

HIGH PERFORMANCE DC SERVOMOTORS

$Print\ Motors$

STANDARD SERIES/WITH REDUCTION GEAR

UGPMEN-08DA2 50W

(UG)PMES-[] A2 100-1000W

UGPMEN-08DAOF 10.4-51.9kg·cm

(UG)PMES-[7]AF 20.5-276kg·cm

out

Print Motors Standard Series are small and lightweight pancake shaped DC motors employing coreless and low-inertia disk-type armatures.

Due to the coreless armature, cogging torque is not generated. Many commutator segments make smooth contact with brushes so that stable speed with long-life is possible. Since frequent reverse operation is accepted, Print Motors Standard Series are optimum as servomotors or precision speed control motors.

The Print Motor with Reduction Gear consists of Print Motor Standard Series and reduction gear combined with a spur gear and features compact arrangement.

Since this Print Motor with Reduction Gear is aligned with the reduction gear output shaft and the print motor shaft, installation to a driven machine is easy to accomplish.

Print Motor Standard Series Type (UG)PMES-12A2

Print Motor Standard Series
Type (UG)PMES-20A2

Print Motor with Reduction Gear (UG)PMES-09AF

PRINT MOTOR STANDARD SERIES

RATINGS AND SPECIFICATIONS (Table 1)

• Time rating: Continuous rating

• Insulation: Class B

• Ambient temp.: -10 to +40°C

• Machine accuracy: Class B

• Vibration class: V15

• Paint color: Munsell 7.5 BG 6/1.5

· Connecting method: Direct connection

• Construction: Totally-Enclosed,

Permanent Magnet Type (Reduction

gear is of flanged type)

• Reduction gear: backlash

Within 1-degree angle at output

shaft

	Туре	UGPMEN-	(UG) PMES-	(UG) PMES-	(UG) PMES-	(UG) PMES-
Item		08 DA2	09 A2	12 A2	16 A2	20 A2
Rated Output *	W	50	100	200	500	1000
Rated Torque *	kg•cm ·	1.22	2.43	6.5	19.5	32.5
Rated Speed *	rpm	4000	4000	3000	2500	3000
Rated Voltage *	V	17	26	42	83	142
Rated Current *	A	4.9	5.5	6.4	7.3	8.3
Power Rate *	kW∕s	0.72	1.3	2.5	5.8	5.0
Angular Acceleration *	rad/s2	6000	5200	4300	3000 -	1570
Instantaneous Max Torque *	kg•cm	7.3	14.4	36.4	103	168
Instantaneous Max Current*	Α	24.5	29	33	37	40
Max Speed	rpm	6600	6600	4950	4130	4000
Rotor Inertia (GD ² /4)	kg•cm²	0.2	0.46	1.5	6.2	20.3
Armature Resistance	Ω	0.42	0.54	0.68	0.92	0.75
Armature Inductance	mΗ	0.016	0.02	0.06	0.15	0.13
Induced Voltage Constant	mV/rpm	3.15	5.2	11.5	29	44
Torque Constant	kg•cm/A	0.306	0.506	1.12	2.82	. 4.29
Friction Torque	kg•cm	0.104	0.11	0.23	0.44	0.8
Viscosity Control Coefficient	g•cm/rpm	0.03	0.075	0.18	0.48	1.0
Mechanical Time Constant	ms	9.2	10	8.5	7.5	8.6
Electrical Time Constant	ms	0.03	0.04	0.09	0.16	0.17

* Values when armature winding temperature is 100 $^{\circ}\!C$ other values are given when the temperature is 20 $^{\circ}\!C$. Note:

 Rated torque and rated current show values given by power supply with smooth voltage waveform such as battery power and in locations having ambient temperature of 40°C or less.

Instantaneous max torque and instantaneous max current are rated for one second
 Power rate is computed as follows:

3. Power rate is computed as follows: Power rate $(kW/s) = 0.096 \times 10^{-10}$

 $\frac{\left[\text{Rated torque } (\text{kg} \cdot \text{cm}) \right]}{\text{GD}^2 / 4(\text{kg} \cdot \text{cm}^2)}$

CHARACTERISTICS

Fig. 1 shows the torque-speed curve and continuous duty zone; Fig. 2 shows the torque-speed curve and instantaneous rated zone.

These figures are given when smooth DC power is used and armature temperature is 100°C.

