EXPERIMENT 7

Aim:

To build and train a simple linear regression model to predict salary based on years of experience using Python's Scikit-learn library.

Algorithm:

- 1. Import the required libraries NumPy, Pandas, Scikit-learn, and Pickle.
- 2. Load the dataset and inspect its contents using read_csv().
- 3. Check data information using info() and ensure there are no missing values.
- 4. Describe statistical properties of the dataset using describe().
- 5. Split the dataset into training and testing sets using train_test_split().
- 6. Train a linear regression model using LinearRegression().fit().
- 7. Evaluate the model performance using score() for both training and testing data.
- 8. Display model parameters coefficient and intercept.
- 9. Save and load the model using Pickle.
- 10. Predict the salary for a given number of years of experience and display the output.

Code:

import numpy as np

import pandas as pd

df = pd.read_csv('Salary_data - Salary_data.csv')

df

Output:

Years Experience Salary

0	1.1	39343
1	1.3	46205
2	1.5	37731
3	2.0	43525
4	2.2	39891
5	2.9	56642

YearsExperience Salary

6	3.0	60150
7	3.2	54445
8	3.2	64445
9	3.7	57189
10	3.9	63218
11	4.0	55794
12	4.0	56957
13	4.1	57081
14	4.5	61111
15	4.9	67938
16	5.1	66029
17	5.3	83088
18	5.9	81363
19	6.0	93940
20	6.8	91738
21	7.1	98273
22	7.9	101302
23	8.2	113381
24	8.7	109431
25	9.0	105582
26	9.5	116969
27	9.6	112635
28	10.3	122391
29	10.5	121872

df.info()

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 30 entries, 0 to 29

Data columns (total 2 columns):

Column Non-Null Count Dtype

--- ----- -----

0 YearsExperience 30 non-null float64

1 Salary 30 non-null int64

dtypes: float64(1), int64(1) memory usage: 612.0 bytes

df.dropna(inplace=True)

df.info()

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 30 entries, 0 to 29

Data columns (total 2 columns):

Column Non-Null Count Dtype

-- ----- -----

0 YearsExperience 30 non-null float64

1 Salary 30 non-null int64

dtypes: float64(1), int64(1) memory usage: 612.0 bytes

df.describe()

Output:

YearsExperience Salary

count 30.000000 30.000000

mean 5.313333 76003.000000

std 2.837888 27414.429785

min 1.100000 37731.000000

YearsExperience Salary

model.intercept_

25%	3.200000	56720.750000				
50%	4.700000	65237.000000				
75%	7.700000	100544.750000				
max	10.500000	122391.000000				
features = df.iloc[:, [0]].values						
label = df.iloc[:, [1]].values						
from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(features, label, test_size=0.2, random_state=42)						
from sklearn.linear_model import LinearRegression						
mode	l = LinearRegressio	on()				
mode	l.fit(x_train, y_train)				
(No output for this cell)						
mada	Logorofy train v t	roin)				
	l.score(x_train, y_t	iaiii)				
Output: 0.9645401573418146						
model.score(x_test, y_test)						
Output:						
0.9024461774180497						
model.coef_						
Output:						
array([[9423.81532303]])						

Output:

array([25321.58301178])

```
import pickle
pickle.dump(model, open('SalaryPred.model', 'wb'))
model = pickle.load(open('SalaryPred.model', 'rb'))

yr_of_exp = 44

yr_of_exp_NP = np.array([[yr_of_exp]])
Salary = model.predict(yr_of_exp_NP)
print("Estimated Salary for {} years of experience is {}: ".format(yr_of_exp, Salary))
Output:
```

Estimated Salary for 44 years of experience is [[439969.45722514]]:

Result:

Thus, the Python program to predict salary using a simple linear regression model was successfully executed. The model was trained, evaluated, and tested, and it accurately predicted salary based on years of experience.