Metal Dusting – Catastrophic Corrosion by Carbon

David Young Lesson 3 Class 1

School of Materials Science & Engineering University of New South Wales Sydney, Australia

1

TECHNOLOGICAL RELEVANCE Hydrocarbons - Oil, Petrochemical Processing Syngas (CO + H₂) - Reforming, Gasification NH₃ synthesis CH₃OH synthesis Combustion Gas (CO₂) Combustion Gas (CO₂)

GRAPHITE CAUSES METAL DUSTING

Graphite deposition causes metal loss rates of cm per year

3

METAL DUSTING, ALLOY 800

Alloy 800 parts in a reduction furnace

Alloy 800 in synthesis gas at about 600°C

METAL DUSTING

- Occurs at intermediate T
- Requires gas with a_C > 1
- Depends on gas composition (not just a_C)
- Mechanism varies with alloy type: Fe- or Ni-base

5

METAL DUSTING OF Fe AND FERRITICS

Start with simplest system: Fe

Rate of C(s) Production

- In gas phase, Syngas and Boudouard reactions do not occur
- Need solid catalysts: Fe, Ni, Co

Catalysis Sites?

EVALUATION OF D IN Fe₃C

$$\frac{dX}{dt} = \frac{k_p}{X} - k_d$$

- Measure X = f(t)
- Measure k_d independently
- Fit to Eqn
- Extract k_p
- Calculate D_C

17

D in CEMENTITE LAYER

Kinetics:

¹² cm² s⁻¹

Diffusion Measurements:

$$D_C (Fe_3C) = 5x10^{-12} \text{ cm}^2 \text{ s}^{-1}$$

CONCLUSIONS: Fe₃C scale growth diffusion controlled

a_C>1 at Fe₃C/Coke interface

Gas Composition Effects

$$CO + H_2 = H_2O + C$$
 (1)

$$2CO = CO_2 + C \tag{2}$$

$$CH_4 = 2H_2 + C$$
 (3)

Net carbon uptake: $Rate = k_1 p_{CO} p_{H_2} + k_2 p_{CO}^2 + k_3 p_{H_2}^2$

Ferritic Cr Steels, Isothermal Cr₂O₃ Alloy Syngas is oxidising to Cr Ferritic alloys have fast D Cold working surface before service...

31

Ferritic Cr Steels, Thermal Cycling

Fe-25Cr, 680°C in CO/ H_2/H_2O (a_c =2.9, p(O₂) = 10^{-23} atm)

- Alloy protected by Cr₂O₃ scale at first
- Repeated T-cycles damage scales
- · C enters Cr-depleted alloy
- Precipitates..
- Prevents scale...
- · Continued C entry...
- Then

33

SUMMARY

- C-supersaturated gas catalysed by Fe produces <u>C</u>
- Fe₃C surface layer formed
- Fe₃C also catalyses release of C from gas
- C diffuses in (a) growing Fe₃C layer
 - (b) precipitates within layer, causes disintegration
- Fe₃C particles catalyse C deposition, cause C nanotube growth
- Chromia scale can protect alloy against dusting

