# Funkce – opakování

#### Funkce 1 – cvičení 1:

- Je dána funkce  $f: y = -\frac{1}{2}x + 3$ ; x > -4.
- Rozhodněte, zda body A[-6; 6], B[4; -5] patří fci.
- Dopočítejte souřadnice bodů M[1; m] a N[n; 1] tak, aby patřily funkci f.
- Vypočítejte souřadnice průsečíků funkce s osami x, y.
- Co je grafem této funkce? Sestrojte jej.
- Určete definiční obor a obor hodnot fce.
- Je funkce monotónní? Pokud ano, jak?
- Pro která x jsou funkční hodnoty záporné?
- 2. Sestrojte graf, uved'te vlastnosti:

$$f: y = 3 - 2|5 + x| - x + |x|$$

- 3. Je dána funkce  $f: y = -3.(x 1)^2$ .
  - $D_f = \{-2, -1, 0, 1, 2, 3\}$ . Určete množinu  $H_f$ .
- 4. Funkce g obsahuje následující body:
  - $g = \{[-3, 5], [-1, -4], [0, 6], [3, 5]\}$ . Určete její definiční obor a obor hodnot.
- 5. Je dána funkce h(x) = -2(x+1). Doplňte následující tabulku:

| X | -3 | -2 |   |    | 2 | 4 |     |
|---|----|----|---|----|---|---|-----|
| y |    |    | 0 | -2 |   |   | -20 |

## Funkce 1 – cvičení2:

Určete definiční obory funkcí

1. 
$$f: y = -3x + 2$$

2. 
$$f: y = \frac{2x-3}{5}$$

1. 
$$f: y = -3x + 4$$
  
2.  $f: y = \frac{2x-3}{5}$   
3.  $f: y = \frac{3}{6-2x}$   
4.  $f: y = -\frac{5x+1}{x}$   
5.  $f: y = \frac{x+1}{x^2}$ 

4. 
$$f: y = -\frac{5x+1}{5x+1}$$

5. 
$$f: y = \frac{x+1}{x}$$

6. 
$$f: y = x + 3 - \frac{5}{2x}$$
  
7.  $f: y = \frac{2x - 3}{5 - 4x}$   
8.  $f: y = \sqrt{x + 1}$ 

7. 
$$f: y = \frac{2x-3}{5-4x}$$

8. 
$$f: y = \sqrt{x+1}$$

9. 
$$f: y = \sqrt{\frac{-3x-1}{4}}$$

10. 
$$f: y = \frac{2x-1}{\sqrt{x-3}}$$

11. 
$$f: y = \sqrt{\frac{-5}{4-2x}}$$

12. 
$$f: y = \sqrt{-\frac{3}{5x-1}}$$
  
13.  $f: y = \frac{\sqrt{-3x+6}}{x+5}$   
14.  $f: y = \frac{\sqrt{-4+2x}}{-x-3}$ 

13. 
$$f: v = \frac{\sqrt{-3x+6}}{}$$

14. 
$$f: y = \frac{\sqrt{-4+2x}}{-x-3}$$

### Funkce 1 – cvičení3:



# Z grafu funkce f určete:

- definiční obor, obor hodnot
- souřadnice průsečíků s osou x a osou y
- funkční hodnotu v bodě x = 2
- pro která x je y = 1
- pro jaká x jsou funkční hodnoty kladné