Class 14: RNASeq Mini Project

Nataliana (PID: A17096549)

library(DESeq2)

```
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,
    table, tapply, union, unique, unsplit, which.max, which.min
Attaching package: 'S4Vectors'
The following object is masked from 'package:utils':
    findMatches
```

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.4.2

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,

```
rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
   rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
   rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
   rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

   Vignettes contain introductory material; view with
   'browseVignettes()'. To cite Bioconductor, see
   'citation("Biobase")', and for packages 'citation("pkgname")'.
```

rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

Data Import

```
metaFile <- "GSE37704_metadata.csv"
countFile <- "GSE37704_featurecounts.csv"

# Import metadata and take a peak
colData = read.csv(metaFile, row.names=1)
head(colData)</pre>
```

condition SRR493366 control_sirna SRR493367 control_sirna SRR493368 control_sirna

```
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

Check correspondance of the columns of counts and the rows of metadata

```
colnames(countFile)
```

NULL

```
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

We need to remove the first "length" column from our counts

Q. Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[, -1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
# Filter count data where you have 0 read count across all samples.
countData = countData[rowSums(countData) > 0, ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

DESeq setup

```
#/message: false
library(DESeq2)
```

DESeq analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
dds
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
```

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

summary(res)

out of 15975 with nonzero total read count adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%

```
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

Result visualization

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2</pre>
```

```
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-</pre>
```


Add annotation

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                     "ALIAS"
                                                                     "ENSEMBLTRANS"
                                     "ENSEMBL"
                                                     "ENSEMBLPROT"
                                     "EVIDENCE"
 [6] "ENTREZID"
                     "ENZYME"
                                                     "EVIDENCEALL"
                                                                    "GENENAME"
[11] "GENETYPE"
                     "GO"
                                     "GOALL"
                                                     "IPI"
                                                                     "MAP"
```

```
"ONTOLOGYALL" "PATH"
[16] "OMIM"
                    "ONTOLOGY"
                                                                "PFAM"
[21] "PMID"
                    "PROSITE"
                                  "REFSEQ"
                                                 "SYMBOL"
                                                                "UCSCKG"
[26] "UNIPROT"
res$symbol = mapIds(org.Hs.eg.db,
                   keys=row.names(res),
                   keytype="ENSEMBL",
                    column="SYMBOL",
                   multiVals="first")
'select()' returned 1:many mapping between keys and columns
res$entrez = mapIds(org.Hs.eg.db,
                   keys=row.names(res),
                   keytype="ENSEMBL",
                   column="ENTREZID",
                   multiVals="first")
'select()' returned 1:many mapping between keys and columns
res$name =
            mapIds(org.Hs.eg.db,
                   keys=row.names(res),
                   keytype="ENSEMBL",
                    column="GENENAME",
                   multiVals="first")
'select()' returned 1:many mapping between keys and columns
head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                  baseMean log2FoldChange
                                              lfcSE
                                                          stat
                                                                    pvalue
                 <numeric>
                                <numeric> <numeric> <numeric> <numeric>
ENSG00000279457 29.913579
                                0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000187634 183.229650
                              0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.188076
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.637938
                                0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583 47.255123
                                0.0405765 0.2718928 0.149237 8.81366e-01
```

```
ENSG00000187642
                  11.979750
                                 0.5428105 0.5215598
                                                        1.040744 2.97994e-01
ENSG00000188290 108.922128
                                 2.0570638 0.1969053 10.446970 1.51282e-25
ENSG00000187608
                 350.716868
                                 0.2573837 0.1027266
                                                        2.505522 1.22271e-02
ENSG00000188157 9128.439422
                                 0.3899088 0.0467163
                                                        8.346304 7.04321e-17
                                                        0.192614 8.47261e-01
ENSG00000237330
                   0.158192
                                 0.7859552 4.0804729
                                 symbol
                                              entrez
                                                                       name
                       padj
                  <numeric> <character> <character>
                                                                <character>
ENSG00000279457 6.86555e-01
                                     NΑ
ENSG00000187634 5.15718e-03
                                              148398 sterile alpha motif ...
                                 SAMD11
ENSG00000188976 1.76549e-35
                                  NOC2L
                                               26155 NOC2 like nucleolar ...
ENSG00000187961 1.13413e-07
                                 KLHL17
                                              339451 kelch like family me..
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                               84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                  PERM1
                                               84808 PPARGC1 and ESRR ind..
ENSG00000188290 1.30538e-24
                                   HES4
                                               57801 hes family bHLH tran..
ENSG00000187608 2.37452e-02
                                  ISG15
                                                9636 ISG15 ubiquitin like..
ENSG00000188157 4.21963e-16
                                              375790
                                   AGRN
                                                                      agrin
ENSG00000237330
                         NA
                                 RNF223
                                              401934 ring finger protein ...
```

