Thermal Physics Notes

Refined Landau Style $(k_B = 1)$

April 4, 2025

Part 1: Foundations and Thermodynamics

1 Foundations: Probability and Statistics

1.1 The Random Walk and Binomial Distribution

Consider a 1D random walk of N steps, length l. P(Right) = p, P(Left) = q = 1 - p. Let n_R be steps right, n_L steps left $(N = n_R + n_L)$. Position $x = (n_R - n_L)l$. Let m = x/l. Then $n_R = (N + m)/2$, $n_L = (N - m)/2$. The probability of position x = ml follows the Binomial Distribution:

$$P_N(m) = \binom{N}{n_R} p^{n_R} q^{n_L} = \frac{N!}{\left(\frac{N+m}{2}\right)! \left(\frac{N-m}{2}\right)!} p^{(N+m)/2} (1-p)^{(N-m)/2}$$
(1)

1.2 Moments of a Distribution

Mean: $\overline{x} = \sum_{i} P(x_i) x_i$. Variance: $\operatorname{var}(x) = \sigma^2 = \overline{(x-\overline{x})^2} = \overline{x^2} - (\overline{x})^2$. Standard Deviation (RMS): $\Delta x_{\text{rms}} = \sqrt{\operatorname{var}(x)}$.

For Binomial n_R : $\overline{n_R} = Np$, $var(n_R) = Npq$, $\Delta n_{R,rms} = \sqrt{Npq}$. Relative Width:

$$\frac{\Delta n_{R,\text{rms}}}{\overline{n_R}} = \frac{\sqrt{Npq}}{Np} = \sqrt{\frac{q}{p}} \frac{1}{\sqrt{N}} \xrightarrow{N \to \infty} 0$$
 (2)

1.3 Gaussian Approximation (Large N Limit)

Stirling's formula: $\ln N! \approx N \ln N - N + \frac{1}{2} \ln(2\pi N)$. For large N, the Binomial distribution approaches a Gaussian (Normal) distribution:

$$P_N(n_R) \approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(n_R - \mu)^2}{2\sigma^2}\right]$$
 (3)

with mean $\mu = Np$ and variance $\sigma^2 = Npq$. Valid for $N \gg 1, Npq \gg 1$.

1.4 Multivariable Probability and Change of Variables

Marginal Probability: $P_u(u_i) = \sum_j P(u_i, v_j)$. Uncorrelated Variables: $P(u_i, v_j) = P_u(u_i)P_v(v_j)$. Change of Variables: For y = f(x), density $\tilde{p}(y) = \sum_i p(x_i) \left| \frac{\mathrm{d}x}{\mathrm{d}f} \right|_{x=x_i}$ over roots x_i .

Example: Component of a Random 2D Vector

Vector \vec{B} fixed length B, random angle $\theta \in [0, 2\pi)$, $p(\theta) = 1/(2\pi)$. Find $\tilde{p}(B_x)$ for $B_x = B\cos\theta$. For $|B_x| < B$, two angles θ_1, θ_2 . $\left|\frac{\mathrm{d}\theta}{\mathrm{d}B_x}\right| = 1/\sqrt{B^2 - B_x^2}$.

$$\tilde{p}(B_x) = p(\theta_1) \left| \frac{\mathrm{d}\theta}{\mathrm{d}B_x} \right|_{\theta_1} + p(\theta_2) \left| \frac{\mathrm{d}\theta}{\mathrm{d}B_x} \right|_{\theta_2} = 2 \cdot \frac{1}{2\pi} \frac{1}{\sqrt{B^2 - B_x^2}} \tag{4}$$

$$\tilde{p}(B_x) = \begin{cases} \frac{1}{\pi\sqrt{B^2 - B_x^2}} & \text{if } |B_x| < B\\ 0 & \text{otherwise} \end{cases}$$
(5)

2 The Statistical Basis of Thermodynamics

2.1 Microstates and Macrostates

Microstate: Specific configuration (positions, momenta; quantum state). Macrostate: Defined by macroscopic parameters (E, V, N).

2.2 The Fundamental Postulate

For an isolated system in equilibrium (fixed E, V, N), let $\Omega(E, V, N)$ be the number of accessible microstates. All accessible microstates are equally probable. Probability of microstate μ_i : $P(\mu_i) = 1/\Omega$ if accessible, 0 otherwise.

2.3 Statistical Definition of Macroscopic Parameters

Probability of observing macro-parameter value y_k : $P(y_k) = \Omega(E; y_k)/\Omega(E)$. Average value: $\overline{y} = \sum_k y_k P(y_k) = \frac{\sum_k y_k \Omega(E; y_k)}{\Omega(E)}$.

Example: Three Spin-1/2 Particles

Energy $E_i = \mp \mu H$ for $m_s = \pm 1/2$. Total $E = \sum E_i$. If $E = -\mu H$, accessible states are (+, +, -), (+, -, +), (-, +, +). $\Omega(E) = 3$. States with $m_1 = +1/2$: (+, +, -), (+, -, +). $\Omega(E; m_1 = +1/2) = 2$. Probability $P(m_1 = +1/2) = 2/3$.

2.4 Density of States

For continuous energy, density of states $\omega(E)$ gives number of states in $[E, E + \delta E]$ as $\Omega(E) \equiv \omega(E) \delta E$.

Example: Classical Monatomic Ideal Gas

N particles, volume V. $H = \sum \vec{p}_i^2/(2m)$. Phase space volume for $E \leq \sum p_i^2/(2m) \leq E + \delta E$. Position integral: V^N . Momentum integral: volume of hyperspherical shell radius $\sqrt{2mE}$, dimension 3N. Volume $\propto R^{3N} \propto E^{3N/2}$. Shell volume $\propto E^{3N/2-1}\delta E$. $\omega(E) \propto V^N E^{3N/2-1}$. Often simplified for large N: $\Omega(E) \propto V^N E^{3N/2}$.

3 Interaction Between Systems and Laws of Thermodynamics

3.1 Types of Interaction

Heat Q: Energy transfer due to temperature difference (fixed external parameters). $Q = \overline{\Delta E}$. Work W: Energy transfer due to change in external parameters. Work by system: $W = -\overline{\Delta_x E}$. General Interaction: $Q = \Delta \overline{E} + W$.

3.2 The First Law of Thermodynamics

Conservation of energy. For an infinitesimal process:

$$dE = \delta Q - \delta W \tag{6}$$

E is state function (exact differential), Q, W are path-dependent (inexact).

3.3 Quasistatic Processes and Generalized Forces

Quasistatic: Slow process, system near equilibrium always. Hamiltonian H(q, p; x), external parameter x. $dE = (\partial H/\partial x)dx$. Average change: $dE = \overline{\partial H/\partial x}dx$. Generalized Force χ : $\chi \equiv -\overline{\partial H/\partial x}$. Work done by system: $\delta W = -dE = \chi dx$.

