

Tema 14. Esquema Programación Dinámica

Algorítmica y Complejidad

1

/

Problema de Cambio de Monedas
Relación de recurrencia
valores: 1 5 10 20 50 cantidad 7 numMonedas (1,7): Número de monedas que se entregan como mínimo usando los tipos de monedas 1 para entregar la cantidad 7
2. Problema de Cambio de Monedas ① ② ③

Problema de Cambio de Monedas
Relación de recurrencia
i:0 valores: 1 5 10 20 50 cantidad 7
numMonedas (0,7): Número de monedas que se entregan como mínimo sin usar monedas para entregar la cantidad 7
2. Problema de Cambio de Monedas 1 3

Problema de Cambio de Monedas
Relación de recurrencia
i:3 valores: 1 5 10 20 50 cantidad 23
numMonedas(i,c): Número de monedas que se entregan como mínimo usando las tipos de monedas 1,,i para entregar la cantidad c
Caso Recursivo: Sí se entrega una moneda i $numMonedas(i,c) = min \{numMonedas(i-1,c) 1 + numMonedas(i,c-valores[i]) \}$ 5
2. Problema de Cambio de Monedas 1 3

Prob	ema	a de	e Ca	mb	io d	le N	lon	eda	S			
					Re	laci	ón d	e re	curr	enci	а	
j	:0											
valor	es:	1	5	10	20	50		cant	idad	0		
		Pa	ara c	>0	nui	mΜ	one	das(0,c)=	∞		
					nu	mM	one	das(i	,0)=	0		
	١											
		0	1	2	3	4	5	6	7	8	9	10
	0	0										
	1											
	2											
	3											
	4											
	5											
2. Pro	oblema	de Can	nbio de	Mone	das							1

Prob	ema	a de	e Ca	mb	io d	le N	lon	eda	S				
					Re	laci	ón d	e re	curr	enci	а		
		i	i:3										
valor	es:	1	5	10	20	50		cant	idad	0			
		Pa	ara c	>0	nu	mM	one	das(0,c)=	∞			
					nu	mΜ	one	das(i	,0)=	0			
	1	•	4	2			_		_			10	
	0	0	1	2	3	4	5	6	7	8	9	10	
	1	0											
	2	0											
	3	0											
	4	0											
	5	0											
2. Pro	oblema 2	de Can	nbio de	Mone	das								

Probl	em	a de	e Ca	mb	io d	le N	lon	eda	S				
					Re	laci	ón d	e re	curr	enci	а		
i	:0												
valor	es:	1	5	10	20	50		cant	idad	4			
		Pá	ara c	>0	nui	mMe	one	das(0,c)=	:oo			
						mM							
									•				
		0	1	2	3	4	5	6	7	8	9	10	
	0	0	00	00	00	00	00	00	00	00	00	00	
	1	0											
	2	0											
	3	0											
	4	0											
	5	0											
2. Pro	oblema	de Can	nbio de	Mone	das								

Prob	em	a de	e Ca	mb	io d	le N	/lon	eda	S					
					Re	laci	ón d	e re	curr	enci	а			
valor	es:	1		,		50		,	idad					
numMoned	las(i,	c) = r	nin {r	ıumM	Ionea	las(i	-1,c	1+	numl	Mone	das(i	, c – v	alores[i])}
													ı	
		0	1	2	3	4	5	6	7	8	9	10		
	0	0	œ	œ	œ	œ	œ	œ	œ	œ	œ	œ		
	1	0	1											
	2	0												
	3	0												
	4	0												
	5	0												
2. Pro	oblema 2	de Can	nbio de	Mone	das									

