Glow Byte Hackaton 2021

Команда "Mental" Кейс 2

Задача: усовершенствовать систему скоринга кредитных заявок физических лиц путем добавления к анкете данных из других источников

Система скоринга сейчас

Дорожная карта продукта команды "Mental"

Новые данные

Выбор данных из разных баз для дополнения анкеты

Автоматизация

Написание скриптов для автоматического подключения к базам и выгрузки данных

Подготовка

Фильтрация, обработка и подготовка данных к использованию

Объединение

Добавление данных к анкете

Машинное обучение

Выявление параметров, значимых для кредитоспособности, из объединенного массива данных

Выбор новых данных для дополнения анкеты

Какие данные уже есть и какие из них нужны?

Общая характеристика данных	БД
Данные о кредитных продуктах	postgresql
Данные о зарплатных продуктах	neo4j
Данные о страховых продуктах	mysql
Транскрипты интервью	mongodb

Первичный анализ данных на релевантность для дополнения анкеты

Postgresql: из 4 таблиц можно использовать 2

MySQL: из 23 таблиц выбрано 2 для объединения с анкетой

Neo4j: можно использовать 1 по связям с зарплатным проектом

Mongodb: данные содержат серьезные ошибки и до использования должны быть исправлены и отфильтрованы

	LOAN_ID	LOAN_BALANCE	OD_AMT	INT_AMT	OD_OVERBUE_AMT	INT_OVERBUE_AMT	START_DT	END_DT
0	15556671000	3945600	267040.0	0.0	0.0	2021-08-20 00:00:00	2021-09-04 00:00:00	NaN
1	15556671000	3942700	261540.0	0.0	0.0	2021-09-05 00:00:00	2999-01-01 00:00:00	NaN
2	15556671001	357800	24780.0	3670.0	550.0	2021-08-20 00:00:00	2999-01-01 00:00:00	NaN
3	15556671002	134500	22760.0	0.0	0.0	2021-08-05 00:00:00	2021-09-09 00:00:00	NaN
4	15556671002	134500	25678.0	0.0	0.0	2021-09-10 00:00:00	2021-09-11 00:00:00	NaN
5	15556671002	128650	20653.0	0.0	0.0	2021-09-12 00:00:00	2999-01-01 00:00:00	NaN
6	15556671003	0	0.0	0.0	0.0	2021-08-05 00:00:00	2999-01-01 00:00:00	NaN
7	15556671004	0	0.0	189034.0	36905.0	2021-07-31 00:00:00	2999-01-01 00:00:00	NaN
8	15556671005	0	0.0	0.0	0.0	2021-06-30 00:00:00	2999-01-01 00:00:00	NaN

Пример отсутствия уникальных ID

Причины отсеивания: таблицы не содержат уникальные ID, уже повторяют данные анкеты, содержат ошибки, не являются релевантными для конкретной задачи

Пример ошибки в транскрипте

```
17: 'Чем вы занимаетесь',
```

А7: 'Я таксист',

18: 'Хорошо, у вас в какой форме вы устроены?',

А8: 'Пятьдесят шестьдесят тысяч рублей обычно',

Данные выгружены. Где и как хранить?

Написание скриптов для автоматического подключения к базам и выгрузки данных

Почему автоматизация?

Возможность проводить изменения системы скоринга регулярно + обязанность банка хранить данные, на основании которых были приняты решения о кредитовании.

Данные в базах систематически обновляются и исправляются. Работа непосредственно с базой данных должна повторяться каждый раз при обновлении расчета скоринга, но данные, на основании которых были сделаны ранние расчеты, должны храниться.

