

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Introduction to ELEC 318

Syllabus Highlights, Course Objectives

Electromagnetics

- -- a branch of physics or electrical engineering in which electric & magnetic phenomena are studied
- microwaves, radio freq, lasers
- antennas
- electrical machines
- nuclear research
- fiber optics
- interference & compatibility
- energy conversion
- radar meteorology
- remote sensing
- induction heating

$$\nabla \cdot \mathbf{D} = \rho_{v} \qquad \nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial}{\partial t} \mathbf{D}$$

ELEC 318 Syllabus Highlights

Course objectives:

- 1. to use vector calculus and Maxwell's Equations to solve for electric & magnetic fields
- 2. to convert vectors, length/surface/volume, derivatives/integrals between coordinate systems
- 3. to classify electric and magnetic materials from constitutive parameters
- 4. to apply boundary conditions to determine static fields on either side of a material mismatch
- 5. to calculate flux, energy density, and total energy in electric and magnetic fields
- 6. to determine the resistance, capacitance, and inductance of electromagnetic geometries
- 7. to calculate forces generated/experienced by magnetism
- 8. to determine the direction, speed, and power of waves propagating in material media

Grading:	written homeworks (9)	15%	$90\% \le A < 100\%$
	in-class exams (3)	15%, 15%, 20%	$80\% \le B < 90\%$
	quiz (1, announced)	5%	$70\% \le C < 80\%$
	take-home exam	5%	$60\% \le D < 70\%$
	final exam (comprehensive)	25%	F < 60%

<u>Lecture notes</u>: Partial lecture notes will be available on the course website before each class. It is recommended that students print these notes out

ahead-of-time and bring them to each class.

ELEC 318 Topics

<u>Lec</u>	<u>Topic</u>	<u>Book</u>	
3	Vector algebra : scalars & vectors, unit vector, vector addition & subtraction, position & distance vectors, vector multiplication, components		
	Coordinate systems & transformations: Cartesian, cylindrical, spherical	3.2-3.3	
	Vector calculus : differential length/area/volume, line/surface/volume integrals, del, gradient, divergence, curl, Laplacian, field classification	3.4-3.7	
4	Electrostatic fields : field intensity, Coulomb's Law, dipole, continuous charge distributions, Gauss' Law & applications, electric potential, E/V relationship	4.1-4.5	Exam 1
	Electric fields in material space : Poisson's equation, flux density, material properties, convection & conduction current, conductors & dielectrics, polarization & dielectric constant, linear/isotropic/homogenous, boundary conditions, resistance	4.6-4.8	
	Electrostatic boundary-value problems : Laplace's equation, uniqueness, capacitance, energy density, method of images	4.9-4.11	Exam 2
5	Magnetostatic fields : Biot-Savart Law, Ampere's Law & applications, flux density, magnetic scalar & vector potentials	5.1-5.4	
	Magnetic forces, materials, & devices : torque & moment, magnetization, material classification, boundary conditions, inductance, magnetic energy, forces on & due to magnetism	5.5-5.8	
6	Maxwell's equations : Faraday's Law, transformers and EMF, displacement current, continuity equation, relaxation time, time-varying potentials, time-harmonic fields	6.1-6.11	Exam 3
7	Electromagnetic wave propagation : in free space, in lossy/lossless dielectrics, in conductors	7.1-7.2, 7.4	Final Exam

ELEC 426: Transmission, radiation, and propagation of electromagnetic waves by means of transmission lines, waveguides, optical fibers, and antennas.

ELEC 318 Course Calendar

15-Jan, first class, both sections (01 & 81)

Important Dates (updated 15-Dec)

22-Jan, HW #1 due

January 2015

			1		29-Jan, HW #2 due
11	12	13	14	15	3-Feb, HW #3 due
		NO CLASS,		FIRST DAY OF	12-Feb, Exam #1
		both sections (01 and 81)		ELEC 318	19-Feb, HW #4 due
				3.1	26-Feb, HW #5 due
18	19	20	21	22	5-Mar, Exam #2
				HW #1 due	12-Mar, HW #6 due
				(thru 3.1)	19-Mar, HW #7 due
		3.2-3.3		3.4-3.7	2-Apr, HW #8 due
25	26	27	28	29	9-Apr, Exam #3
				HW #2 due (thru 3.7)	
		4.1-4.3		4.4-4.5	

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 3(a)

Review of Vector Algebra

Scalars, Vectors, Fields

scalar: quantity; magnitude only

vector: quantity; magnitude & direction

$$\mathbf{H} = 3\frac{\mathbf{A}}{\mathbf{m}}\,\hat{\mathbf{r}} + 4\,\frac{\mathbf{A}}{\mathbf{m}}\,\hat{\mathbf{\theta}}$$

$$\mathbf{E} = 6\frac{\mathbf{V}}{\mathbf{m}}\,\hat{\mathbf{x}} + 2\frac{\mathbf{V}}{\mathbf{m}}\,\hat{\mathbf{y}} + 5\frac{\mathbf{V}}{\mathbf{m}}\,\hat{\mathbf{z}}$$

field: function; specifies a scalar/vector in space

$$\mathbf{B} = 3\cos(2\pi x + 4\pi y)\,\hat{\mathbf{x}} + 2(x^2 + 7y)\,\hat{\mathbf{y}} \frac{\text{Wb}}{\text{m}^2}$$

Vectors, Fields

vector: a quantity with magnitude & direction

field: a function that specifies a scalar/vector in space

$$\mathbf{F}_{g} = -\frac{Gm_{1}m_{2}}{r^{2}}\hat{\mathbf{r}} (\mathbf{N})$$

Fields

Unit Vectors

unit vector: has a magnitude equal to unity (= 1)

In the direction of **A**, the unit vector is

$$\mathbf{a} = \frac{\mathbf{A}}{|\mathbf{A}|} = \frac{\mathbf{A}}{A}$$

where **A** is specified by components in Cartesian coordinates by $\mathbf{A} = A \hat{\mathbf{x}} + A$

$$\mathbf{A} = A_{x}\hat{\mathbf{x}} + A_{y}\hat{\mathbf{y}} + A_{z}\hat{\mathbf{z}}$$

 A_x , A_y , A_z = components of **A** in the x, y, z directions

 $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ = unit vectors in the x, y, z directions

and the magnitude of **A** is

$$A = |\mathbf{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Example: Unit Vectors

Determine the unit vector in the direction of **E** if

(a)
$$E = 3x + 4y V/m$$

(b)
$$E = 2x - 5y + 3z \text{ V/m}$$

Vector Addition & Subtraction

Two vectors can be added (or subtracted) to form a resultant vector:

$$A + B = C$$

Graphically, vectors are added "head-to-tail":

Algebraically, vectors are added by summing components individually:

$$\mathbf{A} = A_{x}\hat{\mathbf{x}} + A_{y}\hat{\mathbf{y}} + A_{z}\hat{\mathbf{z}}$$

$$\mathbf{B} = B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}$$

$$\mathbf{A} + \mathbf{B} = (A_x + B_x)\hat{\mathbf{x}} + (A_y + B_y)\hat{\mathbf{y}} + (A_z + B_z)\hat{\mathbf{z}}$$

$$\mathbf{A} - \mathbf{B} = (A_x - B_x)\hat{\mathbf{x}} + (A_y - B_y)\hat{\mathbf{y}} + (A_z - B_z)\hat{\mathbf{z}}$$

Position & Distance Vectors

position vector, \mathbf{r}_P (of point P):

the *directed distance* (vector) from the origin to P

$$P(x, y, z) \implies \mathbf{r}_P = x \,\hat{\mathbf{x}} + y \,\hat{\mathbf{y}} + z \,\hat{\mathbf{z}}$$

$$P(3 \text{ cm}, 4 \text{ cm}, 5 \text{ cm}) \implies \mathbf{r}_P = 3 \hat{\mathbf{x}} + 4 \hat{\mathbf{y}} + 5 \hat{\mathbf{z}} \text{ cm}$$

distance vector (of point *P*):

- -- the displacement (vector) from one point to another
- -- the difference between two position vectors

$$P(x, y, z) \Rightarrow \mathbf{r}_{P} = x_{1} \hat{\mathbf{x}} + y_{1} \hat{\mathbf{y}} + z_{1} \hat{\mathbf{z}}$$

$$Q(x, y, z) \Rightarrow \mathbf{r}_{Q} = x_{2} \hat{\mathbf{x}} + y_{2} \hat{\mathbf{y}} + z_{2} \hat{\mathbf{z}}$$

$$\mathbf{r}_{PQ} = (x_2 - x_1) \hat{\mathbf{x}} + (y_2 - y_1) \hat{\mathbf{y}} + (y_2 - y_1) \hat{\mathbf{z}}$$

Example: Position/Distance Vectors

Vector **A** is directed from the origin to $P_1(2, 3, 3)$. Vector **B** is directed from P_1 to $P_2(1, -2, 2)$.

Determine

- (a) vector **A**
- (b) the unit vector in the direction of A, a
- (c) vector **B**

Example: Position/Distance Vectors

Vector **A** is directed from the origin to $P_1(2, 3, 3)$. Vector **B** is directed from P_1 to $P_2(1, -2, 2)$.

Determine

- (d) the sum, $\mathbf{A} + \mathbf{B} = \mathbf{C}$
- (e) the difference, $\mathbf{A} \mathbf{B} = \mathbf{D}$

Example: Position/Distance Vectors

Vector **A** is directed from the origin to $P_1(2, 3, 3)$. Vector **B** is directed from P_1 to $P_2(1, -2, 2)$.

Determine (f) a unit vector parallel to $2\mathbf{A} + \mathbf{B}$

Vector Multiplication: Dot Product

dot product

- -- one way to multiply two vectors
- -- product of magnitudes + cosine of angle between (tails together, *not* head-to-tail)
- -- a *scalar* measure of "how parallel" two vectors are

$$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta = A B \cos \theta$$

-- calculated by multiplying components & summing together:

$$\mathbf{A} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$$

$$\mathbf{B} = B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}$$

$$\mathbf{A} \cdot \mathbf{B} = (A_x B_x) + (A_y B_y) + (A_z B_z)$$

- -- maximum magnitude w.r.t. θ is when $\theta = 0^{\circ}$ or 180° (A and B parallel)
- -- minimum magnitude w.r.t. θ is when $\theta = 90^{\circ}$ or 270° (**A** and **B** perpendicular)

Example: Dot Product

Vector **A** is directed from the origin to $P_1(2, 3, 3)$. Vector **B** is directed from P_1 to $P_2(1, -2, 2)$.

Determine (g) the angle between \mathbf{A} and \mathbf{B}


```
>> A = [2 3 3]; B = [-1 -5 -1];

>> theta = acos( dot(A,B)./(norm(A).*norm(B)) );

>> theta_deg = theta .* 180/pi

145.1459
```

Vector Multiplication: Cross Product

cross product

 $\mathbf{A} \mathbf{A} \times \mathbf{B}$

- -- another way to multiply two vectors **A** and **B**
- -- a vector measure of "how perpendicular" two vectors are

$$\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \sin \theta \,\hat{\mathbf{n}} = A B \sin \theta \,\hat{\mathbf{n}}$$

- -- scalar component = product of magnitudes + sine of angle (tails together) = area of the parallelogram spanned by **A** and **B**
- -- vector direction, $\mathbf{n} = \text{unit vector normal (perpendicular) to } both \mathbf{A}$ and \mathbf{B}

-- calculated using components in the matrix determinant...

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \begin{pmatrix} (A_y B_z - A_z B_y) \hat{\mathbf{x}} \\ + (A_z B_x - A_x B_z) \hat{\mathbf{y}} \\ + (A_x B_y - A_y B_x) \hat{\mathbf{z}} \end{vmatrix}$$

Example: Cross Product

Vector **A** is directed from the origin to $P_1(2, 3, 3)$. Vector **B** is directed from P_1 to $P_2(1, -2, 2)$.

Determine

- (h) the area spanned by **A** and **B**
- (i) a unit vector perpendicular to both **A** and **B**

Components of a Vector

projection or **component** of A along B, A_B

-- the part of vector **A** in the direction of vector **B**

$$\mathbf{A}_{B} = \left(\mathbf{A} \cdot \hat{\mathbf{b}}\right) \hat{\mathbf{b}} = A_{B} \hat{\mathbf{b}}$$

$$\mathbf{A} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$$
$$\mathbf{B} = B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}$$

$$\hat{\mathbf{b}} = \frac{\mathbf{B}}{|B|} = \frac{B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}}{\sqrt{B_x^2 + B_y^2 + B_z^2}}$$

$$\mathbf{A} \cdot \hat{\mathbf{b}} = \left(A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}} \right) \cdot \left(\frac{B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}}{\sqrt{B_x^2 + B_y^2 + B_z^2}} \right)$$

= *scalar* projection of **A** in the direction of **B**

$$\left(\mathbf{A} \cdot \hat{\mathbf{b}}\right)\hat{\mathbf{b}} = \left(\frac{A_x B_x + A_y B_y + A_z B_z}{\sqrt{B_x^2 + B_y^2 + B_z^2}}\right) \left(\frac{B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}}{\sqrt{B_x^2 + B_y^2 + B_z^2}}\right) \qquad \dots \qquad = \text{vector projection of } \mathbf{A}$$
in the direction of \mathbf{B}

Example: Vector Projection

Vector **A** is directed from the origin to $P_1(2, 3, 3)$. Vector **B** is directed from P_1 to $P_2(1, -2, 2)$.

Determine (j) the vector projection of C onto A


```
>> A = [2 3 3];

>> B = [-1 -5 -1];

>> C = A + B;

>> a_A = A ./ norm(A);

>> J = dot(C,A);

>> C_A = J .* a_A

0.1818 0.2727 0.2727
```

To be studied outside of class

Chapter 3, Section 1

- definitions of "commutative", "associative", "distributive" for vector algebra
- commutative & distributive laws for the dot product
- properties of the cross product
- vector & scalar triple products