EE 332: Devices and Circuits II

Lecture 3: Single-stage Amplifiers (Part 2)

- Source follower (also called "common-drain" stage) senses the input at the gate and drives load at the source
- It presents a high input impedance, allowing source potential to "follow" the gate voltage
- Acts as a voltage buffer

- For $V_{in} < V_{TH}$, M_1 is off and $V_{out} = 0$
- As V_{in} exceeds V_{TH} , M_1 turns on in saturation since $V_{DS} = V_{DD}$ and $V_{GS} V_{TH} \approx 0$ and I_{D1} flows through R_S
- As V_{in} increases further, V_{out} follows the input with a difference (level shift) equal to V_{GS}
- Input-output characteristic neglecting channel-length modulation can be expressed as

$$\frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})^2 R_S = V_{out}$$

 Small-signal gain can be obtained more easily using small-signal equivalent model

We have,

• KVL:
$$V_{in}-V_1=V_{out},\,V_{bs}=-V_{out}$$

• KCL:
$$g_m V_1 - g_{mb} V_{out} = V_{out}/R_S$$

$$A_v = \frac{g_m R_S}{1 + (g_m + g_m)R_S}$$

- Voltage gain begins from zero for $V_{in} \approx V_{TH} (g_m \approx 0)$, and monotonically increases
- As drain current and g_m increase, A_v approaches

$$g_m/(g_m+g_{mb}) = 1/(1+\eta)$$

• Even if $R_S = \infty$, voltage gain of a source follower is not equal to one

$$\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{in}-V_{TH}-V_{out})^{2}R_{S}=V_{out}$$

- Drain current of M₁ depends heavily of input dc level
- Even if V_{TH} is relatively constant, the increase in V_{GS} means that V_{out} (= V_{in} - V_{GS}) does not follow V_{in} faithfully, incurring nonlinearity
- To alleviate this issue, the resistor can be replaced by a constant current source
- Current source itself is implemented as an NMOS transistor operating in the saturation region

Source Follower: output impedance

- From small-signal equivalent circuit,
- It follows that $I_X g_m V_X g_{mb} V_X = 0$ and $V_X = -V_{bs}$

- $R_{out} = \frac{1}{g_m + g_{mo}}$
- Body effect decreases output resistance of source followers
- If V_X decreases by ΔV so the drain current increases
 - w/o body effect, V_{GS} increases by ΔV
 - with body effect, V_{TH} decreases as well, thus $(V_{GS}-V_{TH})^2$ and I_{D1} increase by a greater amount, hence lower output impedance

 Small-signal equivalent circuit with a finite load resistance and channel-length modulation is shown

• Recall that gain for R_s was
$$A_v = \frac{g_m R_S}{1 + (g_m + g_{mb}) R_S}$$

• Gain = ?

Issues with Source Follower

- Source followers exhibit high input impedance and moderate output impedance, but at the cost of
 - Nonlinearity
 - Voltage headroom limitation -> Vsu, pp smull!
- Even when biased by ideal current source, there is input-output nonlinearity due to nonlinear dependence of V_{TH} on the source potential

Common-Gate Stage

- A common-gate (CG) stage senses the input at the source and produces the output at the drain
- Gate is biased to establish proper operating conditions

Alternatively, M₁ can be biased by a constant current source, with the signal capacitively coupled to the circuit

Common-Gate Stage: Large-signal behavior

- Assume V_{in} decreases from a large positive $V_{in} = V_{out}$ For $V_{in} \ge V_{b}$ For lower values of V_{in} , if M_{1} is in saturation, • Assume V_{in} decreases from a large positive value and that

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2$$

• As V_{in} decreases further, so does V_{out} driving M_1 into the triode region if

$$V_{DD} - \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D = V_b - V_{TH}$$

• In the region where M_1 is saturated, we can express the output voltage as

$$V_{out} = V_{DD} - \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D$$

Common-Gate Stage: Input-output characteristic

• For M_1 in saturation, $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2$

•
$$V_{out} = ?$$

• Small-signal gain: $g_m(1+\eta)R_D$

body effect.

