

# ROYAUME DU MAROC HAUT COMMISSARIAT AU PLAN INSTITUT NATIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE



#### INSEA

Sujet.

PROJET DE TARIFICATION EN SAS

Réalisé par : EL YOUSEFI Ahmed Encadré par : MARRI Fouad

#### Table des matières

| Ι | $\mathbf{T}^{A}$ | ARIF   | ICATION                                                             | 5         |
|---|------------------|--------|---------------------------------------------------------------------|-----------|
| 1 | СН               | APIT   | RE INTRODUCTIF                                                      | 7         |
|   | 1                | Le ma  | arché de l'Assurance au Maroc                                       | 7         |
|   | 2                | Le ma  | arché de l'Assurance Automobile au Maroc                            | 7         |
|   |                  | 2.1    | Chiffres d'affaires                                                 | 7         |
|   |                  | 2.2    | Types de contrats                                                   | 8         |
|   |                  | 2.3    | Coefficient de réduction majoration                                 | 9         |
|   | 3                | Notio  | ns Clefs de marché automobile                                       | 9         |
|   |                  | 3.1    | L'antisélection :                                                   | 9         |
|   |                  | 3.2    | Assurance multirisque habitation:                                   | 9         |
|   |                  | 3.3    | L'assurance RC Décennale :                                          | 10        |
|   |                  | 3.4    | L'assurance garantie décennale                                      | 10        |
| 2 | IM               | PRTA:  | TION NETTOYAGE ET MANIPULATION DES DONNÉES                          | 11        |
|   | 1                | Prétra | aitement des bases                                                  | 11        |
|   | 2                | Impor  | rtation de base : sinistres                                         | 12        |
|   |                  | 2.1    | Importation                                                         | 12        |
|   |                  | 2.2    | Nettoyage                                                           | 13        |
|   |                  | 2.3    | Manipulation                                                        | 15        |
|   | 3                | Impor  | rtation de base : production                                        | 18        |
|   |                  | 3.1    | Importation                                                         | 18        |
|   |                  | 3.2    | Manipulation                                                        | 19        |
|   |                  | 3.3    | Nettoyage                                                           | 20        |
|   | 4                | Créat  | ion de table récupilative                                           | 22        |
|   |                  | 4.1    | Jointudre des tables                                                | 22        |
|   |                  | 4.2    | Ajout de frequence et de severité                                   | 22        |
| 3 | STA              | ATIST  | TQUES DESCRIPTIVES                                                  | <b>25</b> |
|   | 1                | Statis | stiques univariées                                                  | 25        |
|   |                  | 1.1    | Pour chaque variables                                               | 25        |
|   |                  | 1.2    | Étude de l'effet de chaque variable sur le nombre de sinistre et la |           |
|   |                  |        | severtité                                                           | 27        |

4 Table des matières

| 4        | MO  | DELIS    | SATION ET CALCUL DES PRIMES                 | 31 |
|----------|-----|----------|---------------------------------------------|----|
|          | 1   | Modéli   | isation de nombre de sinistres              | 31 |
|          |     | 1.1      | Modèles sans "zéro inflation"               | 31 |
|          |     | 1.2      | Modèles avec zero inflation                 | 35 |
|          |     | 1.3      | Comparaison des modèles :                   | 36 |
|          | 2   | Modèli   | isation de sevérité                         | 37 |
|          |     | 2.1      | Modèle Gamma                                | 37 |
|          |     | 2.2      | Modèle Log-normal                           | 40 |
|          |     | 2.3      | Comparaison des modèles                     | 40 |
|          | 3   | Calcul   | de la prime                                 | 41 |
|          |     | 3.1      | Calcul de la frequence                      | 41 |
|          |     | 3.2      | Calcul de la severité                       | 43 |
|          |     | 3.3      | Calcul de la prime                          | 43 |
| 5        | AN  | NEXE     |                                             | 47 |
| II       | P   | ROVI     | SIONNEMENT                                  | 53 |
| 1        | IMI | PORTA    | TION DES DONNÉES ET DEFINITIONS DES MODÈLES | 55 |
|          | 1   | Import   | tation, netoyage et manipulation            | 55 |
|          | 2   | Fonction | ons de modèlisation                         | 56 |
|          |     | 2.1      | ChaineLadder                                | 56 |
|          |     | 2.2      | Mack                                        | 57 |
|          |     | 2.3      | GLM                                         | 58 |
|          |     | 2.4      | Regression Log-normal                       | 58 |
|          | 3   | Autres   | fonctions de manipulation                   | 59 |
|          |     | 3.1      | Fonction de calcul des pertes cumulées      | 59 |
|          |     | 3.2      | Fonction de calcul des reserves             | 59 |
| <b>2</b> | MO  | DÈLIS    | SATION ET CALCUL DES RÉSERVES               | 61 |
|          | 1   | Modèli   | isation                                     | 61 |
|          |     | 1.1      | ChainLadder                                 | 61 |
|          |     | 1.2      | Mack                                        | 62 |
|          |     | 1.3      | GLM                                         | 63 |
|          |     | 1.4      | regression log-normal                       | 64 |
|          | 2   | Calcul   | des reserves                                | 64 |
|          | 3   | ~        | araison                                     | 65 |

# Première partie TARIFICATION

#### Chapitre 1

#### CHAPITRE INTRODUCTIF

#### 1 Le marché de l'Assurance au Maroc

Le marché des assurances au Maroc est un secteur clé de l'économie marocaine qui a connu une croissance remarquable depuis l'an 2000. Il est constitué de divers intervenants, tels que les assureurs, les sociétés d'assurances, les mutuelles, les institutions de prévoyance, l'autorité de contrôle, les compagnies de réassurances, et d'intermédiaires réglementés tels que les courtiers, les agents d'assurance, les mandataires d'assurance et les mandataires d'intermédiaire d'assurance.

En 2022, les primes globales enregistrées par les compagnies d'assurances et de réassurance ont atteint 54,89 milliards de DH, en hausse de 9.3% sur un an. Cette croissance est principalement due à l'assurance vie, dont les primes ont augmenté de 11.5% à 25,56 milliards de DH, devant l'activité non-vie qui a progressé de 7.5% à 29,32 milliards. Les primes de l'assurance décès ont enregistré une petite hausse de 0.6% à 3,23 milliards de DH.

En termes de réglementation, le secteur d'assurance a connu plusieurs changements grâce aux lois qui lui sont imposées, telles que la loi n° 43.05 pour lutter contre le blanchiment des capitaux, la loi n°18.12 portant sur l'indemnisation des accidents du travail, la loi n°110.14 instituant un régime de couverture des conséquences d'événements catastrophiques, et la loi n°31.08 se concentrant sur la protection des assurés.

Malgré l'amélioration du marché des assurances, le taux de pénétration de l'assurance au Maroc reste faible, représentant à peine 4% du PIB selon l'ACAPS, ce qui positionne le Maroc en troisième position en Afrique, derrière l'Afrique du Sud et la Namibie.

#### 2 Le marché de l'Assurance Automobile au Maroc

#### 2.1 Chiffres d'affaires

Le marché marocain de l'assurance automobile est un secteur clé du marché de l'assurance, avec des entreprises telles que Saham, Wafa Assurance et RMA générant des

|                         | 60.00                       |                         |                     |            |
|-------------------------|-----------------------------|-------------------------|---------------------|------------|
| Compagnies              | Chiffre d'affaires 2022 (1) | Chiffre d'affaires 2021 | Evolution 2021-2022 | Parts 2022 |
| Wafa Assurance          | 10 425 200                  | 9 088 900               | 14.7%               | 19.12%     |
| RMA                     | 8 076 100                   | 7 680 700               | 5.15%               | 14.82%     |
| Mutuelle Taamine Chaabi | 7 345 100                   | 6 308 400               | 16.43%              | 13.47%     |
| Axa Assurance Maroc     | 6 027 800                   | 5 567 400               | 8.27%               | 11.06%     |
| Sanlam Assurance        | 5 954 500                   | 5 621 100               | 5.93%               | 10.92%     |
| AtlantaSanad            | 5 403 600                   | 5 400 800               | 0.05%               | 9.91%      |
| MCMA                    | 2 270 100                   | 2 067 000               | 9.83%               | 4.16%      |
| Marocaine Vie           | 2 268 700                   | 2 339 100               | -3.01%              | 4.16%      |
| Allianz Assurance Maroc | 1 486 100                   | 1 426 800               | 4.16%               | 2.73%      |
| MAMDA                   | 1 278 000                   | 1 172 100               | 9.04%               | 2.34%      |
| CAT                     | 1 263 700                   | 1 177 200               | 7.35%               | 2.32%      |
| MATU                    | 862 700                     | 714 100                 | 20.81%              | 1.58%      |
| Total général           | 54 510 500                  | 50 206 900              | 8 57%               | 100%       |

chiffres d'affaires significatifs. Les données sont présentées dans le tableau ci-dessous :

L'assurance automobile représente une part significative de l'industrie de l'assurance, avec une part de marché de 69% pour les 5 principaux assureurs. Bien que le niveau de concentration soit moyen avec 15 compagnies d'assurance, la branche non-vie représente 53% du chiffre d'affaires global du secteur. En ce qui concerne l'assurance automobile, il s'agit principalement de l'assurance responsabilité civile obligatoire, qui couvre la responsabilité civile du souscripteur, du propriétaire et de toute personne autorisée à conduire le véhicule. Bien que cette assurance couvre les dommages matériels et corporels causés aux victimes lorsqu'un accident est de la responsabilité du souscripteur, elle ne couvre pas les blessures personnelles ou les dégâts matériels causés au véhicule. En conséquence, d'autres garanties facultatives sont souvent souscrites en plus de la RC automobile, telles que les garanties contre les dommages de collision, l'incendie, le vol, les bris de glace, les tiers et la défense. Il convient également de noter que la RC automobile est libérale en termes de réglementation des tarifs, car les compagnies d'assurance ont plus de liberté pour fixer les primes d'assurance responsabilité civile automobile sans être soumises à une réglementation gouvernementale stricte. (Source : ACAPS).

#### 2.2 Types de contrats

Voici quelques types de contrats d'assurance automobile courants :

- Assurance tous risques : Ce type de contrat offre une couverture complète pour les dommages causés à votre véhicule, ainsi que pour les dommages causés à des tiers. Il peut également inclure des garanties supplémentaires telles que l'assistance routière, la protection juridique, etc.
- Assurance responsabilité civile : Ce type de contrat est obligatoire dans la plupart des pays. Il couvre les dommages que vous pourriez causer à des tiers, y compris les blessures corporelles et les dommages matériels.
- **Assurance tiers plus :** Ce type de contrat est une forme intermédiaire d'assurance automobile. Il offre une couverture pour les dommages causés à des tiers, ainsi qu'une couverture pour les dommages causés à votre propre véhicule dans certaines circonstances.

— Assurance incendie, vol et bris de glace : Ce type de contrat offre une couverture pour les dommages causés à votre véhicule en cas d'incendie, de vol ou de bris de glace.

Il existe également d'autres types de contrats d'assurance automobile qui peuvent offrir des garanties spécifiques en fonction de vos besoins, tels que l'assurance tous risques avec franchise, l'assurance kilométrage illimité, etc.

#### 2.3 Coefficient de réduction majoration

Le coefficient de réduction majoration (CRM) est un indicateur utilisé en assurance automobile pour déterminer le niveau de risque d'un conducteur. Il est basé sur l'historique de conduite du conducteur et est calculé en fonction du nombre d'années sans accident responsable (coefficients de réduction) ou avec accident responsable (coefficients de majoration) qu'il a accumulées. Le CRM est utilisé pour calculer la prime d'assurance automobile, qui est ajustée en fonction du niveau de risque du conducteur.

Le coefficient de réduction est un pourcentage qui diminue la prime d'assurance automobile du conducteur. Plus le nombre d'années sans accident responsable est élevé, plus le coefficient de réduction est élevé, et plus la prime d'assurance est réduite. À l'inverse, le coefficient de majoration est un pourcentage qui augmente la prime d'assurance automobile du conducteur. Plus le nombre d'années avec accident responsable est élevé, plus le coefficient de majoration est élevé, et plus la prime d'assurance est majorée.

Le CRM est donc un système de bonus-malus qui encourage les conducteurs à conduire prudemment et à éviter les accidents. Les conducteurs qui ont un historique de conduite sans accident responsable bénéficieront d'une prime d'assurance automobile moins élevée que ceux qui ont eu des accidents responsables. Les conducteurs qui ont un historique de conduite avec des accidents responsables devront payer une prime d'assurance automobile plus élevée pour couvrir le risque plus élevé associé à leur historique de conduite.

#### 3 Notions Clefs de marché automobile

#### 3.1 L'antisélection :

L'antisélection, également connue sous le nom de sélection adverse, se produit lorsque les personnes les plus à risque sont plus susceptibles de souscrire une assurance que les personnes moins à risque. En conséquence, les primes d'assurance sont ajustées à la hausse pour tenir compte de ce risque accru, ce qui peut entraîner une spirale de l'antisélection où seules les personnes les plus à risque continuent à souscrire une assurance.

#### 3.2 Assurance multirisque habitation :

L'assurance multirisque habitation est une assurance qui couvre les dommages causés à votre maison et à vos biens personnels. Elle couvre les dommages causés par les incendies, les inondations, les cambriolages, les actes de vandalisme et d'autres événements indésirables. Cette assurance est généralement souscrite par les propriétaires de maisons, mais elle peut également être souscrite par les locataires.

#### 3.3 L'assurance RC Décennale :

L'assurance responsabilité civile décennale (RC décennale) est une assurance obligatoire pour les constructeurs et les entrepreneurs qui effectuent des travaux de construction en France. Elle couvre les dommages causés à l'ouvrage construit pendant une période de dix ans à compter de la réception des travaux. Cette assurance est destinée à protéger les propriétaires contre les dommages causés par des défauts ou des vices de construction qui pourraient rendre l'ouvrage inhabitable ou dangereux.

#### 3.4 L'assurance garantie décennale

La garantie décennale couvre les dommages qui affectent la solidité de l'ouvrage ou le rendent inhabitable ou impropre à sa destination pendant une période de 10 ans à compter de la réception des travaux. Elle s'applique aux travaux de construction, de rénovation, d'extension, de transformation ou de réhabilitation qui concernent des bâtiments existants ou neufs, ainsi que les travaux d'aménagement extérieur, comme les voiries, les réseaux et les équipements publics.

Les dommages couverts par la garantie décennale sont notamment les suivants :

- Les fissures, les affaissements et les déformations des murs, des planchers et des plafonds
- Les défauts d'étanchéité, les infiltrations d'eau et les fuites
- Les problèmes liés à l'isolation thermique ou phonique
- Les défauts de conception, de fabrication ou de mise en œuvre des éléments de construction, tels que les fondations, les charpentes, les couvertures, les revêtements de sol, les menuiseries extérieures, etc.
- Les désordres affectant les installations techniques, telles que les canalisations, les réseaux électriques, les installations de chauffage, de climatisation, de ventilation, de plomberie, etc.

Il est important de noter que la garantie décennale ne couvre pas les dommages qui résultent d'une mauvaise utilisation de l'ouvrage ou d'un défaut d'entretien de la part du propriétaire. Elle ne s'applique pas non plus aux travaux de décoration, d'aménagement intérieur, de nettoyage ou d'entretien courant.

