

Interrogation écrite n°3

le 19 Janvier 2018. Durée: 3 heures

Consignes:

Il est rappelé de soigner l'**orthographe** et la **présentation** des copies. Calculatrice et formulaire autorisés. **Tout résultat absurde ou non homogène sans commentaire sera sanctionné par un malus.**

Première partie La cuisson par induction

Les systèmes de cuisson par induction sont constitués d'une bobine inductrice produisant un champ magnétique envoyé sur le fond d'une casserole en acier, séparé de la bobine par une vitre isolante. Nous allons étudier ce système de chauffage dans cette partie du sujet.

Tableau des données numériques de la partie I :

Dénomination	symbole	valeur	unité
Perméabilité du vide	μ_0	$4\pi \times 10^{-7}$	$H.m^{-1}$
Permittivité du vide	ϵ_0	$1/(36\pi \times 10^9)$	$F.m^{-1}$
Amplitude efficace du courant dans l'inducteur	I_1	0,2	A
Tension efficace du générateur dans l'inducteur	V_1	240	V
Fréquence de la tension du générateur dans l'inducteur	f	25	kHz
Longueur du solénoïde inducteur	l	9	cm
Rayon du solénoïde inducteur	R	10	cm
Nombre total de spires du solénoïde inducteur	N	10	
Inductance propre de l'inducteur	L_1	$4,4 \times 10^{-5}$	H
Résistance du circuit inducteur	R_1	$1,8 \times 10^{-2}$	Ω
Résistivité du fond de casserole magnétique induit	ρ_a	5×10^{-6}	$\Omega.m$
Résistance du circuit induit magnétique ou non	R_2	$1,2 \times 10^{-2}$	Ω
Perméabilité relative du fond de casserole magnétique induit	μ_r	350	
Rayon « utile » du fond de casserole magnétique induit	R_C	10	cm
Epaisseur du fond de casserole induit	e_T	5	mm
Epaisseur de pénétration des ondes électromagnétiques	e_{δ}	380,5	μm
Inductance propre de l'induit (casserole)	L_2	$2,9 \times 10^{-7}$	Н
Inductance mutuelle induit / inducteur	M	2	μH

On donne, en coordonnées cylindriques : $\vec{rot}(\vec{A}) = (\frac{1}{r}\frac{\partial A_z}{\partial \theta} - \frac{\partial A_\theta}{\partial z})\vec{u_r} + (\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r})\vec{u_\theta} + (\frac{1}{r}\frac{\partial (rA_\theta)}{\partial r} - \frac{1}{r}\frac{\partial A_r}{\partial \theta})\vec{u_z}$ On rappelle également que la résistivité électrique ρ est l'inverse de la conductivité électrique γ .

1 Etude du circuit inducteur

Le circuit inducteur peut être modélisé par un solénoïde de rayon $R=10\ cm$, de longueur $l=9\ cm$ contenant n spires par mètre (ou N=10 spires au total), et parcouru par un courant i_1 (dont le sens conventionnel est indiqué sur la Figure 1). Ce circuit est étudié ici seul (sans la partie induite).

Figure 1: Circuit inducteur modélisé par un solénoïde

Question 1 : En considérant le solénoïde comme infini, et en utilisant les équations de Maxwell, montrer que le champ magnétique à l'intérieur du solénoïde est égal à : $\vec{B_0} = \mu_0 n i_1 \ \vec{u}_z$. On admettra que le champ magnétique est nul <u>en dehors</u> du solénoïde, et on détaillera la relation de passage utilisée.

Question 2 : En déduire l'expression de l'inductance propre L_1 du circuit inducteur en fonction de μ_0 , N, R et l. Calculer L_1 .

