CONTENTS

The Preferential Utilization of Different Forms of Inorganic Nitrogen in the Decomposi-	
tion of Plant Materials. E. H. RICHARDS AND J. G. SHRIKHANDE	1
Relative Amounts of Calcium Carbonate and Magnesium Carbonate in Some Minnesota	
Subsoils. F. J. Alway and Jean M. Zetterberg	9
Toxicity of Manganese to Turkish Tobacco in Acid Kentucky Soils. C. E. BORTNER	15
Mineral Constituents in Relation to Chlorosis of Orange Leaves. N. H. PARBERY	35
Carbon Dioxide Production by Mannite-Treated Soils as a Means of Determining Crop	
Response to Fertilizers. W. B. Andrews	47
The Factors Which Influence the Use of the Conductivity of Soil Suspensions as a Meas-	
ure of Fertility. M. S. DuToit and I. S. Perold	59
The Laws of Soil Colloidal Behavior: XV. The Degradation and the Regeneration of the	
Soil Complex. Sante Mattson and Jackson B. Hester	75
Effect of Sunlight on the Nitrification of Ammonium Salts in Soils. G. S. Fraps and A.	
J. Sterges	85
Characteristics of Certain Bacteria Belonging to the Autochthonous Microflora of Soil.	
H. J. Conn and Mary A. Darrow	95
Inorganic Phosphate in Green Plant Tissue as a Measure of Phosphate Availability. H.	
D. Chapman	
Carbohydrate Supply as a Primary Factor in Legume Symbiosis. Franklin E. Allison.	123
A Response of Chlorotic Corn Plants to the Application of Zinc Sulfate to the Soil. R.	
M. Barnette and J. D. Warner	145
The Laws of Soil Colloidal Behavior: XVI. The Cation Exchange-Maximum in Alumino-	
Silicates. Sante Mattson and J. S. Csiky	
	167
A Note on the Relationship Between the Chemical Composition of Soil Colloids and Two	
of Their Properties. H. A. Wadsworth	171
The Toxic Influence of Fluorine in Phosphatic Fertilizers on the Germination of Corn. H.	
Howe Norse	
Isolation of Some Bacteria Which Oxidize Thiosulfate. ROBERT L. STARKEY	197
The Nomenclature of the Cowpea Group of Root-Nodule Bacteria. R. H. Walker and	
P. E. Brown.	221
A Comparative Study of the Bacterial Flora of Wind-Blown Soil: IV. Shackleford Bank,	
North Carolina. Laetitia M. Snow	227
A Comparative Study of the Bacterial Flora of Wind-Blown Soil: V. Monterey Peninsula,	
California. Laetitia M. Snow	233
The Amphoteric Nature of Three Coastal Plain Soils: I. In Relation to Plant Growth.	
Jackson B. Hester	237
The Amphoteric Nature of Three Coastal Plain Soils: II. In Relation to the Leaching	
and Absorption of Soil Constituents by Plants. Jackson B. Hester	
Keijiro Aso. To Be Honored by Japanese Agricultural Societies	
A New Instrument for Soil Sampling. AASULV LÖDDESÖL	257
The Ammonium Carbonate Method of Dispersing Soils for Mechanical Analysis. AMAR	
Nath Puri.	263
A Simpler Method of Expressing the Mechanical Analysis of Many Common Soils. Rob-	
ERT L. JAMES	271

