CS441/CS241 Automata Theory and Formal Languages

ربيع 2024 د. عدنان محمود عبدالله الشريف adnan.sherif@uot.edu.ly

1

مراجعة لبعض التركيبات الرياضية

- الفئات (المجموعات): الفئة مجموعة من العناصر غير المرتبة (لا تخضع لترتيب معين) وتسمى عناصر الفئة. ونقول ان الفئة تحوي عناصرها. كما نكتب $a \in A$ للدلالة على ان العنصر a ينتمي الى فئة a كما نكتب $a \notin A$ للدلالة على ان العنصر a لا ينتمي الى الفئة a.
 - وصف الفئة:

 $A = \{x | x \text{ is a positive integer less than or equal to } 10\}$

او

$$A = \{1,2,3,4,5,6,7,8,9,10\}$$

 $A = \{1,2,3,4,5,6,7,8,9,10\}$
 $A = \{1,2,3,4,5,10\}$
 $A = \{1,2,4,5,6,10\}$
 $A = \{1,2,4,5,6,10\}$
 $A = \{1,2,4,5,10\}$
 $A = \{1,2$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

2

- العمليات على الفئات (المجموعات):
 - تساوى الفئات:

الفئتان A و B متساویتان إذا کان لهم نفس العناصر بغض النظر عن ترتیبهم. $\forall x \ (x \in A \leftrightarrow x \in B)$

A=B ونعبر عن هذه العلاقة بان

• الفئة الجزئية (Subsets):

الفئة A فئة جزئية من الفئة B إذا كان كل عنصر من A عنصر من الفئة B

 $A\subseteq B$ نرمز لعلاقة الفئة الجزئية بالرمز $A\subseteq B$ ان: $A\subseteq B\equiv \forall x\ (x\in A\to x\in B)$

نلاحظ ان الفئة الخالية ϕ هي فئة جزئية لاي فئة أخرى.

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

3

3

مراجعة لبعض التركيبات الرياضية

- العمليات على الفئات (المجموعات):
 - رتبة الفئة (Cardinality):

رتبة الفئة هي عدد عناصر الفئة ونرمز له بالرمز |A|.

• فئة القوة (Power Set):

هي الفئة التي عناصرها جميع الفئات الجزئية للفئة الاصلية. إذا كان لدينة فئة A فإن فئة القوة ونرمز لها بالرمز $\mathcal{P}(A)$ هي فئة جميع الفئات الجزئية للفئة A.

 $\mathcal{P}(A) = \{x \mid x \subseteq A\}$

• ضرب الفئات (الضرب الكارتيزي) (Cartesian Product):

دع A و B فئتان، حاصل الضرب الكارتيزي لهما هو فئة جميع الأزواج المرتبة (a,b) حيث

 $b \in B \quad a \in A$

 $A \times B = \{(a, b) | a \in A \land b \in B\}$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

4

- العمليات على الفئات (المجموعات):
 - الاتحاد (Union):

دع A و Bفئتان. فإن اتحاد الفئتان ونرمز له بالرمز $A \cup B$ هي فئة تحوي على عناصر من الفئة

A او من الفئة B او من كلاهما.

 $A \cup B = \{x | x \in A \lor x \in B\}$

• التقاطع (Intersection):

دع A و B فئتان. فإن تقاطع الفئتان ونرمز له بالرمز $A \cap B$ هي فئة تحوي على العناصر المشتركة بين الفئة A والفئة B.

 $A \cap B = \{x | x \in A \land x \in B\}$

• الفرق (Difference):

دع A و B فئتان. فإن الفرق بين الفئتان ونرمز له بالرمز A-B هي فئة تحوي على العناصر التي تنتمي الى الفئة الأولى A و X تنتمي الى الفئة الثانية X

 $A - B = \{x | x \in A \land x \notin B\}$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

5

مراجعة لبعض التركيبات الرياضية

• الدوال:

A و B فئتان غير خاليتان، الدالة f علاقة من الفئة A الى الفئة B بحيث لكل عنصر من الفئة Aعنصر واحد فقط في الفئة B. ونكتب b ونكتب الدلالة على ان b هو العنصر من الفئة B المقابل للعنصر a في الفئة A باستخدام الدالة f. ونكتب B
ightarrow B للدلالة عن ان الدالة f علاقة من الفئة \ddot{B} الى الفئة \dot{B} .

