Pakorn Watanachaturaporn pakorn.wa@KMITL.ac.th

01076244 Advanced Digital System Design

Bachelor Program in Computer Engineering (B.Eng.)
Faculty of Engineering

King Mongkut's Institute of Technology Ladkrabang

Clocked Synchronous State-Machine Design

L.	Construct a	corresponding to						
	or	using mnemonic names						
	for the states.							
2.	(Optional) Minimize the state/output table.	in the						
3.	Choose a set of	to the named state.						
4.	the sta	te-variable combination						
	into the state/output	into the state/output table to create						
	that sh	lows the desired						
	combination	n and for each						
	state/input combinat	rion						

5.	Choose a	for the state memory.						
6.	Constructre	that shows theequired to obtain the desired next						
	state for each/input combination.							
7.	Derive	from the						
8.	Derive table.	from the transition/output						
9.		that shows the state-variable						
	storage elements a and output equation	and realized the required excitation ons.						

Design a clocked synchronous state machine with two inputs, A and B, and a single output Z that is 1 if:

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

พระจอมเกล้าลาดกระบัง
pakorn.wa@kmitl.ac.th

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

Timing diagram for example state machine

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

			А	В		
Meaning	S	00	01	11	10	Z
Initial state	INIT					0
			S	*		

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

Otherwise, the output should be 0.

AB

							Meaning	S	00	01	11	10	Z
Meaning	S	00	01	B 11	10	Z	Initial state	INIT					0
Initial state	INIT					0	Got a 0 on A	A0					0
							Got a 1 on A	A1					0
			S	*	_								
									_				
										S	*		

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

		A B					
Meaning	S	00	01	11	10	Z	
Initial state	INIT	Α0	A0	A1	A1	0	
Got a 0 on A	A0					0	
Got a 1 on A	A1					0	
		S*					

Meaning	S	00	01	11	10	Z
Initial state	INIT	A0	A0	A1	A1	0
Got a 0 on A	A0					0
Got a 1 on A	A1					0
Got two equal A inputs	OK					1
			S	*		

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

		AB					
Meaning	S	00	01	11	10	Z	
Initial state	INIT	Α0	A0	A1	A1	0	
Got a 0 on A	A0	OK	OK	A1	A1	0	
Got a 1 on A	A1					0	
Got two equal A inputs	OK					1	
			5	*			

			A B					
Meaning	S	00	01	11	10	Z		
Initial state	INIT	A0	A0	A1	A1	0		
Got a 0 on A	A0	OK	OK	A1	A1	0		
Got a 1 on A	A1					0		
Got two equal A inputs	OK					1		
			S	*				

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

			A B						
Meaning	S	00	01	11	10	Ζ			
Initial state	INIT	Α0	A0	A1	A1	0			
Got a 0 on A	A0	OK	OK	A1	A1	0			
Got a 1 on A	A1	A0	A0	OK	OK	0			
Got two equal A inputs	OK					1			
			S	*					

			A B					
Meaning	S	00	01	11	10	Z		
Initial state	INIT	Α0	Α0	A1	A1	0		
Got a 0 on A	A0	OK	OK	A1	A1	0		
Got a 1 on A	A1	A0	A0	OK	OK	0		
Got two equal A inputs	OK		OK	OK		1		
			S	*				

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

			AB					
Meaning	\mathbf{S}	00	01	11	10	Z		
Initial state	INIT	Α0	Α0	A1	A1	0		
Got a 0 on A	A0	OK	OK	A1	A1	0		
Got a 1 on A	A1	A0	A0	OK	OK	0		
Got two equal A inputs	OK	?	OK	OK	?	1		
			S	*				

		A B						
Meaning	S	00	01	11	10	Z		
Initial state	INIT	Α0	Α0	A1	A1	0		
Got a 0 on A	A0			A1	A1	0		
Got a 1 on A	A1	A0	A0			0		
			S	; *				

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

			Α	В		
Meaning	S	00	01	11	10	Z
Initial state	INIT	A0	A0	A1	A1	0
Got a 0 on A	A0	OK0	OK0	A1	A1	0
Got a 1 on A	A1	A0	A0	OK1	OK1	0
Two equal, A=0 last	OK0					1
Two equal, A=1 last	OK1					1
			5	S*		

			В	}		
Meaning	S	00	01	11	10	Z
Initial state	INIT	A0	A0	A1	A1	0
Got a 0 on A	Α0	OK0	OK0	A1	A1	0
Got a 1 on A	A1	A0	A0	OK1	OK1	0
Two equal, A=0 last	OK0					1
Two equal, A=1 last	OK1					1
			S	S *		

- A had the same value at each of the two previous clock ticks, or
- B has been 1 since the last time that the first condition was true.

			Α	В	
Meaning	S	00	01	11	10
nitial state	INIT	A0	A0	A1	A1
Got a 0 on A	A0	OK0	OK0	A1	A1
Got a 1 on A	A1	A0	A0	OK1	OK1
Two equal, A=0 last	OK0	OK0	OK0	OK1	A1
Two equal, A=1 last	OK1				
			5	S *	

			Α	В		
Meaning	S	00	01	11	10	Z
Initial state	INIT	A0	A0	A 1	A1	0
Got a 0 on A	Α0	OK0	OK0	A1	A1	0
Got a 1 on A	A1	A0	A0	OK1	OK1	0
Two equal, A=0 last	OK0	OK0	OK0	OK1	A1	1
Two equal, A=1 last	OK1					1
			5	S *		

State Minimization

		A B					
Meaning	S	00	01	11	10	Z	
Initial state	INIT	Α0	Α0	A1	A1	0	
Got a 0 on A	A0	OK0	OK0	A1	A1	0	
Got a 1 on A	A1	A0	A0	OK1	OK1	0	
Two equal, A=0 last	OK0	OK0	OK0	OK1	A1	1	
Two equal, A=1 last	OK1	A0	OK0	OK1	OK1	1	
			S	S *			

pakorn.wa@kmitl.ac.th

Minimal state table

			Α	В	
Meaning	S	00	01	11	10
Initial state	INIT	A0	A0	A1	A1
Got a 0 on A	A0	OK00	OK00	A1	A1
Got a 1 on A	A1	A0	A0	OK11	OK11
Got 00 on A	OK00	OK00	OK00	OKA1	A1
Got 11 on A	OK11	A0	OKA0	OK11	OK11
OK, got a 0 on A	OKA0	OK00	OK00	OKA1	A1
OK, got a 1 on A	OKA1	A0	OKA0	OK11	OK11
		S*			

			Α	В		
Meaning	S	00	01	11	10	Z
Initial state	INIT	A0	A0	A1	A1	0
Got a 0 on A	A0	OK00	OK00	A1	A1	0
Got a 1 on A	A1	A0	A0	OK11	OK11	0
Got 00 on A	OK00	OK00	OK00	A001	A1	1
Got 11 on A	OK11	A0	A110	OK11	OK11	1
Got 001 on A, B=1	A001	A0	AE10	OK11	OK11	1
Got 110 on A, B=1	A110	OK00	OK00	AE01	A1	1
Got bb10 on A, B=1	AE10	OK00	OK00	AE01	A1	1
Got bb01 on A, B=1	AE01	A0	AE10	OK11	OK11	1
			S	; *		

Two state S1 and S2 are equivalent if:

1. S1 and S2 must	at the state-machine output(s)

2. For each input combination, S1 and S2 must have either _____

_____ or _____.

			Α	В		
Meaning	S	00	01	11	10	Z
Initial state	INIT	A0	A0	A1	A1	0
Got a 0 on A	A0	OK00	OK00	A1	A1	0
Got a 1 on A	A1	A0	A0	OK11	OK11	0
Got 00 on A	OK00	OK00	OK00	OKA1	A1	1
Got 11 on A	OK11	A0	OKA0	OK11	OK11	1
OK, got a 0 on A	OKA0	OK00	OK00	OKA1	A1	1
OK, got a 1 on A	OKA1	A0	OKA0	OK11	OK11	1
			S	; *		

			Α	В		
Meaning	S	00	01	11	10	Z
Initial state	INIT	A0	A0	A1	A1	0
Got a 0 on A	A0	OK00	OK00	A1	A1	0
Got a 1 on A	A1	A0	A0	OK11	OK11	0
Got 00 on A	OK00	OK00	OK00	A001	A1	1
Got 11 on A	OK11	A0	A110	OK11	OK11	1
Got 001 on A, B=1	A001	A0	AE10	OK11	OK11	1
Got 110 on A, B=1	A110	OK00	OK00	AE01	A1	1
Got bb10 on A, B=1	AE10	OK00	OK00	AE01	A1	1
Got bb01 on A, B=1	AE01	A0	AE10	OK11	OK11	1
			S	S *		

State Assignment

- A ______is the binary combination assigned to a particular state.
- The ______ in a machine with n flip-flops is 2^n , so the number of flip-flops needed to code s states is $\lceil \log_2 s \rceil$, the smallest integer greater than or equal to $\log_2 s$.

		Α	В				
S	00	01	11	10	Z		
INIT	A0	A0	A1	A1	0		
A0	OK0	OK0	A1	A1	0		
A1	A0	A0	OK1	OK1	0		
OK0	OK0	OK0	OK1	A1	1		
OK1	A0	OK0	OK1	OK1	1		

Acc.	an	m	Or	٠+
Assi	וואו		-1	
100	ъ.,		٠.	٠.

	Simplest	Decomposed	One-hot	Almost one-hot
State name	Q1 - Q3	Q1 - Q3	Q1 - Q5	Q1 - Q4
INIT	000	000	00001	0000
A0	001	100	00010	0001
A1	010	101	00100	0010
OK0	011	110	01000	0100
OK1	100	111	10000	1000

 The simplest state assignment 	to the
simplest excitation equations, output equalogic circuit.	tions, and resulting
• Most digital designers rely on	and
for making reasonab assignments.	ne state

• Choose	into which the machine can
easily be forced at reset (00 circuits).	00 or 11 11 in typical
•	that change on each
transition.	
• If there are unused states, then	of the
available state-variable combin	nations to
; i.e.,	the choice of coded
states to the first s n-bit integer	S.

 the set of state 	e variables into
where each b	it or field has a
with respect to the	or
of the machine.	
Consider using	number of state
variables to make a decompo	sed assignment possible.
• Etc.	

