Прекъсвания и директен достъп до паметта

Автор: гл. ас. д-р инж. Любомир Богданов

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

Съдържание

- 1. Обслужване на прекъсвания
- 2. Контролер за директен достъп
- 3. Методи за понижаване на Е/Р
- 4. Схеми за генериране на тактов сигнал

Прекъсване (interrupt) е процес, при който микропроцесорът спира изпълнението на главната програма и започва да изпълнява кода на друга програма, в следствие на хардуерно събитие.

Това събитие може да е синхронно или асинхронно на изпълнението на главната програма.

С помощта на прекъсванията се премахва нуждата от постоянна проверка дали дадено събитие е настъпило (метод "polling"), което е излишно изразходване на изчислителен ресурс.

Хендлер на прекъсване (interrupt handler) - допълнителна програма, различна от основната main, която се изпълнява вследствие на прекъсване. Нейната цел е да обслужи прекъсването, т.е. да се извършат дейности в отговор на постъпилото прекъсване.

Вектор на прекъсване (interrupt vector) - адресът от паметта, на който се намира кодът, изпълняван при настъпило прекъсване. От софтуерна гледна точка това е указател към функцията (хендлерът), която се извиква при настъпило събитие.

Векторна таблица (interrupt vector table) - масив от указатели към функции, който се използва за обслужване прекъсванията. Всеки елемент от този масив е вектор на прекъсване и при настъпване на събитие се извлича един от много хендлери на прекъсване по хардуерен път.

Приоритет на прекъсване (interrupt priority) – при настъпването на две или повече събития се налага приоритизиране на извикването на хендлерите, защото микропроцесорът може да изпълнява само една програма в даден момент. Прекъсването с по-висок приоритет ще се обслужи преди прекъсването с по-нисък приоритет.

На фигурата на следващия слайд е демонстриран пример за реализация на прекъсване от един източник. Както се вижда микропроцесорът превключва от изпълнението на главната програма в изпълнение на хендлера на прекъсване. Източник на сигнал IRQ може да е периферно устройство, което след извършване на дадена функция да сигнализира на микропроцесора за събитието чрез прекъсване.

Броят на IRQ входовете се определя от броя на микропроцесорните ядра. В многоядрените системи софтуерът трябва да определи кое прекъсване от кое ядро да се обслужи (в частност — това се прави от операционната система).

Забележка: суперскаларен не означава многоядрен!

В практиката по-често срещания вариант е получаване на прекъсване от два или повече източника, както е показано на фигурата. Транзисторите образуват логическата функция жично ИЛИ.

В този случай микропроцесорът се нуждае от допълнителен механизъм за разпознаване на източника.

За да може микропроцесорът да разбере от кой точно източник е получена заявката за прекъсване, сигналите се буферират в един или няколко регистъра, които са част от адресното поле.

След получаване на сигнал за прекъсване микропроцесорът прочита тези регистри и, знаейки тяхната предишна стойност, определя източника.

На фигурата на следващия слайд е демонстриран този метод.

Прекъсванията могат да се разделят на два вида – маскируеми и немаскируеми.

Маскируеми прекъсвания — прекъсвания, които могат да бъдат забранявани. Ако дадено прекъсване е забранено, при появата на сигнал от източника няма да се подаде сигнал към микропроцесора.

Пример — приети данни в преместващия регистър на UART модула.

Пример – преобразуването с АЦП е завършило.

Немаскируеми прекъсвания — прекъсвания, които винаги трябва да се обслужват.

Пример - RESET сигнала — микропроцесорът ще бъде рестартиран винаги при наличието на активно ниво на този сигнал.

Пример - прекъсване при прегряване на чипа.

На следващия слайд е показан пример с 4 маскируеми прекъсвания.

Етапите, през които преминава микропроцесорът при поява на заявка за прекъсване са [1] [2]:

*µРU копира съдържанието на **стековата група** (stack frame) в стека, т.е. някъде около края на SRAM при намаляващ стек, или някъде около началото на SRAM при растящ стек. **Това става хардуерно**, т.е. никъде в кода няма да се видят асемблерни инструкции, които да копират регистри.

Пример — на MSP430 стековата група е съставена от PC, SR.

Пример - ARM Cortex-M стековата група е съставена от PSR, PC, R14, R12, R3, R2, R1, R0.

За инструкции с числа с плаваща запетая, виж лекцията за FPU.

- *паралелно с PUSH-ването на стековата група се **прочита адреса на хендлера** от векторната таблица и се записва в програмния брояч (PC). Това е еквивалентно на влизане в хендлера.
- *изпълнява се хендлера на прекъсването. Добре-написаният фърмуер има много малко код в хендлерите. В хендлерите трябва да се записват флагове, които да сигнализират на main() функцията, че събитието се е случило. Обработката на събитието е добре да се случи в main().

Времезакъснения (delay) и извеждането на дебъг съобщения (printf) трябва да се избягват в хендлерите.

Ако в хендлера се използват регистри от ядрото, които не са част от стековата група, те трябва да бъдат копирани чрез асемблерни инструкции (PUSH) на стека (SRAM) в началото на хендлера.

