Adam Wilson

Salt Lake Community College

ANSWER WILL EVENTUALLY BE WRITTEN ON THIS BOARD AT THE COORDINATES (x, y). IF WE-

NOW, LET'S ASSUME THE CORRECT

Source: https://xkcd.com/1724/

Definition

A **vector space** $\mathbb V$ is a nonempty collection of objects called **vectors** for which the following operations

- Vector addition, denoted $\vec{x} + \vec{y}$
- Scalar multiplication, denoted $c\vec{x}$

satisfy the following nine properties. (For all $ec{\pmb{x}}, ec{\pmb{y}}, ec{\pmb{z}} \in \mathbb{V}$ and all $c, d \in \mathbb{R}$)

Closure

 $\mathbf{0} \ \mathsf{c}\vec{\pmb{x}} + d\vec{\pmb{y}} \in \mathbb{V}$

Addition

- ② There exists a zero vector $\vec{0} \in \mathbb{V}$ such that $\vec{x} + \vec{0} = \vec{x}$
- 3 For all $\vec{x} \in \mathbb{V}$ there exists $-\vec{x} \in \mathbb{V}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
- **4** $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- $\vec{\mathbf{o}} \ \vec{x} + \vec{y} = \vec{y} + \vec{x}$

- $\mathbf{6} \ 1\vec{x} = \vec{x}$
- $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- $(c+d)\vec{x} = c\vec{x} + d\vec{x}$
- $\mathbf{O} c(d\vec{\mathbf{x}}) = (cd)\vec{\mathbf{x}}$

Closure

 $\mathbf{0} \ \mathsf{c} \vec{\pmb{x}} + d \vec{\pmb{y}} \in \mathbb{V}$

Addition

- **2** There exists a **zero vector** $\vec{\mathbf{0}} \in \mathbb{V}$ such that $\vec{x} + \vec{\mathbf{0}} = \vec{x}$
- 3 For all $\vec{x} \in \mathbb{V}$ there exists $-\vec{x} \in \mathbb{V}$ such that $\vec{x} + (-\vec{x}) = \bar{0}$
- **4** $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- $\vec{\mathbf{3}} \ \vec{x} + \vec{y} = \vec{y} + \vec{x}$

- $\mathbf{6} \ 1\vec{x} = \vec{x}$
- $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- $(c+d)\vec{x} = c\vec{x} + d\vec{x}$

Closure

 $\mathbf{0} \ \mathsf{c} \vec{\pmb{x}} + d \vec{\pmb{y}} \in \mathbb{V}$

Addition

- **2** There exists a **zero vector** $\vec{\mathbf{0}} \in \mathbb{V}$ such that $\vec{\mathbf{x}} + \vec{\mathbf{0}} = \vec{\mathbf{x}}$
- **3** For all $\vec{x} \in \mathbb{V}$ there exists $-\vec{x} \in \mathbb{V}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
- $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- **6** $\vec{x} + \vec{y} = \vec{y} + \vec{x}$

- $\mathbf{6} \ 1\vec{\mathbf{x}} = \vec{\mathbf{x}}$
- $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$

Closure

 $\mathbf{0}$ c $\vec{\pmb{x}} + d\vec{\pmb{y}} \in \mathbb{V}$

Addition

- **2** There exists a **zero vector** $\vec{\mathbf{0}} \in \mathbb{V}$ such that $\vec{\mathbf{x}} + \vec{\mathbf{0}} = \vec{\mathbf{x}}$
- **3** For all $\vec{x} \in \mathbb{V}$ there exists $-\vec{x} \in \mathbb{V}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
- $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- $\vec{\mathbf{5}} \ \vec{x} + \vec{y} = \vec{y} + \vec{x}$

- $\mathbf{6} \ 1\vec{\mathbf{x}} = \vec{\mathbf{x}}$
- $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$

Closure

 $\mathbf{0}$ c $ec{oldsymbol{x}}+dec{oldsymbol{y}}\in\mathbb{V}$

Addition

- **2** There exists a **zero vector** $\vec{\mathbf{0}} \in \mathbb{V}$ such that $\vec{\mathbf{x}} + \vec{\mathbf{0}} = \vec{\mathbf{x}}$
- **3** For all $\vec{x} \in \mathbb{V}$ there exists $-\vec{x} \in \mathbb{V}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
- **4** $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- $\vec{3} \vec{x} + \vec{y} = \vec{y} + \vec{x}$

