4-1. 지도 연동

Map Chart(이론편)

목 차

1. Map Chart 소개

- 1-1) Map Chart 배경 지식
- 1-2) Spotfire Map 차트

2. Map Chart Layer 소개

- 2-1) Marker Layer
- 2-2) Feature Layer
- 2-3) Map Layer
- 2-4) TMS Layer
- 2-5) WMS Layer
- 2-6) Image Layer

1-1. 맵 차트 배경 지식

맵 이미지 파일의 형태 2가지:

- 래스터(Raster) = 이미지.
 - 점으로 이루어져 있는 그림형식으로 흔히 픽셀 단위로, 보통 말하는 이미지 형식(jpg, png, tif 등)을 말하며, 확대하면 이미지가 흐려진다.
- 벡터(Vector) = 파일.
 - 수학적 함수 등을 이용해서 방향성을 갖는 선형을 말하여, 확대해도 선명하다.

출처: https://ko.wikipedia.org/wiki/ESRI

1-1. 맵 차트 배경 지식_ ESRI & Shape 파일

- **ESRI**는 지리정보시스템 소프트웨어를 제공하는 소프트웨어 개발사로서 본사는 미국 캘리포니아주에 위치하고 있다.
- ESRI는 1969년 Environmental Systems Research Institute라는 이름으로 만들어진 소프트웨어 컨설팅 회사로 <u>ArcGIS Desktop</u>을 비롯하여 다양한 제품을 전 세계 시장에 공급하고 있으며 전 세계 GIS 소프트웨어 사용자의 80%의 점유율을 보유하고 있다.
- SHP 파일은 ESRI사에서 만든 GIS 프로그램에서 사용하는 파일의 확장자 명이다.
- SHP 파일은 벡터 형식의 파일로서
 - dbf = 속성
 - prj = 좌표
 - shx = 도형

등을 포함 하고 있는 링크 형식파일로 기본적으로 속성정보(dbf)와 도형정보(shx)를 가지고 있으며 좌표나 공간인덱스 정보를 통해 2D 또는 3D형식으로 나타낼 수 있는 파일을 일컫는 말이다.

출처: https://ko.wikipedia.org/wiki/ESRI

1-1. 맵 차트 배경 지식 - 좌표참조 시스템

- 맵에서는 3차원의 지구가 2차원으로 표시되므로 필요에 따라 여러 모델을 사용하여 변환할 수 있다. 각 모델은 지구의 특정 위치를 좌표 참조 시스템의 좌표로 표현합니다. Spotfire는 이러한 시스템을 3,000개 이상 지원한다.
- 지리적 좌표 참조 시스템은 지구 표면의 점을 경도 및 위도 값으로 정의한다.
- 데이터를 맵 차트에 시각화하려면 두 개의 좌표 참조 시스템 지정이 필요하다.
 - 데이터 계층에 대한 좌표 참조 시스템
 - 맵 차트를 만들 때는 데이터 테이블에서 사용 가능한 좌표 컬럼을 사용하거나 지역 코드 지정을 사용하여 데이터를 지리적 컨텍스트에 위치시킨다.
 - Spotfire에서 제공하는 지역 코드 지정 데이터 테이블은 EPSG:4326- WGS84 좌표 참조 시스템으로 표현된다.
 - 맵 모양에 대한 좌표 참조 시스템
 - 맵의 모양에 사용되는 투영 모델 위에 표식 및 기능이 배치되는데 이 모델 역시 특정 좌표 참조 시스템으로 표현된다.
 - Spotfire맵 차트에서 맵 계층을 사용하려면 모양 페이지의 좌표 참조 시스템을 EPSG:3857-WGS 84 / Pseudo-Mercator로 설정해야 한다.

1-1. 맵 차트 배경 지식 - 좌표참조 시스템

■ 다음은 모양 페이지에서 여러 좌표 참조 시스템이 설정되고 동일한 데이터 계층이 맵 차트에 추가된 예이다(EPSG:4326- WGS84를 좌표 참조 시스템으로 사용).

데이터 계층에 사용된 것과 다른 좌표 참조 시스템을 선택하면 올바른 위치
 지정을 위해 데이터 계층의 좌표를 다시 계산하게 된다.

