

Serial No.: 10/527,125
Art Unit: 2425

Docket PU020419
Customer No. 24498

RECEIVED
CENTRAL FAX CENTER

Listing and Amendments to the Claims

JUL 13 2009

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Previously presented) A method for transmitting a plurality of pre-coded programs having different bit rates across a fixed bandwidth channel, comprising the steps of:
 - generating at least two different bit rate representations of each program, said generating further comprising generating for each program a lowest bit rate representation having a peak bit rate not greater than C/P where C is the total channel capacity in time T and P is the total number of programs;
 - providing control information at each of a plurality of successive time windows T for each representation of each program, the control information for each successive window indicating a bit rate and quality measure for a representation of a corresponding program; and
 - during each time window T , selecting a representation for each program such to maximize the quality of the selected representations while not exceeding a total available capacity for the channel.

2. (Canceled)

3. (Original) The method according to claim 1 wherein the step of providing the control information further comprises the step of establishing the peak signal-to-noise ratio (PSNR) as the quality measure embodied in the control information.

4. (Original) The method according to claim 1 wherein the selecting step further comprises the step of selecting a representation for each program which meets the

constraint $\sum_{p=0}^{P-1} r[p, n[p]] \leq C$ for all time windows wherein:

C is the total channel capacity available in time frame T ;

P is the total number of programs;

$p \in (0, P-1)$, is the index of a particular program;

Serial No.: 10/527,125
Art Unit: 2425

Docket PU020419
Customer No. 24498

$N[p]$ is the total number of representations of program p ;
 $n[p] \in (0, N[p]-1)$ is the index of a particular representation of program p ; and
 $r[p, x]$ is the bit rate of representation x of program p during T.

5. (Original) The method according to claim 4 further comprising the step of choosing each program's representation $n[p] \in (0, N[P]-1)$ to maximize the quality of the program p that had the minimum quality.

6. (Original) The method according to claim 5 further comprising the steps of:

- (a) sorting the quality information for with the bit rate and quality measure monotonically increasing with an index value;
- (b) storing each bit rate increment (delta) and quality value for each index value;
- (c) beginning with a lowest index value, computing total capacity S for program representations selected thus far for such index value;
- (d) selecting a program representation at a lowest quality measure;
- (e) checking whether the bit rate increment of the selected program at the lowest quality, when added to the representations selected thus far, exceeds total channel capacity, and if not
- (f) incrementing the index value; and
- (g) repeating steps (c)-(f).

7. (Original) The method according to claim 1 wherein the selecting step further comprises the step of selecting the representation for each program such to maximize a sum of individual program qualities by solving $\max_{n[1]} \sum_{p=0}^{P-1} q[p, n[p]]$; subject to

$$\sum_{p=0}^{P-1} r[p, n[p]] \leq C$$

wherein ,

C is the total channel capacity available in time frame T;

P is the total number of programs;

$p \in (0, P-1)$, is the index of a particular program;

Serial No.: 10/527,125
 Art Unit: 2425

Docket PU020419
 Customer No. 24498

$N[p]$ is the total number of representations of program p ;
 $n[p] \in (0, N[p]-1)$ is the index of a particular representation of program p ;
 $r[p, x]$ is the bit rate of representation x of program p during T; and
 $q[p, x]$ is the quality of representation x of program p during T.

8. (Original) The method according to claim 1 wherein the selecting step further comprises the step of selecting the representation for each program such to maximize a product of individual program qualities by solving

$$\max_{n[\cdot]} \prod_{p=0}^{P-1} q[p, n[p]]; \text{ subject to } \sum_{p=0}^{P-1} r[p, n[p]] \leq C$$

where,

C is the total channel capacity available in time frame T;

P is the total number of programs;

$p \in (0, P-1)$, is the index of a particular program;

$N[p]$ is the total number of representations of program p ;

$n[p] \in (0, N[p]-1)$ is the index of a particular representation of program p ;

$r[p, x]$ is the bit rate of representation x of program p during T; and

$q[p, x]$ is the quality of representation x of program p during T.

9. (Original) The method according to claim 8 further comprising the step of applying a weighted average to provide different classes of service for different viewers.

