VII Notion d'application

2 juillet 2020

1 Vocabulaire.

- En toute rigueur, une application est un objet différent d'une fonction, mais la différence est hors programme. On emploiera donc les deux termes indifféremment.
- Une application d'un ensemble E dans un ensemble F est une relation qui, à tout élement de E associe un unique élément de F. Attention : on a forcément unicité de l'image et les ensembles de départ et d'arrivée sont une donnée de l'application.

Exemple 1.0.1.

Les applications qui à x associe x^2 , partant respectivement de \mathbb{R} et de \mathbb{R}_+ , sont différentes : la seconde permet de définir la fonction $\sqrt{\cdot}$, pas la première. Dans les deux cas, on pourra considérer comme ensemble d'arrivée \mathbb{R} ou \mathbb{R}_+ . Une formule ne définit donc pas à elle seule une application.

Définition 1.0.2.

On appelle fonction (ou application) tout triplet $f = (E, F, \Gamma)$ où E est un ensemble appelé ensemble de départ ou domaine de définition, F est un ensemble appelé ensemble d'arrivée, et Γ est une partie de $E \times F$ appelée graphe de f telle que $\forall x \in E, \exists ! y \in F, (x,y) \in \Gamma$. Si $(x,y) \in \Gamma$, on note plus simplement y = f(x). On dit que x est alors $\underline{\mathbf{un}}$ antécédent de y, et y <u>l'</u>image de x.

Remarque 1.0.3.

Il peut y avoir plusieurs antécédents d'un élément dans l'espace d'arrivée, mais une seule image d'un élément de l'espace de départ : cela se voit sur le graphe, que l'on représente comme suit.

- On note une application f all ant d'un ensemble E dans un ensemble F de la manière suivante : $f:E\to F$.
- Si l'application est de plus définie par une formule, on écrit alors :

$$\begin{array}{ccc} f: & E & \to & F, \\ & x & \mapsto & \text{Formule dépendant de } x. \end{array}$$

FIGURE 1 – Exemple d'application – on remarque qu'une image a deux antécédents.

FIGURE 2 – Cette relation n'est pas une application.

FIGURE 3-y a ici trois antécédents représentés.

Remarque 1.0.4.

La notation

$$f: E \rightarrow F,$$
 $x \mapsto f(x)$

n'est pas informative.

Remarque 1.0.5.

Si $f, g: E \to F$, alors f = g équivaut à $\forall x \in E$, f(x) = g(x).

FIGURE 4 – Cette courbe ne représente pas une application.

Définition 1.0.6.

Soit E, F deux ensembles et $f: E \to F$ une application. On appelle image de f le sous-ensemble de F, noté f(E) ou Im(f), égal à $\{f(x), x \in E\}$.

Remarque 1.0.7.

La notation f(E) indique bien l'ensemble de départ, contrairement à la notation $\operatorname{Im} f$. Cet ensemble peut aussi s'écrire $\{y \in F \mid \exists x \in E, \ y = f(x)\}.$

Remarque 1.0.8.

Les ensembles de départ et d'arrivée peuvent être n'importe quoi, pas forcément de \mathbb{R} dans \mathbb{R} .

• On note $\mathscr{F}(E,F)$, ou F^E , l'ensemble des applications de E dans F. Comment s'en souvenir ? Penser que $\operatorname{Card} F^E = \operatorname{Card} F^{\operatorname{Card} E}$.

Exemple 1.0.9.

L'ensemble des suites réelles est noté $\mathbb{R}^{\mathbb{N}}$. $\{1\}^{\mathbb{N}}$: une seule suite possible.

Définition 1.0.10 (Familles).

Soit I un ensemble. On appelle famille d'éléments de E indexée par I toute application de I dans E. Les familles sont notées $(x_i)_{i \in I}$, et rarement, voire jamais, comme des applications.

L'ensemble des familles de E indexées par I est noté E^I .

Exemple 1.0.11.

 $\mathbb{R}^{\{1,2\}}$: on peut l'identifier à $\mathbb{R} \times \mathbb{R}$, que l'on note opportunément \mathbb{R}^2 .

Définition 1.0.12.

Soit E un ensemble et A une partie de E. On appelle fonction indicatrice de A la fonction notée $\mathbb{1}_A$ telle que pour tout $x \in A$, $\mathbb{1}_A(x) = 1$, et pour tout $x \in E \setminus A$, $\mathbb{1}_A(x) = 0$.