Однако, если баз много, это занимает много времени и для его экономии необходимы автоматические скрипты.

```
root@gbc-VBox:/var/lib/mysql-files# ls | grep txt
CLIENT BIRTH DT.
CLIENT_CITIZENSHIP.
CLIENT FIO.
CLIENT INN.
CLIENT.
CONTRACT CLOSE DT.
CONTRACT INSURANCE AMT.
CONTRACT INSURANCE RATE.
CONTRACT NUM.
CONTRACT OPEN DT.
INSURANCE PRODUCT 2 GROUP.
INSURANCE PRODUCT 3 GROUP.
INSURANCE PRODUCT NET RATE.
INSURANCE PRODUCT RISK.
INSURANCE PRODUCT.
ISUTANCE CONTRACT.
ISUTANCE CONTRACT X CLIENT.
ISUTANCE CONTRACT X PLEDGE.
ISUTANCE CONTRACT X PRODUCT.
PLEDGE DISCONT.
PLEDGE INIT VALUE AMT.
PLEDGE.
PLEDGE TYPE.
root@gbc-VBox:/var/lib/mysql-files#
```


Упрощенно: от такого процесса планируется уйти к автоматизации

Решение реализуется на языке Python3. Примеры автоматизации.

```
import psycopg2
con = psycopg2.connect(
 database="postgres",
 user="postgres",
 password="Kaliakakya",
 host="127.0.0.1",
 port="5432"
print("Database opened successfully")cur = con.cursor()
cur.execute("SELECT admission, name, age, course,
department from STUDENT")
rows = cur.fetchall()
for row in rows:
   print("ADMISSION =", row[0])
   print("NAME =", row[1])
   print("AGE =", row[2])
   print("COURSE =", row[3])
   print("DEPARTMENT =", row[4], "\n")
print("Operation done successfully")
con.close()
```

```
pip install py2neo
from py2neo import Graph, Node, Relationship
graph = Graph("localhost:7474>", auth=("neo4j", "gbc user"))
apoc.export.file.enabled=true
CALL apoc.export.csv.all("neo4j data.csv", {})
CALL apoc.export.csv.all(null, {stream:true})
YIELD file, nodes, relationships, properties, data
RETURN file, nodes, relationships, properties, data
```



```
client = pymongo.MongoClient("mongodb://localhost:27017/")
db = client["database name"]
col = db["collection name"]
x = col.find one()
print(x)
```


Фильтрация, обработка и подготовка данных к использованию

Решение реализуется на языке Python3 при помощи Pandas

Необходимо:

- Проверить, какие данные можно убрать из анкеты
- Данные полученных таблиц совместить с заголовками из документа Excel с описаниями БД
- Файлы нетабличного характера распарсить (разделить на отдельные единицы информации в таблицах), и также совместить с заголовками
- Отфильтровать данные, по которым нельзя ориентироваться
- Добавить данные к анкете (по наличию общего ID)

Обработка анкеты (Postgresql)

Было 20 колонок, осталось 12

Подготовка анкеты к анализу и добавлению данных: добавление названий колонок, удаление нерелевантных колонок для анализа, перевод даты рождения в год рождения, замена отсутствующих значений на 0

	CRED_AMOUNT	CRED_TERM	CRED_OBJECT	CUST_MONTH_INCOME	CUST_FAMILY_MONTH_INCOME	CUST_ID	CUST_BIRTH	GUARANTOR_FLAG	GUARANTOR_BIRTH	PLEDGE_AMOUNT	CUST_RELATION_BANK_TYPE	APP_SALE_CHANNE
0	100500.0	5	Выдача средств	35000.0	75000.0	100200300	1982	f	1970	0.0	9	Онлайн-приложение
1	200000.0	12	Кредит на обучение	0.0	0.0	100200301	1984	t	1984	0.0		Онлайн-приложение
2	55000.0	6	Выдача средств	0.0	0.0	100200302	1966	f	1970	0.0		0
3	15040000.0	25	Городская недвижимость	435000.0	0.0	100200303	2001	t	1999	21509000.0	Инсайдер	Офис
4	654600.0	15	Оборудование	0.0	0.0	100200304	1968	t	1983	150000.0	9	0
5	2267000.0	20	Авто	120.0	157.0	100200305	1990	t	1984	3200000.0		0 Сайт
6	559000.0	6	Земельный участок	66.0	150.0	100200306	1984	f	1970	680000.0		О Онлайн-приложение
7	1547000.0	15	Авто	160.0	0.0	100200307	1949	t	1991	1599000.0		0 Сайт
8	8838925.0	36	Дача	95.0	143.0	100200308	1984	t	1988	0.0	Сотрудник банка	
9	502000.0	20	Выдача средств	0.0	0.0	100200309	1988	f	1970	0.0	9	0 Офис
10	35500.0	5	Бытовая техника	0.0	0.0	100200310	2000	f	1970	0.0	9	0 Онлайн-приложение
11	987400.0	24	Авто	65.0	108.0	100200311	2002	t	1965	0.0		0 Онлайн-приложение
12	2502000.0	35	Коммерческая недвижимость	210.0	210.0	100200312	1999	t	1970	2830000.0		0 Сайт

