Assignment-1

Distortion and Correction

Radial Distortion

- Optic lens cause distortion in imaging system.
- Distortion can be irregular
- Radially symmetric distortions are the most common.

Radial distortion. (a) Ideal image with no distortion, (b) Barrel Distortion, (c) Pincushion Distortion.

Types of Radial Distortion

- Optic lens cause distortion in imaging system.
- Distortion can be irregular
- Radially symmetric distortions are the most common.

Radial distortion. (a) Ideal image with no distortion, (b) Barrel Distortion, (c) Pincushion Distortion.

Barrel Distortion

- Geometric transformation where coordinates are mapped to points closer to the center (optic center, lens center)
- Points farther from the center undergo larger distortion, and are displaced more from their original position

Barrel Distortion

- Straight lines at image center, remain straight.
- Straight lines away from the center are bent.
- Circle concentric to the center remains a circle but reduces in radius.

Assignment Objectives

Understand image distortion

- 1. Distortion
- 2. Naïve Image Correction
- 3. Correction with Interpolation
 - 1. Nearest neighbour interpolation
 - 2. Bilinear interpolation

Assignment Objectives

Understand image distortion

1. Distortion

Given a normal image, we apply distortion.

2. Naïve Image Correction:

Given a distorted image, we apply correction to remove distortion

3. Correction with Interpolation

Given a distorted image, we apply correction using interpolation (Nearest neighbour interpolation, Bilinear interpolation)

Simplified Distortion Functions

Assuming the origin (0) for the image is at the center.

Simplified Distortion Functions

Assuming the origin (**0**) for the image is at the center.

A point (x, y) in the original image, when distorted is mapped to coordinate (x, y), using the function f

$$f(x^{\hat{}}, y^{\hat{}}) = f(x, y) = (\frac{1}{1 + kr}x, \frac{1}{1 + kr}y)$$

Where, r is the distance of (x,y) from the image center, and k is distortion parameter

Simplified Distortion Functions

Assuming the origin (**0**) for the image is at the center.

A point (x, y) in the original image, when distorted is mapped to coordinate (x, y), using the function f

$$f(x^{\hat{}}, y^{\hat{}}) = f(x, y) = (\frac{1}{1 + kr}x, \frac{1}{1 + kr}y)$$

Where, r is the distance of (x,y) from the image center, and k is distortion parameter

Note that the distorted point is at distance r` from the origin and not r anymore.

1. Distortion

Distortion parameter K = 0.005

Inputs:
Input image
Distortion parameter (k)

Image Co-ordinate system

- Note that, since we use a (row, col) convention.
- By default, the Image coordinates have x-axis pointing downwards, and y-axis to the right.

Image Co-ordinate system

- Note that, since we use a (row, col) convention.
- By default, the Image coordinates have x-axis pointing downwards, and y-axis to the right.
- Distortion is applied over the center C of the image.
- Need to apply a change in coordinate system before applying the distortion function

Let I be the input image, and the C (c_x, c_y) its center.

1. Initialize a zeros matrix for distorted image (I_D) with same dims as input image.

- 1. Initialize a zeros matrix for distorted image (I_D) with same dims as input image.
- 2. For each (i, j) in image I:

- 1. Initialize a zeros matrix for distorted image (I_D) with same dims as input image.
- 2. For each (i, j) in image I:
 - 1. Apply change in co-ordinate system, and find the point (i_c, j_c) with respect to center C.

$$(i_c, j_c) = (i - c_x, j - c_y)$$

 I_D

Let I be the input image, and the C (c_x, c_y) its center.

- 1. Initialize a zeros matrix for distorted image (I_D) with same dims as input image.
- 2. For each (i, j) in image I:
 - 1. Apply change in co-ordinate system, and find the point (i_c, j_c) with respect to center C.
 - 2. Apply the distortion function on (i_c, j_c) to get (i_{cd}, j_{cd})

$$(i_{cd}, j_{cd}) = f(i_c, j_c)$$

Note that (i_{cd}, j_{cd}) is still with respect to center C.