Et: Terminal voltage Ia: Armature current

(1) Torque-Speed Curve and Continuous Duty Zone

UGPMEN-08DA2

SPEED (rpm)

• (UG)PMES-09A2

Fig. 1 Torque-Speed Curve and Continuous Duty Zone

• (UG) PMES-12A2

PMES-20A2

Fig. 1.2 Torque-Speed Curve and Continuous Duty Zone

Torque and speed of print motor standard type can be computed as follows depending on voltage and current to be applied:

$$T = K_{T} \times (Ia - Iot)$$

$$n = \frac{Et - (Rat \cdot Ia + V_{B}r)}{K_{E}} \times 10^{3}$$

However.

Iot =
$$\frac{\text{Tf + Fd (20^{\circ}) \times 10^{-3} \times \frac{255}{(235 + t) \times n}}}{\text{K}_{\text{T}}}$$

Rat =
$$\frac{(235 + t)}{255}$$
 × Ra (20°)

• (UG) PMES-16A2

T: Torque (kg·cm)

K_T: Torque constant (kg·cm/A)

Ia: Current (A)

Iot: No-load current at armature temp. t°C (A)

n: Speed

Et: Voltage (V)

Rat: Armature resistance at armature temp. $t^{\circ}C$ (Ω)

Ra: Armature resistance at armature temp. 20°C (Ω)

VBr: Brush drop voltage (V) (Approx. 1 to 2 V)

 K_E : Induced voltage constant (mV/rpm)

Tf: Friction torque (kg·cm)

Fd: Viscosity control coefficient at 20°C (g·cm/rpm)

t: Armature temp. (°C)

(2) Torque-Speed Curve and Instantaneous Rated Zone

• UGPMEN-08DA2

• (UG) PMES-09A2

• (UG)PMES-12A2

• (UG) PMES-16A2

• PMES-20A2

Fig. 2 Torque-Speed Curve and Instantaneous Rated Zone

MOTOR OPERATION AND PROTECTION

(1) Grounding method of print motor power supply

When operating print motor with single-phase rectified AC, provide insulation transformer to use insulation circuit against the ground as shown in Fig. 3.

(2) Current waveform

• When power supply waveform contains pulsating component, print motor current pulsates; it is necessary to multiply rated torque value by proper derating factor.

For example, when using DC power supply of which single-phase AC is full-wave rectified by diode, rated torque becomes approx. 70 % of rated value. When using power supply of which single-phase AC is full-wave rectified by thyristor, rated torque becomes approx. 50 %.

However, when smoothing DC reactor is used, this does not apply.

 When impulse load is repeatedly charged, be careful not to let effective value exceed rated current value.

(3) Intermittent duty characteristics

When operating print motor repeatedly as shown in Fig. 4, current conduction time (to) is limited by intermittent duty characteristics shown in Fig. 5.

Therefore, when two elements out of Ia, (to), α are given, other one element is limited by intermittent duty characteristics shown in Fig. 5. Current value Ia in current conduction time (to) must always be considered with waveform rate.

[Example] In Figs. 4 and 5, when Ia is 200 % and α is 20 % in UGPMEN-08DA2, on time (to) becomes 13 seconds maximum.

(4) Derating factor against ambient temperature

Current conducted to print motor varies depending on ambient temperature and cooling conditions. When used at ambient temperature 40°C or more, continuous allowable zone becomes smaller since the allowable temperature of print motor standard series is fixed.

Due to ambient temperature and speed lower the current less than derating factor shown in Fig.6.

[Example]

When using UGPMEN-08DA2 at ambient temperature 70 $^{\circ}$ C and 2250 rpm;

From rating of UGPMEN-08DA2 in Table 1, Continuous rated current Ia = 4.9 (A)

Speed ratio = $\frac{\text{Applicable speed}}{\text{Rated speed}} = \frac{2250 \text{ rpm}}{4000 \text{ rpm}} = 0.56$

Derating factor is 0.69 from Fig. 6. Therefore, $4.9 \times 0.69 = 3.38$ (A).

Fig. 3 Grounding Method of Power Supply

Fig. 4 Intermittent Operation

Fig. 5 Intermittent Duty Characteristics

Fig. 6 Derating Factor against Ambient Temperature

(5) Overload characteristics and overload protection

Since the print motor has small armature heat capacity and effective cooling function, armature heat time constant is small. Therefore, when the motor is overloaded and overloaded current is conducted to armature, armature winding temperature rapidly rises.

