CIMPL Vignette

Jelle ten Hoeve and Jeroen de Ridder

November 23, 2009

1 Introduction

In this Vignette we demonstrate the usage of the cimpl R package. CIMPL is the abbreviation for Common Insertion site Mapping PLatfrom. This package identifies common insertion sites (CISs) given insertional mutagenesis data collected across a cohort of tumors. The implementation is based on the Gaussian Kernel Convolution (GKC) framework developed by de Ridder et al. Originally, this method was developed for analysis of retroviral insertional mutagenesis data. However, we have extended the method to enable the analysis of transposon insertional mutagenesis as well. In cancer research, well known used retro-viruses are Mouse Mammary Tumor Virus (MMTV) and Murine Leukemia Virus (MuLV). Sleeping Beauty (SB) and piggyBac (PB) are examples of transposon-based systems. In this Vignette we walk through the steps for calculation and visualization of the results.

2 Data

First, we load an insertional mutagenesis dataset. The dataset has to be a data.frame containing mapped insertion locations. Columns named 'chr' (chromosome) and 'location' are mandatory. Not required (but useful) columns are 'sampleID' if you want to plot tumor densities (Section 3.2) and 'contig_depth' if local hopping correction is needed. All other columns are not used. However, they will be reported in the results (Section 4) and thus, it might be useful to include other columns for one's own further analysis.

In this package, we have included data of a transposon based screen in mice developing colorectal cancer [2]. This data was harvested from 135 tumors containing 16690 non-redundant mapped insertions. As can be seen, some additional columns are included.

```
> library(cimpl)
> data(colorectal)
> str(colorectal)
'data.frame':
                     16690 obs. of 8 variables:
                         "$357" "$487" "$357" "$357" ...
$ sampleID
                 : chr
$ tissueType
                         "Int" "Int" "Int" "Int" ...
                 : chr
                         "A" "C" "D" "A" ...
$ tissueID
                 : chr
$ chr
                         "chr1" "chr1" "chr1" "chr1" ...
                 : chr
```

```
$ location : int 6053912 8355383 16607442 17511946 22556961 22914215 23907046 28285
$ associatedGene: chr "" "" "" ...
$ cohort : int 1 1 1 1 1 1 1 1 1 1 ...
$ contig_depth : num 1 1 1 1 1 1 1 1 1 ...
```

Next, we load the BSgenome on which the insertions are mapped. Make sure you use exactly the same genome version as used for the mapping! Package BSgenome.Mmusculus.UCSC.mm9 provides a Mmusculus object (which we use later) and is based on the NCBI m37 mouse assembly, which is compatible with the colorectal data.

```
> library(BSgenome.Mmusculus.UCSC.mm9)
```

We are now ready to apply the GKC framework.

3 Analysis

In this example we ran only 100 iterations, selected only Chromosome 18 and varied the scale for only three values. This to minimize computation time. Normally, we recommend 10000 iterations to obtain appropriate p-values. Select all chromosomes, unless, for example, the experimental design forces you to leave out chromosomes that contain the donor site. Regarding scales, [1k, 2.5k, 5k, 10k, 30k, 50k, 100k, 150k] is recommended for retroviral data and [10k, 20k, 30k, 40k, 50k, 60k, 70k, 80k, 90k, 100k, 110k, 120k, 130k, 140k, 150k] for transposon data. If you are not interested in comparing results from different scales, a single scale of 30k for retroviral data is reasonable [1]. For transposon data, no clear guideline exists yet. The following command executes the CIMPL analysis.

The steps performed in doCimplAnalysis are explained below.

3.1 Null distribution

First, random data are generated by permuting the positions of the insertions in the dataset. For each chromosome and each scale, the insertions are randomly distributed across the genome. Although retro-viruses can integrate anywhere on the genome (not taking insertion biases into account), transposons are usually restricted to certain genomic sequences, called specificity patterns. For example, the SB transposon can only insert at TA sites. Therefore, such a restriction can

chromosome: chr18, scale: 50000, # peaks: 309

Figure 1: The null-distribution of peaks in terms of peak height and specificity pattern density.

be set using the specificity.pattern argument. When a restriction pattern is supplied, random insertion perturbations are only allowed on the site define by the specificity pattern. For convenience, you can set the system argument to MMTV, MuLV, SB or PB. The specificity pattern is then automatically set.

Secondly, on these random data GKC is performed and the peaks are detected. For each peak we save the peak height and the specificity pattern (or background) density. If no specificity pattern is used, the background distribution is uniform (1/chr_length), else, the background distribution is computed using GKC on the locations of the specificity pattern. This process of randomly permuting the data, performing GKC, and calculating the peak heights and local specificity pattern density (if applicable) is repeated many times. When a specificity pattern is provided, an empirical distribution of peak height conditioned on specificity pattern density can be constructed (Figure 1). When no specificity pattern is provided, a single empirical distribution function of peak height is constructed. The conditional distribution function is used for the significance calculation of peaks found in the observed data. More specifically, it allows the computation of the probability that a peak observed in the real data exceeds a peak height observed in the $\alpha\%$ of the random cases.

