

630.7  
126b  
no. 669  
cop. 8



UNIVERSITY OF  
ILLINOIS LIBRARY  
AT URBANA-CHAMPAIGN  
AGRICULTURE



Illinois  
No. 669

CIRCUIT  
AGRICULTURE LIBRARY

UNIVERSITY OF ILLINOIS  
AGRICULTURE LIBRARY

LIBRARY

# 1960 Performance of EXPERIMENTAL CORN HYBRIDS IN ILLINOIS

NEW MEXICO STATE  
UNIVERSITY

By Earl R. Leng, R. J. Lambert, M. L. Peasley,  
G. L. Ross, and K. E. Williams

Location of  
test fields



Bulletin 669

UNIVERSITY OF ILLINOIS · AGRICULTURAL EXPERIMENT STATION

## CONTENTS

|                                                                                            | Page |
|--------------------------------------------------------------------------------------------|------|
| MATERIAL TESTED .....                                                                      | 3    |
| FIELD PROCEDURES AND ANALYSIS OF DATA.....                                                 | 5    |
| MEASURING PERFORMANCE .....                                                                | 6    |
| TEST RESULTS .....                                                                         | 6    |
| EXTREME NORTHERN ILLINOIS (Woodstock): Double Crosses.....                                 | 7    |
| NORTHERN ILLINOIS (DeKalb): Double Crosses and Three-Way<br>Crosses and Standards.....     | 8    |
| WEST NORTH-CENTRAL ILLINOIS (Galesburg): Double Crosses.....                               | 16   |
| NORTH-CENTRAL ILLINOIS (Peoria): Double Crosses.....                                       | 17   |
| EAST NORTH-CENTRAL ILLINOIS (Ashkum): Double Crosses.....                                  | 18   |
| CENTRAL ILLINOIS (Stanford): Double Crosses.....                                           | 19   |
| WEST-CENTRAL ILLINOIS (Bowen): Double Crosses.....                                         | 20   |
| EAST-CENTRAL ILLINOIS (Urbana): Double Crosses and<br>Three-Way Crosses and Standards..... | 21   |
| WEST SOUTH-CENTRAL ILLINOIS (Greenfield): Double Crosses.....                              | 29   |
| SOUTHERN ILLINOIS (Brownstown): Double Crosses.....                                        | 30   |
| EXTREME SOUTHERN ILLINOIS (Carbondale): Double Crosses.....                                | 32   |
| WEST EXTREME SOUTHERN ILLINOIS (Wolf Lake): Double Crosses.....                            | 33   |
| DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX<br>TO TABLES .....                       | 34   |

Special acknowledgment is due R. W. Jugenheimer, Assistant Dean and Assistant Director of the Agricultural Experiment Station, who developed a considerable amount of the material in this bulletin. Acknowledgment is also due W. C. Jacobs and R. D. Seif for processing the data.

---

Urbana, Illinois

March, 1961

Publications in the Bulletin series report the results of investigations made  
or sponsored by the Experiment Station

# PERFORMANCE OF EXPERIMENTAL CORN HYBRIDS IN ILLINOIS, 1960

By EARL R. LENG, R. J. LAMBERT, M. L. PEASLEY,  
G. L. ROSS, and K. E. WILLIAMS<sup>1</sup>

ONE OF THE OBJECTIVES OF CORN BREEDERS at the Illinois Agricultural Experiment Station is to develop improved corn inbreds and hybrids for use by seedsmen and farmers of the state. Such development requires considerable breeding work and adequate testing of performance at a number of locations and for a period of years. This bulletin summarizes results of experimental corn hybrid performance trials conducted in 1960. The experimental corn hybrids tested were selected on the basis of their performance in preliminary tests or in advanced tests of previous years.

In 1960 experimental corn hybrids were tested at twelve different locations in the state: Ashkum, Bowen, Brownstown, Carbondale, DeKalb, Galesburg, Greenfield, Peoria, Stanford, Urbana, Wolf Lake, and Woodstock. The maturity series tested at each location, the soil types, the distribution of rainfall during the growing season, dates of planting and harvesting, and planting rates per acre are given in Table 1.