Vou

Common-Gate Stage

- Gain of the common-gate (CG) stage is positive
- Body effect increases the effective transconductance of the stage
- The minimum allowable value of V_{out} is V_b - V_{TH}

• Min of
$$V_b = ?$$

$$V_{h,pc} + V_{+h}$$

Common-Gate Stage (with r_o & R_s)

• Consider output impedance of transistor (r_o) and impedance of the signal source (R_s):

• In small-signal equivalent circuit, since current flowing R_S is $-V_{out}/R_D$,

$$V_1 - \frac{V_{out}}{R_D} R_S + V_{in} = 0 (1)$$

• Moreover, since current through r_O is $-V_{out}/R_D - g_m V_1 - g_{mb} V_1$

$$r_O\left(\frac{-V_{out}}{R_D} - g_m V_1 - g_{mb} V_1\right) - \frac{V_{out}}{R_D} R_S + V_{in} = V_{out}$$
 (2)

Common-Gate Stage

• Substituting V_1 from (1) in (2),

$$r_O\left[\frac{-V_{out}}{R_D} - (g_m + g_{mb})\left(V_{out}\frac{R_S}{R_D} - V_{in}\right)\right] - \frac{V_{out}R_S}{R_D} + V_{in} = V_{out}$$

• Therefore,

$$\frac{V_{out}}{V_{in}} = \frac{(g_m + g_{mb})r_O + 1}{r_O + (g_m + g_{mb})r_O R_S + R_S + R_D} R_D$$

• The voltage gain expression is similar to that of a degenerated CS stage

Cascode Stage

• The cascade of a CS stage and a CG stage is called a cascode topology

- M_1 generates a small-signal drain current proportional to the small-signal input V_{in} and M_2 simply routes the current to R_D
- M_1 is called the input device and M_2 the cascode device
- M_1 and M_2 in this example carry equal bias and signal currents

Cascode Stage: Qualitative Analysis

- Assume both transistors are in saturation and $\lambda = \gamma = 0$
- If V_{in} rises by ΔV , then I_{D1} increases by $g_{m1}\Delta V$
 - This change in current flows through the impedance seen at X, i.e., the impedance seen at the source of M_2 , which is equal to $1/g_{m2}$
 - Thus, V_X falls by an amount given by $g_{m1}\Delta V \cdot (1/g_{m2})$

• This change in I_{D1} also flows through R_D , producing a drop of $g_{m1}\Delta VR_D$ in V_{out} , just as in a

simple CS stage

Cascode Stage: Bias Conditions

- Minimum output level for which both transistors are in saturation is equal to the sum of overdrives of M_1 and M_2
- Addition of M_2 to the circuit reduces the output voltage swing by at least its overdrive voltage (compared with a basic CS amplifier)

Cascode Stage: Small-signal characteristics

- Assume both transistors operate in saturation and λ =0
- Voltage gain is equal to that of a common-source stage because the drain current produced by the input device must flow through the cascode device (M₂): (G_m=g_{m1})
- This result is independent of the transconductance and body effect of M_2
- Can be verified using $A_v = -G_m R_{out}$

Cascode Stage: Output Impedance

Important property of the cascode structure is its high output impedance

- For calculation of R_{out} , the circuit can be viewed as a common-source stage with a degeneration resistor equal to r_{O1}
- Thus, $R_{out} = [1 + (g_{m2} + g_{mb2})r_{O2}]r_{O1} + r_{O2}$
- Assuming $g_m r_O >> 1$, we have $R_{out} \approx (g_{m2} + g_{mb2}) r_{O2} r_{O1}$
- M2 boosts the output impedance of M1 by a factor of $(g_{m2}+g_{mb2})r_{O2}$

Cascode stage with current source load

- Voltage gain can be maximized by maximizing G_m and/or R_{out}
- Since G_m is typically determined by the transconductance of a transistor and has trade-offs with the bias current and device capacitances, it is desirable to increase voltage gain by maximizing R_{out}

• If both M_1 and M_2 operate in saturation, $G_m \approx g_{m1}$ and yielding

$$R_{out} \approx (g_{m2} + g_{mb2})r_{O2}r_{O1}$$

 Maximum gain is roughly equal to the square of the intrinsic gain of the transistors

$$A_v = (g_{m2} + g_{mb2})r_{O2}g_{m1}r_{O1} \approx (g_{n}r_{o})^2$$

Summary of Amplifier Designs