#### Chapitre 2

#### IMPRTATION NETTOYAGE ET MANIPULATION DES DONNÉES

#### 1 Prétraitement des bases

On doit traiter en avance la base de données avant de l'importer en sas, en fait on procede comme suite :

1. On supprime tous les guillemets :



Figure 1.1 – Suppression des guillements

2. On remplace les PF par des modalités plus simple :



FIGURE 1.2 – Remplacement des PF

#### 2 Importation de base : sinistres

#### 2.1 Importation

On importe à travers le code :

```
FILENAME REFFILE '/home/u63328955/projet 2023/sinistre.csv'

→ encoding="LATIN2";

PROC IMPORT DATAFILE=REFFILE

DBMS=CSV

OUT=tabs.sinistre replace;

GETNAMES=YES;

RUN;
```

#### Et on obtient:

| Obs. | VAR1 | numepolice | annee_reference | n_sinistre | montantsinistre |
|------|------|------------|-----------------|------------|-----------------|
| 1    | 2    | 703479     | 2010            | 20122123   | 2269.038909     |
| 2    | 3    | 186906     | 2012            | 20122124   | 318.56930342    |
| 3    | 7    | 665352     | 2013            | 20122125   | 191.06868647    |
| 4    | 10   | 655353     | 2014            | 20122126   | 21898.294476    |
| 5    | 10.1 | 655353     | 2014            | 20122127   | 204.10113316    |
| 6    | 11   | 47415      | 2015            | 20122128   | 211.65011445    |
| 7    | 13   | 918121     | 2017            | 20122129   | 336.98594546    |
| 8    | 13.1 | 918121     | 2017            | 20122130   | 1136.0258708    |
| 9    | 16   | 670251     | 2015            | 20122131   | 38.024265433    |
| 10   | 19   | 809064     | 2011            | 20122132   | 1508.2637996    |

FIGURE 2.1 – Output du code

#### 2.2 Nettoyage

On vérifie d'abord les valeurs manquantes :

```
proc means data=Tabs.sinistre NMISS;
run;
```

| Variable        | Nbre manquant |
|-----------------|---------------|
| VAR1            | 0             |
| numepolice      | 0             |
| annee_reference | 0             |
| n_sinistre      | 0             |
| montantsinistre | 0             |

FIGURE 2.2 – Output du code

On dispose des finalement colonnes suivantes :

- **Numepolice** : c'est le numéro de police
- Année de reference : c'est l'année d'exercice
- n sinistre : numéro de sinistre qui doit être unique
- **Montant sinistre** : le montant de sinistre doit être positif On éliminera tout les observations qui ne vérifie pas ces contraintes

#### 1. Vérification puis Élimination des doublons :

```
proc sql;

create table tab_test as

select n_sinistre, count(*) as repetition from

tabs.sinistre

group by n_sinistre

order by repetition desc;

quit;
```

Ainsi on ne trouvera aucune doublon pour N SINISTRE:

#### 2. Vérification puis élimination des montants négatifs :

| Obs. | n_sinistre        | repetition |
|------|-------------------|------------|
| 1    | 20171274          | 1          |
| 2    | 20163082          | 1          |
| 3    | <b>3</b> 20146698 |            |
| 4    | 20150794          | 1          |
| 5    | 20158986          | 1          |
| 6    | 20142602          | 1          |
| 7    | 20167178          | 1          |
| 8    | 20134410          | 1          |
| 9    | 20148746          | 1          |
| 10   | 20136458          | 1          |

FIGURE 2.3 – Output du code

```
proc sql;
create table tab_test as
select n_sinistre, montantsinistre from tabs.sinistre
order by montantsinistre asc;
quit;
```

On trouver alors que toute les montants sont positifs :

| Obs. | n_sinistre | montantsinistre |
|------|------------|-----------------|
| 1    | 20168311   | 0.0042901856    |
| 2    | 20136766   | 0.0366163168    |
| 3    | 20155653   | 0.0496743261    |
| 4    | 20174641   | 0.0814288004    |
| 5    | 20122315   | 0.0940014301    |
| 6    | 20133633   | 0.108451845     |
| 7    | 20153203   | 0.1344633134    |
| 8    | 20180239   | 0.1782566053    |
| 9    | 20143235   | 0.1938000318    |
| 10   | 20169443   | 0.2293223484    |

FIGURE 2.4 – Output du code

#### 2.3 Manipulation

On créera un nouveau table SINISTRES qui va avoir :

- Le numepolice : numéro de la police
- L'exercice : qui est l'année de reference
- **Nombre :** qui est le nombre des sinistre réalisées par numepolice dans un exercice donnée
- **Somme :** qui est la somme des montants des sinistres réalisées par numepolice dans un exercice donnée

Cela se fait par le code :

```
proc sql;
create table tabs.sinistresT as
select numepolice ,annee_reference as exercice, count(*) as
nombre , sum(montantsinistre) as somme
```

```
from tabs.sinistre
group by annee_reference, numepolice;
quit;
```

| Obs. | numepolice | exercice | nombre | somme   |
|------|------------|----------|--------|---------|
| 1    | 24         | 2008     | 1      | 174.72  |
| 2    | 370        | 2008     | 1      | 83.82   |
| 3    | 612        | 2008     | 2      | 9594.89 |
| 4    | 758        | 2008     | 1      | 19.91   |
| 5    | 974        | 2008     | 2      | 1232.61 |
| 6    | 989        | 2008     | 1      | 335.50  |
| 7    | 1259       | 2008     | 1      | 1147.13 |
| 8    | 1471       | 2008     | 1      | 10.45   |
| 9    | 1691       | 2008     | 3      | 5157.97 |
| 10   | 1836       | 2008     | 1      | 590.70  |

FIGURE 2.5 – Output du code

Cependant, on doit pas travailler sur la totalité de la base de donnée puisque cela fait intervenir même les grandes sinistres, donc on va créer une autre base dont on conditione juste les montants < Quantile (99%).

```
proc univariate data=tabs.sinistre;
var montantsinistre;
output out=quantiles pctlpre=p_
pctlpts=5 25 50 75 95 97 99 pctlname=percentile;
run;
```

Ainsi, on obtient:

| Quantiles (Définition 5) |                                           |  |  |  |
|--------------------------|-------------------------------------------|--|--|--|
| Niveau                   | Quantile                                  |  |  |  |
| 100Max 100%              | 5.50719E+05                               |  |  |  |
| 99%                      | 7.51402E+04                               |  |  |  |
| 95%                      | 2.92383E+04                               |  |  |  |
| 90%                      | 1.66434E+04<br>6.05297E+03<br>1.88127E+03 |  |  |  |
| 75% Q3                   |                                           |  |  |  |
| 50% Médiane              |                                           |  |  |  |
| 25% Q1                   | 5.53929E+02                               |  |  |  |
| 10%                      | 1.78686E+02                               |  |  |  |
| 5%                       | 8.38157E+01                               |  |  |  |
| 1%                       | 1.53991E+01                               |  |  |  |
| 0% Min                   | 4.29019E-03                               |  |  |  |

 ${\bf Figure} \ \ {\bf 2.6} \ - \ {\bf Les} \ {\bf quantile} \ {\bf de} \ {\bf variable} \ {\bf montant} \ {\bf sinistre}$ 

Puis, on recalcule la tables des sinistres agrégées :

```
proc sql;

create table tabs.sinistres as
select numepolice ,annee_reference as exercice, count(*) as
nombre , sum(montantsinistre) as somme
from tabs.sinistre
where montantsinistre< 80000
group by annee_reference, numepolice;
quit;
```

| Obs. | numepolice | exercice | nombre | somme   |
|------|------------|----------|--------|---------|
| 1    | 24         | 2008     | 1      | 174.72  |
| 2    | 370        | 2008     | 1      | 83.82   |
| 3    | 612        | 2008     | 2      | 9594.89 |
| 4    | 758        | 2008     | 1      | 19.91   |
| 5    | 974        | 2008     | 2      | 1232.61 |
| 6    | 989        | 2008     | 1      | 335.50  |
| 7    | 1259       | 2008     | 1      | 1147.13 |
| 8    | 1471       | 2008     | 1      | 10.45   |
| 9    | 1691       | 2008     | 3      | 5157.97 |
| 10   | 1836       | 2008     | 1      | 590.70  |

Figure 2.7 – Montant sinistre standard agrégées

#### 3 Importation de base : production

#### 3.1 Importation

On importe à travers le code :

#### Et on obtient:

On dispose des finalement colonnes suivantes :

— Numepolice : c'est le numéro de police doit être unique pour chaque exercice

— **Exercice** : c'est l'année d'exercice

— **Exposition**: C'est l'exposition

Zone : zone de circulationDOB : année de naissance

— **DMC** : date de mise en circulation

| Obs. | VAR1 | numepolice | exercice | DMC        | DOB        | Sexe | Zone                   | Comubsution | PF      | exposition   |
|------|------|------------|----------|------------|------------|------|------------------------|-------------|---------|--------------|
| 1    | 1    | 880898     | 2011     | 2002-10-05 | 1972-04-05 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.6179260032 |
| 2    | 2    | 703479     | 2010     | 1994-12-08 | 1959-05-13 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.8011278689 |
| 3    | 3    | 186906     | 2012     | 1998-11-15 | 1961-01-07 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.3863229074 |
| 4    | 4    | 41168      | 2016     | 1992-04-28 | 1986-02-05 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.7923478724 |
| 5    | 5    | 69867      | 2017     | 2002-02-04 | 1989-11-13 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.2411030659 |
| 6    | 6    | 681674     | 2015     | 1996-06-19 | 1973-01-03 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.8221188765 |
| 7    | 7    | 665352     | 2013     | 1998-12-14 | 1982-12-12 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.8440500582 |
| 8    | 8    | 243537     | 2008     | 2005-12-17 | 1980-12-18 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.0054783113 |
| 9    | 9    | 545855     | 2017     | 2004-01-25 | 1977-09-18 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.090018302  |
| 10   | 10   | 655353     | 2014     | 1994-07-23 | 1960-11-26 | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.8141488286 |

FIGURE 3.1 – Output du code

— **PF** : Puissance fiscale

— Comubsution: type combustible

— **Sexe**: sexe de conducteur

#### 3.2 Manipulation

On va ajouter des nouvelle variables

— ageV : age de véhicule à l'année de l'exercice, qui doit être positif

-  ${\bf ageC}$  : age de conducteur à l'année de l'exercice, qui doit être positif Cela se fait par le code :

```
proc sql;
alter table tabs.production add ageV int;
alter table tabs.production add ageC int;

update tabs.production
set ageV = exercice - year(DMC), ageC = exercice - year(DOB);

alter table tabs.production drop DOB;
alter table tabs.production drop DMC;
alter table tabs.production drop var1;
quit;
```

| Obs. | numepolice | exercice | Sexe | Zone                   | Comubsution | PF      | exposition   | ageV | ageC |
|------|------------|----------|------|------------------------|-------------|---------|--------------|------|------|
| 1    | 880898     | 2011     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.6179260032 | 9    | 39   |
| 2    | 703479     | 2010     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.8011278689 | 16   | 51   |
| 3    | 186906     | 2012     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.3863229074 | 14   | 51   |
| 4    | 41168      | 2016     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.7923478724 | 24   | 30   |
| 5    | 69867      | 2017     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.2411030659 | 15   | 28   |
| 6    | 681674     | 2015     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.8221188765 | 19   | 42   |
| 7    | 665352     | 2013     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.8440500582 | 15   | 31   |
| 8    | 243537     | 2008     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.0054783113 | 3    | 28   |
| 9    | 545855     | 2017     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.090018302  | 13   | 40   |
| 10   | 655353     | 2014     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.8141488286 | 20   | 54   |

FIGURE 3.2 – Output du code

#### 3.3 Nettoyage

On vérifie d'abord les valeurs manquantes :

```
proc means data=tabs.production NMISS;
run;
```

| La procé     | edure MEANS   |
|--------------|---------------|
| Variable     | Nbre manquant |
| numepolice   | 0             |
| exercice     | 0             |
| exposition   | 0             |
| ageV         | 0             |
| ageV<br>ageC | 0             |

FIGURE 3.3 – Output du code

Puis on vérifie les doublons :

| Obs. | numepolice | exercice | repetition |
|------|------------|----------|------------|
| 1    | 792073     | 2010     | 1          |
| 2    | 956110     | 2011     | 1          |
| 3    | 667580     | 2012     | 1          |
| 4    | 833121     | 2015     | 1          |
| 5    | 915153     | 2017     | 1          |
| 6    | 750819     | 2009     | 1          |
| 7    | 996695     | 2012     | 1          |
| 8    | 606647     | 2012     | 1          |
| 9    | 812202     | 2017     | 1          |
| 10   | 688970     | 2011     | 1          |

FIGURE 3.4 – Output du code

Dans la table finale on doit vérifier les contraints déja vu :

```
proc sql;
select count(*) as nombre_des_ages_neg
from tabs.production
where ageV<18 or ageC<0;
quit;</pre>
```

```
nombre_des_ages_inferieur_à_18
0
```

FIGURE 3.5 - Output du code

#### 4 Création de table récupilative

#### 4.1 Jointudre des tables

On va joindre les deux tables SINISTRES et PRODUCTION, Cela se fait par le code suivante :

```
proc sql;
create table tabs.data as
SELECT p.*, s.nombre, s.somme
FROM tabs.production AS p

LEFT JOIN tabs.sinistres AS s
ON p.numepolice = s.numepolice and p.exercice = s.exercice;
alter table tabs.data drop var1;
update tabs.data
set somme=0,nombre=0
where somme =.;
quit;
```

| Obs. | numepolice | exercice | Sexe | Zone                   | Comubsution | PF      | exposition   | ageV | ageC | nombre | somme   |
|------|------------|----------|------|------------------------|-------------|---------|--------------|------|------|--------|---------|
| 1    | 2          | 2009     | М    | Fčs-Meknčs             | Essence     | [80-00] | 0.8505040312 | 7    | 28   | 1      | 1966.91 |
| 2    | 5          | 2016     | М    | Rabat-Salé-Kénitra     | Essence     | [80-00] | 0.4869068514 | 10   | 27   | 0      | 0.00    |
| 3    | 6          | 2010     | F    | Marrakech-Safi         | Diesel      | [10-14] | 0.4805559502 | 6    | 28   | 2      | 3625.85 |
| 4    | 9          | 2012     | М    | Tanger-Tétouan-Hocedma | Essence     | [80-00] | 0.0609243414 | 19   | 47   | 0      | 0.00    |
| 5    | 24         | 2008     | М    | Rabat-Salé-Kénitra     | Diesel      | [08-10] | 0.5667409257 | 4    | 27   | 1      | 174.72  |
| 6    | 36         | 2011     | М    | Fčs-Meknčs             | Essence     | [80-00] | 0.1621531127 | 7    | 50   | 0      | 0.00    |
| 7    | 65         | 2014     | М    | Casablanca-Settat      | Diesel      | [08-10] | 0.920984172  | 16   | 25   | 1      | 50.47   |
| 8    | 68         | 2016     | М    | Oriental               | Essence     | [80-00] | 0.6330778915 | 13   | 34   | 1      | 504.15  |
| 9    | 69         | 2016     | F    | Souss-Massa            | Diesel      | [10-14] | 0.3843837266 | 9    | 32   | 1      | 371.25  |
| 10   | 74         | 2015     | F    | Marrakech-Safi         | Diesel      | [10-14] | 0.6421667349 | 17   | 26   | 2      | 1441.47 |

FIGURE 4.1 – Output du code

#### 4.2 Ajout de frequence et de severité

On ajoute la frequence et la severité à travers le code :

```
proc sql;

alter table tabs.data add frequence float(4);

alter table tabs.data add severity float(4);

update tabs.data

set frequence = nombre/exposition, severity = somme/nombre;

set frequence = nombre/exposition, severity = somme/nombre;
```

| Obs. | numepolice | exercice | Sexe | Zone                    | Comubsution | PF      | exposition   | ageV | ageC | nombre | somme    | frequence | severity |
|------|------------|----------|------|-------------------------|-------------|---------|--------------|------|------|--------|----------|-----------|----------|
| 1    | 2          | 2009     | М    | Fčs-Meknčs              | Essence     | [80-00] | 0.8505040312 | 7    | 28   | 1      | 1966.91  | 1.17577   | 1966.91  |
| 2    | 5          | 2016     | М    | Rabat-Salé-Kénitra      | Essence     | [80-00] | 0.4869068514 | 10   | 27   | 0      | 0.00     | 0.00000   | 0.00     |
| 3    | 6          | 2010     | F    | Marrakech-Safi          | Diesel      | [10-14] | 0.4805559502 | 6    | 28   | 2      | 3625.85  | 4.16185   | 1812.93  |
| 4    | 9          | 2012     | М    | Tanger-Tétouan-Hocedma  | Essence     | [00-08] | 0.0609243414 | 19   | 47   | 0      | 0.00     | 0.00000   | 0.00     |
| 5    | 24         | 2008     | М    | Rabat-Salé-Kénitra      | Diesel      | [08-10] | 0.5667409257 | 4    | 27   | 1      | 174.72   | 1.76447   | 174.72   |
| 6    | 36         | 2011     | M    | Fčs-Meknčs              | Essence     | [80-00] | 0.1621531127 | 7    | 50   | 0      | 0.00     | 0.00000   | 0.00     |
| 7    | 65         | 2014     | М    | Casablanca-Settat       | Diesel      | [08-10] | 0.920984172  | 16   | 25   | 1      | 50.47    | 1.08579   | 50.47    |
| 8    | 68         | 2016     | М    | Oriental                | Essence     | [80-00] | 0.6330778915 | 13   | 34   | 1      | 504.15   | 1.57958   | 504.15   |
| 9    | 69         | 2016     | F    | Souss-Massa             | Diesel      | [10-14] | 0.3843837266 | 9    | 32   | 1      | 371.25   | 2.60157   | 371.25   |
| 10   | 74         | 2015     | F    | Marrakech-Safi          | Diesel      | [10-14] | 0.6421667349 | 17   | 26   | 2      | 1441.47  | 3.11446   | 720.74   |
| 11   | 75         | 2009     | F    | Laåyoune-Sakia El Hamra | Diesel      | [14-00] | 0.4530977344 | 3    | 35   | 0      | 0.00     | 0.00000   | 0.00     |
| 12   | 87         | 2012     | F    | Casablanca-Settat       | Diesel      | [08-10] | 0.1810813574 | 20   | 36   | 0      | 0.00     | 0.00000   | 0.00     |
| 13   | 90         | 2011     | М    | Fčs-Meknčs              | Essence     | [80-00] | 0.1458816098 | 4    | 28   | 0      | 0.00     | 0.00000   | 0.00     |
| 14   | 95         | 2017     | М    | Rabat-Salé-Kénitra      | Essence     | [80-00] | 0.3933973815 | 17   | 40   | 1      | 1228.62  | 2.54196   | 1228.62  |
| 15   | 110        | 2012     | М    | Casablanca-Settat       | Diesel      | [08-10] | 0.6113797408 | 7    | 35   | 2      | 7124.20  | 3.27129   | 3562.10  |
| 16   | 112        | 2011     | F    | Marrakech-Safi          | Diesel      | [10-14] | 0.5669078722 | 11   | 31   | 1      | 384.56   | 1.76396   | 384.56   |
| 17   | 131        | 2012     | М    | Oriental                | Essence     | [80-00] | 0.6677749872 | 17   | 28   | 0      | 0.00     | 0.00000   | 0.00     |
| 18   | 132        | 2009     | М    | BéniMellal-Khénifra     | Diesel      | [08-10] | 0.7394534245 | 17   | 33   | 2      | 22354.70 | 2.70470   | 11177.35 |
| 19   | 152        | 2016     | F    | Souss-Massa             | Diesel      | [10-14] | 0.7752906904 | 18   | 56   | 2      | 18369.73 | 2.57968   | 9184.87  |

 ${\bf Figure}~{\bf 4.2}-{\rm Output~du~code}$ 

#### Chapitre 3

#### STATISTIQUES DESCRIPTIVES

#### 1 Statistiques univariées

#### 1.1 Pour chaque variables

On peut pour chaque variables faire un histogramme/bar plot visualisons les frequences (Voir page suivante) :

```
vbar sexe / stat=percent
proc sgplot data=tabs.data;

    fillattrs=(color=CX42bfa5);run;

proc sgplot data=tabs.data;
                                     vbar pf / stat=percent

    fillattrs=(color=CX42bfa5);run;

g proc sgplot data=tabs.data;
                                     vbar comubsution / stat=percent

    fillattrs=(color=CX42bfa5);run;

proc sgplot data=tabs.data;
                                      vbar zone/ stat=percent

    fillattrs=(color=CX42bfa5);run;

proc sgplot data=tabs.data;
                                      vbar ageC / stat=percent

→ fillattrs=(color=CX42bfa5);run;
6 proc sgplot data=tabs.data;
                                     vbar ageV / stat=percent

    fillattrs=(color=CX42bfa5)run;

proc sgplot data=tabs.data;
                                     vbar nombre / stat=percent

→ fillattrs=(color=CX42bfa5);run;
proc sgplot data=tabs.data;
                                     histogram somme
   → /fillattrs=(color=CX42bfa5) ;run;
```



FIGURE 1.1 – Distributions des variables de la base de donnée

On tire comme interpretation ce qui suit :

- 1. Les modalitées sont bien enregistrées on ne trouve pas des modalités par exemple comme ('F', 'Féminin',..., 'Autre')
- 2. On remarque le nombre de sinistre est similiaire au distribution de *Poisson*, alors cette distribution serait la base de notre modèlisation après.

