This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12)(19)(CA) Demande-Application

CIPO CANADIAN INTELLECTUAL PROPERTY OFFICE

(21)(A1) 2,271,837 1999/05/11

1999/11/11

(72) SCHINDLER, Rudolf, DE

(72) HÖFGEN, Norbert, DE

(72) POPPE, Hildegard, DE

OPIC

(71) ARZNEIMITTELWERK DRESDEN GMBH, DE (72) BRUNE, Kay, DE

(51) Int.Cl. 6 C07D 231/56, A61K 31/535, A61K 31/495, A61K 31/435, A61K 31/415, A61K 31/41, C07D 403/14, C07D 417/06, C07D 413/06, C07D 409/06, C07D 405/06, C07D 403/06, C07D 401/06

(30) 1998/05/11 (198 21 003.5) DE (54) NOUVEAUX DIHYDRÓINDAZOL-3-ONES-1,2 TRISUBSTITUES-1,2,5 AYANT DES PROPRIETES ANTI-ASTHMATIQUES, ANTI-ALLERGIQUES, ANTI-INFLAMMATOIRES, IMMUNOMODULATRICES ET NEUROPROTECTRICES, AINSI QU'UN PROCEDE POUR LEUR PREPARATION ET LEUR UTILISATION EN TANT

(54) NEW 1,2,5,-TRISUBSTITUTED 1,2,-DIHYDROINDAZOL-3-ONES HAVING ANTI-ASTHMATIC, ANTI-ALLERGIC, ANTI-INFLAMMATORY, IMMUNOMODULATING AND NEUROPROTECTIVE ACTION, PROCESS FOR THEIR PREPARATION AND THEIR USE AS MEDICAMENTS

(57) The invention relates to new 1,2,5-trisubstituted 1,2-dihydroindazol-3-ones, processes for their preparation their pharmaceutical use. The compounds have anti-asthmatic, anti-allergic, anti-inflammatory, immunomodula and neuroprotective actions.

New 1,2,5-trisubstituted 1,2-dihydroindazol-3-ones having anti-asthmatic, anti-allergic, anti-inflammatory, immunomodulating and neuroprotective action, process for their preparation and their use as medicaments.

Technical field

The invention relates to the preparation and use of novel derivatives of indazol-3-one as medicaments having anti-asthmatic, anti-allergic, anti-inflammatory, immunomodulating and neuroprotective properties.

15

5

Prior art

Cyclosporin A (CsA) and FK 506 are immunosuppressant natural substances originating from fungi, which inhibit the Ca²⁺-dependent signal transmission pathway in some cell types. In T cells, both compounds inhibit the transcription of a number of genes. CsA and FK506 both bind with high affinity to soluble receptor proteins such as, for example, cyclophilin (Cyp) or FK-506 binding protein (FKBP) (G. Fischer et al., Nature 337 (1989), 476-478; M.W. Harding et al., Nature 341 (1989), 755-760).

The complex of CsA-Cyp or FK 506-FKBP binds calcineurin inhibits its phosphatase activity. 30 (CN) and phosphorylating component of transcription factor NF-AT was recognized as a cellular target molecule of CN, so that in the absence of CN activity the active transcription complex on the IL 2 promoter cannot be switched on (M.K. 35 Rosen, Schreiber, Angew. Chem. 104 (1992), 413-430; Fischer, Angew. Chem. 106 (1994), 1479-1501).

The allergic, asthmatic diseases are based on an inflammatory reaction which is controlled by T cells

and their mediators. Corticosteroids are still the agent of choice in the treatment of many allergic diseases. CsA and FK 506 also proved to be a favourable therapeutic in bronchial asthma and underlying inflammations both in animal experiments and in clinical studies.

Despite the large number of attempts at the identification of new active immunophilin inhibitors, until now it was not possible to prepare or isolate any 10 more active structures than CsA, FK 506, rapamycin or derivatives of these natural substances. inhibitory potential of CsA, FK 506 and rapamycin, however, is very considerably reduced by the various 15 — side effects, in particular the nephrotoxicity (N.H. Sigal et al., J. Exp. Med. 173 (1991), 619-6128). What is behind this fact is the non-specificity of the interaction between immunophilin ligands and the cellspecific binding proteins. As a result, known 20 medicinal-therapeutic action of these immunosuppressants is considerably restricted. Furthermore, the lacking selectivity of the compounds proves to be problematic especially in long-term therapy.

Substances which inhibit the activity of peptidylprolyl isomerases (PPIases) such as Cyp or FKBP, have neuroprotective properties, stimulate neuronal growth and are suitable for the treatment of neurodegenerative diseases (WO 96/40140, US 5,696,135, WO 97/18828).

30

5

Substituted indazole derivatives are known which, however, differ from the claimed compounds with respect to the substituents X, Y, Z, R^1 , R^2 and R^3 and their pharmacodynamic action.

35

Baiocchi et al. [Synthesis 1978 (9), 633-648] give a general survey of syntheses and properties of the 1,2-dihydro-3H-indazol-3-ones.

Schindler et al. [WO 97/34874] describe 1,3,5-trisubstituted indazoles having anti-asthmatic, anti-allergic, anti-inflammatory and immunomodulating action.

5

EP 0 199 543 includes 1,6-disubstituted 1,2-dihydro-indazol-3-ones and their use for pharmaceutical purposes.

10 WO 94/24109 includes indazole derivatives which are suitable for the treatment of HIV infections.

Ketami et al. [J. Heterocycl. Chem. 7 (4), 807-813 (1970)] describe 1,5-disubstituted 1,2-dihydroindazol15 3-ones.

US 3,470,194 mentions the formation of disubstituted (1,2-dihydro-3-oxyindazol-2-yl)alkanoic acids when using polar solvents.

20

K. v. Auwers [Ber. Dtsch. Chem. Ges. 58, 2081-2088 (1925)] and K. v. Auwers et al. [Justus Liebigs Ann. Chem. 451, 281-307 (1927)] describe the constitution of acylindazoles and their migration.

25

Zoni et al. [Il Farmaco Ed. Sci. 23 (5), 490-501 (1968)] and Zoni et al. [Boll. Chim. Farm. 107, 598-605 (1968)] describe the alkylation of 1-substituted 1H-indazol-3-ols.

30

Evans et al. [Tetrahedron 21, 3351-3361 (1965)] describe the synthesis of 1,3-substituted acyl- and tosylindazoles.

35 Tse et al. [Arch. Pharm. 329 (1), 35-40 (1996)] report on anti-inflammatory properties of N-substituted indazoles.

- 4 -

Anderson et al. [J. Chem. Soc. C, 3313-3314 (1971)] describe 1,3-substituted tosylindazoles.

Palazzo et al. [J. Med. Chem 9, 38-41 (1996)] and Gyula 5 et al. [Acta pharm. Hung. 44, 49-57 (1974)] describe the synthesis of 2-dimethylaminoalkyl-1-phenylindazol-3-ones.

Klicnar [Coll. Czech. Chem. Comm. 42, 327-337 (1977)]
10 describes acetylindazoles.

Tserng et al. [J. Org. Chem. 38, 3498-3502 (1973)] describe the synthesis of 1,2-disubstituted 1,2-dihydroindazol-3-ones.

Aran et. al. [Heterocycles 45, 129-136 (1997)] describe the selective synthesis of 2-substituted indazol-3-ones without N-1 substitution.

15

25

Aran et al. [Liebigs Ann. 1996, 683-691], Aran et al. [Liebigs Ann. 1995, 817-824] and Aran et al. [J. Chem. Soc. Perkin Trans. I, 1119-1127 (1993)] describe 1,2-substituted 5-nitroindazol-3-ones and their cytostatic activity.

