Сравнение моделей, содержащие только положительные активности, и моделей, содержащие положительные и отрицательные активности. 5-кратная кросс-валидация. Проверка подходов к интеграции моделей.

Антон Смирнов

Apr 1, 2023

# Оглавление

| Описание                            | 2  |
|-------------------------------------|----|
| Обработка                           | 3  |
| Общее сравнение                     | 3  |
| Только положительные                | 4  |
| И положительные, и отрицательные    | 6  |
| Проверка подходов интеграции оценок | 8  |
| Выводы                              | 10 |

### Описание

В предыдущем эксперименте было замечено, что наличие в модели отрицательных активностей, снижает среднюю точность модели. Для выбора окончательной модели было решено сравнить пятикратной кросс-валидацией модели, содержащие только положительные активности, и модели, содержащие как положительные, так и отрицательные активности. Подготовка данных описана в скрипте create\_datasets\_epitope\_mhc.R<sup>1</sup>. Данные разбивались на выборки случайно в пропорции 80/20 от каждой активности с помощью пакета caret. Источники данных - IEDB, MHCflurry 2.0. Данные как исследования аффиности, так и масс-спектрометрии.

<sup>&</sup>lt;sup>1</sup>Осторожно, при повторном запуск скриптов, обратить внимание, что нарушены правила наименования файлов!

# Обработка

### Общее сравнение

#### Только положительные

| model_name | num_activity | mean_iap  | mean_20_fold |
|------------|--------------|-----------|--------------|
| fold1      | 174          | 0.9268655 | 0.9255793    |
| fold2      | 174          | 0.9247787 | 0.9216862    |
| fold3      | 174          | 0.9239299 | 0.9226172    |
| fold4      | 176          | 0.9241756 | 0.9227295    |
| fold5      | 172          | 0.9260081 | 0.9245459    |

#### И положительные, и отрицательные

| model_name | num_activity | mean_iap  | mean_20_fold |
|------------|--------------|-----------|--------------|
| Fold1      | 278          | 0.8784223 | 0.8760446    |
| Fold2      | 279          | 0.8797889 | 0.8774785    |
| Fold3      | 278          | 0.8837644 | 0.8825910    |
| Fold4      | 280          | 0.8821582 | 0.8804950    |
| Fold5      | 279          | 0.8799509 | 0.8773333    |

#### График



#### Результаты 5-кратной кросс-валидации Только положительные активности

Parse results

Folds union (604162, 181)

Calculate metrics

Total activities 177

Mean AUROC 0.8781

Mean AUC-PR 0.0943

И положительные, и отрицательные активности

Parse results

Folds union (731667, 290)

Calculate metrics

!HLA-C\*08:03 Only one class present in y\_true. ROC AUC score is not defined in that case.

!HLA-B\*27:10 Only one class present in y\_true. ROC AUC score is not defined in that case.

Total activities 284

Mean AUROC 0.8281

Mean AUC-PR 0.058

#### Только положительные

Загрузим данные



[1] "Activities with AUROC < 0.7 = 7"

[1] "HLA-B\*41:05 HLA-B\*39:09 HLA-B\*15:18 HLA-B\*51:02 HLA-B\*45:06 HLA-B\*35:04 HLA-B\*39:10"

Средний AUC с отфильтрованными активностями

mean\_AUC

1 0.8928

10 наилучших активностей

| Activity    | AUROC  | Average.precision | num_subst | mean_iap | mean_twentyCV |
|-------------|--------|-------------------|-----------|----------|---------------|
| HLA-B*39:05 | 0.9999 | 0.0953            | 7         | 0.9905   | 0.9845        |
| HLA-A*01:03 | 0.9913 | 0.0010            | 6         | 0.9807   | 0.9812        |
| HLA-B*39:06 | 0.9758 | 0.3364            | 802       | 0.9925   | 0.9924        |
| HLA-A*26:08 | 0.9691 | 0.0818            | 329       | 0.9863   | 0.9862        |
| HLA-B*73:01 | 0.9676 | 0.1340            | 236       | 0.9894   | 0.9893        |
| HLA-B*51:08 | 0.9669 | 0.0565            | 500       | 0.9893   | 0.9891        |
| HLA-B*08:02 | 0.9572 | 0.0165            | 30        | 0.9766   | 0.9750        |
| HLA-B*18:03 | 0.9547 | 0.0442            | 184       | 0.9766   | 0.9761        |
| HLA-B*38:02 | 0.9543 | 0.1953            | 2464      | 0.9748   | 0.9746        |
| HLA-B*40:06 | 0.9538 | 0.1487            | 1996      | 0.9761   | 0.9759        |

