

First (incorrect) try

DM[i] = cost of the best
matching for
position 1,2,...,i
in the string

If i is not matched in opt.

M[i]=M[i-i]

If i is metched to k<i-4

X STACK

Second (correct) try

M[i,j] = size of the best matching for positions i, iti,...,j

2) If ji is not matched

M[i,j] = M[i,j-i]

(3) #DP states = $\binom{n}{2}$ = $O(n^2)$ each takes O(n) time

total is $O(n^3)$

Fise, j matched to $k: |i \le k \le j-1|$ M(i,j) = M(i,k-1) + M(k,j-1) + 1 A(k) = 0 and A(j) = A, or

 $=D \left\{ M[i,j] = \max \left(M[i,j-1] \right) \right\}$ $\max M[i,k-1] + M[i+1,j-1] + M[i+1$

M[i,j] = 0 if $j-i \leq 4$

M[i,i] = best cost for alignment of
$$x_1, x_2, ..., x_i$$
 and $y_1, y_2, ..., y_j$

If i unmatched in OPT

M[i,j] = M[i-1,j] + 8

If j unmatched in OPT =D MI

M[i,j] = M[i,j-i] + d

Flor Xi - Yj

M[i,j] = M[i-1,j-i] + d(Xi,Yj)

Assume
$$\alpha(z,z) = 0$$

$$M[0,i] = \delta j \qquad M[i,o] = \delta i$$

$$M[i,j] = min \left(M[i-1,j] + \delta \right)$$

$$M[i,j-1] + \delta$$

$$M[i-1,j-1] + \alpha \left((x_i, y_i) \right)$$

(1,1) (2,1) (3,1) (4,1) (n,1) (6,2) $(\lambda-1,j-1)$ $(\lambda-1,j-1)$ $(\lambda-1,j-1)$ $(\lambda-1,j-1)$ $(\lambda-1,j-1)$ (1,m) (2,m) (a.1,m) = 0 comparte M[n,m] in O(nm) tome O(m) space

= D knear space = D O(nm) time

What's the trivial algorithm for TSP?

pre compute distances Otto, dist(xi, xi) \(\times \times \times \)

go over all permutations of \(\times \)

keep the one minimizing objective

= Time complexity: O(K!K) time

=DO(2k k²)
total time