文興高中	勘學(一)	4_2	二維數據分析	
X 兴同十	安((二)	14-2		

班級:	座號:	姓名:	1
カエバス		XL-'LI '	

4-2 二維數據分析

我們除了分析單一數據資料外,常常也需要一起考慮兩組數據,去發現它們之間可能存在的因果關係,以及對彼此造成的影響,這就是二維數據分析。本章將討論「散佈圖」、「相關係數」與「迴歸直線」等工具,探討、解釋並預測兩組數據間的相互關係。

散佈圖

具有兩個變量的數據,稱為**二維數據**,這在現代生活與科學中處處可見。 例如:(身體,體重),(容量,體積),(風力,雨量),(數學成績,國文成績),(BMI 指數, 血壓)等等。

通常我們將兩個可能相關的變量數據以點標示在坐標平面上,第一個變量當作 x 坐標,第二個變量當作 y 坐標,選取適當刻度後,將每一組資料 (x_i, y_i) 描繪在坐標平面上,這樣所得的圖形稱為**散佈圖**。

例題 1------

測量 7 位同學的身高與體重, 結果如下表:

身高 (公分)	172	160	162	164	170	168	166
體重(公斤)	60	50	52	58	62	56	54

試繪出其散佈圖。	
----------	--

隨堂練習-----

蒐集 7 筆有關年齡與血壓的二維數據,結果如下表,試繪出其散佈圖。

年齡(歲)	35	40	45	50	55	60	65
收縮壓 (mmHg)	116	120	124	128	132	136	140

正相關、負相關、零相關

由散佈圖可以快速觀察出兩個變量之間是否有關係。

(1) 正相關:兩個變量有一致的趨勢(同時增加或減少)。

(2) 負相關:兩個變量趨勢相反,一個增加(減少)則另一個就減少(增加)。

(3) 零相關:一個變量的變化對另一個變量沒有影響。

(4) 完全正相關:資料全部在一條斜率為正的直線上。

(5) 完全負相關:資料全部在一條斜率為負的直線上。

數據標準化

描繪散佈圖時,由於單位與刻度可以任意選定,同一組資料 (x_i, y_i) 的描繪結果可能 差異很大。因此通常我們會先將數據標準化後再描繪出散佈圖。

※二維數據的標準化

設資料的第一個變量的平均數為 μ, 標準差為 σ, 第二個變量的平均數為 μ, 標準差為

 σ_{v} 。則 (x_{i}, y_{i}) 的標準化數據為 (u_{i}, v_{i}) ,其中

$$u_i = \frac{x_i - \mu_x}{\sigma_x}, \ v_i = \frac{y_i - \mu_y}{\sigma_y}$$

例題 2-----

承例題 1 的數據, 試繪出標準化數據的散佈圖。

身高 (公分)	172	160	162	164	170	168	166
體重(公斤)	60	50	52	58	62	56	54

解 由例題 1 的數據,經計算可得 $\mu_x=166$, $\sigma_x=4$, $\mu_y=56$, $\sigma_y=4$ 。標準化數據如下:

$u_i = \frac{x_i - \mu_x}{\sigma_x}$				
$v_i = \frac{y_i - \mu_y}{\sigma_y}$				

隨堂練習-----

例題 1 的隨堂練習中,

年齡(歲)	35	40	45	50	55	60	65
-------	----	----	----	----	----	----	----

文興高中 數學(二)4-2	2 二維數據分析		班	級:_	1	座號:			姓名	:	5
ı	收縮壓(mmHg)	116	120	124	128	132	2 13	36	140		
若年龄 μ _x =50, σ	_x =10,收縮壓 μ _y =	= 128,	$\sigma_y =$	-8 ∘ 🖹	式繪出		化婁	女據6	的散(· 布圖。 	
標準化數據有											
1. 標準化數據的變	選手的沒有単位。 營量的平均數皆為 0	栅	作主に	Ŀ <u>┾</u> , ·	1 ,						
	望里的平均數百為 0 值經過標準化後變度		•			三七三	11.11	総昌	的輝	i淮羊。	
M 不 M 交 里 们 一	直在過保中 [[及交]	火	11 , PY	тшну	干皿		EM:	攵里	山刀亦	十上.	
例題 3											
蒐集 7 筆年齡與關	垂眠時間的數據,結	果如	下表	:					_		
	年齡(歲)	24	28	32	36	40	44	48			
	睡眠時間 (時)	8	7.8	7.6	7.4	7.2	7	6.8			
試繪出標準化數據	的散佈圖。								-		
\mathbf{F} 以 x 坐標表示年齡、 y 坐標表示睡眠時間。則經過標準化的數據如下:											

 $u_i = \frac{x_i - \mu_x}{\sigma_x}$ $v_i = \frac{y_i - \mu_y}{\sigma_y}$

文興高中	數學(二)4-2 二維數據分析	班級:	_座號:	 _6
隨堂練習]			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
如例題 3	3,試選取適當刻度繪出原始資料的間	放佈圖。		

文興高中	勘學(一)	4_2	二維數據分析	
X 兴同十	安((二)	14-2		

班級:座號	:	姓名:	7
-------	---	-----	---

抽油	/し、車を計を占力を士士人	•
保华	化數據的結論	•

- 1. 若原始數據落在斜率為正的直線上,則標準化後的數據必落在通過原點、斜率為 1 的直線上。
- 2. 若原始數據落在斜率為負的直線上,則標準化後的數據必落在通過原點、斜率為 -1 的直線上。

例題 4
νηνας τ
設二維數據原始資料為 (x_i, y_i) ,標準化的數據為 (u_i, v_i) 。試證明:
若原始數據落在直線 $y=3x+2$ 上,則標準化後的數據落在直線 $v=u$ 上。

試證明:若原始數據落在直線 y=-5x+1 上,則標準化後的數據落在直線 v=-u 上。

相關係數 (衡量兩變量相關的程度)

將兩組數據中的其中一組進行平移或伸縮,並不影響兩變量之間的相對關係。所以為了有效描述兩變量之間的關係,我們需將兩組數據標準化,亦即使各組數據的平均值為 0,標準差為 1。將數據標準化之後,在散佈圖上兩變量的平均值會成為原點。設每一筆資料的標準化數據為 (u_i, v_i) 。當點 (u_i, v_i) 在第一、三象限時,有 $u_i v_i > 0$;而當點 (u_i, v_i) 在第二、四象限時,有 $u_i v_i < 0$ 。

所以,如果 $\sum_{i=1}^{n} u_i v_i$ 這個值是正的,表示落在第一、三象限的點多,圖形會是右上左下的趨勢(正相關),如圖 5,而且正愈多,表示趨勢愈強。同理,如果 $\sum_{i=1}^{n} u_i v_i$ 這個值是負的,

那表示落在第二、四象限的點多,圖形會是左上右下的趨勢(負相關),如圖 6,而且負愈多,表示趨勢愈強。

-3 -2 -1 0 1 2 3 *u*

負相關

元

因此, $\sum_{i=1}^{n} u_i v_i$ 可以用來衡量相關程度。為了消弭資料個數的影響,我們除掉資料個數,

得到 $\frac{1}{n} \left(\sum_{i=1}^{n} u_i v_i \right)$ 。此即相關係數的定義,通常記為 r。

※相關係數

標準化數據 (u_i, v_i) , $i=1, 2, \dots, n$ 的相關係數定義為

$$r=\frac{1}{n}\left(\sum_{i=1}^n u_i v_i\right)$$

例題 5-----

例題 2 的標準化數據如下表:

$u_i = \frac{x_i - \mu_x}{\sigma_x}$	1.5	-1.5	-1	-0.5	1	0.5	0
$v_i = \frac{y_i - \mu_y}{\sigma_y}$	1	-1.5	-1	0.5	1.5	0	-0.5

