AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions of claims in this application.

Please cancel claims 10-15, without prejudice or disclaimer, as follows:

- 1. (Canceled).
- 2. (Original) An etching method for plasma-etching an SiO₂ film layer covering an SiN_x film layer formed at a workpiece placed inside an air-tight processing chamber by raising to plasma a processing gas induced into said processing chamber, comprising
 - a first step in which said SiO_2 film layer is etched by using a mixed gas containing at least C_4F_8 and CO as said processing gas; and a second step in which a switch is made to a mixed gas containing at least C_4F_8 and CH_2F_2 to be used as said processing gas to etch said SiO_2 film layer immediately before said SiN_x film layer becomes exposed.
- 3. (Original) An etching method for plasma-etching an SiO₂ film layer covering an SiN_x film layer formed at a workpiece placed inside an air-tight processing chamber by raising to plasma a processing gas induced into said processing chamber, comprising
 - a first step in which said SiO_2 film layer is etched by using a mixed gas containing at least C_4F_8 and CO as said processing gas; and a second step in which a switch is made to a mixed gas containing at least C_4F_8 and CH_2F_2 to be used as said processing gas to etch said SiO_2 film layer immediately after said SiN_x film layer becomes exposed.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LL

1300 L Street, NW Washington, DC 20005 202,408,4000 Fax 202,408,4400 www.finnegan.com

- 4. (Previously Presented) An etching method according to claim 2 or 3, wherein the flow rate ratio (CH_2F_2 / C_4F_8) of C_4F_8 and CH_2F_2 in said mixed gas containing at least C_4F_8 and CH_2F_2 is set essentially within a range of 0.4 ~ 1.0.
- 5. (Previously Presented) An etching method according to claim 2 or 3, wherein the partial pressure corresponding to C₄F₈ relative to the entire pressure of said mixed gas containing at least C₄F₈ and CH₂F₂ is set essentially within a range of 0.4 (mTorr) ~ 0.8 (mTorr).
- 6. (Previously Presented) An etching method according to claim 2 or 3, wherein the density of plasma excited inside said processing chamber is set essentially within a range of 1.5 \times 10¹⁰ (number of ions / cm³) ~ 1.2 \times 10¹¹ (number of ions / cm³).
- 7. (Previously Presented) An etching method according to claim 2 or 3, wherein: said workpiece is placed on a mounting surface of a susceptor provided inside said processing chamber; and the temperature of said susceptor is set essentially within a range of 20 °C ~ the heat resistance temperature of a photoresist layer constituting a mask pattern for said SiO₂ film layer.
- 8. (Previously Presented) An etching method according to claim 2 or 3, wherein said mixed gas containing at least C₄F₈ and CH₂F₂ further contains an inert gas.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER!!!

1300 Estreet, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com 9. (Original) An etching method according to claim 2 or 3, wherein said mixed gas containing at least C₄F₈ and CO further contains an inert gas.

10-15. (Canceled).

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

1300 | Street, NW Washington, DC 20005 202,408,4000 Fax 202,408,4400 www.finnegan.com