Claims

1. A compound of the formula

$$R^{3}$$
 R^{4} R^{10} R^{5} R^{1} $R^{$

in which

R¹ and R² are independently of one another phenyl which is optionally substituted by radicals selected from the group of halogen, cyano, trifluoromethyl, trifluoromethoxy, C₁-C₆-alkyl, C₃-C₈-cycloalkyl, C₁-C₆-alkoxy and C₁-C₆-alkylthio,

R³ and R⁴ are independently of one another hydrogen, C₁-C₆-alkyl or C₃-C₈-cycloalkyl, which are optionally substituted by hydroxy,

m is 1 or 2,

R⁵ is hydrogen,

or a radical of the formula CO-NR⁶R⁷ in which

R⁶ and R⁷ are independently of one another hydrogen, C₁-C₆-alkyl, C₃-C₈-cycloalkyl, benzyl, phenethyl, phenyl or 5- to 6-membered heteroaryl, where C₁-C₆-alkyl, C₃-C₈-cycloalkyl, phenyl or 5- to 6-membered heteroaryl are optionally substituted by radicals independently of one another selected from the group of hydroxy, halogen, C₁-C₆-alkylamino, aminosulfonyl, aminocarbonyl, cyano, formamido,

10

5

15

20

acetamido, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_3 - C_8 -cycloalkyl, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl and 5- to 6-membered heteroaryl, and

benzyl and phenethyl are optionally substituted by radicals independently of one another selected from the group of hydroxy, halogen, aminocarbonyl, C_1 - C_6 -alkylamino, aminosulfonyl, cyano, formamido, acetamido, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_3 - C_8 -cycloalkyl and 5- to 6-membered heteroaryl,

10

5

or in which

the group NR⁶R⁷

15

is a 4- to 10-membered heterocyclyl radical which is linked via the nitrogen atom and which is optionally substituted by radicals independently of one another selected from the group of C₁-C₆-alkyl, C₁-C₆-alkoxy, 1,3-dioxapropane-1,3-diyl, 1,4-dioxabutane-1,4-diyl, oxo, C₃-C₈-cycloalkyl, hydroxy, halogen, cyano, C₁-C₆-alkylcarbonyl, C₃-C₈-cycloalkylcarbonyl, phenylcarbonyl, formamido, aminosulfonyl, C₁-C₆-alkoxycarbonyl, aminocarbonyl, phenyl and 5- to 6-membered heteroaryl,

20

where phenyl is optionally substituted by radicals independently of one another selected from the group of halogen, cyano, trifluoromethyl, trifluoromethoxy, C₁-C₆-alkyl, C₁-C₆-alkoxy and C₁-C₆-alkylsulfonamino, and

C₁-C₆-alkyl is optionally substituted by radicals independently of one another selected from the group of hydroxy, C₁-C₆-alkoxy, phenyl and 5- to 6-membered heteroaryl, and

5

:

 C_1 - C_6 -alkylcarbonyl is optionally substituted by radicals independently of one another selected from the group of hydroxy and C_1 - C_6 -alkoxy,

10

and where 4- to 10-membered heterocyclyl is optionally benzosubstituted,

or

a radical of the formula CO-OR8 in which

15

R⁸ is C₁-C₆-alkyl or C₃-C₈-cycloalkyl, which are optionally substituted by radicals independently of one another selected from the group of hydroxy, halogen, aminosulfonyl, aminocarbonyl, cyano, formamido, acetamido, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₃-C₈-cycloalkyl, C₁-C₆-alkylcarbonyl, phenyl and 5- to 6-membered heteroaryl,

20

or

25

a radical of the formula CO-R9 in which

R⁹ is C₁-C₆-alkyl, C₃-C₈-cycloalkyl, C₆-C₁₀-aryl or 5- to 10-membered heteroaryl, which are optionally substituted by radicals selected from the group of hydroxy, hydroxycarbonyl, halogen, aminosulfonyl, carboxamido, cyano, formamido,

acetamido, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₃-C₈-cycloalkyl, C₁-C₆-alkylcarbonyl, phenyl and 5- to 6-membered heteroaryl,

R¹⁰ is hydrogen or C₁-C₆-alkyl,

5

and the salts, solvates and solvates of the salts thereof.

