

No. 150701-SAR Page 146 of 163

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

GCCT (Auden)

Certificate No: D2450V2-815_Sep12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 815

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

September 26, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Name Function Signature

Calibrated by: Israe El-Naouq Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: September 26, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

No. 150701-SAR Page 147 of 163

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	24.9 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.9 mW / g ± 16.5 % (k=2)

No. 150701-SAR Page 149 of 163

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.4 \Omega + 3.0 j\Omega$
Return Loss	- 29.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.7~\Omega + 4.7~\mathrm{j}\Omega$
Return Loss	- 26.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns
_ control _ cont	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 23, 2007

DASY5 Validation Report for Head TSL

Date: 26.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 815

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.653 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.468 mW/g SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.24 mW/g

Maximum value of SAR (measured) = 16.9 W/kg

0 dB = 16.9 W/kg = 24.56 dB W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 26.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 815

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.205 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.024 mW/g SAR(1 g) = 13 mW/g; SAR(10 g) = 6.06 mW/g Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 24.61 dB W/kg

Impedance Measurement Plot for Body TSL

ANNEX F: DAE Calibration Report

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Fup://www.chinattl.cn

CNAS CALIBRATION No. L0570

GCCT Certificate No: J15-97013 Client: **CALIBRATION CERTIFICATE** Object DAE4 - SN: 893 Calibration Procedure(s) FD-Z11-2-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 01-July-14 (CTTL, No:J14X02147) July-15 Name **Function** Signature Calibrated by: SAR Test Engineer Yu Zongying Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: January 24, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

No. 150701-SAR Page 155 of 163

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: J15-97013

No. 150701-SAR Page 156 of 163

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

 $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1}\mu\mbox{V} \,, & \mbox{full range} = & \mbox{-100...+300 mV} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \,, & \mbox{full range} = & \mbox{-1......+3mV} \\ \mbox{DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec} \end{array}$

Calibration Factors	х	Y	Z	
High Range	406.149 ± 0.15% (k=2)	406.013 ± 0.15% (k=2)	405.056 ± 0.15% (k=2)	
Low Range	4.00925 ± 0.7% (k=2)	4.02229 ± 0.7% (k=2)	3.98452 ± 0.7% (k=2)	

Connector Angle

Connector Angle to be used in DASY system	175.5° ± 1 °

ANNEX G: Dipole Annual Check Result

Per KDB 450824 Dipole SAR Validation Verification, GCCT Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Date: July 24, 2014

Dipole	Liquid Type	Return-loss (dB)		Impedance			
		Target Value	Measured Value	Deviatio n (%)	Target Value	Measured Value	$\operatorname{Deviation}(\Omega)$
D835V2	Head	-30	-28.246	5.58	51.6Ω-2.8jΩ	50.3Ω-2.9jΩ	1.3Ω+0.1jΩ
	Body	-24.2	-25.333	-4.68	47.1Ω-5.2jΩ	48.6Ω-7.3jΩ	-1.5Ω-2.1jΩ
D1900V2	Head	-25.5	-23.651	7.25	52.7Ω+4.7jΩ	51.6Ω+7.9jΩ	1.1Ω-3.2jΩ
	Body	-24.4	-21.90	10.2	48.5Ω+5.8jΩ	49.9Ω+2.8jΩ	-1.4Ω+3.0jΩ
D2450V2	Head	-29.7	-28.4	4.38	51.4Ω+3.0jΩ	50.1Ω+5.4jΩ	0.3Ω-2.4jΩ
	Head	-26.1	-25.86	0.92	48.7Ω+4.7jΩ	49.3Ω+6.6jΩ	0.6Ω+1.9jΩ

835 Head

Measured impedance: 50.3Ω - $2.9j\Omega$

Measured Return loss: -28.246 dB

835 Body

Measured impedance: 48.611Ω - $7.3j\Omega$

Measured Return loss: -25.333 dB

1900 Head

Measured impedance: $51.610\Omega + 7.9j\Omega$

Measured Return loss: -23.651 dB

1900 Body

Measured impedance: $49.911\Omega + 2.8j\Omega$

Measured Return loss: -21.900 dB

2450 Head

Measured impedance: $50.08\Omega + 5.4j\Omega$

Measured Return loss: -28.4 dB

2450 Body

Measured impedance: $49.32\Omega + 6.59j\Omega$

Measured Return loss: -25.86 dB