Analysis

All results presented here can be replicated by running Test.py and plotting the csv file it creates.

Learning with Restarts

PenData:

max: 0.909948542024 avg: 0.899828473413 std: 0.00846429588277

CarData: max: 0.99 avg: 0.985

std: 0.00316227766017

Varying the Hidden Layer - Pen Dataset

After analyzing the data, it becomes clear that after 10 hidden layers, the accuracy of the neuro-net plateaus. The addition of further layers only adds more complexity and computational time without meaningful returns.

hidden				
layers		max	avg	std
	0	0	0	0
	5	0.84333905	0.8280446	0.01529445
	10	0.89708405	0.89479703	0.00228702
	15	0.8976558	0.89679817	0.00085763
	20	0.90451687	0.8957976	0.00871927
	25	0.90937679	0.90680389	0.0025729
	30	0.91109205	0.90380217	0.00728988
	35	0.90880503	0.90451687	0.00428816

Varying the Hidden Layer - Car Dataset

After analyzing the data, it becomes clear that after 5 hidden layers, the accuracy of the neuronet plateaus. The addition of further layers only adds more complexity and computational time without meaningful returns.

hidden layers	max	avg	std
0	0.72	0.72	0
5	0.985	0.98	0.005
10	0.99	0.9825	0.0075
15	0.99	0.99	0
20	0.995	0.99	0.005
25	0.995	0.985	0.01
30	0.985	0.985	0
35	0.985	0.985	0
40	0.995	0.99	0.005

