Résumé 09 : Topologie (9)

Dans tout ce chapitre, $\mathbb K$ sera le corps $\mathbb R$ ou $\mathbb C$, et E sera un espace vectoriel sur $\mathbb K$.

1. Rappel sur la borne supérieure Définition .1 (Borne supérieure d'un ensemble)

Soit $\Omega \subset \mathbb{R}$ et $m \in \mathbb{R}$, on dit que m est la borne supérieure de Ω et on note $m = \sup \Omega$ lorsque :

- 1. Pour tout $\omega \in \Omega, \omega \leqslant m$.
- 2. Pour tout $\epsilon > 0$, il existe $\omega \in \Omega$ tel que $m \epsilon \leqslant \omega$.

REMARQUES:

- Le premier point signifie que la borne supérieur de Ω est un majorant de Ω et le deuxième qu'aucun réel inférieur à la borne supérieure de Ω n'est un majorant de Ω, ce qui conjointement justifie que l'on dise de la borne supérieure qu'el le est le plus petit des majorants.
- ▶ Rappelons que le maximum (ou max) d'un ensemble Ω est quant à lui un réel appartenant à Ω et majorant de Ω . Le problème du maximum est que certaines (beaucoup trop en fait) parties majorées de $\mathbb R$ n'admettent pas de maximum (par exemple [0,1[), alors qu'elles admettent une borne supérieure :

Théorème .2 (de la borne supérieure)

Toute partie non vide et majorée de \mathbb{R} admet une borne supérieure.

Définition .3

Si I est un ensemble, et si $f:I\to\mathbb{R}$ est une fonction majorée, on notera $\sup f$, ou $\sup_{x\in I}f(x)$, la borne supérieure de l'ensemble $\{f(x) \text{ où } x\in X\}$.

Si maintenant f est une fonction **continue** sur un **segment** [a,b], alors elle est bornée et atteint ses bornes (théorème parfois dit de la borne atteinte). En particulier, sa borne supérieure est un maximum : il existe $x_0 \in [a,b]$ tel que $f(x_0) = \sup_{[a,b]} f$. C'est un théorème d'existence très utile, et on peut voir le cours qui suit comme le résultat d'une volonté d'entendre ceci à des fonctions définies sur des espaces vectoriels.

I LES NORMES

Définition I.1

On appelle **norme** sur E toute application $N:E\to\mathbb{R}_+$ (donc positive) qui vérifie

- 1. Pour tout $x \in E$, $N(x) = 0 \iff x = 0_E$.
- 2. Pour tout $x \in E$ et $\lambda \in \mathbb{K}$, $N(\lambda x) = |\lambda|N(x)$.
- 3. Pour tout $x, y \in E, N(x + y) \leq N(x) + N(y)$.
- (E,N) est alors appelé **espace vectoriel normé**. Un vecteur $x \in E$ est dit **unitaire** lorsque N(x) = 1.

Voyons quelques exemples:

- lacktriangle muni de sa valeur absolue est un espace vectoriel normé. De même, $\mathbb C$ muni du module est un $\mathbb R-$ espace vectoriel normé ainsi qu'un $\mathbb C-$ espace vectoriel normé. Rien d'étonnant à cela puisque la notion d'espace vectoriel normé provient d'une volonté d'étendre la notion de valeur absolue à tout espace vectoriel .
- Sur $E = \mathbb{K}^n$, où $n \ge 1$, on définit trois normes. Soit $X = (x_1, \dots, x_n) \in E$.

1.
$$||X||_1 = \sum_{k=1}^n |x_i|$$
.

2.
$$||X||_2 = \sqrt{\sum_{k=1}^n |x_i|^2}$$
.

- 3. $||X||_{\infty} = \max_{1 \le i \le n} |x_i|$.
- Sur $E = \mathcal{M}_n(\mathbb{K})$, où $n \ge 1$, on définit trois normes, qui sont exactement les trois précédentes avec l'identification $\mathcal{M}_n(\mathbb{K}) = \mathbb{K}^{n^2}$. Soit $M = (m_{i,i})_{1 \le i,j \le n} \in E$.

1.
$$||M||_1 = \sum_{i=1}^n \sum_{j=1}^n |m_{i,j}|$$
.

