Frühjahr 22 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

(a) Bestimmen Sie für alle $y_0 \in \mathbb{R}$ die Lösung $y:(a,b) \to \mathbb{R}$ des Anfangswertproblems

$$y' = 3t^2y^2, y(0) = y_0$$

auf einem größtmöglichen Existenzintervall (a,b) (in Abhängigkeit von y_0), wobei a<0< b.

(b) Bestimmen Sie ein Fundamentalsystem aus reellwertigen Funktionen der Differentialgleichung

$$u''' + 4u' = 0.$$

Lösungsvorschlag:

(a) Für $y_0=0$ ist $y\equiv 0$ offensichtlich eine Lösung auf \mathbb{R} . Sei nun also $y_0\neq 0$. Mittels Trennung der Variablen findet man schnell, dass $y(t)=\frac{1}{\frac{1}{y_0}-t^3}$ die Lösung des

Problems ist. Die Funktion besitzt eine Singularität bei $t_0 := \sqrt[3]{\frac{1}{y_0}} := \operatorname{sgn}(y_0) \sqrt[3]{\frac{1}{|y_0|}}$. Das Vorzeichen von t_0 stimmt mit dem von y_0 überein, wir müssen das Intervall, also so wählen, dass die 0 enthalten ist. Für $y_0 > 0$ ist die Lösung auf $(-\infty, t_0)$ definiert und kann nicht weiter fortgesetzt werden und für $y_0 < 0$ ist die Lösung auf (t_0, ∞) definiert und kann nicht weiter fortgesetzt werden.

(b) Das zugehörige charakteristische Polynom der Gleichung ist $x^3 + 4x = x(x^2 + 4x)$ was in \mathbb{C} genau die Nullstellen $x = 0, x = \pm 2i$ besitzt. Nach der Theorie linearer Differentialgleichung ist nun $1, \cos(2t), \sin(2t)$ ein reelles Fundamentalsystem.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$