

Document XD0506P, Revision F, 28 Oct 2021

Xsens DOT BLE Services Specifications

Revision	Date	Ву	Changes
Revision A	25 April 2020	AVY, XUF	Initial release
Revision B	19 May 2020	XUF	Update status definition.Add definition of clipCountAcc and clipCountGyro.
Revision C	27 August 2020	XUF	 Add serial number in configuration service Add power saving notification Add 4 new payload mode Add FL_MagIsNew status Add synchronization message service Add recording message service
Revision D	15 Dec 2020	XUF	 Add output rate in configuration service Add filter profile in configuration service Add button callback in configuration service Add best practice for measurement service Add StopSync message Add GetSyncStatus message Update best practice to start synchronization Remove crash info service (re-design in progress)
Revision E	15 July 2021	XUF, GES	 Add supported hardware version and software version in firmware compatibility Update the firmware changelogs URL Add short product code in device info characteristic Update the power off and power on options in device control characteristic Add the custom 4 payload type in measurement service Update the best practice for synchronization
Revision E	28 October 2021	XUF	Correct the SyID of synchronization acknowledge message from 0x01 to 0x03 in section 5.3.3

© 2005-2021, Xsens Technologies B.V. All rights reserved. Information in this document is subject to change without notice. Xsens, MVN, MotionGrid, MTi, MTi-G, MTx, MTw, Awinda, Xsens DOT and KiC are registered trademarks or trademarks of Xsens Technologies B.V. and/or its parent, subsidiaries and/or affiliates in The Netherlands, the USA and/or other countries. All other trademarks are the property of their respective owners.

Table of Contents

1 In	ntroduction	6
1.1	Base UUID	6
1.2	Scanning and Filtering	6
1.3	Endianness	7
1.4	Firmware Compatibility	7
2 C	onfiguration service	8
2.1	Device Info Characteristic	8
2.2	Device Control Characteristic	9
2.3	Device Report Characteristic	10
3 M	easurement service	12
3.1	Control Characteristic	13
3.2	Long Payload Length Characteristic	14
3.3	Medium Payload Length Characteristic	14
3.4	Short Payload Length Characteristic	15
3.5 3.!	Measurement Data5.1 Status definition	
3.6	Orientation Reset Control Characteristic	17
3.7	Orientation Reset Status characteristic	17
3.8	Best Practices for Measurement Service	18
4 Ba	attery Service	19
4.1	Battery Characteristic	19
4.2	Best Practice for Battery Service	19
5 M	essage Service	20
5.1	Message Structure	
5.2	Recording Message	21 23
	2.3 Recording acknowledge message	26

5.2.5	Best practice for recording	31
	nchronization Message	
,	Synchronization message usage	
	Synchronization control messages	
	Synchronization acknowledge message	
	Synchronization notification message	
	Best practice for synchronization	
5.4 Me	essage Reference Listing	37
5.4.1	Recording messages (section 5.2)	37
	Synchronization messages (section 5.3)	

List of references

1. Xsens DOT User Manual [XD0502P]

			-	_	100	
IC	+	0	-		h	les
15		()		10	11)	105

Table 1: Bluetooth requirements	6
Table 2: BLE services and characteristics	6
Table 3: Xsens Bluetooth company identifier	
Table 4: Firmware compatibility	
Table 5: Characteristics of the Configuration Service	8
Table 6: Device info characteristic structure	
Table 7: Device control characteristic structure	
Table 8: Filter profile index and information	
Table 9: Power off structure	
Table 10: Power saving structure	
Table 11: Button callback structure	
Table 12: Characteristics of the Measurement Service	
Table 13: Control characteristic structure	
Table 14: Long payload length modes	
Table 15: Medium payload length modes	
Table 16: Short payload length modes	
Table 17: Measurement data	
Table 18: Orientation reset control characteristic structure	
Table 19: Orientation reset status structure	
Table 20: Characteristics of the Battery Service	
Table 21: Battery characteristic structure	
Table 22: Characteristics of the Message Service	.20
Table 23: Construction of the Message	
Table 24: Message ID	
Table 25: Available data when exporting	
Table 26: Recording ACK Results	
Table 27: Structure of recording flash	
Table 28: Header file structure	.28
Table 29: Structure of file indicator	
Table 30: Structure of the file	
Table 31: Structure of header space	
Table 32: Synchronization ACK Results	
List of Figures	
Figure 1: Best practice to start a measurement	.18
Figure 2: Best practice to reset the heading	.18
Figure 3: Best practice of battery service	.19
Figure 4: Best practice to start and stop recording	.31
Figure 5: Best practice to export recording files	.32
Figure 6: Best practice to start synchronization	

1 Introduction

This document gives detailed Bluetooth services and characteristics specifications of Xsens DOT sensor firmware. You can refer to this document to build your applications in all platforms. Table 1 shows the Bluetooth requirements of the host device.

Table 1: Bluetooth requirements

Bluetooth requirement

- Best performance with BLE 5.0, DLE supported
- Compatible with Bluetooth 4.2

To get started, read *Xsens DOT User Manual* first to understand the basic functions of the sensor. Then refer to the example code – <u>Xsens DOT server</u>. It is a demonstration built using Node.js in combination with Noble.

1.1 Base UUID

All attributes, i.e., services and characteristics of Xsens DOT have a UUID which is formatted as a hexadecimal number:

1517**xxxx**-4947-11E9-8646-D663BD873D93

The bold characters are those that differ between the attributes. As such, the short notation of the UUID can be used. Refer to Table 2 for the available services and its UUID.

