Prof. Honold

Question 1 (ca. 12 marks)

$$|Y(0)|^{2} - \frac{2}{|C|^{2}} - |C|^{2} = \frac{1}{2} \frac{|C|^{2} - \frac{3}{2}}{|C|^{2} - \frac{3}{2}}$$

Decide whether the following statements are true or false, and justify your answers. There exists a solution y(t) of $y'=2y-y^2$ satisfying y(0)=y(1)=1

- b) The maximal solution of the initial value problem $y' = y^2 t$, $y(0) = \frac{1}{2}$ exists at time t = 2021. The exists at time t = 2021. The exists at time t = 2021. The problem t = 2021. The initial value problem t = 2021 and t = 2021. The initial value problem t = 2021. The initial value problem t = 2021 and t = 2021. The initial value problem t = 2021 and t = 2021 and

Suppose $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ satisfies $\mathbf{A}^3 = \mathbf{I}$ (the 2×2 identity matrix), but $\mathbf{A} \neq \mathbf{I}$. Then every solution $\mathbf{y}(t)$ of the linear system $\mathbf{y}' = \mathbf{A}\mathbf{y}$ must satisfy $\lim_{t \to \infty} \mathbf{y}(t) = (0,0)^\mathsf{T}$. Then every solution $\mathbf{y}(t)$ of the linear system $\mathbf{y}' = \mathbf{A}\mathbf{y}$ must satisfy $\mathbf{y}(t) = (0,0)^\mathsf{T}$. Then every solution $\mathbf{y}(t) = (0,0)^\mathsf{T}$.

f) Suppose $f, g: (-1, 1) \to \mathbb{R}$ are C¹-functions. Then the IVP y' = f(t)g(y), y(0) = 0 has a solution y(t) that is defined for all $t \in (-1,1)$. Fully y(0) = 0 has a solution y(t) that is defined for all $t \in (-1,1)$.

Question 2 (ca. 10 marks)

7'=- (KT±)2 (DE)

 $\begin{array}{ll} \lim_{\lambda \to 0} \frac{\sqrt{2(t')}}{2x^2} & \text{Consider the differential equation} \\ \text{We find } \frac{\sqrt{2}}{2x^2} & \text{Consider the differential equation} \\ \text{We find } \frac{\sqrt{2}}{2x^2} & \text{Consider the differential equation} \\ \text{We find } \frac{\sqrt{2}}{2x^2} & \text{Consider the differential equation} \\ \text{We find } \frac{\sqrt{2}}{2x^2} & \text{Consider the differential equation} \\ \text{We find } \frac{\sqrt{2}}{2x^2} & \text{Consider the differential equation} \\ \text{We find } \frac{\sqrt{2}}{2x^2} & \text{Consider the differential equation} \\ \text{Consider the differential equation} \\$

- a) Verify that $x_0 = 0$ is a regular singular point of (DE).
- b) Determine the general solution of (DE) on $(0, \infty)$.
- c) Using the result of b), state the general solution of (DE) on $(-\infty,0)$ and on \mathbb{R} .

Question 3 (ca. 7 marks)

Consider the ODE

$$y' = y^2 + \frac{5}{t}y + \frac{5}{t^2}, \qquad t > 0.$$
 (R)

- a) Show that there exists a solution $y_1(t)$ of the form $y_1(t) = ct^r$ with constants
- b) Show that the substitution $y = y_1 + 1/z$ transforms (R) into a first-order linear
- c) Using b), determine all maximal solutions of (R) and their domain.

Question 4 (ca. 6 marks)

For the matrix $\mathbf{A} = \begin{pmatrix} -8 & 0 & 5 & -2 \\ 5 & -1 & -4 & 1 \\ -10 & 0 & 7 & -2 \\ 0 & 0 & 3 & 2 \end{pmatrix}$ determine the general solution of

the linear system $\mathbf{y}' = \mathbf{A}\mathbf{y}$.