Example: Piston

External parameter V. Generalized force is pressure P. $P=-\frac{\partial E}{\partial V}$ (at constant S). Work: $\delta W=PdV$. Finite work: $W=\int_{V_i}^{V_f}P(V)dV$.

3.4 Thermal Equilibrium, Entropy, and Temperature

Two systems in thermal contact, isolated total system. $E=E_1+E_2$. Most probable state maximizes $\Omega_{total}=\Omega_1(E_1)\Omega_2(E-E_1)$. Condition: $\frac{\partial \ln \Omega_1}{\partial E_1}=\frac{\partial \ln \Omega_2}{\partial E_2}$. Define Entropy S: (Dimensionless)

$$S(E, V, N) \equiv \ln \Omega(E, V, N) \tag{7}$$

Entropy is additive $S_{total} = S_1 + S_2$. Equilibrium maximizes S_{total} . Define Temperature T: (Units of Energy)

$$\frac{1}{T} \equiv \frac{\partial S}{\partial E_{V,N}} \tag{8}$$

Thermal equilibrium condition: $T_1 = T_2$. Stability requires $\frac{\partial^2 S}{\partial E^2 V} \leq 0$. Fluctuations $\Delta E/\overline{E} \sim 1/\sqrt{N}$.

3.5 The Second Law of Thermodynamics

Spontaneous energy flow from high T to low T increases total entropy. $dS_{total} = dS_1 + dS_2 = (\frac{1}{T_1} - \frac{1}{T_2})dE_1$. If $T_2 > T_1$, $dE_1 > 0$, $dS_{total} > 0$. If $T_1 > T_2$, $dE_1 < 0$, $dS_{total} > 0$. For any process in an isolated system, the total entropy never decreases:

$$\Delta S_{total} \ge 0$$
 (9)

Equality holds for reversible processes, inequality for irreversible processes.

3.6 The Fundamental Thermodynamic Relation

Consider infinitesimal quasistatic change in E(S,V). $dE = \frac{\partial E}{\partial S\,V} dS + \frac{\partial E}{\partial V\,S} dV$. Identify partial derivatives: $T = \frac{\partial E}{\partial S\,V}$ and $P = -\frac{\partial E}{\partial V\,S}$.

$$dE = TdS - PdV \tag{10}$$

Combines 1st and 2nd Laws for quasistatic processes. Comparing with $dE = \delta Q - PdV$:

$$\delta Q_{rev} = TdS \implies dS = \frac{\delta Q_{rev}}{T}$$
 (11)

Also, from S(E,V): $dS=\frac{1}{T}dE+\frac{P}{T}dV$, yielding $\frac{P}{T}=\frac{\partial S}{\partial V}_{E}$. Full equilibrium (thermal and mechanical): $T_{1}=T_{2}$ and $P_{1}=P_{2}$.

3.7 Summary of Thermodynamic Laws

- 0. Zeroth Law: Thermal equilibrium is transitive. (Defines T empirically).
- 1. First Law: $dE = \delta Q \delta W$. (Energy conservation).
- 2. Second Law: $\Delta S \geq 0$ (isolated); $dS \geq \delta Q/T$. (Direction of time, limits efficiency).
- 3. Third Law: $\lim_{T\to 0} S(T,X) = S_0$ (constant, usually $S_0 = \ln(\text{ground state degeneracy}) = 0$). (Absolute zero unattainable).

4 Thermodynamic Response Functions

(Using $k_B = 1$, so T is energy, S is dimensionless, $R = N_A$)

4.1 Heat Capacities

 $\delta Q = C_x dT$ for quasistatic process at constant x.

$$C_V = \left(\frac{\delta Q}{dT}\right)_V = T\frac{\partial S}{\partial T_V} = \frac{\partial E}{\partial T_V}$$
(12)

$$C_P = \left(\frac{\delta Q}{dT}\right)_P = T\frac{\partial S}{\partial T_P} = \frac{\partial H}{\partial T_P} \quad \text{(where } H = E + PV\text{)}$$
 (13)

Entropy change: $S(T_2, x) - S(T_1, x) = \int_{T_1}^{T_2} \frac{C_x(T)}{T} dT$.

4.2 Compressibility and Expansivity

Isothermal Compressibility: $\kappa_T = -\frac{1}{V} \frac{\partial V}{\partial P}_T$. Isobaric Expansion Coefficient: $\alpha_P = \frac{1}{V} \frac{\partial V}{\partial T}_P$.

5 Application: The Ideal Gas

5.1 Statistical Derivation (Monatomic)

Using $\Omega(E) \propto V^N E^{3N/2}, \, S = \ln \Omega \approx N \ln V + \frac{3N}{2} \ln E + {\rm const.}.$

$$\frac{1}{T} = \frac{\partial S}{\partial E_{V,N}} = \frac{3N}{2E} \implies E = \frac{3}{2}NT \tag{14}$$

$$\frac{P}{T} = \frac{\partial S}{\partial V}_{E,N} = \frac{N}{V} \implies PV = NT \tag{15}$$

Energy depends only on T.

5.2 Ideal Gas Law and Molar Quantities

 $N = \nu N_A$. Gas constant $R = N_A$. $PV = \nu N_A T$. Energy $E = \frac{3}{2} \nu N_A T$.

5.3 Specific Heats (Monatomic)

Molar specific heat $c_x = C_x/\nu$.

$$c_v = \frac{1}{\nu} \frac{\partial E}{\partial T_V} = \frac{1}{\nu} \frac{\mathrm{d}}{\mathrm{d}T} = \frac{3}{2} N_A \tag{16}$$

$$c_p = c_v + N_A = \frac{5}{2}N_A$$
 (Using $H = E + PV = E + \nu N_A T$) (17)

Generally for ideal gas: $dE = \nu c_v dT$. $c_p - c_v = N_A$.

5.4 Adiabatic Index

 $\gamma = c_p/c_v$. For monatomic ideal gas: $\gamma = (5/2N_A)/(3/2N_A) = 5/3$.

Ideal Gas Processes

Isothermal (T=const): PV = const.. Adiabatic (Q=0, S=const): $dE = -PdV \implies \nu c_v dT + PdV = 0$. Substituting $P = \nu N_A T/V$ and $N_A = c_p - c_v$: $\nu c_v dT + \frac{\nu (c_p - c_v)T}{V} dV = 0 \implies \frac{dT}{T} + (\gamma - 1) \frac{dV}{V} = 0$. Integrating gives:

 $TV^{\gamma-1} = \text{const.}$ or $PV^{\gamma} = \text{const.}$ (18)

Part 2: Thermodynamic Potentials, Ensembles, and Applications

Thermodynamic Potentials

Choosing different independent variables leads to different potentials, useful under different experimental conditions.

