TI DSP, MCU 및 Xilinx Zynq FPGA 프로그래밍 전문가 과정

2018-08-16 (프로젝트 6회차)

강사 - Innova Lee(이상훈) gcccompil3r@gmail.com 학생 - 정유경

ucong@naver.com

I2C device(PCF8574A)를 이용해서 LCD인터페이스

- 1. Slave Address
- 2. 명령어 입력방법
- 3. 소스코드

1. Slave Address

How do we modify the address of PCF8574A?

Slave Address를 Datasheet에서 확인해보면 0x3F임을 알 수 있다.

b. PCF8574A

Why we modify the address?

Using A0, A1, A2 pins, we can connect up to 8 PCF8574A to the same line

2. 명령어 입력방법

PCF8574A 출력과 명령어입력

0x0C 0000 P[7:4] 1100 P[3:0]

Instruction	Instruction code											Execution
	RS	R/W	DB:	DB(DB 5	DB4	DB;	DB:	DB 1	DB(Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction And blinking of entire display	39us
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
Function set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8- Bit/4-bit), numbers of display Line (N: =2-line/1-line) and, Display font type (F: 5x11/5x8)	39us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address Counter.	39us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address Counter.	39us
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal Operation or not can be known By reading BF. The contents of Address counter can also be read.	0us
Write data to Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us

3. 소스코드

HalCoGen 설정

- Enable I2C2 Driver

- PINMUX: I2C2 체크

- 12C SCL

```
CCS 작성
```

```
#include <string.h>
#include <stdio.h>
#include "HL_sys_common.h"
#include "HL_sys_core.h"
#include "HL_gio.h"
#include "HL i2c.h"
#define LCD_ADDRESS 0x3F
void lcd_send_string(char *str);
void lcd_init(void);
void lcd_send_cmd(char cmd);
void lcd_send_data(char data);
//void lcd_shift_string(char *str);
void lcd_set_cursor(char row, char column);
//void lcd_Backlight_on_off(char control);
int main(void)
{
   volatile int i,j;
   for (i = 0; i < 10000000; i++)</pre>
   i2cInit();
   for (i = 0; i < 10000000; i++)
   lcd init();
   lcd_send_cmd(0x80); // Set DataRAM Address
   lcd_send_string("Let's Start");
   lcd_send_cmd(0xc0);
   lcd_send_string("HELLO WORLD!!");
   lcd_send_cmd(0x01); // clear display
   lcd_send_cmd(0x80);
while(1)
{
   for(j = 16; j >=0 ; j--)
   {
       lcd_set_cursor(0, j);
       lcd_send_string("^-^");
       lcd send cmd(0xc0); // 2nd line
       lcd_set_cursor(1, j);
       lcd_send_string("Goodbye!");
       for(i=0; i<8000000; i++);</pre>
       lcd_send_cmd(0x01);
   j=0;
}
void lcd_send_string(char *str)
   while (*str) // 아스키 NULL은 정수로 0
       lcd_send_data(*str++);
```

```
lcd_send_cmd(0x14);
}
void lcd_send_cmd(char cmd) // 0x80
   volatile unsigned int cnt = 4;
   unsigned char data u, data 1;
   uint8_t data_t[4];
   data u = (cmd \& 0xf0); //1000 0000
   data l = ((cmd << 4) & 0xf0); // 0000 0000
   /* 명령어:0 */
   data_t[0] = data_u \mid 0x0C; //en=1, rs=0
// [2]번 비트: en [1]번비트: <u>rs</u>, // <u>backlight</u> P[3]!!!
   data_t[1] = data_u \mid 0x08; //en=0, rs=0
                                           // 1000 1000:
   data_t[2] = data_1 \mid 0x0C; //en=1, rs=0
                                             // 0000 1100:
   data_t[3] = data_1 | 0x08; //en=0, rs=0
                                           // 0000 1000:
   i2cSetSlaveAdd(i2cREG2, LCD ADDRESS); // LCD ADDRESS = 0x3F
   i2cSetDirection(i2cREG2, I2C TRANSMITTER); // I2C Transmitter가 512
   i2cSetCount(i2cREG2, cnt + 1); // cnt가 4니까 SetCount를 5로 한다.
// stop condition이 생성되기 위한 카운트 조건
   i2cSetStop(i2cREG2);
   i2cSetStart(i2cREG2);
   i2cSendByte(i2cREG2, LCD ADDRESS);
   i2cSend(i2cREG2, cnt, data_t);
   while (i2cIsBusBusy(i2cREG2) == true)
       ; // i2c 버스가 전송중이지 않으면 넘어간다.
   while (i2cIsStopDetected(i2cREG2) == 0)
       ; // stop bit가 인지되면 넘어간다.
   i2cClearSCD(i2cREG2);
   for (cnt = 0; cnt < 1000000; cnt++)</pre>
       ;
}
void lcd_send_data(char data)
   volatile unsigned int cnt = 4;
   char data_u, data_1;
   uint8_t data_t[4];
   data_u = (data & 0xf0);
   data_1 = ((data << 4) & 0xf0);</pre>
   /* 데이터:1 */
   data_t[0] = data_u \mid 0x0D; //en=1, rs=1
   data_t[1] = data_u | 0x09; //en=0, rs=1 // enable 토글(1->0)시켜서 데이터 전송.
   data_t[2] = data_1 \mid 0x0D; //en=1, rs=1
```

```
data_t[3] = data_1 | 0x09; //en=0, rs=1
   i2cSetSlaveAdd(i2cREG2, LCD_ADDRESS);
   i2cSetDirection(i2cREG2, I2C_TRANSMITTER);
   i2cSetCount(i2cREG2, cnt + 1); // LCD_ADDRESS + data_t[0~3] 이므로 총 4개
   i2cSetMode(i2cREG2, I2C_MASTER);
   i2cSetStop(i2cREG2);
   i2cSetStart(i2cREG2);
   i2cSendByte(i2cREG2, LCD_ADDRESS);
   i2cSend(i2cREG2, cnt, data_t);
   while (i2cIsBusBusy(i2cREG2) == true)
   while (i2cIsStopDetected(i2cREG2) == 0)
   i2cClearSCD(i2cREG2);
}
void lcd_init(void)
   lcd_send_cmd(0x02); // Return Home
   lcd send cmd(0x28); //4bit mode/ 2라인모드/ 5X8 Format
   lcd send cmd(0x0C); // 디스플레이 On /커서 Off/커서위치의 문자를 깜빡이지 않는다
   lcd send cmd(0x80); // DDRAM의 주소를 설정한다.
   lcd_send_cmd(0x00);
}
void lcd_set_cursor(char row, char column)
{
   if (row == 0)
       lcd_send_cmd(0x80 + column);
   else if (row == 1)
       lcd send cmd(0xc0 + column);
       printf("Row number is 0 or 1\n");
}
```