

Fondamenti di Chimica industriale

20 Febbraio 2015

Esercizio N. 1

L'ossido di etilene è prodotto per ossidazione catalitica dell'etilene:

$$C_2H_4(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_4O(g)$$

Una reazione secondaria è la combustione dell'etilene a diossido di carbonio.

- · Alimentazione al reattore: 2 moli di C₂H₄ per mole di O₂.
- Reattore: conversione 25%, resa 70% (C₂H₄O prodotto/ C₂H₄ consumato).
- Separatore: C₂H₄ e O₂ sono riciclati al reattore, C₂H₄O esce come prodotto principale, i sottoprodotti sono scaricati.
 - Si etichetti lo schema di processo e si proceda al calcolo dei gradi di libertà con il metodo delle tie streams.
 - Si proceda alla quantificazione delle correnti materiali di processo per una produzione di 1500 kg/giorno di ossido di etilene.

Esercizio N. 2

Monossido di carbonio a 25°C e vapore a 150°C sono alimentati ad un reattore in cui ha luogo la reazione di *water-gas shift*:

$$CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$$

I gas prodotti hanno la seguente composizione (% in volume): 40% idrogeno, 40% diossido di carbonio, 20% vapor d'acqua. I gas, uscenti dal reattore a 500 °C e aventi una portata di 2.5 Nm³/h, sono inviati ad un condensatore. La corrente gassosa e la corrente liquida in uscita dal condensatore sono in equilibrio a 15°C e 1 atm. Si consideri la corrente liquida costituita da acqua pura. La tensione di vapore dell'acqua a 15°C è pari a 12.788 mmHg.

- Disegnare lo schema di processo.
- Determinare l'eccesso di vapore alimentato al reattore, la corrente liquida (kg/h) in uscita dal condensatore e il fabbisogno di potenza termica (kW) del reattore.

	C_p (kJ/mol·K)	ΔH_f^0 (kJ/mol)
СО	0.038	- 110.5
CO ₂	0.039	- 393.5
H_2	0.030	
H ₂ O(g)	0.036	- 241.8

Esercizio N. 3

Legno umido viene essiccato in un essiccatore rotativo in continuo a pressione atmosferica.

Calcolare:

- l'umidità assoluta e l'entalpia specifica dell'aria uscente dall'essiccatore;
- l'umidità residua (% in peso) del legno essiccato (assumendo un peso molecolare dell'aria secca di 29).