2.
$$||M||_2 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |m_{i,j}|^2} = \sqrt{\text{Trace } ({}^tAA)}.$$

- 3. $||M||_{\infty} = \max_{1 \leq i,j \leq n} |m_{i,j}|$.
- Enfin, sur $E = \mathscr{C}^0([a,b],\mathbb{K})$, on définit trois normes. Soit $f \in E$.

1.
$$||f||_1 = \int_a^b |f(t)| dt$$
.

2.
$$||f||_2 = \sqrt{\int_a^b |f(t)|^2 dt}$$
.

3.
$$||f||_{\infty} = \sup_{t \in [a,b]} |f(t)|$$
.

1. Les trois normes dites "2" que l'on vient de définir proviennent d'un produit scalaire (nous n'avons vu en sup que le produit scalaire sur un $\mathbb{R}-$ espace vectoriel , mais nous verrons que sa définition s'étend au cas où le corps de base est \mathbb{C}). Rappelons qu'un produit scalaire est une forme bilinéaire symétrique définie positive $B: E \times E \to \mathbb{R}$. L'application $x \in E \mapsto \sqrt{B(x,x)}$ est alors une norme sur E, dite norme euclidienne. Le point délicat à prouver est l'inégalité triangulaire. Cela se fait avec l'inégalité de Cauchy-Schwarz. Pour les puristes, on en déduit une caractérisation géométrique du cas d'égalité dans l'inégalité triangulaire, cela uniquement si la norme est euclidienne :

$$||x + y||_2 = ||x||_2 + ||y||_2 \iff \exists \lambda \geqslant 0, x = \lambda y.$$

2. Puisqu'une fonction continue sur un segment est bornée et atteint ses bornes, si $f \in \mathscr{C}^0([a,b],\mathbb{K})$, il existe $x_0 \in [a,b]$ tel que $\|f\|_{\infty} = |f(x_0)|$.

II DISTANCES ET BOULES

§ 1. **Distances.**— Cette première définition n'est pas au programme, mais au vu du nombre de fois que nous utiliserons ce mot, il est difficile de ne pas le préciser.

Définition II.1

Une **distance** sur un ensemble X est une application $d: X \times X \to \mathbb{R}$ qui vérifie :

- 1. Pour tout $x, y \in X, d(x, y) = 0 \iff x = y$.
- 2. Pour tous $x, y \in X, d(x, y) = d(y, x)$.
- 3. Pour tous $x, y, z \in X, d(x, z) \leq d(x, y) + d(y, z)$.

Proposition II.2

Sur un espace vectoriel normé $(E,\|.\|)$, l'application suivante est une distance :

$$d: (x,y) \in E \times E \mapsto d(x,y) = ||x - y||.$$

Définissons maintenant la distance d'un point à un ensemble :

Définition II.3

Pour toute partie non vide Ω de $(E, \|.\|)$ et tout $x \in E$, on appelle distance entre le vecteur x et l'ensemble Ω le réel $d(x, \Omega) = \inf_{\omega \in \Omega} \|x - \omega\|$.

REMARQUES:

Notons que si x est élément de Ω , alors $d(x,\Omega)=0$, mais que la réciproque est fausse : d(1,[0,1])=0.

§ 2. **Boules et sphères.**— La notion de boule généralise aux espaces vectoriels normés celle de voisinage d'un point de \mathbb{R} .

Définition II.4

Soit $x_0 \in E$ et r > 0. On appelle :

1. **boule ouverte** de centre x_0 et de rayon r l'ensemble

$$B(x_0, r) = \{x \in E \text{ tels que } ||x - x_0|| < r\}.$$

2. **boule fermée** de centre x_0 et de rayon r l'ensemble

$$\overline{B}(x_0, r) = \{x \in E \text{ tels que } ||x - x_0|| \le r\}.$$

3. **sphère** de centre x_0 et de rayon r l'ensemble

$$S(x_0, r) = \{x \in E \text{ tels que } ||x - x_0|| = r\} = \overline{B}(x_0, r) \setminus B(x_0, r).$$

§ 3. Parties bornées, diamètre.

