Babeş-Bolyai University, Faculty of Mathematics and Computer Science Mathematical Analysis - Homework Solutions Computer Science, Academic Year: 2020/2021

Homework 4

Seminar 11

Exercise 11.1. Let $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq 0_2\\ 0 & \text{if } (x,y) = 0_2. \end{cases}$$

Study the continuity and the partial differentiablilty of f at 0_2 .

Solution We have

$$\forall (x,y) \in \mathbb{R}^2 \setminus 0_2, \quad 0 \le \left| \frac{xy}{\sqrt{x^2 + y^2}} - f(0_2) \right| = \frac{|x|}{\sqrt{x^2 + y^2}} |y| \le |y|,$$

from where, using the Squeeze Theorem, we get $\lim_{(x,y)\to 0_2} f(x,y) = f(0_2)$. This shows that f is continuous at 0_2 .

IMPORTANT: $(x,y) \in \mathbb{R}^2 \setminus 0_2$ means $(x \neq 0 \text{ or } y \neq 0)$, so, xy might be 0. Be careful how you bound $|f(x,y) - f(0_2)|$ so that you avoid the possibility of the denominator being 0. Since

$$\lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = 0 \quad \text{and} \quad \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = 0$$

it follows that f is partially differentiable at 0_2 .

Exercise 11.2. Let $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = e^{2x+y}\cos(3z)$. Find the gradient and the Hessian matrix of f at $(0, 0, \pi/6)$.

Solution For $(x, y, z) \in \mathbb{R}^3$.

$$\begin{split} \frac{\partial f}{\partial x}(x,y,z) &= 2e^{2x+y}\cos(3z), \quad \frac{\partial f}{\partial y}(x,y,z) = e^{2x+y}\cos(3z), \quad \frac{\partial f}{\partial z}(x,y,z) = -3e^{2x+y}\sin(3z), \\ \frac{\partial^2 f}{\partial x^2}(x,y,z) &= 4e^{2x+y}\cos(3z), \quad \frac{\partial^2 f}{\partial y^2}(x,y,z) = e^{2x+y}\cos(3z), \quad \frac{\partial^2 f}{\partial z^2}(x,y,z) = -9e^{2x+y}\cos(3z), \\ \frac{\partial^2 f}{\partial y \partial x}(x,y,z) &= 2e^{2x+y}\cos(3z) = \frac{\partial^2 f}{\partial x \partial y}(x,y,z), \quad \frac{\partial^2 f}{\partial z \partial x}(x,y,z) = -6e^{2x+y}\sin(3z) = \frac{\partial^2 f}{\partial x \partial z}(x,y,z), \\ \frac{\partial^2 f}{\partial z \partial y}(x,y,z) &= -3e^{2x+y}\sin(3z) = \frac{\partial^2 f}{\partial y \partial z}(x,y,z). \end{split}$$

Then,

$$\frac{\partial f}{\partial x}(0,0,\pi/6)=0,\quad \frac{\partial f}{\partial y}(0,0,\pi/6)=0,\quad \frac{\partial f}{\partial z}(0,0,\pi/6)=-3,$$

so $\nabla f(0,0,\pi/6) = (0,0,-3)$. Because

$$\frac{\partial^2 f}{\partial x^2}(0,0,\pi/6) = 0, \quad \frac{\partial^2 f}{\partial y^2}(0,0,\pi/6) = 0, \quad \frac{\partial^2 f}{\partial z^2}(0,0,\pi/6) = 0,$$

$$\begin{split} \frac{\partial^2 f}{\partial y \partial x}(0,0,\pi/6) &= 0 = \frac{\partial^2 f}{\partial x \partial y}(0,0,\pi/6), \quad \frac{\partial^2 f}{\partial z \partial x}(0,0,\pi/6) = -6 = \frac{\partial^2 f}{\partial x \partial z}(0,0,\pi/6), \\ \frac{\partial^2 f}{\partial z \partial y}(0,0,\pi/6) &= -3 = \frac{\partial^2 f}{\partial y \partial z}(0,0,\pi/6). \end{split}$$

we have

$$H_f(0,0,\pi/6) = \begin{pmatrix} 0 & 0 & -6 \\ 0 & 0 & -3 \\ -6 & -3 & 0 \end{pmatrix}.$$

Seminar 12

Exercise 12.1. Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 + y^3 - 3xy$. Find the local extremum points of f and specify their type.

Solution For $(x, y) \in \mathbb{R}^2$,

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 - 3y$$
 and $\frac{\partial f}{\partial y}(x,y) = 3y^2 - 3x$.

