FINAL REPORT APRIL 2000

REPORT NO. 00-03

2.75-INCH ROCKET HYDRA PALLET MIL-STD-1660 FIRST ARTICLE TEST

Prepared for:

U.S. Army Armament Research, Development

and Engineering Center ATTN: AMSTA-AR-WEP-RP Rock Island, IL 61299-7300 Distribution Unlimited

VALIDATION ENGINEERING DIVISION MCALESTER, OKLAHOMA 74501-9053

REPORT DOCUMENTATION PAGE

1. REPORT DATE (DD-MM-YYYY) 01-04-2000	2. REPORT TYPE Final Report	3. DATES COVERED (FROM - TO) xx-xx-2000 to xx-xx-2000
	ET HYDRA PALLET	5a. CONTRACT NUMBER
MIL-STD-1660 F	IRST ARTICLE TEST	5b. GRANT NUMBER
Unclassified		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) Birchmeier, Joseph	h F. ;	5d. PROJECT NUMBER
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. ARMY DEFENSE AMMUNITION CENTER VALIDATION ENGINEERING DIVISION		8. PERFORMING ORGANIZATION REPORT NUMBER 00-03
MCALESTER , O	0K 74501-9053	
9. SPONSORING/MO NAME AND ADDRES U.S. Army Arman	S	10. SPONSOR/MONITOR'S ACRONYM(S)
Development and Engineering Center ATTN: AMSTA-AR-WEP-RP		11. SPONSOR/MONITOR'S REPORT NUMBER(S)
Rock Island, IL 61299-7300		
12. DISTRIBUTION/A A PUBLIC RELEAS	VAILABILITY STATEMENT	
U.S. Army Arman ATTN: AMSTA-A		nent and Engineering Center

Rock Island, IL 61299-7300

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SOSAC-DEV), was tasked by the U.S. Army Armament Research, Development and Engineering Center (ARDEC) to conduct a First Article Test per MIL-STD-1660, Design Criteria for Ammunition Unit Loads on the 2.75-inch Hydra 70, PA150, Rocket Pallet produced by Delfasco of Tennessee, Greeneville, TN. Two of the three pallets submitted by Delfasco were evaluated using MIL-STD-1660 test requirements. No significant flaws were found in the two pallets during testing so the third pallet was not evaluated. As a result of the performance of the pallets during testing, the 2.75 inch, Hydra 70, PA150, Rocket Pallet produced by Delfasco is recommended for USA-wide use.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES 23	19a. NAME OF RESPONSIBLE PERSON Fenster, Lynn lfenster@dtic.mil	
a. REPORT Unclassifi ed	b. ABSTRACT Unclassifie d	c. THIS PAGE Unclassifie d	Public Release		19b. TELEPHONE NUMBER International Area Code Area Code Telephone Number 703 767-9007 DSN 427-9007

AVAILABILTY NOTICE

A copy of this report will be furnished each attendee on automatic distribution. Additional copies or authority for reprinting may be obtained by written request from:

Director U.S. Army Defense Ammunition Center ATTN: SOSAC-DEV 1 C Tree Road, Bldg. 35 McAlester, OK 74501-9053

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official endorsement.

The information contained herein will not be used for advertising purposes.

ABSTRACT

The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SOSAC-DEV), was tasked by the U.S. Army Armament Research, Development and Engineering Center (ARDEC) to conduct a First Article Test per MIL-STD-1660, Design Criteria for Ammunition Unit Loads on the 2.75-inch, Hydra 70, PA150, Rocket Pallet produced by Delfasco of Tennessee, Greeneville, TN. Two of the three pallets submitted by Delfasco were evaluated using MIL-STD-1660 test requirements. No significant flaws were found in the two pallets during testing so the third pallet was not evaluated. As a result of the performance of the pallets during testing, the 2.75 inch, Hydra 70, PA150, Rocket Pallet produced by Delfasco is recommended for USA-wide use.

