Analiza matematyczna 2

dr Joanna Jureczko

Zestaw 7

Szeregi liczbowe o wyrazach zespolonych.

Szeregi funkcyjne.

Podstawowe rodzaje i własności. Zbieżność.

Szeregi potęgowe.

Rozwijanie funkcji w szereg Taylora i Maclaurina.

ZADANIA

7.1. Zbadać zbieżność szeregów a)
$$\sum_{n=1}^{\infty} (\frac{\sqrt{3}+i}{2+\sqrt{3}i})^n$$
, b) $\sum_{n=1}^{\infty} e^{in\frac{\pi}{3}}$, c) $\sum_{n=1}^{\infty} \frac{n^n}{n!(e-i)^n}$, d) $\sum_{n=1}^{\infty} \frac{n(3i-1)^n}{5^n}$, e) $\sum_{n=1}^{\infty} [\frac{1}{n^2} + (-1)^n \frac{i}{3^n}]$.

7.2. Znaleźć promień zbieżności szeregów a)
$$\sum_{n=1}^{\infty} \frac{z^n}{n}$$
, b) $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$, c) $\sum_{n=1}^{\infty} \frac{n}{2^n} z^n$, d) $\sum_{n=1}^{\infty} \frac{(1+i)^n}{(n+1)(n+2)} (z-2)^n$, e) $\sum_{n=1}^{\infty} \frac{3^n (z-1)^n}{\sqrt{(3n-2)2^n}}$.

7.3. Wyznaczyć przedziały zbiezności szeregów a)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2n+1}$$
, b) $\sum_{n=1}^{\infty} (\frac{n}{n+1})^2 (\frac{x}{2})^n$, c) $\sum_{n=0}^{\infty} \frac{3^n}{n!} (x+2)^n$, d) $\sum_{n=0}^{\infty} (6-2x)^n$, e) $\sum_{n=2}^{\infty} \frac{(x-1)^n}{\sqrt{n}-1}$.

7.4. Znaleźć szeregi Maclaurina podanych funkcji i wyznaczyć ich promienie/przedziały zbieżności

a)
$$\frac{2}{1-3x}$$
, b) $x \sin 3x$, c) xe^{-2x} , d) $\frac{x}{9+x^2}$, e) $\frac{3}{1+x-2x^2}$, f) $\cos^2 x$.

7.5* Korzystając z rozwinięć Maclaurina funkcji elementarnych obliczyć pochodne

a)
$$f^{(100)}(0)$$
, gdzie $f(x) = \frac{x}{1-x^2}$, b) $f^{(20)}(0)$, gdzie $f(x) = x^2 e^{2x}$, c) $f^{(50)}(0)$, gdzie $f(x) = x \sin x$, d) $f^{(25)}(0)$, gdzie $f(x) = x^2 \ln(1-x)$.

ODPOWIEDZI

7.1. a) bezwzględnie zbieżny, b) rozbieżny, c) bezwzględnie zbieżny, d) bezwzględnie zbieżny, e) zbieżny.

7.2. a)
$$r = 1$$
, b) $r = e$, c) $r = 2$, d) $r = \frac{\sqrt{2}}{2}$, e) $r = \frac{\sqrt{2}}{3}$.

7.3. a)
$$[0,2)$$
, b) $(-2,2)$, c) \mathbb{R} , d) $(\frac{3}{2},\frac{5}{2})$, \tilde{e} $[0,2)$.

7.2. a)
$$r = 1$$
, b) $r = e$, c) $r = 2$, d) $r = \frac{\sqrt{2}}{2}$, e) $r = \frac{\sqrt{2}}{3}$.
7.3. a) $[0, 2)$, b) $(-2, 2)$, c) \mathbb{R} , d) $(\frac{3}{2}, \frac{5}{2})$, e) $[0, 2)$.
7.4. a) $2 + \sum_{n=1}^{\infty} 2 \cdot 3^n (-1)^{n-1} x^n$, $R = \frac{1}{3}$, b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 3^{2n-1}}{(2n-1)!} x^{2n}$, $x \in \mathbb{R}$, c) $\sum_{n=1}^{\infty} (-1)^n \frac{2^n x^{n+1}}{n!}$, $R = \infty$, d) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{3^{2(n+1)}}$, $R = 3$, e) $2\sum_{n=0}^{\infty} (-2)^n x^n$, $|x| < \frac{1}{2}$, f) $1 + \frac{1}{2}\sum_{n=1}^{\infty} \frac{(-4)^n}{(2n)!} x^{2n}$, $x \in \mathbb{R}$.
7.5. a) $f^{(100)}(0) = 0$, b) $f^{(20)}(0) = 20 \cdot 19 \cdot 2^{18}$, c) $f^{(50)}(0) = 50$, d) $f^{(25)}(0) = -\frac{25!}{23}$.

$$\infty$$
, d) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{3^{2(n+1)}}$, $R = 3$, e) $2\sum_{n=0}^{\infty} (-2)^n x^n$, $|x| < \frac{1}{2}$, f) $1 + \frac{1}{2}\sum_{n=1}^{\infty} \frac{(-4)^n}{(2n)!} x^{2n}$, $x \in \mathbb{R}$.

7.5. a)
$$f^{(100)}(0) = 0$$
, b) $f^{(20)}(0) = 20 \cdot 19 \cdot 2^{18}$, c) $f^{(50)}(0) = 50$, d) $f^{(25)}(0) = -\frac{25!}{23}$.