Algebra I BLATT 1

Jendrik Stelzner

24. April 2014

Aufgabe 1

Wir betrachten zunächst $H = SL_2(K)$. Es ist klar, dass $H.0 = \{0\}$. Wir behaupten, dass $H.x = K^2 \setminus \{0\}$ für alle $x \in K^2 \setminus \{0\}$. Da Bahnen entweder disjunkt oder gleich sind, reicht es hierfür zu zeigen, dass $H.e_1 = K^2 \setminus \{0\}$. Es sei $x = (x_1, x_2)^T \in K^2 \setminus \{0\}$. Ist $x_1 \neq 0$ so gilt für die Matrix

$$A = \begin{pmatrix} x_1 & 0 \\ x_2 & x_1^{-1} \end{pmatrix},$$

dass det A=1, also $A\in H$, und $Ae_1=x$. Ist $x_2\neq 0$ so gilt für die Matrix

$$B = \begin{pmatrix} x_1 & -x_2^{-1} \\ x_2 & 0 \end{pmatrix},$$

dass $\det B=1$, also $B\in H$, und $Be_1=x$. Da $x\neq 0$ muss $x_1\neq 0$ oder $x_2\neq 0$, also $x\in H.e_1$. Die Beliebigkeit von $x\in K^2\setminus\{0\}$ zeigt, dass $H.e_1=K^2\setminus\{0\}$.

Für die natürliche Darstellung von $G = \operatorname{GL}_2(K)$ auf K^2 ergibt sich, dass G.0 = $\{0\}$. Da $H \leq G$ eine Untergruppe ist, so dass die Aktion von H auf K^2 durch die von G induziert wird, ist für alle $x \in K^2 \setminus \{0\}$

$$K^2 \setminus \{0\} = H.x \subseteq G.x \subseteq K^2 \setminus \{0\},\$$

also $G.x = K^2 \setminus \{0\}.$

Für eine Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H_{e_1}$$

muss

$$\begin{pmatrix} a \\ c \end{pmatrix} = Ae_1 = e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

sowie daher $1=\det A=d$. Also ist $H_{e_1}\subseteq U$. Es ist aber auch klar, dass $U\subseteq H_{e_1}$, denn es ist det B=1 und $Be_1=e_1$ für alle $B\in U$. Daher ist $U=H_{e_1}$.

Dass für jedes $x \in K^2 \setminus \{0\}$ die Stabilisatorgruppe H_x zu U konjugiert ist, folgt direkt daraus, dass x und e_1 die gleiche Bahn und damit konjugierte Stabilisatorgruppen haben.

Aufgabe 2

Um uns die Aufgabe zu erleichtern übertragen wir zunächst einige Aussagen, die wir für Polynome in einer Variablen kennen, auf Polynome in mehreren Variablen.

Lemma 1. Sei K ein unendlicher Körper und $n \geq 1$. Dann ist die Abbildung

$$\varphi: K[X_1, \dots, X_n] \to \mathcal{P}(K^n), p \mapsto ((\lambda_1, \dots, \lambda_n) \mapsto p(\lambda_1, \dots, \lambda_n))$$

von Polynomen auf die entsprechenden Polynomsfunktionen injektiv. Insbesondere gilt für $f, g \in K[X_1, \dots, X_n]$ mit

$$f(\lambda_1,\ldots,\lambda_n)=g(\lambda_1,\ldots,\lambda_n)$$
 für alle $\lambda_1,\ldots,\lambda_n\in K$

bereit, dass f = g.

Beweis. Wir zeigen die Aussage per Induktion über $n \geq 1$.

Induktionsanfang. Es sei n=1. Für $f,g\in K[X_1]$ mit $f(\lambda)=g(\lambda)$ für alle $\lambda\in K$ ist $(f-g)(\lambda)=0$ für alle $\lambda\in K$. Da K unendlich ist hat f-g daher unendlich viele Nullstellen. Daher muss f-g=0, also f=g.

