4" Ομάδα Ελσκήσεων

27. (KOZOKÚBES)

Εστω η Τ.Μ. Κ για το καθαρό κέρδος (κ) του μανάβη. Δίνεται Sx = {5,6,4,8}.

Διακρινούμε τις ακόλουθες περιπτώσεις αναφορικά με τις κολοκύθες που
αγοράζει ο μανάβης:

5 κολοκύθες:

	_30	$P_X(x) = P(X=x)$	JK.	 D: (4	k)= P(K=K), K	<u>:= 10</u>
	5	9-5 - 4	4.5 - 2.5 = 20-10=10	K	4	
	Cu.	10 10		K	P. (3K)	T
	6	9-6 - 3	4.5-2.5= 20-10=10	1 12	K	
	P	10 10	(1 πελάτης δε βρίσκει)	1	10	
	¥	9-4 = 2	4.5-2.5=20-10=10			
		10 10	(2 πελάτες δε βρίσκουν)	!		_
	8	9-8 - 1	4.5-2.5=20-10=10			_
		10 10	(3 πελάτες δε βρίσκουν)			_
·						

Συνεπώς το αναμενόμενο κέρδος είναι: Ε(Κ) = Κ· þ (Κ) = 10·1=10

(όπως ήταν αναμενόμενο αφού αν αχοραστούν 5 κολοκύθες θα πωληθούν σίχουρα όλες και το κέρδος θα είναι 5.4-5.2=20-10=10)

6 κολοκύθες;

x_	$P_X(x)=P(x=x)$	K	 P _K (1K)=P(K=3K), 36=8,12
5	4	4.5-2.6=20-12=8	1
	10	(1 κολοκύθα απούλητη)	! x p(x)
6	3	4.6-2.6=24-12=12	1 8 <u>4</u>
	10		12 3,2,1,6
ĭ	2.	4.6 - 2.6 = 24-12=12	10 10 10 10
	10	(1 πελάτης δε βρίσκει)	1
8	1	4.6-2.6=24-12=12	
	10	(2 πελάτει δε βρίσκουν)	

₹						
LUVENUS TO availevous viosos si	T(11) 0 1	_				
Συνεπώς το αναμενόμενο κέρδος είναι:	E(K) = 8.4 + 12	· 6 <u>-</u>	32 _	12 -	104	104
	10	10			101 :	10/1
	10	10	10	10	10	

0 7	κολοκύθες:

x	$P{x}(x)=P(x=x)$	dK.	P (*)=P(K=*), 1=6,11
_5	4	4.5-2.7=20-14=6	ik () · (· · · · · · · · · · · · · · · ·
	10	(2 κολοκύθες απούλητες)	x Pr(x)
 - 6	3	4.6-2.7=24-14=10	6 4
	10	(1 κολοκύθα απούλητη)	10 3
	<u>2</u> 10	4.7-2.7=28-14=14	14 2 1 3 10 10 10
8	1	4.7-2.7=28-14=14	
	10	(Ι πελάτης δε βρίσκει)	

Συνεπώς το αναμενόμενο κέρδος είναι; Ε(Κ)= 6· 4 + 10· 3 + 14· 3 - 24+30+42 - 96 - 9,6

• 8 KO20	οκύθες:			.	
	c	$P_{X}(x) = P(x = x)$	K	Pr(x)=	P(K=*),_*=4,8,1216
	5	4	4.5-2.8=20-16=4	1	
		10	(3 κολοκύθες απούλητες)	1 &	PK-(3K)
	6	3	4.6-2.8=24-16=8	1 4	4
		10	(2 κολοκύθες απούλητες)	1 8	10
	¥	2	4.7-2.8=28-16=12	1 12	10
` .		10	(1 κολοκύθο οπούλητη)	1 16	10
	8	1	4.8-2.8=32-16=16	i	10
	-	10		1	