2 Etude du circuit induit

Le circuit inducteur étudié précédemment est positionné sous le fond d'une casserole, séparé d'elle par une plaque de verre trempé. Le générateur branché sur le circuit inducteur délivre une tension sinusoïdale de forme : $v_1(t) = V_1\sqrt{2}\cos(\omega t + \varphi_1)$, donnant naissance à un courant $i_1(t) = I_1\sqrt{2}\cos(\omega t)$ dans le circuit inducteur, avec $V_1 = 240$ V et $I_1 = 0, 2$ A. La casserole posée sur la plaque de verre sera assimilée à un disque circulaire métallique conducteur, **de perméabilité relative** $\mu_r = 350$ et d'épaisseur $e_T = 5$ mm (Figure 2). La casserole est soumise au champ magnétique sur une zone circulaire de rayon $R_c = 10$ cm, correspondant au rayon du solénoïde inducteur. La fréquence du générateur qui alimente le circuit inducteur est de 25 kHz.

Le champ magnétique \vec{B}_1 présent dans le circuit induit (fond de la casserole) est orienté le long de $+\vec{u}_z$, sa valeur est **uniforme dans toute l'épaisseur de la casserole** et <u>égale à $\vec{B}_1 = \mu_r \vec{B}_0$ </u> (\vec{B}_0 défini dans la question 1). Ces hypothèses seront raisonnables si les épaisseurs concernées restent faibles.

Figure 2: Vue générale du système inducteur / induit

Question 3 : Expliquer <u>rigoureusement</u> mais sans calculs, grâce aux lois de l'électromagnétisme, pourquoi un <u>courant</u> électrique apparaît dans le métal de la casserole.

Question 4 : Pour une résistivité de l'acier de la casserole de ρ_a =5 × 10⁻⁶ $\Omega.m$, et en s'appuyant sur les propriétés des conducteurs <u>non chargés en volume</u> en régime quasi-statique, écrire en les simplifiant les équations de Maxwell valables dans l'acier de la casserole. Justifier.

Le champ électrique et la densité de courant dans la casserole seront considérés dans la suite comme indépendants de z sur une épaisseur $e_{\delta}=380,5~\mu m$ et $\underline{\mathbf{nuls}}$ dans tout le reste de l'épaisseur de la casserole. On négligera tout effet d'auto-induction dans la casserole (le champ magnétique $\vec{B_1}$ existant dans la casserole sera égal à $\mu_r \vec{B_0}$, avec $\vec{B_0}$ possédant la même valeur qu'au centre du solénoïde de la question 1). On admettra de plus que le champ électrique $\vec{E_1}$ qui apparaît dans le métal de la casserole est orthoradial $(\vec{E_1}=E_{1\theta}\vec{u_\theta})$, qu'il ne dépend que de r, et que $E_{1\theta}(r=0)=0$. Avec toutes ces hypothèses, les composantes orthoradiales du champ électrique et de la densité de courant qui apparaissent dans la casserole peuvent être décrite par :

$$\underline{E_{1\theta}} = E_1(r) \, e^{j(\omega t + \varphi_E)} \qquad \qquad \underline{j_{1\theta}} = j_1(r) \, e^{j(\omega t + \varphi_J)}$$

Question 5 : Calculer la composante $E_{1\theta}$ du champ électrique en fonction de ω , r, μ , n, I_1 et préciser l'expression de $E_1(r)$ et de φ_E . En déduire l'expression de $j_{1\theta}$, celle de $j_1(r)$ et de φ_J .

La puissance Joule **volumique** dissipée dans le circuit induit est égale à $p_1 = \rho_a j_{1\theta}^2$. On rappelle également que la valeur moyenne sur une période de la fonction $sin^2(\omega t)$ est $: \langle sin^2(\omega t) \rangle = \frac{1}{2}$.

Question 6 : Calculer la puissance Joule **volumique moyenne** $< p_1 >$ dissipée en chaque point de la casserole. En déduire l'expression de la puissance Joule moyenne $< P_1 >$ dissipée par tout le fond de la casserole sur un disque de rayon R_C .

Question 7 : Application numérique : calculer $\langle P_1 \rangle$ pour $R_C = 10$ cm.

Question 8 : Commenter la nécessité d'utiliser des casseroles à fond ferromagnétique pour que le processus de chauffage par induction soit efficace.