Table 2: BLE services and characteristics

Service	UUID	Description
Configuration Service	0x1000	Sensor information and configuration settings.
Measurement Service	0x2000	Configuring and receiving data of real-time streaming.
Battery Service	0x3000	Charging status and battery level.
Message Service	0x7000	Shared service for recording and synchronization functions.

1.2 Scanning and Filtering

Xsens Technologies B.V. is an Adopter Member of Bluetooth SIG. Refer to Table 3 for the Bluetooth company identifier of Xsens.

Table 3: Xsens Bluetooth company identifier

Company	Decimal	Hexadecimal
Xsens Technologies B.V.	2182	0x0886

You can use company ID, together with the tag name "Xsens DOT" to filter Xsens DOT sensors.

1.3 Endianness

All the members are set in little-endian.

1.4 Firmware Compatibility

All the services and characteristics are applicable to the latest firmware version v2.0.0. Table 4 shows the supported hardware, SDK and App versions regarding the firmware version.

Xsens has released the 2nd generation of Xsens DOT hereinafter as v2. Refer to the 2021-07 Product Change Notification Xsens DOT for the detailed changes.

As firmware v2.0.0 supports both v1 and v2 sensors, unless specifically mentioned, all functions in this document are applicable to v1.

Table 4: Firmware compatibility

Firmware	Hardware (Xsens DOT sensor)	SDK and App (Android & iOS)
2.0.0 (stable)	Both v1 and v2	v2021.0
1.6.0 (stable)	v1	v2020.4
1.4.0 (stable)	v1	v2020.2
1.3.0 (beta)	v1	v2020.1
1.0.0 (stable)	V1	v2020.0, v2020.1, v2020.2

Refer to the <u>firmware changelogs</u> for all the changes between different firmware versions.

Note – It's always recommended to use the latest firmware, SDK and App versions for new features and improvements.

2 Configuration service

Configuration service provides sensor information such as Bluetooth identity address, firmware version and serial number, as well as controlling the sensor configurations.

The UUID of this service is **0x1000** and relevant characteristics are given in Table 5.

Table 5: Characteristics of the Configuration Service

Characteristic	UUID	Description	Length	Property
Device info	0x1001	Sensor basic information	34	Read
Device control	0x1002	Sensor behavior and configurations	32	Read, Write
Device report	0x1004	Return sensor status or control command results	36	Notify

2.1 Device Info Characteristic

The device info characteristic is a 34-bytes data structure with the fields as specified in Table 6.

Table 6: Device info characteristic structure

Field name	Size	Description	Values
Address	6	Bluetooth identity address	BLE_GAP_ADDR_TYPE_PUBLIC
Version Major	1	Firmware major version	0 ~ 255, uint8
Version Minor	1	Firmware minor version	0 ~ 255, uint8
Version Revision	1	Firmware revision version	0 ~ 255, uint8
Build Year	2	Firmware build year	2019 ~ 2100, uint16
Build Month	1	Firmware build month	1 ~ 12, uint8
Build Date	1	Firmware build date	1 ~ 31, uint8
Build Hour	1	Firmware build hour	0 ~ 23, uint8
Build Minute	1	Firmware build minute	0 ~ 59, uint8
Build Second	1	Firmware build second	0 ~ 59, uint8
SoftDevice version	4	SoftDevice version	uint32_t
Serial Number	8	Serial number	uint64_t
Short Product Code	6	First 6 bytes of product code string	 "XS-T01" – Xsens DOT 1st generation sensor "XS-T02" - Xsens DOT 2nd generation sensor

2.2 Device Control Characteristic

The device control characteristic is a 32-bytes data structure with the fields as specified in Table 7.

Table 7: Device control characteristic structure

Field name	Size	Description	Values
Visit Index	1	One-byte bitmask. b0: Identifying b1: Power off b2: Power saving timeout b3: Tag name b4: Output rate b5: Filter profile index	Set the bit to 1 to enable the corresponding function. Set the bit to 0 to ignore.
Identifying	1	Sensor will be identified if it's set to "0x01". The sensor LED will fast blink 8 times and then a short pause in red, lasting for 10 seconds.	0x01: identify the sensor
Power off and power on options	1	Power off – shut down the sensor. Power on options – This setting is only available in Xsens DOT v2 sensor. v2 sensor can always be powered on by pressing the power button for 2 seconds. Additionally, it can also be turned on by USB plug in. This function is disabled by default and it can be enabled by setting the b1 to "1".	 b0: Set '1' to power off the sensor b1: Set '1' to enable the v2 sensor to be powered on by USB plug in. Set '0' to disable it. b2 - b7: reserved Set b0 to '1' will ignore other bits in this field.
Power saving timeout X (minute)	1	Timeout threshold that sensor goes to power saving mode in advertisement mode. Set to 0 if you want to disable power saving in advertisement mode.	0 ~ 30, default value 10
Power saving timeout X (second)	1	,	0 ~ 60, default value 0
Power saving timeout Y (minute)	1	Timeout threshold that sensor goes to power saving mode in connection mode. Set to 0 if you want to disable power saving in connection mode.	0 ~ 30, default value 30
Power saving timeout Y (second)	1		0 ~ 60, default value 0
Device Tag length	1	Length of tag name. Ignore the write operation for invalid length.	0 ~ 16
Device Tag ¹	16	Device tag name	Default value "Xsens DOT"
Output rate	2	Data output rate (Hz) for real-time streaming and recording. It cannot be changed after measurement or synchronization start.	1, 4, 10, 12, 15, 20, 30, 60, 120 • Default value 60

¹ Don't use special numeric for tag name, such as /\:, in case of potential error in host applications.