Internal Energy E(S, V, N): $dE = TdS - PdV + \mu dN$ (Fundamental)

Enthalpy H = E + PV. H(S, P, N): $dH = TdS + VdP + \mu dN$ (Useful for constant P)

Helmholtz Free Energy F = E - TS. F(T, V, N): $dF = -SdT - PdV + \mu dN$ (Useful for constant T, V; connection to partition function)

Gibbs Free Energy G = F + PV = E - TS + PV. G(T, P, N): $dG = -SdT + VdP + \mu dN$ (Useful for constant T, P; chemical reactions)

Grand Potential $\Phi = F - \mu N = E - TS - \mu N$. $\Phi(T, V, \mu)$: $d\Phi = -SdT - PdV - Nd\mu$ (Useful for constant T, V, μ ; grand canonical ensemble)

Here $\mu = \frac{\partial E}{\partial N}_{S,V} = \frac{\partial F}{\partial N}_{T,V} = \frac{\partial G}{\partial N}_{T,P}$ is the chemical potential.

Maxwell Relations

Derived from the equality of mixed second partial derivatives of the potentials (exact differentials). E.g., from dF = -SdT - PdV: $\frac{\partial^2 F}{\partial V \partial T} = \frac{\partial^2 F}{\partial T \partial V} \implies -\frac{\partial S}{\partial V}_T = -\frac{\partial P}{\partial T}_V$. The four main relations:

$$\frac{\partial T}{\partial V_S} = -\frac{\partial P}{\partial S_V} \quad \text{(from } dE) \tag{19}$$

$$\frac{\partial T}{\partial P_S} = \frac{\partial V}{\partial S_R} \quad \text{(from } dH)$$
 (20)

$$\frac{\partial T}{\partial P_S} = \frac{\partial V}{\partial S_P} \quad (\text{from } dH)$$

$$\frac{\partial S}{\partial V_T} = \frac{\partial P}{\partial T_V} \quad (\text{from } dF)$$

$$\frac{\partial S}{\partial P_T} = -\frac{\partial V}{\partial T_P} \quad (\text{from } dG)$$
(21)

$$\frac{\partial S}{\partial P_T} = -\frac{\partial V}{\partial T_P} \quad \text{(from } dG) \tag{22}$$

Relation between Heat Capacities

We can derive $C_P - C_V$ using Maxwell relations. Consider S(T,V). $dS = \frac{\partial S}{\partial T_V} dT + \frac{\partial S}{\partial V_T} dV$. Multiply by T: $TdS = T\frac{\partial S}{\partial T_V} dT + T\frac{\partial S}{\partial V_T} dV = C_V dT + T\frac{\partial P}{\partial T_V} dV$ (using (21)). Now consider S(T,P). $dS = \frac{\partial S}{\partial T_P} dT + \frac{\partial S}{\partial P_T} dP$. $TdS = C_P dT + T\frac{\partial S}{\partial P_T} dP = C_P dT - T\frac{\partial V}{\partial T_P} dP$ (using (22)). Express $dV = \frac{\partial V}{\partial T_P} dT + \frac{\partial V}{\partial P_T} dP$. Substitute into the first TdS equation: $TdS = C_V dT + T\frac{\partial P}{\partial T_V} (\frac{\partial V}{\partial T_P} dT + \frac{\partial V}{\partial P_T} dP)$. Equating coefficients of dT in

the two TdS expressions: $C_P = C_V + T \frac{\partial P}{\partial T_V} \frac{\partial V}{\partial T_P}$. Using the cyclic relation $\frac{\partial P}{\partial T_V} \frac{\partial T}{\partial V_D} \frac{\partial V}{\partial P_T} = -1$, we have $\frac{\partial P}{\partial T_V} = -\frac{\partial V}{\partial T_P} / \frac{\partial V}{\partial P_T}$. $C_P - C_V = -T \left(\frac{\partial V}{\partial T_P}\right)^2 / \frac{\partial V}{\partial P_T}$. Using $\alpha_P = \frac{1}{V} \frac{\partial V}{\partial T_P}$ and $\kappa_T = -\frac{1}{V} \frac{\partial V}{\partial P_T}$.

$$C_P - C_V = \frac{VT\alpha_P^2}{\kappa_T} \tag{23}$$

Since $V, T, \kappa_T > 0$ and $\alpha_P^2 \ge 0$, we have $C_P \ge C_V$.

7.2 Implications of the Third Law $(S \to S_0 \text{ as } T \to 0)$

As $T \to 0$:

- $C_V = T \frac{\partial S}{\partial T_V} \to 0.$
- $C_P = T \frac{\partial S}{\partial T_P} \to 0$
- $\frac{\partial S}{\partial P}_T = -\frac{\partial V}{\partial T}_P = -V\alpha_P$. Since $\frac{\partial S}{\partial P}_T$ must be finite or zero as $T \to 0$, $\alpha_P \to 0$.
- $\frac{\partial S}{\partial V}_T = \frac{\partial P}{\partial T}_V$. Since $\frac{\partial S}{\partial V}_T$ must be finite or zero as $T \to 0$, $\frac{\partial P}{\partial T}_V \to 0$.
- $\frac{C_P C_V}{C_V} = \frac{VT\alpha_P^2}{\kappa_T C_V}$. Since $\alpha_P \to 0$ and $C_V \to 0$, the limit depends on how fast they approach zero. Often $C_P/C_V \to 1$.

8 Calculating Entropy and Energy

Let's find S(T, V) and E(T, V) given an equation of state P(T, V) and $C_V(T, V_0)$ at some reference volume V_0 .

8.1 Entropy S(T, V)

Use (T,V) as independent variables. $dS = \frac{\partial S}{\partial T}_V dT + \frac{\partial S}{\partial V}_T dV$. Using $C_V = T \frac{\partial S}{\partial T}_V$ and the Maxwell relation $\frac{\partial S}{\partial V}_T = \frac{\partial P}{\partial T}_V$:

$$dS = \frac{C_V(T, V)}{T}dT + \frac{\partial P}{\partial T_V}dV \tag{24}$$

Integrating from a reference state (T_0, V_0) to (T, V) along a path, e.g., $(T_0, V_0) \to (T_0, V) \to (T, V)$:

$$S(T,V) - S(T_0, V_0) = \int_{V_0}^{V} \frac{\partial P(T_0, V')}{\partial T}_{V} dV' + \int_{T_0}^{T} \frac{C_V(T', V)}{T'} dT'$$
(25)

Note that $C_V(T,V)$ might depend on V. From dS being exact, $\frac{\partial^2 S}{\partial V \partial T} = \frac{\partial^2 S}{\partial T \partial V}$: $\frac{\partial}{\partial V}_T \left(\frac{C_V}{T}\right) = \frac{\partial}{\partial T}_V \left(\frac{\partial P}{\partial T}_V\right) \Longrightarrow \frac{1}{T} \frac{\partial C_V}{\partial V}_T = \frac{\partial^2 P}{\partial T^2 \partial V}$. So, $\frac{\partial C_V}{\partial V}_T = T \frac{\partial^2 P}{\partial T^2 \partial V}$. This allows finding $C_V(T,V)$ from $C_V(T,V_0)$: $C_V(T,V) = C_V(T,V_0) + \int_{V_0}^V T \frac{\partial^2 P(T,V')}{\partial T^2 \partial V} dV'$.

