Qualification Report

OpenCellular - Connect1 General Purpose Baseband Computing (GBC)

Revision: 1.0

1.	Purpo	ose	24
<i>2</i> .			
<i>3</i> .		ences	
4.	Devic	e-Under-Test (DUT) Details	24
<i>5</i> .		fication Test Condition	
6.		fication Result Summary	
<i>7</i> .		and Test Equipment	
8.		eviation	
9		fication Tests Results	
9.1	_	nt Panel:	
9.1.	1 S	olar Supply	27
9.1.	1.1	Test ID / Test Name: FP.1.1 / Voltage accuracy	27
9.1.	1.1.1	Purpose	
9.1.	1.1.2	Test and Measurement Method	
9.1.	1.1.3	Test Condition	27
9.1.	1.1.4	DUT Sample Information	27
9.1.	1.1.5	Test Results	
9.1.	1.1.6	Measurement Logs	28
9.1.	1.2	Test ID / Test Name: FP.1.2 / Input supply range	28
9.1.	1.2.1	Purpose	
9.1.	1.2.2	Test and Measurement Method	28
9.1.	1.2.3	Test Condition	28
9.1.	1.2.4	DUT Sample Information	29
9.1.	1.2.5	Test Results	29
9.1.	1.2.6	Measurement Logs	29
9.1.	2 A	UX Supply	29
9.1.	2.1	Test ID / Test Name: FP.2.1 / Voltage accuracy	29
9.1.	2.1.1	Purpose	29
9.1.	2.1.2	Test and Measurement Method	30
9.1.	2.1.3	Test Condition	30
9.1.	2.1.4	DUT Sample Information	30
9.1.	2.1.5	Test Results	30
9.1.	2.1.6	Measurement Logs	30
9.1.	2.2	Test ID / Test Name: FP.2.2 / Input supply range	31
9.1.	2.2.1	Purpose	31
9.1.	2.2.2	Test and Measurement Method.	31
9.1.	2.2.3	Test Condition	31
9.1.	2.2.4	DUT Sample Information	31
9.1.	2.2.5	Test Results	
9.1.	2.2.6	Measurement Logs	31
9.1	3 P	PoE In	
9.1	3.1	Test ID / Test Name: FP.3.1 / Voltage Accuracy	32
9.1	3.1.1	Purpose	32
9.1	3.1.2	Test and Measurement Method	32

9.1.3.1.3	Test Condition	32
9.1.3.1.4	DUT Sample Information	
9.1.3.1.5	Test Results	
9.1.3.1.6	Measurement Logs	
9.1.3.2	Test ID / Test Name: FP.3.2 / Input Voltage Range	33
9.1.3.2.1	Purpose	
9.1.3.2.2	Test and Measurement Method	
9.1.3.2.3	Test Condition	
9.1.3.2.4	DUT Sample Information	34
9.1.3.2.5	Test Results	
9.1.3.2.6	Measurement Logs	
9.1.4 F	PoE – Data	
9.1.4.1	Test ID / Test Name: FP.5.1 / Ethernet Compliance	35
9.1.4.1.1	Purpose	
9.1.4.1.2	Test and Measurement Method.	
9.1.4.1.3	Test Condition	
9.1.4.1.4	DUT Sample Information	
9.1.4.1.5	Test Results	
	Protection	
9.1.5.1	Test ID / Test Name: FP.6.1 / Output Voltage Accuracy	37
9.1.5.2	Test ID / Test Name: FP.6.2 / Solar AUX Present Test	
9.1.5.2.1	Purpose	
9.1.5.2.2	Test and Measurement Method.	
9.1.5.2.3	Test Condition	
9.1.5.2.4	DUT Sample Information	
9.1.5.2.5	Test Results	
9.1.5.2.6	Measurement Logs	
9.1.5.3	Test ID / Test Name: FP.6.3 / Protection Limit	39
9.1.5.3.1	Purpose	
9.1.5.3.2	Test and Measurement Method	39
9.1.5.3.3	Test Condition	39
9.1.5.3.4	DUT Sample Information	39
9.1.5.3.5	Test Results	39
9.1.5.3.6	Measurement Logs	
9.2 Por	ver:	40
9.2.1 F	PoE	
9.2.1.1	Test ID / Test Name: PWR.1.1 / Voltage Accuracy	40
9.2.1.2	Test ID / Test Name: PWR.1.2 / Ripple Measurement	
9.2.1.2.1	Purpose	41
9.2.1.2.2	Test and Measurement Method	41
9.2.1.2.3	Test Condition	41
9.2.1.2.4	DUT Sample Information	41
9.2.1.2.5	Test Results	41
9.2.1.2.6	Measurement Logs	
9.2.1.3	Test ID / Test Name: PWR.1.3 /PoE Present Check	42
9.2.1.3.1	Purpose	42

9.2.1.3.2	Test and Measurement Method	42
9.2.1.3.3	Test Condition	
9.2.1.3.4	DUT Sample Information	42
9.2.1.3.5	Test Results	
9.2.1.3.6	Measurement Logs	42
9.2.1.4	Test ID / Test Name: PWR.1.4 / Data transfer validation	43
9.2.1.4.1	Purpose	
9.2.1.4.2	Test and Measurement Method.	
9.2.1.4.3	Test Condition	43
9.2.1.4.4	DUT Sample Information	
9.2.1.4.5	Test Results	
9.2.1.4.6	Measurement Logs	43
9.2.1.5	Test ID / Test Name: PWR.1.5 / Power delivery	
9.2.1.5.1	Purpose	
9.2.1.5.2	Test and Measurement Method	
9.2.1.5.3	Test Condition	44
9.2.1.5.4	DUT Sample Information	
9.2.1.5.5	Test Results	
9.2.1.5.6	Measurement Logs	44
9.2.2 1	solated DC-DC Converter	
9.2.2.1	Test ID / Test Name: PWR.3.1 / Output Voltage Accuracy	45
9.2.2.1.1	Purpose	
9.2.2.1.2	Test and Measurement Method.	
9.2.2.1.3	Test Condition	45
9.2.2.1.4	DUT Sample Information	45
9.2.2.1.5	Test Results	46
9.2.2.1.6	Measurement Logs	46
9.2.2.2	Test ID / Test Name: PWR.3.2 / Solar AUX and PoE Or'ring circuit	46
9.2.2.2.1	Purpose	
9.2.2.2.2	Test and Measurement Method	46
9.2.2.2.3	Test Condition	46
9.2.2.2.4	DUT Sample Information	47
9.2.2.2.5	Test Results	47
9.2.2.2.6	Measurement Logs	47
9.2.3	Lead Acid battery	48
9.2.3.1	Test ID / Test Name: PWR.4.1 / Output Voltage Accuracy	48
9.2.3.1.1	Purpose	48
9.2.3.1.2	Test and Measurement Method	48
9.2.3.1.3	Test Condition	48
9.2.3.1.4	DUT Sample Information	48
9.2.3.1.5	Test Results	
9.2.3.1.6	Measurement Logs	48
9.2.3.2	Test ID / Test Name: PWR.4.2 / Charge current measurement	
9.2.3.2.1	Purpose	
9.2.3.2.2	Test and Measurement Method	
9.2.3.2.3	Test Condition	49

9.2.3.2.4	DUT Sample Information	49
9.2.3.2.5	Test Results	49
9.2.3.3	Test ID / Test Name: PWR.4.3 / Load current measurement	50
9.2.3.3.1	Purpose	50
9.2.3.3.2	Test and Measurement Method	
9.2.3.3.3	Test Condition	50
9.2.3.3.4	DUT Sample Information	50
9.2.3.3.5	Test Results	
9.2.3.3.6	Measurement Logs	51
9.2.3.4	Test ID / Test Name: PWR.4.4 / LDO Output voltage	
9.2.3.4.1	Purpose	
9.2.3.4.2	Test and Measurement Method.	
9.2.3.4.3	Test Condition	51
9.2.3.4.4	DUT Sample Information	51
9.2.3.4.5	Test Results	52
9.2.3.4.6	Measurement Logs	52
9.2.3.5	Test ID / Test Name: PWR.4.5 / Temperature Measurement	
9.2.3.5.1	Purpose	
9.2.3.5.2	Test and Measurement Method.	
9.2.3.5.3	Test Condition	
9.2.3.5.4	DUT Sample Information	
9.2.3.5.5	Test Results	
9.2.3.5.6	Measurement Logs	53
9.2.3.6	Test ID / Test Name: PWR.4.6 / Charge control	
9.2.3.6.1	Purpose	
9.2.3.6.2	Test and Measurement Method.	
9.2.3.6.3	Test Condition	53
9.2.3.6.4	DUT Sample Information	
9.2.3.6.5	Test Results	
9.2.3.7	Test ID / Test Name: PWR.4.7 / Lead Acid and LiON battery or 'ring circuit	
9.2.3.7.1	Purpose	
9.2.3.7.2	Test and Measurement Method.	
9.2.3.7.3	Test Condition	54
9.2.3.7.4	DUT Sample Information	
9.2.3.7.5	Test Results	
9.2.3.7.6	Measurement Logs	55
9.2.3.8	Test ID / Test Name: PWR.4.8 / Power delivery	
9.2.3.8.1	Purpose	
9.2.3.8.2	Test and Measurement Method.	
9.2.3.8.3	Test Condition	
9.2.3.8.4	DUT Sample Information	
9.2.3.8.5	Test Results	
9.2.3.8.6	Measurement Logs	
	ithium Ion Battery	
9.2.4.1	Test ID / Test Name: PWR.5.1 / Output Voltage Accuracy	
9.2.4.1.1	1	

9.2.4.1.2	Test and Measurement Method	57
9.2.4.1.3	Test Condition	57
9.2.4.1.4	DUT Sample Information	57
9.2.4.1.5	Test Results	
9.2.4.1.6	Measurement Logs	57
9.2.4.2	Test ID / Test Name: PWR.5.2 / Charge Current Measurement	58
9.2.4.2.1	Purpose	58
9.2.4.2.2	Test and Measurement Method	58
9.2.4.2.3	Test Condition	58
9.2.4.2.4	DUT Sample Information	58
9.2.4.2.5	Measurement Logs	59
9.2.4.3	Test ID / Test Name: PWR.5.3 / Load current measurement	59
9.2.4.3.1	Purpose	59
9.2.4.3.2	Test and Measurement Method	
9.2.4.3.3	Test Condition	
9.2.4.3.4	DUT Sample Information	59
9.2.4.3.5	Test Results	59
9.2.4.3.6	Measurement Logs	59
9.2.4.4	Test ID / Test Name: PWR.5.4 / LDO Output Voltage	60
9.2.4.4.1	Purpose	60
9.2.4.4.2	Test and Measurement Method	60
9.2.4.4.3	Test Condition	60
9.2.4.4.4	DUT Sample Information	60
9.2.4.4.5	Test Result	60
9.2.4.4.6	Measurement Logs	
9.2.4.5	Test ID / Test Name: PWR.5.5 / Temperature Measurement	61
9.2.4.5.1	Purpose	61
9.2.4.5.2	Test and Measurement Method	61
9.2.4.5.3	Test Condition	61
9.2.4.5.4	DUT Sample Information	61
9.2.4.5.5	Test Result.	61
9.2.4.5.6	Measurement Logs	61
9.2.4.6	Test ID / Test Name: PWR.5.6 / Charge control (JEITA)	62
9.2.4.6.1	Purpose	
9.2.4.6.2	Test and Measurement Method	62
9.2.4.6.3	Test Condition	62
9.2.4.6.4	DUT Sample Information	62
9.2.4.6.5	Test Results	62
9.2.4.6.6	Measurement Logs	
9.2.4.7	Test ID / Test Name: PWR.5.7 / Lion – Lead Acid and LiON battery or 'ing circuit	63
9.2.4.7.1	Purpose	
9.2.4.7.2	Test and Measurement Method	63
9.2.4.7.3	Test Condition	
9.2.4.7.4	DUT Sample Information	
9.2.4.7.5	Test Results	
9.2.4.7.6	Measurement Logs	63

9.2.4.8	Test ID / Test Name: PWR.5.8 / Charge time	64
9.2.4.8.1	Purpose	
9.2.4.8.2	Test and Measurement Method	
9.2.4.8.3	Test Condition	64
9.2.4.8.4	DUT Sample Information	64
9.2.4.8.5	Test Results	
9.2.4.8.6	Measurement Logs	
9.2.4.9	Test ID / Test Name: PWR.5.9 / Power delivery	
9.2.4.9.1	Purpose	65
9.2.4.9.2	Test and Measurement Method	
9.2.4.9.3	Test Condition	65
9.2.4.9.4	DUT Sample Information	65
9.2.4.9.5	Test Results	
9.2.4.9.6	Measurement Logs	65
9.2.5 E	Buck-Boost	
9.2.5.1	Test ID / Test Name: PWR.6.1 / Line regulation	66
9.2.5.1.1	Purpose	
9.2.5.1.2	Test and Measurement Method	66
9.2.5.1.3	Test Condition	66
9.2.5.1.4	DUT Sample Information	67
9.2.5.1.5	Test Results	67
9.2.5.1.6	Measurement Logs	67
9.2.5.2	Test ID / Test Name: PWR.6.2 / Load regulation	68
9.2.5.2.1	Purpose	
9.2.5.2.2	Test and Measurement Method	68
9.2.5.2.3	Test Condition	68
9.2.5.2.4	DUT Sample Information	68
9.2.5.2.5	Test Results	69
9.2.5.2.6	Measurement Logs	69
9.2.5.3	Test ID / Test Name: PWR.6.3 / Ripple measurement	
9.2.5.3.1	Purpose	
9.2.5.3.2	Test and Measurement Method	69
9.2.5.3.3	Test Condition	69
9.2.5.3.4	DUT Sample Information	70
9.2.5.3.5	Test Results	70
9.2.5.3.6	Measurement Logs	70
9.2.5.4	Test ID / Test Name: PWR.6.4 / Load Current Measurement	71
9.2.5.4.1	Purpose	71
9.2.5.4.2	Test and Measurement Method	71
9.2.5.4.3	Test Condition	71
9.2.5.4.4	DUT Sample Information	71
9.2.5.4.5	Test Results	71
9.2.5.4.6	Measurement Logs	71
9.2.5.5	Test ID / Test Name: PWR.6.5 / Temperature Measurement	72
9.2.5.5.1	Purpose	
9.2.5.5.2	Test and Measurement Method	72

9.2.5.5.3	Test Condition	72
9.2.5.5.4	DUT Sample Information	73
9.2.5.5.5	Test Results	73
9.2.5.5.6	Measurement Logs	73
9.2.6 <i>T</i>	TIVA Power Supply	73
9.2.6.1	Test ID / Test Name: PWR.7.3 / Ripple measurement	73
9.2.6.1.1	Purpose	
9.2.6.1.2	Test and Measurement Method.	
9.2.6.1.3	Test Condition	74
9.2.6.1.4	DUT Sample Information	74
9.2.6.1.5	Test Results	74
9.2.6.1.6	Measurement Logs	74
9.2.6.2	Test ID / Test Name: PWR.7.4 / Load Current Measurement	74
9.2.6.2.1	Purpose	74
9.2.6.2.2	Test and Measurement Method	74
9.2.6.2.3	Test Condition	75
9.2.6.2.4	DUT Sample Information	75
9.2.6.2.5	Test Results	
9.2.6.2.6	Measurement Logs	75
9.2.6.3	Test ID / Test Name: PWR.7.5 / Temperature Measurement	
9.2.6.3.1	Purpose	
9.2.6.3.2	Test and Measurement Method.	
9.2.6.3.3	Test Condition	76
9.2.6.3.4	DUT Sample Information	
9.2.6.3.5	Test Results	76
9.2.6.3.6	Measurement Logs	76
9.2.7 F	TET Switch	77
9.2.7.1	Test ID / Test Name: PWR.9.3 / Ripple Measurement	77
9.2.7.1.1	Purpose	
9.2.7.1.2	Test and Measurement Method.	
9.2.7.1.3	Test Condition	77
9.2.7.1.4	DUT Sample Information	77
9.2.7.1.5	Test Results	77
9.2.7.1.6	Measurement Logs	
9.2.7.2	Test ID / Test Name: PWR.9.4 / Load Current Measurement	78
9.2.7.2.1	Purpose	78
9.2.7.2.2	Test and Measurement Method	
9.2.7.2.3	Test Condition	
9.2.7.2.4	DUT Sample Information	78
9.2.7.2.5	Test Results	
9.2.7.2.6	Measurement Logs	
9.2.7.3	Test ID / Test Name: PWR.9.5/ Temperature Measurement	
9.2.7.3.1	Purpose	
9.2.7.3.2	Test and Measurement Method.	79
9.2.7.3.3	Test Condition	
9.2.7.3.4	DUT Sample Information	

9.2.7.3.5	Test Results	79
9.2.7.3.6	Measurement logs	80
9.2.8	PMIC	
9.2.8.1	Test ID / Test Name: PWR.10.2 / Voltage accuracy of all output voltages	80
9.2.8.1.1	Purpose	
9.2.8.1.2	Test and Measurement Method	80
9.2.8.1.3	Test Condition	80
9.2.8.1.4	DUT Sample Information	80
9.2.8.1.5	Test Results	81
9.2.8.1.6	Measurement Logs	81
9.2.8.2	Test ID / Test Name: PWR.10.3/ Secondary supplies enable functionality	81
9.2.8.2.1	Purpose	
9.2.8.2.2	Test and Measurement Method.	82
9.2.8.2.3	Test Condition	82
9.2.8.2.4	DUT Sample Information	82
9.2.8.2.5	Test Results	82
9.2.8.2.6	Measurement Logs	
9.2.8.3	Test ID / Test Name: PWR.10.5/ PMIC debug circuit functionality	83
9.2.8.3.1	Purpose	
9.2.8.3.2	Test and Measurement Method.	
9.2.8.3.3	Test Condition	
9.2.8.3.4	DUT Sample Information	
9.2.8.3.5	Test Results	
9.2.8.3.6	Measurement Logs.	
9.2.9	System Power sequence	
9.2.9.1	Test ID / Test Name: PWR.11.1 / Power-up	
9.2.9.1.1	Purpose	
9.2.9.1.2	Test and Measurement Method.	
9.2.9.1.3	Test Condition	
9.2.9.1.4	DUT Sample Information	
9.2.9.1.5	Test Results	
9.2.9.1.6	Measurement Logs.	
9.2.9.2	Test ID / Test Name: PWR.11.2 / Power-down	
9.2.9.2.1	Purpose	
9.2.9.2.2	Test and Measurement Method.	
9.2.9.2.3	Test Condition	
9.2.9.2.4	DUT Sample Information	
9.2.9.2.5	Test Results	
9.2.9.2.6	Measurement Logs.	
9.2.9.3	Test ID / Test Name: PWR.11.3 / Soft Reset	
9.2.9.3.1	Purpose	
9.2.9.3.2	Test and Measurement Method.	87
9.2.9.3.3	Test Condition	
9.2.9.3.4	DUT Sample Information	
9.2.9.3.5	Test Results	
9.2.9.3.6	Measurement Logs	

9.2.9.4	Test ID / Test Name: PWR.11.4 / Hard Reset	88
9.2.9.4.1	<i>Purpose</i>	88
9.2.9.4.2	Test and Measurement Method	
9.2.9.4.3	Test Condition	88
9.2.9.4.4	DUT Sample Information	88
9.2.9.4.5	Test Results	
9.2.9.4.6	Measurement Logs	88
9.3 CP	${\it PU}_{}$	89
9.3.1	Intel Atom	89
9.3.1.1	Test ID / Test Name: CPU.1.1/ Boot configuration	89
9.3.1.1.1	<i>Purpose</i>	89
9.3.1.1.2	Test and Measurement Method	89
9.3.1.1.3	Test Condition	89
9.3.1.1.4	DUT Sample Information	89
9.3.1.1.5	Test Results	
9.3.1.1.6	Measurement Logs	89
9.3.1.2	Test ID / Test Name: CPU.1.2/ Power-on sequence	90
9.3.1.2.1	Purpose	90
9.3.1.2.2	Test and Measurement Method	90
9.3.1.2.3	Test Condition	90
9.3.1.2.4	DUT Sample Information	90
9.3.1.2.5	Test Results	90
9.3.1.2.6	Measurement Logs	90
9.3.1.3	Test ID / Test Name: CPU.1.3/ Power-down sequence	91
9.3.1.4.1	Purpose	
9.3.1.4.2	Test and Measurement Method	91
9.3.1.4.3	Test Condition	
9.3.1.4.4	DUT Sample Information	92
9.3.1.4.5	Test Results	
9.3.1.4.6	Measurement Logs	92
9.3.2	PMIC (IDTP9145) - I2C	
9.3.2.1	Test ID / Test Name: CPU.2.1 / Electrical validation	
9.3.2.1.1	<i>Purpose</i>	
9.3.2.1.2	Test and Measurement Method	
9.3.2.1.3	Test Condition	
9.3.2.1.4	DUT Sample Information	
9.3.2.1.5	Test Results	
9.3.2.1.6	Measurement Logs	94
9.3.2.2	Test ID / Test Name: CPU.2.2/ Signal integrity	94
9.3.2.2.1	Purpose	94
9.3.2.2.2	Test and Measurement Method	94
9.3.2.2.3	Test Condition	
9.3.2.2.4	DUT Sample Information	
9.3.2.2.5	Test Results	
9.3.2.2.6	Measurement Logs	
9.3.2.3	Test ID / Test Name: CPU.2.3/ Functional validation	

9.3.2.3.1	Purpose	95
9.3.2.3.2	Test and Measurement Method	
9.3.2.3.3	Test Condition	
9.3.2.3.4	DUT Sample Information	
9.3.2.3.5	Test Results	
9.3.2.3.6	Measurement Logs	96
9.3.3	DDR (TS512MSK64W6H-I) - SMBus	97
9.3.3.1	Test ID / Test Name: CPU.5.1/ Electrical validation	97
9.3.3.1.1	Purpose	97
9.3.3.1.2	Test and Measurement Method	97
9.3.3.1.3	Test Condition	97
9.3.3.1.4	DUT Sample Information	97
9.3.3.1.5	Test Results	97
9.3.3.1.6	Measurement Logs	97
9.3.3.2	Test ID / Test Name: CPU.5.2 / Signal integrity	98
9.3.3.2.1	Purpose	
9.3.3.2.2	Test and Measurement Method.	
9.3.3.2.3	Test Condition	99
9.3.3.2.4	DUT Sample Information	99
9.3.3.2.5	Test Results	
9.3.3.2.6	Measurement Logs	
9.3.3.3	Test ID / Test Name: CPU.5.3 / Functional validation	
9.3.3.3.1	Purpose	
9.3.3.3.2	Test and Measurement Method	
9.3.3.3.3	Test Condition	
9.3.3.3.4	DUT Sample Information	
9.3.3.3.5	Test Results	
9.3.3.3.6	Measurement Logs	
9.3.4 I	PCU (ADT7481) - SMBus	
9.3.4.1	Test ID / Test Name: CPU.6.1/ Electrical validation	
9.3.4.1.1	Purpose	
9.3.4.1.2	Test and Measurement Method.	101
9.3.4.1.3	Test Condition	
9.3.4.1.4	DUT Sample Information	
9.3.4.1.5	Test Results	
9.3.4.1.6	Measurement Logs	
9.3.4.2	Test ID / Test Name: CPU.6.2 / Signal Integrity	
9.3.4.2.1	Purpose	
9.3.4.2.2	Test and Measurement Method	
9.3.4.2.3	Test Condition	
9.3.4.2.4	DUT Sample Information	
9.3.4.2.5	Test Results	
9.3.4.2.6	Measurement Logs	
9.3.4.3	Test ID / Test Name: CPU.6.3 / Functional validation	
9.3.4.3.1	Purpose	
9.3.4.3.2	Test and Measurement Method.	

9.3.4.3.3	Test Condition	104
9.3.4.3.4	DUT Sample Information	104
9.3.4.3.5	Test Results	104
9.3.4.3.6	Measurement Logs	104
9.3.5	Springville 1 - MDI	
9.3.5.1	Test ID / Test Name: CPU.7.1/ Signal characteristics	105
9.3.5.1.1	Purpose	
9.3.5.1.2	Test and Measurement Method.	105
9.3.5.1.3	Test Condition	105
9.3.5.1.4	DUT Sample Information	105
9.3.5.1.5	Test Results	105
9.3.5.1.6	Measurement Logs	106
9.3.5.2	Test ID / Test Name: CPU.7.2/ Functional validation	106
9.3.5.2.1	Purpose	106
9.3.5.2.2	Test and Measurement Method	106
9.3.5.2.3	Test Condition	106
9.3.5.2.4	DUT Sample Information	107
9.3.5.2.5	Test Results	107
9.3.6	TIVA - UART	107
9.3.6.1	Test ID / Test Name: CPU.8.1 / Electrical validation	107
9.3.6.1.1	Purpose	107
9.3.6.1.2	Test and Measurement Method	107
9.3.6.1.3	Test Condition	107
9.3.6.1.4	DUT Sample Information	107
9.3.6.1.5	Test Results	108
9.3.6.1.6	Measurement Logs	108
9.3.6.2	Test ID / Test Name: CPU.8.2 / Functional validation	108
9.3.6.2.1	<i>Purpose</i>	108
9.3.6.2.2	Test and Measurement Method	109
9.3.6.2.3	Test Condition	109
9.3.6.2.4	DUT Sample Information	109
9.3.6.2.5	Test Results	109
9.3.6.2.6	Measurement Logs	109
9.3.7	Memory - DDR	110
9.3.7.1	Test ID / Test Name: CPU.9.1 / Reference voltage measurement	110
9.3.7.1.1	Purpose	110
9.3.7.1.2	Test and Measurement Method	110
9.3.7.1.3	Test Condition	110
9.3.7.1.4	DUT Sample Information	110
9.3.7.1.5	Test Results	
9.3.7.1.6	Measurement Logs	
9.3.7.2	Test ID / Test Name: CPU.9.2 / VREF Schmoo test	111
9.3.7.2.1	Purpose	
9.3.7.2.2	Test and Measurement Method	
9.3.7.2.3	Test Condition	111
9.3.7.2.4	DUT Sample Information	111

9.3.7.2.5	Test Results	111
9.3.7.2.6	Measurement Logs	112
9.3.7.3	Test ID / Test Name: CPU.9.3 / Functional validation	113
9.3.7.3.1	Purpose	113
9.3.7.3.2	Test and Measurement Method.	
9.3.7.3.3	Test Condition	
9.3.7.3.4	DUT Sample Information	
9.3.7.3.5	Test Results	
9.3.7.3.6	Measurement Logs	
9.3.7.4	Test ID / Test Name: CPU.9.4 / Throughput measurement	
9.3.7.4.1	Purpose	
9.3.7.4.2	Test and Measurement Method.	
9.3.7.4.3	Test Condition	
9.3.7.4.4	DUT Sample Information	
9.3.7.4.5	Test Results	
9.3.7.4.6	Measurement Logs	
	Memory SPI NOR Flash	
9.3.8.1	Test ID / Test Name: CPU.10.1 / Electrical validation	
9.3.8.1.1	Purpose	
9.3.8.1.2	Test and Measurement Method.	
9.3.8.1.3	Test Condition	
9.3.8.1.4	DUT Sample Information	
9.3.8.1.5	Test Results	
9.3.8.1.6	Measurement Logs	
9.3.8.2	Test ID / Test Name: CPU.10.2 / Signal Integrity	
9.3.8.3.1	Purpose	
9.3.8.3.2	Test and Measurement Method.	
9.3.8.3.3	Test Condition	
9.3.8.3.4	DUT Sample Information	
9.3.8.3.5	Test Results	
9.3.8.3.6	Measurement Logs	
	torage - mSATA	
9.3.9.1	Test ID / Test Name: CPU.11.1 / Signal Integrity	
9.3.9.1.1	Purpose	
9.3.9.1.2	Test and Measurement Method	118
9.3.9.1.3	Test Condition	
9.3.9.1.4	DUT Sample Information	
9.3.9.1.5	Test Results	
9.3.9.1.6	Measurement Logs	
9.3.9.2	Test ID / Test Name: CPU.11.2 / IO Stress	
9.3.9.2.1	Purpose	
9.3.9.2.2	Test and Measurement Method.	
9.3.9.2.3	Test Condition	
9.3.9.2.4	DUT Sample Information	
9.3.9.2.5	Test Results	
9.3.9.2.6	Measurement Logs	

	pringVille1 – PCIe	
9.3.10.1	Test ID / Test Name: CPU.13.1 and CPU.13.2 / Electrical Validation, Eye	– plotting
	121	
9.3.10.1.1	Purpose	121
9.3.10.1.2	Test and Measurement Method	
9.3.10.1.3	Test Condition	122
9.3.10.1.4	DUT Sample Information	122
9.3.10.1.5	Test Results	
9.3.10.1.6	Measurement Logs	122
9.3.11 St	pringVille2 – PCIe	
9.3.11.1	Test ID / Test Name: CPU.14.1 and CPU14.2 / Electrical Validation, Eye -	
	124	1 0
9.3.11.1.1	Purpose	124
9.3.11.1.2	Test and Measurement Method	
9.3.11.1.3	Test Condition	
9.3.11.1.4	DUT Sample Information	
9.3.11.1.5	Test Results	
	RXFE – GPIO	
9.3.12.1	Test ID / Test Name: CPU.15.2 / Control outputs functional validation	
9.3.12.1.1	Purpose	
9.3.12.1.2	Test and Measurement Method	
9.3.12.1.3	Test Condition	
9.3.12.1.4	DUT Sample Information.	
9.3.12.1.5	Test Results	
9.3.12.1.6	Measurement Logs	
9.3.12.2	Test ID / Test Name: CPU.15.3 / Signaling characteristics	
9.3.12.2.1	Purpose	
9.3.12.2.2	Test and Measurement Method.	
9.3.12.2.3	Test Condition	
9.3.12.2.4	DUT Sample Information.	
9.3.12.2.5	Test Results	
9.3.12.2.6	Measurement Logs	
	IVA - GPIOError! Bookmark n	
9.3.13.1	Test ID / Test Name: CPU.17.1 / Control inputs functional validation	
9.3.13.1.1	Purpose	
9.3.13.1.2	Test and Measurement Method.	
9.3.13.1.3	Test Condition	
9.3.13.1.4	DUT Sample Information.	
9.3.13.1.5	Test Results	
9.3.13.1.6	Measurement Logs	
9.3.13.2	Test ID / Test Name: CPU.17.2 / Control outputs functional validation	
9.3.13.2.1	Purpose	
9.3.13.2.2	Test and Measurement Method.	
9.3.13.2.3	Test Condition	
9.3.13.2.4	DUT Sample Information.	
9.3.13.2.5	Test Results	
	=	

9.3.13.2.6 Measurement Logs	131
9.3.13.3 Test ID / Test Name: CPU.17.3 / Signaling characteristics	132
9.3.13.3.1 Purpose	
9.3.13.3.2 Test and Measurement Method	
9.3.13.3.3 Test Condition	132
9.3.13.3.4 DUT Sample Information	132
9.3.13.3.5 Test Results	132
9.3.13.3.6 Measurement Logs	133
9.3.14 TRXFE- FX3 - USB 2.0	
9.3.14.1 Test ID / Test Name: CPU.19.1 / Electrical validation	133
9.3.14.1.1 Purpose	133
9.3.14.1.2 Test and Measurement Method	
9.3.14.1.3 Test Condition	133
9.3.14.1.4 DUT Sample Information	134
9.3.14.1.5 Test Results	
9.3.14.1.6 Measurement Logs	134
9.3.14.2 Test ID / Test Name: CPU.19.2 / Throughput measurement	134
9.3.14.2.1 Purpose	
9.3.14.2.2 Test and Measurement Method	
9.3.14.2.3 Test Condition	
9.3.14.2.4 DUT Sample Information	135
9.3.14.2.5 Test Results	
9.3.14.2.6 Measurement Logs	
9.3.14.3 Test ID / Test Name: CPU.19.3 / Functional validation	
9.3.14.3.1 Purpose	
9.3.14.3.2 Test and Measurement Method	135
9.3.14.3.3 Test Condition	
9.3.14.3.4 DUT Sample Information	
9.3.14.3.5 Test Results	
9.3.14.3.6 Measurement Logs	
9.3.15 TRXFE- FX3 - USB 3.0	
9.3.15.1 Test ID / Test Name: CPU.20.2 / Throughput measurement	
9.3.15.1.1 Purpose	136
9.3.15.1.2 Test and Measurement Method	
9.3.15.1.3 Test Condition	
9.3.15.1.4 DUT Sample Information	
9.3.15.1.5 Test Results	
9.3.15.1.6 Measurement Logs	
9.3.15.2 Test ID / Test Name: CPU.20.3 / Functional validation	
9.3.15.2.1 Purpose	137
9.3.15.2.2 Test and Measurement Method	
9.3.15.2.3 Test Condition	
9.3.15.2.4 DUT Sample Information	
9.3.15.2.5 Test Results	
9.3.15.2.6 Measurement Logs	
9.3.16 Debug USB 2.0	138

