Przetwarzanie obrazów

Zestaw zadań nr 7

⋆: zadania na ocenę

1. Wykrywanie krawędzi w obrazie - operator DoG

W obrazie osa.
png należy wykryć krawędzie operatorem DoG (wartości parametrów fil
trów Gaussa $\sigma=1$ i $\sigma=2).$

- (a) Proszę zastosować operator DoG z przetwarzaniem obrazu na 8-u bitach. W jaki sposób można znaleźć znaczące krawędzie (kontury) na obrazie wynikowym?
- (b) Proszę zastosować operator DoG z przetwarzaniem obrazu na 32-u bitach. W jaki sposób można znaleźć znaczące krawędzie na obrazie wynikowym?
- (c) Czy w obu przypadkach znajdywane są te same krawędzie? Odpowiedź proszę uzasadnić.

2. Wykrywanie krawędzi w obrazie - pochodne krawędzi

W obrazie g (Santa.png) należy wykryć krawędzie poprzez przybliżenie pierwszej pochodnej operacją filtrowania operatorem gradientowym h_y (filtrem gradientowym):

$$h_y = \left(\begin{array}{c} -1\\0\\1 \end{array}\right)$$

oraz przybliżenie drugiej pochodnej operatorem $h_{yy} = h_y * h_y$.

- (a) Które krawędzie wykrywają operatory h_y i h_{yy} ?
- (b) Proszę wykonać operację $g\ast h_y$ na 32 bitach. Jak można znaleźć krawędzie na obrazie wyjściowym?
- (c) Proszę wykonać operację $g*h_{yy}$ na 32 bitach. Jak można znaleźć krawędzie na obrazie wyjściowym?

3. Gradient

Na zaznaczonych pozycjach w obrazie wejściowym proszę

	A	B	C	D	E	F	G	H	I
a					100				
b		0		100	150	190			
c			100	150	150	190	190		
d		100	150	150	225	150	190	190	
e	100	150	150	225	225	225	150	190	190
f	150	150	190	190	190	190	190	190	190
g	190	190	190	185	190	195	190	190	190
h				220	225	230			
i					0				

(a) wyznaczyć gradienty g_x i g_y operatorami Sobela

$$h_x = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix} \quad h_y = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

- (b) wyznaczyć wartość gradientu G i jego kąt θ ,
- (c) przyporządkować kierunkom gradientu możliwe kierunki krawędzi,
- (d) wybrać maskę poszukiwania wartości niemaksymalnych (algorytm Non-Maximum Suppression).

4. Gradient - egzamin SL 2024

Które z poniższych zdań dotyczących obliczania gradientu na obrazach nie jest prawdziwe?

- (a) Gradient zawsze wskazuje kierunek największego wzrostu wartości szarości.
- (b) Wartość gradientu oblicza się z kwadratów gradientów kierunkowych g_x i g_y .
- (c) Kierunek gradientu oblicza się z sumy gradientów kierunkowych g_x i g_y .
- (d) Jeżeli na obrazie istnieją krawędzie, kierunek gradientu jest prostopadły do przebiegu tych krawędzi.
- (e) Na jednolicie białym obszarze obrazu gradient wynosi 0.
- 5. **Algorytm wykrywania krawędzi Canny'ego** \star (0.5+1+1+1+1.5+1) W obrazie pajak.png należy wykryć krawędzie obiektu algorytmem Cannego dla obrazów RGB zgodnie z zalecaną w literaturze kolejnością kroków algorytmu i wyborem operatora:
 - obliczenie gradientu niezależnie dla każdego kanału,
 - wybór operatora zgodnie z normą L_{∞} (maksimum wartości).

Prosze

- (a) wygładzić obraz pajak.png filtrem Gaussa ($\sigma = 2$),
- (b) wyznaczyć gradienty obrazu R_x, G_x, B_x i R_y, G_y, B_y operatorami Sobela

$$h_x = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix} \quad h_y = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

- (c) wyznaczyć gradienty kierunkowe g_x,g_y zgodnie z normą L_∞ (maksimum wartości) oraz wartość gradientu G i jego kąt θ ,
- (d) przyporządkować kierunkom gradientu możliwe kierunki krawędzi,
- (e) wykonać algorytm Non-Maximum Suppression,

- (f) wykonać progowanie z histerezą progami T_1, T_2 :
 - \bullet T_2 wyznaczony metodą Otsu,
 - $T_1 = \frac{1}{2}T_2$.

