BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Paper Presentation

Isaac Kobby Anni

Computer Science Bowling Green State University

November 18, 2024

- Background
- 2 Introducing Transformer
- **3** BERT

- Background
- 2 Introducing Transformer
- 3 BERT

Prerequisite

• Knowledge of recurrent neural networks and how they work.

Prerequisite

- Knowledge of recurrent neural networks and how they work.
- Attention is all you need paper.

• RNNs like LSTM and GRU were established as the state of the art for sequence modeling.

- RNNs like LSTM and GRU were established as the state of the art for sequence modeling.
- For problems like language modeling and machine translation.

Recurrent Neural Networks (RNN)

Figure 1: Workflow of RNN: photo credit, Umar Jamil

• Problem as sequence length increases;

- Problem as sequence length increases;
- i Slow computation

- Problem as sequence length increases;
- i Slow computation
- ii Varnishing and Exploding gradients

- Problem as sequence length increases;
- i Slow computation
- ii Varnishing and Exploding gradients
- iii Difficulty in accessing information from longer past time step

- Background
- 2 Introducing Transformer Attention is all you need
- 3 BER

- Background
- 2 Introducing Transformer Attention is all you need.
- 3 BERT

Transformer Architecture

Figure 2: Transformer Model: photo credit, Attention paper

The Encoder

Figure 3: Transformer Model: photo credit, Attention paper

Input Embedding

Figure 4: Document Representation: photo credit, Umar Jamil

Input Embedding

Figure 5: Document Representation

Input Embedding

We define $d_{model} = 512$, which represents the size of the embedding vector of each word

Figure 6: Document Representation

15 / 47

• Addressing the sequential encoding like in RNNs;

- Addressing the sequential encoding like in RNNs;
- i Position of each word in the document.

- Addressing the sequential encoding like in RNNs;
- i Position of each word in the document.
- ii Treating words that are close as "close" and distant as "distant"

- Addressing the sequential encoding like in RNNs;
- i Position of each word in the document.
- ii Treating words that are close as "close" and distant as "distant"
- iii Position encoding portray patterns learned by the model.

Figure 8: Document Representation

Figure 9: Document Representation

Positional Embedding Calculation

Figure 10: Document Representation

20 / 47

Figure 12: Self Attention computation

Figure 13: Self Attention computation

Properties of Self Atention

• No requires no parameter(s)

Properties of Self Atention

- No requires no parameter(s)
- Values along diagonals are higher.

Properties of Self Atention

- No requires no parameter(s)
- Values along diagonals are higher.
- Can switch off word interactions. etc

Self-Attention Computation

$$\begin{split} Attention(Q,K,V) &= \operatorname{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V \\ MultiHead(Q,K,V) &= Concat(head_1 \dots head_h) W^O \\ head_i &= Attention(QW_i^Q,KW_i^K,VW_i^V) \end{split}$$

Figure 14: Multi-Head Attention

Multi-Head Attention Mechanism - DECODER

Figure 15: Masked Multi-head Attention computation

26 / 47

- Background
- 2 Introducing Transformer
- **3** BERT

Motivation

• Existing models like OpenAI GPT were unidirectional.

Motivation

- Existing models like OpenAI GPT were unidirectional.
- Understanding context in both directions was a challenge.

Goal

• To build a model that fully leverages context from both directions for improved language understanding.

• Architecture is made of layers of **ENCODER**'s of the transformer model.

- Architecture is made of layers of **ENCODER**'s of the transformer model.
- BERT-base:

- Architecture is made of layers of **ENCODER**'s of the transformer model.
- BERT-base:
 - i 12 encoder layers

- Architecture is made of layers of **ENCODER**'s of the transformer model.
- BERT-base:
 - i 12 encoder layers
 - ii 12 attention heads

- Architecture is made of layers of **ENCODER**'s of the transformer model.
- BERT-base:
 - i 12 encoder layers
 - ii 12 attention heads
 - iii 3072 hidden size of feed-forward layer

- Architecture is made of layers of **ENCODER**'s of the transformer model.
- BERT-base:
 - i 12 encoder layers
 - ii 12 attention heads
 - iii 3072 hidden size of feed-forward layer
 - iv 768 embedding size

• BERT-large:

- BERT-large:
- i 24 encoder layers

- BERT-large:
- i 24 encoder layers
- ii 16 attention heads

- BERT-large:
- i 24 encoder layers
- ii 16 attention heads
- iii 4096 hidden size of feed-forward layer

- BERT-large:
- i 24 encoder layers
- ii 16 attention heads
- iii 4096 hidden size of feed-forward layer
- iv 1024 embedding size

BERT Training

Two ways of training;

1 Pre-training

BERT Training

Two ways of training;

- 1 Pre-training
- 2 Fine-tuning

BERT Training

Figure 16: BERT Training

BERT: Pre-training tasks Masked Language Modeling (MLM)

• Randomly masks 15% of the tokens.

BERT: Pre-training tasks Masked Language Modeling (MLM)

- Randomly masks 15% of the tokens.
- Predicts the masked tokens using bidirectional context.

Masked Language Modeling (MLM)

SENTENCE: The cat sat on the mat

80% of the time [MASK] token —-> The [MASK] sat on the mat.

10% of the time random token —-> The ant sat on the mat.

10% of the time unchanged token —-> The cat sat on the mat.

Figure 17: BERT: MLM Pre-training

35 / 47

Masked Language Modeling (MLM)

Masked Language Model (MLM): training

Figure 18: BERT: MLM Pre-training

• Determines if a second sentence follows logically from the first.

- Determines if a second sentence follows logically from the first.
- Sentence pair tasks; (sentence A, sentence B)

- Determines if a second sentence follows logically from the first.
- Sentence pair tasks; (sentence A, sentence B)
- 50% of the B is the actual sentence, 50% is a random sentence.

- Determines if a second sentence follows logically from the first.
- Sentence pair tasks; (sentence A, sentence B)
- 50% of the B is the actual sentence, 50% is a random sentence.
- Classification setup; *IsNEXT*, *NotNEXT*

Next Sentence Prediction (NSP)

Figure 19: BERT: NSP Pre-training

Next Sentence Prediction (NSP)

Next Sentence Prediction (NSP): training

Figure 20: BERT: NSP Pre-training

BERT: Fine-tuning tasks

Text Classification Task

Text Classification: training

My router's led is not working, I tried changing the power socket but still nothing.

Hardware Software Billing

Figure 21: BERT: Fine-tuning for classification task

Text Classification Task

Text Classification: training

Figure 22: BERT: Fine-tuning for classification task

BERT: Fine-tuning tasks Ouestion Answering Task

Question Answering: sentence A and B

Figure 23: BERT: Fine-tuning for question answering task

Question Answering Task

Question Answering: start and end positions

Figure 24: BERT: Fine-tuning for question answering task

Experiment & Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Figure 25: Experiment and results

Limitations

• Computationally expensive.

Limitations

- Computationally expensive.
- Requires large datasets.

Limitations

- Computationally expensive.
- Requires large datasets.
- Limited understanding of rare or out-of-distribution words

Conclusions

• BERT revolutionized NLP with bidirectional transformers.

Conclusions

- BERT revolutionized NLP with bidirectional transformers.
- Future improvements focus on efficiency (e.g., DistilBERT) and domain-specific adaptations (e.g., BioBERT).

Thank You