10 Schedule

Mon, Jul 28	Session
08:00-17:30	Registration Desk Open (HH Lobby)
08:45-09:00	Conference Opening (HH Auditorium)
09:00-10:00	Plenary Talk by Rohan Sawhney (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: Stochastic Computation and Complexity, Part I (HH Auditorium)
10:30-12:30	Track B: Domain Uncertainty Quantification (HH Ballroom)
10:30-12:30	Track C: Nested expectations: models and estimators, Part I (PH Auditorium)
10:30-12:30	Track D: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part I (WH
	Auditorium)
10:30-12:30	Track E: Technical Session 1 - Markov Chain Monte Carlo (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-15:00	Plenary Talk by Christiane Lemieux, U of Waterloo, Golden ratio nets and sequences
	(HH Auditorium)
15:00-15:30	Coffee Break (HH Lobby)
15:30-17:30	Track F: Stochastic Computation and Complexity, Part II (HH Auditorium)
15:30-17:30	Track G: Recent advances in optimization under uncertainty (HH Ballroom)
15:30-17:30	Track H: Computational Methods for Low-discrepancy Sampling and Applications
	(PH Auditorium)
15:30-17:30	Track I: Technical Session 4 - Quasi-Monte Carlo, Part 1 (WH Auditorium)
15:30-17:30	Track J: Technical Session 12 - PDEs (HH Alumni Lounge)
17:30-19:30	Welcome Reception (HH Lobby)

Tue, Jul 29	Session
08:30-17:30	Registration Desk Open (HH Lobby)
09:00-10:00	Plenary Talk by Peter Glynn, Stanford U, Combining Simulation and Linear Algebra:
	COSIMLA (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: Stochastic Computation and Complexity, Part III (HH Auditorium)
10:30-12:30	Track B: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part I (HH Ballroom)
10:30-12:30	Track C: Heavy-tailed Sampling (PH Auditorium)
10:30-12:30	Track D: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part I (WH Auditorium)
10:30-12:30	Track E: Technical Session 2 - Bayesian Methods (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-15:00	Plenary Talk by Roshan Joseph, Georgia Institute of Technology, Sensitivity and
	Screening: From Monte Carlo to Experimental Design ()
15:00-15:30	Coffee Break (HH Lobby)
15:30-17:30	Track F: Stochastic Computation and Complexity, Part IV (HH Auditorium)
15:30-17:30	Track G: Next-generation optimal experimental design: theory, scalability, and real
	world impact: Part II (HH Ballroom)
15:30-17:30	Track H: Advances in Rare Events Simulation (PH Auditorium)
15:30-17:30	Track I: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods,
	Part II (WH Auditorium)
15:30-17:30	Track J: Technical Session 5 - Quasi-Monte Carlo, Part 2 (HH Alumni Lounge)