Induktionsschritt. Es sei $n \geq 2$ und es gelte die Aussage für alle kleineren $k \geq 1$. Da φ offenbar K-linear ist (eigentlich sogar ein K-Algebrahomomorphismus), genügt es zu zeigen, dass ker $\varphi = 0$. Sei also $f \in K[X_1, \dots, X_n]$ mit

$$f(\lambda_1,\ldots,\lambda_n)=0$$
 für alle $\lambda_1,\ldots,\lambda_n\in K$.

Wir können f als

$$f(X_1, \dots, X_n) = \sum_{i=0}^{\infty} p_i(X_1, \dots, X_{n-1}) X_n^i$$

schreiben, wobei $p_i \in K[X_1,\ldots,X_{n-1}]$ für alle $i \in \mathbb{N}$ und $p_i = 0$ für fast alle $i \in \mathbb{N}$. Für alle $\lambda_1,\ldots,\lambda_{n-1} \in K$ ist

$$g_{\lambda_1,...,\lambda_{n-1}}(X_n) := f(\lambda_1,...,\lambda_{n-1},X_n) = \sum_{i=0}^{\infty} p_i(\lambda_1,...,\lambda_{n-1})X_n^i.$$

ein Polynom in nur noch einer Variablen mit

$$g_{\lambda_1,\dots,\lambda_{n-1}}(\lambda) = f(\lambda_1,\dots,\lambda_{n-1},\lambda) = 0$$
 für alle $\lambda \in K$.

Es muss daher nach Induktionsvoraussetzung für k=1 bereits $g_{\lambda_1,\dots,\lambda_{n-1}}=0$ für alle $\lambda_1,\dots,\lambda_{n-1}\in K$. Also ist für alle $\lambda_1,\dots,\lambda_{n-1}\in K$

$$p_i(\lambda_1,\ldots,\lambda_{n-1})=0$$
 für alle $i\in\mathbb{N}$.

Nach Induktionsvoraussetzung für k=n-1 bedeutet dies für alle $i\in\mathbb{N}$, dass bereits $p_i=0$. Also ist bereits f=0.

Da die Abbildung von Polynomen auf Polynomsfunktionen offenbar surjektiv ist, ist φ sogar ein K-Algebraisomorphismus (falls K unendlich ist). Wir werden daher im Folgenden nicht mehr zwischen Polynomen und Polynomsfunktionen unterscheiden, sofern wir uns über einem unendlichen Körper befinden.

Bemerkung 2. Es sei K ein unendlicher Körper, $n \geq 1$ und $f \in K[X_1, \ldots, X_n]$. Dann ist $\mathrm{supp}(f) = \emptyset$ oder $\mathrm{supp}(f)$ unendlich. Insbesondere ist für $f,g \in K[X_1,\ldots,X_n]$ mit

$$f(\lambda_1,\ldots,\lambda_n)=g(\lambda_1,\ldots,\lambda_n)$$
 für fast alle $\lambda_1,\ldots,\lambda_n\in K$

bereits f = g.

Beweis. Wir nehmen an, die Aussage gilt nicht. Dann gibt es $f \in K[X_1,\ldots,X_n]$, so dass $\mathrm{supp}(f) \neq \emptyset$ und $\mathrm{supp}(f)$ endlich ist. Es sei dann $(\lambda_1,\ldots,\lambda_n) \in \mathrm{supp}(f)$. Wir betrachten das Polynom $g \in K[X]$ mit

$$g(X) := f(\lambda_1, \dots, \lambda_{n-1}, X).$$

Es ist $\operatorname{supp}(g) \neq \emptyset$, da $g(\lambda_n) = f(\lambda_1, \dots, \lambda_n) \neq 0$ und $\operatorname{supp}(g)$ endlich, da $\operatorname{supp}(f)$ endlich ist. Da K unendlich ist, hat g unendlich viele Nullstellen. Also muss bereits g=0, was im Widerspruch zu $\operatorname{supp}(g) \neq \emptyset$ steht. Es kann also ein solches g und daher auch ein solches f nicht geben.

Für
$$f,g\in K[X_1,\ldots,X_n]$$
 mit

$$f(\lambda_1,\ldots,\lambda_n)=g(\lambda_1,\ldots,\lambda_n)$$
 für fast alle $\lambda_1,\ldots,\lambda_n\in K$

ist $\operatorname{supp}(f-g)$ endlich. Also muss $\operatorname{supp}(f-g)=\emptyset$ und damit nach Lemma 1 bereits f-g=0 und daher f=g.

