

LOW VOLTAGE CMOS QUAD BUS BUFFERS (3-STATE) HIGH PERFORMANCE

- 5V TOLERANT INPUTS
- HIGH SPEED: $t_{PD} = 5.9$ ns (MAX.) at $V_{CC} = 3V$
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24mA (MIN) at V_{CC} = 3V
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE:
 V_{CC}(OPR) = 1.65V to 3.6V (1.2V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 244
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE: HBM > 2000V (MIL STD 883 method 3015); MM > 200V

DESCRIPTION

The 74LVC244A is a low voltage CMOS OCTAL BUS BUFFER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring C 2 MOS technology. It is ideal for 1.65 to 3.6 $\rm V_{CC}$ operations and low power and low noise applications.

Table 1: Order Codes

PACKAGE	T & R
SOP	74LVC244AMTR
TSSOP	74LVC244ATTR

It can be interfaced to 5V signal environment for inputs in mixed 3.3/5V system.

G control output governs four BUS BUFFERs.

This device is designed to be used with 3 state memory address drivers, etc.

It has more speed performance at 3.3V than 5V AC/ACT family, combined with a lower power consumption.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

July 2004 1/12

Figure 2: Input And Output Equivalent Circuit

Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION		
1	1G	Output Enable Input		
2, 4, 6, 8	1A1 to 1A4	Data Inputs		
9, 7, 5, 3	2Y1 to 2Y4	Data Outputs		
11, 13, 15, 17	2A1 to 2A4	Data Inputs		
18, 16, 14, 12	1Y1 to 1Y4	Data Outputs		
19	2G	Output Enable Input		
10	GND	Ground (0V)		
20	V _{CC}	Positive Supply Voltage		

Table 3: Truth Table

INP	OUTPUT				
G	G An				
L	L	L			
L	Н	Н			
Н	X	Z			

X : Don't care

Z: High Impedance

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage (High Impedance or V _{CC} = 0V)	-0.5 to +7.0	V
Vo	DC Output Voltage (High or Low State) (note 1)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 50	mA
I _{OK}	DC Output Diode Current (note 2)	- 50	mA
I _O	DC Output Current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Supply Pin	± 100	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is

not implied 1) $I_{\rm O}$ absolute maximum rating must be observed 2) $V_{\rm O}$ < GND

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (note 1)	1.65 to 3.6	V
V _I	Input Voltage	0 to 5.5	V
Vo	Output Voltage (High Impedance or V _{CC} = 0V)	0 to 5.5	V
Vo	Output Voltage (High or Low State)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 3.0 to 3.6V)	± 24	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.7 to 3.0V)	± 12	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.3 to 2.7V)	± 8	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 1.65 to 2.3V)	± 4	mA
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 2)	0 to 10	ns/V

¹⁾ Truth Table guaranteed: 1.2V to 3.6V 2) $V_{\rm IN}$ from 0.8V to 2V at $V_{\rm CC}$ = 3.0V

Table 6: DC Specifications

		Test	t Condition	Value				
Symbol	Parameter	V _{cc}		-40 to	-40 to 85 °C		125 °C	Unit
		(V)		Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	1.65 to 1.95		0.65V _{CC}		0.65V _{CC}		
	Voltage	2.3 to 2.7		1.7		1.7		V
		2.7 to 3.6		2		2		
V_{IL}	Low Level Input	1.65 to 1.95			0.35V _{CC}		0.35V _{CC}	
	Voltage	2.3 to 2.7			0.7		0.7	V
		2.7 to 3.6			8.0		0.8	
V_{OH}	High Level Output	1.65 to 3.6	I _O =-100 μA	V _{CC} -0.2		V _{CC} -0.2		
	Voltage	1.65	I _O =-4 mA	1.2		1.2		
		2.3	I _O =-8 mA	1.7		1.7		V
		2.7	I _O =-12 mA	2.2		2.2		V
		3.0	I _O =-18 mA	2.4		2.4		
		3.0	I _O =-24 mA	2.2		2.2		
V _{OL}	Low Level Output	1.65 to 3.6	I _O =100 μA		0.2		0.2	
	Voltage	1.65	I _O =4 mA		0.45		0.45	
		2.3	I _O =8 mA		0.7		0.7	V
		2.7	I _O =12 mA		0.4		0.4	
		3.0	I _O =24 mA		0.55		0.55	
II	Input Leakage Current	3.6	$V_{I} = 0 \text{ to } 5.5V$		± 5		± 5	μΑ
I _{off}	Power Off Leakage Current	0	V_I or $V_O = 5.5V$		10		10	μΑ
I _{OZ}	High Impedance Output Leakage Current	3.6	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ to } 5.5 \text{V}$		± 5		± 5	μΑ
I _{CC}	Quiescent Supply		$V_I = V_{CC}$ or GND		10		10	
	Current	3.6	$V_{I} \text{ or } V_{O} = 3.6 \text{ to}$ 5.5V		± 10		± 10	μΑ
ΔI_{CC}	I _{CC} incr. per Input	2.7 to 3.6	$V_{IH} = V_{CC}$ -0.6V		500		500	μΑ

