Contents

1	Vector Spaces		
	1.1	Fields, Scalars and Vectors	2
		1.1.1 Subspaces	4

1

Vector Spaces

1.1 Fields, Scalars and Vectors

In elementary mathematics, we often refer to a vector as an ordered tuple of numbers with a direction and a magnitude. However, there is a much more abstract aspect to the notion of vectors. In fact, let us first generalise the notion of *scalars*, which are taken as complex constants in an elementary level.

In general, we have the following algebraic structure:

Definition 1.1.1 ▶ Field

A field is a set \mathcal{F} with two binary operations $\mathcal{F}^2 \to \mathcal{F}$, namely addition and multiplication, such that

```
1. u + v = v + u for all u, v \in \mathcal{F};
```

```
2. (u + v) + w = u + (v + w) for all u, v, w \in \mathcal{F};
```

- 3. uv = vu for all $u, v \in \mathcal{F}$;
- 4. (uv)w = u(vw) for all $u, v, w \in \mathcal{F}$;
- 5. u(v+w) = uv + uw for all $u, v, w \in \mathcal{F}$;
- 6. there exists $0 \in \mathcal{F}$ such that u + 0 = u for all $u \in \mathcal{F}$;
- 7. there exists $1 \in \mathcal{F}$ such that 1u = u for all $u \in \mathcal{F}$;
- 8. for every $u \in \mathcal{F}$, there exists some $v \in \mathcal{F}$ such that u + v = 0;
- 9. for every $u \in \mathcal{F}$, there exists some $v \in \mathcal{F}$ such that uv = 1.

One may check that both \mathbb{R} and \mathbb{C} are fields. It turns out that we can also generalise the concept of vectors as any objects which possess properties similar to that of Euclidean vectors, i.e., we can view a vector as a mathematical quantity which can be added up and multiplied by another quantity called a scalar with some axioms which they follow. Rigorously, we define the notion of a *vector space*.

Definition 1.1.2 ▶ **Vector Space**

A **vector space** is a set V over a field \mathcal{F} with two binary operations, namely

- addition +: $V^2 \rightarrow V$, and
- scalar multiplication ()(): $\mathcal{F} \times V \to V$,

such that

- 1. $\boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$ for all $\boldsymbol{u}, \boldsymbol{v} \in V$;
- 2. (u + v) + w = u + (v + w) for all $u, v, w \in V$;
- 3. $ab\mathbf{v} = a(b\mathbf{v})$ for all $a, b \in \mathcal{F}$ and $\mathbf{v} \in V$;
- 4. there exists an additive identity or zero vector $\mathbf{0} \in V$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$ for all $\mathbf{v} \in V$;
- 5. every $\mathbf{v} \in V$ has an additive inverse $\mathbf{w} \in V$ with $\mathbf{v} + \mathbf{w} = 0$;
- 6. there exists a multiplicative identity $1 \in \mathcal{F}$ such that $1\mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in V$;
- 7. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$ and $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$ for all $a, b \in \mathcal{F}$ and $\mathbf{u}, \mathbf{v} \in V$.

Notice that here, the definitions of addition in scalar multiplication in a vector space imply that any vector space must be **closed** under these two operations. Notice also that the operations "addition" and "scalar multiplication" are not necessary the addition and scalar multiplication which we are used to in \mathbb{R}^n , but abstract mappings which satisfy the given axioms.

We shall prove a few basic properties regarding vector spaces.

Theorem 1.1.3 ▶ Uniqueness of Additive Identity

Let V be a vector space with $0 \in V$ as an additive identity, then 0 is unique.

Proof. Suppose on contrary that there exists $u \in V$ such that v + u = v for all $v \in V$. Since $0 \in V$, we have

$$0 + u = 0$$
.

However, **0** is the additive identity, so

$$u = u + 0 = 0 + u = 0$$
,

i.e. **0** is unique.

Similarly, we can also prove the uniqueness of additive inverse.

Theorem 1.1.4 ▶ Uniqueness of Additive Inverse

Let V be a vector space, then every $\mathbf{v} \in V$ has a unique additive inverse.

Proof. Suppose on contrary that there exist $u, w \in V$ both being additive inverse of v, then u + v = 0 and w + v = 0. Therefore,

$$u = (u + v) + u = (w + v) + u = w + (u + v) = w$$

i.e., **v** has a unique additive inverse.

Theorem 1.1.4 justifies the notation -u to denote the additive inverse of u. However, so far we have not ascertained the fact that -u = (-1)u (note that the former means the inverse of u while the latter means u multiplied by the scalar -1)! While seemingly innocent, this result is not as easily proven as it looks.

