

B I U L E T Y N

Obserwatorium Astronomiczne w Wilnie.

B U L L E T I N

de l'Observatoire astronomique de Wilno

II. M é t é o r o l o g i e.

Nr. 13.

**Rezultaty pomiarów wiatrów górnych w roku 1936 w Wilnie.
Observations of winds in the upper air made at Wilno in the
year 1936.**

W. OKOŁOWICZ.

**Temperatury gruntu w Wilnie.
Die Bodentemperaturen in Wilno.**

M. TARANOWSKI.

**Zarys stosunków opadowych w Wilnie (1918 — 1937).
Ein Abriss der Niederschlagsverhältnisse in Wilno (1918 — 1937).**

**W I L N O
1 9 3 7**

Wydano z zasiłku Okręgu
Kolejowego L. O. P. P. w Wilnie.

~~102685~~

1003122556

403706
V 1937

Rezultaty pomiarów wiatrów górnych w roku 1936 w Wilnie.

Wilno:

$$\varphi = 54^{\circ}41'$$

$$\lambda = 25^{\circ}15 \text{ Gr.}$$

$$H = 128 \text{ m}$$

Publikacja niniejsza zawiera wyniki pomiarów wiatrów górnych i podstaw chmur dokonanych przez Zakład Meteorologii Uniwersytetu Stefana Batorego w Wilnie w roku 1936. Obserwacje te są prowadzone w Wilnie od roku 1925. Wyniki dotychczasowe tych pomiarów zostały podane w publikacjach „Biuletyn Obserwatorium Astronomicznego w Wilnie“. II. Meteorologia, a mianowicie:

Obserwacje z okresu:	1925 VII — 1928 VI w numerze	6
	1928 VII — 1929 XII	7
	"	8
	"	9
	"	10
	"	11
	"	12

W ciągu roku 1936 wykonano w Wilnie 151 pilotazy i 44 podstaw chmur. Pomiary te były dokonywane metodą jednoteodolitową, do obserwacji używano baloników pilotowych gumowych, wyrabianych w Polsce. Przy redukcji obserwacji zakładano, że prędkość balonika jest stała. Prędkość ta regulowana była przez dopływ wodoru obliczony w znany sposób ze wzoru Dines'a i była ustalona na 150 m/min.¹⁾.

Poniżej przytaczamy największe indywidualne wysokości, jakie osiągnęły baloniki w roku 1936.

Wysokość Altitude	Data Date	Cieżar powłoki Weight of the cover
18750	V 23	30
14100	V 26	32
9900	IX 16	33
7650	VI 27	34
7500	V 25	36
7050	IX 21	36

129

¹⁾ Stała wzoru Dines'a była przyjmowana równa 82.

Akt. Nr. 792 108/39

W obserwacjach pilotowych brały udział następujące osoby: W. Okołowicz, S. Runczkowska i M. Taradowski. S. Runczkowska również sprawdzała i przygotowała do druku cały materiał.

W załączonych tablicach kierunki wiatrów są podane z dokładnością do 1° . Prędkości zaś do $1/2$ m/sek, przyciem połówka została oznaczona zapomocą punktu, umieszczonego za liczbą.

Do wszystkich obserwacji, w których osiągnięto wysokość co najmniej jednego kilometra, dołączono wykresy rzutów drogi balonika na płaszczyznę poziomą¹⁾. Wykresy te są podane w takiej skali, że przy wietrze 1 m/sek kreski kilometrowe są odległe od siebie o 3.2 mm. Do obliczania podstaw chmur był brany moment zamglenia się balonika przy wejściu jego do chmury. Wszystkie wysokości liczono od poziomu miejsca obserwacji.

Publikacja niniejsza została wydana z zapomogi uprzejmie udzielonej Zakładowi Meteorologii przez Okrąg Kolejowy L.O.P.P. w Wilnie.

Składam na tem miejscu gorące podziękowanie Okręgom L.O.P.P.: Kolejowemu i Wojewódzkiemu w Wilnie, które jak i w latach ubiegłych w zrozumieniu doliwości badań meteorologicznych w sposób wydatny subwencjonowały Stację Meteorologiczną U.S.B.

K. Jantzen

Wilno, w październiku 1937 r.

¹⁾ Pilotaze te oznaczono w tablicach zapomocą * umieszczonej przed Nr.

Observations of winds in the upper air made at Wilno in the year 1936.

The present publication gives the results of the observations of the winds in the upper air and of the bases of the clouds; these observations were made at Wilno in 1936.

The measurements have been made at Wilno since July 1925 and published in „Bulletin de l'Observatoire Astronomique de Wilno“. II. Météorologie, Nr. Nr. 6—12. The observations were carried out by the one-theodolite method with the aid of rubber balloons. By the calculations a constant velocity viz. 150 m/min, was assumed, this number being fixed at the start by adjusting the pressure of hydrogen in the balloon according to Dines' formula.

In 1936 151 pilot observations were made at Wilno and 44 bases of clouds were measured. All heights were reckoned from the horizontal plane of the observational station.

The wind direction was determined with an accuracy of 1° , its velocity with an accuracy of $1/2$ m/sec this number being marked by a dot.

For all observations, where the balloon reached 1 km, diagrams are given¹⁾

K. Jantzen.

Wilno, October 1937.

¹⁾ In the tables these pilotages are marked by an asterisk before the number.

C Z E Ś C I. — P A R T I.

Wiatry górne. — High winds.

Objaśnienia do tabelic.

- I wiersz poziomy: Nr. porządkowy, rok, miesiąc, dzień, godzina;
II " " ciężar powłoki w gr, zachmurzenie całkowite i rodzaj chmur najniższych;
I kolumna pionowa: wysokość warstwy w m;
II " " kierunek wiatru w stopniach, liczony od N przez E;
III " " szybkość wiatru w m/sek.
Gwiazdką * przed Nr. porządkowym oznaczono te pilotaje, do których dołączono wykresy rzutów drogi balonika na płaszczyznę poziomą.

Explanation of the tables.

- I horizontal line: current number, year, mouth, day, hour;
II " " weight of the cover in gr, cloud amount and types of clouds, especially of the lowest;
I column (vertical): height of the layer in m;
II " " wind-direction in degrees, reckoned from N over E;
III " " wind-velocity in m/sec.
An asterisk * before the current number shows those pilotages for which are given diagrams of the projection of the path of balloon on the horizontal plane.

*Nr. 10. 1936. II. 19. 7 ^h 14 ^m .				*Nr. 13. 1936. II. 23. 7 ^h 33 ^m .				*Nr. 16. 1936. III. 6. 7 ^h 05 ^m .			
30.	Surface	7 Cist		30.	Surface	10 Ast		30.	Surface	10 Ci	
	000	45	2		000	90	3		000	180	4
	77	3·			125	5			164	8	
	97	8·			137	12			168	13	
	105	8			150	18·			189	11·	
	94	5·			154	19			176	12	
	83	6·			157	19			180	14	
750				750				750			
	81	7			159	17·			181	13	
	82	9			154	14			183	10·	
	79	9			158	12			180	10·	
	75	8·			161	12			187	10·	
	68	8·			161	11			191	13·	
1500				1500				1500			
	59	9·			169	11			186	11	
	51	9·			173	9			186	11	
	46	9·			170	7·			171	14	
	39	10			200	5			196	13	
	29	11			213	7			193	13·	
2250				2250				2250			
	14	12·							192	12·	
2400									192	11	
									189	14·	
*Nr. 11. 1936. II. 21. 7 ^h 22 ^m .				Nr. 14. 1936. II. 26. 7 ^h 50 ^m .				30. Nr. 17. 1936. III. 8. 7 ^h 17 ^m .			
30.	Surface	9 Ast		30.	Surface	10 St		30.	Surface	1 Ci	
	000	C			000	135	2		135	2	
	316	1·			127	4·			144	5·	
	5	4·			150	5·			173	5	
	12	5·			171	5·			150	4	
	8	4			450				152	7·	
	21	4·			Base:	St 420 m			160	13	
750											
	40	4							162	11	
	43	5·							159	10·	
	28	5							153	9·	
	19	5							147	10·	
1350									147	9·	
	000				000	180	2		750		
						178	5·				
						203	9·				
						194	8				
						196	11				
						214	12				
					750				1500		
										142	10·
										146	11
									1800		
*Nr. 12. 1936. II. 22. 7 ^h 19 ^m .				29. *Nr. 15. 1936. III. 5. 7 ^h 08 ^m .				32. *Nr. 18. 1936. III. 9. 7 ^h 08 ^m .			
31.	Surface	1 Ci		29.	Surface	10 Ci		32.	Surface	10 Ast	
	000	225	2		000	180	2		C		
	226	3·			220	9·			000		
	270	5			220	9·					
	291	5·			219	9					
	296	5			222	10·					
	296	5·			228	11					
750					1500						
	296	5·			239	11·					
	292	5·			245	9·					
	297	5·			235	9·					
	290	6·			231	11					
	295	6			231	11					
1500					2250						
	288	7			222	12·					
	289	6·			224	13					
1800					2550				750		

750 <i>Wet. Junc.</i> 142 8. 148 8. 146 9. 150 9. 156 9.	30. Surface 000 202 2 211 3. 207 8 203 7 199 5 180 4 750 165 5 160 4. 155 4 159 5 148 3. 155 3. 155 3 195 3 2250 263 1. 341 3. 330 5. 334 5. 332 5. 330 5. 336 8 333 9 336 9 335 9. 3750 332 10. 334 10 339 9 337 9. 338 11 4500 345 11 346 11 347 13 347 14. 346 16. 5250 343 15. 343 17. 344 18 350 18 351 18 6000 354 20. 6150 3150 750 202 2 205 2 213 4 209 4 213 5. 221 4 750	*Nr. 21. 1936. III. 21. 7 ^h 11m. 0 224 5. 261 5 273 4 273 2 224 3. 1500 256 3. 276 5. 288 4 267 5. 281 5 2250 281 5. 281 4. 291 6. 307 7 300 6. 3000 319 7 306 9 306 8. 3450			750	
					224 5. 261 5 273 4 273 2 224 3. 1500	
					256 3. 276 5. 288 4 267 5. 281 5	
					281 5. 281 4. 291 6. 307 7 300 6.	
					3000 319 7 306 9 306 8.	
					3450	
*Nr. 19. 1936. III. 10. 7 ^h 15m. 32. 10 Stcu		*Nr. 23. 1936. III. 23. 7 ^h 26m. 30. Surface 000 C				
Surface 000 180 2 000 168 4 173 9. 184 11 185 11 184 11. 750 190 11. 203 9. 1050 Base: Stcu 1140 m		30. Surface 000 C 332 5. 330 5. 336 8 333 9 336 9 335 9. 3750 332 10. 334 10 339 9 337 9. 338 11 4500 345 11 346 11 347 13 347 14. 346 16. 5250 343 15. 343 17. 344 18 350 18 351 18 6000 354 20. 6150 3150 750 202 2 205 2 213 4 209 4 213 5. 221 4 750				
		30. Surface 000 C 297 3 750 259 3 266 4. 277 4 287 6. 280 8 1500 271 8 263 8. 280 5 303 5 326 4 2250 324 5. 339 5. 339 5. 346 6. 354 5. 3000 354 5. 3150 750				
		30. Surface 000 C 271 8 263 8. 280 5 303 5 326 4 2250 324 5. 339 5. 339 5. 346 6. 354 5. 3000 354 5. 3150 750				
*Nr. 20. 1936. III. 17. 6 ^h 58m. 29. 6 Acu		*Nr. 22. 1936. III. 22. 7 ^h 08m. 31. Surface 000 6 Cist				
Surface 000 225 4 000 242 5. 259 9. 262 11 264 10. 271 10. 750 267 8. 276 10 289 9 286 8 288 7. 1500 290 9. 287 11 277 9. 293 12 287 11 2250 287 11 2400		31. Surface 000 6 Cist 202 2 205 2 213 4 209 4 213 5. 221 4 750				
		30. Surface 000 6 Cist 90 5 83 5 90 9 96 10. 106 10. 105 10. 750				
		30. Surface 000 6 Cist 90 5 83 5 90 9 96 10. 106 10. 105 10. 750				

750	96 72 63 52 50	11 10 9 9 7	750	118 14 21 31 12	4 1 3 3 3	750	224 160 165 165 222
1500	48 38 23 13	8 8 8 8	1500	2 341 342 310	3 2 3 4	1500	275 295 9 333 348
2100				317	5	2250	317 307 310 314 323
*Nr. 25. 1936. III. 26. 7 ^h 20 ^m .				2250	328 343 356 360 336	317 307 310 314 323	4 4 5 6 6
27.	Surface	112 000	4	3000	336 324 320	3000 3150	315 6
	144 146 153 156 150	5 8 9 8 9		308 331	7 7	*Nr. 29. 1936. III. 30. 7 ^h 28 ^m .	
750	149 131 166 185 170	8 5 3 5 3	3750	327	9	31. Surface	158 000
1500	207 247 247 261 267	2 4 4 5 4	3900			10 Cist	4
2250	276 276 264 269 259	4 5 5 5 6	750	68 65 65 68 64	3 6 8 10	143 152 158 157 154	4 8 8 7 8
3000	267 266 270 268 294	8 8 9 11 8	1500	60 48 38 27 17	7 9 11 9 11	144 143 132 150 157	8 7 5 5 2
3750	293 293	7 8	2250	19 6	11	129 103 120	4 4 6
4050						2250	124 119 132
*Nr. 26. 1936. III. 27. 7 ^h 16 ^m .							
30.	Surface	C 000	2 Ci	*Nr. 28. 1936. III. 29. 7 ^h 20 ^m .	180 000	10 Cist	Nr. 30. 1936. III. 31. 7 ^h 35 ^m .
	118 101 98 109 106	2 3 4 5 5		194 202 210 218 223	4 6 6 5 3	30. Surface	135 000
750				750		10 Stcu	8
						600	148 167 178 178
						Base:	Stcu 710 m

*Nr. 31. 1936. IV. 1. 7 ^h 25m.				*Nr. 34. 1936. IV. 7. 7 ^h 20m.				*Nr. 38. 1936. IV. 11. 7 ^h 41m.			
30.	Surface 000	180	7	30.	Surface 000	180	9	31.	Surface 000	158	5
	178	7			202	7			164	3	
	183	8			211	9			175	8	
	200	10			223	15			178	9	
	198	13			228	19			177	9	
	196	15			226	18			177	9	
750				750				750			
	202	14			226	20			176	9	
	207	12			226	15			170	10	
	207	12			223	15			161	11	
	208	14			223	16			161	11	
	208	12			225	16			166	11	
1500				1500				1500			
	213	15			228	15			168	8	
	217	13			224	14			173	8	
1800					225	15			1800		
					235	12					
					236	13					
*Nr. 32. 1936. IV. 4. 7 ^h 32m.				*Nr. 39. 1936. IV. 13. 7 ^h 30m.				*Nr. 35. 1936. IV. 8. 7 ^h 15m.			
26.	Surface 000	C	10 Stcu	30.	Surface 000	135	6	30.	Surface 000	135	10 Ast
	196	2			247	10			126	9	
	196	5			248	15			126	10	
	194	3			247	14			136	7	
	205	4			2700				137	15	
	186	3							133	16	
750								750			
	179	3			315	2			133	15	
	197	2			289	3			134	16	
	244	3			316	8			131	15	
	282	5			334	10			123	14	
	285	5			334	13			127	14	
1500					332	14			1500		
	280	6			332	15			126	15	
1650					332	15			124	15	
Base:	Stcu 1650 m				335	17			126	14	
					337	17			1950		
*Nr. 33. 1936. IV. 6. 7 ^h 22m.				*Nr. 40. 1936. IV. 14. 7 ^h 09m.				*Nr. 36. 1936. IV. 9. 7 ^h 22m.			
30.	Surface 000	315	6	30.	Surface 000	248	1	31.	Surface 000	248	10 Frst
	309	6			248	4			292	1	
	314	7			249	6			316	3	
	320	9			259	7			306	1	
	325	12			275	11			262	1	
	329	11			450				204	2	
750					Base: Stcu 550 m				750		
	329	9							191	2	
	331	9							194	3	
	334	8							160	3	
	335	9							160	4	
	334	12							153	5	
1500									1500		
	332	14							176	6	
	331	13							192	9	
	331	14							1800		
	331	14							Base: Frst 250 m		
	330	15							Stcu 1790 m		
2250											
	329	12									
2400					450						

*Nr. 41. 1936. IV. 15. 7 ^h 05m.				*Nr. 44. 1936. IV. 25. 7 ^h 30m.				*Nr. 46. 1936. IV. 29. 7 ^h 02m.			
31.	Surface	202	4	31.	Surface	C	30.	Surface	000	C	10 Cu
	000				000					96	1·
		200	4			259	1·			89	1·
		204	6·			281	3			68	3
		222	11			298	7			75	3·
		220	13·			303	9·			71	4·
		220	15·			296	12		750		
	750				750					65	4
		219	16			296	13·			71	4
		215	15·			299	12			78	6
		215	12			296	10·			83	7
		215	12·		1200					88	8
	1350								1500		
										97	6·
										107	7
*Nr. 42. 1936. IV. 21. 7 ^h 05m.				*Nr. 45. 1936. IV. 26. 7 ^h 30m.				*Nr. 47. 1936. IV. 30. 7 ^h 03m.			
30.	Surface	202	6	30.	Surface	C	30.	Surface	000	4 Steu	
	000				000					90	2
		201	3·			51	1·			98	
		217	7			93	1			101	8
		217	9·			27	1			96	10
		219	9			55	3			98	11
		229	7·			48	3·		2250		
	750				750					101	11
						36	4			99	12
		228	9			27	4·			101	13
		229	9			18	5·			103	12·
		231	10·			7	4·			108	12·
		237	9·			14	5·		3000		
		242	9·		1500					105	16
	1500					40	4			92	14·
		246	10·			74	4·			91	14·
		241	8·			80	5				
		248	8·			88	5				
	1950					77	3·				
					2250				3450		
						77	3				
*Nr. 43. 1936. IV. 23. 7 ^h 10m.				*Nr. 48. 1936. V. 2. 7 ^h 02m.				*Nr. 49. 1936. V. 2. 7 ^h 02m.			
30.	Surface	158	3	30.	Surface	C	30.	Surface	000	3 Ci	
	000				000						
		140	4·			108	5				
		146	8			125	6				
		164	7			134	4·				
		160	8		3000				1500		
		154	8·			129	4			124	8
	750					144	5·			122	8
		148	10·			151	6			119	6
		146	12·			154	7·			121	8
		150	14			136	8·			119	8
		150	14		3750				2250		
		152	15			132	9				
	1500					141	9·				
		151	13			133	10·				
		150	11·			125	12				
		150	13			123	12				
		148	12		4500					60	1·
	2100					124	11·			88	5
						118	10·			101	5·
						110	12			112	4
					4950					161	4
									750		

		*Nr. 51. 1936. V. 5. 7^h 42m.		
750	161 189 194 201 196	Surface 000	45 5 10 Stcu	1500 140 139 143 170 167
1500	202 213 213 214 217		57 4 72 4 93 10· 93 10· 94 9·	6 6· 7 7 8·
2250	211 216 219 211 220	750	101 8 115 7 124 6 115 4 101 4·	2250 176 2400
3000	236 235 227 227 232	1500	Base: Stcu 1540 m	*Nr. 55. 1936. V. 9. 7^h 10m.
3750	228 225	600	Nr. 52. 1936. V. 6. 7 ^h 28m.	30. Surface 000 180 8 Acu
4050			29. Surface 000 90 8 10 Frcu	198 191 190 202 212
*Nr. 49. 1936. V. 3. 7^h 27m.				6· 7 3· 5 7
30.	Surface 000	4 Stcu		191 7 161 3
	68	4		167 4·
	54	3		144 2
	60	5		237 4·
	30	5·		264 3·
	24	7	750	2250 140 186 193 197 178 161
	55	5		3 111 182 202 95 3· 3
750	90	5		3000 267 258 280 280 275 275
	113	1·		9· 3 6 5· 7 9· 9·
	345	1·	1500	111 9· 114 9· 114 11 116 9· 114 9· 115 9· 111 9·
1200				1500 267 270 266
				11· 12·
*Nr. 50. 1936. V. 4. 7^h 15m.				
30.	Surface 000	8 Stcu	*Nr. 54. 1936. V. 8. 7^h 10m.	
	90	6	30. Surface 000 180 4 10 Stcu	
	72	4		4350
	66	4		
	91	8·		
	82	9·		
	68	8		
750	62	4	750	
	62	4		
	71	3·		
	79	2		
1350				
Base: Stcu 700 m			1500	750

*Nr. 63. 1936. V. 21. 7 ^h 12 ^m .							
37.	Surface	10 Ast		2250	9750		
	000			178 187 194 229 212	5 4 2 1 1		70 131 149 129 C
	750			3000		10500	
	1500			193 C C	2		136 187 231
	1800			160	1		260 267
	Base : Ast	1880 m		154	1		8
				3750		11250	
				148 152 130	1 2 1		266 266 153
				73	2		180 192
				70	2		5 8
				4500		12000	
*Nr. 64. 1936. V. 22. 7 ^h 08 ^m .				70 57 68 90 99	2 3 2 3 3		205 205 213 217 223
37.	Surface	10 Stcu		5250		12750	
	000	C					9
	750	C C		88 99 87 104	3 3 3 5		223 230 237 246
	1500	111 110 118	1 3 3	79	4		7 6
	1950	104 121 127 145 151	1 1 3 4 6	6000		13500	
	Base : Stcu	2020 m		74 53 86 84 60	3 3 3 4 3		240 239 221 233 217
				6750		14250	
				101 105 96 101 104	4 5 4 4 4		228 221 223 219 216
*Nr. 65. 1936. V. 23. 6 ^h 57 ^m .			0	7500		15000	
36.	Surface	C		92 92 88 83 68	5 5 6 5 5		9 8 7 9 9
	000	145 159 149 154 154	2 5 5 6 6	8250		15750	
	750	149 152 154 162 170	5 6 7 7 7	63 62 60 60 57	6 6 5 5 5		240 225 221 221 214
	1500	168 172 172 185 180	6 5 5 3 5	9000		16500	
	2250			14 5 355 19 32	7 7 8 8 8		214 218 218 215 215
				9750		17250	

17250		1500		750	
212	16.		C		97 2
210	17.		C		58 2
205	18		C		28 3
201	17.		C		357 3
194	17.	221	2		351 3
18000		2250		1500	
175	12.		230	2	331 3
188	13.		213	3	337 3
178	9		213	2	324 4
193	8.		235	2	331 3
193	7		223	1.	337 4
18750		3000		2250	
			312	3.	330 4
*Nr. 66. 1936. V. 24. 6 ^h 55m.			316	3.	348 5
37.	1 Cu		300	2	357 4
			300	2	3 4
Surface 000		265	1.		3 5
158	3				
150	3	3750		3000	
180	3.		253	2	354 5
175	7		C		354 4
178	5.		C		354 4
192	5		C		339 5
750			330	1.	350 4
192	7	4500		3750	
182	7		354	1.	12 3
178	7		308	1	39 3
175	7		238	2	57 2
172	7		237	4.	57 2
1500			198	3	91 1
178	8	5250		4500	
175	8		205	3	76 1
172	8.		223	3.	C
172	8.		230	3.	313 1
174	8		230	3	278 1
2250		210	2		294 2
178	8.	6000		5250	
178	8.		228	3	294 1
173	4.		218	2	294 1
191	5.		212	3.	321 1
189	4		224	4	321 2
3030			235	3	346 2
192	4	6750		6000	
3150			244	3	346 2
			260	2	323 3
*Nr. 67. 1936. V. 25. 7 ^h 11m.			250	3	323 3
36.	8 Stet		263	3	350 3
			263	3	25 1
Surface 000		7500		6750	
96	2				358 1
93	5.				358 1
93	7.				39 1
98	7				61 1
112	5	Surface 000	45 2		73 1
750					7500
137	4		94 2		47 2
133	3		118 3		72 2
143	1		123 4		57 1
C			112 4		92 1
291	1.		109 3		C
1500		750		8250	

*Nr. 68. 1936. V. 26. 7^h 13m.

