Для чего нужна таблица мак-адресов?

Таблица мак-адресов в Cisco показывает соответствие между физическим адресом устройства (МАС-адресом) и его портом на коммутаторе. Она используется для определения, на какой порт коммутатора должен быть отправлен кадр, адресованный определенному устройству. Когда коммутатор получает кадр, он проверяет его МАС-адрес и сверяет его с записями в таблице мак-адресов. Если соответствие найдено, коммутатор отправляет кадр на соответствующий порт. Если соответствие не найдено, коммутатор широковещательно отправляет запрос ARP (Address Resolution Protocol) для определения МАС-адреса устройства. Когда ответ получен, коммутатор обновляет таблицу мак-адресов и отправляет кадр на соответствующий порт.

Что такое arp таблица?

ARP-таблица (Address Resolution Protocol) используется для хранения соответствия между IP-адресами устройств в сети и их физическими адресами (MAC-адресами).

Когда устройство отправляет пакет в сеть, оно указывает IP-адрес получателя. Чтобы передать пакет, свитч должен знать физический адрес (MAC-адрес) получателя. Для этого он обращается к ARP-таблице и ищет соответствующий IP-адрес. Если запись найдена, свитч использует соответствующий MAC-адрес для отправки пакета. Если записи нет, свитч отправляет ARP-запрос в сеть, чтобы узнать MAC-адрес получателя.

ARP-таблица автоматически обновляется по мере прохождения трафика через свитч. Если свитч получает пакет от нового устройства, он добавляет его IP-адрес и MAC-адрес в таблицу. Если устройство не передает трафик в течение определенного времени (обычно несколько минут), свитч удаляет его запись из таблицы.

Таким образом, ARP-таблица используется для оптимизации передачи данных в локальной сети и предотвращения повторной передачи пакетов в сети.

Что такое статическая маршрутизация?

Статическая маршрутизация - это метод управления передачей данных в компьютерных сетях, при котором администраторы сети вручную настраивают маршруты для передачи данных между устройствами. Это означает, что каждый маршрут определяется заранее и не меняется автоматически. Статическая маршрутизация используется в небольших сетях, где количество устройств не очень велико и требования к скорости передачи данных не очень высоки.

Что такое и для чего нужен default gateway при статической маршрутизации в cisco?

Default gateway (шлюз по умолчанию) - это IP-адрес маршрутизатора, который используется для отправки трафика в сети, к которой устройство не имеет прямого подключения.

При статической маршрутизации в Cisco, default gateway указывается вручную на каждом устройстве в сети. Это позволяет устройству отправлять пакеты на маршрутизатор, который затем будет перенаправлять их в нужную сеть.

Например, если компьютер находится в сети 192.168.1.0/24 и должен отправить пакет в интернет, он будет использовать default gateway, который указан на нем. Default gateway будет маршрутизатором, который имеет подключение к интернету и знает, как доставить пакет в нужную сеть.

Таким образом, default gateway при статической маршрутизации в Cisco необходим для обеспечения связности между различными сетями и отправки трафика в сети, к которым устройство не имеет прямого подключения.

Что такое next hop в статической маршрутизации?

Next hop в статической маршрутизации - это IP-адрес следующего узла (router или gateway) на пути к конечному устройству или сети. Когда маршрутизатор получает пакет, он ищет наиболее подходящий маршрут в своей таблице маршрутизации, который соответствует IP-адресу назначения пакета. Если маршрут найден, маршрутизатор использует next hop для отправки пакета на следующий узел в сети, который будет продолжать пересылку пакета до конечного устройства или сети. В статической маршрутизации next hop задается вручную администратором сети и не изменяется автоматически в зависимости от изменения топологии сети.

Отправляем arp-запрос. Когда устройство отправляет пакет в сеть, оно указывает ip-адрес получателя. Но чтобы отправить пакет, нужно знать физический адрес устройства - мак-адрес. Для этого отправляется arp-запрос. В качестве ip - адреса указывается ip-адрес router0. Потому что это gateway. То есть

Пакеты отправляются на switch0, затем бродкастом рассылаются по остальным

устройствам. Когда пакет дошел до роутера0, мы узнали его мак-адрес

Затем пакет идет обратно: на свич4, затем на свич0 и потом на комп0.

