Relations and Functions CS 2LC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Tuples

- For expressions b and c, the 2-tuple (b, c) (or $\langle b, c \rangle$) is called an *ordered pair*, or simply a *pair*.
- Defining ordered pairs with sets: for any expressions b and c: Ordered pair: $(b,c) = \{\{b\}, \{b,c\}\}.$
- $(c,b) = \{\{c\},\{b,c\}\} \neq \{\{b\},\{b,c\}\} = (b,c)$ $(a,a) = \{\{a\}\}$
- Alternative (logical) approach:

Axiom, Pair equality: $(b,c)=(b',c')\equiv b=b'\wedge c=c'$

Cartesian (Cross) Product

• Cartesian product $S \times T$ of two sets S and T is the set of pairs (b, c) such that b is in S and c is in T.

Axiom, Cartesian product:

$$S \times T = \{b, c \mid b \in S \land c \in T : (b, c)\}$$

Alternative, more popular notation

$$S \times T = \{(b,c) \mid b \in S \land c \in T\}$$

• For example:

$$\{2,5\}\times\{1,2,3\}=\{(2,1),(2,2),(2,3),(5,1),(5,2),(5,3)\}.$$

Theorems for Cartesian Product (Numbers from Textbook)

(14.4) **Membership:**
$$\langle x, y \rangle \in S \times T \equiv x \in S \land y \in T$$

$$(14.5) \quad \langle x, y \rangle \in S \times T \equiv \langle y, x \rangle \in T \times S$$

$$(14.6) S = \emptyset \Rightarrow S \times T = T \times S = \emptyset$$

$$(14.7) \quad S \times T = T \times S \equiv S = \emptyset \lor T = \emptyset \lor S = T$$

(14.8) Distributivity of \times over \cup :

$$S \times (T \cup U) = (S \times T) \cup (S \times U)$$
$$(S \cup T) \times U = (S \times U) \cup (T \times U)$$

(14.9) Distributivity of \times over \cap :

$$S \times (T \cap U) = (S \times T) \cap (S \times U)$$
$$(S \cap T) \times U = (S \times U) \cap (T \times U)$$

(14.10) Distributivity of \times over -:

$$S \times (T - U) = (S \times T) - (S \times U)$$

Theorems for Cartesian Product and Extension from 2 to n

- (14.11) Monotonicity: $T \subseteq U \Rightarrow S \times T \subseteq S \times U$
- $(14.12) \quad S \subseteq U \ \land \ T \subseteq V \ \Rightarrow \ S \times T \subseteq U \times V$
- $(14.13) \quad S \times T \subseteq S \times U \ \land \ S \neq \emptyset \ \Rightarrow \ T \subseteq U$
- $(14.14) \quad (S \cap T) \times (U \cap V) = (S \times U) \cap (T \times V)$
- (14.15) For finite S and T, $\#(S \times T) = \#S \cdot \#T$
 - We can extend the notion of a Cartesian product from two sets to n sets.
 - For example, $\mathbb{Z} \times \mathbb{N} \times \{3,4,5\}$ is the set of triples (x,y,z) where x is an integer, y is a natural number, and $z \in \{3,4,5\}$.
 - The theorems shown for the Cartesian product of two sets extend to theorems for the Cartesian product of n sets in the expected way.

Relations

- A relation on a Cartesian product $B_1 \times ... \times B_n$ is simply a subset of $B_1 \times ... \times B_n$.
- Thus, a relation is a set of n-tuples (for some fixed n).
- A binary relation over $B \times C$ is a subset of $B \times C$.
- If B and C are the same, so that the relation is on $B \times B$, we call it simply a (binary) relation on B.
- Any binary relation can be described by a *directed graph*. The graph has one *vertex* for each element of the set, and there is a directed edge from vertex b (say) to vertex c iff (b, c) is in the binary relation.