Процесс фильтрации и анализа данных: Postgresql

```
pg_lloans = pg_lloans.drop(columns={"PRODUCT_ID"})
pg_lloans['BEGIN_DT'] = pd.DatetimeIndex(pg_lloans['BEGIN_DT']).year
pg_lloans["CLOSE_PLAN_DT"]=pd.DatetimeIndex(pg_lloans["CLOSE_PLAN_DT"]).year
pg_lloans["CLOSE_FACT_DT"]=pd.DatetimeIndex(pg_lloans["CLOSE_FACT_DT"]).year
pg_lloans = pg_lloans.fillna(0)
pg_lloans.CLOSE_FACT_DT = pg_lloans.CLOSE_FACT_DT.astype(int)
pg_lloans
```

	LOAN_ID	BEGIN_DT	CLOSE_PLAN_DT	CLOSE_FACT_DT	CLIENT_ID	REPAYMENT_MODE	INTEREST_RATE
0	15556671000	2019	2029	0	100200300	аннуитет	12.5
1	15556671001	2021	2023	0	100200302	дисконт	7.8
2	15556671002	2021	2022	0	100200304	аннуитет	11.3
3	15556671003	2020	2022	2021	100200306	аннуитет	10.0
4	15556671004	2016	2021	0	100200308	аннуитет	9.4
5	15556671005	2020	2021	2021	100200310	аннуитет	6.9

Пример подготовки данных к объединению (таблица с данными о кредитах)

Процесс фильтрации и анализа данных: Postgresql

	CLIENT_ID	FIO	BIRTH_DT	INN	CITIZENSHIP
0	100200300	Лопатин Иван Иванович	1982-03-02	589463240112	РФ
1	100200302	Захарова Людмила Айдаровна	1966-09-04	554567899997	Республика Беларусь
2	100200304	Романова Валентина Александровна	1968-10-16	234568923474	РФ
3	100200306	Сорокин Павел Леонидович	1984-10-17	345233350097	РФ
4	100200308	Сабиров Рамиль Маратович	1984-12-19	234525680984	РФ
5	100200310	Николаев Егор Ибрагимович	2000-01-21	398088777766	РФ

V 2 4		-			-	74° *
pg_clients	= pg_	_clients.drop	(columns={	"FIO"	"BIRTH	_DT","INN"})
pg_clients	1					

pg	_clients	
	CLIENT_ID	CITIZENSHIP
0	100200300	РФ
1	100200302	Республика Беларусь
2	100200304	РФ
3	100200306	РФ
4	100200308	РФ
5	100200310	РФ

Таблица повторяет данные из анкеты, за исключением гражданства (его можно добавить к анкетным данным)

