On entropy-constrained Gaussian channel capacity via the moment problem

Adway Girish

joint work with Shlomo Shamai and Emre Telatar

June 26, 2025

Outline

Entropy-constrained Gaussian channel

Moment problems

Output
Solution
Output
Description
Output
Description
Descripti

Outline

Entropy-constrained Gaussian channel

2 Moment problems

3 Low SNR capacity

Gaussian channel

Gaussian channel $\begin{array}{c|c} \hline enc \\ + Tx \end{array}$ input $\begin{array}{c|c} enc \\ + dec \end{array}$

Gaussian channel

$$C(\mathsf{snr}) = \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \mathsf{snr})$$

Gaussian channel

$$C(\mathsf{snr}) = \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \mathsf{snr})$$

Entropy-constrained Gaussian channel

$$C(\mathsf{snr}) = \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \mathsf{snr})$$

$$C_H(h, \mathsf{snr}) = \max_{X: \frac{\mathbb{E}[X^2] \leq \mathsf{snr}}{H(X) \leq h}} I(X; X + Z)$$

Entropy-constrained Gaussian channel

$$\begin{split} C(\mathsf{snr}) &= \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \mathsf{snr}) \\ C_H(h, \mathsf{snr}) &= \max_{X: \frac{\mathbb{E}[X^2] \leq \mathsf{snr}}{H(X) \leq h}} I(X; X + Z) = \max_{X: \frac{\mathbb{E}[X^2] \leq 1}{H(X) \leq h}} I(X; \sqrt{\mathsf{snr}}X + Z) \end{split}$$

Entropy-constrained Gaussian channel

$$C(\mathsf{snr}) = \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \frac{1}{2} \log(1 + \mathsf{snr})$$

$$C_H(h, \mathsf{snr}) = \max_{X: \mathbb{E}[X^2] \leq \mathsf{snr}} I(X; X + Z) = \max_{X: \mathbb{E}[X^2] \leq 1} \underbrace{I(X; \sqrt{\mathsf{snr}}X + Z)}_{I(X, \mathsf{snr})}$$

ullet wlog let $\mathbb{E}[X]=0$, $\mathbb{E}[X^2]=1$; $G\sim \mathcal{N}(0,1)$ independent of Z

- wlog let $\mathbb{E}[X] = 0$, $\mathbb{E}[X^2] = 1$; $G \sim \mathcal{N}(0,1)$ independent of Z
- $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = D(\sqrt{\operatorname{snr}}X + Z \parallel \sqrt{\operatorname{snr}}G + Z)$

- wlog let $\mathbb{E}[X] = 0$, $\mathbb{E}[X^2] = 1$; $G \sim \mathcal{N}(0,1)$ independent of Z
- $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = D(\sqrt{\operatorname{snr}}X + Z \parallel \sqrt{\operatorname{snr}}G + Z)$

$$\bullet C(\mathsf{snr}) - C_{\mathcal{H}}(h,\mathsf{snr}) = \min_{\substack{X : \mathbb{E}[X^2] \leq 1, \\ \mathcal{H}(X) \leq h}} D(\sqrt{\mathsf{snr}}X + Z \parallel \sqrt{\mathsf{snr}}G + Z)$$

- wlog let $\mathbb{E}[X] = 0$, $\mathbb{E}[X^2] = 1$; $G \sim \mathcal{N}(0,1)$ independent of Z
- $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = D(\sqrt{\operatorname{snr}}X + Z \parallel \sqrt{\operatorname{snr}}G + Z)$
- $\bullet C(\mathsf{snr}) C_{\mathcal{H}}(h,\mathsf{snr}) = \min_{\substack{X : \mathbb{E}[X^2] \leq 1, \\ \mathcal{H}(X) \leq h}} D(\sqrt{\mathsf{snr}}X + Z \parallel \sqrt{\mathsf{snr}}G + Z)$
- optimal distribution at h: discrete X with $H(X) \leq h$ that is closest to $\mathcal{N}(0, 1 + \mathsf{snr})$ after "Gaussian smoothing"

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X \mid Y])^2\right]$

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship:
$$I(X, \text{snr}) = \frac{1}{2} \int_0^{\text{snr}} \text{mmse}(X, \gamma) \, d\gamma$$
, $H(X) = I(X, \text{"$\infty$"})$

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma$, $H(X) = I(X, "\infty")$