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file ="deseq_results.csv")
```

Pathway analysis

```
# Run in your R console (i.e. not your Rmarkdown doc!)
#BiocManager::install( c("pathview", "gage", "gageData") )

# For old vesrsions of R only (R < 3.5.0)!
#source("http://bioconductor.org/biocLite.R")
#biocLite( c("pathview", "gage", "gageData") )</pre>
```

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications

or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

library(gage)

```
library(gageData)
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720" "10941"
                                          "151531" "1548"
                                                             "1549"
                                                                       "1551"
 [9] "1553"
              "1576"
                        "1577"
                                 "1806"
                                           "1807"
                                                             "221223" "2990"
                                                    "1890"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                    "54490"
                                                             "54575"
                                                                       "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                          "54657"
                                                    "54658"
                                                             "54659"
                                                                       "54963"
[33] "574537" "64816"
                                           "7172"
                                                    "7363"
                        "7083"
                                 "7084"
                                                             "7364"
                                                                       "7365"
                                 "7372"
[41] "7366"
                                           "7378"
                                                    "7498"
                                                             "79799"
              "7367"
                        "7371"
                                                                       "83549"
[49] "8824"
              "8833"
                        "9"
                                 "978"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201"
                                                     "10623"
                                                              "107"
                                                                        "10714"
                         "10606"
                                  "10621"
                                            "10622"
  [9] "108"
               "10846"
                         "109"
                                  "111"
                                            "11128"
                                                     "11164"
                                                              "112"
                                                                        "113"
 [17] "114"
               "115"
                         "122481" "122622" "124583" "132"
                                                              "158"
                                                                        "159"
 [25] "1633"
                                  "196883" "203"
                                                     "204"
                                                              "205"
               "171568" "1716"
                                                                        "221823"
 [33] "2272"
               "22978"
                         "23649"
                                  "246721" "25885"
                                                     "2618"
                                                              "26289"
                                                                        "270"
                         "272"
                                            "2977"
 [41] "271"
               "27115"
                                  "2766"
                                                     "2982"
                                                              "2983"
                                                                        "2984"
 [49] "2986"
               "2987"
                         "29922"
                                  "3000"
                                            "30833"
                                                     "30834"
                                                              "318"
                                                                        "3251"
```

```
[57] "353"
               "3614"
                        "3615"
                                  "3704"
                                           "377841" "471"
                                                              "4830"
                                                                       "4831"
 [65] "4832"
               "4833"
                        "4860"
                                  "4881"
                                           "4882"
                                                    "4907"
                                                              "50484"
                                                                       "50940"
                                                              "5139"
 [73] "51082"
               "51251"
                        "51292"
                                 "5136"
                                           "5137"
                                                    "5138"
                                                                       "5140"
 [81] "5141"
               "5142"
                        "5143"
                                  "5144"
                                           "5145"
                                                    "5146"
                                                              "5147"
                                                                       "5148"
 [89] "5149"
                                  "5152"
                                           "5153"
                                                    "5158"
                                                              "5167"
                                                                       "5169"
               "5150"
                        "5151"
 [97] "51728"
               "5198"
                        "5236"
                                  "5313"
                                           "5315"
                                                    "53343"
                                                              "54107"
                                                                       "5422"
[105] "5424"
               "5425"
                        "5426"
                                  "5427"
                                           "5430"
                                                    "5431"
                                                              "5432"
                                                                       "5433"
[113] "5434"
               "5435"
                        "5436"
                                  "5437"
                                           "5438"
                                                    "5439"
                                                              "5440"
                                                                       "5441"
[121] "5471"
               "548644" "55276"
                                  "5557"
                                           "5558"
                                                    "55703"
                                                              "55811"
                                                                       "55821"
                                                    "57804"
                                                                       "6240"
[129] "5631"
               "5634"
                        "56655"
                                  "56953"
                                           "56985"
                                                              "58497"
[137] "6241"
               "64425"
                        "646625" "654364"
                                           "661"
                                                    "7498"
                                                              "8382"
                                                                       "84172"
[145] "84265"
               "84284"
                        "84618"
                                  "8622"
                                           "8654"
                                                    "87178"
                                                              "8833"
                                                                       "9060"
[153] "9061"
                        "953"
                                  "9533"
                                           "954"
                                                    "955"
                                                              "956"
                                                                       "957"
               "93034"
[161] "9583"
               "9615"
```

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

