

ard Maths

Differentiation: Implicit 3ii

# Differentiation: Implicit 3ii

# Part A Derivative

For the curve  $2x^2 + xy + y^2 = 14$ , find  $\frac{dy}{dx}$  in terms of x and y.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

# Part B Stationary Points

How many points are there on the curve  $2x^2 + xy + y^2 = 14$  at which the tangents are parallel to the *x*-axis?

# Part C Coordinates 1

Find the coordinates of the points at which the tangents to the curve  $2x^2 + xy + y^2 = 14$  are parallel to the *x*-axis.

Give the x-coordinate of the point with the highest (most positive) x-value.

The following symbols may be useful: x

Give the *y*-coordinate of the same point.

The following symbols may be useful: y

# Part D Coordinates 2



Find the coordinates of the points at which the tangents to the curve  $2x^2 + xy + y^2 = 14$  are parallel to the *x*-axis.

Give the x-coordinate of the point with the lowest (most negative) x-value.

The following symbols may be useful: x

Give the *y*-coordinate of the same point.

The following symbols may be useful: y

Used with permission from UCLES A-level Maths papers, 2003-2017.



board Maths

Differentiation: Implicit 5i

# Differentiation: Implicit 5i



# Part A Derivative

Given that  $y\sin 2x + \frac{1}{x} + y^2 = 5$ , find an expression for  $\frac{\mathrm{d}y}{\mathrm{d}x}$  in terms of x and y.

The following symbols may be useful: Derivative(y, x), cos(), cosec(), cot(), sec(), sin(), tan(), x, y

### Part B Gradient

Find the gradient of the curve  $4x^2 + 2xy + y^2 = 12$  at the point (1,2).

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

**STEM SMART Double Maths 28 - Implicit & Parametric Equations & Partial Fractions** 



Maths

Differentiation: Implicit 3i

# Differentiation: Implicit 3i



The equation of a curve is  $xy^2 = 2x + 3y$ .

# Part A Implicit Differentiation

Find an expression for  $\frac{\mathrm{d}y}{\mathrm{d}x}$  in terms of x and y.

The following symbols may be useful: Derivative(y, x), x, y

# Part B Tangents

Give the number of tangents to this curve which are parallel to the y-axis.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

**STEM SMART Double Maths 28 - Implicit & Parametric Equations & Partial Fractions** 



eboard Maths

s Functions

**Graph Sketching** 

Sketching a Parametric Curve

# Sketching a Parametric Curve



A curve has parametric equations  $x=1-\cos t$ ,  $y=\sin t\sin 2t$  , for  $0\leq t\leq \pi$ .

### Part A Coordinates

At how many different points does the curve meet the x-axis?

Enter the highest of the x-coordinates of the points where the curve meets the x-axis.

The following symbols may be useful: x

### Part B Derivative

Find an expression for  $\frac{\mathrm{d}y}{\mathrm{d}x}$  in terms of t.

The following symbols may be useful: Derivative(y, x), arccose(), arccose(),

# Hence find, in an exact form, the coordinates of the stationary points. Enter the exact x-coordinate of the stationary point with the lower x-coordinate. The following symbols may be useful: xEnter the exact y-coordinate of the stationary point with the lower x-coordinate. The following symbols may be useful: y

# Part D Stationary points 2

Hence find, in an exact form, the coordinates of the stationary points.

Enter the exact x-coordinate of the stationary point with the higher x-coordinate.

The following symbols may be useful: x

Enter the exact y-coordinate of the stationary point with the higher x-coordinate.

The following symbols may be useful: y

# Part E Cartesian Equation

Find the cartesian equation of the curve. Give your answer in the form y = f(x), where f(x) is a polynomial.

The following symbols may be useful: x, y

# Part F Sketch

Sketch the curve.



Used with permission from UCLES A-level Maths papers, 2003-2017.

### Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Partial Fractions

<u>rd</u> Maths

Parametric Equations 2i

# Parametric Equations 2i



A curve has parametric equations

$$x=rac{1}{t+1}, y=t-1.$$

The line y=3x intersects the curve at two points.

# Part A Value of t

Show that the value of t at one of these points is -2 and find the value of t at the other point.

The following symbols may be useful: t

# Part B Normal

Find the equation of the normal to the curve at the point for which t=-2, giving your answer in the form y=f(x).

The following symbols may be useful: x, y

# Part C Value of t

Find the value of t at the point where this normal meets the curve again.

