1 Maß-Integral und Erwartungswert

Stochastik I: Ein Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) bestehend aus:

- (i) $\Omega \neq \emptyset$ bel. Menge, der Ergebnisraum
- (ii) $\mathcal{A} \subset \mathcal{P}(\Omega)$ eine σ -Algebra, d.h.
 - $\Omega \in \mathcal{A}$
 - $A \in \mathcal{A} \implies A^c \in \mathcal{A}$
 - $A_1, A_2, \ldots \in \mathcal{A} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- (iii) $P: \mathcal{A} \to [0,1]$ ein Wahrscheinlichkeitsmaß, d.h.
 - $P(\Omega) = 1$
 - $A_1, A_2, \ldots \in \mathcal{A}$, paarweise disjunkt $\implies P(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ (σ -Additivität)

Statt das Wahrscheinlichkeitsmaßes P betrachten wir jetzt eine allgemeine Funktion $\mu: \mathcal{A} \to \mathbb{R}_+ \cup \{\infty\}$, die beliebige positive Werte annehmen kann.

Definition

Sei (Ω, \mathcal{A}) ein messbarer Raum. Eine Abbildung $\mu : \mathcal{A} \to \mathbb{R}_+ \cup \{\infty\}$ heißt **Maß** auf (Ω, \mathcal{A}) , wenn $\mu(\emptyset) = 0$ und $\mu(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ für alle paarweise disjunkten Ereignisse $A_1, A_2, \ldots, (\Omega, \mathcal{A}, \mu)$ heißt **Maßraum**.

Bemerkung

Da $\mu(A) = \infty$ möglich, definieren wir: $a + \infty = \infty \ \forall a \in \mathbb{R} \cup \{\infty\}.$

Definition

Sei μ ein Maß auf (Ω, \mathcal{A}) .

- 1. μ heißt **endlich**, falls $\mu(\Omega) < \infty$,
- 2. μ heißt σ -endlich, falls \exists eine Folge (A_i) , $i \in \mathbb{N}$, $A_i \in \mathcal{A}$ mit $\bigcup_{i=1}^{\infty} A_i = \Omega$ und $\mu(A_i) < \infty \ \forall i \in \mathbb{N}$.

Beispiel 1.1

a) Sei (Ω, \mathcal{A}) ein messbarer Raum, $\omega \in \Omega$ fest.

$$\delta_{\omega}(A) := \begin{cases} 1, & \omega \in A \\ 0, & \text{sonst} \end{cases}$$

für $A \in \mathcal{A}$ definiert ein Maß.

 δ_{ω} heißt **Einpunktmaß** oder **Dirac-Maß** im Punkt ω . Da $\delta_{\omega}(\Omega) = 1$ ist δ_{ω} sogar ein Wahrscheinlichkeitsmaß.

- b) $\mu := \sum_{\omega \in \Omega} \delta_{\omega}$ ist das **abzählende Maß** auf Ω . (Falls $|A| < \infty : \mu(A) = |A|$ Anzahl der Elemente in A.) μ ist endlich $\Leftrightarrow \Omega$ ist endlich, μ ist σ -endlich $\Leftrightarrow \Omega$ ist abzählbar.
- c) Sei $\Omega = \mathbb{R}$, $\mathcal{A} = \mathfrak{B}(\mathbb{R})$ Borelsche σ -Algebra.

$$\mathfrak{B}(\mathbb{R}) = \sigma(\underbrace{\{(a,b], -\infty < a < b < \infty\}}) = \sigma(\varepsilon) := \bigcap_{\mathcal{A} \text{ σ-Algebra}, \varepsilon \subset \mathcal{A}} \mathcal{A}$$

Sei $a, b \in \mathbb{R}$ mit a < b. Durch $\lambda((a, b]) := b - a$ wird auf $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$ ein Maß definiert, das sogenannte **Lebesgue-Maß**. Die Eindeutigkeit von λ folgt aus dem **Eindeutigkeitssatz für Maß**e:

Sei $\mathcal{A} = \sigma(\varepsilon)$ und ε durchschnittsstabil (d.h.: $A, B \in \varepsilon \implies A \cap B \in \varepsilon$). Weiter seien μ_1, μ_2 Maße auf \mathcal{A} mit $\mu_1(A) = \mu_2(A) \ \forall A \in \varepsilon$. \exists eine Folge $(A_n)_{n \in \mathbb{N}} \subset \varepsilon$ mit $A_n \uparrow \Omega$ und $\mu_1(A_n) = \mu_2(A_n) < \infty \ \forall n$, so gilt $\mu_1 = \mu_2$.

Eine nichttriviale Aufgabe ist es hier zu zeigen, dass λ auf ganz $\mathfrak{B}(\mathbb{R})$ zu einem Maß fortgesetzt werden kann. (gezeigt von Carathéodory; s. z.B. Henze, Bauer)

Bei $\Omega = \overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$, ist $\mathfrak{B}(\overline{\mathbb{R}}) := \{B \subset \overline{\mathbb{R}} | B \cap \mathbb{R} \in \mathfrak{B}(\mathbb{R})\} = \{B, B \cup \{\infty\}, B \cup \{-\infty\}, B \cup \{\infty, -\infty\} | B \in \mathfrak{B}(\mathbb{R})\}$ eine σ -Algebra (analog $\mathfrak{B}((-\infty, \infty))$) und $\overline{\lambda}(B) = \lambda(B) \ \forall B \in \mathfrak{B}(\mathbb{R})$ und $\overline{\lambda}(\{\infty\}) = \overline{\lambda}(\{-\infty\}) = 0$ λ ist <u>nicht</u> endlich, da $\lambda((-\infty, a]) = \sum_{n=1}^{\infty} \underline{\lambda((a-n, a-n+1])} = \infty$, aber

σ-endlich, da $\bigcup_{n=1}^{\infty} (-n, n] = \mathbb{R}, \lambda((-n, n]) < \infty \ \forall n \in \mathbb{N}.$

d) Seien μ_n Maße, $n \in \mathbb{N}$, so ist

$$\mu := \sum_{n=1}^{\infty} b_n \mu_n$$

wieder ein Maß.

Konvention: $a \cdot \infty = \infty \cdot a = \infty, a > 0, 0 \cdot \infty = 0$ Spezialfall: $\mu_n = \delta_{\omega_n}(\omega_n \in \Omega), b \geq 0, \sum_{n=1}^{\infty} b_n = 1$

$$\mu = \sum_{n=1}^{\infty} b_n \delta_{\omega_n}$$

ist dann ein diskretes, auf $\{\omega_1, \omega_2, \ldots\}$ konzentriertes Wahrscheinlichkeitsmaß.

e) Sei $G: \mathbb{R} \to \mathbb{R}$ wachsend und rechtsseitig stetig (Eine Funktion mit diesen Eigenschaften heißt **maßdefinierende Funktion**. Gilt zusätzlich $\lim_{x\to\infty} G(x) = 1$, $\lim_{x\to-\infty} G(x) = 0$, dann ist G eine Verteilungsfunktion.)

$$\mu_G((a,b]) := G(b) - G(a)$$

für $a, b \in \mathbb{R}, a \leq b$ definiert μ_G ein Maß auf $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$, das sogenannte **Lebesgue-Stieltjes-Maß** zu G. (Fortsetzungsproblem analog zu c))

Ist Geine Verteilungsfunktion mit $G(x) = \int_{-\infty}^x f(y) \mathrm{d}y$ mit

$$f \ge 0: \int_{-\infty}^{\infty} f(y) \mathrm{d}y = 1,$$

so ist $\mu_G((a,b]) = \int_a^b f(y) dy$ ein Wahrscheinlichkeitsmaß mit Dichte f.

