Trabajo Práctico Nº 3: Modelos de Paneles Dinámicos.

Ejercicio 1.

Considerar la base de datos "mod_abdata.dta" que fue utilizada por Arellano y Bond en su famoso paper de 1991. Se trata de un panel de 140 empresas británicas encuestadas, anualmente, entre 1976 y 1984. El panel original no es balanceado, pero la versión para este ejercicio se trata de un panel balanceado de empresas con observaciones para, exactamente, 6 años entre 1977 y 1982. La variable que identifica la empresa es id y la variable que identifica el tiempo es year. La variable n es el empleo de la empresa. Luego, considerar un modelo muy simplificado del siguiente tipo:

$$ln n_{it} = \rho ln n_{it-1} + \varepsilon_{it},$$

$$\varepsilon_{it} = c_i + v_{it},$$

$$E(c_i) = E(v_{it}) = E(c_i v_{it}) = 0,$$

donde n_{it} es el empleo de la empresa i en el año t.

(a) Estimar el modelo por OLS. ¿Qué sesgo se esperaría encontrar y por qué?

POLS:

Source	SS	df	MS	Number F(1, 76		=	770 76542.09
Model Residual	1396.09073	1 768	1396.09073 .018239518	Prob > R-squar	F red	=	0.0000
Total	1410.09868		1.83367839	1100) 11 0	-	=	0.9901
	Coefficient			P> t	[95% c	onf.	interval]
nL1 _cons	.9967362	.0036027	276.66 -5.95	0.000	.98966		1.003809 0254252

El sesgo que se esperaría encontrar es el sesgo de paneles dinámicos, el cual se desprende que ln n_{it-1} está correlacionado con los efectos fijos, c_i , que se encuentran en el término de error. En general, bajo muchos supuestos, OLS sobrestima el valor real del parámetro ρ .

(b) Estimar el modelo usando efectos fijos (FE). ¿Permite la transformación within eliminar el sesgo de paneles dinámicos?

FE:

· · · · · · · · · · · · · · · · · · ·					obs = groups =	770 138
R-squared: Within = 0.4926 Between = 0.9979 Overall = 0.9901				Obs per g	<pre>min = avg = max =</pre>	5 5.6 6
corr(u_i, Xb)	= 0.9382			F(1,631) Prob > F	=	612.49 0.0000
n	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
	.869605 .1076112					
sigma_e	.18358137 .1315487 .66073284	(fraction o	of varian	ce due to 1	u_i)	
F test that all u_i=0: F(137, 631) = 1.30					Prob >	F = 0.0194

La transformación within no permite eliminar el sesgo de paneles dinámicos, ya que, ahora, el problema se encuentra en que $\ln n_{it-1} = \ln n_{it-1} - \ln n_{i-1}$ está correlacionado con $\tilde{v}_{it} = v_{it} - \bar{v}_i$, aun cuando v_{it} no tiene correlación serial. En particular, el término ln n_{it-1} correlaciona negativamente con $\frac{-1}{T-1}v_{it-1}$ que se encuentra dentro de \bar{v}_i , mientras que, simétricamente, $\frac{-1}{T-1}\ln n_{it}$ y v_{it} también se encuentran correlacionados negativamente. Adicionalmente, hay otros pares de términos que correlacionan, pero su impacto es de segundo orden. Por último, cabe mencionar que Nickell mostró que, si $\rho > 0$, este sesgo es siempre negativo.

(c) Considerar una transformación de diferencias finitas de primer orden del modelo. ¿Continúa siendo la variable dependiente rezagada potencialmente endógena?

Considerando una transformación de diferencias finitas de primer orden del modelo, la variable dependiente rezagada continúa siendo potencialmente endógena, ya que el término $\Delta \ln n_{it-1} = \ln n_{it-1}$ - $\ln n_{it-2}$ está correlacionado con ν_{it-1} en $\Delta \nu_{it} = \nu_{it}$ - ν_{it-1} .

(d) Implementar el estimador de Anderson-Hsiao a partir del comando ivregress en Stata.

