

Poluprovodnici

- Savremene elektronske komponente pretežno se izrađuju od **poluprovodničkih** materijala. Kao što sam naziv sugeriše, njihova električna provodnost je veća nego kod izolatora, a manja nego kod provodnih materijala.
- Materijali koji poseduju željene osobine su elementi IV grupe periodnog sistema (**Si**, Ge), ili legure koje sačinjavaju elementi različitih grupa.

Poluprovodnički element		Poluprovodnička legura	
Si	Silicijum	GaAs	Galijum-arsenid
Ge	Germanijum	GaP	Galijum-fosfid
		AIP	Aluminijum-fosfid
		AlAs	Aluminijum-arsenid
		InP	Indijum-fosfid

Kristalna rešetka silicijuma

- Elementarni silicijum, koji je najrasprostranjeniji i najviše korišćen poluprovodnički materijal kristališe čineći dijamantsku kristalnu rešetku u kojoj je svaki atom silicijuma okružen sa po 4 neposredna suseda na jednakim udaljenostima.
- Susedni atomi silicijuma međusobno su povezani kovalentnim vezama

Generacija i rekombinacija

• Kovalentne veze formiraju parovi elektrona koji pripadaju valentnim zonama susednih atoma silicijuma u rešetki. Da bi elektron prešao iz valentne u provodnu zonu, potrebno mu je saopštiti energiju kojom se savladava **energetski procep**.

- •Prilikom prelaska elekrona iz valentne u provodnu zonu, na valentnom nivou ostaje **šupljina** koja se tretira kao nosilac elementarnog pozitivnog naelektrisanja i koja pored slobodnog elektrona takođe može učestvovati u provođenju struje.
- •Proces formiranja para elektron-šupljina izazvan prelaskom elektrona iz valentne u provodnu zonu naziva se **generacija**, a suprotan proces **rekombinacija**.

Sopstveni poluprovodnik

- Čist kristal silicijuma u kojem je zanemarljiva koncentracija primesa drugih elemenata predstavlja tzv. **sopstveni poluprovodnik** (engl. *intrinsic semiconductor*).
- U sopstvenom poluprovodniku procesi generacije i rekombinacije se spontano odvijaju usled dejstva toplotne energije. Koncentracije slobodnih elektrona i šupljina su jednake i date su izrazom:

$$n_i = p_i = \sqrt{A \cdot T^3 \cdot e^{-\frac{E_g}{k \cdot T}}}$$

- o ni je koncentracija slobodnih elektrona, odnosno broj slobodnih elektrona po jedinici zapremine u sopstvenom poluprovodniku
- o pi je koncentracija šupljina u sopstvenom poluprovodniku
- $\circ\,$ A je konstanta koja zavisi od tipa poluprovodničkog materijala, za Si iznosi $1.08\cdot 10^{31}cm^{-3}K^{-6}$
- o T je apsolutna temperatura (u stepenima Kelvina)
- \circ E_g je veličina energetskog procepa, za Si iznosi $E_q=1.12eV$
- o k je Bolcmanova konstanta, $k = 8.62 \cdot 10^{-5} \frac{eV}{K}$
- Primer: za silicijum na sobnoj temperaturi (T=300K)

$$n_i = p_i = 6.72 \cdot 10^9 \frac{elektrona(ili \, \Supljina)}{cm^3}$$

Primesni poluprovodnik

• Na električnu provodljivost silicijuma moguće je uticati unošenjem primesa drugih elemenata u kristalnu rešetku. Proces unošenja primesa naziva se **dopiranje**, a atomi primesa **dopanti**. Kao koriste se elementi III i V grupe periodnog sistema:

III	V	
B (bor)	N (azot)	
Al (aluminijum)	P (fosfor)	
Ga (galijum)	As (arsenik)	
In (indijum)	Sb (antimon)	

• Atomi elemenata V grupe imaju 5 valentnih elektrona. Od toga, 4 elektrona učestvuju u formiranju kovalentnih veza sa susednim atomima silicijuma, a peti elektron postaje slobodan i prelazi u provodnu zonu. Zbog "doniranja" elektrona, ovakve primese se nazivaju **donorima**.

