

Freescale Semiconductor, Inc.

Data Sheet: Technical Data

K82P121M150SF5 Rev. 1, 09/2015

Kinetis K82 Sub-Family

High performance ARM® Cortex®-M4F MCU with up to 256KB of Flash, 256KB of SRAM, Full Speed USB connectivity, enhanced Security, and QuadSPI for interfacing to Serial NOR flash

The K82 sub-family extends Kinetis products with new hardware security mechanisms including decryption from serial NOR flash memory, AES128, AES256 with side band attack protection, and Elliptical Curve Cryptography acceleration. These advancements are done while maintaining a high level of compatibility with previous Kinetis devices. The MCUs range in total flash space upto 256KB and have 256KB of SRAM. The QuadSPI interface supports connections to Non-Volatile Memory for data or code. The extended memory resources and new security features allow developers to enhance their embedded applications with greater capability.

MK82FN256VDC15 MK82FN256VLL15 MK82FN256VLQ15 MK82FN256CAx15

Performance

 Up to 150 MHz ARM Cortex-M4 based core with DSP instructions and Single Precision Floating Point unit

Memories and memory expansion

- Up to 256 KB program flash with 256 KB RAM
- · FlexBus external bus interface and SDRAM controller
- · Dual QuadSPI with OTF decryption and XIP
- 32 KB Boot ROM with built in bootloader
- · Supports SDR and DDR serial flash and octal configurations

System and Clocks

- Multiple low-power modes
- · Memory protection unit with multi-master protection
- 3 to 32 MHz main crystal oscillator
- 32 kHz low power crystal oscillator
- · 48 MHz internal reference

Timers

- One 4 ch-Periodic interrupt timer
- Two 16-bit low-power timer PWM modules
- Two 8-ch motor control/general purpose/PWM timers
- Two 2-ch quadrature decoder/general purpose timers
- Real-time clock with independent 3.3V power domain
- Programmable delay block

Human-machine interface

- Low-power hardware touch sensor interface (TSI)
- General-purpose input/output

Analog modules

- One 16-bit SAR ADCs, two 6-bit DAC and one 12-bit DAC
- Two analog comparators (CMP) containing a 6-bit DAC and programmable reference input
- Voltage reference 1.2V

Operating Characteristics

- Main VDD Voltage and Flash write voltage range:1.71V-3.6 V
- Temperature range (ambient): -40 to 105°C
- Independent V_{DDIO} for PORTE (QuadSPI): 1.71V-3.6 V

Communication interfaces

- USB full-/low-speed On-the-Go controller
- Secure Digital Host Controller (SDHC) and FlexIO
- One I2S module, three SPI, four I2C modules and five LPUART modules

Security

- LP Trusted Crypto (LTC) hardware accelerators supporting AES, DES, 3DES, RSA and ECC
- Hardware random-number generator
- Supports DES, AES, SHA accelerator (CAU)
- Multiple levels of embedded flash security

Ordering Information

Part Number	Mer	Maximum number of I\O's	
	Flash	SRAM	
MK82FN256VDC15	256 KB	256 KB	87
MK82FN256VLL15	256 KB	256 KB	66
MK82FN256CAx15R ¹	256 KB	256 KB	87
MK82FN256VLQ15 ²	256 KB	256 KB	102

- 1. The 121-pin WLCSP package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

 2. The 144-pin LQFP package for this product is not yet available, however it is included in a Package Your Way program
- for Kinetis MCUs. Visit freescale.com/KPYW for more details.

Related Resources

Туре	Description	Resource
Product Selector	The Product Selector lets you find the right Kinetis part for your design.	K-Series Product Selector
Fact Sheet	The Fact Sheet gives overview of the product key features and its uses.	K8x Fact Sheet
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	K82P121M150SF5RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document.
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	Kinetis_K_1N03P ¹
Package drawing	Package dimensions are provided in package drawings.	 LQFP 100-pin: 98ASS23308W¹ XFBGA 121-pin: 98ASA00595D¹ LQFP 144-pin: 98ASS23177W² WLCSP 121-pin: Under development²

- 1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.
- 2. This package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

Figure 1. K82 Block Diagram

Table of Contents

1	Rati	ngs5	3.5.2 CMP and 6-bit DAC electrical specifications	50
	1.1	Thermal handling ratings5	3.5.3 12-bit DAC electrical characteristics	52
	1.2	Moisture handling ratings 5	3.5.4 Voltage reference electrical specifications	55
	1.3	ESD handling ratings5	3.6 Timers	56
	1.4	Voltage and current operating ratings5	3.7 Communication interfaces	56
		1.4.1 Recommended POR Sequencing6	3.7.1 EMV SIM specifications	57
2	Ger	neral	3.7.2 USB VREG electrical specifications	61
	2.1	AC electrical characteristics8	3.7.3 USB DCD electrical specifications	62
	2.2	Nonswitching electrical specifications9	3.7.4 DSPI switching specifications (limited voltage	Э
		2.2.1 Voltage and current operating requirements9	range)	63
		2.2.2 HVD, LVD and POR operating requirements10	3.7.5 DSPI switching specifications (full voltage	
		2.2.3 Voltage and current operating behaviors 11	range)	64
		2.2.4 Power mode transition operating behaviors13	3.7.6 I2C switching specifications	66
		2.2.5 Power consumption operating behaviors14	3.7.7 UART switching specifications	66
		2.2.6 Electromagnetic Compatibility (EMC)	3.7.8 LPUART switching specifications	66
		specifications20	3.7.9 SDHC specifications	67
		2.2.7 Designing with radiated emissions in mind 20	3.7.10 I2S switching specifications	68
		2.2.8 Capacitance attributes	3.8 Human-machine interfaces (HMI)	74
	2.3	Switching specifications21	3.8.1 TSI electrical specifications	74
		2.3.1 Device clock specifications	4 Dimensions	74
		2.3.2 General switching specifications21	4.1 Obtaining package dimensions	74
	2.4	Thermal specifications23	5 Pinout	75
		2.4.1 Thermal operating requirements23	5.1 K82 Signal Multiplexing and Pin Assignments	75
		2.4.2 Thermal attributes	5.2 Recommended connection for unused analog and	
3	Peri	pheral operating requirements and behaviors24	digital pins	82
	3.1	Core modules24	5.3 K82 Pinouts	84
		3.1.1 Debug trace timing specifications	6 Ordering parts	88
		3.1.2 JTAG electricals25	6.1 Determining valid orderable parts	88
	3.2	Clock modules	7 Part identification	89
		3.2.1 MCG specifications	7.1 Description	89
		3.2.2 IRC48M specifications	7.2 Format	89
		3.2.3 Oscillator electrical specifications	7.3 Fields	89
		3.2.4 32 kHz oscillator electrical characteristics34	7.4 Example	90
	3.3	Memories and memory interfaces	8 Terminology and guidelines	90
		3.3.1 QuadSPI AC specifications34	8.1 Definitions	90
		3.3.2 Flash electrical specifications39	8.2 Examples	91
		3.3.3 Flexbus switching specifications41	8.3 Typical-value conditions	91
		3.3.4 SDRAM controller specifications43	8.4 Relationship between ratings and operating	
	3.4	Security and integrity modules	requirements	92
	3.5	Analog	8.5 Guidelines for ratings and operating requirements	92
		3.5.1 ADC electrical specifications46	9 Revision History	92

1 Ratings

1.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

1.4 Voltage and current operating ratings

Ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{DDIO_E}	V _{DDIO_E} is an independent voltage supply for PORTE ¹	-0.3	3.8	V
V _{BAT}	RTC supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	300	mA
V _{IO}	Input voltage (except PORTE, VBAT domain pins, and USB0) ²	-0.3	V _{DD} + 0.3	V
V _{IO_E}	PORTE input voltage ³	-0.3	$V_{DDIO_E} + 0.3$	V
I _D	Maximum current single pin limit (digital output pins)	-25	25	mA
VREGIN	USB regulator input	-0.3	6.0	V
V _{USB0_Dx}	USB0_DP and USB_DM input voltage	-0.3	3.63	V

V_{DDIO_E} is independent of the V_{DD} domain and can operate at a voltage independent of V_{DD}. However, it is required that the V_{DD} domain be powered up before V_{DDIO_E}. V_{DDIO_E} must never be higher than V_{DD} during power ramp up, or power down. V_{DD} and V_{DDIO_E} may ramp together if tied to the same power supply.

1.4.1 Recommended POR Sequencing

Cases

- VDD = VDDIO_E
- VDD > VDDIO_E
- VDD < VDDIO_E

^{2.} Includes ADC, CMP, and RESET_b inputs.

^{3.} PORTE analog input voltages cannot exceed V_{DDIO_E} supply when $V_{DD} \ge V_{DDIO_E}$. PORTE analog input voltages cannot exceed V_{DD} supply when $V_{DD} < V_{DDIO_E}$.

Figure 2. VDD = VDDIO_E

Figure 3. VDD > VDDIO_E

Figure 4. VDD < VDDIO_E

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

Figure 5. Input signal measurement reference

All digital I/O switching characteristics assume:

1. output pins

- have C_L=15pF loads,
- are slew rate disabled, and
- are normal drive strength

2. input pins

• have their passive filter disabled (PORTx_PCRn[PFE]=0)

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	3.6	V	
V_{DDIO_E}	Supply voltage	1.71	3.6	V	
V_{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{\rm DD} - V_{\rm DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
V _{SS} – V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V_{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage	$0.7 \times V_{DD}$	_	V	
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	$0.75 \times V_{DD}$	_	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V				
V _{IL}	Input low voltage	_	$0.35 \times V_{DD}$	V	
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	_	$0.3 \times V_{DD}$	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V				
V _{IH_E}	Input high voltage	0.7 ×	_	V	
	• 2.7 V ≤ V _{DDIO} _E ≤ 3.6 V	V _{DDIO_E}	_	V	
	• 1.7 V ≤ V _{DDIO_E} ≤ 2.7 V	0.75 × V _{DDIO_E}			
V _{IL_E}	Input low voltage	_	0.35 ×	V	
	• 2.7 V ≤ V _{DDIO_E} ≤ 3.6 V	_	V _{DDIO_E}	V	
	• 1.7 V ≤ V _{DDIO_E} ≤ 2.7 V		$0.3 \times V_{DDIO_E}$		
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
V _{HYS_E}	Input hysteresis	0.06 × V _{DDIO_E}	_	V	
I _{ICIO}	I/O pin negative DC injection current — single pin $ \bullet \ \ V_{IN} < V_{SS} \text{-} 0.3 V $	-5	_	mA	1

Table 1. Voltage and current operating requirements (continued)

Symbol	Description	Min.	Max.	Unit	Notes
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection	-25	_	mA	
V _{ODPU}	Pseudo Open drain pullup voltage level	V_{DD}	V_{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	
V _{RFVBAT}	V _{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	_	V	

All I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD} or V_{DDIO_E}. If V_{IN} is less than -0.3V, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(-0.3-V_{IN})/II_{ICIO}I. The actual resistor value should be an order of magnitude higher to tolerate transient voltages.

2.2.2 HVD, LVD and POR operating requirements Table 2. V_{DD} supply HVD, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{HVDH}	High Voltage Detect (High Trip Point)	_	3.72	_	V	
V _{HVDL}	High Voltage Detect (Low Trip Point)	_	3.46	_	V	
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V_{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V_{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V_{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	60	_	mV	
V_{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V_{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V_{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	40	_	mV	

^{2.} Open drain outputs must be pulled to VDD.