Bruneau et al. [J. Med. Chem. 34, 1028-1036 (1991)] describe 1- and 2-substituted indazol-3-ones as 5-lipoxygenase inhibitors.

30 Wyrick et al. [J. Med. Chem. 27, 768-772 (1984)] describe 1,2-disubstituted indazol-3-ones having cholesterol-lowering action.

Schmutz et al. [Helv. Chim. Acta 47, 1986-1996 (1964)]

35 describe the alkylation of indazolones.

Yamaguchi et al. [Chem. Pharm. Bull. 43 (2), 332-334 (1995)] describe 2-substituted (1-pyridin-3-yl)indazol-3-ones and their anti-asthmatic action.

On account of numerous side effects of the preparations introduced, lack of curative effects and the hitherto too non-specific therapy, a great need for compounds having a high effectiveness and safety furthermore exists for the treatment of asthmatic diseases.

The invention is based on the object of finding new compounds having rotamase-inhibiting and/or pulmonary eosinophil infiltration-inhibiting properties and making them available by targeted synthesis.

A completely novel class of substance, which surprisingly binds immunophilins specifically, is represented by the compounds of the formula I according to the invention. This class of compounds has a high affinity for immunophilins such as CypB.

Description of the invention

20

25

15

Surprisingly, it has now been found that the new indazole derivatives are able to inhibit the action of PPIase. Accordingly, these compounds are of great importance for the production of medicaments where the inhibition of PPIase is of benefit. Such illnesses are, for example: peripheral neuropathies, neurodegeneration, stroke, Parkinson's and Alzheimer's diseases, traumatic brain diseases, multiple sclerosis.

It has furthermore been demonstrated that the compounds according to the invention are able to inhibit the infiltration of eosinophilic granulocytes into the tissue, which is characteristic of the asthmatic latephase reaction.

35

The invention relates to new 1,2,5-trisubstituted 1,2-dihydroindazol-3-ones of the general formula I

$$R^3-Z$$
 $N-Y-R^2$
 $X-R^1$

Formula I

in which X, Y, Z, R^1 , R^2 and R^3 have the following meaning:

- 5 X can be $-SO_2$ -, $-SO_-$, $-(CH_2)_p$ -, $-(CH_2)_p$ -O-, $-(CH_2)_p$ (C=O)-, $-(CH_2)_p$ (C=O)-NH-, $-(CH_2)_p$ -CHOH-, $-(CH_2)_p$ (CH₂)_p-, $-(CH_2)_p$ -CH=CH-, $-(CH_2)_p$ where p=1...4,
- 10 Y can be -(C=O)-, -(C=O)-NH-, -(C=O)-NH- $(CH_2)_p$ -, -(C=O)- $(CH_2)_p$ -, $-(CH_2)_p$ -, $-(CH_2)_p$ -O-, $-(CH_2)_p$ -(C=O)-, $-(CH_2)_p$ -(C=O)-NH-, $-(CH_2)_p$ -(C=O)-NH- $(CH_2)_p$ -, $-(CH_2)_p$ -CHOH-, -CHOH- $(CH_2)_p$ -, $-(CH_2)_p$ -CH=CH-, -CH=CH- $(CH_2)_p$ -where p=1...4,
- Z can be -0-, -0- $(CH_2)_p$ where p = 1...4, -NH-, -NH-(C=0)-, -NH-(C=0)-NH-(C=0)-O-, -NH-(C=0)-O-, -NH-(C=0)-

15

20 R¹, R² and R³ can be identical or different and have the following meaning:

mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having 5...14 25 members, in particular phenyl, naphthyl, anthranyl, fluorenyl; or mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having 5...15 ring members and 1...6 heteroatoms. which are preferably N, O and S, in particular thiophenyl, pyridinyl, isoxazolyl, benzimidazolyl, 30 benzo[1,3]dioxolyl, pyrimidinyl, quinolyl, azolinyl, morpholinyl, pyrrolidinyl, pyrrolyl, benz[1,2,4]oxadiazolyl, benzothiazolyl,

where the carbocycles and the heterocycles can be mono- or polysubstituted by:

 $-C_{1...6}$ -alkyl, $-O-C_{1...6}$ -alkyl, $-O-C_{3...7}$ -cycloalkyl, 5 mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having 3...14 members, mono-, bi- or tricyclic saturated or polyunsaturated heterocycles having mono- or 5...15 ring members and 1...6 heteroatoms, which 10 are preferably N, O and S, -F, -Cl, -Br, -I, -OH, $-NH_2$, $-NHC_{1...6}$ -alkyl, $-N(C_{1...6}$ -alkyl)₂, -SH, $-NO_2$, $-NHC_{6...14}$ -aryl, $-N(C_{6...14}$ -aryl)₂, $-N(C_{1...6}-alkyl) (C_{6...14}-aryl)$, $-NHCOC_{1...6}-alkyl$, $-NHCOC_{6...14}-aryl,$ -CONHC_{1...6}-alkyl, -CONHC_{6...14}-aryl, -CONHSO₂C_{1...6}-15 alkyl, $-CONHSO_2C_{6...14}$ -aryl, -CN, $-(CO)C_{1...6}$ -alkyl, -(CS) $C_{1...6}$ -alkyl, -COOH, -COOC_{1...6}-alkyl, -O-C_{6...14}- $-0-(CO)C_{1...6}-alkyl,$ $-0-(CO)C_{6...14}-aryl,$ aryl, benzyl, benzyloxy, -S-C_{1...6}-alkyl, -S-C_{6...14}-aryl, $-CF_3$, $-(CH_2)_p$ -COOH where p = 1 to 4, $-(CH_2)_p$ -20 $COOC_{1...6}$ -alkyl where p = 1 to 4, $-SO_2-C_{1...6}$ -alkyl, $-SO_2-C_6...14-aryl,$

 R^1 can furthermore be H (but not if $X = CH_2$),

 R^3 -Z can furthermore be NO_2 .

25

30

The compounds according to the invention are new, but excluding compounds as in formula I:

if Z is -NH-(C=O)-, -NH-(C=O)-NH-, -NH-(C=O)-O-, -NH-(C=O)-CH₂- and simultaneously R^1 = phenyl, monosubstituted or polysubstituted by -COOH, -COOC_{1...6}- alkyl, -(CH₂)_p-COOH, where p = 1 to 4, -(CH₂)_p-COOC_{1...6}- alkyl where p = 1...4, -CONHC_{1...6}-alkyl, -CONHC_{6...14}- aryl, -CONHSO₂C_{1...6}-alkyl, -CONHSO₂C_{6...14}-aryl, lH-tetrazol-5-yl, then R^2 must not be phenyl, monosubstituted or polysubstituted by CN, halogen, $C_{1...4}$ -alkyl, $C_{1...4}$ - alkyloxy, CF_3 ;

- 8 -

if $R^3-Z=NO_2$, then R^1-X and R^2-Y must not simultaneously have the following meaning:

 $R^1-X = benzyl, 4-methoxybenzyl$

5 $R^2-Y = benzyl, 2-picolyl.$

The invention furthermore relates to the physiologically tolerable salts of the compounds according to formula I.

