CS 511, Fall 2020, Handout 03 (Part A) Semantics of Propositional Logic

Assaf Kfoury

September 03, 2020

some familiar truth-tables:

logical "or" (\vee) and logical "and" (\wedge)

\boldsymbol{x}	у	$x \lor y$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

х	у	$x \wedge y$
Т	Т	Т
T	F	F
F	Т	F
F	F	F

logical "implication" (\rightarrow)

$$\begin{array}{c|cccc} x & y & x \rightarrow y \\ \hline T & T & T \\ \hline T & F & F \\ \hline F & T & T \\ \hline F & F & T \\ \end{array}$$

and similarly for "negation" (\neg) and many other logical connectives

- lacktriangle start with all the propositional atoms in the wff arphi
- lacktriangle incrementally, consider each sub-wff of φ , from innermost to outermost

X	у
Т	Т
Т	F
F	Т
F	F

- lacktriangle start with all the propositional atoms in the wff arphi
- lacktriangle incrementally, consider each sub-wff of φ , from innermost to outermost

x	у	$\neg x$
Т	Т	F
Т	F	F
F	Т	Т
F	F	Т

- lacktriangle start with all the propositional atoms in the wff arphi
- lacktriangle incrementally, consider each sub-wff of φ , from innermost to outermost

х	у	$\neg x$	$\neg y$
Т	Т	F	F
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

- lacktriangle start with all the propositional atoms in the wff arphi
- lacktriangle incrementally, consider each sub-wff of φ , from innermost to outermost

х	y	$\neg x$	$\neg y$	$x \rightarrow \neg y$
Т	Т	F	F	F
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

- lacktriangle start with all the propositional atoms in the wff arphi
- lacktriangle incrementally, consider each sub-wff of φ , from innermost to outermost

х	у	$\neg x$	$\neg y$	$x \rightarrow \neg y$	$y \lor \neg x$
Т	Т	F	F	F	Т
Т	F	F	Т	Т	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

- lacktriangle start with all the propositional atoms in the wff arphi
- ightharpoonup incrementally, consider each sub-wff of φ , from innermost to outermost

X	у	$\neg x$	$\neg y$	$x \to \neg y$	$y \lor \neg x$	$(x \to \neg y) \to (y \lor \neg x)$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

- lacktriangle start with all the propositional atoms in the wff arphi
- \blacktriangleright incrementally, consider each sub-wff of φ , from innermost to outermost

x	у	$\neg x$	$\neg y$	$x \rightarrow \neg y$	$y \lor \neg x$	$(x \to \neg y) \to (y \lor \neg x)$
Т	Т	F	F	F	Т	T
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	T
F	F	Т	Т	Т	Т	Т

- ightharpoonup propositional wff φ is **satisfiable** if **there is** an assignment of truth-values to the propositional atoms which makes φ true.
- $\begin{tabular}{ll} \hline \textbf{Propositional wff φ is a } \hline \textbf{tautology} & \textbf{if } \hline \textbf{every} \\ \hline \textbf{every} & \textbf{assignment of truth-values to} \\ \hline \textbf{the propositional atoms makes φ true.} \\ \hline \end{tabular}$

- lacktriangle start with all the propositional atoms in the wff arphi
- lacktriangle incrementally, consider each sub-wff of φ , from innermost to outermost

x	у	$\neg x$	$\neg y$	$x \rightarrow \neg y$	$y \lor \neg x$	$(x \to \neg y) \to (y \lor \neg x)$
T	Т	F	F	F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	T
F	F	Т	Т	Т	Т	Т

- propositional wff φ is **satisfiable** if **there is** an assignment of truth-values to the propositional atoms which makes φ true.
- ightharpoonup propositional wff φ is a **tautology** if **every** assignment of truth-values to the propositional atoms makes φ true.
- $\varphi \triangleq (x \to \neg y) \to (y \lor \neg x)$ is satisfiable, but is not a tautology.

Another More Complicated Truth-Table

not of a single wff, but of a sequent $(P \land \neg Q) \to R$, $\neg R$, $P \vdash Q$, which was shown **formally derivable** by the proof rules at the end of **Handout 02**.

Another More Complicated Truth-Table

not of a single wff, but of a sequent $(P \land \neg Q) \to R$, $\neg R$, $P \vdash Q$, which was shown **formally derivable** by the proof rules at the end of **Handout 02**.

P	Q	R	$\neg Q$	$\neg R$	$P \land \neg Q$	$(P \land \neg Q) \to R$
Т	Т	Т	F	F	F	Т
T	Т	F	F	T	F	Т
T	F	T	Т	F	Т	T
Т	F	F	T	Т	Т	F
F	Т	T	F	F	F	Т
F	Т	F	F	Т	F	Т
F	F	T	T	F	F	T
F	F	F	T	Т	F	T

Another More Complicated Truth-Table

not of a single wff, but of a sequent $(P \land \neg Q) \to R$, $\neg R$, $P \vdash Q$, which was shown **formally derivable** by the proof rules at the end of **Handout 02**.

P	Q	R	$\neg Q$	$\neg R$	$P \wedge \neg Q$	$(P \wedge \neg Q) \rightarrow R$
Т	Т	Т	F	F	F	Т
T	Т	F	F	T	F	Т
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	Т	Т	F
F	Т	Т	F	F	F	Т
F	Т	F	F	Т	F	Т
F	F	Т	Т	F	F	Т
F	F	F	Т	Т	F	Т

- when all the premises (shaded in gray) evaluate to **T**, so does the conclusion (shaded in green) this occurs in **row 2** of the truth table,
- lacktriangle in such a case we write $(P \wedge \neg Q) \rightarrow R, \ \neg R, \ P \models Q$.

(THIS PAGE INTENTIONALLY LEFT BLANK)