2 Ringe

2.1 Grundlegende Definitionen und Eigenschaften

Definition + Bemerkung 2.1.1 (a) Ein **Ring** ist eine Menge R mit Verknüpfungen + und \cdot , so dass gilt:

- (i) (R, +) ist abelsche Gruppe
- (ii) (R, \cdot) ist Halbgruppe
- (iii) Die Distributivgesetze gelten:

$$\left. \begin{array}{lll} x \cdot (y+z) & = & xy+xz \\ (x+y) \cdot z & = & xz+yz \end{array} \right\} \text{ für alle } x,y,z \in R$$

- (b) R heißt **Ring mit Eins**, wenn (R, \cdot) Monoid ist.
- (c) R heißt **kommutativer Ring**, wenn (R, \cdot) kommutativ ist.
- (d) Ein Ring R mit Eins heißt **Schiefkörper**, wenn $R^x = (R, \cdot)^x = R \setminus \{0\}$, dh. wenn jedes $x \in R \setminus \{0\}$ invertierbar bzgl. \cdot ist.

Beispiel:

$$\mathbb{H} := \left\{ \begin{pmatrix} w & z \\ -\bar{z} & \bar{w} \end{pmatrix}, w, z \in \mathbb{C} \right\}$$

ist ein Schiefkörper, genannt die Hamilton-Quaternionen.

- (e) Ein kommutativer Schiefkörper heißt Körper.
- (f) In jedem Ring gilt:

$$x \cdot 0 = 0 = 0 \cdot x$$

$$x(-y) = -(xy) = (-x)y$$

$$(-x)(-y) = xy$$
 für alle $x, y \in R$

Beweis:
$$x \cdot 0 = x \cdot (0+0) = x \cdot 0 + x \cdot 0$$
 (genauso für $0 \cdot x$) $x(-y) + xy = x(-y+y) = x \cdot 0 = 0$ $(-x)(-y) = -((-x)y) = -(-(xy)) = xy$

(g) Ist R ein Ring mit Eins und $R \neq \{0\}$, so ist $0 \neq 1$ in R

Beweis: Ware 0 = 1, so galte für jedes $x \in R$: $x = x \cdot 1 = x \cdot 0 = 0$, also doch $R = \{0\}$

Definition 2.1.2

Sei $(R, +, \cdot)$ ein Ring.

- (a) $R' \subseteq R$ heißt **Unterring**, wenn $(R', +, \cdot)$ Ring ist. Umgekehrt heißt R dann **Ring-erweiterung** von R'.
- (b) $I \subseteq R$ heißt (zweiseitiges) **Ideal**, wenn (I, +) Untergruppe von (R, +) ist und $rx \in I$, $xr \in I$ für alle $x \in I$, $r \in R$.

Beispiel: In $R = \mathbb{Z}$ sind $n\mathbb{Z}$ für jedes $n \in \mathbb{Z}$ Ideale. In $R = \mathbb{Q}$ dagegen sind diese für $n \neq 0$ keine Ideale.

Definition + Bemerkung 2.1.3

Sei R ein kommutativer Ring.

- (a) Für a ist (a) := $a \cdot R = \{a \cdot r, r \in R\}$ ein Ideal in R.
- (b) Ein Ideal I in R heißt **Hauptideal**, wenn es ein $a \in R$ gibt mit I = (a).
- (c) R heißt **Hauptidealring**, wenn jedes Ideal in R ein Hauptideal ist.
- (d) \mathbb{Z} ist ein Hauptidealring.
- (e) Sei R ein kommutativer Ring mit Eins, $R \neq \{0\}$. Dann ist R ein Körper genau dann, wenn (0) und R die einzigen Ideale in R sind.

```
Beweis: "\Rightarrow" Sei I \subset R Ideal, a \in I \setminus \{0\} \Rightarrow es gibt a^{-1} \in R \Rightarrow 1 = aa^{-1} \in I \Rightarrow I = R \ (x \in R \Rightarrow x = 1x)" \Leftarrow" Sei a \in R \setminus \{0\} \Rightarrow (a) = R \Rightarrow \exists b \in R : ab = 1
```

Beispiel: $\mathbb{Z}/n\mathbb{Z}$ ist ein kommutativer Ring mit Eins für jedes $n \in \mathbb{N}$. Ist n = p für eine Primzahl p, so ist $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ ein Körper, und $(\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z})^{\times} = \{\bar{a}, a \in \mathbb{Z}, \operatorname{ggT}(a, n) = 1\}$. In $\mathbb{Z}/6\mathbb{Z}$ dagegen gilt $\bar{2} \cdot \bar{3} = \bar{0}$.

Definition 2.1.4

Sei R ein kommutativer Ring.

- (a) $x \in R$ heißt **Nullteiler**, wenn es ein $y \in R \setminus \{0\}$ gibt mit xy = 0.
- (b) $R \neq \{0\}$ heißt **nullteilerfrei**, wenn 0 der einzige Nullteiler in R ist. (Das heißt: Aus xy = 0 folgt, dass x = 0 oder y = 0.)

- (c) *R* heißt **Integritätsbereich** (engl. **integral domain**), wenn er nullteilerfrei und kommutativ ist sowie eine Eins besitzt.
- **Definition + Bemerkung 2.1.5** (a) Eine Abbildung $\varphi: R \to R'$ (R, R' Ringe) heißt **Homomorphismus von Ringen**, wenn $\varphi: (R, +) \to (R', +)$ ein Homomorphismus von Gruppen und $\varphi: (R, \cdot) \to (R', \cdot)$ ein Homomorphismus von Halbgruppen ist.
 - (b) Sind R, R' Ringe mit Eins, so heißt ein Homomorphismus von Ringen $\varphi: R \to R'$ ein **Homomorphismus von Ringen mit Eins**, wenn $\varphi(1_R) = 1_{R'}$.
 - (c) Die Ringe bilden mit Ringhomomorphismus eine Kategorie
 - (d) Die Ringe mit Eins bilden mit Homomorphismen von Ringen mit Eins eine Kategorie (echte Unterkategorie der Ringe)
 - (e) $(R, +, \cdot) \hookrightarrow (R, +)$ ist kovarianter Funktor: Ringe \rightarrow abelsche Gruppen. $(R, +, \cdot) \mapsto (R^{\times}, \cdot)$ ist kovarianter Funktor: Ringe mit Eins \rightarrow Gruppen.

Beispiel: Sei R ein kommutativer Ring mit Eins und $R^{n\times n}$ der Ring der $n\times n$ -Matrizen mit Einträgen in R Für $n\geq 2$ ist $R^{n\times n}$ nicht kommutativ und nicht nullteilerfrei.

Die Eins in $R^{n \times n}$ ist die Einheitsmatrix:

$$E_n := \begin{pmatrix} 1_R & & 0 \\ & \ddots & \\ 0 & & 1_R \end{pmatrix}$$

Die Einheiten in $R^{n\times n}$ sind die invertierbaren Matrizen: $(R^{n\times n})^{\times} = GL_n(R) = \{A \in R^{n\times n} : \exists B \in R^{n\times n} : A \cdot B = B \cdot A = E_n\} = \{A \in R^{n\times n} : \det A \in R^{\times}\}$, denn für die Adjungierte $A^{\#}$ von A gilt: $A \cdot A^{\#} = \det(A) \cdot E_n$.

 $(A^{\#} = (b_{ij}) \text{ mit } b_{ij} = (-1)^{i+j} \det A_{ji}$, wobei A_{ji} die Matrix A ohne die j-te Zeile und i-te Spalte ist.)

Bemerkung 2.1.6

Sei $\varphi: R \to R'$ Ringhomomorphismus. Dann gilt:

- (a) Bild(φ) ist Unterring von R'
- (b) $\operatorname{Kern}(\varphi) := \varphi^{-1}(0)$ ist Ideal in R

Beweis: Sei $x \in \text{Kern}(\varphi)$, $r \in R \Rightarrow \varphi(rx) = \varphi(r)\varphi(x) = \varphi(r)0 = 0 \Rightarrow rx \in \text{Kern}(\varphi)$

(c) Ist R Schiefkörper, R' Ring mit Eins, φ Homomorphismus von Ringen mit Eins, so ist φ injektiv oder die Nullabbildung.

Beweis: Sei $x \in R \setminus \{0\} \Rightarrow \varphi(x)\varphi(x^{-1}) = \varphi(1) \neq 0$, sofern φ nicht die Nullabbildung $\Rightarrow \varphi(x) \neq 0 \Rightarrow \operatorname{Kern}(\varphi) = \{0\} \Rightarrow \varphi$ injektiv.

Definition + Bemerkung 2.1.7

Sei R Ring mit Eins.