8.2 Internal Energy E(T, V)

Use dE = TdS - PdV. Substitute dS: $dE = T\left(\frac{C_V}{T}dT + \frac{\partial P}{\partial T_V}dV\right) - PdV$

$$dE = C_V(T, V)dT + \left[T\frac{\partial P}{\partial T_V} - P\right]dV$$
(26)

This implies $\frac{\partial E}{\partial TV} = C_V$ and $\frac{\partial E}{\partial VT} = T\frac{\partial P}{\partial TV} - P$. Integrating from (T_0, V_0) to (T, V) along path $(T_0, V_0) \rightarrow (T, V)$:

$$E(T,V) - E(T_0, V_0) = \int_{V_0}^{V} \left[T_0 \frac{\partial P(T_0, V')}{\partial T}_V - P(T_0, V') \right] dV' + \int_{T_0}^{T} C_V(T', V) dT'$$
 (27)

9 Thermodynamic Processes

9.1 Free Expansion (Joule Expansion)

Gas expands into vacuum, isolated system. $V_1 \to V_2$. Q = 0, W = 0. First Law: $\Delta E = Q - W = 0$. Internal energy is constant. Temperature change is given by the Joule coefficient: $\mu_J = \frac{\partial T}{\partial V_E} = \frac{1}{C_V} \left[P - T \frac{\partial P}{\partial T_V} \right] = -\frac{1}{C_V} \frac{\partial E}{\partial V_T}$. $T_2 - T_1 = \int_{V_1}^{V_2} \mu_J(E, V) dV$. (Integration at constant E). Entropy change: Since E is constant, $dS = \frac{P}{T} dV$. $\frac{\partial S}{\partial V_E} = \frac{P}{T} > 0$. Expansion always increases entropy. $S_2 - S_1 = \int_{V_1}^{V_2} \frac{P(E, V)}{T(E, V)} dV$.

Ideal Gas

$$E = E(T)$$
. Since $\Delta E = 0$, then $\Delta T = 0$. $\mu_J = 0$. $\Delta S = \int_{V_1}^{V_2} \frac{P}{T} dV = \int_{V_1}^{V_2} \frac{N}{V} dV = N \ln(V_2/V_1)$.

Van der Waals Gas

Eq. of State:
$$(P+a/v^2)(v-b)=N_AT$$
 where $v=V/\nu$. $P=\frac{N_AT}{v-b}-\frac{a}{v^2}$. $\frac{\partial P}{\partial T_V}=\frac{N_A}{v-b}$. $\frac{\partial E}{\partial V_T}=T\frac{\partial P}{\partial T_V}-P=T\frac{\partial P}{\partial T_V}-P=T\frac{N_A}{v-b}-\left(\frac{N_AT}{v-b}-\frac{a}{v^2}\right)=\frac{a}{v^2}=\frac{aN^2}{V^2}$ (using $N=\nu N_A$). $\mu_J=-\frac{1}{C_V}\frac{aN^2}{V^2}$. $\Delta T=T_2-T_1=-\int_{V_1}^{V_2}\frac{aN^2}{C_VV^2}dV=-\frac{aN^2}{C_V}\left(\frac{1}{V_1}-\frac{1}{V_2}\right)$. (Assuming C_V constant). Since $V_2>V_1$, $\Delta T<0$. VdW gas cools upon free expansion.

9.2 Joule-Thomson Process (Throttling)

Gas flows through porous plug/valve from constant P_1 to constant P_2 . Insulated system. Work done on gas entering: $W_{in} = P_1V_1$. Work done by gas leaving: $W_{out} = P_2V_2$. Net work by gas: $W = P_2V_2 - P_1V_1$. First Law: $\Delta E = E_2 - E_1 = Q - W = 0 - (P_2V_2 - P_1V_1)$. $E_2 - E_1 = P_1V_1 - P_2V_2 \implies E_1 + P_1V_1 = E_2 + P_2V_2$. Process occurs at constant enthalpy: $H_1 = H_2$. Temperature change given by Joule-Thomson coefficient: $\mu_{JT} = \frac{\partial T}{\partial P}_H = \frac{1}{C_P} \left[T \frac{\partial V}{\partial T}_P - V \right] = \frac{V}{C_P} (T \alpha_P - 1)$. $T_2 - T_1 = \int_{P_1}^{P_2} \mu_{JT}(H, P) dP$. (Integration at constant H). If $\mu_{JT} > 0$, gas cools on expansion (dP < 0). If $\mu_{JT} < 0$, gas heats. Entropy change: $dH = TdS + VdP = 0 \implies dS = -(V/T)dP$. $\frac{\partial S}{\partial P}_H = -V/T < 0$. Expansion (dP < 0) always increases entropy. $\Delta S = -\int_{P_1}^{P_2} \frac{V(H,P)}{T(H,P)} dP$.

Ideal Gas

$$H = E + PV = E(T) + NT = H(T)$$
. Since $\Delta H = 0$, then $\Delta T = 0$. $\mu_{JT} = 0$.

10 Heat Engines and Refrigerators

Based on the Second Law: $\Delta S_{total} \geq 0$. Consider cycles interacting with hot reservoir (T_1) and cold reservoir $(T_2 < T_1)$.

10.1 Heat Engine

Absorbs heat Q_1 from T_1 , rejects heat Q_2 to T_2 , produces work $W=Q_1-Q_2$. Cycle: $\Delta S_{engine}=0$. Reservoirs: $\Delta S_{res}=-Q_1/T_1+Q_2/T_2$. Second Law: $\Delta S_{total}=\Delta S_{engine}+\Delta S_{res}=-Q_1/T_1+Q_2/T_2\geq 0$. $\Longrightarrow Q_2/T_2\geq Q_1/T_1 \Longrightarrow Q_2/Q_1\geq T_2/T_1$. Efficiency $\eta=W/Q_1=(Q_1-Q_2)/Q_1=1-Q_2/Q_1$.

$$\eta \le 1 - T_2/T_1 \tag{28}$$

Maximum efficiency $\eta_{max} = 1 - T_2/T_1$ is achieved by a reversible engine (e.g., Carnot cycle), where $\Delta S_{total} = 0$. Kelvin statement of 2nd Law: Cannot have $\eta = 1$ ($Q_2 = 0$) unless $T_2 = 0$.