Exercice 1.0.13.

Soit A et B deux ensembles. Calculer $\mathbb{1}_{A \cap B}$, $\mathbb{1}_{\bar{A}}$ et $\mathbb{1}_{A \cup B}$ en fonction de $\mathbb{1}_A$ et de $\mathbb{1}_B$.

2 Restriction, prolongement

Définition 2.0.1.

Soit E, E', F, F' quatre ensembles, $f: E \to F$ et $f': E' \to F'$ deux applications.

(i) Pour toute partie G de E, la restriction de f à G est l'application

$$f_{|G}: G \rightarrow F,$$

 $x \mapsto f(x).$

(ii) On dit que f' est un prolongement de f si $E \subset E', F \subset F'$ et $\forall x \in E, f(x) = f'(x)$.

Il y a toujours une infinité de prolongements possibles à une application.

• Une fonction est toujours le prolongement d'une de ses restrictions.

Exemple 2.0.2.

Tout réel strictement positif a deux antécédents par la fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$; mais il n'a qu'un antécédent par la restriction de f à \mathbb{R}_+ .

3 Composition d'applications

Définition 3.0.1.

Soit E, F, G trois ensembles, $f: E \to F$ et $g: F \to G$ deux applications. On définit alors la composée de f par g comme l'application

$$g \circ f: E \rightarrow G,$$

 $x \mapsto g(f(x)).$

FIGURE 5 – Exemple de composée.

On ne peut pas toujours composer deux applications. Par exemple : les fonctions $\mathbb{R}^* \to \mathbb{R}, x \mapsto 1/x$ et $\mathbb{R} \to \mathbb{R}, x \mapsto x^2$.

• Ce n'est pas une opération commutative. Par exemple : $\exists x \in \mathbb{R}_+$, $\ln(x^2) \neq (\ln x)^2$.

Définition 3.0.2.

Soit E un ensemble, on définit dessus l'application identit'e sur E comme $\mathrm{Id}_E:E\to E,\ x\mapsto x.$

Proposition 3.0.3.

Soit E un ensemble, alors (E^E, \circ) est un monoïde de neutre Id_E .

Démonstration.

Soit $x \in E$, f, g et h trois applications de E dans E. On a alors $h(g(f(x))) = h((g \circ f)(x)) = h \circ (g \circ f)(x)$ et $h(g(f(x))) = (h \circ g)(f(x)) = (h \circ g) \circ f(x)$, d'où l'associativité.

On a aussi pour tout $x \in E$, $(\mathrm{Id}_E \circ f)(x) = \mathrm{Id}_E(f(x)) = f(x)$ et $(f \circ \mathrm{Id}_E)(x) = f(\mathrm{Id}_E(x)) = f(x)$, ce qui montre que $f \circ \mathrm{Id}_E = \mathrm{Id}_E \circ f = f$.

Remarque 3.0.4.

Nous avons vu (et nous reverrons en TD) que certaines fonctions (dans ce cas, $f: \mathbb{N} \to \mathbb{N}$) ne sont pas inversibles (au sens de la structure (E^E, \circ)).

4 Injectivité, surjectivité, bijectivité

On comprend vite, en considérant quelques exemples, quelles sont les propriétés qui peuvent empêcher une fonction $f:E\to E$ d'être inversible pour \circ .

- Si deux éléments de E ont même image par f, on ne pourra pas « revenir en arrière » et construire g vérifiant $g \circ f = \mathrm{Id}_E$.
- Si un élément de E n'a pas d'antécédent par f, on ne pourra pas construire g vérifiant $f \circ g = \operatorname{Id}_E$.

4.1 Injectivité

Définition 4.1.1.

Soit E, F deux ensembles, $f: E \to F$ une application. On dit que f est *injective* (ou est une *injection*) si $\forall (x,y) \in E^2, f(x) = f(y) \Rightarrow x = y$.

Remarque 4.1.2.

On utilise également la contraposée de cette proposition : $\forall (x,y) \in E^2, \ x \neq y \Rightarrow f(x) \neq f(y)$.

Remarque 4.1.3.

