#### **PROBLEM 2.101**



The support assembly shown is bolted in place at B, C, and D and supports a downward force  $\mathbf{P}$  at A. Knowing that the forces in members AB, AC, and AD are directed along the respective members and that the force in member AB is 146 N, determine the magnitude of  $\mathbf{P}$ .

#### **SOLUTION**

Note that AB, AC, and AD are in compression.

Have

$$d_{BA} = \sqrt{(-220 \text{ mm})^2 + (192 \text{ mm})^2 + (0)^2} = 292 \text{ mm}$$

$$d_{DA} = \sqrt{(192 \text{ mm})^2 + (192 \text{ mm})^2 + (96 \text{ mm})^2} = 288 \text{ mm}$$

$$d_{CA} = \sqrt{(0)^2 + (192 \text{ mm})^2 + (-144 \text{ mm})^2} = 240 \text{ mm}$$

$$\mathbf{F}_{BA} = F_{BA} \lambda_{BA} = \frac{146 \text{ N}}{292 \text{ mm}} [(-220 \text{ mm})\mathbf{i} + (192 \text{ mm})\mathbf{j}]$$

$$= -(110 \text{ N})\mathbf{i} + (96 \text{ N})\mathbf{j}$$

$$\mathbf{F}_{CA} = F_{CA} \lambda_{CA} = \frac{F_{CA}}{240 \text{ mm}} [(192 \text{ mm})\mathbf{j} - (144 \text{ mm})\mathbf{k}]$$

and

$$\mathbf{F}_{CA} = F_{CA} \boldsymbol{\lambda}_{CA} = \frac{F_{CA}}{240 \text{ mm}} \left[ (192 \text{ mm}) \mathbf{j} - (144 \text{ mm}) \mathbf{k} \right]$$
$$= F_{CA} \left( 0.80 \mathbf{j} - 0.60 \mathbf{k} \right)$$

$$\mathbf{F}_{DA} = F_{DA} \mathbf{\lambda}_{DA} = \frac{F_{DA}}{288 \text{ mm}} \Big[ (192 \text{ mm}) \mathbf{i} + (192 \text{ mm}) \mathbf{j} + (96 \text{ mm}) \mathbf{k} \Big]$$
$$= F_{DA} \Big[ 0.66667 \mathbf{i} + 0.66667 \mathbf{j} + 0.33333 \mathbf{k} \Big]$$

With

$$\mathbf{P} = -P\mathbf{j}$$

At *A*:

$$\Sigma \mathbf{F} = 0: \quad \mathbf{F}_{BA} + \mathbf{F}_{CA} + \mathbf{F}_{DA} + \mathbf{P} = 0$$

**i**-component:

$$-(110 \text{ N}) + 0.66667 F_{DA} = 0$$
 or  $F_{DA} = 165 \text{ N}$ 

j-component:

$$96 N + 0.80 F_{CA} + 0.66667 (165 N) - P = 0$$
 (1)

k-component:

$$-0.60F_{CA} + 0.33333(165 \text{ N}) = 0 \tag{2}$$

Solving (2) for  $F_{CA}$  and then using that result in (1), gives

P = 279 N

#### **PROBLEM 2.102**



The support assembly shown is bolted in place at B, C, and D and supports a downward force  $\mathbf{P}$  at A. Knowing that the forces in members AB, AC, and AD are directed along the respective members and that  $\mathbf{P} = 200 \,\mathrm{N}$ , determine the forces in the members.

# **SOLUTION**

With the results of 2.101:

$$\mathbf{F}_{BA} = F_{BA} \lambda_{BA} = \frac{F_{BA}}{292 \text{ mm}} \left[ (-220 \text{ mm}) \mathbf{i} + (192 \text{ mm}) \mathbf{j} \right]$$

$$= F_{BA} \left[ -0.75342 \mathbf{i} + 0.65753 \mathbf{j} \right] N$$

$$\mathbf{F}_{CA} = F_{CA} \lambda_{CA} = \frac{F_{CA}}{240 \text{ mm}} \left[ (192 \text{ mm}) \mathbf{j} - (144 \text{ mm}) \mathbf{k} \right]$$

$$= F_{CA} \left( 0.80 \mathbf{j} - 0.60 \mathbf{k} \right)$$

$$\mathbf{F}_{DA} = F_{DA} \lambda_{DA} = \frac{F_{DA}}{288 \text{ mm}} \left[ (192 \text{ mm}) \mathbf{i} + (192 \text{ mm}) \mathbf{j} + (96 \text{ mm}) \mathbf{k} \right]$$

$$= F_{DA} \left[ 0.666667 \mathbf{i} + 0.666667 \mathbf{j} + 0.33333 \mathbf{k} \right]$$

