Basis

Definer P (sprog der kan defineres i polynomiel tid af en TM)
Polynomial Church-Turing thesis
Definer NP (problemer hvis løsnigner kan findes ved exhaustive search) (side 9)

Introducer NP-hårdhed (alle problemer i NP reducerer til disse) (hvorfor er det interessant?) Introducer reduktioner (polynomiel mapping fra L1 til L2) Introducer NPC (hvorfor er det interessant?)

Hvis L1 er NP-hårdt og L1 reducerer til L2, så er L2 også NP-hårdt Problemet er at vi ikke har et sprog at starte med Cook viste at SAT ∈ NPC så vi har et sted at starte

1. P, NP and NPC

Beslutningsproblemer
Polynomiel tid
NP-hardness
Reduktioner
CIRCUIT SAT ∈ NPC
CIRCUIT SAT ≤ SAT

```
Beslutningsproblemer
```

input er bitstrenge $x \in \{0,1\}^*$

output JA eller NEJ $y \in \{0,1\}$

Ikke restriktivt

Vi kan kun give en computer bitstrenge

Vi kan lave funktion $f: \{0,1\}^* \rightarrow \{0,1\}^*$

P er sprog der kan afgøres i polynomiel tid

Hvad er polynomiel tid?

Vi kan bruge en TM som beregningsmodel grundet Church-Turing thesis

En TM tager max p(|x|) for at løse problemet for et poly. p

Dette kan siges grundet Polynomial Church-Turing thesis

NP er beslutningsproblemer hvortil en mulig løsning kan afgøres i polynomiel tid Opskriv formel

Hvordan kan vi se at $P \subseteq NP$ (ignorer y i formel)

Hvis P ≠ NP er vi interesserede i NPC

NP-hard er klassen af problemer som alle problemer i NP kan reduceres til Der er en interessant fællesmængde mellem NP og NP-hard som hedder NPC NPC indeholder de sværeste problemer i NP

Hvad er en reduktion, L1 ≤ L2?

Polynomiel beregnelig funktion fra et sprog til et andet

Hvis L1 ≤ L2

hvis $x \in L1 \Rightarrow r(x) \in L2$

hvis $L2 \in P \Rightarrow L1 \in P$, grundet en algoritme til løsning af L1 er $f_{12}(r(x))$

hvis $L1 \in NP$ -hard $\Rightarrow L2 \in NP$ -hard, grundet reduktioner er transitive

Hvordan finder vi det første problem i NPC som vi kan reducere fra?

Cook's theorem \rightarrow SAT \in NPC

2. Cook's theorem and the complexity of variants of SAT Cook's theorem siger $\mathsf{SAT} \in \mathsf{NPC}$

[Basis] (P, NP og NPC)

CIRCUIT SAT ∈ NPC
CIRCUIT SAT ≤ SAT
Vis at 3SAT og NAESAT følger direkte

 $2SAT \in P$ $3SAT \leq MAX2SAT$

3. NP-complete graph problems

Beskriv undirected graphs

[Basis] (P, NP og NPC)

3SAT ≤ INDEPENDENT SET

Vis korollar CLIQUE er i NPC Vis korollar NODE COVER er i NPC

3SAT ≤ HAMILTON PATH

4. NP-complete problems involving sets and numbers [Basis] (P, NP og NPC)

Introducer BIPARTITE MATCHING (∈ P, da det er special case af MAX FLOW)
Krydser over til NPC ved TRIPARTITE MATCHING (ligesom 2SAT til 3SAT)
3SAT ≤ TRIPARTITE MATCHING

Vis korollar EXACT COVER BY 3-SETS er i NPC Vis korollar SET COVERING er i NPC

EXACT COVER BY 3-SETS ≤ KNAPSACK

Pseudopolynomial algorithms and strong NP-completeness

5. Local search heuristics for TSP

Tour construction algorithms

Nearest Neighbour Greedy Clarke-Wright Christofides

2-Opt og 3-Opt

Tabu search Lin-Kernighan algorithm

Simulated annealing

6. Approximation algorithms

Motivation for approximations algoritmer (**P**, **NP** og **NPC**)

VERTEX COVER (2-approximation algorithm)

Randomization and linear programming

MAX-3-CNF WEIGHTED VERTEX COVER

TSP

Minimum spanning tree Dette er kortere end optimal tur Vi traverser alle kanter 2 gange Herefter shortcutter vi, som vi kan da trekantsuligheden gælder Derfor er vores tur mindre end 2 * c(C *)