

Gianluca Dini
Dept. of Ingegneria dell'Informazione
University of Pisa

Emai: gianluca.dini@unipi.it

Version: 2022-04-05

1

Message Authentication Codes (MACs)

PRINCIPLES OF MACS

apr. '22 Hash functions

2

Message Authentication Code

- Synonims
 - Cryptographic checksum
 - Keyed hash function
- Similarly to digital signatures, MACs provide message authentication and integrity
- Unlike digital signatures, MACs are symmetric schemes and do not provide nonrepudiation
- · MACs are much faster than digital signatures

apr. '22 Hash functions

3

Message Authentication Code (MAC)

- A MAC is defined by (Gen, Mac, Vrfy)
 - Gen takes as input 1ⁿ and outputs a key k
 - Mac takes an input a key k and a message $x \in \{0, 1\}^*$ and outputs a tag t, s.t. $t = Mac_k(x)$
 - Vrfy takes as input a key k, a message x and a tag t and returns true or false
- Consistency property
 - For all key k and message x, $Vrfy_k(x, Mac_k(x)) = true$

apr. '22 Hash functions

5

Properties of MACs (\rightarrow)

- Cryptographic checksum
 - A MAC generates a cryptographically secure authentication tag for a given message.
- Symmetric
 - MACs are based on secret symmetric keys. The signing and verifying parties must share a secret key.
- Arbitrary message size
 - MACs accept messages of arbitrary length.
- Fixed output length
 - MACs generate fixed-size authentication tags.

or. '22 Hash functions 6

Properties of MACs

- Message integrity
 - MACs provide message integrity: Any manipulations of a message during transit will be detected by the receiver.
- · Message authentication
 - The receiving party is assured of the origin of the message.
- No nonrepudiation
 - Since MACs are based on symmetric principles, they do not provide nonrepudiation

apr. '22 Hash functions

7

Security

- Threat model
 - Adaptive chosen-message attack
 - Assume the attacker can induce the sender to authrnticate messages of the attacker's choice
- Security goal
 - Existential unforgeability
 - Attacker should be unable to forge a valid tag on any message not authenticated by the sender

apr. '22 Hash functions 8

Security

- Computation-resistance (chosen message attack)
 - For each key k, given zero o more (x_i, t_i) pairs, where $t_i = S(k, x_i)$, it is computationally infeasible to compute (x, t), s.t. t = S(k, x), for any new input $x \ne x_i$ (including possible $t = t_i$ for some i)
 - · Adaptive chosen-message attack
 - Existential forgery

apr. '22 Hash functions 9

9

Replay

- Mac does not prevent replay
 - No stateless mechanism can
- Replay attack can be a significant real-world concern
- · Need to protect against replay at a higher attack

apr. '22 Hash functions 10

MAC April 22

Types of forgery

- · Selective forgery
 - Attacks whereby an adversary is able to produce a new text-MAC pair for a text of his choice (or perhaps partially under his control)
 - Note that here the selected value is the text for which a MAC is forged, whereas in a chosen-text attack the chosen value is the text of a text-MAC pair used for analytical purposes (e.g., to forge a MAC on a distinct text).
- Existential forgery
 - Attacks whereby an adversary is able to produce a new text-MAC pair, but with no control over the value of that text.

apr. '22 Hash functions 1

11

Implications of a secure MAC

- FACT 1 Computation resistance → key non-recovery (but not vice versa)
 - It must be computationally infeasible to compute k from (x_i, t_i)s
 - However, it may be possible to forge a tag without knowing the key

apr. '22 Hash functions 12

Implications of a secure MAC

- FACT 2 Attacker cannot produce a valid tag for any new message
 - Given (x, t), attacker cannot even produce (x, t') –a
 collision– for t' ≠ t

apr. '22 Hash functions 13

13

Implications of a secure MAC

- FACT 3 For an adversary not knowing k
 - S must be 2nd-preimage and collision resistant;
 - S must be preimage resistant w.r.t. a chosen-text attack;
- FACT 4 Secure MAC definition says nothing about preimage and 2nd-preimage for parties knowing k
 - Mutual trust model

apr. '22 Hash functions 14

How to use MACs in practice

- In combination with encryption
 - x: PT message; x': transmitted message;e: encryption key; a: MAC key
 - Option 1 (SSL): t = S(a, x); $c = E(e, x \mid \mid t)$, x' = c
 - Option 2 (IpSec): c = E(e, x); t = S(a, c); $x' = c \mid \mid t$
 - Option 3 (SSH): c = E(e, x); t = S(a, x); $x' = c \mid \mid t$

apr. '22 Hash functions

15

Other uses

- · One-time password
 - Based on time-syncronization
 - Based on challenge-response

apr. '22 Hash functions

Message Authentication Codes (MACs)

