Separation Logic

Niccolò Piazzesi January 4, 2022

# Outline

- 1 Introduction
- 2 Theoretical Foundations
- 3 Reasoning with separation logic
- 4 Tools

# Outline

- 1 Introduction
- 2 Theoretical Foundations
- 3 Reasoning with separation logic
- 4 Tools

# Brief recap: reasoning about code

- Program semantics described by logical conditions satisfied by language constructs
- Classical model, first put forward by Robert W. Floyd and Tony Hoare

# Floyd-Hoare Logic in 1 slide

# $\{P\}S\{Q\}$

P : pre-conditions

S : statement

Q : post conditions

Partial correctness: If the inital state fullfils pre-conditions and the statement terminates, the final state satisfies the post conditions.

Total correctness: If the initial state fullfils the pre-conditions then the statement terminates and the final state satisfies the post-conditions.

# Limitations

Does not work for non terminating programs

#### Limitations

Does not work for non terminating programs

Becomes complex with modular constructs such as objects and unconditional jumps

#### Limitations

Does not work for non terminating programs

Becomes complex with modular constructs such as objects and unconditional jumps

Global view of state becomes a burden when introducing pointers( think of pointer aliasing..)

# Motivating example

```
void deletetree(struct node *root){
   if(root != NULL){
    struct node *left = root->l;
    struct node *right = root->r;
   deletetree(left);
   deletetree(right);
   free(root);
  }
}
```

How can we prove memory safety?

# First attempt

# Outline

- 1 Introduction
- 2 Theoretical Foundations
- 3 Reasoning with separation logic
- 4 Tools

#### The model

Ints 
$$\triangleq \{\cdots, -1, 0, 1, \cdots\}$$

Atoms, Locations 
$$\subseteq Ints$$

Stores 
$$\triangleq$$
 Variables  $\rightharpoonup_{fin}$  Ints

Variables 
$$\triangleq \{x, y, \cdots\}$$

$$Locations \cap Atoms = \{\}, \ nil \in \\ Atoms$$

$$\mathsf{Heaps} \triangleq \mathsf{Locations} \rightharpoonup_{fin} \mathsf{Ints}$$

$$\mathsf{States} \triangleq \mathsf{Stores} \times \mathsf{Heaps}$$

$$[\![E]\!]_s \in Ints, \ [\![B]\!]_s \in \{\mathsf{true}, \ \mathsf{false}\}$$

$$h \in Heaps, h[E] \in Ints$$

# Expressions:

$$E, F, G := x, y, \dots \mid 0 \mid 1 \mid E + F \mid E \times F \mid E - F$$
$$B := false \mid B \Rightarrow B \mid E = F \mid E < F \mid isatom?(E) \mid isloc?(E)$$

### Expressions:

$$E, F, G := x, y, \cdots \mid 0 \mid 1 \mid E + F \mid E \times F \mid E - F$$
$$B := false \mid B \Rightarrow B \mid E = F \mid E < F \mid isatom?(E) \mid isloc?(E)$$

#### Assertions:

$$P,Q,R ::= B \mid E \mapsto F$$
 Atomic Formulae  $\mid false \mid P \Rightarrow Q \mid \forall x.P$  Classical Logic  $\mid emp \mid P * Q \mid P - * Q$  Spatial Connectives

### Expressions:

$$E, F, G := x, y, \dots \mid 0 \mid 1 \mid E + F \mid E \times F \mid E - F$$
$$B := false \mid B \Rightarrow B \mid E = F \mid E < F \mid isatom?(E) \mid isloc?(E)$$

#### Assertions:

$$P,Q,R ::= B \mid E \mapsto F$$
 Atomic Formulae  $\mid false \mid P \Rightarrow Q \mid \forall x.P$  Classical Logic  $\mid emp \mid P * Q \mid P - * Q$  Spatial Connectives

$$\neg P = P \Rightarrow False \\ true = \neg(false) \\ P \lor Q = \neg(P) \Rightarrow Q$$