9.3.16.1	Test ID / Test Name: CPU.21.1 / Functional validation	138
9.3.16.1.1	Purpose	138
9.3.16.1.2	Test and Measurement Method	
9.3.16.1.3	Test Condition	139
9.3.16.1.4	DUT Sample Information	139
9.3.16.1.5	Test Results	
9.3.16.1.6	Measurement Logs	
9.3.17 De	ebug USB 3.0	
	Test ID / Test Name: CPU.22.1 / Functional validation	
9.3.17.1.1	Purpose	
9.3.17.1.2	Test and Measurement Method	
9.3.17.1.3	Test Condition	140
9.3.17.1.4	DUT Sample Information	
9.3.17.1.5	Test Results	
9.3.17.1.6	Measurement Logs	
9.3.18 De	ebug - Ethernet	
	Test ID / Test Name: CPU.23.1 / Functional validation	
9.3.18.1.1	Purpose	
9.3.18.1.2	Test and Measurement Method	
9.3.18.1.3	Test Condition	
9.3.18.1.4	DUT Sample Information	
9.3.18.1.5	Test Results	
9.3.18.1.6	Measurement Logs	
9.3.19 Di	isplay-HDMI	
	Test ID / Test Name: CPU.24.1 / Functional validation with debug port	
9.3.19.1.1	Purpose	
9.3.19.1.2	Test and Measurement Method	
9.3.19.1.3	Test Condition	
9.3.19.1.4	DUT Sample Information	
9.3.19.1.5	Test Results	
9.3.19.1.6	Measurement Logs	142
9.3.20 De	ebug - UART	
	Test ID / Test Name: CPU.25.1 / Functional validation	
9.3.20.1.1	Purpose	
9.3.20.1.2	Test and Measurement Method	
9.3.20.1.3	Test Condition	143
9.3.20.1.4	DUT Sample Information	
9.3.20.1.5	Test Results	
9.3.20.1.6	Measurement Logs	144
9.3.21 RI	FSDR – PCIe	
9.3.21.1	Test ID / Test Name: CPU.26.1 and CPU26.2 / RFSDR-PCIe0	144
9.3.21.1.1	Purpose	
9.3.21.1.2	Test and Measurement Method	
9.3.21.1.3	Test Condition	
9.3.21.1.4	DUT Sample Information	
9.3.21.1.5	Test Results	

9.3.21.1.6	Measurement Logs	145
9.4 TIV	YA	
	TIVA Access	
9.4.1.1	Test ID / Test Name: TIV.1.1 / Configuration	146
9.4.1.1.1	Purpose	
9.4.1.1.2	Test and Measurement Method	
9.4.1.1.3	Test Condition	
9.4.1.1.4	DUT Sample Information	
9.4.1.1.5	Test Results	
9.4.1.1.6	Measurement Logs	
9.4.1.2	Test ID / Test Name: TIV.1.2 / System Reset sequence	
9.4.1.2.1	Purpose	
9.4.1.2.2	Test and Measurement Method	
9.4.1.2.3	Test Condition	
9.4.1.2.4	DUT Sample Information	
9.4.1.2.5	Test Results	
9.4.1.2.6	Measurement Logs	
	PSE – I2C (LTC4274AIUHF)	
9.4.2.1	Test ID / Test Name: TIV.2.1 / Electrical validation	
9.4.2.1.1	Purpose	
9.4.2.1.2	Test and Measurement Method.	
9.4.2.1.3	Test Condition	
9.4.2.1.4	DUT Sample Information	
9.4.2.1.5	Test Results	
9.4.2.1.6	Measurement Logs	
9.4.2.2	Test ID / Test Name: TIV.2.2 / Signal Integrity	
9.4.2.2.1	Purpose	
9.4.2.2.2	Test and Measurement Method.	
9.4.2.2.3	Test Condition	
9.4.2.2.4	DUT Sample Information	
9.4.2.2.5	Test Results	
9.4.2.2.6	Measurement Logs.	
9.4.2.3	Test ID / Test Name: TIV.2.3 / Functional validation	
9.4.2.3.1	Purpose	
9.4.2.3.2	Test and Measurement Method.	
9.4.2.3.3	Test Condition	
9.4.2.3.4	DUT Sample Information	
9.4.2.3.5	Test Results	
9.4.2.3.6	Measurement Logs	
	Power Monitor (INA226) – I2C	152
9.4.3.1	Test ID / Test Name: TIV.3.1 / Electrical validation	
9.4.3.1.1	Purpose	
9.4.3.1.2	Test and Measurement Method.	
9.4.3.1.3	Test Condition	
9.4.3.1.4	DUT Sample Information	
	Test Results	

9.4.3.1.6	Measurement Logs	153
9.4.3.2	Test ID / Test Name: TIV.3.2 / Signal Integrity	154
9.4.3.2.1	Purpose	
9.4.3.2.2	Test and Measurement Method.	
9.4.3.2.3	Test Condition	154
9.4.3.2.4	DUT Sample Information	154
9.4.3.2.5	Test Results	
9.4.3.2.6	Measurement Logs.	154
9.4.3.3	Test ID / Test Name: TIV.3.3 / Functional validation	155
9.4.3.3.1	Purpose	
9.4.3.3.2	Test and Measurement Method.	
9.4.3.3.3	Test Condition	155
9.4.3.3.4	DUT Sample Information	
9.4.3.3.5	Test Results	
9.4.3.3.6	Measurement Logs	
9.4.4 R	F-SDR board – I2C (PCA9557PW,118)	
9.4.4.1	Test ID / Test Name: TIV.4.1 / Electrical validation	
9.4.4.1.1	Purpose	
9.4.4.1.2	Test and Measurement Method.	
9.4.4.1.3	Test Condition	
9.4.4.1.4	DUT Sample Information	
9.4.4.1.5	Test Results	
9.4.4.1.6	Measurement Logs.	
9.4.4.2	Test ID / Test Name: TIV.4.2 / Signal Integrity	
9.4.4.2.1	Purpose	
9.4.4.2.2	Test and Measurement Method.	
9.4.4.2.3	Test Condition	
9.4.4.2.4	DUT Sample Information	
9.4.4.2.5	Test Results	
9.4.4.2.6	Measurement Logs.	
9.4.4.3	Test ID / Test Name: TIV.4.3 / Functional validation	
9.4.4.3.1	Purpose	
9.4.4.3.2	Test and Measurement Method.	
9.4.4.3.3	Test Condition	
9.4.4.3.4	DUT Sample Information	
9.4.4.3.5	Test Results	
9.4.4.3.6	Measurement Logs.	
	Pemp Sensor (SE98ATP, 547) – I2C	
9.4.5.1	Test ID / Test Name: TIV.5.1 / Electrical validation	
9.4.5.1.1	Purpose	
9.4.5.1.1	Test and Measurement Method.	
9.4.5.1.2	Test Condition	
9.4.5.1.3	DUT Sample Information	
9.4.5.1.4	Test Results	
9.4.5.1.6	Measurement Logs.	
9.4.5.1.0		
7.4.3.2	Test ID / Test Name: TIV.5.2 / Signal Integrity	102

9.4.5.2.1	Purpose	162
9.4.5.2.2	Test and Measurement Method	
9.4.5.2.3	Test Condition	
9.4.5.2.4	DUT Sample Information	
9.4.5.2.5	Test Results	
9.4.5.2.6	Measurement Logs	
9.4.5.3	Test ID / Test Name: TIV.5.3 / Functional validation	
9.4.5.3.1	Purpose	
9.4.5.3.2	Test and Measurement Method.	
9.4.5.3.3	Test Condition	
9.4.5.3.4	DUT Sample Information	
9.4.5.3.5	Test Results	
9.4.5.3.6	Measurement Logs.	
	Sync Board I2C (PCA9557PW,118)	
9.4.6.1	Test ID / Test Name: TIV.6.1 / Electrical Validation	
9.4.6.1.1	Purpose	
9.4.6.1.2	Test and Measurement Method.	
9.4.6.1.3	Test Condition	
9.4.6.1.4	DUT Sample Information	
9.4.6.1.5	Test Results	
9.4.6.1.6	Measurement Logs.	
9.4.6.2	Test ID / Test Name: TIV.6.2 / Signal Integrity	
9.4.6.2.1	Purpose	
9.4.6.2.2	Test and Measurement Method.	
9.4.6.2.3	Test Condition	
9.4.6.2.4	DUT Sample Information	
9.4.6.2.5	Test Results	
9.4.6.2.6	Measurement Logs.	
9.4.6.3	Test ID / Test Name: TIV.6.3 / Functional Validation	
9.4.6.3.1	Purpose	
9.4.6.3.2	Test and Measurement Method.	
9.4.6.3.3	Test Condition	
9.4.6.3.4	DUT Sample Information	
9.4.6.3.5	Test Results	
9.4.6.3.6	Measurement Logs.	
	LED board – I2C (SX1509BIULTRT)	
9.4.7.1	Test ID / Test Name: TIV.7.1 / Electrical validation	
9.4.7.1.1	Purpose	
9.4.7.1.2	Test and Measurement Method.	
9.4.7.1.3	Test Condition	
9.4.7.1.4	DUT Sample Information	
9.4.7.1.5	Test Results	
9.4.7.1.6	Measurement Logs.	
9.4.7.2	Test ID / Test Name: TIV.7.2 / Signal Integrity	
9.4.7.2.1	Purpose	
9.4.7.2.2	Test and Measurement Method	

9.4.7.2.3	Test Condition	. 170
9.4.7.2.4	DUT Sample Information	. 170
9.4.7.2.5	Test Results	
9.4.7.2.6	Measurement Logs.	
9.4.7.3	Test ID / Test Name: TIV.7.3 / Functional validation	. 171
9.4.7.3.1	Purpose	. 171
9.4.7.3.2	Test and Measurement Method.	
9.4.7.3.3	Test Condition	
9.4.7.3.4	DUT Sample Information	. 171
9.4.7.3.5	Test Results	
9.4.7.3.6	Measurement Logs.	. 171
9.4.8 T	IVA GPIO	
9.4.8.1	Test ID / Test Name: TIV.10.1 / Control inputs functional validation	. 172
9.4.8.1.1	Purpose	
9.4.8.1.2	Test and Measurement Method.	. 172
9.4.8.1.3	Test Condition	. 172
9.4.8.1.4	DUT Sample Information	
9.4.8.1.5	Test Results	
9.4.8.1.6	Measurement Logs.	
	IVA GPIO	
9.4.9.1	Test ID / Test Name: TIV.11.1 / Control outputs functional validation	
9.4.9.1.1	Purpose	
9.4.9.1.2	Test and Measurement Method.	
9.4.9.1.3	Test Condition	
9.4.9.1.4	DUT Sample Information	
9.4.9.1.5	Test Results	
9.4.9.1.6	Measurement Logs.	
9.4.10 E	TH SW MGMT Interface	. 174
9.4.10.1	Test ID / Test Name: TIV.12.1 / Functional validation	. 174
9.4.10.1.1	<i>Purpose</i>	. 174
9.4.10.1.2	Test and Measurement Method	. 174
9.4.10.1.3	Test Condition	. 174
9.4.10.1.4	DUT Sample Information	. 174
9.4.10.1.5	Test Results	
9.4.10.1.6	Measurement Logs	. 174
9.5 Ethe	ernet:	. 175
	oE (PD) - MDI	
9.5.1.1	Test ID / Test Name: ETH.1.1/ Electrical Validation	
9.5.1.1.1	Purpose	. 175
9.5.1.1.2	Test and Measurement Method.	. 175
9.5.1.1.3	Test Condition	. 175
9.5.1.1.4	DUT Sample Information	. 175
9.5.1.1.5	Test Results	
9.5.1.1.6	Measurement Logs	
9.5.1.2	Test ID / Test Name: ETH.1.2/ Functional validation	
9.5.1.2.1	Purpose	
	•	

9.5.1.2.2	Test and Measurement Method	176
9.5.1.2.3	Test Condition	
9.5.1.2.4	DUT Sample Information	
9.5.1.2.5	Test Results	
9.5.2	TIVA Ethernet	
9.5.2.1	Test ID / Test Name: ETH.3.1/ Electrical Validation	177
9.5.2.1.1	Purpose	
9.5.2.1.2	Test and Measurement Method	
9.5.2.1.3	Test Condition	177
9.5.2.1.4	DUT Sample Information	
9.5.2.1.5	Test Results	
9.5.2.1.6	Measurement Logs	
9.5.2.2	Test ID / Test Name: ETH.3.2/ Functional validation	
9.5.2.2.1	Purpose	
9.5.2.2.2	Test and Measurement Method	
9.5.2.2.3	Test Condition	179
9.5.2.2.4	DUT Sample Information	
9.5.2.2.5	Test Results	
9.6 Cla	ocks	179
	Clock Sources	
9.6.1.1	Test ID / Test Name: CLK.1.1 / Frequency Accuracy	
9.6.1.1.1	Purpose	
9.6.1.1.2	Test and Measurement Method	
9.6.1.1.3	Test Condition	
9.6.1.1.4	DUT Sample Information	
9.6.1.1.5	Test Results	
9.6.1.1.6	Measurement Logs	
9.6.1.2	Test ID / Test Name: CLK.1.2 / Timing Jitter	
9.6.1.2.1	Purpose	
9.6.1.2.2	Test and Measurement Method	
9.6.1.2.3	Test Condition	
9.6.1.2.4	DUT Sample Information	
9.6.1.2.5	Test Results	
9.6.1.2.6	Measurement Logs	
9.6.2 I	PCIe - GBE clock	
9.6.2.1	Test ID / Test Name: CLK.2.1 / Frequency Accuracy	
9.6.2.1.1	Purpose	
9.6.2.1.2	Test and Measurement Method.	
9.6.2.1.3	Test Condition	
9.6.2.1.4	DUT Sample Information	
9.6.2.1.5	Test Results	
9.6.2.1.6	Measurement Log	
9.6.2.2	Test ID / Test Name: CLK.2.2 / Signal Integrity	
9.6.2.2.1	Purpose	
9.6.2.2.2	Test and Measurement Method	
9.6.2.2.3	Test Condition	

9.6.2.2.4	DUT Sample Information	
9.6.2.2.5	Test Results	
9.6.2.2.6	Measurement Log	
9.6.2.3	Test ID / Test Name: CLK.2.3 / Timing Jitter	186
9.6.2.3.1	Purpose	
9.6.2.3.2	Test and Measurement Method	186
9.6.2.3.3	Test Condition	
9.6.2.3.4	DUT Sample Information	
9.6.2.3.5	Test Results	
9.6.2.3.6	Measurement Log	
9.6.3	40 MHz GPSDO Clock	
9.6.3.1	Test ID / Test Name: CLK.3.1 / Frequency Accuracy	
9.6.3.1.1	Purpose	
9.6.3.1.2	Test and Measurement Method	187
9.6.3.1.3	Test Condition	187
9.6.3.1.4	DUT Sample Information	188
9.6.3.1.5	Test Results	
9.6.3.1.6	Measurement Log	
9.6.3.2	Test ID / Test Name: CLK.3.2 / Signal Integrity	
9.6.3.2.1	Purpose	
9.6.3.2.2	Test and Measurement Method	
9.6.3.2.3	Test Condition	189
9.6.3.2.4	DUT Sample Information	189
9.6.3.2.5	Test Results	189
9.6.3.2.6	Measurement Log	189
9.6.3.3	Test ID / Test Name: CLK.3.3 / Timing Jitter	189
9.6.3.3.1	Purpose	189
9.6.3.3.2	Test and Measurement Method	189
9.6.3.3.3	Test Condition	190
9.6.3.3.4	DUT Sample Information	190
9.6.3.3.5	Test Results	190
9.6.3.3.6	Measurement Log	190
9.6.4 H	HDMI clock	191
9.6.4.1	Test ID / Test Name: CLK.4.1 / Frequency Accuracy	191
9.6.4.1.1	Purpose	191
9.6.4.1.2	Test and Measurement Method	191
9.6.4.1.3	Test Condition	191
9.6.4.1.4	DUT Sample Information	191
9.6.4.1.5	Test Results	191
9.6.4.1.6	Measurement Log	191
9.6.4.2	Test ID / Test Name: CLK .4.2 / Signal Integrity	192
9.6.4.2.1	Purpose	
9.6.4.2.2	Test and Measurement Method	
9.6.4.2.3	Test Condition	
9.6.4.2.4	DUT Sample Information	
9.6.4.2.5	Test Results	

9.6.4.2.6	Measurement Log	
9.6.5	GPS 1pps clock	
9.6.5.1	Test ID / Test Name: CLK.5.1 / Frequency Accuracy	
9.6.5.1.1	Purpose	
9.6.5.1.2	Test and Measurement Method	
9.6.5.1.3	Test Condition	
9.6.5.1.4	DUT Sample Information	
9.6.5.1.5	Test Results	
9.6.5.1.6	Measurement Logs	
9.5.2.1	Test ID / Test Name: CLK.5.2 / Signal Integrity	
9.6.5.1.7	Purpose	
9.6.5.1.8	Test and Measurement Method	
9.6.5.1.9	Test Condition	
9.6.5.1.10		
9.6.5.1.1	l Test Results	
9.6.5.1.1.		
10. Re	vision History	

1. Purpose

The purpose of this document is to capture test data for General Purpose Baseband Computing (GBC) module as part of OpenCellular Base Transceiver Station (BTS). The document provides formal report of measured and validated parameters to qualify GBC module as part of design validation testing to ensure consistent and reliable operation across all supported operating and environmental conditions.

2. Scope

Scope of this document is to qualify different sections as mentioned below:

- 1. **Power Source section** which includes, PoE, Solar, Lead Acid battery and Li Ion battery
- 2. **CPU section** which includes Intel Baytrail SoC, PMIC, DDR, Springville, mSATA
- 3. **TIVA section** with various sensors
- 4. Ethernet section which covers Compliance testing at 100Mbps speed

3. Device-Under-Test (DUT) Details

1. System : OpenCellular Connect -1

2. Sub-system : GBC

3. Hardware version : Life–1 & Life -2

4. Software version

a. Ubuntu – 14.04.64 bit

b. CoreBoot - 4.4-575-gfee24cc-dirty

c. RTOS-2_16_00_08

5. Sample Count : 01

6. DUT Sl. No : WZ1630LIFE2GBC0002, WZ1630LIFE2GBC0005

WZ1630LIFE2GBC0010, WZ1630LIFE2GBC0018 & WZ1630LIFE2GBC0021

4. Qualification Test Condition

Ambient Temperature - 25°C

Operating Voltage - +18V DC

Typical Load -10.8 - 12.6W

5. Qualification Result Summary

6. Tools and Test Equipment

Tools and Test Equipment	Model and Version Information
Oscilloscope	MSO4034, MSO9404A
DC Power Supply	DP832, E3633A, E3634A
Electronic Load	KMO64
IR Thermometer	Fluke 59
Multimeter	Fluke 17B+
Solar cell array simulator	Agilent E4350B
PoE Injector	PS-201G++

7. Abbreviation

GBC General Purpose Baseband Computing

PoE Power over Ethernet

PD Powered device

PSE Power Sourcing Equipment

RF-SDR Radio frequency Software-Defined Radio\

BTS Base Transceiver Station

9 Qualification Tests Results

9.1 Front Panel:

9.1.1 Solar Supply

9.1.1.1 Test ID / Test Name: FP.1.1 / Voltage accuracy

9.1.1.1.1 Purpose

Solar power input is designed to work in the range of 16 to 22V. The purpose of the test case is to validate the range of solar input voltages for which GBC will be functional.

9.1.1.1.2 Test and Measurement Method

This test is conducted by configuring Solar array simulator E4350B to give a voltage in the range of 16V to 22V by setting it to SAS Mode (Setting Voc, Vmp, Isc and Imp parameters accordingly). Vary the simulator settings for voltages in steps of 2V, measure the input voltage at JTB10A.1, R1304.2, C3M171.1 and C1685.1 and make sure the voltages are in the range of 16V to 22V. Please refer to Section 3.2.1.2 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.1.1.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 16V – 22V System load – Typical

9.1.1.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0005

Software versions – NA

9.1.1.1.5 Test Results

The measured voltages are in range of the set voltages of solar supply output.

9.1.1.1.6 Measurement Logs

NOTE: Pass Criteria: Measured Voltage should be equal to input voltage $\pm 5\%$

	Input Voltage Accuracy for Solar Supply											
Sl. No.	Test case	Voc (V)	Vmp(V)	Load curren	VPS OLA R	VSLR_ OVUV OUT(R	VSLRPO E_VOUT (C3M171	VPS_VO UT(C168	Specif Min	ication Max	Margi n (%)	PASS /
NO.	No.	(V)	V)	t(A)	(JTB1 0A.1)	1304.2)	.1)	5.1)	MIII	Iviax	II (%)	FAIL
1	FP 1.1	16	15.6	2.25	15.54	15.53	15.5	15.49	14.82	16.38	-4.52	PASS
2	FP 1.1	18	17.6	2	17.7	17.69	17.67	17.66	16.72	18.48	-4.44	PASS
3	FP 1.1	20	19.6	1.8	19.84	19.83	19.81	19.8	18.62	20.58	-3.79	PASS
4	FP 1.1	22	21.6	1.63	21.96	21.96	21.93	21.92	20.52	22.68	-3.35	PASS

<u>NOTE</u>: The detailed analysis report is embedded in the xls document attached in the end of this section.

9.1.1.2 Test ID / Test Name: FP.1.2 / Input supply range

9.1.1.2.1 Purpose

Solar supply input is designed to work in the range of 16 to 22V. The purpose of the test case is to validate the range of solar voltages for which GBC will be functional.

9.1.1.2.2 Test and Measurement Method

This test is conducted by configuring Solar array simulator E4350B to give a voltage in the range of 16V to 22V by setting it to SAS Mode (Setting Voc, Vmp, Isc and Imp parameters accordingly). Vary the simulator settings for voltages in steps of 2V, measure the input voltage at JTB10A.1, R1304.2, C3M171.1. Make sure the voltages are in the range of 16V to 22V. For every change in input voltage, measure the output voltage of Buck-Boost converter (U88) at R10044.2 and should read 12V. Please refer to Section 3.2.1.3 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.1.1.2.3 Test Condition

Ambient Temperature -25° C Operating Voltage -16V - 22VSystem load - Typical

9.1.1.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0005

Software versions – NA

9.1.1.2.5 Test Results

By varying the solar input, it is ensured that Buck-Boost output is 12Vwhich in-turn ensures proper functionality of GBC module.

9.1.1.2.6 Measurement Logs

	Input Voltage Range for Solar Supply											
					VPSO	VSLR	VSLRPO		Specification			
Sl. N o.	Test case No.	Voc (V)	Vmp (V)	Load curren t (A)	LAR (JTB1 0A.1)	_OVU VOUT (R130 4.2)	E_VOUT (C3M171	12V_IN (R10044. 2)	Min	Max	Margin (%)	PASS / FAIL
1	FP 1.2	16	15.6	2.25	15.54	15.53	15.5	12.06	11.76	12.24	-1.47	PASS
2	FP 1.2	18	17.6	2	17.7	17.69	17.67	12.06	11.76	12.24	-1.47	PASS
3	FP 1.2	20	19.6	1.8	19.84	19.83	19.81	12.06	11.76	12.24	-1.47	PASS
4	FP 1.2	22	21.6	1.63	21.96	21.96	21.93	12.06	11.76	12.24	-1.47	PASS

NOTE:

- 1) Pass Criteria for input voltage range: Measured Voltage should be equal to input voltage $\pm 5\%$
- 2) Pass Criteria for Buck-Boost converter: Measured Voltage should be 12V±2%

The detailed analysis report for solar test cases executed is embedded in the xls document attached herewith.

Solar_Supply_Meas urement_log.xlsx

9.1.2 AUX Supply

9.1.2.1 Test ID / Test Name: FP.2.1 / Voltage accuracy

9.1.2.1.1 Purpose

AUX power input is designed to work in the range of 16 to 24V. The purpose of the test case is to validate the range of AUX input voltages for which GBC will be functional.

9.1.2.1.2 Test and Measurement Method

This test is conducted by configuring AUX supply to give a voltage in the range of 16V to 24V. Vary the simulator settings for voltages in steps of 2V, measure the input voltage at JTB10A.1, R1304.2, C3M171.1, and C1685.1 and make sure the voltages are in the range of 16V to 24V Please refer to Section 3.2.2.2 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.1.2.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 16V – 24V System load – Typical

9.1.2.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0005

Software versions – NA

9.1.2.1.5 Test Results

The measured voltages are in range of the set voltages of AUX supply output.

9.1.2.1.6 Measurement Logs

	Input Voltage Accuracy for AUX Supply									
Sl. No.	Test case No.	Input Voltage (V)	VPSOL AR (JTB10 A.1)	VSLR_O VUVOUT (R1304.2)	VSLRPOE_ VOUT(C3M 171.1)	VPS_V OUT(C 1685.1)	Specifi Min	Max	Margin (%)	PASS / FAIL
1	FP 2.1	16	16.04	16.04	16.02	16.01	15.2	16.8	-4.70	PASS
2	FP 2.1	18	18.03	18.03	18	18	17.1	18.9	-4.76	PASS
3	FP 2.1	20	20.02	20.02	20	20	19	21	-4.76	PASS
4	FP 2.1	22	22.02	22.02	21.99	21.99	20.9	23.1	-4.81	PASS
5	FP 2.1	24	24.01	24.01	23.99	23.99	22.8	25.2	-4.80	PASS

NOTE:

- 1) Pass Criteria: Measured Voltage should be equal to input voltage $\pm 5\%$
- 2) The detailed analysis report is embedded in the xls document attached in the end of this section.

9.1.2.2 Test ID / Test Name: FP.2.2 / Input supply range

9.1.2.2.1 Purpose

AUX supply input is designed to work in the range of 16 to 24V. The purpose of the test case is to validate the range of AUX voltages for which GBC will be functional.

9.1.2.2.2 Test and Measurement Method

This test is conducted by AUX power supply to give a voltage in the range of 16V to 24V. Varying the AUX supply settings for voltages in steps of 2V, measure the input voltage at JTB10A.1, R1304.2, and C3M171.1 and make sure the voltages are in the range of 16V to 24V. For every change in input voltage, measure the output voltage of Buck-Boost converter (U88) at R10044.2 and should read 12V. Please refer to Section 3.2.2.3 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.1.2.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 16V – 24V System load – Typical

9.1.2.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0005

Software versions – NA

9.1.2.2.5 Test Results

By varying the AUX input, it is ensured that Buck-Boost output is 12V which in-turn ensures proper functionality of GBC module.

9.1.2.2.6 Measurement Logs

Input Voltage Range for AUX Supply										
		Input	VPSOLA	VSLR_O	VSLR POE	12V IN	Specif	fication		
Sl. No	Test case No.	Voltage(V)	R (JTB10A. 1)	VUVOU T(R1304. 2)	VOUT (C3M1 71.1)	(R10044 .2)	Min	Max	Margin (%)	PASS / FAIL

										PASS
1	FP 2.2	16	16.04	16.04	16.02	12.08	11.76	12.12	-0.33	
										PASS
2	FP 2.2	18	18.03	18.03	18	12.08	11.76	12.12	-0.33	
										PASS
3	FP 2.2	20	20.02	20.02	20	12.08	11.76	12.12	-0.33	
										PASS
4	FP 2.2	22	22.02	22.02	21.99	12.08	11.76	12.12	-0.33	
										PASS
5	FP 2.2	24	24.01	24.01	23.99	12.08	11.76	12.12	-0.33	

NOTE: Pass Criteria for Buck-Boost converter: Measured Voltage should be 12V±2%

The detailed analysis report with for PoE test cases executed is embedded in the xls document attached herewith.

9.1.3 PoE In

9.1.3.1 Test ID / Test Name: FP.3.1 / Voltage Accuracy

9.1.3.1.1 Purpose

The purpose of this test case is to check the voltage accuracy of input side voltage rails when GBC is powered through PoE.

9 1 3 1 2 Test and Measurement Method

This test is conducted by isolating input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. A constant input voltage of 56V is given from PoE injector (PS-201G++) to J1A connector. Measure the output voltages at C3M103.1, C3M171.1, C1685.1 and C3M96.1. Please refer to Section 3.2.3.2 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.1.3.1.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +56V DC

System load –Typical

9.1.3.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0005

Software versions – NA

9.1.3.1.5 Test Results

The input voltage accuracy of GBC when powered through PoE is within the system input voltage range as per design (10.8V to 28V).

9.1.3.1.6 Measurement Logs

	PoE In - Voltage Accuracy									
					Specification		Design			
S1.	Test case	Voltage Rail	Measuring	Measured			Margin	PASS /		
No.	No.		Points	Voltage(V)	Min(V)	Max(V)	(%)	FAIL		
1	FP 3.1	PV18POE	C3M103.1	18.62	10.8	28	-33.50	PASS		
2	FP 3.1	VSLRPOE_VOUT	C3M171.1	18.6	10.8	28	-33.57	PASS		
3	FP 3.1	VPS_VOUT	C1685.1	18.58	10.8	28	-33.64	PASS		
4	FP 3.1	VPOUT_BUCK	C3M96.1	18.53	10.8	28	-33.82	PASS		

NOTE: The detailed analysis report is embedded in the xls document attached in the end of this section.

9.1.3.2 Test ID / Test Name: FP.3.2 / Input Voltage Range

9.1.3.2.1 Purpose

PoE input supply range must comply with LTPoE++ standard, i.e. it is designed to work in the range of 53.75V to 56V. The purpose of the test case is to validate the range for LTPoE++ voltage range for which GBC will be functional.

9.1.3.2.2 Test and Measurement Method

This test is conducted by varying PoE injector input voltage from 53.75V to 56V. Varying the injector supply for voltages in steps of 1V, measure the input voltage at C2005.1. Load GBC up to 30W using an external electronic load. For every change in input voltage, measure the output voltage of 48V to 18V isolated converter (U38) at C3M171.1 and should read 18V. Please refer to Section 3.2.3.3 in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.1.3.2.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 53.75V to 56V

System load – Typical + External electronic load on 12V rail.

9.1.3.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0005

Software versions – NA

9.1.3.2.5 Test Results

By varying PoE input voltage; it is ensured that output of 48V to 18V isolated converter (U38) is 18V which in-turn ensures proper functionality of GBC module.

9.1.3.2.6 Measurement Logs

	PoE In - Input supply range									
Sl. No.	Test case No.	PoE input	VSLPOE VOUT	Load current	Total system	Total board power	Specif	ication	Design	PASS
		voltage (V)	(at C3M171) (V)	on 12 V rail(A)	current (A)	consumption (W)	Min(V)	Max(V)	Margin (%)	FAIL
1	FP 3.2	53.75	18.57	1.82	0.605	32.52	17.1	18.9	-1.75	PASS
2	FP 3.2	55	18.58	1.82	0.597	32.84	17.1	18.9	-1.69	PASS
3	FP 3.2	55.5	18.57	1.82	0.59	32.75	17.1	18.9	-1.75	PASS
4	FP 3.2	56	18.57	1.82	0.587	32.87	17.1	18.9	-1.75	PASS

NOTE: Pass Criteria for input voltage range: Measured Voltage should be equal to output voltage $\pm 5\%$.

The detailed analysis report for PoE test cases executed is embedded in the xls document attached herewith.

9.1.4 **PoE – Data**

9.1.4.1 Test ID / Test Name: FP.5.1 / Ethernet Compliance

9.1.4.1.1 Purpose

The purpose of this test case is to perform Ethernet Physical Layer Compliance Testing for 100BASE-TX MDI signal.

9.1.4.1.2 Test and Measurement Method

This test is conducted by generating PRBS test pattern from Marvell switch using MDC and MDIO registers and probing signals at both PD port [J1A.1 and J1A.2 (TX pair); J1A.3 and J1A.6 (RX pair)] and PSE port [J1A.13 and J1A.14 (TX pair); J1A.15 and J1A.18 (RX pair)] and perform compliance as per IEEE 802.3 standard which cover these test cases, viz. Template Test, Differential Output Voltage Test, Signal Amplitude Symmetry Test, Rise and Fall Time Test, Waveform Overshoot Test, Jitter Test, Duty Cycle Distortion Test, Return Loss Test, common Mode Rejection. The test procedure and test setup has been performed as per document embed herewith.

Please refer to Section **3.2.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.1.4.1.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +18V DC System load – Typical

9.1.4.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – NA

9.1.4.1.5 Test Results

Test Report for 100Base-TX

Test	Spec. Range	Measured Value	Result
AOI Template	Fit the template		Fail
Output Voltage (+Vout)	950mV to1050mV	965.4mV	Pass
Output Voltage (-Vout)	-950mV to -1050mV	-961.4mV	Pass
Amplitude Symmetry	0.98 to 1.02	1.004	Pass
Rise Time(+ve)	3ns to 5ns	5.39ns	Fail
Rise Time(-ve)	3ns to 5ns	5.32ns	Fail
Fall Time(+ve)	3ns to 5ns	5.06ns	Fail
Fall Time(-ve)	3ns to 5ns	5.23ns	Fail
Rise/Fall Symmetry(+ve)	<500ps	325ps	Pass
Rise/Fall Symmetry(-ve)	<500ps	425ps	Pass
Overshoot(+ve)	<5%	2.37%	Pass
Overshoot(-ve)	<5%	1.82%	Pass
Transmit Jitter(+ve)	<1.4ns	660ps	Pass
Transmit Jitter(-ve)	<1.4ns	1.32ns	Pass
Distortion (Duty Cycle)	<500ps(±250ps)	300ps	Pass

Transmitter Return Loss:

Frequency	Spec. Value	Me	asured Valu	e	Result	
#E 15	\$55(85Ohm	100Ohm	115Ohm		
1 MHz	-16.00dB	-17.22dB;	-24.79dB;	-36.20dB	Pass	
10 MHz	-16.00dB	-17.74dB;	-24.68dB;	-26.79dB	Pass	
20 MHz	-16.00dB	-20.72dB;	-25.24dB;	-20.71dB	Pass	
30 MHz	-16.00dB	-25.39dB;	-26.85dB;	-19.26dB	Pass	
40 MHz	-13.50dB	-26.57dB;	-28.08dB;	-19.41dB	Pass	
50 MHz	-11.56dB	-21.41dB;	-23.05dB;	-18.59dB	Pass	
60 MHz	-9.97dB	-11.37dB;	-12.09dB;	-11.73dB	Pass	

Receiver Return Loss:

Frequency	Spec. Value	Me	asured Valu	e	Result	
		85Ohm	100Ohm	1150hm		
1 MHz	-16.00dB	-17.05dB;	-24.32dB;	-35.91dB	Pass	
10 MHz	-16.00dB	-17.40dB;	-24.58dB;	-29.64dB	Pass	
20 MHz	-16.00dB	-20.33dB;	-27.74dB;	-22.63dB	Pass	
30 MHz	-16.00dB	-24.55dB;	-32.09dB;	-20.64dB	Pass	
40 MHz	-13.50dB	-21.66dB;	-26.10dB;	-20.36dB	Pass	
50 MHz	-11.56dB	-17.62dB;	-20.62dB;	-19.26dB	Pass	
60 MHz	-9.97dB	-13.34dB;	-15.30dB;	-15.72dB	Pass	

NOTE:

Rise, fall time and AOI template failure are attributed to physical layout of the Ethernet channel on Rev-B design. Channel implementation has been updated in Rev C design, which includes optimized center tap routing and channel length. These optimizations are expected to address the failures and will be validated as part of Rev C product qualification.

