Linear and Logistic Regression

Simple, yet powerful predictors

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

Table of Contents

- sli.do: #regr-models
- Machine learning basics
 - Objective function, cost function, optimization
- Linear regression
 - Problem description, motivation
 - Algorithm
 - Usage
- RANSAC
- Extensions: polynomial regression
- Logistic regression
 - Problem description
 - Algorithm
 - Usage

Linear Regression

Predict continuous values...
and torture first-semester students

Linear Regression Intuition

- Regression predicting a continuous variable
- Problem statement
 - Given pairs of (x; y) points, create a model
 - Input x, output y; goal: predict y given x
 - Under the assumption that y depends linearly on x (and nothing else)
- Linear regression model
 - y = ax + b
 - Modelling function
 - *a, b* unknown parameters
 - Example: y = 2x + 3
 - Real case: we have many sources of error
 - So, the relationship we observe, cannot be perfect
 - There is some noise added to our data
 - $y = ax + b + \varepsilon$, ε noise
 - We don't want to model the noise, only the "useful function"

Distances

- By definition, the distance from a point A to the line l is measured on the perpendicular from A to l
 - Red dashed lines
 - This is correct but very computationally expensive
- Another approach: consider vertical distances
 - Gray solid lines
 - Equivalent measures (for our purposes)
 - You can prove it to yourself

Distances (2)

- Look at a point and its projection
 - *x*-coordinate: the same
 - y-coordinate
 - Point: we know it from the start
 - Projection: we can calculate it
- Distance becomes a very simple difference
 - $\bullet d = y \tilde{y}; \ \tilde{y} = ax + b$
 - But... now distances can be negative
 - Better: $d = |y \tilde{y}|$ mean absolute error (MAE)
 - This is used sometimes but has its drawbacks
 - Another approach: $d = (y \tilde{y})^2$
 - This is the most widely used function

Loss Function

- We want to somehow account for all points
 - We can simply sum all distances to get a measure of "the total distance" from all points to the line
 - Since we can have 4, 10, 100 or 10⁹ points, we also need to normalize the error
- The sum of distances now becomes

$$J = \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

- This is what we call our total loss function
- This is an estimation of the total distance
- Minimizing this function will produce the best line

Inspecting the Loss Function

- Note that J does not depend on x and y
 - x and y are already fixed we don't touch the data at all when we try to model it
 - $\blacksquare \Rightarrow J$ depends only on the line parameters a, b
 - In math jargon, *J* is a function of *a* and *b*: J = f(a, b)
- Also note the form of *J*: it's $(\cdots)^2$
 - This is a paraboloid (3D parabola)
 - See how varying a and b gives us a different output number for J
 - It has exactly one min value
 - And we can see it
 - Our task: find the parameters a, b which make J as small as possible

Minimizing the Loss Function (1)

- Intuition
 - If the plot was a real object (say, a sheet of some sort), we could slide a ball bearing on it
 - After a while, the ball bearing will settle at the "bottom" due to gravity
 - We could measure the position of the ball and that's it:)
- More "nerd speak"
 - This is the same task we have a gravity potential energy that the ball tries to minimize
 - When it's minimal, the ball remains in stable equilibrium

Minimizing the Loss Function (2)

- Turns out, we can also do this using calculus
 - In many dimensions
- We can find the optimal parameters right away
 - Because the function is really simple
 - But we'll stick to another approach because this is what is useful for all other ML tasks
- We'll try to replicate the example with the ball
 - Basically, we'll try to slide (descend) over the function surface until we reach the minimum
 - This method is called gradient descent

Gradient Descent

- We know what descent is
 - How about gradient?
- The gradient (let's call it *g* for now) is a vector function
 - Like J, g accepts two values a and b
 - g returns a vector which shows where the steepest ascent is
 - *g* is all arrows on the picture
 - Interpretation
 - The length of the vector tells us how steep the maximum is
 - Long vector = very, very steep; short vector = relatively flat
 - The direction of the vector tells us where to go in order to get there

Gradient Descent (2)

- Gradients will almost work
 - Except they show us the highest point, and we're looking for the lowest one
 - Solution: just take the negative gradient -g
 - Ascending on -g is the same as descending on g
- This is good now, but how is the gradient defined?
 - We saw from the picture that it's related to a function
 - The gradient of a function J(a,b) is a vector g(a,b) with the following components
 - $g_a = \frac{\partial J}{\partial a}$, $g_b = \frac{\partial J}{\partial b}$
 - The ∂ symbol means "partial derivative"
 - If you don't understand this, you only need to know that partial derivatives are quite easy to calculate

