1.2 Basic Time Signals

Prof. Shaoshi Yang

E-mail: shaoshi.yang@bupt.edu.cn

Web: https://teacher.bupt.edu.cn/yangshaoshi

School of Information & Communication Engineering

BUPT

Outline

Elementary Signals

- □ Exponential Signals (指数信号)
- □ Sinusoid Signals (正弦信号)
- □ The Unit-Step Function (单位阶跃函数)
- □ The Unit-Impulse Function (单位冲激函数)

Exponential Signals (指数信号)

$$x(t) = Be^{at}$$

 $x(t) = Be^{at}$ B and a are real parameters

- a < 0: decaying exponential
- a > 0: growing exponential

Figure 1.28 (a) Decaying exponential form of continuous-time signal. (b) Growing exponential form of continuous-time signal.

Exponential Signals

Discrete-time Case

$$x[n] = Br^n$$
 where $r = e^a$

- 0 < r < 1: decaying exponential
- r > 1: growing exponential
- r < 0: alternating signs

Sinusoidal Signals (正弦信号)

Continuous-time Case

$$x(t) = A\cos(\omega t + \phi)$$

- A: amplitude
- \square ω : angular frequency in rad/s
- \Box ϕ : phase angle in radians

period:
$$T = \frac{2\pi}{\omega}$$

$$x(t+T) = A\cos(\omega(t+T) + \phi)$$

$$= A\cos(\omega t + \omega T + \phi)$$

$$= A\cos(\omega t + 2\pi + \phi)$$

$$= A\cos(\omega t + \phi)$$

$$= x(t)$$

Figure 1.31

- (a) Sinusoidal signal $A \cos(\omega t + \Phi)$ with phase $\Phi = + \pi/6$ radians.
- (b) Sinusoidal signal $A \sin (\omega t + \Phi)$ with phase $\Phi = + \pi/6$ radians.

- **Discrete-Time Case** $x[n] = A\cos(\Omega n + \phi)$
 - □ Periodic condition: $x[n+N] = A\cos(\Omega n + \Omega N + \phi)$

$$\Omega N = 2\pi m$$
 $\Omega = \frac{2\pi m}{N}$ radians/cycle, integer m, N

Ex. A discrete-time sinusoidal signal: A = 1, $\phi = 0$, and N = 12.

$$x[n] = \cos(\Omega n)$$

$$= \cos\left(\frac{2\pi}{12}n\right) = \cos\left(\frac{n\pi}{6}\right)$$

Figure 1.33 Discrete-time sinusoidal signal.

Example 1.7 Discrete-Time Sinusoidal Signal

A pair of sinusoidal signals with a common angular frequency is defined by

$$x_1[n] = \sin[5\pi n]$$
 and $x_2[n] = \sqrt{3}\cos[5\pi n]$

- (a) Both $x_1[n]$ and $x_2[n]$ are periodic. Find their common fundamental period.
- (b) Express the composite sinusoidal signal

$$y[n] = x_1[n] + x_2[n]$$

In the form $y[n] = A\cos(\Omega n + \phi)$, and evaluate the amplitude A and phase ϕ .

(a) Angular frequency of both $x_1[n]$ and $x_2[n]$:

$$\Omega = 5\pi$$
 radians/cycle $N = \frac{2\pi m}{\Omega} = \frac{2\pi m}{5\pi} = \frac{2m}{5}$

This can be only for m = 5, 10, 15, ..., which results in N = 2, 4, 6, ...

(b)
$$y[n] = x_1[n] + x_2[n] = \sin[5\pi n] + \sqrt{3}\cos[5\pi n]$$

Trigonometric identity:

$$A\cos(\Omega n + \phi) = A\cos(\Omega n)\cos(\phi) - A\sin(\Omega n)\sin(\phi)$$

$$A\sin(\phi) = -1$$
 and $A\cos(\phi) = \sqrt{3}$

$$\tan(\phi) = \frac{\sin(\phi)}{\cos(\phi)} = \frac{-1}{\sqrt{3}} \quad \implies \quad \phi = -\pi / 6$$

$$A\sin(\phi) = -1 \qquad \longrightarrow \qquad A = \frac{-1}{\sin(-\pi/6)} = 2$$

Accordingly,
$$y[n] = 2\cos\left(5\pi n - \frac{\pi}{6}\right)$$

Prob 1.17 Determine whether each x[n] is periodic, and if it is, find its fundemental period.

a)
$$x[n] = 5\sin[2n]$$
 \longrightarrow $N = \frac{2\pi m}{\Omega} = \frac{2\pi m}{2} = m\pi$ nonperiodic

b)
$$x[n] = 5\cos[0.2\pi n]$$
 \longrightarrow $N = \frac{2\pi m}{\Omega} = \frac{2\pi m}{0.2\pi} = 10m$ periodic

