Nam-Ho Kim

Introduction to Nonlinear Finite Element Analysis

1

CHAP 1
Preliminary Concepts and
Linear Finite Elements

Instructor: Nam-Ho Kim (<u>nkim@ufl.edu</u>)
Web: http://www2.mae.ufl.edu/nkim/INFEM/

Table of Contents

- 1.1. INTRODUCTION
- 1.2. VECTOR AND TENSOR CALCULUS
- 1.3. STRESS AND STRAIN
- 1.4. MECHANICS OF CONTINUOUS BODIES
- 1.5. FINITE ELEMENT METHOD

3

1.1

INTRODUCTION

Background

- · Finite Element Method (FEM):
 - a powerful tool for solving partial differential equations and integro-differential equations
- · Linear FEM:
 - methods of modeling and solution procedure are well established
- Nonlinear FEM:
 - different modeling and solution procedures based on the characteristics of the problems → complicated
 - many textbooks in the nonlinear FEMs emphasize complicated theoretical parts or advanced topics
- This book:
 - to simply introduce the nonlinear finite element analysis procedure and to clearly explain the solution procedure
 - detailed theories, solution procedures, and implementation using MATLAB for only representative problems

5

Chapter Outline

- 2. Vector and Tensor Calculus
 - Preliminary to understand mathematical derivations in other chapters
- 3. Stress and Strain
 - Review of mechanics of materials and elasticity
- 4. Mechanics of Continuous Bodies
 - Energy principles for structural equilibrium (principle of minimum potential energy)
 - Principle of virtual work for more general non-potential problems
- 5. Finite Element Method
 - Discretization of continuum equations and approximation of solution using piecewise polynomials
 - Introduction to MATLAB program ELAST3D

1.2

VECTOR AND TENSOR CALCULUS

7

Vector and Tensor

- Vector: Collection of scalars
- Cartesian vector: Euclidean vector defined using Cartesian coordinates v.
 - 2D, 3D Cartesian vectors

$$\mathbf{u} = \left\{ \begin{array}{c} \mathbf{u}_1 \\ \mathbf{u}_2 \end{array} \right\}, \text{ or } \mathbf{u} = \left\{ \begin{array}{c} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{u}_3 \end{array} \right\}$$

- Using basis vectors: $\mathbf{e}_1 = \{1, 0, 0\}^T$, $\mathbf{e}_2 = \{0, 1, 0\}^T$, $\mathbf{e}_3 = \{0, 0, 1\}^T$

$$\boldsymbol{u} = u_1 \boldsymbol{e}_1 + u_2 \boldsymbol{e}_2 + u_3 \boldsymbol{e}_3$$

Index Notation and Summation Rule

 Index notation: Any vector or matrix can be expressed in terms of its indices

$$\mathbf{v} = [\mathbf{v}_{i}] = \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{bmatrix} \quad \mathbf{A} = [\mathbf{A}_{ij}] = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23} \\ \mathbf{A}_{31} & \mathbf{A}_{32} & \mathbf{A}_{33} \end{bmatrix}$$

· Einstein summation convention

$$\sum_{k=1}^{3} a_k b_k = a_k b_k$$

Repeated indices mean summation!!

- In this case, k is a dummy variable (can be j or i) $a_k b_k = a_j b_j$
- The same index cannot appear more than twice
- · Basis representation of a vector
 - Let ${m e}_k$ be the basis of vector space V Then, any vector in V can be represented by ${m w}=\sum_{k=1}^N w_k{m e}_k=w_k{m e}_k$

Index Notation and Summation Rule cont.

· Examples

- Matrix multiplication:
$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$$
 $\mathbf{C}_{ij} = \mathbf{A}_{ik} \mathbf{B}_{kj}$

- Trace operator:
$$tr(A) = A_{11} + A_{22} + A_{33} = A_{kk}$$

- Dot product:
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \mathbf{u}_3 \mathbf{v}_3 = \mathbf{u}_k \mathbf{v}_k$$

- Cross product:
$$\mathbf{u} \times \mathbf{v} = \mathbf{u}_j \mathbf{v}_k (\mathbf{e}_j \times \mathbf{e}_k) = \mathbf{e}_{ijk} \mathbf{u}_j \mathbf{v}_k \mathbf{e}_i$$

$$\begin{array}{ll} \textbf{Permutation} \\ \textbf{symbol} \end{array} \hspace{0.5cm} e_{ijk} = \begin{cases} 0 & \text{unless i, j, k are distinct} \\ +1 & \text{if (i, j, k) is an even permutation} \\ -1 & \text{if (i, j, k) is an odd permutation} \end{cases}$$

- Contraction: double dot product

$$J = A : B = \sum_{i=1}^{3} \sum_{j=1}^{3} A_{ij} B_{ij} = A_{ij} B_{ij}$$

Cartesian Vector

Cartesian Vectors

$$\mathbf{u} = \mathbf{u}_1 \mathbf{e}_1 + \mathbf{u}_2 \mathbf{e}_2 + \mathbf{u}_3 \mathbf{e}_3 = \mathbf{u}_i \mathbf{e}_i$$

 $\mathbf{v} = \mathbf{v}_i \mathbf{e}_i$

Dot product

$$\boldsymbol{u}\cdot\boldsymbol{v}=(u_{i}\boldsymbol{e}_{i})\cdot(v_{j}\boldsymbol{e}_{j})=u_{i}v_{j}(\boldsymbol{e}_{i}\cdot\boldsymbol{e}_{j})=u_{i}v_{j}\delta_{ij}=u_{i}v_{i}$$

- Kronecker delta function

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$\delta_{jj} = \delta_{11} + \delta_{22} + \delta_{33} = 3$$

- Equivalent to change index j to i, or vice versa
- · How to obtain Cartesian components of a vector

$$\boldsymbol{e}_{i}\cdot\boldsymbol{v}=\boldsymbol{e}_{i}\cdot(\boldsymbol{v}_{j}\boldsymbol{e}_{j})=\boldsymbol{v}_{j}\boldsymbol{\delta}_{ij}=\boldsymbol{v}_{i} \hspace{1cm} \text{Projection}$$

• Magnitude of a vector (norm): $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

11

Notation Used Here

Direct tensor notation	Tensor component notation	Matrix notation
$\alpha = \mathbf{a} \cdot \mathbf{b}$	$\alpha = a_i b_i$	$\alpha = \mathbf{a}^T \mathbf{b}$
$\mathbf{A} = \mathbf{a} \otimes \mathbf{b}$	$A_{ij} = a_i b_j$	$\mathbf{A} = \mathbf{a}\mathbf{b}^T$
$\mathbf{b} = \mathbf{A} \cdot \mathbf{a}$	$b_i = A_{ij} a_j$	b = Aa
$\mathbf{b} = \mathbf{a} \cdot \mathbf{A}$	$b_j = a_i A_{ij}$	$\mathbf{b}^T = \mathbf{a}^T \mathbf{A}$

Tensor and Rank

- Tensor
 - A tensor is an extension of scalar, vector, and matrix (multidimensional array in a given basis)
 - A tensor is independent of any chosen frame of reference
 - Tensor field: a tensor-valued function associated with each point in geometric space
- · Rank of Tensor
 - No. of indices required to write down the components of tensor
 - Scalar (rank 0), vector (rank 1), matrix (rank 2), etc
 - Every tensor can be expressed as a linear combination of rank 1 tensors

- Rank 1 tensor v:
$$v_i$$

$$[\sigma_{ij}] = \begin{vmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{vmatrix}$$
Rank-2 stress tensor

13

Tensor Operations

· Basic rules for tensors

$$(TS)R = T(SR)$$
 $T(S+R) = TS + TR$
 $\alpha(TS) = (\alpha T)S = T(\alpha S)$
 $1T = T1 = T$

Different notations

$$TS = T \cdot S$$

Identity tensor $\mathbf{1} = [\delta_{ii}]$

· Tensor (dyadic) product: increase rank

$$\begin{aligned} &\boldsymbol{A} = \boldsymbol{u} \otimes \boldsymbol{v} = \boldsymbol{u}_i \boldsymbol{v}_j \boldsymbol{e}_i \otimes \boldsymbol{e}_j & \boldsymbol{A}_{ij} = \boldsymbol{u}_i \boldsymbol{v}_j & \boldsymbol{A}^T = \boldsymbol{A}_{ji} \boldsymbol{e}_i \otimes \boldsymbol{e}_j \\ &(\boldsymbol{u} \otimes \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u}(\boldsymbol{v} \cdot \boldsymbol{w}) \\ &\boldsymbol{w} \cdot (\boldsymbol{u} \otimes \boldsymbol{v}) = \boldsymbol{v}(\boldsymbol{w} \cdot \boldsymbol{u}) \\ &(\boldsymbol{u} \otimes \boldsymbol{v})(\boldsymbol{w} \otimes \boldsymbol{x}) = (\boldsymbol{v} \cdot \boldsymbol{w}) \boldsymbol{u} \otimes \boldsymbol{x} & \boldsymbol{u} \otimes \boldsymbol{v} \neq \boldsymbol{v} \otimes \boldsymbol{u} \end{aligned}$$

- Rank-4 tensor: $\textbf{D} = \textbf{D}_{i,jkl} \textbf{e}_i \otimes \textbf{e}_j \otimes \textbf{e}_k \otimes \textbf{e}_l$

Tensor Operations cont.

- Symmetric and skew tensors
 - Symmetric $S = S^T$
 - Skew $\mathbf{W} = -\mathbf{W}^{\mathsf{T}}$
 - Every tensor can be uniquely decomposed by symmetric and skew tensors

$$T = S + W$$

$$S = \frac{1}{2}(T + T^{T})$$

$$\mathbf{W} = \frac{1}{2}(\mathbf{T} - \mathbf{T}^{\mathsf{T}})$$

- Note: \mathbf{W} has zero diagonal components and W_{ij} = W_{ji}
- · Properties Let A be a symmetric tensor

$$A: W = 0$$

$$A: T = A: S$$

15

Example

· Displacement gradient can be considered a tensor (rank 2)

$$\nabla \mathbf{u} = \begin{bmatrix} \frac{\partial \mathbf{u}}{\partial \mathbf{X}} \end{bmatrix} = \begin{bmatrix} \frac{\partial u_1}{\partial X_1} & \frac{\partial u_1}{\partial X_2} & \frac{\partial u_1}{\partial X_3} \\ \frac{\partial u_2}{\partial X_1} & \frac{\partial u_2}{\partial X_2} & \frac{\partial u_2}{\partial X_3} \\ \frac{\partial u_3}{\partial X_1} & \frac{\partial u_3}{\partial X_2} & \frac{\partial u_3}{\partial X_3} \end{bmatrix}$$

$$\begin{aligned} \text{sym}(\nabla \mathbf{u}) = \begin{bmatrix} \frac{\partial u_1}{\partial X_1} & \frac{1}{2} \Big(\frac{\partial u_1}{\partial X_2} + \frac{\partial u_2}{\partial X_1} \Big) & \frac{1}{2} \Big(\frac{\partial u_1}{\partial X_3} + \frac{\partial u_3}{\partial X_1} \Big) \\ \frac{1}{2} \Big(\frac{\partial u_1}{\partial X_2} + \frac{\partial u_2}{\partial X_1} \Big) & \frac{\partial u_2}{\partial X_2} & \frac{1}{2} \Big(\frac{\partial u_2}{\partial X_3} + \frac{\partial u_3}{\partial X_2} \Big) \\ \frac{1}{2} \Big(\frac{\partial u_1}{\partial X_3} + \frac{\partial u_3}{\partial X_1} \Big) & \frac{1}{2} \Big(\frac{\partial u_2}{\partial X_3} + \frac{\partial u_3}{\partial X_2} \Big) & \frac{\partial u_3}{\partial X_3} \end{bmatrix} \end{aligned}$$
 Strain tensor

$$\text{skew}(\nabla \mathbf{u}) = \begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial u_1}{\partial X_2} - \frac{\partial u_2}{\partial X_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial X_3} - \frac{\partial u_3}{\partial X_1} \right) \\ -\frac{1}{2} \left(\frac{\partial u_1}{\partial X_2} - \frac{\partial u_2}{\partial X_1} \right) & 0 & \frac{1}{2} \left(\frac{\partial u_2}{\partial X_3} - \frac{\partial u_3}{\partial X_2} \right) \\ -\frac{1}{2} \left(\frac{\partial u_1}{\partial X_2} - \frac{\partial u_3}{\partial X_2} \right) & -\frac{1}{2} \left(\frac{\partial u_2}{\partial X_3} - \frac{\partial u_3}{\partial X_2} \right) & 0 \end{bmatrix}$$
 Spin tensor

Contraction and Trace

· Contraction of rank-2 tensors

$$\boldsymbol{a}:\boldsymbol{b}=a_{ij}b_{ij}=a_{11}b_{11}+a_{12}b_{12}+\ldots+a_{32}b_{32}+a_{33}b_{33}$$

- contraction operator reduces four ranks from the sum of ranks of two tensors
- · magnitude (or, norm) of a rank-2 tensor

$$|\mathbf{a}| = \sqrt{\mathbf{a} : \mathbf{a}}$$

Constitutive relation between stress and strain

$$\boldsymbol{\sigma} = \boldsymbol{D} : \boldsymbol{\epsilon} \text{,} \quad \boldsymbol{\sigma}_{ij} = \boldsymbol{D}_{ijkl} \boldsymbol{\epsilon}_{kl}$$

Trace: part of contraction

$$tr(A) = A_{ii} = A_{11} + A_{22} + A_{33}$$

- In tensor notation

$$tr(A) = A : 1 = 1 : A$$

17

Orthogonal Tensor

· In two different coord.

$$\mathbf{u} = \mathbf{u}_i \mathbf{e}_i = \mathbf{u}_j^* \mathbf{e}_j^*$$

Direction cosines

$$\boldsymbol{\beta} = [\beta_{ij}] = \mathbf{e}_i^* \otimes \mathbf{e}_j \qquad \mathbf{e}_i^* = \beta \mathbf{e}_j$$

· Change basis

$$\mathbf{u} = \mathbf{u}_{j} \mathbf{e}_{j} = \mathbf{u}_{i}^{*} \mathbf{e}_{i}^{*}$$
$$= \mathbf{u}_{i}^{*} \beta_{ij} \mathbf{e}_{j}$$

$$u_{j} = \beta_{i,j} u_{i}^{*}$$

 $\mathbf{u} = \boldsymbol{\beta}^\mathsf{T} \mathbf{u}^*$

We can also show

$$\begin{split} \boldsymbol{e}_j &= \beta_{ij} \boldsymbol{e}_i^{\star} \quad \boldsymbol{u}^{\star} = \beta \boldsymbol{u} \\ \boldsymbol{u} &= \beta^{\mathsf{T}} \boldsymbol{u}^{\star} = \beta^{\mathsf{T}} (\beta \boldsymbol{u}) = (\beta^{\mathsf{T}} \beta) \boldsymbol{u} \\ \beta^{-1} &= \beta^{\mathsf{T}} \end{split}$$

$$\beta^{\mathsf{T}}\beta = \beta\beta^{\mathsf{T}} = 1 \quad \text{det}(\beta) = \pm 1$$
 Orthogonal tensor

Rank-2 tensor transformation

$$\mathbf{T}^* = \beta \mathbf{T} \beta^\mathsf{T}, \quad \mathsf{T}_{ij}^* = \beta_{ik} \mathsf{T}_{kl} \beta_{jl}$$

Permutation

 The permutation symbol has three indices, but it is not a tensor

$$e_{ijk} = \begin{cases} 1 & \text{if ijk are an even permutation}: 123, 231, 312 \\ -1 & \text{if ijk are an odd permutation}: 132, 213, 321 \\ 0 & \text{otherwise} \end{cases}$$

- the permutation is zero when any of two indices have the same value: $e_{112} = e_{121} = e_{111} = 0$
- Identity

$$\textbf{e}_{ijk}\textbf{e}_{lmk} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$

vector product

$$\boldsymbol{u}\times\boldsymbol{v}=\boldsymbol{e}_{i}\boldsymbol{e}_{ijk}\boldsymbol{u}_{j}\boldsymbol{v}_{k}$$

19

Dual Vector

• For any skew tensor \boldsymbol{W} and a vector \boldsymbol{u}

$$\mathbf{u} \cdot \mathbf{W} \mathbf{u} = \mathbf{u} \cdot \mathbf{W}^T \mathbf{u} = -\mathbf{u} \cdot \mathbf{W} \mathbf{u} = 0$$

- Wu and u are orthogonal

Vector and Tensor Calculus

Gradient

$$\nabla = \frac{\partial}{\partial \mathbf{X}} = \mathbf{e}_{\mathbf{i}} \frac{\partial}{\partial \mathbf{X}_{\mathbf{i}}}$$

- Gradient is considered a vector
- We will often use a simplified notation: $V_{i,j} = \frac{\partial V_i}{\partial X_i}$
- · Laplace operator

$$\nabla^2 = \nabla \cdot \nabla = \left(e_i \frac{\partial}{\partial X_i} \right) \cdot \left(e_j \frac{\partial}{\partial X_j} \right) = \frac{\partial}{\partial X_j} \frac{\partial}{\partial X_j}$$

• Gradient of a scalar field $\phi(X)$: vector

$$\nabla \varphi(\boldsymbol{X}) = \boldsymbol{e}_i \, \frac{\partial \varphi}{\partial \boldsymbol{X}_i}$$

$$\frac{\sqrt[9]{2}}{\partial X_1^2} + \frac{\partial^2}{\partial X_2^2} + \frac{\partial^2}{\partial X_3^2}$$

21

Vector and Tensor Calculus

· Gradient of a Tensor Field (increase rank by 1)

$$\nabla \phi = \phi \otimes \nabla = \phi_i \boldsymbol{e}_i \otimes \boldsymbol{e}_j \frac{\partial}{\partial X_j} = \frac{\partial \phi_i}{\partial X_j} \boldsymbol{e}_i \otimes \boldsymbol{e}_j$$

· Divergence (decrease rank by 1)

$$\nabla \cdot \boldsymbol{\phi} = \left(\boldsymbol{e}_i \frac{\partial}{\partial \boldsymbol{X}_i} \right) \cdot \left(\boldsymbol{\phi}_j \boldsymbol{e}_j \right) = \frac{\partial \boldsymbol{\phi}_i}{\partial \boldsymbol{X}_i}$$

- Ex)
$$\nabla \cdot \boldsymbol{\sigma} = \sigma_{jk,j} \boldsymbol{e}_k$$

· Curl

$$\nabla \times \boldsymbol{v} = \boldsymbol{e}_{i} \boldsymbol{e}_{ijk} \boldsymbol{v}_{k,j}$$

Integral Theorems

· Divergence Theorem

$$\iint_{\Omega} \nabla \cdot \mathbf{A} \, d\Omega = \int_{\Gamma} \mathbf{n} \cdot \mathbf{A} \, d\Gamma$$

n: unit outward normal vector

· Gradient Theorem

$$\iint_{\Omega} \nabla \mathbf{A} \, d\Omega = \int_{\Gamma} \mathbf{n} \otimes \mathbf{A} \, d\Gamma$$

Stokes Theorem

$$\int_{\Gamma} \mathbf{n} \cdot (\nabla \times \mathbf{v}) d\Gamma = \oint_{c} \mathbf{r} \cdot \mathbf{v} dc$$

· Reynolds Transport Theorem

$$\frac{d}{dt} \iint_{\Omega} \mathbf{A} d\Omega = \iint_{\Omega} \frac{\partial \mathbf{A}}{\partial t} d\Omega + \int_{\Gamma} (\mathbf{n} \cdot \mathbf{v}) \mathbf{A} d\Gamma$$

23

Integration-by-Parts

- u(x) and v(x) are continuously differentiable functions
- · 1D

$$\int_a^b u(x)v'(x) dx = \left[u(x)v(x) \right]_a^b - \int_a^b u'(x)v(x) dx$$

· 2D, 3D

$$\int_{\Omega} \frac{\partial u}{\partial x_{i}} v \, d\Omega = \int_{\Gamma} u v n_{i} \, d\Gamma - \int_{\Omega} u \frac{\partial v}{\partial x_{i}} \, d\Omega$$

• For a vector field $\mathbf{v}(x)$

$$\int_{\Omega} \nabla \mathbf{u} \cdot \mathbf{v} \, d\Omega = \int_{\Gamma} \mathbf{u} (\mathbf{v} \cdot \mathbf{n}) \, d\Gamma - \int_{\Omega} \mathbf{u} \nabla \cdot \mathbf{v} \, d\Omega$$

· Green's identity

$$\int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \, d\Omega = \int_{\Gamma} \mathbf{u} \nabla \mathbf{v} \cdot \mathbf{n} \, d\Gamma - \int_{\Omega} \mathbf{u} \nabla^2 \mathbf{v} \, d\Omega$$

Example: Divergence Theorem

- S: unit sphere $(x^2 + y^2 + z^2 = 1)$, $\mathbf{F} = 2x\mathbf{i} + y^2\mathbf{j} + z^2\mathbf{k}$
- Integrate $\int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$

$$\begin{split} \int_{S} \mathbf{F} \cdot \mathbf{n} \, dS &= \iint_{\Omega} \nabla \cdot \mathbf{F} \, d\Omega \\ &= 2 \iint_{\Omega} (1 + y + z) \, d\Omega \\ &= 2 \iint_{\Omega} \, d\Omega + 2 \iint_{\Omega} y \, d\Omega + 2 \iint_{\Omega} z \, d\Omega \\ &= 2 \iint_{\Omega} \, d\Omega \\ &= 2 \iint_{\Omega} \, d\Omega \end{split}$$

25

1.3

STRESS AND STRAIN

Surface Traction (Stress)

- Surface traction (Stress)
 - The entire body is in equilibrium with external forces $(\mathbf{f}_1 \sim \mathbf{f}_6)$
 - The imaginary cut body is in equilibrium due to external forces $(\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ and internal forces
 - Internal force acting at a point P on a plane whose unit normal is n:

$$\mathbf{t^{(n)}} = \lim_{\Delta A \to 0} \frac{\Delta \mathbf{F}}{\Delta \mathbf{A}}$$

- The surface traction depends on the unit normal direction **n**.
- Surface traction will change as **n** changes.
- unit = force per unit area (pressure)

$$\boldsymbol{t^{(n)}} = \boldsymbol{t_1}\boldsymbol{e_1} + \boldsymbol{t_2}\boldsymbol{e_2} + \boldsymbol{t_3}\boldsymbol{e_3}$$

27

Cartesian Stress Components

- Surface traction changes according to the direction of the surface.
- · Impossible to store stress information for all directions.
- Let's store surface traction parallel to the three coordinate directions.
- Surface traction in other directions can be calculated from them.
- · Consider the x-face of an infinitesimal cube

$$\mathbf{t}^{(x)} = \mathbf{t}_{1}^{(x)} \mathbf{e}_{1} + \mathbf{t}_{2}^{(x)} \mathbf{e}_{2} + \mathbf{t}_{3}^{(x)} \mathbf{e}_{3}$$

$$\mathbf{t}^{(x)} = \sigma_{11} \mathbf{e}_{1} + \sigma_{12} \mathbf{e}_{2} + \sigma_{13} \mathbf{e}_{3}$$
Normal Shear stress

Stress Tensor

- First index is the face and the second index is its direction
- When two indices are the same, normal stress, otherwise shear stress.
- Continuation for other surfaces.
- Total nine components
- Same stress components are defined for the negative planes.
- · Rank-2 Stress Tensor

$$\boldsymbol{\sigma} = \sigma_{ij} \boldsymbol{e}_i \otimes \boldsymbol{e}_j$$

Sign convention

$$sgn(\sigma_{11}) = sgn(\mathbf{n}) \times sgn(\Delta F_x)$$

 $sgn(\sigma_{12}) = sgn(\mathbf{n}) \times sgn(\Delta F_y)$

29

Symmetry of Stress Tensor

- Equilibrium of the angular moment

$$\sum \mathbf{M} = \Delta \mathbf{I}(\sigma_{12} - \sigma_{21}) = 0$$
$$\Rightarrow \sigma_{12} = \sigma_{21}$$

- Similarly for all three directions:

$$\sigma_{12} = \sigma_{21}, \quad \sigma_{23} = \sigma_{32}, \quad \sigma_{13} = \sigma_{31}$$

- Let's use vector notation: $\begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \end{array}$ Cartesian components of stress tensor $\{\sigma\} = \begin{cases} \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \end{array}$

$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{bmatrix}$$

Stress in Arbitrary Plane

- If Cartesian stress components are known, it is possible to determine the surface traction acting on any plane.
- Consider a plane whose normal is n.
- Surface area ($\triangle ABC = A$)

 $\triangle PAB = An_3$; $\triangle PBC = An_1$; $\triangle PAC = An_2$

- The surface traction

$$\textbf{t^{(n)}} = \textbf{t}_1^{(n)} \textbf{e}_1 + \textbf{t}_2^{(n)} \textbf{e}_2 + \textbf{t}_3^{(n)} \textbf{e}_3$$

- Force balance

$$\sum F_1 = t_1^{(n)} A - \sigma_{11} A n_1 - \sigma_{21} A n_2 - \sigma_{31} A n_3 = 0$$

$$t_1^{(n)} = \sigma_{11} n_1 + \sigma_{21} n_2 + \sigma_{31} n_3$$

31

Cauchy's Lemma

· All three-directions

$$\begin{aligned} t_1^{(n)} &= \sigma_{11} n_1 + \sigma_{21} n_2 + \sigma_{31} n_3 \\ t_2^{(n)} &= \sigma_{12} n_1 + \sigma_{22} n_2 + \sigma_{32} n_3 \\ t_3^{(n)} &= \sigma_{13} n_1 + \sigma_{23} n_2 + \sigma_{33} n_3 \end{aligned}$$

Tensor notation

$$\mathbf{t}^{(n)} = \mathbf{n} \cdot \boldsymbol{\sigma} \quad \Rightarrow \quad \mathbf{t}^{(n)} = \boldsymbol{\sigma} \cdot \mathbf{n}$$

- stress tensor; completely characterize the state of stress at a point
- · Cauchy's Lemma
 - the surface tractions acting on opposite sides of the same surface are equal in magnitude and opposite in direction

$$t^{(n)} = -t^{(-n)}$$

Projected Stresses

- Normal stress $\sigma(\mathbf{n}) = \mathbf{t}^{\mathbf{n}} \cdot \mathbf{n} = \mathbf{n} \cdot \boldsymbol{\sigma} \cdot \mathbf{n} = \sigma_{ij} n_i n_j$
- Shear stress $\tau(\mathbf{n}) = \sqrt{\|\mathbf{t}^{\mathbf{n}}\|^2} \sigma^2(\mathbf{n}), \quad \tau(\mathbf{n}) = \mathbf{t}^{\mathbf{n}} \mathbf{n}\sigma(\mathbf{n})$
- Principal stresses $\mathbf{t^n} \parallel \mathbf{n} \ \Rightarrow \ \sigma_1, \sigma_2, \sigma_3$
- Mean stress (hydrostatic pressure)

$$p = \sigma_m = \frac{1}{3} tr(\sigma) = \frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33})$$

· Stress deviator

$$\boldsymbol{s} = \boldsymbol{\sigma} - \boldsymbol{\sigma}_{\text{m}} \boldsymbol{1} = \boldsymbol{I}_{\text{dev}}$$
 : $\boldsymbol{\sigma}$

$$\mathbf{s} = \begin{bmatrix} \sigma_{11} - \sigma_{\text{m}} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{11} - \sigma_{\text{m}} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{11} - \sigma_{\text{m}} \end{bmatrix} \qquad \mathbf{I}_{\text{dev}} = \mathbf{I} - \frac{1}{3}\mathbf{1} \otimes \mathbf{1}$$
Rank-4 deviatoric identity tensor

$$\mathbf{I}_{ijkl} = \frac{1}{3} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$

Rank-4 identity tensor

$$\mathbf{I}_{\mathsf{dev}} = \mathbf{I} - \frac{1}{3}\mathbf{1} \otimes \mathbf{1}$$

$$\mathbf{I}_{dev}: \mathbf{1} = \mathbf{0}, \quad \mathbf{I}_{dev}: \mathbf{s} = \mathbf{s}$$

Principal Stresses

- Normal & shear stress change as **n** changes
 - Is there a plane on which the normal (or shear)stress becomes the maximum?
- There are at least three mutually perpendicular planes on which the normal stress attains an extremum
 - Shear stresses are zero on these planes \rightarrow Principal directions
 - Traction t⁽ⁿ⁾ is parallel to surface normal n

$$\mathbf{t^{(n)}} = \sigma_n \mathbf{n} \qquad \Longrightarrow \qquad \sigma \cdot \mathbf{n} = \sigma_n \mathbf{n}$$

 $[\sigma - \sigma_n \mathbf{1}] \cdot \mathbf{n} = \mathbf{0}$

$$\begin{bmatrix} \sigma_{11} - \sigma_n & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} - \sigma_n & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} - \sigma_n \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Eigenvalue Problem for Principal Stresses

 The eigenvalue problem has non-trivial solution if and only if the determinant is zero:

$$\begin{vmatrix} \sigma_{11} - \sigma_n & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} - \sigma_n & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} - \sigma_n \end{vmatrix} = 0$$

The above equation becomes a cubic equation:

$$\begin{split} \sigma_n^3 - I_1 \sigma_n^2 + I_2 \sigma_n - I_3 &= 0 \\ I_1 &= \sigma_{11} + \sigma_{22} + \sigma_{33} \\ I_2 &= \sigma_{11} \sigma_{22} + \sigma_{22} \sigma_{33} + \sigma_{33} \sigma_{11} - \sigma_{12}^2 - \sigma_{23}^2 - \sigma_{13}^2 \\ I_3 &= \left| \sigma \right| = \sigma_{11} \sigma_{22} \sigma_{33} + 2 \sigma_{12} \sigma_{23} \sigma_{13} - \sigma_{11} \sigma_{23}^2 - \sigma_{22} \sigma_{13}^2 - \sigma_{33} \sigma_{12}^2 \end{split}$$

Three roots are principal stresses

$$\sigma_1 \geq \sigma_2 \geq \sigma_3$$

35

Principal Directions

- Stress Invariants: I₁, I₂, I₃
 - independent of the coordinate system
- Principal directions
 - Substitute each principal stress to the eigenvalue problem to get n
 - Since the determinant is zero, an infinite number of solutions exist
 - Among them, choose the one with a unit magnitude

$$\|\mathbf{n}^i\|^2 = (\mathbf{n}_1^i)^2 + (\mathbf{n}_2^i)^2 + (\mathbf{n}_3^i)^2 = 1, \quad i = 1, 2, 3$$

· Principal directions are mutually perpendicular

$$\mathbf{n}^{i} \cdot \mathbf{n}^{j} = 0, \quad i \neq j$$

Principal Directions

- There are three cases for principal directions:
 - 1. σ_1 , σ_2 , and σ_3 are distinct \Rightarrow principal directions are three unique mutually orthogonal unit vectors.
 - 2. $\sigma_1 = \sigma_2$ and σ_3 are distinct $\Rightarrow \mathbf{n}^3$ is a unique principal direction, and any two orthogonal directions on the plane that is perpendicular to \mathbf{n}^3 are principal directions.
 - 3. $\sigma_1 = \sigma_2 = \sigma_3 \Rightarrow$ any three orthogonal directions are principal directions. This state of stress corresponds to a **hydrostatic pressure**.

37

Strains (Simple Version)

- Strain is defined as the elongation per unit length

- Tensile (normal) strains in x_1 - and x_2 -directions

$$\epsilon_{11} = \lim_{\Delta \textbf{x}_1 \rightarrow 0} \frac{\Delta \textbf{u}_1}{\Delta \textbf{x}_1} = \frac{\partial \textbf{u}_1}{\partial \textbf{x}_1}$$

Textbook has different, but more rigorous derivations

$$\epsilon_{22} = \underset{\Delta x_2 \rightarrow 0}{\text{lim}} \frac{\Delta u_2}{\Delta x_2} = \frac{\partial u_2}{\partial x_2}$$

- Strain is a dimensionless quantity. Positive for elongation and negative for compression

Shear Strain

 Shear strain is the tangent of the change in angle between two originally perpendicular axes

$$\theta_1 \sim \tan \theta_1 = \frac{\Delta u_2}{\Delta x_1}$$

$$\theta_2 \sim \tan \theta_2 = \frac{\Delta u_1}{\Delta x_2}$$

- Shear strain (change of angle)

$$\begin{split} \gamma_{12} &= \theta_1 + \theta_2 = \lim_{\Delta x_1 \to 0} \frac{\Delta u_2}{\Delta x_1} + \lim_{\Delta x_2 \to 0} \frac{\Delta u_1}{\Delta x_2} = \frac{\partial u_2}{\partial x_1} + \frac{\partial u_1}{\partial x_2} \\ \epsilon_{12} &= \frac{1}{2} \gamma_{12} = \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} + \frac{\partial u_1}{\partial x_2} \right) \end{split}$$

- Positive when the angle between two positive (or two negative) faces is reduced and negative when the angle is increased.
- Valid for small deformation

39

Strains (Rigorous Version)

- · Strain: a measure of deformation
 - Normal strain: change in length of a line segment
 - Shear strain: change in angle between two perpendicular line segments
- Displacement of $P = (u_1, u_2, u_3)$
- · Displacement of Q & R

Displacement Field

· Coordinates of P, Q, and R before and after deformation

P:
$$(x_{1}, x_{2}, x_{3})$$

Q: $(x_{1} + \Delta x_{1}, x_{2}, x_{3})$
R: $(x_{1}, x_{1} + \Delta x_{2}, x_{3})$
P': $(x_{1} + u_{1}^{p}, x_{2} + u_{2}^{p}, x_{3} + u_{3}^{p}) = (x_{1} + u_{1}, x_{2} + u_{2}, x_{3} + u_{3})$
Q': $(x_{1} + \Delta x_{1} + u_{1}^{Q}, x_{2} + u_{2}^{Q}, x_{3} + u_{3}^{Q})$
= $(x_{1} + \Delta x_{1} + u_{1} + \frac{\partial u_{1}}{\partial x_{1}} \Delta x_{1}, x_{2} + u_{2} + \frac{\partial u_{2}}{\partial x_{1}} \Delta x_{1}, x_{3} + u_{3} + \frac{\partial u_{3}}{\partial x_{1}} \Delta x_{1})$
R': $(x_{1} + u_{1}^{R}, x_{2} + \Delta x_{2} + u_{2}^{R}, x_{3} + u_{3}^{R})$
= $(x_{1} + u_{1} + \frac{\partial u_{1}}{\partial x_{2}} \Delta x_{2}, x_{2} + \Delta x_{2} + u_{2} + \frac{\partial u_{2}}{\partial x_{2}} \Delta x_{2}, x_{3} + u_{3} + \frac{\partial u_{3}}{\partial x_{2}} \Delta x_{2})$

· Length of the line segment P'Q'

$$P'Q' = \sqrt{\left(x_1^{P'} - x_1^{Q'}\right)^2 + \left(x_2^{P'} - x_2^{Q'}\right)^2 + \left(x_3^{P'} - x_3^{Q'}\right)^2}$$

41

Deformation Field

Length of the line segment P'Q'

$$\begin{split} \mathsf{P'Q'} &= \Delta x_1 \sqrt{\left(1 + \frac{\partial \mathsf{u}_1}{\partial x_1}\right)^2 + \left(\frac{\partial \mathsf{u}_2}{\partial x_1}\right)^2 + \left(\frac{\partial \mathsf{u}_3}{\partial x_1}\right)^2} \\ &= \Delta x_1 \left(1 + 2\frac{\partial \mathsf{u}_1}{\partial x_1} + \left(\frac{\partial \mathsf{u}_1}{\partial x_1}\right)^2 + \left(\frac{\partial \mathsf{u}_2}{\partial x_1}\right)^2 + \left(\frac{\partial \mathsf{u}_3}{\partial x_1}\right)^2\right)^{1/2} \\ &\approx \Delta x_1 \left(1 + \frac{\partial \mathsf{u}_1}{\partial x_1} + \frac{1}{2}\left(\frac{\partial \mathsf{u}_1}{\partial x_1}\right)^2 + \frac{1}{2}\left(\frac{\partial \mathsf{u}_2}{\partial x_1}\right)^2 + \frac{1}{2}\left(\frac{\partial \mathsf{u}_3}{\partial x_1}\right)^2\right) \approx \Delta x \left(1 + \frac{\partial \mathsf{u}_1}{\partial x_1}\right) \\ &\text{Linear} & \text{Nonlinear} \Longrightarrow \text{Ignore H.O.T. when displacement gradients are small} \end{split}$$