La donnée de l'ensemble de départ est primordiale. Exemple : l'application $[-\pi/2,\pi/2] \to \mathbb{R}, x \mapsto \sin(x)$ est injective alors que $\mathbb{R} \to \mathbb{R}, x \mapsto \sin(x)$ ne l'est pas (le montrer et tracer les courbes représentatives de ces deux applications). On peut aussi se demander ce qu'il adviendrait de la figure 8 si l'on ne précise pas que l'espace de départ est le segment I ici représenté.

Figure 6 – Exemple d'application injective.

FIGURE 7 – Exemple d'application non injective : une image a deux antécédents ou plus.

FIGURE 8 – Graphe d'application injective sur un segment I.

Remarque 4.1.4.

Une application $f: E \to F$ est injective si et seulement si, pour tout $y \in F$, l'équation y = f(x) admet au plus une solution dans E.

Remarque 4.1.5.

Une restriction d'une fonction injective est tou-

Figure 9 – Graphe d'application non injective : une image a deux antécédents ou plus.

jours injective.

Remarque 4.1.6.

On a montré dans le premier chapitre que toute fonction réelle strictement monotone est injective.

Théorème 4.1.7 (Composée d'injections.). Soit E, F et G trois ensembles, $f: E \to F$ et $g: F \to G$ deux applications injectives. Alors $g \circ f$ est injective.

Démonstration.

Soit (x,y)) $\in E^2$, supposons que $g \circ f(x) = g \circ f(y)$. Alors, par injectivité de g puis de f, f(x) = f(y) puis x = y. \square

Exercice 4.1.8.

Soit E, F deux ensembles, soit $f: E \to F$. Montrer que f est injective si et seulement s'il existe $g: F \to E$ vérifiant $g \circ f = \mathrm{Id}_E$.

4.2 Surjectivité

Définition 4.2.1.

Soit E et F deux ensembles, $f: E \to F$ une application. On dit que f est *surjective* (ou est/réalise une *surjection*) si $\forall y \in F, \exists x \in E, y = f(x)$.

• La donnée de l'espace de départ *et* de l'espace d'arrivée est, là encore, primordiale.

Figure 10 – Exemple d'application surjective.

Figure 11 – Exemple d'application non surjective.

FIGURE 12 – Graphe d'une application surjective d'un segment I dans un segment J.

Exemple 4.2.2.

La fonction définie par $x \mapsto \sin x$ est surjective de $[0, 2\pi]$ sur [-1, 1], mais pas de $[0, 2\pi]$ sur \mathbb{R} ni de $[0, \pi]$ sur [-1, 1]. Revenir aussi sur les figures 12 et 13.

Exercice 4.2.3.

Dans chaque cas, dire si cette application est sur-

Figure 13 – Graphe d'une application non surjective d'un segment I dans un segment J.

jective ou non : $(\mathbb{R}^* \text{ ou } \mathbb{R}_+^*) \to (\mathbb{R} \text{ ou } \mathbb{R}^*), \ x \mapsto \frac{1}{x}$

Remarque 4.2.4.

Une fonction est toujours surjective sur son image (formellement : la *corestriction* d'une application à son image est toujours surjective).

Une fonction non surjective n'est pas nécessairement injective, et vice-versa.

Remarque 4.2.5.

Une application $f: E \to F$ est surjective si et seulement si, pour tout $y \in F$, l'équation y = f(x) admet au moins une solution dans E.

Exercice 4.2.6.

Étudier la surjectivité de la fonction

$$f: \begin{array}{ccc} \mathbb{C} \setminus \{i\} & \to & \mathbb{C} \setminus \{1\} \\ z & \mapsto & \frac{z+i}{z-i} \end{array}.$$

Théorème 4.2.7 (Composée de surjections.). Soit E, F et G trois ensembles, $f: E \to F$ et $g: F \to G$ deux applications surjectives. Alors $g \circ f$ est surjective.

Démonstration.

Soit $z \in G$, g est surjective : il existe $y \in F$ vérifiant z = g(y). Comme f est surjective, il existe $x \in E$ vérifiant y = f(x) et on a donc $z = g \circ f(x)$.

Exercice 4.2.8.

Soit E, F deux ensembles, soit $f: E \to F$. Montrer que f est surjective si et seulement s'il existe $g: F \to E$ vérifiant $f \circ g = \mathrm{Id}_F$.