Question 5 (ca. 7 marks)

Consider the differential equation

$$x(3y^2 - 1) dx + y dy = 0. (DF)$$

- a) Determine the general solution of (DF) in implicit form.
- b) Determine the maximal solution y(x) satisfying $y(1) = \frac{1}{3}$ and its domain. Hint: $\ln\left(\frac{3}{2}\right) \approx 0.4$
- c) Is every point of \mathbb{R}^2 on a unique integral curve of (DF)?

Question 6 (ca. 8 marks)

a) Determine a real fundamental system of solutions of

$$y^{(5)} + 4y^{(4)} + 24y''' + 40y'' + 100y' = 0.$$

Hint: The characteristic polynomial is divisible by the square of a quadratic polynomial.

b) Determine the general real solution of

$$y^{(5)} + 4y^{(4)} + 24y''' + 40y'' + 100y' = 200t - e^{-t}.$$

c) Find the Laplace transform Y(s) of the solution of the ODE in b) with initial values $y(0) = y'(0) = y''(0) = y'''(0) = y^{(4)}(0) = 0$.

Solutions

+1

1 a) False. Since y' = y(2-y) is positive if 0 < y < 2, and any solution starting in the strip 0 < y < 2 is confined to this strip (e.g., because the strip is bounded by the constant solutions $y(t) \equiv 0$ and $y(t) \equiv 2$), the solution with y(0) = 1 must be strictly increasing and hence satisfy y(1) > 1.

Alternatively one can argue that this ODE is of the form $y' = ay^2 + by + c$ and the corresponding canonical form, viz. $z' = -z^2 + 1$, is the same as for the Logistic Equation (cf. our discussion in the lecture and H16 of HW2). Hence solutions starting between the two equilibrium solutions must be monotonically increasing.

- b) True. For $t \geq 0$ we have $-t \leq y^2 t \leq y^2$, so that the solution $\phi_1(t)$ of $y' = y^2 \wedge y(0) = \frac{1}{2}$ is an upper bound for y(t) and the solution $\phi_2(t)$ of $y' = -t \wedge y(0) = \frac{1}{2}$ is a lower bound for y(t), Solving the two auxiliary IVP's gives $\phi_1(t) = 1/(2-t)$, $\phi_2(t) = (1-t^2)/2$. Hence y(t) is defined at least on [0,2).

 Since $y(1) \leq \phi_1(1) = 1$ and $y^2 t \leq y^2 1$ for $t \geq 1$, the solution $\phi_3(t)$ of $y' = y^2 1 \wedge y(1) = 1$ is an upper bound for y(t). Solving the auxiliary IVP gives $\phi_3(t) \equiv 1$. Since $\phi_2(t)$ and $\phi_3(t)$ are defined on $[1, \infty)$, the same must be true of y(t).
- c) True. This is an Euler equation with parameters $\alpha = 3$, $\beta = 2$, indicial equation $r^2 + (\alpha 1)r + \beta = r^2 + 2r + 2 = (r + 1 + \mathrm{i})(r + 1 \mathrm{i}) = 0$, complex fundamental system $t^{-1\pm\mathrm{i}}$, and general real solution $y(t) = t^{-1} (c_1 \cos \ln t + c_2 \sin \ln t)$ on $(0, \infty)$. Since $c_1 \cos x + c_2 \sin x = A \sin(x \alpha)$ for some $A \geq 0$, $\alpha \in [0, 2\pi)$, we can write the solution in the form $y(t) = A t^{-1} \sin(\ln t \alpha)$ and conclude that $t_k = \mathrm{e}^{k\pi + \alpha}$, $k = 0, 1, 2, \ldots$, are solutions.
- d) True. The explicit form of this homogeneous linear 2nd-order ODE is

$$y'' + \frac{x+4}{x^2+4}y' - \frac{4}{x^2+4}y = 0.$$

 $x_0=1$ is an ordinary point and the coefficient functions $p(x)=\frac{x+4}{x^2+4}$, $q(x)=-\frac{4}{x^2+4}$ are analytic (even rational) in the disk $|z-1|<\sqrt{5}$ (the disk with center 1 that has the singularities $\pm 2i$ of p(x) and q(x) on its boundary). Hence (referring to a theorem proved in the lecture) there exists a power series solution $y(x)=\sum_{n=0}^{\infty}a_n(x-1)^n$ of the IVP with radius of convergence $\geq \sqrt{5}$. Since $\sqrt{5}>2$, this solution is defined at x=3.

