

Seminar Approximation Algorithms

Approximating Nash Social Welfare under Submodular Valuations through (Un)Matchings

Based on a paper of the same name by Garg, Kulkarni and Kulkarni

Zeno Adrian Weil Supervised by Dr Giovanna Varricchio

15th July 2023 · Algorithms and Complexity (Prof. Dr Martin Hoefer)

Introduction

What is the issue?

We need to distribute goods amongst recipients fast, efficient and fairly.

Where is this encountered?

- industrial procurement
- cloud services
- satellites
- water withdrawal

Indust. Procure

Cloud Services

s atellit

Table of Contents

- 1 Preliminaries
 - Allocations
 - Valuation Functions
 - Maximum Nash Social Welfare Problem
- 2 RepReMatch
 - The Algorithm
 - Analysing Phases I & III
 - Analysing Phase II
- 3 Conclusion

Preliminaries

Preliminaries

Allocations

Setting:

- recipients: set \mathcal{A} of n agents
- goods: set \mathcal{G} of m items
 - unsharable
 - indivisible

Definition (1)

An *allocation* is a tuple $\mathbf{x} = (\mathbf{x}_i)_{i \in \mathcal{A}}$ of bundles $\mathbf{x}_i \subset \mathcal{G}$ such that each item is element of precisely one bundle.

Item *j* is assigned to agent *i* if $j \in x_i$.

But how to measure its efficiency and fairness?

Valuation Functions

Requirements:

- monotonically non-decreasing: $v_i(\mathcal{S}_1) \leq v_i(\mathcal{S}_2)$ $\forall \mathcal{S}_1 \subset \mathcal{S}_2 \subset \mathcal{G}$
- normalised: $v_i(\emptyset) = 0$
- non-negative: $v_i(\mathcal{S}) \ge 0 \quad \forall \mathcal{S} \subset \mathcal{G}$

Types:

- additive: $v_i(\mathcal{S}) := \sum_{j \in \mathcal{S}} v_i(j) \quad \forall \mathcal{S} \subset \mathcal{G}$
- submodular: $v_i(S_1 \mid S_2) := v_i(S_1 \cup S_2) v_i(S_2)$ $\forall S_1, S_2 \subset \mathcal{G} \text{ with } S_1, S_2 \text{ disjoint }$
 - more general
 - diminishing returns

GOETH UNIVE

Asymmetric Maximum Nash Social Welfare Problem

Problem (2)

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{C})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \quad \text{with NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- \bullet η_i : agent weight

The NSW strikes a middle ground between efficiency and fairness!

Is there a polynomial-time algorithm with an approximation factor ...

- \blacksquare ... dependent on n?
- ... independent from *m*?

RepReMatch

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

Naïve approach:

- repeatedly use maximum matchings
- fails because of missing foresight
 - additive valuations: sort items by valuation ⇒ 2*n*-approximation (SMatch)
 - submodular valuations: set of lowest valuation approximable only by $\Omega(\sqrt{m/\ln m})$ 2

Phase I Assign enough high-value items temporarily.

Phase II Assign the remaining items definitely.

Phase III Re-assign the items of phase I definitely.

 \implies A $2n(\log_2 n + 3)$ -approximation is possible!

RepReMatch

The Algorithm

Phase I

- **1** repeat $\lceil \log_2 n \rceil$ + 1 times or until $\mathscr{G} = \emptyset$
 - **1** create bipartite graph $G = (\mathcal{A}, \mathcal{G}, E)$ with edge weights $w(i, j) = \eta_i \log v_i(j)$
 - **2** compute maximum weight matching \mathcal{M}
 - 3 update bundles x_i^{I} according to matching \mathcal{M} and remove assigned items

Phase II

- **2** repeat until $\mathcal{G} = \emptyset$
 - **T** create bipartite graph $G = (\mathcal{A}, \mathcal{G}, E)$ with edge weights $w(i, j) = \eta_i \log(v_i(\mathbf{x}_i^{\mathbb{I}} \cup \{j\}))$
 - **2** compute maximum weight matching \mathcal{M}
 - ${f 3}$ update bundles $x_i^{
 m II}$ according to matching ${\cal M}$ and remove assigned items

Phase III

- **3** create bipartite graph $G = (\mathcal{A}, \bigcup_{i \in \mathcal{A}} \mathbf{x}_i^{\mathrm{I}}, E)$ with edge weights $w(i, j) = \eta_i \log(v_i(\mathbf{x}_i^{\mathrm{II}} \cup \{j\}))$
- 4 compute maximum weight matching $\mathcal M$
- **5** create bundles x_i^{III} according to matching $\mathcal M$ and previous bundles x_i^{II}

RepReMatch

Analysing Phases I & III (1/2)

Phase I reserves 'high-value' items. But what qualifies as 'high-value'?