> plot(ca, type = "null.cdf", chr = "chr18", scale = 50000)

chromosome: chr18 , scale: 50000 , # peaks: 309 chr18:3.4e+07-3.5e+07

Figure 2: The kse plot.

3.2 Kernel smoothed estimate

Finally, GKC is performed on the observed data, resulting in a kernel smoothed estimate (kse) of the insertion density. The result can be visualized with the plot command:

```
> plot(ca, type = "kse", chr = "chr18", scale = 50000, bpLim = c(3.4e+07, 3.5e+07), interactive = FALSE)
```

Figure 2 gives details about Chromosome 18: 34Mb-35Mb for scale 50k, which contains a CIS. The CIS is the region where the kse (blue line) is above the significance threshold (red solid line) or above the significance threshold corrected for multiple testing (dotted red line). Peaks are indicated with red circles. The vertical lines at the bottom indicate the insertions color-coded by the sample identifiers ('sampleID' column in the data).

By default, the significance threshold is set to 5% and Bonferroni multiple testing correction is applied. This can be modified using the alpha and mul.test arguments. If you set interactive=TRUE, one can interactively browse over the genome using the mouse.

Additionally, a 'lava' plot can be constructed (Figure 3), where the colored bands (layers of lava) represent the contribution of each sample to the kse.

```
> plot(ca, type = "kse", chr = "chr18", scale = 70000, bpLim = c(3.4e+07,
+ 3.5e+07), plot.tumor.densities = TRUE, interactive = FALSE)
```


Figure 3: The 'lava' plot.

Figure 4: The scale space plot.

3.3 Scale space

To inspect the scale space one can make a scale space plot with the following command:

```
> plot(ca, type = "scale.space", chr = "chr18", bpLim = c(3.4e+07,
+ 3.5e+07), interactive = FALSE)
```

The result is depicted is Figure 4. The green blocks represent significant regions, obtained by computing the region corresponding to a peak exceeding the significance threshold. In this case, the CIS becomes smaller as the scale decreases.

4 Export

Several functions are included to export the results of a cimpl analysis. First, one can retrieve the CISs in a data.frame using the getCISs function. This function also associates genes to CISs by associating the closest gene to the CIS.

```
> genes <- getEnsemblGenes(ca)
> ciss <- getCISs(ca, scales = 50000, genes = genes)
> ciss[1:3, ]
```

```
chromosome peak_location peak_height
CIS18:34427530_50k
                      chr18
                             34427530
                                           50.302924 34282128 34543852
CIS18:7901316_50k
                       chr18
                                  7901316
                                           11.967687 7838309 7954631
CIS18:50077657_50k
                       chr18
                                 50077657
                                            7.542657 50053423 50106737
                   width n_insertions p_value scale associated_ensembl_gene_id
CIS18:34427530_50k 261725
                                 64 0 50000
                                                          ENSMUSG00000005871
CIS18:7901316_50k 116323
                                  13
                                           0 50000
                                                          ENSMUSG00000024283
CIS18:50077657_50k 53315
                                           0 50000
                                                          ENSMUSG00000037416
CIS18:34427530_50k ENSMUSG00000073607|ENSMUSG00000014504|ENSMUSG00000005873|ENSMUSG0000001
CIS18:7901316_50k
```

CIS18:50077657_50k

associated_external_gene_id CIS18:34427530_50k CIS18:7901316_50k Wac CIS18:50077657_50k Dmx11

other_external_gene_id

start

CIS18:34427530_50k AC114003.4-1|Srp19|Reep5|Pkd212|SNORA17|Fam13b CIS18:7901316_50k AC130718.3-1|U6 CIS18:50077657_50k AC120859.12

To inspect the full results of a genome-wide, multi-scale analysis, we have included the export.html function.

```
> export.html(ca, genes = genes, dir = "colorectal_chr18", verbose = FALSE)
```

Open [CIMPL package dir]/doc/colorectal_chr18/index.html with your

Additionally, export functions for BED and WIG files (export.bed and export.wig) are also available.

References

- [1] De Ridder et al. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol, 2:e166, 2006.
- [2] Starr et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science. 2009 Mar 27;323(5922):1747-50. Epub 2009 Feb 26.

Session info

```
> sessionInfo()
```

R version 2.10.0 alpha (2009-09-30 r49906) i386-apple-darwin9.8.0

locale:

[1] C

attached base packages:

- [1] tools stats graphics grDevices utils datasets methods
- [8] base

other attached packages:

- [1] BSgenome.Mmusculus.UCSC.mm9_1.3.11 BSgenome_1.13.14
- [3] cimpl_0.99.21 xtable_1.5-5
- [5] biomaRt_2.1.0 MASS_7.3-2
- [7] KernSmooth_2.23-3 Biostrings_2.13.47
- [9] IRanges_1.3.86

loaded via a namespace (and not attached):

[1] Biobase_2.5.8 RCurl_0.94-1 XML_2.6-0