On the other hand, cooling can be performed very quickly; it returns to the normal temperature as soon as power is turned off.

Fig .7 shows the relation between the overload rate and time to reach the allowable temperature.

Starting characteristics show overload allowable time when motor temperature is the same as ambient temperature.

As overload protection relay to be adjusted to such temperature characteristics, RHP thermal overload relay (quick-action type) is available by YASKAWA as an optional. For detais, see page 14.

MECHANICAL SPECIFICATIONS

(1) Accuracy

See Table 2.

(2) Strength

Print Motor Standard Series can bear instantaneous maximum torque up to 500 % of motor rating at output shaft.

(3) Allowable Radial Load, Allowable Thrust Load

Follow Table 3 for reference of values to use radial load and thrust load.

(4) Vibration Resistance

When Print Motor Standard Series shaft is installed horizontally as shown in Fig. 8, it can bear vibration acceleration 2.5 Gs in 3 directions: UP-down, right-left, and forward-backward.

(5) Impact Resistance

When Print Motor Standard Series Shaft is installed horizontally as shown in Fig. 9 and given an up and down inpact, it can bear impact acceleration of 75Gs and 5times of impact force.

Fig. 7 Thermal Overload Relay Type RH Operation Characterisites and Print Motor Overcurrent Short-Time Rating Characteristics

Table 2 Accuracy of Shaft and Mounting Periphery

A	ccuracy	Reference Diagram
Flange surface	e perpendicular to 0.06 mm (TIR)	
Flange diame	eter concentric to 0.06 mm (TIR)	
Shaft run out	0.04 mm (TIR)	

Note: TIR Means difference between max, and min, values of dial gauge reading.

Table 3 Allowable Radial Load, Allowable Thrust Load

Type	Allowable Radial Load F _R kg	Allowable Thrust Load Fs kg	Reference Diagram
UGPMEN-08DA2	6	2.5	d
(UG) PMES-09A2	9	3.5	F _R
(UG) PMES-12A2	16	6.5	Fs Fs
(UG) PMES-16A2	30	13.5	
(UG) PMES-20A2	40	20	7.1

Note: Radial load and thrust load are maximum values of the sum of load occurring from motor torque and load applied to shaft by external forces.

Fig. 8 Vibration Resistance

Fig. 9 Impact Resistance

(6) Brush Life (Table 4)

Brush life is approx. 4000 hours when motor is provided with inertia load: Peak current at reverse operation is kept at instantaneous maximum current value; and plugging operations (forward/reverse) up to rated rpm are performed.

Table 4 Blush Life

Print Motor Standard Series	Brus	h Dimen mm	sions	Max Applicable Length of	Qty of
Type	Н	w	L	Brush mm	Brushes
UGPMEN-08DA2	3	7	18	7.5	4
(UG) PMES-09A2	4	7	16	7	2
(UG) PMES-12A2	4	10	18	7	2
(UG) PMES-16A2	4	10	18	7	4 (2 sets)*
(UG) PMES-20A2	4	10	2.5	7	4 (2 sets)*

^{*}Brush set consists of two brushes.

(7) Applications for Locations Subjected to Water- or Oil- Drops

When Print Motor Standard Series is used in locations subjected to water- or oil-drops, extreme wear on brush sliding face and bearing grease leakage may occur.

Therefore, it is recommended to provide protective covers as countermeasures. For preventing splash, apply liquid gasket on mating surfaces or screw heads.

Do not use the print motor in following cases:

- Where corrosive liquids, such as chemicals or saline solutions may be splashed.
- When using in the presence of corrosive or explosive gases such as, chlorine gas; hydrogen gas and oxygen gas.
- When using in inert gas or vacuum.

