

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Martes 7 de noviembre del 2000 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

880-209 15 páginas

9	3
÷	3
`	5
	5
C	3
3	3
2	3

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75		
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
	5 B 10,81	13 A1 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59	
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Número atómico	Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Número	Masa a		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

71 Lu 174,97	103 Lr (260)
70	102
Yb	No
173,04	(259)
69	101
Tm	Md
168,93	(258)
68 Er 167,26	100 Fm (257)
67	99
Ho	Es
164,93	(254)
66	98
Dy	Cf
162,50	(251)
65	97
Tb	Bk
158,92	(247)
64	96
Gd	Cm
157,25	(247)
63	95
Eu	Am
151,96	(243)
62 Sm 150,35	94 Pu (242)
61	93
Pm	Np
146,92	(237)
60	92
Nd	U
144,24	238,03
59	91
Pr	Pa
140,91	231,04
58	90
Ce	Th
140,12	232,04
+-	***

- 1. ¿Cuál de los siguientes compuestos contiene mayor porcentaje en masa de carbono?
 - A. C_2H_2
 - B. C_2H_4
 - C. C_3H_8
 - D. C_4H_{10}
- 2. La masa molecular relativa de un compuesto es 88. Una posible fórmula empírica de dicho compuesto es
 - A. CH₂
 - B. CH₂O
 - C. CH₃O
 - D. C_2H_4O
- 3. $H_2 + Cl_2 \rightarrow 2HCl$

El hidrógeno y el cloro, reaccionan de acuerdo con la ecuación anterior. ¿Cuál será el resultado de la reacción de 2,0 moles de $\rm H_2$ con 1,5 moles de $\rm Cl_2$?

- A. 3,5 mol de HCl
- B. 1,5 mol de HCl y 0,5 mol de H₂
- C. 2,0 mol de HCl y 0,5 mol de Cl₂
- D. 3,0 mol de HCl y 0,5 mol de H₂

4. 25,0 cm³ de solución de ácido sulfúrico reaccionan con 36,2 cm³ de solución de hidróxido de sodio de concentración 0,225 mol dm⁻³. La concentración del ácido es

A.
$$\frac{36,2\times0,225}{25,0}$$

B.
$$\frac{2\times36, 2\times0, 225}{25,0}$$

C.
$$\frac{36,2\times0,225}{2\times25,0}$$

D.
$$\frac{25,0}{2\times36,2\times0,225}$$

- **5.** ¿Entre qué niveles energéticos se produce mayor **liberación** de energía durante la transición electrónica?
 - A. Primero a tercero
 - B. Cuarto a noveno
 - C. Sexto a tercero
 - D. Segundo a primero
- **6.** Un elemento sólido, X, está formado por átomos que tienen electrones desapareados y forma un cloruro iónico, XCl₂. ¿Cuál es la configuración electrónica más probable del elemento X?
 - A. [Ne] $3s^2$
 - B. $[Ar] 3d^2 4s^2$
 - C. [He] $2s^2 2p^2$
 - D. [Ne] $3s^2 3p^4$

7.

El gráfico anterior representa el espectro de masas de un elemento. ¿Qué enunciado es correcto con respecto a este elemento?

- A. Los tres isótopos están separados después de haber sido convertidos en iones negativos
- B. El isótopo de masa 62 sufrirá mayor desviación que los isótopos de masa 60 ó 61
- C. El isótopo de mayor abundancia tiene 61 neutrones
- D. Su masa atómica está comprendida entre 60 y 61
- **8.** ¿Cuál de los siguientes pares de especies está colocado en orden **creciente** con respecto a la propiedad dada?
 - A. Energía de ionización: O, F
 - B. Radio: Mg, Mg²⁺
 - C. Punto de fusión: I₂, Br₂
 - D. Carácter covalente: HI, HBr
- 9. La mayoría de los óxidos de los elementos no metálicos son
 - A. iónicos y básicos.
 - B. iónicos y ácidos.
 - C. covalentes y básicos.
 - D. covalentes y ácidos.

- 10. ¿Qué ion complejo acuoso no será coloreado?
 - A. Ni²⁺
 - B. Fe^{2+}
 - C. Sc^{3+}
 - D. Cr³⁺
- 11. ¿Qué compuesto contiene átomos de carbono que presentan hibridación sp² y sp³?