## MATERIAL TESTED

A total of 205 corn hybrids, consisting of 109 double crosses, 93 three-way crosses, and 3 single crosses, were tested in advanced corn performance trials in 1960. Most of the hybrids tested were developed by corn breeders at the University of Illinois.

**Double crosses tested.** Double crosses tested were divided into maturity groups, each consisting of a different set of 25 hybrids. The groups used were based on the AES (Agricultural Experiment Station) maturity series; the groups adapted to Illinois range in maturity from "600" in extreme northern Illinois to the "900" group in southern areas of the state. For testing purposes, hybrids comparable in maturity to those of the AES "800" series were divided into "800" and "850" series. The "800 series" hybrids were grown in north-central Illinois and the "850 series" in central Illinois. Illinois Station hybrids of comparable maturity rating are as follows: 600 series = Illinois 1555A; 700 series = Illinois 3152; 800 series = Illinois 1421; 850 series = Illinois 1570; and 900 series = Illinois 1851.

<sup>1</sup>EARL R. LENG, Professor of Agronomy; R. J. LAMBERT, and M. L. PEASLEY, Research Assistants; G. L. ROSS, and K. E. WILLIAMS, Crops Testing Technicians.

**Three-way crosses tested.** Three-way crosses are useful for evaluating the combining ability of an inbred line. Thirty-one inbreds crossed with three single-cross testers, (WF9 × Oh43), (WF9 × B37), and (B41 × Oh7A), were tested at Brownstown, DeKalb, and Urbana in 1959 and 1960. The test at Brownstown, however, was abandoned in 1960 because of poor stand, so 1959 and 1960 summaries are available only for DeKalb and Urbana.

Table 1.—GENERAL INFORMATION:  
Illinois Experimental Corn Hybrids, 1960

(All planting rates 16,000 plants per acre, except at Galesburg where it was 18,000, and at Brownstown, where it was 14,000)

| Location               | Maturity series tested | Soil type              | Monthly rainfall (in.) |      |      |      | Date of planting | Date of harvest |  |
|------------------------|------------------------|------------------------|------------------------|------|------|------|------------------|-----------------|--|
|                        |                        |                        | May                    | June | July | Aug. |                  |                 |  |
| Northern Illinois      |                        |                        |                        |      |      |      |                  |                 |  |
| Woodstock              | 600                    | Proctor silt loam      | 5.6                    | 3.9  | 3.0  | 2.3  | May 15           | Oct. 29         |  |
| DeKalb                 | 600, 700               | Flanagan silt loam     | 6.2                    | 4.1  | 4.8  | 3.0  | May 24           | Nov. 5          |  |
| North-Central Illinois |                        |                        |                        |      |      |      |                  |                 |  |
| Galesburg              | 800                    | Sable silty clay loam  | 6.1                    | 5.8  | 2.2  | 5.4  | June 1           | Oct. 28         |  |
| Peoria                 | 700                    | Muscantine silt loam   | 6.3                    | 5.4  | 3.5  | 5.3  | June 8           | Nov. 17         |  |
| Ashkum                 | 700                    | Milford clay loam      | 3.1                    | 5.0  | 1.1  | 5.1  | May 31           | Nov. 15         |  |
| Stanford               | 800                    | Muscantine silt loam   | 3.6                    | 8.3  | 4.8  | 2.2  | May 12           | Oct. 6          |  |
| Central Illinois       |                        |                        |                        |      |      |      |                  |                 |  |
| Bowen                  | 850                    | Virden silty clay loam | 6.7                    | 8.6  | 3.7  | 5.0  | June 1           | Oct. 25         |  |
| Urbana                 | 850, 900               | Brenton silt loam      | 4.1                    | 6.2  | 2.8  | 1.3  | May 4            | Oct. 6          |  |
| Southern Illinois      |                        |                        |                        |      |      |      |                  |                 |  |
| Greenfield             | 850, 900               | Herrick silt loam      | 5.8                    | 4.2  | 3.1  | 2.1  | June 2           | Oct. 22         |  |
| Brownstown             | 900                    | Cisne silt loam        | 5.9                    | 7.2  | 1.8  | 2.2  | June 9           | Nov. 17         |  |
| Carbondale             | 900                    | Weir silt loam         | 5.5                    | 4.1  | 1.2  | 3.8  | June 2           | Oct. 7          |  |
| Wolf Lake              | 900                    | Riley fine sandy loam  | 3.9                    | 3.5  | 2.8  | 4.6  | May 10           | Oct. 4          |  |