10

The pharmacologically tolerable salts are obtained in a customary manner by neutralization of the bases with inorganic or organic acids or by neutralization of the acids with inorganic or organic bases. Possible inorganic acids are, for example, hydrochloric acid, 15 sulphuric acid, phosphoric acid or hydrobromic acid, organic acids are, for example, carboxylic, sulpho or sulphonic acids such as acetic acid, tartaric acid, lactic acid, propionic acid, glycolic acid, malonic acid, maleic acid, fumaric acid, tannic acid, succinic 20 alginic acid, benzoic acid, 2-phenoxybenzoic 2-acetoxybenzoic acid, cinnamic acid, mandelic acid, acid, citric acid, malic acid, salicylic 3-aminosalicylic acid, ascorbic acid, embonic nicotinic acid, isonicotinic acid, oxalic acid, 25 methanesulphonic acid, acids, ethanesulphonic 2-hydroxyethanesulphonic acid, ethane-1,2-disulphonic acid, benzenesulphonic acid, 4-methylbenzenesulphonic naphthalene-2-sulphonic or acid. Possible 30 inorganic bases are, for example, sodium hydroxide potassium hydroxide solution, solution, ammonia and organic bases are amines, preferably, however, tertiary amines, such as trimethylamine, triethylamine, pyridine, N,N-dimethylaniline, quinoline, isoquinoline, β -picoline, γ -picoline, quinaldine 35 α-picoline, pyrimidine.

In addition, physiologically tolerable salts of the compounds according to formula I can be obtained by

5

25

35

converting derivatives which have tertiary amino groups into the corresponding quaternary ammonium salts in a manner known per se. Possible quaternizing agents are, for example, alkyl halides such as methyl iodide, ethyl bromide and n-propyl chloride, but also arylalkyl halides such as benzyl chloride or 2-phenylethyl bromide.

Furthermore, the invention of compounds of the formula I which contain an asymmetric carbon atom relates to 10 the D form, the L form and D,L mixtures and, in the case of a number of asymmetric carbon atoms, diastereomeric forms. Those compounds of the formula I which contain asymmetric carbon atoms and are obtained as a--rule as racemates, -can be separated into 15 optically active isomers in a manner known per se, for example using an optically active acid. However, it is also possible to employ an optically active starting substance from the beginning, a corresponding optically active or diastereomeric compound then being obtained 20 as a final product.

The invention relates to the preparation and use of the compounds according to the invention or their physiologically tolerable salts as

- inhibitors of rotamases for the production of medicaments for the treatment of diseases mediated by this enzyme and/or
- inhibitors of late-phase eosinophilia for the production of medicaments for the treatment of diseases mediated by these cells.

diseases These include, for example, peripheral neuropathies, neurodegeneration, stroke, Parkinson's and Alzheimer's diseases, traumatic brain diseases, sclerosis, bronchial asthma, allergic multiple rhinitis, allergic conjunctivitis, atopic dermatitis. eczema, allergic angiitis, inflammations mediated by fasciitis. eosinophils such as eosinophilic

- 10 -

eosinophilic pneumonia and PIE syndrome, autoimmune rheumatoid arthritis, diseases such as rheumatoid spondylitis, lupus erythematosus, psoriasis. glomerulonephritis and uveitis, insulin-dependent diabetes mellitus and sepsis.

The compounds according to the invention or their physiologically tolerable salts are furthermore used for the production of medicaments for the prevention of rejection reactions after transplantation of cells, tissues or organs.

For the production of the medicaments, in addition to the customary auxiliaries, carriers and additives, an efficacious—dose of the compounds according to the invention or their salts is used.

The dose of the active compounds can vary depending on the administration route, age, weight of the patient, 20 nature and severity of the diseases to be treated and similar factors.

The daily dose can be given as an individual dose to be administered once or subdivided into 2 or more daily doses and is, as a rule, 0.001-1000 mg.

Possible administration forms are oral, parenteral, intravenous, transdermal, topical, inhalational and intranasal preparations.

30

35

5

For administration, possible customary pharmaceutical preparation forms are those such as tablets, coated tablets, capsules, dispersible powders, granules, aqueous solutions, aqueous or oily suspensions, syrup, juices or drops.

Solid pharmaceutical forms can contain inertingredients and carriers, such as, for example, calcium carbonate, calcium phosphate, sodium phosphate,

lactose, starch, mannitol, alginates, gelatin, guar gum, magnesium or aluminium stearate, methylcellulose, talc, highly disperse silicic acids, silicone oil, high molecular weight fatty acids (such as stearic acid), gelatin, agar-agar or vegetable or animal fats and oils, solid high molecular weight polymers (such as polyethylene glycol); preparations suitable for oral administration can contain, if desired, additional flavourings and/or sweeteners.

10

15

20

25

5

Liquid pharmaceutical forms can be sterilized and/or optionally contain auxiliaries such as preservatives, stabilizers, wetting agents, penetrating agents, emulsifiers, spreading agents, solubilizers, salts, sugars or sugar alcohols for regulating the osmotic pressure or for buffering, and/or viscosity regulators.

Additives of this type are, for example, tartrate and citrate buffers, ethanol, complexing agents (such as ethylenediaminetetraacetic acid and its non-toxic salts). For regulating the viscosity, possible high molecular weight polymers are those such as, for example, liquid polyethylene oxide, microcrystalline celluloses, carboxymethylcelluloses, polyvinylpyrrolidones, dextrans or gelatin. Solid carriers are. example, starch, lactose, mannitol, methylcellulose. talc, highly disperse silicic acids, high molecular weight fatty acids (such as stearic acid), gelatin, agar-agar, calcium phosphate, magnesium stearate. animal and vegetable fats, solid high molecular weight polymers such as polyethylene glycol.

Oily suspensions for parenteral or topical application can be vegetable synthetic or semi-synthetic oils such as, for example, liquid fatty acid esters in each case having 8 to 22 C atoms in the fatty acid chains, for example palmitic, lauric, tridecylic, margaric, stearic, arachic, myristic, behenic, pentadecanoic, linoleic, elaidic, brassidic, erucic or oleic acid,

which are esterified with mono- to trihydric alcohols having 1 to 6 C atoms, such as, for example, methanol, ethanol, propanol, butanol, pentanol or their isomers, glycol or glycerol. Fatty acid esters of this type are, 5 for example, commercially available Miglyols, isopropyl myristate, isopropyl palmitate, isopropyl stearate, PEG 6-capric acid, caprylic/capric acid esters of saturated fatty alcohols, polyoxyethylene glycerol trioleates, ethyl oleate, waxy fatty acid esters such as artificial duck preen gland fat, isopropyl cocoate, oleyl oleate, 10 ethyl oleate, lactate, dibutyl phthalate, diisopropyl adipate, polyol fatty acid esters others. Also suitable are silicone oils of differing viscosities or fatty alcohols such as isotridecyl 15 __alcohol, __2-octyldodecanol, __cetylstearyl alcohol oleyl alcohol, fatty acids such as, for example, oleic acid. It is furthermore possible to use vegetable oils such as castor oil, almond oil, olive oil, sesame oil,

20

25

Possible solvents, gelling agents and solubilizers are water or water-miscible solvents. Those suitable are, for example, alcohols such as, for example, ethanol or isopropyl alcohol, benzyl alcohol, 2-octyldodecanol, polyethylene glycols, phthalates, adipates, propylene glycol, glycerol, di- or tripropylene glycol, waxes, methylcellosolve, cellosolve, esters, morpholines, dioxane, dimethyl sulphoxide, dimethylformamide, tetrahydrofuran, cyclohexanone etc.

cottonseed oil, groundnut oil or soya bean oil.

30

35

Film-forming agents which can be used are cellulose ethers which can dissolve or swell both in water and in organic solvents, such as, for example, hydroxypropylmethylcellulose, methylcellulose, ethylcellulose or soluble starches.

Mixed forms between gel- and film-forming agents are also perfectly possible. Here, especially, ionic macromolecules are used, such as, for example, sodium

5

10

25

30

- 13 -

carboxymethylcellulose, polyacrylic acid, polymethacrylic acid and its salts, sodium amylopectin semiglycolate, alginic acid or propylene glycol alginate as the sodium salt, gum arabic, xanthan gum, guar gum or carrageenan.