- $\mathbf{6} \ 1\vec{\mathbf{x}} = \vec{\mathbf{x}}$
- $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- $(c+d)\vec{x} = c\vec{x} + d\vec{x}$

Closure

 $\mathbf{0}$ c $\vec{\pmb{x}} + d\vec{\pmb{y}} \in \mathbb{V}$

Addition

- **2** There exists a **zero vector** $\vec{\mathbf{0}} \in \mathbb{V}$ such that $\vec{\mathbf{x}} + \vec{\mathbf{0}} = \vec{\mathbf{x}}$
- **3** For all $\vec{x} \in \mathbb{V}$ there exists $-\vec{x} \in \mathbb{V}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
- **4** $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- $\vec{\mathbf{5}} \ \vec{\mathbf{x}} + \vec{\mathbf{y}} = \vec{\mathbf{y}} + \vec{\mathbf{x}}$

- $\mathbf{6} \ 1\vec{\mathbf{x}} = \vec{\mathbf{x}}$
- $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- $(c+d)\vec{x} = c\vec{x} + d\vec{x}$

Closure

 $\mathbf{0} \ \mathsf{c} \vec{\pmb{x}} + d \vec{\pmb{y}} \in \mathbb{V}$

Addition

- **2** There exists a **zero vector** $\vec{\mathbf{0}} \in \mathbb{V}$ such that $\vec{\mathbf{x}} + \vec{\mathbf{0}} = \vec{\mathbf{x}}$
- **3** For all $\vec{x} \in \mathbb{V}$ there exists $-\vec{x} \in \mathbb{V}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
- **4** $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- $\vec{s} \vec{x} + \vec{y} = \vec{y} + \vec{x}$

- $\mathbf{6} \ 1\vec{\mathbf{x}} = \vec{\mathbf{x}}$
- $c(\vec{x}+\vec{y})=c\vec{x}+c\vec{y}$
- $(c+d)\vec{x} = c\vec{x} + d\vec{x}$

Closure

 $\mathbf{0} \ \mathsf{c} \vec{\pmb{x}} + d \vec{\pmb{y}} \in \mathbb{V}$

Addition

- **2** There exists a **zero vector** $\vec{\mathbf{0}} \in \mathbb{V}$ such that $\vec{\mathbf{x}} + \vec{\mathbf{0}} = \vec{\mathbf{x}}$
- **3** For all $\vec{x} \in \mathbb{V}$ there exists $-\vec{x} \in \mathbb{V}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
- **4** $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- $\vec{\mathbf{5}} \ \vec{\mathbf{x}} + \vec{\mathbf{y}} = \vec{\mathbf{y}} + \vec{\mathbf{x}}$

- $\mathbf{6} \ 1\vec{\mathbf{x}} = \vec{\mathbf{x}}$
- $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- $(c+d)\vec{x} = c\vec{x} + d\vec{x}$

Closure

 $\mathbf{0} \ \mathsf{c}\vec{\pmb{x}} + d\vec{\pmb{y}} \in \mathbb{V}$

Addition

- **2** There exists a **zero vector** $\vec{\mathbf{0}} \in \mathbb{V}$ such that $\vec{\mathbf{x}} + \vec{\mathbf{0}} = \vec{\mathbf{x}}$
- **3** For all $\vec{x} \in \mathbb{V}$ there exists $-\vec{x} \in \mathbb{V}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
- **4** $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- $\mathbf{5} \ \vec{\mathbf{x}} + \vec{\mathbf{y}} = \vec{\mathbf{y}} + \vec{\mathbf{x}}$

- $\mathbf{6} \ 1\vec{\mathbf{x}} = \vec{\mathbf{x}}$
- $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- $(c+d)\vec{x} = c\vec{x} + d\vec{x}$

Example

All vectors $\langle x_1, x_2, \dots, x_n \rangle$ in \mathbb{R}^n satisfy these properties. (It doesn't matter if you think of them as row or column vectors.)

Example

All vectors $< x_1, x_2, \dots, x_n >$ in \mathbb{R}^n satisfy these properties. (It doesn't matter if you think of them as row or column vectors.)

Definition

Let \mathbb{M}_{mn} denote the collection of all $m \times n$ matrices.

Example

All vectors $< x_1, x_2, \dots, x_n >$ in \mathbb{R}^n satisfy these properties. (It doesn't matter if you think of them as row or column vectors.)

Definition

Let \mathbb{M}_{mn} denote the collection of all $m \times n$ matrices.

