MT22-Fonctions de plusieurs variables et applications

Chapitre 5 : Intégrale triple

ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES

UTC-UTT

Sommaire

V	Intégr	ale triple	3
	V.1	Construction	4
	V.2	Propriétés de l'intégrale triple	9
	V.3	Calcul pratique des intégrales triples	14
	V.4	Des applications	36
A	Exerci	ces	45
	A.1	Exercices de cours	46
	A.2	Exercices de TD	52

Sommaire Concepts

Chapitre V Intégrale triple

V.1	Construction	4
V.2	Propriétés de l'intégrale triple	9
V.3	Calcul pratique des intégrales triples	14
V.4	Des applications	36

Sommaire Concepts

V.1 Construction

Volume d'un ensemble de \mathbb{R}^3	 . ,									5
Définition de l'intégrale triple										7

Il s'agit ici de généraliser les résultats du chapitre précédent, et notamment de donner un sens à la notation :

$$\int \int \int_{D} f(x, y, z) dx dy dz$$

où $f:D\subset\mathbb{R}^3\to\mathbb{R}$ avec D une partie bornée de $\mathbb{R}^3.$

On ne possède pas de représentation vraiment concrète des intégrales triples alors qu'on pouvait interpréter une intégrale double comme un *volume* et une intégrale simple comme une *aire*.

Sommaire Concepts

Volume d'un ensemble de R³

On se pose ici le problème de savoir sur quel genre d'ensemble ${\cal D}$ on va pouvoir calculer une intégrale triple.

Définition V.1.1 Un ensemble $D \subset \mathbb{R}^3$ est **borné** s'il existe un parallélépipède $P = [a; b] \times [c, d] \times [\gamma, \delta]$ tel que $D \subset P$.

Comme au chapitre précédent, si on se fixe le parallélépipède P pour un ensemble D donné, on peut le découper en plus petits parallélépipèdes, suivant des plans parallèles à (xOy), (xOz), (yOz). Pour $n \in \mathbb{N}^*$, on pose :

$$x_i = a + i \frac{b - a}{n}$$

$$y_j = c + j \frac{d - c}{n}$$

$$z_k = \gamma + k \frac{\delta - \gamma}{n}$$

pour $i, j, k = 0, 1, 2, \dots, n$, ce qui définit les parallélépipèdes $P_{i,j,k}$:

$$P_{i,j,k} = [x_i, x_{i+1}] \times [y_j, y_{j+1}] \times [z_k, z_{k+1}]$$

Sommaire Concepts

Définition V.1.2 Pour n donné, on note D_n^+ l'ensemble obtenu en prenant tous les $P_{i,j,k}$ de ce maillage ayant au moins un point commun avec D, $D \subset D_n^+$. On note D_n^- l'ensemble obtenu en prenant tous les $P_{i,j,k}$ du maillage entièrement contenus dans D, $D_n^- \subset D$.

Volume d'un ensemble de \mathbb{R}^3

On définit les volumes \mathcal{V}_n^- et \mathcal{V}_n^+ respectifs de D_n^- et D_n^+ comme étant la somme des volumes des $P_{i,j,k}$ les formant.

$$\left(\forall (i,j,k) \quad \mathcal{V}\left(P_{i,j,k}\right) = \frac{(b-a)(d-c)(\delta-\gamma)}{n^3}\right)$$

Définition V.1.3 On dira qu'une partie bornée D de \mathbb{R}^3 est **cubable** si :

$$\lim_{p o\infty}\mathcal{V}_{2^p}^-=\lim_{p o\infty}\mathcal{V}_{2^p}^+$$

et on définira le **volume** de D, noté $\mathcal{V}(D)$ comme étant la limite commune des deux suites.

Dans le même esprit qu'au chapitre précédent, la plupart du temps, on considérera des ensembles D limités par des surfaces régulières (définies par des équations cartésiennes ou paramétriques faisant intervenir des fonctions différentiables...), ce qui assurera que ces ensembles sont cubables.

Sommaire Concepts

Définition de l'intégrale triple

On considère une partie cubable D de \mathbb{R}^3 et on réutilise ici les notations du paragraphe V.1.

Soit $f:D \longrightarrow \mathbb{R}$ une fonction définie et *bornée* sur D, on prolonge, comme au chapitre précédent, f au parallélépipède P en posant :

$$f(x, y, z) = 0$$
 pour $(x, y, z) \in P \setminus D$

on pose également :

$$M = \sup_{(x,y,z) \in P} f(x,y,z)$$
 $m = \inf_{(x,y,z) \in P} f(x,y,z)$

On pose enfin, pour $0 \le i \le n-1, 0 \le j \le n-1$ et $0 \le k \le n-1$:

$$M_{i,j,k} = \sup_{(x,y,z)\in P_{i,j,k}} f(x,y,z) \quad m_{i,j,k} = \inf_{(x,y,z)\in P_{i,j,k}} f(x,y,z)$$

Définition V.1.4 Pour $n \in \mathbb{N}^*$, on définit les **sommes de Riemann** associées à f et au découpage d'ordre n de D en posant :

$$s_n(f) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} m_{i,j,k} \mathcal{V}(P_{i,j,k})$$

Sommaire Concepts

Exemples Exercices Documents

et

$$S_n(f) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} M_{i,j,k} \mathcal{V}(P_{i,j,k})$$

avec $V(P_{i,j,k}) = \frac{(b-a)(d-c)(\delta-\gamma)}{n^3} \quad \forall (i,j,k).$

On est alors en mesure de définir l'intégrale de f sur D:

Définition V.1.5 $f: D \longrightarrow \mathbb{R}$ est intégrable sur D si :

$$\lim_{p \to +\infty} s_{2p}(f) = \lim_{p \to +\infty} S_{2p}(f)$$

Cette limite est l'**intégrale triple** de f sur l'ensemble cubable D, on note ce nombre :

$$\int \int \int_{D} f(x, y, z) dx dy dz$$

Définition de l'intégrale triple

> Sommaire Concepts

V.2 Propriétés de l'intégrale triple

Retour au volume d'i	ın (en	se	m	b	le										10
Propriétés élémentai	res															11
Quelques inégalités																12

