Условия оптимальности. Ограничения равенства и неравенства. Условия ККТ.

Семинар

Оптимизация для всех! ЦУ

♥ ೧ ୭

Условия оптимальности

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым (бюджетным) множеством.

• Точка x^* является глобальным минимумом, если $f(x^*) \leq f(x)$ для всех x.

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым (бюджетным) множеством.

- Точка x^* является глобальным минимумом, если $f(x^*) \le f(x)$ для всех x.
- Точка x^* является локальным минимумом, если существует окрестность N точки x^* , такая что $f(x^*) \leq f(x)$ для всех $x \in N$.

എറ ഉ

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым (бюджетным) множеством.

- Точка x^* является глобальным минимумом, если $f(x^*) \leq f(x)$ для всех x.
- Точка x^* является локальным минимумом, если существует окрестность N точки x^* , такая что $f(x^*) \le f(x)$ для всех $x \in N$.
 Точка x^* является строгим докальным минимумом (также называется сильным докальным минимумом)
- Точка x^* является строгим локальным минимумом (также называется сильным локальным минимумом), если существует окрестность N точки x^* , такая что $f(x^*) < f(x)$ для всех $x \in N$ с $x \neq x^*$.

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым (бюджетным) множеством.

- Точка x^* является глобальным минимумом, если $f(x^*) < f(x)$ для всех x.
- ullet Точка x^* является локальным минимумом, если существует окрестность N точки x^* , такая что $f(x^*) < f(x)$ для всех $x \in N$.
- ullet Точка x^* является строгим локальным минимумом (также называется сильным локальным минимумом), если существует окрестность N точки x^* , такая что $f(x^*) < f(x)$ для всех $x \in N$ с $x \neq x^*$.
- Мы называем точку x^* стационарной (или критической), если $\nabla f(x^*) = 0$. Любой локальный минимум должен быть стационарной точкой.

Безусловная оптимизация

Необходимое условие оптимальности первого порядка.

Если x^* является локальным минимумом и f непрерывно дифференцируема в окрестности, то

$$\nabla f(x^*) = 0 \tag{1}$$

Достаточные условия оптимальности второго порядка

Предположим, что $\nabla^2 f$ непрерывна в окрестности точки x^* и что

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Тогда x^* является строгим локальным минимумом функции f.

Оптимизация с ограничениями-равенствами

Оптимизация с ограничениями-равенствами

Рассмотрим простой, но практический случай ограничений-равенств:

$$\begin{split} f(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t. } h_i(x) &= 0, i = 1, \dots, p \end{split}$$

Метод Лагранжа

Основная идея метода Лагранжа состоит в переходе от условной оптимизации к безусловной через увеличение размерности задачи:

$$L(x,\nu) = f(x) + \sum_{i=1}^p \nu_i h_i(x) = f(x) + \nu^T h(x) \rightarrow \min_{x \in \mathbb{R}^n, \nu \in \mathbb{R}^p}$$

Метод Лагранжа

Основная идея метода Лагранжа состоит в переходе от условной оптимизации к безусловной через увеличение размерности задачи:

$$L(x,\nu) = f(x) + \sum_{i=1}^{p} \nu_i h_i(x) = f(x) + \nu^T h(x) \to \min_{x \in \mathbb{R}^n, \nu \in \mathbb{R}^p}$$

Необходимые условия:

$$\nabla_x L(x^*,\nu^*) = 0$$

$$\nabla_{\nu}L(x^*,\nu^*)=0$$

Достаточные условия:
$$\langle y, \nabla^2_{xx} L(x^*, \nu^*) y \rangle > 0,$$

$$\forall y \neq 0 \in \mathbb{R}^n : \nabla h_i(x^*)^T y = 0$$

$$\neq 0 \in \mathbb{R}^n : \nabla h_i(x^*)^T y = 0$$

Оптимизация с ограничениями-неравенствами

Оптимизация с ограничениями-неравенствами

Рассмотрим простой, но практический случай ограничений-неравенств:

$$\begin{split} f(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t. } g(x) &\le 0 \end{split}$$

