Food Safety and Inspection Analysis of Restaurants located in San Francisco

```
[1]: # Initialize OK
     from client.api.notebook import Notebook
     ok = Notebook('proj1b.ok')
    Assignment: proj1b
    OK, version v1.13.11
[2]: import pickle
     import matplotlib
     import matplotlib.pyplot as plt
     import numpy as np
     import pandas as pd
     import seaborn as sns
     sns.set()
     plt.style.use('fivethirtyeight')
    Load the cleaned data
[3]: ins = pickle.load(open('./data/ins.p', 'rb'))
     vio = pickle.load(open('./data/vio.p', 'rb'))
     ins2vio = pickle.load(open('./data/ins2vio.p', 'rb'))
     bus = pickle.load(open('./data/bus.p', 'rb'))
    Look at the distribution of inspection scores
[4]:
```

[4]: Text(0.5, 1.0, 'Distribution of Inspection Scores')

Make a dataframe called scores_pairs_by_business indexed by business_id that contains the field score_pair consisting of the score pairs ordered chronologically [first_score, second_score].

[5]:

[5]:		score_p	air
	bid		
	48	[94,	87]
	66	[98,	98]
	146	[81,	90]
	184	[90,	96]
	273	[83,	84]
	•••	•••	
	95621	[100, 1	[00]
	95628	[75,	75]
	95674	[100,	96]
	95761	[91,	87]
	95764	[100,	92]

[535 rows x 1 columns]

Create a scatter plot

[6]:

[6]: Text(0.5, 1.0, 'First Inspection Score VS Second Inspection Score')

Compare the scores from the two inspections: subtract the first score from the second in scores_pairs_by_business. Make a histogram of these differences in the scores

[7]:

[7]: Text(0.5, 1.0, 'Distribution of Score Differences')

Looking at the distribution of restaurant scores over time. Create a side-by-side boxplot that shows the distribution of these scores for each different risk category from 2017 to 2019

[8]:

[8]: <matplotlib.legend.Legend at 0x7f2ac8717cf8>

[]:

In the context of restaurant ratings, we can choose our x[i], y[i], c[i] values to be the longitude, latitude, and inspection score for each restaurant in San Francisco respectively. First, create a DataFrame rated_geo that includes the longitude, latitude, and score for each restaurant.

[9]:

[9]:		score	latitude	longitude
	16	74	37.755282	-122.420493
	17	76	37.755282	-122.420493
	18	72	37.755282	-122.420493
	36	85	37.752158	-122.420362
	37	90	37.752158	-122.420362
	•••	•••	•••	•••
	14026	77	37.756997	-122.420534
	14027	80	37.756997	-122.420534
	14028	80	37.756997	-122.420534
	14029	82	37.794293	-122.405967
	14030	84	37.794293	-122.405967

[7390 rows x 3 columns]

Create a geospatial hexbin plot that includes the inspection count for all restaurant locations in San Francisco

[11]:

Create another hexbin plot that visualizes the average inspection scores for restaurants in San Francisco.

[13]:

[]: