Интеграл Римана-Стилтьеса

Задача 1. При каких a>0 функция $x\sin(x^{-a})$ является функцией ограниченной вариации на отрезке [0,1]?

Задача 2. Пусть $g \in C[a,b]$ — функция ограниченной вариации. Докажите, что

- (a) $Var_{[a,c]}g + Var_{[c,b]}g = Var_{[a,b]}g$ при a < c < b, (b) функция $x \to Var_{[a,x]}g$ непрерывна.

Задача 3. Пусть $f \in C[a,b]$ и $g \in C^1[a,b]$. Докажите, что

$$\int_a^b f(t) dg(t) = \int_a^b f(t)g'(t) dt.$$

Задача 4. Предположим, что существует интеграл Римана–Стилтьеса $\int_{0}^{b} f(t) \, dg(t)$. До-

кажите, что существует интеграл Римана—Стилтьеса $\int^b g(t)\,df(t)$ и верно равенство

$$\int_{a}^{b} g(t) df(t) = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(t) dg(t).$$

 ${f Задача}\ {f 5.}\ \Pi$ риведите пример функций f и g, для которых интеграл от f по dg существует на [-1,0] и на [0,1], но не существует на [-1,1].

Задача 6. Пусть $f,g \in C[a,b]$ и g — функция ограниченной вариации. Докажите, что при a < c < b

$$\int_a^b f(t)dg(t) = \int_a^c f(t)dg(t) + \int_c^b f(t)dg(t).$$

Задача 7. Пусть $f,g\in C[a,b]$ и g — функция ограниченной вариации. Докажите, что функция

$$t \to \int_a^t f(s) \, dg(s)$$

непрерывна на [a,b]. Является ли эта функция функцией ограниченной вариации?

Задача 8. Пусть $F \in C^1(\mathbb{R})$ и $g \in C[a,b]$ — функция ограниченной вариации. Докажите,

$$\int_{a}^{b} F'(g(t))dg(t) = F(g(b)) - F(g(a)).$$

Задача 9. Пусть g – непрерывная функция ограниченной вариации на [0,T] и f(t,y) непрерывная функция, причем

$$|f(t,y) - f(t,z)| \le L|y - z|.$$

Придайте смысл уравнению

$$dy(t) = f(t, y(t))dg(t)$$

и докажите теорему существования и единственности решения задачи Коши. Докажите, что функция $y(t) = y(0)e^{g(t)}$ является решением уравнения dy(t) = y(t)dg(t).

1

Задача 10. Пусть f,g – непрерывные функции ограниченной вариации на [0,T] Рассмотрим систему уравнений

$$dx = df$$
, $dy = xdg$.

Докажите, что пара $x(t)=f(t),\ y(t)=\int_0^t f(s)dg(s)$ является решением. Существует ли непрерывное отображение $C[0,T]\times C[0,T]\to C[0,T],$ ограничение которого на функции ограниченной вариации имеет вил

$$(f,g) \mapsto \int_0^t f(s) \, dg(s)$$
?

Винеровский процесс

Задача 11. Проверьте, что в определении винеровского процесса условия: $\mathbb{E}w_t = 0$, $\mathbb{E}w_t w_s = \min\{t,s\}$, вектор (w_{t_1},\ldots,w_{t_n}) гауссовский, можно заменить на условия: $w_t - w_s \sim N(0,t-s)$ и при $t_1 < t_2 < \ldots < t_n$ величины $w_{t_1}, w_{t_2} - w_{t_1}, \ldots, w_{t_n} - w_{t_{n-1}}$ независимы.

Задача 12. Пусть w_t — винеровский процесс. Докажите, что при t>s величина w_t-w_s независима от сигма-алгебры $\mathcal{F}_s=\sigma(w_\tau,\tau\leq s)$.

