

Tema6. Introducción a la Representación del Conocimiento

Inteligencia Artificial

Grado en Informática – 2º Curso

Elisa Guerrero Vázquez

Esther L. Silva Ramírez

Objetivos

Al finalizar el tema el alumno será capaz de:

- Comprender la necesidad de representar el conocimiento y realizar inferencia para que un sistema pueda exhibir comportamiento inteligente
- Conocer los distintos enfoques para la representación del conocimiento
- Identificar ventajas y limitaciones de los enfoques de representación revisados

Motivación

- IA intenta resolver problemas de gran complejidad del mundo real, para ello se requiere:
 - Gran cantidad de conocimiento
 - Mecanismos para manipular este conocimiento con el fin de obtener las mejores soluciones y resolver nuevos problemas
- Centramos el estudio en Métodos con representación explícita del conocimiento

Contenidos

- 1. Introducción
 - Base de conocimientos
 - Enfoques: Procedural y Declarativo, Relacional, y Jerárquico
- 2. Modelos Formales
 - Lógica
- 3. Modelos Estructurados
 - Sistemas de Reglas
 - Redes Semánticas
 - Marcos
 - Guiones
- 4. Resumen

Jerarquía del conocimiento

Datos Información Conocimiento Metaconocimiento

Jerarquía del conocimiento

Datos: elementos de interés en un dominio

Ejemplo: letras, dígitos, píxeles ...

Información: datos relevantes procesados

Ejemplo: nombres, fechas, valores de intensidades,...

Jerarquía del conocimiento

 Conocimiento: información especializada de alto nivel. Resultado de la experiencia de expertos.
 Organización e interrelaciones entre "piezas" de información

Ejemplo: ¿cuándo se considera que es alta la temperatura?, ¿qué significa que además haya tos?, precios caros o baratos, ...

Metaconocimiento: conocimiento acerca del conocimiento. Indica cómo utilizar el conocimiento

Ejemplo: Conocimiento que permita decidir desechar parte del conocimiento que no sea relevante en determinadas situaciones(ej.: selección de heurísticas)

Sistemas Basados en el Conocimiento (SBC)

Base de conocimientos

 Depósito de información sobre una serie de objetos y sus relaciones, dentro de un dominio específico del mundo real

Ingeniería del Conocimiento

- Proceso de <u>representar</u> el conocimiento sobre un dominio particular y convertirlo en una base de conocimientos
- Procesos que permiten la <u>manipulación</u> y transformación de una base de conocimientos

Hechos: verdades de un cierto mundo que se desea representar.

Garfield es un gato

Representaciones: de estos hechos de acuerdo a un determinado formalismo, y que serán las entidades que seremos capaces de manejar.

gato(Garfield)

Hechos Eventos

Hechos: Garfield es un gato
 Todos los gatos tienen uñas

5 -

Representación

Representación Simbólica

Hechos Eventos

Hechos: Garfield es un gato
 Todos los gatos tienen uñas

- Representaciones:
 - gato(Garfield)
 - \forall x:gato(x) \rightarrow TieneUñas(x)

Hechos Eventos Representación
Representación
Simbólica

Programas que usan conocimiento

- Hechos: Garfield es un gato
 Todos los gatos tienen uñas
- Representaciones:
 - gato(Garfield)
 - \forall x:gato(x) \rightarrow TieneUñas(x)
- Mediante mecanismo deductivo de la lógica
 - TieneUñas (Garfield)

- Hechos: Garfield es un gato
 Todos los gatos tienen uñas
- Representaciones:
 - gato(Garfield)
 - $\forall x: gato(x) \rightarrow TieneUñas(x)$
- Mediante mecanismo deductivo de la lógica
 - TieneUñas (Garfield)
- Interpretación final
 - Garfield tiene uñas
 - Garfield puede arañar
 - Etc.

Paradigmas de representación del conocimiento

ENFOQUES:

- Declarativo y procedural
- Relacional simple
- Jerárquico u Orientado a objetos

MÉTODOS:

- Lógica
- Sistemas de producción
- Redes semánticas
- Marcos
- Guiones

Enfoque declarativo/procedural

- Representación declarativa
 - Permite expresar hechos, reglas y relaciones de forma independiente de su manipulación o procesamiento
- Representación procedural
 - El conocimiento y su manipulación están implícitos en las estructuras de control y en la secuencia de las sentencias del programa

Declarativo vs. Procedimental

ENFOQUE DECLARATIVO

 $\forall x \text{ persona}(x) \rightarrow \text{mortal}(x)$

 $\forall x \text{ perro}(x) \rightarrow \text{mortal}(x)$

persona(Sócrates) persona(María) perro(Lassie)

FLEXIBILIDAD, MODULARIDAD

ENFOQUE PROCEDIMENTAL

function persona(x)

IF (x=Sócrates) or (x=María)

THEN result= true

ELSE result=false

function perro(x)

IF (x=Lassie) THEN res= true

ELSE res= false

function mortal(x)

IF persona(x) or perro(x)

THEN res= true

ELSE res= false

EFICACIA DE EJECUCIÓN

Representación Relacional Simple

- Representación Relacional Simple
 - Es fuertemente dependiente del tipo de información con el que se trabaje.
 - Similar a las bases de datos relacionales, almacenando una colección de información en una tabla, se pueden utilizar cálculos relacionales para manipular datos.
 - No son adecuadas para representaciones complejas del mundo real.

