Linear Algebra & Convex Optimization – Lecture 7

Text: Introduction to Applied Linear Algebra, S. Boyd: Chapters 14,15.

Example: Advertising Purchase

- *m* demographic groups of audiences
- n number channels to advertise
- $m \times n$ Matrix R represents the 'Available Data' on Ad views per dollar spent
- v^{des} is the desired viewership from each region
- m vector Rs = v gives the total viewership from each demographic group
- n vector s is the dollars invested in each channel for advertisement

Poll: What does n — vector s represents ?

- A) Total Views per channel
- B) Dollars to be invested in each channel C) Total Views per region D) Dollars to be invested in each region

Example: Advertising Purchase

n=3 channels

m = 10 demographic groups.

units : 1000 views per dollar

$$v^{\text{des}} = (10^3) \frac{1}{2}$$

$$v^{\text{des}} = (10^3) \frac{1}{2}$$

$$R = \begin{bmatrix} 0.97 & 1.86 & 0.41 \\ 1.23 & 2.18 & 0.53 \\ 0.80 & 1.24 & 0.62 \\ 1.29 & 0.98 & 0.51 \\ 1.10 & 1.23 & 0.69 \\ 0.67 & 0.34 & 0.54 \\ 0.87 & 0.26 & 0.62 \\ 1.10 & 0.16 & 0.48 \\ 1.92 & 0.22 & 0.71 \\ 1.29 & 0.12 & 0.62 \end{bmatrix}$$

Objective:

find s so that $v = Rs = v^{des}$

Solution:

Find \hat{s} that minimizes $||Rs - v^{des}||^2$

$$\hat{s} = \begin{bmatrix} 62\\100\\1443 \end{bmatrix}$$

This Least Square formulation does-not take consider any budgetary constraints

Scalar Input Data: Straight Line Fit

$$y = mx + c$$

$$\hat{f}(x) = \theta_1 + \theta_2 x$$

$$m = \theta_2, c = \theta_1, y = \hat{f}(x)$$

Input Output
$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

$$A \qquad y^d$$

 $\hat{ heta}$ are the parameters of the line that makes least square error

$$\begin{bmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \end{bmatrix} = (A^T A)^{-1} A^T y^d$$

Example: \implies 1 = $\theta_1 + \theta_2$ [y, x] = [1,1] $[y,x] = [2,2] \implies 2 = \theta_1 + 2\theta_2$ $[y, x] = [2,3] \implies 2 = \theta_1 + 3\theta_2$

Also known as Linear Regression.

Scalar Input Data: Polynomial Fit

 \hat{f} is a polynomial of degree at most p-1

$$\hat{f}(x) = \theta_{1} + \theta_{2}x + \dots + \theta_{p}x^{p-1}$$

$$= \theta_{1} + \theta_{2}x + \theta_{3}x^{2} + \dots + \theta_{p}x^{p-1}$$

$$= \theta_{1} + \theta_{2}x + \theta_{3}x^{2} + \dots + \theta_{p}x^{p-1}$$

$$= \begin{cases}
1 & x^{(1)} & \dots & (x^{(1)})^{p-1} \\
1 & x^{(2)} & \dots & (x^{(2)})^{p-1}
\end{cases}$$

$$A = \begin{bmatrix}
1 & x^{(1)} & \dots & (x^{(2)})^{p-1} \\
\vdots & \vdots & & \vdots \\
1 & x^{(N)} & \dots & (x^{(N)})^{p-1}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & x^{(1)} & x^{(1)} & x^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x^{(N)} & \dots & (x^{(N)})^{p-1}
\end{bmatrix}$$

 x^{i} means the generic scalar value x raised to the ith power $x^{(i)}$ means the ith observed scalar data value.

Poll: Do you think a polynomial of degree 100 is better suited for the data distribution shown in bottom figure?

A) Yes B) No

Data Fitting

Objective

Given are *N* input- output (data-prediction) pairs

$$x^{(1)},\dots,x^{(N)}, \qquad y^{(1)},\dots,y^{(N)}$$

x	у
Input	Output
Data	Prediction
Feature Vector	Label

Common Terminologies

Based on observed data, learn a function $f: \mathbb{R}^n \to \mathbb{R}$ that maps (predicts) any n-vector x to a scalar value

Linear Parameter Model:

$$\hat{f}(x) = \theta_1 f_1(\underline{x}) + \dots + \theta_p f_p(\underline{x})$$

 $f_i \colon \mathbb{R}^n \to \mathbb{R}$ are pre-defined basis functions or feature mappings

 $heta_i$ are the *model parameters* to be learnt

General Regression Model

$$\alpha^{(1)} = \left[\alpha_1 \alpha_2 \cdots \alpha_n \right]$$

$$\hat{y} = \underline{x}^T \underline{\beta} + \underline{v}$$
 β is the weight vector v is the offset.

$$f_1(x) = 1$$
 $f_i(x) = \underbrace{x_{i-1}}, \quad i = 2, \dots, n+1,$

Examples:

- Advertising spending on various products vs Total revenue
- Dosages of various drugs vs Blood pressure
- Amount of different fertilizers, water etc. vs crop yield

Regression Model:
$$\hat{y} = \underline{x}^T \underline{\beta} + \underline{v} \qquad \beta \text{ is the weight vector}$$

$$v \text{ is the offset} \qquad v \text{ is the offset}$$

$$f_1(x) = 1 \qquad \underbrace{f_i(x) = x_{i-1}, \quad i = 2, \dots, n+1}_{\text{projects or products of products of the products of the products of the product of th$$

$$f(x) = 1$$

$$f_2(x) = x_1$$

$$f_3(x) = x_2$$

Least Squares Classifier

Given N Data points and Label for each Data

$$x^{(1)}, \dots, x^{(N)}, \qquad y^{(1)}, \dots, y^{(N)},$$

The outcome y takes only two values [-1 & 1]

Steps:

choose basis functions f_1, \ldots, f_p ,

$$\tilde{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

choose the parameters $\theta_1, \ldots, \theta_p$ to minimize the sum squared error

$$(y^{(1)} - \tilde{f}(x^{(1)}))^2 + \dots + (y^{(N)} - \tilde{f}(x^{(N)}))^2$$

final classifier is then taken to be

$$\hat{f}(x) = \mathbf{sign}(\tilde{f}(x))$$

MNIST Classification

MNIST digits Samples

Objective: Train a classifier to classify the digit '0'

Data: 60,000 Images (28x28) with labels 0 - 9

Least Squares Classifier for Handwritten Digits 0-9

The (training) data set contains 60000 images of size 28 by 28.

J(x) = 1 $J_2(x) = x_1$ \vdots $J_{n}(x) = x_n$

Pre-processing-steps:

remove the pixels that are nonzero in fewer than 600 training examples.

remaining 493 pixels are shown as the white area

Training Classifier for digit 0:494 training examples $x^{(i)}$ from class +1 (digit zero) training examples $x^{(i)}$ from class -1 (digits 1-9).

Poll: What is the modified number of weight parameters to be learnt?
A) 784 B) 493 C) 492 D) 494

Location of the pixels used as features

The coefficients β_k in the least squares classifier that distinguishes the digit zero from the other nine digits.