(a) $\varphi_R: \mathbb{Z} \to R, \ n \mapsto \left\{ \begin{array}{ll} n \cdot 1_R = \underbrace{1_R + \dots + 1_R}_{n} & n \geq 0 \\ -((-n) \cdot 1_R) & n \leq 0 \end{array} \right.$

ist Homomorphismus von Ringen mit Eins.

- (b) Ist Kern $(\varphi_R) = n\mathbb{Z}$ $(n \ge 0)$, so heißt n die **Charakteristik** von $R: n = \operatorname{char}(R)$
- (c) Ist R nullteilerfrei, so ist char(R) = 0, oder char(R) = p für eine Primzahl p.
- (d) $Bild(\varphi_R) \cong \mathbb{Z}/n\mathbb{Z}$, n = char(R)
- (e) Ist K (Schief-)Körper der Charakteristik p>0, so ist $\operatorname{Bild}(\varphi_K)\cong \mathbb{Z}/p\mathbb{Z}=\mathbb{F}_p$ der kleinste Teilkörper von K. Er heißt **Primkörper**. Ist $\operatorname{char}(K)=0$, so läst sich φ_K eindeutig fortsetzen zu einem injektiven Homomorphismus $\tilde{\varphi}_K:\mathbb{Q}\to K$ mit $\tilde{\varphi}_K(\frac{n}{m})=\varphi_K(n)\cdot\varphi_K(m)^{-1}$.

Definition + Bemerkung 2.1.8

Sei R Ring. Dann gilt:

- (a) Ist J eine Indexmenge und sind I_j , $j \in J$ Ideale in R, so ist $\bigcap_{i \in J} I_i$ ein Ideal in R.
- (b) Sind I_1, I_2 Ideale in R, dann ist $I_1 + I_2 = \{a + b : a \in I_1, b \in I_2\}$ ein Ideal.
- (c) Sind I_1, I_2 Ideale in R, dann ist $I_1 \cdot I_2 = \{\sum_{i=1}^{\infty} a_i b_i : a_i \in I_1, b_i \in I_2\}$ ein Ideal.
- (d) Sind I_1 , I_2 Ideale in R, dann ist $I_1 \cdot I_2 \subseteq I_1 \cap I_2$ (aber im allgemeinen $\neq !$)
- (e) Sei R kommutativ mit Eins, $X \subseteq R$. Die Menge

$$(X) = \bigcap_{\substack{I \subseteq R \text{ Ideal} \\ X \subseteq I}} I = \{ \sum_{\text{endl.}} r_i x_i : r_i \in R, x_i \in X \}$$

heißt das von X erzeugte Ideal.

(f) Sind I_1 , I_2 Ideale in einem kommutativen Ring R mit Eins, so ist $I_1 + I_2 = (I_1 \cup I_2)$ und $I_1 \cdot I_2 = (\{ab : a \in I_1, b \in I_2\})$.

2.2 Polynomringe

Definition + Bemerkung 2.2.1

Sei R ein kommutativer Ring mit Eins, $R \neq \{0\}$.

(a) Ein **Polynom** über R ist eine Folge $f=(a_i)_{i\in\mathbb{N}}$ mit einem $n_0\in\mathbb{N}$ so, dass $\forall i>n_0:a_i=0$.

Symbolische Schreibweise: $f = \sum_{i=0}^{n} a_i X^i$

(b) Die Menge R[X] der Polynome über R ist kommutativer Ring mit Eins mit den Verknüpfungen

 $\begin{array}{rcl} (a_i)_{i\in\mathbb{N}} & + & (b_i)_{i\in\mathbb{N}} & = & (a_i+b_i)_{i\in\mathbb{N}} \\ (a_i)_{i\in\mathbb{N}} & \cdot & (b_i)_{i\in\mathbb{N}} & = & (c_i)_{i\in\mathbb{N}} \text{ mit } c_i = \sum_{k=0}^i a_k b_{i-k} \end{array}$

- (c) $R \to R[X]$, $a \mapsto (a, 0, ...)$ ist injektiver Ringhomomorphismus
- (d) Für $f = \sum a_i X^i \in R[X]$, $f \neq 0$, heißt $Grad(f) := max\{i \in \mathbb{N}, a_i \neq 0\}$ der Grad von f.
- (e) Für f, g ist $Grad(f + g) \le max(Grad(f), Grad(g))$, falls $f, g, f + g \ne 0$
- (f) Für f, g ist $\operatorname{Grad}(f \cdot g) \leq \operatorname{Grad}(f) + \operatorname{Grad}(g)$ = , falls R nullteilerfrei für $f, g, f \cdot g \neq 0$.

Folgerung 2.2.2

Ist R Integritätsbereich, so ist R[X] ebenfalls Integritätsbereich und $R[X]^x = R^x$

Proposition 2.2.3

Sei R kommutativer Ring mit Eins.

- (a) Zu jedem $x \in R$ gibt es genau einen Ringhomomorphismus. $\varphi_x : R[X] \to R$ mit $\varphi_x|_R = id_R$ und $\varphi_x(X) = x$. Es ist $\varphi_x(a_0, a_1, \dots) = \sum_{i \geq 0} a_i x^i$
- (b) Zu jedem Homomorphismus $\alpha: R \to R'$ von Ringen mit Eins und jedem $y \in R'$ gibt es genau einen Ringhomomorphismus $\varphi_y: R[X] \to R'$, $\varphi_y|R = \alpha$ und $\varphi_y(X) = y$. Explizit: $\varphi_y(\sum a_i X^i) = \sum \alpha(a_i) y^i$.

Beweis:

- (a) ist (b) für R' = R und $\alpha = id_R$
- (b) Die angegebene Formel ist die einzig mögliche Definition dieses Ringhomomorphismus, weil $\varphi_y(a_0, a_1, \dots) = \varphi_y(\sum_{i=0}^n a_i X^i) = \sum_{i=0}^n \varphi_y(a_i) \varphi_y(X)^i$ sein muß.

Bemerkung 2.2.4

Die vorangehende Folgerung bleibt richtig, wenn R' nicht kommutativ ist, solange $\alpha(R) \subseteq Z(R)$ ist, also $\alpha(a) \cdot b = b \cdot \alpha(a)$ für alle $a \in R$, $b \in R'$ gilt.

Bemerkung 2.2.5

Die Zuordnung $R \mapsto R[X]$ ist ein kovarianter Funktor: Ringe mit Eins \to Ringe mit Eins.

Beweis: Ist $\alpha: R \to R'$ Ringhomomorphismus, so sei $\Psi: R[X] \to R'[X]$ der Homomorphismus, der durch $\alpha: R \to R' \underset{2.8(c)}{\longleftrightarrow} R'[X]$ und $X \mapsto X$ bestimmt ist.

Definition + Bemerkung 2.2.6 (a) $R[X] = \{(a_i)_{i \in \mathbb{N}} : a_i \in R\}$ ist mit + und wie im Polynomring ein kommutativer Ring mit Eins. R[X] heißt **Ring der (formalen) Potenzreihen** über R. Schreibweise (auch):

$$f = \sum_{i=0}^{\infty} a_i x^i$$

 $f \ddot{u} r f = (a_i)_{i \in \mathbb{N}}$

- (b) R[X] ist Unterring von R[X].
- (c) Sei $0 \neq f = \sum_{i=0}^{\infty} a_i x^i \in R[X]$. Dann heißt $o(f) := \min\{i \in \mathbb{N}, a_i \neq 0\}$ der **Untergrad** von f. Es gilt für alle $f, g \in R[X] \setminus \{0\}$:

$$o(f+g) \ge \min\{o(f), o(g)\} \text{ und } o(f \cdot g) \ge o(f) + o(g)$$

wobei in der Ungleichung für die Multiplikation Gleichheit gilt, wenn R nullteilerfrei ist.

- **Proposition 2.2.7** (a) Ist R Integritätsbereich, so ist $o(f \cdot g) = o(f) + o(g) \ \forall f, g \in R[X] \setminus \{0\}$ und es gilt: $R[X]^x = \{f = \sum_{i=0}^{\infty} a_i X^i \in R[X] : a_0 \in R^x\}$
 - (b) Ist R = K Körper, so ist $m := K[X] \setminus K[X]^x = \{\sum a_i X^i : a_0 = 0\}$ Ideal in K[X], und das einzige maximale.

Beweis: (a), (b), (d) ✓

(c) " \subseteq ": Sei $f = \sum a_i X^i \in R[\![X]\!]^x$. Dann gibt es $g = \sum b_i X^i \in R[\![X]\!]$ mit $1 = fg = a_0b_0 + (a_1b_0 + a_0b_1)X + \ldots \Rightarrow a_0 \in R^x$ " \supseteq ": Definiere $g = \sum b_i X^i$ rekursiv durch $b_0 = a_0^{-1}$, $b_i := a_0^{-1} \cdot \sum_{k=1}^i (-1)^k a_k b_{i-k}$, $i \ge 1$. Dann ist fg = 1

Beispiel: $i = 1 : b_i = a_0^{-1}(a_1b_0)$

2.3 Faktorringe

Sei R ein kommutativer Ring mit Eins.