Задача 13. Пусть w_t — винеровский процесс. Пусть $t_k=\frac{kT}{2^n}$, где $k=0,1,\dots,2^n$. Докажите, что почти наверное

$$\sum_{k} (w_{t_k} - w_{t_{k-1}})^2 \to T.$$

Задача 14. Пусть $f \in C[0,T], p > 1, \alpha > 0$. Докажите неравенство

$$|f(t) - f(s)|^p \le C(p, \alpha, T)|t - s|^{-1+p\alpha} \int_0^T \int_0^T \frac{|f(u) - f(v)|^p}{|u - v|^{1+p\alpha}} du dv.$$

Задача 15. Докажите, что почти наверное траектории винеровского процесса нигде не дифференцируемы.

Задача 16. Пусть $\xi_n \sim N(0,1)$ — независимые величины. Проверьте, что для некоторой последовательности номеров N_k суммы

$$\frac{\xi_0 t}{\sqrt{\pi}} + \sum_{n=1}^{N_k} \xi_n \sqrt{\frac{2}{\pi}} \frac{\sin nt}{n}$$

сходятся почти наверное равномерно и их предел является винеровским процессом.

Пространство Камерона-Мартина

Задача 17. Проверьте, что функции

$$\frac{t}{\sqrt{\pi}}, \quad \sqrt{\frac{2}{\pi}} \frac{\sin nt}{n}$$

являются ортонормированным базисом пространства Камерона–Мартина меры Винера на пространстве $C[0,\pi]$.

Задача 18. Пусть μ — конечная борелевская мера на [0,T]. Выразите общее решение уравнения $y'' = \mu$ через функцию распределения $f(t) = \mu([0,t])$.

Задача 19. Пусть H — гильбертово пространство. Докажите, что не существует вероятностной меры γ на H, у которой преобразование Фурье равно $\exp(-\|h\|^2/2)$.

Задача 20. Пусть H — гильбертово пространство и γ — центрированная гауссовская мера на H. Ковариационный оператор K определяется равенством

$$\langle Kx, y \rangle = \int \langle x, u \rangle \langle u, y \rangle \gamma(du).$$

Докажите, что K является компактным самосопряженным оператором. Найдите пространство Камерона-Мартина. Рассмотрите в качестве примера меру Винера на $L^2[0,2\pi]$ и получите новое описание пространства Камерона-Мартина.

Задача 21. Докажите, что пространство Камерона–Мартина является пересечением линейных пространств полной меры.

Интеграл Ито

Задача 22. Пусть (Ω, \mathcal{F}, P) — вероятностное пространство, w_t — винеровский процесс и \mathcal{F}_t — соответствующая фильтрация. Через $\mathbb{L}^2[0,T]$ обозначим пространство функций $\xi \colon \Omega \times [0,T] \to \mathbb{R}$, которые измеримы относительно $\mathcal{F} \times \mathcal{B}[0,T]$ и для каждого t величина ξ_t измеримы относительно \mathcal{F}_t , причем

$$\|\xi\|^2 = \mathbb{E} \int_0^T |\xi_t|^2 dt < \infty.$$

Докажите, что в $\mathbb{L}^2[0,T]$ всюду плотно семейство функций вида

$$\sum_{k=0}^{n-1} \eta_k I_{(t_k, t_{k+1}]},$$

где $\{t_k\}$ — разбиение отрезка [0,T], а случайная величина η_k измерима относительно \mathcal{F}_{t_k} .

Задача 23. Пусть (Ω, \mathcal{F}, P) — вероятностное пространство и \mathcal{F}_t — фильтрация. Докажите, что пространство квадратично интегрируемых почти наверное непрерывных мартингалов M_t на [0,T] с нормой $||M|| = \sqrt{\mathbb{E}|M_T|^2}$ является банаховым пространством.

