Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 7: Modi di un sistema lineare, risposta libera e forzata (tempo discreto)

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

Nella scorsa lezione

- ▶ Modi elementari e evoluzione libera di un sistema lineare a tempo continuo
 - ▶ Analisi modale di un sistema lineare a tempo continuo
 - ▶ Evoluzione forzata di un sistema lineare a tempo continuo
 - ▶ Matrice di trasferimento e equivalenza algebrica
 - ightharpoonup Addendum: calcolo di e^{Ft} tramite Laplace

In questa lezione

- ▶ Modi elementari e evoluzione libera di un sistema lineare a tempo discreto
 - ▶ Analisi modale di un sistema lineare a tempo discreto
 - ▷ Evoluzione forzata di un sistema lineare a tempo discreto

Soluzioni di un sistema lineare autonomo?

Caso vettoriale $x(t) = y(t) \in \mathbb{R}^n$

$$x(t+1) = Fx(t), x(0) = x_0$$
$$x(t) = F^t x_0$$

Giacomo Baggio

IMC-TdS-1920: Lez. 7

October 22, 2019 5 / 20

Usiamo Jordan!

1.
$$F = TF_JT^{-1} \implies F^t = TF_J^tT^{-1}$$

$$\mathbf{2.} \ F_{J} = \begin{bmatrix} J_{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k}} \end{bmatrix} \implies F_{J}^{t} = \begin{bmatrix} J_{\lambda_{1}}^{t} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{2}}^{t} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k}}^{t} \end{bmatrix}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 7

October 22, 2019 6 / 2

Usiamo Jordan!

$$\mathbf{4.}\ J_{\lambda_{i},j} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{bmatrix} \in \mathbb{R}^{r_{ij} \times r_{ij}} \implies J_{\lambda_{i},j}^{t} = (\lambda_{i}I + N)^{t}, \quad N = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$\Rightarrow J_{\lambda_{i},j}^{t} = \begin{bmatrix} \binom{t}{0}\lambda_{i}^{t} & \binom{t}{1}\lambda_{i}^{t-1} & \binom{t}{2}\lambda_{i}^{t-2} & \cdots & \binom{t}{r_{ij}-1}\lambda_{i}^{t-r_{ij}+1} \\ 0 & \binom{t}{0}\lambda_{i}^{t} & \binom{t}{1}\lambda_{i}^{t} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \binom{t}{2}\lambda_{i}^{t-2} \\ \vdots & \ddots & \ddots & \ddots & \binom{t}{1}\lambda_{i}^{t-1} \\ 0 & \cdots & \cdots & 0 & \binom{t}{0}\lambda_{i}^{t} \end{bmatrix}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 7

October 22, 2019 7 / 20

Usiamo Jordan!

$$\textbf{4.} \ J_{\lambda_i,j} = \begin{bmatrix} \lambda_i & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_i \end{bmatrix} \in \mathbb{R}^{r_{ij} \times r_{ij}} \implies J_{\lambda_i,j}^t = N^t, \quad N = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$\implies J_{\lambda_i,j}^t = \begin{bmatrix} \delta(t) & \delta(t-1) & \delta(t-2) & \cdots & \delta(t-r_{ij}+1) \\ 0 & \delta(t) & \delta(t-1) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \delta(t-2) \\ \vdots & \ddots & \ddots & \ddots & \delta(t-1) \\ 0 & \cdots & \cdots & 0 & \delta(t) \end{bmatrix}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 7

October 22, 2019 8 / 2

Modi elementari

- **1.** $\lambda_i \neq 0$: $\binom{t}{k} \lambda_i^{t-k} \sim t^k \lambda_i^t = t^k e^{t(\ln \lambda_i)}$ (ln(·) = logaritmo naturale complesso)
- **2.** $\lambda_i = 0$: modo elementari si annullano dopo un numero finito di passi!

Non esiste una controparte modale a tempo continuo!!