Экстракция и обработка данных из Neo4j

neo4j_relations										
n	r	m								
{"TURN_MONTH_AMT":75324,"CARD_ID":4555300019552003,"SALARY_MONTH_INCOME":45000}	0	{"SALARY_PROJECT_ID":12388933}								
$ \{ \verb"TURN_MONTH_AMT": 192394, \verb"CARD_ID": 5478223498731265, \verb"SALARY_MONTH_INCOME": 145000 \} \\$	{}	{"SALARY_PROJECT_ID":12388933}								
{"LEGAL_ENTITY_ID":100300315,"CLIENT_NAME":МГТУ ДВКТ}	{}	{"SALARY_PROJECT_ID":12388933}								
{"TURN_MONTH_AMT":35986,"CARD_ID":2093435614431892,"SALARY_MONTH_INCOME":2500}	{}	{"SALARY_PROJECT_ID":123834355}								
{"TURN_MONTH_AMT":1750,"CARD_ID":4578430918943344,"SALARY_MONTH_INCOME":1750}	0	{"SALARY_PROJECT_ID":123834355}								
{"LEGAL_ENTITY_ID":100300315,"CLIENT_NAME":МГТУ ДВКТ}	{}	{"SALARY_PROJECT_ID":123834355}								
{"CLIENT_ID":100200301,"CLIENT_FIO":Алексеев Борис Петрович}	8	{"TURN_MONTH_AMT":192394,"CARD_ID":5478223498731265,"SALARY_MONTH_INCOME":145000}								
{"CLIENT_ID":100200303,"CLIENT_FIO":Макарова Елизавета Сергеевна}	{}	{"TURN_MONTH_AMT":75324,"CARD_ID":4555300019552003,"SALARY_MONTH_INCOME":45000}								
{"CLIENT_ID":100200303,"CLIENT_FIO":Макарова Елизавета Сергеевна}	{}	{"TURN_MONTH_AMT":1750, "CARD_ID":4578430918943344, "SALARY_MONTH_INCOME":1750}								
{"CLIENT_ID":100200311,"CLIENT_FIO":Лебедев Марк Генадьевич}	{}	{"TURN_MONTH_AMT":35986,"CARD_ID":2093435614431892,"SALARY_MONTH_INCOME":2500}								
{"TURN_MONTH_AMT":35986,"CARD_ID":2093435614431892,"SALARY_MONTH_INCOME":2500}	{}	{"PRODUCT_ID":111111}								
{"TURN_MONTH_AMT":75324,"CARD_ID":4555300019552003,"SALARY_MONTH_INCOME":45000}	{}	{"PRODUCT_ID":111111}								
{"TURN_MONTH_AMT":1750,"CARD_ID":4578430918943344,"SALARY_MONTH_INCOME":1750}	{}	{"PRODUCT_ID":111112}								
$ \{ \verb"TURN_MONTH_AMT": 192394, \verb"CARD_ID": 5478223498731265, \verb"SALARY_MONTH_INCOME": 145000 \} \\$	{}	{"PRODUCT_ID":111113}								
{"SALARY_PROJECT_ID":12388933}	{}	{"PRODUCT_ID":111114}								
{"SALARY_PROJECT_ID":123834355}	{}	{"PRODUCT_ID":111115}								
{"PRODUCT_1_GROUP_NM":Зарплатный проект}	{}	{"PRODUCT_2_GROUP_NM":Зарплатный проект "Гибкость"}								
{"PRODUCT_1_GROUP_NM":Дебетовая карта}	{}	{"PRODUCT_2_GROUP_NM":Зарплатная дебетовая карта}								
{"PRODUCT_ID":111114}	{}	{"PRODUCT_3_GROUP_NM":ЗРПП "Гибкость" для сотрудников на удаленке}								
{"PRODUCT_2_GROUP_NM":Зарплатный проект "Гибкость"}	{}	{"PRODUCT_3_GROUP_NM":ЗРПП "Гибкость" для сотрудников на удаленке}								
{"PRODUCT_ID":111115}	{}	{"PRODUCT_3_GROUP_NM":ЗРПП "Гибкость" для студентов}								
{"PRODUCT_2_GROUP_NM":Зарплатный проект "Гибкость"}	{}	{"PRODUCT_3_GROUP_NM":ЗРПП "Гибкость" для студентов}								
{"PRODUCT_2_GROUP_NM":Зарплатная дебетовая карта}	{}	{"PRODUCT_3_GROUP_NM":Зарплатная карта "1000 мелочей"}								
{"PRODUCT_ID":111112}	{}	{"PRODUCT_3_GROUP_NM":Зарплатная карта "1000 мелочей"}								
{"PRODUCT_ID":111113}	{}	{"PRODUCT_3_GROUP_NM":Зарплатная карта "1000 мелочей"}								
{"PRODUCT_2_GROUP_NM":Зарплатная дебетовая карта}	{}	{"PRODUCT_3_GROUP_NM":Студенческая зарплатная карта}								
{"PRODUCT_ID":111111}	{}	{"PRODUCT_3_GROUP_NM":Студенческая зарплатная карта}								