Further formulation auxiliaries which can be employed are: glycerol, paraffin of differing viscosities, triethanolamine, collagen, allantoin, novantisolic acid.

The use of surfactants, emulsifiers or wetting agents can also be necessary for formulation, such as. example, of laurylsulphate, fatty alcohol Na sulphates, di-Na N-lauryl-β-iminodipropionate, polyeth-15 -oxylated castor oil or sorbitan monooleate, sorbitan monostearate, polysorbates (e.g. Tween), cetyl alcohol, monostearate, polyoxyethylene lecithin, glycerol stearate, alkylphenyl polyglycol ethers, cetyltrimethylammonium chloride or mono-/dialkyl polyglycol ether orthophosphoric acid monoethanolamine salts. 20

montmorillonites or Stabilizers such as colloidal silicic acids for the stabilization of emulsions or for the breakdown of prevention of the such as antioxidants. for substances, tocopherols or butylhydroxyanisole, or preservatives, such as p-hydroxybenzoic acid esters, can also necessary for the preparation of the desired formulations.

The preparation, dispensation and sealing of the preparations is carried out under the customary antimicrobial and aseptic conditions.

The dose of the pharmaceutical preparations depends on the age, condition and weight of the patient and on the administration form. As a rule, the daily dose of active compound is between 0.001 and 25 mg/kg of body weight.

Preparation

According to the present invention, the compounds of 5 the general formula I can be prepared by the following processes:

Process for the preparation of the compounds of the general formula I, characterized in that

10

- for $X = -SO_2-$, -SO- the reaction is carried out a) according to scheme 1.
- 1H-Indazol-3-yl sulphonates II are reacted in presence of a base and if appropriate in the presence 15 of a diluent to give compounds of the general formula III, where R¹, R³, X and Z have the abovementioned meaning.
- 1H-Indazol-3-yl sulphonates II or 1-sulphonylindazoles 20 III are reacted, if appropriate in the presence of a base, in particular sodium hydride, and if appropriate in the presence of a diluent, in particular dimethyl sulphoxide, with compounds of the following general 25 formulae

$$Hal-Y-R^2$$
, $O=C=N-(CH_2)_p-R^2$, $[R^2-(CH_2)_p-C=O]_2O$ with $p=0...5$,

where R1, R2, R3, X, Y and Z have the abovementioned meaning and Hal is a halogen atom F, Cl, Br or iodine, to give compounds of the general formula I, where R1, R², R³, X, Y and Z have the abovementioned meaning.

Scheme 1:

$$R^{3} - Z \longrightarrow N$$

$$N \longrightarrow$$

Formula II

$$R^{3} Z \bigvee_{N-Y-R^{2}} \bigvee_{N-Y-R^{3}} V$$

Formula I

- b) for $X = -(CH_2)_p (CH_2)_p (CH_2)_p$
- Compounds of the general formula III are reacted, if appropriate in the presence of a base, in particular pyridine or sodium hydride, and if appropriate in the presence of a diluent, in particular tetrahydrofuran or dimethyl sulphoxide, with compounds of the following general formulae

 $Hal-Y-R^2$, $O=C=N-(CH_2)_p-R^2$, $[R^2-(CH_2)_p-C=O]_2O$ with p=0...5,

where R^1 , R^2 , R^3 , X, Y and Z have the abovementioned meaning and Hal is a halogen atom F, Cl, Br or iodine, to give compounds of the general formula I, where R^1 , R^2 , R^3 , X, Y and Z have the abovementioned meaning.

Scheme 2:

$$R^3$$
 Z $N-Y-R^2$ R^3 Z R^3 R^3 R^3 R^3 R^3 R^3 R^3 R^3 R^3

Formula III

Formula I

where formula III can also be present as the tautomeric form formula IV according to scheme 3.

Scheme 3:

10 The compounds of the general formula I are new.

Working examples

The following representatives of the compounds according to the invention are mentioned by way of example:

2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(4-methoxy-benzenesulphonyl)-1,2-dihydroindazol-3-one

- 20 2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(toluene-4sulphonyl)-1,2-dihydroindazol-3-one
 2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(4-trifluoromethoxybenzenesulphonyl)-1,2-dihydroindazol-3-one
 2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(4-chloro-
- 25 benzenesulphonyl)-1,2-dihydroindazol-3-one
 1-(4-fluorobenzenesulphonyl)-2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1,2-dihydroindazol-3-one

10

15

20

25

30

35

```
N-(4-[2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-3-oxo-2,3-
 dihydroindazol-1-sulphonyl]phenyl)acetamide
 2-(4-fluorobenzyl)-5-methoxy-1-(toluene-4-sulphonyl)-
 1,2-dihydroindazol-3-one
2-(4-fluorobenzyl)-5-methoxy-1-(4-chlorobenzene-
 sulphonyl)-1,2-dihydroindazol-3-one
1-(4-fluorobenzenesulphonyl)-2-(4-fluorobenzyl)-5-
methoxy-1,2-dihydroindazol-3-one
2-(2-fluorobenzyl)-5-methoxy-1-(toluene-4-sulphonyl)-
1,2-dihydroindazol-3-one
1-(4-fluorobenzenesulphonyl)-2-(2-fluorobenzyl)-5-
methoxy-1,2-dihydroindazol-3-one
2-(3-methoxybenzyl)-5-methoxy-1-(toluene-4-sulphonyl)-
1,2-dihydroindazol-3-one
2-(3-trifluoromethylbenzyl)-5-methoxy-1-(toluene-4-
sulphonyl)-1,2-dihydroindazol-3-one
2-[2-(4-chlorophenyl)thiazol-4-ylmethyl]-5-methoxy-1-
(toluene-4-sulphonyl)-1,2-dihydroindazol-3-one
5-methoxy-2-(3-phenylallyl)-1-(toluene-4-sulphonyl)-
1,2-dihydroindazol-3-one
5-methoxy-2-(3-oxo-3-phenylpropyl)-1-(toluene-4-
sulphonyl)-1,2-dihydroindazol-3-one
2-[2-(2,6-difluorophenoxy)ethyl]-5-methoxy-1-(toluene-
4-sulphonyl)-1,2-dihydroindazol-3-one
2-[2-(2-bromo-4,6-difluorophenoxy)ethyl]-5-methoxy-1-
(toluene-4-sulphonyl)-1,2-dihydroindazol-3-one
2-[2-(2-bromo-4,6-difluorophenoxy)ethyl]-5-methoxy-1-
(4-methoxybenzenesulphonyl)-1,2-dihydroindazol-3-one
N-(4-{2-[2-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-
yl) ethyl] -5-methoxy-3-oxo-2,3-dihydroindazol-1-
sulphonyl}phenyl)acetamide
2-{3-[4-(3-chlorophenyl)piperazin-1-yl]propyl}-5-
methoxy-1-(toluene-4-sulphonyl)-1,2-dihydroindazol-3-
one
1-(4-chlorobenzenesulphonyl)-2-{3-[4-(3-chlorophenyl)-
piperazin-1-yl]propyl}-5-methoxy-1-(toluene-4-
sulphonyl)-1,2-dihydroindazol-3-one
N-benzyl-2-[5-methoxy-3-oxo-1-(toluene-4-sulphonyl)-
```