Example

Thinking back, we can see that the properties for addition and scalar multiplication of matrices we saw in section 3.1 satisfy all nine requirements to be a vector space.

Which means, for any $m, n \in \mathbb{R}$, \mathbb{M}_{mn} is a vector space.

Definition

A **function space** is a vector space where the "vectors" are functions defined on an interval *I*. The addition and scalar multiplication operations are defined in the usual way:

- (f+g)(t) = f(t) + g(t), for all $t \in I$
- (cf)(t) = cf(t), for all $t \in I$

Definition

A **function space** is a vector space where the "vectors" are functions defined on an interval *I*. The addition and scalar multiplication operations are defined in the usual way:

- (f+g)(t) = f(t) + g(t), for all $t \in I$
- (cf)(t) = cf(t), for all $t \in I$

Solutions to linear homogeneous DEs form a vector space.

Example

The set of all solutions of the first order linear homogeneous DE

$$y'+p(t)y=0$$

(where p and y are defined on some interval I) is a vector space.

Example

The set of all solutions of the first order linear homogeneous DE

$$y'+p(t)y=0$$

(where p and y are defined on some interval I) is a vector space.

The addition and scalar multiplication properties are well known for functions. All we really need to check is that closure holds.

Example

The set of all solutions of the first order linear homogeneous DE

$$y'+p(t)y=0$$

(where p and y are defined on some interval I) is a vector space.

The addition and scalar multiplication properties are well known for functions. All we really need to check is that closure holds.

$$(au + bv)' + p(t)(au + bv)$$

Example

The set of all solutions of the first order linear homogeneous DE

$$y'+p(t)y=0$$

(where p and y are defined on some interval I) is a vector space.

The addition and scalar multiplication properties are well known for functions. All we really need to check is that closure holds.

$$(au + bv)' + p(t)(au + bv) = au' + bv' + au \cdot p(t) + bv \cdot p(t)$$

Example

The set of all solutions of the first order linear homogeneous DE

$$y'+p(t)y=0$$

(where p and y are defined on some interval I) is a vector space.

The addition and scalar multiplication properties are well known for functions. All we really need to check is that closure holds.

$$(au + bv)' + p(t)(au + bv) = au' + bv' + au \cdot p(t) + bv \cdot p(t)$$

= $a(u' + p(t)u) + b(v' + p(t)v)$

Example

The set of all solutions of the first order linear homogeneous DE

$$y'+p(t)y=0$$

(where p and y are defined on some interval I) is a vector space.

The addition and scalar multiplication properties are well known for functions. All we really need to check is that closure holds.

$$(au + bv)' + p(t)(au + bv) = au' + bv' + au \cdot p(t) + bv \cdot p(t)$$

= $a(u' + p(t)u) + b(v' + p(t)v)$
= $a \cdot 0 + b \cdot 0$

Example

The set of all solutions of the first order linear homogeneous DE

$$y'+p(t)y=0$$

(where p and y are defined on some interval I) is a vector space.

The addition and scalar multiplication properties are well known for functions. All we really need to check is that closure holds.

$$(au + bv)' + p(t)(au + bv) = au' + bv' + au \cdot p(t) + bv \cdot p(t)$$

$$= a(u' + p(t)u) + b(v' + p(t)v)$$

$$= a \cdot 0 + b \cdot 0$$

$$= 0$$

Example

The set of all solutions of the second order linear homogeneous DE

$$y'' + q(t)y' + p(t)y = 0$$

(where q, p and y are defined on some interval I) is a vector space.

Example

The set of all solutions of the second order linear homogeneous DE

$$y'' + q(t)y' + p(t)y = 0$$

(where q, p and y are defined on some interval I) is a vector space.

Again, all we really need to check is that closure holds.

Example

The set of all solutions of the second order linear homogeneous DE

$$y'' + q(t)y' + p(t)y = 0$$

(where q, p and y are defined on some interval I) is a vector space.

Again, all we really need to check is that closure holds.

$$(au + bv)'' + q(t)(au + bv)' + p(t)(au + bv)$$

Example

The set of all solutions of the second order linear homogeneous DE

$$y'' + q(t)y' + p(t)y = 0$$

(where q, p and y are defined on some interval I) is a vector space.

Again, all we really need to check is that closure holds.

$$(au + bv)'' + q(t)(au + bv)' + p(t)(au + bv)$$

= $a(u'' + q(t)u' + p(t)u) + b(v'' + q(t)v' + p(t)v)$

Example

The set of all solutions of the second order linear homogeneous DE

$$y'' + q(t)y' + p(t)y = 0$$

(where q, p and y are defined on some interval I) is a vector space.