Συνεπώς το αναμενόμενο κέρδος είναι: Ε(Κ)=4.4 + 8.3 + 12.2 + 16.1 - 16+24+24+16

→Τον μανάβη συμφέρει η επιλοχή χια την οποία μεχιστοποιείται το αναμενόμενο κέρδος
- δηλ. θα πρέπει να αχοράσει 6 κολοκύθες

Κατ'αρχάς, η υψηλότερη σειρά που μπορεί να καταλάβει χυναίκα (δηλ. οι δυνατές τιμές χια το Χ) είναι 1,2,3,4,5,6. [Αν Χ>6 σημαίνει ότι η πρώτη γετοξύ των χυναικών θα καταλαμβάνει μια από τις θέσεις \mp , 8,9,10, με αποτέλεσμα 1,2,3,4 χυναίκες αντίστοιχα να βρίσκονται σε υψηλότερες θέσεις \rightarrow άτοπο], Συνεπώς $S_{X}=\{1,2,3,4,5,6\}$.

Για να βρίσκεται η Πρώτος στη θέση χ, όπου χεςχ, θα πρέπει όσοι βρίσκονται υψηλότερα στην κατάταξη από εκείνη να είναι άντρες, δηλ.

οι (χ-1) πρώτοι θα είναι άντρες και υπάρχουν 5 επιλοχές για την κάλυψη της 1πς θέσης, 4 για τη 2π ..., κ.ο.κ. Η χ-στή θέση θα καλύπτεται από μια εκ των 5 χυναικών, Τέλος, οι (10-χ) τε λευταίες θέσεις θα καλυφθούν από τους υπόλοιπους διαχωνιζόμενους (όντρες και χυναίκες) με οποιαδήποτε δυνατή σειρά. Επομένως έχουμε:

 $P_{X}(X=x) = (5)_{x-1} \cdot 5 \cdot (10-x)!$

Παρακάτω:

A: Avtpes, Γ: Fuvaikes

Y: οι Υπόλοιποι

Έτσι προκύπτει:

$$P_{X}(1) = \underbrace{5 \cdot 9!}_{10!} = \underbrace{\frac{1}{2}}_{10!} P_{X}(2) = \underbrace{5 \cdot 5 \cdot 8!}_{10!} = \underbrace{\frac{5}{10!}}_{10!} P_{X}(3) = \underbrace{5 \cdot 4 \cdot 5 \cdot 7!}_{10!} = \underbrace{\frac{5}{36}}_{10!} P_{X}(3) = \underbrace{\frac{5}{5 \cdot 4 \cdot 5 \cdot 7!}}_{10!} = \underbrace{\frac{5}{36}}_{10!} P_{X}(6) = \underbrace{\frac{5}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 4!}_{10!}}_{10!} = \underbrace{\frac{1}{277}}_{177}$$

Sn2. $P_{X}(x) = \begin{cases} 1/2, & x=1 \\ 5/18, & x=2 \\ 5/36, & x=3 \\ 5/84, & x=4 \\ 5/252, & x=5 \\ 1/252, & x=6 \end{cases}$

29. (Κορώνες μείον χράμματα)