PRINT MOTOR WITH REDUCTION GEAR

RATINGS AND SPECIFICATIONS

Table 5 Ratings and Specifications

	Type													
Item		Type	UGPM	1E _. N-08	DAOF	(UG)	PMES	-09 A F	(UG)	PMES	-12 A F	(UG) PMES-16AF		
No	minal Reduction Ratio		1/10	1/25	1/50	1/10.	1/25	1/50	1/10	1/25	1/50	1/10		
Re	duction Ratio		1/10.00268	1/24,94854	1/50.87557	1/10.09615	1/24.71595	1/49.84722	1/10.09185	1/25,29021	1/50.03177	1/10.07740		
Ou	tput Shaft Rated Torque		10.4	25.9	51.9	20.5	51.5	· 103	55	138	276 .	165		
Ou	tput Shaft Speed		400	160	80	400	160	80	300	120	60	250		
	Type		UGP	MEN-08	BDA2	(UG)	PMES	-09A2	(UG)	PMES	-12 A 2	(UG) PMES-16A2		
	Rated Output *	V		50			100			200		500		
		kg•cm		1.22			2.43			6.5		19.5		
	Rated Speed *	rpm.		4000			4000			3000		2500		
	Rated Voltage *	V		17			26			42		83		
	Rated Current *	. A		4.9			5.5	٠.		6.4		7.3		
s	Power Rate *	kW/s		0.72			1.3			2.5		5.8		
Series		ad/s²		6000			5200			4300		3000		
	Instantaneous max torque *	kg•cm		7.3			14.4			36.4		103		
larc	Instantaneous max current	Α		24.5			29			33		. 37		
Standard	Max Speed	rpm		6600			6600			4950	٠.	4130		
Motor St	Rotor Inertia k. (GD ² /4)	g•cm²		0.2	•		0.46			1.5		6.2		
Mol	Armature Resistance	Ω		0.42			0.54			0.68		0.92		
	Armature Inductance	mΗ		0.016			0.02			0.06		0.15		
rint	Induced Voltage Constant mV	V/rpm		3.15			5.2			11.5		29		
Н	Torque Constant kg.c	cm/A		0.306			0.506	_		1.12		2.82		
	Wear Torque	kg•cm		0.104			0.11			0.23		0.44		
	Viscosity Control Coefficient gec	m/rpm		0.03			0.075			0.18	,	0.48		
	Mechanical Time Constant	ms		9.2			10			8.5	`	7.5		
	Electrical Time Constant	ms		0.03			0.04			0.09		0.16		
	Inertla(GD ² /4) k (Printmotor shaft conversion	g•cm² on)		prox. C			prox. 0		_	prox. 0		Apprpx. 0.63		
ion	Backlash		Withi	n 1-deg	ree ang	le at or					angle a	it print motor shaft		
Redution Gear	Efficiency	%						More th						
Re	Applicable Grease				Sunl	ight EM	13 [Ma	de by S	howa S	shell Oi	l Comp	any]		

 $^{^*}$ Values when armature winding temperature is 100 $^\circ$ C. Other Values are given when the temperature is 20 $^\circ$ C.

Power rate $(kW/s) = 0.096 \times \frac{[Rated torque (kg \cdot cm)]^2}{GD^2/4(kg \cdot cm^2)}$

Note: 1. Rated torque and rated current show values given by power supply with smooth voltage waveform such as battery power and in locations having ambient temperature of 40 °C or less.

^{2.} Instantaneous max torque and instantaneous max current are rated for one second.

^{3.} Power rate is computed as follows:

^{4. (}UG) PMES-20AF is not currently produced.

CHARACTERISTICS

Fig. 10 shows rated zone of print motor with reduction gear. These figures show characteristics when using smooth DC power supply, armature temperature of Print Motor Standard Series is 100 °C, and reduction gear efficiency is 85 %.

UGPEMEN-08DAOF

• (UG) PMES-12AF

Et ... Terminal voltage Ia ... Armature current

· (UG) PMES-09AF

• (UG) PMES-16AF

Fig. 10 Rated Zone of Print Motor with Reduction Gear

MECHANICAL SPECIFICATIONS

(1) Strength

Print motor reduction gear section can bear instantaneous maximum torque up to 300 % of motor rating and continuous rated torque up to 150 of motor rating at output shaft.

Generally, for instantaneous torque at acceleration or deceleration, torque transmitted to reduction gear is reduced to half because print motor rotor acceleration consumes half of the instantaneous torque occurring in the print motor when load inertia is the same as print motor rotor inertia in motor shaft conversion.

In such a case, print motor can be used within this range.

(2) Allowable Radial Load, Allowable Thrust Load

Use radial load and thrust load within the value shown in Table. 6.

(3) Mounting Angle Zone

Do not mount print mtor with reduction gear when its output shaft faces upward within vertical direction of 45° (Fig. 11).

When output shaft should be mounted in portion as shown in Fig. 11, consult Yaskawa representative.