**COOPERATORS:** EARL HUGHES, *McHenry county*; RALPH ANDERSON, *Knox county*; MELVIN KRAFT, *Iroquois county*; W. T. SCHWENK AND SONS, *Peoria county*; ELDON GOLDEN, *Hancock county*; ROBERT BUTH, *McLean county*; CHARLES ROSS, *Macoupin county*; Shawnee High School, *Union county*. Trials in DeKalb and Champaign counties were located on University of Illinois farms managed by R. E. BELL and C. H. FARNHAM. P. E. JOHNSON, Assistant Professor of Soil Fertility, supervised field operations on the test in Fayette county, and D. R. BROWNING of Southern Illinois University supervised field operations on the Union county and Jackson county test fields.

Performance trials of this type are necessary to properly evaluate improved corn inbreds. The performance of an inbred in a combination with three different single-cross testers is a measure of the combining ability of the inbred line being tested. Tests at a number of locations and for several years more accurately measure combining ability than tests for only one year or at one location.

**Availability of material tested.** A number of the Illinois Station corn hybrids listed in this report are not yet in commercial production. The Experiment Station release policy is to make available to the public seed of inbred lines that have demonstrated superior performance for desirable agronomic characters. Small amounts of seed (up to 100 kernels) of *released* Illinois inbred lines are available for a nominal fee. Requests for seed of released Illinois inbred lines should be addressed to the Department of Agronomy, University of Illinois, Urbana, Illinois. Station Bulletin 657 lists the Illinois inbred lines released up to and including 1960, and also presents data on some of their important agronomic characteristics. Seed of single crosses that are used as parents for some Illinois Station hybrids reported in this bulletin may be obtained from the Illinois Seed Producers Association, Champaign, Illinois.

## FIELD PROCEDURES AND ANALYSIS OF DATA

**Method of planting.** All test locations except Carbondale were planted with a mounted four-row John Deere tractor planter, slightly modified for planting experimental plots. The Carbondale location was planted by hand. All locations were planted on land prepared in the normal manner for corn. Individual plots were one row 11 hills in length. Planting simulated "power check," with a variable number of kernels being dropped approximately each 20 inches, depending on the planting rate used. All plots were band-treated for weed control with Atrazine at a rate of 12 pounds per acre. The plots were not thinned.

**Method of harvest.** All plots were harvested with a one-row Ford picker-sheller modified to harvest experimental plots. The shelled corn from each plot was bagged, weighed, and sampled for moisture using a Radson moisture meter. No adjustment was made for dropped ears or for ears on broken stalks that were not harvested.

**Field-plot design and analysis of data.** The experimental designs used for all trials were lattice designs with 3 replications. All field data were recorded on mark-sense cards and processed with digital computers at the University of Illinois.

## MEASURING PERFORMANCE

All hybrids tested were compared for grain yield, kernel moisture, erect plants at harvest, and stand. Data on other agronomic characters such as dropped ears, leaf blight reaction, stalk rot, and smutted plants were recorded when natural conditions permitted measuring true varietal differences.

**Yield of grain.** Acre yields are reported as shelled corn containing 15.5 percent moisture, the upper limit for No. 2 corn.

**Erect plants.** A count of erect plants in each plot of an entry was taken at harvest time for each location. Only plants leaning at an angle of 45° or more or broken below the ear were considered lodged; all others were counted as erect.

