

GUARDA AVANTI

Big Data, nuove competenze per nuove professioni

(Progetto rivolto a laureati in tutte le aree disciplinari, co-finanziato dal Fondo Sociale Europeo Plus 2021-2027 Regione Emilia-Romagna)

Programma della lezione

- Panoramica del Machine Learning
- 2 modelli di machine learning
 - o KNN
 - o SVM
- Metriche per valutare il modello

Programmazione tradizionale

Machine Learning

Machine Learning

$$y = f(x)$$

Machine Learning

$$y = f(x) + \mathcal{E}$$

Esistono due tipi di Supervised Learning

Esempio: vogliamo prevedere se un'email è uno spam o no

È un problema di regressione o classificazione?

Esempio: vogliamo prevedere il prezzo di una casa, data la sua dimensione

È un problema di regressione o classificazione?

Alcune notazioni:

- Il valore che vogliamo prevedere (prezzo) si chiama label/target
- I valori che uso come input (dimensione) si chiamano features
- Ogni campione/record si chiama data point

Dimension	#bedrooms	Price
1000	3	300
1000	4	400
500	5	700

Esempio: funzione di fitting

Come valutiamo il nostro modello? Funzione di costo

Quali di questi modelli ha il costo migliore?

Quali di questi modelli ha il costo migliore?

Soluzione: dividiamo i nosti dati in un "training set" e un "test set"

Notazione

- Train set è un sottoinsieme del dataset usato per allenare il modello (di solito 75% del dataset)
- **Test set** è un sottoinsieme del dataset usato per valutare per il modello addestrato (di solito 25% del dataset)
 - o per valutare la performance del modello su dati che non ha mai visto
 - Per valutare la sua abilità di generalizzare
- Cross Validation è la tecnica che divide il dataset in training e test sets

K fold cross validation

- Divido il dataset in k
 parti, k-1 per allenare il
 modello e la rimanente
 parte per valutarlo
- Ripeto questa operazione k volte

Stratified k fold Cross Validation

- Permette di mantenere la stessa percentuale di osservazioni per ogni livello categorico della variabile target
- Questo è molto utile quando si risolvono problemi di classificazione

K Nearest Neighbors

- È un modello statistico utilizzato per:
 - Classificazione: trova i k punti più vicini al punto preso in considerazione e prevede la classe in base al voto voto di maggioranza dei punti più vicini
 - Regressione: trova i k punti più vicini e prevede il valore calcolando il valore medio dei punti più vicini

Esempio: vogliamo classificare i dati in due classi

Vogliamo prevedere la classe di un nuovo punto

Step 1: Bisogna scegliere il valore di k

Esempio: k=3

Step 2: Definire la metrica di distanza

Euclidean distance $(a, b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$

Step 2: Definire la metrica di distanza

Distance functions

Euclidean $\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$

 $\sum_{i=1}^{k} |x_i - y_i|$

$$\left(\sum_{i=1}^{k} \left(\left|x_{i}-y_{i}\right|\right)^{q}\right)^{1/q}$$

Step 3: Calcolo la distanza da tutti i punti nel training set

Step 4: Ordino le distanze e seleziono i k punti più vicini

Step 5: Assegno la classe più frequente dei k punti al nuovo punto

Riassunto delle fasi

- 1. Preprocessing: Normalizzazione
- 2. Scegliere il valore di k
- 3. Definire la metrica di distanza
- 4. Calcolare la distanza da tutti i punti nel training set
- 5. Ordinare le distanze e selezionare i K punti più vicini
- 6. Assegna
 - Classe più frequente tra i k punti più vicini alla nuova osservazione
 - b. Media (o mediana) dei valori più vicini alla nuova osservazione

Come trovo il valore di k ottimale?

Vantaggi

- È intuitivo e facile
- Versatile
- Funziona bene con dati non lineari
- Ma ... ci sono anche svantaggi
 - Lento quando ci sono tanti dati
 - Sensibile agli outlier
 - Tende a non funzionare bene quando ci sono tante dimensioni (variabili)
 - Occupa tanta memoria!

Risultati al variare di k

Support Vector Machines

- È un modello supervisionato utilizzato sia per la classificazione che per la regressione
- Viene utilizzato sia per dati separabili linearmente che per dati separabili in modo non lineare

Esempio: vogliamo i classificare i topi in obesi e non obesi

Esempio: vogliamo i classificare i topi in obesi e non obesi

Dove:

- Rosso = non obeso
- Verde = obeso

Scegliamo un valore soglia

Based on these observations, we can pick a threshold...

Aggiungiamo una nuova osservazione

Classifichiamo l'osservazione come ...

Riceviamo un'altra nuova osservazione

And when we get a new observation with more mass than the threshold...

Classifichiamo l'osservazione come ...

Cosa succede se abbiamo una nuova osservazione qui?

Cosa succede se abbiamo una nuova osservazione qui?

Ma ha senso?

But that doesn't make sense, because it is much closer to the observations that are **not obese**.