- 2. A compound of the formula (I) in which
- 10 R¹ and R² are independently of one another phenyl which is optionally substituted by radicals selected from the group of halogen, cyano, trifluoromethyl,
- R³ and R⁴ are independently of one another hydrogen, C₁-C₄-alkyl or C₃-C₆-cycloalkyl, which are optionally substituted by hydroxy,

m is 1 or 2,

R⁵ is hydrogen,

20

30

or

a radical of the formula CO-NR⁶R⁷ in which

- 25 R⁶ is hydrogen, C₁-C₄-alkyl,
 - R⁷ is hydrogen, C₁-C₄-alkyl, C₃-C₆-cycloalkyl, benzyl, phenethyl or phenyl, where C₁-C₄-alkyl, C₃-C₆-cycloalkyl and phenyl are optionally substituted by radicals independently of one another selected from the group of hydroxy, halogen, aminocarbonyl, hydroxycarbonyl, cyano, C₁-C₄-alkylamino, C₁-C₄-alkyl, C₁-

 C_4 -alkoxy, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxycarbonyl and 5- to 6-membered heteroaryl, and

benzyl and phenethyl are optionally substituted by radicals independently of one another selected from the group of hydroxy, halogen, aminocarbonyl, cyano, C_1 - C_4 -alkylamino, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_3 - C_6 -cycloalkyl and 5- to 6-membered heteroaryl,

or in which

the group NR⁶R⁷

is a 5- to 6-membered heterocyclyl radical which is linked via the nitrogen atom and which is optionally substituted by radicals independently of one another selected from the group of C₁-C₄-alkyl, C₁-C₄-alkoxy, 1,3-dioxapropane-1,3-diyl, 1,4-dioxabutane-1,4-diyl, oxo, C₃-C₆-cycloalkyl, hydroxy, halogen, C₁-C₄-alkylcarbonyl, C₃-C₆-cycloalkylcarbonyl, phenylcarbonyl, C₁-C₄-alkoxycarbonyl, phenyl and 5- to 6-membered heteroaryl,

where phenyl is optionally substituted by radicals independently of one another selected from the group of halogen, cyano, trifluoromethyl, trifluoromethoxy, C₁-C₄-alkyl, C₁-C₄-alkoxy and C₁-C₄-alkylsulfonamino, and

C₁-C₄-alkyl is optionally substituted by radicals independently of one another selected from the group of hydroxy and phenyl, and

10

5

15

20

25

 C_1 - C_4 -alkylcarbonyl is optionally substituted by radicals independently of one another selected from the group of hydroxy and C_1 - C_4 -alkoxy,

5

or

a radical of the formula CO-R9 in which

10

is C₁-C₄-alkyl, C₃-C₈-cycloalkyl, phenyl or 5- to 6-membered heteroaryl, which are optionally substituted by radicals selected from the group of hydroxy, hydroxycarbonyl, halogen, cyano, acetamido, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₃-C₆-cycloalkyl, C₁-C₄-alkylcarbonyl, phenyl and 5- to 6-membered heteroaryl,

15

R¹⁰ is hydrogen or C₁-C₄-alkyl,

 R^9

and the salts, solvates and solvates of the salts thereof.

20 3. A compound of the formula (I) in which

- R¹ is phenyl which is optionally substituted by radicals selected from the group of fluorine, chlorine, bromine, cyano, trifluoromethyl,
- 25 R² is phenyl which is optionally substituted by fluorine,
 - R^3 is hydrogen or C_1 - C_4 -alkyl,
 - R⁴ is hydrogen or C₁-C₄-alkyl which is optionally substituted by hydroxy

30

R⁵ is hydrogen,

or

a radical of the formula CO-NR⁶R⁷ in which

5

R⁶ is hydrogen, C₁-C₄-alkyl,

10

R⁷ is C₁-C₄-alkyl, C₃-C₆-cycloalkyl, benzyl, phenethyl or phenyl, where C₁-C₄-alkyl, C₃-C₆-cycloalkyl, and phenyl are optionally substituted by radicals independently of one another selected from the group of hydroxy, fluorine, chlorine, aminocarbonyl, hydroxycarbonyl, cyano, dimethylamino, methoxy, ethoxy, C₁-C₄-alkoxycarbonyl or thienyl, and

15

hydroxycarbonyl, cyano, dimethylamino, methoxy, ethoxy, C₁-C₄-alkoxycarbonyl or thienyl, and benzyl and phenethyl are optionally substituted by radicals independently of one another selected from the group of hydroxy, fluorine, chlorine, aminocarbonyl, cyano, dimethylamino, methoxy, ethoxy or thienyl,

