Simulation de variables aléatoires

Exercice 1 (Convergence de variables aléatoires). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires à valeurs réelles.

- 1. Montrer que si la suite $(X_n)_{n\geq 1}$ converge p.s, elle converge en probabilité.
- 2. Montrer que si la suite $(X_n)_{n\geq 1}$ converge en probabilité, elle converge en loi.
- 3. Montrer que si $(X_n)_{n\geq 1}$ converge en loi vers x, supposé déterministe, alors $(X_n)_{n\geq 1}$ converge en probabilité vers x.
- 4. Soit \bar{X} telle que pour tout $\gamma \in [0, \frac{1}{2})$, et tout $p \in \mathbb{N}^*$, $n^{\gamma} \mathbb{E}[|X_n \bar{X}|^p]^{1/p} \to 0$ quand $n \to \infty$. Montrer que $X_n \to \bar{X}$ p.s. quand $n \to \infty$.

Exercice 2 (Méthode de rejet pour les lois à densité). Soit Z et Y deux variables aléatoires à valeurs dans \mathbb{R} de densités respectives f et g. On suppose savoir simuler selon la densité g et qu'il existe k > 0, tel que pour tout $x \in \mathbb{R}$, $f(x) \leq kg(x)$. Soit $(Y_n)_{n\geq 1}$ (resp. $(U_n)_{n\geq 1}$) deux suites iid de loi f (resp. uniforme sur [0,1]) et indépendantes entre elles. On définit

$$\tau = \inf\{n \ge 1 : kg(Y_n)U_n \le f(Y_n)\}.$$

L'objectif de cet exercice est de montrer que Y_{τ} a pour densité g en utilisant le résultat général.

Considérons l'ensemble

$$\mathcal{E} = \{(x, y) : 0 \le y \le kg(x)\}$$

et le sous ensemble $\mathcal{D} \subset \mathcal{E}$ défini par

$$\mathcal{D} = \{(x, y) : 0 \le y \le f(x)\}.$$

- 1. Montrer que la suite $(X_n)_{n\geq 1}$ définie par $X_n=(Y_n,kg(Y_n)U_n)$ est i.i.d de loi uniforme sur \mathcal{E} .
- 2. En déduire que X_{τ} suit la loi uniforme sur \mathcal{D} .
- 3. En déduire que Y_{τ} a pour densité f

Exercice 3 (simulation d'une loi Gamma). On chercher à simuler une variable aléatoire X de loi $\Gamma(\alpha, \beta)$, avec $\alpha, \beta > 0$. On rappelle la densité f de la v.a. X, $f(x) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{-\beta x} \mathbf{1}_{\{x>0\}}$.

1. Montrer que pour α entier, $\sum_{i=1}^{\alpha} Y_i \sim \Gamma(\alpha, \beta)$ où la suite $(Y_i)_i$ est i.i.d selon la loi exponentielle de paramètre β .

- 2. En remarquant que si $Y \sim \mathcal{E}(1)$, alors $\beta^{-1}Y \sim \mathcal{E}(\beta)$, montrer que $\beta^{-1} \sum_{i=1}^{\alpha} Z_i \sim \Gamma(\alpha, 1)$, où $(Z_i)_i$ est i.i.d. selon la loi $\mathcal{E}(1)$.
- 3. Pour α quelconque, on définit g la densité de la loi $\Gamma(\lfloor \alpha \rfloor, b)$ avec b > 0. On souhaite mettre en œuvre une méthode de rejet pour simuler selon la densité f en utilisant la densité g. Expliquer pourquoi on doit choisir $0 < b < \beta$.
- 4. Montrer que $x \mapsto \frac{f(x)}{g(x)}$ est maximale en $x^* = \frac{\alpha \lfloor \alpha \rfloor}{\beta b}$. Quel est le meilleur choix de b pour minimiser le nombre moyen de rejets.

Exercice 4. Soit $(T_i)_i$ une suite i.i.d de loi exponentielle de paramètre λ . On définit $Y_0 = 0$ et pour tout $n \in \mathbb{N}^*$, $Y_n = \sum_{k=1}^n T_k$. On pose

$$X = \sum_{i=1}^{\infty} i \mathbf{1}_{\{Y_i \le 1 < Y_{i+1}\}}$$

- 1. Déterminer la fonction caractéristique de Y_n pour $n \geq 1$. Quelle loi reconnaît-on?
- 2. Déterminer la loi de X
- 3. En déduire une méthode pour simuler une loi de Poisson à partir d'une suite de v.a. de loi $\mathcal{U}_{[0,1]}$.