試求其相關係數。(取到小數點後第四位)

解 直接計算得

$$r = \frac{1}{7} \left(\sum_{i=1}^{n} u_{i} v_{i} \right)$$

$$= \frac{1}{7} (1.5 + 2.25 + 1 - 0.25 + 1.5 + 0 + 0)$$

$$= \frac{6}{7} \approx 0.8571,$$

文興高中	數學(一)	4-2	二維數據分析
\sim	数十(一)		一、い下・女人 カタノノ リノー

即相關係數約為 0.8571。

隨堂練習-----

試求以下標準化數據的相關係數。(取到小數點後第四位)

$u_i = \frac{x_i - \mu_x}{\sigma_x}$	-2	-0.6	-0.3	0.3	0.5	1	1.1
$v_i = \frac{y_i - \mu_y}{\sigma_y}$	2	$-\frac{1}{6}$	$\frac{4}{6}$	$-\frac{7}{6}$	$\frac{1}{6}$	$-\frac{5}{6}$	$-\frac{4}{6}$

※相關係數

原始數據資料 (x_i, y_i) , $i=1, 2, \dots, n$ 的相關係數定義為

$$r = \frac{\sum_{i=1}^{n} (x_{i} - \mu_{x}) (y_{i} - \mu_{y})}{\sqrt{(x_{i} - \mu_{x})^{2} \cdot (y_{i} - \mu_{y})^{2}}}$$

這個式子的好處是可以省去標準化的步驟。

如前述理由,在未標準化的散佈圖上,以(μ_x , μ_y)為原點將坐標平面分成四個象限,若 r>0 時,表示在第一、三象限的點較多(正相關);

若 r < 0 時,表示在第二、四象限的點較多(負相關)。

利用高二會學到的柯西不等式,我們可以證明 $-1 \le r \le 1$ (可參考附錄),且其性質如下:

- (1) r > 0 表兩變量正相關, r < 0 表負相關, r = 0 表零相關。
- (2) r=1 表兩變量完全正相關, r=-1 表完全負相關。
- (3) |r| 越大表示兩變量間的相關程度愈強。

相關係數很高,這兩個變量也不一定有因果關係,需要對整體狀況有進一步的了解之後,才能下定論。

因為 $u_i = \frac{x_i - \mu_x}{\sigma_x}$, $v_i = \frac{y_i - \mu_y}{\sigma_y}$, 故相關係數亦可化為用原始數據來計算:

$$r = \frac{1}{n} \left(\sum_{i=1}^{n} u_{i} v_{i} \right) = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\frac{x_{i} - \mu_{x}}{\sigma_{x}} \right) \left(\frac{y_{i} - \mu_{y}}{\sigma_{y}} \right)$$

$$= \frac{1}{n} \cdot \frac{\sum_{i=1}^{n} (x_{i} - \mu_{x}) (y_{i} - \mu_{y})}{\sigma_{x} \cdot \sigma_{y}}$$

$$= \frac{1}{n} \cdot \frac{\sum_{i=1}^{n} (x_{i} - \mu_{x}) (y_{i} - \mu_{y})}{\sqrt{\frac{1}{n} (x_{i} - \mu_{x})^{2} \cdot \sqrt{\frac{1}{n} (y_{i} - \mu_{y})^{2}}}$$

$$=\frac{\sum_{i=1}^{n} (x_{i}-\mu_{x}) (y_{i}-\mu_{y})}{\sqrt{(x_{i}-\mu_{x})^{2} \cdot (y_{i}-\mu_{y})^{2}}}$$

隨堂練習

以下 5 組原始數據的散佈圖, 試問哪些相關係數為 1?

