Lineare Algebra II

Benjamin Dropmann

March 6, 2025

1 Polynome

1.1 polynomdivision

Seien f und $g \neq 0$ zwei polynome in K[x] dann $\exists q(r), r(r) \in K[x]$ mit deg(r) = 0 oder deg(r) < deg(g) und f = qg + r. **Korollar 9.0.4**: Sei $f(x) \in K[x], f(x) = 0$ sei $\lambda \in K$ so dass $f(\lambda) = 0$. Dann $\exists q(x) \in K[x]$ so dass $f(x) = (x - \lambda)q(x)$ **Beweis** $\exists q(x), r(x) \in K[x]$ $deg(r) < deg(x - \lambda) = 1$ so dass $f(x) = (x - \lambda)(q(x) + r(x), \rightarrow r \in K \Rightarrow f(\lambda) = 0$ **Korollar 9.0.6** Sei $f(x) \in K[x], deg(f) = n > 0$ Dann hat f(x) höchstens n Nullstellen. (Fundamentaler satz der Algebra sehr ähnlich).

Beispiel 9.0.7 Es sei $f(x) = x + 1(x^2 + 1)$, als poly in $\mathbb{R}[x]$ hat es nur eine nullstelle x = -1. Als polynom in $\mathbb{C}[x]$ gilt f(x) = (x + 1)(x + i)(x - i)

Theorem 9.0.8 Fundamentaler Satz der Algebra Es sei $f(x) \in \mathbb{C}[x], deg(f) = n > 0$ dann hat f(x) in $\mathbb{C}[x]$ genau n nullstellen. Dass heisst es existieren $\exists \lambda_1, ..., \lambda_n$ nicht unbedingt verschieden, so dass $f(x) = (x - \lambda_1) \cdot \cdots \cdot (x - \lambda_n)$ Wir sagen \mathbb{C} is Algebraisch abgeschlossen.

9.0.11: sei $f(x) \in K[x], \lambda \in K$ so dass $f(\lambda = 0$ Die Ordnung der Nullstelle (Vielfachheit) λ is die Ganze zahl $n \ge 1$ so dass $\exists q(x) \in K[x]$ so dass

$$f(x) = x - \lambda)^n q(x)$$

beispiele 9.0.12

1. $f(x) = x + 1(x^2 + 1)$ Einfache nullstelle $\lambda = -1$ daher ist die ordnung 1

2.
$$p > 2$$
 $g(x) = x^p \in \mathbb{F}_p[x]$

 $\mathbb{F}_p = [a_n x^n + ... + a_1 x + a_0 | n \ge 0, a_i \in \mathbb{F}_p]$ Und $g(x) = x^p - 1 = (x - 1)^p$ (leicht ausrechnen) **Bemerkung 9.0.13** Analogien $\mathbb{Z} \leftrightarrow K[X]$

$\mathbb Z$	K[x]
±1	$K \setminus 0$
Primzahlen	Unzerlegbare Polynome grad<0
$\mathbb{Z}/_{p\mathbb{Z}}=\mathbb{F}_{\scriptscriptstyle ert}$	$f(x)$ ist unzerlegbar: $K[x]/_{f(x)}$ Körper

2 Eigenwerte und Eigenvektoren

Definition 10.1.1 V/K Vektorraum, $T: V \to V$ Endomorphismus.

- 1. $\lambda \in K$ ist ein Eigenwert von T wenn $\exists v \in V, v \neq 0_v$ so dass $T(v) = \lambda v$
- 2. Ein solches V heisst Eigenvektor mit Eigenwert λ

Bemerkung 10.1.12 Wenn v Eigenveltor von T ist, $T(v) = \lambda v$ dann ist auch αv Eigenveltor von T mit Eigenwer $\lambda, \forall \alpha \in K, \alpha \neq 0$

Beispiele 10.1.3 Rechnung von eigenwerte und Eigenvektoren

1.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 Eigenwerte $\lambda = 3$ und $\lambda = -1$

$$A \cdot \begin{pmatrix} x \\ b \end{pmatrix} = \lambda \cdot \begin{pmatrix} x \\ b \end{pmatrix}$$

Wir kommen dann auf

$$\begin{pmatrix} 1x & 2y \\ 2x & 1y \end{pmatrix} = \lambda \cdot \begin{pmatrix} x \\ b \end{pmatrix}$$

und also

$$2x + y = \lambda x$$
$$x + 2y = \lambda y$$

Wir bekommen also

$$y((1-\lambda)^2 - 4) = 0$$

 $y \neq 0, x \neq 0$ Da die nullvektoren keine Eigenvektoren sind $\Rightarrow (1 - \lambda)^2 = 4 \Rightarrow \lambda = [-1, 3]$ Warum spezifisch zwei?