Schedule 11

Wed, Jul 30	Session
08:30-16:30	Registration Desk Open (HH Lobby)
09:00-10:00	Plenary Talk by Michaela Szölgyenyi, U of Klagenfurt, An optimal transport approach
	to quantifying model uncertainty of SDEs (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30-12:30	Track A: Stochastic Computation and Complexity, Part V (HH Auditorium)
10:30-12:30	Track B: Statistical Design of Experiments (HH Ballroom)
10:30-12:30	Track C: Advances in Adaptive Hamiltonian Monte Carlo (PH Auditorium)
10:30-12:30	Track D: Technical Session 15 - Simulation (WH Auditorium)
10:30-12:30	Track E: Technical Session 6 - Sampling (HH Alumni Lounge)
12:30-14:00	Lunch Break ()
14:00-16:00	Track F: Stochastic Optimization (HH Auditorium)
14:00-16:00	Track G: Recent Progress on Algorithmic Discrepancy Theory and Applications (HH Ballroom)
14:00-16:00	Track H: Monte Carlo Applications in High-performance Computing, Computer
14.00 16.00	Graphics, and Computational Science (PH Auditorium)
14:00-16:00	Track I: Technical Session 16 - Statistics (WH Auditorium)
14:00-16:00	Track J: Technical Session 10 - Langevin (HH Alumni Lounge)
16:00-16:30	Coffee Break (HH Lobby)
18:00-20:30	Conference Dinner (Bridgeport Arts Center)
Thu, Jul 31	Session
08:30–17:30	Registration Desk Open (HH Lobby)
09:00-10:00	Plenary Talk by Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Meth-
09:00-10:00	ods and Optimization Strategies (HH Auditorium)
10:00-10:30	Coffee Break (HH Lobby)
10:30–10:30	Track A: QMC and Applications Part I (HH Auditorium)
10:30-12:30	Track B: Analysis of Langevin and Related Sampling Algorithms, Part I (HH Ball-
10.50 12.50	room)
10:30-12:30	Track C: Nested expectations: models and estimators, Part II (PH Auditorium)
10:30-12:30	Track D: Technical Session 8 - Finance (WH Auditorium)
10:30-12:30	Track E: Technical Session 13 - ML & Optimization (HH Alumni Lounge)
12:30–14:00	Lunch Break ()
14:00-15:00	Plenary Talk by Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte
14.00 10.00	Carlo and its application to exact ecological inference (HH Auditorium)
15:00-15:30	Coffee Break (HH Lobby)
15:30–17:30	Track F: QMC and Applications Part II (HH Auditorium)
15:30–17:30	Track G: Analysis of Langevin and Related Sampling Algorithms, Part II (HH Ball-
10.00 11.00	room)
15:30-17:30	Track H: Recent Advances in Stochastic Gradient Descent (PH Auditorium)
15:30–17:30	Track I: Technical Session 7 - Sampling (WH Auditorium)
15:30-17:30	Track J: Technical Session 11 - SDEs (HH Alumni Lounge)
18:00-20:30	Steering Committee Meeting (by invitation) ()
10.00 20.00	Secting Commerce Necting (by invitation) ()
Fri, Aug 1	Session
08:30-12:15	Registration Desk Open (HH Lobby)
09:00-10:30	Track A: Forward and Inverse Problems for Stochastic Reaction Networks (HH Au-
	ditorium)
09:00-10:30	Track B: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II (HH
	Ballroom)
09:00-10:30	Track C: Technical Session 3 - Simulation (PH Auditorium)
09:00-10:30	Track D: Technical Session 9 - Sampling (WH Auditorium)
00:00 10:30	Track F: Tochnical Session 14 Markov Chain Monte Carlo (HH Alumni Lounga)

Track E: Technical Session 14 - Markov Chain Monte Carlo (HH Alumni Lounge)

Plenary Talk by Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference

09:00–10:30 10:30-11

11:00-12:00

12:00-12:15

Coffee Break (HH Lobby)

Closing Remarks (HH Auditorium)

(HH Auditorium)