- ▶ Une partie Ω non vide d'un espace vectoriel normé est dite **bornée** lorsqu'il existe K > 0 tel que tout $\omega \in \Omega$ est de norme inférieure à K.
- Le diamètre d'une partie bornée Ω est Diam $(\Omega) = \sup \{ \|x y\| \text{ où } x, y \in \Omega \}.$
- Soit un ensemble X et un espace vectoriel normé $(E, \|.\|)$. Une application $f: X \to (E, \|.\|)$ est dite **bornée** lorsque son image f(I) est une partie bornée de E, i.e lorsque

$$\exists K > 0, \forall x \in I, ||f(x)|| \leqslant K.$$

On appelle alors norme infinie de f, ou norme de la convergence uniforme, le réel $||f||_{\infty} = \sup \{||f(x)|| \text{ où } x \in I\}.$

Proposition II.5

Soit I un ensemble et $(E, \|.\|)$ un espace vectoriel normé. On note B(I, E) la partie de $\mathscr{F}(I, E)$ constituée des fonctions bornées de I dans E.

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

- 1. B(I, E) est un sous-espace vectoriel de $\mathscr{F}(I, E)$.
- 2. Muni de la norme infinie, B(I, E) est un espace vectoriel normé.

§ 4. Fonctions Lipschitziennes. – Définition II.6

 $f: E \to F$ est dite **Lipschitzienne** lorsqu'il existe K>0 tel que pour tous $x,y\in E$,

$$||f(x) - f(y)|| \le K||x - y||.$$

- ▶ La norme est une fonction 1-Lipschitzienne, car pour touts $x, y \in E, ||x|| ||y||| \le ||x y||$.
- ▶ Pour toute partie Ω de E, $x \in E \longmapsto d(x,\Omega)$ est aussi 1-Lipschitzienne : pour tous $x,y \in \Omega$, $|d(x,\Omega) d(y,\Omega)| \leq ||x-y||$.
- L'inégalité des accroissements finis nous dit qu'une fonction dérivable $f:I\to\mathbb{R}$ est K-Lipschitzienne si et seulement si |f'| est majorée par K.

III SUITES DANS UN ESPACE VECTORIEL NORMÉ

Soit (u_n) une suite à valeurs dans un espace vectoriel normé et $\ell \in E$. On dit que (u_n) tend vers ℓ si pour toute boule ouverte centrée en ℓ , il existe un rang n_0 à partir duquel tous les éléments de cette suite appartiennent à cette boule. Plus précisément :

$$u_n \xrightarrow[n \to +\infty]{} \ell \iff \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geqslant n_0 \implies ||u_n - \ell|| \leqslant \varepsilon).$$

Une suite qui admet une limite est dite convergente. Sinon, elle est dite divergente.

Proposition III.1

Si (u_n) admet une limite, celle-ci est unique. De plus, la suite (u_n) est bornée.

REMARQUES:

- Modifier un nombre fini de termes de la suite ne change ni sa nature, ni la valeur de son éventuelle limite.
- ▶ La notion de limite est intimement liée au choix de la norme sur E. Par exemple, pour la norme 1, la suite de fonctions $f_n: x \mapsto nxe^{-nx}$ ne converge pas pour la norme infinie vers la fonction nulle, alors que pour la norme 1, elle converge vers la fonction nulle, puisque $||f_n||_1 = \frac{1}{n}$.
- ▶ Une suite est divergente lorsque pour tout $\ell \in E, \forall \varepsilon > 0, \forall n_0 \in \mathbb{N}, \exists n \in \mathbb{N}$, tel que $n \ge N$ ET $||u_n \ell|| \ge \varepsilon$. Mais nous verrons que les suites extraites sont bien plus efficaces pour prouver une divergence.

Proposition III.2

La suite (u_n) converge vers ℓ lorsque l'une des assertions équivalentes suivantes est vérifiée

- 1. $u_n \ell \longmapsto 0_E$.
- 2. $||u_n \ell|| \longmapsto 0_{\mathbb{R}}$.
- 3. Il existe une suite $(\alpha_n)_n$ de réels convergeant vers $0_{\mathbb{R}}$ telle que $||u_n \ell|| \le \alpha_n$.

§ 1. Valeurs d'adhérence. – Définition III.3

Une suite extraite de (u_n) est une suite du type $(u_{\varphi(n)})_n$, où $\varphi: \mathbb{N} \to \mathbb{N}$ est strictement croissante.

Un vecteur $\ell \in E$ est une valeur d'adhérence de (u_n) s'il existe une suite extraite de (u_n) qui tend vers ℓ .

Proposition III.4

Si (u_n) converge ves ℓ , toutes ses suites extraites convergent aussi vers ℓ .