20

or in which

the group NR^6R^7

25

is a 5- to 6-membered heterocyclyl radical which is linked via the nitrogen atom and which is optionally substituted by radicals independently of one another selected from the group of C₁-C₄-alkyl, 1,3-dioxapropane-1,3-diyl, 1,4-dioxabutane-1,4-diyl, oxo, hydroxy, C₁-C₄-alkylcarbonyl, C₃-C₆-cycloalkylcarbonyl, phenylcarbonyl, C₁-C₄-alkoxycarbonyl, phenyl and 6-membered heteroaryl,

where phenyl is optionally substituted by radicals independently of one another selected from the group of fluorine, chlorine, cyano, trifluoromethyl, trifluoromethoxy, C₁-C₄-alkyl, C₁-C₄-alkylsulfonamino, and

5

C₁-C₄-alkyl is optionally substituted by radicals independently of one another selected from the group of hydroxy and phenyl, and

10

 C_1 - C_4 -alkylcarbonyl is optionally substituted by radicals independently of one another selected from the group of hydroxy and methoxy,

or

15

a radical of the formula CO-R9 in which

R⁹ is phenyl,

20

25

 R^{10} is hydrogen or C_1 - C_3 -alkyl,

and the salts, solvates and solvates of the salts thereof.

4. A compound as claimed in claim 1, of the following formula

and the salts, solvates and solvates of the salts thereof.

5. A compound as claimed in claim 1, of the formula

$$R^3$$
 R^2
 $S(O)_m$
 (I)

in which

R¹ and R² are independently of one another phenyl, which is optionally substituted by radicals selected from the group of halogen, cyano, trifluoromethyl, trifluoromethoxy, C₁-C₆-alkyl, C₃-C₈-cycloalkyl, C₁-C₆-alkoxy and C₁-C₆-alkylthio,

5

R³ and R⁴ are independently of one another hydrogen, C₁-C₆-alkyl or C₃-C₈cycloalkyl,

is 1 or 2, m

10

and

 R^5 is hydrogen,

15

is a radical of the formula CO-NR⁶R⁷

in which R⁶ and R⁷ are independently of one another hydrogen, C₁-C₆alkyl, C₃-C₈-cycloalkyl, phenyl or 5- to 6-membered heteroaryl, or

20

in which the group NR⁶R⁷ is a 4- to 10-membered heterocyclyl radical which is linked via a nitrogen atom,

25

where alkyl, cycloalkyl, phenyl, heteroaryl and heterocyclyl are optionally substituted by radicals selected from the group of hydroxy, halogen, aminosulfonyl, carboxamido, cyano, formamido, acetamido, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_3 - C_8 -cycloalkyl, C_1 - C_6 -alkanoyl, phenyl and 5- to 6-membered heteroaryl,

and where heterocyclyl is optionally is benzo-substituted,

30

is a radical of the formula CO-OR8

in which R⁸ is C₁-C₆-alkyl or C₃-C₈-cycloalkyl,

where alkyl and cycloalkyl are optionally substituted by radicals selected from the group of hydroxy, halogen, aminosulfonyl, carboxamido, cyano, formamido, acetamido, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₃-C₈-cycloalkyl, C₁-C₆-alkanoyl, phenyl and 5- to 6-membered heteroaryl,

or

10

5

is a radical of the formula CO-R9,

in which R^9 is C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl, C_6 - C_{10} -aryl or 5- to 10-membered heteroaryl,

15

where alkyl, cycloalkyl, aryl and heteroaryl are optionally substituted by radicals selected from the group of hydroxy, halogen, aminosulfonyl, carboxamido, cyano, formamido, acetamido, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_3 - C_8 -cycloalkyl, C_1 - C_6 -alkanoyl, phenyl and 5-to 6-membered heteroaryl,

20

and the salts, solvates and solvates of the salts thereof.

6. A compound as claimed in claim 1, where

25

R¹ is 2-fluorophenyl which is optionally additionally substituted once to twice by radicals selected from the group of fluorine, chlorine, cyano, trifluoromethyl, methyl and ethyl,

