Лабораторная работа 5.1. Измерение коэффициента ослабления γ -лучей в веществе и определение их энергии.

Дмитрий Норкин и Николай Кузнецов

19/09/2018

Цель работы

Рассчитать коэффициенты ослабления в свинце, железе, алюминии и пробке. Определить среднюю энергию γ -квантов, испускаемых источником.

Ход работы

Соберем экспериментальную установку в соответствии со схемой, приведенной в описании работы. Для начала измерим фон, обусловленный космическим излучением и прочими шумами. Будем измерять количество γ -квантов, прошедших через материал за t=10 с. Длину образцов всегда будем определять штангенциркулем с погрешностью $\Delta l=0.05$ мм.

N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}
339	343	329	336	339	342	351	343	339	347
N_{11}	N_{12}	N_{13}	N_{14}	N_{15}	N_{16}	N_{17}	N_{18}	N_{19}	$\overline{N_{20}}$
339	341	349	337	341	342	339	339	341	345

Таблица 1: Измерение фона

Таким образом, получаем, что $N=341\pm5$ – количество частиц от фона, прилетающих за t=10 с. Затем будем для каждого материала измерять зависимость числа прошедших частиц N от толщины образца l.

N_1	159307.0	106703.0	80788.0	59595.0	45262.0	35534.0	30859.0	25795.0	21942.0	19446.0	16729.0
N_2	159043.0	106828.0	80180.0	59712.0	45133.0	35566.0	30868.0	25780.0	21784.0	19329.0	16664.0
N_3	158290.0	107508.0	80858.0	59244.0	44493.0	35686.0	30986.0	25823.0	21747.0	19652.0	16792.0
l, см	0.0	0.48	0.97	1.47	1.97	2.47	2.95	3.43	3.91	4.41	4.9
N	158880.0	107013.0	80609.0	59517.0	44963.0	35595.0	30904.0	25799.0	21824.0	19476.0	16728.0
ΔN	431.0	354.0	304.0	199.0	336.0	65.0	58.0	18.0	85.0	134.0	52.0
$\ln N$	11.976	11.581	11.297	10.994	10.714	10.48	10.339	10.158	9.991	9.877	9.725
$\Delta \ln N$	0.003	0.003	0.004	0.003	0.007	0.002	0.002	0.001	0.004	0.007	0.003

Таблица 2: Свинец

N_1	156024.0	120333.0	87956.0	62838.0	43589.0	30633.0	20922.0	14509.0	10306.0	6994.0
N_2	154902.0	121010.0	87682.0	62882.0	43684.0	30478.0	21139.0	14482.0	10064.0	7036.0
N_3	154705.0	120579.0	87225.0	63081.0	43787.0	30531.0	20749.0	14561.0	10141.0	7158.0
l, см	0.0	2.0	4.0	6.02	8.05	10.07	12.09	14.09	16.08	18.08
N	155210.0	120641.0	87621.0	62934.0	43687.0	30547.0	20937.0	14517.0	10170.0	7063.0
ΔN	581.0	280.0	302.0	106.0	81.0	64.0	160.0	33.0	101.0	70.0
$\ln N$	11.953	11.701	11.381	11.050	10.685	10.327	9.949	9.583	9.227	8.863
$\Delta \ln N$	0.004	0.002	0.003	0.002	0.002	0.002	0.008	0.002	0.010	0.010

Таблица 3: Алюминий

Все погрешности для каждого N вычислены, как стандартное отклонение по 3 измерениям.

Обработка

Теоретическая зависимость $N(l) = N_0 e^{-\mu l} \Longrightarrow \ln N = \ln N_0 - \mu l$, где μ – коэффициент поглощения. Таким образом, построив зависимость $\ln N(l)$ по наклону графика определим μ .

N_1	156857.0	111396.0	77790.0	53424.0	36296.0	25615.0	17258.0	12148.0	8271.0	5858.0
N_2	155930.0	111910.0	77296.0	53483.0	36409.0	25608.0	17565.0	11898.0	8213.0	5951.0
N_3	155929.0	111053.0	77560.0	53552.0	36601.0	25223.0	17359.0	12156.0	8293.0	5827.0
l, см	0.0	1.01	2.03	3.05	4.07	5.07	6.09	7.1	8.12	9.16
N	156239.0	111453.0	77549.0	53486.0	36435.0	25482.0	17394.0	12067.0	8259.0	5879.0
ΔN	437.0	352.0	202.0	52.0	126.0	183.0	128.0	120.0	34.0	53.0
$\ln N$	11.959	11.621	11.259	10.887	10.503	10.146	9.764	9.398	9.019	8.679
$\Delta \ln N$	0.003	0.003	0.003	0.001	0.003	0.007	0.007	0.010	0.004	0.009

Таблица 4: Железо

N_1	155298.0	147528.0	140596.0	132495.0	125697.0
N_2	156312.0	148432.0	141153.0	132603.0	126339.0
N_3	156024.0	148820.0	141847.0	133642.0	125810.0
l, см	0.0	5.97	11.87	17.84	23.76
N	155878.0	148260.0	141199.0	132913.0	125949.0
ΔN	427.0	541.0	512.0	517.0	280.0
$\ln N$	11.957	11.907	11.858	11.797	11.744
$\Delta \ln N$	0.003	0.004	0.004	0.004	0.002

Таблица 5: Пробка

Рис. 1: Свинец

Рис. 3: Железо

Рис. 2: Алюминий

Рис. 4: Пробка

Погрешности угловых коэффициентов рассчитаны по МНК. $\mu_{Pb} = (0.45 \pm 0.03) \text{ см}^{-1} \\ \mu_{Al} = (0.174 \pm 0.003) \text{ см}^{-1} \Longrightarrow \mathcal{E} = 1.7 \text{ M} \text{эВ} \\ \mu_{Fe} = (0.362 \pm 0.002) \text{ см}^{-1} \Longrightarrow \mathcal{E} = 0.9 \text{ M} \text{эВ} \\ \mu_{cork} = (9.0 \pm 0.2) \cdot 10^{-3} \text{ см}^{-1}$

Выводы

Проверено экспоненциальное затухание интенсивности потока γ -квантов при прохождении через материал. Измерены коэффициенты прохождения для 4 различных материалов. С помощью табличных данных и полученных коэффициентов оценена средняя энергия вылетающих γ -квантов.