Multiple Linear Regression Part B: Ordinary Least Squares

THOMAS WIEMANN

University of Chicago

Econometrics Econ 21020

Updated: May 18, 2022

Summary

In Part A, we introduced BLP(Y|X) as approximation to E[Y|X].

- \triangleright BLP-coefficients are well-defined when $E\left[XX^{\top}\right]^{-1}$ exists;
- ▶ Used the Frisch-Waugh Theorem for subvector analysis;
- Discussed interpretation using a generalized Yitzhaki's Theorem;

The BLP and its coefficients β are theoretical concepts.

In Part B, we bridge the gap between BLP and real data using statistics.

- ▷ Develop the ordinary least squares estimator;
- ▶ Analyze its statistical properties under an iid sample;
- ▶ Use matrix calculus for implementation.

- 1. Ordinary Least Squares
- 2. Estimator Properties
 - ▷ Bias
- 3. Implementation

1. Ordinary Least Squares

- 2. Estimator Properties
 - ▷ Bias
 - ▷ Consistency
- 3. Implementation

Ordinary Least Squares

Let Y be a random variable and $X = (1, X_1, \dots, X_k)^{\top}$ be a random vector. Consider a random sample $(Y^1, X^1), \dots, (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$.

From Lecture 8A, we know that the BLP-coefficients are given by

$$\beta = E[XX^{\top}]^{-1}E[XY],\tag{1}$$

whenever $E[XX^{\top}]^{-1}$ exists.

This suggests the sample analogue estimator

$$\hat{\beta}_n = \left(\frac{1}{n} \, \widehat{\mathcal{Z}} \, X^i X^i^\mathsf{T}\right)^{-1} \left(\frac{1}{n} \, \widehat{\mathcal{L}} \, X^i Y^i\right) \tag{2}$$

Notation: Superscripts – i.e., X^1 , ... X^n – are used as sample indices throughout.

Ordinary Least Squares (Contd.)

The estimator $\hat{\beta}_n$ is known as *ordinary least squares* (OLS). This is because it can also be motivated as solutions to the least-squares sample criterion:

$$\hat{\beta}_n = \underset{\beta \in \mathbb{R}^{k+1}}{\min} \ \frac{1}{n} \sum_{i=1}^n \left(Y^i - X^{i\top} \beta \right)^2, \tag{3}$$

whenever $E[\sum_{i=1}^{n} X^{i} X^{i\top}]^{-1}$ exists. In particular, we have:

$$R_{n}(\beta) = \frac{1}{n} \sum_{i} (\gamma^{i} - x^{iT} \beta)^{2} = \frac{1}{n} \sum_{i} (\gamma^{i2} - 2\gamma^{i} x^{iT} \beta + \beta^{T} X^{i} X^{iT} \beta)$$

$$= \frac{1}{n} \sum_{i} \gamma^{i2} - 2 \frac{1}{n} \sum_{i} \gamma^{i} X^{iT} \beta + \beta^{T} (\frac{1}{n} \sum_{i} x^{i} x^{iT}) \beta$$

$$Foc: \frac{\partial R_{n}(\beta)}{\partial \beta} = -2 \frac{1}{n} \sum_{i} \gamma^{i} X^{iT} + 2 \beta^{T} (\frac{1}{n} \sum_{i} X^{i} X^{iT}) = 0^{T}$$

$$= \sum_{\alpha \in \mathcal{A}} \left(\frac{1}{2} \sum_{i=1}^{N} X_{i}^{i} X_{i}^{i} \right) \mathcal{C}_{i} = \frac{1}{2} \sum_{i=1}^{N} X_{i}^{i} X_{i}^{i}$$

$$= \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$$

For our analysis, it's useful to rewrite $\hat{\beta}_n$ using $\varepsilon^i \equiv Y^i - BLP(Y^i|X^i)$:

$$\hat{\beta}_{n} = \left(\frac{1}{2} \sum_{i} \chi^{i} \chi^{i} \right)^{-1} \left(\frac{1}{2} \sum_{i} \chi^{i} \gamma^{i} \right)$$

$$= \left(\sum_{i} \chi^{i} \chi^{i} \right)^{-1} \left(\sum_{i} \chi^{i} \gamma^{i} \right)$$

$$= \left(\sum_{i} \chi^{i} \chi^{i} \right)^{-1} \left(\sum_{i} \chi^{i} \gamma^{i} \beta + \varepsilon^{i} \right)$$

$$= \left(\sum_{i} \chi^{i} \chi^{i} \right)^{-1} \left(\sum_{i} \chi^{i} \chi^{i} \gamma^{i} \beta + \varepsilon^{i} \right)$$

$$= \left(\sum_{i} \chi^{i} \chi^{i} \right)^{-1} \left(\sum_{i} \chi^{i} \chi^{i} \gamma^{i} \beta + \left(\sum_{i} \chi^{i} \chi^{i} \gamma^{i} \right)^{-1} \left(\sum_{i} \chi^{i} \xi^{i} \right) \right)$$

$$= \left(\sum_{i} \chi^{i} \chi^{i} \right)^{-1} \left(\sum_{i} \chi^{i} \chi^{i} \gamma^{i} \beta + \left(\sum_{i} \chi^{i} \chi^{i} \gamma^{i} \beta + \left(\sum_{i} \chi^{i} \chi^{i} \gamma^{i} \gamma^{i} \beta + \left(\sum_{i} \chi^{i} \gamma^{i} \gamma^{i} \gamma^{i} \beta + \left(\sum_{i} \chi^{i} \gamma^{i} \gamma^{i} \gamma^{i} \gamma^{i} \beta + \left(\sum_{i} \chi^{i} \gamma^{i} \gamma^{i}$$

- 1. Ordinary Least Squares
- 2. Estimator Properties
 - ▶ Bias
 - ▷ Consistency
- 3. Implementation

Our analysis of the OLS estimator begins with its bias.

We assume here that X is continuous to ensure existence of $E[\sum_{i=1}^{n} X^{i} X^{i\top}]^{-1}$ (for n > k+1) when $E[XX^{\top}]^{-1}$ exists.

The bias of $\hat{\beta}_n$ when X is continuous and $E[XX^\top]^{-1}$ exists is given by

$$Bias(\hat{\beta}_{n}) = E[\hat{\beta}_{n}] - \beta = E[fs + (\overline{\chi}_{i}\chi_{i}^{i})^{-1}(\overline{\chi}_{i}^{i}\varepsilon_{i})] - fs$$

$$= E[(\overline{\chi}_{i}\chi_{i}^{i})^{-1}(\overline{\chi}_{i}^{i}\varepsilon_{i})](\chi_{i}^{i})_{i=1}^{n}]$$

$$= E[(\overline{\chi}_{i}\chi_{i}^{i})^{-1}(\overline{\chi}_{i}^{i}\varepsilon_{i})](\chi_{i}^{i})_{i=1}^{n}]$$

$$= E[(\overline{\chi}_{i}\chi_{i}^{i})^{-1}(\overline{\chi}_{i}^{i}\varepsilon_{i})](\chi_{i}^{i})_{i=1}^{n}]$$

$$\stackrel{iid}{=} E[(\overline{\chi}_{i}\chi_{i}^{i})^{-1}(\overline{\chi}_{i}^{i}\varepsilon_{i})] \neq 0 \text{ in several!}$$

$$\neq 0 \text{ in several!}$$

Hence, if $E[\varepsilon^i|X^i]=0$, then $\mathrm{Bias}(\hat{\beta}_n)=0$.

- \triangleright Does $E[\varepsilon^i|X^i]=0$ hold generally? No: $E[\varepsilon^iX^i]=0 \not\Rightarrow E[\varepsilon^i|X^i]=0$.
- \triangleright When do we know that $E[\varepsilon^i|X^i]=0$? Special case: Linear E[Y|X].

Many textbooks state that the OLS estimator $\hat{\beta}_n$ is unbiased for β .

- ▶ Importantly: Strong assumption are made along the way!
- \triangleright We only showed Bias $(\hat{\beta}_n) = 0$ if E[Y|X] linear and X is continuous.

Generally, little reason to believe $Bias(\hat{\beta}_n) = 0$ in economic applications:

- \triangleright Economic theory rarely implies linear E[Y|X] with continuous X.
- ▶ Horrible news? No: Most estimators are biased in practice...

- 1. Ordinary Least Squares
- 2. Estimator Properties
 - ▷ Bias
 - **▷** Consistency
 - ▷ Asymptotic Distribution
- 3. Implementation

Consistency

Theorem 1 ensures OLS satisfies the minimum requirement: Consistency.

Theorem 1

Let Y be a random variable and $X = (1, X_1, ..., X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let β denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n$ are the OLS estimators constructed using $(Y^1, X^1), ..., (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$, then

$$\hat{\beta}_n \stackrel{p}{\to} \beta. \tag{6}$$

Since the OLS estimators are continuous functions of moments of (Y, X), we can prove this straightforwardly using the WLLN and CMT.

Consistency (Contd.)

Proof.
$$\beta_n = \left(\frac{1}{n} \sum_{i} \chi^i \chi^{ir}\right)^{-1} \left(\frac{1}{n} \sum_{i} \chi^i \gamma^i\right)$$

2.
$$g(a,b) = a^{-1}b$$

4. By CMT,

$$g(A_n, B_n) \stackrel{c}{\rightarrow} E[XX^T]^{-1}E[XY] = \beta$$

whenever F[XXT] - exists.

- 1. Ordinary Least Squares
- 2. Estimator Properties
 - ▷ Bias
 - ▷ Consistency
 - > Asymptotic Distribution
- 3. Implementation

Asymptotic Distribution

Theorem 2 shows that OLS is asymptotically normal.

Theorem 2

Let Y be a random variable and $X = (1, X_1, ..., X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let β denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n$ are the OLS estimators constructed using $(Y^1, X^1), ..., (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$, then

$$\sqrt{n}\left(\hat{\beta}_{n}-\beta\right)\stackrel{d}{\to}N\left(0,\;\Sigma\right),$$
 (7)

where

$$\Sigma = E \left[XX^{\top} \right]^{-1} E \left[XX^{\top} \varepsilon^{2} \right] E \left[XX^{\top} \right]^{-1}, \tag{8}$$

with $\varepsilon \equiv Y - BLP(Y|X)$.

Asymptotic Distribution (Contd.)

$$\operatorname{Fr}(\widehat{\beta}_{n}-\widehat{\beta}) = \operatorname{Fr}(\widehat{\beta}_{n} \Sigma X^{i} X^{iT})^{-1}(\widehat{\beta}_{n} \Sigma X^{i} \varepsilon^{i})$$

$$= (\widehat{\beta}_{n} \Sigma X^{i} X^{iT})^{-1} \operatorname{Fr}(\widehat{\beta}_{n} \Sigma X^{i} \varepsilon^{i})$$

By CLT,
$$M(\frac{1}{n} \mathbb{Z} \times i\epsilon^{i} - \mathbb{E}[x\epsilon]) \xrightarrow{d} M(0, Var(x\epsilon)) = \mathbb{E}[\epsilon \times x)$$

$$=E[XX^TE]$$

$$\overline{G}(\overline{G}_{n}-\overline{G}) \stackrel{d}{\to} E[XX^{T}]^{-1} \mathcal{N}(O, E[XX^{T}\varepsilon^{2}])$$

$$\stackrel{d}{=} \mathcal{N}(O, E[XX^{T}]E[XX^{T}\varepsilon^{2}]E[XX^{T}])$$

OLS Covariance Estimation

Theorem 2 is of no practical use unless we can replace the expression for the asymptotic variance by a consistent estimator. Fortunately, we can.

Theorem 3

Let Y be a random variable and $X = (1, X_1, ..., X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let β denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n$ is the OLS estimator constructed using $(Y^1, X^1), ..., (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$, then

$$\sqrt{n}\widehat{\Sigma}_{n}^{-\frac{1}{2}}\left(\widehat{\beta}_{n}-\beta\right) \stackrel{d}{\to} N\left(0,\mathbf{I}_{k+1}\right),\tag{9}$$

where

$$\widehat{\Sigma}_n = \left(\frac{1}{n} \sum_{i=1}^n X^i X^{i\top}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n X^i X^{i\top} \widehat{\varepsilon}^{i2}\right) \left(\frac{1}{n} \sum_{i=1}^n X^i X^{i\top}\right)^{-1} \tag{10}$$

and $\hat{\varepsilon}^i = Y^i - X^{i \top} \hat{\beta}_n$.

OLS Covariance Estimation (Contd.)

Proof. Need to slow:
$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1$$

Similar for An -> 0.

Ordinary Least Squares

OLS Covariance Estimation (Contd.)

Theorem 2 and 3 give inference for the vector $\hat{\beta}_n$.

- ▷ Often interested only in a subvector;
- \triangleright E.g., the estimator $\hat{\beta}_{jn}$ of β_j .

Corollary 1 and 2 give inference for individual components of $\hat{\beta}_n$.

- Corollary 1 combines Theorem 2 + Slutsky's Theorem;

Subvector Asymptotic Distribution

Corollary 1

Let Y be a random variable and $X = (1, X_1, ..., X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let $\beta = (\beta_0, \beta_1, ..., \beta_k)$ denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n = (\hat{\beta}_{0n}, \hat{\beta}_{1n}, ..., \hat{\beta}_{kn})$ is the OLS estimator constructed using $(Y^1, X^1), ..., (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$, then

$$\sqrt{n} \left(\hat{\beta}_{jn} - \beta_j \right) \stackrel{d}{\to} N \left(0, \ e_j^{\top} \Sigma e_j \right), \quad \forall j = 0, 1, \dots, k,$$
 (11)

where Σ is defined by Equation (8) and e_j is the jth unit vector.

Proof.
$$M(\beta_{in} - \beta_{i}) = M(e_{i}^{T}\beta_{in} - e_{j}^{T}\beta_{i}) = e_{j}^{T}M(\beta_{in} - \beta_{i})$$

$$\stackrel{d}{\to} e_{j}^{T}M(o_{i}, T) \stackrel{d}{=} M(o_{i}^{T}e_{j}^{T}E_{i})$$

$$e_{j}^{T}Meorem 2 + Slubly's.$$

Note: $e_j^{\top} \Sigma e_j$ simply selects the jth diagonal entry of Σ Wiemann Ordinary Least Squares

Corollary 2

Let Y be a random variable and $X = (1, X_1, ..., X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists, and let $\beta = (\beta_0, \beta_1, ..., \beta_k)$ denote the BLP(Y|X)-coefficient. If $\hat{\beta}_n = (\hat{\beta}_{0n}, \hat{\beta}_{1n}, ..., \hat{\beta}_{kn})$ is the OLS estimator constructed using $(Y^1, X^1), ..., (Y^n, X^n) \stackrel{iid}{\sim} (Y, X)$, then

$$\frac{\hat{\beta}_{jn} - \beta_{j}}{\operatorname{se}\left(\hat{\beta}_{jn}\right)} \stackrel{d}{\to} N\left(0, 1\right), \quad \forall j = 0, 1, \dots, k, \tag{12}$$

where

$$se\left(\hat{\beta}_{jn}\right) = \frac{1}{\sqrt{n}} \sqrt{e_j^{\top} \widehat{\Sigma}_n e_j} \tag{13}$$

with $\widehat{\Sigma}_n$ is defined by Equation (3) and e_i is the jth unit vector.

Note: $e_j^{\top} \widehat{\Sigma}_n e_j$ simply selects the jth diagonal entry of $\widehat{\Sigma}_n$

Standard Error (Contd.)

Proof.

1.
$$A_n = \frac{2}{2}$$
,
2. $g(\alpha) = \frac{1}{\sqrt{e_i^T \alpha e_i^T}}$

4. Bg CMT,
$$g(\mathcal{A}_n) \stackrel{\mathcal{C}}{\hookrightarrow} \frac{1}{\sqrt{e_i^* \bar{\Sigma} e_j^*}} \quad \text{whenever } e_j^* \bar{\Sigma} e_j > 0.$$

Then, combining w/ Corollary 1, we have by Slubby's

$$\frac{1}{\sqrt{e_{j}^{T} \hat{\Sigma}_{n} e_{j}}} \Omega(\vec{\beta}_{jn} - \vec{\beta}_{j}) \stackrel{d}{\to} \frac{1}{\sqrt{e_{j}^{T} \hat{\Sigma} e_{j}}} \mathcal{N}(0, e_{j}^{T} \bar{\Sigma} e_{j}) \stackrel{d}{=} \mathcal{N}(0, \frac{e_{j}^{T} \bar{\Sigma} e_{j}}{e_{j}^{T} \bar{\Sigma} e_{j}})$$

Wiemann

1. Ordinary Least Squares

2. Estimator Properties

- ▷ Bias
- ▷ Consistency

3. Implementation

OLS Implementation

Implementing OLS by brute force $(e.g., \sum_{i=1}^{n} X^{i}X^{i\top})$ is difficult.

▷ Instead: Use matrix operations for straightforward computation.

Define the stacked sample matrices \mathbb{X}_n and \mathbb{Y}_n :

$$\mathbb{X}_{n} \equiv \begin{bmatrix} X^{1\top} \\ X^{2\top} \\ \vdots \\ X^{n\top} \end{bmatrix}, \qquad \mathbb{Y}_{n} \equiv \begin{bmatrix} Y^{1} \\ Y^{2} \\ \vdots \\ Y^{n} \end{bmatrix}. \tag{14}$$

Then, matrix calculus shows that we have

$$\mathbb{X}_n^{\top} \mathbb{X}_n = \sum_{i=1}^n X^i X^{i \top}, \qquad \mathbb{X}_n^{\top} \mathbb{Y}_n = \sum_{i=1}^n X^i Y^i.$$
 (15)

The OLS estimator can then equivalently be stated as

$$\hat{\beta}_n = \left(\mathbb{X}_n^{\top} \mathbb{X}_n \right)^{-1} \left(\mathbb{X}_n^{\top} \mathbb{Y}_n \right). \tag{16}$$

Wiemann Ordinary Least Squares 24 / 27

OLS Implementation (Contd.)

For the OLS covariance estimator $\widehat{\Sigma}_n$, we define stacked residual vector:

$$\epsilon_{n} \equiv \mathbb{Y}_{n} - \mathbb{X}_{n} \hat{\beta}_{n} = \begin{bmatrix} Y^{1} \\ Y^{2} \\ \vdots \\ Y^{n} \end{bmatrix} - \begin{bmatrix} X^{1\top} \hat{\beta}_{n} \\ X^{2\top} \hat{\beta}_{n} \\ \vdots \\ X^{n\top} \hat{\beta}_{n} \end{bmatrix} = \begin{bmatrix} \hat{\varepsilon}_{1} \\ \hat{\varepsilon}_{2} \\ \vdots \\ \hat{\varepsilon}_{n} \end{bmatrix}. \tag{17}$$

By the same matrix calculus as before, we have

$$(\mathbb{X}_n \odot \epsilon_n)^{\top} (\mathbb{X}_n \odot \epsilon_n) = \sum_{i=1}^n X^i X^{i \top} \hat{\varepsilon}^{i2}, \qquad (18)$$

where \odot denotes element-wise multiplication (*Hadamard product*). Then

$$\widehat{\Sigma}_{n} = \frac{1}{n} \left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n} \right)^{-1} \left[\left(\mathbb{X}_{n} \odot \epsilon_{n} \right)^{\top} \left(\mathbb{X}_{n} \odot \epsilon_{n} \right) \right] \left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n} \right)^{-1}. \tag{19}$$

Notation: Strictly speaking, \odot is defined only for matrices of equal dimension. We abuse the notation here to denote multiplication between each row of the matrix \mathbb{X}_n with the corresponding component of the vector ϵ_n .

OLS Estimation in R

```
# Compute OLS estimates
XX inv <- solve(t(X) %*% X)
XY < - t(X) % * % Y
beta <- XX inv %*% XY
# Compute BLP estimates
blp_yx <- X %*% beta
# Compute standard error for beta
epsilon \leftarrow c(Y - blp yx)
XX_{eps2} \leftarrow t(X * epsilon) %*% (X * epsilon)
Sigma <- XX_inv %*% XX_eps2 %*% XX_inv / n
se <- sqrt(diag(Sigma)) / sqrt(n)</pre>
```

Note: There exists an OLS implementation in R – the lm-command. But importantly: Base-R does not implement the standard error of Corollary 2! So have some faith in your abilities and implement OLS yourself. See Problem 7 of Problem Set 4.

Summary

Today, we introduced OLS as an estimator for the BLP(Y|X).

- ▷ Showed that it is consistent and asymptotically normal;
- Derived standard errors for subvector inference.

We're now well-equipped for causal analysis under selection on observables & common support:

- Defined interesting causal parameters using the all causes model;
- ▷ Showed identification of the CATE, ATT, ATU, and ATE;
- \triangleright Concluded that if (W, X) is discrete, may use the binning estimator;
- \triangleright If (W, X) is continuous/mixed, we can leverage OLS to obtain approximate results.