Again, all we really need to check is that closure holds.

$$(au + bv)'' + q(t)(au + bv)' + p(t)(au + bv)$$

= $a(u'' + q(t)u' + p(t)u) + b(v'' + q(t)v' + p(t)v)$
= $a \cdot 0 + b \cdot 0$

Example

The set of all solutions of the second order linear homogeneous DE

$$y'' + q(t)y' + p(t)y = 0$$

(where q, p and y are defined on some interval I) is a vector space.

Again, all we really need to check is that closure holds.

$$(au + bv)'' + q(t)(au + bv)' + p(t)(au + bv)$$

$$= a(u'' + q(t)u' + p(t)u) + b(v'' + q(t)v' + p(t)v)$$

$$= a \cdot 0 + b \cdot 0$$

$$= 0$$

Example

The set of all solutions of the first-order linear (but not homogeneous) DE

$$y' + 2ty = 1$$

is **not** a vector space. Why?

Example

The set of all solutions of the first-order linear (but not homogeneous) DE

$$y' + 2ty = 1$$

is **not** a vector space. Why?

There is no zero vector. There is no solution z(t) such that, for all solutions u(t), u(t) + z(t) = 0.

Example

The set of all solutions of the first-order linear (but not homogeneous) DE

$$y' + 2ty = 1$$

is **not** a vector space. Why?

There is no zero vector. There is no solution z(t) such that, for all solutions u(t), u(t) + z(t) = 0.

Example

Consider the collection of all polynomials of degree \leq 3. A vector in this space is given by

$$P(t) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

where $a_3, a_2, a_1, a_0 \in \mathbb{R}$.

This collection is a vector space, verified using basic algebra.

- \mathbb{R}^2 , the space of all real ordered pairs.
- \mathbb{R}^3 , the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples
- \mathbb{C}^n , the space of all complex *n*-tuples.
- P, the space of all polynomials
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- M_{mn} , the space of all $m \times n$ matrices.
- ullet $\mathcal{C}(I)$, the space of all continuous functions defined on the interval I
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

- \mathbb{R}^2 , the space of all real ordered pairs.
- \mathbb{R}^3 , the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples
- \mathbb{C}^n , the space of all complex *n*-tuples.
- P, the space of all polynomials.
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- M_{mn} , the space of all $m \times n$ matrices.
- ullet $\mathcal{C}(I)$, the space of all continuous functions defined on the interval I
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

- \mathbb{R}^2 , the space of all real ordered pairs.
- \mathbb{R}^3 , the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples.
- \mathbb{C}^n , the space of all complex *n*-tuples
- P, the space of all polynomials.
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- M_{mn} , the space of all $m \times n$ matrices.
- ullet $\mathcal{C}(I)$, the space of all continuous functions defined on the interval I
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

- \mathbb{R}^2 , the space of all real ordered pairs.
- \mathbb{R}^3 , the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples.
- \mathbb{C}^n , the space of all complex *n*-tuples.
- P, the space of all polynomials
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- \mathbb{M}_{mn} , the space of all $m \times n$ matrices.
- ullet $\mathcal{C}(I)$, the space of all continuous functions defined on the interval I
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

- \mathbb{R}^2 , the space of all real ordered pairs.
- \mathbb{R}^3 , the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples.
- \mathbb{C}^n , the space of all complex *n*-tuples.
- P, the space of all polynomials.
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- \mathbb{M}_{mn} , the space of all $m \times n$ matrices.
- ullet $\mathcal{C}(I)$, the space of all continuous functions defined on the interval I
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

- \mathbb{R}^2 , the space of all real ordered pairs.
- \mathbb{R}^3 , the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples.
- \mathbb{C}^n , the space of all complex *n*-tuples.
- P, the space of all polynomials.
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- M_{mn} , the space of all $m \times n$ matrices.
- ullet $\mathcal{C}(I)$, the space of all continuous functions defined on the interval I.
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

- \mathbb{R}^2 , the space of all real ordered pairs.
- R³, the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples.
- \mathbb{C}^n , the space of all complex *n*-tuples.
- P, the space of all polynomials.
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- \mathbb{M}_{mn} , the space of all $m \times n$ matrices.
- ullet $\mathcal{C}(I)$, the space of all continuous functions defined on the interval I
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

- \mathbb{R}^2 , the space of all real ordered pairs.
- \mathbb{R}^3 , the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples.
- \mathbb{C}^n , the space of all complex *n*-tuples.
- P, the space of all polynomials.
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- \mathbb{M}_{mn} , the space of all $m \times n$ matrices.
- C(I), the space of all continuous functions defined on the interval I.
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

- \mathbb{R}^2 , the space of all real ordered pairs.
- \mathbb{R}^3 , the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples.
- \mathbb{C}^n , the space of all complex *n*-tuples.
- P, the space of all polynomials.
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- \mathbb{M}_{mn} , the space of all $m \times n$ matrices.
- C(I), the space of all continuous functions defined on the interval I.
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

- \mathbb{R}^2 , the space of all real ordered pairs.
- \mathbb{R}^3 , the space of all real ordered triples.
- \mathbb{R}^n , the space of all real ordered *n*-tuples.
- \mathbb{C}^n , the space of all complex *n*-tuples.
- P, the space of all polynomials.
- \mathbb{P}_n , the space of all polynomials of degree $\leq n$
- \mathbb{M}_{mn} , the space of all $m \times n$ matrices.
- C(I), the space of all continuous functions defined on the interval I.
- $C^n(I)$, the space of all functions, defined on the interval I, having n continuous derivatives.
- C^n , the space of all functions, defined on the interval $(-\infty, +\infty)$, having n continuous derivatives.

Theorem

A nonempty subset, \mathbb{W} , of a vector space \mathbb{V} is a subspace of \mathbb{V} if

- $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} \in \mathbb{W}$ for all $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{W}$
- $c\vec{\boldsymbol{u}} \in \mathbb{W}$ for all $\vec{\boldsymbol{u}} \in \mathbb{W}$ and $c \in \mathbb{R}$

Theorem

A nonempty subset, \mathbb{W} , of a vector space \mathbb{V} is a subspace of \mathbb{V} if

- $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} \in \mathbb{W}$ for all $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{W}$
- $c\vec{\mathbf{u}} \in \mathbb{W}$ for all $\vec{\mathbf{u}} \in \mathbb{W}$ and $c \in \mathbb{R}$

Proof

The definition of a subspace guarantees closure, everything else is inherited from the parent vector space.

For example, given $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{W}$, consider $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}}$.

Theorem

A nonempty subset, \mathbb{W} , of a vector space \mathbb{V} is a subspace of \mathbb{V} if

- $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} \in \mathbb{W}$ for all $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{W}$
- $c\vec{\mathbf{u}} \in \mathbb{W}$ for all $\vec{\mathbf{u}} \in \mathbb{W}$ and $c \in \mathbb{R}$

Proof

The definition of a subspace guarantees closure, everything else is inherited from the parent vector space.

For example, given $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{W}$, consider $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}}$.

Since $\mathbb{W} \subseteq \mathbb{V}$ we have $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} = \vec{\boldsymbol{v}} + \vec{\boldsymbol{u}}$.

Theorem

A nonempty subset, \mathbb{W} , of a vector space \mathbb{V} is a subspace of \mathbb{V} if

- $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} \in \mathbb{W}$ for all $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{W}$
- $c\vec{\boldsymbol{u}} \in \mathbb{W}$ for all $\vec{\boldsymbol{u}} \in \mathbb{W}$ and $c \in \mathbb{R}$

Proof

The definition of a subspace guarantees closure, everything else is inherited from the parent vector space.

For example, given $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{W}$, consider $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}}$.

Since $\mathbb{W} \subseteq \mathbb{V}$ we have $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} = \vec{\boldsymbol{v}} + \vec{\boldsymbol{u}}$.

But, since $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} \in \mathbb{W}$ we must have $\vec{\boldsymbol{v}} + \vec{\boldsymbol{u}} \in \mathbb{W}$.

Theorem

A nonempty subset, \mathbb{W} , of a vector space \mathbb{V} is a subspace of \mathbb{V} if

- $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} \in \mathbb{W}$ for all $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{W}$
- $c\vec{\mathbf{u}} \in \mathbb{W}$ for all $\vec{\mathbf{u}} \in \mathbb{W}$ and $c \in \mathbb{R}$

Proof

The definition of a subspace guarantees closure, everything else is inherited from the parent vector space.

For example, given $\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \in \mathbb{W}$, consider $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}}$.

