Instructions

Yu-Ping Yang

December 20, 2017

- The following five files will be output from the interface (under inputs/ directory):
 - eweld.in
 - eweld_weld_parameters.in
 - eweld_boundary_condition.in
 - eweld_preheat_interpass_temperature.in
 - eweld_temperature_monitor.in
 - eweld_mesh_key.txt (Not need to do now. This option will allow users to input their own meshes.)
- For automatic mesh, the following steps will be run:
 - 1. Check if pass_coordinates.out exists in input directory, if no, run utils/determine_passes_arc_v4.exe to create inputs/pass_coordinates.out ¹: ./utils/determine_passes_arc_v4.out inputs/ eweld.in will be input.
 - 2. Run utils/Automesh_v14.py from SALOME's Python Console to create Mesh_3D.unv, or run without Salome GUI:

\$SALOMEPATH/salome start -t -w 1 utils/Automesh_v14.py

- (a) The files will be input:
 - ./inputs/eweld.in
 - ./inputs/eweld_weld_parameters.in
 - ./setting/Setting_arc_efficiency_dfault.in

¹On Linux, compile determine_passes_arc_v4.out, to get determine_passes_arc_v4.out via gfortran determine_passes_arc_v4.for -o determine_passes_arc_v4.out

```
- ./inputs/pass_coordinates.out
```

- (b) The files will be output:
 - Mesh_3D.unv
 - model_dflux.for
 - model_step.in
- 3. Run

```
python2 tools/unv2calculix.py Mesh_3D.unv Model3d
Model3d.inp will be created.
```

- 4. To generate the model_film.in file (using cgx and unical), run:
 - ./createFilm.sh
- 5. Run

```
python Analysis_file_create.py
```

- The files will be input:
 - * ./inputs/eweld.in
 - * eweld_boundary_condition.in
 - * eweld_preheat_interpass_temperature.in
- The files will be output:
 - * model_bc.in
 - * model_ele4.in
 - * model_ele6.in
 - * model_ele8.in
 - * model_film.in
 - * model_group.in
 - * model_ini_temperature.in
 - * model_material.in
 - * model_node.in
- 6. Move model_dflux.for to the CalculiX directory and rename to dflux.f , and compile CalculiX
- 7. Run analysis.inp with CalculiX