Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

SFA

Consumo

SFA: Diseño

Oscar Perpiñán Lamigueiro http://oscarperpinan.github.io

Nomenclatura

Objetivo

Ciclado

Métodos de dimensionado

Configuración de generador y batería

Consumo: L

Probabilidad de pérdida de carga: relación entre la energía que no puede suministrar el sistema fotovoltaico y la energía solicitada por la carga durante todo el período de funcionamiento.

$$LLP = \frac{E_{def}}{L}$$

SFA: Diseño

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenclatura

Objective

Ciclado

létodos de dimensi

nfiguración de ¿ atería

Nomenclatura

Ciclado

Métodos de dimensionado

atería

Consumo

Capacidad del generador: relación entre los valores medios de la energía que puede producir el generador y la energía consumida por la carga.

$$C_A = \frac{\eta_G \cdot A_G \cdot \overline{G_d}(\beta, \alpha)}{L}$$

Capacidad de acumulación: relación entre la capacidad útil del acumulador y la energía consumida por la carga.

$$C_s = \frac{C_U}{L} = \frac{C_B \cdot PD_{max}}{L}$$

Nomenclatura

Objetivo

Ciclado

Métodos de dimensionado

Configuración de generador y batería

311

Obietivo

.........

Métodos de dimensionado

Consumo

La tarea de dimensionar un sistema fotovoltaico consiste en encontrar la mejor solución de compromiso entre coste y fiabilidad.

- ▶ Diferentes valores de (C_A, C_S) pueden conducir al mismo valor de *LLP*.
- Cuanto mayor es el sistema, mayor es la fiabilidad, pero mayor es el coste.

Nomenclatura

Objetivo

Ciclado

Métodos de dimensionado

Configuración de generador y batería

Objetivo

Ciclado

Métodos de dimensionado Configuración de generado

- El ciclado diario es la serie de cargas y descargas de la batería que se producen durante un periodo diario.
 - ▶ PD_d , está relacionada con el consumo nocturno, L_n , y por tanto exclusivamente con la capacidad de la batería: $PD_d = \frac{L_n}{C_p}$
- ► El ciclado estacional es la serie de cargas y descargas que se producen durante un periodo prolongado de duración variable
 - ► La duración, *D*, *PD*_e, están ligados al tamaño del generador, al consumo diario (diurno y nocturno) y a la radiación disponible.
 - La batería debe proporcionar la energía necesaria pero $PD_e < PD_{max}$.

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

27

Objetivo

Ciclado

Métodos de dimensionado

- La combinación de C_A alta y C_S baja conduce a ciclados diarios con valores altos de PD_d con ciclados estacionales cortos.
 - Las descargas profundas y frecuentes asociadas al valor alto de PD_d son perjudiciales para la batería,
 - La corta longitud de los ciclados estacionales es beneficiosa.
 - La estratificación será fácilmente compensable con sobrecargas controladas aplicando el mantenimiento adecuado.

Generador pequeño, acumulador grande

- ▶ La **combinación de** C_A **baja** y C_S **alta** conduce a ciclados diarios con baja PD_d y ciclados estacionales largos.
 - ► La baja *PD_d* es beneficiosa para la batería,
 - La longitud de los ciclados estacionales puede favorecer la sulfatación y la estratificación.
 - Dado el tamaño relativo del generador frente al acumulador, la frecuencia de sobrecargas será baja y la estratificación no será tan fácilmente compensada.

SFA: Diseño

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenclatur

Ciclado

Métodos de dimensionado

Nomenclatura

Objetivo

Ciclado

Métodos de dimensionado

Configuración de generador y batería

Dimensionado del

SE

Obietivo

Ciclado

Métodos de dimensionado

diguración de genera tería

Consum

Método del LLP: a partir de simulaciones o de curvas de isofiabilidad, establece los valores de C_A y C_S para un consumo determinado.

Método del mes peor: selecciona el tamaño de batería y generador para abastecer el consumo durante el mes con peor relación entre radiación y consumo (en los casos de consumo constante, el mes peor es aquel de menor radiación). El tamaño de batería y generador se selecciona en base a la experiencia acumulada según la zona geográfica y la aplicación a abastecer.

Método del LLP

Suposiciones

- ▶ El consumo es constante a lo largo del año
- ▶ Todo el consumo ocurre por la noche
- ▶ Los componentes del sistema FV no tienen pérdidas (incluidas dentro de *C*^A y *C*^S) y lineales.

SFA: Diseño

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del SFA

Nomencia

Ciclado

Métodos de dimensionado

nfiguración de genera atería

Método de LLP

SFA: Diseño

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenclatu

0:1.1

Métodos de dimensionado

onfiguración de ; batería

$$C_s = 3$$

SFA: Diseño

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenclatu

Objetivo

Ciclado

Métodos de dimensionado

onfiguración de generador patería

Dimensionado del

SFA

Objetivo

Ciclado

Métodos de dimensionado

atería

Consumo

 Es posible ajustar las curvas isofiables a una ecuación analítica:

$$C'_A = f \cdot C_s^{-u}$$

- ▶ *f* y *u* son dos parámetros sin significado físico, dependientes del lugar y del LLP deseado.
- Para su determinación es necesario realizar varias simulaciones previas.

