# Chapitre 1 : Ensembles de nombres

## 1 Ensembles de nombres

### Notation

Le symbole  $\in$  se lit «appartient à». Le symbole  $\notin$  se lit «n'appartient pas à».

## Exemple

On a  $5 \in \mathbb{N}$  et  $-1 \notin \mathbb{N}$ .

| Ensemble de nombres         | Définition                                                                                                                                                                      | Nota<br>tion | Exemple         | Contre-<br>Exemple  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|---------------------|
| Nombres entiers<br>naturels | Un nombre entier <i>naturel</i> est un nombre entier positif ou nul.                                                                                                            | N            | 1; 0; 12; 71    | -3;0,5              |
| Nombres entiers relatifs    | Un nombre entier <i>relatif</i> est un nombre entier positif, négatif ou nul.                                                                                                   | $\mathbb{Z}$ | -5;0;17         | $\frac{1}{4}$ ; 2,7 |
| Nombres décimaux            | Un nombre $d\acute{e}cimal$ est un nombre qui peut s'écrire sous la forme $\frac{a}{10^k}$ où $a \in \mathbb{Z}$ et $k \in \mathbb{N}$                                          | $\mathbb{D}$ | 1,1;3,27        | $\frac{1}{3}$       |
| Nombres rationnels          | Un nombre $rationnel$ est un nombre qui peut s'écrire sous la forme $\frac{p}{q}$ où $p \in \mathbb{Z}, q \in \mathbb{N}, q \neq 0$                                             | Q            | $\frac{1}{3}$   | $\pi;\sqrt{2}$      |
| Nombres<br>réels            | On considère une droite graduée et à chaque point de la droite on associe un nombre, son abcisse.  Les nombres réels sont les abcisses de tous les points de la droite graduée. | $\mathbb{R}$ | $\pi, \sqrt{2}$ | i                   |



### Exemple

#### Donner:

- un nombre appartenant aux deux ensembles  $\mathbb{N}$  et  $\mathbb{Z}$ ;
- un nombre appartenant à  $\mathbb{Z}$  mais pas à  $\mathbb{N}$ ;
- un nombre appartenant à  $\mathbb{Q}$  mais pas à  $\mathbb{D}$ ;
- deux nombres appartenant à  $\mathbb{D}$ ;
- un nombre n'appartenant ni à  $\mathbb{D}$ , ni à  $\mathbb{Q}$ ;
- un nombre irrationnel.

## Exemple

Donner les abscisses des points placés sur la droite numérique ci-dessous.



# $\bigcap$ Remarque

Un nombre décimal a une écriture décimale finie, et réciproquement, tout nombre qui a une écriture décimale finie est un nombre décimal.

## Notation

Le symbole  $\subset$  se lit «est inclus dans» et le symbole  $\not\subset$  se lit «n'est pas inclus dans».

## Propriété (admise)

On a

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$$
.

# **Remarque**

Les symboles  $\in$  et  $\subset$  ne sont pas équivalents, attention à ne pas les confondre. On a  $\mathbb{N} \subset \mathbb{Z}$ : l'ensemble  $\mathbb{N}$  est inclus dans l'ensemble  $\mathbb{Z}$ ; tandis qu'on a  $-5 \in \mathbb{Z}$ : le nombre -5 est un élément

## Exemple

Compléter les pointillés avec le symbole correspondant  $(\in, \notin, \subset, \not\subset)$ .

$$a) 8 \dots \mathbb{N}$$

$$a) \ 8 \dots \mathbb{N}$$
  $b) \ -7.5 \dots \mathbb{D}$   $c) \ \frac{1}{4} \dots \mathbb{Z}$   $d) \ \mathbb{D} \dots \mathbb{N}$   $e) \ \sqrt{5} \dots \mathbb{Q}$ 

$$c) \frac{1}{4} \dots \mathbb{Z}$$

$$d) \mathbb{D} \dots \mathbb{N}$$

$$e)\sqrt{5}\dots\mathbb{Q}$$

$$f) - \frac{6}{2} \dots \mathbb{Z}$$
  $g) \frac{2}{3} \dots \mathbb{D}$   $h) \mathbb{Z} \dots \mathbb{R}$   $i) \pi \dots \mathbb{R}$   $j) \mathbb{N} \dots \mathbb{Q}$ 

$$g) \frac{2}{3} \dots \mathbb{D}$$

$$h) \mathbb{Z} \dots \mathbb{R}$$

$$i) \pi \dots \mathbb{R}$$

$$j) \mathbb{N} \dots \mathbb{Q}$$

#### 2 Arithmétique

# Diviseurs et multiples

**Définition** (Diviseurs et multiples)

Soient a et b deux nombres entiers relatifs (donc  $a,b \in \mathbb{Z}$ ). On dit que a est un diviseur de b s'il existe  $k \in \mathbb{Z}$  tel que

$$b = k \times a$$
.

