Bayes Nets: Construction and Conditional Independence

Outline

- I. Construction of Bayes nets
- II. Conditionally independent relations
- III. Efficient representations of conditional distributions

^{*} Figures are either from the <u>textbook site</u> or by the instructor.

^{*} A few slides are based on lecture notes by Dr. Jin Tian.

$$P(X_i | X_{i-1}, ..., X_1) = P(X_i | Parents(X_i))$$
 for $i = 2, ..., n$

The Bayesian network is correct only if X_i is conditionally independent of any X_i , $1 \le i \le i - 1$, such that $X_i \notin Parents(X_i)$.

$$P(X_i | X_{i-1}, ..., X_1) = P(X_i | Parents(X_i))$$
 for $i = 2, ..., n$

The Bayesian network is correct only if X_i is conditionally independent of any X_i , $1 \le i \le i-1$, such that $X_i \notin Parents(X_i)$.

Construction algorithm

1. Determine the set of variables that are required to model the domain.

$$P(X_i | X_{i-1}, ..., X_1) = P(X_i | Parents(X_i))$$
 for $i = 2, ..., n$

The Bayesian network is correct only if X_i is conditionally independent of any X_i , $1 \le i \le i - 1$, such that $X_i \notin Parents(X_i)$.

Construction algorithm

- 1. Determine the set of variables that are required to model the domain.
- 2. Order them as $X_1, X_2, ..., X_n$.

$$P(X_i | X_{i-1}, ..., X_1) = P(X_i | Parents(X_i))$$
 for $i = 2, ..., n$

The Bayesian network is correct only if X_i is conditionally independent of any X_i , $1 \le i \le i - 1$, such that $X_i \notin Parents(X_i)$.

Construction algorithm

- 1. Determine the set of variables that are required to model the domain.
- 2. Order them as $X_1, X_2, ..., X_n$.

- 3. For i = 1 to n do
 - a) Chose a minimal set of parents for X_i from $X_1, X_2, ..., X_{i-1}$ such that $P(X_i \mid X_{i-1}, ..., X_1) = P(X_i \mid Parents(X_i))$

$$P(X_i | X_{i-1}, ..., X_1) = P(X_i | Parents(X_i))$$
 for $i = 2, ..., n$

The Bayesian network is correct only if X_i is conditionally independent of any X_j , $1 \le j \le i - 1$, such that $X_j \notin Parents(X_i)$.

Construction algorithm

- 1. Determine the set of variables that are required to model the domain.
- 2. Order them as $X_1, X_2, ..., X_n$.

- 3. For i = 1 to n do
 - a) Chose a minimal set of parents for X_i from $X_1, X_2, ..., X_{i-1}$ such that $P(X_i | X_{i-1}, ..., X_1) = P(X_i | Parents(X_i))$
 - b) Add a directed edge from every parent to X_i .

$$P(X_i | X_{i-1}, ..., X_1) = P(X_i | Parents(X_i))$$
 for $i = 2, ..., n$

The Bayesian network is correct only if X_i is conditionally independent of any X_i , $1 \le i \le i-1$, such that $X_i \notin Parents(X_i)$.

Construction algorithm

- 1. Determine the set of variables that are required to model the domain.
- 2. Order them as $X_1, X_2, ..., X_n$.

- 3. For i = 1 to n do
 - a) Chose a minimal set of parents for X_i from $X_1, X_2, ..., X_{i-1}$ such that $P(X_i \mid X_{i-1}, ..., X_1) = P(X_i \mid Parents(X_i))$
 - b) Add a directed edge from every parent to X_i .
 - c) Write down the conditional probability table (CPT), $P(X_i | Parents(X_i))$.

Chosen order: MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

JohnCalls

Chosen order: MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.


```
P(j \mid m) > P(j)
```

// If May calls, that probably means
// the alarm has gone off, which
// makes John more likely to call.

$$P(a \mid m, j) > P(a \mid j), P(a \mid m), P(a)$$

// If both Mary and John call, the alarm // is more likely to go off than if just // one calls.

