Aula 18/01:

1) Codos são cantous.

P(x): vi cantor (INTENSIONAL, pois rais tem domknio)

((4x) Pr(x)) (2) Godos são contous e escritores.

Pr(x): re i canton

Pa(sc) se i escritor

((40) (P1(20) 1 P2(20))

(3) Bodos os cantous são escritores. $((\forall x)(P_1(x) \rightarrow P_2(x)))$

(4) Su todos são contous, todos são escritores.

((∀x) P1(x) → (Yx)P2(x)) ~ corrigido

(5) Se alguém é cantor, todos são poetas escritores.

(3nc) Pr(nc) -> (4nc) (Pr(nc) 1 Pr(nc))

6 Nenhum escritor & cantor.

TI ((3x) (P/(x) ~ P2(x)))

 $((\forall x) (P_1(x) \rightarrow \neg P_2(x))$

 $((\forall \infty))(\neg(P_1(\infty)\wedge P_2(\infty)))$

Pe(x,y): x>y

(1) il soma du s'interior e sempre maior do que ambos. Pa(x): x x intuits Pe(x,y): x>y f(x,y)=x+y $(\forall x)((\forall y)((P_1(x) \land P_1(y)) \rightarrow (P_2(f(x,y),x) \land (P_2(f(x,y),y))))$ (18) De suasson de 1 interior nunca é par. Pr(x): x i intuiro;

Pz(y): ri par

Q(x)) x+1

 $\left((\forall x) \left(P_1(x) \rightarrow \left(-1P_2 \left(\varphi(x) \right) \right) \right) \right)$

(19) A soma de dois pares é sempre par.

7(20): 10 et par 4(x14):x+4 ((4x)((4x)((P(x) \P(y)) -> P(f(x,y)))))

D={ João, Pedro, Maria} Pr(x,y): x i pai y Pr(x): x ú música an: Pedro

> (T((3x)(P1(a11x) 1 (P2(y)))): Menhum filhe de Redre et músico > ((∀x)(P1(a1,x) → P2(x)))) : Code filhe du Pedre e músice

((((
$$P \land Q$$
) \rightarrow ($\neg R$)) \land ($\neg P$)) \rightarrow ($R \rightarrow$ ($\neg Q$)))

PQR $\neg P \neg Q \neg R P \land Q (P \land Q) \rightarrow (\neg R) R \rightarrow (\neg Q)$ ($P \rightarrow$

P	Q	R	70	70	TR	7 ~ 0	(P~Q) → (¬R)	2 → (72)	((PAQ) ->(7R)) ~(7P)	F
一	T	T	Ł	F	F	T	F	F	FARET	+
T	T	F	Ł	F	T	T	+	十	F	T
T	F	T	F	T	E	F	T	T	F	T
T	t	1	E	+	F	F	T	F	T	F
+	T	F	T	F	T	F	T	T	F	T
F	F	T	T	-	t	+	T	T	T	T
+	F	t	T	T	T	F	1	T	T	T
1									T	T

Description of the state of the

$$(4c) P_1(4(g(\infty))))$$
 $D=\{2\}$
 $P_1(\infty)=\{2\}$
 $4(\infty)=\{(2,2)\}$
 $g(\infty)=\{(2,2)\}$

$$((\exists c) (P_2(x) \land ((\forall y) P_1(x, y))))$$

$$D = \{1, 2\}$$

$$P_2 = \{2\}$$

$$P_1(x, y) = \{(1, 1), (1, 2)\}$$

$$(\Box) \ \, \xi_1 \colon (P \wedge Q) \to (\neg R)$$

E2: (¬P)

£3: (R → ¬Q)

a)
$$\forall w$$
, $eval((((P \land Q) \rightarrow (\neg R)) \land (\neg P)) \rightarrow (R \rightarrow \neg Q)) = T$

$$\neg H: \exists w \mid eval(((P \land Q) \rightarrow (\neg R) \land (\neg P)) \rightarrow (R \rightarrow \neg Q)) = F$$

$$1 - \text{eval}((P \land Q) \rightarrow (\neg R)) \land (\neg P)), w_1) = T$$

Des,

5- eval
$$(((P \land Q) \rightarrow (\neg R), w_i) = T$$

6,- eval $(\neg P) = T$

Lago, rais se cheger a um absurdo, pais encontrou-se ou interpreta gais Wi que terna H verdadeiro.

3.
$$((\forall x) P_{\lambda}(xc) \rightarrow P_{z}(xc))$$

6.
$$((\forall x) P_1(x) \rightarrow (\forall x) P_2(x))$$

14.
$$P(x_1) \longrightarrow (P_z(x_1) \vee P_z(x_2))$$

$$(\forall x)(P_1(x, a) \rightarrow P_2(x, a)))$$

$$T. ((\exists x) P_1(x) \rightarrow (\forall x) (P_2(x) \land B(x)))$$

(VIII) D={ florie, Redré, Maria}

P1(x,y)= x i pai de y

P2(x)= x i mérica

a1= ledre

1. $((\forall x)(P_1(a_{11}x) \rightarrow P_2(x)))$ Esolo filho de Pedro é músico

2. (((40) Pr(arro)) -> ((4x)Pz(x)))
Coodes es filhes de Recho rois músicos

3. $(((\forall x) P_1(\alpha_{1}, x) \rightarrow P_2(y)))$ Coode filhe de leche é irmée de um múnice
4. $(\neg ((\exists x) (P_1(\alpha_{1}, x) \land P(y)))$

Menhum filhe de Redro é irmão de um músico

5. ((Yx) Pr (arrx)
Cooder rão filher du Redro.

6. $((\forall x) (P_2(x) \rightarrow ((\exists y) P_1(y,x))))$

Codo músico i filho de alguém

7. Osolo músico i pai de alguín

8. Alguns músices são pais.