18MAB302T: Discrete Mathematics for Engineers

Unit – II

1. An ordered arrangement of r elements of a set containing n distinct elements is called

c) an n-permutation of r elements

a) n-factorization

	b) r- factorization d) an r-permutation of n elements
2.	The value of $p(n, r) = \underline{\hspace{1cm}}$
	$\frac{r!}{(r-n)!} \qquad \frac{r!}{(n-r)!} \qquad \frac{n!}{(n-r)!} \qquad \frac{n!}{(n-r)!}$
	a) $(r-n)!$ b) $(n-r)!$ c) $(n-r)!$ d) $(n+r)!$
3.	The value of $p(n, n) = \underline{\hspace{1cm}}$
	r!
	a) $n!$ b) $\frac{r!}{(n-r)!}$ c) $(n+1)!$ d) $\frac{n!}{(n+r)!}$
4.	When repetition of n elements obtained in a set is permitted in r – permutations, then the number
	of r – permutations is
	a) $\mathbf{r}^{\mathbf{r}}$ b) $\mathbf{r}^{\mathbf{n}}$ c) $\mathbf{n}^{\mathbf{n}}$
5.	The value of $C(n, r) = \underline{\hspace{1cm}}$
	r! $n!$ $n!$
	$\frac{r!}{(r-n)!} \frac{r!}{(n-r)!} \frac{n!}{r!(n-r)!} \frac{n!}{d} \frac{n!}{(n+r)!}$
6.	The value of $C(n, 0) = \underline{\hspace{1cm}}$
	r! $n!$
	a) $\frac{r!}{(r-n)!}$ b) 1 c) $\frac{n!}{(n-r)!}$ d) 0
7.	If n pigeons are accommodate in m pigen-holes and $n > m$, then at least one pigeonhole will
	contain
	a) two or more pigens c) two or three pigens
	c) only three pigens d) only two pigens

8.	Assuming that repetitions are not permitted, how many four - digit numbers can be form the												
	six digits 1, 2, 3, 5, 7, 8?												
	a)	120	b) 360	c) 30	00	d) 400							
9.	Wl	What is the number of arrangements of all the six letters in the word PEPPER?											
	a)	60 t	c) 32	20 d) 70)								
10	As	suming that	repetitions are n	ot permitted, how	many of thes	e numbers are less than 4000,							
	fro	m the six dig	its 1, 2, 3, 5, 7, 8	3?									
	a)	180	b) 360	c) 30	00	d) 400							
11	In	how many w	ays can 6 boys a	nd 4 girls sit in a	row?								
	a)	10!	b) 9!	c) 2!		d) 1!							
12	Fre	om a club cor	nsisting of 6 me	n and 7 women, in	n how many w	ays can we select a committee							
	12. From a club consisting of 6 men and 7 women, in how many ways can we select a committee of 3 men and 4 women?												
	a)	100ways	b) 720 wa	c) 36	60 ways	d) 700 ways							
13	Fre	om a club cor	nsisting of 6 me	n and 7 women, in	n how many w	ays can we select a committee							
	of	4 persons wh	ich has at least o	one woman?									
	b)	100ways	b) 720 wa	c) 36	60 ways	d) 700 ways							
14	If A	A and B are f	inite subsets of a	finite Universal	set U, then AU	J B =							
	 4. If A and B are finite subsets of a finite Universal set U, then AUB = a) A + B + A ∩ B c) A + B - A ∩ B 												
	b) $ A + B - A \cup B $ d) $ A - B + A \cap B $												
15	Но	w many pern	nutations are the	re for the 8 letters	a, b, c, d, e, f,	g, h?							
	a)	256	b) 240	c) 52	26	d) 625							
16	. Th	ere are 3 piles	s of identical red	, blue and green b	alls, where eac	h pile contains atleast 10 balls.							
	In	how many w	ays can 10 balls	be selected if the	e is no restrict	ion?							
	a)	20	b) 60	c) 60	ó	d) 10							
17	Ifa	a/b and a/c, th	nen										
	a)	a/(b-c)	b) a/(b+c	c) b/	(a+c)	d) c/(b+c)							
18	. A _]	positive integ	er > 1 and is not	prime is called _									
	a)	composite	b) decom	posite c) no	on-composite	d) None							
19	. Ev	ery integer n	> 1 can be writt	en uniquely as a p	roduct of	-							
	a) permutation c) Prime number												
	b)	factorial	d)	composite									
20	20. If n > 1 is a composite integer and p is a prime factor of n, then												