(α')-Εστω πως συμβολίζουμε με Κ τις κορώνες και με Γ τα εράμματα. Ο δειχματικός
χώρος Ω θα αποτελείται από επαναληπτικές διατόξεις μεξέθους π των
στοιχείων Κ. Γ. (χια παράδειχμα η διάταξη ΚΚΓΚ θα είναι ένα
στοιχειώδες ενδεχόμενο στον Ω με την εξης σημασία: "Την 1" Gopá ήρθε
κορώνα, την 2^n κορώνα, την 3^n γράμματα,, την η-οστή ήρθε κορώνα")
Θ a Eival $ \Omega ^2 g^n$
- Για το σύνολο τιμών της Τ.Μ. Υ έχουμε Sy={-n, -n+2, -n+4,,n-4,n-2n}οπο π τιγή =n Χαμβάνεται όταν σε όλες τις ρίψεις έρχονται χράμματα, π τιμή n αντιστοιχεί
στην περίπτωση που όλες οι ρίψεις φέρουν κορώνα, ενώ δια τις υπόλοι πες περιπτώσει
π γ λαμβάνει μια τιμή ανάμεσα σε αυτές τις δύο όπως περιχράφονται στη Sy.
- Αν Υ=Ο, τότε οι ρίψεις θα έχουν φέρει ισάριθμες κορώνες και χράμματα.
Επιπλέον μπορούμε να συμπεράνουμε πως σε αυτή την περίπτωση ο αριθμός
n θα είναι άρτιος και # κορώνες = # χράψματα = n.
- Av YSK με Κ θετικό ακέραιο τότε # κορώνες - #χράμματα < K >
⇒ # κορώνει < K + #χράμματα δηλ. οι ρίψεις εφεραν το <u>πολύ</u> Κ περισσότερει
κορώνες από ότι χράμματα.
(\mathcal{B}')
Για $n=4$ exoupe: $ \Omega =9^4=16$ και $8y=\{-4,-9,0,9,4\}$
Έστω χ το πλήθος των κορώνων σε μια διάταξη. Οι διατάξεις με χ κορώνει
θα είναι όσες και οι τρόποι με τους οποίους μπορούμε να διαλέξουμε από τις
4 θέσεις τις x χια να τις "παραχωρίσουμε" στις κορώνες, δηλ. με $\begin{pmatrix} 4 \\ x \end{pmatrix}$
Enopievus $P_{Y}(-4) = P(Y=-4) = P(\{"0 \text{ kopibves}"\}) = (0) = 4! = 1$
$P_{Y}(-2) = P(Y=-2) = P(\{"1 \times op \dot{w} \dot{v} \dot{a}"\}) = \frac{\binom{4}{1}}{16} = \frac{4!}{16} \cdot \frac{1}{16} = \frac{1}{4}$
$P_{Y}(0) = P(Y=0) = P(\{"2 \text{ kopwves}"\}) = \frac{\binom{4}{2}}{16} = \frac{4!}{16}, 1 = \frac{6}{16} = \frac{3}{8}$
$P_{Y}(2) = P(Y=2) = P(\{"3 \text{ kopwves"}\}) = {4 \choose 3} = 4! , 1 = 1$ 16 3!1! 16 4

Py(4) = P(Y=4) = P(\$"4 KODWYES"}) = KATANOMH (nio ràtu) (x) [1a n=5 Exoupe | 0|=25=32 Kai Sy= {-5, -3, -1, 1, 3,5} Θεωρώντας και πάλι το χ που ορίσαμε προηχουμένως, οι διατόξεις με x κορώνες θα είναι (5)Enopèvos $P_{Y}(-5) = P(Y=-5) = P(\{"0 \text{ Kopiby } es"\}) = \frac{5}{0} = \frac{5!}{32} = 0!5!$ • P_Y(-3)=P(Y=-3)=P(ξ"1 κορώνα"ξ)=(5) = 5! · Py(-1) = P(Y=-1) = P(\(\frac{2}{3}\) = (\(\frac{5}{3}\)) = (\(\frac{5}{3}\)) = 5! • P_Y (1) = P(Y=1) = P(ξ"3 κορώνες"ξ) = (3) · Py (3)=P(Y=3)=P({\(\) 4 KOPUNES"\(\))=(\(\) 4 • $P_{Y}(5) = P(Y=5) = P(\{1,5\} \times P(\{1,5\}) = (\frac{5}{5})$ Για την κατανομή έχουμε: Fy (y) = 0, y<-5 • Για -5 < y < -3; Fy(y)= Py (-5)= (1) • Fear-3<y<-1: Fy(y)= Py(-3)+Py(-5)= 5 + • Tras-1<-y<1; YFy(y)= Py (-1)+ Py (-3)+ P • Fia 1≤y<3: Fy(y)= Py(1) + Py(-1) + Py(-3)+ Py(-5) · Fia 3 < 4 < 5 = Fy(y) = Py(3)+ Py(1)+ Py(-1)+ Py(-3)+Py(-5) y>5: Fy(y)=Py(5)+Py(3)+Py(1)+Py(-1)+Py(-3)+Py(-5)= $\frac{1}{32}$ $\frac{1}{32}$ $\frac{5}{32}$ $\frac{10}{32}$ $\frac{10}{32}$ $\frac{5}{32}$

```
TEAIRà, \frac{1}{32}, y=-5
\frac{5}{32}, y=-3
\frac{7}{32}, y=-3
\frac{5}{16}, y=-1
\frac{5}{16}, y=1
\frac{5}{32}, y=3
\frac{5}{132}, y=3
\frac{1}{32}, y=5
\frac{1}{32}, y=5
```