Sommaire Concepts

Retour au volume d'un ensemble

Exercices:

Exercice A.1.1

Si on considère la fonction f définie par f(x,y,z)=1 pour $(x,y,z)\in D=[a,b]\times [c,d]\times [\gamma,\delta]$, il est facile de voir, avec la définition de

$$\int \int \int_{[a,b]\times[c,d]\times[\gamma,\delta]} f(x,y,z)dxdydz$$

que cette intégrale triple vaut $\mathcal{V}(D)=(b-a)(d-c)(\gamma-\delta)$. De manière générale, on a la :

Proposition V.2.1 *Pour un ensemble cubable* $D \subset \mathbb{R}^3$,

$$\int \int \int_{D} dx dy dz = \mathcal{V}(D)$$

Sommaire Concepts

Exemples
Exercices
Documents

Propriétés élémentaires

Elles sont, pour l'essentiel, analogues à celles obtenues pour l'intégrale double :

Proposition V.2.2 (linéarité de l'intégrale)

$$\int \int \int_{D} (f(x,y,z) + g(x,y,z)) dx dy dz = \int \int \int_{D} f(x,y,z) dx dy dz + \int \int \int_{D} g(x,y,z) dx dy dz$$

$$\iint \int \int_{D} \lambda f(x, y, z) dx dy dz = \lambda \iint \int \int_{D} f(x, y, z) dx dy dz$$

où f,g sont des fonctions intégrables sur D et $\lambda \in \mathbb{R}$.

Proposition V.2.3 Soient D_1 et D_2 deux ensembles cubables disjoints, alors $D_1 \cup D_2$ est cubable et :

$$\int \int \int_{D_1 \cup D_2} f(x,y,z) dx dy dz = \int \int \int_{D_1} f(x,y,z) dx dy dz + \int \int \int_{D_2} f(x,y,z) dx dy dz$$

Sommaire Concepts

Quelques inégalités

Proposition V.2.4 1. Si $f(x, y, z) \ge 0$ sur D, alors

$$\int \int \int_D f(x,y,z) dx dy dz \ge 0$$

2. Si $f(x, y, z) \leq g(x, y, z)$ sur D, alors

$$\int \int \int_D f(x,y,z) dx dy dz \le \int \int \int_D g(x,y,z) dx dy dz$$

Proposition V.2.5 Si f est une fonction intégrable sur D, alors |f| est intégrable sur D et

$$\left| \int \int \int_D f(x,y,z) dx dy dz \right| \leq \int \int \int_D \left| f(x,y,z) \right| dx dy dz \leq \mathcal{V}(D) \sup_{(x,y,z) \in D} \left| f(x,y,z) \right|$$

 $où \mathcal{V}(D) = \int \int \int_{D} dx dy dz$.

Proposition V.2.6 Si $f(x, y, z) \ge 0$ sur D_2 et $D_1 \subset D_2$ alors

$$\int \int \int_{D_1} f(x, y, z) dx dy dz \le \int \int \int_{D_2} f(x, y, z) dx dy dz.$$

12

Sommaire Concepts

Proposition V.2.7 (inégalité de Schwarz)

$$\left(\int \int \int_{D} f(x, y, z) g(x, y, z) dx dy dz \right)^{2} \\
\leq \left(\int \int \int_{D} \left[f(x, y, z) \right]^{2} dx dy dz \right) \left(\int \int \int_{D} \left[g(x, y, z) \right]^{2} dx dy dz \right)$$

où f,g sont des fonctions intégrables sur D.

Quelques inégalités

Sommaire Concepts

V.3 Calcul pratique des intégrales triples

Intégrale sur un parallélépipède, cas des variables séparables	1
Calcul avec la méthode des bâtonnets	10
Calcul par la méthode des tranches	22
Changement de variables, généralités	28
Passage aux coordonnées cylindriques	3
Passage aux coordonnées sphériques	34

Sommaire Concepts

Intégrale sur un parallélépipède, cas des variables séparables

C'est l'analogue du résultat obtenu pour l'intégrale double

Proposition V.3.1 Soit D le parallélépipède $[a;b] \times [c;d] \times [\gamma;\delta]$ où $a \leq b$, $c \leq d$, $\gamma \leq \delta$. Si

$$\forall (x, y, z) \in D \quad f(x, y, z) = g(x)h(y)l(z)$$

où g, h et l sont des fonctions continues sur [a; b], [c; d] et $[\gamma; \delta]$ respectivement, alors

$$\int \int \int_D f(x,y,z) dx dy dz = \left(\int_a^b g(x) dx \right) \cdot \left(\int_c^d h(y) dy \right) \cdot \left(\int_\gamma^\delta l(z) dz \right)$$

Sommaire Concepts

Calcul avec la méthode des bâtonnets

On suppose que l'ensemble d'intégration D considéré peut être défini par :

$$D = \{(x, y, z) \in \mathbb{R}^3 / (x, y) \in A, \ \phi_1(x, y) \le z \le \phi_2(x, y) \}$$

où A est une partie de \mathbb{R}^2 et ϕ_1, ϕ_2 des fonctions de A dans \mathbb{R} , on pourrait dire que A est l'ombre de D sur le plan (xOy) si on éclaire D suivant (Oz) (cf. figure V.3.1). D est alors un cylindre formé sur la courbe limitant A que l'on a fermé avec les surfaces

$$\Sigma_1: z = \phi_1(x, y) \text{ et } \Sigma_2: z = \phi_2(x, y)$$

Théorème V.3.1 Sous ces hypothèses faites sur D, si $f: D \longrightarrow \mathbb{R}$ est intégrable, on a:

$$\iint \int \int_{D} f(x, y, z) dx dy dz = \iint_{A} \left(\int_{\phi_{1}(x, y)}^{\phi_{2}(x, y)} f(x, y, z) dz \right) dx dy$$

Le calcul de $F(x,y)=\int_{\phi_1(x,y)}^{\phi_2(x,y)}f(x,y,z)dz$ correspond à un découpage de D suivant des bâtonnets parallèles à (Oz) (cf. figure V.3.2), dont la section infinitésimale correspond au quadrillage de l'ensemble A.