IV (Anderson-Hsiao):

Instrumental	variables 2SLS	regression			red	= = = =	632
	Coefficient				-	onf.	interval]
nL1 D1.	1		4.10	0.000	1.0528	76	2.978327
	D +1						

Instrumented: D.nL1
Instruments: nL2

(e) Ahora, obtener la estimación GMM de ρ utilizando todos los instrumentos posibles en niveles para el modelo en primeras diferencias. Para ello, utilizar el comando xtabond2.

GMM One-Step (Arellano-Bond):

Dynamic panel-data estimation, one-step diffe	erence GMM						
Group variable: id Time variable: year Number of instruments = 10 Wald chi2(0) = . Prob > chi2 = .	Number of obs = 632 Number of groups = 138 Obs per group: min = 4 avg = 4.58 max = 5						
n Coefficient Std. err. z	P> z [95% conf. interval]						
nL1 1.146045 .0865907 13.2							
Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.n							
Arellano-Bond test for AR(1) in first difference Arellano-Bond test for AR(2) in first difference Arellano-Bond test for AR(3) in first difference Arellano-Bond test for AR(4) in first							
Sargan test of overid. restrictions: chi2(9) (Not robust, but not weakened by many inst.							

GMM Two-Step (Arellano-Bond):

ference GMM							
Number of obs = 632 Number of groups = 138 Obs per group: min = 4 avg = 4.58 max = 5							
z P> z [95% conf. interval]							
24 0.000 1.024961 1.327456							
rs are unreliable.							
<pre>Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.n</pre>							
rences: $z = -2.97$ Pr > $z = 0.003$ rences: $z = -1.71$ Pr > $z = 0.087$							
= 122.88 Prob > chi2 = 0.000 truments.) = 48.86 Prob > chi2 = 0.000							

(f) Obtener la estimación de GMM de ρ utilizando todos los instrumentos posibles en niveles para el modelo en primeras diferencias e Δy_{it-1} como instrumento para el modelo en niveles.

SGMM One-Step (Blundell-Bond):

Dynamic panel-data estimation, one-step system GMM ______ Number of obs = 770 Number of groups = 138 Obs per group: min = 5 Group variable: id Time variable : year Number of instruments = 15 avg = 5.58Wald chi2(1) = 75831.06Prob > chi2 = 0.000max =6 n | Coefficient Std. err. z P>|z| [95% conf. interval] ______ nL1 | 1.107192 .0200965 55.09 0.000 1.067803 1.14658 _cons | -.1644167 .0233703 -7.04 0.000 -.2102216 -.1186118 Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.nInstruments for levels equation Standard cons GMM-type (missing=0, separate instruments for each period unless collapsed) Arellano-Bond test for AR(1) in first differences: z = -5.47 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -2.27 Pr > z = 0.023______ Sargan test of overid. restrictions: chi2(13) = 168.40 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels Sargan test excluding group: chi2(9) = 127.56 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(4) = 40.84 Prob > chi2 = 0.000

Juan Menduiña

SGMM Two-Step (Blundell-Bond):

```
Dynamic panel-data estimation, two-step system GMM
______
                                              Number of obs = 770
Number of groups = 138
Group variable: id
Time variable : year
Number of instruments = 15
                                               Obs per group: min =
                                                             avg =
Wald chi2(1) = 23169.14
Prob > chi2 = 0.000
                                                             max =
                                                                         6
         n | Coefficient Std. err. z P>|z| [95% conf. interval]
nL1 | 1.149856 .0316392 36.34 0.000 1.087845 1.211868

_cons | -.1738829 .0370401 -4.69 0.000 -.2464801 -.1012857
Warning: Uncorrected two-step standard errors are unreliable.
Instruments for first differences equation
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   L(1/5).L.n
Instruments for levels equation
  Standard
    cons
 GMM-type (missing=0, separate instruments for each period unless collapsed)
Arellano-Bond test for AR(1) in first differences: z = -3.18 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = -1.71 Pr > z = 0.087
Sargan test of overid. restrictions: chi2(13) = 168.40 Prob > chi2 = 0.000
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(13) = 56.19 Prob > chi2 = 0.000
  (Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
   Hansen test excluding group: chi2(9) = 49.15 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(4) = 7.04 Prob > chi2 = 0.134
```

(g) Repetir las estimaciones de los incisos (e) y (f) incluyendo efectos fijos de tiempo.