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

Burglary

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.


```
P(B \mid A, J, M) P(B \mid A)
```

```
// If the value of A (either a or \neg a) is // known, then the call from John or // Mary does not add any information // about burglary.
```


MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

$$P(B \mid A, J, M) = P(B \mid A)$$

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

$$P(B \mid A, J, M) = P(B \mid A)$$

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

$$P(B \mid A, J, M) = P(B \mid A)$$

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

$$P(B \mid A, J, M) = P(B \mid A)$$

$$P(e \mid a, b)$$
 $P(e \mid a), P(e \mid b)$

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

$$P(B \mid A, I, M) = P(B \mid A)$$

// If the value of A (either a or $\neg a$) is // known, then the call from John or // Mary does not add any information // about burglary.

$$P(e \mid a, b)$$
 $P(e \mid a), P(e \mid b)$

// If the alarm is on, it is more likely that // there has been earthquake. If there // has been a burglary, it is slightly more // likely that it happened after an // earthquake. In the occurrences of // both events, the chance of earthquake // occurrence is even higher.

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

$$P(B \mid A, J, M) = P(B \mid A)$$

// If the value of A (either a or $\neg a$) is // known, then the call from John or // Mary does not add any information // about burglary.

$$P(e \mid a, b) > P(e \mid a), P(e \mid b)$$

// occurrence is even higher.

// If the alarm is on, it is more likely that // there has been earthquake. If there // has been a burglary, it is slightly more // likely that it happened after an // earthquake. In the occurrences of // both events, the chance of earthquake

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

$$P(B \mid A, I, M) = P(B \mid A)$$

// If the value of A (either a or $\neg a$) is // known, then the call from John or // Mary does not add any information // about burglary.

$$P(e \mid a, b) > P(e \mid a), P(e \mid b)$$

// If the alarm is on, it is more likely that // there has been earthquake. If there // has been a burglary, it is slightly more // likely that it happened after an // earthquake. In the occurrences of // both events, the chance of earthquake // occurrence is even higher.

$$1+2+4+2+4=13$$
 conditional probabilities

More conditional probabilities than needed.

1+2+4+2+4=13 conditional probabilities

1+2+4+2+4=13 conditional probabilities

More conditional probabilities than needed.

1+2+4+2+4=13 conditional probabilities

- More conditional probabilities than needed.
- Assessment of unnatural probabilities, e.g., P(Earthquake | Burglary, Alarm).

1+2+4+2+4=13 conditional probabilities

- More conditional probabilities than needed.
- Assessment of unnatural probabilities, e.g., P(Earthquake | Burglary, Alarm).
- Sticking to a causal model results in fewer probabilities that are also easier to come up with.

Bad Node Ordering

MaryCalls, JohnCalls, Earthquake, Burglary, Alarm.

1 + 2 + 4 + 8 + 16 = 31distinct probabilities (exactly the same as the full joint distribution)!

Roles of Casualty

- Deciding conditional independence is hard in noncausal directions.
 (Causal models and conditional independence seem hardwired for humans!)
- Assessing conditional probabilities is hard in noncausal directions.
- The interpretation of directed acyclic graphs as carriers of independence assumptions does not necessarily imply causation
- The ubiquity of DAG models in statistical and AI applications stems (often unwittingly) primarily from their causal interpretation.
- In practice, DAG models are rarely used in any variable ordering other than those which respect the direction of time and causation.

 \blacktriangle The full joint distribution contains 2^n numbers.

- \blacktriangle The full joint distribution contains 2^n numbers.
- It is reasonable to assume that each random variable is directly influenced by $\leq k$ others (i.e., every node has $\leq k$ parents in a BN).

- \blacktriangle The full joint distribution contains 2^n numbers.
- It is reasonable to assume that each random variable is directly influenced by $\leq k$ others (i.e., every node has $\leq k$ parents in a BN).
- The conditional probability table (CPT) for each node has size $\leq 2^k$.