CONTENTS

A Study of Phosphorus Penetration and Availability in Soils. LINDSEY A. BROWN	277
The Effect of Nitrate-Nitrogen on the Carbohydrate Metabolism of Inoculated Soybeans.	
F. S. ORCUTT AND P. W. WILSON.	289
The Effect of Long and Short Day and Shading on Nodule Development and Composi-	
tion of the Soybean. E. W. HOPKINS	297
Organization of the American Section of the International Society of Soil Science	323
Studies on Protein Synthesis by the Genus Azotobacter. ROBERT A. GREENE	327
Factors Influencing Phosphate Fixation in Soils. P. L. HIBBARD	337
The Determination of Absorbed Bases by Boiling with Ammonium Chloride and the	
Utility of the Procedure in Related Soil Investigations. W. M. Shaw and W. H.	
MacIntire	359
Colloid Chemical Aspects of Clay Pan Formation in Soil Profiles. HANS JENNY AND GUY	
D. SMITH	377
Soil Profile Studies: VII. The Glei Process. J. S. JOFFE	391
Book Reviews	403
The Feeding Power of Plants for the Potassium in Feldspar, Exchangeable Form, and	
Dilute Solution. EDWARD H. TYNER.	405
Tolerance of Certain Weeds and Grasses to Toxic Aluminum. Basil E. Gilbert and	
	425
Rates of Absorption of Ammonium and Nitrate Nitrogen from Culture Solutions by Ten-	
Day-Old Tomato Seedlings at Two pH Levels. L. B. Arrington and J. W. Shive.	431
Apparatus for the Determination of CO2 in Culture Solution. L. B. Arrington, C. H.	
Wadleigh, and J. W. Shive	437
The Relation of Potential Alkalinity to the Availability of Phosphate in Calcareous Soils.	
***************************************	443
Some Chemical and Physical Properties of Normal and Solonetz Soils and their Relation	
to Erosion. H. F. Murphy and H. A. Daniel.	453
The Separation and Identification of the Mineral Constituents of Colloidal Clays.	
MATTHEW Drosdoff	
Book Reviews	479

PLATES

т	OXICITY OF MANGANESE TO TURKISH TOBACCO IN ACID KENTUCKY SOILS	
Plate 1.	Toxic Condition in Turkish Tobacco Plants 10 Days After Being Set; Consider-	25
	able Chlorosis in Unlimed Soils; None in Limed Soils	25
	Fig. 1. Berea soil.	25
	2. Greenville soil	25
	3. Campbellsville soil	25
DI-4- 2	4. Mayfield soil.	25
Plate 2.	Severe Toxic Condition in Turkish Tobacco 49 Days After Being Set; No Tox-	27
	icity in Limed Soils	27
	2. Greenville soil.	27
Plate 3.	Turkish Tobacco Plants, 49 Days After Being Set, Showing Comparative Size,	21
Tiate o.	Toxic Condition in Plants from Berea and Greenville Check Soils, and Recov-	
	ery in the Campbellsville and Mayfield Unlimed Soils; No Toxicity in the	
	Limed Soils.	29
	Fig. 1. Berea soil.	29
	2. Greenville soil	29
	3. Campbellsville soil	29
	4. Mayfield soil	29
Plate 4.	Toxic Condition of Turkish Tobacco in Water Cultures Containing Manganese;	
	Photographed 13 Days After Mn Additions	31
	Fig. 1. Plants from Experiment 2	31
	2. Plants from Experiment 3, showing effect of phosphorus in reducing	
	manganese injury	31
Plate 5.	Effect of Supplementary Phosphate Treatments in Overcoming the Toxic Con-	
	dition in Turkish Tobacco Grown in Berea and Greenville Check Soils;	
	Photographed 48 Days After the First Treatment Was Added	33
	Fig. 1. Berea soil	33
	2. Greenville soil	33
A RESPO	NSE OF CHLOROTIC CORN PLANTS TO THE APPLICATION OF ZINC SULFATE TO THE S	OIL
Plate 1.	Chlorosia of Com	157
Plate 1.	Chlorosis of Corn	
	2. Advanced stage of "white bud" in young Whatley's Prolific corn plant.	137
	Plants seldom recover from this stage	157
	3. Chlorotic Long Island Beauty corn plant showing striping of leaves	
	4. Leaves of "white bud" corn plant compared with healthy	
Plate 2.	Effect of Zinc Sulfate in Combination with Mixed Inorganic Fertilizer and with	101
I luce 2.	Alkaline Peat on Development of the Corn Plant on Soil Areas Which Pro-	
	duce "White Bud" or Chlorotic Plants.	159
	Fig. 1. No treatment	
	2. Four hundred pounds per acre of an 8-8-4 mixed inorganic fertilizer	
	made from nitrate of soda, superphosphate, and muriate of potash	
	(in row)	159

