### **Modelos Lineares I**

Regressão Linear Simples (RLS): Bandas de confiança e predição

(10<sup>a</sup>, 11<sup>a</sup> e 12<sup>a</sup> Aulas)



Professor: Dr. José Rodrigo de Moraes
Universidade Federal Fluminense (UFF)
Departamento de Estatística (GET)

#### Inferência para reta de regressão:

#### Introdução:

- □ Um dos principais objetivos na análise de regressão linear é estimar a média da distribuição de Y, ou seja, E(Y), para um dado valor de X, digamos X<sub>i</sub>. O valor médio da variável resposta Y dado X<sub>i</sub>, será denotado por E(Y/X<sub>i</sub>), ou alternativamente, por E(Y<sub>i</sub>).
- $\square$  O estimador de  $E(Y/X_i)=E(Y_i)$  é dado por:

$$\hat{\mathbf{Y}}_{i} = \hat{\mathbf{\beta}}_{0} + \hat{\mathbf{\beta}}_{1} \mathbf{X}_{i}$$

2

#### Inferência para reta de regressão:

#### Exemplo 1:

□ Exemplo da concentração da substância (X) e ganho de peso (Y):



**Pergunta**: Qual o ganho médio de peso estimado para bois que receberam uma concentração da substância de:

a) 4 mg/l ?

b) 5 mg/l?

c) 8 mg/l ?

#### Qual a média e a variância de Ŷ,?

$$E(\hat{Y}_i) = E(\hat{\beta}_0 + \hat{\beta}_1 X_i) = \beta_0 + \beta_1 X_i$$

$$VAR(\hat{Y}_i) = E[\hat{\beta}_0 + \hat{\beta}_1 X_i - (\beta_0 + \beta_1 X_i)]^2 = E[(\hat{\beta}_0 - \beta_0) + (\hat{\beta}_1 - \beta_1) X_i]^2$$

$$VAR(\hat{Y}_{i}) = VAR(\hat{\beta}_{0}) + VAR(\hat{\beta}_{1})X_{i}^{2} + 2X_{i}COV(\hat{\beta}_{0},\hat{\beta}_{1})$$

$$VAR\left(\hat{Y}_{i}\right) = \sigma^{2}\left(\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n}\left(X_{i} - \overline{X}\right)^{2}}\right) + \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i} - \overline{X}\right)^{2}} X_{0}^{2} - 2 X_{i} \frac{\overline{X}\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i} - \overline{X}\right)^{2}}$$

$$VAR(\hat{Y}_i) = \sigma^2 \left( \frac{1}{n} + \frac{\overline{X}^2 + X_i^2 - 2X_i \overline{X}}{\sum_{i=1}^n (X_i - \overline{X})^2} \right) = \sigma^2 \left( \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right)$$

#### Observações:

✓ O estimador  $\hat{Y}_i$  de E(Y/X<sub>i</sub>) é uma função linear das v.a`s Y<sub>i</sub>`s e, portanto, tem distribuição normal com os parâmetros:

$$\hat{Y}_i \sim N \left[ \beta_0 + \beta_1 X_i, \quad \sigma^2 \left[ \frac{1}{n} + \frac{\left( X_i - \overline{X} \right)^2}{\sum_{i=1}^n \left( X_i - \overline{X} \right)^2} \right] \right]$$

 $\checkmark \hat{\gamma}_i$  é um estimador não tendencioso de E(Y/X<sub>i</sub>)=  $\beta_0$ + $\beta_1$ X<sub>i</sub>;

✓ Demonstra-se que:  $E(Y/X_i) = E(Y_i) = E(\hat{Y}/X_i) = E(\hat{Y}_i)$ .