- الدالة المركبة (composite function):
 - إذا كان لدينا دالتان f و g بحيث

 $f: B \to A$ $g: A \rightarrow B$

يمكن تعريف دالة نرمز لها و و محيث

 $f \circ g(a) = f(g(a))$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

6

• العلاقات

العلاقة الثنائية من الفئة A الى الفئة B الى الفئة B (Binary Relation from A to B) العلاقة الثنائية من الفئة $A \times B$ أي انها مجموعة من الأزواج المرتبة $A \times B$ حيث $A \times B$ و $A \in A$

R	а	b
0	Χ	X
1	Х	
2		Χ

$$A = \{0,1,2\}$$

$$B = \{a,b\}$$

$$R = \{(0,a), (0,b), (1,a), (2,b)\}$$

$$(0,a) \in R$$

$$(1,b) \notin R$$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

7

7

مراجعة لبعض التركيبات الرياضية

• الاشكال

تعريف الشكل غير الموجه: الشكل G = (V,E) حيث V فئة غير خالية من الرؤوس و E فئة من الأزواج المرتبة $a \in V$ حيث $a \in V$ حيث $a \in V$ حيث $a \in V$ الحافة تربط الرؤوس $a \in V$.

E تعرف الشكل الموجه: التعريف: الشكل G = (V,E) حيث V فئة غير خالية من الرؤوس و فئة من الأزواج المرتبة (a,b) حيث $a \in V$ عيث $a \in V$ نهاية الحافة.

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

.

مثال: الشكل الغير الموجه التالى:

يمكن تمثيلها كالتالي:

حيث

$$V = \{a, b, c, d\}$$

$$E = \{(a, a), (a, b), (b, a), (b, c), (c, a), (c, b), (d, b), (d, d)\}$$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

9

9

مراجعة لبعض التركيبات الرياضية

مثال: الشكل الموجه:

يمكن تمثيلها كالتالي:

حبث

$$V = \{a, b, c, d\}$$

$$E = \{(a, a), (a, b), (b, a), (b, c), (c, a), (c, b), (d, b), (d, d)\}$$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

10

• الأشجار:

الشجرة عبارة عن شكل متصل (Connected) غير موجه (Undirected) لا يوجد به مسار دائري (Circular Path).

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

44

11

تعريفات

• الرمز (Symbol): هو رمز لا يقبل التجزئة مثل حروف اللغة الإنجليزية (A,B...Z) او الأرقام مثل (0,1,2,3...) او حروف اللغة العربية (أ، ب، ت ... ي) او الرموز الرياضية (.../,*,-,+).

نلاحظ ان كل من الأمثلة السابقة لا يمكن تقسيم الرمز الى أكثر من جزاء ولا يعتبر ab رمز حيث يمكن تجزئته الى جزئين ab و d.

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

12

تعريفات

- الأبجدية (Alphabet): هي فئة محددة وغير خالية من الرموز ونستخدم الحرف الاغريقي سيغما ∑ للدلالة على الابجدية.
 - امثلة
 - $\Sigma = \{a,b,c,...z,A,B,C,...Z\}$ و الابجدية للغة الإنجليزية
 - $\Sigma = \{0,1\}$ الأبجدية للأعداد الثنائية •
 - $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$ و الابجدية لنظام الاعداد العشري

ملاحظات:

الفئة {0,1,01} ليس ابجدية لان العنصر 01 ليس رمز حيث يمكن تجزئته الى الرمز 0 والرمز 1.

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

13

13

تعريفات

• السلسلة (الكلمة) (String): هي تسلسل عدد محدد من الرموز لأبجدية محددة.

مثال:

 $\Sigma = \{a,b\}$ لو لدينا ابجدية

فإن aba هي سلسلة من الابجدية Σ كما ان aaabbbaaa سلسلة من نفس الابجدية على abc بينما abc ليست سلسلة من الابجدية Σ حيث الرمز abc عير موجود من ضمن رموز الابجدية.

