29 January 2020

5.1 Do Now: Function operations, algebra review, graphing quadratics

- 1. Let f(x) = 3x 4 and g(x) = 5x, for $x \in \mathbb{R}$.
 - (a) Write down g(-3).
 - (b) Find $(f \circ g)(x)$.
 - (c) Find $f^{-1}(x)$.
- 2. Let f(x) = 3x 1 and $g(x) = -2x^2 + 2$
 - (a) Find $f^{-1}(x)$.
 - (b) Find $(f \circ g)(1)$.

- 3. The diagram below shows the graph of a function f, composed of four points.
 - (a) Write down the value of f(2).
 - (b) Write down the domain of f.
 - (c) Write down the range of f.
 - (d) Write down the value of $f^{-1}(1)$.
 - (e) Sketch the inverse of f, f^{-1} , on the grid at right.

-3

Quadratics algebra competencies

4. Expand each binomial-squared expression to the form $ax^2 + bx + c$.

(a)
$$(x+3)(x+3)$$

(c)
$$(x+5)^2$$

(b)
$$(x+2)^2$$

(d)
$$(x+7)^2$$

5. Simplify each radical.

(a)
$$\sqrt{50}$$

(c)
$$\sqrt{27}$$

(b)
$$\sqrt{18}$$

(d)
$$\sqrt{24}$$

6. Solve for the appropriate variable (h and r).

(a)
$$Area = \frac{1}{2}(14.8)h = 62.9$$

(b)
$$Area = \pi r^2 = 483$$

Graphing quadratic functions (you may use a calculator)

- 7. Consider the function $f(x) = x^2 + 2x 3$.
 - (a) Sketch the graph of f, for $-4 \le x \le 2$. Label the vertex and the intercepts.
 - (b) This function can also be written in the form $f(x) = (x p)^2 4$. Write down the value of p.
 - (c) The graph of f has two solutions for f(x) = 0. Write down the solutions (or roots, zeros) of the function.
 - (d) Hence, write down the function in factored form, f(x) = (x a)(x b).

Sketching a quadratic function

- 8. Given $f(x) = (x-3)^2 4$
 - (a) Write down the vertex of the function as an ordered pair.
 - (b) Expand the function from vertex form to standard form, ax^2+bx+c where $a,b,c \in \mathbb{R}$.
 - (c) Write down the value of f(0). Explain what this represents on the graph.
 - (d) Factor the function. Write down the roots.
 - (e) Sketch the function, labeling the intercepts with values and the vertex as an ordered pair. Show the axis of symmetry as a dotted line and label it with its equation.

(f) Write down the domain and range of the function.

9. Let f be a quadratic function. Part of the graph of f is shown below. The vertex is at P(2,1) and the y-intercept is at Q(0,3).

- (a) Write down the equation of the axis of symmetry.
- (b) The function f can be written in the form $f(x) = a(x h)^2 + k$. Write down the value of h and of k.
- (c) Find a.