STAT 331 - APPLIED LINEAR MODELS

FANTASTIC MODELS AND HOW TO ABUSE THEM

Jose Luis Avilez
Faculty of Mathematics
University of Waterloo

Chapter 1

Introduction

Definition 1.1. We define a **statistical model** as an equation

$$y = \mu + \epsilon$$

where μ is a **deterministic** component and ϵ is a **stochastic** component (or noise).

Definition 1.2. A **response** variable is denoted Y and its values are (y_1, \ldots, y_n) ; an **independent** variable is denoted X and its values are (x_1, \ldots, x_n) ; the **regression slope** is denoted β ; the **noise** term is denoted ϵ ; the regression equation is then given by

$$Y = \beta X + \epsilon$$

Definition 1.3. To emphasise that the model applies to each potential experiment, we index using our dataset (i.e. $\{(x_i, y_i)\}_{i=1,\dots,n}$ are data points) to say

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Definition 1.4. We say that the noise is exhibits **homoscedasticity** if each ϵ_i has equal variance. **Heteroscedasticity** means they have unequal variances.

Definition 1.5. In a **simple linear model** there is only one explanatory variable and we make the following assumptions for the error term ϵ :

- 1. ϵ_i is normally distributed for each i
- 2. $E(\epsilon_i) = 0$, for i = 1, 2, ..., n
- 3. $\operatorname{Var}(\epsilon_i) = \sigma^2$
- 4. ϵ_i and ϵ_j are independent random variables for $i \neq j$

Theorem 1.6. In a simple linear model, if we take x_i to be deterministic and each y_i as a random variable, $E(y_i) = \beta_0 + \beta_1 x_i$.

Proof. Trivial.

Definition 1.7. We define a general linear model¹ as

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

Note that it has multiple independent variables. A more efficient way to write this is in matrix form

$$\vec{y} = X\vec{\beta} + \vec{\epsilon}$$

Except, no sane person puts those funny hats on top of their vectors, so we shall simply write $y = X\beta + \epsilon$ where X is the design matrix. Note it has a column of 1s to multiply out the constant β_0 term.

Definition 1.8. We say that a model is "parsimonious" if it is "economic" and has "low complexity". We use inverted commas since these are not well-defined mathematical constructs.

¹Not to be confused with **generalised**.

Chapter 2

Simple Linear Regression

For this chapter, we explore the consequences of Definition 1.5 and how to test their assumptions.

To obtain estimates of the parameters in a simple linear model we have two available methods: (i) **maximum likelihood estimation**, and (ii) **least squares estimate**. The former requires distributional assumptions; the latter does not.

Theorem 2.1. For a simple linear model, the maximum likelihood estimators are given by $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$ and $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Proof. Given that the y_i are independent, we have that the likelihood function is

$$L(\beta_0, \beta_1, \sigma^2) = f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n f(y_i | \beta_0, \beta_1, \sigma^2)$$

Under the normality assumption for y_i , we then have

$$f(y_i|\beta_0, \beta_1, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y_i - \beta_0 - \beta_1 x_1)^2\right)$$

Thus, the log-likelihood function is given by

$$l(\beta_0, \beta_1, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1)^2$$

The remainder of the result follows from maximising the log-likelihood for the parameters. We show the computation in an upcoming Theorem.

Definition 2.2. We say that $\hat{\beta_0}$ and $\hat{\beta_1}$ are least squares estimates if they minimise the equation

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Theorem 2.3. The least squares estimates are equal to the maximum likelihood estimates¹.

Proof. Taking partial derivatives with respect to the parameters, we obtain,

$$\frac{\partial S}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)$$

$$\frac{\partial S}{\partial \beta_1} = -2\sum_{i=1}^n x_i(y_i - \beta_0 - \beta_1 x_i)$$

¹Proofs for this theorem can be seen in Lectures 1 and 4 of Shalizi's notes

To maximise the parameters, we set the partial derivatives to zero. It is easy to see that the first expression is minimised when $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$. Minimising the second expression requires a bit more algebraic mumbo-jumbo.

$$0 = \sum_{i=1}^{n} x_{i}(y_{i} - \beta_{0} - \beta_{1}x_{i})$$

$$= \sum_{i=1}^{n} (x_{i}y_{i}) - \beta_{0} \sum_{i=1}^{n} x_{i} - \beta_{1} \sum_{i=1}^{n} x_{i}^{2}$$

$$= \sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}(\bar{y} - \beta_{1}\bar{x}) - \beta_{1} \sum_{i=1}^{n} x_{i}^{2}$$

$$= \sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y} - n\beta_{1}\bar{x}^{2} - \beta_{1} \sum_{i=1}^{n} x_{i}^{2}$$

$$\iff$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i}y_{i}) - n\bar{x}\bar{y}}{\sum_{i=1}^{n} x_{i}^{2} + n\bar{x}^{2}}$$

$$= \frac{S_{xy}}{S_{xx}}$$

Ta-da!