e) True. If $\mathbf{v} \in \mathbb{C}^2$ is an eigenvector of \mathbf{A} with eigenvalue $\lambda \in \mathbb{C}$, we have $\mathbf{v} = \mathbf{A}^3\mathbf{v} = \lambda^3\mathbf{v}$, and hence $\lambda^3 = 1$. Thus $\lambda \in \left\{1, \frac{-1+\mathrm{i}\sqrt{3}}{2}, \frac{-1-\mathrm{i}\sqrt{3}}{2}, \right\}$. If \mathbf{A} has an eigenvalue $\neq 1$, the eigenvalues must be $\lambda_{1/2} = \frac{-1\pm\mathrm{i}\sqrt{3}}{2}$ (since complex eigenvalues of real matrices occur in conjugate pairs). Since their real part is $-\frac{1}{2} < 0$, the matrix \mathbf{A} is asymptotically stable. If $\lambda_1 = \lambda_2 = 1$ then $(\mathbf{A} - \mathbf{I})^2 = \mathbf{0}$ (by the Cayley-Hamilton Theorem), which gives $\mathbf{A}^2 = 2\mathbf{A} - \mathbf{I}$, $\mathbf{I} = \mathbf{A}^3 = 2\mathbf{A}^2 - \mathbf{A} = 3\mathbf{A} - 2\mathbf{I}$, and hence $\mathbf{A} = \mathbf{I}$; contradiction.

f) False. Separable ODE's y' = f(t)g(y) may have maximal solutions with strictly smaller domain than f(t).

This can happen even for autonomous ODE's, and we can take $y'=2(y+1)^2$, i.e., $f(t)=1,\ g(y)=2(y+1)^2$ as counterexample. The general solution of this ODE is $y(t)=\frac{1}{C-2t}-1,\ C\in\mathbb{R},\ \mathrm{and}\ y(0)=0\ \mathrm{gives}\ C=1.$ But $y(t)=\frac{1}{1-2t}-1$ is not defined for $t\in\left[\frac{1}{2},1\right)$.

$$\sum_{1} = 8 + 5$$

2 a) The explicit form of (DE) is

$$y'' + \frac{1-x}{2x}y' - \frac{3}{x^2}y = 0$$

Using the notation of the lecture/textbook, $p(x) = \frac{1-x}{2x} = \frac{1}{2}x^{-1} - \frac{1}{2}$ has a pole of order 1 at 0, and $q(x) = -\frac{3}{x^2}$ has a pole of order 2 at 0. This implies that 0 is a regular singular point of (DE).

Alternatively, use that the limits defining p_0, q_0 below are finite.

b) From a) we have $p_0 = \lim_{x\to 0} x p(x) = 1/2$, $q_0 = \lim_{x\to 0} x^2 q(x) = -3$. \Longrightarrow The indicial equation is

$$r^{2} + (p_{0} - 1)r + q_{0} = r^{2} - \frac{1}{2}r - 3 = (r - 2)(r + 3/2) = 0.$$

 \implies The exponents at the singularity $x_0 = 0$ are $r_1 = 2$, $r_2 = -3/2$. Since $r_1 - r_2 \notin \mathbb{Z}$, there exist two fundamental solutions y_1 , y_2 of the form

$$y_1(x) = x^2 \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{n+2},$$

$$y_2(x) = x^{-3/2} \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} b_n x^{n-3/2}$$

with normalization $a_0 = b_0 = 1$.

