NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

MA1522 Linear Algebra for Computing

Tutorial 9

- 1. A father wishes to distribute an amount of money among his three sons Jack, Jim, and John. He wish to distribute such that the following conditions are all satisfied.
 - (i) The amount Jack receives plus twice the amount Jim receives is \$300.
 - (ii) The amount Jim receives plus the amount John receives is \$300.
 - (iii) Jack receives \$300 more than twice of what John receives.
 - (a) Is it possible for the following conditions to all be satisfied?
 - (b) If it is not possible, find a least square solution. (Make sure that your least square solution is feasible. For example, one cannot give a negative amount of money to anybody.)
- 2. (a) Suppose **A** is a $m \times n$ matrix where m > n. Let **A** = **QR** be a **QR** factorization of **A**. Explain how you might use this to write

$$A = Q'R'$$

where \mathbf{Q}' is an $m \times m$ orthogonal matrix, and \mathbf{R}' a $m \times n$ matrix with m - n zero rows at the bottom. This is known as the full QR factorization of \mathbf{A} .

(b) In MATLAB, enter the following.

What is \mathbf{Q} and \mathbf{R} ? Compare this with the answer in tutorial 8 question 5(a).

- (c) Explain how you might use the command qr in MATLAB to find a QR factorization of a $m \times n$ matrix A?
- 3. (Cayley-Hamilton theorem) Consider

$$p(\mathbf{X}) = \mathbf{X}^3 - 4\mathbf{X}^2 - \mathbf{X} + 4\mathbf{I}.$$

- (a) Compute $p(\mathbf{X})$ for $\mathbf{X} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$.
- (b) Find the characteristic polynomial of X.
- (c) Show that X invertible. Express the inverse of X as a function of X.

This question demonstrated the Cayley-Hamilton theorem, which states that if p(x) is the characteristic polynomial of \mathbf{X} , then $p(\mathbf{X}) = 0$. This also show that if 0 is not an eigenvalue of \mathbf{X} , then the constant term of the characteristic polynomial p(x) is nonzero, and we can use that to compute the inverse of \mathbf{X} .

4. For each of the following matrices \mathbf{A} , determine if \mathbf{A} is diagonalizable. If \mathbf{A} is diagonalizable, find an invertible \mathbf{P} that diagonalizes \mathbf{A} and determine $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$.

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
.

(b)
$$\mathbf{A} = \begin{pmatrix} 9 & 8 & 6 & 3 \\ 0 & -1 & 3 & -4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

(c)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
.

(d)
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(e)
$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ -4 & 2 & 3 \end{pmatrix}$$
.

- 5. (a) Show that λ is an eigenvalue of **A** if and only if it is an eigenvalue of \mathbf{A}^T .
 - (b) Suppose \mathbf{A} is diagonalizable. Is \mathbf{A}^T diagonalizable? Justify your answer.
 - (c) Suppose \mathbf{v} is an eigenvector of \mathbf{A} associated to eigenvalue λ . Show that \mathbf{v} is an eigenvector of \mathbf{A}^k associated to eigenvalue λ^k for any positive integer k.
 - (d) If **A** is invertible, show that **v** is an eigenvector of \mathbf{A}^k associated to eigenvalue λ^k for any negative integer k.
 - (e) A square matrix is said to be *nilpotent* if there is a positive integer k such that $\mathbf{A}^k = \mathbf{0}$. Show that if \mathbf{A} is nilpotent, then 0 is the only eigenvalue.
 - (f) Let **A** be a $n \times n$ matrix with one eigenvalue λ with algebraic multiplicity n. Show that **A** is diagonalizable if and only if **A** is a scalar matrix, $\mathbf{A} = \lambda \mathbf{I}$.
 - (g) Show that the only diagonalizable nilpotent matrix is the zero matrix.

Extra problems

- 1. Let **A** be an orthogonal matrix of order n and let \mathbf{u}, \mathbf{v} be any two vectors in \mathbb{R}^n . Show that
 - (a) $||\mathbf{u}|| = ||\mathbf{A}\mathbf{u}||$;
 - (b) $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{A}\mathbf{u}, \mathbf{A}\mathbf{v})$; and
 - (c) the angle between \mathbf{u} and \mathbf{v} is equal to the angle between $\mathbf{A}\mathbf{u}$ and $\mathbf{A}\mathbf{v}$.
- 2. Let **A** be an orthogonal matrix of order n. Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ and define $T = \{\mathbf{A}\mathbf{u}_1, \mathbf{A}\mathbf{u}_2, ..., \mathbf{A}\mathbf{u}_k\}$.
 - (a) If S is orthogonal, show that T is orthogonal.
 - (b) If S is orthonormal, is T orthonormal?
- 3. (a) Suppose **A** and **B** are similar matrices, that is, $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}$ for some invertible matrix **P**. Then the characteristic polynomial of **A** and **B** are equal.
 - (b) Suppose the characteristic polynomial of **A** and **B** are equal. Can we conclude that **A** and **B** are similar? Justify your answer.
 - (c) Suppose **A** and **B** are $n \times n$ matrices with the same determinant. Is it true that their characteristic polynomials are equal? Justify your answer.
- 4. (a) Let \mathbf{A} be a 2×2 matrix. Prove that the characteristic polynomial of \mathbf{A} is

$$x^2 - tr(\mathbf{A})x + \det(\mathbf{A}),$$

where $tr(\mathbf{A})$ is the sum of the diagonal entries of \mathbf{A} .

(b) Let **A** be a $n \times n$ matrix and $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$. Prove that $a_0 = (-1)^n \det(\mathbf{A})$.