

WiiMatrix 算法与分析

Ver1.1

Revisions

版本	日期	说明
1. 0	2016. 09. 06	创建初始版本
1. 1	2017. 01. 30	修改部分文字

1. 概述

WiiMatrix 是一个大数据的算法与分析系统,它是纯软件,运行在WiiCarrier 和 WiiCloud 之上。

应用领域

- 大数据分析;
- 数据趋势监测与预警;
- 复杂数据的模式识别;

优势与特性

- 分布式、高维度计算;
- 基于神经网络的机器学习;
- 支持多种神经网络模型;
- 支持时域、频域分析;

分布式计算

WiiMatrix 让分布于各地的 WiiCarrier(现场服务器)和 WiiCloud (云端服务器)协同工作。

通常情况下,数据会先经 WiiCarrier 进行初步处理,后将处理的"结果"交付 WiiCloud。由于数据量巨大,这样既可以减轻 WiiCloud的计算负担,也可以节省因流量和带宽带来的高昂费用。

机器学习

传感器采集到的数据是监测对象在某一个维度上的变量,监控现场有成百上千个传感器,构建起高维度的变量,对这么大量的数据进行抽象或统计都是不合适的,应利用机器学习对其进行分析。

基于神经网络构建机器学习模型,左侧为传感器的数据输入,右侧为监测对象的状态判断(如正常、异常等状态),中间为分类、学习算法。

时域分析

在时域上设定阈值,分析时域信号的变化趋势以判断是否发生异常,并触发不同等级的报警。

WiiMatrix 可以自行设定阈值,通过机器学习算法动态跟踪对象的变化趋势,使阈值具有自适应性。

变换域分析

WiiMatrix 提供了多种变换域上的分析工具,如 FFT、小波变换、 频域瀑布图等。

2. 主要参数

参数	内容
机器学习框架	TensorFlow
分布式计算	支持
训练期	需要
频域变化	FFT、小波变换
阈值设定	自适应
消息推送	微信、邮件、短信