克欢状名:(T.V.L.). 允许配置,能子叙价互换			
なる。 $E = E_n^1 + E^2$ (E_n^1, N_1) : 量子王In? $N = N_1 + N_2$			
D. 142 92 4X 2 482 :			
$\mathcal{D}_{L}(E,N,Y) = \sum_{E_{n},M} \mathcal{D}_{L}(E_{n},N_{1}) \cdot \mathcal{D}_{L}(E-E_{n}',N-N_{1})$			
对 In as 展升;			
$Im\Omega_2(E-E_1^n, N-N_1) \simeq In\Omega_2(E,N) - \frac{\partial Im\Omega_2}{\partial E}, E_n^1 - \frac{\partial Im\Omega_2}{\partial N}, N_1$ $-\frac{\partial Im\Omega_2}{\partial N} - \frac{\partial Im\Omega_2}{\partial N}$			
= In No (E,N) - βΕ΄, + βμΝ, . Υὐ.λ :			
$\sqrt{L}(E,N,V) = \sum_{E^{I},N,h} \gamma_{A}(E,N,V), \varrho^{-\beta}(E^{I}_{h} - \mu N,h)$			
拉提做正购多维的概率分布,结例:			
$p(E_{n.N}) = \frac{e^{-\beta(E_{n}-\mu_{N})}}{\sum_{k=0}^{\infty} e^{-\beta(E_{n}-\mu_{N})}} = \frac{1}{Q} e^{-\beta(E_{n}-\mu_{N})}$			
Q = ∑ _{E,N} e ^{-β(En-μN)} , 医颅2分函数(数排书中份区)			
济· 宿佑书上含爻ν α=−βμ. ⇒ e ^{−β±−αN} . (Τ.μ)吳 <u>魏</u> 圭至豐 应丏取 <u>(αβ)</u> χ	b独主竞量.		
所面全友义 e ^{gu} = Z. 选度, fugacity,			
回列巨配分函数 ()= ブ のBMN ア o-FE(N) マ nBMN コー・・・・			
$Q = \sum_{N} e^{\beta kN} \cdot \sum_{E_{N}} e^{-\beta E_{N}(N)} = \sum_{N} e^{\beta kN} \cdot \frac{Z(T,V,N)}{E^{N} m_{N} J_{N}}$ $\qquad \qquad $) e-BE]		
[产暑2下因为325,但这只是到式上的。 真正经商托灵操作层面的]			
与正则飞险闷饱,城平可用极值东伏基:			
$\mathcal{Q} \simeq e^{\beta \mu N^*} \cdot Z(T \cdot V \cdot N^*) = e^{\beta \mu N^*} e^{-\beta T^*}$			
$= e^{-\beta(F^* - \mu N^*)} = e^{-\beta \tilde{\Psi}^*}.$			
Ξ= F-μν EΩπな 、 Ξ= E-TS-μν=-pv .			
JER: Y=-kaTINQ.			
なかるそ			
〈E〉= - (³ ph ln Q) ₃ (宮珠記 z = eM ろき、る別全拿下来UN)			
$\langle N \rangle = \left(\frac{\partial}{\partial Q_{\mu}} \ln \mathcal{Q} \right)_{R}$. The			
$dY = -SaJ - pav - Nd\mu$.			
