Cheatsheet for Survival Analysis

Irving Gómez Méndez

Main reference: Collett (2023).

${\bf Contents}$

1	Sur	Survivor, hazard, and cumulative hazard functions						
	1.1	Useful relations						
	1.2	Kaplan-Meier estimator						
	1.3	Nelson-Aalen estimator						
	1.4	Greenwood's formula (standard deviation of the Kaplan-Meier estimator)						
	1.5	Standard deviation of the Nelson-Aalen estimator						
	1.6	Confidence intervals for the survivor function						
	1.7	Expected life time						
	1.8	Quantile survival time						
	1.9	Codes						
_	~							
2		Comparison of two groups of survival data						
	2.1	Log-rank test						
	2.2	Wilcoxon test						
	2.3	Peto-Peto test						
	2.4	Codes						
3	Cox	Cox regression model						
	3.1	Partial Likelihood						
	3.2	Hypothesis testing						
	3.3	Breslow approximation						
	3.4	Comparing models						
		3.4.1 Nested models, log-likelihood test						
		3.4.2 Non-nested models, Akaike information criterion						
	3.5	Codes						
	D. 1							
4		k-adjusted survivor function						
	4.1	Codes						
5	Stra	Stratified Cox regression						
	5.1	Codes						

6	Con	cordance, standard deviation of risk score, and explained variation						
	6.1	Concordance indices						
	6.2	Standard deviation of risk score						
	6.3	Explained variation						
	6.4	Codes						
7	Tim	Time-dependent ROC curves						
	7.1	Codes						
8	Wei	Weibull model						
	8.1	Exponential distribution						
	8.2	Weibull distribution						
	8.3	$\label{log-likelihood} \mbox{Log-likelihood} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $						
	8.4	Suitability of Weibull model						
	8.5	Weibull model, Bayesian approach						
	8.6	Codes						
9	Wei	Weibull regression model						
	9.1	Weibull proportional hazards model						
	9.2	Weibull accelerated failure time, Weibull AFT						
	9.3	Weibull AFT for comparing two groups						
	9.4	Weibull AFT for comparing two groups, Bayesian approach						
	9.5	Codes						
10	Frai	lty models						
		Conditional hazard, conditional cumulative hazard, and conditional survivor func-						
		tion						
	10.2	Likelihood						
		Gamma frailty						
	10.4	Log-likelihood						
		Posterior distribution of Z_i						
		Weibull-Gamma frailty model, Bayesian approach						
	10.0							

1 Survivor, hazard, and cumulative hazard functions

Distribution function

$$F(t) = \mathbb{P}(T < t) = \int_0^t f(u)du$$

Survivor function

$$S(t) = P(T \ge t) = 1 - F(t)$$

Hazard function

$$h(t) = \frac{f(t)}{S(t)}$$

Cumulative hazard function

$$H(t) = \int_0^t h(u)du$$

1.1 Useful relations

$$f(t) = -\frac{d}{dt}S(t); \quad h(t) = -\frac{d}{dt}\log S(t); \quad S(t) = \exp\left\{-H(t)\right\}$$

- 1.2 Kaplan-Meier estimator
 - \bullet *n* individuals.
 - r death times, $t_{(1)} < t_{(2)} < \cdots, t_{(r)}$.
 - n_j individuals alive just before $t_{(j)}$.
 - d_j deaths at $t_{(j)}$.

