

Foundations of Machine Learning (ECE 5984)

- Dimensionality Reduction -

Eunbyung Park

Assistant Professor

School of Electronic and Electrical Engineering

Eunbyung Park (silverbottlep.github.io)

Eigenvalues and Eigenvectors

Matrix Decomposition

- We can decompose an integer into its prime factors
 - $12 = 2 \times 2 \times 3$.
- Similarly, matrices can be decomposed into products of other matrices
- Eigendecomposigion, SVD, LU decomposition, ...

Eigenvector

• An eigenvector of a square matrix $A \in \mathbb{R}^{n \times n}$ is a nonzero vector v such that

$$Av = \lambda v$$

, where the scalar λ is the eigenvalue

- If v is an eigenvector of A with an eigenvalue λ , then any rescaled αv is also an eigenvectors
- So, usually, we find the 'normalized eigenvectors'

Compute Eigenvalues

$$Av = \lambda v$$

$$Av - \lambda v = 0$$

$$(A - \lambda I)v = 0$$

• If nonzero solution for v exists, then $(A - \lambda I)$ should be "non-invertible".

$$det(A - \lambda I) = 0$$

• A.k.a, characteristic polynomial

Exercise

What are the eigenvalues and eigenvectors of A?

$$A = \begin{bmatrix} -3 & 5 \\ 4 & -2 \end{bmatrix}$$

How Many Distinct Eigenvalues?

• An eigenvector of a square matrix $A \in \mathbb{R}^{n \times n}$ is a nonzero vector v such that

$$Av = \lambda v$$

, where the scalar λ is the eigenvalue

How Many Distinct Eigenvalues?

• An eigenvector of a square matrix $A \in \mathbb{R}^{n \times n}$ is a nonzero vector v such that

$$Av = \lambda v$$

, where the scalar λ is the eigenvalue

- There can be maximum distinct 'n' eigenvalues.
- The eigenvalues of an n by n matrix are the roots of a polynomial of degree n. So there are n eigenvalues, though some of them may be repeated.

$$AQ = Q\Lambda \qquad A = Q\Lambda Q^{-1}$$

Symmetric Eigendecomposition

- If A is a symmetric (also square) matrix, then
- All the eigenvalues are real
- The eigenvectors corresponding to different eigenvalues are orthogonal
- If we normalize all eigenvectors, then

$$QQ^{\mathsf{T}} = ?$$

$$AQ = Q\Lambda$$
 $A = Q\Lambda Q^{-1}$

Symmetric Eigendecomposition

- If A is a symmetric (also square) matrix, then
- All the eigenvalues are real
- The eigenvectors corresponding to different eigenvalues are orthogonal
- If we normalize all eigenvectors, then

$$QQ^{\mathsf{T}} = I$$

$$AQ = Q\Lambda$$
 $A = Q\Lambda Q^{-1}$

$$A = Q \Lambda Q^{\mathsf{T}}$$

Symmetric Decomposition

$$A = Q\Lambda Q^{-1} = Q\Lambda Q^{\top}$$

Geometric Interpretation of Eigendecomposition

- Matrix is all about linear transformation!
- Orthogonal matrices ≈ Rotational matrices
- $Ax \rightarrow$ scale and rotate the vector x

$$Ax = Q\Lambda Q^{\mathsf{T}}x$$

Principle Component Analysis (PCA)

Dimensionality Reduction

- Redundant features
 - E.g., mph, kph
- Correlation between features
 - E.g., enjoying study, grade, skill

Principal Component Analysis (PCA)

• Finding 'principal' component that explains the data

Maximizing The Variance

 Finding unit vector u, after data projection, the variance of the projected data is maximized

Maximizing The Variance

 Finding unit vector u, after data projection, the variance of the projected data is maximized

 $x^{(i)}^{\mathsf{T}}u$: The length of the projection of $x^{(i)}$ onto u

Maximizing The Variance

 Finding unit vector u, after data projection, the variance of the projected data is maximized

Optimization

How to optimize it?

$$\max_{u} u^{\mathsf{T}} \Sigma u$$

$$s.t. ||u||_2 = 1$$

Constraint -> unconstraint

Lagrangian, take the derivative, set it to zero!

Optimization

How to optimize it?

$$\max_{u} u^{\mathsf{T}} \Sigma u$$

$$s.t.||u||_2 = 1$$

Constraint -> unconstraint

Lagrangian, take the derivative, set it to zero!

$$L(u,\lambda) = u^{\mathsf{T}} \Sigma u - \lambda (u^{\mathsf{T}} u - 1)$$

Optimization

How to optimize it?

$$L(u,\lambda) = u^{\mathsf{T}} \Sigma u - \lambda (u^{\mathsf{T}} u - 1)$$

$$\frac{\partial L}{\partial u} = \Sigma u - \lambda u = 0$$

$$\Sigma u = \lambda u$$

PCA and Eigenvector

Projected Coordinates

$$y^{(i)} = \begin{bmatrix} u_1^\mathsf{T} x^{(i)} \\ u_2^\mathsf{T} x^{(i)} \\ \dots \\ u_k^\mathsf{T} x^{(i)} \end{bmatrix} \in \mathbb{R}^k$$

The new coordinate, using top-k principal component

Eigenface

Dataset (1000 x 64 x 64 -> 1000 x 4096)

