астероида, r — искомый радиус полости. Для решения задачи мысленно «добавим» выработанную породу обратно. Тогда на всей поверхности астероида должно «восстановится» прежнее значение ускорения свободного падения — $g_{\,\theta}$. Но с другой стороны для точки A можем записать

$$g_0 = g_{min} + \Delta g_A,$$

где Δg_A — ускорение, создаваемое добавленной массой. С учетом закона гравитации Ньютона получаем

$$\Delta g_A = G \frac{4/3\pi r^3 \rho}{a^2}.$$

Аналогичное равенство можно записать и для точки В астероида

$$g_0 = g_{max} + \Delta g_B,$$

где $\Delta g_B = G \frac{4/3\pi r^3}{(2R-a)^2}$. Таким образом, для нахождения глубины залегания

центра полости a и ее радиуса r имеем систему уравнений

$$g_{min} = g_A = \frac{4}{3} G \pi \rho (R - \frac{r^3}{a^2})$$
 (1)

$$g_{max} = g_B = \frac{4}{3} G \pi \rho (R - \frac{r^3}{(2R - a)^2}).$$
 (2)

Выражая из первого уравнения

$$r^3 = \frac{3}{4G\pi\rho} a^2 (g_0 - g_{min})$$

и подставляя полученное значение во второе уравнение, найдем

$$a = 2R \frac{\sqrt{g_0 - g_{max}}}{\sqrt{g_0 - g_{max}} + \sqrt{g_0 - g_{min}}} = 2R \frac{\sqrt{\eta_2}}{\sqrt{\eta_2} + \sqrt{\eta_1}} . \tag{3}$$

Соответственно, для радиуса полости имеем

$$r = R \sqrt[3]{\frac{4(g_0 - g_{max})(g_0 - g_{min})}{g_0(\sqrt{g_0 - g_{max}} + \sqrt{g_0 - g_{min}})^2}} = R \sqrt[3]{\frac{4\eta_2\eta_1}{(\sqrt{\eta_2} + \sqrt{\eta_1})^2}}.$$
 (4)

Подставляя в (3) и (4) числовые данные, находим

$$a = 0.503 R \approx \frac{R}{2}$$
; $r = 0.250 R \approx \frac{R}{4}$.

Задача 3.

При изменении магнитного потока через проводящий контур в нем возникает ЭДС индукции, приводящая к появлению электрического тока. Эти токи создают свое магнитное поле, которое взаимодействует с движущимся

магнитом, вследствие чего и появляются силы «вязкого трения». Существует достаточно простой метод расчета этих сил: работа сил трения в точности равна количеству Джоулевой теплоты индукционных токов. Поэтому решение данной задачи сводится к вычислению мощности индукционного тока в кольце с последующим расчетом силы вязкости.

Вычислим магнитный поток через кольцо. Этот поток удобно рассчитывать через участок сферической поверхности Ω , опирающейся на кольцо, с центром, находящимся в центре магнита. На этой поверхности радиальная составляющая магнитного поля является нормальной, поэтому магнитный поток через малую площадку ΔS равен $\Delta \Phi = B_r \Delta S$. Поток через контур вычисляется как сумма потоков через все малые площадки на рассматриваемом участке сферы

$$\Phi = \sum_{i} B_{ri} \Delta S_{i} = \sum_{i} b \frac{2 \cos \theta_{i}}{r^{3}} \Delta S_{i} = \frac{2b}{r^{3}} \sum_{i} \Delta S_{i} \cos \theta_{i}.$$
 (1)

Можно заметить, что $\Delta S_i \cos \theta_i$ является площадью проекции площадки ΔS_i на площадь кольца. Поэтому сумма, стоящая в формуле (1), равна площади кольца πa^2 . По теореме Пифагора радиус сферы равен $r=\sqrt{a^2+z^2}$. Следовательно, поток через кольцо определяется формулой

$$\Phi = \frac{2\pi ba^2}{\left(a^2 + z^2\right)^{\frac{3}{2}}}.$$
 (3)

Согласно закону электромагнитной индукции, ЭДС индукции равна производной от магнитного потока по времени

$$E = -\Phi' = \frac{6\pi a^2 bzV}{\left(a^2 + z^2\right)^{\frac{5}{2}}}.$$
 (4)

При выводе последнего соотношения учтено, что производная от z равна скорости движения магнита V . По закону Джоуля-Ленца вычислим мощность теплоты, выделяющейся в стержне

$$P = \frac{E^2}{R} = \frac{1}{R} \left(\frac{6\pi a^2 bzV}{\left(a^2 + z^2\right)^{5/2}} \right)^2 = \frac{36\pi^2 a^4 b^2 z^2}{R\left(a^2 + z^2\right)^5} V^2.$$
 (5)

Равная ей мощность, развиваемая силами вязкости, рассчитывается «по определению» P = FV. Из равенства найденных мощностей получаем выражение для магнитной силы

$$F = \frac{36\pi^2 a^4 b^2 z^2}{R(a^2 + z^2)^5} V.$$
 (6)

Задача 4.

1) Для нахождения поверхностной плотности σ' поляризационных зарядов на ленте при выходе из конденсатора будем считать, что вследствие малости скорости движения ленты генератора распределение зарядов на ней будет таким же, как и на неподвижной пластине такой же толщины из такого же диэлектрика, внесенной в конденсатор. Пусть напряженность поля внутри конденсатора вне пластины E, тогда внутри пластины — $E_I = \frac{E}{\varepsilon}$. Тогда для разности потенциалов между обкладками (она в данном случае равна напряжению) можем записать

$$U = E(d - h) + \frac{E}{\varepsilon}h \implies E = \frac{\varepsilon U}{(d - h)\varepsilon + h}.$$
 (1)

Соответственно в диэлектрике модуль напряженности электростатического поля меньше в ε раз

$$E_I = \frac{U}{(d-h)\varepsilon + h}.$$