- \blacktriangle The full joint distribution contains 2^n numbers.
- It is reasonable to assume that each random variable is directly influenced by $\leq k$ others (i.e., every node has $\leq k$ parents in a BN).
- The conditional probability table (CPT) for each node has size $\leq 2^k$.
- With n Boolean variables, the network has $\leq n \cdot 2^k$ numbers.

- \blacktriangle The full joint distribution contains 2^n numbers.
- It is reasonable to assume that each random variable is directly influenced by $\leq k$ others (i.e., every node has $\leq k$ parents in a BN).
- The conditional probability table (CPT) for each node has size $\leq 2^k$.
- With n Boolean variables, the network has $\leq n \cdot 2^k$ numbers.
- To avoid a fully connected network, leave out links that represent slight dependencies.

Every variable is conditionally independent of its non-descendants, given the values of its parents.

Given the value of *Alarm*, *JohnCalls* is independent of *Burglary*, *Earthquake*, and *Marycalls*.

Every variable is conditionally independent of its non-descendants, given the values of its parents.

Given the value of *Alarm*, *JohnCalls* is independent of *Burglary*, *Earthquake*, and *Marycalls*.

Non-descendants property

Every variable is conditionally independent of its non-descendants, given the values of its parents.

Given the value of *Alarm*, *JohnCalls* is independent of *Burglary*, *Earthquake*, and *Marycalls*.

Non-descendants property

// network parameter interpretation $P(x_i | Parents(X_i)) = \theta_i(x_i | parents(X_i))$

Every variable is conditionally independent of its non-descendants, given the values of its parents.

Given the value of *Alarm*, *JohnCalls* is independent of *Burglary*, *Earthquake*, and *Marycalls*.

Non-descendants property

// network parameter interpretation $P(x_i \mid Parents(X_i)) = \theta_i(x_i \mid parents(X_i))$

The full joint distribution
$$P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$$

The *Markov blanket* of a node consists of its parents, children, and children's parents.

The *Markov blanket* of a node consists of its parents, children, and children's parents.

non-descendants property

A node is conditionally independent of all other nodes given its Markov blanket.

The *Markov blanket* of a node consists of its parents, children, and children's parents.

non-descendants property

A node is conditionally independent of all other nodes given its Markov blanket.

The *Markov blanket* of a node consists of its parents, children, and children's parents.

non-descendants property

A node is conditionally independent of all other nodes given its Markov blanket.

Given Alarm and Earthquake, Burglary is independent of JohnCalls and Marycalls.

Q: Is a set of nodes *X* conditionally independent of another set *Y*, given a third set *Z*?

Q: Is a set of nodes *X* conditionally independent of another set *Y*, given a third set *Z*?

This question can be answered as follows:

1. Start with the *ancestral subgraph* consisting of X, Y, Z, and their ancestors (and edges between them).

Q: Is a set of nodes *X* conditionally independent of another set *Y*, given a third set *Z*?

- 1. Start with the *ancestral subgraph* consisting of X, Y, Z, and their ancestors (and edges between them).
- 2. Replace all directed edges with undirected edges.

Q: Is a set of nodes *X* conditionally independent of another set *Y*, given a third set *Z*?

- 1. Start with the *ancestral subgraph* consisting of X, Y, Z, and their ancestors (and edges between them).
- 2. Replace all directed edges with undirected edges.
- 3. Add an (undirected) edge between every two nodes that share a common child. The resulting graph is the *moral graph* of the ancestral subgraph.

Q: Is a set of nodes *X* conditionally independent of another set *Y*, given a third set *Z*?

- 1. Start with the *ancestral subgraph* consisting of X, Y, Z, and their ancestors (and edges between them).
- 2. Replace all directed edges with undirected edges.
- 3. Add an (undirected) edge between every two nodes that share a common child. The resulting graph is the *moral graph* of the ancestral subgraph.
 - a. If *Z* blocks all paths between *X* and *Y* in the moral graph, then *Z* d-separates *X* and *Y*. In this case, *X* is conditionally independent of *Y*, given *Z*.

Q: Is a set of nodes *X* conditionally independent of another set *Y*, given a third set *Z*?