10. (Previously presented) A system for transmitting a plurality of pre-coded programs having different bit rates across a fixed bandwidth channel, comprising the steps of:

means for generating at least two different bit rate representations of each program;

means providing control information at each of a plurality of successive time windows T for each representation of each program, the control information for each successive window indicating a bit rate and quality measure for a representation of a corresponding program; and

Serial No.: 10/527,125
Art Unit: 2425

Docket PU020419
Customer No. 24498

means for selecting during each time window T a representation for each program such to maximize the quality of the selected representations while not exceeding a total available capacity for the channel, said selecting means generating for each program a lowest bit rate representation having a peak bit rate not greater than C/P where C is the total channel capacity in time T and P is the total number of programs.

11. (Original) The system according to claim 10 wherein the generating means and control information providing means collectively comprise:

a plurality of multirate stream generators, each associated with a corresponding one of the plurality of pre-coded programs.

12. (Original) The system according to claim 10 wherein the generating means and control information providing means collectively comprise:

a multirate video encoder for encoding at least two bit rate representations of each pre-coded program.

13. (Original) The system according to claim 10 wherein the generating means and control information providing means collectively comprise:

a multirate video encoder for encoding at least two bit rate representations of each pre-coded program; and

a plurality of transport packetizers, each serving to packetize the bit rate presentations for each pre-coded program.

14. (Original) The system according to claim 10 wherein the selecting means includes a static multiplexer.

15. (Original) The system according to claim 12 wherein the selecting means comprises:

a static multiplexer; and

a transport packetizer for packetizing the selecting representation.

Serial No.: 10/527,125
Art Unit: 2425

Docket PU020419
Customer No. 24498

16. (Original) The system according to claim 10 wherein the selecting means generates for each program a lowest bit rate representation having a peak bit rate not greater than C/P where C is the total channel capacity in time T and P is the total number of programs.

17. (Original) The system according to claim 10 wherein control information providing means establishes quality measure in accordance with a peak signal-to-noise ratio (PSNR).

18. (Original) The system according to claim 10 wherein the selecting means selects a representation for each program which meets the constraint $\sum_{p=0}^{P-1} r[p, n[p]] \leq C$ for all time windows where:

C is the total channel capacity available in time frame T ;

P is the total number of programs;

$p \in (0, P-1)$, is the index of a particular program;

$N[p]$ is the total number of representations of program p ;

$n[p] \in (0, N[p]-1)$ is the index of a particular representation of program p ; and

$r[p, x]$ is the bit rate of representation x of program p during T .

19. (Original) The system according to claim 18 wherein the selecting means chooses each program's representation $n[p] \in (0, N[P]-1)$ to maximize the quality of the program p that had the minimum quality.

20. (Original) The system according to claim 10 wherein the selecting means selects the representation for each program such to maximize a sum of individual program qualities by solving:

$$\max_{n[1]} \sum_{p=0}^{P-1} q[p, n[p]]; \text{ subject to } \sum_{p=0}^{P-1} r[p, n[p]] \leq C$$

where,

C is the total channel capacity available in time frame T ;

Serial No.: 10/527,125
Art Unit: 2425

Docket PU020419
Customer No. 24498

P is the total number of programs;

$p \in (0, P-1)$, is the index of a particular program;

$N[p]$ is the total number of representations of program p ;

$n[p] \in (0, N[p]-1)$ is the index of a particular representation of program p ;

$r[p, x]$ is the bit rate of representation x of program p during T ; and

$q[p, x]$ is the quality of representation x of program p during T .

21. (Original) The system according to claim 10 wherein the selecting means selects the representation for each program such to maximize a product of individual program qualities by solving:

$$\max_{n[\cdot]} \prod_{p=0}^{P-1} q[p, n[p]]; \text{ subject to } \sum_{p=0}^{P-1} r[p, n[p]] \leq C$$

where,

C is the total channel capacity available in time frame T ;

P is the total number of programs;

$p \in (0, P-1)$, is the index of a particular program;

$N[p]$ is the total number of representations of program p ;

$n[p] \in (0, N[p]-1)$ is the index of a particular representation of program p ;

$r[p, x]$ is the bit rate of representation x of program p during T ; and

$q[p, x]$ is the quality of representation x of program p during T .

22. (Original) The system according to claim 10 wherein a weighted average is applied to provide different classes of service for different viewers.