Giacomo Baggio

IMC-TdS-1920: Lez. 7

October 22, 2019

Evoluzione libera

$$x(t+1) = Fx(t) + G\mu(t), \quad x(0) = x_0$$
$$y(t) = Hx(t) + J\mu(t)$$

$$y(t) = y_{\ell}(t) = HF^{t}x_{0} = \sum_{i,j} t^{j}\lambda_{i}^{t}v_{ij}$$

= combinazione lineare dei modi elementari

Giacomo Baggio IMC-TdS-1920: Lez. 7 October 22, 2019

Carattere dei modi elementari

modo associato a $\lambda_i = \sigma_i + i\omega_i$

Comportamento asintotico

 $F \in \mathbb{R}^{n \times n}$ con autovalori $\{\lambda_i\}_{i=1}^k$

$$|\lambda_i| < 1, \forall i$$
 \iff $F^t \xrightarrow{t \to \infty} 0 \implies y(t) = HF^t x_0 \xrightarrow{t \to \infty} 0$

$$F^t = 0 \text{ per } t \text{ finito se } \lambda_i = 0 \text{ !}$$

$$|\lambda_i| \le 1, \ \forall i \text{ e}$$

 $\nu_i = g_i \text{ se } |\lambda_i| = 1$ \iff $F^t \text{ limitata} \Rightarrow y(t) = HF^t x_0 \text{ limitata}$

$$\exists \lambda_i \text{ tale che } |\lambda_i| > 1$$

o $|\lambda_i| = 1$ e $\nu_i > g_i$ \iff $F^t \text{ non limitata} \Rightarrow y(t) = HF^t x_0$?

IMC-TdS-1920: Lez. 7 Giacomo Baggio October 22, 2019

Giacomo Baggio

IMC-TdS-1920: Lez. 7

October 22, 2019

11 / 20

Evoluzione forzata

$$x(t+1) = Fx(t) + Gu(t), \quad x(0) = x_0$$
$$y(t) = Hx(t) + Ju(t)$$

$$x(t) = x_{\ell}(t) + x_{f}(t),$$
 $x_{\ell}(t) = F^{t}x_{0},$ $x_{f}(t)$??
 $y(t) = y_{\ell}(t) + y_{f}(t),$ $y_{\ell}(t) = HF^{t}x_{0},$ $y_{f}(t)$??

Giacomo Baggio

IMC-TdS-1920: Lez. 7

October 22, 2019

October 22, 2019

Evoluzione forzata

$$x(t+1) = Fx(t) + Gu(t), x(0) = x_0$$

$$y(t) = Hx(t) + Ju(t)$$

$$x(t) = \underbrace{F^t x_0}_{=x_{\ell}(t)} + \underbrace{\sum_{k=0}^{t-1} F^{t-k-1} Gu(k)}_{=x_{\ell}(t)}$$

$$y(t) = \underbrace{HF^t x_0}_{=y_{\ell}(t)} + \underbrace{\sum_{k=0}^{t-1} HF^{t-k-1} Gu(k)}_{=y_{\ell}(t)} + Ju(t)$$

$$y(t) = HF^t G + J\delta(t) = \text{risposta impulsiva}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 7

October 22, 2019

Evoluzione forzata

$$x(t+1) = Fx(t) + Gu(t), \quad x(0) = x_{0}$$

$$y(t) = Hx(t) + Ju(t)$$

$$x(t) = \underbrace{F^{t}x_{0}}_{=x_{\ell}(t)} + \underbrace{\sum_{k=0}^{t-1} F^{t-k-1}Gu(k)}_{=x_{\ell}(t)} = \underbrace{F^{t}x_{0}}_{=x_{\ell}(t)} + \underbrace{\mathcal{R}_{t}u_{t}}_{=x_{\ell}(t)} = \underbrace{u_{t} \triangleq \begin{bmatrix} u(t-1) \\ u(t-2) \\ \vdots \\ u(0) \end{bmatrix}}_{=y_{\ell}(t)}$$

$$y(t) = \underbrace{HF^{t}x_{0}}_{=y_{\ell}(t)} + \underbrace{\sum_{k=0}^{t-1} HF^{t-k-1}Gu(k) + Ju(t)}_{=y_{\ell}(t)} = \underbrace{HF^{t}x_{0}}_{=y_{\ell}(t)} + \underbrace{H\mathcal{R}_{t}u_{t} + Ju(t)}_{=y_{\ell}(t)}$$

