

Universidad Complutense de Madrid Master en Big Data y Business Analytics

MACHINE LEARNING CON R, CLASIFICACION BINARIA

Alumna

Ivonne V. Yáñez Mendoza

Profesor

Javier Portela

Enero de 2023

Índice

1	Intr	roducción	1										
2	Análisis exploratorio de los datos Transformaciones												
3	Tra	Transformaciones 4											
4	Sele	elección de variables											
5		oritmos de ML para clasificación binaria	7										
	5.15.25.35.45.5	5.2.1 Tunning de bagging 5.2.2 Validación cruzada para bagging 5.2.3 Comparacion de medias y boxplot Random Forest Classifier 5.3.1 Tunning de random forest 5.3.2 Validacion cruzada para random forest 5.3.3 Comparacion de medias y boxplot Stochastic Gradient Boosting 5.4.1 Tunning de gradient boosting 5.4.2 Validacion cruzada para gradient boosting 5.4.3 Comparacion de medias y boxplot Xgboost	11 13 14 16 16 17 17 19 20										
6	5.6 Ens. 6.1 6.2	amblado de algoritmos Preparación del ensamblado con caret ensemble Validacion cruzada repetida y boxplot 6.2.1 Paso 1, carga del archivo con la funcion "cruzadas ensamblado binaria fuente.R" 6.2.2 Paso 2, Preparacion del archivo 6.2.3 Paso 3, aplicacion de la funcion cruzadas ensamblado 6.2.4 Paso 4, construccion del ensamblado 6.2.5 Paso 5, Procesado de los ensamblados 6.2.6 Paso 6, boxplot inicial 6.2.7 Paso 7, tabla con resultados 6.2.8 Paso 8, Boxplot ordenados para comparacion de medias	22 22 23 26 27 27 27 27 30 30 30 31 31 32										
		6.2.9 Paso 9, comparacion de mejores modelos	33 34										

		6.2.11 Observaciones finales
7	Eva	luación del modelo ganador y conclusiones 34
	7.1	Algoritmo a usar para este modelo
	7.2	Matriz de confusión para el modelo escogido
	7.3	Sensitividad, especificidad y precision
	7.4	Tabla de parámetros para regresión logística
	7.5	Puntos de corte
	7.6	Contraste de hipotesis entre algunos modelos
	7.7	Visualpred
	7.8	Tabla resumen
\mathbf{A}	Ane	exos
	A.1	Otros métodos de selección de variables
		A.1.1 Utilizando la libreria party y random forest ii
		A.1.2 Utilizando MARS: Multivariate Adaptive Regression Splines ii
		A.1.3 Utilizando la libreria Boruta ii
		A.1.4 Utilizando RFE con caret iii
	A.2	Arboles de clasificacion
		A.2.1 Seleccion de variables
		A.2.2 Tunning de algoritmos usando rpart() vi
		A.2.3 Tunning de algoritmos usando caret() vii
		A.2.4 Comparacion con otros algoritmos de ML ix
	A.3	Libreria h2o para python

1 Introducción

Para este trabajo de clasificación binaria utilizando diversas técnicas de machine learning, se ha decidido utilizar el set de datos *Dengue prevalence by administrative region*.

Este dataset contiene información relevante sobre la prevalencia de la enfermedad por cada región administrativa de Nueva Zelanda (2000 regiones), es decir, si se ha observado la presencia del dengue o no, desde 1961 hasta 1990.

El objetivo de este trabajo es entrenar diversos algoritmos de clasificación, con la finalidad de predecir una variable binaria y de tomar una decisión sobre cual modelo propuesto es el mas recomendado para el tipo de dataset con el que se está trabajando.

Fuentes

- 1. Repositorio: https://vincentarelbundock.github.io/Rdatasets/datasets.html
- 2. Explicación de los datos (en ingles): https://vincentarelbundock.github.io/Rdatasets/doc/DAAG/dengue.html
- 3. Descripción de las columnas que contiene el dataset dengue:
 - 3.1 humid: Densidad de vapor promedio desde 1961 a 1990.
 - 3.2 humid90: Percentil 90 para humedad.
 - 3.3 temp: Temperatura promedio desde 1961 a 1990.
 - 3.4 temp90: Percentil 90 para temperatura.
 - 3.5 h10pix: Humedad máxima dentro de un radio de 10 pixeles.
 - 3.6 h10pix90: Humedad máxima de variable temp90 dentro de un radio de 10 pixeles.
 - 3.7 trees: Porcentaje de un área cubierta por arboles, dato entregado por satélite.
 - 3.8 trees90: Percentil 90 de la variable trees.
 - 3.9 NoYes: Se ha observado la presencia de dengue, 1 indica si. Variable dependiente a estudiar.
 - 3.10 **Xmin:** Longitud mínima.
 - 3.11 **Xmax:** Longitud máxima.
 - 3.12 **Ymin:** Latitud mínima.
 - 3.13 Ymax: Latitud máxima.
 - 3.14 X: Indicador fila.
- 4. Dimensión de los datos: 2000 filas x 14 columnas

2 Análisis exploratorio de los datos

X	humid	humid90	temp	temp90	h10pix	h10pix90	trees	trees90	NoYes	Xmin	Xmax	Ymin	Ymax
1	0.6713889	4.416667	2.037500	8.470835	17.35653	17.80861	0	1.5	0	70.5	74.5	38.0	35.5
2	7.6483340	8.167499	12.325000	14.925000	10.98361	11.69167	0	1.0	0	62.5	64.5	35.5	34.5
3	6.9790556	9.563057	6.925000	14.591660	17.50833	17.62528	0	1.2	0	68.5	69.5	36.0	35.0
4	1.1104163	1.825361	4.641665	6.046669	17.41764	17.51694	0	0.6	0	67.0	68.0	35.0	34.0
5	9.0270555	9.742751	18.175000	19.710000	13.84306	13.84306	0	0.0	0	61.0	64.5	33.5	32.0
6	8.9141113	9.516778	11.900000	16.643341	11.69167	11.69167	0	0.2	0	64.5	65.5	36.5	35.0

```
2000 obs. of 14 variables:
'data.frame':
          : int 1 2 3 4 5 6 7 8 9 10 ...
$ humid
           : num 0.671 7.648 6.979 1.11 9.027
                   4.42 8.17 9.56 1.83 9.74 ...
$ humid90 : num
                   2.04 12.32 6.93 4.64 18.18
$ temp
                   8.47 14.93 14.59 6.05 19.71 ...
17.4 11 17.5 17.4 13.8 ...
$ temp90 : num
$ h10pix : num
$ h10pix90: num
                   17.8 11.7 17.6 17.5 13.8 ...
0 0 0 0 0 0 0 0 0 0 0 ...
$ trees
            : num
                   1.5 1 1.2 0.6 0 ...
$ trees90 : num
$ NoYes
            : int
                   0 0 0 0 0 0 0 0 0 0 0 ...
70.5 62.5 68.5 67 61 64.5 67.5 64 63.5 61 ..
$ Xmin
            : num
                    74.5 64.5 69.5 68 64.5 65.5 68.5 66.5 65.5 64.5 ...
$ Xmax
            : num
                   38 35.5 36 35 33.5 36.5 33.5 35 33 35 ...
$ Ymin
            : num
                   35.5 34.5 35 34 32 35 32 33 29.5 33.5
$ Ymax
            : num
[1] 2000
```

Como se observa anteriormente, son 14 columnas con 2000 filas, los tipos de datos son de tipo numérico incluyendo la variable objetivo **NoYes**, se realiza a continuación una exploración mas detallada del dataset a estudiar.

En cuanto a las observaciones sobre la variable independiente (NoYes) y observando el gráfico y tabla referencia, se tiene:

Para un total de 831 observaciones en la clase minoritaria con 12 variables input (se omite columna X y la objetivo) 69 observaciones por parámetro. Respecto a los porcentajes y sobretodo el porcentaje de observaciones de la clase minoritaria da una idea de las métricas a tener en cuenta en la evaluación posterior de los modelos, es decir, un accuracy mayor a 0.58 y una tasa de fallos menor a 0.41 debería mejorar el resultado base.

Se observa un ligero desbalance el cual no debería afectar el proceso de modelado, no se aplican técnicas de balanceo artificial de los datos.

NoYes	cuenta	porcentaje
0	1169	0.58
1	831	0.42

Distribucion en % variable dependiente NoYes

A continuación se presentan algunos gráficos de apoyo al análisis exploratorio:

Observaciones:

- Correlación: Se observan variables altamente correladas que podrían afectar la independencia del modelo. Sin embargo no se eliminan y se espera tratarlas adecuadamente con el método stepwise para selección de variables que se estudiará más adelante.
- Tipos de datos por columna: Datos tipo numeric e integer incluyendo la variable estudio.
- NA's: No se presenta un % alto de datos ausentes, pero deben ser tratados para evitar problemas en el proceso, en la siguiente sección se trabajará en ello. trees y trees90 presentan un NA cercano al 0.6%
- Histograma: Se observan variables que no siguen una distribución normal, X y NoYes deben ser separadas del dataset (X por no ser relevante es un índice y NoYes es la objetivo)

3 Transformaciones

Se realizan transformaciones sobre los datos, eliminación de columnas con escasa relevancia, tratamiento de datos faltantes y estandarización de los datos continuos:

```
# Se elimina la columna X
datos$X <- NULL
# Tratamiento de datos faltantes, se eliminan
datos2 <- na.omit(datos, (!is.na(datos)))</pre>
colSums(is.na(datos2)) > 0
   humid humid90
                                       h10pix h10pix90
                                                            trees trees90
           FALSE
                              FALSE
                                                 FALSE
   FALSE
                    FALSE
                                        FALSE
                                                           FALSE
                                                                     FALSE
                      Xmax
   NoYes
             Xmin
                                Ymin
                                          Ymax
                    FALSE
                              FALSE
# Se separa la variable objetivo de la variable input
varObjBin <-datos2$NoYes
input <- as.data.frame(datos2[, -(9)])
\# Pre procesado, recategorizar, dummies, estandarizar etc
# Estandarizacion
temp <- input %>% mutate_if(is.numeric, scale)
head(temp)
      humid humid90
                              temp
                                         temp90
                                                    h10pix h10pix90
1 -2.187817 -1.752592 -2.04603997 -1.42684042 -0.5252414 -0.5182986 -0.9516725
2 -1.235570 -1.240199 -0.76267048 -0.58677814 -1.3943124 -1.3621731 -0.9516725
3 -1.326917 -1.049555 -1.43632247 -0.63016510 -0.5045405 -0.5435904 -0.9516725
4 -2.127896 -2.106585 -1.72116940 -1.74236542 -0.5169085 -0.5585368 -0.9516725
5 -1.047396 -1.025007 -0.03288072 0.03602869 -1.0043711 -1.0653740 -0.9516725
6 -1.062811 -1.055877 -0.81568941 -0.36312211 -1.2977547 -1.3621731 -0.9516725
trees90 Xmin Xmax Ymin Ymax
1 -1.173965 0.9177821 0.9477775 0.7759536 0.7328488
2 -1.191357 0.7886923 0.7859356 0.6691044 0.6904187
3 -1.184400 0.8855096 0.8668566 0.6904742 0.7116337
4 -1.205271 0.8613053 0.8425803 0.6477345 0.6692036
5 -1.226141 0.7644880 0.7859356 0.5836250 0.5843434
6 -1.219184 0.8209648 0.8021198 0.7118441 0.7116337
# Se une la variable objetivo con los resultados(de estandarizar, dummys etc)
base <- data.frame(varObjBin, temp)</pre>
# La variable objetivo se cambia a alfanumerico yes, no base$varObjBin <- ifelse(base$varObjBin == 1, "Yes", "No")
```

Los datos han sido preparados y transformados por lo tanto se continua con el apartado de selección de variables.

4 Selección de variables

Se realiza una selección automática de variables de tipo stepwise para escoger las features que podrían ser relevantes para el posterior proceso de modelamiento y tunning de algoritmos.

```
# Seleccion de variables
full <- glm(factor(varObjBin) ~., data = base, family = binomial(link = "logit"))</pre>
null <- glm(factor(varObjBin) ~ 1, data = base, family = binomial(link = "logit"))</pre>
# Seleccion de variables automatica
seleccion <- stepAIC(null, scope = list(upper = full), direction = "both", trace = F)</pre>
# Para ver las features escogidas de forma automatica
dput(names(selection$coefficients))
c("(Intercept)", "h10pix", "temp90", "Ymin", "Ymax", "temp",
"humid", "humid90", "trees", "trees90")
# Version formula
formula(seleccion)
factor(varObjBin) ~ h10pix + temp90 + Ymin + Ymax + temp + humid +
   humid90 + trees + trees90
summary(seleccion)
glm(formula = factor(varObjBin) ~ h1Opix + temp90 + Ymin + Ymax -
    temp + humid + humid90 + trees + trees90, family = binomial(link = "logit"),
    data = base)
Deviance Residuals:
                1Q
                       Median
                                      30
-2.63747 -0.15358 -0.02882 0.44958 3.04419
Coefficients:
```

```
Estimate Std. Error z value
                        0.1866 -10.102 < 0.0000000000000000 ***
(Intercept)
            -1.8848
                        0.2542 12.403 < 0.0000000000000000 ***
             3.1524
h10pix
temp90
             3.1225
                        0.7286
                                 4.286
                                                  0.0000182 ***
                        1.1527 -1.636
Ymin
             -1.8854
                                                   0.101914
             1.6698
                        1.1480
                                 1.455
                                                   0.145781
Ymax
temp
            -2.6276
                        0.6948 -3.782
                                                   0.000156 ***
                                                  0.0000677 ***
humid
             3.7731
                        0.9470
                                 3.984
humid90
             -3.4328
                        0.9786 -3.508
                                -3.500
2.477
             -0.6970
                        0.1991
                                                   0.000465 ***
             0.5499
trees90
                        0.2221
                                                   0.013266 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2695.4 on 1985 degrees of freedom
Residual deviance: 1033.8 on 1976 degrees of freedom
ATC: 1053.8
Number of Fisher Scoring iterations: 7
```

Según el código anterior, las variables relevantes seleccionadas son: h10pix + temp90 + Ymin + Ymax + temp + humid + humid90 + trees + trees90, con las cuales se aplica la función steprepetidobinaria() con criterio "AIC" para remuestreo:

```
# Selection AIC
listaAIC <- steprepetidobinaria(
    data = data,
    vardep = vardep,
    listconti = listconti,
    sinicio = 12345,
    sfinal = 12355,
    porcen = 0.8,
    criterio = "AIC")

tabla1 <- listaAIC[[1]]
knitr::kable(tabla1, "pipe")</pre>
```

	modelo	Freq	contador
1	h10pix+temp90+trees+trees90+Ymin+Ymax+temp+humid+humid90	4	9
5	h10pix+temp90+trees+trees90+Ymin+temp+humid+humid90	3	8
8	h10pix+temp90+trees+trees90+temp+humid+humid90	2	7
10	h10pix+temp90+trees+trees90+Ymin+Ymax	1	6
11	h10pix+trees+Ymin+humid	1	4

```
dput(listaAIC[[2]][[1]])

c("h10pix", "temp90", "trees", "trees90", "Ymin", "Ymax", "temp",
   "humid", "humid90")

dput(listaAIC[[2]][[2]])

c("h10pix", "temp90", "Ymin", "temp", "humid", "humid90", "trees",
```

Se repite el mismo proceso pero esta vez con criterio "BIC":

```
# Selection con Bic
listaBIC <- steprepetidobinaria(
    data = data,
    vardep = vardep,
    listconti = listconti,
    sinicio = 12345,
    sfinal=12355, porcen = 0.8, criterio = "BIC")

tabla2 <- listaBIC[[1]]
knitr::kable(tabla2, "pipe")</pre>
```

	modelo	Freq	contador
1	h10pix+temp90	8	2
9	h10pix+humid	1	2
10	h10pix+humid+trees	1	3
11	h10pix+temp90+Ymin	1	3

```
dput(listaBIC[[2]][[1]])

c("h10pix", "temp90")
dput(listaBIC[[2]][[2]])

c("h10pix", "humid")
```

Observando los resultados anteriores y obteniendo los set de variables se comparan con validación cruzada repetida:

```
# Selection de variables AIC
medias1 <- cruzadalogistica(
    data = data,
    vardep = "varObjBin",
    listconti = c("h1Opix", "temp90", "trees", "trees90",
    "ymin", "Ymax", "temp", "humid90"),
    listclass = c(""),
    grupos = 4,
    sinicio = 1234,
    repe = 5)

medias1$modelo <- "Logistica1"

# Selection de variables BIC
medias2 <- cruzadalogistica(
    data = data,
    vardep="varObjBin",
    listconti = c("h1Opix", "temp90"),
    listclass = c(""),
    grupos = 4,
    sinicio = 1234,
    repe = 5)</pre>
medias2$modelo <- "Logistica2"
```

La función genera_graficos() toma las medias de los modelos generados y entrega el respectivo gráfico de tipo boxplot para facilitar la visualización: Se puede revisar en el siguiente repositorio: https://github.com/TiaIvonne/Machine-LearningR/blob/master/src/functions/genera_graficos.R genera_graficos(medias1, medias2)

Observaciones:

• El modelo de Logistica1 con las variables elegidas con criterio AIC entrega mejores resultados que el modelo generado con BIC en AUC y Tasa de fallos respectivamente. De acuerdo a lo anterior, las variables elegidas con criterio AIC son las que se trabajarán en los modelos siguientes.

5 Algoritmos de ML para clasificación binaria

5.1 Redes neuronales

5.1.1 Tunning de redes neuronales

Una vez seleccionada las variables utilizando stepwise visto en la sección anterior, se comienza con el tunning de redes neuronales para un problema de clasificación binaria con la finalidad de encontrar los parámetros que se ajusten mejor para el dataset con el que se está trabajando, realizar un nuevo modelamiento y comparar en este caso con regresión logística y mas adelante, con los próximos algoritmos a modelar (Bagging, Random Forest etc).

5.1.2 Tunning de redes neuronales con base accuracy

Utilizando las variables seleccionadas bajo StepwiseAIC se prueba un primer modelo:

Con el código anterior se ha generado la siguiente tabla la cual puede ser de utilidad para determinar cuales parámetros podrían ser útiles al momento de elegir para entrenar el modelo:

$_{ m size}$	decay	bag	Accuracy	Kappa	AccuracySD	KappaSD
5	0.001	FALSE	0.9052328	0.8075327	0.0139857	0.0278779
5	0.010	FALSE	0.9229599	0.8423037	0.0131987	0.0269257
5	0.100	FALSE	0.9179245	0.8325153	0.0104558	0.0211637
10	0.001	FALSE	0.9207424	0.8384348	0.0132498	0.0265557
10	0.010	FALSE	0.9260815	0.8484666	0.0098502	0.0203012
10	0.100	FALSE	0.9197360	0.8361295	0.0099104	0.0201965
15	0.001	FALSE	0.9211444	0.8389624	0.0114062	0.0230180
15	0.010	FALSE	0.9266882	0.8494893	0.0102616	0.0213015
15	0.100	FALSE	0.9225561	0.8418606	0.0098902	0.0201859
20	0.001	FALSE	0.9244712	0.8454846	0.0101698	0.0207285
20	0.010	FALSE	0.9274934	0.8511611	0.0100521	0.0207691
20	0.100	FALSE	0.9216511	0.8400228	0.0101441	0.0207448

Observando la tabla y con base el Accuracy, los parámetros a considerar son un size de 10 con un decay de 0.010 o un size de 15, en ambos casos con criterio accuracy son los que muestran mejores resultados.

Se prueba el modelo una vez mas utilizando las variables seleccionadas con criterio BIC.

```
# Con las variables seleccionadas BIC
redavnnet2 <- train(
  varObjBin - h1Opix + temp90 ,
  data = data,
  method = "avNNet", linout = FALSE, maxit = 100,
  trControl = control_redes, tuneGrid = avnnetgrid,
  repeats = 5,
  trace = F)</pre>
knitr::kable(redavnnet2$results, "pipe")
```

La siguiente tabla muestra los resultados con las variables obtenidas con BIC

size	decay	bag	Accuracy	Карра	AccuracySD	KappaSD
-5	0.001	FALSE	0.8845932	0.7668955	0.0116786	0.0229006
5	0.010	FALSE	0.8876148	0.7728516	0.0123234	0.0243445
5	0.100	FALSE	0.8857013	0.7690581	0.0101866	0.0198420
10	0.001	FALSE	0.8844937	0.7666186	0.0116891	0.0229713
10	0.010	FALSE	0.8875146	0.7726251	0.0120156	0.0238524
10	0.100	FALSE	0.8857013	0.7690718	0.0103324	0.0201789
15	0.001	FALSE	0.8842914	0.7660637	0.0111788	0.0219331
15	0.010	FALSE	0.8878160	0.7732508	0.0121935	0.0239913
15	0.100	FALSE	0.8856009	0.7688490	0.0106089	0.0207072
20	0.001	FALSE	0.8835874	0.7643829	0.0117112	0.0231024
20	0.010	FALSE	0.8872130	0.7720004	0.0121479	0.0240491
20	0.100	FALSE	0.8853995	0.7684414	0.0104931	0.0204678

El accuracy ha bajado y se ve el efecto de utilizar un menor número de variables predictoras.

5.1.3 Tunning de redes neuronales con MAXIT

Otro criterio para realizar tunning de redes neuronales es utilizando un bucle for() que recorre un vector llamado listaiter que contiene las iteraciones a evaluar, buscando nuevamente los parámetros que podrían ser mas adecuados para este set de datos

```
listconti = c("h10pix", "temp90", "trees", "trees90", "Ymin", "Ymax",
    "temp", "humid", "humid90")
data2 <- dengue[,c(listconti, vardep)]</pre>
nnetgrid \leftarrow expand.grid(size = c(5, 10), decay = c(0.01, 0.1, 0.001), bag = F)
completo <-data.frame()
listaiter<-c(50, 100, 200, 500, 1000, 2000, 3000)
for( iter in listaiter)
    rednnet <- train(
        varObjBin~.,
        data = data2,
method = "avNNet",
linout = FALSE,
maxit = iter,
        trControl = control_redes,
repeats = 5,
        tuneGrid = nnetgrid,
        trace = F)
    # Añado la columna del parametro de iteraciones rednnet$results$itera <- iter
    # Voy incorporando los resultados a completo
    completo <- rbind(completo, rednnet$results)</pre>
completo <- completo[order(completo$Accuracy),]</pre>
ggplot(completo, aes(x = factor(itera), y = Accuracy,
           = factor(decay), pch = factor(size))) +
    theme_minimal() +
    geom_point(position = position_dodge(width = 0.5), size = 3)
```


Observando el gráfico con los resultados del tunning ajustando maxit, los mejores resultados en

accuracy los entrega con un size de 10. En cuanto al decay muestra mejor comportamiento con decay 0.001 y 0.1. Con las iteraciones los mejores resultados los muestra entre 500 y 3000 aunque por simpleza con 500 iteraciones esta bien.

5.1.4 Validación cruzada repetida para redes neuronales

A continuación y una vez obtenidos los parámetros mas adecuados utilizando tunning con criterio accuracy y controlando maxit = se generan las correspondientes validaciones cruzadas repetidas utilizando la función cruzadaavnnetbin()

```
# Validacion cruzada repetida con criterio accuracy
medias3 <-cruzadaavnnetbin(
     data = dengue,
     vardep = "varObjBin",
     listconti = c("h10pix", "temp90", "trees", "trees90", "Ymin", "Ymax", "temp", "humid", "humid90"),
     listclass = c(""),
     grupos = 4,
sinicio = 1234,
    repe = 5,
size = c(10),
decay = c(0.010),
     repeticion
     itera = 200)
medias3$modelo <- "Avnnet1"
medias4 <- cruzadaavnnetbin(
     data = dengue,
vardep = "varObjBin",
listconti = c("h1Opix", "temp90"),
    listclass = c(""),
grupos = 4,
     sinicio = 1234,
     repe = 5,
size = c(15),
     decay = c(0.10),
     repeticiones
itera = 200)
medias4$modelo <- "Avnnet2"
{\it \# Validacion \ cruzada \ repetida \ tunning \ maxit}
medias5 <- cruzadaavnnetbin(
     vardep = "varObjBin",
listconti = c("h10pix", "temp90", "trees", "trees90", "Ymin", "Ymax",
    "temp", "humid", "humid90"), listclass = c(""),
     grupos = 4,
     sinicio = 1234,
    repe = 5,
repeticiones = 5,
     itera = 1000,
size = c(10),
     decay = c(0.01))
medias5$modelo <- "Red con maxit"
```

5.1.5 Comparación de medias y boxplot

Utilizando la función genera_gráficos() se generan los gráficos de tipo boxplot para comparar los modelos creados.

genera_graficos(medias1, medias2, medias3, medias4, medias5)

Observaciones

- Si se compara con los modelos generados bajo regresión logística, hay un aumento considerable del criterio AUC con redes neuronales, específicamente la que se obtuvo con las variables seleccionadas con criterio AIC mas el modelo que utilizo los parámetros que entrego el tunning con maxit. Con los resultados obtenidos vía tunning con maxit, también mejora la varianza como se puede observar en el gráfico.
- Es una comparación temprana por lo que se deben entrenar nuevos algoritmos y modelados para tomar una decisión.

5.2 Bagging

5.2.1 Tunning de bagging

En este apartado se probarán algunas técnicas para realizar tunning de bagging, partiendo de un modelo "básico" utilizando las variables previamente seleccionadas con stepwise y al final de este apartado realizando pruebas de tunning sobre el tamaño muestral del dataset dengue.

Primer modelo de bagging con variables previamente seleccionadas:

```
rfgrid <- expand.grid(mtry = c(6))
set.seed(12345)
control_bagging <- trainControl(method = "repeatedcv", number = 4, repeats = 5,
    savePredictions = "all", classProbs = TRUE)

bagging <- train(
    data = dengue,
    factor(varObjBin) ~ h1Opix + temp90 + trees + trees90 + Ymin + Ymax + temp +
    humid + humid90,
    method = "rf",
    trControl = control_bagging,
    tuneGrid = rfgrid,</pre>
```

```
linout = FALSE,
ntree=5000,
sampsize = 200,
nodesize = 10,
replace = TRUE)
bagging$modelType
```

$_{ m mtry}$	Accuracy	Kappa	AccuracySD	KappaSD
6	0.8987865	0.7945759	0.0143582	0.0286637

A continuación se explora el Out of bag error para este modelo, buscando parámetros para optimización, tal como lo indican los apuntes, se debe utilizar la función de randomForest() para extraer los datos y presentar gráfico:

Out of bag error

A partir de las 1000 muestras se estabiliza el error de los datos analizados

5.2.2 Validación cruzada para bagging

Se realizan algunas pruebas con validación cruzada repetida utilizando la función cruzadarfbin() y cuidando de incluir el parámetro mtry

```
# Con validacion cruzada y 4 grupos
medias6 <-cruzadarfbin(
    data = dengue,
    vardep = "varObjBin",
    listconti = c("h10pix", "temp90", "trees", "trees90", "Ymin", "Ymax",
    "temp", "humid", "humid90"),
    listclass = c(""),
    grupos = 4,
    sinicio = 1234,
    repe = 5,
    mtry = 6,
    ntree =1000,
    replace = TRUE)

medias6$modelo <- "bagging"</pre>
```

A continuación y a modo de complemento se prueba manipular el tamaño muestral para observar el efecto sobre bagging utilizando el parámetro sampsize y aumentando los grupos de validación cruzada de 4 a 10, solo con fines de exploración.

```
# Anexo Manipulando tamanio muestral con 10 grupos no incluir en la seleccion
# de modelos pues el grupos = es diferente
medias7 <-cruzadarfbin(</pre>
    data = dengue,
     vardep = "varObjBin",
listconti = c("h10pix", "temp90", "trees", "trees90", "Ymin", "Ymax",
    "temp", "humid", "humid90"),
listclass = c(""),
     grupos = 10,
sinicio = 1234,
     repe=20,
     nodesize = 10,
     mtry = 6,
     ntree = 3000
     replace = TRUE)
medias7$modelo <- "bagging_base"
# Bagging manipulando sampsize 1000
medias8 <-cruzadarfbin(</pre>
     data = dengue,
     vardep = "var0bjBin",
listconti = c("h10pix", "temp90", "trees", "trees90", "Ymin", "Ymax",
    "temp", "humid", "humid90"),
listclass = c(""),
     grupos = 10,
      sinicio = 1234,
     repe=20,
nodesize = 10,
    mtry = 6,
ntree = 3000,
replace = TRUE,
sampsize = 1000)
medias8$modelo <- "bagging1000"
# Bagging manipulando sampsize 1250
medias9 <-cruzadarfbin(
    data = dengue,
vardep = "varObjBin",
     listcont: = c("h10pix", "temp90", "trees", "trees90", "Ymin", "Ymax",
"temp", "humid", "humid90"),
listclass = c(""),
     grupos = 10,
sinicio = 1234,
     repe=20,
    nodesize = 10,
mtry = 6,
     ntree = 3000,
replace = TRUE,
sampsize = 1250)
medias9$modelo <- "bagging1250"
{\it \# Bagging manipulando samp size 1500}
medias10 <-cruzadarfbin(
data = dengue,
     vardep = "varObjBin",
    vardep = "varObjBin",
listconti = c("h1Opix", "temp90", "trees", "trees90", "Ymin", "Ymax",
"temp", "humid", "humid90"),
listclass = c(""),
grupos = 10,
     sinicio = 1234,
     repe=20,
nodesize = 10,
     mtry = 6,
ntree = 3000,
     replace = TRUE,
      sampsize = 1500)
medias10$modelo <- "bagging1500"
```

Como parte de este complemento se evalúan las medias con la función genera_gráficos() para comparar cual de todos estos tamaños muestrales entrega mejores métricas:

```
# genera graficos para comparar tamanio muestral de bagging
genera_graficos(medias6, medias7, medias8, medias9, medias10)
```


Observaciones

• Solo tomando en cuenta el gráfico, evidentemente las medias evaluadas con 10 grupos (base, 1000, 1250 y 1500) superan a los resultados obtenidos por el bagging original. Para efectos de comparación y decision de modelos se seguirá considerando solo bagging

5.2.3 Comparación de medias y boxplot

Utilizando la función genera_gráficos() se generan los gráficos para realizar comparación de medias y evaluar los modelos

genera graficos para comparar tamanio muestral de bagging
genera_graficos(medias1, medias2, medias3, medias4, medias5, medias6)

Observaciones

• Los resultados mejoran utilizando bagging en relación a los modelos anteriores, menor varianza, mayor auc y menor tasa de fallos que los modelos anteriores.

5.3 Random Forest Classifier

5.3.1 Tunning de random forest

Primer modelo utilizando todas las variables y buscando las variables predictoras mas relevantes. Nota: Solo como complemento a la práctica, para observar como se comporta el algoritmo al seleccionar variables. Para comparar medias, validación cruzada y probar con diferentes números de arboles se utilizan las variables seleccionadas con stepwise

Se obtienen los resultados de este primer modelo de randomforest

Importancia de variables - random forest

Para el modelo anterior el mejor m
try es 9 y en el gráfico se observa que las variables predictoras mas relevantes serian: Xmax, h
10pix, Ymax, trees
90, h
10pix
90, humid, Ymin lo cual difieren a los resultados entregados por la selección
 stepwise pero con el fin de explorar las alternativas que ofrece el algoritmo es útil.

A continuación se prueba generando un bucle for() para buscar los mejores indicadores evaluando según el mtry y numero de trees, desde 300 a 2500 para observar su comportamiento y buscar los mejores parámetros para la validación cruzada:

```
# random forest solo usando las variables mas relevantes
rfgrid_rf2 <- expand.grid(mtry = c(3, 4, 5, 6))</pre>
modellist <- list()
#train with different ntree parameters
for (ntree in c(300,500,1000,1500,2000,2500)){
      set.seed(12345)
     fit <- train(
   factor(varObjBin) ~ h10pix + temp90 + trees + trees90 + Ymin + Ymax +</pre>
           temp + humid + humid90,
          data = dengue,
method = "rf",
           trControl = control_rf,
          tuneGrid = rfgrid_rf2,
lineout = FALSE,
           ntree = ntree,
          nodesize = 10,
replace = TRUE,
           importance = TRUE)
     key <- toString(ntree)
     modellist[[key]] <- fit
results <- resamples(modellist)
dotplot(results)
dotplot(results)
```


fit\$bestTune

mtry

3

El gráfico dotplot() muestra el accuracy correspondiente a los trees evaluados en el ciclo for anterior, con esto los resultados en accuracy son similares pero por complejidad se prefiere dejar para pruebas en 500 trees. Para el parámetro bestTune el mtry es de 4 que también se dejara fijado en la validación cruzada.

5.3.2 Validacion cruzada para random forest

Se genera la validación cruzada para random forest utilizando la función cruzadarfbin y los parámetros obtenidos del estudio anterior, con mtry=4 y ntree=500

```
# Probar a dejar el parametro sampsize sin valor para que lo haga x defecto
medias11 <- cruzadarfbin(data = dengue, vardep = "varObjBin",
    listconti = c("h1Opix", "temp90", "trees", "trees90", "Ymin", "Ymax",
    "temp", "humid", "humid90"),
    listclass = c(""),
    grupos = 4,
    sinicio = 1234,
    repe = 10,
    nodesize = 10,
    mtry = 4, ntree = 500, replace = TRUE)

medias11$modelo <- "randomforest"</pre>
```

5.3.3 Comparacion de medias y boxplot

Utilizando la función genera_gráficos() se generan los gráficos para realizar comparación de medias y evaluar los modelos

Observaciones

• De los algoritmos evaluados hasta el momento, randomforest y bagging son los que muestran mejor rendimiento en AUC y tasa de fallos, dejando atrás las regresiones logísticas y las redes neuronales.

5.4 Stochastic Gradient Boosting

5.4.1 Tunning de gradient boosting

Se realiza un primer tunning del algoritmo gradient boosting con caret, probando los parámetros básicos de *shrinkage*, *n.minobsinnode* y *n.trees* mas las variables seleccionadas con *stepwise*

```
set.seed(12345)
# El shrinkage va desde los valores 0.0001 y 0.2
# Cuanto mas alto mas rapido pero puede resultar menos fino
# n.minobsnode mide la complejidad
# interaction.depth = c(2) arboles binarios
gb_grid <- expand_grid(</pre>
     shrinkage = c(0.1, 0.05, 0.03, 0.01, 0.001),
    n.minobsinnode = c(5,10,20),
     n.trees = c(100, 500, 1000, 2000, 3000, 5000),
    interaction.depth = c(2))
control_gb <- trainControl(method = "repeatedcv", number = 4, repeats = 5,
    savePredictions = "all", classProbs = TRUE)</pre>
gbm <- train(
     factor(varObjBin) ~ h1Opix + temp90 + trees + trees90 + Ymin + Ymax + temp +
    humid + humid90,
     data = dengue.
    method = "gbm",
trControl = control_gb,
tuneGrid = gb_grid,
    distribution = "bebag.fraction = 1,
     verbose = FALSE)
plot(gbm)
gbm$bestTune
```


Observaciones

Según gbm\$bestTune los mejores resultados se consiguen con 1000 iteraciones, shrinkage de 0.1 y
n.minobsinnode de 5. Los graficos muestran que en iteraciones desde 500 en adelante no se
observan diferencias considerables y tienen a compartir resultados especialmente desde el
shrinkage 0.06. El máximo accuracy estaría entre 0.06 y 0.10 de shrinkage ademas de
minobsinnode 5 tal como lo indica bestTune.

5.4.1.1 Estudio de early stopping Se prueba con algunos parámetros para buscar en que iteración se estabiliza el algoritmo

n.trees interaction.depth shrinkage n.minobsinnode 9 5000 2 0.05 5

Importancia de variables

Importancia de variables - gradient boosting

Observaciones

• Realizando el estudio de early stopping con las variables habituales ya seleccionadas y revisando los graficos, entre 1000 y 2000 n.trees comienza a estabilizarse el algoritmo, presentando resultados similares entre 2000 y 5000. Como se privilegia la simplicidad en el próximo apartado se realizan pruebas con n.trees de 2000.

5.4.2 Validacion cruzada para gradient boosting

Se genera la validación cruzada para gradient boosting utilizando los parámetros obtenidos en el proceso anterior de tunning:

5.4.3 Comparacion de medias y boxplot

Utilizando la función genera_gráficos() se generan los gráficos para realizar comparación de medias y evaluar los modelos

Observaciones

• gbm() tiene un buen auc y esta en el medio del gráfico de la tasa de fallos, pero se observa mayor varianza comparándolo con otros modelos y no alcanza los niveles de accuracy que muestra un random forest o un bagging para este dataset.

5.5 Xgboost

5.5.1 Tunning de Xgboost

```
## 3. Tuneo Xgboost -
set.seed(12345)
set.setu(1246)
xgbmgrid <- expand.grid(
    min_child_weight = c(5, 10, 20),
    eta = c(0.1, 0.05, 0.03, 0.01, 0.001),
    nrounds = c(100, 500, 1000, 5000),
    max_depth = c(2, 3, 4, 5, 6),</pre>
      gamma = 0,
      colsample_bytree = 1,
subsample = 1)
control_xgboost <-trainControl(method = "repeatedcv", number = 4, repeats = 5,</pre>
      savePredictions = "all", classProbs = TRUE)
      factor(varObjBin) ~h1Opix + temp90 + trees + trees90 + Ymin + Ymax + temp +
      humid + humid90.
      data = dengue,
      method = "xgbTree",
trControl = control_xgboost,
      tuneGrid = xgbmgrid,
verbose = FALSE,
      verbosity = 0)
xgbm
plot(xgbm)
 xgbm$bestTune
```


	nrounds	\max_depth	eta	gamma	$colsample_bytree$	\min_child_weight	subsample
112	5000	6	0.01	0	1	5	1

Observaciones

• En la tabla anterior indica los que podrían ser mejores parámetros para el modelo, tomando en cuenta esta tabla el se modela el estudio de *early stopping* para confirmar lo indicado en tabla respecto al numero de interacciones sugeridas.

```
# Early stopping
# Con los parametros entregados anteriormente en best tune
# Con las variables ya preseleccionadas
xgbmgrid2 <- expand.grid(
    eta = c(0.1),
    min_child_weight = c(20),
    nrounds = c(50, 100, 150, 200, 250, 300, 500, 1000),
    max_depth = 6,
    gamma = 0,
    colsample_bytree = 1,
    subsample = 1)

set.seed(12345)
control_xgboost1 <-trainControl(method = "repeatedcv", number = 4, repeats = 5,
    savePredictions = "all", classProbs = TRUE)

xgbm2 <- train(
    factor(varObjBin) -h10pix + temp90 + trees + trees90 + Ymin + Ymax + temp +
    humid + humid90,</pre>
```

```
data = dengue,
    method = "xgbTree",
trControl = control_xgboost1,
tuneGrid = xgbmgrid2,
     verbose = FALSE)
plot(xgbm2)
# Se cambia la semilla para observar variaciones
set.seed(45673)
control_xgboost2 <-trainControl(method = "repeatedcv", number = 4, repeats = 5,</pre>
     savePredictions = "all", classProbs = TRUE)
    factor(varObjBin) ~h1Opix + temp90 + trees + trees90 + Ymin + Ymax + temp +
         humid + humid90,
    method = "xgbTree",
trControl = control_xgboost2,
tuneGrid = xgbmgrid2,
     verbose=FALSE)
xgbm3$bestTune
plot(xgbm3)
# Importancia de variables
plot(xgbm3)
```

5.5.1.1 Estudio de early stopping con xgboost

Observaciones

• En el código anterior se probó con una semilla diferente para ver si hay cambios en las interacciones. Aunque el accuracy es similar en ambos casos en su punto mas alto, con una semilla indica un numero de interacciones menor a lo recomendado en el primer tunning y con semilla distinta a la usual alcanza la estabilidad a partir de 1000 boosting iterations.

	nrounds	\max_depth	eta	gamma	${\bf colsample_bytree}$	min_child_weight	subsample
4	200	6	0.1	0	1	20	1

	nrounds	\max_depth	eta	gamma	colsample_bytree	min_child_weight	subsample
8	1000	6	0.1	0	1	20	1

5.5.2 Validacion cruzada para xgboost

Con los resultados obtenidos anteriormente se construye la validación cruzada para xgboost y la posterior comparación con los demás modelos.

```
# Solo con las variables seleccionadas en stepwise

xgbmgrid3 <- expand.grid(
    eta = c(0.1, 0.05, 0.03, 0.01, 0.001),
    min_child_weight = c(5, 10, 20),
    nrounds = c(50,100,150,200,250,300),
    max_depth = c(2,3,4,5,6),
    gamma = 0,
    colsample_bytree = 1,
    subsample = 1)

set.seed(12345)

xgbm4 <- train(
    factor(varObjBin) - h1Opix + h1Opix90 + Xmax + humid90 +
    Ymax + temp90 + Xmin,
    data = dengue,
    method = "xgbTree",
    treControl = control_xgboost,
    tuneGrid = xgbmgrid3,
    verbose = FALSE)

xgbm4$bestTune
plot(xgbm4)
```

5.5.3 Comparación de medias y boxplot

Utilizando la función genera_gráficos() se generan los gráficos para realizar comparación de medias y evaluar los modelos

Observaciones

• Xgbm alcanza resultados muy buenos en relación a auc y tasa de fallos, inclusive con varianza mas pequeña, demostrando la popularidad con la que cuenta el algoritmo, quedando a la cabeza del gráfico mostrado. Como punto a considerar, computacionalmente es mas costoso que un random forest o bagging que también presenta muy buenos resultados por lo que se debe tener este punto en cuenta al momento de elegir modelo ganador.

5.6 Support Vector Machines

5.6.1 Tunning de support vector machines o SVM

5.6.1.1 SVM Lineal Para el SVM lineal se necesita la constante de regularización C. A continuación se construyen un par de modelos buscando un valor C optimo utilizando las variables seleccionadas con *stepwise*:

Se muestran los resultados y el gráfico correspondiente

```
#svm_1
knitr::kable(svm_1$results, "pipe")
```

С	Accuracy	Kappa	AccuracySD	KappaSD
0.01	0.8848896	0.7657148	0.0135121	0.0268383
0.05	0.8874055	0.7717453	0.0143168	0.0282380
0.10	0.8883113	0.7737057	0.0149961	0.0296287
0.20	0.8903258	0.7779425	0.0148499	0.0294770
0.50	0.8906274	0.7786645	0.0154525	0.0307425
1.00	0.8920387	0.7814860	0.0149960	0.0298476
2.00	0.8933464	0.7842393	0.0151495	0.0302194
5.00	0.8933472	0.7842325	0.0155040	0.0310005
10.00	0.8931454	0.7837290	0.0162712	0.0325210

Resultados svm lineal 1

Observando best Tune y el gráfico, para este primer modelado de svm el valor C mas adecuado estaría entre 0.20 y 2 (donde se observa mejor *accuracy* en tabla), caret en best Tune indica un valor de C de 1 que es también lo que se observa en el gráfico. Con este nuevo valor de C se construye otro modelo donde se busca si es que hay un mejor valor de C en un grid de 0.1 hasta 1

```
SVMgrid_1 <- expand.grid(C = c(0.1, 0.2, 0.3, 0.4, 0.6, 0,7, 0.8, 0.9, 1))
svm_2 <- train(
    data = dengue,
    factor(var0bjBin) ~ h10pix + temp90 + trees + trees90 + Ymin +
    Ymax + temp + humid + humid90,
    method = "svmLinear",
    trControl = control_svm,
    tuneGrid = SVMgrid_1,
    verbose = FALSE)</pre>
```

Se despliegan los resultados

С	Accuracy	Kappa	AccuracySD	KappaSD
0.0	NaN	NaN	NA	NA
0.1	0.8884251	0.7740103	0.0172724	0.0341358
0.2	0.8899354	0.7772673	0.0169244	0.0334794
0.3	0.8897338	0.7768704	0.0173686	0.0343322
0.4	0.8900360	0.7775201	0.0170877	0.0337618
0.6	0.8913452	0.7801687	0.0176056	0.0349052 0.0362346 0.0355690 0.0365251 0.0340750
0.8	0.8914459	0.7804207	0.0182903	
0.9	0.8916475	0.7808622	0.0179788	
1.0	0.8913452	0.7802015	0.0184476	
7.0	0.8904384	0.7782801	0.0171994	

8 0.9

Resultados svm lineal 2

Para este dataset con SVM lineal el valor de C mas adecuado seria C=1.

5.6.1.2 SVM Polinomial En este segundo apartado se utiliza un kernel polinomial buscando el valor de C, el grado del polinomio y la escala (C, degree y scale respectivamente), se entrena el modelo:

```
# 1.2 SVM Polinomial ---
SVMgrid_p <- expand.grid(
    C = c(0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10),
    degree = c(2, 3),
    scale = c(0.1, 0.5, 1, 2, 5))

svm_3 <- train(
    data = dengue,
    factor(varDbjBin) ~ h10pix + temp90 + trees + trees90 +
    Ymin + Ymax + temp + humid + humid90,
    method = "svmPoly",
    trControl = control_svm,
    tuneGrid = SVMgrid_p,
    verbose = FALSE)</pre>
```

Se despliegan los resultados

	degree	scale	C
19	3	2	0.05

En los resultados con bestTune se sugiere un degree de 3, scale 2 y un c value de 0.5. En el gráfico los mejores resultados en *accuracy* los muestra con degree 3, para c value muestra buenos resultados de 0.5 en adelante.

Como los mejores resultados los da el degree 3, se muestra un nuevo gráfico con ese grado y realizar observaciones:

En general scale tiende a generar una curva hasta el valor C=0.5 y después descender para volver a alcanzar un accuracy alto en C=10. Como un C muy grande puede tender al sobreajuste para este dataset es mejor un C 0,5 o 1 y escala 2

5.6.1.3 SVM RBF En este tercer apartado se agrega al c value el parámetro sigma de varianza-escala buscando el valor gamma/sigma mas adecuado para este modelo. Gamma: a mayor gamma se puede presentar sobreajuste.

Se despliegan los resultados

- A mayor sigma (10, 30) no se observa que los resultados mejoren en términos de accuracy.
- bestTune recomienda un sigma de 0.5 y un C de 30, pero desde c 1 hasta c 30 los resultados se observan relativamente parejos por lo que se mantiene el dejar el valor c en 1 y un sigma de 0.5

5.6.2 Validacion cruzada para support vector machines

Con los valores obtenidos de svm lineal, polinomial y RBF se realiza la validación cruzada para su posterior ploteo y comparación de medias para este modelo versus los generados con los algoritmos anteriores

```
# 2. Validacion cruzada rep SVM
#cv para lineal
medias14 <- cruzadaSVMbin(
      data = dengue,
      vardep = "varObjBin",
listconti = c("h1Opix", "temp90", "trees", "trees90",
"Ymin", "Ymax", "temp", "humid", "humid90"),
      listclass = c(""),
      grupos = 4,
       sinicio = 1234,
      repe = 5,
C = 1
)
medias14$modelo <- "svmLineal"
# cv para poli
medias15 <- cruzadaSVMbinPoly(
     llasis <- cruzadasymounroly
data = dengue,
vardep = "varObjBin",
listconti = c("h10pix", "temp90", "trees", "trees90",
"Ymin", "Ymax", "temp", "humid", "humid90"),</pre>
      listclass = c(""),
      grupos = 4,
sinicio = 1234,
      repe = 5,
C = 0.5,
      degree = 3,
       scale = 2
medias15$modelo <- "svmPoly"
medias16 <- cruzadaSVMbinRBF(
     data = dengue,
vardep = "varObjBin",
listconti = c("h1Opix", "temp90", "trees", "trees90",
"Ymin", "Ymax", "temp", "humid", "humid90"),
listclass = c(""),
      grupos = 4,
sinicio = 1234,
      repe = 5,
C = 1,
      sigma = 0.5
medias16$modelo <- "svmRBF"
```

5.6.3 Comparación de medias y boxplot

Utilizando la función genera_graficos() se despliega el gráfico de comparación de medias

3. Compara medias --genera_graficos(medias1, medias2, medias3, medias4, medias5, medias6, medias11, medias12, medias13, medias14, medias15, medias16)

Observaciones

• De los tres modelos el que presenta mayor varianza es el modelo polinomial, los resultados en accuracy sobre todo en svmRBF son buenos pero sigue siendo hasta ahora un randomForest o un xgbm (solo observando el gráfico) los que mejores resultados entregan.

6 Ensamblado de algoritmos

Nota: El código completo de la práctica de ensamblados se encuentra en el siguiente repositorio de GitHub, para no extender innecesariamente el reporte: https://github.com/TiaIvonne/Machine-LearningR/blob/master/5_Ensamblado.R

6.1 Preparación del ensamblado con caret ensemble

Antes de comenzar el modelado, se han decidido los parámetros para los algoritmos que serán ensamblados (proceso obtenido anteriormente en el apartado de tunning) para los siguientes algoritmos:

Redes neuronales, Gradient boosting machine, Random Forest Classifier, Support Vector Machines (lineal, polinomial y radial)

Con los resultados obtenidos se construyen las qrids y se realiza el modelamiento

```
set.seed(12345)
repeticiones <- 10
# Evaluar los modelos
stackControl <- trainControl(</pre>
     method = "repeatedcv",
     number = 4,
     repeats = repeticiones,
     savePredictions = TRUE,
classProbs = TRUE)
# grid gbm
gbmGrid <- expand.grid(
    n.trees = c(2000),</pre>
      interaction.depth = c(2),
     shrinkage =c(0.1),
n.minobsinnode = c(20))
# grid random forest
rfGrid <- expand.grid(mtry=c(3))
# grid sum lineal
svmlinGrid <- expand.grid(C=c(0.08))</pre>
svmPolyGrid <- expand.grid(C=c(0.03),degree=c(3),scale=c(2))</pre>
# grid sum radial
svmRadialGrid <- expand.grid(sigma = c(0.5), C = c(30))</pre>
# Modelado
set.seed(12345)
models <- caretList(varObjBin~.,</pre>
     data = dengue,
     trControl = stackControl,
tuneList = list(
          parrf = caretModelSpec(method = "rf", maxnodes = 30, n.trees = 200, nodesize = 10, sampsize = 150, tuneGrid = rfGrid),
           parr = caretModelSpec(method = "rr', maxnodes - 3v, n.vrees - 2vv, nove
glm = caretModelSpec(method = "glm"),
gbm = caretModelSpec(method = "gbm", tuneGrid = gbmGrid),
svmlinear = caretModelSpec(method = "svmLinear", tuneGrid = svmlinGrid),
svmPoly = caretModelSpec(method = "svmPoly", tuneGrid = svmPolyGrid),
           symradial = caretModelSpec(method = "symRadial", tuneGrid = symRadialGrid)))
```

Se despliegan los resultados obtenidos para el ensamblado

```
results <- resamples(models)
summary(results)
dotplot(results)
modelCor(results)
splom(results)
results[[2]]
ensemble <- caretEnsemble(models)
# Aquí se recomiendan los pesos para el ensamblado # de todos los modelos y se
# ve la tasa de aciertos de cada modelo y ensamblado
summary(ensemble)
# 2. Validacion cruzada y kit ensamblado ----
# 2.1 Leer funciones -
# 2.2 Prepapar archivo, variables , semilla y repeticiones ----
dput(names(dengue))
set.seed(12345)
archivo <- dengue
listconti <- c("h10pix", "temp90", "trees", "trees90", "Ymin", "Ymax", "temp", "humid", "humid90")
listclass <- c("")
grupos <- 4
sinicio <- 1234
repe <- 15
# 2.3 Obtener datos de cu repetida para cada algoritmo y
# procesar resultado -
medias_1<-cruzadalogistica(data = archivo,
    vardep = vardep,
listconti=listconti,
    listclass = listclass, grupos = grupos,
    sinicio = sinicio, repe = repe)
medias1bis <- as.data.frame(medias_1[1])</pre>
medias1bis$modelo<-"logistica
predi1 <- as.data.frame(medias_1[2])
{\tt predi1\$logi} \hbox{<-predi1\$Yes}
{\tt medias\_2 <\!\!\!-cruzadaavnnetbin(data=} archivo,
    vardep=vardep,listconti=listconti,
    listclass=listclass,grupos=grupos,sinicio=sinicio,repe=repe,
```

```
size=c(10),decay=c(0.01),repeticiones=5,itera=200)
medias2bis<-as.data.frame(medias_2[1])
medias2bis$modelo<-"avnne
predi2<-as.data.frame(medias_2[2])</pre>
{\tt predi2\$avnnet} {\leftarrow} {\tt predi2\$Yes}
medias_3<-cruzadarfbin(data=archivo,
     vardep=vardep,listconti=listconti,
listclass=listclass,grupos=grupos,sinicio=sinicio,repe=repe,
mtry=3,ntree=500,nodesize=10,replace=TRUE)
medias3bis<-as.data.frame(medias_3[1])
medias3bis$modelo<-"randomforest"
predi3<-as.data.frame(medias_3[2])</pre>
predi3$rf<-predi3$Yes
medias_4 <-cruzadagbmbin(data=archivo,
     vardep=vardep,listconti=listconti,
     listclass=listclass,grupos=grupos,sinicio=sinicio,repe=repe,
n.minobsinnode=5,shrinkage=0.1,n.trees=3000,interaction.depth=2)
medias4bis <- as.data.frame(medias 4[1])
medias4bis$modelo<-"gbm
predi4<-as.data.frame(medias_4[2])
predi4$gbm<-predi4$Yes
Values = listclass, grupos = grupos, sinicio = sinicio, repe = repe, min_child_weight = 5, eta = 0.10, nrounds = 250, max_depth = 6, gamma = 0, colsample_bytree = 1, subsample = 1,
      alpha = 0, lambda = 0, lambda_bias = 0)
medias5bis <-as.data.frame(medias_5[1])
medias5bis$modelo <-"xgbm"
predi5 <-as.data.frame(medias_5[2])
predi5$xgbm<-predi5$Yes</pre>
medias 6<-cruzadaSVMbin(data=archivo.
     vardep=vardep,listconti=listconti,
     listclass=listclass,grupos=grupos,sinicio=sinicio,repe=repe,C=0.08)
{\tt medias6bis \center{condition}-as.data.frame(medias\_6[1])}
medias6bis$modelo<-"svmLinear
predi6<-as.data.frame(medias_6[2])
predi6$svmLinear<-predi6$Yes
C = 0.03, degree = 3, scale = 2)
medias7bis <- as.data.frame(medias_7[1])</pre>
medias7bis$modelo <- "svmPoly"
predi7 <- as.data.frame(medias_7[2])
predi7$svmPoly <- predi7$Yes
medias_8 <- cruzadaSVMbinRBF(data = archivo,</pre>
     vardep = vardep, listconti = listconti,
listclass = listclass, grupos = grupos,
sinicio = sinicio, repe = repe,
     C = 30, sigma = 0.5)
medias8bis<-as.data.frame(medias_8[1])
medias8bis$modelo<-"svmRadial"
predi8<-as.data.frame(medias_8[2])
predi8$svmRadial<-predi8$Yes
summary(ensemble)
The following models were ensembled: parrf, \operatorname{glm}, \operatorname{gbm}, \operatorname{symlinear}, \operatorname{symPoly}, \operatorname{symradial}
They were weighted:
4.1057 -0.3249 0.4592 -2.7462 -1.4311 -1.5155 -3.104
The resulting Accuracy is: 0.9457
The fit for each individual model on the Accuracy is:
method Accuracy AccuracySD
parrf 0.8973276 0.013143839
         glm 0.8899252 0.012870074
         gbm 0.9378647 0.009223015
 symlinear 0.8885664 0.011650506
   svmPoly 0.9256787 0.011685866
 symradial 0.9385687 0.009063826
```

6.2 Validacion cruzada repetida y boxplot

Siguiendo la guia de ensamblados entregada en el material, se realizan los pasos requeridos para realizar pruebas de ensamblado y validacion cruzada repetida

6.2.1 Paso 1, carga del archivo con la funcion "cruzadas ensamblado binaria fuente.R"

6.2.2 Paso 2, Preparacion del archivo

Se define semilla, variables y repeticiones

6.2.3 Paso 3, aplicacion de la funcion cruzadas ensamblado

Con los datos obtenidos del proceso de tunning se construyen las nuevas medias a evaluar bajo la función "cruzadas ensamblado binaria fuente.R".

Solo se adjunta una muestra del código generado

```
medias_1<-cruzadalogistica(data = archivo,</pre>
    vardep = vardep,
listconti=listconti,
     listclass = listclass, grupo
                                         grupos,
    sinicio = sinicio, repe = repe)
medias1bis <- as.data.frame(medias_1[1])</pre>
medias1bis$modelo<-"logistica
predi1 <- as.data.frame(medias_1[2])
predi1$logi<-predi1$Yes
medias_2 <- cruzadaavnnetbin (data=archivo,
    vardep=vardep.listconti=listconti,
listclass=listclass,grupos=grupos,sinicio=sinicio,repe=repe,
    size=c(10),decay=c(0.01),repeticiones=5,itera=200)
medias2bis <- as.data.frame(medias_2[1])
medias2bis$modelo<-"avnnet
predi2 <- as.data.frame(medias_2[2])
predi2$avnnet<-predi2$Yes
medias 3<-cruzadarfbin(data=archivo.
     vardep=vardep,listconti=listconti,
    listclass=listclass,grupos=grupos,sinicio=sinicio,repe=repe,
mtry=3,ntree=500,nodesize=10,replace=TRUE)
medias3bis <- as.data.frame(medias_3[1])
medias3bis$modelo<-"randomfores
predi3<-as.data.frame(medias_3[2])</pre>
predi3$rf<-predi3$Yes
# Se ha omitido el resto del código
```

Con la función genera graficos y una vez calculadas las medias en el proceso anterior se obtiene el gráfico de cajas respectivo:

```
# Genera graficos
genera_graficos(medias1bis, medias2bis, medias3bis, medias4bis, medias5bis,
medias6bis, medias7bis, medias8bis)
```

6.2.4 Paso 4, construccion del ensamblado

Con las predicciones obtenidas en las respectivas variables predi1, predi2, predi3 etc se crean los ensamblados. Solo se adjunta una muestra del código

```
unipredi<-cbind(predi1,predi2,predi3,predi4,predi5,predi6,predi7,predi8)
ncol(unipredi)

unipredi<- unipredi[, !duplicated(colnames(unipredi))]
ncol(unipredi)

unipredi$predi9<-(unipredi$aliogi+unipredi$avnnet)/2
unipredi$predi10<- (unipredi$logi+unipredi$rf)/2
unipredi$predi11<- (unipredi$logi+unipredi$gbm)/2
unipredi$predi12<- (unipredi$logi+unipredi$sgbm)/2
unipredi$predi13<- (unipredi$predi3scminpredi$swmLinear)/2
unipredi$predi14<- (unipredi$predi3scminpredi$swmPoly)/2
```

6.2.5 Paso 5, Procesado de los ensamblados

Solo se adjunta una parte del código, se construyen los promedios de tasa de fallos y AUC.

dput(names(unipredi))
listado<-c("logi", "avnnet",
 "rf","gbm", "xgbm", "svmLinear", "svmPoly",
 "svmRadial","predi9", "predi10", "predi11", "predi12",
 "predi13", "predi14", "predi15", "predi16", "predi17", "predi18",
 "predi25", "predi20", "predi21", "predi28", "predi23", "predi30",
 "predi31", "predi32", "predi33", "predi34", "predi36", "predi36",
 "predi37", "predi38", "predi39", "predi41", "predi41", "predi42",

```
"predi43", "predi44", "predi45", "predi46", "predi47", "predi48", "predi49", "predi50", "predi51", "predi52", "predi53", "predi54", "predi55", "predi56", "predi57", "predi58", "predi59", "predi60", "predi61", "predi62", "predi63", "predi64", "predi65", "predi66", "predi67", "predi68", "predi69")
# Cambio a Yes, No, todas las predicciones
# Defino funcion tasafallos
tasafallos<-function(x,y) {
     confu<-confusionMatrix(x,y)
      tasa<-confu[[3]][1]
auc<-function(x,y) {</pre>
     curvaroc <- roc (response=x, predictor=y)
      auc<-curvaroc$auc
     return(auc)
\# Se obtiene el numero de repeticiones CV y se calculan las medias por repe en
# el data frame medias0
repeticiones<-nlevels(factor(unipredi$Rep))
unipredi$Rep<-as.factor(unipredi$Rep)</pre>
unipredi$Rep<-as.numeric(unipredi$Rep)
medias0<-data.frame(c())
for (prediccion in listado)
      unipredi$proba<-unipredi[,prediccion]
     unipredi[,prediccion]<-ifelse(unipredi[,prediccion]>0.5,"Yes","No")
for (repe in 1:repeticiones)
            paso <- unipredi[(unipredi$Rep==repe),]</pre>
           pre<-factor(paso[,prediccion])
archi<-paso[,c("proba","obs")]</pre>
           archi<-archi[order(archi$proba),]
obs<-paso[,c("obs")]
tasa=1-tasafallos(pre,obs)</pre>
            t<-as.data.frame(tasa)
            t$modelo<-prediccion
            auc <- suppressMessages (auc (archi$obs,archi$proba))
            t$auc<-auc
           medias0<-rbind(medias0,t)
```

6.2.6 Paso 6, boxplot inicial

Boxplot con tasa de fallos para todos los ensamblados, en el punto 8 se muestran ordenados

6.2.7 Paso 7, tabla con resultados

Se genera tabla con resultados para la tasa de fallos y el área under curve.

Nota: Solo se despliegan las primeras salidas para no extender el documento.

```
tablamedias <-medias 0 %>%
group_by(modelo) %>%
summarise(tasa=mean(tasa))

tablamedias<-as.data.frame(tablamedias[order(tablamedias$tasa),])
knitr::kable(head(tablamedias, n = 10), "pipe")
```

modelo	tasa
predi55 predi16 rf predi57 predi26 predi60 predi63 predi69 predi52 predi56	0.0641826 0.0650554 0.0652904 0.0656260 0.0663310 0.0663646 0.0667338 0.0670695 0.0678751
P	

```
# Para AUC

tablamedias2<-medias0 %>%
group_by(modelo) %>%
summarise(auc=mean(auc))
```

modelo	auc
predi55 predi57 predi52 predi60 predi23 predi69 predi56 predi26 predi16 predi16	0.9789378 0.9786039 0.9782842 0.9782593 0.9780586 0.9779774 0.9778908 0.9777369 0.97773005

En el punto siguiente se gráfica para una mejor visualización y toma de decisión

6.2.8 Paso 8, Boxplot ordenados para comparación de medias

Con los resultados obtenidos de los ensamblados se generan los boxplot ordenados por tasa de fallos y auc respectivamente:

knitr::include_graphics("./figure/ensamblado_medias0_tasa.png")

En tasa de fallos los modelos con menor tasa son predi55, predi16, randomforest knitr::include_graphics("./figure/ensamblado_medias0_auc.png")

En AUC respectivamente los modelos con mayor accuracy son predi55, predi57 y predi52.

Como se observa en el gráfico son demasiados modelos, en el apartado siguiente solo se grafican los mejores modelos de ensamblado y se comparan con los algoritmos sin ensamblar.

6.2.9 Paso 9, comparacion de mejores modelos

Los mejores ensamblados son los modelos predi
57, predi
55, predi
52 y predi
60, estos se muestran a continuación comparándolos con los modelos originales sin ensamblar

6.2.10 Paso 10, revision a los mejores ensamblados

```
unipredi$predi55<-(unipredi$rf+unipredi$sybm+unipredi$svmRadial)/3
unipredi$predi57<-(unipredi$rf+unipredi$synnet+unipredi$symRadial)/3
unipredi$predi60<-(unipredi$rf+unipredi$synnet+unipredi$symRadial)/3
unipredi$predi52<-(unipredi$rf+unipredi$gbm+unipredi$symRadial)/3
```

En los ensamblados el algoritmo común en los cuatro mejores ensamblados es random forest, el mejor ensamblado es el numero 55 que mezcla random forest, xgbm y svm radial.

6.2.11 Observaciones finales

- De los modelos originales los mejores resultados observando el gráfico los obtiene random forest, xgbm y avnnet, xgbm presenta mas varianza que los dos anteriores.
- El accuracy alcanzado por los ensamblados es mas alto si se compara con los modelos originales sin ensamblar. Si solo fuese tomando como criterio el accuracy, predi57 que es un ensamblado de randomforest con xgbm y symlineal seria el modelo ganador. Sin embargo no hay diferencias dramáticas desde randomforest hacia adelante y considerando sesgo-varianza, randomforest estaría mostrando mejores resultados que los ensamblados.
- La tasa de fallos vs el auc muestra algunas incoherencias, en tasa de fallos el numero menor lo obtienen predi55 y predi16 pero en auc los ensamblados predi55 y predi57 respectivamente están a la cabecera de los resultados.

7 Evaluación del modelo ganador y conclusiones

7.1 Algoritmo a usar para este modelo

Se ha decidido para esta práctica que el algoritmo ganador es *random forest classifier*, los resultados son de los mejores observados en gráfico, combinado con AUC y tasa de fallos, presentando resultados competitivos si se compara con los generados vía ensamblado, sumado a menor complejidad y costo computacional son los indicadores que han sido considerados para tomar esta decisión.

7.2 Matriz de confusión para el modelo escogido

7.3 Sensitividad, especificidad y precision

Observando la matriz de confusión, mas los estadísticos se pueden formular algunas observaciones:

- De 1986 registros totales, 1080 están siendo clasificados correctamente como no (es decir no se presencia dengue) y 776 como yes (se observa la presencia de dengue). 82 registros son falsos positivos y 48 falsos negativos.
- Accuracy obtenida es de 0.93 y considerando la proporción base, las variables estarían mejorando la medida de base.
- Sensitivity/recall: este indicador se observa en un valor de 0.92 lo cual indica que la probabilidad de detectar un valor positivo es alta. Un valor alto de recall indica que existirían menos falsos negativos.
- Specificity: La probabilidad de detectar correctamente los casos negativos es de un valor de 0.94.
- Precision: La probabilidad de acertar en caso de yes es de un 0.95

7.4 Tabla de parámetros para regresión logística

Call: NULL Deviance Residuals: -2.63747 -0.15358 0.44958 -0.02882 3.04419 Coefficients: Estimate Std. Error z value Pr(>|z|)0.1866 -10.102 < 0.0000000000000000 *** (Intercept) h10pix 3.1524 0.2542 12.403 < 0.00000000000000000 *** 0.0000182 *** temp90 3.1225 0.7286 4.286 -1.8854 Ymax 1.6698 1.1480 1 455 0.145781 -2.6276 0.6948 0.000156 *** -3.782 temp 3.7731 0.0000677 *** humid90 -3.4328 0.9786 -3.508 0.000452 *** -0.6970 0.1991 -3.500 0.000465 *** trees 0.2221 0.5499 2.477 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 2695.4 on 1985 degrees of freedom Residual deviance: 1033.8 on 1976 degrees of freedom Number of Fisher Scoring iterations:

summary(logistica)

• Observando la tabla de parámetros Ymin e Ymax no son variables relevantes para el modelo a pesar de que fueron seleccionadas previamente siguiendo los pasos de selección de variables con

stepwise.

7.5 Puntos de corte

Se prueba cambiando punto de corte de 0.5 a 0.3

```
salida_rf$predcorte <- ifelse(salida_rf$Yes>corte, "Yes", "No")
salida_rf$predcorte <- as.factor(salida_rf$predcorte)</pre>
confusionMatrix(salida_rf$obs, salida_rf$predcorte, positive = "Yes")
Confusion Matrix and Statistics
          Reference
Prediction No Yes
No 1023 139
       Yes 25 799
    Accuracy : 0.9174
95% CI : (0.9044, 0.9292)
No Information Rate : 0.5277
    P-Value [Acc > NIR] : < 0.00000000000000022
                   Kappa : 0.8333
 Mcnemar's Test P-Value : < 0.00000000000000022
            Sensitivity: 0.8518
            Specificity: 0.9761
         Pos Pred Value : 0.9697
         Neg Pred Value : 0.8804
             Prevalence: 0.4723
         Detection Rate : 0.4023
   Detection Prevalence: 0.4149
      Balanced Accuracy : 0.9140
        'Positive' Class : Yes
```

• Solo como experimento adicional, no se observa mejora, al contrario, la accuracy desciende de 0.93 a 0.91, pero si ha aumentado la especificidad, se sigue detectando bien los valores negativos.

7.6 Contraste de hipotesis entre algunos modelos

```
lista_medias <- rbind(medias1,medias2,medias3, medias4, medias5,medias6, medias11, medias12,medias13, medias14,medias15, medias16)
modelos <- c("xgbm", "randomforest")
contraste <- lista_medias [which(lista_medias$modelo%in%modelos),]
resultados <- t.test(contraste$auc -contraste$modelo)
resultados

Welch Two Sample t-test

data: contraste$auc by contraste$modelo
t = -15.115, df = 6.6841, p-value = 0.000002043
alternative hypothesis: true difference in means between group randomforest and group xgbm is not equal to 0
95 percent confidence interval:
-0.013022752 -0.009469958
sample estimates:
mean in group randomforest mean in group xgbm
0.9776175 0.9886639
```

7.7 Visualpred

Utilizando el script facilitado en los apuntes se realizan algunas comparaciones básicas con el paquete visualpred.

• En general las clases se separan adecuadamente pero se observan algunas islas de observaciones sin clasificar correctamente. Con un modelado adicional en el script evaluando diferentes modelos y con criterio auc, random forest sigue mostrando buenos resultados y menor varianza que el resto de los modelos.

7.8 Tabla resumen

Como punto final a esta práctica se adjunta tabla resumen con auc y tasa de fallos para cada modelo evaluado

```
lista_medias <- rbind(medias1,medias2,medias3, medias4, medias5,medias6, medias11, medias12, medias13, medias14,medias15, medias16)
tabla_final <- lista_medias %>%
group_by(modelo) %>%
summarise(tasa-mean(tasa))
knitr::kable(tabla_final, "pipe", caption = "Tasa de fallos ")
```

Cuadro 17: Tasa de fallos

modelo	tasa
Avnnet1	0.0734139
Avnnet2	0.1138973
Logística1	0.1081571
Logística2	0.1121853
Red con maxit	0.0724068
bagging	0.0726083
gbm	0.0862034
randomforest	0.0645519
svmLineal	0.1072508
svmPoly	0.0944612
svmRBF	0.0855992
xgbm	0.0494461

```
tabla_final <- lista_medias %>%
group_by(modelo) %>%
summarise(auc=mean(auc))
knitr::kable(tabla_final, "pipe", caption = "Auc ")
```

Cuadro 18: Auc

A Anexos

A.1 Otros métodos de selección de variables

Como un complemento a la selección de variables de tipo **Stepwise** que se ha estudiado en el apartado de selección se ha decidido estudiar otras alternativas de selección de features utilizando diversas

técnicas que se detallan a continuación:

A.1.1 Utilizando la libreria party y random forest

Un método de selección de variables es utilizando el algoritmo de random forest para encontrar un set de predictores, para eso se utiliza la librería party y se obtienen los siguientes resultados:

A.1.2 Utilizando MARS: Multivariate Adaptive Regression Splines

Otro método de selección de variables es utilizando MARS, contenida en la librería earth para R

```
library(earth)
s2 <- earth(varObjBin - ., data=dengue2) # build model
evaluacion <- evimp (s2)
plot(evaluacion)
```


A.1.3 Utilizando la libreria Boruta

plot(boruta_model, las = 2, cex.axis=0.7, xlab="")

Boruta es otra librería para realizar feature selection de forma automática, permitiendo un acercamiento inicial rápido al dataset (con sus ventajas y desventajas):

```
library(Boruta)
boruta_model <- Boruta(var0bjBin ~ ., data= dengue2, doTrace=2)
relevancia <- names(boruta_model$finalDecision[boruta_model$finalDecision %in% c("Confirmed")])
print(relevancia)

[1] "humid" "humid90" "temp" "temp90" "h10pix" "h10pix90"
[7] "trees" "trees90" "Xmin" "Xmax" "Ymin" "Ymax"
```


Boruta permite revisar si el set de variables a estudiar entran en el modelo o podrían entrar de forma tentativa o definitivamente no han sido considerados como variables predictoras relevantes con lo cual también se pueden probar otros modelos y combinaciones (ej confirmados mas algún tentativo etc)

Para este dataset en particular la selección no marca variables como tentativas o descartadas por lo cual correspondería observar el gráfico generado y realizar algún corte de tipo manual en las variables.