32. 0

8250			750	750		750	330 12 330 11 330 11 334 11 330 9
				229 4			
				225 3			
				233 3			
				236 2			
				220 3			
9000			1500	1500		313 10 310 10	5 Ci
				209 2			
				198 2			
				200 1			
				183 2			
				235 4			
9750			2250	235 5		*Nr. 72. 1936. V. 30. 6 ^h 44m. 33. Surface 180 6	5 Ci
				257 4			
				278 6			
				279 5			
				273 5			
				3000 254 4			
10500			3000	257 3		750 181 7	7
				250 3			
				245 3			
				235 3			
				3750 243 4			
				237 5			
11250			4350	238 5		1500 269 1	1
				240 4			
				36. Surface 202 6			
				195 4			
				200 5			
				221 7			
12000			36. Surface 000 4 Acu	228 11		2250 291 2	2
				221 13			
				750 217 15			
				215 14			
				214 13			
				215 13			
12750			36. Surface 000 4 Acu	214 14		2850 135 4	4
				216 15			
				216 14			
				212 14			
				213 16			
				212 16			
13500			2250	750 217 15		*Nr. 73. 1936. VI. 2. 7 ^h 00m. 39. Surface 135 2	10 Steu
				215 14			
				214 13			
				215 13			
				214 14			
				1500 216 15			
14100			35. Surface 000 7 Fst	216 14		1500 163 11	11
				212 14			
				213 16			
				212 16			
				750 338 5			
				338 5			
*Nr. 69. 1936. V. 27. 7 ^h 08m.							
32.		1 Acu					
Surface 000			750	338 5		1500 167 15	15
				326 4			
				327 8			
				330 9			
				331 11			
				332 12			
*Nr. 71. 1936. V. 29. 7 ^h 19m.							
35.							
Surface 000			750	750		1500 164 13	13
				338 5			
				326 4			
				327 8			
				330 9			
				331 11			
*Nr. 72. 1936. V. 30. 6 ^h 44m.							
33.							
Surface 000			750	338 5		1500 164 13	13
				326 4			
				327 8			
				330 9			
				331 11			
				332 12			

		*Nr. 76. 1936. VI. 6. 6 ^h 54m.		*Nr. 79. 1936. VI. 11. 6 ^h 50m.
2250		36. Surface 68 2 8 Cu	38. Surface 90 5 5 Frst	
	165 14	000	000	
	160 13			112 3
	171 14	105 2		127 3
	171 13	121 7		130 8
	169 16	126 9		127 11
3000		122 9		126 13
		117 9	750	
*Nr. 74. 1936. VI. 4. 7 ^h 03m.	34. Sufrace 0			
	360 10	112 9		125 12
	000	123 10		121 13
	352 8	125 12		120 16
	359 7	128 15		124 14
	4 4	128 12		120 13
	2 10	1500	1500	
	7 14	126 15		122 11
750		124 15		115 10
	8 14	115 12		117 13
	10 13	115 14	1950	
	11 13	114 15		
	12 12	2250	*Nr. 80. 1936. VI. 12. 7 ^h 05m.	
	18 13		32. Surface 22 4 8St	
1500			000	
	19 14			29 3
	14 10	33. Surface 45 2 10 Stcu		33 3
	2 8	000		86 3
	2 8			81 3
	13 7	55 3		77 4
2250		64 4	750	
	13 5	74 7		92 4
	8 6	72 10		104 4
	14 6	72 9		95 6
2700		750		93 6
		82 10		93 6
		91 9	1500	
*Nr. 75. 1936. VI. 5. 6 ^h 40m.	37. Surface 0	91 9		95 7
		94 9		
		99 9	1650	
	Surface 90 3	1500	*Nr. 81. 1936. VI. 13. 7 ^h 06m.	
	000	Base: Stcu 1570 m	37. Surface C 2 Acu	
	94 3		000	
	95 6			271 1
102 8				204 2
102 8	33. Surface C			187 3
103 7	000			169 5
750				158 8
	101 8		750	
	102 8	116 2		154 6
	102 9	122 3		144 5
	101 9	115 4		144 5
	109 11	126 4		144 5
1500		750		137 5
	118 8	120 5		137 4
	116 7	108 5	1500	
	117 6	102 4		137 4
	108 6	100 5		142 5
	104 6	102 7		152 5
2250		1500		157 5
	114 7	91 8		148 4
2400		1650	2250	

2250		*Nr. 83. 1936. VI. 16. 6 ^h 50m.		750	
156	4	38. Surface 202 2	3 Cu	309	10
149	4	000		312	9
149	3	C		308	9
151	4	C		300	9
159	4			303	8
3000		239 2		1500	
180	4	242 1		304	9
189	5	241 1		306	11
185	4	750		1800	
185	3	256 1			
167	3	271 2			
3750		254 2		*Nr. 85. 1936. VI. 19. 6 ^h 52m.	
159	3	261 2		35. Surface 45 1	
155	5	269 1		000	
155	6	1500		72	3
161	8	283 1		92	4
168	6	270 2		71	8
4500		275 3		65	8
165	6	260 3		64	7
160	5	260 3		55	9
4800		2250		66	8
		265 3		43	7
		262 3		38	9
*Nr. 82. 1936. VI. 14. 7 ^h 08m.		263 4		1350	
38.		270 4		Base: Stcu 1340 m	
Surface	C	270 5			
000		3000			
215	1	258 4			
215	3	249 4			
224	3	245 4			
231	3	237 5			
247	3	230 4			
750		3750			
237	3	223 4			
236	3	207 4			
225	3	191 4			
229	5	206 4		750	
229	6	222 4		103	4
1500		4500		100	4
231	5	243 4		91	5
225	6	246 6		87	4
224	8	250 7		89	4
227	4	250 7		1500	
226	7	267 8		89	4
2250		5250		89	5
228	8	280 8		81	5
221	9	5400		76	5
223	8			79	5
219	7			2250	
220	9			84	5
3000		*Nr. 84. 1936. VI. 17. 7 ^h 55m.		84	4
		37. Surface 270 2	10 Frst	84	3
		000		87	4
228	7	256 2		3000	
223	4	275 3		79	3
234	6	293 6		57	4
229	5	303 9		64	5
3600		304 9		73	5
Base: Acu 3720 m		750		3600	

*Nr. 87. 1936. VI. 21. 7^h 14^m.

33. Surface 22 1 8 Acu

000 26 2

87 4

96 7

98 7

100 9

750 106 9.

104 11

104 12

106 12.

106 14

1500 106 14.

106 14.

107 16

107 12.

2250 104 14

106 13.

106 12

109 15.

2850 116 13

Surface 90 3 7 Acu

000 110 3

104 6.

112 10.

119 12

119 13

750 114 15.

109 18

107 14.

113 20.

99 17.

1500 105 19

103 20

102 20.

102 19

2250 104 14.

106 15.

106 12

2550 106 12

3000

Surface 22 2 0

000 17 3.

48 4.

42 9.

42 11

41 11

750

750

39

39

38

38

1500

39

30

33

39

40

2250

40

35

28

34

32

3000

C

000

C

3

354

349

348

750

342

340

335

341

346

1500

342

342

346

353

344

2250

344

336

333

330

328

3000

333

335

337

334

336

3750

336

331

4050

*Nr. 91. 1936. VI. 25. 7^h 42^m.

37.

Surface

000

225

246

252

258

268

263

264

265

267

266

271

1500

278

281

1800

Base:

Stcu

900

m

*Nr. 92. 1936. VI. 26. 7^h 09^m.

33.

Surface

000

315

3

331

317

313

310

317

5

327

324

317

324

327

1500

331

332

1800

*Nr. 93. 1936. VI. 27. 7^h 23^m.

34.

Surface

000

225

3

222

231

233

230

234

750

258

280

286

275

1

Cu

*Nr. 89. 1936. VI. 23. 6^h 56^m.

34. Surface 22 2 0

000 17 3.

48 4.

42 9.

42 11

41 11

750

39

39

38

38

1500

39

30

33

39

40

2250

40

35

28

34

32

3000

C

000

C

3

354

349

348

750

342

340

335

341

346

346

2250

344

336

333

330

328

3000

333

335

337

334

336

3750

336

331

4050

*Nr. 90. 1936. VI. 24. 6^h 47^m.

37.

Surface

000

225

246

252

258

268

263

264

265

267

266

271

1500

278

281

1800

Base:

Stcu

900

m

2250	190	2	1500	222	5	*Nr. 98. 1936. VII. 17. 7 ^h 02m.
	213	3		219	6	34. Surface 225 7
	173	2		221	7	000
	203	4		223	7	216 4
	207	4		225	9	258 9
3000			2250			251 9
	167	3		230	7	260 9
	142	3		230	7	260 14
	158	3		225	8	750
	170	3		230	5	263 15
	148	3		243	5	263 19
3750			3000			264 20
	148	5				263 17
	162	4				260 16
	146	4				34. Surface 1500
	152	5				30 St
	160	6		360	2	257 18
4500				000		1650
	155	6		328	1	
	158	6		354	2	*Nr. 99. 1936. VII. 18. 7 ^h 03m.
	145	6		12	4	34. Surface 248 5
	149	7		450		000
	145	6		Base : St 380 m		265 7
5250						267 6
	153	8				268 8
	148	7				280 10
	141	7		270	3	750
	144	6		279	2	275 12
	145	5		274	4	282 14
6000				281	6	282 14
	146	6		297	5	280 14
	146	6		301	4	282 14
	148	8		750		282 14
	149	9				1500
	142	7		297	6	
6750				290	5	
	158	11		275	5	*Nr. 100. 1936. VII. 19. 6 ^h 35m.
	155	9		260	5	34. Surface C
	153	10		1350		000
	156	11				200 3
	142	9				192 4
7500						206 4
	145	12		33. Surface 180		226 4
				9 Stcu		245 5
7650						750
				192	6	252 5
				202	12	252 6
				220	9	257 7
				236	11	253 8
				226	12	263 8
				750		
				229	16	
				227	17	
				227	16	1500
				226	15	280 7
				226	18	306 7
				1500		300 9
						307 7
				225	17	300 8
				223	20	
				221	20	2250
				223	24	291 7
				224	23	298 7
				2250		297 7
						289 9
				224	24	285 8
1500				2400		3000

3000 295 8 3150	Nr. 101. 1936. VII. 20. 7 ^h 05 ^m . 33. Surface 338 6 000 348 6. 338 6. 343 7 341 7 600 Base : Stcu 660 m	750 1500 1500 2250	69 4 74 3. 89 3 95 3. 87 3	1500 175 9. 175 10. 181 10. 178 9.
			84 3 84 3 90 3 99 3. 106 3	2100 *Nr. 106. 1936. VII. 28. 7 ^h 00 ^m . 33. Surface 135 4 000 140 6. 134 11 138 9 143 10. 146 6.
*Nr. 102. 1936. VII. 21. 6 ^h 37 ^m . 34. Surface 135 3 000 153 4 147 7 148 7. 149 8 152 7. 750 153 8 165 6. 165 6. 165 8. 170 6. 1500 181 5 193 5. 208 11 216 12. 201 13. 2250 212 14. 204 14. 2550	3000 3750 4500	177 5. 190 5 185 4. 166 3. 130 3	750 1500 145 5. 1650	*Nr. 107. 1936. VII. 31. 7 ^h 15 ^m . 35. Surface 315 3 000 319 3 303 2 282 3 291 5. 266 4.
		130 5. 139 6 129 6. 146 7 134 6. 4500	113 6. 113 6. 113 6. 113 6. 113 6. 113 6.	750 251 5. 247 6. 251 6. 243 8. 248 8.
Nr. 103. 1936. VII. 23. 7 ^h 20 ^m . 33. Surface C 000 C C C C C C 750 138 3 135 8. 1050	10 Cu	6000 106 8 6150	117 9 114 8	1500 250 9 244 9. 243 11. 240 10. 239 9.
		Surface 180 1 000 183 2 201 5 201 7 195 7. 195 8. 750	0	2250 239 9 239 10. 232 13 232 16. 237 16 3000 232 16. 3150
*Nr. 104. 1936. VII. 25. 6 ^h 53 ^m . 33. Surface 22 1 000 40 3 43 3. 89 3. 74 3. 74 4 750	1 Aeu	195 9 190 9 184 9 183 9. 181 9.	1500	
		1500		

*Nr. 108. 1936. VIII. 2. 7^h 08^m.

34. Surface 135 7 3 Ci

000 133 5.

142 14

148 14

144 16

143 17.

750 142 18

140 20.

138 18.

138 20.

136 19.

1500 134 21

131 20

130 20

1950 102 5.

98 4.

*Nr. 109. 1936. VIII. 9. 6^h 48^m.

37. Surface C 6 Stcu

000 70 1.

80 4

25 2.

8 1.

317 3

750 317 4

309 3

309 3

293 3

291 4

1500 271 3.

283 4

289 3

301 3

313 3

2250 308 3

305 3

309 1.

5 1.

C

3000 338 1.

325 2

325 2

317 1.

274 1.

3750 263 3

271 3.

268 3

246 3

245 4

4500 750

4500

5250

5700

35.

Surface

000

10 Cist

Surface

C

10 Stcu

750

Base : Stcu 750 m

32.

Surface

000

3 Cu

750

30.

Surface

000

10 St

750

2250

3000

4500

750

2100

3750

4500

450

30.

Surface

000

10 St

750

2100

3750

4500

450

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

750

2100

3750

4500

30.

Surface

000

10 St

7

*Nr. 116. 1936. IX. 11. 7^h 05m.
34. Surface C
000 10 Stcu

750 295 4·
322 4·
346 4

*Nr. 120. 1936. IX. 16. 7^h 04m.
33. Surface C
000 0

335 1·
35 3·
359 4·
6 5·
13 7
750 1500 15 4·
13 9·
12 10·
11 11·
10 12·
8 12

296 3
314 4
320 7
319 7
322 7

13 9·
12 10·
11 11·
10 12·
8 12
1500 2250 15 4·
28 6·
36 7·
37 8·
40 8

750 323 8
325 7
316 8
316 8·
322 7

10 12·
9 8·
19 7·
9 8
2100 Base: Stcu 2080 m
31. Surface C
000 3000 50 8·
47 10

1500 342 6·
341 8
326 7·
5 6·
352 5·

*Nr. 117. 1936. IX. 12. 6^h 55m.
31. Surface C
000 2 Acu

83 2·
73 5·
63 5·
50 6·
36 7
750 3750 63 14·
4050 59 15·

2250 5 4·
356 6·
352 5·
343 5·
339 3·

12 6·
4 7·
360 7·
3 8
26 7
1500 348 6
352 5
750 2 5·

3000 342 6
355 5·
349 4
357 4·

33 6·
34 7·
34 8
42 8
38 8·
2250 358 5·
41 9

3750 10 4
4 4·
351 5·
15 4·
16 4

39 8·
32 8·
37 9
41 8·
3000 20 5
41 10·
41 12·
47 13·

4500 16 5·
12 4
11 3
21 3·
17 5·

3450 2250 8 5·
14 5·
1500 21 5·
20 7
20 5

5250 18 5
11 4·
25 4·
22 5

*Nr. 118. 1936. IX. 13. 7^h 00m.
33. Surface C
000 7 Stcu

258 3·
283 6·
283 5·
278 6·
281 4·
750 3000 19 8·
24 8
3450 37 5
30 5·
21 7
19 8·
24 8
3000 35 7·
26 7·
32 6·

6000 33 6
28 5·
28 6
22 5·
35 5·
6750

750		*Nr. 128. 1936. IX. 28. 7 ^h 05m.		1500	
151	1	34. Surface	22	196	4
163	1	000	3	204	6
188	2			206	7
203	2			204	5
236	3			204	5
1500			41	2250	
			39		204
238	3		40		205
243	3	750			218
236	4				230
1950			38		200
Base : Stcu 1920 m			38		2
			37		
			36	3000	
			34		217
*Nr. 127. 1936. IX. 27. 7 ^h 30m.		1500		222	3
37.		10 Ast	27		22
Surface	45	1	29		
000			35	3300	
			33		
33	3		33		
46	7		34		
46	9	2250			
46	11		37		
35	12		2400		
750					
35	12	*Nr. 129. 1936. IX. 29. 7 ^h 22m.			
40	13	31. Surface	22		
42	14	000	8		
43	15				
34	15		40	750	
1500			45		44
			57		58
32	16		65		8
33	14	750			59
28	15		67		12
28	14		65		53
21	13		64		12
2250			63		53
			60		53
18	12		65		12
22	10	1500			315
24	7		74		4
24	8		85		
14	8		85		
3000			97		
			97		
14	8	2100			316
8	6				330
11	7				345
2	4	*Nr. 130. 1936. X. 2. 6 ^h 52m.			340
316	3	38. Surface	C		12
3750		000			344
			7 Aeu		10
357	3				346
264	3		196		11
268	3		201		350
279	4		207		11
285	7		221		351
4500		750	223		353
			219	1950	11
260	7		216		
246	8		207		
246	8		202		
251	8		201		
251	9	1500			
5250				450	

Nr. 145. 1936. XI. 20. 7 ^h 17m.				Nr. 148. 1936. XII. 27. 7 ^h 02m.				750				
28.			0	28.	Surface	202	5	750	359	14		
	Surface	45	1		000	220	7		7	14		
	000	70	3			246	11		6	14		
		96	11			264	9		6	16		
		99	14			272	9		3	17		
		103	16			277	9		1	16		
	600				750	280	9		359	15		
						300	9		359	18		
						307	10		356	17		
*Nr. 146. 1936. XI. 21. 7 ^h 20m.					316	12		2100				
26.			10 Frst		321	11		Nr. 151. 1936. XII. 30. 7 ^h 10m.				
	Surface	225	5		1500	322	9	28.	Surface	C		
	000	220	8			322	11		000			
		233	12			331	11		190	4		
		255	17			343	11		202	4		
		261	12			347	11		206	3		
		262	14			351	11		209	3		
	750					349	13		229	2		
		268	18			360	13		750			
		272	19		2700				260	1		
		272	13						255	2		
		292	14		*Nr. 149. 1936. XII. 28. 7 ^h 23m.				286	1		
		309	13		28.	Surface	248	4 Cist		283	3	
	1500				000	7				288	4	
*Nr. 147. 1936. XI. 27. 7 ^h 20m.					1500	283	5					
28.			10 St			307	14		313	4		
	Surface	90	2			313	15		329	4		
	000	115	3			316	14		329	5		
		132	9			318	16		337	7		
		156	13						333	7		
		162	12		750	318	16		2250			
		170	12			319	17		327	7		
	750					322	20		323	8		
		177	15			321	19		322	9		
		178	13		1350				329	7		
		177	12						327	8		
		181	13		*Nr. 150. 1936. XII. 29. 7 ^h 26m.				3000			
		179	13		28.	Surface	338	0	332	8		
	1500				000	331	3		332	8		
						358	8		333	9		
						360	11		327	11		
						1	13		324	10		
						5	13		3750			
					750				327	9		
									3900			

C Z E Ś C II. — P A R T II.

Podstawy chmur. — Bases of the clouds.

1936.

Nr.	Data i godzina Date and hour			Rodzaj chmur Cloud form	Podstawa Base	Zachmurzenie Cloud amount	Nr.	Data i godzina Date and hour			Rodzaj chmur Cloud form	Podstawa Base	Zachmurzenie Cloud amount
1	I	18	7 44	St	250	10	26	VI	19	6 52	Stcu	1340	10
2		26	7 46	Stcu	700	10	27		25	7 42	Stcu	900	10
3		31	7 17	St	310	10	28	VII	14	7 04	St	380	10
4	II	4	7 51	Stcu	780	10	29		20	7 05	Stcu	660	10
5		7	7 49	St	250	10	30	VIII	18	7 28	Stcu	750	10
6	II	8	7 39	Stcu	850	10	31	VIII	22	7 10	St	100	9
7		26	7 50	St	420	10	32		28	7 31	St	140	10
8	III	7	7 43	St	150	10	33	IX	5	7 26	St	260	10
9		10	7 15	Stcu	1140	10	34		11	7 05	Stcu	2080	10
10		11	7 43	St	90	10	35		17	7 20	Stcu	750	10
11	III	13	7 55	St	220	10	36	IX	25	7 11	Stcu	1920	10
12		15	7 52	St	80	10	37		26	7 33	St	200	10
13		31	7 35	Stcu	710	10	38		29	7 22	Stcu	2240	10
14	IV	4	7 32	Stcu	1650	10	39	X	8	7 23	St	100	10
15		9	7 22	Stcu	550	10	40		10	7 30	St	350	10
16	IV	14	7 09	Frst	250	10	41	X	21	7 22	Stcu	2080	10
17		14	7 09	Stcu	1790	10	42		22	7 26	Cu	1050	9
18		17	7 10	St	220	8	43		23	7 30	St	720	10
19	V	4	7 15	Stcu	700	8	44	XII	13	7 35	St	260	10
20		5	7 42	Stcu	1540	10							
21	V	14	7 05	Frst	340	9							
22		21	7 12	Ast	1880	10							
23		22	7 08	Stcu	2020	10							
24	VI	7	7 14	Stcu	1570	10							
25		14	7 08	Acu	3720	9							

Tablica I
 №№ 1-64, 66, 67
 69-86 ex 1936 r

Liczby 1,2,3... oznaczają wysokość w km - The numbers 1,2,3... indicate the altitude in km

10 8 6 4 2 0 40 m/sek

Tablica II

The numbers 1,2,3... indicate the altitude in km

Tablica III
N° N° 86-151 ex 1936r

Liczby 1,2,3... oznaczają wysokość w km - The numbers 1,2,3... indicate the altitude in km

W. OKOŁOWICZ.

Temperatury gruntu w Wilnie.

Die Bodentemperaturen in Wilno.

I. W S T E P.

Praca niniejsza opiera się na materiale obserwacyjnym, zebranym przez Zakład Meteorologii U. S. B. w latach 1927—1935.

Za względu na materiał jest więc ona dalszym ciągiem pracy K. Jantzena „O przebiegu rocznym temperatur ziemnych w Wilnie”, (Biulet. Obserw. Astronom. w Wilnie II Meteorologia Nr. 4, 1927).

Materiał obserwacyjny z okresu 1927—1935 jest bardziej jednolity, aniżeli ten, który został opracowany przez K. Jantzena¹⁾. Umożliwiło to potraktowanie niektórych zagadnień w sposób odmienny.

II. MATERIAŁ OBSERWACYJNY.

Miejsce obserwacji. Stacja meteorologiczna Zakładu Meteorologii U.S.B. mieściła się w okresie 1927—1935²⁾ przy Coll. Czartoryskiego (ul. Zakretowa 23), na krawędzi tarasu fluwialnego Wilii, wzniesionego ca 40 m ponad jej poziom. Czynną powierzchnię gruntu stanowił trawnik, skrapiany latem w dnie suche hydrantem, o przeciętnej wysokości trawy 10 cm. która pokrywała 20 cm warstwę gleby silnie spłaszczonej. Pod tą glebą znajduje się gruboziarnisty słabo zlimityzowany piasek, o niewyraźnym uwarstwieniu.

Od strony Wilii (na N), ogródek otoczony był wysokim na 2 m żywopłotem z bzu. Na wschodzie wznosiła się murowana szopa, o wysokości 4 m, oraz żywopłot z dzikiego wina (na N od szopy). Od południa i od zachodu ogródek otaczał parkan sztachetowy.

Termometry ziemne były rozmieszczone w sposób następujący:³⁾ 6 termometrów ziemnych w drewnianych oprawach przy zachodnim boku ogrodu,

¹⁾ W okresie 1918—1926 miejsce obserwacji zmieniano trzykrotnie, a tem samem przebieg temperatur ulegał zmianom w zależności od lokalnych warunków fizycznych podłożu.

²⁾ W roku 1936 ogródek meteorologiczny został przeniesiony o kilkaset metrów na zachód od miejsca poprzedniego, w związku z wybudowaniem nowego gmachu. Pomiary temperatur gruntu uległy przytem przerwie.

³⁾ Termometry w drewnianej oprawie zostały w ten sposób ustawione w 1930 r., w związku z rozszerzeniem ogrodu meteorologicznego.

w linii prostopadłej do zbocza tarasu; termometr na 25 cm głębokości, w mosiężnej oprawie, mniej więcej pośrodku ogródka; trzy pozostałe termometry w mosiężnej oprawie (50, 100, 150 cm) w zachodniej części ogródka na linii równoległej do szopy, w odległości 4 m od niej. W ten sposób te ostatnie, znajdująły się od wschodu słońca w cieniu, aż do godz. 7 $\frac{1}{2}$ (w lipcu) względnie 10-tej (w styczniu), zależnie od zmiennej, z porą roku, deklinacji słońca. Przypuszczalnie fakt ten nie wywarł większego wpływu na wskazania tych termometrów.

Opis termometrów. Obserwacje temperatur prowadzono na 25, 50, 75, 100, 125 i 150 cm głębokości. Przy pomiarach temperatur gruntu używano termometrów dwojakiego rodzaju: do grudnia 1933 r. w oprawach drewnianych oraz od początku 1933 r. w oprawach mosiężnych. Te ostatnie opuszczały drewniane drążki w rury ebonitowe, zakończone oprawkami metalowymi, do których przylutowane są płytki poziome o powierzchni ca 100 cm².

Załączony spis (Tabl. 1) podaje, jakie termometry ustawione były w różnych okresach czasu na poszczególnych poziomach obserwacyjnych.

TABLICA 1. — TABELLE 1.

Spis termometrów ziemnych używanych w okresie 1927 — 1935.

**Das Verzeichnis der in den Jahren 1927 — 1935 benutzten
Bodenthermometer.**

Głębokość Tiefe cm	Cechy termometrów Kennzeichen der Thermometer	od von	do bis
25	„G“ Berent, Plewiński Reaumur bez Nr. „C“ Optyk Rubin bez Nr.	D D D	30.XII.26 — 29.XII.31 25.IV.32 — 3.I.33 3.I.33 — 12.XII.33
50	„C“ Berent, Plewiński	D	10.XII.26 — 12.XII.33
75	Berent, Plewiński bez Nr. Nr. 7439 Nr. 108	D D D	31.XII.26 — 18.III.28 11.IV.28 — 27.XI.30 28.XI.30 — 10.XII.33
100	Nr. 2457	D	31.XII.26 — 11.XII.33
125	„A“ Berent, Plewiński „B“ Berent, Plewiński	D D	8.XII.26 — 30.XII.27 30.XII.27 — 11.XII.33
150	Berent, Plewiński Nr. 113	D	28.XII.29 — 4.XII.33
25	Fuess Nr. 9305	M	16.V.33 — 31.XII.35
50	Fuess Nr. 9366	M	24.XI.32 — 31.XII.35
100	Kurowski Nr. 6676	M	20 XI.32 — 31.XII.35
150	Kurowski Nr. 6674	M	21.XI.32 — 31.XII.35

D — w drewnianej oprawie
— in Holzbekleidung

M — w mosiężnej oprawie
— in Messingbekleidung

Poprawki niektórych termometrów zostały obliczone przez K. Jantzena i M. Żmijewskiego w latach 1925 i 1926, na podstawie porównań w klatce meteorologicznej. W tablicy 2 umieszczono przy tych termometrach gwiazdkę. Poprawki pozostałych termometrów opracowane zostały przez autora z przeciętnej ilości 107 porównań dla każdego z termometrów, z termometrem Nr. 84522, którego poprawkę przyjęto za równą 0.00¹⁾. Porównania były dokonane w termostacie. Poprawki termometru „C” — optyk Rubin w drewnianej oprawie z głębokości 25 cm, obliczono po porównaniu z termometrem Nr. 9305 (w mosiężnej oprawie), na podstawie jednocośnych odczytów z okresu 40 pentad.

Wzór na poprawki ma następującą ogólną linową postać:

$$\Delta = at + b$$

gdzie t jest temperaturą odczytaną w C°, zaś Δ — szukaną poprawką. Wartości na a i b dla poszczególnych termometrów podane są w tablicy 2-ej.

Charakterystyka materiału obserwacyjnego. Poza przerwami w obserwacjach temperatur gruntu, spowodowanymi uszkodzeniami termometrów jak np. na głębokości 25 cm, gdy od chwili stłuczenia termometru „G” Berent, Plewiński, upłynęło 4 miesiące czasu do ustawienia termometru „Reaumur bez Nr.”, szereg przerw nastąpiło z powodu przymarznięcia termometrów w drewnianych oprawach do skrzynek, w które je opuszczano, względnie z powodu zalania termometrów wodą w czasie roztopów wiosennych. Wad tych termometry w rurach ebonitowych nie posiadają.

Przez przerwy te materiał obserwacyjny z okresu 1927—33 został w znacznym stopniu uszczuplony.

Niektóre krótkotrwałe przerwy w obserwacjach, przy nieznacznych wahaniach temperatury (np. na większych głębokościach), nie wywierały, zdaniem autora, istotnego wpływu na średnie miesięczne. Średnie z tych miesięcy, w których takie przerwy miały miejsce, obliczono z posiadanych obserwacji²⁾. Pozatem, gdy powyższego „sposobu rekonstrukcji” (metoda A), nie można było użyć, t. zn. przy przerwach dłuższych lub przy znaczniejszych zmianach temperatury, stosowano metodę „B”. W wyjątkowych wypadkach — „C”, względnie „D”. Poniżej podane są metody stosowane przy rekonstrukcji przerw, oraz spis przerw (Tabl. 3), które udało się przy pomocy tych metod zrekonstruować.

Metody rekonstrukcyj.

- (A) Temperatura średnia miesięczna = średniej z posiadanych obserwacji.
(B) $t = t_m + (T - T_m)$
gdzie t — śred. mies. temperatura
 t_m — śred. z m pentad tegoż miesiąca
 T — śred. mies. wieloletnia
 T_m — śred. wieloletnia z tychże pentad co i t_m

¹⁾ Według świadectwa Physik.-Technische Reichsanstalt w Berlinie poprawki tego termometru, w granicach od 0° do +40°, nie przekraczają 0°.02.

²⁾ W spisie zrekonstruowanych przerw w obserwacjach podano tylko dłuższe luki w ten sposób odtworzone (Metoda „A”).

$$(C) \quad t_a = \frac{t_{a-25} + k t_{a+25}}{1+k}$$

gdzie $k = \frac{T_{a-25} - T_a}{T_a - T_{a+25}}$; dla temperatur ujemnych przyjęto $k = 1,34$

t_a, t_{a-25}, t_{a+25} — temp. śred. mies. w okresie uważanym oraz
 T_a, T_{a-25}, T_{a+25} — temp. śred. mies. wieloletnie na głębokościach a , $a-25$ i $a+25$ cm

$$(D) \quad t_a = \frac{t_{a-25} + t_{a+25}}{2} \text{ oznaczenia jak poprzednio.}$$

TABLICA 2. — TABELLE 2.

Poprawki (Δ) odczytów temperatur (t) :Die Verbesserungen (Δ) der Ablesungen der Temperatur (t) :

$$\Delta = at + b.$$

Nr.	Cechy termometrów Kennzeichen der Thermometer	Przedział temperatur Temperaturintervall	a	b
1	„G“ Berent, Plewiński * \leq + 4.0 + 4.1 \pm 10.0 + 10.1 \pm 24.0	0.074 0.000 — 0.014	— 0.29 0.00 0.09
2	Reaumur bez Nr.	— 10.0 + 25.0	1.257	— 0.31
3	„C“ Optyk Rubin	+ 0.0 + 14.4 + 14.5 + 20.5	— 0.009 — 0.095	0.70 1.95
4	„C“ Berent, Plewiński \leq + 8.9 + 9.0 + 18.0	0.000 0.009	— 0.04 — 0.12
5	Berent, Plewiński bez Nr. *	— 11.5 + 18.5	0.020	— 0.32
6	Nr. 7439 *	— 10.4 + 6.5 + 6.6	0.041 0.000	0.32 0.05
7	Nr. 108	— 5.8 — 1.4 — 1.3 + 17.3 + 17.4 + 20.4	0.020 0.000 0.017	0.07 0.05 — 0.24
8	Nr. 2457	— 4.0 + 0.3 + 0.4 + 19.0	0.034 0.000	— 0.07 — 0.05
9	„A“ Berent, Plewiński *	— 2.0 + 16.7	0.000	0.00
10	„B“ ” ” ”	— 3.0 + 8.0 + 8.1 + 21.0	0.005 0.010	0.02 — 0.02
11	Berent, Plewiński Nr. 113	— 3.5 + 26.0	0.007	0.15
12	Fuess Nr. 9305	— 3.4 + 26.0	0.003	— 0.08
13	Fuess Nr. 9366	— 5.5 + 30.0	0.004	— 0.14
14	Kurowski Nr. 6676	— 5.0 + 0.5 + 0.6 + 4.2 + 4.3 + 10.7 + 10.8 + 14.8 + 14.9 + 30.0	0.000 — 0.025 0.000 0.020 0.000	— 0.11 — 0.10 — 0.21 — 0.42 — 0.12
15	Kurowski Nr. 6674	— 5.8 + 30.2	0.001	— 0.04

* — Poprawki wyznaczyli K. Jantzen i M. Żmijewski.

— Verbesserungen sind von K. Jantzen und M. Żmijewski bestimmt.

Ostatnią metodę zastosowano w wypadku, gdy k (ze wzoru C) dla danego miesiąca w różnych latach było bardzo zmienne (przyjęto k = 1).

Konieczność rekonstrukcji przerw w roku 1931, które na głębokości 100 cm stanowią około 24% okresu rocznego, została podyktywana tem, że rok ten jest jednym z dwóch lat, w ciągu których były prowadzone obserwacje temperatur według termometrów w drewnianych oprawach na wszystkich głębokościach od 25 do 150 cm co 25 cm.

TABLICA 3. — TABELLE 3.

**Spis zrekonstruowanych przerw w obserwacjach.
Die rekonstruierten Unterbrechungen in den Beobachtungen.**

Nr.	Głębokość Tiefe cm	Granice przerw Die Grenzen der Unterbrechungen	P	R
1	25	6.IV.31 — 13.IV.31	8	A
2	50	2.I.32 — 13.I.32	12	A
3	"	16.III.33 — 31.III.33	16	B
4	"	13.XII.33 — 31.XII.33	19	B
5	75	18.III.28 — 31.III.28	14	B
6	"	1.IV.28 — 11.IV.28	11	B
7	"	31.I.30 — 5.II.30	6	B
8	"	30.I.31 — 13.II.31	15	B
9	100	31.I.31 — 2.III.31	31	C
10	"	3.III.31 — 1.IV.31	30	D
11	"	2.IV.31 — 12.IV.31	11	B
12	"	29.XI.31 — 16.XII.31	18	B
13	125	1.I.32 — 13.I.32	13	B
14	"	9.III.32 — 31.III.32	23	B
15	"	1.IV.32 — 10.IV.32	10	A
16	"	14.III.33 — 25.III.33	12	A
17	"	10.XII.33 — 31.XII.33	22	B
18	150	20.III.31 — 1.IV.31	13	A
19	"	2.IV.31 — 12.IV.31	11	A

P — Długość przerw w dniach.

— Die Dauer der Unterbrechungen in Tagen.

R — Metoda rekonstrukcji.

— Die Rekonstruktionsmethode.

TABLICA 4. — TABELLE 4.

Łączna długość przerw i ich stosunek (%) do całego okresu uwzględnionego w średnich wieloletnich.

Die totale Unterbrechungsdauer und ihr Verhältnis (%) zur ganzen Periode, die in den vieljährigen Temperaturmitteln berücksicht war.

Głębokość Tiefe cm	Długość przerw Unterbrechungsdauer			Głębokość Tiefe cm	Długość przerw Unterbrechungsdauer		
	dnie Tagen	%	dnie Tagen		%		
25	8	0.3	100	90	3.1		
50	47	1.4	125	80	3.1		
75	46	2.5	150	24	1.3		

Po zrekonstruowaniu wyżej podanych przerw uzyskano na różnych głębokościach pełne roczne serje obserwacyjne, których spis przedstawiono w tablicy 5-tej.

Z całego tego materiału wzięto do dokładnej analizy przebiegu rocznego temperatur gruntu serię dwuletnią (1930 — 31), z okresu, w czasie którego prowadzono obserwacje na wszystkich głębokościach od 25 do 150 cm co 25 cm, oraz serię pięcioletnią (1930 — 31 i 1933 — 35), z tych głębokości, na których ustawione były termometry w mosiężnych oprawach (25, 50, 100 i 150 cm).

W tych średnich pięcioletnich połączono materiał zebrany przy pomocy termometrów w drewnianych (1930 — 31) i mosiężnych (1933 — 35) oprawach.

TABLICA 5. — TABELLE 5.

Wykaz materiału obserwacyjnego uwzględnionego w pracy: lata i głębokości.

Die vollen Jahresserien der Beobachtungen der Bodentemperaturen.

Głębokość Tiefe	1927	1928	1929	1930	1931	1932	1933	1934	1935
25	D	D	D	D	DR	—	M	M	M
50	D	D	D	D	D	DR	DR;M	M	M
75	D	DR	D	DR	DR	—	—	—	—
100	D	D	D	D	DR	—	M	M	M
125	D	D	D	D	D	DR	DR	—	—
150	—	—	—	D	DR	—	M	M	M

D — termometry w drewnianych oprawach. M — w mosiężnych oprawach.

— Thermometer im Holz. — Thermometer im Messing.

R — lata częściowo rekonstruowane.

— Die Jahre mit rekonstruierten
Unterbrechungen der Beobachtungen.

Coprawa wskazania termometru w zależności od rodzaju oprawy różnią się znacznie, ale ponieważ średnie pięcioletnie składają się z materiału jednakoko-

wego (choć nie jednolitego) dla wszystkich głębokości, więc średnie te uległy na wszystkich głębokościach tym samym zniekształceniom.

Dla scharakteryzowania wielkości, do jakich dochodzą różnice wskazań jednych i drugich termometrów podano tu (Tabl. 6) średnie miesięczne temperatur z głębokości 50 cm. Jedynie na tym poziomie w ciągu okresu pełnorocznego (1933) prowadzone były równolegle obserwacje według termometrów w mosiężnych i drewnianych oprawach. Jest to zbyt szczupły materiał, aby na jego podstawie można było opracować ogólniejsze prawa redukcji jednych termometrów na drugie, bez ryzyka wprowadzenia nowych, nieznanych błędów. Ma on jedynie pewne orientacyjne znaczenie.

TABLICA 6. — TABELLE 6.

Porównanie wskazań termometrów w drewnianej (A) i mosiężnej (B) oprawie.
Vergleichung der Ablesungen der Thermometer in Holz—(A) und in Messingbekleidung (B).

Głębokość: 50 cm — 1933
Tiefe:

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I-XII	Ampl.
A	-0.23	-0.69	-0.55	2.32	10.62	15.16	18.12	17.04	13.56	8.90	3.78	-0.64	7.28	19.84
B	-1.44	-1.03	-0.66	3.28	10.69	15.13	18.41	16.84	12.88	8.82	3.51	-1.36	7.09	20.36
A-B	1.21	0.34	0.11	-0.96	-0.07	0.03	-0.29	0.20	0.68	0.08	0.27	0.72	0.19	-0.52

Najmniejsze różnice występują w lecie, największe, gdy ziemia przemarza lub jest nasyciona wodą. W okresie zamarzania gleby mrznie również woda, którą przepojona jest drewniana oprawa termometru; zjawiska z tem związanego zakłócają prawdopodobnie najsilniej temperaturę odczytaną na termometrze w drewnianej oprawie.

Termometry ziemne odczytywano raz na dobę o godz. 13-tej czasu lokalnego, podczas południowej obserwacji klimatycznej.

III. PRZEBIEG ROCZNY TEMPERATUR GRUNTU.

Ogólna charakterystyka. Roczne przebiegi temperatur gruntu scharakteryzowane są przez liczby zestawione w tablicach 7 i 8-ej.

Z obu tablic widać już na pierwszy rzut oka, że:

1. Średnia roczna temperatura wzrasta z głębokością, przytem temperatura powietrza jest znacznie niższa, aniżeli temperatura gruntu.
2. Amplituda roczna maleje w miarę posuwania się w głąb.
3. Czas występowania minimum i maximum opóźnia się coraz bardziej z głębokością.

Są to zjawiska ogólnie znane. Dalej będą one szczegółowo omówione.

W poszczególnych miesiącach przekrój termiczny gruntu przybiera bardziej skomplikowany obraz. Na jesieni i zimą t. zn. w miesiącach od XI do II właściwie, temperatura obniża się wyraźnie ku powierzchni od 150 cm, gdzie jest

TABLICA 7. — TABELLE 7.

Średnie dwuletnie temperatury (1930—31) w/g termometrów w drewnianych oprawach.
Zweijährige Mitteltemperaturen (1930—31) aus den Thermometern in Holzbekleidung.

Głęb. Tiefe cm	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I—XII
Powier- zna Luft	-3.50	-5.36	-2.04	5.69	14.54	15.96	17.78	16.37	10.10	6.67	1.52	-3.52	6.19
25	-1.26	-3.24	-0.99	5.08	14.02	17.26	18.56	17.29	12.15	7.61	3.68	-0.28	7.49
50	-0.38	-2.36	-1.20	3.24	12.45	17.11	18.34	17.32	12.88	8.31	4.40	0.61	7.56
75	0.80	-0.85	-0.58	2.84	11.34	16.29	17.72	17.21	13.40	9.06	5.56	1.53	7.86
100	1.61	0.14	-0.03	2.22	10.13	15.20	16.97	16.81	13.66	9.61	6.07	2.74	7.93
125	2.18	0.74	0.34	2.04	8.80	13.91	16.00	16.18	13.60	9.90	6.57	3.06	7.78
150	3.24	1.93	1.38	2.39	7.68	12.72	14.96	15.61	13.75	10.57	7.58	4.32	8.01

TABLICA 8. — TABELLE 8.

Średnie pięcioletnie temperatury: 1930—31 w/g termom. w drewn. oprawach i 1933—35 w/g termom. w mosiężnych oprawach.

Fünfjährige Mitteltemperaturen: 1930—31 — Thermometer in Holzbekleidung und 1933—35 — Thermometer in Messingbekleidung.

Głęb. Tiefe cm	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I—XII
Powier- zna Luft	-5.52	-3.83	-0.59	6.07	13.01	16.40	17.62	16.41	11.84	7.75	1.57	-4.27	6.37
25	-1.86	-1.61	-0.40	5.39	13.38	17.50	19.07	17.87	13.16	8.94	3.84	-0.43	7.90
50	-1.33	-1.42	-0.61	4.25	11.93	16.40	18.28	17.47	13.77	9.37	4.41	0.40	7.74
100	0.70	0.11	0.14	3.12	10.14	14.74	17.09	16.97	14.19	10.36	6.03	2.39	8.00
150	2.43	1.47	1.23	2.88	8.20	12.55	15.29	15.92	14.20	11.25	7.65	4.10	8.10

najcieplej, aż do 2 m w powietrzu. W tych więc miesiącach przez obserwowaną warstwę gruntu płynie prąd ciepła w górę. W marcu temperatura spada od 150 cm w kierunku powierzchni, aż do 50 cm, następnie nieco wzrasta na 25 cm i znowu opada w porównaniu z temperaturą powietrza. Maj i kwiecień są to jedyne miesiące, w czasie których powietrze jest cieplejsze od gruntu (licząc od 25 cm), t. zn. kiedy od powierzchni prąd ciepła skierowany jest zdecydowanie w głąb. W czerwcu i lipcu temperatura powietrza jest już niższa aniżeli na 25 cm, poniżej tej głębokości temperatury maleją. W sierpniu najwyższą temperaturę obserwujemy na 50 cm (Tabl. 7), od której to głębokości temperatura obniża się w dół i w górę. Następnie warstwa najcieplejsza posuwa się w głąb i znika pod poziomem obserwacyjnym 150 cm.

Przebieg wyrównany. Przebieg rzeczywisty w stosunku do wyrów-

nanego¹⁾ wykazuje, powtarzające się stale w tych samych porach roku, odchylenia. W różnych latach, w zależności od pogody, zmienia się amplituda tych odchyleń. Posiadają one wyraźny półroczny przebieg.

Czasokresy dodatnich wychyleń od wyrównanego przebiegu temperatur, trwają jak to widać z tablic 9-ej i 10-ej, mniej więcej od listopada do stycznia, względnie od grudnia do lutego, oraz od maja lub czerwca do lipca i sierpnia włącznie. Odchylenia ujemne występują pomiędzy okresami dodatnich wychyleń.

TABLICA 9. — TABELLE 9.

Różnice temperatur: rzeczywiste — wyrównane z dwulecia (1930—31).
Die Differenzen der Temperatur: wahre — ausgeglichene aus zwei Jahren: 1930 und 1931.

Głęb. Tiefe cm	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	p.
Powietrze Luft	1.91	-1.39	-2.23	-0.27	2.76	-0.15	0.00	0.04	-2.07	0.26	0.94	0.22	1.62
25	2.00	-0.87	-2.17	-1.34	2.08	0.99	0.32	-0.05	-1.65	-0.96	0.63	1.01	1.56
50	2.25	-0.11	-1.95	-2.34	1.51	1.72	0.59	-0.05	-1.49	-1.23	0.22	0.88	1.65
75	2.14	0.51	-1.68	-2.53	1.04	1.71	0.66	0.13	-1.22	-1.29	0.14	0.39	1.56
100	1.93	0.83	-1.26	-2.74	0.66	1.62	0.80	0.26	-0.97	-1.29	-0.31	0.47	1.50
125	1.79	1.00	-0.90	-2.46	0.18	1.38	0.83	0.36	-0.71	-1.16	-0.36	0.04	1.32
150	1.40	1.06	-0.45	-2.04	-0.32	1.14	0.77	0.46	-0.45	-1.02	-0.43	-0.12	1.11

p. — Błąd średni wyrównania temperatur miesięcy przez falę roczną.