Table 2. V_{DD} supply HVD, LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

1. Rising threshold is the sum of falling threshold and hysteresis voltage

NOTE

There is no LVD circuit for VDDIO domain

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

2.2.3 Voltage and current operating behaviors

Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
V _{OH}	Output high voltage — normal drive strength					2, 3
	IO Group 1	V _{BAT} – 0.5	_	_	V	
	• $2.7 \text{ V} \le \text{V}_{\text{BAT}} \le 3.6 \text{ V}, \text{I}_{\text{OH}} = -5 \text{mA}$ • $1.71 \text{ V} \le \text{V}_{\text{BAT}} \le 2.7 \text{ V}, \text{I}_{\text{OH}} = -2.5 \text{mA}$	V _{BAT} – 0.5	_	_	V	
	IO Groups 2 and 3	V _{DD} – 0.5	_	_	V	
	 2.7 V ≤ V_{DD} ≤ 3.6 V, I_{OH} = -10mA 1.71 V ≤ V_{DD} ≤ 2.7 V, I_{OH} = -5mA 	V _{DD} - 0.5	_	_	V	
	IO Group 4	V _{DDIO_E} - 0.5	_	_	V	
	 2.7 V ≤ V_{DDIO_E} ≤ 3.6 V, I_{OH} = -5mA 1.71 V ≤ V_{DDIO_E} ≤ 2.7 V, I_{OH} = -2.5mA 	$V_{DDIO_E} - 0.5$	_	_	V	
	Output high voltage — High drive strength					2
	IO Group 3	V _{DD} – 0.5		_	V	
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -20 \text{mA}$ • $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OH} = -10 \text{mA}$	V _{DD} – 0.5	_	_	V	
	IO Group 4	V _{DDIO_E} - 0.5	_	_	V	
	• $2.7 \text{ V} \le \text{V}_{\text{DDIO_E}} \le 3.6 \text{ V}, \text{I}_{\text{OH}} = -15\text{mA}$ • $1.71 \text{ V} \le \text{V}_{\text{DDIO_E}} \le 2.7 \text{ V}, \text{I}_{\text{OH}} = -7.5\text{mA}$	V _{DDIO_E} - 0.5	_	_	V	
I _{OHT}	Output high current total for all ports	_		100	mA	
V _{OL}	Output low voltage — normal drive strength					2, 4, 5
	IO Group 1					

Table 4. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	• 2.7 V ≤ V _{BAT} ≤ 3.6 V, I _{OL} = -5mA	_	_	0.5	V	
	• 1.71 V \leq V _{BAT} \leq 2.7 V, I _{OL} = -2.5mA	_	_	0.5	V	
	IO Groups 2 and 3					
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = -10 \text{mA}$	_	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = -5mA	_	_	0.5	V	
	IO Group 4					
	• $2.7 \text{ V} \le \text{V}_{\text{DDIO E}} \le 3.6 \text{ V}, \text{I}_{\text{OL}} = -5 \text{mA}$	_	_	0.5	V	
	• 1.71 V \leq V _{DDIO_E} \leq 2.7 V, I _{OL} = -2.5mA	_	_	0.5	V	
	Output low voltage — High drive strength					2, 4
	IO Group 3					
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = -20 \text{mA}$	-	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = -10mA	_	_	0.5	V	
	IO Group 4	_	_	0.5	V	
	• $2.7 \text{ V} \le \text{V}_{\text{DDIO}_{\text{E}}} \le 3.6 \text{ V}, \text{I}_{\text{OL}} = -15\text{mA}$ • $1.71 \text{ V} \le \text{V}_{\text{DDIO}_{\text{E}}} \le 2.7 \text{ V}, \text{I}_{\text{OL}} = -7.5\text{mA}$	_	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	_	100	mA	
I _{IN}	Input leakage current					6, 7, 8
	V _{DD} domain pins		0.000	0.5		
	• V _{SS} ≤ V _{IN} ≤ V _{DD}	_	0.002	0.5	μΑ	
		_	0.002	0.5	μA	
	PORTE pins					
	 V_{SS} ≤ V_{IN} ≤ V_{DDIO_E} 	_	0.002	0.5	μA	
	V _{BAT} domain pins					
	• V _{SS} ≤ V _{IN} ≤ V _{BAT}					
R _{PU}	Internal pullup resistors(except RTC_WAKEUP pins)	20	_	50	kΩ	9
R _{PD}	Internal pulldown resistors (except RTC_WAKEUP pins)	20	_	50	kΩ	10

- 1. Typical values characterized at 25°C and V_{DD} = 3.6V unless otherwise noted.
- 2. IO Group 1 includes V_{BAT} domain pins: RTC_WAKEUP_b. IO Group 2 includes V_{DD} domain pins: PORTA, PORTB, PORTC, and PORTD, except PTA4. IO Group 3 includes V_{DD} domain pins: PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7. IO Group 4 includes $V_{DDIO\ E}$ domain pins: PORTE.
- 3. PTA4 has lower drive strength: $I_{OH} = -5$ mA for high V_{DD} range; $I_{OH} = -2.5$ mA for low V_{DD} range.
- 4. Open drain outputs must be pulled to V_{DD} .
- 5. PTA4 has lower drive strength: $I_{OL} = 5mA$ for high V_{DD} range; $I_{OL} = 2.5mA$ for low V_{DD} range. 6. V_{DD} domain pins include ADC, CMP, and RESET_b inputs. Measured at $V_{DD} = 3.6V$.
- 7. PORTE analog input voltages cannot exceed V_{DDIO_E} supply when $V_{DD} \ge V_{DDIO_E}$. PORTE analog input voltages cannot exceed V_{DD} supply when $V_{DD} \ ^{<} \ V_{DDIO_E}.$
- 8. V_{BAT} domain pins include EXTAL32, XTAL32, and RTC_WAKEUP_b pins.
- 9. Measured at minimum supply voltage and V_{IN} = V_{SS}
- 10. Measured at minimum supply voltage and $V_{IN} = V_{DD}$

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100MHz
- Bus clock = 50MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz
- MCG mode=FEI

Table 5. Power mode transition operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V _{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	_	300	μs	
	• VLLS0 -> RUN	_	154	μs	
	• VLLS1 -> RUN	_	154	μs	
	• VLLS2 -> RUN	_	92	μs	
	• VLLS3 -> RUN	_	92	μs	
	• LLS2 -> RUN	_	6.3	μs	
	• LLS3 -> RUN	_	6.3	μs	
	• VLPS -> RUN	_	5.3	μs	
	• STOP -> RUN	_	5.3	μs	

Table 6. Low power mode peripheral adders — typical value

Symbol	Description		Temperature (°C)					Unit
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μА
I _{IREFSTEN32KH} z	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μА

Table 6. Low power mode peripheral adders — typical value (continued)

Symbol	Description			Tempera	ature (°C	;)		Unit
		-40	25	50	70	85	105	
EREFSTEN4MH z	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
I _{EREFSTEN32K} Hz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.							nA
	VLLS1	440	490	540	560	570	580	
	VLLS3	440	490	540	560	570	580	
	LLS2	490	490	540	560	570	680	
	LLS3	490	490	540	560	570	680	
	VLPS	510	560	560	560	610	680	
	STOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μА
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							μΑ
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	
	OSCERCLK (4 MHz external crystal)	214	234	246	254	260	268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μΑ
I _{ADC}	ADC peripheral adder combining the measured values at V _{DD} and V _{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	366	366	366	366	366	366	μА

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Table 7. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from internal flash @ 3.0V					2
	• @ 25°C	_	28	31.55	mA	
	• @ 105°C	_	39.6	50.10		
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from internal flash @ 3.0V					3, 4
	• @ 25°C	_	54	57.55	mA	
	• @ 105°C	_	70	80.50		
I _{DD_RUNCO}	Run mode current in compute operation - 120 MHz core / 24 MHz flash / bus clock disabled, code of					5
	while(1) loop executing from internal flash at 3.0 V • @ 25°C	_	25.1	28.65	mA	
	• @ 105°C	_	37.8	48.30		
I _{DD_HSRUN}	Run mode current — all peripheral clocks disabled, code executing from internal flash @ 3.0V					6
	• @ 25°C	_	38	40.70	mA	
	• @ 105°C	_	51.7	65.04		
I _{DD_HSRUN}	Run mode current — all peripheral clocks enabled, code executing from internal flash @ 3.0V					7, 8
	• @ 25°C	_	48	50.70	mA	
	• @ 105°C	_	63.7	77.04		
I _{DD_HSRUNCO}	HSRun mode current in compute operation – 150 MHz core/ 25 MHz flash / bus clock disabled, code of while(1) loop executing from internal flash at 3.0V				_	
	• @ 25°C	_	34.5	37.2	mA	
	• @ 105°C	_	50.3	63.64		
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled					9
	• @ 25°C	_	14.2	19.87	mA	
	• @ 105°C	_	26.2	35.66		
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks enabled					9
	poliphoral diddied dilabida	_	24.4	30.07	mA	

Table 7. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• @ 25°C	_	36.6	46.06		
	• @ 105°C					
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all					10
	peripheral clocks disabled • @ 25°C	_	0.94	1.10	mA	
	• @ 105°C	_	3.99	7.62		
			0.99	7.02		
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled					11
	• @ 25°C	_	1.36	1.52	mA	
	• @ 105°C	_	4.4	8.03		
1	Very-low-power run mode current in compute					12
I _{DD_VLPRCO_} CM	operation - 4 MHz core / 0.8 MHz flash / bus clock					12
	disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing					
	from internal flash at 3.0 V	_	1000	_	μΑ	
	• @ 25°C	_	3650	_		
	• @ 105°C					
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus at 3.0 V					5
	@ 25°C	_	3.95	5.75	mA	
	• @ 105°C	_	17.71	27.15		
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all					13
_	peripheral clocks disabled • @ 25°C	_	0.45	0.63	mA	
	• @ 105°C	_	3.28	6.87		
			0.20	0.07		
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks enabled		0.75	0.93	mA	
	• @ 25°C	_	0.75		IIIA	
	• @ 105°C	_	3.6	7.19		
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ 25°C	_	0.55	0.85	mA	
	• @ 105°C	_	5.67	9.59		
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @ 25°C	_	91.48	240.90	μΑ	
	• @ 105°C	_	1798.38	3796.94		
I _{DD_LLS2}	Low leakage stop mode current at 3.0 V					
_	• @ 25°C	_	4.94	7.14	μA	
	• @ 105°C	_	73.68	121.9		

Table 7. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_LLS3}	Low leakage stop mode current at 3.0 V					
	• @ 25°C	-	7.78	13.16	μA	
	• @ 105°C	_	160.91	284.31		
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					
	• @ 25°C	_	5.63	9.34	μA	
	• @ 105°C	_	117.89	202.55		
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	• @ 25°C	_	3.13	4.04	μA	
	• @ 105°C	_	29.49	48.7		
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ 25°C	_	1.05	1.36	μA	
	• @ 105°C	_	15.31	18.56		
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with					
	POR detect circuit enabled	_	0.62	0.84	μA	
	• @ 25°C	_	13.92	16.95		
	• @ 105°C		10.02	10.00		
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with					
	POR detect circuit disabled	-	0.33	0.53	μΑ	
	• @ 25°C	_	13.42	16.44		
	• @ 105°C					
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0					
	V	-	0.19	0.23	μΑ	
	• @ 25°C	_	2.56	3.71		
	• @ 105°C					
I _{DD_VBAT}	Average current when CPU is not accessing RTC					14
	registers @ 1.8V	-	0.57	0.64	μA	
	• @ 25°C	_	2.52	5.82		
	• @ 105°C					

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled.
- 3. 150 MHz core and system clock, 75 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configure for PEE mode. All peripheral clocks enabled.
- 4. Max values are measured with CPU executing DSP instructions.
- 5. MCG configured for PEE mode.
- 6. 150 MHz core and system clock, 50 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled.

General

- 150 MHz core and system clock, 50 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled.
- 8. Max values are measured with CPU executing DSP instructions.
- 9. 120 MHz core and system clock, 60MHz bus clock, and FlexBus. MCG configured for PEE mode.
- 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 11. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 12. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
- 13. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 14. Includes 32kHz oscillator current and RTC operation.

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE
- $V_{DD}=V_{DDA}=V_{DDIO_E}$

Figure 6. Run mode supply current vs. core frequency

Figure 7. VLPR mode supply current vs. core frequency

2.2.6 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from Freescale on request.

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	High Speed run mo	ode			
f _{SYS}	System and core clock	_	150	MHz	
	Normal run mode (and High Speed run mode u	nless otherwi	se specified a	bove)	
f _{SYS}	System and core clock	_	120	MHz	
	System and core clock when Full Speed USB in operation	20	_	MHz	
f _{BUS}	Bus clock	_	75	MHz	
FB_CLK	FlexBus clock	_	75	MHz	
f _{FLASH}	Flash clock	_	28	MHz	
f _{LPTMR}	LPTMR clock	_	25	MHz	
	VLPR mode ¹	•			
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock	_	4	MHz	
FB_CLK	FlexBus clock	_	4	MHz	
f _{FLASH}	Flash clock	_	1	MHz	
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	25	MHz	
f _{FlexCAN_ERCLK}	FlexCAN external reference clock	_	8	MHz	
f _{I2S_MCLK}	I2S master clock	_	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock	_	4	MHz	

^{1.} The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

2.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CMT, timers, and I^2C signals.