Prepared by:

WILLIAM R. MEYER

Lead Validation Engineer

Reviewed by:

JERRY W. BEAVER

Chief, Validation Engineering Division

U.S. ARMY DEFENSE AMMUNITION CENTER

VALIDATION ENGINEERING DIVISION MCALESTER, OK 74501-9053

REPORT NO. 00-03

2.75-INCH ROCKET HYDRA PALLET MIL-STD-1660 FIRST ARTICLE TESTING (FAT)

TABLE OF CONTENTS

PA NC	ART D.	PAGE
1.	INTRODUCTION	1-1
	A. BACKGROUND	1-1
	B. AUTHORITY	1-1
	C. OBJECTIVE	1-1
	D. CONCLUSION	1-1
2.	ATTENDEES	2-1
3.	TEST PROCEDURES	3-1
4.	TEST EQUIPMENT	4-1
5.	TEST RESULTS	5-1
6.	INTERIM TEST REPORT	. 6-1
7	DRAWING	7 - 1

PART 1 – INTRODUCTION

- A. <u>BACKGROUND</u>. The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SOSAC-DEV), was tasked by the U.S. Army Armament Research, Development and Engineering Center (ARDEC) to conduct a First Article Test per MIL-STD-1660, Design Criteria for Ammunition Unit Loads on the 2.75-inch, Hydra 70, PA150, Rocket Pallet produced by Delfasco of Tennessee, Greeneville, TN.
- B. <u>AUTHORITY</u>. This test was conducted IAW mission responsibilities delegated by the U.S. Army Operations and Support Command (Prov), Rock Island, IL. Reference is made to the following:
- 1. Change 6, AR 740-1, 18 August 1976, Storage and Supply Activity Operation.
- 2. IOC-R, 10-23, Mission and Major Functions of USADAC, 7 January 1998.
- C. <u>OBJECTIVE</u>. The objective of the tests was to determine if the pallet and its associated metal adapters produced by Delfasco met MIL -STD-1660 test requirements prior to the acceptance of the pallets by the U.S. Army (USA).
- D. <u>CONCLUSION</u>. Two of the three pallets submitted by Delfasco were evaluated using MIL-STD-1660 test requirements. No significant flaws were found in the two pallets during testing so the third pallet was not evaluated. As a result of the performance of the pallets during testing, the 2.75 inch, Hydra 70, PA150, Rocket Pallet produced by Delfasco is recommended for USA-wide use.

PART 2 - ATTENDEES

DATES PERFORMED: MARCH 29-31, 2000

ATTENDEE	MAILING ADDRESS
<u> </u>	

William R. Meyer Director

General Engineer U.S. Army Defense Ammunition Center

DSN 956-8090 ATTN: SOSAC-DEV (918) 420-8090 1 C Tree Road, Bldg. 35

McAlester, OK 74501-9053

Michael S. Bartosiak Director

Mechanical Engineer U.S. Army Defense Ammunition Center

DSN 956-8083 ATTN: SOSAC-DEM (918) 420-8083 1 C Tree Road, Bldg. 35

McAlester, OK 74501-9053

Arnold Jewett General Dynamics Ordinance Systems

Design Specialist Lakeside Avenue

(802) 657-6254 Burlington, VT 05401-4985

PART 3 - TEST PROCEDURES

The test procedures outlined in this section were extracted from the MIL-STD-1660, Design Criteria for Ammunition Unit Loads, 8 April 1977. This standard identifies nine steps that a unitized load must undergo if it is to be considered acceptable. The four tests that were conducted on the test pallets are summarized below.

A. <u>STACKING TEST</u>. The unit load was tested to simulate a stack of identical unit loads stacked 16 feet high, for a period of one hour. This stacking load was simulated by subjecting the unit load to a compression weight equal to an equivalent 16-foot stacking height. The compression load was calculated in the following manner. The unit load weight was divided by the unit load height in inches and multiplied by 192. The resulting number was the equivalent compressive force of a 16-foot-high load. Figure 1 below shows an example of a unit load in the compression tester.

Figure 1. Example of Compression Tester.

(2.75-inch Hydra 70, PA151 Rocket Pallet in the compression tester.)

B. <u>REPETITIVE SHOCK TEST</u>. The repetitive shock test was conducted IAW Method 5019, Federal Standard 101. The test procedure is as follows: The test specimen was placed on (not fastened to) the platform. With the specimen in one position, the platform was vibrated at 1/2-inch amplitude (1-inch double amplitude) starting at a frequency of approximately 3 cycles per second. The frequency was steadily increased until the package left the platform. The resonant frequency was achieved when a 1/16-inch-thick feeler gage momentarily slid freely between every point on the specimen in contact with the platform at some instance during the cycle. Midway into the testing period, the specimen was rotated 90 degrees, and the test continued for the duration. Unless failure occurred, the total time of vibration was three hours. Figure 2 shows an example of the repetitive shock test.

