Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. І. Сікорського»

Кафедра автоматизації проектування енергетичних процесів і систем

Лабораторна робота №4 з дисципліни «Чисельні методи в моделюванні енергетичних процесів» «Інтерполяційні поліноми» Варіант №1

Виконав:

студент 2-го курсу, ТЕФ групи ТР-15 Руденко В.І.

Мета роботи

Створити програму, яка для заданої функції по заданим точкам будує інтерполяційний поліном Pn(x) у формі Лагранжа або Ньютона, а також здійснює інтерполяцію кубічними сплайнами. Програма має розрахувавати значення похибки $\varepsilon = \mid Pn(x) - y(x) \mid$, для чого потрібно вивести на графік із кроком (графік можна будувати допоміжними засобами, наприклад, у Mathcad), меншим у 5-6 разів, ніж крок інтерполяції, відповідні значення поліному та точної функції. Якщо похибка дуже мала, застосувати масштабування. Знайти кубічний інтерполяційний сплайн для заданої функції у Mathcad. Вивести графік результатів.

Варіант завдання (Вихідна система рівнянь).

№	Φ ункція $y(x)$	Вузли інтерполяції x_i
1-10	$\sin(\frac{\alpha}{2} \cdot x) + \sqrt[3]{x \cdot \alpha}$	-5+k, -3+k, -1+k, 1+k, 3+k; $k = N_0eap - 1$
		'
XI	-5:-31-1: 1:3	
y:	-285,3,417,5,2,313,4	

Теоретична частина

Інтерполяція в обчислювальній математиці - спосіб знаходження проміжних значень величини по наявному дискретному наборі відомих значень.

Нехай маємо n значень x_i , кожному з яких відповідає своє значення y_i . Потрібно знайти таку функцію F, що

$$F(x_i) = y_i, \ i = 0, \dots, n.$$

При цьому x_i називаються вузлами інтерполяції; пари (x_i, y_i) - точками даних; функцію F(x) - інтерполянтом.

Інтерполянти, як правило, будуються у вигляді лінійних комбінацій деяких елементарних функцій:

$$y = \sum_{k=0} c_k \, \Phi_k(\mathbf{x}),$$

де $\Phi_k(\mathbf{x})$ - фіксовані лінійно незалежні функції; c_0,\ldots,c_n - не визначені поки що коефіцієнти. З умови (1) отримуємо систему n+1 рівнянь відносно коефіцієнтів c_k :

$$\sum c_k \Phi_k(x_i) = y_i, \quad i = 0, ..., n.$$

$$k = 0$$

У якості системи лінійно незалежних функцій $\Phi_k(\mathbf{x})$ частіше за все обирають: степеневі функції $\Phi_k(\mathbf{x}) = \mathbf{x}^k$ (в цьому випадку $F = P_n(\mathbf{x})$ - поліном ступеня n); тригонометричні функції.

Поліном Лагранжа.

Будемо шукати інтерполяційний поліном у вигляді

$$P_n(\mathbf{x}) = \sum_{k=0}^n c_k \, \mathbf{x}^k \quad . \tag{2}$$

Звідси отримуємо систему рівнянь:

$$c_0 + c_1 x_0 + \ldots + c_n x_0^n = y_0$$

 \cdots
 $c_0 + c_1 x_n + \ldots + c_n x_n^n = y_n$

Ця система має єдиний розв'язок, а отже і інтерполяційний поліном вигляду (2) також єдиний. Форм запису його існує багато.

Лагранж запропонував наступну форму поліному, в основі якої лежить базис поліномів Лагранжа $l_k(x)$ ступеня n:

$$l(x) = 1$$
, якщо $i=k$

Метод прогону

Більшість технічних задач зводиться до розв'язування СЛАР, у яких матриці містять багато нульових елементів, а ненульові елементи розміщені за спеціальною структурою (стрічкові квазітрикутні матриці).

Задачі побудови інтерполяційних сплайнів, різницевих методів розв'язування крайових задач для диференціальних рівнянь зводяться до розв'язування СЛАР з трьохдіагональною матрицею A. У матриці A всі елементи, що не лежать на головній діагоналі і двох сусідніх паралельних діагоналях, дорівнюють нулю. У загальному вигляді такі системи записують так:

Вибір найбільшого елемента при виключенні невідомих за методом Гауса в таких системах робити не можна, оскільки перестановка рядків руйнує структуру матриці. Найчастіше для розв'язку системи з трьохдіагональною матрицею використовують метод прогону, який є частковим випадком методу Гауса.

<u>Прямий хід прогону</u> (алгоритм прямого ходу методу Гауса).

Кожне невідоме x_i виражається через x_{i+1} з допомогою прогоночних коефіцієнтів A_i та B_i

Обернений хід прогонки (аналог оберненого ходу методу Гауса).

Він полягає в послідовному обчисленні невідомих x_i . Спочатку знаходять x_n .

Далі використовуючи формулу (3) знаходимо послідовно всі невідомі Майже у всіх задачах, що приводять до розв'язку системи (2) з трьохдіагональною матрицею, забезпечується умова переважання діагональних коефіцієнтів

$$|b_i| \ge |a_i| + |c_i|$$

Це забезпечує існування єдиного розв'язку та достатню стійкістьметоду прогону відносно похибок заокруглення.

Для запису коефіцієнтів a_i , b_i , та прогоночних коефіцієнтів A_{i-1} , B_{i-1} використати один і той же масив.