- 1. Start with the *ancestral subgraph* consisting of X, Y, Z, and their ancestors (and edges between them).
- 2. Replace all directed edges with undirected edges.
- 3. Add an (undirected) edge between every two nodes that share a common child. The resulting graph is the *moral graph* of the ancestral subgraph.
 - a. If *Z* blocks all paths between *X* and *Y* in the moral graph, then *Z* d-separates *X* and *Y*. In this case, *X* is conditionally independent of *Y*, given *Z*.
 - b. Otherwise, *X* and *Y* are not necessarily conditionally independent, given *Z*.

Moral graph:

Burglary

Moral graph:

1.
$$X = \{ Burglary \}$$

 $Y = \{ Earthquake \}$

Moral graph:

$$Z = \{ Alarm \}$$

1.
$$X = \{ Burglary \}$$

 $Y = \{ Earthquake \}$

Moral graph:

$$Z = \{ Alarm \}$$

1.
$$X = \{ Burglary \}$$

 $Y = \{ Earthquake \}$

Moral graph:

$$Z = \{ Alarm \}$$

1.
$$X = \{ Burglary \}$$

 $Y = \{ Earthquake \}$

Moral graph:

X and *Y* are separated, thus d-separated by *Z*. They (*Burglary* and *Earthquake*) are independent given the empty set.

$$Z = \{ Alarm \}$$

 $X = \{ JohnCalls \}$

 $Y = \{ MaryCalls \}$

 $Z = \{ Alarm \}$

1.
$$X = \{ Burglary \}$$

 $Y = \{ Earthquake \}$

Moral graph:

X and Y are separated, thus d-separated by Z. They (Burglary and Earthquake) are independent given the empty set.

$$Z = \{ Alarm \}$$

Moral graph:

X and Y are separated, thus d-separated by Z. They (Burglary and Earthquake) are independent given the empty set.

$$Z = \{ Alarm \}$$

Burglary and Earthquake are not necessarily independent given Alarm.

Alarm

MaryCalls

1.
$$X = \{ Burglary \}$$

 $Y = \{ Earthquake \}$

Moral graph:

2.
$$X = \{ JohnCalls \}$$

 $Y = \{ MaryCalls \}$ Burglary Earthquake
 $Z = \{ Alarm \}$ Alarm

JohnCalls

MaryCalls

X and Y are separated, thusd-separated by Z. They(Burglary and Earthquake) areindependent given the empty set.

$$Z = \{ Alarm \}$$

1.
$$X = \{ Burglary \}$$

 $Y = \{ Earthquake \}$

Moral graph:

X and Y are separated, thus d-separated by Z. They (Burglary and Earthquake) are independent given the empty set.

$$Z = \{ Alarm \}$$

1.
$$X = \{ Burglary \}$$

 $Y = \{ Earthquake \}$

Moral graph:

X and Y are separated, thus d-separated by Z. They (Burglary and Earthquake) are independent given the empty set.

$$Z = \{ Alarm \}$$

1.
$$X = \{ Burglary \}$$

 $Y = \{ Earthquake \}$

Moral graph:

X and Y are separated, thus d-separated by Z. They (Burglary and Earthquake) are independent given the empty set.

$$Z = \{ Alarm \}$$

The size 2^k of CPT for a node with k parents is the worst-case scenario in which the relationships with the parents are arbitrary.

- The size 2^k of CPT for a node with k parents is the worst-case scenario in which the relationships with the parents are arbitrary.
- Deterministic nodes. Such a node has its value specified exactly by those of its parents, with no uncertainty. Specify deterministic functions in a BN.

- The size 2^k of CPT for a node with k parents is the worst-case scenario in which the relationships with the parents are arbitrary.
- Deterministic nodes. Such a node has its value specified exactly by those of its parents, with no uncertainty. Specify deterministic functions in a BN.

- The size 2^k of CPT for a node with k parents is the worst-case scenario in which the relationships with the parents are arbitrary.
- Deterministic nodes. Such a node has its value specified exactly by those of its parents, with no uncertainty. Specify deterministic functions in a BN.

III. Efficient Representations

- The size 2^k of CPT for a node with k parents is the worst-case scenario in which the relationships with the parents are arbitrary.
- Deterministic nodes. Such a node has its value specified exactly by those of its parents, with no uncertainty. Specify deterministic functions in a BN.

 Context-specific independence. A variable is conditionally independent of some of its parents given certain values of others.

III. Efficient Representations

- The size 2^k of CPT for a node with k parents is the worst-case scenario in which the relationships with the parents are arbitrary.
- Deterministic nodes. Such a node has its value specified exactly by those of its parents, with no uncertainty. Specify deterministic functions in a BN.

 Context-specific independence. A variable is conditionally independent of some of its parents given certain values of others.

```
P(Damage \mid Ruggedness, Accident) = // if no accident, damage to if (Accident = false) then d_1 else d_2(Ruggedness) // your car does not depend // on ruggedness.
```

III. Efficient Representations

- The size 2^k of CPT for a node with k parents is the worst-case scenario in which the relationships with the parents are arbitrary.
- Deterministic nodes. Such a node has its value specified exactly by those of its parents, with no uncertainty. Specify deterministic functions in a BN.

 Context-specific independence. A variable is conditionally independent of some of its parents given certain values of others.

```
P(Damage \mid Ruggedness, Accident) = // if no accident, damage to if (Accident = false) then d_1 else d_2(Ruggedness) // your car does not depend // on ruggedness. some distributions
```

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(\mathit{fever} \cdot)$	$P(\neg fever \cdot)$
f	f	f	0.0	1.0
f	f	t	0.9	0.1
f	t	f	0.8	0.2
f	t	t	0.98	$0.02 = 0.2 \times 0.1$
t	f	f	0.4	0.6
t	f	t	0.94	$0.06 = 0.6 \times 0.1$
t	t	f	0.88	$0.12 = 0.6 \times 0.2$
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(fever \cdot)$	$P(\neg fever \cdot)$
f	f	f	0.0	1.0
f	f	t	0.9	0.1
f	t	f	0.8	0.2
f	t	t	0.98	$0.02 = 0.2 \times 0.1$
t	f	f	0.4	0.6
t	f	t	0.94	$0.06 = 0.6 \times 0.1$
t	t	f	0.88	$0.12 = 0.6 \times 0.2$
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever.
- Fever is false if and only if all its parents are inhibited.

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(fever \cdot)$	$P(\neg fever \cdot)$
f	f	f	0.0	1.0
f	f	t	0.9	0.1
f	t	f	0.8	0.2
f	t	t	0.98	$0.02 = 0.2 \times 0.1$
t	f	f	0.4	0.6
t	f	t	0.94	$0.06 = 0.6 \times 0.1$
t	t	f	0.88	$0.12 = 0.6 \times 0.2$
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever.
- Fever is false if and only if all its parents are inhibited.

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(fever \cdot)$) $P(\neg fever \cdot)$
f	f	f	0.0	1.0
f	f	t	0.9	0.1
f	t	f	0.8	0.2
f	t	t	0.98	$0.02 = 0.2 \times 0.1$
t	f	f	0.4	0.6
t	f	t	0.94	$0.06 = 0.6 \times 0.1$
t	t	f	0.88	$0.12 = 0.6 \times 0.2$
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever.
- Fever is false if and only if all its parents are inhibited.

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(fever \cdot)$	$P(\neg fever \cdot)$
f	f	f	0.0	1.0
f	f	t	0.9	0.1
f	t	f	0.8	0.2
f	t	t	0.98	$0.02 = 0.2 \times 0.1$
t	f	f	0.4	0.6
t	f	t	0.94	$0.06 = 0.6 \times 0.1$
t	t	f	0.88	$0.12 = 0.6 \times 0.2$
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever.
- Fever is false if and only if all its parents are inhibited.