Table 6 Allowable Rodial Load, Allowable Thrust Load

Type	Reduction Ratio	Allowable Radial Load	Allowable Thrust Load	Reference Diagram
GPMEN -	1/10	18	10	
-08DAOF	1/25,1/50	20	15	
(UG) PMES	1/10	32	18	FR
-09AF	1/25,1/50	36	26	Fs
(UG) PMES	1/10	24	20	
-12AF	1/25,1/50	58	43	
(UG) PMES -16AF	1/10	22	31	

Note: Radial load and thrust load are maximum value of the sum of load occurring from motor torque and load given to shaft by external forces.

Fig. 11 Mounting Angle Zone

MODULAR PRINT MOTOR

Modular print motor is also available: print motor provided with oil seal, speed detecting DC tachometer generator, position detecting optical encoder, position holding brake, etc.

Fig. 7 shows applications of print motor and each detector.

Table 7 Applications of Print Motor and Each Detector

		Detector	
Print Motor Type	DC Tachometer Generator Type	Feedback Unit Type *	Optical Encoder Type *
UGPMEN-08DA2†	A CONTRACTOR OF THE STATE OF TH		
(UG) PMES-09A2		TFUE-02[]C7 TFUE-03[]C7 TFUE-15[]C7	UTOPE-03 CL UTOPE-15 CL
(UG) PMES-12A2	11TG-D027	TFUE-05 C7 TFUE-20 C7	UTOPE-05 CL UTOPE-20 CL
(UG) PMES-16A2		TFUE-08 C7 TFUE-25 C7 TFUE-30 C7	UTOPE-08 CL UTOPE-25 CL UTOPE-30 CL
(UG) PMES-20A2	A STATE OF THE STA	11 02 00	0 TOT E-50;;CE

^{*} in feedback unit and optical encoder types must be filled out with either of D (without reference signal) or Z (with reference signal).

Note:

 $[\]dagger$ Print motor UGPMEN-08DA2 can not be provided with feedback unit.

^{1.} shows standard products and shows optional products.

^{2.} Combination of DC tachometer generator and magnetic brake is also available.

DIMENSIONS in mm

PRINT MOTOR STANDARD SERIES

UGPMEN-08DA2 (UG) PMES-09A2

(UG) PMES-12A2 (UG) PMES-16A2

	Γ.							Ι			-				ľ				Shaft Ext	ensi	on	_		Bearin	g No.	Approx.
Type	D_1	D ₂	Di	D4	L	LA	LB ^{h8}	LC	LE	LF	LG	LL	LM	LR	LZ	FВ	Q	Qk	S ^{h7}	Sı	Т	U	w	Opposite Drive End	Drive End	Weight kg
UGPMEN- 08DA	107	105	70	48	108.5	115	95 _{- 0.054}	131	3	10.5	7	<i>7</i> 7.5	64.5	31	5.8	R8	18	16	7_0.015	10.5	-	0.5	-	607ZZ	627ZZ	1.8
. (UG) PMES- 09A2	122	100	75	43	92	130	110 _ 0.054	148	3	10	5	59	39	33	5.8	14	20	18	9 - 8.015	10	-	1		6000ZZ	6000ZZ	2.2
(UG) PMES- 12A2	157	131	100	54	116	165	130 _ 0.063	180	3	15	6	66	41	50	7	16	30	25	14_0.018	15	5	3	5	6202ZZ	6202ZZ	3.6
(UG) PMES- 16A2	208	181	138	65	156	215	180 _ 0.063	240	4	20	7	92	58	64	9	30	40	35	16 _ 0.018	17	5	3	5	6303ZZ	6303ZZ	8.5

Note

- 1. Output shaft employs class 2 of parallel keys in compliance with JIS * B1301 (1959).
- 2. Output shaft rotates in the direction of the arrow when connecting motor lead terminals (A) with \oplus , (B) with \ominus .

• (UG) PMES-20A2

Approx. weight: 13.2 kg

Note:

- 1. Output shaft employs class 2 of parallel keys in compliance with to JIS * B1301 (1959).
- 2. Output shaft rotates in the direction of the arrow when connecting motor lead terminals ♠ with ⊕, ֎ with ⊖. Termianl © is connected to ground terminal.

*Japanese Industrial Standard.