2. $B = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$ Wir Suchen ein λ sodass $b(v) = \lambda \cdot v$ für $v \in \mathbb{R}^2, v \neq 0$

$$\left(B - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Alsow für welche λ ist $B - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ nicht invertierbar (wann ist der kern nicht trivial) \Leftrightarrow Für welche $\lambda \in K$ ist

$$\det\left(B-\lambda\begin{pmatrix}1&0\\0&1\end{pmatrix}\right)=0?$$

$$\det\left(\begin{pmatrix}1-\lambda & -2\\ 1 & 4-\lambda\end{pmatrix}\right) = (1-\lambda)(4-\lambda) \Rightarrow \lambda = [2,3]$$

Und jetzt fur die Eigenvektoren: für $\lambda = 2$

$$b(v) = 2v \Rightarrow v = \alpha \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \alpha \neq 0$$

Satz 10.1.4 $T: V \to V$ linear. Dann gilt: $\lambda \in K$ eigenwert von $T \Leftrightarrow ker(T - \lambda 1_v) = 0$ iiiiiii HEAD

3 Eigenwerttheorie

====== **Fibonaccifolgen** sei V der V-R der Fibonnacci Folgen. wir haben $S:V\to V$ ist die Verschiebungsabbiildung, (die ist definiert in satz 1.1.15)

Die Basis war $B = \{\mathbb{F}_{0,1}, \mathbb{F}_{1,0} < \}$ Und die matrix ist $[S]_B^B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ und $det(S) = \lambda^2 - \lambda - 1$ eigenwerte sind also

 $\phi und\varphi$ und die Eigenfolgen sind $\{\mathbb{F}_{\phi,1},\mathbb{F}_{\varphi,0}<\}$ also die diagonal matrix ist dann $[S]_C^C=\begin{pmatrix}\phi&0\\0&\varphi\end{pmatrix}$ Das charakteristische **polynom** Sei $A \in M_{m \times n}(K)$ Dann ist $X_A(x) = det(A - x \partial_n)$ das charakteristische polynom von A

10.2.2 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ dann ist $X_a(x) = ichhabenichtabgeschrieben$ aber der konstante term des carachteristischen polynom ist die Determinante.

 $det(A-x1_n)$ Insbesondere $X_{1_2}(x)=x^3-2x+1=(x-1)^2$ **Definition 10.2.3** $T:V\to V$ linear dann sei $X_T(x)=det([T]_B^B-x1_n)$ dies ist unabhängig von der wahl der Basis B. 10.2.4: $X_T(x)$ ist wohldefiniert

Beweis $[T]_{c}^{C} = [D]_{C}^{B}[T]_{B}^{B}[D^{-1}]_{B}^{C}$ danns ist

$$det([T]_C^C - 1_n x) = det([D]_C^B [T]_B^B [D^{-1}]_B^C - 1_n x) = det(D[T]_B^B D^{-1} - xDD^{-1})$$
$$= det(D([T]_B^B - xT)D^{-1}) = det(D)det([T]_B^B - x)det(d^{-1} =) = det(D)det([T]_B^B - x)$$

3.1Theorem 10.2.5:

Es sei $T:V\to V$ linear. Dann gilt dans die Eigenverte von $T=\{\lambda\in K|X_T(\lambda)=0\}$ **Lemma 10.2.6**Sei $A = (a_{ij}) \in M_{n \times n}(K)$ eine obere Dreiecksmatrix fann gilt

$$X_A(x) = \prod_{n=1}^n (a_{ii} - x)$$

Sei
$$M = \begin{pmatrix} a & b \\ c & cd \end{pmatrix} \Rightarrow X_A = x^2 - (a+d)x + ad - bc$$