Выбор релевантных данных для дальнейшего анализа

	n	m_
6	CLIENT_ID:100200301,CLIENT_FIO:Алексеев Борис Петрович	TURN_MONTH_AMT:192394,CARD_ID:5478223498731265,SALARY_MONTH_INCOME:145000
7	CLIENT_ID:100200303,CLIENT_FIO:Макарова Елизавета Сергеевна	TURN_MONTH_AMT:75324,CARD_ID:4555300019552003,SALARY_MONTH_INCOME:45000
8	CLIENT_ID:100200303,CLIENT_FIO:Макарова Елизавета Сергеевна	TURN_MONTH_AMT:1750,CARD_ID:4578430918943344,SALARY_MONTH_INCOME:1750
9	CLIENT_ID:100200311,CLIENT_FIO:Лебедев Марк Генадьевич	TURN_MONTH_AMT:35986,CARD_ID:2093435614431892,SALARY_MONTH_INCOME:2500

Обработка данных из Neo4j

	CLIENT_ID	TURN_MONTH_AMT	SALARY_MONTH_INCOME
0	100200301	192394	145000
1	100200303	75324	45000
2	100200303	1750	1750
3	100200311	35986	2500

Итоговая подвыборка данных о зарплате, готовая для объединения

Mongodb: обработка текста

После исправления ошибок в базе можно обратиться к ней за недостающими данными для обработки дополненной анкеты. Например, это проверка двух слов на соответствие

```
import gensim, wget
from gensim.models import Word2Vec, KeyedVectors
import zipfile
model url = 'http://vectors.nlpl.eu/repository/20/180.zip'
m = wget.download(model url)
model file = model url.split('/')[-1]
with zipfile.ZipFile(model file, 'r') as archive:
  stream = archive.open('model.bin')
  model = gensim.models.KeyedVectors.load word2vec format(stream, binary=True)
filename = 'model.bin'
model = KeyedVectors.load word2vec format(filename, binary=True)
words = ['день NOUN', 'ночь NOUN', 'человек NOUN', 'семантика NOUN', 'студент NOUN', 'студент ADJ']
print(model.similarity('ga NOUN', 'HeT NOUN'))
                                                  0.3658021
print(model.similarity('HeT NOUN', 'HET NOUN'))
                                                  0.99999994
print(model.similarity('да NOUN', 'конечно NOUN')) 0.45536008
print(model.similarity('да NOUN', 'хорошо NOUN')) 0.3723208
print(model.similarity('да NOUN', 'верно NOUN'))
                                                  0.34742245
```

4

Добавление данных к анкете

Решение реализуется на языке Python3 при помощи Pandas

Сводная таблица по отфильтрованным данным из Postgresql, MySQL, Neo4j

	CRED_AMOUNT	CRED_TERM	CRED_OBJECT	CUST_MONTH_INCOME	CUST_FAMILY_MONTH_INCOME	CLIENT_ID	CUST_BIRTH	GUARANTOR_FLAG	GUARANTOR_BIRTH	PLEDGE_AMOUNT
0	100500.0	5	Выдача средств	35000.0	75000.0	100200300	1982	f	1970	0.0
1	200000.0	12	Кредит на обучение	0.0	0.0	100200301	1984	t	1984	0.0
2	55000.0	6	Выдача средств	0.0	0.0	100200302	1966	f	1970	0.0
3	15040000.0	25	Городская недвижимость	435000.0	0.0	100200303	2001	t	1999	21509000.0
4	654600.0	15	Оборудование	0.0	0.0	100200304	1968	t	1983	150000.0
5	2267000.0	20	Авто	120.0	157.0	100200305	1990	t	1984	3200000.0
6	559000.0	6	Земельный участок	66.0	150.0	100200306	1984	f	1970	680000.0
7	1547000.0	15	Авто	160.0	0.0	100200307	1949	t	1991	1599000.0
8	8838925.0	36	Дача	95.0	143.0	100200308	1984	t	1988	0.0
9	502000.0	20	Выдача средств	0.0	0.0	100200309	1988	f	1970	0.0
10	35500.0	5	Бытовая техника	0.0	0.0	100200310	2000	f	1970	0.0
11	987400.0	24	Авто	65.0	108.0	100200311	2002	t	1965	0.0
12	2502000.0	35	Коммерческая недвижимость	210.0	210.0	100200312	1999	t	1970	2830000.0

