Medical Image Processing for Diagnostic Applications

Basic Principles of Reconstruction

Online Course – Unit 28 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Image Reconstruction
Simple Example
Reconstruction Steps

Backprojection
Simple Example
Mathematical Formulation

Summary

Take Home Messages Further Readings

Reconstruction: Simple Example

Solve the puzzle:

Reconstruction: Simple Example

• The projection process can be formulated in matrix notation:

$$P = AX$$

where

$$\mathbf{P} = \begin{pmatrix} 7 \\ 2 \\ 5 \\ 4 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ \text{the beams} \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

Can this be solved using the matrix inverse?

$$A^{-1}P = X$$

• Consider: A common problem size is:

$$\mathbf{A} \in \mathbb{R}^{512^3 \times 512^2 \times 512}$$

which implicates

$$512^6 \cdot 4 \text{ Byte} = 2^{9 \cdot 6} \cdot 2^2 \text{ B} = 2^6 \cdot 2^{50} \text{ B} = 64 \text{ PB} = 65536 \text{ TB}$$
. :(too big -> solution via psudoinverse not posible

Andreas Maier

Reconstruction Steps: Projection

Figure 1: Schematic example for a set of projections (Zeng, 2009)

Reconstruction Steps: Backprojection (1)

Figure 2: Schematic example for the backprojection process - one projection (Zeng, 2009)

Reconstruction Steps: Backprojection (2)

Figure 3: Schematic example for the backprojection process - multiple projections (Zeng, 2009)

Reconstruction Steps: Backprojection (3)

Figure 4: Schematic example for the backprojection process - infinitely many projections (Zeng, 2009)

Reconstruction Steps: "Negative Wings"

Figure 5: Schematic example for corrective filtering (Zeng, 2009)

Reconstruction Steps: Reconstruction Result

Figure 6: Schematic example for the reconstruction output (Zeng, 2009)

Topics

Image Reconstruction
Simple Example
Reconstruction Steps

Backprojection Simple Example Mathematical Formulation

Summary

Take Home Messages Further Readings

Backprojection: Simple Example

Backprojection: Simple Example

this is not the real image:/

why would we use this?

Backprojection: Simple Example

- Backprojection is not the inverse of projection!
- In matrix notation, it is simply the matrix transpose:

 $\mathbf{B} = \mathbf{A}^{\mathsf{T}} \mathbf{P},$

better than nothing but not as good as inverse solution

where

$$m{A}^T = egin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}, \quad m{P} = egin{pmatrix} 7 \\ 2 \\ 5 \\ 4 \end{pmatrix}, \quad m{B} = egin{pmatrix} 12 \\ 7 \\ 11 \\ 6 \end{pmatrix}.$$

Backprojection: Mathematical Formulation

The following equivalent formulations are employed in literature:

$$b(x,y) = \int_{0}^{\pi} p(s,\theta)|_{s=x\cos\theta+y\sin\theta} d\theta,$$
 $b(x,y) = \int_{0}^{\pi} p(s,\theta)|_{s=x\cdot\theta} d\theta,$
 $b(x,y) = \int_{0}^{\pi} p(x\cdot\theta,\theta) d\theta,$
 $b(x,y) = \frac{1}{2} \int_{0}^{2\pi} p(x\cos\theta+y\sin\theta,\theta) d\theta.$ same as before, but now continous

Topics

Image Reconstruction
Simple Example
Reconstruction Steps

Backprojection
Simple Example
Mathematical Formulation

Summary

Take Home Messages Further Readings

Take Home Messages

- Reconstruction involves several steps: projection, backprojection, and filtering.
- Backprojection is not the inverse of projection, but just the transpose.

Further Readings

Students learning about reconstruction should have a look at one of the following books:

- Gengsheng Lawrence Zeng. Medical Image Reconstruction A Conceptual Tutorial. Springer-Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-05368-9
- Avinash C. Kak and Malcolm Slaney. Principles of Computerized Tomographic Imaging. Classics in Applied Mathematics. Accessed: 21. November 2016. Society of Industrial and Applied Mathematics, 2001. DOI: 10.1137/1.9780898719277. URL: http://www.slaney.org/pct/
- Thorsten Buzug. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer Berlin Heidelberg, 2008. DOI: 10.1007/978-3-540-39408-2
- Willi A. Kalender. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications. 3rd ed. Publicis Publishing, July 2011