

SPL06-001

Digital pressure sensor

Tel: + 86 536 8525155 Fax: + 86 536 8525000 E- Mail: goertek@goertek.com

Website: http://www.goertekacoustics.com

Address: No.268 Dongfang Road, High-Tech Industry Development District, Weifang, Shandong, P.R.C

Version 2.0 1 / 31

Restricted

1. Security warning

The information contained in this document is the exclusive property of GoerTek Inc. and should not be disclosed to any third party without the written consent of GoerTek Inc.

2. Publication history

Version	Date	Description	Author	Approved
1.0	2015.12.18	New design	Wiming	Sammy
2.0	2016.3.14	 Update © Marking Replace the cover Update peak current Update Marking instructions 	Wiming	Sammy
)		
	7			

Version 2.0 2 / 31

Index of Contents

1. IN	NTRODUCTION	5
2. TE	EST CONDITION	6
3. A	BSOLUTE MAXIMUM RATINGS	6
4. EL	LECTRICAL CHARACTERISTICS	6
5. O	PERATION	8
5.1	OPERATING MODES	8
5.2	MEASUREMENT PRECISION AND RATE	
5.3	SENSOR INTERFACE	g
5.4	Interrupt	
5.5	FIFO OPERATION	
5.6	CALIBRATION AND MEASUREMENT COMPENSATION	10
5.	6.1 How to Calculate Compensated Pressure Values	
5.	.6.2 How to Calculate Compensated Temperature Values	
	.6.3 Compensation Scale Factors	10
6. A	PPLICATIONS	11
6. Al		
6.1	MEASUREMENT SETTINGS AND USE CASE EXAMPLES	
6.2	APPLICATION CIRCUIT EXAMPLE	
6.3	CALCULATING ABSOLUTE ALTITUDE AND CALCULATING PRESSURE AT SEA LEVEL	
7. RI	EGISTER MAP	14
	EGISTER DESCRIPTION	
8.1	Pressure Data (PRS_BN)	
	1.1.1 PRS B2	
	.1.2 PRS_B1	
	.1.3 PRS_B0	
8.2	TEMPERATURE DATA (TMP_TN)	
	.2.1 TMP_B2	
	.2.2 TMP_B1	
	.2.3 TMP_B0	
8.3	Pressure Configuration (PRS_CFG)	
8.4	Temperature Configuration (TMP_CFG)	
8.5	SENSOR OPERATING MODE AND STATUS (MEAS_CFG)	
8.6	INTERRUPT AND FIFO CONFIGURATION (CFG_REG)	
8.7	INTERRUPT STATUS (INT_STS)	

8.8	FIFO STATUS (FIFO_STS)	22
8.9	SOFT RESET AND FIFO FLUSH (RESET)	23
8.10	0 PRODUCT AND REVISION ID (ID)	23
8.11	1 CALIBRATION COEFFICIENTS (COEF)	23
8.12	2 COEFFICIENT SOURCE	24
9. N	MECHANICAL CHARACTERISTICS	
9.1	Pin configuration	
9.2	• •	
9.3	MARKING INSTRUCTIONS	27
10.	STORAGE AND TRANSPORTATION	28
11.	SOLDERING RECOMMENDATION	28
12	DACKAGE SDECIEICATIONS	20

1. Introduction

The SPL06-001 is a miniaturized Digital Barometric Air Pressure Sensor with a high accuracy and a low current consumption. The SPL06-001 is both a pressure and a temperature sensor. The pressure sensor element is based on a capacitive sensing principle which guarantees a high precision during temperature changes. The small package makes the SPL06-001 ideal for mobile applications and wearable devices.

The SPL06-001's internal signal processor converts the output from the pressure and temperature sensor elements to 24-bit results. Each pressure sensor has been calibrated individually and contains calibration coefficients. The coefficients are used in the application to convert the measurement results to true pressure and temperature values.

The SPL06-001 has a FIFO that can store the latest 32 measurements. By using the FIFO, the host processor can remain in a sleep mode for a longer period of time between readouts. This can reduce the overall system power consumption.

Sensor measurements and calibration coefficients are available through the serial I2C interface.

Key features

- Pressure range: 300 ... 1100hPa (+9000m ... -500m relating to sea level)
- Temperature Range: -40...+85°C
- Supply voltage: 1.7 ... 3.6V (VDD), 1.2 ... 3.6V (VDDIO)
- Package: LGA package with metal lid
 - Small footprint: 2.5mm x 2.0mm; Super-flat: 0.95mm height
- Relative accuracy: ±0.06hPa, equiv. to ±0.5 m
- Absolute accuracy: typ. ±1hPa (300 ... 1100hPa)
- Temperature accuracy: $\pm 0.5 \, \text{C}$.
- Pressure temperature sensitivity: < 0.5Pa/K
- Measurement time: Typical: 28 ms. Minimum: 3 ms.
- Average current consumption: High precision: 60 μA, Low power: 3 μA, Standby: <1 μA.
- I2C interface (up to 3.4 MHz), Embedded 24-bit ADC
- FIFO: Stores latest 32 pressure or temperature measurements.
- Pb-free, halogen-free and RoHS compliant
- MSL 1