CUST_RELATION_BANK_TYPE	APP_SALE_CHANNEL	CITIZENSHIP	LOAN_ID	BEGIN_DT	CLOSE_PLAN_DT	CLOSE_FACT_DT	REPAYMENT_MODE	INTEREST_RATE	TURN_MONTH_AMT	SALARY_MONTH_INCOME	INSURANCE_CONTRACT_ID	CONTRACT_INSURANCE_AMT
C	Онлайн-приложение	РФ	15556671000	2019	2029	0	аннуитет	12.5	0.0	0.0	800800100.0	5800000.0
C	Онлайн-приложение	0	0	0	0	0	0	0.0	192394.0	145000.0	0.0	0.0
C	0	Республика Беларусь	15556671001	2021	2023	0	дисконт	7.8	0.0	0.0	800800101.0	1050000.0
Инсайдер	Офис	0	0	0	0	0	0	0.0	77074.0	46750.0	0.0	0.0
C	0	РФ	15556671002	2021	2022	0	аннуитет	11.3	0.0	0.0	800800104.0	2000000.0
C	Сайт	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0
0	Онлайн-приложение	РФ	15556671003	2020	2022	2021	аннуитет	10.0	0.0	0.0	800800103.0	500000.0
C	Сайт	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0
Сотрудник банка	0	РФ	15556671004	2016	2021	0	аннуитет	9.4	0.0	0.0	0.0	0.0
0	Офис	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0
C	Онлайн-приложение	РФ	15556671005	2020	2021	2021	аннуитет	6.9	0.0	0.0	0.0	0.0
C	Онлайн-приложение	0	0	0	0	0	0	0.0	35986.0	2500.0	0.0	0.0
C	Сайт	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0

Выявление параметров, значимых для кредитоспособности, из объединенного массива данных

Значимость параметров рассчитать на основе существующих данных о выплатах, к которым применены алгоритмы для ML

Идеальный пример: Python 3, использовать sklearn, взять Random Forest, GridSearchCV и посмотреть на feature_importances_

Алгоритм подготовки данных:

- 1) Перевести данные формата string/object в числовые (pd.get_dummies)
- 2) Выбрать колонку с данными, значение которых необходимо предсказать (нас интересуют данные о погашении вовремя, или о просрочках)
- 3) Применить подходящий алгоритм
- 4) Получить значимые параметры для системы скоринга

Пример применения машинного обучения:

Классифицировать клиентов сроку кредита дополненной анкете методом Decision Tree (параметр "CRED_TERM")

(данных из примера недостаточно для применения Random Forest)

```
GUARANTOR BIRTH <= 1976.5
                                                      entropy = 2.5
                                                      samples = 8
                                                 value = [1, 2, 1, 2, 1, 1]
      INSURANCE_CONTRACT_ID <= 400400064.0
                                                                              TURN_MONTH_AMT <= 38537.0
                     entropy = 1.5
                                                                                      entropy = 1.5
                                                                                       samples = 4
                     samples = 4
                value = [1, 2, 0, 0, 0, 1]
                                                                                  value = [0, 0, 1, 2, 1, 0]
    entropy = 1.0
                                     entropy = 0.0
                                                                      entropy = 0.0
                                                                                                       entropy = 1.0
     samples = 2
                                      samples = 2
                                                                       samples = 2
                                                                                                        samples = 2
value = [1, 0, 0, 0, 0, 1]
                                 value = [0, 2, 0, 0, 0, 0]
                                                                 value = [0, 0, 0, 2, 0, 0]
                                                                                                  value = [0, 0, 1, 0, 1, 0]
```

Финальный продукт

Учитывает данные из разных источников

Значимые параметры для кредитоспособности клиентов

Список таких параметров может быть опубликован в открытом доступе и способствовать политике прозрачности

Как применить продукт к маркетинговым целям банка?

