

Note: Calculators are not allowed

SURNAMES, NAME: GROUP:

Problem 1 (20 minutes – 2 points)

a) (50%) Complete the next table with the representation of the numbers considering the different systems/codes using 8 bits:

	A	В
Decimal		
Natural binary		
Hexadecimal		
BCD		
OCTAL	+73	
2s-Complement		10001101

b) (50%) Using **A** and **B** of (a), perform the followings operations in 2s-complement (8bits). Indicate whether there is overflow or not and why. In case there is overflow, indicate what would be the correct result:

A+B

A-B

-A+B

DIGITAL ELECTRONICS

First midterm exam. November 2021

Note: Calculators are not allowed

SURNAMES, NAME: GROUP:

Note: Calculators are not allowed

SURNAMES, NAME: GROUP:

Problem 2 (30 minutes – 4 points)

Implement an electronic version of the game where 2 players can push 0, 1 or 2 buttons at a given and synchronised moment. If the sum of these is even¹, then player 1 wins (Output=0), if odd winner is player 2 (Output=1). (4 points)

a) Fill in the truth table (1.2 points)

Player1_1	Player1_2	Player2_1	Player2_2	Z
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

b) Write down the output Z using the first canonical form. Specifically, the complete numerical form and the first 3 terms. **(0.3 points)**

¹ Consider 0 as Even

Departamentc http://dte.uc3m.es

Note: Calculators are not allowed

SURNAMES, NAME: GROUP:

c) Implement a valid VHDL architecture for this circuit. (1.5 points)

d) Complete the simulation report shown below, adding the expected values of the output signal for the time interval between 40 and 80 ns (1 point)

Note: Calculators are not allowed

SURNAMES, NAME: GROUP:

Problem 3 (30 minutes – 4 points)

Given the following circuit, where the D2_4 is a 2 to 4 decoder and the M4_1 is a 4 to 1 multiplexer (4 points)

a) Fill in the truth table, adding names of inputs in the way you consider as more appropriate (1.5 points)

				Z
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Note: Calculators are not allowed

SURNAMES, NAME:	GROUP:

b) Write down the output Z using the second canonical form. Specifically, the complete numerical form and the first 3 terms. **(0.5 points)**

c) Define the entity of this circuit (0.7 points)

d) Write down a valid VHDL implementation for this circuit using processes. If you use intermediate signals to define this architecture add them also in the schematic you have (1.3 points)