- 12. ¿Qué molécula presenta mayor ángulo de enlace?
 - A. BF₃
 - B. CF₄
 - C. NF₃
 - D. OF₂
- 13. ¿En cuál de los siguientes compuestos los electrones de los enlaces carbono-oxígeno están deslocalizados?
 - I. Etóxido de sodio, CH₃CH₂ONa
 - II. Etanoato de sodio, CH₃COONa
 - A. Sólo I
 - B. Sólo II
 - C. Ambos, I y II
 - D. Ninguno

- **14.** ¿Qué especie **no** presenta por lo menos un ángulo de enlace de 90°?
 - A. CF₄
 - B. PF₅
 - C. SF₆
 - D. SiF_6^{2-}
- 15. ¿Qué compuesto tiene **mayor** presión de vapor a 298 K?
 - A. C_3H_7OH
 - B. $C_2H_5OCH_3$
 - C. C₂H₅COOH
 - D. $C_3H_7NH_2$
- **16.** La masa de 125 cm³ de un gas desconocido es 0,725 g a 25 °C y 0,97 atmósferas. ¿Qué expresión dará como resultado la masa molar relativa del gas? $(R = 82,05 \text{ cm}^3 \text{ atm } \text{K}^{-1} \text{ mol}^{-1})$
 - A. $\frac{0,725 \times 82,05 \times 25}{0.97 \times 125}$
 - B. $\frac{125 \times 0.97}{0.725 \times 82.05 \times 298}$
 - C. $\frac{0,725 \times 82,05 \times 298}{0,97 \times 0,125}$
 - D. $\frac{0,725 \times 82,05 \times 298}{0,97 \times 125}$
- 17. Para las siguientes combinaciones de propiedades de un gas, ¿cuál presentará un comportamiento más cercano al ideal?
 - A. Moléculas polares a baja temperatura y elevada presión
 - B. Moléculas polares a elevada temperatura y baja presión
 - C. Moléculas no polares a baja temperatura y elevada presión
 - D. Moléculas no polares a elevada temperatura y baja presión

18.
$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\circ} = -393 \text{ kJ}$
 $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ $\Delta H^{\circ} = -588 \text{ kJ}$

De acuerdo con los datos anteriores, ¿cuál es el valor que corresponde a la entalpía de formación del monóxido de carbono expresada en kJ mol⁻¹?

- A. -87
- B. -99
- C. -173
- D. -220

19.
$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$
 $\Delta H^{\circ} = -137 \text{ kJ}$

¿Qué enunciado sobre la información anterior es correcto?

- A. La energía total de los enlaces que se rompen en los reactivos es **mayor** que la energía total de los enlaces que se forman en los productos.
- B. Los enlaces que se rompen y los que se forman, tienen la misma fuerza.
- C. La energía total de los enlaces que se rompen en los reactivos es **menor** que la energía total de los enlaces que se forman en los productos.
- D. No es posible extraer ninguna conclusión sobre las sumas de las entalpías de enlaces de los productos en comparación con la de los reactivos.
- **20.** Cuando se mezclan 50 cm³ de solución de HCl de concentración 1 mol dm⁻³, con 50 cm³ de solución de NaOH de concentración 1 mol dm⁻³, la temperatura de la solución resultante aumenta en 6 °C. ¿Cuál será la variación de temperatura que se producirá al mezclar 100 cm³ de cada una de dichas soluciones?
 - A. 3 °C
 - B. 6 °C
 - C. 12 °C
 - D. 24 °C

21.

$$NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$$

¿Cuáles son los signos de ΔH y ΔS para esta reacción?

 ΔH ΔS

- A. + +
- В. –
- C. + -
- D. +

22.

La curva anterior se obtiene cuando se representa la reacción de un exceso de CaCO₃ con ácido clorhídrico. ¿Cómo y por qué varía la velocidad de la reacción con el tiempo?

Velocidad de reacción

Razón

- A. disminuye el HCl se diluye
- B. disminuye los trozos de CaCO₃ se hacen más pequeños
- C. aumenta la temperatura aumenta
- D. aumenta el CO₂ que se produce actúa como catalizador

23. La ecuación de velocidad para la reacción entre O_2 y NO es

$$Velocidad = k[O_2][NO]^2$$

¿En qué factor aumentará la velocidad de esta reacción si las concentraciones de O_2 y NO se duplican?

- A. $\frac{1}{8}$
- B. 3
- C. 4
- D. 8

24.

Transcurso de la reacción

¿Qué valor(es) de energía se modificará(n) al añadir un catalizador?

- A. Sólo I
- B. Sólo II
- C. Sólo II y III
- D. I, II y III

$$2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$$

El metanol se fabrica industrialmente por medio de la reacción anterior. La expresión de equilibrio para esta reacción es

- [CH₃OH] A. 2[H,][CO]
- [CH₃OH] B. $[H_2]^2[CO]$
- 2[H₂][CO] C. [CH₃OH]
- $[H_2]^2[CO]$ D. [CH₃OH]

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -91.8 \text{ kJ}$

$$\Delta H = -91.8 \text{ kJ}$$

La síntesis industrial de amoníaco se basa en la reacción anterior. ¿Qué factor(es) producirá(n) un aumento de concentración de amoníaco en el equilibrio?

