# Phys514 Fall 2013: HW3 Solution

TA: David Chen\*

## 1 Magnetic resonance (20 pts)

**Part a.** By identifying the spin state  $|\psi_0\rangle = (|+\rangle - |-\rangle)\sqrt{2}$  with the general form  $|\psi_0\rangle = \cos(\frac{\theta}{2})|+\rangle + \sin(\frac{\theta}{2})e^{i\varphi}|-\rangle$ , we conclude that  $\theta = \pi/2$  and  $\varphi = \pi$ . Therefore  $\mathbf{S}^{cl} = \frac{\hbar}{2}\sin\theta\cos\varphi \ \hat{x} + \sin\theta\sin\varphi \ \hat{y} + \cos\theta \ \hat{z} = -\hbar/2\hat{x}$ 

Part b. The oscillating field is on-resonance in all the cases; we will assume that  $\gamma < 0$ . (i) In this case  $\boldsymbol{B}_{\text{eff}}$  is parallel to  $\boldsymbol{S}^{cl}$ , and therefore, the spin  $\boldsymbol{S}^{cl}(t) = \boxed{-\hbar/2\hat{x}'}$  remains stationary in the rotating frame. The same behavior would occur if  $\boldsymbol{S}^{cl}(t) = \hbar/2\hat{x}'$ , which is associated to the state  $|\psi_0\rangle = \boxed{(|+\rangle + |-\rangle)/\sqrt{2}}$  (ii) In this case  $\boldsymbol{B}_{\text{eff}} = -\frac{\gamma|B_{\perp}}{2}\hat{y}'$ . The spin  $\boldsymbol{S}^{cl}$  lies in the plane perpendicular to  $\hat{y}'$  and rotates with an angular velocity  $\omega \equiv \frac{|\gamma|B_{\perp}}{2}$ , i.e.  $\boldsymbol{S}^{cl}(t) = \boxed{\hbar/2(-\cos\omega t \,\hat{x}' + \sin\omega t \,\hat{z}')}$ . (iii) In this case  $\boldsymbol{B}_{\text{eff}} = -|\gamma|B_{\perp}\hat{y}'$  and the spin rotates in the same way as in the part ii, but with twice the angular velocity.

Part c. The wavefunction evolves as

$$|\psi(t)\rangle = e^{-i\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}}\,\frac{\omega t}{2}}\,|\psi_0\rangle = (\cos\frac{\omega t}{2} - i\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}}\sin\frac{\omega t}{2})\,|\psi_0\rangle$$
 (1)

where  $\omega \equiv \frac{|\gamma|B_{\perp}}{2}$  and  $\hat{n}$  is opposite to  $\boldsymbol{B}_{\text{eff}}$  under the right hand rule convention. (i) In this case  $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}} = \sigma_x$ , then  $|\langle -|\psi\rangle|^2 = \boxed{1/2}$ . (ii) In this case  $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}} = \sigma_y$ , then  $|\langle -|\psi\rangle|^2 = \boxed{1/2(1-\sin\omega t)}$ . (iii) The same as ii but with twice the angular velocity



Figure 1: Assuming  $\gamma < 0$ . Part (i) in black, part (ii) in blue and part (iii) in red.

<sup>\*</sup>dchen30@illinois.edu

#### Beyond the RWA (20 pts) $\mathbf{2}$

**Part a.** The two-level hamiltonian is  $H = -\frac{2\mu}{\hbar} \mathbf{S} \cdot \mathbf{B}$ , where  $\mathbf{B} \equiv B_1 \cos(\omega_0 t) \hat{x} + B_0 \hat{z}$ ,  $\mathbf{S} = \hbar/2(\sigma_x \hat{x} + \sigma_x \hat{x})$  $\sigma_y \hat{y} + \sigma_z \hat{z}$ ). More explicitly,  $H = -\mu B_1 \cos \omega_0 t \sigma_x - \mu B_0 \sigma_z$ . We look for solutions in the form  $|\psi\rangle =$  $a_{+}(t)|+\rangle + a_{-}(t)|-\rangle$ . Plugging  $|\psi\rangle$  into the Schrödinger equation leads to

$$i\frac{d}{dt} \begin{pmatrix} a_{+} \\ a_{-} \end{pmatrix} = \begin{pmatrix} \omega_{0}/2 & 2\Omega\cos\omega_{0}t \\ 2\Omega\cos\omega_{0}t & -\omega_{0}/2 \end{pmatrix} \begin{pmatrix} a_{+} \\ a_{-} \end{pmatrix}$$
 (2)

