Worksheet # 6: Algebraic Evaluation of Limits, Inverse Functions, and Trigonometric Functions

- 1. Let $f(x) = \sqrt{x}$
 - (a) Let $g(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ and find g(x).
 - (b) What is the geometric meaning of g(4)?
 - (c) What is the domain of g(x)?
- 2. Find the limit or explain why it does not exist. Use the limit rules to justify each step.
 - (a) $\lim_{x \to 2} \frac{x+2}{x^2-4}$
 - (b) $\lim_{x \to 2} \frac{x-2}{x^2-4}$
 - (c) $\lim_{x \to 2} \frac{x-2}{x^2+4}$
 - (d) $\lim_{x\to 2} \left(\frac{1}{x-2} \frac{3}{x^2 x 2}\right)$.
- 3. Consider the function $f(x) = 1 + \ln(x)$. Determine the inverse function of f.
- 4. Consider the function whose graph appears below.

- (a) Find f(3), $f^{-1}(2)$ and $(f(2))^{-1}$.
- (b) Give the domain and range of f and of f^{-1} .
- (c) Sketch the graph of f^{-1} .
- 5. Convert the angle $\pi/12$ to degrees and the angle 900° to radians. Give exact answers.
- 6. Find the exact values of the following expressions. Do not use a calculator.
 - (a) $\tan^{-1}(1)$
 - (b) $\tan(\tan^{-1}(10))$
 - (c) $\sin^{-1}(\sin(7\pi/3))$
 - (d) $\tan(\sin^{-1}(0.8))$
- 7. Let O be the center of a circle whose circumference is 48 centimeters. Let P and Q be two points on the circle that are endpoints of an arc that is 6 centimeters long. Find the angle between the segments OQ and OP. Express your answer in radians.

Find the distance between P and Q.

- 8. If $\pi/2 \le \theta \le 3\pi/2$ and $\tan \theta = 4/3$, find $\sin \theta$, $\cos \theta$, $\cot \theta$, $\sec \theta$, and $\csc \theta$.
- 9. Find all solutions to the following equations in the interval $[0, 2\pi]$. You will need to use some trigonometric identities.
 - (a) $\sqrt{3}\cos(x) + 2\tan(x)\cos^2(x) = 0$
 - (b) $3\cot^2(x) = 1$
 - (c) $2\cos(x) + \sin(2x) = 0$
- 10. True or False:
 - (a) Let $p(x) = c_n x^n + c_{n-1} x^{n-1} + ... + c_1 x + c_0$ be a polynomial with coefficients $c_n, c_{n-1}, ..., c_0$. Then $\lim_{x\to a} p(x) = c_n a^n + c_{n-1} a^{n-1} + ... + c_1 a + c_0$.
 - (b) If $\lim_{x\to 0} (f(x))^2$ exists, then $\lim_{x\to 0} f(x)$ exists.
 - (c) Every function has an inverse.
 - (d) The graph of every function will pass the horizontal line test.