— Der mittlere Fehler der Ausgleichung der Monatstemperaturen durch die ganzjährliche Welle.

Słedząc przebieg odchyleń od przebiegu wyrównanego na różnych głębokościach, można dostrzec, że pory minimum i maximum tych odchyleń opóźniają się wraz z rosnącą głębokością. Amplitudy natomiast nieznacznie maleją.

Roczny przebieg temperatur rzeczywistych składa się więc z fali przebiegu wyrównanego, o okresie rocznym, na którą nakłada się jeszcze inna fala, dwa razy krótsza.

¹⁾ Przebieg rzeczywisty wyrównano wg wzoru:

$$T = R + A \sin U$$

gdzie T — oznacza średnią miesięczną temperaturę wyrównaną;

R — jest średnią roczną temperaturą;

A — amplitudą szukanej sinusoidy, obliczoną ze wzoru:

$$A = \frac{\sum t \cdot \cos \alpha}{6 \cdot \sinh};$$

U = h + 30·m, gdzie h — jest to faza szukanej sinusoidy, którą można obliczyć ze wzoru:

$$\operatorname{tg} h = \frac{\sum t \cdot \cos \alpha}{\sum t \cdot \sin \alpha}; \quad t — oznacza średnią miesięczną tempe-$$

raturę zaobserwowaną; $\alpha = 30 \cdot m - 30$, m — jest to kolejny numer miesiąca, przytem dla stycznia m = 0, dla grudnia m = 11.

TABLICA 10. — TABELLE 10.

Różnice temperatur: rzeczywiste — wyrównane z pięcioletią (1930—31 i 1933—35).
 Die Differenzen der Temperatur: wahre — ausgeglichenen aus fünf Jahren: 1930—31 u. 1933—35.

Głęb. Tiefe cm	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	p.
Powietrze Luft	-0.14	0.16	-0.74	0.10	1.10	0.05	-0.50	-0.33	-0.75	0.98	0.74	-0.66	0.73
25	1.05	0.51	-1.77	-1.19	1.19	0.89	0.35	-0.05	-1.27	-0.29	0.22	0.38	1.06
50	1.06	0.65	-1.48	-1.41	0.92	0.93	0.41	-0.09	-0.84	-0.46	-0.07	0.39	0.98
100	1.15	0.94	-1.02	-1.86	0.53	0.93	0.64	0.14	-0.64	-0.65	-0.36	0.20	1.02
150	0.90	0.91	-0.38	-1.53	0.01	0.60	0.62	0.29	-0.38	-0.53	-0.36	0.15	0.78

ψ — oznacza to samo co w tablicy 9-ej.

— wie in der Tabelle 9.

Przebieg roczny jako funkcja głębokości. A. Średnie roczne temperatury gruntu podane są w ostatniej kolumnie tablic 7 i 8-ej. Do tych temperatur umieszczonych w tych tablicach należy jednak wprowadzić pewne poprawki. Liczby te otrzymano bowiem z jednorazowych dziennych obserwacji, są więc one zdeformowane przez przebieg dobowy.

Zmianom ulegną przedewszystkiem średnie roczne na mniejszych głębokościach. Co do rzędu wielkości i znaku poprawek, jakie należałyby uwzględnić, można się orientować na podstawie pracy Smosarskiego p. t. „Temperatura gruntu w Poznaniu”¹⁾. W Poznaniu prowadzono obserwacje trzy razy na dobę: o 7^h, 13^h i 21^h. Różnice pomiędzy średnią dzienną, obliczoną jako średnia arytmetyczna z trzech obserwacji, a temperaturą odczytaną o 13^h, wynoszą w średnich rocznych wartościach dla 30 cm: -0.18; dla 50 cm: +0.09.

W grubem przybliżeniu można przyjąć, że własności fizyczne gruntu w Wilnie i Poznaniu są podobne. Temperatury dla Wilna na głębokości 25 i 50 cm zmieniono więc o różnice: temperatura średnia — temperatura o 13^h, (przytem dla głębokości 25 cm wzięto poprawkę obliczoną z głębokości 30 cm w Poznaniu).

Chociaż przez wprowadzenie tych poprawek wynik zasadniczo nie ulega zmianie, to jednak otrzymane w ten sposób średnie roczne temperatury gruntu (Tabl. 11) są zdaniem autora bardziej zbliżone do temperatur prawdziwych, aniżeli te, które przedstawiono w tablicach 7 i 8-ej. Dla głębokości poniżej 50 cm wzięto niezmienione średnie z tablic poprzednich, gdyż są one w znakomitym stopniu zniekształcone przez przebieg dobowy.

Charakterystykę średnich rocznych temperatur gruntu, jako funkcję głębokości, przedstawiono graficznie na wykresie 1-szym. Ilustruje on w sposób bardziej przejrzysty, to samo co i załączone tablice: wzrost średnich rocznych temperatur z głębokością. Wynosi on +0.3 C°/m (pomiędzy poziomami 50 i 150 cm).

B. Amplitudy, jako funkcję głębokości przedstawiono w tablicy 11-ej i graficznie na wykresie 2-im.

¹⁾ Rocznik Nauk Rolniczych i Leśnych tom XXXIV, Poznań 1935.

TABLICA 11. — TABELLE 11.

Elementy wyrównania średnich temperatur miesięcznych przez falę roczną: R — średnia roczna, A — amplituda, h — faza.

Die Elemente der Ausgleichung der Monatsmitteln durch die Ganzjährliche Welle:
R — Jahresmittel, A — Amplitude, h — Phase.

	Powietrze Luft	25 cm	50 cm	75 cm	100 cm	125 cm	150 cm
1930—1931	R	6.19	7.31	7.65	7.86	7.93	7.78
	A	23.18	21.62	20.75	19.08	17.52	16.17
	h	268°9	264°3	259°0	254°8	250°2	246°0
1930—1931 1933—1935	R	6.37	7.72	7.83	—	8.00	—
	A	23.51	21.78	20.68	—	17.95	—
	h	268°1	263°2	258°4	—	250°4	—
							240°7

Amplitudy maleją w miarę posuwania się w głąb w sposób bardzo regularny, aczkolwiek niezgodny z prawami przewodnictwa cieplnego dla środowisk jednorodnych. W ośrodkach takich amplitudy powinny maleć w postępie geometrycznym przy wzroście głębokości w postępie arytmetycznym (Angot).

Wykres 1. — Abbildung 1.

Z wykresu 2-go widać, że roczne amplitudy temperatur zmieniają się wraz z głębokością linowo. Jeżeli jednak wziąć pod uwagę, że wahania roczne temperatur gruntu dochodzą do 20 m (wg Angot), to znaczy sięgają trzydziestokrotnie głębiej, aniżeli najniższy poziom obserwacyjny uwzględniony w tej pracy, to można przypuszczać, że mamy w danym wypadku do czynienia

z niewielkim odcinkiem linii amplitud, która w całości posiada charakter paraboliczny.

Ciekawem jest to, że roczna amplituda temperatury powietrza leży na tej samej linii co roczne amplitudy temperatur gruntu. Inaczej: na roczną amplitudę temperatury powietrza otrzymano taką wartość, jaką wynikałaby z ekstrapolacji dla poziomu zerowego na podstawie danych z głębokości od 25 do 150 cm.

Wykres 2. — Abbildung 2.

Wykres 3. — Abbildung 3.

C. Faza. Załączony wykres ilustruje zależność fazy od głębokości. Widac z niego, że przebieg fazy, jako funkcja głębokości, ma charakter linjowy, podobnie jak to było ze zjawiskiem zanikania amplitud. Tak samo jak przy amplitudach: ekstrapolacja do poziomu zerowego daje to samo co obserwacja na dwóch metrach nad powierzchnią gruntu w powietrzu.

Minimum rzeczywiste¹⁾ opóźnia się znacznie w stosunku do minimum przebiegu wyrównanego. Opóźnienie to wyznaczono przykładowo dla 50 i 150 cm na podstawie materiału z pięciolecia (1930—31 i 1933—35). Z obliczeń otrzymano, że minimum rzeczywiste temperatur na głębokości 50 cm w tym okresie przypada mniej więcej na 14 lutego. Data ta jest opóźniona w stosunku do minimum przebiegu wyrównanego o 14 dni. Na 150 cm minimum rzeczywiste pojawiło się około 12 marca; opóźnienie wynosi około 27 dni.

IV. ŚREDNIE WIEŁOLETNIE TEMPERATURY GRUNTU.

W tablicy 12-tej przedstawione są średnie temperatury wieloletnie, obejmujące okres siedmioletni (1918—26) opracowany przez K. Jantzena²⁾, oraz lata późniejsze (patrz tabl. 5-ta) opracowane przez autora.

¹⁾ Minimum rzeczywiste wyznaczono metodą średnich ruchomych (moving average).

²⁾ Str. 14-ta, tabl. 2-ga cytowanego we wstępie Biuletynu.

TABLICA 12. — TABELLE 12.

Średnie wieloletnie temperatury gruntu w Wilnie.
Die vieljährigen Mittel der Bodentemperatur in Wilno.

Głęb. Tiefe cm	Zlat aus Jahr.	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I-XII
Powie- trze Luft	16	-4.95	-5.15	-0.75	6.12	13.24	15.46	17.97	16.09	12.13	7.10	1.24	-3.67	6.24
25	15	-2.10	-2.81	-0.58	4.86	12.59	16.03	18.32	16.90	13.10	8.42	3.69	-0.42	7.33
50	16	-0.94	-2.01	-0.73	3.61	11.31	15.22	17.80	16.87	13.80	9.24	4.67	0.88	7.48
75	12	0.66	-0.78	-0.10	3.17	10.38	14.59	17.03	16.65	14.02	9.81	5.92	2.21	7.80
100	15	1.51	0.49	0.44	3.01	9.16	13.61	16.11	16.31	14.19	10.72	6.76	3.20	7.96
125	7	1.84	0.46	-0.04	1.22	7.00	12.25	15.49	16.30	14.21	10.62	7.17	3.65	7.51
150	5	2.43	1.47	1.23	2.88	8.20	12.55	15.29	15.92	14.20	11.25	7.65	4.10	8.10

Dane tu zamieszczone, mimo że oparte są na dość długich serjach obserwacyjnych, nie przedstawiają jak wykazały obliczenia, wdzięczniejszego materiału dyskusyjnego, aniżeli ten jaki był zamieszczony w poprzednich tablicach, a to z tego względu, że nie jest on jednolitym ani co do miejsca i czasu obserwacji, ani co do przyrządów.

Zresztą wszystko naogół o czem mówiono w rozdziałach poprzednich, można i tutaj powtórzyć. Z tego powodu ostatnią tablicę pozostawiono bez specjalnych komentarzy.

Wilno, w październiku 1937.

INHALTSANGABE.

Es kommen hier zur Darstellung die Resultate der Bearbeitung der Beobachtungen der Bodentemperaturen in Wilno aus der Zeit von 1927 bis 1935.

Es waren zwei Arten von Bodenthermometer benutzt: bis zum Ende von 1933 in Holzkästen und vom Anfang 1933 — in Ebonitrohren. Einige von den Unterbrechungen (siehe Tab. 3) in den Beobachtungen wurden mit folgenden Methoden rekonstruiert:

(A) Monatsmittel = Mittel, das aus der vorhandenen Anzahl der Ablesungen ausgerechnet ist.

(B) $t = t_m + (T - T_m)$, hier bedeutet:

t — Monatsmittel,

t_m — Mittel aus m —Pentaden dieses Monates,

T — Vieljähriges Monatsmittel

T_m — Vieljähriges— m —Pentadenmittel

$$(C) \quad t_a = \frac{t_{a-25} + k \cdot t_{a+25}}{1 + k}$$

$$\text{wo: } k = \frac{T_{a-25} - T_a}{T_a - T_{a+25}} ;$$

t_a, t_{a-25}, t_{a+25} — die Mitteltemperaturen in den Tiefen $a, a-25, a+25$ cm sind;

T_a, T_{a-25}, T_{a+25} — vieljährige Temperaturmittel in den selben Bodentiefen sind.

Als k (für $t < 0^\circ$) ist 1,34 angenommen.

$$(D) \quad t_a = \frac{t_{a-25} + t_{a+25}}{2} , \text{ bedeutet wie vorher.}$$

Die letzte Methode wurde dann angewandt, wenn k (aus der Gleichung C) für diesen Monat in verschiedenen Jahren sehr veränderlich war (angenommen wurde $k=1$).

Die vollen Jahresserien der Beobachtungen (teilweise rekonstruiert), die in dieser Arbeit benutzt waren, sind in der Tab. 5 dargestellt. Auf Grund von zwei und fünfjährigen Mittelwerten (Tab. 7 und 8) wurde der jährliche Verlauf der Bodentemperaturen analysiert.

Die Differenzen: Beobachtung — Rechnung sind in der Tab. 9 und 10 zusammengestellt. Sie bilden halbjährliche Wellen. Der wahre jährliche Verlauf der Bodentemperaturen ist aus einer sinusoidalen Hauptwelle mit einjährlicher — und einer Sekundärerwelle mit halbjährlicher Periode gebildet.

In der Tab. 11 und graphisch auf den Abb. 1, 2, 3 ist der jährliche Verlauf der Bodentemperaturen als Funktion der Tiefe dargestellt. Die Temperaturjahresmittel wachsen mit der Tiefe und sind viel grösser als die der Luft. Die Phase und Amplitude der Lufttemperatur haben solche Werte, die man durch Extrapolation der Bodentemperaturen für die Tiefe Null erhält.

Zuletzt sind die Monats—und Jahresmittel der Bodentemperaturen aus dem ganzen vorhandenen Material¹⁾ des Meteorologischen Observatoriums in Wilno ausgerechnet und in der Tab. 12 zusammengestellt.

Wilno, Oktober 1937.

Obserwacje meteorologiczne w Wilnie (1918—1937) — 544153.—SP15 1271—1937
Zestawy zapoznawcze w latach 1920—1937 przez Ks. Mieczysława Kościelskiego
Głównego Dyrektora Wilenskiego Observatorium Astronomicznego²⁾. Obserwacje te zostały zebrane wykazem wielokrotnego posortowanej zapisywanej pisma. Wszystkie je obejmują lata obserwacji w latach 1918—1937 roku. Zostały kolejno jako przekroje dla jednego do czterech lat wraz z przejęciem Uniwersytetu Wilenskiego podlegały publikacji w "K. Kościelskiego p. f. Sprawozdaniu z działalności stacji meteorologicznej w Wilnie"³⁾.

Indeks od czasu zapoznawania obserwacji upływu powyżej 170 lat, jeden z najważniejszych czynników klimatycznych, jakim są opady, jest dziedziną najmniej dla Wilna zbadaną. Zapoznaniom nadawanym Wilno zapewniają M. Horodeckie w pracy p. t. 10 opisane w "Wilno"⁴⁾, lecz poza tym oparta na materiałach z lat 1880—1900, mówiącym o obyczaju zapomnianego deszczomierza, ogólnie zbyt późno do przytoczenia szczegółowych wyników opadów dla poszczególnych lat, ich średnich wartości, oraz badań dla zasadniczych. Ponadto żadne mówiące o opadach oraz秘书处 dla opadów znajdują się w opracowaniach R. Bolesławskiego⁵⁾, W.L. Gorczyńskiego⁶⁾, S. Góreckiego-Bartnickiego⁷⁾⁸⁾, K. Jantzena⁹⁾, taka praca, powstająca specjalnie stosunkiem opadowym Wilna, częściowo hamując się ta ograniczeniem, że materiały obserwacyjne z dawnych lat są nienależy, lub też przechowywane w miejscach w obecnej chwili dla badaczy nisko dostępujących.

Predmiotem mozych rozważań w niniejszej pracy będzie zasada obliczania opadowych w Wilnie opartej na materiałach paragonometrycznych, pochodzących z dwudziestoletniego okresu 1918—1937, oraz na materiałach grawigraficznych dotyczących latów trzydziestoletniego okresu 1925—1937.

¹⁾ Die Bodentemperaturen aus dem Zeitraume 1918—1926 sind von K. Jantzen in Nr. 4 dieses Bulletins veröffentlicht (Tab. 2, Seite 14).

Die Differenz zwischen Beobachtung und Mittel der entsprechenden Periode ist die Abweichung des Monats vom Mittel der entsprechenden Periode. Diese Abweichungen sind in Tab. II nach Monaten geordnet. Die Tabelle zeigt die Abweichungen der Temperatur der Erde im Boden von der Durchschnittstemperatur des Monats für verschiedene Monate. Die Abweichungen sind in Tab. II nach Monaten geordnet. Die Tabelle zeigt die Abweichungen der Temperatur der Erde im Boden von der Durchschnittstemperatur des Monats für verschiedene Monate.

Die Abweichungen der Temperatur der Erde im Boden von der Durchschnittstemperatur des Monats sind in Tab. II nach Monaten geordnet. Die Tabelle zeigt die Abweichungen der Temperatur der Erde im Boden von der Durchschnittstemperatur des Monats für verschiedene Monate. Die Abweichungen der Temperatur der Erde im Boden von der Durchschnittstemperatur des Monats sind in Tab. II nach Monaten geordnet. Die Tabelle zeigt die Abweichungen der Temperatur der Erde im Boden von der Durchschnittstemperatur des Monats für verschiedene Monate.

Die Abweichungen der Temperatur der Erde im Boden von der Durchschnittstemperatur des Monats sind in Tab. II nach Monaten geordnet. Die Tabelle zeigt die Abweichungen der Temperatur der Erde im Boden von der Durchschnittstemperatur des Monats für verschiedene Monate.

Die Abweichungen der Temperatur der Erde im Boden von der Durchschnittstemperatur des Monats sind in Tab. II nach Monaten geordnet.

T_1 — Monatstemittel,

T_{10} — Mittel aus 10 — Pentaden dieses Monates,

T_{15} — Mittelpunkt Monatstemittel

T_{20} — Mittelpunkt — 5 — Pentadtemittel

(2) $b_1 = \frac{b_0 + b_2}{1 + k}$

$$b_1 = b_0 + \frac{T_{10} - T_{15}}{T_{15} - T_{20}}$$

$b_0, b_2, b_{10}, b_{15}, b_{20}$ — die Mitteltemperaturen in den Perioden 0, 5—25, 5—26 cm sind;

T_{15}, T_{10}, T_{20} — viertägige Temperaturmittel in den selben Bodentiefen sind.

Als k (für $b_0 < 0^\circ$) sei $1,84$ angenommen.

(3) $b_2 = \frac{b_1 + b_3}{1 + k}$, bedeutet wie vorher.

Die letzte Methode wurde dann angewandt, wenn k links der Gleichung (2) für diesen Monat in verschiedenen Jahren sehr verschieden war (angenommen wurde $k=0$).

Die vollen Jahresserien der Beobachtungen (teilweise rekonstruiert), die in dieser Arbeit benutzt waren, sind in der Tab. 6 dargestellt. Auf Grund von ihnen und 20-jährigen Abrechnungen (mittels Mittelpunktmethode) wurden die Mittelwerte der Bodentemperaturen analysiert und die mittlere jährliche Mittelwerte ergeben sich in

M. TARANOWSKI.

Zarys stosunków opadowych w Wilnie (1918—1937).

Ein Abriss der Niederschlagsverhältnisse in Wilno (1918—1937).

I. W S T E P.

Obserwacje meteorologiczne w Wilnie ($\varphi = 54^{\circ}41'$; $\lambda = 25^{\circ}15' E$; H = 128 m) zostały zapoczątkowane w maju 1770 roku przez Ks. Marcina Poczobutta-Odłaniciego, pierwszego Dyrektora Wileńskiego Obserwatorium Astronomicznego¹⁾ *). Obserwacje te trwały aż do wybuchu wielkiej wojny poczem uległy paroletniej przerwie. Wznowiła je okupacyjna armia niemiecka w grudniu 1917 roku. Różne kolejne jakie przechodziła stacja meteorologiczna do czasu zanim ją przejął Uniwersytet Wileński zostały podane w publikacji Wł. Dziewulskiego p. t. „Sprawozdanie z działalności stacji meteorologicznej w Wilnie”²⁾.

Jakkolwiek od czasu zapoczątkowania obserwacji upłynęło prawie 170 lat, jeden z najważniejszych czynników klimatycznych, jakim są opady, jest dotąd najmniej dla Wilna zbadany. Zagadnieniami opadowemi Wilna zajmowała się M. Rouckówna w pracy p. t. „O opadach w Wilnie”¹⁵⁾, lecz praca ta, oparta na materiale z lat 1880 — 1909, uzyskanym z obserwacji zapomocą deszczomierza, ogranicza się tylko do przytoczenia miesięcznych wysokości opadów dla poszczególnych lat, ich średnich wartości, oraz liczby dni z opadem. Ponadto sumy miesięczne opadów oraz liczby dni z opadem znajdujemy w opracowaniach R. Mereckiego¹³⁾, Wł. Gorczyńskiego³⁾, St. Kośińskiej-Bartnickiej³⁾¹⁰⁾¹¹⁾, K. Jantzena⁷⁾. Brak prac, poświęconych specjalnie stosunkom opadowym Wilna, częściowo tłumaczy się tą okolicznością, że materiały obserwacyjne z dawnych lat zginęły, lub też przechowują się w miejscach w obecnej chwili dla badaczy mało dostępnych.

Przedmiotem naszych rozważań w niniejszej pracy będzie zarys stosunków opadowych w Wilnie oparty na materiałach pluwiometrycznych, pochodzących z dwudziestoletniego okresu 1918 — 1937, oraz na materiałach pluwiograficznych dotyczących miesięcy letnich trzynastoletniego okresu 1925 — 1937.

^{*}) Liczby oznaczają odnośne pozycje wykazu literatury podanego w końcu pracy (str. 73).

II. PRZYRZĄDY I MATERJAŁ OBSERWACYJNY.

W latach 1918—1922 miejsce obserwacji wileńskiej stacji meteorologicznej było wielokrotnie zmieniane, co naturalnie nie wpływało dodatnio na jednorodność obserwacji. W lipcu 1922 roku stacja została przeniesiona na parcelę Zakładu Meteorologii Uniwersytetu Stefana Batorego, położoną przy Gmachu Collegium Czartoryskiego (ul. Zakretowa). Od tego czasu do 23 marca 1936 r. datuje się stałość miejsca dokonywanych obserwacji meteorologicznych. W marcu 1936 roku po przeniesieniu Zakładu Meteorologii do nowowybudowanego gmachu została również przeniesiona i stacja meteorologiczna na nową parcelę odległą o ca 200 m na zachód od poprzedniej. Ta stosunkowo niewielka odległość w zmianie położenia stacji oraz identyczne warunki obserwacyjne pozwalają przypuszczać, że jednorodność obserwacji nie została zakłócona.

Do obserwacji opadowych, w omawianym w niniejszej pracy okresie, używano w Wilnie deszczomierza systemu Hellmanna, oraz dwa pluwjografy tego samego systemu:

1. Pluwjograf firmy Balcerkiewicza (Warszawa) czynny w czasie od 1925 do 1930 roku;
2. Pluwjograf Lambrechta (Getynga) czynny od 1931 do 1937 roku.

