

CLAIMS

1 1. A system, comprising:
2 a) a gas turbine engine, which includes at least one
3 annular flange extending from a turbine casing; and
4 b) a continuous annular heat shield, which
5 i) encapsulates the annular flange, and
6 ii) includes bellows or diaphragms which
7 reduce the axial modulus of elasticity of
8 the heat shield.

1 2. System according to claim 1, wherein the annular
2 heat shield includes base edges adjacent the turbine
3 casing, and the annular heat shield is impervious to gas
4 flow, except possibly at the base edges.

1 3. System according to claim 1, wherein the annular
2 heat shield is constructed of several adjacent units, each
3 unit including
4 c) a mounting section in thermal contact with a first
5 sector of the flange;
6 b) a hollow section surrounding a second sector of
7 the flange, and separated from the second sector by a
8 blanket of air; and
9 d) a bulkhead lying in an axial plane, which connects

10 the bracket section with the hollow section.

1 4. System according to claim 3, wherein the mounting
2 sections are generally U-shaped in cross section, with
3 legs of the U in thermal contact with the annular flange.

1 5. System according to claim 3, wherein the bulkheads
2 flex during thermal expansion or contraction of the
3 annular heat shield.

1 6. System according to claim 1, and further comprising
2 spacers which extend between the heat shield and either
3 the annular flange or the turbine casing, and which
4 support the annular flange.

1 7. A system, comprising:

2 a) a gas turbine engine, which includes an annular
3 flange extending from a turbine casing, the
4 flange/casing having an axial modulus of elasticity
5 defined therein; and

6 b) a heat shield, which

7 i) encapsulates a sector of the flange, and
8 ii) has an axial modulus of elasticity
9 which is less than fifty percent of the
10 axial modulus of elasticity of the sector.

1 8. Method of operating a gas turbine engine,
2 comprising:

3 a) maintaining an annular body on an outer surface of
4 a turbine casing;

5 b) maintaining an array of housings, each
6 i) encapsulating a respective sector of the
7 annular body, and
8 ii) maintaining a blanket of air adjacent
9 said respective sector;

10 c) maintaining an array of brackets, each
11 i) between a pair of housings; and
12 ii) in thermal contact with a respective
13 sector of the body;

14 d) maintaining a gas seal between each bracket and
15 its adjacent pair of housings.

1 9. Method according to claim 8, and further comprising:

2 e) maintaining bolts which extend through the annular
3 body, each bolt fastening a bracket to the annular
4 body.

1 10. Method according to claim 8, wherein the brackets,
2 housings, and seals present a spatially continuous barrier
3 to gases moving toward the annular body, except possibly
4 at the radially innermost parts of the brackets, housings,
5 and seals.

1 11. A system, comprising:

2 a) a gas turbine engine, which includes at least one

3 flange extending from a turbine shroud;

4 b) an annular heat shield constructed of a sequence

5 of hollow units, each unit surrounding a sector of the

6 flange, and each unit comprising:

7 i) a first housing which surrounds a first

8 sector of the flange, and

9 ii) a second housing which surrounds a

10 second sector of the flange to define an air

11 space between the second housing with the

12 second sector.

1 12. System according to claim 11, wherein (A) the first
2 housing is generally U-shaped in cross-section, and (B)
3 legs of the U straddle the flange.

1 13. System according to claim 11, and further
2 comprising bolts which extend through the first housings
3 and through the flange, and which clamp the first housings
4 into thermal contact with the flange.

1 14. System according to claim 11, and further
2 comprising

3 c) a planar diaphragm, lying in an axial plane,

4 connecting an end of the first housing with an end of
5 the second housing.

1 15. System according to claim 11, and further
2 comprising:

3 c) bellows means within the heat shield for reducing
4 the axial modulus of elasticity of the heat shield.

1 16. System according to claim 11, and further
2 comprising a collection of spacers positioned between the
3 annular heat shield and either the annular shroud or the
4 flange, which spacers support the annular heat shield.

1 17. System according to claim 16, wherein an annular
2 space exists between the annular heat shield and the
3 flange.

1 18. A system, comprising:

2 a) a gas turbine engine containing a turbine shroud
3 from which extends an annular body;

4 b) an annular heat shield encapsulating the annular
5 body, comprising:

6 i) shell sections;

7 ii) deformable connectors between adjacent
8 shell sections; and

9 iii) connectors for connecting the shell

10 sections to the shroud or annular body,
11 wherein each shell section captures a blanket of air
12 adjacent the annular body.

1 19. System according to claim 18, wherein the
2 connectors are U-shaped, and of smaller cross-section than
3 the shell sections.