

Neuropixels 1.0

IMEC - SEM image of a probe tip and electrodes

IMEC – large scale manufacture

Resources:

Get probes and more

https://www.neuropixels.org/

Wiki

https://github.com/cortex-lab/neuropixels/wiki

Slack channel

https://neuropixelsgroup.slack.com

UCL course slides

https://www.ucl.ac.uk/neuropixels/courses/2019-course

How to videos:

https://billkarsh.github.io/SpikeGLX/#how-to-videos

Recording with neuropixels 1.0 probes

Xilinx

1 probe per system; ethernet connection

PXI

4 probes per module; up to 16 per PXI

Standard PXIe hardware

Neuropixels probes

Image from: http://www.open-ephys.org/neuropixels

Planning a recording - stimuli

https://www.youtube.com/watch?v=8VdFf3egwfg

J. Physiol. (1959) 148, 574-591

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

By D. H. HUBEL* AND T. N. WIESEL*

From the Wilmer Institute, The Johns Hopkins Hospital and
University, Baltimore, Maryland, U.S.A.

(Received 22 April 1959)

Planning a recording – simultaneous V1 and dLGN

Using the Allen Common Coordinate Framework Andy Peters https://github.com/cortex-lab/allenCCF

allen_ccf_npx

Probe insertion: -3187 AP, -2400 ML, Angle: 78 deg horizontal

Neuropixels 1.0 – probe holders

3D printed holder

Nick Steinmetz https://github.com/cortex-lab/neuropixels/wiki/Probe_handling

Dovetail holder

Spike sorting - installation

Hardware:

CUDA capable graphics card (4Gb memory)
> 16Gb memory (¼ of the max recording file recomended)
Fast disk - SSD

Software:

CUDA toolkit (depends on matlab version) Visual Studio Community (on Windows) Matlab (>R2016)

Toolboxes (check documentation):

Signal Processing Parallel computing

Statistics and Machine learning

Kilosort2 - https://github.com/MouseLand/Kilosort2

Download: git clone https://github.com/MouseLand/Kilosort2.git

Matlab install: cd CUDA % in the kilosort2 folder

mexGPUall

JRClust - https://github.com/JaneliaSciComp/JRCLUST

Download: git clone https://github.com/JaneliaSciComp/JRCLUST.git

Matlab version	CUDA toolkit
R2019a	10.0
R2018b	9.1
R2018a	9.0
R2017b	8.0
R2017a	8.0
R2016	7.5

Spike sorting – running

Kilosort2 - https://github.com/MouseLand/Kilosort2

With the GUI: kilosort2 https://github.com/MouseLand/Kilosort2/wiki/1.-The-GUI

Through the command line:

- 1) Create a channelmap: look at \configFiles\createChannelMap.m
- 2) **Copy** the *master_kilosort.m* and *configFiles\StandardConfig_MOVEME.m* to another folder (e.g. data folder).
- 3) StandardConfig.m: **Set the paths** <u>ops.fbinary</u>, <u>ops.fproc</u>, <u>ops.chanMap</u> and <u>ops.root</u>, the **sampling frequency** <u>ops.fs</u>, and the **number of channels** in the file *ops.NchanTOT*.
- 4) master_file.m: Set the paths to the config file and the repositories.

Run the master_file.

JRClust - https://jrclust.readthedocs.io/en/latest/usage/index.html

Create a config file: jrc bootstrap

Display traces: jrc traces <configfile.prm>

Do the sorting: jrc detect-sort <configfile.prm>

Manual sorting GUI: jrc manual <configfile.prm>

Spike sorting – manual curation kilosort2

Installation:

Install dependencies using conda: https://github.com/kwikteam/phy

pip install git+https://github.com/kwikteam/phy git+https://github.com/kwikteam/phy-contrib --upgrade

Documentation:

https://phy-contrib.readthedocs.io/en/latest/template-qui/ - Important! Has also decision criteria.

Spike sorting – manual curation JRClust

jrc manual <configfile.prm>

Documentation:

https://jrclust.readthedocs.io/en/latest/pipeline/curate/index.html#the-waveform-view-figwav

Spike sorting – manual curation

Documentation:

https://phy-contrib.readthedocs.io/en/latest/template-qui/#a-typical-approach-to-manual-clustering

Small waveforms?

Yes: label as MUA; move to the next.

No: compare with most similar waveforms.

Are the clusters in different channels?

Yes: Move to the next comparison.

No: inspect cross-correlograms.

Are the autocorrelograms different and there is no refractory period on the cross-correlogram?

Yes: Not the same neuron

No: Check amplitude stability and overlap in feature space

Units drift continuously in time and don't overlap?

Yes: Probably the same unit, merge.

No: Move to the next comparison.

Clear refractory period and all reasonable comparisons made?

Yes: Classify as "good"

No: Classify as "multi-unit activity" (MUA)

Neuropixels 3A – xilinx and basestation

