

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING UNIVERSITY OF IOANNINA

> P.O. Box 1186 GR 45110 IOANNINA, GREECE T: +30 26510 08817 - F: +30 26510 08890

ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ ΙΩΑΝΝΙΝΩΝ Τ.Θ. 1186, 45110 ΙΩΑΝΝΙΝΑ T: 26510 08817 - F: 26510 08890

Μάθημα: ΜΥΕ031-Ρομποτική

Διδάσκων: Κ. Βλάχος

Ασκήσεις επανάληψης

Άσκηση 1

- α΄) Πόσους βαθμούς ελευθερίας πρέπει να έχει ένας ρομποτικός βραχίονας, ώστε να μπορεί να δώσει οποιαδήποτε αυθαίρετη θέση και προσανατολισμό στο τελικό στοιχείο δράσης του, στον Καρτεσιανό χώρο; Πόσοι βαθμοί ελευθερίας απαιτούνται, αν δεν μας ενδιαφέρει η περιστροφή roll;
- β΄) Πόσα συστήματα συντεταγμένων χρειάζονται για να καθοριστεί ο προσανατολισμός ενός ρομπότ, σε σχέση με ένα άλλο τυχαίο εμπόδιο;
- γ') Ποια είναι η φυσική σημασία των στηλών ενός πίνακα περιστροφής ${}^{A}\mathbf{R}_{B}$; Παρομοίως, ποια είναι η φυσική σημασία των γραμμών του;

Άσκηση 2

α') Με δεδομένο κύβο όγκου L^3 και ένα σύνολο από (επίσης δεδομένα) συστήματα συντεταγμένων $\{0\}$, $\{1\}$, και $\{2\}$, όπως φαίνονται στο σχήμα, να βρεθούν οι ομογενείς μετασχηματισμοί ${}^0\mathbf{T}_1$, ${}^0\mathbf{T}_2$ και ${}^1\mathbf{T}_2$. Δείξτε ότι ${}^0\mathbf{T}_2=$ ${}^{0}\mathbf{T}_{1}{}^{1}\mathbf{T}_{2}$.

β΄) Με δεδομένους τους ακόλουθους πίνακες μετασχηματισμών, οι οποίοι συσχετίζουν τα συστήματα συντεταγμένων $\{1\}$, $\{2\}$, και $\{3\}$, να βρεθεί ο ${}^2\mathbf{T}_3$.

$${}^{1}\mathbf{T}_{2} = \begin{bmatrix} 0.500 & 0 & -0.866 & 10 \\ 0.6124 & -0.7071 & 0.3536 & 0 \\ -0.6124 & -0.7071 & -0.3536 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{1}\mathbf{T}_{3} = \begin{bmatrix} 0 & 0 & -1.0 & 0 \\ 0 & 1.0 & 0 & 10 \\ 1.0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}\mathbf{T}_{3} = \begin{bmatrix} 0 & 0 & -1.0 & 0 \\ 0 & 1.0 & 0 & 10 \\ 1.0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF IOANNINA

P.O. Box 1186 GR 45110 IOANNINA, GREECE T: +30 26510 08817 - F: +30 26510 08890

ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ ΙΩΑΝΝΙΝΩΝ Τ.Θ. 1186, 45110 ΙΩΑΝΝΙΝΑ Τ: 26510 08817 - F: 26510 08890

- γ΄) Έστω το σύστημα συντεταγμένων $\{0\}$. Υπολογίστε τον ομογενή μετασχηματισμό ${\bf T}$ που αντιπροσωπεύει μεταφορική κίνηση 3m κατά μήκος του άξονα X_0 , η οποία ακολουθείται από περιστροφή κατά $\pi/2$ γύρω από τον άξονα Y_1 , η οποία ακολουθείται από μεταφορική κίνηση 1m κατά μήκος του αρχικού άξονα Z_0 . Σχεδιάστε το τελικό σύστημα συντεταγμένων, $\{2\}$, και βρείτε τις συντεταγμένες της αρχής του, σε σχέση με το σύστημα συντεταγμένων $\{0\}$.
- δ΄) Το διάνυσμα $\mathbf{p} = [2.8284, 0.7071, 0.7071]^\mathsf{T}$ περιστρέφεται καταλήγοντας στο διάνυσμα $\mathbf{p}' = [2, 1, 2]^\mathsf{T}$. Να βρεθεί ο αντίστοιχος πίνακας περιστροφής \mathbf{R} . (Υπόδειξη: χρησιμοποιήστε την παράσταση άξονα-γωνίας του πίνακα περιστροφής.)