Do rozwiązania należy załączyć obrazy poszczególnych etapów algorytmu oraz podać progi $T_1,T_2. \\$

6. Detektor krawędzi Canny'ego - egzamin SL 2024

W poniższym obrazie wyznaczone zostały krawędzie obiektów:

Proszę przyporządkować obrazy A,B,\ldots,G do zasadniczych kroków algorytmu Canny'ego (jeden z obrazów nie powstał w wyniku zastosowania tego algorytmu):

- (a) Redukcja szumu \longrightarrow obraz ...
- (b) Wyznaczenie gradientów kierunkowych obrazu:
 - gradient $g_x \longrightarrow \text{obraz} \dots$
 - gradient $g_y \longrightarrow \text{obraz} \dots$
- (c) Wyznaczenie gradientu obrazu:
 - $\bullet\,$ wartość gradientu $G\longrightarrow {\rm obraz}\,\dots$
 - kierunek gradientu $\theta \longrightarrow \text{obraz} \dots$
- (d) Usunięcie niemaksymalnych pikseli (Non-Maximum Suppression) \longrightarrow obraz . . .
- (e) Progowanie z histerezą (Hysteresis-Threshold) \longrightarrow obraz . . .

7. Wykrywania grzbietów z macierzą Hessego * (0.5+1+1+1.5+1) W obrazie g (zyczenia.png) należy wykryć grzbiety obiektów.

${\bf Prosze}$

- (a) wygładzić obraz zyczenia.png filtrem Gaussa ($\sigma = 2$),
- (b) wyznaczyć drugie pochodne kierunkowe obrazu

$$g_{xx} = h_{xx} * g$$

$$g_{yy} = h_{yy} * g$$

$$g_{xy} = h_{xy} * g$$

gdzie

$$h_x = (1 \ 0 \ -1) \ i \ h_y = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix},$$

a drugie pochodne kierunkowe $h_{ij\;i,j\in\{x,y\}}$ to splot h_i*h_j :

$$\begin{array}{rcl} h_{xx} & = & h_x * h_x \\ h_{yy} & = & h_y * h_y \\ h_{xy} & = & h_x * h_y \end{array}$$

- (c) wyznaczyć jako miarę krzywizny główną wartość własną k_1 macierzy Hessego,
- (d) usunąć niemaksymalne piksele w obrazie w kierunku danym przez wektor własny,
- (e) wykonać progowanie z histerezą progami T_1, T_2 :
 - T_2 wyznaczony metodą Otsu,
 - $T_1 = \frac{1}{2}T_2$.

Do rozwiązania należy załączyć obrazy poszczególnych etapów algorytmu oraz podać progi $T_1,T_2. \\$

8. Poprawa jakości binaryzacji obrazu * (1)

Zacieniony obraz KaszubskieNuty.png należy przetworzyć wstępnie przed wykonaniem binaryzacji.

Proszę zaproponować kroki mające na celu usunięcie zacienienia w obrazie. Do rozwiązania proszę załączyć obrazy wyjściowe kolejnych kroków przetwarzania wstępnego i porównać wynik binaryzacji obrazu bez korekty i z wykonaną korektą zacienienia. Proszę podać wybraną metodę binaryzacji.

9. Segmentacja progiem zmiennym * (3)

Obraz Kopernik.png o wymiarach 345×345 ma zostać progowany progiem zmiennym. W tym celu należy wyznaczyć progi lokalne z histogramów w podregionach o wymiarach 23×23 , wykonać interpolację biliniową wartości progowych T(m,n) dla wszystkich pikseli obrazu i wykonać segmentację

według g(m, n) > T(m, n).

Proszę porównać wynik segmentacji obrazu progiem zmiennym z segmentacją progiem globalnym oraz metodą binaryzacji zapoponowaną w zadaniu 4(c) w zestawie zadań nr 3.