Examples of Binary Relations

Examples of (binary) relations

- (a) The *empty relation* on $B \times C$ is the empty set, \emptyset .
- (b) The identity relation i_B on B is $\{x \mid x \in B : \langle x, x \rangle\}$.
- (c) Relation parent on the set of people is the set of pairs $\langle b, c \rangle$ such that b is a parent of c. Relation child on the set of people is the set of pairs $\langle b, c \rangle$ such that b is a child of c. Relation sister on the set of people is the set of pairs $\langle b, c \rangle$ such that b is a sister of c.
- (d) Relation pred (for predecessor) on $\mathbb Z$ is the set of pairs $\langle b-1,b\rangle$ for integers b, $pred = \{b: \mathbb Z \mid \langle b-1,b\rangle\}$. Relation succ (for successor) is defined by $succ = \{b: \mathbb Z \mid \langle b+1,b\rangle\}$.
- (e) Relation sqrt on $\mathbb R$ is the set $\{b,c:\mathbb R\mid b^2=c:\langle b,c\rangle\}$.
- (f) An algorithm P can be viewed as a relation on states. A pair $\langle b,c\rangle$ is in the relation iff some execution of P begun in state b terminates in state c.

Notations, Domain and Range of Relations

• **Notations:** Let $R \subseteq B \times C$ be a binary relation. We may write

$$bRc$$
 or $(b, c) \in R$.

- For example: x < y or $(x, y) \in <$ (or sometimes $(x, y) \in R_{<}$).
- We have $bR_1cR_2d \equiv bR_1c \wedge cR_2d$, etc.
- The domain Dom.R (or Dom(R) and range Ran.R (or Ran(R) of the relation R on $B \times C$ are defined by:

• B and Dom.R need not to be the same!

Operations on Relations: \cup , \cap , \setminus , \sim , $^{-1}$

- Suppose R and Q are relations on $B \times C$.
- Since a relation is a set, $R \cup Q$, $R \cap Q$, $R \setminus Q$, and $\sim R$ (where $\sim R = (B \times C) \setminus R$) are also relations on $B \times C$.
- The *inverse* R^{-1} of a relation R on $B \times C$ is the relation defined by:

$$(b,c)\in R^{-1}\equiv (c,b)\in R$$
 (for all $b\in B,c\in C$).

- Properties of inverse
 - (a) $Dom(R^{-1}) = Ran(R)$, $Ran(R^{-1}) = Dom(R)$
 - (b) $R \subseteq B \times C \implies R^{-1} \subseteq C \times B$
 - (c) $(R^{-1})^{-1} = R$
 - (d) $R \subseteq Q \equiv R^{-1} \subseteq Q^{-1}$

Operations on Relations: composition/product

- Let R be a relation on $B \times C$ and Q be a relation on $C \times D$.
- The *composition* or *product* of R and Q, denoted by $R \circ Q$, is the relation defined by

$$(b,d) \in R \circ Q \equiv (\exists c \mid c \in C : (b,c) \in R \land (c,d) \in Q),$$
 or, using the alternative notation, by $b(R \circ Q)d \equiv (\exists c \mid : bRcQd).$

 $b (\rho \circ \sigma) d$ holds iff $b \rho c \sigma d$ holds for some c.

Example of Composition

$$B = \{a, b, c, d, e\}, C = \{1, 2, 3, 4, 5, 6\}, D = \{\alpha, \beta, \gamma, \delta\}, R = \{(a, 1), (a, 4), (c, 2), (d, 3), (d, 4), (d, 5)\} \subseteq B \times C, Q = \{(1, \beta), (2, \alpha), (2, \gamma), (3, \delta), (6, \delta)\} \subseteq C \times D, R \circ Q = \{(a, \beta), (c, \alpha), (c, \gamma), (d, \delta)\} \subseteq B \times D.$$

• The figure above represents another useful representation of compositin of finite relations.