First we determine the analytic solution $y_1(x)$. We have

$$0 = 2x^{2} y_{1}'' + x(1-x)y_{1}' - 6y_{1}$$

$$= 2x^{2} \sum_{n=0}^{\infty} (n+2)(n+1)a_{n}x^{n} + (x-x^{2}) \sum_{n=0}^{\infty} (n+2)a_{n}x^{n+1} - 6\sum_{n=0}^{\infty} a_{n}x^{n+2}$$

$$= \sum_{n=0}^{\infty} [2(n+2)(n+1) + n + 2 - 6] a_{n}x^{n+2} - \sum_{n=0}^{\infty} (n+2)a_{n}x^{n+3}$$

$$= \sum_{n=0}^{\infty} (2n^{2} + 7n)a_{n}x^{n+2} - \sum_{n=1}^{\infty} (n+1)a_{n-1}x^{n+2}$$

$$= \sum_{n=1}^{\infty} [n(2n+7)a_{n} - (n+1)a_{n-1}] x^{n+2}.$$

Equating coefficients gives the recurrence relation

$$a_n = \frac{n+1}{n(2n+7)}a_{n-1}$$
 for $n = 1, 2, 3, \dots$

and with $a_0 = 1$ further $a_n = \frac{(n+1)!}{n! \cdot 9 \cdot 11 \cdot 13 \cdots (2n+7)} = \frac{n+1}{9 \cdot 11 \cdot 13 \cdots (2n+7)}$.

$$\implies y_1(x) = \sum_{n=0}^{\infty} \frac{n+1}{9 \cdot 11 \cdot 13 \cdots (2n+7)} x^{n+2}$$

$$= x^2 + \frac{2}{9} x^3 + \frac{3}{9 \cdot 11} x^4 + \frac{4}{9 \cdot 11 \cdot 13} x^5 + \frac{5}{9 \cdot 11 \cdot 13 \cdot 15} x^7 + \cdots$$

For the determination of $y_2(x)$ we repeat the process with exponents decreased by 3.5:

$$0 = 2x^{2} y_{2}'' + x(1-x)y_{2}' - 6y_{2}$$

$$= 2x^{2} \sum_{n=0}^{\infty} \left(n - \frac{3}{2}\right) \left(n - \frac{5}{2}\right) b_{n} x^{n-7/2} + \left(x - x^{2}\right) \sum_{n=0}^{\infty} \left(n - \frac{3}{2}\right) b_{n} x^{n-5/2} - 6 \sum_{n=0}^{\infty} b_{n} x^{n-3/2}$$

$$= \sum_{n=0}^{\infty} \left[2 \left(n - \frac{3}{2}\right) \left(n - \frac{5}{2}\right) + n - \frac{3}{2} - 6\right] b_{n} x^{n-3/2} - \sum_{n=0}^{\infty} \left(n - \frac{3}{2}\right) b_{n} x^{n-1/2}$$

$$= \sum_{n=0}^{\infty} \left(2n^{2} - 7n\right) b_{n} x^{n-3/2} - \sum_{n=1}^{\infty} \left(n - \frac{5}{2}\right) b_{n-1} x^{n-3/2}$$

$$= \sum_{n=0}^{\infty} \left[n(2n - 7)b_{n} - \left(n - \frac{5}{2}\right) b_{n-1}\right] x^{n-3/2}.$$

Here we obtain the recurrence relation

$$b_n = \frac{n-5/2}{n(2n-7)} b_{n-1} = \frac{2n-5}{2n(2n-7)} b_{n-1} \quad \text{for } n = 1, 2, 3, \dots,$$

and with $b_0 = 1$ further $b_n = \frac{(-3)(-1)\cdots(2n-5)}{2\cdot 4\cdots 2n(-5)(-3)\cdots(2n-7)} = \frac{2n-5}{2\cdot 4\cdots 2n(-5)}$.

$$y_2(x) = -\frac{1}{5} \sum_{n=0}^{\infty} \frac{2n-5}{2 \cdot 4 \cdots 2n} x^{n-3/2}$$

$$= x^{-3/2} + \frac{3}{5 \cdot 2} x^{-1/2} + \frac{1}{5 \cdot 2 \cdot 4} x^{1/2} - \frac{1}{5 \cdot 2 \cdot 4 \cdot 6} x^{3/2} - \frac{3}{5 \cdot 2 \cdot 4 \cdot 6 \cdot 8} x^{5/2} - \frac{5}{5 \cdot 2 \cdot 4 \cdot 6 \cdot 8 \cdot 10} x^{7/2} - \cdots$$

Alternative solution: We use the general recurrence relation for the rational functions $a_n(r)$, viz. $a_0(r) = 1$ and

$$a_n(r) = -\frac{1}{F(r+n)} \sum_{k=0}^{n-1} \left[(r+k)p_{n-k} + q_{n-k} \right] a_{n-1}(r)$$
 for $n \ge 1$.