- I. Aumento de presión
- II. Aumento de temperatura
- Sólo I A.
- B. Sólo II
- C. Ambos, I y II
- D. Ninguno
- ¿Cuál de las siguientes opciones presenta una combinación correcta? **27.**

	Fuerzas intermoleculares	Punto de ebullición	ΔH_{vap}	
A.	débiles	bajo	baja	
B.	débiles	bajo	elevada	
C.	fuertes	elevado	baja	
D.	fuertes	bajo	baja	

Véase al dorso 880-209

- 28. Cuando el pH de una solución varía de 2,0 a 4,0, la concentración de iones hidrógeno
 - A. aumenta en un factor igual a 100.
 - B. aumenta en un factor igual a 2.
 - C. disminuye en un factor igual a 2.
 - D. disminuye en un factor igual a 100.
- **29.** ¿Cuál(es) de las siguientes propiedades será(n) iguales para soluciones separadas de concentración 1 mol dm⁻³ de un ácido fuerte y un ácido débil?
 - I. Conductividad eléctrica
 - II. Concentración de iones H⁺
 - A. Sólo I
 - B. Sólo II
 - C. Ambas, I y II
 - D. Ninguna
- **30.** ¿Cuál es el valor de K_a para una solución de concentración 0,10 mol dm⁻³ de un ácido monoprótico débil, si la $[H^+] = 2,0 \times 10^{-3}$ mol dm⁻³?
 - A. $2,0 \times 10^{-2} \text{ mol dm}^{-3}$
 - B. $2,0 \times 10^{-4} \text{ mol dm}^{-3}$
 - C. $4,0 \times 10^{-5} \text{ mol dm}^{-3}$
 - D. $4.0 \times 10^{-7} \text{ mol dm}^{-3}$
- 31. Una solución búfer se formará mezclando volúmenes iguales de soluciones 0,1 mol dm⁻³ de
 - A. ácido clorhídrico e hidróxido de sodio.
 - B. ácido clorhídrico y etanoato de sodio.
 - C. ácido etanoico e hidróxido de sodio.
 - D. ácido etanoico y etanoato de sodio.

- 32. ¿Cuál de las siguientes **no** es una reacción redox?
 - A. $3H_2 + N_2 \rightarrow 2NH_3$
 - B. $N_2O_4 \rightarrow 2NO_2$
 - C. $Cl_2 + 2NaI \rightarrow 2NaCl + I_2$
 - D. $2H_2O_2 \rightarrow 2H_2O + O_2$
- **33.** Se hace circular la misma cantidad de corriente a través de muestras fundidas separadas de óxido de aluminio y cloruro de sodio. ¿Cuántos moles de sodio se obtienen si se producen 0,2 moles de oxígeno?
 - A. 0,1
 - B. 0,2
 - C. 0,4
 - D. 0,8

34.
$$2AgNO_3(aq) + Zn(s) \rightarrow 2Ag(s) + Zn(NO_3)_2(aq)$$

$$Zn(NO_3)_2(aq) + Co(s) \rightarrow No$$
 se produce reacción

$$2\mathsf{AgNO}_3(\mathsf{aq}) + \mathsf{Co(s)} \to \mathsf{Co(NO_3)}_2(\mathsf{aq}) + 2\mathsf{Ag(s)}$$

Utilizando la información anterior, el orden creciente de actividad de los metales es

- A. Ag < Zn < Co
- B. Co < Ag < Zn
- C. Co < Zn < Ag
- $D. \qquad Ag < Co < Zn$

- 35. ¿Cuál de los siguientes compuestos origina un espectro de RMN que tiene dos picos diferentes?
 - A. C_6H_6
 - B. C₂H₅OH

- D. CH₃OCH₃
- **36.** ¿Cuál de las siguientes sustancias reaccionará con mayor probabilidad con los iones hidróxido por medio de un mecanismo $S_{\rm N}1$?
 - A. C_6H_5Cl
 - B. (CH₃)₃CCl
 - C. (CH₃)₂CHCH₂Cl
 - D. CH₃CH₂CH₂CH₂Cl
- **37.** ¿En cuál de las siguientes opciones los compuestos numerados presentan orden **decreciente** (de mayor a menor) con respecto al punto de ebullición?
 - 1. etano
- 2. fluoretano
- 3. etanol
- 4. ácido etanoico

- A. 4, 3, 1, 2
- B. 4, 3, 2, 1
- C. 3, 4, 1, 2
- D. 2, 1, 3, 4

20	O 1		OTT OTT	COCTT	0
38.	¿Qué reactivo	reacciona con	CH ₂ CH	2COCH	, ?

- I. LiAlH₄
- II. $H^+/K_2Cr_2O_7$
- A. Sólo I
- B. Sólo II
- C. Ambos, I y II
- D. Ninguno

39. ¿Qué compuesto presenta actividad óptica?

- A. CH₃COOH
- B. H₂NCH₂COOH
- C. HOCH(CH₃)COOH
- D. (CH₃)₃CCOOH

40. ¿Cuántos isómeros estructurales diferentes tienen la fórmulaC₄H₉Cl?

- A. 2
- B. 3
- C. 4
- D. 5