Gradient Descent (3)

- Remember that $J = \frac{1}{n} \sum (y_i \widetilde{y}_i)^2$
 - We can prove that

- Now, if we know x, y, a, b we can calculate the gradient vector
 - You'll also see the gradient of J being denoted as VJ
 - This is simply math notation

This is also math notation – a way to write down the components of the vector

Gradient Descent (4)

- Let's now get to the real descent
- Iterative algorithm perform as long as needed
 - Start from some point in the (a; b) space: $(a_0; b_0)$
 - Decide how big steps to take: number α
 - Called "learning rate" in ML terminology
 - Use the current a, b and x, y to compute ∇J
 - $-\nabla J_a$ tells us how much to move in the a direction in order to get to the minimum
 - Similar for $-\nabla J_b$
 - Take a step with size α in each direction
 - $a_1 = a_0 \nabla J_a$; $b_1 = b_0 \nabla J_b$
 - $(a_1; b_1)$ are the new coordinates
 - Repeat the two preceding steps as needed
 - Usually, we do this for a fixed number of iterations

Results and Interpretation

- Going through the entire process, we now have a line $\tilde{y} = ax + b$ which describes our data in the best way
 - We could plot the evolution of *J* to see that it always decreases
 - If it doesn't, this indicates a problem with our algorithm
- This was a lot of work
 - Thankfully, there are libraries that hide away all that complexity for us
 - scikit-learn is the most popular of them
 - Arguably, the most popular of the scikits as well
 - Also, generalizes trivially to more dimensions

```
from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(data_x.reshape(-1, 1), data_y)
print(model.coef_, model.intercept_)
```


Lab: Linear Regression on Real Data

- The algorithm can be generalized to more than 2D
 - "Multiple linear regression": $y = \beta_0.1 + \beta_{1...m}x$
- Let's use this model to try and predict housing prices (a classical dataset located <u>here</u>)

```
housing.columns = ["crime_rate", "zoned_land", "industry", "bounds_river",
"nox_conc", "rooms", "age", "distance", "highways", "tax", "pt_ratio",
"b_estimator", "pop_status", "price"]
```

- First, we want to explore the datasets
 - A more thorough exploration is "left as an exercise to the reader"
 - But we want to see what model would be appropriate
 - In addition to usual data analysis techniques, let's plot all correlations between any pair of features

Plotting Correlations

 A correlation matrix is... well, a matrix of all Pearson correlation coefficients

```
housing.corr()
```

• We can plot it as a "heatmap" for better viewing (using seaborn)

```
import seaborn as sns
sns.heatmap(housing.corr(), annot = True, fmt = ".2f", square = True)
```

- We can also view correlations of attribute pairs
 - We'll select a subset of all attributes for a smaller chart

We can see that most correlations are, indeed, linear

Creating a Model

- Modelling is very simple
 - Like in the 2D example

```
housing_model = LinearRegression()
predictor_attributes = housing.drop("price", axis = 1)
housing_model.fit(predictor_attributes, housing.price)
print(housing_model.coef_)
print(housing_model.intercept_)
```

- So what?
 - We might want to predict some prices
 - Let's just pass some random rows and see the result
 - Note: Never test on the training dataset!

```
test_houses = housing.sample(10)
predicted = housing_model.predict(
   test_houses.drop("price", axis = 1))
print(predicted)
print(test_houses.price)
```

Regression with Outliers

- As we saw, the data has outliers
 - A few points which are far from the others
- Our goal is to exclude outliers
 - There are several methods
 - One very common RANSAC (RANdom SAmple Consensus)
- Algorithm
 - 1. Fit a model to a random subsample ("inliers")
 - 2. Test all data points and include those which are "near" the model
 - Small enough error, tolerance provided by developer
 - 3. Fit the model again
 - 4. Estimate the error of the model (difference between first and second)
 - 5. Iterate steps 1-4 until performance reaches a threshold or number of iterations