Trace (noch nachzu sehen) $Tr: M_{n\times n}(K) \to A = (a_{ij}) \to \sum a_{ii} 1$ **Def 10.2.7** Sei $T: V \to V$ linear dann ist die Spur von

$$Tr(T) = Tr([T]_B^B)$$

10.2.8 Tr(T) ist wohldefiniert

Beweis Zu zeigen wann C eine Andere Basis un $D = id|_{B}^{C}$ dann gilt

$$Tr([T]_B^B) = Tr(D^{-1}[T]_C^C D)$$

Es reicht aus zu zeigen dass wenn $M_1, M-2 \in M_{n \times n}(K)$ dann gilt $Tr(M_1M_2) = Tr(M-2M_1)$ (mit explizite rechnung beweisen)

Daher gilt auch 10.2.8

Satz10.2.9 es sei $T: v \to V$ linear dann gilt

$$X_T = (-1)^n x^n + (-1)^{n-1} x^{n-1} Tr(T) + \dots + det(T)$$

Beweis es sei $A = \begin{bmatrix} B \\ B \end{bmatrix}$ Mit induktion kann man beweisen dass wenn es für eine $M_{n-1 \times n-1}$ geht dann geht es für $M_{n \times n}$ als übung zu machen. Der Zweite beweis geht wie folgt ab:

Sei $B \in M_{n \times n}$ und $b = (b_{ij})$ dann gitl die formel

$$\sum_{\sigma \in S_n} b_{\sigma(1,1)} \dots b_{\sigma(n,n)}$$

Sei $B = A - x1_n$ und $\sigma \in S_n$ Fur welche σ hat

$$b_{\sigma(1,1)}b_{\sigma(2,2)}....b_{\sigma(n,n)}$$

ein polynom von grad >n-1? Der beweis ist todlich, nacheher schauen ich tippe jetzt was ich nicht verstehe...

 $\dot{\iota}\dot{\iota}\dot{\iota}\dot{\iota}\dot{\iota}\dot{\iota}\dot{\iota}\dot{\iota}$ refs/remotes/origin/main $T:V\to V$ linear, dann ist $\lambda\in K$ eine Eigenvector wenn $\exists v\in V, v\neq 0_v$ so dass $Tv=\lambda v$. Hier merken wir dass der skalar eines Eigenvektors, auch ein egeinvektor ist, und dass die addition von zwei vektoren mir den selben eigenwert, auch ein Eigenvektor ist, also hat dies die Struktur eines unterraums...

Wir sind auf dem Folgenden Satz gekommen. Sei $T:V\to V$ linear, dann gilt $\lambda\in K$ ist genau dann Eigenwert von T wenn $\ker(T-\lambda I_n)\neq\{\emptyset\}$

Beweis $\lambda \in K$ Eigenwert $\Leftrightarrow \exists v \in V, v \neq 0_v$ so dass $Tv = \lambda v \Leftrightarrow (T - \lambda I_n)v = 0_v$ Und daher ist $v \in ker(T - \lambda I_n)$

Das ist Praktisch da wenn $(T - \lambda I_n)$ nicht injektiv ist dann ist $ker(T - \lambda I_n) \neq \emptyset$ und wenn die Determinante nicht null ist dann ist $T - \lambda I_n$ kein endomorphismus.

Bemerkung 0 ist ein Eigenwert wenn T kein isomorphismus ist

Korollar Folgende aussagen sind äquivalent:

- λ ist ein Eigenwert von T
- $ker(T_{\lambda}I_n) \neq = 0_v$
- $T \lambda I_n$ ist kein Isomorphismus
- $det(T \lambda I_n) = 0$

Der Beweis ist eine zusammenfassung von vorherigen beweisen

Mit dieses wissen kann man Finden dass es hochstens n Unterschliedliche eigenwerte gibt, da die mit einen grad n polynom definiert sind.

3.2 Das charachteristische polynom

Definition 10.2.1 Sei $A \in M_{n \times n}(K)$. dann ist $X_a(x) = det(A - x1_n)$ das charakteristische polyom von A Für eine 2×2 Matrix ist dann

$$X_A(X) = x^2 - \underbrace{(a-d)x}_{Tr(A)} + \underbrace{ad-bc}_{det(A)}$$

Kleine errinerung, die Trace ist die Summe der Diagonale elemente. Diese bemerkung gilt auch für 3×3 . Wir rechnen jetzt für $n \times n$. Der Konstante term von $det(A - xI_n)$ ist det(A) (da es der Fall bei x = 0 ist) Insbesondere:

$$X_1(x) = x^2 - 2x + 1 = (x - 1)^2$$

Definition 10.2.3 $T: V \to V$ linear dann ist $X_T(x) = det([T]_b^b - xI_n)$ Für eine Basis B von V.

10.2.4 $X_T(x)$ ist wohldefiniert.

Beweis

$$[T]_C^C = [D]_C^B [T]_B^B [D^{-1}]_B^C$$

Multiplikativität von det:

$$det([T]_C^C - xI_n) = det([D]_C^B [T]_B^B [D^{-1}]_B^C - xI_n) = det([D]_C^B [T]_B^B [D^{-1}]_B^C - xD^{-1}D) = det(D)det([T]_B^B - xI_n)det(D^{-1})$$

Was unsere aussage zustimmt.

Da das Charakteristische Polynom unabhängig von der Wahl der Basis, ist sie Eindeutig und daher Wohldefiniert.

Theorem 10.2.5 Es sei $T: V \to V$ linear, dann gilt dass

{Eigenwerte von
$$T$$
} = { $\lambda \in K | X_T(\lambda) = 0$ }

Lemma 10.2.6 Sei $A = (a_{ij}) \in M_{n \times n}(K)$ Eine Obere Dreiecksmatrix. Dann ist das Charakteristische Polynom

$$X_A(x) = \prod_{i=1}^n (a_{ii} - x)$$

iiiiiii HEAD

 $Tr: M_{n \times n}(K) \to K$ $A = (a_{ij} \to \sum a_{ii})$ Ist wohldefiniert. **Definition 10.2.7** Sei $T: V \to V$ linear dann ist $Tr(T) = Tr([T]_B^B)$ Wobei B eine Basis, Wohldefiniert (**Satz 10.2.8**).

Beweis Zu Zeigen, wenn \mathbb{C} eine andere Basis ist, und $D = [id_v]_{\mathbb{C}}^B$ eine Basiswechselmatrix ist, dann gilt:

$$Tr[T]^B_B = Tr(D^{-1}[T]^{\mathbb{C}}_{\mathbb{C}})$$

Hier Bleibt nichts übrig ausser es auszurechnen, aber es funktioniert, es reicht aus zu zeigen, Wenn $M_1, M_2 \in M_{n \times n}(K)$ dann gilt $Tr(M_1 \cdot M_2) = Tr(M_2 \cdot M_1)$ Da wenn dass gilt dann kürzt sich der D, D^{-1} . Dass ist eine Explizite berechung. **Satz 10.2.9** Sei $T: V \to V$ linear, dann gilt

$$X_T(x) = (-1)^n x^n + (-1)^{n-1} Tr(T) x^{n-1} + \dots + det(T)$$

Beweis Es sei $A = [T]_B^B = = = = = =$ Satz 10.2.8 Tr(T) ist wohldefiniert. Beweis Wenn C eine andere basis ist und $D = [id_v]_C^B$ dann gilt: $Tr[T]_B^B = Tr(D^{-1}[T]_C^CD)$ Hier bleibt in theorie nichts anderes als von hand zu zeigen dass $M_1, M_1 \in M_{n \times n}(K)$ dann gilt: $Tr(M_1M_2) = Tr(M_2M_1)$. Aber es ist immer noch nicht sehr schon.

Satz 10.2.9 Es sei $T: V \to V$ linear dann ist

$$X_T(x) = (-1)^n x^n + (-1)^{n-1} Tr(T) x^{n-1} + \dots + det(T)$$

Uber den rest kann man nicht viel sagen

Beweis Es sei $A = [T]_B^B$ dann ist $X_A(x) = det(A)$ Aber die A matrix ist sehr gross, dann muss man den beweis per induktion machen (Gute exams aufgabe). Hier ist die zweite idee die wir machen Wir wissen dass $B \in M_{n \times n}(K)$ dann gilt

$$det(B) = \sum_{\sigma \in S_n} sgn(\sigma)b_{\sigma(1),1} \cdot \dots \cdot b_{\sigma(n),n}$$

Sei $B = A - xI_n$ und $\sigma \in S_n$, für welche σ ist $b_{\sigma(1),1} \cdot b_{\sigma(2),2} \cdots b_{\sigma(n),n} = (*)$ ein Polynom vom Grad $\geq n-1$? wenn $\sigma = id$ dann ist

$$(*) = (a_{1,1} - x) \cdots (a_{nn} - x) = (-1)^n x^n + (-1)^{n-1} \underbrace{(a_{1,1} + a_{2,2} + \dots + a_{n,n})}_{=Tr(B)} x^{n-1} + \text{Restterm von grad in-1}$$

