DOCUMENT RESUME

ED 074 077

TM 002 439

AUTHCR

Keselman, H. J.: And Others

TITLE

The Harmonic Mean and Kramer Unequal n Forms of the

Tukey Statistic.

INSTITUTION

Manitoba Univ., Winnipeg.

SFONS AGENCY

Canada Council, Ottawa (Ontario).

PUB DATE

[73]

NOTE

20p.

AVAILABLE FROM

H. J. Keselman, Department of Psychology, University

of Manitoba, Winnipeg, Manitoba R3T 2N2

EDRS PRICE

MF-\$0.65 HC-\$3.29

DESCRIPTORS

Analysis of Variance; *Comparative Analysis;

*Probability; *Statistical Studies; Statistics:

*Tables (Data); Technical Reports; *Test Selection

IDENTIFIERS

*Tukey Statistic

ABSTRACT

The harmonic mean and Kramer (1956) unequal n forms of the Tukey multiple comparison statistic were investigated for Monte Carlo Type I and Type II errors under conditions of assumption violations. The two major questions concerning the sensitivity of multiple comparison statistics for different types of pairwise contrasts and the affect of increasing the number of treatment levels are discussed. Neither procedure consistently out-performs the other: the choice of test depends upon the population condition(s) and the pattern of unequal cell frequencies. (Author)

002 439

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGINATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY

THE HARMONIC MEAN AND KRAMER UNEQUAL ${\bf n}$ FORMS OF THE TUKEY STATISTIC ${\bf 1}$

H. J. Keselman²

Larry E. Toothaker

M. Shooter

University of Manitoba

University of Oklahoma

University of Manitoba

THE HARMONIC MEAN AND KRAMER UNEQUAL n FORMS OF THE TUKEY STATISTIC

ABSTRACT

The harmonic mean and Kramer (1956) unequal n forms of the Tukey multiple comparison statistic were investigated for Monte Carlo Type I and Type II errors under conditions of assumption violations. The two major questions concerning the sensitivity of multiple comparison statistics for different types of pairwise contrasts and the affect of increasing the number of treatment levels are discussed. Neither procedure consistently out-performs the other; the choice of test depends upon the population condition(s) and the pattern of unequal cell frequencies.

The Tukey (T) multiple comparison statistic is considered appropriate for probing pairwise differences among means (Kirk, 1968; Miller, 1966; Scheffe, 1959). A crucial assumption of the T statistic is that the variances of the contrasts be equal (Scheffe, 1959). To satisfy this assumption there must be an equal number of observations per cell.

Smith's (1971) Monte Carlo investigation compared three unequal n procedures that can be used with the T statistic: the harmonic mean, the Kramer (1956) method, and the procedure suggested by Miller (1966). The harmonic mean, the most commonly cited procedure (Kirk, 1968; Winer, 1972), utilizes all the sample sizes from the K treatment levels ([K/ 1/n₁ + 1/n₂ +,...,+ 1/n_k]). Miller suggests using an average or median value of the group sizes, whereas Kramer's procedure utilizes the sample sizes of the largest and smallest (range) groups. Smith (1971) found that the harmonic mean procedure and the procedure suggested by Kramer generated Type I estimates that were closer to theoretical alpha than the procedure cited by Miller. When choosing any statistical test both types of errors should be considered. Using the Kramer method, as Smith suggests solely on the basis of Type I estimates places too great an emphasis on the Type I error.

Recent studies (Games, 1971; Keselman and Toothaker, 1973) indicate two important factors that need to be investigated for the T statistic. Keselman and Toothaker (1973) point out that the power of multiple comparison tests is a function of the magnitude of the comparison deviating from the null hypothesis that $\Psi = \Sigma c_k \mu_k = 0$. For example, in their investigation the four treatment levels were made to differ by .67 c-units, consequently, $\mu_1 = 0.00$, $\mu_2 = 0.67$, $\mu_3 = 1.34$, and $\mu_4 = 2.01$. The contrast that compares means one and four is the maximum contrast and its

power would be greater than any of the remaining five pairwise contrasts. Their results corroborate the correspondence between the sensitivity of the analysis of variance (ANOVA) F test and the contrast that compares the maximum difference in a set of K means suggested by Scheffe (1959). Games (1971) shows that theoretical Type I error rates will vary, depending upon the number of treatment levels. A major question that remains unanswered is, "whether differences between extremes in a large set of means will be more sensitive to form and heterogeneity of variance than is the two means case" (Games, 1971, p.100).

To examine this question the harmonic mean (H) and the Kramer (K) unequal n forms of the T statistic were investigated for the empirical probability of a Type I and Type II error. The Monte Carlo estimates were generated under conditions of assumption violations for varying numbers of treatment levels when the true magnitude of deviation from the multiple comparison null hypothesis of zero was considered.

Procedure

Pseudo-random numbers were selected using a pseudo-random number generator. Depending upon the assumption violation, the numbers were selected from either a normal or exponential distribution. The normal deviates with μ = 0 and σ^2 = 1, were generated by a technique developed by Box and Muller (1958). To sample from the exponential distribution (Lehman and Bailey, 1968, p.227),

$$f(t) = pe^{-pt}$$
 (1)

with p = 1, E(t) = 1/p = 1, and $var(t) = 1/p^2 = 1$, pseudo-random exponential variables were generated by multiplying the negative of the mean, -E(t) = -1,

times the natural logarithm of uniform random variates distributed on the unit interval (IBM, 1970). The exponential variates were then scaled so that the mean would be zero and the variance σ_k^2 , $k=1,\ldots,K$ (for the unequal variance conditions). The resulting skewed population has mean zero, variance σ_k^2 , skewness measure $\gamma_1=2$ and kurtosis measure $\gamma_2=6$.

Differences in means were obtained by adding multiples of the constant δ (δ = 0.67) to the successive observations within the K treatment levels starting with the second level. Depending upon whether the sampling procedure was restricted to four, six, or eight treatment populations, the generated samples have population means of: μ_1 = 0.00, μ_2 = 0.67, μ_3 = 1.34, μ_4 = 2.01, μ_5 = 2.68, μ_6 = 3.35, μ_7 = 4.02, and μ_8 = 4.69.

From the Pearson and Hartley (1951) tables for noncentrality value of $\phi = (\Sigma \beta_k/k)^{\frac{1}{2}}/\sigma/(n)^{\frac{1}{2}} = 1.98$, seven observations per cell were required to obtain 86% power for rejecting the ANOVA null hypothesis. Only after rejecting the ANOVA F hypothesis was the T statistic simulated. The probability of a Type II error was simulated with the observations that had the mean differences built-in($\delta = 0.67$), whereas the probability of a Type I error was evaluated with the original randomly generated observations ($\delta = 0.00$).

Given four, six, and eight levels of the treatment variable there were six, fifteen, and twenty-eight pairwise contrasts, respectively. For the six, fifteen, and twenty-eight contrasts there were three, five, and seven respective magnitudes of deviation from a true psi of zero for 0.67 σ -unit differences between adjoining means. The contrasts were coded as to the extent to which they differed from the multiple comparison null hypothesis. Consequently, the probability of a Type I and Type II error

was counted only for contrasts that had the same magnitude of deviation from zero.