**Stand.** A count was made in late summer at all locations of the total number of plants in each plot of a hybrid. The percent stand was computed by comparing the actual number of plants in each plot with the number of kernels planted. Stand differences may have been caused by failure of seed to germinate or by disease, insect damage, cultivation injury, or other factors.

## TEST RESULTS

Results from the tests are summarized in Tables 2 to 13. The following facts should be considered when comparing the performance of hybrids in a test.

1. Results covering two and three years at a location are more reliable than results for only one year. The performance of hybrids tested only in 1960 should not be used as a measure of their true ability since further testing will be necessary before valid conclusions can be drawn. This is true of all hybrids tested at Ashkum, Bowen, Carbon-dale, Galesburg, Greenfield, Stanford, Wolf Lake, and Woodstock. Results from these tests are not ranked by yield but are listed according to hybrid designation. Two- and three-year summaries are available for Brownstown, DeKalb, Peoria, and Urbana, and entries are ranked according to yield in these summaries.

2. Small differences between hybrids do not necessarily indicate that one hybrid is truly superior to another. Interpretation of the data and comparisons between hybrids are made more meaningful by use of certain statistical procedures. One procedure used to compare the difference between hybrids is the "Multiple Range Test."<sup>1</sup> Using this

<sup>1</sup> DUNCAN, D. B. "Multiple Range and Multiple F Tests." *Biometrics* 11 (1) 1-43, 1955.

statistical test, the difference necessary for significance between two or more hybrids can be calculated. Whenever the observed difference between two or more hybrids exceeds the amount calculated for that range, the two hybrids are significantly different. To find the difference necessary for significance the hybrids are first ranked according to performance for a particular character. Then the "number in range" can be computed by counting the hybrids to be compared and the number of hybrids falling between them in performance. For example, if hybrids A and E are to be compared and the rank in performance is A, B, C, D, E, the "number in range" would be 5. When the "number in range" has been determined, the corresponding "difference necessary for significance" can be read from the figures at the bottom of each table. If the observed difference exceeds the "difference necessary for significance," the performances of the hybrids are considered different.

