Source: [KBe2020math530floIndex]

- · Vector spaces and fields are like groups
 - · With 2 operations
- Vector
 - · direction and magnitude
 - · numbers with an order
 - list = ordered set
 - Nx1 matrix
 - A vector is not just an Nx1 matrix. A vector exists in a vector space
 - · might be full of physics vectors, matrices, or polynomials
- Field
 - · Addition and multiplication might be different
 - might be related to normal addition/multiplication
 - might by any binary operation
 - Addition is "primary" operation, multiplication is "secondary"
 - · addition is really good (more group like)
 - · multiplication needs to exclude the additive identity (because it can't have an inverse)
 - · questions
 - · multiplication is repeated addition?
 - · not nessacarily
 - binary expressions?
 - · associative?
 - · both yes
 - · 1.3 demonstrates that the complex numbers are a field
 - communativity
 - · associativity
 - identities
 - · additive inverse
 - · multiplicitive inverse except additive identity
 - · distributive
 - · usually means Reals or Complex
 - · ints mod 3 are a field
 - · #bonushw show ints mod 3 are a field
 - higher dimensions
 - R^2 is a cartesian plane, R^4 is a space
 - operations
 - · addition is really nice (element wise)
 - · scalar multiplication is easy enough
 - · vector vector multiplication is hard to find
- two square roots of i
 - · fundamental theorem of algebra
 - · (important)
 - So, i should have two square roots
 - Powers of i go in a circle (90 degrees rotation)
 - · Complex number rotation gives a preferred direction

Exr0n · 2020-2021 Page 1

- · So that's why the quadrants are numbered in that direction
- One can be found geometrically 20math530srcSquareRootl.png
- · We could also try it algebraically

•
$$(a+bi)^2 = i = a^2 - b^2 + 2abi$$

• so
$$a^2 - b^2 = 0$$
 and $2ab = 1$

- dot product
 - How much of \vec{A} is in the direction of \vec{B} multiplied by the magnitude of \vec{B}

•
$$\vec{A} \cdot \vec{B} = |A||B|cos\theta$$

#bonushw prove that ^^

• Identity:
$$\frac{\vec{A} \cdot \vec{B}}{|A||B|} = cos\theta$$

- · cross product
 - · only works on 3x1 matrices
 - steps
 - determinant
 - i, j, k are the unit vectors

$$\begin{bmatrix} 2\\1\\0\end{bmatrix} \begin{bmatrix} 1\\2\\-1\end{bmatrix} = \begin{vmatrix} \begin{bmatrix} i & j & k\\2 & 1 & 0\\1 & 2 & -1 \end{vmatrix} = i \begin{vmatrix} \begin{bmatrix} 1 & 0\\2 & -1 \end{bmatrix} \begin{vmatrix} -j \begin{vmatrix} \begin{bmatrix} 2 & 0\\1 & -1 \end{bmatrix} \end{vmatrix} + k \begin{vmatrix} \begin{bmatrix} 2 & 1\\1 & 2 \end{bmatrix} \end{vmatrix} = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$$

- dropping zero: $0a = (0+0)a = 0a + 0a \Rightarrow 0a = 0$, so the additive identity can't have a multiplicative inverse (everything multiplied it will just be the additive identity)
 - 20math530srcFieldsMultiplyCannotBeGroup.png
- determinant
 - measures the "size" of a matrix, denoted absolute value (relevant to inverse of a matrix multiplication)
- #todo #exr0n #future prove identities are unique