- 1. A thermometer has a resistance of 1 k Ω at temperature 298 K and 465 Ω at temperature 316 K. Find the temperature sensitivity in K⁻¹ [i.e. (1/R)(dR/dT), where R is the resistance at the temperature T (in K)], at 316 K.
 - Consider a semiconductor thermometer. The resistance at T = 100°C is 1 k at T = 100°C, and at T = 0°C it is 100 K. Calculate the resistance at T = 40°C.
- 2. What are the meanings of the terms "Sensors" and "Transducers"?
- 3. What are the applications that you can apply to sensors and transducers?
- 4. Compare and contrast the sensors and transducers?
- 5. Compare and contrast analogue and digital sensors?
- 6. What are the sensor characteristics that should be considered for selecting a sensor?
- 7. What are the features that should be considered when choosing a sensor?
- 8. What are the basic requirements of a sensor?
- Compare and contrast advantages and disadvantages of "passive" and "active" sensors?Give examples.
- 10. What are "absolute sensor" and "relative sensor"?
- 11. What is a RTD?
- 12. What is Seebeck Effect?
- 13. What is Peltier Effect?
- 14. What is Thomson Effect?
- 15. Let us consider a semiconductor thermistor. The resistance at T = 100 °C is 1 k Ω at T = 100 °C, and at T = 0 °C it is 100 k Ω . Calculate the resistance at T = 40 °C.

The semiconductor thermistor is characterized by the following relationship:

$$R(T) = R_{T_0} \cdot \exp \left[B \cdot \left(\frac{1}{T} - \frac{1}{T_0} \right) \right]$$

To calculate B, let us replace in the above equation $T = 100 \text{ }^{\circ}\text{C} = 373 \text{ K}$ and $T_0 = 0 \text{ }^{\circ}\text{C} = 273 \text{ K}$, and the respective resistance values.

16. The following figure shows a voltage divider where R_{term} is a RTD sensor whose characteristics is $R = R_0(1 + \alpha(T - T_0))$

Calculate the maximum tolerable measurement error of V_0 in order to obtain a resolution less that 0.1 K in the range 0 - 100 °C.

17.

- 1. What is the meaning of electric current?
- 2. What is the capacitance (*C*) of a parallel plate capacitor and give the relevant equation for *C*. State all the symbols are used.
- 3. State Hooke's law of elasticity. State all the symbols clearly.
- 4. To deform a resistor and cause strain, it should be stressed.

Figure 1.0. Strain changes geometry of conductor and its resistance.

- i. Write an expression for the stress σ , in terms of F and the cross-sectional area a.
- ii. What is the strain of a material and write an expression for the Strain. Clearly define the symbols are used.

- iii. Write an expression for the Young's modulus, **Y** of the material in terms of **stress** and **strain**.
- iv. Plot Stress Strain plot for Brittle, Ductile, and Plastic.

18.

- a) What is an actuator?
- b) Explain the working mechanisms of hydraulic, pneumatic, and electric actuators.
- c) What are the advantages and disadvantages of above actuators? Compare and contrast them.
- d) Why do we need signal conditioning in a sensory systems?

19.

The above figure 2.0 illustrates a capacitive sensor that can be used to provide a linear displacement to measure. The sensor consists of two sets of flat electrodes which are at a

fixed mutual distance d=0.5 mm have been placed on each other. All six, the plates have the same length L=10 mm and the same width b=10 mm. The upper four fixed plates (N, M, K, S) are cross-linked and form a capacitive bridge with the bottom two moving plates (P, Q).

In the space between the fixed and moving plates is air ($E_r = 1$, $E_0 = 8.85$ pF/m = 8.15 x 10^{-12} pF/m). The electrically equivalent circuit of this sensor (including a power supply voltage V_r) is shown in Figure (b).The supply voltage V_r produces a sinusoidal voltage having a frequency $\omega_r = 2$ x 10 kHz.

Show that the capacitance C_1 is equal to: $C_1 = \frac{\varepsilon_0 \varepsilon_r b}{d} \left(\frac{L}{2} - x \right)$

- (b) Show that the output voltage of the sensor, V_0 , is equal to: $V_0 = -\frac{2x}{L}V_r$, with x is the linear displacement of the sensor. Assuming that $C_1 = C_2 = C_3$ and C_4 .
- 20. Obtain an expression for the total capacitance of the capacitive water level sensor (Figure 3.0). Capacitive water level sensor (a); capacitance as function of water level (b) (sensor's dimensions are a = 10 mm, b = 12 mm, H = 200 mm, liquid—water). Find the sensitivity of the sensor.

Figure 3.0

- a). Show that the output voltage v s of the sensor circuit is equal to: $V_s = -\frac{x}{2}V_r$
- b). What value needs to have the supply voltage Vr to the sensitivity of the sensor circuit, issued image in Figure 4.0, to maximize a change in x?
- c). Show that the output voltage v_s of the sensor circuit that is shown in Figure 3 is equal to 5.00 mV if there is a pressure of 100 x10⁶ N/m² is exerted on the metal strip, and Vr = 10 V.
- 22. Following is a schematic diagram depicts of usage of a resistive displacement sensor for measuring rotation of an object. The resistance of the variable resistor varies from 0 to R_T linearly when angle of rotation is changes θ from 0° to 270°. The sensor circuit is connected to a voltmeter with internal resistance $R_m = R_{T/a}$, where a is a positive constant.

a) Show that the voltage $V_{\rm m}$ over the resistance $R_{\rm m}$ is $V_{\rm m} = -\frac{270^{\circ}}{(270^{\circ})^2 + a\theta(270^{\circ} - \theta)}V_{\rm m}$

- b) Show that the relative error ε in the output voltage $V_{\rm m}$ excreted due to load resistor $R_{\rm m}$ is $\varepsilon = \frac{a\theta(270^{\circ} \theta)}{(270^{\circ})^2 + a\theta(270^{\circ} \theta)} V_r$
- c) What is the ratio of resistors $R_{\rm T}/R_{\rm m}$ that should be maintain in order to keep relative error of $V_{\rm m}$ less than 5 % ?