Homework 3

David Abeiku Saah

MATH212: Linear Algebra

Dr Ayawoa Dagbovie

September 14, 2023

Problem 1

$$x_1 - 2x_2 + 3x_3 = 0 (1)$$

Solving for x_1 in terms of x_2 and x_3 :

$$x_1 = 2x_2 - 3x_3$$

 x_1 and x_2 are free. Representing the solution set in vector form:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_2 - 3x_3 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

$$\text{Let } \boldsymbol{u} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \text{ and } \boldsymbol{v} = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

$$x = x_2 \boldsymbol{u} + x_3 \boldsymbol{v}$$

$$x_1 - 2x_2 + 3x_3 = 4 (2)$$

Solving for x_1 in terms of x_2 and x_3 :

$$x_1 = 2x_2 - 3x_3 + 4$$

 x_1 and x_2 are free. Representing the solution set in vector form:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 - 3x_3 + 4 \\ x_2 \\ x_3 \end{bmatrix}$$
$$= \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

Substituting \boldsymbol{u} and \boldsymbol{v} :

$$x = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + x_2 \boldsymbol{u} + x_3 \boldsymbol{v}$$

... The solution of eqn(1) and eqn(2) are in \mathbb{R}^3 . The line $x_1-2x_2+3x_3=0$ passes through the origin and spans \boldsymbol{u} and \boldsymbol{v} . The line $x_1-2x_2+3x_3=4$ is parallel to the line $x_1-2x_2+3x_3=0$ and passes through the point (4,0,0).

Problem 2

- 1. Let A be Agriculture.
- 2. Let E be Energy.
- 3. Let M be Manufacturing.
- 4. Let T be Transportation.

(a)

\mathbf{A}	${f E}$	\mathbf{M}	${f T}$	Purchased By
0.65	0.3	0.3	0.2	A
0.1	0.1	0.15	0.1	${f E}$
0.25	0.35	0.15	0.3	\mathbf{M}
0	0.25	0.4	0.4	${f T}$

(b)

Let p_a, p_e, p_m, p_t be the amount of money spent on Agriculture, Energy, Manufacturing and Transportation respectively.

$$\text{Systems of equations:} \begin{cases} -0.35p_a + 0.3p_e + 0.3p_m + 0.2p_t = 0 \\ 0.1p_a - 0.9p_e + 0.15p_m + 0.1p_t = 0 \\ 0.25p_a + 0.35p_e - 0.85p_m + 0.3p_t = 0 \\ 0p_a + 0.25p_e + 0.4p_m - 0.6p_t = 0 \end{cases}$$

After computing the augmented matrix using software, the reduced row echelon form is:

$$\begin{bmatrix} 1 & 0 & 0 & -2.0279 & 0 \\ 0 & 1 & 0 & -0.5311 & 0 \\ 0 & 0 & 1 & -1.1681 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Equivalent system of equations:

$$p_a - 2.0279t = 0$$

 $p_e - 0.5311t = 0$
 $p_m - 1.1681t = 0$
 $p_t = p_t$

The general solution for equilibrium prices in the economy: $\begin{cases} p_a = 2.0279t \\ p_e = 0.5311t \\ p_m = 1.1681t \\ p_t = p_t \end{cases}$

Vector form:

$$p = \begin{bmatrix} p_a \\ p_e \\ p_m \\ p_t \end{bmatrix} = \begin{bmatrix} 2.0279p_t \\ 0.5311p_t \\ 1.1681p_t \\ p_t \end{bmatrix} = p_t \begin{bmatrix} 2.0279 \\ 0.5311 \\ 1.1681 \\ 1 \end{bmatrix}$$

If $p_t = \$1,000,000$, then $p_a = \$2,027,900$, $p_e = \$531,100$, and $p_m = \$1,168,100$.

 \therefore The incomes and expenditures of each sector will be equal if the output of Agriculture is priced at \$2,027,900, Energy is \$531,100, Manufacturing is priced at \$1,168,100 and that of Transportation is \$1,000,000 (using the example above).

Problem 3

Intersection	Flow in	Flow out
A	x_1	$x_2 + 100$
В	$x_2 + 50$	x_3
\mathbf{C}	x_3	$x_4 + 120$
D	$x_4 + 150$	x_5
${ m E}$	x_5	$x_6 + 80$
\mathbf{F}	$x_6 + 100$	x_1

System of linear equations:

$$x_1 - x_2 = 100$$

$$x_2 - x_3 = -50$$

$$x_3 - x_4 = 120$$

$$x_4 - x_5 = -150$$

$$x_5 - x_6 = 80$$

$$x_6 - x_1 = -100$$

Augmented matrix:

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 100 \\ 0 & 1 & -1 & 0 & 0 & 0 & -50 \\ 0 & 0 & 1 & -1 & 0 & 0 & 120 \\ 0 & 0 & 0 & 1 & -1 & 0 & -150 \\ 0 & 0 & 0 & 0 & 1 & -1 & 80 \\ -1 & 0 & 0 & 0 & 0 & 1 & -100 \end{bmatrix}$$

Reduced row echelon form (using software):

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 100 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 50 \\ 0 & 0 & 0 & 1 & 0 & -1 & -70 \\ 0 & 0 & 0 & 0 & 1 & -1 & 80 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

... The general solution of the network is:
$$\begin{cases} x_1 = 100 + x_6 \\ x_2 = x_6 \\ x_3 = 50 + x_6 \\ x_4 = -70 + x_6 \\ x_5 = 80 + x_6 \\ x_6 = x_6 \end{cases}$$

Distance cannot be negative so the smallest possible value for x_6 is 0.