PCS5024 Atividade 3

Previsão de receita de um norte-americano baseado na base adult

Aluno: Filipe Assis Mourão

Número Usp: 8988914

Neste terceiro exercício foi pedido para se continuar à análise da base de dados "Adult Census Income" utilizando outros algoritmos.

Tal base de dados possui 15 colunas, 14 sendo features como idade, nível de escolaridade e estado civil, além de uma coluna dizendo se o descrito cidadão americano ganhava mais ou menos de 50 mil dólares anualmente.

A base de dados está amplamente disponível no site de competições kaggle, onde também é possível discutir possíveis soluções para o problema. As melhores acurácias para este problema variam entre 84% e 88% . Para se obter o melhor resultado possível, foi necessário primeiro um pré-processamento dos dados.

Inicialmente notou-se que a base possuía dados faltantes em 3 das 14 colunas, eram estas "workclass" que aparecia em cerca de 5.64% das linhas, "occupation" que aparecia em cerca de 5.66% das linhas e "native.country" que aparecia em cerca de 1.79% das linhas. Para simplificar o problema foi decidido que todas as linhas que possuíam dados faltantes seriam excluídas do problema, nisso o número total de 32561 linhas se reduziu para 30162 uma perda de 7.4% dos dados disponíveis.

Após à remoção de dados faltantes, foram feitas duas mudanças recomendadas por soluções que obtiveram uma alta acurácia no kaggle, a primeira é alterar à coluna de status matrimonial para casado ou solteiro, ao invés de uma das 7 possíveis possibilidades inicias. A segunda foi retirar à coluna de educação na forma numerada, pois representava os mesmos dados da coluna de educação. Finalmente, às colunas "income" e "sex" foram convertidas em colunas com dados binários.

Após isso, foi notado que 6 colunas possuíam valores discretos, dessa forma, foi necessário decompor essas colunas em colunas com indicadores, através da função get_dummies() da biblioteca pandas.

Em seguida, foi feita uma normalização entre os valores 0 e 1 em todas as 5 colunas com valores contínuos, utilizando a função preprocessing.MinMaxScaler() da biblioteca sklearn, para que a ordem de grandeza dos valores não influenciasse na construção do nosso modelo classificador.

Após a decomposição e normalização foi feita um mapa de calor com a correlação entre cada uma das colunas e a coluna "income" com o objetivo de escolher as colunas com maior relevância para criar o modelo classificador. Um mapa de calor contendo as 5 variáveis mais significativas é apresentado abaixo.

Pela correlação, percebe-se que as variáveis mais indicativas de renda são o status civil do entrevistado e se a pessoa entrevistada é o marido do casamento.

Foram então finalmente criados diferentes modelos utilizando um diferente número de variáveis significativas (3,5,10, 20 e 30), os dados foram divididos em 60% para treinamento, 20% para validação cruzada e 20% para teste.

Imagem 1: Mapa de calor com a correlação das 5 variáveis mais relevantes

Para cada algoritmo utilizado foi feito um hyperparameter tuining para se obter o melhor resultado possível. A descrição dos parâmetros otimizados em cada algoritmo é feita a seguir:

- KNN: Número de vizinhos
- Naive bayes: Tipo de algoritmo utilizado (gaussiano, bernoulli ou multinominal)
- Logistic Regression: A constante C que indica o quão forte será à regularização
- Decision Tree: Tamanho máximo da árvore
- Random Forest: Número de árvores utilizadas e tamanho máximo da árvore

Os 3 melhores resultados de cada algoritmo utilizando os dados de validação cruzada podem ser vistos na tabela abaixo:

Algorithm	number of relevant variables	accuracy	precision	recall	f1-score
Random Forest	20	0,858776728	0,8101983	0,568588469	0,668224299
Random Forest	30	0,858776728	0,81556196	0,562624254	0,665882353
Random Forest	20	0,857782198	0,808530806	0,565275017	0,665366615
logistic regression	30	0,846842367	0,757255937	0,570576541	0,650793651
logistic regression	30	0,846179347	0,756398941	0,567925779	0,648750946
naive bayes	30	0,771423836	0,526903974	0,843605036	0,64866242

logistic	30	0,845847837	0,755516328	0,567263088	0,647993944
regression					
naive bayes	30	0,813194099	0,615338164	0,675281643	0,643917852
naive bayes	20	0,820984585	0,641397495	0,644797879	0,643093192
knn	30	0,838554616	0,740774077	0,545394301	0,628244275
decision tree	30	0,82048732	0,654796512	0,597084162	0,624610052
decision tree	30	0,820653075	0,655498908	0,596421471	0,624566273
decision tree	30	0,819658545	0,651766402	0,599072233	0,624309392
knn	20	0,835073761	0,726232394	0,546719682	0,623818526
knn	30	0,834079231	0,726381462	0,540092777	0,619536298

Imagem 2: Top 3 resultados obtidos por cada algoritmo ordenados em maior f1-score

Pelo resultado acima, percebe-se que o algoritmo com o melhor resultado foi o random forest com os hiper-parâmetros maxima_profundidade = 10 numero_de_arvores = 650 e 20 variáveis significativas.

Foi então realizado um novo treinamento utilizando os dados de treinamento e validação cruzada e se obteve os seguintes valores de performance:

Accuracy: 0.853
Precision; 0.777
Recall: 0.573
F1-score: 0.66

O que se aproxima muito dos melhores resultados obtidos no kaggle utilizando algoritmos mais complexos como o xgboost.