1,3-dihydroindazol-2-yl]acetamide

2-[5-methoxy-3-oxo-1-(toluene-4-sulphonyl)-1,3-dihydroindazol-2-yl]-N-(4-methoxyphenyl)acetamide 2-(2,6-dichlorobenzoyl)-5-nitro-1-(toluene-4sulphonyl)-1,2-dihydroindazol-3-one 1-(3,4-dichlorobenzyl)-2-(2-hydroxy-5-nitrobenzyl)-5methylthio-1,2-dihydroindazol-3-one 2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(3-nitrobenzyl) -1,2-dihydroindazol-3-one 5-methoxy-1-(3-nitrobenzyl)-3-oxo-1,3-dihydroindazol-2carboxylic acid (2-fluorophenyl)amide 10 5-methoxy-1-(3-nitrobenzyl)-3-oxo-1,3-dihydroindazol-2carboxylic acid (2,6-dichlorophenyl)amide 5-methoxy-1-(3-nitrobenzyl)-3-oxo-1,3-dihydroindazol-2carboxylic acid (2-fluoro-6-trifluoromethylphenyl)amide methyl 3-[2-(2-fluorophenylcarbamoyl)-5-methoxy-3-oxo-15 2,3-dihydroindazol-1-ylmethyl]benzoate 1-(4-fluorobenzyl)-5-methoxy-3-oxo-1,3-dihydroindazole-2-carboxylic acid (2,6-dichlorophenyl)amide 1-(4-fluorobenzyl)-5-methoxy-3-oxo-1,3-4-nitrobenzyl dihydroindazole-2-carboxylate 20 1-(2,6-difluorobenzyl)-5-methoxy-3-oxo-1,3-dihydroindazole-2-carboxylic acid (2,6-dichlorophenyl) amide 1-(2-chloro-6-fluorobenzyl)-5-methoxy-3-oxo-1,3dihydroindazole-2-carboxylic acid (2,6-dichlorophenyl)amide. 25

The compounds are characterized by means of melting point, thin-layer chromatography, elemental analysis, NMR spectroscopy, IR and UV-VIS spectroscopy and optionally using mass spectroscopy.

Purification using column liquid chromatography:

In the preparation of the compounds of Examples 1 to

35, the 1- and 3-0-substituted 1H-indazoles according
to the general formula V can be formed as by-products.

30

35

$$R^3$$
— Z
 N
 X
 R^1

Formula V

The compounds of the general formula I can usually be separated from the compounds of the general formula V by recrystallization. If this is unsuccessful, a column-chromatographic separation under the following conditions is necessary: stationary phase: normal phase silica gel, e.g. Si 60 to 100 Å, particle size 5 to 100 µM. Eluent: methylene chloride/ethyl acetate = 95/5 or methylene chloride/methanol = 95/5.

10

15

The compounds of the general formula I are more polar than the compounds of the general formula V, so the compounds of the general formula I are eluted after the compounds of the general formula V under these chromatographic conditions. This purification operation is applicable to all of Examples 1 to 35.

Example 1

2-(2-Hydroxy-5-nitrobenzyl)-5-methoxy-1-(4-methoxy-benzenesulphonyl)-1,2-dihydroindazol-3-one

5 '

5-methoxy-1H-indazol-3-yl (15 mmol) of 4-methoxybenzenesulphonate are dissolved in 70 ml DMSO and treated in portions with 1.5 g (37.5 mmol) of hydride (60 per cent). After stirring for 2 hours, a solution of 2.81 g (15 mmol) of 2-hydroxy-5-10 nitrobenzyl chloride in 25 ml of DMSO is added dropwise and the mixture is stirred at 90-100°C for 3 hours. After cooling, 400 ml of water are added, and the for is stirred 3 hours and extracted three times with 400 ml of ethyl acetate. The combined 15 organic phases are washed with 100 ml of water, dried over sodium sulphate, distilled to dryness in vacuo and the residue is recrystallized from ethanol.

Yield: 3.0 g (41.1% of theory)

20 M.p. 215-217°C

¹³C NMR (DMSO- d_6 ; 300 MHz): δ = 46.0 CH₂N; 55.8 2 × CH₃O; 165.1 C=O.

IR(KBr): $v = 1669 \text{ cm}^{-1} \text{ C}=0$.

25 The compounds listed in Table 1 are prepared by an analogous procedure.

Table 1:

$$\begin{array}{c|c}
R^{1} & O \\
N - R^{3} \\
O = S = O \\
R^{2}
\end{array}$$

Formula VI

01	_	CH	LO
н	=	СП	IV

Example	R²	R³	Yield (% of theory)	m.p. [°C]	IR (KBr) [cm ⁻¹] C=O	¹³ C-NMR (DMSO) N-CH₂
2	4-Toly!	CH ₂ NO,	20	212-215 (2-PrOH)	1673	46.62
3	4-Trifluoro - methoxy- phenyl	сн <u>,</u> , ,	67	99-103 (EtOH)	1694	46.81
4	4-Chloro- phenyl	сн	. 66	212-216 (MeCN)	1690	45,33
5	4-Fluoro - pheny!	CH, NO,	55	210-212 (EtOH)	1690	46.54
6	4-Acetyl- aminophenyl	сн,	25	242-244 (EIOH)	1672; 1713	46.50
7	4-Tolyl	но сн ₇ —	12	151 (MeOH)	1703	48.89
8	4-Chloro - phenyl	CH ₂ —F	8	179 (EIOH)	1704	49.81

9 .	4-Fluoro- phenyl	CH ₂ ————————————————————————————————————	. 28	167-169 (EtOH)	1708	49.53
10	4-Tolyl	сн _з	65	164-167 (2-PrOH)	1712	44.54
11	4-Fluoro- phenyl	CH ₂	16	151-153 (MeCN)	1713	49.36
12	4-Tolyl	CH2 O-CH3	10	125-127 (MeCN)	1704	47.77
13	4-Tolyl	сн,	18	110 (EtOH)	1704	49.86
14	4-Tolyl	CH ₂ N	52	192-193 (MeCN)	1703	47,14
15	4-Tolyl	CH ₂	58	137-139 (2-PrOH)	1708	46.22
16	4-Tolyl		19	140-145 (ElOH)	1690; 1716	41.20
17	4-Tolyl	сн, — о — Б	10	151-153 (EIOH)	1718	46.99
18	4-Tolyl	CH ₃ O F	7	125-126 (2-PrOH)	1717	46,86
19	4-Methoxy- phenyl	CH ₃ O F	14	76-81 (EtOH)	1711	48.70
20	4-Acetyl- aminophenyl	сн,—сн.	15	245-247 (MeCN)	1714	38.22; 44.75
21	4-Tolyl	CH3NCI	14	157-162 (EIOH)	1704	45.71; 47.78; 52.78; 55.77

22	4-Chloro- phenyl	CH; N N	11	166-168 (MeCN)	1704	45.92; 47.75; 52.80; 55.80
23	4-Tolyl	CH ₃ N	5	221-223 (EtOH)	1685; 1718	42.27; 50.24
24	4-Tolyl	CH ₃	6	226-228 (EtOH)	1690; 1704	51,31

Example 25

5

10

15

2-(2,6-Dichlorobenzoyl)-5-nitro-1-(toluene-4-sulphonyl)-1,2-dihydroindazol-3-one

5 g (0.015 mol) of 5-nitro-1H-indazol-3-yl toluene-4-sulphonate are dissolved in 50 ml of pyridine and stirred at 80°C for 30 minutes with 3.77 g (0.018 mol) of 2,6-dichlorobenzoyl chloride. After cooling, the mixture is stirred into 150 ml of water, treated with 100 ml of 5 N HCl, and the solid is filtered off with suction and washed with water. The crude product is purified by preparative HPLC using silica gel Si 60 and the eluent methylene chloride/ethyl acetate = 99/1.