Definition 2.4. The following two equations are called **normal equations**:

$$n\hat{\beta}_0 + \left(\sum x_i\right)\hat{\beta}_1 = \sum y_i \tag{2.1}$$

$$\left(\sum x_i\right)\hat{\beta}_0 + \left(\sum x_i^2\right)\hat{\beta}_1 = \sum x_i y_i \tag{2.2}$$

Definition 2.5. The **residual**, e_i , of the fitted value at x_i is $e_i = y_i - \hat{\mu}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$.

Theorem 2.6. In a regression line fitted by the least squares estimate procedure, the following are facts about residuals:

- 1. $\sum e_i = 0$
- 2. $\sum e_i x_i = 0$
- 3. $\sum \hat{\mu_i} e_i = 0$

Proof. Follows from the minimisation procedure used in Theorem 2.3.

Theorem 2.7. The maximum likelihood estimate of σ^2 is $\hat{\sigma}^2 = \frac{S(\hat{\beta_0}, \hat{\beta_1})}{n}$.

Theorem 2.8. The estimated value of σ^2 using the least squares estimate method is

$$S^2 = \frac{S(\hat{\beta_0}, \hat{\beta_1})}{n-2}$$

We call this the least square error and it has n-2 degrees of freedom. In R, the summary output for a linear model is the **residual standard error**, which is simply $S = \sqrt{S^2}$.

Proof. Exercise.

Theorem 2.9. The mean squared error, S^2 is an unbiased estimate for σ^2 . That is, $E(S^2) = \sigma^2$.

Theorem 2.10. The estimators $\hat{\beta}_0$, $\hat{\beta}_1$ is unbiased; that is $E\left[\hat{\beta}_{0,1}\right] = \beta_{0,1}$

Proof. We can write

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \sum_{i=1}^n c_i y_i$$

where $c_i = \frac{x_i - \bar{x}}{S_{xx}}$. Thus,

$$E\left[\hat{\beta}_{1}\right] = E\left[\sum c_{i}y_{i}\right] = \sum c_{i}E\left[y_{i}\right] = \sum c_{i}E\left[\beta_{0} + \beta_{1}x_{i}\right] = E\left[\beta_{0}\right]\sum c_{i} + \beta_{1}\sum c_{i}E\left[x_{i}\right] = \beta_{1}\frac{S_{xx}}{S_{xx}} = \beta_{1}$$

Likewise,

$$\mathrm{E}\left[\hat{\beta}_{0}\right] = \mathrm{E}\left[y_{i} - \hat{\beta}_{1}x_{i}\right] = \bar{y} - \beta_{1}\bar{x} = \beta_{0}$$

Theorem 2.11. The estimator $\hat{\mu}$ is an unbiased estimate for μ and S^2 is an unbiased estimator for σ^2 .

Proof. The first follows easily from Theorem 2.10. The second estimator requires finding a pivotal quantity which follows a chi-squared distribution with n-2 degrees of freedom. I'll provide details later.

Theorem 2.12. The following are the variances for the estimators:

1. Var
$$\left(\hat{\beta}_1\right) = \frac{\sigma^2}{S_{xx}}$$

2. Var
$$\left(\hat{\beta}_0\right) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]$$

3.
$$\operatorname{Var}(\hat{\mu_0}) = \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]$$

Proof. The first two follow by our usual variance formulas. The third point requires writing

$$\operatorname{Var}(\hat{\mu_0}) = \operatorname{Var}\left(\bar{y} - \hat{\beta}_1 \bar{x} + \hat{\beta}_1 \bar{x}\right) = \operatorname{Var}\left(\bar{y} + \hat{\beta}_1 (x_0 - \bar{x})\right)$$

and using the independence² of \bar{y} and $\hat{\beta}_1$.

²The professor claimed this. I am not entirely convinced... I'll check this at a later date.