First, we shall justify that $0\mathbf{u} = \mathbf{0}$ for all $\mathbf{u} \in V$. Notice that

$$0\mathbf{u} = (0+0)\mathbf{u} = 0\mathbf{u} + 0\mathbf{u}.$$

Adding $-(0\mathbf{u})$ to both sides of the equation yields $0\mathbf{u} = \mathbf{0}$ as desired. From this result we see that

$$(-1)u + u = (-1+1)u = 0u = 0.$$

By uniqueness of additive inverse, we must have $(-1)\mathbf{u} = -\mathbf{u}$.

Note that by using a similar technique we can prove that $a\mathbf{0} = \mathbf{0}$ for all $a \in \mathcal{F}$, and so $\mathbf{0} = -\mathbf{0}$ as a consequence.

Additionally, note that subtraction is defined as $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-1)\mathbf{v}$, so the above result allows us to write $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$.

1.1.1 Subspaces

Note that a vector space is extended based on a set of vectors, so we can define *subspaces* similarly to the notion of subsets.

Definition 1.1.5 ► Subspace

Let V be a vector space. $U \subseteq V$ is called a **subspace** if U is a vector space under addition and scalar multiplication in V.

It is easy to see that the intersection of any number of subspaces of a vector space V is still a subspace of V, but the union might not be so. In particular, we would like to consider a special construct known as *direct sum*.

Definition 1.1.6 ▶ **Direct Sum**

Let V be a vector space and $U_1, U_2 \subseteq V$ such that $U_1 \cap U_2 = \{0\}$, then their **direct sum** is defined as

$$U_1 \oplus U_2 := \{ \boldsymbol{u}_1 + \boldsymbol{u}_2 : \boldsymbol{u}_1 \in U_1, \boldsymbol{u}_2 \in U_2 \}.$$

More generally, we can let U_1 and U_2 be any subsets of V and define $U_1 + U_2$ in the same manner, which is known as the *sum* of U_1 and U_2 .

It can be easily proven that for any vector space V, the direct sum of any two subspaces of V is still a subspace of V. A nice property of direct sum can be proven as follows:

Proposition 1.1.7 ▶ Unique Decomposition with Direct Sums

Let $V = U_1 \oplus U_2$, then every $\mathbf{v} \in V$ can be uniquely expressed as $\mathbf{u} + \mathbf{w}$ for some $\mathbf{u} \in U_1$ and $\mathbf{w} \in U_2$.

Proof. The existence of \boldsymbol{u} and \boldsymbol{w} is trivial by Definition 1.1.6. Suppose there exist $\boldsymbol{u}' \in U_1$ and $\boldsymbol{w}' \in U_2$ such that $\boldsymbol{u} + \boldsymbol{w} = \boldsymbol{u}' + \boldsymbol{w}'$, then we have $\boldsymbol{u} - \boldsymbol{u}' = \boldsymbol{w}' - \boldsymbol{w}$. Note that $\boldsymbol{u} - \boldsymbol{u}' \in U_1$ and $\boldsymbol{w}' - \boldsymbol{w} \in U_2$, so we have $\boldsymbol{u} - \boldsymbol{u}'$, $\boldsymbol{w}' - \boldsymbol{w} \in U_1 \cap U_2 = \{\boldsymbol{0}\}$, i.e.,

$$u-u'=w'-w=0.$$

Therefore, u = u' and w = w', i.e., u and w are unique.

In some sense, a direct sum of V can be viewed as a "partition" of V into two subsets with a minimal overlap. Note that unlike partition in its real definition, the subspaces U_1 and U_2 here cannot be disjoint sets as both of them have to contain the zero vector in V. More generally, for any subspace $U \subseteq V$, we have $\mathbf{0}_U = \mathbf{0}_V$, the proof of which should be trivial enough as an exercise to the reader.

In particular, we would like to consider \mathcal{F}^n for a general field \mathcal{F} . We can define the dot product operation over \mathcal{F}^n in the same way as \mathbb{R}^n . Take any subspace $U \subseteq \mathcal{F}^n$ and define the set

$$U_{\perp} := \{ \boldsymbol{u} \in \mathcal{F}^n : \boldsymbol{u} \cdot \boldsymbol{v} = 0 \text{ for all } \boldsymbol{v} \in U \},$$

then $\mathcal{F}^n = U \oplus U_{\perp}$.

To justify this, we first take any $v \in \mathcal{F}^n$. Using some calculus, we can show that there exists

$$\mathbf{u}_0 = \underset{\mathbf{u} \in U}{\operatorname{argmin}} |\mathbf{u} \cdot \mathbf{v}|.$$

Let $\mathbf{w} = \mathbf{v} - \mathbf{u}_0$, then clearly $\mathbf{v} = \mathbf{w} + \mathbf{u}_0$ where $\mathbf{u}_0 \in U$ and $\mathbf{w} \in U_\perp$. This implies that $V = U + U_\perp$. Note that $\mathbf{0}$ is the only vector in \mathcal{F}^n which is orthogonal to itself, so we have $U \cap U_\perp = \{\mathbf{0}\}$. It follows that $V = U \oplus U_\perp$.