Since F(r) = (r-2)(r+3/2), $p_1 = -1/2$, $p_2 = p_3 = \cdots = q_1 = q_2 = \cdots = 0$, we obtain

$$a_n(r) = -\frac{1}{(r+n-2)(r+n+3/2)} [(r+n-1)(-1/2)] a_{n-1}(r)$$

$$= \frac{r+n-1}{(r+n-2)(2r+2n+3)} a_{n-1}(r), \qquad n \ge 1.$$

Thus the coefficients $a_n(2)$ of $y_1(x)$ satisfy the recurrence relation $a_n(2) = \frac{n+1}{n(2n+7)} a_{n-1}(2)$ (the same as for a_n above) and the coefficients $a_n(-3/2)$ of $y_2(x)$ satisfy the recurrence relation $a_n(-3/2) = \frac{n-5/2}{(n-7/2)2n} a_{n-1}(-3/2)$ (the same as for b_n above). The rest of the computation remains the same.

The general (real) solution on $(0, \infty)$ is then $y(x) = c_1 y_1(x) + c_2 y_2(x), c_1, c_2 \in \mathbb{R}.$

That solutions are defined on the whole of $(0, \infty)$, is guaranteed by the analyticity of p(x), q(x) in $\mathbb{C} \setminus \{0\}$, but follows also readily from the easily established fact that the radius of convergence of both power series is ∞ .

c) The solution on $(-\infty, 0)$ is $y(x) = c_1 y_1(x) + c_2 y_2^-(x)$ with the same power series $y_1(x)$ as in b) and

$$y_2^{-}(x) = -\frac{1}{5|x|^{3/2}} \sum_{n=0}^{\infty} \frac{2n-5}{2\cdot 4\cdots 2n} x^n = -\frac{1}{5(-x)^{3/2}} \sum_{n=0}^{\infty} \frac{2n-5}{2\cdot 4\cdots 2n} x^n.$$

(This is <u>not</u> the same as $y_2(-x)$, whose coefficients have an additional factor $(-1)^n$.) Since $y_1(x)$ is analytic everywhere and $\lim_{x\downarrow 0} y_2(x) = \infty$, the general solution on \mathbb{R} is $y(x) = c_1 y_1(x)$, $c_1 \in \mathbb{R}$.

$$\sum_{2} = 10$$

3 a) Substituting $y_1(t) = c t^r$ into the ODE gives

$$cr t^{r-1} = c^2 t^{2r} + 5c t^{r-1} + 5 t^{-2},$$

which holds if r = -1 and $-c = c^2 + 5c + 5$, i.e., $c^2 + 6c + 5 = 0$, which has solutions $c \in \{-1, -5\}$. Thus we can take $y_1(t) = -t^{-1}$ or $y_1(t) = -5t^{-1}$.

b) Taking $y_1(t) = -t^{-1}$ in a), the substitution becomes $y = -t^{-1} + 1/z$, $y' = 1/t^2 - z'/z^2$. Substituting this into (R) gives

$$\begin{split} \frac{1}{t^2} - \frac{z'}{z^2} &= \left(-\frac{1}{t} + \frac{1}{z} \right)^2 + \frac{5}{t} \left(-\frac{1}{t} + \frac{1}{z} \right) + \frac{5}{t^2} = \frac{1}{t^2} - \frac{2}{tz} + \frac{1}{z^2} - \frac{5}{t^2} + \frac{5}{tz} + \frac{5}{t^2} \\ \iff -\frac{z'}{z^2} &= \frac{3}{tz} + \frac{1}{z^2} \\ \iff z' &= -\frac{3}{t} z - 1. \end{split}$$

This is of the form z' = a(t)z + b(t), hence first-order (inhomogeneous) linear.