Table 10. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	NMI_b pin interrupt pulse width (analog filter enabled) — Asynchronous path	100	_	ns	
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	50	_	ns	3
	External RESET_b input pulse width (digital glitch filter disabled)	100	_	ns	
	Port rise and fall time (high drive strength)				4, 5
	Slew enabled	_	34	ns	
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	16	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V				
	Slew disabled	_	10	ns	
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	8	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V				
	Port rise and fall time (low drive strength)				6, ⁷
	Slew enabled	_	34	ns	
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	16	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V				
	Slew disabled	_	7	ns	
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	5	ns	
	• 2.7 ≤ V _{DD} ≤ 3.6V				
	Port rise and fall time (high drive strength)				5, 8
	Slew enabled	_	34	ns	
	• 1.71 ≤ V _{DDIO_E} ≤ 2.7V	_	16	ns	
	• 2.7 ≤ V _{DDIO_E} ≤ 3.6V				
	Slew disabled	_	7	ns	
	• 1.71 ≤ V _{DDIO_E} ≤ 2.7V	_	5	ns	
	• 2.7 ≤ V _{DDIO_E} ≤ 3.6V				
	Port rise and fall time (low drive strength)				7, 8
	Slew enabled	_	34	ns	
		_	16	ns	

Symbol	Description	Min.	Max.	Unit	Notes
	• 1.71 ≤ V _{DDIO_E} ≤ 2.7V	_	7	ns	
	• 2.7 ≤ V _{DDIO_E} ≤ 3.6V	_	5	ns	
	Slew disabled		-		
	• 1.71 ≤ V _{DDIO_E} ≤ 2.7V				
	• 2.7 ≤ V _{DDIO_E} ≤ 3.6V				

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry in run modes.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7.
- 5. 75 pF load.
- 6. Ports A, B, C, and D.
- 7. 25 pF load.
- 8. Port E pins only.

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1,

 Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is:

2.4.2 Thermal attributes

Table 12. Thermal attributes

Board type	Symbol	Description	100 LQFP	121 XFBGA	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	52	71	°C/W	1
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	39	36.8	°C/W	1

 $T_J = T_A + \theta_{JA} x$ chip power dissipation

Table 12. Thermal attributes (continued)

Board type	Symbol	Description	100 LQFP	121 XFBGA	Unit	Notes
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	42	55	°C/W	1
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	33	32.2	°C/W	1
_	$R_{\theta JB}$	Thermal resistance, junction to board	24	18	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	11	12.2	°C/W	3
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	2	0.25	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)* with the single layer board horizontal. Board meets JESD51-9 specification.
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)*.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 Debug trace timing specifications

Table 13. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	dependent	MHz
T _{wl}	Low pulse width	2	_	ns
T _{wh}	High pulse width	2	_	ns
T _r	Clock and data rise time	_	3	ns
T _f	Clock and data fall time	_	3	ns
T _s	Data setup	1.5	_	ns
T _h	Data hold	1.0	_	ns

Figure 8. TRACE_CLKOUT specifications

Figure 9. Trace data specifications

3.1.2 JTAG electricals

Table 14. JTAG limited voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	2.0	_	ns
J7	TCLK low to boundary scan output data valid	_	28	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	1		ns

Table 14. JTAG limited voltage range electricals (continued)

Symbol	Description	Min.	Max.	Unit
J11	TCLK low to TDO data valid	_	19	ns
J12	TCLK low to TDO high-Z	_	17	ns
J13	TRST assert time	100	_	ns
J14	TRST setup time (negation) to TCLK high	8	_	ns

Table 15. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	25	_	ns
	Serial Wire Debug	12.5	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	2.0	_	ns
J7	TCLK low to boundary scan output data valid	_	30.6	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	1.0	_	ns
J11	TCLK low to TDO data valid	_	19.0	ns
J12	TCLK low to TDO high-Z	_	17.0	ns
J13	TRST assert time	100	_	ns
J14	TRST setup time (negation) to TCLK high	8	_	ns

Figure 10. Test clock input timing

Figure 11. Boundary scan (JTAG) timing

Figure 12. Test Access Port timing

Figure 13. TRST timing

3.2 Clock modules

3.2.1 MCG specifications

Table 16. MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	_	32.768	_	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed	31.25	_	39.0625	kHz	
I _{ints}	Internal reference (slow clock) current	_	20	_	μA	
t _{irefsts}	[O:] Internal reference (slow clock) startup time	_	32	_	μs	
$\Delta f_{dco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature	_	±1	± 2	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C	_	± 0.5	± 1	%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C	_	4	_	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	_	5	MHz	
I _{intf}	Internal reference (fast clock) current	_	25	_	μA	
t _{irefsts}	[L:] Internal reference startup time (fast clock)	_	10	15	μs	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00	(3/5) x f _{ints_t}	_	_	kHz	
	ext clk freq: above (3/5)f _{int} never reset					

Table 16. MCG specifications (continued)

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
	ext clk freq: betwe reset (phase depe	en (2/5)fint and (3/5)f _{int} maybe ndency)					
	ext clk freq: below	(2/5)f _{int} always reset					
f _{loc_high}	Loss of external cl RANGE = 01, 10,	ock minimum frequency — or 11	(16/5) x f _{ints_t}	_	_	kHz	
	ext clk freq: above	(16/5)f _{int} never reset					
	ext clk freq: betwe maybe reset (phas	en (15/5)f _{int} and (16/5)f _{int} se dependency)					
	ext clk freq: below	(15/5)f _{int} always reset					
		FL	.L				
f _{fII_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco_ut}	DCO output	Low range	16.0	23.04	26.66	MHz	2
	frequency range — untrimmed	(DRS=00, DMX32=0)					
	_ drittillined	$640 \times f_{ints_ut}$					
		Mid range	32.0	46.08	53.32		
		(DRS=01, DMX32=0)					
		$1280 \times f_{ints_ut}$					
		Mid-high range	48.0	69.12	79.99		
		(DRS=10, DMX32=0)					
		1920 × f _{ints_ut}					
		High range	64.0	92.16	106.65		
		(DRS=11, DMX32=0)					
		2560 × f _{ints_ut}					
		Low range	18.3	26.35	30.50		
		(DRS=00, DMX32=1)					
		$732 \times f_{ints_ut}$					
		Mid range	36.6	52.70	60.99		
		(DRS=01, DMX32=1)					
		$1464 \times f_{ints_ut}$					
		Mid-high range	54.93	79.09	91.53		
		(DRS=10, DMX32=1)					
		$2197 \times f_{ints_ut}$					
		High range	73.23	105.44	122.02		
		(DRS=11, DMX32=1)					
		$2929 \times f_{ints_ut}$					
f _{dco}	DCO output	Low range (DRS=00)	20	20.97	25	MHz	3, 4
	frequency range	640 × f _{fll_ref}					
		Mid range (DRS=01)	40	41.94	50	MHz]

Table 16. MCG specifications (continued)

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		1280 × f _{fll_ref}					
		Mid-high range (DRS=10)	60	62.91	75	MHz	
		1920 × f _{fll_ref}					
		High range (DRS=11)	80	83.89	100	MHz	1
		2560 × f _{fll_ref}					
f _{dco_t_DMX3}	DCO output	Low range (DRS=00)	_	23.99	_	MHz	5, 6
2	frequency	732 × f _{fll_ref}					
		Mid range (DRS=01)	_	47.97	_	MHz	-
		1464 × f _{fll_ref}					
		Mid-high range (DRS=10)	_	71.99	_	MHz	1
		2197 × f _{fll_ref}					
		High range (DRS=11)	_	95.98	_	MHz	-
		2929 × f _{fll_ref}					
J _{cyc_fll}	FLL period jitter					ps	
•cyc_iii	• f _{DCO} = 48 M	IH ₇	_	180	_	Po	
	• f _{DCO} = 98 M		_	150	_		
t _{fll_acquire}	FLL target freque	ncy acquisition time	_	_	1	ms	7
-		Р	LL				
f _{pll_ref}	PLL reference free	quency range	8	_	16	MHz	
f _{vcoclk_2x}	VCO output frequ	ency	180	_	360	MHz	
f _{vcoclk}	PLL output freque	ency	90	_	180	MHz	
f _{vcoclk_90}	PLL quadrature o	utput frequency	90	_	180	MHz	
I _{pll}		rent 6 MHz (f _{pll_ref} = 8 MHz, VDIV 22, PRDIV divide=1)	_	1.1	_	mA	8
I _{pll}	PLL operating cur • VCO @ 360 multiplier =	rent 0 MHz (f _{pll_ref} = 8 MHz, VDIV 45, PRDIV divide=1)	_	2	_	mA	8
J _{cyc_pll}	PLL period jitter (I	RMS)					9
	• f _{vco} = 180 M	1Hz	_	100	_	ps	
	• f _{vco} = 360 M		_	75		ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					9
-	• f _{vco} = 180 M	1Hz	_	600		ps	
	• f _{vco} = 360 M		_	300		ps	
D _{unl}	Lock exit frequence	cy tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector dete	ection time	_	_	$150 \times 10^{-6} + 1075(1/f_{pll_ref})$	S	10

- This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. This applies when SCTRIM at value (0x80) and SCFTRIM control bit at value (0x0).
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- 4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco.t}) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.2.2 IRC48M specifications

Table 17. IRC48M specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	_	3.6	V	
I _{DD48M}	Supply current	_	520	_	μΑ	
f _{irc48m}	Internal reference frequency	_	48	_	MHz	
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature • Regulator disable (USB_CLK_RECOVER_IRC_EN[REG_EN]=0) • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1)	_	± 0.5 ± 0.5	± 1.0	%f _{irc48m}	
Δf _{irc48m_ol_hv}	, , , , , , , , , , , , , , , , , , , ,	_	± 0.5	± 1.0	%f _{irc48m}	
Δf _{irc48m_cl}	Closed loop total deviation of IRC48M frequency over voltage and temperature	_	_	± 0.1	%f _{host}	1
J _{cyc_irc48m}	Period Jitter (RMS)	_	35	150	ps	
t _{irc48mst}	Startup time	_	2	3	μs	2

- 1. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN]=1).
- 2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by one of the following settings:
 - USB_CLK_RECOVER_IRC_EN[IRC_EN]=1, or
 - MCG_C7[OSCSEL]=10, or
 - SIM_SOPT2[PLLFLLSEL]=11

3.2.3 Oscillator electrical specifications

3.2.3.1 Oscillator DC electrical specifications Table 18. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	_	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	600	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μΑ	
	• 16 MHz	_	950	_	μΑ	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	7.5	_	μA	
	• 4 MHz	_	500	_	μA	
	• 8 MHz (RANGE=01)	_	650	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3.25	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance	_	_	_		2, 3
C _y	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	ΜΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	_	МΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					

Table 18.	Oscillator DC electrical	specifications	(continued)	
-----------	--------------------------	----------------	-------------	--

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

- 1. V_{DD} =3.3 V, Temperature =25 °C, Internal capacitance = 20 pf
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x, C_y can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.2.3.2 Oscillator frequency specifications Table 19. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	1, 2
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Proper PC board layout procedures must be followed to achieve specifications.

Peripheral operating requirements and behaviors

Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

3.2.4 32 kHz oscillator electrical characteristics

3.2.4.1 32 kHz oscillator DC electrical specifications Table 20. 32kHz oscillator DC electrical specifications

Symbol	Symbol Description		Тур.	Max.	Unit
V _{BAT}	V _{BAT} Supply voltage		_	3.6	V
R _F	Internal feedback resistor	_	100	_	ΜΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	_	0.6	_	V

^{1.} When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

3.2.4.2 32 kHz oscillator frequency specifications Table 21. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	_	32.768	_	kHz	
t _{start}	Crystal start-up time	_	1000	_	ms	1
f _{ec_extal32}	Externally provided input clock frequency	_	32.768	_	kHz	2
V _{ec_extal32}	Externally provided input clock amplitude	700	_	V _{BAT}	mV	2, 3

- 1. Proper PC board layout procedures must be followed to achieve specifications.
- 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.
- 3. The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT} .

3.3 Memories and memory interfaces

3.3.1 QuadSPI AC specifications

- All data is based on a negative edge data launch from the device and a positive edge data capture, as shown in the timing diagrams in this section.
- Measurements are with a load of 15pf (1.8V) and 35pf (3V) on output pins. Input slew: 1ns
- Timings assume a setting of 0x0000_000x for QuadSPI _SMPR register (see the reference manual for details).

