LECTURE 3

Example 4. Let n = 2 $(X_1, X_2) = (1, 2)$ be a random sample of size 2 from a distribution with probability density function

$$p(x|\theta) = {x \choose 3} \theta^x (1-\theta)^{3-x}, \quad x = 0, 1, 2, 3.$$

If the prior density of θ is

$$p(\theta) = \begin{cases} k, & \text{if } 1/2 < \theta < 1\\ 0, & \text{otherwise} \end{cases}$$

what is the posterior distribution of θ ?

Solution. Since $p(\theta)$ is the probability density function of θ , we should get

$$\int_{-\infty}^{\infty} p(\theta) d\theta = 1, \text{ that is } \int_{1/2}^{1} k d\theta = 1.$$

Therefore k = 2. The joint density of the sample and the parameter is given by

$$f(x_1, x_2, \theta) = p(x_1 | \theta) \cdot p(x_2 | \theta) \cdot p(\theta) = \begin{pmatrix} 3 \\ x_1 \end{pmatrix} \theta^{x_1} (1 - \theta)^{3 - x_1} \cdot \begin{pmatrix} 3 \\ x_2 \end{pmatrix} \theta^{x_2} (1 - \theta)^{3 - x_2} \cdot 2$$
$$= 2 \begin{pmatrix} 3 \\ x_1 \end{pmatrix} \begin{pmatrix} 3 \\ x_2 \end{pmatrix} \theta^{x_1 + x_2} (1 - \theta)^{6 - x_1 - x_2}.$$

Hence,

$$f(1,2,\theta) = 2 \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \theta^3 (1-\theta)^3 = 18 \theta^3 (1-\theta)^3.$$

The marginal distribution of the sample

$$g(1,2) = \int_{1/2}^{1} f(1,2,\theta) d\theta = 18 \int_{1/2}^{1} \theta^3 (1-\theta)^3 d\theta = 18 \int_{1/2}^{1} \theta^3 (1+3\theta^2 - 3\theta - \theta^3) d\theta =$$

$$= 18 \int_{1/2}^{1} (\theta^3 + 3\theta^5 - 3\theta^4 - \theta^6) d\theta = \frac{9}{140}.$$

The conditional distribution of the parameter θ given the sample $X_1 = 1$ and $X_2 = 2$ is given by

$$p(\theta|x_1 = 1, x_2 = 2) = \frac{f(1, 2, \theta)}{g(1, 2)} = \frac{18 \cdot \theta^3 (1 - \theta)^3}{9/140} = 280 \,\theta^3 (1 - \theta)^3.$$

Therefore, the posterior distribution of θ is

$$p(\theta|x_1 = 1, x_2 = 2) = \begin{cases} 280 \cdot \theta^3 (1 - \theta)^3, & \text{if } 1/2 < \theta < 1 \\ 0, & \text{otherwise.} \end{cases}$$

§7. DISTRIBUTION FUNCTIONS

Definition 0. Let (Ω, \mathcal{F}, P) be a probability space, i. e. Ω is a sample space on which a probability P has been defined. A *random variable* is a function η from Ω to the set of real numbers

$$\eta: \Omega \longrightarrow \mathbb{R}^1,$$

i. e. for every outcome $\omega \in \Omega$ there is a real number, denoted by $\eta(\omega)$, which is called the value of $\eta(\cdot)$ at ω .

We can also give the following definition of distribution function.

The distribution function F of a random variable $\eta(\omega)$ is defined for all real numbers $x \in \mathbb{R}^1$, by the formula

$$F(x) = P(\omega : \eta(\omega) \le x). \tag{7}$$

In words, F(x) denotes the probability that the random variable $\eta(\omega)$ takes on a value that is less than or equal to x.

Some properties of the distribution function are the following:

Property 0. $0 \le F(x) \le 1$.

Property 1. F is a nondecreasing function, that is, if $x_1 \leq x_2$ then $F(x_1) \leq F(x_2)$.