c) The general solution of z' = (-3/t)z is

$$z(t) = c \exp \int -\frac{3}{t} dt = \frac{c}{t^3}, \quad c \in \mathbb{R}.$$

Variation of parameters then yields a particular solution z_p of z' = (-3/t) - 1:

$$z_p(t) = t^{-3} \int t^3(-1) dt = -\frac{t}{4}.$$

 \implies The general solution of z' = (-3/t)z - 1 is

$$z(t) = -\frac{t}{4} + \frac{c}{t^3}, \quad c \in \mathbb{R}.$$

 \implies The general solution of (R) is

$$y(t) = -\frac{1}{t} + \frac{1}{-t/4 + c/t^3} = -\frac{1}{t} + \frac{t^3}{c - t^4/4}, \quad c \in \mathbb{R} \cup \{\infty\},$$

where $c = \infty$ represent the solution y_1 .

The maximal domain of y(t) is $(0, \infty)$ for $c \in \{0, \infty\}$ and c < 0 (c = 0 corresponds to the 2nd solution $y(t) = -5t^{-1}$ discovered in a).) For c > 0 the expression for y(t) defines two maximal solutions on $(0, \sqrt[4]{4c})$ and $(\sqrt[4]{4c}, \infty)$.

$$\sum_{3} = 7$$

4 The characteristic polynomial of A is

$$\chi_{\mathbf{A}}(X) = \begin{vmatrix} X+8 & 0 & -5 & 2 \\ -5 & X+1 & 4 & -1 \\ 10 & 0 & X-7 & 2 \\ 0 & 0 & -3 & X-2 \end{vmatrix} = (X+1) \begin{vmatrix} X+8 & -5 & 2 \\ 10 & X-7 & 2 \\ 0 & -3 & X-2 \end{vmatrix}$$

$$= (X+1) \begin{vmatrix} X+8 & -5 & 2 \\ 2-X & X-2 & 0 \\ 0 & -3 & X-2 \end{vmatrix} = (X+1)(X-2) \begin{vmatrix} X+8 & -5 & 2 \\ -1 & 1 & 0 \\ 0 & -3 & X-2 \end{vmatrix}$$

$$= (X+1)(X-2) \begin{vmatrix} X+3 & -5 & 2 \\ 0 & 1 & 0 \\ -3 & -3 & X-2 \end{vmatrix} = (X+1)(X-2) \begin{vmatrix} X+3 & 2 \\ -3 & X-2 \end{vmatrix}$$

$$= (X+1)(X-2) [(X+3)(X-2) - (-3)2]$$

$$= X(X+1)^2(X-2).$$

 \Longrightarrow The eigenvalues of ${\bf A}$ are $\lambda_1=0$ with algebraic multiplicity 1, $\lambda_2=-1$ with algebraic multiplicity 2, $\lambda_3=2$ with algebraic multiplicity 1.

$$\lambda_1=0$$
:

$$\mathbf{A} - 0\mathbf{I} = \begin{pmatrix} -8 & 0 & 5 & -2 \\ 5 & -1 & -4 & 1 \\ -10 & 0 & 7 & -2 \\ 0 & 0 & 3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} -8 & 0 & 5 & -2 \\ 5 & -1 & -4 & 1 \\ -2 & 0 & 2 & 0 \\ -8 & 0 & 8 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -8 & 0 & 5 & -2 \\ 5 & -1 & -4 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The latter is in "permuted" echelon form with x_1 as a free variable, say. Setting $x_1 = 1$ gives $x_3 = 1$, $x_4 = -3/2$, $x_2 = -1/2$.

 \Longrightarrow The eigenspace corresponding to $\lambda_1 = 0$ is generated by $\mathbf{v}_1 = (2, -1, 2, -3)^\mathsf{T}$.

$$\mathbf{A} + \mathbf{I} = \begin{pmatrix} -7 & 0 & 5 & -2 \\ 5 & 0 & -4 & 1 \\ -10 & 0 & 8 & -2 \\ 0 & 0 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & -3 & 0 \\ 5 & 0 & -4 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & -3 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 \Longrightarrow The eigenspace corresponding to $\lambda_2 = -1$ is generated by $\mathbf{v}_2 = (0, 1, 0, 0)^\mathsf{T}$ and $\mathbf{v}_3 = (-1, 0, -1, 1)^\mathsf{T}$. $\lambda_3 = 2$:

$$\mathbf{A} - 2\mathbf{I} = \begin{pmatrix} -10 & 0 & 5 & -2 \\ 5 & -3 & -4 & 1 \\ -10 & 0 & 5 & -2 \\ 0 & 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & -3 & -4 & 1 \\ 0 & -6 & -3 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Setting $x_4 = 1$ gives $x_3 = 0$, $x_2 = 0$, $x_1 = -1/5$.