GMM One-Step (Arellano-Bond):

Dsz	namic	nanel-data	estimation,	ona-stan	difference	CMM
ν_{ν}	HallitC	paner-data	estimation,	one-step	arrrerence	GIVIIVI

Group variable: id Time variable: year Number of instruments = 15 Wald chi2(0) = . Prob > chi2 = .			Number of Number of Obs per	of group	ps =	138	
n Coefficient	Std. err.	z	P> z	[95%	conf.	interval]	
yr1978 000092 yr1980 0390927 yr1981 1440582	.0133804 .0101049 .010015	0.54 -0.01 -3.90 -13.42	0.017 0.590 0.993 0.000 0.000	019 019 058	0901	.0334304	
Instruments for first differences equation Standard D.(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.n							
Arellano-Bond test for AR(1) in first	differenc	es: z =	0.30	Pr >	z = 0.764	

GMM Two-Step (Arellano-Bond):

Dynamic panel-data estimation, two-step difference GMM

(Not robust, but not weakened by many instruments.)

Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 15 = .			Number	of obs of group:	ps =	632 138 4 4.58
n	Coefficient	Std. err.	 Z 	P> z	[95%	conf.	interval]
nL1 yr1977 yr1978 yr1980 yr1981 yr1982	.0090912 .0020047 0313017 1342723	.0923988 .0095385 .0051366 .0073163 .0163176 .0235447	4.43 0.95 0.39 -4.28 -8.23 -8.50	0.000 0.341 0.696 0.000 0.000	.228 00 008 045 166	9604 0629 6414 2543	.5903486 .0277864 .0120723 0169621 1022903 1539855

Warning: Uncorrected two-step standard errors are unreliable.

```
Instruments for first differences equation Standard
```

D.(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982)

GMM-type (missing=0, separate instruments for each period unless collapsed) $L(1/5) \cdot L \cdot n$

```
Arellano-Bond test for AR(1) in first differences: z=-0.90 Pr > z=0.370 Arellano-Bond test for AR(2) in first differences: z=-1.22 Pr > z=0.222 Sargan test of overid. restrictions: chi2(9)=36.01 Prob > chi2=0.000 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(9)=11.00 Prob > chi2=0.276 (Robust, but weakened by many instruments.)
```

SGMM One-Step (Blundell-Bond):

Dynamic panel-data estimation, one-step system GMM ______ Number of obs = 770
Number of groups = 138 Group variable: id Time variable : year Number of instruments = 20 Obs per group: min = avg = Wald chi2(6) = 84467.08Prob > chi2 = 0.000max =6 n | Coefficient Std. err. z P>|z| [95% conf. interval] ______ nL1 | 1.070702 .0198077 54.05 0.000 1.031879 1.109524 yr1977 | .0438478 .0151864 2.89 0.004 .0140831 .0736126 yr1978 | .0518471 .0129701 4.00 0.000 .0264261 .0772681 yr1979 | .0418566 .0129664 3.23 0.001 .0164428 .0672704 yr1981 | -.0742759 .0129883 -5.72 0.000 -.0997325 -.0488193 yr1982 | -.0521052 .0133172 -3.91 0.000 -.0782065 -.026004 _cons | -.1213363 .0250374 -4.85 0.000 -.1704086 -.072264 ______ Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.nInstruments for levels equation Standard yr1977 yr1978 yr1979 yr1980 yr1981 yr1982 cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.n ______ Arellano-Bond test for AR(1) in first differences: z = -6.30 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -2.36 Pr > z = 0.018______ Sargan test of overid. restrictions: chi2(13) = 79.17 Prob > chi2 = 0.000(Not robust, but not weakened by many instruments.) Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels Sargan test excluding group: chi2(9) = 21.45 Prob > chi2 = 0.011 Difference (null H = exogenous): chi2(4) = 57.72 Prob > chi2 = 0.000iv(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982, eq(level)) Sargan test excluding group: chi2(8) = 56.13 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(5) = 23.05 Prob > chi2 = 0.000

SGMM Two-Step (Blundell-Bond):

Dynamic panel-data estimation, two-step system GMM ______ Number of obs = 770 Number of groups = 138 Group variable: id Time variable : year Number of instruments = 20 Obs per group: min = Wald chi2(6) = 19554.89avg = Prob > chi2 = 0.000max =6 n | Coefficient Std. err. z P>|z| [95% conf. interval] _______ nL1 | 1.115279 .0252032 44.25 0.000 1.065881 1.164676 ______ Warning: Uncorrected two-step standard errors are unreliable. Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.nInstruments for levels equation Standard yr1977 yr1978 yr1979 yr1980 yr1981 yr1982 GMM-type (missing=0, separate instruments for each period unless collapsed) Arellano-Bond test for AR(1) in first differences: z = -3.22 Pr > z = 0.001Arellano-Bond test for AR(2) in first differences: z = -1.56 Pr > z = 0.118Sargan test of overid. restrictions: chi2(13) = 79.17 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(13) = 28.91 Prob > chi2 = 0.007 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(9) = 6.67 Prob > chi2 = 0.671 Difference (null H = exogenous): chi2(4) = 22.23 Prob > chi2 = 0.000iv(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982, eq(level))

Hansen test excluding group: chi2(8) = 22.21 Prob > chi2 = 0.005 Difference (null H = exogenous): chi2(5) = 6.69 Prob > chi2 = 0.244

Ejercicio 2.

En este ejercicio, se ilustrará el hecho de que los estimadores de Arellano-Bond y de Blundell-Bond pueden extenderse, en forma directa, a modelos que incluyan regresores estrictamente exógenos y regresores secuencialmente exógenos.

En su paper original, Arellano y Bond modelaron el empleo de las empresas (n) utilizando un modelo de ajuste parcial para reflejar los costos de contratación y despido, incluyendo dos rezagos de la variable empleo. Otras variables incluidas fueron el nivel salarial actual y el rezagado (w), el stock de capital actual, rezagado una y dos veces (k), y la producción agregada actual, rezagada una y dos veces en el sector de la empresa (ys). Todas las variables se expresan en logaritmos. También se incluye un conjunto de variables dummy de tiempo.

(a) Estimar el modelo por OLS. Computar los errores estándar robustos a heterocedasticidad y correlación serial.

POLS:

Linear regression	Number of obs	=	632
	F(14, 137)	=	15042.46
	Prob > F	=	0.0000
	R-squared	=	0.9948
	Root MSE	=	.09885

(Std. err. adjusted for 138 clusters in id)

		(50	a. eii.	aujusteu	101 130 Clust	ers in id)
n	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
nL1	1.083681	.0479746	22.59	0.000	.9888145	1.178548
nL2	1204015	.0432502	-2.78	0.006	2059257	0348772
W	4314672	.1861579	-2.32	0.022	7995817	0633527
wL1	.3933175	.1806983	2.18	0.031	.035999	.7506359
k	.3214569	.0546692	5.88	0.000	.2133524	.4295614
kL1	2087172	.0674584	-3.09	0.002	3421117	0753228
kL2	0811552	.030786	-2.64	0.009	1420324	020278
ys	.5156912	.1862924	2.77	0.006	.1473108	.8840716
ysL1	7065917	.2745098	-2.57	0.011	-1.249416	1637674
ysL2	.2489473	.1450994	1.72	0.088	0379767	.5358714
yr1977	0	(omitted)				
yr1978	0	(omitted)				
yr1979	.0161153	.0087992	1.83	0.069	0012845	.0335151
yr1980	.0267825	.0153105	1.75	0.082	003493	.057058
yr1981	0111743	.0255106	-0.44	0.662	0616197	.0392712
yr1982	0017447	.0217911	-0.08	0.936	044835	.0413456
_cons	1238146	.2952534	-0.42	0.676	7076579	.4600287

(b) Estimar el modelo por FE. Computar los errores estándar robustos a heterocedasticidad y correlación serial.

Juan Menduiña

н	н٠	
1	L.	