9.1.5 Protection

9.1.5.1 Test ID / Test Name: FP.6.1 / Output Voltage Accuracy

Covered in FP.2.1

9.1.5.2 Test ID / Test Name: FP.6.2 / Solar AUX Present Test

9.1.5.2.1 Purpose

The purpose of this test case is to check the presence of Solar or AUX supply.

9.1.5.2.2 Test and Measurement Method

This test is conducted by isolating input side of Tiva and Intel microprocessor by removing R10054 and R10067 respectively. Connect an AUX supply to the input of GBC. Measure the voltage at R9957.2. When AUX or solar supply is present, the voltage on this resistor should measure <0.4V. Please refer to Section 3.2.5.3 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.1.5.2.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage - +18V DC

System load – Typical

9.1.5.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0005

Software versions – NA

9.1.5.2.5 Test Results

Measuring the voltage at R9957.2 to be < 0.4V, indicates that Solar/ AUX supply is present as the input source to GBC.

9.1.5.2.6 Measurement Logs

	Test				Specification			PASS
S1.	case		Measuring	Measured			Margin	/
No.	No.	Voltage Rail	Points	Voltage	Min(V)	Max(V)	(%)	FAIL
1	FP 6.2	VSLRPOE_VOUT	R988.1	17.98	17.82	18.18	-0.90	PASS
2	FP 6.2	SOLAR_AUX_PRSNT_N	R9957.2	0.185	0	0.4	-53.75	PASS
3	FP 6.2	VPS_VOUT	R1056.1	17.98	17.82	18.18	-0.90	PASS

NOTE:

- 1) Pass Criteria for Solar_AUX_Present: Measured Voltage at R9957.2 should be < 0.4V (designed value is for <0.4V)
- 2) The detailed analysis report is embedded in the xls document attached in the end of this section.

9.1.5.3 Test ID / Test Name: FP.6.3 / Protection Limit

9.1.5.3.1 Purpose

The purpose of this test case is to ensure the voltage protection limits are as per the designed value, i.e. input voltage to U91 (LT4256) is \geq 11.5V.

9.1.5.3.2 Test and Measurement Method

This test is conducted by isolating input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. Connect an AUX supply to the input of GBC. Vary the input voltage from 10.5V to 11.5V in steps of 0.2V. Measure the voltages at C3M171.1, R1053.2, R1056.1 and R10044.2. Input voltage for U91 should be greater than 11.5V for its proper operation. This test fails if input voltage of U91 (VSLRPOE_VOUT) is less than 11.5V, or if the nodal voltage at R1053 and R1052 junction is greater than 3.96V. Please refer to Section 3.2.5.4 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.1.5.3.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +10.5V DC to +11.5V DC System load –Typical

9.1.5.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0005

Software versions – NA

9.1.5.3.5 Test Results

Measuring the voltage at R1053.2 < 3.96V and input voltage to U91 greater than 11.5V indicates that U91 protects GBC at under voltages.

9.1.5.3.6 Measurement Logs

					Voltag	ge Rail						
			Node		Specif	ication			Specif	ication		
Sl. No.	Test case No.	VSLRPOE_VOUT @ C3M171.2	voltage at UV pin of U91 @ R1053.2	VPS_VOUT @ R1056.2	Min (V)	Max (V)	Design Margin (%)	12V_IN @ R10044.3	Min (V)	Max (V)	Design Margin (%)	PASS / FAIL
1	FP	10.5	3.672	0	0	0	0.00	0	0	0	0.00	PASS
	6.3						****				****	
2	FP 6.3	10.8	3.776	0	0	0	0.00	0	0	0	0.00	PASS
3	FP 6.3	11	3.846	0	0	0	0.00	0	0	0	0.00	PASS
4	FP 6.3	11.2	3.917	0	0	0	0.00	0	0	0	0.00	PASS
5	FP 6.3	11.5	4.021	11.52	11.27	11.73	-1.79	12.08	11.76	12.24	-1.31	PASS

NOTE:

Pass Criteria for Protection Circuit:

- 1) Voltage measured at VSLRPOE_VOUT should be $\ge 11.5 \text{V}$ (11.5V is the designed value). This implies that the node voltage at R1053.2 should be > 3.96 V.
- 2) When the above two criteria are met, voltage at VPS_VOUT should be equal to VSLRPOE_VOUT and 12V_IN should be equal to $\pm 5\%$ of 12V (i.e. between 11.4V and 12.6V)

The detailed analysis report for PoE test cases executed is embedded in the xls document attached herewith.

Protection_FP.6.xlsx

9.2 Power:

9.2.1 **PoE**

9.2.1.1 Test ID / Test Name: PWR.1.1 / Voltage Accuracy

Same as test case FP.3.1

9.2.1.2 Test ID / Test Name: PWR.1.2 / Ripple Measurement

9.2.1.2.1 Purpose

The purpose of this test case is to check the maximum peak-to-peak ripple voltage of PoE supply.

9.2.1.2.2 Test and Measurement Method

This test is conducted by isolating input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. A constant input voltage of 56V is given from PoE injector (PS-201G++) to J1A connector. An Isolated DC-DC converter in turn converts 56V to 18V. To measure the ripple voltage, operate the oscilloscope in AC coupling mode and measure the ripple voltage across C3M103.1. Please refer to Section **4.2.1.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure

9.2.1.2.3 Test Condition

Ambient Temperature - 25°C Operating Voltage – PoE injector supply System load – Idle/Typical

9.2.1.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0018 Software versions – NA

9.2.1.2.5 Test Results

The ripple voltage accuracy is within 5% of expected ripple voltage.

9.2.1.2.6 Measurement Logs

PoE In - Ripple Measurement										
	Test Specification PA									
S1.	case	Voltage	Measuring	Ripple			Margin	/		
No.	No.	Rail	Point	Voltage(mV)	Min(mV)	Max(mV)	(%)	FAIL		
1	PWR1.2	PV18POE	C3M103.1	13.2	0	900	-98.53	PASS		

NOTE:

1) Supporting waveform capture is provided at end of test case id <u>PWR 1.3</u>

2) The detailed analysis report is embedded in the xls document attached in the end of this section.

9.2.1.3 Test ID / Test Name: PWR.1.3 /PoE Present Check

9.2.1.3.1 Purpose

The purpose of this test case is to check the presence of PoE as an input supply source.

9.2.1.3.2 Test and Measurement Method

This test is conducted by isolating input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. A constant input voltage of 56V is given from PoE injector (PS-201G++) to J1A connector. A DC-DC in turn converts 56V to 18V. When PoE supply is present, the voltage on R9953.2 resistor should measure <1.155V. Any voltage less than 1.155V is considered as low signal for Tiva thus indicating the presence of PoE supply. Please refer to Section **4.2.1.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.1.3.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +18V DC System load – Idle/Typical

9.2.1.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0018 Software versions – NA

9.2.1.3.5 Test Results

The voltage at R9953.2 was measured to be 0.192V.

9.2.1.3.6 Measurement Logs

	PoE In - Supply Present Check											
	Test				Specification	on		PASS				
S1.	case		Measuring	Measured	Sp Comount	Margin	/					
No.	No.	Voltage Rail	Point	Voltage(V)	Min(mV)	Max(mV)	(%)	FAIL				
1	PWR1.3	POE_PRSNT_N	R9953.2	0.192	0	1.155	-83.38	PASS				

The detailed analysis report with waveform captured for PoE test cases executed is embedded in the xls document attached herewith.

Test ID / Test Name: PWR.1.4 / Data transfer validation 9.2.1.4

9.2.1.4.1 Purpose

This test case indicates the data validation between PoE ports A and B.

9.2.1.4.2 Test and Measurement Method

Connect Data In port of PoE injector to CPU1. Connect Port B of GBC to another machine (CPU2). Ping CPU2 from CPU1 and vice versa. Please refer to Section 4.2.1.5 in latest version of "OC_CONNECT_1 GBC_Test_Specification" document for detailed test procedure.

9.2.1.4.3 **Test Condition**

Ambient Temperature – 25°C

Operating Voltage – AUX supply: + PoE injector supply

System load - Typical

9.2.1.4.4 **DUT Sample Information**

GBC Board Serial Number - WZ1630LIFE2GBC0005

Software versions – NA

9.2.1.4.5 **Test Results**

The number of packets transferred from CPU1 to CPU2 and vice versa should have a loss of 0%, then data validation through PoE is successful.

9.2.1.4.6 Measurement Logs

n_CPU1.JPG

PoE_Data_Validatio PoE_Data_Validation_ CPU2.ipg

9.2.1.5 Test ID / Test Name: PWR.1.5 / Power delivery

9.2.1.5.1 Purpose

The purpose of the test case is to validate the power delivery of PoE.

9.2.1.5.2 Test and Measurement Method

This test is conducted by measuring the voltage at the sense resistor R10044 and calculating the current and power for the output section. PoE Voltage and Current are measured by connecting the injector to DC power supply and measuring the voltage at the input point of injector. The efficiency is calculated as $\eta = 100\%$ * Pout / Pin. Please refer to Section 4.2.1.6 in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.1.5.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – PoE injector supply System load – Typical

9.2.1.5.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – NA

9.2.1.5.5 Test Results

The efficiency is calculated to be 61.64%.

9.2.1.5.6 Measurement Logs

	PoE Power Delivery										
Section	Probing	Resistor Value	Voltage	Measured Voltage across	Current	Power	Calculated Efficiency		fication %)	Design Margin	
	points	$(m\Omega)$	(V)	sense resistor (mV)	(A)	(W)	(%)	Min	Max	(%)	
Input											
Section	NA	NA	47.97	NA	0.487	23.36139					
Output											
Section	R10044	10	12	12	1.2	14.4	61.64	60	70	-2.73361	

NOTE: PoE Voltage and Current measured by connecting the injector to DC power supply and measuring the voltage at the output point of injector.

NOTE: This test case was carried out for typical load condition. Full load condition will be tested in next version.

The detailed analysis report for power delivery of PoE is embedded in the xls document attached herewith.

9.2.2 Isolated DC-DC Converter

9.2.2.1 Test ID / Test Name: PWR.3.1 / Output Voltage Accuracy

9.2.2.1.1 Purpose

The purpose of this test case is to check the voltage accuracy of output voltage rail of DC – DC converter when PoE input voltage is varied.

9.2.2.1.2 Test and Measurement Method

A varying input PoE voltage from 40V to 48V is varied in steps and fed to J1A connector. Measure the input voltage at J1.A C2005.1 and output voltage of DC-DC converter at C1807.1. Please refer to Section **4.2.2.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.2.1.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +40V to +48V DC System load –Typical

9.2.2.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0005

Software versions - NA

9.2.2.1.5 Test Results

The output voltage accuracy of DC-DC converter when powered through varying PoE input voltage is within 5% of expected voltage.

9.2.2.1.6 Measurement Logs

		Isola	nted DC-DC Conv	erter -Outp	ut Voltage	e Accuracy	y		
Sl.	Test case	PoE Input			Specif	ïcation		PASS/	
No.	o. No.	Voltage (V)	VPORTA_P(V)	PV18POE	Min(V)	Max(V)	Margin (%)	FAIL	
1	PWR 3.1	44.2	44.2	18.58	17.1	18.9	-1.69	PASS	
2	PWR 3.1	40.4	40.22	18.63	17.1	18.9	-1.43	PASS	
3	PWR 3.1	47.4	47.2	18.57	17.1	18.9	-1.75	PASS	

NOTE: The detailed analysis report is embedded in the xls document attached in the end of this section.

9.2.2.2 Test ID / Test Name: PWR.3.2 / Solar AUX and PoE Or'ring circuit

9.2.2.2.1 Purpose

The purpose of this test case is to check the switching between AUX/ Solar supply and PoE supply.

9.2.2.2.2 Test and Measurement Method

This test is conducted by isolating input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. A constant input voltage of 56V is given from PoE injector (PS-201G++) to J1A connector. A DC-DC in turn converts 56V to 18V. AUX/ Solar input supply is also given to JTB10A.1. Measure the output voltage at C3M171.1. As per design, output voltage should follow AUX/ Solar supply if AUX supply is greater than 16.3V; else output voltage will follow PoE. Please refer to Section 4.2.2.3 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.2.2.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage - +18V DC from PoE; AUX voltage range +15V DC to +24V DC

System load – Idle/Typical

9.2.2.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0018 Software versions – NA

9.2.2.2.5 Test Results

From AUX or solar input voltage equal to 16.27V, the output voltage follows the input.

9.2.2.2.6 Measurement Logs

		Isolated DC-	-DC Conver	ter - Solar AU	X and PoE	OR'ing C	Circuit	
		Voltage			Specifica	tion		
		Rail	Voltage					
		VSLR_OV	Rail					
Sl.	Test case	UVOUT(V	PV18POE	Measured				PASS/
No.	No.)	(V)	Voltage(V)	Min(V)	Max(V)	Margin (%)	FAIL
1	PWR 3.2	15	18.65	18.61	17.7175	19.5405	-4.76	PASS
2	PWR 3.2	15.7	18.65	18.61	17.7175	19.5405	-4.76	PASS
3	PWR 3.2	16.06	18.65	18.58	17.7175	19.509	-4.76	PASS
4	PWR 3.2	16.27	18.65	16.25	15.4565	17.0835	-4.88	PASS
5	PWR 3.2	17	18.65	16.97	16.15	17.85	-4.93	PASS
6	PWR 3.2	18	18.65	17.95	17.1	18.9	-4.97	PASS
7	PWR 3.2	24	18.65	23.91	22.8	25.2	-4.87	PASS

NOTE: When VSLR_OVUVOUT is between 16.12V and 16.17V; then voltage source selection is based on the first available source.

The detailed analysis report for PoE test cases executed is embedded in the xls document attached herewith.

9.2.3 Lead Acid battery

9.2.3.1 Test ID / Test Name: PWR.4.1 / Output Voltage Accuracy

9.2.3.1.1 Purpose

The purpose of this test case is to check the output voltage accuracy of battery charger U82 (LTC4015).

9.2.3.1.2 Test and Measurement Method

This test is conducted by isolating input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. Measure the voltages at C1685.1, JTB10B.3, C1741.1, and C1686.1. Please refer to Section **4.2.3.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.3.1.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage - Lead Acid battery voltage – 9.5V to 13.8V (12V nominal voltage)

System load – Idle/Typical

9.2.3.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0018 Software versions – NA

9.2.3.1.5 Test Results

Measured battery voltage at various input points are within the limits.

9.2.3.1.6 Measurement Logs

	Lead Acid Battery - Voltage Accuracy										
Sl.	Test case		Measuring	Measured	Specif	Specification		PASS /			
No.	No.	Voltage Rail	Point	Voltage(V)	Min(V)	Max(V)	(%)	FAIL			
1	PWR 4.1	VPS_VOUT	C1685.1	0	0	0	0	PASS			
2	PWR 4.1	LACID_VBAT_P	JTB10B.3	12.77	10.5	13.5	-5.41	PASS			
3	PWR 4.1	LT4231_BAT_CHRGR_LACID	C1741.1	12.75	12.610375	12.929625	-1.11	PASS			
4	PWR 4.1	VBC_LACID	C1686.1	12.73	12.590625	12.909375	-1.11	PASS			

<u>NOTE</u>: The detailed analysis report is embedded in the xls document attached in the end of the test case PWR.4.7.

9.2.3.2 Test ID / Test Name: PWR.4.2 / Charge current measurement

9.2.3.2.1 Purpose

Charge current for lead acid battery is designed for 10.6A.

i.e. Charge current
$$=\frac{32mV}{3mahm}=10.66A$$

Charge current read from register Ibat having sub-address 0x3D, must be equal to the programmed charge current (10.66A).

NOTE: Charge current will decrease when charging voltage increases.

9.2.3.2.2 Test and Measurement Method

Connect lead acid battery terminals between to JTB10B.3and JTB10B.4 Connect a debug board to GBC board in order to access TIVA through CCS. Through I2C channel 0, lead acid battery charger U82 can be accessed. Program the charge current as 10.66A by writing into Icharge _target register at address 0x1A. Read register Ibat having sub-address 0x3D. This value gives the charging current of the lead acid battery. Repeat the same procedure for different values such as 2A, 4A, 6A and 8A as charge current for verification. Please refer to Section **4.2.3.4** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.3.2.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage - +Lead Acid Battery Voltage (12V nominal, 9.5V to 13.8V)

System load – Typical

9.2.3.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0014

Software versions – NA

9 2 3 2 5 Test Results

The register read value must be equal to the current measured across resistor R9959.

The detailed analysis report for lead acid battery charge current test case executed is embedded in the xls document attached herewith.

NOTE: PASS Criteria: IBAT value read from register 0x3D and current measured across R9959 should be equal.

9.2.3.3 Test ID / Test Name: PWR.4.3 / Load current measurement

9.2.3.3.1 Purpose

The purpose of this test case is to measure the current drawn from the battery when system is powered ON by lead acid battery.

9.2.3.3.2 Test and Measurement Method

This test is conducted by isolating input side of Intel microprocessor, by removing R10067. Connect the lead acid battery at JTB10B.3.

Connect a debug board to GBC board in order to access TIVA through CCS. Through I2C channel 0, lead acid battery charger U82 can be accessed. Read register IIN having sub-address 0x3E. This value gives the load current of GBC board.

Measure the voltage drop across R9959 (battery sense resistor).

Load current is given by $\frac{[Voltage\ across\ 9960(mV)]}{R9960(mohm)} = \frac{[Voltage\ across\ R9960(mV)]}{2}$. Please refer to Section

4.2.3.5 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.3.3.3 Test Condition

Ambient Temperature - 25°C (Lab temperature was maintained at 25°C during testing)

Operating Voltage – Lead Acid battery voltage

System load – Idle/Typical

9.2.3.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0018 Software versions – NA

9.2.3.3.5 Test Results

The register read value must be equal to the current measured across resistor R9960.

9.2.3.3.6 Measurement Logs

The detailed analysis report for lead acid battery Load current test case executed is embedded in the xls document attached herewith.

NOTE: PASS criteria: IIN value read from register 0x3E and current measured across R9960 should be equal.

9.2.3.4 Test ID / Test Name: PWR.4.4 / LDO Output voltage

9.2.3.4.1 Purpose

The purpose of this test case is to measure the battery charger (U82) internal INTV_{CC} LDO voltage.

9.2.3.4.2 Test and Measurement Method

This test is conducted by isolating input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. Connect the lead acid battery at JTB10B.3. Measure the battery charger internal LDO voltage at C1767.1. Please refer to Section **4.2.3.6** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.3.4.3 Test Condition

Ambient Temperature - 25°C Operating Voltage – Lead Acid battery voltage System load – Idle/Typical

9.2.3.4.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0018 Software versions – NA

9.2.3.4.5 Test Results

Internal LDO voltage is measured and is within the expected limit (i.e. between 4.3V and 5.5V).

9.2.3.4.6 Measurement Logs

	Lead Acid Battery - LDO Output Voltage											
Sl				Measur	Expecte	Specif	ication					
			Measur	ed	d	Min(Max(Mar				
N	Test		ing	Voltage	Voltage	V)	V)	gin	PASS/F			
0.	case No.	Voltage Rail	Point	(V)	(V)	v)	v)	(%)	AIL			
		INT_VCC_L	C1767.									
1	PWR 4.4	ACID	1	4.87	5	4.3	5.5	-9.09	PASS			

NOTE: The detailed analysis report is embedded in the xls document attached in the end of this section.

9.2.3.5 Test ID / Test Name: PWR.4.5 / Temperature Measurement

9.2.3.5.1 Purpose

The purpose of this test case is to measure the temperature of battery charger IC U82 Microcontroller when it's fully operational.

9.2.3.5.2 Test and Measurement Method

Connect lead acid battery. Connect a debug board to GBC board in order to access TIVA through CCS. Through I2C channel 0, lead acid battery charger, U82 can be accessed. Read register DIE_TEMPERATURE having sub-address 0x3F. Please refer to Section **4.2.3.7** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.3.5.3 Test Condition

Ambient Temperature - 23°C Operating Voltage – Lead Acid battery voltage System load – Idle/Typical

9.2.3.5.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software versions – NA TIVA RTOS VER.33 lead acid battery charger configuration code

9.2.3.5.5 Test Results

The measured value is well within operating temperature of U82 i.e. -40C to +125C

9.2.3.5.6 Measurement Logs

							Specification			PASS
Sl. No	Register	Register Address	Hex Value	Decimal Value	Parameter	Value	Min (deg C)	Max (deg C)	Margin (%)	/ FAIL
					LTC4015					
					temperature					
1	DIE_TEMP	0x3F	3568	13672	(deg C)	36.447	-40	125	191.12	PASS

The detailed analysis report with waveform captured for lead acid battery die temperature test case executed is embedded in the xls document attached herewith.

9.2.3.6 Test ID / Test Name: PWR.4.6 / Charge control

9.2.3.6.1 Purpose

This test case indicates the programmed charge current for lead acid battery.

9.2.3.6.2 Test and Measurement Method

Connect lead acid battery at connector JTB10B. Connect a debug board to GBC board in order to access TIVA through CCS. Through I2C channel 0, lead acid battery charger U82 can be accessed. Write the desired charge current to register 0x1A, ICHARGE_TARGET. Read the register 0x3D (Ibat) to measure the charge current. Please refer to Section 4.2.3.8 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.3.6.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – Lead Acid battery and AUX supply: +18V DC

System load – Typical

9.2.3.6.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0005

Software versions - TIVA RTOS VER.33 lead acid battery charger configuration code

9.2.3.6.5 Test Results

The read value from register 0x3D and 0x1A should be the same.

9.2.3.6.6 Measurement Logs

NOTE: PASS criteria: Programmed value of register 0x1A should be equal to the read value from register 0x3D.

9.2.3.7 Test ID / Test Name: PWR.4.7 / Lead Acid and LiON battery or 'ring circuit

9.2.3.7.1 Purpose

The purpose of this test case is to check OR'ing between lead acid battery and lithium ion battery when solar or AUX power supply is absent. Measure the current drawn from the battery when system is powered ON by lithium ion battery.

9.2.3.7.2 Test and Measurement Method

Connect both lead acid battery and lithium ion battery. If lead acid battery measures >10.35V. lead acid battery will be selected as the power supply source. Please refer to Section **4.2.3.9** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.3.7.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage – Lithium ion battery voltage or lead acid battery

System load – Idle/Typical

9.2.3.7.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0005 Software versions – NA

9.2.3.7.5 Test Results

When lead acid battery voltage is greater than 10.35V, the power source for GBC will be lead acid and is verified by this test.

9.2.3.7.6 Measurement Logs

		Lead	Acid and Lithi	um Ion Battery - O	R'ing (Circuit		
Cl	Tost	VBC_	Spe	cification	Mangin	PASS		
Sl. No	Test Case ID	()	LACID (V) @C3M97.1	VPOUT_BUCK (V) @ C3M96.1	Min	Max	Margin (%)	/ FAIL
1	PWR.4.7	12.37	11.17	11.12	10.35	13.5	-7.44	PASS

NOTE: VPOUT_BUCK = VBC_LACID only if voltage of lead acid battery voltage is >10.35

The detailed analysis report for lead acid battery charger test cases executed is embedded in the xls document attached herewith.

9.2.3.8 Test ID / Test Name: PWR.4.8 / Power delivery

9.2.3.8.1 Purpose

The purpose of the test case is to validate the power delivery of Lead Acid battery.

9.2.3.8.2 Test and Measurement Method

This test is conducted by measuring the voltage at the sense resistors R9959 and R10044 and calculating the current and power. The efficiency is calculated as $\eta = 100\% * Pout / Pin$. Please refer to Section **4.2.3.10** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.3.8.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.2.3.8.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – NA

9.2.3.8.5 Test Results

The efficiency is calculated to be 69.39%.

9.2.3.8.6 Measurement Logs

				Lead Acid Pow	er Delivery						
	Probing	Resistor		Measured Voltage	Current	Power	Calculated	_	ficatio (%)	Design	
Section	points	Value (mΩ)	Voltage (V)	across sense resistor (mV)	(A)	(W)	Efficiency (%)	Min	Max	Margin (%)	
Input											
Section	R9959	5	11.89	0.8	0.16	1.9024					
Output											
Section	R10044	10	12	1.1	0.11	1.32	69.39	60	70	-0.87709	

NOTE: This test case was carried out for typical load condition. Full load condition will be tested in next version.

The detailed analysis report for power delivery of Lead Acid battery is embedded in the xls document attached herewith.

9.2.4 Lithium Ion Battery

9.2.4.1 Test ID / Test Name: PWR.5.1 / Output Voltage Accuracy

9.2.4.1.1 Purpose

The purpose of this test case is to check the output voltage accuracy of battery charger U85 (LTC4015).

9.2.4.1.2 Test and Measurement Method

This test is conducted by isolating input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. Measure the voltages at C1718.1, JTB8.1, C1715.1, and C1718.1. Please refer to Section **4.2.4.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.4.1.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage - AUX voltage range +16V DC to +24V DC and lithium ion battery (9V to 12.6V) System load – Idle/Typical

9.2.4.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0005 Software versions – NA

9.2.4.1.5 Test Results

Measured battery voltage at various input points are within the specified limits.

9.2.4.1.6 Measurement Logs

	Lithium Ion Battery – Output Voltage Accuracy											
Sl. Test case Voltage Rail		Waltaga Dail	Measuring	Measuring Measured		ication	Margin	PASS /				
No.	No.	Voltage Rall	Point	Voltage(V)	Min(V)	Max(V)	(%)	FAIL				
1	PWR 5.1	VPS_VOUT	C1718.1	0	0	0	0	PASS				
2	PWR 5.1	LION_VBAT_P	JTB8.1	11.67	11.1	12.6	-5.14	PASS				

3	PWR 5.1	VBC_LION	C1715.1	11.68	11.1	12.6	-5.23	PASS
---	---------	----------	---------	-------	------	------	-------	------

<u>NOTE</u>: The detailed analysis report with waveform captured is embedded in the xls document attached in the end of the test case PWR 5.5.

9.2.4.2 Test ID / Test Name: PWR.5.2 / Charge Current Measurement

9.2.4.2.1 Purpose

Charge current for lithium ion battery is designed for 1.45A.

i.e. Charge current
$$=\frac{32\text{mV}}{22\text{mohm}} = 1.45\text{A}$$

Charge current read from register Ibat having sub-address 0x3D, must be equal to the programmed charge current (1.45A).

NOTE: Charge current will decrease when charging voltage increases.

9.2.4.2.2 Test and Measurement Method

Connect lithium ion battery terminals between to JTB8.1 and JTB8.2. Connect a debug board to GBC board in order to access TIVA through CCS. Through I2C channel 0, lithium ion battery charger U85 can be accessed. Read register Ibat having sub-address 0x3D. This value gives the charging current of the lithium ion battery. The read value must be equal to the measured value across R10039. Please refer to Section **4.2.4.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.4.2.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage – Lithium ion battery Voltage (9V to 12.6V)

System load –Typical

9.2.4.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0014

Software versions – TIVA RTOS VER.33 code for lithium ion battery configuration

9.2.4.2.5 Measurement Logs

NOTE: PASS Criteria: Measured value across R10039 and read value from register 0x3D must be equal

9.2.4.3 Test ID / Test Name: PWR.5.3 / Load current measurement

9.2.4.3.1 Purpose

The purpose of this test case is to measure the current drawn from the battery when system is powered ON by lithium ion battery.

9.2.4.3.2 Test and Measurement Method

Connect lead acid battery. Connect a debug board to GBC board in order to access TIVA through CCS. Through I2C channel 0, lithium ion battery charger U85 can be accessed. Read register IIN having subaddress 0x3E. IIN register outputs the value of total load current. Please refer to Section **4.2.4.5** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9 2 4 3 3 Test Condition

Ambient Temperature - 25°C

Operating Voltage – Lithium ion battery voltage

System load – Idle/Typical + External electronic load

9.2.4.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0005 Software versions – TIVA RTOS VER.33 code for lithium ion battery configuration

9.2.4.3.5 Test Results

Current measured across R9961 must be equal to value read from register 0x3E.

9.2.4.3.6 Measurement Logs

NOTE: PASS Criteria: Measured value across R9961 and read value from register 0x3E must be equal

9.2.4.4 Test ID / Test Name: PWR.5.4 / LDO Output Voltage

9.2.4.4.1 Purpose

The purpose of this test case is to ensure the internal LDO output voltage of Lithium Ion battery charger U85 must be equal to 5V.

9.2.4.4.2 Test and Measurement Method

Connect Lithium Ion battery terminals between to JTB8.1 and JTB8.2. Measure the battery charger U85 internal LDO output voltage at C1765.1. The above measured voltage should be equal to 5V to ensure proper functionality of GBC module. Please refer to Section **4.2.4.6** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.4.4.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage – Lithium ion battery Voltage (9V to 12.6V)

System load –Typical

9.2.4.4.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0014

Software versions – NA

9.2.4.4.5 Test Result

Measured LDO voltage is within the prescribed limit.i.e. between 4.3V and 5.5V

9.2.4.4.6 Measurement Logs

				Lithium I	on Battery -	LDO Output	Voltage			
;	S1.	Test	Waltona Dail	Measuring	Measured	Expected	Specif	fication	Margin	DACC/EAH
1	No.	case No.	Voltage Rail	Point	Voltage(V)	Voltage(V)	Min(V)	Max(V)	%	PASS/FAIL
	1	PWR 5.4	INT_VCC_LION	C1765.1	5.037	5	4.3	5.5	-9.09	PASS

9.2.4.5 Test ID / Test Name: PWR.5.5 / Temperature Measurement

9.2.4.5.1 Purpose

The purpose of this test case is to measure the temperature of battery charger IC U85 when it's fully operational.

9.2.4.5.2 Test and Measurement Method

Connect lithium ion battery terminals between to JTB8.1and JTB8.2 Connect a debug board to GBC board in order to access TIVA through CCS. Through I2C channel 0, lithium ion battery charger U85 can be accessed. Read register DIE_TEMPERATURE having sub-address 0x3F. Please refer to Section 4.2.4.7 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.4.5.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage – Lithium ion battery Voltage (9V to 12.6V)

System load -Typical

9.2.4.5.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0014

Software versions – TIVA RTOS VER.33 code for lithium ion battery configuration

9.2.4.5.5 Test Result

Read temperature is within the prescribed limits of the lithium ion battery, U85 IC.

9.2.4.5.6 Measurement Logs

							Spec	ification		
							Min(PASS
		Register	Hex	Decimal			deg	Max(deg		/
Sl.No	Register	Address	Value	Value	Parameter	Value	C)	C)	Margin(%)	FAIL
					LTC4015					
					temperature				196.00	
1	DIE TEMP	0x3F	35c1	13761	(deg C)	38.399	-40	125		PASS

9.2.4.6 Test ID / Test Name: PWR.5.6 / Charge control (JEITA)

9.2.4.6.1 Purpose

This test case indicates the current at which the lithium ion battery should be charged at a given temperature.

9.2.4.6.2 Test and Measurement Method

Connect lithium ion battery at connector JTB8. Connect a debug board to GBC board in order to access TIVA through CCS. Through I2C channel 0 lithium ion battery charger U85 can be accessed. Write to registers from JEITA_T1 (sub- address 0x1F) to JEITA_T6 (sub- address 0x24) with temperature range from 0° C to 60° C. Read register DIE_TEMP (sub-address 0x3F) to know the temperature. The battery should charge with a current corresponding to the measured temperature. Measure the charging current by measuring voltage across R10039. Charging current can be calculated by *Charging Current* = $\frac{measured\ voltage(mV)}{22}$. Also read the register IBAT (sub-address 0x3D). Please refer to Section **4.2.4.8** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.4.6.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – Lithium Ion battery + AUX supply: +18V DC System load – Typical

9.2.4.6.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0005

Software versions – TIVA RTOS VER.33 code for lithium ion battery configuration

9.2.4.6.5 Test Results

The value read by register 0x3D and the measured current across resistor R10039, should be same.

9.2.4.6.6 Measurement Logs

9.2.4.7 Test ID / Test Name: PWR.5.7 / Lion – Lead Acid and LiON battery or 'ing circuit

9.2.4.7.1 Purpose

The purpose of this test case is to check or 'ing between lithium ion and lead acid battery when solar or AUX power supply is absent.

9.2.4.7.2 Test and Measurement Method

Connect both lead acid battery and lithium ion battery. If lead acid battery measures <10.35V, lithium ion battery will be selected as the power supply source. Please refer to Section **4.2.4.9** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.4.7.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage – Lithium ion battery voltage or lead acid battery

System load - Idle/Typical

9.2.4.7.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0005 Software versions – NA

9.2.4.7.5 Test Results

When lead acid battery voltage is greater than 10.35V, the power source for GBC will be from lead acid and is verified by this test.

