期末作业: 自监督训练、Transformer 与三维重建

何益涵 20307110032

吕文韬 23210180109

摘要: 本项目的仓库地址为该超链接¹. 详见其中的文件夹 final. 其中包含自监督框架任务 task1_self_supervised_learning、Transformer 任务 task2_Transformer_vs_CNN和三维重建任务 task3_object_reconstruction_view_synthesis.

本项目提供了训练好的模型,详见百度网盘²,若链接失效,也可以通过 Github Issue 联系作者.

 $^{^{1} \}rm https://github.com/HeDesertFox/Neural-Networks-and-Deep-Learning-Homework-Group-Tasks.git$

 $^{^{2}}$ 提取码

第一章 对比监督学习和自监督学习在图像分类任务上的性能表 现

第1节 任务描述

- 1. 实现任一自监督学习算法并使用该算法在自选的数据集上训练 ResNet-18, 随后在 CIFAR-100 数据集中使用 Linear Classification Protocol 对其性能进行评测;
- 2. 将上述结果与在 ImageNet 数据集上采用监督学习训练得到的表征在相同的协议 下进行对比,并比较二者相对于在 CIFAR-100 数据集上从零开始以监督学习方 式进行训练所带来的提升;
- 3. 尝试不同的超参数组合,探索自监督预训练数据集规模对性能的影响.

第 2 节 项目架构

- 1. data_preparation.py 文件:
- 2. model.py 文件:
- 3. training.py 文件:
- 4. test_notebook.ipynb 文件:

第 3 节 实验设置

3.1. 模型选择

本项目的自监督训练框架是 SimCLR, 详见以下论文。

图 1.1: SimCLR 架构

SimCLR 是一种用于自监督学习的框架,旨在学习高质量的视觉表示。其核心思想是通过对比学习来最大化正样本对之间的相似度,并最小化负样本对之间的相似度。SimCLR 架构主要包括以下几个关键步骤:

- 1. 数据增强: SimCLR 对每张输入图像应用一系列随机的数据增强操作(如裁剪、旋转、颜色抖动等),生成两种不同的视图。这些视图构成正样本对,而来自不同图像的视图构成负样本对。
- 2. 编码器: 使用深度神经网络(通常是 ResNet)作为编码器,将每个增强后的图像 视图映射到一个低维特征空间中。编码器的输出是一个固定长度的特征向量。
- 3. 投影头 (Projection Head): 为了计算对比损失, SimCLR 在编码器之后引入了一个小型的 MLP 投影头,将编码器的输出特征向量进一步映射到另一个特征空间中。这个步骤有助于学习更好的表示。
- 4. 对比损失(Contrastive Loss): SimCLR 使用一种称为 NT-Xent(Normalized Temperature-scaled Cross Entropy)对比损失函数。对于每对正样本对,损失函数鼓励它们在特征空间中彼此接近,同时使负样本对之间的距离尽可能远。

整个 SimCLR 框架通过在一个大规模未标注数据集上进行训练,逐步优化编码器和投影头的参数。经过训练后,编码器能够提取有用的图像特征,这些特征可以用于下游任务(如分类、检测等)。

SimCLR 的一个显著优点是它仅依赖于数据增强和对比学习,无需任何人工标注的数据,从而有效利用大量未标注的数据进行训练。通过学习更加通用的特征表示,SimCLR 在许多视觉任务中表现出色,并成为自监督学习领域的重要方法之一。

Algorithm 1 SimCLR's main learning algorithm.

```
input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
for sampled minibatch \{oldsymbol{x}_k\}_{k=1}^N do
    for all k \in \{1, ..., N\} do
        draw two augmentation functions t \sim T, t' \sim T
        # the first augmentation
        \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
       \boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})
                                                                 # representation
        \boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})
                                                                        # projection
        # the second augmentation
        \tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)
       \boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})
                                                                  # representation
        \boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})
                                                                        # projection
    end for
    for all i \in \{1, \dots, 2N\} and j \in \{1, \dots, 2N\} do
         s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|) # pairwise similarity
    end for
    define \ell(i,j) as \ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}
    \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
    update networks f and g to minimize \mathcal{L}
end for
return encoder network f(\cdot), and throw away g(\cdot)
```

图 1.2: SimCLR 伪代码

- 3.2. 数据集选择
- 3.3. 优化器设置

第 4 节 实验结果

4.1. 数据分析

第二章 在 CIFAR-100 数据集上比较基于 Transformer 和 CNN 的图像分类模型

第1节 任务描述

- 1. 分别基于 CNN 和 Transformer 架构实现具有相近参数量的图像分类网络;
- 2. 在 CIFAR-100 数据集上采用相同的训练策略对二者进行训练, 其中数据增强策略中应包含 CutMix;
- 3. 尝试不同的超参数组合,尽可能提升各架构在 CIFAR-100 上的性能以进行合理的比较。

