Függvények

Matematikai alapozás, 2023-2024/I.

 $A,B\subset\mathbb{R},$ függvény: $f:A\to B,\,x\mapsto f(x).$

- 1. Pont
 - 1.1 $x \in A$ képe: f(x)
 - 1.2 $y \in B$ ősképe: az az $x \in A$ pont, melyre f(x) = y (jelölés: $f^{-1}(y) = x$).

- 1. Pont
 - 1.1 $x \in A$ képe: f(x)
 - 1.2 $y \in B$ ősképe: az az $x \in A$ pont, melyre f(x) = y (jelölés: $f^{-1}(y) = x$).
- 2. Intervallum
 - 2.1 $[a,b]\subseteq A$ képe: $f([a,b]):=\{f(x)\in B\ :\ x\in [a,b]\}$
 - 2.2 $[c,d] \subseteq B$ ősképe: $f^{-1}([c,d]) := \{x \in A : f(x) \in [c,d]\}$

- 1. Pont
 - 1.1 $x \in A$ képe: f(x)
 - 1.2 $y \in B$ ősképe: az az $x \in A$ pont, melyre f(x) = y (jelölés: $f^{-1}(y) = x$).
- 2. Intervallum
 - 2.1 $[a,b]\subseteq A$ képe: $f([a,b]):=\{f(x)\in B\ :\ x\in [a,b]\}$
 - 2.2 $[c,d] \subseteq B$ ősképe: $f^{-1}([c,d]) := \{x \in A : f(x) \in [c,d]\}$
- 3. Halmaz
 - 3.1 $A_1 \subseteq A$ képe: $f(A_1) := \{ f(x) \in B : x \in A_1 \}$
 - 3.2 $B_1 \subseteq B$ ősképe: $f^{-1}(B_1) := \{x \in A : f(x) \in B_1\}$

- 1. Pont
 - 1.1 $x \in A$ képe: f(x)
 - 1.2 $y \in B$ ősképe: az az $x \in A$ pont, melyre f(x) = y (jelölés: $f^{-1}(y) = x$).
- 2. Intervallum
 - 2.1 $[a,b]\subseteq A$ képe: $f([a,b]):=\{f(x)\in B\ :\ x\in [a,b]\}$
 - 2.2 $[c,d] \subseteq B$ ősképe: $f^{-1}([c,d]) := \{x \in A : f(x) \in [c,d]\}$
- 3. Halmaz
 - 3.1 $A_1 \subseteq A$ képe: $f(A_1) := \{ f(x) \in B : x \in A_1 \}$
 - 3.2 $B_1 \subseteq B$ ősképe: $f^{-1}(B_1) := \{x \in A : f(x) \in B_1\}$
- 4. Értelmezési tartomány, értékkészlet
 - 4.1 $D_f := \{x \in A : \exists y \in B : f(x) = y\}$
 - 4.2 $R_f := \{ y \in B : \exists x \in D_f : f(x) = y \}$
 - 4.3 Megjegyzés: $f(D_f) = R_f, f^{-1}(R_f) = D_f$

Inverz: az f függvény "fordítottja"

$$x \stackrel{f}{\longmapsto} y \qquad \Longleftrightarrow \qquad y \stackrel{f^{-1}}{\longmapsto} x$$

Inverz: az f függvény "fordítottja"

$$x \stackrel{f}{\longmapsto} y \qquad \Longleftrightarrow \qquad y \stackrel{f^{-1}}{\longmapsto} x$$

Mikor definiál ez a leképezés egy függvényt?

Inverz: az f függvény "fordítottja"

$$x \stackrel{f}{\longmapsto} y \qquad \Longleftrightarrow \qquad y \stackrel{f^{-1}}{\longmapsto} x$$

Mikor definiál ez a leképezés egy függvényt?

Ha minden $y \in B$ esetén legfeljebb egy olyan x létezik, amire f(x) = y, azaz az $f^{-1}(y)$ halmaz legfeljebb egyelemű. (R_f -et és D_f -et úgy fogjuk megadni, hogy pontosan egyelemű legyen.)

