DERIVATIVES & ANTIDERIVATIVES

GENERAL RULES

$$(af)'(x) = af'(x)$$

$$(f(x)+g(x))' = f'(x)+g'(x)$$

$$(f(x)g(x))' = f'(x)g(x)+f(x)g'(x)$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}$$

$$(f(g(x)))' = f'(g(x))g'(x)$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dots$$

Above: \boldsymbol{a} is a constant, and $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ functions of \boldsymbol{x} .

ELEMENTARY FUNCTIONS

f(x)	f'(x)	$\int f(x) dx$
а	0	ax+C
X	1	$\frac{\mathbf{x}^2}{2} + \mathbf{C}$
χ^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1} + C (\alpha \neq -1)$ $\ln x + C (\alpha = -1)$
ln <i>x</i>	$\frac{1}{x}$	+C
e ^x	e ^x	$e^x + C$
sin <i>x</i>	COS <i>X</i>	-cosx+C
COS <i>X</i>	-sin <i>x</i>	sin <i>x</i> +C
tan <i>x</i>	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	+C
$\arcsin(\mathbf{x})$	$\frac{1}{\sqrt{1-x^2}}$	+C
$\arccos(\mathbf{x})$	$\frac{-1}{\sqrt{1-x^2}}$	+C
$\arctan(\mathbf{x})$	$\frac{1}{1+\boldsymbol{x}^2}$	+C

Above: a and α are constant, and C the antiderivative constant.