```
In [1]: import pandas as pd
    from scipy.io.arff import loadarff
    data = loadarff('./arritmias.txt')
    df = pd.DataFrame(data[0])
    print("Setup complete.")
```

Setup complete.

1) A partir da base de dados de arritimias cardíacas:

a) Descreva a base de dados, descrevendo os atributos, númericos e categóricos, classificando segundo a escala (nominal ou razão) e a cardinalidade (discreta,contínua, binária).

Númericos e categóricos

Separando os atributos em listas

```
In [4]: numericos
```

Out

[4]:		Age	Height	Weight	QRS_duration	P-R	Q-T	T_interval	P_interval	QRS	Т	 Amp_V6_1	Amp_
	0	75.0	190.0	80.0	91.0	193.0	371.0	174.0	121.0	-16.0	13.0	 -0.3	
	1	56.0	165.0	64.0	81.0	174.0	401.0	149.0	39.0	25.0	37.0	 -0.5	
	2	54.0	172.0	95.0	138.0	163.0	386.0	185.0	102.0	96.0	34.0	 0.9	
	3	55.0	175.0	94.0	100.0	202.0	380.0	179.0	143.0	28.0	11.0	 0.1	
	4	75.0	190.0	80.0	88.0	181.0	360.0	177.0	103.0	-16.0	13.0	 -0.4	
	447	53.0	160.0	70.0	80.0	199.0	382.0	154.0	117.0	-37.0	4.0	 0.0	
	448	37.0	190.0	85.0	100.0	137.0	361.0	201.0	73.0	86.0	66.0	 -0.5	
	449	36.0	166.0	68.0	108.0	176.0	365.0	194.0	116.0	-85.0	-19.0	 1.2	
	450	32.0	155.0	55.0	93.0	106.0	386.0	218.0	63.0	54.0	29.0	 0.2	
	451	78.0	160.0	70.0	79.0	127.0	364.0	138.0	78.0	28.0	79.0	 -0.3	

452 rows × 272 columns

```
In [5]: categoricos
```

Out[5]:		Sex	Existence_ragged_R_wave	Existence_diphasic_derivation_R_wave	Existence_ragged_P_wave	Existence
	0	b'0'	p,0,	p ₀ ,	p,0,	
	1	b'1'	p,0,	p ₀ ,	p,0,	
	2	b'0'	p,0,	p ₀ ,	p,0,	
	3	b'0'	p,0,	b'0'	p,0,	
	4	b'0'	p,0,	p ₀ ,	p,0,	
	447	b'1'	p,0,	p ₀ ,	p,0,	
	448	b'0'	p'0'	b'0'	p'0'	
	449	b'0'	p,0,	b'0'	p'0'	
	450	b'1'	p,0,	b'0'	p,0,	
	451	b'1'	p,0,	p,0,	p,0,	

452 rows × 8 columns

Notamos que são 272 atributos númericos e 8 do tipo "O"

In [6]: df.select_dtypes(include='0')

Out[6]:		Sex	Existence_ragged_R_wave	${\bf Existence_diphasic_derivation_R_wave}$	Existence_ragged_P_wave	Existence
	0	b'0'	p,0,	p ₀ ,	b'0'	
	1	b'1'	p,0,	p ₀ ,	p,0,	
	2	b'0'	p,0,	p ₀ ,	b'0'	
	3	b'0'	p,0,	p ₀ ,	p,0,	
	4	b'0'	p,0,	p ₀ ,	p,0,	
	447	b'1'	p,0,	b'0'	p,0,	
	448	b'0'	p,0,	p ₀ ,	p,0,	
	449	b'0'	p,0,	p ₀ ,	b'0'	
	450	b'1'	p,0,	p ₀ ,	p,0,	
	451	b'1'	p,0,	b'0'	b'0'	

452 rows × 8 columns

Os 8 atributos "O" são categóricos e estão salvos em "Bytes"

In [7]: df.Class.value_counts()

```
b'1'
                  245
Out[7]:
        b'10'
                   50
        b'2'
                   44
        b'6'
                   25
        b'16'
                   22
        b'3'
                   15
        b'4'
                   15
        b'5'
                   13
        b'9'
                   9
        b'15'
                   5
        b'14'
                    4
        b'7'
                    3
        b'8'
                    2
        Name: Class, dtype: int64
```

Dentre estes 8 atributos:

- . 7 são binários
- . 1 é a definição da condição diagnosticada, são 13 valores possiveis

Nominal ou Razão

Atributos com escala Nominal: São os categóricos

Atributos com escala de Razão: São os númericos com Zero Absoluto

Nominal

In [8]:	cate	egori	cos			
Out[8]:		Sex	Existence_ragged_R_wave	Existence_diphasic_derivation_R_wave	Existence_ragged_P_wave	Existence
	0	b'0'	p,0,	b'0'	p,0,	
	1	b'1'	p,0,	b'0'	p,0,	
	2	b'0'	p,0,	b'0'	p,0,	
	3	b'0'	p,0,	b'0'	p,0,	
	4	b'0'	p,0,	p,0,	p,0,	
	447	b'1'	p,0,	p,0,	p,0,	
	448	b'0'	p,0,	p,0,	p,0,	
	449	b'0'	p,0,	b'0'	p,0,	
	450	b'1'	p,0,	b'0'	p,0,	
	451	b'1'	p,0,	p,0,	p,0,	

452 rows × 8 columns

Razão

```
In [9]: mask = numericos >= 0

positive_columns = numericos.loc[:, mask.all()]
positive_columns
```

:		Age	Height	Weight	QRS_duration	P-R	Q-T	T_interval	P_interval	Q_wave	R_wave	 Amp_V3_3
	0	75.0	190.0	80.0	91.0	193.0	371.0	174.0	121.0	0.0	52.0	 8.4
	1	56.0	165.0	64.0	81.0	174.0	401.0	149.0	39.0	0.0	48.0	 5.8
	2	54.0	172.0	95.0	138.0	163.0	386.0	185.0	102.0	0.0	40.0	 5.8
	3	55.0	175.0	94.0	100.0	202.0	380.0	179.0	143.0	0.0	72.0	 9.0
	4	75.0	190.0	80.0	88.0	181.0	360.0	177.0	103.0	0.0	48.0	 8.5
	447	53.0	160.0	70.0	80.0	199.0	382.0	154.0	117.0	0.0	52.0	 1.3
	448	37.0	190.0	85.0	100.0	137.0	361.0	201.0	73.0	0.0	44.0	 12.2
	449	36.0	166.0	68.0	108.0	176.0	365.0	194.0	116.0	16.0	40.0	 18.3
	450	32.0	155.0	55.0	93.0	106.0	386.0	218.0	63.0	0.0	56.0	 8.8
	451	78.0	160.0	70.0	79.0	127.0	364.0	138.0	78.0	0.0	44.0	 20.7

452 rows × 174 columns

Cardinalidade

Out[9]:

Temos apenas 2 tipos de dados. Sabemos que, dos 8 dados "Object", 7 são binários(6 perguntas "Sim" ou "Não" e uma indicação de sexo) e 1 é Discreto, o diagnóstico do paciente, com 16 resultados possíveis.

Para lidarmos com os 272 "Floats" teremos que diferenciar entre os atributos que realmente são números reais e os atributos que, apesar de estarem salvos como floats, são inteiros(se um inteiro for salvo com um '.0', ao lermos, será interpertrado e considerado um 'float', por exemplo: 8.0)

```
In [10]: # Primeiro, vamos separar as colunas numéricas
         cols_nums = df.select_dtypes(include=['float'])
         total_numericos = cols_nums.shape[1]
         cols_nums.shape
         (452, 272)
Out[10]:
In [11]: list_cols_real = list() # Lista de colunas com valores reais
         for col in cols_nums.columns: # Iteramos por cada coluna
             #print(cols_nums[col])
             #if not cols_nums[col] == int(cols_nums[col]):
                 #print(cols_nums[col])
             for row in cols_nums[col]: # Para cada linha nessa coluna
                 #print(row)
                  try: # Se o valor analisado não for iqual ao seu inteiro, temos um float
                      if not row == int(row):
                         #print(col, " - ", row)
                         if col not in list_cols_real:
                              list_cols_real.append(col)
                  except ValueError:
                      #print(col," - ",row)
                      pass
In [12]: print(len(list_cols_real))
```

Temos 116 valores que são contínuos

```
In [13]: total_numericos-len(list_cols_real)
```

Out[13]: 156

Out[15]:

Temos 156 valores que são discretos mais o valor do resultado do diagnóstico

Conclusão

157 atributos Discretos

116 atributos Contínuos

7 atributos *Binários*

b. Descreva cada um dos atributos segundo frequência, mínimo e máximo valor, desvios padrão, conforme o caso

Atributos númericos

```
In [14]: nums = df.select_dtypes(include=['float'])
In [15]: nums.describe()
```

	Age	Height	Weight	QRS_duration	P-R	Q-T	T_interval	P_interval	
count	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452.000000	452
mean	46.471239	166.188053	68.170354	88.920354	155.152655	367.207965	169.949115	90.004425	33
std	16.466631	37.170340	16.590803	15.364394	44.842283	33.385421	35.633072	25.826643	45
min	0.000000	105.000000	6.000000	55.000000	0.000000	232.000000	108.000000	0.000000	-172
25%	36.000000	160.000000	59.000000	80.000000	142.000000	350.000000	148.000000	79.000000	3
50%	47.000000	164.000000	68.000000	86.000000	157.000000	367.000000	162.000000	91.000000	40
75%	58.000000	170.000000	79.000000	94.000000	175.000000	384.000000	179.000000	102.000000	66
max	83.000000	780.000000	176.000000	188.000000	524.000000	509.000000	381.000000	205.000000	169

8 rows × 272 columns

Atributos categóricos

249

freq

```
cats = df.select_dtypes(include=['0'])
In [16]:
In [17]:
                                                                                                        cats.describe()
Out[17]:
                                                                                                                                                                              Sex Existence_ragged_R_wave Existence_diphasic_derivation_R_wave Existence_ragged_P_wave Existence_ragged_P_wave Existence_ragged_P_wave Existence_ragged_P_wave Existence_wave Existence_ragged_P_wave Existence_ragged_P_wave Existence_wave Existence_ragged_P_wave Existence_wave Existence_wave Existence_ragged_P_wave Existence_wave Exis
                                                                                                                 count 452
                                                                                                                                                                                                                                                                                                                                                                                                                        452
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    452
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         452
                                                                                                                                                                                                                                                                                                                                                                                                                                          2
                                                                                                         unique
                                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                                                                                                                                                                         b'0'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            b'0'
                                                                                                                                   top
                                                                                                                                                                                 b'1'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     b'0'
```

447

447

451

c. Avalie os resultados dos processos abaixo, caso sejam utilizados na base de dados, após o processo de classificação com J48 ter sido utilizado

- i) Limpeza de dados(Outilier, Missing)
- ii) Normalização
- iii) Discretização

Primeiramente, vamos converter os bytes para inteiros

```
In [18]: bytes_columns = df.select_dtypes(include=['0']).columns

for column in df[bytes_columns]:
    if column == "Sex":
        df[column] = df[column].apply(lambda sex: 1 if sex == b'0' else 0)
    else:
        df[column] = df[column].apply(lambda x: int(x))
```

Missing Values

Vamos começar identificando quantos missing values temos e em quais atributos se encontram

Iremos lidar com os "Missing Values" antes de lidarmos com os "Outliers" pois o algoritmo utilizado para a detecção de "Outliers" não suporta valores do tipo NaN

```
In [19]: df.isnull().sum()[lambda x: x != 0]
                          8
Out[19]:
                         22
         QRST
                          1
         J
                        376
         Heart_rate
                          1
         dtype: int64
In [20]: # Agora vamos ver quantos % relativo ao total está faltando
         TOTAL = df.shape[0]
         missing = df.isnull().sum()[lambda x: x != 0]
         missing.apply(lambda x: (x/TOTAL)*100)
                         1.769912
Out[20]:
                         4.867257
         QRST
                         0.221239
                        83.185841
         J
                         0.221239
         Heart_rate
         dtype: float64
         80% da coluna "J" são "Missing Values", Vamos removê-la
In [21]:
         df.drop('J',axis=1,inplace=True)
```

Vamos remover também as linhas das colunas que possuem apenas um valor missing

```
In [22]: df = df.dropna(subset=["QRST","Heart_rate"])
```

Para as colunas "QRST" e "Heart_rate" apenas um elemento de cada consta como "Missing Value", o mesmo não se aplica para as colunas "T" e "P", que possuem ~5% e ~2% das linhas sem os dados. Logo, foi decidido que para os atributos que possuem apenas um elemento sem dado marcado, iríamos remover

Loading [MathJax]/extensions/Safe.js terá um impacto mínimo no conjunto de dados, para os atributos que possuem uma

quantidade maior do que 1%, iremos utilizar um algoritmo. "J" foi removida justamente por possuir **muitos** missing values, em uma quantidade que inviabilizou qualquer ação na coluna

Para as colunas "T" e "P" iremos usar o knn imputer da scikit learn

```
In [23]: from sklearn.impute import KNNImputer
In [24]: imputer = KNNImputer()
In [25]: df[['T', 'P']] = imputer.fit_transform(df[['T', 'P']].to_numpy())
In [26]: df.isnull().sum()[lambda x: x!=0]
Out[26]: Series([], dtype: int64)
```

Lidamos com todos os missing values

Outliers

Vamos analisar os Outliers primeiro, pois podem ser gerados mais missing values com a análise

Será utilizado LocalOutlierFactor, um algoritmo não supervisionado que mede a densidade do conjunto de amostras e compara com o dado, caso um dado se encontre distante de uma área de densidade, pode ser um Outlier

```
In [27]: from sklearn.neighbors import LocalOutlierFactor
```

Vamos criar uma função que itera por cada atributo desse DataFrame, buscando Outliers

```
In [28]:
         def train_model(column):
             clf = LocalOutlierFactor(n_neighbors=int(nums[column].shape[0]*0.99)) # Numero de vi
             # Pelo que eu entendi do algoritmo e da documentação, iremos marcar os que estiverem
             y_pred = clf.fit_predict(nums[column].values.reshape(-1,1))
             return y_pred
In [29]:
         def find_outliers(l):
             positions = []
             for i, item in enumerate(1):
                 if item == -1:
                     positions.append(i)
             return positions
         nums = df.select_dtypes(include=['float'])
In [30]:
         count = 0 # Para evitar cobrir muito espaço em pdf
```

```
In [30]:    nums = df.select_dtypes(include=['float'])
    count = 0 # Para evitar cobrir muito espaço em pdf
    for i in nums.columns:
        # Primeiro treinamos para aquela coluna
        print(i)
        try:
            tmp_train = train_model(i)

            # Depois salvamos quais são os valores que destoaram do modelo
            tmp_list_out = find_outliers(tmp_train)
            print(tmp_list_out)
            except ValueError:
Loading [MathJax]/extensions/Safe.js
```

#if count == 20: break

#count += 1

```
Age
[]
Height
[140, 314]
Weight
[212]
QRS_duration
[]
P-R
[391]
Q-T
T_interval
[27]
P_interval
[]
QRS
[]
Т
[269]
QRST
[]
Heart_rate
[314]
Q_wave
[75, 101]
R_wave
S_wave
[]
R_lin_wave
[115, 192, 212, 420]
S_lin_wave
[]
Number_itrinsic_deflections
[84]
DII_Q_wave
[29, 189]
DII_R_wave
[]
DII_S_wave
DII_R_lin_wave
[0]
DII_S_lin__wave
[140, 310]
DII_Number_itrinsic_deflections
DII_Existence_ragged_R_wave
DII_Existence_diphasic_derivation_R_wave
DII_Existence_ragged_P_wave
[212]
DII_Existence_diphasic_drivation_P_wave
[111, 206]
DII_Existence_ragged_T_wave
[35, 306]
DII_Existence_diphasic_derivation_T_wave
DIII_Q_wave
```

```
DIII_R_wave
DIII_S_wave
[386]
DIII_R_lin__wave
[]
DIII_S_lin__wave
[162]
DIII_Number_itrinsic_deflections
DIII_Existence_ragged_R_wave
[438]
DIII_Existence_diphasic_derivation_R_wave
DIII_Existence_ragged_P_wave
[380]
DIII_Existence_diphasic_drivation_P_wave
DIII_Existence_ragged_T_wave
[87, 107, 249, 265]
DIII_Existence_diphasic_derivation_T_wave
[140, 370]
AVR_1
[]
AVR_2
[]
AVR_3
[]
AVR_4
[425]
AVR_5
[316]
AVR_6
[]
AVR_7
[]
AVR_8
[289, 364]
AVR_9
[132, 212]
AVR_10
[45, 192]
AVR_11
[140, 186]
AVR_12
[206, 212, 368, 379]
AVL_1
[]
AVL_2
[]
AVL_3
[]
AVL_4
[]
AVL_5
[]
AVL_6
[]
AVL_7
[]
AVL_8
AVL_9
Γ3481
```

AVL_10 [217] AVL_11 [132, 265, 289] AVL_12 [140] AVF_1 [] AVF_2 [] AVF_3 [386] AVF_4 [] AVF_5 [140, 352, 364] AVF_6 [] AVF_7 [28, 332] AVF_8 []AVF_9 [] AVF_10 [132] AVF_11 [97] AVF_12 [368] V1_1 [] V1_2 [291, 295] V1_3 [] V1_4 [] V1_5 [59, 157, 447] V1_6 [] V1_7 [203, 314, 401] V1_8 [] V1_9 [13, 365, 383, 399] V1_10 [107, 149, 314, 428] V1_11 [] V1_12 [] V2_1 [] V2_2 [291, 295] V2_3 [] V2_4 [428] V2_5 [311. 325. 37₇]

V2_6 [] V2_7 [84, 186, 250, 297] V2_8 [291, 295, 395, 401] V2_9 [] V2_10 [25, 107, 197, 314] V2_11 [107, 217, 294, 354] V2_12 [] V3_1 [] V3_2 [295] V3_3 [] V3_4 [2, 295, 377] V3_5 [2, 377] V3_6 [295] V3_7 [] V3_8 [249, 295] V3_9 [25, 84, 334] V3_10 [25, 107, 217, 399] V3_11 [28, 186, 320] V3_12 [] V4_1 [] V4_2 [] V4_3 [] V4_4 [] V4_5 [361, 424] V4_6 [] V4_7 [203, 354] V4_8 [] V4_9 [] V4_10 [] V4_11 [85, 217] V4_12 [] V5_1 [75. 217. 352]

```
V5_2
[]
V5_3
[417]
V5_4
[84]
V5_5
[]
V5_6
[84, 206]
V5_7
[]
V5_8
[87, 188, 206]
V5_9
[]
V5_10
[265]
V5_11
[]
V5_12
[42, 75, 255]
V6_1
[75, 217]
V6_2
[]
V6_3
[]
V6_4
[90, 278, 345]
V6_5
[]
V6_6
[84, 206]
V6_7
[439]
V6_8
[184]
V6_9
[401, 439]
V6_10
[]
V6_11
[]
V6_12
[]
Amp_JJ_wave
[386]
Amp_Q_wave
[]
Amp_R_wave
[]
Amp_S_wave
[140, 401]
Amp_R_lin_wave
[115, 192, 212, 420]
Amp_S_lin_wave
[]
Amp_P_wave
[401]
Amp_T_wave
[386]
QRSA
T3861
```

QRSTA [] Amp_DII_1 [386] Amp_DII_2 [] Amp_DII_3 [] Amp_DII_4 [447] Amp_DII_5 [140] Amp_DII_6 [140, 310] Amp_DII_7 Amp_DII_8 [] Amp_DII_9 Amp_DII_10 [] Amp_DIII_1 [386] Amp_DIII_2 [325] Amp_DIII_3 [4] Amp_DIII_4 [] Amp_DIII_5 [140] Amp_DIII_6 [162, 333, 417, 425] Amp_DIII_7 [447] Amp_DIII_8 [197, 422] Amp_DIII_9 [] Amp_DIII_10 [4] Amp_AVR_1 [386] Amp_AVR_2 [] Amp_AVR_3 [209, 401, 447] Amp_AVR_4 []Amp_AVR_5 [] Amp_AVR_6 [316] Amp_AVR_7 [401] Amp_AVR_8 [386] Amp_AVR_9 [386] ${\rm Amp_AVR_10}$ Amp_AVL_1 [132. 386]

 Amp_AVL_2 [203, 314] Amp_AVL_3 [] Amp_AVL_4 [] Amp_AVL_5 [82, 101] Amp_AVL_6 Amp_AVL_7 [447] Amp_AVL_8 [386] Amp_AVL_9 [386] Amp_AVL_10 [] Amp_AVF_1 [422] Amp_AVF_2 []Amp_AVF_3 [] Amp_AVF_4 [447] Amp_AVF_5 [140, 321] Amp_AVF_6 [140, 352, 364] Amp_AVF_7 [447] Amp_AVF_8 [197, 209, 422] Amp_AVF_9 Amp_AVF_10 [] Amp_V1_1 [386] Amp_V1_2 [] Amp_V1_3 [295, 401] Amp_V1_4 [386] Amp_V1_5 [59, 377, 447] Amp_V1_6 [59, 157, 447] Amp_V1_7 [197] Amp_V1_8 [386] Amp_V1_9 [295, 386] Amp_V1_10 [295, 422] Amp_V2_1 [84, 386] Amp_V2_2 Amp_V2_3 [357. 408]

Amp_V2_4 [4] Amp_V2_5 [2, 377, 430] Amp_V2_6 [311, 325, 377] Amp_V2_7 [447] Amp_V2_8 Amp_V2_9 [] Amp_V2_10 [] Amp_V3_1 [84, 422] Amp_V3_2 [203, 255] Amp_V3_3 [] Amp_V3_4 [] Amp_V3_5 [2, 348, 377] Amp_V3_6 [2, 377] Amp_V3_7 [84] Amp_V3_8 [] Amp_V3_9 [84] Amp_V3_10 [] Amp_V4_1 [84] Amp_V4_2 [75, 203, 217] Amp_V4_3 [] Amp_V4_4 [107] Amp_V4_5 [107, 334] Amp_V4_6 [361, 424] Amp_V4_7 [173] Amp_V4_8 [84] Amp_V4_9 [] Amp_V4_10 [447] Amp_V5_1 [386] Amp_V5_2 [75, 217, 352] Amp_V5_3 [] Amp_V5_4 [447] Amp_V5_5 Γ841

```
Amp_V5_6
[]
Amp_V5_7
[197]
Amp_V5_8
[]
Amp_V5_9
[]
Amp_V5_10
Amp_V6_1
[84, 386]
Amp_V6_2
[217]
Amp_V6_3
Amp_V6_4
[401, 447]
Amp_V6_5
[90, 278, 345]
Amp_V6_6
[]
Amp_V6_7
[197]
Amp_V6_8
[]
Amp_V6_9
[]
Amp_V6_10
[]
```

In [31]: pd.set_option("display.max_columns", None)

Vamos analisar os casos para "Height"

```
In [32]: nums.iloc[[140,314]]
```

Out[32]:		Age	Height	Weight	QRS_duration	P-R	Q-T	T_interval	P_interval	QRS	Т	Р	QRST	Heart_r
	141	1.0	780.0	6.0	85.0	165.0	237.0	150.0	106.0	88.0	30.0	30.0	52.0	13
	316	0.0	608.0	10.0	83.0	126.0	232.0	128.0	60.0	125.0	21.0	-50.0	102.0	16

Observação 1

Certamente são dados errados(Note que o 316, que é 314 na lista mostrada, causou diversos outliers em outros atributos)

```
height = df[df["Height"] > 200]
In [33]:
           height
In [34]:
Out[34]:
                Age Sex
                          Height Weight QRS_duration
                                                          P-R
                                                                Q-T T_interval P_interval
                                                                                           QRS
                                                                                                   Т
                                                                                                         Р
                                                                                                            QRST H
           141
                 1.0
                       0
                           780.0
                                      6.0
                                                   85.0
                                                        165.0 237.0
                                                                         150.0
                                                                                    106.0
                                                                                           0.88
                                                                                                30.0
                                                                                                       30.0
                                                                                                              52.0
           316
                 0.0
                                                                                          125.0 21.0
                                                                                                     -50.0
                           608.0
                                     10.0
                                                   83.0 126.0 232.0
                                                                         128.0
                                                                                     60.0
                                                                                                             102.0
```

In [35]: df = df.drop([141, 316])

Diversas colunas parecem ter valores constantes, que não são importantes para os algoritmos de Machine Learning, os atributos devem ser indicadores que ajudam a determinar o alvo. Se um atributo sempre contém o mesmo valor, ele não contribui para saber o valor de destino.

```
df.columns[df.nunique() <= 1]</pre>
In [36]:
          Index(['S_lin_wave', 'AVL_5', 'AVL_7', 'AVL_12', 'AVF_9', 'V4_9', 'V4_10',
Out[361:
                  'V5_5', 'V5_7', 'V5_9', 'V5_11', 'V6_5', 'V6_10', 'V6_11',
                  'Amp_S_lin_wave', 'Amp_AVL_6', 'Amp_V5_6', 'Amp_V6_6'],
                 dtype='object')
          len(df.columns[df.nunique() <= 1])</pre>
In [37]:
          18
Out[37]:
          df.drop(df.columns[df.nunique() <= 1], axis=1, inplace=True)</pre>
In [38]:
In [39]:
          numerals = df.select_dtypes(include='float')
          numerals.columns[numerals.nunique() <= 2]</pre>
          Index(['DII_S_lin__wave', 'DII_Existence_ragged_R_wave',
Out[39]:
                  'DII_Existence_diphasic_derivation_R_wave',
                  'DII_Existence_ragged_P_wave',
                  'DII_Existence_diphasic_drivation_P_wave',
                  'DII_Existence_ragged_T_wave',
                  'DII_Existence_diphasic_derivation_T_wave',
                  'DIII_Existence_ragged_R_wave',
                  'DIII_Existence_diphasic_derivation_R_wave',
                  'DIII_Existence_ragged_P_wave',
                  'DIII_Existence_diphasic_drivation_P_wave',
                  'DIII_Existence_ragged_T_wave',
                  'DIII_Existence_diphasic_derivation_T_wave', 'AVR_5', 'AVR_7', 'AVR_8',
                  'AVR_9', 'AVR_10', 'AVR_11', 'AVR_12', 'AVL_8', 'AVL_9', 'AVL_10',
                  'AVL_11', 'AVF_7', 'AVF_8', 'AVF_10', 'AVF_11', 'AVF_12', 'V1_7',
                  'V1_8', 'V1_9', 'V1_10', 'V1_11', 'V1_12', 'V2_7', 'V2_8', 'V2_9', 'V2_10', 'V2_11', 'V2_12', 'V3_7', 'V3_8', 'V3_9', 'V3_10', 'V3_11',
                  'V3_12', 'V4_7', 'V4_8', 'V4_11', 'V4_12', 'V5_8', 'V5_10', 'V5_12', 'V6_7', 'V6_8', 'V6_9', 'V6_12', 'Amp_DII_6', 'Amp_AVR_6'],
                 dtype='object')
          df.drop(numerals.columns[numerals.nunique() <= 2], axis=1, inplace=True)</pre>
In [40]:
          df.shape
In [41]:
          (448, 201)
Out[41]:
```

Foi feita uma análise de todos os outros atributos apontados como "Outliers", porém não foram encontrados dados que destoassem do resto de forma à atrapalhar os algoritmos de classificação

Vamos dividir em treino e teste. E testar como um modela de árvore de decisão para avaliar o desempenho

```
In [42]: from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import f1_score

    train, teste = train_test_split(df, test_size=0.1, random_state=42)

    train_X = train.drop("Class", axis=1)
    train_V = train.Class
Loading [MathJax]/extensions/Safe.js
```

```
test_y = teste.Class
         forest_model = RandomForestClassifier(random_state=1)
         forest_model.fit(train_X, train_y)
         preds = forest_model.predict(test_X)
         print(accuracy_score(test_y, preds))
         print(f1_score(test_y, preds, average='weighted'))
         0.7333333333333333
         0.6886772486772486
         Aplicando a normalização e testando nosso modelo
In [43]:
         train, teste = train_test_split(df, test_size=0.1, random_state=42)
         train_X = train.drop("Class", axis=1)
         train_y = train.Class
          test_X = teste.drop("Class", axis=1)
         test_y = teste.Class
         from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         normalized_x_train = pd.DataFrame(
              scaler.fit_transform(train_X),
             columns = train_X.columns
         )
         forest_model = RandomForestClassifier(random_state=1)
         forest_model.fit(normalized_x_train, train_y)
         normalized_x_test = pd.DataFrame(
             scaler.transform(test_X),
              columns = train_X.columns
          )
         preds = forest_model.predict(normalized_x_test)
         print(accuracy_score(test_y, preds))
         print(f1_score(test_y, preds, average='weighted'))
         0.7333333333333333
         0.6886772486772486
In [44]: | df.shape
         (448, 201)
Out[44]:
In [45]: df['Class'].describe()
                  448.000000
         count
Out[45]:
                    3.875000
         mean
         std
                    4.421576
         min
                   1.000000
         25%
                    1.000000
         50%
                    1.000000
         75%
                    6.000000
                   16.000000
         max
         Name: Class, dtype: float64
         df['Class'].value_counts()
In [46]:
```

test_X = teste.drop("Class", axis=1)

```
244
         1
Out[46]:
         10
               50
               44
         6
               25
         16
               22
         3
               15
         4
               15
              11
         5
         9
               9
         15
               5
         14
                4
               2
         8
         7
                2
         Name: Class, dtype: int64
```

2 - Seleção de variáveis e aplicação dos modelos

Utilizando as técnicas de Seleção de variáveis:

```
.Random Forest
.Select K Best
.Mutual Information
```

iremos aplicar os algoritmos de classificação:

```
.Logistic Regression
.K-Nearest Neighbors
.Random Forest
.Gaussian Naive Bayes
```

Em diferentes cenários propostos pelas técnicas de seleção de variáveis, assim procurando os melhores modelos

```
In [47]:

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import roc_auc_score

from sklearn.model_selection import RandomizedSearchCV

import numpy as np
```

Random Forest

```
In [48]: from sklearn.ensemble import RandomForestRegressor

# Separar os dados em features (X) e target (y)
X = df.drop('Class', axis=1)
y = df['Class']

# Criar o modelo Random Forest

Loading [MathJax]/extensions/Safe.js | restRegressor()
```

```
# Treinar o modelo
rf.fit(X, y)

# Obter a importância das variáveis
feature_importance = rf.feature_importances_

# Criar um DataFrame com as variáveis e suas importâncias
importance_df = pd.DataFrame({'Variable': X.columns, 'Importance': feature_importance})

# Ordenar as variáveis por importância
importance_df = importance_df.sort_values(by='Importance', ascending=False)
importance_df
```

Out[48]:

	variable	importance
146	Amp_V1_5	0.104637
4	QRS_duration	0.069399
13	Heart_rate	0.058485
150	Amp_V1_9	0.031362
8	P_interval	0.030705
84	V6_4	0.000000
177	Amp_V4_6	0.000000
62	V2_5	0.000000
67	V3_4	0.000000
74	V4_5	0.000000

Variable Importance

200 rows × 2 columns

Random Forest classifier

```
In [49]: def selecting_best_rf_rf():
                hash_table = {}
                 columns2select = [20, 30, 50, 70, 100, 150, 200]
                 for qtd in columns2select:
                     atribute_columns = list(importance_df.head(qtd)['Variable'])
                     tmp_df = train_X[atribute_columns]
                     foest_model = RandomForestClassifier(random_state=3)
                     forest_model.fit(tmp_df, train_y)
                     preds_tmp = forest_model.predict(test_X[atribute_columns])
                     hash_table[qtd] = [accuracy_score(test_y, preds_tmp), f1_score(test_y, preds_tmp)
                 return hash_table
            def table_rf_rf():
                 table = selecting_best_rf_rf()
                 for value in table:
                     print('Número de atributos selecionados: ', value)
                     print('Acurácia: ', end='')
                     print(table[value][0])
                     print('F1:
                                      ', end='')
Loading [MathJax]/extensions/Safe.js (table[value][1])
```

```
print()
table_rf_rf()
Número de atributos selecionados:
                                   20
Acurácia: 0.6888888888888889
F1:
         0.6035978835978835
Número de atributos selecionados:
                                   30
Acurácia: 0.71111111111111111
F1:
       0.6264004096262161
Número de atributos selecionados:
                                  50
Acurácia: 0.73333333333333333
F1:
         0.6572998805256869
Número de atributos selecionados: 70
Acurácia: 0.73333333333333333
F1:
         0.6572998805256869
Número de atributos selecionados:
                                  100
Acurácia: 0.7555555555555555
F1:
         0.6895543000627746
Número de atributos selecionados:
                                  150
Acurácia: 0.75555555555555555
F1:
         0.6855026455026454
Número de atributos selecionados: 200
Acurácia: 0.71111111111111111
F1:
    0.6380406212664277
```

KNN

Primeiro, vamos encontrar o melhor número de "vizinhos" no modelo

```
def find_best_n(df):
In [50]:
             best_score = -np.inf
             best_n_knn = np.inf
             print(df.shape)
             for n in range(1, df.columns.shape[0]):
                  temp_model = KNeighborsClassifier(n_neighbors=n)
                 print(n,end=" ")
                 temp_model.fit(train_X, train_y)
                 temp_pred = temp_model.predict(test_X)
                 temp_score = f1_score(test_y, temp_pred, average='weighted')
                 #print(temp_score)
                 if temp_score > best_score:
                          best_score = temp_score
                          best_n_knn = n
             #print('-'*30)
             #print("Best performing number of n_neighbors is",best_n_knn,"scoring",round(best_sc
             return best_n_knn
```

```
(403, 182)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3
3 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 9
2 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 1
16 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 1
38 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 1
60 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
```

Agora, rodamos o KNN nas variáveis selecionadas pelo RandomForest

```
In [52]:
         def selecting_best_rf_knn():
             hash_table = {}
             tmp_gain_df = importance_df[importance_df['Importance']>0]
             columns2select = [20, 30, 50, 70, 100, 150, tmp_gain_df.shape[0]]
             #best_n = find_best_n(tmp_gain_df)
             for qtd in columns2select:
                 atribute_columns = list(tmp_gain_df.head(qtd)['Variable'])
                 tmp_df = train_X[atribute_columns]
                 #best_n_knn = find_best(tmp_df)
                  knn_model = KNeighborsClassifier(n_neighbors=best_n)
                 knn_model.fit(tmp_df, train_y)
                  knn_pred = knn_model.predict(test_X[atribute_columns])
                 hash_table[qtd] = [accuracy_score(test_y, knn_pred), f1_score(test_y, knn_pred,
             return hash_table
         def table_rf_knn():
             table = selecting_best_rf_knn()
             for value in table:
                 print('Número de atributos selecionados: ', value)
                 print('Acurácia: ', end='')
                 print(table[value][0])
                 print('F1:
                                    , end='')
                 print(table[value][1])
                 print()
         table_rf_knn()
```

```
Número de atributos selecionados:
Acurácia: 0.644444444444445
F1:
         0.5924338624338624
Número de atributos selecionados:
                                 30
Acurácia: 0.577777777777777
F1:
         0.47962962962962963
Número de atributos selecionados:
                                 50
Acurácia: 0.64444444444445
F1:
         0.5343790849673202
Número de atributos selecionados:
Acurácia: 0.688888888888888
F1:
         0.6
Número de atributos selecionados:
                                 100
Acurácia: 0.622222222222222
         0.5326495726495726
Número de atributos selecionados: 150
F1:
         0.5782642343836374
Número de atributos selecionados:
                                 182
Acurácia: 0.73333333333333333
F1:
         0.6706974506974507
```

Logistic Regression

```
In [53]: def selecting_best_rf_log():
             hash_table = {}
             tmp_gain_df = importance_df[importance_df['Importance']>0]
             columns2select = [20, 30, 50, 70, 100, 150, tmp_gain_df.shape[0]]
             for qtd in columns2select:
                 atribute_columns = list(tmp_gain_df.head(qtd)['Variable'])
                 tmp_df = train_X[atribute_columns]
                 log_model = LogisticRegression(random_state=0, solver = "saga")
                 log_model.fit(tmp_df, train_y)
                 log_pred = log_model.predict(test_X[atribute_columns])
                 hash_table[qtd] = [accuracy_score(test_y, log_pred), f1_score(test_y, log_pred,
             return hash_table
         def table_rf_log():
             table = selecting_best_rf_log()
             for value in table:
                  print('Número de atributos selecionados: ', value)
                 print('Acurácia: ', end='')
                 print(table[value][0])
                 print('F1:
                                   ', end='')
                 print(table[value][1])
                 print()
         table_rf_log()
```

```
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
 warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
Número de atributos selecionados:
                                  20
Acurácia: 0.6
         0.5311891751236014
F1:
Número de atributos selecionados:
Acurácia: 0.64444444444445
F1:
         0.5517460317460318
Número de atributos selecionados:
                                  50
Acurácia: 0.644444444444445
F1: 0.5507936507936507
Número de atributos selecionados: 70
Acurácia: 0.688888888888888
        0.6311111111111111
Número de atributos selecionados:
                                  100
Acurácia: 0.71111111111111111
F1:
         0.6785112205801861
Número de atributos selecionados:
                                  150
Acurácia: 0.7777777777778
F1:
         0.7556632321544602
Número de atributos selecionados: 182
Acurácia: 0.7777777777778
F1:
     0.7556632321544602
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
```

Gaussian Naive Bayes

warnings.warn(

```
In [54]: def selecting_best_rf_nb():
    hash_table = {}
    tmp_gain_df = importance_df[importance_df['Importance']>0]
    columns2select = [20, 30, 50, 70, 100, 150, tmp_gain_df.shape[0]]

for qtd in columns2select:
    atribute_columns = list(tmp_gain_df.head(qtd)['Variable'])
    tmp_df = train_X[atribute_columns]

    nb_model = GaussianNB(var_smoothing = 0.5) # var_smoothing foi decidido no 'olho
```

```
nb_model.fit(tmp_df, train_y)
       nb_pred = nb_model.predict(test_X[atribute_columns])
       hash_table[qtd] = [accuracy_score(test_y, nb_pred), f1_score(test_y, nb_pred, av
    return hash_table
def table_rf_nb():
    table = selecting_best_rf_nb()
    for value in table:
       print('Número de atributos selecionados: ', value)
       print('Acurácia: ', end='')
       print(table[value][0])
       print('F1:
                        ', end='')
       print(table[value][1])
       print()
table_rf_nb()
Número de atributos selecionados:
Acurácia: 0.64444444444445
F1:
         0.5286346047540077
Número de atributos selecionados:
                                 30
0.5524709784411277
Número de atributos selecionados:
                                 50
F1:
         0.5616161616161617
Número de atributos selecionados:
                                 70
Acurácia: 0.71111111111111111
F1:
         0.6398809523809524
Número de atributos selecionados:
                                 100
Acurácia: 0.7111111111111111
         0.64831541218638
F1:
Número de atributos selecionados:
                                 150
Acurácia: 0.8
F1:
         0.7231746031746032
Número de atributos selecionados:
                                 182
Acurácia: 0.7555555555555555
F1:
         0.6819047619047619
```

K best

Random Forest

```
#k_best_data
        forest_model = RandomForestClassifier(random_state=3)
        forest_model.fit(k_best_data, train_y)
        preds_tmp = forest_model.predict(test_X[selector.qet_feature_names_out()])
        hash_table[qtd] = [accuracy_score(test_y, preds_tmp), f1_score(test_y, preds_tmp
        #print('Para as ', value, 'primeiras colunas')
        #print(accuracy_score(test_y, preds_tmp))
        #print(f1_score(test_y, preds_tmp, average='weighted'))
        #print()
        #print('-'*30)
    return hash_table
def table_kbest_rf():
    hash_table = selecting_best_kbest_rf()
    for value in hash_table:
        print('Número de atributos selecionados: ', value)
        print('Acurácia: ', end='')
        print(hash_table[value][0])
        print('F1:
                        ', end='')
        print(hash_table[value][1])
        print()
table_kbest_rf()
Número de atributos selecionados:
                                   20
Acurácia: 0.688888888888888
F1:
         0.5958597883597883
Número de atributos selecionados:
Acurácia: 0.73333333333333333
F1:
         0.6696296296296296
Número de atributos selecionados:
                                   40
Acurácia: 0.73333333333333333
         0.6664550264550264
F1:
Número de atributos selecionados:
Acurácia: 0.7777777777778
F1:
          0.7478781244298487
Número de atributos selecionados:
                                   60
Acurácia: 0.7777777777778
F1:
         0.7429934535019282
Número de atributos selecionados:
                                   100
Acurácia: 0.7777777777778
F1:
         0.7429934535019282
Número de atributos selecionados:
                                   150
Acurácia: 0.75555555555555555
F1:
          0.711776522284997
Número de atributos selecionados:
                                   200
Acurácia: 0.73333333333333333
F1:
         0.6833272616879174
```

```
In [56]: def selecting_best_kbest_knn():
             hash_table = {}
             columns2select = [20, 30, 50, 70, 100, 150, 200]
             for qtd in columns2select:
                 selector = SelectKBest(f_classif, k=qtd)
                 k_best_data = pd.DataFrame(selector.fit_transform(train_X, train_y), columns=sel
                 knn_model = KNeighborsClassifier(n_neighbors=3)
                 knn_model.fit(k_best_data, train_y)
                 knn_pred = knn_model.predict(test_X[selector.get_feature_names_out()])
                hash_table[qtd] = [accuracy_score(test_y, knn_pred), f1_score(test_y, knn_pred,
             return hash_table
         def table_kbest_knn():
             table = selecting_best_kbest_knn()
             for value in table:
                 print('Número de atributos selecionados: ', value)
                print('Acurácia: ', end='')
                print(table[value][0])
                print('F1:
                             ', end='')
                print(table[value][1])
                print()
         table_kbest_knn()
         Número de atributos selecionados:
         Acurácia: 0.688888888888888
         F1:
                  0.595138888888888
         Número de atributos selecionados:
                                           30
         F1:
                  0.5556902356902357
         Número de atributos selecionados:
                                          50
         Acurácia: 0.622222222222222
         F1:
                  0.5401058201058202
         Número de atributos selecionados:
                                          70
         F1:
                  0.5705050505050505
         Número de atributos selecionados:
                                          100
         Acurácia: 0.622222222222222
         F1:
                  0.5556695156695157
         Número de atributos selecionados:
                                          150
         Acurácia: 0.644444444444445
                  0.5768981481481482
         F1:
         Número de atributos selecionados:
         Acurácia: 0.73333333333333333
         F1:
                  0.6706974506974507
```

Logistic Regression

```
for qtd in columns2select:
        selector = SelectKBest(f_classif, k=qtd)
        k_best_data = pd.DataFrame(selector.fit_transform(train_X, train_y), columns=sel
        log_model = LogisticRegression(random_state=0, solver = "saga")
        log_model.fit(k_best_data, train_y)
        log_pred = log_model.predict(test_X[selector.get_feature_names_out()])
        hash_table[qtd] = [accuracy_score(test_y, log_pred), f1_score(test_y, log_pred,
    return hash_table
def table_kbest_log():
    hash_table = selecting_best_kbest_log()
    for value in hash_table:
        print('Número de atributos selecionados: ', value)
        print('Acurácia: ', end='')
        print(hash_table[value][0])
        print('F1:
                         ', end='')
        print(hash_table[value][1])
        print()
table_kbest_log()
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
 warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
```

```
Número de atributos selecionados:
Acurácia: 0.71111111111111111
F1:
         0.6247685185185184
Número de atributos selecionados:
                                   30
Acurácia: 0.7111111111111111
F1:
         0.6448677248677248
Número de atributos selecionados:
                                   40
Acurácia: 0.6888888888888889
F1:
         0.6198351981958539
Número de atributos selecionados:
                                   50
Acurácia: 0.6888888888888889
F1:
         0.6232258064516129
Número de atributos selecionados:
                                   60
Acurácia: 0.73333333333333333
         0.6862962962962962
Número de atributos selecionados:
                                   100
Acurácia: 0.688888888888888
F1:
         0.6369312169312169
Número de atributos selecionados:
                                   150
Acurácia: 0.7555555555555555
F1:
          0.7144900565590221
Número de atributos selecionados:
                                   200
Acurácia: 0.7777777777778
F1:
         0.7556632321544602
```

/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv ergenceWarning: The max_iter was reached which means the coef_ did not converge warnings.warn(

Gaussian Naive Bayes

```
In [58]: def selecting_best_kbest_nb():
                hash_table = {}
                columns2select = [20, 30, 40, 50, 60, 100, 150, 200]
                for qtd in columns2select:
                    selector = SelectKBest(f_classif, k=qtd)
                    k_best_data = pd.DataFrame(selector.fit_transform(train_X, train_y), columns=sel
                    #k_best_data
                    nb_model = GaussianNB(var_smoothing = 0.5) # var_smoothing foi decidido no 'olho
                    nb_model.fit(k_best_data, train_y)
                    nb_pred = nb_model.predict(test_X[selector.get_feature_names_out()])
                    hash_table[qtd] = [accuracy_score(test_y, nb_pred), f1_score(test_y, nb_pred, av
                    #print('Para as ', value, 'primeiras colunas')
                    #print(accuracy_score(test_y, preds_tmp))
                    #print(f1_score(test_y, preds_tmp, average='weighted'))
                    #print()
                    #print('-'*30)
                return hash_table
            def table_kbest_nb():
                hash_table = selecting_best_kbest_nb()
Loading [MathJax]/extensions/Safe.js in hash_table:
```

```
print('Número de atributos selecionados: ', value)
        print('Acurácia: ', end='')
        print(hash_table[value][0])
                       ', end='')
        print('F1:
        print(hash_table[value][1])
        print()
table_kbest_nb()
Número de atributos selecionados:
Acurácia: 0.688888888888888
F1:
         0.5742483660130719
Número de atributos selecionados:
                                   30
Acurácia: 0.688888888888888
F1:
         0.5724709784411277
Número de atributos selecionados:
                                   40
Acurácia: 0.688888888888888
F1:
         0.5813598673300167
Número de atributos selecionados:
                                   50
Acurácia: 0.6888888888888889
F1:
         0.5813598673300167
Número de atributos selecionados:
                                   60
Acurácia: 0.7111111111111111
         0.6183969043670536
Número de atributos selecionados:
                                   100
Acurácia: 0.7555555555555555
F1:
         0.6953968253968255
Número de atributos selecionados:
                                  150
Acurácia: 0.73333333333333333
F1:
          0.6785858585858585
Número de atributos selecionados:
                                   200
Acurácia: 0.7555555555555555
F1:
         0.6819047619047619
```

Mutual Info

```
In [59]: import pandas as pd
from sklearn.feature_selection import mutual_info_classif

# Separar os dados em features (X) e target (y)
X = df.drop('Class', axis=1)
y = df['Class']

# Calcular o ganho de informação entre cada variável e a variável alvo
gain = mutual_info_classif(X, y)

# Criar um DataFrame com as variáveis e seus ganhos de informação
gain_df = pd.DataFrame({'Variable': X.columns, 'Gain': gain})

# Ordenar as variáveis por ganho de informação
gain_df = gain_df.sort_values(by='Gain', ascending=False)

# Exibir as variáveis em ordem decrescente de ganho de informação
gain_df
```

```
Out[59]:
                                          Variable
                                                       Gain
            13
                                         Heart_rate 0.264960
           197
                                        Amp_V6_8 0.248316
           120
                                       Amp_AVR_8 0.225076
           150
                                        Amp_V1_9 0.224810
            66
                                             V3 3 0.218437
             ...
            22
                 Existence_diphasic_drivation_P_wave 0.000000
           109
                                       Amp DIII 6 0.000000
                Existence_diphasic_derivation_R_wave 0.000000
            20
           176
                                        Amp V4 5 0.000000
            90
                                   Amp_R_lin_wave 0.000000
```

200 rows × 2 columns

Random Forest

```
In [60]:
         def selecting_best_mi_rf():
             hash_table = {}
             tmp_gain_df = gain_df[gain_df['Gain']>0]
             columns2select = [20, 30, 40, 50, 100, 150, tmp_gain_df.shape[0]]
             for qtd in columns2select:
                 atribute_columns = list(tmp_gain_df.head(qtd)['Variable'])
                 tmp_df = train_X[atribute_columns]
                 forest_model = RandomForestClassifier(random_state=3)
                 forest_model.fit(tmp_df, train_y)
                 preds_tmp = forest_model.predict(test_X[atribute_columns])
                 hash_table[qtd] = [accuracy_score(test_y, preds_tmp), f1_score(test_y, preds_tmp
             return hash_table
         def table_mi_rf():
             hash_table = selecting_best_mi_rf()
             for value in hash_table:
                 print('Número de atributos selecionados: ', value)
                 print('Acurácia: ', end='')
                 print(hash_table[value][0])
                 print('F1:
                                   ', end='')
                 print(hash_table[value][1])
                 print()
         table_mi_rf()
```

```
Número de atributos selecionados:
Acurácia: 0.7777777777778
F1:
         0.7029993928354584
Número de atributos selecionados:
                                  30
Acurácia: 0.73333333333333333
F1:
         0.6720939826024572
Número de atributos selecionados:
                                  40
Acurácia: 0.73333333333333333
F1:
         0.6720939826024572
Número de atributos selecionados:
                                  50
Acurácia: 0.7777777777778
F1:
         0.740893399254055
Número de atributos selecionados: 100
Acurácia: 0.7555555555555555
         0.711776522284997
Número de atributos selecionados: 150
Acurácia: 0.73333333333333333
F1:
         0.6886772486772486
Número de atributos selecionados: 175
Acurácia: 0.7555555555555555
F1:
         0.7123056228140976
```

KNN

```
In [61]:
         def selecting_best_mi_knn():
             hash_table = {}
             tmp_gain_df = gain_df[gain_df['Gain']>0]
             columns2select = [20, 30, 40, 50, 100, 150, tmp_gain_df.shape[0]]
             for qtd in columns2select:
                 atribute_columns = list(tmp_gain_df.head(qtd)['Variable'])
                 tmp_df = train_X[atribute_columns]
                 knn_model = KNeighborsClassifier(n_neighbors=3)
                  knn_model.fit(tmp_df, train_y)
                  knn_pred = knn_model.predict(test_X[atribute_columns])
                 hash_table[qtd] = [accuracy_score(test_y, knn_pred), f1_score(test_y, knn_pred,
             return hash_table
         def table_mi_knn():
             hash_table = selecting_best_mi_knn()
             for value in hash_table:
                 print('Número de atributos selecionados: ', value)
                 print('Acurácia: ', end='')
                 print(hash_table[value][0])
                                 ', end='')
                 print('F1:
                 print(hash_table[value][1])
                 print()
         table_mi_knn()
```

Número de atributos selecionados: Acurácia: 0.64444444444445 F1: 0.5504629629629629 Número de atributos selecionados: 30 Acurácia: 0.622222222222222 F1: 0.536957387495022 Número de atributos selecionados: 40 Acurácia: 0.6 F1: 0.5226984126984127 Número de atributos selecionados: 50 Acurácia: 0.62222222222222 F1: 0.5167827529021559 Número de atributos selecionados: 100 Acurácia: 0.64444444444445 0.5346932006633499 Número de atributos selecionados: 150 Acurácia: 0.64444444444445 F1: 0.5696866096866097 Número de atributos selecionados: 175 Acurácia: 0.71111111111111111 F1: 0.6300371160072653

Logistic Regression

```
In [62]: def selecting_best_mi_log():
             hash_table = {}
             tmp_gain_df = gain_df[gain_df['Gain']>0]
             columns2select = [20, 30, 40, 50, 100, 150, tmp_gain_df.shape[0]]
             for qtd in columns2select:
                 atribute_columns = list(tmp_gain_df.head(qtd)['Variable'])
                 tmp_df = train_X[atribute_columns]
                 log_model = LogisticRegression(random_state=0, solver = "saga")
                 log_model.fit(tmp_df, train_y)
                 log_pred = log_model.predict(test_X[atribute_columns])
                 hash_table[qtd] = [accuracy_score(test_y, log_pred), f1_score(test_y, log_pred,
             return hash_table
         def table_mi_log():
             hash_table = selecting_best_mi_log()
             for value in hash_table:
                 print('Número de atributos selecionados: ', value)
                 print('Acurácia: ', end='')
                 print(hash_table[value][0])
                 print('F1:
                                   ', end='')
                 print(hash_table[value][1])
                 print()
         table_mi_log()
```

```
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
 warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
  warnings.warn(
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
ergenceWarning: The max_iter was reached which means the coef_ did not converge
 warnings.warn(
Número de atributos selecionados:
                                  20
0.5869907407407406
F1:
Número de atributos selecionados:
Acurácia: 0.64444444444445
F1:
         0.5788871821129885
Número de atributos selecionados:
                                  40
Acurácia: 0.7111111111111111
F1: 0.643915343915344
Número de atributos selecionados:
Acurácia: 0.688888888888888
        0.6336976320582878
Número de atributos selecionados:
                                  100
Acurácia: 0.7555555555555555
         0.7159387797805877
F1:
Número de atributos selecionados:
                                  150
Acurácia: 0.7555555555555555
F1:
         0.737056530214425
Número de atributos selecionados: 175
Acurácia: 0.7777777777778
F1:
     0.7556632321544602
/home/kalai/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_sag.py:352: Conv
```

ergenceWarning: The max_iter was reached which means the coef_ did not converge warnings.warn(

Gaussian Naive Bayes

```
In [63]:
         def selecting_best_mi_nb():
             hash_table = {}
             tmp_gain_df = gain_df[gain_df['Gain']>0]
             columns2select = [20, 30, 40, 50, 100, 150, tmp_gain_df.shape[0]]
             for qtd in columns2select:
                 atribute_columns = list(tmp_gain_df.head(qtd)['Variable'])
                 tmp_df = train_X[atribute_columns]
                 nb_model = GaussianNB(var_smoothing = 0.5) # var_smoothing foi decidido no 'olho
```

```
nb_model.fit(tmp_df, train_y)
        nb_pred = nb_model.predict(test_X[atribute_columns])
        hash_table[qtd] = [accuracy_score(test_y, nb_pred), f1_score(test_y, nb_pred, av
    return hash_table
def table_mi_nb():
    hash_table = selecting_best_mi_nb()
    for value in hash_table:
        print('Número de atributos selecionados: ', value)
        print('Acurácia: ', end='')
        print(hash_table[value][0])
                         ', end='')
        print('F1:
        print(hash_table[value][1])
        print()
table_mi_nb()
Número de atributos selecionados:
Acurácia: 0.622222222222222
F1:
         0.4924867724867725
Número de atributos selecionados:
                                  30
Acurácia: 0.622222222222222
F1:
         0.4924867724867725
Número de atributos selecionados:
Acurácia: 0.644444444444445
F1:
         0.5325281803542673
Número de atributos selecionados:
                                   50
Acurácia: 0.644444444444445
F1:
         0.5140096618357488
Número de atributos selecionados:
                                  100
Acurácia: 0.688888888888888
         0.5742483660130719
Número de atributos selecionados:
                                  150
Acurácia: 0.73333333333333333
F1:
         0.6521789321789322
Número de atributos selecionados: 175
Acurácia: 0.7777777777778
F1:
         0.7027932098765431
```