Hotel	Estrellas	Habitaciones	Ciudad
Palacio Real	4	500	Sevilla
Inn Relax	5	124	Cádiz
Abarde	5	23	Cádiz
Carolyne	3	56	Málaga
Barabas	4	345	Málag

Representación Jerárquica

- Los elementos u objetos que comparten una serie de características comunes se pueden asociar en clases o grupos.
 - Conocimiento heredado
 - Estructura jerárquica: forma útil y eficiente de organización de la información: reduce la complejidad y permite mayores niveles de abstracción.

Paradigmas de representación del conocimiento

ENFOQUES:

- Declarativo y procedural
- Relacional simple
- Jerárquico u Orientado a objetos

MÉTODOS:

- Lógica
- Sistemas de producción
- Redes semánticas
- Marcos
- Guiones

Formalismo Lógico

- Lógica Clásica
 - Lógica Proposicional
 - Lógica de Predicados
- Lógica Temporal
- Lógicas Multivaluadas
 - Trivalente
 - Lógica estándar de Lukasiewicz
 - Lógica Borrosa o Difusa (Fuzzy Logic)
 (la lógica del sentido común)

Lógica Proposicional

Cada proposición o hecho es representado mediante un símbolo (o conjunto de símbolos) del que se evalúa su Verdad o su Falsedad.

```
p: llover
s: suelo mojado
p→s
______
s
```

	Negación (NOT)
^	Conjunción (AND)
V	Disyunción (OR)
\Rightarrow	Implicación
	Implicación doble, si y
	sólo si, bicondicional

Es simple y posee un mecanismo de decisión a través de los proc. de inferencia, p.e. Modus Ponen

Lógica proposicional

Limitaciones

Mateo es estudiante de informática:

MateoEstudianteInformática

Camila estudiante de informática:

CamilaEstudianteInformática

Carlos es estudiante de informática:

CarlosEstudianteInformática

Manuela es estudiante de informática:

ManuelaEstudianteInformática

•••

Lógica proposicional

Limitaciones

Mateo es estudiante de informática:

MateoEstudianteInformática

Camila estudiante de informática:

CamilaEstudianteInformática

 Todos los estudiantes de informática son Inteligentes

EstudianteInformáticaInteligente;?;?

. .

Utilización de Predicados

Cádiz es calurosa en verano

- Lugar (Cádiz) Clima (caluroso)
 Estación (verano)
- Calurosa (Cádiz, verano)
- Verano (Cádiz, calurosa)

Utilización de Predicados

Cádiz es calurosa en verano

- Lugar (Cádiz) Clima (caluroso) Estación (verano)
- Calurosa (Cádiz, verano)
- Verano (Cádiz, calurosa)
- Limitaciones de la L. Proposicional
 Camila es estudiante de informática:

CamilaEstudianteInformática

Mateo es estudiante de informática:

MateoEstudianteInformática

Mejor: Estudiante (Camila, Informática)

Estudiante (Mateo, Informática)

- Introducción de los cuantificadores:
 - Existencial
 - Universal
- Introducción de Variables

```
\forall x, informatico(x)\rightarrowinteligente(x)
```

Sólo Mateo es Inteligente

```
inteligente (Mateo) \wedge

\neg \exists x (x \neq Mateo \wedge inteligente(x))
```


Mecanismos de Razonamiento

Resolución

 Proceso iterativo simple, donde en cada paso se comparan dos cláusulas padre, produciendo una nueva cláusula inferida de las anteriores

Refutación

 Para probar una proposición se intenta demostrar que su negación lleva a una contradicción

Equiparamiento de Patrones (Pattern Matching)

 Comparar los predicados iguales de dos sentencias y comprobar si sus argumentos se pueden unificar

Ventajas

- Modelo (funcional) para los razonamientos humanos
- Alto grado de formalización (sintaxis y semántica)
- Separación conocimiento (reglas)/razonamiento (inferencia)
- Otros esquemas se basan o pueden expresarse con ella
- Suficientemente expresiva para muchos dominios

Inconvenientes

- Los algoritmos de inferencia para el caso general son complejos y hay ciertos tipos de problemas en los que bastaría un lenguaje con algoritmos más sencillos
- A veces se queda corta
- Problemas para razonar con conocimiento incierto, impreciso y subjetivo