最小平方法與迴歸直線

本節我們要找一條最適合代表兩變量之間關係的直線 L,稱為**迴歸直線**(或**最適直線**),以當作預測的依據。尋找直線 L 的方法稱為**最小平方法**,是由數學家高斯所提出的。關鍵的想法是:

使得資料點到直線 L 的鉛垂距離的平方和最小(因此稱為最小平方法)。

例題 6	例題	6				
------	----	---	--	--	--	--

散佈圖上有資料(1,1),(2,2),(3,6),試用最小平方法求迴歸直線方程式。

解

隨堂練習-

給定 3 個二維數據分別是(1,0),(2,2),(3,7),試利用最小平方法求迴歸直線方程式。

當數據很多時,仿上述方法求迴歸直線方程式的計算量相當大。但若先考慮標準化後的數據,設其迴歸直線方程式為 Y=a+bX,則可以證得美妙的結果:迴歸直線通過原點,且斜率恰好就是相關係數。

※標準化數據的迴歸直線方程式

設 (u_i, v_i) , $i=1, 2, \dots, n$, 是標準化後的數據, 則迴歸直線方程式為

Y=rX, 其中 r 為相關係數。

此式的優點是不需要計算相關係數與標準差。

※二維數據的迴歸直線方程式

設 (x_i, y_i) , $i=1, 2, \dots, n$ 為二維數據,則迴歸直線方程式為

 $y-\mu_y=r$ $\frac{\sigma_y}{\sigma_x}$ $(x-\mu_x)$, 其中 r 為相關係數。此迴歸直線方程式

亦可寫為
$$y-\mu_y=rac{\sum\limits_{i=1}^{n}\ (x_i-\mu_x)\ (y_i-\mu_y)}{(x_i-\mu_x)^2} \bullet (x-\mu_x) \circ$$

文興高中	數學(二)4-2 二維數據分析	班級:	_座號:	_姓名:	14
例題 7					

下表為五位同學的身高體重:

身高 (公分)	160	164	168	172	176
體重(公斤)	50	52	48	56	54

令 x 表身高, y 表示體重, 試求迴歸直線方程式。

解 計算得算術平均數 $\mu_x=168$, $\mu_y=52$ 。製作表格如下:

х	у	$x-\mu_x$	$y-\mu_y$	$(x-\mu_x)(y-\mu_y)$	$(x-\mu_x)^2$	$(y-\mu_y)^2$

立 爾	歌學(-	14_2	二維數據分析	ŕ
义兴同十	安(12-11-	/+		ı

班級:	座號:	姓名:	15

迴歸直線的意義,在於二維數據資料的分布,在某種測量的方式之下,最能代表兩組變量相互關係的線型方程式。我們利用已知的二維數據資料求得迴歸直線後,通常會使用此直線方程式作為模型,計算在x變量改變的情形下,y變量可能會呈現如何的數據,以作為預測與決策的根據。

例題 8------

下表為每公頃的土地上,使用肥料量(公斤)與產量(公斤)的關係:

肥料量(公斤)	280	300	320	340	360	380	400
產量(公斤)	7150	7100	7200	7250	7350	7400	7300

試問每公頃施肥量為 350 公斤時, 產量約為多少?

解 假設 x 表示肥料量, y 表示產量, 計算得算術平均數 $\mu_x=340$ 、 $\mu_y=7250$,製作表格如

下:

х	у	$x-\mu_x$	$y-\mu_y$	$(x-\mu_x)(y-\mu_y)$	$(x-\mu_x)^2$	$(y-\mu_y)^2$

0.53 公斤時, 試預測資源回收率為何?

每人每日垃圾	0.9	0.85	0.8	0.75	0.7	0.65	0.6	0.55	0.5
清運量(公斤)	0.5	0.02	0.0	0.75	0.,	0.02	0.0	0.00	0.0
資源回收率(%)	15	17	20	22	25	27	29	33	37