				Number Number	of obs of groups	= 632 = 138
R-squared: Within = Between = Overall =	= 0.9706			Obs per	group: min avg max	= 4.6
corr(u_i, Xb)	= 0.6273			F(14,13 Prob >	•	= 128.03 = 0.0000
		(St	td. err.	adjusted	for 138 clu	usters in id)
n	 Coefficient	Robust std. err.	t	P> t	[95% cor	nf. interval]
nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr1977 yr1978 yr1979 yr1980 yr1981 yr1982cons	0 .0218097 .0241949 .0319888 0005961	.0546499 .0557228 .1902322 .1374862 .0660277 .052492 .0412597 .1803162 .2111979 .1695363 (omitted) .0273806 .0257897 .0201233 .0168409 (omitted) .8176095	13.03 -3.98 -2.65 1.27 5.55 -1.23 0.70 2.91 -2.66 0.79 0.80 0.94 1.59 -0.04	0.000 0.000 0.009 0.205 0.000 0.219 0.487 0.004 0.009 0.431 0.427 0.350 0.114 0.972	.6041925331814988050510968619 .236157116861520528031 .1686574979845620133830323336026802400780370338978	91114389 1281629 .4468772 .4972875 .0389834 .1103735 .8817831 1445871 .4691544 .0759531 .0751922 .0717813 .0327056
sigma_u sigma_e rho	.09040774	(fraction	of varia	ance due t	:o u_i)	

⁽c) Implementar el estimador de Anderson-Hsiao usando n_{it-2} como instrumento.

IV (Anderson-Hsiao):

Instrumental	variables 2SLS	S regression		Wald Prob R-squ	r of obs = chi2(13) = > chi2 = ared = MSE =	14.10 0.3669
D.n	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
nL1		14.07042	0.41	0.679	-21.75353	33.40152
nL2 D1.		2.216574	-0.44	0.657	-5.329062	3.359749
w D1.	•	.4888956	-0.68	0.497	-1.290533	.6259022
wL1 D1.	1.433551	3.563217	0.40	0.687	-5.550226	8.417328
k D1.		.7653782	0.09	0.927	-1.430246	1.569981
kL1 D1.	 -1.708326	4.482217	-0.38	0.703	-10.49331	7.076659
kL2 D1.	 5052786	1.434586	-0.35	0.725	-3.317016	2.306459
ys D1.	1.344045	1.935232	0.69	0.487	-2.448939	5.13703
ysL1 D1.		6.196766	-0.44	0.660	-14.86758	9.423296
ysL2 D1.		.837905	-0.18	0.857	-1.792822	1.491705
yr1977 D1.		(omitted)				
yr1978 D1.		.381059	0.18	0.859	6791328	.814591
yr1979 D1.		.3885855	0.30	0.767	6465268	.8767003
yr1980 D1.		.2766837	0.40	0.693	4329398	.6516404
yr1981 D1.		(omitted)				
yr1982 D1.	 	(omitted)				
_cons	 .1190119 	.350733	0.34	0.734	5684122	.806436

Instrumented: D.nL1

(d) Estimar la ecuación de empleo usando el estimador de Arellano-Bond. Asumir que la única endogeneidad presente es en el rezago de la variable dependiente.

GMM One-Step (Arellano-Bond):

Dynamic panel-data estimation, one-step difference GMM

Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 20 = .			Number	of obs = of groups = r group: min = avg = max =	138 3 3.00
n	 Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
n	 					
L1.	.5325962	.4060438	1.31	0.190	2632351	1.328428
L2.	1678165	.108895	-1.54	0.123	3812468	.0456137
W						
	5435347	.1878885	-2.89		9117894	1752799
L1.	.0465042	.2149028	0.22	0.829	3746976	.467706
k						
	.3597198	.0798932	4.50	0.000	.203132	.5163076
L1.	0203542	.1486021	-0.14	0.891	311609	.2709006
L2.	.0531949	.0564035	0.94	0.346	0573539	.1637438
ys						
	•	.1618321	4.15	0.000	.3548932	.9892634
L1.	•	.2155005	-1.84	0.066	818599	.0261475
L2.	061621	.1883471	-0.33	0.744	4307746	.3075325
yr1979		.0289454	-0.07	0.947	0586417	.0548221
yr1980		.0194	0.79	0.429	0226734	.0533731
yr1982	0047222	.0199879	-0.24	0.813	0438977	.0344534

Instruments for first differences equation $\ \ \,$

Standard

D.(w L.w k L.k L2.k ys L.ys L2.ys yr1977 yr1978 yr1979 yr1980 yr1981 yr1982)

GMM-type (missing=0, separate instruments for each period unless collapsed) $L(1/5) \cdot L \cdot n$

Arellano-Bond test for AR(1) in first differences: z=-0.93 Pr > z=0.351 Arellano-Bond test for AR(2) in first differences: z=-1.57 Pr > z=0.117

Sargan test of overid. restrictions: chi2(7) = 18.99 Prob > chi2 = 0.008 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(7) = 12.33 Prob > chi2 = 0.090
 (Robust, but weakened by many instruments.)

