

IE 33000: Probability and Statistics in Engineering II (Fall 2022) School of Industrial Engineering, Purdue University

Homework 6

Instruction: There are 4 problems in total.

1) Problems 1-4 – 25 points Due November 14, 2022 (11:59 pm)

For all problems, provide both hand-written solutions and R codes (for 30 points bonus), wherever applicable.

Problem 1

Consider the following computer output for an experiment. The factor was tested over four levels.

Solution $M \leq_T$

- (a) How many replicates did the experimenter use?
- (b) Fill in the missing information in the ANOVA table. Use bounds for the P-value if you use the tables, not a calculator nor R.
- (c) What conclusions can you draw about differences in the factor-level means?

a)
$$f(reathermores = 2)$$
 b) $F(sem F - table : p-val = 0.0115)$
 $N = dF + 1$
 $= 31 + 1$
 $= 32$
 $MS_E = 74.767$
 $MS_E = 330.4716$
 $MS_E = 31 - 3$
 $MS_E = 34.767$
 $MS_E = 31 - 3$
 $SSE = M_{SE} \cdot 0F_E$
 $= 30.84.89$
 $SSE = M_{SE} \cdot 0F_E$
 $= 30.84.89$

he say Fstat= 4.112 > p-val = 0.0117 which is
$$\angle \alpha = 0.07$$

So we reject the and say there are difference in the factor level means.

Problem 2

A research study described an experiment to determine the effect of C₂F₆ flow rate on the uniformity of the etch on a silicon wafer used in integrated circuit manufacturing. Three flow rates are used in the experiment, and the resulting uniformity (in percent) for six replicates follows.

C ₂ F ₆ Flow (SCCM)		_					
, ,	1	2	3	4	5	6	- AVG (Ÿ)
125	2.7	4.6	2.6	3.0	3.2	3.8	3,35
160	4.9	4.6	5.0	4.2	3.6	4.2	4.42
200	4.6	3.4	2.9	3.5	4.1	5.1	3.93

- (a) Does C₂F₆ flow rate affect etch uniformity? Perform the analysis of variance using $\alpha = 0.05$.
- (b) Apply Fisher's LSD method with $\alpha = 0.01$ and determine which levels of the

(b) Apply Fisher's LSD method with
$$\alpha = 0.01$$
 and determine which levels of the factor differ.

$$V = V_1 + V_2 + V_3$$

$$= 6 \cdot [0.307 + 0.071 + 0.000]$$

$$= (0.7 - 3.8)^2 + (4.9 - 3.8)^2 + (4.9 - 3.8)^2 + (4.9 - 3.8)^3 +$$

B) LSD =
$$t_{\frac{0.01}{3}, (18-1)} \cdot \sqrt{2 \cdot MSE}$$

= 0.690
SCCM 125 and 160

Problem 3

An article investigated four different methods of preparing the superconducting compound PbMo6S8. The authors contend that the presence of oxygen during the preparation process affects the material's superconducting transition temperature T_c . Preparation methods 1 and 2 use techniques that are designed to eliminate the presence of oxygen, and methods 3 and 4 allow oxygen to be present. Five observations on T_c (in ${}^{\circ}K$) were made for each method, and the results are as follows:

Preparation Method						
1	14.8	14.8	14.7	14.8	14.9	14.8
2	14.6	15.0	14.9	14.8	14.7	14.8
3	12.7	11.6	12.4	12.7	12.1	13.3
4	14.2	14.4	14.4	12.2	11.7	13.4

- (a) Is there evidence to support the claim that the presence of oxygen during preparation affects the mean transition temperature? Use $\alpha = 0.05$.
- (b) What is the P-value for the F-test in part (a)?
- (c) Find a 95% confidence interval on mean Tc when method 1 is used to prepare the material.
- (d) Apply Fisher's LSD method with $\alpha = 0.05$ and determine which levels of the factor differ.

