Chapitre 3 – Du macroscopique au microscopique

Les deux premiers chapitres nous ont permis de décrire et caractériser la matière à notre échelle, l'échelle **macroscopique**. L'objectif de ce chapitre est de modéliser la matière à l'échelle des particules qui la compose, l'échelle **microscopique**.

1 Vers le microscopique

1.1 Identifier les images

Les images ci-dessous représentent (dans le désordre) : un chat, un virus, un cheveu, des atomes, un flocon de neige, des cellules animales, une abeille et un morceau de molécule d'ADN. Écris sous chaque image ce qu'elle représente.

1.2 Du plus grand au plus petit

Réécris la liste des éléments précédents en les classant par taille du plus grand au plus petit.

1.3 Quelle est leur taille?

Complète le tableau.

Taille	Élément
75 μm	
5 dm	
2 mm	
2nm	
0,1 nm	
10 μm	
100 nm	
1 cm	

1.4 Et en mètre, ça fait combien?

Complète le tableau.

Définition :

- $1 \mu m = 1 \times 10^{-6} m$
- $1 \text{ nm} = 1 \times 10^{-9} \text{ m}$

Taille	Valeur en mètre
75 μm	
5 dm	
2 mm	
2nm	
0,1 nm	
10 μm	
100 nm	
1 cm	

Conseil: Un rappel sur les puissances de 10 sera fait en classe.

1.5 Du macroscopique au microscopique

Résume les résultats précédents en plaçant les différents éléments autour de l'échelle de taille et en réécrivant pour chacun son nom et sa taille.

2 Modèle microscopique de la matière

Définition: Une espèce chimique est constituée d'un très grand nombre d'entités chimiques, c'est à dire d'un très grand nombre d'atomes, d'ions, ou de molécules.

Pour chaque espèce chimique ci-dessous, dire si elle est constituée d'atomes, de molécules, de cations ou d'anions.

Complète les définitions ci-dessous.

Définition :
• Un atome est une entité chimique électriquement constituée d'un noyau
chargé et d' chargés négativement.
• Une molécule est une entité chimique électriquement formée de plusieurs
liés entre eux.
Un ion est une entité chimique électriquement
• Un cation est un chargé
• Un anion est un chargé

Quand on écrit la formule chimique d'une espèce ionique, on indique le nombre de charges portées par les ions qui la compose : chaque ion de cuivre $II Cu^{2+}$ porte deux charges positives.

3 Électroneutralité de la matière à l'échelle macroscopique

3.1 Les solides ioniques

Exemple : Le sel de table a pour formule chimique NaCl : c'est le chlorure de sodium. C'est un solide ionique composé :

- de cations sodium Na⁺ possédant une charge positive;
- d'anions chlorure Cl⁻ possédant une charge négative.

Le chlorure de sodium a donc autant de charges positives que de charges négatives (une de chaque), il est neutre.

Exemple : Le nigari, ou chlorure de magnésium est un solide ionique composé :

- de cations magnésium Mg²⁺ possédant deux charges positives;
- d'anions chlorure Cl⁻ possédant une charge négative.

Pour qu'il soit neutre, il faut deux fois plus d'anions chlorure Cl⁻ que de cation magnésium Mg²⁺ : en effet, le nombre de charges positives doit être égal au nombre de charges négatives. La formule chimique du chlorure de magnésium est donc MgCl₂.

Définition :	: Un solide	e ionique e	st toujours	électriquement	
--------------	-------------	-------------	-------------	----------------	--

Par convention on écrit la formule chimique d'un solide ionique en commençant par le cation.

Applications 3.2

Nom	Formule chimique	À l'aide des deux exemples précédents et du			
ion hydrogène	H ⁺	tableau ci-contre, écris la formule chimique des			
ion sodium	Na ⁺	solides ionique suivants :			
ion magnésium	Mg ²⁺	• iodure de potassium :	:		
ion chlorure	Cl ⁻	• louare de potassium .			
ion potassium	K ⁺	chlorure d'hydrogène :			
ion fer II	Fe ²⁺				
ion fer III	Fe ³⁺	permanganate de potassium :			
ion cuivre II	Cu ²⁺	• sulfate de cuivre II :			
ion iodure	-	Sunute de cuivie ii			
ion hydroxyde	HO ⁻	• chlorure de fer III :			
ion sulfate	SO ₄ -	16 . 1 . 6 . 111			
ion permanganate	MnO ₄	• sulfate de fer III :			