### 1.2 Étude de l'effet de chaque variable sur le nombre de sinistre et la severtité

On utilise le macro plot stats suivant (le macro est définit en Annexe 1) :

#### 1. Effet de la zone :

```
plot_stats(cat_var=zone, quant_var=nombre);
plot_stats(cat_var=zone, quant_var=severity);
```



On remarque que il y a pas une grande difference entre les zones, donc on les répartie en deux zones (ZONE HIGH RISK, ZONE LOW RISK) pour améliorer la corrélaion avec la variable NOMBRE. Ainsi on va choisir :

- ZONE LOW RISK : ("Tanger-Tétouan-Hoced'ma", "Laâyoune-Sakia El Hamra", "Dakhla-Oued Ed Dahab", "Marrakech-Safi")
- ZONE HIGH RISK: les autres

Même logique, on va choisir une autre découpage pour améliorer la corrélation avec la variable SEVERITE, ainsi on choisit (voir découpage en annexe) :

- ZONE LOW RISK : ("Tanger-Tétouan-Hoced'ma","Laâyoune-Sakia El Hamra","Dakhla-Oued Ed Dahab","Marrakech-Safi")
- ZONE HIGH RISK: les autres

#### 2. Effet de la age conducteur :

```
%plot_stats(cat_var=ageC, quant_var=nombre);
%plot_stats(cat_var=ageC, quant_var=severity);
```





(a) Effet sur le nombre

(b) Effet sur la severité

On remarque qu'il y a pas un effet tendencielle de l'age conducteur sur le nombre de sinistre, donc on propose de découper les ages en des nouvelles tranche d'ages pour améliorer la correlation :

```
— AGE CONDUCTEUR HIGH RISK : [30-55]
— AGE CONDUCTEUR LOW RISK : [18-30] \cup [56-+\infty]
Cela se fait à travers ce code<sup>1</sup> :
```

```
proc sql;

alter table tabs.data add ageCnew char(100);

update tabs.data set ageCnew ="[18-30] U [56-oo]" where

→ (ageC between 18 and 28) or (ageC >= 56);

update tabs.data set ageCnew ="[29-50]" where ageC between

→ 29 and 55;

quit;
```

#### 3. Effet de la age Véhicule :

```
plot_stats(cat_var=ageV, quant_var=nombre);
plot_stats(cat_var=ageV, quant_var=severity);
```

On remarque alors qu'il y a une tendance entre l'age de vehicule et le nombre des sinistres/séverité. Donc ne fait pas de découpage de cette variable.

<sup>1.</sup> On remarque qu'un individus d'age moyenne est moins suspect à faire une sinistre par rapport au gens agées (problèmes sanitaires) et les gens jeunes (manque d'experience)



(a) Effet sur le nombre

(b) Effet sur la severité

#### 4. Effet de la comubsution :

```
%plot_stats(cat_var=comubsution, quant_var=nombre);
%plot_stats(cat_var=comubsution, quant_var=severity);
```



On remarque que la comubsution n'a pas de grande effet sur le nombre de sinistre, cependant on voit un effet interessant sur la séverité.

#### 5. Effet de Puissance fiscale :

```
%plot_stats(cat_var=PF, quant_var=nombre);
%plot_stats(cat_var=PF, quant_var=severity);
```

On remarque que il y a une seule puissance fiscal qui fait un difference significative, donc on regroupe les modalitées deux (PF high risk, PF low risk) pour améliorer la significativité.

Ainsi on va choisir pour la variable dépendante NOMBRE:



- (a) Effet sur le nombre
- (b) Effet sur la severité
- PF нідн RISK : [10 14]
- PF LOW RISK : [0 10] ∪  $[14 +\infty]$

Ainsi on va choisir pour la variable dépendante SEVERITÉ :

- PF HIGH RISK : [00 08]
- PF LOW RISK :  $[08 +\infty]$

#### 6. Effet de la sexe :

```
%plot_stats(cat_var=sexe, quant_var=nombre);
%plot_stats(cat_var=sexe, quant_var=severity);
```



(a) Effet sur le nombre

(b) Effet sur la severité

#### Chapitre 4

## MODELISATION ET CALCUL DES PRIMES

#### 1 Modélisation de nombre de sinistres

On va modéliser notre base de données par un modèle de *Poisson* avec inflation et avec zéro inflation, notre choix de modèle poissonienne vient de la forme de fonction de distribution de variable NOMBRE. Cependant cela ne nous empêchera pas à comparer le modèle avec le modèle binomial négatif.

On doit d'abord calculer le logarithme de l'exposition qui va être l'Offset des modèles.

```
proc sql;
alter table tabs.data add logexp float(4);
update tabs.data set logexp = log(exposition);
quit;
```

#### 1.1 Modèles sans "zéro inflation"

On va d'abord essayer un modèle naif qui inclut toute les variables explicatives, puis on l'améliore au fure et au mesure selon les output qu'on obtient.

```
proc genmod data=tabs.data;
class sexe zone comubsution PF;
Model nombre = sexe comubsution PF zone ageC ageV/
dist = pois link = log offset=logexp;
title "Poisson 1";
ods output modelfit = pois1;
run;
```

| Paramètre   |                         | DDL | Estimation | Erreur<br>type | Intervalle de confia | ance de Wald à95% | Khi-2 de Wald | Pr > khi-2 |
|-------------|-------------------------|-----|------------|----------------|----------------------|-------------------|---------------|------------|
| Intercept   |                         | 1   | 0.1078     | 0.0236         | 0.0616               | 0.1540            | 20.94         | <.0001     |
| Sexe        | F                       | 1   | -0.0160    | 0.0213         | -0.0577              | 0.0258            | 0.56          | 0.4537     |
| Sexe        | М                       | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000            |               |            |
| Comubsution | Diesel                  | 1   | -0.0148    | 0.0320         | -0.0775              | 0.0478            | 0.22          | 0.6428     |
| Comubsution | Essence                 | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000            |               |            |
| PF          | [00-08]                 | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000            |               |            |
| PF          | [08-10]                 | 1   | 0.0011     | 0.0382         | -0.0738              | 0.0760            | 0.00          | 0.9764     |
| PF          | [10-14]                 | 1   | 0.0211     | 0.0443         | -0.0658              | 0.1080            | 0.23          | 0.6337     |
| PF          | [14-00]                 | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000            |               |            |
| Zone        | BéniMellal-Khénifra     | 1   | 0.0085     | 0.0317         | -0.0536              | 0.0707            | 0.07          | 0.7877     |
| Zone        | Casablanca-Settat       | 1   | 0.0136     | 0.0283         | -0.0419              | 0.0691            | 0.23          | 0.6301     |
| Zone        | Dakhla-Oued Ed Dahab    | 1   | 0.0147     | 0.0258         | -0.0358              | 0.0652            | 0.33          | 0.5674     |
| Zone        | Dråa-Tafilalet          | 1   | 0.0106     | 0.0452         | -0.0780              | 0.0991            | 0.05          | 0.8152     |
| Zone        | Fčs-Meknčs              | 1   | 0.0011     | 0.0190         | -0.0363              | 0.0384            | 0.00          | 0.9558     |
| Zone        | Guelmim-Oued Noun       | 1   | 0.0413     | 0.0257         | -0.0090              | 0.0916            | 2.58          | 0.1079     |
| Zone        | Laâyoune-Sakia El Hamra | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000            |               |            |
| Zone        | Marrakech-Safi          | 1   | -0.0251    | 0.0425         | -0.1084              | 0.0581            | 0.35          | 0.5539     |
| Zone        | Oriental                | 1   | 0.0071     | 0.0216         | -0.0353              | 0.0495            | 0.11          | 0.7428     |
| Zone        | Rabat-Salé-Kénitra      | 1   | 0.0048     | 0.0210         | -0.0363              | 0.0459            | 0.05          | 0.8173     |
| Zone        | Souss-Massa             | 1   | 0.0234     | 0.0452         | -0.0651              | 0.1120            | 0.27          | 0.6041     |
| Zone        | Tanger-Tétouan-Hocedma  | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000            |               |            |
| ageC        |                         | 1   | -0.0020    | 0.0004         | -0.0028              | -0.0012           | 22.06         | <.0001     |
| ageV        |                         | 1   | 0.0128     | 0.0008         | 0.0113               | 0.0143            | 284.25        | <.000      |
| Echelle     |                         | 0   | 1.0000     | 0.0000         | 1.0000               | 1.0000            |               |            |

FIGURE 1.1 – Modèle poisson 1

On remarque que les puissance fiscales sont pas significatifs, et il ont des pvalues qui dépassent 90%, donc on va essayer en premiere tempe à remedier ce problème. On va alors travailler avec NEWPF

```
proc genmod data=tabs.data;
class sexe zone comubsution newPF;
Model nombre = sexe comubsution newPF zone ageC ageV/
dist = pois link = log offset=logexp;
title "Poisson 2";
ods output modelfit = pois2;
run;
```

On voit bien que ce modèle améliore le pvalue de puissance fiscale mais sans qui le rendre significative, on le laisse dans le modèle jusqu'à remidier le problème de zone qui parait plus sérieux, on travaille alors sur la variable NEWZONE.

| Paramètre   |                         | DDL | Estimation | Erreur | Intervalle de confia | man de Weld 2059/ | Khi-2 de Wald | Pr > khi-2 |
|-------------|-------------------------|-----|------------|--------|----------------------|-------------------|---------------|------------|
|             |                         |     |            | type   |                      |                   |               |            |
| Intercept   |                         | 1   | 0.1278     | 0.0415 | 0.0466               | 0.2091            | 9.51          | 0.0020     |
| Sexe        | F                       | 1   | -0.0160    | 0.0213 | -0.0577              | 0.0258            | 0.56          | 0.4537     |
| Sexe        | M                       | 0   | 0.0000     | 0.0000 | 0.0000               | 0.0000            |               |            |
| Comubsution | Diesel                  | 1   | -0.0137    | 0.0210 | -0.0548              | 0.0274            | 0.43          | 0.5137     |
| Comubsution | Essence                 | 0   | 0.0000     | 0.0000 | 0.0000               | 0.0000            |               |            |
| newPF       | PF_high_risk            | 1   | -0.0200    | 0.0341 | -0.0868              | 0.0468            | 0.34          | 0.5572     |
| newPF       | PF_low_risk             | 0   | 0.0000     | 0.0000 | 0.0000               | 0.0000            |               |            |
| Zone        | BéniMellal-Khénifra     | 1   | 0.0085     | 0.0317 | -0.0536              | 0.0707            | 0.07          | 0.7877     |
| Zone        | Casablanca-Settat       | 1   | 0.0136     | 0.0283 | -0.0419              | 0.0691            | 0.23          | 0.6301     |
| Zone        | Dakhla-Oued Ed Dahab    | 1   | 0.0136     | 0.0382 | -0.0613              | 0.0885            | 0.13          | 0.7219     |
| Zone        | Drâa-Tafilalet          | 1   | 0.0106     | 0.0452 | -0.0780              | 0.0991            | 0.05          | 0.8152     |
| Zone        | Fčs-Meknčs              | 1   | 0.0011     | 0.0190 | -0.0363              | 0.0384            | 0.00          | 0.9558     |
| Zone        | Guelmim-Oued Noun       | 1   | 0.0401     | 0.0382 | -0.0347              | 0.1149            | 1.11          | 0.2929     |
| Zone        | Laâyoune-Sakia El Hamra | 1   | -0.0011    | 0.0382 | -0.0760              | 0.0738            | 0.00          | 0.9764     |
| Zone        | Marrakech-Safi          | 1   | -0.0251    | 0.0425 | -0.1084              | 0.0581            | 0.35          | 0.5539     |
| Zone        | Oriental                | 1   | 0.0071     | 0.0216 | -0.0353              | 0.0495            | 0.11          | 0.7428     |
| Zone        | Rabat-Salé-Kénitra      | 1   | 0.0048     | 0.0210 | -0.0363              | 0.0459            | 0.05          | 0.8173     |
| Zone        | Souss-Massa             | 1   | 0.0234     | 0.0452 | -0.0651              | 0.1120            | 0.27          | 0.6041     |
| Zone        | Tanger-Tétouan-Hocedma  | 0   | 0.0000     | 0.0000 | 0.0000               | 0.0000            |               |            |
| ageC        |                         | 1   | -0.0020    | 0.0004 | -0.0028              | -0.0012           | 22.06         | <.0001     |
| ageV        |                         | 1   | 0.0128     | 0.0008 | 0.0113               | 0.0143            | 284.25        | <.0001     |
| Echelle     |                         | 0   | 1.0000     | 0.0000 | 1.0000               | 1.0000            |               |            |

FIGURE 1.2 - Poisson 2

```
proc genmod data=tabs.data;

Class sexe newzone comubsution newPF;

Model nombre = sexe comubsution newPF newzone ageC ageV/

dist = pois link = log offset=logexp;

title "Poisson 3";

ods output modelfit = pois3;

run;
```

|             |                | Analys | e des parame | ures esur      | nés du maximum de    | Viaisemblance     |               |            |
|-------------|----------------|--------|--------------|----------------|----------------------|-------------------|---------------|------------|
| Paramètre   |                | DDL    | Estimation   | Erreur<br>type | Intervalle de confia | ınce de Wald à95% | Khi-2 de Wald | Pr > khi-2 |
| Intercept   |                | 1      | 0.0931       | 0.0245         | 0.0451               | 0.1412            | 14.45         | 0.0001     |
| Sexe        | F              | 1      | 0.0010       | 0.0132         | -0.0249              | 0.0268            | 0.01          | 0.9419     |
| Sexe        | М              | 0      | 0.0000       | 0.0000         | 0.0000               | 0.0000            |               |            |
| Comubsution | Diesel         | 1      | -0.0106      | 0.0108         | -0.0318              | 0.0105            | 0.97          | 0.3246     |
| Comubsution | Essence        | 0      | 0.0000       | 0.0000         | 0.0000               | 0.0000            |               |            |
| newPF       | PF_high_risk   | 1      | 0.0008       | 0.0129         | -0.0245              | 0.0260            | 0.00          | 0.9531     |
| newPF       | PF_low_risk    | 0      | 0.0000       | 0.0000         | 0.0000               | 0.0000            |               |            |
| newzone     | zone_high_risk | 1      | 0.0212       | 0.0103         | 0.0009               | 0.0414            | 4.20          | 0.0404     |
| newzone     | zone_low_risk  | 0      | 0.0000       | 0.0000         | 0.0000               | 0.0000            |               |            |
| ageC        |                | 1      | -0.0020      | 0.0004         | -0.0028              | -0.0012           | 22.11         | <.0001     |
| ageV        |                | 1      | 0.0128       | 0.0008         | 0.0113               | 0.0143            | 284.14        | <.0001     |
| Echelle     |                | 0      | 1.0000       | 0.0000         | 1.0000               | 1.0000            |               |            |