• Sa druge strane, atomi elemenata III grupe imaju 3 valentna elektrona. Njihovim unošenjem u kristalnu rešetku se uvode nove šupljine, usled čega se ovakve primese nazivaju

akceptorima.

Koncentracija nosilaca naelektrisanja

• U poluprovodniku koji je dopiran donorima, akceptorima, ili čak primesama oba tipa (tzv. kompenzovani poluprovodnik), kao nosioci naelektrisanja istovremeno su prisutni termički generisani elektroni i šupljine, elektroni koji potiču od donorskih primesa i šupljine koje potiču od akceptorskih primesa. Prilikom izražavanja koncentracija nosilaca koriste se sledeće oznake:

- \circ n_i koncentracija elektrona u sopstvenom poluprovodniku
- \circ p_i koncentracija šupljina u sopstvenom poluprovodniku
- o n ukupna koncentracija elektrona u primesnom poluprovodniku
- \circ p ukupna koncentracija šupljina u primesnom poluprovodniku
- \circ N_D koncentracija donorskih primesa
- o N_A koncentracija akceptorskih primesa
- U uslovima termičke ravnoteže, važi zakon dejstva masa:

$$n \cdot p = n_i^2$$

• Pošto je kristalna rešetka poluprovodnika u celini električno neutralna (tj. $Q_+ = Q_-$), važi i **zakon održanja naelektrisanja**:

$$N_D + p = N_A + n$$

Tipovi poluprovodnika

 Primenom zakona dejstva masa i zakona održanja naelektrisanja dobijaju se izrazi za koncentracije elektrona, odnosno šupljina:

$$n \cdot p = n_i^2 \Rightarrow p = \frac{n_i^2}{n}$$

$$\frac{n_i^2}{n} + N_D = n + N_A$$

$$n^2 + (N_A - N_D) \cdot n - n_i^2 = 0$$

$$n_{1/2} = \frac{(N_D - N_A) \pm \sqrt{(N_D - N_A)^2 + 4n_i^2}}{2}$$

$$n = \frac{(N_D - N_A)}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2}$$

$$p = \frac{(N_A - N_D)}{2} + \sqrt{\left(\frac{N_A - N_D}{2}\right)^2 + n_i^2}$$

Mogući slučajevi:

a) Sopstveni poluprovodnik:

$$N_D - N_A = 0 \Longrightarrow n = p = n_i$$

b) Poluprovodnik n-tipa:

$$N_D - N_A \approx N_D \wedge N_D >> n_i \Longrightarrow \begin{cases} n \approx N_D \\ p \approx \frac{n_i^2}{N_D} \end{cases}$$

c) Poluprovodnik p-tipa:

$$N_A - N_D \approx N_A \wedge N_A >> n_i \Longrightarrow \begin{cases} p \approx N_A \\ n \approx \frac{n_i^2}{N_A} \end{cases}$$

d) Dopirani poluprovodnik gde je $n_i >> |N_A - N_D| \Rightarrow n \approx p \approx n_i$

$$n_i >> |N_A - N_D| \Rightarrow n \approx p \approx n_i$$

Temperaturna zavisnost koncentracije elektrona u poluprovodniku n-tipa

- Na niskim temperaturama, donorski atomi su nepotpuno jonizovani, pošto deo elektrona ostaje "zamrznut" (nepobuđen). Koncentracija elektrona je manja od koncentracije donora, pa se ovaj temperaturni opseg naziva **opsegom nepobuđenih nosilaca**.
- Sa povećanjem temperature, donori se potpuno jonizuju. Koncentracija elektrona približno je jednaka koncentraciji donora. Ovo je tzv. **primesni opseg**, odnosno **radni opseg** u kojem uobičajeno rade elektronske komponente.
- Na visokim temperaturama, koncentracija termički generisanih parova elektronšupljina počinje da dominira nad koncentracijom donora, pa poluprovodnik ulazi u **sopstveni opseg**, gde se ponaša približno kao sopstveni poluprovodnik.