Table 2.—DOUBLE CROSSES OF 600 MATURITY  
Tested at Woodstock, 1960

| Entry                                               | Pedigree | Acre yield | Moisture in grain                     | Erect plants | Stand |     |
|-----------------------------------------------------|----------|------------|---------------------------------------|--------------|-------|-----|
| 1960 results                                        |          |            |                                       |              |       |     |
| III. 1277 (WF9×M14)(I.205×187-2).....               | 92.0     | 21.7       | 90.5                                  | 95.4         |       |     |
| III. 1555A (check) (WF9×Oh51A)(I.224×Oh28).....     | 76.5     | 20.1       | 98.3                                  | 87.8         |       |     |
| III. 1559B* (WF9×Oh51A)(M14×Oh28).....              | 87.2     | 22.5       | 98.3                                  | 87.8         |       |     |
| III. 1861 (WF9×M14)(I.224×Oh28).....                | 68.4     | 22.5       | 92.1                                  | 87.1         |       |     |
| III. 1862 (WF9×M14)(I.205×Oh43).....                | 87.2     | 24.8       | 92.3                                  | 98.4         |       |     |
| III. 1936 (WF9×Hy2)(M14×B14).....                   | 78.0     | 22.4       | 93.8                                  | 87.8         |       |     |
| III. 1952 (W64A×A545)(M14×B14).....                 | 93.6     | 22.2       | 93.4                                  | 93.1         |       |     |
| III. 1955 (W64A×B14)(M14×A297).....                 | 83.9     | 20.9       | 97.4                                  | 83.3         |       |     |
| III. 1957 (W64A×B14)(M14×A545).....                 | 79.9     | 20.4       | 98.1                                  | 89.3         |       |     |
| III. 1958 (Oh26A×M14)(B14×A545).....                | 81.5     | 22.8       | 94.1                                  | 91.6         |       |     |
| III. 1959 (W64A×M14)(B14×A297).....                 | 94.1     | 23.4       | 92.8                                  | 95.4         |       |     |
| III. 1960 (W64A×M14)(B14×A545).....                 | 86.1     | 22.7       | 95.9                                  | 96.9         |       |     |
| III. 1961 (W64A×A239)(B14×A545).....                | 87.5     | 22.9       | 100.0                                 | 86.3         |       |     |
| III. 1962 (W64A×A297)(B14×A545).....                | 84.6     | 21.5       | 94.5                                  | 92.4         |       |     |
| III. 1969A (WF9×R165)(R168×B14).....                | 80.1     | 24.4       | 96.2                                  | 81.0         |       |     |
| III. 3009 (W64A×A297)(B14×B21).....                 | 86.0     | 21.9       | 95.4                                  | 96.2         |       |     |
| III. 3152 (WF9×M14)(B14×Oh43).....                  | 86.8     | 23.5       | 97.5                                  | 94.6         |       |     |
| III. 3173 (A545×N24)(B14×Oh43).....                 | 84.0     | 22.8       | 96.1                                  | 90.1         |       |     |
| III. 3174 (A297×Oh43)(B37×Oh28).....                | 76.3     | 22.8       | 92.7                                  | 93.9         |       |     |
| III. 3301 (M14×Oh43)(R168×B14).....                 | 85.2     | 22.8       | 97.5                                  | 96.2         |       |     |
| III. 3302A-1 <sup>b</sup> (W64A×M14)(R172×B14)..... | 82.5     | 22.6       | 94.0                                  | 90.1         |       |     |
| III. 3303 (M14×Oh43)(R172×B14).....                 | 81.3     | 23.0       | 95.7                                  | 90.1         |       |     |
| III. 3313 (W64A×Oh43)(L12×B14).....                 | 69.5     | 23.8       | 98.9                                  | 78.7         |       |     |
| III. 6201 (WF9×B14)(R53×Oh7).....                   | 77.2     | 21.2       | 83.5                                  | 96.9         |       |     |
| III. 6202 (W64A×Oh43)(Oh51×R53).....                | 84.8     | 20.4       | 90.6                                  | 96.2         |       |     |
| Average.....                                        | 83.0     | 22.5       | 94.8                                  | 91.0         |       |     |
| Number in range                                     |          |            | Difference necessary for significance |              |       |     |
| 2.....                                              |          |            | 3.9                                   | 0.7          | 1.9   | 3.0 |
| 3-5.....                                            |          |            | 4.4                                   | 0.8          | 2.1   | 3.4 |
| 6-10.....                                           |          |            | 4.6                                   | 0.8          | 2.3   | 3.6 |
| 11-15.....                                          |          |            | 4.7                                   | 0.8          | 2.3   | 3.7 |
| 16-25.....                                          |          |            | 4.8                                   | 0.9          | 2.4   | 3.7 |

\* Illinois Station hybrids with A or B endings in the numerical designation are permutations of a basic arrangement.

<sup>b</sup> (-1) indicates that W64A has replaced WF9 in III. 3302A (WF9×M14)(R172×B14).

Table 3.—DOUBLE CROSSES OF 600 MATURITY AND 700 MATURITY AND THREE-WAY CROSSES AND STANDARDS  
Tested at DeKalb, 1958-1960