(a)

Da K unendlich ist, können wir K[X,Y] nach Lemma 1 mit den Polynomsfunktionen $\mathcal{P}\left(K^2\right)$ identifizieren. Die natürliche Darstellung von $G=\mathrm{GL}_2(K)$ auf K^2 induziert bekanntermaßen eine lineare Gruppenwirkung von G auf $\mathcal{P}\left(K^2\right)$ vermöge

$$(A.p)(x) = p(A^{-1}x)$$
 für alle $A \in G, x \in K^2$.

Für

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$$

ist daher für alle $p \in K[X,Y]$

$$(A.p)(X,Y) = p(aX + bY, cX + dY).$$

Für $X,Y\in K[X,Y]$ ist daher

$$A.X = aX + bY \text{ und } A.X = cX + dY.$$

(b)

Es ist klar, dass $K\subseteq K[X,Y]^G$. Es gilt daher nur noch zu zeigen, dass $K[X,Y]\subseteq K$. Sei hierfür $p\in K[X,Y]$. Für $x\in K^2\smallsetminus\{0\}$ gibt es nach Aufgabe 1 eine Matrix $A\in G$ mit $A^{-1}x=e_1$. Daher ist

$$p(x) = (A.p)(x) = p(A^{-1}.x) = p(e_1).$$

Dass zeigt, dass p auf $K^2 \setminus \{0\}$ konstant ist. Nach Bemerkung 2 ist daher p bereits auf ganz K^2 konstant, also nach Lemma 1 bereits $p \in K$. (Es ist klar, dass bei der Identifikation $K[X,Y] \cong \mathcal{P}\left(K^2\right)$ die konstanten Polynome auf naheliegende Weise genau den konstanen Polynomsfunktionen entsprechen.)

Für $\mathrm{SL}_2(K)$ ist die Argumentation analog, da die natürliche Wirkung von $\mathrm{SL}_2(K)$ auf K^2 zu den gleichen Bahnen führt wie die Wirkung von $\mathrm{GL}_2(K)$.

(c)

Für $p \in K[X,Y]$ mit $p \in K[Y]$ ist für alle $A = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \in U$

$$(A.p)(X,Y) = p(X - sY,Y) = p(X,Y).$$

Daher ist $U \subseteq K[X,Y]^U$.

Sei andererseits $p \in K[X,Y]^U$. Dann ist für alle $A = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \in U$

$$p(X,Y) = (A.p)(X,Y) = p(X - sY,Y).$$

Wir bemerken, dass daher p(x,y) = p(x',y) für alle $y \neq 0, x, x' \in K$, da

$$p(x,y) = p(x - ((x'-x)y^{-1})y, y) = p(x', y).$$

Wir definieren $q\in K[X,Y]$ mit $q\in K[X,Y]$ als q(X,Y)=p(0,Y). Für alle $x\in K$ ist für alle $y\neq 0$

$$q(x, y) = p(0, y) = p(x, y).$$

Nach Bemerkung 2 muss daher bereits q(x,y)=p(x,y) für alle $x,y\in K$. Nach Lemma 1 ist daher bereits p=q, also $p\in K[Y]$. Das zeigt, dass $K[X,Y]^U\subseteq K[Y]$.

Aufgabe 3

(a)

Aufgrund der universellen Eigenschaft des Polynomrings setzt sich die Abbildung

$$X_i \mapsto x_i$$
 für alle $i = 1, \dots, n$

zu einem eindeutigen Ringhomomorphismus

$$\phi: k[X_1, \dots, X_n] \to S(V^*)$$

fort. Aufgrund der universellen Eigenschaft der symmetrischen Algebra $S(V^*)$ setzt sich die lineare Abbildung

$$V^* \to k[X_1, \dots, X_n]$$
 definiert durch $x_i \mapsto X_i$ für alle $i = 1, \dots, n$