Przyrządy te były ustawione w ten sposób, że górny brzeg deszczomierza znajdował się na wysokości 1 m ponad powierzchnią gruntu, pluwjografów zaś na wysokości 1,5 m. Odległość tych przyrządów od siebie wynosiła 6 m.

Na parceli Zakładu Meteorologii warunki dla obserwacji opadowych naogół przedstawały się korzystnie. Instrumenty były dostatecznie oddalone zarówno od zabudowań jak i od wysokich drzew. Ujemny wpływ na pomiar opadów mogło wywierać jedynie strome urwisko zawieszone nad łożyskiem Wilji, które przylega bezpośrednio do północnej granicy parceli. Różnica poziomów parceli i zwierciadła rzeki wynosi ca 40 m. Stąd też wiry, powstające za północnym brzegiem parceli, mogły łatwo przedostawać się na jej teren i powodować nieporządane wywiewanie opadów. Jednakże dzięki oddzieleniu parceli od urwiska gęstym i dosyć wysokim pasem krzewów wywiewanie to było znacznie zmniejszone.

Omawiając materiał obserwacyjny użyty do niniejszej pracy należy podkreślić, że w obserwacjach dokonanych przy pomocy deszczomierza miała miejsce pięciomiesięczna luka, spowodowana przez działania wojenne. Poza tem żadnych przerw w notowaniach nie było. Luka ta przypadająca na czas lipiec — listopad 1920 roku została przy opracowaniu (rozdział IV) wyrównana w ten sposób, że jako dane obserwacyjne dla tych brakujących miesięcy przyjęto odpowiednie wartości średnie, obliczone z okresu 19-letniego. Brak notowań dla tych miesiąca również i na innych pobliskich stacjach uniemożliwił nam dokonanie wyrównań w sposób stosowany przy opracowaniach opadowych.

Jeżeli chodzi o materiał pluwjograficzny, to mimo bardzo starannej obsługi pluwjografów, nie uniknęło się pewnych luk w obserwacjach spowodowanych zepsaniem się bądź mechanizmu zegarowego, bądź płynwaka. Z drugiej strony

okres działania pluwjografu był różny w poszczególnych latach, (ponieważ pluwjograf był używany wyłącznie przy temperaturze powyżej 0° C, więc długość okresu zależała od temperatury powietrza), stąd też dla maja i września, jako miesiące ustawienia i demontowania przyrządu, mamy mniejszy materiał obserwacyjny.

Poniżej są przytoczone: tablica 1 zawierająca daty ustawienia i demontażu pluwjografu w poszczególnych latach oraz tablica 2 podająca ilości dni z deszczem dla których w okresie 1925—1937 brak jest notowania pluwjografu. Dni te dla poszczególnych miesięcy 13-letniego okresu są podane w procentach całkowitej ilości dni z deszczem w danym miesiącu.

TABLICA 1. — TABELLE 1.

Okresy notowań pluwjografu w poszczególnych latach.

Aufzeichnungintervalle des Pluviographen in einzelnen Jahren.

Rok Jahr	Data ustawienia Aufgestellt am	Data zdjęcia Abgenommen am	D
1925	April 30	September 17	139
1926	Mai 7	September 22	138
1927	Mai 21	September 27	129
1928	Mai 8	September 26	141
1929	Mai 13	Oktober 1	141
1930	Mai 7	Oktober 1	147
1931	April 30	September 29	151
1932	Mai 2	Oktober 1	152
1933	April 30	Oktober 1	153
1934	April 30	Oktober 1	153
1935	April 30	Oktober 1	153
1936	April 30	Oktober 1	153
1937	Mai 8	Oktober 1	146

D — długość okresu w dniach.

— die Länge des Intervalles in Tagen.

Należy zaznaczyć, że do danych tablicy 2 w miesiącu maju dochodzą jeszcze dnie z deszczem niezanotowane przez pluwjograf wskutek późnego ustawienia i we wrześniu — dnie z deszczem wskutek wczesnego zdjęcia przyrządu.

TABLICA 2. — TABELLE 2.

Procent dni z opadem niezanotowanym przez pluwjograf.

Anzahl der Tage mit Niederschlag (in Prozenten) vom Pluviographen nicht aufgezeichnet.

Miesiąc Monat	V	VI	VII	VIII	IX	V — IX
%	12	8	13	8	7	10

Ponieważ jednak, jak wykazało badanie, rozkład opadów niezaznaczonych przez pluwiograf nie posiadał, ze względu na wysokość opadu, punktów skupień, lecz był przypadkowy, więc też nieuwzględnienie tych opadów wpłynęło jedynie na bezwzględną ilość opadów, czy też dni z opadem, natomiast bardzo mało zaznaczyło się na charakterystyce stosunków opadowych. Z powyższych przyczyn możnaby uważać materiał użyty do opracowań za jednolity, chociaż pochodzący z nieco krótszego okresu w porównaniu z okresem podanym wyżej.

III. PORÓWNANIE WSKAZAŃ DESZCZOMIERZA I PLUWJOGRAFU.

Równoczesne funkcjonowanie deszczomierza i pluwiografu ustawionych w identycznych warunkach, dało nam możliwość porównania ich wskazań.

Ponieważ pomiar opadu zapomocą deszczomierza był dokonywany zwykle jeden raz na dobę, podczas porannej obserwacji klimatycznej (7^h czasu lokalnego), więc też porównanie wskazań deszczomierza i pluwiografu można było przeprowadzić zestawiając tylko dobowe wysokości opadów. Z porównań tych wynika, że mimo starannego wycechowania⁴⁾ przyrządów przed ustawieniem, rezultaty uzyskane przez nie są równe.

W dalszych rozważaniach będziemy oznaczali przez:

R_d — wysokość opadu dobowego, otrzymaną z deszczomierza;

R_p — wysokość tego samego opadu, zanotowaną przez pluwiograf;

$$\Delta = R_d - R_p .$$

Przypuszczając, że wielkość Δ ma charakter systematyczny, badaliśmy ją jako funkcję:

1^o. Średniej dobowej temperatury powietrza,

2^o. Wysokości opadu, zanotowanego przez pluwiograf, t. zn. R_p .

Poszukiwanie pierwszej zależności (Δ , jako funkcja temperatury powietrza) przeprowadziliśmy metodą korelacji, przyczem otrzymaliśmy odpowiedź zdecydowanie negatywną. Obliczony spółczynnik korelacji wynosił: $r = 0.07$. Stąd wniosek, że różnica wskazań między przyrządami — deszczomierzem i pluwiogramem — nie zależy od temperatury powietrza.

Badanie zależności Δ , jako funkcji R_p , zostało przeprowadzone metodą miejsc normalnych. Celem uniknięcia nadmiernej liczbeności zbyt małych deszczów przeprowadziliśmy podział danych tak, aby wielkości kolejno po sobie następujących przedziałów tworzyły (w przybliżeniu) postęp geometryczny. Wobec tego jednak, że nawet przy takim podziale dalsze miejsca normalne były za mało liczne, połączylismy miejsca normalne 8 z 9 jako jedno, oraz 10 z 11 jako drugie. Z tych samych przyczyn nie włączyliśmy do obliczeń miejsca normalnego 12. Całość zawarta jest w tablicy 3.

W założeniu, że zależność $\Delta = \Delta(R_p)$ ma kształt $\Delta = aR_p + b$ dane tabl. 3 dają się łatwo wyrównać i w wyniku doprowadzają nas do wartości:

$$a = 0.052 \pm 0.002; \quad b = -0.08 \pm 0.01 \quad [1]$$

TABLICA 3. — TABELLE 3.

Redukcja notowań pluwiografu na deszczomierz.
Reduktion des Pluviographen auf den Pluviometer.

A	B	C	D
	mm		
1	0.1	0.3	124
2	0.4	0.7	102
3	0.8	1.3	105
4	1.4	2.3	129
5	2.4	3.7	90
6	3.8	5.7	95
7	5.8	8.6	82
8	8.7	13.0	64
9	13.1	19.4	27
10	19.5	28.7	14
11	28.8	42.3	7
12	42.4	62.3	2
8 — 9	8.7	19.4	91
10 — 11	19.5	42.3	21
			R_p *) Δ *)
			R_d — — R_p .
			R_p — die Höhe des Niederschlags nach dem Pluviographen; R_d — die Höhe des Niederschlags nach dem Pluviometer; $\Delta = R_d - R_p$.

*) R_p — wysokość opadu z pomiaru pluwiografem; R_d — z pomiaru deszczomierzem;
 $\Delta = R_d - R_p$.

R_p — die Höhe des Niederschlags nach dem Pluviographen; R_d — die Höhe des Niederschlags nach dem Pluviometer; $\Delta = R_d - R_p$.

A — numer klasy.

— die Klassennummer.

B — granice klas na R_p .

— die Klassengrenzen für den Pluviographen (R_p).

C — liczność klasy.

— die Frequenz.

D — spółrzędne miejsc normalnych.

— die Koordinaten der Normalörter.

Z powyższego widzimy, że wskazania pluwiografu w przedziale od 0.6 mm do 2.5 mm opadu, w granicach dokładności pomiaru, są zgodne ze wskazaniami deszczomierza; dla opadów poniżej 0.6 mm wskazania pluwiografu są większe; dla opadów zaś ponad 2.5 mm — są mniejsze.

Nadwyżkę wskazań pluwiografu nad wskazaniami deszczomierza przy małych opadach (do 0.6 mm) można解释更大的降水与蒸发之间的差异。特别是当降水强度较小时，蒸发量可能大于降水量，导致地表水分减少，从而影响土壤湿度和植物生长。

Niedociąganie wskazań pluwiografu w stosunku do deszczomierza dla opadów większych ma inne przyczyny. Jedną z nich jest dobrze znany fakt nie-notowania przez pluwiograf opadu w chwili opróżniania się zbiorniczka i odczytu płynawaka. Przy opadach o wielkim natężeniu ten niezarejestrowany opad

może być znaczny, tem bardziej, że napływający w czasie opuszczania się płynwaka opad przedłuża czas nierejestrowania. Objasnienia powyższe mają zastosowanie przy opadach naogół większych niż 10 mm. Natomiast przy opadach mniejszych niedobór wskazań pluwiografa może być wyjaśniony przez większe wypryskiwanie kropel deszczu odbijających się od stożkowatej podstawy naczynia. Dwukrotnie większa wysokość ścianek deszczomierza niż pluwiografa powoduje, że odbijające się krople deszczu w mniejszym stopniu wydostają się nazewnatrz deszczomierza. Bardzo mała pochyłość dna naczynia w pluwiografie może również w pewnej mierze ułatwiać wydostawanie się kropel poza przyrząd, utrudniając jednocześnie spływanie do zbiornika.

Wprowadzając pojęcie odchyłki względnej, wyrażonej w procentach, to znaczy:

$$\delta = \frac{\Delta}{R_p} \cdot 100 \quad [2]$$

i uwzględniając poprzednio otrzymane wartości [1] mamy:

$$\delta = 5.2 - \frac{8}{R_p} \quad [3]$$

Z tej zależności [3] wnioskujemy, że odchyłka względna będzie co do wartości absolutnej tem większa, im opad jest mniejszy; natomiast wraz ze wzrostem opadów dąży do stałej wartości 5.2%, którą można nazwać stałą redukcji notowań pluwiografu na deszczomierz.

W kolumnie oznaczonej przez δ_{B+L} (tabl. 4) są zawarte wartości δ ze związku [3], obliczone dla różnych opadów notowanych przez pluwiograf. Ujemny znak odchyłek wskazuje na niedociągania wskazań deszczomierza względem pluwiografa, zaś dodatni — na niedociągania pluwiografa względem deszczomierza.

TABLICA 4. — TABELLE 4.

Odchyłki względne pluwiografów.

Die relativen Abweichungen des Pluviographen.

$$\delta_B = 3.5 - 10 : R_p ; \quad \delta_L = 5.9 - 5 : R_p ; \quad \delta_{B+L} = 5.2 - 8 : R_p .$$

R_p	δ_B	δ_L	δ_{B+L}
0.1	- 96	- 44	- 85
0.2	- 46	- 19	- 35
0.3	- 30	- 11	- 21
0.4	- 22	- 7	- 15
0.5	- 16	- 4	- 11
0.8	- 9	0	- 5
1.0	- 6	+ 1	- 3
2.0	- 2	+ 3	+ 1
3.0	0	+ 4	+ 2
5.0	+ 1.5	+ 4.9	+ 3.6
10.0	+ 2.5	+ 5.4	+ 4.4
20.0	+ 3.0	+ 5.6	+ 4.8
40.0	+ 3.2	+ 5.8	+ 5.0

Jak zaznaczyliśmy w rozdziale II niniejszej pracy, w latach 1925 — 1937 funkcjonowały w Wilnie dwa pluwjografy, a mianowicie w okresie 1925 — 1930 korzystano z notowań pluwjografa firmy Balcerkiewicz, w pozostałym okresie z notowań pluwjografa firmy Lambrecht. Postępując jak poprzednio (tabl. 3) dokonaliśmy indywidualnych porównań działań tych dwóch przyrządów względem deszczomierza. Wyniki uzyskane są następujące:

pluwjograf Balcerkiewicza:

$$a = 0.035 \pm 0.002 \quad b = -0.10 \pm 0.01 \quad [4]$$

pluwjograf Lambrechta:

$$a = 0.059 \pm 0.003 \quad b = -0.05 \pm 0.01 \quad [5]$$

Odchyłki względne tych pluwjografów są zawarte w tabl. 4 w kolumnach oznaczonych odpowiednio przez δ_B i δ_L .

Z otrzymanych wyników widzimy, że używane pluwjografy co do sposobu działania swego są przyrządami równowartościowymi. Warto może tylko zwrócić uwagę na mniejszą odchyłkę wskazań pluwjografa Lambrechta dla małych opadów.

IV. OPADY DOBOWE.

Wyniki opadowe podane w niniejszym rozdziale są uzyskane z dobowych obserwacji zapomocą deszczomierza. Zgodnie z ogólnie przyjętą konwencją za opad dobowy uważaliśmy całkowitą wysokość opadu w okresie między dwiema kolejnymi porannymi obserwacjami klimatycznymi. Wielka nierównomierność jaka zachodzi w opadach zarówno rocznych jak i w miesięcznych powoduje, że dla uzyskania dobrych średnich klimatycznych należy używać długich okresów czasu, nb. dłuższych niż dla obliczania średnich wartości innych elementów meteorologicznych. Dwudziestoletni okres, którym dysponowaliśmy w niniejszej pracy, mógłby być uważany za niewystarczający do obliczenia średnich klimatycznych. Momentem kompensacyjnym staje się w pewnym stopniu jednorodność naszych obserwacji oraz ich staranne wykonywanie. W rezultacie sądzimy, że materiał nasz może służyć za podstawę do charakterystyki stosunków opadowych Wilna.

Tablica 5 podaje zestawienie materiału obserwacyjnego z okresu 1918 — 1937. Zawiera ona wysokości opadów w poszczególnych miesiącach, sumy roczne oraz średnie dwudziestoletnie dla każdego miesiąca.

Z przebiegu wartości miesięcznych widzimy, że maximum wysokości opadów przypada na miesiąc lipiec, stanowiąc 16% całego opadu rocznego; minimum zaś przypada na miesiąc luty, stanowiąc 4% opadu rocznego.

Pragnąc przebieg roczny opadów przedstawić w sposób bardziej plastyczny podzieliliśmy dane tabl. 5 na cztery kwartały oraz dwa półrocza, uważając za kwartał zimowy okres grudzień-luty i t. d., oraz za półrocze zimowe miesiące październik — marzec i t. d. Dane te wyrażone w procentach opadu rocznego stanowią treść tablicy 6. Kwartał letni cechują największe opady (42% całości), zimowe najmniejsze — (15%). Pozatem widzimy, że jesień odznacza się większą wysokością opadów niż wiosna. Podział półroczny wykazuje ponadto, że opady w półroczu letnim prawie dwukrotnie przewyższają opady półroczu zimowego.

TABLICA 5. — TABELLE 5.

Wysokości opadów w mm w okresie 1918—1937.

Die Niederschlagshöhe in mm in der Periode 1918—1937.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I—XII
1918	47.1	30.5	7.5	11.5	7.0	76.5	161.2	74.0	61.4	14.4	17.9	45.4	554.4
1919	9.8	5.3	25.0	40.2	20.5	70.8	65.7	88.0	51.6	21.3	36.7	37.6	472.5
1920	53.5	23.8	20.9	27.9	42.2	47.5	101.9	95.8	56.2	55.2	47.7	9.9	582.5
1921	81.0	13.0	26.0	44.6	64.7	68.1	61.6	56.8	54.8	36.1	35.3	49.9	591.9
1922	30.4	26.1	52.6	31.4	82.7	82.9	222.9	83.2	69.1	32.3	23.9	54.6	792.1
1923	28.7	17.0	17.5	29.3	43.5	39.6	37.6	120.2	53.7	103.5	106.0	32.7	629.3
1924	21.6	28.9	33.4	46.8	69.8	112.3	173.3	143.1	12.4	16.7	25.6	18.0	701.9
1925	44.9	34.3	33.1	39.5	37.6	83.9	55.9	193.2	49.8	47.1	43.7	78.2	741.2
1926	30.6	24.4	37.0	45.3	50.6	88.3	75.3	65.2	64.6	27.6	39.2	49.5	597.6
1927	14.6	9.8	66.1	36.0	76.8	99.6	68.5	95.2	54.5	76.7	91.2	16.8	705.8
1928	30.3	26.8	3.1	31.0	150.9	76.7	63.6	104.3	53.9	46.8	42.0	41.1	670.5
1929	6.9	17.5	23.1	31.8	20.6	84.8	83.4	33.1	73.4	56.9	79.4	45.0	555.9
1930	11.4	8.2	45.2	53.3	76.2	16.1	108.7	121.0	38.8	90.1	124.9	42.2	736.1
1931	49.5	33.7	23.1	28.3	50.8	45.8	93.3	107.0	85.8	61.7	18.6	61.0	658.6
1932	10.0	24.7	12.2	24.2	55.0	52.6	102.9	115.6	61.8	108.3	27.0	27.7	622.0
1933	14.4	34.7	15.8	64.4	70.8	103.3	107.4	142.8	61.5	54.2	36.1	20.2	725.6
1934	15.4	39.1	27.9	22.9	43.5	18.4	142.8	47.3	57.7	68.9	80.5	0.7	565.1
1935	34.3	51.8	31.7	50.8	77.4	109.1	166.7	16.7	82.2	97.2	8.7	37.7	764.3
1936	49.3	40.3	38.1	55.0	24.3	46.2	92.9	128.5	59.9	76.0	25.7	24.8	661.0
1937	17.1	50.7	47.9	66.8	8.4	50.7	52.1	84.5	20.1	13.2	43.7	62.2	517.4
Średnie Mittel	30.0	27.0	29.4	39.0	53.7	68.7	101.9	95.8	56.2	55.2	47.7	37.8	642.4

TABLICA 6. — TABELLE 6.

Procentowy rozkład wysokości opadów.

Die prozentuelle Verteilung der Niederschlagshöhe.

Zima Winter	Wiosna Frühling	Lato Sommer	Jesień Herbst	Półrocze Halbjahr		Rok Jahr
				Zima Winter	Lato Sommer	
14.7	19.0	41.5	24.8	35.4	64.6	100.0

Spróbujmy zestawić wyniki powyższe z wynikami, które podała St. Kośińska-Bartnicka¹⁰), korzystając z materiału o 27 lat starszego od naszego. Oba te szeregi liczbowe pozwalają na prowadzenie porównań, gdyż odnoszą się do tej samej miejscowości i są oparte na jednakowych dwudziesto-

letnich okresach*). Jak wynika z tabl. 7 extrema wypadają u St. Kosińskiejsko-Bartnickiej w marcu i sierpniu natomiast u nas w lutym i lipcu. Sądzimy, że od przytoczonych różnic ważniejsza jest różnica w sumach rocznych,ściślej znaczne zwiększenie średniego obecnego opadu rocznego w stosunku do dawniejszego. Niestety w chwili obecnej nie potrafimy objaśnić przyczyny tych różnic. Nasuwa się przypuszczenie, iż okres 1918—1937 mógł być bardziej mokry od okresu, uwzględnionego przez St. Kosińską-Bartnicką. Lecz nie jest również wykluczone, że różnice te są pozorne. Być może spowodowały je ulepszenia metodyki obserwacyjnej oraz większa skrupulatność i jednorodność pomiarów obecnych w porównaniu z pomiarami dawniejszymi.

TABLICA 7. — TABELLE 7.

Średnie wysokości opadów w okresach 1891—1910 i 1918—1937.

Die mittleren Niederschlagshöhen in den Perioden 1891—1910 und 1918—1937.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Rok Jahr
1891—1910	33	28	27	38	47	77	82	96	46	40	44	36	592
1918—1937	30	27	29	39	54	69	102	96	56	55	48	39	642

TABLICA 8. — TABELLE 8.

Zasięg zmienności opadów.

Der Veränderlichkeitsbereich der Niederschläge.

	Średnie Mittel	Dyspersja Dispersion	Wartości skrajne Die Extremwerte	
			max.	min.
I	30.0	21.1	81.0	6.9
II	27.0	12.7	51.8	5.3
III	29.4	15.2	66.1	3.1
IV	39.0	14.0	66.8	11.5
V	53.7	32.0	150.9	7.0
VI	68.7	27.5	112.3	16.1
VII	101.9	47.3	222.9	37.6
VIII	95.8	40.4	193.2	16.7
IX	56.2	17.0	85.8	12.4
X	55.2	29.2	108.3	13.2
XI	47.7	30.9	124.9	8.7
XII	37.8	18.8	78.2	0.7
I—XII	642.4	85.5	792.1	472.5

*) Okres obserwacyjny uwzględniony przez St. Kosińską-Bartnicką wynosił 18 lat (1893—1910), jednak otrzymane wyniki zostały przez nią wyrównane do okresu dwudziestoletniego (1891—1910).

Dyspersję miesięcznych sum opadów w okresie 1918—1937 ilustruje tabl. 8, w której ponadto są zestawione extremalne sumy opadów w poszczególnych miesiącach oraz średnie wartości miesięczne. Jak należało oczekwać największe dyspersje przypadają na miesiące o największej wysokości opadów.

Prócz bezwzględnej ilości opadu, ważną rolę dla stosunków klimatycznych przedstawia częstość jego występowania. Częstość tę możemy wyrażać przez ilość dni z opadem w obranym przedziale czasu np. przykład w jednym miesiącu. Tak określoną wielkość nazywamy częstością bezwzględną w odróżnieniu od częstości względnej, którą rozumiemy jako stosunek ilości dni z deszczem w danym przedziale do ilości dni w tymże przedziale. Częstość względna orientuje nas w prawdopodobieństwie występowania opadu.

TABLICA 9. — TABELLE 9.

Ilość dni z opadem w okresie 1918—1937.