Az előző gondolat képletekkel kifejezve:

$$\forall x, t \in D_f : f(x) = f(t) \implies x = t$$

ami nem más, mint az injektivitás definíciója.

(Ezzel ekvivalens az alábbi:
$$\forall x, t \in D_f : x = t \implies f(x) = f(t)$$
.)

Tétel: Egy $f: A \to B$ függvény pontosan akkor invertálható, ha injektív. Az inverzfüggvény jelölése: f^{-1} .

Definíció:
$$D_{f^{-1}} := R_f, y \in D_{f^{-1}}$$
 esetén $f^{-1}(y) := x$, ha $f(x) = y$.

$+\infty$ -ben vett határérték

Bevezető gondolat: körülbelül mivel lesz egyenlő f(x), ha x elég nagy?

Feltesszük: $\exists a \in \mathbb{R}$ úgy, hogy $(a, +\infty) \subset D_f$, azaz f értelmezve van elég nagy x értékek esetén. (Ez a feltétel precízebb lesz Analízis I-en, a torlódási pont definiálásával.)

Jelölés:
$$\lim_{x \to +\infty} f(x)$$
.

A határérték bármilyen $\overline{\mathbb{R}}$ -beli elemet felvehet, így 3 kategóriát veszünk figyelembe:

$$1. \lim_{x \to +\infty} f(x) = +\infty,$$

$$2. \lim_{x \to +\infty} f(x) = A \in \mathbb{R},$$

$$3. \lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = +\infty$$

Definíció: Legyen $f: \mathbb{R} \to \mathbb{R}$, tegyük fel, hogy $+\infty$ a D_f halmaz torlódási pontja. Azt mondjuk, hogy $\lim_{x \to +\infty} f(x) = +\infty$, ha

$$\forall P > 0 : \exists K > 0 : \forall x \in D_f, x > K : f(x) \ge P.$$

$$\lim_{x \to +\infty} f(x) = A$$

Definíció: Legyen $f: \mathbb{R} \to \mathbb{R}$, tegyük fel, hogy $+\infty$ a D_f halmaz torlódási pontja. Azt mondjuk, hogy $\lim_{x \to +\infty} f(x) = A$, ha

$$\forall \varepsilon > 0 : \exists K > 0 : \forall x \in D_f, x > K : |f(x) - A| \ge \varepsilon.$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

Definíció: Legyen $f: \mathbb{R} \to \mathbb{R}$, tegyük fel, hogy $+\infty$ a D_f halmaz torlódási pontja. Azt mondjuk, hogy $\lim_{x \to +\infty} f(x) = -\infty$, ha

$$\forall p < 0 : \exists K > 0 : \forall x \in D_f, x > K : f(x) \le p.$$

Hf.:
$$\lim_{x \to +\infty} f(x) = -\infty = \lim_{x \to +\infty} -f(x) =$$
.

$$\lim_{x \to +\infty} f(x) = -\infty$$

Definíció: Legyen $f: \mathbb{R} \to \mathbb{R}$, tegyük fel, hogy $+\infty$ a D_f halmaz torlódási pontja. Azt mondjuk, hogy $\lim_{x \to +\infty} f(x) = -\infty$, ha

$$\forall p < 0 : \exists K > 0 : \forall x \in D_f, x > K : f(x) \le p.$$

Hf.:
$$\lim_{x \to +\infty} f(x) = -\infty = \lim_{x \to +\infty} -f(x) = -\infty.$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

Definíció: Legyen $f: \mathbb{R} \to \mathbb{R}$, tegyük fel, hogy $+\infty$ a D_f halmaz torlódási pontja. Azt mondjuk, hogy $\lim_{x \to +\infty} f(x) = -\infty$, ha

$$\forall p < 0 : \exists K > 0 : \forall x \in D_f, x > K : f(x) \le p.$$

Hf.:
$$\lim_{x \to +\infty} f(x) = -\infty = \lim_{x \to +\infty} -f(x) = -\infty.$$

