EM Side-Channel Leakage Modeling and Security Assessment at Pre-Silicon Stages (CYAN Task 2.4.2)

Md Kawser Bepary, Tanvir Rahman, Hasan Al-Shaikh, Jungmin Park, Mark Tehranipoor, Fahim Rahman Florida Institute of Cybersecurity (FICS) Research, Department of ECE, University of Florida

Fahim Rahman

Pre-silicon EMSCA

Application:

- Offer automated RTL/Gate-level EMSC
 vulnerability assessment tool for security-critical modules
 - Cryptographic IPs -- AES and RSA
 - Hash and password checkers

Impact:

- □ RTL/Gate-level assessment unlike traditional physical design-level or post-silicon analysis
 - > Fast & easy to assess, identify, fix, & iterate with low cost
 - physical design-level or post-silicon analysis is too late to provide quick countermeasures.
- □ Scalable and automated CAD framework
- ☐ Improved EMSC model with empirical data
- □ Easy-to-quantify EMSC vulnerability metrics
- □ Designer requires minimal 'security' knowledge

Pre-silicon EM Side-Channel Assessment (EMSCA)

(RTL/Gate-level Vulnerability Analysis)

Figure: High-level overview of pre-silicon EM side-channel assessment (EMSCA) framework

Pre-silicon EMSCA

Innovation

- Identifying inherent features of EM sidechannel leakage
- > EM emanation occurs due to data-dependent currents flowing through the metal layers of an IC
- Higher metal layers contribute the most to the detectable EM side-channel
- Additional features are identified and analyzed (see the poster.)
- □ A complete framework at RT- and gate-level for EM side-channel assessment
- Provides fast quantitative evaluation of EM sidechannel vulnerability at RT/Gate level
- Offer improved EM leakage model with physical designguided parameters for better accuracy, performance, and scalability
- Establish side-channel metrics (TVLA and KL Divergence) for easy assessment and validation

Figure: Contribution of each metal layers for EM emission [1]

Figure: Physical layout guided weight assignment in the leakage model

[1] Das, D., & Sen, S. (2020). Electromagnetic and power side-channel analysis: Advanced attacks and low overhead generic countermeasures through white-box approach. Cryptography, 4(4), 30.

Pre-silicon EMSCA

Figure: Simulated EM traces of example AES design for random and semifixed plaintext sets

Figure: T-test and KL-divergence results of AES module for each sample points

Figure: Layout-level EM analysis flow using RedHawk

Performance

□ Results

- Current weighted switching activity model can provide insights into each round of operation
- T-test and KL-divergence metric can identify vulnerable rounds of operations
- More granular analysis is capable of identifying vulnerable blocks

■ Work-in-progress

- Physical design guided weighted assignment to account for higher metal layers' EM emission
- A layout-level EM simulation with Ansys Redhawk
- Static analysis can identify hotspot location

Please stop by our poster for more...

STAMP: A Holistic Backward/Forward Trust Framework for Protecting Microelectronics Throughout Lifecycle

EM Side-Channel Leakage Modeling and Security Assessment at Pre-Silicon Stages

Md Kawser Bepary, Tanvir Rahman, Hasan Al-Shaikh, Jungmin Park, Fahim Rahman, Mark Tehranipoor, Florida Institute of Cybersecurity (FICS) Research, Department of ECE, University of Florida

INTRODUCTION

Electromagnetic (EM) side-channel analysis is a powerful technique to extract secret keys and assets from electronic hardware.

- · EM emanation occurs due to data-dependent current flowing through the metal layers of an IC
- · Higher metal layers contribute the most to the detectable EM side-channel.

Figure 1: Contribution of each metal layers for EM

APPLICATION

Analyze cryptographic hardware designs and secure operation against EMSC-based attacks

- · Model EM leakage at pre-silicon stage easy to assess, identify, fix, and iterate.
- · Establish easy-to-quantify EMSC metrics.
- · Scalable and automated CAD framework for vulnerability analysis with ease
- · Designer require no/minimal knowledge Blackbox information leakage model

Traditional EM/Power side-channel vulnerability assessment rely on post-silicon traces -- Too late to make design improvements for countermeasure.

INNOVATION

A complete framework at RT- and gate-level for EM side-channel assessment

- · Provides fast quantitative detection of EM sidechannel vulnerability at RT/Gate Level
- · Offer improved EM leakage model with physical design-guided parameters for higher accuracy and scalability
- · Establish side-channel metrics (TVLA and KL Divergence) for assessment and validation

Figure 2: High-level overview of pre-silicon EM side-channel assessment framework

Proposed Framework

- Registers and their driving fanouts are extracted -> input to the leakage model.
- Functional simulation is performed for inputs --
- · Fixed key, random vs random plaintext
- · Fixed key, random vs semifixed plaintext
- · Chosen key pair, fixed random plaintext · Random key pair, fixed random plaintext
- Simulated EM leakage trace is computed as the weighted switching activity of the registers
- · Vulnerability assessed against metrics TVLA and KL Divergence

Figure 5: Simulated EM traces of example AES

design for random and semifixed plaintext sets

· WIP: Physical design guided weight is assigned to account for higher metal layers' EM emission

Figure 3: Physical layout guided weight assignment in the leakage model

Figure 4: Layout-level EM analysis flow using RedHawk

Figure 6: Distribution of weighted switching activities at

Table 1: Features for Pre-silicon EM/Power Leakage Assessment in Each Abstraction Level

	RTL	Gate-level Netlist	Layout Level
Available information	Switching Activity	Switching Activity	Switching Activity
	Register Counts	# of Fanout (≈ Load Capacitance ≈ C _{gate} + C _{wire} + C _{diffusion})	Load Capacitance (C _{gate} + C _{wire} + C _{diffusion} + C _{parasitio}), resistance
	Submodules (hierarchy)	Library Definition	Parasitic Capacitance, Resistance
	Functional Testbench	Functional and Parametric Testbench	Metal layer interconnect
Simulation Granularity	Transition of each node for each clock cycle	n-time samples per clock cycle	Transistor level SPICE simulation
	For each submodule	For each node	For each transistor
Tool	Synopsys VCS (SAIF), Cadence Incisive (VCD)	Synopsys VCS (SAIF), Cadence Incisive (VCD)	Cadence Voltus, Spectre, Synopsys HSPICE
Trace Computa- tion	Hamming Distance (HD), Hamming Weight (HW) Model	Hamming Distance (HD), Hamming Weight (HW) Model	Hamming Distance (HD), Hamming Weight (HW) Model
Leakage Assess- ment Metric	Test Vector Leakage Assessment (TVLA), KL/JS Divergence	Test Vector Leakage Assessment (TVLA), KL/JS Divergence	Test Vector Leakage Assessment (TVLA), KL/JS Divergence

RESULT & WORK-IN-PROGRESS

- Current weighted switching activity model provides insights into each round of operations
- Both T-test and KL-div. agree on vulnerable modules
- Static IR drop analysis identifies hotspot locations
- · WIP: A layout level EM simulation with Ansys RedHawk is underway for improved modeling

[1] Das, D., & Sen, S. (2020). Electromagnetic and power side-channel analysis: Advanced attacks and low overhead generic countermeasures through white-box approach. Cryptography, 4(4), 30.

ACKNOWLEDGEMENTS

We like to thank AFRL for sponsoring this project.

Center for Enabling Cyber Defense in Analog and Mixed Signal Domain (CYAN)