```
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

```
attributes(keggres)
```

\$names

[1] "greater" "less" "stats"

```
# Look at the first few down (less) pathways
head(keggres$less)
```

```
p.geomean stat.mean p.val
hsa04110 Cell cycle 8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication 9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport 1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination 3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis 3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
```

```
q.val set.size
                                                                  exp1
hsa04110 Cell cycle
                                     0.001448312
                                                      121 8.995727e-06
hsa03030 DNA replication
                                     0.007586381
                                                       36 9.424076e-05
hsa03013 RNA transport
                                     0.073840037
                                                      144 1.375901e-03
hsa03440 Homologous recombination
                                                      28 3.066756e-03
                                     0.121861535
hsa04114 Oocyte meiosis
                                     0.121861535
                                                      102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
```

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14

Info: Writing image file hsa04110.pathview.png

Figure 1: Cell Cycle

A different PDF based output of the same data pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

^{&#}x27;select()' returned 1:1 mapping between keys and columns

```
Warning: reconcile groups sharing member nodes!
     [,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14
Info: Writing image file hsa04110.pathview.pdf
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14
```

Info: Writing image file hsa00140.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14

Info: Writing image file hsa04142.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14

Info: Writing image file hsa04330.pathview.png

Save Results

Figure 2: Jak-Stat Signaling Pathway

Figure 3: Hematopoietic Cell Lineage

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways.d <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string</pre>
```

```
keggresids = substr(keggrespathways.d, start=1, stop=8)
keggresids
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Nataliana/OneDrive/Documents/R Lab-Bimm 143/Class14
Info: Writing image file hsa04114.pathview.png
```


Figure 4: Cell Cycle

Figure 5: DNA Replication

Figure 6: Nucleocytoplasmic Transport

Figure 7: Homologous Recombination

Figure 8: Ooctye Meiosis

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean p.val
G0:0007156 homophilic cell adhesion 8.519724e-05 3.824205 8.519724e-05
G0:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
G0:0048729 tissue morphogenesis 1.432451e-04 3.643242 1.432451e-04
G0:0007610 behavior 1.925222e-04 3.565432 1.925222e-04
G0:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
G0:0035295 tube development 5.953254e-04 q.val set.size exp1
```

```
GO:0007156 homophilic cell adhesion
                                          0.1951953
                                                         113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                                         424 1.432451e-04
                                          0.1951953
GO:0007610 behavior
                                          0.1967577
                                                         426 1.925222e-04
GO:0060562 epithelial tube morphogenesis 0.3565320
                                                         257 5.932837e-04
GO:0035295 tube development
                                          0.3565320
                                                         391 5.953254e-04
```

\$less

	p.geomean	stat.mean p.val
GO:0048285 organelle fission	1.536227e-15	-8.063910 1.536227e-15
GO:0000280 nuclear division	4.286961e-15	-7.939217 4.286961e-15
GO:0007067 mitosis	4.286961e-15	-7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.169934e-14	-7.797496 1.169934e-14
GO:0007059 chromosome segregation	2.028624e-11	-6.878340 2.028624e-11
GO:0000236 mitotic prometaphase	1.729553e-10	-6.695966 1.729553e-10
	q.val	set.size exp1
GO:0048285 organelle fission	5.841698e-12	376 1.536227e-15
GO:0000280 nuclear division	5.841698e-12	352 4.286961e-15
GO:0007067 mitosis	5.841698e-12	352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.195672e-11	362 1.169934e-14
GO:0007059 chromosome segregation	1.658603e-08	142 2.028624e-11
GO:0000236 mitotic prometaphase		

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GD:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.565432	3.565432
GD:0060562	epithelial tube morphogenesis	3.261376	3.261376
GD:0035295	tube development	3.253665	3.253665

Reactome Setup/Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

Figure 9: M-Phase of the significant genes for Homo Sapiens

- Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?
- The pathway with the most significant entities p-value is the M Phase. The next two most significant values are: Transcription of E2F targets under negative control by DREAM complex, G0 and Early G1. Based on the KEGG results these are different. The adjusted values and interfaces used/databases where the information is coming from could cause differences.