9.2.4.7.6 Measurement Logs

Lead Acid and Lithium Ion Battery - OR'ing Circuit									
	VBC_LION(V)	VBC_LACID(V)		Specification					

Sl. No	Test Case ID	@C3M97.1	@C3M98.1	VPOUT_BUCK (V) @ C3M96.1	Min	Max	Margin (%)	PASS / FAIL
1	PWR.5.7	12.38	10.3	12.37	11.1	13.5	-8.37	PASS

NOTE: VPOUT BUCK = VBC LION only if voltage of lead acid battery voltage is < 10.35

9.2.4.8 Test ID / Test Name: PWR.5.8 / Charge time

9.2.4.8.1 Purpose

This test case indicates the total time for which lithium ion is in charging phase.

9.2.4.8.2 Test and Measurement Method

Connect lithium ion battery at connector JTB8. Connect a debug board to GBC board in order to access TIVA through CCS. Through I2C channel 0 lithium ion battery charger U85 can be accessed. Read register *MAX_CHARGE_TIMER* having sub-address 0x30. This register outputs the value of total time (in seconds) the lithium ion battery is in charging state. Please refer to Section **4.2.4.10** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9 2 4 8 3 Test Condition

Ambient Temperature – 25°C Operating Voltage – Lithium Ion battery + AUX supply: +18V DC System load – Typical

9.2.4.8.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0005

Software versions - TIVA RTOS VER.33 code for lithium ion battery configuration

9.2.4.8.5 Test Results

By reading the register 0x30, it is validated that charge time read equals to the actual time of charging of lithium ion battery., i.e. 618 seconds (10 min 30 seconds)

9.2.4.8.6 Measurement Logs

9.2.4.9 Test ID / Test Name: PWR.5.9 / Power delivery

9.2.4.9.1 Purpose

The purpose of the test case is to validate the power delivery of Lithium Ion Battery.

9.2.4.9.2 Test and Measurement Method

This test is conducted by measuring the voltage at the sense resistors R10039 and R10044 and calculating the current and power. The efficiency is calculated as $\eta = 100\%$ * Pout / Pin. Please refer to Section **4.2.4.11** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.4.9.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V

System load – Typical

9.2.4.9.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – NA

9.2.4.9.5 Test Results

The efficiency is calculated to be 64.64%.

9.2.4.9.6 Measurement Logs

Lithium Ion Power Delivery											
Section	Probing points	Resistor Value (mΩ)	Voltage (V)	Measured Voltage across sense	Current (A)	Power (W)	Calculated Efficiency (%)	Specific n (ficatio %) Max	Design Margin (%)	

				resistor (mV)						
Input Section	R10039	22	12.48	3.6	0.164	2.042				
Output Section	R10044	10	12	1.1	0.110	1.320	64.64	60	70	-7.66178

NOTE: This test case was carried out for typical load condition. Full load condition will be tested in next version.

The detailed analysis report for power delivery of Lithium Ion battery is embedded in the xls document attached herewith.

9.2.5 Buck-Boost

9.2.5.1 Test ID / Test Name: PWR.6.1 / Line regulation

9.2.5.1.1 Purpose

The purpose of this test case is to check the ability of the Buck-Boost converter to maintain its specified output voltage over changes in the input line voltage.

9.2.5.1.2 Test and Measurement Method

This test is conducted by isolating input side of buck-boost converter (U88) by removing R10071 resistor and connecting and external DC power supply. Isolate input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. The input voltage is then varied in steps and output voltage is measured at R10044.2. Validate the output voltage accuracy at each step. Please refer to Section **4.2.5.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.5.1.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +9V DC to 22V DC System load – Idle/Typical

9.2.5.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software versions – NA

9.2.5.1.5 Test Results

The output voltage accuracy of buck boost converter is within 2% of expected voltage under various supply input and load conditions.

9.2.5.1.6 Measurement Logs

	Line regulation without electronic load (Probed at C1800)												
Supply		Output	Specificati										
Voltage	Output Current	Voltage			Margin								
(V)	(A)	(V)	Min(V)	Max(V)	(%)	Pass/Fail							
9	0.04	11.92	11.76	12.24	-1.36	PASS							
11.1	0.04	11.93	11.76	12.24	-1.45	PASS							
12.6	0.04	11.94	11.76	12.24	-1.53	PASS							
16	0.04	12.01	11.76	12.24	-1.88	PASS							
18	0.04	12.03	11.76	12.24	-1.72	PASS							
20	0.04	12.03	11.76	12.24	-1.72	PASS							
22	0.04	12.04	11.76	12.24	-1.63	PASS							

	Line	regulation	with electi	onic load (Probed a	t C1800)		
Supply		Output	Output	Specificatio	n		
Voltage	Load Current	Current	Voltage			Margin	
(V)	(A)	(A)	(V)	Min(V)	Max(V)	(%)	Pass/Fail
9	0.5	0.68	11.98	11.76	12.24	-1.87	PASS
9	1	1.35	11.99	11.76	12.24	-1.96	PASS
9	1.5	2.05	11.98	11.76	12.24	-1.87	PASS
11.1	0.5	0.59	11.99	11.76	12.24	-1.96	PASS
11.1	1	1.12	12	11.76	12.24	-1.96	PASS
11.1	1.5	1.67	11.99	11.76	12.24	-1.96	PASS
12.6	0.5	0.51	11.99	11.76	12.24	-1.96	PASS
12.6	1	0.98	11.99	11.76	12.24	-1.96	PASS
12.6	1.5	1.47	12	11.76	12.24	-1.96	PASS
16	0.5	0.39	11.99	11.76	12.24	-1.96	PASS
16	1	0.78	11.96	11.76	12.24	-1.70	PASS
16	1.5	1.16	12.05	11.76	12.24	-1.55	PASS
18	0.5	0.36	12.02	11.76	12.24	-1.80	PASS
18	1	0.69	12.03	11.76	12.24	-1.72	PASS
18	1.5	1.04	12.06	11.76	12.24	-1.47	PASS
20	0.5	0.33	12.04	11.76	12.24	-1.63	PASS

20	1	0.64	12.05	11.76	12.24	-1.55	PASS
20	1.5	0.94	12.1	11.76	12.24	-1.14	PASS
22	0.5	0.3	12.01	11.76	12.24	-1.88	PASS
22	1	0.58	12.04	11.76	12.24	-1.63	PASS
22	1.5	0.86	12.06	11.76	12.24	-1.47	PASS

The detailed analysis report with waveform captured for Buck-Boost Line Regulation test case executed is embedded in the xls document attached herewith.

9.2.5.2 Test ID / Test Name: PWR.6.2 / Load regulation

9.2.5.2.1 Purpose

The purpose of this test case is to check the capability of Buck-Boost converter to maintain a constant output voltage over changes in the load.

9.2.5.2.2 Test and Measurement Method

This test is conducted by isolating input side of buck-boost converter (U88) by removing R10071 resistor and connecting and external DC power supply. Isolate input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. The input voltage is then varied in steps and output voltage is measured at R10044.2. Connect an external load at R10063.1 and vary in of 0.5A.Please refer to Section 4.2.5.3 latest steps in version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.5.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Idle/Typical

9.2.5.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software versions – NA

9.2.5.2.5 Test Results

The output voltage accuracy of buck boost converter is within 2% of expected voltage under various load conditions.

9.2.5.2.6 Measurement Logs

Load Regulation (Input Voltage - 18V)								
Load	Output	Output	Specif	ication		Pass/Fail		
Current	Current	Voltage	Min(V)	Max(V)	Margin		The	
(A)	(A)	(V)	. ,	, ,	(%)			
		(avg)						
0.5	0.39	11.88	11.76	12.24	-1.02	PASS		
1	0.73	11.87	11.76	12.24	-0.94	PASS		
1.5	1.07	11.89	11.76	12.24	-1.11	PASS		

detailed analysis report with waveform captured for Buck-Boost Load Regulation test case executed is embedded in the xls document attached herewith.

Buck-Boost_load_re gulation.xlsx

9.2.5.3 Test ID / Test Name: PWR.6.3 / Ripple measurement

9.2.5.3.1 Purpose

The purpose of this test case is to check the maximum peak-to-peak ripple voltage of Buck-Boost converter output under different load conditions and input voltage.

9.2.5.3.2 Test and Measurement Method

This test is conducted by isolating input side of buck-boost converter (U88) by removing R10071 resistor and connecting and external DC power supply. Isolate input side of Tiva and Intel microprocessor, by removing R10054 and R10067 respectively. The input voltage is then varied in steps and output voltage is measured at R10044.2. Connect an external load at R10063.1 and vary in steps of 0.5A. Setting oscilloscope in AC coupling mode, measure the ripple voltage across C1800. Please refer to Section **4.2.5.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.5.3.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V System load – Idle/Typical/Full

9.2.5.3.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software versions – NA

9.2.5.3.5 Test Results

The maximum peak-to-peak ripple voltage measured is found to be less than 5% of the input voltage.

9.2.5.3.6 Measurement Logs

Ripple Measurement for line regulation							
Supply	Load	Ripple	Specification		Design		
Voltage (V)	Current (A)	Voltage (mV)	Min(mV)	Max(mV)	Margin (%)	Pass/Fail	
9	0.5	52	0	450	-88.44	PASS	
9	1	62	0	450	-86.22	PASS	
9	1.5	64	0	450	-85.78	PASS	
11.1	0.5	44	0	555	-92.07	PASS	
11.1	1	58	0	555	-89.55	PASS	
11.1	1.5	56	0	555	-89.91	PASS	
12.6	0.5	44	0	630	-93.02	PASS	
12.6	1	50	0	630	-92.06	PASS	
12.6	1.5	52	0	630	-91.75	PASS	
16	0.5	24	0	800	-97.00	PASS	
16	1	24	0	800	-97.00	PASS	
16	1.5	25	0	800	-96.88	PASS	
18	0.5	29	0	900	-96.78	PASS	
18	1	28	0	900	-96.89	PASS	
18	1.5	29	0	900	-96.78	PASS	
20	0.5	31	0	1000	-96.90	PASS	
20	1	30	0	1000	-97.00	PASS	
20	1.5	30	0	1000	-97.00	PASS	
22	0.5	33	0	1100	-97.00	PASS	
22	1	34	0	1100	-96.91	PASS	
22	1.5	34	0	1100	-96.91	PASS	

The detailed analysis report with waveform captured for Buck-Boost Ripple measurement test case executed is embedded in the xls document attached herewith.

9.2.5.4 Test ID / Test Name: PWR.6.4 / Load Current Measurement

9.2.5.4.1 Purpose

The purpose of this test case is to measure the current drawn by Buck-Boost Converter when it is fully operational.

9.2.5.4.2 Test and Measurement Method

This test is conducted by measuring voltage across sense resistor R10044 (0.01ohm). The measured value is then used to derive current drawn by the system. Please refer to Section **4.2.5.5** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.5.4.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Idle/Typical

9.2.5.4.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Software versions – NA

9.2.5.4.5 Test Results

The current drawn by the Buck-Boost is close to typical current consumption of Intel (600mA), TIVA (120mA) and miscellaneous IC's.

9.2.5.4.6 Measurement Logs

Buck-Boost converter - Load Current measurement								
		Current (A)	Specification	Pass/Fail				

Voltage across sense resistor R10044	Resistance (ohm)		Min	Max	Design Margin (%)	
7.638 mV	0.01	0.7638	0.4	0.8	-4.53	PASS

The detailed analysis report with waveform captured for Buck-Boost Load Current Measurement test case executed is embedded in the xls document attached herewith.

9.2.5.5 Test ID / Test Name: PWR.6.5 / Temperature Measurement

9.2.5.5.1 Purpose

The purpose of this test case is to measure the operating junction temperature of Buck Boost converter when it's fully operational under ambient temperature.

9.2.5.5.2 Test and Measurement Method

This test is conducted by measuring the case temperature via using Fluke 59 Mini IR Thermometer measured on U88.And then calculating junction operating temperature using the below formula:

$Tj = Tc + Rth(j-c) \times P$

Tc : Case temperature*

Rth(j-c): Thermal resistance between Junction - Case

P : Current consumption **

The derived operating junction temperature value is well within operating temperature range of the device. Please refer to Section **4.2.5.6** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.5.5.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.2.5.5.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software versions – NA

9.2.5.5.5 Test Results

The temperature measured at the Buck Boost converter is well within the designed spec.

9.2.5.5.6 Measurement Logs

Temperature Measurement											
		Calculated operating junction	Specification (degree Celsius)		Design Margin						
Measuring	Case Temperature	temperature (degree			(%)						
point	(degree Celsius)	Celsius)	Min	Max		Pass/Fail					
U88	45.17	53.05	-40	125	232.63	PASS					

The detailed analysis report with waveform captured for each of the Buck Boost temperature measurement test cases executed is embedded in the xls document attached herewith.

9.2.6 TIVA Power Supply

9.2.6.1 Test ID / Test Name: PWR.7.3 / Ripple measurement

9.2.6.1.1 Purpose

The purpose of this test case is to check the maximum peak-to-peak ripple voltage of DC-DC converter output under different load conditions and input voltage.

9.2.6.1.2 Test and Measurement Method

This test is conducted by isolating both input and output side of DC-DC converter (U70) by removing relevant resistors. The load connected is varied for different currents along with input voltage. Please refer to Section **4.2.6.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.6.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Idle/Typical/Full

9.2.6.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0002

Software versions – NA

9.2.6.1.5 Test Results

The maximum peak-to-peak ripple voltage measured is found to be less than 10mVp-p of the output voltage.

9.2.6.1.6 Measurement Logs

	Ripple Measurement for TIVA power supply											
	ication	Design										
	Measuring	Voltage			Margin							
Supply Voltage (V)	Point	(mV)	Min(mV)	Max(mV)	(%)	Pass/Fail						
18	C502	6.3	0	10	-37	PASS						

<u>NOTE</u>: The detailed analysis report with waveform captured is embedded in the xls document attached in the end of this section.

9.2.6.2 Test ID / Test Name: PWR.7.4 / Load Current Measurement

9.2.6.2.1 Purpose

The purpose of this test case is to measure the current drawn by TIVA microcontroller when it's fully operational.

9.2.6.2.2 Test and Measurement Method

This test is conducted by measuring voltage across shunt resistor R10054 (0.002ohm). The measured value is 0.26mV. So the current drawn by the device is 130mA. The same has been validated by reading through I2C. Please refer to Section **4.2.6.3** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.6.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.2.6.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0002

Software versions – NA

9.2.6.2.5 Test Results

The current drawn by the TIVA controller is within the designed spec.

9.2.6.2.6 Measurement Logs

	Load	current Mea	asuremen	t for Tiva	power	supply		
Voltage across shunt (mV)	Measurin g Point	Resistanc e (Ohm)	Curren t (mA)	Read Value through I2C (mA)	•	ficatio mA) Max	Design Margi n (%)	Pass/Fail
0.26	R10054	0.002	130	137	120	140	-5.11	PASS

NOTE:

- 1) PASS criteria Calculated value must be equal to read value through I2C.
- 2) The detailed analysis report with waveform captured is embedded in the xls document attached in the end of this section.

9.2.6.3 Test ID / Test Name: PWR.7.5 / Temperature Measurement

9.2.6.3.1 Purpose

The purpose of this test case is to measure the operating junction temperature of TIVA microcontroller when it's fully operational and under ambient temperature.

9.2.6.3.2 Test and Measurement Method

This test is conducted by measuring the temperature via using Fluke 59 Mini IR Thermometer measured on U72. And then calculating junction operating temperature using the below formula:

$Tj = Tc + Rth(j-c) \times P$

Tc : Case temperature*

Rth(j-c): Thermal resistance between Junction - Case

P : Current consumption **

The derived operating junction temperature value is well within operating temperature of the device. Please refer to Section **4.2.6.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.6.3.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load – Typical

9.2.6.3.4 DUT Sample Information

GBC Board Serial Number – PT11605002

Software versions – NA

9.2.6.3.5 Test Results

The temperature measured at the TIVA controller is well within the designed spec.

9.2.6.3.6 Measurement Logs

	Temperature Measurement											
		operating	(degree C	elsius)	Design							
Case		junction			Margin							
Temperature		temperature			(%)							
(degree	Measuring	(degree			(70)							
Celsius)	Point	Celsius)	Min	Max		Pass/Fail						
41	U72	46.05	-40	85	215.13	PASS						

The detailed analysis report with waveform captured for each of the TIVA power supply test case executed is embedded in the xls document attached herewith.

9.2.7 FET Switch

9.2.7.1 Test ID / Test Name: PWR.9.3 / Ripple Measurement

9.2.7.1.1 Purpose

The purpose of this test case is to check the maximum peak-to-peak ripple voltage of FET switch.

9.2.7.1.2 Test and Measurement Method

To measure the ripple voltage, coupling mode is changed to AC and Bandwidth to 20M in oscilloscope. Ripple voltage is measured across the capacitor C1A4. Please refer to Section **4.2.7.2** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.7.1.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage - +18V DC

System load - Idle/Typical

9.2.7.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Software versions – NA

9.2.7.1.5 Test Results

The ripple voltage accuracy is within 5% of expected ripple voltage.

9.2.7.1.6 Measurement Logs

	FET switch - Ripple Measurement									
Voltage Rail	Measuring Point	Ripple Voltage(mV)	Specif Min (mV)	Max (mV)	Design Margin (%)	Pass/Fail				
V12_A	C1A4	27	0	600	-95.5	PASS				

The detailed analysis report with waveform captured for FET switch Ripple Measurement test case executed is embedded in the xls document attached herewith.

9.2.7.2 Test ID / Test Name: PWR.9.4 / Load Current Measurement

9.2.7.2.1 Purpose

The purpose of this test case is to measure the current drawn by FET switch when it is fully operational.

9.2.7.2.2 Test and Measurement Method

This test is conducted by measuring voltage across shunt resistor R10067 (0.002ohm). The measured value is then used to derive current drawn by the system. The same has been validated by reading through I2C. Please refer to Section **4.2.7.3** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.7.2.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load – Typical

9.2.7.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021

Software versions – NA

9.2.7.2.5 Test Results

The current drawn by the FET switch is within the designed spec.

9.2.7.2.6 Measurement Logs

	FET switch - Load Current Measurement											
Voltage across	Measurement	Resistance	Current	Read	Specification	on	Design	D /E 11				
shunt resistor R10067	Point	(ohm)	(A)	Through I2C	Min	Max	Margin (%)	Pass/Fail				
1.230 mV	R10067	0.002	0.615	0.556 A	0.605	0.625	10.61	FAIL				

NOTE:

- 1) Resolution for failure Changed the TIVA configuration settings. The read current readings is now matching with the actual drawn current
- 2) PASS criteria Calculated value must be equal to read value through I2C.

The detailed analysis report with waveform captured for FET switch Load Current Measurement test case executed is embedded in the xls document attached herewith.

9.2.7.3 Test ID / Test Name: PWR.9.5/ Temperature Measurement

9.2.7.3.1 Purpose

The purpose of this test case is to measure the operating junction temperature of FET switch U248 when it is fully operational.

9.2.7.3.2 Test and Measurement Method

This test is conducted by measuring the temperature via using Fluke 59 Mini IR Thermometer measured on U248. And then calculating junction operating temperature using the below formula:

$Tj = Tc + Rth(j-c) \times P$

Tc : Case temperature*

Rth(j-c): Thermal resistance between Junction - Case

P : Current consumption **

The derived operating junction temperature value is well within range of operating temperature of the device. Please refer to Section **4.2.7.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.7.3.3 Test Condition

Ambient Temperature - 25°C

Operating Voltage –18V

System load – Idle/Typical

9.2.7.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021 Software versions – NA

9.2.7.3.5 Test Results

The measured value is well within operating temperature of the device.

9.2.7.3.6 Measurement logs

	Temperature Measurement of FET Switch										
Case			Specification (degree	e	Dogian						
Temperature		Calculated operating	Celsius)		Design Margin						
(degree	Measurement	junction temperature			(%)						
Celsius)	Point	(degree Celsius)	Min	Max	(70)	Pass/Fail					
44.2	U248	49	-40	125	222.50	PASS					

The detailed analysis report with waveform captured for FET switch Temperature Measurement test case executed is embedded in the xls document attached herewith.

FET_Switch_tempera ture_measurement_k

9.2.8 PMIC

9.2.8.1 Test ID / Test Name: PWR.10.2 / Voltage accuracy of all output voltages

9.2.8.1.1 Purpose

The purpose of the test case is to measure the output voltage rails of PMIC and to ensure that these voltages are in specified limits for the proper operation of Intel SoC.

9.2.8.1.2 Test and Measurement Method

This test is conducted by probing at appropriate locations to measure the voltage rails as depicted in the below table. The measured values are in-line to Intel SoC requirement and should match with the preprogrammed voltages as per IDT9145-I0 specification. Please refer to Section **4.2.8.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.8.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.2.8.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021

9.2.8.1.5 Test Results

The measured values match with the pre-programmed voltages as per IDT9145-I0 specification.

9.2.8.1.6 Measurement Logs

	PMIC Ou	itput Supply Ac	curacy			
		Output	Specif	ication	Margin	
Voltage Rail	Measuring Points	Voltage (V)	Min(V)	Max(V)	(%)	Pass/Fail
V1P8_A	C3M17	1.792	1.764	1.836	-1.59	PASS
VDDQ	C4M10	1.345	1.323	1.377	-1.66	PASS
V5_A	C3M24	5.08	4.9	5.1	-0.39	PASS
V1P5_S	C3M8	1.495	1.47	1.53	-1.70	PASS
VSFR_SX	C3M30	1.345	1.323	1.377	-1.66	PASS
V1P35_S	C3M22	1.342	1.323	1.377	-1.44	PASS
V1P2_A	C2N9	1.245	1.225	1.275	-1.63	PASS
V1P2_S	C2N11	1.244	1.225	1.275	-1.55	PASS
VTT_DDR	C4P17	0.664	0.62775	0.72225	-5.77	PASS
V1P8_IFSUP	C1B7	1.793	1.764	1.836	-1.64	PASS
VUSBPHY	C3M10	3.283	3.234	3.366	-1.52	PASS
V3P3_A	C3M11	3.293	3.234	3.366	-1.82	PASS
VCC_S	C2B34	0.91	0.98	1.02	7.14	FAIL
VNN_S	C2B1	0.948	0.931	0.969	-1.83	PASS
VDDQ	C1B4	1.343	1.323	1.377	-1.51	PASS
V1P05_S	C3M180	1.057	1.029	1.071	-1.31	PASS
V1P0_A	C3M19	1	0.98	1.02	-1.96	PASS
V12_A	C3L18	12.09	11.76	12.24	-1.23	PASS

NOTE: Failure is attributed to IDT9145 PMIC and is addressed with IDT9180 PMIC. Rev C design now uses IDT9180 PMIC.

The detailed analysis report with waveform captured for PMIC voltage accuracy Measurement test case executed is embedded in the xls document attached herewith.

PMIC.xlsx

9.2.8.2 Test ID / Test Name: PWR.10.3/ Secondary supplies enable functionality

9.2.8.2.1 Purpose

The purpose of the test case is to validate secondary supply rails of PMIC by checking status of dependency rails with respect to change in status (high or low).

9.2.8.2.2 Test and Measurement Method

Impact of High level status of PMIC_SLP_S0IX is verified by measuring dependency power rails VSFRX and V1P0SX_EN at appropriate locations as mentioned in the below table and ensuring those are enabled. Upon which remove R1B22 to make PMIC_SLP_S0IX low and ensure dependency power rails VSFRX and V1P0SX_EN are disabled. Please refer to Section **4.2.8.3** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.8.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.2.8.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Software versions – NA

9.2.8.2.5 Test Results

This test case verifies the impact of Secondary power supplies on dependency power rails as per the IDT9145 specification.

9.2.8.2.6 Measurement Logs

		Secondary	supplies ena	ble functional	ity		
	Power	Danandanas	Magazzina	Dependency rail status	Specification	Design	Pass/Fail
Power rail	rail Status	Dependency rails	Measuring Points		Expected rail status	Margin (%)	
	High	VSFRX	C3M30	Enable	Enable		PASS
PMIC SLP S0IX		V1P0SX_EN	C3B21	Enable	Enable		PASS
FMIC_SLF_SUIX	Low	VSFRX	C3M30	Disable	Disable		PASS
	Low	V1P0SX_EN	C3B21	Disable	Disable	NA	PASS
		V1P05_S	c3M180	Enable	Enable	INA	PASS
PMIC SLP S3	High	V1P02_S	C2N11	Enable	Enable		PASS
FIVIIC_SLP_S3	High	V1P5_S	C3M8	Enable	Enable		PASS
		V1P35_S	C3M22	Enable	Enable		PASS

	V1P05_S	c3M180	Disable	Disable	PASS
Low	V1P02_S	C2N11	Disable	Disable	PASS
Low	V1P5_S	C3M8	Disable	Disable	PASS
	V1P35_S	C3M22	Disable	Disable	PASS

9.2.8.3 Test ID / Test Name: PWR.10.5/ PMIC debug circuit functionality

9.2.8.3.1 Purpose

The purpose of the test case is to validate debug circuit of PMIC.

9.2.8.3.2 Test and Measurement Method

This test case is conducted by probing dependency power rails of PMIC_SLP_S0IX and PMIC_SLP_S3 at appropriate locations as depicted in below table. High level status of PMIC_THERMTRIP is checked in debug circuit by removing R4M16 to isolate PMIC_THERMTRIP from Intel SOC and ensure all the power rails are turned on. Please refer to Section **4.2.8.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.8.3.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load - Typical

9.2.8.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021

Software versions – NA

9.2.8.3.5 Test Results

The debug circuit functionality is verified and validated

9.2.8.3.6 Measurement Logs

PMIC debug circuit functionality									
Power rail	De rail		Measuring Points	Dependency rail status	Specification		Pass/Fail		

	Power rail Status				Expected rail status	Design Margin (%)	
	High	VSFRX	C3M30	Enable	Enable		PASS
DMIC SLD SOLV	High	V1P0SX_EN	C3B21	Enable	Enable		PASS
PMIC_SLP_S0IX	Low	VSFRX	C3M30	Disable	Disable		PASS
	Low	V1P0SX_EN	C3B21	Disable	Disable		PASS
	High	V1P05_S	C3M180	Enable	Enable		PASS
		V1P02_S	C2N11	Enable	Enable		PASS
		V1P5_S	C3M8	Enable	Enable		PASS
DMIC SLD S2		V1P35_S	C3M22	Enable	Enable	NA	PASS
PMIC_SLP_S3		V1P05_S	C3M180	Disable	Disable		PASS
	Law	V1P02_S	C2N11	Disable	Disable		PASS
	Low	V1P5_S	C3M8	Disable	Disable		PASS
		V1P35_S	C3M22	Disable	Disable		PASS
PMIC THERMTRIP	High	All Power rails		Enable	Enable		PASS
TWIC_THERWITKIF	Low	All Power rails		Disable	Disable		PASS

9.2.9 System Power sequence

9.2.9.1 Test ID / Test Name: PWR.11.1 / Power-up

9.2.9.1.1 Purpose

The purpose of the test case is to validate the Power-up sequence of the system including GBC and RF-SDR board.

9.2.9.1.2 Test and Measurement Method

This test is conducted by probing the signals "ATOM_12V_ONOFF" (Intel atom) and "TRXFE_12V_ONOFF" (RF-SDR) at R10753 and R10580 respectively. The power sequence is measured while powering on the system. Please refer to Section **4.2.9.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.9.1.3 Test Condition

Ambient Temperature -25° C Operating Voltage -18V System load - Typical

9.2.9.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0010

Debug board Serial Number - WZ1628LIFE2DEBUG0018

Software versions – TIVA RTOS code

9.2.9.1.5 Test Results

Power up sequence is verified and is in the following order.

- 1. Intel atom
- 2. RF-SDR

9.2.9.1.6 Measurement Logs

~	Measuring		Specification	Design							
Sl.No	Point	Measured sequence	Expected sequence	Margin (%)	Result						
	System power-up sequence										
1	R10753	ATOM_12V_ONOFF	ATOM_12V_ONOFF	NA	PASS						
2	R10580	TRXFE_12V_ONOFF	TRXFE_12V_ONOFF	INA	rass						

NOTE: There is no time delay requirement for the power up sequence.

The detailed analysis report with waveform captured for system power up sequence is embedded in the xls document attached herewith.

System_Power-up_S equence.xlsx

9.2.9.2 Test ID / Test Name: PWR.11.2 / Power-down

9.2.9.2.1 Purpose

The purpose of the test case is to validate the Power-down sequence of the system including GBC and RF-SDR board.

9.2.9.2.2 Test and Measurement Method

This test is conducted by probing the signals "ATOM_12V_ONOFF" (Intel atom) and "TRXFE 12V_ONOFF" (RF-SDR) at R10753 and R10580 respectively. The power sequence is measured

while powering off the system. Please refer to Section **4.2.9.3** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.9.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.2.9.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0010

Debug board Serial Number - WZ1628LIFE2DEBUG0018

Software versions – TIVA RTOS code

9.2.9.2.5 Test Results

Power down sequence is verified and is in the following order.

- 1. RF-SDR
- 2. Intel atom

9.2.9.2.6 Measurement Logs

Cl No	Measuring Point		Specification	Design	_					
Sl.No		Measured sequence	Expected sequence	Margin (%)	Result					
System power-down sequence										
1	R10580	TRXFE_12V_ONOFF	TRXFE_12V_ONOFF	NA						
2	R10753	ATOM_12V_ONOFF	ATOM_12V_ONOFF	INA	PASS					

NOTE: There is no time delay requirement for the power down sequence.

The detailed analysis report with waveform captured for system power down sequence is embedded in the xls document attached herewith.

9.2.9.3 Test ID / Test Name: PWR.11.3 / Soft Reset

9.2.9.3.1 Purpose

The purpose of the test case is to validate the soft reset for the system.

9.2.9.3.2 Test and Measurement Method

This test is conducted by connecting debug board to GBC board and restarting the system after it boots up. The system is restarted either by giving the command "sudo reboot" in the terminal or by clicking the restart button. Please refer to Section **4.2.9.5** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.2.9.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.2.9.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002 Debug board Serial Number - WZ1628LIFE2DEBUG0018 Software versions – Linux 14.4.4

9.2.9.3.5 Test Results

Soft Reset for the system is verified.

9.2.9.3.6 Measurement Logs

	Measuring Point	Measuring Criteria	Observation	Speci	fication	Design Margin (%)	Test result			
Test				Min	Max					
	Soft Reset									
	NA									

The snapshots of Soft Reset for the system are attached herewith.

9.2.9.4 Test ID / Test Name: PWR.11.4 / Hard Reset

9.2.9.4.1 Purpose

The purpose of the test case is to validate the hard reset of the system.

9.2.9.4.2 Test and Measurement Method

This test is conducted by connecting debug board to GBC board and restarting the system after it boots up. The system is restarted by pressing switch (S2). Please refer to Section **4.2.9.6** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.2.9.4.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.2.9.4.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002 Debug board Serial Number - WZ1628LIFE2DEBUG0018 Software versions – Linux 14.4.4

9.2.9.4.5 Test Results

Hard Reset for the system is verified.

9.2.9.4.6 Measurement Logs

Test	Measuring Point	Measuring Criteria	Observation	Speci	fication	Design Margin (%)	Test			
				Min	Max		result			
Hard Reset										
NA										

The snapshots of Hard Reset for the system are attached herewith.

9.3 CPU

9.3.1 Intel Atom

9.3.1.1 Test ID / Test Name: CPU.1.1/ Boot configuration

9.3.1.1.1 Purpose

The purpose of the test case is to validate SPI NOR Flash memory by accessing the device and loading the CoreBoot image

9.3.1.1.2 Test and Measurement Method

This test is conducted by programming SPI NOR FLASH device using SF100 ISP IC programmer. Please refer to Section **5.2.1.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.1.1.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load – Typical

9.3.1.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0016

Software versions – NA

9.3.1.1.5 Test Results

This test case verifies successfully programming and configuring the SPI NOR FLASH.

9.3.1.1.6 Measurement Logs

_	Measuring	Measuring		Speci	fication	Design	Test	
Т	`est	Point	Criteria	Observation	Min	Max	Margin (%)	result

Boot configuration

NA

Snapshot of SF100 programmer GUI and its programming execution is embed in the image below.

9.3.1.2 Test ID / Test Name: CPU.1.2/ Power-on sequence

9.3.1.2.1 Purpose

The purpose of the test case is to validate sequence of PMIC power rails while powering on the system.

9.3.1.2.2 Test and Measurement Method

This test is conducted by probing at appropriate locations using logic analyzer to check the sequence of power rails as depicted in the below table and the trigger is set to 550mV. The measured sequence should be as per the IDT9145-I0 specification. Please refer to Section **5.2.1.3** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.1.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.1.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021

Software versions – NA

9.3.1.2.5 Test Results

This test case verifies the Cold Boot Sequence (Power on sequence) of Intel SOC.

9.3.1.2.6 Measurement Logs

Power-on sequence

Sl. No	Logic analyzer bits	Measurement Points	Measured sequence	Specification Expected sequence	Design Margin (%)	Result	
1	D5	R2B40.1	PWRBTNIN	PWRBTNIN			
2	D0	C1B7.1	VUSBPHY	V1P8_IFSUP			
3	D1	C3M10	V1P0_A	VUSBPHY			
4	D2	C3M19.1	V1P2_A	V1P0_A			
5	D3	C2N9.2	V1P8_A	V1P2_A			
6	D4	C3M17.1	VDDQ	V1P8_A	NA	PASS	
7	D6	C4M10.2	V1P8_IFSUP*	VDDQ			
8	D7	C2B34.1	VCC	VCC			
9	D8	C3M8.1	V1P5_S	V1P5_S			
10	D9	C3M22.1	V1P35_S	V1P35_S			
11	D10	C3B33.1	COREPWROK	COREPWROK			

NOTE:

- 1. *Even though V1P8_IFSUP is not in sequence we can consider this test case as PASS. Because V1P8_IFSUP is not used for Intel SOC.
- 2. PMIC IC has been changed in next version from 9145 to 9180. IDT team has tested power on and power down sequence and the reports for the same are attached below.