-

			120 is only available for recording.
Filter profile index	1	Index of the filter profile. Use the index to get or set the active filter profile for real-time streaming and recording. It cannot be changed after measurement or synchronization start.	Refer to Table 8 for the index and information of filter profiles. Refer to section 3.2 in User manual for detailed information.
Reserved	5	Reserved for future use	0

Note - the bold fields are saved in external flash.

Table 8: Filter profile index and information

Index	Property	Name	Name length	Description
0	Public	General	7	Default for general human motions
1	Public	Dynamic	7	For fast and jerky human motions like sprinting.

2.3 Device Report Characteristic

The device report characteristic is a 36-bytes data structure. Based on the command sent from the device control characteristic, or the operations applied on the sensor, the sensor will send out specific report to inform the central device. The following sections list out 3 different types of report. The structure of each report is also specified. Ignore the unused bytes.

2.3.1 Power off

Sensor will send out this report when it is powered off by following methods:

- 1. Power button is pressed over 3s
- 2. Receive power off command from central as described in Table 7.
- 3. Battery level is lower than 2%

Table 9: Power off structure

Field name	Size	Description	Values
Туре	1	Sensor is powered off.	1
-	35	Unused	-

2.3.2 Power saving

Sensor will send out this report when entering power saving mode in advertisement or connection mode.

Table 10: Power saving structure

Field name	Size	Description	Values
Туре	1	Sensor is in power saving mode.	4
-	35	Unused	-

2.3.3 Button callback

If there is a single click on the power button during connection, sensor will send out this report with a sensor timestamp. This function is called as "Button callback".

When the pressing time is $10 \sim 800$ ms, it is judged as a valid single click. The timestamp is from sensor's local clock and independent of synchronization timestamp.

Table 11: Button callback structure

Field name	Size	Description	Values
Туре	1	Detection of a single click	5
Length	1	The length of the timestamp	4: 4 bytes timestamp (default) 8: 8 bytes timestamp
Timestamp	4 or 8	Timestamp when the power button is pressed. Unit is millisecond.	
-	30 or 26	Unused	-

3 Measurement service

Measurement service enables the start and stop of the measurement on the sensor, as well as setting payload modes and receiving the measurement data.

The UUID of this service is **0x2000** and relevant characteristics are given in Table 12.

Table 12: Characteristics of the Measurement Service

Characteristic	UUID	Description	Length	Property
Control	0x2001	Control the start/stop and payload mode of the measurement.	3	Read, Write
Long payload length	0x2002	Return the data of payload modes that have payload length higher than 40 bytes.	63	Notify
Medium payload length	0x2003	Return the data of payload modes that have payload length between 21 to 40 bytes.	40	Notify
Short payload length	0x2004	Return the data of payload modes that have payload length between 0 to 20 bytes.	20	Notify
Magnetic field mapper	0x2005	Not for public use	_	-
Orientation reset control	0x2006	Reset or revert the heading.	2	Read, Write
Orientation reset status	0x2007	Heading reset result	1	Read
Orientation reset data	0x2008	Not for public use	-	-

3.1 Control Characteristic

The control characteristic is a 3-bytes data structure with the fields as specified in Table 13.

Note - Enable BLE notification to get the measurement data for real-time streaming before setting the control characteristic.

Table 13: Control characteristic structure

Field Name	Size	Description	Values
Туре	1	Type of the control target	1: measurement Others are invalid value
Action	1	Start or stop the measurement or get the status of the measurement.	0: stop, or measurement is stopped 1: start, or measurement is started
Payload mode	1	Set the payload mode or get the current payload mode.	1: High Fidelity (with mag) ² 2: Extended (Quaternion) 3: Complete (Quaternion)
		Based on payload length, each measurement type will use medium or short payload length characteristics for notification.	4: Orientation (Euler) 5: Orientation (Quaternion) 6: Free acceleration 7: Extended (Euler) 16: Complete (Euler)
		Refer to section 3.2 and 3.4 for the structure of each payload mode.	17: High Fidelity ³ 18: Delta quantities (with mag) 19: Delta quantities 20: Rate quantities (with mag) 21: Rate quantities 22: Custom mode 1 23: Custom mode 2 24: Custom mode 3 25: Custom mode 4 ⁴

Note - the **bold** fields are saved in external flash.

⁴ Custom mode 4 payload mode can only be parsed through the SDK

_

² High Fidelity (with mag) payload mode can only be parsed through the SDK

³ High Fidelity payload mode can only be parsed through the SDK

3.2 Long Payload Length Characteristic

Long payload length characteristic will return the data of payload mode that has the payload length higher than 40 bytes.

Based on the selected payload mode in control characteristic, the structure of long payload characteristic is specified in Table 14. Refer to Table 17 for the definition and format of each measurement data. The data transmission order is the data structure order listed in the table. Unused bytes are all set to 0x00.

Table 14: Long payload length modes

Payload mode	Total Size	Data structure
Custom mode 4	51	This mode contains timestamp, inertial data in high fidelity mode, quaternion, magnetic field data and status. It can only be parsed through the SDK. So please use this mode through the SDK.

3.3 Medium Payload Length Characteristic

Medium payload length characteristic will return the data of payload mode that has the payload length between 21 and 40 bytes.