Figure 2. Example of the Repetitive Shock Test.

("Clip-Lok" pallet on the vibration table.)

C. <u>EDGEWISE ROTATIONAL DROP TEST</u>. This test was conducted using the procedures of Method 5008, Federal Standard 101. The procedure for the edgewise rotational drop test is as follows: The specimen was placed on its skids with one end of the pallet supported on a beam 4-1/2 inches high. The height of the beam was increased if necessary to ensure that there was no support for the skids between the ends of the pallet when dropping took place, but was not high enough to cause the pallet to slide on the supports when the dropped end was raised for the drops. The unsupported end of the pallet was then raised and allowed to fall freely to the concrete, pavement, or similar underlying surface from a prescribed height. Unless otherwise specified, the height of drop for level A protection conforms to the following tabulation:

GROSS WEIGHT (WITHIN RANGE LIMITS)	DIMENSIONS OF ANY EDGE, HEIGHT OR WIDTH (WITHIN RANGE LIMITS)	HEIGHT OF DRO	OPS ON EDGES
		Level A	Level B
(Pounds)	(Inches)	(Inches)	(Inches)
150 -250	60 - 66	36	27
250 -400	66 - 72	32	24
400 - 600	72 - 80	28	21
600 - 1,000	80 - 95	24	18
1,000 - 1,500	95 - 114	20	16
1,500 - 2,000	114 - 144	17	14
2,000 - 3,000	Above 145 - No limit	15	12
Above - 3,000		12	9

Figure 3. Example of Edgewise Rotational Drop Test (2.75-inch Hydra 70, PA151, Rocket Pallet)

D. INCLINE-IMPACT TEST. This test was conducted by using the procedure of Method 5023, Incline-Impact Test of Federal Standard 101. The procedure for the incline-impact test is as follows: The specimen was placed on the carriage with the surface or edge to be impacted projecting at least 2 inches beyond the front end of the carriage. The carriage was brought to a predetermined position on the incline and released. If it were desired to concentrate the impact on any particular position on the container, a 4- by 4-inch timber would be attached to the bumper in the desired position before the test. The carriage struck no part of the timber. The position of the container on the carriage and the sequence in which surfaces and edges were subjected to impacts was at the option of the testing activity and depends upon the objective of the tests. This test was to determine satisfactory requirements for a container or pack, and, unless otherwise specified, the specimen was subjected to one impact on each surface that has each dimension less than 9.5 feet. Unless otherwise specified, the

velocity at the time of the impact was 7 feet-per-second. Figure 4 shows an example of this test.

Figure 4. Example of the Incline-Impact Test. (2.75 Inch, Hydra 70, PA151 Rocket Pallet on incline-impact tester.)

E. <u>SLING COMPATIBILITY TEST</u>. Unit loads utilizing special design or non-standard pallets shall be lifted, swung, lowered and otherwise handled as necessary, using slings of the types normally used for handling the unit loads under consideration. Slings shall be easily attached and removed. Danger of slippage or disengagement when load is suspended shall be cause for rejection of the unit load.

PART 4 - TEST EQUIPMENT

A. <u>COMPRESSION TESTER</u>.

1. Manufacturer: Ormond Manufacturing

2. Platform: 60- by 60-inches

3. Compression Limit: 50,000 pounds

4. Tension Limit: 50,000 pounds

B. TRANSPORTATION SIMULATOR.

1. Manufacturer: Gaynes Laboratory

2. Capacity: 6,000-pound pallet

3. Displacement: 1/2-inch amplitude

4. Speed: 50 to 400 RPM

5. Platform: 5- by 8-foot

C. INCLINED PLANE.

1. Manufacturer: Conbur Incline

2. Type: Impact Tester

3. Grade: 10 percent incline

4. Length: 12-foot

PART 5 - TEST RESULTS

Two of three pallets submitted by Delfasco of Tennessee were inertly loaded to the specified design weight using two 4- by 4-inch lengths of lumber, two 2- by 4-inch lengths of lumber, and a quantity of ammunition simulant to bring each container individually to the required weight. Special care was taken to ensure that each container had the proper amount of weight in order to achieve a realistic pallet center of gravity (CG). Once properly prepared, the first two pallets were tested using MIL-STD-1660, Design Criteria for Ammunition Unit Loads, requirements. As a result of the good performance of the pallets during testing, the third pallet submission was not tested.