#### Intervalo de confiança para E(Y/X<sub>i</sub>):

Dado um valor X<sub>i</sub>, pode-se calcular o intervalo de confiança para o valor médio de Y, denotado por E(Y/X<sub>i</sub>), ao nível de confiança 100(1-α)%, por meio da seguinte estatística:

$$T = \frac{\hat{Y}_i - E(Y/X_i)}{\hat{\sigma}\sqrt{\frac{1}{n} + \frac{\left(X_i - \overline{X}\right)^2}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}}} \sim T - Student \ com \ (n-2) \ g.l`s$$

onde:

$$\hat{\sigma}^2 = QMRes = \frac{\sum_{i=1}^{n} e_i^2}{n-2}$$



Exemplo 1: Dados sobre a concentração da substância X (em mg/l) e ganho de peso Y (em kg) após trinta dias, de n=30 bovinos: Ganho de peso Conc. Subst Conc. Subst. Ganho de peso Boi Boi (mg/l) (kg) (mg/l) (kg) 9,40 17 18 19 11,40 12,00 12,50 15,20 3,70 5.50 1.00 6.00 9,00 16,00 14,20 11,00 12,50 7,00 7,50 2,00 20 21 22 23 24 25 26 27 28 29 30 16,50 6 7 2.25 17.00 2,91 10,40 8,00 14,50 11,50 12,50 2,75 8,25 16,00 3.00 9.40 17,00 9,43 11 12 3,75 9,45 14,50 17,00 8,94 9,20 15,00 19,00 7,00 4,75 14,80 14,00 16,00 <sub>8</sub> 17,50 8,00

| Descriptive Statistics |                           |                  |            |  |  |  |
|------------------------|---------------------------|------------------|------------|--|--|--|
|                        | Mean                      | Std. Deviation   | N          |  |  |  |
| Y_ganho_pes            | o 14,3717                 | 2,36708          | 30         |  |  |  |
| X_conc.subs            | 5,9177                    | 2,83677          | 30         |  |  |  |
| Pearson Correlation    | Y ganho pe                |                  |            |  |  |  |
|                        |                           | Y_ganho_<br>peso | X_conc.sub |  |  |  |
| i carson contenation   | X conc.subs               |                  |            |  |  |  |
|                        |                           |                  |            |  |  |  |
| Sig. (1-tailed)        | <br>Y_ganho_pe            | so .             | ,00        |  |  |  |
| Sig. (1-tailed)        | Y_ganho_pe<br>X_conc.subs |                  |            |  |  |  |
| Sig. (1-tailed)        |                           | ,000             | )          |  |  |  |

|     |                                                            |                                  | Mod               | lel Sumn                 | nary        |                 |         |                  |               |         |         |
|-----|------------------------------------------------------------|----------------------------------|-------------------|--------------------------|-------------|-----------------|---------|------------------|---------------|---------|---------|
|     | Mode                                                       | ı R                              | R Squa            |                          | djus<br>Squ | ted R<br>are    |         | Error of stimate |               |         |         |
|     | 1                                                          | ,877                             | a ,7              | 70                       | ,761 1,15   |                 | 1,15619 | 7                |               |         |         |
|     | a. Predictors: (Constant), X_conc.subs  ANOVA <sup>b</sup> |                                  |                   |                          |             |                 |         |                  |               |         |         |
|     | Model                                                      |                                  | Sum of<br>Squares | df                       |             | Mean Sq         | uare    | F                | Sig           | g.      |         |
|     | 1 F                                                        | Regression                       | 125,05            | 9                        | 1           | 125             | ,059    | 93,554           | ,0            | 00ª     |         |
|     | _ I '                                                      | Residual                         | 37,42             |                          | 28          | 1               | ,337    |                  |               |         |         |
|     |                                                            | otal                             | 162,48            | 8                        | 29          |                 |         |                  |               |         |         |
|     |                                                            | lictors: (Const<br>endent Variab |                   |                          |             |                 |         |                  |               |         |         |
|     |                                                            |                                  |                   | Coefficie                | ntsª        |                 |         |                  |               |         |         |
|     |                                                            | Unstandardize                    | d Coefficients    | Standardi:<br>Coefficier | zed<br>nts  |                 |         | 95,0% C          | onfiden       | ce Inte | rval fo |
| del | 10 1 11                                                    | B                                | Std. Error        | Beta                     | _           | t               | Sig.    | Lower B          |               | Uppe    | er Bou  |
|     | (Constant)<br>X conc.subs                                  | 10,040<br>.732                   | ,495<br>.076      | l                        | 877         | 20,277<br>9.672 | ,000    | 1 '              | 9,025<br>.577 |         | 11,0    |