Based on the selected payload mode in control characteristic, the structure of medium payload characteristic is specified in Table 15Table 14. Refer to Table 17 for the definition and format of each measurement data. The data transmission order is the data structure order listed in the table. Unused bytes are all set to 0x00.

Table 15: Medium payload length modes

Payload mode	Total Size	Data structure
Extended (Quaternion)	36	 Timestamp Quaternion Free acceleration Status clipCountAcc clipCountGyr
Complete (Quaternion)	32	TimestampQuaternionFree acceleration
Extended (Euler)	32	 Timestamp Euler Free acceleration Status clipCountAcc clipCountGyr
Complete (Euler)	28	TimestampEulerFree acceleration
High Fidelity (with mag)	35	This mode contains timestamp, inertial data in high fidelity mode, magnetic field data and status. It can only be parsed through the SDK. So please use this mode through the SDK.

High Fidelity	29	This mode contains timestamp, inertial data in high fidelity mode and status. It can only be parsed through the SDK. So please use this mode through the SDK.
Delta quantities (with mag)	38	TimestampdqdvMagnetic field
Delta quantities	32	Timestampdqdv
Rate quantities (with mag)	34	TimestampAccelerationAngular velocityMagnetic field
Rate quantities	28	TimestampAccelerationAngular velocity
Custom mode 1	40	TimestampEulerFree accelerationAngular velocity
Custom mode 2	34	TimestampEulerFree accelerationMagnetic field
Custom mode 3	32	TimestampQuaternionAngular velocity

3.4 Short Payload Length Characteristic

Short payload length characteristic will return the data of payload mode that has the payload length lower than 20 bytes.

Based on the selected payload mode in control characteristic, the structure of long payload characteristic is specified in Table 16. Refer to Table 17 for the definition and format of each measurement data. The data transmission order is the data structure order listed in the table. Unused bytes are all set to 0x00.

Table 16: Short payload length modes

Payload mode	Total Size	Data structure
Orientation (Euler)	16	TimestampEuler
Orientation (Quaternion)	20	TimestampQuaternion
Free acceleration	16	Timestamp Free acceleration

3.5 Measurement Data

This section explains the definition and format for each measurement data in medium and short payload length characteristics. Refer to chapter 4 in *Xsens DOT User Manual* for more details about each data.

Table 17: Measurement data

Data	Size	Description	Format
Timestamp	4	Timestamp on the sensor in microseconds.	
Quaternion	16	The orientation expressed as a quaternion.	w,x,y,z, IEEE-754 32-bit floating point
Euler angles	12	The orientation expressed as Euler angles, degree.	x,y,z, IEEE-754 32-bit floating point
Free acceleration	12	Acceleration in local earth coordinate and the local gravity is deducted, m/s ²	x,y,z, IEEE-754 32-bit floating point
dq	16	Orientation change during a time interval.	w,x,y,z, IEEE-754 32-bit floating point
dv	12	Velocity change during a time interval, m/s.	x,y,z, IEEE-754 32-bit floating point
Acceleration	12	Calibrated acceleration in sensor coordinate, m/s ² .	x,y,z, IEEE-754 32-bit floating point
Angular velocity	12	Rate of turn in sensor coordinate, dps.	x,y,z, IEEE-754 32-bit floating point
Magnetic field	6	Magnetic field in sensor coordinate, a.u.	x,y,z, fixed point
Status	2	See section 3.5.1	unsigned short
clipCountAcc	1	Count of ClipAcc in status	unsigned integer
clipCountGyr	1	Count of ClipGyr in status	unsigned integer

3.5.1 Status definition

Data (Bit mask)	Abbr.	Description
0x0001	FL_ClipAccX	Accelerometer is out of range in x-axis
0x0002	FL_ClipAccY	Accelerometer is out of range in y-axis
0x0004	FL_ClipAccZ	Accelerometer is out of range in z-axis
0x0008	FL_ClipGyrX	Gyroscope is out of range in x-axis
0x0010	FL_ClipGyrY	Gyroscope is out of range in y-axis
0x0020	FL_ClipGyrZ	Gyroscope is out of range in z-axis
0x0040	FL_ClipMagX	Magnetometer is out of range in x-axis
0x0080	FL_ClipMagY	Magnetometer is out of range in y-axis
0x0100	FL_ClipMagZ	Magnetometer is out of range in z-axis
0x0200	FL_MagIsNew	Magnetometer sample in this data packet is updated. In DOT
		the magnetometer is sampled at 60Hz so this bit should
		always be set if the output rate is 60Hz.

For example, if status is 0x0012, it means accelerometer is out of range in y-axis and gyroscope is out of range in y-axis for this data packet.

3.6 Orientation Reset Control Characteristic

Orientation reset allows the user to align the orientation outputs among all sensors and with the object(s) they are connected to. Only heading reset is available for now. The heading reset or revert must be executed during the measurement. Heading reset is maintained between connection/disconnection or different measurements but will be lost after the sensor reboots. After reset the heading, a revert is required before conducting a new reset.

The orientation reset control characteristic a 2-bytes data structure with the fields as specified in Table 18.

Table 18: Orientation reset control characteristic structure

Field name	Size	Description	Values
Туре	2	Control to reset or revert the heading.	0x0001: Reset heading 0x0007: Revert heading to default 0x0008: Default status

3.7 Orientation Reset Status characteristic

Table 19: Orientation reset status structure

Field name	Size	Description	Values
ResetResult	1	The result of heading reset	0: Fail
		_	1: Success

3.8 Best Practices for Measurement Service

Figure 1: Best practice to start a measurement

Figure 2: Best practice to reset the heading

4 Battery Service

This service provides battery information such as battery level and charging status. The sensor will periodically read the fuel gauge to give an up-to-date value. This service will explicitly notify the battery level when battery level percentage changes.