A. PALLET NO. 1.

Date: 29-30 March 2000

Weight: 2,245 pounds

Length: 78-1/2 inches

Width: 29-3/8 inches

Height: 43-1/2 inches

1. <u>Compression Test</u>. The test pallet was compressed with a load force of 9,285 pounds for 60 minutes. No damage was noted as a result of this test. See figure 5 below for a picture of the test pallet in the compression unit.

Figure 5. PA150 Hydra Test Pallet in the Compression Tester.

2. <u>Repetitive Shock Test</u>. The test pallet was vibrated 90 minutes at 225 RPM in the longitudinal orientation and 90 minutes at 168 RPM in the lateral orientation. See figure 6 below.

Figure 6. PA150 Hydra Test Pallet on the Vibration Table.

- 3. Edgewise Rotational Drop Test. The test pallet was edgewise rotationally dropped from a height of 15-inches on the longitudinal and 12 inches on the lateral drops due the load slipping off the wooden block after a height of 12 inches was exceeded during testing. No problems were encountered.
- 4. <u>Incline-Impact Test</u>. The test pallet was incline-impacted on all four sides with the pallet impacting the stationary wall from a distance of 8 feet. Again, no problems were encountered.
- 5. <u>Sling Compatibility Test</u>. The test pallet was lifted off of the ground using the top lift adapter by four points, three points, two diagonal points, two adjacent points, and one point. No shifting of the containers or permanent deformation of the top lift adapter was noted.
- 6. <u>Post Test Inspection</u>. Following completion of MIL-STD-1660 testing, the pallet was disassembled and inspected for damage. Minor weld cracks were noted on the pallet deck that were in line with the pallet posts. Some minor cracking was noted on the bottom of the support posts that were in contact with the skids. No significant damage was noted in the top or bottom adapters or the pallet deck. See figure 7 below.

Figure 7. Picture of First Pallet Taken After Testing.

5-3

B. PALLET NO. 2.

Date: 31 March 2000

Weight: 2,245 pounds

Length: 78-1/2 inches

Width: 29-3/8 inches

Height: 43-1/2 inches

1. <u>Compression Test</u>. The test pallet was compressed with a load force of 9,265 pounds for 60 minutes. No damage was noted as a result of this test.

- 2. Repetitive Shock Test. The test pallet was vibrated 90 minutes at 222 RPM in the longitudinal orientation and 90 minutes at 182 RPM in the lateral orientation. The center of gravity appeared to be too high which did not allow the pallet to vibrate at the desired amplitude. A wood cradle was made to brace the pallet towards the back of the vibration table to minimize the severity of the top heavy load and provide a vibration where the 1/16-inch feeler gage could move freely by each point of the pallet that was in contact with the platform. During both phases of testing no problems were noted.
- 3. Edgewise Rotational Drop Test. The test pallet was edgewise rotationally dropped from a height of 15-inches on the longitudinal and 12 inches on the lateral drops. See figure 8 below.

Figure 8. Edgewise Rotational Drop of Pallet No. 2

- 4. <u>Incline-Impact Test</u>. No damage was noted to the pallet or the adapters in the first successful pallet test so this test was not repeated.
- 5. <u>Sling Compatibility Test</u>. The test pallet was lifted off of the ground using the top lift adapter by only one point due to the successful completion of the first pallet adapter. No shifting of the containers or permanent deformation of the top lift adapter was noted.
- 6. <u>Post Test Inspection</u>. Following completion of MIL-STD-1660 testing, the pallet was disassembled and inspected for additional damage. Similar to the first pallet, minor weld cracks were noted on some of the areas on the pallet deck that were in line with the pallet posts. Again, some minor weld cracking on the post where they contact the skids was also noted. No significant damage was noted in the top or bottom adapters or the pallet deck.
- 7. <u>Conclusion.</u> Both pallets met MIL-STD-1660 Design Criteria for Ammunition Unit Loads with no major problems noted.