- **Definition + Bemerkung 2.3.1** (a) Sei I Ideal in R. Durch die Verknüpfung $\bar{x} \cdot \bar{y} := \bar{x}\bar{y}$ wird die Faktorgruppe (R,+)/(I,+) ein kommutativer Ring mit Eins. Dieser Ring R/I heißt **Faktorring** oder **Quotientenring** von R und I. (Man verwechsle diesen Begriff des Quotientenrings nicht mit dem Quotientenkörper eines Integritätsbereiches, siehe weiter unten!)
 - (b) Die Restklassenabbildung $\pi: R \to R/I$, $x \mapsto \bar{x}$ ist surjektiver Ringhomomorphismus mit $\text{Kern}(\pi) = I$.
 - (c) (UAE des Faktorrings:) Sei $\varphi:R\to R'$ ein Ringhomomorphismus. Dann gibt es zu jedem Ideal $I\subseteq R$ mit $I\subseteq \mathrm{Kern}(\varphi)$ einen eindeutig bestimmten Ringhomomorphismus $\bar{\varphi}:R/I\to R'$ mit $\varphi=\bar{\varphi}\circ\pi$
 - (d) (Homomorphiesatz für Ringe:) Ist $\varphi: R \to R'$ surjektiver Ringhomomorphismus, dann ist $R' \cong R/\operatorname{Kern}(\varphi)$.

Beweis:

(a) **Wohldef. des Produkts:** Seien $x', y' \in R$ mit $\overline{x'} = \overline{x}$, $\overline{y'} = \overline{y}$. Dann gibt es $a, b \in I$ mit x' = x + a, y' = y + b. $\Rightarrow x'y' = (x + a)(y + b) = xy + \underbrace{ay + bx + ab}_{\in I} \Rightarrow \overline{x'}\overline{y'} = \overline{x}\overline{y}$.

Die restlichen Eigenschaften vererben sich dann von R.

- (b) π ist surjektiver Gruppenhomomorphismus mit Kern (φ) = I nach Satz 1(a). $\pi(xy) = \pi(x) \cdot \pi(y)$ nach Definition der Verknüpfung.
- (c) Nach Satz 1(d) gibt es einen eindeutig bestimmten Gruppenhomomorphismus $\bar{\varphi}: R/I \to R'$ mit $\varphi = \bar{\varphi} \circ \pi$. Zeige also: $\bar{\varphi}$ ist Ringhomomorphismus: Für $x,y \in R$ ist $\bar{\varphi}(\bar{x}\bar{y}) = \varphi(xy) = \varphi(x)\varphi(y) = \bar{\varphi}(\bar{x})\bar{\varphi}(\bar{y})$
- (d) Folgt aus (c) und Satz 1(a)

Definition 2.3.2 (a) Ein Ideal $I \subsetneq R$ heißt **maximal**, wenn es kein Ideal I' in R gibt mit $I \subsetneq I' \subsetneq R$.

Beispiel: In R = K[X], K Körper, ist $(X) = \{f = \sum_{i=0}^{n} a_i X^i, a_0 = 0\}$

(b) Ein Ideal $I \subsetneq R$ heißt **Primideal**, wenn für $x, y \in R$ mit $xy \in I$ gilt: $x \in I$ oder $y \in I$.

Beispiel:

- (1) Für $p \in \mathbb{Z}$, p > 0 gilt: p prim $\Leftrightarrow p\mathbb{Z}$ ist Primideal in \mathbb{Z} (sogar maximal)
- (2) (X) ist Primideal in $R[X] \Leftrightarrow R$ ist Körper.
- (3) $\{0\}$ ist Primideal in \mathbb{Z} .

Bemerkung 2.3.3 (a) R ist nullteilerfrei \Leftrightarrow (0) ist Primideal.

(b) $I \subseteq R$ ist Primideal genau dann, wenn R/I nullteilerfrei ist.

Beweis:

- (a) R ist nicht nullteilerfrei $\Leftrightarrow \exists a, b \in R \setminus \{0\}$: $ab = 0 \Leftrightarrow (0)$ kein Primideal.
- (b) Seien $x, y \in R$ mit $x \cdot y = I$, also $\bar{x} \cdot \bar{y} = 0$ in R/I. I Primideal $\iff x \in I$ oder $y \in I \iff \bar{x} = 0$ oder $\bar{y} = 0 \iff R/I$ ist nullteilerfrei.

Bemerkung 2.3.4

Sei $I \subset R$ ein Ideal. Dann gilt:

- (a) Jedes maximale Ideal ist Primideal.
- (b) I ist maximales Ideal $\Leftrightarrow R/I$ ist Körper.

Beweis:

- (a) folgt aus (b) und Bemerkung 2.3.5.
- (b) Nach 2.1.3 (e) ist R/I genau dann Körper, wenn (0) und R/I die einzigen Ideal in R/I sind. Die Behauptung folgt dann aus: $I \subsetneq J \subsetneq R$ in $R \Leftrightarrow 0 \neq \overline{J} \neq R/I$ in R/I wobei \overline{J} das Bild von J in R/I ist.

Bemerkung 2.3.5

Sei I ein Ideal in R. Dann entsprechen die Ideale in R/I bijektiv den Idealen in R, die I enthalten.

Beweis: Sei $\pi: R \to R/I$ die Restklassenabbildung. Für jedes Ideal \bar{J} in R/I ist $\pi^{-1}(\bar{J})$ ein Ideal in R. Es gilt $\pi^{-1}(\bar{J}) \supseteq \pi^{-1}(0) = \operatorname{Kern} \pi = I$.

Sei umgekehrt $J \subsetneq R$ ein Ideal mit $I \subseteq J$. Dann ist $\bar{J} := \pi(J)$ ein Ideal in R/I, da π surjektiv ist.

Weiter ist $\pi^{-1}(\pi(J)) = J$, da Kern $\pi \subseteq J$, und $\pi(\pi^{-1}(\bar{J})) = \bar{J}$, da π surjektiv ist.

Beispiel 2.3.6 (Algebraische Konstruktion der reelen Zahlen)

Sei $C=\{(a_n)_{n\in\mathbb{N}}:(a_n)$ Cauchy-Folge, $a_n\in\mathbb{Q}\}$ (dh. für $k\in\mathbb{N}$ $\exists n\in\mathbb{N}:|a_i-a_j|<\frac{1}{k}$ für $i,j\geq n$)

C ist Ring mit komponentenweiser + und \cdot (vornehm: $C \subset \prod_{n \in \mathbb{N}} \mathbb{Q}$).

 $N = \{(a_n) \in C : (a_n) \text{ Nullfolge } \} \text{ (dh. für } k \in \mathbb{N} \exists n \in \mathbb{N} : |a_i| < \frac{1}{k} \ \forall i > n)$

N ist Ideal in C: ✓

Beh.: *C/N* ist Körper (bzw. *N* ist maximal)

Beweis: Sei $a=(a_n)_{n\in\mathbb{N}}\in C\setminus N$. zu zeigen: $1\in (N+(a))$. $(a_n)\not\in N\Rightarrow a_n=0$ nur für endlich viele n, dh. $a_i\neq 0$ für $i>n_0$.

$$b_n := \left\{ \begin{array}{ll} 0 & , & a_i = 0 | i \le n_0 \\ \frac{1}{a_i} & , & a_i \ne 0 | i > n_0 \end{array} \right.$$

 $b = (b_n) \in C$.

$$ab = (c_n), c_n = \begin{cases} 0 & : & n < n_0 \\ 1 & : & n \ge n_0 \end{cases}$$

$$\Rightarrow 1 - ab = (d_n), \ d_n = \left\{ \begin{array}{lcl} 1 & : & n < n_0 \\ 0 & : & n \ge n_0 \end{array} \right.$$

 \Rightarrow $(d_n) \in N \Rightarrow 1 = (d_n) + ba \in N + (a) \Rightarrow N$ maximal.

$$\Rightarrow C/N = \mathbb{R}!$$

Satz 7 (Chinesischer Restsatz)

Sei R kommutativer Ring mit Eins, I_1,\ldots,I_n Ideale in R mit $I_\nu+I_\mu=R$ für alle $\nu\neq\mu$ (dann heißen I_ν,I_μ **relativ prim** oder **koprim**) Für $\nu=1,\ldots,n$ sei $\pi_\nu:R\to R/I_\nu$ die Restklassenabbildung. Dann gilt:

(a)
$$\varphi: R \to R/I_1 \times \cdots \times R/I_n$$

 $x \mapsto (\pi_1(x), \dots, \pi_n(x))$ ist surjektiv.

(b) Wegen dem Homomorphiesatz und $\operatorname{Kern}(\varphi) = \bigcap_{\nu=1}^n I_{\nu}$ gilt:

$$R/I_1 \times \cdots \times R/I_n \cong R/\bigcap_{\nu=1}^n I_{\nu}$$

(c) (Simultane Kongruenzen:)

Für paarweise teilerfremde ganze Zahlen m_1, \ldots, m_n und beliebige $r_1, \ldots, r_n \in \mathbb{Z}$ gibt es $x \in \mathbb{Z}$ mit $x \equiv r_{\nu} \mod m_{\nu}$ für $\nu = 1, \ldots, n$ (Spezialfall von (a) für $R = \mathbb{Z}$)

Beweis: Es genügt z.z.:
$$\bar{e_{\nu}} = (0, \dots, 0, \underbrace{1}_{\nu\text{-te Stelle}}, 0, \dots, 0) \in \mathsf{Bild}(\varphi)$$
 für jedes ν ,

dh. es gibt $e_{\nu} \in R \ (\nu = 1, ..., n)$ mit $e_{\nu} \in I_{\mu}$ für $\nu \neq \mu$ und $1 - e_{\nu} =: a_{\nu} \in I_{\nu}$ (Denn für $x = (\bar{x}_1, ..., \bar{x}_n) \in R/I_1 \times \cdots \times R/I_n$ sei $e := \sum_{\nu=1}^n r_{\nu} e_{\nu}$ mit $r_{\nu} \in p_{\nu}^{-1}(\bar{x}_{\nu}) \Rightarrow \varphi(e) = \sum p_{\nu}(r_{\nu}e_{\nu}) = x.$)

Nach Voraussetzung gibt es für jedes $\mu \neq \nu$ $a_{\mu} \in I_{\nu}$, $b_{\mu} \in I_{\mu}$ mit

$$a_{\mu} + b_{\mu} = 1 \Rightarrow 1 = \prod_{\substack{\mu=1\\ \mu \neq \nu}}^{n} (a_{\mu} + b_{\mu}) = \prod_{\substack{\mu=1\\ \mu \neq \nu}}^{n} b_{\mu} + \underbrace{a_{\nu}}_{\in I_{\nu}}$$
$$=: e_{\nu} \in \bigcap_{\substack{\mu=1\\ \mu \neq \nu}}^{n} I_{\mu}$$

 $\Rightarrow 1 - e_{\nu} = a_{\nu}$ wie gewünscht.

2.4 Teilbarkeit

Sei R ein Integritätsbereich.

Definition + Bemerkung 2.4.1

Seien $a, b \in R \setminus \{0\}$.

- (a) a **teilt** b (Schreibweise $a \mid b$) : $\Leftrightarrow b \in (a)$ ($\Leftrightarrow \exists x \in R : b = ax$)
- (b) $d \in R$ heißt **größter gemeinsamer Teiler** von a und b, (Schreibweise ggT(a,b)) wenn gilt:
 - (i) $d \mid a \text{ und } d \mid b \text{ bzw. } a \in (d), b \in (d)$
 - (ii) ist $d' \in R$ auch Teiler von a und b, so gilt $d' \mid d$ bzw. $d \in (d')$
- (c) Ist $d \in R$ ein ggT von a und b und $e \in R^x$, so ist auch $e \cdot d$ ein ggT. Sind d, d' beide ggT von a und b, so gibt es $e \in R^x$ mit d' = ed.

Beweis: Nach Definition gibt es
$$x, y \in R$$
 mit $d' = xd$ und $d = yd' \Rightarrow d' = xyd' \Rightarrow d'(1-xy) = 0 $\Rightarrow d' \neq 0$
 $\Rightarrow d' \neq 0$$

(d) In analoger Weise wird das kleinste gemeinsame Vielfache definiert.

Beispiel:

(a) In $\mathbb Z$ gibt es einen größten gemeinsamen Teiler.

- (b) In jedem nullteilerfreiem Hauptidealring R gibt es zu je zwei Elementen a,b einen größten gemeinsamen Teiler: Denn (a,b)=(a)+(b) ist ein Hauptideal, das heißt, es gibt ein $d\in R$ mit (a,b)=(d). Also gilt $d\mid a$ und $d\mid b$ und für jedes $d'\in R$, für das $d'\mid a$ und $d'\mid b$ gilt, gilt auch: $(a)\subseteq (d')$, $(b)\subseteq (d')$, also $(a,b)\subseteq (d')$ und somit $(d)\subseteq (d')$, also $d'\mid d$.
- (c) In $\mathbb{Z}[\sqrt{-5}]$ gibt es zu 6 und $4+2\sqrt{-5}$ keinen größten gemeinsamen Teiler.

Definition 2.4.2

Ein Integritätsbereich R heißt **euklidisch**, wenn es eine Abbildung: $\delta: R \setminus \{0\} \to \mathbb{N}$ mit folgender Eigenschaft gibt: zu $f, g \in R, g \neq 0$ gibt es $q, r \in R$ mit f = qg + r mit r = 0 oder $\delta(r) < \delta(g)$.

Beispiel: \mathbb{Z} mit $\delta(a) = |a|$, K[X] mit $\delta(f) = \operatorname{Grad}(f)$

Bemerkung 2.4.3

Sei R euklidisch.

- (a) Für $a, b \in R \setminus \{0\}$ gilt:
 - (i) in R gibt es einen ggT von a und b, er heiße d.
 - (ii) (d) = (a, b) = (a) + (b)
- (b) Jeder euklidische Ring ist ein Hauptidealring.

Beweis:

(a) Œsei $\delta(a) \geq \delta(b)$. Nach Voraussetzung gibt es $q_1, r_1 \in R$ mit $a = q_1b + r_1$, $\delta(r_1) < \delta(b)$ oder $r_1 = 0$. Ist $r_1 = 0$, so ist $a \in (b) = (a, b)$ und ggT(a, b) = b. Sonst gibt es $q_2, r_2 \in R$ mit

Ist $r_1 = 0$, so ist $a \in (b) = (a, b)$ und gg I (a, b) = b. Sonst gibt es $q_2, r_2 \in R$ mit $b = q_2r_1 + r_2$ und $r_2 = 0$ oder $\delta(r_2) < \delta(r_1)$. usw...

$$r_{i} = q_{i+2}r_{i+1} + r_{i+2}$$

$$\Rightarrow \vdots \qquad \vdots$$

$$r_{n-2} = q_{n}r_{n-1}$$

 $(da \ \delta(r_{i+2}) < \delta(r_{i+1}))$

Beh.: $d := r_{n-1}$ ist ggT von a und b.

denn: $d \mid r_{n-2}$ (vorletzte Zeile: $r_{n-3} = q_{n-1}r_{n-2} + r_{n-1} \Rightarrow d \mid r_{n-3}$)

Induktion: $d \mid r_i$ für alle $i \Rightarrow d \mid b \Rightarrow d \mid a$

umgekehrt: Sei d' Teiler von a und $b \Rightarrow d' \mid r_1 \Rightarrow_{\text{Induktion}} d' \mid r_i \forall i \Rightarrow d' \mid d$.

noch zu zeigen ist (d) = (a, b):

" \subseteq ": $d \in (a, b)$ Nach Konstruktion ist $r_{i+2} \in (r_i, r_{i+1}) \subset \cdots \subset (a, b) \ \forall i$

" \supseteq " $a \in (d)$, $b \in (d)$ nach Definition.

(b) Sei $I \subseteq R$ Ideal, $I \neq \{0\}$. Wähle $a \in I$ mit $\delta(a)$ minimal. Dann gilt für jedes $b \in I : b = qa + r$ mit $r \in I$ und $\delta(r) < \delta(a) \notin \text{also } r = 0 \Rightarrow I = (a)$

Definition + Bemerkung 2.4.4

Sei R kommutativer Ring mit Eins.

- (a) $x, y \in R$ heißen **assoziiert**, wenn es $e \in R^x$ mit y = xe gibt. "assoziiert" ist eine Äquivalenzrelation.
- (b) $x \in R \setminus R^x$, $x \neq 0$ heißt **irreduzibel** (unzerlegbar), wenn aus $x = y_1 \cdot y_2$ mit $y_1, y_2 \in R$ folgt: $y_1 \in R^x$ oder $y_2 \in R^x$.
- (c) $x \in R \setminus R^x$ heißt **prim** (oder **Primelement**), wenn (x) ein Primideal ist, dh. aus $x \mid y_1 y_2$ folgt $x \mid y_1$ oder $x \mid y_2$.
- (d) Sind $x, y \in R \setminus R^x$ assoziiert, so ist x genau dann irreduzibel (bzw. prim), wenn y irreduzibel (bzw. prim) ist.
- (e) Ist R nullteilerfrei, so ist jedes von Null verschiedene Primelement irreduzibel.