Alternativa: Ci focalizziamo sulle osservazioni al limite di ciascun gruppo

Alternativa: e ... scegliamo il punto medio tra loro

Riceviamo un'altra nuova osservazione

Now, when a new observation falls on the left side of the threshold...

È più vicina alle osservazioni non obese

The shortest distance between the observations and the threshold is called the **margin**.

When the threshold is halfway between the two observations, the **margin** is as large as it can be.

...then the distance between the threshold and the observation that is **not obese** would be smaller...

Vogliamo la threshold che massimizza il margine

Ma cosa succederebbe se avessimo un outlier?

...and we had an outlier observation that was classified as **not obese**, but was much closer to the **obese** observations.

Ma cosa succederebbe se avessimo un outlier?

Ma cosa succederebbe se avessimo un outlier?

...we would classify it as **not obese**, even though most of the **not obese** observations are much
further away than the **obese**observations.

Come possiamo risolvere il problema?

To make a threshold that is not so sensitive to outliers we must **allow** misclassifications.

Soluzione per risolvere il problema

For example, if we put the threshold halfway between these two observations...

Soluzione per risolvere il problema

Soluzione per risolvere il problema

Definizione di **Soft Margin**

When we allow misclassifications, the distance between the observations and the threshold is called a **Soft Margin**.

Ma come sappiamo quale soft margin è il migliore?

Si usa la k-fold cross
 validation per determinare
 quante classificazioni
 errate e quante
 osservazioni sono
 permesse all'interno del
 Soft Margin per ottenere la
 migliore classificazione!

Soft Margin dopo la k-fold cross validation

For example, if **Cross Validation**determined that this was the best **Soft Margin**...

Soft Margin dopo la k-fold cross validation

...then we would allow one misclassification...

Soft Margin dopo la k-fold cross validation

...and two observations, that are correctly classified, to be within the **Soft Margin**.

Notazione

- Quando usiamo il margine standard, abbiamo il maximum margin classifier
- Quando usiamo il Soft Margin, abbiamo il soft margin classifier, chiamato anche support vector classifier per classificare le osservazioni

...then we are using a **Soft Margin Classifier** aka a **Support Vector Classifier** to classify observations.

Definizione di support vectors

The name **Support Vector Classifier** comes from the fact that the observations on the edge *and within* the **Soft Margin** are called **Support Vectors**.

E quando i dati hanno dimensione >= 4?

Quando i dati hanno 4 o più dimensioni, il Support Vector Classifier è un **iperpiano** (hyperplane)

Riassunto del SVM

- SVM cerca un iperpiano che massimizzi il margine tra le due classi
- Supporta anche una tecnica, chiamata Kernel trick, per i trasformare i dati non linearmente separabili in dati di dimensione superiore che possono essere linearmente separabili

Risultati con diversi kernel

Vantaggi di SVM

- È efficace in dati ad alta dimensionalità
- Versatile grazie al kernel trick
- Robusto perché riesce a gestire outliers
- Flessibile perché permette classificazioni errate
- Ma ... ha anche svantaggi
 - Non scala molto bene con grandi volumi di dati
 - Sensibile alla scelta di iperparametri
 - Non molto intuitivo da interpretare

Come valuto le performance del mio modello

- Classificazione
 - Accuratezza
 - Precision
 - Recall
 - F1-Score
- Regressione
 - MAE
 - MSE
 - RMSE

Confusion Matrix

Accuracy

Accuracy =
$$\frac{(TP + TN)}{(TP + FP + TN + FN)}$$

- Si usa quando il dataset è bilanciato
 - Esempio: la classe 'tumore benigno' deve avere lo stesso numero di osservazioni della classe 'tumore maligno'
- Ci poniamo la domanda: Il nostro modello ha fatto le previsioni corrette per entrambe le classi?

Precision

Precision = True Positives / (True Positives + False Positives)

- Si usa quando
 - il dataset è sbilanciato
 - Si vuole minimizzare il numero di falsi positivi
- Falso positivo significa che il nostro modello dice che il paziente ha un tumore maligno, ma in realtà non ha un tumore maligno

Recall

Recall = True Positives / (True Positives + False Negatives)

- Si usa quando
 - il dataset è sbilanciato
 - Si vuole minimizzare il numero di falsi negativi
- Falso negativo significa che il paziente ha un tumore maligno, ma il modello non lo ha identificato

F1-score

F1-Score =
$$2 \times (Precision \times Recall) / (Precision + Recall)$$

- Si usa quando
 - o il dataset è sbilanciato
 - Si vuole una misura che riassume Precision e Recall

Regressione

MAE

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y_i}|$$

 Differenza in valore assoluto tra i valori delle previsioni e i valori attuali della variabile target

MSE

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Differenza al quadrato tra i valori delle previsioni e i valori attuali della variabile target
 - Gli errori grandi peseranno di più

RMSE

RMSE =
$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Radice quadrata del MSE
 - o Gli errori grandi peseranno di più

Resources:

- KNN tutorial
- SVM video di StatQuest
- Statistical Learning di Trevor Hastie