			HH Alumni Lounge Track E: Technical Session	1 - Markov Chain Monte	Carlo	Chair: TBD		Zhihao Wang,	Stereographic Multi-Try	Metropolis Algorithms for	Heavy-tailed Sampling,	p. 139	Ruben Seyer, Creating	rejection-free samplers by	rebalancing skew-balanced	jump processes, p. 140				Philippe Gagnon,	Theoretical guarantees for	litted samplers, p. 141								
			Special Session,WH Auditorium	Track D: Hardware or	Software for	(Quasi-)Monte Carlo	Algorithms, Part J p. 35 Chair: <i>TBD</i>	Pieterjan Robbe,	Multilevel quasi-Monte	Carlo without replications,	p. 80		Irina-Beatrice Haas, A	nested Multilevel Monte	Carlo framework for	efficient simulations on	FPGAs, p. 80			Mike Giles, CUDA	implementation of MLMC	on NVIDIA GPUS, p. 81			Chama Mina Lai Caslabla	and User-friendly QMC	Sampling with UMBridge,	p. 82		
			Special Session,PH Auditorium	Track C: Nested	expectations: models and	estimators, Part I p. 34	Chair: TBD	Abdul Lateef Haji Ali, An	Adaptive Sampling	Algorithm for Level-set	Approximation, p. 77		$Sebastian\ Krumscheid,$	Double-loop randomized	quasi-Monte Carlo	estimator for nested	integration, p. 77			Vinh Hoang,	Posterior-Free A-Optimal	Bayesian Design of	Experiments via	Conditional Expectation,	p. 78 Voca Kammioia OMC for	Bayesian optimal	experimental design with	application to inverse	problems governed by	PDEs, p. 79
	ng by Fred Hickernell, HH Auditorium Rohan Sawhneu, p. ?? Chair:	1	Special Session,HH Ballroom	Track B: Domain	Uncertainty Quantification	p. 33	Chair: TBD	$Andr\'e-Alexander$	Zepernick, Domain UQ	for stationary and	time-dependent PDEs	using QMC, p. 74	$Carlos\ Jerez-Hanckes,$	Domain Uncertainty	Quantification for	Electromagnetic Wave	Scattering via First-Order	Sparse Boundary Element	Approximation, p. 75	Jurgen Dolz, Quantitying	uncertainty in spectral	clusterings: expectations	for perturbed and	incomplete data, p. 70	Hami Halmila Madal		Uncertain Domains, p. 76	4		
Registration Desk Open	Conference Opening by Fred Hickernell, HH Plenary Talk: Rohan Sawhney, D. ??		Special Session,HH Auditorium	Track A: Stochastic	Computation and	Complexity, Part I p. 32	Chair: TBD	Andreas Neuenkirch, A	strong order 1.5 boundary	preserving discretization	scheme for scalar SDEs	defined in a domain, p. 72	Christopher Rauhögger,	An adaptive Milstein-type	method for strong	approximation of systems	of SDEs with a	discontinuous drift		Verena Schwarz, Stong	order 1 adaptive	approximation of	jump-diffusion SDEs with	discontinuous drift, p. 13						
08:00-17:30	08.45 - 09.00 $9.00 - 10.00$	10:00-10:30						10:30–12:30					10:30-12:30							10:30-12:30					10.30_19.30	00:01				

- Afternoon
2025
Jul 28 ,
Mon,

	nences, p. 22 Chair: Nathan Kirk			Track I: Technical Session Track J: Technical Session 4 - Quasi-Monte Carlo, 12 - PDEs		Chair: TBD		Christian Weiss, Halton Adrien Richou, A	Sequences, Scrambling and probabilistic Numerical		Star-Discrepancy, p. 149 elliptic Partial Differential	Equations, p. 172		Xiaoda Xu, Star $Abdujabar Rasulov$, Monte	discrepancy and uniform Carlo method for the	approximation under Spatially Homogenous		stratified random sampling p. 172	y. p. 150	Signic Liu, mansport Migael Alvarez, A ivew	Adast-Mone Carlo, p. 191 Approach 191 Ciblesed	of Domination of a lambered	OI Fartially Observed	Diffusions, p. 113	Ambrose Emmett-Iwaniw, Håkon Hoel, High-order			apling	for Conilas n 159
	of Waterloo, Golden ratio nets and sequences, p. 22		Hd'uoiss	Auditorium Track H: Computational		ling	and Applications p. 39 Chair. TBD	ment,	tations			Sets and Inverstigating the	Kritzinger Sequence, p. 88	Nathan Kirk, Minimizing	the Stein Discrepancy,	p. 89			M. homen			Damping-used Motion	Flanning Via	Message-rassing Monte Carlo p. 89	iak, An	Jc	ators for	RQMC, p. 90	
	$Christiane\ Lemieux,\ U\ of\ Waterloo,$		Special Session,HH	Ballroom Track G: Recent advances	in optimization under	uncertainty p. 38	Chair: TBD	Tapio Helin, Stability of	Expected Utility in	Bayesian Optimal	Experimental Design, p. 85			Karina Koval, Subspace	accelerated measure	fast	and scalable sequential	experimental design, p. 86			Call mothoda for	callo inetilous ioi	risk-averse stochastic	optimization, p. 81	Arved Bartuska, Efficient	expected information gain	estimators based on the	randomized quasi-Monte	X C 0001000 0140
Lunch Break	HH Auditorium Plenary Talk: Christiane		ssion,HH	Auditorium Track F: Stochastic		IJ p. 37	Chair: TBD	Michael Gnewuch,	Optimality of deterministic		al al	scales of function spaces,	p. 82		Optimal designs for	function discretization and	construction of tight	frames, p. 84	I					presence of deterministic or random noise, p. 85					
12:30–14:00	14:00–15:00	15:00-15:30						15:30–17:30						15:30–17:30					15.30 17.30	19.90_11_90					15:30–17:30				