- 1. Initialize a zeros matrix for distorted image (I_D) with same dims as input image.
- 2. For each (i, j) in image:
 - 1. Apply change in co-ordinate system, and find the point (i_c, j_c) with respect to center C.
 - 2. Apply the distortion function on (i_c, j_c) to get (i_{cd}, j_{cd})
 - 3. Apply change in co-ordinate system again to get (i_d, j_d) $(i_d, j_d) = (i_{cd} + c_x, j_{cd} + c_y)$

Let I be the input image, and the $C\left(c_x,c_y\right)$ its center.

- 1. Initialize a zeros matrix for distorted image (I_D) with same dims as input image.
- 2. For each (i, j) in image:
 - 1. Apply change in co-ordinate system, and find the point (i_c, j_c) with respect to center C.
 - 2. Apply the distortion function on (i_c, j_c) to get (i_{cd}, j_{cd})
 - 3. Apply change in co-ordinate system again to get (i_d, j_d)
 - 4. Copy the pixel values from (i, j) in the original image at (i_d, j_d) in the distorted image.

$$D(i_d, j_d) = I(i, j)$$

Results

K = 0.0005

K = 0.005

2. Naïve Correction

Apply inverse distortion K = 0.005

Corrected image

Inputs:
Distorted image
Distortion parameter (k)

We originally applied distortion using the function

$$(x', y') = f(x, y) = (\frac{1}{1 + kr}x, \frac{1}{1 + kr}y)$$

Mathematically the inverse distortion function is

We originally applied distortion using the function

$$(x', y') = f(x, y) = (\frac{1}{1 + kr}x, \frac{1}{1 + kr}y)$$

Mathematically the inverse distortion function is

$$x` = \frac{1}{1 + kr} x \Rightarrow x = (1 + kr)x`$$

So, the inverse distortion function is

$$(x,y) = ((1+kr)x`, (1+kr)y)$$

We originally applied distortion using the function

$$f(x^*, y^*) = f(x, y) = (\frac{1}{1 + kr}x, \frac{1}{1 + kr}y)$$

Mathematically the inverse distortion function is

$$x` = \frac{1}{1 + kr} x \Rightarrow x = (1 + kr)x`$$

So, the inverse distortion function is

$$(x,y) = \left((1+kr)x', (1+kr)y' \right)$$

However, r here is the distance of (x,y) from center. Since (x,y) is not known, we cannot compute r.

We originally applied distortion using the function

$$(x`, y`) = f(x, y) = (\frac{1}{1 + kr}x, \frac{1}{1 + kr}y)$$

Mathematically the inverse distortion function is

$$x` = \frac{1}{1 + kr}x \Rightarrow x = (1 + kr)x`$$

So, the inverse distortion function is

$$(x,y) = ((1+kr)x`, (1+kr)y`)$$

However, r here is the distance of (x,y) from center. Since (x,y) is not known, we cannot compute r

So, it is not possible to apply an exact inverse function.

We originally applied distortion using the function

$$(x`, y`) = f(x, y) = (\frac{1}{1 + kr}x, \frac{1}{1 + kr}y)$$

Mathematically the inverse distortion function is

$$x` = \frac{1}{1 + kr}x \Rightarrow x = (1 + kr)x`$$

So, the inverse distortion function is

$$(x,y) = f^{-1}(x',y') = ((1+kr)x',(1+kr)y')$$

Alternatively, we assume r to be the distance of the point (x, y) from the center C.

(x`,y`) is known

- 1. Initialize a zeros matrix for corrected image (I_C) with same dims as input image.
- 2. For each (i_d, j_d) in distorted image:

- 1. Initialize a zeros matrix for corrected image (I_C) with same dims as input image.
- 2. For each (i_d, j_d) in distorted image:
 - 1. Apply change in co-ordinate system, and find the point (i_{cd}, j_{cd}) with respect to center C.

