Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Calculer $\sum_{n\geq 2} u_n$, avec $u_n = \frac{1}{n^2 - 1}$.

EXERCICE 2 [Indication] [Correction]

Calculer $\sum_{n=1}^{\infty} u_n$, avec $u_n = \frac{n}{n^4 + n^2 + 1}$.

Exercice 3 [Indication] [Correction]

Calculer la somme de la série $\sum_{n=2}^{\infty} u_n$, avec $u_n = \ln\left(1 - \frac{1}{n^2}\right)$.

EXERCICE 4 [Indication] [Correction]

Calculer $\sum_{n=1}^{\infty} u_n$, avec $u_n = \arctan \frac{2}{n^2}$.

EXERCICE 5 [Indication] [Correction]

Calculer $\sum_{n=2}^{\infty} u_n$, avec $u_n = \ln \cos \frac{\pi}{2^n}$.

EXERCICE 6 [Indication] [Correction]

Soit p un entier ≥ 2 . Trouver la somme de la série $\sum_{n=1}^{\infty} \frac{1}{n(n+1)\cdots(n+p)}$.

Sommes de séries à termes réels positifs (I)

Indications, résultats

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Utiliser $u_n = \frac{1}{2(n-1)} - \frac{1}{2(n+1)}$ pour obtenir $\sum_{n=2}^{N} u_n = \frac{3}{4} - \frac{1}{2N} - \frac{1}{2(N+1)}$.

INDICATION POUR L'EXERCICE 2 [Retour à l'énoncé]

Vérifier que $u_n = v_n - v_{n+1}$, avec $v_n = \frac{1}{2(n^2 - n + 1)}$. En déduire $\sum_{n=1}^{N} u_n = \frac{1}{2} - \frac{1}{2(N^2 + N + 1)}$.

INDICATION POUR L'EXERCICE 3 [Retour à l'énoncé]

Vérifier que $u_n = \ln(n-1) + \ln(n+1) - 2\ln(n)$. En déduire $\sum_{n=2}^{N} u_n = -\ln 2 + \ln \frac{N+1}{N}$.

INDICATION POUR L'EXERCICE 4 [Retour à l'énoncé]

Vérifier que $u_n = v_{n-1} - v_{n+1}$, avec $v_n = \arctan \frac{1}{n}$.

En déduire l'égalité $\sum_{n=1}^{N} u_n = \frac{3\pi}{4} - \arctan \frac{1}{N} - \arctan \frac{1}{N+1}$.

INDICATION POUR L'EXERCICE 5 [Retour à l'énoncé]

Vérifier que $u_n \sim -\frac{\pi^2}{2^{2n+1}}$, puis que $\ln\cos\frac{\pi}{2^n} = v_{n-1} - v_n - \ln 2$, avec $v_n = \ln\sin\frac{\pi}{2^n}$.

En déduire $\sum_{n=2}^{N} u_n = -\ln\left(2^{N-1}\sin\frac{\pi}{2^N}\right).$

INDICATION POUR L'EXERCICE 6 [Retour à l'énoncé]

Noter $u_{n,p} = \frac{1}{n(n+1)\cdots(n+p)}$. Remarquer que $u_{n,p} = \frac{1}{p}(u_{n,p-1} - u_{n+1,p-1})$.

En déduire $\sum_{n=1}^{N} u_{n,p} = \frac{1}{p}(u_{1,p-1} - u_{N+1,p-1})$, puis $\sum_{n=1}^{\infty} u_{n,p} = \frac{1}{p}u_{1,p-1} = \frac{1}{p}p!$.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

CORRIGÉ DE L'EXERCICE 1 [Retour à l'énoncé]

La série converge car $u_n \sim \frac{1}{n^2}$ (série de Riemann).

Pour tout
$$n \ge 2$$
, on a $u_n = \frac{1}{2(n-1)} - \frac{1}{2(n+1)}$.

On en déduit
$$\sum_{n=2}^{N} u_n = \sum_{n=2}^{N} \frac{1}{2(n-1)} - \sum_{n=2}^{N} \frac{1}{2(n+1)} = \sum_{n=1}^{N-1} \frac{1}{2n} - \sum_{n=3}^{N+1} \frac{1}{2n} = \frac{3}{4} - \frac{1}{2N} - \frac{1}{2(N+1)}.$$

On fait tendre N vers $+\infty$ et on trouve $\sum_{n=2}^{\infty} u_n = \frac{3}{4}$.

Corrigé de l'exercice 2 [Retour à l'énoncé]

La série $\sum u_n$ est convergente car $u_n \sim \frac{1}{n^3}$ (comparaison avec une série de Riemann.)

D'autre part
$$n^4 + n^2 + 1 = (n^2 + 1)^2 - n^2 = (n^2 - n + 1)(n^2 + n + 1)$$
.

Pour tout entier
$$n$$
, $u_n = \frac{1}{2(n^2 - n + 1)} - \frac{1}{2(n^2 + n + 1)} = \frac{1}{2(n(n - 1) + 1)} - \frac{1}{2((n + 1)n + 1)}$.

$$u_n$$
 s'écrit donc $u_n = v_n - v_{n+1}$, avec $v_n = \frac{1}{2(n^2 - n + 1)}$.

On en déduit, pour tout
$$N: \sum_{n=1}^{N} u_n = \sum_{n=1}^{N} (v_n - v_{n+1}) = v_1 - v_{N+1} = \frac{1}{2} - \frac{1}{2(N^2 + N + 1)}$$
.

On fait tendre N vers
$$+\infty$$
 et on trouve : $\sum_{n=1}^{\infty} \frac{n}{n^4 + n^2 + 1} = \frac{1}{2}$.