The detailed analysis report with waveform captured for power on sequence test case is embed in the excel document attached herewith.

9.3.1.3 Test ID / Test Name: CPU.1.3/ Power-down sequence

9.3.1.4.1 Purpose

The purpose of the test case is to validate sequence of PMIC power rails while powering off the system.

9.3.1.4.2 Test and Measurement Method

This test is conducted by probing at appropriate locations using logic analyzer to check the sequence of power rails while powering off the device as depicted in the below table and the trigger is set to 550mV.

The measured sequence should be as per the IDT9145 specification. Please refer to Section **5.2.1.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.1.4.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.1.4.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021

Software versions – NA

9.3.1.4.5 Test Results

This test case fails to verify the Cold Off Sequence (Power down sequence) of Intel SOC.

9.3.1.4.6 Measurement Logs

		F	ower-down seque	nce		
Sl.No	Logic analyzer bits	Measurement Points	Measured sequence	Specification Expected sequence	Design Margin (%)	Result
1	D11	R2B13.1	PLTRST_B	PLTRST_B		
2	D10	C3B33.1	COREPWROK	COREPWROK		
3	D12	C2B22.1	VDDQ_VTT	VDDQ_VTT		
4	D7	C2B34.1	VCC	VCC		
5	D13	C3A12.1	VNN	V3P3S	NA	FAIL
6	D15	C2B1.1	V1P2_A	VNN		
7	D3	C2N9.2	V1P0_A	V1P2_A		
8	D4	C3M17.1	V1P8_A	V1P8_A		
9	D2	C3M19.1	V3P3S	V1P0_A		

<u>NOTE</u>: Failure resolution: Issue is attributed to IDT9145 PMIC and is addressed with IDT9180 PMIC. Rev C design now uses IDT9180 PMIC.

The detailed analysis report with waveform captured for power down sequence test case is embed in the excel document attached herewith.

9.3.2 PMIC (IDTP9145) - I2C

9.3.2.1 Test ID / Test Name: CPU.2.1 / Electrical validation

9.3.2.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of I2C interface between Intel Atom processor and PMIC.

9.3.2.1.2 Test and Measurement Method

This test is conducted by probing the I2C signal at R1B14.2 (SCL), R1B8.2 (SDA) after running the script "./soc_i2c0_pmic_read_kernel_4.4.0.31.sh" in the terminal. The measured values are well with-in the limit as specified in the IDT9145 PMIC datasheet specification. Please refer to Section **5.2.2.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.2.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.2.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with PMIC I2C code

9.3.2.1.5 Test Results

The electrical characteristics of I2C interface between Intel Atom processor and PMIC is within the designed spec.

9.3.2.1.6 Measurement Logs

Test	Measuring	Measuring Criteria	Observation	Speci	fication	Design	Test
1681	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	result
		PN	MIC - U2B3				
		VLOW (max) (V)	0.08	-0.5	0.54	116.00	PASS
		VHIGH (min) (V)	1.8	1.26	2.3	-21.74	PASS
SOC_I2C_SCL	R1B14.2	Rise time (ns)	163.8	0	300	-45.40	PASS
		Fall time (ns)	152.9	0	300	-49.03	PASS
		Frequency (kHz)	384.6	0	400	-3.85	PASS
		VLOW (max) (V)	0.08	-0.5	0.54	116.00	PASS
SOC I2C SDA	R1B8.2	VHIGH (min) (V)	1.8	1.26	2.3	-21.74	PASS
SOC_12C_SDA	K1D8.2	Rise time (ns)	284.8	0	300	-5.07	PASS
		Fall time (ns)	163.8	0	300	-45.40	PASS

The detailed analysis report with waveform captured for PMIC I2C - Electrical validation is embedded in the xls document attached herewith.

9.3.2.2 Test ID / Test Name: CPU.2.2/ Signal integrity

9.3.2.2.1 Purpose

The purpose of the test case is to validate the signal integrity of I2C interface between Intel Atom processor and PMIC.

9.3.2.2.2 Test and Measurement Method

This test is conducted by probing the I2C signal at R1B14.2 (SCL), R1B8.2 (SDA) after running the script "./soc_i2c0_pmic_read_kernel_4.4.0.31.sh" in the terminal. The measured values are well with-in the limit as specified in the IDT9145 PMIC datasheet specification. Please refer to Section 5.2.2.3 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.2.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.2.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with PMIC I2C code

9.3.2.2.5 Test Results

The signal integrity of I2C interface between Intel Atom processor and PMIC is not within the designed spec.

9.3.2.2.6 Measurement Logs

	Measuring			Specification		Design	Test
Test	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	result
PMIC - U2B3							
SOC I2C SCL	R1B14.2	Positive Over-shoot (%)	11.63	0	10	16.3	FAIL
SOC_12C_SCL		Negative Over-shoot (%)	20.93	0	10	109.3	FAIL
		Positive Over-shoot (%)	9.3	0	10	-7	PASS
SOC I2C SDA	R1B8.2	Negative Over-shoot (%)	9.3	0	10	-7	PASS
SOC_IZC_SDA	K1D0.2	Data set-up time (ns)	1450	100	2500	-42	PASS
		Data hold time (ns)	990	300	2500	-60.40	PASS

NOTE: Failure Resolution: Series termination changed to 33 Ohms in Rev C.

The detailed analysis report with waveform captured for PMIC I2C - Signal integrity is embedded in the xls document attached herewith.

9.3.2.3 Test ID / Test Name: CPU.2.3/ Functional validation

9.3.2.3.1 Purpose

The purpose of the test case is to validate the I2C interface of PMIC IC.

9.3.2.3.2 Test and Measurement Method

This test is conducted by accessing I2C0 bus and reading chip revision register value 0x05 from address 0x01. Please refer to Section **5.2.2.4** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.2.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.2.3.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with PMIC I2C code

9.3.2.3.5 Test Results

INTEL atom processor able to read chip revision register of PMIC and the same has been validated.

9.3.2.3.6 Measurement Logs

	Measuring Point	Measuring Criteria	Observation	Speci	fication	Design Margin (%)	Test			
Test				Min	Max		result			
	PMIC									
NA										

The snapshot of functional validation of PMIC I2C is attached herewith.

9.3.3 DDR (TS512MSK64W6H-I) - SMBus

9.3.3.1 Test ID / Test Name: CPU.5.1/ Electrical validation

9.3.3.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of SMBus interface between Intel Atom processor and DDR Memory.

9.3.3.1.2 Test and Measurement Method

This test is conducted by probing the SMBus signal at U4D1.6 (SDA) and U4D1.7 (CLK) after running the script "./pcu_smb_ddr3spd_read.sh" in the terminal. The measured values are well with-in the limit as specified in the DDR datasheet specification. Please refer to Section **5.2.3.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.3.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.3.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with DDR3 SMB code

9.3.3.1.5 Test Results

The electrical characteristics of SMBus interface between Intel Atom processor and DDR Memory is within the designed spec.

9.3.3.1.6 Measurement Logs

	Test	Measuring	Measuring Criteria		Specification		Design	Test		
		Point		Observation	Min	Max	Margin (%)	result		
	DDR-SMB (Before Level Shifter)									

		VLOW (max) (V)	0	-0.5	0.54	100.00	PASS
		VHIGH (min) (V)	1.8	1.26	5.5	-42.86	PASS
PCU_SMB_CLK	U4D1.2	Rise time (ns)	710	0	1000	-29.00	PASS
		Fall time (ns)	8	0	300	-97.33	PASS
		Frequency (kHz)	100	0	100	0.00	PASS
		VLOW (max) (V)	0	-0.5	0.54	100.00	PASS
DCII SMD DAT	114D1 2	VHIGH (min) (V)	1.8	1.26	5.5	-42.86	PASS
PCU_SMB_DAT	U4D1.3	Rise time (ns)	740	0	1000	-26.00	PASS
		Fall time (ns)	10	0	300	-96.67	PASS
		DDR-SMB (After	Level Shifter)	•			
		VLOW (max) (V)	0.4	-0.5	0.99	180.00	PASS
		VHIGH (min) (V)	2.8	2.31	3.8	-21.21	PASS
SMB_DDR3_CLK	U4D1.7	Rise time (ns)	860	0	1000	-14.00	PASS
		Fall time (ns)	52	0	300	-82.67	PASS
		Frequency (kHz)	83.3	0	100	-16.70	PASS
		VLOW (max) (V)	0.4	-0.5	0.99	180.00	PASS
CMD DDD2 DAT	HAD1 (VHIGH (min) (V)	2.8	2.31	3.8	-21.21	PASS
SMB_DDR3_DAT	U4D1.6	Rise time (ns)	980	0	1000	2.00	PASS
		Fall time (ns)	56	0	300	-81.33	PASS

The detailed analysis report with waveform captured for DDR SMBus - Electrical validation is embedded in the xls document attached herewith.

9.3.3.2 Test ID / Test Name: CPU.5.2 / Signal integrity

9.3.3.2.1 Purpose

The purpose of the test case is to validate the signal integrity of SMBus interface between Intel Atom processor and DDR Memory.

9.3.3.2.2 Test and Measurement Method

This test is conducted by probing the SMBus signal at U4D1.6 (SDA) and U4D1.7 (CLK) after running the script "./pcu_smb_ddr3spd_read.sh" in the terminal. The measured values are well with-in the limit as specified in the DDR datasheet specification. Please refer to Section **5.2.3.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.3.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.3.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with DDR3 SMB code

9.3.3.2.5 Test Results

The Signal integrity characteristics of SMBus interface between Intel Atom processor and DDR Memory is not within the designed spec.

9.3.3.2.6 Measurement Logs

	Measuring		01 .:	Specif	ication	Design	Test
Test	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	result
DCII CMD CLV	114D1 2	Positive Over-shoot (V)	0	0	0.18	-100.00	PASS
PCU_SMB_CLK	U4D1.2	Negative Over-shoot (V)	0	0	0.18	-100.00	PASS
		data set-up time (ns)	3000	250	10000	-70.00	00 PASS
PCU SMB DAT	U4D1.3	data hold time (ns)	1680	300	10000	-83.20	PASS
		Positive Over-shoot (V)	0	0	0.18	-100.00 PASS -100.00 PASS -70.00 PASS -83.20 PASS -100.00 PASS 88.89 FAIL -100.00 PASS -3.03 PASS -70.00 PASS -83.40 PASS	PASS
		Negative Over-shoot (V)	0.34	0	0.18	88.89	FAIL
		DDR-SMB (Aft	ter Level Shifte	er)			
CMD DDD3 CLV	11401.7	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
SMB_DDR3_CLK	U4D1.7	Negative Over-shoot (V)	0.32	0	0.33	-3.03	PASS
	U4D1.6	data set-up time (ns)	3000	250	10000	-70.00	PASS
SMB_DDR3_DAT		data hold time (ns)	1660	300	10000	-83.40	PASS
	U4D1.0	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0.36	0	0.33	9.09	FAIL

NOTE: Failure Resolution: Series termination changed to 10 Ohms in Rev C.

The detailed analysis report with waveform captured for DDR SMBus - Signal integrity is embedded in the xls document attached herewith.

9.3.3.3 Test ID / Test Name: CPU.5.3 / Functional validation

9.3.3.3.1 Purpose

The purpose of the test case is to validate the SMBus interface of DDR Memory.

9.3.3.3.2 Test and Measurement Method

This test is conducted by reading I2C9 bus at address 50H by reading device register address from 128 to 145. Please refer to Section **5.2.3.4** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.3.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.3.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with DDR3 SMB code

9.3.3.3.5 Test Results

INTEL atom processor able to read DDR registers and the same has been validated.

9.3.3.3.6 Measurement Logs

		Measuring Criteria	Observation	Speci	fication	Design Margin (%)	Test result			
Test				Min	Max					
	DDR-SMB									
NA										

The snapshots of functional validation of DDR SMBus are attached herewith.

9.3.4 **PCU (ADT7481) - SMBus**

9.3.4.1 Test ID / Test Name: CPU.6.1/ Electrical validation

9.3.4.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of SMBus interface between Intel Atom processor and temperature sensor.

9.3.4.1.2 Test and Measurement Method

This test is conducted by probing the I2C signal at U3A1.10 (SCL), U3A1.9 (SDA) after running the script "./pcu_smb_tsensor_read.sh" in the terminal. The measured values are well with-in the limit as specified in the Temperature Sensor datasheet specification. Please refer to Section 5.2.4.2 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.4.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.4.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with Temp sensor SMB code

9.3.4.1.5 Test Results

The electrical characteristics of SMBus interface between Intel Atom processor and temperature sensor is within the designed spec.

9.3.4.1.6 Measurement Logs

	Measuring			Speci	ification	Design	
Test	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	Test result
		PCU - SMB (Be	fore Level Shifte	er)			
		VLOW (max) (V)	0	-0.5	0.54	100.00	PASS
		VHIGH (min) (V)	1.8	1.26	5.5	-42.86	PASS
PCU3_SMB_CLK	U2A1.2	Rise time (ns)	700	0	1000	-30.00	PASS
		Fall time (ns)	8.4	0	300	-97.20	PASS
		Frequency (kHz)	92.592	0	100	-7.41	PASS
		VLOW (max) (V)	0	-0.5	0.54	100.00	PASS
DOLLS CMD DAT	112 4 1 2	VHIGH (min) (V)	1.8	1.26	5.5	-42.86	PASS
PCU3_SMB_DAT	U2A1.3	Rise time (ns)	750	0	1000	-25.00	PASS
		Fall time (ns)	11.6	0	300	-96.13	PASS
		PCU-SMB (At	ter Level Shifter)			
		VLOW (max) (V)	0.4	-0.5	0.8	180.00	PASS
		VHIGH (min) (V)	2.8	2.1	3.8	-26.32	PASS
SMB_3P3_CLK	U3A1.10	Rise time (ns)	630	0	1000	-37.00	PASS
		Fall time (ns)	62	0	300	-79.33	PASS
		Frequency (kHz)	98.039	0	100	-1.96	PASS
SMB_3P3_DAT		VLOW (max) (V)	0.4	-0.5	0.8	180.00	PASS
	112 4 1 0	VHIGH (min) (V)	2.8	2.1	3.8	-26.32	PASS
	U3A1.9	Rise time (ns)	650	0	1000	-35.00	PASS
		Fall time (ns)	60	0	300	-80.00	PASS

The detailed analysis report with waveform captured for PCU SMBus - Electrical validation is embedded in the xls document attached herewith.

9.3.4.2 Test ID / Test Name: CPU.6.2 / Signal Integrity

9.3.4.2.1 Purpose

The purpose of the test case is to validate the Signal Integrity of SMBus interface between Intel Atom processor and temperature sensor.

9.3.4.2.2 Test and Measurement Method

This test is conducted by probing the I2C signal at U3A1.10 (SCL), U3A1.9 (SDA) after running the script "./pcu_smb_tsensor_read.sh" in the terminal. The measured values are well with-in the limit as specified in the Temperature Sensor datasheet specification. Please refer to Section

5.2.4.3 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.4.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.4.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with Temp sensor SMB code

9.3.4.2.5 Test Results

The Signal Integrity characteristics of SMBus interface between Intel Atom processor and temperature sensor is not within the designed spec.

9.3.4.2.6 Measurement Logs

	Measuring			Specifica	ation	Design	Test
Test	Point	Measuring Criteria	Criteria Observation	Min	Max	Margin (%)	result
PCU3 SMB CLK	U2A1.2	Positive Over-shoot (V)	0	0	0.18	-100.00	PASS
FCU3_SMID_CLK	U2A1.2	Negative Over-shoot (V)	0	0	0.18	-100.00	PASS
		data set-up time (ns)	3720	250	10000	-62.80	PASS
DCU2 CMD DAT	U2A1.3	data hold time (ns)	1690	300	10000	-83.10	PASS
PCU3_SMB_DAT	U2A1.3	Positive Over-shoot (V)	0	0	0.18	-100.00	PASS
		Negative Over-shoot (V)	0.2516	0	0.18	39.78	FAIL
		PCU-SMB (After	Level Shifter)				
		Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
SMB_3P3_CLK	U3A1.10	Negative Over-shoot (V)	0.23	0	0.33	-30.30	PASS
		data set-up time (ns)	3040	250	10000	-69.60	PASS
SMB 3P3 DAT	112 4 1 0	data hold time (ns)	1620	300	10000	-83.80	PASS
SMD_SF3_DAT	U3A1.9	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0.28	0	0.33	-15.15	PASS

NOTE: Failure Resolution: Series termination changed to 10 Ohms in Rev C.

The detailed analysis report with waveform captured for PCU SMBus - Signal Integrity is embedded in the xls document attached herewith.

9.3.4.3 Test ID / Test Name: CPU.6.3 / Functional validation

9.3.4.3.1 Purpose

The purpose of the test case is to validate the SMBus interface of temperature sensor.

9.3.4.3.2 Test and Measurement Method

This test is conducted by reading I2C9 bus at address 3DH and 3EH for respective device ID and manufacture ID and read values 81H and 41H respectively. Please refer to Section **5.2.4.4** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.4.3.3 Test Condition

Ambient Temperature25°C Operating Voltage – 18V System load – Typical

9.3.4.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with Temp sensor SMB code

9.3.4.3.5 Test Results

INTEL atom processor able to read Device and Manufacture ID of temperature sensor and the same has been validated.

9.3.4.3.6 Measurement Logs

	Measuring Point	Measuring Criteria	Observation	Speci	fication	Design Margin (%)	Test result		
Test				Min	Max				
	PCU - SMB								
NA									

The snapshot of functional validation of PCU SMBus is attached herewith.

9.3.5 Springville 1 - MDI

9.3.5.1 Test ID / Test Name: CPU.7.1/ Signal characteristics

9.3.5.1.1 Purpose

The purpose of this test case is to verify MDI (interface between Marvell Switch (88E6071) to Springville (WGI210AT)) signal characteristics.

9.3.5.1.2 Test and Measurement Method

This test is conducted by connecting a Linux PC to port A of GBC board and starting communication between them by pinging each other. The MDI transmitting signals (from Springville to Switch) are measured at R962 (MDI0P) and R963 (MDI0N) and MDI receiving signals (from Switch to Springville) are measured at L1M2.6 (MDI1P) and L1M2.8 (MDI1N). Please refer to Section **5.2.5.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.5.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.5.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4

9.3.5.1.5 Test Results

The signal characteristics of MDI signals are as per the specification and the data rate is 100Mbps.

9.3.5.1.6 Measurement Logs

Test	Measuring	Measuring	Observation	Specification		Design Margin	Test
Test	Point	Criteria	Observation	Min	Max	(%)	result
	ngville 1 - MD	I					
MDI0P,		Vp-p (V)	1.012	0.950	1.05	-3.62	PASS
	R962.2, R963.2	Overshoot (%)	0.86	0	5	-82.80	PASS
MDI0N		Undershoot (%)	2.01	0	5	-59.80	PASS
		Data rate (Mbps)	100	NA	100	0.00	PASS
MDI1P, MDI1N	L1M2.6,	Vp-p (V)	1.012	0.950	1.05	-3.62	PASS
		Overshoot (%)	0.86	0	5	-82.80	PASS
	L1M2.8	Undershoot (%)	2.01	0	5	-59.80	PASS
		Data rate (Mbps)	100	NA	100	0.00	PASS

The detailed analysis report with waveform captured for signal characteristics of Springville MDI test case is embedded in the xls document attached herewith.

9.3.5.2 Test ID / Test Name: CPU.7.2/ Functional validation

9.3.5.2.1 Purpose

The purpose of the test case is to validate the function of springville1-MDI.

9.3.5.2.2 Test and Measurement Method

This test is conducted by connecting a Linux PC to port A of GBC board and starting communication between them by giving command "ping IPaddress (IP address of Linux PC)" in the terminal of GBC system and "ping IPaddress (IP address of GBC system)" in Linux PC. Please refer to Section **5.2.5.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.5.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.5.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4

9.3.5.2.5 Test Results

Communication is established between Springville and Marvell switch through MDI interface over 100Mbps data rate.

The snapshot of functional validation of Springville MDI is attached herewith.

9.3.6 TIVA - UART

9.3.6.1 Test ID / Test Name: CPU.8.1 / Electrical validation

9.3.6.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of UART interface between Tiva controller and Intel Atom processor.

9.3.6.1.2 Test and Measurement Method

This test is conducted by probing the UART TX signal at R10550 and UART RX signal at R10472 respectively. UART TX is measured by sending data from TIVA to SOC. UART RX is measured by sending data from SOC to TIVA. Please refer to Section **5.2.6.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.6.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.6.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Debug board Serial Number - WZ1628LIFE2DEBUG0018 Software versions - Linux 14.4.4

9.3.6.1.5 Test Results

The electrical characteristics of UART interface between Tiva controller and Intel Atom processor fails.

9.3.6.1.6 Measurement Logs

T	Measuring	W	Observatio	Spec	ification	Design	Test	
Test	Point	Measuring Criteria	n	Min	Max	Margin (%)	result	
		TX						
ISO_TIVA_SOC_U ART3_TX		VLOW (V)	0	0.378	0.63	100.00	PASS	
	R10550	VHIGH (V)	1.8	1.17	2.232	-19.35	PASS	
	1110550	Positive Overshoot (V)	0.17	0	0.18	-5.56	PASS	
		Negative Overshoot (V)	0.22	0	0.18	22.22	FAIL	
		UART	RX					
TIVA_SOC_UART 3_RX		VLOW (V)	-0.18	0	1.155	-115.58	FAIL	
	D 10472	VHIGH (V)	3.16	2.145	4	-21.00	PASS	
	R10472	Positive Overshoot (V)	0.9	0	0.33	172.73	FAIL	
		Negative Overshoot (V)	0.96	0	0.33	190.91	FAIL	

NOTE: Failure Resolution: Series termination changed to 49.9 Ohms in Rev C.

The detailed analysis report with waveform captured for Electrical validation of TIVA – UART test case is embedded in the xls document attached herewith.

TIVA- UART_EV.xlsx

9.3.6.2 Test ID / Test Name: CPU.8.2 / Functional validation

9.3.6.2.1 Purpose

The purpose of the test case is to validate the function of UART interface between Tiva controller and Intel Atom processor.

9.3.6.2.2 Test and Measurement Method

The function of UART is validated by sending message from SOC to TIVA to request the Intel temperature reading and getting the response from TIVA. Please refer to Section **5.2.6.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.6.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.6.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021

Debug board Serial Number - WZ1628LIFE2DEBUG0018

Software versions – Linux 14.4.4

9.3.6.2.5 Test Results

The UART interface between Tiva controller and Intel Atom processor is validated.

9.3.6.2.6 Measurement Logs

	Measuring	Measuring		Speci	fication	Design	Test	
Test	Point	Criteria	Observation	Min	Max	Margin (%)	result	
			TIVA- UAI	RT				
	NA							

The snapshots of Functional validation of UART interface between Tiva controller and Intel Atom processor are attached herewith.

UART_RX_SOC.png UART_RX_TIVA.png UART_TX_SOC.jpg UART_TX_SOC_TIVA. UART_TX_TIVA.jpg

9.3.7 Memory - DDR

9.3.7.1 Test ID / Test Name: CPU.9.1 / Reference voltage measurement

9.3.7.1.1 Purpose

The purpose of the test case is to measure the reference voltages of DDR (DDR_VREF and DDR_VTT).

9.3.7.1.2 Test and Measurement Method

This test is conducted by probing the voltage at R2P7.1/R3P12.1 and C4P17.1 for DDR_VREF and DDR_VTT respectively. The measured reference values have to be in the range 0.64 - 0.725V. The VDDQ voltage has also been measured at C3P14.1 to validate the reference voltage (VREF = VDDQ/2, VDDQ = 1.35V). Please refer to Section **5.2.7.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.7.1.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load – Typical

9.3.7.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021

Software versions – NA

9.3.7.1.5 Test Results

The voltage measured at DDR VREF and DDR VTT are in the range 0.64 - 0.725V.

9.3.7.1.6 Measurement Logs

	Memory - DDR Reference voltage measurement									
	Drobing	Measured	Expected	Specif	rication	Design				
Test	Probing Point	Voltage	Voltage(V)	Min(V)	Max(V)	Margin	Result			
	Fonit	(V)	voltage(v)	Will(V)	Iviax(v)	(%)				
VDDQ	C3P14.1	1.33	1.35	1.28	1.45	-3.90625	PASS			
VREF/DQ	R2P7.1	0.671	0.675	0.64	0.725	-4.84375	PASS			
VREFCA	R3P12.1	0.671	0.675	0.64	0.725	-4.84375	PASS			

VTT DDR C4P17.1 | 0.657 | 0.675 | 0.64 | 0.725 | -2.65625 | PASS

The detailed analysis report with waveform captured for Reference voltage measurement test case is embedded in the xls document attached herewith.

9.3.7.2 Test ID / Test Name: CPU.9.2 / VREF Schmoo test

9.3.7.2.1 Purpose

The purpose of the test case is to validate the DDR module by varying VREF voltage within the limits at different temperatures.

9.3.7.2.2 Test and Measurement Method

This test is conducted by executing 'memtester' utility on SoC for different voltages of DDR VREF at different temperatures. DDR VREF can be varied by changing the voltage divide resistors, R2P11, R2P7, R3P6 and R3P12 such that there can be three co-ordinates within the specified range of DDR module. In each co-ordinate, memtester utility is executed at six different temperatures to validate **VREF** Schmoo. Please refer 5.2.7.3 of to Section in latest version "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9 3 7 2 3 Test Condition

Temperature – -20°C to +70°C Operating Voltage – 18V System load – Typical

9.3.7.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002 Software versions – Linux 14.4.4 with memtester utility

9.3.7.2.5 Test Results

The 'memtester' utility passes for various DDR VREF voltages under different temperature conditions.

9.3.7.2.6 Measurement Logs

1. Memory - DDR VREF measurement

			Men	nory - DDR	VREF me	asuremei	nt			
Sl	Probin	Temperatu re	Resistor Value	Resistor Value	Measur ed	Expect		ication	Design	Pass/F
N o.	g Point	Condition (°C)	(kΩ) - R2P7/R3 P12	(kΩ) - R2P11/R 3P6	Voltage (V)	Voltag e (V)	Min (V)	Max (V)	Margin (%)	ail
1		-20	4.42	4.7	0.616	0.654	0.64	0.725	3.75	FAIL
2		0	4.42	4.7	0.631	0.654	0.64	0.725	1.41	FAIL
3		20	4.42	4.7	0.626	0.654	0.64	0.725	2.19	FAIL
4		25	4.42	4.75	0.662	0.651	0.64	0.725	-3.44	PASS
5		40	4.42	4.7	0.611	0.654	0.64	0.725	4.53	FAIL
6		70	4.42	4.7	0.614	0.654	0.64	0.725	4.06	FAIL
7		-20	4.99	4.7	0.671	0.695	0.64	0.725	-4.84	PASS
8		0	4.99	4.7	0.659	0.695	0.64	0.725	-2.97	PASS
9	D 2 D 7	20	4.99	4.7	0.663	0.695	0.64	0.725	-3.59	PASS
10	R2P7	25	4.99	4.7	0.708	0.695	0.64	0.725	-2.34	PASS
11		40	4.99	4.7	0.66	0.695	0.64	0.725	-3.13	PASS
12		70	4.99	4.7	0.66	0.695	0.64	0.725	-3.13	PASS
13		-20	5.11	4.42	0.693	0.724	0.64	0.725	-4.41	PASS
14		0	5.11	4.42	0.686	0.724	0.64	0.725	-5.38	PASS
15		20	5.11	4.42	0.681	0.724	0.64	0.725	-6.07	PASS
16		25	5.11	4.42	0.718	0.724	0.64	0.725	-0.97	PASS
17		40	5.11	4.42	0.679	0.724	0.64	0.725	-6.09	PASS
18		70	5.11	4.42	0.689	0.724	0.64	0.725	-4.97	PASS

NOTE: Reason for failure - Measurements have been taken placing the board in thermal chamber and the length of the wire soldered to the measuring points were very long which caused the drop and hence the failures.

2. Memory - DDR VDDQ measurement

	Memory - DDR VDDQ measurement									
Sl. Probing	Temperature	r Value Value		Measur ed	Expect	Specification		Desig n	Pass/F	
N o.	Point	Condition (°C)	(kΩ) - R2P7/ R3P12	(kΩ) - R2P11/R 3P6	Voltage (V)	Voltag e (V)	Min (V)	Max (V)	Marg in (%)	ail
1		-20	4.42	4.7	1.289	1.35	1.28	1.45	-0.70	PASS
2	C3P14	0	4.42	4.7	1.319	1.35	1.28	1.45	-3.05	PASS
3		20	4.42	4.7	1.316	1.35	1.28	1.45	-2.81	PASS

4	25	4.42	4.75	1.379	1.35	1.28	1.45	-4.90	PASS
5	40	4.42	4.7	1.288	1.35	1.28	1.45	-0.63	PASS
6	70	4.42	4.7	1.323	1.35	1.28	1.45	-3.36	PASS
7	-20	4.99	4.7	1.33	1.35	1.28	1.45	-3.91	PASS
8	0	4.99	4.7	1.323	1.35	1.28	1.45	-3.36	PASS
9	20	4.99	4.7	1.323	1.35	1.28	1.45	-3.36	PASS
10	25	4.99	4.7	1.368	1.35	1.28	1.45	-5.66	PASS
11	40	4.99	4.7	1.317	1.35	1.28	1.45	-2.89	PASS
12	70	4.99	4.7	1.329	1.35	1.28	1.45	-3.83	PASS
13	-20	5.11	4.42	1.329	1.35	1.28	1.45	-3.83	PASS
14	0	5.11	4.42	1.321	1.35	1.28	1.45	-3.20	PASS
15	20	5.11	4.42	1.322	1.35	1.28	1.45	-3.28	PASS
16	25	5.11	4.42	1.364	1.35	1.28	1.45	-5.93	PASS
17	40	5.11	4.42	1.321	1.35	1.28	1.45	-3.20	PASS
18	70	5.11	4.42	1.316	1.35	1.28	1.45	-2.81	PASS

The snapshot of execution of 'memtester' utility for VREF Schmoo test is attached herewith.

The detailed analysis report with waveform captured for VREF Schmoo test is embedded in the xls document attached herewith.

9.3.7.3 Test ID / Test Name: CPU.9.3 / Functional validation

9.3.7.3.1 Purpose

The purpose of the test case is to validate the entire DDR memory using memtest option at boot stage.

9.3.7.3.2 Test and Measurement Method

This test is conducted by executing memtest function during boot stage. The results of memtest are captured to check for any errors. Please refer to Section **5.2.7.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.7.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.7.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021

Software versions – CoreBoot with memtest option

9.3.7.3.5 Test Results

The memtest test is executed with zero errors.

9.3.7.3.6 Measurement Logs

	Measuring	Measuring		Speci	fication	Design	Test
Test	Point	Criteria	Observation	Min	Max	Margin (%)	result
			Memory - D	DR			
			NA				

The snapshot of execution of memtest option for functional validation of DDR memory is attached herewith.

9.3.7.4 Test ID / Test Name: CPU.9.4 / Throughput measurement

9.3.7.4.1 Purpose

The purpose of the test case is to validate the DDR memory for its latency and bandwidth.

9.3.7.4.2 Test and Measurement Method

This test is conducted by running "make results see".exe after unpacking the downloaded source code (Imbench 3.0). The results will be saved in Imbench directory. Read / Write throughputs which are read in Mbps data speed present in the last result columns. Please refer to Section 5.2.7.5 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.7.4.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.7.4.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Software versions – Linux 14.4.4 with lmbench 3.0

9.3.7.4.5 Test Results

The read / write throughputs are measured in Mbps. The throughput of Mem read and Mem write is 4414 MB/s and 2758 MB/s respectively.

9.3.7.4.6 Measurement Logs

	Measuring	Measuring		Speci	fication	Design	Test
Test	Point Criteria		Observation	Min	Max	Margin (%)	result
	Memory -		DDR; Through	hput meas	urement		
			NA				

The log of throughput measurement for DDR memory is attached herewith.

9.3.8 Memory SPI NOR Flash

9.3.8.1 Test ID / Test Name: CPU.10.1 / Electrical validation

9.3.8.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of SPI interface of SPI NOR Flash.

9.3.8.1.2 Test and Measurement Method

This test is conducted by probing the SPI signal at R10762.2 (CLK), R1M11.2 (MISO) while system booting. The measured values should follow pass criteria, as specified in the below table. Please refer to Section **5.2.8.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.8.1.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load - Typical

9.3.8.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software versions – Core boot

9.3.8.1.5 Test Results

The Electrical characteristics of SPI interface of SPI NOR Flash is within the designed spec.