**Exemplo 1 – a)** Considerando os dados dos n=30 bovinos, obtenha uma estimativa do valor médio de Y dado que X<sub>i</sub>=4 mg/l, e obtenha um IC de 95% para E(Y/X<sub>i</sub>=4).

**Exemplo 1 – b)** Considerando os dados dos n=30 bovinos, obtenha uma estimativa do valor médio de Y dado que  $X_i$ =5 mg/l, e obtenha um IC de 95% para E(Y/ $X_i$ =5).

Resp.: [13,245 kg;14,155 kg]  $\rightarrow$  A = 0,91kg

Prof.: José Rodrigo de Moraes: Estatístico (ENCE), Mestre em Estatística Social (ENCE) e Doutor em Saúde Coletiva (IESC/UFRJ)

Resp.:  $[12,443 \text{ kg};13,493 \text{ kg}] \rightarrow A = 1,05 \text{ kg}$ 

**Exemplo 1 – c)** Considerando os dados dos n=30 bovinos, obtenha uma estimativa do valor médio de Y dado que  $X_i$ =8 mg/l, e obtenha um IC de 95% para  $E(Y/X_i$ =8).

Resp.:  $[15,356 \text{ kg}; 16,436 \text{ kg}] \rightarrow A = 1,08 \text{ kg}$ 

## Intervalo de Confiança para $E(Y/X_i)$ – Bandas de confiança:

- ☐ Calculando-se intervalos de confiança para E(Y/X₁) considerando diferentes valores de X, pode-se representar no gráfico de dispersão uma região em torno da reta de regressão estimada, indicando os limites superiores e inferiores desses intervalos.
- ☐ Essa região recebe o nome de *bandas de confiança*.

14

# Intervalos de confiança para E(Y/X<sub>i</sub>) (Bandas de confiança)

Exemplo 1: Para ilustrar o cálculo das bandas de confiança consideraremos os dados da concentração de substância (X) e ganho de peso (Y) dos n=30 bovinos.

15



E goal of the contraction of the

Predição de Y dado um novo valor de X:

#### Introdução:

- ☐ Uma importante aplicação da análise de regressão linear é a predição de um <u>valor individual da variável resposta Y</u> dado um valor de X<sub>i</sub> de interesse, sendo denotado por Y/X<sub>i</sub>, ou alternativamente, por Y<sub>i</sub>.
- $\square$  Para obter um IC para um valor individual de Y, dado um X<sub>i</sub>, basta determinar a distribuição da diferença  $Y_i = \hat{Y}_j$ .
- O valor médio de Y dado o valor X<sub>i</sub>, será denotado por E(Y/X<sub>i</sub>), ou alternativamente, por E(Y<sub>i</sub>).

Inferência para reta de regressão:

#### Exemplo 2:

□ Exemplo da concentração da substância (X) e ganho de peso (Y):



Pergunta: Qual o ganho de peso estimado para um boi que recebeu uma concentração da substância de:

a) 4 mg/l ?

b) 10 mg/l?

