Методы типа ESPRIT для оценивания параметров временных рядов

Тимофеев Алексей Олегович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Голяндина Н.Э. Рецензент: к.ф.-м.н., доц. Некруткин В.В.

Санкт-Петербург 2010г.

Постановка задачи: временной ряд

Пусть имеется комплекснозначный временной ряд вида

$$f_n = \sum_{k=1}^{r} c_k a_k^n + \epsilon_n, \ n = 0 \dots N - 1.$$

3адача: оценить параметры $\{a_k\}$.

Метод: ESPRIT, Estimation of Signal Parameters via Rotational Invariance Techniques.

- Paulraj, Roy и Kailath, 1985 год,
- Mahata, Soderstrom, 2004 год,
- Badeau, Richard, David, 2008 год.

Общая постановка задачи

ESPRIT умеет работать с матрицами такого вида:

$$\mathbf{X} = \mathbf{S} + \mathbf{N}, \ \mathbf{X}, \mathbf{S}, \mathbf{N} \in \mathbb{C}^{L \times K}.$$

$$s_{jl} = \sum_{k=1}^{r} c_{kl} a_k^j. \ \mathbf{C} = \{c_{kl}\} \in \mathbb{C}^{r \times L}, \ \mathrm{rank} \ \mathbf{C} = r.$$

Две задачи:

ullet оценивание параметров временного ряда. ${f X}$ — ганкелева $(x_{jl}=x_{1,l+j-1})$ траекторная матрица, K=N-L+1.

$$\mathbf{X} = [X_1 : \dots : X_K], \ X_i = (f_{i-1}, \dots, f_{i+L-2})^{\mathrm{T}},$$
$$s_{jl} = \sum_{k=1}^r c_k a_k^{l-2} a_k^j, \ n_{jl} = \epsilon_{j+l-2}.$$

Direction Of Arrival.

Постановка задачи: описание DOA

 x_{jl} — показание j-го сенсора в l-й момент времени.

При оценивании параметров ряда мы имеем возможность выбрать L, а в DOA L определяется числом сенсоров.

Постановка задачи: модификации

$$\mathbf{X} = \mathbf{S} + \mathbf{N}, \ x_{jl} = s_{jl} + n_{jl} = \sum_{k=1}^{r} c_{kl} a_k^j + \epsilon_{jl}.$$

Решаемые задачи: DOA и анализ временных рядов. Различия моделей данных:

- ullet матрица шума ${f N}$ м.б. ганкелевой ($n_{il}=n_{1,l+i-1}$) или нет,
- ullet $\mathbf{X}, \mathbf{S}, \mathbf{N} \in \mathbb{C}^{L imes K}$ или $\mathbb{R}^{L imes K}$,
- ullet L фиксированное или произвольное,
- ullet $|a_i|=1,\;i=1\dots r$ немодулированный ряд, или модулированный, т. е. $\exists\;i:|a_i|
 eq 1$.

Модификации метода:

- TLS-ESPRIT, LS-ESPRIT,
- ESPRIT, ESPRIT₀,
- R-ESPRIT,
- Minimum Variance и SSA в качестве препроцессинга.

Общая идея ESPRIT

Линейная оболочка столбцов ${f S}$ называется подпространством сигнала и имеет ранг r. Известен результат:

Теорема

Пусть есть базис подпространства сигнала $\{G_k\}_{k=1}^r$ и $\mathbf{G}=[G_1:\ldots:G_r]$. Тогда при некоторой матрице \mathbf{Z} выполнено

$$\mathbf{G}_{\triangle}\mathbf{Z} = \mathbf{G}^{\nabla},\tag{1}$$

и собственные числа ${\bf Z}$ равны $\{a_k\}_{k=1}^r$.

Замечание

При наличии шума мы можем лишь приближенно оценить подпространство сигнала. Тогда (1) превращается в приближенное равенство: $\mathbf{G}_{\triangle}\widehat{\mathbf{Z}} \approx \mathbf{G}^{\triangledown}$.

Модификации алгоритма ESPRIT

Возникают два этапа:

- оценить подпространство сигнала,
- решить приближенное равенство

$$\mathbf{G}_{\Delta}\widehat{\mathbf{Z}}\approx\mathbf{G}^{\triangledown}.$$

Способы оценки подпространства сигнала:

- SVD,
- используя MinVar в качестве препроцессинга,
- используя SSA в качестве препроцессинга.

Способы решения $\mathbf{G}_{\vartriangle}\widehat{\mathbf{Z}} pprox \mathbf{G}^{\triangledown}$:

- метод наименьших квадратов (LS-ESPRIT),
- обобщенный метод наименьших квадратов (TLS-ESPRIT).

