Sergio Garcia Tapia Numerical Linear Algebra, Lloyd Trefethen and David Bau III Lecture 8: Gram Schmidt Factorization June 23, 2024

Lecture 8: Gram Schmidt Factorization

Exercise 1. Let A be an $m \times n$ matrix. Determine the exact numbers of floating point additions, subtractions, and multiplications involved in computing the factorization $A = \hat{Q}\hat{R}$ by Algorithm 8.1.

Solution: The presented algorithm was:

```
# Initialize v_i to columns of A
for i = 1 to n
    v_i = a_i

# Create orthogonal list from columns of A
for i = 1 to n
    r_ii = ||v_i|| # Norm of v_i
    q_i = v_i/r_ii # Normalize
    for j = i + 1 to n
        r_ij = adj(q_i) * v_j # inner product of q_i and v_j
        v_j = v_j - r_ijq_i
```

The norm operation, $||v_i||$, involves m products (squaring each entry), m-1 addition (to add the m products), and one square root. The expression $q_i = v_i/r_{ii}$ involves m divisions. Each of these two operations occurs exactly n times, since they occur in the outer loop.

As discussed in page 59, the operations of the inner loop are

$$r_{ij} = q_i^* v_j$$
$$v_j = v_j - r_{ij} q_i$$

Since $a_i \in \mathbb{C}^m$, the inner product $q_i^*v_j$ involves m multiplications (one for each pair of entries) and m-1 additions (one for each pair of the m multiplication results). Meanwhile, $r_{ij}q_i$ involves m multiplications, and subtracting the result from v_j in the expression $v_j - v_j - r_{ij}q_i$ involves m subtractions. Thus the exact number of operations in each iteration of the inner loop is 4m-1: 2m multiplications, m subtractions, and m-1 additions.

Note that each inner loop operations occurs a constant number of times, so its helpful

to compute the sum:

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} (1) = \sum_{i=1}^{n} (n-i)$$

$$= \sum_{i=1}^{n} (n) - \sum_{i=1}^{n} i$$

$$= n^{2} - \frac{n(n+1)}{2}$$

$$= \frac{2n^{2}}{2} - \frac{n^{2} + n}{2}$$

$$= \frac{n(n-1)}{2}$$

Altogether:

Square Roots: 1

Divisions : n

Addition:
$$n \cdot (m-1) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} (m-1)$$
$$= n(m-1) + \frac{(m-1)n(n-1)}{2}$$
$$= \frac{(m-1)n(n+1)}{2}$$
Subtractions:
$$\sum_{i=1}^{n} (m-1) = \frac{mn(n-1)}{2}$$

 $Multiplications: m + \sum_{j=i+1}^{n} (2m) = m + mn(n-1)$

 $= m(n^2 - n + 1)$

Exercise 8.2. Write a MATLAB function [Q,R] = mgs(A) (see next lecture) that computes a reduced QR factorization $A = \hat{Q}\hat{R}$ of an $m \times n$ matrix with $m \ge n$ using modified Gram Schmidt orthogonalization. The output variables are a matrix $Q \in \mathbb{C}^{m \times n}$ with orthogonal columns and a triangular matrix $R \in \mathbb{C}^{m \times n}$.

Exercise 3. Each upper-triangular matrix R_j of p. 61 can be interpreted as the product of a diagonal matrix and a unit upper-triangular matrix (i.e., an upper-triangular matrix with 1 on the diagonal). Explain exactly what these factors are, and which line of Algorithm 8.1 corresponds to each.

Solution: Consider the example matrix given in page 61 for $R_1 \in \mathbb{C}^{n \times n}$:

$$R_1 = \begin{bmatrix} \frac{1}{r_{11}} & \frac{-r_{12}}{r_{11}} & \frac{-r_{13}}{r_{11}} & \cdots \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots \end{bmatrix}$$

Then $R_1 = D_1 T_1$, where $D_1, T_1 \in \mathbb{C}^{n \times n}$, D_1 is a diagonal matrix, and T_1 is an upper triangular matrix of the form

$$D_{1} = \begin{bmatrix} \frac{1}{r_{11}} & 0 & \cdots & 0 \\ 0 & 1 & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & & 1 \end{bmatrix} \qquad T_{1} = \begin{bmatrix} 1 & -r_{12} & -r_{13} & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & \ddots & 0 \end{bmatrix}$$

That is, D_1 has is diagonal with entry every 1, except the first diagonal entry where $d_{11} = \frac{1}{r_{11}}$. Then T_1 is upper-triangular with all diagonal entries 1. Every other entry is 0, except the first row, where $t_{11} = 1$ and $t_{1j} = -r_{1j}$ for j > 1. In general, $D_i, T_i \in \mathbb{C}^{n \times n}$ satisfy $R_i = D_i T_i$, where

$$d_{kj} = \begin{cases} \frac{1}{r_{ii}} & \text{if } k = i \text{ and } j = i \\ 1 & \text{if } k = i \text{ and } j \neq i \end{cases} \qquad t_{kj} = \begin{cases} 1 & \text{if } k = i \\ 0 & \text{if } k \neq i \\ r_{kj} & \text{if } k = i \text{ and } j > i \end{cases}$$

In Algorithm 8.1, the D_i matrix corresponds to the step $q_i = v_i/r_{ii}$, which normalizes v_i . The T_i matrix corresponds to the inner loop

$$r_{ij} = q_i^* v_j$$
$$v_j = v_j - r_{ij} q_i$$

where r_{ij} is computed and then multiplied by the outer loop column before it is subtracted.