18

#### Qual a média e a variância de $\mathbf{Y}_{_{\mathrm{I}}}$ - $\hat{\mathbf{Y}}_{_{\mathrm{I}}}$ ?

Supondo que a relação linear permanece quando observamos um <u>novo valor de X</u>, temos que:

(1) 
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

(2) 
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

Subtraindo-se as equações, obtém-se: (3)= (1) - (2):

(3) 
$$Y_i - \hat{Y}_i = \beta_0 + \beta_1 X_i + \epsilon_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

(3) 
$$Y_i - \hat{Y}_i = (\beta_0 - \hat{\beta}_0) + (\beta_1 - \hat{\beta}_1) X_i + \varepsilon_i$$

19

#### Qual a média e a variância de $\gamma \, {}_{\mbox{-}} \hat{\gamma}_{_{\mbox{\tiny i}}}$ ? (continuação)

$$\mathsf{E}\big(Y_i - \hat{Y}_i\big) = 0 \quad \rightarrow \quad \mathsf{E}\big(\hat{Y}_i\big) = \mathsf{E}\big(\hat{\beta}_0 + \hat{\beta}_1 X_i\big) = \beta_0 + \beta_1 X_i = \mathsf{E}(Y_i)$$

$$VAR(Y_i - \hat{Y}_i) = VAR(Y_i) + VAR(\hat{Y}_i)$$

$$VAR(Y_i - \hat{Y}_i) = \sigma^2 + \sigma^2 \left( \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2} \right)$$

$$VAR(Y_i - \hat{Y}_i) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}\right)$$

20

#### Observações:

 $\square$  A estatística  $Y_i - \hat{Y}_i$  tem distribuição normal com os parâmetros:

$$Y_i - \hat{Y}_i \sim N \left[ 0, \sigma^2 \left( 1 + \frac{1}{n} + \frac{\left( X_i - \overline{X} \right)^2}{\sum_{i=1}^n \left( X_i - \overline{X} \right)^2} \right) \right]$$

 $\begin{tabular}{ll} $\square$ $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i $ tamb\'em \'e um estimador não tendencioso de \\ $E(Y/X_i) = E(Y_i), $ dado um novo valor de $X$. \end{tabular}$ 

21

#### Intervalo de predição para Y<sub>i</sub>:

Dado o valor X<sub>i</sub>, pode-se calcular o intervalo de predição para o <u>valor individual de Y</u>, ao nível de confiança de 100(1-α)%, por meio da seguinte estatística:

$$T = \frac{Y_i - \hat{Y}_i}{\hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{\left(X_i - \overline{X}\right)^2}{\sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2}}} \ \sim \ T - Student \ com \ (n-2) \ g.l`s$$

onde:

$$\hat{\sigma}^2 = QMRes = \frac{\sum_{i=1}^{n} e_i^2}{n-2}$$

22

#### Intervalo de predição para Yi:

Portanto o intervalo de predição para o <u>valor individual de</u> <u>Y</u>, dado um X<sub>i</sub>, ao nível de confiança de 100(1-α)%, é obtido por:



**Exemplo 2 – a)** Considerando o exemplo dos n=30 bovinos, obtenha uma predição de Y para um novo valor de X, digamos X<sub>i</sub>=4 mg/l, e construa um intervalo de predição de 95% para o valor de Y/X<sub>i</sub>=4.

Resp.: 12,968 kg ; [10,543 kg;15,393 kg]

24

Exemplo 2 - b) Considerando o exemplo dos n=30 bovinos, obtenha uma predição de Y para um novo valor de X, digamos X<sub>i</sub>=10 mg/l, e construa um intervalo de predição de 95% para o valor de Y/X<sub>i</sub>=10.

Resp.: 17,36 kg ; [14,871 kg;19,849 kg]

#### Intervalos de predição para Y/X, - Bandas de predição:

- ☐ Se calcularmos intervalos de predição para Y considerando diferentes valores de Xi, pode-se representar no gráfico de dispersão uma região, delimitada pelos limites superiores e inferiores desses intervalos.
- ☐ Essa região recebe o nome de *bandas de predição*.