FIGURE 1.3 – Poisson 3

Lorsque On a ajouté une deuxième variable explicative (newzone) au modèle, la p-value de newPF augmente considérablement, passant de 55% à 95% Cela peut signifier que

l'ajout de newzone en tant que variable explicative a en quelque sorte "expliqué" une partie de la variation dans la variable dépendante qui était auparavant attribuée à newPF. Cela peut également indiquer une corrélation entre newPF et newzone, ce qui peut rendre difficile la distinction de l'effet de chacune de ces variables sur la variable dépendante. On peut essayer de faire un modèle qui fait intervenire l'interaction entre les deux variables :

```
proc genmod data=tabs.data;

Class sexe newzone comubsution newPF;

Model nombre = sexe comubsution newPF*newzone ageC ageV/

dist = pois link = log offset=logexp;

title "Poisson 4";

ods output modelfit = pois4;

run;
```

| Paramètre     |                |              | DDL | Estimation | Erreur<br>type | Intervalle de confiance | e de Wald à95% | Khi-2 de Wald | Pr > khi-2 |
|---------------|----------------|--------------|-----|------------|----------------|-------------------------|----------------|---------------|------------|
| Intercept     |                |              | 1   | 0.0858     | 0.0251         | 0.0365                  | 0.1350         | 11.65         | 0.0006     |
| Sexe          | F              |              | 1   | -0.0038    | 0.0137         | -0.0306                 | 0.0230         | 0.08          | 0.7833     |
| Sexe          | М              |              | 0   | 0.0000     | 0.0000         | 0.0000                  | 0.0000         |               |            |
| Comubsution   | Diesel         |              | 1   | -0.0088    | 0.0109         | -0.0301                 | 0.0126         | 0.65          | 0.420      |
| Comubsution   | Essence        |              | 0   | 0.0000     | 0.0000         | 0.0000                  | 0.0000         |               |            |
| newzone*newPF | zone_high_risk | PF_high_risk | 1   | 0.0275     | 0.0171         | -0.0060                 | 0.0610         | 2.59          | 0.1074     |
| newzone*newPF | zone_high_risk | PF_low_risk  | 1   | 0.0415     | 0.0183         | 0.0056                  | 0.0773         | 5.14          | 0.023      |
| newzone*newPF | zone_low_risk  | PF_high_risk | 1   | 0.0158     | 0.0171         | -0.0177                 | 0.0494         | 0.86          | 0.354      |
| newzone*newPF | zone_low_risk  | PF_low_risk  | 0   | 0.0000     | 0.0000         | 0.0000                  | 0.0000         |               |            |
| ageC          |                |              | 1   | -0.0020    | 0.0004         | -0.0028                 | -0.0012        | 22.16         | <.000      |
| ageV          |                |              | 1   | 0.0128     | 0.0008         | 0.0113                  | 0.0143         | 284.11        | <.000      |
| Echelle       |                |              | 0   | 1.0000     | 0.0000         | 1.0000                  | 1.0000         |               |            |

FIGURE 1.4 – Poisson 4

On remarque qu'on a réduit de toutes les variables, donc ça serait interessant de modèliser avec ce modèle (On va se baser sur l'AIC et la deviance pour décider plus tard). Maintenant on va procéder sur l'ageC, on a déja remarqué que ça peut être interessant de modèliser par des tranches d'ages que d'un seul variable quantitative (voir statsitique descriptives 2)

```
proc genmod data=tabs.data;

Class sexe newzone comubsution agecnew newPF;

Model nombre = sexe comubsution newPF*newzone ageCnew ageV/
dist = pois link = log offset=logexp;

title "Poisson 5";
ods output modelfit = pois5;
run;
```

On constate que cette décomposition n'a rien amélioré, on fait elle a décortiquer le modèle, donc on élimine cette idée.

| Paramètre     |                   |              | DDL |         | Erreur<br>type | Intervalle de confianc | Khi-2 de Wald | Pr > khi-2 |        |
|---------------|-------------------|--------------|-----|---------|----------------|------------------------|---------------|------------|--------|
| Intercept     |                   |              | 1   | 0.0046  | 0.0205         | -0.0356                | 0.0448        | 0.05       | 0.8209 |
| Sexe          | F                 |              | 1   | -0.0036 | 0.0137         | -0.0304                | 0.0232        | 0.07       | 0.7942 |
| Sexe          | М                 |              | 0   | 0.0000  | 0.0000         | 0.0000                 | 0.0000        |            |        |
| Comubsution   | Diesel            |              | 1   | -0.0088 | 0.0109         | -0.0302                | 0.0125        | 0.66       | 0.4171 |
| Comubsution   | Essence           |              | 0   | 0.0000  | 0.0000         | 0.0000                 | 0.0000        |            |        |
| newzone*newPF | zone_high_risk    | PF_high_risk | 1   | 0.0278  | 0.0171         | -0.0057                | 0.0613        | 2.64       | 0.1042 |
| newzone*newPF | zone_high_risk    | PF_low_risk  | 1   | 0.0412  | 0.0183         | 0.0053                 | 0.0770        | 5.07       | 0.024  |
| newzone*newPF | zone_low_risk     | PF_high_risk | 1   | 0.0158  | 0.0171         | -0.0177                | 0.0494        | 0.86       | 0.3542 |
| newzone*newPF | zone_low_risk     | PF_low_risk  | 0   | 0.0000  | 0.0000         | 0.0000                 | 0.0000        |            |        |
| ageCnew       | [18-30] U [56-00] |              | 1   | 0.0385  | 0.0100         | 0.0190                 | 0.0581        | 14.95      | 0.000  |
| ageCnew       | [29-50]           |              | 0   | 0.0000  | 0.0000         | 0.0000                 | 0.0000        |            |        |
| ageV          |                   |              | 1   | 0.0124  | 0.0008         | 0.0110                 | 0.0139        | 273.79     | <.000  |
| Echelle       |                   |              | 0   | 1.0000  | 0.0000         | 1.0000                 | 1.0000        |            |        |

FIGURE 1.5 – Poisson 5

Cependant le sexe reste moins significative donc on l'élimine du modèle :

```
proc genmod data=tabs.data;
Class sexe newzone comubsution newPF;
Model nombre = comubsution newzone*newpf ageC ageV/
dist = pois link = log offset=logexp;
title "Poisson 6";
ods output modelfit = pois6;
run;
```

|               |                | Analyse      | des pa | rametres estii | mes du m       | aximum de vraisemb   | olance           |                        |            |
|---------------|----------------|--------------|--------|----------------|----------------|----------------------|------------------|------------------------|------------|
| Paramètre     |                |              | DDL    | Estimation     | Erreur<br>type | Intervalle de confia | nce de Wald à95% | Khi-2 de Wald<br>12.24 | Pr > khi-2 |
| Intercept     |                |              | 1      | 0.0837         | 0.0239         | 0.0368               | 0.1305           |                        | 0.0005     |
| Comubsution   | Diesel         |              | 1      | -0.0104        | 0.0091         | -0.0283              | 0.0075           | 1.30                   | 0.2549     |
| Comubsution   | Essence        |              | 0      | 0.0000         | 0.0000         | 0.0000               | 0.0000           |                        |            |
| newzone*newPF | zone_high_risk | PF_high_risk | 1      | 0.0300         | 0.0146         | 0.0013               | 0.0586           | 4.20                   | 0.0403     |
| newzone*newPF | zone_high_risk | PF_low_risk  | 1      | 0.0415         | 0.0183         | 0.0056               | 0.0773           | 5.14                   | 0.0234     |
| newzone*newPF | zone_low_risk  | PF_high_risk | 1      | 0.0167         | 0.0168         | -0.0162              | 0.0497           | 0.99                   | 0.319      |
| newzone*newPF | zone_low_risk  | PF_low_risk  | 0      | 0.0000         | 0.0000         | 0.0000               | 0.0000           |                        |            |
| ageC          |                |              | 1      | -0.0020        | 0.0004         | -0.0028              | -0.0012          | 22.17                  | <.000      |
| ageV          |                |              | 1      | 0.0128         | 0.0008         | 0.0113               | 0.0143           | 284.12                 | <.000      |
| Echelle       |                |              | 0      | 1.0000         | 0.0000         | 1.0000               | 1.0000           |                        |            |

FIGURE 1.6 - Poisson 6

Étant donnée qu'on a éliminer juste le sexe pour obtenir des pvalues assez bons comme cela (juste la comubsution qui est supérieur à 5%) on conververa ce modèle.

#### 1.2 Modèles avec zero inflation

On essaie d'améliorer les bons modèles trouvées par Poisson (poisson 4 et poisson 6) avec l'ajout de phènomen de zéro inflation :

```
proc genmod data=tabs.data;
                   comubsution newPF
  Class newzone
  Model nombre = comubsution newzone*newpf
                                              ageC ageV/
  dist = zip link = log offset=logexp ;
  zeromodel / link = logit
  title "ZIP 4";
   ods output modelfit = zip4;
  run;
  proc genmod data=tabs.data;
  Class newzone
                   comubsution newPF
12
  Model nombre = comubsution newzone*newpf ageC ageV/
  dist = zip link = log offset=logexp ;
  zeromodel / link = logit
15
  title "ZIP 6";
  ods output modelfit = zip6;
17
  run;
```



On remarque que *l'intercepte* est significativement null et que ce modèle ne differe rien de modèle poisson, donc on ne travaille pas avec ZIP.

#### 1.3 Comparaison des modèles :

On fait une comparaison statistiques à l'aide de la deviance et l'AIC :

| Obs. | Criterion                           | DF  | Value       | ValueDF | Obs. | Criterion                           | DF  | Value       | ValueDF |
|------|-------------------------------------|-----|-------------|---------|------|-------------------------------------|-----|-------------|---------|
| 1    | Ecart                               | 1E5 | 93538.3287  | 0.9355  | 1    | Ecart                               | 1E5 | 93538.4044  | 0.935   |
| 2    | Déviance normalisée                 | 1E5 | 93538.3287  | 0.9355  | 2    | Déviance normalisée                 | 1E5 | 93538.4044  | 0.935   |
| 3    | Khi2 de Pearson                     | 1E5 | 97873.1617  | 0.9788  | 3    | Khi2 de Pearson                     | 1E5 | 97873.2434  | 0.978   |
| 4    | Pearson normalisé X2                | 1E5 | 97873.1617  | 0.9788  | 4    | Pearson normalisé X2                | 1E5 | 97873.2434  | 0.978   |
| 5    | Log-vraisemblance                   | _   | -79165.1146 |         | 5    | Log-vraisemblance                   | _   | -79165.1525 |         |
| 6    | Log-vraisemblance complète          | _   | -94056.9202 |         | 6    | Log-vraisemblance complète          | _   | -94056.9581 |         |
| 7    | AIC (préférer les petites valeurs)  | _   | 188129.8405 | _       | 7    | AIC (préférer les petites valeurs)  | _   | 188127.9161 |         |
| 8    | AICC (préférer les petites valeurs) | _   | 188129.8419 | _       | 8    | AICC (préférer les petites valeurs) | _   | 188127.9173 |         |
| 9    | BIC (préférer les petites valeurs)  |     | 188205.9439 |         | 9    | BIC (préférer les petites valeurs)  |     | 188194.5066 |         |

(a) Poisson 4

(b) Poisson 6

Les modèles en tant presques similiares au niveau statistique, on va faire une autre comparaison Macro qu'on verrait après.

## 2 Modèlisation de sevérité

Dans la suite on va modèliser la sevérité en utilisant les deux modèles gamma et lognormal :

#### 2.1 Modèle Gamma

On commence toujours avec un modèle très naif, qui inclut toutes les variables :

```
proc genmod data=tabs.data;
Class sexe zone Comubsution PF;
Model severity = sexe zone Comubsution PF ageC ageV/
dist = gamma link = log offset=logexp;
ods output modelfit = Gam1;
run;
```

| Paramètre   |                         | DDL | Estimation | Erreur<br>type | Intervalle de confia | nce de Wald à95% | Khi-2 de Wald | Pr > khi-2 |
|-------------|-------------------------|-----|------------|----------------|----------------------|------------------|---------------|------------|
| Intercept   |                         | 1   | 5.9338     | 0.0355         | 5.8643               | 6.0034           | 27961.0       | <.0001     |
| Sexe        | F                       | 1   | -0.0806    | 0.0314         | -0.1422              | -0.0191          | 6.59          | 0.0102     |
| Sexe        | М                       | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |            |
| Zone        | BéniMellal-Khénifra     | 1   | -0.0589    | 0.0467         | -0.1505              | 0.0327           | 1.59          | 0.2078     |
| Zone        | Casablanca-Settat       | 1   | -0.0552    | 0.0418         | -0.1372              | 0.0268           | 1.74          | 0.1872     |
| Zone        | Dakhla-Oued Ed Dahab    | 1   | -0.1855    | 0.0656         | -0.3140              | -0.0570          | 8.01          | 0.0047     |
| Zone        | Drâa-Tafilalet          | 1   | -0.1702    | 0.0667         | -0.3010              | -0.0395          | 6.51          | 0.0107     |
| Zone        | Fčs-Meknčs              | 1   | 0.0248     | 0.0282         | -0.0305              | 0.0801           | 0.77          | 0.3796     |
| Zone        | Guelmim-Oued Noun       | 1   | -0.1424    | 0.0656         | -0.2709              | -0.0139          | 4.72          | 0.0299     |
| Zone        | Laâyoune-Sakia El Hamra | 1   | -0.1617    | 0.0655         | -0.2899              | -0.0334          | 6.10          | 0.0135     |
| Zone        | Marrakech-Safi          | 1   | -0.1553    | 0.0627         | -0.2782              | -0.0324          | 6.14          | 0.0132     |
| Zone        | Oriental                | 1   | 0.1020     | 0.0321         | 0.0391               | 0.1649           | 10.10         | 0.0015     |
| Zone        | Rabat-Salé-Kénitra      | 1   | -0.0162    | 0.0310         | -0.0769              | 0.0445           | 0.27          | 0.6014     |
| Zone        | Souss-Massa             | 1   | -0.1913    | 0.0666         | -0.3219              | -0.0608          | 8.25          | 0.0041     |
| Zone        | Tanger-Tétouan-Hocedma  | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |            |
| Comubsution | Diesel                  | 1   | 0.2371     | 0.0591         | 0.1213               | 0.3529           | 16.11         | <.0001     |
| Comubsution | Essence                 | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |            |
| PF          | [00-08]                 | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |            |
| PF          | [08-10]                 | 1   | -0.2024    | 0.0503         | -0.3009              | -0.1038          | 16.19         | <.0001     |
| PF          | [10-14]                 | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |            |
| PF          | [14-00]                 | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |            |
| ageC        |                         | 1   | 0.0732     | 0.0006         | 0.0720               | 0.0745           | 12700.6       | <.0001     |
| ageV        |                         | 1   | -0.0109    | 0.0011         | -0.0131              | -0.0086          | 91.50         | <.0001     |
| Echelle     |                         | 1   | 0.6602     | 0.0039         | 0.6527               | 0.6678           |               |            |

FIGURE 2.1 - Gamma1

On remarque que la majorité des variables sont significatives, sauf quelque unes. On commence à regler le problème de puissance fiscale, on utilise alors la décomposition trouvée précédement NEWSPF :

```
proc genmod data=tabs.data;
Class sexe zone Comubsution newPF;
Model severity = sexe zone Comubsution newPF ageC ageV/
dist = gamma link = log offset=logexp;
ods output modelfit = Gam2;
run;
```

| Paramètre   |                         | DDL | Estimation | Erreur | Intervalle de confi | ance de Wald à95% | Khi-2 de Wald | Pr > khi-2 |
|-------------|-------------------------|-----|------------|--------|---------------------|-------------------|---------------|------------|
|             |                         |     |            | type   |                     |                   |               |            |
| Intercept   |                         | 1   | 6.1362     | 0.0614 | 6.0159              | 6.2565            | 9989.53       | <.0001     |
| Sexe        | F                       | 1   | -0.0806    | 0.0314 | -0.1422             | -0.0191           | 6.59          | 0.0102     |
| Sexe        | M                       | 0   | 0.0000     | 0.0000 | 0.0000              | 0.0000            |               |            |
| Zone        | BéniMellal-Khénifra     | 1   | -0.0589    | 0.0467 | -0.1505             | 0.0327            | 1.59          | 0.2078     |
| Zone        | Casablanca-Settat       | 1   | -0.0552    | 0.0418 | -0.1372             | 0.0268            | 1.74          | 0.1872     |
| Zone        | Dakhla-Oued Ed Dahab    | 1   | 0.0168     | 0.0565 | -0.0939             | 0.1276            | 0.09          | 0.7657     |
| Zone        | Drâa-Tafilalet          | 1   | -0.1702    | 0.0667 | -0.3010             | -0.0395           | 6.51          | 0.0107     |
| Zone        | Fčs-Meknčs              | 1   | 0.0248     | 0.0282 | -0.0305             | 0.0801            | 0.77          | 0.3796     |
| Zone        | Guelmim-Oued Noun       | 1   | 0.0599     | 0.0565 | -0.0508             | 0.1707            | 1.12          | 0.2889     |
| Zone        | Laâyoune-Sakia El Hamra | 1   | 0.0407     | 0.0564 | -0.0698             | 0.1512            | 0.52          | 0.4705     |
| Zone        | Marrakech-Safi          | 1   | -0.1553    | 0.0627 | -0.2782             | -0.0324           | 6.14          | 0.0132     |
| Zone        | Oriental                | 1   | 0.1020     | 0.0321 | 0.0391              | 0.1649            | 10.10         | 0.0015     |
| Zone        | Rabat-Salé-Kénitra      | 1   | -0.0162    | 0.0310 | -0.0769             | 0.0445            | 0.27          | 0.6014     |
| Zone        | Souss-Massa             | 1   | -0.1913    | 0.0666 | -0.3219             | -0.0608           | 8.25          | 0.0041     |
| Zone        | Tanger-Tétouan-Hocedma  | 0   | 0.0000     | 0.0000 | 0.0000              | 0.0000            |               |            |
| Comubsution | Diesel                  | 1   | 0.0347     | 0.0310 | -0.0260             | 0.0955            | 1.26          | 0.2624     |
| Comubsution | Essence                 | 0   | 0.0000     | 0.0000 | 0.0000              | 0.0000            |               |            |
| newPF       | PF_high_risk            | 1   | -0.2024    | 0.0503 | -0.3009             | -0.1038           | 16.19         | <.0001     |
| newPF       | PF_low_risk             | 0   | 0.0000     | 0.0000 | 0.0000              | 0.0000            |               |            |
| ageC        |                         | 1   | 0.0732     | 0.0006 | 0.0720              | 0.0745            | 12700.6       | <.0001     |
| ageV        |                         | 1   | -0.0109    | 0.0011 | -0.0131             | -0.0086           | 91.50         | <.0001     |
| Echelle     |                         | 1   | 0.6602     | 0.0039 | 0.6527              | 0.6678            |               |            |

