Data Exploration and Visualization

Data Exploration

Not always sure what we are looking for (until we find it)

Visualization

- Visualization is the conversion of data into a visual or tabular format.
- Visualization helps understand the characteristics of the data and the relationships among data items or attributes can be analyzed or reported.
- Visualization of data is one of the most powerful and appealing techniques for data exploration.
 - Humans have a well developed ability to analyze large amounts of information that is presented visually
 - Can detect general patterns and trends
 - Can detect outliers and unusual patterns

Ask an interesting What is the scientific goal? What would you do if you had all the data? question. What do you want to **predict** or **estimate**? How were the data sampled? Which data are relevant? Get the data. Are there privacy issues? Plot the data. Are there anomalies? Explore the data. Are there patterns? Build a model. Model the data. Fit the model. Validate the model. Communicate and What did we learn? Do the results make sense? visualize the results. Can we tell a **story**?

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature

Objects

- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

)		
_	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

Type of variables (attributes)

Descriptive (categorical) variables

- Nominal variables (no order between values):
 gender, eye color, race group, ...
- Ordinal variables (inherent order among values): response to treatment: none, slow, moderate, fast

Measurement variables

- Continuous measurement variable: height, weight, blood pressure ...
- Discrete measurement variable (values are integers): number of siblings, the number of times a person has been admitted to a hospital ...

Properties of Attribute Values

 The type of an attribute depends on which of the following properties it possesses:

```
Distinctness: = ≠
```

- Multiplication: * /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties

The Trouble with Summary Stats

Set A		Set B		Se	t C	Set D	
X	Υ	X	Υ	X	<u> Y</u>	X	Υ
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.7
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.11	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89
Summ	ary Statis	tics Line	ar Regres	sion			
$u_x = 9.0$ $\sigma_x = 3.317$ $u_y = 7.5$ $\sigma_y = 2.03$		Y = 3 + 0.5 X $R^2 = 0.67$			[Anscom	be 73	

Looking at Data

Chart types

- Single variable
 - Dot plot
 - Box-and-whisker plot
 - Histogram
 - Jitter plot
 - Error bar plot
 - Cumulative distribution function

Chart types

- Two variables
 - Bar chart
 - Scatter plot
 - Line plot
 - Log-log plot
- More than two variables
 - Stacked plots
 - Parallel coordinate plot

Sample Data

Height	Weight	Waist	Hip	bp.sys	bp.dia
172	72	87	94	127.5	80
166	91	109	107	172.5	100
174	80	95	101	123	64
176	79	93	100	117	76
166	55	70	94	100	60
163	76	96	99	160	87.5
154	84	98	118	130	80
165	90	108	101	139	80
155	66	80	96	120	70
146	59	77	96	112.5	75
164	62	76	93	130	47.5
159	59	76	96	109	69
163	69	96	99	155	100
143	73	97	117	137.5	8.5

. . .

Plotting a Vector

 plot(v) will print the elements of the vector v according to their index

```
# Plot height for each observation
```

- > plot(dataset\$Height)
- # Plot values against their ranks
- > plot(sort(dataset\$Height))

Parameters for plot()

- Specifying labels:
 - main provides a title
 - xlab label for the x axis
 - ylab label for the y axis
- Specifying range limits
 - ylim 2-element vector gives range for x axis
 - xlim 2-element vector gives range for y axis

Distribution of Heights

Plotting a Vector

plot(dataset\$Height)

plot(sort(dataset\$Height))

Histogram

```
hist(dataset$bp.sys, col = "lightblue",
xlab = "Systolic Blood Pressure", main = "Blood Pressure")
```


Histogram

```
hist(dataset$bp.sys, col = "lightblue" breaks = seq(80,220,by=2), xlab = "Systolic Blood Pressure", main = "Blood Pressure")
```


Bar graph

Cause of death	Frequency
Judgo of usuali	rioquency
Accidents	6,688
Homicide	2,093
Suicide	1,615
Malignant tumor	745
Heart disease	463
Congenital abnormalities	222
Chronic respiratory disease	107
Influenza and pneumonia	73
Cerebrovascular diseases	67
Other tumor	52
All other causes	1,653

Frequency table showing the ten most common causes of death in Americans between 15 and 19 years of age in 1999. The total number of deaths is n = 13,778.

