

TENTAMEN I FYSIK

Kurs:	HF0025 Fysik för basår II								
Moment:	TENA 8 hp								
Program:	Tekniskt basår/Bastermin TBASA								
Rättande lärare:	Staffan Linnæus, Maria Shamoun,								
	Svante Granquist								
Examinator:	Staffan Linnæus								
Datum:	2019-03-15								
Tid:	8.00-12.00								
Jourhavande lärare:		Stefan Eriksson, tel 08 790 4809							
Hjälpmedel:	Miniräknare								
			elsamli	_					
	ISBN9	78-91-2	27-7227	9-8 elle	r				
	ISBN978-91-27-42245-2,								
	passare	e, gradsl	kiva och						
Omfattning och	0-10p	11p	12-14	15-17	18-20	21-23	24-26		
betygsgränser:	F	Fx	E	D	C	В	A		
Övrig information:	Till samtliga uppgifter krävs fullständiga								
	lösningar. Lösningarna skall vara tydliga och						och		
	lätta att följa. Skriv helst med blyertspenna. Införda beteckningar skall definieras.								
			mband						
	uppgifter innehållande kraftsituationer (eller andra vektorsituationer) skall vektorfigurer								
ritas med linjal. Uppgifter med elek									
		d kopplingsscheman							
	r anväi	ända storheter.							
	Lycka till!								
	Грска	u11:							

1.	Den nedre plattan är ansluten till jord medan den övre har potentialen $-20,0~\rm kV$. Avståndet mellan plattorna är $40,0~\rm mm$.					
	 a) Ange det arbete som krävs för att föra en elektron från den nedre plattan till den övre. Svara i SI-enheter. b) Hur stor är den elektriska fältstyrkan mellan plattorna? 	1				
2.	Den 7 juli 1995 befann sig rymdsonden Galileo (massa m = 2223 kg) i en cirkulär bana med radien R runt Jupiter. Rymdsondens fart i banan var 7,2 km/s. Jupiters massa är $1,8995\cdot10^{27}$ kg. a) Beräkna banans radie R.					
	b) Beräkna rymdsondens omloppstid.					
3.	Maria ska försöka bestämma jordens magnetfält. Hon placerar en kompass i mitten av en platt spole med fyra varv och radien 14 cm. Hon vrider spolen så att dess magnetfält ska vara riktat rakt västerut österut. När hon slår på strömmen 0,38 A vrider sig kompassnålen 34°. Beräkna den horisontella komposanten av jordens magnetfält. Väst Stade	2				
4.	En kondensator med kapacitans 2,0 mF matas med växelspänning, vars frekvens är 50 Hz. Strömmens toppvärde är 0,17 A. Beräkna spänningens effektivvärde.	2				

Зр

b) beräkna induktans.

9. Ett objekt glider friktionsfritt utan begynnelsehastighet från en punkt A på en mjukt kurvad bana. Den lämnar banan då den passerar banans lägsta punkt B. Hastigheten v i punkten B är horisontell. Höjden på den kurvade banan är h₁ och banan befinner sig på höjden h₂ över golvet, se figuren nedan.

Hur långt från punkten O kommer objektet att landa om $\,h_{\rm l}=0,45\,\,{\rm m}\,$ och $\,h_2=1,1\,{\rm m}$?

avlänkning y = 2,00 cm (se figur). Beräkna *U*_d.

2p

Figuren nedan visar ett tvärsnitt genom två långa parallella ledare L₁ och L₂. 12. Strömmen i L2 är dubbel så stor som i L1. I punkten A är den magnetiska flödestätheten 60 mT. Hur stor är den i punkten B?

Lösningsförslag:

- En elektron har laddningen $q=1,60218\cdot 10^{-19}~{
 m C}$ och spänningen mellan plattorna är potential differensen, dvs U = 20000 V.
 - a) Detta ger arbetet:

$$W = \Delta E_p = qU = 1,60218 \cdot 10^{-19} \cdot 20000 \text{ Nm} = 3,20436 \cdot 10^{-15} \text{ Nm}$$

Svar: Arbetet som krävs för att flytta elektronen är $3, 2 \cdot 10^{-15}$ Nm = 3, 2 fNm

b) Elektriska fältstyrkan är: $E = \frac{U}{d} = \frac{20000}{0.040}$ V/m = 500000 V/m

