

ANALOG Low Power, Rail-to-Rail Output, Precision DEVICES **JFET Amplifiers**

Data Sheet

AD8641/AD8642/AD8643

FEATURES

Low supply current: 250 µA max Very low input bias current: 1 pA max Low offset voltage: 750 µV max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±13 V

Rail-to-rail output Unity-gain stable No phase reversal SC70 package

APPLICATIONS

Line-/battery-powered instruments **Photodiode amplifiers Precision current sensing Medical instrumentation Industrial controls Precision filters** Portable audio **ATE**

GENERAL DESCRIPTION

The AD8641/AD8642/AD8643 are low power, precision JFET input amplifiers featuring extremely low input bias current and rail-to-rail output. The ability to swing nearly rail-to-rail at the input and rail-to-rail at the output enables designers to buffer complementary metal-oxide semiconductor digital-to-analog converters (CMOS DACs), ASICs, and other wide output swing devices in single-supply systems. The outputs remain stable with capacitive loads of more than 500 pF.

The AD8641/AD8642/AD8643 are suitable for applications utilizing multichannel boards that require low power to manage heat. Other applications include photodiodes, ATE reference level drivers, battery management, and industrial controls.

The AD8641/AD8642/AD8643 are fully specified over the extended industrial temperature range of -40° C to $+125^{\circ}$ C. The AD8641 is available in 5-lead SC70 and 8-lead SOIC lead-free packages. The AD8642 is available in 8-lead MSOP and 8-lead SOIC lead-free packages. The AD8643 is available in 14-lead SOIC and 16-lead, 3 mm × 3 mm, LFCSP lead-free packages.

PIN CONFIGURATIONS

Figure 6. 16-Lead LFCSP (CP-16-27) (Not Drawn to Scale)

TABLE OF CONTENTS

Features
Applications1
General Description1
Pin Configurations
Revision History2
Specifications3
Electrical Characteristics
REVISION HISTORY
4/16—Rev. E to Rev. F
Changed CP-16-3 to CP-16-27 Throughou
Changes to Figure 2 and Figure 6
Updated Outline Dimensions
Changes to Ordering Guide
9/11—Rev. D to Rev. E
Changes to Thermal Resistance Section
7/11—Rev. C to Rev. D
Changes to Figure 6
11/10—Rev. B to Rev. C
Changes to Figure 6
Added Thermal Resistance Section and Table 4
Updated Outline Dimensions13
Changes to Ordering Guide15
4/05—Rev. A to Rev. B
Added AD8643Universa
Added 14-Lead SOICUniversa
Added 16-Lead LFCSPUniversa
Updated Outline Dimensions13
Changes to Ordering Guide14

Absolute Maximum Ratings	
Thermal Resistance	
ESD Caution	
Typical Performance Characteristics	
Outline Dimensions	
Ordering Guide	14

3/05—Rev. 0 to Rev. A

Added AD8642	Universal
Changes to General Description	1
Added Figure 3 and Figure 4	1
Changes to Specifications	3
Changes to Absolute Maximum Ratings	5
Changes to Figure 22	8
Changes to Figure 23	9
Changes to Figure 41	12
Updated Outline Dimensions	13
Changes to Ordering Guide	14

10/04—Initial Version: Revision 0

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 V_{S} = 5.0 V, V_{CM} = 2.5 V, T_{A} = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			50	750	μV
		AD8643 LFCSP only			1	mV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			1.5	mV
		$+85^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}, \text{V}_{CM} = 1.5 \text{ V}$			1.6	mV
Input Bias Current	I _B			0.25	1	pА
		-40°C < T _A < +125°C			180	pA
Input Offset Current	los				0.5	pA
·		-40°C < T _A < +125°C			60	pA
Input Voltage Range			0		3	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 2.5 V$	74	93		dB
Large Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega, V_O = 0.5 \text{ to } 4.5 \text{ V}$	80	140		V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C		2.5		μV/°C
OUTPUT CHARACTERISTICS						†
Output Voltage High	V _{OH}		4.95			V
. 5 5		$I_L = 1 \text{ mA}, -40^{\circ}\text{C to } +125^{\circ}\text{C}$	4.94			V
Output Voltage Low	V _{OL}	,			0.05	V
. 5		$I_L = 1 \text{ mA}, -40^{\circ}\text{C to } +125^{\circ}\text{C}$		0.01	0.05	V
Output Current	lout	,		±6		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 5 V \text{ to } 26 V$	90	107		dB
Supply Current/Amplifier	Isy			195	250	μΑ
		-40°C < T _A < +125°C			270	μA
DYNAMIC PERFORMANCE						† '
Slew Rate	SR			2		V/µs
Gain Bandwidth Product	GBP	AD8641, AD8642		3		MHz
		AD8643		2.5		MHz
Phase Margin	Ø _m			50		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _N p-p	f = 0.1 Hz to 10 Hz		4.0		μV p-p
Voltage Noise Density	e _N	f = 1 kHz		28.5		nV/√Hz
Current Noise Density	i _N	f = 1 kHz		0.5		fA/√Hz

