1 基本知識

1.1 平方根

 $\sqrt{a^2} = |a|$

2 線形代数

2.1 行列式

2.1.1 余因子行列とクラメールの公式

n 次正方行列 $A=[a_{ij}]$ の第 i 行と第 j 列を取り除いて得られる n-1 次正方行列を A_{ij} と書く.

- 余因子展開 ---

(1) 第 j 列に関する余因子展開

$$|A| = (-1)^{1+j} a_{1j} |A_{1j}| + (-1)^{2+j} a_{2j} |A_{2j}| + \dots + (-1)^{n+j} a_{nj} |A_{nj}|$$

(2) 第 i 行に関する余因子展開

$$|A| = (-1)^{i+1} a_{1j} |A_{i1}| + (-1)^{i+2} a_{i2} |A_{i2}| + \dots + (-1)^{i+n} a_{in} |A_{in}|$$

- 余因子行列 —

n 次正方行列 $|a_{ij}|$ に対し、

$$\check{a}_{ij} = (-1)^{i+j} |A_{ji}|$$

さらに、以下のようにおき、Aの余因子行列という.

$$\tilde{A} = [\check{a}_{ij}]$$

- 定理 3.4.1 —

正方行列 A の余因子行列を \tilde{A} とすると、以下の関係が成立する.

$$A\tilde{A} = \tilde{A}A = dE (d = \det(A))$$

- クラメールの公式 —

2.2 連立一次方程式,基本変形

2.2.1 連立一次方程式の消去法による解法

- (i) 連立一次方程式より拡大係数行列を抽出(行列のデータ化)
- (ii) 抽出した拡大係数行列を簡約化する(未知数の整理)
- (iii) 簡約化の結果を連立一次方程式に還元し解を作成する

2.2.2 解が不定の場合

「1 式に 1 未知数」という形は,一般には成り立たない.そこで,「1 式に 1 未知数」に近い形に整理したものが**階段 行列** (=**筒約行列**) である.一般の連立 1 次方程式の場合,未知数,方程式の本数,任意定数の間には以下の関係が成り立つ.

(未知数の個数) = (有効な方程式の数) + (任意定数の数)

2.3 固有値と固有ベクトルの計算

2.3.1 固有値と固有ベクトル

- 定義 —

n 次正方行列 A とスカラー λ に対し、

 $Ax = \lambda x$

となる**零ベクトル** o **ではないベクトル** x が存在するとき λ を A の固有値といい.

 λ に対し上の条件を満たす o ではないベクトル x を A の固有ベクトルという. また, 固有値を求める際に は, $|\lambda E - A| = 0$ を解けば良い.

2.3.2 行列の対角化

正方行列 A が与えられたとき, $B=P^{-1}AP$ が対角行列になるような生息行列 P と対角行列 B を求めることを行列 A の対角化という.

固有多項式 ——

正方行列 A に対し、以下の多項式 $g_A(t)$ を A の固有多項式という.

$$g_A(t) = |tE - A|$$

2.3.3 対角化可能性

正方行列 A は常に対角化されるとは限らない.

- 対角化の条件 -

A が N 次の正方行列のとき,「A が対角化可能」とは A が N 個の独立な固有ベクトルを持つことと同値である. (固有値の重複度と固有空間の次元が一致している)

2.3.4 対角化の手順

対角化の作業は以下の手順で行われる.

- (i) 固有値の計算
- (ii) 各固有値に対する固有ベクトルの計算
- (iii) 上の手順で得られた(一次独立な)固有ベクトルの組を並べてできた行列を P としたとき,この P は正則行列であり, $P^{-1}AP$ は対角行列となる.

3 微積分

3.1 微分の公式

- 微分の公式 -

$$y = \arcsin(x) \quad \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$$
$$y = \arccos(x) \quad \frac{dy}{dx} = -\frac{1}{\sqrt{1 - x^2}}$$
$$y = \arctan(x) \quad \frac{dy}{dx} = \frac{1}{1 + x^2}$$

3.2 関数のべき級数展開

関数のべき級数展開とは、関数を多項式で近似していくことを指す. 工学分野では、必要不可欠なツールであり、出 題内容として (1) 関数を展開する問題 (2) 近似・誤差の評価という 2 種類が主なものである.

3.2.1 Taylor 展開

Taylor 展開 -

$$f(x) = f(0) + f^{(1)}(0)x + \frac{f^{(2)}(0)}{2}x^2 + \frac{f^{(3)}(0)}{3}x^3 + \dots + \frac{f^{(n)}(0)}{n}x^n$$

3.3 1 変数の積分

- 3.3.1 偶関数と奇関数
- 3.4 多変数関数
- 3.4.1 偏微分

多変数関数の微分 → 偏微分

3.4.2 多変数関数の極値

- 定理 4.3.3 極値を持つ必要条件 -

f(x,y) が (a,b) で極値をとるならば, $f_x(a,b) = f_y(a,b) = 0$ である.

- 定理 極値の判定 –

 $f\left(x,y
ight)$ は C^2 の関数であり、点 (a,b) において $f_x\left(a,b
ight)=f_y\left(a,b
ight)=0$ であるとする. 判別式を $D=f_{xx}\left(a,b\right)f_{yy}\left(a,b\right)-f_{xy}\left(a,b\right)^2$ と定義する.

(1) D > 0 とする.

 $f_{xx}\left(a,b
ight)>0$ ならば,f は点 $\left(a,b
ight)$ で極小値をとる.

 $f_{xx}(a,b) < 0$ ならば,f は点 (a,b) で極大値をとる.

(2) D < 0 ならば,f は点 (a,b) で極値をとらない.

3.4.3 接平面の方程式

関数のグラフz = f(x,y)は空間内の局面を定める。この曲面上の $p(x_0,y_0,z_0)$ における接平面の方程式は、

- 接平面の方程式 ----

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

により与えられる。

3.4.4 接線の方程式と陰関数の定理

- 定理 4.4.1 陰関数の定理 -

f(x,y) が C^1 級の関数で, $f_x(a,b)=0$, $f_y(a,b)\neq 0$ ならば, a を含む開区間で定義された f(x,y)=0 の陰関数 $y=\phi(x)$ で, $\phi(a)=b$ となるものが存在する. このとき, $y=\phi(x)$ は微分可能で, 次の式が成り立つ.

$$\phi'(x) = \frac{f_x(x,\phi(x))}{f_y(x,\phi(x))}$$
, すなわち, $\frac{dy}{dx} = -\frac{f_x(x,y)}{f_y(x,y)}$

3.5 重積分

3.5.1 主な解法スキーム

(1) 基本形

(重積分) →計算用の式変換→ (累次積分) →計算の実行→ (値)

(2) 積分の順序変更

(重積分) →計算用の式変換・問題の差し戻し→ (累次積分) →計算の実行→ (値)

(3) 変数変換

(重積分 1) \rightarrow 変数の変更 \rightarrow (重積分 2) \rightarrow 計算用の式変換 \rightarrow (累次積分) \rightarrow 計算の実行 \rightarrow (値)

3.5.2 具体的な手順

(1) 積分領域 (範囲) を求める

3.5.3 積分区間の変換

積分区分を変換する際は、固定されていない変数を固定して区間を考える。

 \times 区間にx が含まれる場合は、「x を固定した」ということ \rightarrow 変数を変換する場合は、「y を固定」して考える

3.5.4 変数変換公式

- ヤコビ行列 -

st 平面の有界な領域 E で定義された C^1 級関数 $x=\varphi(s,t)$ 、 $y=\psi(s,t)$ に対して

(1) E の各点で Jacobi 行列

$$J = \frac{\partial (x, y)}{\partial (s, t)} = \begin{bmatrix} x_s & x_t \\ y_s & y_t \end{bmatrix}$$

の行列式 $J = x_s y_t - x_t y_s$ は 0 ではない。

(2) 写像 $F\left(s,t\right)=\left(\varphi\left(s,t\right),\psi\left(s,t\right)\right)$ は E から E の像 $D=F\left(E\right)$ への 1 対 1 の写像であるという上記の 2 つ の条件が成立するとき、連続関数 s(x,y) に対して以下の式が成立する。

$$\iint_{D}f\left(x,y\right) dxdy=\iint_{E}f\left(\varphi\left(s,t\right) ,\psi\left(s,t\right) \right) |J|dsdt$$

ヤコビヤンは絶対値をかける!!

