Contrôle continu Programmation des systèmes

Les réponses aux questions doivent être commentées clairement et lisiblement.

Exercice 1:

On considère le schéma simplifié d'un ordinateur présenté sur la Figure 1.

- i) Décrire les fonctions des différents bus qui composent le système.
- ii) La logique des fonctions de sélection des circuits est donnée par : S1 = NOT A9 AND NOT A10 ; S2 = NOT A8 AND NOT A10 ; S3 = NOT A8 AND NOT A9. Décrire complètement le plan d'adressage du système.
- iii) Quels sont les capacités des mémoires?
- iv) Comparez le décodage vu en ii) avec le suivant: S1 = A8; S2 = A9; S3 = A10?

Figure 1: Schéma simplifié, exercice 1.

Exercice 2: Décrivez les quatre différents types de piles vus au cours ainsi que les modes d'adressages qui permettent de les implémenter.

Exercice 3:

On considère le programme suivant:

CMP r0,#3 ADDEQ r0,r0,#1 ADDNES r1,r1,#2 ADDEQ r2,r2,#3

- Pour chacune des instructions décrivez l'exécution par le processeur.
- Ecrivez un programme équivalent en C.
- Récrivez le programme sans utiliser les instructions conditionnelles et discutez pourquoi le code est moins performant.

Exercice 4: Décrire l'état des registres et de la mémoire après l'exécution des instructions suivantes:

• LDR r1, [r2,#2] avec r1 = 0x2345FA12, r2 = 0xFFF00004 et

Mémoire

0xFFF00010	23	45	FA	12
0xFFF00008	98	76	C4	A1
0xFFF00004	24	AB	A0	FF
0xFFF00000	00	0F	A0	22

• LDR r1, [r2,-r3]! avec r1=0x000000000, r2=0x00100014, r3=0x00000000C et

Mémoire

0x100010	DF	0C	63	20
0x10000C	FF	AA	10	00
0x100008	23	45	FA	12
0x100004	24	AB	A0	FF
0x100000	00	0F	A0	22

• LDR r1,[r2],-r3 avec r1=0x00000000, r2=0x00100010, r3=0x00000000C et

Mémoire

0x100010	DF	0C	63	20
0x10000C	FF	AA	10	00
0x100008	23	45	FA	12
0x100004	24	AB	A0	FF
0x100000	00	0F	A0	22

• STR r1,[r2,-r3]! avec r1=0x000000000, r2=0x00100014, r3=0x000000008 et

TA /E	,		
11/1	ém	α	ro
TVT		LV.	\mathbf{L}

0x100010	DF	0C	63	20
0x10000C	FF	AA	10	00
0x100008	23	45	FA	12
0x100004	24	AB	A0	FF
0x100000	00	0F	A0	22

• LDR r2,[r1,r3 LSL # 2]! avec r1=0x00100000, r2=0x00000001, r3=0x00000002 et

Mémoire

0x100010	DF	0C	63	20
0x10000C	FF	AA	10	00
0x100008	23	45	FA	12
0x100004	24	AB	A0	FF
0x100000	00	0F	A0	22

Exercice 5: Répondez aux questions.

- Quelle est la différence entre es instructions LRSB et LDRB? Donner des exemples pour illustrer.
- On veut coder une boucle sans fin.

loop B loop

Donner le code (opcode) de l'instruction.

- Dans le code de l'émulateur développé au cours, où est-ce que vous placeriez une procédure qui test si une interruption est levée?
- Qu'est-ce qu'une mémoire ROM, une mémoire statique, une mémoire dynamique?