Boolean Logic

Cyber Systems Architecture

SY 303 - Fall AY2021

Usage and Copyright Notice:

Copyright © Noam Nisan and Shimon Schocken

This presentation accompanies the textbook "The Elements of Computing Systems" by Noam Nisan & Shimon Schocken, MIT Press, 2005.

We provide 13 such presentations.

Each presentation is designed to support about 3 hours of classroom or self-study instruction.

You are welcome to use or edit this presentation as you see fit for instructional and non-commercial purposes.

If you use our book and course materials, please include a reference to www.nand2tetris.org

If you have any questions or comments, please write us at nand2tetris@gmail.com

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Course theme and structure

(Abstraction–implementation paradigm)

Objectives

Cyber Systems Architecture

SY 303 - Fall AY2021

Objectives

- 1. Implement a complete set of logic gates by using a hardware description language to describe each gates logical functions.
- Implement a complete set of logic gates using only NAND gates as a primitive along with any gates built using NAND gates.
- 3. Describe logical functions and convert their representations between Boolean expressions, truth tables, and gate diagrams.
- 4. Verify proper operation of a logic chip using a supplied hardware simulator and test input scripts.
- 5. Recognize the difference the between the interface to a system and the implementation of a system.

Boolean Functions

Cyber Systems Architecture

SY 303 - Fall AY2021

Boolean algebra

Some elementary Boolean functions:

- \blacksquare Not(x)
- \blacksquare And(x,y)
- Or(x,y)
- \blacksquare Nand(x,y)

2	K	Not(x)
(C	1
-	L	0

x	У	And(x,y)
0	0	0
0	1	0
1	0	0
1	1	1

x	У	Or(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

x	У	Nand(x,y)
0	0	1
0	1	1
1	0	1
1	1	0

Boolean functions:

x	y	Z	$\int f(x,$	$y,z) = (x+y)\overline{z}$
0	0	0		
Ū	Ū	U	0	
0	0	1	0	A Boolean f
0	1	0	1	functional
0	1	1	0	
1	0	0	1	■ <u>Important</u>
1	0	1	0	Every Boole
1	1	0	1	And, Or, N
1	1	1	0	

- A Boolean function can be expressed using a functional expression or a truth table expression
- Important observation: Every Boolean function can be expressed using And, Or, Not.

All Boolean functions of 2 variables

Function	x	0	0	1	1
runction	y	0	1	0	1
Constant 0	0	0	0	0	0
And	$x \cdot y$	0	0	0	1
x And Not y	$x \cdot \overline{y}$	0	0	1	0
x	x	0	0	1	1
Not x And y	$\overline{x} \cdot y$	0	1	0	0
y	y	0	1	0	1
Xor	$x \cdot \overline{y} + \overline{x} \cdot y$	0	1	1	0
Or	x + y	0	1	1	1
Nor	$\overline{x+y}$	1	0	0	0
Equivalence	$x \cdot y + \overline{x} \cdot \overline{y}$	1	0	0	1
Not y	\overline{y}	1	0	1	0
If y then x	$x + \overline{y}$	1	0	1	1
Not x	\overline{x}	1	1	0	0
If x then y	$\overline{x} + y$	1	1	0	1
Nand	$\overline{x \cdot y}$	1	1	1	0
Constant 1	1	1	1	1	1

Boolean algebra

Given: Nand(a,b), false

We can build:

- \blacksquare Not(a) = Nand(a,a)
- true = Not(false)
- And(a,b) = Not(Nand(a,b))
- Or(a,b) = Not(And(Not(a),Not(b)))
- Xor(a,b) = Or(And(a,Not(b)),And(Not(a),b)))
- Etc.

George Boole, 1815-1864 ("A Calculus of Logic")

Whodunit story: Each suspect may or may not have an alibi (a), a motivation to commit the crime (m), and a relationship to the weapon found in the scene of the crime (w). The police decides to focus attention only on suspects for whom the proposition Not(a) And $(m \ Or \ w)$ is true.

