WHAT IS CLAIMED IS:

1	1. A composition comprising a peptide that binds to six or more different
2	members of a panel of HLA-DR molecules, wherein the peptide comprises at least about
3	nine amino acids, said peptide having the formula Z_n - $X_1X_2X_3X_4X_5X_6X_7X_8X_9$ - Z_c , wherein:
4	X ₁ is an amino acid selected from the group consisting of: (X), Y, F, M
5	L, I, V, and W, wherein (X) is cyclohexylalanine;
6	X ₂ is an amino acid selected from the group consisting of: I and V;
7	X_3 , X_4 , X_5 , X_7 , X_8 , and X_9 are each an amino acid;
8	X ₆ is an amino acid selected from the group consisting of: T, V, M, S,
9	A, C, P, L, and I;
10	Z_n and Z_c each comprise 1 to about 15 amino acids.
1	2. The composition of claim 1, wherein either or both of Z_n and Z_c
2	comprise at least one D-amino acid.
1	3. The composition of claim 1, wherein Z _n comprises K or A adjacent to
2	X_1 ; X_1 is (X) , Y or F ; and X_2 is I or V .
1	4. The composition of claim 1, wherein the peptide inhibits activation of a
2	T cell which displays a receptor which is specific for a DR molecule and X ₅ is a non-polar,
3	non-charged, non-bulky, non-aromatic amino acid.
1	5. The composition of claim 4, wherein X_5 is A.
1	6. The composition of claim $\frac{1}{4}$, wherein one or more of X_3 , X_4 , X_7 , X_8 , and
2	X ₉ is a non-polar, non-charged, non-bulky, non-aromatic amino acid.
. /	
l/	7. The composition of claim 6 , wherein Z_n comprises at least one non-
2	polar, non-charged, non-bulky, non-aromatic amino acid.

1	8.	The composition of claim 6, wherein one or more of X ₃ , X ₄ , X ₇ , X ₈ , and
2	X ₉ is A.	
1	9.	The composition of claim 1, wherein the peptide stimulates activation of
2	a T cell which disp	lays a receptor specific for a DR molecule and wherein X ₅ is a polar,
3		aromatic amino acid.
1	10.	The composition of claim 9 , wherein X_5 is W .
1	11.	The composition of claim 9, wherein one or more of X ₃ , X ₄ , X ₇ , X ₈ , and
2	X ₉ is a polar, charg	ged, bulky, or aromatic amino acid.
1 2	12. and X ₉ is W.	The composition of claim 11, wherein one or more of X ₃ , X ₄ , X ₇ , X ₈ ,
1	13.	
2	-	el of HLA-DR molecules, wherein the peptide comprises at least about
3	nine amino acids,	said peptide having the formula Z_n - $X_0X_1X_2X_3X_4X_5X_6X_7X_8X_9$ - Z_c ,
4	wherein:	
5		X_0 is an amino acid selected from the group consisting of: K and A;
6		X_1 is an amino acid selected from the group consisting of: (X), Y and F;
7		X ₂ is an amino acid selected from the group consisting of: I and V;
8		X ₃ , X ₄ , X ₅ , X ₇ , X ₈ , and X ₉ are each an amino acid;
9		X_6 is T ;
10		Z_n and Z_c each comprise 1 to about 15 amino acids.
1	14.	The composition of claim 13, wherein either or both of Z_n and Z_c
2	comprise at least of	one D-amino acid.

