IS590PR Final Project

Analysis of the relationship between the extent of COVID-19 and the developed level of countries

JINGTAO YU PENGXIN BIAN YILIN TAN

Background

- The Covid-19 outbreak has caused significant global panic.
- More than 253, 000 deaths and 3.61 million confirmed cases.
- The are some data suggest that the covid-19 pandemic is hitting some countries particularly hard.
- It seems like it hit some high-income countries even harder.
- Our target is to find out the relationship between the extent of COVID-19 and the developed level of countries.

Hypotheses

- 1. The GDP per capita has positive linear relationship with COVID-19 confirmed rate and death rate
- 2. The expected year of schooling has positive linear relationship with COVID-19 confirmed rate and death rate
- 3. The life expectancy at birth has positive linear relationship with COVID-19 confirmed rate and death rate
- 4. The internet user percentage has positive linear relationship with COVID-19 confirmed rate and death rate

Dataset

- GDP per capita (current US): API_NY.GDP.PCAP.CD_DS2_en_csv_v2_988471.csv
- Life expectancy at birth, total (years): API_SP.DYN.LEoo.IN_DS2_en_csv_v2_988752.csv
- Expected year of schooling: Expected years of schooling (years).csv
- Internet user percentage: Internet users, total (% of population).csv
- Global Covid-19 confirmed cases: time_series_covid19_confirmed_global.csv
- Global Covid-19 death cases: time_series_covid19_deaths_global.csv
- Population by Country: API_SP.POP.TOTL_DS2_en_csv_v2_9886o6.csv

Code Explanation

- 13 functions totally
- 7 functions for data preprocessing Pandas.read_csv()
 - read_covid_csv(): Read datasets of COVID-19 confirmed cases and death cases and store the results in dictionaries
 - read_covid_data(): Transfer the data in dictionaries into DataFrame type
 - read_life_expectancy(): Read the dataset of life expectancy
 - read_population(): Read the dataset of population
 - read_GDP(): Read the dataset of GDP
 - read_Education(): Read the dataset of education
 - read_Internet(): Read the dataset of Internet

Code Explanation(Cont.)

- 3 functions for calculating the statistics for analysis
 - calculate_covariance(): calculate the covariance of confirmed rate and death rate for life expectancy, GDP, education and Internet separately

Numpy.cov()

 calculate_correlation_coefficient(): calculate the correlation coefficient of confirmed rate and death rate for life expectancy, GDP, education and Internet separately

Numpy.corr()

calculate_significance_of_coefficient(): calculate the significance
of coefficient of confirmed rate and death rate for life expectancy, GDP,
education and Internet separately

Scipy.stats.pearsonr()

Code Explanation(Cont.)

- 3 functions for analysing and showing the results visually
 - correlation_analysis(): Main function of the correlation analysis to join the data frames together and call the display_analysis_result() function

Pandas.merge()

- display_analysis_result(): Call the calculation functions and display results in the forms of text and images
- draw_scatter_plot(): Generate a scatter plot based on two given data frame columns

Matplotlib.pyplot.scatter()

Scatter plots

GDP per capita

Expected year of schooling

Life expectancy at birth

Internet user percentage

Correlation with COVID-19 confirmed rate:

Factor	GDP per capita	Expected year of schooling	Life expectancy at birth	Internet user percentage
Covariance	20.71	0.0019	0.0048	0.019
Correlation coefficient	0.82	0.48	0.55	0.57
Significance of coefficient	3.57e-36	1.08e-09	1.47e-12	5.35e-14

Correlation with COVID-19 death rate:

Factor	GDP per capita	Expected year of schooling	Life expectancy at birth	Internet user percentage
Covariance	1.04	0.00013	0.00030	0.00099
Correlation coefficient	0.49	0.41	0.40	0.36
Significance of coefficient	6.34e-10	3.53e-07	9.37e-07	1.24e-05

Conclusion

All our four hypothesis are supported

That means that countries with higher developed level tend to have more serious extend of COVID-19

We think this may because:

- 1. Testing problems in less developed countries
- 2. Low connectivity in less developed countries

Thank You And Stay Safe

Reference

COVID-19 confirmed case and death case:

https://github.com/CSSEGISandData/COVID-19

GDP per capita:

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD

Expected year of schooling & Internet user percentage : http://hdr.undp.org/en/data#

Life expectancy at birth:

https://data.worldbank.org/indicator/SP.DYN.LEoo.IN

https://en.wikipedia.org/wiki/COVID-19_pandemic