PART 6 – INTERIM TEST REPORT

INTERIM TEST REPORT

VALIDATION ENGINEERING DIVISION
U.S. ARMY DEFENSE AMMUNITION CENTER
MCALESTER, OKLAHOMA 74501-9053

1. TEST TITLE:

2.75-Inch Rocket Hydra Pallet

MIL-STD-1660 FAT Test

2. TEST NUMBER:

00-03

3. DATES OF TESTS:

29 - 31 March 2000

4. ITEM TESTED:

2.75-Inch Rocket Hydra metal pallets and associated adapters.

5. PURPOSE:

To determine if the FAT pallets submitted meet MIL-STD-1660 first article requirements prior to manufacturing. Note:

Manufacturing process modified to include a straightening

operation to the deck.

6. TEST ENGINER:

William Meyer

7. TEST OBSERVERS:

Arnold Jewett, General Dynamics Ordinance Systems,

Burlington, VT

Michael Bartosiak, DAC, SIOAC-DEM

8. TESTS CONDUCTED:

MIL-STD-1660

a. Stacking Test.

b. Repetitive Shock Test.

c. Edgewise Rotational Drop Test.

d. Incline-Impact Test.

e. Sling Compatibility Test.

9. TEST OBSERVATIONS:

During both series of tests, minor weld cracks were noted on the pallet deck in line with the skid support posts. Minor cracks were noted at the bottom of the support posts in contact with the skids.

No other significant observations noted.

10. TEST CONCLUSION:

Passed MIL-STD-1660 testing.

11. PREPARED BY:	the Rolley	DATE: 3-31-00
	WILLIAM R. MEYER	
	General Engineer, Validation	
	Engineering Division	
12. SUBMITTED BY:	Day W deaver	DATE: 3/31/10
	JERRY W. BEAVER	
•	Chief, Validation	
	Engineering Division	, /
13. CONCURRED BY:	mike Burhay	DATE: 4/4/20
fo	MARK C. JORDAN	, ,
	Chief, Maintenance	
	Engineering Division	<u>,</u>
14. APPROVED BY:	William I Emt	DATE: 4/4/00
•	WILLIAM F. ERNST	
	Associate Director for	
	Engineering	

PART 7 – DRAWING

APPENDIX 60

UNITIZATION PROCEDURES FOR AMMUNITION AND COMPONENTS PACKED IN CYLINDRICAL METAL OR PLASTIC CONTAINERS ON 4-WAY ENTRY METAL PALLETS

2.75" HYDRA ROCKET, PACKED 4 PER PA150 CYLINDRICAL METAL CONTAINER, UNITIZED 12 PER 78.50" X 29.31" SPECIAL METAL PALLET; APPROX CONTAINER SIZE 78.50" L X 9.25" W X 9.25" H

NOTICE: THIS APPENDIX CANNOT STAND ALONE BUT MUST BE USED IN CONJUNCTION WITH THE BASIC UNITIZATION PROCEDURES DRAWING 19-48-4231-20PM1006.

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE:	U.S. AR	MY MATER	IEL C	OMM	AND DR	AWING
DISTRIBUTION IS UNLIMITED.	ONI YMRA .2.U .GBYORPPA	ZMOTTAREGO JATRIZU	DRAFT	NAM2	BETTY	J. KUNDERT
2	COMMAND NLH	, ,	ENGIN	EE R	VACINA 2	M. SCHULTZ
	Poved A Challen &	hindly fre	SUPPLY ENGI DIVISI		RANSPORTATION ENGINEERING DIVISION	VALIDATION ENGINEERING DIVISION
1	AZB-RA-ATZMA	CMT-DIZMA	7.1. Mu	chil a	J. Funk	Alberton
	APPROVED BY ORDER OF COM	.2.U , LARBHED DINIDINAH	whi	LOGISTIC	T Cons	FFICE T
	(crimin	Commande		Α	PRIL 199	4
	U.S. ARHY DEFENSE	AMMUNITION CENTER	CLASS	MOISIVIO	DRAVING	FILE
DO NOT SCALE	REVISION NO. 2	FEBRUARY 1998	19	48	4231/	20PM
	SEE THE REVISION	LISTING ON PAGE 2			60	1006