Typical applications

- Enhancement of GPS navigation (dead-reckoning, slope detection, etc.)
- In- and out-door navigation
- Leisure and sports
- Weather forecast
- Vertical velocity indication (rise/sink speed)

Version 2.0 5 / 31

2. Test condition

Table 1: Test condition

Standard Conditions	Temperature	Humidity	Air pressure
Environment conditions	-40°C+85°C	25%RH75%RH	300hPa1100hPa
Basic test conditions	+25℃	60%RH70%RH	300hPa1100hPa

3. Absolute maximum ratings

Table 2: Absolute maximum ratings

Parameter	Condition	Min	Max	Units
Storage temperature		-40	+125	${\mathcal C}$
Supply Voltage	All pins		+4	V
Voltage at all IO Pins	All pins		+4	V
ESD rating	JESD22-A114	-2	+2	kV
Overpressure			10000	hPa

4. Electrical characteristics

VDD = 1.8V, VDDIO=1.8V, T=25 $^{\circ}$ C, unless otherwise noted. If not stated otherwise, the given values are ± 3 -Sigma values over temperature/voltage range in the given operation mode.

Table 3: Operating conditions, output signal and mechanical characteristics

Parameter	Symbol		Condition	Min	Type	Max	Units
On anoting town anotyma	- TA			-40	25	85	$\mathcal C$
Operating temperature	TA	F	Full accuracy		25	65	$\mathcal C$
Operating Pressure	P			300		1100	hPa
Supply voltage	VDD			1.7		3.6	V
Interface supply voltage	VDDIO			1.2		3.6	
© C1			Low Power		3	5	
© Supply current (with 1 measurement per second.)	Idd	1 Hz	Standard		11	15	uA
			High precision		40	50	

Note: The current consumption depends on both pressure measurement precision and rate. Please refer to the Pressure Configuration (PRS_CFG) register description for an overview of the current consumption in different combinations of measurement precision and rate.

Peak current	Ipeak	During conversion	400	500	uA
© Standby current	Iddsbm			1	uA
Dalativa accumacy massuma		9501050hPa	±6		Pa
Relative accuracy pressure		+25+40°C	±0.5		m

Version 2.0 6 / 31

© Absolute accuracy		3001100hPa	±1.0	hPa
pressure		0+65°C		
Pasalution of output data		Pressure	0.06	Pa
Resolution of output data		Temperature	0.01	\mathcal{C}
Noise in pressure	P_Noise	Low Power mode	5	
		Standard mode	1.2	PaRMS
		High precision mode	0.6	

Note: Pressure noise is measured as the average standard deviation. Please refer to the Pressure Configuration (PRS_CFG) register description for all precision mode options.

Offset temperature	TCO	1000hPa		±0.5		Pa/K
coefficient	ico	+25+40°C		±4.2		cm/K
Absolute accuracy		@+25°C		±0.5		${\mathbb C}$
temperature		0+65°C		±1.0		${\mathbb C}$
Pressure/Temperature	f		1		128	Hz
measurement rate	measurement rate		1	•	120	112
D		Low Power mode		5		
Pressure measurement time	t	Standard mode		28		ms
time		High precision mode		105		

Note: The pressure measurement time (and thus the maximum rate) depends on the pressure measurement precision. Please refer to the Pressure Configuration (PRS_CFG) register description for an overview of the possible combinations of measurement precision and rate.

		Measured with 217Hz				
Power supply rejection	Ap_psr	square wave and broad			0.063	PaRMS
		band noise, 100mVpp				
Supply voltage ramp-up	tuddug	Time for supply voltage to	0.001		5	ms
time	tvddup	reach 90% of final value.				
Serial data clock		For I2C			3.4	MHz
Solder drifts			-0.5		2	hPa
Long term stability	7	12month		±1		hPa
		The SENSOR_RDY bit in				
		the Measurement				
Time to sensor ready	TSensor_rdy	Configuration register			12	ms
		will be set when the				
		sensor is ready.				
		The COEF_RDY bit in				
		the Measurement				
Time to coefficients are	TCoof adv	Configuration register			40	****
available.	TCoef_rdy	will be set when the			40	ms
		coefficients can be read				
		out.				

Note: © Key performance.

Version 2.0 7 / 31

5. Operation

5.1 Operating Modes

The SPL06-001 supports 3 different modes of operation: Standby, Command, and Background mode.

- · Standby Mode
 - Default mode after power on or reset. No measurements are performed.
 - All registers and compensation coefficients are accessible.
- · Command Mode
 - One temperature or pressure measurement is performed according to the selected precision.
 - The sensor will return to Standby Mode when the measurement is finished, and the measurement result will be available in the data registers.
- · Background Mode
 - Pressure and/or temperature measurements are performed continuously according to the selected measurement precision and rate. The temperature measurement is performed immediately after the pressure measurement.
 - The FIFO can be used to store 32 measurement results and minimize the number of times the sensor must be accessed to read out the results.

