Solutions Asymptotic Statistics Course

Data Analytics Lab

January 2020

Exercise 1

Prove Theorem 1.5

Theorem 1.5 Weak Law of Large Number

Suppose X_i are i.i.d. random variables with finite mean μ (i.e. $\mathbb{E}[X_i] = \mu$) and finite variance.

Let
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
, then $\bar{X}_n \stackrel{\mathcal{P}}{\longrightarrow} \mu$

If we consider x_i i.i.d., $\mathbb{E}[X_i] = \mu$, $\operatorname{Var}(x_i) = \sigma^2 < \infty$

$$\bar{x}_n = \frac{1}{n} \sum x_i$$
 show that $\bar{x}_n \to \mu$

That is, $\forall \varepsilon > 0, \forall \delta > 0, \exists n^* > 0$ s.t. $\forall n \ge n^*$

$$\Pr(\|\bar{x}_n - \mu\| \ge \varepsilon) \le \delta$$

Proof:

 $\mathbb{E}\left[\bar{x}_n\right] = \mu$, by linearity of the expectation, $\operatorname{Var}\left(\bar{x}_n\right) = \frac{1}{n^2} \sum \operatorname{var}\left(x_i\right) = \frac{\sigma^2}{n}$

Inequality of Chebyshev

$$\forall k > 0: \quad \Pr\left(\|\bar{x}_n - \mu\| \ge k \frac{\sigma}{\sqrt{n}}\right) \le \frac{1}{k^2}$$

Therefore, taking $\tilde{\varepsilon}$ as an auxiliary for ε and $\tilde{\varepsilon} = k$

$$\Rightarrow \forall \tilde{\varepsilon} > 0: \quad \Pr(\|\bar{x}_n - \mu\| \geq \tilde{\varepsilon}) \leq \frac{\sigma^2}{n\tilde{\varepsilon}^2}$$

Then, let's take $\varepsilon > 0$, $\delta > 0$ arbitrarly

Let's take $\tilde{\epsilon} := \varepsilon$ and take $n^* > 0$ such that $\frac{\sigma^2}{n^* \varepsilon^2} < \delta$.

Hence, $\forall n \geq n^*$, we have

$$\Pr(\|\bar{x}_n - \mu\| \ge \varepsilon) \le \delta$$

Prove Corollary 1.4

Corollary 1.4 Consistency with L_2 norm \Rightarrow Consistency with any norm

If $p < \infty$, then for all $k \in \mathbb{N}^* \cup \{\infty\}$

$$\lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_2 \ge \varepsilon \right) = 0$$

if and only if

$$\lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_k \ge \varepsilon \right) = 0$$

Where $\|\mathbf{x}\|_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$

Proof:

Hypothesis: $\forall \varepsilon > 0, \forall \delta > 0, \quad \exists n^* > 0 \quad \text{s.t.} \quad \forall n \ge n^*$

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_{\infty} \geqslant \varepsilon\right) \leqslant \delta$$

Since $\|\hat{\theta} - \theta_0\|_2 \le p^{1/2} \|\hat{\theta} - \theta\|_{\infty}$, p, the dimension of θ_0

Let's take $\varepsilon > 0$, $\delta > 0$ arbitrarily and let's find, $n^* > 0$ such that

$$\forall n \geq n^{\star} \quad P_r \left(\left\| \hat{\theta} - \theta_0 \right\|_2 \geq \varepsilon \right) \leq \delta$$

We know that $\exists n_0^* > 0$ such that

$$\Pr(\|\hat{\theta} - \theta_0\|_{\infty} \ge \frac{\varepsilon}{p^{\frac{1}{2}}}) \le \delta$$

$$\Pr(\|\hat{\theta} - \theta_0\|_{\infty} p^{\frac{1}{2}} \ge \varepsilon) \le \delta$$

$$\Rightarrow \Pr(\left\|\hat{\theta} - \theta_0\right\|_2 \ge \varepsilon) \le \delta$$

Which therefore implies that $\|\cdot\|_2$ -consistant $\Rightarrow \|\cdot\|_{\infty}$ -consistant

Since
$$\|\hat{\theta} - \theta_0\|_{\infty} \le \|\hat{\theta} - \theta_0\|_2$$

In $\mathbb{R}^{\infty},$ are the $\|\cdot\|_{\infty}$ -consistency and the $\|\cdot\|_2$ -consistency equivalent?