11/25

Properties of Composition/Product of Relations

- Associativity of \circ : $R \circ (Q \circ S) = (R \circ Q) \circ S$
- Distributivity of \circ over \cup : $R \circ (Q \cup S) = R \circ Q \cup R \circ S$ $(Q \cup S) \circ R = Q \circ R \cup S \circ R$
- Distributivity of \circ over \cap : $R \circ (Q \cap S) \subseteq R \circ Q \cap R \circ S$ $(Q \cap S) \circ R \subseteq Q \circ R \cap S \circ R$

Power of Relations

- Let $R \subseteq B \times B$ be a relation. The relation $R \circ R$ is often written as R^2 , $R \circ R \circ R$ as R^3 , etc.
- Formally, R^n , $n \ge 0$ can be defined as follows:

$$R^0 = id_B = \{(b, b) \mid : b \in B\}$$
 (identity on B , diagonal of B)
 $R^{n+1} = R^n \circ R$ (for $n > 0$)

- Properties of powers:
 - (a) $R^m \circ R^n = R^{m+n}$ (for $m \ge 0, n \ge 0$)
 - (b) $(R^m)^n = R^{m \cdot n}$ (for $m \ge 0, n \ge 0$)

Functions as Relations

• **Definition.** A binary relation f on $B \times C$ is called a **function** iff it is *determinate*:

```
Determinate: (\forall b, c, c' \mid bfc \land bfc' : c = c') or, using more traditional notation: \forall b, c, c'(bfc \land bfc' \implies c = c').
```

Definition. A function f on B × C is total if
 Total: B = Dom(f);
 otherwise it partial.

- We write $f: B \to C$ for the type of f if f is *total*.
- We write $f: B \leadsto C$ (or $f: B \rightharpoonup C$, $f: B \hookrightarrow C$, $f: B \nrightarrow C$, or just $f: B \rightarrow C$ and a comment "partial") if f is partial.
- Composition of partial functions might be undefined!
- For each partial function f : B → C, the function
 f : Dom(B) → C is total.

Examples of Functions as Relations

- (a) Binary relation < is not a function, because it is not determinate —both 1 < 2 and 1 < 3 hold.</p>
- (b) Identity relation i_B over B is a total function $i_B: B \to B$; i.b = b for all b in B.
- (c) Total function $f: \mathbb{N} \to \mathbb{N}$ defined by f(n) = n+1 is the relation $\{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \dots \}$.
- (d) Partial function $f: \mathbb{N} \to \mathbb{Q}$ defined by f(n) = 1/n is the relation $\{\langle 1, 1/1 \rangle, \langle 2, 1/2 \rangle, \langle 3, 1/3 \rangle, \ldots \}$. It is partial because f.0 is not defined.
- (e) Function $f: \mathbb{Z}^+ \to \mathbb{Q}$ defined by f(b) = 1/b is total, since f.b is defined for all elements of \mathbb{Z}^+ , the positive integers. However, $g: \mathbb{N} \leadsto \mathbb{Q}$ defined by g.b = 1/b is partial because g.0 is not defined.
- (f) The partial function f that takes each lower-case character to the next character can be defined by a finite number of pairs: $\{\langle `a', `b' \rangle, \langle `b', `c' \rangle, \ldots, \langle `y', `z' \rangle\}$. It is partial because there is no pair whose first component is `z'.

Composition of Total Functions

• **Theorem.** Let $f: B \to C$ and $g: C \to D$. We have: $(f \circ g)(b) = g(f(c))$, for all $b \in B$.

The proof is simple:

$$(f \circ g)(b)$$
= $\langle f \circ g \text{ as a relation } \rangle$

$$b(f \circ g)d$$

 $= \langle \text{ Definition of composition for relations} \rangle$

$$(\exists c \mid : bfc \land cgd)$$

 $= \langle f, g \text{ are total functions } \rangle$ $(\exists c \mid : f(b) = c \land g(c) = d)$

$$= \langle \ \mathsf{Trading} \ \rangle$$

$$(\exists c \mid : c = f(b) \land d = g(c))$$

- = \langle One-point rule for quantifiers \rangle g(f(b))
- **Definition**. For functions f and g, $f \bullet g = g \circ f$.