Problem 4

An article reported a study on the effects of additives on final polymer properties. In this case, polyurethane additives were referred to as cross-linkers. The average domain spacing was the measurement of the polymer property. The data are as follows:

Cross-Linker Level	Domain Spacing (nm)							
-1	8.2	8	8.2	7.9	8.1	8		
-0.75	8.3	8.4	8.3	8.2	8.3	8.1		
-0.5	8.9	8.7	8.9	8.4	8.3	8.5		
0	8.5	8.7	8.7	8.7	8.8	8.8		
0.5	8.8	9.1	9.0	8.7	8.9	8.5		
1	8.6	8.5	8.6	8.7	8.8	8.8		

- (a) Is there a difference in the cross-linker level? Draw comparative box plots and perform an analysis of variance. Use $\alpha = 0.05$.
- (b) Find the P-value of the test. Estimate the variability due to random error.
- (c) Plot average domain spacing against cross-linker level and interpret the results.
- (d) Apply Fisher's LSD method with $\alpha = 0.05$ and determine which levels of the factor differ.

hes this a difference a gradual increase thin

hull hope and say the

$$\frac{1}{\sqrt{3}} = \frac{8.13}{\sqrt{3}} = \frac{8.7}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}} = \frac{8.63}{\sqrt{3}} = \frac{8.6}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}} = \frac{8.63}{\sqrt{3}} = \frac{8.6}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$=$$

3

```
###Problem 1###
MSf = 330.4716
Fstat = 4.45
DFt = 31
DFf = 4-1
DFe = 31-3
pval = pf(Fstat, DFf, DFe, lower.tail = FALSE)
MSe = MSf / Fstat
SSf = MSf * DFf
SSe = MSe * DFe
SSt = SSf + SSe
###Problem 2###
vals <-c(2.6,2.7,3,3.2,3.8,4.6,3.6,4.2,4.2,4.6,4.9,5,2.9,3.4,3.5,4.1,4.6,5.1)
groups \leftarrow c(rep("125", 6), rep("160", 6), rep("200", 6))
df<-data.frame(vals, groups)</pre>
result anova <- aov(vals ~ groups, data = df)
summary(result anova)
library(agricolae)
fisher <- LSD.test(result anova, "groups"))</pre>
###Problem 3###
vals 3 <-c(14.8, 14.8, 14.7, 14.8, 14.9, 14.6, 15.0, 14.9, 14.8, 14.7, 12.7,
11.6,
         12.4, 12.7, 12.1, 14.2, 14.4, 14.4, 12.2, 11.7)
groups 3 \leftarrow c(rep("1", 5), rep("2", 5), rep("3", 5), rep("4",5))
df 3<-data.frame(vals 3, groups 3)</pre>
result anova 3 \leftarrow aov(vals 3 \sim groups 3, data = df 3)
summary(result anova 3)
library(agricolae)
fisher 3 <- LSD.test(result anova 3, "groups 3")</pre>
###Problem 4###
vals 4 < -c(8.2, 8, 8.2, 7.9, 8.1, 8, 8.3, 8.4, 8.3, 8.2, 8.3, 8.1, 8.9, 8.7,
8.9,
          8.4, 8.3, 8.5, 8.5, 8.7, 8.7, 8.7, 8.8, 8.8, 8.8, 9.1, 9.0, 8.7,
8.9,
          8.5, 8.6, 8.5, 8.6, 8.7, 8.8, 8.8)
groups 4 < -c(rep("-1", 6), rep("-0.75", 6), rep("-0.5", 6), rep("0",6),
rep("0.5",6), rep("1",6))
df 4<-data.frame(vals 4, groups 4)</pre>
dim(vals 4) <- c(6,6)
colnames(vals 4)<- c("-1", "-0.75", "-0.5", "0", "0.5", "1")
boxplot(vals 4)
val avg 4 <- colMeans(vals 4)</pre>
plot(val avg 4)
result anova 4 < - aov(vals 4 \sim groups 4, data = df 4)
summary(result anova 4)
library(agricolae)
fisher 4 <- LSD.test(result anova 4, "groups 4"))</pre>
```