 \implies The eigenspace corresponding to $\lambda_3 = 2$ is generated by $\mathbf{v}_4 = (-1, 0, 0, 5)^\mathsf{T}$.

Since eigenvectors corresponding to different eigenvalues are linearly independent, $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ form a basis of \mathbb{R}^4 (and \mathbf{A} is diagonalizable).

 \implies A fundamental system of solutions of $\mathbf{y}' = \mathbf{A}\mathbf{y}$ is

$$\mathbf{y}_{1}(t) \equiv \begin{pmatrix} 2 \\ -1 \\ 2 \\ -3 \end{pmatrix}, \quad \mathbf{y}_{2}(t) = e^{-t} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{y}_{3}(t) = e^{-t} \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \quad \mathbf{y}_{4}(t) = e^{2t} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 5 \end{pmatrix},$$

and the general (real) solution is $\mathbf{y}(t) = c_1 \mathbf{y}_1(t) + c_2 \mathbf{y}_2(t) + c_3 \mathbf{y}_3(t) + c_4 \mathbf{y}_4(t), c_1, c_2, c_3, c_4 \in \mathbb{R}$.

$$\sum_{4} = 6$$

5 a) Dividing (DF) by $3y^2 - 1$ gives the exact (even separable) equation

$$x \, \mathrm{d}x + \frac{y}{3y^2 - 1} \, \mathrm{d}y = 0.$$

A function F with $dF = x dx + \frac{y}{3y^2 - 1} dy$ is $F(x, y) = \frac{1}{2}x^2 + \frac{1}{6}\ln|3y^2 - 1|$, and hence the general solution of (DF) in implicit form is

$$\frac{1}{2}x^2 + \frac{1}{6}\ln|3y^2 - 1| = C, \quad C \in \mathbb{R}.$$

This must be complemented by the horizontal lines $y = \pm 1/\sqrt{3}$, which have been lost when dividing by $3y^2 - 1$. Since y = const. implies dy = 0, these are indeed solutions (even explicit solutions $y(x) \equiv \pm 1/\sqrt{3}$).

b) y(1) = 1/3 requires $C = \frac{1}{2} + \frac{1}{6} \ln \frac{2}{3}$. Then we solve the corresponding contour equation

for y:

$$\frac{1}{6} \ln |3y^2 - 1| = \frac{1}{2} (1 - x^2) + \frac{1}{6} \ln \frac{2}{3}$$

$$\ln |3y^2 - 1| = 3(1 - x^2) + \ln \frac{2}{3}$$

$$|3y^2 - 1| = \frac{2}{3} e^{3(1 - x^2)}$$

$$3y^2 - 1 = -\frac{2}{3} e^{3(1 - x^2)}$$

$$y = y(x) = \sqrt{\frac{1 - \frac{2}{3} e^{3(1 - x^2)}}{3}}$$
(since $3y(1) - 1 = -\frac{2}{3}$)

The domain I of y(x) is determined by

$$1 - \frac{2}{3} e^{3(1-x^2)} \ge 0$$

$$\iff 3(1-x^2) \le \ln \frac{3}{2}$$

$$\iff x^2 \ge 1 - \frac{1}{3} \ln \frac{3}{2} \approx 0.87$$

Since I must be an interval containing 1, we obtain $I = [\sqrt{0.87}, \infty)$.