The following symbols may be useful: t

# Part D Cartesian Equation

Find a cartesian equation of the curve, giving your answer in the form y = f(x).

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Partial Fractions



Maths

Parametric Equations 3i

# Parametric Equations 3i



The parametric equations of a curve are

$$x=2 heta+\sin2 heta,y=4\sin heta$$

and part of its graph is shown in Figure 1.



Figure 1: A sketch of the curve.

# Part A Value of Theta

Find the value of  $\theta$  at A.

The following symbols may be useful:  $\operatorname{pi}$ , theta

Find the value of  $\theta$  at B.

The following symbols may be useful: pi, theta

# Part B Derivative

Find an expression for  $\frac{\mathrm{d}y}{\mathrm{d}x}$  in terms of  $\theta$ .

The following symbols may be useful: Derivative(y, x), arccose(), arccose(),

# Part C Coordinates

At the point C on the curve the gradient is 2. Find the coordinates of C, giving your answer in an exact form.

Find the *x*-coordinate.

The following symbols may be useful: pi,  $\times$ 

Find the *y* coordinate.

The following symbols may be useful: pi, y

# Part D Nature of Origin

Point O is at the origin. State the nature of point O, justifying your answer by reference to suitable values of  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$ .

Easier question?

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Partial Fractions



<u>Home</u> <u>Gameboard</u>

board Maths

Calculus

Integration

Parametric Integration 1

# Parametric Integration 1



The curve  ${\cal C}$  has parametric equations

$$x=2t^2-3 \qquad y=t(4-t^2)$$

The curve crosses the x-axis at the points A and B and the region R is enclosed by the loop of the curve, as shown in Figure 1.



Figure 1: A graph of the curve C.

### 

Find the x-coordinate of the point A.

| Fin    | d the $x$ -coordinate of the point $B$ . |
|--------|------------------------------------------|
|        |                                          |
|        |                                          |
| Part C | Area of ${\it R}$                        |

The region R is enclosed by the loop of the curve, as shown in Figure 1. Find the exact value of the area of R .

Created for isaacphysics.org by Matthew Rihan

 $\operatorname{Point} B$ 

Part B

Gameboard:

<u>STEM SMART Double Maths 28 - Implicit & Parametric Equations & Partial Fractions</u>



<u>d</u> Maths

Partial Fractions 3ii

# Partial Fractions 3ii



The equation of a curve is y=f(x), where  $f(x)=\dfrac{3x+1}{(x+2)(x-3)}$ .

# Part A Partial Fractions

Hence express f(x) in partial fractions.

The following symbols may be useful: x

# Part B Derivative

Hence find f'(x).

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

### Part C Deduction

Hence deduce that the gradient of the curve is negative for all points on the curve.

More practice questions?

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

**STEM SMART Double Maths 28 - Implicit & Parametric Equations & Partial Fractions** 



<u>Home</u>

<u>Gameboard</u>

Maths

Partial Fractions 1i

# **Partial Fractions 1i**



### **Partial Fractions** Part A

Express 
$$\frac{2+x^2}{(1+2x)(1-x)^2}$$
 in the form  $\frac{A}{1+2x}+\frac{B}{1-x}+\frac{C}{(1-x)^2}$ .

The following symbols may be useful: x

### Integration Part B

Hence find 
$$\int_0^{rac{1}{4}} rac{2+x^2}{(1+2x)(1-x)^2} \mathrm{d}x$$
 in exact form.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

# STEM SMART Double Maths 28 - Implicit & Parametric Equations & Partial Fractions



Maths

Functions

**General Functions** 

Integration With Partial Fractions 2

# **Integration With Partial Fractions 2**



Write the function 
$$\frac{2z^2-z-3}{(z+2)(z^2-2z-1)}$$
 in the form  $\frac{A}{z+2}+\frac{B+Cz}{z^2-2z-1}$ . Hence find  $\int_1^2 \frac{2z^2-z-3}{(z+2)(z^2-2z-1)} \, \mathrm{d}z$ .

# Part A Find A

Find the constant A

# Part B Find B

Find the constant B.

# Part C Find C

Find the constant C.

# Part D Integrate

Hence find 
$$\int_1^2 \frac{2z^2-z-3}{(z+2)(z^2-2z-1)} \; \mathrm{d}z.$$

The following symbols may be useful: cos(), cosec(), cosech(), cosh(), coth(), ln(), log(), sec(), sech(), sin(), tanh(), z

Created for isaacphysics.org by Julia Riley