Может ли рассмотрение дополнительных данных улучшить продукт?

Roadmap: 1 дополнительные данные для повышения эффективного скоринга

Onay C., Öztürk E. A review of credit scoring research in the age of Big Data //Journal of Financial Regulation and Compliance. - 2018.

Roadmap: 2 добавление балльной системы после зелёного флага

Внедрение балльной системы

```
# пример скоринга
s = 0 # кол-во баллов
credit = 1000000 # размер кредита в рублях
# данные о клиенте №1 ( Иванов Иван ИВанович )
# персональные данные
|data_1_pers = [
    'man', # пол
    40, # возраст
   True, # брак
   3 # кол-во детей
# работа и тд
data_1_fin = [
    100000, # официальная з.п.
    'manager_1', # должность и класс профессии
   7, # срок работы на последнем месте
    1, # кол-во офиц работ
    { 'car': 1200000,
                              # список имущества в собственности и его оценочной стоимости
      'house': 5000000
    0, # кол-во активных кредитов
    { 'car': 'данные о кредите',
      'house': 'данные о кредите'
                                         # кол-во закрытых кредитов
# анализ соц сетей и др
data_1_live = [
   10, # результат оценки оплаты штрафов ( от 0 до 10)
   10, # результат анализа соц сете ( от 0 до 10 )
```

```
# обработка персональных данных
if 27 >= data_1_pers[1] >= 18:
   s += 10
elif 28 >= data_1_pers[1] >= 35: # оценка возраста
   s += 15
elif 35 >= data_1_pers[1] >= 55:
   s += 20
else:
   s += 13
if data_1_pers[2]:
                                # социальное положение
   s += 20
if data_1_pers[0] == 0:
   s += 15
# обработка данных о работе
s += round(( data_1_fin[0] / credit) * 150)
a = data_1_fin[1].split('_')[-1]
if a == '1':
  s += 150
if a == '2':
   s += 100
if a == '3':
   s += 50
if 3 >= data_1_fin[2] >= 1:
   s += 50
if 9 >= data_1_fin[2] >= 4:
    s += 100
```

```
if 3 >= data 1 fin[2] >= 1:
   s += 50
if 9 >= data_1_fin[2] >= 4:
   s += 100
else:
   s += 150
if 2 >= data_1_fin[3] >= 1:
   s += 100
else:
   s += 50
a = data_1_fin[4]
x = 0
for i in a:
   x += a[i] # стоит все имущество
if x >= credit:
   s += 50
if data_1_fin[5] == 0:
   s += 150
                               # кол-во активных кредитов
for i in range(len(data_1_live)):
   s += data_1_live[i]
print(s) # 618 баллов получает наш пользователь
```

Roadmap 3: изменение первичного скоринга литературных данных, на основе положительных и отрицательных заемщиков (страны/региона)

Маркетинговое предложение сейчас

Маркетинг #1 - для различных категорий заемщиков

- Кластеризация заемщиков по выбранным параметрам (профессия, категории расходов, возраст и тд.)
- Разные предложения для неплательщиков и тех, кто платит вовремя

Маркетинг #2 гос. программы

https://programs.gov.ru

Для кого:

Молодые семьи Многодетные родители военных Учёные На что:

Новостройки Сельское хозяйство Гектар и дальние земли

Пример кластеризации заемщиков

Кластеризация по возрасту

- 🔵 от 18 до 27
- от 28 до 40
- от 41 до 50
- >=51

Персонализированное маркетинговое предложение

СМС: Уважаемый кот Василий! ПАО Котобанк предлагает ипотеку на хорошенькую однушку, мы можем одобрить вам кредит без первоначального взноса!

Решение представила команда Mental:

Прудий Дмитрий Игоревич

евич

Красавин Георгий Сергеевич

Контактные данные 89175881896 vasin-ks@rambler.ru

Зеленова Мария Александровна

Васин Кирилл Сергеевич

Спасибо за внимание!

Наобучают там свои машины, а кота кто погладит

Усы, лапы и хвост моя платежеспособность!