Alle andere moglichkeiten für σ müssen also vom grad < n-1 sein (da nur auf der Diagonale $a_{j,j}-x$ steht, uberall sonst gibt es kein x und wenn wir nur ein element vertauschen, sind es zwei, und daher ist grad (n-1), und daher ist dass zweite vorfaktor vom polynom Welches dann beweist dass der zweite Restterm Tr(A) ist und also dass unsere gleichung stimmt (der konstante faktor muss ja = det(A) sein)

Korollar 10.2.11 $T:V\to V$ mir V n-dim hat hochstens n Eigenwerte (da der Charachteristische polynom grad n ist.)

3.3 Diagonalisierung

Frage: es sei $T: V \to V$ ein Endomorphismus. Gibt es eine Basis in welche die abbildungsmatrix von T diagonal ist? Satz 10.3.2 Es seien $\lambda_1, \dots, \lambda_n$ verschieden eigenwerte von T und $\forall i$ sei v_i ein Eigenvektor mit eigenwert λ_i dann sind v_1, \dots, v_m linear unabhängig.

Beweis Es sei zwei Eigenvektoren, v_a, v_b mit eigenwerte λ_a, λ_b dabei ist dann $Tv_a = \lambda_a v_a$ und $Tv_b = \lambda_b v_b$ wenn aber

 $v_a = cv_b$ (sie sind nicht linear unabhängig) dann gilt $Tcv_b = \lambda_a cv_b$ und damit ist $\lambda_a \cdot c = \lambda_a$ und also sind diese Eigenvektore nicht unterschiedlich, da sie beide den selben Eigenwert haben.

Korollar 10.3.4 Wenn Wir für $T: V \to V$ linear mit V n-dim, wenn T Genau n verschidene Eigenwerte hat, dann hat V eine Basis die aus $\lambda_1, \lambda_2, \dots, \lambda_n$ besteht.

Definition 10.3.5 $T:V\to V$ ist diagonalisierbar wenn \exists Basis von Eigenvektoren existiert. In diesem Fall ist die Abbildungsmatrix von T bezüglich dieser Basis diagonal, mit den Eigenwerte als einträge in der Matrix.

Bemerkung 10.3.6 Eine $A \in M_{n \times n}$ Matrix ist diagonalisierbar $\Leftrightarrow \exists B \in GL_n(K)$ so dass $B^{-1}AB$ diagonal ist (basiswechselmatrix).

Lemma 10.3.7 Wenn A Diagonalisierbar mit Eigenwerten $\lambda_1, \dots, \lambda_1$ ist, dann ist $X_A = \Pi(\lambda_i - x)$

Charachterische Polynom ist: $X_A = det(A - xI_n)$ und seine losungen sind die Eigenwerte der Matrix.

Eine n-dim Matrix ist diagonalisierbar falls es n unterschiedliche Eigenwerte gibt, daher wenn es eine Basis von Eigenvektoren gibt. Wir wissen auch dass

$$A = [T]_B^B \Leftrightarrow \exists P \in GL_n(K) \text{ so dass } P^{-1}AP \text{ Diagonal ist}$$

Frage, für welche A gibt es so ein P?

- \bullet Wenn A diagonal ist dann ist P die identität.
- Wenn $X_A(x)$ n verschiedene Nullstellen hat, beachte, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} aber X(x) = (1-x)^2$ also diese bedingung ist nicht ausschlieslich.

Gibt es matizen die Nicht diagonlisierbar sind?

Beispiele 10.3.8

- $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow X_A(x) = x^2 \Rightarrow A$ hat nur einen Eigenwert, $\Rightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow$ Eigenvektoren sind $\alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Daraus kann man aber keine Basis machen, dies ist nicht diagonalisierbar.
- Es kann auch am Korper liegen dass wir nicht diagonaliseren konnen: $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_{2\times 2}(\mathbb{R}) \Rightarrow X_M(x) = x^2 + 1$ dass konnen wir nicht in \mathbb{R} faktorisieren, aber in \mathbb{C} geht es mit Eigenwerte $\pm i$, Wir werden immer den Korper vergrossern so dass dieser Fall nicht aufkommt

Besipiel 10.3.9: der Erste Fall in der Liste lässt sich verallgemeinern, Sei $n \ge 1, \lambda \in K$ Wir definieren die Jordansche Blockmatrix

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \lambda & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

Und wir merken also dass $X_{J_n}(x) = (\lambda - x)^n$ Wobei der einzige Eigenwert $x = \lambda$ und die Dazugehorigen EigenVektoren

sind dann $\alpha \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ was natürlich für n>1 keine Basis.