zu einem eindeutigen k-Algebrahomomorphismus $\psi: S(V^*) \to k[X_1, \ldots, X_n]$ fort. Es ist $\psi \circ \phi: k[X_1, \ldots, X_n] \to k[X_1, \ldots, X_n]$ ein Ringhomomorphismus, und für alle $i=1,\ldots,n$ ist $(\psi \circ \phi)(X_i)=X_i$. Aufgrund der universellen Eigenschaft des Polynomrings ist daher $\psi \circ \phi=\mathrm{id}_{k[X_1,\ldots,X_n]}$. (Denn es gibt einen eindeutigen Ringhomomorphismus $k[X_1,\ldots,X_n] \to k[X_1,\ldots,X_n]$ mit $X_i \mapsto X_i$ für $i=1,\ldots,n$, und dieser ist offenbar $\mathrm{id}_{k[X_1,\ldots,X_n]}$.)

 ϕ ist offenbar auch k-linear und somit ein k-Algebrahomomorphismus. Also ist $\phi \circ \psi : S(V^*) \to S(V^*)$ ein k-Algebrahomomorphismus. Da $(\phi \circ \psi)(x_i) = x_i$ für alle $i=1,\ldots,n$ muss wegen der universellen Eigenschaft von der symmetrischen Algebra bereits $\phi \circ \psi = \mathrm{id}_{S(V^*)}$. (Denn es gibt einen eindeutigen k-Algebrahomomorphismus $S(V^*) \to S(V^*)$ mit $x_i \mapsto x_i$ für $i=1,\ldots,n$, und dieser ist offenbar $\mathrm{id}_{S(V^*)}$).

Das zeigt, dass ϕ ein k-Algebraisomorphismus ist mit $\phi^{-1} = \psi$. Dieser ist aufgrund der universellen Eigenschaft des Polynomrings $k[X_1, \ldots, X_n]$ durch $\phi(X_i) = x_i$ für alle $i = 1, \ldots, n$ eindeutig bestimmt (s.o.).wh

(b)

Aufgrund der universellen Eigenschaft des Polynomrings setzt sich die Abbildung

$$X_j \mapsto \left(\sum_{i=1}^n \lambda_i b_i \mapsto \lambda_j\right) \in \mathcal{P}(V)$$

zu einem eindeutigen Ringhomomorphismus $\rho: k[X_1,\ldots,X_n] \to \mathcal{P}(V)$ fort, der von der Form

$$k[X_1, \dots, X_n] \to \mathcal{P}(V), p \mapsto \left(\sum_{i=1}^n \lambda_i b_i \mapsto p(\lambda_1, \dots, \lambda_n)\right)$$

ist. Es ist klar, dass dieser auch k-linear, und somit ein k-Algebrahomomorphismus ist. ρ ist nach Definition von $\mathcal{P}(V)$ offensichtlich surjektiv.

Ist k unendlich, so folgt aus Lemma 1, dass es einen k-Algebraisomorphismus

$$k[X_1, \dots, X_n] \cong \mathcal{P}(k^n) \text{ mit } p \mapsto ((\lambda_1, \dots, \lambda_n) \mapsto p(\lambda_1, \dots, \lambda_n)).$$

gibt. Die Basis b_1, \ldots, b_n von V liefert einen k-Vektorraumisomorphismus

$$V \to k^n, \sum_{i=1}^n \lambda_i b_i \mapsto (\lambda_1, \dots, \lambda_n).$$

Es ist klar, dass dieser k-Vektorraumisomorphismus auch einen k-Algebraisomorphismus

$$\mathcal{P}(k^n) \to \mathcal{P}(V), p \mapsto \left(\sum_{i=1}^n \lambda_i b_i \mapsto p(\lambda_1, \dots, \lambda_n)\right)$$

induziert. Damit ergibt sich insgesamt ein k-Algebraisomorphismus

$$k[X_1,\ldots,X_n]\to \mathcal{P}(V), p\mapsto \left(\sum_{i=1}^n\lambda_ib_i\mapsto p(\lambda_1,\ldots,\lambda_n)\right).$$

Dieser ist gerade ρ . Das zeigt, dass ρ ein k-Algebraisomorphismus ist, wenn k unendlich ist.