#### Expressions:

$$E, F, G := x, y, \dots \mid 0 \mid 1 \mid E + F \mid E \times F \mid E - F$$
$$B := false \mid B \Rightarrow B \mid E = F \mid E < F \mid isatom?(E) \mid isloc?(E)$$

#### Assertions:

$$P,Q,R ::= B \mid E \mapsto F$$
 Atomic Formulae  $\mid false \mid P \Rightarrow Q \mid \forall x.P$  Classical Logic  $\mid emp \mid P * Q \mid P - * Q$  Spatial Connectives

$$\neg P = P \Rightarrow False 
true = \neg(false) 
P \lor Q = \neg(P) \Rightarrow Q$$

$$P \land Q = \neg(\neg P \lor \neg Q) 
\exists x.P = \neg \forall x. \neg P$$

#### Some notation

- **1** dom(h) and dom(s) denote the domain of definition for  $h \in Heaps$  and  $s \in Stores$ , respectively
- $2 h \# h' \to dom(h) \cap dom(h') = \emptyset$
- 3 h \* h' is the union of disjoint heaps
- **4**  $(f|i\mapsto j)$  represent the partial function that behaves like f except that i goes to j.

$$E \mapsto F_0, \dots, F_n \triangleq (E \mapsto F_0) * \dots * (E + n \mapsto F_n)$$
  
 $E \doteq F \triangleq (E = F) \land emp$   
 $E \mapsto - \triangleq \exists y.E \mapsto y$ 

# **Semantics**

| For store $s$ and heap $h$ |  |  |  |
|----------------------------|--|--|--|
|                            |  |  |  |
|                            |  |  |  |
|                            |  |  |  |
|                            |  |  |  |
|                            |  |  |  |
|                            |  |  |  |
|                            |  |  |  |
|                            |  |  |  |
|                            |  |  |  |
|                            |  |  |  |

## **Semantics**

#### For store s and heap h

$$\begin{split} s,h &\models B \; iff \; [\![B]\!]_s = true \\ s,h &\models E \mapsto F \; iff \; \{ [\![E]\!]_s \} = dom(h) \; and \; h([\![E]\!]_s) = [\![F]\!]_s \\ s,h &\models false \quad never \\ s,h &\models P \Rightarrow Q \; iff \; if \; s,h \models P \; then \; s,h \models Q \\ s,h &\models \forall x.P \; iff \; \forall v \in Ints.[s \mid x \mapsto v],h \models P \end{split}$$

#### **Semantics**

#### For store s and heap h

$$\begin{split} s,h &\models B \ iff \ [\![B]\!]_s = true \\ s,h &\models E \mapsto F \ iff \ \{[\![E]\!]_s\} = dom(h) \ and \ h([\![E]\!]_s) = [\![F]\!]_s \\ s,h &\models false \quad never \\ s,h &\models P \Rightarrow Q \ iff \ if \ s,h \models P \ then \ s,h \models Q \\ s,h &\models \forall x.P \ iff \ \forall v \in Ints.[s \mid x \mapsto v], h \models P \\ s,h &\models emp \ iff \ h = [\!] \ is \ the \ empty \ heap \\ s,h &\models P \ast Q \ iff \ \exists h_0,h_1.h_0\#h_1, \ h_0 \ast h_1 = h, \ s,h_0 \models P \ and \ s,h_1 \models Q \\ s,h &\models P - \ast Q \ iff \ \forall h'. \ if \ h'\#h \ and \ s,h' \models P \ then \ s,h \ast h' \models Q \end{split}$$

# Visual example



# Core system

Proof rules in seapartion logic are divide in:

- **1** Axioms for basic mutation commands  $\rightarrow$  *Small axioms*
- 2 Inference rules for modular reasoing  $\rightarrow$  Structural rules

$$\{E\mapsto -\}[\mathbf{E}]:=\mathbf{F}\{E\mapsto F\} \; \big(\text{"Store"}\big)$$

$$\begin{split} \{E \mapsto -\} [\mathbf{E}] &:= \mathbf{F} \{E \mapsto F\} \text{ ("Store")} \\ \{E \mapsto -\} \mathbf{free}(\mathbf{E}) \{emp\} \text{ ("Reclaim memory")} \end{split}$$

$$\begin{split} \{E \mapsto -\} [\mathbf{E}] &:= \mathbf{F} \{E \mapsto F\} \text{ ("Store")} \\ \{E \mapsto -\} \mathbf{free}(\mathbf{E}) \{emp\} \text{ ("Reclaim memory")} \\ \{x \doteq m\} \mathbf{x} &:= \mathbf{cons}(\mathbf{E_1}, \cdots, \mathbf{E_k}) \{x \mapsto E_1[m/x], \cdots, E_k[m/x]\} \\ \text{("Allocate memory")} \end{split}$$

$$\begin{split} \{E \mapsto -\} [\mathbf{E}] &:= \mathbf{F} \{E \mapsto F\} \text{ ("Store")} \\ \{E \mapsto -\} \mathbf{free}(\mathbf{E}) \{emp\} \text{ ("Reclaim memory")} \\ \{x \doteq m\} \mathbf{x} &:= \mathbf{cons}(\mathbf{E_1}, \cdots, \mathbf{E_k}) \{x \mapsto E_1[m/x], \cdots, E_k[m/x]\} \\ \text{("Allocate memory")} \\ \{x \doteq n\} \mathbf{x} &:= \mathbf{E} \{x \doteq (E[n/x])\} \end{split}$$

$$\{E \mapsto -\}[\mathbf{E}] := \mathbf{F}\{E \mapsto F\} \text{ ("Store")}$$

$$\{E \mapsto -\}\mathbf{free}(\mathbf{E})\{emp\} \text{ ("Reclaim memory")}$$

$$\{x \doteq m\}\mathbf{x} := \mathbf{cons}(\mathbf{E_1}, \cdots, \mathbf{E_k})\{x \mapsto E_1[m/x], \cdots, E_k[m/x]\}$$
("Allocate memory")
$$\{x \doteq n\}\mathbf{x} := \mathbf{E}\{x \doteq (E[n/x])\}$$

$$\{E \mapsto n \land x = m\}\mathbf{x} := [\mathbf{E}]\{x = n \land E[m/x] \mapsto n\} \text{ ("Load")}$$

#### Frame Rule

$$\frac{\{P\}C\{Q\}}{\{P*frame\}C\{Q*frame\}}\ Mod(C)\cap Free(frame)=\emptyset$$

Frame Rule

$$\frac{\{P\}C\{Q\}}{\{P*frame\}C\{Q*frame\}}\ Mod(C)\cap Free(frame)=\emptyset$$

Auxiliary variable elimination

$$\frac{\{P\}C\{Q\}}{\{\exists x.P\}C\{\exists x.Q\}} \ x \notin Free(C)$$

#### Variable substitution

$$\frac{\{P\}C\{Q\}}{(\{P\}C\{Q\})[E_1/x_1,\cdots E_k/x_k]}$$

 $x_i$  free and if  $x_i \in Mod(C)$  then  $E_i$  is not free in any  $E_j$ 

#### Variable substitution

$$\frac{\{P\}C\{Q\}}{(\{P\}C\{Q\})[E_1/x_1,\cdots E_k/x_k]}$$

 $x_i$  free and if  $x_i \in Mod(C)$  then  $E_i$  is not free in any  $E_j$ 

#### Rule of consequence

$$\frac{P\Rightarrow P' \quad \{P\}C\{Q\} \quad Q\Rightarrow Q'}{\{P\}C\{Q'\}}$$

#### Derived laws

The structural rules can be used to obtain more convenient derived laws.

As an example, we can simplify the rule for memory allocation by assuming  $x \notin Free(E_1, \cdots, E_k)$ .

$$\{emp\}x := cons(E_1, \cdots, E_k)\{x \mapsto E_1, \cdots, E_k\}$$

#### Derived laws

The structural rules can be used to obtain more convenient derived laws.