Definition (14)

Let $\mathbf{x}_i^* = \{o_i^1, o_i^2, \dots\}$ be an optimal bundle. An item $j \in \mathcal{G}$ is outstanding if $v_i(j) \ge v_i(o_i^1)$.

⇒ Are enough outstanding items reserved?

Lemma (15)

Each agent can be matched with an outstanding item in phase III.

Sketch Proof

- maximum number of unmatched agents halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\geq n/2$ many agents matched with an outstanding item
- < n/2 many agents matched with an outstanding item
 - > n/2 many items o_i^1 assigned to someone else
 - > n/2 many agents matched upon release in phase III

Lemma (15)

Each agent can be matched with an outstanding item in phase III.

Sketch Proof

- maximum number of unmatched agents halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\geq n/2$ many agents matched with an outstanding item
- < n/2 many agents matched with an outstanding item
 - > n/2 many items o_i^1 assigned to someone else
 - > n/2 many agents matched upon release in phase III

Lemma (15)

Each agent can be matched with an outstanding item in phase III.

Sketch Proof

- maximum number of unmatched agents halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\ge n/2$ many agents matched with an outstanding item
- < n/2 many agents matched with an outstanding item
 - > n/2 many items o_i^1 assigned to someone else
 - > n/2 many agents matched upon release in phase III

Lemma (15)

Each agent can be matched with an outstanding item in phase ${\rm I\hspace{-.1em}I\hspace{-.1em}I}$.

Sketch Proof

- maximum number of unmatched agents halved with each round of phase I
 - $[\log_2 n] + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\ge n/2$ many agents matched with an outstanding item
- = < n/2 many agents matched with an outstanding item
 - > n/2 many items o_i^1 assigned to someone else
 - > n/2 many agents matched upon release in phase III

Analysing Phase II (1/2)

Definition (9)

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ assigned to other agents $i' \neq i$ in round r.

Definition (10)

Let $\mathbf{x}_i^{\text{II}} = \{a_i^1, a_i^2, ...\}$ be the bundle of agent *i*. The set of *optimal and attainable items* is defined as

$$\overline{\mathbf{x}}_{i,r}^{\star} := \begin{cases} \mathbf{x}_{i}^{\star} \setminus \left(\bigcup_{i' \in \mathcal{A}} \mathbf{x}_{i'}^{\mathrm{I}} \cup \mathcal{L}_{i,1}\right) & \text{in round } r = 1, \\ \overline{\mathbf{x}}_{i,r-1}^{\star} \setminus \left(\mathcal{L}_{i,r} \cup \left\{a_{i}^{r-1}\right\}\right) & \text{in round } r \geq 2. \end{cases}$$

⇒ What is the valuation of the remaining items?

Analysing Phase II (2/2)

maybe auxiliary calculation for
$$\begin{aligned} & v_i(\mathcal{L}_{i,l} \mid a_i^1, \dots, a_i^{l-2}) \\ &= |\mathcal{L}_{i,l}| \cdot v_i(a_i^{l-1} \mid a_i^1, \dots, a_i^{l-2}) \\ & \text{here} \end{aligned}$$

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge v_i(\overline{x}_{i,r}^*) - v_i(a_i^1, \dots, a_i^{r-1}) - \sum_{l=2}^r |\mathscr{L}_{i,l}| \cdot v_i(a_i^{l-1} \mid a_i^1, \dots, a_i^{l-2})$$

Plan: first show black set, then alternately enlarge green set and uncover blue sets ⇒ valuation of grey area = val. of black – val. of dark green – val. of blue ⇒ lower bound is enough, therefore subtract val. of whole green area ⇒ show that sum of marg. val. of a_i^l equals val. of a_i^l , ..., a_i^{l-1} ⇒ then subtract marg. val. of blue area by summing over marg. val. of each lost set ⇒ marg. val. of lost set ≤ sum of marg. val. of items of lost set ⇒ marg. val. of item of lost set ≤ marg. val. of a_i^{l-1} because a_i^{l-1} assigned before items in lost set

Conclusion

Summary & Outlook

- allocation: partition of items amongst agents
- bundles valued using submodular valuation functions
 - diminishing returns
- Nash social welfare: weighted geometric mean of valuations
- approximation factor independent from *m*?
- simple, repeated matching fails because of missing foresight
- RepReMatch: $2n(\log n + 3)$ -approximative Phase I finding enough outstanding items
 - Phase II assigning remaining item

 Phase III assigning outstanding items

Any Room for Improvement?

Possibly! Lower bound of 1.72.