Bemerkung

Viele der in Stochastik I für Wahrscheinlichkeitsmaße besprochene Eigenschaften gelten auch für allgemeine Maße μ , z.B. μ ist stetig von unten, d.h.

$$\underbrace{A_n \uparrow}_{A_n \subset A_{n+1}} \operatorname{mit} \bigcup_{i=1}^{\infty} A_i = A \implies \mu(A) = \lim_{n \to \infty} (A_n)$$

Bei der Stetigkeit von oben brauchen wir eine Zusatzbedingung:

$$\underbrace{A_n \downarrow}_{A_n \supset A_{n+1}} \operatorname{mit} \bigcap_{k=1}^{\infty} A_k = A, \underline{\mu(A_n) < \infty} \implies \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Beispiel

Lebesgue-Maß: $A_n = (-\infty, -n] \downarrow, \emptyset = \bigcap_{n=1}^{\infty} (-\infty, -n], \lim_{n \to \infty} \lambda((-\infty, -n]) = \infty \neq 0 = \lambda(\emptyset)$

Definition

Seien (Ω, \mathcal{A}) und (Ω', \mathcal{A}') zwei meßbare Räume. Eine Abbildung $f: \Omega \to \Omega'$ heißt $(\mathcal{A}, \mathcal{A}')$ -messbar, falls

$$f^{-1}(A') \in \mathcal{A}, \ \forall A' \in \mathcal{A}'$$

f mit dieser Eigenschaft heißt **Zufallsgröße**. Ist $\Omega' = \mathbb{R}$, dann **Zufallsvariable**.

Im Folgenden sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Ziel ist es, möglichst vielen Funktionen $f: \Omega \to \bar{\mathbb{R}}$ ein Integral bezüglich μ zuzuordnen. Die Konstruktion erfolgt in drei Schritten:

1.) Sei $\mathcal{E} := \{ f : \Omega \to \mathbb{R} | f \geq 0, f \text{ ist } \mathcal{A}\text{-messbar}, f(\Omega) \text{ endlich} \}$ die Menge der Elementarfunktionen auf Ω .

Ist
$$f(\Omega) = {\alpha_1, \ldots, \alpha_n}, \alpha_i \ge 0$$
, so gilt:

$$f = \sum_{j=1}^{n} \alpha_j \mathbf{1}_{A_j}$$

mit $A_j := f^{-1}(\{\alpha_j\})$ und $\Omega = \sum_{j=1}^n A_j$. Eine Darstellung von f mit dieser Eigenschaft heißt "Normaldarstellung" von f. Normaldarstellung ist nicht eindeutig.

Definition

Ist f eine Elementarfunktion mit Normaldarstellung $f = \sum_{j=1}^{n} \alpha_j \mathbf{1}_{A_j}$, so heißt $\int f d\mu := \sum_{j=1}^{n} \alpha_j \mu(A_j)$ das μ -Integral von f. Schreibweise $\int f d\mu = \mu(f)$.

Lemma 1.1 (Unabhängigkeit des Integrals von der Normaldarstellung)

Für zwei Normaldarstellungen

$$f = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i} = \sum_{i=1}^{m} \beta_i \mathbf{1}_{B_i}$$

einer Funktion $f \in \mathcal{E}$ gilt:

$$\sum_{j=1}^{n} \alpha_j \mu(A_j) = \sum_{i=1}^{m} \beta_i \mu(B_i)$$

Beweis

Voraussetzung
$$\implies \Omega = \sum_{j=1}^{n} A_j = \sum_{i=1}^{m} B_i$$

$$\implies \mu(A_j) \stackrel{\sigma-\text{Add.}}{=} \sum_{i=1}^m \mu(A_j \cap B_i)$$
$$\mu(B_i) = \sum_{i=1}^n \mu(A_j \cap B_i)$$

$$\mu(A_j \cap B_i) \neq 0 \implies A_j \cap B_i \neq \emptyset \implies \alpha_j = \beta_i$$

Insgesamt:

$$\sum_{j=1}^{n} \alpha_{j} \mu(A_{j}) = \sum_{j=1}^{n} \sum_{i=1}^{m} \underbrace{\alpha_{j}}_{\beta_{i}} \mu(A_{j} \cap B_{i})$$
$$= \sum_{i=1}^{m} \beta_{i} \mu(B_{i})$$