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(fever \cdot)$	$P(\neg fever \cdot)$	
f f f	f f t	f t f t	0.0 0.9 0.8 0.98	1.0 0.1 0.2 $0.02 = 0.2 \times 0.1$	9
t t t	f f t	f t f t	0.4 0.94 0.88 0.988	$0.06 = 0.6 \times 0.1$ $0.12 = 0.6 \times 0.2$ $0.012 = 0.6 \times 0.2 \times 0.1$	•

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

$$q_1 = q_{cold}$$
 // false alarm
= $P(\neg fever \mid cold, \neg flu, \neg malaria) = 0.6$

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever.
- Fever is false if and only if all its parents are inhibited.

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(\mathit{fever} \cdot)$	$P(\neg fever \mid \cdot)$	
$ \begin{array}{c} f \\ f \\ f \end{array} $	f f t	f t f t	0.0 0.9 0.8 0.98	1.0 0.1 0.2 $0.02 = 0.2 \times 0.1$	a
t t t	f f t t	f t f t	0.4 0.94 0.88 0.988	$0.06 = 0.6 \times 0.1$ $0.12 = 0.6 \times 0.2$ $0.012 = 0.6 \times 0.2 \times 0.1$	q

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

$$q_1 = q_{cold}$$
 // false alarm
= $P(\neg fever \mid cold, \neg flu, \neg malaria) = 0.6$

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever.
- Fever is false if and only if all its parents are inhibited.

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(fever \cdot)$	$P(\neg fever \mid \cdot)$	
f	f	f	0.0	1.0	
f	f	t	0.9	0.1	
f	t	f	0.8	0.2	
f	t	t	0.98	$0.02 = 0.2 \times 0.1$	q
t	f	f	0.4	0.6	ľ
t	f	t	0.94	$0.06 = 0.6 \times 0.1$	
t	t	f	0.88	$0.12 = 0.6 \times 0.2$	G
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$	

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

$$q_1 = q_{cold}$$
 // false alarm
= $P(\neg fever \mid cold, \neg flu, \neg malaria) = 0.6$
 $q_2 = q_{flu}$
= $P(\neg fever \mid \neg cold, flu, \neg malaria) = 0.2$

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever.
- Fever is false if and only if all its parents are inhibited.

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(fever \cdot)$	$P(\neg fever \mid \cdot)$	
f	f	f	0.0	1.0	
f	$\frac{f}{t}$	$\frac{t}{f}$	0.9	0.1	
f	t	t	0.98	$0.02 = 0.2 \times 0.1$	q
<u>t</u>	ff	f t	0.4	$ \begin{array}{c} 0.6 \\ 0.06 = 0.6 \times 0.1 \end{array} $	
t	t	f	0.88	$0.12 = 0.6 \times 0.2$	Ç
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$	

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

$$q_1 = q_{cold}$$
 // false alarm
= $P(\neg fever \mid cold, \neg flu, \neg malaria) = 0.6$
 $q_2 = q_{flu}$
= $P(\neg fever \mid \neg cold, flu, \neg malaria) = 0.2$

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever.
- Fever is false if and only if all its parents are inhibited.

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	P(fever)	$ \cdot P(\neg fever \cdot)$
f	f	f	0.0	1.0
f	f	t	0.9	0.1
f	t	f	0.8	0.2
f	t	t	0.98	$0.02 = 0.2 \times 0.1$
t	f	f	0.4	0.6
t	f	t	0.94	$0.06 = 0.6 \times 0.1$
t	t	f	0.88	$0.12 = 0.6 \times 0.2$
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever. $= P(\neg fev)$
- Fever is false if and only if all its parents are inhibited.

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

Inhibition probabilities:

$$q_1 = q_{ ext{cold}}$$
 // false alarm
$$= P(\neg \textit{fever} \mid \textit{cold}, \neg \textit{flu}, \neg \textit{malaria}) = 0.6$$
 $q_2 = q_{ ext{flu}}$

$$= P(\neg \textit{fever} \mid \neg \textit{cold}, \textit{flu}, \neg \textit{malaria}) = 0.2$$

 $q_3 = q_{\text{malaria}}$ = P(-fever | -cold -flu malaria) = 0.3

 $= P(\neg fever | \neg cold, \neg flu, malaria) = 0.1$

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(\mathit{fever} \cdot)$	$P(\neg fever \cdot)$	
f	f	f	0.0	1.0	
f	f	t	0.9	0.1	
f	t	f	0.8	0.2	
f	t	t	0.98	$0.02 = 0.2 \times 0.1$	q
t	f	f	0.4	0.6	1
t	f	t	0.94	$0.06 = 0.6 \times 0.1$	
t	t	f	0.88	$0.12 = 0.6 \times 0.2$	9
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$	

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever. = P
- Fever is false if and only if all its parents are inhibited.

