CS 3313 Foundations of Computing:

Properties of Context Free Languages

http://gw-cs3313-2021.github.io

Properties of Context Free Languages

- What are the properties of CFLs? Why is this interesting?
 - What types of languages are CFL?
 - Can all properties/semantics of a programming language be captured by a CFL ?
 - Can natural languages be described by CFGs ?
 - Can we determine ambiguity and remove ambiguity?
 - Can we parse natural languages using a CFG for the syntax ?
 - If we combine CFLs using set operations, is the resulting language CFL?
- How do we prove if a language is not context free?
 - Pumping lemma for CFLs !!

Why bother with Properties/limits of CFLs

- Exercise in abstraction:
- Scenario: In a program, we have function declaration and then a function call.
 - The actual and formal parameters need to match
 - Ex: int foo(int x, char y).... and main has: z= foo(a,b)
 - a must be an int, b must be a char
- Question: Can this property be described/specified by a context free grammar?
- Abstraction: the property can be captured by {aⁿb^mcⁿd^m}
 - aⁿ,b^m are formal parameters n of type a (int), m of type b (char)

Pumping Lemma: Intuition

- Informally: DFAs don't have external memory, so languages that require "storing" counts, strings, etc. are likely to not be regular
 - Ex: {equal number of a's and b's}, { ww^R},....
- Recall the pumping lemma for regular languages.
- It told us that if there was a string long enough to cause a cycle in the DFA transition graph, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.
 - Apply it using the 2-person game:
 - You pick the string after adversary picks n (i.e., you cannot specify a value for n)

Intuition – (2)

- For CFL's the situation is a little more complicated.
- PDAs have external memory a stack
 - But stack is limited in its capabilities
 - One "counter"
 - If you store something in the stack then when you check storage (i.e., pop the stack) the reverse pattern is popped.
 - Informal limits:
 - Languages that require multiple counters { aⁿbⁿcⁿ}
 - Languages that require exact patterns {ww}
 - If you push a pattern into the stack in the "first part" of the string, then that pattern repeats in "second part"
- We can always find two pieces of any sufficiently long string to "pump" in tandem.
 - That is: if we repeat each of the two pieces the same number of times, we get another string in the language.

Properties of Parse Trees

- Lemma 1: Let G in Chomsky Normal Form (CNF), then for any parse tree with yield w (string w generated by grammar) if n is the length of the longest path in the tree then $|w| \le 2^{n-1}$.
- Proof: What type of tree is a parse tree for a CNF grammar? –
 binary tree
- Recall CS1311 !!!
- Or prove by induction on length of the path
 - Basis: n=1 derivation must be $S \rightarrow a$
 - Ind.Step: Since G is in CNF, $S \rightarrow AB$ and $A=>^* w_2$ and $B=>^* w_2$
 - − A derives substring w_1 with path \leq n-1
 - B derives substring w_2 with path ≤ n-1
 - From IH: $|w_1| \le 2^{n-2}$ and $|w_2| \le 2^{n-2}$
 - $-|w| = |w_1| + |w_2| \le 2^{n-1}$

Properties of parse trees for arbitrarily long strings

- From previous theorems, if L is a CFL then there exists CNF G=(V,T,P,S) such that L=L(G)
 - L is generated by a CNF grammar G
 - |V| = m finite set of variables m variables
- We are implicitly discussing infinite languages
 - If a language is finite then it is a regular language
 - Implies regular grammar (subset of CFLs)
- Suppose we have $z \in L(G)$ and $|z| \ge n = 2^m$
- What can we say about parse tree for z?
 - From lemma 1, parse tree for z must have a path of length at least m+1
 - Yield of the tree is $\leq 2^m$

Parse tree properties

- If path has length k ≥ m+1, then it has k+1 vertices/nodes in the path
 - Last vertex is labelled with a terminal
- Therefore path has k internal nodes labelled with variables of the grammar
 - These are A_1 , A_2 ... A_i ,... A_j ... A_k
 - A₁ is the start symbol S
- We have m distinct variables => from pigeon hole principle,
 at least two of the vertices A_i and A_j are the same variable
 - In fact, from the leaf, these two occur within path of length m+1
- So what does this tell us about the parse tree for z?