where  $\Omega \equiv -\frac{\mu B_1}{2\hbar}$  and  $\omega_0 \equiv -\frac{2\mu B_0}{\hbar}$ Part b. Switching to a rotating frame using  $\tilde{a}_+(t) = e^{i\omega_0 t/2} a_+(t)$  and  $\tilde{a}_-(t) = e^{-i\omega_0 t/2} a_-(t)$  results in

$$i\frac{d}{dt}\begin{pmatrix} \tilde{a}_{+} \\ \tilde{a}_{-} \end{pmatrix} = \begin{pmatrix} 0 & \Omega(1+e^{i2\omega_{0}t}) \\ \Omega(1+e^{-i2\omega_{0}t}) & 0 \end{pmatrix} \begin{pmatrix} \tilde{a}_{+} \\ \tilde{a}_{-} \end{pmatrix}$$
 (3)

Under the RWA, the fast oscillatory terms  $e^{i2\omega_0 t}$  and  $e^{-i2\omega_0 t}$  are averaged out, then

$$i\frac{d}{dt}\begin{pmatrix} \tilde{a}_{+} \\ \tilde{a}_{-} \end{pmatrix} = \begin{pmatrix} 0 & \Omega \\ \Omega & 0 \end{pmatrix}\begin{pmatrix} \tilde{a}_{+} \\ \tilde{a}_{-} \end{pmatrix} \tag{4}$$

It is clear that the eigenvalues are  $\pm \Omega$  and their respective eigenvectors are  $\mathbf{v}_{\pm} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}$ . If we assume that the system has the initial conditions  $a_{-}(0) = \tilde{a}_{-}(0) = 0$  and  $a_{+}(0) = \tilde{a}_{+}(0) = 1$ , then

$$\begin{pmatrix} \tilde{a}_{+} \\ \tilde{a}_{-} \end{pmatrix} = \begin{pmatrix} \cos \Omega t \\ -i \sin \Omega t \end{pmatrix} \tag{5}$$

Finally  $|\psi(t)\rangle = \cos \Omega t \ e^{-i(\Omega + \omega_0/2)t} |+\rangle - i \sin \Omega t \ e^{i(\Omega + \omega_0/2)t} |-\rangle$ 

Part c. For plotting, we can write eq.(3) in a more convenient way

$$i\frac{d}{d(\Omega t)} \begin{pmatrix} \tilde{a}_{+} \\ \tilde{a}_{-} \end{pmatrix} = \begin{pmatrix} 0 & 1 + e^{i8\frac{B_{0}}{B_{1}}\Omega t} \\ 1 + e^{-i8\frac{B_{0}}{B_{1}}\Omega t} & 0 \end{pmatrix} \begin{pmatrix} \tilde{a}_{+} \\ \tilde{a}_{-} \end{pmatrix}$$
(6)





Figure 2:  $P_{+}$  in blue and  $P_{-}$  in red. The counter-rotating term appears as fast oscillations.

Mathematica code:

```
\alpha = 10; (*B0/B1*)
eqs = \{i ap'[t] = am[t] (1 + Exp[2 i 4 \alpha t]),
   iam'[t] = ap[t] (1 + Exp[-2i4\alpha t]), am[0] = 0, ap[0] = 1};
sol = NDSolve[eqs, {am, ap}, {t, 2}];
Plot[{Abs[ap[t] /. sol]^2, Abs[am[t] /. sol]^2}, {t, 0, 2}, AxesLabel -> {\Omega t, Prob}]
```

#### 3 Matrix elements (20 pts)

The field  $B_0 = (1 \text{ Gauss})\hat{z}$  induces a Zeeman splitting  $\Delta E = g_F m_F \mu B_0$  on the hyperfine energy levels. On the other hand,  $B_1 = B_1 \cos \omega_0 t \ (\hat{x} + \hat{z})$  has both  $\pi$  and  $\sigma^{\pm}$  components<sup>1</sup>, which couple  $|F = 3, m_F = 0\rangle$ with  $|4,0\rangle$ ,  $|4,\pm 1\rangle$ , respectively. The frequency detunings associated with those transitions are  $\delta_0 \equiv 0$  and  $\delta_{\pm 1} \equiv \pm g_F \mu B_0 / \hbar = \pm (2\pi) \ 0.35 \text{ MHz}, \text{ respectively}^2.$ 

