- Aim of the project is to create a model that will help to predict the price of a car whenever a new data is inputed... I used a previous data in this project
- Importing the dependencies (libraries needed)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set_style("whitegrid")
import warnings
warnings.filterwarnings("ignore")
```

## Loading the dataset

```
df = pd.read_csv('car_price.csv')
df
```

|     | car_ID | symboling | CarName                     | fueltype | aspiration | doornumber | carbody     | d |
|-----|--------|-----------|-----------------------------|----------|------------|------------|-------------|---|
| 0   | 1      | 3         | alfa-romero<br>giulia       | gas      | std        | two        | convertible |   |
| 1   | 2      | 3         | alfa-romero<br>stelvio      | gas      | std        | two        | convertible |   |
| 2   | 3      | 1         | alfa-romero<br>Quadrifoglio | gas      | std        | two        | hatchback   |   |
| 3   | 4      | 2         | audi 100 ls                 | gas      | std        | four       | sedan       |   |
| 4   | 5      | 2         | audi 100ls                  | gas      | std        | four       | sedan       |   |
| ••• | • • •  |           |                             |          |            | •••        |             |   |
| 200 | 201    | -1        | volvo 145e<br>(sw)          | gas      | std        | four       | sedan       |   |
| 201 | 202    | -1        | volvo 144ea                 | gas      | turbo      | four       | sedan       |   |
| 202 | 203    | -1        | volvo 244dl                 | gas      | std        | four       | sedan       |   |
| 203 | 204    | -1        | volvo 246                   | diesel   | turbo      | four       | sedan       |   |
| 204 | 205    | -1        | volvo 264gl                 | gas      | turbo      | four       | sedan       |   |

205 rows × 26 columns

```
df.shape
```

(205, 26)

#### df.columns

### df.dtypes

| int64   |
|---------|
| int64   |
| object  |
| float64 |
| float64 |
| float64 |
| float64 |
| int64   |
| object  |
| object  |
| int64   |
| object  |
| float64 |
| float64 |
| float64 |
| int64   |
| int64   |
| int64   |
| int64   |
| float64 |
|         |
|         |

### df.nunique()

| car_ID     | 205 |
|------------|-----|
| symboling  | 6   |
| CarName    | 147 |
| fueltype   | 2   |
| aspiration | 2   |
| doornumber | 2   |

5 carbody 3 drivewheel 2 enginelocation wheelbase 53 75 carlength carwidth 44 49 carheight 171 curbweight 7 enginetype 7 cylindernumber enginesize 44 8 fuelsystem boreratio 38 37 stroke 32 compressionratio horsepower 59 23 peakrpm 29 citympg 30 highwaympg 189 price dtype: int64

Is\_there\_missing\_value = df.isnull().sum()
Is\_there\_missing\_value

car\_ID 0 0 symboling 0 CarName fueltype 0 aspiration 0 0 doornumber carbody 0 drivewheel 0 enginelocation 0 wheelbase 0 carlength 0 0 carwidth 0 carheight 0 curbweight enginetype 0 0 cylindernumber enginesize 0 0 fuelsystem 0 boreratio stroke 0 0 compressionratio 0 horsepower peakrpm 0 0 citympg highwaympg 0 0 price dtype: int64

### DATA VISUALIZATION

sns.lineplot(data=df, x='horsepower',y='price')
plt.xticks(rotation=90)



sns.lineplot(data=df,x='enginesize',y='price')
plt.xticks(rotation=90)



sns.lineplot(data=df,x='enginetype',y='price')
plt.xticks(rotation=90)

([0 1 2 3 4 5 6] <a list of 7 Text major ticklahel objects>)

sns.lineplot(data=df,x='stroke',y='price')

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f0c11a29b90>



sns.lineplot(data=df,x='carbody',y='price')

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f0c11a77450>



sns.countplot('enginetype',hue='carbody',data=df)
plt.xticks(rotation=90)

(array([0, 1, 2, 3, 4, 5, 6]), <a list of 7 Text major ticklabel objects>)



sns.countplot('highwaympg',hue='symboling',data=df)
plt.xticks(rotation=90)



df = df.apply(pd.to\_numeric, errors='coerce')

df

|     | car_ID | symboling | CarName | fueltype | aspiration | doornumber | carbody | driv |
|-----|--------|-----------|---------|----------|------------|------------|---------|------|
| 0   | 1      | 3         | NaN     | NaN      | NaN        | NaN        | NaN     |      |
| 1   | 2      | 3         | NaN     | NaN      | NaN        | NaN        | NaN     |      |
| 2   | 3      | 1         | NaN     | NaN      | NaN        | NaN        | NaN     |      |
| 3   | 4      | 2         | NaN     | NaN      | NaN        | NaN        | NaN     |      |
| 4   | 5      | 2         | NaN     | NaN      | NaN        | NaN        | NaN     |      |
| ••• | • • •  |           |         |          | •••        | •••        |         |      |
| 200 | 201    | -1        | NaN     | NaN      | NaN        | NaN        | NaN     |      |
| 201 | 202    | -1        | NaN     | NaN      | NaN        | NaN        | NaN     |      |
| 202 | 203    | -1        | NaN     | NaN      | NaN        | NaN        | NaN     |      |
| 203 | 204    | -1        | NaN     | NaN      | NaN        | NaN        | NaN     |      |
| 204 | 205    | -1        | NaN     | NaN      | NaN        | NaN        | NaN     |      |

205 rows × 26 columns

df.dropna(axis = 1,inplace=True)

df

|       | car_ID | symboling | wheelbase | carlength | carwidth | carheight | curbweight | eı |
|-------|--------|-----------|-----------|-----------|----------|-----------|------------|----|
| 0     | 1      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       |    |
| 1     | 2      | 3         | 88.6      | 168.8     | 64.1     | 48.8      | 2548       |    |
| 2     | 3      | 1         | 94.5      | 171.2     | 65.5     | 52.4      | 2823       |    |
| 3     | 4      | 2         | 99.8      | 176.6     | 66.2     | 54.3      | 2337       |    |
| 4     | 5      | 2         | 99.4      | 176.6     | 66.4     | 54.3      | 2824       |    |
| • • • | •••    |           |           |           |          |           | •••        |    |
| 200   | 201    | -1        | 109.1     | 188.8     | 68.9     | 55.5      | 2952       |    |
| 201   | 202    | -1        | 109.1     | 188.8     | 68.8     | 55.5      | 3049       |    |
| 202   | 203    | -1        | 109.1     | 188.8     | 68.9     | 55.5      | 3012       |    |
| 203   | 204    | -1        | 109.1     | 188.8     | 68.9     | 55.5      | 3217       |    |
|       |        |           |           |           |          |           |            |    |

sns.lineplot(data=df,x='carlength',y='price')

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f0c11596450>



sns.lineplot(data=df,x='carwidth',y='price')

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f0c114fdb90>



sns.lineplot(data=df,x='carheight',y='price')

#### <matplotlib.axes.\_subplots.AxesSubplot at 0x7f0c11541150>



df.drop(['car\_ID','symboling'],axis=1,inplace=True)

## Feature Selection

