CENTRO DE CIENCIAS MATEMÁTICAS

CINVESTAV

ENES Análisis univariado de comunidades

Capítulo 8

Andrés Arredondo (email_1@gmail.com) Adriana Haydé Contreras Peruyero (haydeeperuyero@gmail.com) David Alberto García Estrada (@gmail.com)

Morelia

Septiembre de 2022

${\bf \acute{I}ndice}$

1.	Aná	álisis u	nivariado de comunidades	3
	1.1.	Compa	araciones de diversidades entre dos grupos	3
		1.1.1.	Prueba t de Welch para dos muestras	3
	1.2.	Compa	arisons of a Taxon of Interest between Two Groups	7
	1.3.	Compa	aración entre más de dos grupos usando ANOVA	7
		1.3.1.	ANOVA de una vía	7
		1.3.2.	Comparaciones múltiples Pareadas y de Tukey	14
	1.4.	Compa	araciones entre más de dos grupos usando la prueba de Kruskal-Wallis	18
		1.4.1.	Prueba de Kruskal-Wallis	18
		1.4.2.	Comparación de diversidades entre grupos	18
		1.4.3.	Encontrar taxones significativos entre los grupos	21
		1.4.4.	Pruebas múltiples y valor E, FWER y FDR	27
	1.5	Regum	nen .	31

1. Análisis univariado de comunidades

Dividimos el estudio de la composición de las comunidades microbianas en dos grandes componentes: (a) Evaluación de hipótesis sobre diversidad taxonómica, OTU y Taxones (b) Análisis de diferencias entre grupos. El primer componente pertenece principalmente a analisis univariado de comunidades. El segundo puede ser dividido en varias tecnicas multivariadas, como lo son "clustering" y "ordinations", y la evaluación de hipotesis de analisis multivariado de dissimilitudes.

1.1. Comparaciones de diversidades entre dos grupos

En nuestro estudio con ratones Vdr-/-, uno de los propósitos es probar la diferencia de diversidades entre dos grupos (Vdr-/- y ratones de tipo salvaje) en sitios fecales y cecales. Aquí ilustraremos el análisis de la comunidad univariante, y compararemos la diversidad de Shannon(calculado anteriormente en Cap. 6 en las muestras fecales) usando varias estadísticas de prueba.

1.1.1. Prueba t de Welch para dos muestras

El estadístico t fue introducido en 1908 por William Sealy Gosset. Una prueba t de dos muestras se utiliza para probar que las medias de dos poblaciones son iguales. Se aplica más comúnmente cuando el estadístico de prueba seguiría una distribución normal. Si los dos grupos tienen la misma varianza, el estadístico t se puede calcular de la siguiente manera:

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

donde, sp y s22 son el estimador imparcial de la varianza de las muestras 1 y 2, respectivamente. Cuando las dos muestras tienen varianzas desiguales y tamaños de muestra desiguales, la prueba t de Welch se considera más confiable (Ruxton 2006). Por lo tanto, aquí usamos la prueba t de Welch para nuestros datos de ratón Vdr-/-. Primero, cargue y transponga el conjunto de datos:

```
# IMPORTANTE

# Ajustamos path de trabajo según tu PC

# Mostramos directorio actual
getwd()
```

[1] "C:/Users/alber/OneDrive - CINVESTAV/Documentos/Doctorado/Materias/BioestadísticaMicrobiomas/Equ

Para incorporar la información del grupo del conjunto de datos directamente a la comparación, necesitamos administrar los datos. En el conjunto de datos, la información de ID se muestra y grupo está en una franja de caracteres. Primero los extraemos de allí.

	Location	Group
5_15_drySt-28F	Fecal	Vdr-/-
20_12_CeSt-28F	Cecal	Vdr-/-
1_11_drySt-28F	Fecal	Vdr-/-
2_12_drySt-28F	Fecal	Vdr-/-
3_13_drySt-28F	Fecal	Vdr-/-
4_14_drySt-28F	Fecal	Vdr-/-
7_22_drySt-28F	Fecal	WT
8_23_drySt-28F	Fecal	WT
9_24_drySt-28F	Fecal	WT
19_11_CeSt-28F	Cecal	Vdr-/-
21_13_CeSt-28F	Cecal	Vdr-/-
22_14_CeSt-28F	Cecal	Vdr-/-
23_15_CeSt-28F	Cecal	Vdr-/-
25_22_CeSt-28F	Cecal	WT
26_23_CeSt-28F	Cecal	WT
27_24_CeSt-28F	Cecal	WT

Repetimos el calculo de la diversidad de Shannon para esta tabla, igual que en el capitulo 6.

```
#library(vegan)
H<-diversity(abund_table, "shannon")</pre>
```

Luego combinamos dataframes de diversidad y agrupación para crear un nuevo dataframe.

```
df_H<-data.frame(sample=names(H), value=H, measure=rep("Shannon",length(H)))
df_G <-cbind(df_H, grouping)
rownames(df_G)<-NULL
df_G</pre>
```

sample	value	measure	Location	Group
5_15_drySt-28F	2.460729	Shannon	Fecal	Vdr-/-
20_12_CeSt-28F	2.339725	Shannon	Cecal	Vdr-/-
$1_11_{\text{drySt-28F}}$	2.228023	Shannon	Fecal	Vdr-/-
$2_12_{\text{drySt-28F}}$	2.734405	Shannon	Fecal	Vdr-/-
$3_13_{\text{drySt-28F}}$	2.077282	Shannon	Fecal	Vdr-/-
4_14 _drySt-28F	2.466830	Shannon	Fecal	Vdr-/-
$7_22_{\mathrm{drySt-28F}}$	1.777171	Shannon	Fecal	WT
$8_23_{\text{drySt-28F}}$	1.999559	Shannon	Fecal	WT
$9_24_{drySt-28F}$	1.971996	Shannon	Fecal	WT
19 11 CeSt-28F	1.344813	Shannon	Cecal	Vdr-/-

sample	value	measure	Location	Group
21_13_CeSt-28F 22_14_CeSt-28F	2.016113 1.955432	Shannon Shannon	Cecal Cecal	Vdr-/- Vdr-/-
23_15_CeSt-28F 25_22_CeSt-28F	1.614456 1.958839	Shannon Shannon	Cecal Cecal	Vdr-/- WT
26_23_CeSt-28F 27_24_CeSt-28F	$2.270818 \\ 2.002195$	Shannon Shannon	Cecal Cecal	WT WT

A continuación, creamos subconjuntos de datos fecales del nuevo dataframe.

```
Fecal_G<- subset(df_G, Location=="Fecal")
Fecal_G</pre>
```

	sample	value	measure	Location	Group
1	5_15_drySt-28F	2.460729	Shannon	Fecal	Vdr-/-
3	$1_11_{\text{drySt-28F}}$	2.228023	Shannon	Fecal	Vdr-/-
4	$2_12_drySt-28F$	2.734405	Shannon	Fecal	Vdr-/-
5	$3_13_drySt-28F$	2.077282	Shannon	Fecal	Vdr-/-
6	$4_14_drySt-28F$	2.466830	Shannon	Fecal	Vdr-/-
7	$7_22_{\mathrm{drySt-28F}}$	1.777171	Shannon	Fecal	WT
8	$8_23_drySt-28F$	1.999559	Shannon	Fecal	WT
9	$9_24_drySt\text{-}28F$	1.971996	Shannon	Fecal	WT

Ahora los datos están listos para el análisis estadístico. Antes de realizar la prueba de hipótesis, exploremos la distribución de los valores de diversidad de Shannon usando la función ggplot()

```
#library(ggplot2)
#dividimos el gráfico en dos paneles usando facet_grid.
p<-ggplot(Fecal_G, aes(x=value))+
  geom_histogram(color="black", fill="black")+
  facet_grid(Group ~ .)</pre>
```

El paquete plyr se utiliza para calcular los valores promedio de diversidad de Shannon de cada grupo

```
#library(plyr)
#la función ddply toma input un df y arroja un df de output
mu <- ddply(Fecal_G, "Group", summarise, grp.mean=mean(value))
head(mu)</pre>
```

```
\begin{array}{ccc} Group & grp.mean \\ \hline Vdr-/- & 2.393454 \\ WT & 1.916242 \\ \end{array}
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

En el histograma anterior la eliminación de Vdr de este grupo se desplaza hacia la derecha en relación con el grupo WT (hacia valores de diversidad más altos), lo que da como resultado una mayor diversidad.

```
#Usamos la prueba t de Welch para probar la hipotesis nula
fit_t <- t.test(value ~ Group, data=Fecal_G)
fit_t</pre>
```