For $t_{(k)} \le t < t_{(k+1)}$:

$$\begin{split} S(t) &= \mathbb{P}(T \geq t) \\ &= \mathbb{P}(T \geq t | T \geq t_{(k)}) \mathbb{P}(T \geq t_{(k)}) \\ &= \mathbb{P}(T \geq t | T \geq t_{(k)}) \mathbb{P}(T \geq t_{(k)} | T \geq t_{(k-1)}) \mathbb{P}(T \geq t_{(k-1)}) \\ &= \vdots \end{split}$$

$$\widehat{S}(t) = \prod_{j=1}^{k} \left(\frac{n_j - d_j}{n_j} \right)$$

1.3 Nelson-Aalen estimator

Because $S(t) = \exp\{-H(t)\}$, then

$$\tilde{S}(t) = \exp\left\{-\sum_{j=1}^{k} \frac{d_j}{n_j}\right\}$$

1.4 Greenwood's formula (standard deviation of the Kaplan-Meier estimator)

$$\widehat{\operatorname{sd}}\left(\widehat{S}(t)\right) = \widehat{S}(t) \left(\sum_{j=1}^{k} \frac{d_j}{n_j(n_j - d_j)}\right)^{1/2}$$

1.5 Standard deviation of the Nelson-Aalen estimator

(Grambsch and Therneau, 2000)

$$\widehat{\operatorname{sd}}\left(\widetilde{S}(t)\right) = \widetilde{S}(t) \left(\sum_{j=1}^{k} \frac{d_j}{n_j^2}\right)^{1/2}$$

1.6 Confidence intervals for the survivor function

Practical, yet not very realistic

$$\widehat{S}(t) \stackrel{\cdot}{\sim} \mathcal{N}\left(S(t), \widehat{\mathrm{sd}}\left(\widehat{S}(t)\right)\right)$$

Logit transformation

$$\log \left(\frac{\widehat{S}(t)}{1 - \widehat{S}(t)} \right) \stackrel{\cdot}{\sim} \mathcal{N}$$

Log-log transformation

$$\log\left(-\log\widehat{S}(t)\right) \stackrel{\cdot}{\sim} \mathcal{N}$$

1.7 Expected life time

$$\mu = \int_0^\infty S(t)dt; \quad \hat{\mu} = \sum_{j=1}^k \tau_j \widehat{S}(t_{(j)}), \text{ if } \widehat{S}(t_{(r)}) = 0, \quad \tau_j = t_{(j)} - t_{(j-1)}.$$

1.8 Quantile survival time

$$S(t(p)) = 1 - p$$

$$\hat{t}(p) = \min \left\{ t_{(j)} : \widehat{S}(t_{(j)}) < 1 - p \right\}$$

$$\widehat{\operatorname{sd}}(\hat{t}(p)) = \frac{1}{\widehat{f}(\hat{t}(p))} \widehat{\operatorname{sd}}(\widehat{S}(\hat{t}(p)))$$

where

$$\begin{split} \hat{f}\left(\hat{t}(p)\right) &= \frac{\widehat{S}\left(\hat{u}(p)\right) - \widehat{S}\left(\hat{l}(p)\right)}{\hat{l}(p) - \hat{u}(p)}, \\ \hat{u}(p) &= \max\left\{t_{(j)}: \ \widehat{S}(t_{(j)}) \geq 1 - p + \varepsilon\right\} \\ \hat{l}(p) &= \min\left\{t_{(j)}: \ \widehat{S}(t_{(j)}) \leq 1 - p - \varepsilon\right\} \end{split}$$

1.9 Codes

$00_Kaplan Meier Nelson Aalen Quantile Inference$

- Implement by hand the KM and NA estimators.
- Estimate by hand quantile survival time with its confidence interval.

01_KaplanMeierNelsonAalen

- Fit the KM and NA estimators using lifelines.
- To estimate median survival times: kmf.median_survival_time_.
- To get a CI for the median survival times:

 median_survival_times(kmf.confidence_interval_).

 It turns out not to be very useful nor accurate.
- Quantile survival time: qth_survival_time(p,kmf).

$01_Kaplan Meier Nelson Aalen_Scikit Survival$

- Fit the KM and NA estimators using sksurv.
- time, survival_prob, conf_int = kaplan_meier_estimator(...).
- time[survival_prob=p].min().
- u = time[survival_prob>=1-p+epsilon].max().
- 1 = time[survival_prob<=1-p-epsilon].min().

2 Comparison of two groups of survival data

- r distinct death times across the two groups.
- Hypothesis, H: no difference between the groups.

Group	# deaths at $t_{(j)}$	# surviving at $t_{(j)}$	# risk just before $t_{(j)}$
I	d_{1j}	$n_{1j} - d_{1j}$	n_{1j}
II	d_{2j}	$n_{2j} - d_{2j}$	n_{2j}
Total	d_{j}	$n_j - d_j$	n_j

2.1 Log-rank test

$$U_L = \sum_{j=1}^{r} (d_{1j} - e_{1j}), \quad V_L = \sum_{j=1}^{r} v_{1j},$$

where

$$v_{1j} = \frac{n_{1j}n_{2j}d_j(n_j - d_j)}{n_j^2(n_j - 1)}, \quad e_{1j} = n_{1j}\frac{d_j}{n_j}$$

Under H,

$$\frac{U_L}{\sqrt{V_L}} \stackrel{\cdot}{\sim} \mathcal{N}(0,1) \Rightarrow \frac{U_L^2}{V_L} \stackrel{\cdot}{\sim} \chi_1^2.$$

2.2 Wilcoxon test

$$U_W = \sum_{j=1}^r n_j (d_{1j} - e_{1j}), \quad V_L = \sum_{j=1}^r n_j^2 v_{1j}$$

2.3 Peto-Peto test

$$U_P = \sum_{j=1}^r \widehat{S}(t_{(j)})(d_{1j} - e_{1j}), \quad V_L = \sum_{j=1}^r \widehat{S}(t_{(j)})^2 v_{1j}$$

 \widehat{S} is the estimated survivor function for the combined data.

2.4 Codes

00_ComparisonTwoGroups

• Implement by hand the log-rank, Wilcoxon, and Peto-Peto tests.

3 Cox regression model

Proportional hazard assumption

$$h_{\text{Group}_1}(t) = \psi h_{\text{Group}_0}(t), \ \psi \ge 0.$$

 ψ : hazard ratio.

If there are covariables $X^{(1)}, \ldots, X^{(p)}$, then $\psi = \psi(\vec{X})$.

Because $\psi(\vec{X}) \ge 0$, it is convenient to make

$$\psi(\vec{X}) = \exp\{\eta\},\,$$

where

$$\eta = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)} = \vec{\beta}^T \vec{X}.$$

 η : risk score or prognostic index.

$$h(t) = \psi(\vec{X})h_0(t)$$

$$= \exp{\{\vec{\beta}^T \vec{X}\}} h_0(t).$$

 $h_0(t)$: baseline hazard function.

If X = 1 {Individual is in Group 1}, then

$$h_{\text{Group}_1}(t) = \psi h_0(t)$$

= $e^{\beta} h_0(t)$.

Thus, $\beta = 0 \Rightarrow \psi = e^{\beta} = 1$.

3.1 Partial Likelihood

$$L(\vec{\beta}) = \prod_{j=1}^{r} \frac{\exp\left\{\vec{\beta}^T \vec{X}_{(j)}\right\}}{\sum_{\ell \in R(t_{(j)})} \exp\left\{\vec{\beta}^T \vec{X}_{\ell}\right\}}.$$

L is maximized using Newton-Raphson.

3.2 Hypothesis testing

Under the hypothesis $H: \beta_j = 0$,

$$\begin{split} \frac{\hat{\beta}_j}{\widehat{\operatorname{sd}}(\hat{\beta}_j)} &\stackrel{.}{\sim} \mathcal{N}(0,1). \\ p_{value} &= 2\mathtt{norm.sf}\left(\left|\frac{\hat{\beta}_j}{\widehat{\operatorname{sd}}(\hat{\beta}_j)}\right|\right). \end{split}$$

3.3 Breslow approximation

$$\tilde{\xi}_{j} = \exp \left\{ \frac{-d_{j}}{\sum_{\ell \in R(t_{(j)})} \exp{\{\vec{\beta}^{T} \vec{X}_{\ell}\}}} \right\}$$
$$\hat{h}_{0}(t) = \frac{1 - \tilde{\xi}_{j}}{t_{(j+1)} - t_{(j)}}$$

3.4 Comparing models

3.4.1 Nested models, log-likelihood test

- Model 1: p covariables.
- Model 2: p + q covariables.
- Model $1 \subset Model 2$.

$$-2\log\frac{\hat{L}(\text{Model }1)}{\hat{L}(\text{Model }2)} \stackrel{\cdot}{\sim} \chi_q^2$$

3.4.2 Non-nested models, Akaike information criterion

$$AIC = -2\log\hat{L} + 2p$$

3.5 Codes

${\bf 02_Comparison Two Groups Using Cox No Variables}$

- Use logrant_test from lifelines.statistics to perform log-rank, Wilcoxon, and Peto-Peto tests.
- Use CoxPHFitter() from lifelines to compare two groups.
- cph.print_summary()

7

- -2*cph.log_likelihood_= $-2\log\hat{L}$.
- cph.log_likelihood_ratio_test() = $-2\log\hat{L}_{\mathrm{Null}} + 2\log\hat{L}_{\mathrm{Model}}$.

4 Risk-adjusted survivor function

Because

$$S(t) = \exp\left\{-\int_0^t h(u)du\right\},\,$$

and

$$h(t) = \exp{\{\vec{\beta}^T \vec{X}\}} h_0(t),$$

then

$$S(t) = \exp\left\{\exp\{\vec{\beta}^T \vec{X}\}\left(-\int_0^t h_0(u)du\right)\right\}$$

$$= S_0(t)^{\exp\{\vec{\beta}^T \vec{X}\}}$$

Let be $\widehat{S}_i(t)$ the estimated survivor function for individual i, then

$$\widehat{S}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{S}_i(t).$$

 \widehat{S} : average survivor function or risk-adjusted survivor function.

4.1 Codes

$09_CoxModelTwoFactors$

- Fit Cox model using two factors.
- Estimate the average survivor function.

5 Stratified Cox regression

If proportional hazards cannot be assumed between groups

$$h_j(t) = \exp{\{\vec{\beta}^T \vec{X}\}} h_{0j}(t), \text{ for Group}_j$$

5.1 Codes

10_CoxModelTwoStrata

• Fit Cox model using a strata with two levels.

6 Concordance, standard deviation of risk score, and explained variation

6.1 Concordance indices

C-index

• It is a generalization of the ROC AUC, including censoring.

 $C_{ ext{index}} = \widehat{P}(\eta_i > \eta_j | T_i < T_j)$

• It can only be calculated when there is no uncertainty of who lived longer.

K-statistic Gönen and Heller (2005)

$$K = \mathbb{P}(T_i < T_j | \eta_i > \eta_j)$$

$$\widehat{K} = \frac{2}{n(n-1)} \sum_{i < j} \frac{\mathbb{1} (\hat{\eta}_i \neq \hat{\eta}_j)}{1 + \exp\{-|\hat{\eta}_j - \hat{\eta}_i|\}}$$

6.2 Standard deviation of risk score

D-statistic Royston and Sauerbrei (2004)

$$\widehat{\mathrm{sd}}(\eta) = \frac{D}{K}, \quad K = \sqrt{8/\pi}$$

Process to calculate D:

- 1. Order $\eta_{(1)} < \eta_{(2)} < \dots < \eta_{(n)}$
- 2. Let be

$$z_{(i)} = \Phi^{-1} \left(\frac{i - 3/8}{n + 1/4} \right)$$

3. Fit the Cox model using

$$\frac{z_{(i)}}{\sqrt{8/\pi}}$$

as the predictive variable.