Топ-10 наихудших активностей

| Activity    | AUROC  | Average.precision | num_subst | mean_iap | mean_twentyCV |
|-------------|--------|-------------------|-----------|----------|---------------|
| HLA-B*41:06 | 0.7937 | 0.0006            | 18        | 0.8720   | 0.8703        |
| HLA-A*03:02 | 0.7929 | 0.0047            | 24        | 0.8279   | 0.8192        |
| HLA-B*44:09 | 0.7894 | 0.0026            | 170       | 0.8268   | 0.8268        |
| HLA-B*14:03 | 0.7733 | 0.0002            | 17        | 0.7994   | 0.7995        |
| HLA-B*15:16 | 0.7691 | 0.0004            | 15        | 0.7910   | 0.7917        |
| HLA-B*41:03 | 0.7681 | 0.0009            | 68        | 0.7827   | 0.7800        |
| HLA-C*03:01 | 0.7596 | 0.0026            | 71        | 0.7800   | 0.7767        |
| HLA-B*07:06 | 0.7523 | 0.0138            | 12        | 0.8731   | 0.8717        |
| HLA-B*41:02 | 0.7484 | 0.0001            | 17        | 0.7706   | 0.7642        |
| HLA-A*11:10 | 0.7424 | 0.0001            | 5         | 0.8637   | 0.8385        |

## И положительные, и отрицательные

#### Загрузим данные



[1] "Activities with AUROC < 0.7 = 45"

[1] "!HLA-B\*07:02 !HLA-A\*03:01 !HLA-A\*11:01 !HLA-B\*58:01 !HLA-B\*40:01 !HLA-B\*15:01 !HLA-A\*01:01 !HLA-B\*08:01 !HLA-A

Средний AUC с отфильтрованными активностями

mean\_AUC

1 0.868

10 наилучших активностей

| Activity     | AUROC  | Average.precision | num_subst | mean_iap | mean_twentyCV |
|--------------|--------|-------------------|-----------|----------|---------------|
| HLA-A*01:03  | 0.9866 | 0.0006            | 6         | 0.9762   | 0.9727        |
| !HLA-C*07:01 | 0.9783 | 0.0503            | 341       | 0.9859   | 0.9858        |
| HLA-B*39:06  | 0.9739 | 0.3246            | 802       | 0.9926   | 0.9925        |
| HLA-B*73:01  | 0.9689 | 0.1078            | 236       | 0.9893   | 0.9888        |
| HLA-A*26:08  | 0.9669 | 0.0713            | 329       | 0.9862   | 0.9858        |
| !HLA-C*03:04 | 0.9664 | 0.2660            | 161       | 0.9568   | 0.9535        |
| HLA-B*51:08  | 0.9638 | 0.0538            | 500       | 0.9893   | 0.9892        |
| HLA-B*14:01  | 0.9603 | 0.0131            | 14        | 0.9859   | 0.9822        |
| HLA-B*08:02  | 0.9591 | 0.0067            | 30        | 0.9764   | 0.9761        |
| HLA-B*18:03  | 0.9587 | 0.0423            | 184       | 0.9764   | 0.9758        |

Топ-10 наихудших активностей

| Activity    | AUROC  | Average.precision | num_subst | mean_iap | mean_twentyCV |
|-------------|--------|-------------------|-----------|----------|---------------|
| HLA-B*41:06 | 0.7937 | 0.0006            | 18        | 0.8720   | 0.8703        |
| HLA-A*03:02 | 0.7929 | 0.0047            | 24        | 0.8279   | 0.8192        |
| HLA-B*44:09 | 0.7894 | 0.0026            | 170       | 0.8268   | 0.8268        |
| HLA-B*14:03 | 0.7733 | 0.0002            | 17        | 0.7994   | 0.7995        |
| HLA-B*15:16 | 0.7691 | 0.0004            | 15        | 0.7910   | 0.7917        |
| HLA-B*41:03 | 0.7681 | 0.0009            | 68        | 0.7827   | 0.7800        |
| HLA-C*03:01 | 0.7596 | 0.0026            | 71        | 0.7800   | 0.7767        |
| HLA-B*07:06 | 0.7523 | 0.0138            | 12        | 0.8731   | 0.8717        |
| HLA-B*41:02 | 0.7484 | 0.0001            | 17        | 0.7706   | 0.7642        |
| HLA-A*11:10 | 0.7424 | 0.0001            | 5         | 0.8637   | 0.8385        |

## Проверка подходов интеграции оценок

```
#|warning: false
  #|error: false
  import pandas as pd
  import os
  from sklearn import metrics
  from glob import glob
  import numpy as np
  WORKDIR = "/home/stotoshka/Documents/Epitops/PredictionEpitopes/data/cross val/total result allele"
  folds = glob(os.path.join(WORKDIR, "*.CSV"))
  union = pd.DataFrame()
  for f in folds:
     tbl = pd.read_csv(f, sep=";", header=4,decimal=",")
     union = pd.concat([union, tbl])
  union = union.drop(columns=["Substructure Descriptors","New Descriptors","Possible Activities at Pa > Pi"])
   union = union.rename(columns = {"<activity>":"activity"})
   activities = union.columns[1:]
   prediction = union.query("activity in @activities")
   negative_activities = sorted([a for a in activities if "!" in a])
  positive_activities = sorted([a for a in activities if "!" not in a and "!"+a in negative_activities])
   total train data = pd.read excel("/home/stotoshka/Documents/Epitops/PredictionEpitopes/data/cross val/total result allele
<string>:1: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list ins
  result = pd.DataFrame(columns=["Activity","AUROC", "Average precision"])
```

pred = np.where((prediction.loc[prediction[pos].notnull() & prediction[neg].notnull(),pos] > 0) | (prediction.loc[prediction[pos].notnull(),pos] > 0)

for i, (pos, neg) in enumerate(zip(positive\_activities,negative\_activities)):

```
true = np.where(prediction.loc[prediction[pos].notnull() & prediction[neg].notnull(),"activity"] == pos, 1, 0)

roc_auc = metrics.roc_auc_score(true, pred)

pr_auc = metrics.average_precision_score(true, pred)

result.loc[i] = [pos + "/" +neg, roc_auc, pr_auc]

result1 = pd.DataFrame(columns=["Activity","AUROC", "Average precision"])

for i, (pos, neg) in enumerate(zip(positive_activities,negative_activities)):

pred = np.where((prediction.loc[prediction[pos].notnull() & prediction[neg].notnull(),pos] > 0) | (prediction.loc[prediction[pos].notnull() & prediction[neg].notnull(),"activity"] == pos, 1, 0)

roc_auc = metrics.roc_auc_score(true, pred)

pr_auc = metrics.average_precision_score(true, pred)

result1.loc[i] = [pos + "/" +neg, roc_auc, pr_auc]
```

Area under ROC

Усреднение 0.8406

Взвешенное по 20CV 0.8529

Area under Precision-Recall curve

Усреднение 0.057

Взвешенное по 20CV 0.0631

# Выводы

- 1. Модели с использованием только положительных активностей дают большую точность по результатам 5-кратной, 20-кратной и leave-one-out кросс-валидации.
- 2. Модели имеют хороший AUROC, но крайне низкий AUC-PR.
- 3. Взвешивание по 20-кратной кросс-валидации дает большую точность прогноза, чем простое усреднение.