# MICRO ARCHITECTURE

D'UN CONTRÔLEUR

DE CACHE L1

#### PLAN

# A) PRESENTATION

- " RÔLE
- · INTERFACE
- · CARACTÉRISTIQUES
- . TRANSACTIONS

#### B) AUTOMATES DU CACHE

- . I CACHE
- \* DCACHE
- « CMD
- , RSP

#### C) WRITE BUFFER

- " RÔLE
- 4 SIMPLE
- 4 MULTI

#### RÔLE DU CACHE



Le CPU fait

- \* une lecture I par cycle
- " une lecture D to Res 5 cycles
- « une écriture D ts les 10 cycles

#### Sans CACHE

Si la latence est grande => CPI est grand

#### Avec CACHE

réduction du nombre de transactions réduction de la Latence => réduit le CPI

### INTERFACE DU CACHE



DRSP DATA 32 bils
DRSP VAL 1 bits
DRSP ERROR 1 bils

TREQ ADDR 30 bits

IREQ NODE 1 bits CUSER/KERNEL)

IRSPINS 32 bils

IRSPUBL 1 bit

IRSP ERROR 2 bits

transaclin OK, BOS ERROR (adr non mappée)

C DREQ APPR 32 bits

DREQ APPR 32 bits

DREQ ODE 1 bits

DREQ ODE 1 bits

DREQBE 4 bits DREGTYPE 4 bits 2 bits RIW

2 bits autres es parces cl'adressige DREG W PATA 32 bits

# CARACTÉRISTIQUES 1

- € 2 caches séparés vostructions et données
- 1 Seul port UCI
- de quant pour le lectures p le risc me gere que instruction à la pis
- non bloquant pour les écutures - o wrîle buffer poeunet de poster les centures souf si le wrîlebuffer est plain
- traite devoieurs tronsactions voi simultanées

   → perret d'augnenter de débit puisque labuce provide
   → umpose 2 autombtes VOI CMD & RSP

# CARACTÉRISTIQUES

2

PAPDR = adverse des programme (virtuel)

Soms MMU PADDR= UADDR

ONE TABLE [VADDR, PID)

Traduction processus

PAS de cohérence. Si 2 caches 11 lisent la niew lipre et que l'on le modific alors l'outre m'est per misc à jour

# TRANSACTIONS VCI

- · MISS INSTRUCTION lecture memoire
- . MISS DATA lecture remote
- . READ PATA uncarhad lacture périphenque
- . READ instruction uncadred lecture memoire (cadre décadrué)
- · WRITE DATA contrue de puis le write buffet

#### 4 AUTO MATES



# Pourquoi 4?

- => pour pouvoir paralléliser
  - a on a 2 caches => 2 FSD
  - " CND + RSP pour pipeliner

# ICACHE FSM

Gère la domandes de lecture du DIPS



### DCACHE FSM

gère les demandes de lecture et d'écriture du MiPS + inval



#### CMD FSM

gêre les commondes VCè et l'usage de write Brifer



C'art un serveur dant les clients sont les automates du cache qui ont besoin de faire des ammonds Vii

## CLIENTS

DMISS INSPISS WRITE DUNC TUNC les instructions sont prioritaires et pour le données les écratures sont prioritaires

### RSP FSM



## WRITE BUFFER SIMPLE

n capacité 1 ligne de cache (+BE)

n 3 états définis par 2 boils:

« la requêtes sont acceptées dans le write buffer. Si vide ou si m'ligne

| O(EMPTY) |
|----------|
| OPEN     |
| LOCKED   |

| état   | r-empty | r- Reg |                                |
|--------|---------|--------|--------------------------------|
| EUPTY  | 1       | Ø      | wbul vide                      |
| OPEN   | Ø       | Ø      | what en cours de remplissage   |
| LOCKED | $\phi$  | 1      | what on conus d'écutive en VCi |

X = CMD-DATAMERIE . COD-ACK . LAST le donner flut d'un boost a été accepté

Z z DLACHE-Weitzzeg. WOK
Le write truffer prend une écriture

7 = DUACHE\_WRITE\_REQ. (DREQ.WRITE+WOK)
pas d'ecutrue ou refus du Wouf

### WRITE BUFFER MULTI

· capacité N ligres de Buffer 1 ligre de buffer z 1, 1/2, 1/4 ligre de cache



- · regréte contrue acceptée si un slot of EMPTY on OPEN & n buflire
- . l'états pour daque stit



D'existe un pointeur Circulaire uncrémenté à deque cycle rotr qui antible la tionsition open source

#### THE

- a analysor le comportement tempnal du carbe
- " analyse la modelisation de autonotes
- 2 remplecer le virite boffer somple por un virite buffer muiti