Anzahl der Niederschlagstage in der Periode 1918—1937.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I—XII
1918	29	19	13	11	7	28	28	20	20	16	19	30	240
1919	18	19	23	17	14	20	15	27	18	17	21	27	236
1920	25	16	14	19	13	17	19	19	18	20	19	14	213
1921	23	13	16	16	14	21	15	13	18	19	20	23	211
1922	23	14	25	16	20	19	21	18	19	23	17	25	240
1923	21	14	13	17	19	22	20	24	19	28	22	24	243
1924	17	27	18	17	17	17	23	20	13	9	18	19	215
1925	24	18	25	13	13	23	14	19	21	21	17	27	235
1926	21	19	24	15	17	17	14	23	19	23	19	20	231
1927	15	17	24	21	24	21	14	18	18	22	27	18	239
1928	20	19	10	11	18	26	19	17	18	17	24	22	221
1929	21	18	17	19	15	20	17	14	14	22	19	21	217
1930	11	16	21	20	21	11	26	22	19	18	24	21	230
1931	22	18	21	20	13	21	14	20	24	20	16	26	235
1932	17	21	18	17	17	23	16	19	20	23	19	17	227
1933	21	20	12	21	16	22	16	21	18	17	14	19	217
1934	17	20	16	9	20	12	22	15	13	20	24	15	203
1935	22	24	18	18	22	20	22	19	21	20	9	21	236
1936	23	19	10	24	15	16	18	21	16	22	17	17	218
1937	19	24	24	15	13	14	24	18	13	14	19	26	223
A	20.4	18.8	18.1	16.8	16.4	19.5	18.8	19.4	18.0	19.6	19.2	21.6	226.6
B	15.3	13.4	13.2	12.3	12.8	14.9	15.6	16.1	14.2	16.4	15.8	16.7	176.7

A — średnia ilość dni z opadem ≥ 0.0 mm.— die mittlere Anzahl der Tage mit dem Niederschlage ≥ 0.0 mm.B — średnia ilość dni z opadem ≥ 0.1 mm.— die mittlere Anzahl der Tage mit dem Niederschlage ≥ 0.1 mm.

Różni autorowie przyjmują różne kryteria w określaniu dnia z opadem. W niniejszej pracy będziemy uważali za dzień z opadem taki dzień, w którym był notowany choćby najmniejszy opad, t. zw. ślad opadu. Dzień taki oznaczamy sygnaturą: opad 0.0 mm. Aby uczynić nasze wyniki porównywalne z innymi, w statystykach dalszych obok zestawień dni z opadem większym lub równym 0.0 mm, dołączać będziemy zestawienia dni z opadem nie mniejszym niż 0.1 mm. Te ostatnie nazywać będziemy opadami mierzalnymi.

Przebieg roczny częstości bezwzględnej opadów, wskutek małej rozpiętości wahań w poszczególnych miesiącach, jest bardzo mało zróżnicowany. Z tabl. 9, w której są zebrane ilości dni z opadem według miesięcy, ich wartości średnie oraz sumy roczne i z tabl. 10, która podaje rozkład dni z opadem według kwartałów i półroczy, wynika, że maximum częstości opadów mierzalnych przypada na miesiące letnie i późne jesienne; minimum zaś — na miesiące wiosenne. Ponadto widzimy, że opad 0.0 mm (ślad opadu) najczęściej zostaje notowany w zimie i fakt ten sprawia przesuwanie się maximum częstości opadów (dla opadów ≥ 0.0 mm) na miesiące zimowe. Występowanie maximum częstości w późnych miesiącach jesiennych powoduje przewagę częstości opadów w półroczu zimowem.

TABLICA 10. — TABELLE 10.

Procentowy rozkład ilości dni z opadem.**Die prozentuelle Verteilung der Niederschlagstage.**

	Zima Winter	Wiosna Frühling	Lato Sommer	Jesień Herbst	Półrocze Halbjahr		Rok Jahr
					Zima Winter	Lato Sommer	
A	26.8	22.6	25.5	25.1	51.9	48.1	100 0
B	25.6	21.7	26.4	26.3	51.4	48.6	100.0

A, B — jak w tabl. 9.

— wie in der Tab. 9.

Przebieg roczny częstości względnej (prawdopodobieństwo opadu) został ujęty w tabl. 11, w której podaliśmy również przebieg roczny natężenia opadów, rozumiejąc przez natężenie — przeciętną wysokość opadu przypadającego na dzień z opadem mierzalnym. Przebieg średniego natężenia opadów posiada maximum w lipcu i minimum w styczniu.

W dotychczasowych naszych rozważaniach przeprowadziliśmy obliczenia opadów dobowych traktując jednakowo zarówno dni o dużej jak i małej intensywności opadowej. Tego rodzaju obliczenia mają charakter jakościowy. To samo zjawisko może być również badane od strony ilościowej, to znaczy charakteryzując poszczególne dni według ilości opadu. Takie podejście, jak sądzimy, będzie interesujące dla klimatologii, oraz ponadto może posiadać wartości praktyczne np. przykład w rolnictwie czy też hydrotechnice. To ilościowe podejście

TABLICA 11. — TABELLE 11.

Prawdopodobieństwo i natężenie opadu.

Die Wahrscheinlichkeit und die Intensität des Niederschlags.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I—XII
A	0.66	0.66	0.58	0.56	0.53	0.65	0.61	0.62	0.60	0.63	0.64	0.70	0.62
B	0.49	0.47	0.43	0.41	0.41	0.50	0.50	0.52	0.48	0.53	0.53	0.54	0.48
C	1.96	2.02	2.22	3.17	4.21	4.61	6.53	5.95	3.94	3.38	3.01	2.26	3.63

A — prawdopodobieństwo opadu ≥ 0.0 mm (stosunek ilości dni z opadem ≥ 0.0 mm do ilości dni w miesiącu).

— die Wahrscheinlichkeit der Niederschläge ≥ 0.0 mm (das Verhältnis der Anzahl der Tage mit dem Niederschlage ≥ 0.0 mm zur Anzahl der Tage im Monate).

B — prawdopodobieństwo opadu ≥ 0.1 mm.

— die Wahrscheinlichkeit der Niederschläge ≥ 0.1 mm.

C — natężenie opadu w mm/dobę (stosunek wysokości opadu do ilości dni z opadem ≥ 0.1 mm).

— die Niederschlagsintensität in mm/Tag (das Verhältnis der Niederschlagshöhe zur Anzahl der Tage mit dem Niederschlage ≥ 0.1 mm).

umożliwia stwierdzenie zarówno tego jakie opady występują najczęściej jak też i tego jakie opady dostarczają największych ilości wody. Rozwiążanie powyżej wymienionych zagadnień zawiera się w tablicach 12 i 13. Tablice te podają rozkłady ilości opadów oraz ich częstości jako funkcje intensywności dobowej. Zostały one ułożone według klas wysokości opadu o równej, ustalonej przez nas na 2 mm szerokości, przytem opady wyższe niż 30 mm połączymy w jedną klasę i podaliśmy w odsyłaczach indywidualnie.

Analizując dane tablic 12 i 13 przekonujemy się, że w kwartale zimowym występują małe opady. Opady powyżej 14 mm stanowią tam znikomy odsetek. Opady o największej intensywności dobowej występują w kwartale letnim. W miesiącach lipcu i sierpniu ilości wody otrzymanej z opadów dobowych o wysokości powyżej 30 mm tworzą więcej niż piątą część wysokości miesięcznych.

Pozatem z tabl. 12 widzimy, że w półroczu zimowem największe ilości wody są dostarczane przez opady o intensywności dobowej około 4 mm. Miesiące letnie w przeciwstawieniu do miesięcy zimowych nie dadzą się scharakteryzować przez jedną liczbę. Opad dający największą ilość wody zmienia się od miesiąca do miesiąca, wykazując w niektórych z nich aż dwie wartości (maj, sierpień). Jednak uważne przyjrzenie się tabl. 12 doprowadza nas do wniosku, że w miesiącach letnich największe ilości wody są dostarczane przez opady o większej intensywności dobowej, niż to ma miejsce w miesiącach zimowych.

Z tablic poprzednich wynika, że największe ilości wody nie są otrzymywane z opadów najczęściej występujących. Dla przykładu porównajmy rubryki styczniowe tych tablic. Najczęstsze deszcze występują w granicach od 0.1 — 2.0 mm (202 wypadki), natomiast największe ilości wody dostarczają deszcze

TABLICA 12. — TABELLE 12.

Procentowy rozkład ilości opadów według dni z opadem o różnej intensywności (1918—1937)
 Die prozentuelle Verteilung der Niederschlagsmenge nach Niederschlagstagen verschiedener
 Intensität (1918—1937).

mm	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I—XII
0.1 — 0.2	1.3	1.0	1.0	0.6	0.4	0.3	0.2	0.2	0.4	0.5	0.9	1.2	0.5
0.3 — 0.5	2.7	3.3	2.3	1.3	0.8	0.8	0.5	0.4	1.1	1.2	1.7	1.6	1.2
0.6 — 1.0	6.7	7.0	4.6	3.8	3.1	2.4	1.1	1.2	1.8	3.5	3.6	5.3	3.0
0.1 — 2.0	23.9	23.5	23.0	12.9	12.0	7.9	4.6	7.1	8.7	12.7	13.4	20.9	11.6
2.1 — 4.0	29.3	25.3	24.5	18.2	11.6	11.0	8.3	7.4	14.6	15.5	14.0	28.9	14.6
4.1 — 6.0	21.9	31.5	16.8	20.1	6.4	11.8	8.4	12.1	14.9	13.7	21.1	14.8	14.2
6.1 — 8.0	14.2	5.2	16.4	11.7	9.4	12.5	9.4	5.4	20.0	11.8	11.6	9.1	10.9
8.1 — 10.0	4.7	9.9	1.5	14.8	8.1	13.0	8.4	6.1	9.4	12.4	8.4	13.1	9.2
10.1 — 12.0	1.8	2.2	5.7	8.5	6.2	6.5	5.8	11.0	6.6	5.4	5.8	2.9	6.4
12.1 — 14.0	4.2	2.4	2.2	3.4	12.1	6.7	6.5	9.7	6.9	10.7	4.1	3.3	6.8
14.1 — 16.0	—	—	2.7	2.0	2.8	8.8	6.5	1.6	7.8	4.2	1.5	4.1	4.1
16.1 — 18.0	—	—	—	2.0	1.5	5.0	4.9	2.7	5.9	3.2	5.3	—	3.1
18.1 — 20.0	—	—	3.4	—	5.4	4.0	2.8	3.9	1.6	3.5	2.0	—	2.7
20.1 — 22.0	—	—	—	—	1.9	3.0	4.1	2.2	3.6	—	6.4	2.9	2.4
22.1 — 24.0	—	—	3.8	—	6.6	3.4	2.2	6.0	—	2.0	—	—	2.5
24.1 — 26.0	—	—	—	6.4	2.3	—	3.6	1.3	—	2.2	—	—	1.5
26.1 — 28.0	—	—	—	—	2.5	3.9	—	2.8	—	—	—	—	1.0
28.1 — 30.0	—	—	—	—	2.8	—	1.4	—	—	2.7	3.1	—	0.9
≥ 30.1	—	—	—	—	8.4 ^{a)}	2.4 ^{b)}	23.1 ^{c)}	20.7 ^{d)}	—	—	3.3 ^{e)}	—	8.1
Suma Summe	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
													100.0

a, b, c, d, e — patrz tabl. 13.

— s. Tab. 13.

od 2.1 — 4.0 mm (29.3%). Ta pozorna sprzeczność między wynikami nie jest tak bardzo jaskrawa, wobec tego, że procent wody dostarczony przez deszcze od 0.1 — 2.0 mm tylko nieznacznie ustępuje procentowi maximalnemu.

Jest rzeczą godną uwagi, że przy traktowaniu statystyki opadów z punktu widzenia częstości ich występowania otrzymujemy przebiegi zasadniczo inne, niż przy rozpatrywaniu jakichkolwiek innych szeregów statystycznych. Tak więc przy rozpatrywaniu równych przedziałów na wielkości opadów i obliczaniu ich frekwencji znajdujemy, że opady małe występują niezmiernie często i wykres funkcji częstości przedstawia się w formie krzywej przypominającej hyperbolę asymptotyzującą oś wysokości opadów i oś częstości. Z trudem moglibyśmy znajdywaną krzywą linię traktować jako deformację Gaussowskiej krzywej rozkładu. Nasuwa się myśl, że moglibyśmy uzyskać przebieg opadów o kształcie normalnym, gdybyśmy zamiast wysokości opadów jako zmiennej niezależnej wprowadzili inną zmienną, stosownie dobraną, wewnątrz której prowadzilibyśmy też podział na przedziały równej szerokości. Ta nowa zmienna musiałaby nieskoń-

TABLICA 13. — TABELLE 13.

Ilość dni z opadem o różnej intensywności dobowej (1918—1937).

Die Anzahl der Niederschlagstage mit verschiedener Tagesintensität (1918—1937).

mm	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I—XII
0.0	103	108	97	90	73	92	65	65	74	64	67	98	996
0.1 — 0.2	58	38	43	32	29	23	24	24	30	40	62	64	467
0.3 — 0.5	39	45	36	25	22	28	28	19	30	36	40	34	382
0.6 — 1.0	49	47	34	37	39	40	30	30	27	49	43	51	476
0.1 — 2.0	202	175	171	129	143	131	119	139	127	180	191	211	1918
2.1 — 4.0	60	46	51	47	43	52	53	47	55	58	43	73	628
4.1 — 6.0	26	34	21	32	14	33	34	46	34	30	40	22	366
6.1 — 8.0	12	4	14	13	14	25	27	15	31	19	16	10	200
8.1 — 10.0	3	6	1	13	10	20	19	13	12	16	9	11	133
10.1 — 12.0	1	1	3	6	6	8	11	19	7	5	5	2	74
12.1 — 14.0	2	1	1	2	10	7	10	14	6	9	3	2	67
14.1 — 16.0	—	--	1	1	2	8	9	2	6	3	1	2	35
16.1 — 18.0	—	--	—	1	1	4	6	3	4	2	3	—	24
18.1 — 20.0	—	--	1	—	3	3	3	4	1	2	1	—	18
20.1 — 22.0	—	--	—	—	1	2	4	2	2	—	3	1	15
22.1 — 24.0	—	--	1	—	3	2	2	5	—	1	—	—	14
24.1 — 26.0	—	--	—	2	1	—	3	1	—	1	—	—	8
26.1 — 28.0	—	--	—	—	1	2	—	2	—	—	—	—	5
28.1 — 30.0	—	--	—	—	1	—	1	—	—	1	1	—	4
≥ 30.1	—	--	—	—	2 ^{a)}	1 ^{b)}	11 ^{c)}	10 ^{d)}	—	—	1 ^{e)}	—	25
Summa Summe	306	267	265	246	255	298	312	322	285	327	317	334	3534

a) Po jednym dniu w przedziałach (34.1—36.0) i (54.1—56.0).

Je ein Tag in den Intervallen (34.1—36.0) und (54.1—56.0).

b) W przedziale (32.1—34.0).

Im Intervall (32.1—34.0).

c) 2 dni w przedziale (30.1—32.0); 4 dni w przedziale (34.1—36.0); po jednym dniu w przedziałach (40.1—42.0), (50.1—52.0), (54.1—56.0), (58.1—60.0) i (62.1—64.0).

2 Tage im Intervall (30.1—32.0); 4 Tage im Intervall (34.1—36.0); je ein Tag in den Intervallen (40.1—42.0), (50.1—52.0), (54.1—56.0), (58.1—60.0) und (62.1—64.0).

d) Po dwa dni w przedziałach (30.1—32.0) i (32.1—34.0); 3 dni w przedziale (36.1—38.0); po jednym dniu w przedziałach (42.1—44.0), (50.1—52.0) i (62.1—64.0).

Je 2 Tage in den Intervallen (30.1—32.0) und (32.1—34.0); 3 Tage im Intervall (36.1—38.0); je ein Tag in den Intervallen (42.1—44.0), (50.1—52.0) und (62.1—64.0).

e) W przedziale (30.1—32.0).

Im Intervall (30.1—32.0).

czenie rozszerzać okolice małych wysokości opadów. Stanowisko podobne znaleźliśmy już w pracy M. Omshansky'ego¹¹⁾, w której autor jako nową zmienną niezależną wprowadza pierwiastek stopnia k z wysokości opadu, uzykując przez dyskusję na k liczbę zbliżoną do trzech. Nie kwestjonując słuszności matematycznej powyższego podstawienia zdecydowaliśmy wybrać jako bardziej naturalne podstawienie funkcji wykładniczej: $R = a^t$. Gdzie t jest nowym argumentem, R — zaś wysokością opadu w milimetrach.

TABLICA 14. — TABELLE 14.

Zamiana skali wysokości opadów na skalę ich logarytmów.

Die Verwandlung der Niederschlagshöhen Skala auf die logarithmische Skala.

$\lg R$	R
— 2.0	0.0
— 1.5	—
— 1.0	0.1
— 0.5	0.2 — 0.5
0.0	0.6 — 1.7
+ 0.5	1.8 — 5.6
+ 1.0	5.7 — 17.7
+ 1.5	17.8 — 56.2
+ 2.0	≥ 56.3

R — opad w mm.

— der Niederschlag in mm.

W tablicy 14 zostały podane przedziały o równej szerokości nowego argumentu: $t = \lg_a R$, oraz odpowiadające im przedziały dawnego argumentu R . Przeliczeń tych dokonaliśmy przy $a=10$, przyczem dla $R=0.0$ przyjęliśmy wartość $t=-2.0$.

Tak uzyskane podstawienie daje, podobnie jak i podstawienie M. Omshansky'ego wyniki regularne dające przebieg częstości dosyć normalny. Sądziliśmy, że tego rodzaju podstawienie charakteryzuje istotę opadów.

Wyniki powyżej omawianej statystyki zawiera tablica 15. Widzimy, że otrzymany w ten sposób rozkład częstości opadów zasadniczo różni się od poprzedniego zawartego w tabl. 13. Zatraca się przedewszystkiem wybitna asymetria rozkładu, pozatem występujące maximum częstości pozwala na obliczenie wysokości opadów dobowych, którym to maximum odpowiada. Obliczenia te zawarliśmy w ostatnim wierszu tabl. 15. W ten sposób w średnim charakterystyczne opady dla Wilna byłyby następujące: w kwartale zimowym około 2.0 mm, wiosennym — 2.2 mm, letnim — 4.1 mm i jesiennym — 2.7 mm. Rok charakteryzowałby się liczbą 2.7 mm opadu dobowego.

Otrzymane powyżej wyniki zachęciły nas do identycznego przeliczenia ilości opadów również jako funkcji logarytmu wysokości opadu dobowego. Rezultat przeliczenia ujęliśmy w tabl. 16. W ostatnim wierszu tej tablicy podaliśmy

dla poszczególnych miesięcy wysokości opadów, które dostarczają nam największych ilości wody, przyczem podkreślić należy naogół zgodność otrzymanych wyników z wynikami tabl. 12.

TABLICA 15. — TABELLE 15.

Liczba dni z opadem jako funkcja logarytmu wysokości opadu.

Die Anzahl der Niederschlagstage als Funktion der Logarithmen der Niederschlagshöhe.

IgR	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I—XII
— 2.0	103	108	97	90	73	92	65	65	74	64	67	98	996
— 1.5	—	—	—	—	—	—	—	—	—	—	—	—	—
— 1.0	35	23	25	18	17	9	12	9	12	26	42	39	267
— 0.5	62	60	54	39	34	42	40	34	48	50	60	59	582
0.0	97	83	78	58	76	70	57	82	58	90	75	92	916
+ 0.5	90	83	85	89	72	90	90	98	95	94	92	112	1090
+ 1.0	22	18	21	40	44	77	89	75	69	61	42	31	589
+ 1.5	—	—	2	2	12	10	22	23	3	6	6	1	87
+ 2.0	—	—	—	—	—	—	2	1	—	—	—	—	3
Summa Summe	409	375	362	336	328	390	377	387	359	391	384	432	4530
C	1.5	1.8	2.2	2.8	1.7	3.6	5.7	2.9	3.5	2.0	2.6	2.6	2.7

C — najczęściej występujące wysokości opadów dobowych w mm.

— die am häufigsten auftretenden Höhen der Tagesniederschläge in mm.

TABLICA 16. — TABELLE 16.

Procentowy rozkład ilości opadów jako funkcja logarytmu wysokości opadu.

Die prozentuelle Verteilung der Niederschlagsmengen als Funktion der Logarithmen der Niederschlagshöhen.

IgR	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	I—XII
— 1.0	0.6	0.4	0.4	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.4	0.5	0.2
— 0.5	3.4	3.9	2.9	1.7	1.0	1.0	0.6	0.6	1.4	1.4	2.1	2.3	1.5
0.0	17.4	16.0	15.1	7.6	8.0	5.4	2.9	5.0	5.7	8.7	8.1	12.8	7.7
+ 0.5	49.7	53.5	44.9	38.7	20.2	22.0	15.6	18.2	29.4	27.4	34.8	45.9	28.4
+ 1.0	28.9	26.2	29.5	45.4	40.6	54.8	43.4	39.2	58.2	50.2	39.8	35.6	43.0
+ 1.5	—	—	7.2	6.4	30.0	16.7	31.4	33.6	5.2	12.1	14.8	2.9	17.8
+ 2.0	—	—	—	—	—	—	6.0	3.3	—	—	—	—	1.4
Summa Summe	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
D	3.6	3.5	3.6	7.1	12.0	9.6	11.3	13.8	7.1	6.7	7.1	3.9	8.6

D — wysokości dobowych opadów (mm) dostarczające największych ilości wody.

— die Höhen der Tagesniederschläge (mm) die die grössten Niederschlagsmengen liefern.

Rozdział niniejszy kończymy omówieniem najwyższych opadów dobowych w okresie 1918—1937. W tabl. 17 podaliśmy zestawienie maximów absolutnych w poszczególnych miesiącach wymienionego okresu, oraz średnie 20-letnie wartości maximów opadów dobowych. Jak należało oczekivać roczny przebieg średniego maximum dobowego osiąga wartość najwyższą w miesiącach lipcu i sierpniu, najmniejszą zaś w lutym i styczniu. Ponadto w tabl. 17 w ostatnim wierszu podaliśmy stosunki maximum średniego do średnich wartości opadów miesięcznych. Jak widzimy roczny przebieg tego stosunku posiada dość jednostajny charakter, wykazując lekki wzrost dla kwartałów wiosennego i letniego.

TABLICA 17. — TABELLE 17.

Maxima dobowe w okresie 1918—1937.**Die Tagesmaxima in dem Zeitraume 1918—1937.**

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
A	13.4	13.3	22.3	24.9	55.5	32.5	62.7	63.1	20.9	29.9	31.0	21.9
B	6.8	6.7	8.6	11.7	17.3	16.9	30.2	26.8	12.3	13.2	12.6	8.5
C	23	25	29	30	32	25	30	28	22	24	26	22

A — maximum absolutne w 20-letnim okresie (mm).

— das absolute Maximum in dem 20-jährigen Zeitraume in mm.

B — średnie maximum dobowe (mm).

— das mittlere Tagesmaximum in mm.

C — procentowy stosunek średniego maximum do średniej wysokości opadów.

— das prozentuelle Verhältnis des mittleren Maximums zur mittleren Niederschlagshöhe.

TABLICA 18. — TABELLE 18.