On rassemble tous ces bâtonnets lorsque l'on calcule

$$\int \int_A F(x,y) dx dy$$

Sommaire Concepts

FIG. V.3.1 – Ensemble pour lequel on peut appliquer la méthode des bâtonnets

Sommaire Concepts

Calcul avec la méthode des bâtonnets

Remarque V.3.1 Pour obtenir le volume de D, on peut dans ce cas écrire :

$$\mathcal{V}(D) = \int \int_{A} \left(\phi_2(x, y) - \phi_1(x, y)\right) dx dy$$

Exemple V.3.1 Soit l'ensemble $D=\left\{(x,y,z)\in\mathbb{R}^3/(x,y)\in A,\ x^2+y^2\leq z\leq 2\right\}$ où

$$A = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\}.$$

Calculons

$$I = \int \int \int_{D} z dx dy dz$$

On se trouve sous les hypothèses du théorème :

$$I = \int \int_{A} \left(\int_{x^2+y^2}^2 z dz \right) dx dy$$
$$= \int \int_{A} \left(2 - \frac{(x^2 + y^2)^2}{2} \right) dx dy$$

On est donc ramené à des techniques de calcul évoquées au chapitre précédent.

Sommaire Concepts

FIG. V.3.2 – Un bâtonnet

Calcul avec la méthode des bâtonnets

> Sommaire Concepts

Calcul avec la méthode des bâtonnets

Sommaire Concepts

Exemples Exercices

Si on passe en coordonnées polaires, on a :

$$I = \int \int_{[0;1]\times[0;2\pi]} \left(2 - \frac{r^4}{2}\right) r dr d\theta$$
$$= \int_0^{2\pi} \left[r^2 - \frac{r^6}{12}\right]_{r=0}^{r=1} d\theta$$
$$I = \frac{11\pi}{6}$$

Calcul avec la méthode des bâtonnets

Sommaire Concepts

Calcul par la méthode des tranches

On suppose, ce qui n'exclut pas forcément le cas précédent, que l'ensemble cubable D peut être défini par :

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 / \gamma \le z \le \delta, \ (x, y) \in D_z \right\}$$

où D_z est une partie quarrable de \mathbb{R}^2 qui dépend de la cote z et qui correspond à la coupe de l'ensemble D suivant un plan parallèle à (xOy) (cf figure V.3.3) : $D_{z_0} = D \cap \mathcal{P}_0$ où \mathcal{P}_0 est le plan d'équation $z = z_0$.

Théorème V.3.2 Sous ces hypothèses faites sur D, si $f: D \longrightarrow \mathbb{R}$ est intégrable, on a:

$$\int \int \int_{D} f(x, y, z) dx dy dz = \int_{\gamma}^{\delta} \left(\int \int_{D_{z}} f(x, y, z) dx dy \right) dz$$

Cela correspond cette fois à un découpage de l'ensemble D en tranches D_z parallèles à (xOy), on calcule, à z fixé :

$$F(z) = \int \int_{D_z} f(x, y, z) dx dy$$

grâce aux méthodes du chapitre précédent, puis on empile ces tranches pour le calcul de :

$$\int_{\gamma}^{\delta} F(z)dz = \int \int \int_{D} f(x, y, z) dx dy dz$$

Sommaire Concepts

FIG. V.3.3 – Méthode des tranches

Calcul par la méthode des tranches

> Sommaire Concepts

Remarque V.3.2 — On peut, bien sûr, selon la commodité des calculs, découper en tranches parallèlement à (xOz) ou (yOz), ce qui conduira à des égalités de la forme :

$\int \int \int_{D} f(x, y, z) dx dy dz = \int_{c}^{d} \left(\int \int_{D_{y}} f(x, y, z) dx dz \right) dy$

ou

$$\iint \iint_D f(x, y, z) dx dy dz = \int_a^b \left(\iint_{D_x} f(x, y, z) dy dz \right) dx$$

 Si on veut calculer le volume d'un ensemble cubable D, l'application du théorème, lorsque l'ensemble D s'y prête, conduit à :

$$\mathcal{V}(D) = \int_{\gamma}^{\delta} \mathcal{A}(D_z) dz$$

où $A(D_z)$ est l'aire de D_z , formule qui ne vous est pas inconnue.

Exemple V.3.2 Calculons

$$I = \int \int \int_{D} x^{3}y^{2}z dx dy dz$$

où l'ensemble D est défini par :

$$D = \{(x, y, z) \in \mathbb{R}^3 / 0 \le x \le 1, 0 \le y \le x, 0 \le z \le xy\}$$

Calcul par la méthode des tranches

Sommaire Concepts

Pour pouvoir appliquer le théorème, on est amené à redéfinir autrement l'ensemble ${\it D}$:

Soit $z_0 \in \mathbb{R}^+$ et \mathcal{P}_{z_0} le plan d'équation $z=z_0$.

$$D \cap \mathcal{P}_{z_0} = \{(x, y) \in \mathbb{R}^2 / 0 \le x \le 1, 0 \le y \le x, xy \ge z_0 \}$$

Si on note $D_{z_0} = D \cap \mathcal{P}_{z_0}$, on peut écrire :

$$D = \{(x, y, z) \in \mathbb{R}^3 / 0 \le z \le 1, (x, y) \in D_z \}$$

car on a $D_z = \emptyset$ pour z > 1.

On peut alors tenter une représentation des ensembles D_{z_0} et de l'ensemble D (cf. figure V.3.4).

