Math 655 Henry Woodburn

Homework 1

Let X be a finite dimensional normed vector space. Show that the weak topology and the norm topology coincide.

Let τ be the norm topology on X and τ_w the weak topology. We know that $\tau_w \subset \tau$ by definition.

To prove the other direction, we will show that a weakly convegent net is norm-convergent. Let $\{x_1, \ldots, x_n\}$ be a basis for x and let $\varphi_j : (a_1x_1 + \cdots + a_nx_n) \mapsto a_j$ be linear functionals on X. Let $x_{\alpha} = a_{1,\alpha}x_{1,\alpha} + \cdots + a_{n,\alpha}x_{n,\alpha}$ be a net and suppose WLOG that $x_{\alpha} \to 0$ weakly. Then $\varphi_j(x_{\alpha}) = a_{j,\alpha} \to 0$ for $j = 1, \ldots, n$.

Now give X the norm $\|\cdot\|': a_1x_1 + \cdots + a_nx_n \mapsto \sum_{1}^{n}|a_j|$ so that $\|x_{\alpha}\|' \to 0$. Since X is finite dimensional, all norms are equivalent and $x_{\alpha} \to 0$ in τ . Then $\tau \subset \tau_w$.