Yield: 2.4 g (32% of theory)

20 M.p. 195-197°C (EtOAc) 13 C NMR (DMSO-d₆; 300 MHz): δ = 20.27 CH₃; 159.33 C=O; 162.87 C=O. $IR(KBr): v = 1726 cm^{-1} C=0.$

Example 26

5 1-(3,4-Dichlorobenzyl)-2-(2-hydroxy-5-nitrobenzyl)-5methylthio-1,2-dihydroindazol-3-one hydrate

3.6 g (11 mmol) of 1-(3,4-dichlorobenzyl)-5-methylthio1H-indazol-3-ol are dissolved in 100 ml of DMSO and
10 treated in portions with 0.34 g (13.2 mmol) of sodium
hydride (95 per cent). After stirring for 2 hours, a
solution of 2.1 g (11 mmol) of 2-hydroxy-5-nitrobenzyl
chloride in 20 ml of DMSO is added dropwise and the
mixture is stirred at 60°C for 3 hours. After cooling,
15 200 ml of water are added dropwise, the mixture is
stirred for 4 hours and the solid is filtered off with
suction. The precipitate is extracted by stirring with
methanol whilst hot and recrystallized from 2-propanol.

Yield: 1.0 g (18.5% of theory)

M.p. 225°C

13°C NMR (DMSO-d₆; 300 MHz): δ = 13.7 CH₃S; 48.8 2 × CH₂N; 160.6 C=0.

IR(KBr): ν = 1623 cm⁻¹ C=0.

25

The compound shown in Table 2 is prepared by an analogous procedure using 5-methoxy-1-(3-nitrobenzyl)-1H-indazol-3-ol as a starting substance.

Table 2:

$$R^1$$
 $N-R^3$
 R^2

Formula VII

Example	R²	R³	Yield (% of theory)	m.p. [°C]	IR (KBr) [cm ⁻¹] C=O	¹³ C-NMR (DMSO) N-CH₂
27	CH ₂ —NO ₂	CH ₂ —NO ₂	61	232 (MeCN)	1642	40.51; 53.44

Example 28

5-Methoxy-1-(3-nitrobenzyl)-3-oxo-1,3-dihydroindazole-10 2-carboxylic acid (2-fluorophenyl)amide

1.8 g (0.013 mol) of 2-fluorophenyl isocyanate are added to a solution of 3.0 g (0.01 mol) of 5-methoxy-1-(3-nitrobenzyl)-1H-indazol-3-ol in 100 ml of tetra-hydrofuran and the mixture is heated under reflux for 4 hours. It is then concentrated to 20 ml, and the precipitate deposited is filtered off with suction and recrystallized from ethyl acetate.

5

15

Yield: 1.1 g (25% of theory)

M.p. 149-151°C

¹³C NMR (DMSO-d₆; 300 MHz): $\delta = 157.22$ C=O; 165.15 C=O.

5 IR(KBr): v = 1682; 1727 cm⁻¹ C=O.

The compounds listed in Table 3 are prepared by an analogous procedure.

10 Table 3:

$$R^1$$
 N
 R^2

Formula VIII

R1	=	CI	٦,	0

Example	R ²	R³	Yield (% of theory)	m.p. [*C]	IR (KBr) [cm ⁻¹] C=O	13C-NMR (CDCI ₃) C=O
29	CH ₂ —NO ₂	HN—CI	31	170-172 (EtOAc)	1684; 1730	156,77; 164.88
30	CH ₂ —NO ₂	HN————————————————————————————————————	78	200-201 (ElOH)	1693; 1732	155.21; 163.16
31	сн, —	HN————————————————————————————————————	49	149-154 (EtOH)	1685; 172 1	156.65; 164.95; 166.48

32	CH, —F HN—CI	65	165 (MeCN)	1695; 1736	156.43, 165.01
33	CH ₂ ——F NO,	8	156-158 (MeCN)	1730 b	157.05; 164.83
34	CH ₂ HN CI	50	169-171 (EIOAc)	1692; 1740	159.38; 168.14
35	CH ₂ CI CI CI	60	151-153 (EtOH)	1687, 1737	156.79; 165.53

To determine the anti-asthmatic, anti-allergic, anti-inflammatory and/or immunomodulating properties of the compounds according to the invention, in vitro and in vivo investigations were carried out.

The compounds according to the invention as in formula I are surprisingly distinguished by immunophilin binding and inhibit its peptidyl-prolyl cis-transisomerase (PPIase) activity. For the initial screening (10 μ mol/l), the inhibition of the human cyclophilin B in the PPIase test is determined.

15 Assay for the determination of the peptidylprolyl isomerase (PPIase) activity and inhibition

Method:

5

The PPIase activity is tested according to a globally customary enzyme test: G. Fischer, H. Bang, C. Mech, Biomed. Biochim. Acta 43 1101-1111; G. Fischer, H. Bang, A. Schellenberger, Biochim. Biophys. Acta 791 (1984), 87-97; D.H. Rich et al., J. Med. Chem. 38 (1995), 4164-4170.

The compounds of the general formula I according to the invention are preincubated at 4°C for 15 minutes together with 10 nmol of Cyp B. The enzyme reaction is started using the test peptide Suc-Ala-Ala-Pro-Phe-Nan after addition of chymotrypsin and HEPES buffer. The extinction change at 390 nm is then monitored and evaluated. The photometrically determined extinction change results from two sub-reactions: a) the rapid chymotryptic cleavage of the trans-peptide; b) the non-enzymatic cis-trans isomerization, which is catalysed by cyclophilins. The determined inhibition of the PPIase activity of selected compounds of the general formula I is shown in Table 4:

15 Table 4:

10

Example	Inhibition of the PPIase				
	activity at 10 μM				
1	70				
2	50				
3	93				
4	90				
5	67				
26	98				

Inhibition of late-phase eosinophilia 24 h after inhalational ovalbumin challenge in actively sensitized guinea-pigs

Method:

20

25

30

The inhibition of pulmonary eosinophil infiltration by the substances is tested in an *in vivo* test on male Dunkin-Hartley guinea-pigs (200-250 g) sensitized against ovalbumin (OVA). The sensitization is carried out by means of two intraperitoneal injections of a suspension of 20 μ g of OVA together with 20 mg of aluminium hydroxide as an adjuvant in 0.5 ml of physiological saline solution per animal on two

successive days. 14 days after the second injection. animals are pretreated with mepyramine maleate i.p.) in order to protect them (10 mg/kg from anaphylactic death. 30 minutes later, the animals are exposed for 30 sec in a plastic box to an OVA aerosol (0.5 mg/ml) which is generated by a nebulizer driven by compressed air (19.6 kPa) (allergen challenge). Control nebulized physiological with are animals solution. 24 hours after the challenge, the animals are anaesthetized with an overdose of ethylurethane (1.5 g/kg of body weight i.p.) and a bronchoalveolar is carried out with 2 × 5 ml lavage (BAL) physiological saline solution. The BAL fluid is collected, centrifuged at 300 rpm for 10 min and the resuspended is then in 1 ml pellet of saline solution. The physiological eosinophils stained using the Becton-Dickinson test kit (N. 5877) for eosinophils and counted in a Neubauer chamber. 2 control groups (nebulization with physiological saline solution and nebulization with OVA solution) additionally included in each test.

10

15

20

25

30

35

The percentage inhibition of the eosinophilia of the test group treated with substance is calculated according to the following formula:

$$(A - C) - (B - C)/(A - C) \times 100 = % inhibition$$

The test substances are administered intraperitoneally or orally as a suspension in 10% polyethylene glycol 300 and 0.5% strength 5-hydroxyethylcellulose 2 hours before allergen challenge. The control groups are vehicle according the to the treated with administration form of the test substance. The number animals per control and test group is 3-10. of results are listed in Table 5:

Table 5:

Ex-	Dose	Admin-		Eosinophils					Inhi-			
ample	[mg/	istra-		million/animal						bition		
	kg]	tion				x	±	s				[%]
				А			В			C		į
1	2 × 30	i.p. -2h/+4h	1.89	±	0.42	0.51	±	0.25	0.55	±	0.12	97

- A = Eosinophils in the control group with OVA challenge and vehicle
 - B = Eosinophils in the group treated with substance
 with OVA challenge
 - C = Eosinophils in the control group with 0.9%
 strength NaCl challenge and vehicle
- $\frac{10}{x}$ = Average value s = Standard deviation

The compounds according to the invention are thus particularly suitable for the production of medicaments for the treatment of diseases which are connected with the suppression of immunological processes.