- **Svar:** Elektriska fältstyrkan mellan plattorna är 500 kV/m Givet: $m = 2223 \text{ kg}, v = 7,2 \text{ km/s}, G = 6,6726 \cdot 10^{-11} \text{ Nm}^2 / \text{kg}^2$ 2. $M(\text{Jupiters massa}) = 1,8995 \cdot 10^{27} \text{ kg}$
 - a) Kraftekvationen F = ma med gravitationen $F = \frac{GMm}{r^2}$ och accelerationen $a = \frac{v^2}{r}$ ger:

$$\frac{mv^2}{r} = \frac{GMm}{r^2}$$

$$r = \frac{GM}{v^2} = \frac{6,6726 \cdot 10^{-11} \cdot 1,8995 \cdot 10^{27}}{7200^2} \text{ m} = 2,4449 \cdot 10^9 \text{ m}$$

Svar: banans radie är 2,4 Gm

b) För en centralrörelse med konstant fart v gäller:

$$v = \frac{2\pi r}{T}$$
 \Rightarrow $T = \frac{2\pi r}{v} = \frac{2\pi \cdot 2,4449 \cdot 10^9}{7200}$ s = 2,1336·10⁶ s

Svar: omloppstiden är 2,1 Ms eller 25 dagar.

Givet: N = 4 varv, r = 14 cm, I = 0.38 A, $\mu_0 = 4\pi \cdot 10^{-7}$ Vs/Am, $\alpha = 34^{\circ}$ 3.

Se figuren till höger där de olika flödestätheterna representeras av vektorer.

Då gäller enligt figuren: $\tan \alpha = \frac{B_{spole}}{B_{ih}}$ där

$$B_{spole} = \frac{\mu_0}{2} \cdot \frac{NI}{r} = \frac{4\pi \cdot 10^{-7}}{2} \cdot \frac{4 \cdot 0.38}{0.14} \text{ T} = 6.8217 \cdot 10^{-6} \text{ T}$$

$$B_{jh} = \frac{B_{spole}}{\tan \alpha} = \frac{6,8217 \cdot 10^{-6}}{\tan 34^{\circ}} \text{ T} = 1,0113 \cdot 10^{-5} \text{ T}$$

Svar: Det horisontella jordmagnetiska är 10 µT.

Givet: $\hat{i} = 0.17 \text{ A}$, $C = 2.0 \text{ mF} = 2.0 \cdot 10^{-3} \text{ F och } f = 50 \text{ Hz}$

Spänningens effektivvärde är $U=\frac{\hat{u}}{\sqrt{2}}$ där $\hat{u}=X_c\hat{i}=\frac{\hat{i}}{\omega C}=\frac{\hat{i}}{2\pi fC}$.

Detta ger spänningen: $U = \frac{\hat{i}}{\sqrt{2} \cdot 2\pi fC} = \frac{0.17}{\sqrt{2} \cdot 2\pi \cdot 50 \cdot 2 \cdot 10^{-3}} \text{ V} = 0.1913 \text{ V}$

Svar: Spänningens effektivvärde är 0,19 V.

Givet: $v = 2.7 \text{ Mm/s}, q = 0.16 \text{ aC} = 1.6 \cdot 10^{-19} \text{ C}, a = 2.5 \text{ cm}, I = 4.0 \text{ A}, \mu_0 = 4\pi \cdot 10^{-7} \text{ Vs/Am}$

Partikeln utsätts för magnetfältet från strömmen genom ledaren.

Dess storlek fås ur sambandet: $B=\frac{\mu_0}{2\pi}\cdot\frac{I}{a}$. Den magnetiska kraften som verkar på partikeln är:

$$F = Bqv = \left[B = \frac{\mu_0}{2\pi} \cdot \frac{I}{a} \text{ insättes} \right] = \frac{\mu_0 Iqv}{2\pi a} = \frac{2 \cdot 10^{-7} \cdot 4 \cdot 1,6 \cdot 10^{-19} \cdot 2,7 \cdot 10^6}{0,025} \text{ N} = 1,3824 \cdot 10^{-17} \text{ N}$$

I figuren till höger har högerhandregeln använts för att bestämma riktningen på den magnetiska kraften.

Svar: Kraften på laddningen är 14 aN och pekar neråt i papprets plan.

Givet: U = 32V, $C_1 = 0.65 \cdot 10^{-6} \text{ F}$, $C_2 = 1.05 \cdot 10^{-6} \text{ F}$

Den sökta energin är $E = \frac{QU}{2}$ där Q = CU och kapacitansen

för seriekopplade kondensatorer fås ur sambandet:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$
.

$$\frac{1}{C} = \frac{C_2 + C_1}{C_1 C_2} \implies C = \frac{C_1 C_2}{C_2 + C_1} = \frac{0.65 \cdot 10^{-6} \cdot 1.05 \cdot 10^{-6}}{(0.65 + 1.05) \cdot 10^{-6}} \text{ F} = 4.0147 \cdot 10^{-7} \text{ F ger energin}$$

$$E = \frac{4.0147 \cdot 10^{-7} \cdot 32^2}{2} \text{ J} = 2.0555 \cdot 10^{-4} \text{ J}$$

Svar: Energin som lagras är 0,21 mJ.