4.3 Bijectivité

Définition 4.3.1.

Une application *bijective* (ou qui réalise une *bijection*) est une application injective et surjective.

Soit E et F deux ensembles. Une application $f: E \to F$ est donc bijective si et seulement si $\forall y \in F, \exists ! \ x \in E, \ y = f(x).$

Exemple 4.3.2.

Application identité, fonctions affines de la forme $\mathbb{R} \to \mathbb{R}, x \mapsto ax + b$, avec $a \neq 0$, les similitudes ...

Théorème 4.3.3 (Fonction réciproque).

Soit $f: E \to F$ une application.

- 1. f est bijective si et seulement s'il existe g: $F \to E$ telle que $g \circ f = \mathrm{Id}_E$ et $f \circ g = \mathrm{Id}_F$.
- 2. Dans ce cas, g est unique et notée f^{-1} , appelée fonction réciproque de f, et on a, pour tout $(x,y) \in E \times F$, f(x) = y si et seulement si $x = f^{-1}(y)$.
- 3. f^{-1} est bijective et $(f^{-1})^{-1} = f$.

Démonstration. 1. Si f bijective, on construit g. Soit $y \in F$. On note g(y) l'unique antécédent de y par f: donc g est une fonction bien définie (tout point a une et une seule image). On vérifie bien que $f \circ g = \mathbf{I}_F$ et que $g \circ f = \mathbf{Id}_E$.

Si g existe, on montre que f est injective et que f est surjective.

- 2. Unicité : on utilise l'injectivité de f. Équivalence : facile par double implication.
- 3. On utilise le point (i) pour la bijectivité et le point (ii) pour l'unicité. $\hfill\Box$

Ne JAMAIS parler de f^{-1} avant d'avoir montré qu'elle existe.

Dans le cas d'une fonction réelle, il ne faut

pas confondre f^{-1} et 1/f. Ex : f = 1 (1/f existe, pas f^{-1}), $f: x \mapsto x$ (f^{-1} existe, pas 1/f).

• Le graphe de la réciproque d'une fonction est le symétrique par rapport à la première bissectrice du plan du graphe de cette fonction. En effet, si on note Γ le graphe de f et Γ' celui de sa réciproque, on a par définition, pour tous x et y, $(x,y) \in \Gamma$ si et seulement si $(y,x) \in \Gamma'$.

Exemple 4.3.4.

 $x \mapsto x^2$ et $x \mapsto \sqrt{x}$, $x \mapsto \ln x$ et $x \mapsto e^x$, tan et arctan (sur leurs espaces de départ et d'arrivée usuels).

Remarque 4.3.5.

Une application $f: E \to F$ est bijective si et seulement si, pour tout $y \in F$, l'équation y = f(x) admet exactement une solution dans E.

- \bullet En pratique, pour montrer que f est bijective, on peut au choix :
 - 1. montrer que f est injective et surjective ;
 - 2. montrer que f a une réciproque en raisonnant par équivalence : y = f(x) ssi $x = f^{-1}(y)$, où f^{-1} est alors à donner (on résout donc y = f(x));
 - 3. donner f^{-1} et vérifier que $f\circ f^{-1}=\mathrm{Id}\ \underline{\mathbf{et}}$ $f^{-1}\circ f=\mathrm{Id}.$

Exemple 4.3.6.

Reprendre l'exercice 4.2.6 et déterminer l'inverse de cette application.

Remarque 4.3.7.

Une injection réalise toujours une bijection sur son image.

Remarque 4.3.8.

Si E est un ensemble et $f: E \to E$ une application bijective, alors f est un élément inversible dans le monoïde (E^E, \circ) , d'inverse (au sens algébrique) sa réciproque $: f^{-1}$.

Théorème 4.3.9 (Composée de bijections.). Soit E, F et G trois ensembles, $f: E \to F$ et $g: F \to G$ deux bijections. Alors $g \circ f$ est une bijection et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Démonstration.

Utilise les résultats analogues sur injectivité et surjectivité. Ou encore : on donne l'inverse (formule à connaître !) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$, et surtout ne pas inverser les membres

Exercice 4.3.10.

Trouver deux applications f et g toutes les deux non bijectives, telles que $g \circ f$ est bijective.