10.2 Refrigerator

Uses work W to extract heat Q_2 from T_2 and reject heat $Q_1 = Q_2 + W$ to T_1 . $\Delta S_{total} = -Q_2/T_2 + Q_1/T_1 \geq 0$. $\implies Q_1/T_1 \geq Q_2/T_2 \implies (Q_2 + W)/T_1 \geq Q_2/T_2$. $\implies W/T_1 \geq Q_2(1/T_2 - 1/T_1) = Q_2(T_1 - T_2)/(T_1T_2)$. $\implies W \geq Q_2(T_1 - T_2)/T_2$. Coefficient of Performance (COP) COP_{ref} = Q_2/W .

$$COP_{ref} \le \frac{T_2}{T_1 - T_2} \tag{29}$$

Maximum COP achieved by reversible refrigerator. Clausius statement of 2nd Law: Cannot have W = 0 (transfer heat from cold to hot spontaneously) unless $T_1 = T_2$.

11 Canonical Ensemble (Constant T, V, N)

System in thermal contact with a large heat reservoir at temperature T. Probability of the system being in a specific microstate r with energy E_r :

$$P_r = \frac{e^{-E_r/T}}{Z} \tag{30}$$

where Z is the Partition Function:

$$Z(T, V, N) = \sum_{r} e^{-E_r/T}$$
(31)

The sum is over all possible microstates r of the system. $E_r = E_r(V, N)$. Average value of an observable O (whose value in state r is O_r):

$$\overline{O} = \sum_{r} O_r P_r = \frac{1}{Z} \sum_{r} O_r e^{-E_r/T}$$
(32)

Classical case: Replace sum over states \sum_r with integral over phase space $\int \frac{d^{3N}qd^{3N}p}{N!h^{3N}}$. $Z_{cl} = \frac{1}{N!h^{3N}} \int e^{-H(q,p)/T} d^{3N}qd^{3N}p$. (Factor 1/N! for identical particles).

11.1 Connection to Thermodynamics: Helmholtz Free Energy

The central connection is through the Helmholtz free energy F:

$$F(T, V, N) = -T \ln Z(T, V, N) \tag{33}$$

Derivation: Average energy $\overline{E} = \sum_r E_r P_r = \frac{1}{Z} \sum_r E_r \mathrm{e}^{-E_r/T} = -\frac{\partial (\ln Z)}{\partial (1/T)_V} = T^2 \frac{\partial (\ln Z)}{\partial T}_V$. $\Longrightarrow \overline{E} = T^2 \frac{\partial}{\partial T} \left(-\frac{F}{T} \right)_V = -T^2 \left(\frac{1}{T} \frac{\partial F}{\partial T}_V - \frac{F}{T^2} \right) = F - T \frac{\partial F}{\partial T}_V$. From thermodynamics, F = E - TS, so $E = F + TS = F - T \frac{\partial F}{\partial T}_V$. This matches. Other thermodynamic quantities from $F = -T \ln Z$:

$$S = -\frac{\partial F}{\partial T}_{V,N} = \frac{\partial}{\partial T}_{V,N} = \ln Z + T \frac{\partial (\ln Z)}{\partial T}_{V,N}$$
(34)

$$P = -\frac{\partial F}{\partial V}_{T,N} = T \frac{\partial (\ln Z)}{\partial V}_{T,N} \tag{35}$$

$$\mu = \frac{\partial F}{\partial N_{T,V}} = -T \frac{\partial (\ln Z)}{\partial N_{T,V}} \tag{36}$$

$$E = F + TS = -T \ln Z + T \left(\ln Z + T \frac{\partial (\ln Z)}{\partial T}_{V,N} \right) = T^2 \frac{\partial (\ln Z)}{\partial T}_{V,N} = -\frac{\partial \ln Z}{\partial \beta}_{V,N} \quad \text{(where } \beta = 1/T) \quad (37)$$

Energy fluctuations: $\overline{(\Delta E)^2} = \overline{E^2} - \overline{E}^2$. $\overline{E^2} = \frac{1}{Z} \sum_r E_r^2 e^{-E_r/T} = \frac{1}{Z} \frac{\partial^2 Z}{\partial \beta \partial 2} = \frac{\partial^2 (\ln Z)}{\partial \beta \partial 2} + (\frac{\partial \ln Z}{\partial \beta})^2$. $\overline{(\Delta E)^2} = \frac{\partial^2 (\ln Z)}{\partial \beta \partial 2} = -\frac{\partial \overline{E}}{\partial \overline{B}} = -\frac{\partial \overline{E}}{\partial T} \frac{\partial T}{\partial \beta} = -\frac{\partial E}{\partial T} V(-T^2) = T^2 C_V$.

$$\overline{(\Delta E)^2} = T^2 C_V \tag{38}$$

Relative fluctuation $\frac{\sqrt{(\Delta E)^2}}{\overline{E}} = \frac{\sqrt{T^2 C_V}}{E}$. Since $E, C_V \propto N$, this is $\propto 1/\sqrt{N}$.

First and Second Laws in Canonical Ensemble

Second Law: System at const T, V tends to minimize Helmholtz free energy F. First Law: Consider quasistatic change. $d\overline{E} = \sum_r E_r dP_r + \sum_r P_r dE_r$. Identify heat $\delta Q = \sum_r E_r dP_r = T dS$. Identify work $\delta W = -\sum_r P_r dE_r$. If $dE_r = \frac{\partial E_r}{\partial V} dV$, then $\delta W = -(\sum_r P_r \frac{\partial E_r}{\partial V}) dV = P dV$.

Example: Maxwell Velocity Distribution

Consider classical monatomic ideal gas. Treat one particle (A) as the system, rest (A') as reservoir at T. Energy $E = m\vec{v}^2/2$. Probability density for velocity \vec{v} : $P(\vec{v}) \propto e^{-E/T} = e^{-mv^2/(2T)}$. Normalization constant: $\int P(\vec{v})d^3v = 1$. $\int Ce^{-m(v_x^2 + v_y^2 + v_z^2)/(2T)} dv_x dv_y dv_z = C\left(\int_{-\infty}^{\infty} e^{-mv_x^2/(2T)} dv_x\right)^3 = C(\sqrt{2\pi T/m})^3 = C(\sqrt{2\pi T/m})^3$ 1. $C = (m/(2\pi T))^{3/2}$

$$f(\vec{v})d^3v = \left(\frac{m}{2\pi T}\right)^{3/2} e^{-mv^2/(2T)} d^3v$$
(39)

Grand Canonical Ensemble (Constant T, V, μ) 12

System can exchange energy and particles with a large reservoir at temperature T and chemical potential μ . Probability of system being in state r with energy E_r and particle number N_r :

$$P_r = \frac{e^{-(E_r - \mu N_r)/T}}{\mathcal{Z}} \tag{40}$$

where \mathcal{Z} is the Grand Partition Function:

$$\mathcal{Z}(T, V, \mu) = \sum_{r} e^{-(E_r - \mu N_r)/T} = \sum_{N=0}^{\infty} \sum_{r(N)} e^{-(E_{r(N)} - \mu N)/T}$$
(41)

Sum over all possible states (including different particle numbers). Can be written using canonical partition function Z(T, V, N):

$$\mathcal{Z}(T, V, \mu) = \sum_{N=0}^{\infty} e^{\mu N/T} Z(T, V, N) = \sum_{N=0}^{\infty} z^N Z(T, V, N)$$
 (42)

where $z = e^{\mu/T}$ is the fugacity.