For the Rabi rates, we need to get the matrix elements between the F=3 and F=4 states. The coupling hamiltonian is  $H = g_J \frac{\mu}{\hbar} \mathbf{J} \cdot \mathbf{B}_1$ , where  $g_J = 2$  and the nuclear magnetic moment is neglected. We express  $|F, m_F\rangle$  in terms of  $|m_I, m_J\rangle \equiv |7/2, m_I\rangle |1/2, m_J\rangle$  (for example, use the ClebschGordan function on Mathematica)

$$|3,0\rangle = \frac{1}{\sqrt{2}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle - \frac{1}{\sqrt{2}} \left| -\frac{1}{2}, \frac{1}{2} \right\rangle |4,0\rangle = \frac{1}{\sqrt{2}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle + \frac{1}{\sqrt{2}} \left| -\frac{1}{2}, \frac{1}{2} \right\rangle |4,\pm 1\rangle = \frac{1}{2} \sqrt{\frac{5}{2}} \left| \pm \frac{1}{2}, \pm \frac{1}{2} \right\rangle + \frac{1}{2} \sqrt{\frac{3}{2}} \left| \pm \frac{3}{2}, \mp \frac{1}{2} \right\rangle$$

The hamiltonian, in terms of ladder operators, is

$$H = \frac{\mu B_1}{\hbar} (2J_z + J_+ + J_-) \cos \omega_0 t \tag{7}$$

Let us see the effect of those operators on  $|3,0\rangle$ 

$$J_{z} |3,0\rangle = -\frac{\hbar}{2\sqrt{2}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle - \frac{\hbar}{2\sqrt{2}} \left| -\frac{1}{2}, \frac{1}{2} \right\rangle J_{\pm} |3,0\rangle = \pm \frac{\hbar}{\sqrt{2}} \left| \pm \frac{1}{2}, \pm \frac{1}{2} \right\rangle$$

Therefore

$$\langle 4,0| \, H \, |3,0\rangle = -\mu B_1 \cos \omega_0 t$$
 
$$\langle 4,\pm 1| \, H \, |3,0\rangle = \pm \frac{\sqrt{5}\mu B_1}{4} \cos \omega_0 t$$

We conclude that the effective Rabi rates are

$$\begin{split} &(\Omega_{\rm eff})_0 = \mu B_1/\hbar = \boxed{(2\pi) \ 14 \ \rm kHz} \\ &(\Omega_{\rm eff})_{\pm 1} = \left(\delta^2 + (\sqrt{5}\mu B_1/4\hbar)^2\right)^{1/2} = \boxed{(2\pi) \ 350 \ \rm kHz} \end{split}$$

 $<sup>\</sup>hat{}^1\hat{x}=(\hat{e}_{-1}-\hat{e}_1)\sqrt{2}$  and  $\hat{z}=\hat{e}_0$   $^2g_F=+1/4$  for  $F=4;~\mu=h\cdot 1.4$  MHz/Gauss (Steck, Cesium D line data)

# Quantum projection noise (20 pts)

We will assume  $\gamma < 0$ . We will use eq.(1) to rotate the spin.

**Part a.** The initial state is  $|\psi_0\rangle \equiv |+\rangle$ . Right after the first  $\pi/2$ -pulse,  $|\psi_0'\rangle \equiv e^{-i\sigma_x\pi/4} |\psi_0\rangle = \frac{1}{\sqrt{2}}(|+\rangle - |\psi_0|)$  $i\left|-\right\rangle). \text{ After an evolution time } T, \left|\psi_T'\right\rangle \equiv e^{i\sigma_z T\delta/2} \left|\psi_0'\right\rangle = \boxed{1/\sqrt{2}(e^{iT\delta/2}\left|+\right\rangle - ie^{-iT\delta/2}\left|-\right\rangle)}$ 

- (i) After the second  $\pi/2$ -pulse  $|\psi_T''\rangle \equiv e^{-i\sigma_x\pi/4} |\psi_T'\rangle = i\sin T\delta/2 |+\rangle i\cos T\delta/2 |-\rangle$ . If  $T\delta = \pm \pi/2$ , then  $|\psi_T''\rangle_{\pm} = \boxed{i/\sqrt{2}(\pm |+\rangle - |-\rangle)}$ (ii) If we consider an arbitrary state  $|\psi\rangle \equiv \alpha |+\rangle + \beta |-\rangle$ , where  $|\alpha|^2 + |\beta|^2 = 1$ , then

$$\langle S_z \rangle = \frac{\hbar}{2} (|\alpha|^2 - |\beta|^2) = \frac{\hbar}{2} (1 - 2|\beta|^2) = \boxed{\hbar/2(1 - 2P_-)}$$
 (8)

