

AZ-104 Tag 3

Administer **Network Traffic**

Gyten Morgen!

About this course: Course Outline

01: Administer Identity

02: Administer Governance and Compliance

03: Administer Azure Resources

04: Administer Virtual Networking

05: Administer Intersite Connectivity

06: Administer Network Traffic Management

Storage Account

07: Administer Azure Storage

08: Administer Azure Virtual Machines

09: Administer PaaS Compute Options

10: Administer Data Protection

11: Administer Monitoring

Administer Network Traffic Introduction

Configure Azure Load Balancer

Configure Azure Load Balancer Introduction

- Implement an Internal Load Balancer
- Determine Load Balancer SKUs
- Create Load Balancer Rules
- Demonstration Configure a load balancer
- Summary and Resources

Choose a Load Balancer Solution

Feature	Application Gateway	Front Door	Load Balancer	Traffic Manager
Usage	Optimize delivery from application server farms while increasing application security with web application firewall.	Scalable, security- enhanced delivery point for global, micro service-based web applications.	Balance inbound and outbound connections and requests to your applications or server endpoints.	Distribute traffic optimally to services across global Azure regions, while providing high availability and responsiveness.
Protocols	HTTP, HTTPS, HTTP2	HTTP, HTTPS, HTTP2	TCP, UDP	Any
Private (regional)	Yes		Yes	
Global		Yes		Yes
Env	Azure, non-Azure cloud, on premises	Azure, non-Azure cloud, on premises	Azure	Azure, non-Azure cloud, on premises
Security	WAF	WAF, NSG	NSG	

Implement a Public Load Balancer

Maps public IP addresses and port number of incoming traffic to the VM's private IP address and port number, and vice versa

Apply load balancing rules to distribute traffic across VMs or services

Implement an Internal Load Balancer

Directs traffic only to resources inside a virtual network or that use a VPN to access Azure infrastructure

Frontend IP addresses and virtual networks are never directly exposed to an internet endpoint

Enables load balancing within a virtual network, for cross-premises virtual networks, for multi-tier applications, and for line-of-business applications

Determine Load Balancer SKUs

Feature	Basic SKU	Standard SKU
Backend pool size	300 IP configurations, single availability set	Up to 5000 instances
Health probes	TCP, HTTP	TCP, HTTPS
Availability zones	Not available .	Zone-redundant and zonal frontends for inbound and outbound traffic
Multiple frontends	Inbound only	Inbound and outbound
Secure by default	By default, open to the internet	Closed to inbound connections unless opened by NSGs
SLA	Not available	99.99%

Create load balancer rules

Maps a frontend IP and port combination to a set of backend pool and port combination

Rules can be combined with NAT rules

A NAT rule is explicitly attached to a VM (or network interface) to complete the path to the target

Demonstration – Configure a Load Balancer

Portal – Help me choose a load balancer

Configure a load balancer

Summary and Resources – Configure Azure Load Balancer

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Improve application scalability and resiliency by using Azure Load Balancer (Sandbox)

Load balance non-HTTP(S) traffic in Azure

Introduction to Azure Load Balancer

A sandbox indicates a hands-on exercise.

Configure Azure Application Gateway regional

Front Door global + CDN Profiles

Configure Azure Application Gateway Introduction

Implement Application Gateway

Determine Application Gateway Routing

Demonstration – Configure an Application Gateway

Setup Application Gateway Components

Summary and Resources

Implement Application Gateway

Manages web app requests

Routes traffic to a pool of web servers based on the URL of a request

The web servers can be Azure virtual machines, Azure virtual machine scale sets, Azure App Service, and even on-premises servers

Determine Application Gateway Routing

Path-based routing

Image Server Pool **Application Gateway** /images/* contoso.com Video Server WAF Pool /video/* L7 LB

Multiple-site routing

Demonstration – Configure an Azure Application Gateway

Configure the Azure Application Gateway

Compare to the Load Balancer

Summary and Resources – Configure Azure Application Gateway

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Introduction to Azure Application Gateway

Load balance your web service traffic with Application Gateway

Load balance HTTP(S) traffic in Azure

Encrypt network traffic end to end with Azure Application Gateway

Configure Network Watcher

Configure Network Watcher Introduction

- Describe Network Watcher Features
- Review IP Flow Verify Diagnostics
- Review Next Hop Diagnostics
- Visualize the Network Topology
- Summary and Resources

Describe Network Watcher Features

A **regional service** that provides various network diagnostic and monitoring tools

IP Flow Verify diagnoses connectivity issues

Next Hop determines if traffic is being correctly routed

VPN Diagnostics troubleshoots gateways and connections

NSG Flow Logs maps IP traffic through a network security group

Connection troubleshoot shows connectivity between source VM and destination

Topology generates a visual diagram of resources

Network Watcher Monitoring Network diagnostic tools Topology IP flow verify Connection monitor Next hop Network Performance Monitor Effective security rules VPN troubleshoot Logs Packet capture NSG flow logs Connection troubleshoot Diagnostic logs Traffic Analytics

Review IP Flow Verify Diagnostics

Checks if a packet is allowed or denied to or from a virtual machine

Review Next Hop Diagnostics

Helps with determining whether traffic is being directed to the intended destination by showing the next hop

Visualize the Network Topology

Provides a visual representation of your networking elements

View all the resources in a virtual network, resource to resource associations, and relationships between the resources

The Network Watcher instance in the same region as the virtual network

Summary and Resources – Configure Network Watcher

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Introduction to Azure Network Watcher

Monitor and troubleshoot your end-to-end Azure network infrastructure by using network monitoring tools

<u>Analyze your Azure infrastructure by using Azure Monitor logs (Sandbox)</u>

Monitor the performance of virtual machines using Azure Monitor VM Insights (Sandbox)

Write your first query with Kusto Query Language

A sandbox indicates a hands-on exercise.

Lab – Implement Traffic Management

Lab 06 – Implement traffic management

Scenario

You are tasked with implementing a hub spoke topology for network traffic. The topology should include an Azure Load Balancer and Azure Application Gateway.

Objectives

Task 1:

Provision the lab environment

Task 4:

Configure routing in the hub and spoke topology

Task 2:

Configure the hub and spoke network topology

Task 5:

Implement Azure Load Balancer

Task 3:

Test transitivity of virtual network peering

Task 6:

Implement Azure **Application Gateway**

Next slide for an architecture diagram (>)

End of presentation