GMM Two-Step (Arellano-Bond):

Dynamic	panel-data	estimation,	two-step	difference	GMM	

Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 20 = .			Number	of obs = of groups = group: min = avg = max =	138 3 3.00
n	 Coefficient	Corrected std. err.	z	P> z	[95% conf.	interval]
n L1. L2.	.6080291	.6739661 .1688863			7129203 468953	1.928978 .1930691
w L1.	4912924	.2335444	-2.10 0.55	0.035 0.582	949031 3231847	0335539 .5758381
k L1. L2.	.2912765 0170639	.0889614 .219071 .0736175	3.27 -0.08 0.36	0.001 0.938 0.721	.1169154 4464351 1179608	.4656376 .4123073 .1706145
ys L1. L2.	.5452599 307353	.1895989 .2411337 .2036039	2.88 -1.27 -0.62	0.004 0.202 0.538	.1736528 7799662 524455	.916867 .1652603 .2736577
yr1979 yr1980 yr1982	.0244669	.0360821 .0224526 .0283143	0.24 1.09 -0.67	0.276	0619306 0195394 0744428	.0795087 .0684731 .0365472
Standard D.(w L.w l yr1982)	or first diffe k L.k L2.k ys issing=0, sepa	L.ys L2.ys	yr1977 yı			
Arellano-Bond Arellano-Bond	·	· ·				
Sargan test of (Not robust, Hansen test of	, but not weak	ened by man	y instrum	ments.)		

(e) Ahora, considerar, como hicieron Blundell y Bond (1998), que los salarios y el stock de capital no deben tomarse como estrictamente exógenos en este contexto (como se hizo en los modelos anteriores). Reestimar el modelo usando el estimador de A-B y considerando a los salarios y al stock de capital como regresores secuencialmente exógenos.

(Robust, but weakened by many instruments.)

GMM One-Step (Arellano-Bond):

	2 2 .			11.66	~
Dynamic	panel-data	estimation,	one-step	difference	GMM

Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 33				of obs = of groups = group: min = avg = max =	138 3 3.00
n	 Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
n L1. L2.	.8328315	.1219725	6.83 -2.13	0.000	.5937698 3150873	1.071893 0130599
w L1.	5056556	.3148758 .3347117	-1.61 0.82	0.108 0.411	-1.122801 3809867	.1114896 .931059
k L1. L2.	.3384097 2157422	.1810356 .1197218 .0481602	1.87 -1.80 -0.01	0.062 0.072 0.988	0164135 4503925 0950895	.6932329 .0189082 .0936951
ys L1. L2.	.7245478 5540143	.2528721 .4752081 .2887007	2.87 -1.17 0.19	0.004 0.244 0.850	.2289276 -1.485405 5112447	1.220168 .3773765 .6204413
	.0188299	.0303218 .0214161 .0217373	-0.20 0.88 -0.31	0.841 0.379 0.757	0655299 0231449 049338	.0533295 .0608046 .0358708
Standard D.(ys L.ys GMM-type (m:	or first diffe s L2.ys yr1977 issing=0, sepa .n L.w L.k)	yr1978 yr1	979 yr198			ollapsed)
Arellano-Bond Arellano-Bond						
(Not robust) Hansen test of	f overid. rest, but not weak f overid. rest t weakened by	ened by man rictions: c	y instrum hi2(20)	nents.)	6 Prob > chi.	
Hansen tes	-Hansen tests L2.ys yr1977 y st excluding g e (null H = ex	r1978 yr197 roup: c	9 yr1980 hi2(14)	yr1981 yr = 14.84	r1982)	

GMM Two-Step (Arellano-Bond):

Dynamic panel	-data estimati	on, two-ste	o differe	ence GMM		
Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 33 = .				of obs = of groups = group: min = avg = max =	3
n	 Coefficient	Corrected std. err.	Z	P> z	[95% conf.	interval]
n L1. L2.	.9403457	.1894156	4.96 -1.65	0.000	.5690979 3346062	1.311593
w L1.	4490707	.3993756 .3136958	-1.12 1.08	0.261 0.281	-1.231833 2762982	.3336911
k L1. L2.	.1701686 2258957	.2126183 .1315513 .0564683	0.80 -1.72 -0.74	0.424 0.086 0.458	2465556 4837316 1526117	.5868928 .0319401 .0687401
ys L1. L2.	.689388 5276126	.2434718 .4812107 .2419835	2.83 -1.10 0.55	0.005 0.273 0.585	.2121921 -1.470768 3421794	1.166584 .4155429 .6063786
yr1979 yr1980 yr1982	.0379698	.0342941 .0228282 .0242533	0.56 1.66 -0.85	0.573 0.096 0.394	0478977 0067727 0682285	.0865326 .0827124 .0268427
GMM-type (m:	or first diffe s L2.ys yr1977 issing=0, sepa .n L.w L.k)	yr1978 yr1	979 yr198			ollapsed)
Arellano-Bond Arellano-Bond						
Hansen test of	, but not weak	ened by man	y instrum hi2(20)	ments.)		
Hansen tes	-Hansen tests L2.ys yr1977 y st excluding o	r1978 yr197: group: cl	9 yr1980 hi2(14)	yr1981 yr = 14.8	r1982)	

(f) Adicionalmente, Blundell y Bond (1998) eliminan de su modelo los rezagos más largos (de dos períodos) del empleo y el capital y prescinden del nivel de producto agregado sectorial. Considerando esta cuestión, computar el estimador de Blundell-Bond.

SGMM One-Step (Blundell-Bond):

Dynamic panel-data estimation, one-step system GMM Number of obs = Number of groups = Group variable: id 138 Time variable : year Number of instruments = 47Obs per group: min = avg = 5.00 Wald chi2(9) = 37427.45Prob > chi2 = 0.000max = Robust n | Coefficient std. err. z P>|z| [95% conf. interval] L1. | .9025721 .0412484 21.88 0.000 .8217267 .9834175 w --. | -.5397871 .1984403 -2.72 0.007 -.928723 -.1508513 1.69 0.090 -.0480722 L1. | .3047706 .1800251 kΙ --. | .4734141 .0900715 5.26 0.000 .2968772 .6499511 L1. | -.3942878 .086912 -4.54 0.000 -.5646322 -.2239433
 yr1978 |
 .0347845
 .0217776
 1.60
 0.110
 -.0078988

 yr1979 |
 .044848
 .0173516
 2.58
 0.010
 .0108395

 yr1980 |
 .0291248
 .0171671
 1.70
 0.090
 -.004522

 yr1982 |
 .0333513
 .0144621
 2.31
 0.021
 .0050062

 _cons |
 .8194633
 .3304982
 2.48
 0.013
 .1716988
 .0774678 .0616964 .1716988 1.467228 _____ Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(L.n L.w L.k)Instruments for levels equation Standard yr1977 yr1978 yr1979 yr1980 yr1981 yr1982 cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.n L.w L.k)______ Arellano-Bond test for AR(1) in first differences: z = -4.61 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -1.18 Pr > z = 0.238._____ Sargan test of overid. restrictions: chi2(37) = 86.05 Prob > chi2 = 0.000(Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(37) = 52.82 Prob > chi2 = 0.044(Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(25) = 35.67 Prob > chi2 = 0.077 Difference (null H = exogenous): chi2(12) = 17.15 Prob > chi2 = 0.144 iv(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982, eq(level)) Hansen test excluding group: chi2(33) = 44.68 Prob > chi2 = 0.084 Difference (null H = exogenous): chi2(4) = 8.14 Prob > chi2 = 0.087

SGMM Two-Step (Blundell-Bond):

