器, 12-位 ADC, 11 个通讯接口

Features

- 高性能 32 位 ARM CortexTM-M3 内核
 - ▶ 最高 72MHz 系统频率
 - ▶ 内置专用指令和数据缓存
 - ▶ 单周期 32 位硬件乘法器和硬件除法
 - AHB, APB1 和 APB2 时钟各自相互独立
- 存储空间
 - ▶ 96 或 128K 字节 Flash
 - ➤ 28K 字节 SRAM
- 供电电源
 - ➤ 双电源域: 主电源 VDD2.0V~3.6V、备份电池电源 VBAT1.8V~3.6V
 - ▶ 上电复位以及可配置电压检测模块
- 时钟
 - ▶ 支持 4~16MHz 晶振
 - ▶ 内嵌带校准的 8MHz 的 RC 振荡器
 - ▶ 内嵌带校准的 48MHz 的 RC 振荡器
 - ▶ 内嵌 32KHz 看门狗振荡器
 - ▶ PLL 时钟
 - ▶ 外部 LSE: 32.768KHz 晶振
- 电源管理
 - ➤ 三种省电模式:睡眠模式,停止模式, 特机模式
 - ▶ 动态功耗: ~160uA/MHz@3.3V
 - ➤ Stop 待机功耗: ~18.5uA@3.3V
 - ➤ Standby 待机功耗: ~4.5uA@3.3V
 - ➤ VBAT RTC 功耗: ~1.1uA@3.3V
 - ➤ 当主电源掉电时, VBAT 电源下提供 84 字节容量的备份寄存器
- 工作温度范围
 - ➤ 工业级(-40°C~+85°C)
- 12 位 SAR ADC 转换器
 - ▶ 最高转换器频率: 1Msps
 - ▶ 最多可支持 16 个通道
 - ▶ 支持多种自动连续转换、扫描转换
 - ▶ 温度传感器连接到 AD 转换器 16 通道
- 电压比较器
 - ▶ 2个独立的电压比较器
 - ▶ 每个比较器的正端和负端都支持4个输

入通道,共16个独立通道

- LED 驱动模块
 - → 可以同时驱动 56 个 LED 或 8 个七段数 码管
- 通用输入输出 IO
 - ▶ 64 引脚产品有 51 个 GPIO 引脚, 48 引脚产品有 37 个 GPIO 引脚
 - ▶ 所有 GPIO 引脚可配置为外部中断输入
- 调试接口
 - ▶ 串行单线调试(SWD)
- 7个定时器/计数器
 - ▶ 3 个基础定时器/计数器和1个增强型定时器/计数器
 - ➤ 20 位的 PWM 计时器 (增强型计时器的 通道 1~3 支持死区互补输出)
 - 增强型定时器/计数器支持边沿计数,门 控计数,正交计数,触发计数,符号计数
 - ▶ 独立看门狗定时器和窗口看门狗定时器
 - ▶ 24 位 SystemTick 定时器
- 11 个通信接口
 - ▶ 2个 I2C 接口,支持 Smbus 协议
 - ➤ 3 个 UART 接口
 - ▶ 3 个 SPI 接口, 1 个 QSPI 接口
 - ▶ 1 个 I2S 接口
 - ▶ 1个 USB 2.0 全速设备接口
- 2个多通道 DMA 控制器,支持 Timers、ADC、 SPIs、12Cs、UARTs 等多种外设触发
- RTC 时钟计数器,记录年月日时分秒
- CRC 计算模块
- RNG 模块
- ECOPACK®封装

目录

第一章	简介	4
1.1	概述	4
1.2	主要特点	4
第二章	封装管脚	7
2.1	LQFP64 封装	7
2.2	LQFP48 封装	8
2.3	管脚功能描述	9
第三章	系统框图	13
	系统描述	14
	概述	
4.2	ARM Cortex™-M3 内核	15
4.3	内存映射	16
4.4	系统复位	17
4.5	嵌套向量中断控制器 (NVIC)	18
4.6	EXTI	18
4.7	时钟	18
4.8	Boot 模式	18
4.9	供电方案	19
4.10	DMAC	19
4.11	RTC 时钟和 Backup 寄存器	19
4.12	独立看门狗	19
4.13	窗口看门狗	20
4.14	System Tick	20
4.15	通用定时器	20
4.16	高级定时器	20
4.17	I2C 总线	21
4.18	I2S 总线	21
4.19	UART	21
4.20	SPI	21
	USB	
4.22	GPIO	21

4.23	ADC	22
4.24	比较器	22
4.25	RNG	22
	LED 驱动	
4.27	CRC 计算单元	22
4.28	存储器和编程	22
4.29	电源监控器	22
4.30	低功耗模式	23
	4.30.1 睡眠模式	23
	4.30.2 停机模式	23
	4.30.3 待机模式	23
4.31	SWD 调试端口	23
818. 	of the late	•
-	电气规范	24
5.1	绝对最大额定值	
	5.1.1 极限电压特性	
	5.1.2 极限电流特性	
	5.1.3 极限温度特性	
5.2	工作参数	
	5.2.1 推荐工作条件	
	5.2.2 复位和低压检测	
	5.2.3 工作电流特性	
	5.2.4 外部时钟特性	
	5.2.5 内部时钟特性	
	5.2.6 PLL 特性	
	5.2.8 绝对最大值 (电气敏感性)	
	5.2.9 EFT 特性	
	5.2.10 IO 引脚特性	
	5.2.10 TIM 计数特性	
	5.2.12 CMP 特性	
	5.2.13 ADC 特性	
	5.2.13 ADC 存性	50
第六章	封装尺寸	34
6.1	LQFP64 10X10mm	34
6.2	LQFP64 7X7mm	36
6.3	LQFP48 7X7mm	37
第七章	产品选型表	39
第八章	产品代号信息	41
第九章	修改版本	42

第一章 简介

1.1 概述

MG32F103 系列使用高性能的 ARM ®Cortex™-M3 32 位的 RISC 内核,最高工作频率 72MHz,内置高达 128KB FLASH、28KB SRAM,1 个增强型计时器,3 个通用计时器,两个看门狗 WWDG 和 IWDG,3 个 SPI 串行同步通讯接口,1 个 QSPI 串行同步通讯接口,2 个 I2C 串行通讯接口,3 个 UART 串行异步通讯接口,1 个 I2S 音频接口,1 个 USB2.0 Full Speed 通讯接口,1 个 12 位 SAR 模拟数字转换器,1 个 LED 驱动模块,2 个电压比较器,实时时钟模块 RTC。

1.2 主要特点

- 电压工作范围
 - 双电源域: 主电源 VDD 2.0V ~ 3.6V、备份电池电源 VBAT 1.8V ~ 3.6V
 - 当主电源掉电时,RTC 模块可继续在 VBAT 电源下工作
 - 当主电源掉电时, VBAT 电源下提供 84Byte 容量的备份寄存器
- 电源管理
 - 三种省电模式: 睡眠模式, 停止模式, 待机模式
 - 动态功耗: ~ 160uA/MHz@3.3V
 - Stop 待机功耗: ~ 18.5uA@3.3V
 - Standby 待机功耗: ~ 4.5uA@3.3V
 - VBAT RTC 功耗: ~ 1.1uA@3.3V
- 工作温度范围
 - 工业级 (-40°C ~ +85°C)
- 复位
 - 外部管脚复位
 - 电源上电复位
 - 软件复位
 - 看门狗(IWDT和WWDT)计时器复位