A.1.4 Utilizando RFE con caret

Eliminación recursiva de características o RFE en sus siglas en ingles, es un estimador que asigna pesos a las características del dataset que se desea estudiar.

```
set.seed(7)
# Cargar dates
data(dengue2)
# Se define la funcion de control
controlrfe <- rfeControl(functions=rfFuncs, method="cv", number=4)</pre>
# Algoritmo RFE
res_rfe <- rfe(dengue2[,2:12], dengue2[,1], sizes=c(2:12), rfeControl=controlrfe)
print(res_rfe)
Recursive feature selection
Outer resampling method: Cross-Validated (4 fold)
Resampling performance over subset size:
                                                             MAESD Selected
 Variables
            RMSE Rsquared
                                 MAE
                                       RMSESD RsquaredSD
         2 0.2559
                     0.7144 0.13033 0.080328
                                                 0.188079 0.080015
         3 0.2103
                     0.8186 0.09381 0.008193
                                                 0.013435 0.001988
          4 0.2093
                     0.8200 0.09198 0.006153
                                                 0.011944 0.003804
         5 0.1927
                     0.8479 0.08635 0.009504
                                                 0.014010 0.004464
                                                 0.011868 0.003713
         6 0.1915
                     0.8499 0.08543 0.008331
           0.1934
                     0.8473 0.08939 0.006407
                                                 0.009145 0.004466
         8 0.1941
                     0.8465 0.09210 0.004874
                                                 0.007074 0.003773
                     0.8450 0.09183 0.004130
                                                 0.007247 0.003856
         9 0.1949
         10 0.1985
                     0.8395 0.09571 0.004161
         11 0.2012
                     0.8353 0.09888 0.002943
                                                 0.007213 0.002814
The top 5 variables (out of 6):
   Xmax, h10pix, Xmin, h10pix90, Ymin
predictors(res_rfe)
                "h10pix"
                                        "h10pix90" "Ymin"
[1] "Xmax"
                          "Xmin"
                                                               "temp"
# plot(results, type=c("g", "o"))
```

Con las variables que ha seleccionado el modelo de RFE mas los modelos anteriores se prueban con la función cruzadalogistica() y se genera el boxplot para comparar:

Conclusiones:

• A modo general la selección de variables realizada con stepwise (Logistica1), sigue siendo la que presenta mejor AUC y menor tasa de fallos, ademas de menor varianza por lo que se seguirá trabajando con ese modelo.

A.2 Arboles de clasificación

A.2.1 Seleccion de variables

Como complemento al trabajo realizado anteriormente con los algoritmos de ML y su posterior evaluación, se ha añadido un apartado de practica modelando arboles de clasificación utilizando R y el dataset dengue

Primer modelado, modelo con todas las variables del dataset para realizar estudio de importancia de variables (que se hizo en el apartado de selección con Stepwise pero se prefiere agregarlo a la practica)

```
# Modelo completo con gini para variable dependiente categorica
arbol1 <- rpart(factor(varObjBin) - .,
    data = dengue_arbol,
    minbucket = 30,
    method = "class",
    parms = list(split = "gini"))
# Reglas de decision
rattle::asRules(arbol1)</pre>
```

Representación gráfica de las variables consideradas relevantes y árbol:

Observaciones

• Según el gráfico importancia de variables Árbol1, las varibles predictoras mas relevantes serian, h10pix, h10pix, h10pix, humid90, Ymin, humid e Ymax.

Se prueba modelando un nuevo árbol esta vez usando maxsurrogate = 0, solo como complemento puesto que el archivo dengue no contiene datos faltantes:

```
# Modelo con mazsurrogate = 0 para que trabaje los na's
arbol2 <- rpart(factor(varObjBin) ~ .,
    data = dengue_arbol,
    minbucket = 30,
    method = "class",
    maxsurrogate = 0,
    parms = list(split = "gini"))</pre>
```

Representación gráfica de las variables consideradas relevantes y árbol:

Importancia de variables Arbol2

rpart.plot(arbol2, extra = 105, tweak = 1.2, type = 1, nn = TRUE)

Observaciones

• Según el gráfico importancia de variables Arbol2, las varibles predictoras mas relevantes serian, h10pix e Ymax.

A.2.2 Tunning de algoritmos usando rpart()

De forma inicial se realiza un primer tunning de arboles observando el comporta miento de la complejidad del árbol graficando su estructura en relación al parámetro minbucket (5, 30 y 60) utilizando la función rpart()

```
# Tuneado sobre complejidad del arbol con Rpart
arbol_min5 <- rpart(factor(varObjBin) - ., data = dengue_arbol, minbucket = 5, cp = 0)
arbol_min30 <- rpart(factor(varObjBin) - ., data = dengue_arbol, minbucket = 30, cp = 0)
arbol_min60 <- rpart(factor(varObjBin) - ., data = dengue_arbol, minbucket = 60, cp = 0)
```

Representación gráfica del tunning de minbucket

Importancia de variables con minbucke Importancia de variables con minbucket

Importancia de variables con minbucket

Observaciones

Se puede apreciar que con minbucket 5 se genera un modelo complejo y con minbucket 60 un modelo básico, para encontrar un equilibrio y ver otras opciones de minbucket a continuación se profundiza en el tuneado utilizando caret de R

A.2.3 Tunning de algoritmos usando caret()

Como indican los apuntes, no se puede realizar tunning en el grid por lo que se construye un bucle for() que recorre por cada numero de minbucket indicado y va guardando los resultados para una posterior evaluación:

```
\# En los ejemplos anteriores se dejaron los na's para ver el comportamiento, se eliminan
# tunning de minubucket en bucle
# Tratamiento de datos faltantes
dengue_arbol1 <- na.omit(dengue_arbol, (!is.na(dengue_arbol)))</pre>
colSums(is.na(dengue_arbol1)) > 0
# Tunning con minbucket en bucle
set.seed(12345)
control_arbol <- trainControl(method = "repeatedcv", number = 4,
         eats = 5, savePredictions = "all", classProbs = TRUE)
arbolgrid <- expand.grid(cp = c(0))
tabla_resultados <-c()
for (minbu in seq(from = 5, to = 60, by = 5)){
   arbolgrid <- expand.grid(cp=c(0))
   arbolcaret <- train(factor(var0bjBin) - h10pix + temp90 + Ymin + Ymax +</pre>
         temp + humid + humid90 + trees + trees90,
    data = dengue_arbol1,
    method = "rpart'
    minbucket = minbu,
trControl = control_arbol,
    tuneGrid = arbolgrid)
    accuracy <- arbolcaret$results$Accuracy</pre>
             arbolcaret$pred
     salconfu <- confusionMatrix(sal$pred, sal$obs)</pre>
     curvaroc <-roc(response = sal$obs, predictor = sal$Yes)</pre>
     auc <- curvaroc$auc
     # Guarda los resultados en formato tabla
     tabla_resultados <- rbind(tabla_resultados, c(minbu, accuracy, auc))
# Cambia los nombres de las columnas
colnames(tabla_resultados) <- c("minibucket","accuracy","AUC")</pre>
```

Con el código anterior se genera una tabla para una mejor visualización de los indicadores:

```
knitr::kable(tabla_resultados, "pipe")
```

AUC	accuracy	minibucket
0.9570891	0.9061411	
0.9510540	0.9012119	10
0.9534192	0.9040294	15
0.9542344	0.9041276	20
0.9565679	0.9036242	25
0.9553399	0.9087667	30
0.9535379	0.9048338	35
0.9537842	0.9039296	40
0.9508535	0.9017137	45
0.9538240	0.9071493	50
0.9539353	0.9012103	55
0.9557522	0.9042310	60

Como se puede apreciar en la tabla anterior, en combinación entre mejor accuracy y AUC para este modelo es adecuado utilizar un minbucket de 30. Con ese numero se realiza la validación cruzada repetida utilizando la función cruzadaarbolbin()

Se obtiene la matriz de confusión para este modelo

```
salida_a4 <- arbol4$pred
salida4_confusion <- confusionMatrix(salida_a4$pred, salida_a4$obs)
salida4_confusion
Confusion Matrix and Statistics
         Reference
Accuracy : 0.9104
95% CI : (0.8969, 0.9226)
    No Information Rate: 0.5851
    Mcnemar's Test P-Value : 0.06095
           Sensitivity: 0.9122
           Specificity: 0.9078
        Pos Pred Value : 0.9331
Neg Pred Value : 0.8800
            Prevalence : 0.5851
        Detection Rate : 0.5337
   Detection Prevalence: 0.5720
      Balanced Accuracy: 0.9100
       'Positive' Class : No
fourfoldplot(salida4_confusion$table)
```


Se obtiene la curva ROC

A.2.4 Comparacion con otros algoritmos de ML

Con los resultados obtenidos de entrenar el modelo se realiza la validación cruzada repetida para posteriormente comparar las medias con los demás modelos y evaluar sesgo-varianza

```
# 2. Validacion cruzada repetida -----
# Con los resultados de la tabla con iteraciones se configura la validacion cruzada
medias_arbol <-cruzadaarbolbin(
    data = dengue_arbol1,
    vardep = "varObjBin",
    listconti = c("h1Opix", "temp90", "trees", "trees90", "Ymin", "Ymax", "temp",
    "hunid", "hunid90"),
    listclass = c(""), grupos = 4, sinicio = 1234, repe = 5,
    cp = c(0), minbucket = 20)

medias_arbol$modelo <- "Arbol"</pre>
```

Con la función genera_gráficos() se despliega la comparación de medias para los distintos algoritmos entrenados

```
#genera_graficos(medias1, medias2, medias4, medias5, medias6, medias9, medias11, medias_arbol)
genera_graficos(medias1, medias2, medias_arbol)
```


Observaciones:

• Para esta practica en particular, un árbol no es lo suficientemente competitivo frente a otros algoritmos modelados. Presenta mejores indicadores que la regresión logística o una red neuronal pero ante otros algoritmos como bagging o random forest se queda un tanto atrás.

A.3 Libreria h2o para python

Como practica adicional se ha decidido realizar un modelado con autoML utilizando la librería h2o para python, utilizando un jupyter notebook para este fin.

El notebook se puede revisar en detalle en: https://github.com/TiaIvonne/Machine-LearningR/blob/master/h2o%20python/autoML_dengue.ipynb

El primer paso ha sido generar un modelo de autoML que determine cual combinación es la mas adecuada para el set de datos dengue y buscar si hay coincidencias con la practica realizada con R.

Para autoML la mejor combinación es utilizar un Xgboost el cual coincide con los resultados de esta practica (a pesar de que se dio por ganador a un random forest) con metricas de buena calidad y similares a las obtenidas con R.