

TD Ensembles, applications, relations

Exercice1:

Les applications suivantes sont-elles injectives, surjectives, bijectives?

- 1. $f: \mathbb{N} \to \mathbb{N}, \ n \mapsto n+1$.
- **2.** $g: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto n+1.$
- 3. $h:\mathbb{R}^2 o\mathbb{R}^2,\;(x,y)\mapsto(x+y,x-y).$

Exercice2:

Soient f et g les applications de $\mathbb N$ dans $\mathbb N$ définies par f(x)=2x et

$$g(x) = \left\{ egin{array}{ll} rac{x}{2} & ext{ si } x ext{ est pair} \ 0 & ext{ si } x ext{ est impair}. \end{array}
ight.$$

Déterminer $g \circ f$ et $f \circ g$. Les fonctions f et g sont-elles injectives? surjectives? bijectives?

Exercice 3:

Démontrer que l'application

$$egin{array}{lll} f:\mathbb{C}ackslash\{-3\} &
ightarrow & \mathbb{C}ackslash\{i\} \ z & \mapsto & rac{iz-i}{z+3} \end{array}$$

est une bijection. Déterminer sa bijection réciproque.

Exercice 4:

Sur \mathbb{R}^2 , on définit la relation d'équivalence \mathcal{R} par

$$(x,y)\mathcal{R}(x',y')\iff x=x'.$$

Démontrer que \mathcal{R} est une relation d'équivalence, puis déterminer la classe d'équivalence d'un élément $(x_0,y_0)\in\mathbb{R}^2$.

Exercice 5:

Soit E un ensemble et A, B, C trois éléments de $\mathcal{P}(E)$.

- **1.** Démontrer que, si $A \cap B = A \cup B$, alors A = B.
- **2.** Démontrer que, si $A \cap B = A \cap C$ et $A \cup B = A \cup C$, alors B = C. Une seule des deux conditions suffit-elle?

Exercice 6:

On considère 4 ensembles A,B,C et D, et des applications $f:A\to B,\,g:B\to C$ et $h:C\to D.$ Montrer que

$$g \circ f$$
 injective $\Longrightarrow f$ injective, $g \circ f$ surjective $\Longrightarrow g$ surjective.

Montrer que :

$$(g \circ f \text{ et } h \circ g \text{ sont bijectives}) \iff (f, g \text{ et } h \text{ sont bijectives}).$$