HOW TO BUILD A MAC

apr. '22 Hash functions

17

How to build a MAC

- From Block Ciphers (more in general from PRF)
 - CBC-MAC
 - NMAC
 - PMAC
- From a hash functions
 - HMAC

apr. '22

Hash functions

18

19

CBC-MAC: security

- Normally CBC-MAC does not use the last encryption, so it is insecure
- The attack
 - The adversary chooses a one-block message x
 - The adversary requests t = rawCBC(k, x)
 - t = E(k, x)
 - The adversary outputs t' = t as MAC forgery of the two-block message x' = x, $(t \oplus x)$

apr. '22

Hash functions

20

CBC-MAC: security

• Proof (for brevity rawCBC = H)

```
- Let t' = H(k, (x, (t \oplus x)) =

E(k, (E(k, x) \oplus (t \oplus x))) = E(k, t \oplus (t \oplus x)) = E(k, x) = t,

where E is the cipher Q.E.D
```

apr. '22 Hash functions 21

21

HMAC

How to build a MAC from ah hash function

- Insecure constructions
 - Secret prefix scheme
 - S(k, x) = H(k|x), H hash function
 - Secret suffix scheme
 - $S(k, x) = H(x \mid \mid k)$, H hash function
 - Forgery is possible in both cases
 - HMAC construction is necessary

apr. '22 Hash functions 22

Insecurity of prefix scheme

- Let $x = (x_1, x_2, x_3, ..., x_n)$
- Let $t = S(k, x) = H(k \mid | x_1, x_2, ..., x_n)$
- Attack: construct t' of x' = x₁, x₂,... x_n, x_{n+1} without knowing k (x_{n+1}: additional block)
 - Consider the Merkle-Damgard scheme →
 - $-t' = h(x_{n+1}, t)$ with h compression function
 - The MAC of x_{n+1} only needs the previous hash output t but not k

apr. '22 Hash functions 2

23

Insecurity of the suffix scheme

- Let t = S(k, x) = H(x | | k)
- Attack: construct t' of a x' without knowing the key k
 - Consider the Merkle-Damgard scheme
 - Assume the adversary is able to find a collision H(x) = H(x')
 - Then, t = h(H(x), k) = h(H(x'), k), thus t' = t, h compression function

apr. '22 Hash functions 24

25

HMAC

- Computational efficiency
 - The message is hashed in the inner hash
 - The outer hash only hashes two blocks
- Security
 - There exists a proof of security in HMAC
 - THM If an attacker can break HMAC then (s)he can break
 H

apr. '22 Hash functions

26

Message Authentication Code (MAC)

PADDING

27

MAC Padding

- Pad by zeroes ⇒ insecure
 - pad(m) and pad(m||0) have the same MAC
- Padding must be an invertible function
 - $m0 \neq m1 \Rightarrow pad(m0) \neq pad(m1)$
- Standard padding (ISO)
 - Append "100...00" as needed
 - Scan right to left
 - "1" determines the beginning of the pad
 - Add a dummy block if necessary
 - When the message is a multiple of the block
 - The dummy block is necessary or existential forgery arises

apr. '22 Hash functions 28

MAC April 22

Padding by Oes is a bad idea

- Proof
 - Let $x = x_1, x_2, x_3$ where x_3 is shorter than a block
 - Let's pad x₃ as follows m₃ | |000 (for example)
 - Let t be the tag outputted.
 - Consider know a message $x' = x \mid 0$.
 - x' would be composed of three blocks $x'_1 = x_1$, $x'_2 = x_2$, and $x'_3 = x_3 \mid 0$.
 - x'_3 needs padding and becomes $x'_3 = x_3 | |0| | 00 = x_3 | |000$.
 - So, x and x' after padding are equal and thus have the same tag.

QED

apr. '22 Hash functions 29

29

On dummy block

- · Without dummy block, existential forgery arises
- Proof
 - Let x = x1, x2 which needs padding
 - Build $x^* = x1$, x2 | | 100, where x^* is the padded message
 - Consider now x' = x1, x2 | | 100
 - Since x' is a multiple of the block we don't pad it
 - It follows that $x' = x^*$ and thus x ad x' have the same tag

 QED

apr. '22 Hash functions 30

TIMING ATTACK

apr. '22

Hash functions

......

31

Timing Attack

- Example: Keyczar crypto library (Python) [simplified]
 def Verify(key, msg, tag):
 return HMAC(key, msg) == tag
- The problem: operator '==' is implemented as a byte-by-byte comparison
 - It returns false when first inequality found

apr. '22

Hash functions

32

33

Defense #1

- Make string comparator always take same time
- Solution 1:

```
return false if tag has wrong length
result = 0
for x, y in zip( HMAC(key,msg) , tag):
    result |= ord(x) ^ ord(y)
return result == 0
```

Can be difficult to ensure due to optimizing compiler

apr. '22 Hash functions 34

MAC April 22

Defense #2

• Make string comparator always take same time

```
    Solution 2
    def Verify(key, msg, tag):
        mac = HMAC(key, msg)
        return HMAC(key, mac) == HMAC(key, tag)
```

• Attacker doesn't know values being compared

apr. '22 Hash functions 35