Siamese Network: Architecture and Applications in Computer Vision

February 9, 2017

Outline

Metric Learning

Siamese Architecture

 Siamese Network: Applications in computer vision

Traditional Classification

All classes should be known

 Number of samples per category should be large

Training samples should have a known class

Distance-based Methods

 Compute a similarity metric between the pattern to be classified or verified and a library of stored prototypes

 Can be used to compare or match new samples from previously-unseen categories (e.g. faces from people not seen during training)

Metric Learning

• Euclidean distance vs Mahalanobis distance

Metric Learning

Mahalanobis Distance Metric Learning

- Euclidean distance
- Mahalanobis distance $d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} \vec{y})^T S^{-1} (\vec{x} \vec{y})}$.
- Mahalanobis Distance Metric Learning

$$d(x,y) = d_A(x,y) = ||x - y||_A = \sqrt{(x - y)^T A(x - y)}$$

$$\min_A \quad \sum_{(x_i, x_j) \in \mathcal{S}} ||x_i - x_j||_A^2$$
s.t.
$$\sum_{(x_i, x_j) \in \mathcal{D}} ||x_i - x_j||_A \ge 1$$

$$A \succeq 0$$

Xing E P, Jordan M I, Russell S, et al. Distance metric learning with application to clustering with side-information[C], NIPS2002: 505-512.

Metric Learning

Large-Margin Nearest Neighbors(LMNN)

$$\min_{A\succeq 0} \sum_{(i,j)\in\mathcal{S}} d_A(\boldsymbol{x}_i,\boldsymbol{x}_j) + \lambda \sum_{(i,j,k)\in\mathcal{R}} [1 + d_A(\boldsymbol{x}_i,\boldsymbol{x}_j) - d_A(\boldsymbol{x}_i,\boldsymbol{x}_k)]_+$$

Siamese

- Someone or something from Thailand:
 - The Thai language, The Thai people

- Siamese, an informal term for conjoined or fused:
 - Siamese twins, conjoined twins
 - Siamesing (engineering), the practice, whose name is derived from siamese twins, of combining two devices (such as cylinder ports or cooling jackets) together into a closely coupled pair, so as to save space between them.

Siamese Architecture

Siamese Architecture and loss function

Learning Hierarchies of Invariant Features. Yann LeCun. helper.ipam.ucla.edu/publications/gss2012/gss2012_10739.pdf

Application in Signature Verification

The input is 8(feature)
 x 200(time) units.

 The cosine distance was used, (1 for genuine pairs, -1 for forgery pairs)

Bromley J, Guyon I, Lecun Y, et al. Signature Verification using a" Siamese" Time Delay Neural Network, NIPS Proc. 1994.

Application in Dimensionality reduction

The exact loss function is

$$L(W, Y, \vec{X_1}, \vec{X_2}) = (1 - Y)\frac{1}{2}(D_W)^2 + (Y)\frac{1}{2}\{max(0, m - D_W)\}^2$$

Application in Dimensionality reduction

LearnedMapping of MNIST samples

Learning a Shift Invariant Mapping of MNIST samples

Image Descriptors

Application in Learning Image Descriptors (I)

Using the contrastive cost function

$$l_{\theta}\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right) = \begin{cases} s_{ij}d_{ij}^{2}, & \text{if matching} \\ \max\left(1.0 - d_{ij}^{2}, 0\right), & \text{if non-matching} \end{cases}$$

Nicholas Carlevaris-Bianco and Ryan M. Eustice, Learning visual feature descriptors for dynamic lighting conditions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014

Application in Learning Image Descriptors (I)

CNN Model

Nicholas Carlevaris-Bianco and Ryan M. Eustice, Learning visual feature descriptors for dynamic lighting conditions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014

Application in Learning Image Descriptors (II)

$$d_D(\mathbf{x}_1, \mathbf{x}_2) = \|D(\mathbf{x}_1) - D(\mathbf{x}_2)\|_2$$

$$l(\mathbf{x}_1, \mathbf{x}_2, \delta) = \delta \cdot l_P(d_D(\mathbf{x}_1, \mathbf{x}_2)) + (1 - \delta) \cdot l_N(d_D(\mathbf{x}_1, \mathbf{x}_2))$$

$$l_P(d_D(\mathbf{x}_1, \mathbf{x}_2)) = d_D(\mathbf{x}_1, \mathbf{x}_2)$$

$$l_N(d_D(\mathbf{x}_1, \mathbf{x}_2)) = \max(0, m - d_D(\mathbf{x}_1, \mathbf{x}_2))$$

$$l(\mathbf{x}_1, \mathbf{x}_2, \delta)$$

$$l(\mathbf{x}_1, \mathbf{x}_2, \delta)$$

Siamese Network Stereo

Zbontar, Jure, and Yann LeCun. "Stereo matching by training a convolutional neural network to compare image patches." *Journal of Machine Learning Research* (2016)

Thentar Jure, and Yann LeCup, "Computing the stereo matching cost with a convolutional neural network." *CVI*

Zbontar, Jure, and Yann LeCun. "Computing the stereo matching cost with a convolutional neural network." CVPR 2015.

Siamese Network Stereo

- Correspondances on image locations(Matching)
 - *Good feature*
- Refinement in practice
 - Smoothing

Stereo

Zbontar, Jure, and Yann LeCun. "Stereo matching by training a convolutional neural network to compare image patches." *Journal of Machine Learning Research* (2016)

Zbontar, Jure, and Yann LeCun. "Computing the stereo matching cost with a convolutional neural network." CVPR 2015.