For comparisons involving unequal variances the variances were in the ratio of 1:2:3:4 (K = 4), 1:2:3:4:5:6 (K = 6), and 1:2:3:4:5:6:7:8 (K = 8). The unequal variances were achieved by multiplying the generated number by a value for each level such that the average variance was one for the given experiment.

Unequal variances and unequal sample sizes were combined when sampling from the normal distribution to explore the probability of a Type I and Type II error under conditions of assumption violations. The five combinations examined were (1) equal observations per treatment level - equal variances, (2) equal observations per treatment level - unequal variances, (3) unequal observations per treatment level - equal variances, (4) unequal observations per treatment level - unequal variances (positively related) and (5) unequal observations per treatment level - unequal variances (negatively related). These five conditions were also investigated for the non-normal exponential population. The unequal variances and sample sizes for the nine combinations of treatment levels and sample sizes investigated are contained in Table 1.

Table 1 about here

The procedure of generating K random samples with \mathbf{n}_k observations per cell and calculating the T statistics constituted one experiment; the procedure was repeated for 1,000 experiments.

Monte Carlo Type I Errors: Because the levels contain different numbers of contrasts there is a difference between the Type I probabilities (Tables For example, for four treatment levels there are six pairwise contrasts which are separated into three magnitudes of deviation from zero, that is, for .67 σ -unit differences between adjoining means there is one population contrast (Ψ_{I}) equal to 2.01 two contrasts equal to 1.34 (Ψ_{II}), and three contrasts equal to 0.67 ($\Psi_{\mbox{III}}$). The experimentwise error rate fluctuates depending upon the number of contrasts that define the experiment. For the Tukey tests (Table 2, condition 1) over 1000 experiments there are six experiments containing one false rejection when each experiment contains one contrast $(\Psi_{\overline{L}})$, nineteen experiments with at least one false rejection when each experiment contains two contrasts ($\Psi_{ extbf{II}}$), and forty-two experiments with at least one erroneous statement of rejection when the experiment is defined over three contrasts ($\Psi_{\overline{111}}$). When the probability of a Type I experimentwise error is defined over all contrasts comprising the experiment, there are fifty-two experiments with at least one false rejection $(\Psi_{\stackrel{}{A}})$. When considering all contrasts comprising the experiment, there are six contrasts for four treatment levels, fifteen for six treatment levels, and twenty-eight when there are eight levels of the treatment variable.

Tables 2-4 about here

Conditions (1) and (2) are not comparison conditions of crucial interest. The probabilities reported for (1) only reflect the procedure of dichotomizing the contrasts into levels of deviation from a true psi

ERIC Provided by ERIC

of zero whereas, the probabilities tabled under condition (2) not only reflect the above but also, the effect of heterogeneity of variance. In both conditions the H and K probabilities must be equal since, $n_k = n$. Considering conditions (3), (4), and (5) a distinct pattern of comparison emerges. For the combinations of unequal observations per treatment level - equal variances (3), and unequal observations per treatment level - unequal variances (negatively related) (5), the K probabilities are consistently less than the H probabilities. When positively pairing unequal sample sizes and unequal variances (4) the probabilities for the H procedure are smaller. The above pattern holds across the four, six, and eight treatment levels.

Differences in extremes in a large set of means are not adversly affected by form and heterogeneity of variance with increases in the number of treatment levels. If Games (1971) meant by extremes the contrast comparing the two most disparate means, that is $\Psi_{\rm I}$, then the probability of a Type I error is inversly related to increases in the number of treatment levels for the three sample sizes investigated. This general inverse relationship holds for each level of deviation $(\Psi_{\rm I}, \ \Psi_{\rm II}, \dots, \ \Psi_{\rm VII})$ but not when considering all the contrasts $(\Psi_{\rm A})$.

Sampling from the exponential distribution does not cause the Type I probabilities to substantially deviate from the probabilities when sampling from the normal distribution, though, the exponential probabilities are, more often than not, less than the corresponding normal distribution probabilities.

Monte Carlo Type II Errors: The H and K Type II probabilities (Tables 5-7) compliment the reported Type I error comparison pattern, though, the

pattern here is very weak. The H Type II probabilities are, more often than not, less than and/or generally equal to the K probabilities for conditions (3) and (5). For condition (4), the H probabilities are more often than not, slightly larger and/or generally equal to the tabled K estimates.

Tables 5-7 about here

For comparisons other than the maximum contrast the T statistics are not powerful for the smallest sample condition (n = 7). Increases in sample size and/or an increase in nominal alpha (from .05 to .10) can substantially increase the power for some of the non-maximum contrasts. The greater the true deviation from zero, the more pronounced is the affect.

The exponential and normal distribution probabilities do differ from one another and there are cases in which the discrepancies are large but, no distinctive pattern of difference is specifiable.

Discussion

The harmonic mean and Kramer (1956) unequal n forms of the Tukey multiple comparison statistic were simulated under conditions of assumption violations. Monte Carlo Type I and Type II probabilities for various combinations of population form and heterogeneity of variance were tabled.

The pairwise contrasts were differentiated in terms of their magnitude of deviation from the multiple comparison null hypothesis that $\psi = \frac{k}{2} c_k \mu_k = 0$ Consequently, Type II errors were evaluated with contrasts that have the same magnitude of deviation. As a consequence of separating the pairwise contrasts, the similarity of the sensitivity of the ANOVA F

test and the contrast that compares the maximum difference in a set of K means, as suggested by Scheffe (1959), is corroborated.

The Tukey statistic controls the probability of a Type I error experimentwise and is considered therefore most appropriate when several contrasts are to be computed. The effect of non-normality and heterogeneity of variance is similar to the consequences reported for the ANOVA F test (Scheffe, 1959). Increasing the number of treatment levels under conditions of assumption violations does not generally affect the Type I error probabilities. The probabilities whether extremely conservative, conservative, or liberal, are typically within sampling variability of one another across the four, six, and eight treatment levels.

while selection of an appropriate statistical test is always specific to an experimental question, the Monte Carlo investigation delineates general frames of reference leading to the following recommendations. If there is evidence that suggests that the population variances are not equal, or if the number of observations per cell are not equal and negatively related to unequal variances, the Kramer form of the Tukey statistic would appear to be most appropriate since it better controls for the probability of a Type I error and is not substantially less powerful than the harmonic mean procedure. If suspecting heterogeneity of population variances and sample sizes are positively paired, the data favors the use of the harmonic mean procedure. Although the Type I error probabilities are larger than the K Type I probabilities they are nonetheless still quite conservative, yet the H procedure generally commits fewer Type II errors and is therefore the more powerful statistic.