Lab: RANSAC on the Housing Dataset

Usage: similar to the linear regression model

```
from sklearn.linear_model import RANSACRegressor
ransac = RANSACRegressor()
ransac.fit(housing.drop("price", axis = 1), housing.price)
print(ransac.estimator_.coef_, ransac.estimator_.intercept_)
```

- We can also provide parameters, e.g. min number of random samples, max iterations, threshold (to include data points)
 - We can also provide the type of model we want to perform RANSAC on
 - Linear regression by default but we may use other regression models

```
ransac = RANSACRegressor(LinearRegression(), min_samples = 50,
max_trials = 100, residual_threshold = 5.0)
```

View inliers and outliers

```
inliers = housing[ransac.inlier_mask_]
outliers = housing[~ransac.inlier_mask_]
plt.scatter(inliers.rooms, inliers.price)
plt.scatter(outliers.rooms, outliers.price)
```

Polynomial Regression

- Extension of the linear regression algorithm
 - We can use the linear regression algorithm to perform polynomial regression (e.g. fitting a quadratic curve)
 - Just precompute the columns
 - Example: if we have columns x, y and z, compute x * z, y * z, x * z and perform linear regression on these 6 features
 - Example 2: polynomial terms: multiply x by itself: x * x, x * x * x, etc.
- This can be achieved easily with scikit-learn

```
from sklearn.preprocessing import PolynomialFeatures

x = np.arange(6).reshape(3, 2)
poly = PolynomialFeatures(2)
x_transformed = poly.fit_transform(x)
print(poly.get_feature_names())
print(poly.n_input_features_)
print(poly.n_output_features_)
# Now we can perform linear regression with x_transformed as the input
```

Common Mistakes

- There are two main types of errors we can make while trying regression models
 - Use a wrong model
 - Anscombe's quartet

 Extrapolate without knowing (especially if we have interacting features)

MY HOBBY: EXTRAPOLATING

Logistic Regression Use a regression model to classify

Classification

- Predict one of several known classes
 - Based on the input parameters
 - Example: classify whether a picture is of a cat or a dog
- Regression and classification make up most of the machine learning problems
- Choosing an algorithm
 - "No free lunch": **no single algorithm** works best
 - It's best to compare some algorithms to select the best for a particular model
 - Also, we might want to tune them first
- Reminder: ML process
 - Select features, choose a performance metric (cost function), choose a classifier, evaluate and fine-tune the performance

Logistic Regression

- Classification algorithm (despite its name)
- Two classes: negative (0) and positive (1)
 - Can be extended to more classes
- How does it work?
 - Linear regression can give us all kinds of values
 - We want to constrain them between 0 and 1
 - Approach
 - Perform linear regression: $\tilde{y} = \beta x$
 - Use the sigmoid function to constrain the output:

$$\sigma(\tilde{y}) = \frac{1}{1 + e^{-\tilde{y}}} = \frac{1}{1 + e^{-\beta x}}$$

- Quantization: if $\sigma > 0.5$ return 1, and 0 otherwise
 - Remember that we only need to return 0 or 1
 - We can also use the raw values as probability measures

Lab: Logistic Regression on Real Data

- A classic dataset for classification is the Iris dataset
 - Located <u>here</u>
 - Three classes (setosa, virginica, versicolor)
 - 4 attributes: petal width / height; sepal width / height (all in cm)
 - Some features are highly correlated to the class
 - Explore and inspect the data before modelling

Lab: Logistic Regression on Real Data (2)

Perform logistic regression

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(C = 1e6)
model.fit(iris_train_data, iris_train_labels)
```

Test (output classes or probabilities)

```
print(model.predict(iris_test))
print(model.predict_proba(iris_test))
```

- In the model, there's a "mysterious" parameter C
 - Regularization: how powerful the data is (more next time)
 - A large number means no regularization
 - We just take the data "as-is", with no other constraints

Many Classes

- Two main approaches
 - One-vs-all: several predictors
 - One predictor for each class vs. the others
 - Overall: calculate probabilities of each class
- scikit-learn takes care of multiple classes (multinomial logistic regression) by default
 - We don't even need to transform the labels
 - This applies to all algorithms in the library

Summary

- Machine learning basics
 - Objective function, cost function, optimization
- Linear regression
 - Problem description, motivation
 - Algorithm
 - Usage
- RANSAC
- Extensions: polynomial regression
- Logistic regression
 - Problem description
 - Algorithm
 - Usage

Questions?