- 低功耗模式复位
- 低电压检测 (PVD)
 - 8级检测门限可调
 - 上升沿/下降沿可配
- 时钟单元
 - 外部 HSE: 支持 4 ~ 16MHz 晶振, 典型 8MHz 晶振
 - 外部 LSE: 32.768KHz 晶振
 - 内嵌经出厂调校的 8MHz 的 RC 振荡器 (MHSI)
 - 内嵌带校准的 48MHz 的 RC 振荡器 (FHSI)
 - 内嵌 32KHz 看门狗振荡器 (LSI)
 - PLL 时钟
- 高性能 32 位 ARM CPU 内核
 - 最高 72MHz 的 ARM Cortex™-M3 处理器
 - 内置专用指令和数据缓存
 - 支持频率可配置
 - 可嵌套中断向量控制器 (NVIC)
 - 单周期 32 位硬件乘法器
 - 24 位 System Tick 定时器
- Flash 内存
 - $96\text{KB}\sim128\text{KB}$ Flash
- SRAM 内存
 - 28KB SRAM
- 12 位 SAR ADC 转换器
 - 最多可支持 16 个通道
 - 最高转换器频率: 1Msps
 - 支持自动连续转换、扫描转换
 - 支持软件和硬件 AD 转换触发模式
 - 温度传感器连接到 AD 转换器独立通道 16
- 电压比较器
 - 2个独立的电压比较器
 - 每个比较器的正端和负端都支持 4 个输入通道, 共 16 个独立通道
- 调试接口

- 串行单线调试 (SWD)
- Cortex-M3 测量跟踪宏单元 (ITM)
- 通信接口
 - 3 个 UART 接口
 - 3 个 SPI 接口, 1 个 QSPI 接口
 - 2 个 I2C 接口, 支持 Smbus 协议
 - 1个 USB2.0 Full Speed 设备接口
 - 1 个 I2S 接口
- 定时器/计数器
 - 3 个基础定时器/计数器和 1 个增强型定时器/计数器
 - 20 位的 PWM 计时器(增强型计时器的通道 1~3 支持死区互补输出)
 - 增强型定时器/计数器支持边沿计数,门控计数, AB 相正交计数,触发计数,符号计数
 - 可产生 ADC 触发事件
- 通用输入输出 IO
 - 64 引脚产品有 51 个 GPIO 引脚, 48 引脚产品有 37 个 GPIO 引脚
 - 所有 GPIO 引脚可配置为外部中断输入
 - 提供最高 16mA 驱动电流
- 多通道的 DMA 控制器,支持 Timers、ADC、SPIs、I2Cs、UARTs 等多种外设触发
- CRC 计算模块, 支持多种 8/16/32 位 CRC 算法。
- RNG 模块,用来产生随机数
- LED 驱动模块,可以同时驱动 56 个 LED 或 8 个七段数码管
- RTC 时钟计数器,配合软件记录年月日时分秒
- 支持用户程序二次开发
- 支持 LQFP64, LQFP48 多种封装

第二章 封装管脚

2.1 LQFP64 封装

2.2 LQFP48 封装

2.3 管脚功能描述

表 2.1: 管脚功能描述

	No.					
LQFP48	LQFP64	Pin Name	Туре	Main Function	Alternate Function	Analog Function
1	1	VBAT	S	VBAT		
2	2	PC13	I/O	PC13	TAMPER/RTC	
3	3	PC14	I/O	PC14		OSC32_IN
4	4	PC15	I/O	PC15		OSC32_OL
5	5	PD0	I/O	PD0		OSC_IN
6	6	PD1	I/O	PD1		OSC_OUT
7	7	NRST	I/O	NRST		
-	8	PC0	I/O	PC0	I2S_WS/SPIM2_NSS0/SPIS2_NSS	ADC_IN10
-	9	PC1	I/O	PC1	I2S_SCLK/SPIM2_SCK/SPIS2_SCK	ADC_IN11
-	10	PC2	I/O	PC2	I2S_SD0/SPIM2_MI/SPIS2_SO	ADC_IN12
-	11	PC3	I/O	PC3	I2S_SD1/SPIM2_MO/SPIS2_SI	ADC_IN13
8	12	VSSA	S	VSSA		
9	13	VDDA	S	VDDA		
10	14	PA0	I/O	PA0/WKUP	TIM2_CH1_ETR/UART2_CTS/WKUP	ADC_IN0
11	15	PA1	I/O	PA1	TIM2_CH2/UART2_RTS	ADC_IN1
12	16	PA2	I/O	PA2	TIM2_CH3/UART2_TX	ADC_IN2
13	17	PA3	I/O	PA3	TIM2_CH4/UART2_RX	ADC_IN3
-	18	VSS_4	S	VSS_4		
-	19	VDD_4	S	VDD_4		
14	20	PA4	I/O	PA4	QSPI_NSS0/SPIS1_NSS/UART2_CK	ADC_IN4
15	21	PA5	I/O	PA5	QSPI_SCK/SPIS1_SCK	ADC_IN5
16	22	PA6	I/O	PA6	TIM1_BKIN/TIM3_CH1/QSPI_MI_IO1/SPIS1_SO	ADC_IN6
17	23	PA7	I/O	PA7	TIM1_CH1N/TIM3_CH2/QSPI_MO_IO0/SPIS1_SI	ADC_IN7
-	24	PC4	I/O	PC4	TRACECK	ADC_IN14
-	25	PC5	I/O	PC5	SPIM2_NSS2/TRACED0	ADC_IN15
18	26	PB0	I/O	PB0	TIM1_CH2N/TIM3_CH3/I2S_MCLK/QSPI_IO2	ADC_IN8
19	27	PB1	I/O	PB1	TIM1_CH3N/TIM3_CH4/QSPI_IO3	ADC_IN9
20	28	PB2	I/O	PB2/BOOT1		
21	29	PB10	I/O	PB10	TIM2_CH3/TIM4_CH1/I2C2_SCL/QSPI_NSS2/UART3_TX	
22	30	PB11	I/O	PB11	TIM2_CH4/I2C2_SDA/SPIM2_NSS1/UART3_RX	
	31	VSS_1	S	VSS_1		
_	32	VDD_1	S	VDD_1		
	33	PB12	I/O	PB12	TIM1_BKIN/I2S_WS/LED4/SPIM2_NSS0/SPIS2_NSS/UART3_CK	
_	34	PB13	I/O	PB13	TIM1_CH1N/I2S_SCLK/LED5/SPIM2_SCK/SPIS2_SCK/UART3_CTS	
	35	PB14	I/O	PB14	TIM1_CH2N/LED6/SPIM2_MI/SPIS2_SO/UART3_RTS	
_	36	PB15	I/O	PB15	TIM1_CH3N/LED7/SPIM2_MO/SPIS2_SI/I2S_SD0	
	37	PC6	I/O	PC6	TIM3_CH1/I2S_MCLK/LED0	
	38	PC7	1/0	PC7	TIM3_CH2/I2S_MCLK/LED1	
	39	PC8	1/0	PC8	TIM3_CH3/LED2	
	40	PC9	1/0	PC9	TIM3_CH4/LED3/TRACED1	