Patent Claims

1. New 1,2,5-trisubstituted 1,2-dihydroindazol-3-ones of the general formula I

$$R^3-Z$$
 $N-Y-R^2$

Formula I

in which X, Y, Z, R^1 , R^2 and R^3 have the following meaning:

10

5

X can be $-SO_2$ -, $-SO_-$, $-(CH_2)_p$ -, $-(CH_2)_p$ -O-, $-(CH_2)_p$
(C=O)-, $-(CH_2)_p$ -(C=O)-NH-, $-(CH_2)_p$ -CHOH-, -CHOH
(CH₂)_p-, $-(CH_2)_p$ -CH=CH-, -CH=CH-(CH₂)_p- where

p = 1...4,

15

- Y can be -(C=0)-, -(C=0)-NH-, -(C=0)-NH- $(CH_2)_p$ -, -(C=0)- $(CH_2)_p$ -, $-(CH_2)_p$ -, $-(CH_2)_p$ -O-, $-(CH_2)_p$ -(C=0)-, $-(CH_2)_p$ -(C=0)-NH-, $-(CH_2)_p$ -(C=0)-NH- $(CH_2)_p$ -, $-(CH_2)_p$ -CH=CH-, $-(CH_2)_p$ -where p=1...4,
- Z can be -O-, -O-(CH₂)_p- where p = 1...4, -NH-, -NH- (C=O)-, -NH-(C=O)-NH-, -NH-(C=O)-O-, -NH-CH₂- (C=O)- and -NH-(C=O)-CH₂-,

25

20

- R^1 , R^2 and R^3 can be identical or different and have the following meaning:
- mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycles having 5...14 ring members, in particular phenyl, naphthyl, anthranyl, fluorenyl; or mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having 5...15 ring members and 1...6 heteroatoms, which are preferably N, O and S, in particular

thiophenyl, pyridinyl, isoxazolyl, benzimidazolyl, benzo[1,3]dioxolyl, pyrimidinyl, quinolyl, quinazolinyl, morpholinyl, pyrrolidinyl, pyrrolyl, benz[1,2,4]oxadiazolyl, benzothiazolyl,

5

where the carbocycles and the heterocycles can be mono- or polysubstituted by:

- $-C_{1...6}$ -alkyl, $-O-C_{1...6}$ -alkyl, $-O-C_{3...7}$ -cycloalkyl, mono-, bi- or tricyclic saturated or mono- or 10 polyunsaturated carbocycles having 3...14 ring members, mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles having 5...15 ring members and 1...6 heteroatoms, which are preferably N, O and S, -F, -Cl, -Br, -I, -OH, 15 -SH, -NO₂, -NH₂, -NHC_{1...6}-alkyl, -N(C_{1...6}-alkyl)₂, -NHC_{6...14}-aryl, $-N(C_{6...14}-aryl)_2$, $-N(C_{1...6}-alkyl) (C_{6...14}-aryl)$, $-NHCOC_{1...6}-alkyl$, -NHCOC_{6...14}-aryl, -CONHC_{1...6}-alkyl, -CONHC_{6...14}-aryl, -CONHSO₂C_{1...6}alkyl, $-CONHSO_2C_{6...14}$ -aryl, -CN, $-(CO)C_{1...6}$ -alkyl, 20 -(CS) $C_{1...6}$ -alkyl, -COOH, -COOC_{1...6}-alkyl, -O-C_{6...14}aryl, $-0-(CO)C_{1...6}-alkyl$, $-0-(CO)C_{6...14}-aryl,$ benzyl, benzyloxy, -S-C_{1...6}-alkyl, -S-C_{6...14}-aryl, $-CF_3$, $-(CH_2)_p$ -COOH where p = 1 to 4, $-(CH_2)_p$ - $COOC_{1...6}$ -alkyl where p = 1 to 4, $-SO_2-C_{1...6}$ -alkyl, 25 $-SO_2-C_{6...14}-aryl$,
 - R^1 can furthermore be H (but not if $X = CH_2$),
- 30 R^3 -Z can furthermore be NO_2 ,

but excluding compounds as in formula I:

if Z is -NH-(C=O)-, -NH-(C=O)-NH-, -NH-(C=O)-O-, $-NH-(C=O)-CH_2-$ and simultaneously R^1 = phenyl, monosubstituted or polysubstituted by -COOH, $-COOC_1...6-$ alkyl, $-(CH_2)_p-COOH$, where p = 1 to 4, $-(CH_2)_p-COOC_1...6-$ alkyl where p = 1...4, $-CONHC_1...6-$ alkyl, $-CONHC_6...14-$ aryl, $-CONHSO_2C_1...6-$ alkyl, $-CONHSO_2C_6...14-$ aryl, $-CONHSO_2C_6...14-$

zol-5-yl, then R^2 must not be phenyl, monosubstituted or polysubstituted by CN, halogen, $C_{1...4}$ -alkyl, $C_{1...4}$ -alkyloxy, CF_3 ,

