NILMTK v0.2: A Non-intrusive Load Monitoring **Toolkit for Large Scale Data Sets**

Jack Kelly¹, Nipun Batra², Oliver Parson³, Haimonti Dutta⁴, William Knottenbelt¹, Alex Rogers³, Amarjeet Singh², Mani Srivastava⁵

¹Imperial College London, ² IIIT Delhi, ³ University of Southampton, ⁴ CCLS Columbia, ⁵ UCLA nilmtk.github.io

Problems with NILM research

- 1. Different data sets used by each paper
- 2.No reference benchmark implementations available
- 3.Different metrics used by each paper

NILMTK: A toolkit for NILM research

NILMTK offers a complete pipeline from data sets to metrics:

- NILMTK defines a file format (NILMTK-DF) for NILM data
- Multiple dataset converters are included.
- Pipeline includes dataset statistics, preprocessing,
- training, disaggregation and NILM metrics.

Load arbitrarily large data sets

NILMTK v0.2 data set converters:

- 1. AMPds v2
- 2. COMBED
- 3. Dataport (was 'WikiEnergy')
- 4. ECO
- 5. GREEND
- 6. HES
- 7. iAWE
- 8. REDD
- 9. UK-DALE

Data set statistics

- ON-OFF duration distribution
- Appliance usage distribution
- Appliance power distribution
- Correlation between sensor streams
- Find appliance contributions
- Percentage energy sub-metered
- Percentage of samples when energy sub-metered greater than threshold

Data set diagnostics

Common imperfections in data sets can be

identified:

• Gaps Find continuous periods

Dropout rate

Kitchen outlets Washer dryer

 Dropout rate ignoring large gaps

Up-time

Benchmark algorithms

Combinatorial optimisation

(CO): Finds combination of appliance states which sum to aggregate power demand

$$\hat{x}_{t}^{(n)} = \underset{\hat{x}_{t}^{(n)}}{\operatorname{argmin}} \left| \bar{y}_{t} - \sum_{n=1}^{N} \hat{y}_{t}^{(n)} \right|$$

Factorial hidden Markov model (FHMM): extends combinatorial optimisation to consider time dependencies between consecutive samples

George Hart 1985's algorithm

MLE

...and more coming...

disaggregator = FHMM() disaggregator.train(training_data)

Performance metrics

- Error in total energy assigned
- Fraction total energy assigned correctly
- Normalised error in assigned power
- RMS error in assigned power
- Confusion matrix
- TP, FP, FN, TN • Precision, recall
- F-score
- Hamming loss

f_score(predicted_power, ground_truth_power)

Example results

- FHMM outperforms CO for 2 data sets
- Uses state durations
- CO performs comparably to FHMM for 4 data sets
 - State durations add little value

$\mathbf{Data} \ \mathbf{set}$	${f F-score}$	
	\mathbf{CO}	\mathbf{FHMM}
REDD	0.31	0.31
Smart*	0.53	0.61
Pecan Street	0.77	0.77
AMPds	0.55	0.71
iAWE	0.73	0.73
UK-DALE	0.38	0.38