Графіки:

Рисунок 2 Графік функції та інтерполяційного поліному

Рисунок 3 Графік функції та сплайн інтерполяції в MathCad

Вигляд поліному Лагранжа:

Сплайни:

```
-----|Splines|-----
X : -3.000000
     a: -2.857696 b:-0.193800 c:0.000000 d:-0.019864
Pn(-3.0) = -2.8577 + -0.1938 * (X - -5.0000) + 0.0000 * (X - -5.0000)^2 + -0.019
9 * (X - -5.0000)^3
 Step: 2
X : -1.000000
     a: -3.404212 b:0.114343 c:-0.119187 d:0.167978
Pn(-1.0) = -3.4042 + 0.1143 * (X - -3.0000) + -0.1192 * (X - -3.0000)^2 + 0.1680
  Step: 3
X : 1.000000
Pn(1.0) = -2.3084 + 0.5576 * (X - -1.0000) + 0.8887 * (X - -1.0000)^2 + -0.0066
* (X - -1.0000)^3
 Step: 4
X : 3.000000
  a: 2.308448 b:1.176510 c:0.848953 d:-0.141492
Pn(3.0) = 2.3084 + 1.1765 * (X - 1.0000) + 0.8490 * (X - 1.0000)^2 + -0.1415 * (
X - 1.0000)^3
```

Скріншоти роботи програми:

	роооти програм	іи.
Step: 1 F(-5.000000):-2.857696 LF(-5.000000):-2.857696 Error: 0.000000	Step: 8 F(-1.500000):-1.385872 LF(-1.500000):-2.991563 Error: 1.685691	Step: 11 F(0.000000):0.000000 LF(0.000000) : -0.209089 Error: 0.209089
Step: 2 F(-4.500000):-1.855300 LF(-4.500000): -2.710126 Error: 0.854826	Step: 9 F(-1.000000):-2.308448 LF(-1.000000):-2.308448 Error: 0.000000	Step: 12 F(0.500000):2.306193 LF(0.500000) : 1.056781 Error: 1.249412
Step: 3 F(-4.000000):-2.170397 LF(-4.000000): -2.870330 Error: 0.699933	Step: 10 F(-0.500000):-2.306193 LF(-0.500000):-1.361702 Error: 0.944491	Step: 13 F(1.000000):2.308448 LF(1.000000): 2.308448 Error: 0.000000
Step: 4	Step: 11	Step: 14
F(-3.500000):-3.220971	F(0.000000):0.000000	F(1.500000):1.385872
LF(-3.500000): -3.152133	LF(0.000000): -0.209089	LF(1.500000) : 3.383604
Error: 0.068837	Error: 0.209089	Error: 1.997732
Step: 5	Step: 12	Step: 15
F(-3.000000):-3.404212	F(0.500000):2.306193	F(2.000000):1.195510
LF(-3.000000): -3.404212	LF(0.500000): 1.056781	LF(2.000000) : 4.085094
Error: 0.000000	Error: 1.249412	Error: 2.889584
Step: 6	Step: 13	Step: 16
F(-2.500000):-2.287615	F(1.000000):2.308448	F(2.500000):2.287615
LF(-2.500000): -3.510088	LF(1.000000) : 2.308448	LF(2.500000): 4.180914
Error: 1.222473	Error: 0.000000	Ernor: 1.893299
Step: 7	Step: 14	Step: 17
F(-2.000000):-1.195510	F(1.500000):1,385872	F(3.000000):3.404212
LF(-2.000000): -3.388132	LF(1.500000) : 3,383604	LF(3.000000): 3.404212
Error: 2.192621	Error: 1.997732	Error: 0.000000

Розв'язок інтерполяції у MathCad

$$X := \begin{pmatrix} -5 \\ -3 \\ -1 \\ 1 \\ 3 \end{pmatrix} \qquad Y := \begin{pmatrix} -2.85 \\ -3.4 \\ -2.3 \\ 2.3 \\ 3.4 \end{pmatrix}$$

$$\sup_{S_{x}} := cspline(X, Y) \qquad \qquad \sup_{T \in \mathcal{X}} \left(\frac{5 \cdot X}{2} \right) + \sqrt[3]{5 \cdot X}$$

spline(t) := interp(s, X, Y, t)

Лістинг програми:

```
using namespace std;
float Array[ArraySize] = \{-5+K, -3+K, -1+K, 1+K, 3+K\};
float FArray[ArraySize];
    cout.setf(ios::fixed);
        FArray[i] = Function(Array[i]);
        cout << setw(11) << FArray[i];</pre>
            L *= (X - Array[j]);
            L /= (Array[i] - Array[j]);
```

```
L *= FArray[i];
float temp=Array[0];
}while (temp>=Array[0] && temp<=Array[ArraySize-1]);</pre>
    beta[i] = y[i] / A[i][i];
float* h = new float[ArraySize - 1];
```

```
for (int i = 0; i < ArraySize - 1;_i++)</pre>
for (int i = 0; i < ArraySize - 1; i++)
     a[i] = FArray[i];
     vec[i] = 3 * (((FArray[i + 1] - FArray[i]) / h[i]) + ((FArray[i] - FArray[i
     if (i != ArraySize - 2)
         b[i] = ((FArray[i] - FArray[i - 1]) / h[i]) - ((2 * h[i] * c[i]) / 3);
   if (temp == Array[i])
a[k], b[k], Array[k], c[k], Array[k], d[k], Array[k]);
   SplineFunction(Array[i]);
```