Bar graphs and frequencies

- > type.freq <- table(Pima.tr\$type)
- > barplot(type.freq, xlab = "Type", ylab = "Frequency", main = "Frequency Bar Graph of Type")

Frequency Bar Graph of Type

Adding a Label Inside a Plot

- > hist(dataset\$Weight, xlab = "Weight", main = "Who will develop obesity?", col = "blue")
- > rect(90, 0, 120, 1000, border = "red", lwd = 4)
- > text(105, 1100, "At Risk", col = "red", cex = 1.25)

Who will develop obesity?

Pie chart

- We can use a pie chart to visualize the relative frequencies of different categories for a categorical variable.
- In a pie chart, the area of a circle is divided into sectors, each representing one of the possible categories of the variable.
- The area of each sector c is proportional to its frequency.

slices <- c(11, 4, 6) lbls <- c("1", "2", "3",) pie(slices, labels = lbls, main="Pie Chart of Races")

Box Plots

Example of Box Plots

Box plots can be used to compare attributes

boxplot(dataset, col = rainbow(6), ylab = "Appropriate Units")

Scatter plots -Plotting Two Vectors

Circumference (in cm)

Line Plots

Dell Closing Stock Price

plot(t1,D2\$DELL,type="l",main='Dell Closing Stock Price',
xlab='Time',ylab='Price \$'))

Adding a Legend

Closing Stock Prices

legend(60,45,c('Intel','Dell'),lty=c(1,2))

Mosaic plot

Association between reproductive effort and avian malaria

Table 2.3A. Contingency table showing incidence of malaria in female great tits subjected to experimental egg removal.

2		control group	egg removal group	row total
	malaria	7	15	22
	no malaria	28	15	43
	column total	35	30	65

>library(vcd)

>mosaic(HairEyeColor, shade=TRUE, legend=FALSE)

Plotting Contents of a Dataset as Matrix

>plot(dataset[c(5,6,7)])

Effective Visualizations

- I. Have graphical integrity
- 2. Keep it simple
- 3. Use the right display
- 4. Use color strategically
- 5. Tell a story with data

Graphical Integrity

Graphical Integrity

Scale Distortions

Scale Distortions

Keep It Simple

Edward Tufte

Maximize Data-Ink Ratio

Data-Ink Ratio = $\frac{\text{Data ink}}{\text{Total ink used in graphic}}$

Maximize Data-Ink Ratio

Data-Ink Ratio = Data ink

Total ink used in graphic

Why 3D pie charts are bad

Avoid Chartjunk

Extraneous visual elements that distract from the message

Avoid Chartjunk

Avoid Chartjunk

Don't!

Mark of Sales

matplotlib gallery

Excel Charts Blog

Use The Right Display

Chart Suggestions—A Thought-Starter

http://extremepresentation.typepad.com/blog/files/choosing a good chart.pdf

Comparisons

Bars vs. Lines

Trends

601.10 + 15.53(2.65%) 4:00PM EDT | After Hours: 604.60 +3.50 (0.58%) 7:15PM EDT - Nasdaq Real Time Price

Proportions

Pie Charts

eagerpies.com

Stacked Bar Chart

Don't!

Correlations

Scatterplots

Don't!

Perceptual Effectiveness

How much longer?

How much steeper slope?

How much larger area?

How much darker?

How much bigger value?

Most Effective

Less Effective

Pie vs. Bar Charts

65% of the market is controlled by companies B and C

Least Effective

FIGURE 13. Estimated Mean Annual Ratio of Actual Evapotranspiration (ET) to Precipitation (P) for the Conterminous U.S. for the Period 1971-2000. Estimates are based on the regression equation in Table 1 that includes land cover. Calculations of ET/P were made first at the 800-m resolution of the PRISM climate data. The mean values for the counties (shown) were then calculated by averaging the 800-m values within each county. Areas with fractions >1 are agricultural counties that either import surface water or mine deep groundwater.

Use Color Strategically

Color Discriminability

Colors for Categories

Do not use more than 5-8 colors at once

Colors for Ordinal Data

Vary luminance and saturation

Zeilis et al, 2009, "Escaping RGBland: Selecting Colors for Statistical Graphics"

Avoid Rainbow Colors!

Perceptually nonlinear

gallery

Color Blindness

Deuteranope

Tritanope

Red / green deficiencies

Blue /Yellow deficiency