As an example, we can simplify the rule for memory allocation by assuming  $x \notin Free(E_1, \cdots, E_k)$ .

$$\{emp\}x := cons(E_1, \cdots, E_k)\{x \mapsto E_1, \cdots, E_k\}$$

The core system can also be extended with the usual Hoare rules

$$\frac{\{P \land B\}C\{Q\} \quad \{P \land \neg B\}C\{Q\}}{\{P\}if \ B \ then \ C \ else \ C'\{Q\}}$$

# Revisiting the tree example

```
void deletetree(struct node *root){
   if(root != NULL){
    struct node *left = root->1;
    struct node *right = root->r;
   deletetree(left);
   deletetree(right);
   free(root);
  }
}
```

# Revisiting the tree example

```
void deletetree(struct node *root){
    if(root != NULL){
     struct node *left = root->1;
     struct node *right = root->r;
     deletetree(left);
     deletetree (right);
    free (root);
}
Specification:
{tree(root)} deletetree(root) {emp}
tree(root) = if root == 0 then emp
           else \exists xy.root \mapsto [l:x,r:y] * tree(x) * tree(y)
```

 $\{root \mapsto [l: left, r: right] * tree(left) * tree(red)\}$ 

```
\{root \mapsto [l: left, r: right] * tree(left) * tree(red)\}
deletetree(left);
```

```
\{root \mapsto [l: left, r: right] * tree(left) * tree(red)\}
deletetree(left);
\{root \mapsto [l: left, r: right] * emp * tree(red)\}
```

```
 \{ root \mapsto [l: left, r: right] * tree(left) * tree(red) \}   deletetree(left);   \{ root \mapsto [l: left, r: right] * emp * tree(red) \}   deletetree(right);
```

```
\{root \mapsto [l: left, r: right] * tree(left) * tree(red)\}
deletetree(left);
\{root \mapsto [l: left, r: right] * emp * tree(red)\}
deletetree(right);
\{root \mapsto [l: left, r: right] * emp * emp\}
```

```
\begin{aligned} & \textbf{Proof:} \\ & \{ root \mapsto [l:left,r:right]*tree(left)*tree(red) \} \\ & deletetree(left); \\ & \{ root \mapsto [l:left,r:right]*emp*tree(red) \} \end{aligned}
```

 $\{root \mapsto [l: left, r: right] * emp * emp\}$ 

deletetree(right);

free(root);

```
Proof:
\{root \mapsto [l: left, r: right] * tree(left) * tree(red)\}
deletetree(left);
\{root \mapsto [l: left, r: right] * emp * tree(red)\}
deletetree(right);
\{root \mapsto [l: left, r: right] * emp * emp\}
free(root);
\{emp * emp * emp\}
\{emp\}
```

# Outline

- 1 Introduction
- 2 Theoretical Foundations
- 3 Reasoning with separation logic
- 4 Tools

# Outline

- Introduction
- 2 Theoretical Foundations
- Reasoning with separation logic
- 4 Tools

## References



Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter O'Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving fast with software verification.

In NASA Formal Methods Symposium, pages 3–11. Springer, 2015.

Dino Distefano, Peter W. O'Hearn, and Hongseok Yang.

A local shape analysis based on separation logic.

In Holger Hermanns and Jens Palsberg, editors, *Tools and Algorithms for the Construction and Analysis of Systems*, pages 287–302, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

### References



Josh Berdine, Cristiano Calcagno, and Peter W. O'Hearn. Smallfoot: Modular automatic assertion checking with separation logic.

In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for Components and Objects, pages 115–137, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.



James Brotherston, Nikos Gorogiannis, Max Kanovich, and Reuben Rowe.

Model checking for symbolic-heap separation logic with inductive predicates.

ACM SIGPLAN Notices, 51(1):84–96, 2016.

## References III



Josh Berdine, Byron Cook, and Samin Ishtiaq.

Slayer: Memory safety for systems-level code.

In *International Conference on Computer Aided Verification*, pages 178–183. Springer, 2011.