Noise Modeling of Sensors: The Allan Variance Method

Siddharth Tallur, 31/08/2020 EE617 Sensors in Instrumentation Modifications to slides found here: https://eecs.wsu.edu/~taylorm/16_483/Jerath.pptx

You should be able to answer these questions...

PART I: MOTIVATION

- What is noise?
- What is noise modeling and why is it required?

PART II: BASICS

- How is noise characterized?
- How is noise in sensors quantified?

PART III: ALLAN VARIANCE ANALYSIS

- What is Allan Variance?
- How can it be used to specify sensor characteristics?

Noise models can be useful

Think of the sensing process

Noise models are useful in signal filtering

 Signal filtering or recovery: E.g. Noise canceling hardware may utilize knowledge of noise models for signal filtering

Noise models are useful in sensor selection

Sensor design, selection and performance mapping:

Identifying performance of various "virtual" sensors for a given sensing task requires knowledge of noise models

Varying degrees of measurement noise

You should be able to answer these questions...

PART I: MOTIVATION

- What is noise?
- What is noise modeling and why is it required?

PART II: BASICS

- How is noise characterized?
- How is noise in sensors quantified?

PART III: ALLAN VARIANCE ANALYSIS

- What is Allan Variance?
- How can it be used to specify sensor characteristics?

Can you think of some tools used to *characterize noise*?

What is autocorrelation?

As you change the data's phase, how probable is correlation with the original data?

Noise characterization tools: Autocorrelation

- Time-domain representation
- Let X(t) be a stochastic variable:

$$R_{XX}(t,\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(\tau) \bar{f}(t-\tau) d\tau$$

Noise characterization tools: Autocorrelation

• If X(t) represents white noise, $R_{XX}(t_1,t_2)=\delta(t_1-t_2)$

MATLAB code

```
%% White noise autocorrelation
clear all
clc
close all

N = 10000;
w = randn(N,1);
t = linspace(0,N,N);

[c,lags] = xcorr(w,w);
plot(lags,abs(c./max(c)),'Linewidth',2);
```

212

1/f Noise

MARVIN S. KESHNER

Fig. 6. Autocorrelation functions for $(1/f) ** \gamma$ noise. For $\gamma = 1$, the recent and the distant past have almost equal correlation with the present.

Noise characterization tools: PSD

- Power Spectral Density (PSD) is frequencydomain representation of noise
- PSD is the Fourier Transform of the autocorrelation function

$$S_X(f) = \mathcal{F}(R_{XX}(\tau)) = \int_{-\infty}^{\infty} R_{XX}(\tau)e^{-2\pi i f \tau} d\tau$$

Noise characterization tools: PSD

• If X(t) represents white noise, $S_X(f) = N_0$

MATLAB code

```
%% Power Spectral density

N = 10000;
w = randn(N,1);

n = 256;
W = fft(w,n);
% Method 1
Pww = W.*conj(W)/n;
% Method 2
Pww_welch = pwelch(w);
% Method 3
Pww_cov = pcov(w,3);
% See Mathworks help for more details
```

Sensor characterization: Check the datasheet!

Linear Output Magnetic Field Sensor

AD22151

OUTPUT NOISE FIGURE (6 kHz BW)

2.4 mV/rms

NOISE

The principal noise component in the sensor is thermal noise from the Hall cell. Clock feedthrough into the output signal is largely suppressed with application of a supply bypass capacitor.

Figure 12 shows the power spectral density (PSD) of the output signal for a gain of 5 mV/Gauss. The effective bandwidth of the sensor is approximately 5.7 kHz, as shown in Figure 13. The PSD indicates an rms noise voltage of 2.8 mV within the 3 dB bandwidth of the sensor. A wideband measurement of 250 MHz indicates 3.2 mV rms (see Figure 14a).

