

iTMO

Noises Types

Impulse noise

Mathematical model:

$$x_{i,j} = \begin{cases} d \text{ with probability } p, \\ s_{i,j} \text{ with probability } (1-p), \end{cases}$$

where $\{x_{i,j}\}$ – disturbed image, $s_{i,j}$ – intensities (brightness) of source image, p – probability noise appearing in pixel (i,j), d – noise.

- If d = 0 noise «pepper»,
- If d = 255 noise «salt».

Additive noise

Mathematical model:

$$g(x,y) = f(x,y) + \eta(x,y), \label{eq:g}$$
 where $f(x,y)$ – source image,

$$g(x, y)$$
 – noised image,

$$\eta(x,y)$$
 – additive noise.

Multiplicative noise

Mathematical model:

$$g(x,y) = f(x,y)\eta(x,y),$$

where f(x, y) – source image, g(x, y) – noised image,

 $\eta(x,y)$ – multiplicative noise.

Gaussian (normal) noise

Mathematical model:

$$p(z) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(z-\mu)^2}{2\sigma^2}}$$

p(z) – probability distribution density,

z – random variable,

 μ – average value,

 σ – standard deviation,

 σ^2 – variance.

- 67% z: [($\mu \sigma$), ($\mu + \sigma$)],
- 96 % z: [(μ 2 σ), (μ + 2 σ)].

Quantization noise

ITMO

- Artifacts
- Not fixed

Speckle Noise

ITMO

ITMO

Images Filtering

Filtering

- Local transforms consider brightness values in a neighborhood called a «window».
- A window is described by a matrix called a mask (filter, filter core, filter kernel).
- Matrix elements are filter coefficients.
- Filtering the image f(x, y) with dimensions $M \times N$:

$$g(x,y) = \sum_{s} \sum_{t} w(s,t) f(x+s,y+t),$$

where s and t – mask w elements coordinates relative to center (in center s=t=0).

Convolution

- Filtering can be done using the convolution operation.
- Convolution function shows the «similarity» of one function with a reflected and shifted copy of another:

$$(f * g)(m,n) = \sum_{k,l} f(m-k,n-l)g(k,l),$$

f – image **brightness** function,

g – filter **mask**,

(f * g) – **convolution** operation of image f with mask g.

Filtering

- If mask at the edge of image algorithm can:
 - restriction of the sliding window movement in the image (leave edges pixels unfiltered),
 - image expansion by adding rows and columns with zero values,
 - image expansion by adding lines and columns with values symmetrical to the edge.

Filtering

ITMO

ITMO

Low-Pass Filters

Low-pass Filters

- The result of low-pass filtering is image blurring.
- Low-pass filters features:
 - non-negative mask coefficients;
 - the sum of all the coefficients is equal to one.
- Examples of low-pass filter cores:

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

The main group of low-pass filters is averaging (or smoothing) filters.

Arithmetic Mean Filter

ITMO

(Box Filter)

- Masks with the same coefficients are used, for example:
 - for a 3x3 mask, the coefficients are 1/9,
 - for a 5x5 mask 1/25.

$$g(x,y) = \frac{1}{M \cdot N} \sum_{i=0}^{M} \sum_{j=0}^{N} f(i,j),$$

where g(x, y) – **output** pixel value, f(i, j) – **current** pixel value (mask center),

M and *N* – mask **width** and **height** correspondingly.

The graphical representation of a 2D filter function is like a box.

Formula:

$$g(x,y) = \left[\prod_{i=0}^{M} \prod_{j=0}^{N} f(i,j)\right]^{\frac{1}{M \cdot N}},$$

where g(x, y) – **output** pixel value,

f(i,j) – **current** pixel value (mask center),

M and *N* – mask **width** and **height** correspondingly.

Harmonic Mean Filter

iTMO

Formula:

$$g(x,y) = \frac{M \cdot N}{\sum_{i=0}^{M} \sum_{j=0}^{N} \frac{1}{f(i,j)}},$$

where g(x,y) – **output** pixel value, f(i,j) – **current** pixel value (mask center), M and N – mask **width** and **height** correspondingly.

- Eliminates noise like «salt»,
- Not eliminates noise like «pepper».

Counterharmonic Mean Filter

Formula:

$$g(x,y) = \frac{\sum_{i=0}^{M} \sum_{j=0}^{N} f(i,j)^{Q+1}}{M \cdot N \cdot \sum_{i=0}^{M} \sum_{j=0}^{N} f(i,j)^{Q}},$$

where Q – filter order:

- If Q > 0 filter eliminates noise of type «pepper»,
- If Q < 0 filter eliminates noise of type «salt».
- If Q = 0 filter is arithmetic,
- If Q = -1 filter is harmonic.

Gauss Filter

Formula:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}, G_{\sigma} = \frac{1}{2\pi\sigma^2}e^{\frac{-x^2+y^2}{2\sigma^2}},$$

where μ – center point coordinate,

 σ – variance, described width of «bell».