$$D = \hat{\beta}.$$

6.3 Explained variation

 R_P^2 Kent and O'Quigley (1988)

$$R_P^2 = \frac{\widehat{V}_P}{\widehat{V}_P + \pi^2/6}, \quad \widehat{V}_P = \mathbb{V}(e\widehat{t}a_1, \dots, \widehat{\eta}_n)$$

 R_D^2 Royston and Sauerbrei (2004)

$$R_D^2 = \frac{D_0^2}{D_0^2 + \pi^2/6}, \quad D_0 = \frac{D}{\sqrt{8/\pi}}$$

6.4 Codes

${\bf 11_Concordance And Explained Variance}$

- Implement by hand the statistics K, D, R_P^2, R_D^2 .
- ullet $C_{\mathrm{index}} = \mathtt{CoxPHFitter().concordance_index_.}$
- $\eta = \text{CoxPHFitter().predict_log_partial_hazard(dat)}$.

7 Time-dependent ROC curves

- 1. Fit the KM estimator for all the observations, $\widehat{S}(t)$.
- 2. Fix some time τ .
- 3. For c in $\hat{\eta}_{(1)}, \dots, \hat{\eta}_{(n)}$:
 - (a) Let be

$$\operatorname{Dat}_1 = \operatorname{Dat}[\hat{\eta}_i > c], \quad \operatorname{Dat}_2 = \operatorname{Dat}[\hat{\eta}_i \leq c], \quad p = \frac{n_2}{n}.$$

(b)

 $\widehat{S}_1 = \operatorname{KM} \text{ estimator of } \operatorname{Dat}_1, \quad \widehat{S}_2 = \operatorname{KM} \text{ estimator of } \operatorname{Dat}_2$

(c)

$$\widehat{\operatorname{sens}}(\tau, c) = \frac{(1 - \widehat{S}_1(\tau))(1 - p)}{1 - \widehat{S}(\tau)}$$

(d)

$$\widehat{\operatorname{spec}}(\tau, c) = \frac{\widehat{S}_2(\tau)p}{\widehat{S}(\tau)}$$

- 4. Plot the ROC curve form by the points $(1 \widehat{\operatorname{spec}}(\tau, c), \widehat{\operatorname{sens}}(\tau, c))$.
- 5. Calculate the AUC for the ROC curve.

7.1 Codes

${\bf 12_TimeDependentRoc}$

- Implement time-dependent ROC curves by hand.
- from sklearn.metrics import auc.
- auc(Roc[''1-Spec'']),Roc[''Sens'']).

8 Weibull model

8.1 Exponential distribution

$$h(t) = \lambda,$$

$$H(t) = \lambda t,$$

$$S(t) = e^{-\lambda t},$$

$$f(t) = \lambda e^{-\lambda t},$$

$$t(p) = \frac{1}{\lambda} \log \left(\frac{1}{1-p}\right).$$

8.2 Weibull distribution

$$h(t) = \lambda \gamma t^{\gamma - 1},$$

$$H(t) = \lambda t^{\gamma},$$

$$S(t) = \exp \{-\lambda t^{\gamma}\},$$

$$f(t) = \lambda \gamma t^{\gamma - 1} \exp \{-\lambda t^{\gamma}\}.$$

It is common the reparametrization:

$$\beta = \frac{1}{\lambda^{1/\gamma}} \Leftrightarrow \lambda = \frac{1}{\beta^{\gamma}},$$
$$\alpha = \gamma.$$

$$h(t) = \frac{\alpha}{\beta^{\alpha}} t^{\alpha - 1},$$

$$H(t) = (t/\beta)^{\alpha},$$

$$S(t) = \exp\left\{-(t/\beta)^{\alpha}\right\},$$

$$f(t) = \frac{\alpha}{\beta^{\alpha}} t^{\alpha - 1} \exp\left\{-(t/\beta)^{\alpha}\right\},$$

$$t(p) = \beta \left[\log\left(\frac{1}{1 - p}\right)\right]^{1/\alpha}.$$

- Weibull($\gamma = 1, \lambda$) = Exponential(λ).
- Hazard function increases monotonically if $\gamma > 1$.
- Hazard function decreases monotonically if $\gamma < 1$.

8.3 Log-likelihood

Likelihood

$$L = \prod_{i=1}^{n} f(t_i)^{\delta_i} S(t_i)^{1-\delta_i}$$
$$= \prod_{i=1}^{n} h(t_i)^{\delta_i} S(t_i)$$

Log-likelihood

$$l = \sum_{i=1}^{n} \delta_i \log f(t_i) + (1 - \delta_i) \log S(t_i)$$
$$= \sum_{i=1}^{n} \delta_i \log h(t_i) + \log S(t_i)$$

8.4 Suitability of Weibull model

$$\log(-\log S(t)) = -\alpha \log \beta + \alpha \log t$$

- The points $(\log t_i, \log(-\log \widehat{S}(t_i)))$ should follow a straight line.
- We can implement linear regression:

$$\log(-\log \widehat{S}(t_i)) = \beta_0 + \beta_1 \log t_i + \varepsilon \Rightarrow \hat{\beta},$$
$$\exp\left\{-\hat{\beta}_0/\hat{\beta}_1\right\}, \quad \hat{\alpha} = \hat{\beta}_1.$$

8.5 Weibull model, Bayesian approach

$$T \sim \text{Weibull}(\alpha, \beta)$$

$$p(\alpha) \propto \mathbb{1}_{(0,\infty)}(\alpha)$$

 $\lambda \sim \text{Gamma}(\alpha = 1, \beta \to 0)$
 $\beta = 1/\lambda^{1/\alpha}$

8.6 Codes

$15_Bayesian Weibull No Covariates$

- Use WeibullFitter to fit Weibull model using lifelines.
- lifeline parameters are λ and ρ.
 λ corresponds with β.
 ρ corresponds with α.
- Implement Weibull model using a Bayesian approach.

9 Weibull regression model

9.1 Weibull proportional hazards model

Proportional hazard model

$$h(t) = \underbrace{\exp\left\{\vec{\beta}^T \vec{X}\right\}}_{\psi} h_0(t)$$

Let be
$$h_0(t) = \lambda \gamma t^{\gamma - 1}$$
, then $h(t) = \psi \lambda \gamma t^{\gamma - 1}$. That is, if $T_{\text{Group}_0} \sim \text{Weibull}(\gamma, \lambda) \Rightarrow T_{\text{Group}_1} \sim \text{Weibull}(\gamma, \psi \lambda)$

9.2 Weibull accelerated failure time, Weibull AFT

$$h(t) = \exp\left\{\vec{\beta}^T \vec{X}\right\} \lambda \gamma t^{\gamma-1}$$

Making the reparametrization:

$$\vec{\beta} = -\gamma \vec{\zeta}, \quad \lambda = e^{-\gamma \mu}, \quad \gamma = \alpha,$$

then

$$h(t) = \frac{\alpha}{\beta^{\alpha}} t^{\alpha - 1},$$

where

$$\beta = \exp\left\{\mu + \vec{\zeta}^T \vec{X}\right\}.$$

That is,

$$T \sim \text{Weibull}(\alpha, \beta)$$

$$\beta = \exp\{\eta\}$$

$$\eta = \mu + \vec{\zeta}^T \vec{X}$$

9.3 Weibull AFT for comparing two groups

$$T \sim \text{Weibull}(\alpha, \beta)$$

$$\beta = \exp\{\eta\}$$

$$\eta = \zeta_{[0]} + \zeta_{[1]}$$

$$\psi = e^{-\alpha(\zeta_{[1]} - \zeta_{[0]})}$$

9.4 Weibull AFT for comparing two groups, Bayesian approach

$$\zeta_{[j]} \sim \mathcal{N}(0, \sigma_{\zeta}^2)$$

$$\beta_{[j]} = e^{\zeta_{[j]}}$$

$$\alpha \sim \text{HalfNormal}(\sigma_{\alpha}^2)$$

9.5 Codes

${\bf 17_Bayesian Weibull Regression}$

- Implement WeibullAFT from a Bayesian approach.
- Use WeibullAFTFitter from lifelines.

