LITERATURE SURVEY

TITLE	AUTHOR'S	ABSTRACT	METHODOLOGY
	NAME		
CROP YIELD	1 P.Surya,	Data Mining is	Data Mining
PREDICTION IN	2 Dr. I.Laurence	emerging research field	Dutu Mining
AGRICULTURE	Aroquiaraj	in Agriculture	
USING DATA		especially in crop yield	
MINING		analysis and prediction.	
PREDICTIVE		As early into the	
ANALYTIC		growing season as	
TECHNIQUES		possible, a farmer is	
		focused in perceptive	
		how much yield they	
		about to expect. As	
		with many other sectors	
		the amount of	
		agriculture data are	
		increasing on a daily	
		source. In our proposed	
		work, collected	
		agriculture dataset will	
		be used to get crop	
		yield prediction model	
		using various	
		regression techniques.	
		Regression analysis	
		was tested for the	
		effective prediction or	
		forecast of the	

agriculture yield for various crops in Tamilnadu state particularly in North Western zone of Tamilnadu. North western zone of tamilnadu state data	
Tamilnadu state particularly in North Western zone of Tamilnadu. North western zone of	
particularly in North Western zone of Tamilnadu. North western zone of	
Western zone of Tamilnadu. North western zone of	
Tamilnadu. North western zone of	
western zone of	
tamilnadu state data	
tammadu state data	
consist four districts.	
The North western	
zone of Tamilnadu	
districts are	
Dharmapuri, Salem,	
Namakkal, Krishnagiri.	
By the analysis	
depends on the results	
of predictor model, in	
the north western zone,	
under the area having	
more cultivated crops	
are Tapiaco, Sugar	
cane, Ragi, Maize,	
Groundnut.	
CROP YIELD 1 Potnuru Sai In India, we all know Stacked Regression	
PREDICTION Nishant, that Agriculture is the	
BASED ON 2 Pinapa Sai backbone of the	
INDIAN Venkat, country. This paper	
AGRICULTURE 3 Bollu Lakshmi predicts the yield of	
USING Avinash, almost all kinds of	
MACHINE 4 B. Jabber crops that are planted	
LEARNING in India. This script	

		_	<u></u>
		makes novel by the	
		usage of simple	
		parameters like State,	
		district, season, area	
		and the user can predict	
		the yield of the crop in	
		which year he or she	
		wants to. The paper	
		uses advanced	
		regression techniques	
		like Kernel Ridge,	
		Lasso and ENet	
		algorithms to predict	
		the yield and uses the	
		concept of Stacking	
		Regression for	
		enhancing the	
		algorithms to give a	
		better prediction.	
		_	
FORECASTING	1 G.M.Nasira,	The Agricultural sector	Neural Networks
MODEL FOR	2 N.Hemageetha	needs more support for	
VEGETABLE		its development in	
PRICE USING		developing countries	
BACK		like India. Price	
PROPAGATION		prediction helps the	
NEURAL		farmers and also the	
NETWORK		Government to make	
		effective decision.	
		Based on the	
		complexity of	
		vegetable price	

	1	1	T
		prediction, making use	
		of the classification	
		technique like neural	
		networks such as self	
		build up the model of	
		Back-propagation	
		neural network	
		(BPNN) to predict	
		vegetable price. A	
		prediction model was	
		set up by applying the	
		neural network. Taking	
		tomato as an example,	
		the parameters of the	
		model are analyzed	
		through experiment. At	
		the end of the result of	
		Back shows accuracy	
		percentage of the price	
		prediction.	
DISEASE	1 Youvrajsinh	The decision tree is one	Classification
PREDICTION	Chauhan,	of the common	Chabbilloution
ON SOIL	2 Jignesh Vania	modelling methods to	
MICRONUTRIE		classify. This is an	
NTS ANALYSIS		emerging research field	
OF BT COTTON		that is experiencing a	
BY J48		constant development.	
CLASSIFICATI		In this paper, we	
ON		present the basic	
		knowledge of 16 soil	
		nutrients of crop and	
	<u> </u>	1	I

		how related with other	
		factors like Soil PH,	
		Cation Exchange, Soil	
		Fertility. We add	
		general concept of	
		decision tree and recent	
		applications that	
		already tested and	
		predict the use in field	
		of agriculture. We	
		make the conceptual	
		model that helps to	
		feature research work	
		in agriculture with use	
		of soil nutrients.	
A STUDY OF	1 Utkarsha P.	Farming community	Clustering
CLUSTERING	Narkhede,	necessitate for well	Clustering
TECHNIQUES	2 K. P. Adhiya	organized system to	
FOR CROP		predict and improve the	
PREDICTION -		crop over the world.	
A SURVEY		The complexity of	
		predicting the best	
		crops is highly due to	
		unavailability of proper	
		knowledge discovery in	
		crop knowledgebase	
		which affects the	
		quality of prediction.	
		However, Clustering is	
		an important step in	
		mining useful	
		information. There are	
		miorimulon. There are	

	T	1	
		several clustering	
		methods such as	
		partitioning,	
		hierarchical, model-	
		based, grid-based,	
		constrained-based	
		which make this task	
		complicated due to	
		problems related to	
		optimization and noise.	
		In this review paper	
		there is a comparative	
		study of clustering	
		algorithms. Out of	
		these BeeHive and	
		Improved k-means	
		clustering algorithm are	
		outstanding in solving	
		the optimization	
		problem which led to	
		select for performance	
		evaluation in order to	
		get good quality of	
		clusters.	
KNOWLEDGE	1 Farah Khan,	Data mining is a	Association Rule Mining
DISCOVERY	2 Dr. Divakar	technique of analyzing	
ON	Singh	the dataset such that the	
AGRICULTURA		final conclusion can be	
L DATASET		accessed easily and	
USING		quickly from the	
		dataset. Here in this	

ASSOCIATION		paper association rule	
RULE MINING			
RULE MINING		mining technique is	
		implemented for the	
		analysis of agricultural	
		dataset. The idea is to	
		apply association rule	
		mining technique for	
		generating rules and	
		establishing a	
		relationship between	
		them .So as to enhance	
		crop productivity. Also	
		a performance	
		comparison is done	
		between Apriori and FP	
		Growth algorithm.	
	1 Benny Antony	Agriculture is one of	
PREDICTION	J	the most important	Regression Method
OF THE		sectors in the Indian	
PRODUCTION		context. It is one of the	
OF CROPS		highest employing	
WITH RESPECT		sectors in the Indian	
TO RAINFALL		scenario. Unlike other	
		sectors agriculture is	
		highly dependent on	
		. 41 41	
		the quality and the	
		quantity of both the	
		quantity of both the external factors like	
		quantity of both the	
		quantity of both the external factors like	
		quantity of both the external factors like rainfall, climate, pH of	

internal factors like the quality of seeds. This paper predicts the production of crops as a function of rainfall for four Indian States. This knowledge can be implemented in generating a rough overview of how the production is based on rainfall and how much can a specific crop production for the amount of rainfall it receives. Two crops each belonging to four different states are chosen and the best regression model for the crop of the state is chosen. There is no research done solely on how rainfall affects crops of particular states. The proposed method of evaluation is better than other existing methods of evaluation as it evaluates all the regression techniques (Linear Regression,

AN APPLICATION	1 Gianni Fenu, 2 Francesca	Polynomial Regression, Support Vector Regression, Decision Tree Regression, Random Forest, and XGBRegression) for two crops of four individual states. For balanced evaluation, two states of North India and two states of South India are selected. The regression techniques are evaluated based on their Mean Squared Error In the recent years, Big Data Analytics and	Support Vector Machine Classification
LEARNING	Trial familia Trial for	techniques are playing	
TECHNIQUE IN		an increasingly key role	
FORECASTING		in the agriculture sector	
CROP DISEASE		in order to tackle the	
		increasing challenges	
		due to the climate	
		changes which are causing serious damage	
		production. The	
		analysis of	
		anarysis or	

and cultural factors allows to establish the irrigation and nutritional needs of crops, forecast crop disease, improve crop yield, as well as improve the quantity and the quality of agricultural output while using less input. Potato late blight is considered one of the most devasting disease world over, including Sardinia. Unexpected epidemics can result in significant economic and yield losses. In this paper, we describe the test conducted using the DSS LANDS in order to predict potato late blight disease in Sardinia. The object of the study was to investigate if regional weather variables could be used to predict potato late blight risk in southern Sardinia using a Machine Learning approach. The disease

		severity is predicted using Feed-forward Neural Network and Support Vector Machine Classification based on meteorological parameters provided by ARPAS weather stations. The prediction accuracy for ANN was 96% and for SVM Classification was 98%	
WHEAT YIELD PREDICTION USING MACHINE LEARNING AND ADVANCED SENSING TECHNIQUES	X.E., Moshou, D., Alexandridis, T., Whetton, R.L. and Mouazen	Understanding yield limiting factors requires high resolution multi-layer information about factors affecting crop growth and yield. Therefore, on-line proximal soil sensing for estimation of soil properties is required, due to the ability of these sensors to collect high resolution data (>1500 sample per ha), and subsequently reducing labor and time cost of soil sampling and analysis. The aim	Supervised Kohonen Networks

of this paper is to predict within field variation in wheat yield, based on on-line multi-layer soil data, and satellite imagery crop growth characteristics. Supervised selforganizing maps capable of handling existent information from different soil and crop sensors by utilizing an unsupervised learning algorithm were used. The performance of counter-propagation artificial neural networks (CP-ANNs), XY-fused Networks (XY-Fs) and Supervised Kohonen Networks (SKNs) for predicting wheat yield in a 22 ha field in Bedfordshire, UK were compared for a single cropping season. The self organizing models consisted of input nodes corresponded to

feature vectors formed from normalized values of on-line predicted soil parameters and the satellite normalized difference vegetation index (NDVI). The output nodes consisted of yield isofrequency classes, which were predicted from the three trained networks. Results showed that cross validation based yield prediction of the SKN model for the low yield class exceeded 91% which can be considered as highly accurate given the complex relationship between limiting factors and the yield. The medium and high yield class reached 70% and 83% respectively. The average overall accuracy for SKN was 81.65%, for CP-ANN 78.3% and for XY-F 80.92%, showing that the SKN model had the

		best overall performance.	
A SMART FARMING APPROACH IN AUTOMATIC DETECTION OF FAVORABLE CONDITIONS FOR PLANTING AND CROP PRODUCTION IN THE UPPER BASIN OF CAUCA RIVER	1 López, I.D., 2 Corrales, J.C.	The upper basin of Cauca River is one of the most important agricultural and industrial corridors in Colombia. In addition, Colombian relief has a variety of soils and climatic zones, in which the slightest modification of agro- climatic conditions could imply a great impact on sowing, production, yield, crop quality, and hence, the farmers' income sources. However, these conditions are not the only factors that influence a crop growth; dimensions like biophysical, economic-productive, political-institutional, and socio-cultural establish interrelations that affect the viability of planting and produce	Big Data Analytics

a crop in a geographic territory. For a more efficient information management, Smart Farming represents the application of information and communication technologies in order to support more intelligent decisions in the agricultural sector. This study presents a theoretical proposal based on Big Data Analytics to detect appropriate conditions for sowing and crop production in the upper basin of Cauca River. Similarly, the preliminary public datasets (corresponding to biophysical and economic-productive) and main proposal components are described in a general view. Finally, a future implementation and evaluation of this research work is proposed.

INTERNET OF THINGS- DRIVEN DATA MINING FOR SMART CROP PRODUCTION PREDICTION IN THE PEASANT FARMING DOMAIN	Colombo- Mendoza, L.O., Paredes-Valverde, M.A., Salas- Zárate, M.D.P. and Valencia- García, R.	Internet of Things (IoT) technologies can greatly benefit from machine-learning techniques and artificial neural networks for data mining and vice versa. In the agricultural field, this convergence could result in the development of smart farming systems suitable for use as decision support systems by peasant farmers. This work presents the design of a smart farming system for crop production, which is based on low- cost IoT sensors and popular data storage services and data analytics services on the cloud. Moreover, a new data-mining method exploiting climate data along with crop-production data is proposed for the	Internet of Things, Data Mining

prediction of production volume from heterogeneous data sources. This method was initially validated using traditional machinelearning techniques and open historical data of the northeast region of the state of Puebla, Mexico, which were collected from data sources from the National Water Commission and the Agri-food Information Service of the Mexican Government.