To find the stationary points, we solve the system of equations

$$\begin{cases} y = x^2 \\ x = y^2. \end{cases}$$

Then $y = y^4$, that is, $y(1-y)(1+y+y^2) = 0$. Thus, $y \in \{0,1\}$ and we obtain the stationary points (0,0) and (1,1). We now classify these points. To this end, we first determine the second order partial derivatives of f. For $(x,y) \in \mathbb{R}^2$,

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 6x, \quad \frac{\partial^2 f}{\partial y^2}(x,y) = 6y, \quad \frac{\partial^2 f}{\partial y \partial x}(x,y) = -3 = \frac{\partial^2 f}{\partial x \partial y}(x,y).$$

Note that

$$H_f(0,0) = \left(\begin{array}{cc} 0 & -3 \\ -3 & 0 \end{array}\right)$$

is indefinite. This can be justified either because $\Delta_2 = -9 < 0$ or, directly, because for the associated quadratic form $\Phi : \mathbb{R}^2 \to \mathbb{R}$, $\Phi(h_1, h_2) = -6h_1h_2$ we have $\Phi(1, 1) = -6 < 0 < 6 = \Phi(-1, 1)$. Hence, (0,0) is not a local extremum point of f. Note that

$$H_f(1,1) = \left(\begin{array}{cc} 6 & -3 \\ -3 & 6 \end{array} \right)$$

is positive definite. This can be justified either because $\Delta_1=6>0$ and $\Delta_2=36-9=27>0$ or, directly, because the associated quadratic form $\Phi:\mathbb{R}^2\to\mathbb{R}, \ \Phi(h_1,h_2)=6h_1^2-6h_1h_2+6h_2^2$ satisfies $\Phi(h_1,h_2)=6(h_1-h_2/2)^2+9h_2^2/2>0$ for all $(h_1,h_2)\in\mathbb{R}^2\setminus\{0_2\}$. Hence, (1,1) is a local minimum point of f.

Exercise 12.2. Let $f:(0,\infty)\times\mathbb{R}\to\mathbb{R}, f(x,y)=x(y^2+\ln^2x)$. Find the local extremum points of f and specify their type.

Solution For $(x,y) \in (0,\infty) \times \mathbb{R}$,

$$\frac{\partial f}{\partial x}(x,y) = y^2 + \ln^2 x + 2\ln x$$
 and $\frac{\partial f}{\partial y}(x,y) = 2xy$.

To find the stationary points, we solve the system of equations

$$\begin{cases} y^2 + \ln^2 x + 2\ln x = 0\\ xy = 0. \end{cases}$$

Then y=0, so, $\ln^2 x + 2 \ln x = 0$, from where $x \in \{1, e^{-2}\}$ and we obtain the stationary points (1,0) and $(e^{-2},0)$. We now classify these points. To this end, we first determine the second order partial derivatives of f. For $(x,y) \in (0,\infty) \times \mathbb{R}$,

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{2}{x} \ln x + \frac{2}{x}, \quad \frac{\partial^2 f}{\partial y^2}(x,y) = 2x, \quad \frac{\partial^2 f}{\partial y \partial x}(x,y) = 2y = \frac{\partial^2 f}{\partial x \partial y}(x,y).$$

Note that

$$H_f(1,0) = \left(\begin{array}{cc} 2 & 0\\ 0 & 2 \end{array}\right)$$

is positive definite. This can be justified either because $\Delta_1=2>0$ and $\Delta_2=4>0$ or, directly, because the associated quadratic form $\Phi:\mathbb{R}^2\to\mathbb{R},\ \Phi(h_1,h_2)=2h_1^2+2h_2^2$ satisfies $\Phi(h_1,h_2)>0$ for all $(h_1,h_2)\in\mathbb{R}^2\setminus\{0_2\}$. Hence, (1,0) is a local minimum point of f. Note that

$$H_f(e^{-2},0) = \begin{pmatrix} -2e^2 & 0\\ 0 & 2e^{-2} \end{pmatrix}$$

is indefinite. This can be justified either because $\Delta_2 = -4 < 0$ or, directly, because for the associated quadratic form $\Phi: \mathbb{R}^2 \to \mathbb{R}$, $\Phi(h_1, h_2) = -2e^2h_1^2 + 2e^{-2}h_2^2$ we have $\Phi(1, 0) = -2e^2 < 0 < 2e^{-2} = \Phi(0, 1)$. Hence, $(e^{-2}, 0)$ is not a local extremum point of f.

Seminar 13

Exercise 13.1. Let $\alpha, \beta \in \mathbb{R}$ and $f: [1, \infty) \to \mathbb{R}$, $f(x) = \frac{x^{\alpha} \arctan x}{1 + x^{\beta}}$. Study the improper integrability f on its domain.

Solution First note that f is continuous and $f(x) \ge 0$ for all $x \ge 1$.

We try to find $p \in \mathbb{R}$ so that there exists $L = \lim_{x \to \infty} \frac{x^{p+\alpha} \arctan x}{1+x^{\beta}}$ ($\in (0,\infty)$ preferably).

Case 1. $\beta < 0$

For $p = -\alpha$,

$$L = \begin{cases} \pi/2 & \text{if } \beta < 0\\ \pi/4 & \text{if } \beta = 0. \end{cases}$$

Hence, $L \in (0, \infty)$, so f is improperly integrable on $[1, \infty)$ if and only if p > 1, that is, $\alpha < -1$.

Case 2. $\beta > 0$

For $p = \beta - \alpha$, $L = \pi/4 \in (0, \infty)$. Hence, f is improperly integrable on $[1, \infty)$ if and only if p > 1, that is, $\alpha < \beta - 1$.