Dr. Andrey Soldatenkov

Übungen zur Einführung in die komplexe Analysis – Blatt 8

Aufgabe 49. (Meromorphe Funktion, 2 Punkte)

Sei $U \subset \mathbb{C}$ offen und $f: U \to \widehat{\mathbb{C}}$ stetig, so dass $f^{-1}(\infty) \subset U$ diskret ist und f auf $U \setminus f^{-1}(\infty)$ holomorph. Man beweise, dass dann f meromorph ist.

Aufgabe 50. (Integrale und Residuen, 3+3 Punkte) Man beweise folgende Gleichungen:

1.
$$\int_0^\infty \frac{1}{1+x^n} dx = \frac{\pi/n}{\sin(\pi/n)}$$

2.
$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx = \frac{\pi\sqrt{2}}{2}$$

Aufgabe 51. (Satz von Rouché, 2+3 Punkte)

Man beweise folgende Aussagen:

- 1. Alle Nullstellen des Polynoms $f(z) = z^7 5z^3 + 12$ liegen im Kreisring $D_{1,2}(0)$.
- 2. Sei $U \subset \mathbb{C}$ offen mit $\overline{D}_1(0) \subset U$ und $f: U \to \mathbb{C}$ eine nichtkonstante, holomorphe Funktion. Falls |f(z)| = 1 für alle z mit |z| = 1, dann gilt $D_1(0) \subset f(D_1(0))$. Hinweis: Man zeige, dass für beliebige $w_1, w_2 \in D_1(0)$: $w_1 \in f(D_1(0)) \Leftrightarrow w_2 \in f(D_1(0))$.

Aufgabe 52. (Produktformel, 3 Punkte)

Man finde eine holomorphe Funktion auf $\mathbb{C} \setminus \{0\}$, deren Residuum (in 0) gegeben ist durch

$$\sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}.$$

Aufgabe 53. (Möbiustransformationen, 3 Punkte)

Sei

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

eine Matrix mit $a, b, c, d \in \mathbb{R}$ und $\det(A) = ad - bc = 1$. Sei $f_A(z) = \frac{az+b}{cz+d}$. Man beweise, dass f_A ein Automorphismus von $\mathbb{H} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$ ist.

Aufgabe 54. (Aut(\mathbb{H}), 4 Punkte)

Sei $\mathrm{SL}_2(\mathbb{R})$ die Gruppe aller reeller 2×2 Matrizen A mit $\det(A) = 1$. Es folgt aus Aufgabe 53, dass $A \mapsto f_A$ ein Gruppenhomomorphismus $\varphi \colon \mathrm{SL}_2(\mathbb{R}) \to \mathrm{Aut}(\mathbb{H})$ ist. Man beschreibe den Kern von φ und beweise, dass φ surjektiv ist. *Hinweis*: Man verwende das Lemma von Schwarz (Aufgabe 30, Blatt 5).