FIGURE 2.2 - Gamma2

Cela règle le problème de la puissance fiscale, passons maintenant aux zones : on utilise également la décomposition NEWSZONE :

```
proc genmod data=tabs.data;
Class sexe newszone Comubsution newPF;
Model severity = sexe newszone Comubsution newPF ageC ageV/
dist = gamma link = log offset=logexp;
ods output modelfit = Gam3;
run;
```

| Paramètre   |                | DDL | Estimation | Erreur<br>type | Intervalle de confia | nce de Wald à95% | Khi-2 de Wald | Pr > khi- |
|-------------|----------------|-----|------------|----------------|----------------------|------------------|---------------|-----------|
| Intercept   |                | 1   | 5.9702     | 0.0358         | 5.9000               | 6.0403           | 27825.8       | <.000     |
| Sexe        | F              | 1   | -0.0184    | 0.0180         | -0.0536              | 0.0169           | 1.04          | 0.307     |
| Sexe        | М              | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |           |
| newszone    | zone_high_risk | 1   | 0.0422     | 0.0158         | 0.0112               | 0.0732           | 7.10          | 0.007     |
| newszone    | zone_low_risk  | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |           |
| Comubsution | Diesel         | 1   | -0.0149    | 0.0177         | -0.0497              | 0.0198           | 0.71          | 0.400     |
| Comubsution | Essence        | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |           |
| newPF       | PF_high_risk   | 1   | -0.0417    | 0.0194         | -0.0796              | -0.0037          | 4.62          | 0.031     |
| newPF       | PF_low_risk    | 0   | 0.0000     | 0.0000         | 0.0000               | 0.0000           |               |           |
| ageC        |                | 1   | 0.0732     | 0.0006         | 0.0719               | 0.0745           | 12687.1       | <.000     |
| ageV        |                | 1   | -0.0109    | 0.0011         | -0.0131              | -0.0087          | 91.71         | <.000     |
| Echelle     |                | 1   | 0.6599     | 0.0039         | 0.6524               | 0.6675           |               |           |

FIGURE 2.3 – Gamma 3

On remarque que le regroupement de zone, a augmenté les pvalues des autres variables, pour régler ce problème on propose de faire ajouter un effet d'interaction entre le sexe et la comubsution :

```
proc genmod data=tabs.data;
Class sexe newszone Comubsution newPF;
Model severity = newszone sexe* Comubsution newPF ageC ageV/
dist = gamma link = log offset=logexp;
ods output modelfit = Gam4;
run;
```

#### On trouve:

|                  |                | Analyse | des pa | aramètres esti | imés du n      | naximum de vraisem   | iblance           |               |            |
|------------------|----------------|---------|--------|----------------|----------------|----------------------|-------------------|---------------|------------|
| Paramètre        |                |         | DDL    | Estimation     | Erreur<br>type | Intervalle de confia | ance de Wald à95% | Khi-2 de Wald | Pr > khi-2 |
| Intercept        |                |         | 1      | 5.9702         | 0.0358         | 5.9000               | 6.0403            | 27825.8       | <.0001     |
| newszone         | zone_high_risk |         | 1      | 0.0422         | 0.0158         | 0.0112               | 0.0732            | 7.10          | 0.0077     |
| newszone         | zone_low_risk  |         | 0      | 0.0000         | 0.0000         | 0.0000               | 0.0000            |               |            |
| Sexe*Comubsution | F              | Diesel  | 1      | -0.0333        | 0.0190         | -0.0704              | 0.0039            | 3.08          | 0.0792     |
| Sexe*Comubsution | M              | Diesel  | 1      | -0.0149        | 0.0177         | -0.0497              | 0.0198            | 0.71          | 0.4003     |
| Sexe*Comubsution | М              | Essence | 0      | 0.0000         | 0.0000         | 0.0000               | 0.0000            |               |            |
| newPF            | PF_high_risk   |         | 1      | -0.0417        | 0.0194         | -0.0796              | -0.0037           | 4.62          | 0.0316     |
| newPF            | PF_low_risk    |         | 0      | 0.0000         | 0.0000         | 0.0000               | 0.0000            |               |            |
| ageC             |                |         | 1      | 0.0732         | 0.0006         | 0.0719               | 0.0745            | 12687.1       | <.0001     |
| ageV             |                |         | 1      | -0.0109        | 0.0011         | -0.0131              | -0.0087           | 91.71         | <.0001     |
| Echelle          |                |         | 1      | 0.6599         | 0.0039         | 0.6524               | 0.6675            |               |            |

**FIGURE 2.4** – Gamma 4

On peut également supprimer la variable sexe de modèle :

```
proc genmod data=tabs.data;
Class newszone Comubsution newPF;
Model severity = newszone Comubsution newPF ageC ageV/
```

```
dist = gamma link = log offset=logexp;
ods output modelfit = Gam5;
run;
```

|             |                | Analys | se des paramè | tres estir     | nés du maximum de    | vraisemblance     |               |            |
|-------------|----------------|--------|---------------|----------------|----------------------|-------------------|---------------|------------|
| Paramètre   |                | DDL    | Estimation    | Erreur<br>type | Intervalle de confia | nnce de Wald à95% | Khi-2 de Wald | Pr > khi-2 |
| Intercept   |                | 1      | 5.9599        | 0.0344         | 5.8926               | 6.0273            | 30069.1       | <.0001     |
| newszone    | zone_high_risk | 1      | 0.0425        | 0.0158         | 0.0115               | 0.0736            | 7.23          | 0.0072     |
| newszone    | zone_low_risk  | 0      | 0.0000        | 0.0000         | 0.0000               | 0.0000            |               |            |
| Comubsution | Diesel         | 1      | -0.0228       | 0.0159         | -0.0540              | 0.0085            | 2.04          | 0.1530     |
| Comubsution | Essence        | 0      | 0.0000        | 0.0000         | 0.0000               | 0.0000            |               |            |
| newPF       | PF_high_risk   | 1      | -0.0315       | 0.0166         | -0.0641              | 0.0011            | 3.58          | 0.0584     |
| newPF       | PF_low_risk    | 0      | 0.0000        | 0.0000         | 0.0000               | 0.0000            |               |            |
| ageC        |                | 1      | 0.0732        | 0.0006         | 0.0719               | 0.0745            | 12685.6       | <.0001     |
| ageV        |                | 1      | -0.0109       | 0.0011         | -0.0131              | -0.0087           | 91.82         | <.0001     |
| Echelle     |                | 1      | 0.6599        | 0.0039         | 0.6524               | 0.6675            |               |            |

FIGURE 2.5 – Gamma 5

On dispose alors de deux modèles qui semblent assez bons, on les compare ulérieurement à l'aide de l'AIC.

## 2.2 Modèle Log-normal

On ajoute d'abord le logarithme de la severité :

```
proc sql;
alter table tabs.data add logSev float(4);
update tabs.data set logsev = log(severity);
quit;
```

À l'aide d'un démarche analogique on trouve toutes les modèles possibles non significatives, voir l'annexe 5 :

## 2.3 Comparaison des modèles

On ne compare que les modèles : Gamma4 et Gamma5,

Autre fois, on ne remarque aucune difference significative entre les deux modèles, donc on va faire une comparaison macro en derniere temps.

| Obs. | Criterion                           | DF   | Value        | ValueDF | Obs. | Criterion                           | DF   | Value        | ValueDF |
|------|-------------------------------------|------|--------------|---------|------|-------------------------------------|------|--------------|---------|
| 1    | Ecart                               | 42E3 | 77894.5167   | 1.8472  | 1    | Ecart                               | 42E3 | 77896.0922   | 1.8472  |
| 2    | Déviance normalisée                 | 42E3 | 51402.7123   | 1.2190  | 2    | Déviance normalisée                 | 42E3 | 51402.6376   | 1.2190  |
| 3    | Khi2 de Pearson                     | 42E3 | 131178.0063  | 3.1108  | 3    | Khi2 de Pearson                     | 42E3 | 131026.0154  | 3.1072  |
| 4    | Pearson normalisé X2                | 42E3 | 86564.5697   | 2.0528  | 4    | Pearson normalisé X2                | 42E3 | 86462.3963   | 2.0504  |
| 5    | Log-vraisemblance                   | _    | -380136.4036 | _       | 5    | Log-vraisemblance                   | _    | -380136.9234 | _       |
| 6    | Log-vraisemblance complète          | _    | -380136.4036 | _       | 6    | Log-vraisemblance complète          | _    | -380136.9234 | _       |
| 7    | AIC (préférer les petites valeurs)  | _    | 760288.8072  | _       | 7    | AIC (préférer les petites valeurs)  | _    | 760287.8468  | _       |
| 8    | AICC (préférer les petites valeurs) | _    | 760288.8106  | _       | 8    | AICC (préférer les petites valeurs) | _    | 760287.8495  | _       |
| 9    | BIC (préférer les petites valeurs)  | _    | 760358.0038  | _       | 9    | BIC (préférer les petites valeurs)  | _    | 760348.3939  | _       |

(a) Gamma 4

**(b)** Gamma 5

## 3 Calcul de la prime

La primes serait calculée comme suit :

```
Prime_{pure} = Prime_{stand} + Prime_{grand}
Prime_{pure} = Severit\acute{e} \times Frequence + \mathbb{P}(Grand\ sin) \times \mathbb{E}(Mont_{grand})
```

- $Prime_{stand}$  correspond au primes qui vont couvrir les sinistres standards;
- *Prime<sub>grand</sub>* correspond à une prime constante (appliquée à tous independament de son profile assurée) qui va couvrir les sinistres de grandes montants.

On calcul chaque terme toute seule :

### 3.1 Calcul de la frequence

On utilise ce code:

```
proc genmod data=tabs.data;
  Class sexe newzone
                        comubsution newPF
  Model nombre = sexe comubsution newPF*newzone ageC ageV/
  dist = pois link = log offset=logexp ;
  title "Poisson 4";
  ods output modelfit = pois4;
  output out=tabs.tarif4 p=fitted_frequence;
  run;
  proc sql;
10
           update tabs.tarif4 set fitted_frequence =
11

→ fitted_frequence/exposition;

  quit;
13
  proc genmod data=tabs.data;
  Class newzone
                   comubsution
                               newPF
  Model nombre = comubsution newzone*newpf ageC ageV/
  dist = pois link = log offset=logexp ;
```

On disposera à la sortie du code de deux tables TARIF4 et TARIF6 chaqu'une possède les frequences calculée selon un modèle donnée.

Comparons d'abord s'il la totalité des nombres de sinistres observé est proches des prédictions des modèles, Cela peut être fait à travers ce code :

```
proc sql;
  CREATE TABLE amd (
    nombre_total INT ,
    nombre_tarif4 INT,
    nombre_tarif6 INT
  );
   INSERT INTO amd (nombre_total, nombre_tarif4, nombre_tarif6) VALUES
     (0, 0, 0);
10
  UPDATE amd set
11
  nombre_total = (select sum(nombre) from tabs.sinistres),
  nombre_tarif4 = (select sum(fitted_frequence*exposition) from

    tabs.tarif4),
  nombre_tarif6 = (select sum(fitted_frequence*exposition) from

→ tabs.tarif6);
  quit;
```

Qui nous donne cela:

| Obs. | nombre_total | nombre_tarif4 | nombre_tarif6 |
|------|--------------|---------------|---------------|
| 1    | 60689        | 60689.00      | 60689.00      |

FIGURE 3.1 – Comparaison des totaux de nombre sinistres

On remarque ainsi que les deux modèles ne different pas dans leur estimation de la totalité des nombre de sinistres, et ils sont adéquates au valeur de notre base.

#### 3.2 Calcul de la severité

On utilise ce code:

```
proc genmod data=tabs.data;
  Class sexe newszone Comubsution newPF;
  Model severity = newszone sexe* Comubsution newPF ageC ageV/
  dist = gamma link = log offset=logexp ;
  ods output modelfit = Gam4;
  output out=sev4 p=fitted_severity;
  run;
  proc genmod data=tabs.data;
  Class newszone Comubsution newPF;
  Model severity = newszone Comubsution newPF ageC ageV/
11
  dist = gamma link = log offset=logexp ;
   ods output modelfit = Gam5;
13
   output out=sev5 p=fitted_severity;
14
  run;
```

## 3.3 Calcul de la prime

#### 3.i Prime standard

On dispose de deux modèles pour chaqu'une de nombre et de severité, donc on aurrait quatre tables de tarif, on donnera les code de création dans l'annexe : 6 On obtient alors les tables suivantes, affichée par ce code (même ordre) :

```
proc print data=tarif44(obs=5);run;
proc print data=tarif45(obs=5);run;
proc print data=tarif64(obs=5);run;
proc print data=tarif65(obs=5);run;
```



FIGURE 3.2 – Les tables des primes

#### 3.ii Prime pure

On doit d'abord calculer la cotisation qui va s'ajouter au primes standards :

Finalement, on l'ajoute à travers ce code :



Figure 3.3 – Cotisation à ajouter au primes standard

```
proc sql;
alter table tarif44 add prime_pure float(4);
update tarif44 set prime_pure = prime_stand + (select cot from
    cotisation);
alter table tarif45 add prime_pure float(4);
update tarif45 set prime_pure = prime_stand + (select cot from
    cotisation);
alter table tarif64 add prime_pure float(4);
update tarif64 set prime_pure = prime_stand + (select cot from
    cotisation);
alter table tarif65 add prime_pure float(4);
update tarif65 set prime_pure = prime_stand + (select cot from
    cotisation);
update tarif65 set prime_pure = prime_stand + (select cot from
    cotisation);
quit;
```