Задача 24. Пусть (Ω, \mathcal{F}, P) — вероятностное пространство, \mathcal{F}_t — фильтрация и M_t — непрерывный квадратично интегрируемый Мартингал на [0,T], а $\langle M \rangle_t$ — его квадратичная вариация, то есть такой неубывающий непрерывный процесс, что процесс $M_t^2 - \langle M \rangle_t$ является мартингалом. Докажите, что в среднем квадратичном

$$\sum_{k} (M_{t_{k+1}} - M_{t_k})^2 \to \langle M \rangle_T$$

при $\lambda(\mathbb{T}) \to 0$ и \mathbb{T} — разбиение отрезка [0,T].

Задача 25. Пусть w_t — винеровский процесс. Проверьте, что $\xi_t = e^{w_t - \frac{t}{2}}$ является решением стохастического уравнения $d\xi_t = \xi_t \, dw_t$, $\xi_0 = 1$.

Задача 26. Пусть w_t — винеровский процесс. Докажите, что решение стохастического уравнения

$$d\xi_t = -\frac{1}{2}\xi_t \, dt + dw_t$$

задается формулой

$$\xi_t = e^{-t/2}\xi_0 + e^{-t/2} \int_0^t e^{s/2} dw_s.$$

Задача 27. Пусть b и σ — гладкие ограниченные функции на $\mathbb R$ с ограниченными производными, причем $\sigma(x) \geq \sigma_0 > 0$. Предположим, что случайный процесс $w_{t,n}$ является кусочно-гладкой функцией по t и при каждом t почти наверное сходится к w_t . Пусть $x_{t,n}(\omega)$ при каждом ω является решением обычного дифференциального уравнения

$$dx_{t,n} = b(x_{t,n}) dt + \sigma(x_{t,n}) dw_{t,n}, \quad x_{t,n} = x_0.$$

Найдите предел $x_{t,n}$ при $n \to +\infty$.

Задача 28. Пусть f — гладкая функция с ограниченными производными. Найдите

$$\int_0^T f'(w_t) \circ dw_t.$$

Задача 29. Пусть f — гладкая функция с ограниченными производными на \mathbb{R}^d . Выразите интеграл

$$\int_0^T f(w_t^1, \dots, w_t^d) \circ dw_t^i$$

через интеграл Ито.

Задача 30. Пусть w_t^i — независимые винеровские процессы. Пусть g — неотрицательная гладкая функция с носителем в [0,1] и равным единице интегралом. Положим $g_n(t)=ng(nt)$. Положим

$$w_{t,n}^i(\omega) = \int_0^{+\infty} w_{t+s}^i(\omega) g_n(s) \, ds.$$

Найдите предел при $n \to \infty$ выражения

$$\int_0^T w_{t,n}^i dw_{t,n}^j - \int_0^T w_{t,n}^j dw_{t,n}^i.$$

Задача 31. Пусть x_t — гладкая кривая в \mathbb{R}^2 . Докажите, что величина

$$\frac{1}{2} \int_{s}^{t} (x_{\tau}^{1} - x_{s}^{1}) dx_{\tau}^{2} - (x_{\tau}^{2} - x_{s}^{2}) dx_{\tau}^{1}$$

выражает площадь (со знаком) между кривой и хордой, соединяющей точки (x_s^1, x_s^2) и (x_t^1, x_t^2) .

Задача 32. Пусть $x_n(t)=\frac{1}{n}\cos n^2t,\ y_n(t)=\frac{1}{n}\sin n^2t,$ где $t\in[0,2\pi]$. Проверьте, что по гёльдеровой норме

$$||f||_{\delta} = \max_{[0,2\pi]} |f(t)| + \sup_{t \neq s} \frac{|f(t) - f(s)|}{|t - s|^{\delta}}, \quad 0 < \delta < 1/2$$