Connection to Thermodynamics: Grand Potential

The relevant potential is the Grand Potential $\Phi = E - TS - \mu N$:

$$\Phi(T, V, \mu) = -T \ln \mathcal{Z}(T, V, \mu) \tag{43}$$

From $d\Phi = -SdT - PdV - Nd\mu$:

$$S = -\frac{\partial \Phi}{\partial T}_{V,\mu} = \frac{\partial}{\partial T}_{V,\mu} \tag{44}$$

$$P = -\frac{\partial \Phi}{\partial V}_{T\mu} = T \frac{\partial (\ln \mathcal{Z})}{\partial V}_{T\mu} \tag{45}$$

$$P = -\frac{\partial \Phi}{\partial V}_{T,\mu} = T \frac{\partial (\ln \mathcal{Z})}{\partial V}_{T,\mu}$$

$$\overline{N} = -\frac{\partial \Phi}{\partial \mu}_{T,V} = T \frac{\partial (\ln \mathcal{Z})}{\partial \mu}_{T,V} = z \frac{\partial (\ln \mathcal{Z})}{\partial z}_{T,V}$$

$$(45)$$

Average energy $\overline{E} = -\frac{\partial \ln \mathcal{Z}}{\partial \beta}_{V,\mu} + \mu \overline{N}$. Particle number fluctuations: $\overline{(\Delta N)^2} = \overline{N^2} - \overline{N}^2 = T \frac{\partial \overline{N}}{\partial \mu}_{T,V} = T \frac{\partial \overline{N}}{\partial \mu}_{T,V}$

13 Classical Ideal Gas Revisited

13.1 Partition Function

Single particle (monatomic) in volume V. $H = p^2/(2m)$. Canonical partition function for one particle (N = 1, 1) ignore N!): $\zeta = Z(T, V, N = 1)_{distinguishable} = \frac{1}{h^3} \int d^3q d^3p \, \mathrm{e}^{-p^2/(2mT)} \, \zeta = \frac{V}{h^3} \left(\int_{-\infty}^{\infty} \mathrm{e}^{-p_x^2/(2mT)} dp_x \right)^3 = \frac{V}{h^3} (\sqrt{2\pi mT})^3 = V \left(\frac{2\pi mT}{h^2} \right)^{3/2}$. Define the thermal de Broglie wavelength: $\lambda_{th} = h/\sqrt{2\pi mT}$.

$$\zeta = \frac{V}{\lambda_{th}^3} \tag{47}$$

For N non-interacting, distinguishable particles: $Z_{dist} = \zeta^N$. For N non-interacting, indistinguishable particles (dilute limit, avoid multiple occupancy): Correct by Gibbs factor N!.

$$Z(T, V, N) = \frac{\zeta^N}{N!} = \frac{1}{N!} \left(\frac{V}{\lambda_{th}^3}\right)^N \tag{48}$$

Helmholtz Free Energy: $F = -T \ln Z = -T \left(N \ln \zeta - \ln N! \right)$. Using Stirling approx $\ln N! \approx N \ln N - N$: $F \approx -T \left(N \ln \left(V / \lambda_{th}^3 \right) - N \ln N + N \right) = -NT \left(\ln \left[\frac{V}{N \lambda_{th}^3} \right] + 1 \right)$. This is the Sackur-Tetrode equation (up to constants). Check thermodynamics: $P = -\frac{\partial F}{\partial V}_{T,N} = -(-NT) \frac{\partial}{\partial V} = NT/V \implies PV = NT$. E = F + TS. $S = -\frac{\partial F}{\partial T}_{V,N}$. $S = N \left(\ln \left[\frac{V}{N \lambda_{th}^3} \right] + 1 \right) + NT \frac{\partial}{\partial T}_{V,N}$ $S = N \left(\ln \left[\frac{V}{N \lambda_{th}^3} \right] + 1 \right) + NT \frac{\partial}{\partial T}_{V,N} = N \left(\ln \left[\frac{V}{N \lambda_{th}^3} \right] + 1 \right) + NT \left(\frac{3}{2T} \right)$ $S = N \left(\ln \left[\frac{V}{N \lambda_{th}^3} \right] + \frac{5}{2} \right)$. $E = F + TS = -NT \left(\ln[\dots] + 1 \right) + NT \left(\ln[\dots] + 5/2 \right) = \frac{3}{2}NT$. Correct.

14 Equipartition Theorem

For a classical system in thermal equilibrium at temperature T, each quadratic degree of freedom in the Hamiltonian contributes $\frac{1}{2}T$ to the average internal energy. Let $H = \sum_i A_i p_i^2 + \sum_j B_j q_j^2 + H_{other}$. $\overline{A_i p_i^2} = \frac{\int (A_i p_i^2) \mathrm{e}^{-H/T} d\Gamma}{\int \mathrm{e}^{-H/T} d\Gamma}$. Integrate over p_i first: $\overline{A_i p_i^2} = \frac{\int A_i p_i^2 \mathrm{e}^{-A_i p_i^2/T} dp_i}{\int \mathrm{e}^{-A_i p_i^2/T} dp_i}$. Let $x = \sqrt{A_i/T} p_i$. $\overline{A_i p_i^2} = T \frac{\int x^2 \mathrm{e}^{-x^2} dx}{\int \mathrm{e}^{-x^2} dx} = T \frac{\sqrt{\pi}/2}{\sqrt{\pi}} = \frac{1}{2}T$. Similarly $\overline{B_j q_j^2} = \frac{1}{2}T$.

