• Da li su sledeći uređeni parovi grupoidi sa neutralnim elementom:
1) $(\mathbb{N},+)$ 2) (\mathbb{N},\cdot) 3) $(\mathbb{N},-)$ 4) $(\mathbb{Z},-)$ 5) (\mathbb{Z},\cdot) 6) $(\mathbb{Z}\backslash\{0\},:)$ 7) $(\mathbb{R},:)$ 8) $(\mathbb{R}\backslash\{0\},:)$.
• Zaokružiti brojeve ispred struktura koje su komutativni, asocijativni, grupoidi sa neutralnim elementom. 1) $(\mathbb{N},+)$ 2) (\mathbb{N},\cdot) 3) $(\mathbb{R},+)$ 4) (\mathbb{R},\cdot) 5) $(\{-1,1\},\cdot)$ 6) $((0,\infty),\cdot)$
• Zaokružiti asocijativno komutativne grupoide sa neutralnim elementom, koji nisu grupe: 1) $(\mathbb{Z}_7 \setminus \{1,3,5\},\cdot)$ 2) $(\mathbb{Z}_7 \setminus \{1,3,5\},+)$ 3) $(\mathbb{R}[x],\cdot)$ 4) $(\{z \in \mathbb{C} Im(z) = Re(z)\},+)$ 5) $(\{f f:\mathbb{R} \to \mathbb{R}\},\circ)$ 6) $(\mathbb{N} \cup \{0\},+)$ 7) (\mathbb{Z},\cdot) 8) $(\{7k k \in \mathbb{Z}\},\cdot)$
• Zaokružiti brojeve ispred struktura koje su grupe: 1) $(\{-1,1\},\cdot)$ 2) $(\{f f:\mathbb{R} \xrightarrow{1-1}_{na}\mathbb{R}\},\circ)$ 3) $(\mathbb{N},+)$ 4) $(\{2k k\in\mathbb{Z}\},+)$ 5) $(\{2k k\in\mathbb{Z}\},\cdot)$ 6) $(\{2k+1 k\in\mathbb{Z}\},\cdot)$ 7) $(\{ai a\in\mathbb{R}\},+)$ 8) $(\{ai a\in\mathbb{R}\},\cdot)$ 9) $(\mathbb{R}[x],\cdot)$ 10) $(\{\frac{m}{5} \mid m\in\mathbb{Z}\},+)$
• Zaokružiti podgrupe grupe $(\mathbb{R} \setminus \{0\}, \cdot)$: 1) $(\mathbb{R} \setminus \{0\}, +)$ 2) $((0, \infty), \cdot)$ 3) $((-\infty, 0), \cdot)$ 4) (\mathbb{N}, \cdot) 5) $(\mathbb{Z} \setminus \{0\}, \cdot)$ 6) $(\mathbb{Q} \setminus \{0\}, +)$ 7) $((0, 1), \cdot)$ 8) $(\{-1, 1\}, \cdot)$ 9) $(\{-1, 0, 1\}, \cdot)$ 10) $(\mathbb{Q} \setminus \{0\}, \cdot)$
• Zaokružiti podgrupe grupe (ℂ, +): 1) (ℕ, +) 2) (ℤ, +) 3) (ℝ, +) 4) ({0}, +) 5) ([0, ∞), ·) 6) ((-∞, 0), +) 7) ({1, -1, i, -i}, ·) 8) ({ai a ∈ \mathbb{R} }, +) 9) ({a + ai a ∈ \mathbb{R} }, +) 10) ({a + ai a ∈ \mathbb{Z} }, +)
• Grupe su: 1) $\left(\{ f_k : \mathbb{R} \to \mathbb{R} \middle f_k(x) = k^2 x, k \in \mathbb{R} \}, + \right)$ 2) $\left(\{ f_k : \mathbb{R} \to \mathbb{R} \middle f_k(x) = k x, k \in \mathbb{R} \setminus \{0\} \}, \circ \right)$
3) $\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big f_k(x)=kx,k\in\mathbb{R}\},+\right)$ 4) $\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big f_k(x)=k^2x,k\in\mathbb{R}\setminus\{0\}\},\circ\right)$
5) $\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big f_k(x)=kx,k\in\mathbb{R}\},\circ\right)$ 6) $\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big f_k(x)=kx,k\in\mathbb{R}^+\},\circ\right)$ 7) $\left(\{f\Big f:\mathbb{R}\overset{1-1}{\underset{\mathrm{na}}{\longrightarrow}}\mathbb{R}\},\circ\right)$
• Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakoj grupi (P, \cdot) u kojoj je e neutralni element, a sa x^{-1} je označen inverzni element od elementa x : 1) $a \cdot e = e$ 2) $a \cdot x = b \cdot x \Rightarrow a = b$ 3) $e \cdot e = e$ 4) $e^{-1} = e$ 5) $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$ 6) $a \cdot a = a$
• Napisati Kejlijeve tablice grupoida $(\mathbb{Z}_3,+)$ i (\mathbb{Z}_3,\cdot) , odrediti inverzne elemente i izračunati: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

• Napisati tablicu grupoida $(\{1,3,7,9\},\cdot)$, gde je · množenje po modulu 10. Odrediti inverzne elemente i izračunati:

1	1 3 7 9	$1^{-1} = 3$, $3^{-1} = 3$, $7^{-1} = 3$, $9^{-1} = 3$, $(9 \cdot 7)^{-1} = 3$, $7^{-1} \cdot 9^{-1} = 3$.	
$\begin{bmatrix} 3 \\ 7 \end{bmatrix}$		Da li je $(\{1,3,7,9\},\cdot)$ Abelova grupa? DA NE. Zaokružiti tačan odgovor. Da li je $(\{1,3,7,9\},\cdot)=(\{3^n n\in\mathbb{N}\},\cdot)$? DA NE. Zaokružiti tačan odgovor.	
$\begin{bmatrix} 7 \\ 9 \end{bmatrix}$			

• Napisati jedan primer konačne nekomutativne grupe i jedan primer beskonačne nekomutativne grupe Konačna:

Beskonačna:

• Ako je $f: G \to H$ izomorfizam grupoida (G, +) sa neutralnim elementom 0 u grupoid (H, \cdot) sa neutralnim elementom 1, tada je: 1) f(0) = 1 2) $f(-a) = a^{-1}$ 3) $f(x \cdot y) = f(x) + f(y)$

elementom 1, tada je: **1)** f(0) = 1 **2)** $f(-a) = a^{-1}$ **3)** $f(x \cdot y) = f(x) + f(y)$ • Funkcija $f: \mathbb{R}^+ \to \mathbb{R}$ definisana sa $f(x) = \ln x$:

Funkcija $f: \mathbb{R}^+ \to \mathbb{R}$ definisana sa $f(x) = \ln x$:

1) je izomorfizam (\mathbb{R}^+, \cdot) u $(\mathbb{R}, +)$ 2) je homomorfizam (\mathbb{R}^+, \cdot) u $(\mathbb{R}, +)$ 3) ima inverznu f^{-1} 4) f^{-1} je homomorfizam (\mathbb{R}^+, \cdot) u $(\mathbb{R}, +)$

• Zaokružiti homomorfizme $f: \mathbb{Z} \to \mathbb{Z}_2$ iz grupe $(\mathbb{Z}, +)$ u grupu $(\mathbb{Z}_2, +)$: 1) $\forall x \in \mathbb{Z}, f(x) = 0$ 2) $\forall x \in \mathbb{Z}, f(x) = 1$ 3) $f(x) = \begin{cases} 0 & x \text{ je paran broj} \\ 1 & x \text{ je neparan broj} \end{cases}$ 4) $f(x) = \begin{cases} 0 & x \text{ je neparan broj} \\ 1 & x \text{ je paran broj} \end{cases}$