(x,y,z,w,r,v,...) نرمز للسلسلة بالأحرف

مثال: السلسلة aba يمكن ان نرمز لها

x = aba

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

تعريفات

• طول السلسلة (Length of String): هو عدد الرموز المشكلة للسلسلة ونرمز لطول السلسلة w = |w|.

 $\Sigma = \{a,b\}$ هي سلسلة مشكلة من الأبجدية x = abb مثال (1): إذا كانت لدينا سلسلة x = abb لان عدد الرموز المكونة للسلسلة 3.

 $\Sigma = \{0,1\}$ مثال (2): إذا كانت لدينا سلسلة y = 00110 هي سلسلة مشكلة من الأبجدية y = 00110 كون |y| لان عدد الرموز المكونة للسلسلة 5.

• السلسلة الفارغة (Empty String): هي سلسلة ليس بها أي رمز وطولها يساوي صفر نرمز لها بع

$$|\varepsilon| = 0$$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

15

15

العمليات على السلاسل (Operations on Strings)

• التعاقب بين السلاسل (Concatenation): تعاقب سلسلتين χ و y هو سلسلة جديدة مكونة من رموز السلسلة الأولى متبوعة مباشرة برموز السلسلة الثانية. نرمز لعملية التعاقب أحيانا بالرمز (\cdot).

وأن
$$y=$$
 bbb والسلسة $x=$ aba والسلسة $\Sigma=$ $\{a,b\}$ والسلسة $x\cdot y=xy=$ ababbb $y\cdot x=yx=$ bbbaba

بعض خصائص التعاقب:

$$x \cdot y \neq y \cdot x$$

$$x \cdot \varepsilon = \varepsilon \cdot x = x$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

16

العمليات على السلاسل (Operations on Strings)

• بادئة سلسلة (Prefix): تكون السلسلة u هي بادئة السلسة v إذا وجدت سلسلة v بحيث يتحقق $v=u\cdot w$

مثال: لتكن لدينا السلسلة مع فإن مجموعة بادئات هذه السلسلة هي مثال: لتكن لدينا السلسلة v=ababbb

• لاحقة سلسلة (Postfix): تكون السلسة u هي لاحقة السلسة v إذا وجدت سلسلة v بحيث يتحقق $v=w\cdot u$

مثال: لتكن لدينا السلسلة v=ababbb فإن مجموعة لاحقات هذه السلسلة هي مثال: لتكن لدينا السلسلة $\{\varepsilon, b, bb, bbb, abbb, abbbb, ababbb\}$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

17

17

العمليات على السلاسل (Operations on Strings)

• السلسلة الجزئية (Sub String): تكون السلسلة u سلسلة جزئية من السلسلة v إذا وجدت سلسلة w تكون سلسلة بادئة للسلسلة v وسلسلة أخرى v تكون سلسلة لاحقة للسلسلة v وسلسلة v وسلسلة v تكون سلسلة v يتحقق v تكون سلسلة بادئة السلسلة v

مثال: لتكن لدينا السلسلة v=a هل السلسة u=a هل السلسة جزئية من v ؟ الإجابة: نعم حيث يمكن إيجاد قيم للسلسلة v=a و v تحقق الشرط عند:

 $v = w \cdot u \cdot r$ و w = ab يحقق الشرط w = ab (1

 $v = w \cdot u \cdot r$ و معقق الشرط r = abbb و $w = \varepsilon$

u تعریف اخر: تکون السلسلة u سلسلة جزئیة من السلسلة v إذا کانت کل رموز السلسة موجودة في السلسلة v مع المحافظة على ترتیب الرموز.

