Crypto 2 U1

```
EX11
      a.) Compute 11213 (mod 42)
                                        713,0 = 110101012
11<sup>213</sup> = \(\(\(11^4\)^2 \cdot \(11^4\)^2 \cdot \(11^4\)^
                                                                                                                                                                                                                                                                                                                                                                5 (un od 47)
                                         by terble:
                                                 11<sup>213</sup> med 42
                                                              29 =5 11 213 (mod 42) = 29
                                                                                                                                              16 = -1 (mod 17)
                                                           => 16 517 (mod 17)= (-1) (mod 17)
                                                                                                                                                                                                                         = 1 (moel 17)
```

For (7,4) = 5 for $b_2 = 94 = 9$ holds =) $x = m \cdot i + j \pmod{p-1} = 6 \cdot 4 + 7 \mod 78 = 76$ Crystor 41

the DL is 26

check: 326 mod 29 = 3¹³.3¹³ = 19.19

= 13 (mod 29) V

remark to completive

Running 2 \(\begin{align*} \pm = 0 \left(\begin{align*} \pm \right) \\ \pm \end{align*}

Brufe force \(\approx 0 \left(\beta \right) \)

Ex3.)

Prove that $a^{x} \equiv a^{y} \mod n$ $(=> x \equiv y \mod ord_n(a)$ with $x, y \in \mathbb{Z}$ $a \in \mathbb{Z}_{n}^{\infty}$ $a \neq 1$ $ord_n(a) = 4$

"=>" Let $a^{t} \equiv a^{t} \mod n => a^{t-1} \equiv 1 \pmod{n}$ with $a^{t} \equiv 1 \pmod{n} => \operatorname{ord}_{n}(a) \equiv k \text{ || smallest possible}$

=3 $4/(x-y)=3 \times = y \pmod{4}$ =3 $\times = y \pmod{(ord_n(a))}$

He H Let x = y mod (order (a)) => k/(x-y) => x-y=k·l, l∈Z

 $= \begin{cases} a^{x-y} \equiv a^{k-1} = (a^{k})^{1} = 1 \equiv 1 \pmod{n} \\ = \begin{cases} a^{x-y} \equiv 1 \pmod{n} = 3 \end{cases} = \begin{cases} a^{x} \equiv a^{y} \pmod{n} \end{cases}$

2

Find basis a for a = 17 (mod 31)

1) usually a difficult problem, but 31, 3 parme.

Apply proposition 7.5. (p.53) to show

that 17 is a promitive element mod 31.

=> 17 (30 \$ 1 (mod p) Yi=1,..., 4 where p-1 = II pit: (important to remember!!)

here: $\rho = 3.1 = 3.0 = 2.3.5$

 $17^{\frac{30}{2}} = 30$, $17^{\frac{30}{2}} = 25$, $17^{\frac{30}{5}} = 8$

#1 (mod 37)

17 is a PE.

2.) Knowing that 17 is a PE wood 3%.

7 b 17 = a (mod 31)

 $\binom{q^{13}}{9} \equiv 9 \pmod{31}$

=> q13.b-1 = 1 (mod 31)

with: th. 6.7. : Let a E Zu,
then a les = 1 (mod n)

Fernal's LYAGe theorem (p. 43)

(poline 9(37)= 30

a 4(1) = a 30 = 1 (mod 31)

a 13 p-1 = a 30 = 1 (mod 37)

Crypto 2 51

(=> 13.6 -1 = 30 (mod 30)
(=> 13.6 = 1 (mod 30)

$$b = 73^{-1}$$
 (mod 30)

EEA:
$$30 = 13.2 + 4$$
 => $7 = 13 - 4.3$
 $13 = 4.3 + 1$ = $13 - (30 - 13.2)3$
= $13.7 - 30.3$
= 13.7

$$\Rightarrow a = 17^{7} = 12 \pmod{31}$$

$$\det 12^{12} = 17 \pmod{31}$$