			• .
		R^2	is 4-chlorophenyl which is optionally additionally substituted once to
			twice by radicals selected from the group of fluorine, chlorine, cyano,
			trifluoromethyl, methyl and ethyl,
5		R^3	is hydrogen,
		R ⁴	is hydrogen or C ₁ -C ₄ -alkyl,
10		m	is 1 or 2,
		and	· ·
		R ⁵	is a radical of the formula CO-NR ⁶ R ⁷ ,
15			in which R ⁶ and R ⁷ are independently of one another hydrogen, C ₁ -C ₆ -
			alkyl, C ₃ -C ₈ -cycloalkyl or benzyl,
			or .
20			in which the group NR ⁶ R ⁷
			is pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl, thiomorpholin-1-yl,
			piperazin-1-yl, 4-methylpiperazin-1-yl or 4-ethylpiperazin-1-yl,
		and th	ne salts, solvates and solvates of the salts thereof.
25			
	7.		
		chara	cterized in that
30		[A]	compounds of the formula

$$R^3$$
 R^4
 R^{10}
 R^2
 R^3
 R^4
 R^{10}
 R^1
 R^3
 R^4
 R^{10}
 R^1
 R^2
 R^3
 R^4
 R^{10}
 R^3
 R^4
 R^{10}
 R^{10}

in which R¹ to R⁴ and R¹⁰ have the meanings indicated in claim 1, are first converted with appropriate equivalents of a suitable oxidizing agent such as, for example, peroxides or peracids, preferably metachloroperbenzoic acid (mCPBA) into compounds of the formula

$$R^3$$
 R^4
 R^{10}
 R^2
 R^1
 $S(O)_m$
(Ia),

in which R¹ to R⁴, R¹⁰ and m have the meanings indicated in claim 1,

and the latter are then reacted in an acylation step, where appropriate in the presence of a base, with a compound of the formula

$$R^{5a}-X$$
 (III),

in which

R^{5a} has the meanings indicated above for R⁵ with the exception of hydrogen,

and

X is a suitable leaving group such as, for example, halogen,

5

10

15

or

[B] compounds of the formula (II) are first converted with a compound of the formula (III), where appropriate in the presence of a base, into compounds of the formula

$$R^{3}$$
 R^{2}
 R^{10}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}

in which

10

5

 R^1 to R^4 , R^{5a} and R^{10} have the meanings indicated above and in claim 1,

15

and the latter are then reacted with appropriate equivalents of a suitable oxidizing agent, preferably meta-chloroperbenzoic acid,

or

[C] compounds of the formula

20

$$R^{3}$$
 R^{4} R^{10} OH R^{2} $S(O)_{r}$ $(V),$

in which

R¹ to R⁴ and R¹⁰ have the meanings indicated in claim 1,

and

r is zero, 1 or 2,

are first reacted, where appropriate in the presence of a base, with a compound of the formula

in which

5

10

15

20

Y¹ and Y² are identical or different and are a suitable leaving group such as, for example, halogen, -OCCl₃ or a group of the formula

to give compounds of the formula

$$R^3$$
 R^4
 R^{10}
 R^2
 R^1
 $S(O)_r$
 O
 O
 V^2
 $(VII),$

in which

5

10

15

20

R¹ to R⁴, R¹⁰, r and Y² have the meanings indicated above and in claim 1,

the latter are then, where appropriate in the presence of a base and/or of a suitable catalyst, converted with a compound of the formulae

$$\begin{array}{cccc}
R^6 & & & & & & \\
HN & & & & & & & \\
R^7 & & & & & & \\
(VIII) & & & & & (IX)
\end{array}$$

in which

R⁶, R⁷ and R⁸ have the meanings indicated above,

into compounds of the formulae

$$R^{3}$$
 R^{4}
 R^{10}
 R^{7}
 R^{7}
 R^{10}
 R^{2}
 R^{10}
 R^{10}

in which

 R^{1} to R^{4} , R^{6} to R^{8} , R^{10} and r have the meanings indicated above and in claim 1,

10

15

and the latter are then, where r is zero, reacted with appropriate equivalents of a suitable oxidizing agent, preferably meta-chloroperbenzoic acid,

- and the resulting compounds (I) and (Ia) are converted where appropriate with the appropriate solvents and/or bases or acids into their solvates, salts and/or solvates of the salts.
 - 8. A compound as claimed in claim 1 for the treatment and/or prophylaxis of diseases.
 - 9. A medicament comprising at least one compound as claimed in claim 1 in combination with at least one pharmaceutically acceptable, pharmaceutically acceptable carrier or excipient.
 - 10. The use of compounds as claimed in claim 1 for producing a medicament for the treatment and/or prophylaxis of Alzheimer's disease.
- The medicament as claimed in claim 9 for the treatment and/or prophylaxis of
 Alzheimer's disease.
 - 12. A method for controlling Alzheimer's disease in humans and animals by administering an effective amount of at least one compound as claimed in claim 1.