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma$, $H(X) = I(X, \text{``\infty''})$

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma, \quad H(X) = I(X, "\infty")$

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \operatorname{snr}) = \frac{1}{2} \int_0^{\operatorname{snr}} \operatorname{mmse}(X, \gamma) \, \mathrm{d}\gamma, \quad H(X) = I(X, "\infty")$

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \mathsf{snr}) = \frac{1}{2} \int_0^{\mathsf{snr}} \mathsf{mmse}(X, \gamma) \, \mathrm{d}\gamma, \quad H(X) = I(X, \text{``}\infty\text{''})$

• MMSE of estimating X from $Y = \sqrt{\operatorname{snr}}X + Z$: $\operatorname{mmse}(X,\operatorname{snr}) = \mathbb{E}\left[(X - \mathbb{E}[X\mid Y])^2\right]$

• I-MMSE relationship: $I(X, \text{snr}) = \frac{1}{2} \int_0^{\text{snr}} \text{mmse}(X, \gamma) \, d\gamma$, $H(X) = I(X, \text{"$\infty$"})$

ullet optimal distribution at snr: indistinguishable at SNR < snr, distinguishable at SNR > snr

•
$$\mathbb{E}[X^{2n}] < \infty$$
: $I(X, \mathsf{snr}) = \sum_{i=1}^{n-1} a_{i,X} \mathsf{snr}^i + r_{n,X} \mathsf{snr}^n$

$$\bullet \ \mathbb{E}[X^{2n}] < \infty \colon I(X,\mathsf{snr}) = \sum_{i=1}^{n-1} a_{i,X} \, \mathsf{snr}^i + r_{n,X} \, \mathsf{snr}^n$$

• $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$

$$\bullet \ \mathbb{E}[X^{2n}] < \infty \colon I(X,\mathsf{snr}) = \sum_{i=1}^{n-1} \mathsf{a}_{i,X} \, \mathsf{snr}^i + \mathsf{r}_{n,X} \, \mathsf{snr}^n$$

- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$:

- $\mathbb{E}[X^{2n}] < \infty$: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$
- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, $n = 1, \ldots, k$ and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$,

- $\mathbb{E}[X^{2n}] < \infty$: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$
- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$

- $\bullet \ \mathbb{E}[X^{2n}] < \infty \colon I(X,\mathsf{snr}) = \sum_{i=1}^{n-1} a_{i,X} \, \mathsf{snr}^i + r_{n,X} \, \mathsf{snr}^n$
- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$
- $k_h := \text{maximum number of moments of } G \text{ matched by } X \text{ with } H(X) \leq h$

- $\mathbb{E}[X^{2n}] < \infty$: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$
- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$
- $k_h := \text{maximum number of moments of } G \text{ matched by } X \text{ with } H(X) \leq h$
- $C(\operatorname{snr}) C_H(h,\operatorname{snr}) = \mathcal{O}(\operatorname{snr}^{k_h+1})$

- $\mathbb{E}[X^{2n}] < \infty$: $I(X, \operatorname{snr}) = \sum_{i=1}^{n-1} a_{i,X} \operatorname{snr}^i + r_{n,X} \operatorname{snr}^n$
- $a_{k,X}$ is a polynomial of $\{\mathbb{E}[X^n]: n=1,\ldots,k\}$ for $k\geq 2$
- for X with $\mathbb{E}[X^{2(k+2)}] < \infty$: if $\mathbb{E}[X^n] = \mathbb{E}[G^n]$, n = 1, ..., k and $\mathbb{E}[X^{k+1}] \neq \mathbb{E}[G^{k+1}]$, then $I(G, \operatorname{snr}) I(X, \operatorname{snr}) = \Theta(\operatorname{snr}^{k+1})$ as $\operatorname{snr} \to 0$
- $k_h := \text{maximum number of moments of } G \text{ matched by } X \text{ with } H(X) \leq h$
- $C(\operatorname{snr}) C_H(h, \operatorname{snr}) = \mathcal{O}(\operatorname{snr}^{k_h+1})$ (\mathcal{O} instead of Θ to allow for X with $\mathbb{E}[X^{2(k_h+2)}] = \infty$)

