Extracting Graph Relations from Natural Language in Historical Emigrant Savings Bank Data

Stephen Balogh Chun Ming (Sam) Ho

Emigrant Industrial Savings Bank

- Founded in NYC in 1850
- Bank records have been hand transcribed, we have access to 25k accounts
- Each account has a "Remarks" field that (usually) contains many pieces of information about the account holder:
 - Country / location of origin
 - Occupation data
 - Account of emigration to U.S. (shipnames, departure locations, dates)
 - Family tree (where parents / siblings are located currently and whether or not they are alive)
 - Details about marriages
- The dataset is of interest to historians working on New York City

Our Project

Turning a natural language field like this:

Native of Cormack, 7mi from Loughrea, Co Galway Ire - Arr NY May 07 per the ship Howard from L'Pool - Parents Dead, Fa Owen- Mo Mary Quill, 2 Sisters Marg in NY- Bridget in Ire -Is Single

... into entities and relationships that can populate a graph network:

Relevant Entities / Relations

- Existing (non-NLP) work has been done in trying to make sense of this data
 - Historians are interested in capturing any named entities that appear in the "remarks" field,
 particularly those related to emigration
- We looked at the dataset, and some of the work that has been done in converting it to a database, and came up with a set of entity types and relationships that occurred with enough regularly that we thought we could capture them using NLP
- These entities and relationships comprise the vast majority of the content of the "remarks" fields that we looked at
- We then started to construct labels that would help in identifying these features

1. Labeling Token Sequences

- Unfortunately, none of the data was labeled, so we had to construct a training set ourselves
 - o But, it gave us freedom to choose whatever labels we wanted
- We used conditional random fields (CRF) in two consecutive passes to predict labels on a per-token basis:
 - First pass uses labels to semantically categorize general types of statements that might be found within the "remarks" text field
 - E.g. every token in **Native of Cormack**, **7 mi from Loughrea**, **Ire** would be tagged with "subj:native-of", since that is the "theme" under which this part of the text falls under
 - Second pass then uses these theme tags, along with other features, to map tokens into symbols expressing relationships, units, named entities, and etc

1. Labeling Token Sequences (cont.)

- CRF is a discriminative model, so we have to extract features from our sequence of input tokens
- We used the <u>sklearn-crfsuite</u> implementation of CRF, so all of our feature extraction happened in Python
- Our features encoded:
 - Word shape
 - Prefix / suffix bigrams and trigrams
 - Presence/absence of non-alphabetic characters
 - Presence of an element belonging to a group of known, meaningful tokens (e.g. "Ire" or "LP", which are known location abbreviations)
 - A couple syntactic features (if token is found within open brackets or parens)
 - O ...
- Trained with gradient descent
- Model performs surprisingly well even with only 81 annotated training examples; on random sample of 30 record predictions:
 - Accuracy of "theme" tags was 1.0
 - Accuracy of per-token symbols was 0.97

Token	Statement Label (CRF 1)	Token Tag (CRF 2)
She	subj:native-of	t:subj:IS_WOMAN
Nat	subj:native-of	t:rel:IS_NATIVE_OF
of	subj:native-of	t:rel:IS_NATIVE_OF
Ferrymount	subj:native-of	t:location:NAME
,	subj:native-of	t:DELIMITER
6	subj:native-of	t:location:DISTANCE
miles	subj:native-of	t:location:DISTANCE_UNIT
from	subj:native-of	t:location:FROM
Mt	subj:native-of	t:location:NAME
Mellick	subj:native-of	t:location:NAME
,	subj:native-of	t:location:NAME
Queens	subj:native-of	t:location:NAME
,	subj:native-of	t:location:NAME
Ire	subj:native-of	t:location:NAME
-	delimiter:thematic	delimiter:thematic
Arr	subj:emigration-event	t:emigration:ARRIVED
Jul	subj:emigration-event	t:time:MONTH
1844	subj:emigration-event	t:time:YEAR
per	subj:emigration-event	t:emigration:VIA
Fairfield	subj:emigration-event	t:emigration:VESSEL
from	subj:emigration-event	t:emigration:VESSEL_HAS_ORIGIN
LP	subj:emigration-event	t:location:NAME

Sequence subset of tuples containing *token*, *statement*, *tag*

2. Interpreting Label Sequences

"Nat of Ferrymount, 6 miles from Mt Mellick, Queens, Ire - Arr NY per ship Orinthian fr London - Par dead Fa Jno, Mo Sarah ..."

 We used context free grammar (CFG) to parse each group of statement-label tokens into parse tree.

subj:native-of			
Nat of	t:rel:IS_NATIVE_OF		
Ferrymount	t:location:NAME		
,	t:DELIMITER		
6	t:location:DISTANCE		
miles	t:location:DISTANCE_UNIT		
from	t:location:FROM		
Mt Mellick, Queens, Ire	t:location:NAME		

LHS	RHS
native_of_start	[t:rel:IS_NATIVE_OF] [t:location:NAME] [t:DELIMITER?] [native_dist?] [t:location:NAME?]
native_of_dist	[t:location:DISTANCE] [t:location:DISTANCE_UNIT?] [t:location:FROM] [t:location:NAME]

2. Interpreting Label Sequences (cont.)

 We use Breadth-First-Search (BFS) in each statement-label subtree and Depth-First-Search (DFS) for each named entity.

```
{'distance_from',
.... {'from', 'Mt Mellick, Queens, Ire'}
.... {'distance', '6 miles'}

Nat of Ferrymount , native_of_dist

6 miles from Mt Mellick, Queens, Ire
```

```
"native of": {
 "location": "Curraghamore , Co Donegal"
},
"emigration": [
  {
   "date": {
     "month": "July",
     "date": "6",
     "year": "1859"
    },
    "vessel": {
      "vessel": "James Foster",
     "location": "LP"
],
"parents": [
   "type": "Father",
   "name": "Jas"
  },
   "type": "Mother",
   "name": "Mary Hannegan"
],
"martial": {
                                 Sample of a final "extracted" record
 "status": "Is Single"
```

End-to-end metrics

- We decided to use precision and recall (plus F₁ scores)
 - Take a random sample of records that did not appear in the training data
 - Run them through CRF models, then CFG-based (and heuristic) interpreters
 - Compare claims made in the resulting extraction to the total amount of human-detectable correct claims from the original text
 - Possible claims come from a bounded domain of possibilities including:
 - Existence and related properties for Locations, Persons, Ships, Voyages, Employers
 - Relationships between entities such as "is_brother_of", "emigrated_via", "native_of", etc.
 - The claims we can support are bounded by the CRF labels we created and the sequences that we designed our CFG around
 - From a random sample of 30 records that we labeled to use as our dev set:

Metric	Non-CFG Interpreter	CFG Interpreter
Precision	0.9424	0.9612
Recall	0.3669	0.7647
F ₁	0.5282	0.8517

Building a sample graph

- From our extracted record schema, it is straightforward to actually construct a graph network
- Some standardization needs to happen, particularly regarding locations
 - Location names are ambiguous, or may appear in many different formats
 - We geocoded our location strings and tied them to an authority (GeoNames/WOF)
 - Used the Elasicsearch-based <u>Pelias</u> geocoder
- We used <u>Neo4j</u> to build a proof-of-concept graph network

Thanks!