Regular language equivalence

Let L and M be regular languages (specified by means of some representation)

To test $L \stackrel{?}{=} M$:

- convert L and M representations into DFAs
- construct the union DFA (never mind if there are two start states)
- apply state equivalence algorithm
- if the two start states are distinguishable, then $L \neq M$, otherwise L = M

The state equivalence algorithm produces the table

We have $A \equiv C$, thus the two DFAs are equivalent

Both DFAs recognize language $L(\epsilon + (\mathbf{0} + \mathbf{1})^*\mathbf{0})$

Pumping Lemma Closure properties Decision problems Automata minimization

DFA minimization

Important application of the equivalence algorithm: given DFA as input, produces equivalent DFA with minimum number of states

Minimal DFA is unique, up to renaming of the states

Idea:

- eliminate states that are unreachable from the initial state
- merge equivalent states into an individual state

State partition based on the equivalence relation : $\{\{A, E\}, \{B, H\}, \{C\}, \{D, F\}, \{G\}\}$

State partition based on the equivalence relation :

Transitivity

Theorem If $p \equiv q$ and $q \equiv r$, then $p \equiv r$

Proof

Suppose to the contrary that $p \not\equiv r$

- Then $\exists w$ such that $\hat{\delta}(p,w) \in F$ and $\hat{\delta}(r,w) \notin F$ or the other way around
- Case 1 : $\hat{\delta}(q, w)$ is accepting. Then $q \not\equiv r$
- Case 2 : $\hat{\delta}(q, w)$ is not accepting. Then $p \neq q$

Therefore it must be that $p \equiv r$

Relation \equiv is reflexive, symmetric and transitive : thus \equiv is an equivalence relation

We can talk about equivalence classes

DFA minimization

To minimize DFA
$$A=(Q,\Sigma,\delta,q_0,F)$$
, construct DFA $B=(Q,\Sigma,\gamma,q_0,F)$, where where $A=\{0,1\}$ whe

States

- elements of F/ are the equivalence classes of \equiv composed by states from F
- $q_0/$ is the set of states that are equivalent to q_0

•
$$\gamma(p/_{\equiv},a)=\delta(p,a)/_{\equiv}$$

• which all stores equivalent to the $\delta(p,a)$ state

DFA minimization

In order for B to be well defined we have to show that

If
$$p \equiv q$$
 then $\delta(p, a) \equiv \delta(q, a)$

If $\delta(p,a) \not\equiv \delta(q,a)$, then the equivalence algorithm would conclude that $p \not\equiv q$. Thus B is well defined

We obtain

Automata minimization

We cannot apply the algorithm to NFAs

Example: To minimize

we simply remove state C. However, $A \not\equiv C$

2. i) remark
$$q_{2}$$
 $\frac{1}{1+2!(0)^{2}1}$
 $\frac{1}{2}+2!(0)^{2}1$
 $\frac{1}{2}+2!(0)^{2}1$

