

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Брянский государственный технический университет

Утверждаю	
Ректор универс	ситета
	О.Н.Федонин
«	2017 г.

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МНОЖЕСТВЕННАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ

Методические указания к выполнению лабораторной работы № 3 для студентов очной формы обучения по направлениям подготовки 09.03.01 «Информатика и вычислительная техника», 02.03.03 «Математическое обеспечение и администрирование компьютерных систем», 09.03.04 «Программная инженерия», 13.03.01 «Теплоэнергетика и теплотехника»

Обработка экспериментальных данных. Множественная линейная регрессия [Электронный ресурс]: методические указания к выполнению лабораторной работы № 3 для студентов очной формы обучения по направлениям подготовки 09.03.01 «Информатика и вычислительная техника», 02.03.03 «Математическое обеспечение и администрирование компьютерных систем», 09.03.04 «Программная инженерия», 13.03.01 «Теплоэнергетика и теплотехника». – Брянск: БГТУ, 2017. – 8 с.

Разработал:

Л.И.Пугач,

канд. физ.-матем. наук, доц.

Рекомендовано кафедрой «Информатика и программное обеспечение» БГТУ (протокол №7 от 01.06.17)

Методические издания публикуются в авторской редакции

Цель работы

Целью лабораторной работы является получение практических навыков в построении аппроксимации линейной функцией от двух переменных методом наименьших квадратов по заданной таблице данных.

Продолжительность лабораторной работы -2 часа.

Краткие сведения

Множественная линейная регрессия — важный и актуальный метод обработки экспериментальных данных. Он позволяет по заданной таблице числовых данных вида

X	x_1	x_2	•••	\mathcal{X}_n
Y	y_1	<i>y</i> ₂	•••	y_n
Z	<i>Z1</i>	<i>Z</i> .2	•••	Z_n

получить линейную зависимость Z=aX+bY+c, которая наиболее точно соответствует этим данным. Говоря языком графиков, мы находим график, который проходит наиболее близко ко всем заданным точкам.

Для нахождения коэффициентов a,b,c указанной линейной зависимости Z=aX+bY+c с помощью метода наименьших квадратов выведена система уравнений:

$$\begin{cases} a \cdot \sum x_i^2 + b \cdot \sum x_i y_i + c \cdot \sum x_i = \sum z_i x_i \\ a \cdot \sum x_i y_i + b \cdot \sum y_i^2 + c \cdot \sum y_i = \sum z_i y_i \\ a \cdot \sum x_i + b \cdot \sum y_i + c \cdot n = \sum z_i \end{cases}$$

Задание к лабораторной работе

Дана таблица экспериментальных данных

X	x_1	x_2	•••	χ_n
Y	<i>y</i> ₁	У2	•••	Уn
Z	<i>Z</i> ₁	<i>Z</i> ₂	•••	Z_n

(конкретные числовые значения возьмите из Вашего варианта)

- 1) Вычислите все суммы ($\sum x_i^2$,..., $\sum z_i$) и составьте систему уравнений множественной линейной регрессии.
- 2) Решите её (рекомендуется по правилу Крамера) и найдите коэффициенты a,b,c.
- 3) Вычислите 5 значений $F_i = aX_i + bY_i + c$.
- 4) Найдите среднее квадратичное отклонение $d=\sqrt{\frac{\sum (Z_i-F_i)^2}{n}}$

(в нашей работе n=5), характеризующее точность найденной модели

Задания к вариантам

Вариант 1	X	1	2	3	4	5
	Y	2	4	6	7	9
	Z	9	15	24	30	36
	X	2	3	4	5	6
Вариант 2	Y	3	4	7	8	10
	Z	9	14	24	30	35
Вариант 3	X	3	4	5	6	7
	Y	2	3	5	7	8
	Z	10	13	24	31	34
Вариант 4	X	4	5	6	7	8
	Y	3	4	7	8	9
	Z	10	15	24	31	36

Вариант 5	X	5	6	7	8	9
	Y	3	4	6	7	9
	Z	9	15	24	30	35
	X	6	7	8	9	10
Вариант 6	Y	3	5	6	7	9
	Z	9	15	24	30	37
	X	1	2	3	4	5
Вариант 7	Y	4	5	6	9	10
	Z	12	15	24	30	37
	X	2	3	4	5	6
Вариант 8	Y	3	6	7	8	9
	Z	6	15	24	30	40
	X	3	4	5	6	7
Вариант 9	Y	4	6	7	8	9
	Z	9	12	18	30	36
	X	4	5	6	7	8
Вариант 10	Y	3	4	6	8	9
	Z	8	11	14	17	22
	X	5	6	7	8	9
Вариант 11	Y	2	3	5	7	9
	Z	9	14	19	24	30
	X	6	7	8	9	10
Вариант 12	Y	3	4	6	8	9
	Z	7	10	13	15	18
	X	1	2	3	4	5
Вариант 13	Y	2	4	6	7	8
	Z	6	9	12	15	20
Вариант 14	X	2	3	4	5	6
	Y	3	5	7	9	10
	Z	5	8	11	15	19
Вариант 15	X	3	4	5	6	7
	Y	2	4	6	7	8
	Z	6	8	10	12	15
	<u> </u>					

Вариант 16	X	4	5	6	7	8
	Y	2	4	6	7	9
	Z	11	13	16	19	22
	X	5	6	7	8	9
Вариант 17	Y	3	4	5	8	9
	Z	11	13	15	18	21
	X	6	7	8	9	10
Вариант 18	Y	4	5	6	8	9
	Z	7	11	15	20	25
Вариант 19	X	1	2	3	4	5
	Y	3	5	6	7	9
	Z	6	10	15	20	25
Вариант 20	X	2	3	4	5	6
	Y	2	3	6	7	9
	Z	5	7	10	13	15

Контрольные вопросы

- 1. Какова постановка задачи множественной линейной регрессии?
- 2. Как выглядит система уравнений для решения этой задачи?
- 3. Как можно решить эту систему уравнений?
- 4. Как оценить точность построенной линейной модели?

Список рекомендуемой литературы

Гребенникова Методы обработки 1. И.В. математической [Электронный учебноэкспериментальных данных pecypc]: методическое пособие / И.В. Гребенникова. — Электрон. текстовые данные. — Екатеринбург: Уральский федеральный университет, 2015. 978-5-7996-1456-0. 124 Режим доступа: http://www.iprbookshop.ru/66551.html

Обработка экспериментальных данных. Множественная линейная регрессия [Электронный ресурс]: методические указания к выполнению лабораторной работы № 3 для студентов очной формы обучения по направлениям подготовки 09.03.01 «Информатика и вычислительная техника», 02.03.03 «Математическое обеспечение и администрирование компьютерных систем», 09.03.04 «Программная инженерия», 13.03.01 «Теплоэнергетика и теплотехника». – Брянск: БГТУ, 2017. – 8 с.

ПУГАЧ ЛЕОНИД ИЗРАИЛЕВИЧ

Научный редактор А.А.Азарченков Компьютерный набор Л.И.Пугач

Темплан 2017 г., п.

Подписано в печать Формат 60х84 1/16 Бумага офсетная. Офсетная печать. Усл.печ.л. 0,46 Уч.-изд.л. 0,46 Тираж 1 экз Заказ Бесплатно.

Брянский государственный технический университет Кафедра «Информатика и программное обеспечение», тел. 56-09-84 241035, Брянск, бульвар 50 лет Октября, 7 БГТУ