<u>Truth table of the "suspect" function</u> $S(a, m, w) = \overline{a} \cdot (m + w)$

а	m	w	minterm	suspect(a,m,w)= not(a) and (m or w)
0	0	0	$m_0 = \overline{a} \overline{m} \overline{w}$	0
0	0	1	$m_1 = \overline{a} \overline{m} w$	1
0	1	0	$m_2 = \overline{a}m\overline{w}$	1
0	1	1	$m_3 = \overline{a}mw$	1
1	0	0	$m_4 = a \overline{m} \overline{w}$	0
1	0	1	$m_5 = a\overline{m}w$	0
1	1	0	$m_6 = am\overline{w}$	0
1	1	1	$m_7 = a m w$	0

Canonical form: $S(a, m, w) = \overline{a} \overline{m} w + \overline{a} m \overline{w} + \overline{a} m w$

Gate Logic

Cyber Systems Architecture

SY 303 - Fall AY2021

Gate logic

- Gate logic a gate architecture designed to implement a Boolean function
- Elementary gates:

Composite gates:

Gate interface

If a=b=c=1 then out=1 else out=0

- out

Gate implementation

■ <u>Important distinction</u>: Interface (what) VS implementation (how).

Gates as Building Blocks

Gate logic

Interface

а	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Claude Shannon, 1916-2001

("Symbolic Analysis of Relay and Switching Circuits")

Implementation

Xor(a,b) = Or(And(a,Not(b)),And(Not(a),b)))

Circuit implementations

From a computer science perspective, physical realizations of logic gates are irrelevant.

Project 1 Overview

Cyber Systems Architecture

SY 303 - Fall AY2021

Project 1: elementary logic gates

Given: Nand(a,b), false

Build:

- Not(a) = ...
- true = ...
- \blacksquare And $(a,b) = \dots$
- Or(a,b) = ...
- Mux(a,b,sel) = ...
- Etc. 12 gates altogether.

a	b	Nand(a,b)
0	0	1
0	1	1
1	0	1
1	1	0

Q: Why these particular 12 gates?

A: Since ...

- They are commonly used gates
- They provide all the basic building blocks needed to build our computer.

Example: Building an And gate

And.cmp

a	b	out
0	0	0
0	1	0
1	0	0
1	1	1

Contract:

When running your .hdl on our .tst, your .out should be the same as our .cmp.

And.hdl

```
CHIP And
{ IN a, b;
OUT out;
// implementation missing
}
```

And.tst

```
load And.hdl,
output-file And.out,
compare-to And.cmp,
output-list a b out;
set a 0,set b 0,eval,output;
set a 0,set b 1,eval,output;
set a 1,set b 0,eval,output;
set a 1, set b 1, eval, output;
```



```
CHIP And
{    IN a, b;
    OUT out;
    // implementation missing
}
```



```
CHIP And
{    IN a, b;
    OUT out;
    // implementation missing
}
```

Building an And gate


```
CHIP And
{    IN a, b;
    OUT out;
    // implementation missing
}
```


Hardware Simulator Demo

Cyber Systems Architecture

SY 303 - Fall AY2021

Hardware simulator (demonstrating Xor gate construction)

Hardware simulator

Hardware simulator

Multiplexer

a	b	sel	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

sel	out
0	a
1	b

<u>Proposed Implementation:</u> based on Not, And, Or gates.

Project 1 tips

- Read the Introduction + Chapter 1 of the book
- Read Appendix A, sections A1-A6 to get familiar with HDL
- Download the book's software suite
- Go through the hardware simulator tutorial
- You're in business.

Project 1

- Implement the logic gates presented in chapter 1.
- You may only use the primitive Nand gates and the composite gates that your team builds with them.
- Submit your working code and gate diagrams to Blackboard
 - If you need the extended time, submit the full project report

Perspective

- Each Boolean function has a canonical representation
- The canonical representation is expressed in terms of And, Not, Or
- And, Not, Or can be expressed in terms of Nand alone
- Ergo, every Boolean function can be realized by a standard PLD consisting of Nand gates only
- Mass production
- Universal building blocks, unique topology
- Gates, neurons, atoms, ...

Instructor Demo

Project 1

Not, Xor