0.013	0.022	0.013	0.003
0.059	0.097	0.059	0.013
0.097	0.159	0.097	0.022
0.059	0.097	0.059	0.013
0.013	0.022	0.013	0.003
	0.013 0.059 0.097 0.059 0.013	0.013 0.022 0.059 0.097 0.097 0.159 0.059 0.097 0.013 0.022	0.013 0.022 0.013 0.059 0.097 0.059 0.097 0.159 0.097 0.059 0.097 0.059 0.013 0.022 0.013

$$5 \times 5$$
, $\sigma = 1$

Properties of Gauss Filter

Separable:

$$G_{\sigma} = \frac{1}{2\pi\sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-x^{2}}{2\sigma^{2}}} \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-y^{2}}{2\sigma^{2}}}$$

- It allows to reduce the number of calculations from $(2r+1)^2$ up to 2(2r+1) on each pixel (in r times).
- Convolution performed twice with a mask with a radius filter r, gives the same result as once with a radius mask $r\sqrt{2}$.

Properties of Gauss Filter

- The greater σ , the more blurred the image when applying the filter.
- The radius of the filter r is chosen equal to 3σ .
- The size of the mask is 2r + 1, so it is described by a matrix of size $(6\sigma + 1)$ * $(6\sigma + 1)$.

iTMO

Nonlinear Filtering

Median Filter

- The neighborhood of a mask may be arbitrary.
- Pixel brightness values in the neighborhood are sorted in ascending order.
- The result of filtering is the central pixel.

Median Filtering

Original image

3x3 mask, applied 3 times

5x5 mask

7x7 mask 9x9 mask

Weighted Median Filter

- The mask uses weights (2, 3, etc.).
- The number of the median element after sorting is (N + 1) / 2,
 - where *N* is the number of brightness values in the sorting, equal to the sum of the mask weights.
 - in a sorting we should **repeat pixel intensity** by his weight factor.
- Properties:
 - inseparable;
 - nonlinear;
 - at grayscale images doesn't introduce new brightness values;
 - qualitatively removes impulse-type noise.

Adaptive Median Filter

 Idea: increasing the size of the window S during the filtering process, depending on local statistical characteristics.

Key terms:

- $S \times S$ window's size.
- Z_{min} minimum value in the window;
- Z_{max} maximum value in the window;
- Z_{med} median value in the window;
- Z_{ij} pixel value with coordinates (i, j);
- S_{max} maximum allowed window size.

Adaptive Median Filter

ITMO

(Algorithm)

- 1. Set the initial filtering window size S and maximum S_{max} .
- 2. For pixel (i, j) with intensity Z_{ij} :
 - Calculate: Z_{min} , Z_{max} , Z_{med} , $A_1 = Z_{med} Z_{min}$, $A_2 = Z_{med} Z_{max}$.
 - If $A_1 > 0$ and $A_2 < 0$ go to step 3.
 - Otherwise, increase window size;
 - If current size $S \le S_{max}$ repeat step 2;
 - Otherwise, filtering result is Z_{ii}.
- 3. Calculate $B_1 = Z_{ij} Z_{min}$, $B_2 = Z_{ij} Z_{max}$.
 - If $B_1 > 0$ and $B_2 < 0$, filtering result is Z_{ii} .
 - Otherwise, filtering result is Z_{med} .
- 4. Change coordinates (i, j)
 - If is not end of image, go to step 2.
 - Otherwise, end.

Adaptive Median Filtering

ITMO

- Advantages:
 - optimal removal of impulse noise;
 - smoothing other types of noise.
- Disadvantages:
 - increases the amount of computati

Noised image

Filtered image

Rank Filtering

- A rank filter of order r ($1 \le r \le N$, where N is the number of elements in the neighborhood) selects the element with number r from the resulting series and assigns its value as a result of pixel filtering.
 - If the number N is odd and r = (N + 1) / 2, the filter becomes median.
 - If r = 1, the filter selects the minimum brightness value in the window and called «min-filter».
 - If r = N, the filter selects the maximum brightness value in the window and called «max filter».
- The rank can be set in percent, then the choice of the minimum value corresponds to 0%, median – 50%, and maximum – 100%.

iTMO

Activity Time

What is the result of median filtering?

ITMO

$$\begin{bmatrix} 13 & 11 & 3 \\ 1 & 9 & 2 \\ 0 & 2 & 14 \end{bmatrix}$$

What is the result of

median filtering?

What is the result of

ITMO

weighted median filtering?

Mask
$$M = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
,

Fragment of image
$$Im = \begin{bmatrix} 0 & 1 & 2 & 3 & 2 \\ 1 & 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 & 2 \\ 2 & 3 & 1 & 0 & 1 \\ 2 & 1 & 2 & 3 & 1 \end{bmatrix}$$
.

Leave the edge pixels unfiltered.

What is the result of

ITMO

min / max filtering?

Fragment of image
$$Im = \begin{bmatrix} 0 & 1 & 2 & 3 & 2 \\ 1 & 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 & 2 \\ 2 & 3 & 1 & 0 & 1 \\ 2 & 1 & 2 & 3 & 1 \end{bmatrix}$$
.

Leave the edge pixels unfiltered.

THANK YOU FOR YOUR TIME!

ITSIMOre than a UNIVERSITY

s.shavetov@itmo.ru