Lemma 1.2 (Eigenschaften des μ -Integrals)

a)
$$\int \mathbf{1}_A d\mu = \mu(A) \text{ für } A \in \mathcal{A}$$

b)
$$\int (\alpha f) d\mu = \alpha \int f d\mu \ f \ddot{u} r \ f \in \mathcal{E}, \alpha \geq 0$$

c)
$$\int (f+g)d\mu = \int f d\mu + \int g d\mu \ f\ddot{u}r \ f, g \in \mathcal{E}$$

d)
$$f \leq g \implies \int f d\mu \leq \int g d\mu \ f \ddot{u} r \ f, g \in \mathcal{E}$$

Beweis

a), b) klar

c) Sei
$$f = \sum_{j=1}^{n} \alpha_j \mathbf{1}_{A_j}, g = \sum_{i=1}^{m} \beta_i \mathbf{1}_{B_i}$$

$$\Rightarrow f = \sum_{j=1}^{n} \sum_{i=1}^{m} \alpha_{j} \mathbf{1}_{A_{j} \cap B_{i}}$$

$$g = \sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{i} \mathbf{1}_{B_{i} \cap A_{j}}$$

$$\text{also } f + g = \sum_{j=1}^{n} \sum_{i=1}^{m} (\alpha_{j} + \beta_{i}) \mathbf{1}_{A_{j} \cap B_{i}}$$

$$\Rightarrow \mu(f + g) = \sum_{j=1}^{n} \sum_{i=1}^{m} (\alpha_{j} + \beta_{i}) \mu(A_{j} \cap B_{i})$$

$$= \sum_{j=1}^{n} \alpha_{j} \sum_{i=1}^{m} \mu(A_{j} \cap B_{i}) + \sum_{i=1}^{m} \beta_{i} \sum_{j=1}^{n} \mu(A_{j} \cap B_{i})$$

$$= \mu(f) + \mu(g)$$

d) folgt mit gleicher Darstellung wie in c)

Bemerkung

- a) Ist $f = \sum_{j=1}^{n} \alpha_j \mathbf{1}_{A_j} \in \mathcal{E}$, aber nicht notwendig eine Normaldarstellung, so folgt aus Lemma 1.2 c) $\int f d\mu = \sum_{j=1}^{n} \alpha_j \mu(A_j)$
- b) Ist (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}_+$ eine Zufallsvariable mit endlich vielen Werten $\{x_1, \dots, x_n\}$, so gilt:

$$\int X dP = \sum_{j=1}^{n} x_{j} P(X^{-1}(\{x_{j}\}))$$
$$= \sum_{j=1}^{n} x_{j} P^{X}(\{x_{j}\})$$

$$(A_j = X^{-1}(\{x_j\}))$$

Also: $\int X dP = EX$

2.) Sei $\mathcal{E}^+ := \{ f : \Omega \to \mathbb{R} | f \geq 0, f \text{ ist } \mathcal{A}\text{-messbar} \}$. Wichtig: Elemente von \mathcal{E}^+ kann man beliebig gut duch Elemente aus \mathcal{E} approximieren.

Satz 1.1

Zu jedem $f \in \mathcal{E}^+$ gibt es eine wachsende Folge $(u_n)_{n \in \mathbb{N}}$ aus \mathcal{E} mit $u_n \uparrow f$, d.h. $u_n \leq u_{n+1}$ und $\lim_{n \to \infty} u_n = f$ (jeweils punktweise).

Beweis

Sei $\alpha_n: \mathbb{R} \to [0, \infty]$ gegeben durch:

$$\alpha_n(x) := \begin{cases} 0, & \text{falls } x < 0\\ \frac{j}{2^n}, & \text{falls } \frac{j}{2^n} \le x < \frac{j+1}{2^n}, j = 0, 1, \dots, n2^n - 1\\ n, & \text{falls } x \ge n \end{cases}$$

(Hier fehlt ein Bild)

 α_n ist \mathfrak{B} -messbar. $\alpha_n \uparrow$ und $\lim_{n \to \infty} \alpha_n(x) = x$ für $n \to \infty$. Sei $u_n := \alpha_n \circ f$. Dann gilt $u_n \in \mathcal{E}$ und $u_n \uparrow f$.