Objetivo

Ciclado

Métodos de dimensionado

atería

Consumo

- Este proceso de cálculo se apoya en series de valores de radiación solar que reproducen el comportamiento estadístico de la irradiación.
- Predicción del comportamiento del sistema limitada por la incertidumbre asociada.
- ▶ Los ejercicios de cálculo para probabilidades de pérdida de carga inferiores a $LLP = 1 \times 10^{-2}$ carecen de utilidad.

Recordatorio

«[...] los modelos de simulación muy exactos pueden proporcionar números también muy exactos, pero ello no significa que se traduzcan automáticamente en predicciones también muy exactas.»

Valores según el UTS for SHS

- ► Electrificación rural:
 - $C_A = 1.1$
 - ▶ $3 < C_S < 5$
- Aplicaciones profesionales:
 - ▶ $1.2 \le C_A \le 1.3$
 - ▶ $5 \le C_S \le 8$

Dimensionado del SFA

Nomenclatura

Ciclado

Métodos de dimensionado

nguración de genera: tería

Nomenclatura

Objetivo

Ciclado

Métodos de dimensionado

Configuración de generador y batería

Configuración de generador y batería

- ▶ Una vez elegidos los valores de C_A y C_S , se deben configurar el generador y batería de acuerdo a las tensiones de trabajo.
- ► En general, la batería impone la tensión de trabajo (no hay buscador de MPP). Supondremos $V_{mpp} \simeq V_b$
- ► Carga en Ah

$$Q_L = L/V_b$$

SFA: Diseño

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenclatur Objetivo

Ciclado

Métodos de dimensionado Configuración de generador

y batería

0111

Objetivo

Ciclado

Métodos de dimensionado Configuración de generador

y batería

Consumo

 Capacidad en Ah (es recomendable no usar baterías en paralelo)

$$Q_B = \frac{C_S \cdot Q_L}{PD}$$

► Hay que elegir el número de vasos en serie adecuados a *V*_b

Objetivo

Ciciado

Configuración de generador v batería

Consumo

Capacidad del generador

$$C_A = \frac{\eta_G \cdot A_G \cdot \overline{G_d}(\beta, \alpha)}{Q_L \cdot V_b}$$
$$I_g^* \cdot V_b = \eta_G \cdot A_G \cdot G_{stc}$$

 Corriente de funcionamiento (determina número de ramas)

$$I_g^* = \frac{C_A \cdot Q_L \cdot G_{stc}}{\overline{G_d}(\beta, \alpha)}$$

 Hay que elegir el número de módulos en serie adecuados a V_b radiación en los meses de menor insolación

$$\beta = |\phi| + 10^{\circ}$$

 Para instalaciones con consumo menor en meses de baja radiación se busca maximizar radiación en equinoccios.

$$\beta = |\phi|$$

 Para instalaciones con uso predominante en verano (hemisferio Norte) conviene emplear un ángulo inferior a la latitud.

$$\beta = |\phi| - 10^{\circ}$$

► En general, la inclinación debe superar los 15°.

SFA: Diseño

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomen

Objetivo

Ciciado

Configuración de generador

Consumo

Estimación del consumo

Escenarios

Consumo

Estimación del consumo Escenarios

$$L_T = rac{L_{dc}}{\eta_r} + rac{L_{ac}}{\eta_{inv}}$$
 $L = rac{L_T}{\eta_{bat} \cdot \eta_c}$

Como valores orientativos pueden utilizarse $\eta_{inv}=0.9$, $\eta_r=0.95$, $\eta_{bat}=0.85$ y $\eta_c=0.98$.

Distribución del consumo

SFA: Diseño

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del SFA

Consumo

Estimación del consumo Escenarios

Relación entre el consumo y la fiabilidad

SFA: Diseño

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del SFA

Consumo

Estimación del consumo Escenarios

Consumo

Estimación del consumo

Escenarios

120 Wh/dia

- ▶ Iluminación
- ► Radio
- ► TV b/n,
- ► Sin frigorífico

$$C_A = 1.1$$
$$3 \le C_s \le 5$$

Estimación del consumo Escenarios

250 Wh/dia

- Iluminación
- ► Radio
- ► TV color
- ► Sin frigorífico

$$C_A = 1.1$$
$$3 \le C_s \le 5$$

1000 Wh/dia

- Iluminación
- radio
- TV color
- Con frigorífico eficiente

$$C_A = 1.1$$

$$C_A = 1.1$$

 $C_S = 5$

Escenarios

Todo AC

▶ 500 Wh/dia por vivienda.

$$C_A = 1.1$$

$$C_A = 1.1$$

 $C_S = 5$