последовательности x_n и y_n стремятся к нулю. Найдите предел посследовательности

$$\frac{1}{2} \int_0^{2\pi} x_n dy_n - y_n dx_n.$$

Сигнатура кривой

Задача 33. Найдите

$$\int_{0 < u_1 < t} dx_{u_1}^i, \quad \int_{0 < u_1 < u_2 < t} dx_{u_1}^{i_1} dx_{u_2}^{i_2}, \quad \int_{0 < u_1 < u_2 < u_3 < t} dx_{u_1}^{i_1} dx_{u_2}^{i_2} dx_{u_3}^{i_3}$$

для кривой (x_t^1, x_t^2) , где

$$(a) x_t^1 = a^1 + b^1 t, \quad x_t^2 = a^2 + b^2 t, \quad (b) x_t^1 = e^t, \quad x_t^2 = e^{2t}.$$

Задача 34. Докажите, что сигнатура гладкой кривой не меняется при параллельном переносе и гладкой возрастающей замене параметра.

Задача 35. Пусть $(x_t)_{t\in[0,T]}$ — гладкая кривая, причем $\max_{[0,T]}|x_t'|=M$. Докажите, что

$$\left| \int_{0 < u_1 < \dots < u_k < T} dx_{u_1}^{i_1} \dots dx_{u_k}^{i_k} \right| \le \frac{M^k}{k!}.$$

Задача 36. Пусть f_1, \ldots, f_m — непрерывные функции на [0,T] и $1 \leq i < m$. Докажите, что

$$\int_{0 < u_1 < \dots < u_i < t} f_1(u_1) \cdots f_i(u_i) du_1 \dots du_i \cdot \int_{0 < v_{i+1} < \dots < v_m < t} f_{i+1}(v_{i+1}) \cdots f_m(v_m) du_{i+1} \dots du_m$$

является линейной комбинацией интегралов вида

$$\int_{0 < u_1 < \dots < u_m < t} f_{i_1}(u_1) \cdots f_{i_m}(u_m) du_1 \dots du_m,$$

где (i_1,\ldots,i_m) пробегает все перестановки элементов $\{1,2,\ldots,m\}$. Проведите рассуждение по индукции, рассмотрев производную функции g(t)=

$$= \int_{0 < u_1 < \dots < u_i < t} f_1(u_1) \cdots f_i(u_i) du_1 \dots du_i \cdot \int_{0 < v_{i+1} < \dots < v_m < t} f_{i+1}(v_{i+1}) \cdots f_m(v_m) du_{i+1} \dots du_m.$$

Задача 37. Пусть x_t — гладкая кривая в $\mathbb{R}^2, t \in [0,T], x_0 = 0$. Выразите через сигнатуру величины

(a)
$$\int_{0 \le u_1 \le u_2 \le T} dx_{u_1}^1 dx_{u_2}^2 \cdot \int_0^T dx_u^2$$
, $\int_0^T (x_u^1)^2 x_u^2 dx_u^1$.

Задача 38. Пусть x_t — гладкая кривая в \mathbb{R}^d , $t \in [0,T]$. Положим $y_t = x_{T-t}$. Докажите, что

$$S(x) \otimes S(y) = 1.$$

Задача 39. («lead-lag embedding») По набору из четырёх значений (a_1, a_2, a_3, a_4) построили набор точек плоскости:

$$(a_1, a_1), (a_1, a_2), (a_2, a_2), (a_2, a_3), (a_3, a_3), (a_3, a_4), (a_4, a_4),$$

которые последовательно соединили отрезками. Получили плоскую кривую $X_t, t \in [0,T]$. Изобразите эту кривую в случае, когда $a_1=1, a_2=0, a_3=2, a_4=3$. Найдите

$$\int_{0 < u_1 < T} dx_{u_1}^i, \quad \int_{0 < u_1 < u_2 < T} dx_{u_1}^{i_1} dx_{u_2}^{i_2}.$$

Задача 40. («cumulative lead-lag embedding») Пусть в условиях предыдущей задачи

$$a_1 = 0$$
, $a_2 = b_1$, $a_3 = b_1 + b_2$, $a_4 = b_1 + b_2 + b_3$.