(iii)  $\Delta S_z = (\langle S_z^2 \rangle - \langle S_z \rangle^2)^{1/2} = \hbar/2$ . Then,  $P_- = \frac{1}{2}(1 - \frac{\langle S_z \rangle}{\hbar/2})$  implies  $\Delta P_- = -\frac{1}{\hbar}\Delta \langle S_z \rangle$ . Therefore  $\Delta_{-} \equiv |\Delta P_{-}| = \boxed{1/2}$ 

Part c. The uncertainty in  $\omega_0$  is given by  $\Delta\omega_0 = 1/2\sqrt{\Delta\omega_u^2 + \Delta\omega_l^2}$ . To calculate  $\Delta\omega_u$  and  $\Delta\omega_l$  in terms of  $\Delta P_- = \frac{\Delta_-}{\sqrt{N}}$ , we use the derivative of  $P_- \equiv |\langle -|\psi_T''\rangle|^2 = \frac{1}{2} + \frac{1}{2}\cos(\omega - \omega_0)T$  with respect to  $\omega$ , evaluated at  $\omega_u$  and  $\omega_l$ . In both cases  $\left|\frac{dP_-}{d\omega}\right| = \frac{T}{2}$ , therefore  $\Delta\omega_u = \Delta\omega_l = \frac{2\Delta_-}{T\sqrt{N}}$ . Finally, the uncertainty in  $\omega_0$  is  $\Delta\omega_0 = \frac{2\sqrt{2}\Delta_-}{T\sqrt{N}} = \left| 1/(T\sqrt{2N}) \right|$ 

## Spin echo (20 pts)

We will assume  $\gamma = 2\mu/\hbar < 0$ 

**Part a.** Right after the first  $\pi/2$ -pulse, the spin points towards  $-\hat{y}'$ . As time evolves, the spin rotates about  $\hat{z}'$  towards  $-\hat{x}'$  if  $\delta B_0 > 0$  and towards  $\hat{x}'$  if  $\delta B_0 < 0$ . Therefore, after a time T, the spin will be uniformly distributed at angles  $\theta \in [-\theta_m, \theta_m]$  with respect to  $-\hat{y}'$ , where  $\theta_m \equiv \frac{|\mu|B_0T}{50\hbar}$ 

Part b. The second  $\pi/2$ -pulse rotates the spin about  $+\hat{x}'$  by  $\pi/2$ . In the last problem, we found that  $P_{-}=$  $1/2+1/2\cos T\delta$ . Therefore  $P_- \in [1/2+1/2\cos\theta_m,1]$ . For  $\langle S_z \rangle$ , we use eq.(8), then  $\langle S_z \rangle \in [-\hbar/2,-\hbar/2\cos\theta_m]$ To calculate  $\langle P_{-}\rangle_{N}$ , we consider the angular probability density =  $1/(2\theta_{m})$ , therefore

$$\langle P_{-}\rangle_{N} = \int_{-\theta_{m}}^{\theta_{m}} \left(\frac{1}{2} + \frac{1}{2}\cos\theta\right) \frac{1}{2\theta_{m}} d\theta = \boxed{1/2 + 1/(2\theta_{m}) \sin\theta_{m}}$$

Part c. Let us take the particular case  $\delta B_0^* > 0$ . Right before the  $\pi$ -pulse, the spin is in the x'-y'plane at an angle  $\theta^* = 2|\mu|\delta B_0^* T/(2\hbar)$  with respect to  $-\hat{y}'$  (measured clockwise). The  $\pi$ -pulse rotates the spin about  $\hat{x}'$  by  $\pi$ , i.e. now the spin is at  $\theta^*$  with respect to  $+\hat{y}'$  (measured counterclockwise). After an evolution time T/2, the spin becomes aligned with  $\hat{y}'$ , which is independent of  $\delta B_0$ . Finally, after the second  $\pi/2$ -pulse, the spin returns to the initial state  $|+\rangle$ . Therefore,  $P_{-}=0$ ,  $\langle P_-\rangle_N=0$