Contents

1		1	3
	1.1	Fields	3
	1.2	Matrices	4
	1.3	Row-Reduced Echelon	6
2	Vec	tor Spaces	7
	2.1	Subspaces	8
	2.2	Span	8
	2.3	Basis and Dimension	Ć

Chapter 1

Linear Equation

1.1 Fields

The set \mathbb{F} together with two operation +, addition, and ·, multiplication, that satisfy the follwings is called a **field**. For all $x, y, z \in \mathbb{F}$

1. Addition and multiplication are *commutative*

$$x + y = y + x \qquad \qquad x \cdot y = y \cdot x$$

2. Addition and multiplication are associative

$$x + (y + z) = (x + y) + z \qquad x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

3. Multiplication distributes over addition

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

- 4. There exists an element 0, zero, in \mathbb{F} such that x + 0 = x.
- 5. There exists an element 1 , one, in \mathbb{F} such that $x \cdot 1 = x$.
- 6. For each element $x \in \mathbb{F}$ there corresponds a unique element $y \in \mathbb{F}$ such that x + y = 0. y is commonly denoted as -x.
- 7. For each non-zero element $x \in \mathbb{F}$ there corresponds a unique element $y \in \mathbb{F}$ such that $x \cdot y = 1$. y is commonly denoted as x^{-1} or $\frac{1}{x}$.
- 8. \mathbb{F} is closed under addition and multiplication.

$$x + y \in \mathbb{F}$$
 $x \cdot y \in \mathbb{F}$

Definition (Characteristics): Let n be the least number such that

$$\underbrace{1+1+\ldots 1}_{n}=0\tag{1.1}$$

then n is the **characteristics** of \mathbb{F} . If for a field there exists no such n, then its characteristics is 0.

Theorem 1.1. If \mathbb{F} is a finite field, then the number of elements of \mathbb{F} must be in form of p^k where p is a prime number and $k \in \mathbb{N}$. Also fro every number in such form there exists a unique \mathbb{F} with p^k elements.

If \mathbb{F} is a field then the set of all polynomials with the coefficients in \mathbb{F} is denoted by $\mathbb{F}[x]$, that is

$$\mathbb{F}[x] = \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in \mathbb{F} \,\forall i, \ n \in \mathbb{N} \right\}$$

Cleary $\mathbb{F}[x]$ does not have a multiplicative inverse for some of its non-zero elements. Define $\mathbb{F}(x)$ as follow

$$\mathbb{F}(x) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in \mathbb{F}[x], \ g(x) \neq 0 \right\}$$

which is a field. Also, note that $\mathbb{F} \subset \mathbb{F}[x] \subset \mathbb{F}(x)$.

1.2 Matrices

Let us denote the set of all metrices of size $m \times n$ with elements in \mathbb{F} by $\mathcal{M}_{m \times n}(\mathbb{F})$ and if m = n then it is equivalently denoted as $\mathcal{M}_n(\mathbb{F})$.

Matrix $A \in \mathcal{M}_n(\mathbb{F})$ is said to be **invertiable** or **non-singular** if there exists a matrix $B \in \mathcal{M}_n(\mathbb{F})$ such that $AB = BA = \mathbb{I}_n$.

Consider the following system of linear equations:

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + a_{1n}x_n = y_1 \\
 a_{21}x_1 + a_{22}x_2 + a_{2n}x_n = y_2 \\
 \vdots \\
 a_{m1}x_1 + a_{n2}x_2 + a_{mn}x_n = y_m
\end{cases}$$
(1.2)

with all $a_{ij} \in \mathbb{F}$. Then if $c_k \in F$, k = 1, ..., n:

$$(c_1a_{11} + c_2a_{21} + \dots + c_ma_{m1})x_1 + \dots + (c_1a_{1n} + c_2a_{2n} + \dots + c_ma_{mn})x_n = c_1y_1 + \dots + c_my_m$$

is **linear combination** of the Equation (1.2).

Definition (Equaivalent Systems): Two systems are considered equivalent if each equation in one system is a linear combination of the other system.

Proposition 1.2. Equivalent systems of linear equations have exactly the same solution.

The linear system, Equation (1.2), can be represent in form of matrices AX = Y where $A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \\ a_{n1} & \dots & a_{mn} \end{bmatrix} \in \mathcal{M}_{m \times n}(\mathbb{F})$ and $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$ then the solutions of Equation (1.2) are exactly the same as AX = Y.