Ist k endlich mit q Elementen, so ist ρ nicht injektiv, denn $k[X_1,\ldots,X_n]$ ist unendlich, aber $\mathcal{P}(V)\subseteq \mathrm{Abb}(V,k)$, und $\mathrm{Abb}(V,k)$ enthält nur endlich (genau q^{q^n}) viele Elemente.

Es gilt sogar $\mathcal{P}(V)=\operatorname{Abb}(V,k)$: Um zu zeigen, dass $\operatorname{Abb}(V,k)\subseteq\mathcal{P}(V)$, bemerken wir, dass $\operatorname{Abb}(V,k)$ die k-Basis $\{\chi_v:v\in V\}$ besitzt. Für $v=\sum_{i=1}^n\lambda_i^vb^i\in V$ können wir die Polynomsfunktion $h^v\in\mathcal{P}(V)$ definieren als

$$h^{v}\left(\sum_{i=1}^{n} \lambda_{i} b_{i}\right) := \prod_{j=1}^{n} \prod_{\mu \in k^{\times}} (\mu + \lambda_{j}^{v} - \lambda_{j}).$$

Es ist $h^v(w) = 0$ genau dann wenn $w \neq v$ für alle $v, w \in V$. Daher ist für alle $v \in V$

$$\chi_v = \frac{1}{h^v(v)} h^v \in \mathcal{P}(V).$$

Da k aus q Elementen besteht ist bekannt, dass das Polynom $X^q-X\in k[X]$ jedes Körperelement als Nullstelle hat. Daher ist $X_i^q-X_i\in\ker\rho$ für alle $i=1,\ldots,n$. Da ρ ein Ringhomomorphismus ist, ist damit auch

$$(X_1^q - X_1, \dots, X_n^q - X_n) \subseteq \ker \rho$$

Um Gleichheit zu zeigen betrachten wir die zugrunde liegenden k-Vektorräume. Wir bemerken, dass das Ideal $I:=(X_1^q-X_1,\ldots,X_n^q-X_n)$ ein Untervektorraum von $k[X_1,\ldots,X_n]$ ist, und dass aufgrund des Homomorphiesatzes und der Isomorphiesätze

$$\mathcal{P}(V) \cong k[X_1, \dots, X_n] / \ker \rho \cong (k[X_1, \dots, X_n]/I) / (\ker \rho/I).$$

Dabei ist $\dim_k \mathcal{P}(V) = \dim_k \mathrm{Abb}(V, k) = q^n$ und $\dim_k k[X_1, \dots, X_n]/I = q^n$, da

$$\{X_1^{\nu_1}\cdots X_n^{\nu_n}: \nu_1,\ldots,\nu_n\in\{0,\ldots,q-1\}\}$$

ein k-Basis von $k[X_1,\ldots,X_n]/I$ ist. Es muss daher $\dim_k \ker \rho/I=0$, also $\ker \rho/I=0$ und deshalb $\ker \rho\subseteq I$.

Aufgabe 4

(a)

Wir zeigen zunächst, dass $H=\mathrm{GL}_2(\mathbb{C})$ auf $F^{(n)}$ wirkt. Wir wissen aus Aufgabe 2, dass H linear auf K[X,Y] per

$$(A.p)(x) = p(A^{-1}.x)$$
 für alle $A \in H, x \in \mathbb{C}^2, p \in K[X,Y]$

wirkt, also

$$(A.p)(X,Y) = p(aX+bY,cX+dY) \text{ für alle } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H, p \in K[X,Y].$$