The UUID of this service is **0x3000** and relevant characteristics are given in Table 12.

Table 20: Characteristics of the Battery Service

Characteristic	UUID	Description	Length	Property
Battery	0x3001	Battery level and charging status	2	Read, Notify

4.1 Battery Characteristic

The battery characteristic is a 2-bytes data structure with the fields as specified in Table 21.

Table 21: Battery characteristic structure

Field name	Size	Description	Values
Battery level	1	Battery level in percentage	0~100
Charging status	1	Charging status of the battery	0: Not charging 1: Charging

4.2 Best Practice for Battery Service

Figure 3: Best practice of battery service

5 Message Service

Message service is a shared service for recording and synchronization functions.

The UUID of this service is **0x7000** and relevant characteristics are given in.

Table 22: Characteristics of the Message Service

Characteristic	UUID	Description	Length	Property
Control	0x7001	Manage control messages	160	Write
Acknowledge	0x7002	Manage acknowledge messages	160	Read
Notification	0x7003	Manage notification message	160	Notify

5.1 Message Structure

The communication of recording and synchronization functions with Xsens DOT sensors is done by messages which are built according to a standard structure. The message has a maximum of 157 data bytes.

A DOT message contains the following fields:

MID	LEN	DATA	CHECKSUM

Table 23: Construction of the Message

Field	Field width	Description
MID	1 byte	Message Identifier
LEN	1 byte	Specifies the number of data bytes in the DATA field
DATA	0-157 bytes	Data bytes
CHECKSUM	1 byte	Checksum of message

Message Identifier (MID)

This message field identifies the type of message.

Table 24: Message ID

MID	Description	
0x01	Recording Message	
0x02	Synchronization message	

Length (LEN)

Specifies the number of data bytes in the DATA field.

Data (DATA)

This field contains the data bytes. The data is always transmitted in little-endian format.

Checksum

This field is used for communication error-detection. If all message bytes are summed and the lower byte value of the result equals zero, the message is valid and it may be processed. The checksum value of the message should be included in the summation.

5.2 Recording Message

With recording function, sensor data can be stored in internal storage and exported for post process after the measurement. Refer to section 3.3.3 in *Xsens DOT User Manual* for more information about recording function.

MID of recording messages is 0x01. DATA of recording message contains two fields: recording ID (ReID) and recording DATA (ReDATA).

A recording message contains the following fields:

		DATA	
MID(0x01) LEN	ReID	ReDATA	CHECKSUM

Recording ID (ReID)

This field identifies different recording messages. For a complete listing of all possible recording messages see section 5.2.2, 5.2.3 and 5.2.4.

Recording DATA (ReDATA)

This field contains the recording data bytes. The interpretation of the recording data bytes is recording message specific, i.e., depending on the ReID value the meaning of the ReDATA bytes is different.

5.2.1 Recording message usage

After sending a recording control message with a certain ReID, check the acknowledge (ACK) right after it. Otherwise, this acknowledge will be overwritten by the acknowledge of the next message.

Some recording message will be replied with a notification message with a ReID value that is increased. Depending on the message type, the notification message can have a data field (no fixed length) or not. If nothing is specified, the data field does not exist.

Some messages have the same ReMID and the meaning differs depending on its message service characteristics. For example, the ReMID of control message stop recording (StopRecording) is the same as the notification message that recording stopped (RecordingStopped). The difference between the two messages is that they use different message characteristices.

Example

Request the recording status:

Sending message:

GetState = 0x010102FC

Check acknowledge:

Acknowledge = 0x01030106 02F30000 00000000 ... 00000000

Example

Start a 30 min timed recording

Sending message:

StartRecording = 0x010740DF503B5B0807E0

Check acknowledge:

Acknowledge = 0x01090100 40DF503B 5B0807DD 00000000 ... 00000000

Example

Stop a timed recording:

Sending message:

StopRecording = 0x010141BD

Check acknowledge:

Acknowledge = 0x01030100 41BA0000 00000000 00000000 ... 00000000

Example

Request 1st file information:

Sending message:

RequestFileInfo = 0x010260019C

Check acknowledge:

Receiving notification:

Notification =

Example

Select export data with following data quantities:

- 1. Timestamp
- 2. Quaternion
- 3. dq
- 4. dv
- 5. Calibrated angular velocity
- 6. Calibrated acceleration
- 7. Calibrated mag
- 8. Status

Sending message:

SelectExportData = 0x010974000105060708090A54

Receiving notification:

Notification = $0 \times 010B0100740001050607080904510000...000000000$

Example

Request 7th file data:

Sending message:

RequestFileData = 0x0102700786

Check acknowledge:

Acknowledge = 0x01040100 70078300 00000000 00000000 ... 00000000

Receiving notification:

Notification =

0x01557100 00000075 A766A81A 3D643EFF ... 00000000 00000000 0x01557101 00000090 E866A84B A7673E67 ... 00000000 00000000

. . .

5.2.2 Recording control messages

GetState

ReID 0x02 ReDATA n/a

Direction To sensor Valid in Any state

Request sensor's recording state. Check acknowledge to get the result.

