FUNDAMENTAL GROUP AND FUNDAMENTAL PROPERTIES

ADITYA KARNATAKI

1. Introduction

Recall that we defined the fundamental group $\pi_1(X, x_0)$ of a space X based at x_0 as-

Definition 1.1. The set of path-homotopy classes of loops based at x_0 , with the concatenation operation * is called the *fundamental group* of X for the base point x_0 , denoted $\pi_1(X, x_0)$.

Today we will explore its properties and related concepts.

2. Fundamental properties of fundamental groups

First we need to figure out how much the group $\pi_1(X, x_0)$ depends on the basepoint x_0 . To this end, let us observe that if x_0 and x_1 are in the same path component of X, by definition there exists a path α from x_0 to x_1 . Then, given any loop f based at x_0 , we can get a loop based at x_1 , by taking $\bar{\alpha} * f * \alpha$, i.e. traversing from x_1 to x_0 first via the reverse path $\bar{\alpha}$, looping at x_0 via f, and then returning back to x_1 via α . Thus, we get a map

$$\hat{\alpha}: \pi_1(X, x_0) \to \pi_1(X, x_1)$$

given by

$$[f] \to [\bar{\alpha} * f * \alpha] = [\alpha]^{-1} * [f] * [\alpha].$$

(Recall that * is well-defined on homotopy classes.)

Proposition 2.1. $\hat{\alpha}: \pi_1(X, x_0) \to \pi_1(X, x_1)$ is an isomorphism of groups.

Proof. This actually follows formally- in the fundamental groupoid we defined earleir, the objects x_0 and x_1 are isomorphic, with the isomorphism given by $[\alpha]$. A homework problem last week then would show us (if we have indeed solved it!) that $\operatorname{Aut}(x_0) \cong \operatorname{Aut}(x_1)$ as groups, and the statement follows. Let us work this out explicitly in this case.

First of all, we need to show that $\hat{\alpha}$ is a group homomorphism. This is a usual trick. If we have $a, b \in \pi_1(X, x_0)$, we have

$$\hat{\alpha}(a*b) = [\alpha]^{-1} * (a*b) * [\alpha] = [\alpha]^{-1} * a * [\alpha] * [\alpha]^{-1} * b * [\alpha]$$

and thus $\hat{\alpha}(a * b) = \hat{\alpha}(a) * \hat{\alpha}(b)$.

Let us denote $\beta = \bar{\alpha}$. Then we have $\hat{\beta} : \pi_1(X, x_1) \to \pi_1(X, x_0)$ which is also a group homomorphism. We claim that $\hat{\alpha}$ and $\hat{\beta}$ are inverses of each other. Indeed, for any $a \in \pi_1(X, x_0)$, we have

$$\hat{\beta}(\hat{\alpha}(a)) = \hat{\beta}([\alpha]^{-1} * a * [\alpha]) = [\beta]^{-1} * [\alpha]^{-1} * a * [\alpha] * \beta$$

and since $[\beta] = [\alpha]^{-1}$ in the groupoid, we get that $\hat{\beta}(\hat{\alpha}(a)) = a$. Similarly, we have $\hat{\alpha}(\hat{\beta}(b)) = b$ for any $b \in \pi_1(X, x_1)$, so we are done.

Corollary 2.2. If X is path connected, then $\pi_1(X, x_0)$ is independent of the base point x_0 up to an isomorphism. Sometimes in such a situation, we will denote this object simply as $\pi_1(X)$.

Corollary 2.3. A loop f at x_0 induces an automorphism \hat{f} of $\pi_1(X, x_0)$. This is simply of the form $a \to [f]^{-1} * a * [f]$, called an 'inner automorphism' ("conjugation by f").

This illustrates how category language can be useful in simplifying proofs and ideas in our minds.

Consider the category of pointed topological spaces: this has objects $\{(X, x_0)\}$ ordered pairs of topological spaces X and the choice of a base point $x_0 \in X$. The morphisms are given by continuous maps that take base points to base points- $f: (X, x_0) \to (Y, y_0)$ means that $f: X \to Y$ is continuous, and $f(x_0) = y_0$.

Definition 3.1. Any morphism of pointed topological spaces $h:(X,x_0)\to (Y,y_0)$ induces a group homomorphism $h_*:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ defined by

$$h_*([f]) := [h \circ f].$$

Note that h_* is well-defined. If $f \simeq_p f'$ with homotopy F(s,t), then $h \circ f \simeq_p h \circ f'$ with homotopy $h \circ F(s,t)$. It is also a group homomorphism because composition with h is compactible with concatenation of loops: $h \circ (f * g) = (h \circ f) * (h \circ g)$. Thus, $h_*([f] * [g]) = h_*([f]) * h_*([g])$.

Lemma 3.2. π_1 is a functor from the category of pointed topological spaces to Groups.

Proof. On objects, π_1 takes (X, x_0) to $\pi_1(X, x_0)$. On morphisms, we have $\pi_1(h) = h_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$. We have to check the two required properties:

- (i) **Composition:** Let $h:(X,x_0) \to (Y,y_0)$ and $k:(Y,y_0) \to (Z,z_0)$ be two morphisms of pointed topological spaces. Then we have to show that $\pi_1(k \circ h) = \pi_1(k) \circ \pi_1(h)$, i.e. for $(k \circ h)_* = k_* \circ h_*$. For $[f] \in \pi_1(X,x_0)$, we have $(k \circ h)_*([f]) = [(k \circ h) \circ f] = [k \circ (h \circ f)] = k_*([h \circ f]) = k_*(h_*(f))$.
- (ii) **Identity:** We have $(id_{x_0})_*([f]) = [id_{x_0} \circ f] = [f]$ so that the identity element in the category of pointed topological spaces induces the identity on the group $\pi_1(X, x_0)$.

Since functors carry isomorphisms to isomorphisms (exercise!), we get the following corollary:

Corollary 3.3. If $h:(X,x_0)\to (Y,y_0)$ is a homeomorphism, then h_* is an isomorphism of groups.

In fact there are much more general statements of this kind, once we get to homotopy equivalence for topological spaces.