Mornin
2025
29,
Jul
Tue,

		Chair: Chang-Han Rhee		HH Alumni Lounge Track E: Technical Session 2 - Bayesian Methods Chair: <i>TBD</i>	Lorenzo Nagar, Optimizing Generalized Hamiltonian Monte Carlo for Bayesian Inference applications, p. 142	Hamza Ruzaygat, Bayesian Anomaly Detection in Variable-Order and Variable-Diffusivity Fractional Mediums, p. 143	Arghya Datta, Theoretical Guarantees of Mean Field Variational Inference for Bayesian Principal Component Analysis, p. 144	Jimmy Lederman, Bayesian Analysis of Latent Underdispersion Using Discrete Order Statistics, p. 144
		Algebra: COSIMLA, p. 23	4	Special Session,WH Auditorium Track D: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods, Part J p. 46 Chair: TBD	Hwanwoo Kim, Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration, p. 98			
		U, Combining Simulation and Linear Algebra: COSIMLA, p. 23	,	Special Session,PH Auditorium Track C: Heavy-tailed Sampling p. 44 Chair: TBD	Sebastiano Grazzi, Parallel computations for Metropolis Markov chains Based on Picard maps, p. 95	Federica Milinanni, A large deviation principle for Metropolis-Hastings sampling, p. 96	Xingyu Wang, Sharp Characterization and Control of Global Dynamics of SGDs with Heavy Tails, p. 97	
- Morning		$Peter\ Glynn,\ Stanford\ U,\ Combinin$		Special Session,HH Ballroom Track B: Next-generation optimal experimental design: theory, scalability, and real world impact: Part I p. 42 Chair: TBD	Xun Huan, Optimal Pilot Sampling for Multi-fidelity Monte Carlo Methods, p. 93	Adrien Corenflos, A recursive Monte Carlo approach to optimal Bayesian experimental design, p. 94	Ayoub Belhadji, Weighted quantization using MMD: From mean field to mean shift via gradient flows, p. 94	
Tue, Jul 29, $2025 -$	Registration Desk Open	HH Auditorium Plenary Talk: Peter Glys	Coffee Break	Special Session, III Auditorium Track A: Stochastic Computation and Complexity, Part III p. 41 Chair: TBD	Jean-François Chassagneux, Computing the stationary measure of McKean-Vlasov SDEs, p. 91	Noufel Frikha, On the convergence of the Euler-Maruyama scheme for McKean-Vlasov SDEs, p. 91	Sotirios Sabanis, Wasserstein Convergence of Score-based Generative Models under Semiconvexity and Discontinuous Gradients, p. 92	
	08:30-17:30	09:00–10:00	10:00-10:30		10:30–12:30	10:30–12:30	10:30–12:30	10:30–12:30