Note: Operation mode and measurement type are set in the Sensor Operating Mode and Status (MEAS_CFG) register.

5.2 Measurement Precision and Rate

Different applications require different measurement precision and measurement rates. Some applications, like weather stations, require lower precision and measurement rates than for instance indoor navigation and sports applications.

The SPL06-001's measurement precision and rate (in background mode) can be configured to match the requirements of the application in which it is being used. This reduces current consumption of the sensor and the system.

In order to achieve a higher precision, the SPL06-001 will read the sensor multiple times (oversampling), and combine the readings into one result. This increases the current consumption and the measurement time, which again reduces the maximum measurement rate.

The measurement precision, rate and time is set in the *Pressure Configuration (PRS_CFG)* and *Temperature Configuration (TMP_CFG)* registers. The register descriptions contain information about the current consumption and the possible combinations of measurement precision, time, and rate.

Please note that the pressure sensor is temperature dependent. Temperature measurements must be made together with the pressure measurements in order to compensate for the temperature dependency. This reduces the maximum pressure measurement rate, since: Ratetemperature*Timetemperature + Ratepressure*Timepressure< 1 second. *Measurement Settings and Use Case Examples* contains a table with examples of combinations of pressure and temperature precision and rates for different use cases.

Version 2.0 8 / 31

5.3 Sensor Interface

The SPL06-001 can be accessed as a slave device through I2C serial interface.

- The sensor's default interface.
- The sensor's address is 0x77 (default) or 0x76 (if the SDO pin is pulled-down to GND)

5.4 Interrupt

The SPL06-001 can generate an interrupt when a new measurement result is available and/or when the FIFO is full. The sensor uses the SDO pin for the interrupt signal.

The interrupt is enabled and configured in the *Interrupt and FIFO configuration (CFG_REG)* register. The SDO pin serves as both interrupt and as the least significant bit in the device address. If the SDO pin is pulled low the interrupt polarity must be set to active high and vice versa.

The interrupt status can be read from the *Interrupt Status (INT STS)* register.

5.5 FIFO Operation

The SPL06-001 FIFO can store the last 32 measurements of pressure or temperature. This reduces the overall system power consumption when the host processor does not need to continuously poll data from the sensor but can go into standby mode for longer periods of time.

The FIFO will store any combination of temperature and pressure measurements since the measurement rate of temperature and pressure can be set up independently in Background Mode. The pressure rate can for instance be set 4 times higher than the temperature rate and thus only every fifth result will be a temperature result. The measurement type can be seen in the result data. The sensor will set the least significant bit to:

- '1' if the result is a pressure measurement.
- '0' if it is a temperature measurement.
 - The sensor uses 24 bits to store the measurement result. Because this is more bits than is needed to cover the full dynamic range of the pressure sensor, using the least significant bit to label the measurement type will not affect the precision of the result.

The FIFO can be enabled in the *Interrupt and FIFO configuration (CFG_REG)* register. The data from the FIFO is read out from the *Pressure Data (PRS_Bn)* registers regardless of the next result in the FIFO is a temperature or a pressure measurement.

When a measurement has been read out, the FIFO will auto increment and place the next result in the data register. A flag will be set in the *FIFO Status (FIFO_STS)* register when the FIFO is empty and all following reads will return 0x800000.

If the FIFO runs full a flag will be set in the FIFO Status (FIFO_STS) register and the sensor will generate an interrupt if this has been enabled in the Interrupt and FIFO configuration (CFG_REG) register.

Version 2.0 9 / 31

5.6 Calibration and Measurement Compensation

The SPL06-001 is a calibrated sensor and contains calibration coefficients. These are used in the application (for instance by the host processor) to compensate the measurement results for sensor non-linearity's.

The sections that follow, describe how to calculate the compensated results and convert them into Pa and $\,^{\circ}$ C values.

5.6.1 How to Calculate Compensated Pressure Values

- 1. Read the calibration coefficients (c00, c10, c20, c30, c01, c11, and c21) from the Calibration Coefficient register. *Note: The coefficients read from the coefficient register are 16 bit 2 s complement numbers.*
- 2. Choose scaling factors kT (for temperature) and kP (for pressure) based on the chosen precision rate. The scaling factors are listed in *Table 4*.
- 3. Read the pressure and temperature result from the registers or FIFO.

Note: The measurements read from the result registers (or FIFO) are 24 bit 2 s complement numbers.

Depending on the chosen measurement rates, the temperature may not have been measured since the last pressure measurement.