Les champs électriques et magnétiques sont en fait des ondes, aspect qui a été négligé dans les questions précédentes. La densité de courant \vec{j} qui apparaît dans le fond de la casserole à cause de l'induction est également une onde. On peut montrer qu'elle est orthoradiale $(\vec{j}=j_{\theta}\vec{u}_{\theta})$ et peut s'écrire :

$$j_{\theta} = Ae^{-\frac{z}{\delta}}e^{j(\omega t - \frac{z}{\delta})}$$

 $O\grave{u}\ \delta = \sqrt{rac{2}{\mu\gamma\omega}}\ et\ A\ est\ une\ constante\ r\'eelle\ positive.$

Question 9 : A partir de l'expression de \vec{j} , donner toutes les caractéristiques possibles de cette onde.

Question 10 : A partir d'un graphe le plus précis possible, décrire l'évolution <u>en fonction de t</u> de j_{θ} à la profondeur $z_0 = 0$ (interface entre le verre trempé et la casserole en acier).

Question 11 : A partir d'un graphe le plus précis possible, décrire l'évolution <u>en fonction de z</u> de j_{θ} pour un temps $t_0 = 0$ fixé.

Question 12 : Calculer δ (On rappelle que pour l'acier utilisé $\mu_r=350$). Comparer à l'épaisseur de la casserole $e_T=5$ mm) et commenter.

3 Etude du couplage entre inducteur et circuit induit

L'inducteur est maintenant modélisé par un enroulement de N spires de cuivre d'auto-inductance $L_1=4,4\times 10^{-5}\,H$ et de résistance $R_1=1,8\times 10^{-2}\,\Omega$. Il est alimenté par une tension $v_1(t)=V_1\sqrt{2}cos(\omega t+\varphi_1)$. On considère que le disque métallique (fond de casserole) en acier magnétique se comporte comme une spire d'auto-inductance $L_2=2,9\times 10^{-7}\,H$ et de résistance $R_2=1,2\times 10^{-2}\,\Omega$, parcourue par un courant i_2 . Les deux circuits sont couplés par une inductance mutuelle $M=2\,\mu H$.

Figure 3: circuit couplé

Question 13 : En appliquant les lois de Kirchhoff, écrire les équations qui couplent les courants i_1 et i_2 en régime sinusoïdal.

Question 14 : En déduire le rapport des courants $\frac{\underline{i_2}}{\underline{i_1}}$ et le rapport $\frac{v_1}{\underline{i_1}}$ appelé **impédance d'entrée** complexe du système et noté Z_e .

Question 16 : Calculer $|Z_e|$.

Question 17 : Pour des raisons de sécurité, on limite les pertes par effet Joule dans l'inducteur à P_{max} = 50 W. Quelles sont alors les valeurs efficaces maximales du courant $\underline{i_1}$ et de la tension $\underline{v_1}$? (Attention : les valeurs de courant trouvées peuvent être élevées.)

Question 18 : Pour cette valeur maximale du courant $\underline{i_1}$, calculez le courant maximal dans le disque métallique et la puissance de chauffe P_2 de ce disque. Indiquez le rendement en puissance (défini comme $r=\frac{P_2}{P_{max}+P_2}$) de la table à induction.

Deuxième partie

Génération et propagation d'une onde ultrasonore dans un tube à parois rigides contenant un fluide parfait – Application à l'imagerie médicale par effet photo-acoustique

Les techniques d'imagerie médicale par effet photo-acoustique utilisent les ondes émises par les zones de tissus (assimilés à un fluide parfait) ayant absorbé la lumière et possédant un fort coefficient d'absorption de la lumière. Des récepteurs ultrasonores captent ces ondes, ce qui permet par la suite

Figure 4: Emission d'une onde ultra-sonore dans les tissus biologiques sous l'effet d'une illumination.

de reconstruire une image basée sur les contrastes d'absorption des différentes zones de tissus. Nous allons étudier certaines propriétés de telles ondes dans un cas unidimensionnel.