9.3.8.1.6 Measurement Logs

Test	Measuring Point	Measuring Criteria	Observation	Specifica Min	tion Max	Design Margin (%)	Test result
SPI_NOR_Flash							
		VLOW (max) (V)	-4.47e-13	-0.5	0.54	100.00	PASS
SOC_FLASH_CLK	R10762	VHIGH (min) (V)	1.64	1.26	2.2	-25.45	PASS
		Rise time (V/ns)	0.1906	0.1	3	-90.60	PASS

		Fall time (V/ns)	0.1682	0.1	3	-68.20	PASS
		Frequency (MHz)	33.33	0	50	-33.34	PASS
		VLOW (max) (V)	0.02	-0.5	0.54	104.00	PASS
COC EL ACIT MICO	D10764	VHIGH (min) (V)	1.82	1.26	2.2	-17.27	PASS
SOC_FLASH_MISO	R10764	Rise time (V/ns)	0.2028	0.1	3	-93.24	PASS
		Fall time (V/ns)	0.2025	0.1	3	-93.25	PASS

The detailed analysis report with waveform captured for SPI NOR Flash electrical validation test case is embed in the excel document attached herewith.

9.3.8.2 Test ID / Test Name: CPU.10.2 / Signal Integrity

9.3.8.3.1 Purpose

The purpose of the test case is to validate the signal integrity of SPI interface of SPI NOR Flash.

9.3.8.3.2 Test and Measurement Method

This test is conducted by probing the SPI signal at R10762.2 (CLK), R1M11.2 (MISO) while system booting. The measured values should follow pass criteria, as specified in the below table. Please refer to Section **5.2.8.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.8.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.8.3.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software versions – Core boot

9.3.8.3.5 Test Results

The Signal integrity characteristics of SPI interface of SPI NOR Flash is within the designed spec.

9.3.8.3.6 Measurement Logs

	SPI_NOR_Flash								
Test	Measuring Point	Measuring Criteria	Observation	Specification Min Max		Design Margin (%)	Test Result		
SOC_FLASH	D10763	Positive Over-shoot (V)	0.074	0	0.18	-58.8889	PASS		
_CLK R10762		Negative Over-shoot (V)	0.074	0	0.18	-58.8889	PASS		
		Positive Over-shoot (V)	0.102	0	0.18	-43.3333	PASS		
SOC SPI MI	R1M11.2	Negative Over-shoot (V)	0.122	0	0.18	-32.2222	PASS		
SO SO		data set-up time (ns)	13.7	2	100	-86.3	PASS		
		data hold time (ns)	33	0	100	-67	PASS		

<u>NOTE:</u> Re-measurement taken by changing R1M11 from 22 Ohm to 49.9 Ohm to decrease Overshoot and Undershoot of MISO signal.

The detailed analysis report with waveform captured for SPI NOR Flash electrical validation test case is embed in the excel document attached herewith.

9.3.9 Storage - mSATA

9.3.9.1 Test ID / Test Name: CPU.11.1 / Signal Integrity

9.3.9.1.1 Purpose

The purpose of the test case is to validate the signal integrity of mSATA signals by plotting the eye diagram.

9.3.9.1.2 Test and Measurement Method

This test is conducted by plotting eye diagram of TX lines (SATA_TXP0/N0) and RX lines (SATA_RXN0/P0) and analyzing the eye characteristics as per mSATA standard. The TX lines are probed at C1833.1 and C1834.1. The RX lines are probed at C1835.2 and C1836.2. Please refer to

Section **5.2.9.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.9.1.3 Test Condition

Ambient Temperature -25° C Operating Voltage -18V System load - Typical

9.3.9.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Software versions – Linux 14.4.4

9.3.9.1.5 Test Results

The eye height fails for both mSATA TX and RX lines. All other parameters of mSATA TX and RX lines are within the specified limits.

9.3.9.1.6 Measurement Logs

Storage - mSATA Signal integrity -MSATA Transmit								
		Measured	Specific	ation	Design			
Probing points	Parameters	Value	Min	Max	Margin (%)	Result		
	Eye jit RMS (ps)	4.3	NA	100	-95.70	PASS		
	Eye Width (ps)	304.858	166.66	NA	-82.92	PASS		
C1833.1 and C1834.1	Eye Height (mV)	520.1	695.2	NA	25.19	FAIL		
C1033.1 and C1034.1	Data TIE (ps)	0.088	-11	11	100.80	PASS		
	Data Rate (Gb/s)	3	NA	3	0.00	PASS		
	Voltage peak to peak (mV)	949.46	800	NA	-18.68	PASS		

Storage - mSATA Signal integrity -MSATA Receive								
Probing points	Parameters	Measured	Specification		Design Margin	Result		
		Value	Min	Max	(%)			
	Eye jit RMS (ps)	11.436	NA	100	-88.56	PASS		
	Eye Width (ps)	279.435	166.66	NA	-67.67	PASS		
C1835.2 and C1836.2	Eye Height (mV)	304.2	695.2	NA	56.24	FAIL		
C1655.2 and C1650.2	Data TIE (ps)	0.512	-11	11	104.65	PASS		
	Data Rate (Gb/s)	3.06	NA	3	2.00	PASS		
	Voltage peak to peak (mV)	1210.13	800	NA	-51.27	PASS		

NOTE: Failure Resolution: New mSATA drives are being planned for Rev C and SATA characteristics will be revalidated in Rev C.

The detailed analysis report with waveform captured for Signal Integrity of mSATA memory is embedded in the xls document attached herewith.

9.3.9.2 Test ID / Test Name: CPU.11.2 / IO Stress

9.3.9.2.1 Purpose

The purpose of the test case is to validate mSATA memory access when mSATA lines are under stress.

9.3.9.2.2 Test and Measurement Method

This test is conducted by using FIO utility, which will stress the mSATA lines to their maximum performance. While they are under stress, mSATA memory should be accessible with no errors. Please refer to Section **5.2.9.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.9.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.9.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Software versions – Linux 14.4.4 with FIO utility configured

9.3.9.2.5 Test Results

FIO utility results show that there are no errors in accessing mSATA memory.

9.3.9.2.6 Measurement Logs

	Test Measuring Measuring Point Criteria	Measuring		Speci	fication	Design	Test	
Test	Point Criteria	Observation	Min	Max	Margin (%)	result		
Storage – mSATA								
	NA							

The snapshots of execution of FIO utility for validating IO Stress of mSATA memory is attached herewith.

mSATA_FIO_1.png mSATA_FIO_2.png

9.3.10 SpringVille1 – PCIe

9.3.10.1 Test ID / Test Name: CPU.13.1 and CPU.13.2 / Electrical Validation, Eye – plotting

9.3.10.1.1 Purpose

The purpose of this test case is to check and validate the electrical parameters and signal integrity of PCIe interface between Intel processor (U3) and Springville1 (U2M1).

9.3.10.1.2 Test and Measurement Method

- Transmitter Tests:
 - 1. Remove Springville1 IC (U2M1). Terminate the Tx lane1 lines from Intel processor by mounting a 50-ohm resistor on pin no 23 and 24 of U2M1. By doing so, PCIe compliance pattern as per section 4.2.8 of PCIe base specification ver. 2.1 is generated.
 - 2. Probe PCIE1 TXP LAN and PCIE1 TXN LAN at C2B30.1 and C2B29.1 respectively.
 - 3. Run the test utility N5393D in the iminium oscilloscope. To configure the test suite, select PCIe version as 2.0, Transmitter tests, Device1, Lane1, and speed as 2.5GT/s. In select tests option in utility, select transmitter tests and run all the selected test cases.
 - 4. The test utility generates the test report for all the test cases selected with the pass or fail criteria and its % margin.
- Receiver Tests:

- 1. Mount back Springville1 IC (U2M1). Terminate the Rx lane1 lines from Springville1 (U2M1) by lifting capacitor side C2M4.1 and C2M6.1 and terminating the line by mounting a 50-ohm resistor. By doing so, PCIe compliance pattern as per section 4.2.8 of PCIe base specification ver. 2.1 is generated.
- 2. Probe PCIE1 RXP LAN and PCIE1 RXN LAN at C2M4.1 and C2M6.1 respectively.
- 3. Run the test utility N5393D in the infinitum oscilloscope. To configure the test suite, select PCIe version as 2.0, Receiver tests, Device1, Lane1, and speed as 2.5GT/s. In select tests option in utility, select receiver tests and run all the selected test cases.
- 4. The test utility generates the test report for all the test cases selected with the pass or fail criteria and its % margin.

Please refer to Section **5.2.10** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.10.1.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +18V DC System load –Typical

9.3.10.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software version - NA

9.3.10.1.5 Test Results

The test result generated by the test utility should be within the mentioned range in the PCIe Ver.2.1 base specification.

9.3.10.1.6 Measurement Logs

• Transmitter:

PCIe - Springville1 _Transmitter Test								
Sl.	Test Name	Measured Value	Pass Margin		% Pass	PASS / FAIL		
No		value	Min	Max	Margin	FAIL		
1	Unit Interval Test (UI) (ps)	400.025	399.88	400.12	39.6	PASS		

2	Template Test	-	-	-	100	PASS
3	Median-to-Max jitter(ps)	17.03		50	65.9	PASS
4	Eye Width(mUI)	891	750		18.8	PASS
5	Peak Differential Output	923.5	800	1200	30.9	PASS
	Voltage(Transition) (mV)					
6	Peak Differential Output Voltage (Non -	682.7	504	1200	25.7	PASS
	Transition) (mV)					
7	Rise/Fall time (ps)	78.13	50		56.3	PASS
8	De-emphasized voltage ratio (dB)	-2.6	-4.5	-2.5	5	PASS
9	RMS AC peak common mode voltage (mV)	19.8		20	1	PASS
10	Avg DC common mode voltage (mV)	2.3	0	3600	0.1	PASS
11	Avg DC common mode voltage output	72.3		100	27.7	PASS
	variation (mV)					
12	Avg DC common mode line delta (mV)	4.653		25	81.4	PASS

The detailed analysis report for PCIe – springville1 transmitter test case executed is attached herewith.

• Receiver:

	PCIe - Springville1 _Receiver Test								
Sl.	Test Name	Measured	Pass N	Iargin	% Pass	PASS /			
No	1 est ivame	Value	Min	Max	Margin	FAIL			
1	Unit Interval Test (UI) (ps)	400.028	399.88	400.12	38.3	PASS			
2	Template Test	-	-	-	100	PASS			
3	Median-to-Max jitter(ps)	18.7		120	84.4	PASS			
4	Eye Width(mUI)	893	400		123.3	PASS			
5	Peak Differential Output Voltage (mV)	225.2	175	1200	4.9	PASS			
6	RMS AC peak common mode input	57.3		150	61.8	PASS			
	voltage (mV)								

The detailed analysis report for PCIe – springville1 receiver test case executed is attached herewith.

9.3.11 SpringVille2 – PCIe

9.3.11.1 Test ID / Test Name: CPU.14.1 and CPU14.2 / Electrical Validation, Eye – plotting

9.3.11.1.1 Purpose

The purpose of this test case is to check and validate the electrical parameters and signal integrity of PCIe interface between Intel processor (U3) and Springville2 (U2M2).

9.3.11.1.2 Test and Measurement Method

• Transmitter Tests:

- 1. Remove Springville2 IC (U2M2). Terminate the Tx lane2 lines from Intel processor by mounting a 50-ohm resistor on pin no 23 and 24 of U2M2. By doing so, PCIe compliance pattern as per section 4.2.8 of PCIe base specification ver. 2.1 is generated.
- 2. Probe PCIE2 TXP LAN and PCIE2 TXN LAN at C2B32.1 and C2B31.1 respectively.
- 3. Run the test utility N5393D in the infinitum oscilloscope. To configure the test suite, select PCIe version as 2.0, Transmitter tests, Device1, Lane2, and speed as 2.5GT/s. In select tests option in utility, select transmitter tests and run all the selected test cases.
- 4. The test utility generates the test report for all the test cases selected with the pass or fail criteria and its % margin.

• Receiver Tests:

- 1. Mount back Springville2 IC (U2M2). Terminate the Rx lane2 lines from Springville2 (U2M2) by lifting capacitor side C2M22.1 and C2M21.1 and terminating the line by mounting a 50-ohm resistor. By doing so, PCIe compliance pattern as per section 4.2.8 of PCIe base specification ver. 2.1 is generated.
- 2. Probe PCIE2 RXP LAN and PCIE2 RXN LAN at C2M22.1 and C2M21.1 respectively.
- 3. Run the test utility N5393D in the infinitum oscilloscope. To configure the test suite, select PCIe version as 2.0, Receiver tests, Device1, Lane2, and speed as 2.5GT/s. In select tests option in utility, select receiver tests and run all the selected test cases.
- 4. The test utility generates the test report for all the test cases selected with the pass or fail criteria and its % margin.
 - Please refer to Section **5.2.11** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.11.1.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +18V DC System load –Typical

9.3.11.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software version – NA

9.3.11.1.5 Test Results

The test result generated by the test utility should be within the mentioned range in the PCIe Ver.2.1 base specification.

9.3.11.1.6 Measurement Logs

• Transmitter:

	PCIe - Spring	ville2 _Transm	itter Test	t		
Sl.	T. AN	Measured	Pass N	Aargin	% Pass /	PASS /
No	Test Name	Value	Min	Max	Fail Margin	FAIL
1	Unit Interval Test (UI) (ps)	400.025	399.88	400.12	39.6	PASS
2	Template Test	-	-	-	-100	FAIL
3	Median-to-Max jitter(ps)	16.28		50	64.7	PASS
4	Eye Width(mUI)	899	750		19.9	PASS
5	Peak Differential Output Voltage(Transition) (mV)	861.8	800	1200	15.5	PASS
6	Peak Differential Output Voltage (Non - Transition) (mV)	639.6	504	1200	19.5	PASS
7	Rise/Fall time (ps)	60.31	50		20.6	PASS
8	De-emphasized voltage ratio (dB)	-2.6	-4.5	-2.5	5	PASS
9	RMS AC peak common mode voltage (mV)	13.7		20	13.5	PASS
10	Avg DC common mode voltage (mV)	4.5	0	3600	0.1	PASS

11	Avg DC common mode voltage output variation (mV)	62.7	100	37.3	PASS
12	Avg DC common mode line delta (mV)	4.867	25	80.5	PASS

NOTE: This test will be re-performed in RevC by varying the de-emphasis settings.

The detailed analysis report for PCIe – springville2 transmitter test case executed is attached herewith.

Transmitter_Spring Ville2.zip

• Receiver:

		PCIe - Spring	gville2 _Recei	iver Test		
Sl. No	Test Name	Measured	Pass Mar	gin	% Pass	PASS /
51. 110	1 est Name	Value	Min	Max	Margin	FAIL
1	Unit Interval Test (UI) (ps)	400.026	399.88	400.12	39.2	PASS
2	Template Test	-	-	-	100	PASS
3	Median-to-Max jitter(ps)	20.52		120	82.9	PASS
4	Eye Width(mUI)	799	400		99.8	PASS
5	Peak Differential Output Voltage (mV)	515.8	175	1200	33.2	PASS

The detailed analysis report for PCIe – springville2 receiver test case executed is attached herewith.

9.3.12 TRXFE – GPIO

NOTE: CPU 15.1 cannot be done because the GPIO line is connected to Test points in RF-SDR board.

9.3.12.1 Test ID / Test Name: CPU.15.2 / Control outputs functional validation

9.3.12.1.1 Purpose

The purpose of the test case is to execute the control outputs functional validation of TRXFE- GPIO signals.

9.3.12.1.2 Test and Measurement Method

This test is conducted by toggling the GPIO lines by using GPIO Sysfs Interface in Linux. Please refer to Section **5.2.12.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.12.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V

System load – Typical

9.3.12.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0010

Software versions – Linux 14.4.4

9.3.12.1.5 Test Results

The toggling of TRXFE- GPIO signals is verified.

9.3.12.1.6 Measurement Logs

	Measuring	Measuring		Specification		Design	Test		
Test	Point Criteria	Observation	Min	Max	Margin (%)	result			
	TRXFE - GPIO: Control outputs								
	NA								

The snapshots of execution of Control outputs functional validation of TRXFE- GPIO are attached herewith.

TRXFE_GPIO1_340.p TRXFE_GPIO2_341.p TRXFE_GPIO3_342.p TRXFE_GPIO4_343.p ng ng

9.3.12.2 Test ID / Test Name: CPU.15.3 / Signaling characteristics

9.3.12.2.1 Purpose

The purpose of the test case is to validate the signal characteristics of TRXFE- GPIO signals.

9.3.12.2.2 Test and Measurement Method

This test is conducted by probing the TRXFE - GPIO lines before level shifter at R10546, R10547, R10548 and R10549 and after level shifter at R10542, R10543, R10528 and R10529 respectively and verifying the signal characteristics. The GPIO lines are toggled using GPIO Sysfs Interface in Linux. Please refer to Section **5.2.12.3** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.12.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.12.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0010

Software versions – Linux 14.4.4

9.3.12.2.5 Test Results

The signal characteristic of TRXFE- GPIO signals is within the requirement limits.

9.3.12.2.6 Measurement Logs

Test	Measuring Point	Measuring Criteria	Observation	Specification	Test result
------	--------------------	--------------------	-------------	---------------	----------------

				Min(V)	Max(V)	Design Margin (%)	
		TRXFE - GPIO (Before	Level Shifte	r)			
		$V_{LOW}(V)$	0	0	0.63	-100.00	PASS
SOC_TRXFE_GPIO1	R10546	$V_{HIGH}(V)$	1.8	1.17	1.8	0.00	PASS
SOC_TRATE_OFFOT	10340	Positive Over-shoot (V)	0	0	0.18	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.18	-100.00	PASS
		V _{LOW} (V)	0	0	0.63	-100.00	PASS
SOC TRYEE CRIO2	D10547	V _{HIGH} (V)	1.8	1.17	1.8	0.00	PASS
SOC_TRXFE_GPIO2	R10547	Positive Over-shoot (V)	0	0	0.18	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.18	-100.00	PASS
		$V_{LOW}(V)$	0	0	0.63	-100.00	PASS
	R10548	V _{HIGH} (V)	1.8	1.17	1.8	0.00	PASS
SOC TRXFE GPIO3		Positive Over-shoot (V)	0	0	0.18	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.18	-100.00	PASS
		V _{LOW} (V)	0	0	0.63	-100.00	PASS
SOC TRYEE CRIO	R10549	V _{HIGH} (V)	1.8	1.17	1.8	0.00	PASS
SOC_TRXFE_GPIO4		Positive Over-shoot (V)	0	0	0.18	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.18	-100.00	PASS
		TRXFE - GPIO (After	Level Shifter	.)			
		$V_{LOW}(V)$	0	-0.3	0.8	100.00	PASS
ISO_SOC_TRXFE_G	R10542	V _{HIGH} (V)	3.3	2	3.6	-8.33	PASS
PIO1	K10342	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.33	-100.00	PASS
		V _{LOW} (V)	0	-0.3	0.8	100.00	PASS
ISO_SOC_TRXFE_G	R10543	V _{HIGH} (V)	3.3	2	3.6	-8.33	PASS
PIO2	11100 10	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.33	-100.00	PASS
		$V_{LOW}(V)$	0	-0.3	0.8	100.00	PASS
ISO_SOC_TRXFE_G	R10528	$V_{HIGH}(V)$	3.3	2	3.6	-8.33	PASS
PIO3	K10326	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.33	-100.00	PASS
		$V_{LOW}(V)$	0	-0.3	0.8	100.00	PASS
ISO_SOC_TRXFE_G	R10529	V _{HIGH} (V)	3.3	2	3.6	-8.33	PASS
PIO4		Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.33	-100.00	PASS

The detailed analysis report with waveform captured for Signaling characteristics of TRXFE- GPIO is embedded in the xls document attached herewith.

9.3.13 TIVA - GPIO

9.3.13.1 Test ID / Test Name: CPU.17.1 / Control inputs functional validation

9.3.13.1.1 Purpose

The purpose of the test case is to execute the control inputs functional validation of TIVA-GPIO signals.

9.3.13.1.2 Test and Measurement Method

This test is conducted by toggling the GPIO lines from TIVA controller using CCS software and checking the status of the GPIO lines in SOC by using GPIO Sysfs Interface in Linux. Please refer to Section **5.2.13.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.13.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.13.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0010

Software versions – Linux 14.4.4

9.3.13.1.5 Test Results

The toggling of TIVA- GPIO signals is verified.

9.3.13.1.6 Measurement Logs

Lest	Measuring Point Measuring Criteria	Measuring		Specification		Design Margin (%)	Test result		
Test		Observation	Min	Max					
TIVA - GPIO: Control inputs									

The snapshots of execution of control inputs functional validation of TIVA- GPIO is attached herewith.

GPIO2_FV_TIVA.png GPIO2_FV_SOC.png

9.3.13.2 Test ID / Test Name: CPU.17.2 / Control outputs functional validation

9.3.13.2.1 Purpose

The purpose of the test case is to execute the control outputs functional validation of TIVA-GPIO signals.

9.3.13.2.2 Test and Measurement Method

This test is conducted by toggling the GPIO lines by using GPIO Sysfs Interface in Linux. Please refer to Section **5.2.13.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.13.2.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load - Typical

9.3.13.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0010

Software versions - Linux 14.4.4

9.3.13.2.5 Test Results

The toggling of TIVA- GPIO signals is verified and TIVA SOC GPIO1 fails.

9.3.13.2.6 Measurement Logs

Test	Observation	Specification		
------	-------------	---------------	--	--

	Measuring Point	Measuring Criteria		Min	Max	Design Margin (%)	Test result		
TIVA - GPIO: Control outputs									
NA									

The snapshots of execution of Control outputs functional validation of TIVA- GPIO is attached herewith.

9.3.13.3 Test ID / Test Name: CPU.17.3 / Signaling characteristics

9.3.13.3.1 Purpose

The purpose of the test case is to validate the signal characteristics of TIVA- GPIO signals.

9.3.13.3.2 Test and Measurement Method

This test is conducted by probing the GPIO2 signal at R10514 before level shifter and at R10516 after level shifter and verifying the signal characteristics. The GPIO line is toggled using GPIO Sysfs Interface in Linux. Please refer to Section **5.2.13.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.13.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.13.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0010

Software versions – Linux 14.4.4

9.3.13.3.5 Test Results

The signal characteristic of TIVA- GPIO signals is within the requirement limits.

9.3.13.3.6 Measurement Logs

Test	Measuring	Measuring Criteria	Observation	Specification		Design Margin	Test
	Point	<i>β</i> :		Min(V)	Max(V)	(%)	result
		Level Shifter)					
	R10514	$V_{LOW}(V)$	0	0.00	0.63	-100.00	PASS
ISO_TIVA_SOC_G		V _{HIGH} (V)	1.8	1.17	1.80	0.00	PASS
PIO2		Positive Over-shoot (V)	0	0.00	0.18	-100.00	PASS
		Negative Over-shoot (V)	0	0.00	0.18	-100.00	PASS
		TIVA_GPIO (After l	Level Shifter)				
TIVA_SOC_GPIO2	R10516	$V_{LOW}(V)$	0	0.00	1.16	-100.00	PASS
		$V_{HIGH}(V)$	3.3	2.15	4.00	-17.50	PASS
		Positive Over-shoot (V)	0.3	0.00	0.33	-9.09	PASS
		Negative Over-shoot (V)	0.1	0.00	0.33	-69.70	PASS

The detailed analysis report with waveform captured for signaling characteristics of TIVA-GPIO is embedded in the xls document attached herewith.

9.3.14 TRXFE- FX3 - USB 2.0

9.3.14.1 Test ID / Test Name: CPU.19.1 / Electrical validation

9.3.14.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of USB2.0 interface between GBC and RF-SDR.

9.3.14.1.2 Test and Measurement Method

This test is conducted by probing the USB2.0 signal at R206.2 (USB_DP0), R208.2 (USB_DN0). Capture one frame of data (USB 2.0 signals) and save as .csv format. Then input this file to USBET20 tool. This will produces the familiar .html results files of the analysis. Please refer to Section **5.2.14.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.14.1.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load – Typical

9.3.14.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021 Debug board Serial Number - WZ1628LIFE2DEBUG0018

RF-SDR Board Serial Number - WZ1630LIFE2SDR0006

Software versions – Linux 14.4.4

9.3.14.1.5 Test Results

The electrical characteristics of USB2.0 interface between GBC and RF-SDR is verified.

9.3.14.1.6 Measurement Logs

The detailed analysis report generated by "USBET20" tool for FX3-USB2.0 - Electrical validation is attached herewith.

FX3_USB2.0.zip

9.3.14.2 Test ID / Test Name: CPU.19.2 / Throughput measurement

9.3.14.2.1 Purpose

The purpose of the test case is to validate USB 2.0 throughput.

9.3.14.2.2 Test and Measurement Method

This test is conducted by Installing the FX3 Utility and running the installation script. (./install.sh). The cyusb_linux application is run. The process is started under the Data Transfers tab. Please refer to Section **5.2.14.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.14.2.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load - Typical

9.3.14.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Software versions – Linux 14.4.4 with cyusb linux application

9.3.14.2.5 Test Results

The throughput of USB2.0 is 22.588 MB/s.

9.3.14.2.6 Measurement Logs

	Measuring	Measuring	Observation	Speci	fication	Design Margin (%)	Test result				
Test	Point	Criteria		Min	Max						
	USB 2.0 - Throughput measurement										
	NA										

The log of throughput measurement for USB 2.0 is attached herewith.

9.3.14.3 Test ID / Test Name: CPU.19.3 / Functional validation

9.3.14.3.1 Purpose

The purpose of the test case is to validate USB 2.0 interface between GBC and RF-SDR board.

9.3.14.3.2 Test and Measurement Method

This test is conducted by connecting debug board and RF-SDR board to GBC board and giving the command "sudo uhd_usrp_probe" in the terminal. Please refer to Section 5.2.14.4 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.14.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.14.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021
Debug board Serial Number - WZ1628LIFE2DEBUG0018
RF-SDR Board Serial Number - WZ1630LIFE2SDR0006
Software versions – Linux 14.4.4

9 3 14 3 5 Test Results

The functional validation of USB 2.0 interface between GBC and RF-SDR board is verified.

9.3.14.3.6 Measurement Logs

T	Measuring Point	Measuring Criteria	Observation	Speci	fication	Design Margin (%)	Test		
Test				Min	Max		result		
TRXFE- FX3 - USB 2.0									
	NA								

The snapshot of functional validation of USB 2.0 interface between GBC and RF-SDR board is attached herewith.

9.3.15 TRXFE- FX3 - USB 3.0

9.3.15.1 Test ID / Test Name: CPU.20.2 / Throughput measurement

9.3.15.1.1 Purpose

The purpose of the test case is to validate USB 3.0 throughput.

9.3.15.1.2 Test and Measurement Method

This test is conducted by Installing the FX3 Utility and running the installation script. (./install.sh). The cyusb_linux application is run. The process is started under the Data Transfers tab after selecting streamer. Please refer to Section **5.2.15.2** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.15.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.15.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Software versions – Linux 14.4.4 with cyusb linux application

9.3.15.1.5 Test Results

The throughput of USB3.0 is 240.007 MB/s.

9.3.15.1.6 Measurement Logs

	Measuring	Measuring	Observation	Speci	fication	Design Margin (%)	Test result			
Test	Point	Criteria		Min	Max					
USB 3.0 - Throughput measurement										
	NA									

The log of throughput measurement for USB 3.0 is attached herewith.

9.3.15.2 Test ID / Test Name: CPU.20.3 / Functional validation

9.3.15.2.1 Purpose

The purpose of the test case is to validate USB 3.0 interface between GBC and RF-SDR board.

9.3.15.2.2 Test and Measurement Method

This test is conducted by connecting debug board and RF-SDR board to GBC board and giving the command "sudo uhd_usrp_probe" in the terminal. Please refer to Section 5.2.15.3 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.15.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.15.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0021
Debug board Serial Number - WZ1628LIFE2DEBUG0018
RF-SDR Board Serial Number - WZ1630LIFE2SDR0006
Software versions – Linux 14.4.4

9.3.15.2.5 Test Results

The functional validation of USB 3.0 interface between GBC and RF-SDR board is verified.

9.3.15.2.6 Measurement Logs

	Measuring	Measuring		Specification		Design	Test		
Test	Point	Criteria	Observation	Min	Max	Margin (%)	result		
TRXFE- FX3 - USB 3.0									
	NA								

The snapshot of functional validation of USB 3.0 interface between GBC and RF-SDR is attached herewith.

9.3.16 Debug USB 2.0

9.3.16.1 Test ID / Test Name: CPU.21.1 / Functional validation

9.3.16.1.1 Purpose

The purpose of the test case is to validate USB 2.0 in debug board.

9.3.16.1.2 Test and Measurement Method

This test is conducted by connecting debug board to GBC board and connecting a USB 2.0 in debug board and giving the command "**lsusb** –**t**"/" **lsusb** -**v**" in the terminal. Please refer to Section **5.2.16** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.16.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.16.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002 Debug board Serial Number - WZ1628LIFE2DEBUG001 Software versions – Linux 14.4.4

9.3.16.1.5 Test Results

The functional validation of USB 2.0 in debug board is verified.

9.3.16.1.6 Measurement Logs

	Measuring	- Incervation		Specification		Design	Test			
Test	Point			Min	Max	Margin (%)	result			
	Debug USB 2.0									
			NA							

The snapshots of functional validation of USB 2.0 in debug board are attached herewith.

9.3.17 Debug USB 3.0

9.3.17.1 Test ID / Test Name: CPU.22.1 / Functional validation

9.3.17.1.1 Purpose

The purpose of the test case is to validate USB 3.0 in debug board.

9.3.17.1.2 Test and Measurement Method

This test is conducted by connecting debug board to GBC board. Board is turned on with CoreBoot loaded. Once Linux comes up, the USB3.0 signals at USB switch (U48) is routed to debug connector by toggling operation mode select pin of Mux/Demux switch (U48) using GPIO Sysfs Interface in Linux. A USB3.0 pen drive/HDD is connected to debug port and "Isusb –t" command is given in the terminal which shows the device is listed under USB3.0 Bus/Hub. This confirms that the USB3.0 enumeration is happening at GBC. Please refer to Section **5.2.17** in latest version of

"OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.17.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.17.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002 Debug board Serial Number - WZ1628LIFE2DEBUG0018 Software versions – Linux 14.4.4

9.3.17.1.5 Test Results

The functional validation of USB 3.0 in debug board is verified.

9.3.17.1.6 Measurement Logs

	Measuring	Measuring		Specification		Design	Test		
Test	Point	Criteria	Observation	Min	Max	Margin (%)	result		
Debug USB 3.0									
	NA								

The snapshots of functional validation of USB 3.0 in debug board are attached herewith.

9.3.18 Debug - Ethernet

9.3.18.1 Test ID / Test Name: CPU.23.1 / Functional validation

9.3.18.1.1 Purpose

The purpose of the test case is to validate Ethernet port in debug board.

9.3.18.1.2 Test and Measurement Method

This test is conducted by connecting debug board to GBC board and connecting a PC to the Ethernet port of debug board. The connection between GBC system and the external PC is verified using "ping" command. Please refer to Section **5.2.18** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.3.18.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.18.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002

Debug board Serial Number - WZ1628LIFE2DEBUG0018

Software versions – Linux 14.4.4

9.3.18.1.5 Test Results

The functional validation of Ethernet port in debug board is verified.

9.3.18.1.6 Measurement Logs

	Measuring	Measuring		Speci	fication	Design Margin (%)	Test result		
Test	Point	Criteria	Observation	Min	Max				
Debug - Ethernet									
	NA								

The snapshots of functional validation of Ethernet port in debug board are attached herewith.

_GBC.png

Debug_Ethernet_FV Debug_Ethernet_FV _PC.png

Display-HDMI 9.3.19

Test ID / Test Name: CPU.24.1 / Functional validation with debug port 93191

9.3.19.1.1 Purpose

The purpose of the test case is to validate HDMI port in debug board.

9.3.19.1.2 Test and Measurement Method

This test is conducted by connecting debug board to GBC board and connecting a monitor to the HDMI Please refer debug board. to Section 5.2.19 in latest version "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

Test Condition 9.3.19.1.3

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.19.1.4 **DUT Sample Information**

GBC Board Serial Number – WZ1630LIFE2GBC0002 Debug board Serial Number - WZ1628LIFE2DEBUG0018 Software versions – Linux 14.4.4

9.3.19.1.5 Test Results

The functional validation of HDMI port in debug board is verified.

9.3.19.1.6 Measurement Logs

|--|

Measuring Point	Measuring Criteria		Min	Max	Design Margin (%)	Test result			
Display-HDMI									
		NA							

The snapshots of functional validation of HDMI port in debug board are attached herewith.

9.3.20 Debug - UART

9.3.20.1 Test ID / Test Name: CPU.25.1 / Functional validation

9.3.20.1.1 Purpose

The purpose of the test case is to validate UART interface in debug board.

9.3.20.1.2 Test and Measurement Method

This test is conducted by connecting debug board to GBC board and connecting a PC (with Docklight software) to the USB port (J1N4) of debug board. The Docklight software will be running in the PC. The Intel Atom processor sends boot log through the USB port to the PC during board power up. The data sent can be verified in the application software. Please refer to Section **5.2.20** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.20.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.3.20.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0002 Debug board Serial Number - WZ1628LIFE2DEBUG0018 Software versions – Linux 14.4.4

9.3.20.1.5 Test Results

The functional validation of UART interface in debug board is verified.

9.3.20.1.6 Measurement Logs

	Measuring	Measuring		Speci	fication	Design	Test result		
Test	Point	Criteria	Observation	Min	Max	Margin (%)			
Debug-UART									
NA									

The log of functional validation of UART interface in debug board is attached herewith.

9.3.21 RFSDR – PCIe

9.3.21.1 Test ID / Test Name: CPU.26.1 and CPU26.2 / RFSDR-PCIe0

9.3.21.1.1 Purpose

The purpose of this test case is to check and validate the electrical parameters and signal integrity of PCIe interface at 5GT/s between Intel processor (U3) and RFSDR board.