Significant Tukey contrasts can occur in the absence of a signi-

ficant F test, though infrequently, since it is based on the distribution of the Studentized range and is not therefore mathematically related to an ANOVA F test. The Tukey tests were only simulated when the ANOVA null hypothesis was rejected in order to mirror the popularized accepted procedure (Glass and Stanley, 1970; Hopkins and Chadburn, 1967; Hays, 1963). Assuming that the tabled Type II probabilities may be slightly inflated estimates, the Tukey tests still lack substantial power for detecting non-maximum contrasts when alpha equals .05. Therefore, regardless of which form of the Tukey test is used to increase power for non-maximum contrasts it is suggested that the level of significance be at least .10.

References

- Box, G. E. P., & Muller, M. A note on the generation of random normal deviates. Annals of Mathematical Statistics, 1958, 29, 611.
- Games, P. A. Inverse relation between the risks of Type I and Type II
 errors and suggestions for the unequal n case in multiple comparisons. <u>Psychological Bulletin</u>, 1971, 75, 97-102.
- Glass, G. V., & Stanley, J. C. Statistical Methods in Education and

 Psychology. New Jersey: Prentice-Hall, Inc., 1970.
- Hays, W. L. Statistics. New York: Holt, Rinehart, & Winston, 1963.
- Hopkins, K. D. & Chadburn, R. A. A schema for proper utilization of multiple comparisons in research and a case study. American Educational Research Journal, 1967, 4, 407-412.
- IBM, 360 Scientific Subroutine Package (360A-CM-03X) Programmer's Mannual, H20-0205. International Business Machines Corporation, 1970.
- Keselman, H. J., & Toothaker, L. E. Concerning the conclusions reached by Petrinovich and Hardyck. <u>Psychological Bulletin</u>, 1973, in press.
- Kramer, C. Y. Extension of Multiple range test to group means with unequal numbers of replications. <u>Biometrics</u>, 1956, <u>12</u>, 307-310.
- Lehman, R. S., & Bailey, D. E. <u>Digital Computing</u>. New York: John Wiley & Sons, 1968.
- Miller, R. G. Jr. Simultaneous Statistical Inference. New York: McGraw-Hill, 1966.
- Scheffe, H. The Analysis of Variance. New York: John Winey & Sons, 1959.
- Smith, R. A. The effect of unequal group size on Tukey's HSD procedure.

 Psychometrika, 1971, 36, 31-34.

Footnotes

- 1. The authors wish to express their appreciation to David Koulack for his comments on an earlier draft of this paper. This research was supported by the Canada Council (Grant No. S72-0533) and The Research Board of The University of Manitoba (Grant No. 431-1665-15).
- 2. Requests for reprints should be sent to H. J. Keselman, Department of Psychology, The University of Manitoba, Winnipeg, Manitoba R3T 2N2.
- 3. $\Sigma \beta_k^2 = \text{squared treatment effects}$
 - σ = square root of the mean square error from the ANOVA
 - n = number of observations per cell
 - k = number of means

MRTE :

UNEQUAL VARIANCES AND SAMPLE SIZES FOR EIGHT COMBINATIONS OF TREATMENT LEVELS AND SAMPLE SIZES

Variances:	4 .8, 1.2, 1.6	TREATMENT IEVELS (K) 6 .28571, .57142, .85713, 1.14284, 1.42855, 1.71426	222, .44444,	.66666888	8 388. 1.11110.	22222, .44444, .66666, .88888, 1.11110, 1.33332 1 55554 1 27736	אננננ ו
Sample Sizes:							
	4, 5, 7, 12	6, 6, 7, 7, 7, 9		5	6, 6, 7, 7, 7, 8, 8	7, 8, 8	
92 	12, 14, 17, 21	15, 15, 16, 16, 17, 17		15, 15,	15, 15, 16, 16, 16, 16, 17, 17	16, 17, 17	
" = 25	21, 23, 26, 30	24, 24, 25, 25, 26, 26		24. 24.	24. 24. 25. 25. 25. 25. 25. 26. 26.	25 26 36	

MONTE CARLO TYPE I EXPERIMENTMISE ERRORS FOR THE HARMONIC HEAN (H) AND KRAMER (K) UNEQUAL

TABLE 2

FORMS OF THE TUKEY STATISTIC FOR FOUR TREATHENT LEVELS WHEN DEVIATION FROM ZERO IS CONSIDERED

	:			*	NOR	MAL DIS	NORMAL DISTRIBUTION	**		CONDITIONS	#S#01				RYPONDATATA TATTERIANTED	741 PT	TOTAL	95				1
8.4.		-		-	7	,		4		5				2		3	TOTTU	`. .	٠	'n		
		Ħ	×	H	×	#	×	Ħ	×	123	×	æ	×	.⊞ .	×	п	×	53	M	22	M	
	,H	900.0	900.0	0.009	0.009	0.005	0.005	0.001	0.001	0.036	0.037	0.009	0.009	0.016	0.016	0.012	0.012	0.001	0.001	0.030	0.030	1
· •	114	0.019	0.019	0.026	0.026	0.026 0.024		0.006	0.006	0.058	0.050	0.019		0.017		0.030					0.056	
	μī, I	0.042	0.042	0.048	0.048	0.045	0.033	0.016	0.023	0.107	0.074	0.026	0.026	0.028	0.028	0,040	0.033				0.069	
·	¥,	0.052	0.052	0.064	0.064	0.058	0.049	0.018	0.027	0.141	0.106	0.041	0.041	0.049	0.049	0.056	0.050	0.015			0.099	
	I,	0.012	0.012	0.011	0.011	0.013	0.013	0.002	0.002	0.023	0.023	0.010	0.010	0.014	0.014	0.010	0.010	0.007	0.007	0.020	0.020	
7	ΙŢφ	0.024	0.024	0.031	0.031	0.021	0.020	0.016	0.016	0.042	0.037	0.016	0.016	0.038	0.038	0.017	0.018				0.033	
3		0.031		0.041	0.041	0.024	0.022	0.015	0.024	0.064	0.044	0.024		0.034	0.034						0.044	
, 4 	ĄΑ	0.057	0.057	0.063	0.063	0.052	0.049	0.028	0.035	0.093	0.080	0.038	0.038	990.0	0.066		0.043		0.038		0.073	
in dec To job	. H	0.007	0.007	0.023	0.023	0.011	0.011	0.017	0.017	0.029	0.029	0.012	0.012	0.012	0.012	0.014	0.014	0.011	110	7100	. 0.015	
- 25	Π¢	0.023	0.023	0.035	0.035	0.025	0.025	0.014	0.019	0.059	0.051	0.020									9	
	μIII φ	0.033	0.033	0.033	0.033	0.025	0.024	0.025	0.037	0.054	0.045	0.030	0.030	0.025							0.044	
	₩	0.053	0.053	0.069	0.069	0.050	0.049	0.043	0.058	960.0	0.085	0.052	0.052	0.047	0.047	0.036	0,035				0.071	, .
	a a	0.021	9,021	0.023	0.023	0.012	0.013	0.004	, OO	0,00	050	5										
	1	0.050		0.054			4.0	0	0.023	0, 107	103	010.0	0.010	770.0	770.0	170.0					0.062	
	i J	0.057	*0.057	0.069	0.069			ó	0.034	0.156	0.131						100.0	170.0	620.0	0.100	0.058	(has
	¥	0.092	0.092	0.103	0.103	0.095	0.092	0.043	0.047	0.195	0.177	0.082									0.181	-
	. J	0.022	0.022	0.040	0.040	0.023	0.023	0.016	0.016	0.055	0.055	0.023	0.073	0.028	0.028	7,000		. 60	000	250		
=16	μ	0.042	0.042	0.054	0.054	0.040		Ö	0.036	0.094	0.087	0.040									0.083	
1 14 1 14 1 14	III	0.061	0.061	0.068	0.068	0.069	0.070	0.049	0.057	0.122	0.101	0.069									0,100	
	φ	0.093	0.093	0.112	0.112	0.103	0.108	0.073	0.086	0.177	0.162	0.097	0.097	0.129	0.129	0.092	0.000				0.154	•
	-	0.022	0.022	0.042	0.042	0.013	0.013	0.035	0.036	0.033	0.034	0.017	0.017	0.022	0.022	0.071	0.071	. 0.0	6 4 4	000	Ş	
-25	ΙĻ	0.055	0.055	0.067	0.067	0.032	0.032	0.032	0.037	0.092	0.082	0.048									0.055	÷
	III.	0.064	0.064	0.079	0.079	0.044	0.049	0.065	0.082	0.107	0.102	0.058									0.088	
9. j.	¥	0.103	0.103	0.137	0.137	0.074	0.079	0.100	0.114	0.173	0.164	0.093		0.112		٠				-	0.127	
																		,				