- Afternoon
2025 -
Jul 29 ,
Tue, J

$12:30-14:00\\14:00-15:00$	Lunch Break Plenary Talk: Roshan J Design, p. 24 Chair: S	Roshan Joseph, Georgia Institute o Chair: Simon Mak	Institute of Technology, Sensitivity and Screening: From Monte Carlo to Experimental	nd Screening: From Mont	te Carlo to Experimental
15:00-15:30					
	Special Session,HH Auditorium Track F: Stochastic Computation and Complexity, Part IV, p. 47 Chair: TBD	Special Session,HH Ballroom Track G: Next-generation optimal experimental design: theory, scalability, and real world impact: Part II p. 48 Chair: TBD	Special Session,PH Auditorium Track H: Advances in Rare Events Simulation p. 50 Chair: TBD	Special Session,WH Auditorium Track I: Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods, Part II p. 51 Chair: TBD	HH Alumni Lounge Track J: Technical Session 5 - Quasi-Monte Carlo, Part 2 Chair: TBD
15:30–17:30	Larisa Yaroslavtseva, Optimal strong approximation of SDEs with Hölder continuous drift coefficient, p. 98	Alen Alexanderian, Goal Oriented Sensor Placement for Infinite-Dimensional Bayesian Inverse Problems , p. 100	Victor Elwira, Multiple Importance Sampling for Rare Event Simulation in Communication Systems, p. 103	Takashi Goda, Quasi-uniform quasi-Monte Carlo digital nets, p. 105	Peter Kritzer, Approximation using median lattice algorithms, p. 153
15:30–17:30	Gunther Leobacher, Tractability of L_2 -approximation and integration in weighted Hermite spaces of finite smoothness, p. 99	jacopo iollo, Diffusion-Based Bayesian Experimental Design: Advancing BED for Practical Applications, p. 101	Bruno Tuffin, Asymptotic robustness of smooth functions of rare-event estimators, p. 103	Ziang Niu, Boosting the inference for generative models by (Quasi-)Monte Carlo resampling, p. 106	Yang Liu, Convergence Rates of Randomized Quasi-Monte Carlo Methods under Various Regularity Conditions, p. 153
15:30–17:30	Alexander Steinicke, Malliavin differentiation of Lipschitz SDEs and BSDEs and an Application to Quadratic Forward-Backward SDEs, p. 100	Tommie Catanach, Robust Bayesian Optimal Experimental Design under Model Misspecification, p. 102	Eya Ben Amar, Importance Sampling Methods with Stochastic Differential Equations for the Estimation of the Right Tail of the CCDF of the Fade Duration, p. 104	Chenyang Zhong, A hit and run approach for sampling and analyzing ranking models, p. 107	Jakob Dilen, Use of rank-1 lattices in the Fourier neural operator, p. 154
15:30–17:30			Shyam Mohan Subbiah Pillai, Estimating rare event probabilities associated with McKean-Vlasov SDEs, p. 104		Aadit Jain, Investigating the Optimum RQMC Batch Size for Betting and Empirical Bernstein Confidence Intervals, p. 154

	- Morning	
	CZ0Z	
_	_:	
2	30	
C	7	
-	Jul	
-	ð	•
►	wed.	
-	>	

			nodel uncertainty of		HH Alumni Lounge	Track E: Technical Session	6 - Sampling	Onail: 1DD		Akash Sharma, Sampling with constraints, p. 155					Joonha Park, Sampling	from high-dimensional,	multimodal distributions	using automatically tuned,	tempered Hamiltonian	Monte Carlo, p. 150	Arne Bounton, Localized	consensus-based samping for non-Ganssian	distributions, p. 157	4		Alon Obloticle Immention	Aver Sukvinuk, importance Sampling for Hawkes	Processes, p. 157	
			approach to quantifying m		WH Auditorium	Track D: Technical Session	15 - Simulation	Ondu: 1DD		Philippe Blondeel, Combining quasi-Monte	Optimal Control for	Trajectory Optimization of	Autonomous venicles in Mine Counter Measure	Simulations, p. 181	Rino Persiani, A Monte	Carlo Approach to	Designing a Novel Sample	Holder for Enhanced	UV-Vis Spectroscopy,	p. 182	rasarın əngamsanaar,		sign problem in the	simulation of collider	events in high energy	physics, p. 183	and Surrogate Modeling	Approaches for Uncertainty Quantification	in Ice Sheet Simulations, p. 184
		:	of Klagenfurt, An optimal transport approach to quantifying model uncertainty of		Special Session,PH	Auditorium	Track C: Advances in	Monte Carlo p. 56	Chair: TBD	Bob Carpenter, GIST: Gibbs self-tuning for	Hamiltonian Monte Carlo,	p. 113			$Nawaf\ Bou-Rabee,$	Acceleration of the	No-U-Turn Sampler, p. 113			China hardina	Churdy Modit, Alles:	Adapting Hajectory Lenoths and Sten-Size for	Hamiltonian Monte Carlo.	p. 114		The constant of the state of th	Irevor Campbell, AutoStep: Locally	adaptive involutive MCMC, p. 115	
			Michaela Szölgyenyi, U of Klagenfu Chair: Gunther Leobacher		Special Session,HH	Ballroom	Track B: Statistical Design	Chair: TBD		Simon Mak, Respecting the boundaries:	Surrogate modeling with	boundary information,	p. 110		Chih-Li Sung, Stacking	designs: designing	multi-fidelity computer	experiments with target	predictive accuracy, p. 111		Gran Atao, Optimal	design of experiments with	factors, p. 112	4			Chaojan Huang, ractor Importance Ranking and	Selection using Total Indices, p. 112	
wed, Jul 90, 2029	Registration Desk Open		Plenary Talk: Michaela S		HH'uoiss		Track A: Stochastic	Part V, p. 53		Stefan Heinrich, On the quantum complexity of						.E.	t Besov	Spaces, p. 108			E	tile iliteractilig Farticle Langevin Algorithm —	ė.	p. 109		Torit Toring Committee	with Langevin Dynamics	from non-smooth and non-logconcave potentials.,	p. 109
	08:30-16:30	09:00-10:00		10:00-10:30						10:30–12:30					10:30-12:30					10.90 19.90	10:30-12:30					10.90 19.90	06:21-06:01		