Since $\mathbb{W} \subseteq \mathbb{V}$ we have $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} = \vec{\boldsymbol{v}} + \vec{\boldsymbol{u}}$.

But, since $\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}} \in \mathbb{W}$ we must have $\vec{\boldsymbol{v}} + \vec{\boldsymbol{u}} \in \mathbb{W}$.

A vector space is a subspace of itself.

Example

Is the upper half plane a subspace of \mathbb{R}^2 ?

No, points in the upper half plane are not closed under scalar multiplication.

Example

Is the upper half plane a subspace of \mathbb{R}^2 ?

No, points in the upper half plane are not closed under scalar multiplication.

Consider (1,1).

Example

Is the upper half plane a subspace of \mathbb{R}^2 ?

No, points in the upper half plane are not closed under scalar multiplication.

Consider (1,1).

Multiplying by the scalar -1 gives $(-1 \cdot 1, -1 \cdot 1) = (-1, -1)$, a point in Q3.

Example

Is the set containing Q1 and Q3 a subspace of \mathbb{R}^2 ?

No, points in the set containing Q1 and Q3 are not closed under addition.

Example

Is the set containing Q1 and Q3 a subspace of \mathbb{R}^2 ?

No, points in the set containing Q1 and Q3 are not closed under addition.

Consider (1, 2) and (-2, -1).

Example

Is the set containing Q1 and Q3 a subspace of \mathbb{R}^2 ?

No, points in the set containing Q1 and Q3 are not closed under addition.

Consider (1,2) and (-2,-1).

Adding these points gives (1 + (-2), 2 + (-1)) = (-1, 1), a point in Q2.

Is the line y = x a subspace of \mathbb{R}^2 ?

Example

Is the line y = x a subspace of \mathbb{R}^2 ?

Yes. Given (s, s) and (t, t), two points on the line, then

$$a \cdot (s,s) + b \cdot (t,t) =$$

Example

Is the line y = x a subspace of \mathbb{R}^2 ?

Yes. Given (s, s) and (t, t), two points on the line, then

$$a \cdot (s,s) + b \cdot (t,t) = (as,as) + (bt,bt)$$

Example

Is the line y = x a subspace of \mathbb{R}^2 ?

Yes. Given (s, s) and (t, t), two points on the line, then

$$a \cdot (s,s) + b \cdot (t,t) = (as,as) + (bt,bt)$$

$$= (as+bt,as+bt)$$

Example

Is the line y = x a subspace of \mathbb{R}^2 ?

Yes. Given (s, s) and (t, t), two points on the line, then

$$a \cdot (s,s) + b \cdot (t,t) = (as,as) + (bt,bt)$$

$$= (as+bt,as+bt)$$

which is a point on the line.

Is the line y = x + 1 a subspace of \mathbb{R}^2 ?

Example

Is the line y = x + 1 a subspace of \mathbb{R}^2 ?

No, the zero vector, (0,0) is not on the line.

Corollary

The only subspaces of \mathbb{R}^2 are

- The zero subspace (0,0)
- Any line passing through the origin
- lacksquare \mathbb{R}^2

Corollary

The only subspaces of \mathbb{R}^2 are

- The zero subspace (0,0)
- Any line passing through the origin
- \mathbb{R}^2

We call a subspace of \mathbb{V} **trivial** if it is the subspace containing just the zero vector, or \mathbb{V} itself. All other subspaces are called **nontrivial**.

Theorem

The set of solutions of the linear system $A\vec{x} = \vec{0}$ is a subspace of \mathbb{R}^m , where A is a $m \times n$ matrix and $\vec{x} \in \mathbb{R}^m$, is a subspace of \mathbb{R}^m .

Theorem

The set of solutions of the linear system $A\vec{x} = \vec{0}$ is a subspace of \mathbb{R}^m , where A is a $m \times n$ matrix and $\vec{x} \in \mathbb{R}^m$, is a subspace of \mathbb{R}^m .

Proof

Closure is given by the Superposition Principle from section 2.1.

Theorem

The set of solutions of the linear system $A\vec{x} = \vec{0}$ is a subspace of \mathbb{R}^m , where A is a $m \times n$ matrix and $\vec{x} \in \mathbb{R}^m$, is a subspace of \mathbb{R}^m .

Proof

Closure is given by the Superposition Principle from section 2.1. Since solutions to $A\vec{x} = \vec{0}$ are vectors in \mathbb{R}^m , the remaining properties are inherited from \mathbb{R}^m