Beweis: Sei
$$(x)$$
 Primideal und $x = y_1y_2$, $y_1, y_2 \in R \Rightarrow \times$: $y_1 \in (x)$, dh. $y_1 = xa$ für ein $a \in R$ (R nullteilerfrei, $x \neq 0$) $\Rightarrow x = xay_2 \Rightarrow x(1 - ay_2) = 0 \Rightarrow_{x \neq 0} ay_2 = 1 \Rightarrow y_2 \in R^x$

Beispiel 2.4.5 (a) In $\mathbb{Z}/6\mathbb{Z}$ ist 2 nicht irreduzibel: $2 \cdot (-2) = 2$.

(b) In $R = \mathbb{Z}[\sqrt{-5}] = \{a+b\sqrt{-5}: a, b \in \mathbb{Z}\} \subset \mathbb{C}$ ist $(1+\sqrt{-5})(1-\sqrt{-5}) = 6 = 2\cdot 3$ In R ist 2 kein Primelement, weder $1+\sqrt{-5}$ noch $1-\sqrt{-5}$ sind durch 2 teilbar, **aber** 2 ist irreduzibel!.

denn: Sei
$$2 = (a+b\sqrt{-5})(c+d\sqrt{-5}) \Rightarrow 4 = |2|^2 = (a+b\sqrt{-5})(a-b\sqrt{-5})(\dots) = (a^2+5b^2)(c^2+5d^2) = a^2c^2 + \underbrace{5P}_{P>0} \Rightarrow P = 0 \Rightarrow b = d = 0 \Rightarrow a^2 = 1, c^2 = 4$$

Proposition + Definition 2.4.6

Sei R ein Integritätsbereich.

- (a) Folgende Eigenschaften sind äquivalent:
 - (i) Jedes $x \in R \setminus \{0\}$ läßt sich eindeutig als Produkt von Primelementen schreiben.
 - (ii) Jedes $x \in R \setminus \{0\}$ läßt sich "irgendwie" als Produkt von Primelementen schreiben.
 - (iii) Jedes $x \in R \setminus \{0\}$ läßt sich eindeutig als Produkt von irreduziblen Elementen schreiben.

- (b) Sind diese drei Eigenschaften für R erfüllt, so heißt R faktorieller Ring. (Oder ZPE-Ring (engl.: UFD)). Dabei ist in (a) "eindeutig" gemeint, bis auf Reihenfolge und Multiplikation mit Einheiten. Präziser: Sei P ein Vertretersystem der Primelemnte (≠ 0) bezüglich "assoziiert".
 - Dann heißt (i) $\forall x \in R \setminus \{0\} \exists ! \ e \in R^x$ und für jedes $p \in \mathcal{P}$ ein $\nu_p(x) \ge 0 : x = e \prod_{p \in \mathcal{P}} p^{\nu_p}$. (beachte $\nu_p \ne 0$ nur für endlich viele p).

Beweis:

- (i) ⇒ (ii) ✓
- (ii) \Rightarrow (iii) Sei $x \neq 0$, $x = ep_1 \cdot \ldots \cdot p_r$, $p_i \in \mathcal{P}$, $e \in R^x$. Sei weiter $x = q_1 \cdot \ldots \cdot q_s$ mit irreduziblem Element q_j . Es ist $x \in (p_1) \Rightarrow \exists j \text{ mit } q_j \in (p_1)$. $\times j = 1$ dh. $q_1 = \varepsilon_1 p_1$ mit $\varepsilon_1 \in R^x$ (da q_1 irreduzibel) $\Rightarrow \varepsilon_1 q_2 \cdot \ldots \cdot q_s = ep_2 \cdot \ldots \cdot p_r$. Mit Induktion über r folgt die Behauptung.
- (iii) \Rightarrow (i) Noch zu zeigen: Jedes irreduzible Element in R ist prim. Sei $p \in R \setminus R^x$ irreduzibel, $x, y \in R$ mit $xy \in (p)$, also xy = pa für ein $a \in R$. Schreibe $x = q_1, \ldots, q_m, \ y = s_1 \cdot \ldots \cdot s_n, \ a = p_1 \cdot \ldots \cdot p_l$ mit irreduziblen Elementen q_i, s_j, p_k . $\Rightarrow xy = q_1 \ldots q_m s_1 \ldots s_n = pa = p \cdot p_1 \cdot \ldots \cdot p_l \stackrel{\text{Eindeutigkeit}}{\Longrightarrow} p \in \{q_1, \ldots, q_m, s_1, \ldots, s_n\}$ (bis auf Einheiten)

Bemerkung 2.4.7

Ist R faktorieller Ring, so gibt es zu allen $a, b \in R \setminus \{0\}$ einen ggT(a,b).

Beweis: Sei \mathcal{P} wie in 2.4.6 Vertretersystem der Primelemente.

$$a = e_1 \prod_{p \in \mathcal{P}} p^{\nu_p(a)}, \ b = e_2 \prod_{p \in \mathcal{P}} p^{\nu_p(b)} \Longrightarrow d := \prod_{p \in \mathcal{P}} p^{\nu_p(d)}$$

mit $\nu_p(d) = \min(\nu_p(a), \nu_p(b))$ ist ggT von a und b.

Satz 8

Jeder nullteilerfreie Hauptidealring ist faktoriell.

Beweis:

- (1) Jedes $x \in R \setminus \{0\}$ läßt sich als Produkt von irreduziblen Elementen schreiben.
- (2) Jedes irreduzible $p \in R \setminus \{0\}$ erzeugt ein maximales Ideal. Mit 2.4.6 folgt dann die Behauptung.
- B(2) Sei $p \in R \setminus \{0\}$ irreduzibel, I Ideal in R mit $(p) \subseteq I \subset R$. Nach Voraussetzung gibt es $a \in R$ mit I = (a), $a \notin R^x$, da $I \neq R$. Da $p \in (p) \subseteq I = (a)$, gibt es $\varepsilon \in R$ mit $p = a\varepsilon \stackrel{p \text{ irreduzibel}}{\Longrightarrow} \varepsilon \in R^x \Rightarrow (p) = (a) = I$
- B(1) $x \in R \setminus \{0\}$ heiße Störenfried, wenn x nicht als Produkt von irreduziblen Elementen darstellbar ist.

Sei x Störenfried. Dann ist $x \notin R^x$ und x nicht irreduzibel, also $x = x_1y_1$ mit $x_1, y_1 \notin R^x$.

Œsei x_1 Störenfried (sonst ist x doch Produkt von irreduziblen Elementen). Also $x_1 = x_2y_2, \ x_2, y_2 \notin R^x$.

Œsei x_2 Störenfried. Induktiv erhalten wir x, x_1, x_2, \ldots alles Störenfriede mit $(x) \subset (x_1) \subset (x_2) \subset \ldots$

Sei nun $I = \bigcup_{i \ge 1} (x_i)$. I ist Ideal $\checkmark \Rightarrow$

Es gibt $a \in R$ mit $I = (a) \Rightarrow \exists i$ mit $a \in (x_i) \Rightarrow x_i \in (x_i)$ für alle $j > i \nleq$

Bemerkung 2.4.8

Sei R ein faktorieller Ring, \mathcal{P} ein Vertretersystem der Primelemente $\neq 0$. Für $x \in R \setminus \{0\}$ sei $x = e \prod_{p \in \mathcal{P}} p^{\nu_p(x)}$ die eindeutige Darstellung, also $e \in R^\times$, $\nu_p(x) \in \mathbb{N}$, $\nu_p(x) \neq 0$ nur für endlich viele $p \in \mathcal{P}$. Dann gilt für jedes $p \in \mathcal{P}$:

- (a) $\nu_p(x) = n \iff p^n \mid x \text{ und } p^{n+1} \nmid x$
- (b) Die Abbildung $\nu_p \to \mathbb{N}$ erfüllt
 - (i) $\nu_{D}(x \cdot y) = \nu_{D}(x) + \nu_{D}(y)$
 - (ii) $\nu_p(x+y) \ge \min(\nu_p(x), \nu_p(y))$, falls $x+y \ne 0$
- (c) Sei $\rho \in \mathbb{R}$, $0 < \rho < 1$. Dann ist die Abbildung $|\cdot|_{\rho} : R \to \mathbb{R}$,

$$|x|_{\rho} = \begin{cases} \rho^{\nu_{\rho}(x)}, & x \neq 0 \\ 0 & x = 0 \end{cases}$$

ein "nichtarchimedischer Betrag" auf R, d.h. $|x \cdot y|_{\rho} = |x|_{\rho} \cdot |y|_{\rho}$ und $|x + y|_{\rho} \le \max(|x|_{\rho}, |y|_{\rho})$.

(d) $d_{\rho}(x, y) = |x - y|_{\rho}$ ist eine Metrik auf R.

Beispiel: $R = \mathbb{Z}$, $\mathcal{P} = \{ p \in \mathbb{N}_{>0}, p \text{ Primzahl} \}$. ν_p ist die p-adische Bewertung und $|\cdot|_{\frac{1}{p}}$ ist der p-adische Betrag auf \mathbb{Z} (und \mathbb{Q}).

Satz 9 (Irreduzibilitätskriterium für Polynome)

Sei R ein faktorieller Ring, $p \in \mathcal{P}$, $f = \sum_{i=0}^{n} a_i X^i \in R[X]$ mit $a_n \neq 0$, $ggT(a_0, \ldots, a_n) = 1$, $p \nmid a_n$.

(a) (Eisenstein) Ist n > 0, $p \mid a_i$ oder $a_i = 0$ für i = 0, ..., n - 1, $p^2 \nmid a_0 \neq 0$, so ist f irreduzibel.

Beweis: Sei f = gh mit $g = \sum_{i=0}^{r} b_i X^i$, $h = \sum_{i=0}^{s} c_i X^i$ $b_r \neq 0 \neq c_s \Rightarrow n = r + s$, $a_n = b_0 c_0 \Rightarrow p \nmid b_r$, $p \nmid c_s$

(a) $\times p \mid b_0, p \nmid c_0$. Sei t maximal mit $p \mid b_i$ für i = 0, ..., tDann ist $0 \le t \le r - 1$ und

$$\underbrace{a_{t+1}}_{\not\in(p)} = \underbrace{b_{t+1} \cdot c_0}_{\not\in(p)} + \underbrace{\sum_{i=0}^t b_i c_{t+1-i}}_{\in(p)} \notin(p)$$

 $\Rightarrow t+1=n \Longrightarrow r=n \Rightarrow s=0 \Rightarrow f=c_0 \cdot g$, nach Voraussetzung ist dann $c_0 \in R^{\times}$.

2.5 Brüche

Ziel: Verallgemeinere die Konstruktion von \mathbb{Q} aus \mathbb{Z} .

$$\mathbb{Q} = \{ \frac{m}{n} : m, n \in \mathbb{Z} \neq 0 \} /_{\sim}$$

mit $\frac{m}{n} \sim \frac{m'}{n'} \Leftrightarrow mn' = m'n$

Definition + Bemerkung 2.5.1

Sei R kommutativer Ring mit Eins, $S \subseteq (R, \cdot)$ ein Untermonoid.

(a) $S^{-1}R = R_S = (R \times S)/_{\sim}$ mit der Äquivalenzrelation $(a_1, s_1) \sim (a_2, s_2) :\Leftrightarrow \exists t \in S : t(a_2s_1 - a_1s_2) = 0$ heißt **Ring der Brüche** von R mit Nennern in S. (oder **Lokalisierung** von R nach S) Schreibweise: $\frac{a}{s}$ sei eine Äquivalenzklasse von (a, s)

Beweis: z.z.: \sim ist Äquivalenzrelation:

reflexiv √

symmetrisch ✓

transitiv: $\begin{array}{ccc} (1) & a_2s_1 & = a_1s_2 \\ (2) & a_3s_2 & = a_2s_3 \end{array} \right\} \stackrel{?}{\Longrightarrow} a_3s_1 = a_1s_3$

$$a_3s_2s_1 \stackrel{(2)}{=} a_2s_3s_1 \stackrel{(1)}{=} a_1s_3s_2 \Rightarrow s_2(a_3s_1 - a_1s_3) = 0$$

(falls R nullteilerfrei und $0 \notin S \Rightarrow a_3s_1 = a_1s_3$)

Andernfalls sei nun mit $t, t' \in S$ $\begin{cases} t(a_2s_1 - a_1s_2) = 0 \\ t'(a_2s_3 - a_3s_2) = 0 \end{cases} \Rightarrow tt's_2(a_3s_1 - a_1s_3) = t(t'a_3s_2s_1 - t'a_1s_3s_2) \stackrel{(2)}{=} t(t'a_2s_3s_1 - t'a_1s_3s_2) = ts_3t'(a_2s_1 - a_1s_2) \stackrel{(1)}{=} 0$

(b) Mit $\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2}$ und $\frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1 s_2 + a_2 s_1}{s_1 s_2}$ ist R_S ein kommutativer Ring mit Eins.

Beweis: • wohldefiniert: Sei $\frac{a_1'}{s_1'} = \frac{a_1}{s_1} \Rightarrow \exists t \in S : t(a_1's_1 - a_1s_1') = 0(*) \Rightarrow t(a_1'a_2s_1s_2 - a_1a_2s_2s_1') \stackrel{(*)}{=} (ta_1s_1'a_2s_2 - ta_1a_2s_2s_1') = 0 + \text{wohldefiniert:}$ Seien die $\frac{a_1'}{s_1'}$, $\frac{a_1}{s_1}$ wie oben. $\Rightarrow t(s_1's_2(a_1s_2 + a_2s_1) - s_1s_2(a_1's_2 + a_2s_1')) = ts_2(a_1s_2s_1' + a_2s_1s_1' - a_1's_1s_2 - a_2s_1s_1') \stackrel{(...)}{=} 0$. Die restlichen Eigenschaften vererben sich von R

Definition + Bemerkung 2.5.2

Sei R Integritätsbereich, $S = R \setminus \{0\}$. Dann ist $Quot(R) := R_S$ ein Körper, denn das Inverse zu $\frac{b}{a}$ mit $a \neq 0$ ist $\frac{a}{b}$. Er heißt der **Quotientenkörper** von R. (Dieser Begriff hat mit dem Quotientenring R/I von R modulo einem Ideal I nichts zu tun.)

Beispiel:

- (a) $R = \mathbb{Z}[X] \Rightarrow \operatorname{Quot}(R) = \mathbb{Q}(X)$
- (b) $R = K[X_1, ..., X_n]$, K Körper \Rightarrow Quot $(R) = K(X_1, ..., X_n)$ Körper der rationalen Funktionen in n Variablen.

Beispiele 2.5.3 (a) Ist $0 \in S$, so ist $R_S = 0$.

- (b) $x \in R \setminus \{0\}, S = \{x^n : n \ge 0\} R_S =: R_x = \{\frac{a}{x^n} : a \in R, n \ge 0\}$ z.B.: $R = \mathbb{Z}, x = 2 \Rightarrow R_S = \mathbb{Z}[\frac{1}{2}] = \{\frac{m}{2^n} : m \in \mathbb{Z}, n \in \mathbb{N}\}$
- (c) Sei $\mathfrak{p} \subset R$ Primideal, dann ist $S = R \setminus \mathfrak{p}$ ist Monoid. $R_S =: R_{\mathfrak{p}}$ heißt Lokalisierung von R nach \mathfrak{p} .

Beispiel:

- a) $R = \mathbb{Z}$, $\mathfrak{p} = (2) \Rightarrow \mathbb{Z}_{(2)} = \{\frac{m}{n} : m \in \mathbb{Z}, n \text{ ungerade } \}$
- b) $\mathfrak{p} = (0)$, R nullteilerfrei, dann ist $R_{\mathfrak{p}} = \operatorname{Quot}(R)$.
- c) R = K[X], $\mathfrak{p} = (X)$, dann ist $R_{\mathfrak{p}} = \{\frac{f}{g}, f, g \in K[X], g(0) \neq 0\}$.
- (d) $\mathfrak{p}R_{\mathfrak{p}} = \{\frac{x}{y} : x \in \mathfrak{p}, \ y \in R \setminus \mathfrak{p}\}$ ist maximales Ideal in $R_{\mathfrak{p}}$ und zwar das einzige. **denn**: Sei $\frac{z}{y} \in R_{\mathfrak{p}} \setminus \mathfrak{p}R_{\mathfrak{p}}$, dh. $z \in R \setminus \mathfrak{p}, \ y \in R \setminus \mathfrak{p} \Rightarrow \frac{y}{z} \in R_{\mathfrak{p}} \Rightarrow \frac{z}{y} \in (R_{\mathfrak{p}})^{x}$, typisches Beispiel: $R = \mathbb{R}[X]$ (oder $R = C^{0}([-1,1])$) $\mathfrak{p} = \{f \in R : f(0) = 0\}$ ist Primideal in R. $R_{\mathfrak{p}} = \{\frac{f}{g} : f, g \in R, g(0) \neq 0\}$

Bemerkung 2.5.4

Sei R kommutativer Ring mit Eins, $S \subset (R, \cdot)$ Monoid.