14.1 Examples

- Monatomic ideal gas: $H = \sum_{i=1}^{N} (p_{ix}^2 + p_{iy}^2 + p_{iz}^2)/(2m)$. 3N quadratic terms. $\overline{E} = 3N \times (\frac{1}{2}T) = \frac{3}{2}NT$. $C_V = \frac{\partial E}{\partial T_V} = \frac{3}{2}N$.
- Diatomic ideal gas (rigid rotor): Add rotational kinetic energy $H_{rot} = (L_x^2 + L_y^2)/(2I)$ (rotation about axes perp. to bond). 2 quadratic terms. $E = \frac{3}{2}NT + 2 \times \frac{1}{2}NT = \frac{5}{2}NT$. $C_V = \frac{5}{2}N$.
- Diatomic ideal gas (with vibration): Add $H_{vib}=p_{\xi}^2/(2\mu)+\frac{1}{2}k\xi^2$ (relative motion along bond). 2 quadratic terms. $E=\frac{5}{2}NT+2\times\frac{1}{2}NT=\frac{7}{2}NT$. $C_V=\frac{7}{2}N$. (Only at high T where vibration is classical).
- Solid (Dulong-Petit): Model as N atoms in 3D harmonic potential. $H = \sum_{i=1}^{3N} (p_i^2/(2m) + \frac{1}{2}m\omega_i^2q_i^2)$. 6N quadratic terms. $\overline{E} = 6N \times (\frac{1}{2}T) = 3NT$. $C_V = 3N$. (Classical limit).

15 Quantum Statistics Examples

15.1 Harmonic Oscillator (Quantum)

Energy levels $E_n = \hbar \omega (n+1/2), n = 0, 1, 2, \dots$ Partition function $Z = \sum_{n=0}^{\infty} e^{-E_n/T} = \sum_{n=0}^{\infty} e^{-\hbar \omega (n+1/2)/T}$. $Z = e^{-\hbar \omega/(2T)} \sum_{n=0}^{\infty} (e^{-\hbar \omega/T})^n$. Geometric series sum 1/(1-x).

$$Z = \frac{e^{-\hbar\omega/(2T)}}{1 - e^{-\hbar\omega/T}} = \frac{1}{2\sinh(\hbar\omega/(2T))}$$
(49)

Average energy $\overline{E} = T^2 \frac{\partial (\ln Z)}{\partial T}$. $\ln Z = -\frac{\hbar \omega}{2T} - \ln \left(1 - \mathrm{e}^{-\hbar \omega/T}\right)$. $\frac{\partial (\ln Z)}{\partial T} = \frac{\hbar \omega}{2T^2} - \frac{-\mathrm{e}^{-\hbar \omega/T}(\hbar \omega/T^2)}{1 - \mathrm{e}^{-\hbar \omega/T}} = \frac{\hbar \omega}{T^2} \left[\frac{1}{2} + \frac{\mathrm{e}^{-\hbar \omega/T}}{1 - \mathrm{e}^{-\hbar \omega/T}}\right]$. This is the Planck distribution plus zero-point energy. Heat capacity $C = \frac{\partial \overline{E}}{\partial T}$. $C = \hbar \omega \frac{d}{dT} (\mathrm{e}^{\hbar \omega/T} - 1)^{-1} = \hbar \omega (-1)(\dots)^{-2} \mathrm{e}^{\hbar \omega/T} (-\hbar \omega/T^2)$.

$$C = \left(\frac{\hbar\omega}{T}\right)^2 \frac{e^{\hbar\omega/T}}{(e^{\hbar\omega/T} - 1)^2} \tag{50}$$

Limits:

- High T $(T \gg \hbar \omega)$: $e^{\hbar \omega/T} \approx 1 + \hbar \omega/T + \dots$ $\overline{E} \approx \hbar \omega (\frac{1}{2} + \frac{1}{\hbar \omega/T}) \approx T$. $C \to 1$. (Equipartition recovered, $k_B = 1$).
- Low T $(T \ll \hbar \omega)$: $e^{\hbar \omega/T} \gg 1$. $\overline{E} \approx \hbar \omega (\frac{1}{2} + e^{-\hbar \omega/T}) \rightarrow \frac{1}{2}\hbar \omega$ (Zero-point energy). $C \approx (\frac{\hbar \omega}{T})^2 e^{-\hbar \omega/T} \rightarrow 0$.

15.2 Einstein Solid

Model solid as N independent 3D harmonic oscillators, all with same frequency ω . Total energy $\overline{E}_{total} = 3N\overline{E}_{1DHO} = 3N\hbar\omega \left[\frac{1}{2} + \frac{1}{\mathrm{e}^{\hbar\omega/T} - 1}\right]$. Heat capacity $C_V = \frac{\partial \overline{E}_{total}}{\partial T}$. Define Einstein Temperature $\Theta_E = \hbar\omega$.

$$C_V = 3N \left(\frac{\Theta_E}{T}\right)^2 \frac{e^{\Theta_E/T}}{(e^{\Theta_E/T} - 1)^2}$$
(51)

Limits:

- High T $(T \gg \Theta_E)$: $C_V \to 3N$. (Dulong-Petit recovered).
- Low T $(T \ll \Theta_E)$: $C_V \approx 3N(\Theta_E/T)^2 e^{-\Theta_E/T} \to 0$. (Matches experiment qualitatively, but exponential decay is too fast. Debye model gives T^3).

15.3 Paramagnetism (Spin J)

N non-interacting magnetic moments $\vec{\mu}$ in external field $\vec{H} = H\hat{z}$. Energy levels $E_m = -\vec{\mu} \cdot \vec{H}$. For spin J, $\mu_z = g\mu_B m_J$, $m_J = -J, -J+1, \ldots, J$. (Assume simple case $E_m = -\mu_0 H m$, where m is quantum number). Energy $E_m = -\gamma m H$, $m = -J, \ldots, +J$. (γ is gyromagnetic ratio). Let's use your notation $E_m = -g\mu_B H m$. Single particle partition function Z_1 : $Z_1 = \sum_{m=-J}^J \mathrm{e}^{-E_m/T} = \sum_{m=-J}^J \mathrm{e}^{g\mu_B H m/T}$. Let $\eta = g\mu_B H/T$. $Z_1 = \sum_{m=-J}^J (\mathrm{e}^{\eta})^m = \mathrm{e}^{-J\eta} \sum_{k=0}^{2J} (\mathrm{e}^{\eta})^k$. Geometric series $\frac{1-x^{N+1}}{1-x}$. Here N=2J. $Z_1 = \mathrm{e}^{-J\eta} \frac{1-\mathrm{e}^{(2J+1)\eta}}{1-\mathrm{e}^{\eta}} = \frac{\mathrm{e}^{-J\eta}-\mathrm{e}^{(J+1/2)\eta}-\mathrm{e}^{-(J+1/2)\eta}}{\mathrm{e}^{\eta/2}-\mathrm{e}^{-\eta/2}} \frac{\mathrm{e}^{-\eta/2}}{\mathrm{e}^{-\eta/2}}$

$$Z_1 = \frac{\sinh((J+1/2)\eta)}{\sinh(\eta/2)} \tag{52}$$

Total partition function $Z=(Z_1)^N$ (distinguishable sites). Average magnetic moment $\overline{\mu_z}=T\frac{\partial(\ln Z_1)}{\partial H}_T$. $\ln Z_1=\ln \sinh((J+1/2)\eta)-\ln \sinh(\eta/2)$. $\frac{\partial(\ln Z_1)}{\partial H}=\frac{\cosh((J+1/2)\eta)}{\sinh((J+1/2)\eta)}(J+1/2)\frac{\partial\eta}{\partial H}-\frac{\cosh(\eta/2)}{\sinh(\eta/2)}(1/2)\frac{\partial\eta}{\partial H}$. $\frac{\partial\eta}{\partial H}=g\mu_B/T$. $\overline{\mu_z}=T[\coth((J+1/2)\eta)(J+1/2)-\coth(\eta/2)(1/2)](g\mu_B/T)$

$$\overline{\mu_z} = g\mu_B \left[(J + 1/2) \coth((J + 1/2)\eta) - (1/2) \coth(\eta/2) \right] \equiv g\mu_B J B_J(\eta)$$
 (53)

where $B_J(x) = \frac{1}{J}[(J+1/2)\coth((J+1/2)x)-(1/2)\coth(x/2)]$ is the Brillouin function. Total Magnetization $M = N\overline{\mu_z} = Ng\mu_BJB_J(\eta)$. Limits:

- High T / Low H $(\eta \ll 1)$: $\coth(x) \approx 1/x + x/3$. $B_J(\eta) \approx \frac{1}{J}[(J+1/2)(\frac{1}{(J+1/2)\eta} + \frac{(J+1/2)\eta}{3}) (1/2)(\frac{1}{\eta/2} + \frac{\eta/2}{3})]$ $B_J(\eta) \approx \frac{1}{J}[\frac{1}{\eta} + \frac{(J+1/2)^2\eta}{3} \frac{1}{\eta} \frac{\eta}{12}] = \frac{\eta}{3J}[(J^2 + J + 1/4) 1/4] = \frac{\eta(J^2 + J)}{3J} = \frac{J+1}{3}\eta$. $M \approx Ng\mu_B J \frac{J+1}{3} \frac{g\mu_B H}{T} = \frac{N(g\mu_B)^2 J(J+1)}{3T} H$. Curie Law: $M = \chi H$ with $\chi = C/T$. $C = \frac{N(g\mu_B)^2 J(J+1)}{3T}$.
- Low T / High H $(\eta \gg 1)$: $\coth(x) \to 1$. $B_J(\eta) \to \frac{1}{J}[(J+1/2)-1/2] = 1$. $M \to Ng\mu_B J$. (Saturation).

16 Elements of Kinetic Theory

Focuses on microscopic origins of macroscopic phenomena like pressure, transport.

16.1 Maxwell Velocity and Speed Distributions

Velocity distribution (derived earlier): $f(\vec{v}) = (\frac{m}{2\pi T})^{3/2} \mathrm{e}^{-mv^2/(2T)}$. Speed distribution F(v): Integrate $f(\vec{v})$ over angles in velocity space. $d^3v = v^2 \sin\theta dv d\theta d\phi$. Angle integral gives 4π .

$$F(v)dv = 4\pi \left(\frac{m}{2\pi T}\right)^{3/2} v^2 e^{-mv^2/(2T)} dv$$
 (54)

Characteristic speeds:

- Most probable speed \tilde{v} : Max of F(v). $\frac{d(v^2 e^{-mv^2/2T})}{dv} = 0 \implies \tilde{v} = \sqrt{2T/m}$.
- Mean speed \overline{v} : $\int_0^\infty vF(v)dv = \sqrt{8T/(\pi m)}$.
- RMS speed v_{rms} : $\sqrt{\overline{v^2}}$. $\overline{v^2} = \int_0^\infty v^2 F(v) dv = 3T/m$. $v_{rms} = \sqrt{3T/m}$.

Note $\tilde{v} < \overline{v} < v_{rms}$.

16.2 Particle Flux and Effusion

Flux $\Phi(\vec{v})d^3v$: Number of particles with velocity in d^3v crossing unit area perpendicular to \hat{z} per unit time. Volume is $v_z dt dA$. Number density is $nf(\vec{v})$. $\Phi(\vec{v})d^3v = (nf(\vec{v})d^3v)(v_z)/(dAdt) = nv_z f(\vec{v})d^3v$. Total particle flux Φ_0 (particles crossing in +z direction): Integrate for $v_z > 0$. $\Phi_0 = \int_{v_x = -\infty}^{\infty} \int_{v_y = -\infty}^{\infty} \int_{v_z = 0}^{\infty} nv_z f(\vec{v}) dv_x dv_y dv_z$. The v_x, v_y integrals give $(2\pi T/m)$. $\Phi_0 = n(\frac{m}{2\pi T})^{3/2} (2\pi T/m) \int_0^{\infty} v_z e^{-mv_z^2/(2T)} dv_z$. Integral is T/m. $\Phi_0 = n(\frac{m}{2\pi T})^{1/2} (T/m) = n\sqrt{T/(2\pi m)} = n\frac{\sqrt{8T/(\pi m)}}{4} = \frac{1}{4}n\overline{v}$. Using ideal gas law P = nT:

$$\Phi_0 = \frac{1}{4}n\overline{v} = \frac{P}{\sqrt{2\pi mT}}\tag{55}$$

Effusion: Rate of particles leaking out of small hole (area A) if $P_{in} \gg P_{out}$. $I = \Phi_0 A = \frac{PA}{\sqrt{2\pi mT}}$.

16.3 Pressure of an Ideal Gas

Particles elastically colliding with wall (area A) perpendicular to z. Momentum change $\Delta p_z = 2mv_z$. Number colliding in dt with velocity \vec{v} (and $v_z > 0$) is $nf(\vec{v})d^3v(Av_zdt)$. Total force $F_z = \frac{\text{Total momentum change}}{dt} = \int_{v_z>0} (2mv_z)(nf(\vec{v})d^3vAv_z)$. $F_z = 2mnA\int_{v_z>0} v_z^2f(\vec{v})d^3v$. Since $f(\vec{v})$ is even in v_z , $\int_{v_z>0} v_z^2f(\vec{v})d^3v = \frac{1}{2}\int v_z^2f(\vec{v})d^3v = \frac{1}{2}\overline{v_z^2}$. $F_z = mnA\overline{v_z^2}$. Pressure $P = F_z/A = mn\overline{v_z^2}$. By isotropy $\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2}$. Since $\overline{v^2} = \overline{v_x^2} + v_y^2 + v_z^2 = 3\overline{v_z^2}$. $\overline{v^2} = 3T/m$. So $\overline{v_z^2} = T/m$. P = mn(T/m) = nT. Recovered ideal gas law.