Examenul național de bacalaureat 2024 Proba E. c) Matematică *M șt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z_1 + iz_2 = 3 - i + i(1+i) = 3 - i + i + i^2 =$	3 p
	=3+(-1)=2	2p
2.	f(a) = 5 - a, $g(a+1) = a+3$	2p
	5-a=a+3, de unde obținem $a=1$	3 p
3.	$4x - x^2 = 3$, de unde obținem $x^2 - 4x + 3 = 0$	3 p
	x = 1 sau $x = 3$, care convin	2p
4.	Cifra unităților se poate alege în 4 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor se poate alege în câte 3 moduri, deci se pot forma $4 \cdot 3 = 12$ numere	3p
5.	C(4,0)	2p
	$AC = \sqrt{4^2 + 3^2} = 5$	3 p
6.	AC = 4	2p
	$AB = 4\sqrt{3}$, deci $\mathcal{A}_{\Delta ABC} = \frac{4\sqrt{3} \cdot 4}{2} = 8\sqrt{3}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 0 & -3 \\ 1 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & -3 \\ 1 & -2 \end{vmatrix} = 0 \cdot (-2) - (-3) \cdot 1 =$	3p
	= 0 + 3 = 3	2p
b)	$A(2) = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}, \ A(5) = \begin{pmatrix} 5 & 12 \\ -4 & 13 \end{pmatrix}, \ A(2) \cdot A(0) + A(5) = \begin{pmatrix} 3 & -12 \\ 4 & -5 \end{pmatrix} + \begin{pmatrix} 5 & 12 \\ -4 & 13 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8I_2$	3p
	$8I_2 = mI_2$, de unde obținem $m = 8$	2p
c)	$A(1-x) = \begin{pmatrix} 1-x & -3x \\ x & 1-3x \end{pmatrix}, A(x) - A(0) \cdot A(1-x) = \begin{pmatrix} 4x & -6x \\ 2x & 0 \end{pmatrix}, \text{de} \text{unde} \text{obținem}$ $\det(A(x) - A(0) \cdot A(1-x)) = 12x^2, \text{ pentru orice număr real } x$	3p
	$12x^2 = 3$, de unde obţinem $x = -\frac{1}{2}$ sau $x = \frac{1}{2}$	2p
2.a)	$1 \circ 8 = 1 + 8 + 1 - \sqrt{1 \cdot 8 + 1} =$	3p
	=10-3=7	2p
b)	$x \circ \frac{3}{x} = x + \frac{3}{x} - 1$, pentru orice $x \in M$	3 p
	$x + \frac{3}{x} - 1 = x$, de unde obținem $x = 3$, care convine	2p

 Central Pagional de l'ornel și Evaluare în Educație			
c)	$n \circ (n+2) = n+2$, $(n \circ (n+2)) \circ (n+4) = n+4$, pentru orice număr natural nenul n	3p	
	$n+4>\frac{n^2}{2}$ și, cum n este număr natural nenul, obținem $n=1$ sau $n=2$ sau $n=3$	2p	

SUBIECTUL al III-lea (30 de puncte)

$f'(x) = (3x^2 + 4x)e^x + (x^3 + 2x^2)e^x =$	3p
$= (x^3 + 5x^2 + 4x)e^x = x(x^2 + 5x + 4)e^x, x \in \mathbb{R}$	2p
f(0) = 0, f'(0) = 0	2p
Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = 0$	3p
$f'(x) = 0 \Leftrightarrow x = -4$ sau $x = -1$ sau $x = 0$; pentru $x \in [-4, -1] \Rightarrow f'(x) \ge 0$, deci f este	
crescătoare pe $[-4,-1]$ și pentru $x \in [-1,0] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe	2p
[-1,0]	
$f(-4) = -\frac{32}{e^4}$, $f(-1) = \frac{1}{e}$ și $f(0) = 0$, deci $-\frac{32}{e^4} \le f(x) \le \frac{1}{e}$, de unde obținem	2n
$-\frac{32}{e^{x+4}} \le x^2 (x+2) \le \frac{1}{e^{x+1}}$, pentru orice $x \in [-4,0]$	3р
$\int_{1}^{2} \left(f(x) + \frac{2}{x+1} \right) dx = \int_{1}^{2} 3x^{2} dx = x^{3} \Big _{1}^{2} =$	3р
=8-1=7	2p
$\int_{1}^{5} (3x^{2} - f(x)) dx = \int_{1}^{5} \frac{2}{x+1} dx = 2 \int_{1}^{5} \frac{(x+1)^{2}}{x+1} dx = 2 \ln(x+1) \Big _{1}^{5} =$	3p
$= 2 \ln 6 - 2 \ln 2 = 2 \ln 3$	2p
$\int_{1}^{4} (a+bg(x))g'(x)dx = \int_{1}^{4} ag'(x)dx + \int_{1}^{4} bg(x)g'(x)dx = ag(x) \left \frac{4}{1} + \frac{bg^{2}(x)}{2} \right _{1}^{4} =$	3p
$= a(g(4) - g(1)) + \frac{b}{2}(g^2(4) - g^2(1)), \text{ pentru orice numere reale } a \text{ si } b$	
$g(1) = f(0) = -2$, $g(4) = f(1) = 2$, deci $\int_{1}^{4} (a + bg(x))g'(x)dx = 4a$, pentru orice numere	2p
reale a și b	