

Generic Cryptographic Interface

Documentation Steve Wagner

December 16, 2015

Laboratory for Embedded Systems and Communication Electronics Hochschule Offenburg Prof. Axel Sikora Andreas Walz

Statutory declaration

I declare that	I have authored this thesis indepe	endently, that I have not u	used other than the declared
sources / res	ources, and that I have explicitly	marked all material wh	ich has been quoted either
literally or by	content from the used sources.		_
Offenburg,			-
	Datum	Unterschrift	

Abstract

Contents

1	Initi	alisation of the interface	1			
2	Con	Context management				
	2.1	Creation of a context	2			
		2.1.1 Hash context	2			
		2.1.2 Signature (for generating) context	2			
		2.1.3 Signature (for verifying) context	2			
		2.1.4 Cipher context	2			
		2.1.5 Diffie-Hellmann context	2			
	2.2	Clone an existing context	2			
		2.2.1 Hash context	2			
		2.2.2 Both signature context	2			
	2.3	Delete an existing context	2			
3	Has	.h	3			
	3.1	Algorithm of hash	3			
	3.2	Steps to hash	3			
4	Sign	nature	4			
	4.1	Signature configuration	4			
	•	4.1.1 RSA	4			
		4.1.2 Digital Signature Algorithm (DSA)	4			
		4.1.3 Elliptic Curve Digital Signature Algorithm (ECDSA)	4			
		4.1.4 Block-Cipher-Based Message Authentification Code (CBC-MAC / CMAC)	4			
		4.1.5 keyed-Hash Message Authentication Code (HMAC)	4			
	4.2	Steps to sign	4			
5	Gen	nerate key pair	5			
	5.1	Configuration of a key pair	5			
	_	5.1.1 RSA	5			
		5.1.2 Digital Signature Algorithm (DSA)	5			
		5.1.3 Elliptic Curve Digital Signature Algorithm (ECDSA)	5			
	5.2	Steps to generate a key pair	5			
6	Cipl	her	6			
	6.1	Configuration of a symmetric cipher	6			
	6.2	Configuration of an asymmetric cipher	6			
	6.3	Encrypt a plaintext	6			
	6.4	Decrypt a ciphertext	6			

7	Gen	erate Diffie-Hellmann key pair	7
	7.1	Configuration of a Diffie-Hellmann key pair	7
		7.1.1 Diffie-Hellmann (DH)	7
		7.1.2 Elliptic Curve Diffie Hellmann (ECDH)	
	7.2	Steps to generate a Diffie-Hellmann key pair	7
8	Calc	culate a Diffie-Hellmann shared secret	8
	8.1	Steps to calculate a shared secret	8
9	Pseu	udo-Random Number Generator	9
	9.1	Generate a pseudo-random number	9
	9.2	Seed a pseudo-random number	9
10	Key	management	10
	10.1	Save a key as big number and get an ID	10
		Get a saved key with his ID	
	10.3	Delete a key	10

1 Initialisation of the interface

2 Context management

- 2.1 Creation of a context
- 2.1.1 Hash context
- 2.1.2 Signature (for generating) context
- 2.1.3 Signature (for verifying) context
- 2.1.4 Cipher context
- 2.1.5 Diffie-Hellmann context
- 2.2 Clone an existing context
- 2.2.1 Hash context
- 2.2.2 Both signature context
- 2.3 Delete an existing context

- 3 Hash
- 3.1 Algorithm of hash
- 3.2 Steps to hash

4 Signature

- 4.1 Signature configuration
- 4.1.1 RSA
- 4.1.2 Digital Signature Algorithm (DSA)
- 4.1.3 Elliptic Curve Digital Signature Algorithm (ECDSA)
- 4.1.4 Block-Cipher-Based Message Authentification Code (CBC-MAC / CMAC)
- 4.1.5 keyed-Hash Message Authentication Code (HMAC)
- 4.2 Steps to sign

5 Generate key pair

- 5.1 Configuration of a key pair
- 5.1.1 RSA
- 5.1.2 Digital Signature Algorithm (DSA)
- 5.1.3 Elliptic Curve Digital Signature Algorithm (ECDSA)
- 5.2 Steps to generate a key pair

6 Cipher

- 6.1 Configuration of a symmetric cipher
- 6.2 Configuration of an asymmetric cipher
- 6.3 Encrypt a plaintext
- 6.4 Decrypt a ciphertext

7 Generate Diffie-Hellmann key pair

- 7.1 Configuration of a Diffie-Hellmann key pair
- 7.1.1 Diffie-Hellmann (DH)
- 7.1.2 Elliptic Curve Diffie Hellmann (ECDH)
- 7.2 Steps to generate a Diffie-Hellmann key pair

- 8 Calculate a Diffie-Hellmann shared secret
- 8.1 Steps to calculate a shared secret

9 Pseudo-Random Number Generator

- 9.1 Generate a pseudo-random number
- 9.2 Seed a pseudo-random number

10 Key management

- $10.1\,$ Save a key as big number and get an ID
- 10.2 Get a saved key with his ID
- 10.3 Delete a key