Examen

Durée 1h30. Les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. Sont autorisés : une feuille A4 manuscrite, une calculatrice type collège ou lycée en mode examen. La qualité de la rédaction sera prise en compte.

Exercice 1.

On considère l'endomorphisme f de \mathbb{R}^3 défini par $f:(x,y,z)\to (3x-z,2x+4y+2z,-x+3z).$

- 1. Déterminer la matrice $A = Mat(f)_B$ de f dans la base canonique de \mathbb{R}^3 .
- 2. Déterminer le polynôme caractéristique de f. En déduire les valeurs propres de f.
- 3. Déterminer une base pour chaque espace propre de f. L'endomorphisme f est-il diagonalisable ?
- 4. Trouver une matrice P telle que $A=PDP^{-1}$, où D est une matrice diagonale que l'on explicitera.
- 5. Déterminer la matrice A^n , pour tout $n \ge 1$.

, Exercice 2.

L'espace est muni d'un repère orthonormé. Calculer la distance du point M(-1;0;1) à la droite D dont une représentation paramétrique est :

$$(D): \left\{ \begin{array}{lcl} x & = & -1+t \\ y & = & 5t \\ z & = & 3t \end{array} \right. \quad (t \in \mathbb{R}).$$

Exercice 3.

Soit A une matrice carrée de taille $n \times n$. On suppose que A est inversible et que $\lambda \in \mathbb{R}$ est une valeur propre de A.

- 1. Démontrer que $\lambda \neq 0$.
- 2. Démontrer que si x est un vecteur propre de A pour la valeur propre λ alors il est vecteur propre de A^{-1} de valeur propre $\frac{1}{\lambda}$.

Exercice 4.

Pour quelles valeurs de $t \in \mathbb{R}$ les vecteurs $\{(1,0,t),(1,1,-t),(t,0,1)\}$ forment-ils une base de \mathbb{R}^3 ? Inverser la matrice de ces vecteurs dans la base canonique, lorsque c'est possible.

Exercice 5.

On munit le plan \mathbb{R}^2 d'une structure d'espace vectoriel avec la base canonique $\{e_1, e_2\}$. Soit \mathcal{R} la rotation du plan de centre O et d'angle θ .

- 1. Montrer que \mathcal{R} est un endomorphisme de \mathbb{R}^2 .
- 2. Si θ n'est pas un multiple de π , montrer que $\mathcal R$ n'admet aucun vecteur propre.
- 3. Si $\theta=\pi$, déterminer les valeurs propres et les vecteurs propres de $\mathcal{R}.$
- 4. Si $\theta = 2\pi$, déterminer les valeurs propres et les vecteurs propres de \mathcal{R} .