L'application du théorème conduit à :

$$I = \int_0^1 \left(\int \int_{D_z} x^3 y^2 z dx dy \right) dz$$

On est, là-encore, ramené aux méthodes de calcul du chapitre précédent : pour 0 < z < 1, posons :

$$F(z) = \int \int_{D_z} x^3 y^2 z dx dy$$
$$= z \int_{\sqrt{z}}^1 \left(\int_{\frac{z}{x}}^x x^3 y^2 dy \right) dx$$

Calcul par la méthode des tranches

> Sommaire Concepts

(On voit ici l'importance d'un schéma pour déterminer les bornes d'intégration)

Calcul par la méthode des tranches

$$F(z) = z \int_{\sqrt{z}}^{1} x^{3} \left[\frac{y^{3}}{3} \right]_{\frac{z}{x}}^{x} dx$$

$$= z \int_{\sqrt{z}}^{1} \left(\frac{x^{6}}{3} - \frac{z^{3}}{3} \right) dx$$

$$= z \left[\frac{x^{7}}{21} - \frac{z^{3}x}{3} \right]_{\sqrt{z}}^{1}$$

$$F(z) = \frac{z}{21} - \frac{z^{4}}{3} - \frac{z^{\frac{9}{2}}}{21} + \frac{z^{\frac{9}{2}}}{3}$$

On obtient alors:

$$I = \int_0^1 F(z)dz = \frac{1}{110}$$

Sommaire Concepts

FIG. V.3.4 – Représentation de l'ensemble d'intégration

Sommaire Concepts

Changement de variables, généralités

Exercices:

Exercice A.1.2

Là encore, on généralise ce qui a été vu au chapitre précédent. Soient D et Δ des ensembles cubables de \mathbb{R}^3 , on notera :

- -(x,y,z) les points de D;
- -(u,v,w) les points de Δ .

Définition V.3.1 On désignera par changement de variables de Δ sur D toute application :

$$\Phi: \Delta \longrightarrow D$$

$$(u, v, w) \longmapsto \Phi(u, v, w) = \begin{pmatrix} \alpha(u, v, w) \\ \beta(u, v, w) \\ \gamma(u, v, w) \end{pmatrix} = \begin{pmatrix} x(u, v, w) \\ y(u, v, w) \\ z(u, v, w) \end{pmatrix}$$

telle que :

- Φ est bijective de Δ sur D;
- α , β et γ sont des fonctions C^1 sur Δ ;

Sommaire Concepts

– Si on écrit u, v et w en fonction de $(x,y,z) \in D$ à l'aide de Φ^{-1} (bijection réciproque), on obtient encore des fonctions C^1 sur D.

Définition V.3.2 On appelle **jacobien** d'un changement de variables Φ l'expression, donnée par le **produit mixte** des vecteurs $\frac{\partial \Phi}{\partial u}$, $\frac{\partial \Phi}{\partial v}$ et $\frac{\partial \Phi}{\partial w}$:

$$J_{\Phi}(u, v, w) = \left(\frac{\partial \Phi}{\partial u}, \frac{\partial \Phi}{\partial v}, \frac{\partial \Phi}{\partial w}\right) = \begin{vmatrix} \frac{\partial \alpha}{\partial u} & \frac{\partial \alpha}{\partial v} & \frac{\partial \alpha}{\partial w} \\ \frac{\partial \beta}{\partial u} & \frac{\partial \beta}{\partial v} & \frac{\partial \beta}{\partial w} \\ \frac{\partial \gamma}{\partial u} & \frac{\partial \gamma}{\partial v} & \frac{\partial \gamma}{\partial w} \end{vmatrix}$$

Théorème V.3.3 Soient Δ , D deux ensembles bornés et cubables de \mathbb{R}^3 , $\Phi: \Delta \to D$ est un changement de variables de Δ sur D. On suppose que la fonction

$$(u, v, w) \longmapsto J_{\Phi}(u, v, w)$$

reste bornée sur Δ . Supposons que $f:D\to \mathbb{R}$ une application continue sur $D=\Phi(\Delta)$, alors la fonction

$$(u, v, w) \longmapsto f \circ \Phi(u, v, w)$$

est intégrable sur Δ et on a :

$$\iint \int \int_{D} f(x, y, z) dx dy dz = \iint \int \int_{\Delta} f(\alpha(u, v, w), \beta(u, v, w)) |J_{\Phi}(u, v, w)| du dv dw$$

Changement de variables, généralités

> Sommaire Concepts

Il s'agit là-encore de s'adapter à la géométrie de l'ensemble sur lequel on calcule l'intégrale triple considérée (lorsque cela entraı̂ne des calculs plus faciles...) : il y a une déformation des éléments de volume servant à découper l'ensemble D (cf. figures V.3.5 pour les coordonnées cylindriques), on utilise en quelque sorte des parallélépipèdes curvilignes.

Changement de variables, généralités

> Sommaire Concepts

Passage aux coordonnées cylindriques

Les formules de changement de variables sont dans ce cas :

$$\Phi: (\rho, \theta, z) \mapsto \begin{pmatrix} x(\rho, \theta, z) &= & \rho \cos \theta \\ y(\rho, \theta, z) &= & \rho \sin \theta \\ z(\rho, \theta, z) &= & z \end{pmatrix}$$

Le triplet (ρ, θ, z) constitue un système de coordonnées cylindriques. En choisissant $\rho > 0$ et $\theta \in [0, 2\pi[$ on définit une bijection de $]0, +\infty[\times[0, 2\pi[\times\mathbb{R} \text{ sur } \mathbb{R}^3\setminus(Oz)$ (éventuellement une bijection d'un sous-ensemble Δ sur un autre sous-ensemble D).

$$\forall (\rho, \theta, z) \in]0, +\infty[\times[0, 2\pi[\times \mathbb{R}$$

$$J_{\Phi}(\rho,\theta,z) = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \cos \theta & -\rho \sin \theta & 0 \\ \sin \theta & \rho \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho$$

Pour passer en coordonnées cylindriques dans une intégrale triple, on remplace

- D par le domaine des (θ, ρ, z) correspondant $(\Phi^{-1}(D) = \Delta)$;
- f(x, y, z) par $f(\rho \cos \theta, \rho \sin \theta, z)$;
- dxdydz par $\rho d\theta d\rho dz$.