1	15. The composition of claim 13, wherein the peptide inhibits activation of
2	a T cell which displays a receptor specific for a DR molecule and wherein X5 is a non-polar
3	non-charged, non-bulky, non-aromatic amino acid.
1	16. The composition of claim 15, wherein X ₅ is A.
1	17. The composition of claim 15, wherein one or more of X ₃ , X ₄ , X ₇ , X ₈
2	and X ₉ is a non-polar, non-charged, non-bulky, non-aromatic amino acid.
1	18. The composition of claim 15, wherein either or both of Z_n and Z_c
2	comprises at least one non-polar, non-charged, non-bulky, non-aromatic amino acid.
1	19. The composition of claim 13, wherein the peptide stimulates activation
2	of a T cell which displays a receptor specific for a DR molecule and wherein X ₅ is a polar,
3	charged, bulky, or aromatic amino acid
1	20. The composition of claim 19, wherein X_5 is W.
1	21. The composition of claim 19, wherein one or more of X ₃ , X ₄ , X ₇ , X ₈ ,
2	and X ₉ is a polar, charged, bulky, or aromatic amino acid.
1	The composition of claim 21, wherein one or more of X ₃ , X ₄ , X ₇ , X ₈ , and X ₉ is W or K.
2	and X_9 is w/of K.
1	23. The composition of claim 22, wherein one or more of X_7 and X_8 is K.
1	24. The composition of claim 1, wherein the panel of HLA-DR molecules
2	comprises at least six members selected from the group consisting of DR1, DR2w2b,
3	DR2w2a, DR3, DR4w4, DR4w14, DR5, DR6, DR7, DR8, DR9, DR52a, DR52b, DR52c
4	and DR53.

1	25. T	he composition of claim 1, wherein the peptide is a pan-DR peptide
2	that binds to at least al	bout seven members of the panel with high affinity.
1	26. T	The composition of claim 1, wherein the composition comprises a
2	pharmaceutically acce	eptable carrier.
1	27. T	The composition of claim 1, which further comprises a CTL inducing
2	peptide.	
1	28. T	he composition of claim 27, wherein the CTL inducing peptide is
2	acetylated, palmitylate	ed, or acylated with a fatty acid.
1	29. T	The composition of claim 27, wherein the CTL inducing peptide is
2	linked to the peptide to	o form a CTL/T helper peptide conjugate.
1		The composition of claim 29, wherein the CTL/T helper peptide
2	conjugate is linked to	a carrier.
1	31. T	The composition of claim 29, wherein the CTL inducing peptide is
2	linked to the peptide b	by a spacer molecule.
1	/	he composition of claim 1, wherein the peptide is a naturally occurring
2	peptide that arises upor	n processing of a protein by an antigen-presenting cell.
_		The second of th
1	/33. T	The composition of claim 32, wherein the peptide is a human peptide.
	24 T	The commonition of alaim 1 wherein the nentide is linked to one or
1		The composition of claim 1, wherein the peptide is linked to one or
2		itopes and the composition can induce an immune response to an
3	antigenic carbohydrat	e.

1	35. The composition of claim 34, wherein the carbohydrate epitope
2	comprises an antigenic determinant from a bacterium, a virus, a cancer cell, a fungus, or a
3	parasite.
1	36. The composition of claim 34, wherein the carbohydrate epitope is
2	linked to the carboxy-terminus of the peptide.
1	37. The composition of claim 34, wherein the carbohydrate epitope is
2	covalently linked to the PADRE peptide through a linker.
1	38. The composition of claim 37, wherein the linker comprises a cysteine
2	residue.
1	39. The composition of claim 37, wherein the linker consists of an
2	aminocaproic acid residue and a cysteine residue.
1	40. The composition of claim 34, wherein the peptide is further linked to
2	surface-active material.
1	41. The composition of claim 40, wherein the surface-active material is a
2	lipid moiety, a polymer, polyalkylene glycol, or a surfactant.
1	42. The composition of claim 40, wherein the surface-active material is
2	linked to the N-terminus of the PADRE peptide.
1	43. The composition of claim 40 , wherein the surface-active material
2	comprises palmitic acid.
1	44. The composition of claim 43, wherein the surface-active material is a
2	lipid moiety which is PAM ₂ K, wherein K is a lysine residue and PAM is a palmitic acid
3	residue.