Dans ce cas, on dit aussi que

- b est un multiple de a;
- a divise b;
- b est divisible par a.

### Exemple

- 1. Donner les diviseurs de 18, 12.
- 2. Donner les multiples de 7 inférieurs à 50.

#### Exemple

Simplifier les fractions suivantes

$$\frac{120}{39} =$$

$$\frac{66}{42} =$$

$$\frac{108}{32} =$$

#### 2.2 Parité

**Définition** (Nombres pairs ou impairs)

Soit  $a \in \mathbb{Z}$  un entier relatif, on dit que a est un nombre

- pair s'il existe  $k \in \mathbb{Z}$  tel que  $a = 2 \times k$ ;
- impair s'il existe  $k \in \mathbb{Z}$  tel que  $a = 2 \times k + 1$ .

## Remarque

Ce sont les définitions que vous connaissiez déjà : un nombre est pair s'il est divisible par 2. On dit qu'il est impair s'il n'est pas divisible par 2.

## Exemple

Expliquer pourquoi les nombres 12 ou 70 sont pairs. Expliquer pourquoi les nombres 13 ou 39 sont impairs.

## 2.3 Nombre premier

**Définition** (Nombre premier)

Un entier naturel est dit *premier* s'il possède exactement deux diviseurs distincts : 1 et lui-même.

## Exemple

Donner tous kes nombres premiers inférieurs à 10.

# Remarque

Le nombre 1 n'est pas un nombre premier car il a un seul diviseur.

### Exemple

Donner la décomposition comme produit de nombres premiers de chacun des nombres suivants.

$$40 =$$

$$12 =$$

$$75 =$$

$$126 =$$

### 3 Intervalles

**Définition** (Intervalle)

Un intervalle de  $\mathbb{R}$  est une partie de  $\mathbb{R}$  qui correspond à un segment, une demi-droite, ou à la droite toute entière.

#### 3.1 Intervalle borné

On considère deux réels a et b tels que a < b.

| L'ensemble des réels $x$ tels que | est représenté par un <b>segment</b><br>sur une droite graduée : | Notation de l'intervalle | Type de l'intervalle |
|-----------------------------------|------------------------------------------------------------------|--------------------------|----------------------|
| $a \le x \le b$                   |                                                                  | [a;b]                    |                      |
| a < x < b                         |                                                                  | ]a;b[                    |                      |
| $a \le x < b$                     |                                                                  | [a;b[                    |                      |
| $a < x \le b$                     |                                                                  | ]a;b]                    |                      |

## Exemple

Compléter le tableau suivant.

| L'ensemble des réels $x$ tels que | est représenté par | Intervalle     | Type de l'intervalle |
|-----------------------------------|--------------------|----------------|----------------------|
| 8 < x < 15                        |                    |                |                      |
|                                   |                    | $x \in ]-2;1[$ |                      |
|                                   |                    |                |                      |

# Remarque

L'ordre des réels a une importance. L'intervalle [3; 4] existe alors que [4; 3] n'existe pas. Pour les ensembles de solutions, écrits entre accolades, l'ordre n'a pas d'importance : {4; 3} existe.

## 3.2 Intervalle non borné

On considère deux réels  $a,b \in \mathbb{R}$ .

| L'ensemble des réels $x$ tels que | est représenté par une <b>demi-droite</b><br>sur une droite graduée : | Notation de l'intervalle |
|-----------------------------------|-----------------------------------------------------------------------|--------------------------|
| $x \ge a$                         |                                                                       | $[a; +\infty[$           |
| x > a                             |                                                                       | $]a;+\infty[$            |
| $x \leq b$                        |                                                                       | $]-\infty;b]$            |
| x < b                             |                                                                       | $]-\infty;b[$            |

## Exemple

Compléter le tableau suivant.

| L'ensemble des réels $x$ tels que | est représenté par | Notation<br>de l'intervalle |
|-----------------------------------|--------------------|-----------------------------|
| $x \le 10$                        |                    |                             |
|                                   |                    | $x \in ]-2;+\infty[$        |