Obyčejné diferenciální rovnice

Obsah

• Rovnice se separovanými proměnnými

Rovnice se separovanými proměnnými

Obyčejné diferenciální rovnice, kterou lze zapsat v následujícím tvaru, budeme nazývat rovnicí se separovanými proměnnými.

$$g(y) \cdot y' = h(t)$$

Předpokládáme $g\in C(J), h\in C(I)$. Nechť φ řeší předchozí rovnici na $I_1\subset I$. Pak na $I_1:g\left(\varphi(t)\right)\cdot \varphi'(t)=h(t)$. Označme $H(t)=\int h(t)dt$ na I a $G(y)=\int g(y)dy$ na J. Poté na $I_1:\exists c\in\mathbb{R}:G\left(\varphi(t)\right)=H(t)+c$. Obráceně nechť $\exists c\in\mathbb{R}\land\varphi\in C^2\left(I_1\right):\forall t\in I_1:G\left(\varphi(t)\right)=H(t)$. Pak na $I_1:g\left(\varphi(t)\right)\cdot\varphi'(t)=h(t)$. Tedy φ řeší původní rovnici.

Řešme Cauchyovu úlohu $g(y)\cdot y'=h(t), y\left(t_0\right)=y_0$. Nechť je jím řešením funkce φ . Tedy $\int_{t_0}^t g\left(\varphi(s)\right)\cdot \varphi'(s)ds=\int_{t_0}^t h(s)ds, \varphi\left(t_0\right)=y_0$. Odtud $\int_{y_0}^{\varphi(t)} g(s)ds=\int_{t_0}^t h(s)ds, \varphi\left(t_0\right)=y_0$.

Věta: (existence a unikátnost řešení Cauchyovy úlohy pro RSP): Uvažujme $g(y)\cdot y'=h(t),y$ ($t_0)=y_0$, kde $I\subset\mathbb{R},J\subset\mathbb{R}$ jsou otevřené intervaly, $h\in C(I),g\in C(J)$. Nechť $t_0\in I$ a $\forall y\in J:g(y)\neq 0$. Pak zadaná Cauchyova úloha má právě jedno maximální řešení.