Simulat	tion Panel					
Event List						
Vis.	Time(sec)	Last Dev	At Device		Туре	
	0.000		PC0_192.168.77.10		ICMP	
	0.000		PC0_192.168.77.10		ARP	
	0.001	PC0	Switch0		ARP	
	0.002	Switc	PC1_192.168.77.11		ARP	
	0.002	Switc	PC2_192.168.77.12		ARP	
	0.002	Switc	Switch4		ARP	
	0.003	Switc	Router0		ARP	
	0.004	Rout	Switch4		ARP	
	0.005	Switc	Switch0		ARP	
(9)	0.006	Switc	PC0_192.168.77.10		ARP	
49	0.006		PC0_192.168.77.10		ICMP	

Все, агр пакет отработал.

Пришло время істр запроса.

У істр указывается ресивером ір адрес пк10.

Запрос идет на свич0, затем на свич4, потом на роутер0. И умирает. Потому что роутер0 может достучаться только до сети, в которой лежит пк10, но не знает

этого пк0, не знает его мак адрес. Поэтому исмп умирает.

Далее отправляется arp-запрос от роутера0 до пк10.

В качестве получателя

указывается ір-адрес роутера 1. Как? мы указывали его как гейтвей.

Default gateway (шлюз по умолчанию) - это IP-адрес маршрутизатора, который используется для отправки трафика в сети, к которой устройство не имеет прямого подключения.

Network Address 192.168.202.0/24 via 192.168.103.2

В данном случае

ICMP пакет отправится на свич2. Бродкастится на другие устройства. Попадает на роутер1.

00E0.F953. ▼ Arp	TY DATA (VAI PE: ABLE LEN	DEST ADDR:00E0.F 7B9.ED02 V	Bytes	
HARDWARE 1	TYPE:0x0001	PROTOCOL TYPE:0x	0800	
HLEN:0x06	PLEN:0x04	OPCODE:0x000	2	
	SOURCE MAC :0	0E0.F953.A001		
		SOURCE IP :192.168.	.103.2	
	TARGET MAC:00	DE0.F7B9.ED02		
	TARGET IP:19	22.168.103.1		Узнали мак роутера1

Состояние пакета:

Возвращаемся обратно: свич2, роутер0.

Всё. Больше ничего не происходит (роутер не может отправлять ни исмп, ни арп запросы).

Теперь отправляем только істр пакет от пк0 до пк10. Состояние пакета на старте:

At Device: PC0_192.168.77.1 Source: PC0_192.168.77.10	.0
Destination: PC10_192.168.2	
n Layers Layer7	Out Layers Layer7
Layer6	Layer6
Layer5	Layer5
Layer4	Layer4
Layer3	Layer 3: IP Header Src. IP: 192.168.77.10, Dest. IP: 192.168.202.20 ICMP Message Type: 8
Layer2	Layer 2: Ethernet II Header 0001.43C9.BE32 >> 00E0.F7B9.ED01
Layer1	Layer 1: Port(s): FastEthernet0

Идем на свич0, бродкаст на все компы. Затем роутер0, свич2, роутер1.

6. The default gateway is set. The device sets the next-hop to default gateway.

the broadcast address.

Затем отправляется arp запрос. Состояние пакета:

получателя указывается ір 10го компа.

Идем на свич3. Бродкаст. Всё. Ура. Мы узнали мак адрес 10го компа!!!!! Возварщаемся обратно на свич3, потом роутер1. Всё.

Еще раз отправляем ТОЛЬКО істр запрос.

В качестве ір адреса получателя указывается ір адрес 10го компа

Итак: свич0, ..., пк10.

Мак гуляет в пределах ОДНОЙ СЕТИ, а арп - во всех сетях. Если мы не знаем, куда обращаться, обращаемся к роутеру0.