

Prueba Bimestral I Matemáticas 11°

Germán Avendaño Ramírez *

Formulario A. Conteste las preguntas en el cuadro de respuesta diseñado para tal fin

1. Si en la expresión x^2y , el valor de x se disminuye en un $40\,\%$ y el valor de y en un $25\,\%$, entonces el valor de la expresión disminuye en un

A. 73 % B. 32.5 % C. 27 % D. 22.5 %

 De dos varillas cuyas longitudes son 360 cm y 108 cm, respectivamente, se desea obtener trozos iguales que tengan la longitud máxima posible. El mayor número total de trozos obtenidos es

A. 13 B. 12 C. 18 D. 16

3. Si se trasladan los cuatro puntos 5 unidades a la izquierda y 2 unidades hacia arriba, las coordenadas de los nuevos puntos serán, respectivamente

- A. (-4,3), (6,5), (5,10), (-5,8)
- B. (6,-1), (16,1), (15,6), (5,4)
- C. (-4,-1), (6,1), (5,6), (-5,4)
- D. (6,3), (16,5), (15,6), (-5,4)
- 4. La gráfica que representa correctamente el subconjunto

$$S = \{(x,y)/-1 \le x \le 1, \quad 0 \le y \le x+1\}$$
 es

5. Un cono circular recto de volumen C, un cilindro de volumen D y una esfera de volumen E tienen todos, el mismo radio; el cono y el cilindro tiene la misma altura y ésta es igual al diámetro de la esfera. De acuerdo con la información anterior es correcto afirmar que

A.
$$2C + 2D = 3E$$

B.
$$C + D = E$$

C.
$$2C = D + E$$

D.
$$C - D + E = 0$$

Conteste 6–8. En la siguiente recta numérica, se han señalado algunos puntos con sus respectivas coordenadas.

6. Si \overline{DE} se divide en n segmentos congruentes (de igual medida), la longitud de cada uno de los n segmentos es:

^{*}Lic. Mat. U.D., M.Sc. U.N.

- 7. Si M y N son los puntos medios de \overline{AB} y \overline{CD} respectivamente, la longitud de \overline{MN} es,

- A. $\frac{1}{2}$ C. $\frac{9}{16}$ B. $\frac{5}{8}$ D. $\frac{11}{16}$
- 8. De la expresión $\left\lceil \frac{1-\sqrt{3}}{2} \right\rceil^2$, se puede afirmar que La primera columna es la lista de los cinco intervalos corresponde a un número
 - A. racional y se ubica en \overline{AB}
 - B. racional v se ubica en \overline{BD}
 - C. irracional y se ubica en \overline{CD}
 - D. irracional y se ubica en \overline{DE}
- 9. Al efectuar la operación $\frac{2}{3} \frac{3}{4}$ se obtiene:
 - A. $\frac{1}{4}$ B. $-\frac{1}{7}$ C. $-\frac{1}{12}$ D. $\frac{1}{12}$
- 10. ¿Cuál de los siguientes intervalos corresponde a la solución de la inecuación $-5 < x \le 10$
 - A. [-5, 10) C. (-5, 10]
- - B. (-5, 10)
- D. [-5, 10]

Dados los conjuntos A = (-2, 8) y $B = (-\infty, \pi]$, responda las preguntas 11–13

- 11. El conjunto $A \cup B$ será el intervalo
 - A. $(-2, \pi)$ C. $(8, \pi]$ B. $(-\infty, 8)$ D. $(-\infty, \pi)$
- D. $(-\infty, \pi)$
- 12. El conjunto $A \cap B$ será el intervalo
 - A. $(-2, \pi)$ C. (-2, 8)B. $(-2, \pi]$ D. [-2, 8]
 - C. (-2,8)
- 13. El complemento de A, que se simboliza A^c y está conformado por los elementos que NO están en A es:
 - A. $(-\infty, +\infty)$
 - B. $(-\infty, -2] \cup [8, +\infty)$
 - C. $(-\infty, 2) \cup (8, +\infty)$
 - D. $(-2, \pi]$
- 14. Al solucionar la inecuación $3x \le 18$ se obtiene
 - A. $(-\infty, 6)$
- C. $(6, +\infty)$
- B. $(-\infty, 6]$
- D. $[6, +\infty)$

Una tabla de distribución de frecuencias con intervalos sirve para resumir un conjunto de datos estadísticos. Por ejemplo, ésta tabla muestra las 500 notas o calificaciones recibidas en el examen final del programa de ingeniería en una universidad.

Invervalo	Marca de clase	Frecuencia
[0,1)	0.5	20
[1,2)	1.5	21
[2,3)	2.5	46
[3,4)	3.4	283
[4,5)	4.5	130

en que se han agrupado las notas. La segunda, el punto medio de cada intervalo. La tercera muestra el número de notas de cada intervalo, es decir su frecuencia. (Por ejemplo hay 20 notas entre 0 y 1)

Con base en esto, escoja la respuesta correcta en cada caso en las preguntas 15-19.