習 題 4-2

一、基本題

- 1. 下列哪些選項的敘述是正確的?
 - (A) 相關係數 r 一定滿足 $-1 \le r \le 1$
 - (B) 若兩變數成直線關係,則相關係數為1
 - (C) (x, y) 的相關係數 r_{xy} 與 (y, x) 的相關係數 r_{yx} 相同
 - (D) 二維數據的單位改變之後,相關係數也會改變
 - (E) 將數據標準化,不會改變相關係數
- 2. 已知一組二維數據如下表所示:

x	2	6	8	10	14
у	3	6	5	9	7

- (1) 試求其標準化數據。
- (2) 試繪出標準化數據散佈圖。
- (3) 求相關係數。

3. 給定 4 個二維數據分別是 (1,2), (3,6), (5,4), (7,8), 試利用最小平方法求最適 直線方程式。 4. 設 A, B, C 是三組資料, 其標準化散佈圖由左至右排列如下:

若 A 組資料與 B 組資料的相關係數分別為-0.8 與-0.2,則下列何者最可能是 C 組資 料的相關係數?

- (A) -1
- (B) -0.9 (C) -0.6 (D) -0.1 (E) 0

5. 某一公司行銷部門蒐集廣告費(千元)與銷售量(千個)的資料如下表,假設 x 表示廣 告費, y 表示銷售量。

廣告(x)	1	3	5	7	9	11	13
銷售(y)	1	3	2	5	4	7	6

試求:

- (1) y 對 x 的迴歸直線方程式。
- (2) 利用迴歸直線方程式,預測當廣告費用是 10(千元)時,銷售量大約為多少(千個)? (取到小數點後第二位)

二、進階題

6. 已知三筆資料 (5,3), (1,t), (3,1) y 對 x 的迴歸直線方程式是 $y = \frac{5}{4} + \frac{1}{4}x$, 試求 t 值。

7. 小璿發現爺爺的古老數學筆記本,上面有這樣的題目:

小璿想了一下說,我知道被蟲蛀掉的數是什麼。試求出被蟲蛀掉的兩個數。

8. 令 x 表示國民每天平均睡覺的時間,y=24-x 為國民每天平均醒著的時間,w 表示國民平均生產毛額。令 r_{xw} 為 x, w 的相關係數,令 r_{yw} 為 y, w 的相關係數。試將 r_{yw} 用 r_{xw} 表示。

9. 有一組二維數據 (x_i, y_i) , $i=1, 2, \dots, n$, 若已知 y 對 x 的迴歸直線方程式為 y=2x+1, 且已知平均數 $\mu_x=2$, $\mu_v=5$, 標準差 $\sigma_x=3$, $\sigma_v=7$ 。試求 x 與 y 的相關係數。

三、挑戰題

- 10. (1) 假設二維數據 (x_i, y_i) 之相關係數為 $r \circ \Leftrightarrow x_i' = ax_i + b$ 與 $y_i' = cy_i + d$,試證明新的 二維數據 (x_i', y_i') 之相關係數為 $\frac{ac}{|ac|} r \circ$
 - (2) 設二維數據 (x_i, y_i) 之相關係數為 r=0.6,則 $(2x_i+3, 5y_i+4)$ 之相關係數為多少?
 - (3) 設二維數據 (x_i, y_i) 之相關係數為 r=0.6,則 $(2x_i+3, -5y_i+4)$ 之相關係數為多

小?

(4) 試說明為什麼將二維數據 (x_i, y_i) 的資料標準化後,相關係數不會改變。

第4章 綜合演練

- 1. 有 10 隻各式造型的 kitty 布偶,為增加其價值,每個布偶外加一個重量 200 克的包裝盒, 則包裝前與包裝後, 布偶重量的統計數值不會改變的有哪些?
 - (A) 算術平均數 (B) 中位數 (C) 眾數 (D) 變異數 (E) 標準差
- 2. 健身房有 10 位同學,每人左、右手各拿著一個等重的啞鈴。若每人右手所持的啞鈴重量 的算術平均數是 8 磅,標準差是 2 磅。則所有啞鈴重量的算術平均數是多少?標準差是 多少?
- 3. 小璿收到某次段考的成績單如下,試問小璿的班級排名較好是哪一科目?

