Lecture 13

Model Diagnostics

STAT 8020 Statistical Methods II September 18, 2019 Model Diagnostics

CLEMS Leverage Values

Studentize & St

Whitney Huang Clemson University

Agenda

- Leverage Values
- 2 Studentized & Studentized Deleted Residuals
- **3** DFFITS
- Wariance Inflation Factor
- **5** Non-Constant Variance & Transformation

Studentized & Studentized Deleted Residuals DFFITS
Variance Inflation Factor

13.2

Notes

Notes

Notes

Leverage

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

 \bullet The leverage value for the $i_{\rm th}$ observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

- Can show that ${\rm Var}(e_i)=\sigma^2(1-h_i),$ where $e_i=Y_i-\hat{Y}_i$ is the residual for the $i_{\rm th}$ observation
- $\frac{1}{n} \leq h_i \leq 1$, $1 \leq i \leq n$ and $\bar{h} = \sum_{i=1}^n \frac{h_i}{n} = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages of more than $\frac{2p}{n}$ should be looked at more closely

verage Values

Studentized & Studentized Deleted Residuals DFFITS

ariance Inflation

on-Constant ariance &

100

Leverage Values of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

Studentized Residuals

As we have seen $Var(e_i) = \sigma^2(1 - h_i)$, this suggests the use of $r_i = \frac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$

- ullet r_i 's are called **studentized residuals**. r_i 's are sometimes preferred in residual plots as they have been standardized to have equal variance.
- ullet If the model assumptions are correct then ${
 m Var}(r_i)=1$ and $Corr(e_i, e_i)$ tends to be small

Notes

Notes

Studentized Residuals of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

Model Diagnostics CLEMS UNIVERSITY	
Studentized & Studentized Deleted Residuals	

Notes

Studentized Deleted Residuals

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}, \, \hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$
- ullet The observation i is an outlier if $\hat{Y}_{i(i)} Y_i$ is "large"
- $\begin{array}{l} \bullet \ \ \mathsf{Can} \ \mathsf{show} \\ \ \ \mathsf{Var}(\hat{Y}_{i(i)} Y_i) = \sigma_{(i)}^2 \left(1 + \pmb{x}_i^T (\pmb{X}_{(i)}^T \pmb{X}_{(i)})^{-1} \pmb{x}_i \right) = \frac{\sigma_{(i)}^2}{1 \hbar_i} \end{array}$
- Define the Studentized Deleted Residuals as

$$t_i = \frac{\hat{Y}_{i(i)} - Y_i}{\hat{\sigma}_{(i)}^2/1 - h_i} = \frac{\hat{Y}_{i(i)} - Y_i}{\mathsf{MSE}_{(i)}(1 - h_i)^{-1}}$$

which are distributed as a t_{n-p-1} if the model is correct and $\varepsilon \sim \mathrm{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Model Diagnostics
Studentized & Studentized Deleted Residuals

Notes

Jackknife Residuals of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

Model Diagnostics
Leverage Values Studentized & Studentized Deleted Residuals

I	Notes				
-					
-					

Influential Observations

DFFITS

- \bullet Difference between the fitted values \hat{Y}_i and the predicted values $\hat{Y}_{i(i)}$
- ullet DFFITS $_i = rac{\hat{Y}_i \hat{Y}_{i(i)}}{\sqrt{\mathsf{MSE}_{(i)}h_i}}$
- Concern if absolute value greater than 1 for small data sets, or greater than $2\sqrt{p/n}$ for large data sets

Model Diagnostics
CLEMS N
DFFITS

Notes			

$\textbf{DFFITS of Species} \sim \textbf{Elev} + \textbf{Adj}$

Variance Inflation Factor (VIF)

$$\mathsf{VIF}_k = \frac{1}{1 - R_k^2},$$

where R_k^2 is the coefficient of determination when X_k is regressed on the remaining p-2 other predictors.

> vif(step_gala)

Elevation Adjacent

1.404074 1.404074

> vif(full)

Area Elevation Nearest

2.928145 3.992545 1.766099

Scruz Adjacent

1.675031 1.826403

Notes

Notes

...

Residual Plot of Species $\sim \mathtt{Elev} + \mathtt{Adj}$

Model Diagnostics CLEMS UNIVERSITY
Non-Constant Variance & Transformation

Notes	6			

Residual Plot After Square Root Transformation

Model Diagnostics
CLEMS N
Non-Constant Variance & Transformation
13 13

Notes		
Notes		
_		
Notes		