

David TREMBLAY 1748125

Tom AVEDISSIAN 1732195

TP1

Architecture du processeur

INF1600- Architecture des micro-ordinateurs

Groupe 02

Département de génie informatique et génie logiciel

Le 9 octobre 2016 École polytechnique de Montréal

Exercice 1 - Révision logique et arithmétique numérique

1.

- **a**)-68
- **b**) 99
- **c**) 2699
- **d)** -23390
- **e**) -2

2.

ID	Numéros	BIN	OCT	DEC	HEX
a)	5821			X	X
b)	01101011	X	X		X
c)	5213		X	X	X
d)	A4A2				X
e)	11111110	X	X	X	X

3.

Elle assigne à la variable y une valeur qui est déterminée par la comparaison arithmétique (bitor) d'une variable x et de la valeur "24" décalée de 3 bits vers la droite (00011000 \rightarrow 00000011). On peut donc affirmer que la variable y contiendra au-moins XXXXXX11.

4.

- **a)** 11111111111101001
- **b)** 0011101010011000
- c) 11111111010101011

5.

a) EN BINAIRE: 10010101EN HEXADÉCIMAL: 95

Il y a un débordement puisque 107 + 42 = 149 et non -107

b) EN BINAIRE:01010010EN HEXADÉCIMAL: 52

Il y a un débordement puisque 171 + 167 = 338 et non 82

6.

- a)194 167 145 178
- **b**)178 145 167 194

Exercice 2 - Disque dur

b) Taux = Vitesse de rotation * secteurs/pistes * données/secteur =
$$(120 * 743 * 512 * 8 / 2^{20}) * 720/3211 + (120 * 500 * 512 * 8 / 2^{20}) * 1200/3211 + (120 * 1200 * 512 * 8 / 2^{20}) * 400/3211 + (120 * 720 * 512 * 8 / 2^{20}) * 891/3211 = 329,41 Mb / s$$

c)Pour cette exercice, on doit ajusté les taux de lecture pour chacune des zones tel qu'à la question et réduire les taux supérieurs à 300 Mb/s s'ils sont supérieurs.

Zone 1: $120 * 743 * 512 * 8 / 2^{20} = 348,28$ Mb/s donc on a juste à 300 Mb/s

Zone 2: $120 * 500 * 512 * 8 / 2^{20} = 234,38 \text{ Mb/s}$

Zone 3: $120 * 1200 * 512 * 8 / 2^{20} = 562,5$ Mb/s donc on ajuste à 300 Mb/s

Zone 4: $120 * 720 * 512 * 8 / 2^{20} = 337,5$ Mb/s donc on ajuste à 300 Mb/s

Taux effectif = 300 * 720/3211 + 234,375 * 1200/3211 + 300 * 400/3211 + 300 * 891/3211 =**275, 47 Mb / s**

d)

Le nombre de surface n'affecte en aucun cas les calculs effectués en **a**) **b**) et **c**) et les résultats ne changeraient donc pas.

Exercice 3 - Description RTN

1.

$$(op = 9) \rightarrow Ra \leftarrow ((Ra + k) \ll Rb)$$

2.

$$(op = 11) \rightarrow Rc \leftarrow \sim (Rb \ll Ra)$$

Exercice 4 - Architecture d'un microprocesseur

1.

a) Instruction: 00 29 80 00 (en little Endian)

b)
$$T \leftarrow R(IR < 20..18 >);$$

$$T \leftarrow T + R(IR < 17..15 >);$$

$$T \leftarrow Memoire2 [T];$$

 $R(IR < 23..21 >) \leftarrow T \gg R(IR < 17..15 >);$

Voir tableau ci-dessous pour la correspondance avec les registres

c)

ор	A	В	C	D	E	F	G	UAL	EcrireEIP	EcrireT	EcrireRegistre
$T \leftarrow r2$	0	1	0	0	1	0	0	0x0a	0	1	0
$T \leftarrow T + r3$	0	2	0	0	1	0	0	0x4a	0	1	0
$T \leftarrow Memoire2[T]$	0	0	0	0	0	1	0	0x0a	0	1	0
$r1 \leftarrow T \gg r3$	0	2	0	0	1	0	0	0x11	0	0	1

Panel 1			Main: 40r					Ext: 0.16us	Center		Delta: 0.12us	
H 4 M F F H		Time ^{Os}	20ns	4	0ns	60ns	80ns	0.lus	0.12us	0.14us	0.16us	0.18us
HORLOGE	×		_									
A	×											
B[1:0]	×	<u> </u>			1	12	1 0	¥2				
C	×										_	
D	×										1	
E	×						_					
F	×											
ECRIRE_R	×											
ECRIRE_T	×				-							
ECRIRE_IR	×											
ECRIRE_EIP	×											
ALU_OP[6:0]	×	40			Ah (10) ¥4Ah	(74) Ah I	(10) 111	(17)			
IR[31:0]	×	Χo		X29800C	h (271974							
T[31:0]	×	×0				XBI	(11) X0					
REGISTRE_0.EAX[31:0]	×	XQ	XCCCC0004	4h (343592	1412)							
REGISTRE_0.ECX[31:0]	×		137DDh (7983	37)				X	00000000)@			
REGISTRE_0.EDX[31:0]	×	XQ	XBh (11)									
REGISTRE_0.EBX[31:0]	×	X(0	X1Fh (31)								
REGISTRE_0.ESP[31:0]	×	×0										
REGISTRE_0.EBP[31:0]	×	\$@										
REGISTRE_0.ESI[31:0]	×	XQ										
REGISTRE_0.EDI[31:0]	×	X0										

La simulation écrit la valeur prévue (00000000) dans le bon registre (ECX)

2.

a) Instruction: 15 29 80 00 (En little Endian)

b)

$$T \leftarrow R(IR < 17..15 >);$$

$$T \leftarrow Memoire2 \ [T] \ ;$$

$$T \leftarrow T + R(IR < 12..0 >): EIP \leftarrow IR;$$

$$R(IR < 23..21 >) \leftarrow T \ll R(IR < 20..18 >): EIP \leftarrow EIP + 4;$$
Voir tableau ci-dessous pour la correspondance avec les registres

c)

op	A	В	С	D	E	F	G	UAL	EcrireEIP	EcrireT	EcrireRegistre
$T \leftarrow r3$	0	2	0	0	1	0	0	0x0a	0	1	0
T	0	0	0	0	0	1	0	0x0a	0	1	0
\leftarrow Memoire2 [T]T											
$T \leftarrow T + 0x15$:	0	0	0	1	0	0	0	0x4a	1	1	0
$EIP \leftarrow IR$											
r1 ← T ≪ r2:	1	1	0	0	1	0	0	0x10	1	0	1
$EIP \leftarrow EIP + 4$											

La simulation écrit la valeur prévue dans le bon registre (ECX)