- (a) Die Abbildung $i_S: R \to R_S, a \mapsto \frac{a}{1}$ ist Ringhomomorphismus
- (b) i_S ist injektiv genau dann, wenn S keinen Nullteiler von R enthält. $(0 \notin S)$

Beweis:
$$\frac{a}{1} = 0 = \frac{0}{1}$$
 in $R_S \Rightarrow \exists s \in S$ mit $s(a1 - 01) = 0$

(c) $i_S(S) \subset (R_S)^x$

Beweis:
$$(\frac{s}{1})^{-1} = \frac{1}{s}$$

(d) (UAE) Zu jedem Homomorphismus $\varphi: R \to R'$ von Ringen mit Eins mit $\varphi(S) \subset (R')^{\times}$ gibt es genau einen Homomorphismus $\widetilde{\varphi}: R_S \to R'$ mit $\varphi = \widetilde{\varphi} \circ i_S$

Beweis:
$$\widetilde{\varphi}(\frac{a}{s}) = \widetilde{\varphi}(a\frac{1}{s}) = \widetilde{\varphi}(\frac{a}{1}(\frac{s}{1})^{-1}) = \varphi(a)\varphi(s)^{-1}$$

2.6 Der Satz von Gauß

Sei R faktorieller Ring, \mathcal{P} Vertretersystem der von Null verschiedenen Primelemente in R.

Bemerkung 2.6.1

Für jedes $p \in \mathcal{P}$ lässt sich ν_p fortsetzen zu einer Abbildung ν_p : Quot $(R) \setminus \{0\} \to \mathbb{Z}$, die die Eigenschaften von 2.4.8 b) erfüllt. Dabei gilt für $a, b \in R \setminus \{0\}$: $\nu_p(\frac{a}{b}) = \nu_p(a) - \nu_p(b)$.

Beispiel:

2 Ringe

- (a) $R = \mathbb{Z}$, $\mathcal{P} = \{p \in \mathbb{N}, p \text{ Primzahl}\}$. ν_p ist die p-adische Bewertung auf \mathbb{Q} . Die Vervollständigung von \mathbb{Q} wie in Beispiel 2.3.6 ergibt den Körper \mathbb{Q}_p der p-adischen Zahlen.
- (b) $R = \mathbb{C}[X]$, $\mathcal{P} = \{X a, a \in \mathbb{C}\}$. Für $p = X a \in \mathcal{P}$, $f \in \mathbb{C}[X]$ ist $\nu_p(f) = \operatorname{ord}_a(f)$ die Nullstellenordnung der Nullstelle a.

Definition + Proposition 2.6.2

Sei R faktorieller Ring, \mathcal{P} Vertretersystem der von Null verschiedenen Primelemente in R, $p \in \mathcal{P}$ und $K = \operatorname{Quot}(R)$.

- (a) Für $f = \sum_{i=0}^{n} a_i X^i \in K[X] \setminus \{0\}$ sei $\nu_p(f) := \min\{\nu_p(a_i), i = 0, \dots, n\}$.
- (b) $f \in K[X] \setminus \{0\}$ heißt **primitiv**, wenn $\nu_p(f) = 0$ für alle $p \in \mathcal{P}$ ist.
- (c) (Gauß) Für $f, g \in K[X] \setminus \{0\}$ gilt: $\nu_p(f \cdot g) = \nu_p(f) + \nu_p(g)$ für alle $p \in \mathcal{P}$.

Beweis: Sei $f = \sum_{i=0}^n a_i X^i$, $g = \sum_{j=0}^m b_j X^j$, $f \cdot g = \sum_{k=0}^{m \cdot n} c_k X^k$, also $c_k = \sum_{i+j=k} a_i b_j$.

1. Fall: Sei m = 0. Dann ist $c_k = a_k b_0$ für k = 0, ..., n und

$$\nu_{p}(f \cdot g) = \min_{i=0}^{n} (\nu_{p}(a_{i}b_{0}))$$

$$= \min_{i=0}^{n} (\nu_{p}(a_{i}) + \nu_{p}(b_{0}))$$

$$= \min_{i=0}^{n} (\nu_{p}(a_{i})) + \nu_{p}(b_{0}) = \nu_{p}(f) + \nu_{p}(g)$$

2. Fall: Sei $f, g \in R[X]$ und primitiv, also $\nu_p(f) = \nu_p(g) = 0$. Sei $i_0 := \min_{i=0}^n \{i : p \nmid a_i\}$ und $j_0 := \min_{j=0}^n \{j : p \nmid b_j\}$. Es ist:

$$c_{i_0+j_0} = \underbrace{a_{i_0}b_{j_0}}_{p\nmid} + \sum_{i=0}^{i_0-1} \underbrace{a_i}_{p\mid} b_{i_0+j_0-i} + \sum_{j=0}^{j_0-1} a_{i_0+j_0-j} \underbrace{b_j}_{p\mid}$$

also gilt $p \nmid c_{i_0+j_0}$ und damit $\nu_p(f \cdot g) = 0$.

3. Fall: f, g sind beliebig. Es gibt $c, d \in K \setminus \{0\}$, so dass $\tilde{f} = c \cdot f$, $\tilde{g} = d \cdot g$ primitiv sind. Dann folgt aus Fall 1 und Fall 2, dass:

$$\nu_{\rho}(f \cdot g) = \nu_{\rho}(\frac{1}{c}\tilde{f} \cdot \frac{1}{d}\tilde{g})$$

$$= \nu_{\rho}(\frac{1}{c}) + \nu_{\rho}(\frac{1}{d}) + \nu_{\rho}(\tilde{f} \cdot \tilde{g})$$

$$= \nu_{\rho}(\frac{1}{c}) + \nu_{\rho}(\tilde{f}) + \nu_{\rho}(\frac{1}{d}) + \nu_{\rho}(\tilde{g})$$

$$= \nu_{\rho}(f) + \nu_{\rho}(g)$$

Satz 10 (Gauß)

Ist R faktorieller Ring, so ist R[X] faktoriell.

Beweis: Sei $K = \operatorname{Quot}(R)$. Dann ist K[X] faktoriell (sogar euklidisch), und $R[X] \subseteq K[X]$ ist ein Unterring. Sei $\mathcal P$ Vertretersystem der von Null verschiedenen Primelemente in K[X]. O.B.d.A. ist jedes Primpolynom in $\mathcal P$ ein primitives Polynom in R[X]. Sei weiter $\widetilde{\mathcal P}$ ein Vertretersystem der von Null verschiedenen Primelemente in R. Sei nun $f \in R[X] \setminus \{0\}$. Schreibe $f = c \cdot f_1 \cdots f_n$ mit $f_i \in \mathcal P$ und $c \in (K[X])^\times = K \setminus \{0\}$.

Es ist $c \in R$, denn: für $p \in \tilde{P}$ ist nach 2.6.2

$$\underbrace{\nu_p(f)}_{>0} = \nu_p(c) + \sum_{i=1}^n \underbrace{\nu_p(f_i)}_{=0},$$

also ist $\nu_p(c) \geq 0$.

Schreibe also $c = e \cdot p_1 \cdots p_m$ mit $e \in R^{\times}$ und $p_i \in \tilde{\mathcal{P}}$.

Behauptung 1: Jedes $p_i \in \tilde{\mathcal{P}}$ ist auch prim in R[X]:

Sei $(p) := p \cdot R[X]$ das von p in R[X] erzeugte Ideal. Es genügt zu zeigen: R[X]/(p) ist nullteilerfrei (nach 2.3.3 b)). Sei $\bar{R} := R/(p \cdot R)$. \bar{R} ist nullteilerfrei, da $p \in \tilde{\mathcal{P}}$ ist, also ist auch $\bar{R}[X]$ nullteilerfrei.

Die Restklassenabbildung $\pi: R \to \bar{R}$ ist surjektiv und induziert einen surjektiven Ringhomomorphismus $\tilde{\pi}: R[X] \to \bar{R}[X]$. Es ist Kern $\pi = \{f = \sum_{i=0}^n a_i X^i \in R[X], p \mid a_i, i = 0, \ldots, n\} = p \cdot R[X]$, also ist $\bar{R}[X] \cong R[X]/(p)$.

Behauptung 2: Jedes $f_i \in \mathcal{P}$ ist auch prim in R[X]:

Seien $g,h\in R[X]$ mit $g\cdot h\in (f_i):=f_i\cdot R[X]$. Da f_i prim in K[X] ist, ist o.B.d.A: $g\in f_i\cdot K[X]$, also $g=f_i\cdot \tilde{g}$ für ein $\tilde{g}\in K[X]$. Für jedes $p\in \tilde{\mathcal{P}}$ ist $0\leq \nu_p(g)=\nu_p(f_i)+\nu_p(\tilde{g})=\nu_p(\tilde{g})$, also ist $\tilde{g}\in R[X]$ und damit (f_i) ein Primideal in R[X].