Corrigé de l'exercice 3 [Retour à l'énoncé]

La série $\sum u_n$ est convergente car $u_n \sim -\frac{1}{n^2}$ (comparaison avec une série de Riemann.)

Pour tout entier $n \ge 2$, $u_n = \ln(n^2 - 1) - 2\ln(n) = \ln(n - 1) + \ln(n + 1) - 2\ln(n)$. Ainsi :

$$\sum_{n=2}^{N} u_n = \sum_{n=2}^{N} \ln(n-1) + \sum_{n=2}^{N} \ln(n+1) - 2\sum_{n=2}^{N} \ln(n) = \sum_{n=1}^{N-1} \ln n + \sum_{n=3}^{N+1} \ln n - 2\sum_{n=2}^{N} \ln(n)$$

$$= \ln 2 + \ln N + \ln(N+1) - 2\ln 2 - 2\ln N = -\ln 2 + \ln \frac{N+1}{N}$$

On fait tendre N vers $+\infty$ et on trouve : $\sum_{n=2}^{\infty} \ln \left(1 - \frac{1}{n^2}\right) = -\ln 2$

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Sommes de séries à termes réels positifs (I)

Corrigés

CORRIGÉ DE L'EXERCICE 4 [Retour à l'énoncé]

La série $\sum u_n$ est convergente car $u_n \sim \frac{2}{n^2}$ (comparaison avec une série de Riemann.)

Pour tout
$$n \ge 2$$
, on a: $\frac{2}{n^2} = \frac{2}{(n^2 - 1) + 1} = \frac{\frac{2}{n^2 - 1}}{1 + \frac{1}{n^2 - 1}} = \frac{\frac{1}{n - 1} - \frac{1}{n + 1}}{1 + \frac{1}{(n - 1)(n + 1)}}$

Posons
$$v_n = \arctan \frac{1}{n}$$
. Alors $\frac{2}{n^2} = \frac{\tan v_{n-1} - \tan v_{n+1}}{1 + \tan v_{n-1} \tan v_{n+1}} = \tan(v_{n-1} - v_{n+1})$

Puisque $0 < v_{n-1} - v_{n+1} < \frac{\pi}{2}$, on en déduit $u_n = v_{n-1} - v_{n+1}$. Pour tout $N \ge 2$, on a alors :

$$\begin{split} \sum_{n=1}^N u_n &= u_1 + \sum_{n=2}^N (v_{n-1} - v_{n+1}) = u_1 + \sum_{n=2}^N v_{n-1} - \sum_{n=2}^N v_{n+1} = u_1 + \sum_{n=1}^{N-1} v_n - \sum_{n=3}^{N+1} v_n \\ &= u_1 + v_1 + v_2 - v_N - v_{N+1} \\ &= \arctan 2 + \arctan 1 + \arctan \frac{1}{2} - \arctan \frac{1}{N} - \arctan \frac{1}{N+1} \end{split}$$

Puisque
$$\arctan 2 + \arctan \frac{1}{2} = \frac{\pi}{2}$$
, il vient $\sum_{n=1}^{N} u_n = \frac{3\pi}{4} - \arctan \frac{1}{N} - \arctan \frac{1}{N+1}$.

Quand on fait tendre N vers $+\infty$, on trouve : $\sum_{n=1}^{\infty} \arctan \frac{2}{n^2} = \frac{3\pi}{4}$.

CORRIGÉ DE L'EXERCICE 5 [Retour à l'énoncé]

Quand
$$x \to 0$$
, $\ln \cos x \sim \cos x - 1 \sim -\frac{x^2}{2}$. Donc quand $n \to \infty$: $u_n \sim -\frac{\pi^2}{2^{2n+1}}$.

On en déduit la convergence de la série $\sum u_n$, par comparaison avec une série géométrique.

Pour tout entier
$$n$$
, $\sin \frac{\pi}{2^{n-1}} = 2 \sin \frac{\pi}{2^n} \cos \frac{\pi}{2^n}$.

On en déduit, pour tout
$$n \ge 2$$
: $\ln \cos \frac{\pi}{2^n} = v_{n-1} - v_n - \ln 2$, avec $v_n = \ln \sin \frac{\pi}{2^n}$.

On somme de
$$n=2$$
 à $n=N$: $\sum_{n=2}^{N} u_n = v_1 - v_N - (N-1) \ln 2 = -\ln \left(2^{N-1} \sin \frac{\pi}{2^N}\right)$.

Quand
$$N \to \infty$$
, $2^{N-1} \sin \frac{\pi}{2^N} \sim 2^{N-1} \frac{\pi}{2^N} \sim \frac{\pi}{2}$. Donc $\sum_{n=2}^{\infty} \ln \cos \frac{\pi}{2^n} = -\ln \frac{\pi}{2}$.

Corrigé de l'exercice 6 [Retour à l'énoncé]

Notons $u_{n,p} = \frac{1}{n(n+1)\cdots(n+p)}$. Puisque $p \geq 2$, $\sum u_{n,p}$ est convergente.

On a:
$$u_{n,p} = \frac{1}{p} \frac{(n+p)-n}{n(n+1)\cdots(n+p)} = \frac{1}{p} \frac{1}{n(n+1)\cdots(n+p-1)} - \frac{1}{p} \frac{1}{(n+1)(n+2)\cdots(n+p)}$$
.

Autrement dit
$$u_{n,p} = \frac{1}{p}(u_{n,p-1} - u_{n+1,p-1}).$$

On en déduit
$$\sum_{n=1}^{N} u_{n,p} = \frac{1}{p}(u_{1,p-1} - u_{N+1,p-1})$$
, et quand $N \to \infty$: $\sum_{n=1}^{\infty} u_{n,p} = \frac{1}{p}u_{1,p-1} = \frac{1}{p}p!$.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.