4. Calculate scaled measurement results.

$$\begin{array}{l} T_{raw_sc} \, = T_{raw}/kT \\ P_{raw_sc} \, = P_{raw}/kP \end{array}$$

5. Calculate compensated measurement results.

$$\begin{split} & P_{comp}(Pa) = c00 \\ & *(c11 + P_{raw_sc}*(c20 + P_{raw_sc}*(c20 + P_{raw_sc}*c30)) + T_{raw_sc}*c01 + T_{raw_sc}*P_{raw_sc} \end{split}$$

5.6.2 How to Calculate Compensated Temperature Values

- 1. Read the calibration coefficients (c0 and c1) from the *Calibration Coefficients (COEF)* register. *Note: The coefficients read from the coefficient register are 12 bit 2 s complement numbers.*
- 2. Choose scaling factor kT (for temperature) based on the chosen precision rate. The scaling factors are listed in *Table 4*.
- 3. Read the temperature result from the temperature register or FIFO.

Note: The temperature measurements read from the temperature result register (or FIF0) are 24 bit 2 's complement numbers.

4. Calculate scaled measurement results.

$$T_{raw sc} = T_{raw}/kT$$

5. Calculate compensated measurement results

$$T_{comp}$$
 (°C) = $c0*0.5 + c1*T_{raw\ sc}$

5.6.3 Compensation Scale Factors

Table 4 Compensation Scale Factors

Version 2.0 10 / 31

Oversampling Rate	Scale Factor (kP or kT)
1 (single)	524288
2 times (Low Power)	1572864
4 times	3670016
8 times	7864320
16 times (Standard)	253952
32 times	516096
64 times (High Precision)	1040384
128 times	2088960

6. Applications

6.1 Measurement Settings and Use Case Examples

Table 5 Measurement Settings and Use Case Examples (TBD)

Use Case	Performance	Pressure Register Configuration Address: 0x06	Temperature Register Configuration Address: 0x07	Other
Weather Station (Low power, Background mode)	5 Pa precision. 1 pr sec. 6 uA	0x01	0x80	Start background measurements (addr 0x08)
Indoor navigation (Standard precision, Background mode)	10 cm precision. 2 pr sec. 30 uA	0x14	0x80	Enable P shift (addr 0x09) Start background measurements (addr 0x08)
Sports (High precision, high rate, background mode)	5 cm precision 4 pr sec. 200 uA	0x26	0xA0	Enable P shift (addr 0x09) Start background measurements (addr 0x08)

Version 2.0 11 / 31

6.2 Application Circuit Example

The example application circuit example uses the I2C serial interface. The SDO pin can be used for interrupt or to set least significant bit of the device address.

I2C Adreess

0x76(SDO pulled-down to GND)

0x77(SDO pulled-down to VDD or NC)

Figure 1: Typical application circuit

Table 6 Component Values

	G 1 1		Values		TT 1.	N (/T (C 1''	
Component	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Pull-up/down Resistor	R_1, R_2	5		100	ΚΩ	R_2 is optional and will set the address to $0x76$ instead of $0x77$.	
Supply Blocking Capacitor	C ₁ , C ₂	100	100		nF	The blocking capacitors should be placed as close to the package pins as possible.	

Version 2.0 12 / 31

6.3 Calculating absolute altitude and calculating pressure at sea level

With the measured pressure P and the pressure at sea level P_0 =1013.25hPa, the altitude in meters can be calculated with the international barometric formula:

Altitude =
$$44330 \times \left[\mathbf{1} - \left(\frac{\mathbf{P}}{P_0} \right)^{\frac{1}{5.255}} \right]$$

Thus, a pressure change of $\Delta p = 1$ hPa corresponds to 8.43m at sea level.

Figure 2: Transfer function: Altitude over sea level – Barometric pressure

With the measured pressure p and the absolute altitude the pressure at sea level can be calculated:

$$P_0 = \frac{p}{\left(1 - \frac{\text{altitude}}{44330}\right)^{5.255}}$$

Thus, a difference in altitude of Δ altitude = 10m corresponds to 1.2hPa pressure change at sea level.

Version 2.0 13 / 31

7. Register Map

Table 7 Register Map

Register Name	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Reset State		
PSR_B2	0x00	PSR[23:16] (r)							00 _h		
PSR_B1	0x01	PSR[15:8]	SR[15:8](r)									
PSR_B0	0x02	PSR[7:0](SR[7:0](r)									
TMP_B2	0x03	TMP[23:16	TMP[23:16] (r)									
TMP_B1	0x04	TMP[15:8]	(r)							00 _h		
TMP_B0	0x05	TMP[7:0] (r)							00 _h		
PRS_CFG	0x06	-										
TMP_CFG	0x07	TMP _ EXT (rw)	TMP_RATE [2:0] (rw)									
MEAS_CFG	0x08	COEF_ RDY (r)	SENSOR _RDY (r)	777()								
CFG_REG	0x09	INT_ HL (rw)	INT_SEL[2:	(rw)	N	TMP_ SHIFT_ EN (rw)	PRS_ SHIFT_ EN (rw)	FIFO_ EN (rw)	SPI_ MOD E	00 _h		
INT_STS	0x0A	-	-			-	INT_ FIFO_ FULL(r)	INT_ TMP(r)	INT_ PRS(r	00h		
FIFO_STS	0x0B	-		-	-	-	-	FIFO_ FULL(r)	FIFO_ EMPTY(r)	00 _h		
RESET	0x0C	FIFO_ FLUSH (w)		-	-	SOFT_RST	[3:0] (w)			00 _h		
ID	0x0D	PROD_ID	[3:0] (r)			REV_ID [3:0	(r)			00 _h		
COEF	0x10- 0x21	< see regis	<see description="" register=""></see>									
Reserved	0x22- 0x27	Reserved	Reserved									
COEF_SRCE	0x28	TMP_C OEF_S RCE (r)	Reserved							XXh		