Выразите

$$\int_{0 < u_1 < T} dx_{u_1}^i, \quad \int_{0 < u_1 < u_2 < T} dx_{u_1}^{i_1} dx_{u_2}^{i_2}$$

через b_1, b_2, b_3 .

Мультипликативные функционалы и грубые траектории

Задача 41. Пусть $(1, X_{st}^{(1)}, \dots, X_{st}^{(k)})$ — мультипликативный функционал, причем выполнено $(k+1)\alpha > 1$ и $|X_{st}^{(j)}| \le C_j |t-s|^{\alpha j}$ при $j=1,2\dots,k$. Положим $\widehat{X}_{st} = (1,\widehat{X}_{st}^{(1)},\dots,\widehat{X}_{st}^{(k)},0)$. Докажите, что существует предел

$$\lim_{\lambda(\mathbb{T})\to 0} \widehat{X}_{su_1} \otimes \widehat{X}_{u_1u_2} \otimes \ldots \otimes \widehat{X}_{u_{N-1}t}.$$

Задача 42. Пусть $(1, X_{st}^{(1)}, X_{st}^{(2)})$ — мультипликативный функционал степени 2 на [0, T]. Докажите, что для всякого разбиения $s = u_0 < u_1 < \ldots < u_N = t$ верно равенство

$$X_{st}^{(2)} = \sum_{k} \left(X_{u_k u_{k+1}}^{(2)} + X_{su_k}^{(1)} \otimes X_{u_k u_{k+1}}^{(1)} \right).$$

Задача 43. Пусть $(1,X_{st}^{(1)},X_{st}^{(2)})$ — мультипликативный функционал степени 2 на [0,T], причем $|X_{st}^{(1)}| \leq K_1 |t-s|^{\alpha}$ и $|X_{st}^{(2)}| \leq K_2 |t-s|^{2\alpha}$. Докажите, что для всякого p>2 справедливо неравенство

$$K_2 \le 2K_1^2 + N(p,\alpha) \left(\int_0^T \int_0^v \frac{|X_{uv}|^p}{|u-v|^{2\alpha p+2}} \, du \, dv \right)^{1/p}.$$

Задача 44. Используя приближение стохастического интеграла Стратоновича интегралом Римана—Стилтьеса и предыдущую задачу дать обоснование почти наверное непрерывности по Гёльдеру с показателем 2α , где $\alpha \in (1/3, 1/2)$, интеграла

$$\int_{s}^{t} \left(w_{\tau}^{i} - w_{s}^{i} \right) \circ dw_{\tau}^{j},$$

без ссылки на теорему Колмогорова для грубых траекторий.

Задача 45. Пусть $(1,X_{st,n}^{(1)},X_{st,n}^{(2)})$ — мультипликативные функционалы степени 2 на [0,T], причем $|X_{st,n}^{(1)}| \leq K_1|t-s|^{\alpha}$ и $|X_{st,n}^{(2)}| \leq K_2|t-s|^{2\alpha}$, где константы K_1,K_2 не зависят от n. Предположим, что $X_{st,n}^{(1)} \to X_{st}^{(1)}$ и $X_{st,n}^{(2)} \to X_{st}^{(2)}$ поточечно. Докажите, что $(1,X_{st}^{(1)},X_{st}^{(2)})$ — мультипликативные функционал степени 2 на [0,T]. Докажите, что при $0<\beta<\alpha$ величина

$$\sup_{s \neq t} \frac{|X_{st}^{(1)} - X_{st,n}^{(1)}|}{|t - s|^{\beta}} + \sup_{s \neq t} \frac{|X_{st}^{(2)} - X_{st,n}^{(2)}|}{|t - s|^{2\beta}}$$

стремится к нулю при $n \to \infty$.

Задача 46. Докажите, что пространство Гёльдера $C^{\alpha}[0,T]$ является полным, но не является сепарабельным.