Proof: We will present two proofs. For $x_1 \leq x_2$ the event $\{\omega \colon \eta(\omega) \leq x_1\}$ is contained in the event $\{\omega \colon \eta(\omega) \leq x_2\}$ and so cannot have a larger probability (see Property 5 of Probabilities), i. e.

$$P(\omega: \eta(\omega) \le x_1) \le P(\omega: \eta(\omega) \le x_2).$$

Therefore, by definition of the distribution function we have $F(x_1) \leq F(x_2)$.

Another proof of the property 1 is the following. Let us prove the formula

$$P(\omega: x_1 < \eta(\omega) \le x_2) = F(x_2) - F(x_1), \quad \text{for all} \quad x_1 < x_2.$$
 (8)

This can best be seen by writing the event $\{\omega \colon \eta(\omega) \leq x_2\}$ as the union of the mutually exclusive events $\{\omega \colon \eta(\omega) \leq x_1\}$ and $\{\omega \colon x_1 < \eta(\omega) \leq x_2\}$. That is,

$$\{\omega \colon \eta(\omega) \le x_2\} = \{\omega \colon \eta(\omega) \le x_1\} \bigcup \{\omega \colon x_1 < \eta(\omega) \le x_2\}.$$

and so

$$P(\omega: \eta(\omega) \le x_2) = P(\omega: \eta(\omega) \le x_1) + P(\omega: x_1 < \eta(\omega) \le x_2)$$

which established equation (8). By Axiom 1 the left-hand side of (8) is nonnegative, and therefore $F(x_2) - F(x_1) \ge 0$. The proof is complete.

Property 2. $F(x) \to 1$ as $x \to +\infty$.

Property 3. $F(x) \to 0$ as $x \to -\infty$.

Property 4. F(x) is right continuous. That is, for any x and any decreasing sequence x_n that converges to x,

$$\lim_{n \to \infty} F(x_n) = F(x).$$

Thus, Properties 1-4 are necessary conditions for a function G(x) to be a distribution function.

However, these properties are also sufficient. This assertion follows from the following theorem which we cite without proof.

Theorem 1 (about Distribution Function). Let a function G(x), $x \in \mathbb{R}^1$ satisfy the Properties 1—4. Then there exist a probability space (Ω, P) and a random variable $\eta(\omega)$ for which distribution function coincides with given function G(x), i. e.

$$P(\omega: \eta(\omega) \le x) = G(x).$$

Therefore, for giving an example of a random variable we have to cite a function which satisfies the Properties 1-4.

We want to stress that in Theorem about distribution function a random variable $\eta(\omega)$ is determined by non–unique way.

Example 5. Let (Ω, P) be a probability space and $P(A) = P(\overline{A}) = 0.5$. We define the following two random variables

$$\eta_1(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ -1 & \text{if } \omega \not\in A \end{cases}, \qquad \eta_2(\omega) = \begin{cases} 1 & \text{if } \omega \in \overline{A} \\ -1 & \text{if } \omega \in A \end{cases}.$$

It is obvious that $\{\omega: \quad \eta_1(\omega) \neq \eta_2(\omega)\} = \Omega$. However,

$$F_{\eta_1}(x) = F_{\eta_2}(x) = \begin{cases} 0 & \text{if } x < -1\\ 0.5 & \text{if } -1 \le x < 1\\ 1 & \text{if } x \ge 1 \end{cases}.$$

Definition 1. Two random variables $\eta_1(\omega)$ and $\eta_2(\omega)$ are said to be *Identically Distributed* if their distribution functions are equal, that is,

$$F_{\eta_1}(x) = F_{\eta_2}(x)$$
 for all $x \in \mathbf{R}^1$.

§8. EXAMPLES OF DISTRIBUTION FUNCTIONS

Example 6. A random variable $\eta(\omega)$ is said to be *Normally distributed* if its distribution function has the following form

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{(y-a)^2}{2\sigma^2}\right) dy,\tag{9}$$

where a and σ are constants, moreover $a \in \mathbb{R}^1$ and $\sigma > 0$.

In order to show the correctness of Example 6 we have to verify that the function in the right–hand side of (9) satisfies the Properties 1 — 4. The correctness of Example 6 can be found in the Appendix of the present lecture.

The normal distribution plays a central role in probability and statistics. This distribution is also called the Gaussian distribution after Carl Friedrich Gauss, who proposed it as a model for measurement errors.

Example 7. A random variable is said to be *Uniformly distributed* on the interval (a, b) if its distribution function is given by

$$F(x) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ 1 & \text{if } x \ge b \end{cases}$$
 (10)

It is obvious that the function (10) satisfies all Properties 1-4.

Example 8. A random variable is said to be Exponentially distributed with parameter $\lambda > 0$ if its distribution function is given by

$$F(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 - e^{-\lambda x} & \text{if } x \ge 0 \end{cases}$$
 (11)

It is obvious that the function (11) satisfies all Properties 1-4.

Like the Poisson distribution, the exponential distribution depends on the only parameter.

Example 9. If $\eta(\omega) \equiv c$ then corresponding distribution function has the form

$$F(x) = \begin{cases} 0 & \text{if } x < c \\ 1 & \text{if } x \ge c \end{cases}$$
 (12)

Consider the experiment of flipping a symmetrical coin once. The two possible outcomes are "heads" (outcome ω_1) and "tails" (outcome ω_2), that is, $\Omega = \{\omega_1, \omega_2\}$. Suppose $\eta(\omega)$ is defined by putting $\eta(\omega_1) = 1$ and $\eta(\omega_2) = -1$. We may think of it as earning of the player who receives or loses a dollar according as the outcome is heads or tails. Corresponding distribution function has the form

$$F(x) = \begin{cases} 0 & \text{if } x < -1\\ 1/2 & \text{if } -1 \le x < 1\\ 1 & \text{if } x \ge 1 \end{cases}.$$

Lemma 1. Let F(x) be a distribution function of a random variable $\eta(\omega)$. Then for any real number x we have

$$P\{\omega: \quad \eta(\omega) = x\} = F(x) - F(x - 0), \tag{13}$$

where F(x-0) is the left-hand limit at x.

Therefore, for continuous distribution function (as in Examples 6 — 8) we have

$$P(\omega: \eta(\omega) = x) = 0$$
 for any $x \in \mathbb{R}^1$. (14)

§9. CONTINUOUS RANDOM VARIABLES

We say that $\eta(\omega)$ is an **absolutely continuous** random variable if there exists a function f(x) defined for all real numbers and the distribution function F(x) of the random variable $\eta(\omega)$ is represented in the form

$$F(x) = \int_{-\infty}^{x} f(y) \, dy. \tag{14}$$

The function f is called the **Density function** of $\eta(\omega)$.

A function f(x) must have certain properties in order to be a density function. Since $F(x) \to 1$ as $x \to +\infty$ we obtain

Property 1.

$$\int_{-\infty}^{+\infty} f(x) \, dx = 1. \tag{15}$$

Property 2. f(x) is a nonnegative function.

Proof: Differentiating both sides of (14) yields

$$f(x) = \frac{d}{dx}F(x). \tag{16}$$

That is, the density is the derivative of the distribution function. We know that the first derivative of a nondecreasing function is always nonnegative. Therefore the proof is complete as F(x) is nondecreasing. Remarkably that these two properties are also sufficient for a function g(x) be a density function.

Theorem 2 (About Density Function). Let a function g(x), $x \in \mathbb{R}^1$ satisfy (15) and, in addition, satisfies the condition

$$g(x) \ge 0$$
 for all $x \in \mathbb{R}^1$.

Then there exist a probability space (Ω, P) and an absolutely continuous random variable $\eta(\omega)$ for which density function coincides with given function g(x).