Version 2.0 14 / 31

8. Register Description

8.1 Pressure Data (PRS_Bn)

The Pressure Data registers contains the 24 bit (3 bytes) 2's complement pressure measurement value.

If the FIFO is enabled, the register will contain the FIFO pressure and/or temperature results (please see *FIFO Operation*). Otherwise, the register contains the pressure measurement results and will not be cleared after read.

8.1.1 PRS_B2

The highest byte of the three bytes measured pressure value.

PRS_B2	Address:							
Pressure (MSB data) Reset value:							$00_{\rm H}$	
7	6	5	4	3	2	1	0	
PRS23	PRS22	PRS21	PRS21 PRS20 PRS19 PRS18 PRS17					
T .								
Field	Bits	Туре	Description	on				

PRS[23:16]	7:0	r	MSB of 24 bit 2 s complement pressure data.

8.1.2 PRS_B1

The middle byte of the three bytes measured pressure value.

PRS_B1 Address:								01_{H}
Pressure (LSB data) Reset value:								$00_{\rm H}$
7	6		5	4	3	2	1	0
PRS15	PRS15 PRS14 PRS13				PRS11	PRS10	PRS9	PRS8-
				1	•			
Field		Bits	Type	Descriptio	n			
PRS[15:8] 7:0 r LSB of 24 bit 2 s complement pressure data.								

8.1.3 PRS_B0

The lowest byte of the three bytes measured pressure value.

Version 2.0 15 / 31

PRS_B0					Address:			$02_{\rm H}$	
Pressure (XLSI	B data)			Re	eset value:		$00_{\rm H}$		
7	6		5	4	3	2	1	0	
PRS7	PRS	66	PRS5	PRS4	PRS3	PRS2	PRS1	PRS0	
				r	:				
Field		Bits	Type	Descriptio	escription				
PRS[7:0] 7:0 r XLSB of 24 bit 2 s complement pressure data.									

8.2 Temperature Data (TMP_Tn)

The Temperature Data registers contain the 24 bit (3 bytes) 2's complement temperature measurement value (unless the FIFO is enabled, please see *FIFO Operation*) and will not be cleared after the read.

8.2.1 TMP_B2

The highest byte of the three bytes measured temperature value.

TMP_B2				Address:			03 _H
Temperature (MSB data)		Re	$00_{\rm H}$			
7	6	5	4	3	2	1	0
TMP23	TMP22	TMP21	TMP20	TMP19	TMP18	TMP17	TMP16
			I	•			
Field Bits Type Description							
TMP[23:16]	7:0 r MSB of 24 bit 2 s complement temperature data.						

8.2.2 TMP_B1

The middle byte of the three bytes measured temperature value.

TMP_B1	TMP_B1 Address:							
Temperature (LSB data) Reset value:								$00_{\rm H}$
7	7 6 5 4 3 2 1							
TMP15	TMP1	4 Ti	TMP13 TMP12 TMP11 TMP10					TMP8
				r				
Field	Е	Bits	Туре	Description	n			
TMP[15:8]	7	7:0 r LSB of 24 bit 2 s complement temperature data.						

Version 2.0 16 / 31

8.2.3 TMP_B0

The lowest part of the three bytes measured temperature value.

TMP_B0		05 _H						
Temperature (XLSB data)		Re	eset value:			00_{H}	
7	7 6 5 4 3 2							
TMP7	TMP6	TMP5	TMP4	TMP3	TMP2	TMP1	TMP0	
			1	r				
Field	Bits Type Description							
TMP[7:0]	7:0	0 r XLSB of 24 bit 2 s complement temperature data.						

8.3 Pressure Configuration (PRS_CFG)

Configuration of pressure measurement rate (PM_RATE) and resolution (PM_PRC).

