Math221 – Mathematics for Computer Science

S1-2024 Assignment 1 - Sample Answer

(Each question carries 10 marks)

- 1. Let Z be the set of integers, \mathbb{R} be the set of real numbers, N be the set of natural numbers, $A = \{x \in \mathbb{R}: -5 < x \le 5\}$ and $B = \{x \in \mathbb{N}: -5 < x \le 5\}$. Find the following and specify them either directly or using set builder notations:
 - (i) (Z-R)
 - (ii) (N-R)
 - (iii) (N-Z).
 - (iv) (A B)
 - (v) $\{9,3,8\} \cap (\{-9,9\} \cup \{1,10\})$

Answer:

- (i) \emptyset
- (ii) \emptyset
- (iii) Ø
- (iv) $\{x \in \mathbb{R}: (x \notin \mathbb{N}) \land (-5 \le x \le 5)\}$ Or $\{x \in \mathbb{R}: (-5 \le x \le 1) \lor (1 \le x \le 2) \lor (2 \le x \le 3) \lor (3 \le x \le 4) \lor (3 \le x \le 4)\}$
- $(v) \{9\}$
- 2. Use element argument method to prove that for any two sets A and B, if $A \subseteq B$, then $P(A) \subseteq P(B)$, where P(A) and P(B) are power sets of A and B respectively. You must state your reasons clearly for every statement in your proof.

Proof.

Let A and B be sets, such that $A \subseteq B$. Let $X \in P(A)$. From definition of power set, $X \subseteq A$. Let $y \in X$. Since $y \in X$ and $X \subseteq A$, from the definition of subset, $y \in A$. Since $A \subseteq B$, from the definition of subset, $y \in B$. Thus, from definition of subset, we have $X \subseteq B$. Hence, from the definition of power set, $X \in P(B)$. Therefore, from the definition of subset, we have $P(A) \subseteq P(B)$.

3. Prove using mathematical induction that if a and r are real numbers and $r \neq 1$,

$$\sum_{i=0}^{n} ar^{i} = \frac{a(r^{n+1} - 1)}{r - 1}$$

for all $n \ge 0$.

Proof:

Basis Step:

For n = 0,

LHS =
$$\sum_{i=0}^{0} ar^{i} = a \times r^{0} = a$$

RHS = $\frac{a(r^{n+1}-1)}{r-1} = \frac{a(r^{1}-1)}{r-1} = a$

Hence, LHS = RHS

Hence, the formula holds.

Inductive Step:

Assume that the equality holds when n = k, where $k \ge 0$, that is,

$$\sum_{i=0}^{k} ar^{i} = \frac{a(r^{k+1} - 1)}{r - 1}$$

We shall prove that the equality still holds when n = k+1, that is:

$$\sum_{i=0}^{k+1} ar^i = \frac{a(r^{k+2} - 1)}{r - 1}$$

When n=k+1,

$$\sum_{i=0}^{k+1} ar^{i} = \sum_{i=0}^{k} ar^{i} + ar^{k+1}$$

$$= \frac{a(r^{k+1}-1)}{r-1} + ar^{k+1} \qquad \text{from the assumption}$$

$$= \frac{ar^{k+1} - a + ar^{k+2} - ar^{k+1}}{r-1}$$

$$= \frac{a(r^{k+2}-1)}{r-1}$$

Hence, the formula holds when n = k+1.

Therefore, by the principle of mathematical induction, the given formula holds for all $n \ge 0$.

4. Let $b \in R$. Prove that if $b^2 + 7b + 777$ is an irrational number, then b irrational numbers.

Proof:

We shall use Proof by Contradiction.

Let b be a rational number.

Since b is a rational number, from definition of rational number:

$$b = \frac{p}{q}$$
 where p, $q \in Z$ and $q \neq 0$

Then,

$$b^{2} + 7b + 777 = \left(\frac{p}{q}\right)^{2} + 7\left(\frac{p}{q}\right) + 777$$

$$= \frac{p^{2}}{q^{2}} + \frac{7p}{q} + 777$$

$$= \frac{p^{2} + 7pq + 777q^{2}}{q^{2}}$$

$$= \frac{m}{n}, \text{ where } m = p^{2} + 7pq + 777q^{2}, n = q^{2}, m, n \in \mathbb{Z} \text{ n} \neq 0$$

This is a Contradiction to the given assumption.

Therefore, if $b^2 + 7b + 777$ is an irrational number, b be an irrational number.