Pin	No.					
LQFP48	LQFP64	Pin Name	Туре	Main Function	Alternate Function	Analog Function
29	41	PA8	I/O	PA8	TIM1_CH1/LED0/UART1_CK/MCO	CMPA_P0
30	42	PA9	I/O	PA9	TIM1_CH2/LED1/UART1_TX	CMPA_N0
31	43	PA10	I/O	PA10	TIM1_CH3/LED2/UART1_RX	
32	44	PA11	I/O	ISOCLK	TIM1_CH4/LED3/UART1_CTS	USBDM
33	45	PA12	I/O	ISODIO	TIM1_ETR/UART1_RTS	USBDP
34	46	PA13	I/O	SWDIO	QSPI_NSS1	CMPA_P3
35	47	VSS_2	S	VSS_2		
36	48	VDD_2	S	VDD_2		
37	49	PA14	I/O	SWDCLK	QSPI_NSS2	CMPA_N3
38	50	PA15	I/O	PA15	TIM2_CH1_ETR/I2S_WS/I2C1_SMBAI/QSPI_NSS0/SPIS1_NSS	CMPB_P3
-	51	PC10	I/O	PC10	LED4/UART3_TX/TRACED2	CMPB_P1
-	52	PC11	I/O	PC11	LED5/UART3_RX/TRACED3	CMPB_P2
-	53	PC12	I/O	PC12	TIM4_ETR/LED6/UART3_CK	CMPB_N0
-	54	PD2	I/O	PD2	TIM3_ETR/LED7	CMPB_P0
39	55	PB3	I/O	PB3	SWO/TIM2_CH2/I2S_SCLK/QSPI_SCK/SPIS1_SCK	CMPB_N3
40	56	PB4	I/O	PB4	TIM3_CH1/QSPI_MI_IO1/SPIS1_SO	CMPA_P1
41	57	PB5	I/O	PB5	TIM3_CH2/I2S_SD1/I2C1_SMBAI/QSPI_MO_IO0/SPIS1_SI	CMPA_P2
42	58	PB6	I/O	PB6	TIM4_CH1/I2C1_SCL/QSPI_NSS1/UART1_TX	CMPA_N1
43	59	PB7	I/O	PB7	TIM4_CH2/I2C1_SDA/SPIM2_NSS1/UART1_RX	CMPA_N2
44	60	воото	I	воото		
45	61	PB8	I/O	PB8	TIM4_CH3/I2C1_SCL/SPIM2_NSS2/UART1_CTS	CMPB_N1
46	62	PB9	I/O	PB9	TIM4_CH4/I2C1_SDA/UART1_RTS	CMPB_N2
47	63	VSS_3	S	VSS_3		
48	64	VDD_3	S	VDD_3		

MG32F103xx GPIO 功能选择:

表 2.2: 管脚功能选择

AFR	[3:0]	0	1	2	3	4	5	6	7
PORT	PA0	WKUP	TIM2_CH1_ETR						UART2_CTS
Α		VVICOI							
-	PA1		TIM2_CH2 TIM2_CH3						UART2_RTS
	PA2								UART2_TX
	PA3		TIM2_CH4				OCDI NECO	CDIC4 NCC	UART2_RX
	PA4						QSPI_NSS0 QSPI_SCK	SPIS1_NSS	UART2_CK
	PA5		TIMA DIZINI	TIMO CLIA					
	PA6		TIM1_BKIN	TIM3_CH1 TIM3_CH2			QSPI_MI_IO1		
	PA7	1400	TIM1_CH1N TIM1_CH1	TIIVI3_CHZ		1.500	QSPI_MO_IO	3 3 3 3 1 3 1	LIADT1 CK
	PA8	MCO	_			LED0			UART1_CK
	PA9		TIM1_CH2			LED1			UART1_TX UART1_RX
	PA10		TIM1_CH3 TIM1_CH4			LED2			
	PA11		TIM1_CH4			LED3			UART1_CTS UART1_RTS
	PA12	CMD DIO	TIIVII_ETK				OCDI NECA		UARTI_RTS
	PA13	SWD_DIO					QSPI_NSS1 QSPI_NSS2		
	PA14	SWD_CLK	TIMO CLIA ETD		126 M6	IOCA CMDAI		SPIS1 NSS	
PORT	PA15		TIM2_CH1_ETR		I2S_WS	I2C1_SMBAI	QSPI_NSS0	3P131_N33	
В	PB0		TIM1_CH2N	TIM3_CH3	I2S_MCLK		QSPI_IO2		
	PB1		TIM1_CH3N	TIM3_CH4			QSPI_IO3		
	PB2	BOOT1							
	PB3	SWO	TIM2_CH2		I2S_SCLK			SPIS1_SCK	
	PB4			TIM3_CH1			QSPI_MI_IO1	SPIS1_SO	
	PB5			TIM3_CH2	I2S_SD1	I2C1_SMBAI	QSPI_MO_IO	SPIS1_SI	
	PB6			TIM4_CH1		I2C1_SCL	QSPI_NSS1		UART1_TX
	PB7			TIM4_CH2		I2C1_SDA	SPIM2_NSS1		UART1_RX
	PB8			TIM4_CH3		I2C1_SCL	SPIM2_NSS2		UART1_CTS
	PB9			TIM4_CH4		I2C1_SDA			UART1_RTS
	PB10		TIM2_CH3	TIM4_CH1		I2C2_SCL	QSPI_NSS2		UART3_TX
	PB11		TIM2_CH4			I2C2_SDA	SPIM2_NSS1		UART3_RX
	PB12		TIM1_BKIN		I2S_WS	LED4	SPIM2_NSS0		=
	PB13		TIM1_CH1N		I2S_SCLK	LED5	SPIM2_SCK		UART3_CTS
	PB14		TIM1_CH2N			LED6	SPIM2_MI	SPIS2_SO	UART3_RTS
DODT	PB15		TIM1_CH3N		I2S_SD0	LED7	SPIM2_MO	SPIS2_SI	
PORT C	PC0				I2S_WS		SPIM2_NSS0	SPIS2_NSS	
	PC1				I2S_SCLK		SPIM2_SCK	SPIS2_SCK	
	PC2				I2S_SD0		SPIM2_MI	SPIS2_SO	
	PC3				I2S_SD1		SPIM2_MO	SPIS2_SI	
	PC4	TRACECK							
	PC5	TRACED0					SPIM2_NSS2		
	PC6			TIM3_CH1	I2S_MCLK	LED0			
	PC7			TIM3_CH2	I2S_MCLK	LED1			
	PC8			TIM3_CH3		LED2			
	PC9	TRACED1		TIM3_CH4		LED3			
	PC10	TRACED2				LED4			UART3_TX
	PC11	TRACED3				LED5			UART3_RX

AFR	[3:0]	0	1	2	3	4	5	6	7
	PC12			TIM4_ETR		LED6			UART3_CK
	PC13	TAMPER_RTC							
	PC14	OSC32_IN							
	PC15	OSC32_OUT							
PORT	PD0	OSC_IN							
	PD1	OSC_OUT							
	PD2			TIM3_ETR		LED7			

第三章 系统框图

下图是 MG32F103xx 系列产品的系统框图:

图 3.1: MG32F103xx 系统框图

第四章 系统描述

4.1 概述

下表显示了 MG32F103xx 系列产品特性和外围数。

表 4.1: MG32F103xx 器件特	
-----------------------	--

	表 4.1: MG32F1039 周边功能		<u>ЕТПЛОДЕРЛЕ</u> F103Cx	MG32F103RBT6
	 	96	128	128
	SRAM(KB)	28	28	28
计数器	通用	3	3	3
本	高级	1	1	1
	QSPI(Master)	1	1	1
	SPIM	1	1	1
	SPIS	2	2	2
通讯接口	I ² C	2	2	2
75	UART	3	3	3
	USB	1	1	1
	l ² S	0	1	1
	GPIO 数目	37	37	51
	12 位转换器数量	1	1	1
ADC	通道数量	10	10	16
比较器	数量	2	2	2
丑	通道数量	12	12	16
	CPU 频率			72MHz
	工作电压			2.0V ~ 3.6V
	工作温度	工业温度:	-40°C ∼	+85°C 结温度: -40°C ~ +125°C
	封装	LQF	P48	LQFP64

4.2 ARM Cortex™-M3 内核

Cortex™ M3 处理器是 32 位可配置的多级流水线 RISC 处理器,内嵌 AMBA-Lite 接口和嵌套向量中断控制器(NVIC),是一个低成本、高性能的 MCU 平台。具有可选的硬件调试功能,可以执行 Thumb-2 指令,并与其它 Cortex-M 系列兼容。MG32F103xx 系列产品拥有内置的 Cortex™-M3 核心,因此它与所有的

ARM 工具和软件兼容。

4.3 内存映射

MG32F103xx 内存地址空间支持 4GB 大小。分为: 引导区, Flash 存储器区, SRAM 区, 系统自有外设区, APB 外设区和 AHB 外设区。系统自有外设区保留为 M3 内核所用。

AHB 外设区占据 64KB 大小空间,可以支持到 64 个外设。APB 外设区是一片 64KB 大小空间,每一个 APB 外设都分配 1KB 空间。APB 外设区所有控制寄存器读写都采用字地址寻址,用户不可以单独访问寄存器高位字节或低位字节。

引导区有 4KB 大小空间用于存储引导程序, ISP 函数。Flash 和 SRAM 数据总线都采用 32 位操作方式。 下图是 MG32F103xx 内存地址空间分配图:

4.4 系统复位

下列事件可以触发系统复位:

• 电源上电复位 (POR)

- 外部管脚复位信号(低电平)
- 看门狗超时复位 (IWDG 和 WWDG)
- 软件复位
- 低功耗模式复位

复位可以由任意一个复位源引起,只要工作电压处于可用电平,就会启动内部 MHSI 并保持有效。当外部复位无效后,此时振荡器运行,同时闪存控制器完成初始化。

4.5 嵌套向量中断控制器 (NVIC)

嵌套向量中断控制器 (NVIC) 是 Cortex™-M3 内核的一部分。它可以让 CPU 以最短的时间对中断作出 反应。主要的特征有:

- 较短的中断响应延迟.
- 处理系统异常和外设中断.
- 支持 43 个中断向量.
- 四种可编程的中断响应优先级别.
- 产生软件中断.
- 可配置的不可屏蔽中断源 (NMI).

4.6 EXTI

外部中断/事件控制器包含 19 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置它的触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽。拥有一个挂起寄存器维持所有中断请求的状态。

4.7 时钟

系统时钟的选择是在启动时进行,复位时内部 8MHz 的 RC 振荡器(MHSI)被选为默认的 CPU 时钟,随后可以选择外部的 4~16MHz 时钟(HSE)、内部的 48Mhz 的 RC 振荡器(FHSI)或者 PLL 的输出经分频得到的频率。当外部时钟失效时,它将被隔离,同时产生相应的中断。具有多个预分频器用于配置 AHB、APB1 和 APB2 区域的频率。AHB、APB1 和 APB2 区域的最高频率可以达到 72MHz,而且 AHB、APB1 和 APB2 的配置频率可以相互独立。

4.8 Boot 模式

在启动时, 自举管脚被用于选择三种自举模式中的一种:

- 从用户闪存自举
- 从系统存储器自举
- 从内部 SRAM 自举

4.9 供电方案

- VDD = 2.0 ~ 3.6V: VDD 管脚为 I/O 管脚和内部 LDO 供电
- VDDA = 2.4 ~ 3.6V: 为 ADC 模拟部分提供供电。
- VBAT = 1.8 ~ 3.6V: 当关闭 VDD 时,内部电源切换电路将通过 VBAT 为 RTC、外部 32kHz 振荡器和 后备寄存器供电。

注意: VDD 和 VDDA 电压需要一致,建议使用相同的电源为 VDD 和 VDDA 供电。

4.10 **DMAC**

两个通用 DMAC 控制器,每个 DMAC 控制器有 3 个通道和最高 16 组硬件握手接口 (DMAC0 有 16 组, DMAC1 有 12 组,一共有 28 组硬件握手接口),管理各种类型的存储器到存储器、设备到存储器和存储器到设备的数据传输。每个 DMAC 内部还有一个仲裁器来协调各个 DMA 请求的优先级。

每个通道都可以单独配置硬件握手接口,或者软件握手接口触发每个通道;传输的长度、传输的源地址和目标地址都可以通过软件单独设置。DMAC可以用于主要的外设:SPI、I2C、I2S、UART、定时器TIMx和ADC。

4.11 RTC 时钟和 Backup 寄存器

RTC 和后备寄存器通过一个开关供电,在 VDD 有效时该开关选择 VDD 供电,否则由 VBAT 管脚供电。后备寄存器可以用于保存用户应用数据。该寄存器不会被系统或电源复位源复位。当从待机模式唤醒时,也不会被复位。实时时钟具有一组连续运行的计数器,可以通过适当的软件提供日历时钟功能,还具有闹钟中断和阶段性中断功能。RTC 的驱动时钟可以是一个使用外部晶体的 32.768kHz 的振荡器、内部低功耗 RC 振荡器的典型频率为 32kHz。为补偿天然晶体的偏差,可以通过输出一个 512Hz 的信号对 RTC 的时钟进行校准。RTC 具有一个 32 位的可编程计数器,使用比较寄存器可以进行长时间的测量。有一个 20 位的预分频器用于时基时钟,默认情况下时钟为 32.768kHz 时它将产生一个 1 秒长的时间基准。

4.12 独立看门狗

独立的看门狗是基于一个 12 位的递减计数器和一个 8 位的预分频器,它由一个内部独立的 32kHz 的 RC 振荡器提供时钟,因为这个 RC 振荡器独立于主时钟,所以它可运行于停机和待机模式。它可以被当成看门狗用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选择字节可

以配置成是软件或硬件启动看门狗。在调试模式, 计数器可以被冻结。

4.13 窗口看门狗

窗口看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生问题时复位整个系统。它由主时钟驱动,具有早期预警中断功能。在调试模式,计数器可以被冻结。