	rig. 3. Five tons per acre of alkaline peat in the furrow	
	4. Four hundred pounds per acre of an 8-8-4 mixed inorganic fertilizer	
	and 20 pounds per acre of zinc sulfate (in row)	
	5. Five tons per acre of alkaline peat in the furrow with 20 pounds per acre	
	of zinc sulfate	159
Tur To	OXIC INFLUENCE OF FLUORINE IN PHOSPHATIC FERTILIZERS ON THE GERMINAT	rtos.
THE TO	OF CORN	101
Plate 1	Relation of Fertilizer Placement to Germination of Corn	195
11401.	Total of Perinder Paronosis to Commented of Commenters	
	ISOLATION OF SOME BACTERIA WHICH OXIDIZE THIOSULFATE	
Plate 1.		217
	Fig. 1a. Culture B	
	2a. Culture T (Th. trautweinii)	
	3a. Culture K (Th. trautweinii)	217
	4a. Culture A (Th. novellus)	217
	5a. Culture C (Th. thioparus)	217
	Photomicrographs of Cells From Thiosulfate Agar Cultures, 5 Days Old	217
	Fig. 1b. Culture B.	
	2b. Culture T (Th. trautweinii)	
	3b. Culture K (Th. trautweinii)	
	4b. Culture A (Th. novellus)	
	5b. Culture C (Th. thioparus)	
	6. Globules of sulfur from a colony of culture C developing upon thiosul-	
		217
Dl. 4. 2	fate agar	
Plate 2.	Colony Development During 5 Days on Nutrient Agar	
	Fig. 7. Culture B	
	8. Culture T (Th. trautweinii)	
	9. Culture A (Th. novellus)	
	10. Photomicrograph of Th. thiooxidans showing flagellation	
	11. a. Uninoculated thiosulfate solution medium	219
	b. Thiosulfate solution medium supporting growth of culture C (Th.	
	thioparus). General turbidity with sulfur precipitation in cul-	
	ture 7 days old	219
	c. Thiosulfate solution medium supporting growth of culture A (Th.	
	novellus). Uniformly turbid solution of culture 7 days old	219
Тн	E AMPHOTERIC NATURE OF THREE COASTAL PLAIN SOILS: I. IN RELATION TO	
	PLANT GROWTH	
Plate 1.	Effect of Soil Type, Reaction, and Organic Matter Upon the Growth of Beets	245
	Fig. 1. Effect of soil type and reaction	245
	2. Effect of soil type and organic matter (peat moss source of organic	
	matter)	245
	Keijiro Aso	
Keijiro A	Aso	iece
	A New Instrument for Soil Sampling	
Plate 1.	The Complete Soil Sampler.	261

THE EFFECT OF LONG AND SHORT DAY AND SHADING ON NODULE DEVELOPMENT AND COMPOSITION OF THE SOYBEAN
Plate 1. Fig. 1. Tops and roots of plants from Experiment 2 at time of third harvest, plants 77 days old. Long day plants, left; short day plants, right 321 2. Tops and roots of plants from Experiment 4 at time of second harvest, plants 77 days old. Tops, unshaded plants, left; shaded plants, right. Roots, shaded plants, left; unshaded plants, right
THE FEEDING POWER OF PLANTS FOR THE POTASSIUM IN FELDSPAR, EXCHANGEABLE FORM, AND DILUTE SOLUTION
Plate 1. Growth of Sweet Clover and Sudan Grass with Various Potassium Treatments 423 Fig. 1. Growth of sweet clover with the potassium treatments indicated. Jar 1, 100 pounds per acre soluble potassium; jar 2, 2 tons per acre feld- spar; jar 3, no potassium
jar 4, no potassium
Tolerance of Certain Weeds and Grasses to Toxic Aluminum
Plate 1. Effect of Aluminum on Common Chickweed (Stellaria media) 429
TEXT-FIGURES
RELATIVE AMOUNTS OF CALCIUM CARBONATE AND MAGNESIUM CARBONATE IN SOME MINNESOTA SUBSOILS
Fig. 1. Map of Minnesota Showing Extent in the State of the Des Moines Lobe of the Last Glacial Ice Sheet, Directions of Ice Movement and Portion Covered by Lake Agassiz
Carbon Dioxide Production by Mannite-Treated Soils as a Means of Determining Crop Response to Fertilizers
Fig. 1. Response of Cotton and Soil Microörganisms to Nitrogen and to Nitrogen and Phosphorus—Mississippi Soils
THE FACTORS WHICH INFLUENCE THE USE OF THE CONDUCTIVITY OF SOIL SUSPENSIONS AS A MEASURE OF FERTILITY
Fig. 1. Contributing Factors in "7 Days Increase". 64 2. Conductivity Increase Due to Hydrolysis. 69 3. Relation Between Dispersion and Conductivity Increase. 70
CARBOHYDRATE SUPPLY AS A PRIMARY FACTOR IN LEGUME SYMBIOSIS
Fig. 1. Carbohydrate Utilization in Legumes as a Function of Amount Synthesized 125 $$
THE LAWS OF SOIL COLLOIDAL BEHAVIOR: XVI. THE CATION EXCHANGE-MAXIMUM IN ALUMINO-SILICATES
Fig. 39. The Cation Exchange-Maximum in Precipitated Alumino- and Ferric-Silicates. 163