Face recognition

1. Face identification

Α

Multiclass classification

2. Face verification

Same person or not.

Binary Result

Application in face verification (I)

Let X_1 and X_2 be a pair of images shown to our learning machine. Let Y be a binary label of the pair, Y = 0 if the images X_1 and X_2 belong to the same person (a "genuine pair") and Y = 1 otherwise (an "impostor pair").

We assume that the loss function depends on the input and the parameters only indirectly through the energy. Our loss function is of the form:

$$\mathcal{L}(W) = \sum_{i=1}^{P} L(W, (Y, X_1, X_2)^i)$$

$$L(W, (Y, X_1, X_2)^i) = (1 - Y)L_G \left(E_W(X_1, X_2)^i \right)$$

$$+ YL_I \left(E_W(X_1, X_2)^i \right)$$

$$= (1 - Y)\frac{2}{Q} (E_W)^2 + (Y)2Q e^{-\frac{2.77}{Q}E_W}$$

$$E_W = ||G_W(X_1) - G_W(X_2)||$$

Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with application to face verification, CVPR 2005

Application in face verification (Π)

LFW:90.68%

Application in face verification(II)

$$d_f^2(x_i, x_j) < \tau - 1, l_{ij} = 1$$

$$d_f^2(x_i, x_j) > \tau + 1, l_{ij} = -1$$

$$\ell_{ij} \left(\tau - d_f^2(\mathbf{x}_i, \mathbf{x}_j) \right) > 1$$

Intuitive illustration of the proposed DDML method

DDML as the following optimization problem:

$$\arg \min_{f} J = J_1 + J_2 \qquad \text{the hid}$$

$$= \frac{1}{2} \sum_{i,j} g \left(1 - \ell_{ij} \left(\tau - d_f^2(\mathbf{x}_i, \mathbf{x}_j) \right) \right)$$

$$+ \frac{\lambda}{2} \sum_{m=1}^{M} \left(\left\| \mathbf{W}^{(m)} \right\|_F^2 + \left\| \mathbf{b}^{(m)} \right\|_2^2 \right)$$

where $g(z) = \frac{1}{\beta} \log (1 + \exp(\beta z))$ is the generalized logistic loss function [25], which is a smoothed approximation of the hinge loss function $[z]_+ = \max(z, 0)$

Junlin Hu, etc. Discriminative Deep Metric Learning for Face Verification in the Wild, CVPR 2014

Classification Network

Application in face verification (IV)

LFW:97.35%

Verification Metric:

- 1)Cosine similarity
- 2) Weighted χ^2 distance $\chi^2(f_1, f_2) = \sum_i w_i (f_1[i] f_2[i])^2 / (f_1[i] + f_2[i])$
- 3) Siamese network $d(f_1, f_2) = \sum_i \alpha_i |f_1[i] f_2[i]|$

Classification Network

Application in face verification (III)

LFW:97.45%

Face Verification: Joint Bayesian

Classification & Siamese Network

Application in face verification (V)

LFW:99.15%

Figure 1: The ConvNet structure for DeepID2 extraction.

Deep Learning Face Representation by Joint Identification-Verification

Classification & Siamese Network

Application in face verification (V)

1. identification loss(cross-entropy)

$$Ident(f, t, \theta_{id}) = -\sum_{i=1}^{n} -p_i \log \hat{p}_i = -\log \hat{p}_t$$

2. verification loss (contrastive)

$$Verif(f_i, f_j, y_{ij}, \theta_{ve}) = \begin{cases} \frac{1}{2} \|f_i - f_j\|_2^2 & \text{if } y_{ij} = 1\\ \frac{1}{2} \max \left(0, m - \|f_i - f_j\|_2\right)^2 & \text{if } y_{ij} = -1 \end{cases}$$

3. verification loss (cosine)

Verif
$$(f_i, f_j, y_{ij}, \theta_{ve}) = \frac{1}{2} (y_{ij} - \sigma(wd + b))^2$$

where $d = \frac{f_i \cdot f_j}{\|f_i\|_2 \|f_i\|_2}$ is the cosine similarity

From Siamese to Triplet Network

Application in Image ranking

Sample images from the triplet dataset

Application in Image ranking

Application in Image ranking

Jiang Wang, etc. Learning Fine-grained Image Similarity with Deep Ranking. CVPR 2014

Application in Image ranking

Distance

$$D(f(P), f(Q)) = ||f(P) - f(Q)||_2^2$$

$$D(f(p_i), f(p_i^+)) < D(f(p_i), f(p_i^-)),$$

 $\forall p_i, p_i^+, p_i^- \text{ such that } r(p_i, p_i^+) > r(p_i, p_i^-)$

Hinge Loss

$$l(p_i, p_i^+, p_i^-) = \max\{0, g + D(f(p_i), f(p_i^+)) - D(f(p_i), f(p_i^-))\}$$

Application in deep metric learning

$$TripletNet(x, x^{-}, x^{+}) = \begin{bmatrix} ||Net(x) - Net(x^{-})||_{2} \\ ||Net(x) - Net(x^{+})||_{2} \end{bmatrix} \in \mathbb{R}^{2}_{+}$$

SoftMax function is applied on both outputs

Elad Hoffer, etc. DEEP METRIC LEARNING USING TRIPLET NETWORK. http://arxiv.org/abs/1412.6622

Application in deep metric learning

2D VISUALIZATION OF FEATURES of CIFAR10

Conclusion

 The loss function in Siamese Network is very important.

Mixed Network Architecture can improve the performance.

Caffe implementation of Siamese Network:
 http://caffe.berkeleyvision.org/gathered/examples/siamese.html

Thank you!