Afternoon
2025
30,
Jul
Wed,

12:30–14:00	Lunch Break				
	Special Session,HH	Special Session,HH	Special Session,PH	WH Auditorium	HH Alumni Lounge
	Auditorium	Ballroom	Auditorium	Track I: Technical Session	Track J: Technical Session
	Track F: Stochastic	Track G: Recent Progress	Track H: Monte Carlo	16 - Statistics	10 - Langevin
	Optimization p. 58	on Algorithmic	Applications in	Chair: TBD	Chair: TBD
	Chair: TBD	Discrepancy Theory and	High-performance		
		Applications p. 59	Computing, Computer		
		Chair: TBD	Graphics, and		
			Committational Coinne		
			Computational Science		
			p. 01		
			Chair: TBD		
14:00-16:00	$Raghu\ Bollapragada,$	$Haotian\ Jiang,$	Arash Fahim, Gaining	$Kazeem\ Adeleke,$	Attila Lovas, Stochastic
	Monte Carlo Based	Algorithmic Discrepancy	efficiency in Monte Carlo	Empirical Statistical	gradient Langevin
	Adaptive Sampling	Theory: An Overview,	policy gradient methods	Comparative Analysis of	dynamics with
	Approaches for Stochastic	p. 117	for stochastic optimal	SNP Heritability	non-stationary data, p. 166
	Optimization, p. 115	•	control, p. 118	Estimators and Gradient	•
) - J			Boosting Machines (CBM)	
				Using Conotic Deta from	
				the III Biokent 194	
000	77 1 11	ţ	7 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the UK Biobank, p. 184	
14:00-16:00	Shane Henderson, A New	Feng Zhang, Improving	Silei Song, Wos-ININ:	Carles Domingo-Enrich,	Sara Ferez-Vieites,
	Convergence Analysis of	the Design of Randomized	Collaborating	Cheap permutation testing	Langevin-based strategies
	Two Stochastic	Experiments via	Walk-on-Spheres with	, p. 185	for nested particle filters,
	Frank-Wolfe Algorithms.	Discrepancy Theory,	Machine Learning to Solve	1	p. 167
	p. 116	p. 117	Ellip- tic PDEs, p. 119		1
14:00-16:00		Aleksandar Nikolov,		Christopher Draper,	
		Online Factorization for		Moving PCG beyond	
		Online Discrepancy		LCGs, p. 186	
		Minimization, p. 118		1	
14:00-16:00				Yiming Xu, Hybrid least	
				squares for learning	
				functions from highly	
				noisy data, p. 186	
16:00-16:30	Coffee Break				
18:00-20:30	Conference Dinner				

