Home Credit Default Risk Analysis

Daryle Bilog Joe Sarnello Sanskriti Bhargava Vinay Kumar Vascuri

Introduction

Business Problem:

- Identify underserved individuals
- Assess repayment ability
- Predict high-risk clients

Objective

Build a model to:

 Effectively extend loans to creditworthy individuals and decline those with insufficient repayment ability.

 Accurately assess and suggest the Home credit group regarding the applicant's loan repayment capability.

Feature-Target Visualization

Feature-Target Visualization

Models Implemented

- 1. Light Gradient Boosting
- 2. KNN
- 3. Random Forest
- 4. Gradient Boosting
- 5. Ensemble Modeling (Random Forest, Gradient Boosting, Logistic Regression)
- 6. Naive Bayes
- 7. Logistic Regression

Important Features

Light Gradient Boosting Machine Model(LGB)

Important Features:

DAYS_ID_PUBLISH

DAYS_REGISTRATION

DAYS_LAST_PHONE_CHANGE

Less Likely to Default

Married

Higher Education

Businessmen

Owns a car

Owns a house or an apartment

Thank you!

Any Questions?

Data Cleaning Steps (Appendix part 1)

- Dropped columns with 30% or more of their values being null
- Dropped 4 rows that had "XNA" as their value in the Code_Gender column
- Dropped the 1 row with a value of 117000000 in the AMT_Income_Total column
- Replaced the remaining nulls in the data:
 - o Numerical columns: Replaced nulls with the median value of the column
 - o Categorical columns: Replaced nulls with the most frequent value of the column
- Used Winsorization to handle outliers / normalize the data

Model Building (Appendix part 2)

- 1. Undersampling using Random Under Sampler
- 2. Oversampling using SMOTE
- 3. Train Test Split
- 4. Model Fitting/Ensemble Modelling
- 5. Hypertuning
- 6. Evaluation

Comparison of Models (Appendix part 3)

	LGB	KNN (K=3)	Random Forest	Gradient Boosting	Ensemble Modelling	Naive bayes	Logistic Regression
Accuracy	94%	67%	68%	69%	69%	57.7%	60.9%
Precision	82%	10%	68%	69%	69%	59%	60%
Recall	46%	44.31%	69%	69%	69%	58%	61%
F1 score	60%	17.42%	68%	69%	68%	58%	57%
Kaggle Score	67.1%	55%	66.2%	66.07%	65.4%	57%	57%

Results (Appendix part 4)

- 1. Top Performers: LGB and Random Forest
- 2. Competitive model: Gradient Boosting
- 3. Ensemble Approach
- Baseline Models: Logistic Regression and Naive Bayes
- 5. Underperforming model: KNN