Tutorial Sheet – IX (Boolean algebra, Language and Grammar)

- 1. Which of the following lattices are Boolean algebra?
 - (a) D_{20} (b) D_{55} (c) D_{99} (d) D_{130} (e)
- 2. Which of the following are Boolean algebra

- 3. Consider the words $u = a^3bab^2$ and $v = baba^2$. Find:
 - (i) uvu (ii) λu (iii) λv (iv) $u\lambda v$ (v) $|\lambda|$ (vi) |u| (vii) |uvu|
- 4. Consider the language $L = \{ab, c\}$ over $A = \{a, b, c\}$. Find:
 - (i) L^0 (ii) L^2 (iii) L^{-1}
- 5. For the finite state machine M given in the table A, find out the string among the following strings, which are accepted by M: (a) 101101 (b) 11111 (c) 000000

	Inputs	
States	0	1
q_{0}	$q_{_2}$	$q_{_1}$
$q_{_1}$	$q_{\scriptscriptstyle 3}$	$q_{_0}$
q_{2}	$q_{_0}$	$q_{_3}$
q_3	$q_{_1}$	$q_{_2}$

	Inputs			
States	a	b		
s_0	s_0	\boldsymbol{s}_1		
\boldsymbol{s}_1	\boldsymbol{s}_1	s_2		
s_2	s_2	s_2		
Table B				

 D_{210}

Accepting states are q_0, q_2

Table A

- 6. Let M be the automaton with the following input set A, state set S, and accepting or final ("yes") state set $Y: A = \{a,b\}, S = \{s_0,s_1,s_2\}, Y = \{s_1\}$. Suppose s_0 is the initial state of M, and next state function F of M is given by the table B. Draw the state diagram D = D(M) of the automaton M.
- 7. Construct the state diagram for the finite-state machine with the state table shown below.

8. Construct the state table for the finite-state machine with the state diagram shown in Figure 1.

F	Inputs	
States	0	1
s_0	$s_1, 1$	$s_0, 0$
s_1	$s_{3}, 1$	$s_0, 1$
s_2	$s_1, 0$	$s_{2}, 1$
s_3	$s_{2}, 0$	$s_1, 0$

Table C

- 9. Find the output string generated by the finite state machine in **Figure 1** if the input string is (i) 000000 (ii) 111111 (iii) 101011 (iv) 110101
- 10. Describe the language L = L(G), where G has the productions $S \to aSb, Sb \to bA, abA \to c$.