Beispiel 2.6.3

 $f(X) = X^{p-1} + X^{p-2} + \dots + X + 1 \in \mathbb{Q}[X]$, p Primzahl. Beh.: f ist irreduzibel. Beobachte:

$$f(X) = \frac{X^p - 1}{X - 1}$$

(f heißt "p-tes Kreisteilungspolynom" (Zeichnung fehlt))

Trick: g(X) = f(X+1) ist genau dann irreduzibel, wenn f(X) irreduzibel ist.

$$g(X) = \frac{(X+1)^p - 1}{X} = \sum_{k=1}^p \binom{p}{k} X^{k-1}, (n = p-1), (\binom{p}{p} = 1 = a_{p-1}, \binom{p}{1} = p = a_0)$$

Noch zu überlegen: $\binom{p}{k}$ ist durch p teilbar für $k=1,\ldots,p-1$, bekannt: $\binom{p}{k}=\frac{p!}{k!(p-k)!}\Rightarrow \binom{p}{k}$ ist durch p teilbar. Mit Eisenstein folgt die Behauptung.

2.7 Maximale Ideale

Proposition 2.7.1

Sei R ein kommutativer Ring mit Eins. Dann gibt es zu jedem echten Ideal $I \triangleright R$ ein maximales Ideal \mathfrak{m} mit $I \subseteq \mathfrak{m}$.

Lemma von Zorn

Sei M eine nicht leere, geordnete Menge. Hat jede total geordnete Teilmenge von M eine obere Schranke in M, so besitzt M ein maximales Element.

Zur Erinnerung:

- \leq heißt **Ordnung** wenn \leq reflexiv, transitiv und antisymmetrisch ist.
- $N \subset M$ ist **total geordnet**, falls für $x, y \in N$ gilt: $x \leq y$ oder $y \leq x$.
- $x \in M$ ist eine **oberere Schranke** für N wenn für alle $y \in N$ gilt: $y \le x$.
- $m \in M$ heißt **maximal**, wenn für alle $x \in M$ aus $m \le x$ folgt, dass x = m ist.

Beweis: (der Proposition) Sei M die Menge aller echten Ideale in R, die I enthalten. $I \in M$, also $M \neq \emptyset$. M ist durch \subseteq geordnet.

Behauptung: $n = \bigcup_{J \in N} J$ ist obere Schranke für $N \subseteq M$. Nach Zorn enthält M dann ein maximales Element \mathfrak{m} . \mathfrak{m} ist ein maximales Ideal in R.

Beweis: (der Behauptung)

- n ist ein Ideal: Seien $x, y \in n$, also $x \in J_1, y \in J_2$. O.B.d.A.A. $J_1 \subseteq J_2$, also $x \in J_2$ und damit auch $x + y \in J_2 \subseteq n$. Auch gilt für alle $a \in R$: $a \cdot x \in J \subseteq n$.
- $1 \subseteq n \checkmark$
- *n* ist eine obere Schranke von *N*. ✓
- $n \neq R$, denn sonst wäre $1 \in n$, also $1 \in J$ für ein $J \in N$, im Widerspruch zu $J \in M$.

2.8 Moduln

Sei R kommutativ mit Eins.

Definition + Bemerkung 2.8.1 (a) Eine abelsche Gruppe (M, +) zusammen mit einer Abbildung $\bullet : R \times M \to M$ heißt **R-Modul**, wenn für alle $a, b \in R, x, y \in M$ gilt:

(i)
$$a(x + y) = ax + ay$$

(ii)
$$(a+b)x = ax + bx$$

(iii)
$$(ab)x = a(bx)$$

(iv)
$$1x = x$$

Beispiel:

- (1) R ist R-Modul. (mit · als Ringmultiplikation)
- (2) Ist R ein Körper, so ist R-Modul = R-Vektorraum.
- (3) $R = \mathbb{Z}$, $M = \mathbb{Z}/2\mathbb{Z} = \{\bar{0}, \bar{1}\}$ ist \mathbb{Z} -Modul durch $n \cdot \bar{0} = \bar{0}$, $n \cdot \bar{1} = \bar{n}$. Jede abelsche Gruppe A ist \mathbb{Z} -Modul durch $nx = \underbrace{x + \cdots + x}_{\text{n-mal}}$ und (-n)x = n
- (4) Jedes Ideal in R ist R-Modul.
- (b) Eine Abbildung $\varphi: M \to M'$ von R-Moduln heißt **R-Modulhomomorphismus** (oder **R-linear**), wenn φ Gruppenhomomorphismus ist und für alle $x \in M$, $a \in R$ gilt: $\varphi(ax) = a\varphi(x)$

(c)
$$Hom_R(M,M') := \{ \varphi : M \to M' : \varphi \text{ R-linear} \} \text{ ist R-Modul durch}$$
 $(\varphi_1 + \varphi_2)(x) := \varphi_1(x) + \varphi_2(x)$ $\{ \varphi_1, \varphi_2 \in Hom_R(M,M'), \ a \in R, \ x \in M \}$

- (d) Die R-Moduln bilden mit den R-linearen Abbildungen eine Kategorie
- (e) Die Kategorien **Z-Mod.** und **Abelsche Gruppen** sind isomorph. denn:

$$\dots \varphi(nx) = \varphi(x + \dots + x) = \varphi(x) + \dots + \varphi(x) = n\varphi(x)$$

 $(\varphi: A \to A'$ Gruppenhomomorphismus, $x \in A$, $n \in \mathbb{N}) \Rightarrow$ Jeder Gruppenhomomorphismus von abelschen Gruppen ist \mathbb{Z} -linear.

Definition + Bemerkung 2.8.2

Sei M ein R-Modul.

- (a) Eine Untergruppe U von (M, +) heißt R-**Untermodul** von M, wenn $R \cdot U \subseteq U$ ist, dh. wenn U selbst R-Modul ist.
- (b) Ist $\varphi: M \to M'$ *R*-linear, so sind Kern(φ) und Bild(φ) Untermoduln von *M* bzw. M' (denn $\varphi(x) = 0 \Rightarrow \varphi(ax) = 0 \forall \dots$ und $a\varphi(x) = \varphi(ax) \forall \dots$)
- (c) Sei $U \subseteq M$ Untermodul. Dann wird M/U zu einem R-Modul durch $a\overline{x} =: \overline{ax}$ (denn: lst $x' \in \overline{x}$, also $x - x' \in U$, so ist $ax' - ax = a(x' - x) \in U$) Die Restklassenabbildung $p: M \to M/U$, $x \mapsto \overline{x}$ ist dann R-linear $(p(ax) = \overline{ax} = a\overline{p}(x))$

Definition + Bemerkung 2.8.3 (a) Für $X \subseteq M$ heißt

$$\langle X \rangle := \bigcap_{\substack{U \text{ Untermodul von } M \\ X \subseteq U}} U$$

der von X erzeugte Untermodul.

(b)
$$\langle X \rangle = \{ \sum_{i=0}^{n} a_i x_i, \ a_i \in R, x_i \in X, n \in \mathbb{N} \}.$$

- (c) Eine Teilmenge $B\subseteq M$ heißt **linear unabhängig**, wenn $0=\sum_{b\in B}a_bb$ mit $a_b\in R$ (wobei $a_b=0$ für alle bis auf endlich viele $b\in B$ gelten soll, damit die Summe $\sum_{b\in B}a_bb$ wohldefiniert ist) nur möglich ist mit $a_i=0$ $\forall i$.
- (d) Eine Teilmenge $B\subseteq M$ heißt **Basis**, wenn jedes $x\in M$ eindeutig als Linearkombination $0=\sum_{b\in B}a_bb$ mit $a_b\in R$ (wobei $a_b=0$ für alle bis auf endlich viele $b\in B$ gelten soll) darstellbar ist. äquivalent: B linear unabhängig und $\langle B\rangle=M$

(e) M heißt **frei**(er R-Modul), wenn M eine Basis besitzt.

Beispiel:

- (1) R ist freier R-Modul mit Basis 1 (oder einer anderen Einheit)
- (2) Für jedes $n \in \mathbb{N}$ ist $R^n = R \oplus \cdots \oplus R$ freier R-Modul mit Basis $e_1, \ldots, e_n, e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ (hier steht die 1 an der i-ten Stelle).
- (3) Ist $I \subseteq R$ Ideal, so ist $M := R/I = \langle \{\overline{1}\} \rangle$. Für $I \neq \{0\}$ ist R/I **nicht** frei. denn: Sei $\overline{x} \in M$, $a \in I \setminus \{0\} \Rightarrow a\overline{x} = \overline{ax} = \overline{0} \Rightarrow$ in M gibt es kein linear unabhängiges Element (oder, um formal zu sein, keine linear unabhängige einelementige Teilmenge).