PRS_CFG				Address:			$06_{\rm H}$		
Pressure meas	suremen	t configu	ration	Reset value:			00_{H}		
7	6		5	4 3	2	1	0		
-		PM	_RATE[2:0]		PM_PR	RC[3:0]			
-	rw								
Field		Bits	Type	Description					
		7		Reserved.					
PM_RATE[2:0]		6:4	rw	Pressure measurement	rate:				
				000 - 1 measurements p	r. sec.				
				001 - 2 measurements p	r. sec.				
				010 - 4 measurements p	r. sec.				
				011 - 8 measurements pr	r. sec.				
				100 - 16 measurements	pr. sec.				
				101 - 32 measurements	pr. sec.				
				110 - 64 measurements	pr. sec.				
				111 - 128 measurements	s pr. sec.				
				Applicable for measurem	nents in Backgro	und mode onl	'y		

Version 2.0 17 / 31

PM_PRC[3:0]	3:0	rw	Pressure oversampling rate:
			0000 - Single.
			0001 - 2 times (Low Power).
			0010 - 4 times.
			0011 - 8 times.
			0100 *)- 16 times (Standard).
			0101 *) - 32 times.
			0110*) - 64 times (High Precision).
			0111 *) - 128 times.
			1xxx - TBD

^{*)} Note: Use in combination with a bit shift. See *Interrupt and FIFO configuration (CFG_REG)* register

Table 8 Pressure measurement time (ms) and precision (PaRMS)

Oversampling (PRC[3:0])	Single (0000)	2 times (0001)	4 times (0010)	8 times (0011)	16 times (0100)	32 times (0101)	64 times (0110)	128 times (0111)
Measurement time (ms)	3.6	5.2	8.4	14.8	27.6	53.2	104.4	206.8
Precision (Pa _{RMS})	5		2.5		1.2	0.9	0.5	

Table 9 Estimated current consumption (uA)

Oversampling (PRC[3:0]) Measurements pr sec. (PM_RATE([2:0])	Single (0000)	2 times (0001)	4 times (0010)	8 times (0011)	16 times (0100)	32 times (0101)	64 times (0110)	128 tim es (0111)
1 (000)	2.1	2.7	3.8	6.1	11	20	38	75
2 (001)								
4 (010)								
8 (011)			sumption co of 1 measur			Measureme	nt Rate *	n.a.
16 (100)							n.a.	n.a.
32 (101)						n.a.	n.a.	n.a.
64 (110)					n.a.	n.a.	n.a.	n.a.
128 (111)			n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Note: The table shows the possible combinations of Pressure Measurement Rate and oversampling when no temperature measurements are performed. When temperature measurements are performed the possible combinations are limited to Rate temperature x Measurement Time temperature + Rate pressure x Measurement Time pressure < 1 second.

Version 2.0 18 / 31

8.4 Temperature Configuration (TMP_CFG)

Configuration of temperature measurement rate (TMP_RATE) and resolution (TMP_PRC). 07_{H} TMP_CFG Address: 00_{H} Temperature measurement configuration Reset value: TMP EXT TMP RATE[2:0] TMP_PRC[3:0] Field **Bits** Type Description TMP_EXT rw Temperature measurement 0 - Internal sensor (in ASIC) 1 - External sensor (in pressure sensor MEMS element) Note: It is highly recommended to use the same temperature sensor as the source of the calibration coefficients. Please see the Coefficient Source register TMP_RATE[2:0] 6:4 Temperature measurement rate: rw 000 - 1 measurement pr. sec. 001 - 2 measurements pr. sec. 010 - 4 measurements pr. sec. 011 - 8 measurements pr. sec. 100 - 16 measurements pr. sec. 101 - 32 measurements pr. sec. 110 - 64 measurements pr. sec. 111 - 128 measurements pr. sec.. Applicable for measurements in Background mode only 2:0 TMP_PRC[3:0] rw Temperature oversampling (precision): 000 - single. (Default) - Measurement time 3.6 ms. *Note:* Following are optional, and may not be relevant: 001 - 2 times. 010 - 4 times. 011 - 8 times. 100 - 16 times. 101 - 32 times. 110 - 64 times.. 111 - 128 times. 1xxx - TBD.

Version 2.0 19 / 31

$\bf 8.5\,Sensor\,\,Operating\,\,Mode\,\,and\,\,Status\,\,(MEAS_CFG)$

Setup measurement mode.

MEAS_CFG			Address: $08_{\rm H}$					
Measurement	configuration		Re	eset value:			$00_{\rm H}$	
7	6	5	4	3	2	1	0	
COEF_RDY	SENSOR_R DY	TMP_RDY	PRS_RDY	-		MEAS_CTRI	_	
r	r	r	r	-		rw		
Field	Bits	Туре	Description	on				
COEF_RDY	7	r	0 - Coeffic	Coefficients will be read to the Coefficients Registers after start-up: 0 - Coefficients are not available yet. 1 - Coefficients are available.				
SENSOR_RDY	6	r	The pressustart-up. 0 - Sensor 1 - Sensor It is recon	The pressure sensor is running through self initialization after				
TMP_RDY	5	r	Temperatu 1 - New to	Temperature measurement ready 1 - New temperature measurement is ready. Cleared when temperature measurement is read.				
PRS_RDY	4		1 - New p	neasurement r ressure measurement measurement	urement is rea	ady. Cleared	when	
_	3		Reserved.					
MEAS_CTRL	2:0	rw	Set measu	rement mode	and type:			
			Standby M	l ode				
			000 - Idle /	Stop backgrou	und measuren	nent		
			Command	Mode				
			001 - Press	sure measuren	nent			
			010 - Temp	erature measu	irement			
			011 - na.					
			100 - na.					
			Backgroun	nd Mode				
			101 - Cont	inuous pressur	e measureme	nt		
			110 - Cont	inuous temper	ature measure	ement		
			111 - Conti	inuous pressure	e and tempera	ature measure	ement	

Version 2.0 20 / 31

$\textbf{8.6 Interrupt and FIFO configuration (CFG_REG)}$

Configuration of interrupts, measurement data shift, and FIFO enable.