Częstość występowania maximów dobowych.**Die Frequenz der Tagesmaxima.**

Opad Niederschlag	Półrocze Halbjahr		Rok Jahr
	Lato Sommer	Zima Winter	
mm			
0.1 — 10.0	20.8	66.7	43.8
10.1 — 20.0	44.1	25.8	35.0
20.1 — 30.0	19.2	6.7	12.9
30.1 — 40.0	8.3	0.8	4.6
40.1 — 50.0	1.7	—	0.8
50.1 — 60.0	4.2	—	2.1
60.1 — 70.0	1.7	—	0.8
Suma Summe	100.0	100.0	100.0

Wyniki dyskusji nad częstością występowania maximum dobowego jako funkcji wysokości opadu ujeliśmy w zestawieniu, które obejmuje tabl. 18. Widzimy, że maximum dobowe opadów letnich (44.1%) przypada na wysokość od 10.1 do 20.0 mm, natomiast maximum opadów zimowych (66.7%) — na wysokość mniejsze a mianowicie od 0.1 do 10.0 mm. Maxima roczne podobnie jak maxima zimowe występują najczęściej w przedziale 0.1 — 10.0 mm.

V. PRZEBIEG DOBOWY OPADÓW.

W rozdziale niniejszym przedstawiamy wyniki notowań pluwjograficznych opracowane na podstawie materiału pochodzącego z letnich miesięcy 13-letniego okresu 1925—1937.

Notowania pluwjograficzne, dające możliwość studjowania intensywności dowolnych skupień opadów od najdłużej trwających do najbardziej krótkotrwałych kilkuminutowych, posiadają zarówno dla celów teoretycznych-klimatologicznych jak i dla praktycznych doniosłe znaczenie. Znajomość występujących opadów, ich największe natężenie, prawdopodobieństwo wystąpienia, wysokość — w znacznym stopniu orientują nas w stosunkach klimatycznych danej miejscowości.

Wyrażając wysokości opadu pewnych przedziałów doby w procentach opadu dobowego uzyskujemy wartości, które w dogodny sposób ilustrują dobowy przebieg wysokości opadów. W tabl. 19 podajemy otrzymane w ten sposób wartości dla poszczególnych miesięcy okresu maj — wrzesień oraz dla całego tego okresu. Jako przedziały doby wybraliśmy dwugodzinne interwały, gdyż wprowadzenie interwałów większych okazało się niekorzystnym ze względu na szczupłość materiału. Chcąc jednak mieć pewność, że otrzymane wyniki nie są wywołane specjalnym doborem interwałów zrobiliśmy statystykę kontrolną dotyczącą również interwałów dwugodzinnych lecz przesuniętych o jedną godzinę w stosunku do obliczeń poprzednich. Wyniki otrzymane jakkolwiek w szczegółach różnią się nieco między sobą w ogólnym zarysie są te same.

TABLICA 19. — TABELLE 19.
Przebieg dobowy ilości opadów w %.
Täglicher Gang der Niederschlagsmenge in %.

	0 ^h	2 ^h	4 ^h	6 ^h	8 ^h	10 ^h	12 ^h	14 ^h	16 ^h	18 ^h	20 ^h	22 ^h	24 ^h	0 ^h —24 ^h
V	6.1	5.1	7.4	4.6	8.0	6.9	6.7	11.6	12.2	11.5	8.8	11.1		100.0
VI	11.9	6.5	6.0	6.5	5.7	5.9	10.1	11.1	11.8	8.7	9.1	6.7		100.0
VII	4.5	4.3	4.1	2.8	5.9	6.6	14.2	14.0	12.6	15.2	6.8	9.0		100.0
VIII	7.0	6.4	6.3	4.6	4.9	6.8	9.5	13.9	12.2	11.1	7.3	10.0		100.0
IX	5.5	7.4	9.4	9.0	7.3	6.8	9.5	11.1	10.6	12.5	3.9	7.0		100.0
V—IX	7.0	5.9	6.4	5.2	6.1	6.6	10.3	12.6	12.0	11.9	7.2	8.8		100.0

Przeglądając dane tabl. 19 stwierdzamy, że wyniki otrzymane naogół są zgodne z wynikami ogólnej teorji o przebiegu dobowym wysokości opadów⁴⁾. Poza zwykle występującymi w okresie letnim, w miejscowościach o klimacie kontynentalnym, maximami głównym popołudniowym w przedziale 14^h — 16^h, oraz wtórnym 4^h — 6^h, daje się obserwować w Wilnie inne maximum występujące około północy. Pozatem jeżeli chodzi o przebiegi w poszczególnych miesiącach to należy móc zwrócić uwagę na charakterystyczny przebieg opadów w najcieplejszym miesiącu t. zn. w lipcu. Spotykamy tutaj wczesne maximum popołudniowe 12^h — 14^h oraz drugie absolutne maximum przebiegu 18^h — 20^h. To ostatnie jest wywołane występującymi w tym miesiącu ulewami. Nawiąsem zaznaczyć należy, że występowanie wspomnianego powyżej drugiego maximum nie jest rzeczą istotną. Przy innym łączeniu w interwały nie otrzymaliśmy tego maximum, lecz zamiast niego popołudniowe zostało rozciagnięte na godziny późniejsze. O fakcie przesuwania się wskutek ulew maximum przebiegu wysokości opadów na godziny późniejsze wspomina w swojej pracy Less¹²⁾.

Największa amplituda przebiegu dobowego wysokości opadów występuje w miesiącu lipcu.

Tablica 20 zawiera wartości ilustrujące dobowy przebieg ilości godzin w których był notowany opad. Wartości te są zebrane w interwały dwugodzinne i wyrażone w procentach całkowitej ilości godzin z opadem w danym miesiącu. Jak widzimy maximum tych wartości występuje w przedziałach 6^h — 8^h oraz 14^h — 16^h. Termin występowania tych maximów zostaje zachowany prawie we wszystkich miesiącach. Jedynie w lipcu konstatujemy brak maximum rannego 6^h — 8^h. W miesiącach maj, czerwiec i lipiec zjawia się nowe maximum przed północą.

Podobnie, jak w wypadku dobowego przebiegu wysokości opadów, przeprowadziliśmy również statystykę ilości godzin, w których był notowany opad według interwałów dwugodzinnych: 1^h — 3^h, 3^h — 5^h, . . . i t. d. Wyniki otrzymane są naogół zgodne z wynikami tabl. 20.

TABLICA 20 — TABELLE 20.
Przebieg dobowy ilości godzin z opadem w %.
Täglicher Gang der Niederschlagsstunden in %.

	0 ^h	2 ^h	4 ^h	6 ^h	8 ^h	10 ^h	12 ^h	14 ^h	16 ^h	18 ^h	20 ^h	22 ^h	24 ^h	0 ^h —24 ^h
V	7.0	5.6	6.8	7.4	6.8	8.7	9.4	10.0	9.1	10.2	11.1	7.9		100.0
VI	7.5	7.1	7.2	8.0	6.6	8.2	9.8	10.9	10.0	8.5	9.0	7.2		100.0
VII	6.8	4.9	5.4	6.5	7.1	8.0	10.7	14.4	13.1	9.2	6.8	7.1		100.0
VIII	6.8	6.9	7.2	8.6	6.6	7.8	9.2	10.5	10.6	9.3	8.3	8.2		100.0
IX	5.6	7.7	8.8	10.2	8.0	8.3	8.8	11.1	10.3	9.7	6.3	5.2		100.0
V—IX	6.7	6.5	7.1	8.2	7.0	8.2	9.6	11.4	10.6	9.3	8.3	7.1		100.0

Wprowadzając pojęcie częstości bezwzględnej i względnej opadów godzinnych, dane poprzedniej tablicy 20 pozwolą bliżej wejrzeć w zagadnienie częstości występowania opadów. Przez częstość bezwzględną będziemy rozumieli stosunek ilości godzin w których w pewnym przedziale doby był notowany opad do ilości dni z opadem, oraz przez częstość względną — stosunek tych ilości godzin do ilości dni w danym okresie obserwacyjnym. Wartości te będą nas orientowały: pierwsza o prawdopodobieństwie wystąpienia opadu w pewnym przedziale podczas doby z opadem, druga zaś o prawdopodobieństwie wystąpienia opadu w pewnym przedziale dowolnej doby. Wartości te przeliczone dla okresu 1925—1937 są podane w tablicach 21 i 22. Naturalnie

TABLICA 21. — TABELLE 21.

Przebieg dobowy prawdopodobieństwa (p) zjawienia się deszczu podczas doby z deszczem.

Tagesverlauf der Wahrscheinlichkeiten (p) des Auftretens eines Regens während eines Regentages.

100p

	0 ^h	2 ^h	4 ^h	6 ^h	8 ^h	10 ^h	12 ^h	14 ^h	16 ^h	18 ^h	20 ^h	22 ^h	24 ^h
V	33	26	32	35	32	41	44	47	43	48	52	37	
VI	32	30	30	34	28	35	42	46	42	36	38	31	
VII	27	20	21	26	28	31	42	57	52	36	27	28	
VIII	32	32	33	40	31	36	43	49	50	44	39	38	
IX	25	35	40	46	36	38	40	50	47	44	29	23	
V—IX	30	30	31	36	31	36	42	50	47	41	36	31	

TABLICA 22. — TABELLE 22.

Przebieg dobowy prawdopodobieństwa (q) zjawienia się deszczu.

Tagesverlauf der Wahrscheinlichkeiten (q) des Auftretens eines Regens im Allgemeinen.

100q

	0 ^h	2 ^h	4 ^h	6 ^h	8 ^h	10 ^h	12 ^h	14 ^h	16 ^h	18 ^h	20 ^h	22 ^h	24 ^h
V	14	11	14	15	14	18	19	20	18	21	23	16	
VI	19	18	18	21	17	21	25	28	26	22	23	19	
VII	14	10	11	13	15	16	22	30	27	19	14	14	
VIII	19	19	20	24	19	22	26	30	30	26	24	23	
IX	14	19	21	25	19	20	21	27	25	24	15	13	
V—IX	16	16	17	20	17	19	23	27	25	22	20	17	

łatwo docieć, że charakter przebiegów tych częstotliwości jest identyczny z charakterem dobowego przebiegu ilości godzin z deszczem w odpowiednim miesiącu (tabl. 20). Otrzymujemy więc, że największe prawdopodobieństwo występowania deszczu w okresie letnim, zarówno w dniach deszczowych jak i w każdych innych przypada na godziny popołudniowe 14^h — 16^h. W lipcu prawdopodobieństwo to dla dni deszczowych osiąga wartość 0,57.

Tablica 23 w której są przedstawione w procentach czasy trwania opadów jest pomocniczą do otrzymywania przebiegów intensywności opadów w poszczególnych miesiącach. Nie omawiając szczegółowo danych tej tablicy ograniczymy się do stwierdzenia, że w lecie najbardziej mokremi godzinami (ze względu na długość trwania opadów) są godziny 6^h — 8^h oraz 16^h — 20^h. Najmniej zaś 8^h — 10^h.

TABLICA 23. — TABELLE 23.

Przebieg dobowy czasów trwania opadów w %.

Täglicher Gang der Niederschlagsdauer in %.

	0 ^h	2 ^h	4 ^h	6 ^h	8 ^h	10 ^h	12 ^h	14 ^h	16 ^h	18 ^h	20 ^h	22 ^h	24 ^h	0 ^h —24 ^h
V	8.2	7.7	8.7	8.1	7.7	8.1	6.4	8.4	6.7	9.9	11.3	8.8		100.0
VI	9.4	9.1	9.0	9.5	5.8	5.3	7.3	7.7	9.1	9.6	9.8	8.4		100.0
VII	8.8	7.2	7.0	7.1	8.2	8.0	8.7	10.9	10.3	9.1	6.9	7.8		100.0
VIII	8.5	8.4	7.8	9.3	7.6	7.5	6.7	7.6	8.5	9.3	9.0	9.8		100.0
IX	5.4	9.1	10.8	11.4	7.2	8.9	9.2	9.3	9.5	8.5	5.6	5.1		100.0
V—IX	8.0	8.4	8.7	9.2	7.2	7.5	7.7	8.6	8.8	9.4	8.5	8.0		100.0

TABLICA 24. — TABELLE 24.

Przebieg dobowy intensywności indywidualnej opadów w 1000 mm/min.

Täglicher Gang der individuellen Niederschlagsintensität in 1000 mm/min.

	0 ^h	2 ^h	4 ^h	6 ^h	8 ^h	10 ^h	12 ^h	14 ^h	16 ^h	18 ^h	20 ^h	22 ^h	24 ^h	0 ^h —24 ^h
V	20	18	23	15	28	23	27	37	48	31	21	34		27
VI	35	19	18	19	27	30	38	40	36	25	25	22		27
VII	24	28	28	18	34	39	78	62	58	80	47	55		48
VIII	29	27	29	18	23	32	50	65	51	42	29	36		36
IX	23	18	19	18	23	17	23	26	25	32	15	30		22
V—IX	27	22	23	18	26	27	42	46	42	40	27	34		31

Należy zastreżć, że tablice 23 i 24 zostały otrzymane metodą deszczów indywidualnych. Szczegółowe omówienie tej metody podajemy w następnym rozdziale VI.

Dane tabl. 24 zostały otrzymane zgodnie z określeniem średniej godzinnej intensywności opadów jako stosunek wysokości opadów do długości czasu trwania. Przekonujemy się, że najwyższe intensywności występują naogół w przedziałach największych wysokości opadów.

Reasumując wszystkie otrzymane dotychczas wyniki tego rozdziału możemy stwierdzić co następuje:

- 1^o W okresie maj — wrzesień w przedziale 14^h — 16^h opady występują najczęściej (są najbardziej prawdopodobne).
- 2^o Opady w przedziale 14^h — 16^h są najintensywniejsze i dostarczają maksymalnych ilości wody.
- 3^o Przedziały doby 6^h — 8^h oraz 18^h — 20^h są najbardziej mokremi godzinami z punktu widzenia długości trwania opadów.
- 4^o Występujące w przedziałach 6^h — 8^h oraz 18^h — 20^h dosyć częste opady są w pierwszym przedziale z pośród dwu wymienionych mało intensywne i dostarczają najmniejszych ilości wody.

Na zakończenie niniejszego rozdziału pragnelibyśmy zaznaczyć, że jakkolwiek bardzo interesującą rzeczą byłoby dokonanie dla interwałów godzinnych podobnych obliczeń jakie zostały przeprowadzone w rozdziale poprzednim dla interwałów dobowych, ze względu jednak na szczupłość materiału i wynikającą stąd niedostateczną pewność wyników, zestawienia te nie zostały umieszczone w naszej pracy.

VI. DESZCZE INDYWIDUALNE.

Opracowanie samopisów deszczowych w rozdziale poprzednim dokonaliśmy zgodnie ze spotykana w literaturze meteorologicznej metodą obliczeń ilości, częstości i t. d. opadów, w równych kolejno następujących po sobie interwałach czasu. Nie ulega wątpliwości, że przy badaniu przebiegów opadowych metoda ta jest najbardziej uzasadniona, niemniej jednak nie pozbawiona pewnych usterek. Jest rzeczą widoczną, że przy tego rodzaju opracowaniach intensywności deszczów są mniejsze od rzeczywistych, a to dlatego, że nie można uchronić się od pozostawiania w stałych interwałach chwil bez deszczu.

Inną metodą opracowania opadów może być takie podejście w którym każdy deszcz traktuje się jako oddzielne zjawisko, ustalając dla każdego takiego zjawiska czas jego trwania, wysokość oraz co za tem idzie intensywność. Metoda taka jakkolwiek jest kłopotliwsza od poprzedniej, daje jednak prerogatywy większej realności znalezionych faktów. W braku lepszej nazwy na obie wspomniane metody, moglibyśmy nazwać: pierwszą — metodą równych interwałów, drugą zaś — metodą deszczów indywidualnych.

W rozdziale niniejszym zawiąźliśmy opracowanie całkowitego naszego materiału pluwjograficznego dokonane metodą deszczów indywidualnych. Przy opracowaniu uważaliśmy za oddzielne zjawisko deszczowe taki deszcz, który od sąsiednich był oddzielony przynajmniej dwudziestoma minutami bezopa-

dowem. Każdy taki deszcz był charakteryzowany przez następujące trzy elementy: czas trwania deszczu w minutach, wysokość deszczu w mm, oraz intensywność deszczu w mm/min. Dla odróżnienia intensywności otrzymanej w ten sposób od intensywności którą można było znaleźć metodą równych interwałów, pozwolimy sobie wprowadzić dla tego pojęcia nazwę: intensywność indywidualna. Przebieg dobowy intensywności indywidualnej podaliśmy w rozdziale poprzednim w tabl. 24. Również dane tabl. 23 zawartej w rozdziale V są oparte na metodzie deszczów indywidualnych.

Opracowanie nasze dotyczy miesięcy maj — wrzesień okresu 1925—1937. Po odrzuceniu śladu opadów (opad o wysokości 0.0 mm), wyodrębniliśmy we wspomnianym 13-letnim okresie: $n = 2058$ deszczów, przyczem zależności między elementami tych deszczów wyczerpały się w tablicach 25—28.

Ogólne omówienie charakteru indywidualnych deszczów letnich miesiące można przeprowadzić korzystając z danych tabl. 25. Największą liczbą występujących deszczów odznaczają się miesiące sierpień oraz czerwiec. Ponadto na sierpień w rozpatrywanym okresie przypada maximum całkowitego czasu trwania oraz wysokości opadów. Średni czas trwania poszczególnych deszczów

TABLICA 25. — TABELLE 25.

Wartości miesięczne elementów deszczu.

Die Monatswerte der Elemente der Niederschläge.

	W % sum ogólnych In % der Gesamtheit			t_0	r_0	i
	n	t	r			
V	14.1	17.2	14.8	1 ^h 17 ^m	2.1	0.027
VI	22.2	21.7	19.1	1 02	1.7	0.027
VII	20.7	15.5	23.5	0 47	2.2	0.048
VIII	23.9	23.9	27.2	1 03	2.2	0.036
IX	19.1	21.7	15.4	1 12	1.6	0.022
V—XI	100.0	100.0	100.0	1 03	2.0	0.031

n — ilość deszczów.

— die Anzahl der Niederschläge.

t — całkowity czas trwania opadów.

— die totale Niederschlagsdauer.

r — całkowita wysokość opadów.

— die totale Niederschlagshöhe.

$t_0 = \frac{t}{n}$ — średnie trwanie jednego opadu.

— die mittlere Dauer eines Niederschlages.

$r_0 = \frac{r}{n}$ — średnia wysokość jednego opadu w mm.

— die mittlere Höhe eines Niederschlages in mm.

$i = \frac{r}{t}$ — średnie natężenie opadów w mm/min.

— die mittlere Intensität in mm/min.

zmienia się regularnie: zmniejszając się od maja do lipca i wzrastając od lipca do września. W ten sposób na lipiec przypadają deszcze krótkotrwałe o dosyć dużej średniej wysokości, najintensywniejsze. Deszcze stosunkowo dłużej trwające o słabym natężeniu i o małej średniej wysokości charakteryzują wrzesień. Maj charakteryzowany jest również przez deszcze długotrwałe jednak o dużej przeciętnej wysokości. Wobec małej ilości deszczów majowych całkowita wysokość opadów jest dla tego miesiąca najmniejsza z pośród wysokości dla pięciu miesięcy.

Jak zaznaczyliśmy w każdym deszczu rozróżniamy następujące trzy elementy: czas trwania, wysokość oraz średnie natężenie. Stąd też chcąc całkowicie wyczerpać zagadnienie o współzależności tych elementów między sobą przeprowadziliśmy obliczenia zależności dowolnych dwóch elementów względem trzeciego jako argumentu. W ten sposób uzyskaliśmy trzy zestawienia, których wyniki są przedłożone w tablicach 26–28. Przy wyznaczaniu przedziałów argumentu kierowaliśmy się tylko chęcią dokładnego zobrazowania zależności dla małych wartości argumentu, stąd też przedziały początkowe są bardziej rozdrobnione. Pozatem wybór przedziałów był dowolny.

Przeglądając te tablice od razu dostrzegamy asymetrię, z którą się ciągle spotykamy przy rozkładach opadowych. Chodzi mianowicie o przeważające skupienie deszczów w grupach o małych wartościach elementów. Asymetrię tę uwypukliłoby się bardziej, gdyby zestawień dokonywać według równych przedziałów argumentów. Rozkład asymetryczny daje się obserwować zarówno w liczبności deszczów jak i całkowitym czasie trwania oraz wysokości. Tylko że dla tych ostatnich nie zaznacza się czasami w wybitny sposób.

TABLICA 26. — TABELLE 26.

Elementy deszczu jako funkcja czasu trwania.

Niederschlagselemente als Funktion der Niederschlagsdauer.

Czas trwania Niederschlags- dauer	W % sum ogólnych In % der Gesamtheit			t_0	r_0	i
	n	t	r			
0 ^h 01 ^m — 0 ^h 05 ^m	11.7	0.6	1.6	0 ^h 03 ^m	0.3	0.087
0 06 — 0 15	22.6	3.6	7.9	0 10	0.7	.068
0 16 — 0 30	19.2	6.8	9.5	0 22	1.0	.044
0 31 — 0 60	19.0	13.2	16.2	0 44	1.7	.038
1 01 — 2 00	14.0	18.6	20.1	1 24	2.8	.034
2 01 — 3 00	5.8	13.6	13.1	2 27	4.4	.030
3 01 — 6 00	5.3	20.4	17.9	4 00	6.6	.028
6 01 — 12 00	1.9	14.0	8.4	7 47	8.7	.019
12 01 — 24 00	0.4	7.3	5.0	17 37	22.8	.022
≥ 24 ^h 01 ^m	0.1	1.9	0.3	41 42	14.1	0.006
Sumy i średnie Summe und Mittel	100.0	100.0	100.0	1 ^h 03 ^m	2.0	0.031

TABLICA 27. — TABELLE 27.

Elementy deszczu jako funkcja wysokości.
Niederschlagselemente als Funktion der Niederschlagshöhe.

Wysokość deszczu Niederschlagshöhe mm	W % sum ogólnych In % der Gesamtheit			t_0	r_0	i
	n	t	r			
0.1	15.5	3.6	0.8	0 ^h 15 ^m	0.1	0.007
0.2	12.9	4.7	1.3	0 23	0.2	.009
0.3 — 0.5	18.3	8.5	3.6	0 29	0.4	.013
0.6 — 1.0	15.0	9.6	5.9	0 40	0.8	.019
1.1 — 2.0	13.8	12.2	10.3	0 56	1.5	.026
2.1 — 3.0	7.5	11.1	9.6	1 33	2.5	.027
3.1 — 5.0	6.5	11.6	13.0	1 52	3.9	.035
5.1 — 10.0	7.1	21.0	25.3	3 05	7.0	.038
10.1 — 20.0	2.6	13.0	18.3	5 11	13.7	.044
≥ 20.1	0.8	4.7	11.9	6 24	30.1	0.078
Sumy i średnie Summe und Mittel	100.0	100.0	100.0	1 ^h 03 ^m	2.0	0.031

TABLICA 28. — TABELLE 28.

Elementy deszczu jako funkcja natężenia.
Niederschlagselemente als Funktion der Niederschlagsintensität.