Способы оценивания подпространства сигнала

$$\mathbf{X} = \left(\begin{array}{cc} (L \times r) \\ \mathbf{U}_1 \end{array} \right. \mathbf{U}_2 \ \left) \left(\begin{array}{cc} (r \times r) \\ \mathbf{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_2 \end{array} \right) \left(\begin{array}{cc} (K \times r) \\ \mathbf{V}_1 & \mathbf{V}_2 \end{array} \right)^{\mathrm{H}}.$$

SVD. Базис из сингулярных векторов $\{U_i\}_{i=1}^r$ матрицы ${\bf X}$. Препроцессинг MinVar.

$$\mathbf{X}_{MV} = \mathbf{U}_1 \mathbf{\Sigma}_1^{-1} (\mathbf{\Sigma}_1^2 - K \sigma^2 \mathbf{I}) \mathbf{V}_1^{\mathrm{H}},$$

 $\mathbf{X}_{MV,hankel}$ — ганкелизованная \mathbf{X}_{MV} . Базис из сингулярных векторов $\{U_i'\}_{i=1}^r$ матрицы $\mathbf{X}_{MV,hankel}$. Препроцессинг SSA.

$$\mathbf{X}_{SSA} = \mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^{\mathrm{H}}$$
,

 $\mathbf{X}_{SSA,hankel}$ — ганкелизованная \mathbf{X}_{SSA} . Базис из сингулярных векторов $\{U_i''\}_{i=1}^r$ матрицы $\mathbf{X}_{SSA,hankel}$.

Способы решения приближенного равенства

Имеем прибиженное равенство:

$$\mathbf{G}_{\triangle}\widehat{\mathbf{Z}} \approx \mathbf{G}^{\triangledown}.$$

Least Squares

$$\begin{split} \|\mathbf{G}^{\triangledown} - \mathbf{G}_{\triangle} \widehat{\mathbf{Z}} \|^2 &\longrightarrow \min, \\ \widehat{\mathbf{Z}} &= (\mathbf{G}_{\triangle})^{\dagger} \mathbf{G}^{\triangledown}. \end{split}$$

Total Least Squares

$$\begin{split} \|\mathbf{G}_{\vartriangle} - \mathbf{H}\|^2 + \|\mathbf{G}^{\triangledown} - \mathbf{F}\|^2 &\longrightarrow \min, \\ (\mathbf{H}, \mathbf{F}) \in \{(\mathbf{H}, \mathbf{F}) : \exists \widehat{\mathbf{Z}}, \mathbf{H}\widehat{\mathbf{Z}} = \mathbf{F}\}. \end{split}$$

Так возникают разновидности LS-ESPRIT и TLS-ESPRIT.

ESPRIT₀

Шаг 1 метода ESPRIT $_0$.

Сформируем из матрицы ${f X}$ матрицу ${f X}'$ следующим образом:

$$\mathbf{X}' = \left(egin{array}{c} \mathbf{X}_{egin{array}{c} \Delta \ \mathbf{X}^{igtitary} \end{array}}
ight).$$

Шаг 2 метода ESPRIT $_0$. SVD-разложение.

Возьмем матрицу G, составленную из первых r сингулярных векторов SVD-разложения \mathbf{X}' :

$$\mathbf{G} = [U_1 : \ldots : U_r].$$

Обозначим за \mathbf{G}_1 верхнюю половину матрицы \mathbf{G} , за \mathbf{G}_2 — нижнюю половину:

$$\mathbf{G}_1 = \mathbf{G}[1:(L-1),], \ \mathbf{G}_2 = \mathbf{G}[L:(2L-2),].$$

В отсутствие шума выполнено ${f G}_1 \widehat{f Z} pprox {f G}_2$, что можно решать в терминах LS или TLS.

R-ESPRIT

Данные:

$$f_n = \sum_{k=1}^{d} c_k \cos(2\pi w_k n + \phi_k) + \epsilon_n, \ n = 1 \dots N.$$

Построение матриц

$$\mathbf{Y} = [Y_1:\ldots:Y_{K-L}],$$
 $Y_j = 0.5((f_{j+L},\ldots,f_{j+2L-1})^{\mathrm{T}} + (f_{j+L-1},\ldots,f_{j})^{\mathrm{T}}).$ $\{U_i\}_{i=1}^d$ — сингулярные вектора $\mathbf{Y},\,\mathbf{G} = [U_1:\ldots:U_d].$

Приближенное равенство:

$$\mathbf{T}^{(1)}\mathbf{G}\widehat{\mathbf{Z}} \approx \mathbf{T}^{(2)}\mathbf{G},$$

где $\mathbf{T}^{(1)}$ и $\mathbf{T}^{(2)}$ — теплицевы матрицы размерности (L-2) imes L.Собственные числа $\widehat{\mathbf{Z}}$ оценивают $\cos(2\pi w_1), \ldots, \cos(2\pi w_d)$.

