

<!--StartFragment-->MZEBT1A
 Locus MZEBT1A 1733 bp mRNA linear PLN 27-APR-1993
 Definition Zea mays brittle-1 protein (bt1) mRNA, complete cds.
 Accession M79333
 Version M79333.1 GI:168425
 Keywords brittle-1 protein.
 Source Zea mays
 Organism Zea mays
 Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
 Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; PACCAD
 clade; Panicoideae; Andropogoneae; Zea.
 Reference 1 (sites)
 Authors Dumas,B., Van Doorslaere,J., Legrand,M., Van Montagu,M.M. and
 Inze,D.
 Title Molecular analysis of a poplar C-methyltransferase involved in
 lignin biosynthesis
 Journal Unpublished (1991)
 Reference 2 (bases 1 to 1733)
 Authors Sullivan,T.D., Strelow,L.I., Illingworth,C.A., Phillips,R.L. and
 Nelson,O.E. Jr.
 Title Analysis of maize brittle-1 alleles and a defective
 Suppressor-mutator-induced mutable allele
 Journal Plant Cell 3 (12), 1337-1348 (1991)
 MEDLINE 93056585
 PUBMED 1668652
 COMMENT Original source text: Zea mays (strain R802) Endosperm, 22 days
 postpollination cDNA to mRNA.
 FEATURES location/qualifiers
 source 1..1733
 /organism="Zea mays"
 /mol_type="mRNA"
 /strain="R802"
 /db_xref="taxon:4577"
 /dev_stage="Endosperm, 22 days postpollination"
 gene 1..1733
 /gene="bt1"
 CDS 87..1397
 /gene="bt1"
 /note="putative"
 /codon_start=1
 /product="brittle-1 protein"
 /protein_id="AA33438.1"
 /db_xref="GI:168426"
 /translation="MAATMAVTIMVTRSEKESWSSLQQPAPAVFPWKPRGGKTGGLFPR
 RAMPAASVGLNVCPOGVAGRDPRPPDKVRAADNCIAASLAPPFGSRPGGRGRGS
 EEEAEAGRHHHEAAAAGRSPEEGGGQDQRQAPAPARLIVSGAIAAGAVSRTVFAPELTIRT
 HLMVGSIGVDSMAGVFWIINQNEGWTLFRGNNAVNLRVAPSKALEHETYDTAKKELT
 PKQDEPPKPKIPTFLWAGALAFGSTLCKTYPMLIKTRVTTIEKDVNVAHAFVKILR
 DEGSSEPLYGLITPSLICLGVVP1AACNFTAYETKLRLTRTAIGRGPAGDVGPAAILIGC
 ANGAIASSATPFLLEVNRKQMVGAVGSGRQVYQNVLHAIYCILKKKEGAGGLYRGLGPSC
 KLMPAAGIATFCYCEAKILVLDKEDEEEDEAAGGGEDDKKKVE"
 transit_peptide 87..311
 /gene="bt1"
 /note="putative amyloplast_chloroplast transit peptide
 based on cleavage at a consensus transit peptide cleavage
 site; putative"
 /citation=[1]
 mat_peptide 312..1394
 /gene="bt1"
 /product="brittle-1 protein"
 /function="possible amyloplast membrane translocator
 protein"
 /note="putative mature peptide based on the presence of a
 transit peptide cleavage consensus sequence; putative"
 /citation=[1]
 misc_signal 303..314
 /gene="bt1"
 /note="putative transit peptide cleavage site; matches
 consensus sequence; putative"
 /citation=[1]
 /function="transit peptide cleavage site"
 polyA_site 1565
 /gene="bt1"
 /citation=[1]
 /evidence=experimental
 polyA_site 1733
 /gene="bt1"
 /citation=[1]
 /evidence=experimental
 ORIGIN

Query Match 41.0%; Score 666; DB 8; Length 1733;
 Best Local Similarity 80.2%; Pred. No. 1.8e-83;
 Matches 810; Conservative 0; Mismatches 190; Indels 10; Gaps 2;

Qy 302 CTCGGCCCCCGACGAGCTGCACACAGCTCGCAGCCCCGGCGAGCCGGCGTCCAGA 361
 Db 353 CCCGGGCCACGAGSCCCCTGGAGCGAGGAAGAGCAGCGAACAGGAACAGAACAGAAAGG 412

Qy 362 AGGCCCCAGAGCCAAAAAGGCCAAAAGACGACGCTGAGCTGAGGAACGGTAGGGTCA 421
 Db 413 GCGGCCGACGAAAGCAGCACGAGCTGGCGATCTGAGCTGAGGAAGTCAGGGTCA 472

Qy 422 AGATCGCCACCCCCACCTGGCGCCGCTGGTCAAGCGCCCATGCGCCGGCCGTTGCGA 481
 Db 473 AGATCGCCACCCCCACCTGC-CCGCTGGTACGGCGCCCATGCGCCGGCCGTTGCTCA 531

Qy 482 GGACTTCTGGGGCCACTGGAGACGTCAGGACCCACCTGATGGTGGGGAGCTCCGGCC 541
 Db 532 GGACGCTTGTGGCCCGCTGGAGACGATCGGACCCACCTGATGGTGGCCGGATCGGGG 591

Qy 542 CGCAGCTCATGGCGGGGGTTGGTCCAGGATCATGCAACCGAAGGGTGGACCGCCGCTG 601
 Db 592 TCGACCTCATGGGGGGGGTGTCCAGGATCATGCAACCGAAGGGTGGACCGCCGCTG 651

Qy 602 TCCCGCCACCGCGTCACGGTCCTGGCGCTGGGCCAACGAAAGGCTATCGAACCTICA 661
 Db 652 TCCCGCCACCGCGTCACGGTCCTGGCGCTGGGCCAACGAAAGGCTATCGAACCTICA 711

Qy 662 CCTACGACAGGGAGAAGATCTGGACCCCGAGGGCGCGAGCCAGGCTGGCC 721
 Db 712 CCTATGACACGGCCAAGAAGITCTCAACCCCAAGGGCCACGAGCCGCCAACAGTCCC 771

Qy 722 TCCCCACGGCTGTCGGCTGGCGAGGGCTGGCGAGGTGGCTAACCTGTGACCTATC 781
 Db 772 TCCCCACGGCTGTCGGCTGGCGAGGTGGCTAACCTGTGACCTTACGGCTAC 831

Qy 782 CCATGGAGCTGTCAGACCCGTCACCATCGAGAAGGACGTGTACGACAACCTCC 841
 Db 832 CCATGGAGCTGATCAAGACCAAGGGTACCATCGAGAAGGACGTATAACGACAACGTGCGC 891

Qy 842 ACGGCGCTCAAGATCGTGGCGAGCAAGGGCCGGGAGCTGTAACGGCGGCTGGCG 901
 Db 892 ACGGCGCTCAAGATCTACGCGAGGGGCCGTCGGAGCTGTAACGGCGGCTGACAC 951

Qy 902 CGAGCCCTGATGGCGTGGTGGCTACCGCCGCAACTCTACGGCTACGAGACGCTGC 961
 Db 952 CGAGCCCTGATGGCGTGGTGGCTACGGCGCTGTAACCTCTACGGCTACGAGACGCTGA 1011

Qy 962 GCGCGCTGTAACGGCCGGCTGGG-----AAAGGGAGGTGGCAACGTCCTGA 1012
 Db 1012 AGCGGCCCTACCGTCGCCGCCGACCCGGCGCGTCCGGCGGCCGACGTGGGCCGGTGGCGA 1071

Qy 1013 CGCTGCTGATGGCTGGCGCGGCCGCTATGGCGAGCGCTGGCTGGGGCTGGAGG 1072
 Db 1072 CGCTGCTGATGGCTGGCGCGGCCGCTGGCGAGCGCTGGGGCTGGAGG 1131

Qy 1073 TGGCGCGGAAGCAGATGCGAGTGGCGCGCGTGGCGGGAGGCAGGTGTAACAAACGTGC 1132
 Db 1132 TGGCGCGGAAGCAGATGCGAGTGGCGCGCGTGGCGGGAGGCAGGTGTAACAAACGTGC 1191

Qy 1133 TGCACGCCATGTACTGCTCTCGAGAAGGGGCCACCCCGGGCTCTACCGCGGTGCG 1192
 Db 1192 TCCACGCTATCTACTGCTCTCGAGAAGGGGCCACCCGGCTGTAACGGGTCTCG 1251

Qy 1193 GCCCCAGCTGATCAAGCTCATGGCCGCCGCGCATCTCCCTCATGTCAGGGCT 1252
 Db 1252 GCCCCAGCTGATCAAGCTCATGGCCGCCGCGCATGGCCCTCATGTCAGGGCT 1311

Qy 1253 GCAAGAAGATCTGTCGACGAGAAGAAGAGAGCGCGGCCGCGAGGCC 1302
 Db 1312 GCAAGAAGATCTGTCGACAAAGGAGGATGAGAGAGAGAGAGAACGC 1361

<!--EndFragment-->