```
##
## Welch Two Sample t-test
##
## data: value by Group
## t = 3.5999, df = 5.9206, p-value = 0.01163
## alternative hypothesis: true difference in means between group Vdr-/- and group WT is not equal to 0
## 95 percent confidence interval:
## 0.1517841 0.8026392
## sample estimates:
## mean in group Vdr-/- mean in group WT
```

Para probar la hipótesis nula de que no hay diferencia en la diversidad de Shannon, se utilizó una prueba t de Welch que dio como resultado un valor de p=0.01 (t=3.6, df=5.9). Por lo tanto, rechazamos la hipótesis nula de no diferencia a favor de la alternativa de que las diversidades de Shannon son diferentes en los dos grupos.

1.916242

2.393454

##

1.2. Comparisons of a Taxon of Interest between Two Groups

1.3. Comparación entre más de dos grupos usando ANOVA

1.3.1. ANOVA de una vía

El análisis de varinza (ANOVA) fue propuesto por Ronal Fisher en 1918 y se hizo bien conocido después de la publicación del libro de Fisher, "Statitiscal Methods for Research Workers" en 1925. El ANOVA generaliza la prueba de t de dos muestras a más de dos grupos. La Hipótesis nula del ANOVA es: Todas las medias de grupos comparados son iguales. El análisis usando ANOVA se basa en un supuesto de Normalidad de los datos subyacentes. Sin embargo, la composición de la mayoría de los datos de comunidades microbiana, especialmente datos multivariados, no están normalmente distribuidos, por lo tanto, ANOVA solo es usaod para comparar análisis univariado de mediciones de alfa diversidad. Para datos de composición comunitaria multivariante, se aplica una versión no paramétrica La formación de la estadística de prueba se realiza mediante la partición tradicional de la suma de cuadrados (división de la variación). La ecuación de definición de la muestra varianza es

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

donde $s^{2} =$ varianza de la muestra. La varianza de la muestra es calculada por la suma de cuadados (SS) dividido por n-1 (grados de libertad, DF). El resultado es llamado media cuadrada (MS) y los términos cuadrados son desviaciones de la media simple. La técnica fundamental del ANOVA divide la suma total de cuadrados (SS) de desviaciones en dos componentes: suma de cuadrados relacionados con el tratamiento y suma de cuadrados relacionados con el error:

$$SS_{Total} = SS_{Tratamientos} + SS_{Error}$$

El número de grados de libertad, DF, pueden ser particionados de una manera similar:

$$DF_{Total} = DF_{Tratamientos} + DF_{Error}$$

La prueba F es usada para comparar los factores de la desviación total. El valor F es obtenido por la división de la varianza entre tratamientos por la varianza dentro de tratamientos. La prueba estadística F en un ANOVA de una vía esta dado por:

$$F = \frac{MS_{Tratamientos}}{MS_{Error}} = \frac{SS_{Tratamientos}/(K-1)}{SS_{Error}/(N-1)}$$

donde MS= media cuadrada, K= número de tratamientos y N= número total de muestras. Para ilustrar el ANOVA en el estudio de la composición de la comunidad del microbioma, utilizamos los datos de nuestro ratón $Vdr^{-/-}$. Una hipótesis de este estudio es que el estado de Vdr y la localización intestinal no tienen efectos en la comunidad bacteriana del intestino. Analizamos las medidas de diversidad alfa de Chao 1 utilizando ANOVA para abordar esta hipótesis. Los siguientes códigos crean un marco de datos de riqueza Chao1 y añaden la información de los grupos a este marco de datos

-	sample	value	measure	Location	Group
	Батріс	varac	measure	Location	
5_15_drySt-28F	$5_15_drySt-28F$	94.75000	Chao1	Fecal	Vdr-/-
$20_12_\text{CeSt-}28\text{F}$	$20_12_\text{CeSt-}28\text{F}$	59.80000	Chao1	Cecal	Vdr-/-
$1_11_{\text{drySt-}28F}$	$1_11_{\text{drySt-}28F}$	77.00000	Chao1	Fecal	Vdr-/-
$2_12_{\text{drySt-28F}}$	$2_12_{\text{drySt-28F}}$	103.27273	Chao1	Fecal	Vdr-/-
$3_13_{\text{drySt-28F}}$	$3_13_{\text{drySt-28F}}$	85.66667	Chao1	Fecal	Vdr-/-
$4_14_{\text{drySt-}28F}$	$4_14_{\text{drySt-}28F}$	55.14286	Chao1	Fecal	Vdr-/-
$7_22_{\mathrm{drySt-28F}}$	$7_22_{\mathrm{drySt-28F}}$	62.75000	Chao1	Fecal	WT
$8_23_{\text{drySt-28F}}$	$8_23_{\text{drySt-}28F}$	67.66667	Chao1	Fecal	WT
9_24 _drySt-28F	$9_24_{drySt-28F}$	80.50000	Chao1	Fecal	WT
$19_11_CeSt-28F$	$19_11_CeSt-28F$	52.16667	Chao1	Cecal	Vdr-/-
$21_13_CeSt-28F$	$21_13_CeSt-28F$	55.00000	Chao1	Cecal	Vdr-/-
$22_14_CeSt-28F$	$22_14_CeSt-28F$	59.00000	Chao1	Cecal	Vdr-/-
$23_15_CeSt-28F$	$23_15_CeSt-28F$	60.87500	Chao1	Cecal	Vdr-/-
$25_22_CeSt-28F$	$25_22_CeSt-28F$	51.00000	Chao1	Cecal	WT
$26_23_CeSt-28F$	$26_23_CeSt-28F$	112.85714	Chao1	Cecal	WT
27_24_CeSt-28F	$27_24_\mathrm{CeSt}\text{-}28\mathrm{F}$	78.05882	Chao1	Cecal	WT

Los nuevos 4 niveles de grupo son generados usando interacción de Locación y Grupo

	sample	value	measure	Location	Group	Group4
5_15_drySt-28F	5_15_drySt-28F	94.75000	Chao1	Fecal	Vdr-/-	Fecal.Vdr-/-
$20_12_\text{CeSt-}28\text{F}$	$20_12_\text{CeSt-}28\text{F}$	59.80000	Chao1	Cecal	Vdr-/-	Cecal.Vdr-/-
$1_11_{\text{drySt-}28F}$	$1_11_{\text{drySt-28F}}$	77.00000	Chao1	Fecal	Vdr-/-	Fecal.Vdr-/-
$2_12_drySt-28F$	$2_12_drySt-28F$	103.27273	Chao1	Fecal	Vdr-/-	Fecal.Vdr-/-
$3_13_drySt-28F$	$3_13_drySt-28F$	85.66667	Chao1	Fecal	Vdr-/-	Fecal.Vdr-/-
$4_14_drySt-28F$	4_14 _drySt-28F	55.14286	Chao1	Fecal	Vdr-/-	Fecal.Vdr-/-
$7_22_{\mathrm{drySt-28F}}$	$7_22_{\mathrm{drySt-28F}}$	62.75000	Chao1	Fecal	WT	Fecal.WT
$8_23_{\text{drySt-}28F}$	$8_23_drySt-28F$	67.66667	Chao1	Fecal	WT	Fecal.WT
$9_24_drySt-28F$	$9_24_drySt-28F$	80.50000	Chao1	Fecal	WT	Fecal.WT
$19_11_CeSt-28F$	$19_11_\text{CeSt-28F}$	52.16667	Chao1	Cecal	Vdr-/-	Cecal.Vdr-/-
$21_13_CeSt-28F$	$21_13_CeSt-28F$	55.00000	Chao1	Cecal	Vdr-/-	Cecal.Vdr-/-
$22_14_CeSt-28F$	$22_14_\text{CeSt-}28\text{F}$	59.00000	Chao1	Cecal	Vdr-/-	Cecal.Vdr-/-
$23_15_CeSt-28F$	$23_15_CeSt-28F$	60.87500	Chao1	Cecal	Vdr-/-	Cecal.Vdr-/-
$25_22_CeSt-28F$	$25_22_CeSt-28F$	51.00000	Chao1	Cecal	WT	Cecal.WT
$26_23_\text{CeSt-}28\text{F}$	$26_23_CeSt-28F$	112.85714	Chao1	Cecal	WT	Cecal.WT
$27_24_\mathrm{CeSt}\text{-}28\mathrm{F}$	$27_24_\mathrm{CeSt}\text{-}28\mathrm{F}$	78.05882	Chao1	Cecal	WT	Cecal.WT

Exploramos el índice de Chao usando boxplot()

```
boxplot(value~Group4, data=df_CH_G, col = rainbow(4), main="Chao1 index")
```

Chao1 index

Figura 1: Boxplot del índice Chao 1 con cuatro grupos generados usando la función 'boxplot()'.

El siguiente ${\tt ggplot}(\tt)$ genera una alta calidad de boxplot para publicarlo

Figura 2: Boxplot del índice Chao 1 con cuatro grupos generados usando la función 'ggplot()'.

```
ggplot(df_CH_G, aes(x = Group4, y = value, col = factor(Group4))) +
geom_boxplot(notch = FALSE)
```


Figura 3: Boxplot del índice Chao 1 con cuatro grupos generados usando la función 'ggplot()'.

Además de la inspección visual de la normalidad de los datos subyacentes, la homogeneidad de varianza puede ser probada. Sokal y Rohlf (2011) describen tres pruebas de este tipo: la prueba de homogeneidad de Bartlett, la prueba F_{max} de Hartley y la prueba log-anova o Scheffé-Box. Para proceder a la comprobación del uso de ANOVA, primero debemos comprobar la homogeneidad de las varianzas. El software R proporciona dos pruebas: la prueba de Bartlett y la prueba de Fligner-Killeen. Para ilustrar la prueba de homogeneidad de varianzas, utilizamos las medidas de riqueza Chao 1 de los datos de los ratones $Vdr^{-/-}$ y WT de las localizaciones fecales y cecales. La hipótesis nula (H_0) de es que todas las varianzas de los cuatro grupos son iguales. Comenzamos con la prueba de Bartlett. Para facilitar el procesamiento de la prueba de Bartlett de Bartlett, utilizamos la función select() del paquete dplyr para seleccionar el grupo pertinente y las columnas de valor de Chao 1.

```
library(dplyr)

df_CH_G4 <- select(df_CH_G, Group4, value)
df_CH_G4</pre>
```

	Group4	value
5 15 drySt-28F	Fecal.Vdr-/-	94.75000
20_12_CeSt-28F	Cecal.Vdr-/-	59.80000
$1_11_{\text{drySt-28F}}$	Fecal.Vdr-/-	77.00000
$2_12_{\text{drySt-28F}}$	Fecal.Vdr-/-	103.27273
$3_13_drySt-28F$	Fecal.Vdr-/-	85.66667
$4_14_{\text{drySt-28F}}$	Fecal.Vdr-/-	55.14286

	Group4	value
7_22_drySt-28F	Fecal.WT	62.75000
$8_23_{\text{drySt-}28F}$	Fecal.WT	67.66667
9_24_drySt-28F	Fecal.WT	80.50000
$19_11_CeSt-28F$	Cecal.Vdr-/-	52.16667
$21_13_CeSt-28F$	Cecal.Vdr-/-	55.00000
$22_14_\mathrm{CeSt}\text{-}28\mathrm{F}$	Cecal.Vdr-/-	59.00000
$23_15_CeSt-28F$	Cecal.Vdr-/-	60.87500
$25_22_\mathrm{CeSt}\text{-}28\mathrm{F}$	Cecal.WT	51.00000
$26_23_CeSt-28F$	Cecal.WT	112.85714
$27_24_\mathrm{CeSt}\text{-}28\mathrm{F}$	Cecal.WT	78.05882

Los códigos R siguientes conducen a la prueba Barlett de homogeneidad de varanzas:

```
# No corre
# bartlett.test(df_CH_G4, Group4)
```

La función nos da el valor K al cuadrado de las pruebas estadísticas y el valor p. Muestra que la hipótesis nula puede rechazarse al nivel del 5%. Como alternativa, podemos comparar el K-cuadrado de Bartlett con el valor de las tablas de chi-cuadrado, utilizando el mismo nivel de alfa y grados de libertad en la función qchisq(). Si Chi-cuadrado > K-cuadrado de Bartlett, aceptamos la hipótesis nula H_0 (homogeneidad de varianzas), de lo contrario rechazamos la hipótesis nula.