AD8641/AD8642/AD8643

 V_{S} = ± 13 V, V_{CM} = 0 V, T_{A} =25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			70	750	μV
		AD8643 LFCSP only			1	mV
		-40°C < T _A < +125°C			1.5	mV
Input Bias Current	I _B			0.25	1	рА
		-40°C < T _A < +125°C			260	рА
Input Offset Current	I _{OS}				0.5	рА
		-40°C < T _A < +125°C			65	рА
Input Voltage Range			-13		+10	٧
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -13 \text{ V to } +10 \text{ V}$	90	107		dB
Large Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega, V_O = -11 \text{ V to } +11 \text{ V}$	215	290		V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$		2.5		μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{он}		+12.95			V
		$I_L = 1 \text{ mA}, -40^{\circ}\text{C to} +125^{\circ}\text{C}$	+12.94			V
Output Voltage Low	V _{OL}				-12.95	٧
		$I_L = 1 \text{ mA}, -40^{\circ}\text{C to} +125^{\circ}\text{C}$			-12.94	٧
Output Current	Іоит			±12		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = \pm 2.5 \text{ V to } \pm 13 \text{ V}$	90	107		dB
Supply Current/Amplifier	Isy			200	290	μΑ
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			330	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR			3		V/µs
Gain Bandwidth Product	GBP			3.5		MHz
Phase Margin	Ø _m			60		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _N p-p	f = 0.1 Hz to 10 Hz		4.2		μV p-p
Voltage Noise Density	e _N	f = 1 kHz		27.5		nV/√Hz
Current Noise Density	i _N	f = 1 kHz		0.5		fA/√Hz

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings apply at 25°C, unless otherwise noted.

Table 3.

Parameter	Rating
Supply Voltage	27.3 V
Input Voltage	VS- to VS+
Differential Input Voltage	±Supply Voltage
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	
KS-5, R-8, RM-8, R-14, CP-16 Packages	−65°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	
KS-5, R-8, RM-8, R-14, CP-16 Packages	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard 4-layer board. For the LFCSP, solder the exposed pad to a copper plane, which should be connected to V+.

Table 4.

Package Type	Ө ЈА	Ө лс	Unit
5-Lead SC70 (KS)	430	149	°C/W
8-Lead SOIC (R)	121	43	°C/W
8-Lead MSOP (RM)	142	45	°C/W
14-Lead SOIC (R)	110	36	°C/W
16-Lead LFCSP (CP)	81	16	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Input Offset Voltage

Figure 8. Offset Voltage Drift

Figure 9. Input Offset Voltage

Figure 10. Offset Voltage Drift

Figure 11. Input Bias Current vs. V_{CM}

Figure 12. Input Bias Current vs. V_{CM}

Figure 13. Input Bias Current vs. Temperature

Figure 14. Input Bias Current vs. V_{CM}

Figure 15. Input Offset Voltage vs. V_{CM}

Figure 16. Input Offset Voltage vs. V_{CM}

Figure 17. Open-Loop Gain vs. Load Resistance

Figure 18. Open-Loop Gain vs. Temperature

Figure 19. Input Error Voltage vs. Output Voltage for Resistive Loads

Figure 20. Input Error Voltage vs. Output Voltage Within 300 mV of Supply Rails

Figure 21. Quiescent Current vs. Supply Voltage at Different Temperatures

Figure 22. Output Saturation Voltage vs. Load Current

Figure 23. Output Saturation Voltage vs. Load Current

Figure 24. Open-Loop Gain and Phase Margin vs. Frequency

Figure 25. Open-Loop Gain and Phase Margin vs. Frequency

Figure 26. Closed-Loop Gain vs. Frequency

Figure 27. Closed-Loop Gain vs. Frequency

Figure 28. CMRR vs. Frequency

Figure 29. CMRR vs. Frequency

Figure 30. PSRR vs. Frequency

Figure 31. PSRR vs. Frequency

Figure 32. Output Impedance vs. Frequency

Figure 33. Output Impedance vs. Frequency

Figure 34. No Phase Reversal

Figure 35. Output Swing and Error vs. Settling Time

Figure 36. Small Signal Overshoot vs. Load Capacitance

Figure 37. Small Signal Overshoot vs. Load Capacitance

Figure 38. 0.1 Hz to 10 Hz Noise

Figure 39. 0.1 Hz to 10 Hz Noise

Figure 40. Voltage Noise Density

Figure 41. Voltage Noise Density

Figure 42. Total Harmonic Distortion + Noise vs. Frequency

Figure 43. Channel Separation

072809-A

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-203-AA

Figure 44. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-5)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 45. 8-Lead Standard Small Outline Package [SOIC_N] (R-8)

Dimensions shown in millimeters and (inches)

Figure 46. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 47. 14-Lead Standard Small Outline Package [SOIC_N] (R-14)Dimensions shown in millimeters and (inches)

3.10 0.30 3.00 SQ 0.25 PIN 1 INDICATOR 2.90 0.20 PIN 1 INDICATOR EXPOSED PAD 1.65 1.50 SQ 1.45 ח ו **1** 0.20 MIN BOTTOM VIEW **TOP VIEW** 0.40 0.30 FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.80 0.75 0.05 MAX 0.70 0.02 NOM COPLANARITY 0.08 SEATING PLANE 0.20 REF 01-26-2012-A

> Figure 48. 16-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-16-27) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
AD8641AKSZ-R2	-40°C to +125°C	5-Lead Thin Shrink Small Outline Transistor Package [SC70]	KS-5	A07
AD8641AKSZ-REEL7	-40°C to +125°C	5-Lead Thin Shrink Small Outline Transistor Package [SC70]	KS-5	A07
AD8641ARZ	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8641ARZ-REEL7	−40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8642ARMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A0A
AD8642ARMZ-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A0A
AD8642ARZ	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8642ARZ-REEL7	−40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8642ARZ-REEL	−40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8643ARZ	-40°C to +125°C	14-Lead Standard Small Outline Package [SOIC_N]	R-14	
AD8643ARZ-REEL7	-40°C to +125°C	14-Lead Standard Small Outline Package [SOIC_N]	R-14	
AD8643ACPZ-R2	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	AUA
AD8643ACPZ-REEL7	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	AUA

¹ Z = RoHS Compliant Part.

NOTES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

AD8641AKSZ-REEL7 AD8641ARZ-REEL7 AD8641AKSZ-R2 AD8641ARZ