#### Ce qui donne:

| Obs.                    | numepolice                         |                                                  |                                           | Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comubaution                                                             | PF           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sition age                                                                                  |                                                                                                                                  |                                                    |                           | - manger                                                                  |                                                                                                     |                                                                                         |                                                                                                                             |                                                                                                                                  |                                 | newsPf                                                                                    | logexp                                                                                            |                                                                                  | logSev                                        |                                                              |                                                                         |                                                                              |                                                                        |
|-------------------------|------------------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|
| - 1                     | 2                                  | 2009                                             | м                                         | Fčs-<br>Meknčs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Essence                                                                 | [00-<br>[80] | 0.85050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40312                                                                                       | 7 21                                                                                                                             |                                                    | 1 1966.5                  | 1 1.17                                                                    | 177 1966.9                                                                                          | 11 zone_t                                                                               | nigh_risk zone_                                                                                                             | high_risk [18-3<br>[56-o                                                                                                         |                                 | isk PF_low_r                                                                              | ak -0.16193                                                                                       | 1                                                                                | 7.58422                                       | 1                                                            | 1.15838 23                                                              | 95.73 2776                                                                   | 32 3936                                                                |
| 2                       | 5                                  | 2016                                             | м                                         | Rabat-<br>Salé-<br>Kénéra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Essence                                                                 | 08]          | 0.48690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68514 1                                                                                     | 2                                                                                                                                |                                                    | 0 0.0                     | 0.00                                                                      | 0.0                                                                                                 | 10 zone_t                                                                               | nigh_risk zone_                                                                                                             | high_risk [18-3<br>[56-o                                                                                                         |                                 | tak Pf_low_t                                                                              | ak -0.71968                                                                                       | 0                                                                                |                                               |                                                              | 1.20616 12                                                              | 34.34 1488                                                                   | 81 2648.1                                                              |
| 3                       | 6                                  | 2010                                             | F                                         | Marrakech-<br>Safi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diesel                                                                  | [10-         | 0.48055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59502                                                                                       | 3 21                                                                                                                             |                                                    | 2 3625.8                  | 5 4.16                                                                    | 1812.9                                                                                              | 3 zone_l                                                                                | ow_risk zone_                                                                                                               | low_risk [18-3<br>[56-o                                                                                                          | (U PF_low_                      | sk PF_high_                                                                               | tsk -0.73281                                                                                      | 1                                                                                | 7.50270                                       | 1                                                            | 1.09874 13                                                              | 23.53 1454                                                                   | 22 2614.2                                                              |
| 4                       | 9                                  | 2012                                             | М                                         | Tanger-<br>Tétouan-<br>Hocedma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Essence                                                                 | [00-<br>08]  | 0.06060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93414 1                                                                                     | 4                                                                                                                                | -                                                  | 0 0.0                     | 0.00                                                                      | 0.0                                                                                                 | 0 zone_l                                                                                | ow_risk zone_                                                                                                               | low_risk [29-5                                                                                                                   | ( PF_high                       | tak PF_low_t                                                                              | sk -2.79812                                                                                       | 0                                                                                |                                               | 1                                                            | 1.28543 5                                                               | 80.29 745                                                                    | 93 1905.1                                                              |
| 5                       | 24                                 | 2008                                             | м                                         | Rabat-<br>Salé-<br>Kénéra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Diesel                                                                  | (08-<br>10)  | 0.56674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 09257                                                                                       | 2                                                                                                                                |                                                    | 1 174.3                   | 2 1.76                                                                    | 174.3                                                                                               | 2 zone_t                                                                                | nigh_risk zone_                                                                                                             | high_risk [18-3<br>[55-o                                                                                                         |                                 | isk PF_high,                                                                              | tsk -0.56785                                                                                      | 1                                                                                | 5.16319                                       | 1                                                            | 1.10719 15                                                              | 10.89 1672                                                                   | 84 2832                                                                |
|                         |                                    |                                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |                                                                                                                                  |                                                    |                           |                                                                           |                                                                                                     |                                                                                         |                                                                                                                             |                                                                                                                                  |                                 |                                                                                           |                                                                                                   |                                                                                  |                                               |                                                              |                                                                         |                                                                              |                                                                        |
| Obs.                    | numepolice                         | exercice                                         | Sexe                                      | Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comubs                                                                  | ution        | PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | expositio                                                                                   | age\                                                                                                                             | / ageC                                             | nombre                    | somme                                                                     | frequence                                                                                           | severity                                                                                | newzone                                                                                                                     | newszone                                                                                                                         | ageCnew                         | newPF                                                                                     | newsPf                                                                                            | logex                                                                            | isnutt                                        | logSev                                                       | fitted_frequence                                                        | fitted_severity                                                              | prime_stand                                                            |
| - 1                     | 2                                  | 2009                                             | м                                         | Fčs-Meknčs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Essence                                                                 |              | (00-<br>08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.850504031                                                                                 | 2 :                                                                                                                              | 28                                                 | 1                         | 1965.91                                                                   | 1.17577                                                                                             | 1986.91                                                                                 | zone_high_risk                                                                                                              | zone_high_risk                                                                                                                   | [18-30] U<br>[56-00]            | PF_high_risk                                                                              | PF_low_risk                                                                                       | -0.1619                                                                          | 1                                             | 7.58422                                                      | 1.15838                                                                 | 2397.12                                                                      | 2776.77                                                                |
| 2                       | 5                                  | 2016                                             | м                                         | Rabat-Salé-<br>Kénéra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Esserce                                                                 |              | (00-<br>06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.486905851                                                                                 | 4 10                                                                                                                             | 27                                                 | 0                         | 0.00                                                                      | 0.00000                                                                                             | 0.00                                                                                    | zone_high_risk                                                                                                              | zone_high_risi                                                                                                                   | [18-30] U<br>[56-00]            | PF_high_risk                                                                              | PF_low_risk                                                                                       | -0.7196                                                                          | 0                                             |                                                              | 1.20616                                                                 | 1234.52                                                                      | 1489.03                                                                |
| 3                       | 6                                  | 2010                                             | *                                         | Marrakech-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | afi Diesel                                                              |              | [10-<br>14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.480555950                                                                                 | 2 6                                                                                                                              | 28                                                 | 2                         | 3625.85                                                                   | 4.16185                                                                                             | 1812.93                                                                                 | zone_low_risk                                                                                                               | zone_low_risk                                                                                                                    | [18-30] U<br>[56-00]            | PF_low_risk                                                                               | PF_high_risk                                                                                      | -0.7328                                                                          | 1                                             | 7.50270                                                      | 1.09874                                                                 | 1323.66                                                                      | 1454.36                                                                |
| - 4                     | 9                                  | 2012                                             | м                                         | Tanger-Tétou<br>Hocedma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an- Essence                                                             |              | (00-<br>08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.060924341                                                                                 | 4 11                                                                                                                             | 47                                                 | 0                         | 0.00                                                                      | 0.00000                                                                                             | 0.00                                                                                    | zone_low_risk                                                                                                               | zone_low_risk                                                                                                                    | [29-50]                         | PF_high_risk                                                                              | PF_low_risk                                                                                       | -2.79613                                                                         | . 0                                           |                                                              | 1.28543                                                                 | 580.08                                                                       | 745.65                                                                 |
|                         |                                    |                                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |                                                                                                                                  |                                                    |                           |                                                                           |                                                                                                     |                                                                                         |                                                                                                                             |                                                                                                                                  |                                 |                                                                                           |                                                                                                   |                                                                                  |                                               |                                                              |                                                                         |                                                                              |                                                                        |
| 5                       | 24                                 | 2008                                             | м                                         | Rabat-Salé-<br>Kénéra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Diesel                                                                  |              | (08-<br>10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.588740925                                                                                 | , ,                                                                                                                              | 27                                                 | 1                         | 174.72                                                                    | 1.76447                                                                                             | 174.72                                                                                  | zone_high_risk                                                                                                              | zone_high_risi                                                                                                                   | [18-30] U<br>[56-00]            | PF_high_risk                                                                              | PF_high_risk                                                                                      | -0.5678                                                                          | 1                                             | 5.16319                                                      | 1.10719                                                                 | 1499.33                                                                      | 1660.04                                                                |
|                         |                                    |                                                  |                                           | Rabat-Salé-<br>Kénitra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |              | (O8-<br>10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                                                                                                  |                                                    |                           |                                                                           |                                                                                                     |                                                                                         | zone_high_risk                                                                                                              |                                                                                                                                  | [56-00]                         |                                                                                           |                                                                                                   |                                                                                  |                                               |                                                              |                                                                         |                                                                              |                                                                        |
| 5<br>Obs.               | 24<br>numepolice                   | 2008<br>exercice                                 |                                           | Rabat-Salé-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Diesel                                                                  | ution        | [08-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.566740925<br>expositio                                                                    |                                                                                                                                  |                                                    |                           |                                                                           | 1.78447                                                                                             | 174.72<br>severity                                                                      | zone_high_risk                                                                                                              | zone_high_risi                                                                                                                   |                                 | Pf_high_risk                                                                              | PF_Ngh_risk                                                                                       | -0.5678                                                                          |                                               |                                                              | 1.10719                                                                 |                                                                              | 1660.04                                                                |
|                         |                                    |                                                  | Sexe                                      | Rabat-Salé-<br>Kénitra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         | ution        | (O8-<br>10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | age\                                                                                                                             | / ageC                                             |                           |                                                                           |                                                                                                     | severity                                                                                |                                                                                                                             |                                                                                                                                  | [56-00]                         |                                                                                           |                                                                                                   |                                                                                  | Isnutt                                        |                                                              |                                                                         |                                                                              |                                                                        |
| Obs.                    | numepolice                         | exercice                                         | Sexe<br>M                                 | Rabet-Salé-<br>Kénitra<br>Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comubs                                                                  | ution        | (08-<br>10)<br>PF<br>(00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | expositio                                                                                   | agel                                                                                                                             | / ageC                                             |                           | волити                                                                    | frequence                                                                                           | severity<br>1988.91                                                                     | newzone                                                                                                                     | newszone                                                                                                                         | ageCnew                         | newPF                                                                                     | newsPf                                                                                            | logest                                                                           | i isruili                                     | T-58422                                                      | fitted_frequence                                                        | fitted_severity                                                              | prime_stand                                                            |
| Obs.                    | numepolice<br>2                    | exercice<br>2009                                 | Sexe<br>M                                 | Rabat-Salé-<br>Kémbra  Zone  Fis-Meknisa  Rabat-Salé-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comubs<br>Esserce                                                       | ution        | [08-<br>10]<br>PF<br>[00-<br>06]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | expositio<br>0.850504031                                                                    | n age\                                                                                                                           | / ageC<br>r 28                                     | nombre<br>1               | somme<br>1985.91                                                          | frequence<br>1.17577                                                                                | severity<br>1988.91<br>0.00                                                             | newzone<br>zone_high_risk                                                                                                   | newszone<br>zone_high_risi                                                                                                       | ageCnew<br>[18-30] U<br>[56-00] | newPF<br>PF_high_risk                                                                     | nowsPf Pf_low_risk                                                                                | logexq                                                                           | i ismulli                                     | logSev<br>7.58422                                            | fitted_frequence                                                        | fitted_severity<br>2396.73                                                   | prime_stand<br>2777.17                                                 |
| Obs.                    | numepolice<br>2<br>5               | exercice<br>2009<br>2016                         | Sexe<br>M<br>M                            | Rabat-Salè-<br>Kénéra<br>Zone<br>Fčs-Meknča<br>Rabat-Salè-<br>Kénéra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Consubs Essence Essence                                                 | ution        | [08-<br>10]<br>PF<br>[00-<br>08]<br>[00-<br>08]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | expositio<br>0.850504031<br>0.488906851                                                     | 1 age/<br>2 :<br>4 11<br>2 (                                                                                                     | 7 ageC<br>7 28<br>0 27<br>5 28                     | nombre<br>1               | somme<br>1985.91<br>0.00                                                  | frequence<br>1.17577<br>0.00000                                                                     | severity<br>1988.91<br>0.00                                                             | newzone<br>zone_high_risk<br>zone_high_risk                                                                                 | newszone<br>zone_high_risi                                                                                                       |                                 | newPF PF_high_risk PF_high_risk PF_high_risk PF_high_risk                                 | newsPF  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk                                        | 0.7196<br>0.7196<br>0.7328                                                       | i ismuli                                      | T.58422                                                      | fitted_frequence<br>1.15873<br>1.20053                                  | fitted_severity<br>2396.73<br>1234.34                                        | prime_atland<br>2777.17<br>1489.27                                     |
| Obs. 1 2 3              | numepolice<br>2<br>5               | 2009<br>2016<br>2010                             | Sexe<br>M<br>M                            | Rabat-Salé-<br>Kémbra  Zone  Fita-Meknita  Rabat-Salé-<br>Kémbra  Mamakach-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Consubs Essence Essence                                                 | ution        | [05-<br>10]<br>PF<br>[00-<br>08]<br>[00-<br>08]<br>[10-<br>14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | expositio<br>0.850504031<br>0.480905851<br>0.480555950                                      | 1 age/<br>2 :<br>4 10<br>2 (                                                                                                     | 7 ageC<br>7 28<br>0 27<br>5 28                     | nombre<br>1<br>0          | somme<br>1965.91<br>0.00<br>3625.85                                       | frequence<br>1.17577<br>0.00000<br>4.16185                                                          | severity<br>1966.91<br>0.00<br>1812.93                                                  | newzone zone_high_risk zone_high_risk zone_low_risk                                                                         | newszone<br>zone_high_risi<br>zone_low_risk<br>zone_low_risk                                                                     |                                 | newPF PF_high_risk PF_high_risk PF_high_risk PF_high_risk                                 | newsPF PF_low_risk PF_low_risk PF_high_risk                                                       | 0.7196<br>0.7196<br>0.7328                                                       |                                               | T.58422                                                      | fitted_frequence<br>1.15873<br>1.20653<br>1.06674                       | fitted_severity<br>2395.73<br>1234.34<br>1323.53                             | prime_stand<br>2777.17<br>1489.27<br>1454.22                           |
| Obs. 1 2 3 4            | numepolice<br>2<br>5<br>6          | 2009<br>2016<br>2010<br>2012                     | Sexe<br>M<br>M                            | Rabat-Salé-<br>Kémbra  Zone Fis-Meknita  Rabat-Salé-<br>Kémbra  Manakech-S  Tanger-Tébu Hocadha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comutes Essence Essence and Diesel                                      | ution        | [05-<br>10]<br>PF<br>[00-<br>06]<br>[00-<br>06]<br>[10-<br>14]<br>[00-<br>06]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | expositio<br>0.850504031<br>0.486905851<br>0.480555950<br>0.060924341                       | 1 age/<br>2 :<br>4 10<br>2 (                                                                                                     | 7 ageC<br>7 28<br>0 27<br>5 28                     | 1 0 2 0                   | 30mms<br>1986.91<br>0.00<br>3625.85                                       | 1.17577<br>0.00000<br>4.16185<br>0.00000                                                            | severity<br>1966.91<br>0.00<br>1812.93                                                  | newzone zone_high_risk zone_low_risk zone_low_risk                                                                          | newszone<br>zone_high_risi<br>zone_low_risk<br>zone_low_risk                                                                     | 25-00                           | newPF PF_high_risk PF_high_risk PF_high_risk PF_high_risk                                 | newsPF  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk                                        | 0.7196<br>0.7196<br>0.7328                                                       |                                               | 7.58422<br>7.50270                                           | fitted_frequence<br>1.15873<br>1.20653<br>1.00874<br>1.28382            | 581ed_severity<br>2396.73<br>1234.34<br>1323.53                              | prime_stand<br>2777.17<br>1489.27<br>1454.22<br>744.99                 |
| Obs. 1 2 3 4            | numepolice<br>2<br>5<br>6          | 2009<br>2016<br>2010<br>2012                     | Sexe<br>M<br>M<br>F<br>M                  | Rabat-Salé-<br>Kémbra  Zone Fis-Meknita  Rabat-Salé-<br>Kémbra  Manakech-S  Tanger-Tébu Hocadha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comutes Essence Essence and Diesel                                      |              | [05-<br>10]<br>PF<br>[00-<br>06]<br>[00-<br>06]<br>[10-<br>14]<br>[00-<br>06]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | expositio<br>0.850504031<br>0.486905851<br>0.480555950<br>0.060924341                       | 1 age/1                                                                                                                          | 7 ageC<br>7 28<br>0 27<br>5 28<br>9 47<br>8 27     | 1 0 2 0                   | 30mme<br>1985.91<br>0.00<br>3625.85<br>0.00                               | 1.17577<br>0.00000<br>4.16185<br>0.00000                                                            | severity<br>1966.91<br>0.00<br>1812.93                                                  | newzone zone_high_risk zone_high_risk zone_low_risk zone_low_risk                                                           | newszone<br>zone_high_risi<br>zone_low_risk<br>zone_low_risk                                                                     | 25-00                           | newPF PF_high_risk PF_high_risk PF_high_risk PF_high_risk                                 | newsPF  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk                                        | 0.7196<br>0.7196<br>0.7328                                                       | 1 ismulii 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10gSev<br>7.58422<br>7.50270                                 | fitted_frequence<br>1.15873<br>1.20653<br>1.00874<br>1.28382            | 581ed_severity<br>2396.73<br>1234.34<br>1323.53<br>580.29<br>1510.89         | prime_stand<br>2777.17<br>1489.27<br>1454.22<br>744.99                 |
| Obs. 1 2 3 4 5 5        | numepolice 2 5 6 6 9 24            | 2009<br>2016<br>2010<br>2012<br>2012             | Sexe<br>M<br>M<br>F<br>M                  | Rates-Sale-<br>Kimitra  Zone  FCs-Meknita  Pates-Sale-<br>Kimitra  Manskech-Sale-<br>Kimitra  Rates-Sale-<br>Kimitra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Consubs Essence Essence Dissel                                          |              | [OS-<br>10]<br>PF<br>[OO-<br>06]<br>[10-<br>14]<br>[OO-<br>06]<br>[OS-<br>10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | expositio<br>0.850594031<br>0.486906851<br>0.48695950<br>0.086924341                        | 1 age/<br>2 :<br>4 10<br>2 4<br>1 17<br>7 4                                                                                      | 7 ageC<br>7 28<br>0 27<br>5 28<br>9 47<br>8 27     | 0 2 0 1                   | 30mme<br>1985.91<br>0.00<br>3625.85<br>0.00                               | frequence<br>1.17577<br>0.00000<br>4.16185<br>0.00000<br>1.76447                                    | severity 1966.91 0.00 1812.93 0.00 174.72                                               | newzone zone_high_risk zone_high_risk zone_low_risk zone_low_risk                                                           | newszone zone_high_fal zone_high_fal zone_low_nak zone_low_nak                                                                   |                                 | newPF<br>PF_high_risk<br>PF_high_risk<br>PF_low_risk<br>PF_high_risk<br>PF_high_risk      | nowsPF PF_low_risk PF_low_risk PF_low_risk PF_low_risk PF_low_risk PF_low_risk                    | 0.7196<br>-0.7196<br>-0.7328<br>-0.7328<br>-0.7328<br>-0.5678                    | i ismulii                                     | 10gSev<br>7.58422<br>7.50270                                 | fitted_frequence<br>1.15673<br>1.20653<br>1.06674<br>1.26582<br>1.10672 | 581ed_severity<br>2396.73<br>1234.34<br>1323.53<br>580.29<br>1510.89         | prime_stand<br>2777.17<br>1469.27<br>1454.22<br>744.99                 |
| Obs. 1 2 3 4 5 5 Obs.   | numepolice 2 5 6 9 24 numepolice   | 2009<br>2016<br>2010<br>2012<br>2006             | M M F M M M M M M M M M M M M M M M M M   | Pated-Sale-<br>Kimitra  Zone  Fits-Melenia  Pated-Sale-<br>Kimitra  Manukech-S  Tanger-Télou  Hocadres  Pated-Sale-<br>Kimitra  Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Consubs Essence Essence af Diesel Diesel                                |              | [OS-<br>10]<br>PF<br>[OS-<br>06]<br>[OS-<br>14]<br>[OS-<br>10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | expositio<br>0.850904031<br>0.480905801<br>0.480955900<br>0.080924341<br>0.586740925        | 1 age/1                                                                                                                          | / ageC / 28 25 25 25 27 27 27 27 27 27 28 27 28    | 0 2 0 1                   | 30mme<br>1905.91<br>0.00<br>3625.85<br>0.00<br>174.72                     | frequence<br>1.17577<br>0.00000<br>4.16185<br>0.00000<br>1.76447                                    | severity<br>1986.91<br>0.00<br>1812.93<br>0.00<br>174.72<br>severity<br>1986.91         | newzone zone high risk zone high risk zone low risk zone low risk zone high risk                                            | newszone zone_high_fail zone_high_fail zone_lose_nisk zone_lose_high_fail newszone zone_high_fail                                |                                 | newPF PF_high_risk PF_high_risk PF_high_risk PF_high_risk PF_high_risk                    | newsPF PF_low_risk PF_low_risk PF_low_risk PF_low_risk PF_low_risk PF_low_risk                    | 0.1612<br>0.7196<br>0.7328<br>-0.7328<br>-0.5678                                 | i bersell                                     | 1ogSev<br>7.58422<br>7.50270<br>5.16319<br>1ogSev<br>7.58422 | 888d_frequence<br>1.15873<br>1.20653<br>1.00874<br>1.26582<br>1.10072   | Stied_severity 2296.73 1224.34 1223.53 580.29 1510.89                        | prime_stand<br>2777.17<br>1489.27<br>1454.22<br>744.99<br>1670.63      |
| Obs. 1 2 3 4 5 5 Obs. 1 | numspolice 2 5 6 9 24 numspolice 2 | 2009 2016 2010 2012 2006 exercice 2009           | Sexe<br>M<br>M<br>M<br>M<br>M<br>M        | Pates-Sale-<br>Kimbra  Zone  FCs-Misteria  Flashi-Sale-<br>Kimbra  Manakech-S  Tanger-Télos-<br>Hocodina  Pates-Sale-<br>Kimbra  Zone  FCs-Misteria  Rates-Sale-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comubas Essence Essence Essence Comubas Essence Essence Essence Essence |              | [05-<br>10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | expositio 0.850304031 0.480305651 0.480355900 0.060024341 0.566740022                       | n age/<br>2 2 3<br>4 11<br>7 4 11<br>1 11<br>1 11<br>1 11<br>1 11<br>1 11<br>1                                                   | f ageC r 28                                        | nombre 1 0 2 0 1 1 nombre | 1965.91   1965.91   1965.91                                               | frequence<br>1.17577<br>0.00000<br>4.16185<br>0.00000<br>1.76447<br>frequence<br>1.17577            | severity<br>1966.91<br>0.00<br>1812.93<br>0.00<br>174.72<br>severity<br>1966.91         | newzone zone_high_risk zone_high_risk zone_low_risk zone_low_risk zone_high_risk zone_high_risk                             | newszone zone_high_fail zone_high_fail zone_lose_nisk zone_lose_high_fail newszone zone_high_fail                                |                                 | newPF PF_high_risk PF_high_risk PF_high_risk PF_high_risk PF_high_risk newPF PF_high_risk | nowsPF  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk              | logext  -0.1612  -0.7196  -0.7328  -0.7328  -0.9676   -0.9676   -0.9676  -0.1612 |                                               | logSev<br>7.58422<br>7.50270<br>5.16319<br>logSev<br>7.58422 |                                                                         | ### ### ### ### ### ### ### ### ### ##                                       | prime_atland 2777.17 1460.27 1454.22 744.99 1670.63                    |
| Obs. 1 5 Obs. 1 2       | numspolice 2 5 6 9 24 numspolice 2 | 2016 2016 2016 2010 2012 2008 exercice 2009 2016 | Sesse M M M M M M M M M M M M M M M M M M | Patest-Sale-<br>Ventra  Zone  FCs-Melenda  Patest-Sale- Memberch-Sale- Memberch-Sale | Consubs Essence ah Diesel Diesel Consubs Essence ah Diesel              |              | DS-<br>  10    DS-<br>  10    DS-<br>  00    DS-<br>  00    DS-<br>  10    DS-<br>  10    DS-<br>  00    DS- | expositio 0.850594031 0.486908851 0.48695850 0.060924341 0.5867496925 expositio 0.850994031 | n age/4 2 : 2 : 4 111 2 : 6 4 11 7 : 4 11 1 n age/4 2 : 2 : 6 4 11 2 : 6 4 11 2 : 7 : 4 11 3   1   1   1   1   1   1   1   1   1 | 7 ageC 7 28 27 27 27 27 27 27 27 27 27 27 27 27 27 | nombre                    | 30mme<br>1966.91<br>0.00<br>3625.85<br>0.00<br>174.72<br>30mme<br>1966.91 | frequence<br>1.17577<br>0.00000<br>4.16185<br>0.00000<br>1.75447<br>frequence<br>1.17577<br>0.00000 | severity<br>1966.91<br>0.00<br>1812.93<br>0.00<br>174.72<br>severity<br>1966.91<br>0.00 | newzone zone jirgh risk zone jirgh risk zone jow risk zone jow risk zone jirgh risk newzone zone jirgh risk zone jirgh risk | newszone zone high fisik zone high fisik zone low nisk zone low nisk zone low nisk zone low nisk zone high fisik zone high fisik |                                 | newPF PF_high_risk PF_high_risk PF_high_risk PF_high_risk PF_high_risk PF_high_risk       | nowsPF  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk  PF_low_risk | loges; -0.1612 -0.7196 -0.7328 -0.7328 -0.5678 -0.5678 -0.9612 -0.7196           |                                               | logSev<br>7.58422<br>7.59270<br>5.18319<br>logSev<br>7.58422 |                                                                         | 8tted_severity 2396.73 1224.34 1323.53 550.29 1510.89 8tted_severity 2397.12 | prime_stand 2777.17 1480.27 1454.22 744.90 1670.63 prime_stand 2777.63 |