```
qchisq(0.95, 1)
```

```
## [1] 3.841459
```

Como la Chi-cuadrado es menor que la K-cuadrado de Bartlett, rechazamos la hipótesis nula H_0 y concluimos que las varianzas no son iguales. Ahora utilizamos la prueba de Fligner-Killeen para comprobar la homocedasticidad. La sintaxis como a continuación es bastante similar.

```
fligner.test(df_CH_G4, Group4)
```

```
##
## Fligner-Killeen test of homogeneity of variances
##
## data: df_CH_G4
## Fligner-Killeen:med chi-squared = 20.572, df = 1, p-value = 5.742e-06
```

Las conclusiones son similares a las de la prueba de Bartlett: las varianzas no son iguales. Sin embargo, a efectos de ilustración, procedemos a analizar los datos mediante ANOVA independientemente de los resultados de la prueba de homegeneidad de varianzas. Los siguientes códigos R se ajustan al modelo:

```
fit = lm(formula = value~Group4, data = df_CH_G)
```

Entonces analizamos el modelo de ANOVA

```
anova(fit)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Group4 Residuals	_	1925.600 3512.691		2.192736 NA	0.1417611 NA

O solo usamos el siguiente codigo: la función aov() anidade dentro de la función summary().

```
summary(aov(value~Group4, data=df_CH_G))
```

```
## Group4 Df Sum Sq Mean Sq F value Pr(>F)
## Group4 3 1926 641.9 2.193 0.142
## Residuals 12 3513 292.7
```

Podemos imprimir el intercepto usando lo siguiente

```
aov_fit <- aov(value~Group4, data = df_CH_G)
summary(aov_fit, intercept=T)</pre>
```

```
##
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
## (Intercept)
                  83450
                           83450 285.080 9.97e-10 ***
               1
## Group4
                    1926
                             642
                                   2.193
                                            0.142
                3
## Residuals
              12
                    3513
                             293
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Como el valor p > 0.05, aceptamos la hipótesis H_0 : las cuatro medias no son diferentes. Podemos comprar el valor F con el valor tabulado de F:

```
qf(0.95, 12, 3)
```

[1] 8.744641

Debido a que el valor tabulado de F es más grande que el computado valor F, aceptamos la H_0 . Los resultados del ANOVA son un poco desordenados. Puede utilizar el paquete broom para obtener las tablas ordenadas y más informativas.

```
#install.packages("mnormt")
library("broom")
tidy(aov_fit)
```

term	df	sumsq	meansq	statistic	p.value
Group4	3	1925.600	641.8668	2.192736	0.1417611
Residuals	12	3512.691	292.7242	NA	NA

```
augment(aov_fit)
```

.rownames	value	Group4	.fitted	.resid	.hat	.sigma	.cooksd	.std.resid
5_15_drySt-	94.75000	Fecal.Vdr-	83.16645	11.583550	0.2000000	17.43812	0.0358109	0.7569503
28F		/-						
20_12_CeSt-	59.80000	Cecal.Vdr-	57.36833	2.431667	0.2000000	17.85115	0.0015781	0.1589021
28F		/-						
1_11_drySt-	77.00000	Fecal.Vdr-	83.16645	-6.166450	0.2000000	17.74865	0.0101485	-
28F	100.05050	/-	00.100.45	20.100277	0.0000000	10 50 151	0.10=0004	0.4029590
2_12_drySt-	103.27273	Fecal.Vdr-	83.16645	20.106277	0.2000000	16.53471	0.1078934	1.3138850
28F	01 <i>66667</i>	/- Fecal.Vdr-	99 1 <i>661</i> E	2 500217	0.2000000	17 05007	0.0016699	0.1622017
3_13_drySt- 28F	85.66667	/-	83.16645	2.500217	0.2000000	17.85007	0.0016683	0.1633817
4 14 drySt-	55.14286	/- Fecal.Vdr-	83.16645	_	0.2000000	15.16886	0.2095941	_
28F	00.14200	/_	05.10040	28.023593	0.2000000	19.10000	0.2033341	1.8312579
7 22 drySt-	62.75000	Fecal.WT	70.30556	-7.555556	0.3333333	17.65081	0.0365658	1.0012010
28F	02.1.0000	1 00011 11 1	.0.00000		0.000000	11.00001	0.0000000	0.5408573
8 23 drySt-	67.66667	Fecal.WT	70.30556	-2.638889	0.3333333	17.84337	0.0044605	-
28F								0.1889024
9_24_{drySt}	80.50000	${\it Fecal.WT}$	70.30556	10.194444	0.33333333	17.46893	0.0665687	0.7297597
28F								
19_11_CeSt-	52.16667	Cecal.Vdr-	57.36833	-5.201667	0.2000000	17.78372	0.0072213	-
28F		/-						0.3399133
21_13_CeSt-	55.00000	Cecal.Vdr-	57.36833	-2.368333	0.2000000	17.85212	0.0014970	-
28F	F 0 00000	/-		4 004 00=	0.000000	4 = 004.40	0 000=405	0.1547635
22_14_CeSt-	59.00000	Cecal.Vdr-	57.36833	1.631667	0.2000000	17.86149	0.0007105	0.1066245
28F	60.87500	/-	F7 20022	2 506667	0.2000000	17 02000	0.0022010	0.2291502
23_15_CeSt- 28F	00.87300	Cecal.Vdr- /-	57.36833	3.506667	0.2000000	17.83082	0.0032819	0.2291302
25 22 CeSt-	51.00000	Cecal.WT	80.63866		0.3333333	14.12611	0.5626776	
28F	31.00000	Cecai. W 1	00.03000	29.638655	0.5555555	14.12011	0.5020110	2.1216552
26 23 CeSt-	112.85714	Cecal.WT	80.63866	32.218487	0.3333333	13.33364	0.6648948	2.3063300
28F		2 30001. , , 1	20.00000	53.210101	2.0000000	_3.55551	5.00 200 10	0000000
27 24 CeSt-	78.05882	Cecal.WT	80.63866	-2.579832	0.3333333	17.84455	0.0042631	_
28F								0.1846748

glance(aov_fit)

logLik	AIC	BIC	deviance	nobs	r.squared
-65.83541	141.6708	145.5338	3512.691	16	0.3540819

1.3.2. Comparaciones múltiples Pareadas y de Tukey

Los resultados del ANOVA dan la prueba global de diferencia de grupos (en este caso, 4 grupos con combinación fecal, cecal, $Vdr^{-/-}$ y WT). Nuestro propósito es probar también cada diferencia de pares asociada a la riqueza de Chao 1. Los siguientes pasos sirven para ilustrar las capacidades de la prueba t por pares y las comparaciones múltiples ad hoc de Tukey en R. Vamos a ejecutar la prueba t por pares no ajustada para los cuatro grupos. La configuración por defecto en R para esta prueba es ajustar los valores p como post hoc usando el método Holm, así que para obtener valores p no ajustados, debe especificar p.adjust = "none". El valor por defecto de R asume la homogeneidad de la varianza, por lo que no es necesario especificar pool. sd = T. Si sus datos tienen una varianza desigual, debe utilizar pool.sd = F.

```
##
   Pairwise comparisons using t tests with pooled SD
##
##
## data: df_CH_G$value and df_CH_G$Group4
##
##
                Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
## Fecal.Vdr-/- 0.035
## Cecal.WT
                0.087
                              0.843
## Fecal.WT
                0.321
                              0.324
                                           0.474
##
## P value adjustment method: none
```

Si no hacemos ningún ajuste a nuestros valores p, hay diferencias estadísticamente entre $Vdr^{-/-}$ fecal, $Vdr^{-/-}$ cecal, y marginalmente diferencias estadísticas entre WT cecal y $Vdr^{-/-}$ cecal. Estas diferencias se visualizan en el boxplot. Como observamos, la función p.adjust() está anidada dentro de la función pairwise.t.test() de pares. Esta es una función básica y muy útil de R. Puede utilizarse para controlar el error de tipo I de la familia. La función p.adjust() puede anidarse en otra función, o ser llamada de forma independiente. En una llamada independiente, la sintaxis se da a continuación:

```
p.adjust(p, method = p.adjust.methods, n = length(p))
```

donde, p= vector numérico de valores p, $m\acute{e}todo=$ método de corrección, n= número de comparaciones, debe ser al menos length(p). Los métodos de ajuste incluyen c("bonferroni", "holm", "hochberg", "hommel", "BH", "BY", "fdr", "none"). Donde "bonferroni" es la corrección de Bonferroni en la que los valores p se multiplican por el número de comparaciones; "holm", "hochberg", "hommel", "BH", "BY", "fdr" se refieren a Holm (1979), Hochberg (1988), Hommel (1988), Benjamini y Hochberg (1995) y Benjamini y Yekutieli (2001), y "fdr" es un alias de "BH". Son correcciones menos conservadoras.

```
##
   Pairwise comparisons using t tests with pooled SD
##
##
## data: df_CH_G$value and df_CH_G$Group4
##
                Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
##
## Fecal.Vdr-/- 0.21
## Cecal.WT
                0.52
                              1.00
## Fecal.WT
                1.00
                              1.00
                                           1.00
##
## P value adjustment method: bonferroni
```

```
##
##
    Pairwise comparisons using t tests with pooled SD
##
  data: df_CH_G$value and df_CH_G$Group4
##
##
                Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
##
## Fecal.Vdr-/- 0.21
                              1.00
## Cecal.WT
                0.44
## Fecal.WT
                1.00
                              1.00
                                           1.00
##
## P value adjustment method: holm
# Método de Benjamini & Hochberg(BH)
pairwise.t.test(df_CH_G$value, df_CH_G$Group4,
                p.adjust= "BH", pool.sd = T)
##
    Pairwise comparisons using t tests with pooled SD
##
##
##
  data: df_CH_G$value and df_CH_G$Group4
##
##
                Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
## Fecal.Vdr-/- 0.21
## Cecal.WT
                0.26
                              0.84
                0.49
                                           0.57
## Fecal.WT
                              0.49
##
## P value adjustment method: BH
# Método de Benjamini & Yekutieli
pairwise.t.test(df_CH_G$value, df_CH_G$Group4,
                p.adjust = "BY", pool.sd = T)
##
##
    Pairwise comparisons using t tests with pooled SD
##
  data: df_CH_G$value and df_CH_G$Group4
##
##
##
                Cecal.Vdr-/- Fecal.Vdr-/- Cecal.WT
## Fecal.Vdr-/- 0.51
## Cecal.WT
                0.64
                              1.00
                1.00
## Fecal.WT
                              1.00
                                           1.00
##
## P value adjustment method: BY
```

Los cuatro ajustes anteriores no ofrecen diferencias significativas en las comparaciones por pares. Los ajustes conservadores de Bonferroni y Benjamini & Yekutieli tienen los mayores valores p. Con el método de Benjamini y Hochberg ninguna de las comparaciones son significativas, pero sus valores p ajustados son menores. El método Benjamini & Hochberg es más potente en este caso. Tanto el método de Benjamini & Hochberg (BH) como el de Benjamini & Yekutieli (BY) son para ajustar la "tasa de falsos descubrimientos" (FDR). En realidad no es un verdadero control de error por familia. Los métodos de la Falsa Tasa de Descubrimiento encuentran los mismos resultados: todas las comparaciones por pares no presentan diferencias significativas. A continuación, vamos a mostrar el uso de la función TukeyHSD() para hacer comparaciones múltiples de

Tukey de medias y obtener sus intervalos de confianza. La forma de llamar a esta función es similar a la función summary(). Toma la variable del cálculo original de ANOVA original como uno de sus argumentos.

```
# Comparaciones multiple de medias Tukey
TukeyHSD(aov_fit, conf.level=.95)
```

```
Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = value ~ Group4, data = df_CH_G)
##
## $Group4
##
                                   diff
                                                lwr
                                                         upr
## Fecal.Vdr-/--Cecal.Vdr-/-
                              25.798117
                                         -6.327765 57.92400 0.1333624
## Cecal.WT-Cecal.Vdr-/-
                              23.270322 -13.825451 60.36609 0.2935302
## Fecal.WT-Cecal.Vdr-/-
                              12.937222 -24.158550 50.03299 0.7327590
## Cecal.WT-Fecal.Vdr-/-
                              -2.527795 -39.623567 34.56798 0.9969042
## Fecal.WT-Fecal.Vdr-/-
                             -12.860895 -49.956667 24.23488 0.7361596
## Fecal.WT-Cecal.WT
                             -10.333100 -51.807435 31.14123 0.8792446
```

```
# Gráfico
plot(TukeyHSD(aov(df_CH_G$value~df_CH_G$Group4), conf.level=.95))
```

 $\verb|\begin{figure}|[H]|$

95% family-wise confidence level

\caption{Gráfico de Tukey de comparaciones múltiples de medias y su intervalo de confianza en datos de ratón $Vdr^-/-$ }:\ \end{figure}

Este gráfico representa todas las pruebas posibles por pares y los valores p, así como los intervalos de confianza del 95%. El nivel de confianza del 95% por defecto puede cambiarse según su elección. Dado que todas las líneas de confianza cruzan 0, para este ejemplo, no hay términos significativamente diferentes tras el ajuste mediante comparaciones múltiples de Tukey.

1.4. Comparaciones entre más de dos grupos usando la prueba de Kruskal-Wallis

1.4.1. Prueba de Kruskal-Wallis

La prueba de Kruskal-Wallis o ANOVA unidireccional sobre rangos, llamada así por William Kruskal y W.Allen Wallis, es un método no paramétrico para comprobar si las muestras proceden de la misma distribución (Kruskal y Wallis 1952; Daniel 1990). El equivalente paramétrico de la prueba de Kruskal-Wallis es el ANOVA de una vía. La ampliación es la prueba U de Mann-Whitney a más de dos grupos. La hipótesis nula de la prueba de Kruskal-Wallis es que los rangos medios de los grupos son los mismos. A diferencia del ANOVA unidireccional análogo, la prueba no paramétrica de Kruskal-Wallis no asume una distribución normal de los datos subyacentes. Se ha utilizado ampliamente en investigación del microbioma. Por ejemplo, los datos del microbioma posteriores a la secuenciación no están distribuidos normalmente y contienen algunos valores atípicos importantes. Por lo tanto, es conveniente utilizar rangos en lugar de valores reales para evitar que las pruebas se vean afectadas por la presencia de valores atípicos o por una distribución no normal. La estadística de la prueba consta de cuatro pasos principales: + Paso 1. Clasificar todos los datos de todos los grupos juntos en una única serie en orden ascendente, es decir, clasificar los datos de 1 a N ignorando la pertenencia a un grupo. + Paso 2. Asignar los valores empatados

Clasificar todos los datos de todos los grupos juntos en una única serie en orden ascendente, es decir, clasificar los datos de 1 a N ignorando la pertenencia a un grupo. + Paso 2. Asignar los valores empatados promediando su posición en el ranking. + Paso 3. Sumar los diferentes rangos, por ejemplo, R_1 R_2 R_3 ... para cada uno de los diferentes grupos. + Paso 4. Calcula la estadística de la prueba aplicando la siguiente fórmula:

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(n+1)$$

donde + H Prueba estadística de Kruskal-Wallis + n número total de mediiones en todas las muestras $+ n_i$ número de mediciones en la muestra de la población i + k número de poblaciones $+ R_i$ rango de sumas para la muestra i.

El estadístico de la prueba de Kruskal-Wallis es aproximadamente una distribución chi-cuadrado, con k - 1 grados de libertad si los valores de n_i son "grandes". La aproximación se acepta generalmente como adecuada cuando cada uno de los valores de n_i es mayor o igual a 5.

1.4.2. Comparación de diversidades entre grupos

La prueba de Kruskal-Wallis o ANOVA de una vía se realiza para comparar grupos múltiples cuyos datos no siguen una distribución normal. Esta prueba es similar a la prueba de suma de rangos de Wilcoxon para dos muestras. Primero utilizamos los datos de nuestros ratones $Vdr^{-/-}$ para ilustrar esta prueba.

Estadística descriptiva

```
library("FSA")
Summarize(value ~ Group4, data = df_CH_G)
```

Group4	n	mean	sd	min	Q1	median	Q3	max
Cecal.Vdr-/-	5	57.36833	3.658497	52.16667	55.00000	59.00000	59.80000	60.8750
Fecal.Vdr-/-	5	83.16645	18.493505	55.14286	77.00000	85.66667	94.75000	103.2727
Cecal.WT	3	80.63866	31.009163	51.00000	64.52941	78.05882	95.45798	112.8571
Fecal.WT	3	70.30556	9.164520	62.75000	65.20833	67.66667	74.08333	80.5000

Generamos Histograma por grupo

```
# Gráficos individulaes en un panel de 2X2
library("lattice")
histogram(~ value|Group4, data=df_CH_G,layout=c(2,2))
```


Figura 4: Distribuciones de los valores entre los grupos'.

El histograma muestra que las distribuciones de los valores entre los grupos son diferentes en este caso. Ahora realizamos la prueba de Kruskal-Wallis para comparar las diferencias de medianas utilizando la función kruskal.test().

```
# Prueba de Kruskal-Wallis de la riqueza de Chao1
kruskal.test(value ~ Group4, data = df_CH_G)
```

```
##
## Kruskal-Wallis rank sum test
##
## data: value by Group4
## Kruskal-Wallis chi-squared = 5.2353, df = 3, p-value = 0.1554
```

El valor de la estadística de la prueba es 5,2 con un valor p superior a 0,05 y también es inferior a la tabulación chi-cuadrado:

```
qchisq(0.950, 3)
```

```
## [1] 7.814728
```

Por tanto, aceptamos la hipótesis nula H_0 : las medianas de los 4 grupos son estadísticamente iguales a un nivel significativo del 5 %. Generalmente, se realiza un análisis post hoc para encontrar qué niveles de los grupos son diferentes entre sí si la prueba de Kruskal-Wallis es significativa. En este caso, la prueba de Kruskal-Wallis no es significativa. A modo de ilustración, realizamos dos pruebas post hoc: La prueba de Nemenyi y la prueba de Dunn. De forma similar al ANOVA, podemos elegir un método para ajustar los valores p para controlar la tasa de error familiar o para controlar la tasa de falsos descubrimientos. Al introducir p-adjust en R o R-Studio, aparece un enlace al documento "Adjust P-values for Multiple Comparisons". Puede consultar los detalles de los métodos de ajuste desde este enlace.

1.4.2.1. Prueba de Nemenyi para comparaciones múltiples

La prueba de Nemenyi se realiza mediante la función NemenyiTest() del paquete DescTools. Primero cargamos el paquete DescTools y llamamos a la función NemenyiTest(). El método para ajustar los valores p debe ser uno de "tukey", "chisq". En este caso elegimos el método Tukey

```
##
##
   Nemenyi's test of multiple comparisons for independent samples (tukey)
##
##
                             mean.rank.diff
                                              pval
## Fecal.Vdr-/--Cecal.Vdr-/-
                                  6.6000000 0.1254
## Cecal.WT-Cecal.Vdr-/-
                                  4.7333333 0.5237
## Fecal.WT-Cecal.Vdr-/-
                                  5.0666667 0.4636
## Cecal.WT-Fecal.Vdr-/-
                                 -1.8666667 0.9501
## Fecal.WT-Fecal.Vdr-/-
                                 -1.5333333 0.9713
## Fecal.WT-Cecal.WT
                                  0.3333333 0.9998
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

La prueba de Nemenyi muestra que no hay diferencias significativas en el rango medio de la diversidad Chao 1 entre localizaciones y genotipos en las muestras fecales y cecales de vdr knockout utilizando el método de ajuste de Tukey. Sin embargo, cuando los grupos tienen números desiguales de observaciones, la prueba de Nemenyi es inadecuada, y la prueba de Dunn es apropiada (Zar 2010).

