An introduction to Reinforcement Learning

Philipp Schwartenbeck

Al Center, University of Tübingen

Also, why are slides in English?

- RL is a computational approach to learning from interactions with the environment
 - Trial-and-error
 - Delayed reward
- Considers whole problem of goal-directed agent interacting with an uncertain environment
- RL agents
 - Have explicit goals
 - Sense aspects of their environments
 - Choose actions to influence their environments
- Very general

A few hours (+a bit of evolution) after birth:

This process is perhaps not too different from Al learning to walk:

Learn useful actions:

RL has been tremendously successful at explaining behaviour and psychological variables (More next session)

Trial type

Guitart-Masip et al. 2011

RL has been tremendously successful at explaining neuroscience (More in session after next)

Types of (machine) learning: supervised learning

Find correct labelling/prediction of data:

- That's not what we want though:
 - Want to learn from own experience by interacting with the world

Types of (machine) learning: unsupervised learning

• Find structure in data:

- That's also not what we want:
 - Don't (necessarily) want to learn hidden structure, rather: maximise reward

Types of (machine) learning: Reinforcement learning

In RL, we want to learn good actions from interactions with the world

RL as a Marrian system?

- RL has the ambition to provide a complete account of agency
 - There is much debate about that (e.g. Sliver et al. 2021: "Reward is enough")

- Can RL account for Marr's levels?
 - The **problem**: optimal prediction of future reward
 - The algorithm: temporal difference learning, Q-learning, model-based RL, ...
 - Neural implementation: Basal ganglia, dopaminergic system, replay, ...

Why should we know about RL?

- Lots of reasons
- Powerful framework to understand individual differences in behaviour individual parameters?
 - Differences in action selection (randomness, heuristics)
 - Mechanisms to find the value of states
 - Mechanisms of learning
- Exploit vs. Explore

• Interesting modern applications based on ('deep') RL

Course Structure

This seminar: components

- Most of this is first time material tell me if something doesn't work
 - Should be fun and open for suggestions

- Theory (key reference: Sutton & Barto, 1998)
- Research (key papers)
- Coding (Python)

Dates and topics

Options

- Just cancel
- Coding exercise
- Two sessions (coding) on 17th or 31st

Basics, theory

31.05.2022
Holiday
14.06.2022
21.06.2022
28.06.2022
05.07.2022
12.07.2022
19.07.2022
26.07.2022

Applications, other aspects

Dates and topics

Topics (some flexibility)

- Intro RL, Python
- Basics of learning theories, psychology
- Learning about different options, neuroscience
 - Primer on Temporal Difference (TD) learning
- Markov Decision Processes
- Basics of control
 - Dynamic Programming, TD learning
 - Action selection
- Other important aspects
 - Model-based vs. Model-free
 - Exploration vs. Exploitation

19.04.2022

26.04.2022

03.05.2022

10.05.2022

17.05.2022

24.05.2022

31.05.2022

Basics, theory

Dates and topics

Topics (some flexibility)

Some codingRole of different parameters	14.06.2022 ———
 Model-fitting If possible: parameter recovery, model comparison 	21.06.2022
	28.06.2022
 'Advanced' topics and current applications Planning, Dyna, replay 	05.07.2022
 Clever ways of planning, tree-search etc 	12.07.2022
• Deep RL	19.07.2022
 Future directions, limitations, current research 	26 07 2022

Applications, important aspects

Key resources

- Sutton and Barto 1998 Reinforcement Learning: An Introduction
- My <u>GitHub</u>

- Other resources
 - David Silver's course at UCL
 - Other great courses on RL in Tuebingen with slightly different focus, e.g. by Georg Martius

Evaluation

Some flexibility

- Essay at end of the course
 - e.g. modelling of a simple task
 - Review on specific application, topic

- Additional possibilities
 - Smaller coding exercises
 - Presentation

What are you most interested in? Any other Ideas?