Bemerkung

Ist f beschränkt, so konvergiert die Folge (u_n) gleichmäßig gegen f, d.h. $\lim_{n\to\infty} \sup_{\omega\in\Omega} |f(\omega)-u_n(\omega)|=0$.

Definition

Sei $f \in \mathcal{E}^+$ und (u_n) eine wachsende Folge aus \mathcal{E} mit $\lim_{n\to\infty} u_n = f$. Dann heißt

$$\int f \, d\mu := \lim_{n \to \infty} \int u_n \, d\mu$$

das μ -Integral von f. Wir zeigen, dass $\int f d\mu$ wohldefiniert ist.

Lemma 1.3

Sind (u_n) und (v_n) wachsende Folgen aus \mathcal{E} mit $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n$, so gilt:

$$\lim_{n \to \infty} \int u_n d\mu = \lim_{n \to \infty} \int v_n d\mu$$

Beweis

Wir zeigen zunächst: $\lim_{n\to\infty} u_n \geq v$ mit $v\in\mathcal{E} \implies \mu(v) \leq \lim_{n\to\infty} \mu(u_n)$ Denn: Sei $v=\sum_{j=1}^m \alpha_j \mathbf{1}_{A_j} \ (\alpha_j \geq 0, A_j \in \mathcal{A})$ und 0 < c < 1 beliebig. Sei $B_n := \{\omega | u_n(\omega) \geq cv(\omega)\} \in \mathcal{A}$. Da $u_n \geq cv\mathbf{1}_{B_n}$ folgt:

$$\mu(u_n) \ge c\mu(v\mathbf{1}_{B_n}) \ (*)$$

Nach Voraussetzung: $v \leq \lim_{n \to \infty} u_n, u_n \uparrow \Longrightarrow B_n \uparrow \Omega, A_j \cap B_n \uparrow A_j$

$$\implies \mu(v) = \sum_{j=1}^{m} \alpha_j \mu(A_j) = \lim_{n \to \infty} \sum_{j=1}^{m} \alpha_j \mu(A_j \cap B_n)$$
$$= \lim_{n \to \infty} \mu(v \mathbf{1}_{B_n})$$

Nehme $\lim_{n\to\infty}$ in (*): $\lim_{n\to\infty} \mu(u_n) \ge c\mu(v)$. Da c<1 beliebig war, folgt die Behauptung.

Jetzt zur eigentlichen Aussage: Es gilt: $v_k \leq \lim_{n \to \infty} u_n, u_k \leq \lim_{n \to \infty} v_n \xrightarrow{\text{Hilfsaussage}} \mu(v_k) \leq \lim_{n \to \infty} \mu(u_n), \mu(u_k) \leq \lim_{n \to \infty} \mu(v_n), \ \forall k \in \mathbb{N}.$ lim $_{k \to \infty}$ bei beiden Ungleichungen \Longrightarrow Behauptung.

Bemerkung

- a) Die letzten beiden Definitionen sind verträglich
- b) Die Eigenschaften von Lemma 1.2 gelten weiter.
- 3.) $f: \Omega \to \overline{\mathbb{R}}$ ist \mathcal{A} -messbar (ohne Vorzeichenbeschränkung). $f^+ := \max\{0, f\}, f^- := -\min\{0, f\}, f = f^+ f^-, |f| = f^+ + f^-$

Definition

Eine A-messbare Funktion $f: \Omega \to \overline{\mathbb{R}}$ heißt μ -integrierbar, falls $\int f^+ d\mu < \infty$, $\int f^- d\mu < \infty$. In diesem Fall heißt $\int f d\mu = \mu(f) = \int f^+ d\mu - \int f^- d\mu$ das μ -Integral von f.