1.4.2.2. Prueba de Dunn para comparaciones múltiples

La prueba post hoc de Kruskal-Wallis más popular es la prueba de Dunn. Podemos realizar la prueba de Dunn utilizando la función dunnTest() del paquete FSA. A continuación, llamamos a la función función dunnTest() y utilizamos el método de Benjamini y Hochberg para ajustar los valores p.

Dunn (1964) Kruskal-Wallis multiple comparison

p-values adjusted with the Benjamini-Hochberg method.

```
## Comparison Z P.unadj P.adj
## 1 Cecal.Vdr-/- - Cecal.WT -1.36136286 0.17339905 0.3467981
## 2 Cecal.Vdr-/- - Fecal.Vdr-/- -2.19189684 0.02838696 0.1703217
## 3 Cecal.WT - Fecal.Vdr-/- -0.53687549 0.59135362 0.8870304
## 4 Cecal.Vdr-/- - Fecal.WT -1.45723348 0.14505194 0.4351558
## 5 Cecal.WT - Fecal.WT -0.08574929 0.93166572 0.9316657
## 6 Fecal.Vdr-/- - Fecal.WT 0.44100487 0.65920947 0.7910514
```

La prueba de Dunn muestra que hay una diferencia estadísticamente significativa de la diversidad Chao 1 entre las muestras cecales y fecales de $Vdr^{-/-}$. Sin embargo, después de ajustar los valores comparación múltiple con el método Benjamini-Hochberg, no hay términos estadísticamente términos estadísticamente significativos entre las localizaciones y los genotipos de las muestras.

1.4.3. Encontrar taxones significativos entre los grupos

En esta sección, utilizamos la prueba de Kruskal-Wallis para ilustrar cómo encontrar taxones significativos entre los grupos. Supongamos que queremos saber si existen taxones significativos entre muestras de ratones $Vdr^{-/-}$ y WT de ubicaciones fecales y cecales. Usamos el test de prueba de Kruskal-Wallis para cada uno de los 248 taxones (bacterias) en el conjunto de datos. Primero, normalizamos los datos de abundancia y los convertimos en un marco de datos. Un método de normalización de método de normalización es utilizar la transformación logarítmica.

```
data <- log((abund_table+1)/(rowSums(abund_table)+dim(abund_table)[2]))
df <- as.data.frame(data)</pre>
```

Otro método de normalización es convertir las cuentas de abundancia en abudancia relativa

```
df <- as.data.frame(abund_table/rowSums(abund_table))</pre>
```