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

العمليات على السلاسل (Operations on Strings)

• قوة السلسلة (Power of String): قوة سلسلة w من الدرجة n هي عبارة عن تعاقب السلسة w ل المرات.

$$w^n = w \cdot w \cdot w \cdot w \dots w$$
مرة n مثال: لتكن لدينا السلسلة $v = ab$ عليه: $v^1 = v = ab$

 $v^2 = abab$ $v^3 = ababab$

 $y = aaabbbba = a^3b^4a$ يمكن استخدام القوة مع الرموز

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

19

19

قوة ابجدية (Power of Alphabet)

 Σ^n ونرمز لها ب Σ^n التعريف: هي مجموعة السلاسل المولدة من الابجدية Σ^n ذات الطول

مثال: لتكن
$$\Sigma = \{0,1\}$$
 فيكون:

$$\Sigma^0 = \{ \varepsilon \}$$

$$\Sigma^1 = \Sigma = \{0,1\}$$

$$\Sigma^2 = \{00,01,10,11\}$$

$$\Sigma^3 = \{000,001,010,011,100,101,110,111\}$$
 n هو عدد عناصر الابجدية Σ مرفوع الى القوة Σ^n نلاحظ عدد عناصر $\Sigma^n = (|\Sigma|)^n$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

20

قوة ابجدية (Power of Alphabet)

• نعرف $^*\Sigma$ على انها مجموعة كل السلاسل التي يمكن تكوينها من الابجدية Σ وهي مجموعة غير منتهية أي:

 $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$

مثال: لتكن $\Sigma = \{0,1\} = 1$ أبجدية فتكون مجموعة كل السلاسل التي يمكن تكوينها من الأبجدية هي:

 $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111 \dots\}$

أحيانا يلزمنا تعريف كل السلاسل المكونة من الأبجدية Σ ماعدا السلسلة الفارغة ε ونعرف هذه المجموعة بـ Σ حيث :

 $\Sigma^+ = \Sigma^* - \{\varepsilon\}$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

21

21

(Language) اللغة

• هي مجموعة السلاسل المختارة من المجموعة Σ والمتكونة من الابجدية Σ ونرمز لها بالرمز (L) بحيث Σ يتم وصف اللغة بتحديد شروط تكوين السلاسل التي تنتمي الى اللغة

:a أبجدية واللغة $\Sigma=\{a,b\}$ تحتوي على كلمات تنتهي بالرمز $L=\{a,aa,ba,aaa,bba,aba,baa,...\}$

نلاحظ ان:

 $\varepsilon \notin L$

 $b \notin L$

 $bb \notin L$

 $ab \notin L$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

22

(Language) اللغة

مثال: لتكن
$$\Sigma=\{a,b\}$$
 أبجدية واللغة L_1 تحتوي على كلمات تحتوي على الرمز $\Sigma=\{a,b\}$ على الاقل: $L_1=\{aa,baa,aaa,aba,aab,baaa,bbaa,abaa...\}$

مثال: لتكن
$$\Sigma=\{a,b\}$$
 أبجدية واللغة مرتين L_2 تحتوي على كلمات تحتوي على الرمز $\Sigma=\{a,b\}$ فقط:
$$L_2=\{aa,baa,aba,aab,bbaa,\dots\}$$
 نلاحظ ان $L_2\subseteq L_1$ نلاحظ ان $L_2\subseteq L_1$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

23

العمليات على اللغات (Operations on Languages)

```
• اتحاد لغتين (Union): اتحاد لغتين L_1 و L_2 ويمثل بـ L_1 \cup L_2 هي اللغة التي تحتوي على السلاسل الموجودة في L_1 او L_2 او كلاهما: L_1 \cup L_2 = \{x|x \in L_1 \lor x \in L_2\}
                                : حيث \Sigma = \{a,b\} مثال: لتكن لدينا لغتين L_1 و L_2 على ابجدية
                                        L_1 = \{a, aa, ab, bb\}
                                        L_2 = \{b, ab, ba, aa\}
```

فإن

 $L_1 \cup L_2 = \{a, b, aa, ab, ba, bb\}$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

24

(Operations on Languages) العمليات على اللغات

• تقاطع لغتين (Intersection): تقاطع لغتين
$$L_1 \cap L_2$$
 و يمثل ب $L_1 \cap L_2$ هي اللغة التي تحتوي على السلاسل الموجودة في $L_1 \cap L_2 = \{x | x \in L_1 \land x \in L_2\}$: $\Sigma = \{a,b\}$ على البحدية $L_1 \cap L_2 = \{a,aa,ab,bb\}$ مثال: لتكن لدينا لغتين $L_1 \in \{a,aa,ab,bb\}$ $L_2 = \{b,ab,ba,aa\}$ فإن $L_1 \cap L_2 = \{aa,ab\}$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