The following table lists the QuadSPI delay chain read/write settings. Refer the device reference manual for register and bit descriptions.

Mode	QuadSPI registers				
	QuadSPI_MCR[DQ S_EN]	QuadSPI_SOCCR[SOCCFG]	QuadSPI_MCR[SC LKCFG]	QuadSPI_FLSHC R[TDH]	
SDR	Yes	3Fh	5	No	Delay of 63 buffer and 64 mux
DDR	Yes	3Fh	1	2	Delay of 63 buffer and 64 mux
Hyperflash	RDS driven from Flash	0h	No	2	Delay of 1 mux

Table 22. QuadSPI delay chain read/write settings

SDR mode

Figure 14. QuadSPI input timing (SDR mode) diagram

NOTE

• The below timing values are with default settings for sampling registers like QuadSPI_SMPR.

Peripheral operating requirements and behaviors

- A negative time indicates the actual capture edge inside the device is earlier than clock appearing at pad.
- The below timing are for a load of 15pf (1.8V) and 35pf (3V) or output pads
- All board delays need to be added appropriately
- Input hold time being negative does not have any implication or max achievable frequency

Table 23. QuadSPI input timing (SDR mode) specifications

Symbol	Parameter	Value		Unit
		Min	Max	
T _{is}	Setup time for incoming data	4	-	ns
T _{ih}	Hold time requirement for incoming data	1.5	-	ns

Figure 15. QuadSPI output timing (SDR mode) diagram

Table 24. QuadSPI output timing (SDR mode) specifications

Symbol	Parameter	Value		Unit
		Min	Max	
T _{ov}	Output Data Valid	-	2.8	ns
T _{oh}	Output Data Hold	-1.4	-	ns
T _{ck}	SCK clock period	-	100	MHz
T _{css}	Chip select output setup time	2	-	ns
T _{csh}	Chip select output hold time	-1	-	ns

NOTE

For any frequency setup and hold specifications of the memory should be met.

DDR Mode

Figure 16. QuadSPI input timing (DDR mode) diagram

NOTE

- Numbers are for a load of 15pf (1.8V) and 35pf (3V)
- The numbers are for setting of hold condition in register QuadSPI_SMPR[DDRSNP]

Table 25. QuadSPI input timing (DDR mode) specifications

Symbol	Parameter	Value		Unit
		Min	Max	
T _{is}	Setup time for incoming data	4 (Without learning)	-	ns
		1 (With learning)		
T _{ih}	Hold time requirement for incoming data	1.5	-	ns

Figure 17. QuadSPI output timing (DDR mode) diagram

Table 26. QuadSPI output timing (DDR mode) specifications

Symbol	Parameter		Value	Unit
		Min Max		
T _{ov}	Output Data Valid	-	4.5	ns
T _{oh}	Output Data Hold	1.5	-	ns
T _{ck}	SCK clock period	-	75 (with learning)	MHz
		-	45 (without learning)	
T _{css}	Chip select output setup time	2	-	Clk(sck)
T _{csh}	Chip select output hold time	-1	-	Clk(sck)

Hyperflash mode

Figure 18. QuadSPI input timing (Hyperflash mode) diagram

Table 27. QuadSPI input timing (Hyperflash mode) specifications

Symbol	Parameter	Value		Unit
		Min	Max	
Ts _{MIN}	Setup time for incoming data	2	-	ns
Th _{MIN}	Hold time requirement for incoming data	2	-	ns

Figure 19. QuadSPI output timing (Hyperflash mode) diagram

Table 28. QuadSPI output timing (Hyperflash mode) specifications

Symbol	Parameter	Value		Unit
		Min	Max]
Tdv _{MAX}	Output Data Valid	-	4.3	ns
Tho	Output Data Hold	1.3	-	ns
Tclk _{SKMAX}	Ck to Ck2 skew max	-	T/4 + 0.5	ns
Tclk _{SKMIN}	Ck to Ck2 skew min	T/4 - 0.5	-	ns

NOTE

Maximum clock frequency = 75 MHz.

3.3.2 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.3.2.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 29. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	_	7.5	18	μs	_

Table 29. NVM program/erase timing specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversall}	Erase All high-voltage time	_	208	1808	ms	1

^{1.} Maximum time based on expectations at cycling end-of-life.

3.3.2.2 Flash timing specifications — commands Table 30. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec4k}	Read 1s Section execution time (flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	0.9	ms	1
t _{rdonce}	Read Once execution time	_	_	30	μs	1
t _{pgmonce}	Program Once execution time	_	100	_	μs	_
t _{ersall}	Erase All Blocks execution time	_	280	2100	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1

^{1.} Assumes 25 MHz flash clock frequency.

3.3.2.3 Flash high voltage current behaviors Table 31. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.3.2.4 Reliability specifications

Table 32. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes		
	Program Flash							
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	_		

^{2.} Maximum times for erase parameters based on expectations at cycling end-of-life.

Table 32.	NVM reliability	/ specifications	(continued))
-----------	-----------------	------------------	-------------	---

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	_
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

- Typical data retention values are based on measured response accelerated at high temperature and derated to a
 constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
 Engineering Bulletin EB619.
- 2. Cycling endurance represents number of program/erase cycles at $-40 \, ^{\circ}\text{C} \le T_{i} \le ^{\circ}\text{C}$.

3.3.3 Flexbus switching specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Table 33. Flexbus limited voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	_	11.8	ns	
FB3	Address, data, and control output hold	1.0	_	ns	1
FB4	Data and FB_TA input setup	6	_	ns	
FB5	Data and FB_TA input hold	0.0	_	ns	2

- 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.
- 2. Specification is valid for all FB_AD[31:0] and $\overline{\text{FB}}$ TA.

Table 34. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	_	12.6	ns	

Table 34. Flexbus full voltage range switching specifications (continued)

Num	Description	Min.	Max.	Unit	Notes
FB3	Address, data, and control output hold	1.0	_	ns	1
FB4	Data and FB_TA input setup	12.5	_	ns	
FB5	Data and FB_TA input hold	0	_	ns	2

- 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.
- 2. Specification is valid for all FB_AD[31:0] and FB_TA.

Figure 20. FlexBus read timing diagram

Figure 21. FlexBus write timing diagram

3.3.4 SDRAM controller specifications

Following figure shows SDRAM read cycle.

Figure 22. SDRAM read timing diagram

Table 35. SDRAM Timing (Full voltage range)

NUM	Characteristic ¹	Symbol	MIn	Max	Unit
	Operating voltage	1.71	3.6	V	
	Frequency of operation	_	CLKOUT	MHz	
D0	Clock period	1/CLKOUT	_	ns	2
D1	CLKOUT high to SDRAM address valid	t _{CHDAV}	-	11.2	ns
D2	CLKOUT high to SDRAM control valid	t _{CHDCV}		11.1	ns
D3	CLKOUT high to SDRAM address invalid	t _{CHDAI}	1.0	-	ns
D4	CLKOUT high to SDRAM control invalid	t _{CHDCI}	1.0	-	ns
D5	SDRAM data valid to CLKOUT high	t _{DDVCH}	12.0	-	ns
D6	CLKOUT high to SDRAM data invalid	t _{CHDDI}	1.0	-	ns
D7 ³	CLKOUT high to SDRAM data valid	t _{CHDDVW}	-	12.0	ns
D8 ³	CLKOUT high to SDRAM data invalid	t _{CHDDIW}	1.0	-	ns

^{1.} All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.

^{2.} CLKOUT is same as FB_CLK, maximum frequency can be 75 MHz

3. D7 and D8 are for write cycles only.

Table 36. SDRAM Timing (Limited voltage range)

NUM	Characteristic ¹	Symbol	MIn	Max	Unit
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	CLKOUT	MHz	
D0	Clock period	1/CLKOUT	_	ns	2
D1	CLKOUT high to SDRAM address valid	t _{CHDAV}	-	11.1	ns
D2	CLKOUT high to SDRAM control valid	t _{CHDCV}		11.1	ns
D3	CLKOUT high to SDRAM address invalid	t _{CHDAI}	1.0	-	ns
D4	CLKOUT high to SDRAM control invalid	t _{CHDCI}	1.0	-	ns
D5	SDRAM data valid to CLKOUT high	t _{DDVCH}	7.3	-	ns
D6	CLKOUT high to SDRAM data invalid	t _{CHDDI}	1.0	-	ns
D7 ³	CLKOUT high to SDRAM data valid	t _{CHDDVW}	-	11.1	ns
D8 ³	CLKOUT high to SDRAM data invalid	t _{CHDDIW}	1.0	-	ns

- 1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.
- 2. CLKOUT is same as FB_CLK, maximum frequency can be 75 MHz
- 3. D7 and D8 are for write cycles only.

Following figure shows an SDRAM write cycle.

Figure 23. SDRAM write timing diagram

3.4 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.5 Analog

3.5.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 37 and Table 38 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

3.5.1.1 ADC operating conditions Table 37. ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V_{DDA}	V_{DDA}	V	
V _{REFL}	ADC reference voltage low		V_{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 × VREFH	V	
		All other modes	VREFL	_	VREFH		
C _{ADIN}	Input capacitance	8-bit / 10-bit / 12-bit modes	_	4	5	pF	
R _{ADIN}	Input series resistance		_	2	5	kΩ	
R _{AS}	Analog source	13-bit / 12-bit modes					3
	resistance (external)	f _{ADCK} < 4 MHz	_	_	5	kΩ	
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	_	818.330	ksps	
		Continuous conversions enabled, subsequent conversion time					

^{1.} Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

^{2.} DC potential difference.

^{3.} This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.

^{4.} To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.

^{5.} For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 24. ADC input impedance equivalency diagram

3.5.1.2 ADC electrical characteristics

Table 38. ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	imes			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	• <12-bit modes	_	±1.4	±2.1		
DNL	Differential non-	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
	,	<12-bit modes	_	±0.2	-0.3 to		
INL	Integral non-linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5

Table 38. ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		• <12-bit modes	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^{5}$
		<12-bit modes	_	-1.4	-1.8		
EQ	Quantization error	• ≤13-bit modes	_	_	±0.5	LSB ⁴	
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	_	bits	
		• Avg = 4	11.4	13.1	_		
T. 15		401111111111111111111111111111111111111				bits	_
THD	Total harmonic distortion	16-bit differential mode		-94		dB	7
		• Avg = 32	94	_	dB		
		16-bit single-ended mode		-85			
		• Avg = 32	_	-05	_		
SFDR	Spurious free	16-bit differential mode			_	dB	7
	dynamic range	• Avg = 32	82	95			
		4.C. hit aireala aradad reada	70	00	_	dB	
		16-bit single-ended mode • Avg = 32	78	90			
		Avg = 32					
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
- 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.
- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

8. ADC conversion clock < 3 MHz

Figure 25. Typical ENOB vs. ADC_CLK for 16-bit differential mode

3.5.2 CMP and 6-bit DAC electrical specifications

Table 39. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} - 0.3	_	V_{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA

Table 39. Comparator and 6-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

- 1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD}=0.6 V.
- 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3. 1 LSB = V_{reference}/64

Figure 26. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Figure 27. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.5.3 12-bit DAC electrical characteristics

3.5.3.1 12-bit DAC operating requirements Table 40. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage		3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
C _L	Output load capacitance	_	100	pF	2
ΙL	Output load current	_	1	mA	

- 1. The DAC reference can be selected to be V_{DDA} or V_{REFH} .
- 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.5.3.2 12-bit DAC operating behaviors Table 41. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	_	_	150	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	_	700	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000		_	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	_	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode		_	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	_	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	_	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, V _{DDA} ≥ 2.4 V	60	_	90	dB	
T _{CO}	Temperature coefficient offset voltage		3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
A _C	Offset aging coefficient	_	_	100	μV/yr	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	_	_	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	• High power (SP _{HP})	1.2	1.7	_		
	• Low power (SP _{LP})	0.05	0.12	_		
СТ	Channel to channel cross talk	_	_	-80	dB	
BW	3dB bandwidth				kHz	
	• High power (SP _{HP})	550	_	_		
	• Low power (SP _{LP})	40		_		

- 1. Settling within ±1 LSB

- The INL is measured for 0 + 100 mV to V_{DACR} -100 mV
 The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV
 The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV with V_{DDA} > 2.4 V
 Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV

6. $V_{DDA} = 3.0 \text{ V}$, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 28. Typical INL error vs. digital code

Figure 29. Offset at half scale vs. temperature

3.5.4 Voltage reference electrical specifications

Table 42. VREF full-range operating requirements

Symbol	Description	Min. Max.		Unit	Notes
V_{DDA}	Supply voltage	3.6		V	
T _A	Temperature	Operating temperature range of the device		°C	
C _L	Output load capacitance	100		nF	1, 2

- 1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
- 2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 43. VREF full-range operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	_	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	_	1.197	V	1
V _{step}	Voltage reference trim step	_	0.5	_	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	_	80	mV	1
I _{bg}	Bandgap only current	_	_	80	μA	1
I _{Ip}	Low-power buffer current	_	_	360	uA	1
I _{hp}	High-power buffer current	_	_	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time	_	_	100	μs	
T _{chop_osc_st}	Internal bandgap start-up delay with chop oscillator enabled	_	_	35	ms	_
V_{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2	_	mV	1

^{1.} See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

Table 44. VREF limited-range operating requirements

S	ymbol	Description	Min.	Max.	Unit	Notes
	T _A	Temperature	0	50	°C	

Table 45. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

3.6 Timers

See General switching specifications.

