HW8: Dynamic Programming

- A. [60 pnts] Problems from the text book (15 points per question):
 - 6.1,
 - 6.4,
 - 6.17,
 - 6.19;
- B. [40 pnts] Consider the "Weighted Interval Scheduling" problem discussed in the class with the following requests

R={ r1,r2,r3,r4,r5,r6} where		
Start time	Finish time	Value
r1: (1	3	2)
r2: (2	5	4)
r3: (4	5	3)
r4: (2	7	7)
r5: (6	8	2)
r6: (6	9	1)

- 1. [20 pnts] Implement an iterative DP Algorithm to find the subset of requests that has the total maximum value. (Hint: us an array M to store the values as described in the class)
- 2. [20 pnts] implement an algorithm and print the list of intervals in the optimal solution above by using the array M without maintaining another data structure.