4.4 Un peu de vocabulaire anglais ...

- \bullet Application : mapping ou map.
- Injection : injection ou one-to-one mapping.
- Surjection : surjection ou onto mapping.
- « non injection » : many-to-one mapping .
- Bijection : bijection ou one-to-one correspondance .

5 Image directe, tiré en arrière.

5.1 Image directe

Définition 5.1.1.

Soit E et F deux ensembles, $f:E\to F$ une application et A une partie de E. On appelle image directe de A par f l'ensemble des images des éléments de A (voir figure 14), i.e. la partie de F:

$$f(A) = \{ f(x) \mid x \in A \}$$

= \{ y \in F \| \exists x \in A, y = f(x) \}.

Remarque 5.1.2.

La seconde forme de f(A) est la plus pratique à utiliser et est à retenir en priorité.

Remarque 5.1.3.

La notation f(E) utilisée pour l'image de f est bien cohérente.

Remarque 5.1.4.

On a toujours $f(A) \subset \text{Im}(f)$.

• Cela se lit aisément sur un graphe.

FIGURE 14 – Image directe d'une partie A par une application f.

Exercice 5.1.5.

Soit $c: \mathbb{R} \to \mathbb{R}$, déterminer c([2,4]) et $x\mapsto x^2$ c([-1,3]).

Exercice 5.1.6.

Soit E et F deux ensembles, $f: E \to F$ une application, A et B deux parties de E.

- Si $A \subset B$, est-ce que $f(A) \subset f(B)$?
- Comparer $f(A \cup B)$ et $f(A) \cup f(B)$, puis $f(A \cap B)$ et $f(A) \cap f(B)$.

Proposition 5.1.7.

Soit E et F deux ensembles, $f: E \to F$ une application. Alors f est surjective si et seulement si f(E) = F.

5.2 Tiré en arrière

Définition 5.2.1.

Soit E et F deux ensembles, $f: E \to F$ une application et B une partie de F. On appelle $tir\acute{e}$ en arrière de B par f l'ensemble des antécédents des éléments de B (voir figure 15), i.e. la partie de E:

$$f^{\leftarrow}(B) = \{ x \in E \mid f(x) \in B \}.$$

Remarque 5.2.2.

Le vocabulaire officiel est plutôt « image réci-

proque de B par f » et la notation officielle est : $f^{-1}(B)$.

D'expérience, cette terminologie et cette notation sont une source de confusions désastreuses. Ne l'utilisez qu'une fois cette notion solidement acquise.

FIGURE 15 – Tiré en arrière d'une partie B par une application f.

• On lit aussi le tiré en arrière d'une partie sur le graphe d'une fonction.

Ne pas confondre avec la réciproque d'une fonction, qui n'existe pas si f n'est pas bijective.

• Notamment, les notations $f^{\leftarrow}(\{x\})$ et $f^{-1}(x)$ ne font formellement pas référence au même type d'objet.

Exercice 5.2.3.

Soit
$$c: \mathbb{R} \to \mathbb{R}$$
, déterminer $c^{\leftarrow}([1,4[)$ et $x\mapsto x^2$
 $c^{\leftarrow}([-3,1]).$

Théorème 5.2.4.

Soit E et F deux ensembles. Si $f: E \to F$ est une application bijective et si $B \subset F$, alors on a $f^{\leftarrow}(B) = f^{-1}(B)$, où la deuxième écriture désigne l'image directe par f^{-1} .

Démonstration.

Soit $x \in E$, alors

$$x \in f^{-1}(B) \Leftrightarrow \exists y \in B, \ x = f^{-1}(y)$$

 $\Leftrightarrow \exists y \in B, \ f(x) = y$
 $\Leftrightarrow f(x) \in B$
 $\Leftrightarrow x \in f^{\leftarrow}(B)$

Exercice 5.2.5.

Soit E et F deux ensembles, $f: E \to F$ une application, A et B deux parties de F.

- Si $A \subset B$, est-ce que $f^{\leftarrow}(A) \subset f^{\leftarrow}(B)$?
- Comparer $f^{\leftarrow}(A \cup B)$ et $f^{\leftarrow}(A) \cup f^{\leftarrow}(B)$, puis $f^{\leftarrow}(A \cap B)$ et $f^{\leftarrow}(A) \cap f^{\leftarrow}(B)$.