25

25

(Operations on Languages) العمليات على اللغات

```
• فرق لغتين (Difference): فرق لغتين L_1 و L_2 ويمثل بL_1 هي اللغة التي تحتوي على السلاسل الموجودة في L_1 و غير موجودة في L_1 الموجودة في L_1 L_2 = \{x | x \in L_1 \land x \notin L_2\} : ثمثال: لتكن لدينا لغتين L_1 و L_2 على ابجدية L_1 بحيث L_1 و L_2 على ابجدية L_1 الموجودة في L_2 و L_3 بحيث L_1 و L_2 على ابجدية L_3 المؤرن الم
```

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

26

(Operations on Languages) العمليات على اللغات

• متمم لغة (Complement): متمم اللغة L المعرفة على الابجدية Σ هي اللغة التي تحوي السلاسل الموجودة في Σ^* وغير موجودة في L ونرمز لمتمم اللغة L ب Σ^* Σ^* وغير موجودة في Σ^* Σ^*

 $\overline{L} = \{\varepsilon, b, ba, bb, aaa, aab, ...\}$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

27

27

العمليات على اللغات (Operations on Languages)

```
• تعاقب لغتين (Concatenation): تعاقب لغتين L_1 و L_2 ويمثل بـ L_1.L_2 هي اللغة التي تحتوي على السلاسل المشكلة من تعاقب السلاسل في L_1 بجميع السلاسل في L_1 \cdot L_2 = \{x \cdot y | x \in L_1 \land y \in L_2\} : ثمثال: لتكن لدينا اللغتين L_1 و L_2 على ابجدية L_1 بحيث L_1 اللغتين L_1 و L_2 على ابجدية L_1 L_2 L_3 بحيث L_1 و L_2 على اللغتين L_1 = \{a,aa,ab,bb\} L_2 = \{b,ab,ba,aa\}
```

 $L_1.L_2 = egin{cases} ab, aab, aba, aaa, \\ aaab, aaba, aaaa, \\ abb, abab, abba, abaa, \\ bbb, bbab, bbba, bbaa \end{pmatrix}$

08/05/2024

S441/CS241 Automata Theory and Formal Language

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

28

(Operations on Languages) العمليات على اللغات

• إغلاق لغة (Closure): إغلاق اللغة L المعرفة على الابجدية Σ هي اللغة الناتجة عن تعاقب كل سلاسل اللغة L ونرمز لإغلاق اللغة L ب $L^*=L^0\cup L^1\cup L^2\cup L^3$...

حيث

$$L^{0} = \{\varepsilon\}$$

$$L^{1} = L$$

$$L^{2} = L \cdot L$$

$$L^{3} = L \cdot L \cdot L = L^{2} \cdot L$$

...

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

29

29

(Operations on Languages) العمليات على اللغات

• إغلاق لغة (تابع):

08/05/2024

S441/CS241 Automata Theory and Formal Language

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

30

تمارين مراجعة

```
1. أي من المجموعات التالية ابجدية مع شرح السبب:
```

 $\{a,b,c\}$ -

 $\{a,b,ab,ba,aa,bb\}$ - φ

 $\{a,b,0,1\}$ -=

{+, -, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} --

2. لتكن السلسلة $\Sigma = \{0,1\}$ معرفة على الابجدية $\Sigma = \{0,1\}$ اوجد كل من:

أ- مجموعة بادئات السلسلة

ب- مجموعة لاحقات السلسلة

x مجموعة السلاسل الجزئية للسلسلة

 $x \cdot x - 2$ $\sum^2 - 6$

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم حجامعة طرابلس

31

تمارين مراجعة

: بحيث $\Sigma = \{0,1\}$ على ابجدية L_1 و L_2 بحيث : $L_1 = \{00,01,10,11\}$

 $L_2 = \{0,1,00,11,000,111\}$

اوجد كل من:

 $L_1 \cup L_2$ -

08/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس