IT ACADEMY

Productos y Consumidores y Predicción de Envíos con Machine Learning

Por Sara Gutierrez

Tabla de Contenidos

- Objetivo del Proyecto
- 2 Metodología
- 3 Resultados
- 4 Machine Learning
- 5 Modelos de Regresión
- 6 Conclusiones

IT ACADEMY

Objetivos del Proyecto

- Hacer una exploración analítica de las ventas por años
- Hacer un modelo predictivo con Machine Learning

¿Cómolo hicimos?

Análisis Exploratorio

DATA COLLECTION

DATA MANAGEMENT

EXPLORATORY DATA ANALYST

DATA COLLECTION

A través de la API de Kaggle Al cual podéis acceder aquí

```
from kaggle.api.kaggle_api_extended import KaggleApi

# Autenticación
api = KaggleApi()
api.authenticate()

# Descargar el dataset
api.dataset_download_files('rohitsahoo/sales-forecasting', path='.', unzip=True)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9800 entries, 0 to 9799
Data columns (total 18 columns):
    Column
                   Non-Null Count Dtype
                   9800 non-null int64
     Row ID
                   9800 non-null
                                  object
     Order ID
                                  object
     Order Date
                   9800 non-null
                                  object
     Ship Date
                   9800 non-null
   Ship Mode
                   9800 non-null
                                   object
                                  object
    Customer ID
                   9800 non-null
                                  object
     Customer Name 9800 non-null
                                   object
     Segment
                   9800 non-null
                                  object
     Country
                   9800 non-null
                   9800 non-null
     City
                                   object
 10 State
                   9800 non-null
                                   object
 11 Postal Code
                   9800 non-null
                                   object
                                  object
 12 Region
                   9800 non-null
 13 Product ID
                   9800 non-null
                                   object
 14 Category
                   9800 non-null
                                   object
 15 Sub-Category 9800 non-null
                                   object
 16 Product Name
                   9800 non-null
                                   object
 17 Sales
                   9800 non-null
                                   float64
dtypes: float64(1), int64(1), object(16)
memory usage: 1.3+ MB
None
```

DATA MANAGEMENT

- Nuestro dataset estaba muy limpio
- Cambiamos algunos tipos y creamos dos nuevas columnas
- Substituimos los nulos

EXPLORATORY DATA ANALYST

- Comprobamos si había patrones en los outliers.
- Decidimos trabajar con ellos porque son ventas reales.

Resultados

<u>Dashboards Exploratorio Ventas</u>

Resultados

Resultados

<u>Dashboards Exploratorio Consumidores</u>

IT ACADEMY

Proyecto Final Sara Gutierrez

Machine Learning

FAILS

```
X = sales_predicciones[['Month', 'Year']] #nuestras variables
y = sales_predicciones['Sales'] #la predicción
```

 Resultados excesivamente dispares

```
Year Sales

0 2015 354108.5921

1 2016 372897.2024

2 2017 448276.5274

3 2018 552617.0552

Year Predicted Sales

0 2019 2022.395636
```

```
X = copia_sales[['Ship Mode', 'Segment', 'Category', 'Region', 'Year', 'Month']]
y = copia_sales['Sales'] #Nuestra predicción
```

```
Error medio cuadrático (MSE): 66145.71688879425
Coeficiente de determinación (R<sup>2</sup>): 0.13297240534610433
```

IT ACADEMY

 Métricas que reflejan un rendimiento muy bajo

Proyecto Final Sara Gutierrez

Regresión Lineal

¿Por qué no fue posible?

Regresión Lineal

No hay relación lineal y menos con variables categóricas

Regresión Logistica

Predecir categorías

RESULTADOS

```
X = copia_sales[['Sales', 'Category']] #Variables que van a predecir
y = copia_sales['Ship Mode'] #Variable a predecir
```

Precisión del modelo: 0.37854363535297386 Informe de clasificación:				
	precision	recall	f1-score	support
First Class	0.00	0.00	0.00	207
First Class	0.00	0.00	0.00	287
Same Day	0.05	0.23	0.08	110
Second Class	0.20	0.16	0.18	345
Standard Class	0.59	0.57	0.58	1057

- Precisión del 37%
- Predice 3 de los 4 envíos

IT ACADEMY

Proyecto Final Sara Gutierrez

Resultados Modelo Predictivo

<u>Dashboards Exploratorio Predicciones</u>

Conclusiones de Machine Learning

- Hay que estudiar estadística.
- El procesamiento de datos y exploración es el 90% del trabajo.
- Control de la frustración: Ensayo y Error

Muchas Gracias

GITHUB LINKEDING