BERT: Pre-training of Deep Bidirectional Transformer for Language Understanding

Jacob Devlin

Ming-Wei Chang Kenton Lee Google AI Language NACCL '19

Kristina Toutanova

How can we further develop current pre-training methods for language representations?

Semi-Supervised Learning

Self-Supervised Learning

02 Motivation

Fine-tuning vs Feature-Based

-> improve the robustness of text generation models by fine-tuning + deeply bidirectional architecture

Fine-tuning vs Fe

-> improve the rc

rectional architecture

- 1) Presents BERT to demonstrate the importance of bidirectional pretraining for language representations
- 2) Shows how pre-trained representations reduce the need for taskspecific architecture engineering
- 3) Advances the state of the art(SOTA) performances for 11 NLP tasks

[Pre-training Datasets]

- BookCorpus (800M words)
- English Wikipedia (2500M words)

Sentence Pair CLS Single Sentence CLS Question Answer Single Sentence Tagging

[Fine-tuning Datasets 1/2]

- GLUE(General Language Understanding Evaluation): except WNLI*
 - MNLI: entailment classification
 - QQP: binary CLS if semantically equivalent
 - QNLL: SQuAD -> binary CLS, whether correct answer
 - SST-2: binary single-sentence CLS for sentiment
 - Cola: binary single- sentence whether sentence linguistically acceptable
 - STS-B: how two sentences are semantically alike from 1 to 5
 - MRPC: whether sentences in the pair are semantically equivalent
 - RTE: binary entailment task but with less training data
 - WNLI: small inference dataset…*

^{*} Excluded due to poor performance (likely by the adversarial examples with shared sentences)

04 Datasets

[Fine-tuning Datasets 2/2]

- SQuAD v1.1
 - QA dataset from 100k crowd-sourced QA pairs
 - Predict the answer text span
- **SQuAD** v2.0
 - Extension of v1.1: more realistic as to allowing "no answer"
- SWAG (Situations With Adversarial Generations)
 - 113k sentence-pair completion
 - 1 given sentence: four possible continuation

BERT Overview

- Framework: pre-training -> fine-tuning
- For fine-tuning, utilize unified architecture over most tasks (minimal changes)
- Multi-layer bidirectional Transformer encoder based
- BERT_BASE (L=12, H=768, A=12, Total Parameters=110M)
- BERT_LARGE (L=24, H=1024, A=16, Total Parameters=340M)

BERT Overview

Input Embedding

Sum of emb_token, emb_segment, emb_position

Pre-training

1) Masked LM

80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy \rightarrow my dog is [MASK]

10% of the time: Replace the word with a random word, e.g., my dog is hairy \rightarrow my dog is apple

10% of the time: Keep the word unchanged, e.g., my dog is hairy \rightarrow my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

2) Next Sentence Prediction (NSP)

```
Input = [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]
```

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]
 penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

Pre-training Outlook: MLM

Pre-training Outlook: NSP

Fine-tuning: Sentence Pair CLS

Fine-tuning: Single Sentence CLS

Fine-tuning: QA Task

Fine-tuning: Single Sentence Tagging

06 Experiment

Downstream Performance: GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

06 Experiment

Downstream Performance: SQuAD 1.1, 2.0

System	Dev		Te	st			
•	EM	F1	EM	F1			
Top Leaderboard Systems (Dec 10th, 2018)							
Human	-	-	82.3	91.2			
#1 Ensemble - nlnet	-	-	86.0	91.7			
#2 Ensemble - QANet	-	-	84.5	90.5			
Published							
BiDAF+ELMo (Single)	-	85.6	-	85.8			
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5			
Ours							
BERT _{BASE} (Single)	80.8	88.5	-	-			
BERT _{LARGE} (Single)	84.1	90.9	-	-			
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-			
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8			
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2			

System	Dev		Te	st		
•	EM	F1	EM	F1		
Top Leaderboard Systems (Dec 10th, 2018)						
Human	86.3	89.0	86.9	89.5		
#1 Single - MIR-MRC (F-Net)	_	_	74.8	78.0		
#2 Single - nlnet	_	-	74.2	77.1		
Published						
unet (Ensemble)	_	-	71.4	74.9		
SLQA+ (Single)	_		71.4	74.4		
Ours						
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1		

SQuAD 1.1 SQuAD 2.0

06 Experiment

Downstream Performance: SWAG

System	Dev	Test	
ESIM+GloVe	51.9	52.7	
ESIM+ELMo	59.1	59.2	
OpenAI GPT	-	78.0	
BERT _{BASE}	81.6	_	
$BERT_{LARGE}$	86.6	86.3	1
Human (expert) [†]	-	85.0	
Human (5 annotations) [†]	-	88.0	

Considerable performance…

- Presents BERT to demonstrate the importance of bidirectional pre-training for language representations
- 2) Shows how pre-trained representations reduce the need for taskspecific architecture engineering
- 3) Advances the state of the art(SOTA) performances for 11 NLP tasks (8 GLUE tasks, SQuAD 1.1&2.0, SWAG)

Q&A