1-2. Spotfire Map Chart

- Spotfire 에서 제공하는 Visualization 중 하나인 Map Chart는 데이터를 지도에 표시할 수 있는 차트로서 지도를 통해 다양한 정보를 알 수 있게 하는 시각화이다.
- 삽입 > 시각화 > 맵차트 를 선택하거나 아이콘(둥근 지구모양)을 클릭하여 생성할 수 있다.

예: Map Chart를 사용한 미국 전역의 Store Type 분석 화면 Sample

1-2. Spotfire Map Chart

■ Spotfire 에서 제공하는 Map Chart는 총 6개의 Layer를 사용하여 시각화를 만들게 되어 있다. 사용자가 각각의 Layer를 겹겹이 쌓아 원하는 Visualization을 완성하는 방식이라고 생각하면 된다.

Map Layer 배경에 Marker Layer(데이터)를 쌓아서 완성한 Visualization

2. Map Chart Layer 소개

- 맵 차트에서 다양한 계층을 사용하여 데이터(일반적으로 지리적 데이터)를 컨텍스트에 배치할 수 있다.
- 계층은 다음 2가지로 크게 구분된다.
 - 1) 데이터 계층 :

예: 표식 계층((marker layer) 또는 기능계층((feature layer)

2) 참조 계층

예: 맵 계층(Map layer), WMS(웹 맵 서비스), TMS layer, 또는 이미지 계층 (image layer)

■ 3차원 지구상의 위치를 2차원 평면으로 변환한 결과는 좌표 참조 시스템을 사용하여 표현된다. 변환에 사용된 모델에 따라 좌표의 값은 시스템마다 다르다.

2-1) Marker Layer(표식 계층)

- 표식 계층에서는 표식 또는 파이가 서로 다른 영역에 위치한다.
- 데이터를 포함하고 있는 Layer이다. 데이터에 위도, 경도 값이 포함되어 있다면 바로 Map Layer위에 데이터를 표시할 수 있다. 만약 위도/경도 값이 포함되어 있지 않다면 위도/경도 값이 있는 다른 데이터 테이블을 컬럼일치 시켜서 사용할 수 있다.
- Marker Layer는 데이터를 포함한 Layer일 뿐이기 때문에 데이터가 표시될 기본 Map Layer(Map, TMS, Feature Layer)가 필요하다. Marker Layer 단일 Layer로는 Map Chart에서 원하는 정보를 제대로 전달할 수 없다.

Marker Layer

2-1) Marker Layer(표식 계층)

Marker Layer & Feature Layer

Marker Layer & TMS Layer

Marker Layer & Map Layer

2-2) Feature Layer(기능 계층)

- 사용자가 원하는 지역(상권)별로 구획을 나누어 주고 싶을 때 사용하는 Layer이다.
- Shape File을 통해 원하는 구역별로 맵 구획을 나누어 줄 수 있다.
- Shape File을 기존 데이터가 포함되어 있는 Marker Layer(표식계층)와 컬럼일치를 시켜 주어야 한다.
- Shape File 은 Spotfire 가 하는 것이 아니라, Shape File을 전문적으로 제작하는 곳에서 구매해야 한다.

Shape File									
Geometry	AREA	STATE_NAME	STATE_FIPS	SUB_REGION	STATE_ABBR	POP1990	POP1997	POP90_SQMI	HOUSEHOLDS
	67286.88	Washington	53	Pacific	WA	4866692.00	5604260.00	72.00	1872431.00
	147236.03	Montana	30	Mtn	MT	799065.00	888723.00	5.00	306163.00
A	32161.66	Maine	23	N Eng	ME	1227928.00	1244828.00	38.00	465312.00
	70810.15	North Dakota	38	W N Cen	ND	638800.00	644782.00	9.00	240878.00
	77193.62	South Dakota	46	W N Cen	SD	696004.00	736549.00	9.00	259034.00
	97799.49	Wyoming	56	Mtn	WY	453588.00	484529.00	5.00	168839.00
	56088.07	Wisconsin	55	E N Cen	WI	4891769.00	5189399.00	87.00	1822118.00
	83340.60	Idaho	16	Mtn	ID	1006749.00	1210819.00	12.00	360723.00
7	9603.22	Vermont	50	N Eng	VT	562758.00	591659.00	59.00	210650.00
	84517.47	Minnesota	27	W N Cen	MN	4375099.00	4690847.00	52.00	1647853.00

Shape File

2-2) Feature Layer(기능 계층)

Marker Layer & Feature Layer & Map Layer

2-2) Feature Layer(기능 계층)

- 기능 계층의 모양은 다각형, 선, 점 등 세 가지 기하 도형 유형 중 하나일 수 있다.
- 선이 기능계층으로 유용한 경우의 예는 고속도로 또는 도로망을 표시하는 맵이다. 다음은 대화식 모양을 포함한 맵 차트의 예이다. 각 모양은 고속도로를 나타낸다.