4.14 System Tick

这个定时器是专用于操作系统,也可当成一个标准的递减计数器。它具有下述特性。

- 24 位的递减计数器
- 重加载功能
- 当计数器为 0 时能产生一个可屏蔽中断
- CPU 时钟频率的 1/8

4.15 通用定时器

每个定时器都有一个 20 位的自动加载递加/递减计数器、一个 16 位的预分频器和 4 个独立的通道。每个通道都可用于输入捕获、输出比较、PWM 和单脉冲模式输出,在最大的封装配置中可提供最多 16 个输入捕获、输出比较或 PWM 通道。它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。

任一标准定时器都能用于产生 PWM 输出。每个定时器都有独立的 DMA 请求机制。

4.16 高级定时器

高级控制定时器 (TIM1) 可以被看成是分配到 6 个通道的三相 PWM 发生器,还可以被当成完整的通用定时器。四个独立的通道可以用于:

- 输入捕获
- 输出比较
- 产生 PWM(边缘或中心对齐模式)
- 单脉冲输出
- 互补 PWM 输出,具程序可控的死区插入功能

配置为 20 位标准定时器时,它与 TIMx 定时器具有相同的功能。配置为 20 位 PWM 发生器时,它具有全调制能力 (0 \sim 100%)。在调试模式下,计数器可以被冻结。很多功能都与标准的 TIM 定时器相同,内部

结构也相同,因此高级控制定时器可以通过定时器链接功能与 TIM 定时器协同操作,提供同步或事件链接功能。

4.17 I2C 总线

多达 2 个 I2C 总线接口,能够工作于多主和从模式,支持标准 (<=100Kb/s)、快速 (<=400Kb/s) 和高速 (<=3.4Mb/s)模式,并支持 SMBus 总线。I2C 接口支持 7 位或 10 位寻址,7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器/校验器。它们可以使用 DMA 操作。

4.18 I2S 总线

内置 1 个 I2S 总线接口,支持多种音频传输协议,工作于主控模式,支持双通道输入和输出。提供主时钟(MCLK)和串行时钟(SCLK)以及帧时钟(WS)和串行数据(SD0/SD1)。

4.19 UART

内置了 3 个通用同步/异步收发器 (UART1、UART2 和 UART3), 这 3 个接口提供异步通信、支持红外线传输。UART1、UART2 和 UART3 接口通信速率可达 6MBit/s,接口具有硬件的 CTS 和 RTS 信号管理,所有接口都可以使用 DMA 操作。

4.20 SPI

多达 3 个 SPI 接口,和 1 个 QSPI 接口。在主模式下的通信速率可达 24MBit/s,在从模式下的通信速率可达 18MBit/s。支持多种帧尺寸配置,可以配置成每帧 4/8/16/32 位。

所有的 SPI 接口都可以使用 DMA 操作。

4.21 USB

内嵌一个兼容全速 USB 的设备控制器,遵循全速 USB 设备标准,端点可由软件配置,具有待机/恢复功能。USB 专用的 48MHz 时钟由系统时钟分频后产生。

4.22 **GPIO**

每个 GPIO 管脚都可以由软件配置成输出 (推拉或开路)、输入 (带或不带上拉或下拉) 或其它的外设功能端口。多数 GPIO 管脚都与数字或模拟的外设共用。所有的 GPIO 管脚都有大电流通过能力。在需要的情况下,I/O 管脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入 I/O 寄存器。

4.23 ADC

内嵌 1 个 12 位的模拟/数字转换器 (ADC), 1Msps 转换率,支持 16 个外部 AD 通道采样转换,可以实现单次或扫描转换。在扫描模式下,在选定的一组模拟输入上的转换自动进行。

ADC 可以使用 DMA 操作。模拟看门狗功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀值时,将产生中断。由标准定时器 (TIMx) 和高级控制定时器 (TIM1)产生的事件,可以分别内部级联到 ADC 的开始触发和注入触发,应用程序能使 AD 转换与时钟同步。

ADC 需要独立的供电电源 VDDA, 供电范围在 2.4V 到 3.6V。ADC 测量范围在 0V 到 VDDA 之间。内嵌温度传感器在内部被连接到 ADC_IN16 的输入通道上,用于将传感器的输出转换到数字数值。

4.24 比较器

内嵌 2 个模拟输入比较器,每个模拟输入比较器的正端和负端输入支持 4 个输入通道,一共支持 16 个外部输入通道比较。

4.25 RNG

随机数发生器,支持产生8、16、32位随机数序列。

4.26 LED 驱动

内嵌的 LED 驱动模块,最大可以同时驱动 56 个 LED 或 8 个七段数码管。

4.27 CRC 计算单元

内部集成了一个独立的 CRC 硬件计算单元,支持多种 8/16/32 位 CRC 算法,提供加速处理的能力。

4.28 存储器和编程

内部集成了 $32KB\sim 256KB$ Flash 程序存储器空间,4KB 系统存储器空间,以及高达 36KByte SRAM。 支持在系统编程 (ISP) 编程方式。用户可以通过 bootloader 接口来调用 ISP 功能。

4.29 电源监控器

内部集成了上电复位 (POR)/掉电复位 (PDR) 电路,该电路始终处于工作状态,保证系统在供电超过 2V时工作。当 VDD 低于 POR/PDR 阀值时,置器件于复位状态,而不必使用外部复位电路。器件中还有一个可编程电压监测器 (PVD),它监视 VDD 供电并与阀值 V_{PVD} 比较,当 VDD 低于或/和高于阀值 V_{PVD} 时

将产生中断,中断处理程序可以发出警告信息或将微控制器转入安全模式。PVD 功能需要通过程序使能开启。

4.30 低功耗模式

MG32F103xx 支持多种功耗控制功能。在处理器正常工作模式下,可以对所选外设的电源和时钟进行优化,从而降低系统功耗。此外,处理器有三种特殊的低功耗模式:睡眠模式、停机模式和待机模式。

4.30.1 睡眠模式

在睡眠模式下, ARM Cortex™-M3 内核的时钟被关闭, 所有的指令执行被挂起直到系统被重启或中断唤醒。

对于外设来说,它的时钟此时由寄存器控制并可以产生中断,从而唤醒处理器重启执行指令。睡眠模式可以减少由处理器,内存和内部总线产生的系统动态功耗。处理器的状态和寄存器,外设寄存器,内存数据以及管脚的逻辑状态在睡眠模式下都保持不变。

4.30.2 停机模式

在保持 SRAM 和寄存器内容不丢失的情况下,停机模式可以达到最低的电能消耗。在停机模式下,所有内部时钟被关闭,HSI 和 HSE 的 RC 振荡器被关闭。可以通过任一配置成 EXTI 的信号把微控制器从停机模式中唤醒,EXTI 信号可以是 16 个外部 I/O 口之一、PVD 的输出、RTC 闹钟或 USB 的唤醒信号。

