Beyond Linear Regression models

Linear Regression model

Linear Regression model

Training $RMSE =$	
$\sqrt{\frac{1}{n}\sum_{i=1}^{k}(yi-f(xi))^2} =$	0.5947

Testing
$$RMSE = \sqrt{\frac{1}{k}\sum_{i=1}^{k}(yi - f(xi))^2} = 0.9426$$
 (IT582) Foundation of Machine Learning

Income (x) (thousand dollar)	Balance (y) (thousand dollar)	Estimated f(x) (thousand dollar)
0.96703	9.675083	9.41205399
0.547232	6.293266	6.47467789
0.972684	9.730614	9.45161938
0.714816	7.474346	7.64728226
0.697729	7.342933	7.5277212
0.216089	4.619033	4.15763074
0.976274	9.765597	9.47673972
0.00623	4.012784	2.68921946
0.252982	4.762698	4.41577473
0.434792	5.626166	5.68791617
0.779383	7.989045	8.09906511
0.197685	4.552625	4.02885271
0.862993	8.705537	8.6840969
0.983401	9.835217	9.52660279
0.163842	4.43522	3.79205019
0.597334	6.622444	6.8252457
0.008986	4.01882	2.70850244
0.386571	5.37153	5.35051307
0.04416	4.096522	2.95461902
0.956653	9.574695	9.33944573

Quadratic Fitting

Quadratic Fitting

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we need to solve

$$Min_{(\beta_2,\beta_1,\beta_0)}$$
 $J(\beta_2,\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i + \beta_2 x_i^2)^2$ (2)

Quadratic Fitting

Training RMSE = 0.4980

Fitting with fourth order polynomial

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we need to solve

$$Min_{(\beta_4,\beta_3,\beta_2,\beta_1,\beta_0)} J(\beta_4,\beta_3,\beta_2,\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4))^2 \qquad ...(3)$$

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we need to solve

$$Min_{(\beta_4,\beta_3,\beta_2,\beta_1,\beta_0)} J(\beta_4,\beta_3,\beta_2,\beta_1,\beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4))^2 \qquad ...(3)$$

Fitting with seven order polynomial

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7$$

$$= 11.89 - 283.034 x + 3015 x^2 - 14643.7x^3 + 38006.62x^4 - 54565.9x^5 + 40844.5x^6 - 12458.5x^7$$

Training $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(yi - f(xi))}2 = 0.1186$

Fitting with eight order polynomial

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7 + \beta_8 x^8$$

$$= 18.14 - 527.837 x + 6379 x^2 - 37080.8x^3 + 120518.8x^4 - 230990x^5 + 256860.2x^6 - 154208x^7 + 235.43x^8$$

Training
$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{k}(yi - f(xi))}2 = 0.0026$$

(IT582) Foundation of M38542×7ning

Improving the prediction for M=7

$$Min \left\{ \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4 + \beta_5 x_i^5 + \beta_6 x_i^6 + \beta_7 x_i^7))^2 \right\}$$

$$\left\{ \left\{ \left(\frac{\lambda}{2} (\beta_0^2 + \beta_1^2 + \beta_2^2 + \beta_3^2 + \beta_4^2 + \beta_5^2 + \beta_6^2 + \beta_7^2) \right\} \right\}$$
User defined parameter

$$\begin{array}{lll}
\text{Min} & (Y - AY)^T (Y - AY) + \lambda y^T y, & \text{where} \\
y = (Y - AY)^T (Y - AY) + \lambda y & \text{where} \\
y = -\lambda Y + \lambda Ay + \lambda Y & = 0
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Ay + \lambda Y & = 0$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay
\end{array}$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y + \lambda Y & = Ay$$

$$\begin{array}{lll}
\Rightarrow -A^T y$$

Estimation with regularization

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \\ \beta_7 \\ \end{bmatrix} \begin{bmatrix} 3.51 \\ 2.75 \\ 1.60 \\ 1.05 \\ 0.78 \\ 0.61 \\ 0.50 \\ 0.41 \end{bmatrix}$$

M = 7 order polynomial estimation

Estimation with regularization

Train RMSE = 0.4989

Test RMSE = 0.8646

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \\ \beta_7 \end{bmatrix} = \begin{bmatrix} 3.51 \\ 2.75 \\ 1.60 \\ 1.05 \\ 0.78 \\ 0.61 \\ 0.50 \\ 0.41 \end{bmatrix}$$

Estimation with regularization

Test RMSE = 0.8646 which was 3.90

10