PRINT MOTOR WITH REDUCTION GEAR

• UGPMEN-08DAOF to (UG) PMES-12AF • (UG) PMES-16AF (Reduction ratio 1/10)

Detail of Shaft Extension

Detail of Shaft Extension

Т	Reduction	n		,		١,	,,			7 D h8															s	haft Exte	nsio		Approx.		
Туре	Ratio	D ₁	D ₂	D ₃	D4	J	, r	L	LA	LB ^{h8}	LC	լեր	LE	LF	ւն	լե	LM	LN	LLO	LR	LV	LZ	Q	QB	QK	S h7	Sı	Т	U	w	Weight kg
UGPMEN- 08DAOF	1/10, 1/25, 1/50	136	107	70	-	4.5	4-M5	184	160	120 _ 0.054	180	95	3	-	8.	152	82.5	56.5	-	32	-	9	26	1	22	14 - 0.018	15	5	3	5	8.0
(UG) PMES- 09AF	1/10, 1/25, 1/50	154	122	75	-	4.5	4-M5	192	180	130 _ 0.063	202	110	3	-	9	156	90	46	-	36		12	28	1	24	16 _ 0.018	17	5	3	5	8.5
(UG) PMES-	1/10	154	156	100	175	4,5	4- M5	209	180	130 _0.063	202	110	3	-	9	173-	91	57	45	36	51	12	28	`l`	24	16 _ 0.018	17	5	3	5	12
12 A F	1/25, 1/50	205	156	100	-	4.5	6-M5	238	235	180 _0.063	265	150	4	65	13	193	112	56	-	45	-	14	36	2	30	24 _ 0.021	25	7	4	7	16.5

Note:

- 1. Output shaft employs class 2 of parallel keys in compliance with JIS * B1301 (1959).
- 2. Output shaft rotates in the direction of the arrow when connecting motor lead terminals (A) with \oplus , 86 with \ominus .

MODULAR PRINT MOTOR STANDARD SERIES

· With Oil Seal

Type	Di	mensic	ons	Applicable Oil
Туре	LR	LF	. D ₂	Seal Type
(UG) PMES-19A2S	33	11.5	43	SB10207
(UG) PMES-12A2S	50	17.5	54	SB15287
(UG) PMES-16A2S	64	21	65	SB17287
(UG) PMES-20A2S	65	13	96	SB25387

Note:

- · Locate oil level below oil seal lip level.
- · Oil seal should not be immersed in the oil.

Note: Oil seal to be used is made by Nippon Oil Seal Industry Co., Ltd.

· With Mounting Flange

*Japanese Industrial Standard

Туре			Di	mei	nsio	ns			Motor Connector	Connecto	r Terminals
1 ype	LM	M	N	CL	Т	SL	G	Ll	Туре		
(UG) PMES-09A2M	60	41	19	102	3	10	7	49	MS3102A 14S-2P		A: Motor terminal ⊕
(UG) PMES-12A2M	68	46.5	21.5	109	3	10	7	56	MS3102A 18-10P	(C: :A)	B: Motor terminal ⊖
(UG) PMES-16A2M	113	91.5	21.5	124	4	10	7	82	MS3102A 18-10P		C: Ground terminal D: Not used
(UG) PMES-20A2M	145	122	23	120	5	10	10	118	MS3102A 18-10P		D. Not used

MODULAR PRINT MOTOR STANDARD SERIES (Cont'd)

· With Feedback Unit

Т		Di	mei	nsio	ns		Motor Connector
Туре	LL	M	N	LG	D	CL	Type
(UG) PMES-09A2F	185	41	101	5	122	102	MS3102A 14S-2P
(UG) PMES-12A2F	192	46.5	102	6	157	109	MS3102A 18-10P
(UG) PMES-16A2F	218	91.5	83	7	208	124	MS3102A 18-10P
(UG) PMES-20A2F	235	122	88	12	240	120	MS3102A 18-10P

Connector Terminal

- A: Motor terminal \oplus B: Motor terminal \ominus
- C: Ground terminal

D: Not used

· With DC Tachometer Generator

	Type		Di	mei	Motor Connector			
	туре	LL	M	N	LG	D	CL	Type
(U(G) PMES-09A24	142	41	46	5	122	102	MS3102A 14S-2P
(U(G) PMES-12A24	149	46.5	47.5	6	157	109	MS3102A 18-10P
(U(G) PMES-16A24	175	91.5	28.5	7	208	124	MS3102A 18-10P
(U(G) PMES-20A24	211	122	34	12	240	120	MS3102A 18-10P