Powers of Functions

- The theory of binary relations tells us that function composition is associative: $(f \bullet g) \bullet h = f \bullet (g \bullet h)$.
- Powers of a function $f: B \to B$ are defined as follows: f^0 is the identity function: $f^0(b) = b$,

```
f^{n+1}(b) = f(f^n(b)), fro all for n \ge 0.
```

Functions as Sets

- Let $f: B \to C$ and $g: B \to C$ be total functions.
- The relation $f \cap g$ is a partial function $(f \cup g) : C \leadsto B$, unless f = g. Moreover

$$(f \cap g)(x) = \begin{cases} f(x) & \text{if } f(x) = g(x) \\ \text{undefined} & \text{otherwise} \end{cases}$$

- If $f \neq g$ then the relation $f \cup g$ is *never a function*, even partial. If $f \neq g$ then there is at least one x such that $f(x) \neq g(x)$, so we have $(x, f(x)) \in f \cup g$ and $(x, g(x)) \in f \cup g$, so $f \cup g$ is not determinate.
- Example: $f(x) = 5 \cdot x$, $g(x) = x^2$. then $\{(2,10),(2,4)\} \subseteq f \cup g$.

Basic Classes of Relations

- A few classes of relations that enjoy certain properties are used frequently.
- The most popular properties are given below, in two equivalent forms.

Name	Property	Alternative
(a) reflexive	$(\forall b \mid: b \rho b)$	$i_B \subseteq \rho$
(b) irreflexive	$(\forall b \mid: \neg(b \mathrel{ ho} b))$	$i_B \cap \rho = \emptyset$
(c) symmetric	$(\forall b, c \mid: b \ \rho \ c \ \equiv \ c \ \rho \ b)$	$\rho^{-1}~=~\rho$
(d) antisymmetric	$(\forall b, c \mid: b \ \rho \ c \ \land \ c \ \rho \ b \ \Rightarrow \ b = c)$	$ \rho \cap \rho^{-1} \subseteq \imath_B $
(e) asymmetric	$(\forall b, c \mid: b \ \rho \ c \ \Rightarrow \ \neg(c \ \rho \ b))$	$\rho\cap\rho^{-1}\ =\ \emptyset$
(f) transitive	$(\forall b, c, d \mid: b \ \rho \ c \ \land \ c \ \rho \ d \ \Rightarrow \ b \ \rho \ d)$	$\rho = (\cup i \mid i > 0 : \rho^{\imath})$

Examples of Classes Of Relations

- (a) Relation \leq on \mathbb{Z} is reflexive, since $b \leq b$ holds for all integers b. It is not irreflexive. Relation < on \mathbb{Z} is not reflexive, since 2 < 2 is false. It is irreflexive.
- (b) Consider relation square on \mathbb{Z} that is defined by b square c iff $b=c\cdot c$. It is not reflexive because it does not contain the pair $\langle 2,2\rangle$. It is not irreflexive because it does contain the pair $\langle 1,1\rangle$. Thus, a relation that is not reflexive need not be irreflexive.
- (c) Relation = on the integers is symmetric, since $b=c\equiv c=b$. Relation < is not symmetric.
- (d) Relation \leq is antisymmetric since $b \leq c \land c \leq b \Rightarrow b = c$. Relation < is antisymmetric: since $b < c \land c < b$ is always false , we have $b < c \land c < b \Rightarrow b = c$ for all b, c. Relation \neq is not antisymmetric.
- (e) Relation < is asymmetric, since b < c implies $\neg (c < b)$. Relation \leq is not asymmetric.
- (f) Relation < is transitive, since if b < c and c < d then b < d. Relation *parent* is not transitive. However, relation *ancestor* is transitive, where b ancestor c holds if b is an ancestor of c.