Morning
M_0
2025
31,
Jul
Thu,

	on Strategies, p. 26	HH Alumni Lounge Track E: Technical Session 13 - ML & Optimization Chair: TBD	Frédéric Blondeel, Learning cooling strategies in simulated annealing through binary interactions, p. 175	Du Ouyang, Accuracy of Discretely Sampled Stochastic Policies in Continuous-Time Reinforcement Learning, p. 176	Wei Cai, Martingale deep neural networks for quasi-linear PDEs and stochastic optimal controls in 10,000 dimensions, p. 177	Yiqing Zhou, Minimizing Functions with Sparse Samples: A Fast Interpolation Approach, p. 177
	$Uros\ Seljak,\ UC\ Berkeley,\ Gradient-Based\ MCMC\ Sampling:\ Methods\ and\ Optimization\ Strategies,\ { m p.}\ 26$:	WH Auditorium Track D: Technical Session 8 - Finance Chair: TBD	Matyokub Bakoev, The Stochastic Differential Equations of the Heston Model for Option Pricing, p. 161	Vincent Zhang, Characterizing Efficacy of Geometric Brownian Motion Expectation-based Simulations on Low-Volatility American Common Stocks, p. 162	Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 164	
	t-Based MCMC Sampling	Special Session,PH Auditorium Track C: Nested expectations: models and estimators, Part II p. 64 Chair: TBD	RAUL TEMPONE, Multilevel randomized quasi-Monte Carlo estimator for nested expectations, p. 125	Matteo Raviola, Stochastic gradient with least-squares control variates, p. 126	Philipp Guth, A one-shot method for Bayesian optimal experimental design, p. 127	
	ak, UC Berkeley, Gradien	Special Session,HH Ballroom Track B: Analysis of Langevin and Related Sampling Algorithms, Part I p. 63 Chair: TBD	Krishnakumar Balasubramanian, Finite-Particle Convergence Rates for Stein Variational Gradient Descent, p. 122	Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 123	Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 124	Xiaoou Cheng, Delocalization of Bias in Unadjusted Hamiltonian Monte Carlo, p. 125
Registration Desk Open	HH Auditorium Plenary Talk: Uros Selji Chair: Tim Hobbs	Coffee Break Special Session,HH Auditorium Track A: QMC and Applications Part I p. 62 Chair: TBD	Felix Bartel, Exact discretization, tight frames and recovery via D-optimal designs, p. 120	Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 121	Zhijian He, High-dimensional density estimation on unbounded domain, p. 121	Frances Y. Kuo, Application of QMC to Oncology, p. 122
08:30-17:30	09:00-10:00	10:00–10:30	10:30–12:30	10:30–12:30	10:30–12:30	10:30–12:30

- Afternoon
2025
Jul 31,
Thu, J

12:30–14:00	Lunch Break HH Anditorium				
14:00	ξ.	Chopin, Institut Polytechni Chair: Bruno Tuffin	Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte Carlo and its application to exact ence, p. 28 Chair: Bruno Tuffin	Monte Carlo and its apple	lication to exact
15:00-15:30	Coffee Break				
	Special Session,HH	Special Session,HH	Special Session,PH	WH Auditorium	HH Alumni Lounge
	Auditorium	Ballroom	Auditorium	Track I: Technical Session	Track J: Technical Session
	Track F: QMC and	Track G: Analysis of	Track H: Recent Advances	7 - Sampling	11 - SDEs
	Applications Part II p. 65	Langevin and Related	in Stochastic Gradient	Chair: TBD	Chair: TBD
	Chair: TBD	Sampling Algorithms, Part	Descent p. 67		
		IJ p. 66 Chair: <i>TRD</i>	Chair: TBD		
15:30-17:30	Dirk Nuyens,	Molei Tao.	Jose Blanchet, Inference	Kun-Lin Kuo, Revisiting	Fabio Zoccolan, Dynamical
	Approximation of	Langevin-Based Sampling	for Stochastic Gradient	the Gibbs Sampler: A	Low-Rank Approximation
	multivariate periodic	under Nonconvex	Descent with Infinite	Conditional Modeling	for SDEs: an interacting
	functions, p. 127	Constraints, p. 130	Variance, p. 132	Perspective, p. 158	particle-system ROM.
		, T			p. 168
15:30-17:30	Art Owen. Bandomized	Vifan Chen. Convergence	Tina Dona. Stochastic	Sascha Holl.	Riccardo Sanoriti.
	QMC with one categorical	of Unadjusted Langevin in	Gradient Descent with	Concatenation of Markov	Comparing Probabilistic
	variable, p. 128	High Dimensions:	Adaptive Data, p. 133	processes for Monte Carlo	Load Forecasters:
		Delocalization of Bias,		Integration, p. 158	Stochastic Differential
		p. 130			Equations and Deep
					Learning, p. 170
15:30–17:30	Zexin Pan, QMC	Fuzhong Zhou, Entropy		Josephine Westermann,	Leon Wilkosz, Forward
	confidence intervals using	methods for the		Polynomial approximation	Propagation of Low
	quantiles of randomized	delocalization of bias in		for efficient	Discrepancy Through
	nets, p. 129	Langevin Monte Carlo,		transport-based sampling,	McKean-Vlasov
		p. 131		p. 160	Dynamics: From QMC to
					MLQMC, p. 171
15:30-17:30	Kosuke Suzuki,	Siddharth Mitra,		Soumyadip Ghosh, Fast	
	Quasi-uniform	Convergence of		Approximate Matrix	
	quasi-Monte Carlo lattice	Φ -Divergence and		Inversion via MCMC for	
	point sets, p. 129	Φ-Mutual Information		Linear System Solvers,	
		Along Langevin Markov		p. 160	
		Chains, p. 131			
18:00-20:30	Steering Committee Meeting (by invitation)	(by invitation)			