EraseFlash

ReID 0x30

ReDATA EraseUTC (4 bytes)

Direction To sensor Valid in Idle state

Request to clear all the recording data space, other flash space will not be affected. A **StoreFlashInfoDone** notification will be sent to host if recording flash erase is completed.

EraseUTC

The erase start time that contains the timestamp expressed as the UTC time in seconds.

StartRecording

ReID 0x40

ReDATA StartUTC (4 bytes) RecordingTime (2 bytes)

Direction To sensor Valid in Idle state

Start recording message. Recording will automatically stop in the following situations:

- power button is pressed over 1 second
- time is up for timed recording
- flash memory is over 90%

RecordingStopped notification will be sent to the host once the recording stops.

StartUTC

The recording start time that contains the timestamp expressed as the UTC time in seconds.

RecordingTime

The time setting value of a timed recording and the unit is second. Don't set a timer that exceeds the maximum recording time (88 min = 5280 sec). Set RecordingTime to 0xFFFF if you want a normal recording without timer.

StopRecording

ReID 0x41 ReDATA n/a Direction Both

Valid in Recording state

Stop recording.

RequestRecordingTime

ReID 0x42
ReDATA n/a
Direction To sensor
Valid in Recording state

Request the recording time since recording started. **RecordingTime** notification will be sent to host with recording time information.

RequestFlashInfo

ReID 0x50
ReDATA n/a
Direction To sensor
Valid in Idle state

Request recording flash information. **ExportFlashInfo** notification will be sent to host with flash information. **ExportFlashInfoDone** notification will be sent if the flash information has been sent completely.

RequestFileInfo

ReID 0x60

ReDATA FileIndex (1 byte)

Direction To sensor Valid in Idle state

Request recording file information by FileIndex. ExportFileInfo notification will be sent to host with the requested recording file information.

ExportFileInfoDone notification will be sent if the file information has been sent completely.

FileIndex

Index of the recording files. Starts from 0x01 and maximum up to 0xFE. You can get total file number and file sizes from ExportFlashInfo notification.

RequestFileData

ReID 0x70

ReDATA FileIndex (1 byte)

Direction To sensor Valid in Idle state

Request recording file data based on FileIndex. Recording file data packets will be sent to host via **ExportFileData** notification. **ExportFileDataDone** notification will be sent if all the file data has been sent.

StopExportData

ReID 0x73 ReDATA n/a Direction Both

Valid in Export recording data

Use this message to stop data exporting.

SelectExportData

ReID 0x74

ReDATA SelectedData
Direction To sensor
Valid in Idle state

Configure export data options. Set byte array if you want to export multi-quantites. This message should be sent before RequestFileData. Otherwise, the default data byte array [0x00, 0x04, 0x07, 0x08] will be set.

SelectedData

See the table for the available data quantity and the corresponding value of SelectedData. Refer to chapter 4 in *Xsens DOT User Manual* for the meanings of data and section 3.5 for data format.

Table 25: Available data when exporting

Data quantity	SelectedData
Timestamp	0x00
Quaternion	0x01
Euler Angles	0x04
dq	0x05
dv	0x06
Acceleration	0x07
Angular Velocity	0x08
Mag Field	0x09
Status	0x0a
clipCountAcc	0x0b
clipCountGyro	0x0c

Note that free acceleration is not provided in this firmware. Refer to this <u>base</u> <u>article</u> to calculate free acceleration from quaternion and dv.

Retransmission

ReID 0x75

ReDATA RetransDataNumber (4 byte)

Direction To sensor

Valid in Export data state

Retransmit all the data from the RetransDataNumber packet.

RetransDataNumber

Packet Counter of the retransmit data packet.

5.2.3 Recording acknowledge message

ReID 0x01

ReDATA Result (1 byte) | Control message ReID | Control message ReDATA

Direction To host

Acknowledge (ACK) is the receipt of a control message. ReDATA contains the Result in 1 byte and the control message DATA from host to clarify which message the ACK is responding to.

Result

Indicates the receiving status of a control message, or the sensor states when receiving the message.

Table 26: Recording ACK Results

Result	Description	Details
0x00	Success	Control messages write success
0x02	InvalidCmd	Invalid command
0x03	FlashProcessBusy	Flash is occupied by other process
0x06	IdleState	Idle state
0x30	OnErasing	Erasing internal storage
0x40	OnRecording	In recording state
0x50	OnExportFlashInfo	Exporting flash information
0x60	OnExportRecordingFileInfo	Exporting recording file information
0x70	OnExportRecordingFileData	Exporting recording data

Control message ReID

ReID of the control message.

Control message ReDATA

ReDATA of the control message.

5.2.4 Recording notification messages

Notifications of recording control messages. A callback is required to handle notifications.

FlashProcessBusy

ReID 0x03 ReDATA n/a Direction To host

Flash is occupied by other process. Wait a while and send the control message again.

StoreFlashInfoDone

ReID 0x33 0x31 ReDATA n/a Direction To host

Recording flash erase is completed.

FlashFull

ReID 0x34 ReDATA n/a Direction To host

Recording flash space is full.

InvalidFlashFormat

ReID 0x35 ReDATA n/a Direction To host

Recording flash format is invalid. Current firmware version doesn't support the flash format. Use EraseFlash to reset the flash format.

RecordingStopped

ReID 0x41 ReDATA n/a Direction Both

Recording stopped.

RecordingTime

ReID 0x43

ReDATA StartUTC TotalRecordingTime RemainingRecordingTime

(4 bytes) (2 bytes) (2 bytes)

Direction To host

StartUTC

Recording start UTC and unit is second.