7.

Givet: m = 25 g, r = 0.33 m, $g = 9.82 \text{ m/s}^2$, $\alpha = 30^\circ$

Kulan påverkas av tyngden F_g nedåt och spännkraften F_s enligt figur 1.

Den resulterande kraften F_R är riktad mot centrum av den cirkulära banan, se figur 2. Metoden som har används här för att bestämma riktningen på kraften F_R är

polygonmetoden (eller genom att rita en parallellogram). Enligt figuren gäller följande geometriska samband:

$$\tan\alpha = \frac{F_{\rm R}}{F_{\rm g}} \ {\rm där} \ F_{\rm R} = ma = \frac{mv^2}{r} \ {\rm och} \ F_{\rm g} = mg \ . \label{eq:alpha}$$

Hastighet fås ur:
$$\tan \alpha = \frac{F_R}{F_g} = \frac{\frac{mv^2}{r}}{mg} = \frac{v^2}{gr} \implies v = \sqrt{gr \tan \alpha}$$

Vilket ger $v = \sqrt{9.82 \cdot 0.33 \cdot \tan 30^{\circ}}$ m/s = 1.3678 m/s

Figur 2.

Anm. Alternativ lösning: Dela upp spännkraften F_s i x- och y-led, se figur 3.

$$\begin{vmatrix}
F_{sy} = F_g \\
F_{sx} = F_R
\end{vmatrix} \Rightarrow \begin{cases}
F_s \cos \alpha = F_g \\
F_s \sin \alpha = F_R
\end{cases}$$

$$\frac{F_g}{\cos \alpha} = \frac{F_R}{\sin \alpha} \implies F_R = F_g \tan \alpha$$

Insättning av
$$F_R = ma = \frac{mv^2}{r}$$
 och $F_g = mg$ ger: $v = \sqrt{gr \tan \alpha}$ $v = \sqrt{9.82 \cdot 0.33 \cdot \tan 30^\circ}$ m/s = 1.3678 m/s

Svar: banhastigheten är 1,4 m/s.

- 8.
- a) Vi bestämmer resistansen genom att läsa av strömmen efter lång tid när grafen planar ut. Då är strömmen konstant och därmed induceras ingen spänning. Då gäller U=RI där $U=9,0~{\rm V}$ och $I=0,45~{\rm A}$ enligt diagrammet. Vilket ger

 $R = \frac{U}{I} = \frac{9.0}{0.45} \ \Omega = 20 \ \Omega$

- **Svar:** Spolens resistans är 20 Ω .
- b) Spolens induktans bestäms i början av diagrammet då strömstyrkan är så liten att den kan försummas. En tangent dras vid t=0 och ger:

$$\frac{di}{dt} = \frac{0.4 - 0}{0.005 - 0}$$
 A/s = 80 A/s

Induktansen L beräknas sedan enligt: $e = L \frac{di}{dt} \implies L = \frac{e}{di/dt} = \frac{9.0}{80} \text{ H} = 0.1125 \text{ H} \approx 0.11 \text{ H}$

Svar: Spolens induktans är 0,11 H.

9. Givet $h_1 = 0.45 \text{ m}$, $h_2 = 1.1 \text{ m}$, $g = 9.82 \text{ m/s}^2$

Friktionsfritt längs banan, dvs från punkten A till B ger enligt energiprincipen att $E_{\scriptscriptstyle k}=E_{\scriptscriptstyle p}$ där

$$E_k = \frac{mv^2}{2}$$
 och $E_p = mgh_1$

$$E_k = E_p \implies \frac{mv^2}{2} = mgh_1 \implies v = \sqrt{2gh_1}$$

Efter att objektet passerat läge B delas rörelsen upp i x-led och y-led med positiv riktning enligt figuren ovan. Hastigheten v betecknas nu som v_0 .

Objektets fortsatta rörelse i y-led följer likformig accelererad rörelse: $s = v_0 t + \frac{at^2}{2}$

I läge B är den vertikala hastigheten, $v_{oy}=0$. För fallrörelse är $a=g \, {
m och} \, s=h_2$.

