

Big Data Analytics

Session 5(a)
Assessing Model Accuracy

Outline

- Assessing Model Accuracy (Chapter 2.2)
 - Measuring the Quality of Fit
 - The Bias-Variance Trade-off
 - The Classification Setting

The big picture

• The general way of statistical learning

- Training data: the existing known data
- Test data: the new data that we would like to explore

Measuring Quality of Fit

- Suppose we have a regression problem.
 - Recall residual sum of squares (RSS):

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Where $\hat{\mathcal{Y}}_i$ is the prediction our method gives for the observation in our training data.

Measuring Quality of Fit

- Suppose we have a regression problem.
 - Recall residual sum of squares (RSS):

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• One common measure of accuracy is the mean squared error (MSE) i.e.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} RSS$$

• Where \hat{y}_i is the prediction our method gives for the observation in our training data.

A Problem

- Our method has generally been designed to make MSE small on the training data we are looking at
 - e.g. with linear regression we choose the line such that MSE (RSS) is minimised → least squares line.

- What we really care about is how well the method works on the **test data**.
- There is no guarantee that the method with the smallest training MSE will have the smallest test MSE.

Training vs. Test MSE's

In general,
 the more flexible a method is,
 the lower its training MSE will be
 i.e. it will "fit" or explain the training data very well.

• However, the test MSE may in fact be higher for a more flexible method than for a simple approach like linear regression.

Examples with Different Levels of Flexibility

<u>LEFT</u> Black: Truth

Orange: Linear Estimate Blue: smoothing spline

Green: smoothing spline (more

flexible)

RIGHT

RED: Test MSE

Grey: Training MSE

Dashed: Minimum possible test

MSE (irreducible error)

Bias/Variance Tradeoff

- The previous graph of test versus training MSE's illustrates a very important tradeoff that governs the choice of statistical learning methods.
- There are always two competing forces that govern the choice of learning method i.e. bias and variance.

Bias of Learning Methods

- Bias refers to the error that is introduced by modeling a real life problem (that is usually extremely complicated) by a much simpler problem.
- For example, linear regression assumes that there is a linear relationship between Y and X.
 - It is unlikely that, in real life, the relationship is exactly linear so some bias will be present.
- The more flexible/complex a method is the less bias it will generally have.

Variance of Learning Methods

- Variance refers to how much your estimate for f would change by if you had a different training data set (from the same population).
- Generally, the more flexible a method is the more variance it has.

The Trade-Off

• The expected test MSE is equal to

$$Expected Test MSE = Bias^{2} + Var + \underbrace{\sigma^{2}}_{Irreducible Error}$$

Method	Bias	Variance	Expected TestMSE
more complex	decrease	increase	Decrease or increase?
simpler	increase	decrease	Unknown!

- It is a challenge to find a method for which both the variance and the squared bias are low.
 - This trade-off is one of the most important recurring themes in this course.

Test MSE, Bias and Variance

Black: Truth

Orange: Linear Estimate Blue: smoothing spline

Green: smoothing spline (more

flexible)

How to calculate MSE in R?

- Consider the linear regression models
 - Recall $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - Given the dataset DS, we compute its training MSE

```
>lm.fit <- lm(y~x,data=DS)
>mean((y-predict(lm.fit,DS))^2)
```

• Try it on the Auto data set

y: mpg -- gas mileage (miles per gallon)

x: horsepower -- engine horsepower

Training MSE is 23.94366

The Classification Setting

• For a regression problem, we used the MSE to assess the accuracy of the statistical learning method

• For a classification problem we can use the error rate.

Evaluation of classification models

- First, get a confusion matrix
 - Counts of test records that are correctly (or incorrectly) predicted by the classification model

Actual Class

Predicted Class

	Class = 1	Class = 0
Class = 1	f ₁₁	f_{10}
Class = 0	f_{01}	$\mathbf{f_{00}}$

 \mathbf{f}_{11} is the number of records that are actually 1 and are predicted to be 1.

 \mathbf{f}_{10} is the number of records that are actually 1 and are predicted to be 0 .

 \mathbf{f}_{00} and \mathbf{f}_{01} are defined similarly.

Then compute error rate

Accuracy =
$$\frac{\text{\# correct predictions}}{\text{total \# of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Error rate = $\frac{\text{\# wrong predictions}}{\text{total \# of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$

An Example for Confusion Matrix

- Given the following table of 10 observations with their actual y value and predicted y value.
 - Draw your confusion matrix.
 - Calculate the accuracy rate and error rate.

Obs.	1	2	3	4	5	6	7	8	9	10
Actual value	Yes	Yes	No	No	No	No	No	No	Yes	No
Predicted value	No	Yes	Yes	Yes	No	Yes	Yes	No	No	No

An Example for Confusion Matrix

• Confusion matrix:

Actual Class

	Class = Yes	Class = No
Class = Yes		
Class = No		

Obs.	1	2	3	4	5	6	7	8	9	10
Actual value	Yes	Yes	No	No	No	No	No	No	Yes	No
Predicted value	No	Yes	Yes	Yes	No	Yes	Yes	No	No	No

An Example for Confusion Matrix

Confusion matrix:

Actual Class

Predicted Class

	Class = Yes	$Class = N_0$
Class = Yes	1	2
Class = No	4	3

Accuracy =
$$(1+3)/10=0.4$$

Error rate = $(4+2)/10=0.6$

Obs.	1	2	3	4	5	6	7	8	9	10
Actual value	Yes	Yes	No	No	No	No	No	No	Yes	No
Predicted value	No	Yes	Yes	Yes	No	Yes	Yes	No	No	No

How to Calculate Error Rate in R Birkl

- In logistic regression, calculate the training error rate
 - Building the glm.fit
 - Using glm.fit to make probability predictions
 - Set a threshold (could be 0.5, or other number) to make qualitative predictions based on the probability predictions
 - Using table() function to build a confusion matrix
 - Using mean() function to calculate the error rate
- Try it on the Default data set

Code


```
glm.fit <- glm(default~balance,data = Default, family=binomial)
dim(Default)
#[1] 10000 4
glm.probs <- predict(glm.fit, Default, type="response")
glm.pred <- rep("Yes",10000)
glm.pred[glm.probs<.5] <- "No"
table(glm.pred,default)
default
glm.pred No Yes
No 9625 233
Yes 42 100
```