. סעיפי רשות – (*)

ו. הגדרות:

- פולינום עם מקדמים שלמים פונקציה מהצורה $\underline{a_0, a_1, ..., a_{n-1}, a_n} \in \mathbb{Z}$ כאשר $\underline{a_0, a_1, ..., a_{n-1}, a_n} \in \mathbb{Z}$ כאשר
- . $a_{\rm n} \neq 0$ -ש כך x כך של המשתנה n של הגבוהה החזקה הגבוה n
 - . p(c)=0 שורש ממשי של פולינום כזה מספר ממשי של פולינום \bullet
- <u>מספר אלגברי</u> − מספר ממשי שהוא שורש של איזשהו פולינום <u>עם מקדמים שלמים</u>
 שאינו פולינום האפס.
- - א) הוכח: קבוצת הפולינומים עם מקדמים שלמים בעלת העוצמה ₀א.
 - בי. אלגברי. מספר אלגברי. (*) בי הוכח:
 - גברי. (*) הוכח: $\sqrt{3+\sqrt{6}}$ מספר אלגברי.
- ד) באלגברה מוכיחים: לפולינום ממעלה n יש לכל היותר n שורשים ממשיים. היעזר במשפט זה כדי להוכיח: קבוצת המספרים האלגבריים בעלת העוצמה $_{0}$.
 - ה) הוכח: קבוצת המספרים הטרנסצנדנטיים בעלת העוצמה א
 - 2. הוכח או הפרך ע"י דוגמא נגדית:
 - . $|X \setminus Y| = \aleph_0$ אם $|X| = |Y| = \aleph_0$ ו- $|X \subseteq X|$ אם אם א
 - . $|X \backslash Y| <$ אס אם |X| = |Y| =אס ו- $Y \subseteq X$ ב
 - . $|X \setminus Y|$ אז א|Y| אם |X| אם |X| אם |X|
 - ד) קבוצה אינסופית היא בת מניה אם ורק אם היא שקולה לכל תת-קבוצה אינסופית שלה.

.3

- $|\{x \in \mathbb{R}: \sin(x) \in \mathbb{Q}\}| = \alpha_0$ או הוכח: (א
- . $|\{x\in\mathbb{R}:f(x)\in\mathbb{Q}\}|$ כך ש- $f:\mathbb{R} \to \mathbb{R}$ מצא פונקציה (ב

.4

- א) תהיX קבוצה בת מניה של ישרים שונים במישור. תהיY קבוצה של נקודות החיתוך של אברי X (כלומר, קבוצה של כל הנקודות במישור ששייכות לשניים או יותר ישרים מ-X). הוכח ש-Y בת מניה.
- ב) תהי X קבוצה של ישרים שונים במישור. תהי Y קבוצה של נקודות החיתוך של אברי X בת מניה. נתון ש- Y בת מניה.
 - :הבאה: את-קבוצה של $P(\mathbb{N})$ בעלת התכונה הבאה (*) גו (*) גו
 - . $|A \cap B| = 1$ לכל A ו- A, שני איברים שונים של X, מתקיים A לכל A הוכח ש- A בת מניה.

- : תת-קבוצה של $P(\mathbb{N})$, בעלת התכונות הבאות: (*) מצא דוגמא של X
 - $|X| = \aleph_0$
 - . $|A \cap B| = 1$ מתקיים , X שני איברים שונים של , B -ו ווא לכל •
- $A\cap B\cap C=\emptyset$ ביים של של של של , C ו- B , A לכל
 - $. \, \mathbb{N}$ איחוד של כל אברי X הוא \bullet
 - .5. תהיS קבוצה בת מניה של נקודות במישור.
 - א: הוכח: קיימת נקודה P במישור שיש לה התכונה הבאה:
 - P כל הנקודות של S נמצאות במרחק שונה מ- \bullet
 - ב) נסמן ב-X את הקבוצה של כל הנקודות בעלות התכונה מסעיף א'. |X| = |X|.
 - |X| . א=||X| תהי (*) תהי אקבוצה של כל הישרים במישור.
- 7. בשאלות 1-אבגדה, 3-א, 4-אבג, 5-אב, 6 בתרגיל בית זה התבקשת להוכיח טענות מסוימות. אחת מהן לא נכונה. מצא את הטענה הלא נכונה, הבא דוגמא נגדית, (*) הצע תיקון לשאלה כך שהטענה תהפוך לנכונה והוכח אותה בצורה המתוקנת.