Exercice 5. Soit X une variable aléatoire dont la densité est donnée par

$$f(x) = \frac{x}{16}e^{-\frac{x}{4}}\mathbf{1}_{\{x \ge 0\}}.$$

L'exercice consiste à trouver une méthode pour simuler selon la loi de X.

- 1. Justifier que f est une densité de probabilité.
- 2. Calculer la fonction de répartition de X.
- 3. Expliquer pourquoi la méthode de la fonction de répartition inverse ne permet pas de simuler une v.a. de densité f.
- 4. Soit Y une variable aléatoire de loi exponentielle de paramètre $\lambda > 0$. Expliquer comment simuler une réalisation de Y.
- 5. On souhaite mettre en oeuvre une méthode de rejet pour simuler une réalisation de X.
 - (a) Pour quelles valeurs de λ existe-t-il une constante C finie telle que

$$\forall x \in \mathbb{R} \ f(x) \le C\lambda e^{-\lambda x} \mathbf{1}_{\{x \ge 0\}}. \tag{1}$$

(b) Comment choisir λ pour optimiser la méthode de rejet?

(c) Ecrire l'algorithme associé à cette méthode de rejet.

Exercice 6 (simulation exacte du processus d'Ornstein Ulhenbeck). On considère le processus d'Ornstein Ulhenbeck défini par

$$\begin{cases} dX_t = -cX_t dt + \sigma dW_t, \\ X_0 = x \end{cases}$$

où c et σ sont deux constantes strictement positives et x un réel.

- 1. Soit $M \in \mathbb{N}^*$ et $h = \frac{1}{M}$. Ecrire le schéma d'Euler $(\bar{X}_{kh})_{0 \leq k \leq M}$ de pas h du processus X sur l'intervalle [0,1].
- 2. En utilisant le processus $Y_t = X_t e^{ct}$, montrer que X_t s'écrit

$$X_t = x e^{-ct} + \sigma e^{-ct} \int_0^t e^{cs} dW_s.$$
 (2)

- 3. Montrer que $\mathbb{E}(X_t) = x e^{-ct}$ et que $\operatorname{Var}(X_t) = \sigma^2 \frac{1 e^{-2ct}}{2c}$. En déduire que \bar{X}_h et X_h n'ont pas même loi.
- 4. Soit la grille de discrétisation $t_i = ih$, pour $i = 0 \dots M$. Montrer que l'on peut écrire

$$X_{t_i} = m_i + \int_0^1 f_i(s) dW_s$$

où l'on précisera la valeur des constantes m_i et des fonctions f_i pour $i = 0 \dots M$.

- 5. Déduire de la question précédente une méthode de simulation exacte du processus X à l'instant t_i pour i fixé dans $\{1 \dots M\}$.
- 6. Montrer que le vecteur $(x, Y_{t_1} Y_{t_0}, \dots, Y_{t_M} Y_{t_{M-1}})$ est un vecteur gaussien de moyenne μ et de matrice de covariance Γ , où

$$\mu = (x, 0, \dots, 0), \quad \Gamma = \operatorname{diag}\left(0, \sigma^2 \frac{e^{2ct_1} - e^{-2ct_0}}{2c}, \dots, \sigma^2 \frac{e^{2ct_N} - e^{-2ct_{N-1}}}{2c}\right).$$

Indication: on rappelle que pour tout s < t et toute fonction continue f, $\int_{s}^{t} f(u)dW_{u}$ est indépendante de $\mathcal{F}_{s} = \sigma(W_{u}, u \leq 0 \leq s)$.

- 7. Donner la loi du vecteur $(Y_{t_1}, \ldots, Y_{t_M})$ et en déduire celle de $(X_{t_1}, \ldots, X_{t_M})$.
- 8. En utilisant la question précédente, expliquer comment simuler le vecteur $(X_{t_1}, \ldots, X_{t_M})$.