Figura 2: Gráfico de dispersão entre a concentração da substância (X) e o ganho de peso (Y), incluindo o modelo de regressão ajustado e as bandas de predição.



Figura 3: Gráfico de dispersão entre a concentração da substância (X) e o ganho de peso (Y), incluindo o modelo de regressão ajustado e as bandas de confiança e predição.



#### Bandas de confiança e predição:

Tamanho da amostra: n ↑ IC ↓

Variância de Y:  $\hat{\sigma}^2 \downarrow IC \downarrow$ 

E quanto ao desvio de X<sub>i</sub> em relação a sua média ?

Aula prática - Exercício 1: Um estudo foi desenvolvido com objetivo de avaliar o efeito da idade no tempo de reação a um certo estímulo.

Os dados referentes as essas duas variáveis para uma amostra de n=20 indivíduos se encontram na tabela 1 a seguir.

- a) Escreva a equação do modelo, descrevendo os seus termos e variáveis no contexto do problema.
- b) Ajuste o modelo pelo método de mínimos quadrados (MQ) e interprete as estimativas dos parâmetros e o coeficiente de determinação do modelo (contexto).
- c) Estime o tempo médio de reação para pessoas de 30 anos de idade, e construa o seu respectivo IC de 95%. E para o grupo de 28 anos?

#### Aula prática - Exercício 1 (continuação):

- d) Estime o tempo de reação de uma pessoa de 30 anos de idade, e construa o seu respectivo IC de 95%. E para uma pessoa de 28 anos?
- e) Obtenha os intervalos de confiança e predição ( $usando\ o\ R\ e\ o\ SPSS$ ).
- f) Construa um gráfico de dispersão para representar as bandas de confiança e predição, incluindo os dados observados e o modelo de regressão linear ajustado (*usando o R e o SPSS*).

| Aluno | Idade (X) | Tempo de reação (Y) |                                    |
|-------|-----------|---------------------|------------------------------------|
| 1     | 20        | 96                  |                                    |
| 2 3   | 20        | 92                  |                                    |
| 3     | 20        | 106                 |                                    |
| 4     | 20        | 100                 |                                    |
| 5     | 25        | 98                  |                                    |
| 6     | 25        | 104                 |                                    |
| 7     | 25        | 110                 |                                    |
| 8     | 25        | 101                 | $\sum_{n=1}^{\infty} X^2 - 19.000$ |
| 9     | 30        | 116                 | $\sum_{i=1}^{n} X_i^2 = 19.000$    |
| 10    | 30        | 106                 |                                    |
| 11    | 30        | 109                 | T *** ***                          |
| 12    | 30        | 100                 | $\sum_{i=1}^{n} Y_i^2 = 232.498$   |
| 13    | 35        | 112                 | <i>t</i> =1                        |
| 14    | 35        | 105                 | п                                  |
| 15    | 35        | 118                 | $\sum_{i=1}^{m} X_i Y_i = 65.400$  |
| 16    | 35        | 108                 | i=1                                |
| 17    | 40        | 113                 |                                    |
| 18    | 40        | 112                 |                                    |
| 19    | 40        | 127                 |                                    |
| 20    | 40        | 117                 | 32                                 |
| Total | 600       | 2.150               |                                    |

#### Considerações finais:



- Ressalta-se que os IC's são mais informativos que as estimativas pontuais;
- Na análise de regressão se deseja prever valores de Y em situações em que o valor de X está fora do intervalo de valores efetivamente observados. Tais previsões (extrapolações), são muito menos confiáveis do que previsões baseadas em valores de X contidos no intervalo de valores previamente observados.

33





- Se repetirmos o cálculo do IC de E(Y) para diferentes valores  $X_i$  obtemos as chamadas bandas de confiança.
- Se repetirmos o cálculo do IC de Y para diferentes valores de X obtemos as chamadas bandas de predição.
- As estimativas pontuais são as mesmas para um mesmo valor de X, mas não os IC's.

34