Collaborative Filtering via Group-Structured Dictionary Learning

Auton Lab

Zoltán Szabó¹

Barnabás Póczos²

András Lőrincz¹

¹Faculty of Informatics, Eötvös Loránd University
Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
email: {szzoli, andras.lorincz}@elte.hu
web: http://nipg.inf.elte.hu

²School of Computer Science, Carnegie Mellon University 5000 Forbes Ave, 15213, Pittsburgh, PA, USA

email: bapoczos@cs.cmu.edu
web: http://www.autonlab.org

-OSDL estimation $(\mathbf{d}_k \boldsymbol{\alpha}_t, \ k \notin O_t)$ corrected by the similarity weighted (s_{kj}) prediction errors $(\mathbf{d}_j \boldsymbol{\alpha}_t - x_{jt})$ of the observable items $(j \in O_t)$.

1. Introduction

- Help users in decision making.
- Recommender systems: collaborative filtering (CF) [1]:
 - users' preferences = ratings,
 - estimation based on (i) his/her rating history, (ii) ratings of similar users.
- Novel advances in CF: dictionary learning (latent, unstructured features).
- Our goal:
 - structured dictionaries [2] to CF.
 - +requirements:
 - * online learning: changing item-/user set/preferences; adaptation.
 - * incomplete observations: missing rating values.

2. The OSDL Problem

Definition [3]:

ullet Group structure inducing on the hidden representation lpha through regularization:

$$\Omega(\alpha) = \|(\|\alpha_G\|_2)_{G \in \mathcal{G}}\|_{\eta}, \quad \eta \in (0, 2).$$
 (1)

• Approximate on the observed coordinates (x_O) using dictionary D:

$$\frac{1}{2} \|\mathbf{x}_O - \mathbf{D}_O \boldsymbol{\alpha}\|_2^2. \tag{2}$$

• Loss for a fixed observation ($\kappa > 0$):

$$l(\mathbf{x}_O, \mathbf{D}_O) = \min_{\boldsymbol{\alpha} \in \mathcal{A}} \left[\frac{1}{2} \|\mathbf{x}_O - \mathbf{D}_O \boldsymbol{\alpha}\|_2^2 + \kappa \Omega(\boldsymbol{\alpha}) \right].$$
 (3)

ullet Goal: minimize online the average loss of the dictionary (ho=0)

$$\min_{\mathbf{D} \in \mathbf{D}} f_t(\mathbf{D}) := \frac{1}{t} \sum_{i=1}^t l(\mathbf{x}_{O_i}, \mathbf{D}_{O_i}). \tag{4}$$

Inclusion of forgetting ($\rho \ge 0$) is possible/motivated:

$$\min_{\mathbf{D} \in \mathbf{D}} f_t(\mathbf{D}) := \frac{1}{\sum_{i=1}^t (j/t)^{\rho}} \sum_{i=1}^t \left(\frac{i}{t}\right)^{\rho} l(\mathbf{x}_{O_i}, \mathbf{D}_{O_i}). \tag{5}$$

Special cases for 9:

'Traditional' sparse dictionary $\mathcal{G} = \{\{1\}, \{2\}, \dots, \{d_{\alpha}\}\}$.

Group Lasso g = partition.

Hierarchical dictionary g = descendants of the nodes. Grid adopted dictionary g = descendants of the nodes.

Online optimization of dictionary D through alternations¹:

- 1. Representation update (α_t): variational property of $\|\cdot\|_n$.
- 2. Dictionary update (\mathbf{D}_t):
 - ullet update statistics of the cost \hat{f}_t : matrix recursions.
 - block-coordinate descent optimization.

3. CF Task via OSDL

- t^{th} user's known ratings = OSDL observations \mathbf{x}_{O_t} \Rightarrow \mathbf{D} .
- ullet Test user ($\mathbf{x}_O \in \mathbb{R}^{|O|}$):
- 1. Estimate α : using \mathbf{x}_O and \mathbf{D}_O (rows of \mathbf{D} restricted to O; solve (3)).
- 2. Estimate ratings: $\hat{\mathbf{x}} = \mathbf{D}\boldsymbol{\alpha}$.
- Neighbor correction for further improvement:
- assumption: similar items are rated similarly (s_{ij}) .

4. Numerical Results

- Dataset: joke recommendation (Jester), 100 jokes \times 73,421 users (4,136,360 ratings).
- Performance measure:

$$RMSE = \sqrt{\frac{1}{|S|} \sum_{(i,t) \in S} (x_{it} - \hat{x}_{it})^2}.$$
 (6)

- Baseline: best known RMSE = 4.1123 (item neighbor), 4.1229 (unstructured dictionary).
- Applied similarities [$s_{ij} = s_{ij}(\mathbf{d}_i, \mathbf{d}_j)$, $\beta > 0$]:

$$S_1: \quad s_{ij} = \left(\frac{\max\left(0, \mathbf{d}_i \mathbf{d}_j^T\right)}{\|\mathbf{d}_i\|_2 \|\mathbf{d}_j\|_2}\right)^{\beta} \text{, and } S_2: \quad s_{ij} = \left(\frac{\|\mathbf{d}_i - \mathbf{d}_j\|_2^2}{\|\mathbf{d}_i\|_2 \|\mathbf{d}_j\|_2}\right)^{-\beta}. \tag{7}$$

 $s_{ij} \ge 0$, close to zero (large) = very different (very similar) items.

Toroid group structure: varying neighbor size $(r \in \{0, 1, ..., 5\})$, Fig. 1, Table 2.

- validation, test surfaces: very similar.
- the same holds for similarity parameter (β) dependence.
- structured dictionaries (r > 0) are advantageous over unstructured ones (r = 0).
- best result (r=4): RMSE = 4.0774 < state-of-the-art (RMSE = 4.1123).
- robust estimation w.r.t. forgetting factor (ρ) , similarity (S_i) and mini-batch size (R).

Figure 1: (a)-(b): validation and test surface – forgetting factor and regularization dependence. (c): validation and test curves – similarity parameter dependence.

Table 2: OSDL prediction – performance summary. Group structure (9): toroid.

	R = 8					R = 16				
	r = 0	r=1	r=2	r = 3	r=4	r = 0	r = 1	r=2	r = 3	r=4
S_1	4.1594	4.1326	4.1274	4.0792	$\boxed{4.0774}$	4.1611	4.1321	4.1255	4.0804	4.0777
S_2	4.1765	4.1496	4.1374	4.0815	4.0802	4.1797	4.1487	4.1367	4.0826	4.0802

Hierarchical group structure: varying hierarchy level $(l \in \{3, ..., 6\})$.

- Results: similar to that of the toroid structure.
- Best RMSE = 4.1220 (l = 4, i.e., $d_{\alpha} = 15$).
- much smaller d_{α} compared to unstructured dictionaries ($d_{\alpha}=100$, RMSE= 4.1229).
- competitive to the state-of-the-art (RMSE= 4.1123).

References

- [1] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul Kantor. *Recommender Systems Handbook*. Springer, 2011.
- [2] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. *Optimization for Machine Learning*, chapter Convex optimization with sparsity-inducing norms. MIT Press, 2011.
- [3] Zoltán Szabó, Barnabás Póczos, and András Lőrincz. Online group-structured dictionary learning. In CVPR 2011, pages 2865–2872.

The research was partly supported by the Department of Energy (grant number DESC0002607).