1.2 Matrices 5

1.2.1 Elementary Row Operations

Consider a matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$, we define three elementary row operations on A:

- 1. multiplication of one row by a non-zero scalar c, denoted by $e_r(c)$.
- 2. replacement of $r_{\rm th}$ row of A by row r plus c times row $s \neq r$ that is $r_{\rm new} = r + cs$ and it is denoted by $e_{rs}(c)$
- 3. Interchange two rows e_{rs} .

Theorem 1.3. To each elementary row operation e there corresponds an elementary row operation e^{-1} , of the same type as e, such that $e^{-1}(e(A)) = e(e^{-1}(A)) = A$ for any A.

Proof. It is easily verified by hand.

Definition (Row-equivalent): If A and B are $m \times n$ matrices over \mathbb{F} , we say that B is **row-equivalent** to A if B can be obtained from A by a finite sequence of elementary row operation.

Theorem 1.4. If A and B are row equivalent, the homogenous systems of linear equations AX = 0 and BX = 0 have exactly the same solution.

Definition (Row-reduced): A matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ is **row-reduced** if it satisfies

- 1. the first non-zero entry in each non-zero rwo of A is equal to 1.
- 2. each column of A which contains the leading non-zero entry of some row has all its other entries 0.

Example 1.1. for example the following matrices are row-reduced

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Theorem 1.5. Every $m \times n$ matrix over \mathbb{F} is row-equivalent to a row-reduced matrix. However, note that, row-reduced matrices are not necessarily unique.

Each of the three elementary row operations have an equivalent $m \times n$ matrix such that, if it is multiplied from left to A, it is equivalent to that operation. For example consider the row operations on a 4×3 matrix A.

$$e_2(c) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad e_{14}(c) = \begin{bmatrix} 1 & 0 & 0 & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad e_{14} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Similarly, one can define column operations as well, however, when considering their equivalent matrix, it must be multiplied from right to A. Furthermore, row-equivalence is an equivalence relationship, that is

Definition:

Reflexive $A \sim A$.

Symmetric
$$A \sim B \implies A = p_1 p_2 \dots p_k B \implies B = p_1^{-1} p_2^{-1} \dots p_k^{-1} A \implies B \sim A$$
.
Transivite $A \sim B \implies A = p_1 p_2 \dots p_k B, \ B \sim C \implies B = q_1 q_2 \dots q_m C$ and therefore $A = p_1 p_2 \dots p_k q_1 \dots q_m C \implies A \sim C$

1.3 Row-Reduced Echelon

A matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ is called a **row-reduced echelon** matrix if:

- 1. A is row reduced.
- 2. every row of A which has all its entries 0 occurs below every rwo which has a non-zero entry.
- 3. if rows $1, \ldots, r$ are the non-zero row of A, and if the leading non-zero entry of row i occurs in column k_i , then $k_1 < k_2 < \cdots < k_r$.

Theorem 1.6. Every $m \times n$ matrix A is row-equivalent to a row-reduced echelon matrix.

Definition (Elementary matrix): An $m \times n$ matrix is said to be an **elementary matrix** if it can be obtained from the from \mathbb{I}_m matrix by means of a single elementary row operation.

Chapter 2

Vector Spaces

A vector space, also called linear space, consist of the followings:

- 1. a field \mathbb{F} of scalars.
- 2. a set V of vectors.
- 3. a vector addition +, with the following properties:
 - (a) V is closed under addition.
 - (b) addition is commutative.
 - (c) addition is associative.
 - (d) addition has a unique identity element 0.
 - (e) for each vector $\alpha \in V$, $\exists \beta \in V$ s.t. a + b = 0.
- 4. a scalar multiplication with the following properties:
 - (a) V is closed under scalar multiplication.
 - (b) $(c_1c_2)\alpha = c_1(c_2\alpha)$.
 - (c) $c(\alpha + \beta) = c\alpha + c\beta$.
 - (d) $(c_1 + c_2)\alpha = c_1\alpha + c_2\alpha$
 - (e) scalar multiplication has a unique identity element 1.

Example 2.1. $V = \mathbb{R}$ and $\mathbb{F} = \mathbb{R}$ is a vector space. Furthermore, $V = \mathbb{R}^n$ over $\mathbb{F} = \mathbb{R}$ is a vector space with the scalar multiplication $c(x_1, x_2, \dots, x_n) = (cx_1, cx_2, \dots, cx_n)$.

Example 2.2. $V = \mathbb{R}$ and $\mathbb{F} = \mathbb{Z}$ is not a vector space as \mathbb{Z} is not a field.

