Notes

December 8, 2014

 f_n converges pointwise to f if $\lim f_n(x) = f(x)$ for all x in the domain of f_n the L^{∞} -norm is $||f||_{\infty} = \sup_{x \in \text{dom } f} |f(x)|$

lebesque

 f_n converges to f uniformally if $\lim ||f_n - f||$

maybe in exam

if $f_n:[a,b]\to\mathbb{R}$ is continuous and $f_n\to f$ uniformally then f is continuous. counterexample is $f_n(x)=x^n$ if $x\in[0,1]$ does not converge uniformally

Lebesque

uniform convergence and integrals

thrm 8.3.1

if $f_n \to f$ is uniform and f_n are Riemann integrable then f is Riemann and $\lim \int_a^b f_n = \int_a^b fkk$

corollary 8.2.2

 $C(K) = \{f : K \to \mathbb{R} \text{ that are continuous}\}$. C(K) is a complete space with the uniform norm, ie every cauchy sequence f_n of functions in C(K) converges to a function in C(K).

example

let $f_n(x) = f(x) + \frac{1}{n}\sin(\frac{x}{n} \in [a, b])$ where $a \neq 0$ error gets smaller and smaller but sin function wildly varies. so $f_n \to f$ is uniform all are continuous. but the f'_n goes nuts. if we want $f_n \to f$ to converge and to preserve derivitives then we need to explicitly require $f'_n \to f'$ be uniform

8.4 series

we say a series of functions converges pointwise (or uniformally) if the partial sums converge pointwise (or uniformly)

power series

a special type of series is the power series. $\sum_{n=0}^{\infty} a_n x^n$. these are easy to study because the ratio test works for them.

for them. $\lim_{n\to\infty} \frac{|a_{n+1}x^{n+1}|}{|a_nx^n|} = \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| |x| \text{ and so it converges if } |x| < \frac{1}{\lim_{n\to\infty} \frac{a_{n+1}}{a_n}}. \text{ check } \frac{x^n}{n!}$

weierstrass-m

power series

hadamard's thrm

given a power series $\sum a_n x^n$ there is R in $[,+\infty) \cup +\infty$ so that the series converges for all x with |x| < R and diverges for all x with |x| > R. moreover the series converges uniformally oneach closedinterval $[a,b] \subset (-R,R)$

$$(-R, R)$$

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} \text{ root test?}$$