. ЗАВДАННЯ НА РОЗРАХУНКОВО-ГРАФІЧНУ РОБОТУ

В електричному колі діє джерело періодичної несинусоїдної напруги, форма якої зображена на рис.4, $t_1 = 5 \cdot 10^{-3} \, \mathrm{c}$. Нелінійні ділянки є відтинками синусоїди.

ПОТРІБНО:

- 1. Розкласти задану напругу (рис. 4) в тригонометричний ряд (обмежитися постійною і трьома гармонічними складовими).
- 2. Побудувати в одній системі координат часові графіки складових і су-марну криву напруги, останню порівняти з заданою.
 - 3. Розрахувати миттєві значення струмів усіх віток заданої схеми (рис. 5).
- 4. Побудувати амплітудні і фазові спектральні діаграми для струму і нап-руги джерела.
- 5. Обчислити для змінної складової прикладеної напруги коефіцієнти форми, спотворення, амлітуди, гармонік.
- 6. Визначити покази увімкнених у схему приладів (амперметри електромагнітної системи, вольтметри магнітоелектричної).
- 7. Скласти баланс активних потужностей і обчислити потужності S, Q, T джерела і коефіцієнт потужності.
- 8. Показати, при якій ємності C можливий резонанс усього кола для однієї з вищих гармонік.
- 9. Вважаючи задану схему однією з фаз симетричного трифазного кола при з'єднанні генератора і навантаження зіркою з нульовим проводом, визначити діюче значення лінійної напруги і струму в нульовому проводі.

При розрахунку вважати, що постійна складова напруги кожної фази і опір нульового проводу дорівнюють нулю.

Таблиця 3

	0	1	2	3	4	5	6	7	8	9
U_m (B)	20	30	40	50	60	70	80	90	40	100
R (Ом)	2	3	4	5	6	7	8	9	3,5	4,5
С (мкФ)	50	100	150	200	250	300	80	120	180	220
L $(M\Gamma)$	1	2	3	4	5	1,5	3,2	4,5	2,5	3,5

СПИСОК ЛІТЕРАТУРИ

Hейман Π , P., \mathcal{L} емирчян K. C. "Теоретические основы электротехники". Т. 1. – M.: Высшая Школа, 1981.

Зевеке Γ . В., Ионкин Π . А., Нетушил А. В., Страхов С. В. "Основы теории цепей". – М.: Энергоатомиздат, 1989.

Шебес М. Р. "Задачник по теории линейных электрических цепей". – М.: Высшая. Школа, 1982.

Антамонов В.Х., Курило И.А. "Избранные задачи по линейным электрическим цепям": Учебное пособие.-К.,: НМК ВО, 1993. — 96 с.

Рис.4

