The intuition behind panel regression

Prof. Alex COAD

1 2 12 23 2 1 15 40 2 2 16 3 3 1 21 43 3 2 23 3 4 1 30 63 4 2 32 63 5 1 42 8	city	time	police	murders
2 1 15 40 2 2 16 3 3 1 21 43 3 2 23 3 4 1 30 63 4 2 32 63 5 1 42 8	1	1	11	30
2 2 16 3 3 4 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4	1	2	12	28
3 1 21 43 3 2 23 3 4 1 30 63 4 2 32 63 5 1 42 8	2	1	15	40
3 2 23 3 3 4 1 30 65 4 2 32 65 5 1 42 8 9	2	2	16	37
4 1 30 65 4 2 32 65 5 1 42 8	3	1	21	42
4 2 32 6: 5 1 42 8:	3	2	23	37
5 1 42 8	4	1	30	65
	4	2	32	61
	5	1	42	87
5 2 45 8:	5	2	45	81

- Naïve OLS: $Murders_i = a + bPolice_i + e_i$
- In each city, adding more police reduces the number of murders
- So, how can the relationship be positive?
- UNOBSERVED HETEROGENEITY: large cities have more police and more murders
 - Omitted Variable Bias (OVB): control for city size?
 - Focus on differences or changes rather than levels?
 - Take into account the different starting points?

> coef(summary(ols))

Estimate Std. Error t value Pr(>|t|) (Intercept) 9.058655 4.2859464 2.113572 6.749711e-02 crime\$police 1.689933 0.1572467 10.747017 4.944797e-06

>

DATA STRUCTURE Individuals A:G; Time 1:10

		Individual						
		Α	В	С	D	E	F	G
	1							
	2							
	3							
	4							
Time	5							
	6							
	7							
	8							
	9							
	10							
		LEGEND:		Missing				
				Observed				

Cross-section 1 time period, several entities

		Individual						
		Α	В	С	D	E	F	G
	1							
	2							
	3							
	4							
Time	5							
	6							
	7							
	8							
	9							
	10							
		LEGEND:		Missing				
				Observed				

Time series: several time periods, one entity

Balanced panel

Several time periods, several entities, no missing observations

		Individual						
		Α	В	С	D	E	F	G
	1							
	2							
	3							
	4							
Time	5							
	6							
	7							
	8							
	9							
	10							
		LEGEND:		Missing				
				Observed				

Balanced panel

Several time periods, several entities, no missing observations

		Individual						
		Α	В	С	D	E	F	G
	1							
	2							
	3							
	4							
Time	5							
	6							
	7							
	8							
	9							
	10							
		LEGEND:		Missing				
				Observed				

Unbalanced panel

Several time periods, several entities, with missing observations

		Individual						
		Α	В	С	D	E	F	G
	1							
	2							
	3							
	4							
Time	5							
	6							
	7							
	8							
	9							
	10							
		LEGEND:		Missing				
				Observed				

Panel regression

- $y_{it} = \alpha + \beta x_{it} + \varepsilon_{it}$
- But: there is a time-invariant component in the error term:
- $\varepsilon_{it} = (\eta_i + v_{it})$
- Hence: $y_{it} = \alpha + \beta x_{it} + (\eta_i + v_{it})$

- η_i is usually not directly observed
 - time-invariant
 - individual-specific

Fixed-effects (a.k.a. "within") regression

- Subtract the individual's average over time to every variable
 - "time-demeaning"
 - Estimation in deviations-from-means is called the "within estimator"

•
$$y_{it} - \overline{y}_i = (x_{it} - \overline{x}_i)\beta + (v_{it} - \overline{v}_i)$$

- We drop the terms for α and η_i :
- $\alpha \alpha = 0$
- $\eta_i \eta_i = 0$
- This is similar to estimating: $y_{it} = \alpha_i + x_{it}\beta + v_{it}$

• FE is equivalent to estimating:

$$y_{it} = \alpha_i + x_{it}\beta + v_{it}$$

- I.e. leaving the individual intercepts free to vary
- Considering them as parameters to be estimated

Differencing

- η_i is removed by first-differencing the data
 - Taking lags and subtracting

•
$$y_{it} = \alpha + \beta x_{it} + (\eta_i + v_{it})$$

•
$$y_{i,t-1} = \alpha + \beta x_{i,t-1} + (\eta_i + v_{i,t-1})$$

•
$$y_{it} - y_{i,t-1} = \alpha - \alpha + \beta x_{it} - \beta x_{i,t-1} + (\eta_i + v_{it}) - (\eta_i + v_{i,t-1})$$

• $\Delta y_{it} = \beta \Delta x_{it} + \Delta v_{it}$

- This is the first difference (FD) estimator
 - Can be consistently estimated by pooled OLS

Crime example revisited

=======================================	Dependent variable:							
	OLS OLS							
	(1)	(2)	linear (3)	(4)				
police	1.690*** (0.157)							
police		-2.158*** (0.142)	-1.786** (0.357)	-2.158*** (0.142)				
city1				53.816*** (1.659)				
city2				71.947*** (2.218)				
city3				86.974*** (3.133)				
city4				129.895*** (4.404)				
city5				177.868*** (6.172)				
Constant	9.059* (4.286)		-0.786 (0.696)					
Observations R2	10 0.935	10 0.983	5 0.893	10 1.000				
Adjusted R2	0.927 5.731 (df = 8)	0.962	0.857	1.000 1.000 26,085.680*** (df = 6; 4)				
Note:			*1	0<0.1; **p<0.05; ***p<0.01				

- (1): OLS
 - Wrong, because doesn't take into account unobserved heterogeneity
- (2):FE
 - No constant term
- (3) First differences
 - Similar but not identical to FE
 - Only 5 observations
- (4) LSDV
 - Least Squares Dummy Variable
 - Dummy for each city added
 - Exactly the same coefficient as FE, but more output

FE vs differences

•
$$y_{it} = \alpha + \beta x_{it} + (\eta_i + v_{it})$$

• Fixed effects (FE): Estimations of differences-in-means:

•
$$y_{it} - \overline{y}_i = (x_{it} - \overline{x}_i)\beta + (v_{it} - \overline{v}_i)$$

• Taking differences:

•
$$y_{it} - y_{i,t-1} = \alpha - \alpha + \beta x_{i,t} - \beta x_{i,t-1} + (\eta_i + v_{it}) - (\eta_i + v_{i,t-1})$$

•
$$\Delta y_{it} = \beta \Delta x_{it} + \Delta v_{it}$$

FE and FD transform the data differently

Fixed effects

• First differences

References

- Croissant, Y., & Millo, G. (2019). Panel data econometrics with R. John Wiley and Sons, Incorporated.
- Cunningham (2021). Causal inference: the mixtape. Yale University Press. Free to read online: https://scunning.com/mixtape.html
- Huntington-Klein, N. (2021). The effect: An introduction to research design and causality. Chapman and Hall/CRC (New York, USA). DOI https://doi.org/10.1201/9781003226055 Free to read online here: https://theeffectbook.net/ch-FixedEffects.html