A continuación, utilice la función kruskal.test() y una función iterativa de R para realizar 248 pruebas (cada una para una bacteria). La función kruskal.test() tiene varios componentes componentes clave: + La prueba es un bucle para todos los taxones (columnas) con los códigos "for (i in 1:dim(df)[2])". - Para cada bucle, ejecuta la prueba de Kruskal-Wallis con los códigos "KW_test <- kruskal.test(df[,i], g=Grupo4)". - Los resultados se almacenan en un marco de datos con una fila por muestra y una columna por cada valor p de la prueba KW. - Informe el número de pruebas con la función cat "cat(paste("Kruskal-Wallis test for ", names(df)[i], " ", i, /", dim(df)[2], "; p-value=", KW_test\$p.value,"\n")", sep=)".

```
## Kruskal-Wallis test for Tannerella 1/248; p-value=0.0052887551168933
## Kruskal-Wallis test for Lactococcus 2/248; p-value=0.353414882633892
## Kruskal-Wallis test for Lactobacillus 3/248; p-value=0.0668292640592179
## Kruskal-Wallis test for Lactobacillus::Lactococcus 4/248; p-value=0.476355094306889
## Kruskal-Wallis test for Parasutterella 5/248; p-value=0.231291869427266
## Kruskal-Wallis test for Helicobacter 6/248; p-value=0.0251057855497528
## Kruskal-Wallis test for Prevotella 7/248; p-value=0.00590090852956467
## Kruskal-Wallis test for Bacteroides 8/248; p-value=0.00397577720168958
## Kruskal-Wallis test for Barnesiella 9/248; p-value=0.0401317383052277
## Kruskal-Wallis test for Odoribacter 10/248; p-value=0.00443152726879245
## Kruskal-Wallis test for Eubacterium 11/248; p-value=0.57853361325349
## Kruskal-Wallis test for Allobaculum 12/248; p-value=0.727715895732644
## Kruskal-Wallis test for Roseburia 13/248; p-value=0.111897187856823
## Kruskal-Wallis test for Clostridium 14/248; p-value=0.0329375619788283
## Kruskal-Wallis test for Porphyromonas 15/248; p-value=0.0101839307809772
## Kruskal-Wallis test for Butyrivibrio 16/248; p-value=0.106570927868518
## Kruskal-Wallis test for Ruminococcus 17/248; p-value=0.026320704237654
## Kruskal-Wallis test for Acholeplasma 18/248; p-value=0.0888090977754463
## Kruskal-Wallis test for Alistipes 19/248; p-value=0.00393948262860657
## Kruskal-Wallis test for Clostridium::Coprococcus 20/248; p-value=0.227647113061301
## Kruskal-Wallis test for Eubacterium (Erysipelotrichaceae)::Eubacterium 21/248; p-value=0.37213164260
## Kruskal-Wallis test for Hydrogenoanaerobacterium 22/248; p-value=0.782882943019658
## Kruskal-Wallis test for Paraprevotella 23/248; p-value=0.00475416632504993
## Kruskal-Wallis test for Blautia 24/248; p-value=0.162098601397032
## Kruskal-Wallis test for Adlercreutzia::Asaccharobacter 25/248; p-value=0.725073232872234
## Kruskal-Wallis test for Coprococcus 26/248; p-value=0.125164693212525
## Kruskal-Wallis test for Parabacteroides 27/248; p-value=0.0616475690479629
## Kruskal-Wallis test for Eubacterium (Erysipelotrichaceae) 28/248; p-value=0.899201554861072
## Kruskal-Wallis test for Oscillibacter 29/248; p-value=0.0245787705312523
## Kruskal-Wallis test for Acinetobacter 30/248; p-value=0.531948371210495
## Kruskal-Wallis test for Alkalitalea 31/248; p-value=0.291046112229166
## Kruskal-Wallis test for Sporobacter 32/248; p-value=NaN
```

```
## Kruskal-Wallis test for Oscillospira 33/248; p-value=0.312344080172615
## Kruskal-Wallis test for Blautia::Clostridium 34/248; p-value=0.129409784600271
## Kruskal-Wallis test for Planctomyces 35/248; p-value=0.531948371210495
## Kruskal-Wallis test for Akkermansia 36/248; p-value=0.154574788263912
## Kruskal-Wallis test for Ruminofilibacter 37/248; p-value=0.310813822109325
## Kruskal-Wallis test for Pseudoflavonifractor 38/248; p-value=0.216820677518461
## Kruskal-Wallis test for Butyricimonas 39/248; p-value=0.00537686120875426
## Kruskal-Wallis test for Desulfovibrio 40/248; p-value=0.635967607335924
## Kruskal-Wallis test for Anaerotruncus 41/248; p-value=0.531948371210495
## Kruskal-Wallis test for Alistipes::Bacteroides 42/248; p-value=0.0175659448281556
## Kruskal-Wallis test for Turicibacter 43/248; p-value=0.225788700034188
## Kruskal-Wallis test for Mucispirillum 44/248; p-value=0.531948371210495
## Kruskal-Wallis test for Lachnospira 45/248; p-value=0.137113018301519
## Kruskal-Wallis test for Catabacter 46/248; p-value=0.531948371210495
## Kruskal-Wallis test for Desulfosporosinus 47/248; p-value=0.227647113061301
## Kruskal-Wallis test for Bacillus 48/248; p-value=0.156680145869787
## Kruskal-Wallis test for Sporanaerobacter 49/248; p-value=0.366846653612092
## Kruskal-Wallis test for Streptomyces 50/248; p-value=0.331271241004806
## Kruskal-Wallis test for Butyrivibrio::Clostridium 51/248; p-value=0.610481322254572
## Kruskal-Wallis test for Candidatus Arthromitus 52/248; p-value=0.15737830241587
## Kruskal-Wallis test for Enterorhabdus 53/248; p-value=0.616215837652105
## Kruskal-Wallis test for Kurthia 54/248; p-value=0.531948371210495
## Kruskal-Wallis test for Eggerthella 55/248; p-value=0.061890232897499
## Kruskal-Wallis test for Actinocorallia 56/248; p-value=0.0874598809266384
## Kruskal-Wallis test for Caldanaerocella 57/248; p-value=0.730716747994278
## Kruskal-Wallis test for Dorea 58/248; p-value=0.0692885571632859
## Kruskal-Wallis test for Streptococcus 59/248; p-value=0.982782073009701
## Kruskal-Wallis test for Adlercreutzia 60/248; p-value=0.443430240761201
## Kruskal-Wallis test for Paraeggerthella 61/248; p-value=0.0244868514394503
## Kruskal-Wallis test for Lachnobacterium 62/248; p-value=0.310813822109325
## Kruskal-Wallis test for TM7 (genus) 63/248; p-value=0.0338181771077889
## Kruskal-Wallis test for Clostridium:: Anaerostipes 64/248; p-value=0.531948371210495
## Kruskal-Wallis test for Erysipelothrix 65/248; p-value=0.504786911847933
## Kruskal-Wallis test for Formosa 66/248; p-value=NaN
## Kruskal-Wallis test for Rikenella 67/248; p-value=0.0152837097075061
## Kruskal-Wallis test for Dysgonomonas 68/248; p-value=0.155137948838003
## Kruskal-Wallis test for Desulfitobacterium 69/248; p-value=0.381179725807674
## Kruskal-Wallis test for Oribacterium 70/248; p-value=0.730716747994278
## Kruskal-Wallis test for Syntrophococcus 71/248; p-value=NaN
## Kruskal-Wallis test for Ruminococcus::Clostridium 72/248; p-value=0.0635319064439386
## Kruskal-Wallis test for Rhodospirillum 73/248; p-value=0.531948371210495
## Kruskal-Wallis test for Pedobacter 74/248; p-value=0.0102158301994736
## Kruskal-Wallis test for Acetivibrio 75/248; p-value=0.253853716714176
## Kruskal-Wallis test for Clostridium::Eubacterium 76/248; p-value=0.56598353771052
## Kruskal-Wallis test for Limibacter 77/248; p-value=0.0328385403639491
## Kruskal-Wallis test for Clostridium::Ruminococcus 78/248; p-value=0.116642324140909
## Kruskal-Wallis test for Coprobacillus 79/248; p-value=0.723086145004186
## Kruskal-Wallis test for Cytophaga 80/248; p-value=0.0964007544917066
## Kruskal-Wallis test for Denitrobacterium 81/248; p-value=0.183234024503822
## Kruskal-Wallis test for Mycoplasma 82/248; p-value=0.305497320114101
## Kruskal-Wallis test for Roseburia::Clostridium 83/248; p-value=0.461687499237106
## Kruskal-Wallis test for Sporobacterium 84/248; p-value=0.506779636927482
## Kruskal-Wallis test for Eubacterium::Ruminococcus 85/248; p-value=NaN
## Kruskal-Wallis test for Pseudobutyrivibrio 86/248; p-value=0.731238219352963
```

```
## Kruskal-Wallis test for Robinsoniella 87/248; p-value=NaN
## Kruskal-Wallis test for Brevibacterium 88/248; p-value=0.170328740151205
## Kruskal-Wallis test for Blautia::Ruminococcus 89/248; p-value=0.168276852724954
## Kruskal-Wallis test for Pseudomonas 90/248; p-value=0.127405844323988
## Kruskal-Wallis test for Clostridium::Roseburia 91/248; p-value=NaN
## Kruskal-Wallis test for Desulfotomaculum 92/248; p-value=0.0813350148785695
## Kruskal-Wallis test for Clostridium (Erysipelotrichaceae) 93/248; p-value=0.716038214215504
## Kruskal-Wallis test for Olsenella 94/248; p-value=0.316836231291143
## Kruskal-Wallis test for Azospirillum 95/248; p-value=0.331591190693348
## Kruskal-Wallis test for Oxobacter 96/248; p-value=NaN
## Kruskal-Wallis test for Asaccharobacter::Adlercreutzia 97/248; p-value=0.531948371210495
## Kruskal-Wallis test for Desulfocurvus 98/248; p-value=0.531948371210495
## Kruskal-Wallis test for Anaerostipes 99/248; p-value=0.116642324140909
## Kruskal-Wallis test for Clostridium::Ruminococcus::Desulfotomaculum::Escherichia 100/248; p-value=0.
## Kruskal-Wallis test for Halanaerobacter 101/248; p-value=0.331591190693348
## Kruskal-Wallis test for Slackia 102/248; p-value=0.210359383843896
## Kruskal-Wallis test for Anaplasma 103/248; p-value=0.227647113061301
## Kruskal-Wallis test for Syntrophomonas 104/248; p-value=0.227647113061301
## Kruskal-Wallis test for Clostridium::Blautia 105/248; p-value=0.0262113670860976
## Kruskal-Wallis test for Anaerosporobacter::Clostridium 106/248; p-value=NaN
## Kruskal-Wallis test for Clostridium::Bacteroides 107/248; p-value=0.0836269593937169
## Kruskal-Wallis test for Blautia::Lactonifactor 108/248; p-value=NaN
## Kruskal-Wallis test for Parabacteroides::Bacteroides 109/248; p-value=0.531948371210495
## Kruskal-Wallis test for Enterorhabdus::Adlercreutzia 110/248; p-value=NaN
## Kruskal-Wallis test for Flavobacterium 111/248; p-value=0.0415631075919192
## Kruskal-Wallis test for Clostridium::Desulfotomaculum 112/248; p-value=NaN
## Kruskal-Wallis test for Parasporobacterium 113/248; p-value=0.531948371210495
## Kruskal-Wallis test for Coprococcus::Clostridium 114/248; p-value=NaN
## Kruskal-Wallis test for Fusobacterium 115/248; p-value=0.39162517627109
## Kruskal-Wallis test for Ruminococcus::Escherichia 116/248; p-value=0.461398715042894
## Kruskal-Wallis test for Clostridium::Ruminococcus::Coprococcus 117/248; p-value=NaN
## Kruskal-Wallis test for Lactonifactor 118/248; p-value=NaN
## Kruskal-Wallis test for Haemophilus 119/248; p-value=0.156678124450806
## Kruskal-Wallis test for Sporichthya 120/248; p-value=0.513799266315117
## Kruskal-Wallis test for Cytophaga::Flavobacterium 121/248; p-value=0.461398715042894
## Kruskal-Wallis test for Clostridium::Dorea 122/248; p-value=0.0262113670860976
## Kruskal-Wallis test for Ruminococcus::Blautia 123/248; p-value=0.227647113061301
## Kruskal-Wallis test for Frigoribacterium 124/248; p-value=0.730716747994278
## Kruskal-Wallis test for Paenibacillus 125/248; p-value=0.99052573216016
## Kruskal-Wallis test for Johnsonella 126/248; p-value=0.531948371210495
## Kruskal-Wallis test for Pseudoflavonifractor::Clostridium 127/248; p-value=NaN
## Kruskal-Wallis test for Adlercreutzia::Enterorhabdus::Asaccharobacter 128/248; p-value=0.53194837121
## Kruskal-Wallis test for Nocardiopsis 129/248; p-value=0.327018183274628
## Kruskal-Wallis test for Pedobacter::Pseudomonas 130/248; p-value=NaN
## Kruskal-Wallis test for Flexibacter 131/248; p-value=0.200600894661472
## Kruskal-Wallis test for Catabacter::Ruminococcus 132/248; p-value=NaN
## Kruskal-Wallis test for Butyricimonas::Bacteroides 133/248; p-value=0.531948371210495
## Kruskal-Wallis test for Staphylococcus 134/248; p-value=0.396742675169042
## Kruskal-Wallis test for Alkalitalea::Prevotella 135/248; p-value=NaN
## Kruskal-Wallis test for Lachnospira::Anaerostipes 136/248; p-value=NaN
## Kruskal-Wallis test for Flavobacterium::Cytophaga 137/248; p-value=0.227647113061301
## Kruskal-Wallis test for Gelidibacter 138/248; p-value=0.00633832770736067
## Kruskal-Wallis test for Treponema 139/248; p-value=0.730716747994278
## Kruskal-Wallis test for Pontibacter 140/248; p-value=NaN
```

```
## Kruskal-Wallis test for Desulfuromonas 141/248; p-value=NaN
## Kruskal-Wallis test for Butyricicoccus 142/248; p-value=NaN
## Kruskal-Wallis test for Clostridium::Butyrivibrio 143/248; p-value=0.782882943019658
## Kruskal-Wallis test for Coprobacillus::Clostridium 144/248; p-value=0.531948371210495
## Kruskal-Wallis test for Porphyromonas::Prevotella 145/248; p-value=NaN
## Kruskal-Wallis test for Effluviibacter 146/248; p-value=0.324889697852914
## Kruskal-Wallis test for Caminicella 147/248; p-value=0.531948371210495
## Kruskal-Wallis test for Prevotella::Bacteroides 148/248; p-value=NaN
## Kruskal-Wallis test for Pseudoalteromonas 149/248; p-value=NaN
## Kruskal-Wallis test for Butyrivibrio::Blautia 150/248; p-value=0.227647113061301
## Kruskal-Wallis test for Lachnospira::Clostridium 151/248; p-value=0.143421037011305
## Kruskal-Wallis test for Alicyclobacillus 152/248; p-value=NaN
## Kruskal-Wallis test for Lachnospira::Robinsoniella 153/248; p-value=NaN
## Kruskal-Wallis test for Subdoligranulum 154/248; p-value=0.531948371210495
## Kruskal-Wallis test for Anaerofilum 155/248; p-value=0.227647113061301
## Kruskal-Wallis test for Sporosarcina 156/248; p-value=0.227647113061301
## Kruskal-Wallis test for Alkalitalea::Sphingobacterium 157/248; p-value=0.227647113061301
## Kruskal-Wallis test for Kopriimonas 158/248; p-value=0.531948371210495
## Kruskal-Wallis test for Olivibacter 159/248; p-value=NaN
## Kruskal-Wallis test for Lachnobacterium::Coprococcus 160/248; p-value=0.227647113061301
## Kruskal-Wallis test for Fluviicola 161/248; p-value=0.227647113061301
## Kruskal-Wallis test for Peptococcus 162/248; p-value=NaN
## Kruskal-Wallis test for Ruminococcus::Roseburia 163/248; p-value=0.227647113061301
## Kruskal-Wallis test for Marinilabilia 164/248; p-value=NaN
## Kruskal-Wallis test for Catonella 165/248; p-value=NaN
## Kruskal-Wallis test for Sphingobium 166/248; p-value=0.730716747994278
## Kruskal-Wallis test for Olsenella::Streptomyces 167/248; p-value=NaN
## Kruskal-Wallis test for Terasakiella 168/248; p-value=NaN
## Kruskal-Wallis test for Roseospirillum 169/248; p-value=0.116642324140909
## Kruskal-Wallis test for Clostridium::Ruminococcus::Blautia 170/248; p-value=0.227647113061301
## Kruskal-Wallis test for Lachnospira::Roseburia 171/248; p-value=NaN
## Kruskal-Wallis test for Thalassospira 172/248; p-value=NaN
## Kruskal-Wallis test for Eubacterium::Clostridium 173/248; p-value=0.730716747994278
## Kruskal-Wallis test for Allobaculum::Eubacterium 174/248; p-value=NaN
## Kruskal-Wallis test for Blautia::Lachnospira 175/248; p-value=NaN
## Kruskal-Wallis test for Cryptobacterium 176/248; p-value=NaN
## Kruskal-Wallis test for Atopobium 177/248; p-value=0.0888090977754463
## Kruskal-Wallis test for Eubacterium::Lachnospira 178/248; p-value=NaN
## Kruskal-Wallis test for Bacteroides::Alistipes 179/248; p-value=NaN
## Kruskal-Wallis test for Faecalibacterium 180/248; p-value=0.495049983682098
## Kruskal-Wallis test for Lachnospira::Coprococcus 181/248; p-value=0.227647113061301
## Kruskal-Wallis test for Microbacterium 182/248; p-value=0.531948371210495
## Kruskal-Wallis test for Zhangella::Stella 183/248; p-value=0.531948371210495
## Kruskal-Wallis test for Paludibacter 184/248; p-value=NaN
## Kruskal-Wallis test for Butyrivibrio::Ruminococcus 185/248; p-value=0.324889697852914
## Kruskal-Wallis test for Bacteroides::Lactobacillus 186/248; p-value=NaN
## Kruskal-Wallis test for Prevotella::Flavobacterium 187/248; p-value=0.227647113061301
## Kruskal-Wallis test for Ruminococcus::Dorea 188/248; p-value=NaN
## Kruskal-Wallis test for Slackia::Asaccharobacter::Adlercreutzia 189/248; p-value=0.531948371210495
## Kruskal-Wallis test for Caldicellulosiruptor 190/248; p-value=0.637778389635797
## Kruskal-Wallis test for Kordia 191/248; p-value=NaN
## Kruskal-Wallis test for Bacteroides::Lactobacillus::Lachnospira 192/248; p-value=0.531948371210495
## Kruskal-Wallis test for Sphingobacterium 193/248; p-value=NaN
## Kruskal-Wallis test for Anaeroplasma 194/248; p-value=0.531948371210495
```

```
## Kruskal-Wallis test for Atopostipes 195/248; p-value=0.531948371210495
## Kruskal-Wallis test for Enterococcus 196/248; p-value=NaN
## Kruskal-Wallis test for Insolitispirillum 197/248; p-value=NaN
## Kruskal-Wallis test for Clostridium::Acetivibrio 198/248; p-value=NaN
## Kruskal-Wallis test for Plantactinospora 199/248; p-value=NaN
## Kruskal-Wallis test for Stappia 200/248; p-value=NaN
## Kruskal-Wallis test for Anaplasma::Clostridium 201/248; p-value=0.227647113061301
## Kruskal-Wallis test for Clostridium (Erysipelotrichaceae)::Clostridium 202/248; p-value=NaN
## Kruskal-Wallis test for Algoriphagus 203/248; p-value=NaN
## Kruskal-Wallis test for Dorea::Ruminococcus 204/248; p-value=0.227647113061301
## Kruskal-Wallis test for Roseburia::Lachnospira 205/248; p-value=0.531948371210495
## Kruskal-Wallis test for Rhizobium 206/248; p-value=NaN
## Kruskal-Wallis test for Anaerofustis 207/248; p-value=NaN
## Kruskal-Wallis test for Echinicola 208/248; p-value=NaN
## Kruskal-Wallis test for Anaerostipes::Clostridium 209/248; p-value=NaN
## Kruskal-Wallis test for Lachnospira::Blautia 210/248; p-value=0.531948371210495
## Kruskal-Wallis test for Aestuariimicrobium 211/248; p-value=NaN
## Kruskal-Wallis test for Gelidibacter::Flavobacterium 212/248; p-value=NaN
## Kruskal-Wallis test for Helicobacter::Flexispira 213/248; p-value=0.531948371210495
## Kruskal-Wallis test for Eubacterium (Erysipelotrichaceae)::Paenibacillus::Eubacterium 214/248; p-val
## Kruskal-Wallis test for Pelospora 215/248; p-value=0.227647113061301
## Kruskal-Wallis test for Stella 216/248; p-value=NaN
## Kruskal-Wallis test for Methylobacterium 217/248; p-value=NaN
## Kruskal-Wallis test for Rickettsia 218/248; p-value=0.531948371210495
## Kruskal-Wallis test for Porphyromonas::Flavobacterium 219/248; p-value=NaN
## Kruskal-Wallis test for Adlercreutzia::Enterorhabdus 220/248; p-value=NaN
## Kruskal-Wallis test for Ruminococcus::Escherichia::Parabacteroides 221/248; p-value=0.53194837121049
## Kruskal-Wallis test for Limibacter::Bacteroides 222/248; p-value=NaN
## Kruskal-Wallis test for Paraprevotella::Prevotella 223/248; p-value=NaN
## Kruskal-Wallis test for Janthinobacterium::Zoogloea::Duganella 224/248; p-value=NaN
## Kruskal-Wallis test for Flavobacterium::Gelidibacter 225/248; p-value=NaN
## Kruskal-Wallis test for Barnesiella::Bacteroides 226/248; p-value=NaN
## Kruskal-Wallis test for Porphyromonas::Gelidibacter 227/248; p-value=NaN
## Kruskal-Wallis test for Bacilloplasma 228/248; p-value=NaN
## Kruskal-Wallis test for Natronincola 229/248; p-value=NaN
## Kruskal-Wallis test for Lumbricincola 230/248; p-value=NaN
## Kruskal-Wallis test for Desulfotomaculum::Clostridium 231/248; p-value=0.227647113061301
## Kruskal-Wallis test for Roseburia::Ruminococcus 232/248; p-value=NaN
## Kruskal-Wallis test for Bifidobacterium 233/248; p-value=NaN
## Kruskal-Wallis test for Streptacidiphilus 234/248; p-value=NaN
## Kruskal-Wallis test for Butyrivibrio::Pseudobutyrivibrio 235/248; p-value=0.531948371210495
## Kruskal-Wallis test for Aeromicrobium 236/248; p-value=NaN
## Kruskal-Wallis test for Proteus 237/248; p-value=NaN
## Kruskal-Wallis test for Sporobacterium::Clostridium 238/248; p-value=NaN
## Kruskal-Wallis test for Butyrivibrio::Roseburia 239/248; p-value=NaN
## Kruskal-Wallis test for Luteococcus 240/248; p-value=NaN
## Kruskal-Wallis test for Clostridium::Blautia::Desulfotomaculum 241/248; p-value=0.531948371210495
## Kruskal-Wallis test for Lachnospira::Ruminococcus 242/248; p-value=0.531948371210495
## Kruskal-Wallis test for Ornithinimicrobium 243/248; p-value=NaN
## Kruskal-Wallis test for Persicivirga 244/248; p-value=NaN
## Kruskal-Wallis test for Lachnospira::Ruminococcus::Escherichia 245/248; p-value=NaN
## Kruskal-Wallis test for Anaerophaga 246/248; p-value=0.227647113061301
## Kruskal-Wallis test for Dysgonomonas::Flavobacterium 247/248; p-value=NaN
## Kruskal-Wallis test for Bizionia 248/248; p-value=0.531948371210495
```

```
# Revisamos el data.frame
head(KW_table)
```