Vilket ger tiden:
$$h_2 = \frac{gt^2}{2} \implies t = \sqrt{\frac{2h_2}{g}}$$

För den horisontella rörelsen under fallrörelse gäller likformig rörelse: $s = vt \mod v = v_{0x}$ och s = x

$$x = v_{0x}t = \begin{bmatrix} \text{insättning av} \\ t = \sqrt{\frac{2h_2}{g}} \text{ och} \\ v = \sqrt{2gh_1} \end{bmatrix} = \sqrt{2gh_1} \cdot \sqrt{\frac{2h_2}{g}} = 2\sqrt{h_1h_2} = 2\sqrt{0.45 \cdot 1.1} \text{ m} = 1,4071 \text{ m}$$

Svar: Föremålet landar 1,4 m från punkten O.

10. Givet: l = 1.5 m, $t_1 = 2.0 \text{ s}$, $e_1 = 0.32 \text{ mV}$, $t_2 = 4.0 \text{ s}$

Fallrörelsen är en likformigt accelererad rörelse: $v = v_0 + at$ där a = g och $v_0 = 0$.

När staven har fallit 2,0 sek har den hastigheten $v_1=gt$. Den inducerade spänningen är då $e_1=Bv_1l$. Magnetfältet i området som staven faller igenom och ger upphov till induktion är den horisontella komponenten av det jordmagnetiska fältet. Magnetfältet blir:

$$v_1 = gt_1 \implies e_1 = Bv_1l = Bgt_1l \implies B = \frac{e_1}{glt_1} = \frac{0.32}{9.82 \cdot 1.5 \cdot 2} \text{ mT} = 0.01086 \text{ mT}$$

Emk:n vid t₂ blir då:
$$e_2 = Bv_2 l = \begin{bmatrix} \text{insättning av} \\ v_2 = gt_2 & \text{och} \\ B = \frac{e_1}{glt_1} \end{bmatrix} = \frac{e_1}{glt_1} \cdot gt_2 \cdot l = \frac{e_1t_2}{t_1} = \frac{0.32 \cdot 4}{2} \text{ mV} = 0.64 \text{ mV}$$

Anm. Alternativ lösning:

Fallet sker med konstant acceleration under 2 s vilket ger att hastigheten ökar proportionellt mot tiden. Fördubblas tiden så fördubblas även hastigheten, $v_2 = 2v_1$. Detta medför att den inducerade spänningen även fördubblas eftersom e = Bvl är B och I konstanta och e ökar proportionellt mot v.

Den inducerade spänningen är därför $e_2 = 2e_1 = 2 \cdot 0.32 \text{ mV} = 0.64 \text{ mV}$

Svar: Spänningen mellan stavens änder är 0,64 mV efter 4,0 s.

Givet: s = 20.0 cm, d = 10.0 cm, y = 2.00 cm, $U_a = 3.58$ kV, $m = 1.99 \cdot 10^{-26}$ kg, $q = 1.60218 \cdot 10^{-19}$ C Jonerna accelereras av spänningen $U_a = 3.58$ kV mellan de parallella plattorna P_1 and P_2 .

De tillförs då energin: $\Delta E = qU_a$

Eftersom jonerna accelereras från vila är deras rörelseenergi noll från början. Vi antar också att all tillförd elektrisk energi blir till rörelseenergi $E_k = \frac{mv^2}{2}$ hos jonerna. Vi får då:

$$\Delta E = E_k \implies qU_a = \frac{mv^2}{2}$$
. Vi kan nu lösa ut hastigheten v: $v = \sqrt{\frac{2qU_a}{m}}$

och beräkna den till:

$$v = \sqrt{\frac{2 \cdot 1,60218 \cdot 10^{-19} \cdot 3580}{1,99 \cdot 10^{-26}}} \text{ m/s} = 2,40096 \cdot 10^5 \text{ m/s}$$

Jonernas rörelse i fältet mellan P₃ och P₄ är vinkelrät mot fältriktningen vilket betyder ingen kraft verkar på jonerna och därför en oförändrad hastighet v i x-led.

Den elektriska kraften på jonerna F = Eq där E är fältstyrkan mellan P_3 och P_4 .

I y-led gäller likformig accelererad rörelse gäller: $s = v_0 t + \frac{at^2}{2}$ där $v_{0y} = 0$ och $a = \frac{F}{m} = \frac{Eq}{m} = \frac{U_d q}{dm}$.

Avlänkningen y blir då: $y = \frac{at^2}{2}$.

Insättning av acceleration i formeln för avlänkningen ger: $y = \frac{U_d qt^2}{2dm}$

Tiden det tar för jonerna att passera genom fältet i x-led är: $t = \frac{s}{v}$.