1	45. A peptide that binds to seven or more members of a panel of HLA-DR
2	molecules, the peptide comprising a neutral amino acid at each position that is not a critical
3	contact site, which critical contact sites are necessary for binding of the antigen to a selected
4	HLA-DR molecule.
1	46. A method for identifying a pan-DR peptide, the method comprising
2	analyzing one or more peptide sequences for a peptide that has the formula Z_n -
3	$X_1X_2X_3X_4X_5X_6X_7X_8X_9$ -Z _c , wherein:
4	X ₁ is an amino acid selected from the group consisting of: (X), Y, F, M
5	L, I, V, and W, wherein (X) is cyclohexylalanine;
6	X ₂ is an amino acid selected from the group consisting of: I and V;
7	X_3 , X_4 , X_5 , X_7 , X_8 , and X_9 are each an amino acid;
8	X_6 is an amino acid selected from the group consisting of: T, V, M, S,
9	A, C, P, L, and I;
10	Z _n and Z _c each comprise 1 to about 15 amino acids; and
11	selecting a peptide or peptides that have such formula.
12	
1	47. The method of claim 46, further comprising the step of testing the
2	selected peptide or peptides for binding to three different members of a panel of HLA-DR
3	molecules that comprises at least three members selected from the group consisting of DR1,
4	DR2w2b, DR2w2a, DR3, DR4w4, DR4w14, DR5, DR6, DR7, DR8, DR9, DR52a, DR52b,
5	DR52c, and DR53.
1	48. The method of claim 46, wherein the selected peptide is a naturally
2	occurring peptide.
1	49. The method of claim 46, wherein the peptides are tested for binding to
2	sequential panels of HLA-DR molecules.

1	50. The method of claim 49, wherein the sequential panel comprises a
2	primary panel which comprises DR1, DR4w4 and DR7 HLA molecules.
1	51. The method of claim 50, wherein peptides that bind to at least two
2	members of the primary panel are tested for binding to members of a secondary panel which
3	comprises DR2w2β1, DR2w2β2, DR6w19 and DR9 HLA molecules.
1	52. The method of claim 51, wherein peptides that bind to at least three
2	members of the secondary panel are tested for binding to members of a tertiary panel which
3	comprises DR4w15, DR5w11 and DR8w2 HLA molecules.
1	53. A method for rational design of a peptide that binds to three or more
2	different members of a panel of HLA-DR molecules, which peptide has the formula Z _n -
3	X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ X ₇ X ₈ X ₉ -Z _c , the method comprising:
4	introducing at position X1 an amino acid selected from the group
5	consisting of (X), Y, F, M, L, I, V, and W, wherein (X) is cyclohexylalanine;
6	introducing at position X ₂ an amino acid selected from the group
7	consisting of I and V; and
8	introducing at position X ₆ an amino acid selected from the group
9	consisting of T, V, M, S, A, C, P, L, and I;
10	wherein X_3 , X_4 , X_5 , X_7 , X_8 , and X_9 are each an amino acid; and
11	Z_n and Z_c each comprise 1 to about 15 amino acids.
1	54. The method of claim 53, wherein the method further comprises testing
2	the peptide to identify those that bind with high to intermediate affinity to three or more
3	different members of a panel of HLA-DR molecules.
1	55. The method of claim 53, wherein the panel of HLA-DR molecules
2	comprises at least three members selected from the group consisting of DR1, DR2w2b,
3	DR2w2a, DR3, DR4w4, DR4w14, DR5, DR6, DR7, DR8, DR9, DR52a, DR52b, DR52c,
4	and DR53.