. 可以苏工吏征召立力李孟敖、『正二px 周zep已行五选了』			
30.独气体			
$Z(T,V,N) = \frac{1}{N!} \left(\frac{V}{2\tau^3} \right)^N$			
$Q = \sum_{N=1}^{\infty} Z^{N} \frac{1}{N!} \left(\frac{V}{\lambda_{1}^{1}} \right)^{N} = \exp \left(\frac{ZV}{\lambda_{1}^{2}} \right)$			
$\ln \mathcal{U} = \frac{2V}{\lambda \tau^2}$			
$\overline{Y} = -k_B T \frac{2V}{\lambda \gamma^2}$			
$P = -\frac{\overline{V}}{V} = \frac{K_0 T}{V}, \frac{2}{2T}, \qquad N = ?$			
$\langle N \rangle = \frac{2}{2\langle \beta \mu \rangle} \ln Q = \frac{V}{\lambda_{7}!} \frac{2}{2\langle \beta \mu \rangle} (e^{\beta \mu}) = \frac{2V}{\lambda_{7}!}$			

下 T MM

$\hat{y}_2^2: \text{ TA} \mathcal{N} = \frac{2V}{\lambda_T^2}, \qquad e^{i\hat{y}\mu} = \frac{N}{V} \lambda_T^3 = n\lambda_T^3.$			
从=方加(n);>、又结构引进行结构。			
$\langle E \rangle = -\left(\frac{\partial}{\partial \beta} \ln Q\right)_2 = -\frac{1}{2} V \frac{\partial}{\partial \beta} \left(\lambda_T^{-3}\right).$			
$\lambda_7 = \frac{h}{\sqrt{2\lambda m^2 k_T^2}} = \frac{\sqrt{B}}{\sqrt{2\lambda m}} h , \frac{3}{3\beta} (\lambda_7^{-3}) = -\frac{3}{2} \lambda_7^{-3} \cdot \frac{1}{\beta}$			
$\Rightarrow \langle E \rangle = \frac{3}{2} 2V \frac{1}{\beta \lambda_1} \epsilon = \frac{3}{2} \langle N \rangle keT.$			
	免受 (≥×) _{T.v}		
$\langle N^2 \rangle_c = \left(\frac{\partial^2}{\partial (\beta \mu)^2} \ln \alpha \right)_{\beta} = \frac{\partial N}{\partial (\beta \mu)} \Big _{\beta} = k_B T \left(\frac{\partial N}{\partial \mu} \right)_T \propto N.$			
⇒ < <u>N³).</u>			
(N ⁿ) _c ∝ N.			
版 N 的分和也是极声的高斯。			
□亨绍秉强. P(N)强L泊松分和.但(N)→α 吋与高期-改.	1		
. 问:(<u>款</u>) _{Tv} =?。据铭:与某个 <u>响左孟赦服</u> 知一匙。			
$d\mu = -sa_7 + vdp$			
$\left(\frac{\partial N}{\partial N}\right)_{T,V} = \left(\frac{\partial V}{\partial P}\right)_{T,V} \left(\frac{\partial P}{\partial N}\right)_{T,V} = \frac{V}{N} \left(\frac{\partial P}{\partial N}\right)_{T,V}$			
又 $\left(\frac{\partial P}{\partial A}\right)_{V} \cdot \left(\frac{\partial N}{\partial A}\right)_{P} \cdot \left(\frac{\partial V}{\partial A}\right)_{N} = -1$ 「丁子蔥」。			
Kan			
$\left(\frac{\partial N}{\partial N}\right)_{T,V} = -\left(\frac{V}{N}\right)^*, \left(\frac{\partial P}{\partial V}\right)_{N,T}$			
$\Rightarrow \langle N^2 \rangle_c = -k_B T \cdot \left(\frac{N}{V} \right)^2 \left(\frac{\partial V}{\partial P} \right)_{N,\gamma}$			
$. = k_B T \cdot \frac{N^2}{V} \stackrel{K_T}{=} n k_B T \cdot N K_T \propto N.$ $= I C M_B \Delta \Delta$			
一般表致,此存距, 他应临界互附近,片发散!!			
亞孟明哲子做N面涨為吳 <u>剛</u> 孟昭! → 临界无免沈	氯.		
$\langle E^2 \rangle_c = \left(\frac{\partial z}{\partial \beta^2} \ln \Omega \right)_z^2 = -\left(\frac{\partial E}{\partial \beta} \right)_{z,N} = k_B T^* \left(\frac{\partial E}{\partial T} \right)_{z,N}$			
ī弦: (2E) _{2v} # Cv. 后名吳 (2E) _{nv}]			
绍果: (E ³) _c = $k_B T^2 C_V + k_B T \left(\frac{\partial E}{\partial N}\right)^2 \cdot (N^2)_c$.			
不 為攻			