Folgerungen Dass Charakterische allein entscheidet nicht ob eine Matrix diagonalisierbar ist. Und dass Problem ist eine Mogliche Diskrepanz zwischen der Ordnung der Nullstelle und die Dimension des aufgespannten Unterraums der Eigenvektoren.

3.4 Eigenräume

Definition 10.4.1 Sei $T:V\to V$ linear und λ ein Eigenvektor von T. Der Eigenraum, ist der Aufgespannte unterraum vom λ -Eigenvektor, seine Definition ist wie Folgt $E_{\lambda}=ker(T-\lambda id_v)=<\lambda$ Eigenvektoren > **Lemma 10.4.2** $E_{\lambda}\subset V$ Beweis trivial.

10.4.3

• $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ Dann ist $X_A(x) = -x^3 + 3x + 2$ und dann sind die Eigenwerte $X_A(2) = 0$ und dann konnen wir Faktorisieren und es kommt $X_A(x) = -(x-2)(x+1)^2$ und die Dimensionen der Dazugehorigen Eigenräume sind:

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow E_{\lambda=2} = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle$$

Und mit
$$E_{\lambda=-1} = \left\langle \begin{pmatrix} 1\\1\\-2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \right\rangle$$

Aber mit eine Riesen matrix ist es schwierig zu sagen ob wenn wir alle Eigenräume zusammenstellen, wir eine Basis von V haben, oder nicht.

Definition 10.4.4 Sei V ein V-R, wir betrachten $U_1, ..., U_k \subset V$ Sei $W = U_1 + \cdots + U_k$ Dann ist W die Direkte summe von $U_1, ..., U_k$, wenn

$$\forall w \in W \quad \exists ! u_1 \in U_1, ..., u_k \in U_k \text{ so dass } w = u_1 + ... + u_k$$

Man schreibt $W = U_1 \bigoplus ... \bigoplus U_k$

Ich glaube dies ist äquivalent zu $\bigcap U_i = \{0_v\}$ Der beweis ist schwierig.

Lemma 10.4.6 Es gilt $W = U_1 \bigoplus ... \bigoplus U_k$ genau wenn die Gleichung $u_1 + ... + u_k ==_v$ mit $u_i \in U_i$ $\forall i$ nur die Losung $u_i = 0_v$ $\forall i$ hat. Der beweis ist als übung zum Leser überlassen

Beispiele 10.4.7

•
$$\mathbb{R}^3 = \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\rangle \bigoplus \left\langle \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \right\rangle \bigoplus \left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle$$
 Dies wäare äquivalent zu sagen dass diese drei elemente eine Basis von \mathbb{R}^3 sind also ia

•
$$\mathbb{R}^2 = \left\langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\rangle + \left\langle \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \end{pmatrix} \right\rangle$$
 aber Keine Direkte summe da die zweite lineare Hülle unnotige elemente enthält

Beachte 10.4.8 Wenn W die Direkte Summe von $U_1...U_k$ ist dann gilt dass $\dim(W) = \dim(U_1) + ... \dim(U_k)$

Beweis Sei B_i Basis von U_i dann behaupten wir dass $B_1 \cup \cup B_k$ Basis von W ist. Dieser Teil des Beweis ist als Ubung überlassen

Satz 10.4.9 Es sei $T: V \to V$ linear und $\lambda_1, ..., \lambda_k$ Eigenwerte von T mit $\lambda_i \neq \lambda_j \forall i \neq j$. Sei $W = E_{\lambda_1} + ... + E_{\lambda_k}$ Dann gilt $W = E_{\lambda_1} \bigoplus ... \bigoplus E_{\lambda_k}$.

