本科生实验报告

实验课程	《传感与检测技术》	
学院名称	核技术与自动化工程学院	
专业名称	测控技术与仪器	
学生姓名	节场宇	
学生学号	202006010328	
指导教师	彭 颖	
实验地点	6C801	
实验成绩		

2022年10月 ____ 2022年11月

实验 1 金属箔式应变片直流单臂、半桥、全桥比较

1. 实验原理:

有一般智果. 上方应变片, 由旧在应变片上平衡的电话。 桥, 当应变片发力对会做生形变压成内阻变化, 会导致 转出晚变化, 经放出器放大后, 结似的侧下底, 通过改变 爱力不小, 即改变 00, 未改变用形态水, 最终得出级。

3. 实验业课:
1. 识据电路原理图长现解中路
2. 调磨差和缺坏器
3. 特果胃深调水什
4. 按电路, 调磨电压表,(在1处调节)
额, 5. 理野记录知始值, 运, 调节具骨果重两椭圆以还到
或化/m. 約目的.
6. 该出行对并记录, 后重转跟 5.

7. 情愿, 再后前转转, 维罗路 5.

双隔 8. 重发发涨 5.1.7 (特见, 段形)

全纸 9、 维片 移 5、6.7 (特尺, 段形)

4. 实验结果数据:(数据表+曲线图,单桥、半桥、全桥的曲线图画在一个坐标系上)

数据表:

级. 款鹏

(mm) 位移	-5	-4	-3	-2_	-1	0	1	2	3	4	5
(mV) 单臂	-78	-63	-47	-34	-18	0	16	33	48	63	80
(mV) 半桥	-154	-126	96	-64	-31	0	31	63	95	125	157
(mV) 全桥	-312	-253	-187	-127	-63	0	63	128	193	257	320

曲线图:

5.	B1 -	10	BES.	
5.	思:	3	Æ25	:

- 正反行程的测量结果是重合的吗? 为什么?
- 计算单桥、半桥、全桥的灵敏度,说明灵敏度与哪些因素有关?
- (3) 在连接全桥的时候, 如果基应变片的方向接反, 会有什么影响?

(3) 若全桥哲传,应对方的接负,则会子较以致的有种同 相互推炼技術出域小人及此了 当应实防的全部接近,特无影响。

Angr.

Jon. co. to.

心·动物的对方的以的两个RR=RR或是二品 有的的设立 施達片的 V. = E (PH DR - RITRY) = E (PY)(DR) RITARIA) = E ((PY)(DR) RITARIA) (1+RY/R) V.= 4. 4. Ku= 4 同理,双角为号, 全桥为户.

实验 2 传感器在开关控制电路中的应用

(一) 集成式霍尔传感器

1. 开关型霍尔元件 3144EU:

内部电路结构图:

工作原理:

和用金数点。当然收货时, 产生效场。全型 A.E. 有自体特出, 此时内部三以答到自己的中心被补偿。 转出的作件,就是在基本的

2. 电路原理图:

3. 实验结果现象分析:(以3中电路原理图为基础) 当础缺靠近时,根据电路质证(3144EU),③从输出为低电子,VT(9014)的 加入为低性,VT不到, LED,从下,当础铁 拉运时,①处被上拉为高

魁、VT (904) 验, LED 两名开城 压差, 是好。

4. 思考题:

- (1) 9014 和 9015 各是什么器件,在工作原理上有何区别?
- (2) 除 LED 灯控制外, 霍尔元件还可以检测的对象有哪些? (至少列出 2 个)
- (1,9014 见AM) 形三极管,而 905是 PNP形三极管。 CBNEF Go14在复取 为言种用于面, 905在重极为任何产时于通
- (1) 霍尔元件可以通过检测证码的变化未统计论性物的数 也引人在例中和中转子的转迹

(二) 光电开关

1. 电路原理图 (标注出传感器)

当无物体症的时,无敏三 如台题, 的《处好被我代 的三极管以下不是的, YL不免, 当有物体症的时, D处现被扩充 175句, 开绒 图的I, 电VT 供先,

3. 思考题:

- ① 光电开关的输出量是开关量还是模拟量? 开关量
- ② 教材图 16-15 电路中的 R1 作用是什么? 用于限性,防止 VD 电中枢 以后交坏、
- ③ 如果电路中的三极管替换为另一种类型 (N型→P型或P型→N型),输出 LED 如何变化?
- ④ 如果电路中的 VD 损坏,输出 LED 如何变化?
 - ①若换成了另一种开伏的三极管,则高天状况完全相反.
- 日若 VD投坏, 四先敏 三极智会一直处于裁上状态 · OSERE 始此为高、VT战路影, LED始终点点

11.4

实验 3-1 电涡流式传感器位移与材料检测实验

付感出的城庄民代图, 的电台拉研场, 全层片位于此层附近 时,老使国的交流电时、阿艾兹特仍,安岛在于交交战场中 岳性 温波及交交环场,专生的与传历出住界农业委化时,电流 大小有处生变化。由此可问目的结结。

3. 实验数据测试表、数据曲线图(另附图)

铜岛 教鹏

根据测试数据。积此以下结果:

(1) 存集 医发片对电涡流传感器等效阻抗的影响最大,其次是

最小是 \$5

(2) 经计算。

测量铁片时, 传感器的线性区域为__4、7m___, 灵敏度为 / .895W/m/

X mum	0	0.5	1	1.5	2	2.5	2						
Uc. /V	0.83	-172	211			2.3	3	3.5	4	4.5	5	6	7
-		+16	-3 11	-4 62	-607	-73	-8.37	-924	-983	10.20		-	
. U V	0	0	0	0	0	0.00			.303	-10.39	-108	1146	-1100
UANV	1.24	-211				-0.29	-0 77	-133	-204	-2.93	3.89	-5.93	
-		-6.44	-3 65	-522	-6.67	-787	-884	-96	1001			220	
-C mum	8	9	10	11	12			-30	-1021	10.7	1109	1164	12 02
Uc. V	12.14	1222			12	13	14	15	16	17	18	10	0.0
		-12.33	-1244	-1249	-1252	-1254	-1255	10.00		-	10	19	20
Ure/V	9 18	-102	-109				-1200	-12.55	-12.55	F1255	1285	1255	125
U_{Al}/V	12.20			-114	-117	-1194	-1214	-12.28	-1238/	12.15			
AL	17.70	-1241	-12 48	-1252	-1254	-1255	-		1	-12.45	125	1254	158
						-15.22	-1256	-12 56	1778	-1256	-1255	1256	125

实验 3-2 气敏传感器应用

1. 实验原理:

利用气件在书子体和的氧化还原反应是软阻值其化。 指入的 LM394后,点导致共化中平的惨胀增加或减少

2 电路原理图: (标注出传感器)

北京 · 卡向县 喷洒精时,沿着最下面一个灯亮起向其喷入面精后, 灯从上下下依次发表,进后还次烧灭。

(4)200mg, 759/3

(1) 底型气体吸附到1/22特体上,特体数低子增多 几位年降低,LM39/4的电压增有,二极管被点充.

4. 思考题

- (1) LM3914 芯片的作用是什么?
- (2) 气敏传感器的六个引脚是如何定义的? 传感器的基本应用电路是什么?
- (3) 实验所用气敏传感器可等效为哪种参数?
- (4) 气敏传感器应用时必需的操作是什么? 为什么要这样做?

IV LM39件依特息入电压决定LED是否被点亮,从而实现直观观例领情欲信。

E AMIN W

如图所示, 产量 A.A, B. B. B. 两的站在一起, F. F. 为 Doz. 回路, 其某在国中默是 为电阻的变化存纹观压电流的转化.

131 1819

中 接触作物、一般的。 0去除外珠残铝, ② 提高化学发发等。

11.28

实验 4 光纤传感器实验

(一) 反射式光纤测位移

1. 实验原理:

光师发出的光线经过光纤的建筑,即到被侧侧纤韧,被侧侧外线的,被侧侧外外光后射到 书一根光纤处,被光敏发升吸收,即称发射 国来的光线机,可收得可相应的信息

2. 实验接线电路图:

3. 实验步骤:

D 拖彭/然,连接中路, 上坡带 等。他表现了

@ 将 探旋 例做关 顶锅 团 起好 特例 至居片, 特集 调 列 的 反 久, 放在 其 3 上 宏 8 光 4 传 原 8 人

③将负债积至0分成外,并旋转跟施的做外

图 自设性一个组记录一次数据,指数挺发节 30图。

图 找到过程中就最大值处.

⑥ 英英 (部)/加品, 查定①②②⑤ \$1\$\$

日点处任东 4的品 归住

4. 实验结果数据: (数据表 Cu、Al、Fe+曲线图, 画在同一坐标轴上)

细是 被陷

∆x/mm	0.5	1	1.5	2	2.5	3	3.5		4.5	-
U铁/V	0.88	181	251	294	3.07			4	4.5	5
リ铅八	0.84	167	2.3					2.45	216	1 89
U钼/V	0.46	0.96				2.65	2.42	2.15	188	1 64
***************************************		0.50		151	1 54	1.46	1 33	1 18	1 04	0.9
∆x/mm	6	/	8	9	10	11	12	13	14	15
U铁N	1 44	1.06	0.77	0.56	0.41	0.35	0.3	0.25	0.22	0.19
U 铝/V	1.24	0.92	0.72		•		0.33	0.28	0.24	0.21
U 铜/V	0.69	051	0.4			0.22			0.13	-

当 $\triangle x$ 为 2.55mm 时,Fe 的输出电压值最大,为 3.09V ; 当 $\triangle x$ 为 2.50mm 时,AI 的输出电压值最大,为 2.76V ; 当 $\triangle x$ 为 2.75mm 时,Cu 的输出电压值最大,为 1.55V ;

京野(球末明 fr 的反击 生度最大, 其能出脏也最大, 从国中可知(上为 fe, 左下为A1, 右下为(u)。但但兴查任得 (x) 的处理应证, 故应是 (u. A)表面易被制化,多分外不够何不局被氧化,才得出战现象。

(二) 反射式光纤传感器测电机转速

1. 测量所需元件

去好传成器, 中机, 示仗器, 差和放大器, ②垂

2.测量原理:

度机上的新图息,盘上有的别的发生后向,切用分布。图机等的图色设在,而光纤维等提供对准其中介别成面处,使机识性起来后,安性不断到的原在,并给出到示使第上.

3.测量结果和计算方法。

MAMA.

由于6个全层的各不相同的收集 产生的电压电各不相同。但何的产组 波形大致机用的每行代表一图。 读出的问下:20mg

的 15岁村 20图, 15种战转几00图

	2004	4.7		
4	思	老	腴	:
44	15.0	- 3	-	•

(1) 实验所用光纤是什么组合类型的?

(2)	光纤测量转速时,	如果在输出的脉冲中出现毛刺,	可能会是什么原因?
			/

(1以4为书试 (R型) 组分型 (2)可能是田为住属于面不为局,有些地方有利症,多致先的能量 被叫做较大,而光粉,被吸收较小,出机实验,

11.18