- furthermore if $R^3-Z=NO_2$, then R^1-X and R^2-Y must not simultaneously have the following meaning: $R^1-X=\text{benzyl}, \text{ 4-methoxybenzyl}$ $R^2-Y=\text{benzyl}, \text{ 2-picolyl}.$
- 10 2. Compounds according to Claim 1,
 - 2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(4-methoxy-benzenesulphonyl)-1,2-dihydroindazol-3-one
 - 2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(toluene-4-
- sulphonyl)-1,2-dihydroindazol-3-one
 - 2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(4-trifluoro-methoxybenzenesulphonyl)-1,2-dihydroindazol-3-one
 2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(4-chloro-benzenesulphonyl)-1,2-dihydroindazol-3-one
- 1-(4-fluorobenzenesulphonyl)-2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1,2-dihydroindazol-3-one N-(4-[2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-3-oxo-2,3dihydroindazol-1-sulphonyl]phenyl)acetamide 2-(4-fluorobenzyl)-5-methoxy-1-(toluene-4-sulphonyl)-
- 25 1,2-dihydroindazol-3-one
 2-(4-fluorobenzyl)-5-methoxy-1-(4-chlorobenzenesulphonyl)-1,2-dihydroindazol-3-one
 1-(4-fluorobenzenesulphonyl)-2-(4-fluorobenzyl)-5methoxy-1,2-dihydroindazol-3-one
- 2-(2-fluorobenzyl)-5-methoxy-1-(toluene-4-sulphonyl)1,2-dihydroindazol-3-one
 1-(4-fluorobenzenesulphonyl)-2-(2-fluorobenzyl)-5methoxy-1,2-dihydroindazol-3-one
 - 2-(3-methoxybenzyl)-5-methoxy-1-(toluene-4-sulphonyl)-
- 1,2-dihydroindazol-3-one
 2-(3-trifluoromethylbenzyl)-5-methoxy-1-(toluene-4sulphonyl)-1,2-dihydroindazol-3-one
 2-[2-(4-chlorophenyl)thiazol-4-ylmethyl]-5-methoxy-1-
 - (toluene-4-sulphonyl)-1,2-dihydroindazol-3-one

```
5-methoxy-2-(3-phenylallyl)-1-(toluene-4-sulphonyl)-
      1,2-dihydroindazol-3-one
      5-methoxy-2-(3-oxo-3-phenylpropyl)-1-(toluene-4-
      sulphonyl)-1,2-dihydroindazol-3-one
     2-[2-(2,6-difluorophenoxy)ethyl]-5-methoxy-1-(toluene-
  5
     4-sulphonyl)-1,2-dihydroindazol-3-one
     2-[2-(2-bromo-4,6-difluorophenoxy)ethyl]-5-methoxy-1-
     (toluene-4-sulphonyl)-1,2-dihydroindazol-3-one
     2-[2-(2-bromo-4,6-difluorophenoxy)ethyl]-5-methoxy-1-
     (4-methoxybenzenesulphonyl)-1,2-dihydroindazol-3-one
 10
     N-(4-{2-[2-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-
     yl)ethyl]-5-methoxy-3-oxo-2,3-dihydroindazol-1-
     sulphonyl}phenyl)acetamide
     2-{3-[4-(3-chlorophenyl)piperazin-1-yl]propyl}-5-
     methoxy-1-(toluene-4-sulphonyl)-1,2-dihydroindazol-3-
15
     one
    1-(4-chlorobenzenesulphonyl)-2-{3-[4-(3-chlorophenyl)-
    piperazin-1-yl]propyl}-5-methoxy-1-(toluene-4-
    sulphonyl)-1,2-dihydroindazol-3-one
    N-benzyl-2-[5-methoxy-3-oxo-1-(toluene-4-sulphonyl)-
20
    1,3-dihydroindazol-2-yl]acetamide
    2-[5-methoxy-3-oxo-1-(toluene-4-sulphonyl)-1,3-dihydro-
    indazol-2-yl]-N-(4-methoxyphenyl)acetamide
    2-(2,6-dichlorobenzoyl)-5-nitro-1-(toluene-4-
    sulphonyl)-1,2-dihydroindazol-3-one
25
    1-(3,4-dichlorobenzyl)-2-(2-hydroxy-5-nitrobenzyl)-5-
    methylthio-1,2-dihydroindazol-3-one
    2-(2-hydroxy-5-nitrobenzyl)-5-methoxy-1-(3-nitro-
    benzyl)-1,2-dihydroindazol-3-one
    5-methoxy-1-(3-nitrobenzyl)-3-oxo-1,3-dihydroindazol-2-
    carboxylic acid (2-fluorophenyl) amide
    5-methoxy-1-(3-nitrobenzyl)-3-oxo-1,3-dihydroindazol-2-
    carboxylic acid (2,6-dichlorophenyl)amide
   5-methoxy-1-(3-nitrobenzyl)-3-oxo-1,3-dihydroindazol-2-
   carboxylic acid (2-fluoro-6-trifluoromethylphenyl)amide
            3-[2-(2-fluorophenylcarbamoyl)-5-methoxy-3-oxo-
   2,3-dihydroindazol-1-ylmethyl]benzoate
   1-(4-fluorobenzyl)-5-methoxy-3-oxo-1,3-dihydroindazole-
   2-carboxylic acid (2,6-dichlorophenyl)amide
```

30

35

- 4-nitrobenzyl 1-(4-fluorobenzyl)-5-methoxy-3-oxo-1,3-dihydroindazole-2-carboxylate
 1-(2,6-difluorobenzyl)-5-methoxy-3-oxo-1,3-dihydro-indazole-2-carboxylic acid (2,6-dichlorophenyl)amide
 5 1-(2-chloro-6-fluorobenzyl)-5-methoxy-3-oxo-1,3-dihydroindazole-2-carboxylic acid (2,6-dichlorophenyl)-amide.
- 3. Physiologically tolerable salts of the novel compounds as in formula I according to Claims 1 and 2, characterized by neutralization of the bases with inorganic or organic acids or by neutralization of the acids with inorganic or organic bases or by quaternization of tertiary amines to give quaternary ammonium salts.
 - 4. Use of the compounds as in formula I and their salts according to Claims 1 to 3 as therapeutic active compounds for the production of medicaments for the treatment of diseases mediated by PPIase.
 - 5. particularly preferred use of the compounds as in formula I and their salts according to Claims 1 to 3 as therapeutic active compounds for the production of medicaments for the treatment of diseases which are connected with the suppression of immunological processes.
- 6. Process for the preparation of the compounds of 30 the general formula I, according to Claims 1 to 3, characterized in that
 - a) for $X = -SO_2-$, -SO- the reaction is carried out according to scheme 1 by

20

25

35

Formula II

in the presence of a base and if appropriate in the presence of a diluent to give compounds of the general formula III

Formula III

where R1, R3, X and Z have the meaning mentioned in 10 Claim 1 or above, and reacting 1H-indazol-3-yl sulphonates or 1-sulphonylindazoles II appropriate in the presence of a base, in particular sodium hydride, and if appropriate in the presence of a in particular dimethyl sulphoxide, 15 diluent, compounds of the following general formulae

 $Hal-Y-R^2$, $O=C=N-(CH_2)_p-R^2$, $[R^2-(CH_2)_p-C=O]_2O$ with p=0...5,

where R^1 , R^2 , R^3 , X, Y and Z have the meaning mentioned in Claim 1 or above and Hal is a halogen atom F, Cl, Br or iodine, to give compounds of the general formula I, where R^1 , R^2 , R^3 , X, Y and Z have the meaning mentioned in Claim 1 or above,

20

25

b) for $X = -(CH_2)_p-$, $-(CH_2)_p-O-$, $-(CH_2)_p-(C=O)-$, $-(CH_2)_p-(C=O)-NH-$, $-(CH_2)_p-CHOH-$, -CHOH-($CH_2)_p-$, $-(CH_2)_p-CH=CH-$, -CH=CH-($CH_2)_p-$ where p = 1...4 the reaction is carried out according to scheme 2 by

reacting compounds of the general formula III, if appropriate in the presence of a base, in particular pyridine or sodium hydride, and if appropriate in the presence of a diluent, in particular tetrahydrofuran or dimethyl sulphoxide, with compounds of the following general formulae

 $Hal-Y-R^2$, $O=C=N-(CH_2)_p-R^2$, $[R^2-(CH_2)_p-C=O]_2O$ with p=0...5,

10

15

5

where R^1 , R^2 , R^3 , X, Y and Z have the meaning mentioned in Claim 1 or above and Hal is a halogen atom F, Cl, Br or iodine, to give compounds of the general formula I, where R^1 , R^2 , R^3 , X, Y and Z have the meaning mentioned in Claim 1 or above,

where formula III can also be present as the tautomeric form formula IV

Formula IV

20

25

according to scheme 3.

- 7. Pharmaceutical composition, characterized in that, as an active constituent, it contains at least one compound of the formula I according to Claims 1 to 3 and physiologically tolerable carriers and/or diluents or auxiliaries.
- 8. Pharmaceutical preparations, characterized in 30 that, as an active constituent, they contain at least one compound of the formula I according to Claims 1 to 3 and a suitable carrier.
- Pharmaceutical preparations according to Claims 1,
- 35 2, 3, 7 and 8, characterized in that they are

CA 02271837 1999-05-11

- 38 -

administered in the form of tablets, coated tablets, capsules, aerosols, powder formulations, patches, solutions, ampoules or suppositories.

5 10. Use of the compounds of the formula I according to Claims 1 to 3 and/or of pharmaceutical preparations according to Claims 7 and 8 as agents having antiasthmatic, anti-allergic, anti-inflammatory and/or immunomodulating actions on their own or in combination with one another or in combination with carriers.

Abstract

The invention relates to new 1,2,5-trisubstituted 1,2-dihydroindazol-3-ones, processes for their preparation and their pharmaceutical use.

The compounds have anti-asthmatic, anti-allergic, anti-inflammatory, immunomodulating and neuroprotective actions.