Probl	ema	a de	e Ca	mb	io d	le N	/lon	eda	S					
					Re	laci	ón d	e re	curr	enci	а			
valore	_	:1	5	10	20	50		cant	idad	10				
numMoned	las(i,	c) = r	nin {r	ıumM	Ioned	las(i	- 1 , c	1+	num!	Mone.	das(i	, c – v	alores[i])
		0	1	2	3	4	5	6	7	8	9	10		
	0	0	∞	∞	œ	œ	00	00	00	œ	00	œ		
	1	0	1	2	3	4	5	6	7	8	9	10		
	2	0												
	3	0												
	4	0												
	5	0												
2. Pro	blema	de Can	nbio de	Mone	das									

Prob	em	a de	e Ca	mb	io d	le N	/lon	eda	S					
					Re	laci	ón d	e re	curr	enci	а			
valor	es:	1:2		10	20	50		cant	idad	1]			
numMoned	las(i,	c) = i	nin {1	ıumM	Ionea	las(i	- 1 , c	1+	numl	Mone	das(i	, c – v	alores[i])}
		0	1	2	3	4	5	6	7	8	9	10		
	0	0	∞	∞	œ	œ	00	œ	œ	00	œ	œ		
	1	0	1	2	3	4	5	6	7	8	9	10		
	2	0	1											
	3	0												
	4	0												
	5	0												
2. Pro	oblema 2	de Can	nbio de	Mone	das									

Probl	ema	a de	e Ca	mb	io d	le N	lon	eda	S					
					Re	laci	ón d	e re	curr	enci	а			
valore	es:	1		10	20	50		cant	idad:	5	1			
numMoned	as(i,	c) = r	nin {r	ıumM	Ionea	las(i	- 1 , c	1+	num!	Mone	das(i	, <i>c</i> – <i>v</i>	alores[i])
		0	1	2	3	4	5	6	7	8	9	10		
	0	0	∞	∞	œ	œ	œ	œ	œ	œ	œ	œ		
	1	0	1	2	3	4	5	6	7	8	9	10		
	2	0	1	2	3	4	1							
	3	0												
	4	0												
	5	0												
2. Pro	blema	de Can	nbio de	Mone 3	das									

Prob	lem	a de	e Ca	mb	io d	le N	/lon	eda	S					
					Re	laci	ón d	e re	curr	enci	а			
valor	es:	1:2		10	20	50		cant	idad	6	1			
numMoned	las(i,	c) = r	nin {[ıumM	Ioned	las(i	- 1 , c	1+	num!	Mone	das(i	, c – v	alores[i])}
		0	1	2	3	4	5	6	7	8	9	10		
	0	0	∞	∞	œ	œ	œ	œ	œ	œ	œ	œ		
	1	0	1	2	3	4	5	6	7	8	9	10		
	2	0	1	2	3	4	1	2						
	3	0												
	4	0												
	5	0												
2. Pro	oblema 2	de Can	nbio de	Mone	das									

Probl	ema	a de	e Ca	mb	io d	le N	lon	eda	S					
					Re	laci	ón d	e re	curr	enci	а			
valore	es:	1 1		10	20	50		cant	:idad	9	1			
numMoned	as(i,	c) = r	nin {r	ıumM	Ionea	las(i	- 1 , c	1 +	num!	Mone	das(i	, <i>c</i> – <i>v</i>	alores[i])
					I			I			I			
		0	1	2	3	4	5	6	7	8	9	10		
	0	0	∞	∞	œ	œ	00	00	œ	œ	00	∞		
	1	0	1	2	3	4	5	6	7	8	9	10		
	2	0	1	2	3	4	1	2	3	4	5			
	3	0												
	4	0												
	5	0												
2. Pro	blema	de Can	nbio de	Mone	das									

Prob	em	a de	e Ca	mb	io d	le N	/lon	eda	S					
					Re	laci	ón d	e re	curr	enci	а			
valor	es:	1:2		10	20	50		cant	idad	10	1			
numMoned	las(i,	c) = r	nin {	ıumM	Ionea	las(i	- 1 , c	1+	numl	Mone	das(i	, c – v	alores[i])	}
		0	1	2	3	4	5	6	7	8	9	10		
	0	0	∞	∞	œ	œ	œ	œ	œ	œ	œ	œ		
	1	0	1	2	3	4	5	6	7	8	9	10		
	2	0	1	2	3	4	1	2	3	4	5	2		
	3	0												
	4	0												
	5	0												
2. Pro	oblema 2	de Can	nbio de	Mone 3	das									

