Econometrics: 1 Lecture to

16.02.2021

Multiple Linear Regression model NXI = X B + U NXI NXK KXI NXI K: # of refressors hen we have SLRM

A1: E(UIX)=0

 $\Rightarrow E(x|u) = 0$ KXN NXI KXI

 $\begin{cases} \frac{Q}{k \times 1} = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \end{cases}$

me will now expand E(X|U) to see Must income in the scalar intrational context?

Example

(sixm) wage:= Bo+Beduci+ li ->SIRM.

& E(ui) educi) =0

(MLRM) wager = No + Medue i + N2 experi + N3 ager + ui

G MUM

E(Uileduci) = 0

and E(Ui (expert) = 0

and E(uilagei) =0

$$E(UU) = E \begin{cases} u_1 \\ u_2 \\ u_N \end{cases} = E \begin{cases} u_1 \\ u_2 \\ u_N \end{cases} = E \begin{cases} u_1 \\ u_2 \\ u_N \end{cases} = U_1 \\ u_1 \\ u_2 \\ u_1 \\ u_2 \\ u_2 \\ u_1 \\ u_2 \\ u_2 \\ u_2 \\ u_2 \\ u_2 \\ u_2 \\ u_3 \\ u_4 \\ u_1 \\ u_2 \\ u_2 \\ u_2 \\ u_3 \\ u_4 \\ u_1 \\ u_2 \\ u_2 \\ u_3 \\ u_4 \\ u_4 \\ u_5 \\ u_5 \\ u_6 \\ u_1 \\ u_1 \\ u_2 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_5 \\ u_5 \\ u_6 \\ u_$$

$$= \begin{bmatrix} E u_1^2 & E u_1 u_2 & --- E u_1 u_1 \\ E u_2 u_1 & E u_2^2 & --- E u_2 u_1 \\ \vdots & \vdots & \vdots \\ E u_N u_1 & E u_N u_2 & --- E u_N^2 \end{bmatrix} = \begin{bmatrix} E u_1 u_1 & E u_1 u_1 \\ E u_2 u_1 & E u_N u_2 & --- E u_N^2 \\ \vdots & \vdots & \vdots \\ E u_N u_1 & E u_N u_2 & --- E u_N^2 \end{bmatrix}$$

$$\Rightarrow EU_{1}^{2} = EU_{2}^{2} = EU_{3}^{2} = --- = EU_{3}^{2} = \sigma^{2}$$
and $EU_{1}U_{1} = \sigma^{2}$

$$\Rightarrow EU_{1}^{2} = EU_{2}^{2} = EU_{3}^{2} = --- = EU_{3}^{2} = \sigma^{2}$$

A2:
$$E(UU') = C^2 IN$$

$$E(U_i^2) = C^2 \quad \forall i \in \{1,2,-...,N\}$$

$$E(U_i U_j^2) = C \quad \forall i,j \in \{1,2,-...,N\} \text{ and}$$

$$E(U_i U_j^2) = C \quad \forall i,j \in \{1,2,-...,N\} \text{ and}$$

$$E(U_i U_j^2) = E(U_i^2) = E(U_i^2) = C^2 \forall i$$

$$E(U_i U_j^2) = E(U_i^2) = E(U_i^2) = C^2 \forall i$$

$$E(U_i U_j^2) = E(U_i - EU_j^2) = E(U_i U_j^2) = C \forall i$$

$$E(U_i U_j^2) = E(U_i U_j^2) = C \forall i$$

$$E(U_i U_j^2) = E(U_i U_j^2) = C \forall i$$

$$E(U_i U_j^2) = C \forall i$$

$$E$$

ERRORS ARE SPHERICAL.

AI: E(UIX)=0 $\underline{A2} : \underline{E}(\underline{U}\underline{U}'|X) = \sigma^2 \underline{I}_N$ $\frac{A3}{A3}$: Rank (X) = K. $\langle \longrightarrow X \text{ has full rank}$. Rank of a matrix: # of linearly independent commen vectors in a matrix, Rawk (x) = min(N,K) = K LMy A3 important? (MUAM) wayer = Bo + B, educi + B experit B experit Li Suppose exper and age are linearly relation, Everi = agei - 20

Buen MIRM becomes

Guen MIRM becomes

wasei = $\beta_0 + \beta_1$ educi + β_2 (agei - 20) + β_3 agei + U,

wasei = $(\beta_0 - 20\beta_2) + \beta_1$ educi + $(\beta_2 + \beta_3)$ agei + Ui

	o otherwist			y i is male otherwise
waje;=	Bo+ B, edu	icit Bzerper	ri + Bagei	+ RDi+RD;
wayei =	= Bot Bred	rs. IG: +Bzexp	eri-f3agei	+ Ry Di+RD; + Ry Di+RD; + Ry Di+ Wi \$P.2
Mich	amony the	e above s	peafical the sa	uple comprise
₹ w \$1.1}	all and of		GC.	?
X=	l educ	expers afer		DUTION We note both
		, . 0	extudi	Di and Di in the same repression model