HAETAE and SMAUG-T: Korean PQC Standards

Hyeongmin Choe

CryptoLab, Inc.

April 25th, 2025 KMS Spring Meeting, KAIST

TABLE OF CONTENTS

Why Post-Quantum Cryptography?

HAETAE, Digital Signature Scheme

SMAUG-T, Key Encapsulation Mechanism

From Competition to Standard

^{*} Images from https://scientists-estimate-that-quantum-computers-may-become-powerful-enough-to-crack-the-Bitcoin-encryption-in-a-decade.597437.0.html, https://scientists-estimate-that-quantum-computers-may-become-powerful-enough-to-crack-the-Bitcoin-encryption-in-a-decade.597437.0.html, <a href="https://scientists-estimate-that-quantum-computers-may-become-powerful-enough-to-crack-the-Bitcoin-encryption-in-a-decade.597437.0.html, <a href="https://scientists-estimate-that-quantum-computers-may-become-powerful-enough-to-crack-the-Bitcoin-encryption-in-a-decade.597437.0.html, <a href="https://scientists-estimate-that-quantum-computers-may-become-powerful-enough-to-crack-the-Bitcoin-encryption-in-a-decade.597437.0.html, <a href="https://scientists-estimate-that-quantum-computers-may-become-powerful-enough-to-crack-the-Bitcoin-encryption-in-a-decade.597437.0.html, <a href="https://scientists-estimate-that-quantum-computers-may-become-powerful-enough-to-crack-the-Bitcoin-encryption-in-a-decade.597437.0.html, <a href="https://scientists-estimate-that-quantum-computers-may-become-powerful-enough-to-crack-the-Bitcoin-enough-to-crack-th

"Classical" Cryptography

"Classical" Cryptography

"Classical" Cryptography

Cryptosystem

Reduction

Hard problems

- RSA Encryption/Signature
- Diffie-Hellman Key Exchange
- ECDSA/ECDH

- Integer Factorization
- Discrete Logarithm (DL)
- DL in Elliptic Curve o

 \mathbf{f}_p (ECDL)

Shor's algorithm in Quantum Computer

"Classical" Cryptography

Qubit growth estimates, according to Moore's Law

RSA2048: billions of years vs. several seconds in 4,000-logical-cubit quantum computer.

(expected, when quantum computers are commercialized... but when?)

Post-Quantum Cryptography

Post-Quantum Cryptography

Reduction

Hard problems (even) against Quantum **Algorithms**

- Lattice-based cryptography

- Code-based cryptography

- Shortest/Closest Vector Problem (SVP/CVP)
 - \approx Learning With Errors (LWE)
 - ≈ Learning With Rounding (LWR)
 - \approx Short Integer Solution (SIS)
- Syndrome Decoding Problem (SDP)

 - NP-hard!*

Global Movement

KpqC Competition

- 2021년, 국립보안기술연구소에서 한국형 양자내성암호 확보를 목표로 공모
 - 공개 키 암호(PKE)와 키 캡슐화(KEM) 분야: 7개 알고리즘
 - 전자서명(Digital Signature) 분야: 9개 알고리즘
- 2025년, 최종 4개 알고리즘 선정

KpqC 2025 Selected	PKE/KEM	Signatures	Overall
Lattice-based	SMAUG-T NTRU+	HAETAE	3
Symmetric-based		AlMer	1

SMAUG-T

Key Encapsulation Mechanism

Key Encapsulation Mechanism (KEM):

 $(k,c) \leftarrow \mathsf{Encap}(pk)$

 \rightarrow Both have the same key k

2. Shared key

 $k \leftarrow \mathsf{Decap}(sk, c)$

THE History

LWE, LWR and their Module Variants

Learning With Errors (LWE)

Gaussian noise is added:

Learning With Rounding (LWR)

Noise comes from rounding:

Module LWE (MLWE)

Gaussian noise is added:

Module LWR (MLWR)

Noise comes from rounding:

SMAUG-T.PKE

SMAUG-T.PKE

$$n = 256$$

$$R = \mathbb{Z}[x]/(x^n + 1)$$

MLWE-based Public Key

- * secret (s): sparse ternary (HWT)
- * noise (e): discrete Gaussian (dG)

MLWR-based Encryption

$$\left(\left| \frac{p}{q} \cdot \right|^{r} \right], \left| \frac{p'}{q} \cdot \right|^{r} \left| \frac{p'}{q} \cdot \right|^{\Delta M} \right)$$

* noise: rounding error

 $r \in R_q^k$

SMAUG-T.KEM

- **Fujisaki-Okamoto Transform (FO):**
 - SMAUG-T.PKE → SMAUG-T.KEM

HAETAE

Joint work between Seoul National University (서울대학교), CryptoLab, Inc. ((주)크립토랩), École Normale Supérieure de Lyon (ENS de Lyon), Ruhr-Universität Bochum (RUB), and Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI).

Digital signature

Digital signatures

Verify(vk, m, σ) = accept (or reject)

THE History

Short Integer Solution (SIS) and its Module Variant

Short Integer Solution (SIS)

• Can we find a short solution $x \in \mathbb{Z}_q^n \setminus \{\mathbf{0}\}$ of $Ax \equiv \mathbf{0} \ mod \ q$ for given $A \in \mathbb{Z}_q^{m \times n}$?

Module Variant (MSIS)

• Can we find a short solution $x \in R_q^n \setminus \{0\}$ of $Ax \equiv 0$ in R_q for given $A \in R_q^{m \times n}$?

"Fiat-Shamir with Abort" Paradigm

KeyGen

• Sign

But with rejection sampling, since

$$z = y + S$$
 c depends on S.

Verify

- Is z short?
- Is c = H(Az-Tc)?

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{z} \end{bmatrix} - \begin{bmatrix} \mathbf{C} \\ \mathbf{T} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{y} \end{bmatrix} + \begin{bmatrix} \mathbf{C} \\ \mathbf{y} \end{bmatrix} - \begin{bmatrix} \mathbf{A} \\ \mathbf{S} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A} \\ \mathbf{y} \end{bmatrix}$$

HAETAE

- HAETAE
 - Randomness y

•
$$z = y + (-1)^b \cdot Sc$$

- Rejection sampling on z
 - From: hyperball centered at $\pm Sc$
 - To: smaller hyperball centered at 0

[KpqC] SMAUG-T

SMAUG-T and HAETAE

KEM

Size in bytes CT PK 497% 4000 100% 117% 129%

Concretely-proven security

128-bit secure parameters

[NIST] Kyber

Small sizes with good performance

[KpqC] NTRU+

[NIST] HQC

Digital Signatures

128-bit secure parameters

PROJECTS

Post-Quantum Cryptography PQC

From Competition to Standard

산 업 표 준 심 의 회 2023년 4월 3일 개정

From Competition to Standard

Future Plan

Migration to PQC

When? ASAP, Harvest Now, Decrypt Later (HNDL) attacks!

- x: time that products and data must remain secure
- y: time it takes to migrate to post-quantum cryptography
- z: time it takes until cryptographically-relevant quantum computers will be available
- See HEaaN PQC Alliance Program at https://heaanpqc.com !!!

From Competition to Standard

Future Plan

Korean Standards

Ongoing efforts for governmental/industrial usages!

• **Hybrid** with..

- Classical algorithms?
- NIST-selected US standards?

• Some **Improvements**..

Thank You