Probl	em	a de	e Ca	mb	io d	le N	lon	eda	S					
					Re	laci	ón d	e re	curr	enci	а			
valor	es:[1	5	10	20	50		cant	:idad	10				
numMoned	las(i,	c) = r	nin {r	ıumM	Ionea	las(i	- 1 , c	1+	num!	Mone	das(i	, c – v	alores[i	()
		0	1	2	3	4	5	6	7	8	9	10		
	0	0	∞	∞	œ	œ	œ	œ	œ	œ	œ	∞		
	1	0	1	2	3	4	5	6	7	8	9	10		
	2	0	1	2	3	4	1	2	3	4	5	2		
	3	0	1	2	3	4	1	2	3	4	5	1		
	4	0												
	5	0												
2. Pro	blema	de Can	nbio de	Mone 3	das									

Probl	em	a de	e Ca	mb	io d	le N	lon	eda	S					
					Re	laci	ón d	e re	curr	enci	а			
			i :	4										
valor	es :	1	5	10	20	50		cant	idad	10				
	_	-	,	-										
marm M on a d	las(i	a) – a			A on o	las(i	1 0	1 1		M om o	das(i		alonosi	:156
numMoned	ias (t,	$c_j = r$	ուո ք	uum	ionec	ias (t	$-1, \mathbf{c}$	1 +	num	vi one	aas(i	c-v	utoresti	J)}
		0	1	2	3	4	5	6	7	8	9	10		
	0	0	∞	oo	00	∞	00	œ	∞	00	00	∞		
	1	0	1	2	3	4	5	6	7	8	9	10		
	2	0	1	2	3	4	1	2	3	4	5	2		
	3	0	1	2	3	4	1	2	3	4	5	1		
	4	0	1	2	3	4	1	2	3	4	5	1		
	5	0												
2. Pro	oblema	de Can	nbio de	Mone	das									

Probl	ema	a de	e Ca	mb	io d	le N	lon	eda	S				
					Re	laci	ón d	e re	curr	enci	а		
valore	es:[1		10	20	50		cant	:idad	10	1		
numMoned	las(i,	c) = r	nin {r	ıumM	Ionea	las(i	- 1 , c	1+	num!	Mone	das(i	, c – v	alores[i]
	ı		_			_	_		I _		_		
	_	0	1	2	3	4	5	6	7	8	9	10	
	0	0	∞	∞	œ	00	00	œ	00	00	00	00	
	1	0	1	2	3	4	5	6	7	8	9	10	
	2	0	1	2	3	4	1	2	3	4	5	2	
	3	0	1	2	3	4	1	2	3	4	5	1	
	4 0 1 2 3 4								3	4	5	1	
	5	0	1	2	3	4	1	2	3	4	5	1	
2. Pro	blema	de Can		Mone	das								

Problema de Cambio de Monedas Relación de recurrencia Actividad 14.3. Calcula la complejidad del algoritmo en tiempo de acuerdo con el número de bits k para representar la cantidad, y el número de monedas, N. int numMonedas(int[] valores, int cantidad){ int[][] cant = new int[valores.length+1][cantidad+1]; $\Theta(N \cdot K)$ for (int c=0;c<=cantidad; c++)</pre> cant[0][c] = Integer.MAX_VALUE; for (int i=0;i<=valores.length; i++)</pre> cant[i][0] = 0;for (int i=1;i<=valores.length; i++)</pre> for (int c=1;c<=cantidad; c++)</pre> $\Theta(N \cdot 2^k)$ if (c<valores[i-1])</pre> cant[i][c]=cant[i-1][c]; cant[i][c]=Math.min(cant[i-1][c],1+cant[i][c-valores[i-1]]); return cant[valores.length][cantidad];