Connector Terminal

- A: Motor terminal ⊕ B: Motor terminal ⊖
- C: TG Output
- terminal ⊕
 D: TG Output
 terminal ⊖

· With Optical Encoder

Τ		Di	mei	nsio	ns		Motor Connector	
Type	LL	М	N	LG	D	CL	Type	
(UG) PMES-09A2E	167	41	96	5	122	102	MS3102A 14S-2P	
(UG) PMES-12A2E	174	46.5	97.5	6	157	109	MS3102A 18-10P	
(UG) PMES-16A2E	200	91.5	78.5	7	208	124	MS3102A 18-10P	
(UG) PMES-20A2E	236	122	84	12	240	120	MS3102A 18-10P	

Connector Terminal

- A: Motor terminal ⊕
 B: Motor terminal ⊖
 C: Ground terminal
- D: Not used

· With Holding Brake

Т		D	Motor Connector				
Type	LL	М	N	LG	D	CL	Type
(UG) PMES-09A2B	111	60	51	5	125	92	MS3102A 14S-2P
(UG) PMES-12A2B	115	64	51	6	157	99	MS3102A

(UG) PMES-16A2B

D· ·A C· ·B

18-10P

Connector Terminal

A: Motor terminal ⊕
B: Motor terminal ⊖
C: Brake terminal ⊕

C: Brake terminal \oplus D: Brake terminal \ominus

Note: 80VDC input to C and D.

Applicable Plug and Cable

Clamp

Connector	Plug	Cable Clamp
MS3102A 14S-2P	MS3106B 14S-2S	MS3057-6A
MS3102A	MS3106B	MS3057-10A

137 94 43

Note: Use plug and cable clamp made DAIICHI DENSHI KOGYO,

MODULAR PRINT MOTOR WITH REDUCTION GEAR

· With Mounting Flange

-	T	Reduction	Dimensions									
	Type	Ratio	LL	M	N	LG	·D	CL	T	SL	G	L1
3	(UG) PMES-09AFM	1/10*, 1/25, 1/50	158	139	19	9	122	102	3	10	7	146.5
	(IIC) DMCC 104 PM	1/10*	175	153.5	21.5	9	157	109	3	10	7	163
	(UG) PMES-12AFM	1/25, 1/50	195.5	174	21.5	13	157	109	3	10	7	183.5
-	(UG) PMES-16AFM	1/10	247.5	226	21.5	13	208	124	4	10	7	216.5

208 124

^{*}Rotated CCW.

· With Feedback Unit

Type	Reduction	Dimensions							
1 y pe	Ratio :	LL	M	N	LG	D	CL		
(UG) PMES-09AFF	1/10*, 1/25, 1/50	283	139	101	9	122	102		
(UG) PMES-12AFF	1/10*	299	153.5	102	9	157	109		
(UG) PMES-12AFF	1/25, 1/50	319	174	102	13	157	109		
(UG) PMES-16AFF	1/10	352	226	83	13	208	124		

· With DC Tachometer Generator

Тира	Reduction	Dimensions							
Type	Ratio	LL	M	N	LG	D	CL		
(UG) PMES-09AF4	1/10*, 1/25, 1/50	240	139	46	, 9 ,	122	102		
(UG) PMES-12AF4	1/10*	256	153.5	47.5	9.	157	109		
(UG) PMES-12AF4	1/25, 1/50	277	174	47-5	13	157	109		
(UG) PMES-16AF4	1/10	310	226	28.5	13	208	- 124		

· With Optical Encoder

Type	Reduction	Dimensions						
1 ype	Ratio	LL	M	N	LG	D	CL	
(UG) PMES-09AFE	1/10*, 1/25, 1/50	265	139	96	- 9	122	102	
(UG) PMES-12AFE	1/10*	281	153.5	97.5	9	157	109	
(UG) PMES-12AFE	1/25, 1/50	302	174	97.5	9 9 13	157	109	
(UG) PMES-16AFE	1/10	335	226	78.5	13	208	124	

· With Holding Brake

Type	Reduction		D	Motor/Brake Connector				
_ Type	Ratio	LL	M	N	LG	D	CL	Type
(UG) PMES-09AFB	1/10*, 1/25, 1/50	209	158	51	9	125	92	MS3102A 14S-2P
(UG) PMES-12AFB	1/10*	222	171	51	13	157	99	
(UU) TWES-12AFD	1/25, 1/50	242	171	51	13	157	99	MS3102A 18-10P
(UG) PMES-16AFB	1/10	272	229	43	13	208	124	

*Rotated CCW.

Note

- 1. Installation periphery dimensions and rotation direction of modular print motor are the same as those of Print Motor Standard Series.

 Rotation direction of modular print motor with reduction gear differs depending on reduction ratio.
- 2. Motor connector and connector terminals of modular print motor with reduction gear are the same as those of Modular Print Motor Standard Series. Straight plug is provided as standard.

Print Motor TM STANDARD SERIES/WITH REDUCTION GEAR

ASSOCIATED DEVICES

■ RHP THERMAL OVERLOAD RELAY (Quick Action Type)

RHP Thermal Overload Relay Application Table

•	Applicable Motor Type	Rated Current	Applicable RHP Thermal Overload Relay
•	UGPMEN-08DA2	4.9A	RHP-15/4.9
١ -	(UG) PMES-09A2	5.7 A	RHP-15/5.7
	(UG) PMES-12A2	6.6 A	RHP-15/6.6
	(UG) PMES-16A2	7.5A	RHP-15/7.5
	(UG) PMES-20A2	8.3A	RHP-15/8.3F

RHP Thermal Overload Relay Characteristics Table

Type		Conta	act Rate	ed Curr	ent A	Thermal	Contact	Approx.
Туре		110V	/ 220V 440V 55		550 V	Element	Construction	Weight g
RHP-15/()	6	3	1.5	1.2	- 1	INONC	70

RHP Thermal Overload Relay Connection Diagram

■ CONTROLLER

Controller **Servopack** for print motor is available in system or standard type to meet various applications.

For details, refer to the following bulletins:

- TSE-C717-11 Servopack TRANSISTOR PWM, REVERSIBLE TYPE CPCR-FR01B TO FR05C
- TSE-C717-12 Servopack FOR SPEED CONTROL (TRANSISTOR PWM, REVERSIBLE) TYPE CPCR-MR01C TO-MR99C

A Better Tomorrow for Industry through Automation

YASKAWA Electric Mfg. Co., Ltd.

TOKYO OFFICE Ohtemachi Bldg., 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo, 100 Japan Phone (03) 284-9111, -9145 Telex YASKAWA J33530 Fax (03) 284-9034 SEOUL OFFICE Seoul Center Bidg., 91-1, So Kong-Dong, Chung-Ku, Seoul, Korea Phone (02) 776-7844 Fax (02) 753-2639

SINGAPORE OFFICE CPF Bldg., 79 Robinson Road No. 24-03, Singapore 0106 Phone 2217530 Telex (87) 24890 YASKAWA RS Fax (65) 224-5854

TAIPEI OFFICE Union Commercial Bldg., 137, Nanking East Road, Sec. 2, Taipei, Taiwan Phone (02) 507-7065,-7732 Fax (02) 506-3837

YASKAWA ELECTRIC AMERICA, INC.; SUBSIDIARY

Chicago Office (Head Office) 3160 MacArthur Blvd., Northbrook, Illinois 60062-1917, U.S.A. Phone (708) 291-2340, 291-2348 Telex (230) 270197 YSKW YSNC NBRK Fax (708) 498-2430, 480-9731 Los Angeles Office 7341 Lincoln Way, Garden Grove, California 92641, U. S. A. Phone (714) 894-5911 Telex (230) 678396 YASKAWAUS TSTN Fax (714) 894-3258

New Jersey Office 30 Two Bridges Road, Fairfield, New Jersey 07006, U. S. A. Phone (201) 575-5940 Fax (201) 575-5947

VASKAWA ELECTRIC EUROPE GmbH : SUBSIDIARY
Niederhöchstädter Straße 71-73, 6242 Kronberg-Oberhöchstadt, West Germany
Phone (06173) 640071, 640072, 640073 Telex 415660 YASE D Fax (06173) 68421
YASKAWA ELETRICO DO BRASIL COMÉRCIO LTDA : SUBSIDIARY
AV. Brig. Faria Lima, 1664-cj. 721/724, Pinheiros, São Paulo-SP, Brasil CEP-01452
Phone (011) 813-3933, 813-3694 Telex (011) 82869 YSKW BR Fax (011) 815-8795

