MTH 470/570 Winter 2021 Assignment 4.

This assignment is due before class on Tuesday, February 16. Please submit your solutions via Blackboard. Solutions are required – answers must be justified.

p.52 #3.41. Convert the following expressions to the form
$$x+iy$$
. (Reason carefully.) (a) $e^{i\pi}$. (c) i^i . (d) $e^{\sin(i)}$. (e) $\exp(\text{Log}(3+4i))$ (f) $(1+i)^{1/2}$

- 3.51. Prove that $\exp(b \log a)$ is single valued if and only if b is an integer. (Note that this means that complex exponentials do not clash with monomials z^n , no matter which branch of the logarithm is used.) What can you say if b is rational?
 - p.68 #4.3. Integrate the function $f(z) = \overline{z}$ over these three paths from Example 4.1:
 - (a) The line segment from 0 to 1 + i.
 - (b) The arc of the parabola $y = x^2$ from 0 to 1 + i.
 - (c) The union of the line segment from 0 to 1 and the line segment from 1 to 1+i.
 - 4.8. Compute $\int_{\gamma} f(z) dz$ for the following functions f and paths γ :

Hint: All but one of these can be computed using the complex version of the Fundamental Theorem of Calculus.

- (a) $f(z) = z^2$ and $\gamma(t) = t + it^2$, $0 \le t \le 1$.
- (b) f(z) = z and γ is the semicircle from 1 through i to -1.
- (c) $f(z) = \exp(z)$ and γ is the line segment from 0 to a point z_0 . (The answer will be a function of z_0 .)
 - (d) $f(z) = |z|^2$ and γ is the line segment from 2 to 3+i.