Question Number	Answer		Mark
12(a)	Either		
	Decrease of GPE = gain of KE.	(1)	
	Use of $E_k = \frac{1}{2} m v^2$ and $\Delta E_{grav} = m g \Delta h$	(1)	
	$v = 3.1 (\text{ m s}^{-1})$	(1)	
	Or		
	Use of trigonometry to find parallel component of g and distance along ramp	(1)	
	Use of $v^2 = u^2 + 2 a s$ (or other valid <i>suvat</i> method)	(1)	
	$v = 3.1 (\text{ m s}^{-1})$	(1)	3
	(reverse calculations can score maximum 2 marks)		
	Example of calculation $\frac{1}{2} m v^2 = m g \Delta h$ $\frac{1}{2} v^2 = 9.81 \text{ m s}^{-2} \times 0.5 \text{ m}$ $v = \sqrt{(2 \times 9.81 \text{ m s}^{-2} \times 0.5 \text{ m})} = 3.13 \text{ m s}^{-1}$		
12(b)	Use of Pythagoras' Theorem to calculate distance along the ramp Or		
	Use of trigonometry to find parallel component of g	(1)	
	Use of $s = \frac{1}{2} (u + v) t$ (or other valid <i>suvat</i> method for t_{AB})	(1)	
	Use of $s = u t$	(1)	
	Total time = 1.64 s (show that value gives 1.65 s)	(1)	4
	(may see some MPs for (b) in (a))		
	Example of calculation Distance along ramp = $(\sqrt{(2^2 + 0.5^2)})$ m = 2.06 m 2.06 m = $\frac{1}{2}$ (0 + 3.13) m s ⁻¹ × t_{AB} $t_{AB} = 2 \times 2.06$ m / 3.13 m s ⁻¹ = 1.32 s $t_{BC} = 1$ m / 3.13 m s ⁻¹ = 0.32 s Total time = 1.32 s + 0.32 s = 1.64 s		
	Total for question 12		7