- 15. La marca de clase es un número
 - A. Natural
- C. Racional
- B. entero
- D. Irracional

D. [4,5)

- 16. ¿Cuántos estudiantes obtuvieron una nota menor que 1?
 - A. 20 B. 21 C. 46 D. 130
- 17. Si para aprobar el examen es necesario obtener una nota de 3 o más, ¿cuántos estudiantes aprobaron el examen?
 - B. 283 C. 413 D. 130
- 18. Si un estudiante obtiene una nota de 4, pertenece al invervalo
 - A. [1,2) B. [2,3) C. [3,4) D. [4,5)
- 19. Al obtener una nota de 3, lo ubicamos en el intervalo
 - B. [2,3) C. [3,4) A. [1,2)

Conteste 20 con base en:

- I Si x es un número real y x < 0, entonces $\frac{1}{x} < 0$
- II Si x es un número entero, entonces x es un número racional.
- III El producto de dos números primos es un número primo.
- IV Si x es un número real, $\sqrt{x^2} = x$
- 20. Es o son verdaderas
 - A. I y II
 - B. III y IV

- C. Solamente II
- D. Solamente IV
- 21. Un entero n se denomina un número perfecto si es igual a la suma de todos sus divisores propios. 1 se cuenta como un divisor propio pero el número no. De los siguientes números el que NO es perfecto es

A. 28 B. 496 C. 2026 D. 6

22. Un profesor asigna 3 ejercicios. Pide a $\frac{1}{4}$ del número de estudiantes que está en clase que resuelvan el primer ejercicio, a $\frac{3}{8}$ que resuelvan el segundo, y a $\frac{5}{16}$ que resuelvan el tercero. Del total de alumnos dos están ausentes. La cantidad total de alumnos es:

A. 28 B. 32 C. 38 D. 42

23. Si la distancia entre dos puntos A y B de una recta numérica no es menor que 3, la gráfica que representa dos puntos con esta condición es:

- 24. La negación correcta de la proposición P: Todos los números reales son racionales es:
 - A. $\neg P$: Todos los números reales no son racionales
 - B. $\neg P$: Todos los números reales son irracionales
 - C. $\neg P$: Algunos números reales son racionales
 - D. $\neg P$: Algunos números reales son no son números complejos
- 25. Al hacer la tabla de verdad con las proposiciones p, q, r, s y t se deben considerar
 - A. 10 posibilidades porque $2 \times 5 = 10$
 - B. 25 posibilidades porque $5^2 = 25$
 - C. 10 posibilidades porque $2^5 = 10$
 - D. 32 posibilidades porque $2^5 = 32$
- 26. Haga la tabla de verdad de la proposición compuesta

$$[\neg(p \land q)] \iff [\neg p \lor \neg q]$$

al respaldo de su cuadro de respuestas.

Probabilidad

27. En una caja blanca hay 3 fichas marcadas con los números 1, 2 y 3 respectivamente. En una caja negra hay 5 fichas marcadas con los números 1, 2, 3, 4 y 5 respectivamente. ¿Cuál de los siguientes diagramas de árbol representa los posibles resultados de sacar,

al azar, primero una ficha de la caja blanca y después una ficha de la caja negra?

28. La siguiente tabla muestra, para tres años consecutivos, el valor del auxilio de transporte mensual que reciben los trabajadores de una empresa y el promedio de la tarifa de un pasaje para el servicio de transporte urbano en la ciudad:

Año	Auxilio de transporte Tarifa de un pas	
	(mensual)	(promedio)
2009	\$59300	\$1 500
2010	\$61 500	\$1 600
2011	\$63 800	\$1 700

Si un trabajador debe comprar al mes 40 pasajes, se puede afirmar que, con respecto al primer año, en el tercero el desequilibrio (el costo de transporte que no le cubre el auxilio) es

- A. Mayor en \$200 C. 3 veces mayor
- B. Menor en \$4300 D. 6 veces mayor
- 29. Se lanzan 2 dados y se considera la suma de los puntajes obtenidos. La tabla muestra las parejas posibles para algunos puntajes.

Puntaje	Parejas posibles	Cantidades de
		posibilidades
2	(1,1)	1
3	(1,2), (2,1)	2
4	(1,3), (2,2), (3,1)	3
5	(1,4), (2,3), (3,2), (4,1)	4
6	(1,5), (2,4), (3,3), (4,2), (5,1)	5
7	(1.6), (2.5), (3.4), (4.3), (5.2), (6.1)	6

Si se lanzan dos veces los 2 dados, ¿cuántas posibilidades hay de obtener 10 puntos en total, de manera que en el primer lanzamiento se obtengan 6 puntos?

A. 8 B. 15 C. 16 D. 24