3.7 Communication interfaces

^{2.} Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

3.7.1 EMV SIM specifications

Each EMV SIM module interface consists of a total of five pins.

The interface is designed to be used with synchronous Smart cards, meaning the EMV SIM module provides the clock used by the Smart card. The clock frequency is typically 372 times the Tx/Rx data rate; however, the EMV SIM module can also work with CLK frequencies of 16 times the Tx/Rx data rate.

There is no timing relationship between the clock and the data. The clock that the EMV SIM module provides to the Smart card is used by the Smart card to recover the clock from the data in the same manner as standard UART data exchanges. All five signals of the EMV SIM module are asynchronous with each other.

There are no required timing relationships between signals in normal mode. The smart card is initiated by the interface device; the Smart card responds with Answer to Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC 7816 defines reset and power-down sequences (for detailed information see ISO/IEC 7816).

Figure 30. EMV SIM Clock Timing Diagram

The following table defines the general timing requirements for the EMV SIM interface.

Table 46. Timing Specifications, High Drive Strength

ID	Parameter	Symbol	Min	Max	Unit
SI 1	EMV SIM clock frequency (EMVSIMn_CLK) ¹	S _{freq}	1	5	MHz
SI 2	EMV SIM clock rise time (EMVSIMn_CLK) ²	S _{rise}	_	0.09 × (1/Sfreq)	ns
SI 3	EMV SIM clock fall time (EMVSIMn_CLK) ²	S _{fall}	_	0.09 × (1/Sfreq)	ns
SI 4	EMV SIM input transition time (EMVSIMn_IO, EMVSIMn_PD)	S _{tran}	20	25	ns
Si 5	EMV SIM I/O rise time / fall time (EMVSIMn_IO) ³	Tr/Tf	_	1	ns
Si 6	EMV SIM RST rise time / fall time (EMVSIMn_RST) ⁴	Tr/Tf	_	1	ns

^{1. 50%} duty cycle clock,

3.7.1.1 EMV SIM Reset Sequences

Smart cards may have internal reset, or active low reset. The following subset describes the reset sequences in these two cases.

3.7.1.1.1 Smart Cards with Internal Reset

Following figure shows the reset sequence for Smart cards with internal reset. The reset sequence comprises the following steps:

- After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)
- After 200 clock cycles, EMVSIMn_IO must be asserted.
- The card must send a response on EMVSIMn_IO acknowledging the reset between 400–40000 clock cycles after T0.

^{2.} With C = 50 pF

^{3.} With Cin = 30 pF, Cout = 30 pF,

^{4.} With Cin = 30 pF,

Figure 31. Internal Reset Card Reset Sequence

The following table defines the general timing requirements for the SIM interface.

Table 47. Timing Specifications, Internal Reset Card Reset Sequence

Ref	Min	Max	Units
1			EMVSIMx_CLK clock cycles
2	400		EMVSIMx_CLK clock cycles

3.7.1.1.2 Smart Cards with Active Low Reset

Following figure shows the reset sequence for Smart cards with active low reset. The reset sequence comprises the following steps::

- After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)
- After 200 clock cycles, EMVSIMn_IO must be asserted.
- EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles)
- EMVSIMn_RST is asserted (at time T1)
- EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1, and a response must be received on EMVSIMn_IO between 400 and 40,000 clock cycles after T1.

Figure 32. Active-Low-Reset Smart Card Reset Sequence

The following table defines the general timing requirements for the EMVSIM interface..

 Ref No
 Min
 Max
 Units

 1
 —
 200
 EMVSIMx_CLK clock cycles

 2
 400
 40,000
 EMVSIMx_CLK clock cycles

 3
 40,000
 —
 EMVSIMx_CLK clock cycles

Table 48. Timing Specifications, Internal Reset Card Reset Sequence

3.7.1.2 EMVSIM Power-Down Sequence

Following figure shows the EMV SIM interface power-down AC timing diagram. Table 49 table shows the timing requirements for parameters (SI7–SI10) shown in the figure. The power-down sequence for the EMV SIM interface is as follows:

- EMVSIMn_SIMPD port detects the removal of the Smart Card
- EMVSIMn_RST is negated
- EMVSIMn_CLK is negated
- EMVSIM_IO is negated
- EMVSIMx_VCCENy is negated

Each of the above steps requires one Frtcclk period (usually 32 kHz and selected by SIM_SOPT1[OSC32KSEL]). Power-down may be initiated by a Smart card removal detection; or it may be launched by the processor.

Figure 33. Smart Card Interface Power Down AC Timing

Table 49. Timing Requirements for Power-down Sequence

Ref No	Parameter	Symbol	Min	Max	Units
SI7	EMVSIM reset to SIM clock stop	S _{rst2clk}	0.9 × 1/ Frtcclk ¹	1.1 × 1/Frtcclk	μs
SI8	EMVSIM reset to SIM Tx data low	S _{rst2dat}	1.8 × 1/ Frtcclk	2.2 × 1/Frtcclk	μs
SI9	EMVSIM reset to SIM voltage enable low	S _{rst2ven}	2.7 × 1/ Frtcclk	3.3 × 1/Frtcclk	μs
SI10	EMVSIM presence detect to SIM reset low	S _{pd2rst}	0.9 × 1/ Frtcclk	1.1 × 1/Frtcclk	μs

1. Frtcclk is ERCLK32K, and this clock must be enabled during the power down sequence.

NOTE

Same timing is also followed when auto power down is initiated. See Reference Manual for reference.

3.7.2 USB VREG electrical specifications Table 50. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	_	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	_	125	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	_	1.1	10	μА	
I _{DDoff}	Quiescent current — Shutdown mode					
	 VREGIN = 5.0 V and temperature=25 °C 	_	650	_	nA	
	Across operating voltage and temperature	_	_	4	μA	
I _{LOADrun}	Maximum load current — Run mode	_	_	120	mA	
I _{LOADstby}	Maximum load current — Standby mode	_	_	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	V	
	Standby mode	2.1	2.8	3.6	V	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	_	3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1	_	100	mΩ	
I _{LIM}	Short circuit current	_	290	_	mA	

^{1.} Typical values assume VREGIN = 5.0 V, Temp = $25 \,^{\circ}\text{C}$ unless otherwise stated.

3.7.3 USB DCD electrical specifications

Table 51. USB DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
$V_{\mathrm{DP_SRC}}, \ V_{\mathrm{DM_SRC}}$	USB_DP and USB_DM source voltages (up to 250 μ A)	0.5	_	0.7	V
V_{LGC}	Threshold voltage for logic high	0.8	_	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μΑ
I _{DM_SINK} , I _{DP_SINK}	USB_DM and USB_DP sink currents	50	100	150	μА
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	_	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

^{2.} Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_{Load}.

3.7.4 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	30	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 2	$(t_{SCK}/2) + 2$	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) –	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) –	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	15.0	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	1.0	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15.8	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

Table 52. Master mode DSPI timing (limited voltage range)

- 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
- 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 34. DSPI classic SPI timing — master mode

Table 53. Slave mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		15 ¹	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	23.0	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	_	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2.7	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7.0	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	13	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	13	ns

1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example, when bus clock is 60MHz, SPI clock should not be greater than 10MHz.

Figure 35. DSPI classic SPI timing — slave mode

3.7.5 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

			_		
Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	_	15	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) –	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) –	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	16	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	1.0	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	19.1	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

Table 54. Master mode DSPI timing (full voltage range)

- 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
- 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 36. DSPI classic SPI timing — master mode

Table 55. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

^{1.} The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

Num	Description	Min.	Max.	Unit
	Frequency of operation	_	7.5	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	23.1	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	_	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2.6	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7.0	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	13.0	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	13.0	ns

Table 55. Slave mode DSPI timing (full voltage range) (continued)

Figure 37. DSPI classic SPI timing — slave mode

3.7.6 I²C switching specifications

See General switching specifications.

3.7.7 UART switching specifications

See General switching specifications.

3.7.8 LPUART switching specifications

See General switching specifications.

3.7.9 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Table 56. SDHC full voltage range switching specifications

Num	Symbol	Description	Min.	Max.	Unit
		Operating voltage	1.71	3.6	V
		Card input clock		'	
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25/45	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	25/45	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	_	ns
SD3	t _{WH}	Clock high time	7	_	ns
SD4	t _{TLH}	Clock rise time	_	3	ns
SD5	t _{THL}	Clock fall time	_	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)
SD6	t _{OD}	SDHC output delay (output valid)	0	8.1	ns
	SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)				
SD7	t _{ISU}	SDHC input setup time	5	_	ns
SD8	t _{IH}	SDHC input hold time	0	_	ns

Table 57. SDHC limited voltage range switching specifications

Num	Symbol	Description	Min.	Max.	Unit
		Operating voltage	2.7	3.6	V
		Card input clock			
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	_	ns
SD3	t _{WH}	Clock high time	7	_	ns
SD4	t _{TLH}	Clock rise time	_	3	ns
SD5	t _{THL}	Clock fall time	_	3	ns
	SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)				
SD6	t _{OD}	SDHC output delay (output valid)	0	7	ns
	SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)				

Table 57. SDHC limited voltage range switching specifications (continued)

Num	Symbol	Description	Min.	Max.	Unit
SD7	t _{ISU}	SDHC input setup time	5		ns
SD8	t _{IH}	SDHC input hold time	0	_	ns

Figure 38. SDHC timing

3.7.10 I²S switching specifications

This section provides the AC timings for the I²S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Table 58. I2S master mode timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	80	_	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid	_	15	ns
S6	I2S_BCLK to I2S_FS output invalid	0	_	ns

Num	Description	Min.	Max.	Unit
S7	I2S_BCLK to I2S_TXD valid	_	15	ns
S8	I2S_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	15	_	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0	_	ns

Figure 39. I²S timing — master mode

Table 59. I2S slave mode timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_BCLK cycle time (input)	80	_	ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	4.5	_	ns
S14	I2S_FS input hold after I2S_BCLK	2	_	ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid	_	20	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_BCLK	4.5	_	ns
S18	I2S_RXD hold after I2S_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid1		25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 40. I²S timing — slave modes

3.7.10.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Num. Characteristic Min. Unit Max. Operating voltage 1.71 3.6 ٧ S1 I2S_MCLK cycle time 40 ns I2S_MCLK (as an input) pulse width high/low 45% MCLK period S2 55% S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low S4 45% 55% BCLK period I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ S5 15 ns I2S_RX_FS output valid I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ 0 S6 ns I2S RX FS output invalid S7 I2S_TX_BCLK to I2S_TXD valid 15 ns I2S_TX_BCLK to I2S_TXD invalid S8 0 ns S9 I2S_RXD/I2S_RX_FS input setup before 15 ns 12S_RX_BCLK I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 S10 ns

Table 60. I2S/SAI master mode timing

Figure 41. I2S/SAI timing — master modes

Table 61. I2S/SAI slave mode timing

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	4.5	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	23.1	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	4.5	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 42. I2S/SAI timing — slave modes

3.7.10.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 62. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	45	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 43. I2S/SAI timing — master modes

Table 63. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	5	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	56.5	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	5	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid1	_	72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Dimensions