Fundamental period=10 for m=1

c)
$$x[n] = 5\cos[6\pi n]$$
 $N = \frac{2\pi m}{\Omega} = \frac{2\pi m}{6\pi} = \frac{m}{3}$ periodic

Fundamental period=1 for m=3

d)
$$x[n] = 5\cos[6\pi n/35]$$
 $N = \frac{2\pi m}{\Omega} = \frac{35m}{3}$ periodic

Fundamental period=35 for m=3

Prob 1.18 Find the smallest angular frequencies for which discrete-time sinusoidal signals with the following periods would be periodic:

a)
$$N = 8$$
 $\Omega = \frac{2\pi m}{N} = \frac{2\pi m}{8} = \frac{\pi}{4} m = \frac{\pi}{4}$ when $m = 1$.

b)
$$N = 32$$
 $\Omega = \frac{2\pi m}{32} = \frac{\pi}{16} m = \frac{\pi}{16}$ when $m = 1$.

c)
$$N = 64$$
 $\Omega = \frac{2\pi m}{64} = \frac{\pi}{32} m = \frac{\pi}{32}$ when $m = 1$.

d)
$$N = 128$$
 $\Omega = \frac{2\pi m}{128} = \frac{\pi}{64} m = \frac{\pi}{64}$ when $m = 1$.

Relation between sinusoidal and complex exponential signals

Euler's identity

$$e^{j\theta} = \cos\theta + j\sin\theta$$

- $x(t) = A\cos(\omega t + \phi) = \text{Re}\{Be^{j\omega t}\}$ where $B = Ae^{j\phi}$.
- lacktriangle Complex exponential signal: $Be^{j\omega t}$

$$Be^{j\omega t} = Ae^{j\phi}e^{j\omega t}$$

$$= Ae^{j(\phi+\omega t)}$$

$$= A\cos(\omega t + \phi) + jA\sin(\omega t + \phi)$$

Continuous-time signal in terms of sine function:

$$x(t) = A\sin(\omega t + \phi) = \operatorname{Im}\{Be^{j\omega t}\}\$$
$$= A\cos(\omega t + \phi - \pi/2)$$

Relation between sinusoidal and complex exponential signals

Discrete-Time Case

$$A\cos(\Omega n + \phi) = \text{Re}\{Be^{j\Omega n}\}\$$

$$A\sin(\Omega n + \phi) = \text{Im}\{Be^{j\Omega n}\}\$$

where $B = Ae^{j\phi}$.

Ex. Two-dimensional representation of the complex exponential $e^{j\Omega n}$ for $\Omega = \pi/4$ and n = 0, 1, 2, ..., 7.

$$e^{j\Omega n} = \cos \Omega n + j \sin \Omega n$$
$$= \cos \frac{\pi n}{4} + j \sin \frac{\pi n}{4}$$

Projection on real axis: $\cos(\Omega n)$

Projection on imaginary axis: $sin(\Omega n)$

Exponential Damped Sinusoidal Signals (指数阻尼正弦信号)

$$x(t) = Ae^{-\alpha t}\sin(\omega t + \phi), \quad \alpha > 0$$

$$A = 60$$
,
 $\alpha = 6$, and $\phi = 0$

Figure 1.35 Exponentially damped sinusoidal signal $Ae^{-at}\sin(\omega t)$, with A = 60 and a = 6.

2024/9/10

Exponential Damped Sinusoidal Signals

Prob 1.20 evaluate the real and imaginary components of complex-valued exponential signal x(t) for the following cases:

(a) $\alpha = \alpha_1$, real; (b) $\alpha = j\omega_1$, imaginary; (c) $\alpha = \alpha_1 + j\omega_1$, complex.

$$x(t) = Ae^{\alpha t + j\omega t}$$

a)
$$x(t) = Ae^{\alpha_1 t + j\omega t} = Ae^{\alpha_1 t} (\cos \omega t + j\sin \omega t)$$

Re
$$\{x(t)\} = Ae^{\alpha_1 t} \cos \omega t$$
, Im $\{x(t)\} = Ae^{\alpha_1 t} \sin \omega t$

b)
$$x(t) = Ae^{j\omega_l t + j\omega t} = Ae^{j(\omega_l + \omega)t}$$

Re
$$\{x(t)\}$$
 = $A\cos(\omega_1 + \omega)t$, Im $\{x(t)\}$ = $A\sin(\omega_1 + \omega)t$

c)
$$x(t) = Ae^{\alpha_1 t + j\omega_1 t + j\omega t} = Ae^{\alpha_1 t}e^{j(\omega_1 + \omega)t}$$

$$\operatorname{Re}\{x(t)\} = Ae^{\alpha_1 t} \cos(\omega_1 + \omega)t, \operatorname{Im}\{x(t)\} = Ae^{\alpha_1 t} \sin(\omega_1 + \omega)t$$

Unit-Step Function (单位阶跃函数)

Discrete-Time Case

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

Figure 1.37 Discrete-time version of step function of unit amplitude.

Continuous-Time Case

$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

Figure 1.38 Continuous-time version of the unitstep function of unit amplitude.

Unit-Step Function

Example 1.8 Consider the rectangular pulse x(t) shown in Fig. 1.39 (a). This pulse has an amplitude A and duration of 1 second. Express x(t) as a weighted sum of two step functions.

<Sol.>

$$x(t) = \begin{cases} A, & 0 \le |t| < 0.5 \\ 0, & |t| > 0.5 \end{cases}$$

$$= Au\left(t + \frac{1}{2}\right) - Au\left(t - \frac{1}{2}\right)$$

Unit-Impulse Function (单位冲激函数)

Discrete-time version of unit impulse

$$\mathcal{S}[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Figure 1.41 Discrete-time form of impulse.

Continuous-time version of unit impulse

$$\delta(t) = 0$$
 for $t \neq 0$ ~ Dirac delta function

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

 \square $x_{\Lambda}(t)$: even function of t with duration Δ and unit area

$$\delta(t) = \lim_{\Delta \to 0} x_{\Delta}(t) = \lim_{\Delta \to 0} \frac{1}{\Delta} \left[u \left(t + \frac{\Delta}{2} \right) - u \left(t - \frac{\Delta}{2} \right) \right]$$

- strength of the impulse: area under the pulse
- relations between impulse and unit step function

$$\delta(t) = \frac{d}{dt}u(t) \qquad u(t) = \int_{-\infty}^{t} \delta(\tau)d\tau$$

Properties of impulse function

- □ Even function: $\delta(-t) = \delta(t)$
- □ Sampling property: $x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$
- □ Shifting property: $\int_{-\infty}^{\infty} x(t) \delta(t t_0) dt = x(t_0)$
- □ Time-scaling property: $\delta(at) = \frac{1}{a}\delta(t)$, a > 0

$$\delta(at) = \lim_{\Delta \to 0} x_{\Delta}(at) = \frac{1}{a} \delta(t) \quad \text{while} \quad \lim_{\Delta \to 0} ax_{\Delta}(at) = \delta(t).$$

19

derivatives of the impulse

$$\delta'(t) = \frac{d\delta(t)}{dt} = \lim_{\Delta \to 0} \frac{d}{dt} x_{\Delta}(t) = \lim_{\Delta \to 0} \frac{1}{\Delta} \cdot \frac{d}{dt} \left[u \left(t + \frac{\Delta}{2} \right) - u \left(t - \frac{\Delta}{2} \right) \right]$$

ullet doublet: the first derivative of $\delta(t)$ is the limiting form of the first derivative of the same rectangular pulse

$$\frac{\delta^{(1)}(t)}{\delta^{(1)}(t)} = \lim_{\Delta \to 0} \frac{1}{\Delta} \left[\delta(t + \Delta / 2) - \delta(t - \Delta / 2) \right]$$

Fundamental property of the doublet

$$\int_{-\infty}^{\infty} \delta^{(1)}(t)dt = 0$$

$$\int_{-\infty}^{\infty} f(t) \delta^{(1)}(t - t_0) dt = \lim_{\Delta \to 0} \frac{1}{\Delta} \int_{-\infty}^{\infty} f(t) \left[\delta(t - t_0 + \Delta / 2) - \delta(t - t_0 - \Delta / 2) \right] dt$$
$$= \lim_{\Delta \to 0} \frac{1}{\Delta} \left[f(t_0 - \Delta / 2) - f(t_0 + \Delta / 2) \right] = -\frac{d}{dt} f(t) \Big|_{t=t_0}$$

Second derivative of impulse

$$\delta^{(2)}(t) = \frac{d^2}{dt^2} \delta(t) = \frac{d}{dt} \delta^{(1)}(t) = \lim_{\Delta \to 0} \frac{\delta^{(1)}(t + \Delta/2) - \delta^{(1)}(t - \Delta/2)}{\Delta}$$

$$\int_{-\infty}^{\infty} f(t)\delta^{(2)}(t-t_0)dt = \frac{d^2}{dt^2} f(t)|_{t=t_0}$$

$$\int_{-\infty}^{\infty} f(t) \delta^{(n)}(t - t_0) dt = \left(-1\right)^n \frac{d^n}{dt^n} f(t) \big|_{t = t_0}$$

Ramp Function (斜坡函数)

Continuous-time Case

$$r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$
$$= tu(t)$$

Figure 1.46 Ramp function of unit slope.

Discrete-time Case

$$r[n] = \begin{cases} n, & n \ge 0 \\ 0, & n < 0 \end{cases}$$
$$= nu[n]$$

Figure 1.47 Discrete-time version of the ramp function.

Summary

Elementary Signals

- Exponential Signals
- Sinusoid Signals
- The Unit-Step Function
- The Unit-Impulse Function

- Reference in textbook: 1.6
- Homework: 1.58, 1.60