More precisely $I = (a, \infty)$ with $a = \sqrt{1 - \frac{1}{3} \ln \frac{3}{2}} \approx 0.929970410262577$. Since y(x) is not differentiable at a, we exclude a from the domain.

c) No. The integral curves of (DF) are the contours of $F(x,y) = \frac{1}{2}x^2 + \frac{1}{6}\ln|3y^2 - 1|$. From $dF(x,y) = x dx + \frac{y}{3y^2 - 1} dy$ we get $F_x = x$, $F_y = \frac{y}{3y^2 - 1}$, $F_{xx} = 1$, $F_{xy} = F_{yx} = 0$, and $F_{yy} = -\frac{3y^2 + 1}{(3y^2 - 1)^2}$. Since $F_x(0,0) = F_y(0,0) = 0$, $F_{xx}(0,0) = 1$, $F_{yy}(0,0) = -1$, the origin (0,0) is a saddle point of F and hence contained in two distinct integral curves. $\boxed{+2}$

$$\sum_{5} = 6 + 2$$

6 a) The characteristic polynomial is

$$a(X) = X^5 + 4X^4 + 24X^3 + 40X^2 + 100X$$

= $X(X^4 + 4X^3 + 24X^2 + 40X + 100)$
= $X(X^2 + 2X + 10)^2$
= $X(X + 1 - 3i)^2(X + 1 + 3i)^2$

with zeros $\lambda_1 = 0$ of multiplicity 1 and $\lambda_2 = -1 + 3i$, $\lambda_3 = -1 - 3i$ of multiplicity 2. \implies A complex fundamental system of solutions is 1, $e^{(-1+3i)t}$, $t e^{(-1+3i)t}$, $e^{(-1-3i)t}$, $t e^{(-1-3i)t}$ and the corresponding real fundamental system is

1,
$$e^{-t}\cos(3t)$$
, $e^{-t}\sin(3t)$, $te^{-t}\cos(3t)$, $te^{-t}\sin(3t)$.

- b) In order to obtain a particular solution $y_p(t)$ of the inhomogeneous equation, we solve the two systems $a(D)y_i = b_i(t)$ for $b_1(t) = 200 t$, $b_2(t) = e^{-t}$. Superposition then yields the particular solution $y_p(t) = y_1(t) y_2(t)$.
 - (1) Since $\mu = 0$ is a zero of multiplicity 1 of a(X), the proper Ansatz in this case is $y_1(t) = c_0 t + c_1 t^2$. Substituting it into the ODE we get

$$40(2c_1) + 100(c_0 + 2c_1t) = 200 t.$$

$$\implies c_1 = 1, c_0 = -\frac{4}{5}, \text{ and } y_1(t) = t^2 - \frac{4}{5}t.$$

(2) Since $\mu = -1$ is not a root of a(X), we can take $y_2(t) = \frac{1}{a(-1)} e^{-t} = -\frac{1}{81} e^{-t}$.

$$\implies y_p(t) = t^2 - \frac{4}{5}t + \frac{1}{81}e^{-t}$$
 is a particular solution.

The general real solution is then

$$y(t) = c_1 + c_2 e^{-t} \cos(3t) + c_3 e^{-t} \sin(3t) + c_4 t e^{-t} \cos(3t) + c_5 t e^{-t} \sin(3t) + t^2 - \frac{4}{5}t + \frac{1}{81}e^{-t} \quad \text{with } c_1, c_2, c_3, c_4, c_5 \in \mathbb{R}.$$

c) The Laplace transform of the right-hand side of the ODE in b) is

$$200 \mathcal{L}{t} - \mathcal{L}\left{e^{-t}\right} = \frac{200}{s^2} - \frac{1}{s+1} = \frac{-s^2 + 200 s + 200}{s^2(s+1)}.$$

Using the formulas for the Laplace transform of the derivatives of y(t) and the given initial conditions, this implies $s^5 Y(s) + 4s^4 Y(s) + 24s^3 Y(s) + 40s^2 Y(s) + 100s Y(s) = \frac{-s^2 + 200 s + 200}{s^2(s+1)}$, i.e.,

$$Y(s) = \frac{-s^2 + 200 \, s + 200}{s^3 (s+1)(s^2 + 2s + 10)^2}.$$

$$\sum_{6} = 8$$

$$\sum_{\text{Final Exam}} = 45 + 7$$