Note on the Relation Between Lime Content and pH Values of Soils
Fig. 1. Relation Between pH Values and Average pH Differences
A Note on the Relationship Between the Chemical Composition of Soil Colloids and Two of Their Properties
Fig. 1. Relation Between the Moisture Equivalents of Soils and the Percentages of Colloidal Materials
THE TOXIC INFLUENCE OF FLUORINE IN PHOSPHATIC FERTILIZERS ON THE GERMINATION OF CORN
Fig. 1. Percentage Increase in Weight of Corn Seeds Planted in Moist Fertilizer 180
A New Instrument for Soil Sampling
Figs. 1, 2, and 3. Diagrams Showing the Construction of the Soil Sampler
A SIMPLER METHOD OF EXPRESSING THE MECHANICAL ANALYSIS OF MANY COMMON SOILS
Fig. 1. Some Typical Lines for Soils When Logarithm of Time of Hydrometer Reading is Plotted Against Logarithm of Hydrometer Reading
A STUDY OF PHOSPHORUS PENETRATION AND AVAILABILITY IN SOILS
Fig. 1. Percolation Tube Setup Used in Laboratory Penetration Tests
THE EFFECT OF NITRATE-NITROGEN ON THE CARBOHYDRATE METABOLISM OF INOCULATED SOYBEANS
Fig. 1. Comparison of Nitrate in the Sap to Nitrate Added. 291 2. Effect of Nitrate on Glucose Content of Plant Sap. 292 3. Sucrose Content of Plant Sap After Nitrate Additions Have Ceased. 293 4. Effect of Nitrate on Soluble Sugar in Sap of Uninoculated Plants. 294
THE EFFECT OF LONG AND SHORT DAY AND SHADING ON NODULE DEVELOPMENT AND COMPOSITION OF THE SOYBEAN
 Experiment 1. Carbohydrate and Nitrogen Composition, Wet Basis, of Soybeans Grown in Long and Short Day. Plus Nitrate. Plants 47 Days Old 309 Experiment 2. Carbohydrate Composition, Wet Basis, of Soybeans Grown in Long and Short Day. Minus Nitrogen. Plants of First Harvest 49 Days Old,
of Third Harvest 77 Days Old
Second Crop 43 Days Old
FACTORS INFLUENCING PHOSPHATE FIXATION IN SOILS
Fig. 1. Fixation of PO ₄ From Different Amounts Added to 100 gm. Soil
THE DETERMINATION OF ABSORBED BASES BY BOILING WITH AMMONIUM CHLORIDE AND THE UTILITY OF THE PROCEDURE IN RELATED SOIL INVESTIGATIONS
Fig. 1. Disintegration of Limestone and of Dolomite by Boiling Normal Solutions of

	COLLOID CHEMICAL ASPECTS OF CLAY PAN FORMATION IN SOIL PROFILES	
2. 3. 4. 5.	Accumulations of Clay Particles Less Than 1µ in Diameter in Various Horizons of a Well-Drained (A) and a Poorly Drained (B) Profile	378 380 383 384 385 385
7.	Formation of Attraction Pans with the Aid of Positive Iron Sols	386
THE F	EEDING POWER OF PLANTS FOR THE POTASSIUM IN FELDSPAR, EXCHANGEABLE FOR AND DILUTE SOLUTION	M,
2.	Apparatus for Flowing Culture	18
	Apparatus for the Determination of CO2 in Culture Solutions	
Fig. 1.	Apparatus for the Determination of CO2 in Culture Solution 4	39
Тне	RELATION OF POTENTIAL ALKALINITY TO THE AVAILABILITY OF PHOSPHATE IN CALCAREOUS SOILS	
2. 3. 4.	Descending Order of Solubility of Calcium Phosphates and Ascending Order of Solubility of Phosphates of Iron and Aluminum with Increase in pH	46 48 49
5.	Effect of Varying the Soil-Water Ratio on pH of Soil Number 3 4.	50