(β') συνέχεια... (υπολογισμός κατανομώς)

$$=\frac{1}{4} + \frac{3}{8} + \frac{1}{4} + \frac{1}{16} = \frac{4+6+4+1}{16} = \frac{15}{16}$$

30. (20 μπάλες)	_
priories)	-

11.	
-(a) O Rely Horizon Villago	
_(α') Ο δειχματικός χώρος Ω αποτελείται από όλες τις μη διατεταχμέ	νες Βάδες
0.5	120.0000
apropriety and to 1 years to 20 pay upopolity va arrangements.	
αριθμών από το 1 μέχρι το 20 που μπορούν να σχηματιστούν (σ	sidmy lottoponona
Pa siva 101- (90) 0-1	επά νάληψη)
$Cu = x_0 = x_0 = 1140$.	, ,
3/ 17121	
αρτομών από το 1 μεχρι το 20 που μπορούν να σχηματιστούν (σ Θα είναι 191= (20) = 20! = 1140. Ει 17:3!	

(β') • Για
$$x < 3$$
 είναι $F_x(x) = 0$ χιατί είναι αδύνατον από τις τρεω μπάλες που θα επιλεχούν η πρώτη ή/και η δενύτερη να έχουν τη μέχιστη ένδειξη ενώ οι υπόλοιπες τιμές (εκτός από 1,2) δεν ανήκουν καθόλου στο S_x . Ουσιαστικά $S_x = \{3,4,...,20\}$ • Για $a < x < a+1$ όπου $a \in \{3,4,...,19\}$ θα είναι

$$F_X(x) = F_X(a) = \frac{\binom{a}{3}}{3}$$
 οι φού χια να είναι η μέχιστη ένδειξη μπάλας μικρότερη.

1140 η ίση του α θα πρέπει οι τρεις μπάλες να έχουν

επιλεχεί από τις α πρώτες.

(8') Onws graption is
$$P_{x}(x) = F_{x}(x) - F_{x}(x^{-}) = \frac{x}{3} = \frac{x-1}{3}$$
, xeSx

(δ') Έστω το ενδεχόμενο
$$A = \{ "1 τουλάχιστον ἐνδείξη > 17" \}$$
. Τότε
$$A' = \{ "0λες οι ενδείξεις < 16" \}. |A'| = {16 \choose 3}, δηλ. χια να είναι όλες οι ενδείξεις$$
μικρότερες του 17, θα πρέπει οι 3 μπάλες να επιλεχούν μεταξύ των 16 πρώτων.
$$\frac{Aρα P(A') = |A'| - {16 \choose 3} - 16! \cdot 3! \cdot 17! - 14 \cdot 15 \cdot 16 - 336 - 56 \sim 0.49}{|\Omega| (30) 3! \cdot 13! \cdot 20! \cdot 18 \cdot 19 \cdot 20 \cdot 684 \cdot 114}$$