- 1. Initialize a zeros matrix for corrected image (I_C) with same dims as input image.
- 2. For each (i_d, j_d) in distorted image:
 - 1. Apply change in co-ordinate system, and find the point (i_{cd}, j_{cd}) with respect to center C.
 - 2. Apply the inverse distortion function on (i_{cd}, j_{cd}) to get (i_c, j_c) $(i_c, j_c) = f^{-1}(i_{cd}, j_{cd})$

- 1. Initialize a zeros matrix for corrected image (I_C) with same dims as input image.
- 2. For each (i, j) in distorted image:
 - 1. Apply change in co-ordinate system, and find the point (i_c, j_c) with respect to center C.
 - 2. Apply the inverse distortion function on (i_c, j_c) to get (i_{cd}, j_{cd})
 - 3. Apply change in co-ordinate system again to get (i,j)

- 1. Initialize a zeros matrix for corrected image (I_C) with same dims as input image.
- 2. For each (i, j) in distorted image:
 - 1. Apply change in co-ordinate system, and find the point (i_c, j_c) with respect to center C.
 - 2. Apply the inverse distortion function on (i_c, j_c) to get (i_{cd}, j_{cd})
 - 3. Apply change in co-ordinate system again to get (i, j)
 - 4. Copy the pixel values from at (i_d, j_d) in the distorted image at (i, j) in the corrected image.

$$I_C(i,j) = I_D(i_d,j_d)$$

Corrected image (K = .0005)

Corrected

Corrected image (K = .005)

Corrected

Too many artifacts!

3. Correction using Interpolation

K = 0.005

Corrected image

Inputs:
Distorted image
Distortion parameter (k)
Interpolation type (nearest neighbor)

Idea

- Create a corrected image with zeros
- For every pixel (i,j) in the corrected image apply distortion and calculate (i_d,j_d) co-ordinate it would map to.
- Now use neighbors around the point (i_d, j_d) to perform interpolation, and estimate the value for the location (i, j) in the corrected image.

Correction with Steps

- 1. Initialize a zeros matrix for corrected image (I_c) with same dims as input image.
- 2. For each (i, j) in corrected image:
 - 1. Apply change in co-ordinate system, and find the point (i_c, j_c) with respect to center C.
 - 2. Apply the distortion function on (i_c, j_c) to get (i_{cd}, j_{cd})
 - 3. Apply change in co-ordinate system again to get (i_d, j_d)
 - 4. If using nearest neighbour interpolation

$$(i_{nn}, j_{nn}) = \left(round(i_d), round(j_d)\right)$$

Copy the pixel form the nearest neighbor $I_C(i, j) = I_D(i_{nn}, j_{nn})$

Correction with Steps

Let I_D be the distorted image, and the C $\left(c_x, c_y\right)$ its center.

- 1. Initialize a zeros matrix for corrected image (I_c) with same dims as input image.
- 2. For each (i, j) in corrected image:
 - 1. Apply change in co-ordinate system, and find the point (i_c, j_c) with respect to center C.
 - 2. Apply the distortion function on (i_c, j_c) to get (i_{cd}, j_{cd})
 - 3. Apply change in co-ordinate system again to get (i_d, j_d)
 - 4. If using bilinear interpolation

Find **four** nearest neighbors to (i_d, j_d)

Calculate bi-linear interpolated value (b)

$$I_{\mathsf{C}}(i,j) = b$$

Corrected Image (K=0.005)

Bilinear

Nearest Neighbor

Corrected Image (K=0.0005)

Bilinear

Nearest Neighbor

Assignment - 1

- 1. Distortion (20 Pts.)
- 2. Naïve Correction (20 Pts)
- 3. Correction with interpolation (35 Pts)

Total: 75 Pts.

Due Date: Feb 21st, 11:59 PM

Submission Instructions

- Must use the starter code available in Github
- Submission allowed only through Github
- You will receive an email with invitation to join Github classroom
- Start by reading the readme.md file.
- Instructions are available here
- Github will automatically save the last commit as a submission before the deadline