 $[\]alpha = .05$, $\sigma_p = .007$; $\alpha = .10$, $\sigma_p = .009$

^{*}Conditions: (1) equal n's - equal o²'s (2) equal n's unequal o²'s (3) unequal n's - equal o²'s (4) unequal n's - unequal o²'s (positively related) (5) unequal n's - unequal o²'s (negatively related).

²nd largest contrast(s); \(\psi_{\text{III}}\) 3rd largest contrast(s); \(\psi_{\text{A}}\) all contrasts. Maximum contrast; VII

TABLE 3

MONTE CARLO TYPE I EXPERIMENTWISE ERRORS FOR THE HARMONIC (H) AND KRAMER (K) UNEQUAL
FORS OF THE TUKEY STATISTIC FOR SIX TREATMENT LEVELS WHEN DEVIATION FROM ZERO IS COMSIDERED

_						NO	ORMAL DI	STRIBUI	ION		CONDI	TIONS*	1 .			EXPONEN	TIAL DI	STRIBUT	ION			
			. 1		2		3		- 4	•	5		1		Ž		3		4		5	
		y**	H	·к	R	K.	н	K	н́	, K ,	В	K	H	K	Н.	ĸ	. в	L	. 8	ĸ	н	X.
		¥1	0.005	0.005	0.008	0.008	0.004	0.006	0.003	,0.003	0.012	0.013	0.004	0.004	0.005	0.005	0.006	0.006	0.002	0.002	0.005	0.005
	.,	ΨII	0.018	0.018	0.014	0.014	0.006	0.005	0.008	0.008	0.018	0.020	0.009	0.009	0.014	0.014	0.014	0.015	0.011	0.009	0.017	0.015
		VIII	0.016	0.016	0.020	0.020	0.017	0.019	0.009	0.009	0.035	0.026	0.006	0.006	0.026	0.026	0.019	0.014	0.012	0.014	. 0.032	0.026
	n _k =7	ΨĮV	0.016	0.016	0.030	0.030	0.014	0.012	0.015			0.034								-	0.045	_
		ΨV					0.013			0.030		0.052								,	0.057	
		ΨA	0.058	0.058	0.062	0.062	0.039	0.041	0.040	0.049	0.096	0.085	0.041	0.041	0.067	0.067	0.050	0.048	0.046	0.052	0.092	0.070
		ΨĮ	0.004	0.004	0.004	0.004	0.003	0.003	0.001	0.001	0.002	0,002	0.005	0.005	0.004	0.004	0.007	0.007	0.005	0.005	0.006	0.006
5	•	ΨīI	0.007	0.007	0.009	0.009	0.009	0.009	0.006	0.006	0.008	0.008	0.008	0.008	0.014	0.014	0.005	0.005	0.012	0.012	0.009	0.009
ä	n _k =16	Ψ _{III}	0.017	0.017	0.022	0.022	0.011	0.011	0.015	0.016	0.022	0.020	0.016	0.016	0.021	0.021	0.018	0.017	0.016	0.018	0.023	
a	• •	Ψiν	0.013	0.013	0.032	0.032	0.012	0.013	0.012	0.016	0.029	0.027									0.030	0.028
		. • _V					0.015				0.057					2000	0.025			0.041		0.046
		Ψ _A	0.047	0.047	0.070	0.070	0.040	0.040	0.055	0.061	0.083	0.077	0.045	0.045	0.079	0.079	0.048	0.049	0.071	0.075	0.086	0.076
		$\psi_{\overline{I}}$.	0.007	0.007	0.004	0.004	0.006	0.006	0.005	0.005	0.010	0.010	0.010	0.010	0.002	0.002	0,005	0.005	0.006	0.006	0.007	0.007
	-	$\Psi_{\mathbf{I}\mathbf{I}}$	0.018	0.018	0.004	0.004	0.012	0.012	0.012	0.012	0.016	0.016	0.015	0.015	0.011	0.011	0.013	0.012	0.008	0.008	0.008	0.008
	n25	Ψ1111	0.021	0.021	0.022	0.022	0.015	0.014	0.016	0.017	0.020	0.019	0.025	0.025	0.021	0.021	0.009	0.009	0.012	0.012	0.024	0.023
		$\Psi_{ t IV}$									*	0.038			3			0.017	1 "	0.029		0.034
		$\Psi_{\mathbf{V}}$							1 .			0.049					0.023				0.046	0.039
		Ψ A .	0.062	0.062	0.067	0.067	0.055	0.054	0.065	0.070	0.095	0.091	0.072	0.072	0.086	0.086	0.049	0.048	0.070	0.073	0.085	0.075
		Ψ_{1}	0.004	ó.004	0.012	0.012	0.015	0.015	0.009	0.009	0.022	0.024	0.021	0.021	0.012	0.012	0.008	0.010	0.004	0.006	0.014	0.022
		Ψ11	0.015	0.015	0.023	0.023	0.022	0.019	0.016	0.015	0.034	0.033	0.028	0.028	0.028	0.028	0.017	0.017	0.013	0.016	0,040	0.037
	n. = 7	ψ_{III}	0.030	0.030	0.036	0.036	0.035	0.033	0.030	0.032	0.057	0.052	0.031	0.031	0.037	0.037	0.037	0.039	0.014	0.024	0.052	0.044
	e De ee	ΨIV	0.038	0.038	0.051	0.051	0.041	0.038	0.034	0.038	0.078	0.071	0.040	0.040	0.041	0.041	0.040	0.035	0. 0 20	0.034	0.072	0.058
		Ψ _V :	0.043	0.043	0.066	0.066	0.056	0.058	0.047	0,055	0.104	0.085	0.053	0.053	0.052	0,052	0.047	0.045	0.036	0.048	0.078	0,068
		· VA	0.091	.0.091	0.117	0.117	0.115	0.111	0.081	0.089	0.175	0.154	0.103	0.103	0.108	0.108	0.091	0.091	0.063	0.095	0.147	0.129
_		Ψī						0.009			0.010						0.012				0.020	
4		ΨII					2				0.020			100		i an la	0.020		2.00		0.026	
, ,	k 16	Ψ _{III}			7.			0.024			0.048						0.030				0.052	
,		YIV		0.035		-				-		0.013						-			0.064	1.61
		Ψ V		0.035								0.021									0.097	
		Ψ _A	0.005	0.065	0.140	0.140	0.093.	0.092	0.111	0,121	0.142	0.042	0.098	0.098	0.139	0.139	0.094	0.093	0.105	0.109	0.157	0.147
		Ψ	0.016	0.016	0.006	0.006	0.015	0.015	0.007	0.007	0.012	0.012	0.008	0.008	0.015	0.015	0.012	0.012	0.009	0.008	0.017	0.017
	•	ΨīI	0.018	0.018	0.019	0.019	0.015	0.015	0.022	0.022	0.029	0.029	0.018	0.018	0.029	0.029	0.018	0.018	0.020	0.020	0.031	0.031
,	-25	$\Psi_{\mathtt{III}}$										0.036	0.032	0.032	0.042	0.042	0.029	0.029	0.035	0.036	0.046	0.044
		ΨĮV	*					-			0.054						0.041					0.062
		Ψv					0.039				0.077	•		0.052				0.052				0.069
		ΨA	0.099	0.099	0,130	0.130	0.096	0.095	0.108	0.112	0.135	0.133	0.102	0.102	0.122	0,122	0.108	0.110	0.110	0.114	0.143	0.139