FIGURE 3.4 – Tables des primes pures (même ordre que précédement)

### 3.iii Comparaison macro des modèles :

On utilise ce code pour calculer les differents charges totaux et les primes totaux pour chaque tarif :

| Obs. | charges_totaux | tarifs44     | tarifs45     | tarifs64     | tarifs65     |
|------|----------------|--------------|--------------|--------------|--------------|
| 1    | 417211670.61   | 549312989.96 | 549306224.74 | 549312140.03 | 549307977.33 |

FIGURE 3.5 – Comparaisons des Tarifs

On remarque que toutes les tarifs, assure la solvabilité de l'assureur, cependant il vaut mieux choisir celle le plus proche des charges réelles, donc on va choisir le tarif : TARIF45.

## Chapitre 5

## ANNEXE

1. Code pour le macro qui fait les statistique descriptives :

```
%macro plot_stats( cat_var=, quant_var=);
  proc sql;
  create table amd as
  select &cat_var, mean(&quant_var) as mean_sin,

    sqrt(var(&quant_var))/5 as var_sin

  from tabs.data
  group by &cat_var
  order by mean_sin;
  quit;
  /* Print table */
  proc print data=amd;
  run;
13
  /* Create bar chart */
  proc sgplot data=amd;
  vbar &cat_var / response=mean_sin barwidth=1

→ fillattrs=(color=CX42bfa5);

  vbar &cat_var / response=var_sin barwidth=0.5

    fillattrs=(color=CX5d6a74);

  run;
19
20
   %mend;
```

#### 2. Découpage de la zone :

Voici le code de découpage pour le nombre sinistre <sup>1</sup>:

<sup>1.</sup> Dans ce découpage on ai basé sur le tableau des statistique descriptives, on ait choisit les 4 régions le moins générateurs des sinistres par individus

Voici le code de découpage pour la severité <sup>2</sup> :

```
proc sql;
           alter table tabs.data add newszone char(1000);
           update tabs.data set newszone = zone;
           update tabs.data
           set newszone = "zone_low_risk"
           where zone in ("Laâyoune-Sakia El
               Hamra", "Marrakech-Safi", "Dakhla-Oued Ed
              Dahab", "Souss-Massa", "Tanger-Tétouan-Hocedma",
               "Drâa-Tafilalet", "BéniMellal-Khénifra",
               "Casablanca-Settat");
           update tabs.data
           set newszone = "zone_high_risk"
10
           where newszone <> "zone_low_risk" ;
11
   quit;
12
```

#### 3. Découpage de Puissance fiscale

Voici le code de découpage pour le nombre sinistre <sup>3</sup>:

```
proc sql;
alter table tabs.data add newPF char(1000);
update tabs.data set newPF = PF;
```

<sup>2.</sup> Dans ce découpage on ai basé sur le tableau des statistique descriptives, on ait choisit les 8 régions générateurs des moindres montants par individus

<sup>3.</sup> Dans ce découpage on se base sur les graphes ou on voit clairement quelle modalité est plus risquée

```
update tabs.data
set newPF = "PF_low_risk"
where PF in ("[10-14]");
update tabs.data
set newPF = "PF_high_risk"
where newPF <> "PF_low_risk";
quit;
```

Voici le code de découpage pour la severité 4 :

```
alter table tabs.data add newsPF char(1000);

update tabs.data set newPF = PF;

update tabs.data

set newsPF = "PF_low_risk"

where PF in ("[00-08]");

update tabs.data

set newsPF = "PF_high_risk"

where newsPF <> "PF_low_risk";

quit;
```

4. Decoupage des ages conducteurs Voici le code :

```
proc sql;

alter table tabs.data add ageCnew char(100);

update tabs.data set ageCnew ="[18-30] U [56-oo]" where

→ ageC between 18 and 28;

update tabs.data set ageCnew ="[29-50]" where ageC between

→ 29 and 55;

update tabs.data set ageCnew ="[18-30] U [56-oo]" where

→ ageC >= 56;

quit;
```

5. Code démarche pour distribution lognormal

```
/* Model tout variable */

proc genmod data=tabs.data;

Class sexe zone Comubsution PF;

Model logsev = sexe zone Comubsution PF ageC ageV/
```

<sup>4.</sup> Dans ce découpage on se base sur les graphes ou on voit clairement quelle modalité est plus risquée

```
dist = normal link = identity offset=logexp ;
6 ods output modelfit = LGN1;
7 run;
  /* Model avec decomposition pf */
proc genmod data=tabs.data;
11 Class sexe zone Comubsution newsPF;
Model logsev = sexe zone Comubsution newsPF ageC ageV/
dist = normal link = identity offset=logexp;
 ods output modelfit = LGN2;
 run;
15
16
  /* ne se regle pas , on elimine newspf */
proc genmod data=tabs.data;
 Class sexe newzone Comubsution ;
Model logsev = sexe newzone Comubsution ageC ageV/
dist = normal link = identity offset=logexp ;
  ods output modelfit = LGN3;
  run;
24
  /* On élimine newszone */
proc genmod data=tabs.data;
 Class sexe Comubsution;
Model logsev = sexe Comubsution ageC ageV/
 dist = normal link = identity offset=logexp ;
ods output modelfit = LGN4;
31 run;
32
 /* On elimine sexe */
 proc genmod data=tabs.data;
 Class newzone Comubsution;
Model logsev = newzone Comubsution ageC ageV/
dist = normal link = identity offset=logexp;
ods output modelfit = LGN3;
39 run;
```

#### 6. Calcule des primes :

```
proc sql;

create table tarif44 as

select p4.*,s4.fitted_severity,

s4.fitted_severity*p4.fitted_frequence as prime_stand
```

```
from tabs.tarif4 as p4
           inner join sev4 as s4
5
           on p4.numepolice = s4.numepolice and p4.exercice =
               s4.exercice;
   quit;
   proc sql;
10
           create table tarif45 as
11
           select p4.*,s5.fitted_severity,

⇒ s5.fitted_severity*p4.fitted_frequence as prime_stand

           from tabs.tarif4 as p4
13
           inner join sev5 as s5
           on p4.numepolice = s5.numepolice and p4.exercice =
15
            quit;
16
17
18
   proc sql;
19
           create table tarif64 as
20
           select p6.*,s4.fitted_severity,
21

→ s4.fitted_severity*p6.fitted_frequence as prime_stand

           from tabs.tarif6 as p6
22
           inner join sev4 as s4
23
           on p6.numepolice = s4.numepolice and p6.exercice =
            \rightarrow s4.exercice;
   quit;
25
26
27
   proc sql;
28
           create table tarif65 as
           select p6.*,s5.fitted_severity,
30

⇒ s5.fitted_severity*p6.fitted_frequence as prime_stand

           from tabs.tarif6 as p6
31
           inner join sev5 as s5
32
           on p6.numepolice = s5.numepolice and p6.exercice =
33

    s5.exercice;

  quit;
```

# Deuxième partie PROVISIONNEMENT

## Chapitre 1

# IMPORTATION DES DONNÉES ET DEFINITIONS DES MODÈLES

## 1 Importation, netoyage et manipulation

D'abord, on import la base de donnée à travers le code :

| Annee | X0      | X1      | X2     | Х3     | X4     | X5     | X6    | X7    | X8    | X9   |
|-------|---------|---------|--------|--------|--------|--------|-------|-------|-------|------|
| 2011  | 1376384 | 1211168 | 535883 | 313790 | 168142 | 79972  | 39235 | 15030 | 10865 | 4068 |
| 2012  | 1576278 | 1437150 | 652445 | 342694 | 188799 | 76956  | 35042 | 17089 | 12507 | NA   |
| 2013  | 1763277 | 1540231 | 678959 | 364199 | 177108 | 78169  | 47391 | 25288 | NA    | NA   |
| 2014  | 1779698 | 1498531 | 661401 | 321434 | 162578 | 84581  | 53449 | NA    | NA    | NA   |
| 2015  | 1843224 | 1573604 | 613401 | 299473 | 176842 | 106296 | NA    | NA    | NA    | NA   |
| 2016  | 1962385 | 1520298 | 581932 | 347434 | 238375 | NA     | NA    | NA    | NA    | NA   |
| 2017  | 2033371 | 1430541 | 633500 | 432257 | NA     | NA     | NA    | NA    | NA    | NA   |
| 2018  | 2072061 | 1458541 | 727098 | NA     | NA     | NA     | NA    | NA    | NA    | NA   |
| 2019  | 2210754 | 1517501 | NA     | NA     | NA     | NA     | NA    | NA    | NA    | NA   |
| 2020  | 2206886 | NA      | NA     | NA     | NA     | NA     | NA    | NA    | NA    | NA   |

Table 1.1 – Les pertes incrementé

On fait quelque netoyage pour qu'il soit adapté au fonctions qu'on dispose :

```
## Netoyage
rownames(pIncrem) = pIncrem[,1]
pIncrem = pIncrem[2:length(pIncrem[1,])]
```

De plus on calcul les pertes cumulées à travers ce code :

|      | X0      | X1      | X2     | Х3     | X4     | X5     | X6    | X7    | X8    | X9   |
|------|---------|---------|--------|--------|--------|--------|-------|-------|-------|------|
| 2011 | 1376384 | 1211168 | 535883 | 313790 | 168142 | 79972  | 39235 | 15030 | 10865 | 4068 |
| 2012 | 1576278 | 1437150 | 652445 | 342694 | 188799 | 76956  | 35042 | 17089 | 12507 | NA   |
| 2013 | 1763277 | 1540231 | 678959 | 364199 | 177108 | 78169  | 47391 | 25288 | NA    | NA   |
| 2014 | 1779698 | 1498531 | 661401 | 321434 | 162578 | 84581  | 53449 | NA    | NA    | NA   |
| 2015 | 1843224 | 1573604 | 613401 | 299473 | 176842 | 106296 | NA    | NA    | NA    | NA   |
| 2016 | 1962385 | 1520298 | 581932 | 347434 | 238375 | NA     | NA    | NA    | NA    | NA   |
| 2017 | 2033371 | 1430541 | 633500 | 432257 | NA     | NA     | NA    | NA    | NA    | NA   |
| 2018 | 2072061 | 1458541 | 727098 | NA     | NA     | NA     | NA    | NA    | NA    | NA   |
| 2019 | 2210754 | 1517501 | NA     | NA     | NA     | NA     | NA    | NA    | NA    | NA   |
| 2020 | 2206886 | NA      | NA     | NA     | NA     | NA     | NA    | NA    | NA    | NA   |

Table 1.2 – Les pertes incrementé après netoyage

```
## Calcul de version cumulé

pCumul = cumul(pIncrem)

colnames(pCumul) = 1:length(colnames(pCumul))
```

|      | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2011 | 1376384 | 2587552 | 3123435 | 3437225 | 3605367 | 3685339 | 3724574 | 3739604 | 3750469 | 3754537 |
| 2012 | 1576278 | 3013428 | 3665873 | 4008567 | 4197366 | 4274322 | 4309364 | 4326453 | 4338960 | NA      |
| 2013 | 1763277 | 3303508 | 3982467 | 4346666 | 4523774 | 4601943 | 4649334 | 4674622 | NA      | NA      |
| 2014 | 1779698 | 3278229 | 3939630 | 4261064 | 4423642 | 4508223 | 4561672 | NA      | NA      | NA      |
| 2015 | 1843224 | 3416828 | 4030229 | 4329702 | 4506544 | 4612840 | NA      | NA      | NA      | NA      |
| 2016 | 1962385 | 3482683 | 4064615 | 4412049 | 4650424 | NA      | NA      | NA      | NA      | NA      |
| 2017 | 2033371 | 3463912 | 4097412 | 4529669 | NA      | NA      | NA      | NA      | NA      | NA      |
| 2018 | 2072061 | 3530602 | 4257700 | NA      |
| 2019 | 2210754 | 3728255 | NA      |
| 2020 | 2206886 | NA      |

Table 1.3 – Les pertes cumulées

La modèlisation serait fait dans le chapitre suivante, Discutons dans la section suivante les fonctions qu'on va utiliser.