Задача 47. Пусть $X \in C^{\alpha}[0,T]$. Докажите, что если

$$\lim_{\delta \to 0+} \sup_{|s-t| < \delta} \frac{|X_{st}|}{|s-t|^{\alpha}} = 0,$$

то X можно приблизить в $C^{\alpha}[0,T]$ гладкими функциями.

Задача 48. Пусть $0<\alpha<1$. Проверьте, что функцию t^{α} нельзя в $C^{\alpha}[0,1]$ приблизить гладкими функциями.

Задача 49. Найдите замыкание бесконечно дифференцируемых функций в $C^1[0,T]$.

Задача 50. Пусть h — непрерывно дифференцируемая кривая $[0,T] \to \mathbb{R}^d$. Для всякой грубой траектории $\mathbf{X} = (X, \mathbb{X}) \in \mathcal{C}^{\alpha}[0,T]$ положим $T_h(\mathbf{X}) = (X^h, \mathbb{X}^h)$, где

$$X^h = X + h$$
, $\mathbb{X}_{st}^h = \mathbb{X}_{st} + \int_s^t h_{sr} \otimes dX_r + \int_s^t X_{sr} \otimes dh_r + \int_s^t h_{sr} \otimes dh_r$.

Докажите, что T_h — непрерывное отображение из $\mathcal{C}^{\alpha}[0,T]$ в $\mathcal{C}^{\alpha}[0,T]$.

Задача 51. Пусть $\mathbf{X} = (X, \mathbb{X}) \in \mathcal{C}^{\alpha}[0, T]$ и (W, \mathbb{W}) — грубая траектория, соответствующая винеровскому процессу. Положим

$$Z_{t} = \begin{pmatrix} X_{t} \\ W_{t} \end{pmatrix}, \mathbb{Z}_{st} = \begin{pmatrix} \mathbb{X}_{st} & \int_{s}^{t} X_{sr} \otimes dw_{r} \\ \int_{s}^{t} w_{sr} \otimes dX_{r} & \mathbb{W}_{st} \end{pmatrix}$$

Докажите, что (Z,\mathbb{Z}) имеет модификацию, которая является грубой траекторией.

Задача 52. Пусть (X, \mathbb{X}) — геометрическая грубая траектория с показателем Гёльдера $\alpha = 1/2$. Докажите, что

$$\mathbb{X}_{st}^{ij} = \lim_{\lambda(\mathbb{T}) \to 0} \sum_{[u,v] \in \mathbb{T}} X_{su}^i X_{uv}^j,$$

где \mathbb{T} — разбиение отрезка [s,t].

Задача 53. Пусть w_t — многомерный винеровский процесс. Положим $X_t = \beta t + \sigma W_t$. Предложите грубую траекторию, соответствующую кривой X_t .

Задача 54. Пусть
$$(X, \mathbb{X}) \in \mathfrak{C}^{\alpha}$$
 и $F_{st}^{ij} = \mathbb{X}_{st}^{ij} + \mathbb{X}_{st}^{ji} - X_{st}^{i}X_{st}^{j}$. Докажите, что
$$F_{st} = F_{su} + F_{ut}, \quad |F_{st}| \leq C|t-s|^{2\alpha}.$$

Задача 55. Покажите, что геометрическая грубая траектория (X, \mathbb{X}) не определяется однозначно своей первой компонентой X и приближая кривую X гладкими кривыми можно получить различные грубые траектории.

Задача 56. Пусть $G^{(2)}$ — подгруппа в $T_1^{(2)}(V)$, состоящая из элементов $(1,b,c+\frac{1}{2}b\otimes b)$, где $c^{ij}=-c^{ji}$. Пусть (X,\mathbb{X}) — грубая геометрическая траектория. Проверьте, что $g_t=(1,X_t,\mathbb{X}_{0t})\in G^{(2)}$ и найдите $g_s^{-1}\otimes g_t$ для s< t.

Интегрирование по грубой траектории

Задача 57. Обоснуйте лемму о сшивке с помощью рассуждений, которые использовались при обосновании существования предела в задаче 41.

Задача 58. Докажите для интеграла Юнга формулу Ньютона-Лейбница

$$F(x_t) - F(x_s) = \int_s^t F'(x_\tau) \, dx_\tau,$$

где x_t — кривая класса C^{α} , функция F непрерывно дифференцируема и $F' \in C^{\beta}$, причем $\alpha(\beta+1) > 1$.

Задача 59. Докажите для интеграла Юнга формулу интегрирования по частям

$$X_T Y_T = X_0 Y_0 + \int_0^T X_u \, dY_u + \int_0^T Y_u \, dX_u.$$

Задача 60. Пусть $Y,Z\in C^{\beta}[0,T],\,X\in C^{\alpha}[0,T]$ и $\alpha+\beta>1.$ Положим

$$U_t = \int_0^t Z_s \, dX_s.$$

Обоснуйте равенство

$$\int_0^T Y_t dU_t = \int_0^T Y_t Z_t dX_t.$$

Задача 61. Найдите производную Губинелли относительно $X_t = t^{\alpha}, \ \alpha \in (0,1), \ t \in [0,1],$ у кривых (a) $Y_t = t,$ (b) $Y_t = t^{\beta},$ (c) $Y_t = \cos(t^{\beta}).$

Задача 62. Верно ли, что производная Губинелли определена единственным образом? Докажите, что если для всякого ненулевого вектора v выпонено

$$\overline{\lim}_{t\to s+} \frac{|\langle X_{st}, v\rangle|}{|t-s|^{2\alpha}} = \infty,$$

то производная Губинелли Y'_s определена однозначно. Убедитесь, что производная Губинелли относительно винеровского процесса определена однозначно.

Задача 63. Обоснуйте правило Лейбница для контролируемых траекторий: если (Y,Y') и (Z,Z') — контролируемые траектории относительно X, то (YZ,Y'Z+YZ') — контролируемая траектория относительно X.

Задача 64. Пусть $(Y,Y')\in\mathcal{D}_X^{2\alpha},\,(X,\mathbb{X}),(\widetilde{X},\widetilde{\mathbb{X}})\in\mathfrak{C}^{\alpha},$ причем $\widetilde{X}_t=X_t$ и $\widetilde{\mathbb{X}}_{st}=\mathbb{X}_{st}+F_t-F_s$. Докажите, что

$$\int_0^T Y_u d\widetilde{X}_u = \int_0^T Y_u dX_u + \int_0^T Y_u' dF_u.$$

Задача 65. Покажите, что интеграл по грубой траектории действительно зависит от производной Губинелли.

Задача 66. Пусть f — гладкая функция с ограниченными производными до третьего порядка включительно и $(X, \mathbb{X}) \in \mathfrak{C}^{\alpha}$. Предположим, что (X, \mathbb{X}) — геометрическая грубая траектория. Докажите, что

$$\int_0^T Df(X_u) \, dX_u = f(X_T) - f(X_0).$$

Верно ли это утверждение, если (X, \mathbb{X}) не является геометрической грубой траекторией? Можно ли в этом утверждении контролируемую кривую $(Df(X_t), D^2f(X_t))$ заменить на $(Df(X_t), Y_t')$ с какой-то производной Губинелли Y'?

Задача 67. Докажите, что интеграл Стратоновича почти наверное совпадает с интегралом по соответствующей грубой траектории.

Задача 68. В условии задачи 50 ослабим ограничения на h до $h \in C^{2\alpha}[0,T]$, а интегралы будем понимать как интегралы Юнга. Проверьте, что (X_t^h, \mathbb{X}^h) является грубой траекторией. Найдите $[X^h]_t$.

