Linkable Ring Signature Algorithm

Reference: "Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups" by Liu, Wei et al. [section 4.1 and 4.2]

June 25, 2012

Signature Generation 1

Let $G = \langle g \rangle$ be a group of large prime order (preferably safeprime) q. Let $H_1 : \{0,1\}^* \to \mathbb{Z}_q$ and $H_2 : \{0,1\}^* \to G$ be independent hash functions. Each user i $\{i = 1, ..., n\}$ has a distinct public key y_i and a private key x_i such that $y_i = g^{x_i}$. Let $L = \{y_1, ..., y_n\}$ be the list of n public keys.

Input: $m \in \{0,1\}^*$, list of public keys $L = \{y_1, ... y_n\}$, private key x_{π} corresponding to $y_{\pi} \ 1 \le \pi \le n$.

- 1: Compute $h = H_2(L)$ and $\tilde{y} = h^{x_{\pi}}$.
- 2: Pick $u \epsilon_R \mathbb{Z}_q$ and compute $c_{i+1} = H_1(L, \tilde{y}, m, g^u, h^u)$.
- 3: For $i = \pi + 1, ..., 1, ..., \pi 1$ pick $s_i \epsilon_R \mathbb{Z}_q$ and compute $c_{i+1} = H_1(L, \tilde{y}, m, g^{s_i} y_i^{c_i}, h^{s_i} \tilde{y}^{c_i})$
- 4: Compute $s_{\pi} = u x_{\pi} c_{\pi} modq$

The signature is $\sigma_L(m) = (c_1, s_1, ..., s_n, \tilde{y}).$

Signature Verification

Input: $\sigma_L(m) = (c_1, s_1, ..., s_n, \tilde{y})$ and list of public keys $L = \{y_1, ..., y_n\}$.

- 1: Compute $h=H_2(L)$ and for i=1,...,n, compute $z_i'=g^{s_i}y_i^{c_i}$ and $z_i''=h^{s_i}\tilde{y}^{c_i}$ and then $c_{i+1}=H_1(L,\tilde{y},m,z_i',z_i'')$ if $i\neq n$.
- 2: Check $c_1 \stackrel{?}{=} H_1(L, \tilde{y}, m, z'_n, z''_n)$. If yes, accept signature else reject.

Linkability Testing

Given: Two signatures $\sigma'_L(m')=(c'_1,s'_1,...,s'_n,\tilde{y}')$ and $\sigma''_L(m'')=(c''_1,s''_1,...,s''_n,\tilde{y}'')$ corresponding to messages

- 1: Verify signatures : $\sigma'_L(m')$ and $\sigma L''(m"")$
- 2: Check if $\tilde{y}' = \tilde{y}''$. If so, signatures are created by the same signer. Otherwise, signatures are generated by different signers.