4.30.3 待机模式

在待机模式下可以达到最低的电能消耗。内部 LDO 被关闭,因此所有内部 1.2v 部分的供电被切断;HSI 和 HSE 的 RC 振荡器也被关闭;进入待机模式后,SRAM 和寄存器的内容将消失,但后备寄存器的内容仍然保留,待机电路仍工作。从待机模式退出的条件是:NRST 上的外部复位信号、IWDG 复位、WKUP 管脚上的一个上升边沿或 RTC 的闹钟到时。

4.31 SWD 调试端口

内嵌 ARM 的 SWJ-DP 接口,这是一个串行单线调试的接口,可以实现串行单线调试接口的连接。

第五章 电气规范

5.1 绝对最大额定值

最大额定值只是短时间的压力值。并且芯片在该值或者其他任何超出该推荐值的条件下工作是不可取的。超出下列最大额定值可能会给芯片造成永久性的损坏。长时间工作在最大额定值下可能影响芯片的可靠性表。

5.1.1 极限电压特性

表 5.1: 极限电压特性

符号	描述	最小值	最大值	单位
VDD-VSS	外部主供电压 (包含 VDDA 和 VDD)	-0.5	3.6	V
Vin	Vin 引脚上的输入电压		VDD + 0.5	
$ \Delta VDDx $	不同供电引脚之间的电压差	-	50	m\/
VSSx - VSS	不同接地引脚之间的电压差	-	50	mV

5.1.2 极限电流特性

表 5.2: 极限电流特性

符号	描述	最大值	单位
I_{VDD}	经过 VDD/VDDA 电源线的总电流 (供电电流)	60	
I_{VSS}	经过 VSS 地线的总电流 (流出电流)	60	
	任意 I/O 和控制引脚上的输出灌电流	16	
I_{IO}	任意 I/O 和控制引脚上的输出拉电流	-16	mA
$I_{INJ(PIN)}$	引脚上的注入电流	± 5	
\sum l _{INJ(PIN)}	引脚上的注入电流	± 25	

注 1: 所有的电源(VDD, VDDA)和地(VSS, VSSA)引脚必须始终连接到外部允许范围内的供电系统上。

注 2: 反向注入电流会干扰器件的模拟性能。

注 3: 当 VIN > VDD 时,有一个正向注入电流;当 VIN < VSS 时,有一个反向注入电流,注入电流绝对不可以超过规定范围。

注 4: 当几个 I/O 口同时有注入电流时, $\sum I_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。

5.1.3 极限温度特性

表 5.3: 极限温度特性

符号	描述	参数值	单位
T_{STG}	存储温度范围	$-45 \sim +150$	°C
T_J	最大结温度	100	C

5.2 工作参数

5.2.1 推荐工作条件

表 5.4: 推荐工作条件

符号	描述	最小值	最大值	单位
f_{HCLK}	内部 AHB 时钟频率	-	72	
f_{PCLK1}	内部 APB1 时钟频率	-	72	MHz
f_{PCLK2}	内部 APB2 时钟频率	-	72	
VDD	标准工作电压	2	3.6	V
VDDA	模拟工作电压	2	3.6	V
VBAT	备用部分工作电压	1.8	3.6	V
Т	工作温度	-40	85	°C

注: ADC 工作时, VDDA 的工作范围是 2.4V~3.6V。

5.2.2 复位和低压检测

表 5.5: 上电复位特性

符号	参数	条件	最小值	典型值	最大值	单位
T_{delay}	RSTN 建立时间	-	-	40	-	us
$V_{POR/PDR}$	<i>₩ ₩ ₩ ₩</i>	上升沿	-	1.92	-	V
	复位门限	下降沿	-	1.88	-	V

表 5.6: PVD 特性

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[2:0] = 000	-	2.25	-	
		PLS[2:0] = 001	-	2.35	-	
		PLS[2:0] = 010	-	2.45	-	
	司绝和由民校测鬼的校测由亚维权上代纸	PLS[2:0] = 011	-	2.55	1	
	可编程电压检测器的检测电平选择上升沿	PLS[2:0] = 100	-	2.65	-	
		PLS[2:0] = 101	-	2.75	-	
		PLS[2:0] = 110	-	2.85	-	
\ /		PLS[2:0] = 111	-	2.95	-	V
V_{PVD}		PLS[2:0] = 000	-	2.14	-	V
		PLS[2:0] = 001	-	2.24	-	
		PLS[2:0] = 010	-	2.34	-	
	司迫犯由异处调鬼的抡调由亚牙权工废机	PLS[2:0] = 011	-	2.44	-	
	可编程电压检测器的检测电平选择下降沿	PLS[2:0] = 100	-	2.54	-	
		PLS[2:0] = 101	-	2.64	-	
		PLS[2:0] = 110	-	2.74	-	
		PLS[2:0] = 111	-	2.84	-	

5.2.3 工作电流特性

表 5.7: 工作电流特性

- tit-	Ar III.	VDD	TA@2	25°C	34 D.
模式	条件	2.0V	2.5V	3.6V	单位
	HCLK=72MHz, 从 FLASH 执行指令,APB 时钟 enable	12.43	12.92	12.3	mA
	HCLK=72MHz, 从 FLASH 执行指令,APB 时钟 disable	8.0	8.22	7.73	mA
	HCLK=48MHz(FHSI), 从 FLASH 执行指令,APB 时钟 enable	9.83	9.55	10.04	mΑ
Run Mode ¹	HCLK=48MHz(FHSI), 从 FLASH 执行指令,APB 时钟 disable	6.96	6.41	6.89	mA
Run Mode	HCLK=8MHz(HSE), 从 FLASH 执行指令,APB 时钟 enable	3.35	2.78	3.41	mA
	HCLK=8MHz(HSE), 从 FLASH 执行指令,APB 时钟 disable	2.84	2.37	2.87	mA
	HCLK=8MHz(MHSI), 从 FLASH 执行指令,APB 时钟 enable	3.11	2.54	2.79	mA
	HCLK=8MHz(MHSI), 从 FLASH 执行指令,APB 时钟 disable	2.54	1.91	2.28	mΑ
Cloop Mode	HCLK=72MHz, APB 时钟 disable	3.23	2.79	3.04	mΑ
Sleep Mode	HCLK=8MHz(MHSI), APB 时钟 disable	1.68	0.93	1.12	mA
Cton Mode	LDO 全速工作状态,HSE/HSI/LSE 关闭	240	264	296	uA
Stop Mode	LDO 低功耗状态,HSE/HSI/LSE 关闭	15.98	17.34	20.8	uA
Standby		4.29	4.50	E 11	
Mode	LSI 和 IWDG 工作 ode		4.52	5.14	uA
VBAT Mode	RTC 和 LSE 时钟工作	0.78	1.05	1.25	uA

注 1: Cache 打开。

注 2: 当电压低于 2.5V 时内部升压电路工作, 会增加 ~1mA 电流。

注 3: 当 ADC 工作在 12 位模式,会增加 ~0.8mA 电流。

5.2.4 外部时钟特性

表 5.8: 外部高速时钟特性

	次 5.5. 기 前	AIDI XX B 1 11 17 17				
符号	参数	条件	最小值	典型值	最大值	单位
f_{HSE_ext}	时钟频率		-	8	16	MHz
V_{HSEH}	输入引脚高电平	<u> </u>	0.7VDD	-	VDD	M
V_{HSEL}	输入引脚低电平		VSS	-	0.3VDD	V
$T_{W(HSE)}$	有效高/低电平时间		16	-	-	
$T_{r(HSE)}$ $T_{f(HSE)}$	上升/下降时间		-	-	5	ns
$C_{in(HSE)}$	输入容抗	-	-	5	-	pF
$DuCy_{(HSE)}$	占空比	-	45	-	55	%

