Question 1

Build a DPDA to show that the language $L=\{(ba)^na(ab)^{n-2}\,|\,n>2\}$ is deterministic context free.

$$\begin{split} Q &= \left\{q_0, q_1, q_2, q_3, q_f\right\} \\ \Sigma &= \left\{a \;,\; b\right\} \\ \Gamma &= \left\{Z_0 \;,\; X\right\} \\ \delta &: Q \;\times \left(\Sigma \;\cup \left\{\epsilon\right\}\right) \times \; \Gamma \to \mathrm{Q} \;\times \Gamma \end{split}$$

defined by:

Current State	Input	Stack Top	Next State	Stack Operation
q_0	b	Z_0	q_0	Push X
q_0	b	X	q_0	Push X
q_0	а	X	q_1	Pop X
q_1	а	X	q_2	Pop X
q_2	а	X	q_3	Pop X
q_3	а	X	q_3	Pop X
q_3	b	X	q_3	Pop X
q_3	E	Z_0	q_f	-

Transitions:

 $(q0, b, Z0) \rightarrow (q0, XZ0)$

 $(q0, b, X) \rightarrow (q0, XX)$

 $(q0, a, X) \rightarrow (q1, \epsilon)$

 $(q1, a, X) \rightarrow (q2, \epsilon)$

 $(q2, a, X) \rightarrow (q3, \epsilon)$

 $(q3, a, X) \rightarrow (q3, \epsilon)$

 $(q3, b, X) \rightarrow (q3, \epsilon)$

 $(q3, \epsilon, Z0) \rightarrow (qf, Z0)$

Question 2 Prove that the language $L=\{banb^{2n}a^{n+1}\,|\,n>0\}$ $L=\{(ba)^na(ab)^{n-2}\,|\,n>2\}$ over the alphabet $\Sigma=\{a,\,b\}$ is non-context free. Use the pumping lemma with length.

Pumping Lemma for context-free languages

- [1] Assume that the language $L = \{banb^{2n}a^{n+1} \mid n > 0\}$ is context-free.
- [2] For any context-free language LThere exists a pumping length p such that any string $s \in L$ with $s \ge p$ can be decomposed into five parts s = uvwxyssatisfying the following conditions:
 - 1. Length(vwx) has at most ppp
 - 2. vx is non-empty
 - 3. For all $i \ge 0$, the string $uv^i wx^i y$ is also in L
- [3] Chose suitable word s: $s = ba^pb^{2p}a^{p+1}$ Length(s) = 4p + 2
- [4] Five ways in which vwx can occur in the word:
 - 1. Initial 'b' and some of the 'a's.
 - 2. Some/all of the 'a's.
 - 3. Some of the 'a's to 'b's and some of the 'b's.
 - 4. Some or all of the 'b's.
 - 5. The transition from 'b's to the final 'a's and some of the 'a's.
- [5] show that pumping v and x results in a string that does not belong to L for each case
 - 1. Suppose vwx consists of an **Initial 'b' and some of the 'a's**
 - v and/or x would have 'b's and 'a's.
 - pumping v and/or x, change the number of 'a's before the sequence of 'b's disrupting the pattern of s
 - Length(a) before 'b's must be p.
 - 2. Suppose vwx consists of Some/all of the 'a's.
 - v and x would have 'b's and 'a's.
 - pumping \boldsymbol{v} and \boldsymbol{x} changes the number of 'a's disrupting the pattern of \boldsymbol{s}
 - Length(a) before 'b's must be p.

- 3. Suppose vwx consists of 'a's to 'b's and some of the 'b's.
- v and x would have 'a's and 'b's.
- pumping v and/or x would disrupt the count of 'a's
- 4. Suppose vwx consists of Some or all of the 'b's
- v and x would have 'b's.
- pumping v and x changes the number of 'b's
- Length(b) before 'b's must be 2p.
- 5. Suppose vwx consists of 'b's to the final 'a's and some of the 'a's.
- v and x would have 'b's and 'a's.
- pumping v and/or x would disrupt the count of 'b's disrupting the pattern of s
- pumping v and x would disrupt the form of s
- Length(b) before 'b's must be 2p.

Thus, L is not a context-free language.

Question 3

Let L_1 be the grammar generating (aa)*.Let L_2 be the grammar generating (a+b)*ba(a+b)*.

First provide the grammars generating L_1 and L_2 respectively. Then apply the applicable theorem of Chapter 17 to determine L_1 L_2 .

[1] Define grammar for L_1 $G_1 = (V_1, \Sigma_1 P_1, S_1)$

Σ_1 : Terminal(s)	а
V_1 : Non-terminal(s)	S_1
P_1 : Production Rule(s)	P_1
	$S_1 \rightarrow aaS_1$
	$S_1 \rightarrow \epsilon$

[2] Define grammar for L_2 $G_2 = (V_2, \Sigma_2 P_2, S_2)$

Σ_2 : Terminal(s)	a, b	
V_2 : Non-terminal(s)	S_2 , A , B	
P_2 : Production Rule(s)	P_2	
	$S_1 \to AB$	
	$A \rightarrow aA \mid bA \mid \epsilon$	
	$b \rightarrow bAa bBAa ba$	

[3] Theorem on concatenation of context-free languages $G = (V, \Sigma P, S)$

Σ : Terminal(s)	$\Sigma_1 \cup \Sigma_2$
<pre>V: Non-terminal(s)</pre>	$V_1 \cup V_2 \cup \{S\}$
<pre>P: Production Rule(s)</pre>	P
	P_1
	$S_1 \rightarrow aaS_1$
	$S_1 \rightarrow \epsilon$
	P_2
	$S_1 \to AB$
	$A \rightarrow aA \mid bA \mid \epsilon$
	$b \rightarrow bAa bBAa ba$
	$S \rightarrow S_1 S_2$

Thus

Σ : Terminal(s)	a, b
<pre>V: Non-terminal(s)</pre>	S, S_1, S_2, A, B
<pre>P: Production Rule(s)</pre>	P
	$S_1 \rightarrow aaS_1$
	$S_1 \rightarrow \epsilon$
	$S_1 \to AB$
	$A \rightarrow aA bA \epsilon$
	$b \rightarrow bAa bBAa ba$
	$S \rightarrow S_1 S_2$

Question 4

Decide whether the grammar given below generates any words

$$S \rightarrow XY$$

$$X \rightarrow SY$$

$$Y \rightarrow SX$$

[1] Derivation process

$$S \rightarrow XY$$

[2] Derivation process

$$X \rightarrow SY$$

$$Y \rightarrow SX$$

1.
$$S \rightarrow XY$$

2.
$$X \rightarrow SY$$

$$S \to (SY)Y \to SYY$$

3.
$$Y \rightarrow SX$$

$$SYY \rightarrow S(SX)Y \rightarrow SSXY$$

[3] Derivation process

1.
$$S \rightarrow XY$$

2.
$$X \rightarrow a$$

$$S \rightarrow aY$$

3.
$$Y \rightarrow b$$

$$S \rightarrow ab$$

 $S \rightarrow XY \rightarrow aY \rightarrow ab$ can be generated.

Therefore at least one word can be generated.

Thus, the grammar does generate words.