

Lab4 Q1 CoCurrent

Report date

Dec 3, 2024, 5:43:05 PM

Contents

1. Glo	bal Definitions	3
1.1.	Parameters	3
1.2.	Materials	
2. Cor	mponent 1	4
2.1.	Definitions	4
2.2.	Geometry 1	4
2.3.	Materials	5
2.4.	Laminar Flow	5
2.5.	Heat Transfer in Solids and Fluids 3	6
2.6.	Mesh 1	7
3. Stu	ıdy 1	
3.1.	Stationary	
4. Res	sults	9
4.1.	Datasets	9
4.2.	Derived Values	
4.3.	Tables	14
4.4.	Plot Groups	15

1 Global Definitions

Date Dec 3, 2024, 5:08:12 PM

GLOBAL SETTINGS

Name	Lab4 Q1 CoCurrent.mph
Path	C:\Users\a3dufres\Downloads\Lab4 Q1_CoCurrent.mph
Version	COMSOL Multiphysics 6.1 (Build: 282)

USED PRODUCTS

COMSOL Multiphysics

COMPUTER INFORMATION

CPU	Intel64 Family 6 Model 183 Stepping 1, 20 cores, 31.82 GB RAM
Operating system	Windows 10

1.1 PARAMETERS

PARAMETERS 1

Name	Expression	Value	Description
Thick	0.001 [m]	0.001 m	Thickness of the Copper Tube
Di	0.1 [m]	0.1 m	Radius of Inner Tube
D	2*Di + Thick	0.201 m	Radius of Outer Tube
K_Cop	385 [W/(K*m)]	385 W/(m·K)	Copper Thermal Conductivity
rho	998 [kg/m^3]	998 kg/m³	Density of Water
vis	0.001 [Pa*s]	0.001 Pa·s	Viscosity of Water
Ср	4182 [J/(kg*K)]	4182 J/(kg·K)	Specific Heat capacity of Water
K_Water	0.6 [W/(m*K)]	0.6 W/(m·K)	Thermal Conductivity of Water
T_Hot	80 [degC]	353.15 K	Temperature of the Hot Water
V_Hot	0.02 [m/s]	0.02 m/s	Speed of the Hot Water
T_Cold	20 [degC]	293.15 K	Temperature of the Cold Water
V_Cold	0.01 [m/s]	0.01 m/s	Speed of the Cold Water
Length	0.5 [m]	0.5 m	Length of the Tube
Ri	Di/2	0.05 m	Diameter of Inner Tube
R_Tot	2*Ri + Thick	0.101 m	

1.2 MATERIALS

1.2.1 Copper 1

2 Component 1

2.1 **DEFINITIONS**

2.1.1 Coordinate Systems

Boundary System 1

Coordinate system type	Boundary system
Tag	sys1

COORDINATE NAMES

First	Second	Third
t1	to	n

2.2 GEOMETRY 1

Geometry 1

UNITS

Length unit	m
Angular unit	deg

2.3 MATERIALS

2.3.1 Copper

Copper

SELECTION

Geometric entity level	Domain
Selection	Geometry geom1: Dimension 2: Domain 2

2.4 LAMINAR FLOW

Laminar Flow

EQUATIONS

$$\begin{split} & \rho(\mathbf{u}\cdot\nabla)\mathbf{u} = \nabla\cdot[-\rho\mathbf{I} + \mathbf{K}] + \mathbf{F} \\ & \rho\nabla\cdot\mathbf{u} = 0 \end{split}$$

FEATURES

Name	Level
Fluid Properties 1	Domain
Initial Values 1	Domain
Axial Symmetry 1	Boundary
Wall 1	Boundary
Hot Water In	Boundary
Cold Water In	Boundary
Hot Water Out	Boundary
Cold Water Out	Boundary

2.5 HEAT TRANSFER IN SOLIDS AND FLUIDS 3

Heat Transfer in Solids and Fluids 3

EQUATIONS

$$\rho C_p \mathbf{u} \cdot \nabla T \mathbf{3} + \nabla \cdot \mathbf{q} = Q + Q_{\text{ted}}$$
$$\mathbf{q} = -k \nabla T \mathbf{3}$$

FEATURES

Name	Level
Copper	Domain
Water Hot	Domain

Name	Level
Initial Values 1	Domain
Axial Symmetry 1	Boundary
Thermal Insulation 1	Boundary
Cold Water Temp	Boundary
Hot Water Temp	Boundary
Water Outflow	Boundary
Water Cold	Domain