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

Inhibition probabilities:

$$q_1 = q_{ ext{cold}}$$
 // false alarm
$$= P(\neg \textit{fever} \mid \textit{cold}, \neg \textit{flu}, \neg \textit{malaria}) = 0.6$$
 $q_2 = q_{ ext{flu}}$

$$= P(\neg \textit{fever} \mid \neg \textit{cold}, \textit{flu}, \neg \textit{malaria}) = 0.2$$

 $q_3 = q_{\text{malaria}}$ $q_3 = P(\neg \text{fever} | \neg \text{cold}, \neg \text{flu}, \text{malaria}) = 0.1$

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(\mathit{fever} \cdot)$	$P(\neg fever \mid \cdot)$	
f	f	f	0.0	1.0	
f	f	t	0.9	0.1	
f	t	f	0.8	0.2	
f	t	t	0.98	$0.02 = 0.2 \times 0.1$	q
t	f	f	0.4	0.6	-1
t	f	t	0.94	$0.06 = 0.6 \times 0.1$	
t	t	f	0.88	$0.12 = 0.6 \times 0.2$	9
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$	

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever. $q_3 = q_{\rm malaria}$ independent of whatever inhibits flu from causing a fever. $= P(\neg feve)$
- Fever is false if and only if all its parents are inhibited.

Random variables:

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

Inhibition probabilities:

$$q_1 = q_{ extsf{Cold}}$$
 // false alarm
$$= P(\neg \textit{fever} \mid \textit{cold}, \neg \textit{flu}, \neg \textit{malaria}) = 0.6$$
 $q_2 = q_{ extsf{flu}}$
$$= P(\neg \textit{fever} \mid \neg \textit{cold}, \textit{flu}, \neg \textit{malaria}) = 0.2$$

 $= P(\neg fever | \neg cold, \neg flu, malaria) = 0.1$

The causal relationship between a node and its parents may be *inhibited*.

- All the possible causes are listed.
- Inhibition of each parent is independent of inhibition of any other parents.

Cold	Flu	Malaria	$P(fever \cdot)$	$P(\neg fever \mid \cdot)$	
f	f	f	0.0	1.0	
f	f	t	0.9	0.1	
f	t	f	0.8	0.2	
f	t	t	0.98	$0.02 = 0.2 \times 0.1$	q
t	f	f	0.4	0.6	-1
t	f	t	0.94	$0.06 = 0.6 \times 0.1$	
t	t	f	0.88	$0.12 = 0.6 \times 0.2$	9
t	t	t	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$	

- Whatever inhibits cold from causing a fever is independent of whatever inhibits flu from causing a fever.
- Fever is false if and only if all its parents are inhibited.

$$X_1 \equiv Cold, X_2 \equiv Flu, X_3 \equiv Malaria$$

$$q_1 = q_{ ext{cold}}$$
 // false alarm
$$= P(\neg \textit{fever} \mid \textit{cold}, \neg \textit{flu}, \neg \textit{malaria}) = 0.6$$
 $q_2 = q_{ ext{flu}}$

$$= P(\neg \textit{fever} \mid \neg \textit{cold}, \textit{flu}, \neg \textit{malaria}) = 0.2$$

$$q_3 = q_{\mathsf{malaria}}$$

 $q_3 = P(\neg \mathsf{fever} | \neg \mathsf{cold}, \neg \mathsf{flu}, \mathsf{malaria}) = 0.1$

$$P(x_i \mid parents(X_i)) = 1 - \prod_{\{j: X_i = true\}} q_j$$

