Mechanical and relaxation-based detection of dipolar-interactions between spins in diamond

Clément Pellet-Mary Laboratoire de physique de l'ENS *ENS, Paris*

October 8, 2021

Two experiments around cross-relaxations in diamond

Cross-Relaxation between NV^- and new spin species $(VH^-, WAR1, ...)$

Measurement of a torque induced by NV^--NV^- CR on a levitating diamond

Outline

- 1 Nitrogen Vacancy center presentation
- 2 Cross-relaxations with new spin species
- 3 Cross-relaxation between NV centers
- 4 Torque induced by cross-relaxation on a levitating diamond

Outline

- 1 Nitrogen Vacancy center presentation
- 2 Cross-relaxations with new spin species
- 3 Cross-relaxation between NV centers
- 4 Torque induced by cross-relaxation on a levitating diamond

Minimalist approach to NV center

Triplet spin levels at rest

Triplet spin levels with optical pumping

Magnetometry with NV centers: ODMR with a single spin

Spin Hamiltonian and orientation of the centers

$$|m_s=0,\pm 1\rangle$$
: Eigenstates of $S_{\bf z}$

$$\hat{\mathcal{H}}_s = D\hat{S}_z^2 + \gamma_e \hat{\mathbf{S}} \cdot \mathbf{B}$$

z direction defined by the crystal lattice for $D > \gamma_e B$

$$\begin{aligned} \mathcal{E}_{\pm 1}^{i} &\approx D \pm \gamma_{e} \mathbf{B} \cdot \mathbf{e_{i}} \\ &\rightarrow 4 \text{ possible pairs of } \mathcal{E}_{\pm 1}^{i} \text{ (4 classes of NV)} \end{aligned}$$

ODMR with an ensemble of NV centers

Outline

- 1 Nitrogen Vacancy center presentation
- 2 Cross-relaxations with new spin species
- 3 Cross-relaxation between NV centers
- 4 Torque induced by cross-relaxation on a levitating diamond

Photoluminescence change with magnetic field amplitude

PL change with magnetic field: [100] direction

PL change with magnetic field : transverse field

Subtracting the transverse field envelope

Cross-relaxation between NV⁻ and VH⁻

Cross-relaxation between NV⁻ and WAR1

EPR spectroscopy

Electron Paramagnetic Resonance : A spectroscopy technique using absorption of a microwave at a given frequency (typically 9.5 GHz) as a function of magnetic field to detect paramagnetic defects.

 ${
m VH^{-1}}$ and WAR1 2 have been observed by EPR spectrocopy in CVD diamonds by Mark Newton's team at the University of Warwick.

¹Claire Glover et al. "Hydrogen Incorporation in Diamond: The Vacancy-Hydrogen Complex". In: *Phys. Rev. Lett.* 92.13 (Mar. 2004), p. 135502.

²Robin Cruddace. "Magnetic resonance and optical studies of point defects in single crystal CVD diamond". PhD thesis. University of Warwick, 2007.

Comparison between CR and EPR

- CR experiments are much simpler to setup (low B, no microwave)
- lacktriangleright NV centers produce a calibration for B o Better precision on the ZFS measurement
- Potential for polarization transfer
- Requires a high NV concentration and quickly becomes unreadable on non-[100] directions.

Cross-relaxation between NV⁻ and ¹³C-NV⁻

Outline

- 1 Nitrogen Vacancy center presentation
- 2 Cross-relaxations with new spin species
- 3 Cross-relaxation between NV centers
- 4 Torque induced by cross-relaxation on a levitating diamond

Experimental proofs of NV-NV CR

Sample : 15 μm HPHT diamond with \sim 5 PPM of NV (Adamas)

Microscopic explanation of the NV-NV CR

Outline

- 1 Nitrogen Vacancy center presentation
- 2 Cross-relaxations with new spin species
- 3 Cross-relaxation between NV centers
- 4 Torque induced by cross-relaxation on a levitating diamond

Torque measurement with a levitating diamond

Torque potential energy

Angular Potential Energy

Displacement of equilibrium

Back-scattered laser detection

Torque caused by cross-relaxations

PL detection

Torque Detection

Origin of the magnetic torque

- Solve the master equation to get ρ (With or without modified T_1
- Derive $\vec{S} = \text{Tr}(\rho \hat{\vec{S}})$ for all four classes
- Derive $\Gamma_t = \sum_i \gamma_e \vec{S}_i \times \vec{B}$

Without Cross-Relaxations

With Cross-Relaxations

Torque caused by CR: other configuration

Conclusion

- Detection of new spin defects in diamond through Cross-Relaxations
 - Potential for hyperpolariaztion of new dark electronic spins
- Observations of NV—NV Cross-Relaxations
- Mechanical detection of NV-NV Cross relaxations :
 - Potential for mechanical detection of new spin species
 - Potential for Resonant Einstein-De-Haas effect