Zadanie: PRO

Programowanie współbieżne [A]

Potyczki Algorytmiczne 2020, runda piąta. Limity: 512 MB, 9 s.

11.12.2020

W ramach przygotowania do konkursów algorytmicznych Bajtek postanowił nauczyć się czegoś o programowaniu współbieżnym. Przecież nawet na Potyczkach Algorytmicznych występowały kiedyś zadania rozproszone.

Bajtek zaczął od napisania n bardzo prostych programów. Wszystkie programy współdzielą jedną globalną całkowitoliczbową zmienną x, dodatkowo każdy z nich posiada jeden prywatny licznik y. Każdy program składa się z ciągu operacji, a każda operacja jest jednego z następujących czterech typów:

- \bullet W wczytanie wartości globalnej zmiennej x do prywatnego licznika y,
- \bullet Z zapisanie wartości prywatnego licznika y na globalną zamienną x,
- \bullet + c zwiększenie prywatnego licznika y o dodatnią stałą c,
- \bullet c zmniejszenie prywatnego licznika y o dodatnią stałą c.

Bajtek uruchomił wszystkie programy równolegle. Początkowe wartości wszystkich liczników y oraz zmiennej x wynosiły 0. Programy zostały wykonane w pewnym **przeplocie**, czyli wszystkie operacje ze wszystkich programów zostały wykonane jedna po drugiej, w pewnej kolejności spełniającej warunek, że w każdym momencie był wykonany prefiks każdego programu.

Przeplot ten okazał się dość niefortunny i ostateczna wartość zmiennej x była na tyle mała, że bardzo zaskoczyła Bajtka. Podejrzewa on nawet, że nie jest to możliwe i jego komputer go oszukał. Pomóż Bajtkowi zweryfikować jego obawy i napisz weryfikator, który dla danych programów obliczy, jaka jest najmniejsza możliwa wartość zmiennej x po równoległym wykonaniu wszystkich programów.

Wejście

Pierwszy wiersz wejścia zawiera jedną liczbę całkowitą $t~(1 \le t \le 100\,000)$ oznaczającą liczbę zestawów testowych.

Opis każdego zestawu testowego zaczyna się wierszem zawierającym liczbę całkowitą $n~(1 \le n \le 100\,000)$ oznaczającą liczbę programów napisanych przez Bajtka. Następne 2n~wierszy zawiera opisy poszczególnych programów. Opis każdego programu składa się z dwóch wierszy. Pierwszy z nich zawiera jedną liczbę całkowitą $\ell~$ ($1 \le \ell \le 1\,000\,000$) oznaczającą liczbę operacji w danym programie. Drugi zawiera ciąg $\ell~$ operacji, każda z nich jest jednego z czterech typów:

- pojedyncza litera W oznaczająca operację wczytania,
- pojedyncza litera Z oznaczająca operację zapisania,
- znak + oraz liczba całkowita c ($1 \le c \le 10^9$) oznaczające operacje zwiększenia licznika o stałą c,
- znak oraz liczba całkowita c ($1 \le c \le 10^9$) oznaczające operacje zmniejszenia licznika o stałą c.

Suma po wszystkich wartościach ℓ we wszystkich programach ze wszystkich przypadków testowych nie przekroczy 1 000 000.

Wyjście

Na wyjście należy wypisać t wierszy; i-ty z nich powinien zawierać jedną liczbę całkowitą, oznaczającą najmniejszą możliwą wartość x po równoległym wykonaniu programów z i-tego zestawu testowego.

Przykład

Wyjaśnienie przykładu: W pierwszym przypadku testowym minimalną końcową wartość x daje na przykład następujący przeplot:

			W				+ 2					Z	W		+ 2	Z	W	+ 2		Z	W	+ 2	Z	
	W	+ 3		Z	W	+ 3		Z	W	+ 3	Z			W					+ 3					Z
y_1	0	0	0	0	0	0	2	2	2	2	2	2	2	2	4	4	4	6	6	6	6	8	8	8
y_2	0	3	3	3	3	6	6	6	6	9	9	9	9	2	2	2	2	2	5	5	5	5	5	5
x	0	0	0	3	3	3	3	6	6	6	9	2	2	2	2	4	4	4	4	6	6	6	8	5

2/2