9.3.21.1.2 Test and Measurement Method

• Transmitter Tests:

- 1. Terminate PCIe transmitter lane 0 lines with a 50-ohm resistor. By doing so, PCIe compliance pattern as per section 4.2.8 of PCIe base specification ver. 2.1 is generated.
- 2. For low power mode: voltage swing of PCIE signals from 600mV to 800V), modify bit 9:7 of "LCTL2 LSTS2" register with offset 70h to 010b
- 3. From AWG (arbitrary waveform generator), generate bursts a 100MHz signal for 1ms duration. Connect the output of AWG to *PCIE0_RXP*. This ensures the PCIe Tx lines to be transmitting data at 5GT/s speed.
- 4. Probe PCIE0 TXP PCIE0 TXN at C2000.1 and C1999.1 respectively.

- 5. Run the test utility N5393D in the infinitum oscilloscope. To configure the test suite, select PCIe version as 2.0, Transmitter tests, Device1, Lan01, and speed as 5GT/s. In select tests option in utility, select transmitter tests and run all the selected test cases.
- 6. The test utility generates the test report for all the test cases selected with the pass or fail criteria and its % margin.

Please refer to Section **5.2.21** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.3.21.1.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +18V DC System load –Typical

9.3.21.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Software version - NA

9.3.21.1.5 Test Results

The test result generated by the test utility should be within the mentioned range in the PCIe Ver.2.1 base specification.

9.3.21.1.6 Measurement Logs

PCIe	0 - 5GT/s6dB Full power level	- Writing to re	egister 70h			
Sl.	Test Name	Measured	sured Pass Margin			PASS /
No	1 est Name	Value	Min	Max	Margin	FAIL
1	Unit Interval Test (UI) (ps)	200.013	199.94	200.06	39.2	PASS
2	Rise/Fall time (ps)	50.63	30	>30	68.8	PASS
3	Tmin - Pulse(mUI)	938	900	>900	4.2	PASS
4	Deemphasized Voltage Ratio - 3.5dB (dB)	-2.8	-4.5	-2.5	15	PASS
5	Deterministic Jitter > 1.5 MHz (mUI)	32	<150	150	78.7	PASS
6	Random Jitter < 1.5 MHz(ps)	1.72	<3	3	42.7	PASS
7	Template Test	-	-	-	100	PASS

8	Eye Width(mUI)	846	750	>750	12.8	PASS
9	Peak Differential Output Voltage(Transition) (mV)	722.9	400	1200	40.4	PASS
10	Peak Differential Output Voltage (Non -Transition) (mV)	523.4		1200	29.7	PASS

The detailed analysis report for PCIe 0 – RFSDR transmitter test case executed for the above case is attached herewith.

PCIE_low swing.zip

9.4 TIVA

9.4.1 TIVA Access

9.4.1.1 Test ID / Test Name: TIV.1.1 / Configuration

9.4.1.1.1 Purpose

The purpose of this test case is to access TIVA through JTAG and configuring with the help of CCS debug software.

9.4.1.1.2 Test and Measurement Method

Connect debug board to a GBC board. To access CCS debug software, connect USB cable from host PC to connector J1N2 on debug board. Configure the debugger in CCS, and load the program onto TIVA (U72). Please refer to Section **6.2.1.2** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.4.1.1.3 Test Condition

Ambient Temperature - 25°C Operating Voltage - +18V DC System load –Typical

9.4.1.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0021

Software versions – TIVA RTOS code

9.4.1.1.5 **Test Results**

Program is successfully loaded into TIVA through CCS debug software.

9.4.1.1.6 Measurement Logs

-	Measuring	Measuring		Speci	fication	Design	Test
Test	Point	Criteria	Observation	Min	Max	Margin (%)	result
		T	IVA Configura	tion			
			NA				

Tiva_Configuration.

Test ID / Test Name: TIV.1.2 / System Reset sequence 9.4.1.2

9.4.1.2.1 Purpose

The purpose of the test case is to validate TIVA system reset sequence.

9.4.1.2.2 Test and Measurement Method

This test is conducted by probing the signals "TIVA RESET TO PROC", "TIVA ETHSW RESET", "TIVA TRXFE RESET", "TIVA SYNC RESET" at R10523, R10438, 0165 and R10519 respectively. The TIVA system reset sequence is measured while resetting the system from TIVA Please controller. refer to Section 6.2.1.3 in version of latest "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.4.1.2.3 **Test Condition**

Ambient Temperature – 25°C Operating Voltage – 18V System load - Typical

9.4.1.2.4 **DUT Sample Information**

GBC Board Serial Number - WZ1630LIFE2GBC0004

Debug board Serial Number - WZ1628LIFE2DEBUG0018 Software versions – TIVA RTOS code

9.4.1.2.5 Test Results

TIVA system reset sequence is verified and is in the following order.

- 1. TIVA RESET TO PROC
- 2. TIVA ETHSW RESET
- 3. TIVA TRXFE RESET
- 4. TIVA SYNC RESET

9.4.1.2.6 Measurement Logs

	Measurement	Measured sequence	Specification	Design Margin	Result	
Sl.No	Points	Wieasured sequence	Expected sequence	(%)	Result	
		TIVA system rese	et sequence			
1	R10523	TIVA_RESET_TO_PROC	TIVA_RESET_TO_PROC			
2	R10438	TIVA_ETHSW_RESET	TIVA_ETHSW_RESET	NIA	PASS	
3	R10165	TIVA_TRXFE_RESET	TIVA_TRXFE_RESET	NA	PASS	
4	R10519	TIVA_SYNC_RESET	TIVA_SYNC_RESET			

NOTE: There is no time delay requirement for the System reset sequence.

The detailed analysis report with waveform captured for TIVA system reset sequence is embedded in the xls document attached herewith.

9.4.2 **PSE – I2C (LTC4274AIUHF)**

9.4.2.1 Test ID / Test Name: TIV.2.1 / Electrical validation

9.4.2.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of I2C interface of PSE controller.

9.4.2.1.2 Test and Measurement Method

This test is conducted by probing the I2C signal at U206.2 (TIVA_PSE_I2C8_SDA) and U206.3 (TIVA_PSE_I2C8_SCLK) before isolator, U206.7 (PSE_I2CSDA) and U206.6 (PSE_I2CSCL) after isolator on the GBC board. The measured values are well with-in the limit as specified in the I2C isolator and PSE datasheet specification. Please refer to Section **6.2.2.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure

9.4.2.1.3 Test Condition

Ambient Temperature – 25° C

Operating Voltage – 18V

System load – Typical

9.4.2.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions – TIVA RTOS code

9.4.2.1.5 Test Results

The electrical characteristics of I2C interface with PSE is within the designed spec.

9.4.2.1.6 Measurement Logs

	Measuring			Speci	fication		Test
Test	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	result
		PSE (Before Isola	tor)				
		VLOW (max) (V)	0	0	0.5	-100.00	PASS
TIVA DOE 100		VHIGH (min) (V)	3.3	2.31	3.3	0.00	PASS
TIVA_PSE_I2C 8 SCLK	U206.3	Rise time (ns)	964	0	1000	-3.60	PASS
6_SCLK		Fall time (ns)	32.8	0	300	-89.07	PASS
		Frequency (kHz)	96.15	0	100	-3.85	PASS
	U206.2	VLOW (max) (V)	0.26	0	0.5	-48.00	PASS
TIVA PSE I2C		VHIGH (min) (V)	3	2.31	3.3	-9.09	PASS
8_SDA		Rise time (ns)	240	0	1000	-76.00	PASS
		Fall time (ns)	36.4	0	300	-87.87	PASS
		PSE (After Isolat	tor)				
		VLOW (max) (V)	-0.08	-0.5	0.8	84.00	PASS
		VHIGH (min) (V)	3.06	2.2	3.8	-19.47	PASS
PSE_I2CSCL	U206.6	Rise time (ns)	492	0	1000	-50.80	PASS
		Fall time (ns)	49	0	300	-83.67	PASS
		Frequency (kHz)	96.9	0	100	-3.10	PASS

PSE_I2CSDA	U206.7	VLOW (max) (V)	-0.1	-0.5	0.8	80.00	PASS
		VHIGH (min) (V)	2.8	2.2	3.8	-26.32	PASS
		Rise time (ns)	488	0	1000	-51.20	PASS
		Fall time (ns)	47	0	300	-84.33	PASS

The detailed analysis report with waveform captured for PSE I2C - Electrical validation is embedded in the xls document attached herewith.

9.4.2.2 Test ID / Test Name: TIV.2.2 / Signal Integrity

9.4.2.2.1 Purpose

The purpose of the test case is to validate the signal integrity of I2C interface of PSE controller.

9.4.2.2.2 Test and Measurement Method

This test is conducted by probing the I2C signal at U206.2 (TIVA_PSE_I2C8_SDA) and U206.3 (TIVA_PSE_I2C8_SCLK) before isolator, U206.7 (PSE_I2CSDA) and U206.6 (PSE_I2CSCL) after isolator on the GBC board. The measured values are well with-in the limit as specified in the I2C isolator and PSE datasheet specification. Please refer to Section **6.2.2.3** in latest version of "OC CONNECT_1 GBC Test Specification" document for detailed test procedure.

9.4.2.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.2.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions – TIVA RTOS code

9.4.2.2.5 Test Results

The Signal integrity characteristics of I2C interface with PSE is within the designed spec.

9.4.2.2.6 Measurement Logs

	Measuring			Specif	ication	Design	Test
Test	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	result
		PSE (Before Iso	olator)				
TIVA_PSE_I2C8_S	U206.3	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
CLK	0200.3	Negative Over-shoot (V)	0	0	0.33	-100.00	PASS
		data set-up time (ns)	1750	240	10000	-82.50	PASS
TIVA_PSE_I2C8_S	U206.2	data hold time (ns)		240	10000	-70.20	PASS
DA		Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.33	-100.00	PASS
		PSE (After Iso	lator)				
		Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
PSE_I2CSCL	U206.6	Negative Over-shoot (V)	0.16	0	0.33	-51.52	PASS
		data set-up time (ns)	2500	240	10000	-75.00	PASS
DCE 12CCDA	11206.7	data hold time (ns)	2980	240	10000	-70.20	PASS
PSE_I2CSDA	U206.7	Positive Over-shoot (V)	0.18	0	0.33	-45.45	PASS
		Negative Over-shoot (V)	0.24	0	0.33	-27.27	PASS

The detailed analysis report with waveform captured for PSE I2C - Signal Integrity is embedded in the xls document attached herewith.

9.4.2.3 Test ID / Test Name: TIV.2.3 / Functional validation

9.4.2.3.1 Purpose

The purpose of the test case is to validate the I2C interface of PSE controller.

9.4.2.3.2 Test and Measurement Method

This test is conducted by reading I2C8 bus at address 2FH and read back the device ID 70H. Please refer to Section **6.2.2.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.4.2.3.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load - Typical

9.4.2.3.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions – TIVA RTOS code

9.4.2.3.5 Test Results

TIVA is able to read device ID from PSE device.

9.4.2.3.6 Measurement Logs

	Measuring Point	Measuring Criteria	Observation	Speci	fication	Design Margin (%)	Test
Test				Min	Max		result
			PSE				
			NA				

The snapshot of functional validation of PSE I2C is attached herewith.

9.4.3 Power Monitor (INA226) – I2C

9.4.3.1 Test ID / Test Name: TIV.3.1 / Electrical validation

9.4.3.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of I2C interface of Power monitor IC.

9.4.3.1.2 Test and Measurement Method

This test is conducted by probing the I2C signal at U182.5 (SCL), U182.4 (SDA). The measured values are well with-in the limit as specified in the INA226 power monitor datasheet specification. Please refer to Section **6.2.3.2** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.4.3.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.3.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions - TIVA RTOS code

9.4.3.1.5 Test Results

The electrical characteristics of I2C interface of power monitor is within the designed spec.

9.4.3.1.6 Measurement Logs

	Measuring			Spec	ification	Design	Test			
Test	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	result			
	Power Monitor (INA226) - U185									
		VLOW (max) (V)	0	-0.5	0.99	100.00	PASS			
	U185.5	VHIGH (min) (V)	3.3	2.31	6	-42.86	PASS			
TIVA_PWRMNTR_I 2C6 SCLK		Rise time (ns)	720	0	1000	-28.00	PASS			
2C0_SCLK		Fall time (ns)	19.6	0	300	-93.47	PASS			
		Frequency (kHz)	96.52	0	100	-3.48	PASS			
		VLOW (max) (V)	0	-0.5	0.99	100.00	PASS			
TIVA_PWRMNTR_I 2C6_SDA	11105.4	VHIGH (min) (V)	3.4	2.31	6	-43.33	PASS			
	U185.4	Rise time (ns)	704	0	1000	-29.60	PASS			
		Fall time (ns)	52	0	300	-82.67	PASS			

NOTE:

- 1) Rise time and fall time passes for t70%-30%. Values are taken for t10%-90%.
- 2) Re-measurement taken by changing the pull-up value from 10K to 4.75K and Rise time and Fall time passes.

The detailed analysis report with waveform captured for Power Monitor I2C - Electrical validation is embedded in the xls document attached herewith.

9.4.3.2 Test ID / Test Name: TIV.3.2 / Signal Integrity

9.4.3.2.1 Purpose

The purpose of the test case is to validate the signal integrity of I2C interface of Power monitor IC.

9.4.3.2.2 Test and Measurement Method

This test is conducted by probing the I2C signal at U182.5 (SCL), U182.4 (SDA). The measured values are well with-in the limit as specified in the I2C specification standard, please refer to Section **6.2.3.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.4.3.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.3.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions - TIVA RTOS code

9.4.3.2.5 Test Results

The Signal integrity characteristics of I2C interface with Current and Power monitor IC is within the designed spec.

9.4.3.2.6 Measurement Logs

Test Measuring Criteria Observation Specification

	Measuring Point			Min	Max	Design Margin (%)	Test result
		Power Monitor (INA226) -	· U185				
TIVA_PWRMNTR_I2C6	U185.5	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
SCLK	0165.5	Negative Over-shoot (V)	0.3	0	0.33	-9.09	PASS
		data set-up time (ns)	1700	250	10000	-83.00	PASS
TIVA_PWRMNTR_I2C6	U185.4	data hold time (ns)	3000	300	10000	-70.00	PASS
_SDA	0185.4	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0.12	0	0.33	-63.64	PASS

The detailed analysis report with waveform captured for Power Monitor I2C - Signal Integrity is embedded in the xls document attached herewith.

9.4.3.3 Test ID / Test Name: TIV.3.3 / Functional validation

9.4.3.3.1 Purpose

The purpose of the test case is to validate the I2C interface of Power monitor IC.

9.4.3.3.2 Test and Measurement Method

This test is conducted by reading I2C6 bus at address 40H and Manufacture ID, 5449 is read from Address FEh. Please refer to Section **6.2.3.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.4.3.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.3.3.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions – TIVA RTOS code

9.4.3.3.5 Test Results

TIVA is able to access the power monitor through I2C bus and read Manufacture ID from the device.

9.4.3.3.6 Measurement Logs

T	Measuring Point	Measuring Criteria	Observation	Speci	fication	Design Margin (%)	Test
Test				Min	Max		result
			Power Monito	r			
			NA				

The snapshots of functional validation of Power Monitor are attached herewith.

9.4.4 RF-SDR board – I2C (PCA9557PW,118)

9.4.4.1 Test ID / Test Name: TIV.4.1 / Electrical validation

9.4.4.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of I2C interface of IO expander in RF-SDR board.

9.4.4.1.2 Test and Measurement Method

This test is conducted by probing the I2C signal at R1089.2 and R2034 (SCL), R1088.2 and R2033 (SDA) at RF SDR Board while it's integrated with GBC board. The measured values are well with-in the limit as specified in the PCA9557 IO expander datasheet specification. Please refer to Section **6.2.4.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure

9.4.4.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.4.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions – TIVA RTOS code

9.4.4.1.5 Test Results

The electrical characteristics of I2C interface with IO expander is within the designed spec.

9.4.4.1.6 Measurement Logs

Test	Measurin	Measuring Criteria	Observation	-	fication	Design	Test
	g Point			Min	Max	Margin (%)	result
		RF-SDR IO Exp	- I2C (Before Leve	l Shifter)			
		VLOW (max) (V)	0	-0.5	0.99	100.00	PASS
TIVA TRXFEC		VHIGH (min) (V)	3.3	2.31	5.5	-40.00	PASS
ONN_I2C2_SCL	R1089.2	Rise time (ns)	216	0	300	-28.00	PASS
K		Fall time (ns)	2.3	0	300	-99.23	PASS
		Frequency (kHz)	357.1	0	400	-10.73	PASS
		VLOW (max) (V)	0	-0.5	0.99	100.00	PASS
TIVA_TRXFEC	R1088.2	VHIGH (min) (V)	3.3	2.31	5.5	-40.00	PASS
ONN_I2C2_SDA		Rise time (ns)	244	0	300	-18.67	PASS
		Fall time (ns)	2.8	0	300	-99.07	PASS
		RF-SDR IO Exp	p- I2C (After Level	Shifter)			
		VLOW (max) (V)	0.4	-0.5	0.99	180.00	PASS
		VHIGH (min) (V)	2.8	2.31	5.5	-21.21	PASS
SYS_I2C_2_SCL	R2034	Rise time (ns)	56	0	300	-81.33	PASS
		Fall time (ns)	35	0	300	-88.33	PASS
		Frequency (kHz)	357.1	0	400	-10.73	PASS
		VLOW (max) (V)	0.4	-0.5	0.99	180.00	PASS
SYS I2C 2 SD	D2022	VHIGH (min) (V)	2.8	2.31	5.5	-21.21	PASS
Α	R2033	Rise time (ns)	64	0	300	-78.67	PASS
		Fall time (ns)	42	0	300	-86.00	PASS

The detailed analysis report with waveform captured for RF SDR IO Expander I2C - Electrical validation is embedded in the xls document attached herewith.

9.4.4.2 Test ID / Test Name: TIV.4.2 / Signal Integrity

9.4.4.2.1 Purpose

The purpose of the test case is to validate the signal integrity of I2C interface of IO expander in RF-SDR board.

9.4.4.2.2 Test and Measurement Method

This test is conducted by probing the I2C signal at R1089.2 and R2034 (SCL), R1088.2 and R2033 (SDA) at RF SDR Board. The measured values are well with-in the limit as specified in the PCA9557 IO expander datasheet specification. Please refer to Section **6.2.4.3** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.4.4.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.4.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions – TIVA RTOS code

9.4.4.2.5 Test Results

The Signal integrity characteristics of I2C interface with IO expander is within the designed spec.

9.4.4.2.6 Measurement Logs

	Measuring			Specification		Design	Test
Test	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	result
		RF-SDR IO Exp (Before Leve	el Shifter)				
TIVA_TRXFECONN_I	R1089.2	Positive Over-shoot (V)	0	0	0.33	100.00	PASS
2C2_SCLK	K1009.2	Negative Over-shoot (V)	0	0	0.33	100.00	PASS

		data set-up time (ns)	456	100	2500	-81.76	PASS
TIVA TRXFECONN I		data hold time (ns)	548	300	2500	-78.08	PASS
2C2_SDA	R1088.2	Positive Over-shoot (V)	0	0	0.33	100.00	PASS
		Negative Over-shoot (V)	0.1088	0	0.33	-67.03	PASS
		RF-SDR IO Exp (After Leve	l Shifter)				
SYS I2C 2 SCL	R2034	Positive Over-shoot (V)	0	0	0.33	100.00	PASS
515_12C_2_5CL	102054	Negative Over-shoot (V)	0.22	0	0.33	-33.33	PASS
		data set-up time (ns)	664	100	2500	-73.44	PASS
		data hold time (ns)	330	300	2500	-10.00	PASS
SYS_I2C_2_SDA	R2033	Positive Over-shoot (V)	0	0	0.33	100.00	PASS
		Negative Over-shoot (V)	0.22	0	0.33	-33.33	PASS

The detailed analysis report with waveform captured for RF SDR IO Expander I2C - Signal Integrity is embedded in the xls document attached herewith.

9.4.4.3 Test ID / Test Name: TIV.4.3 / Functional validation

9.4.4.3.1 Purpose

The purpose of the test case is to validate the I2C interface of IO expander in RF-SDR board.

9.4.4.3.2 Test and Measurement Method

This test is conducted by reading I2C2 bus and writing data in input register. Register 0x3 is written with value 0xfe (slave address 0x1b) and Register 0x1 is written with value 0xaa (slave address 0x1e). Please refer to Section 6.2.4.4 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.4.4.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.4.3.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions – TIVA RTOS code

9.4.4.3.5 Test Results

TIVA is able to write data in input register of IO expander.

9.4.4.3.6 Measurement Logs

T	Measuring	Measuring		Speci	fication	Design	Test
Test	Point Criteria		Observation	Min	Max	Margin (%)	result
			RF SDR IO Ex	кр			
			NA				

The snapshot of functional validation of IO Expander in RF-SDR Board is attached herewith.

9.4.5 Temp Sensor (SE98ATP, 547) – I2C

9.4.5.1 Test ID / Test Name: TIV.5.1 / Electrical validation

9.4.5.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of I2C interface of temperature sensor.

9.4.5.1.2 Test and Measurement Method

This test is conducted by probing the I2C signal at R10255.2/ R10221.2 (SCL), R10256.2/ R10222.2 (SDA). The measured values are well with-in the limit as specified in the SE98ATP, 547 Temp sensor datasheet specification. Please refer to Section **6.2.5.2** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.4.5.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.5.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions – TIVA RTOS code

9.4.5.1.5 Test Results

The electrical characteristics of I2C interface of temperature sensor is within the designed spec.

9.4.5.1.6 Measurement Logs

	Measuring			Speci	ification	Design	Test
Test	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	result
		Temp Sensor - U21	5 (Near Tiva)				
		VLOW (max) (V)	0	-0.5	0.99	100.00	PASS
TIME TEMPORALIO		VHIGH (min) (V)	3.4	2.31	4.3	-20.93	PASS
TIVA_TEMPSEN_I2 C1_SCLK	R10255.2	Rise time (ns)	570	0	1000	-43.00	PASS
		Fall time (ns)	16	0	300	-94.67	PASS
		Frequency (kHz)	94.34	0	100	-5.66	PASS
		VLOW (max) (V)	0	-0.5	0.99	100.00	PASS
TIVA_TEMPSEN_I2	R10256.2	VHIGH (min) (V)	3.4	2.31	4.3	-20.93	PASS
C1_SDA		Rise time (ns)	600	0	1000	-40.00	PASS
		Fall time (ns)	16	0	300	-94.67	PASS
		Temp Sensor - U210	(Far from Tiva))			
		VLOW (max) (V)	0	-0.5	0.99	100.00	PASS
TIME TEMPORALIO		VHIGH (min) (V)	3.3	2.31	4.3	-23.26	PASS
TIVA_TEMPSEN_I2 C1 SCLK	R10221.2	Rise time (ns)	570	0	1000	-43.00	PASS
CI_SCLK		Fall time (ns)	18	0	300	-94.00	PASS
		Frequency (kHz)	94.34	0	100	-5.66	PASS
		VLOW (max) (V)	0	-0.5	0.99	100.00	PASS
TIVA_TEMPSEN_I2 C1_SDA	D10222.2	VHIGH (min) (V)	3.3	2.31	4.3	-23.26	PASS
	R10222.2	Rise time (ns)	600	0	1000	-40.00	PASS
		Fall time (ns)	36	0	300	-88.00	PASS

The detailed analysis report with waveform captured for Temp Sensor I2C - Electrical validation is embedded in the xls document attached herewith.

9.4.5.2 Test ID / Test Name: TIV.5.2 / Signal Integrity

9.4.5.2.1 Purpose

The purpose of the test case is to validate the signal integrity of I2C interface of temperature sensor.

9.4.5.2.2 Test and Measurement Method

This test is conducted by probing the I2C signal at R10255.2/ R10221.2 (SCL), R10256.2/ R10222.2 (SDA). The measured values are well with-in the limit as specified in the I2C specification standard, but need tweaking the layout design for better HOLD time. Please refer to Section **6.2.5.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.4.5.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.5.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions – TIVA RTOS code

9.4.5.2.5 Test Results

The Signal integrity characteristics of I2C interface with temperature sensor is within the designed spec except the Hold time which needs tweaking in layout design in next version.

9.4.5.2.6 Measurement Logs

	Measuring			Specif	fication	Design	Test
Test	Point	Measuring Criteria	Observation	Min	Max	Margin (%)	result
		Temp Sensor - U215 (N	lear Tiva)				
TIVA_TEMPSEN_I2C1	R10255.2	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
_SCLK	K10233.2	Negative Over-shoot (V)	0.2	0	0.33	-39.39	PASS
		data set-up time (ns)	2460	250	10000	-75.40	PASS
TIVA_TEMPSEN_I2C1	R10256.2	data hold time (ns)	3000	200	3450	-13.04	PASS
_SDA	K10230.2	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0.3	0	0.33	-9.09	PASS
		Temp Sensor - U210 (Far	from Tiva)				
TIVA_TEMPSEN_I2C1	R10221.2	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
_SCLK	K10221.2	Negative Over-shoot (V)	0.3	0	0.33	-9.09	PASS
		data set-up time (ns)	2460	250	10000	-75.40	PASS
TIVA_TEMPSEN_I2C1	D10222.2	data hold time (ns)	3000	200	3450	-13.04	PASS
_SDA _	R10222.2	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0.2	0	0.33	-39.39	PASS

The detailed analysis report with waveform captured for Temp Sensor I2C - Signal Integrity is embedded in the xls document attached herewith.

9.4.5.3 Test ID / Test Name: TIV.5.3 / Functional validation

9.4.5.3.1 Purpose

The purpose of the test case is to validate the I2C interface of temperature sensor.

9.4.5.3.2 Test and Measurement Method

This test is conducted by reading I2C1 bus at address 18H, 19F, 1AH, 1CH, 1DH and 1FH. The Device ID is read from register 0x6 with value 0x1131. The Manufacture ID is read from register 0x7 with value 0xa102. Please refer to Section **6.2.5.4** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.4.5.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.5.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0001 Software versions – TIVA RTOS code

9.4.5.3.5 Test Results

TIVA is able to access the temperature sensor through I2C bus and read manufacture ID from the device.

9.4.5.3.6 Measurement Logs

T	Measuring	Measuring		Speci	fication	Design	Test
Test	Point Criteria		Observation	Min	Max	Margin (%)	result
			Temp Sensor	•			
			NA				

The snapshots of functional validation of temperature sensor are attached herewith.

9.4.6 Sync Board I2C (PCA9557PW,118)

9.4.6.1 Test ID / Test Name: TIV.6.1 / Electrical Validation

9.4.6.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of I2C interface of GPIO Expander in sync board.

9.4.6.1.2 Test and Measurement Method

This test is conducted by probing the I2C signal at U1.1-SCL (Near Via), U1.2-SDA (Near Via). The measured values are well with-in the limit as specified in the PCA9557PW,118 GPIO Expander datasheet specification. Please refer to Section **6.2.6.2** of 'SYNC Board' Test specifications (Rev 0.1) for detailed test procedure.

9.4.6.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.6.1.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0006 SYNC Board Serial Number- WZ1627LIFE1SYNC0011 Software versions – TIVA RTOS code

9.4.6.1.5 Test Results

The electrical characteristics of I2C interface with GPIO Expander is within the designed specification.

9.4.6.1.6 Measurement Logs

Test	Measuring Point	Measuring Criteria	Observation	Speci Min	fication Max	Design Margin (%)	Test result
		Sync board – I2C (Po	CA9557PW,118		IVIAX	iviaigiii (70)	resurt
		VLOW (max) (V)	-0.2	-0.5	0.99	60.00	PASS
		VHIGH (min) (V)	3.2	2.31	5.5	-38.53	PASS
TIVA_SYNCCONN_I2C7_ SCLK	U1.1	Rise time (ns)	450	0	1000	-55.00	PASS
SCLK		Fall time (ns)	5.6	0	300	-98.13	PASS
		Frequency (kHz)	90.9	0	100	-9.10	PASS
		VLOW (max) (V)	0	-0.5	0.99	100.00	PASS
TIVA_SYNCCONN_I2C7_ SDA		VHIGH (min) (V)	3.3	2.31	5.5	-40.00	PASS
	U1.2	Rise time (ns)	450	0	1000	-55.00	PASS
		Fall time (ns)	39	0	300	-87.00	PASS

The detailed analysis report with waveform captured for Sync board I2C - Electrical validation is embedded in the xls document attached herewith.

9.4.6.2 Test ID / Test Name: TIV.6.2 / Signal Integrity

9.4.6.2.1 Purpose

The purpose of the test case is to validate the electrical characteristics of I2C interface of GPIO Expander in sync board.

9.4.6.2.2 Test and Measurement Method

This test is conducted by probing the I2C signal at U1.1-SCL (Near Via), U1.2-SDA (Near Via). The measured values are well with-in the limit as specified in the PCA9557PW,118 GPIO Expander datasheet specification. Please refer to Section **6.2.6.3** of 'SYNC Board' Test specifications (Rev 0.1) for detailed test procedure.

9.4.6.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.6.2.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0006 SYNC Board Serial Number- WZ1627LIFE1SYNC0011 Software versions – TIVA RTOS code

9.4.6.2.5 Test Results

The Signal Integrity characteristics of I2C interface with GPIO Expander is within the designed specification.

9.4.6.2.6 Measurement Logs

	Measuring			Specif	ication	Design	Test	
Test Measuring Point		Measuring Criteria	Observation	Min	Max	Margin (%)	result	
	Sync board – I2C (PCA9557PW,118)							
TIVA_SYNCCO	U1.1	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS	
NN_I2C7_SCLK	U1.1	Negative Over-shoot (V)	0	0	0.33	-100.00	PASS	

TIVA_SYNCCO		data set-up time (ns)	2520	250	10000	-74.80	PASS
	U1.2	data hold time (ns)	296	0	10000	-97.04	PASS
NN_I2C7_SDA	01.2	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS
		Negative Over-shoot (V)	0	0	0.33	-100.00	PASS

The detailed analysis report with waveform captured for Sync board I2C - Signal Integrity is embedded in the xls document attached herewith.

9.4.6.3 Test ID / Test Name: TIV.6.3 / Functional Validation

9.4.6.3.1 Purpose

The purpose of the test case is to validate the I2C interface of GPIO expander in sync board.

9.4.6.3.2 Test and Measurement Method

This test is conducted by reading I2C7 bus at address 1FH. Input register data, 0x3 is written with value 0x1f. Please refer to Section 6.2.6.4 of 'SYNC Board' Test specifications (Rev 0.1) for detailed test procedure.

9 4 6 3 3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.6.3.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0006 SYNC Board Serial Number- WZ1627LIFE1SYNC0011 Software versions – TIVA RTOS code

9.4.6.3.5 Test Results

TIVA is able to write data in input register of GPIO Expander in Sync board.

9.4.6.3.6 Measurement Logs

	Measuring	Measuring			fication	Design	Test
Test	LACT	Criteria	- Incervation	Min	Max	Margin (%)	result
			Sync board				
			NA				

The snapshot of functional validation of GPIO Expander in SYNC Board is attached herewith.

9.4.7 LED board – I2C (SX1509BIULTRT)

9.4.7.1 Test ID / Test Name: TIV.7.1 / Electrical validation

9.4.7.1.1 Purpose

The purpose of the test case is to validate the electrical characteristics of I2C interface of GPIO Expander in LED board.

9.4.7.1.2 Test and Measurement Method

This test is conducted by probing the I2C signal at R24.2 (SCL), R23.2 (SDA) at LED board while it's integrated with GBC board. The measured values are well with-in the limit as specified in the SX1509BIULTRT GPIO Expander datasheet specification. Please refer to Section **6.2.7.2** of 'LED Board' Test specifications (Rev 0.1) for detailed test procedure.

9.4.7.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.7.1.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0006

Software versions – TIVA RTOS code

9.4.7.1.5 Test Results

The electrical characteristics of I2C interface with GPIO Expander is within the designed spec.

9.4.7.1.6 Measurement Logs

	Measuring	Measuring		Specif	rication	Design	Test
Test Point	\mathcal{C}	Criteria	Observation	Min	Max	Margin (%)	result
LED board – I2C (SX1509BIULTRT)							
		VLOW (max) (V)	0	-0.4	0.99	100.00	PASS
		VHIGH (min) (V)	3.3	2.31	3.3	0.00	PASS
LED_I2C_SCL	U1.25	Rise time (ns)	630	0	1000	-37.00	PASS
		Fall time (ns)	30.4	0	300	-89.87	PASS
		Frequency (kHz)	83.33	0	100	-16.67	PASS
		VLOW (max) (V)	0.2	-0.4	0.99	150.00	PASS
LED_I2C_SDA	111 24	VHIGH (min) (V)	3	2.31	3.3	-9.09	PASS
	U1.24	Rise time (ns)	760	0	1000	-24.00	PASS
		Fall time (ns)	60	0	300	-80.00	PASS

The detailed analysis report with waveform captured for LED board I2C - Electrical validation is embedded in the xls document attached herewith.

9.4.7.2 Test ID / Test Name: TIV.7.2 / Signal Integrity

9.4.7.2.1 Purpose

The purpose of the test case is to validate the Signal characteristics of I2C interface of GPIO Expander in LED board.

9.4.7.2.2 Test and Measurement Method

This test is conducted by probing the I2C signal at R24.2 (SCL), R23.2 (SDA). The measured values are well with-in the limit as specified in the SX1509BIULTRT GPIO Expander

datasheet specification. Please refer to Section **6.2.7.3** of 'LED Board' Test specifications (Rev 0.1) for detailed test procedure.

