Vertices removal for feasibility of clustered spanning tree

Nili Guttmann-Beck, Roni Rozen, Michal Stern: Vertices removal for feasibility of clustered spanning trees. Discret. Appl. Math. 296: 68-84 (2021)

Outline

- Cluster spanning tree
- Problem description
- Reduction graph
- Find removal list and solution tree
- Minimal removal list
- Non disappearing vertices and clusters
- Conclusion

Cluster spanning tree

- $H = \langle V, S \rangle$ is a hypergraph
- V is a set of vertices, S is a set of clusters
- The Cluster Spanning Tree problem is to find a tree spanning all vertices in V which satisfies that each cluster S_i induces a spanning tree if it exists
- application
 - communication network
 - databases with synchronous replications
 - key management for secure group communications

Problem description

- If the given hypergraph H does not have feasible solution tree, remove some vertices from some clusters to gain feasibility
- L is a removal list of H if L is a list of pairs:

$$L = \{(v_1, S_{i1}), \dots, (v_k, s_{ik})\}$$
 with $v_j \in S_{ij}$

- Check for feasibility
 - Helly property
 - cordiality and acyclicity
 - ES algorithm

$$V = \{1,2,3\}$$

 $S = \{\{1,2\},\{2,3\},\{1,3\}\}$

Reduction graph

- Given hypergraph $H=<{\cal V},{\cal S}>$, its reduction graph $G^r=<{\cal V}^r, E^r>$
- V^r contains
 - Cluster node s_i , each denoted corresponded cluster $S_i \subset S$
 - Intersection node x, denoted corresponded intersection set $X = \cap_{S_i \in S'}$, $S' \subseteq S$ and |S'| > 1
 - Vertex node v_i , each denoted corresponded vertex $V_i \subset V$
- E^r contains
 - edge (x_1, x_2) if $X_1 \subseteq X_2$ and there is no intersection set X' that $X_1 \subseteq X' \subseteq X_2$
 - edge (v, x) if $v \in X$ and there is no intersection set X' that $v \in X' \subseteq X$

Reduction graph

- Example:
- $H = \langle V, S \rangle, V = \{1, 2, 3, 4, 5, 6\},\$ $S = \{S_1, S_2, S_3, S_4, S_5\}$
- 右圖則為H的reduction graph $G^r = \langle V^r, E^r \rangle$
- 方形實線: cluster node
- 方形虛線: intersection node
- 圓形虛線: vertex node

Find removal list

- Accessible : given $G^r = \langle V^r, E^r \rangle$ and its subgraph G'. $x, w \in V^r$, w is accessible to x in G' if the path between x and w in G' only use set nodes contained in x.
- For any set node x , $A(G^\prime,x)$ is a set of vertices accessible to x in G^\prime
- To get a feasible removal list
 - 1. Find a spanning tree T^r on G^r
 - 2. For every cluster S_i , if vertex $v_i \in S_i$ and $v_i \notin A(T^r, S_i)$, add (v_i, S_i) into removal list L

Example

• 右圖為 G^r 中的一個spanning tree T^r ,feasible removal list $L=\{(4,S_4),(2,S_5),(3,S_5)\}$

Find feasible solution tree

- Initialize solution tree F contained V without edges
- Scan T^r from bottom to top, according to the size of node
- For each set node X
 - 1. Add edge to create subtree spanning isolated vertices of $A(T^r, X)$ in F
 - 2. Connected all connected component of $A(T^r, X)$, using edge whose both endpoint are in $A(T^r, X)$, without creating cycle
- If V still not connected after scanning all set node, add arbitrarily edge to connect them without creating cycle

Example

Proof

- 當我們 scan 到 set node X 的時候,如果 F 中 $A(T^r, X)$ 已經形成好幾個 subtree,則對 X 中所有點 u,v ,兩者之間的path只會使用 $A(T^r, X)$ 中的點。
- 假設F中存在一條u-v的路徑使用 $A(T^r, X)$ 以外的vertices,在 T^r 上 u~X 和 v~X 的 path 的聯集會包含一條 u~v 的path
 - 1. u~v 的path中不包含X
 - 2. u~v 的path中包含X

- Consistency : for H=< V, S> and removal list L , L is consistent with respect to intersection set X if for each vertices $u,v\in X$, if $(u,S_i)\in L$ then $(v,S_i)\in L$
- 圖中 $L_1 = \{(2,S_1),(3,S_1)\}$ 對intersection set $\{2,3\}$ 是consistency

- If L is feasible removal list, and vertex $v\in$ intersection set $X\in\cap_{i=1}^lS_i$, and v is exist in H\L, then $L'=L\setminus\{(u,S_{i_j})\,|\,u\in X/\{v\},j=\{1,\cdots,l\}\}$ is also feasible removal list
- Therefore, if L is a minimal removal list, then for any intersection set $X \in \bigcap_{i=1}^{l} S_i$, L' = L, otherwise L in not minimal.
- This means that if we don't remove vertex $v\in X$ from cluster S_i , then we don't remove other vertices $u\in X$ of S_i
- If a feasible removal list is minimal, it is AllXconsistent

- Slender: given G^r , each intersection nodes X_1, X_2 do not contain others
- Check whether a hypergraph H has a slender reduction graph : for each cluster S_1,S_2,S_3 , $S_1\cap S_2\cap S_3=\phi$ or $S_1\cap S_2\cap S_3=S_1\cap S_2=S_1\cap S_2=S_1\cap S_3=S_1\cap S_3$
- If the reduction graph G^r is slender, then we can find a minimal removal list

- 1. Given $H = \langle V, S \rangle$, $G^r = \langle V^r, E^r \rangle$. Define edges in E^r with weight
 - w(v, y) = 0 for every vertex node v and every set node y that $(v, y) \in E^r$.
 - $w(x, s_i) = |X|$ for every intersection-node x and every cluster-node s_i that $(v, y) \in E^r$, where X is the intersection set which corresponds to x.
- 2. Find maximum spanning tree T^r on G^r
- 3. The size of removal list $L = W(G^r) W(T^r)$
 - If edge $(X, S_i) \in E(G^r)/E(T^r)$, all of vertices in X are not accessible to S_i , otherwise G^r is not slender. So it will create |X| vertices removal.

Non disappearing vertices and clusters

- The result solution tree is depend on the spanning tree we found in reduction graph
- Sometimes it would cause disappearance of vertices or clusters

Non disappearing vertices and clusters

- Non vertex disappear :
 - 1. Initial $V(T^r)$ and $E(T^r)$ with empty
 - 2. For each vertex node or intersection node u, find another node w, which has larger size than u, in $V(T^r)$ that (u, w) exist in E^r , add (u, w) into $E(T^r)$ and add $\{u, w\}$ into $V(T^r)$
 - 3. For each cluster node u, if u not in $V(T^r)$, find an intersection node w in $V(T^r)$ that (u, w) exist in E^r , add (u, w) into $E(T^r)$ and add $\{u, w\}$ into $V(T^r)$
- Because for each node u, it has at least one edge to a bigger set node that contain u, so each vertex node has at least one path to a cluster, which means it would appear at least once.

Non disappearing vertices and clusters

- Non cluster disappear :
 - 1. Initial V(T') and E(T') with empty
 - 2. For each set node u, find another node w, which has smaller size than u, in $V(T^r)$ that (u, w) exist in E^r , add (u, w) into $E(T^r)$ and add $\{u, w\}$ into $V(T^r)$
 - 3. For each vertex node u, if u not in V(T'), find an intersection node w in V(T') that (u, w) exist in E^r , add (u, w) into E(T') and add $\{u, w\}$ into V(T')
- Because for each node u, it has at least one edge to a smaller set node that contain u, so each cluster node has at least one path to a vertex, which means each cluster would contain at least one vertex.

Conclustion

- If a hypergraph cannot find a cluster spanning tree, we can remove some vertices from some cluster
- To find a removal list , we need the reduction graph G^r and a spanning tree T^r on G^r
- ullet Different T^r may produce different removal list and different solution tree
- If we want minimal removal list -> use maximum spanning tree on G^r
- · If we want removal list that don't make vertices or clusters disappear
 - ->use correspond spanning tree