 $[\]alpha$ = .05, σ_{p} = .007; α = .10, σ_{p} = .009 % With the standard with

Conditions: (1) equal n's - equal σ^2 's (2) equal n's unequal σ^2 's (3) unequal n's - equal σ^2 's (4) unequal n's - unequal σ^2 's (positively) related).

^{**} ψ_{A} **Haximum contrast; ψ_{II} 2nd largest contrast(s); ψ_{III} 3rd largest contrast(s); ψ_{IV} 4th largest contrast(s); ψ_{V} 5th largest contrast(s); ψ_{V} all contrasts.

TABLE A

MONTE CARLO TYPE I EXPERIMENTWISE ERRORS FOR THE HARMONIC MEAN (H) AND KRAMER (K) UNEQUAL FORMS OF THE TUKEY STATISTIC FOR EIGHT TREATMENT LEVELS WHEN DEVIATION FROM ZERO IS CONSIDERED

1			· 															<u> </u>					
The color The										ISTRIBU	TION					_				BUTTON			
			ų**						-	. 4	4 , X .	-						-		5	K.	_	
**************************************	-		٧.	0.002	0.002	0.002	0.002	0.001	0.001	6.002	0.002	0.006	0.005	0.005	0.005	0.003	0.003	0.001	0.001	0.005	0.003	0.006	0.006
				0.003												1.5							
1				0.004	0.004	0.014	0.014	0.006	0.007	0.008	0.007	0.031	0.029	0.009	0.009	0.012	0.012	0.004	0.003	0.011	0.012	0.018	0.017
The color The color The color				0.016	0.016	0.016	0.016	0.006	0.007	0.016	0.015	0.032	0.030	0.012	0.012	0.013	0.013	0.010	0.012	0.014	0.014	0.030	6.027
		n = 7		0.012	0.012	0.021	0.021	0.010	0.009	0.018	0.023	0.043	0.039	0.012	0.012	0.028	0.028	0.012	0.015	0,018	0.020	0.033	0.030
			Ψ v1 .	0.010	0,010	0,024	0,024	0.005	0.006	0.022	0.028	0.042	0.037	0.014	0.014	0.029	0.029	0.008	0.009	0.028	0.033	0.047	0.038
			$\psi_{ t VII}$									_											
			Ψ _A	0.045	0.045	0.077	0.077	0.038	0.044	0.061	0.073	0.117	0.100	0.036	0.036	0.073	0.073	0.031	0.036	0.057	0.064	0.109	0.099
11			v _I	0.000	0,000	0.002	0.002	0.001	0.001	0.003	0.003	0.005	0.005	0.004	0.004	0.002	0.002	0.000	0.000	0.002	0.002	0.003	0.003
\$				0.005	0.005	0.008	0.008	0.005	0.004	0.002	0.002	0.011	0.011	0.004	0.004	0.006	0.006	0.005	0.005	0.011	0.011	0.007	0.007
**************************************	20		Ψ_{III}	0.011	0.011	0,012	0.012	0,007	0.008	0,006	0.007	0,009	0.009										
P	•	n _k -16	V _{IV}																				
				i .										-									
	•																						
										5 -													
			*A	. 0.033	0,055	0,075	0.0,3	0,002	0,033	0.007	0.077	0.002	0.072	0.033	0.033	0.000	0.000	0.043	0.042	0.050	0.000	0.077	0.073
			$\psi_{\mathbf{I}}$																				
			ΨII									-											
			VIII																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	a _k =25	V _{IV}				• · · ·																
								1															
\$align*** \$\begin{align**** \$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						,												5		-			
V		•							4.44				100										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																							
V	0.	- 7	4 .																				
V V V V V V V V V V	×			0.028																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																							
***				0.032																			
***				0.083	0.083	0,131	0.131	0.099	0.104	0.108	0.126	0.197	0.167	0.117	0.117	0.117	0.117	0.073	0.069	0.087	0.107	0.159	0.139
*** **********************************				0.005	0.005	0.001	0.001	0.005	0.005	0.005	0.005	0.011	0.011	0.006	0.006	0.001	0.001	0.004	0.004	0.003	0.002	0.008	0.008
11	ŋ		¥ÎT																				
*** **** **** **** ***** ***** ***** ****	a		ψ_{III}^{-}																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 	-16	V _{IV}																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		ψ_{∇}																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ψ _{VI}																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 4																					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			V _A	0.003	0.009	0.117	0,11/	0.101	0, 102	0.117	0.130	0.149	0.137	0.031	V.U.	0,11,	0,117	0.002	0.002	0.110			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ψ ₁	0.010	0.010	0.004	0.004	0.003	0.003	0.009	0.009	0.006	0.006	0.008	0.008	0.005	0.005	0.005	0.005	0.010	0.010	0.014	0.014
n. =25 VIV 0:016 0.016 0.035 0.035 0.032 0.019 0.026 0.028 0.039 0.039 0.031 0.025 0.025 0.025 0.025 0.029 0.032 0.035 0.051 0.043																							
			Ψ _{III}																				
	n _k "	25	Ψ _{IV}																				
* • 0.017 0.017 0.046 0.046 0.021 0.022 0.040 0.039 0.052 0.050 0.028 0.028 0.038 0.038 0.035 0.035 0.045 0.047 0.073 0.073		•	ψ _V																				
Ψ _{VI} 0,028 0,028 0,044 0,044 0,027 0,028 0,045 0,046 0.064 0.060 0,035 0,035 0,036 0.056 0.025 0.025 0.051 0.052 0.072 0,070			-																				
ψ_{VII} 0.035 0.035 0.056 0.056 0.035 0.036 0.059 0.059 0.079 0.074 0.042 0.042 0.050 0.050 0.033 0.035 0.069 0.075 0.089 0.086 ψ_{A} 0.091 0.091 0.127 0.127 0.101 0.099 0.131 0.134 0.182 0.176 0.102 0.102 0.121 0.121 0.096 0.098 0.136 0.145 0.178 0.169			_																				
Ψ _A 0.091 0.091 0.127 0.127 0.101 0.099 0.131 0.134 0.182 0.176 0.102 0.102 0.121 0.121 0.096 0.098 0.136 0.145 0.169	-		''A	0,071	-1774		*****	5, 101	4.475	J J.	J. 237	J UA	3,170	7. 202	71.101		J.,	3.070	3.070	71270			