PROLOG

PROLOG

Este lenguaje de programación puede describirse como un sistema de programación lógica en el cual se usan solamente <u>Cláusulas de Horn</u>, y las pruebas se hacen usando resolución por **refutación**.

```
%% %% declaraciones %%
padrede('juan', 'maria'). % juan es padre de maria
padrede('pablo', 'juan'). % pablo es padre de juan
padrede('pablo', 'marcela')
padrede('carlos', 'debora')

% A es hijo de B si B es padre de A
hijode(A,B) :- padrede(B,A).
```


Lógica Difusa

PROGRAMACIÓN LÓGICA

alto(X) ← jugador_baloncesto(X)

LÓGICA DIFUSA

alto(pau_gasol) al 95%

PROGRAMACIÓN LÓGICA DIFUSA

alto(X) \leftarrow prod jugador_baloncesto(X) with 0.9

Contenidos

- 1. Introducción
 - Base de conocimientos
 - Enfoques: Procedural y Declarativo, Relacional, y Jerárquico
- 2. Modelos Formales
 - Lógica
- 3. Modelos Estructurados
 - Sistemas de Reglas
 - Redes Semánticas
 - Marcos
 - Guiones
- 4. Resumen

Reglas de Producción

SBR: SISTEMAS BASADOS EN REGLAS

si <antencedente> entonces <consecuente>

- Fácil de entender
- Robusto y más general que la lógica de predicados
- Permite la aplicación de distintos tipos de razonamiento para inferir nuevo conocimiento

Si lugar=Cádiz y estación=verano
entonces clima=caluroso

Reglas de Producción

si <antencedente> entonces <consecuente>

Todos los Estudiantes de Informática son Inteligentes

 $\forall x, estudiante_informática(x) \Rightarrow inteligente(x)$

Si ?x es estudiante_informática entonces ?x es inteligente

Red Semántica

- Grafo orientado y formado por un conjunto de nodos y arcos unidireccionales, ambos etiquetados.
- Los conocimientos relativos a un objeto o concepto se representan mediante pares atributos-valor.
 - Los nodos representan conceptos e instancias de dichos conceptos
 - Los arcos, que conectan nodos, representan relaciones binarias entre ellos:
 - Instancia
 - liga un objeto concreto con su tipo genérico
 - Subclase de
 - pone en relación una clase con otra más general, formando una red de nodos por especialización de conceptos
 - Parte de
 - liga un objeto con sus componentes

Ejemplo de Red Semántica

Marcos

- (slot-and-filler) Colección de atributos que define el estado de un objeto y su relación con otros objetos (marcos).
- Slots: valores de los datos
- Fillers: procedimientos para rellenar slots
- Pueden ser
 - Clases: representan conceptos o entidades generales.
 - Instancias: concreciones o ejemplos particulares de las clases

Ejemplo de Marco

SCRIPTS (Guiones)

- Estructura que describe una secuencia estereotipada de acciones.
- Secuencia causal de acciones:
 - la realización de una acción permite que pueda ocurrir la siguiente.
- Basados en los grafos de dependencia conceptual de Shank (años 70), pero van más allá de la representación de frases aisladas.

Componentes de un guión

- Precondiciones (Entry conditions)
- Poscondiciones (Result): hechos que serán ciertos una vez completado la secuencia de hechos del guión.
- Roles: Personajes.
- Objetos (Props) objetos que describen los hechos.
- Escenas: sucesos descritos en el guión, organizados secuencialmente (la realización de una escena permite que se pueda realizar la siguiente).
- Tracks: Variaciones en el script. Tracks diferentes pero que pueden compartir gran parte de los componentes de un script.

Restaurante - Planteamiento

El cliente entra en el restaurante y se sienta. El camarero le entrega el menú. El cliente selecciona unos platos. El cocinero prepara la comida y el camarero la sirve. El cliente come la comida que le han servido; después paga y se va del restaurante.

Guiones (scripts)

Guión: Restaurante l

Track: Cafetería

Props: Mesas

Menú

Comida

Cuenta

Dinero

Escena 1: Entrar

Cliente entra Restaurante

Cliente mira las Mesas

Cliente elige donde sentarse

Cliente mueve a la posición elegida

Escena 2: Pedir

Roles: Cliente

Camarero

Cajero

Cocinero

Escena 3: Comer

Escena 4: Pagar

Escena 5: Salir

Departamento de Ingeniería Informát

Bibliografía

- **1. Pajares** G. y Santos Peñas M.: *Inteligencia artificial e ingeniería del conocimiento,* Ra-Ma, Madrid 2005
- **2. Rich** E. y Knight K.: *Inteligencia Artificial*. McGraw-Hill, 1994
- **3. Borrajo** D., Juristo N., Martínez V. y Pazos J.: *Inteligencia Artificial. Métodos y Técnicas*, Centro de Estudios Universitarios Ramón Areces, Madrid, 1993.
- **4. Escolano** F., Cazorla M.A., Alfonso M.I., Colomina O. y Lozano M.A. *Inteligencia Artificial. Modelos, técnicas y áreas de aplicación.*
- 5. Transparencias: Representación del Conocimiento. F.J. Ribadas Pena, Universidad de Vigo.

