Mathematical Methods for International Commerce

Week 3/2: Indices and Logarithms, Exponential and Natural Log Functions

legor Vyshnevskyi, Ph.D.

Sogang University

March 21, 2025

Introduction

- Why do we study these?
 - Indices and logarithms are fundamental for understanding economic growth, inflation, and interest rates.
 - Logarithmic scales simplify financial data analysis.
 - Exponential functions describe compounding interest and population growth.
 - Natural log functions are essential for continuous growth models.

Indices and Logarithms

Section 1: Indices and Exponents

1.1 Understanding Indices

Indices are used to represent repeated multiplication.

Exponents show the number of times a base is multiplied by itself.

• The general form of an exponential expression:

 a^n

where:

- o a is the base the number being multiplied
- on is the exponent or index the number of times the base is multiplied by itself

Examples:

•
$$2^3 = 2 \times 2 \times 2 = 8$$

•
$$10^{-2} = \frac{1}{10^2} = 0.01$$

Section 1: Indices and Exponents (cont'd)

- 1.2 Rules of Indices
- 1. Multiplication Rule:

$$a^m \times a^n = a^{m+n}$$

2. Division Rule:

$$rac{a^m}{a^n}=a^{m-n}$$

3. Power Rule:

$$(a^m)^n = a^{mn}$$

4. Zero Power Rule:

$$a^{0} = 1$$

5. Fractional Exponents:

$$a^{1/n}=\sqrt[n]{a}$$

Section 1: Indices and Exponents (cont'd)

1.2 Rules of Indices (cont'd)

Examples: Laws of Indices

Example: Simplify $2^3 \times 2^2$

$$2^3 imes 2^2 = 2^{3+2} = 2^5 = 32$$

Example: Evaluate $2^4 \div 2^2$

$$2^4 \div 2^2 = 2^{4-2} = 2^2 = 4$$

Example: Solve $3^x = 81$

$$3^x = 81 = 3^4 \Rightarrow x = 4$$

Your Turn: Practice Problems

- 1. Simplify: $5^3 \times 5^{-1}$
- 2. Evaluate: $3^4 \div 3^2$
- 3. Solve: $2^x = 16$
- 4. Find: $\sqrt[3]{64}$
- 5. Use Indices: Solve $10^{2x} = 1000$

Section 2: Logarithms

2.1 Definition of Logarithms

Logarithms show the **exponent** to which a base must be raised to produce a given number.

The logarithm is the **inverse** of exponentiation:

$$\log_a(x) = y$$
 if and only if $a^y = x$

Examples:

- $\log_2 8 = 3$ because $2^3 = 8$ We read this as "log base 2 of 8 is 3" or "log of 8 with base 2 is 3".
- $\log_{10} 1000 = 3$ because $10^3 = 1000$

Section 2: Logarithms (cont'd)

2.2 Logarithm Rules

1. Multiplication Rule:

$$\log_b(xy) = \log_b x + \log_b y$$

2. Division Rule:

$$\log_b(rac{x}{y}) = \log_b x - \log_b y$$

3. Power Rule:

$$\log_b(x^c) = c\log_b x$$

Example:

$$\log_2(4 \times 8) = \log_2 4 + \log_2 8 = 2 + 3 = 5$$

Your Turn: Practice Problems

- 1. Simplify: $\log_2 32$
- 2. Evaluate: $log_3 81$
- 3. Solve: $\ln(x)=2$, hint: $e^2pprox 7.39$
- 4. Find: The value of $\log_2 16$
- 5. Use Logs: Solve $e^{2x}=10$, hint: $\ln(e)=1pprox 1.15$

Exponential and Natural Logarithmic Functions

Section 3: Exponential and Natural Logarithmic Functions

What Are Exponential and Natural Logarithmic Functions?

- Exponential Functions describe growth and decay in economics, finance, and science.
 - Example: Compound interest, inflation, population growth.
 - General form:

$$y = ae^{bx}$$

where:

- \circ (e) is Euler's number (~2.718) constant number, the base of the natural logarithm.
- (a) is the initial value
- (b) determines growth (+) or decay (-).

Section 3: Exponential and Natural Logarithmic Functions (cont'd)

What Are Exponential and Natural Logarithmic Functions? (cont'd)

- Natural Logarithm Functions help analyze percent changes and elasticities.
 - Used in logarithmic transformations of economic data.
 - Inverse of exponential function:

$$\ln(y) = x \quad textif \quad e^x = y$$

Why Important?

- Used in financial modeling (continuous interest rates, risk analysis).
- Logarithmic scales simplify large economic datasets.

Section 4: Exponential Growth in Economics

The Number e and Continuous Growth

The mathematical constant ${f e}$ (Euler's number, $e\approx 2.718$) is fundamental in continuous growth models:

$$A=A_0e^{rt}$$

where:

- A is the final amount
- A_0 is the initial amount
- *r* is the growth rate
- *t* is time

Example: If \$1000 is invested at a 5% continuous interest rate, find the amount after 3 years.

$$A = 1000 imes e^{0.05 imes 3} pprox 1161.83$$

Section 5: Logarithmic Applications in Economics

Elasticity of Demand and Supply

Elasticity is defined as:

$$E = \frac{dQ}{dP} \times \frac{P}{Q}$$

Taking logarithms:

$$\log Q = \log a + b \log P$$

where b represents the price elasticity.

Example: If demand follows $Q=200P^{-0.5}$, then:

$$\log Q = \log 200 - 0.5 \log P$$

$$E = -0.5$$

(inelastic demand) - when the price of a good or service goes up, consumers' buying habits stay about the same, and when the price goes down, consumers' buying habits also remain unchanged.

Section 6: Solving Logarithmic Equations

Example 1: Solve $2^x = 16$

$$x = \log_2(16) = 4$$

Example 2: Solve $\ln(x)=2$

$$x = e^2 \approx 7.39$$

Visualizing Exponential and Logarithmic Functions

- **Top Left:** $y = 2^x$ (Exponential Growth)
- Top Right: $y = \log_2(x)$ (Logarithmic Function)
- Bottom Left: $y = e^x$ (Natural Exponential Growth)
- Bottom Right: $y = \ln(x)$ (Natural Logarithm)

Practice Problems

- 1. Simplify: $5^3 \times 5^{-1}$
- 2. Evaluate: $\log_2(32)$
- 3. Solve: $10^x = 1000$
- 4. Find: The elasticity of demand if $Q=250P^{-0.8}$.
- 5. Use Logs: Solve $e^{2x}=10$.

Summary

- 1. Indices and logarithms simplify economic modeling.
- 2. Exponential growth explains interest rates, inflation, and GDP.
- 3. Logarithmic transformations help interpret financial data.
- 4. Euler's number is key in continuous growth models.

Discussion Questions

- 1. Why do economists use logarithms for large financial data?
- 2. How does exponential growth affect debt accumulation?
- 3. What is the significance of the natural logarithm in finance?

Any QUESTIONS?

Thank you for your attention!

Next Class

• (Mar 26) Percentages (3.1), Compound Interest (3.2)