2025	
1,	
Aug,)
Fri,	

08:30-12:15	Registration Desk Open				
	Special Session,HH Auditorium Track A: Forward and Inverse Problems for Stochastic Reaction Networks p. 68 Chair: TBD	Special Session,HH Ballroom Track B: Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II p. 69 Chair: TBD	PH Auditorium Track C: Technical Session 3 - Simulation Chair: TBD	WH Auditorium Track D: Technical Session 9 - Sampling Chair: TBD	HH Alumni Lounge Track E: Technical Session 14 - Markov Chain Monte Carlo Chair: TBD
09:00-10:30	Zhou Fang, Fixed-budget simulation method for growing cell populations, p. 133	Niklas Baumgarten, A High-performance Multi-level Monte Carlo Software for Full Field Estimates and Applications in Optimal Control, p. ??	Yashveer Kumar, Monte Carlo simulation approach to solve distributed order fractional mathematical model, p. 146	Nicola Branchini, Revisiting self-normalized importance sampling: new methods and diagnostics, p. 164	Kevin Bitterlich, Delayed Acceptance Slice Sampling: A Two-Level method for Improved Efficiency in High-Dimensional Settings , p. 178
09:00-10:30	Sophia Münker, Dimensionality Reduction for Efficient Rare Event Estimation, p. 134	Aleksei Sorokin, Fast Gaussian Processes, p. 136	Serena Fattori, Benchmarking the Geant4-DNA 'UHDR' Example for Monte Carlo Simulation of pH Effects on Radiolytic Species Yields Using a Mesoscopic Approach, p. 146	Daniel Yukimura, Quantitative results on sampling from quasi-stationary distributions, p. 165	Reuben Cohn-Gordon, Gradient-based MCMC in high dimensions, p. 179
09:00-10:30	Maksim Chupin, Filtered Markovian Projection: Dimensionality Reduction in Filtering for Stochastic Reaction Networks, p. 135	Johannes Krotz, Hybrid Monte Carlo methods for kinetic transport, p. 137	Toon Ingelaere, Multilevel simulation of ensemble Kalman methods: interactions across levels, p. 148	Amit Subrahmanya, Serial ensemble filtering with marginal coupling, p. 166	Philip Schaer, Parallel Affine Transformation Tuning: Drastically Improving the Effectiveness of Slice Sampling, p. 180
09:00-10:30	Muruhan Rathinam, State and parameter inference in stochastic reaction networks, p. 136		Muhammad Noor ul Amin, Adaptive Max-EWMA Control Chart with SVR: Monte Carlo Simulation for Run Length Analysis, p. 148		Annabelle Carrell, Low-Rank Thinning, p. 181
	Coffee Break				
11:00–12:00	HH Auditorium Plenary Talk: Veronika	Veronika Ročková, U of Chicago, 🗵	Chicago, AI-Powered Bayesian Inference, p. 30	ence, p. 30 Chair: Art Owen)wen
12:00-12:15	Closing Remarks by TBD, HH Auditorium	IH Auditorium			