Outline

1 Entropy-constrained Gaussian channel

Moment problems

3 Low SNR capacity

Classical moment problem

Classical moment problem

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

Classical moment problem

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1,\ldots,s_{2n})=\begin{pmatrix}1&s_1&\ldots&s_n\\s_1&s_2&\ldots&s_{n+1}\\\vdots&\vdots&\ddots&\vdots\\s_n&s_{n+1}&\ldots&s_{2n}\end{pmatrix}\succeq 0 \text{ for } n=1,2,3,\ldots$$

Classical moment problem

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1, ..., s_{2n}) = \begin{pmatrix} 1 & s_1 & ... & s_n \\ s_1 & s_2 & ... & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & ... & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1, 2, 3, ...;$$

infinite support iff $H_n \succ 0$ for all n

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1, 2, 3, \ldots;$$
infinite support iff $H > 0$ for all n

infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1, 2, 3, \ldots;$$

infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff (k odd)(k even)

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1, 2, 3, \ldots;$$
infinite support iff $H_n \succ 0$ for all n

- Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?
 - A: iff (k odd) there exists \tilde{s}_{k+1} such that $H_{\frac{k+1}{2}}(s_1, \ldots, s_k, \tilde{s}_{k+1}) \succeq 0$ (k even)

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on $\mathbb R$ such that $\mathbb E[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1, 2, 3, \ldots;$$

infinite support iff $H_n \succ 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots, k$?

A: iff
$$(k \text{ odd})$$
 there exists $\tilde{\mathbf{s}}_{k+1}$ such that $\mathbf{H}_{\frac{k+1}{2}}(s_1,\ldots,s_k,\tilde{\mathbf{s}}_{k+1})\succeq 0$ $(k \text{ even})$ there exist $\tilde{\mathbf{s}}_{k+1},\tilde{\mathbf{s}}_{k+2}$ such that $\mathbf{H}_{\frac{k}{2}+1}(s_1,\ldots,s_k,\tilde{\mathbf{s}}_{k+1},\tilde{\mathbf{s}}_{k+2})\succeq 0$

• Q: Given s_1, s_2, s_3, \ldots , does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \ldots$?

A: iff
$$H_n(s_1, \ldots, s_{2n}) = \begin{pmatrix} 1 & s_1 & \ldots & s_n \\ s_1 & s_2 & \ldots & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_{n+1} & \ldots & s_{2n} \end{pmatrix} \succeq 0 \text{ for } n = 1, 2, 3, \ldots;$$

infinite support iff $H_n > 0$ for all n

• Q: Given $s_1, s_2, s_3, \ldots, s_k$, does there exist X on \mathbb{R} such that $\mathbb{E}[X^n] = s_n$ for $n = 1, 2, 3, \dots, k$?

A: iff
$$(k \text{ odd})$$
 there exists \tilde{s}_{k+1} such that $H_{\frac{k+1}{2}}(s_1,\ldots,s_k,\tilde{s}_{k+1})\succeq 0$ $(k \text{ even})$ there exist $\tilde{s}_{k+1},\tilde{s}_{k+2}$ such that $H_{\frac{k}{2}+1}(s_1,\ldots,s_k,\tilde{s}_{k+1},\tilde{s}_{k+2})\succeq 0$; finite support: at most $\lfloor k/2 \rfloor + 1$ atoms (if it exists)

Outline

1 Entropy-constrained Gaussian channel

2 Moment problems

Output
Solution
Output
Description
Output
Description
Descripti

Theorem

For any continuous W , there exists $\eta_W \in (0, \frac{1}{2})$ such that

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if
$$X$$
 has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for $n = 1, 2, 3, 4$, then $H(X) \ge h_2(\eta_W)$.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

•
$$H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

- $H(X) \le h < \log 2 \iff X = \begin{cases} \ddot{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 \epsilon > 1/2 \end{cases}$
- need $\mathbb{E}[\tilde{X}^n] = s_n := \frac{1}{\epsilon}(\mathbb{E}[W^n] (1 \epsilon)x_0^n)$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$.
- (ii) for any h > 0, there is X with $H(X) \le h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.

- $H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 \epsilon > 1/2 \end{cases}$
- need $\mathbb{E}[\tilde{X}^n] = s_n := \frac{1}{\epsilon} (\mathbb{E}[W^n] (1 \epsilon) x_0^n)$
- check: s_1, \ldots, s_4 "valid" iff $\epsilon > \eta_W$, but s_1, s_2, s_3 always "valid"

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

(i) if
$$X$$
 has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for $n = 1, 2, 3, 4$, then $H(X) \ge h_2(\eta_W)$.
(ii) for any $h > 0$, there is X with $H(X) < h$ and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for $n = 1, 2, 3$.