1	56. The method of claim 53, wherein the peptide is a pan-DR peptide that
2	binds to at least about three members of the panel with high affinity.
1	57. The method of claim 56, wherein the pan-DR peptide binds to at least
2	about three members of the panel with an IC ₅₀ of about 500 nM or less relative to the IC ₅₀ of
3	a reference peptide.
1	58. The method of claim 53, wherein the method further comprises
2	rationally designing the peptide to inhibit DR-restricted T cell proliferation by replacing one
3	or more amino acids at positions X ₃ , X ₄ , X ₅ , X ₇ , X ₈ , and X ₉ with a non-polar, non-charged,
4	non-aromatic, non-bulky amino acid.
1	59. The method of claim 58, wherein the non-polar, non-charged, non-
2	aromatic, non-bulky amino acid is selected from the group consisting of Ala, Gly, and Pro.
1	60. The method of claim 59, wherein the non-polar, non-charged, non-
2	aromatic, non-bulky amino acid is Ala.
1	61. The method of claim 58, wherein each amino acid at positions X_3 , X_4 ,
2	X ₅ , X ₇ , X ₈ , and X ₉ is replaced with a non-polar, non-charged, non-aromatic, non-bulky
3	amino acid.
1	62. The method of claim 58, wherein the method further comprises:
2	identifying those test peptides that retain their ability to bind with high
3	to intermediate affinity to greater than 50% of members of a panel of HLA-DR molecules;
4	and
5	testing the peptides that retain HLA-DR binding ability to identify those
6	that can inhibit DR-restricted T cell proliferation.

1	63. The method of claim 62, wherein the testing of the peptides to identify
2	those that can inhibit DR-restricted T cell proliferation is conducted in an in vitro assay
3	system or in an in vivo system.
1	64. A peptide that binds to greater than 50% of members of a panel of
2	HLA-DR molecules, wherein the peptide is identified using the method of claim 53.
1	65. The method of claim 53, wherein the method further comprises
2	rationally designing the peptide to induce an immune response by including at one or more
3	of positions X ₃ , X ₄ , X ₅ , X ₇ , X ₈ , and X ₉ a polar, charged, aromatic, or bulky amino acid.
1	66. The method of claim 65, wherein the polar, charged, aromatic or bulky
2	amino acid is selected from the group consisting of W, K, and (X).
1	67. The method of claim 65, wherein positions X_7 and X_8 are each
2	independently selected from the group consisting of W and K.
1	68. The method of claim 65, wherein the method further comprises:
2	identifying those test peptides that retain their ability to bind with high
3	to intermediate affinity to greater than 50% of members of a panel of HLA-DR molecules;
4	and
5	testing the pan-DR peptides that retain HLA-DR binding ability to
6	identify those that can induce an immune response.
1	The method of claim 68, wherein the amino acid is selected from the
2	group consisting of cyclohexylalanine, tryptophan, and lysine.
1	70. The method of claim 68, wherein the immune response is a humoral
2	response or a cytotoxic response.
1	71. The method of claim 68, wherein the peptides are tested in vivo.

1	72. A peptide that comprises a pan-DR T helper epitope that binds to three
2	or more different members of a panel of HLA-DR molecules, wherein the peptide is
3	obtained using the method of claim 68.
1	73. A method of inhibiting antigen-specific activation of T cells, the method
2	comprising contacting a composition that comprises antigen presenting cells and the T cells
3	with a peptide that binds to three or more different members of a panel of HLA-DR
4	molecules, wherein:
5	the antigen presenting cells display a member of the panel of HLA-DR
6	molecules and the T cells are of the DR MHC restriction; and
7	at least one amino acid residue in the peptide which is not a critical
8	contact site for binding to the HLA-DR molecule but is involved in binding to a T cell
9	receptor is substituted with a neutral amino acid.
1	74. The method of claim 73, wherein the method comprises administering
2	to a patient a therapeutically effective dose of a pharmaceutical composition that comprises
3	the peptide and a pharmaceutically acceptable carrier.
1	75. A method of inducing antigen-specific activation of T cells, the method
2	comprising contacting a composition that comprises antigen presenting cells and the T cells
3	with a peptide that binds to three or more members of a panel of HLA-DR molecules,
4	wherein the antigen presenting cells display a member of the panel of HLA-DR molecules
5	and the T cells are of the DR MHC restriction, and further wherein the peptide has at least
6	one characteristic selected from the group consisting of:
7	at least one amino acid which does not constitute a critical contact site
8	in a pan-DR peptide from which the peptide is derived is substituted with an amino acid
9	having a side chain that has one or more properties selected from the group consisting of
10	increased bulk, hydrophobicity, aromaticity and charge compared to the substituted amino
11	acid;
12	the peptide is conjugated to a CTL-inducing antigenic determinant; and

Add)