10 Frailty models

z: Frailty level.

10.1 Conditional hazard, conditional cumulative hazard, and conditional survivor function

$$h(t|z) = zh_{\text{unfrail}}(t),$$

$$H(t|z) = zH_{\text{unfrail}}(t)$$

$$= z(-\log S_{\text{unfrail}}(t)),$$

$$S(t|z) = \exp\{-H(t|z)\}$$

$$= \exp\{z\log S_{\text{unfrail}}(t)\},$$

$$\Rightarrow \log S(t|z) = z\log S_{\text{unfrail}}(t)$$

$$= -zH_{\text{unfrail}}(t)$$

10.2 Likelihood

$$L = \prod_{i=1}^{n} \int_{-\infty}^{\infty} h(t_i|z_i)^{\delta_i} S(t_i|z_i) f_Z(z_i) dz_i$$

10.3 Gamma frailty

$$z \sim \Gamma(\theta, \theta)$$

The unfrailty model is achieved when $\theta \to \infty$.

$$h(t) = \frac{h_{\text{unfrail}}(t)}{1 + \theta^{-1}H_{\text{unfrail}}(t)},$$

$$H(t) = \theta \log \left(1 + \theta^{-1}H_{\text{unfrail}}(t)\right)$$

$$S(t) = \left(1 + \theta^{-1}H_{\text{unfrail}}(t)\right)^{-\theta}$$

$$f(t) = h_{\text{unfrail}}(t)\left(1 + \theta^{-1}H_{\text{unfrail}}(t)\right)^{-\theta-1}$$

$$t(p) = H_{\text{unfrail}}^{-1}\left(\theta(1-p)^{-1/\theta} - 1\right)$$

10.4 Log-likelihood

$$l = \sum_{i=1}^{n} \theta \log \theta - \log \Gamma(\theta) + \log \Gamma(\theta + \delta_i) + \delta_i h_{\text{unfrail}}(t_i) - (\theta + \delta_i) \log(\theta + H_{\text{unfrail}}(t_i))$$

10.5 Posterior distribution of Z_i

$$Z_i | \vec{t}, \vec{\delta} \sim \Gamma(\theta + \delta_i, \theta + H_{\text{unfrail}}(t_i))$$

$$\Rightarrow \mathbb{E}(Z_i|\vec{t},\vec{\delta}) = \frac{\theta + \delta_i}{\theta + H_{\text{unfrail}}(t_i)}$$

10.6 Weibull-Gamma frailty model, Bayesian approach

$$T_{\text{unfrail}} \sim \text{Weibull}(\alpha, \beta)$$

$$\theta \sim \text{Exponential}(1)$$

We can use the same priors as before for the other parameters.

10.7 Codes

${\bf 18_Bayesian Weibull Gamma Frailty Regression}$

References

Collett, David (2023). Modelling survival data in medical research. Chapman and Hall/CRC.

Gönen, Mithat and Glenn Heller (2005). "Concordance probability and discriminatory power in proportional hazards regression". In: *Biometrika* 92.4, pp. 965–970.

Grambsch, Patricia M and Terry M Therneau (2000). "Modeling survival data: extending the Cox model". In: Statistics for Biology and Health.

Kent, John T and John O'Quigley (1988). "Measures of dependence for censored survival data". In: *Biometrika* 75.3, pp. 525–534.

Royston, Patrick and Willi Sauerbrei (2004). "A new measure of prognostic separation in survival data". In: *Statistics in medicine* 23.5, pp. 723–748.