Задача 69. Пусть (Y,Y') и (Z,Z') — две контролируемые относительно X кривые. Докажите, что существует предел

$$\lim_{\lambda(\mathbb{T})\to 0} \sum_{[u,v]} \Big(Y_u Z_{uv} + Y_u' Z_u' \mathbb{X}_{uv} \Big),$$

который обозначаем через $\int_s^t Y_u \, dZ_u$.

Задача 70. Пусть (Y,Y'),(Z,Z') — контролируемые траектории относительно X. Проверьте равенство

$$\int_0^T Y_t \, dU_t = \int_0^T Y_t Z_t \, dX_t, \quad U_t = \int_0^t Z_s \, dX_s,$$

где интегралы в правой части равенства и в определении U являются интегралами по грубым траекториям, а интеграл в левой части понимается в смысле задачи 69 (напомним, что (U,Z) — контролируемая траектория).

Задача 71. Пусть (Z,Z') — контролируемая траектория. Понимая интеграл как в задаче 69 положим

$$\mathbb{Z}_{st} = \int_{s}^{t} Z_{su} \otimes dZ_{u}.$$

Проверьте, что (Z, \mathbb{Z}) является грубой траекторией, причем грубый интеграл по Z совпадает с интегралом из задачи 69.

Задача 72. Пусть $Y,Z,\widetilde{Y},\widetilde{Z}\in\mathcal{D}_{X}^{2\alpha}$ и

$$\max\{\|Y\|_{\mathcal{D}}, \|Z\|_{\mathcal{D}}, \|\widetilde{Y}\|_{\mathcal{D}}, \|\widetilde{Z}\|_{\mathcal{D}}\} \le M.$$

Докажите, что

$$\left| \int_0^T Y \, dZ - \int_0^T \widetilde{Y} \, d\widetilde{Z} \right| \le C(M) \left(\|Y - \widetilde{Y}\|_{\mathcal{D}} + \|Z - \widetilde{Z}\|_{\mathcal{D}} \right).$$

Задача 73. Пусть (X,\mathbb{X}) — грубая траектория, (Y,Y') — контролируемая траектория относительно X. Пусть $Z_t=\int_0^t Y_s\,dX_s$, а (Z,\mathbb{Z}) — соответствующая грубая траектория. Докажите, что

$$[Z]_t = \int_0^t Y_s \otimes Y_s \, d[X]_s.$$

Задача 74. Пусть

$$Y_t = Y_0 + \int_0^t Z_u dX_u + F_t,$$

где $F_t \in C^{2\alpha}, \, (X,\mathbb{X}) \in \mathfrak{C}^{\alpha}, \, (Z,Z') \in \mathcal{D}_X^{2\alpha}$. Для гладкой функции f обоснуйте равенство

$$f(Y_T) - f(Y_0) = \int_0^T Df(Y_u) Z_u \, dX_u + \int_0^T Df(Y_u) dF_u + \frac{1}{2} \int_0^T D^2 f(Y_u) (Z_u \otimes Z_u) \, d[X]_u.$$

Задача 75. Решите грубое дифференциальное уравнение

$$dY = YZdX$$
.

где (X, \mathbb{X}) — грубая траектория, (Z, Z') — контролируемая относительно X траектория.

Задача 76. Распространите теорему существования и единственности на грубое дифференциальное уравнение вида

$$dY = q(Y) dt + f(Y) dX,$$

где (X, \mathbb{X}) — грубая траектория, а g, f — трижды дифференцируемые функции с ограниченными производными.

(Указание: увеличить размерность и свести к уравнению dY = f(Y) dX)

Задача 77. Рассмотрим грубое дифференциальное уравнение dY = f(Y) dX, где f гладкая **ограниченная** функция с ограниченными производными. Докажите, что в этом случае теорема существования верна не только на малом отрезке $[0,\tau] \subset [0,T]$, но и на всем отрезке [0,T].

(Указание: немного поменять метрику в доказательстве теоремы существования и убедиться, что построенное τ не зависит от начальной точки)