Sommaire Concepts

FIG. V.3.5 – Élément de volume en coordonnées cylindriques

Exemple V.3.3 Calcul du volume d'un ellipsoïde de révolution par rapport à l'axe (Oz):

Soit l'ensemble D définit par

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + \frac{z^2}{c^2} \le 1 \right\}$$

où c est strictement positif; on a en fait

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 / x^2 + y^2 \le 1, \ -c\sqrt{1 - (x^2 + y^2)} \le z \le c\sqrt{1 - (x^2 + y^2)} \right\}$$

ce qui correspond, en coordonnées cylindriques, à l'ensemble

$$\Delta = \left\{ (\rho, \theta, z) / 0 < \rho \le 1, 0 \le \theta < 2\pi, -c\sqrt{1 - \rho^2} \le z \le c\sqrt{1 - \rho^2} \right\}$$

Passage aux coordonnées cylindriques

Sommaire Concepts

L'application du théorème conduit dans ce cas à :

$$\mathcal{V}(D) = \int \int \int_{D} dx dy dz = \int \int \int_{\Delta} |J_{\phi}(\rho, \theta, z)| d\rho d\theta dz$$
$$= \int \int \int_{\Delta} \rho d\rho d\theta dz$$

On peut alors, par exemple, appliquer la méthode des bâtonnets pour calculer cette intégrale :

$$\mathcal{V}(D) = \int \int_{[0;1]\times[0,2\pi]} \rho \left(\int_{-c\sqrt{1-\rho^2}}^{c\sqrt{1-\rho^2}} dz \right) d\rho d\theta$$

$$= \int_0^{2\pi} \left(\int_0^1 \rho \left(\int_{-c\sqrt{1-\rho^2}}^{c\sqrt{1-\rho^2}} dz \right) d\rho \right) d\theta$$

$$= \int_0^{2\pi} \left(\int_0^1 2c\rho\sqrt{1-\rho^2} d\rho \right) d\theta$$

$$= c \int_0^{2\pi} \left[-\frac{2}{3} (1-\rho^2)^{\frac{3}{2}} \right]_{\rho=0}^{\rho=1} d\theta$$

$$\mathcal{V}(D) = \frac{4\pi}{3} c$$

On retrouve au passage que, lorsque c=1, $\mathcal{V}(D)=\frac{4\pi}{3}$, ce qui est bien le volume d'une sphère de rayon 1.

Passage aux coordonnées cylindriques

> Sommaire Concepts

Passage aux coordonnées sphériques

Les formules de changement de variables :

$$\Phi: (\rho, \theta, \varphi) \mapsto \begin{pmatrix} x(\rho, \theta, \varphi) &= & \rho \cos \theta \cos \varphi \\ y(\rho, \theta, \varphi) &= & \rho \sin \theta \cos \varphi \\ z(\rho, \theta, \varphi) &= & \rho \sin \varphi \end{pmatrix}$$

Le triplet (ρ,θ,φ) constitue un système de coordonnées sphériques. En choisissant $\rho>0,$ $\theta\in[0,2\pi[$ et $\varphi\in[-\frac{\pi}{2},\frac{\pi}{2}]$ on définit une bijection de $]0,+\infty[\times[0,2\pi[\times[-\frac{\pi}{2},\frac{\pi}{2}]$ sur $\mathbb{R}^3\setminus\{(0;0;0)\}$ (éventuellement une bijection d'un sous-ensemble Δ sur un autre sous-ensemble D).

$$\forall (\rho,\theta,\varphi) \in]0,+\infty[\times[0,2\pi[\times[-\frac{\pi}{2},\frac{\pi}{2}]$$

$$J_{\Phi}(\rho,\theta,\varphi) = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \varphi} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos\theta\cos\varphi & -\rho\sin\theta\cos\varphi & -\rho\cos\theta\sin\varphi \\ \sin\theta\cos\varphi & \rho\cos\theta\cos\varphi & -\rho\sin\theta\sin\varphi \\ \sin\theta\cos\varphi & \rho\cos\varphi \end{vmatrix} = \rho^2\cos\varphi$$

Pour passer en coordonnées sphériques dans une intégrale triple, on remplace

- D par le domaine Δ des (θ, φ, ρ) correspondant $(\Phi^{-1}(D) = \Delta)$;
- $f(x, y, z) \operatorname{par} f(\rho \cos \theta \cos \varphi, \rho \sin \theta \cos \varphi, \rho \sin \varphi);$
- $dxdydz \operatorname{par} \rho^2 |\cos \varphi| d\theta d\varphi d\rho$ (Si $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, alors $\cos \varphi \ge 0$ et $|\cos \varphi| = \cos \varphi$).

Sommaire Concepts

Exemples
Exercices
Documents

$$I = \int \int \int_{D} \frac{1}{\sqrt{9 - (x^2 + y^2 + z^2)^{\frac{3}{2}}}} dx dy dz$$

où l'ensemble D est la boule creuse définie par :

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 / \frac{1}{4} \le x^2 + y^2 + z^2 \le 4 \right\}$$

ce qui correspond en coordonnées sphériques à l'ensemble

$$\Delta = \left\{ (\rho, \theta, \phi) / \frac{1}{2} \le \rho \le 2, 0 \le \theta < 2\pi, -\frac{\pi}{2} \le \phi \le \frac{\pi}{2} \right\}$$

L'application de la formule de changement de variables conduit à :

$$I = \int \int \int_{\Delta} \frac{|\rho^2 \cos \phi|}{\sqrt{9 - \rho^3}} d\rho d\theta d\phi$$

$$= \int_{0}^{2\pi} d\theta \cdot \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \phi d\phi \cdot \int_{\frac{1}{2}}^{2} \frac{\rho^2}{\sqrt{9 - \rho^3}} d\rho$$

$$= 4\pi \left[-\frac{2}{3} (9 - \rho^3)^{\frac{1}{2}} \right]_{\frac{1}{2}}^{2}$$

$$I = \frac{8\pi}{3} \left(\sqrt{\frac{71}{8}} - 1 \right)$$

Passage aux coordonnées sphériques

Sommaire Concepts

V.4 Des applications

Détermination du cer	nt	re	d	e	gı	ra	vi	té	C	ľτ	ın	S	ol	id	le						3
Moments d'inertie .											•					•			•		39
Théorème de Guldin																•					4:

Sommaire Concepts

Détermination du centre de gravité d'un solide

Exercices:

Exercice A.1.3

On considère un objet qu'on assimile à un ensemble cubable D de \mathbb{R}^3 .