Insättning av tiden i formeln för avlänkningen y ger:

$$y = \frac{U_d q s^2}{2 dm v^2} \iff U_d = \frac{2 y dm v^2}{q s^2}$$

$$U_d = \frac{2 \cdot 0,02 \cdot 0,1 \cdot 1,99 \cdot 10^{-26} \cdot (2,4009 \cdot 10^5)^2}{1,60218 \cdot 10^{-19} \cdot 0,2^2} \text{ V} = 716 \text{ V}$$

Svar: spänning Ud mellan plattorna är 716 V.

12. Givet: $B_A = 60 \text{ mT}, \ \mu_0 = 4\pi \cdot 10^{-7} \text{ As/Vm}$

Låt strömmen i L_1 vara $I_1 = I$ då är $I_2 = 2I$ i L_2 .

Flödestätheten runt en rak ledare är $B = \frac{\mu_0}{2\pi} \cdot \frac{I}{a}$.

Väljer neråt som positiv riktning. Figuren visar vektorerna som representerar flödestätheten från de båda ledarna i punkterna A och B.

$$\vec{B}_{A1} = \frac{\mu_0}{2\pi} \cdot \frac{I_1}{a} = \frac{\mu_0}{2\pi} \cdot \frac{I}{2r}$$

$$\vec{B}_{A2} = \frac{\mu_0}{2\pi} \cdot \frac{I_2}{a} = \frac{\mu_0}{2\pi} \cdot \frac{2I}{r}$$

Flödestätheten från L₁ i och L₂ i punkten A

$$\vec{B}_A = \vec{B}_{A1} + \vec{B}_{A2} = \frac{\mu_0}{2\pi} \cdot \left(\frac{I}{2r} + \frac{2I}{r}\right) = \frac{5}{2} \cdot \frac{\mu_0}{2\pi} \cdot \frac{I}{r} = 60 \text{ mT} \implies \frac{\mu_0}{2\pi} \cdot \frac{I}{r} = 24 \text{ mT}$$

I punkten B:

$$\vec{B}_B = \vec{B}_{B1} + \vec{B}_{B2} = \frac{\mu_0}{2\pi} \cdot \left(\frac{I}{4r} - \frac{2I}{r} \right) = -\frac{7}{4} \cdot \frac{\mu_0}{2\pi} \cdot \frac{I}{r} = -\frac{7}{4} \cdot 24 \text{ mT} = -42 \text{ mT}$$

Svar: flödestätheten i punkten B är 42 mT med riktningen rakt uppåt.

Rättningsmall:

Ge	nerella riktlinjer för tentamensrättning					
Räl	knefel	-1p				
Enl	netsfel	-1p				
Αv	-1p/tenta första gången					
Fel	-1p/tenta andra gången					
Ofu	minst -1p					
On	-1p					
Pre	fixfel i svaret	inget avdrag om rätt svar finns tidigare				
Up	pgiftsspecifika riktlinjer					
1.	a) -	-				
_	b) -	-				
2.	a) Kraftfigur saknas	ok				
2	 b) Följdfel: endast poängavdrag vid första fe Enkelt trigonometriskt fel 	-1p				
٦.	Tar fel på riktning, öst istället för väst	-Op				
	Använder formeln för lång spole	-ор -2р				
4.	<u> </u>	-2ρ				
	kraftfigur saknas	-1p				
	Kopplingsschema saknas	ok				
Ο.						
_	Räknar med $C = C_1 + C_2$	-2p				
7.	Kraftfigur felaktig eller saknas	-1p				
	Enkelt trigonometriskt fel	-1p				
	Felaktigt kraftresonemang	-2p				
8.	Kopplingsschema saknas	ok				
	a) Avläsningsfel av I=0,45 A	-1p				
	b) Motivering till beräkning av $\frac{di}{dt}$ saknas	-1p				
	Bestämmer 70 A/s $\leq \frac{di}{dt} \leq$ 90 A/s	ok				
9.	Felaktigt energiresonemang	- 3 p				
	Delar inte upp i x- och y-led	-2p				
10.	10. Antar att fallrörelsen är med konstant hastighet					
11.	Beräknar hastigheten v korrekt men sedan f	el -2p				
	Antar att hastigheten ökar då jonerna passe	rar genom magnetfältet -3p				
12.	Felaktig riktning på $\vec{B}_{{\scriptscriptstyle A}{\scriptscriptstyle 1}}$ och/eller $\vec{B}_{{\scriptscriptstyle A}{\scriptscriptstyle 2}}$ i punl	cten A -2p				
	Felaktig riktning på $\vec{B}_{\it B1}$ och/eller $\vec{B}_{\it B2}$ i punl	cten B -1p				
	Antar ett värde på strömmen I.	- 1p				