Оптимизация с ограничениями-неравенствами

Рассмотрим простой, но практический случай ограничений-неравенств:

$$\begin{split} f(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t. } g(x) &\le 0 \end{split}$$

$$g(x) \leq 0$$
 неактивно. $g(x^*) < 0$:
$$g(x^*) < 0$$

$$\nabla f(x^*) = 0$$

$$\nabla^2 f(x^*) > 0$$

$$g(x) \leq 0 \text{ активно. } g(x^*) = 0:$$

$$g(x^*) = 0$$

$$-\nabla f(x^*) = \lambda \nabla g(x^*), \lambda > 0$$

$$\langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0,$$

$$\forall y \neq 0 \in \mathbb{R}^n : \nabla g(x^*)^\top y = 0$$

Условия Каруша-Куна-Таккера

Общая формулировка

Общая задача математического программирования:

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Общая формулировка

Общая задача математического программирования:

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Решение включает в себя построение функции Лагранжа:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия ККТ

Пусть x^* , (λ^*, ν^*) является решением математической задачи программирования с нулевым двойственным разрывом (оптимальное значение для приоритетной задачи p^st равно оптимальному значению для двойственной задачи d^*). Пусть также функции f_0, f_i, h_i дифференцируемы.

Необходимые условия ККТ

Пусть x^* , (λ^*, ν^*) является решением математической задачи программирования с нулевым двойственным разрывом (оптимальное значение для приоритетной задачи p^* равно оптимальному значению для двойственной задачи d^*). Пусть также функции f_0, f_i, h_i дифференцируемы.

$$\begin{split} &(1)\nabla_x L(x^*,\lambda^*,\nu^*) = 0 \\ &(2)\nabla_\nu L(x^*,\lambda^*,\nu^*) = 0 \\ &(3)\lambda_i^* \geq 0, i = 1,\dots,m \\ &(4)\lambda_i^* f_i(x^*) = 0, i = 1,\dots,m \\ &(5)f_i(x^*) < 0, i = 1,\dots,m \end{split}$$

Некоторые условия регулярности

Эти условия необходимы для того, чтобы условия ККТ стали необходимыми. Некоторые из них даже превращают необходимые условия в достаточные. Например, условие Слейтера:

Некоторые условия регулярности

Эти условия необходимы для того, чтобы условия ККТ стали необходимыми. Некоторые из них даже превращают необходимые условия в достаточные. Например, условие Слейтера:

Если для выпуклой задачи (т.е., предполагая минимизацию, f_0, f_i выпуклы и h_i аффинны), существует точка x такая что h(x)=0 и $f_i(x)<0$ (существование строго допустимой точки), то условия ККТ становятся необходимыми и достаточными.

Достаточные условия ККТ

Для гладких, нелинейных задач оптимизации, второе достаточное условие задается следующим образом. Решение x^*, λ^*, ν^* , которое удовлетворяет условиям ККТ (выше), является локальным минимумом при ограничениях, если для функции Лагранжа

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

выполняются следующие условия:

$$\begin{split} \langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle &> 0 \\ \forall y \neq 0 \in \mathbb{R}^n : \nabla h_i(x^*)^\top y = 0, \nabla f_0(x^*)^\top y \leq 0, \nabla f_j(x^*)^\top y = 0 \\ i = 1, \dots, p \quad \forall j : f_i(x^*) = 0 \end{split}$$

Задачи

i Question

Функция $f:E o\mathbb{R}$ определена как

$$f(x) = \ln\left(-Q(x)\right)$$

где $E=\{x\in\mathbb{R}^n:Q(x)<0\}$ и

$$Q(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x + c$$

 $c A \in \mathbb{S}^n_{++}, b \in \mathbb{R}^n, c \in \mathbb{R}.$

Найдите точку максимума x^* функции f.

i Question

Найдите явное решение следующей задачи.

$$f(x,y) = x + y \to \min$$
 s.t. $x^2 + y^2 = 1$

где $x,y \in \mathbb{R}$.

i Question

Найдите явное решение следующей задачи.

$$\langle c, x \rangle + \sum_{i=1}^n x_i \log x_i \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } \sum_{i=1}^n x_i = 1,$$

где $x \in \mathbb{R}^n_{++}, c \neq 0$.

i Question

Пусть $A \in \mathbb{S}^n_{++}, b>0$ покажите, что:

$$\det(X) \to \max_{X \in \mathbb{S}_n^n} \text{ s.t.} \langle A, X \rangle \leq b$$

имеет единственное решение и найдите его.

i Question

Даны $y \in \{-1,1\}$, и $X \in \mathbb{R}^{n \times p}$, задача об опорных векторах:

$$\frac{1}{2}||w||_2^2 + C\sum_{i=1}^n \xi_i \to \min_{w,w_0,\xi_i}$$

s.t.
$$\xi_i \ge 0, i = 1, ..., n$$

$$y_i(x_i^T w + w_0) \ge 1 - \xi_i, i = 1, \dots, n$$

найдите условие стационарности ККТ.

i Question

Покажите, что следующая задача оптимизации с ограничениями имеет единственное решение и найдите его.

$$\langle C^{-1}, X \rangle - \log \det(X) \to \min_{X \in \mathbb{S}_{++}^n} \text{s.t. } a^T X a \leq 1$$

$$C \in \mathbb{S}^n_{++}, a \neq 0$$

Вы должны избежать явного обратного матрицы C в ответе.

Задача 7 (БОНУС)

Для некоторых $\Sigma, \Sigma_0 \in \mathbb{S}^n_{++}$ определите расхождение Кульбака-Лейблера между двумя гауссовыми распределениями как:

$$D(\Sigma, \Sigma_0) = \frac{1}{2} (\langle \Sigma_0^{-1}, \Sigma \rangle - \log \det(\Sigma_0^{-1} \Sigma) - n)$$

Теперь пусть $H \in \mathbb{S}^n_{++}$ и $y,x \in \mathbb{R}^n: \langle y,s \rangle > 0$

Мы хотим решить следующую задачу минимизации с ограничениями.

$$\min_{X \in \mathbb{S}^n} \{ D(X^{-1}, H^{-1}) | Xy = s \}$$

Докажите, что она имеет единственное решение и оно равно:

$$(I_n - \frac{sy^T}{y^Ts})H(I_n - \frac{ys^T}{y^Ts}) + \frac{ss^T}{y^Ts}$$

Задача 8 (БОНУС)

i Question

Пусть e_1, \dots, e_n будет стандартным базисом в \mathbb{R}^n . Покажите, что:

$$\max_{X \in \mathbb{S}_{++}^n} \det(X): ||Xe_i|| \leq 1 \forall i \in 1, \dots, n$$

имеет единственное решение I_n , и выведите неравенство Гильберта:

$$\det(X) \leq \prod^n ||Xe_i|| \forall X \in \mathbb{S}^n_{++}$$

Приложения

Адверсариальные атаки

Определение: Адверсариальные атаки используются для обмана моделей DL путем добавления небольших возмущений к входным данным. Мы можем сформулировать это как задачу оптимизации с ограничениями, где целью является минимизация/максимизация функции потерь при сохранении возмущения в определенных пределах (ограничение нормы).

Метод FGSM (быстрого знака градиента) является самым простым таким методом, который генерирует adversarial examples путем применения небольшого возмущения в направлении градиента функции потерь. Формально:

$$x' = x + \varepsilon \cdot \mathrm{sgn}(\nabla_x L(x,y)), \text{s.t. } ||x - x'|| \leq \varepsilon$$

Таким образом, мы выполняем градиентный подъем на изображении (== максимизация потерь по отношению к этому изображению).