On se servira de cette proposition pour prouver qu'une suite diverge, en lui trouvant deux valeurs d'adhérence distinctes.

§ 2. Equivalences de normes.— Définition III.5

Deux normes N et ν sur un espace vectoriel E sont dites **équivalentes**, lorsqu'il existe deux réels a, b > 0 tels que pour tous x et $y \in E$,

$$aN(x) \leqslant \nu(x) \leqslant bN(x).$$

Résumé 09 : Topologie (I)

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

On peut caractériser l'équivalence de normes avec les suites de limite nulle :

Théorème III.6

Soit E un $\mathbb{K}-$ espace vectoriel et N et $\|.\|$ deux normes sur E. Elles sont équivalentes si et seulement si pour toute suite (u_n) d'éléments de E,

$$\lim_{n \to \infty} N(u_n) = 0 \Longleftrightarrow \lim_{n \to \infty} ||u_n|| = 0.$$

§ 3. **Densité.** – Finissons par une notion centrale de topologie :

Définition III.7

Soient $A \subset B$ deux parties d'un espace vectoriel normé. On dit que A est dense dans B lorsque pour tout $b \in B$ et pour tout r > 0, il existe $A \cap B(b,r)$ est non vide.

Par exemple, \mathbb{Q} et $\mathbb{R} \setminus Q$ sont deux parties denses dans \mathbb{R} .

Proposition III.8

Soient $A \subset B$ deux parties d'un espace vectoriel normé. A est dense dans $B \iff$ pour tout $b \in B$, il existe une suite d'éléments de A qui converge vers b.

Il FAUT connaître les démonstrations sur les comparaisons des trois normes usuelles sur \mathbb{R}^n , et sur $\mathscr{C}^0([a,b],\mathbb{R})$, et notamment se souvenir que pour montrer que deux normes ne sont pas équivalentes, il suffit de construire une suite d'éléments de E convenable.

IV Suites numériques

Se conférer au cours de première année, ainsi qu'au polycopie que je vous ai distribué sur o, O, \sim .

- Les approximations décimales d'un réel $x: u_n = \frac{\lfloor 10^n x \rfloor}{10^n}$.
- Les définitions de $\lim_{n\to\infty} u_n = \pm \infty$.
- ▶ Les suites du type $u_{n+1} = f(u_n)$, où $f: I \to I$.
- Les suites du type $u_{n+2} = au_{n+1} + bu_n$.

ANNEXE

A LES PREUVES À CONNAITRE...

- ightharpoonup Si N et u sont deux normes sur E. Il y a équivelance entre les deux assertions suivantes :
 - 1. Il existe a > 0 tel que pour tout $x \in E, \nu(x) \leq aN(x)$.
 - 2. Pour toute suite (u_n) d'éléments de E, si $N(x_n) \xrightarrow[n \to \infty]{} 0$, alors $\nu(x_n) \xrightarrow[n \to \infty]{} 0$.
- ▶ Les normes 1, 2 et ∞ sont équivalentes sur \mathbb{R}^n .

B LES FIGURES IMPOSÉES

EXERCICES:

CCP Analyse 37 On note E l'espace vectoriel des applications continues de [0;1] dans \mathbb{R} .

On pose,
$$\forall f \in E$$
, $N_{\infty}(f) = \sup_{x \in [0;1]} |f(x)|$ et $N_1(f) = \int_0^1 |f(x)| \mathrm{d}x$.

- 1. (a) Démontrer que N_{∞} et N_1 sont deux normes sur E.
 - (b) Démontrer qu'il existe k > 0 tel que, pour tout f de E, $N_1(f) \leq kN_\infty(f)$.
- 2. Démontrer que les normes N_1 et N_{∞} ne sont pas équivalentes.

EXERCICES:

 $\it CCP$ Analyse 55 Soit $\it a$ un nombre complexe.

On note E l'ensemble des suites à valeurs complexes telles que : $\forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia-1)u_n \text{ avec } (u_0, u_1) \in (\mathbb{C})^2.$

- 1. Prouver que E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes.
 - Déterminer, en le justifiant, la dimension de E.
- 2. Dans cette question, on considère la suite de E définie par : $u_0=1$ et $u_1=1$. Exprimer, pour tout entier naturel n, le nombre complexe u_n en fonction de n. Indication : discuter suivant les valeurs de a.

Résumé 09 : Topologie (I)