科目姓名	國文	英文	數學	歷史	地理
	•••	•••	•••	•••	•••
小璿	80	75	70	80	82
•••	•••	•••	•••	•••	•••
各科平均	76	80	50	80	88
標準差	4	5	10	5	4

4. 下表為 10 位同學參加學科能力測驗的數學科成績,其中 A, B 兩位同學的成績因印刷油 污看不清楚。已知 10 位同學的算術平均數為 11 級分,變異數為 3 級分;又 A 的成績 比 B 高,試問 A, B 兩位同學的成績分別為何?

姓名	A.	В	C	D	E	F	G	Н	I	J
成績			9	10	12	11	14	12	10	11
	1716	11/2						•		

5. 高一甲班 40 人某次考試數學(橫軸)與英文(縱軸)成績之散佈圖如右,每個點代表一 位學生的成績。若及格標準為60分,請問下列哪些選項是正確的?

(A) 兩科都不及格的學生有 5 位

- (B) 數學的中位數大於英文的中位數
- (C) 每位同學兩科成績總和都超過 100 分
- (D) 數學的標準差大於英文的標準差
- (E) 若以最小平方法決定數據集中趨勢的直線方程式,則該直線的斜率大於 0
- 6. (1) 有一組二維數據 (x_i, y_i) , $i=1, 2, \dots, n$, 若已知平均數 $\mu_x=2$, $\mu_y=4$, 標準差 $\sigma_x=3$, $\sigma_y=8$, 且 x 與 y 的相關係數為 $-\frac{3}{4}$, 試求 y 對 x 的迴歸直線方程式?
 - (2) 有一組二維數據 (x_i, y_i) , $i=1, 2, \dots, n$, 若已知平均數 $\mu_x=5$ $\mu_y=3$, 標準差 $\sigma_x=4$, $\sigma_y=10$, 且 y 與 x 的迴歸直線過點 (3,7), 試求 x 與 y 的相關係數?
- 7. 高一某班 40 位學生,數學科第一次段考、第二次段考分別以 x_i , y_i (其中 $i=1, 2, \cdots$, 40)表示,且每位學生的成績用 0 至 100 評分。若這兩次段考數學科成績的相關係數為 0.6,試問下列哪些選項是正確的?
 - (A) x-1 與 y+2 的相關係數仍為 0.6
 - (B) 2x 與 3y 的相關係數仍為 0.6
 - (C) 若 $x' = \frac{x \mu_x}{\sigma_x}$ 、 $y' = \frac{y \mu_y}{\sigma_y}$,其中 μ_x , μ_y 分別為 x, y 的平均數, σ_x , σ_y 分別為 x, y 的標準差,用 x' 與 y' 的相關係數為 0.6
 - (D) 2x-1 與 3y 的相關係數仍為 0.6
 - (E) 2x-1 與-3y+2 的相關係數仍為 0.6
- 8. 下圖中,有五組數據,每組各有 A, B, C, D, E, F 等六個資料點,設各組的相關係數由左而右分別為 r_1 , r_2 , r_3 , r_4 , r_5 , 則下列關係式何者為真?

- 9. 某班的 50 名學生參加一項考試,考題共有 100 題,全為是非題,計分方法共有 X, Y 兩種;若某學生有 R 題答對,W 題未答對(含答錯或未答),則 X=R、 $Y=R-\frac{W}{5}$,試問下列敘述哪些是正確的?
 - (A) 同一學生的 Y 分數不可能大於 X 分數
 - (B) 全班 Y 分數的算術平均數不可能大於 X 分數的算術平均數
 - (C) 任兩學生 Y 分數的差之絕對值不可能大於 X 分數的差之絕對值

~an > +	申に紹 / 一 / 4 つ 一 / 4 申に長 / 八 上 「	ナげんガ ・	D .	Id. A	2
乂巺局屮 -	數學(二)4-2 二維數據分析	班級:	座號:	姓名:	2.

- (D) 用 X 分數將全班排名次的結果與用 Y 分數排名次是完全相同的
- (E) 兩種分數的相關係數為 1