Problem 01

Três sacolas com capacidades variadas de carregar itens devem ser enchidas a fim de serem utilizadas para transportar itens entre localidades. Por exemplo, uma sacola com capacidade de 10kg não pode ser enchida com itens os quais somados seus volumes se chegue a mais de 10kg. Neste problema, cada item tem peso proporcional ao seu volume, o mesmo ocorre com a capacidade das sacolas. Desta forma, se um item tem 1 kg, tal item ocupa 1 unidade de volume e, similarmente, se uma sacola tem capacidade de 10kg então a mesma tem capacidade de carregar 10 unidades de volume. Neste sentido, informe que itens de um total de 30 com pesos diferentes devem estar em cada sacola a fim de levar a maior quantidade possível de peso em tais sacolas. Além do exposto, considere que o peso de cada item deve ser selecionado aleatoriamente dentre os seguintes valores {1,3, 5, 7, 11, 13, 17, 19}. Pode haver itens com valores repetidos. A capacidade de cada sacola deve ser selecionada também aleatoriamente dentre os seguintes valores {23, 29, 31, 37, 41, 43, 47}. Não pode haver sacolas com valores repetidos.

Implemente uma solução que informe que itens devem ser colocados em cada sacola. Elabore um relatório no qual se descreve o(s) método(s) utilizado(s), a modelagem realizada para o problema e os resultados obtidos para 10 realizações diferentes da solução aplicada ao problema.

Problem 02

Três representantes comerciais precisam visitar todas as cidades programadas por sua gerência, sendo que cada cidade só deve ser visitada uma única vez independentemente do representante que a visitou. A gerência exige um plano de visitas dos 3 representantes para no mínimo 30 cidades. A quantidade de cidades visitadas por cada representante é definida em comum acordo entre os representantes. Por exemplo, o representante 1 pode ter de visitar 12 cidades, o representante 2 pode visitar 8 cidades, enquanto o representante 3 teria de visitar 10 cidades para completar o total de 30 cidades. Sempre que o representante 1 começar sua visita ele só pode interromper seu trabalho quando chegar ao total de cidades previamente acordadas com os demais representantes. Além disso, considere que a última cidade visitada deve ser a mais próxima possível da primeira cidade visitada. A localização de cada cidade deve ser definida aleatoriamente em um espaço bidimensional (2D).

Implemente uma solução que informe que representante deve visitar que cidade com o intuito de minimizar a distância total percorrida pelos representantes. Elabore um relatório no qual se descreve o(s) método(s) utilizado(s), a modelagem realizada para o problema e os resultados obtidos para 10 realizações diferentes da solução aplicada ao problema.

Entrega: 28/03/2018