 $\mathcal{R}_t \triangleq \left[\begin{array}{c|c} \textit{G} & \textit{FG} & \textit{F}^2\textit{G} \\ \end{array} \right] = \mathsf{matrice} \; \mathsf{di} \; \mathsf{raggiungibilit\`{a}} \; \mathsf{in} \; \; t \; \mathsf{passi}$

Evoluzione forzata (con trasformata Zeta)

$$zX(z) - zx_0 = FX(z) + GU(z)$$

$$V(z) \triangleq \mathcal{Z}[v(t)] = \sum_{t=0}^{\infty} v(t)z^{-t}$$

$$Y(z) = HX(z) + JU(z)$$

$$X(z) = \underbrace{z(zI - F)^{-1}x_0}_{=X_{\ell}(z)} + \underbrace{(zI - F)^{-1}G}_{=X_{f}(z)}$$

$$Y(z) = \underbrace{Hz(zI - F)^{-1}x_0}_{=Y_{\ell}(z)} + \underbrace{[H(zI - F)^{-1}G + J]U(z)}_{=Y_{f}(z)}$$

Giacomo Baggio IMC-TdS-1920: Lez. 7 October 22, 2019

Equivalenze dominio temporale/Zeta

1. $W(z) = \mathcal{Z}[w(t)] = H(zI - F)^{-1}G + J = \text{matrice di trasferimento}$

2. $\mathcal{Z}[F^t] = \mathbf{z}(zI - F)^{-1} = \text{metodo alternativo per calcolare } F^t !!$

Giacomo Baggio IMC-TdS-1920: Lez. 7 October 22, 2019

Struttura della matrice di trasferimento

 $T \in \mathbb{R}^{n \times n} = \mathsf{base} \; \mathsf{di} \; \mathsf{Jordan}$

$$(F, G, H, J) \xrightarrow{z=T^{-1}x} (F_J = T^{-1}FT, G_J = T^{-1}G, H_J = HT, J_J = J)$$

$$W(z) = W_J(z) = H_J(zI - F_J)^{-1}G_J + J_J$$

Giacomo Baggio IMC-TdS-1920: Lez. 7 October 22, 2019 18 / 20

Struttura della matrice di trasferimento

$$F_{J} = \begin{bmatrix} \frac{J_{\lambda_{1},1}}{0} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{1},2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k},\ell_{k}} \end{bmatrix}, \quad G_{J} = \begin{bmatrix} \frac{G_{\lambda_{1},1}}{G_{\lambda_{1},2}} \\ \vdots \\ G_{\lambda_{k},\ell_{k}} \end{bmatrix}, \quad H_{J} = \begin{bmatrix} H_{\lambda_{1},1} \mid H_{\lambda_{1},2} \mid \cdots \mid H_{\lambda_{k},\ell_{k}} \end{bmatrix}$$

$$W(z) = H_{\lambda_1,1}(zI - J_{\lambda_1,1})^{-1}G_{\lambda_1,1} + H_{\lambda_1,2}(zI - J_{\lambda_1,2})^{-1}G_{\lambda_1,2} + \dots + H_{\lambda_k,\ell_k}(zI - J_{\lambda_k,\ell_k})^{-1}G_{\lambda_k,\ell_k} + J$$

$$= W_{\lambda_1,1}(z) + W_{\lambda_1,2}(z) + \dots + W_{\lambda_k,\ell_k}(z) + J$$

Struttura della matrice di trasferimento

$$\text{miniblocco } J_{\lambda_i,j} \in \mathbb{R}^{r_{ij} \times r_{ij}} \implies W_{\lambda_i,j}(z) = \frac{A_1}{z - \lambda_i} + \frac{A_2}{(z - \lambda_i)^2} + \dots + \frac{A_{r_{ij}}}{(z - \lambda_i)^{r_{ij}}}$$

$$y_f(t) = \mathcal{Z}^{-1} \left[\sum_{i,j} W_{\lambda_i,j}(z) U(z) + JU(z) \right]$$

Giacomo Baggio IMC-TdS-1920: Lez. 7 October 22, 2019 19 / 20 Giacomo Baggio IMC-TdS-1920: Lez. 7 October 22, 2019 20 / 2