CFG_REG		Address: 09 _H							
Configuration	register		Re	set value:			$00_{\rm H}$		
7	6	5	4	3	2	1	0		
INT_HL	INT_FIFO	INT_PRS	INT_TMP	T_SHIFT	P_SHIFT	FIFO_EN	SPI_MODE		
rw	rw	rw	rw	rw rw rw rw					
Field	Bits	Type	Descriptio	n					
INT_HL	7	rw	Interrupt (Interrupt (on SDO pin) active level:					
			0 - Active lo	0 - Active low.					
			1 - Active h	igh.					
INT_FIFO	6	rw	Generate is	nterrupt when	the FIFO is ful	l:			
			0 - Disable						
			1 - Enable.						
INT_PRS	5	rw		Generate interrupt when a pressure measurement is ready:					
			0 - Disable						
			1 - Enable.						
INT_TMP	4	rw	Generate is	Generate interrupt when a temperature measurement is ready:					
			0 - Disable						
			1 - Enable.						
T_SHIFT	3	rw		re result bit-sh	ift				
			0 - no shift						
			1 - shift res	ult right in data	a register.				
			Note: Must	be set to '1' wh	en the oversar	npling rate is	>8 times.		
P_SHIFT	2	rw	Pressure re	esult bit-shift					
			0 - no shift						
			1 - shift res	ult right in data	a register.				
				be set to '1' wh	en the oversar	npling rate is	>8 times.		
FIFO_EN	1	rw	Enable the						
			0 - Disable	•					
			1 - Enable.						
SPI_MODE	0	rw	Set SPI mo	Set SPI mode:					
			0 - 4-wire i	nterface.					
			1 - 3-wire i	nterface.					
-		*	•						

Version 2.0 21 / 31

8.7 Interrupt Status (INT_STS)

Interrupt status register. The register is cleared on read.

INT_STS				Address:			$0A_{H}$	
Interrupt status			R	eset value:			$00_{\rm H}$	
7	6	5	4	3	2	1	0	
		-			INT_FIFO_F ULL	INT_TMP	INT_PRS	
		-	_		r	r	r	
Field	Bits	Туре	Description	on				
-	7:3	-	Reserved.					
INT_FIFO_FULL	2	r		FIFO interrupt pt not active pt active	\ Y -			
INT_TMP	1	r	Status of temperature measurement interrupt 0 - Interrupt not active					
INT_PRS	0	r	1 - Interrupt active Status of pressure measurement interrupt 0 - Interrupt not active 1 - Interrupt active					

8.8 FIFO Status (FIFO_STS)

FIFO status register

FIFO_STS	Address:	$0B_{H}$
FIFO status register	Reset value:	$00_{\rm H}$

•	 	•	 	<u> </u>	
	-			FIFO_FULL	FIFO_EMPT
					Y

Field	Bits	Туре	Description
-	7:2	-	Reserved.
FIFO_FULL	1	r	0 - The FIFO is not full
			1 - The FIFO is full
FIFO_EMPTY	0	r	0 - The FIFO is not empty
			1 - The FIFO is empty

Version 2.0 22 / 31

8.9 Soft Reset and FIFO flush (RESET)

Flush FIFO or gene	rate soft rese	t.						
RESET				Address:			$0C_{H}$	
FIFO flush and soft	reset		Re	set value:			$00_{\rm H}$	
7	6	5	4	3	2	1	0	
FIFO_FLUSH		-	SOFT_RST					
W		-	w					
Field	Bits	Type	Description	n				
FIFO_FLUSH	7	w	FIFO flush					
			1 - Empty F	FIFO				
			After reading	ng out all data f	rom the FIFO,	write '1' to cle	ar all old data.	
-	6:4	-	Reserved.					
SOFT_RST	3:0	w	Write '1001' to generate a soft reset. A soft reset will run though the same sequences as in power-on reset.					

8.10 Product and Revision ID (ID)

Product and Re	evision ID.							
ID			Address:					
Product and rev	vision ID		Re	eset value:		0x00 _H		
7	6	5	4	3	2	1	0	
	PRO	DD_ID			REV_ID			
	r				ı			
Field	Bits	Type	Description	on				
PROD_ID	7:4	r	Product II)				
REV_ID	3:0	r	Revision	ID				

8.11 Calibration Coefficients (COEF)

The Calibration Coefficients register contains the 2 s complement coefficients that are used to calculate the compensated pressure and temperature values.