9.4.7.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.7.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0006

Software versions – TIVA RTOS code

9.4.7.2.5 Test Results

The Signal Integrity characteristics of I2C interface with GPIO Expander is within the designed spec.

9.4.7.2.6 Measurement Logs

	Maranina			Speci	fication	Davis a Manaia	Test	
Test Measuring Point		Measuring Criteria	Observation	Min	Max	Design Margin (%)	result	
		LED board – I2C	(SX1509BIULT	RT)				
LED I2C SCL	U1.25	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS	
LLD_12C_5CL	01.23	Negative Over-shoot (V)	0	0	0.33	-100.00	PASS	
		data set-up time (ns)	2760	250	10000	-72.40	PASS	
LED I2C SDA	U1.24	data hold time (ns)	3600	300	10000	-64.00	PASS	
LED_12C_SDA	01.24	Positive Over-shoot (V)	0	0	0.33	-100.00	PASS	
		Negative Over-shoot (V)	0.3	0	0.33	-9.09	PASS	

The detailed analysis report with waveform captured for LED board I2C - Signal Integrity is embedded in the xls document attached herewith.

9.4.7.3 Test ID / Test Name: TIV.7.3 / Functional validation

9.4.7.3.1 Purpose

The purpose of the test case is to validate the I2C interface of GPIO Expander in LED board.

9.4.7.3.2 Test and Measurement Method

This test is conducted by reading I2C8 bus at address 3EH. Register REG_CLOCK is read with 0x0 and REG_MISC is read with 0x24. Please refer to Section **6.2.7.3** of 'LED Board' Test specifications (Rev 0.1) for detailed test procedure.

9.4.7.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.7.3.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0006 Software versions – TIVA RTOS code

9.4.7.3.5 Test Results

TIVA is able to registers of GPIO expander in LED board.

9.4.7.3.6 Measurement Logs

	Measuring Point	Measuring Criteria	Observation	Speci	fication	Design Margin (%)	Test result		
Test				Min	Max				
	LED board								
	NA								

The snapshot of functional validation of GPIO Expander in LED Board is attached herewith.

9.4.8 TIVA GPIO

9.4.8.1 Test ID / Test Name: TIV.10.1 / Control inputs functional validation

9.4.8.1.1 Purpose

The purpose of the test case is to execute the control inputs functional validation of TIVA-GPIO signals.

9.4.8.1.2 Test and Measurement Method

This test is conducted by toggling the GPIO lines which are input to TIVA through hardware. Please refer to Section **6.2.8** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.4.8.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.8.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software versions – NA

9.4.8.1.5 Test Results

Some TIVA- GPIO signals are toggling and some are not toggling.

NOTE: Resolution for failure – This is due to the design issue and this will be updated in the next version.

9.4.8.1.6 Measurement Logs

The list of result of control inputs functional validation of TIVA- GPIO is attached herewith.

9.4.9 TIVA GPIO

9.4.9.1 Test ID / Test Name: TIV.11.1 / Control outputs functional validation

9.4.9.1.1 Purpose

The purpose of the test case is to execute the control outputs functional validation of TIVA-GPIO signals.

9.4.9.1.2 Test and Measurement Method

This test is conducted by toggling the GPIO lines which are output from TIVA by software control using CCS. Please refer to Section **6.2.9** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.4.9.1.3 Test Condition

Ambient Temperature -25° C Operating Voltage -18V

System load – Typical

9.4.9.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0018

Software versions – TIVA RTOS code

9.4.9.1.5 Test Results

Some TIVA- GPIO signals are toggling and some are not toggling.

NOTE: Resolution for failure – This is due to the design issue and this will be updated in the next version.

9.4.9.1.6 Measurement Logs

The list of result of Control outputs functional validation of TIVA- GPIO is attached herewith.

9.4.10 ETH SW MGMT Interface

9.4.10.1 Test ID / Test Name: TIV.12.1 / Functional validation

9.4.10.1.1 Purpose

The purpose of the test case is to validate the TIVA in order to control and configure the Marvell switch.

9.4.10.1.2 Test and Measurement Method

This test is conducted by accessing two GPIOs (PC6- MDC, PC7-MDIO) of TIVA which are connected to Marvell switch(88E6071)'s MDC/MDIO and read back the device ID 0141H. Please refer to Section **6.2.10** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.4.10.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.4.10.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0001

Software versions - TIVA RTOS code

9.4.10.1.5 Test Results

TIVA is able to read device ID from Marvell device.

9.4.10.1.6 Measurement Logs

	Measuring	Measuring Criteria	Observation	Speci	fication	Design Margin	Test result	
Test	Point			Min	Max	Margin (%)		
ETH SW MGMT Interface								
NA								

The snapshot of functional validation of Marvell switch is attached herewith.

9.5 Ethernet:

9.5.1 **PoE (PD) - MDI**

9.5.1.1 Test ID / Test Name: ETH.1.1/ Electrical Validation

9.5.1.1.1 Purpose

The purpose of this test case is to verify MDI (interface between Marvell Switch (88E6071) to POE (PD port)) signal characteristics.

9.5.1.1.2 Test and Measurement Method

This test is conducted by connecting a Linux PC to port A (PD port) of GBC board and starting communication between them by pinging each other. The MDI transmitting signals (from Port to Switch) are measured at J1A.1 (TXP) and J1A.2 (TXN) and MDI receiving signals (from Switch to Port) are measured at J1A.3 (RXP) and J1A.6 (RXN). Please refer to Section 7.2.1.2 in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.5.1.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.5.1.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0007

Software versions - Linux 14.4.4

9.5.1.1.5 Test Results

The signal characteristics of MDI signals are as per the specification and the data rate is 100Mbps.

9.5.1.1.6 Measurement Logs

Toot	Measuring	Measuring Criteria	Observatio	Specification		Design	Test
Test	Point		n	Min	Max	Margin (%)	result

PoE(PD) - MDI									
LANSW_ETHSW_P1_TXP, LANSW_ETHSW_P1_TXN	J1A.1, J1A.2	Vp-p(V)	2.45	1.9	2.63	-6.84	PASS		
		Overshoot (%)	3.05	0	10	-69.50	PASS		
		Undershoot (%)	3.025	0	10	-69.75	PASS		
		Data rate (Mbps)	100	NA	100	0.00	PASS		
		Vp-p (V)	2.1	1.9	2.63	-10.53	PASS		
ETHSW LANSW P1 RXP,	11 4 2 11 4 6	Overshoot (%)	1.247	0	10	-87.53	PASS		
ETHSW_LANSW_P1_RXN	J1A.3, J1A.6	Undershoot (%)	1.217	0	10	-87.83	PASS		
		Data rate (Mbps)	100	NA	100	0.00	PASS		

The detailed analysis report with waveform captured for signal characteristics of PoE (PD) MDI test case is embedded in the xls document attached herewith.

9.5.1.2 Test ID / Test Name: ETH.1.2/ Functional validation

9.5.1.2.1 Purpose

The purpose of the test case is to validate the function of PoE (PD) - MDI.

9.5.1.2.2 Test and Measurement Method

This test is conducted by connecting a Linux PC to port A of GBC board and starting communication between them by giving command "ping IPaddress (IP address of Linux PC)" in the terminal of GBC system and "ping IPaddress (IP address of GBC system)" in Linux PC. Please refer to Section 7.2.1.3 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.5.1.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.5.1.2.4 DUT Sample Information

GBC Board Serial Number – WZ1630LIFE2GBC0007

Software versions – Linux 14.4.4

9.5.1.2.5 Test Results

Communication is established between Port and Marvell switch through MDI interface over 100Mbps data rate.

The snapshot of functional validation of Springville MDI is attached herewith.

9.5.2 TIVA Ethernet

9.5.2.1 Test ID / Test Name: ETH.3.1/ Electrical Validation

9.5.2.1.1 Purpose

The purpose of this test case is to verify the electrical parameters between Marvell Switch (88E6071) to TIVA.

9.5.2.1.2 Test and Measurement Method

This test is conducted by connecting a debug board to GBC. Ethernet cable from PC to port A (PD port) of GBC board. Flash the relevant code to TIVA so that signals between Port 0 of marvell switch and TIVA are initiated. The transmitting signals (from Port to Switch) are measured at T10.16 (TXP) and T10.14 (TXN) and receiving signals (from TIVA to Switch) are measured at T10.11 and (RXP) 7.2.2.2 and T10.9 (RXN). Please refer to Section in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.5.2.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.5.2.1.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0007

9.5.2.1.5 Test Results

The electrical characteristics of Port0 Ethernet signals are as per the specification.

9.5.2.1.6 Measurement Logs

TIVA - Ethernet								
T	Measuring Point	Measuring Criteria	Observation	Specification		Design	Test	
Test				Min	Max	Margin (%)	result	
	T10.16, T10.14	Vp-p (V)	2.24	1.9	2.63	-14.83	PASS	
ETHSW_TIVA_P0_TXP, ETHSW_TIVA_P0_TXN		Overshoot (%)	1.69	0	10	-83.10	PASS	
EIIISW_IIVA_IO_IAN		Undershoot (%)	1.61	0	10	-83.90	PASS	
ETHOM: THE PO DATE	T10.11, T10.9	Vp-p (V)	2.2	1.9	2.63	-15.79	PASS	
ETHSW_TIVA_P0_RXP, ETHSW_TIVA_P0_RXN		Overshoot (%)	1.03	0	10	-89.70	PASS	
LINGW_IIVA_IO_KAIV		Undershoot (%)	0.099	0	10	-99.01	PASS	

The detailed analysis report with waveform captured for electrical characteristics for TIVA – Port0 of marvel switch MDI test case is embedded in the xls document attached herewith.

9.5.2.2 Test ID / Test Name: ETH.3.2/ Functional validation

9.5.2.2.1 Purpose

The purpose of the test case is to validate the function of TIVA – Marvell Switch (Port 0)

9.5.2.2.2 Test and Measurement Method

This test is conducted by connecting a debug board to GBC. Ethernet cable from PC to port A (PD port) of GBC board. Flash the relevant code to TIVA so that signals between Port 0 of marvell switch and TIVA are initiated. Once IP address is assigned to TIVA, initiate the communication by pinging from PC using the TCPSendRecieve executable. Please refer to Section 7.2.2.3 in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.5.2.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.5.2.2.4 DUT Sample Information

GBC Board Serial Number - WZ1630LIFE2GBC0007

9.5.2.2.5 Test Results

Communication is established between TIVA and Port 0 of Marvell switch at 100Mbps data rate.

The snapshot of functional validation of TIVA –Ethernet interface is attached herewith.

9.6 Clocks

9.6.1 Clock Sources

9.6.1.1 Test ID / Test Name: CLK.1.1 / Frequency Accuracy

9.6.1.1.1 Purpose

The purpose of this test case is to validate the frequency accuracy of crystal sources for 25MHz and 32.768 kHz.

9.6.1.1.2 Test and Measurement Method

- 1) This test is conducted for the following 25MHz crystals:
 - i) Y3B2 at C3B22.1.
 - ii) Y2M3 at C2M26.2.
 - iii) Y2M1 at C2M2.2.
 - iv) X1 at C475.1.
 - v) X5 at C521.1
- 2) This test is also conducted for the following 32.768kHz crystal:
 - i) Y2M2 at C2N1.2

The values are captured by a frequency counter. For frequency accuracy and stability measured value (Hz) is converted to ppb by following the below procedure:

- i) The difference between the ideal clock frequency and maximum frequency value is calculated (df).
- ii) Ppb is calculated by the equation: $ppb = \frac{df(Hz)*10^6*1000}{f(Hz)}$

Please refer to Section **8.2.1.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.1.1.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load – Typical

9.6.1.1.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0005

Software versions – NA

9.6.1.1.5 Test Results

The frequency read at frequency counter is within the prescribed limit for Y3B2 and Y2M2 crystal.

9.6.1.1.6 Measurement Logs

	Y3B2 Clock - Frequency Accuracy										
		Ideal			Frequ ency	Specification					
Sl. No	Test Case ID	Clock Frequency (MHz)	Measured Frequency(M Hz)	Deviation(M Hz)	tolera nce (ppb)	Min(p pb)	Max(p pb)	Margin (%)	PASS / FAIL		
1	CLK1.1	25	24.9981645	0.002	73420	10000	10000	-26.58			
2	CLK1.1		24.99816027						PASS		
3	CLK1.1		24.99815864	0.002					17100		
4	CLK1.1		24.99815792								

	Y2B3 Clock - Frequency Accuracy											
					Frequen	Ma	rgin					
	Test	Ideal Clock	Measured		cy				PASS			
Sl.	Case	Frequency(Frequency	Deviation(M	toleranc	Min(p	Max(p	Margi	/			
No	ID	MHz)	(MHz)	Hz)	e (ppb)	pb)	pb)	n (%)	FAIL			
1	CLK1.1		24.99851									
2	CLK1.1		24.99851									
3	CLK1.1	25	24.99851	0.001487	59485.2	-30000	30000	98.284	FAIL			
4	CLK1.1	23	24.99851	0.001467	39463.2	-30000	30000	90.204	ΓAIL			
5	CLK1.1		24.99851									
6	CLK1.1		24.99851									

	Y2M1 Clock - Frequency Accuracy											
					Frequen	Specification						
	Test	Ideal Clock	Measured		cy				PASS			
Sl.N	Case	Frequency(Frequency(M	Deviation(M	toleranc	Min	Max	Margi	/			
0	ID	MHz)	Hz)	Hz)	e (ppb)	(ppb)	(ppb)	n (%)	FAIL			
1	CLK1.1		24.99847									
2	CLK1.1		24.99847					103.88				
3	CLK1.1	25	24.99847	0.001529	61165.2	-30000	30000		FAIL			
4	CLK1.1		24.99847					4				
5	CLK1.1		24.99847									

	Y2M2 Clock - Frequency Accuracy											
		Ideal Clock			Frequenc	Specification						
Sl. No	Test Case ID	Freque ncy(kH z)	Measured Frequency(k Hz)	Deviation(kHz)	y tolerance (ppb)	Min(pp b)	Max(p pb)	Margin (%)	PASS / FAIL			
1	CLK1.1		32.76694167					_				
2	CLK1.1	32.768	32.76693846	0.0010583	32297.668 46	-50000	50000	35.4046	PASS			
3	CLK1.1		32.76693775					6				

	X1 Clock - Frequency Accuracy											
			Ideal				Specification					
			Clock			Frequenc						
			Frequen	Measured		y						
Sl.1	N	Test	cy	Frequncy	Deviation	tolerance	Min	Max	Margin	PASS /		
0		Case ID	(MHz)	(MHz)	(MHz)	(ppb)	(ppb)	(ppb)	(%)	FAIL		
1	(CLK1.1	25	24.99805495	0.0019450	77802	40000	50000	55.604	FAIL		
2	(CLK1.1	23	24.99805339	5	77802	40000	30000	33.004	ГAIL		

	1	1
3	CLK1.1	24.99805276
4	CLK1.1	24.99805273
5	CLK1.1	24.99805229

	X5 Clock - Frequency Accuracy										
		Ideal Clock	Measured		Frequen	Specification			PASS		
Sl. No	Test Case ID	Frequency(MHz)	Frequncy(M Hz)	Deviation(M Hz)	toleranc e (ppb)	Min (ppb)	Max (ppb)	Margin (%)	/ FAIL		
1	CLK1.1		24.99764676								
2	CLK1.1	25	24.99764478	0.00235324	94129.6	-	50000	88.2592	FAIL		
3	CLK1.1	23	24.99764371	0.00235324	94129.0	50000	30000	88.2392	FAIL		
4	CLK1.1		24.99764137								

NOTE: Resolution for failure – TBD. This test case will be re-measured in Life-3.

The detailed analysis report for Clock sources test case executed is attached herewith.

9.6.1.2 Test ID / Test Name: CLK.1.2 / Timing Jitter

9.6.1.2.1 Purpose

The purpose of this test case is to validate the timing jitter of crystal clock sources.

9.6.1.2.2 Test and Measurement Method

- 3) This test is conducted for the following 25MHz crystals:
 - i) Y3B2 at C3B22.1.
 - ii) Y2M3 at C2M26.2.
 - iii) Y2M1 at C2M2.2.
 - iv) X1 at C475.1.
 - v) X5 at C521.1

The jitter values are captured by an oscilloscope.

Please refer to Section **8.2.1.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.1.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.6.1.2.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0002 Software versions – NA

9.6.1.2.5 Test Results

The timing jitter of Y3B2 crystal is within the specified limit.

9.6.1.2.6 Measurement Logs

Clock - Timing Jitter												
			Cycle-to-	Specif	ication							
	Test Case	Ideal Crystal	cycle			Margin	PASS /					
Sl.No	ID	Frequency	Jitter(ps)	Min(ps)	Max(ps)	(%)	FAIL					
1	CLK1.2	Y3B2 - 25MHz	145.24	0	300	-51.59	PASS					
2	CLK1.2	X5 - 25MHz	59.014	0	50	18.03	FAIL					
3	CLK1.2	X1 - 25MHz	533.82 0 300		77.94	FAIL						
		Cloc	k - Timing Jitt	er								
	Test Case	Ideal Crystal	RMS	Specif	ication	Margin	PASS /					
Sl.No	ID	Frequency	Jitter(ps)	Min(ps)	Max(ps)	(%)	FAIL					
1	CLK1.2	Y2M3 - 25MHz	9.8884	0	1.5	559.23	FAIL					
2	CLK1.2	Y2M1 - 25MHz	8.16	0	1.5	444.00	FAIL					
3	CLK1.2 X1 - 25MHz		11.589	0	1.5	672.60	FAIL					

The detailed analysis report for clock sources jitter test case executed is attached herewith.

NOTE: Resolution for failure – TBD. This test case will be re-measured in Life-3.

9.6.2 PCIe - GBE clock

9.6.2.1 Test ID / Test Name: CLK.2.1 / Frequency Accuracy

9.6.2.1.1 Purpose

The purpose of this test case is to validate the frequency accuracy of 100MHz PCIe reference clock: PCIE0_GBE_CLKP.

9.6.2.1.2 Test and Measurement Method

This test is conducted by probing 100MHz clock at R10647.1. The value is captured by a frequency counter for 6 iterations. For frequency accuracy and stability measured value (Hz) is converted to ppm by following the below procedure:

- iii) The difference between the ideal clock frequency and maximum frequency value is calculated (df).
- iv) Ppb is calculated by the equation: $ppb = \frac{df(Hz)*10^6*1000}{f(Hz)}$

Please refer to Section **8.2.2.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.2.1.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load - Typical

9.6.2.1.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0021 Software versions – NA

9.6.2.1.5 Test Results

The frequency read at frequency counter is within the prescribed limit of 100MHz clock.

9.6.2.1.6 Measurement Log

		Clock -	PCIe -GBE	Clock - Fre	quency Acc	uracy			
		Ideal				Specifi	cation		
		Clock							
		Frequency			Frequen				
		(MHz) -	Measured		cy				PASS
Sl.	Test Case	PCIE0_GB	Frequenc	Deviatio	tolerance	Min	Max	Margi	/
No	ID	E_CLKP	y(MHz)	n	(ppb)	(ppb)	(ppb)	n (%)	FAIL
1	CLK2.1		99.994329						
2	CLK2.1		99.994326						
3	CLK2.1	100	99.994288	0.005671	56710	-300000	300000	118.90	PASS
4	CLK2.1	100	99.994235	0.003671	30/10	-300000	300000	33	PASS
5	CLK2.1		99.994226					55	
6	CLK2.1		99.99422						

<u>NOTE</u>: The detailed analysis report with waveform captured is embedded in the xls document attached in the end of this section.

9.6.2.2 Test ID / Test Name: CLK.2.2 / Signal Integrity

9.6.2.2.1 Purpose

The purpose of the test case is to validate the electrical characteristics of 100 MHz PCIe clock.

9.6.2.2.2 Test and Measurement Method

This test is conducted by probing 100MHz clock at R10647.1. The value is captured on an oscilloscope and is within the prescribed limit by Intel microcontroller. Please refer to Section **8.2.2.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.2.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.6.2.2.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0021 Software versions – NA

9.6.2.2.5 Test Results

The electrical characteristics of 100 MHz PCIe Clock is within the designed spec.

9.6.2.2.6 Measurement Log

	PCIe - GBE clock - signal Integrity											
Sl.	Test	Measurin	Measure ment	Measured	Measured	Speci Min(fication Max(V	Margin	PASS/			
No	Case ID	g Rail	location	Parameter	Value (V)	v))	(%)	FAIL			
		PCIE0_G										
		BE_CLK		Positive								
1	CLK2.2	P	R10647.1	Over-shoot	0.12	0	0.18	-33.33	PASS			
		PCIE0_G										
		BE_CLK		Negative								
2	CLK2.2	N	R10648.1	Over-shoot	0.12	0	0.18	-33.33	PASS			

NOTE: The detailed analysis report with waveform captured is embedded in the xls document attached in the end of this section.

9.6.2.3.1 Purpose

The purpose of the test case is to validate the Timing Jitter of 100 MHz PCIe Clock.

9.6.2.3.2 Test and Measurement Method

This test is conducted by terminating PCIE0_GBE_CLKP and with a 2.2pF capacitor at R10647.1 and R10648.1. Probe at R10647.1 and R10648.1. Run the test utility N5393D in the infiniium oscilloscope. To configure the test suite, select PCIe version as 2.0, Refclk tests, Device1, Lan0. In select tests option in utility, select common clock tests and run all the selected test cases. The test utility generates the test report for all the test cases selected with the pass or fail criteria and its % margin. Please refer to Section 8.2.2.4 in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.2.3.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.6.2.3.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0021

Software versions – NA

9.6.2.3.5 Test Results

The timing jitter for 100Mhz clock is checked and validated.

9.6.2.3.6 Measurement Log

	PCIe - GBE clock_Timing Jitter										
Sl.	Test		Measure			Specification			PASS		
N	Case	Measuring	ment	Measured	Measured	Min(V	Max(V	Margi	1		
0	ID	Rail	location	Parameter	Value (ps)))	n (%)	FAIL		
				RMS Jitter	12.95	NA	NA	NA	NA		
	CLK2.	PCIE0_GBE_		Peak-to-peak							
1	3	CLKP	R10647.1	jitter	96.348	0	150	-35.77	PASS		

The detailed analysis report with waveform captured for each of the 100MHz PCIe clock test case executed is embedded in the xls document attached herewith.

report.html

 $\mathsf{PCIE}_100\mathsf{MHz}_\mathsf{CLK}.\mathsf{xI}$

SX

9.6.3 40 MHz GPSDO Clock

9.6.3.1 Test ID / Test Name: CLK.3.1 / Frequency Accuracy

9.6.3.1.1 Purpose

The purpose of this test case is to validate the frequency accuracy of 40MHz reference clock for GPSDO. Please refer to Section **8.2.3.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.3.1.2 Test and Measurement Method

This test is conducted by probing 40MHz clock at R19.2. The value is captured by a frequency counter.

9.6.3.1.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V System load – Typical

9.6.3.1.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0002 SYNC Board Serial Number- WZ1627LIFE1SYNC0011 Software versions – NA

9.6.3.1.5 Test Results

The frequency read at frequency counter is within the prescribed limit of 40MHz clock.

9.6.3.1.6 Measurement Log

		Cloc	k - GPSDO_40M	1Hz_ Clock -	- Frequency A	ccuracy			
Sl		Ideal	Measured		Frequency	Specification			PASS
•	Test	Clock	Frequency	Deviation	tolerance	Min	Max		I ASS
N	Case ID	Frequency	(MHz)	(MHz)	(ppb)	(ppb)	(ppb)		FAIL
0		(MHz)	(WIIIZ)		(ppb)	(ppb)	(bhn)	Margin %	TAIL
1	CLK3.1		40.00008109						
2	CLK3.1	40	40.0000812	0.115.05	2027.25	-50	50	100.00016	FAIL
3	CLK3.1	40	40.00008119	8.11E-05	2027.23	-30	30	100.00016	FAIL
4	CLK3.1		40.00008128						

NOTE: Resolution for failure – TBD. This test case will be re-measured in Life-3.

The detailed analysis report with waveform captured is embedded in the xls document attached in the end of this section.

9.6.3.2 Test ID / Test Name: CLK.3.2 / Signal Integrity

9.6.3.2.1 Purpose

The purpose of the test case is to validate the electrical characteristics of 40 MHz GPSDO Clock.

9.6.3.2.2 Test and Measurement Method

This test is conducted by probing the GPSDO Clock signal at R19.2 (Near Via). The measured values are well with-in the limit as specified in the LTE-Lite Module datasheet specification. Please refer to Section **8.2.3.3** of 'SYNC Board' Test specifications (Rev 0.1) for detailed test procedure.

9.6.3.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.6.3.2.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0002 SYNC Board Serial Number- WZ1627LIFE1SYNC0011 Software versions – NA

9.6.3.2.5 Test Results

The electrical characteristics of 40 MHz GPSDO Clock is within the designed spec. 40MHz clock is coming out from the GPSDO Module.

9.6.3.2.6 Measurement Log

	Clock - GPSDO_40MHz_ Clock - Signal Integrity											
	Test					Specif	ication					
Sl.	Case		Measurement	Measured	Measured			Margin	PASS/			
No	ID	Measuring Rail	location	Parameter	Value (V)	Min(V)	Max(V)	(%)	FAIL			
				VLOW	0.125	0	0.4	-68.75	PASS			
1	CLK3.2	LTE_REF_OUT_40MHz	R19.2	VHIGH	3.125	0.8	3.3	-5.30	PASS			

<u>NOTE</u>: The detailed analysis report with waveform captured is embedded in the xls document attached in the end of this section.

9.6.3.3 Test ID / Test Name: CLK.3.3 / Timing Jitter

9.6.3.3.1 Purpose

The purpose of the test case is to validate the Timing Jitter of 40 MHz GPSDO Clock.

9.6.3.3.2 Test and Measurement Method

This test is conducted by probing the GPSDO Clock Signal Timing Jitter at R19.2 (Near Via). The measurement data will be compared with the measured data that will be made available by Jacksons Lab. Steps to measure RMS jitter through signal analyzer:

- i) Connect Sync board to GBC board.
- ii) Configure DC power supply to give a voltage of 18V.

- iii) Set the central frequency to 40MHz in MXA signal Analyzer.
- iv) Carrier frequency will be automatically detected.
- v) Go to Mode option, Select Phase Noise.
- vi) Go to Measure option and select Log Plot.
- vii) In Span option set start and stop offset values to 8kHz and 22MHz respectively
- viii) Select marker go to Integrated RMS Noise then select Jitter option.
- ix) Go to Band adjust set the left band (10 KHz) and right band (22MHz).
- x) Measure the Jitter on the analyzer in pico second.
- xi) Select auto tune in frequency option at the end of each step.

Please refer to Section **8.2.3.4** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.3.3.3 Test Condition

Ambient Temperature – 25°C

Operating Voltage – 18V

System load – Typical

9.6.3.3.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0002

SYNC Board Serial Number- WZ1627LIFE1SYNC0011

Software versions – NA

9.6.3.3.5 Test Results

The timing Jitter of 40 MHz GPSDO Clock is measured.

9.6.3.3.6 Measurement Log

	Clock - GPSDO_40MHz_ Clock - Timing Jitter									
	Test				Measured	Margin				
Sl.	Case		Measurement	Measured	Value			PASS/		
No	ID	Measuring Rail	location	Parameter	(ps)	Min(V)	Max(V)	FAIL		
				RMS Jitter	47.75	NA	NA	NA		
				Peak-to-						
1	CLK3.3	LTE_REF_OUT_40MHz	R10647.1	peak jitter	355.26	NA	NA	NA		

The detailed analysis report with waveform captured for each of the SYNC Board Clock test case executed is embedded in the xls document attached herewith.

NOTE:

For 40MHz clock jitter requirement, ADI indicates that the only requirement is of phase noise of Reference input. There is no requirement for jitter as there is internal PLL in ADI that cleans the clock. Therefore, measurement was done to capture the baseline performance, and was not against any specification.

9.6.4 HDMI clock

9.6.4.1 Test ID / Test Name: CLK.4.1 / Frequency Accuracy

9.6.4.1.1 Purpose

The purpose of this test case is to validate the frequency accuracy of HDMI clock.

9.6.4.1.2 Test and Measurement Method

Connect debug board to GBC. Probe HDMI_CLK_DP and HDMI_CLK_DN at C4N2.2 and C4N1.2 respectively. Measure the frequency value using oscilloscope. Please refer to Section **8.2.4.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.4.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V

System load - Typical

9.6.4.1.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0002

Software versions – NA

9.6.4.1.5 Test Results

The frequency read at frequency counter is within the prescribed limit of 100MHz HDMI clock.

9.6.4.1.6 Measurement Log

Clock - 100MHz_ Clock - Frequency Accuracy								
					Specification			

Sl. No	Test Case ID	Ideal Clock Frequency (MHz)	Measured Frequency (MHz)	Deviation (Hz)	Frequency tolerance (ppb)	Min(ppb)	Max(ppb)	Margin (%)	PASS / FAIL
1	CLK4.1	100	107.9	7.9	79	-1000000	1000000	100.01	PASS

<u>NOTE</u>: The detailed analysis report with waveform captured is embedded in the xls document attached in the end of this section.

9.6.4.2 Test ID / Test Name: CLK .4.2 / Signal Integrity

9.6.4.2.1 Purpose

The purpose of the test case is to validate the electrical characteristics of 100 MHz HDMI Clock.

9.6.4.2.2 Test and Measurement Method

Connect debug board to GBC. Probe HDMI_CLK_DP and HDMI_CLK_DN at C4N2.2 and C4N1.2 respectively. Measure the overshoot and undershoot parameters for HDMI clock using oscilloscope. Please refer to Section **8.2.4.3** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.4.2.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.6.4.2.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0002

Software versions – NA

9.6.4.2.5 Test Results

The electrical characteristics of 100 MHz HDMI Clock is within the designed spec.

9.6.4.2.6 Measurement Log

Clock - 100MHz_ Clock - Frequency Accuracy								
						Specification		

Sl. No	Test Case ID	Measuring Rail	Measurement location	Measured Parameter	Measured Value (V)	Min(V	Max(V)	Margi n (%)	PASS/ FAIL
		HDMI_CL K DP and		Positive Over-shoot	0.16	0	0.78	-79.49	PASS
1	CLK4.2	HDMI_CL K_DN	C4N2.2 and C4N1.2	Negative Over-shoot	0.2	0	0.2	0.00	PASS

The detailed analysis report with waveform captured for each of the 100MHz PCIe clock test case executed is embedded in the xls document attached herewith.

9.6.5 GPS 1pps clock

9.6.5.1 Test ID / Test Name: CLK.5.1 / Frequency Accuracy

9.6.5.1.1 Purpose

The purpose of this test case is to validate the 1pps clock.

9.6.5.1.2 Test and Measurement Method

Connect Sync board to GBC board. Probe R48.1 on sync board in order to check 1pps clock. Measure the frequency using frequency counter. Please refer to Section **8.2.5.2** in latest version of "OC_CONNECT_1_GBC_Test_Specification" document for detailed test procedure.

9.6.5.1.3 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.6.5.1.4 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0005 SYNC Board Serial Number- WZ1627LIFE1SYNC0011 Software versions – NA

9.6.5.1.5 Test Results

The frequency read at frequency counter is 1Hz and is within the prescribed limit.

9.6.5.1.6 Measurement Logs

	Clock - SYNC_1pps_ Clock - Frequency Accuracy									
					Frequency	Ma	rgin	PASS		
Sl.	Test	Ideal Clock	Measured		tolerance			/		
No	Case ID	Frequency(Hz)	Frequency(Hz)	Deviation(Hz)	(ppb)	Min(ppb)	Max(ppb)	FAIL		
1	CLK.5.1		1.000002022							
2	CLK.5.1		1.000002018							
3	CLK.5.1	1	1.000002198	2.0215E-06	2021.5	NA	NA	NA		
4	CLK.5.1		1.000002037							
5	CLK.5.1		1.000002021							

<u>NOTE</u>: The detailed analysis report with waveform captured is embedded in the xls document attached in the end of this section.

9.5.2.1 Test ID / Test Name: CLK.5.2 / Signal Integrity

9.6.5.1.7 Purpose

The purpose of the test case is to validate the electrical characteristics of 1pps clock.

9.6.5.1.8 Test and Measurement Method

Connect Sync board to GBC board. This test is conducted by probing 1pps clock at R48.1 on the sync board. The value is captured on an oscilloscope. Please refer to Section **8.2.5.3** in latest version of "OC CONNECT 1 GBC Test Specification" document for detailed test procedure.

9.6.5.1.9 Test Condition

Ambient Temperature – 25°C Operating Voltage – 18V System load – Typical

9.6.5.1.10 DUT Sample Information

GBC Board Serial Number- WZ1630LIFE2GBC0005 SYNC Board Serial Number- WZ1627LIFE1SYNC0011

Software versions – NA

9.6.5.1.11 Test Results

9.6.5.1.12 Measurement Log

	Sync Board - 1Hz Signal Integrity										
Sl.	Test		Measurement	Measured	Measured	Margin		PASS/			
No	Case ID	Measuring Rail	location	Parameter	Value	Min(V)	Max(V)	FAIL			
1				Frequency	1 Hz	NA	NA	NA			
				Voltage Peak							
2	CLK.5.2	R_LTE_1_PPS_OUT	R48.1	to Peak	3.690 V	NA	NA	NA			
3				Overshoot	160 mV	NA	NA	NA			
4				Undershoot	140 mV	NA	NA	NA			

The detailed analysis report with waveform captured for each of the 1Hz clock test case executed is embedded in the xls document attached herewith.

10. Revision History

SL.no	Date	Version	Author	Comments
1	February 9 th , 2017	1.0	OpenCellular Team	First Release