Figure 44. I2S/SAI timing — slave modes

3.8 Human-machine interfaces (HMI)

3.8.1 TSI electrical specifications

Table 64. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
TSI_RUNF	Fixed power consumption in run mode	_	100	_	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	_	128	μΑ
TSI_EN	Power consumption in enable mode	_	100	_	μA
TSI_DIS	Power consumption in disable mode	_	1.2	_	μA
TSI_TEN	TSI analog enable time	_	66	_	μs
TSI_CREF	TSI reference capacitor	_	1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	0.19	_	1.03	V

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
100-pin LQFP	98ASS23308W
121-pin XFBGA	98ASA00595D
144-pin LQFP	98ASS23177W ¹

^{1.} The 144-pin LQFP package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

5 Pinout

5.1 K82 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

The 144-pin LQFP and 121-WLCSP packages for this product are not yet available, however they are included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

144 LQFP	100 LQFP	121 XFB GA	121 WLC SP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	QSPI_SIP_ MODE
Х	_	H6	K9	NC	NC	NC								
-	-	-	G8	ADC0_ SE16	ADC0_ SE16	ADC0_ SE16								
_	_	A11	_	NC	NC	NC								
_	_	J6	_	NC	NC	NC								
_	_	J4	-	NC	NC	NC								
1	1	B1	C10	PTE0	DISABLED		PTE0	SPI1_ PCS1	LPUART1_ TX	SDHC0_D1	QSPI0A_ DATA3	I2C1_SDA	RTC_ CLKOUT	
2	2	C2	D9	PTE1/ LLWU_P0	DISABLED		PTE1/ LLWU_P0	SPI1_SCK	LPUART1_ RX	SDHC0_D0	QSPI0A_ SCLK	I2C1_SCL	SPI1_SIN	
3	3	C1	D10	PTE2/ LLWU_P1	DISABLED		PTE2/ LLWU_P1	SPI1_ SOUT	LPUART1_ CTS_b	SDHC0_ DCLK	QSPI0A_ DATA0		SPI1_SCK	
4	4	D2	B11	PTE3	DISABLED		PTE3	SPI1_ PCS2	LPUART1_ RTS_b	SDHC0_ CMD	QSPI0A_ DATA2		SPI1_ SOUT	

144 LQFP	100 LQFP	121 XFB GA	121 WLC SP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	QSPI_SIP_ MODE
5	5	F7	F6	VSS	VSS	VSS								
6	6	E5	F7	VDDIO_E	VDDIO_E	VDDIO_E								
7	7	D1	C11	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2	SPI1_SIN	LPUART3_ TX	SDHC0_D3	QSPI0A_ DATA1			
8	8	E2	E8	PTE5	DISABLED		PTE5	SPI1_ PCS0	LPUART3_ RX	SDHC0_D2	QSPI0A_ SS0_B	FTM3_CH0	USB0_ SOF_OUT	
9	9	E1	E9	PTE6/ LLWU_P16	DISABLED		PTE6/ LLWU_P16	SPI1_ PCS3	LPUART3_ CTS_b	I2SO_ MCLK	QSPI0B_ DATA3	FTM3_CH1	SDHC0_D4	
10	10	F3	E10	PTE7	DISABLED		PTE7	SPI2_SCK	LPUART3_ RTS_b	I2S0_RXD0	QSPI0B_ SCLK	FTM3_CH2	QSPI0A_ SS1_B	
11	11	F2	D11	PTE8	DISABLED		PTE8	12S0_RXD1	SPI2_ SOUT	12S0_RX_ FS	QSPI0B_ DATA0	FTM3_CH3	SDHC0_D5	
12	12	F1	E11	PTE9/ LLWU_P17	DISABLED		PTE9/ LLWU_P17	I2S0_TXD1	SPI2_ PCS1	I2S0_RX_ BCLK	QSPI0B_ DATA2	FTM3_CH4	SDHC0_D6	
13	13	G2	F8	PTE10/ LLWU_P18	DISABLED		PTE10/ LLWU_P18	I2C3_SDA	SPI2_SIN	I2S0_TXD0	QSPI0B_ DATA1	FTM3_CH5	SDHC0_D7	
14	14	G1	F9	PTE11	DISABLED		PTE11	I2C3_SCL	SPI2_ PCS0	I2S0_TX_ FS	QSPI0B_ SS0_B	FTM3_CH6	QSPI0A_ DQS	
15	_	_	_	PTE12	DISABLED		PTE12		LPUART2_ TX	I2S0_TX_ BCLK	QSPI0B_ DQS	FTM3_CH7	FXIO0_D2	QSPI0A_ DATA3
16	-	_	_	PTE13	DISABLED		PTE13		LPUART2_ RX		QSPI0B_ SS1_B	SDHC0_ CLKIN	FXIO0_D3	QSPI0A_ SCLK
17	15	_	F10	VDDIO_E	VDDIO_E	VDDIO_E								
18	16	-	F11	VSS	VSS	VSS								
19	1	1	1	PTE16	ADC0_ SE4a	ADC0_ SE4a	PTE16	SPIO_ PCS0	LPUART2_ TX	FTM_ CLKIN0		FTM0_ FLT3	FXIO0_D4	QSPI0A_ DATA0
20	1	1	ı	PTE17/ LLWU_P19	ADC0_ SE5a	ADC0_ SE5a	PTE17/ LLWU_P19	SPI0_SCK	LPUART2_ RX	FTM_ CLKIN1		LPTMR0_ ALT3/ LPTMR1_ ALT3	FXIO0_D5	QSPI0A_ DATA2
21	-		_	PTE18/ LLWU_P20	ADC0_ SE6a	ADC0_ SE6a	PTE18/ LLWU_P20	SPI0_ SOUT	LPUART2_ CTS_b	I2CO_SDA			FXIO0_D6	QSPI0A_ DATA1
22	_	-	_	PTE19	ADC0_ SE7a	ADC0_ SE7a	PTE19	SPI0_SIN	LPUART2_ RTS_b	I2C0_SCL			FXIO0_D7	QSPI0A_ SS0_B
23	16	НЗ	F11	VSS	VSS	VSS								
24	17	H2	G11	USB0_DP	USB0_DP	USB0_DP								
25	18	H1	H11	USB0_DM	USB0_DM	USB0_DM								
26	19	J1	G10	VOUT33	VOUT33	VOUT33								
27	20	J2	H10	VREGIN	VREGIN	VREGIN								
28	21	1	G9	NC	NC	NC								
29	_	K2	J10	ADC0_DP0	ADC0_DP0	ADC0_DP0								
30	_	K1	K10	ADC0_ DM0	ADC0_ DM0	ADC0_ DM0								
31	_	J3	J11	ADC0_DP3	ADC0_DP3	ADC0_DP3								

144 LQFP	100 LQFP	121 XFB GA	121 WLC SP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	QSPI_SIP_ MODE
32	ı	K3	K11	ADC0_ DM3	ADC0_ DM3	ADC0_ DM3								
33	22	F5	H8	VDDA	VDDA	VDDA								
34	23	G5	H9	VREFH	VREFH	VREFH								
35	24	G6	Ј9	VREFL	VREFL	VREFL								
36	25	F6	J8	VSSA	VSSA	VSSA								
37	26	L2	_	ADC0_DP1	ADC0_DP1	ADC0_DP1								
38	27	L1	_	ADC0_ DM1	ADC0_ DM1	ADC0_ DM1								
39	28	L3	L11	VREF_ OUT/ CMP1_IN5/ CMP0_IN5/ ADC0_ SE22	VREF_ OUT/ CMP1_IN5/ CMP0_IN5/ ADC0_ SE22	VREF_ OUT/ CMP1_IN5/ CMP0_IN5/ ADC0_ SE22								
40	29	K4	L10	DACO_ OUT/ CMP1_IN3/ ADCO_ SE23	DACO_ OUT/ CMP1_IN3/ ADCO_ SE23	DACO_ OUT/ CMP1_IN3/ ADCO_ SE23								
42	30	K5	H7	RTC_ Wakeup_ B	RTC_ Wakeup_ B	RTC_ Wakeup_ B								
43	31	L4	L9	XTAL32	XTAL32	XTAL32								
44	32	L5	L8	EXTAL32	EXTAL32	EXTAL32								
45	33	K6	K8	VBAT	VBAT	VBAT								
46	34	-	G7	VDD	VDD	VDD								
47	35	-	F6	VSS	VSS	VSS								
48	-	H5	L7	PTA20	DISABLED		PTA20	I2CO_SCL	LPUART4_ TX	FTM_ CLKIN1	FXIO0_D8	EWM_ OUT_b	TPM_ CLKIN1	
49	-	J5	K7	PTA21/ LLWU_P21	DISABLED		PTA21/ LLWU_P21	I2CO_SDA	LPUART4_ RX		FXIO0_D9	EWM_IN		
50	36	L7	J7	PTA0	JTAG_ TCLK/ SWD_CLK	TSIO_CH1	PTA0	LPUARTO_ CTS_b	FTM0_CH5		FXIO0_D10	EMVSIMO_ CLK	JTAG_ TCLK/ SWD_CLK	
51	37	H8	J6	PTA1	JTAG_TDI	TSI0_CH2	PTA1	LPUARTO_ RX	FTM0_CH6	I2C3_SDA	FXIO0_D11	EMVSIMO_ IO	JTAG_TDI	
52	38	J7	K6	PTA2	JTAG_ TDO/ TRACE_ SWO	TSIO_CH3	PTA2	LPUARTO_ TX	FTM0_CH7	I2C3_SCL	FXIO0_D12	EMVSIMO_ PD	JTAG_ TDO/ TRACE_ SWO	
53	39	H9	L6	PTA3	JTAG_ TMS/ SWD_DIO	TSIO_CH4	PTA3	LPUARTO_ RTS_b	FTM0_CH0		FXIO0_D13	EMVSIMO_ RST	JTAG_ TMS/ SWD_DIO	
54	40	J8	H6	PTA4/ LLWU_P3	NMI_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1		FXIO0_D14	EMVSIMO_ VCCEN	NMI_b	

144 LQFP	100 LQFP	121 XFB GA	121 WLC SP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	QSPI_SIP_ MODE
55	41	K7	H5	PTA5	DISABLED		PTA5	USB0_ CLKIN	FTM0_CH2		FXIO0_D15	I2SO_TX_ BCLK	JTAG_ TRST_b	
56	_	L10	G6	VDD	VDD	VDD								
57	_	K10	F5	VSS	VSS	VSS								
58	1	1	1	PTA6	DISABLED		PTA6	I2C2_SCL	FTM0_CH3	EMVSIM1_ CLK	CLKOUT		TRACE_ CLKOUT	
59	-	-	_	PTA7	ADC0_ SE10	ADC0_ SE10	PTA7	I2C2_SDA	FTM0_CH4	EMVSIM1_ IO			TRACE_D3	
60	_		_	PTA8	ADC0_ SE11	ADC0_ SE11	PTA8		FTM1_CH0	EMVSIM1_ PD		FTM1_QD_ PHA/ TPM1_CH0	TRACE_D2	
61	_		_	PTA9	DISABLED		PTA9		FTM1_CH1	EMVSIM1_ RST		FTM1_QD_ PHB/ TPM1_CH1	TRACE_D1	
62	ı	Э9	L5	PTA10/ LLWU_P22	DISABLED		PTA10/ LLWU_P22	I2C2_SDA	FTM2_CH0	EMVSIM1_ VCCEN	FXIO0_D16	FTM2_QD_ PHA/ TPM2_CH0	TRACE_D0	
63	ı	H7	L4	PTA11/ LLWU_P23	DISABLED		PTA11/ LLWU_P23	I2C2_SCL	FTM2_CH1		FXIO0_D17	FTM2_QD_ PHB/ TPM2_CH1		
64	42	K8	K5	PTA12	DISABLED		PTA12		FTM1_CH0	TRACE_ CLKOUT	FXIO0_D18	12S0_TXD0	FTM1_QD_ PHA/ TPM1_CH0	
65	43	L8	J5	PTA13/ LLWU_P4	DISABLED		PTA13/ LLWU_P4		FTM1_CH1	TRACE_D3	FXIO0_D19	12S0_TX_ FS	FTM1_QD_ PHB/ TPM1_CH1	
66	44	K9	L3	PTA14	DISABLED		PTA14	SPIO_ PCS0	LPUARTO_ TX	TRACE_D2	FXIO0_D20	I2S0_RX_ BCLK	I2S0_TXD1	
67	45	L9	K4	PTA15	DISABLED		PTA15	SPI0_SCK	LPUARTO_ RX	TRACE_D1	FXIO0_D21	I2S0_RXD0		
68	46	J10	J4	PTA16	DISABLED		PTA16	SPI0_ SOUT	LPUARTO_ CTS_b	TRACE_D0	FXIO0_D22	I2SO_RX_ FS	I2S0_RXD1	
69	47	H10	K3	PTA17	DISABLED		PTA17	SPI0_SIN	LPUARTO_ RTS_b		FXIO0_D23	I2SO_ MCLK		
70	48	E6	L2	VDD	VDD	VDD								
71	49	G7	K2	VSS	VSS	VSS								
72	50	L11	L1	PTA18	EXTAL0	EXTAL0	PTA18		FTM0_ FLT2	FTM_ CLKIN0			TPM_ CLKIN0	
73	51	K11	K1	PTA19	XTAL0	XTAL0	PTA19		FTM1_ FLT0	FTM_ CLKIN1		LPTMR0_ ALT1/ LPTMR1_ ALT1	TPM_ CLKIN1	
74	52	J11	J1	RESET_b	RESET_b	RESET_b								_
75	_	-	-	PTA24	DISABLED		PTA24	EMVSIM0_ CLK				FB_A29		

144 LQFP	100 LQFP	121 XFB GA	121 WLC SP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	QSPI_SIP_ MODE
76	-	-	-	PTA25	DISABLED		PTA25	EMVSIMO_ IO				FB_A28		
77	_	П	-	PTA26	DISABLED		PTA26	EMVSIMO_ PD				FB_A27		
78	1	1	-	PTA27	DISABLED		PTA27	EMVSIM0_ RST				FB_A26		
79	_	_	-	PTA28	DISABLED		PTA28	EMVSIMO_ VCCEN				FB_A25		
80	_	H11	J2	PTA29	DISABLED		PTA29					FB_A24		
81	53	G11	J3	PTB0/ LLWU_P5	ADC0_ SE8/ TSI0_CH0	ADC0_ SE8/ TSI0_CH0	PTB0/ LLWU_P5	I2CO_SCL	FTM1_CH0		SDRAM_ CAS_b	FTM1_QD_ PHA/ TPM1_CH0	FXIO0_D0	
82	54	G10	H2	PTB1	ADC0_ SE9/ TSI0_CH6	ADC0_ SE9/ TSI0_CH6	PTB1	I2CO_SDA	FTM1_CH1		SDRAM_ RAS_b	FTM1_QD_ PHB/ TPM1_CH1	FXIO0_D1	
83	55	G9	H1	PTB2	ADC0_ SE12/ TSI0_CH7	ADC0_ SE12/ TSI0_CH7	PTB2	I2C0_SCL	LPUARTO_ RTS_b		SDRAM_ WE	FTM0_ FLT3	FXIO0_D2	
84	56	G8	Н3	PTB3	ADC0_ SE13/ TSI0_CH8	ADC0_ SE13/ TSI0_CH8	PTB3	I2CO_SDA	LPUARTO_ CTS_b		SDRAM_ CSO_b	FTM0_ FLT0	FXIO0_D3	
85	ı	B11	H4	PTB4	DISABLED		PTB4	EMVSIM1_ IO			SDRAM_ CS1_b	FTM1_ FLT0		
86	-	C11	G1	PTB5	DISABLED		PTB5	EMVSIM1_ CLK				FTM2_ FLT0		
87	-	F11	G2	PTB6	DISABLED		PTB6	EMVSIM1_ VCCEN			FB_AD23/ SDRAM_ D23			
88		E11	G3	PTB7	DISABLED		PTB7	EMVSIM1_ PD			FB_AD22/ SDRAM_ D22			
89	-	D11	G4	PTB8	DISABLED		PTB8	EMVSIM1_ RST	LPUART3_ RTS_b		FB_AD21/ SDRAM_ D21			
90	57	E10	G5	PTB9	DISABLED		PTB9	SPI1_ PCS1	LPUART3_ CTS_b		FB_AD20/ SDRAM_ D20			
91	58	D10	F1	PTB10	DISABLED		PTB10	SPI1_ PCS0	LPUART3_ RX	I2C2_SCL	FB_AD19/ SDRAM_ D19	FTM0_ FLT1	FXIO0_D4	
92	59	C10	F2	PTB11	DISABLED		PTB11	SPI1_SCK	LPUART3_ TX	I2C2_SDA	FB_AD18/ SDRAM_ D18	FTM0_ FLT2	FXIO0_D5	
93	60	L6	F5	VSS	VSS	VSS								
94	61	E7	G6	VDD	VDD	VDD								

144 LQFP	100 LQFP	121 XFB GA	121 WLC SP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	QSPI_SIP_ MODE
95	62	B10	E1	PTB16	TSIO_CH9	TSIO_CH9	PTB16	SPI1_ SOUT	LPUARTO_ RX	FTM_ CLKIN0	FB_AD17/ SDRAM_ D17	EWM_IN	TPM_ CLKIN0	
96	63	E9	F3	PTB17	TSIO_CH10	TSIO_CH10	PTB17	SPI1_SIN	LPUARTO_ TX	FTM_ CLKIN1	FB_AD16/ SDRAM_ D16	EWM_ OUT_b	TPM_ CLKIN1	
97	64	D9	F4	PTB18	TSIO_CH11	TSIO_CH11	PTB18		FTM2_CH0	I2S0_TX_ BCLK	FB_AD15/ SDRAM_ A23	FTM2_QD_ PHA/ TPM2_CH0	FXIO0_D6	
98	65	C9	E2	PTB19	TSIO_CH12	TSI0_CH12	PTB19		FTM2_CH1	I2S0_TX_ FS	FB_OE_b	FTM2_QD_ PHB/ TPM2_CH1	FXIO0_D7	
99	66	F10	D1	PTB20	DISABLED		PTB20	SPI2_ PCS0			FB_AD31/ SDRAM_ D31	CMP0_ OUT	FXIO0_D8	
100	67	F9	E3	PTB21	DISABLED		PTB21	SPI2_SCK			FB_AD30/ SDRAM_ D30	CMP1_ OUT	FXIO0_D9	
101	68	F8	E4	PTB22	DISABLED		PTB22	SPI2_ SOUT			FB_AD29/ SDRAM_ D29		FXIO0_D10	
102	69	E8	D2	PTB23	DISABLED		PTB23	SPI2_SIN	SPIO_ PCS5		FB_AD28/ SDRAM_ D28		FXIO0_D11	
103	70	В9	C1	PTC0	ADC0_ SE14/ TSI0_CH13	ADC0_ SE14/ TSI0_CH13	PTC0	SPIO_ PCS4	PDB0_ EXTRG	USB0_ SOF_OUT	FB_AD14/ SDRAM_ A22	12S0_TXD1	FXIO0_D12	
104	71	D8	D3	PTC1/ LLWU_P6	ADC0_ SE15/ TSI0_CH14	ADC0_ SE15/ TSI0_CH14	PTC1/ LLWU_P6	SPIO_ PCS3	LPUART1_ RTS_b	FTM0_CH0	FB_AD13/ SDRAM_ A21	I2S0_TXD0	FXIO0_D13	
105	72	C8	C2	PTC2	ADC0_ SE4b/ CMP1_IN0/ TSI0_CH15	ADC0_ SE4b/ CMP1_IN0/ TSI0_CH15	PTC2	SPI0_ PCS2	LPUART1_ CTS_b	FTM0_CH1	FB_AD12/ SDRAM_ A20	I2S0_TX_ FS		
106	73	B8	B1	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_ PCS1	LPUART1_ RX	FTM0_CH2	CLKOUT	I2S0_TX_ BCLK		
107	74	_	E5	VSS	VSS	VSS								
108	75	_	G6	VDD	VDD	VDD								
109	76	A8	A1	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPIO_ PCS0	LPUART1_ TX	FTM0_CH3	FB_AD11/ SDRAM_ A19	CMP1_ OUT		
110	77	D7	B2	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2/ LPTMR1_ ALT2	12S0_RXD0	FB_AD10/ SDRAM_ A18	CMP0_ OUT	FTM0_CH2	
111	78	C7	C3	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPIO_ SOUT	PDB0_ EXTRG	I2S0_RX_ BCLK	FB_AD9/ SDRAM_ A17	I2SO_ MCLK	FXIO0_D14	

144 LQFP	100 LQFP	121 XFB GA	121 WLC SP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	QSPI_SIP_ MODE
112	79	В7	A2	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN	USB0_ SOF_OUT	12S0_RX_ FS	FB_AD8/ SDRAM_ A16		FXIO0_D15	
113	80	A7	В3	PTC8	CMP0_IN2	CMP0_IN2	PTC8		FTM3_CH4	I2SO_ MCLK	FB_AD7/ SDRAM_ A15		FXIO0_D16	
114	81	D6	D4	PTC9	CMP0_IN3	CMP0_IN3	PTC9		FTM3_CH5	I2SO_RX_ BCLK	FB_AD6/ SDRAM_ A14	FTM2_ FLT0	FXIO0_D17	
115	82	C6	A3	PTC10	DISABLED		PTC10	I2C1_SCL	FTM3_CH6	I2SO_RX_ FS	FB_AD5/ SDRAM_ A13		FXIO0_D18	
116	83	C5	C4	PTC11/ LLWU_P11	DISABLED		PTC11/ LLWU_P11	I2C1_SDA	FTM3_CH7	I2S0_RXD1	FB_RW_b		FXIO0_D19	
117	84	В6	B4	PTC12	DISABLED		PTC12		LPUART4_ RTS_b	FTM_ CLKIN0	FB_AD27/ SDRAM_ D27	FTM3_ FLT0	TPM_ CLKIN0	
118	85	A6	A4	PTC13	DISABLED		PTC13		LPUART4_ CTS_b	FTM_ CLKIN1	FB_AD26/ SDRAM_ D26		TPM_ CLKIN1	
119	86	A5	D5	PTC14	DISABLED		PTC14		LPUART4_ RX		FB_AD25/ SDRAM_ D25		FXIO0_D20	
120	87	B5	C5	PTC15	DISABLED		PTC15		LPUART4_ TX		FB_AD24/ SDRAM_ D24		FXIO0_D21	
121	88	_	F6	VSS	VSS	VSS								
122	89	_	E6	VDD	VDD	VDD								
123	I	D5	A5	PTC16	DISABLED		PTC16		LPUART3_ RX		FB_CS5_b/ FB_TSIZ1/ FB_BE23_ 16_BLS15_ 8_b/ SDRAM_ DQM2			
124	90	C4	B5	PTC17	DISABLED		PTC17		LPUART3_ TX		FB_CS4_b/ FB_TSIZ0/ FB_BE31_ 24_BLS7_ 0_b/ SDRAM_ DQM3			
125		B4	A6	PTC18	DISABLED		PTC18		LPUART3_ RTS_b		FB_TBST_ b/ FB_CS2_b/ FB_BE15_ 8_BLS23_ 16_b/			

144 LQFP	100 LQFP	121 XFB GA	121 WLC SP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	QSPI_SIP_ MODE
											SDRAM_ DQM1			
126	_	A4	B6	PTC19	DISABLED		PTC19		LPUART3_ CTS_b		FB_CS3_b/ FB_BE7_ 0_BLS31_ 24_b/ SDRAM_ DQM0	FB_TA_b		
127	91	D4	C6	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPIO_ PCS0	LPUART2_ RTS_b	FTM3_CH0	FB_ALE/ FB_CS1_b/ FB_TS_b		FXIO0_D22	
128	92	D3	D6	PTD1	ADC0_ SE5b	ADC0_ SE5b	PTD1	SPI0_SCK	LPUART2_ CTS_b	FTM3_CH1	FB_CS0_b		FXIO0_D23	
129	93	C3	D7	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_ SOUT	LPUART2_ RX	FTM3_CH2	FB_AD4/ SDRAM_ A12		I2C0_SCL	
130	94	B3	A7	PTD3	DISABLED		PTD3	SPI0_SIN	LPUART2_ TX	FTM3_CH3	FB_AD3/ SDRAM_ A11		I2C0_SDA	
131	95	А3	В7	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_ PCS1	LPUARTO_ RTS_b	FTM0_CH4	FB_AD2/ SDRAM_ A10	EWM_IN	SPI1_ PCS0	
132	96	A2	C7	PTD5	ADC0_ SE6b	ADC0_ SE6b	PTD5	SPI0_ PCS2	LPUARTO_ CTS_b	FTM0_CH5	FB_AD1/ SDRAM_ A9	EWM_ OUT_b	SPI1_SCK	
133	97	B2	A8	PTD6/ LLWU_P15	ADC0_ SE7b	ADC0_ SE7b	PTD6/ LLWU_P15	SPI0_ PCS3	LPUARTO_ RX	FTM0_CH6	FB_AD0	FTM0_ FLT0	SPI1_ SOUT	
134	98	-	F6	VSS	VSS	VSS								
135	99	_	E7	VDD	VDD	VDD								
136	100	A1	B8	PTD7	DISABLED		PTD7	CMT_IRO	LPUARTO_ TX	FTM0_CH7	SDRAM_ CKE	FTM0_ FLT1	SPI1_SIN	
137	-	A10	A9	PTD8/ LLWU_P24	DISABLED		PTD8/ LLWU_P24	I2C0_SCL				FB_A16	FXIO0_D24	
138	_	A9	C8	PTD9	DISABLED		PTD9	I2C0_SDA				FB_A17	FXIO0_D25	
139	-	E4	В9	PTD10	DISABLED		PTD10					FB_A18	FXIO0_D26	
140	-	E3	A10	PTD11/ LLWU_P25	DISABLED		PTD11/ LLWU_P25	SPI2_ PCS0				FB_A19	FXIO0_D27	
141	-	F4	D8	PTD12	DISABLED		PTD12	SPI2_SCK	FTM3_ FLT0			FB_A20	FXIO0_D28	
142	-	G3	C9	PTD13	DISABLED		PTD13	SPI2_ SOUT				FB_A21	FXIO0_D29	
143	-	G4	B10	PTD14	DISABLED		PTD14	SPI2_SIN				FB_A22	FXIO0_D30	
144	_	H4	A11	PTD15	DISABLED		PTD15	SPI2_ PCS1				FB_A23	FXIO0_D31	

5.2 Recommended connection for unused analog and digital pins

Table 65 shows the recommended connections for analog interface pins if those analog interfaces are not used in the customer's application

Table 65. Recommended connection for unused analog interfaces

Pin Type		Short recommendation	Detailed recommendation
Analog/non GPIO	ADCx/CMPx	Float	Analog input - Float
Analog/non GPIO	VREF_OUT	Float	Analog output - Float
Analog/non GPIO	DAC0_OUT, DAC1_OUT	Float	Analog output - Float
Analog/non GPIO	RTC_WAKEUP_B	Float	Analog output - Float
Analog/non GPIO	XTAL32	Float	Analog output - Float
Analog/non GPIO	EXTAL32	Float	Analog input - Float
GPIO/Analog	PTA18/EXTAL0	Float	Analog input - Float
GPIO/Analog	PTA19/XTAL0	Float	Analog output - Float
GPIO/Analog	PTx/ADCx	Float	Float (default is analog input)
GPIO/Analog	PTx/CMPx	Float	Float (default is analog input)
GPIO/Analog	PTx/TSIOx	Float	Float (default is analog input)
GPIO/Digital	PTA0/JTAG_TCLK	Float	Float (default is JTAG with pulldown)
GPIO/Digital	PTA1/JTAG_TDI	Float	Float (default is JTAG with pullup)
GPIO/Digital	PTA2/JTAG_TDO	Float	Float (default is JTAG with pullup)
GPIO/Digital	PTA3/JTAG_TMS	Float	Float (default is JTAG with pullup)
GPIO/Digital	PTA4/NMI_b	$10k\Omega$ pullup or disable and float	Pull high or disable in PCR & FOPT and float
GPIO/Digital	PTx	Float	Float (default is disabled)
USB	USB0_DP	Float	Float
USB	USB0_DM	Float	Float
USB	VOUT33	Tie to input and ground through 10kΩ	Tie to input and ground through 10kΩ
USB	VREGIN	Tie to output and ground through $10k\Omega$	Tie to output and ground through 10kΩ
USB	USB0_VSS	Always connect to VSS	Always connect to VSS
VBAT	VBAT	Float	Float
VDDA	VDDA	Always connect to VDD potential	Always connect to VDD potential
VREFH	VREFH	Always connect to VDD potential	Always connect to VDD potential
VREFL	VREFL	Always connect to VSS potential	Always connect to VSS potential

Table continues on the next page...

Table 65. Recommended connection for unused analog interfaces (continued)

Pin Type		Short recommendation	Detailed recommendation
VSSA	VSSA	Always connect to VSS potential	Always connect to VSS potential

5.3 K82 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

84

Figure 45. K82 100 LQFP Pinout Diagram

	1	2	3	4	5	6	7	8	9	10	11	
Α	PTD7	PTD5	PTD4/ LLWU_P14	PTC19	PTC14	PTC13	PTC8	PTC4/ LLWU_P8	PTD9	PTD8/ LLWU_P24	NC	А
В	PTE0	PTD6/ LLWU_P15	PTD3	PTC18	PTC15	PTC12	PTC7	PTC3/ LLWU_P7	PTC0	PTB16	PTB4	В
С	PTE2/ LLWU_P1	PTE1/ LLWU_P0	PTD2/ LLWU_P13	PTC17	PTC11/ LLWU_P11	PTC10	PTC6/ LLWU_P10	PTC2	PTB19	PTB11	PTB5	С
D	PTE4/ LLWU_P2	PTE3	PTD1	PTD0/ LLWU_P12	PTC16	PTC9	PTC5/ LLWU_P9	PTC1/ LLWU_P6	PTB18	PTB10	PTB8	D
E	PTE6/ LLWU_P16	PTE5	PTD11/ LLWU_P25	PTD10	VDDIO_E	VDD	VDD	PTB23	PTB17	PTB9	PTB7	Е
F	PTE9/ LLWU_P17	PTE8	PTE7	PTD12	VDDA	VSSA	VSS	PTB22	PTB21	PTB20	PTB6	F
G	PTE11	PTE10/ LLWU_P18	PTD13	PTD14	VREFH	VREFL	VSS	PTB3	PTB2	PTB1	PTB0/ LLWU_P5	G
н	USB0_DM	USB0_DP	VSS	PTD15	PTA20	NC	PTA11/ LLWU_P23	PTA1	PTA3	PTA17	PTA29	н
J	VOUT33	VREGIN	ADC0_DP3	NC	PTA21/ LLWU_P21	NC	PTA2	PTA4/ LLWU_P3	PTA10/ LLWU_P22	PTA16	RESET_b	J
к	ADC0_DM0	ADC0_DP0	ADC0_DM3	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	RTC_ WAKEUP_B	VBAT	PTA5	PTA12	PTA14	VSS	PTA19	К
L	ADC0_DM1	ADC0_DP1	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC0_SE22	XTAL32	EXTAL32	VSS	PTA0	PTA13/ LLWU_P4	PTA15	VDD	PTA18	L
	1	2	3	4	5	6	7	8	9	10	11	•

Figure 46. K82 121 XFBGA Pinout Diagram

Figure 47. K82 144 LQFP Pinout Diagram

NOTE

The 144-pin LQFP package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

	1	2	3	4	5	6	7	8	9	10	11	
Α	PTC4/ LLWU_P8	PTC7	PTC10	PTC13	PTC16	PTC18	PTD3	PTD6/ LLWU_P15	PTD8/ LLWU_P24	PTD11/ LLWU_P25	PTD15	А
В	PTC3/ LLWU_P7	PTC5/ LLWU_P9	PTC8	PTC12	PTC17	PTC19	PTD4/ LLWU_P14	PTD7	PTD10	PTD14	PTE3	В
С	PTC0	PTC2	PTC6/ LLWU_P10	PTC11/ LLWU_P11	PTC15	PTD0/ LLWU_P12	PTD5	PTD9	PTD13	PTE0	PTE4/ LLWU_P2	С
D	PTB20	PTB23	PTC1/ LLWU_P6	PTC9	PTC14	PTD1	PTD2/ LLWU_P13	PTD12	PTE1/ LLWU_P0	PTE2/ LLWU_P1	PTE8	D
E	PTB16	PTB19	PTB21	PTB22	VSS	VDD	VDD	PTE5	PTE6/ LLWU_P16	PTE7	PTE9/ LLWU_P17	E
F	PTB10	PTB11	PTB17	PTB18	VSS VSS	VSS VSS VSS VSS	VDDIO_E	PTE10/ LLWU_P18	PTE11	VDDIO_E	VSS VSS	F
G	PTB5	PTB6	PTB7	PTB8	PTB9	VDD VDD VDD	VDD	ADC0_SE16	NC	VOUT33	USB0_DP	G
н	PTB2	PTB1	PTB3	PTB4	PTA5	PTA4/ LLWU_P3	RTC_ WAKEUP_B	VDDA	VREFH	VREGIN	USB0_DM	н
J	RESET_b	PTA29	PTB0/ LLWU_P5	PTA16	PTA13/ LLWU_P4	PTA1	PTA0	VSSA	VREFL	ADC0_DP0	ADC0_DP3	J
κ	PTA19	VSS	PTA17	PTA15	PTA12	PTA2	PTA21/ LLWU_P21	VBAT	NC	ADC0_DM0	ADC0_DM3	к
L	PTA18	VDD	PTA14	PTA11/ LLWU_P23	PTA10/ LLWU_P22	PTA3	PTA20	EXTAL32	XTAL32	CMP1_IN3/	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC0_SE22	L
	1	2	3	4	5	6	7	8	9	10	11	1

Figure 48. K82 121 WLCSP Pinout Diagram

NOTE

The 121-pin WLCSP package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: MK82.

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K82
Α	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
М	Flash memory type	N = Program flash onlyX = Program flash and FlexMemory
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB

Table continues on the next page...

Terminology and guidelines

Field	Description	Values
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm)
СС	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz 18 = 180 MHz
N	Packaging type	R = Tape and reel(Blank) = Trays

7.4 Example

This is an example part number:

MK82FN256VLL15

8 Terminology and guidelines

8.1 Definitions

Key terms are defined in the following table:

Term	Definition
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered.

Table continues on the next page...

Term	Definition	
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.	
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip	
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions	
Typical value	A specified value for a technical characteristic that: Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.	

8.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

Operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

Operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
	Digital I/O weak pullup/pulldown current	10 tank	70	130	μΑ

8.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Revision History

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V_{DD}	3.3 V supply voltage	3.3	V

8.4 Relationship between ratings and operating requirements

8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

9 Revision History

The following table provides a revision history for this document.

Table 66. Revision History

Rev. No.	Date	Substantial Changes
1	09/2015	 Updated part numbers. Updated Related Resources table to include package drawing numbers and other relevant resource information. Updated title of section 2.2.2 to 'HVD, LVD and POR operating requirements'. Updated 'V_{DD} supply LVD and POR operating requirements' table. Added rows for V_{HVDH} and V_{HVDL}. Updated 'Power consumption operating behaviors' table. Updated Typ. values and Max. values. Added data for 105°C. Updated IDD charts - Figure 6. Run mode supply current vs. core frequency and Figure 7. VLPR mode supply current vs. core frequency. Replaced section 2.2.6 'EMC radiated emissions operating behaviors' with 'Electromagnetic Compatibility (EMC) specifications'. Removed EZPort information from 'General switching specifications' table. Updated 100 LQFP and 121 XFBGA values in the 'Thermal attributes' table. Updated 'MCG specifications' table Updated 'MCG specifications' table Updated 'MCG specifications' table Updated Typ. value of Δfdco_t from -1 to ±1. Removed J_{acc_fil} data. Updated description of I_{pil} and their corresponding Typ. values. Updated Typ. values of J_{cyc_pil} and J_{acc_pil}. Updated footnote 2 in 'SDRAM Timing (Full voltage range)' table - corrected maximum frequency of FB_CLK to 75MHz. Removed I_{ALKG} data from 'Comparator and 6-bit DAC electrical specifications' table. Updated Min and Max values of S_{freq} in the 'Timing Specifications, High Drive Strength' table. Updated the 'Timing Requirements for Power-down Sequence' table. Added a footnote - "Frtcclk is ERCLK32K, and this clock must be enabled during the power down sequence." Updated unit from ns to μs. Added 121 WLCSP pin assignment information and diagram to the Pinout section.

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

Document Number K82P121M150SF5 Revision 1, 09/2015