Порядок ошибок

Кроме самих методов были собраны результаты для границ Рао-Крамера. Пусть $L \leq K$.

Порядок убывания дисперсий оценок ESPRIT.

- Оценка параметров ряда в немодулир. случае: $1/(LK^2)$. Можно выбрать такие L и K, что порядок совпадет с CRB. Badeau, Richard, David, 2008.
- DOA, L фиксировано, $K \longrightarrow \infty: 1/K$, Otterstein, Viberg, Kailath, 1991.

Порядок убывания границ Рао-Крамера.

- ullet Оценка параметров ряда : $1/N^3$, Yao, Pandit, 1995.
- ullet DOA, L фиксировано, $K\longrightarrow\infty:1/K$, Steedly, Moses, 1993, Stoica, Nehorai, 1989.

Сравнение методов

8 тестовых примеров: $f_n = c_a r_a^n + c_b r_b^n + \sigma \epsilon_n$, n = 0...99. Вещественные параметры c_a , r_a , c_b и r_b подобраны так, что:

- с увеличением номера теста убывает минимальное сингулярное число сигнала, т.е. ухудшается разделимость,
- соотношение сигнала и шума по норме во всех тестах совпадает,
- вклады обеих экспонент в сигнал равны.

Сравнивались:

- LS-ESPRIT μ TLS-ESPRIT,
- ESPRIT μ ESPRIT₀,
- ESPRIT и МНК.

Считалось MSD оценок параметров.

Особенность: комплексные оценки вещественных параметров.

Сравнение методов LS-ESPRIT и TLS-ESPRIT

$$f_n = c_a r_a^n + c_b r_b^n + \sigma \epsilon_n, \ n = 0 \dots 99.$$

TLS-ESPRIT чаще дает комплексные оценки, немного лучше оценивает r_a, c_a, c_b , немного хуже — r_b .

$$r_a = 0.905, \ r_b = 1, \ c_a = 1.09, \ c_b = 0.12, \ \sigma = 0.03.$$

Таблица: MSD оценок параметров

L		$\widehat{r_a}$	$\widehat{r_b}$	$\widehat{c_a}$	$\widehat{c_b}$	$\widehat{\sigma}$
50	LS	0.0047	0.00212	0.0234	0.0187	0.02935
	TLS	0.0046	0.00213	0.0233	0.0184	0.02934
10	LS	0.014	0.0071	0.065	0.066	0.0326
	TLS	0.013	0.0073	0.058	0.058	0.0324

Сравнение методов TLS-ESPRIT и МНК

$$f_n = c_a r_a^n + c_b r_b^n + \sigma \epsilon_n, \ n = 0 \dots 99.$$

 λ_{\min} — минимальное собственное число сигнала ${f S}$.

ullet Большое λ_{\min} — MHK-оценка r_b лучше ESPRIT-оценки, маленькое λ_{\min} — ESPRIT лучше.

• Большое λ_{\min} — MHK-оценка и ESPRIT-оценка r_a сравнимы по качеству, маленькое λ_{\min} — преимущество МНК.

ESPRIT u MHK

Таблица: Доля «проваленных» случаев в МНК.

$\mu_{ m min}$	ideal	ideal	ESPRIT	ESPRIT
	$\sigma = 0.1$	$(\sigma = 0.01)$	$(\sigma = 0.1)$	$(\sigma = 0.01)$
8.66E-01	0	0	0	0
3.80E-01	0	0	0	0
9.90E-02	0	0	0	0
5.83E-02	0.0002	0	0.02375	0
1.07E-02	0.0258	0	0.34125	0
3.44E-03	0.1236	0	0.445	0
5.90E-04	0.3573	0.0002	0.48375	0.03875
5.27E-05	0.7556	0.2031	0.48125	0.44

Сравнение методов препроцессинга

Сигнал: $s_n = \cos(0.2\pi n), \; n = 0 \dots 99.$ Дисперсия шума: $\sigma^2 = 1.$

Заключение

Что сделано:

- систематизированы результаты различных авторов,
- проведены сравнения LS-ESPRIT и TLS-ESPRIT, ESPRIT и ESPRIT₀, ESPRIT и MHK,
- проведено сравнение SSA и MinVar в качестве препроцессинга.

Открытые вопросы:

- Нужно расширить круг исследуемых примеров. Не рассмотрен случай близких частот. Качество разделения близких частот — это важная характеристика алгоритма.
- Необходимо глубже исследовать результаты сравнения.
- Не доведено до конца исследование границ Рао-Крамера и порядков убывания дисперсий оценок ESPRIT.