Answer:

No! for example because of the fact that $\|\hat{\theta} - \theta_0\|_{\infty} \le \|\hat{\theta} - \theta_0\|_2$.

Also, we can have $||X_n||_{\infty} \longrightarrow 0$ while $||X_n||_2 \longrightarrow \infty$

П

Prove Theorem 1.6 using Definition 1.2

Theorem 1.6 Continuous Mapping Theorem

Supose $Y_n \xrightarrow{p} \mu$ then $g(Y_n) \xrightarrow{p} g(\mu)$ if $g(\cdot)$ is a *continuous function*.

Reminder

f is *continuous* in x_0 if $\forall \varepsilon > 0, \exists \delta_{\varepsilon, x_0} > 0$ such that

$$||x - x_0|| \le \delta \implies ||f(x) - f(x_0)|| \le \varepsilon$$

Definition 1.2 Consistency

The estimator $\hat{\theta}$ is said to be consistent if it converges in probability to θ_0 , i.e.

for all $\varepsilon > 0$

$$\lim_{n \to \infty} \Pr\left(\left\| \hat{\theta} - \theta_0 \right\|_2 \ge \varepsilon \right) = 0$$

More precisely, by the definition of the limit, this means that the estimator $\hat{\theta}$ is consistent if $\forall \varepsilon > 0, \forall \delta > 0, \exists n^* \geq 0$ such that $\forall n \geq n^*$ we have

$$\Pr\left(\left\|\hat{\theta} - \theta_0\right\|_2 \ge \varepsilon\right) \le \delta$$

Proof:

Hypothesis

 $\forall \varepsilon > 0, \forall \delta > 0, \exists n_{\varepsilon, \delta}^* \text{ such that } \forall n \geq n_{\varepsilon, \delta}^*$

$$\Pr(\|y_n - \mu\| \ge \varepsilon) \le \delta$$

Let's take $\varepsilon > 0$, $\delta > 0$ arbitrary and find n*>0 such that $\forall n \geqslant n^*$

$$\Pr(\|g(Y_n) - g(\mu)\| \ge \varepsilon) \le \delta$$

 $\forall \delta' > 0$, define $B_{\delta'} := \{ y \in \mathbb{R} | \exists x, ||x - y|| < \delta' \text{ and } ||g(x) - g(y)|| \ge \varepsilon \}$

Suppose that $||g(y_n) - g(\mu)|| > \varepsilon$ for some n,

$$\Rightarrow \{\mu \in B_{\delta'}\} \text{ or } \{\|y_n - \mu\| \geqslant \delta'\}$$

Therefore $\Pr(\|g(y_n) - g(\mu)\| \ge \varepsilon) \le \Pr(\mu \in B_{\delta'}) + \Pr(\|y_n - \mu\| \ge \delta')$

Since g() is continuous in μ , $\exists \delta_{\varepsilon,\mu} > 0$ such that

$$\left[\|y - \mu\| < \delta_{\varepsilon, \mu} \Rightarrow \|g(y) - g(\mu)\| < \varepsilon\right]$$

$$\Rightarrow \Pr\left(\mu \in B_{\delta_{\varepsilon,\mu}}\right) = 0$$

$$\Rightarrow \Pr(\|g(y_n) - g(\mu)\| \ge \varepsilon) \le P(\|y_n - \mu\| \ge \delta_{\varepsilon,\mu})$$

Therefore,

$$\Rightarrow$$
 for $n_{\delta_{\varepsilon,\mu'},\delta}^{\star} \ge 0$ and $\forall n \ge n_{\delta_{\varepsilon,\mu'},\delta}^{\star}$ we have $\Pr(\|y_n - \mu\| \ge \delta_{\varepsilon,\mu}) \le \delta$

Prove Theorem 1.8 using Theorem 1.7

Theorem 1.8 Consistency of Z-estimators

Let $\hat{\theta} := \operatorname{argzero}_{\theta \in \Theta} \hat{\mathbf{g}}_n(\theta)$. If there exists a function $\mathbf{g}_0(\theta)$ such that:

- (C.1) $g_0(\theta)$ has a unique root in Θ at θ_0^a
- (C.2) Θ is compact
- (C.3) $g_0(\theta)$ is continuous in θ
- (C.4) $\hat{\mathbf{g}}_n(\theta)$ converges uniformly in probability to $\mathbf{g}_0(\theta)$

$$\sup_{\boldsymbol{\theta}\in\Theta} \|\hat{\mathbf{g}}_n(\boldsymbol{\theta}) - \mathbf{g}_0(\boldsymbol{\theta})\| \stackrel{\mathcal{P}}{\longrightarrow} 0$$

then we have $\hat{\theta} \stackrel{\mathcal{P}}{\longrightarrow} \theta$

^athis means that $\mathbf{g}_0(\boldsymbol{\theta}) = 0$ if and only if $\boldsymbol{\theta} = \boldsymbol{\theta}_0$

Proof:

Set $\hat{Q}_n(\theta) = -\|\hat{g}_n(\theta)\|$ and $Q_0(\theta) := -\|g_0(\theta)\|$

We only need to check C4 of Theorem 1,7

Theorem 1.7 Consistency of Extremum estimators

If there is a function $Q_0(\theta)$ such that:

- (C.1) $Q_0(\theta)$ is uniquely maximized in θ_0
- (C.2) Θ is compact ^a
- (C.3) $Q_0(\theta)$ is continuous in θ
- (C.4) $\widehat{Q}_n(\theta)$ converges uniformly in probability to $Q_0(\theta)^b$

then we have $\hat{\theta} \stackrel{\mathcal{P}}{\longrightarrow} \theta$

^aCompact, in finite dimension, means that Θ is both closed (i.e. containing all its limit points) and bounded (i.e. all its points are contained in a ball). ${}^b\widehat{Q}_n(\theta)$ is said to converges uniformly in probability to $Q_0(\theta)$ if $\sup_{\theta \in \Theta} |Q_n(\theta) - Q_0(\theta)| \xrightarrow{\mathcal{P}} 0$

$$\left|\widehat{Q}_n(\theta) - Q_0(\theta)\right| = \left|-\left\|\widehat{g}_n(\theta)\right\| + \left\|g_0(\theta)\right\|\right|$$

 Δ ineq

$$\leq \|g_0(\theta) - \hat{g}_n(\theta)\|$$

Done by C,4 of Theroem 1.8

Consider the following estimator:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmax}} - \|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}(\boldsymbol{\theta})\|_{\mathbf{W}}^{2}$$

where $\|\mathbf{x}\|_{\mathbf{A}}^2 = \mathbf{x}^T \mathbf{A} \mathbf{x}$, and where $\hat{\mu} \in \mathbb{R}^p$, $\mu(\theta) \in \mathbb{R}^p$, $W \in \mathbb{R}^{p \times p}$ and $\theta \in \Theta \subset \mathbb{R}^p$. Note that the \mathbf{W} may be random and/or depend on θ but we assume that W > 0.

Is it possible to show that

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argzero}} \quad \hat{\boldsymbol{\mu}} - \boldsymbol{\mu}(\boldsymbol{\theta})$$
?

If so, do we need any additional conditions?

Simplify the conditions of Theorem 1.7 (or 1.8) for this estimator.

Proof:

Yes if
$$\frac{\partial}{\partial \theta^{\top}} \|\hat{\mu} - \mu(\theta)\|_{\mathbf{W}}^2$$
 and if $\hat{\theta} \in \text{Int}(\mathbb{B})$

Assume
$$\hat{\mu} := \hat{\mu}(\theta_0, n)$$

$$\mu(\theta) := \lim_{n \to \infty} \hat{\mu}(\theta, n)$$

Def
$$\hat{g}_n(\theta) := \hat{\mu}(\theta_0, n) - \mu(\theta)$$

$$g_0(\theta) = \mu(\theta_0) - \mu(\theta)$$

Then
$$\hat{g}_n(\theta) - g(\theta) = \hat{\mu}(\theta_0, n) - \mu(\theta_0) \xrightarrow[n \to \infty]{} 0$$

So C4 is not necessary but I don't know if we assumed too much