Figure 12. Power Spectral Density (5 mV/G)

Four Degrees of Freedom Inertial Sensor

ADIS16300

Parameter	Min	Тур	Max	Unit
GYROSCOPE				
Dynamic Range	±300	±375		°/sec
Initial Sensitivity	0.0495	0.05	0.0505	°/sec/LSB
		0.025		°/sec/LSB
		0.0125		°/sec/LSB
Sensitivity Temperature Coefficient		400		ppm/°C
Misalignment		0.1		Degrees
		±0.5		Degrees
Nonlinearity		0.1		% of FS
Initial Bias Error		±3		°/sec
In-Run Bias Stability		0.007		°/sec
Angular Random Walk		1.9		°/√hr
Bias Temperature Coefficient		0.1		°/sec/°C
ACCELEROMETERS				
Dynamic Range	±3	±3.6		g
Initial Sensitivity	0.594	0.6	0.606	mg/LSB
Sensitivity Temperature Coefficient		250		ppm/°C
		300		ppm/°C
Misalignment		±0.25		Degrees
		±0.5		Degrees
Nonlinearity		±0.3		% of FS
Initial Bias Error		±60		mg
		±110		mg
In-Run Bias Stability		0.048		mg
		0.054		mg
Velocity Random Walk		0.118		m/sec/√h
		0.164		m/sec/√h
Bias Temperature Coefficient		2.5		mg/°C
		4.5		mg/°C

You should be able to answer these questions...

PART I: MOTIVATION

- What is noise?
- What is noise modeling and why is it required?

PART II: BASICS

- How is noise characterized?
- How is noise in sensors quantified?

PART III: ALLAN VARIANCE ANALYSIS

- What is Allan Variance?
- How can it be used to specify sensor characteristics?

Make an educated guess...

Which of the following technologies in the 1950s necessitated the development of a new measure of variance, i.e. the Allan variance?

- a) Solar-powered batteries
- b) Precision atomic clocks
- c) Leak-free ball point pens
- d) Flexible optical fibers

Origins: Frequency stability of atomic clocks

1950s-1960s: Development of precise atomic clocks – issues pertaining to frequency stability arise

 Preliminary work: D W Allan, "Statistics of Atomic Frequency Standards", Proceedings of the IEEE, 1966

Allan Variance

• Allan variance is defined as one half of the time average of the squares of the differences between successive readings of the frequency deviation sampled over the sampling period.

$$\sigma^{2}(\tau) = \frac{1}{2} \langle (\overline{\Omega}_{k+m} - \overline{\Omega}_{k})^{2} \rangle$$

$$\sigma^{2}(\tau) = 4 \int_{2}^{\infty} S_{X}(f) \frac{\sin^{4}(\pi f \tau)}{(\pi f \tau)^{2}} df$$

NOTE:

- Allan variance analysis is always performed for zero input to the sensor. In this situation, any sensor output is due to noise arising from the sensor.
- See next slide to understand variables in the equation

How is Allan Variance computed?

Repeat for different values of m

Allan Variance ($\sigma^2(m)$) is a function of a parameter m.

Of the number of the contract of the contract

 $<(\Omega_{i+1}-\Omega_i)^2> = [(\Omega_2-\Omega_1)^2 + (\Omega_2-\Omega_1)^2 + (\Omega_2-\Omega_1)^2 + (\Omega_2-\Omega_1)^2]/4$ Also, known as the Expected value.

Allan Variance – Angle random walk

$$\sigma^2(\tau) = \frac{1}{2} \langle (\overline{\Omega}_{\mathbf{k}+\mathbf{m}} - \overline{\Omega}_k)^2 \rangle$$

Simulated white noise

Correlation time = 0.02 seconds

PSD(f) $\propto f^{\alpha}$ is equivalent to, $\sigma(\tau) \propto \tau^{\beta}$, where $\beta = -(\alpha+1)/2$ and $f=1/\tau$.

PSD(f) $\propto f^{\alpha}$ is equivalent to, $\sigma(\tau) \propto \tau^{\beta}$, where $\beta = -(\alpha+1)/2$ and $f=1/\tau$.

PSD(f) $\propto f^{\alpha}$ is equivalent to, $\sigma(\tau) \propto \tau^{\beta}$, where $\beta = -(\alpha+1)/2$ and $f=1/\tau$.

Figure C.8 – $\sigma(\tau)$ Sample plot of Allan variance analysis results