Cálculo II - 2013/14 Agrupamento III

Duração: 15h00-17h00

Teste 2

1. Determine a soma das seguintes séries:

(a)
$$\sum_{n=2}^{+\infty} 2^{-3n+1}$$
;

(b)
$$\sum_{n=2}^{+\infty} \left(\frac{1}{n+2} - \frac{1}{n-1} \right)$$
.

2. Discuta a natureza das seguintes séries, indicando divergência, convergência simples ou convergência absoluta.

(a)
$$\sum_{n=1}^{+\infty} (-1)^n \sqrt[n]{n}$$

(a)
$$\sum_{n=1}^{+\infty} (-1)^n \sqrt[n]{n};$$
 (b) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{2n^3 + \ln n + 1}};$ (c) $\sum_{n=1}^{+\infty} (-3)^n \frac{n!}{n^n}.$

(c)
$$\sum_{n=1}^{+\infty} (-3)^n \frac{n!}{n^n}$$

- [40 p.] 3. Considere a função $f(x) = \sum_{n=1}^{+\infty} \frac{1}{n+1} (x-2)^{n+2}$.
 - (a) Determine o domínio de convergência desta série de potências.
 - (b) Determine, justificando, explicitamente a função f.
- [45 p.] 4. Considere a função $f(x) = \cos^2 x$.
 - (a) Determine o polinómio de MacLaurin de grau 4 desta função.
 - (b) Verifique que o erro cometido na aproximação de cos²(0.5), quando se usa o polinómio de MacLaurin calculado anteriormente, é inferior a $\frac{1}{120}$.
- 5. Considere a função $f(x) = \pi x$. [3 p.]
 - (a) Determine a sua série de Fourier de senos no intervalo $[0, \pi]$.
 - (b) Represente graficamente a função soma no intervalo $[-2\pi, 2\pi]$.