id	p.value
Tannerella	0.0052888
Lactococcus	0.3534149
Lactobacillus	0.0668293
Lactobacillus::Lactococcus	0.4763551
Parasutterella	0.2312919
Helicobacter	0.0251058

1.4.4. Pruebas múltiples y valor E, FWER y FDR

En la literatura existen varios tipos diferentes de correcciones de pruebas múltiples. Entre ellas, la corrección de Bonferroni es la más conservadora. La corrección consiste simplemente en dividir el alfa por el número de pruebas. Aquí pesentamos las correcciones generales de las pruebas múltiples: Valor E, Tasa de error por familia (FWER) y FDR.

1.4.4.1. Valor E

El valor E es el número esperado de falsos positivos por azar cuando se hacen múltiples pruebas. Simplemente se puede multiplicar el valor p por el número de taxones en que se realiza la prueba para obtenerlo: Valor E = valor p epor el número de pruebas. Tenga en cuenta que en el valor E, la corrección de base es utilizar el alfa original, el valor p de las pruebas en lugar del valor p nominal.

```
KW_table$E.value <- KW_table$p.value * dim(KW_table)[1]
KW_table$E.value</pre>
```

```
##
     [1]
           1.3116113
                       87.6468909
                                    16.5736575 118.1360634
                                                              57.3603836
                                                                           6.2262348
##
     [7]
           1.4634253
                        0.9859927
                                     9.9526711
                                                  1.0990188
                                                            143.4763361 180.4735421
##
    [13]
          27.7505026
                        8.1685154
                                     2.5256148
                                                 26.4295901
                                                               6.5275347
                                                                           22.0246562
##
    [19]
           0.9769917
                       56.4564840
                                    92.2886474 194.1549699
                                                                          40.2004531
                                                               1.1790332
    [25]
         179.8181618
                       31.0408439
                                    15.2885971 223.0019856
##
                                                               6.0955351 131.9231961
##
    [31]
          72.1794358
                                    77.4613319
                                                 32.0936266 131.9231961
                                                                           38.3345475
                               NaN
##
    [37]
          77.0818279
                       53.7715280
                                     1.3334616 157.7199666
                                                            131.9231961
                                                                           4.3563543
##
    [43]
          55.9955976 131.9231961
                                    34.0040285 131.9231961
                                                              56.4564840
                                                                           38.8566762
##
    [49]
          90.9779701
                       82.1552678 151.3993679
                                                 39.0298190 152.8215277 131.9231961
##
    [55]
          15.3487778
                       21.6900505 181.2177535
                                                 17.1835622 243.7299541 109.9706997
##
    [61]
           6.0727392
                       77.0818279
                                     8.3869079 131.9231961 125.1871541
    [67]
           3.7903600
                                    94.5325720 181.2177535
##
                       38.4742113
                                                                     NaN
                                                                           15.7559128
##
    [73] 131.9231961
                        2.5335259
                                    62.9557217 140.3639174
                                                               8.1439580
                                                                           28.9272964
##
    [79]
         179.3253640
                       23.9073871
                                    45.4420381
                                                 75.7633354
                                                            114.4984998 125.6813500
##
    [85]
                  NaN 181.3470784
                                           NaN
                                                 42.2415276
                                                              41.7326595
                                                                           31.5966494
##
    [91]
                  NaN
                       20.1710837 177.5774771
                                                 78.5753854
                                                              82.2346153
                                                                           52.1691272
##
    [97]
         131.9231961 131.9231961
                                    28.9272964
                                                 56.4564840
                                                              82.2346153
   [103]
          56.4564840
                       56.4564840
                                     6.5004190
                                                              20.7394859
                                                                                  NaN
   [109] 131.9231961
                                    10.3076507
                                                        NaN 131.9231961
                                                                                  NaN
                               NaN
## [115]
          97.1230437 114.4268813
                                                        NaN
                                                             38.8561749 127.4222180
                                           NaN
```