Algoritmo

pseudopolinomial

94

(1)

2. Problema de Cambio de Monedas

(3)

Problema de Cambio de Monedas

Relación de recurrencia

i:3 cantidad 10 valores: $numMonedas(i)c) = min\{numMonedas(i-1)c), 1 + numMonedas(i)c - valores[i])\}$ No necesitamos ya estos valores Objetivo: Calcular este valor 2. Problema de Cambio de Monedas (1)-(3)

Problema de Cambio de Monedas
Conociendo las monedas que se entregan
valores: 1 5 10 20 50 cantidad: 10 Algoritmo para cambio monedas (Programación Dinámica) Nº de monedas Indica el número de monedas que se entregan
2. Problema de Cambio de Monedas 1 3

Probl	em	a de	e Ca	mb	io d	le N	lon	eda	S					
			Cor	ocie	endo	las	moi	neda	as qu	ie se	e en	trega	an	
			i	:5										
valor	es :	1	5	10	20	50		cant	idad	10				
	_													
numMoned	las(i,	c) = r	nin {r	ıumM	Ioned	las(i	- 1 , c	1+	numl	Mone	das(i	, c – v	alores[i])}
	. ,	-	Ł											
		0	1	2	3	4	5	6	7	8	9	10		
	0	F	F	F	F	F	F	F	F	F	F	F		
	1	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т		
	2	F	F	F	F	F	Т	Т	Т	Т	Т	Т		
	3	F	F	F	F	F	F	F	F	F	F	Т		
	4	F	F	F	F	F	F	F	F	F	F	F		
	5	F	F	F	F	F	F	F	F	F	F	F		
2. Pro	blema	de Can	nbio de	Mone 3	das									

Probl	ema	a de	e Ca	mb	io d	le N	1on	eda	S					
			Cor	ocie	endo	las	mo	neda	as qu	ie se	ent	trega	an	
		i:2	2											
valor	es:	1	5	10	20	50		cant	idad	6				
								Se	e entr	ega u	na mo	oneda	de 5	
numMoned	las(i,	c) = r	nin {1	ıumM	loned	las(i	- 1 , c),1+	numl	Moned	das(i	c-v	palores[i])	
		0	1	2	3	4	5	6	7	8	9	10		
	0	F	F	F	F	F	F	F	7	F	F	F		
	1	F	Т	Т	Т	Т	Т	T/	Т	Т	Т	Т		
	2	F	F	F	F	F	Т	Т	Т	Т	Т	Т		
	3	F	F	F	F	F	F	F	F	F	F	Т		
	4	F	F	F	F	F	F	F	F	F	F	F		
	5	F	F	F	F	F	F	F	F	F	F	F		
2. Pro	oblema	de Can	nbio de	Mone (das									

Probl	em	a de	e Ca	mb	io d	le N	lon	eda	S				
			Cor	ocie	endo	las	mo	neda	as qu	ie se	e en	trega	an
		i :2	2										
valore	es :	1	5	10	20	50		cant	idad	6			
			No	se en	trega	una n	noned	da de	5	-	_		
numMoned	las(i,	c) = r	nin {r	ıumM	Ioned	las(i	-1,c	1+	numl	Ione	das(i	c-v	alores[i])
					1								
		0	1	2	3	4	5	6	7	8	9	10	
	0	F	F	F	F	F	F	F	F	F	F	F	
	1	F	Т	Т	1	Т	Т	Т	Т	Т	Т	Т	
	2	F	F	F	F	F	Т	Т	Т	Т	Т	Т	
	3	F	F	F	F	F	F	F	F	F	F	Т	
	4	F	F	F	F	F	F	F	F	F	F	F	
	5	F	F	F	F	F	F	F	F	F	F	F	
2. Pro	oblema	de Can	nbio de	Mone	das								