Wir bemerken, dass $F^{(n)}$ eine Unterdarstellung dieser Darstellung von G ist. DaH von Matrizen der Form

$$I:=\begin{pmatrix}0&1\\1&0\end{pmatrix}, B_{\lambda}:=\begin{pmatrix}\lambda&0\\0&1\end{pmatrix}, C_{\mu}:=\begin{pmatrix}1&\mu\\0&1\end{pmatrix} \text{ mit } \lambda\in\mathbb{C}^{\times}, \mu\in\mathbb{C}$$

erzeugt wird, genügt es hierfür die Abgeschlossenheit von $F^{(n)}$ unter der Wirkung dieser Matrizen zu zeigen. Dies gilt, denn für alle $p=\sum_{k=0}^n a_k X^{n-k} Y^k \in F^{(n)}$ ist

$$(I.p)(X,Y) = p.(Y,X) \in F^{(n)},$$

für alle $\lambda \in \mathbb{C}^{\times}$

$$(B_{\lambda}.p)(X,Y) = p(\lambda X,Y) = \sum_{k=0}^{n} a_k \lambda^{n-k} X^{n-k} Y^k \in F^{(n)}$$

und für alle $\mu \in \mathbb{C}$

$$(C_{\mu} \cdot p)(X, Y) = p(X + \mu Y, Y) = \sum_{k=0}^{n} a_{k}(X + \mu Y)^{n-k} Y^{k}$$

$$= \sum_{k=0}^{n} a_{k} \sum_{l=0}^{n-k} {n-k \choose l} X^{l} \mu^{n-k-l} Y^{n-k-l} Y^{k}$$

$$= \sum_{k=0}^{n} \sum_{l=0}^{n-k} a_{k} {n-k \choose l} \mu^{n-k-l} X^{l} Y^{n-l} \in F^{(n)},$$

da $X^lY^{n-l}\in F^{(n)}$ für alle $0\leq l\leq n$ und $F^{(n)}$ ein $\mathbb C$ -Vektorraum ist. Da H linear auf $F^{(n)}$ wirkt, wirkt H auch linear auf $\mathcal P\left(F^{(n)}\right)$ via

$$(A.p)(v) = p\left(A^{-1}.v\right) \text{ für alle } A \in H, p \in \mathcal{P}\left(F^{(n)}\right), v \in F^{(n)}.$$

Da $G \leq H$ eine Untergruppe ist, induziert die lineare Gruppenwirkung von H auf $F^{(n)}$ und $\mathcal{P}(F^{(n)})$ eine lineare Gruppenwirkung von G auf diesen Räumen.

(b)

Für eine symmetrische Matrix $A \in \mathbb{C}^{2 \times 2}$ und das Polynom

$$f_A(X,Y) := \begin{pmatrix} X & Y \end{pmatrix} \cdot A \cdot \begin{pmatrix} X \\ Y \end{pmatrix} = a_{11}X^2 + 2a_{12}XY + a_{22}Y^2$$

ist $f_A \in F^{(n)}$ mit $D(f) = \det A$. (Diese Schreibweise ist unproblematisch, da wir wegen Lemma 1 nicht zwischen Polynomen und Polynomsfunktionen unterscheiden müssen.) Sei nun $f = a_0 X^2 + 2a_1 XY + a_2 Y^2 \in F^{(n)}$. Mit der symmetrischen Matrix

$$B = \begin{pmatrix} a_0 & a_1 \\ a_1 & a_2 \end{pmatrix} \in \mathbb{C}^{2 \times 2}$$

können wir f schreiben als $f=f_B$. Für $S\in \mathrm{SL}_2(\mathbb{C})$ ist auch $\left(S^{-1}\right)^TBS^{-1}$ symmetrisch, da

$$\left(\left(S^{-1} \right)^T B S^{-1} \right)^T = \left(S^{-1} \right)^T B^T S^{-1} = \left(S^{-1} \right)^T B S^{-1}.$$

Es ist $S.f = f_{(S^{-1})^T B S^{-1}}$, da

$$(S.f)(X,Y) = (S.f_B)(X,Y)$$

$$= (X Y) (S^{-1})^T BS^{-1} \begin{pmatrix} X \\ Y \end{pmatrix}$$

$$= f_{(S^{-1})^T BS^{-1}}(X,Y).$$

Da $\det S^{-1}=1$ ist daher

$$\begin{split} D(S.f) &= D\left(f_{(S^{-1})^TBS^{-1}}\right) = \det\left(\left(S^{-1}\right)^TBS^{-1}\right) \\ &= \det B = D(f_B) = D(f). \end{split}$$

Das zeigt, dass D(f) G-invariant ist.