上海大学 2014 ~ 2015 学年 秋季学期试卷(A) (参考答案评分标准)

课程名: <u>操作系统(一)</u> 课程号: <u>08305011</u> 学分: <u>4</u>

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应进工程大院交

应以入 应以入字号											
	题号			=	四	五	六	七	八	九	
	分值	10	15	10	15	8	10	12	12	8	

一、简答题(10分)

得分

1、从处理机、存储器、外部设备、文件系统四个方面,利用虚拟机的观点,简述操作系统的功能。(4分)

参考答案答:(少一个要点扣1分,只要回答出四点,辅以简单的解释即可)

处理机管理——利用处理机构造进程和线程。

点半 1 兴口

存储器管理——利用存储器和外部存储设备构造进程虚拟地址空间。

设备管理 ——统一设备操作界面,把千差万别的设备抽象成两类设备。

文件管理 ——利用存储设备,辅助以内存缓冲,构造文件抽象。

2、简述核心态和用户态。(3分)

参考答案答:(少一个要点扣1分)

这是处理机的状态,目的是在指令级实现安全与保护。

处理机处于核心态时,可以执行所有指令。

处理机处于用户态时,不能执行特权指令。

3、简述微内核的概念, 微内核最大的一个缺陷是什么, 判断 linux 体系结构是否微内核(3分) 参考答案:

把最基本的功能放在内核中, 其它功能尽量放在核外由服务器实现。

性能太差

linux 体系结构不是微内核

二、单项选择题(在4个选项中选择最合适的一个填入括号中。每小题1分,共15分)

1.	在微内核结构的操作系统中,哪些功能放在核内,哪些功能还是放在核外,并没有一个统一的标准。但是有一项功能,所有微内核结构操作系统都把它放在了核外,该功能是(D A 进程管理 B 内存管理 C 设备管理 D 文件系统
2.	在进程的状态转换图中,不能从就绪态直接转到阻塞态,原因是 (A)。 A. 逻辑上就是错误的
3.	关闭中断指令是 (A)。 A. 特权指令 B. 转移指令 C. 传输指令 D. IO 指令
4.	设某用户编制了如右框中的源程序,经编译后在 main() LINUX 下运行,此程序运行时,要占用(D) { while (fork() = = -1); while (fork() = = -1); wait(0); A. 1 B. 2 C. 3 D. 4 wait(0);
5.	为了利用信号量实现临界区互斥,信号初值应该为 (A)。 wait(0); }
6.	A1 B2 C4 D8 哲学家就餐问题是(C) B. 酒店管理问题 A. 餐饮问题 B. 酒店管理问题 C. 同步互斥问题 D. 缓冲管理问题
7.	生产者-消费者问题是(B) A. 工厂生产调度问题 B. 使用缓冲区时的同步互斥问题 C. 资源分配问题 D. 进程调度问题
8.	下列操作引起进程终止的是 (A)。
9.	若有一个进程拥有 100 个线程,这些线程都属于用户级线程,则在系统调度执行时间上,设进程占用(C)个时间片。

10. 产生死锁的基本原因是,系统资源不足和(B)。

A. 100 B. 1/100 C. 1 D. 0

A. 资源分配不当

B. 进程推进顺序非法

C. 形成环路等待

D. 资源的独占性

11. 在 Linux 操作系统中, root 是 (A)。

A. 超级用户 B. 0#进程

C. 1#进程 D. 根目录

12. 在 Linux 操作系统中, fork 系统功能调用 (C)。

A. 实现分支 B. 实现分叉 C. 实现创建子进程 D. 实现同步互斥

13. 管程是(A)

A. 实现进程同步互斥的数据类型

B. 实现进程同步互斥的原语

C. 实现进程同步互斥的指令

D. 实现进程同步互斥的系统调用

14. 线程出现在(B)。

A. 上世纪五十年代

B. 上世纪八十年代

C. 2000 年以后

D. 仅仅存在于库函数中,内核中根本没有线程概念

15. 在 Linux 系统中, 键入命令"cat /etc/passwd | wc -1", 则该命令执行完成后,终端的屏 幕 (В

A. 显示 /etc/passwd 中的文件和目录的总数 B. 显示当前系统的注册用户总数

C. 显示 /etc/passwd 中的用户口令

D. 显示 A 和 C

三、判断题 (用 √ 表示命题正确,用 × 表示命题错误,在括弧中填入你的判断。每题1分,共10分)

- 1. (×)所有算数逻辑运算类指令都是特权指令。
- 2. (×) 微内核操作是一种性能非常好操作系统体系结构机构,广泛应用于各种操作系统中。
- 3. (×) linux 操作系统是微内核结构的操作系统。
- 4. (×)在 linux 操作系统中,信号量(semaphore)和信号(signal)是一个概念。
- 5. (×)银行家算法广泛应用于各种操作系统中用于解决死锁问题。
- 6. (×)在 linux 操作系统中,如果父进程终止退出,子进程、甚至子进程的子进程,包括整个 进程家族都跟着终止退出。
- 7. (√) 进程和线程均有三种基本状态: 执行状态、就绪状态和阻塞状态。
- 8. (×) 在体系结构上, UNIX 操作系统很适合实现多线程, 实现多线程时性能非常好。
- 9. (×) Linux 系统中的管道是一种输入/输出设备。
- 10. (√)特权指令不能在用户态下执行,必须在处理机处于核心态、受到安全保护时才能执行。

四、填空题(每空1分,共15分)

- 1. 在操作系统中,产生死锁的四个必要条件是是<u>互斥条件</u>、<u>保持等待条件</u>、<u>非剥夺条</u> <u>件</u>、和 <u>环路条件</u>。
- 2. 在操作系统中,处理机调度的三给层次是___高级调度___、_中级调度__、_和_低级调度_。
- 3. 在操作系统中,实现线程的两种方法是<u>在内核中实现线程</u>和<u>在库函数中实现线程</u>,也有操作系统实现了二者的混合实现。
- 4. 采用有序资源分配的方式,由于破坏了环路条件,因此不会产生死锁。
- 5. 操作系统使用管程来管理系统中的共享资源,管程由管程的名称、<u>代表共享资源的数据结构进明</u>、<u>对数据结构进行操作的一组过程</u>、<u>对共享数据设置初值的语句</u>四部分组成。
- 6. UNIX 操作系统中的管道分为___有名管道__和 _ 无名管道两种 。

五、(8分) 在 LINUX 环境下,编制如右框中的 shell 程序,假设文件名为 shprog。要求在当前目录下用 VI 编辑器编辑程序,然后执行该 shell 程序。请写出操作步骤和相应命令,给出执行结果并解释该 shell 程序中\$#和\$1 的具体含义。

If [\$# = = 0]
then
echo "no name"
else
echo "name is "\$1
fi

参考答案:

操作步骤包括

- ① 编辑程序
- vi shprg
- ② 修改为可执行的权限 chmod 711 shprg 或 chmod +x shprg 执行该 shell 程序 ./shprg Smith 执行结果为: name is Smith

./shprg 执行结果为: no name

(或② 直接执行该 shell 程序 sh shprg Smith 执行结果为: name is Smith

Sh shprg 执行结果为: no name)

③ 该 shell 程序中\$#代表执行该 shell 程序时所带参数个数, \$1 则代表第一个参数的值。

```
六、(10分)请写出利用信号量实现生产者-消费者问题的算法。要求数据结构定义如下:
```

semaphore empty; /*表示缓冲区是否为空,初值为 n。*/

semaphore full; /*表示缓冲区中是否为满,初值为 0。*/

semaphore p_mutex; /*互斥信号量,初值为1,用于实现生产者之间的临界区互斥。*/

semaphore c mutex; /*斥信号量, 初值为1,用于实现消费者之间的临界区互斥。*/

int in, out;

/*设缓冲区的编号为 1~n-1, 定义两个指针 in 和 out, 初值为零, 分别

是生产者进程和消费者进程使用的指针,指向下一个可用的缓冲区。*/

参考答案:

```
生产者进程
while (TRUE) {
  生产一个产品;
  P(empty);
  P(p mutex);
  产品送往 buffer (in):
  in=(in+1) \mod n:
  V(p mutex);
  V(full);
消费者进程
while(TRUE) {
P(full);
 P(c mutex);
 从 buffer (out) 中取出产品:
 out = (out + 1) \mod n;
 V (c mutex);
 V(empty);
```

七、(12分)在一个分时系统中,五个进程的提交时间和所需运行时间如下表所示。

(1) 若系统采用**最高响应比优先的**调度算法,请将表中各项填写完整(6分-对每一个进程的调度时间数据酌情给分)。

最高响应比优先 调度算法										
进程	提交时间	所需运行时间	开始时间	结束时间	周转时间	带权周转时间				
A	A 0 4 B 1 5		0	4	4	1				
В			10	15	14	14/5				
C	2	3	4	7	5	5/3				
D	3	2	8	10	7	7/2				
Е	4	1	7	8	4	4				
平均周转时间		6.8		平均带权	周转时间	2.6				
进程	调度序列	A,C,E,D,B								

(2) 在两道批处理环境下,采用先来先服务调度算法(FCFS)进行作业调度、采用最短进程优先(SPF) 抢占调度算法进行进程调度,忽略系统开销的时间(6分-对每一个进程的调度时间数据酌情给分)。

进程调度时 "Rt 为进程全部所需 CPU 时间",参考答案为:

是在"物质",在7.7是在工品/// III O F 11 7 9 1 日本/1.									
 作业名	到达时间	执行时间	开始时间	结束时间	周转时间	带权周转			
	(时)	(分钟)	(时)	(时)	(分)	时间			
A	8: 00	65	8: 00	11: 40	220	3.38			
B 8: 20		60	8: 20	9: 20	60	1			
С	8: 45	35	9: 20	9: 55	70	2			
D	9: 30	9: 30 50		10: 45	75	1.5			
E 9: 40 10 10: 45				10: 55	75	7.5			
		100							
			3.1						

或进程调度时"Rt 为进程剩余所需 CPU 时间",参考答案为:

作业名	到达时间	执行时间	开始时间	结束时间	周转时间	带权周转	
1FJL/G	(时)	(分钟)	(时)	(时)	(分)	时间	
A	8: 00	65	8: 00 9: 05		65	1	
В	8: 20	60	10: 40	11: 40	200	3.3	
С	C 8: 45 35 D 9: 30 50 E 9: 40 10		9: 05	9: 40	55	1.6	
D			9: 40	10: 30	60	1.2	
Е			10: 30	10: 40	60	6	
		88					
			2.6				

③进程调度顺序 ACDEB

八、 $(12 \, \mathcal{A})$ 设在 T 时刻,系统中有 5 个进程,三种资源 A、B、C 的使用情况如下表所示。设当前系统可供使用的空闲资源数 Available = 2, 2, 1。

进程		Max								
	A	В	С		A	В	С			
P0	1	3	3		1	2	2			
P1	3	2	2		2	2	1			
P2	2	2	1		2	1	1			
Р3	2	0	2		1	0	1			
P4	2	4	3		2	3	3			

此时若有以下三种不同的分配请求,请用银行家算法判断系统能否予以分配,并写出具体步骤。

(注:以下各个小题没有因果关系,每小题都以表中所示状态为当前状态。)

- (1) P3 进程申请资源 A、B、C 分别为 2、0、0,能否分配?为什么?
- (2) P1 进程申请资源 A、B、C 分别为 0、0、2, 能否分配? 为什么?
- (3) P2 进程申请资源 A、B、C 分别为 1、1、1,能否分配?为什么?

答:

题号	能否分配	分析和依据
(1)	否(1分)	P3 的请求 > P3 的 need。(1 分)
(2)	否(1分)	PO 的请求 > 当前的 available。(1分)
(3)	能(1分)	P2 的请求<=P2 的 need,且<=当前的 available,且分配后的状态是安全的。(1分)

(3) (6分) 预分配后 available = 1, 1, 0 (错一处扣 0.5分, 扣完为止)

								,	A			
进程	allocation					need			Woı	rk+alloca	ation	finish
P0	0	1	1		1	2	2		3	3	3	T (4)
P1	1	0	1		2	2	1		3	2	2	T (3)
P2	0	Ammend	0		2	1	1		2	2	1	T (2)
Р3	1	0	1		1	1	0		2	1	1	T (1)
P4	0	1	0		2	3	3		3	4	3	T (5)

九、(8分)在Linux操作系统命令环境下,下列命令的功能是

1. ls : 文件列表

2. ps : 进程状态

3. date : 显示设置时间

4. su : 改变用户,默认为改变为超级用户

5. vi : 文本编辑

6. cat :显示文件内容

7. cd : 进入文件目录

8. gcc :编译高级语言程序