With:

$$\mathbf{P} = -(200 \text{ N})\mathbf{j}$$

At *A*:

$$\Sigma \mathbf{F} = 0$$
:  $\mathbf{F}_{BA} + \mathbf{F}_{CA} + \mathbf{F}_{DA} + \mathbf{P} = 0$ 

Hence, equating the three  $(\mathbf{i}, \mathbf{j}, \mathbf{k})$  components to 0 gives three equations

i-component: 
$$-0.75342F_{BA} + 0.66667F_{DA} = 0$$
 (1)

**j**-component: 
$$0.65735F_{BA} + 0.80F_{CA} + 0.66667F_{DA} - 200 \text{ N} = 0$$
 (2)

**k**-component: 
$$-0.60F_{CA} + 0.33333F_{DA} = 0$$
 (3)

Solving (1), (2), and (3), gives

$$F_{BA} = 104.5 \text{ N}, \qquad F_{CA} = 65.6 \text{ N}, \qquad F_{DA} = 118.1 \text{ N}$$

$$F_{BA} = 104.5 \text{ N} \blacktriangleleft$$

$$F_{CA} = 65.6 \text{ N} \blacktriangleleft$$

$$F_{DA} = 118.1 \text{ N} \blacktriangleleft$$

# **PROBLEM 2.103**



Three cables are used to tether a balloon as shown. Determine the vertical force  $\mathbf{P}$  exerted by the balloon at A knowing that the tension in cable AB is 60 lb.

# **SOLUTION**



The forces applied at *A* are:

$$\mathbf{T}_{AB}, \ \mathbf{T}_{AC}, \ \mathbf{T}_{AD} \ \text{and} \ \mathbf{P}$$

where  $\mathbf{P} = P\mathbf{j}$ . To express the other forces in terms of the unit vectors  $\mathbf{i}$ ,  $\mathbf{j}$ ,  $\mathbf{k}$ , we write

$$\overrightarrow{AB} = -(12.6 \text{ ft})\mathbf{i} - (16.8 \text{ ft})\mathbf{j}$$

$$\overrightarrow{AC} = (7.2 \text{ ft})\mathbf{i} - (16.8 \text{ ft})\mathbf{j} + (12.6 \text{ ft})\mathbf{k}$$
  $AC = 22.2 \text{ ft}$ 

 $AB = 21 \, \mathrm{ft}$ 

$$\overrightarrow{AD} = -(16.8 \text{ ft})\mathbf{j} - (9.9 \text{ ft})\mathbf{k}$$
  $AD = 19.5 \text{ ft}$ 

and 
$$\mathbf{T}_{AB} = T_{AB} \mathbf{\lambda}_{AB} = T_{AB} \frac{\overrightarrow{AB}}{AB} = (-0.6\mathbf{i} - 0.8\mathbf{j}) T_{AB}$$

$$\mathbf{T}_{AC} = T_{AC} \boldsymbol{\lambda}_{AC} = T_{AC} \frac{\overrightarrow{AC}}{AC} = (0.3242\mathbf{i} - 0.75676\mathbf{j} + 0.56757\mathbf{k})T_{AC}$$

$$\mathbf{T}_{AD} = T_{AD} \boldsymbol{\lambda}_{AD} = T_{AD} \frac{\overrightarrow{AD}}{AD} = (-0.8615 \mathbf{j} - 0.50769 \mathbf{k}) T_{AD}$$

# **PROBLEM 2.103 CONTINUED**

Equilibrium Condition

$$\Sigma F = 0$$
:  $\mathbf{T}_{AB} + \mathbf{T}_{AC} + \mathbf{T}_{AD} + P\mathbf{j} = 0$ 

Substituting the expressions obtained for  $\mathbf{T}_{AB}$ ,  $\mathbf{T}_{AC}$ , and  $\mathbf{T}_{AD}$  and factoring  $\mathbf{i}$ ,  $\mathbf{j}$ , and  $\mathbf{k}$ :

$$(-0.6T_{AB} + 0.3242T_{AC})\mathbf{i} + (-0.8T_{AB} - 0.75676T_{AC} - 0.8615T_{AD} + P)\mathbf{j}$$

$$+ (0.56757T_{AC} - 0.50769T_{AD})\mathbf{k} = 0$$

Equating to zero the coefficients of i, j, k:

$$-0.6T_{AB} + 0.3242T_{AC} = 0 (1)$$

$$-0.8T_{AB} - 0.75676T_{AC} - 0.8615T_{AD} + P = 0 (2)$$

$$0.56757T_{AC} - 0.50769T_{AD} = 0 (3)$$

Setting  $T_{AB} = 60$  lb in (1) and (2), and solving the resulting set of equations gives

$$T_{AC} = 111 \, \text{lb}$$

$$T_{AD} = 124.2 \text{ lb}$$

 $\mathbf{P} = 239 \text{ lb} \uparrow$