第 2 节 项目架构

此任务的所有文件在 task2 Transformer vs CNN 文件夹中,其中包含以下文件:

- 1. data_preparation.py 文件: 包含数据下载函数与预处理函数, 其中包含 Cutmix 的实现.
- 2. model.py 文件:包含 Resnet 和 ViT 的模型构造函数.
- 3. training.py 文件:包含训练和超参数调优函数.
- 4. test_notebook.ipynb 文件: 包含 Transformer 架构和 CNN 架构的对比任务的全部流程,如数据加载、调参和训练可视化.
- 5. para_count.py 文件: 精细统计模型每一层的参数量。

第 3 节 实验设置

3.1. 数据增广

此项目的数据增广在常规图像变化的基础上增加了 Cutmix 增强方法。详见以下论文。

CutMix 是一种数据增强技术,旨在提升网络的泛化性能。CutMix 的主要思想是在训练图像之间剪切并粘贴图像块,同时按比例混合相应的标签。此方法有助于模型从更多样化的训练样本中学习,从而提高其鲁棒性和性能。

CutMix 的原理包括两个主要步骤:从一张图像中剪切出一个块并将其粘贴到另一张图像上,然后按比例调整两张图像的标签。具体来说,对于两张图像 x_A 和 x_B 及其对应的标签 y_A 和 y_B ,新的图像 \tilde{x} 和标签 \tilde{y} 的生成方式如下:

$$\tilde{x} = M \odot x_A + (1 - M) \odot x_B \tag{2.1}$$

$$\tilde{y} = \lambda y_A + (1 - \lambda)y_B \tag{2.2}$$

其中,M 是一个二进制掩码,表示图像块的应用位置, \odot 表示元素级乘法, $\lambda \in [0,1]$ 是表示原始图像保留比例的随机变量,通常从 Beta 分布中采样。

图 2.1: Cutmix 与其他混合增强方法的对比

CutMix 已被证明能通过以下几方面增强深度学习模型的性能:

• 提高泛化性能:通过使模型暴露于更广泛的图像变体,CutMix 有助于防止过拟合,从而提高在未见数据上的泛化性能。

第二章 在 CIFAR-100 数据集上比较基于 TRANSFORMER 和 CNN 的图像分类模型6

- 正则化:该技术类似于 dropout,通过引入随机性防止模型过度依赖特定特征,起到正则化的作用。
- 标签平滑:标签混合有助于模型学习更柔和的标签,这对于分类任务中类间界限不明确的情况尤为有益。

实验证明,与传统的数据增强技术相比,使用 CutMix 训练的模型在准确率和对抗攻击的鲁棒性方面表现更佳。

CutMix 的实现包括以下步骤:

- 1. 随机选择两张图像: 从训练集中选择两张图像 x_A 和 x_B 及其对应的标签 y_A 和 y_B 。
- 2. 生成二进制掩码:通过在第一张图像中选择一个随机矩形区域,并将该区域对应的第二张图像的部分设为零,创建一个二进制掩码 M。
- 3. 应用 CutMix: 使用二进制掩码组合两张图像, 创建新的训练样本。根据掩码区域的面积按比例调整标签。
- 4. 更新训练数据: 使用新的图像和标签作为训练过程的一部分。

在本项目的实现中,函数 rand_bbox 用于生成随机边界框,而 cutmix 函数则将 CutMix 增强应用于一批图像。在训练函数每次载入小批量数据时,我们调用 cutmix 函数。

3.2. 模型选择

本项目采用的 CNN 架构是 resnet 架构,具体采用了 resnet18 架构,也可以改为更大的 resnet 架构。

本项目采用的 Transformer 架构是经典的 ViT(Vision Transformer) 架构。详见以下论文:

图 2.2: ViT 架构

ViT 是一种将 Transformer 应用于图像分类任务的新型架构。Transformer 最初在自然语言处理(NLP)任务中取得了巨大成功,ViT 则将其应用于计算机视觉领域,通过将图像划分为一系列图像块(patch),并将这些图像块视为序列数据进行处理。ViT 在许多图像分类任务上表现出色,特别是在大型数据集上。

ViT 的核心思想是将图像分割成固定大小的图像块,然后将这些图像块展平并嵌入到更高维度的向量空间中。每个图像块通过线性变换被映射为一个特征向量,这些特征向量连同位置编码一起作为 Transformer 编码器的输入。

具体步骤如下:

- 1. 图像分割:将输入图像 $x \in \mathbb{R}^{H \times W \times C}$ 划分为 N 个不重叠的图像块,每个图像块的大小为 $P \times P$,因此 $N = \frac{HW}{P^2}$ 。
- 2. 图像块展平和嵌入:将每个图像块展平并通过线性变换映射到 d 维特征向量,得到 $z_0 \in \mathbb{R}^{N \times d}$ 。
- 3. 位置编码:为每个图像块添加位置编码,以保留空间位置信息,位置编码与特征向量相加形成最终输入 $z_0 + E_{pos}$ 。
- 4. Transformer 编码器:将上述输入序列传递给标准的 Transformer 编码器,编码器由多层自注意力机制和前馈神经网络组成。
- 5. 分类:使用分类标记(class token)作为输入序列的一部分,通过 Transformer 编码器的输出进行图像分类。