2.6 MESH 1

Mesh 1

3 Study 1

COMPUTATION INFORMATION

Computation time 4 s

3.1 STATIONARY

STUDY SETTINGS

Description	Value
Include geometric nonlinearity	Off

PHYSICS AND VARIABLES SELECTION

Physics interface	Solve for	Equation form
Laminar Flow (spf)	On	Automatic (Stationary)
Heat Transfer in Solids and Fluids 3 (ht3)	On	Automatic (Stationary)

MESH SELECTION

Component	Mesh
Component 1	Mesh 1

4 Results

4.1 DATASETS

4.1.1 Study 1/Solution 1

SOLUTION

Description	Value
Solution	Solution 1
Component	Component 1 (comp1)

Dataset: Study 1/Solution 1

4.1.2 Revolution 2D

DATA

Description	Value
Dataset	Study 1/Solution 1

AXIS DATA

Description	Value
Axis entry method	Two points
Points	{{0, 0}, {0, 1}}

REVOLUTION LAYERS

Description	Value
Start angle	-90

Description	Value
Revolution angle	225

Dataset: Revolution 2D

4.1.3 Study 1/Parametric Solutions 1

SOLUTION

Description	Value
Solution	Parametric Solutions 1
Component	Component 1 (comp1)

4.1.4 Cut Line

DATA

Description	Value
Dataset	Study 1/Solution 1

LINE DATA

Description	Value
Line entry method	Two points
Points	{{0, Length/2}, {R_Tot, Length/2}}

ADVANCED

Description	Value
Space variable	cln1x
Normal variables	{cln1nx, cln1ny}

Description	Value
Tangent variables	{cln1tx, cln1ty}

Dataset: Cut Line

4.1.5 Hot Water Temp

DATA

Description	Value
Dataset	Study 1/Solution 1

LINE DATA

Description	Value	
Line entry method	Two points	
Points	{{0, Length/2}, {Ri, Length/2}}	

ADVANCED

Description	Value
Space variable	cln2x
Normal variables	{cln2nx, cln2ny}
Tangent variables	{cln2tx, cln2ty}

Dataset: Hot Water Temp

4.1.6 Cold Water Temp

DATA

Description	Value
Dataset	Study 1/Solution 1

LINE DATA

Description	Value
Line entry method	Two points
Points	{{Ri + Thick, Length/2}, {2*Ri + Thick, Length/2}}

ADVANCED

Description	Value
Space variable	cln3x
Normal variables	{cln3nx, cln3ny}
Tangent variables	{cln3tx, cln3ty}

Dataset: Cold Water Temp

4.2 **DERIVED VALUES**

4.2.1 Cold Water Avg Out

OUTPUT

Table 5

DATA

Description	Value
Dataset	Study 1/Solution 1

EXPRESSIONS

Expression	Unit	Description
T3	K	Temperature

INTEGRATION SETTINGS

Description	Value
Integration order	4
Compute surface integral	On

4.2.2 Hot Water Avg Out

OUTPUT

Evaluated in	Table 6
_valaacca III	TODIC O

DATA

Description	Value
Dataset	Study 1/Solution 1

EXPRESSIONS

Expression	Unit	Description
T3	K	Temperature

INTEGRATION SETTINGS

Description	Value
Integration order	4
Compute surface integral	On

4.3 TABLES

4.3.1 Evaluation 3D

Interactive 3D values

x	y	Z	Value
0.049186	0.053169	0.5	321.02
0.015289	0.011451	0.5	321.02
0.032141	0.041288	0.5	321.02
1.5774E-4	-0.007018	0.5	321.02
0.013571	-0.040626	0.5	321.02
0	-0.081705	0.4376	321.02

4.3.2 Table 3

Hot Temp Avg

Temperature (K)	
350.56	

4.3.3 Table 4

Cold Temp Avg

Temperature (K)	
294.56	

4.3.4 Table 5

Cold Water Avg In

Temperature (K)	Temperature (K)	Temperature (K)
293.15	293.15	295.01

4.3.5 Table 6

Hot Water Avg Out

Temperature (K)	
349.61	

4.4 PLOT GROUPS

4.4.1 Velocity (spf)

Surface: Velocity magnitude (m/s)

4.4.2 Pressure (spf)

Contour: Pressure (Pa)

4.4.3 Velocity, 3D (spf)

Surface: Velocity magnitude (m/s)

4.4.4 Temperature, 3D (ht3)

Surface: Temperature (K)

4.4.5 Isothermal Contours (ht3)

Contour: Temperature (K)

4.4.6 1D Plot Group 6

Line Graph: Velocity magnitude (m/s)

4.4.7 Temperature Group

Line Graph: Temperature (K)