1 Introduction to Galois theory assignmens 1

Problem 1.1

Problem 1.2 Set $\zeta = e^{\frac{2i\pi}{7}}$ and let $L = \mathbb{Q}(\zeta)$. Let $M = L \cap \mathbb{R}$.

- (a) Let p be prime. Prove $X^{p-1} + X^{p-2} + \cdots + X + 1 = \frac{X^p 1}{X 1}$ is irreducible over \mathbb{Q} (hint: Eisenstein)
- (b) Find the minimal polynomial of ζ over \mathbb{Q} and the degree of L over \mathbb{Q} .
- (c) Find the minimal polynomial of ζ over M (hint: $\zeta + \frac{1}{\zeta}$) and the degree $[L:M], [M:\mathbb{Q}].$
- (d) Let f be an automorphism of L over \mathbb{Q} . List all possibilities for $f(\zeta)$ then for $f(\cos(2\pi/7))$.

Solution: For (a), Let X = y + 1, then the polynomial is

$$\frac{(1+y)^p-1}{1+y-1} = \frac{y^p+py^{p-1}+\dots+py+1-1}{y} = y^{p-1}+py^{p-2}+\dots+p$$

Using Eisenstein criterion, it's irreducible, hence original polynomial must be irreducible.

For (b), it's a root of $X^7 - 1 = 0$, using (a), we know the minimal polynomial is $X^6 + X^5 + \cdots + 1$. And $[L : \mathbb{Q}] = 6$.

For (c), Because two dimension space need at most two independent vectors to generate. ζ have only degree 2 over $\mathbb R$. Actually because $\zeta+\frac{1}{\zeta}=\gamma\in L\cap\mathbb R$ we have $\zeta^2+1=\gamma\zeta$ which means it's a minimal polynomial over $M=L\cap\mathbb R$. Then $[M:\mathbb Q]=2$ and [L:M]=3.

For (d), $f(\zeta)$ must be a root of $X^6+X^5+\cdots+1$. And using stem field structure, any $\zeta\mapsto \zeta^i, i=1,\ldots,6$ exists. So all possible $f(\zeta)$ are $\zeta^i, i=1,\ldots,6$ And $f(\cos(2\pi/7))=f(\frac{\zeta+\zeta^{-1}}{2})$, hence all possibilities are $\cos(2k\pi/7), k=1,\ldots,6$.