· Linear normal strain

$$\varepsilon_{11} = \frac{P'Q' - PQ}{PQ} = \frac{\partial u_1}{\partial x_1}$$

$$\varepsilon_{22} = \frac{\partial u_2}{\partial x_2}, \quad \varepsilon_{33} = \frac{\partial u_3}{\partial x_3}$$

Deformation Field

- Shear strain γ_{xy}
 - change in angle between two lines originally parallel to x- and y-

$$\mathbf{\theta_1} = \frac{\mathbf{x_2^{Q'}} - \mathbf{x_2^{Q}}}{\Delta \mathbf{x_1}} = \frac{\partial \mathbf{u_2}}{\partial \mathbf{x_1}}$$

$$\theta_2 = \frac{\mathbf{x}_1^{\mathsf{R}'} - \mathbf{x}_1^{\mathsf{R}}}{\Delta \mathbf{x}_2} = \frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_2}$$

axes
$$\theta_1 = \frac{\mathbf{x}_2^{Q'} - \mathbf{x}_2^{Q}}{\Delta \mathbf{x}_1} = \frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_1}$$
 $\theta_2 = \frac{\mathbf{x}_1^{R'} - \mathbf{x}_1^{R}}{\Delta \mathbf{x}_2} = \frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_2}$
$$\gamma_{12} = \theta_1 + \theta_2 = \frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_2} + \frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_1}$$
 Engineering shear strain
$$\gamma_{13} = \frac{\partial \mathbf{u}_3}{\partial \mathbf{x}_1} + \frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_3}$$
 Different not

$$\varepsilon_{12} = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right)$$

$$\varepsilon_{23} = \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right)$$

$$\varepsilon_{13} = \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} + \frac{\partial u_1}{\partial x_3} \right)$$

$$\begin{split} \epsilon_{ij} &= \frac{1}{2} \Bigg(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \Bigg) \\ \epsilon_{ij} &= \frac{1}{2} \big(u_{i,j} + u_{j,i} \big) \end{split}$$

$$\epsilon = \text{sym}(\nabla \textbf{u})$$

43

Strain Tensor

Strain Tensor

$$\boldsymbol{\epsilon} = \boldsymbol{\epsilon}_{ij} \boldsymbol{e}_i \otimes \boldsymbol{e}_j$$

- Cartesian Components $\begin{bmatrix} \varepsilon_{ij} \end{bmatrix} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33} \end{bmatrix}$
- Vector notation

Volumetric and Deviatoric Strain

Volumetric strain (from small strain assumption)

$$\begin{split} \epsilon_V &= \frac{V - V_0}{V_0} = (1 + \epsilon_{11})(1 + \epsilon_{22})(1 + \epsilon_{33}) - 1 \approx \epsilon_{11} + \epsilon_{22} + \epsilon_{33} \\ \epsilon_V &= \epsilon_{11} + \epsilon_{22} + \epsilon_{33} = \epsilon_{kk} \end{split}$$

· Deviatoric strain

$$\mathbf{e} = \mathbf{e} - \frac{1}{3} \mathbf{e}_{V} \mathbf{1}$$
 $\mathbf{e}_{ij} = \mathbf{e}_{ij} - \frac{1}{3} \mathbf{e}_{V} \delta_{ij}$

$$\boldsymbol{e} = \boldsymbol{I}_{\text{dev}} : \boldsymbol{\epsilon}$$

Exercise: Write \mathbf{I}_{dev} in matrix-vector notation

45

Stress-Strain Relationship

- Applied Load ⇒ shape change (strain) ⇒ stress
- · There must be a relation between stress and strain
- · Linear Elasticity: Simplest and most commonly used

Generalized Hooke's Law

- Linear elastic material $\sigma = \mathbf{D} : \epsilon$, $\sigma_{ij} = D_{ijkl} \epsilon_{kl}$
 - In general, Dijkl has 81 components
 - Due to symmetry in σ_{ij} , D_{ijkl} = D_{jikl}
 - Due to symmetry in ϵ_{kl} , D_{ijkl} = D_{ijlk}
 - from definition of strain energy, $D_{ijkl} = D_{klij}$
- 21 independent coeff
- Isotropic material (no directional dependence)
 - Most general 4-th order isotropic tensor

$$\begin{split} D_{ijkl} &= \lambda \delta_{ij} \delta_{kl} + \mu \delta_{ik} \delta_{jl} + \mu \delta_{il} \delta_{jk} \\ &= \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \end{split}$$

$$\mathbf{D} = \lambda \mathbf{1} \otimes \mathbf{1} + 2\mu \mathbf{I}$$

- Have only two independent coefficients (Lame's constants: λ and μ)

47

Generalized Hooke's Law cont.

· Stress-strain relation

$$\sigma_{ij} = D_{ijkl} \epsilon_{kl} = [\lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})] \epsilon_{kl} = \lambda \epsilon_{kk} \delta_{ij} + 2\mu \epsilon_{ij}$$

- Volumetric strain: $\epsilon_{\bf kk}=\epsilon_{11}+\epsilon_{22}+\epsilon_{33}=\epsilon_{\bf v}$
- Off-diagonal part: $\sigma_{12}=2\mu\epsilon_{12}=\mu\gamma_{12}-\mu$ is the shear modulus
- Bulk modulus K: relation b/w volumetric stress & strain

$$I_{1} = 3\sigma_{m} = \sigma_{jj} = \lambda\epsilon_{kk}\delta_{jj} + 2\mu\epsilon_{jj} = (3\lambda + 2\mu)\epsilon_{kk}$$

$$p = \sigma_{m} = (\lambda + \frac{2}{3}\mu)\epsilon_{kk} = K\epsilon_{v}$$

Bulk modulus

- Substitute $\lambda = K \frac{2}{3}\mu\,$ so that we can separate volumetric part
- · Total deform. = volumetric + deviatoric deform.

Generalized Hooke's Law cont.

Stress-strain relation cont.

$$\begin{split} \sigma_{ij} &= (\textbf{K} - \frac{2}{3}\mu)\epsilon_{kk}\delta_{ij} + 2\mu\epsilon_{ij} \\ &= \textbf{K}\epsilon_{kk}\delta_{ij} + 2\mu\epsilon_{ij} - \frac{2}{3}\mu\epsilon_{kk}\delta_{ij} \\ &= \textbf{K}\delta_{ij}\delta_{kl}\epsilon_{kl} + 2\mu[\delta_{ik}\delta_{jl} - \frac{1}{3}\delta_{ij}\delta_{kl}]\epsilon_{kl} \\ &= \Big[\textbf{K}\delta_{ij}\delta_{kl} + 2\mu(\textbf{I}_{dev})_{ijkl}\Big]\epsilon_{kl} \end{split}$$

Important for plasticity; plastic deformation only occurs in deviatoric part volumetric part is always elastic

49

Generalized Hooke's Law cont.

- Vector notation
 - The tensor notation is not convenient for computer implementation
 - Thus, we use Voigt notation 2^{nd} -order tensor \Rightarrow vector 4^{th} -order tensor \Rightarrow matrix
 - Strain (6×1 vector), Stress (6×1 vector), and C (6×6 matrix)

$$\boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ 2\epsilon_{12} \\ 2\epsilon_{23} \\ 2\epsilon_{13} \end{bmatrix} = \begin{bmatrix} u_{1,1} \\ u_{2,2} \\ u_{3,3} \\ u_{1,2} + u_{2,1} \\ u_{2,3} + u_{3,2} \\ u_{1,3} + u_{3,1} \end{bmatrix}$$

$$\boldsymbol{\epsilon}_{12} + \epsilon_{21} = 2\epsilon_{12}$$

3D Solid Element cont.

Elasticity matrix

$$\textbf{D} = \textbf{K1} \otimes \textbf{1} + 2\mu \textbf{I}_{\text{dev}}$$

 Relation b/w Lame's constants and Young's modulus

$$v = \frac{\lambda}{2(\lambda + \mu)}, \qquad E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}$$
$$\lambda = \frac{Ev}{(1 + v)(1 - 2v)}, \quad \mu = \frac{E}{2(1 + v)}$$

$$\mathbf{1} = \begin{cases} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} \qquad \mathbf{I}_{dev} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & 0 & 0 & 0 \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

and Poisson's ratio
$$v = \frac{\lambda}{2(\lambda + \mu)}, \quad E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}$$

$$\lambda = \frac{Ev}{(1 + v)(1 - 2v)}, \quad \mu = \frac{E}{2(1 + v)}$$

$$D = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu \end{bmatrix}$$

Textbook has a definition of D in terms of E and v

Plane Stress

- · Thin plate-like components parallel to the xy-plane
- · The plate is subjected to forces in its in-plane only
- $\sigma_{13} = \sigma_{23} = \sigma_{33} = 0$

$$\{\sigma\} = \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1}{2}(1 - v) \end{bmatrix} \begin{cases} \epsilon_{11} \\ \epsilon_{22} \\ \gamma_{12} \end{cases}$$

- $\varepsilon_{13} = \varepsilon_{23} = 0$, but $\varepsilon_{33} \neq 0$
- ϵ_{33} can be calculated from the condition of σ_{33} = 0:

$$\varepsilon_{33} = -\frac{v}{1-v}(\varepsilon_{11} + \varepsilon_{22})$$

Plane Strain

- Strains with a z subscript are all zero: ϵ_{13} = ϵ_{23} = ϵ_{33} = 0
- Deformation in the z-direction is constrained, (i.e., $u_3 = 0$)
- can be used if the structure is infinitely long in the zdirection

$$\{\sigma\} = \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1}{2}-\nu \end{bmatrix} \begin{cases} \epsilon_{11} \\ \epsilon_{22} \\ \gamma_{12} \end{cases}$$

- $\sigma_{13} = \sigma_{23} = 0$, but $\sigma_{33} \neq 0$
- σ_{33} can be calculated from the condition of ϵ_{33} = 0:

$$\sigma_{33} = \frac{Ev}{(1+v)(1-2v)} (\epsilon_{11} + \epsilon_{22})$$

53

1.4

MECHANICS OF CONTINUOUS BODIES

Governing Equations for Equilibrium

- · Governing differential equations for structural equilibrium
 - Three laws of mechanics: conservation of mass, conservation of linear momentum and conservation of angular momentum
- Boundary-valued problem: satisfied at every point in Ω
 - Governing D.E. + Boundary conditions
 - Solutions: C^2 -continuous for truss & solid, C^4 -continuous for beam
 - Unnecessarily requirements for higher-order continuity
- · Energy-based method
 - For conservative system, structural equilibrium when the potential energy has its minimum: Principle of minimum potential energy
 - If the solution of BVP exists, then that solution is the minimizing solution of the potential energy
 - When no solution exists in BVP, PMPE may have a natural solution
- Principle of virtual work
 - Equilibrium of the work done by both internal and external forces with small arbitrary virtual displacements

55

Balance of Linear Momentum

· Balance of linear momentum

$$\iint_{\Omega} \boldsymbol{f}^b \ d\Omega + \int_{\Gamma} \boldsymbol{t}^n \ d\Gamma = \iint_{\Omega} \rho \boldsymbol{a} \ d\Omega$$

fb: body force tn: surface traction

0 for static problem

Stress tensor (rank 2):

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_{ij} \boldsymbol{e}_i \otimes \boldsymbol{e}_j \quad \begin{bmatrix} \boldsymbol{\sigma}_{ij} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\sigma}_{11} & \boldsymbol{\sigma}_{12} & \boldsymbol{\sigma}_{13} \\ \boldsymbol{\sigma}_{21} & \boldsymbol{\sigma}_{22} & \boldsymbol{\sigma}_{23} \\ \boldsymbol{\sigma}_{31} & \boldsymbol{\sigma}_{32} & \boldsymbol{\sigma}_{33} \end{bmatrix}$$

Surface traction

$$\mathbf{t^n} = \mathbf{n} \cdot \mathbf{\sigma}$$

· Cauchy's Lemma

$$\mathbf{t}^{\mathbf{n}} = -\mathbf{t}^{-\mathbf{n}}$$

$$\mathbf{t}^{\mathbf{n}} = \mathbf{n} \cdot \boldsymbol{\sigma} \qquad \mathbf{t}^{-\mathbf{n}} = -\mathbf{n} \cdot \boldsymbol{\sigma}$$

