Đặt vấn đề

Dòng phun chất lỏng ảnh hưởng tới chất lượng của hệ thống phun nhiên liệu

Ứng dụng trong nhiều hệ thống khác nhau

→ Bài toán phân tích dòng phun chất lỏng nghiên cứu về vấn đề này

Động cơ tua bin khí

Động cơ đánh lửa nén

Máy bay phản lực siêu âm

Đặt vấn đề

Hạn chế mà các nghiên cứu trước đây gặp phải:

- Các quan sát thủ công có chi phí lớn
- Độ chính xác thu được không cao

Mô tả bài toán

Bài toán phát hiện đối tượng với 4 nhãn lớp: Lobe, Attached ligament, Detached ligament, Droplet

Đóng góp của đề tài

- Xây dựng được một hệ thống tự động phát hiện các giọt chất lỏng
- Đưa ra các chiến lược xử lý đem lại kết quả cải thiện so với các nghiên cứu trước đây
- Tạo ra một chiến lược sinh dữ liệu hợp lý

Giải pháp

Tổng quan giải pháp

Thử nghiệm hai kịch bản:

Mô hình Scaled YOLOv4

Chiến lược sinh dữ liệu

Dữ liệu huấn luyện

Kết quả của kịch bản thứ nhất

Xử lý ảnh

Bước 1

Phát hiện các droplet nhỏ rời rạc thông qua diện tích

Hu Moment

- Một đại lượng đặc trưng cho ảnh, vật thể
- Gồm 7 giá trị khác nhau
- Bất biến đối với các phép biến đổi hình học cơ bản
- → Có thể sử dụng cho thuật toán Template Matching để phát hiện droplet

Bước 2

Template Matching bằng Hu Moment

Kết quả của bước 2

Watershed

- Phân đoạn dựa trên các marker
- Marker được tính toán thông qua Distance Transform
- Distance Transform trên ảnh được tiền xử lý để thu được kết quả chính xác

Bước 3

Đối với mỗi phân đoạn thu được từ watershed, thực hiện template matching để phát hiện droplet

Kết quả của bước 3

Thuật toán Pb

• Tính toán giá trị xác suất là cạnh cho từng pixel

• Sử dụng độ tương phản về màu sắc, độ sáng, và hướng

· Kết quả tốt hơn các thuật toán phát hiện cạnh truyền thống

Thuật toán Pb

Bước 4

Giống với bước 3, bỏ qua bước Template Matching mà chấp nhận toàn bộ các phân đoạn

Kết quả của bước 4

Kết quả của kịch bản thứ hai

Kết quả thực nghiệm

Kết quả trên tập thực nghiệm

Kết quả trên tập thực nghiệm (tiếp)

Sự biến thiên của droplet

Biểu đồ biến thiên số lượng droplet:

Kịch bản thứ nhất

Kịch bản thứ hai

Sự biến thiên của detached ligament

Biểu đồ biến thiên số lượng detached ligament:

Kịch bản 1

Kịch bản 2