##	[121]	114.4268813	6.5004190	56.4564840	181.2177535	245.6503816	131.9231961
##	[127]	NaN	131.9231961	81.1005095	NaN	49.7490219	NaN
##	[133]	131.9231961	98.3921834	NaN	NaN	56.4564840	1.5719053
##	[139]	181.2177535	NaN	NaN	NaN	194.1549699	131.9231961
##	[145]	NaN	80.5726451	131.9231961	NaN	NaN	56.4564840
##	[151]	35.5684172	NaN	NaN	131.9231961	56.4564840	56.4564840
##	[157]	56.4564840	131.9231961	NaN	56.4564840	56.4564840	NaN
##	[163]	56.4564840	NaN	NaN	181.2177535	NaN	NaN
##	[169]	28.9272964	56.4564840	NaN	NaN	181.2177535	NaN
##	[175]	NaN	NaN	22.0246562	NaN	NaN	122.7723960
##	[181]	56.4564840	131.9231961	131.9231961	NaN	80.5726451	NaN
##	[187]	56.4564840	NaN	131.9231961	158.1690406	NaN	131.9231961
##	[193]	NaN	131.9231961	131.9231961	NaN	NaN	NaN
##	[199]	NaN	NaN	56.4564840	NaN	NaN	56.4564840
##	[205]	131.9231961	NaN	NaN	NaN	NaN	131.9231961
##	[211]	NaN	NaN	131.9231961	NaN	56.4564840	NaN
##	[217]	NaN	131.9231961	NaN	NaN	131.9231961	NaN
##	[223]	NaN	NaN	NaN	NaN	NaN	NaN
##	[229]	NaN	NaN	56.4564840	NaN	NaN	NaN
##	[235]	131.9231961	NaN	NaN	NaN	NaN	NaN
##	[241]	131.9231961	131.9231961	NaN	NaN	NaN	56.4564840
##	[247]	NaN	131.9231961				

Dado que el valor E no es más que multiplicar el valor p por el número de pruebas, puede ser mayor que 1. Si hay muchos taxones en el marco de datos para las pruebas, este método de corrección no es fácil de encontrar los taxones significativos. Los taxones significativos son aquellos para los que el valor E es mucho menor que 1. Los siguientes códigos se utilizan para comprobar si o no los valores E se añaden al marco de datos resultante:

Revisamos el data.frame de resultados head(KW_table)

id	p.value	E.value
Tannerella	0.0052888	1.311611
Lactococcus	0.3534149	87.646891
Lactobacillus	0.0668293	16.573657
Lactobacillus::Lactococcus	0.4763551	118.136063
Parasutterella	0.2312919	57.360384
Helicobacter	0.0251058	6.226235

1.4.4.2. FWER

La FWER es la probabilidad de obtener al menos un falso positivo (error de tipo I). En En otras palabras, es la probabilidad de no rechazar la hipótesis nula H_0 : no hay diferencias entre los grupos mientras se realizan pruebas múltiples. La fórmula es dada por:

$$FWER = 1 - (1 - p - value)^T$$

donde, T = el número de pruebas. Para evitar los errores de redondeo causados por el cálculo directo utilizando la fórmula anterior, en R es mejor calcular la FWER con una prueba de distribución binomial de cola derecha.

Revisamos el dataframe para ver si FWER son añadidos al data frame de resultados

head(KW_table)

id	p.value	E.value	FWER
Tannerella	0.0052888	1.311611	0.7315504
Lactococcus	0.3534149	87.646891	1.0000000
Lactobacillus	0.0668293	16.573657	1.0000000
Lactobacillus::Lactococcus	0.4763551	118.136063	1.0000000
Parasutterella	0.2312919	57.360384	1.0000000
Helicobacter	0.0251058	6.226235	0.9981742

1.4.4.3. FDR

Por último, pero no por ello menos importante, está el FDR. Benjamini y Hochberg (1995) definieron la tasa de falsos descubrimientos de la siguiente manera: $FDR = proporción \ esperada \ de \ rechazos \ erróneos \ entre todos los rechazos.$ En este caso, el FDR es la proporción de falsos positivos entre los taxones aceptados como positivos cuando se hacen múltiples pruebas. La corrección de Benjamini-Hochberg consiste en los siguientes pasos. En primer lugar, se ordenan los valores p de menor a mayor y se hace un rango $(1, 2, 3, \ldots, k, \ldots, T)$;

```
# Ordenamos los valores p de menor a mayor
KW_table <- KW_table[order(KW_table$p.value, decreasing=FALSE), ]
head(KW_table)</pre>
```

	id	p.value	E.value	FWER
19	Alistipes	0.0039395	0.9769917	0.6242838
8	Bacteroides	0.0039758	0.9859927	0.6276638
10	Odoribacter	0.0044315	1.0990188	0.6676149
23	Paraprevotella	0.0047542	1.1790332	0.6932876
1	Tannerella	0.0052888	1.3116113	0.7315504
39	Butyricimonas	0.0053769	1.3334616	0.7373832

Ahora calculamos el valor q usando la siguiente ecuación

$$q - value = p - value * T/k$$

```
# Calculamos el valor q
KW_table$q.value.factor <- dim(KW_table)[1] / 1:dim(KW_table)[1]
head(KW_table$q.value.factor)</pre>
```

[1] 248.00000 124.00000 82.66667 62.00000 49.60000 41.33333

```
KW_table$q.value <- KW_table$p.value * KW_table$q.value.factor
head(KW_table$q.value)</pre>
```

[1] 0.9769917 0.4929964 0.3663396 0.2947583 0.2623223 0.2222436

```
# Revisamos si el valor q es añadido a la tabla de resultados head(KW_table)
```

	id	p.value	E.value	FWER	q.value.factor	q.value
19	Alistipes	0.0039395	0.9769917	0.6242838	248.00000	0.9769917
8	Bacteroides	0.0039758	0.9859927	0.6276638	124.00000	0.4929964
10	Odoribacter	0.0044315	1.0990188	0.6676149	82.66667	0.3663396
23	Paraprevotella	0.0047542	1.1790332	0.6932876	62.00000	0.2947583
1	Tannerella	0.0052888	1.3116113	0.7315504	49.60000	0.2623223
39	Butyricimonas	0.0053769	1.3334616	0.7373832	41.33333	0.2222436

A continuación, especifique el FDR objetivo e identifique el último elemento de la lista clasificada que tenga un valor q igual o menor que el alfa especificado utilizando los siguientes códigos:

```
# Ajustamos valor alfa
KW_alpha <- 0.05

# Identificamos el último elemento de la lista ranqueada con un valor q =< alfa
last.significant.item <- max(which(KW_table$q.value <= KW_alpha))
last.significant.item</pre>
```

[1] -Inf

En nuestro caso, no hay ningún valor q menor o igual al alfa especificado, por lo que el programa devuelve un infinito negativo. Por último, muestra la tabla del marco de resultados y los taxones elegidos:

```
# Mostramos algunos resultados
selected <- 1:5
print(KW_table[selected,])</pre>
```

```
##
                  id
                         p.value
                                   E.value
                                                 FWER q.value.factor
                                                                       q.value
## 19
           Alistipes 0.003939483 0.9769917 0.6242838
                                                           248.00000 0.9769917
## 8
         Bacteroides 0.003975777 0.9859927 0.6276638
                                                           124.00000 0.4929964
## 10
         Odoribacter 0.004431527 1.0990188 0.6676149
                                                            82.66667 0.3663396
## 23 Paraprevotella 0.004754166 1.1790332 0.6932876
                                                            62.00000 0.2947583
## 1
          Tannerella 0.005288755 1.3116113 0.7315504
                                                            49.60000 0.2623223
```

```
diff.taxa.factor <- KW_table$id[selected]
diff.taxa <- as.vector(diff.taxa.factor)
diff.taxa</pre>
```

```
## [1] "Alistipes" "Bacteroides" "Odoribacter" "Paraprevotella"
## [5] "Tannerella"
```

Debido a que en este caso no hay ningún valor q menor o igual al alfa especificado = 0,05, los 5 taxones mostrados arriba no se basan en el FDR. Son los taxones elegidos con valores p más pequeños. La corrección de Benjamini-Hochberg es menos estricta que las otras correcciones de pruebas múltiples presentadas anteriormente y, por lo tanto, tiene una mayor sensibilidad. El FDR se utiliza ampliamente en el microbioma (Le Chatelier et al. 2013; Ballou et al. 2016) y en otros campos de estudio (Jungquist et al. 2010) y en muchas funciones de R.

1.5. Resumen

En este capítulo, presentamos una variedad de métodos comunes y clásicos en todos los campos de investigación. Algunos de ellos se aplican ampliamente en los estudios del microbioma. Ilustramos estos métodos para analizar los datos del microbioma con una implementación paso a paso en el sistema R. Los lectores pueden utilizar los códigos de R y las explicaciones proporcionadas en este capítulo para analizar sus propios datos del microbioma. Nos centramos en las pruebas de hipótesis para los datos del microbioma comunitario univariante.