On se ramène donc dans la suite au cas d'une onde ultrasonore créée dans un tube d'axe x à parois rigides et transparentes contenant un fluide de densité ρ et de module de compression κ , par absorption d'une impulsion lumineuse très brève. La zone ayant absorbé une partie de la lumière s'échauffe soudainement et provoque une onde se propageant dans le tube.

Figure 5: Schéma simplifié du système.

L'équation de propagation de l'onde concernant la surpression p dans le fluide est donnée par :

$$\frac{\partial^2 p(x,t)}{\partial x^2} = \frac{\rho}{\kappa} \frac{\partial^2 p(x,t)}{\partial t^2}$$

Question 1 : Quelles sont les solutions générales de cette équation? A quoi correspondent-elles? Donner leur expression à l'aide d'une fonction f et d'une fonction g à définir.

Question 2 : Application numérique : si $\rho = 1,0 \times 10^3~kg.m^{-3}$ et $\kappa = 0,222 \times 10^{10}~Pa$, que vaut la vitesse de propagation V de l'onde ultrasonore?

L'impédance de ce milieu est $Z = \sqrt{\kappa \rho}$.

Question 3 : En déduire que la solution générale de l'équation d'onde pour la vitesse des particules $\frac{\partial u}{\partial t}(x,t)$ peut d'écrire :

$$\frac{\partial u}{\partial t}(x,t) = \frac{1}{\rho V} f(x - Vt) - \frac{1}{\rho V} g(x + Vt)$$

Dans la suite de l'exercice, on illumine la zone du fluide entre $x=-\frac{a}{2}$ et $x=+\frac{a}{2}$ par une impulsion lumineuse très brève de durée τ . Cette zone qui reçoit de l'énergie voit sa température augmenter provoquant donc une surpression.

Question 4 : On souhaite se placer dans le cas où la durée de l'impulsion lumineuse τ est petite devant le temps t_d mis par l'onde acoustique pour traverser le milieu possédant un fort coefficient d'absorption (un vaisseau sanguin par exemple). Si $\tau=5~ns$ et que la largeur du vaisseau sanguin est de $L=100~\mu m$, cette condition est-elle remplie?

L'impulsion optique transporte une énergie par unité de surface ϕ , appelée fluence. Elle induit une surpression p_h donnée par l'expression :

$$p_h = \frac{\beta V^2}{C} \mu \phi$$

Où β , C et μ sont respectivement le coefficient d'expansion thermique, la capacité calorifique massique (à pression constante) et le coefficient d'absorption optique. V est toujours la vitesse de l'onde dans le milieu.

Question 5 : Si $\beta = 2,0 \times 10^{-4}~K^{-1}$, $C = 4,0 \times 10^3~J.kg^{-1}.K^{-1}$, $\mu = 1,0~cm^{-1}$ et $\phi = 10,0~mJ.cm^{-2}$, quelle valeur de la surpression p_h obtient-on? Si p_0 est la pression atmosphérique a-t-on bien $p_h \ll p_0$?

Question 6 : Après le passage de l'impulsion lumineuse, prise comme origine des temps, la surpression vérifie l'équation d'onde établie précédemment avec pour conditions initiales :

$$p(x,t=0) = \begin{cases} p_h \text{ si } \frac{-a}{2} < x < \frac{a}{2} \\ 0, \text{ ailleurs} \end{cases}$$
 et $\frac{\partial u}{\partial t}(x,t=0) = 0$ quel que soit x .

Compte tenu des conditions initiales, et en vous aidant des questions 1 et 3, donner la relation liant f(x,t=0), g(x,t=0), puis exprimer f(x) et g(x) en fonction de p_h . Représenter l'onde de surpression p(x,t) en fonction de x dans les trois cas suivants : t=0, $t=\frac{a}{2V}$ et $t=\frac{a}{V}$.

Question 7: (Bonus) Quel commentaire pouvez-vous faire sur le champ de surpression (forme des ondes, chevauchement, etc).

Feuille à rendre avec votre copie

Prénom et NOM:

