clusters

February 23, 2024

1


```
1.0.1
```

```
[]: from sklearn.metrics import calinski_harabasz_score
     Z = linkage(data[metric_vars_norm], method='ward', metric='euclidean')
     for k in range (2, 10):
         labels = fcluster(Z, t=k, criterion='maxclust')
                                  {}'.format(k,_
                    : {},
      Gradinski_harabasz_score(data[metric_vars_norm], labels)))
            : 2,
                      3472.7837578700446
            : 3,
                     4137.100774187066
                      3884.1640364346213
                      3859.477449898328
            : 5,
                     3763.4272468143577
            : 6,
                      3586.4697918214747
            : 7,
            : 8,
                      3460.7338908173924
                      3373.308424818836
            : 9,
                   3-
[]: labels = fcluster(Z, t=3, criterion='maxclust') #
     data['culster_labels'] = labels
```

```
[]: data.groupby('culster_labels')[metric_vars].mean()
[]:
                                         price owner_count engine_volume_lites \
                            year
     culster_labels
     1
                     2017.023838 7.682089e+06
                                                   2.584242
                                                                        3.509616
                     1997.753226 6.396754e+05
                                                   6.891935
                                                                        2.365323
     2
     3
                     2015.409892 2.921244e+06
                                                   2.947097
                                                                        2.097663
                     power_in_hp
                                        mileage
     culster_labels
     1
                      350.581414
                                   93081.826667
     2
                      163.000000 319837.154032
     3
                      197.075842 133176.449319
[]: grouped = data.groupby('culster_labels').size().reset_index(name='all_count')
     grouped_audi = data[data['manufacturer'] == 'Audi'].groupby('culster_labels').
      size().reset_index(name='audi_count')
     grouped_mercedes = data[data['manufacturer'] == 'Mercedes-Benz'].
      Groupby('culster_labels').size().reset_index(name='mercedes_count')
     grouped_bmw = data[data['manufacturer'] == 'BMW'].groupby('culster_labels').
      ⇔size().reset index(name='bmw count')
     result = pd.merge(grouped, grouped_audi, on='culster_labels')
     result = pd.merge(result, grouped_bmw, on='culster_labels')
     result = pd.merge(result, grouped_mercedes, on='culster_labels')
     result['percentage_audi'] = (result['audi_count'] / result['all_count']) * 100
     result['percentage_mercedes'] = (result['mercedes_count'] / __
      ⇔result['all_count']) * 100
     result['percentage_bmw'] = (result['bmw_count'] / result['all_count']) * 100
     result
[]:
       culster_labels all_count audi_count bmw_count mercedes_count \
     0
                     1
                             2475
                                          312
                                                    1128
                                                                    1035
     1
                     2
                             1240
                                          414
                                                     429
                                                                     397
     2
                     3
                             6975
                                         1574
                                                    2698
                                                                    2703
       percentage_audi percentage_mercedes percentage_bmw
     0
              12.606061
                                   41.818182
                                                   45.575758
              33.387097
                                                   34.596774
     1
                                   32.016129
              22.566308
                                   38.752688
                                                   38.681004
[]: color_groups = ['black', 'white', 'grey_silver', 'blue_brown', 'red', 'other']
     def color_group(x):
         if pd.isna(x):
             return np.nan
         for i in color_groups:
```

```
if x in i:
                 return i
         return 'other'
     data['color_group'] = data['color'].apply(color_group)
     pd.crosstab(data['culster_labels'], data['color_group']).apply(lambda r: r*100/

¬r.sum(), axis=1)

[]: color_group
                         black blue_brown grey_silver
                                                               other
                                                                           red \
     culster labels
                     46.967847
                                  13.146113
                                               16.931217
                                                            3.540904 1.709402
     2
                     29.562345
                                  17.671346
                                               28.075970 12.881916 4.541701
                     37.339674
     3
                                  15.996541
                                               15.621848
                                                            3.631647 4.496325
     color_group
                         white
     culster_labels
     1
                     17.704518
     2
                      7.266722
     3
                     22.913965
[]: pd.crosstab(data['culster_labels'], data['is_sport_line']).apply(lambda r:u
      \Rightarrowr*100/r.sum(), axis=1)
[]: is_sport_line
                         False
                                    True
     culster labels
                     91.562656 8.437344
     2
                     99.908257
                                0.091743
                     99.338374 0.661626
[]: pd.crosstab(data['culster_labels'], data['is_crossover']).apply(lambda r: r*100/
      \hookrightarrowr.sum(), axis=1)
[]: is_crossover
                         False
                                     True
     culster labels
                     35.878788
                                64.121212
     2
                     88.145161
                                11.854839
                     64.817204 35.182796
[]: pd.crosstab(data['culster_labels'], data['transmission']).apply(lambda r: r*100/
      \hookrightarrowr.sum(), axis=1)
[]: transmission
                     automatic
                                    manual
                                                robot variator
     culster labels
                                  0.080873
                                             2.871007 0.000000
     1
                     97.048120
     2
                     47.657512 48.626817
                                             0.646204 3.069467
     3
                     74.562661
                                  1.132779
                                            20.461715 3.842845
```

```
[]: data['model_full'] = data['manufacturer'] + " " + data['model']
data.groupby('culster_labels')['model_full'].value_counts().groupby(level=0).

onlargest(20)
```

[]:	culster_labels	culster_labels	model_full BMW X5		342
	1	1	Mercedes-Benz	S-Class	287
			BMW X6	b Glabb	252
			Mercedes-Benz	GLS-Class	166
			Mercedes-Benz		143
			BMW X7		120
			BMW 7-Series		111
			BMW 5-Series		105
			Mercedes-Benz	G-Class	103
			Audi Q7		100
			Mercedes-Benz	GLE Coupe	88
			Audi Q8		59
			Mercedes-Benz	GL-Class	54
			Audi A8		52
			BMW X4		51
			Mercedes-Benz	E-Class	43
			BMW X3		42
			Mercedes-Benz	CLS-Class	34
			BMW 6-Series (33
			Mercedes-Benz	M-Class	26
	2	2	BMW 5-Series		163
			BMW 3-Series		140
			Mercedes-Benz	E-Class	138
			Audi 80		108
			Audi A6		94
			Audi 100		87
			Audi A4		78
			BMW X5	C Cl	75
			Mercedes-Benz Mercedes-Benz		73
			Mercedes-Benz		35 32
			BMW 7-Series	M-Class	26
			Mercedes-Benz	Mercedes	25
			Mercedes-Benz		20
			Mercedes-Benz		18
			Audi A3	100	14
			Mercedes-Benz	CLK-Class	13
			BMW X3		12
			Mercedes-Benz	G-Class	12
			Mercedes-Benz		7
	3	3	Mercedes-Benz	E-Class	731

BMW 5-Series		684
BMW 3-Series		557
Mercedes-Benz	C-Class	410
BMW X3		316
Audi A6		292
Audi A4		278
Mercedes-Benz	GLC	249
BMW X1		247
Audi Q5		236
Audi A3		197
BMW X5		189
BMW 1-Series		174
Mercedes-Benz	GLA-Class	168
Audi A5		155
Mercedes-Benz	GLE	134
Mercedes-Benz	CLA-Class	133
Mercedes-Benz	A-Class	128
Mercedes-Benz	M-Class	121
BMW X4		118

Name: count, dtype: int64