## 2 Fonctions de modèlisation

### 2.1 ChaineLadder

Voici le code pour faire cette modèlisation, il prend en parametre une matrice des pertes cumulées, et il fait sortir un output qui contient, la matrice complét ee par le modèle et d'autre mesure qui fait evaluer la qualité de modèle :

```
ChainLadderr<- function(pCumul){
    n=length(pCumul[,1])
    L = rep(0,times= n)
```

```
Rsq = rep(0, times=n)
     pertes = data.frame(pCumul)
5
     for(k in 2:n){
       n <- length(pCumul[,1])</pre>
       y <- as.numeric(pCumul[1:(n-k+1),k])
       x \leftarrow as.numeric(pCumul[1:(n-k+1),k-1])
       model < -lm(y ~ 0 + x)
11
       newdata <- data.frame(x = pertes[(n-k+2):n,k-1])
12
       pertes[(n-k+2):n,k] = predict(model, newdata)
13
       L[k] <-coef (model)[1]
14
       Rsq[k] <-summary(model)$r.squared</pre>
15
     }
     return(list(L=L,Rsq=Rsq,pertes = pertes))
17
   }
18
```

#### 2.2 Mack

Voici le code pour faire cette modèlisation, il prend en parametre une matrice des pertes cumulées, et il fait sortir un output qui contient, la matrice complét ee par le modèle et d'autre mesure qui fait evaluer la qualité de modèle :

```
library(ChainLadder)
   # La fonction est déja défini dans cette library, on l'adapte à notre
   → besoin :
  MackCumul <- function(pCumul){</pre>
     M <- MackChainLadder(pCumul, est.sigma = "Mack")</pre>
     df = as.data.frame(M$FullTriangle)
     mat <- matrix(df$value, nrow = length(unique(df$origin)), ncol =</pre>
     → length(unique(df$dev)), byrow = TRUE)
     mat=t(mat)
     rownames(mat) = unique(df$origin)
     colnames(mat) = unique(df$dev)
10
     return(list(pertes = mat,sum_up = summary(M)))
11
  }
12
```

#### 2.3 GLM

Voici le code pour faire cette modèlisation, il prend en parametre une matrice des pertes cumulées, et il fait sortir un output qui contient, la matrice complét ee par le modèle et d'autre mesure qui fait evaluer la qualité de modèle :

### 2.4 Regression Log-normal

Voici le code pour faire cette modèlisation, il prend en parametre une matrice des pertes cumulées, et il fait sortir un output qui contient, la matrice complét ee par le modèle et d'autre mesure qui fait evaluer la qualité de modèle :

```
14 }
```

## 3 Autres fonctions de manipulation

On utilise de plus ces deux fonctions :

### 3.1 Fonction de calcul des pertes cumulées

À partir d'une matrice des pertes incrémentées on peut calculer la matrice des pertes cumulées à travers cette fonction :

```
cumul<-function(Increm) {
    n=length(pCumul[,1])
    Cumul = data.frame(pIncrem)
    for (i in 2:n) {Cumul[,i] = Cumul[,i]+Cumul[,i-1]}
    colnames(pCumul) = colnames(Increm)
    return(Cumul)
}</pre>
```

#### 3.2 Fonction de calcul des reserves

Après avoir modèlisé et remplir la matrice des pertes cumulées, on peut calculer les reserves à travers cette fonction :

```
reserve <- function(pCumul){
   tt = as.matrix(pCumul)
   chargeultime = pCumul[,length(pCumul[,1])]
   paiements= diag(tt[,10:1])
   r = chargeultime-paiements
   return(r)
}</pre>
```

# Chapitre 2

# MODÈLISATION ET CALCUL DES RÉSERVES

## 1 Modèlisation

## 1.1 ChainLadder

ChainLadderr(pCumul)

|      | X1      | X2      | Х3      | X4      | X5      | X6      | X7      | X8      | X9      | X10     |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2011 | 1376384 | 2587552 | 3123435 | 3437225 | 3605367 | 3685339 | 3724574 | 3739604 | 3750469 | 3754537 |
| 2012 | 1576278 | 3013428 | 3665873 | 4008567 | 4197366 | 4274322 | 4309364 | 4326453 | 4338960 | 4343666 |
| 2013 | 1763277 | 3303508 | 3982467 | 4346666 | 4523774 | 4601943 | 4649334 | 4674622 | 4688165 | 4693250 |
| 2014 | 1779698 | 3278229 | 3939630 | 4261064 | 4423642 | 4508223 | 4561672 | 4582531 | 4595807 | 4600792 |
| 2015 | 1843224 | 3416828 | 4030229 | 4329702 | 4506544 | 4612840 | 4660219 | 4681529 | 4695091 | 4700184 |
| 2016 | 1962385 | 3482683 | 4064615 | 4412049 | 4650424 | 4743380 | 4792100 | 4814013 | 4827959 | 4833196 |
| 2017 | 2033371 | 3463912 | 4097412 | 4529669 | 4732326 | 4826919 | 4876497 | 4898796 | 4912988 | 4918317 |
| 2018 | 2072061 | 3530602 | 4257700 | 4639743 | 4847325 | 4944217 | 4994999 | 5017840 | 5032377 | 5037835 |
| 2019 | 2210754 | 3728255 | 4452468 | 4851988 | 5069065 | 5170389 | 5223495 | 5247380 | 5262582 | 5268290 |
| 2020 | 2206886 | 3937711 | 4702611 | 5124576 | 5353849 | 5460865 | 5516954 | 5542182 | 5558238 | 5564266 |

 ${\bf TABLE} \ {\bf 1.1} - {\bf Les} \ {\bf pertes} \ {\bf cumul\'e} \ {\bf pr\'evision} \ {\bf ChainLadder}$ 

Les  $(\lambda_k)$  du modèle sont exprimées comme suit :

| $\mid \lambda \mid$ | 0.000000 | 1.784284 | 1.194250 | 1.089730 | 1.044740 | 1.019989 | 1.010271 | 1.004573 | 1.002897 | 1.001085 |
|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|

1. Modèlisation

## 1.2 Mack

```
M= MackChainLadder(pCumul, est.sigma = "Mack")
```

|      | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2011 | 1376384 | 2587552 | 3123435 | 3437225 | 3605367 | 3685339 | 3724574 | 3739604 | 3750469 | 3754537 |
| 2012 | 1576278 | 3013428 | 3665873 | 4008567 | 4197366 | 4274322 | 4309364 | 4326453 | 4338960 | 4343666 |
| 2013 | 1763277 | 3303508 | 3982467 | 4346666 | 4523774 | 4601943 | 4649334 | 4674622 | 4688167 | 4693252 |
| 2014 | 1779698 | 3278229 | 3939630 | 4261064 | 4423642 | 4508223 | 4561672 | 4582319 | 4595597 | 4600581 |
| 2015 | 1843224 | 3416828 | 4030229 | 4329702 | 4506544 | 4612840 | 4660162 | 4681255 | 4694820 | 4699912 |
| 2016 | 1962385 | 3482683 | 4064615 | 4412049 | 4650424 | 4743616 | 4792280 | 4813971 | 4827920 | 4833157 |
| 2017 | 2033371 | 3463912 | 4097412 | 4529669 | 4732784 | 4827626 | 4877152 | 4899227 | 4913423 | 4918753 |
| 2018 | 2072061 | 3530602 | 4257700 | 4640885 | 4848987 | 4946158 | 4996900 | 5019517 | 5034062 | 5039522 |
| 2019 | 2210754 | 3728255 | 4455215 | 4856177 | 5073932 | 5175611 | 5228707 | 5252374 | 5267593 | 5273306 |
| 2020 | 2206886 | 3958267 | 4730076 | 5155775 | 5386965 | 5494917 | 5551289 | 5576415 | 5592573 | 5598639 |

Table 1.2 – Les pertes cumulé prévision Mack

Ainsi les erreurs d'estimation des réserves sont :

|      | Latest  | Dev.To.Date | Ultimate | IBNR        | Mack.S.E         | CV(IBNR)  |
|------|---------|-------------|----------|-------------|------------------|-----------|
| 2011 | 3754537 | 1.0000000   | 3754537  | 0.000       | 0.000000e+00     | NaN       |
| 2012 | 4338960 | 0.9989165   | 4343666  | 4706.315    | 7.439965e-01     | 0.0001581 |
| 2013 | 4674622 | 0.9960304   | 4693252  | 18630.153   | 5.612735e+01     | 0.0030127 |
| 2014 | 4561672 | 0.9915425   | 4600581  | 38909.321   | 4.376441e+03     | 0.1124780 |
| 2015 | 4612840 | 0.9814737   | 4699912  | 87071.896   | $8.926831e{+03}$ | 0.1025225 |
| 2016 | 4650424 | 0.9621919   | 4833157  | 182732.708  | 1.625929e+04     | 0.0889785 |
| 2017 | 4529669 | 0.9208979   | 4918753  | 389083.668  | 3.428735e+04     | 0.0881233 |
| 2018 | 4257700 | 0.8448619   | 5039522  | 781822.111  | 6.211308e+04     | 0.0794466 |
| 2019 | 3728255 | 0.7070052   | 5273306  | 1545051.249 | 9.910553e+04     | 0.0641438 |
| 2020 | 2206886 | 0.3941826   | 5598639  | 3391752.891 | $2.855638e{+05}$ | 0.0841936 |

Table 1.3 – Erreurs d'estimation des réserves

1. Modèlisation 63

## 1.3 GLM

glmCumul(pCumul)

|      | X1      | X2      | Х3      | X4      | X5      | X6      | X7      | X8      | X9      | X10     |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2011 | 1441344 | 2595108 | 3115633 | 3404397 | 3564981 | 3646082 | 3695302 | 3723856 | 3744523 | 3754537 |
| 2012 | 1672811 | 3011860 | 3615977 | 3951113 | 4137486 | 4231611 | 4288736 | 4321875 | 4345861 | 4357483 |
| 2013 | 1818964 | 3275005 | 3931903 | 4296320 | 4498976 | 4601325 | 4663440 | 4699475 | 4725556 | 4738194 |
| 2014 | 1796709 | 3234936 | 3883797 | 4243755 | 4443932 | 4545028 | 4606384 | 4641977 | 4667740 | 4680223 |
| 2015 | 1847341 | 3326097 | 3993243 | 4363346 | 4569163 | 4673108 | 4736193 | 4772790 | 4799278 | 4812113 |
| 2016 | 1905042 | 3429987 | 4117971 | 4499633 | 4711879 | 4819071 | 4884126 | 4921866 | 4949182 | 4962418 |
| 2017 | 1942636 | 3497674 | 4199235 | 4588429 | 4804864 | 4914171 | 4980510 | 5018994 | 5046850 | 5060347 |
| 2018 | 2000889 | 3602558 | 4325157 | 4726021 | 4948946 | 5061531 | 5129859 | 5169498 | 5198188 | 5212090 |
| 2019 | 2140728 | 3854335 | 4627434 | 5056315 | 5294819 | 5415273 | 5488376 | 5530785 | 5561481 | 5576354 |
| 2020 | 2206886 | 3973450 | 4770442 | 5212577 | 5458452 | 5582628 | 5657991 | 5701710 | 5733354 | 5748687 |

 ${\bf TABLE} \ {\bf 1.4} - {\bf Les} \ {\bf pertes} \ {\bf cumul\'e} \ {\bf pr\'evision} \ {\bf GLM}$ 

Ainsi les coeficient sont exprimé comme suite :

|             | Estimate   | Std. Error | t value    | $\Pr(> t )$ |
|-------------|------------|------------|------------|-------------|
| (Intercept) | 14.1810865 | 0.0110292  | 1285.77759 | 0           |
| rows2012    | 0.1489297  | 0.0107652  | 13.83434   | 0           |
| rows2013    | 0.2326911  | 0.0112585  | 20.66797   | 0           |
| rows2014    | 0.2203808  | 0.0117971  | 18.68094   | 0           |
| rows2015    | 0.2481714  | 0.0124375  | 19.95341   | 0           |
| rows2016    | 0.2789281  | 0.0132496  | 21.05177   | 0           |
| rows2017    | 0.2984700  | 0.0143518  | 20.79672   | 0           |
| rows2018    | 0.3280159  | 0.0159888  | 20.51539   | 0           |
| rows2019    | 0.3955701  | 0.0187995  | 21.04147   | 0           |
| rows2020    | 0.4260066  | 0.0253604  | 16.79813   | 0           |
| cols2       | 0.5880523  | 0.0107652  | 54.62521   | 0           |
| cols3       | 0.7708565  | 0.0112585  | 68.46863   | 0           |
| cols4       | 0.8594918  | 0.0117971  | 72.85624   | 0           |
| cols5       | 0.9055828  | 0.0124375  | 72.81045   | 0           |
| cols6       | 0.9280772  | 0.0132496  | 70.04554   | 0           |
| cols7       | 0.9414864  | 0.0143518  | 65.60066   | 0           |
| cols8       | 0.9491837  | 0.0159888  | 59.36564   | 0           |
| cols9       | 0.9547183  | 0.0187995  | 50.78411   | 0           |
| cols10      | 0.9573891  | 0.0253604  | 37.75140   | 0           |

Table 1.5 – Coeficients de modèle GLM

2. Calcul des reserves

## 1.4 regression log-normal

```
regCumul(pCumul)
```

|      | X1      | X2      | Х3      | X4      | X5      | X6      | X7      | X8      | X9      | X10     |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2011 | 1440763 | 2595370 | 3116063 | 3404952 | 3565533 | 3646711 | 3696074 | 3724827 | 3745677 | 3755524 |
| 2012 | 1671982 | 3011885 | 3616140 | 3951391 | 4137743 | 4231948 | 4289233 | 4322600 | 4346797 | 4358225 |
| 2013 | 1818369 | 3275584 | 3932744 | 4297348 | 4500015 | 4602468 | 4664769 | 4701057 | 4727372 | 4739801 |
| 2014 | 1796234 | 3235711 | 3884870 | 4245036 | 4445236 | 4546442 | 4607984 | 4643831 | 4669826 | 4682103 |
| 2015 | 1846791 | 3326784 | 3994215 | 4364518 | 4570353 | 4674407 | 4737682 | 4774538 | 4801264 | 4813886 |
| 2016 | 1904364 | 3430496 | 4118734 | 4500581 | 4712833 | 4820132 | 4885379 | 4923384 | 4950943 | 4963959 |
| 2017 | 1941643 | 3497649 | 4199359 | 4588681 | 4805088 | 4914487 | 4981011 | 5019760 | 5047858 | 5061130 |
| 2018 | 2000090 | 3602934 | 4325768 | 4726809 | 4949730 | 5062422 | 5130948 | 5170864 | 5199808 | 5213479 |
| 2019 | 2139606 | 3854257 | 4627512 | 5056527 | 5294998 | 5415551 | 5488858 | 5531557 | 5562521 | 5577145 |
| 2020 | 2207466 | 3976500 | 4774279 | 5216902 | 5462936 | 5587313 | 5662944 | 5706998 | 5738944 | 5754032 |

Table 1.6 – Les pertes cumulé prévision regression log normal

Ainsi les coeficient sont exprimé comme suite :

|             | Estimate   | Std. Error | t value    | $\Pr(> t )$ |
|-------------|------------|------------|------------|-------------|
| (Intercept) | 14.1804202 | 0.0110758  | 1280.30914 | 0           |
| rows2012    | 0.1488369  | 0.0108107  | 13.76756   | 0           |
| rows2013    | 0.2327672  | 0.0113061  | 20.58777   | 0           |
| rows2014    | 0.2205194  | 0.0118469  | 18.61407   | 0           |
| rows2015    | 0.2482768  | 0.0124901  | 19.87793   | 0           |
| rows2016    | 0.2789757  | 0.0133056  | 20.96680   | 0           |
| rows2017    | 0.2983618  | 0.0144124  | 20.70173   | 0           |
| rows2018    | 0.3280194  | 0.0160563  | 20.42932   | 0           |
| rows2019    | 0.3954491  | 0.0188790  | 20.94655   | 0           |
| rows2020    | 0.4266728  | 0.0254675  | 16.75363   | 0           |
| cols2       | 0.5885565  | 0.0108107  | 54.44208   | 0           |
| cols3       | 0.7713976  | 0.0113061  | 68.22849   | 0           |
| cols4       | 0.8600583  | 0.0118469  | 72.59760   | 0           |
| cols5       | 0.9061410  | 0.0124901  | 72.54888   | 0           |
| cols6       | 0.9286530  | 0.0133056  | 69.79419   | 0           |
| cols7       | 0.9420985  | 0.0144124  | 65.36719   | 0           |
| cols8       | 0.9498477  | 0.0160563  | 59.15729   | 0           |
| cols9       | 0.9554297  | 0.0188790  | 50.60819   | 0           |
| cols10      | 0.9580553  | 0.0254675  | 37.61877   | 0           |

 ${\bf TABLE} \ {\bf 1.7} - {\bf Coeficient \ de \ modèle \ log \ normal}$ 

## 2 Calcul des reserves

On calcul dans une table recupilative:

```
reserves = data.frame(
CHLadder = reserve(CH$pertes),
Mack = reserve(CH$pertes),
```

3. Comparaison 65

```
GLM = reserve(GLM$pertes),

LogNorm = reserve(LOGN$pertes))

rownames(reserves) = rownames(pCumul)
```

On obtient:

|      | CHLadder    | Mack        | GLM        | LogNorm    |
|------|-------------|-------------|------------|------------|
| 2011 | 0.000       | 0.000       | 0.00       | 0.00       |
| 2012 | 4706.315    | 4706.315    | 11622.30   | 11427.99   |
| 2013 | 18627.699   | 18630.153   | 38719.64   | 38743.31   |
| 2014 | 39119.728   | 38909.321   | 73839.37   | 74118.63   |
| 2015 | 87344.072   | 87071.896   | 139004.81  | 139479.02  |
| 2016 | 182771.705  | 182732.708  | 250538.48  | 251125.88  |
| 2017 | 388647.694  | 389083.668  | 471917.39  | 472448.56  |
| 2018 | 780135.213  | 781822.111  | 886933.23  | 887711.18  |
| 2019 | 1540035.495 | 1545051.249 | 1722019.17 | 1722888.25 |
| 2020 | 3357380.473 | 3391752.891 | 3541801.35 | 3546565.24 |

Table 2.1 – Les reserves selon les differentes modèles

## 3 Comparaison

On compare graphiquement à travers ce code :

```
library(ggplot2)
   # Create a time series plot for each methode :
   ggplot(data = reserves, aes(x = rownames(reserves))) +
     geom_line(aes(y = CHLadder, group = 1, color = "CHLadder")) +
     geom_line(aes(y = Mack, group = 2, color = "Mack")) +
     geom_line(aes(y = GLM, group = 3, color = "GLM")) +
     geom_line(aes(y = LogNorm, group = 4, color = "LogNorm")) +
     labs(title = "Reserves Time Series",
          x = "Year",
          y = "Reserves",
          color = "Method") +
11
     scale_color_manual(values = c("CHLadder" = "red",
12
                                    "Mack" = "blue",
13
                                    "GLM" = "green",
14
```

3. Comparaison

15

"LogNorm" = "purple"))

Figure 3.1 – Comparaison des provision selon les differents modèles