Natężenie Intensität mm/min	W % sum ogólnych In % der Gesamtheit			t_0	r_0	i
	n	t	r			
≤ 0.01	30.5	40.9	10.9	85 ^m	0.7	0.008
0.02 — 0.03	30.6	33.5	25.0	69	1.6	.023
0.04 — 0.05	14.0	12.2	17.1	55	2.4	.044
0.06 — 0.10	14.2	9.5	23.0	42	3.2	.075
0.11 — 0.15	4.1	1.8	7.2	28	3.5	.125
0.16 — 0.20	2.9	1.0	5.7	22	3.9	.180
0.21 — 0.30	1.8	0.7	4.7	22	5.0	.227
0.31 — 0.50	1.2	0.3	3.7	16	6.2	.381
0.51 — 1.00	0.6	0.1	2.6	15	8.6	0.585
≥ 1.01	0.1	0.0	0.1	2	2.8	1.140
Sumy i średnie Summe und Mittel	100.0	100.0	100.0	63 ^m	2.0	0.031

Dane tablic 26—28 w sposób jasny charakteryzują opady letnie; specjalnie omawiać ich nie będziemy. Podajemy tylko wnioski wynikające z tych tablic co do średnich wartości elementów, a mianowicie:

1^o Średnie wysokości opadów wzrastają wraz ze wzrostem średniego czasu trwania.

2^o Średnie natężenia opadów zmniejszają się wraz ze wzrostem średniego czasu trwania.

3^o Średnie natężenia opadów wzrastają wraz ze wzrostem średniej wysokości.

Warunki powyższe są również słuszne i po odwróceniu.

VII. U L E W Y.

Przedmiotem rozważań rozdziału niniejszego będą deszcze dostarczające w krótkich okresach znacznych ilości wody. Deszcze te są znane pod nazwą ulew.

W literaturze meteorologicznej spotykamy się z różnymi definicjami ulew. Tak więc nprz. C. Goodman rozumie przez ulewę deszcz o intensywności większej niż 10 mm/godz. Definicja ta jak to łatwo spostrzec nie jest wystarczająca, gdyż działanie ulewy zależy nie tylko od jej intensywności ale i od ilości dostarczonej wody, względnie czasu jej trwania. Poprawkę powyższą wprowadza do swojej definicji ulewy A. Rigggenbach. Autor ten podaje dwa warunki konieczne, którym ulewy muszą czynić zadość: 1^o — czas trwania musi być dłuższy niż 5 minut, 2^o — intensywność musi być większa niż 20 mm/godz. Rozwinięcie matematyczne idei A. Rigggenbacha podał G. J. Symons, uważając jako dolną granicę ulewy, pewną zależność między intensywnością deszczu a czasem jego trwania. Deszcze krótkotrwałe aby były ulewami muszą być bardziej intensywne, niż deszcze długotrwałe. Wyżej wy-

TABLICA 29. — TABELLE 29.

Skala ulew według Hellmanna.

Skala der Platzregen nach Hellmann.

A	B
1 — 5	1.00
6 — 15	0.80
16 — 30	.60
31 — 45	.50
46 — 60	.40
61 — 120	.30
121 — 180	.20
≥ 181	0.10

A — czas trwania deszczu w minutach.
— die Regendauer in Minuten.

B — dolna granica natężeń w mm/min.
— die untere Grenze der Niederschlagsintensitäten in mm/min.

mieniona koncepcja G. J. Symonsa posłużyła jako podstawa na której została oparta najbardziej dziś rozpowszechniona definicja ulew podana przez G. Hellmanna⁵⁾. Definicję tę ilustruje tabl. 29. Hellmann wyodrębnia ponadto deszcze o bardzo znacznym natężeniu, zwane w życiu potocznem oberwaniem się chmury (Wolkenbruch). Jako dolną granicę intensywności oberwania się chmury proponuje wymieniony autor intensywności dwukrotnie większe, niż te które wynikają z tabl. 29. U Hellmanna spotykamy też analityczną zależność intensywności jako funkcji czasu: $i = a\sqrt{t} + b$ gdzie t oznacza czas zaś i — intensywność. Zasadniczo inne podejście znajdujemy u G. Wussowa¹⁸⁾. Zamiast intensywności podaje on mianowicie jako kryterium ulewy minimalną ilość wody dostarczonej przez deszcz jako funkcję czasu jego trwania. M. Soumgin w pracy swojej¹⁷⁾ wprowadza pojęcie ulew śróddeszczowych, to znaczy takich, które nie w ciągu całego okresu trwania opadu ale tylko w jakiejś jego części mają cechy ulewy.

Analizując poglądy szeregu autorów o ulewach należy zaznaczyć, że same definicje tych ulew winny ulegać zmianie w zależności od tego czy kryteria te stosujemy do klimatu o dużych czy małych opadach, to znaczy do mokrego lub suchego.

Załączone poniżej tablice dotyczące ulew wileńskich, zostały oparte na definicji Hellmannowskiej z uwzględnieniem Soumginowskich ulew śróddeszczowych. Wprowadzenie tych ulew zaznaczyło się w pierwszym rzędzie na znaczenie zwiększonej frekwencji ulew krótkotrwałych jedno lub dwuminutowych o wysokości opadu od 1 do 3 mm.

Z opracowywanego materiału wyodrębniłyśmy 108 ulew. Rozkład dobowy i miesięczny tych ostatnich zawiera tabl. 30. Miesiącami najczęstszych wystąpień ulew jak wynika z powyższej tablicy są miesiące lipiec i sierpień. I w jednym i w drugim miesiącu maximum częstości przypada na godziny 16^h—20^h. W dużem przybliżeniu zaznaczona reguła o porze występowania ulew dotyczy i pozostałych miesięcy. Warto nadmienić, że interwał 12^h—16^h mało ustępuje interwałowi maximalnemu.

TABLICA 30. — TABELLE 30.

Rozkład dobowy ilości ulew (1925—1937).

Tagesverteilung der Anzahlen der Platzregen (1925—1937).

	0 ^h	4 ^h	8 ^h	12 ^h	16 ^h	20 ^h	24 ^h	0 ^h —24 ^h
V	.	.	1	6	3	3		13
VI	3	1	1	7	6	2		20
VII	1	1	2	9	12	9		34
VIII	3	2	1	7	12	3		28
IX	.	2	3	1	5	2		13
V—IX	7	6	8	30	38	19		108

TABLICA 31. — TABELLE 31.

Elementy ulewy jako funkcja czasu jej trwania.

Elemente des Platzregens als Funktion seiner Dauer.

Czas trwania Dauer	<i>n</i>	<i>t</i> ₀	<i>r</i> ₀	<i>i</i>
min				
≤ 5	83	2	2.3	1.35
6 — 15	12	9	8.5	0.99
16 — 30	6	20	17.4	0.86
31 — 60	—	—	—	—
61 — 120	1	76	35.5	0.47
121 — 180	—	—	—	—
181 — 360	6	216	23.9	0.11

n; *t*₀; *r*₀; *i* — ilość ulew; średnia długość trwania jednej ulewy w min; jej wysokość w mm; oraz natężenie w mm/min.

— Anzahl der Platzregen; die mittlere Dauer eines Platzregens in min; seine Höhe in mm; Intensität im mm/min.

TABLICA 32. — TABELLE 32.

Elementy ulewy jako funkcja wysokości.

Elemente des Platzregens als Funktion seiner Höhe.

Wysokość Höhe	<i>n</i>	<i>t</i> ₀	<i>r</i> ₀	<i>i</i>
mm				
1.1 — 2.0	43	1	1.4	1.25
2.1 — 3.0	22	2	2.4	1.33
3.1 — 5.0	16	3	4.0	1.45
5.1 — 10.0	11	8	6.8	0.87
10.1 — 20.0	9	52	14.2	0.27
≥ 20.1	7	150	27.7	0.18

Stosunki jakie zachodzą pomiędzy elementami ulew są uwidocznione w tablicach 31 i 32. Wyniki otrzymane przypominają swym charakterem zależności uzyskane dla wszystkich deszczów w rozdziale poprzednim (tabl. 26 — 28). Do tablic 31 i 32 nie przywiązuje zbyt wielkiej wagi dlatego, że znalezione tam wyniki są przynajmniej częściowo następstwem dowolności mieszczacej się w samej definicji ulewy.

Na zakończenie pragnę złożyć gorące podziękowanie Panu Profesorowi Dr Kazimierzowi Jantzenowi, Kierownikowi Zakładu Meteorologii Uniwersytetu Stefana Batorego, który przez cały czas wykonywania tej pracy, nie szczerdził swoich cennych rad i wskazówek.

LITERATURA.

1. Cotte P. *Traité de météorologie*. Paris. 1774.
2. Dziewulski Wł. *Sprawozdanie z działalności stacji meteorologicznej w Wilnie*. Biuletyn Obserwatorium Astronomicznego w Wilnie. II. Meteorologia. Nr. 1. Wilno. 1921.
3. Górczyński Wł. i Kosińska St. *Stosunki opadowe w Polsce*. Wiadomości Meteorologiczne, wydawane przez Państwowy Instytut Meteorologiczny w Warszawie. Nr. 6/7 (og. zb. Nr. 18/19). Warszawa 1922.
4. Hann J.—Süring R. *Lehrbuch der Meteorologie*. Leipzig. 1926.
5. Hellmann G. *Die Niederschläge in den Norddeutschen Stromgebieten*. Berlin. 1906.
6. Hellmann G. *Ergebnisse zehnjähriger Registrierungen des Regenfalls in Norddeutschland*. Berlin. 1912.
7. (Jantzen K.) *Dziesięciolecie obserwacji meteorologicznych (1918—1927) w Wilnie*. Biuletyn Obserwatorium Astronomicznego w Wilnie. II. Meteorologia. Nr. 5. Wilno. 1928.
8. Kassner C. *Über sehr dichte Regenfälle*. Met. Zeit. Band 36. Heft 5/6. 1919.
9. Kleinschmidt E. *Handbuch der meteorologischen Instrumente*. Berlin. 1935.
10. Kosińska-Bartnicka St. *Opady w Polsce (wysokość, częstość i charakter klimatyczny)*. Prace Meteorologiczne i Hydrograficzne. Zeszyt V. Warszawa. 1927.
11. Kosińska-Bartnicka St. *Zarys klimatu ziem wschodnich Polski*. Prace Instytutu Bad. Stanu Gospod. Ziemi Wschodnich. Nr. 23. Warszawa. 1927.
12. Less E. *Über den täglichen Gang der Sommerregen bei verschiedenen Wetterlagen*. Met. Zeit. 1900.
13. Merecki R. *Klimatologia ziem polskich*. Warszawa. 1914.
14. Omshansky M. A. *The Deformation of the Scales of Meteorological Elements and its Practical Meaning*. Transactions of the Central Geophysical Observatory. Theoretical Meteorology. Leningrad. 1935. (In Russian with English Summary).
15. Rouckówna M. *O opadach w Wilnie*. Biuletyn Obserwatorium Astronomicznego w Wilnie. II. Meteorologia. Nr. 2. Wilno. 1921.
16. Rybczyński M., Pomianowski K., Wójcicki K. *Hydrologia*. Warszawa. 1933.
17. Soumgin M. *On the Characteristics of Rains in the Amur District by Registrations of Self Recording Rain Gauges*. Records of the Far East Geophysical Institute. Nr. 1 (VIII). Vladivostok. 1931. (In Russian with English Summary).
18. Wussow G. *Untere Grenzwerte dichter Regenfälle*. Met. Zeit. Band 39. Heft 6. 1922.

Wilno, w grudniu 1937 r.

ZUSAMMENFASSUNG.

I. Einleitung *). Das Ziel der vorliegenden Arbeit ist einen Abriss der Niederschlagsverhältnisse in Wilno zu geben. Zur Bearbeitung gelangten die pluviometrischen Messungen aus dem 20-jährigen Zeitabschnitte 1918 — 1937 und pluviographische Aufzeichnungen aus dem 13-jährigen Zeitabschnitte 1925—1937. Die letzteren beziehen sich nur auf die Sommermonate vom Mai bis September.

II. Instrumente und Beobachtungsmaterial. Die Messungen der Niederschläge wurden vermittelst der Instrumente von System Hellmann ausgeführt. Es wurden nämlich gebraucht: ein Pluviometer und zwei Pluviographen (Balcerkiewicz Warszawa und Lambrecht Göttingen).

III. Die Vergleichung der Pluviometer und Pluviographen — Aufzeichnungen. Die gleichzeitige Betätigung des Pluviometers und Pluviographen, die übrigens in identischen Verhältnissen aufgestellt waren, gestattete eine Vergleichung ihrer Aufzeichnungen. Die Vergleichung wurde auf Grund einer Zusammenstellung der Tagesniederschlagshöhen, die durch beide Instrumente gleichzeitig notiert waren, durchgeführt.

Wir führen folgende Bezeichnungen ein:

R_d — Tagesniederschlagshöhe des Pluviometers in mm;

R_p — Tagesniederschlagshöhe des Pluviographen in mm;

$\Delta = R_d - R_p$.

In der Annahme, dass die Grösse Δ einen systematischen Charakter besitzt, haben wir sie als Funktion:

1^o. der mittleren Tagestemperatur der Luft,

2^o. der Höhe des Niederschlages R_p ,

untersucht.

Die Untersuchung der ersten Annahme ergab, dass zwischen diesen beiden Grössen kein Zusammenhang zu bestehen scheint, wie das der niedrige Korrelationskoeffizient zeigt ($r = 0.07$).)

Das Resultat der zweiten Annahme ist in der Tab. 3 enthalten. Ausgehend von der Annahme, dass die Beziehung $\Delta = \Delta (R_p)$ sich durch die Formel $\Delta = aR_p + b$ darstellen lässt, erhalten wir nach der Ausgleichung für die Konstanten a und b folgende Werte:

$$a = 0.052 \pm 0.002; b = -0.08 \pm 0.01.$$

*) Die römische Numerierung und Titeln der Abschnitte beziehen sich auf die entsprechenden Abschnitte des polnischen Textes.

Die numerischen Werte der Koeffizienten dieser Funktion für beide gebrauchte Pluviographen sind in [4] und [5] angegeben *).

Wir führen den Begriff der relativen Abweichung [2] und [3] ein und kommen zur Überzeugung, dass sie den absolut genommen grössten Wert für kleine Niederschläge erreicht, dagegen mit dem Anwachsen der Niederschlagshöhe sich einem konstanten Werte nähert. Diesen Grenzwert können wir als eine konstante Reduktion der Pluviographenaufschreibungen auf den Pluviometer betrachten. Die relativen Abweichungen für beide Pluviographen enthält die Tab. 4.

IV. Die Tagesniederschläge. Der jährliche Verlauf der Niederschlagshöhen ist in der Tab. 5 enthalten. Die Betrachtung dieser Tabelle zeigt, dass der jährliche Verlauf der Niederschlagshöhen sein Maximum im Juli (ca 16% des gesamten jährlichen Niederschlages), sein Minimum dagegen im Februar (4%) erreicht. Die Einteilung nach Jahreszeiten **) (Tab. 6) ergibt, dass:
a) 42% der gesamten jährlichen Niederschlagsmenge auf den Sommer entfällt;
b) der Herbst ist mehr feucht als der Frühling.

Die Vergleichung der Resultate der Niederschlagsmessungen aus den Jahren 1891—1910 mit den jetzt erhaltenen ist in der Tab. 7 enthalten. Wir bemerken gleich, dass die gegenwärtigen Messungen eine bedeutende Vergrösserung der mittleren jährlichen Niederschlagshöhe aufweisen.

Den jährlichen Verlauf der absoluten und relativen Frequenz (die Wahrscheinlichkeit des Niederschlages) gibt die Tab. 9—11 an.

Die Charakteristik der Niederschlagsverhältnisse ist in der Tab. 12 und 13 enthalten. Hier sind die Frequenzen der Niederschläge und ihre Häufigkeit als Funktion ihrer Tagesintensität zusammengestellt. Aus dieser Zusammenstellung lässt sich ersehen, dass im Winterhalbjahr (X—III) die grösste Niederschlagsmenge durch die Niederschläge von der Tagesintensität ca 4 mm geliefert wird. Das Sommerhalbjahr (IV — IX) lässt sich dagegen nicht durch eine einzige Zahl charakterisieren. Wir können nur behaupten, dass im Sommerhalbjahr die grösste Niederschlagsmenge aus den Tagesniederschlägen von grösserer Höhe als im Winter erhalten wird. Aus diesen Tabellen folgt auch, dass die grösste Niederschlagsmenge nicht aus den am häufigsten auftretenden Niederschlägen erhalten wird.

Die statistische Behandlung der Niederschläge unter dem Gesichtspunkte der Häufigkeit ihres Auftretens lässt, wie bekannt, erkennen, dass die kleineren Niederschläge ungewöhnlich oft auftreten. Als graphische Darstellung der Funktion der Niederschlagshäufigkeit erhält man eine der Hyperbel ähnliche Kurve, derer Zweige sich den Achsen der Niederschlagshöhen und Niederschlagshäufigkeiten asymptotisch nähern. Es liegt der Gedanke nahe, dass wir einen normalen, Gaußschen Verlauf der Niederschlagshäufigkeiten erhalten könnten, wenn wir anstatt der Niederschlagshöhe eine andere passend gewählte Veränderliche als unabhängige Variable einführen würden, welche die Umgebung der

*) Die Zahlen in Klammern gelten für die entsprechenden Formeln des polnischen Textes.

**) Winter: Dezember, Januar, Februar; Frühling: März, April, Mai; Sommer: Juni, Juli August; Herbst: September, Oktober, November.

kleinen Niederschläge unendlich ausbreiten könnten. Eine ähnliche Behandlung dieser Frage haben wir in der Arbeit von M. Omshansky¹⁴⁾ *) gefunden. Omshansky führt die k -te Wurzel aus der Niederschlagshöhe als eine neue Veränderliche ein, wobei er aus der Diskussion für k einen Wert beinahe gleich 3 erhält. Obwohl wir die Richtigkeit dieser Annahme in mathematischer Hinsicht nicht in Frage stellen, haben wir uns entschlossen eine Darstellung zu wählen, die der Natur der Erscheinung eher entsprechen würde. Wir haben zu diesem Zwecke die exponentielle Funktion $R = a^t$ gewählt. Hier bedeutet t ein neues Argument, R die Niederschlagshöhe in mm. In der Tab. 14 finden sich die Abschnitte von gleicher Breite des neuen Argumentes $t = \lg_a R$ und die ihnen entsprechenden Abschnitte des früheren Argumentes R zusammengestellt. Die Rechnung haben wir mit $a = 10$ ausgeführt, dabei für $R = 0.0$ nahmen wir $t = -2.0$ an. Diese Darstellung gibt, ähnlich wie beim M. Omshansky einen ziemlich normalen Verlauf. Wir fühlen uns daher berechtigt zu behaupten, dass eine derartige Darstellung gut das Wesen der Niederschlagsverteilung charakterisiert. Die Resultate der eben besprochenen Statistik enthält die Tab. 15. Die so erhaltene Verteilung der Niederschlagshäufigkeiten ist grundsätzlich verschieden von der Verteilung der Tab. 13. Die ausgesprochene Asymmetrie der Verteilung geht verloren. Außerdem erlaubt das hier auftretende Maximum der Häufigkeit, eine, diesem Maximum entsprechende Tagesniederschlagshöhe zu berechnen. Diese Berechnungen sind in der letzten Zeile der Tab. 15 enthalten.

Im Mittel lassen sich also die charakteristischen Tagesniederschläge für Wilno wie folgt darstellen: Winter ca 2.0 mm, Frühling — 2.2 mm, Sommer — 4.1 mm, Herbst — 2.7 mm. Der jährliche charakteristische Tagesniederschlag beträgt 2.7 mm.

Die Tab. 17 enthält die Niederschlagsmengen umgerechnet als Funktionen des Logarithmus der Niederschlagshöhe. In der letzten Zeile stehen die Niederschlagshöhen, die die grössten Niederschlagsmengen liefern. Zu unterstreichen ist die Übereinstimmung der erhaltenen Resultate mit der Tab. 12.

Die Besprechung der Tagesniederschläge aus dem Zeitraume 1918 — 1937 beschliessen wir mit einer Zusammenstellung der Tagesmaxima. (Tab. 17, 18).

V. Der tägliche Verlauf der Niederschläge. Der 13-jährige Zeitraum 1925—1937 der Aufzeichnungen des Pluviographen wurde dazu ausgenutzt um den Tagesverlauf der charakteristischen Werte der Niederschläge für die Sommermonate zu bestimmen. Diese Werte sind in den Tab. 19 — 24 angegeben. Die Resultate, die man aus der Diskussion dieser Tabellen erhält, können folgendermassen dargestellt werden.

1º In dem Zeitraume Mai — September von 14^h — 16^h treten die Niederschläge am häufigsten auf (die grösste Wahrscheinlichkeit des Auftretens).

2º Die Niederschläge im Abschnitte 14^h — 16^h sind die intensivsten und liefern die maximalen Regenmengen.

*) Siehe das Literaturverzeichnis am Ende des polnischen Teiles (S. 73).

- 3^o Die Abschnitte 6^h — 8^h und 18^h — 20^h sind die feuchtesten Stunden in bezug auf die Länge der Niederschlagsdauer.
4^o Die, in den Abschnitten 6^h — 8^h und 18^h — 20^h ziemlich häufigen Niederschläge sind in dem ersten von diesen beiden Abschnitten wenig intensiv und liefern die kleinsten Regenmengen.

VII. Die individuellen Niederschläge. Die Bearbeitung der pluviographischen Aufzeichnungen kann nach zwei Methoden durchgeführt werden. Entweder berechnet man die für die Niederschläge charakteristischen Größen in gleichen und gleichmäßig hintereinander folgenden Zeitintervallen (Methode der gleichen Intervallen) oder man kann jeden Regen als eine einzelne Erscheinung betrachten und für jede auf diese Weise abgesonderte Erscheinung ihre Elemente d. h. Höhe, Dauer, Intensität bestimmen (Methode der individuellen Regen).

Das Resultat der Bearbeitung der Pluviographenaufzeichnungen nach der Methode der individuellen Regen ist in den Tab. 25 — 28 zusammengestellt *). Bei dieser Bearbeitung haben wir diejenigen Regen als individuell betrachtet, die von den benachbarten wenigstens durch ein 20-Minuten langes Intervall ohne Regen getrennt waren.

Zwischen den mittleren Werten der Elemente der Niederschläge bestehen folgende Beziehungen, wobei auch die Umkehrung gilt:

- 1^o Die mittlere Höhe des Niederschlagewachszt zusammen mit dem Wachsen der mittleren Niederschlagsdauer.
- 2^o Die mittlere Intensität des Niederschlagewachszt mit dem Wachsen der mittleren Niederschlagsdauer.
- 3^o Die mittlere Niederschlagsintensität wächst mit dem Wachsen der mittleren Höhe.

VII. Die Platzregen. Aus der Anzahl der 2058 individuellen Regen haben wir 108 Platzregen ausgesondert. Als Platzregen wurden diejenigen Regen betrachtet, welche entweder während der ganzen Dauer oder wenigstens während eines Teiles, die Bedingung, welche Hellmann angegeben hat, erfüllen (Tab. 29).

Monats- und Tagesverteilungen der Platzregen sind in der Tab. 30 zusammengestellt. Die Tab. 31 und 32 geben die Beziehungen zwischen den Mittelwerten der Elemente der Platzregen an.

Wilno, im Dezember 1937.

*) Zur besseren Veranschaulichung wurden die Angaben der Tab. 23 und 24 auch nach der Methode der individuellen Regen gebildet.