PROJECT CA 243/60-87

PALLET UNIT DATA				
ITEMS INCLUDED		HAZARD CLASS AND DIVISION		APPROX
NZN	DODIC	0D CLASS	COMP GROUP	WEIGHT LBS
1340- 01-379-7814 01-289-4719 01-379-6347 01-379-7780 01-379-7790 01-379-7797 01-379-7899 01-446-4095 01-446-4097	H463 H463 H464 H464 H974 HA14	(04)1.2 (04)1.2 (05)1.2 (05)1.2 (04)1.2 (04)1.2 (05)1.2	шооошшо	2,239 2,239 2,239 2,239 2,239 2,239 2,239 2,239 2,239

HAZARO CLASSIFICATION DATA CONTAINED IN THE ABOVE CHART IS FOR GUIDANCE AND INFORMATIONAL PURPOSES ONLY. VERIFICATION OF THE SPECIFIED DATA SHOULD BE MADE BY CONSULTING THE MOST RECENT JOINT HAZARO CLASSIFICATION SYSTEM LISTING OR OTHER APPROVED LISTING(S).

REVISIONS

REVISION NO. 1, DATED MARCH 1996, CONSISTS OF:

- 1. ADDING ITEM BY NATIONAL STOCK NUMBER TO "PALLET UNIT DATA" CHART.
- 2. CHANGING GENERAL NOTE "H" ON PAGE 3.
- 3. CHANGES IN ACCORDANCE WITH ECP MST3003.

REVISION NO. 2, DATED FEBRUARY 1998, CONSISTS OF:

- 1. DELETING GENERAL NOTE RELATING TO STRAP CUTTER AND RE-LETTERING OTHER GENERAL NOTES.
- 2. CHANGING THE STORAGE DRAWING NOTE ON PAGE 3 TO REFLECT 19-48-4250/50-1-2-3-4-14-22PM1004.
- 3. ADDING ITEM BY NATIONAL STOCK NUMBER TO "PALLET UNIT DATA CHART" AND UPDATING THE HAZARD CLASS.
- 4. CHANGES IN ACCORDANCE WITH ECP RBA3002.

PAGE 2

PROJECT CA 243/60-87

DRAWING 19-48-4232/60

SEE GENERAL NOTE "B" AT RIGHT.

12 CONTAINERS OF	F 2.75 HYDRA RO	OCKETS	
(4 PER CONTAINE	R) AT 162 LBS		1,944 LBS (APPROX)
DUNNAGE			185 LBS
PALLET			110 LBS

TOTAL WEIGHT - - - - - - 2,239 LBS (APPROX)
CUBE - - - - - - - 57.3 CU FT (APPROX)

BILL OF MATER	RIAL
HETAL PALLET, 78.50° X 29.31° - 1 TOP ASSEMBLY 1 STEEL STRAPPING, 3/4° - 41.00° SEAL FOR 3/4° STRAPPING 4 SEAL FOR 1-1/4° TRAPPING 4 SEAL FOR 1-1/4° STRAPPING 4	REOD 90 LBS REOD 85 LBS REOD 2.93 LBS REOD 7.00 LBS