第二章 在 CIFAR-100 数据集上比较基于 TRANSFORMER 和 CNN 的图像分类模型8

ViT 在大型数据集上的表现优异,并且在参数数量相近的情况下,能够比传统卷积神经 网络取得更好的性能。其主要优势包括:

- 灵活性: ViT 能够处理不同分辨率和大小的图像,只需调整图像块的大小即可。
- 全局信息: 自注意力机制能够捕捉图像中的全局信息, 而不是局限于局部感受野。
- 可扩展性: ViT 能够轻松扩展到更大的模型尺寸和更多的参数,从而进一步提高性能。

然而, ViT 的一个主要挑战是在小型数据集上容易过拟合, 因此在使用 ViT 时, 通常需要预训练模型或更强的数据增强技术(如 Cutmix)。

3.3. 模型参数量估计

ResNet 的分类头输出维数是 100, resnet18 模型的参数量统计为: 11227812。

在我们的 ViT 模型中,image_size=32 表示输入图像的尺寸为 32x32 像素;patch_size=4 表示将图像划分为 4x4 像素的 patch,因此一个 32x32 的图像将被划分为 64 个 patch;num_classes=100 表示模型需要进行 100 类分类;dim=192 表示每个 patch 嵌入到一个 192 维的向量空间;depth=25 表示模型包含 25 层 Transformer 编码器块;heads=6 表示每个自注意力层包含 6 个独立的注意力头;mlp_dim=384 表示前馈神经网络的隐藏层维度为 384。ViT 模型的参数统计为:11139844.

更细致的统计见附录 A。

3.4. 优化器设置

两种架构的优化器都选择 Adam 优化器。除学习率和权重衰退以外,其余参数都为默认参数。

第 4 节 调参结果

本实验调节两个参数以尽可能提高模型性能:学习率 lr 和权重衰退 weight_decay. 经过多轮调参,最终确定 resnet18 的 lr 为 1e-3, weight_decay 为 0. ViT 的 lr 为 4e-4, weight_decay 为 1e-5.

第 5 节 实验结果

5.1. 数据分析

以下图片中, 橙线都是 resnet18 网络的数据曲线, 蓝线都是 ViT 网络的数据曲线.

图 2.3: 准确率对比

可以看出两个模型的准确率在训练的过程中不断上升,并且都没有饱和,理论上如果训练更长时间,两者都能获得更好的效果。训练初始阶段 resnet18 性能更好,约 30个 epoch 左右被 ViT 超越。resnet18的最终验证集准确率为 57.88%, ViT 的最终验证集准确率为 65.53%.

图 2.4: 损失函数对比

两个模型的损失函数值也逐渐下降,初始时 resnet18 下降更快,但随后被 ViT 超越。

5.2. 结论

以上实验结果一定程度上验证了 ViT 原论文中的结论,即 ViT 虽然在较小的数据集上性能不如 CNN 网络,但在更大的数据集上,ViT 的性能可以超越 CNN 架构。在我们的实验中,可以认为训练轮数较少等价于数据集较小,因此随着训练的进行,模型学习的数据量增多,ViT 的性能逐渐超越 resnet18.

以下是 ViT 原论文中两种模型的性能对比,其中 BiT 是一种基于 CNN 的模型架构,灰色区域是其架构的性能范围,随着数据量的增加,ViT 的性能增加比 BiT 更多。

图 2.5: 数据集大小与模型性能的关系

ViT 由于其较复杂的结构,在小数据集和短期训练中容易过拟合,导致其性能不如 resnet18。但随着训练数据量的增加,ViT 能够更好地利用其全局注意力机制,捕捉数据中的长距离依赖关系,从而逐渐提升其性能。在相同训练策略下,ViT 需要更多的训练时间和数据量来展现其优势。因此,在实际应用中,为了充分发挥 ViT 的潜力,通常需要结合大规模数据集或进行预训练。对于数据量有限的任务,resnet18 等传统 CNN 架构依然是有效的选择。而对于数据量充足的任务,ViT 则展现出更强的性能和泛化能力。

第三章 基于 NeRF 的物体重建和新视图合成 3

第 1 节 任务描述

- 1. 选取身边的物体拍摄多角度图片/视频,并使用 COLMAP 估计相机参数,随后使用现成的框架进行训练;
- 2. 基于训练好的 NeRF 渲染环绕物体的视频,并在预留的测试图片上评价定量结果。