Beweis Nehmen wir an dass $\exists u_1, ..., u_k \ u_i \in E_{\lambda_i}$ und dann da u_i jeweils in unterschiedliche Eigenräume sind, sind die alle von einander linear unabhängig, kann die summe den Nullvektor ergeben:

$$\exists u_1, ..., u_k \in E_{\lambda_i} \text{ so dass } u_1 + ... + u_k = 0_v$$

Doch $u_1,...,u_k$ sind linear unabhängig und wenn $u_i \neq 0_v \quad \forall i$ dann kriegen wir ein widerspruch.

Korollar 10.4.10 Sei $T:V\to V$ linear mit Eigenwerte $\lambda_1,...,\lambda_k$ dann ist T genau dann Diagonalisierbar, wenn die summe der dimensionen der dazugehorigen Eigenräume, die dimension von V ist:

$$T$$
 ist Diagonaliserbar $\Leftrightarrow \dim(V) = \sum_{i=1}^{k} \dim(E_{\lambda_i})$

3.5 Algebraische und Geometrische vielfachheit

Bemerkung 10.5.1 Es sei $n = \dim_K(V)$ mit $T: V \to V$ Dann hat $X_T(x)$ grad n und wenn $X_T(x) = (\lambda_1 - x)^{a_1} \cdot ... \cdot (\lambda_k - x)^{a_k}$ mit $\lambda_i \neq \lambda_j \forall i \neq j$ dann ist $n = \sum a_i$

Definition 10.5.2 sei λ Eigenwert von T dann ist

- Die Geometrische Vieflachheit; $g_{\lambda} = \dim(E_{\lambda})$
- Algebraische Vielfacheit a_{λ} ist die Ordnung der Nullstelle vom Faktor λ in $X_T(x)$

Beispiele 10.5.3 Im beispiel 10.4.3 hatten wir

•
$$\lambda_1 = -1$$
 und $g_{\lambda_1} = a_{\lambda_1} = -2$

- $J_n(\lambda)$ $g_{\lambda} = 1$ $a_{\lambda} = n$
- λI_n $g_{\lambda} = a_{\lambda} = n$

Man merkt dass:

Satz 10.5.4 $T: V \to V$ mir Eigenwert λ Dann gilt $g_{\lambda} \leq a_{\lambda}$

Beweis Sei $v_1, ..., v_k$ eine Basis von E_{λ}, v_k eine Basis von E_{λ} und wir erweitern sie zu einer Basis $B = \{v_1, ..., v_k, v_{k+1}, ..., v_n\}$

von V. Dann ist $[T]_B^B = \begin{pmatrix} \lambda I_k & C \\ 0 & D \end{pmatrix}$ Dann ist $\det([T]_B^B - xI_n) = (\lambda - x)^k \cdot \det(D - xI_{n-k})$ das bedeutet dass $k \leq a_\lambda$ da

im $\det(D - xI_{n-k})$ auch eine Nullstelle vorkommen kann.

Korollar 10.5.5 Es seien $\lambda_1, ..., \lambda_k$ unterschiedliche Eigenwerte von T, dann gilt:

T ist diagonalisierbar
$$\Leftrightarrow g_{\lambda_i} = a_{\lambda_i} \quad \forall i$$

Beweis Korollar 10.4.10 sagt dass

$$T \text{ ist Diagonalisierbar } \Leftrightarrow V = E_{\lambda_1} \bigoplus \ldots \bigoplus E_{\lambda_k} \Leftrightarrow \dim(V) = \sum \dim(E_{\lambda_i}) = \sum g_{\lambda_i} \leq \sum a_{\lambda_i} = n = \dim(V)$$

da beide seiten dim(V) haben, dann ist $\sum g_{\lambda_i} = \sum a_{\lambda_i}$ und da $a_{\lambda_i} \geq g_{\lambda_i}$ ist $a_{\lambda_i} = g_{\lambda_i} \quad \forall i$ **Theorem 10.5.6** Sei dim(V) = n mit $T: V \to V$ dann sind folgende aussagen äquivalent:

- T ist Diagonalisierbar
- $\forall \lambda \text{ gilt } a_{\lambda} = g_{\lambda}$
- Seien $\lambda_1, ... \lambda_k$ Eigenwerte, dann gilt $X_T(x) = \Pi(\lambda_i x)^{g_{\lambda_i}}$
- $V = \bigoplus_{i=1}^{k} E_{\lambda_i}$

Die Beweise sind schon alle vorgeführt gewesen.