Parse Tree in the Pumping-Lemma Proof

Pump Zero Times

Pump Twice

Pump Thrice

Etc., Etc.

Statement of the CFL Pumping Lemma

For every context-free language L

There is an integer n, such that

For every string z in L of length \geq n

There exists z = uvwxy such that:

- 1. $|vwx| \leq n$.
- 2. |vx| > 0.
- 3. For all $i \ge 0$, $uv^i wx^i y$ is in L.

How do use the pumping lemma: recall 2 person adversarial game

For all context free languages L, there exists n...for all z in

....there exists uvwxy.....

 Logical statements/assertions that have several alternations of for all and there exists quantifiers can be thought of as a game between two players

 Application of the pumping lemma can be seen as a two player game (of 5 steps)

Pumping Lemma as Adversarial Game

- 1. Player 1 (we) picks language we want to show is not a CFL
- 2. Player 2 "adversary" gets to pick *n*
 - We do not know the value of *n*, and must plan for all values of *n*
- 3. We get to pick z, and may use n as a parameter
 - Can express *z* using the parameter *n*
- 4. Adversary gets to break z into uvwxy subject only to the constraints that $|vwx| \le n$ and $|vx| \ge 1$.
- 5. We "win" the game, if we can, by picking i and showing uv^iwx^iy is not in L
 - We have to show this for all cases of how adversary breaks z into uvwxy

Example: $L = \{a^ib^ic^i\}$

- Informally: CFL (PDA) can count & match two groups of symbols but not three (since we have one counter)
- Apply pumping lemma to prove L is not CFL
- Assume L is CFL
- Let n be the constant of the lemma.
- Pick $z = a^n b^n c^n$
- Big difference from pumping lemma for regular languages
 - For regular languages, the pumping lemma allowed us to focus on the first n symbols/locations in the string
 - In CFL, the lemma only states $|vwx| \le n$
 - This suggests we have to consider different cases where vwx can occur!
 - Prove contradiction in every case!
 - No matter how adversary breaks up vwx, we prove a contradiction

Example: Cases for vwx for $L = \{a^ib^ic^i\}$

1. vwx is entirely within a^n

2. vwx is entirely within bⁿ

3. vwx is entirely within c^n

4. vwx has two symbols (a and b, or b and c)

Exercise: $L_2 = \{ a^i b^j c^i d^j \} a's = c's \text{ and } b's = d's \}$

- Intuition: L_2 is likely not CFL. If we push a's and b's on the stack (to remember how many), then we pop b's before a's
- 1. Assume L_2 is CFL you pick
- 2. Let *n* be the constrant adversary picks
- 3. Consider $z=a^nb^nc^nd^n \in L_2$ you pick
- 4. z = uvwxy, $|vwx| \le n$, and $|vx| \ge 1$ adversary picks
- 5. For every $i \ge 0$, $uv^i wx^i y \in L_2$ you pick I
- Question: (a) Find all cases for vwx and then (b) show contradiction for each case

"weakness" of the Pumping Lemma

- It allows vwx to be anywhere in the string
 - In contrast to pumping lemma for regular languages
- Looking at the proof, we can see the opportunity to limit the 'areas' to pump.....leads to a stronger pumping lemma:

Ogden's lemma: For every context-free language L, there is an integer n (which may in fact be the same as for the pumping lemma), such that if z is any string in L and we mark any n or more positions of z as "distinguished", then z = uvwxy such that:

- 1. vwx has at most n distinguished positions
- 2. vx has at least one distinguished position
- 3. For all $i \ge 0$, $uv^i wx^i y$ is in L.

Pumping lemma essentially marks all positions as distinguished!