*на излизане от хендлера се изпълнява една последна специална инструкция, която кара µPU да копира обратно стековата група от SRAM в регистрите на ядрото. Това включва РС, в който се зарежда адреса, до който е било стигнало изпълнението на програмата преди прекъсването. Същото важи и за останалите регистри, които са специфични за всеки µPU (при MSP430 – SR, при ARM Cortex - PSR, R14, R12, R3, R2, R1, R0).

Инструкцията за излизане от прекъсване при MSP430 е:

reti

Инструкцията за излизане от прекъсване при ARM Cortex е преход (branch) към адрес, записан в специален регистър (link register, lr = r14):

b r14

Всъщност в r14 има служебен код, който казва на ядрото да възстанови стековата група и да направи преход към стойността на r14, която е PUSH-ната на стека.

Исторически, цифровата cxema, отговорна 3a съхраняване на векторите прекъсване, на приоритизирането максирането им, е била на отделен чип, наречен програмируем контролер прекъсванията (РІС, Programmable Interrupt Controller).

На схемата е показан класическият 8259A, съвместим с 8086, 8088.

Figure 5. 8259A Interface to Standard System Bus

В съвременните вградени системи контролерът на прекъсванията е част от µРU и се интегрира на чипа.

Източниците на прекъсвания се свързват към входовете на контролера на прекъсванията от **производителя**. Това означава, че приоритетите на прекъсванията са фиксирани от производителя.

ARM Cortex могат да препрограмират приоритетите по време на изпълнението на програмата.

При MSP430 всяка периферия има регистър, който указва точно от кой източник е дошло прекъсването, което ускорява обслужването му.

Пример – MSP430, UART модул, IV регистър. Прилича на "малка векторна таблица", локално в модула.

30.4.12 UCAxIV Register

eUSCI_Ax Interrupt Vector Register

Figure 30-23. UCAxIV Register

				-					
15	14	13	12	11	10	9	8		
UCIVx									
r0	r0	r0	r0	r0	r0	r0	r0		
7	6	5	4	3	2	1	0		
UCIVx									
r0	r0	r0	r0	r-(0)	r-(0)	r-(0)	r0		

Table 30-19. UCAxIV Register Description

Bit	Field	Туре	Reset	Description	
15-0	UCIVx	R	0h	eUSCI_A interrupt vector value	
				00h = No interrupt pending	
				02h = Interrupt Source: Receive buffer full; Interrupt Flag: UCRXIFG; Interrupt Priority: Highest	
				04h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG	
				06h = Interrupt Source: Start bit received; Interrupt Flag: UCSTTIFG	
				08h = Interrupt Source: Transmit complete; Interrupt Flag: UCTXCPTIFG; Interrupt Priority: Lowest	

```
(void){
switch(UCA0IV)){
case 0:
  //Vector 0 - no interrupt
  break;
case 2:
  //Vector 2 - RXIFG
  break;
case 4:
  //Vector 4 – TXIFG
  break;
default:
  break;
```

Прекъсванията изискват специални механизми за обслужване, в случаите когато постъпят два или повече сигнала за прекъсване в един и същ момент.

Внедряване на прекъсванията (interrupt preemption) – изпълнението на хендлера на едно прекъсване може да бъде временно спряно, за да се изпълни хендлера на друго прекъсване. Това може да стане само, ако приоритета на новодошлото прекъсване е по-голям от настоящо-изпълняващото се прекъсване.

Не може да съществуват прекъсвания с един и същ приоритет (освен ако не се въведат суб-приоритети, както е при ARM Cortex).

Верижен механизъм (tail chaining) – при едновременно постъпване на сигнали за прекъсване, преминаването от хендлер 1 в хендлер 2 става без да се записва (PUSH) и възстановява (POP) стека. Резултатът – по-бързо обслужване на прекъсванията спрямо стандартния подход. Методът е демонстриран на следващия слайд[3].

Преминаването от един хендлер в друг не става мигновено, а изисква няколко системни такта, обусловени от вътрешната структура на µPU.

Прекъсване на стековото възстановяване (рор pre-emption) – при постъпване на сигнал за прекъсване, докато μРU излиза от друго прекъсване, се прекратява възстановяването на стека (РОР) и се преминава към изпълняване на следващия хендлер. Методът е демонстриран на следващия слайд.

Прекратяването на процеса по възстановяване на стека не може да стане мигновено и са необходими няколко системни такта за целите на микропроцесорната логика.

Късно-пристигнал (late arriving) – изпълнение на хендлер с висок приоритет във времевия слот на хендлер с нисък приоритет, ако първият е пристигнал по време на PUSH операцията на втория.

Флагове Битове за разрешаване Локални и глобални прекъсвания

Литература

[1]Pedro Dinis Gaspar, Antonio Santo, Bruno Ribeiro, Humberto Santos, Device Systems and Operating Modes, chapter 5, TI & University of Beira Interior (PT), 2009.

[2]Н. Кенаров, "РІС Микроконтролери", Част 1, Млад Конструктор, Варна, 2003.

[3]M. Trevor, "The Designer's Guide to the Cortex-M Processor Family – A Tutorial Approach", Elsevier, 2013.