Supervised learning for data driven cucumber yield prediction and control of greenhouses

Melanie Millet, Andreas Kloos, Lucas Luttner, Fabian Nickel, Meike Haese



# 1. Data Preparation

- **Deleting missing values:** Total of 11
- Deleting outliers: Negative values in irrigation
- Deleting cycles → deliver no relevant information
- One-Hot-Encoding country data



- Divide dataset into target values y ("yield") and features X
- Split Dataset into train, validation and test data (test\_size=0.25)
- Use min-max **normalization** [0,1] to reduce variance error of NN

# 2. Neural Network – Process of Optimization

Goal: Train a model that minimizes the loss function

## Methods used for selecting model architecture

- Random-Search: Train the model with a randomly given combination of hyperparameters that are in a given interval
- Grid-Search: Try all possible combinations of the given interval

### **Specifications**

- Small number of Hiddenlayers → small number of features
- choose the model with the smallest MAPE
  - → Percent easy to interpret
  - → Good comparison to models with another context
- Activation function: only ReLU makes sense. Sigmoid limits the prediction at 1

# 2. Neural Network – Random Search

• Early Stopping – Patience = 30

| Parameter Intervals    |                   | Best Parameters |  |  |  |
|------------------------|-------------------|-----------------|--|--|--|
| Hidden Layer           | [2,4]             | 2               |  |  |  |
| Units/Neurons          | [ 32, 128 ]       | 35,35           |  |  |  |
| Activation Hiddenlayer | [ ReLU, Sigmoid ] | ReLU            |  |  |  |
| L2-Regularization      | [ 0.05 , 0.0005 ] | 0.02647         |  |  |  |
| Dropout                | [ 0, 0.2 ]        | 0.00753         |  |  |  |
| Epochs                 | 500               | 500             |  |  |  |
| Batch Size             | 128               | 128             |  |  |  |
| Optimizer              | Adam              | Adam            |  |  |  |
| Learning Rate          | [ 0.0002, 0.02 ]  | 0.0192          |  |  |  |

 Net should predict a number in the interval [0,∞] → ReLU



**Best MAPE: 1.509** 

## 2. Neural Network – Grid Search

- Using **GridSearchCV** for hyperparametersearch
- 5 Fold Cross Validation (standard)
- Changing parameters with a multidimensional grid



Best mean score: MAPE of 1.48

| Parameters        |       |         |        |    |     |     |     |
|-------------------|-------|---------|--------|----|-----|-----|-----|
| Hidden Layer      | 1     | 2       | 3      |    |     |     |     |
| Units/Neurons     | 8     | 16      | 32     | 64 | 150 | 252 | 504 |
| Activation        | ReLU  | Sigmoid |        |    |     |     |     |
| L2-Regularization | 0     | 0.005   | 0.01   |    |     |     |     |
| Dropout           | 0.001 | 0.002   |        |    |     |     |     |
| Epochs            | 300   | 400     | 600    |    |     |     |     |
| Batch Size        | 32    | 64      |        |    |     |     |     |
| Optimizer         | Adam  | SGD     |        |    |     |     |     |
| Learning Rate     | 0.01  | 0.001   | 0.0045 |    |     |     |     |

# 2. Best Neural Network (Evaluation)



## 3. Cost Function

## Setup:

- Initialize a dataframe with all possible combinations
- Only test temperature/irrigation values within boundaries which are known to the net

## Add cost calculation:

| Cost per cycle                  | Used formula                                                                                                      |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Temperature cost                | test temperature                                                                                                  |
| Irrigation cost                 | $test\ irrigation \frac{l}{m^2d}*60 \frac{d}{cycle}*greenhouse\ m^2*\frac{1\ m^3}{1000\ l}*0.021 \frac{EUR}{m^3}$ |
| Labour/depreciation cost        | $greenhouse m^2 * \frac{20  EUR}{m^2 * year} * \frac{1  year}{6  cycles}$                                         |
| Cost for underfulfilling demand | $\max((demand - yield), 0)$                                                                                       |



Find minimal sum of costs within dataframe

# 3. Cost Function – Optimal Decisions

| Cycle | size   | temperature | irrigation | pesticide | demand  | Cost for irrigation | Cost for temperature change | Cost for labour/ depreciation | Cost for underfulfilling demand | Sum of all<br>cost per<br>cycle |
|-------|--------|-------------|------------|-----------|---------|---------------------|-----------------------------|-------------------------------|---------------------------------|---------------------------------|
| 2     | 28,000 | 15          | 3.5        | Gly       | 300,000 | 123.48              | 0                           | 93,333                        | 0                               | 93,457                          |
| 3     | 40,000 | 22          | 3.5        | Gly       | 500,000 | 178.40              | 0                           | 133,333                       | 1,794                           | 136,292                         |
| 4     | 48,000 | 23          | 3.5        | Gly       | 580,000 | 211.68              | 7,200                       | 160,000                       | 0                               | 167,411                         |

## For cycle 3 underfulfillment of demand:

- Why not irrigate more? → perfect level of irrigation already reached
- Why not change temperature? → additional cost of min 3,600 EUR not worth it (> 1,794 EUR)
- Why not increase greenhouse size? → additional labour cost of min 3,333 EUR not worth it



# What's more efficient?

- → There is no clear winner
- → Depends on cycle properties (e.g. outside temperature) and demand

# LABOUR COST



# 3. Visualization – Cost for Irrigation







- Regardless of cycle, irrigation is always 3.5
- Reason: cheapest method to increase yield

# 3. Visualization – Cost for Temperature



- Optimal temperature for cucumber yield is 20°C
- But it's never used because of high costs