Probl	em	a de	e Ca	mb	io d	le N	lon	eda	S		
			Cor	nocie	endo	las	moi	neda	as qu	ie se	e entregan
valor	es:	1	5	10	20	50		cant	idad	8	1
entreg	-					0					•
numMoned	as(i)	c) = r	nin {1	num N	Ioned	las(i	– 1 c`	1 1 ± ·	ทาเท l	Moned	das(i, c-valores[i])
nummoneu	.us (t,	c) — 1	ittit (i	tuni.	onei	ius (i	1,0,	,, I T	num	Tone	
						-	_		_		
		0	1	2	3	4	5	6	7	8	
	0	F	F	F	F	F	F	F	F	F	
	1	F	Т	Т	Т	Т	Т	Т	Т	Т	
	2	F	F	F	F	F	Т	Т	Т	Т	
	3	F	F	F	F	F	F	F	F	F	
	4	F	F	F	F	F	F	F	F	F	
	5	F	F	F	F	F	F	F	F	F	
2. Pro	blema	de Can	nbio de	Mone	das						

Probl	ema	a de	e Ca	mb	io d	le N	lon	eda	S		
			Cor	nocie	endo	las	moi	neda	as qu	ie se	e entregan
valore	es:	1	5	10	20	50		cant	idad	8	1
entreg	a:			0	0	0					•
numMoned	las(i,	c) = r	nin {1	numM	Ionea	las(i	- 1 , c), 1 + :	numI	Mone	das(i, c-valores[i])
		,				·					
		0	1	2	3	4	5	6	7	8	
	0	F	F	F	F	F	F	F	F	F	
	1	F	Т	Т	Т	Т	Т	Т	Т	Т	
	2	F	F	F	F	F	Т	Т	Т	Т	
	3	F	F	F	F	F	F	F	F	F	
	4	F	F	F	F	F	F	F	F	F	
	5	F	F	F	F	F	F	F	F	F	
2. Pro	blema	de Can	nbio de	Mone:	das						

Probl	em	a de	e Ca	mb	io d	le N	lon	eda	S			
			Cor	nocie	endo	las	moı	neda	as qu	ie se	entregan	
valor	es:	1	5	10	20	50		cant	idad	3		
entreg	ga:		1	0	0	0					•	
numMoned	las(i,	c) = r	nin {1	numM	Ioned	las(i	- 1 , c), 1 + :	numN	Ione	las(i, c - valores[i]))}
		0	1	2	3	4	5	6	7	8		
	0	F	F	F	F	F	F	F	F	F		
	1	F	Т	Т	Т	Т	Т	Т	Т	Т		
	2	F	F	F	F	F	Т	Т	Т	Т		
	3	F	F	F	F	F	F	F	F	F		
	4	F	F	F	F	F	F	F	F	F		
	5	F	F	F	F	F	F	F	F	F		
2. Pro	oblema	de Can	nbio de	Mone	das							

Probl	em	a de	e Ca	mb	io d	le N	lon	eda	S			
			Cor	nocie	endo	las	moi	neda	as qu	ie se	entregan	
valor	es:	1	5	10	20	50		cant	idad	1		
entreg	ga:	2	1	0	0	0					•	
numMoned	las(i,	c) = r	nin {1	numM	Ionea	las(i	- 1 , c),1+	numN	Ione	as(i, c - valores[i])	
		0	1	2	3	4	5	6	7	8		
	0	F	F	F	F	F	F	F	F	F		
	1	F	Т	Т	Т	Т	Т	Т	Т	Т		
	2	F	F	F	F	F	Т	T	Т	Т		
	3	F	F	F	F	F	F	F	F	F		
	4	F	F	F	F	F	F	F	F	F		
	5	F	F	F	F	F	F	F	F	F		
2. Pro	blema	de Can	nbio de	Mone 3	das							

