Eksamen R1 V2023 Del 2

Del 2)

Oppgave 1)

b)

Den eksponentielle funksjonen g gitt ved $278 \cdot 1.02^x$ er en god tilnærming på timelønnen for yrkesgruppe x år etter 2008.

c)

Den samlede lønnen til Amalie i årene 2008-2022 er 8,188,594kr.

1 $2 \cdot 272.55 + 3 \cdot 285.50 + 2 \cdot 307.30 + 4 \cdot 314.00 + 3 \cdot 327.60 + 340.10$

≈ 4595.1

2 4595.1 · 1700

≈ **7811670**

Den samlede lønnen til Per i årene 2008-2022 er 7,811,670kr.

d)

 $f(x) := 272.55 \cdot 1.023^{x}$

$$\rightarrow$$
 f(x) := $\frac{5451}{20} \left(\frac{1023}{1000}\right)^{x}$

2 f(17)

≈ **401.1732**

3 $340.10 \cdot v^3 = 401.17$

NLØS: $\{v = 1.0566\}$

Oppgave 2)

b)

1 A := (3, 2)

$$\rightarrow$$
 A := (3, 2)
2 B := (7, 5)
 \rightarrow B := (7, 5)
 \rightarrow C := (2 t + 7, 5 t + 5)
 \rightarrow C := (2 t + 3, 5 t + 2)
 \rightarrow D := (2 t + 3, 5 t + 2)
 \rightarrow AC := $\begin{pmatrix} 2 t + 7 - 3 \\ 5 t + 5 - 2 \end{pmatrix}$
6 P := (8, 11)
 \rightarrow AP := $\begin{pmatrix} 5 \\ 9 \end{pmatrix}$
8 AC = k AP
Løs: $\{\{k = 2, t = 3\}\}$

t=3 slikt at diagonalene i parrallelogrammet skjærer hverandre i P(8,11).

Oppgave 5)

1
$$L = 120 + 10 \log_{10}(I)$$

 $L = 10 \cdot \frac{\ln(I)}{\ln(10)} + 120$

$$\rightarrow \left\{\mathsf{I} = 10^{\frac{1}{10}\mathsf{L} - 12}\right\}$$

3 \$2

ByttUt, L=130: {I = 10}

$$4 \quad \frac{10^{\frac{1}{10}(L+2)-12}}{10^{\frac{1}{10}L-12}} \cdot 100$$

≈ 158.49

5
$$Løs \left(10^{\frac{1}{10}L-12} = \frac{E}{4 \pi r^2}, E\right)$$

$$\ \, \rightarrow \ \, \left\{ \mathsf{E} = \mathsf{4} \; \mathsf{r}^2 \; \pi \cdot \mathsf{10}^{\frac{1}{10}\mathsf{L} - \mathsf{12}} \right\}$$

6 \$5

ByttUt, L=140,r=50:
$$\{E = 1000000 \ \pi\}$$

7 \$6

$$\approx \{E = 3141592.65\}$$

8 \$5

ByttUt, E=1000000*
$$\pi$$
,L=130: $\{1000000 \pi = 40 r^2 \pi\}$

9 \$8

NLØS:
$$\{r = 158.11\}$$

a)

Lydintensiteten når lydstyrken er 130dB er $10W/m^2$. (Se Rute 3)

b)

Lydintensiteten øker med $58.49\,\%$ når lydstyrken øker med 2dB. (Se Rute 4)

c)

Man må stå minst 158.11 meter for at lydstyrken fra flyet skal være mindre enn 130dB. (Se Rute 9)

Realfag.net

2023-2024

1 A := (4, -2)

$$\rightarrow A := (4, -2)$$

2
$$B := (6, 6)$$

$$\rightarrow B := (6, 6)$$

$$AB := Vektor(A, B)$$

$$\rightarrow$$
 AB := $\binom{2}{8}$

4
$$P := (2, 8)$$

$$\rightarrow P := (2, 8)$$

$$PA := Vektor(P, A)$$

$$ightarrow$$
 PA := $\begin{pmatrix} 2 \\ -10 \end{pmatrix}$

PQ := PA + k AB

$$\rightarrow PQ := {2 k + 2 \choose 8 k - 10}$$

$$PQAB = 0$$

Løs:
$$\left\{ k = \frac{19}{17} \right\}$$

ByttUt:
$$\frac{18}{17} \sqrt{17}$$

Realfag.net

2023-2024

9 $f(x) := x^2 + 2x$

$$\rightarrow$$
 f(x) := x² + 2 x

10 I(x) := Linje(A, B)

11 I'(x) = f'(x)

Løs:
$$\{x = 1\}$$

12 R := (1, f(1))

13 Avstand(R, I)

$$\rightarrow \sqrt{17}$$

- a) Den eksakte avstanden mellom punktet P og linjen l er $\frac{18}{17}\sqrt{17}$.
- b) Den eksakte verdien for avstanden mellom f og linjen l var $\sqrt{17}$

Oppgave 7)

```
1  a = 0
2  b = 1
3  N = 1000
4  summ = 0
5
6  d = (b-a)/N
7
8  def f(x):
9    return x**(1/2)
10
11  while a < b:
12    summ += f(a)
13    a+=d
14
15  g = summ/N
16
17  print("Gjennomsnittet av f(x) = er", g)</pre>
```

Gjennomsnittet blir tilnærmet lik $\frac{2}{3}$.