Schreibweise: $\int f d\mu = \int f(\omega)\mu(d\omega) = \int_{\Omega} f d\mu$; $\int_{A} f d\mu := \int f \cdot \mathbf{1}_{A} d\mu$

Bemerkung a) Die letzten beiden Definitionen sind verträglich

- b) Falls mindestens einer der Werte $\int f^+ d\mu$, $\int f^- d\mu$ endlich ist, so heißt f quasi-integrierbar.
- c) Ist (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $X : \Omega \to \mathbb{R}$ eine Zufallsvariable, so gilt: EX existiert $\iff X$ ist P-integrierbar. In diesem Fall: $EX = \int X dP$
- d) Offenbar gilt: f ist integrierbar $\iff |f|$ ist integrierbar

Satz 1.2 (Eigenschaften des μ -Integrals)

Es seien $f, g: \Omega \to \mathbb{R}$ μ -integrierbar und $c \in \mathbb{R}$. Dann gilt:

a) of und f + g sind μ -integrierbar und

$$\int cf d\mu = c \int f d\mu$$

$$\int (f+g) d\mu = \int f d\mu + \int g d\mu$$

- b) $f \leq g \implies \int f d\mu \leq \int g d\mu$
- $|c| | \int f d\mu | \leq \int |f| d\mu$

Beweis a) α) Sei $c \geq 0$ (analog $c \leq 0$): $(cf)^+ = cf^+, (cf)^- = cf^-$ Also ist cf integrierbar: $\xrightarrow{\text{Satz 1.1}} \exists u_n^+ \uparrow f^+, u_n^+ \in \mathcal{E}$

$$\int cf^{+} d\mu = \lim_{n \to \infty} \int cu_{n}^{+} d\mu$$
$$= c \lim_{n \to \infty} \int u_{n}^{+} d\mu$$
$$= c \int f^{+} d\mu$$

Analog f^- .

 β) $|f+g| \leq |f| + |g| \implies f+g$ μ -integrierbar. Sei zunächst $f, g \in \mathcal{E}^+ \xrightarrow{\text{Satz 1.1}} \exists u_n \uparrow f, v_n \uparrow g, u_n, v_n \in \mathcal{E} \implies u_n + v_n \uparrow f + g, u_n + v_n \in \mathcal{E}$ Mit Lemma 1.2 folgt:

$$\int (f+g)d\mu = \lim_{n\to\infty} \int (u_n + v_n)d\mu$$

$$= \lim_{n\to\infty} (\int u_n d\mu + \int v_n d\mu)$$

$$= \lim_{n\to\infty} \int u_n d\mu + \lim_{n\to\infty} \int v_n d\mu$$

$$= \int f d\mu + \int g d\mu$$

Sei jetzt f, g beliebig $(f+g)^+ - (f+g)^- = f + g = f^+ - f^- + g^+ - g^- \implies (f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+ \implies \int (f+g)^+ d\mu + \int f^- d\mu + \int g^- d\mu = \int (f+g)^- d\mu + \int f^+ d\mu + \int g^+ d\mu = \int (f+g) d\mu = \int (f+g)^+ d\mu - \int (f+g)^- d\mu = \int f^+ d\mu - \int f^- d\mu + \int g^+ d\mu - \int g d\mu = \int f d\mu + \int g d\mu$

b) vergleiche Übung

c)
$$f \leq |f|, -f \leq |f| \xrightarrow{\text{b) mit } g = |f|}$$
 Behauptung

Bemerkung Ist $\mu = \lambda$ das Lebesgue-Maß, so heißt $\int f d\mu = \int f d\lambda$ Lebesgue-Integral.