Balance of Linear Momentum cont

· Balance of linear momentum

$$\begin{split} &\iint_{\Omega} (\boldsymbol{f}^b - \rho \boldsymbol{a}) d\Omega = -\!\!\int_{\Gamma} \boldsymbol{n} \cdot \boldsymbol{\sigma} d\Gamma = -\!\!\int_{\Omega} \nabla \cdot \boldsymbol{\sigma} d\Omega \\ &\iint_{\Omega} \!\! \left[\nabla \cdot \boldsymbol{\sigma} + (\boldsymbol{f}^b - \rho \boldsymbol{a}) \right] \! d\Omega = 0 \end{split} \qquad \text{Divergence Theorem}$$

$$\nabla \cdot \boldsymbol{\sigma} + (\boldsymbol{f}^b - \rho \boldsymbol{a}) = 0$$

- For a static problem

$$\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f}^b = 0$$
 $\sigma_{ij,i} + f_j^b = 0$

· Balance of angular momentum

$$\begin{split} \iint_{\Omega} \boldsymbol{x} \times \boldsymbol{f}^{b} \; d\Omega + \int_{\Gamma} \boldsymbol{x} \times \boldsymbol{t}^{\boldsymbol{n}} \; d\Gamma &= \iint_{\Omega} \rho \boldsymbol{x} \times \boldsymbol{a} \, d\Omega \\ & \Longrightarrow \boldsymbol{\sigma} = \boldsymbol{\sigma}^{\boldsymbol{T}} \quad \boldsymbol{\sigma}_{ij} = \boldsymbol{\sigma}_{ji} \end{split}$$

5

Boundary-Valued Problem

- · We want to determine the state of a body in equilibrium
- The equilibrium state (solution) of the body must satisfy
 - local momentum balance equation
 - boundary conditions
- · Strong form of BVP
 - Given body force f^b , and traction t on the boundary, find u such that

$$\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f}^{b} = 0$$
and
$$\mathbf{u} = \mathbf{0} \quad \text{on } \Gamma^{h} \quad \text{essential BC} \quad (2)$$

$$\mathbf{t} = \mathbf{n} \cdot \boldsymbol{\sigma} \quad \text{on } \Gamma^{s} \quad \text{natural BC} \quad (3)$$

Solution space

$$D_A = \left\{ \mathbf{u} \in [C^2(\Omega)]^3 \mid \mathbf{u} = 0 \text{ on } \mathbf{x} \in \Gamma^h, \ \sigma \cdot \mathbf{n} = \mathbf{t} \text{ on } \mathbf{x} \in \Gamma^s \right\}_{58}$$

Boundary-Valued Problem cont.

- How to solve BVP
 - To solve the strong form, we want to construct trial solutions that automatically satisfy a part of BVP and find the solution that satisfy remaining conditions.
 - Statically admissible stress field: satisfy (1) and (3)
 - Kinematically admissible displacement field: satisfy (2) and have piecewise continuous first partial derivative
 - Admissible stress field is difficult to construct. Thus, admissible displacement field is used often

59

Principle of Minimum Potential Energy (PMPE)

- Deformable bodies generate internal forces by deformation against externally applied forces
- · Equilibrium: balance between internal and external forces
- For elastic materials, the concept of force equilibrium can be extended to energy balance
- Strain energy: stored energy due to deformation (corresponding to internal force)

$$U(\mathbf{u}) \equiv \frac{1}{2} \iint_{\Omega} \sigma(\mathbf{u}) : \epsilon(\mathbf{u}) d\Omega$$

$$\sigma(\mathbf{u}) = \mathbf{D} : \epsilon(\mathbf{u})$$
Linear elastic material

 For elastic material, U(u) is only a function of total displacement u (independent of path)

PMPE cont.

Work done by applied loads (conservative loads)

$$W(\mathbf{u}) = \iint_{\Omega} \mathbf{u} \cdot \mathbf{f}^b \, d\Omega + \int_{\Gamma^s} \mathbf{u} \cdot \mathbf{t} \, d\Gamma.$$

• $U(\mathbf{u})$ is a quadratic function of \mathbf{u} , while $W(\mathbf{u})$ is a linear function of \mathbf{u} .

· Potential energy

$$\Pi(\mathbf{u}) = U(\mathbf{u}) - W(\mathbf{u})$$

$$= \frac{1}{2} \iint_{\Omega} \sigma(\mathbf{u}) : \varepsilon(\mathbf{u}) d\Omega - \iint_{\Omega} \mathbf{u} \cdot \mathbf{f}^{b} d\Omega - \int_{\Gamma^{s}} \mathbf{u} \cdot \mathbf{t} d\Gamma.$$

61

PMPE cont.

- PMPE: for all displacements that satisfy the boundary conditions, known as kinematically admissible displacements, those which satisfy the boundary-valued problem make the total potential energy stationary on D_A
- But, the potential energy is well defined in the space of kinematically admissible displacements

$$\mathbb{Z} = \left\{ \mathbf{u} \in [H^1(\Omega)]^3 \mid \mathbf{u} = 0 \text{ on } \mathbf{x} \in \Gamma^h \right\},$$

H1: first-order derivatives are integrable

- No need to satisfy traction BC (it is a part of potential)
- · Less requirement on continuity
- · The solution is called a generalized (natural) solution

Example - Uniaxial Bar

Strong form

$$EAu'' = 0 \quad x \in [0,L]$$

$$u = 0 \quad x = 0$$

$$EAu'(L) = F \quad x = L$$

- Integrate twice: $EAu(x) = c_1x + c_2$
- Apply two BCs: $u(x) = \frac{Fx}{EA}$ Solution of BVP
- PMPE with assumed solution $u(x) = c_1x + c_2$
- To satisfy KAD space, u(0) = 0, $\rightarrow u(x) = c_1x$
- Potential energy: $U = \frac{1}{2} \int_0^L EA(u')^2 dx = EALc_1^2$ $W = Fu(L) = FLc_1$

$$\frac{d\Pi}{dc_1} = \frac{d}{dc_1}(U - W) = EALc_1 - FL = 0 \qquad c_1 = \frac{F}{EA} \quad \Rightarrow \quad u(x) = \frac{Fx}{EA}$$

63

Virtual Displacement

- Virtual displacement is not experienced but only assumed to exist so that various possible equilibrium positions may be compared to determine the correct one
- Let mass m and springs are in equilibrium at the current position
- Then, a small arbitrary perturbation, $\delta \mathbf{r}$, can be assumed
 - Since $\delta \mathbf{r}$ is so small, the member forces are assumed unchanged
- · The work done by virtual displacement is

$$\delta W = \textbf{F}_1 \cdot \delta \textbf{r} + \textbf{F}_2 \cdot \delta \textbf{r} + \textbf{F}_3 \cdot \delta \textbf{r} + \textbf{F}_4 \cdot \delta \textbf{r} = (\textbf{F}_1 + \textbf{F}_2 + \textbf{F}_3 + \textbf{F}_4) \cdot \delta \textbf{r}$$

• If the current position is in force equilibrium, δW = 0

Virtual Displacement Field

- Virtual displacement (Space \mathbb{Z})
 - Small arbitrary perturbation (variation) of real displacement
 - $\delta \mathbf{u} = \lim_{\tau \to 0} \frac{1}{\tau} [(\mathbf{u} + \tau \mathbf{\eta}) (\mathbf{u})] = \frac{d}{d\tau} (\mathbf{u} + \tau \mathbf{\eta}) = \mathbf{\eta} \equiv \overline{\mathbf{u}}.$
 - Let $\bar{\mathbf{u}}$ be the virtual displacement, then $\mathbf{u} + \bar{\mathbf{u}}$ must be kinematically admissible, too
 - Then, **ū** must satisfy homogeneous displacement BC

$$\boldsymbol{u} \mapsto \boldsymbol{u} + \tau \overline{\boldsymbol{u}} \in \mathbb{V} \quad \Rightarrow \quad \overline{\boldsymbol{u}} \in \mathbb{Z}$$

$$\mathbb{Z} = \left\{ \left. \overline{\boldsymbol{u}} \right| \overline{\boldsymbol{u}} \in [H^1(\Omega)]^3, \ \left. \overline{\boldsymbol{u}} \right|_{\Gamma^h} = 0 \right\}$$

Property of variation

$$\delta\!\left(\frac{d\boldsymbol{u}}{d\boldsymbol{x}}\right) = \frac{d(\delta\boldsymbol{u})}{d\boldsymbol{x}}$$

65

PMPE As a Variation

- Necessary condition for minimum PE
 - Stationary condition <--> first variation = 0

$$\delta\Pi(\mathbf{u};\overline{\mathbf{u}}) = \lim_{\tau \to 0} \frac{1}{\tau} [\Pi(\mathbf{u} + \tau \overline{\mathbf{u}}) - \Pi(\mathbf{u})] = \frac{d}{d\tau} \Pi(\mathbf{u} + \tau \overline{\mathbf{u}}) \bigg|_{\tau=0} = 0$$

for all $\bar{\mathbf{u}} \in \mathbb{Z}$

Variation of strain energy

$$\delta \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right) = \frac{d}{d\tau} \left(\frac{\partial \mathbf{u} + \tau \overline{\mathbf{u}}}{\partial \mathbf{x}} \right) \bigg|_{\tau=0} = \frac{\partial \overline{\mathbf{u}}}{\partial \mathbf{x}}$$

$$\delta \varepsilon(\mathbf{u}) = \varepsilon(\overline{\mathbf{u}}) = \overline{\varepsilon}$$

$$\delta \sigma = \mathbf{D} : \overline{\epsilon}$$

$$\delta U(\mathbf{u}; \overline{\mathbf{u}}) = \frac{1}{2} \iint_{\Omega} \left[\varepsilon(\overline{\mathbf{u}}) : \mathbf{D} : \varepsilon(\mathbf{u}) + \varepsilon(\mathbf{u}) : \mathbf{D} : \varepsilon(\overline{\mathbf{u}}) \right] d\Omega$$

$$= \iint_{\Omega} \varepsilon(\overline{\mathbf{u}}) : \mathbf{D} : \varepsilon(\mathbf{u}) d\Omega$$

$$= \alpha(\mathbf{u}, \overline{\mathbf{u}}) \qquad \text{Energy bilinear form}$$

PMPE As a Variation cont.

· Variation of work done by applied loads

$$\delta W(\textbf{u};\overline{\textbf{u}}) = \iint_{\Omega} \overline{\textbf{u}} \cdot \textbf{f}^{b} \ d\Omega + \int_{\Gamma^{s}} \overline{\textbf{u}} \cdot \textbf{f} \ d\Gamma \equiv \ell(\overline{\textbf{u}}) \quad \text{Load linear form}$$

$$\delta\Pi(\mathbf{u}; \overline{\mathbf{u}}) = \delta U(\mathbf{u}; \overline{\mathbf{u}}) - \delta W(\mathbf{u}; \overline{\mathbf{u}}) = 0$$

Thus, PMPE becomes

$$a(\mathbf{u}, \overline{\mathbf{u}}) = \ell(\overline{\mathbf{u}}), \quad \forall \overline{\mathbf{u}} \in \mathbb{Z}$$

- Load form $\ell(\overline{\mathbf{u}})$ is linear with respect to $\overline{\mathbf{u}}$
- Energy form $a(\mathbf{u}, \mathbf{\bar{u}})$ is symmetric, bilinear w.r.t. \mathbf{u} and $\mathbf{\bar{u}}$
- Different problems have different a(\mathbf{u} , $\bar{\mathbf{u}}$) and $\ell(\bar{\mathbf{u}})$, but they share the same property
- · How can we satisfy "for all $\bar{u} \in \mathbb{Z}''$ requirement? Can we test an infinite number of \bar{u} ?