第 2 节 项目架构

第 3 节 实验设置

第 4 节 实验结果

附录 A ResNet18 和 ViT 的模型参数量精细统计

可以运行 task2_Transformer_vs_CNN 文件夹中的 para_count.py 文件来统计模型参数。以下是统计结果:

	25 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7		
1	ResNet-18 Architecture and Parameters:		
2	Layer	Shape	Params
3			
4	conv1.weight	[64, 3, 7, 7]	9408
5	bn1.weight	[64]	64
6	bn1.bias	[64]	64
7	layer1.0.conv1.weight	[64, 64, 3, 3]	36864
8	layer1.0.bn1.weight	[64]	64
9	layer1.0.bn1.bias	[64]	64
10	layer1.0.conv2.weight	[64, 64, 3, 3]	36864
11	layer1.0.bn2.weight	[64]	64
12	layer1.0.bn2.bias	[64]	64
13	layer1.1.conv1.weight	[64, 64, 3, 3]	36864
14	layer1.1.bn1.weight	[64]	64
15	layer1.1.bn1.bias	[64]	64
16	layer1.1.conv2.weight	[64, 64, 3, 3]	36864
17	layer1.1.bn2.weight	[64]	64
18	layer1.1.bn2.bias	[64]	64
19	layer2.0.conv1.weight	[128, 64, 3, 3]	73728
20	layer2.0.bn1.weight	[128]	128
21	layer2.0.bn1.bias	[128]	128
22	layer2.0.conv2.weight	[128, 128, 3, 3]	147456
23	layer2.0.bn2.weight	[128]	128
24	layer2.0.bn2.bias	[128]	128
25	layer2.0.downsample.0.weight	[128, 64, 1, 1]	8192
26	layer2.0.downsample.1.weight	[128]	128
27	layer2.0.downsample.1.bias	[128]	128
28	layer2.1.conv1.weight	[128, 128, 3, 3]	147456
29	layer2.1.bn1.weight	[128]	128
30	layer2.1.bn1.bias	[128]	128
31	layer2.1.conv2.weight	[128, 128, 3, 3]	147456
32	layer2.1.bn2.weight	[128]	128

33	layer2.1.bn2.bias	[128]	128
34	layer3.0.conv1.weight	[256, 128, 3, 3]	294912
35	layer3.0.bn1.weight	[256]	256
36	layer3.0.bn1.bias	[256]	256
37	layer3.0.conv2.weight	[256, 256, 3, 3]	589824
38	layer3.0.bn2.weight	[256]	256
39	layer3.0.bn2.bias	[256]	256
40	layer3.0.downsample.0.weight	[256, 128, 1, 1]	32768
41	layer3.0.downsample.1.weight	[256]	256
42	layer3.0.downsample.1.bias	[256]	256
43	layer3.1.conv1.weight	[256, 256, 3, 3]	589824
44	layer3.1.bn1.weight	[256]	256
45	layer3.1.bn1.bias	[256]	256
46	layer3.1.conv2.weight	[256, 256, 3, 3]	589824
47	layer3.1.bn2.weight	[256]	256
48	layer3.1.bn2.bias	[256]	256
49	layer4.0.conv1.weight	[512, 256, 3, 3]	1179648
50	layer4.0.bn1.weight	[512]	512
51	layer4.0.bn1.bias	[512]	512
52	layer4.0.conv2.weight	[512, 512, 3, 3]	2359296
53	layer4.0.bn2.weight	[512]	512
54	layer4.0.bn2.bias	[512]	512
55	layer4.0.downsample.0.weight	[512, 256, 1, 1]	131072
56	layer4.0.downsample.1.weight	[512]	512
57	layer4.0.downsample.1.bias	[512]	512
58	layer4.1.conv1.weight	[512, 512, 3, 3]	2359296
59	layer4.1.bn1.weight	[512]	512
60	layer4.1.bn1.bias	[512]	512
61	layer4.1.conv2.weight	[512, 512, 3, 3]	2359296
62	layer4.1.bn2.weight	[512]	512
63	layer4.1.bn2.bias	[512]	512
64	fc.weight	[100, 512]	51200
65	fc.bias	[100]	100
66			=====
67	Total Parameters: 11227812		
68			
69	ViT Architecture and Parameters:		
70	Layer	Shape	Params
71			=====
72	pos_embedding	[1, 65, 192]	12480