注:基于设计仿真和实验室测试结果,非产品测试项目。

表 5.9: 外部低速时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{LSE_ext}	时钟频率		-	32.768	-	KHz
V_{LSEH}	输入引脚高电平		0.7VDD	-	VDD	٧
V_{LSEL}	输入引脚低电平		VSS	-	0.3VDD	V
$T_{W(LSE)}$	有效高/低电平时间	_	450	ı	-	
$T_{r(LSE)}$ $T_{f(LSE)}$	上升/下降时间		-	-	50	ns
$C_{in(LSE)}$	输入容抗	-	-	5	-	pF
$DuCy_{(LSE)}$	占空比	-	30	-	70	%
$T_{SU(LSE)}$	启动时间	VDD 稳定	-	2	-	s

注: 基于设计仿真和实验室测试结果, 非产品测试项目。

5.2.5 内部时钟特性

表 5.10: 内部快速时钟 0 特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{MHSI}	时钟频率	-	_	8	-	MHz
$DuCy_{(MHSI)}$	占空比	-	45	-	55	%
		T _A =-40 to 85°C	TBD	-	TBD	%
$ACC_{(MHSI)}$	振荡器精度	T _A =0 to 85°C	TBD	-	TBD	%
		T _A =25°C	TBD	-	TBD	%
$T_{SU(MHSI)}$	振荡器启动时间	$VSS \leq Vin \leq VDD$	1	-	2	us
$I_{DD(MHSI)}$	振荡器功耗	-	-	25	-	uA

表 5.11: 内部快速时钟 1 特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{FHSI}	时钟频率	-	_	48	-	MHz
$DuCy_{(FHSI)}$	占空比	-	45	-	55	%
		T _A =-40 to 85°C	TBD	-	TBD	%
$ACC_{(FHSI)}$	振荡器精度	T _A =0 to 85°C	TBD	-	TBD	%
		T _A =25°C	TBD	-	TBD	%
$T_{SU(FHSI)}$	振荡器启动时间	$VSS \leq Vin \leq VDD$	200	-	500	ns
$I_{DD(FHSI)}$	振荡器功耗	-	-	55	-	uA

表 5.12: 内部慢速时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{LSI}	时钟频率	-	20	-	40	KHz
$T_{SU(LSI)}$	振荡器启动时间	-	-	-	85	us
$I_{DD(LSI)}$	振荡器功耗	-	-	250	-	nA

注: 基于设计仿真和实验室测试结果, 非产品测试项目。

5.2.6 PLL 特性

表 5.13: PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
£ .	输入时钟频率	-	1	8	16	MHz
f_{PLL_IN}	输入时钟占空比	-	40	-	60	%
f_{PLL_OUT}	输出时钟频率	-	-	72	-	MHz
T_{LOCK}	锁相时间	-	-	-	200	us
Jitter	循环抖动	-	-	•	300	ps

注: 基于设计仿真和实验室测试结果, 非产品测试项目。

5.2.7 存储器特性

表 5.14: 存储器特性

符号	参数	最小值	典型值	最大值	单位
T_{PROG}	页写人时间	-	2.1	-	ms
т	页擦除时间	-	6.4	-	ms
T_{ERASE}	整片擦除时间	-	25.6	-	ms
IDD_{PROG}	页写人电流	-	-	2	mA
IDD_{ERASE}	页/片擦除电流	-	-	1.5	mA
IDD	读电流 @48MHz	-	-	4.7	mA
IDD_{READ}	读电流 @24MHz	-	-	2.5	mA
N_{END}	擦写寿命	100	-	-	千次
t_{RET}	数据保存时间	10	-	-	year

5.2.8 绝对最大值 (电气敏感性)

基于三个不同的测试 (ESD, LU),使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

静电放电 (ESD)

静电放电 (一个正的脉冲然后间隔一秒钟后一个负的脉冲) 施加到所有样品的所有引脚上,样品的大小与芯片上供电引脚数目相关 (3 片×(n+1) 供电引脚)。这个测试符合 JESD22- A114/C101 标准。

静电闩锁

为了评估栓锁性能,需要在6个样品上进行2个互补的静态栓锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的 I/O 引脚上注入电流。

这个测试符合 ANSI/ESDA/JEDEC 集成电路栓锁标准。

符号	参数	条件	最大值	单位
V	数山边山山区 (人) (木塔利)	T _A = +25 ∘C,符合	4000	V
V _{ESD(HBM)} 静电放电电压 (人体模型)		JEDEC JS-001-2017	4000	V
V	越山进山山区 (大山沿夕贯阳)	T _A = +25 ∘C,符合	500	V
$V_{ESD(CDM)}$	静电放电电压 (充电设备模型)	JEDEC JS-002-2018	500	V
	整本於端米 (Latch up current)	T _A = +25 ∘C,符合	200	mA
I_{LU}	静态栓锁类 (Latch-up current)	JEDEC 2016	200	IIIA

表 5.15: ESD 特性

5.2.9 EFT 特性

 符号
 标准
 电压
 级别

 EFT to IO
 (IEC61000-4-4)
 2KV
 Class: 4

 EFT to Power
 (IEC61000-4-4)
 4KV
 Class: 4

表 5.16: EFT 特性

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器。
- 意外的复位。
- 关键数据被破坏 (控制寄存器等……)

增强 IO 的驱动能力可以提高对 EFT 的能力。

在进行 EET 测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错。

5.2.10 IO 引脚特性

表 5.17: IO 引脚直流特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{IH}	输入高电平	-	0.65VDD	-	VDD+0.5	V
V_{IL}	输入低电平	-	-0.5	-	0.3VDD	V
V_{hys}	施密特触发器电压迟滞	-	5%VDD	-	-	V
I_{lkg}	输入漏电流	$VSS \leq Vin \leq VDD$	-	-	±1	uA
R_{pu}	弱上拉等效电阻	Vin=VSS	30	40	50	kΩ
R_{pd}	弱下拉等效电阻	Vin=VDD	30	40	50	kΩ
C_{IO}	I/O 管脚电容	-	-	5	-	pF

注: 基于设计仿真和实验室测试结果, 非产品测试项目。

表 5.18: IO 引脚交流特性

速度	符号	参数	条件	最小值	最大值	单位
	$f_{max(IO)out}$	最大频率		-	10	MHz
x0	$t_{f(IO)out}$	高到低输出时间	C_L =50pF,VDD=2V to 3.6V	-	125	ns
	$t_{r(IO)out}$	低到高输出时间		-	125	ns
	$f_{max(IO)out}$	最大频率		-	50	MHz
x1	$t_{f(IO)out}$	高到低输出时间	C_L =50pF,VDD=2V to 3.6V	-	25	ns
	$t_{r(IO)out}$	低到高输出时间		-	25	ns