When the number of states available with n flip-flops, 2^n , is greater than the number of states required, s.

Two possible approaches:

• Minimal risk.

•	Assume that it	t is possible for the	state machine	e somehow	to get into
	one of the unu	ısed	_ states : hard	dware failu	re, an
	unexpected in	nput, or a design er	ror.		
•	Therefore, all	of the unused state-	variable com	bination a	re
	, and		are r	nade so tha	at, for any
	input combina	ation, the unused sta	ates go to the		state,
	the	_ state, or some oth	er	_ state.	

Minimal cost.

•	Assume that the	machine	an unused	state.

- Therefore, in the transition and excitation tables, the next-state entries of the unused states can be marked as ______
 In most case, this simplifies the excitation logic.
- However, the machine's behavior if it ever does enter an unused state may be pretty weird.

Synthesis Using D Flip-Flops

		АВ				
S	00	01	11	10	Z	
INIT	A0	A0	A1	A1	0	
A0	OK0	OK0	A1	A1	0	
A1	A0	A0	OK1	OK1	0	
OK0	OK0	OK0	OK1	A1	1	
OK1	A0	OK0	OK1	OK1	1	
S*						

	АВ				
Q1 Q2 Q3	00	01	11	10	Z
000	100	100	101	101	0
100	110	110	101	101	0
101	100	100	111	111	0
110	110	110	111	101	1
111	100	110	111	111	1
		Q1* Q	2* Q3*		

State / output table

Transition / output table (possibly minimized)

	АВ				
Q1 Q2 Q3	00	01	11	10	Z
000	100	100	101	101	0
100	110	110	101	101	0
101	100	100	111	111	0
110	110	110	111	101	1
111	100	110	111	111	1
		Q1* Q	2* Q3*		

		АВ					
Q1 Q2 Q3	00	01	11	10	Z		
000	100	100	101	101	0		
100	110	110	101	101	0		
101	100	100	111	111	0		
110	110	110	111	101	1		
111	100	110	111	111	1		
		D1 D	2 D3				

Transition / output table (possibly minimized)

AB Q1 Q2 Q3 00 01 11 10 Z 000 100 100 101 101 0 100 110 110 101 101					
Q1 Q2 Q3	00	01	11	10	Z
000	100	100	101	101	0
100	110	110	101	101	0
101	100	100	111	111	0
110	110	110	111	101	1
111	100	110	111	111	1
		D1 D	2 D3		

A B					
Q1 Q2 Q3	00	01	11	10	Z
000	100	100	101	101	0
100	110	110	101	101	0
101	100	100	111	111	0
110	110	110	111	101	1
111	100	110	111	111	1
		D1 D	2 D3		

พระจอมเกล้าลาดกระบัง pakorn.wa@kmitl.ac.th

Q1 Q2 Q3	00	01	11	10	Z	
000	100	100	101	101	0	
100	110	110	101	101	0	
101	100	100	111	111	0	
110	110	110	111	101	1	
111	100	110	111	111	1	
D1 D2 D3						

In case "don't-cares" are used in the unused states.

В

Q1=0

Q1=1

В

Synthesis Using J-K Flip-Flops

Q	Q*	J	K
0	0	0	d d
0	1	1	d
1	0	d	1
1	1	d	0

АВ						АВ				
Q1 Q2 Q3	00	01	11	10	Z	Q1 Q2 Q3	00	01	11	10
000	100	100	101	101	0	000	1d, Od, Od	1d , Od , Od	1d, Od, 1d	1d, 0d, 1d
100	110	110	101	101	0	100	d0 , 1d , 0d	d0,1d,0d	d0,0d,1d	d0,0d,1d
101	100	100	111	111	0	101	d0,0d,d1	d0,0d,d1	d0,1d,d0	d0,1d,d0
110	110	110	111	101	1	110	d0,d0,0d	d0, d0, 0d	d0,d0,1d	d0,d1,1d
111	100	110	111	111	1	111	d0,d1,d1	d0,d0,d1	d0,d0,d0	d0, d0, d0
Q1* Q2* Q3*				J1 K1 , J2 K2 , J3 K3						

Transition / output table (possibly minimized)

Excitation maps for J1, K1 Assuming that unused states go to state 000

Excitation maps for J2, K2 Assuming that unused states go to state 000

Excitation maps for J3, K3 Assuming that unused states go to state 000

Excitation equations using J-K flip-flops by putting d's in all of the unused state entries

$$J1 = 1$$

 $J2 = Q1 \cdot Q3 \cdot A' + Q3 \cdot A$
 $J3 = A$

$$K1 = 0$$

$$K2 = Q3' \cdot A \cdot B' + Q3 \cdot A' \cdot B'$$

$$K3 = A'$$