GENERAL NOTES

- A. THIS APPENDIX CANNOT STAND ALONE BUT MUST BE USED IN CONJUNCTION WITH THE BASIC UNITIZATION PROCEDURES. DRAWING 19-48-4231-20PH1006. TO PRODUCE AN APPROVED UNIT LOAD, ALL PERTINENT PROCEDURES. SPECIFICATIONS AND CRITERIA SET PORTH WITHIN THE BASIC DRAWING WILL APPLY TO THE PROCEDURES DELINEATED IN THIS APPENDIX. ANY EXCEPTIONS TO THE BASIC PROCEDURES ANE SPECIFIED IN THIS APPENDIX.
- DIMENSIONS, CUBE AND WEIGHT OF A PALLET UNIT VILL VARY SLIGHTLY DEPENDING UPON THE ACTUAL DIMENSIONS OF THE CONTAINER AND THE WEIGHT OF THE SPECIFIC ITEM BEING UNITIZED.
- C. BUNDLING STRAPS MUST BE TENSIONED AND SEALED PRIOR TO THE APPLICATION OF THE UNITIZING STRAPS. BUNDLING STRAPS MUST ALSO BE INSTALLED AS CLOSE TO THE OUTER RINGS AS POSSIBLE, TO AVOID DAMAGE TO THE CONTAINER.
- D. ALTHOUGH THE CONTAINERS DEPICTED IN THE UNIT LOAD AT LEFT ARE CONSTRUCTED WITH INTERLOCKING DEVICES. THE INTERLOCK WILL NOT PUNCTION PROPERLY UNLESS THE CONTAINERS ARE POSITIONED SO THAT THE "PENS" OF THE INTERLOCKS ARE FACING UPWARD. THIS ORIENTATION WILL ALD IN THE PREVENTION OF CONTAINER MOVEMENT, BOTH LATERALLY AND LONGITUDINALLY, DURING SHIPMENT OF THE UNIT LOAD.
- E. THE FOLLOWING AMC DRAWINGS ARE APPLICABLE FOR OUTLOADING AND STORAGE OF THE ITEMS COVERED BY THIS APPENDIX.

CARLOADING - - - 19-48-4242/60-SPH1004
TRUCKLOADING - - 19-48-423-60-11PH1004
STORAGE - - 19-48-4250/60-1-2-3-4-14-22PH1004
END OPENING ISO
CONTAINER - - 19-48-4245/60-1SPH1009
MILVAN - - - 19-48-4245/60-1SPH1009
SIDE OPENING ISO
CONTAINER - - 19-48-4247/60-1SPH1016

- F. IF ITEMS COVERED HEREIN ARE UNITIZED PRIOR TO ISSUANCE OF THIS APPENDIX, THE CONTAINERS NEED NOT BE REUNITIZED SOLELY TO CONFORM TO THIS APPENDIX.
- G. FOR DETAILS OF THE PALLET AND PALLET ADAPTERS, SEE AMCCOM DRAWING ACVO0156, MIL-A-70788 AND MIL-P-70786.
- H THE UNITIZATION PROCEDURES DEPICTED HEREIN MAY ALSO BE USED FOR UNITIZING 2.75" HYDRA ROCKETS WHEN IDENTIFIED BY DIFFERENT NATIONAL STOCK NUMBERS (NSN) THAN WHAT IS SHOWN ON PAGE 2. PROVIDED THE CONTAINER PACK DOES NOT VARY FROM WHAT IS DELINEATED HEREIN. THE EXPLOSIVE CLASSIFICATION OF OTHER ITEMS MAY BE DIFFERENT THAN WHAT IS SHOWN.
- WHAT IS SHOWN.

 J. EMPTY OR REJECT PALSO CONTAINERS WILL BE USED AS FILLER CONTAINERS AS NECESSARY. FILLER CONTAINERS OF FILLER CONTAINERS AS NECESSARY. FILLER CONTAINERS. ARE TO BE CONTAINERS. IF THREE FULL CONTAINERS ARE TO BE OHITTED. WHEN REJECTED FILLER CONTAINERS WILL BE ONITTED WHEN REJECTED FILLER CONTAINERS ARE USED IN PLACE OF OHITTED CONTAINERS TO COMPLETE A LAYER ON A PALLET, THE WORD FEMTY VILL BE STENKILED IN ORANGE ON THE EMPTY CONTAINERS IN COMPLETE A LAYER ON A PALLET, THE WORD FEMTY VILL BE STENKILED IN ORANGE ON THE EMPTY CONTAINER IN 1-10K SIZE LETTERS. THE WORD FEMTY VILL BE STENKILED ON THE FOR HOME OF THE CONTAINER AND SPACED LAND THE BOOT BERNEL TO THE CONTAINER AND SPACED LODGERES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AND THE PALSO CONTAINER SEED PROTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AS MEASURED AROUND THE CONTAINER AND SPACED 120 DEGREES APART AND THE PALSO CONTAINER AND SPACED 120 DEGREES APART AS MEASURED
- K. FOR DETAILS OF THE PAISO CONTAINER SEE PICATINNY DRAWING 12937856-2.

PAGE 3

PROJECT _CA 243/60-87

DRAWING 19-48-4231/60

ÃĞE 4	