Survey on Subreddit Post Using **NLP** approach

By: Faiz Puad

Agenda

Problem Statement

of career pathway is a must. However, industry such as digital keeps growing at fast pace for the past few years.

Image from: Statistica.com

- IT industry growth forecast by segment

Rely On Traditional Approach:
Refer to online articles
Pamphlet online
Depend on available survey

Might not feasible as it is **time** consuming and might even be costly

Image from: mckinsey.com

- Covid 19 impact on technology acceleration

Exploratory Data Analysis

DATA OVERVIEW

DATA CLEANING

FEATURES ENGINEERING

MODEL EVALUATION

Data Overview

- Data science subreddit
- 10000 rows, 16 columns
- Unique author: 6968
- Top author post: 33
- Average comment /post: 2
- Highest comment/post: 346
- Lowest subscribers: 608,935
- Highest subscribers: 783,616

- Computer science subreddit
- 15000 rows, 16 columns
- Unique author: 15080
- Top author post is 471
- Average comment /post: 5
- Highest comment/post: 341
- Lowest subscribers: 308,929
- Highest subscribers: 2 million

compsci: Distribution of status word count 400 300 100 -

status word count

Original:

Skewness: 6.788906574552096 Kurtosis: 86.11276298774011

After log:

Skewness: -0.8105170015250748 Kurtosis: 1.8747987098655061

Data Science Subreddit

Computer Science Subreddit

Data Cleaning

Drop rows with null values & status ['deleted']

Compsc row removed: 73

New shape is:

Ds(rows, columns), Compsc(rows, columns) (8160, 12), (7016, 12)

Drop 1144 rows in DS to balance dataset

Remove symbol, emoji, hyperlink using regex and custom function

Include: "https", "www.", "\$", "@"

"Welcome to this week's entering & amp; transitioning thread! This thread is for any questions about getting started, studying, or transitioning into the data science field. Topics include:\n\n* Learning resources (e.g. books, tutorials, videos)\n* Tradit ional education (e.g. schools, degrees, electives)\n* Alternative education (e.g. online courses, bootcamps)\n* Job search questions (e.g. resumes, applying, career prospects)\n* Elementary questions (e.g. where to start, what next)\n\n\hillinghille you wait for answers from the community, check out the [FAQ](https://www.reddit.com/r/datascience/wiki/frequently-asked-questions) and [Reso urces](Resources) pages on our wiki. You can also search for answers in [past weekly threads](https://www.reddit.com/r/datascience/search?q=weekly%20thread&restrict_sr=1&sort=new)."

"welcome to this week's entering & transitioning thread! this thread is for any questions about getting started, studying, or t ransitioning into the data science field. topics include: * learning resources (e.g. books, tutorials, videos) * traditional ed ucation (e.g. schools, degrees, electives) * alternative education (e.g. online courses, bootcamps) * job search questions (e.g. resumes, applying, career prospects) * elementary questions (e.g. where to start, what next) while you wait for answers from the community, check out the (and (resources) pages on our wiki. you can also search for answers in ("

Feature Engineering

- Apply PorterStemmer on selftext column
 - Change word to its base form
 - Flies > fly
- Encode target variable into 1 (compsc) & 0 (datascience)
- Train & test split data with test size 20%
- Instantiate transformer and estimator inside pipeline
- Transformer use: CountVectorizer & TfidVectorizer
- Estimator use: Multinomial Naïve Bayes

Model Evaluation

Test size	Row	Estimator	Transformer	Train Score	Test Score	ROC_AUC Score
0.3	2000	Multinomial NB	Count Vectorize	0.903	0.835	
0.3	2000	Multinomial NB	TfidVectorize	0.918	0.840	
0.3	4000	Multinomial NB	Count Vectorize	0.887	0.873	
0.3	4000	Multinomial NB	TfidVectorize	0.897	0.871	
0.3	6000	Multinomial NB	Count Vectorize	0.890	0.870	
0.3	6000	Multinomial NB	TfidVectorize	0.890	0.870	
0.2	6000	Multinomial NB	Count Vectorize	0.884	0.879	0.8797
0.2	6000	Multinomial NB	TfidVectorize	<mark>0.888</mark>	<mark>0.885</mark>	0.8848

True Negatives: 1277
False Positives: 150
False Negatives: 173
True Positives: 1207
Specificity: 0.8949
Precision: 0.8895
Sensitivity: 0.8746

F1 score: 0.882

ROC AUC score: 0.8848

True Negatives: 1277
False Positives: 150
False Negatives: 187
True Positives: 1193
Specificity: 0.8949
Precision: 0.8883
Sensitivity: 0.8645
F1 score: 0.8762

ROC AUC score: 0.8797

Conclusion

- Multinomial Naïve Bayes with TfidVectorizer is chosed as the best model as it produce the highest accuracy mark for this study.
- Model is slightly overfit and can be further improve using other classification model
- Few possible reason are:
 - train data is not enough. This is proved as I increase from initial data of 2000 to 6000, train score drop from 95% to 88% but increase test score from 80% to 88%
 - data still contain unnecessary symbol including emoji which cause inaccurate prediction

Recommendation

- Model found to be useful for detecting sentiment and classifying a post into category.
 Thus, it can be fitted generally to all industry such as marketing to promote their product.
- Model results can be utilized as providing snapshot of a person to be filter for job application based on finding above.
- Introduce more data to fight overfit issue and there is possibility model perform higher than 90% using other model including decision tree, random forest and adaboost

Reference

- How COVID-19 has pushed companies over the technology tipping point—and transformed business forever. (2021, February 18). McKinsey & Company. Available at:
 - https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever#
- Statista. (2022, February 21). IT industry growth rate forecast worldwide from 2018 to 2023, by segment. Available at:
 - https://www.statista.com/statistics/967095/worldwide-it-industry-growth-rate-forecast-segment/
- Varshney, P. (2021b, December 14). Q-Q Plots Explained Towards Data Science. Medium. Available at:
 - https://towardsdatascience.com/q-q-plots-explained-5aa8495426c0
- Yadav, K. (2022, January 22). Cleaning & Preprocessing Text Data by Building NLP Pipeline. Medium. Available at:
 - https://towardsdatascience.com/cleaning-preprocessing-text-data-by-building-nlp-pipeline-853148add68a