Helices indices of RNAs

Jiabin Huang

AG Experimentelle Bioinformatik (Cyanolab) Institut für Biologie III Universität Freiburg

March 11, 2011

Outline

- an overview of RNA secondary structure elements and a classical RNA secondary structure prediction algorithm
- introducing concept of abstract shapes
- basic idea about the helices indices
- outlook

Secondary structure elements of RNA

Classical secondary structure algorithms (Zuker 1981)

facts about Zuker algorithm

- first described by Zuker and Stiegler in 1981
- assumption: There are no knots (base pairs never cross).
- basic idea:
 - a RNA sequence can be folded into many different secondary structure
 - 2 for every secondary structure, we can calculate a free energy value
 - after that, the algorithm choose the structure with the minimum free energy
- the runtime is $O(n^3)$
- can get only one solution

Free energy computation example

energy landscape

Suboptimal structures

- but the "true" structure is not always the one with the lowest predicted free energy.
- but it is not far away from the mfe and it is normally a local minimum
- one of solution: enumerate all suboptimal structures within a given energy range
- but the number of suboptimal structures grows exponentially with the energy range considered.

energy landscape setting a range

Introducing abstract shapes

Solution: Use abstract shapes to describe a set of structures.

- developed by Giegerich and Voss
- An abstract shape represents a class of similar structures sharing a common pattern of helix nesting and adjacency.
- "Abstract" since we do not care about all details of the structures.
- Each shape class has a representative structure called shrep (with minimum folding energy).

Abstract shape, energy range: 5 kcal/mol

Drawback of abstract shape

 The major drawback of abstract shape analysis is the position independence of the abstraction

Drawback example 1 of abstract shape

AACUAAAACAAUUUUUGAAGAACAGUUUCUGUACUUCAUUGGUAUGUAGAGACUUC

Drawback example 2 of abstract shape

develop a new structure abstraction

The straightforward idea to overcome the position independence of the current available shape abstractions is

the position of which secondary structure elements will be tracked

- helical regions of hairpin loop
- helical regions of multiloops
- helical regions of stacked pairs, bulge and internal loops

which positions of the vordefined structure element will be tracked

- i
- j
- (i,j)
- i+j/2

helices positions example

Figure: The structure is composed of two helices which are closed by hairpin loops (i,j) and (k,l), respectively. The positions are: i=8, j=13, k=35 and l=41. Thus, this structure would be abstracted to [10.5,38]

Output from the first trial version of helices indices

```
Helices shape, Energy range: 5 kcal/mol
-6.7 ..((..((....))..))...((((((((((....)))))..))))).. [11.5.38]
 -6.4 .(((((.....(((((((...)))))))))))).((...))... [27,49.5]
 ..((....(((...))).))...((((((((((....)))))..))))).. [13,38]
 -4.2 .(((((.....((((((...)))).))))))))....((...)).. [27,51]
-3.3 .(((((.....(((((((...)))).)))))))),...((...)), [27.51.5]
-3.3 ..((((....))....))...((((((((((....)))))..))))).. [9,38]
.(((((.....((((((((...)))).))))))))....((...)). [27.52]
 -2.3 .....((((,,(((,,,)))((((,,,,)))),...,)))) [36.5.27.38] *
```

energy barrier

Possible problem

Although the helices space grows considerably slower than structure space, but it is still exponential

Solution of possible problem

One of the solution: we limit the helices space by setting an energy range on it

Outlook: Designing RNA class predictors

- Development of a new structure abstraction (helices index)
- Implementation of an algorithm based on the structure abstraction
- Evaluating the algorithm
- Designing RNA class predictors.

End

- Thanks a lot for your attention !
- Questions ?