T-11-0 DO 0 --- 'f' -- d' ---

Table 7: Dynamic Switching Characteristics

Ī			Tes	st Condition		Value			
	Symbol	Parameter	Parameter V _{CC}		7	Γ _A = 25 °C		Unit	
			(V)		Min.	Тур.	Max.		
Ī	V _{OLP}	Dynamic Low Level Quiet	3.3	2.2	C _L = 50pF		0.8		\/
I	V_{OLV}	Output (note 1)	3.3	$V_{IL} = 0V, V_{IH} = 3.3V$		-0.8		V	

¹⁾ Number of output defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

Table 8: AC Electrical Characteristics

		Test Condition			Value					
Symbol	Parameter	v _{cc}	CL	R _L	$t_s = t_r$	-40 to 85 °C		-55 to 125 °C		Unit
		(V)	(pF)	(Ω)	(ns)	Min.	Max.	Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay	1.65 to 1.95	30	1000	2.0		9.0		12	
	Time	2.3 to 2.7	30	500	2.0		7.9		10.5	20
		2.7	50	500	2.5	1.5	6.9		8.3	ns
		3.0 to 3.6	50	500	2.5	1	5.9		7.1	
t _{PZL} t _{PZH}	Output Enable Time	1.65 to 1.95	30	1000	2.0		11		14.3	
		2.3 to 2.7	30	500	2.0		9.6		12.5	
		2.7	50	500	2.5	1	8.6		10.3	ns
		3.0 to 3.6	50	500	2.5	1	7.6		9.1	
t _{PLZ} t _{PHZ}	Output Disable Time	1.65 to 1.95	30	1000	2.0		9.0		11.7	
		2.3 to 2.7	30	500	2.0		7.8		10.1	no
		2.7	50	500	2.5	2	6.8		8.2	ns
		3.0 to 3.6	50	500	2.5	2	6.5		7.8	
toslh toshl	Output To Output Skew Time (note1, 2)	2.7 to 3.6					1		1	ns

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (t_{OSLH} = | t_{PLHm} - t_{PLHn}|, t_{OSHL} = | t_{PHLm} - t_{PHLn}|
2) Parameter guaranteed by design

Table 9: Capacitive Characteristics

		Tes	Value				
Symbol	Parameter	v _{cc}		-	Γ _A = 25 °C		Unit
		V _{CC} (V)		Min.	Тур.	Max.	
C _{IN}	Input Capacitance				4		pF
C _{PD}	Power Dissipation Capacitance	1.8	f _{IN} = 10MHz		28		
	(note 1)	2.5			30		pF
		3.3			34		

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/n$ (per circuit)

Figure 3: Test Circuit

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Table 10: Test Circuit And Waveform Symbol Value

Symbol	V _{CC}							
Symbol	1.65 to 1.95V	2.3 to 2.7V	2.7V	3.0 to 3.6V				
C _L	30pF	30pF	50pF	50pF				
$R_L = R_1$	1000Ω	500Ω	500Ω	500Ω				
V _S	2 x V _{CC}	2 x V _{CC}	6V	6V				
V _{IH}	V _{CC}	V _{CC}	2.7V	2.7V				
V _M	V _{CC} /2	V _{CC} /2	1.5V	1.5V				
V _{OH}	V _{CC}	V _{CC}	3.0V	3.0V				
V _X	V _{OL} + 0.15V	V _{OL} + 0.15V	V _{OL} + 0.3V	V _{OL} + 0.3V				
V_{Y}	V _{OH} - 0.15V	V _{OH} - 0.15V	V _{OH} - 0.3V	V _{OH} - 0.3V				
$t_r = t_r$	<2.0ns	<2.0ns	<2.5ns	<2.5ns				

Figure 4: Waveform - Propagation Delays (f=1MHz; 50% duty cycle)

Figure 5: Waveform - Output Enable And Disable Time (f=1MHz; 50% duty cycle)

SO-20 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	2.35		2.65	0.093		0.104	
A1	0.1		0.30	0.004		0.012	
В	0.33		0.51	0.013		0.020	
С	0.23		0.32	0.009		0.013	
D	12.60		13.00	0.496		0.512	
E	7.4		7.6	0.291		0.299	
е		1.27			0.050		
Н	10.00		10.65	0.394		0.419	
h	0.25		0.75	0.010		0.030	
L	0.4		1.27	0.016		0.050	
k	0°		8°	0°		8°	
ddd			0.100			0.004	

TSSOP20 MECHANICAL DATA

DIM		mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0079		
D	6.4	6.5	6.6	0.252	0.256	0.260		
Е	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
K	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Tape & Reel SO-20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			30.4			1.197
Ao	10.8		11	0.425		0.433
Во	13.2		13.4	0.520		0.528
Ko	3.1		3.3	0.122		0.130
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	6.9		7.1	0.272		0.280
Ko	1.7		1.9	0.067		0.075
Ро	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Table 11: Revision History

Date	Revision	Description of Changes
26-Jul-2004	5	Ordering Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.