67

Example - Uniaxial Bar

- Assumed displacement $u(x) = cx \rightarrow$
 - virtual displacement is in the same space with u(x): $\overline{u}(x) = \overline{c}x$
- · Variation of strain energy

$$\begin{split} \delta U &= \frac{d}{d\tau} \bigg[\frac{1}{2} \int_0^L EA \Big[\left(u + \tau \overline{u} \right)' \Big]^2 \, dx \, \bigg]_{\tau=0} \\ &= \int_0^L EAu' \overline{u}' \, dx = EALc\overline{c} \end{split}$$

Variation of applied load

$$\delta W = \frac{d}{d\tau} \left[F \left[u(L) + \tau \overline{u}(L) \right] \right]_{\tau=0} = F \overline{u}(L) = F L \overline{c}$$

PMPE

$$\delta\Pi = \delta U - \delta W = \overline{c}(EALc - FL) = 0$$
 $u(x) = cx = \frac{Fx}{FA}$

Principle of Virtual Work

- Instead of solving the strong form directly, we want to solve the equation with relaxed requirement (weak form)
- Virtual work Work resulting from real forces acting through a virtual displacement
- Principle of virtual work when a system is in equilibrium, the forces applied to the system will not produce any virtual work for arbitrary virtual displacements
 - Balance of linear momentum is force equilibrium $\nabla \cdot \boldsymbol{\sigma} + \rho \boldsymbol{f}^b = 0$
 - Thus, the virtual work can be obtained by multiplying the force equilibrium equation with a virtual displacement

$$\overline{W} = \iint_{\Omega} (\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f}^{b}) \cdot \overline{\boldsymbol{u}} \, d\Omega$$

- If the above virtual work becomes zero for arbitrary $\bar{\mathbf{u}}$, then it satisfies the original equilibrium equation in a weak sense

69

Principle of Virtual Work cont

$$\begin{split} \bullet \quad \text{PVW} \qquad & \iint_{\Omega} (\sigma_{ij,i} + f^b_j) \overline{u}_j \, d\Omega = 0 \quad \forall \overline{\boldsymbol{u}} \in \mathbb{Z} \\ & = \iint_{\Omega} \sigma_{ij,i} \overline{u}_j \, d\Omega + \iint_{\Omega} f^b_j \overline{u}_j \, d\Omega \end{split}$$

- Integration-by-parts

$$= \iint_{\Omega} \left[\left(\sigma_{ij} \overline{u}_{j} \right)_{\!\! ,i} - \sigma_{ij} \overline{u}_{j,i} \right] \! d\Omega + \iint_{\Omega} f_{j}^{b} \overline{u}_{j} \, d\Omega$$

Divergence Thm

$$= \int_{\Gamma} \textbf{n}_{i} \sigma_{ij} \overline{\textbf{u}}_{j} \, d\Gamma - \iint_{\Omega} \sigma_{ij} \overline{\textbf{u}}_{j,i} \, d\Omega + \iint_{\Omega} \textbf{f}_{j}^{b} \overline{\textbf{u}}_{j} \, d\Omega$$

- The boundary is decomposed by $\Gamma = \Gamma^h \cup \Gamma^s$ $\overline{u}_j = 0 \text{ on } \Gamma^h \text{ and } n_i \sigma_{ij} = t_j \text{ on } \Gamma^s$ $= \int_{\Gamma^s} t_j \overline{u}_j \, d\Gamma - \iint_{\Omega} \sigma_{ij} \overline{u}_{j,i} \, d\Omega + \iint_{\Omega} f_j^b \overline{u}_j \, d\Omega$

Principle of Virtual Work cont

• Since σ_{ij} is symmetric

$$\sigma_{ij}\overline{u}_{j,i} = \sigma_{ij}sym(\overline{u}_{j,i}) = \sigma_{ij}\overline{\epsilon}_{ij}$$

 $\text{sym}(\overline{u}_{i,j}) = \frac{1}{2} \left(\frac{\partial \overline{u}_i}{\partial X_j} + \frac{\partial \overline{u}_j}{\partial X_i} \right) = \overline{\epsilon}_{ij}$

Weak Form of BVP

$$\iint_{\Omega} \sigma_{ij} \overline{\epsilon}_{ij} \, d\Omega = \iint_{\Omega} f_j^b \overline{u}_j \, d\Omega + \int_{\Gamma^s} t_j \overline{u}_j \, d\Gamma \quad \forall \overline{\boldsymbol{u}} \in \mathbb{Z}$$

Internal virtual work = external virtual work

Starting point of FEM

Symbolic expression

$$a(\mathbf{u}, \overline{\mathbf{u}}) = \ell(\overline{\mathbf{u}}) \quad \forall \overline{\mathbf{u}} \in \mathbb{Z}$$
 | [K]{d} = {F} | FE equation

- Energy form: $a(\mathbf{u}, \overline{\mathbf{u}}) = \iint_{\Omega} \sigma : \overline{\epsilon} d\Omega$
- Load form: $\ell(\overline{\boldsymbol{u}}) = \iint_{\Omega} \rho \overline{\boldsymbol{u}} \cdot \boldsymbol{f}^b \ d\Omega + \int_{\Gamma^s} \overline{\boldsymbol{u}} \cdot \boldsymbol{t} \ d\Gamma$

71

Example - Heat Transfer Problem

Steady-State Differential Equation

$$\frac{\partial}{\partial x}\!\left(\,k_{\!_{\boldsymbol{X}}}\frac{\partial T}{\partial x}\,\right)\!+\frac{\partial}{\partial y}\!\left(\,k_{\!_{\boldsymbol{Y}}}\frac{\partial T}{\partial y}\,\right)\!+Q\,=\,0$$

Boundary conditions

$$\begin{cases} T = T_0 \text{ on } S_T \\ q_n = -n_x k_x \frac{dT}{dx} - n_y k_y \frac{dT}{dy} & \text{on } S_q \end{cases} \qquad n = \{n_x, n_y\}^T$$

· Space of kinematically admissible temperature

$$\mathbb{Z} = \left\{ \overline{T} \in H^1(\Omega) \middle| \overline{T}(\boldsymbol{x}) = 0, \, \forall \boldsymbol{x} \in S_T \right\}$$

 Multiply by virtual temperature, integrate by part, and apply boundary conditions

$$\int_{\Omega}\!\!\left(\,k_{\!_{\boldsymbol{X}}}\frac{\partial T}{\partial x}\frac{\partial \overline{T}}{\partial x}+k_{\!_{\boldsymbol{y}}}\frac{\partial T}{\partial y}\frac{\partial \overline{T}}{\partial y}\,\right)\!d\Omega = \int_{\Omega}\overline{T}Q\,d\Omega + \int_{S_q}\overline{T}q_{\!_{\boldsymbol{\eta}}}\,dS_{\!_{\boldsymbol{q}}},\quad\forall\,\overline{T}\in\mathbb{Z}$$

Example - Beam Problem

· Governing DE

$$EI\frac{d^4v}{dx^4} = f(x), x \in [0,L]$$

· Boundary conditions for cantilevered beam

$$v(0) = \frac{dv}{dx}(0) = \frac{d^2v}{dx^2}(L) = \frac{d^3v}{dx^3}(L) = 0$$

· Space of kinematically admissible displacement

$$\mathbb{Z} = \left\{ \overline{v} \in H^2[0,L] \middle| \overline{v}(0) = \frac{d\overline{v}}{dx}(0) = 0 \right\}$$

Integrate-by-part twice, and apply BCs

$$\int_0^L EI \frac{d^2 \overline{v}}{dx^2} \frac{d^2 v}{dx^2} dx = \int_0^L f \overline{v} dx, \quad \forall \overline{v} \in \mathbb{Z}$$

73

Difference b/w Strong and Weak Solutions

- The solution of the strong form needs to be twice differentiable $\frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y} \right) + Q = 0$
- The solution of the weak form requires the first-order derivatives are integrable \Rightarrow bigger solution space than that of the strong form $\int_{\Omega} \left(k_{x} \frac{\partial T}{\partial x} \frac{\partial \overline{T}}{\partial x} + k_{y} \frac{\partial T}{\partial y} \frac{\partial \overline{T}}{\partial y} \right) d\Omega$
- If the strong form has a solution, it is the solution of the weak form
- If the strong form does not have a solution, the weak form may have a natural solution

1.5

FINITE ELEMENT METHOD

75

Finite Element Approximation

- · Difficult to solve a variational equation analytically
- Approximate solution
 - Linear combination of trial functions
 - Smoothness & accuracy depend on the choice of trial functions

$$u(x) = \sum_{i=1}^{n} c_i \phi_i(x)$$

- If the approximate solution is expressed in the entire domain, it is difficult to satisfy kinematically admissible conditions
- · Finite element approximation
 - Approximate solution in simple sub-domains (elements)
 - Simple trial functions (low-order polynomials) within an element
 - Kinematically admissible conditions only for elements on the boundary $\uparrow u(x)$

Piecewiselinear approximation

Finite Elements

· Types of finite elements

· Variational equation is imposed on each element.

$$\int_0^1 \Box dx = \int_0^{0.1} \Box dx + \int_{0.1}^{0.2} \Box dx + \dots + \int_{0.9}^1 \Box dx$$
One element

77

Trial Solution

- Solution within an element is approximated using simple polynomials.

- *i*-th element is composed of two nodes: x_i and x_{i+1} . Since two unknowns are involved, linear polynomial can be used:

$$u(x) = a_0 + a_1 x, \quad x_i \le x \le x_{i+1}$$

- The unknown coefficients, a_0 and a_1 , will be expressed in terms of nodal solutions $u(x_i)$ and $u(x_{i+1})$.

Trial Solution cont.

- Substitute two nodal values

$$\begin{cases} u(x_i) = u_i = a_0 + a_1x_i \\ u(x_{i+1}) = u_{i+1} = a_0 + a_1x_{i+1} \end{cases}$$

- Express a_0 and a_1 in terms of u_i and u_{i+1} . Then, the solution is approximated by

$$u(x) = \underbrace{\frac{x_{i+1} - x}{L^{(e)}}}_{N_1(x)} u_i + \underbrace{\frac{x - x_i}{L^{(e)}}}_{N_2(x)} u_{i+1}$$

- Solution for Element e:

$$u(x) = N_1(x)u_i + N_2(x)u_{i+1}, \quad x_i \le x \le x_{i+1}$$

- $N_1(x)$ and $N_2(x)$: Shape Function or Interpolation Function

79

Trial Solution cont.

- Observations
 - Solution u(x) is interpolated using its nodal values u_i and u_{i+1} .
 - $N_1(x)$ = 1 at node x_i , and =0 at node x_{i+1} .

- The solution is approximated by piecewise linear polynomial and its gradient is constant within an element.

- Stress and strain (derivative) are often averaged at the node.

1D Finite Elements

• 1D BVP
$$\frac{d^2u}{dx^2} + p(x) = 0$$
, $0 \le x \le 1$
 $u(0) = 0$
 $\frac{du}{dx}(1) = 0$ Boundary conditions

Space of kinematically admissible displacements

• Use PVW
$$\int_0^1 \left(\frac{d^2u}{dx^2} + p \right) \overline{u} \, dx = 0$$

$$\mathbb{Z} = \left\{ \overline{u} \in H^{(1)}[0,1] \middle| \overline{u}(0) = 0 \right\}$$

$$\mathbb{Z} = \left\{ \overline{u} \in H^{(1)}[0,1] \middle| \overline{u}(0) = 0 \right\}$$

Integration-by-parts

$$\frac{du}{dx}\overline{dx} = -\int_0^1 \frac{du}{dx} \frac{d\overline{u}}{dx} dx = -\int_0^1 p\overline{u} dx$$

- This variational equation also satisfies at individual element level

$$\int_{x_i}^{x_j} \frac{du}{dx} \frac{d\overline{u}}{dx} dx = \int_{x_i}^{x_j} p\overline{u} dx \qquad \forall \overline{u} \in \mathbb{Z}$$

$$\forall \overline{\textbf{u}} \in \mathbb{Z}$$

81

1D Interpolation Functions

Finite element approximation for one element (e) at a time

$$\mathbf{d}^{(e)}(\mathbf{x}) = \mathbf{q}_{1} \mathbf{N}_{1}(\mathbf{x}) + \mathbf{q}_{1+1} \mathbf{N}_{2}(\mathbf{x}) = \mathbf{N}^{(e)} \cdot \mathbf{d}^{(e)}$$
$$\mathbf{d}^{(e)} = \left\{ \begin{array}{c} \mathbf{q}_{1} \\ \mathbf{q}_{1+1} \end{array} \right\} \qquad \mathbf{N}^{(e)} = \left[\begin{array}{c} \mathbf{N}_{1} & \mathbf{N}_{2} \end{array} \right]$$

Satisfies interpolation condition

$$u^{(e)}(x_i) = u_i$$

 $u^{(e)}(x_{i+1}) = u_{i+1}$

Interpolation of displacement variation (same with u)

$$\overline{\mathbf{u}}^{(e)}(x) = \overline{\mathbf{u}}_{i} N_{i}(x) + \overline{\mathbf{u}}_{i+1} N_{2}(x) = \mathbf{N}^{(e)} \cdot \overline{\mathbf{d}}^{(e)}$$

Derivative of u(x): differentiating interpolation functions

$$\frac{du^{(e)}}{dx} = \left\lfloor \frac{dN_1}{dx} \quad \frac{dN_2}{dx} \right\rfloor \left\{ \begin{matrix} u_i \\ u_{i+1} \end{matrix} \right\} = \left\lfloor -\frac{1}{L^{(e)}} \quad \frac{1}{L^{(e)}} \right\rfloor \left\{ \begin{matrix} u_i \\ u_{i+1} \end{matrix} \right\} = \boldsymbol{B}^{(e)} \cdot \boldsymbol{d}^{(e)}$$

Element-Level Variational Equation

Approximate variational equation (1) for element (e)

$$\overline{\mathbf{d}}^{(e)\mathsf{T}}\bigg[\int_{x_{i}}^{x_{j}}\mathbf{B}^{(e)\mathsf{T}}\mathbf{B}^{(e)}\,\mathrm{d}x\bigg]\mathbf{d}^{(e)}=\overline{\mathbf{d}}^{(e)\mathsf{T}}\int_{x_{i}}^{x_{j}}\mathbf{N}^{(e)\mathsf{T}}p(x)\,\mathrm{d}x+\overline{\mathbf{d}}^{(e)\mathsf{T}}\left\{\begin{array}{l}-\frac{du}{dx}(x_{i})\\+\frac{du}{dx}(x_{i+1})\end{array}\right\}$$

- Must satisfied for all $\bar{\mathbf{u}}^{(e)}(\mathbf{x}) \in \mathbb{Z}$
- If element (e) is not on the boundary, $\overline{\mathbf{d}}^{(e)}$ can be arbitrary

· Element-level variational equation

$$\begin{bmatrix} \int_{x_{i}}^{x_{j}} \mathbf{B}^{(e)T} \mathbf{B}^{(e)} dx \end{bmatrix} \mathbf{d}^{(e)} = \begin{bmatrix} \int_{x_{i}}^{x_{j}} \mathbf{N}^{(e)T} p(x) dx \\ + \frac{du}{dx} (x_{i+1}) \end{bmatrix}$$

$$2x1 \text{ vector}$$

$$[\mathbf{k}^{(e)}] \{ \mathbf{d}^{(e)} \} = \left\{ \mathbf{f}^{(e)} \right\} + \begin{cases} -\frac{du}{dx} (x_{i}) \\ +\frac{du}{dx} (x_{i+1}) \end{cases}$$

83

Assembly

- · Need to derive the element-level equation for all elements
- · Consider Elements 1 and 2 (connected at Node 2)

$$\begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}^{(1)} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} = \begin{Bmatrix} f_1 \\ f_2 \end{Bmatrix}^{(1)} + \begin{Bmatrix} -\frac{du}{dx}(x_1) \\ +\frac{du}{dx}(x_2) \end{Bmatrix}$$

$$\begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}^{(2)} \begin{Bmatrix} u_2 \\ u_3 \end{Bmatrix} = \begin{Bmatrix} f_2 \\ f_3 \end{Bmatrix}^{(2)} + \begin{Bmatrix} -\frac{du}{dx}(x_2) \\ +\frac{du}{dx}(x_3) \end{Bmatrix}$$

· Assembly

$$\begin{bmatrix} k_{11}^{(1)} & k_{12}^{(1)} & 0 \\ k_{21}^{(1)} & k_{22}^{(1)} + k_{11}^{(2)} & k_{12}^{(2)} \\ 0 & k_{21}^{(2)} & k_{22}^{(2)} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1^{(1)} \\ f_2^{(1)} + f_2^{(2)} \\ f_3^{(2)} \end{bmatrix} + \begin{bmatrix} -\frac{du}{dx}(x_1) \\ 0 \\ \frac{du}{dx}(x_3) \end{bmatrix}$$

Assembly cont.

• Assembly of N_E elements $(N_D = N_E + 1)$

$$\begin{bmatrix} k_{11}^{(1)} & k_{12}^{(1)} & 0 & \dots & 0 \\ k_{21}^{(1)} & k_{22}^{(1)} + k_{11}^{(2)} & k_{12}^{(2)} & \dots & 0 \\ 0 & k_{221}^{(2)} & k_{22}^{(2)} + k_{11}^{(2)} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & k_{21}^{(N_E)} & k_{22}^{(N_E)} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_N \\ (N_b \times 1) \end{bmatrix} = \begin{bmatrix} f_1^{(1)} \\ f_2^{(1)} + f_2^{(2)} \\ f_3^{(2)} + f_3^{(3)} \\ \vdots \\ f_N^{(N_E)} \\ (N_b \times 1) \end{bmatrix} + \begin{bmatrix} -\frac{du}{dx}(x_1) \\ 0 \\ 0 \\ \vdots \\ +\frac{du}{dx}(x_N) \end{bmatrix}$$

 $[K]{d} = {F}$

 Coefficient matrix [K] is singular; it will become nonsingular after applying boundary conditions

85

Example

· Use three equal-length elements

$$\frac{d^2u}{dx^2} + x = 0, \ 0 \le x \le 1 \qquad u(0) = 0, \ u(1) = 0$$

· All elements have the same coefficient matrix

$$\begin{bmatrix} \mathbf{k}^{(e)} \end{bmatrix}_{2\times 2} = \frac{1}{L^{(e)}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}, \quad (e = 1, 2, 3)$$

• RHS (p(x) = x)

$$\begin{split} \left\{ f^{(e)} \right\} &= \int_{x_i}^{x_{i+1}} p(x) \begin{cases} N_1(x) \\ N_2(x) \end{cases} dx = \frac{1}{L^{(e)}} \int_{x_i}^{x_{i+1}} \begin{cases} x(x_{i+1} - x) \\ x(x - x_i) \end{cases} dx \\ &= L^{(e)} \begin{cases} \frac{x_i}{3} + \frac{x_{i+1}}{6} \\ \frac{x_i}{6} + \frac{x_{i+1}}{3} \end{cases}, \quad (e = 1, 2, 3) \end{split}$$

Example cont.

• RHS cont.
$$\begin{cases} f_1^{(1)} \\ f_2^{(1)} \end{cases} = \frac{1}{54} \begin{cases} 1 \\ 2 \end{cases}$$
, $\begin{cases} f_2^{(2)} \\ f_3^{(2)} \end{cases} = \frac{1}{54} \begin{cases} 4 \\ 5 \end{cases}$, $\begin{cases} f_3^{(3)} \\ f_4^{(3)} \end{cases} = \frac{1}{54} \begin{cases} 7 \\ 8 \end{cases}$

$$\begin{cases} f_2^{(2)} \\ f_3^{(2)} \end{cases} = \frac{1}{54} \begin{cases} 4 \\ 5 \end{cases}$$

Assembly

Element 1 Element 2 Element 3

- Apply boundary conditions
 - Deleting 1st and 4th rows and columns

$$\begin{bmatrix} 6 & -3 \\ -3 & 6 \end{bmatrix} \begin{Bmatrix} u_2 \\ u_3 \end{Bmatrix} = \frac{1}{9} \begin{Bmatrix} 1 \\ 2 \end{Bmatrix} \longrightarrow \begin{array}{c} u_2 = \frac{4}{81} \\ u_3 = \frac{5}{81} \end{array}$$

87

EXAMPLE cont.

Approximate solution

$$u(x) = \begin{cases} \frac{4}{27}x, & 0 \le x \le \frac{1}{3} \\ \frac{4}{81} + \frac{1}{27}\left(x - \frac{1}{3}\right), & \frac{1}{3} \le x \le \frac{2}{3} \\ \frac{5}{81} - \frac{5}{27}\left(x - \frac{2}{3}\right), & \frac{2}{3} \le x \le 1 \end{cases}$$

Exact solution

$$u(x) = \frac{1}{6}x(1-x^2)$$

- Three element solutions are poor
- Need more elements

3D Solid Element

- Isoparametric mapping
 - Build interpolation functions on the reference element
 - Jacobian: mapping relation between physical and reference elem.
- Interpolation and mapping

$$\boldsymbol{u}(\boldsymbol{\xi}) = \sum_{T=1}^{8} N_{T}(\boldsymbol{\xi}) \boldsymbol{u}_{T} \qquad \boldsymbol{x}(\boldsymbol{\xi}) = \sum_{T=1}^{8} N_{T}(\boldsymbol{\xi}) \boldsymbol{x}_{T}$$

Same for mapping and interpolation

$$N_{\mathtt{T}}(\xi) = \frac{1}{8}(1 + \xi \xi_{\mathtt{T}})(1 + \eta \eta_{\mathtt{T}})(1 + \zeta \zeta_{\mathtt{T}})$$

(b) Reference Element

89

3D Solid Element cont.

Jacobian matrix

$$\mathbf{J}_{3\times3} = \frac{\partial \mathbf{x}}{\partial \boldsymbol{\xi}} = \sum_{\mathbf{I}=1}^{8} \mathbf{x}_{\mathbf{I}} \frac{\partial N_{\mathbf{I}}(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}}$$

 $|\mathbf{J}|$: Jacobian

Derivatives of shape functions

ratives of shape functions
$$\begin{cases}
\frac{\partial N_{T}}{\partial \xi} & \frac{\partial N_{T}}{\partial \eta} & \frac{\partial N_{T}}{\partial \zeta}
\end{cases} = \begin{cases}
\frac{\partial N_{T}}{\partial x_{1}} & \frac{\partial N_{T}}{\partial x_{2}} & \frac{\partial N_{T}}{\partial x_{3}}
\end{cases}
\begin{cases}
\frac{\partial X_{1}}{\partial \xi} & \frac{\partial X_{1}}{\partial \eta} & \frac{\partial X_{1}}{\partial \zeta}
\end{cases} = \begin{cases}
\frac{\partial X_{1}}{\partial \xi} & \frac{\partial X_{1}}{\partial \eta} & \frac{\partial X_{1}}{\partial \zeta}
\end{cases}
\begin{cases}
\frac{\partial X_{1}}{\partial \xi} & \frac{\partial X_{1}}{\partial \eta} & \frac{\partial X_{1}}{\partial \zeta}
\end{cases}
\begin{cases}
\frac{\partial X_{1}}{\partial \xi} & \frac{\partial X_{1}}{\partial \eta} & \frac{\partial X_{1}}{\partial \zeta}
\end{cases}
\end{cases}$$

$$\frac{\partial N_{T}}{\partial \xi} = \frac{\partial N_{T}}{\partial \chi} \cdot \mathbf{J}$$

$$\begin{bmatrix}
\frac{\partial \mathbf{x}_1}{\partial \xi} & \frac{\partial \mathbf{x}_1}{\partial \eta} & \frac{\partial \mathbf{x}_1}{\partial \zeta} \\
\frac{\partial \mathbf{x}_2}{\partial \xi} & \frac{\partial \mathbf{x}_2}{\partial \eta} & \frac{\partial \mathbf{x}_2}{\partial \zeta} \\
\frac{\partial \mathbf{x}_3}{\partial \xi} & \frac{\partial \mathbf{x}_3}{\partial \eta} & \frac{\partial \mathbf{x}_3}{\partial \zeta}
\end{bmatrix}$$

$$\frac{\partial N_{\underline{\textbf{I}}}}{\partial \textbf{x}} = \frac{\partial N_{\underline{\textbf{I}}}}{\partial \boldsymbol{\xi}} \cdot \textbf{J}^{-1}$$

- Jacobian should not be zero anywhere in the element
- Zero or negative Jacobian: mapping is invalid (bad element shape)

3D Solid Element cont.

· Displacement-strain relation

$$\boldsymbol{\epsilon}(\mathbf{u}) = \sum_{\mathtt{I}=1}^{8} \mathbf{B}_{\mathtt{I}} \mathbf{u}_{\mathtt{I}}$$

$$\overline{\boldsymbol{\epsilon}} = \boldsymbol{\epsilon}(\overline{\mathbf{u}}) = \sum_{\mathtt{I}=1}^{8} \mathbf{B}_{\mathtt{I}} \overline{\mathbf{u}}_{\mathtt{I}}$$

$$\begin{aligned} \boldsymbol{B}_{\!T} &= \begin{bmatrix} N_{\!T,1} & 0 & 0 \\ 0 & N_{\!T,2} & 0 \\ 0 & 0 & N_{\!T,3} \\ N_{\!T,2} & N_{\!T,1} & 0 \\ 0 & N_{\!T,3} & N_{\!T,2} \\ N_{\!T,3} & 0 & N_{\!T,1} \end{bmatrix} \\ N_{\!T,i} &= \frac{\partial N_i}{\partial x_i} \end{aligned}$$

91

3D Solid Element cont.

· Transformation of integration domain

$$\iiint_{\Omega} d\Omega = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} |\mathbf{J}| d\xi d\eta d\zeta$$

· Energy form

$$\boldsymbol{\alpha}(\boldsymbol{u}, \overline{\boldsymbol{u}}) = \sum_{T=1}^{8} \sum_{J=1}^{8} \overline{\boldsymbol{u}}_{T}^{T} \left[\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \boldsymbol{B}_{T}^{T} \boldsymbol{D} \boldsymbol{B}_{J} \, \middle| \, \boldsymbol{J} \middle| \, d\xi d\eta d\zeta \, \right] \boldsymbol{u}_{J} \, \equiv \{ \overline{\boldsymbol{d}} \}^{T} [\boldsymbol{k}] \{ \boldsymbol{d} \}$$

· Load form

$$\ell(\overline{\mathbf{u}}) = \sum_{T=1}^{8} \overline{\mathbf{u}}_{T}^{T} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} N_{T}(\xi) \mathbf{f}^{b} \left| \mathbf{J} \right| d\xi d\eta d\zeta = \{\overline{\mathbf{d}}\}^{T} \{\mathbf{f}\}$$

· Discrete variational equation

$$\{\overline{d}\}^T[k]\{d\} = \{\overline{d}\}^T\{f\}, \quad \forall \{\overline{d}\} \in \mathbb{Z}_h$$

Numerical Integration

- · For bar and beam, analytical integration is possible
- For plate and solid, analytical integration is difficult, if not impossible
- Gauss quadrature is most popular in FEM due to simplicity and accuracy
- · 1D Gauss quadrature

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{i=1}^{NG} \omega_{i} f(\xi_{i})$$

- NG: No. of integ. points; ξ_i : integ. point; ω_i : integ. weight
- ξ_i and ω_i are chosen so that the integration is exact for (2*NG 1)-order polynomial
- Works well for smooth function
- Integration domain is [-1, 1]

93

Numerical Integration cont.

· Multi-dimensions

$$\begin{split} &\int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta) \, d\xi d\eta = \sum_{i=1}^{NG} \sum_{j=1}^{NG} \omega_{i} \omega_{j} f(\xi_{i}, \eta_{j}) \\ &\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) \, d\xi d\eta \, d\zeta = \sum_{i=1}^{NG} \sum_{j=1}^{NG} \sum_{k=1}^{NG} \omega_{i} \omega_{j} \omega_{k} f(\xi_{i}, \eta_{j}, \zeta_{k}) \end{split}$$

NG	Integration Points (ξ_i)	Weights (ω_i)
1	0.0	2.0
2	$\pm .5773502692$	1.0
3	$\pm .7745966692$.555555556
	0.0	.888888889
4	$\pm .8611363116$.3478546451
	$\pm .3399810436$.6521451549
	$\pm .9061798459$.2369268851
5	$\pm .5384693101$.4786286705
	0.0	.5688888889

ELAST3D.m

- · A module to solve linear elastic problem using NLFEA.m
- · Input variables for ELAST3D.m

Variable	Array size	Meaning
ETAN	(6,6)	Elastic stiffness matrix Eq. (1.81)
UPDATE	Logical variable	If true, save stress values
LTAN	Logical variable	If true, calculate the global stiffness matrix
NE	Integer	Total number of elements
NDOF	Integer	Dimension of problem (3)
XYZ	(3,NNODE)	Coordinates of all nodes
LE	(8,NE)	Element connectivity

95

How to Solve Linear Problem in Nonlinear Code

· Linear matrix solver

$$[K]\{d\} = \{F\} \implies \{f^{\text{int}}\} = \{f^{\text{ext}}\} \implies \{f\} = \{f^{\text{ext}}\} - \{f^{\text{int}}\} = \{0\}$$

- Construct stiffness matrix and force vector
- Use LU decomposition to solve for unknown displacement {d}
- Nonlinear solver (iterative solver)
 - Assume the solution at iteration n is known, and n+1 is unknown

$$\{\mathbf{d}^{n+1}\} = \{\mathbf{d}^n\} + \{\Delta \mathbf{d}\}$$
 For linear problem, $\{\mathbf{d}^n\} = \{\mathbf{0}\}$

$$\{f^{n+1}\} = \{f^n\} + \left[\frac{\partial f}{\partial d}\right] \{\Delta d\} \approx \{0\}$$

$$\implies \{\mathbf{F}\} - [\mathbf{K}]\{\mathbf{d}^{\mathbf{M}}\} - [\mathbf{K}]\{\Delta\mathbf{d}\} = 0$$

$$\implies$$
 [K]{ Δ d} = {F} Only one iteration!!

```
function ELAST3D(ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)
  MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX AND RESIDUAL FORCE FOR
  ELASTIC MATERIAL MODELS
8*****
응응
 global DISPTD FORCE GKF SIGMA
 % Integration points and weights (2-point integration)
 XG=[-0.57735026918963D0, 0.57735026918963D0];
 WGT=[1.00000000000000000, 1.000000000000000];
 % Index for history variables (each integration pt)
 INTN=0;
 %LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F
 for IE=1:NE
   % Nodal coordinates and incremental displacements
   ELXY=XYZ(LE(IE,:),:);
   % Local to global mapping
   IDOF=zeros(1,24);
   for I=1:8
     II = (I-1) * NDOF + 1;
     IDOF(II:II+2) = (LE(IE,I)-1)*NDOF+1: (LE(IE,I)-1)*NDOF+3;
   end
   DSP=DISPTD(IDOF);
   DSP=reshape(DSP, NDOF, 8);
   %LOOP OVER INTEGRATION POINTS
    for LX=1:2, for LY=1:2, for LZ=1:2
     E1=XG(LX); E2=XG(LY); E3=XG(LZ);
     INTN = INTN + 1;
      % Determinant and shape function derivatives
      [~, SHPD, DET] = SHAPEL([E1 E2 E3], ELXY);
      FAC=WGT(LX)*WGT(LY)*WGT(LZ)*DET;
                                                                                    97
```

```
% Strain
       DEPS=DSP*SHPD';
       DDEPS=[DEPS(1,1) DEPS(2,2) DEPS(3,3) ...
               {\tt DEPS}\,(1,2)\,+{\tt DEPS}\,(2,1)\,\,\,{\tt DEPS}\,(2,3)\,+{\tt DEPS}\,(3,2)\,\,\,{\tt DEPS}\,(1,3)\,+{\tt DEPS}\,(3,1)\,]\,\hbox{'};
       % Stress
       STRESS = ETAN*DDEPS;
       % Update stress
       if UPDATE
         SIGMA(:,INTN)=STRESS;
         continue;
       end
       % Add residual force and stiffness matrix
       BM=zeros(6,24);
       for I=1:8
         COL=(I-1)*3+1:(I-1)*3+3;
         BM(:,COL) = [SHPD(1,I) 0]
                                             0:
                                 SHPD(2,I) 0;
                                  0
                                             SHPD(3,I);
                      SHPD(2,I) SHPD(1,I) 0;
                                 SHPD(3, I) SHPD(2, I);
                      SHPD(3,I) 0
                                             SHPD(1, I)];
       end
       % Residual forces
       FORCE(IDOF) = FORCE(IDOF) - FAC*BM'*STRESS;
       % Tangent stiffness
       if LTAN
         EKF = BM'*ETAN*BM;
         GKF(IDOF, IDOF) = GKF(IDOF, IDOF) + FAC*EKF;
    end, end, end, end
end
                                                                                                  98
```

```
function [SF, GDSF, DET] = SHAPEL(XI, ELXY)
% Compute shape function, derivatives, and determinant of hexahedral
XNODE=[-1 1 1 -1 -1 1 1 -1;
       -1 -1 1 1 -1 -1 1;
       -1 -1 -1 -1 1 1 1];
                                  SF(8\times1): shape functions,
 QUAR = 0.125;
 SF=zeros(8,1);
 DSF=zeros(3,8);
                                  GDSF (3\times8): shape functions derivatives
 for I=1:8
   XP = XNODE(1, I);
   YP = XNODE(2, I);
                                  DET: Jacobian of the mapping
   ZP = XNODE(3,I);
   XIO = [1+XI(1)*XP 1+XI(2)*YP 1+XI(3)*ZP];
   SF(I) = QUAR*XIO(1)*XIO(2)*XIO(3);
   DSF(1,I) = QUAR*XP*XI0(2)*XI0(3);
   DSF(2,I) = QUAR*YP*XIO(1)*XIO(3);
   DSF(3,I) = QUAR*ZP*XIO(1)*XIO(2);
 GJ = DSF*ELXY;
 DET = det(GJ);
 GJINV=inv(GJ);
 GDSF=GJINV*DSF;
```

One Element Tension Example

```
x_3
                                                                                     10kN
                                                                         10kN
% One element example
                                                                                10kN
                                                               10kN
% Nodal coordinates
                                                                                         8
XYZ=[0 0 0;1 0 0;1 1 0;0 1 0;0 0 1;1 0 1;1 1 1;0 1 1];
% Element connectivity
                                                               6
LE=[1 2 3 4 5 6 7 8];
                                                                                    7
% External forces [Node, DOF, Value]
EXTFORCE=[5 3 10.0E3; 6 3 10.0E3; 7 3 10.0E3; 8 3 10.0E3];
                                                                                            x_2
                                                                                     4
% Prescribed displacements [Node, DOF, Value]
SDISPT=[1 1 0;1 2 0;1 3 0;2 2 0;2 3 0;3 3 0;4 1 0;4 3 0];
% Material properties
% MID:0(Linear elastic) PROP=[LAMBDA NU]
MID=0;
PROP=[110.747E3 80.1938E3];
% Load increments [Start End Increment InitialFactor FinalFactor]
TIMS=[0.0 1.0 1.0 0.0 1.0]';
% Set program parameters
ITRA=30; ATOL=1.0E5; NTOL=6; TOL=1E-6;
% Calling main function
NOUT = fopen('output.txt','w');
NLFEA(ITRA, TOL, ATOL, NTOL, TIMS, NOUT, MID, PROP, EXTFORCE, SDISPT, XYZ, LE);
fclose(NOUT);
                                                                                              100
```

One Element Output

Command line output

```
Time Time step Iter Residual 1.00000 1.000e+00 2 5.45697e-12
```

Contents in output.txt

TIME = 1.000e+00

Nodal Displacements

Node	U1	U2	U3
1	0.000e+00	0.000e+00	0.000e+00
2	-5.607e-08	0.000e+00	0.000e+00
3	-5.607e-08	-5.607e-08	0.000e+00
4	0.000e+00	-5.607e-08	0.000e+00
5	-5.494e-23	1.830e-23	1.933e-07
6	-5.607e-08	4.061e-23	1.933e-07
7	-5.607e-08	-5.607e-08	1.933e-07
8	-8.032e-23	-5.607e-08	1.933e-07

Element Stress

S11	S22	s33	S12	S23	S13
Element	1				
0.000e+00	1.091e-11	4.000e+04	-2.322e-13	6.633e-13	-3.317e-12
0.000e+00	0.000e+00	4.000e+04	-3.980e-13	1.327e-13	-9.287e-13
-3.638e-12	7.276e-12	4.000e+04	-1.592e-12	-2.123e-12	-3.317e-12
0.000e+00	0.000e+00	4.000e+04	2.653e-13	-2.123e-12	5.307e-13
0.000e+00	0.000e+00	4.000e+04	5.638e-13	3.449e-12	-1.327e-12
0.000e+00	0.000e+00	4.000e+04	-1.194e-12	4.776e-12	1.061e-12
0.000e+00	0.000e+00	4.000e+04	-7.960e-13	2.919e-12	-3.449e-12
3.638e-12	3.638e-12	4.000e+04	-5.307e-13	3.715e-12	1.061e-12
*** Successful end of program ***					