5. Using substitution method to prove the following equivalence:

$$(\sim x \Rightarrow y \lor z) \equiv (\sim x \land \sim y \Rightarrow z)$$

Proof:

$$(\sim x \Rightarrow y \lor z) \equiv \sim (\sim x) \lor (y \lor z)$$
 implication law
$$\equiv (\sim (\sim x) \lor y) \lor z$$
 associative law
$$\equiv (\sim \sim x \lor \sim \sim \sim y) \lor z$$
 double negation law
$$\equiv \sim (\sim x \land \sim \sim y) \lor z$$
 DeMozgan's law
$$\equiv (\sim x \land \sim \sim \sim y) \lor z$$
 implication law

Or

Proof:

$$(\sim x \Rightarrow y \lor z) \equiv \sim (\sim x) \lor (y \lor z)$$

$$\equiv (\sim (\sim x) \lor y) \lor z$$

$$\equiv (\sim \sim x \lor \sim \sim y) \lor z$$

$$\equiv (x \lor y) \lor z$$

$$(\sim x \land \sim y \Rightarrow z) \equiv \dots (x \lor y) \lor z$$

$$\dots \qquad \qquad \qquad \equiv (x \lor y) \lor z$$
Therefore, $(\sim x \Rightarrow y \lor z) \equiv (\sim x \land \sim y \Rightarrow z)$

6. Let *P*, *Q* and *R* be simplest statements. Determine whether the following statement is a tautology, contradiction or contingent statement:

$$(Q \land P \Rightarrow R) \Rightarrow Q \land R$$

Answer:

P	Q	R	$Q \wedge P$	$Q \land P \Rightarrow R$	$Q \wedge R$	$(Q \land P \Rightarrow R) \Rightarrow Q \land R$
T	T	Т	T	T	T	T
T	T	F	T	F	F	T
T	F	T	F	T	F	F
T	F	F	F	T	F	F
F	T	T	F	T	T	T
F	T	F	F	T	F	F
F	F	T	F	T	F	F
F	F	F	F	T	F	F

Since $(Q \land P \Rightarrow R) \Rightarrow Q \land R$ is true only for 3 rows, the given statement is a contingent statement.

7. Prove that for any integer $m \in \mathbb{Z}$, $m^2 + 3m + 9$ is odd.

Proof:

We shall use proof by cases: Case 1 - m is odd; Case 2 - m is even.

Case 1 - m is odd

We shall use direct proof for proving this case.

Let m be an odd integer.

Then from definition, m = 2p + 1, where $p \in Z$.

Hence,

$$\begin{split} m^2 + 3m + 9 &= (2p+1)^2 + 3(2p+1) + 9 \\ &= (4p^2 + 4p + 1) + (6p + 3) + 9 \\ &= 4p^2 + 10p + 13 \\ &= 4p^2 + 10p + 12 + 1 \\ &= 2(2p^2 + 5p + 6) + 1 \\ &= 2x + 1 \quad \text{where } x = (2p^2 + 5 + 6), x \in Z. \end{split}$$

Hence, if m is odd, $m^2 + 3m + 9$ is odd.

Case 2 - m is even

We shall use direct proof for proving this case.

Let m be an even integer.

Then from definition, m = 2q, where $q \in Z$.

Hence,

$$m^{2} + 3m + 9 = (2q)^{2} + 3(2q) + 9$$

$$= 4q^{2} + 6q + 9$$

$$= 4q^{2} + 6q + 8 + 1$$

$$= 2(2q^{2} + 3q + 4) + 1$$

$$= 2y + 1 \quad \text{where } y = (2q^{2} + 3q + 4), y \in Z.$$

Hence, if m is even, $m^2 + 3m + 9$ is odd.

Therefore, from the proofs for the two cases, we conclude that for any integer $m \in \mathbb{Z}$, $m^2 + 3m + 9$ is odd.

- 8. Specify the following statement in symbolic form:
 - (i) The sum of an odd integer and an even integer is odd.
 - (ii) Some integers are not natural numbers.
 - (iii) There are computes that do not use any Microsoft product.

Answer:

(i) The sum of an odd integer and an even integer is odd.

$$\forall m \in \mathbb{Z}, \forall n \in \mathbb{Z}, (m \text{ is odd}) \land (n \text{ is even}) \Rightarrow (m+n) \text{ is odd}$$

(ii) Some integers are not natural numbers.

$$\exists \ m \in \mathbb{Z} \text{, } m \not\in N$$

(iii) There are computes that do not use any Microsoft product.

∃ computer C, ∀ Microsoft product S, C does not use S

- 9. Determine whether the following statements are True or False.
 - (i) $\{a, b\} \not\subset \{a, b\};$

True

(ii) $\varnothing \subseteq P(\{a, b\});$

True

(iii) $\emptyset \in P(\{a, b\});$

True

(iv) $\varnothing \subseteq P(\{a,b\});$

False

(v) $\emptyset \in \{\{\emptyset\}\};$

False

(vi) $\varnothing \subseteq \{\varnothing, a, b\};$

False.

(vii)
$$\{\emptyset\} \in P(\{a, b\});$$

False

10. Start from vertex e, find a minimum spanning tree (MST) of the following graph using *Prim*'s algorithm: Show the minimum weight and the sequence of edges in the MST according to the order added.

Answer:

A possible minimum spanning tree can be formed by selecting the following edges:

The minimum total weight = 5 + 6 + 7 + 8 + 9 + 9 + 7 = 51