Probl	em	a de	e Ca	mb	io d	le N	lon	eda	S		
			Cor	nocie	endo	las	moi	neda	as qu	ie se	e entregan
valore	es:	1	5	10	20	50		cant	idad	8	
entreg	ga: _	3	1	0	0	0					_
numMoned	las(i,	c) = r	nin {1	numM	Ioned	las(i	- 1 , c),1+	numN	Ione	das(i, c - valores[i])
		0	1	2	3	4	5	6	7	8	
	0	F	F	F	F	F	F	F	F	F	
	1	F	Т	Т	Т	Т	Т	Т	Т	Т	
	2	F	F	F	F	F	Т	Т	Т	Т	
	3	F	F	F	F	F	F	F	F	F	
	4	F	F	F	F	F	F	F	F	F	
	5	F	F	F	F	F	F	F	F	F	
2. Pro	blema	de Can	nbio de	Mone	das						


```
Problema de Cambio de Monedas
                       Obteniendo las monedas que se entregan
int[] numMonedas(int[] valores, int cantidad){
  int[][] cant = new int[2][cantidad+1];
 boolean[][] aux = new boolean[valores.length+1][cantidad+1];
for (int c=0;c<=cantidad; c++)</pre>
        {cant[0][c] = Integer.MAX_VALUE; aux[0][c]= false;}
  cant[0][0] = 0; cant[1][0] = 0;
for (int i=0;i<=valores.length; i++)</pre>
       aux[i][0] = false;
  for (int i=1; i<=valores.length; i++) {
  for (int c=1; c<=cantidad; c++)</pre>
      if (c<valores[i-1]) {
   cant[i%2][c]=cant[(i-1)%2][c];</pre>
          aux[i][c]=false;}
       else {
          cant[i%2][c]=Math.min(cant[(i-1)%2][c],1+cant[i%2][c-valores[i-1]]);
         aux[i][c]=(cant[i%2][c]==1+cant[i%2][c-valores[i-1]]);}
  return entrega(aux, valores);
       2. Problema de Cambio de Monedas
                            -(3)
```


Problema de la Mochila 0-1																	
Relación de recurrencia																	
i:1 pesos: 8																	
p p																	
maxValor(1,0)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
i=0 0	0	0	0	0	0	0	0	0	20	20	20	20	20	20	20	20	
i=1 1	0																
3. Problema de la Mochila 0-1																	

Problema de la Mochila 0-1 Relación de recurrencia

Actividad 14.7. Implementa el algoritmo que determina el valor máximo que puede llevar la mochila

```
int mochila01(int[] pesos, int[] valores, int maxPeso){
  int[][] maxValor = new int[2][maxPeso+1];
  for (int p=0;p<=maxPeso; p++)</pre>
     if (pesos[0]<=p) maxValor[0][p]=valores[0]; else maxValor[0][p]=0;</pre>
  int iaux = 0;
  for (int i=1;i<valores.length; i++) {</pre>
    int iauxAnt= (i-1) % 2;
    iaux = i \% 2;
    for (int p=0;p<=maxPeso; p++) {</pre>
       if (pesos[i]>p)
          maxValor[iaux][p] = maxValor[iauxAnt][p];
       else
          maxValor[iaux][p] = Math.max(maxValor[iauxAnt][p],
                                   valores[i]+maxValor[iauxAnt][p-pesos[i]]);
  }
  return maxValor[(valores.length-1)%2][maxPeso];
```

191

Problema de la Mochila 0-1

Relación de recurrencia

Actividad 14.7. Implementa el algoritmo que determina el valor máximo que puede llevar la mochila

Problema de la Mochila 0-1 Relación de recurrencia Actividad 14.7. Implementa el algoritmo que determina el valor máximo que puede llevar la mochila int mochila01(int[] pesos, int[] valores, int maxPeso){ **Caso Recursivo:** maxValor(i, p) $\int maxValor(i-1, p)$ si pesos[i]>p $max \{ maxValor(i-1, p), valores[i] + maxValor(i-1, p-pesos[i]) \}$ en otro caso if (pesos[i]>p) maxValor[iaux][p] = maxValor[iauxAnt][p]; else maxValor[iaux][p] = Math.max(maxValor[iauxAnt][p], valores[i]+maxValor[iauxAnt][p-pesos[i]]); } 193

Problema de la Mochila 0-1 Relación de recurrencia Actividad 14.8. Calcula la complejidad del algoritmo en tiempo según el número de bienes, N, y el valor del máximo peso, K (maxPeso). int mochila01(int[] pesos, int[] valores, int maxPeso){ $\Theta(N \cdot K)$ int[][] maxValor = new int[2][maxPeso+1]; for (int p=0;p<=maxPeso; p++)</pre> if (pesos[0]<=p) maxValor[0][p]=valores[0]; else maxValor[0][p]=0;</pre> int iaux = 0; for (int i=1;i<valores.length; i++) {</pre> int iauxAnt= (i-1) % 2; iaux = i % 2;for (int p=0;p<=maxPeso; p++) {</pre> if (pesos[i]>p) maxValor[iaux][p] = maxValor[iauxAnt][p]; maxValor[iaux][p] = Math.max(maxValor[iauxAnt][p], valores[i]+maxValor[iauxAnt][p-pesos[i]]); } return maxValor[(valores.length-1)%2][maxPeso];

Problema de la Mochila 0-1 Conociendo los objetos que se introducen maxPeso: 15 Kg. 8 4 Kg. pesos: 12 | 21 valores: 20 37 Algoritmo para Mochila 0-1 ¿Qué objetos se introducen en la (Programación Dinámica) mochila? Valor máximo Indica el valor máximo que se puede alcanzar 3. Problema de la Mochila 0-1 (1)-

Problema de la Mochila 0-1																			
Conociendo los objetos que se introducen																			
pesos: 8 4 1 7 5																			
	· · · · · · · · · · · · · · · · · · ·					+		_							_				
	valores:			20	12	21		37 3			maxPeso: 3								
	mochila:							1	1]									
_ f max	$ maxValor(i, p) \\ = \begin{cases} maxValor(i-1, p) & si \ pesos[i] > p \\ max \{maxValor(i-1, p), \ valores[i] + maxValor(i-1, p-pesos[i])\} \end{cases} $ en otro caso																		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
0	F	F	F	F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т			
1	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т			
2	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т			
3	F	F	F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т	Т			
4	F	F	F	F	F	Т	Т	Т	F	F	Т	Т	Т	Т	Т	Т			
1	3. Problema de la Mochila 0-1																		


```
Problema de la Mochila 0-1
                        Obteniendo los objetos que se entregan
boolean[] mochila01(int[] pesos, int[] valores, int maxPeso){
  int[][] maxValor = new int[2][maxPeso+1];
  boolean[][] aux = new boolean[valores.length][maxPeso+1];
  for (int p=0;p<=maxPeso; p++)</pre>
      if (pesos[0]<=p) {
          maxValor[0][p]=valores[0]; aux[0][p] = true;}
      else {
          maxValor[0][p]=0; aux[0][p]= false;}
  int iaux = 0;
  for (int i=1;i<valores.length; i++) {</pre>
    int iauxAnt= (i-1) % 2;
    iaux = i % 2;
    for (int p=0;p<=maxPeso; p++) {</pre>
        if (pesos[i]>p)
           maxValor[iaux][p] = maxValor[iauxAnt][p];
           maxValor[iaux][p] = Math.max(maxValor[iauxAnt][p],
                                        valores[i]+maxValor[iauxAnt][p-pesos[i]]);
        aux[i][p] = !(maxValor[iaux][p] == maxValor[iauxAnt][p]);
    }
  return objetosIntroducidos(aux, pesos);
```