注: 基于设计仿真和实验室测试结果, 非产品测试项目。

5.2.11 TIM 计数特性

表 5.19: TIM 计数特性

符号	条件	最小值	最大值	单位
$T_{res(TIM)}$	计时器分辨率单位	1	-	$T_{TIMxCLK}$
FEXT	通道 1 到通道 4 的外部频率	0	$T_{TIMxCLK}/2$	MHz
RESTIM	计时器分辨率	-	20	bit
$T_{counter}$	当内部时钟源是 16 位计数器的周期	1	65536	$T_{TIMxCLK}$
T_{MAX_COUNT}	最大计数值	1	1048576×1048576	$T_{TIMxCLK}$

注 1: TTIMxCLK = 72MHz

5.2.12 CMP 特性

表 5.20: CMP 特性

符号	参数	最小值	典型值	最大值	单位
Vin	输入电压	0.6	-	VDD-0.3	٧
VHYST	迟滞	-	2	5	mV
VOFF	失调电压	-	5	15	mV
TPGD	传播延时	-	-	200	nS
lq	工作电流均值	-	-	8.5	uA

5.2.13 ADC 特性

表 5.21: ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
VDDA	ADC 供电电源	-	2.4	-	3.6	٧
f_s	采样率	-	0.05	-	1	MHz
f_{TRIG}	外部触发器频率	f _{ADC} =14MHz	-	ı	823	KHz
V_{AIN}	转换电压范围	-	0	ı	VDDA	V
R_{AIN}	外部输入阻抗	-	-	ı	200	Ω
C_{AIN}	外部电容	-	-	TBD	-	pF
I_{lkg}	模拟管脚负输入漏电流	-	-	ı	10	uA
R_{ADC}	采样开关阻抗	-	_	-	1.4	kΩ
C_{ADC}	内部采样保持电容	-	-	15.5	-	pF

表 5.22: ADC 转换时间

符号	参数	条件	最小值	典型值	最大值	单位
T_{AD}	ADC 时钟周期	-	62.5	-	-	ns
T_{CONV}	转换时间	12-bit	-	$13T_{AD}$	-	ns
F_{CONV}	转换速率	12-bit	-	-	940	KSPS
T_{SAMP}	采样时间	12-bit	$3T_{AD}$	-	-	ns
t_{DIS}	放电时间	-	-	$0.5T_{AD}$	-	ns
t_{DPU}	上电时间	-	-	-	20	us

第六章 封装尺寸

6.1 LQFP64 10X10mm

注 1: 示意图非按比例绘制

图 6.2: LQFP64 10X10mm, 64 pin 封装参数

Unit	mm				inch	
Symbols	Min.	Nom.	Max.	Min.	Nom.	Max.
A			1.60			0.062
A1	0.05		0.15	0.001		0.005
A2	1.35	1.40	1.45	0.053	0.055	0.057
b	0.17	0.22	0.27	0.006	0.008	0.010
c	0.09		0.20	0.003		0.007
D	11.75	12.00	12.25	0.462	0.472	0.482
D1	9.90	10.00	10.10	0.389	0.393	0.397
E	11.75	12.00	12.25	0.462	0.472	0.482
E1	9.90	10.00	10.10	0.389	0.393	0.397
e		0.50 BSC			0.019 BSC	
L	0.45	0.6	0.75	0.017	0.023	0.029
L1		1.00 REF		0.039 REF.		
S		0.20 REF		0.007 REF.		
Θ		3.5° REF			0.137 REF.	
ө1	5.0° REF			REF 0.196 REF.		
Θ2	12° REF			0.472 REF.		
ө3	12° REF			0.472 REF.		
R1		0.16 REF		0.006 REF.		
R2		0.15 REF			0.005 REF.	

	Е	2	D2		
PAD SIZE	Min.	Max.	Min.	Max.	
165*16E	3.99	4.19	3.99	4.19	
210*21E	4.27	5.33	4.27	5.33	
260*26E	5.28	6.60	5.28	6.60	

6.2 LQFP64 7X7mm

图 6.3: LQFP64 7X7mm, 0.4mm 间距以及封装参数

注 1: 示意图非按比例绘制

图 0.4. LQFF04 / \/ / / / / / / / / / / / / / / / / /				OT PIII 到	衣多奴	
Unit		mm	_	inch		
Symbols	Min.	Nom.	Max.	Min.	Nom.	Max.
A			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
ь	0.13	0.18	0.23	0.005	0.007	0.009
c	0.09		0.20	0.004		0.008
D		9.00 BSC	-	0.354 BSC		
D1		7.00 BSC		0.276 BSC		
e		0.40 BSC		0.016 BSC		
E	9.00 BSC 0.354 BSC					
E1		7.00 BSC			0.276 BSC	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1	1.00 REF			0.039 REF		
θ	0°	3.5°	7°	0°	3.5°	7°

图 6.4: LQFP64 7X7mm, 64 pin 封装参数

6.3 LQFP48 7X7mm

图 6.5: LQFP48 7X7mm, 0.5mm 间距以及封装参数

注 1: 示意图非按比例绘制 注 2: 标注尺寸单位是毫米

图 6.6: LQFP48 7X7mm, 48 pin 封装参数

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090		0.200	0.0035		0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3		5.500			0.2165	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3		5.500			0.2165	
е		0.500			0.0197	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1		1.000			0.0394	
k	0°	3.5°	7°	0°	3.5°	7°
ccc	0.080		0.0031			

第七章 产品选型表

က	
0	
$\overline{}$	
ш	
2	
က	
G	
Š	
_	

Nb Segment LCD pins	8	8	∞
USB	_	_	1
UART	3	3	3
I2C	2	2	2
128	0	1	1
SPI (S)	2	2	2
SPI (M)	1	1	1
Quad SPI (M)	1	1	1
Nb COMP Channels	12	12	16
Nb COMP	7	2	2
Nb ADC Channels	10	10	16
Nb ADC 10/12 bit Cell	7	1	_
Nb Motor Control Timer	1	1	1
Nb Timer (20bit)	3	3	3
Vmax	3.6	3.6	3.6
Vmin	2	2	2
IONb	37	37	51
Package Name	LQFP48	LQFP48	LQFP64
Ram (Kbytes)	28	28	28
Flash (Kbytes)	96	128	128
Core	Cortex-M3	Cortex-M3	Cortex-M3
Frequency (MHz)	72	72	72
Commercial Product Code	MG32F103C9T6	MG32F103CBT6	MG32F103RBT6

第八章 产品代号信息

图 8.1: MG32F103xx 产品代号信息表 MG 32 F 10 s w x megawin _____ Device family ——— 32 = 32 bit MCU Application family _____ F = Mainstream MCU Series _____ 10 = ARM Cortex-M3 Max Freq. _____ 3 = 72Mhz4 = 96MhzPin count _____ R = 64 pins**C** = 48 pins Flash memory Size — **C = 256 Kbyte B** = 128 Kbyte 9 = 96 Kbyte Package type _____ T = LQFP Temperature ______ 6 = -40°C to 85°C

7 = -40°C to 105°C

第九章 修改版本

Revision	Date	Author	Modify
01.01	20211124	zy.yao Add LQFP64 7X7mm	
01.00	20211013	zy.yao	Draft version