

ESCOLA DE ENGENHARIA DE VOLTA REDONDA (EEIMVR-UFF) Departamento de Ciências Exatas (VCE)

Verificação de Recuperação (VR) - 2019/1

Disciplina:	Equações Diferenciais Ordinárias (EDOs) Data: 11/07/2019	NOTA
Professor:	Yoisell Rodríguez Núñez	
Aluno(a):		

1.
$$(1,50 \text{ pontos})^*$$
 Resolva o **PVI**:
$$\begin{cases} \frac{dy}{dx} = \frac{(2x+y)y}{x^2}, \\ y(1) = 2 \end{cases}$$

- 2. $(1,50 \text{ pontos})^*$ Encontre a **solução da EDO**: $y' = xy + xy^3$
- 3. (1,50 pontos) Determine a solução geral da EDO: $2 \operatorname{sen}(y^2) dx + xy \cos(y^2) dy = 0$
- 4. (2,50 pontos) Calcule a solução do PVI:

$$\begin{cases} y'' + 2y' + 5y = 4e^{-t}\cos(2t) \\ y(0) = 1, \\ y'(0) = 0 \end{cases}$$

- a) Usando as ferramentas sobre EDOs de 2^a ordem linear não-homogêneas e com coeficientes constantes (estudadas na primeira parte do curso).
- b) Via transformada de Laplace.

Dicas:

$$\frac{s^3 + 4s^2 + 13s + 14}{(s^2 + 2s + 5)^2} = \frac{s + 2}{(s+1)^2 + 4} + \frac{2 \cdot 2(s+1)}{[(s+1)^2 + 4]^2}$$
$$\mathcal{L}\left\{te^{-at}\operatorname{sen}(\omega t)\right\} = \frac{2 \cdot \omega(s+a)}{[(s+a)^2 + \omega^2]^2}$$

5. (2,00 pontos) Calcule a **transformada inversa de Laplace** da função:

a)
$$\frac{2s+4}{s^2+4s+13}$$

b)
$$\frac{e^{2\pi s}s}{s^2 + 100}$$

6. (2,50 pontos) Encontre a solução geral para o seguinte **sistema de EDOs** homogêneo, utilizando o **método matricial**:

$$\begin{cases} x' = x + y, \\ y' = 4x - 2y. \end{cases}$$

Observações:

- \circ *Escolha a questão 1 ou 2 para resolver.
- As demais questões são de resolução obrigatória.
- o Todas **as respostas devem ser justificadas**, isto é, acompanhadas dos argumentos e/ou cálculos usados para obtê-las.

Se você realmente quer que aconteça, vá atrás e NÃO DESISTA.

Laplace transforms - Table					
$f(t) = L^{-1}{F(s)}$	F (s)	$f(t) = L^{-1}\{F(s)\}$	F (s)		
$a t \ge 0$	$\frac{a}{s}$ $s > 0$	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$		
at $t \ge 0$	$\frac{a}{s^2}$	cosωt	$\frac{s}{s^2 + \omega^2}$		
e ^{-at}	$\frac{1}{s+a}$	$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$		
te ^{-at}	$\frac{1}{(s+a)^2}$	$\cos(\omega t + \theta)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$		
$\frac{1}{2}t^2e^{-at}$	$\frac{1}{(s+a)^3}$	t sin ωt	$\frac{2\omega s}{(s^2 + \omega^2)^2}$		
$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{(s+a)^n}$	tcosωt	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$		
e ^{at}	$\frac{1}{s-a} \qquad s > a$	sinh ωt	$\frac{\omega}{s^2 - \omega^2} \qquad s > \omega $		
te ^{at}	$\frac{1}{(s-a)^2}$	$\cosh \omega t$	$\frac{s}{s^2 - \omega^2} \qquad s > \omega $		
$\frac{1}{b-a}\left(e^{-at}-e^{-bt}\right)$	$\frac{1}{(s+a)(s+b)}$	e ^{-at} sin ωt	$\frac{\omega}{(s+a)^2+\omega^2}$		
$\frac{1}{a^2}[1-e^{-at}(1+at)]$	$\frac{1}{s(s+a)^2}$	e ^{-at} cosωt	$\frac{s+a}{(s+a)^2+\omega^2}$		
t ⁿ	$\frac{n!}{s^{n+1}}$ $n = 1,2,3$	e ^{at} sin ωt	$\frac{\omega}{(s-a)^2+\omega^2}$		
t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}} s > a$	e ^{at} cosωt	$\frac{s-a}{(s-a)^2+\omega^2}$		
t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}} s > a$	$1-e^{-at}$	$\frac{a}{s(s+a)}$		
\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{3/2}}$	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$		
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$ $s > 0$	$f(t-t_1)$	$e^{-t_1s}F(s)$		
$g(t) \cdot p(t)$	$G(s) \cdot P(s)$	$f_1(t) \pm f_2(t)$	$F_1(s) \pm F_2(s)$		
$\int f(t)dt$	$\frac{F(s)}{s} + \frac{f^{-1}(0)}{s}$	$\delta(t)$ unit impulse	1 all s		
$\frac{df}{dt}$	sF(s)-f(0)	$\frac{d^2f}{df^2}$	$s^2F(s) - sf(0) - f'(0)$		
$\frac{d^n f}{dt^n}$	$\frac{d^n f}{dt^n} \qquad s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - s^{n-3} f''(0) - \dots - f^{n-1}(0)$				