TotalRecordingTime

Total recording time of a timed recording. Unit is second. 0xFFFF for normal (non-timed) recording.

RemainingRecordingTime

Remaining time of a timed recording. Unit is second. 0xFFFF for normal (non-timed) recording.

ExportFlashInfo

ReID 0x51

ReDATA Flash header file information (128 bytes)

Direction To host

A simple recording file system is created to manage the recording files. Following table shows the structure of the recording flash. It consists of a header file and the recording files.

Table 27: Structure of recording flash

Header file (4 kB) 1 st recording file 2 nd recording file	Header file (4 kB)	1st recording file	2 nd recording file	
--	--------------------	--------------------	--------------------------------	--

Recording flash information is preserved in the header file. See the table below for header file structure.

Table 28: Header file structure

Field		Field width	Description
Header	Magic number	4 bytes	0x466C6173
	Header size	4 bytes	0X80, header size is 128 bytes
	Revision	2 bytes	Current revision number is 0.1 (decimal)
	Flash	4 bytes	Unit: second
erase/creation UTC			
	Flash size	4 bytes	Unit: byte
	Reserved	110 bytes	Reserved byte is set to 0xFF
File indicator		0~3968 bytes	Indication of recording file number and size

See the table below for the structure of file indicator.

Table 29: Structure of file indicator

Field	Field width	Description
1 st file header	1 byte	file header, 0xEE represents a recording file and 4 kB file header
1 st file size	Based on file size	Rough estimate of file size. Each 0xCC represents 228 kB file size
2 nd file header	1 byte	0xEE
2 nd file size	Based on file size	0xCC

Unused bytes in file indicator are set to 0xFF. File indicator are all 0xFF bytes if there is no recording file in the flash.

You can get the file number and rough file size through file indicator. For example, 0xCCEECCEEEFF...FF means that there are 2 files in the recording flash:

- The first file has a rough size of 232kB (4kB +228kB)
- The second file has a rough size of 460kB (4kB +228kB*2)

This notification may response with multiple messages based on the actual length of the header file, with each message contains 128 bytes ReDATA. It stops when there is all 0xFF values in next message.

If you get the mess code, or there is no information in the message, it means the flash structure is invalid. Erase the flash to reset it.

ExportFlashInfoDone

ReID 0x52 ReDATA n/a Direction To host

Recording flash information export is completed.

ExportFileInfo

ReID 0x61

ReDATA File header space information (128 bytes)

Direction To host

Refer to the table below for file structure.

Table 30: Structure of the file

Header space (4 kB) Data

Reocriding file information is preserved in header space.

Table 31: Structure of header space

Field		Field width	Description
Header	Magic number	4 bytes	0x5265636F
	Header size	4 bytes	0X80, header size is 128 bytes
	Revision	2 bytes	Current revision number is 0.1
			(decimal)
	Start recording UTC	4 bytes	Unit: second
	Total recording time	2 bytes	Unit: second
	Reserved	112 bytes	Reserved byte is set to 0xFF
Reserved		3968 bytes	-

ExportFileInfoDone

ReID 0x62 ReDATA n/a Direction To host

Recording file information export is completed.

NoRecordingFile

ReID 0x63 ReDATA n/a Direction To host

There is no recording file (with this FileIndex).

ExportFileData

ReID 0x71

ReDATA DataNumber (4 bytes) ExportedData

Direction To host

Export the file data based on the FileIndex and SelectedData. Refer to section 3.5 for the format of each data. Each notification contains one data packet with the following ReDATA fields:

DataNumber

Data packet counter, starts from 0.

ExportedData

Data packet base on SelectedData configuration.

ExportFileDataDone

ReID 0x72 ReDATA n/a Direction To host

Recording data export is completed.

ExportDataStopped

ReID 0x73 ReDATA n/a Direction Both

${\tt ExportFlieDataInvalid}$

ReID 0x76

ReDATA DataNumber (4 bytes) ExportedData

Direction To host

Invalid data packet due to internal data checksum or preamble check fail.

5.2.5 Best practice for recording

Figure 4: Best practice to start and stop recording

Figure 5: Best practice to export recording files

5.3 Synchronization Message

All sensors will be time-synced with each other to a common sensor time base after synchronization. Refer to section 3.3.4 in *Xsens DOT User Manual* for more information.

MID of synchronization messages is 0x02. DATA of synchronization message contains the sync ID (SyID) and sync DATA (SyDATA).

A synchronization message contains the following fields:

	DATA	
MID(0x02) LEN	SyID SyDATA	CHECKSUM

Sync ID (SyID)

This field identifies different synchronization messages. For a complete listing of all possible synchronization messages see section 5.3.2, 5.3.3 and 5.2.4.

Sync DATA (SyDATA)

This field contains the synchronization data bytes. The interpretation of the synchronization data bytes is synchronization message specific, i.e., depending on the SyID value the meaning of the SyDATA bytes is different.

5.3.1 Synchronization message usage

Example

Get synchronization status.

Sending message:

GetSyncStatus = 0x020108F5

Get notification:

SyncStatus = 0x02025109A2 or 0x02025104A7

Example

Start synchronization. Root node MAC address is D4:CA:6E:F1:69:3D

Sending message:

StartSync = 0x0207013D69F16ECAD453

Check acknowledge:

Acknowledge = $0 \times 02020300 \text{ F9}$

Example

Stop synchronization.