a) $P \ge \sqrt{n}$	b) $P < \sqrt{n}$	c) $P > \sqrt{n}$	d) $P \leq \sqrt{n}$							
21. The number of prin	ne numbers is									
a) indefinite	b) finite	c) infinite	d) un-finite							
22. If a, b are any inte	egers, which are	not simultaneously zero, and	l k is a positive integer, then							
a) $gcd(ka, kb) = 1$	k gcd(a, b)	c) $gcd(ka, kb) = gcd(a, b)$								
b) $gcd(a, kb) = k gcd(a, b)$ d) $gcd(a, b) = k gcd(a, b)$										
23. If a and b are two p	oositive integers, t	then $gcd(a, b)$. $lcm(a, b) =$	_							
a) 1	b) a	c) b	d) ab							
24. Find the prime fact	corization of 10!									
a) $2^8 \cdot 3^4 \cdot 5^2 \cdot 7$		c) $2^8 cdot 3^4 cdot 5^2$								
b) $3^4 cdot 5^2 cdot 7$		d) 3 ⁴ . 5 ² . 7								
25. LCM (24, 30) =										
a) 6	b) 24	c) 120	d) 30							
26. If $gcd(a, b) = 1$, th	en for any integer	c, gcd(ac, b) =								
a) lcm (a, b)	b) gcd (c , b)	c) gcd(a, b)	d) lcm(c, b)							
27. How many positive	e integers n can be	formed using the digits 3, 4,	4, 5, 5, 6, 7, if n has to exceed							
50,00,000?										
a) 700	b) 720	c) 420	d) 2520							
28. In how many ways	can 2 letters be s	elected from the set {a,b,c,d}	when repetition of the letters							
is allowed if the or	der of the letters r	natter?								
a) 8	b) 4	c) 16	d) 2							
29. In any group of six	people, how man	y people must be mutual frien	nds or how many people must							
be mutual strangers										
a) 3 mutual friend	ls	c) 3 mutual friends and 3	mutual strangers							
b) 3 mutual strang	gers	d) 1 mutual friends and 2 m	utual strangers							
30. In how many differ	rent ways can the	letters in the word MISSISSI	IPPI be arranged if there is no							
restriction?										
a) 46350	b) 24	c) 36540	d) 34650							
31. Find integers m and	d n such that 2884	14m + 15712n = 4.								
a) -1693, 3108	b) -3108,2091	c) -1963,2345	d) 1693,1234							

32. Let a, b, c Z, the	set of integers, if a/b	and a/c then									
a) $a/(b-c)$	$\mathbf{b)} \ \mathbf{a}/(\mathbf{a} + \mathbf{c})$	c) $b/(a+c)$	d)(b+c)/a								
33. Find the prime factorization of 45,500.											
a) 2².5³.7.13	b) $2^3.5^2.7.13$	c) $2.5.7^3.13^2$	d) $5.7^3.3^2$								
34. Using prime factorization, find the gcd of 337500, 21600.											

b) 2100 35. Using prime factorization, find the lcm of 337500, 21600.

b) 2700000 a) 2700 c) 33500 d) 337500

36. If we select 10 points in the interior of an equilateral triangle of side 1 then there must be atleast two points whose distances apart is

c) 3375

d) 2·3²·5²

a) less than 1/2

b) less than 1/3

c) greater than 1/2

d) greater than 1/3

Answers:

a) **2700**

1	d	2	c	3	a	4	d	5	c	6	b	7	a	8	b	9	a	10	a
11	a	12	d	13	d	14	c	15	a	16	С	17	b	18	a	19	c	20	d
21	c	22	a	23	d	24	a	25	c	26	b	27	b	28	c	29	c	30	d
31	a	32	b	33	a	34	a	35	b	36	b								