79	-2 - 1-2	[4 4 400]	100
73	cls_token	[1, 1, 192]	192
74	to_patch_embedding.1.weight	[48]	48
75	to_patch_embedding.1.bias	[48]	48
76 	to_patch_embedding.2.weight	[192, 48]	9216
77	to_patch_embedding.2.bias	[192]	192
78	to_patch_embedding.3.weight	[192]	192
79	to_patch_embedding.3.bias	[192]	192
80	transformer.norm.weight	[192]	192
81	transformer.norm.bias	[192]	192
82	transformer.layers.0.0.norm.weight	[192]	192
83	transformer.layers.0.0.norm.bias	[192]	192
84	transformer.layers.0.0.to_qkv.weight	[1152, 192]	221184
85	transformer.layers.0.0.to_out.0.weight	[192, 384]	73728
86	transformer.layers.0.0.to_out.0.bias	[192]	192
87	transformer.layers.0.1.net.0.weight	[192]	192
88	transformer.layers.0.1.net.0.bias	[192]	192
89	transformer.layers.0.1.net.1.weight	[384, 192]	73728
90	transformer.layers.0.1.net.1.bias	[384]	384
91	transformer.layers.0.1.net.4.weight	[192, 384]	73728
92	transformer.layers.0.1.net.4.bias	[192]	192
93	transformer.layers.1.0.norm.weight	[192]	192
94	transformer.layers.1.0.norm.bias	[192]	192
95	transformer.layers.1.0.to_qkv.weight	[1152, 192]	221184
96	transformer.layers.1.0.to_out.0.weight	[192, 384]	73728
97	transformer.layers.1.0.to_out.0.bias	[192]	192
98	transformer.layers.1.1.net.0.weight	[192]	192
99	transformer.layers.1.1.net.0.bias	[192]	192
100	transformer.layers.1.1.net.1.weight	[384, 192]	73728
101	transformer.layers.1.1.net.1.bias	[384]	384
102	transformer.layers.1.1.net.4.weight	[192, 384]	73728
103	transformer.layers.1.1.net.4.bias	[192]	192
104	transformer.layers.2.0.norm.weight	[192]	192
105	transformer.layers.2.0.norm.bias	[192]	192
106	transformer.layers.2.0.to_qkv.weight	[1152, 192]	221184
107	transformer.layers.2.0.to_out.0.weight	[192, 384]	73728
108	transformer.layers.2.0.to_out.0.bias	[192]	192
109	transformer.layers.2.1.net.0.weight	[192]	192
110	transformer.layers.2.1.net.0.bias	[192]	192
111	transformer.layers.2.1.net.1.weight	[384, 192]	73728
112	transformer.layers.2.1.net.1.bias	[384]	384
	·		

113	transformer.layers.2.1.net.4.weight	[192, 384]	73728
114	transformer.layers.2.1.net.4.bias	[192]	192
115	transformer.layers.3.0.norm.weight	[192]	192
116	transformer.layers.3.0.norm.bias	[192]	192
117	transformer.layers.3.0.to_qkv.weight	[1152, 192]	221184
118	transformer.layers.3.0.to_out.0.weight	[192, 384]	73728
119	transformer.layers.3.0.to_out.0.bias	[192]	192
120	transformer.layers.3.1.net.0.weight	[192]	192
121	transformer.layers.3.1.net.0.bias	[192]	192
122	transformer.layers.3.1.net.1.weight	[384, 192]	73728
123	transformer.layers.3.1.net.1.bias	[384]	384
124	transformer.layers.3.1.net.4.weight	[192, 384]	73728
125	transformer.layers.3.1.net.4.bias	[192]	192
126	transformer.layers.4.0.norm.weight	[192]	192
127	transformer.layers.4.0.norm.bias	[192]	192
128	transformer.layers.4.0.to_qkv.weight	[1152, 192]	221184
129	transformer.layers.4.0.to_out.0.weight	[192, 384]	73728
130	transformer.layers.4.0.to_out.0.bias	[192]	192
131	transformer.layers.4.1.net.0.weight	[192]	192
132	transformer.layers.4.1.net.0.bias	[192]	192
133	transformer.layers.4.1.net.1.weight	[384, 192]	73728
134	transformer.layers.4.1.net.1.bias	[384]	384
135	transformer.layers.4.1.net.4.weight	[192, 384]	73728
136	transformer.layers.4.1.net.4.bias	[192]	192
137	transformer.layers.5.0.norm.weight	[192]	192
138	transformer.layers.5.0.norm.bias	[192]	192
139	transformer.layers.5.0.to_qkv.weight	[1152, 192]	221184
140	transformer.layers.5.0.to_out.0.weight	[192, 384]	73728
141	transformer.layers.5.0.to_out.0.bias	[192]	192
142	transformer.layers.5.1.net.0.weight	[192]	192
143	transformer.layers.5.1.net.0.bias	[192]	192
144	transformer.layers.5.1.net.1.weight	[384, 192]	73728
145	transformer.layers.5.1.net.1.bias	[384]	384
146	transformer.layers.5.1.net.4.weight	[192, 384]	73728
147	transformer.layers.5.1.net.4.bias	[192]	192
148	transformer.layers.6.0.norm.weight	[192]	192
149	transformer.layers.6.0.norm.bias	[192]	192
150	transformer.layers.6.0.to_qkv.weight	[1152, 192]	221184
151	transformer.layers.6.0.to_out.0.weight	[192, 384]	73728
152	transformer.layers.6.0.to_out.0.bias	[192]	192

153	transformer.layers.6.1.net.0.weight	[192]	192
154	transformer.layers.6.1.net.0.bias	[192]	192
155	transformer.layers.6.1.net.1.weight	[384, 192]	73728
156	transformer.layers.6.1.net.1.bias	[384]	384
157	transformer.layers.6.1.net.4.weight	[192, 384]	73728
158	transformer.layers.6.1.net.4.bias	[192]	192
159	transformer.layers.7.0.norm.weight	[192]	192
160	transformer.layers.7.0.norm.bias	[192]	192
161	transformer.layers.7.0.to_qkv.weight	[1152, 192]	221184
162	transformer.layers.7.0.to_out.0.weight	[192, 384]	73728
163	transformer.layers.7.0.to_out.0.bias	[192]	192
164	transformer.layers.7.1.net.0.weight	[192]	192
165	transformer.layers.7.1.net.0.bias	[192]	192
166	transformer.layers.7.1.net.1.weight	[384, 192]	73728
167	transformer.layers.7.1.net.1.bias	[384]	384
168	transformer.layers.7.1.net.4.weight	[192, 384]	73728
169	transformer.layers.7.1.net.4.bias	[192]	192
170	transformer.layers.8.0.norm.weight	[192]	192
171	transformer.layers.8.0.norm.bias	[192]	192
172	transformer.layers.8.0.to_qkv.weight	[1152, 192]	221184
173	transformer.layers.8.0.to_out.0.weight	[192, 384]	73728
174	transformer.layers.8.0.to_out.0.bias	[192]	192
175	transformer.layers.8.1.net.0.weight	[192]	192
176	transformer.layers.8.1.net.0.bias	[192]	192
177	transformer.layers.8.1.net.1.weight	[384, 192]	73728
178	transformer.layers.8.1.net.1.bias	[384]	384
179	transformer.layers.8.1.net.4.weight	[192, 384]	73728
180	transformer.layers.8.1.net.4.bias	[192]	192
181	transformer.layers.9.0.norm.weight	[192]	192
182	transformer.layers.9.0.norm.bias	[192]	192
183	transformer.layers.9.0.to_qkv.weight	[1152, 192]	221184
184	transformer.layers.9.0.to_out.0.weight	[192, 384]	73728
185	transformer.layers.9.0.to_out.0.bias	[192]	192
186	transformer.layers.9.1.net.0.weight	[192]	192
187	transformer.layers.9.1.net.0.bias	[192]	192
188	transformer.layers.9.1.net.1.weight	[384, 192]	73728
189	transformer.layers.9.1.net.1.bias	[384]	384
190	transformer.layers.9.1.net.4.weight	[192, 384]	73728
191	transformer.layers.9.1.net.4.bias	[192]	192
192	transformer.layers.10.0.norm.weight	[192]	192

193	transformer.layers.10.0.norm.bias	[192]	192
194	transformer.layers.10.0.to_qkv.weight	[1152, 192]	221184
195	transformer.layers.10.0.to_out.0.weight	[192, 384]	73728
196	transformer.layers.10.0.to_out.0.bias	[192]	192
197	transformer.layers.10.1.net.0.weight	[192]	192
198	transformer.layers.10.1.net.0.bias	[192]	192
199	transformer.layers.10.1.net.1.weight	[384, 192]	73728
200	transformer.layers.10.1.net.1.bias	[384]	384
201	transformer.layers.10.1.net.4.weight	[192, 384]	73728
202	transformer.layers.10.1.net.4.bias	[192]	192
203	transformer.layers.11.0.norm.weight	[192]	192
204	transformer.layers.11.0.norm.bias	[192]	192
205	transformer.layers.11.0.to_qkv.weight	[1152, 192]	221184
206	transformer.layers.11.0.to_out.0.weight	[192, 384]	73728
207	transformer.layers.11.0.to_out.0.bias	[192]	192
208	transformer.layers.11.1.net.0.weight	[192]	192
209	transformer.layers.11.1.net.0.bias	[192]	192
210	transformer.layers.11.1.net.1.weight	[384, 192]	73728
211	transformer.layers.11.1.net.1.bias	[384]	384
212	transformer.layers.11.1.net.4.weight	[192, 384]	73728
213	transformer.layers.11.1.net.4.bias	[192]	192
214	transformer.layers.12.0.norm.weight	[192]	192
215	transformer.layers.12.0.norm.bias	[192]	192
216	transformer.layers.12.0.to_qkv.weight	[1152, 192]	221184
217	transformer.layers.12.0.to_out.0.weight	[192, 384]	73728
218	transformer.layers.12.0.to_out.0.bias	[192]	192
219	transformer.layers.12.1.net.0.weight	[192]	192
220	transformer.layers.12.1.net.0.bias	[192]	192
221	transformer.layers.12.1.net.1.weight	[384, 192]	73728
222	transformer.layers.12.1.net.1.bias	[384]	384
223	transformer.layers.12.1.net.4.weight	[192, 384]	73728
224	transformer.layers.12.1.net.4.bias	[192]	192
225	transformer.layers.13.0.norm.weight	[192]	192
226	transformer.layers.13.0.norm.bias	[192]	192
227	transformer.layers.13.0.to_qkv.weight	[1152, 192]	221184
228	transformer.layers.13.0.to_out.0.weight	[192, 384]	73728
229	transformer.layers.13.0.to_out.0.bias	[192]	192
230	transformer.layers.13.1.net.0.weight	[192]	192
231	transformer.layers.13.1.net.0.bias	[192]	192
232	transformer.layers.13.1.net.1.weight	[384, 192]	73728

233	transformer.layers.13.1.net.1.bias	[384]	384
234	transformer.layers.13.1.net.4.weight	[192, 384]	73728
235	transformer.layers.13.1.net.4.bias	[192]	192
236	transformer.layers.14.0.norm.weight	[192]	192
237	transformer.layers.14.0.norm.bias	[192]	192
238	transformer.layers.14.0.to_qkv.weight	[1152, 192]	221184
239	transformer.layers.14.0.to_out.0.weight	[192, 384]	73728
240	transformer.layers.14.0.to_out.0.bias	[192]	192
241	transformer.layers.14.1.net.0.weight	[192]	192
242	transformer.layers.14.1.net.0.bias	[192]	192
243	transformer.layers.14.1.net.1.weight	[384, 192]	73728
244	transformer.layers.14.1.net.1.bias	[384]	384
245	transformer.layers.14.1.net.4.weight	[192, 384]	73728
246	transformer.layers.14.1.net.4.bias	[192]	192
247	transformer.layers.15.0.norm.weight	[192]	192
248	transformer.layers.15.0.norm.bias	[192]	192
249	transformer.layers.15.0.to_qkv.weight	[1152, 192]	221184
250	transformer.layers.15.0.to_out.0.weight	[192, 384]	73728
251	transformer.layers.15.0.to_out.0.bias	[192]	192
252	transformer.layers.15.1.net.0.weight	[192]	192
253	transformer.layers.15.1.net.0.bias	[192]	192
254	transformer.layers.15.1.net.1.weight	[384, 192]	73728
255	transformer.layers.15.1.net.1.bias	[384]	384
256	transformer.layers.15.1.net.4.weight	[192, 384]	73728
257	transformer.layers.15.1.net.4.bias	[192]	192
258	transformer.layers.16.0.norm.weight	[192]	192
259	transformer.layers.16.0.norm.bias	[192]	192
260	transformer.layers.16.0.to_qkv.weight	[1152, 192]	221184
261	transformer.layers.16.0.to_out.0.weight	[192, 384]	73728
262	transformer.layers.16.0.to_out.0.bias	[192]	192
263	transformer.layers.16.1.net.0.weight	[192]	192
264	transformer.layers.16.1.net.0.bias	[192]	192
265	transformer.layers.16.1.net.1.weight	[384, 192]	73728
266	transformer.layers.16.1.net.1.bias	[384]	384
267	transformer.layers.16.1.net.4.weight	[192, 384]	73728
268	transformer.layers.16.1.net.4.bias	[192]	192
269	transformer.layers.17.0.norm.weight	[192]	192
270	transformer.layers.17.0.norm.bias	[192]	192
271	transformer.layers.17.0.to_qkv.weight	[1152, 192]	221184
272	transformer.layers.17.0.to_out.0.weight	[192, 384]	73728

273	transformer.layers.17.0.to_out.0.bias	[192]	192
274	transformer.layers.17.1.net.0.weight	[192]	192
275	transformer.layers.17.1.net.0.bias	[192]	192
276	transformer.layers.17.1.net.1.weight	[384, 192]	73728
277	transformer.layers.17.1.net.1.bias	[384]	384
278	transformer.layers.17.1.net.4.weight	[192, 384]	73728
279	transformer.layers.17.1.net.4.bias	[192]	192
280	transformer.layers.18.0.norm.weight	[192]	192
281	transformer.layers.18.0.norm.bias	[192]	192
282	transformer.layers.18.0.to_qkv.weight	[1152, 192]	221184
283	transformer.layers.18.0.to_out.0.weight	[192, 384]	73728
284	transformer.layers.18.0.to_out.0.bias	[192]	192
285	transformer.layers.18.1.net.0.weight	[192]	192
286	transformer.layers.18.1.net.0.bias	[192]	192
287	transformer.layers.18.1.net.1.weight	[384, 192]	73728
288	transformer.layers.18.1.net.1.bias	[384]	384
289	transformer.layers.18.1.net.4.weight	[192, 384]	73728
290	transformer.layers.18.1.net.4.bias	[192]	192
291	transformer.layers.19.0.norm.weight	[192]	192
292	transformer.layers.19.0.norm.bias	[192]	192
293	transformer.layers.19.0.to_qkv.weight	[1152, 192]	221184
294	transformer.layers.19.0.to_out.0.weight	[192, 384]	73728
295	transformer.layers.19.0.to_out.0.bias	[192]	192
296	transformer.layers.19.1.net.0.weight	[192]	192
297	transformer.layers.19.1.net.0.bias	[192]	192
298	transformer.layers.19.1.net.1.weight	[384, 192]	73728
299	transformer.layers.19.1.net.1.bias	[384]	384
300	transformer.layers.19.1.net.4.weight	[192, 384]	73728
301	transformer.layers.19.1.net.4.bias	[192]	192
302	transformer.layers.20.0.norm.weight	[192]	192
303	transformer.layers.20.0.norm.bias	[192]	192
304	transformer.layers.20.0.to_qkv.weight	[1152, 192]	221184
305	transformer.layers.20.0.to_out.0.weight	[192, 384]	73728
306	transformer.layers.20.0.to_out.0.bias	[192]	192
307	transformer.layers.20.1.net.0.weight	[192]	192
308	transformer.layers.20.1.net.0.bias	[192]	192
309	transformer.layers.20.1.net.1.weight	[384, 192]	73728
310	transformer.layers.20.1.net.1.bias	[384]	384
311	transformer.layers.20.1.net.4.weight	[192, 384]	73728
312	transformer.layers.20.1.net.4.bias	[192]	192

313	transformer.layers.21.0.norm.weight	[192]	192
314	transformer.layers.21.0.norm.bias	[192]	192
315	transformer.layers.21.0.to_qkv.weight	[1152, 192]	221184
316	transformer.layers.21.0.to_out.0.weight	[192, 384]	73728
317	transformer.layers.21.0.to_out.0.bias	[192]	192
318	transformer.layers.21.1.net.0.weight	[192]	192
319	transformer.layers.21.1.net.0.bias	[192]	192
320	transformer.layers.21.1.net.1.weight	[384, 192]	73728
321	transformer.layers.21.1.net.1.bias	[384]	384
322	transformer.layers.21.1.net.4.weight	[192, 384]	73728
323	transformer.layers.21.1.net.4.bias	[192]	192
324	transformer.layers.22.0.norm.weight	[192]	192
325	transformer.layers.22.0.norm.bias	[192]	192
326	transformer.layers.22.0.to_qkv.weight	[1152, 192]	221184
327	transformer.layers.22.0.to_out.0.weight	[192, 384]	73728
328	transformer.layers.22.0.to_out.0.bias	[192]	192
329	transformer.layers.22.1.net.0.weight	[192]	192
330	transformer.layers.22.1.net.0.bias	[192]	192
331	transformer.layers.22.1.net.1.weight	[384, 192]	73728
332	transformer.layers.22.1.net.1.bias	[384]	384
333	transformer.layers.22.1.net.4.weight	[192, 384]	73728
334	transformer.layers.22.1.net.4.bias	[192]	192
335	transformer.layers.23.0.norm.weight	[192]	192
336	transformer.layers.23.0.norm.bias	[192]	192
337	transformer.layers.23.0.to_qkv.weight	[1152, 192]	221184
338	transformer.layers.23.0.to_out.0.weight	[192, 384]	73728
339	transformer.layers.23.0.to_out.0.bias	[192]	192
340	transformer.layers.23.1.net.0.weight	[192]	192
341	transformer.layers.23.1.net.0.bias	[192]	192
342	transformer.layers.23.1.net.1.weight	[384, 192]	73728
343	transformer.layers.23.1.net.1.bias	[384]	384
344	transformer.layers.23.1.net.4.weight	[192, 384]	73728
345	transformer.layers.23.1.net.4.bias	[192]	192
346	transformer.layers.24.0.norm.weight	[192]	192
347	transformer.layers.24.0.norm.bias	[192]	192
348	transformer.layers.24.0.to_qkv.weight	[1152, 192]	221184
349	transformer.layers.24.0.to_out.0.weight	[192, 384]	73728
350	transformer.layers.24.0.to_out.0.bias	[192]	192
351	transformer.layers.24.1.net.0.weight	[192]	192
352	transformer.layers.24.1.net.0.bias	[192]	192

353	transformer.layers.24.1.net.1.weight	[384, 192]	73728
354	transformer.layers.24.1.net.1.bias	[384]	384
355	transformer.layers.24.1.net.4.weight	[192, 384]	73728
356	transformer.layers.24.1.net.4.bias	[192]	192
357	mlp_head.weight	[100, 192]	19200
358	mlp_head.bias	[100]	100
359			
360	Total Parameters: 11139844		