Relazione di laboratorio: impedenza in uscita del generatore di funzioni

Ilaria Brivio (582116) brivio.ilaria@tiscali.it Matteo Abis (584206) webmaster@latinblog.org

Lorenzo Rossato (579393) supergiovane05@hotmail.com

11 giugno 2009

Impostare il generatore di funzioni in modo che fornisca un uscita con le seguenti caratteristiche: Scegliere una resistenza (R_1) di valore nominale 56Ω .

 $\begin{array}{ccc} & forma: & sinusoidale \\ frequenza: & 20\,kHz \\ ampiezza \; pp: & 1.34\,V \\ valor \; medio: & 0\,V \end{array}$

Misurare (con l'oscilloscopio) il valore di tensione tra i punti A e B nelle condizioni di R_1 sconnessa (V_0) e R_1 connessa (V_{AB}) . Per le due misure si utilizzi il canale 1 dell'oscilloscopio e lo stesso valore di sensibilità verticale. Ricavare il valore di R dalle misure e calcolarne l'accuratezza. La resistenza R_1 è stata misurata con il multimetro T110B. Abbiamo notato che dopo aver realizzato il circuito con fili più corti il segnale è notevolmente migliorato.

$$R_1 = 56.0 \pm 0.7 \,\Omega$$

Le misure effettuate con l'oscilloscopio risultano:

$$V_0 = 1.34 \,\mathrm{V}$$
 $200 \,\mathrm{^{mV}/div}$ $V_{AB} = 712 \,\mathrm{mV}$ $200 \,\mathrm{^{mV}/div}$

Resistenza interna del generatore:

$$R_G = \left(\frac{V_0}{V_{AB}} - 1\right) R_1$$

$$R_G = 49.40 \pm 0.25 \Omega$$

Il valore riportato nelle specifiche tecniche è $R_{G,0}=50\pm 1\,\Omega$, compatibile con quello misurato.