Άσκηση 3

Χρησιμοποιώντας τον παρακάτω πίνακα περιστροφής,

$$\mathbf{R} = \begin{bmatrix} 0.616 & 0.75 & 0.433 \\ -0.75 & 0.625 & -0.2165 \\ -0.433 & -0.2165 & 0.875 \end{bmatrix}$$

να βρεθούν τα ακόλουθα και να εξηγηθεί με σαφήνεια η φυσική τους σημασία

- α') οι 3-2-1 (ZYX) γωνίες Euler
- β') οι 3-2-3 (ZYZ) γωνίες Euler
- γ') το αντίστοιχο ζεύγος άξονα-γωνίας

Άσκηση 4

Εξετάζουμε ένα ρομποτικό βραχίονα τύπου RPR (βλέπε Σχήμα 1). Ο βραχίονας έχει 3 β.ε. και επομένως μπορεί να τοποθετήσει το ΤΣΔ σε κάποιο σημείο $[x_E \ y_E]^{\mathsf{T}}$ και προσανατολισμό ϑ_E , στον χώρο εργασίας του.

Σχήμα 1: Ρομποτικός βραχίονας τύπου RPR

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF IOANNINA

P.O. Box 1186 GR 45110 IOANNINA, GREECE T: +30 26510 08817 - F: +30 26510 08890

ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ ΙΩΑΝΝΙΝΩΝ Τ.Θ. 1186, 45110 ΙΩΑΝΝΙΝΑ Τ: 26510 08817 - F: 26510 08890

Οι μεταβλητές των αρθρώσεων είναι οι $\vartheta_1, d_2, \vartheta_3$ που μετρώνται όπως φαίνεται στο Σχήμα 1.

- α΄) Σχεδιάστε τον προσπελάσιμο και τον επιδέξιο χώρο εργασίας όταν $0 \le d_2 \le l_2$. Δεχόμαστε ότι $l_3 \approx 0$, και ότι δεν υπάρχουν όρια για τις γωνίες ϑ_1, ϑ_3 .
- β΄) Γράψτε τις κινηματικές εξισώσεις που συνδέουν τα x_E, y_E, ϑ_E με τα $\vartheta_1, d_2, \vartheta_3$ (ευθεία κινηματική).
- γ΄) Γράψτε τις αντίστροφες κινηματικές εξισώσεις.
- δ΄) Γράψτε την Ιακωβιανή του βραχίονα με ταχύτητες εξόδου τις $\frac{\mathrm{d}x_E}{\mathrm{d}t}, \frac{\mathrm{d}y_E}{\mathrm{d}t}, \frac{\mathrm{d}\vartheta_E}{\mathrm{d}t}$.
- ε΄) Υπάρχουν ιδιόμορφα σημεία; Αν ναι, ποια; Τι συμβαίνει σε αυτά;

Άσκηση 5

Για τον PRP βραχίονα τριών β.ε. που εικονίζεται στο Σχήμα 2, γνωρίζουμε ότι $0 \le d_1 \le 1m$ και $0 \le d_3 \le 1m$. Το μήκος του δεύτερου συνδέσμου είναι $l_2 = 1m$. Δεν υπάρχει όριο για την γωνία ϑ_2 .

Σχήμα 2: Ρομποτικός βραχίονας τύπου PRP

- α΄) Σχεδιάστε τον προσπελάσιμο χώρο εργασίας.
- β΄) Επιλύστε το ευθύ κινηματικό πρόβλημα, δηλαδή εξάγετε εκφράσεις για τα x_E, y_E, ϑ_E συναρτήσει των μεταβλητών των αρθρώσεων.
- γ΄) Επιλύστε το αντίστροφο κινηματικό πρόβλημα, δηλαδή με δεδομένα τα x_E, y_E, ϑ_E , βρείτε τις αντίστοιχες μεταβλητές των αρθρώσεων. Διατυπώστε τις συνθήκες κάτω από τις οποίες υπάρχει(ουν) λύση(εις).
- δ΄) Βρείτε την Ιακωβιανή, η οποία μετατρέπει τους ρυθμούς μεταβολής των μεταβλητών των αρθρώσεων σε ταχύτητες του τελικού σημείου δράσης (ΤΣΔ), $\frac{\mathrm{d}x_E}{\mathrm{d}t}$, $\frac{\mathrm{d}y_E}{\mathrm{d}t}$, με $\frac{\mathrm{d}\psi_E}{\mathrm{d}t}$ $\frac{\mathrm{d}$

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

TMHMA MHXANIKΩN H/Y & ΠΛΗΡΟΦΟΡΙΚΗΣ DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING UNIVERSITY OF IOANNINA

ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ ΙΩΑΝΝΙΝΩΝ T.Θ. 1186, 45110 IΩANNINA T: 26510 08817 - F: 26510 08890

P.O. Box 1186 GR 45110 IOANNINA, GREECE T: +30 26510 08817 - F: +30 26510 08890

- ε΄) Ποια είναι η συνεισφορά της άρθρωσης 2 στη γραμμική ταχύτητα του ΤΣΔ;
- ς') Έχει αυτός ο βραχίονας ιδιόμορφες καταστάσεις; Αν ναι, ποια είναι η φυσική τους σημασία;