Eigenface

Dataset (1000 x 64 x 64 -> 1000 x 4096)

$$\Sigma u = \lambda u$$

Eigenface

Eigenvectors

Code Demo

05.09-Principal-Component-Analysis.ipynb - Colaboratory (google.com)

Nonlinear Dimensionality Reduction

Orthogonal Assumption of PCA

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction

Neural Networks based auto-encoder

PCA 2D Embeddings for MNIST

t-SNE 2D Embeddings for MNIST

Stochastic Neighbor Embedding (SNE)

- High dimensional neighborhood information as a distribution
- Given $x^{(i)}$, $P_{i|i}$ is the probability that point $x^{(i)}$ chooses $x^{(j)}$ as its neighbor
- Final distribution over pairs is symmetrized

$$P_{j|i} = \frac{\exp\left(-\frac{\|x^{(i)} - x^{(j)}\|^{2}}{2\sigma_{i}^{2}}\right)}{\sum_{k \neq i} \exp\left(-\frac{\|x^{(i)} - x^{(k)}\|^{2}}{2\sigma_{i}^{2}}\right)} \qquad P_{ij} = \frac{1}{2N} \left(P_{i|j} + P_{j|i}\right)$$

Stochastic Neighbor Embedding (SNE)

- High dimensional neighborhood information as a distribution
- Given $x^{(i)}$, $P_{i|i}$ is the probability that point $x^{(i)}$ chooses $x^{(j)}$ as its neighbor
- Final distribution over pairs is symmetrized

$$P_{j|i} = \frac{\exp\left(-\frac{\|x^{(i)} - x^{(j)}\|^{2}}{2\sigma_{i}^{2}}\right)}{\sum_{k \neq i} \exp\left(-\frac{\|x^{(i)} - x^{(k)}\|^{2}}{2\sigma_{i}^{2}}\right)} \qquad P_{ij} = \frac{1}{2N} \left(P_{i|j} + P_{j|i}\right)$$

SNE Objective

- Given data, $x^{(1)}$, ..., $x^{(N)} \in \mathbb{R}^D$, we define the distribution P_{ij}
- Goal: Find $y^{(1)}, \dots, y^{(N)} \in \mathbb{R}^d$, for some $d \ll D$, minimizing

$$KL(P||Q) = \sum_{ij} P_{ij} \log \left(\frac{P_{ij}}{Q_{ij}}\right)$$

$$Q_{ij} = \frac{\exp\left(-\|y^{(i)} - y^{(j)}\|^2\right)}{\sum_{l \neq k} \exp\left(-\|y^{(l)} - y^{(k)}\|^2\right)}$$

$$P_{j|i} = \frac{\exp\left(-\|x^{(i)} - x^{(j)}\|^{2} / 2\sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\|x^{(i)} - x^{(k)}\|^{2} / 2\sigma_{i}^{2}\right)} \qquad P_{ij} = \frac{1}{2N} \left(P_{i|j} + P_{j|i}\right)$$

KL Divergence

- Measures distance between two distributions, P and Q
- Not a metric function not symmetric
- $KL(P||Q) \ge 0$
- KL(P||Q) = 0 only when P == Q

$$KL(P||Q) = \sum_{ij} P_{ij} \log \left(\frac{P_{ij}}{Q_{ij}}\right)$$

Optimizing SNE

$$\min_{y^{(1)} \dots y^{(N)}} KL(P||Q) = \min_{y^{(1)} \dots y^{(N)}} \sum_{ij} P_{ij} \log \left(\frac{P_{ij}}{Q_{ij}}\right)
= \min_{y^{(1)} \dots y^{(N)}} - \sum_{ij} P_{ij} \log(Q_{ij}) + \text{const}$$

$$\frac{\partial}{\partial y^{(i)}} - \sum_{ij} P_{ij} \log(Q_{ij}) = \dots = \sum_{j} (P_{ij} - Q_{ij}) (y^{(i)} - y^{(j)})$$

- Gradient descent!
- Non-convex, multiple runs!
- Main issue crowding problem

Crowding Problem

- In high dimension, we have more room
- In low dimension, we do not have enough room to accommodate all neighbors

t-SNE

- t-Ditributed Stochastic Neighbor Embedding
- Student's t distribution
- Probability goes to zero much slower than a Gaussian

t-SNE

- t-Ditributed Stochastic Neighbor Embedding
- We can now redefine Q_{ij} as
- P_{ij} is same as before

$$Q_{ij} = \frac{\left(1 + \|y^{(i)} - y^{(j)}\|^2\right)^{-1}}{\sum_{l \neq k} \left(1 + \|y^{(l)} - y^{(k)}\|^2\right)^{-1}}$$

t-SNE Algorithms

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

```
Data: data set X = \{x_1, x_2, ..., x_n\},\
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t).
Result: low-dimensional data representation \mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}.
begin
     compute pairwise affinities p_{j|i} with perplexity Perp (using Equation 1)
     set p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}
     sample initial solution \mathcal{Y}^{(0)} = \{y_1, y_2, ..., y_n\} from \mathcal{N}(0, 10^{-4}I)
     for t=1 to T do
           compute low-dimensional affinities q_{ij} (using Equation 4)
          compute gradient \frac{\delta C}{\delta \mathcal{Y}} (using Equation 5)
         set \mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left( \mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)
     end
end
```

t-SNE Visualization

• <u>Visualizing MNIST: An Exploration of Dimensionality Reduction - colah's blog</u>