 $[\]alpha = .05$, $\sigma_{p} = .007$; $\alpha = .10$, $\sigma_{p} = .009$

[&]quot;Unditions: (1) equal n's - equal σ^2 's (2) equal n's unequal σ^2 's (3) unequal n's - equal σ^2 's (4) unequal n's - unequal σ^2 's (positively) related) (5) unequal n's - unequal σ^2 's (negatively related).

Aπψ. Haximum contrast; ψ. 2nd largest contrast(e); ψ. 3rd largest contrast(e); ψ. 4th largest contrast(e); ψ. 3th largest contrast(e); ψ. 5th largest contrast(e); ψ. 3th largest contrast(e); ψ. 3th

TABLE 5

FORMS OF THE TURET STATISTIC HAVING .67 o-UNIT MEAH DIFFREECES FOR FOUR TREATHERT LEVELS WHEN DEVIATION FROM ZEED IS CONSIDERED MENTE CARLO TYPE II EXPERIMENTWISE ERRORS FOR THE HARMONIC HEAN (H) AND KRAMER (K) UNEQUAL

		М	0.107						0.281	0.972		0.001	0.090	0.910	0.910	690 0	0.516	0.978	0.979		070.0	007.0	0.943	6	0.053	0.862	863
		ш	0.110	0.595	000	0.994		0.010	7/770	0.973		0.001	0.081	0.915	0.915	0.071	0.513	0.982	0.983		OTO: O	201.0	0.942	6	0.053	0.871	
	答。	• ⊾ •	0.104	0.892	1.000	1.000	, · 6	100.0	0.7.00	0.999		0000	0.041	0.993	0.993	0.081	0.778	0.999	1.000	6	177	000	0.998	900	0.011	0.944	770
	DISTRIBUTION	æ	0.108	0.889	1.000	1.000	. 0	700.0	000	1.000		0.000	0.041	0.992	0.992	0.088	0.784	0.999	1.000	5	700.0	966.0	0.998	. 0	0.010	0.944	7,70
		124	0.094	0.741	1.000	1.000	0	26.0	0.995	0.995		0.001	0.065	0.961	0.961	0.089	0.659	0.997	0.999	000	19.5	0.985	0.985	000	0.036	0.907	000
	EXPONENTIAL	Ħ	0.098	0.738	1.000	1.000	010	0 263	0.996	966.0		0.001	0.058	0.958.	0.958	0.092	0.652	0.997	0.999	000	0.194	0.985	0.985	0.00	0.038	0.903	000
	<u>a</u>		0.058	0.743	1.000	1.000	0.003	0.231	0.999	0.999		0.000	0.029	0.983	0.983	0,040	0.628	1.000	1.000	000	0.132	0.995	0.995	0.000	0.021	0.930	0.0
		· E	0.058	0.743	1.000	1.000	0.003	0.231	0.999	0.999		0.000	0.029	0.983	0.983	0,000	0.628	1.000	1.000	0.001	0.132	0.995	9,395	0.000	0.021	0.930	0.930
	_	34	0.065	0.675	0.999	0.999	0.004	0.235	0.992	0.992	6	0.000	0.00	0.949	0.949	0.055	0.564	0.999	0.999	0.003	0.170	0.980	0.980	0.000	0.028	0.899	0.899
		Œ	0.065	0.675	0.999	0.999	0.004	0.235	0.992	0.992	6	000.0	0.050	0.949	0.949	0.055	0.564	0.999	0.999	0.003	0.170	0.980	0.980	0.000	0.028	0.899	0.899
NS#	. 10	M	0.081	0,709	0.998	1.000	0.002	0.268	0.999	0.999	ć	200.0	0.140	0.957	0.957	0.084	0.548	0.660	0.991	0.018	0.255	0.983	0.983	0.000	0.095	0.923	0.923
CONDITIONS		Ħ	. 0.082	0,723	0.998	1.000	0.002	0.264	0.998	.0.998	Š	700	0.130	26.0	0.960	0.085	0.542	0.992	0.992	0.018	0.254	0.978	0.978	0.000	0.094	0.925	0.925
8	•	×	0.106	0.895	1.000	1.000	0.001	0.300	1.000	1.000	000	3000	9 6	106.0	0.961	0.045	0.680	1.000	1.000	0.000	0.079	0.987	0.987	0.000	0.007	0.872	0.872
	TOW	田	0.112	0.890	1.000	1.060	0.001	0.301	1.000	1.000	, 0		•	•	0.957	0.045	0.657	1.000	1.000	0.000	0.083	0.981	0.981	٥٥٥٠ ،	900.0	0.878	0.878
	STRIBUT 3	×	0.084	0.807	1.000	1.000	0.000	0.264	1.000	1,000	000	0.062	0.052		0.953	0.072	0.627	0.998	0.999	0.003	0.175	0.981	0.981	0.000	0.022		0.904
	NORMAL DISTRIBUTION 3	Ħ	0.086	0.820	1.000	1.000	0.000	0.260	1.000	1.009	0.00	0.058	0 953	2	0.953	0.073			1.000	0.003	0.169	0.981	0.981	0.000	0.022	2.000	0.892
	NOI	×	0.047			1.000	0.000	0.251	0.999	0.999	0.00	0.012	936	200	0.936	0,018	0.532	0.997	0.997	0.000	0.051	0.970	0.970	0.000	0.005	0.838	0.838
		m				1 000	0.000	0.251	0.999	0.999	0.00	0.012	0.936	2000	0.730		0.532	0.997	0.997	0.000	0.051	0.970	0.970	0.000	0.005	0.838	0.838
	1	M				1.000	0.001	0.255	1.000	1.000	0.000	0.055	0.955	0 055		0.033	0.569	666.0	0.999	0.001	0.170	0.975	0.975	0.000	0.039	0.887	0.887
		#	0.037	0.763	1.000	1.000	0.001	0.255	1.000	1.000	0.000	0.055	0.955	0 955		0.033	50.0	666.0		0.001	0.170	0.975	0.975	0.000	0.039	788.0	28.0
		***	I.	11,	*III	•⁴	Ιφ	ΙI	111,	¥	-	1	1.1. W	11 ,	⋖	, ⊢.	ĮĮ,	III,	. ✓	a I	ψ _{II}	111,	. *	Ψ. I	II,	HI,	•
				~	4.1			4	3				Ž.				-	•			 <u></u>				. 23		

α = .05, σ_p = .007; α = .10, σ_p = .009

^{*}Conditions: (1) equal n's - equal o²'s (2) equal n's umequal o²'s (3) umequal n's - equal o²'s (4) umequal n's + umequal o²'s (positively related). ψ_1 Maximum contrast; ψ_{II} 2nd largest contrast(s); ψ_{III} 3rd largest contrast(s); ψ_A all contrasts.

TABLE 6

HONTE CARLO TYPE II EXPERIMENTALISE ERRORS FOR THE HARMONIC MEAN (H) AND KRAMER (K) IMMEQUAL

FORS OF THE TUKEY STATISTIC HAVING .67 0-UNIT MEAN DIFFERENCES FOR SIX TREATMENT LEVELS WHEN DEVIATION FROM ZERO IS CONSIDERED

									1		CONDITI	ON*											~
						-	NORMAL	DISTRI	BUTION				-				EXPONEN	TIAL DI	STRIBUT	ION			
				, 1		2		3		4	. *	5		1		2		3		4		5	
		# **	R	K	H	K	. H	K	H	K	H	K	Ħ	· K	H	K.	H	K	<u> </u>	K	Ħ	x	
		Ψ	0.00	3 0.003	0,002	0.002	0.001	0.000	0.001	0.000	0.000	0.000	0.009	0.009	0.002	0,002	0.010	0.007	0.003	0,002	0.020	0,019	-
		ΨĮI	0.07	2 0.072	0.052	0.052	0.057	0.063	0.083	0.081	0.051	0.052	0.086	0.086	0.049	0.049	0.113	0,112	0.064	0.070	0.117	0,122	
		ΨIII	0.53	5 0.535	0.529	0.529	0.548	0.544	0.599	0.602	0.495	0.502	0.464	0.464	0.457	0.457	0.488	0,503	0.487	0.493	0.449	0.456	
1	n 7	ΨIV	0,99	1 0,991	0.988	0.988	0.991	0.990	0.991	0.992	0.984	0.983	0.968	0.968	0.971	0.971	0.954	0.956	0.983	0.986	C. 918	0.916	
		Ψ	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1,000	1,000	1,000	1.000	1.000	1,000	
		ΨÂ	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1,000	1,000	1.000	1,000	1.000	1.000	1,000	1.000	
		ΨΙ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 - 000	0.000	0.000		0.000	0.000		n 000	0.000	0.000	0.000	0.000	0.000	
		Ψ ₁₁	0.000	0.000		0.000			0.000		0.000		0.000		0.000			0.000		2		0.006	
3				0.011											0.000								
	. =16	Ψ _{III}		0.594		0.611	*										,						
, '	'k ""	ΨĪV		1.000					1.000		1,000				0,557						· .		
	1	ΨV		1.000					1.000		1.000		4.7.7.7		1.000				1.000		0.999		
		Å		-,,,,,			2,000		1.000		11000	1,000	1.000	1,000	1.000	1.000	1,000	1.000	1.000	1.000	0,999	0,998	
		$\Psi_{\mathbf{I}}$		0.000					0.000	0.000	0.000	0.000	0.000	0,000	0,000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	
		$\Psi_{ exttt{II}}$	0.000				0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0,000	0.000	0,000	
	=25	$\Psi{ t III}$		0.000			-	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0,000	0.002	0.002	
	-	Ψ_{IV}	0.129	0.129	0.128	0.128	0.118	0.119	0.131	0.129	0.129	0.135	0.157	0.157	0.106	0.106	0.153	0.156	0.124	0,121	0.168	0,168	
		ΨV		1.000		0.999	1.000	1.000	1.000	1.000	0.999	0.999	0. 999	0.999	1,000	1,000	0.999	1,000	1.000	1.000	0.994	0.995	
	,	Ψ A	1.000	1.000	0.999	0.999	1.000	1.000	1.000	1.000	0.999	0.999	0,999	0. 999	1.000	1.000	0,999	1.000	1.000	1.000	0.994	0.995	
		$\psi_{\underline{\mathbf{I}}}$	0.000	0.000	0,000	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.005	0.005	0,000	0,000	0.002	0.002	0.000	0.000	0.015	0.011	
•		Ψ_{II}	0.024	0.024	0.026	0.026	0.020	0.022	0.035	0.035	0.030	0.035	0.062	0.062	0.027	0.027	0.058	0.061	0.036	0.035	0.087	0.091	
. 1	, - 7	Ψ_{111}	0.382	0.382	0.346	0.346	0.370	0.333	0.414	0.422	0.349	0.355	0.372	0.372	0.318	0.318	0.342	0.349	0.356	0,362	0.350	0.353	
	: .	VIV .	. 0.977	0.977	0.969							0.964			0.946			0.922					
		$\Psi_{\mathbf{V}}$	1,000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	
		Ψ _A	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1,000	1.000	1.000	1,000	1.000	
		ΨΙ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	
	•	ΨII		0.000			0.000	0.000					-		0,000					0.000	0.001	0.001	
ń	_=16	Ψ111		0.009											0.006					0,007	0.034	0.035	
		ΨIV		0,426										-	0.409					0.409	0.421	0.419	
		ΨV	1,000			1.000		1.000	2			1.000			7.5	1,000		 4 4 4 5 5 5 	1.000	1.000	1,000	1,000	
		ΨA		1.000												1.000	1.000	1.000	1.000	1.000	1.000	1,000	
		**						45															
		ΨĮ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			0.000		0.000		0.000		0.000		
		Ψ_{II}		0.000	0.000	0.000			0.000	0.000	;	0.000		-	0.000		0.000	0.000		0.000	0.000	0.000	
n	k=23	Ψ_{III}		0.000		0.000		0.000		0.000	0.000	0.000			0.000		0.000	0.000		0.000		0.001	
*		Ψ_{IV}		0.049	0.077	2.5		0.064			0.076		_		0.072	4.52	0.080		0.068		0, 111		
		$\Psi_{\mathbf{V}}$	0.999	0.999	1.000	1.000						0.999		•	0,998								
		$\Psi_{\mathbf{A}}$	0.999	0.999	1.000	1.000	0.999	0,999	1.000	1.000	0.999	0.999	0.999	0.999	0.998	0,998	0.995	0.996	1,000	1,000	0.985	0,986	
_																					·		

 $[\]alpha = .05$, $\sigma_p = .007$; $\alpha = .10$, $\sigma_p = .009$

^{*}Conditions: (1) equal n's - equal σ^2 's (2) equal n's unequal σ^2 's (3) unequal n's - equal σ^2 's (4) unequal n's - unequal σ^2 's (positively related) (5) unequal n's - unequal σ^2 's (negatively related).

 $[\]psi_1$ Maximum contrast; ψ_{11} 2nd largest contrast(s); ψ_{111} 3rd largest contrast(s); ψ_{10} 4th largest contrast(s); ψ_{0} 5th largest contrast(s); ψ_{0} all contrasts.

TABLE 7

HONTE CARLO TYPE II EXPERIMENTWISE ERRORS FOR THE HARMONIC MEAN (N) AND KRAMER (K) WHENQUAL FORMS OF THE TUKEY STATISTIC HAVING .67 0-UNIT MEAN DIFFERENCES FOR EIGHT TREATHENT LEVELS MICH DEVIATION FROM ZERO IS CONSIDERED

											CONNI	TION*	-			- 12						
	,						NORMAL	DISTRI	BUTION	-	CONDI	TTON"				×	XPO ZRI	TAL DIS	Toverno	ON:		
				1		2		3		4		5		1 ,		2		3	TUTOUT	4		5
		V:**	H	, K	<u>я</u>	. K	R	K	H	K	_ H	K	Ħ	K		K	н	K	E	K	R	. K
		ΨĮ	0.00		0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.00	0.000	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	0.004
	•	Ψ ₁₁	0.00						0,00			0.00	0.002	0.002	0.00	0.000	0.00	2 0.00	2 0.00	0.00	0.00	3 0.009
		Ψ111 Ψ		0.00			7 0.00							0.015			0.02	4 0.02	3 0.01	0.01	0.05	0.059
	n _k *	7 Ψ ₁ ν	0.14				0 0.15	0.156		0.165							0.19	0.20	3 0.14	3 0.14	8 0.21	0.221
		Ψ _{V1}	0.81				7 0.809			0.827		0.741	0.700	0.700	0.680	0.680	0.70	0.70	9 0.70	0.69	0.62	0.628
		V _{VII}	0.99							1.000		1.000	0.996	0.996	C.996	0.996	0.99	3 0.99	1.000	1.000	0.975	0.973
		w.	1.00			0 1.000				1.000				1.000			1.00	1.00	1.000	1.000	1.000	1.000
	•	٨	1.00	0 1,00	0 1.00	0 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	2000	1.00	1.000	1.000	1.000	1.000
		$\Psi_{\mathbf{I}}$	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000
		Ψ _{II}	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	01000	0.000	0.000	0.000	0.000	0.000	0.000			0.000		
S		, III	0.000						0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	.0.000	0.000	0.000	0.000	0.000
•	n _k =1		0.000				0.000		0.000				0.001		0.001			0.00	0.000	0.000	0.004	0.004
q		Ψ _V	0.026					0.018						0.053								0.090
		ΨVI		4 0,864 0 1.000			0.825		0.837					0.763			0.759				0.722	0.726
	•	ΨVII	1.000						1.000			1.000					2.000		1.000	1.000	1.000	1.000
		Ψ _A -				7.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
		Ψį	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9 000	0.000	0.000	0.000	0.000	0.000
		Ψı	0.000	0.000	0.000	. 0.000	0.000	0.000	0.000	0.000	0.000			2.0	0.000		9.000				2 2 To 1	4.5
		Ψii	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000						
	n _k =25	414	0.000			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				4. 1. 1	0.000
		₩	0.000			0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.001	0.001	0.001	9. 000	0.000	0.000	0.000	0.007	0.007
	,	₩1	0.249			0,244	0.234	0.238	0.270	0.267	0,232	0.238	0.261	0.261	0.211	0.211	0.259	0.257	0.247	0.245	0.286	0.286
		₩11 #_	1.000	.,		1.000	1.000	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	•	ΨA	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	2_000	1.000	1.000	1.000	1.000	1.000
		$\psi_{\mathbf{I}}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		ΨII ·	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			0.002	1 1	0.000					0.006	5.006
		$\psi_{ exttt{III}}$	0.002	0.002	0.004	0.004	0.000	0.000	0.005	0.904	0.005	0.005	0.014	0.014	0.006	0.006	0.016	0.015	0.004	0.004	0.032	
	n. = 7	Ψιν	0.067		0.079		0.072	0.076	0.084	0.092	0.084	0.096	0.131	0.131	0.089	0.089	5.118	0,123	0.102	0.096	0.154	0.156
	K.	Ψv	0.674			0.645		0.660	0.697	0.691				0.585				0.545	0,602	0.600	0.553	0.562
		ΨVI	0.999	0.999		0.997	-2		0.999	0.999				0.981				0.983		0.995	0.967	0.964
	•	VII	1.000	1.000		1.000	1.000		1.000					1.000						1.000	1.000	1.000
		Ψ A	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
		ΨŢ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0-000	0.000	0.500	0.000	0.000	0.000
	٠.	ΨīΙ			0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9-000	0,000	0.000	0.000	0.000	0.000
6	·	Ψ _{III}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000,	0.000	0.000	0.000	0.000	0. 000	0.000	0.000		0.000	0.000
	n _k =16	ΨĮV	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	D .000	0.000	0.000	0.000	0.000	0.000
8	K	Ψv	0.012	0.012	0.019	0.019	0.013	0.013	0.024	0.022	0.010	0.010	0.025	0.025	0.026	0.026 .	0. 027	0.028	0.023	0.023	0.044	0.045
٠.		ΨVI	0.699	0.699	0.668	0.668	0.686	0.688	0.698	0.697	0.683	0.684	0.648	0.648	0.617	0.617	D-628	0.632	0.672	0.668	0.587	0.586
		. ΨVII	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000
		. [₩] A	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1 -000	1.000	1.000	1,000	1.000	1.000
		$\Psi_{\mathbf{I}}$	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	D. 000	0.000	0.000	0.000	0.000	0.000
		ΨII	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			0.000	
	·	Ψ III	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	D.000	0.000	0.000			0.000
	n _k =25	νıν	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			0.000
		Ψv	0.000			100,0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.001	0.007	0.007
		η. Α.Δ	1 000	1.000	U. 159	0.159	0.156	0.158	0.157	0.152 (183	0.186	0.181	0.181	0.165	0.165	0.181	0.180	0.173	0.168	0.211	0.215
		ΨVII Ψ.	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999
		۸	1,000		11000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999
-	-												- 1								1.5	10.00

 $[\]alpha = .05$, $\sigma_{p} = .007$; $\alpha = .10$, $\sigma_{p} = .009$

Conditions: (1) equal n's - equal σ^2 's (2) equal n's unequal σ^2 's (3) unequal n's - equal σ^2 's (4) unequal n's - unequal σ^2 's (positively related).

^{##} Ψ, Maximum contrast; ψ₁₁ and largest contrast(s); ψ₁₁ 3rd largest contrast(s); ψ_{1V} 4th largest contrast(s); ψ_V 5th largest contrast(s); ψ_V 6th largest contrast(s); ψ_V 6th