Definition: A vector $\beta \in V$ is said to be a **linear combination** of the vectors $\alpha_1, \alpha_2, \dots, \alpha_n$ if there exists scalars $c_1, c_2, \dots, c_n \in \mathbb{F}$ such that:

$$\beta = c_1 \alpha_1 + c_2 \alpha_2 + \dots + c_n \alpha_n = \sum_{i=1}^n c_i \alpha_i$$

2.1 Subspaces

Let V be a vector space over field \mathbb{F} . A susbspace of V is a subset W of V which is itself a vector space over \mathbb{F} with the operations of vector addition and scalar multiplication on V.

Theorem 2.1. A non-empty subset W of V is a subspace of V if and only if for each pair of vectors $\alpha, \beta \in W$ and each scalar $c \in \mathbb{F}$ the vector $c\alpha + \beta \in W$.

Proof. Necessity: Suppose W is a non-empty subset of V with the above property. Since W is not empty then there exists a vector $\alpha \in W$ and therefore, $(-1)\alpha + \alpha = 0 \in W$. For each $c \in \mathbb{F}$, $c\alpha + 0 = c\alpha \in W$. Finally, if $\beta \in W$ as well then $1\alpha + \beta \in W$. Therefore, W satisfies all the conditions and is a linear subspace of V.

Sufficiency: If W is a subspace of V and $\alpha, \beta \in W$ with $c \in \mathbb{F}$ then $c\alpha + \beta \in W$.

Corollary 2.2. Let V be a vector space over \mathbb{F} . The intersection of any collection subspaces of V is a subspace of V.

Theorem 2.3. Let V be a vector space and W_1 and W_2 be two subspaces of V such that $W_1 \cap W_2$ is a subspace of V. Then $W_1 \subset W_2$ or $W_2 \subset W_1$.

Proof. For the sake of contradiction assume neither $W_1 \subset W_2$ nor $W_2 \subset W_1$. Then, there are vectors α_1 and α_2 such that $\alpha_1 \in W_1$ but $\alpha_2 \notin W_2$ and similarly $\alpha_2 \in W_2$ but $\alpha_2 \notin W_1$. Since $\alpha_1 + \alpha_2 \in W_1 \cup W_2$, then $\alpha_1 + \alpha_2 \in W_1$ or $\alpha_1 + \alpha_2 \in W_2$ which is a contradiction.

Theorem 2.4. Let V be a vector space over the inifinite field \mathbb{F} . If W_1, W_2, \ldots, W_n are subspaces of V and $V \subset \bigcup W_i$, then there exists k such that $V = W_k$.

Proof. too long, do it urself bitch.

2.2 Span

Definition: Let S be a set of vector in a vector space V. The subspace spanned by S is defined to be the intersection of all subspaces of V which contains S and is denoted by span S. That is, span $S = \bigcap_{S \subset W} W$. By Corollary 2.2, span S is a linear subspace. Obviously, span S is the smallest subspace containing S because if there were $S \subset K \subset \operatorname{span} S$ since by definition $\operatorname{span} S = \cap W \subset K$, then $K = \operatorname{span} S$.

Example 2.3. Let $S = \{0\}$ then span $S = \bigcap_{\{0\} \subset W} W = \{0\}$. Moreover:

$$\operatorname{span} \emptyset = \{0\} \qquad \qquad \operatorname{span} V = V$$

Theorem 2.5. Let V is a vector space and $S \neq \emptyset$

$$\operatorname{span} S = \{c_1 \alpha_1 + \dots + c_n \alpha_n \mid \alpha_i \in S, \ c_i \in \mathbb{F}, \ n \in \mathfrak{p}\}\$$

Proof. Let L be the set describe above. Clearly, $S \subset L$ and L is a subsapce of V hence span $S \subset L$. Since $S \subset \operatorname{span} S$ and span S is closed under addition and scalar multiplication then $c_1\alpha_1 + \cdots + c_n\alpha_n \in \operatorname{span} S$ hence $L \subset \operatorname{span} S$.

Definition: If S_1, S_2, \ldots, S_k are subsets of a vector space V, the set of all sums

$$\alpha_1 + \alpha_2 + \cdots + \alpha_k$$

where $\alpha_i \in S_i$ is called the **sum** of subsets S_1, S_2, \ldots, S_k and is denoted by

$$S_1 + \dots + S_k = \{\alpha_1 + \alpha_2 + \dots + \alpha_k \mid \alpha_i \in S_i\}$$

Theorem 2.6. Let W_1, W_2, \ldots, W_k be subspaces of vector space V. Then

$$W = W_1 + W_2 + \dots + W_k$$

is a subspaces of V. Moerover, $W = \operatorname{span} \cup W_i$.

