Gestión de inventarios Restricción de espacio: conceptual Clase 26

Investigación Operativa UTN FRBA 2021

Curso: I4051(Palazzo)

Docente: Rodrigo Maranzana

Datos

```
# Ejemplo:
S = 150
diasmes = 30
t = 1 # período de análisis
interes = 0.1 # anual
# Datos producto 1:
b 1 = 30 #costo por producto
alquiler 1 = 30 # diario
compra 1 = 100 # unidad
calidadrecepcion 1 = 200 # pedido
demanda 1 = 3000 # por año
k 1 = calidadrecepcion 1 + compra 1 # costo de orden
d 1 = demanda 1 # demanda
c1_1 = b_1 * interes + (alquiler_1 * diasmes * 12) # costo unitario
s 1 = 10
# Datos producto 2:
b 2 = 40 #costo por producto
alquiler 2 = 40 # diario
compra 2 = 150 # unidad
calidadrecepcion 2 = 250 # pedido
demanda 2 = 4300 \# por año
k_2 = calidadrecepcion_2 + compra_2 # costo de orden
d 2 = demanda 2 # demanda
c1 2 = b 2 * interes + (alquiler 2 * diasmes * 12) # costo unitario
s 2 = 15
```

Modelo restringido por espacio

Siendo:

S: espacio total.

 s_i : espacio unitario utilizado por cada producto.

 q_i : cantidad de cada producto.

CTE: Costo total esperado.

$$\begin{aligned} \min_{q_i} \quad Z &= CTE(q_1, q_2, \dots, q_m) \\ s. t. \\ q_1 s_1 + q_2 s_2 + \dots + q_m s_m &\leq S \end{aligned}$$

Modelo relajado

Siendo:

 λ : multiplicador de Lagrange.

L: Lagrangiano.

$$f = CTE(q_1, q_2, \dots, q_m)$$

$$g = (q_1 s_1 + q_2 s_2 + \dots + q_m s_m - S)$$

El modelo relajado será el siguiente:

$$L(\lambda) = min_{q_i}$$
 $Z_{relax} = f + \lambda g$

$$L^*(\lambda^*) = max_{\lambda} min_{q_i} f + \lambda g$$

Cantidad óptima

$$q_i^*(\lambda) = \sqrt{\frac{2 * K_i * D_i}{T * c_{ui} + 2 * \lambda * s_i}}$$

Producto 1	Producto 2
$q_1^*(\lambda) = \sqrt{\frac{1.800.000}{10.803 + 20 * \lambda}}$	$q_2^*(\lambda) = \sqrt{\frac{3.440.000}{14.404 + 30 * \lambda}}$

Restricción de espacio

$$g = (q_1 s_1 + q_2 s_2 + \ldots + q_m s_m - S)$$

$$g = [q_1 \quad q_2 \quad \ldots \quad q_m] \times \begin{bmatrix} s_1 \\ s_2 \\ \ldots \\ s_m \end{bmatrix} - S \quad \text{(Forma vectorial)}$$

Restricción para producto 1 y 2:

$$g(q_1, q_2) = q_1 * 10 + q_2 * 15 - 150$$

Costo total esperado

$$f_i = CTE(q_i) = Cadq + Calm(q_i) + Cpedido(q_i)$$
 (Del producto i)
$$f = CTE(q_1, q_2, \dots, q_m)$$

$$f = \sum_i f_i$$

$$L(\lambda) = min_{q_i} \quad Z_{relax} = f + \lambda g$$

Producto 1	Producto 2	Total (f)
$f_1(q_1) = 90.000 + 5.401,5 * q_1 + \frac{900.000}{q_1}$	$f_2(q_2) = 172.000 + 7202 * q_2 + \frac{1.720.000}{q_2}$	$f_1(q) + f_2(q)$

Búsqueda de λ* con Grid Search

Pseudocódigo:

- Creamos un vector de lambdas $\lambda = [\lambda_1, \lambda_2, ... \lambda_n]$
- Para cada λ_i :
 - Calculamos el óptimo q_i
 - Construimos el vector de óptimos $Q = [q_1, q_2, ..., q_m]$
 - Calculamos g y f
 - Calculamos $L(\lambda_i)$ para el lambda actual.
 - Guardamos $L(\lambda_i)$ en un vector de soluciones Lvector
- Buscamos el máximo $L(\lambda_i)$ en Lvector

	λ	f	\boldsymbol{g}	L
λ_{0}	0	624.044,51	210,89	624.044,52
λ_1	1.000	679.831,26	58,47	738.300,61
λ_2	2.000	747.279,40	11,51	770.314,18
λ_3	2.500	778.761,63	-2,54	772.397,02
λ_4	3.000	808.718,15	-13,47	768.286,00

$$\lambda_3 = 2.500 \approx \lambda^*$$

Búsqueda de λ* con Grid Search

Plot $L(\lambda_i)$

RESULTADOS:

El lambda óptimo es: 2400.00

Las cantidades óptimas son: 5.53, 6.31

El CTE óptimo es: 772591.03

600 valores de λ

Búsqueda de λ* con método del SubGradiente

Pseudocódigo:

- -Inicializar λ_0
- -Calcular $L(\lambda)$
- -Calcular $\nabla L(\lambda)$
- -Actualizar λ : $\lambda_{i+1} = \lambda_i + step * \nabla L(\lambda)$
- -Calcular $\Delta \lambda = |\lambda_{i+1} \lambda_i|$
- -Revisar si $\Delta \lambda > tol$, continuar; sino parar.

step=10

	λ	f	g = abla f	L
λ_{0}	0	624.044,51	210,89	624.044,52
λ_1	2.108,90	754.271,45	8,11	771.381,06
λ_2	2.190,02	759.431,19	5,71	771.941,14
λ_3	2.247,15	763.038,87	4,09	772.220,75
λ_4	2.288,01	765.606,78	2,95	772.364,48

Búsqueda de λ* con método del SubGradiente

RESULTADOS:

El lambda óptimo es: 2398.94

Las cantidades óptimas son: 5.53, 6.31

El CTE óptimo es: 772524.68