Table 10 Calibration Coefficients

Version 2.0 23 / 31

Coefficient	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
c0	0x10	c0 [11:4]							
c0/c1	0x11	c0 [3:0]				c1 [11:8]			
c1	0x12	c1[7:0]							
c00	0x13	c00 [19:1	12]						
c00	0x14	c00 [11:4	1]						
c00/c10	0x15	c00 [3:0]				c10 [19:1	16]		
c10	0x16	c10 [15:8	3]						
c10	0x17	c10 [7:0]							
c01	0x18	c01 [15:8	c01 [15:8]						
c01	0x19	c01 [7:0]							
c11	0x1A	c11 [15:8	3]						
c11	0x1B	c11 [7:0]							
c20	0x1C	c20 [15:8	3]		•	V	-		
c20	0x1D	c20 [7:0]							
c21	0x1E	c21 [15:8	c21 [15:8]						
c21	0x1F	c21 [7:0]	c21 [7:0]						
c30	0x20	c30 [15:8]							
c30	0x21	c30 [7:0]							

8.12 Coefficient Source

States which internal temperature sensor the calibration coefficients are based on: the ASIC temperature sensor or the MEMS element temperature sensor. The coefficients are only valid for one sensor and it is highly recommended to use the same temperature sensor in the application. This is set-up in the Temperature Configuration register.

TMP_COEF_SRCE Address:							$28_{\rm H}$	
Temperature Coefficients Source				Re	set value:		XX_H	
7	6		5	4	3	2	1	0
TMP_COEF_ SRCE					-			
r					-			
Field		Bits	Type	Description	n			
TMP_COEF_S	SRCE	7	r	0 - Internal	re coefficients temperature s temperature s	ensor (of ASIO	C)	EMS element)
-		6:0	-	Reserved				

Version 2.0 24 / 31

9. Mechanical characteristics

9.1Pin configuration

Figure 3: Layout pin configuration SPL06-001 (bottom view)

Table 11: Pin configuration of SPL06-001

Pin	Name	12C	I2C with interrupt				
1	GND	Ground					
2	CSB	Not used - open (internal pull- up) or tie to VDDIO	Not used - open (internal pull- up) or tie to VDDIO				
3	SDA	Serial data in/out	Serial data in/out				
4	SCK	Serial Clock					
5	SDO	Least significant bit in the device address.	Interrupt pin and least significant bit in the device address.				
6	VDDIO	Digital supply voltage for digital blocks and I/O interface					
7	GND	Ground					
8	VDD	Supply voltage for analog blocks					

Version 2.0 25 / 31

9.2 Outline dimensions

The sensor housing is an 8Pin LGA package with metal lid. Its dimensions are 2.5 mm ($\pm 0.1 \text{ mm}$) @x 2.0 mm ($\pm 0.1 \text{ mm}$) . ($\pm 0.05 \text{mm}$) . ($\pm 0.05 \text{mm}$) . ($\pm 0.05 \text{mm}$) .

Figure 4: Top view of SPL06-001

Figure 5: Bottom view of SPL06-001

Version 2.0 26 / 31

Figure 6: Side view of SPL06-001

9.3Marking instructions

Symbol	Meaning	Introductions
Α	ID	SPL06-001
Υ	Year	One number, such as "5" on behalf of 2015
М	Month	One number, A ~ L for 1 ~ 12 month, such as "E" on behalf of May
DD	Day	Two numbers 01 ~ 31, such as "19" on behalf of the 19th
XXX	Serial number	Three numbers 001-999, each batch of products occupy a serial number

Version 2.0 27 / 31

10. Storage and transportation

- Keep in warehouse with less than 75% humidity and without sudden temperature change, acid air, any other harmful air or strong magnetic field.
- The MEMS pressure sensor with normal pack can be transported by ordinary conveyances. Please protect products against moist, shock, sunburn and pressure during transportation.
- Storage Temperature Range: -40°C∼+125°C
- Operating Temperature Range: -40°C ~+85°C

11. Soldering recommendation

Recommended Solder Reflow

Profile Feature	Pb-Free Assembly
Average ramp-up rate(TsMAX to TP)	3°C/seconds max.
Preheat	
-Temperature Min.(TsMIN)	150℃
-Temperature Max.(TsMAX)	200℃
-Time(TsMIN to TsMAX)(Ts)	60~80seconds
Time maintained above:	
-Temperature(TL)	217℃
-Time(tL)	$60\sim150$ seconds
Peak temperature(TP)	260℃
Time within 5°C of actual peak temperature(TP)2	20~40seconds
Ramp-down rate	4°C/seconds max.
Time 25° C to peak temperature	8 minutes max.

Version 2.0 28 / 31

12. Package Specifications

Carrier Tape Information [Unit: mm]

Quantity per reel: 10kpcs.

Figure 7: Carrier Tape (1)

Version 2.0 29 / 31

Figure 8: Carrier Tape (2)

Version 2.0 30 / 31

Version 2.0 31 / 31