# Rendering atmospheric clouds using neural networks

Author: Mikhail Panin, ITMO

Scientific Supervisor: Anton Kovalev, Assistant Prof., ITMO Scientific Advisor: Sergey Nikolenko, PHD, Head of Al lab, PDMI RAS



## Clouds are HARD to render

- Light bounces thousands of times
- In a non-deterministic manner
- And we have to simulate it.



# **Old Fashioned Solution (path-tracing)**

Rendering clouds by simulation of light bounces.

#### Pros:

- Physically correct
- Any level of accuracy

#### Cons:

Takes over 24 hours per image





# **Modern Solution (By Disney Research)**

Approximating out coming light using neural network.

#### Pros:

- Takes a few minutes per image
- Can be trained for various looks

#### Cons:

- There are corner cases
- Still not fast enough



# **Descriptor**





## **Neural Network**

- Feed the descriptor layer-by-layer
- Three fully connected in the end





## Goal

- Beat Disney's performance
- Come close to a real-time solution.

## **Objectives**

- Implement a Monte-Carlo path-tracer (Ground Truth, data source)
- Collect a dataset of clouds
- Collect a dataset of [LightDirection, SunDirection, Descriptor, Radiance]
- Train Disney style Neural Network
- Train a faster Neural Network
- Implement NN rendering on GPU
- Compare images and performance



# The new idea (backing of Neural Network)

What if we could pre bake the output of the first K layers?

#### **Problems:**

- Variable Υ
- Variable view direction
- Variable sun direction
- Memory footprint





# The new idea (backing of Neural Network)

- Precompute only the first N blocks
- Freeze the sun direction
- Use the view direction only in the last layers
- Different Descriptor for the baked layers





## **Results**

- Improved performance
- And the same image quality.





## What's next?

Even faster rendering of dense clouds

- By only baking the values on the surface
- And using rasterization instead of raytracing

At 10 FPS or more?





# Thank you for your attention!

Questions?