Proof: Let us define a function

$$G(x) = \int_{-\infty}^{x} g(y) \, dy.$$

It is not difficult to verify that G(x) satisfies all conditions 1 — 4 for distribution function. Therefore by Theorem 1 about distribution function, there exists a random variable $\eta(\omega)$ for which distribution function coincides with G(x). By definition of density function, g(x) is a density function of the random variable $\eta(\omega)$. The proof is complete.

Therefore, for giving an example of an absolutely continuous random variable we have to cite a *non-negative* function which satisfies (15).

The normally distributed random variable (see Example 6) is absolutely continuous and its density function has the form

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right),\tag{17}$$

where a and σ are constant, moreover $a \in \mathbb{R}^1$ and $\sigma > 0$.

The uniformly distributed random variable over the interval (a, b) (see Example 7) is absolutely continuous and its density function has the form

$$f(x) = \begin{cases} 0 & \text{if } x \notin (a, b) \\ \frac{1}{b - a} & \text{if } a \le x \le b \end{cases}$$
 (18)

It is obvious that the function (18) satisfies (15).

The exponentially distributed random variable with parameter $\lambda > 0$ (see Example 8) is absolutely continuous and its density function has the form

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ \lambda e^{-\lambda x} & \text{if } x > 0 \end{cases}$$
 (19)

It is obvious that the function (19) satisfies (15).

We obtain from (8) that

$$P(\omega: \ a \le \eta(\omega) \le b) = P(\omega: \ a \le \eta(\omega) < b) =$$

$$= P(\omega: \ a < \eta(\omega) \le b) = P(\omega: \ a < \eta(\omega) < b) = \int_a^b f(x) \, dx. \tag{20}$$

As the distribution function of an absolutely continuous random variable is continuous at all points thus

$$P(\omega: \eta(\omega) = x) = 0$$

for any fixed x.

Therefore this equation states that the probability that an absolutely continuous random variable will assume any fixed value is zero.

A somewhat more intuitive interpretation of the density function may be obtained from (18). If $\eta(\omega)$ is an absolutely continuous random variable having density function f(x), then for small dx

$$P(\omega: x < \eta(\omega) < x + dx) = f(x) dx + o(dx).$$

In general case (for any distribution function) we have the following formulae:

$$P(\omega: \ a \le \eta(\omega) \le b) = F(b) - F(a - 0),$$

$$P(\omega: \ a \le \eta(\omega) < b) = F(b - 0) - F(a - 0),$$

$$P(\omega: \ a < \eta(\omega) \le b) = F(b) - F(a),$$

$$P(\omega: \ a < \eta(\omega) \le b) = F(b - 0) - F(a),$$

where F(a-0) is the left-limit of F(x) at point a.

APPENDIX 3.

Proof of Lemma 1: Let us prove the following equation

$$P(\omega: \quad \eta(\omega) < x) = F(x - 0), \tag{21}$$

i. e. we want to compute the probability that $\eta(\omega)$ is less than x. It is not difficult to verify that

$$\{\omega : \quad \eta(\omega) < x\} = \bigcup_{n=1}^{\infty} A_n,$$

where $A_n = \left\{ \omega \colon \quad \eta(\omega) \le x - \frac{1}{n} \right\}$.

 A_n is an increasing sequence and therefore, tends to the event $\{\omega \colon \quad \eta(\omega) < x\}$. Thus

$$A_n \uparrow \{\omega : \quad \eta(\omega) < x\}.$$

By a property of Probability we get

$$P(A_n) \uparrow P(\omega: \eta(\omega) < x).$$

Hence (21) is proved.

 $\mathbf{A}\mathbf{s}$

$$P(\omega: \eta(\omega) = x) = P(\omega: \eta(\omega) \le x) - P(\omega: \eta(\omega) < x) = F(x) - F(x - 0)$$

the assertion of the Lemma follows from the equation (21). The proof is complete.