```
from sklearn.feature selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.preprocessing import MinMaxScaler
X = df.iloc[:,:-1]
y = df['price']
X_norm = MinMaxScaler()
X_norm.fit_transform(X)
     array([[0.05830904, 0.41343284, 0.31666667, ..., 0.34693878, 0.22222222,
              0.289473681,
             [0.05830904, 0.41343284, 0.31666667, ..., 0.34693878, 0.22222222,
              0.28947368],
             [0.2303207 , 0.44925373 , 0.43333333 , ..., 0.34693878 , 0.16666667 ,
              0.26315789],
             [0.65597668, 0.7119403 , 0.71666667, ..., 0.55102041, 0.13888889,
              0.18421053],
             [0.65597668, 0.7119403, 0.71666667, ..., 0.26530612, 0.36111111,
              0.289473681,
             [0.65597668, 0.7119403 , 0.71666667, ..., 0.51020408, 0.16666667,
              0.23684211]])
Chi = SelectKBest(k=3)
Chi_features = Chi.fit_transform(X,y)
Chi_support = Chi.get_support()
Chi_feat = X.loc[:,Chi_support].columns.tolist()
print("Original feature number ", X.shape[1])
print(Chi_feat)
     Original feature number 13
     ['carwidth', 'curbweight', 'enginesize']
```

## Correlation features

```
corr = df.corr()
sns.heatmap(corr, annot = True)
       <matplotlib.axes. subplots.AxesSubplot at 0x7f0c1043de10>
                                                                        -1.00
             wheelbase 1 0.87 0.8 0.5 90.780.570.490.160.250.350.360.470.540.5
              carlength 0.87 1 0.840.490.880.680.610.130.160.550.290.670.70.68
                                                                        -0.75
               carwidth 0.8 0.84 1 0.28 0.870.740.560.180.180.640.220.640.680.76
              carheight 0.590.490.28 1 0.30.06 0.1-0.055 260.1-0.30.049.1 0.12
                                                                        -0.50
             curbweight 0.780.880.870.3 1 0.850.650.170.150.750.270.760.80.84
             enginesize 0.570.680.74.060.85 1 0.580.20.020.810.240.650.680.87
                                                                        -0.25
               boreratio 0.490.610.560.170.650.58 1 0.08.60050.570.250.580.590.5
                 stroke 0.160.130.140.056.170.20.05 1 0.140.080.060.06040204407
                                                                        - 0.00
        compressionratio 0.250.160.180.260.150.0290050219 1 -0.20.440.320.210.06
             horsepower 0.350.550.640.110.750.810.57.0810.2 1 0.13-0.80.770.81
                                                                        - -0.25
               peakrpm -0.360.290.220.320.270.240.25.068.440.13 1 0.140.090408
               citympg 0.470.670.64.049.760.650.58.040.32-0.80.11 1 0.970.69
                                                                         -0.50
            highwaympg 40.540.740.680.1140.80.680.59.049.270.747.050.97 1 -0.7
                  price 0.580.680.760.120.840.870.55.0700060.800.085.690.7 1
                                                                         -0.75
corr_target = abs(corr['price'])
relevant_feat = corr_target[corr_target > 0.8]
print("Original feature :", df.shape[1])
print(relevant_feat)
       Original feature : 14
       curbweight
                          0.835305
       enginesize
                          0.874145
                          0.808139
       horsepower
                          1.000000
       price
       Name: price, dtype: float64
from sklearn.feature_selection import mutual_info_classif
res = mutual_info_classif(X.astype(int),y.astype(int))
feature_importance = pd.Series(res,df.columns[0:len(df.columns)-1])
feature_importance.plot(kind='bar')
print(res)
```

```
[1.96850238 1.44607998 1.72890834 1.68922 1.51407408 1.16566588 1.03103398 0.8256772 0.8745418 2.14490143 1.83133307 1.82432366 1.768698831
```

## Backward Elimination

```
import statsmodels.api as sm
X_data = df[['curbweight','enginesize','horsepower']]
X1 = np.append(arr=np.ones((205,1)).astype(int), values = X_data, axis = 1)
```

pd.DataFrame(X\_data)

 $X_{opt} = X1[:,[0,1,2,3]]$ 

|     | curbweight | enginesize | horsepower |
|-----|------------|------------|------------|
| 0   | 2548       | 130        | 111        |
| 1   | 2548       | 130        | 111        |
| 2   | 2823       | 152        | 154        |
| 3   | 2337       | 109        | 102        |
| 4   | 2824       | 136        | 115        |
|     |            |            |            |
| 200 | 2952       | 141        | 114        |
| 201 | 3049       | 141        | 160        |
| 202 | 3012       | 173        | 134        |
| 203 | 3217       | 145        | 106        |
| 204 | 3062       | 141        | 114        |

205 rows × 3 columns

pd.DataFrame(X\_opt)

|   |     | 0   | 1     | 2   | 3   |
|---|-----|-----|-------|-----|-----|
|   | 0   | 1   | 2548  | 130 | 111 |
|   | 1   | 1   | 2548  | 130 | 111 |
|   | 2   | 1   | 2823  | 152 | 154 |
|   | 3   | 1   | 2337  | 109 | 102 |
|   | 4   | 1   | 2824  | 136 | 115 |
|   | ••• | ••• | •••   |     |     |
| 2 | 200 | 1   | 2952  | 141 | 114 |
| _ |     |     | 00.40 |     |     |

regressor\_OLS = sm.OLS(endog=y,exog=X\_opt).fit()
regressor\_OLS.summary()

#### **OLS Regression Results**

Dep. Variable: price R-squared: 0.814 Model: OLS Adj. R-squared: 0.811 Method: Least Squares F-statistic: 292.9 Fri, 27 May Prob (F-Date: 4.36e-73 2022 statistic): Time: 22:00:32 Log-Likelihood: -1960.2

In the above output, The features P\_value is not greater than 0.5

# Train and Test set

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_data,y,
test_size=0.25,
random_state=0)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
     (153, 3)
     (52, 3)
      (153,)
      (52,)
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
     LinearRegression()
y_pred = model.predict(X_test)
plt.scatter(y_test,y_pred)
plt.xlabel('Actual Prices')
plt.ylabel('Predicted Prices')
plt.title('Actual vs Predicted')
```

Text(0.5, 1.0, 'Actual vs Predicted')

## Actual vs Predicted

35000

print("Training score is ",model.score(X\_train,y\_train))
print("Testing score is ",model.score(X\_test,y\_test))

Training score is 0.8115088706121217 Testing score is 0.8138284013856698

from sklearn.metrics import r2\_score
print(r2\_score(y\_test,y\_pred))

0.8138284013856698