Proof. Let $\alpha \in \operatorname{span} \cup W_i$ and $\beta \in W$. By Theorem 2.5, $\alpha = \alpha_1 + \dots + \alpha_n$ where $\alpha_i \in \cup W_i$. Define $\alpha_1' = \sum_{\alpha_i \in W_1} \alpha_i$, $\alpha_2' = \sum_{\alpha_i \in W_2 \setminus W_1} \alpha_i$ and so on. Clearly, $\alpha = \alpha_1' + \alpha_2' + \dots + \alpha_k'$ thus $\alpha \in W$ and $\operatorname{span} \cup W_i \subset W$. By definition, $\beta = \beta_1 + \dots + \beta_k$ where $\beta_i \in W_i$ and therefore, $\beta_i \in \cap W_i \subset \operatorname{span} \cup W_i$. Since $\operatorname{span} \cup W_i$ is a subspace of V then $\beta \in \operatorname{span} \cup W_i$ which implies $W = \operatorname{span} \cup W_i$.

2.3 Basis and Dimension

Definition (Linearly dependent): A set S of vector space V is said to be **linearly dependent**if there are $c_1, \ldots, c_n \in \mathbb{F}$ where at least one of the c_i is non-zero and $\alpha_1, \ldots, \alpha_n$ such that

$$c_1\alpha_1 + \dots + c_n\alpha_n = 0$$

Furthermore, S is **linearly independent** if it is not linearly dependent. That is, if $c_1\alpha_1 + \cdots + c_n\alpha_n = 0$ then $c_i = 0$ for all $i = 1, \dots, n$.

Corollary 2.7. If S is linearly dependent and $S \subset S'$ then S' is linearly dependent as well. If S is linearly independent and $S' \subset S$ then S' is linearly independent.

Definition (Basis): Let V be a vector space over field \mathbb{F} . $S \subset V$ is a **basis** of V if it is linearly independent and spans V. Additionally, V is finite dimensional if V has a finite basis.

Theorem 2.8. Let V be a vector space which is spanned by a β_1, \ldots, β_m . Then any independent subset of V contains at most m elements.

Proof. needs matrices maybe.

Corollary 2.9. If V is a finite dimensional vector space then any two bases of V have the same finite number of elements.

Proof. Let α, β be two bases of V. By Theorem 2.8, $|\alpha| \leq |\beta|$ and $|\beta| \leq |\alpha|$ therefore they must have the same number of elements. Since, there exists a finite basis γ then α and β must be finite as well.

Definition (Dimension): Dimension of a finite dimensional vector space V, denoted by $\dim V$ is the number of elements of one of its basis.

Example 2.4. dim $\{0\} = 0$ since span $\emptyset = \{0\}$ and therefore dim $\{0\} = |\emptyset| = 0$.

Corollary 2.10. Let V be a finite dimensional vector space and let $n = \dim V$. Then

- 1. any subset of V whichi has more then n elements is linearly dependent.
- 2. no subset of V which contains fewer than n vectors can span V.

Proof. 1. It is an immediate consequence of Theorem 2.8.

2. If there was a set $\beta = \{\beta_1, \dots, \beta_m\}$ with m < n such that $V = \operatorname{span} \beta$ then there must be a basis β' such that $|\beta'| \le m$. Which contradicts Corollary 2.9

Lemma 2.11. Let S be a linearly independent subset of vector space V. Suppose β is a vector in V not spanned by S. Then the set $S \cap \{\beta\}$ is linearly independent.

Proof. Suppose $\alpha_1, \ldots, \alpha_m$ are distinct vectors in S and that

$$c_1\alpha_1 + \dots + c_m\alpha_m + b\beta = 0 \tag{2.1}$$

then if $b \neq 0$

$$\beta = -\frac{1}{b}(c_1\alpha_1 + \dots + c_m\alpha_m)$$

and thus $\beta \in \text{span } S$ which is a contradiction.

Theorem 2.12. If W is a subspace of a finite dimensional vector space V then every linearly independent subset of W is finite and part of a basis of V.

Proof. Clearly, since $W \subset V$ then every linearly independent subset S of W must be finite and $|S| \leq \dim V$. Let $S = \{\alpha_1, \alpha_m\} \subset W$ be linearly independent. If $\operatorname{span} S = V$ we're done otherwise, there is $\alpha_{m+1} \in V$ such that $\alpha_{m+1} \notin \operatorname{span} S$. By Lemma 2.11, $S_1 = S \cup \{\alpha_{m+1}\}$ is linearly independent. Now if $\operatorname{span} S_1 = V$ we are done. If not we continue in similar fashion. Since V is finite and any independent set can not have more than $\dim V$ elements, then in $\dim V - m$ steps the set $S \cap \{\alpha_{m+1}, \ldots, \alpha_n\}$ is a basis for V.

Corollary 2.13. A proper subspace W of a finite dimensional vector space V is finite dimensional and $\dim W < \dim V$.

Proof. Any basis W is linearly independent subset of V and therefore it is finite. Suppose W has basis $\{\beta_1, \ldots, \beta_m\}$ with $m \leq \dim V$. Since span $\beta = W \subsetneq V$ then there is αinV that is not in W therefore, $\beta \cup \{\alpha\}$ is a linearly independent subset of V by Lemma 2.11. Simply

$$|\beta| = |\beta \cup \{\alpha\}| + 1 \le n$$

and thus $\dim W < \dim V$.

Theorem 2.14. If W_1 and W_2 are finite dimensional subspaces of V (not necessarily finite dimensional), then $W_1 + W_2$ is finite dimensional and

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$$

Proof. $W_1 \cap W_2$ is a finite subsapce of V and thus there are $\alpha = \{\alpha_1, \ldots, \alpha_a\}$ which form a basis for $W_1 \cap W_2$. Furthermore, since $W_1 \cap W_2 \subset W_1, W_2$ then there are vectors $\beta = \{\beta_1, \ldots, \beta_b\}$ and $\gamma = \{\gamma_1, \ldots, \gamma_c\}$ such that $\alpha \cup \beta$ is a basis for W_1 and $\alpha \cup \gamma$ is a basis for W_2 . We claim that $\alpha \cup \beta \cup \gamma$ is a basis for $W_1 + W_2$. For all $\xi_1 \in W_1$ and $\xi_2 \in W_2$, $\xi_1 + \xi_2 \in W_1 + W_2$. Writing $\xi_1 = x_1\alpha_1 + \cdots + x_a\alpha_a + y_1\beta_1 + \cdots + y_b\beta_b$ and $\xi_2 = x_1'\alpha_1 + \ldots x_a'\alpha_a + z_1\gamma_1 + \cdots + z_c\gamma_c$ we get

$$\xi_1 + \xi_2 = \sum_{i=1}^a (x_i + x_i')\alpha_i + \sum_{i=1}^b y_i\beta_i + \sum_{i=1}^c z_i\gamma_i \in \operatorname{span}(\alpha \cup \beta \cup \gamma)$$

and thus $W_1 + W_2 \subset \operatorname{span}(\alpha \cup \beta \cup \gamma)$. Cleary $\operatorname{span}(\alpha \cup \beta \cup \gamma) \subset W_1 + W_2$ and thus $W_1 + W_2 = \operatorname{span}(\alpha \cup \beta \cup \gamma)$. Now we need to show that $\alpha \cup \beta \cup \gamma$ is independent. Consider

$$\sum_{i=1}^{a} x_i \alpha_i + \sum_{i=1}^{b} y_i \beta_i + \sum_{i=1}^{c} z_i \gamma_i = 0$$

$$\implies \sum_{i=1}^{a} x_i \alpha_i + \sum_{i=1}^{b} y_i \beta_i = \sum_{i=1}^{c} z_i \gamma_i$$

and thus $\sum_{i=1}^c z_i \gamma_i \in W_1$ and as a result $\sum_{i=1}^c z_i \gamma_i \in W_1 \cap W_2$ therefore, writing $\sum_{i=1}^c z_i \gamma_i = \sum_{i=1}^a x_i' \alpha_i$

$$\sum_{i=1}^{a} x_i \alpha_i + \sum_{i=1}^{b} y_i \beta_i = -\sum_{i=1}^{a} x_i' \alpha_i$$

$$\implies \sum_{i=1}^{a} (x_i + x_i') \alpha_i + \sum_{i=1}^{b} y_i \beta_i = 0$$

and since $\alpha \cup \beta$ is a basis for W_1 then $y_i = 0$. hence

$$\sum_{i=1}^{a} x_i \alpha_i + \sum_{i=1}^{c} z_i \gamma_i = 0$$

which implies $\alpha_i = 0, \gamma_i = 0$ as $\alpha \cup \gamma$ is a basis for W_2 .