Практическая работа №5

АНАЛИЗ ВЕРОЯТНОСТНЫХ СВЯЗЕЙ МЕЖДУ ФАКТОРАМИ И РЕЗУЛЬТАТАМИ ИСПЫТАНИЙ

Цель работы: изучение методики определения корреляционных связей между факторами, определяющими объект исследования.

В процессе изучения явлений устанавливаются взаимосвязи между факторами, определяющими явление. Указанная связь устанавливается с помощью корреляционного анализа.

К изучению связи методом корреляции обращается в том случаи, когда нельзя изолировать влияние посторонних факторов, либо потому, что они неизвестны, либо из-за невозможности их изоляции.

Поэтому метод корреляции применяется для того, чтобы при сложном взаимодействии посторонних влияний выяснить, какова бы была зависимость между результатом и факторами, если бы посторонние факторы не изменялись и своим изменением не искажали бы основную зависимость.

При этом число наблюдений должно быть достаточно велико, так как малое число наблюдений не позволяет обнаружить закономерность связей.

Первая задача корреляции заключается в выявлении на основе значительного числа наблюдений того, как меняется в среднем результативный признак в связи с изменением одного или нескольких факторов. Это изменение предполагает условие неизменности ряда других факторов, хотя искажающие влияние последних на самом деле есть.

Вторая задача – определение различных показателей тесноты связей между факторами, определяющими явление (процесс).

Первая задача решается определением уровня регрессии и носит название регрессионного анализа.

Вторая задача является корреляционным анализом. Корреляционный анализ количественно оценивает связь между двумя или несколькими взаимодействующими явлениями.

Его применение позволяет определить наличие и силу связи между явлениями.

Регрессионный анализ дает возможность установить, как в среднем изменяется результативный признак под влиянием одного или нескольких факторных признаков.

					Практическая работа №5						
Изм.	Лист	№ докум.	Подпись	Дата							
Разри	1δ.				АНАЛИЗ ВЕРОЯТНОСТНЫХ	Лит.	Лист	Листов			
Прове	₽ <i>p</i> .				СВЯЗЕЙ МЕЖДУ ФАКТОРАМИ		1	5			
Реце	43.				И РЕЗУЛЬТАТАМИ						
Н. Ко	нтр.				ИСПЫТАНИЙ		ГГТУ гр.	C-41			
Утве	Утверд.										

Теоретически обоснованной мерой тесноты связи между двумя статически связанными признаками служит линейный коэффициент корреляции (γ). Он может принимать как положительные, так отрицательные значения.

Положительное значение указывает на прямую связь между признаками, отрицательное – на обратную связь между ними.

Линейный коэффициент корреляции для парной таблицы связей исчисляется по формуле:

$$\gamma = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\delta x \cdot \delta y}; \qquad \overline{xy} = \frac{\sum x \cdot y}{n}; \qquad \overline{x} = \frac{\sum x}{n}; \qquad \overline{y} = \frac{\sum y}{n};$$

$$\delta x = \sqrt{\frac{\sum x^2}{n} - \frac{-2}{x}}; \qquad \delta x = \sqrt{\frac{\sum y^2}{n} - \frac{-2}{y}};$$

Если $\overline{xy} > \overline{x \cdot y}$, то δ положителен, если $\overline{xy} < \overline{x \cdot y}$, то δ отрицателен.

Квадрат коэффициента корреляции называется коэффициентом детерминации. Линейный коэффициент корреляции можно вычислить и по другим формулам:

$$\gamma = \frac{n \cdot \sum y \cdot x - \sum x \cdot \sum y}{\sqrt{[n \cdot \sum y^2 - (\sum y)^2] \cdot [n \cdot \sum x^2 - (\sum x)^2]}}.$$

Часто применяется формула, основанная на расчетах отклонений от средней

$$\gamma = \frac{\sum (x - \overline{x}) \cdot (y - \overline{y})}{\sum (x - \overline{x})^2 \cdot (y - \overline{y})^2} .$$

Полученный при расчетах линейный коэффициент корреляции имеет ошибку, которая вычисляется по формуле:

$$\delta_{\gamma} = \frac{1 - \gamma^2}{\sqrt{n - 1}}.$$

При этом предполагается, что число наблюдений, по которым велись расчеты, является лишь выборкой из общего числа наблюдений "генеральной совокупности", а вычисленный коэффициент корреляции — только положительная оценка того истинного коэффициента, который характерен для нее. Поэтому вместо единственной оценки этого "истинного коэффициента" корреляции строится доверительный интервал, в котором он находиться. Доверительный интервал определяется по формуле:

 $\gamma - t \cdot \delta_{\gamma} \leq \delta_0 \leq \delta + t \cdot \delta_{\gamma}$, где δ_{γ} - средняя квадратическая ошибка "выборочного" коэффициента корреляции t — доверительная величина, определяющая степень вероятности утверждения.