Beispiel 1.2 a) Sei δ_{ω} das Dirac-Maß, $f: \Omega \to \mathbb{R}$ ist δ_{ω} -integrierbar falls $f(\omega) < \infty$ und dann gilt

$$\int f \mathrm{d}\delta_{\omega} = f(\omega)$$

Denn: Sei $f \in \mathcal{E} \implies f = \sum_{j=1}^{n} \alpha_{j} \mathbf{1}_{A_{j}} \implies \int f d\delta_{\omega} = \sum_{j=1}^{n} \alpha_{j} \delta_{\omega}(A_{j}) = \alpha_{k} \cdot 1 = f(\omega)$ $f \in \mathcal{E}^{+} : u_{n} \uparrow f, \int u_{n} d\delta_{\omega} = u_{n}(\omega) \uparrow f(\omega)$ $f \text{ allgemein } \implies f = f^{+} - f^{-}$

b) Sei (μ_n) eine Folge von Maßen und $\mu = \sum_{n=1}^{\infty} \mu_n$. Für $f: \Omega \to \bar{\mathbb{R}}$ gilt:

$$f$$
 ist μ -integrierbar $\iff \sum_{n=1}^{\infty} \int |f| d\mu_n < \infty$
 $\int f d\mu = \sum_{n=1}^{\infty} \int f d\mu_n$ (vergleiche Übung)

Spezialfall: $(\Omega, \mathcal{A}) = (\mathbb{N}, \mathcal{P}(\mathbb{N})), \mu = \sum_{n=1}^{\infty} \delta_n$ (Zählmaß auf \mathbb{N}) f ist μ -integrierbar $\iff \sum_{n=1}^{\infty} |f(n)| < \infty$, dann $\int f d\mu = \sum_{n=1}^{\infty} f(n)$. Summation ist ein Spezialfall von Integration. Sei $\Omega = \{\omega_1, \omega_2, \ldots\}, \mathcal{A} = \{\omega_1, \omega_2, \ldots\}$

 $\mathcal{P}(\Omega).\mu = P := \sum_{n=1}^{\infty} p_n \delta_{\omega_n}$ mit $p_n \geq 0, \sum_{n=1}^{\infty} p_n = 1$ (Wahrscheinlichkeitsmaß).

Sei $X: \Omega \to \overline{\mathbb{R}}$ eine Zufallsvariable:

$$EX$$
 existiert $\iff \sum_{n=1}^{\infty} |X(\omega_n)| p_n < \infty \iff X$ ist P -integrierbar

$$EX = \sum_{n=1}^{\infty} X(\omega_n) P_n = \sum_{n=1}^{\infty} X(\omega_n) P(\{\omega_n\}) = \int X dP$$

c) Sei $\Omega = [a, b]$ und $\mathcal{A} = \mathfrak{B}_{[a,b]} = \{A \cap [a, b] | A \in \mathfrak{B}\}$ (Spur von \mathfrak{B} auf [a, b]) $\mu(A) := \lambda(A) \ \forall A \in \mathcal{A}$. Ist $f: \Omega \to \mathbb{R}$ messbar und f Riemann-integrierbar, so ist f auch μ -integrierbar und es gilt:

$$\int f \mathrm{d}\mu = \int f(x) \mathrm{d}x$$

(Hier fehlt ein Bild zur Veranschaulichung)

Das Lebesgue-Integral ist eine Erweiterung des Riemann-Integrals: Sei $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$. f ist nicht Riemann-integrierbar. Da $f \in \mathcal{E}$ gilt:

$$\int f d\lambda = 0 \cdot \lambda(\mathbb{Q}^c \cap [0, 1]) + 1 \cdot \lambda(\mathbb{Q} \cap [0, 1]) = 0$$

Das letzte Gleichheitszeichen gilt wegen:

(i)
$$\lambda(\{a\}) = 0$$
, da $\{a\} = \bigcap_{n=1}^{\infty} [a, a + \frac{1}{n}]$

(ii)
$$\lambda(\sum_{i=1}^{\infty}\{a_i\}) = \sum_{i=1}^{\infty} \lambda(\{a_i\}) = 0$$

Vorsicht bei uneigentlichen Riemann-Integralen! $\int_0^\infty \frac{\sin x}{x} dx$ ist Riemann-integrierbar, aber nicht Lebesgue-integrierbar.