Closures

- The closure of a relation R with respect to some property (e.g. reflexivity) is the smallest relation that both has that property and contains R.
- To construct a closure, add pairs to R, but not too many, until it has the property.
- For example, the reflexive closure of < over the integers is the relation constructed by adding to relation < all pairs (b, b) for b an integer.
- Therefore, \leq is the *reflexive closure* of <.
- The construction of a closure does not always make sense.
- For example, the irreflexive closure of a relation containing (1,1) doesn't exist, since it is precisely the *presence* of this pair that makes the relation not irreflexive.

Definition (14.30 in the textbook)

Let R be a relation, $R \subseteq B \times B$. The *reflexive* (*symmetric*, *transitive*, etc.,) closure of R is the relation $R' \subseteq B \times B$ that satisfies:

- (a) reflexive (symmetric, transitive, etc.,),
- (b) $R \subseteq R'$,
- (c) If R'' is reflexive (symmetric, transitive, etc.,) and $R'' \subseteq R$, then $R' \subseteq R''$.

Notation:

- r(R) the reflexive closure of R;
- s(R) the symmetric closure;
- R⁺ the transitive closure;
- R* the reflexive transitive closure.

Examples and Simple Properties of Closures

- (a) The reflexive closure r(<) of < on the integers is \leq .
- (b) The symmetric closure s(parent) of parent is $parent \cup child$, since if $\langle b,c \rangle$ is in the symmetric closure, then so is $\langle c,b \rangle$.
- (c) The transitive closure $parent^+$ of parent is ancestor, since whenever $\langle b,c \rangle$ and $\langle c,d \rangle$ are in the transitive closure, then so is $\langle b,d \rangle$.
- (d) The reflexive transitive closure $parent^*$ of parent is the relation ancestor-or-self.

Theorem

A reflexive relation is its own reflexive closure; a symmetric relation is its own symmetric closure; and a transitive relation is its own transitive closure.

Alternative Explicit Definitions of Closures

Theorem

Let $R \subseteq B \times b$. Then

- (a) $r(R) = R \cup id_B$, where id_B is the identity relation on B.
- (b) $s(R) = R \cup R^{-1}$.
- (c) $R^+ = \bigcup (i \mid 0 < i : R^i)$, or equivalently $R^+ = \bigcup_{i=1}^{\infty} R^i$.
- (d) $R^* = R^+ \cup id_B = \bigcup (i \mid 0 \le i : R^i)$, or equivalently $R^* = \bigcup_{i=0}^{\infty} R^i$.

Proof.

We will prove only (c) as this is the only one that is non trivial. Our proof will be a little bit of high level, a very detailed low level proof in in the textbook.

Proof.

We will prove: $R^+ = \bigcup (i \mid 0 < i : R^i)$, or $R^+ = \bigcup_{i=1}^{n} R^i$, is a

transitive closure according to Definition from page 22.

- (a) We need to show that R^+ is transitive. Assume bR^+c and cR^+d . This means there are $i_1>0$ and $i_2>0$ such that $bR^{i_1}c$ and $cR^{i_2}d$. Hence $bR^{i_1}c\circ R^{i_2}d=bR^{i_1+i_2}d\Rightarrow bR^+d$. So R^+ is transitive.
- (b) Clearly $R \subseteq R^+ = R \cup R^2 \cup R^3 \cup ...$
- (c) Assume R' is transitive and $R \subseteq R'$. We will show that

 $R^+ \subseteq R'$. Since $R^+ = \bigcup_{i=1}^{\infty} R^i$, it suffices to show that $R^i \subseteq R'$ for

all $i \geq 1$. First note that if a relation Q is transitive than $Q^i \subseteq Q$. This just follows from the fact that

 $b_0Qb_1Qb_2...b_{i-1}Qb_i \Rightarrow b_0Qb_i$ for any transitive relation Q. Since $R \subseteq R'$, then $R^i \subseteq (R')^i \subseteq R'$, so we are done.