						Лист
					Практическая раδота №5	•
Изм.	Лист	№ докум.	Подпись	Дата		

Практическая часть Таблица 5.1 - Результаты эксперимента.

	1	2	3	4	5	6	7	8	9	10	Сум-
Толщина											Ma
валка, см											
Ширина валка,											
СМ											
$X_i - \overline{X}$											
$\frac{Y_i - \overline{Y}}{(X_i - \overline{X})^2}$ $\frac{(Y_i - \overline{Y})^2}{(X_i - \overline{X}) \cdot (Y_i - \overline{Y})}$											
$(X_i - \overline{X})^2$											
$(Y_i - \overline{Y})^2$											
$(X_i - \overline{X}) \cdot (Y_i - \overline{Y})$											

Изм.	Лист	№ докум.	Подпись	Дата

Пример расчета

Оценить взаимосвязь между шириной и толщиной валка, формируемого жаткой, используя результаты эксперимента (таблица 5.1).

Таблица 5.1 - Результаты эксперимента.

	1	2	3	4	5	6	7	8	9	10	Сум-
Толщина валка, см	12	12	13	14	14	14	15	15	15	16	140
Ширина валка, см	122	128	132	132	134	135	136	141	138	142	1340
$X_i - \overline{X}$	-2	-2	-1	0	0	0	1	1	1	2	0
$Y_i - \overline{Y}$	-12	-6	-2	-2	0	1	2	7	4	8	0
$(X_i - \overline{X})^2$	4	4	1	0	0	0	1	1	1	4	16
$(Y_i - \overline{Y})^2$	144	46	14	14	0	11	14	59	26	74	412
$(X_i - \overline{X}) \cdot (Y_i - \overline{Y})$	24	12	2	0	0	0	2	7	4	16	67

Средне арифметическое значение толщины валка $\overline{X} = \frac{140}{10} = 14$ см, ширины $\overline{Y} = \frac{1340}{10} = 134$ см.

Средние квадратические отклонения значений толщины и ширины валка

$$\sigma_{X} = \sqrt{\frac{16}{10-1}} = 1,33 \text{ cm}, \ \sigma_{Y} = \sqrt{\frac{412}{10-1}} = 6,6 \text{ cm}.$$

Коэффициент корреляции

$$r = \frac{67}{10 \cdot 1{,}33 \cdot 6{,}6} = 0{,}911.$$

Ошибка корреляции

$$S_r = \frac{1 - 0.911^2}{\sqrt{10 - 1}} = 0.16$$
.

Следовательно, $0.737 \le \kappa \le 0.937$, поэтому корреляцию следует признать сильной. Расчетная величина критерия Стьюдента

$$t_P = \frac{0.911}{\sqrt{1 - 0.911^2}} \cdot \sqrt{10 - 2} = 4.82.$$

Для $\mathcal{G} = 10 - 2 = 8$ и $\alpha = 0.04$ получим $t_T = 2.31$.

Так как $t_P > t_T$, то следует признать существование положительной корреляции между толщиной и шириной валка формируемого жаткой

Вывод: изучили методики определения корреляционных связей между факторами, определяющими объект исследования

						Лист
					Практическая работа №5	,
Изм.	Лист	№ докум.	Подпись	Дата		4

Исходные данные по вариантам

Вариант 1

	1	2	3	4	5	6	7	8	9	10
Толщина валка, см	13	13	14	15	15	15	16	16	16	17
Ширина валка, см	124	130	134	134	136	137	138	143	140	144

Вариант 2

	1	2	3	4	5	6	7	8	9	10
Толщина валка, см	11	11	12	13	13	13	14	14	14	15
Ширина валка, см	120	126	130	130	132	133	134	138	136	140

Вариант 3

Baphani 3										
	1	2	3	4	5	6	7	8	9	10
Толщина валка, см	10	10	11	12	12	12	13	13	13	14
Ширина валка, см	123	129	133	133	135	136	137	142	139	143

Вариант 4

	1	2	3	4	5	6	7	8	9	10
Толщина валка, см	14	13	13	15	15	15	16	16	16	15
Ширина валка, см	119	125	131	131	132	133	134	138	138	140

Изм.	Лист	№ докум.	Подпись	Дата