# 4. Sensitivity Analysis – Optimal Decision and Costs

- Conducted to see how sensitive results are with respect to the contracted demand
- Contracted demand is varied in steps of 10% from -20% to +20%, for all three cycles

#### Optimal decisions and costs for scenarios $\{0.8, 0.9, 1.0, 1.1, 1.2\}$ = factors for expected demand :

| irri | gation | sun      | temperature size | total_yield   | Envidum_NED | Glyfanac_ESI | demand | scenario | $cost\_for\_underful filling\_demand$ | $cost\_for\_temperature\_change$ | $cost\_for\_irrigation$ | cost_for_labour | sum_of_all_cost_per_cycle | cycle |
|------|--------|----------|------------------|---------------|-------------|--------------|--------|----------|---------------------------------------|----------------------------------|-------------------------|-----------------|---------------------------|-------|
| 0    | 3.5    | 0.303956 | 15 22000         | 238304.309845 | 0           |              | 240000 | 0.8      | 1695.690155                           | 0.0                              | 97.02                   | 73333.333333    | 75126.043488              | 2     |
| 3    | 3.5    | 0.303956 | 15 25000         | 270800.352097 | 0           |              | 270000 | 0.9      | 0.000000                              | 0.0                              | 110.25                  | 83333.333333    | 83443.583333              | 2     |
| 6    | 3.5    | 0.303956 | 16 29000         | 327451.898575 | 0           |              | 330000 | 1.1      | 2548.101425                           | 3600.0                           | 127.89                  | 96666.666667    | 102942.658092             | 2     |
| 9    | 3.5    | 0.303956 | 16 32000         | 361326.232910 | 0           |              | 360000 | 1.2      | 0.000000                              | 3600.0                           | 141.12                  | 106666.666667   | 110407.786667             | 2     |
| 12   | 3.5    | 0.303956 | 15 28000         | 303296.394348 | 0           |              | 300000 | 1        | 0.000000                              | 0.0                              | 123.48                  | 93333.333333    | 93456.813333              | 2     |
| 1    | 3.5    | 0.537537 | 22 32000         | 398564.575195 | 0           |              | 400000 | 0.8      | 1435.424805                           | 0.0                              | 141.12                  | 106666.666667   | 108243.211471             | 3     |
| 4    | 3.5    | 0.537537 | 22 36000         | 448385.147095 | 0           |              | 450000 | 0.9      | 1614.852905                           | 0.0                              | 158.76                  | 120000.000000   | 121773.612905             | 3     |
| 7    | 3.5    | 0.537537 | 22 44000         | 548026.290894 | 0           |              | 550000 | 1.1      | 1973.709106                           | 0.0                              | 194.04                  | 146666.666667   | 148834.415773             | 3     |
| 10   | 3.5    | 0.537537 | 22 48000         | 597846.862793 | 0           |              | 600000 | 1.2      | 2153.137207                           | 0.0                              | 211.68                  | 160000.000000   | 162364.817207             | 3     |
| 13   | 3.5    | 0.537537 | 22 40000         | 498205.718994 | 0           |              | 500000 | 1        | 1794.281006                           | 0.0                              | 176.40                  | 133333.333333   | 135304.014339             | 3     |
| 2    | 3.5    | 0.523284 | 23 38000         | 462510.339737 | 0           |              | 464000 | 8.0      | 1489.660263                           | 7200.0                           | 167.58                  | 126666.666667   | 135523.906930             | 4     |
| 5    | 3.5    | 0.523284 | 23 43000         | 523366.963387 | 0           |              | 522000 | 0.9      | 0.000000                              | 7200.0                           | 189.63                  | 143333.333333   | 150722.963333             | 4     |
| 8    | 3.5    | 0.523284 | 21 50000         | 633151.531219 | 0           |              | 638000 | 1.1      | 4848.468781                           | 14400.0                          | 220.50                  | 166666.666667   | 186135.635447             | 4     |
| 11   | 3.5    | 0.523284 | 21 50000         | 633151.531219 | 0           |              | 696000 | 1.2      | 62848.468781                          | 14400.0                          | 220.50                  | 166666.666667   | 244135.635447             | 4     |
| 14   | 3.5    | 0.523284 | 23 48000         | 584223.587036 | 0           |              | 580000 | 1        | 0.000000                              | 7200.0                           | 211.68                  | 160000.000000   | 167411.680000             | 4     |

# 4. Sensitivity Analysis





• Ideal irrigation at 3.5  $\frac{l}{sqm*d}$ 

For all scenarios and cycles
Glyfanac was chosen as optimal pesticide

# 4. Sensitivity Analysis





- For cycle 2 temperature changes are only necessary for scenario 1.1 and 1.2
- For each scenario of cycle 3 there are no costs for temperature change, since outside temperature is closer to the optimum
- Cycle 4 has higher temperature costs since hot outside temperatures need to be cooled down, to adress high demand

# 4. Sensitivity Analysis



- For most scenarios it is better to underfulfill rather than exceeding the demand
- Only for some scenarios demand is fulfilled
- Limited field size results in increasing difficultiy to supply enough cucumbers → high underfulfilling costs



- To generate a higher yield, larger fields are needed
- Size of fields are limited at 50,000 sqm
- Total yield depends highly on the size of the field and therefore caps at certain point



# 5. Concluding Remarks

- Irrigation is the cheapest method to increase yield  $\rightarrow$  always irrigate optimal at 3.5  $\frac{l}{sqm*d}$
- There are scenarios in which max. capacity is reached (e.g.+20% demand cycle 4) → resulting in high cost for underfulfilling demand
- Using Glyphanac shows higher yields than Envidum
- temperature change is rather useful at higher demand levels (depends on cycle)
- accepting costs for not meeting demand is an option

# Attachment