Sending message:

StopSync = 0x020102FB

Get notification:

StopSyncResult = 0x02025000AC

5.3.2 Synchronization control messages

StartSync

SyID 0x01

SyDATA Root node MAC address (6 bytes)

Direction To sensor

Valid in Connection state

Start the synchronization. Refer to section 5.3.5 for the best practice to start synchronization.

Root node MAC address

Root node can be any of the sync sensors. If the MAC address is AA:BB:CC:DD:EE:FF, then the SyDATA should be 0xFF, 0xEE, 0xDD, 0xCC, 0xBB, 0xAA.

StopSync

SyID 0x02 SyDATA -

Direction To sensor Valid in Synced state

Stop the synchronization. **StopSyncResult** notification will be sent to let the host know if the StopSync is successful or not.

GetSyncStatus

SyID 0x08 SyDATA -

Direction To sensor

Valid in Connection state

Check if the sensor is already synced or not. **SyncStatus** notification will be sent to host with the sync status.

5.3.3 Synchronization acknowledge message

SyID 0x03

SyDATA Result (1 byte) | Control message SyID | Control message SyDATA |

Direction To host

Acknowledge (ACK) is the receipt of a control message. SyDATA contains the Result in 1 byte and the control message DATA from host to clarify which message the ACK is responding to.

Result

Indicates the result of the synchronization after re-connection with the sensor.

Table 32: Synchronization ACK Results

Result	Description	Details
0x00	Success	Synchronization success
0x05	NoEnoughSample	Sync failed for not enough data samples
0x07	SkewTooLarge	Sync failed for estimated skew too large
0x08	StartingTimingError	Sync failed for start time error
0x09	Unstarted	Sync is not started

Control message SyID

SyID of the control message.

Control message SyDATA

SyDATA of the control message.

5.3.4 Synchronization notification message

Notifications of synchronization control messages. A callback is required to handle notifications.

StopSyncResult

SyID 0x50

SyDATA Result (1byte)

Direction To host

Result

The result of stop sync command. 0x00 means success. 0x01 means failed.

SyncStatus

SyID 0x51

SyDATA SyncStatus (1byte)

Direction To host

SyncStatus

The sync status of the sensor. 0x04 means synced. 0x09 means un-synced.

5.3.5 Best practice for synchronization

Figure 6: Best practice to start synchronization

Before starting the synchronization, check the synchronization status of the target sensors and make sure they are not synced. Stop the synced sensor before starting a new synchronization to prevent error status.

Set the output rate and filter profile before starting the synchronization. Since the sensor will enter measurement mode right after the sync succeeds so it's not possible to change it after sync.

Disconnect the sensors after sending start sync command to allow scanners to receive the data from the root sensor. It will take about 12 seconds to finish the sync period. Reconnect to the sensors again after 14s and retry if connection fails. Read the acknowledge right after the reconnection to get the synchronization result. If the synchronization is successful for all sensors, then you can start the measurement. If any of the sensors fails in synchronization, you can continue with the successful sensors or stop the synchronization for all the involved sensors and try again.

5.4 Message Reference Listing

5.4.1 Recording messages (section 5.2)

MID	ReID	Message	Direction	Description
0x01	0x01	ACK	To host	Acknowledge message
0.00	0x02	GetState	To sensor	Request sensor recording state
	0x03	FlashProcessBusy	To host	Flash is occupied by other process
	- CACC			riadii id dadapida by daiidi prodada
	0x30	EraseFlash	To sensor	Request to clear all the recording data space
	0x33	StoreFlashInfoDone	To host	Flash information has been updated
	0x34	FlashFull	To host	Recording flash space is full
	0x35	InvalidFlashFormat	To host	Recording flash format is invalid
	- CACC	2		Trees and graden remarks to three to
	0x40	StartRecording	To sensor	Start recording
	0x41	StopRecording	Both	Stop recording or recording stopped
	0x42	RequesetRecordingTime	To sensor	Request recording time
	0x43	RecordingTime	To host	Recording time values
	0x50	RequetFlashInfo	To sensor	Request recording flash information
	0x51	ExportFlashInfo	To host	Export flash information
	0x52	ExportFlashInfoDone	To host	Export flash information done
	0x60	RequestFileInfo	To sensor	Request recording file information by
				FileIndex
	0x61	ExportFileInfo	To host	Export file information
	0x62	ExportFileInfoDone	To host	Export file information done
	0x63	NoRecordingFile	To host	No recording file (with this FileIndex).
	0x70	RequestFileData	To sensor	Request recording file data based on
				FileIndex
	0x71	ExportFileData	To host	Export recording file data based on FileIndex
	0x72	ExportFileDataDone	To host	Export file data done
	0x73	StopExportData	Both	Stop export file data or export stopped
	0x74	SelectExportData	To sensor	Configure export data options
	0x75	Retransmission	To sensor	Retransmit all the data from the
				RetransDataNumber packet
	0x76	ExportFileDataInvalid	To host	Invalid data packet due to internal data
				checksum or preamble check fail

5.4.2 Synchronization messages (section 5.3)

MID	SyID	Message	Direction	Description
0x02	0x01	StartSync	To sensor	Start synchronization
	0x02	StopSync	To sensor	Stop synchronization
	0x03	ACK	To host	Acknowledge message
	0x08	GetSyncStatus	To sensor	Get synced or un-synced status
	0x50	StopSyncResult	To host	Notification of stop sync result
	0x51	SyncStatus	To host	Notification of sync status