Was machen wir mit den Matrizen die man nicht diagonalisieren kann?

4 Das minimale Polynom

Definition und Erste Eigenschaften

 $End_k(V)$. Es geht auch mit matrizen.

Beispiele 11.1.4

•
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$$
 $f(x) = x^2 - x + 3 \Rightarrow f(A) = A$

• $g(x) = x^n$ dann ist $g(J_n(0)) = 0_{n \times n}$ im Jordanblock, verschiebt sich die diagonale nach oben rechts.

Satz 11.1.5 Sei $T \in End_K(V)$ dann $\exists g(x) \in K[x]$ so dass $g(T) = 0_v$

Beweis $\dim(End_k(V)) = n^2 \Leftrightarrow \dim(V) = n$ dass heisst dass $T^0, T^1, ..., T^{n^2}$ sind alle linear unabhängig, und daher:

$$\exists a_0,...a_{n^2} \in K \neq 0$$
 so dass $a_0T^0+...+a_{n^2}T^{n^2}=0_v$

Aber kann man dieses Polynom finden, und hat es einen zusammenhang mit den Charakteristischen Polynom **Bemerkung 11.1.6** Wenn $g(T) = 0_V$ dann gilt auch $(\alpha g)(T) = 0_V$ $\forall \alpha \in K$ Beispiele 11.1.7

• Sei $n \ge 1$, $A = Id_n$ und g(x) = x - 1 dann gilt $g(A) = 0_{n \times n}$

• Sei
$$A = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_k \end{pmatrix}$$
 dann haben wir $\forall g \ g(A) = \begin{pmatrix} g(\lambda_1) & 0 \\ & \ddots & \\ 0 & & g(\lambda_k) \end{pmatrix}$ Hier konnen wir also $X_A(A) = 0_{n \times n}$

Gilt also dass $g(x) = X_A(x)$ für jede Matrix A?

Vermutung: Sei $A \in M_{n \times n}(K)$ dann ist $X_A(A) = 0_{n \times n}$ Hier kommen wir später zuruck

Definition 11.1.8 Sei $T:V\to V$ linear. Das minimale Polynom ist das monische $(\neq 0)$ Polynom kleinsetn Grades $m_T(x)\in K[x]$ so dass $m_T(T)=0_V$

Lemma 11.1.9: Seien m(x) und m'(x) beide Monisch, vom kleinsten Grad $d \ge 1$ so dass $m(T) = m'(T) = 0_V$. Dann gilt m(x) = m'(x).

Beweis Nimm an dass $m(x) \neq m'(x)$ Dann sei

$$g(x) = m(x) - m'(x) \neq \Rightarrow deg(g) < d \text{ und } g(T) = 0_V$$

Was ein Widerspruch bringt.

Sat 11.1.10 Sei $T: V \to V$ Linear und $g(x) \in K[x]$ monisch so dass $g(T) = 0_V$ Dann gilt dass $m_T(x)|g(x)|(m_T(x))$ teilt g(x)

Beweis Polynom division: $\exists q(x), r(x) \in K[x]$ mit deg(r) < deg(m) so dass g(x) = m(x)q(x) + r(x) und da $g(T) = 0_v = q(T) \underbrace{m(T)}_{} + r(T)$ also $r(T) = 0_V \Rightarrow r(x) = 0$

Beispiele11.1.11

- $A = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \Rightarrow X_A(x) = (x \lambda)(x \mu)$ wir wissen dass $X_A(A) = 0_{2 \times 2}$ und wir wissen das der minimale polynom der Charakteristische Polynom teilt. Wenn also $\mu \neq \lambda \Rightarrow m_A(x) = X_A(x)$ aber wenn $\lambda = \mu \Rightarrow m_A(x) = x \lambda$
- Sei $A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{pmatrix}$ $X_A(x) = (\lambda x)^2 (\mu x) \Rightarrow m_A(x) = (\lambda x)(\mu x) \quad \lambda \neq \mu \text{ Wenn } \mu = \lambda \quad m_a(x) = x \lambda$
- $A = J_n(\lambda) \Rightarrow X_A(x) = (\lambda x)^n \Rightarrow m_A(x) = X_A(x)$
- $A = \lambda i d_n \Rightarrow X_A(x) = (\lambda x)^n$ und $m_A(x) = x \lambda$