Définition V.4.1 On appelle masse volumique (ou densité) au point $M \in D$ le réel $\mu(M) = \mu(x,y,z)$ qui représente la masse par unité de volume de cet objet et qui peut dépendre de la position de M (et aussi du matériau avec lequel est fait l'objet).

Définition V.4.2 On appelle **masse totale** du solide D de \mathbb{R}^3 de masse volumique μ le nombre réel **positif** m défini par l'intégrale triple :

$$m = \int \int \int_{D} \mu(M) dx dy dz$$

où M décrit D.

Définition V.4.3 On appelle **centre d'inertie** (ou centre de gravité) du solide D de \mathbb{R}^3 de masse volumique μ le point G dont les coordonnées sont données par

Sommaire Concepts

Exemples
Exercices
Documents

les intégrales triples :

$$x_G = \frac{1}{m} \int \int \int_D \mu(M) x dx dy dz$$

$$y_G = \frac{1}{m} \int \int \int_D \mu(M) y dx dy dz$$

$$z_G = \frac{1}{m} \int \int \int_D \mu(M) z dx dy dz$$

ce qui vectoriellement s'écrit :

$$\begin{array}{ll} \overrightarrow{OG} & = & x_G \overrightarrow{\imath} + y_G \overrightarrow{\jmath} + z_G \overrightarrow{k} \\ & = & \frac{1}{m} \left(\int \int \int_D \mu(M) x dx dy dz \right) \overrightarrow{\imath} + \frac{1}{m} \left(\int \int \int_D \mu(M) y dx dy dz \right) \overrightarrow{\jmath} \\ & + \frac{1}{m} \left(\int \int \int_D \mu(M) z dx dy dz \right) \overrightarrow{k} \\ \overrightarrow{OG} & = & \frac{1}{m} \int \int \int_D \mu(M) \overrightarrow{OM} dx dy dz \end{array}$$

Détermination du centre de gravité d'un solide

Sommaire Concepts

Moments d'inertie

Exercices:

Exercice A.1.4

Avec les mêmes notations que précédemment :

Définition V.4.4 Le moment d'inertie du solide D par rapport à la droite Δ est défini par :

$$\mathcal{I}_{\Delta} = \int \int \int_{D} [d(M, \Delta)]^{2} \mu(x, y, z) dx dy dz$$

où $d(M,\Delta)$ représente la distance du point M(x,y,z) à la droite Δ ,i.e. $d(M,\Delta) = \|\overline{MH}\|$ où H est le projeté orthogonal du point M sur la droite Δ .

Exemple V.4.1 Calcul du moment d'inertie d'un cylindre de révolution homogène, par rapport à son axe de révolution.

Soit le cylindre occupant l'ensemble $D = \{(x, y, z)/x^2 + y^2 \le a^2, \ 0 \le z \le h\}$ avec a > 0, h > 0.

$$\mathcal{I}_{Oz} = \int \int \int_{D} [d(M, (Oz))]^{2} \mu dx dy dz$$

Sommaire Concepts

Exemples Exercices Documents

avec μ constante.

Moments d'inertie

$$\mathcal{I}_{Oz} = \mu \int \int \int_{D} (x^2 + y^2) dx dy dz$$
$$= \mu \int \int \int_{\Delta} \rho^3 d\rho d\theta dz$$

en passant en coordonnées cylindriques avec $\Delta = \{(\rho, \theta, z)/0 \le \rho \le a, \ 0 \le \theta \le 2\pi, \ 0 \le z \le h\}$

$$\mathcal{I}_{Oz} = \mu.2\pi.h. \int_0^a \rho^3 d\rho$$
$$= \frac{1}{2}\mu\pi ha^4$$
$$\mathcal{I}_{Oz} = \frac{1}{2}ma^2$$

où $m = \mu \pi h a^2$ est la masse du cylindre.

Définition V.4.5 Le moment d'inertie du solide D par rapport au point A est défini par :

$$\mathcal{I}_A = \int \int \int_D [d(M,A)]^2 \mu(x,y,z) dx dy dz$$

$$\mathcal{I}_A = \int \int \int_D \left((x - x_A)^2 + (y - y_A)^2 + (z - z_A)^2 \right) \mu(x, y, z) dx dy dz$$

Sommaire Concepts

Moments d'inertie

Définition V.4.6 Le moment d'inertie du solide D par rapport au plan $\mathcal P$ est défini par :

$$\mathcal{I}_{\mathcal{P}} = \int \int \int_{D} [d(M, \mathcal{P})]^{2} \mu(x, y, z) dx dy dz$$

où $d(M,\mathcal{P})$ représente la distance du point M(x,y,z) au plan \mathcal{P} ,i.e. $d(M,\mathcal{P}) = \|\overline{MH}\|$ où H est le projeté orthogonal du point M sur le plan \mathcal{P} .

On rappelle que les distances évoquées ci-dessus peuvent être calculées simplement en établissant que :

$$d(M, \Delta) = \frac{\|\overline{M_0M} \wedge \overline{w}\|}{\|\overline{w}\|}$$

où M_0 est un point de Δ et \overrightarrow{u} est un vecteur directeur de Δ ;

$$d(M, \mathcal{P}) = \frac{\|\overline{M_0M} \cdot \overline{w}\|}{\|\overline{w}\|}$$

où M_0 est un point de \mathcal{P} et \overrightarrow{u} un vecteur normal à \mathcal{P} .

Sommaire Concepts

Théorème de Guldin

Exercices:

Exercice A.1.5

On considère un solide de révolution par rapport à l'axe (Oz): on peut voir ce solide $\mathcal S$ comme ce qu'on obtient en faisant tourner une plaque D autour de (Oz) (cf. figure V.4.6).

FIG. V.4.6 -

Si D est un disque, on obtient un tore.

Sommaire Concepts

Exemples
Exercices
Documents

On voudrait calculer $\mathcal{V}(\mathcal{S})$:

$$\mathcal{V}(\mathcal{S}) = \int \int \int_{\mathcal{S}} dx dy dz = \int \int \int_{\Delta} \rho d\rho d\theta dz$$

en passant en coordonnées cylindriques, avec :

$$\Delta = \{(\rho,\theta,z)/a \leq z \leq b, 0 \leq \theta < 2\pi, \rho_1(z) \leq \rho \leq \rho_2(z)\}$$

$$\mathcal{V}(\mathcal{S}) = \int_0^{2\pi} \left(\int_a^b \left(\int_{\rho_1(z)}^{\rho_2(z)} \rho d\rho \right) dz \right) d\theta = 2\pi I$$

en posant:

$$I = \int_{a}^{b} \left(\int_{\rho_{1}(z)}^{\rho_{2}(z)} \rho d\rho \right) dz$$

Si on regarde, dans le plan (xOz) par exemple, la plaque D comme un objet homogène de masse surfacique $\mu=1$, l'abscisse x_G de son centre de gravité est donnée par $(m=\mu\mathcal{A}(D)=\mathcal{A}(D))$ est alors la masse de la plaque) :

$$x_G = \frac{1}{\mathcal{A}(D)} \int_a^b \left(\int_{\rho_1(z)}^{\rho_2(z)} x dx \right) dz = \frac{1}{\mathcal{A}(D)} \int_a^b \left(\int_{\rho_1(z)}^{\rho_2(z)} \rho d\rho \right) dz$$

Théorème de Guldin

Sommaire Concepts

ce qui permet d'écrire:

$$I = mx_G = x_G \mathcal{A}(D)$$

ďoù

$$\mathcal{V}(\mathcal{S}) = 2\pi I = 2\pi x_G \mathcal{A}(D)$$

En résumé, le volume engendré par la rotation de D autour de l'axe (Oz) est le produit du trajet parcouru par le centre de gravité de D (cercle de rayon x_G) par l'aire de D.

Sommaire Concepts

Annexe A Exercices

A.1	Exercices de cours									•							46	
A.2	Exercices de TD .											•					52	

Sommaire Concepts

A.1 Exercices de cours

A.1.1	Chap5-Exercice1				•								47
A.1.2	Chap5-Exercice2												48
A.1.3	Chap5-Exercice3												49
A.1.4	Chap5-Exercice4												50
A.1.5	Chap5-Exercice5												51

Sommaire Concepts

Exemples Exercices Documents

Exercice A.1.1 Chap5-Exercice1

Démontrer la proposition V.2.1 dans le cas d'un parallélépipè de $D=[a,b]\times [c,d]\times [\gamma,\delta].$

Solution

Sommaire Concepts

Exercice A.1.2 Chap5-Exercice2

En s'inspirant de la géométrie de $\mathcal{E} \subset \mathbb{R}^3$, ensemble limité par l'ellipsoïde d'équation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad (a > 0, b > 0, c > 0)$$

trouver un changement de variables qui permette un calcul facile du volume $\mathcal{V}(\mathcal{E}).$

Solution

Sommaire Concepts

Exercice A.1.3 Chap5-Exercice3

Soit B une demi-boule homogène (de masse volumique constante égale μ) définie par

$$B = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 \le R^2, z \ge 0\}$$

Calculer les coordonnées de son centre de gravité G.

Solution

Sommaire Concepts

Exercice A.1.4 Chap5-Exercice4

Reprendre la demi-boule de l'exercice A.1.3 et calculer :

- 1. son moment d'inertie par rapport à l'axe (Oz);
- 2. son moment d'inertie par rapport à O.

Solution

Sommaire Concepts

Exercice A.1.5 Chap5-Exercice5

Calculer le volume d'un solide S engendré par la rotation d'une plaque de forme circulaire de rayon R autour de l'axe (Oz).

Solution

Sommaire Concepts

A.2 Exercices de TD

A.2.1	Fubini	53
A.2.2	Fubini, coordonnées cylindriques	54
A.2.3	coordonnées sphériques	55
A.2.4	Fubini, des bâtons et des tranches	56
A.2.5	Fubini, des bâtons et des tranches	57
A.2.6	Fubini	58
A.2.7	intersection sphère-cylindre	59
A.2.8	intersection sphère-cône	60
A.2.9	variables sphériques	61
A.2.10	ellipsoïde/8	62

Sommaire Concepts

Exercice A.2.1 Fubini

On considère le domaine de \mathbb{R}^3 défini par

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3; \quad x \ge 0, \ z \ge 0, \ x - 2y + 2z \le 0, \ y \le 1\}$$

- 1. Faire une figure et exprimer de plusieurs façons $\int \int \int_{\mathcal{V}} f(x,y,z) dx dy dz$ à l'aide d'intégrales simples.
- 2. Calculer les coordonnées du centre de gravité de $\mathcal V$ qu'on supposera homogène pour l'occasion.

Sommaire Concepts

Exercice A.2.2 Fubini, coordonnées cylindriques

On considère le domaine de \mathbb{R}^3 défini par

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3; \quad 0 \le z \le 1 - x^2 - y^2\}$$

- 1. Faire une figure et exprimer de plusieurs façons $\int \int \int_{\mathcal{V}} f(x,y,z) dx dy dz$ à l'aide d'intégrales simples.
- 2. Calculer le volume de \mathcal{V} en utilisant l'une des expressions obtenues.
- 3. Calculer le volume de $\mathcal V$ en utilisant un changement de variables en coordonnées cylindriques.

Sommaire Concepts

Exercice A.2.3 coordonnées sphériques

On considère le domaine de \mathbb{R}^3 défini par

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3; (x-1)^2 + (y-3)^2 + (z-2)^2 \le 4\}$$

- 1. Faire une figure et exprimer $\int \int \int_{\mathcal{V}} f(x,y,z) dx dy dz$ à l'aide des coordonnées sphériques.
- 2. Calculer le volume de \mathcal{V} .

Sommaire Concepts

Exercice A.2.4 Fubini, des bâtons et des tranches

On considère le domaine de \mathbb{R}^3 défini par

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3; \quad z + x^2 + y^2 \le 4, \ z + 2y \ge 1\}$$

- 1. Faire une figure.
- 2. (a) Quelle est la projection de V sur le plan z = 0?
 - (b) Quelle est la projection de V sur le plan x = 0?
 - (c) Quelle est l'intersection de V avec le plan y = b?
- 3. En déduire trois façons de calculer $\int \int \int_{\mathcal{V}} f(x,y,z) dx dy dz$.
- 4. Calculer le volume de \mathcal{V} .

Sommaire Concepts

Exercice A.2.5 Fubini, des bâtons et des tranches

On considère le domaine de \mathbb{R}^3 défini par

$$V = \{(x, y, z) \in \mathbb{R}^3; \quad x^2 + y^2 \le z \le 1 - 2y\}$$

- 1. Faire une figure.
- 2. (a) Quelle est la projection de V sur le plan z = 0?
 - (b) Quelle est la projection de V sur le plan x = 0?
 - (c) Quelle est l'intersection de \mathcal{V} avec le plan y = b?
 - (d) Quelle est l'intersection de V avec le plan z = c?
- 3. En déduire quatre façons de calculer $\int \int \int_{\mathcal{V}} f(x,y,z) dx dy dz$.
- 4. Calculer le volume de \mathcal{V} .

Sommaire Concepts

Exercice A.2.6 Fubini

On considère le domaine de \mathbb{R}^3 défini par

$$\mathcal{V} = \left\{ (x, y, z) \in \mathbb{R}^3; \quad x \ge 0, \ y \ge 0, \ z \ge 0, \ x + y \ge 2, \ 2y + x \le 6, \ y^2 + z^2 \le 4 \right\}$$

- 1. Faire une figure et exprimer $\int \int \int_{\mathcal{V}} f(x,y,z) dx dy dz$ à l'aide d'intégrales simples.
- 2. Calculer $\int \int \int_{\mathcal{V}} f(x,y,z) dx dy dz$ lorsque f(x,y,z) = z.

Sommaire Concepts

Exercice A.2.7 intersection sphère-cylindre

On considère le domaine de \mathbb{R}^3 défini par

$$\mathcal{V} = \left\{ (x, y, z) \in \mathbb{R}^3; \quad x^2 + y^2 + z^2 \le R^2, \ x^2 + (y - \frac{R}{2})^2 \le \frac{R^2}{4} \right\}$$

Faire une figure et calculer le volume de V.

Sommaire Concepts

Exercice A.2.8 intersection sphère-cône

Calculer le volume de l'intersection de la sphère d'équation $x^2+y^2+z^2 \le R^2$ et du cône d'équation $x^2+y^2 \le z^2$.

Sommaire Concepts

Exercice A.2.9 variables sphériques

On considère le domaine de \mathbb{R}^3 défini par

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3; \quad a^2 \le x^2 + y^2 + z^2 \le b^2 \}$$

Calculer l'intégrale triple $\int \int \int_{\mathcal{V}} \frac{1}{\sqrt{x^2+y^2+z^2}} dx dy dz$.

Sommaire Concepts

Exercice A.2.10 ellipsoïde/8

On considère le domaine de \mathbb{R}^3 défini par

$$\mathcal{V} = \left\{ (x, y, z) \in \mathbb{R}^3; \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}$$

En supposant que la masse volumique vaut 1, calculer la masse et le moment d'inertie de V par rapport à l'origine.

Sommaire Concepts

Index des concepts

Le gras indique un grain où le concept est défini; l'italique indique un renvoi à un exercice ou un exemple, le gras italique à un document, et le romain à un grain où le concept est mentionné.	Ensemble cubable	7	
C	integrales sur un paranelepipeue 1	J	
Centre de gravité		1	Sommaire Concepts
Coordonnées sphériques (changement de variables en)	Méthode des bâtonnets	2	Exemples Exercices Documents
6	3		

_	_
	_
	_

Positivité-Comparaison de deux intégrales 12

\mathbf{T}

\mathbf{V}

Volume......10

Sommaire Concepts

Dans ce cas là, on a, pour tout n entier non nul :

$$s_n(f) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1\mathcal{V}(P_{i,j,k})$$

et

$$S_n(f) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1\mathcal{V}(P_{i,j,k})$$

avec
$$\mathcal{V}\left(P_{i,j,k}
ight) = rac{(b-a)(d-c)(\delta-\gamma)}{n^3} \quad orall (i,j,k)$$
 d'où

$$s_n(f) = S_n(f) = n^3 \frac{(b-a)(d-c)(\delta-\gamma)}{n^3} = (b-a)(d-c)(\delta-\gamma)$$

On peut s'inspirer des coordonnées sphériques, puisque, pour a=b=c, l'ellipsoïde considéré est une sphère.

Utiliser le changement de variables :

$$\begin{cases} x = a\rho\cos\theta\cos\phi \\ y = b\rho\sin\theta\cos\phi & (\rho,\theta,\phi) \in \mathbb{R}_*^+ \times [0;2\pi[\times[-\frac{\pi}{2};\frac{\pi}{2}]] \\ z = c\rho\sin\phi \end{cases}$$

Le jacobien de ce changement est $abc\rho^2\cos\phi$ et on obtient

$$\mathcal{V}(\mathcal{E}) = \frac{4}{3}\pi abc$$

Pour des raisons de symétrie, on doit trouver $x_G = y_G = 0$ et utiliser, bien sûr, les coordonnées sphériques pour calculer z_G .

La masse de la demi-boule est $m = \frac{2}{3}\pi R^3 \mu$ et

$$z_G = \frac{\mu}{m} \int \int \int_{[0;R] \times [0;2\pi] \times \left[-\frac{\pi}{2};\frac{\pi}{2}\right]} \rho \sin \phi \rho^2 \cos \phi d\rho d\theta d\phi = \frac{3R}{8}$$

En reprenant les notations de l'exercice A.1.3 , on obtient $\frac{2}{5}mR^2$ pour le moment par rapport à l'axe Oz et $\frac{3}{5}mR^2$ pour le moment par rapport au point O.

 $\mathcal{V}(\mathcal{S}) = 2\pi^2 dR^2$ où d est la distance du centre de la plaque à l'axe Oz (en supposant d > R).