【代表的なヤコビ行列】

・デカルト座標から極座標への変換

 $x = r\cos\theta, y = r\sin\theta$ すると、

$$|J| = \frac{\partial (x, y)}{\partial (r, \theta)} = \begin{bmatrix} x_r & x_\theta \\ y_r & y_\theta \end{bmatrix} = \begin{bmatrix} \sin \theta & r \cos \theta \\ \cos \theta & -r \sin \theta \end{bmatrix} = r$$

4 微分方程式

4.1 1 階常微分方程式

4.1.1 直接微分形

$$\frac{dy}{dx} = f\left(x\right)$$

の形を**直接微分形**という。

- (1) 方程式を標準形に直す $\frac{dy}{dx} = f(x)$ (2) 両辺を積分して一般解を求める
- (3) 特殊解を求める際は、初期条件を代入して積分定数を求める

4.1.2 変数分離形

$$g\left(y\right)\frac{dy}{dx} = f\left(x\right)$$

の形を**変数分離形**という。

(1) 方程式を標準形に直す

$$g(y)\frac{dy}{dx} = f(x)$$
(2) 両辺を x で積分する

- (3) 変形しきれいな形に直して一般解とする
- (4) 特殊解を求める際は、初期条件を代入して積分定数を求める

4.1.3 $y' = f(\alpha x + \beta y + \gamma)$ の形

 $y'=f(\alpha x+\beta y+\gamma)$ の $\alpha x+\beta y+\gamma$ がひとかたまりになっている場合は、 $u=\alpha x+\beta y+\gamma$ とおくことで、変数 分離形に帰着される。

- 解法 -

- (1) $u = \alpha x + \beta y + \gamma$ とおいて、x で微分し、y' を求める $u' = \alpha + \beta y'$
- (2) 元の方程式に代入して整理し、変数微分形の形にする
- (3) 変数分離形の一般解を求める
- (4) u を元の式に代入して一般解を求める
- (5) 特殊解を求める際は、初期条件を代入して積分定数を求める

4.1.4 同次形

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

の形の微分方程式を同次形という。

解法 -

(1) 方程式を標準形に直す

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

- = u とおいて標準形に代入し、u と x の方程式に直す。
- (3) 両辺をxで積分して関数uを求める
- (4) $u = \frac{y}{2}$ とおいて元に戻し、一般解 y を求める
- (5) f(u) u = 0 をみたす u = a(定数) があるとき、これから得られる y = ax も解となる。 また、これが一般解に含まれるかどうか調べる。
- (6) 特殊解を求める際は、初期条件を代入して積分定数を求める

4.2 線形微分方程式

 $P_{1}\left(x\right),P_{2}\left(x\right),\ldots,P_{n}\left(x\right),Q\left(x\right)$ をxの関数とするとき $y^{(n)} + P_1(x)y^{(n-1)} + \dots + P_{n-1}(x)y' + P_n(x)y = Q(x)$ を n 階微分方程式という。 また、Q(x) = 0 のとき**同次方程式**という。

5 材料力学

5.1 重要公式

引張・圧縮 -

$$\sigma = \frac{P}{A}$$

$$\varepsilon = \frac{\lambda}{L}$$

$$\sigma = E\varepsilon$$

$$P = \frac{AE}{l}\lambda = AE\varepsilon$$

AE: 引張剛性

- ねじり -

$$\tau (r) = \frac{T}{I_p} r$$

$$\gamma (r) = \frac{\lambda (r)}{L} = \frac{\varphi}{L} r = \theta r$$

$$\tau (r) = G\gamma (r) = G\theta r$$

$$T = \frac{I_p G}{L} \varphi$$

 $heta = rac{arphi}{L}$: 比ねじれ角 I_pG : ねじれ剛性