2-3) Map Layer(맵 계층)

- 온라인 상태에서 사용하며, Spotfire에서 기본적으로 제공하는 세계지도 Layer이다.
- 기본적인 지도정보를 포함하고 있기 때문에 상세한 내역까지는 확인이 어렵다.
- 기본적으로 좌표 값이 지정되어 있다. 때문에 Map Layer 위에 뿌려질 Marker Layer에 좌표 값이 지정되어 있다면, 자동적으로 해당 위치에 데이터를 표시할 수 있다.
- 맵 계층은 항상 참조 계층으로 사용되며 직접 상호 작용할 수 없다.
- 또한 다른 Tile Map Service(TMS) 계층을 참조 계층으로 추가할 수 있다.
- Spotfire에서는 기본적으로 OpenStreetMap 을 제공하고 있다.

2-3) Map Layer(맵 계층)

Map Layer

2-4) TMS Layer(TMS 계층)

- 앞서 설명한 Map Layer와 비슷한 성격의 Layer이다. 하지만 TMS Layer는 웹상에서 제공하는 지도(예, Naver 지도, Daum 지도)를 Layer로 이용한다.
- Map Layer와 다르게 웹 상에서 Map에 따라서 상세한 내역을 지도에 표시할 수 있다.
- Map Layer와 같이 TMS Layer는 기본적으로 좌표 값이 지정되어 있다. 때문에 TMS Layer 위에 뿌려질 Marker Layer에 좌표 값이 지정되어 있다면, 자동적으로 해당 위치에 데이터를 표시할 수 있다.
- **TMS** (**T**ile **M**ap **S**ervice): a protocol for serving maps as <u>tiles</u> i.e. splitting the map up into a pyramid of images at multiple zoom levels.

 (http://wiki.openstreetmap.org/wiki/TMS)

2-4) TMS Layer(TMS 계층)

2-5) WMS Layer(WMS 계층)

- 다른 유형의 참조 배경으로 WMS 계층이 있다.
- WMS 계층은 인터넷에서 ESRI ArcGIS 및 여러 공개 WMS 서버를 포함한 다양한 GIS(Geographic Information System) 데이터베이스의 지리 참조 맵 이미지에 액세스하기 위한 웹 표준인 웹 맵 서비스에서 검색된다.
- Web Map Service (WMS): a standard protocol for serving (over the <u>Internet</u>)
 georeferenced map images which a <u>map server</u> generates using data from a <u>GIS</u>
 database.^[2]
- (https://en.wikipedia.org/wiki/Web_Map_Service)

2-5) WMS Layer(WMS 계층)

아래 그림은 배경 WMS 계층에 날씨 관찰값을 표시하였다.

2-5) WMS Layer(WMS 계층)

2-6) Image Layer(이미지 계층)

- 사용자가 사용하고자 하는 이미지 파일을 통해 Map Data를 표시해주는 Layer이다.
- 데이터(Marker Layer)에 X, Y(위, 경도) 값이 있을 때는 이미지에 x, y 축 설정을 통해 간편하게 시각화를 만들 수 있다.
- 데이터(Marker Layer)에 X, Y(위, 경도) 값이 없을 때는 이미지에 x, y 축 설정을 해주고, 직접 이미지와 데이터의 x, y 축을 맞추어 주는 수작업을 통해 시각화를 만들수 있다.
- 수작업을 통해 만든 Data는 본 데이터와 Column match를 통해 해당하는 데이터를 원하는 위치에 표시해 주는 방법으로 사용할 수 있다.

2-6) Image Layer(이미지 계층)

Image Layer 예시

Image Layer 예시

2-6) Image Layer(이미지 계층)

Image Layer 예시