

## **UMinho**

## Mestrado Engenharia Informática Aplicações de Serviços em Computação em Nuvem (2022/23)

Grupo: 33

pg50633 Mariana Rocha Marques pg50229 António Luís de Macedo Fernandes pg50483 João Paulo Sousa Mendes pg50518 José Diogo Martins Vieira pg50499 João Silva Torres











Repositório: (https://github.com/joaopsmendes/ascn-ghost).
Braga, 9 de agosto de 2023

# Conteúdo

| 1        | Introdução                                                                                                      | 2                    |
|----------|-----------------------------------------------------------------------------------------------------------------|----------------------|
| <b>2</b> | Ghost                                                                                                           | 3                    |
| 3        | Arquitetura e Componentes                                                                                       | 4                    |
| 4        | Ferramentas para a instalação e configuração automática da aplicação.  4.1 Ansible                              | 6<br>6<br>6<br>7     |
| 5        | Ferramentas de monitorização, métricas e visualização escolhidas, justificando a sua escolha  5.1 DashBoard CPU | 8<br>8<br>8<br>9     |
| 6        | Ferramentas de avaliação e testes desenvolvidos.  6.1 Teste 1- Conexão à pagina principal                       | 10<br>10<br>10<br>10 |
| 7        | Monitorização durante os Testes                                                                                 | 12                   |
| 8        | Conclusão                                                                                                       | 13                   |

## 1. Introdução

No âmbito do desenvolvimento do projeto da Unidade Curricular de Aplicações e Serviços de Computação em Nuvem, foi-nos proposto desenvolver a automatização do processo de instalação, configuração, monitorização e avaliação da aplicação Ghost.

Assim sendo, o presente relatório pretende expor todo o trabalho realizado, de forma detalhada, para a perceção das etapas efetuadas na realização e justificação das decisões tomadas enquanto grupo.

Numa fase inicial, apresentamos a arquitetura e os componentes do sistema. De seguida, iremos identificar as ferramentas e abordagem utilizadas para a instalação e configuração automática da aplicação. Por fim, as últimas fases dizem respeito às ferramentas de monitorização e avaliação onde justificamos as nossas escolhas. Também faremos um análise dos resultados da avaliação experimental.

Na última secção deste relatório faremos uma reflexão final sobre todo o trabalho desenvolvido pelo grupo, apontando os principais pontos fortes e os pontos a melhorar.

## 2. Ghost

O Ghost é uma aplicação para criadores de novos conteúdos publicarem, partilharem e expandirem os seus negócios de acordo com o seu conteúdo. Além disso, possui ferramentas modernas para construir um site, publicar conteúdo, enviar *newsletters* e oferecer assinaturas pagas aos membros.



Figura 2.1: Logo Ghost

## 3. Arquitetura e Componentes

Para a elaboração da arquitetura do sistema baseamos-nos no padrão multi camada, uma vez que possui a camada de interface para os utilizadores, a camada de serviço da aplicação e, por fim, uma camada responsável pela persistência de dados. Com isto, através da arquitetura é possível a separação dos diversos componentes e suas respetivas funcionalidades, ainda que as mesmas consigam comunicar e propagar o seu estado entre elas.



Figura 3.1: Arquitetura Implementada

Assim sendo, com a arquitetura criada, foi mais facil elaborar a estrutura do projeto, que se segue em diante:

```
— paginaInicial.jmx
   - signIn.jmx
subscribe.jmx
benchmark.yml
create-gke-cluster.yml
— dashboard.json
deploy-ghost.yml
destroy-gke-cluster.yml
L— Enunciado.pdf
ghost-deployment.yml ghost-service.yml
   - gcloud.json
  — gcloud_vault.json
  — gcp.yml
— mail.yml
  mysql-deployment.yml
mysql-pvc.yml
mysql-service.yml
  persistent-volume.yml
README.md
   _ deploy_ghost
_ gke_cluster_create
   test_ghostundeploy_ghost
    ghost-deployment.yml
   - ghost-service.yml
   – paginaInicial.jmx
   - signIn.jmx
   - subscribe.jmx
test-all.yml
undeploy-ghost.yml
```

Figura 3.2: Estrutura do Projeto

# 4. Ferramentas para a instalação e configuração automática da aplicação.

A ferramenta **Ansible** possibilitou a instalação e configuração automática da aplicação Ghost no serviço **Google Kubernetes Engine** (**GKE**) da Google Cloud. Este objetivo é apresentado na *Tarefa Base* e é acompanhado por uma lista de requisitos, dos quais foram todos cumpridos.

#### 4.1 Ansible

Foram definidos 5 playbooks:

- create-gke-cluster.yml e destroy-gke-cluster.yml. Responsável pela criação e destruição do cluster Kubernetes no serviço GKE, tendo apenas um role associado a cada playbook,gke\_cluster\_create e gke\_cluster\_destroy, respetivamente.
- deploy-ghost.yml Instala, configura e executa, no cluster todos as componentes da aplicação Ghost. Este playbook irá executar três roles, pela seguinte ordem:
  - setup\_ghost Responsável por atualizar os templates com as variáveis dimâmicas ou confidencias, que não podem estar nestes ficheiros.
  - deploy\_ghost Responsável pela aplicação de todos os ficheiros necessários para a componente da base de dados e da aplicação no Kubernetes. Assim como a atualização das credenciais do admin. Este role termina, quando a o url da aplicação possa ser acedido.
  - create\_dashboards Cria as dashboards necessárias para a monitorização das várias componentes do cluster.
- undeploy\_ghost Termina a execução da instalação atual da aplicação Ghost. Removendo todos os ficheiros que foram atualizados aquando do setup\_ghost. Quando for especificada a flag (-e delete\_data=true), irá se proceder a remoção de todos os dados presentes na base de dados. Também é responsável pela remoção das dashboards anteriormente criadas.
- test\_all Efetua um conjunto de testes automáticos para validar a execução do Ghost.

### 4.2 Kubernetes Deployment

Para os ficheiros de kubernetes, relativos às duas componentes:

### 4.2.1 Deployment do mysql

Para o deployment da base de dados foram utilizados 4 ficheiros:

• **persistent-volume.yml** - Este ficheiro irá criar o volume de dados que irá ser usado para a persistência dos dados. Atribuimos 10Gi.

- mysql-deployment Este ficheiro irá fazer a implementação da base de dados mysql, que
  vai ser utilizada pela aplicação ghost através da porta 3306. Aqui será criado o utilizador e
  a sua password, como o nome da BD. Irá também referenciar o volume de dados a utilizar.
- mysql-pvc.yml Este ficheiro irá fazer o claim do volume de dados criado.
- mysql-service.yml Este ficheiro irá criar o serviço do tipo ClusterIP, para apenas poder ser acedido pelos restantes nodos do cluster. Irá também referenciar a porta na qual este seriço está disponível, 3306.

### 4.2.2 Deployment do Ghost

Para o delpoyment do ghost teremos 2 ficheiros:

- ghost-deployment.yml Neste ficheiro encontra-se toda a informação necessária para instalação do ghost. Essa informação será relativa à base de dados que irá utilizar, ao url onde ficará disponível e às credenciais do serviço de email.
- **ghost-service.yml** Este ficheiro irá criar o serviço do tipo LoadBalancer, este permite que a aplicação possa ser acedida pelo exterior e não apenas pelos nodos do cluster, através da porta 2368.

Todas as variáveis dinâmicas ou confidencias necessárias para estes ficheiros, irão ser devidamente atribuídas antes destes serem aplicados.

# 5. Ferramentas de monitorização, métricas e visualização escolhidas, justificando a sua escolha

Na realização deste trabalho prático, utilizámos a API da Google Cloud de forma a monotorizar e visualizar o comportamento da utilização de recursos na nossa aplicação. As métricas utilizadas nesta monotorização são referentes à performance do sistema, isto é, gastos do CPU, utilização de memória RAM e I/O. Para tal, utilizaram-se as dashboards fronecidas para visualizar as diferentes métricas quando corremos a nossa aplicação Ghost.

### 5.1 DashBoard CPU

VM Instance - CPU utilization - Fração de utilização de CPU nestas instâncias. Estes valores variam normalmente entre 0.0 e 1.0.

Kubernetes Container - CPU usage time - Uso de CPU acumulado em todos os núcleos utilizados pelo container. O valor está em segundos.



Figura 5.1: DashBoard CPU

### 5.2 DashBoard RAM

Kubernetes Container - Memory usage - Memória utilizada em bytes, por cada container. Kubernetes Container - Ephemeral storage usage - Memória efémera em bytes, por cada container.

Kubernetes Container - Page faults - Número de page faults, por cada container.



Figura 5.2: DashBoard CPU

### 5.3 DashBoard I/O

**Kubernetes Pod - Bytes received -** Número acumulado de bytes recebidos pela network, para cada container.

 ${\bf RTT}$ latencies per GKE Pod - Uma distribuição do RTT medido sobre conexões TCP do GKE pod para Cloud endpoints.



Figura 5.3: DashBoard I/O

## 6. Ferramentas de avaliação e testes desenvolvidos.

Para a realização da avaliação e da testagem da aplicação *Ghost*, utilizamos a ferramenta *JMeter*. Esta ferramenta é utilizada para carregar o comportamento funcional de teste e medir o desempenho, assim sendo permite realizar diferentes testes ao sistema.

Consequentemente, podemos avaliar diversos acessos à aplicação, nomeadamente o acesso à página principal da aplicação. Ademais, através da ferramenta, é possível definir o número de clientes (Threads) que acedem à aplicação ao mesmo tempo para executar as operações prédefinidas. Após os testes é gerada uma dashboard, onde é possivel ver as diferentes métricas avaliadas relativas ao sistema.

### 6.1 Teste 1- Conexão à pagina principal

Os testes simulando vários números de Utilizadores a realizarem o acesso à página.



Figura 6.2:  $N^{o}$  Threads = 200

### 6.2 Teste 2- Sign In

Os testes simulando 5 números de Utilizadores a realizarem o sign in.



Figura 6.3:  $N^{\circ}$  Threads = 5

### 6.3 Teste 3- Subscribe

Os testes simulando 5 números de Utilizadores a realizarem o subscribe



Figura 6.4:  $N^{o}$  Threads = 5

Quando tentamos realizar tannto o SignIn como o Subscribe com o número de threads superior a 5, o Ghost impede que isso aconteça, bloqueando as tentativas:



Figura 6.5: Mensagem de erro

As figuras 6.1 e 6.2 ilustram as simulações de acesso à página por 100 e 200 utilizadores, respetivamente. O "average" representa a média do tempo que a página demora a estar operacional.

Ora, os tempos médios são de 3461ms e 7496ms, respetivamente. Concluímos que ao dobrar os utilizadores o tempo médio aumenta para um pouco mais do dobro.

## 7. Monitorização durante os Testes

De maneira a perceber melhor o custo na performance e o poder computacional necessário para lidar com tantos pedidos a aceder a página principal precisamos de analisar as métricas através das Dashboards. As métricas consideradas são:



Figura 7.1: Monitorização dos testes

## 8. Conclusão

Dado por concluído o trabalho prático, iremos apresentar uma análise geral e crítica acerca do trabalho produzido.

Assim sendo, a instalação e a configuração automática da aplicação ocorreu sem falhas e foi possível monitorizá-la de acordo de acordo com métricas relevantes.

No entanto, na perspetiva de elaboração e melhoramento num trabalho futuro, consideramos que seria benéfico implementar mecanismos de replicação que permitam melhorar o desempenho e/ou resiliência da instalação do *Ghost*, com intuito de prevenir eventuais falhas que fossem detetadas.

Em suma, consideramos que o balanço do trabalho é positivo, uma vez que as dificuldades sentidas foram superadas com sucesso e os requisitos foram cumpridos.