Fast Rudin

Davi Sales Barreira

March 30, 2021

Abstract

This document are condensed notes on the book "Real and Complex Analysis" [Rudin, 1987]. The goal is to cover the first 9 chapters of the book.

1 Abstract Integration

Definition 1.1 (Topological Space). (X, τ) is a topological space where τ is the collection of open sets in X, such that:

- (i) $X \in \tau$;
- (ii) Se $A_1, ..., A_n \in \tau \implies \bigcap_{i=1}^n A_i \in \tau$;
- (iii) Se $A_{\alpha} \in \tau$ for any $\alpha \in \Lambda \implies \bigcup_{\alpha \in \Lambda} A_{\alpha} \in \tau$;

 τ is the topology of X.

Definition 1.2 (Measurable Space). (X, \mathcal{F}) is a measurable space where \mathcal{F} is a σ -algebra in X. A σ -algebra is defined such that:

- (i) $X \in \mathcal{F}$;
- (ii) If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$;
- (iii) If $A_n \in \mathcal{F} \ \forall n \in \mathbb{N} \ \text{then } \cup_{n \in \mathbb{N}} A_n \in \mathcal{F}$;

Definition 1.3 (Continuous Function). For (X,τ) and (Y,τ') topological spaces, we say $f:X\to Y$ is continuous if for every open set $V\subset Y$ we have that $f^{-1}(V)\subset X$ is open.

Definition 1.4 (Measurable Function). For (X, \mathcal{F}) a measurable space and (Y, τ') a topological space, we say $f: X \to Y$ is \mathcal{F} -measurable if for every open set $V \subset Y$ we have that $f^{-1}(V) \in \mathcal{F}$.

References

Walter Rudin. Real and complex analysis. 1987. Cited on, 156, 1987.