Dynamic panel-data estimation, two-step system GMM Number of obs = Number of groups = Group variable: id 138 Time variable : year Number of instruments = 47Obs per group: min = avg = 5.00 Wald chi2(9) = 30749.14Prob > chi2 = 0.000max = Corrected n | Coefficient std. err. z P>|z| [95% conf. interval] L1. | .892057 .0524149 17.02 0.000 .7893258 w | --. | -.4138471 .2405795 -1.72 0.085 -.8853744 .0576801 .23221 .1663529 1.40 0.163 -.0938358 L1. | kΙ --. | .4563271 .1222931 3.73 0.000 .2166371 .6960171 L1. | -.3582417 .1210988 -2.96 0.003 -.595591 -.1208924
 yr1978 |
 .0405244
 .0265643
 1.53
 0.127
 -.0115406
 .0925895

 yr1979 |
 .0513874
 .0198615
 2.59
 0.010
 .0124596
 .0903151

 yr1980 |
 .0296077
 .0200915
 1.47
 0.141
 -.0097708
 .0689863

 yr1982 |
 .0290802
 .014089
 2.06
 0.039
 .0014662
 .0566942

 _cons |
 .6712912
 .3744471
 1.79
 0.073
 -.0626117
 1.405194
 _____ Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(L.n L.w L.k)Instruments for levels equation Standard yr1977 yr1978 yr1979 yr1980 yr1981 yr1982 cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.n L.w L.k)______ Arellano-Bond test for AR(1) in first differences: z = -4.46 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -1.27 Pr > z = 0.203._____ Sargan test of overid. restrictions: chi2(37) = 86.05 Prob > chi2 = 0.000(Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(37) = 52.82 Prob > chi2 = 0.044(Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(25) = 35.67 Prob > chi2 = 0.077 Difference (null H = exogenous): chi2(12) = 17.15 Prob > chi2 = 0.144 iv(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982, eq(level)) Hansen test excluding group: chi2(33) = 44.68 Prob > chi2 = 0.084 Difference (null H = exogenous): chi2(4) = 8.14 Prob > chi2 = 0.087

Ejercicio 3.

Cuando hay muchos instrumentos, surgen dos problemas principales:

- Sobreestimación (overfitting) de la variable endógena.
- Mala estimación de la matriz de pesos W.

En estos casos, se proponen las siguientes soluciones:

- Probar diferentes especificaciones de IV recortando el número de rezagos en la matriz de instrumentos Z.
- Colapsar/combinar instrumentos. Se modifica la matriz de instrumentos para el individuo i:

$$Z_{i} = \begin{bmatrix} y_{i1} & 0 & 0 & \cdots \\ y_{i1} & y_{i2} & 0 & \cdots \\ y_{i3} & y_{i2} & y_{i1} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

Si el modelo funciona, debería dar resultados similares con distintos instrumentos. Retomar el Ejercicio 2.e para ver una aplicación de esta cuestión. Estimar el modelo de empleo restringiendo el máximo rezago a 3 y 4 períodos. Por último, estimar el modelo colapsando instrumentos. Analizar si los resultados obtenidos son robustos.

Tabla comparativa:

	(1) GMM (OS) 2	(2) GMM (TS) 2	(3) GMM (OS) 3	(4) GMM (TS) 3	(5) GMM (OS) 4	(6) GMM (TS) 4	(7) GMM (OS) 5	(8) GMM (TS) 5
nL1	0.833*** (0.122)	0.940*** (0.189)	0.949*** (0.182)	0.900*** (0.226)	0.847*** (0.121)	0.930*** (0.174)	1.108*** (0.387)	0.877* (0.455)
N	414	414	414	414	414	414	414	414

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Ejercicio 4.

Considerar, nuevamente, el modelo del primer ejercicio. Obtener el estimador LSDVC propuesto por Kiviet (1995) a partir del comando xtlsdvc. Luego, estimar la matriz de varianzas y covarianzas de los coeficientes de Kiviet siguiendo el procedimiento explicado en clase.

LSDVC (Kiviet):

LSDVC dynamic regression (SE not computed)

n C	Coefficient	Std.	err.	z 	P> z	[95% conf.	interval]
n L1.	.9890308						

LSDVC (Kiviet):

LSDVC dynamic regression (SE not computed)

n	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
n L1.	.7863675					
yr1978						
yr1979		•	•	•	•	•
yr1980 yr1981		•	•	•	•	•
ĀTIAOI	.0103706	•	•	•	•	•