Proof idea

•
$$H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

- need $\mathbb{E}[\tilde{X}^n] = s_n \coloneqq \frac{1}{\epsilon} (\mathbb{E}[W^n] (1-\epsilon)x_0^n)$
- ullet check: s_1,\ldots,s_4 "valid" iff $\epsilon>\eta_W$, but s_1,s_2,s_3 always "valid"

Corollary

 $\eta_{G} = \frac{1}{3}$

Theorem

For any continuous W, there exists $\eta_W \in (0, \frac{1}{2})$ such that

- (i) if X has $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3, 4, then $H(X) \ge h_2(\eta_W)$. (ii) for any h > 0, there is X with H(X) < h and $\mathbb{E}[X^n] = \mathbb{E}[W^n]$ for n = 1, 2, 3.
- Proof idea

•
$$H(X) \le h < \log 2 \iff X = \begin{cases} \tilde{X} & \text{w.p. } \epsilon < 1/2 \\ x_0 & \text{w.p. } 1 - \epsilon > 1/2 \end{cases}$$

- need $\mathbb{E}[\tilde{X}^n] = s_n \coloneqq \frac{1}{\epsilon} (\mathbb{E}[W^n] (1 \epsilon) x_0^n)$
- ullet check: s_1,\ldots,s_4 "valid" iff $\epsilon>\eta_W$, but s_1,s_2,s_3 always "valid"

Corollary

$$\eta_{\mathcal{G}} = \frac{1}{3}$$
, so for $h < h_2(\frac{1}{3})$, as $\operatorname{snr} \to 0$, $C(\operatorname{snr}) - C_H(h,\operatorname{snr}) = \mathcal{O}(\operatorname{snr}^4)$.

• entropy-constrained Gaussian channel

ullet entropy-constrained Gaussian channel capacity $C_H(h, \operatorname{snr})$

- ullet entropy-constrained Gaussian channel capacity $C_H(h, \operatorname{snr})$
- $\operatorname{snr} \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h, \operatorname{snr}) = C(\operatorname{snr}) \mathcal{O}(\operatorname{snr}^4)$

- ullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- $\operatorname{snr} \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h, \operatorname{snr}) = C(\operatorname{snr}) \mathcal{O}(\operatorname{snr}^4)$, via entropy-constrained version of truncated moment problem

- ullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr \to 0, 0 < h < $h_2(\frac{1}{3})$: $C_H(h, \text{snr}) = C(\text{snr}) \mathcal{O}(\text{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy

- \bullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr \to 0, 0 < h < $h_2(\frac{1}{3})$: $C_H(h, \text{snr}) = C(\text{snr}) \mathcal{O}(\text{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy
- open:

- entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr \to 0, 0 < h < $h_2(\frac{1}{3})$: $C_H(h, \text{snr}) = C(\text{snr}) \mathcal{O}(\text{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy
- open:
 - structure of capacity-achieving distributions

- \bullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr \to 0, 0 < h < $h_2(\frac{1}{3})$: $C_H(h, \text{snr}) = C(\text{snr}) \mathcal{O}(\text{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy
- open:
 - structure of capacity-achieving distributions
 - $C_H(h, snr)$ for other h, snr

- \bullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- snr \to 0, 0 < h < $h_2(\frac{1}{3})$: $C_H(h, \text{snr}) = C(\text{snr}) \mathcal{O}(\text{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy
- open:
 - structure of capacity-achieving distributions
 - $C_H(h, snr)$ for other h, snr
 - insights from/to estimation problems?

- \bullet entropy-constrained Gaussian channel capacity $C_H(h, snr)$
- $\operatorname{snr} \to 0$, $0 < h < h_2(\frac{1}{3})$: $C_H(h, \operatorname{snr}) = C(\operatorname{snr}) \mathcal{O}(\operatorname{snr}^4)$, via entropy-constrained version of truncated moment problem
- for any continuous distribution, only three moments can be matched by a discrete distribution of sufficiently small entropy
- open:
 - structure of capacity-achieving distributions
 - $C_H(h, snr)$ for other h, snr
 - insights from/to estimation problems?

Thank you!