| Entry                                  | Pedigree     | Acre<br>yield | Molsture<br>in grain                  | Erect<br>plants | Stand  |
|----------------------------------------|--------------|---------------|---------------------------------------|-----------------|--------|
| <b>DOUBLE CROSSES OF 600 MATURITY</b>  |              |               |                                       |                 |        |
|                                        |              | bu.           | perct.                                | perct.          | perct. |
| <b>Summary: 1958-1960</b>              |              |               |                                       |                 |        |
| III. 3173 (A545×N24)(B14×Oh43).....    | 124.3        | 28.9          | 91.0                                  | 96.2            |        |
| III. 3152 (WF9×M14)(B14×Oh43).....     | 122.5        | 28.2          | 87.6                                  | 96.2            |        |
| III. 3174 (A297×Oh43)(B37×Oh28).....   | 118.7        | 27.4          | 86.9                                  | 95.4            |        |
| III. 1962 (W64A×A297)(B14×A545).....   | 118.3        | 24.7          | 86.0                                  | 96.3            |        |
| III. 1936 (WF9×Hy2)(M14×B14).....      | 118.1        | 28.0          | 81.9                                  | 96.4            |        |
| III. 1559B (WF9×Oh51A)(M14×Oh28).....  | 117.9        | 25.9          | 78.7                                  | 96.6            |        |
| III. 1952 (W64A×A545)(M14×B14).....    | 116.6        | 26.7          | 84.4                                  | 96.4            |        |
| III. 3009 (W64A×A297)(B14×B21).....    | 116.1        | 25.8          | 88.3                                  | 94.6            |        |
| III. 1959 (W64A×M14)(B14×A297).....    | 116.1        | 26.0          | 90.6                                  | 97.1            |        |
| III. 1961 (W64A×A239)(B14×A545).....   | 114.2        | 25.1          | 85.7                                  | 97.0            |        |
| III. 1960 (W64A×M14)(B14×A545).....    | 114.0        | 26.4          | 82.7                                  | 96.7            |        |
| III. 1958 (Oh26A×M14)(B14×A545).....   | 113.4        | 25.0          | 80.2                                  | 97.4            |        |
| III. 1955 (W64A×B14)(M14×A297).....    | 111.3        | 24.4          | 88.1                                  | 96.4            |        |
| III. 1957 (W64A×B14)(M14×A545).....    | 110.6        | 26.6          | 80.0                                  | 95.1            |        |
| III. 1555A (WF9×Oh51A)(L224×Oh28)..... | 107.5        | 24.0          | 77.8                                  | 95.5            |        |
| III. 1277 (WF9×M14)(L205×187-2).....   | 105.1        | 26.3          | 65.7                                  | 97.2            |        |
| <b>Average</b> .....                   | <b>115.3</b> | <b>26.2</b>   | <b>83.5</b>                           | <b>96.3</b>     |        |
| Number in range                        |              |               | Difference necessary for significance |                 |        |
| 2.....                                 |              |               | N.S.                                  | 2.2             | N.S.   |
| 3-5.....                               |              |               | N.S.                                  | 2.4             | N.S.   |
| 6-10.....                              |              |               | N.S.                                  | 2.5             | N.S.   |
| 11-16.....                             |              |               | N.S.                                  | 2.6             | N.S.   |
| <b>Summary: 1959-1960</b>              |              |               |                                       |                 |        |
| III. 3303 (M14×Oh43)(R172×B14).....    | 122.7        | 26.8          | 92.6                                  | 98.1            |        |
| III. 3301 (M14×Oh43)(R168×B14).....    | 121.7        | 26.2          | 97.4                                  | 96.9            |        |
| III. 3173 (A545×N24)(B14×Oh43).....    | 118.1        | 27.0          | 92.4                                  | 94.3            |        |
| III. 1962 (W64A×A297)(B14×A545).....   | 117.6        | 23.5          | 86.4                                  | 96.6            |        |
| III. 3302A-1 (W64A×M14)(R172×B14)..... | 115.6        | 25.5          | 92.6                                  | 98.8            |        |
| III. 3174 (A297×Oh43)(B37×Oh28).....   | 113.3        | 26.9          | 87.9                                  | 93.5            |        |
| III. 1960 (W64A×M14)(B14×A545).....    | 113.0        | 24.7          | 91.0                                  | 95.1            |        |
| III. 1959 (W64A×M14)(B14×A297).....    | 112.6        | 24.1          | 91.7                                  | 97.3            |        |
| III. 3152 (WF9×M14)(B14×Oh43).....     | 112.6        | 26.5          | 94.6                                  | 94.4            |        |
| III. 3313 (W64A×Oh43)(L12×B14).....    | 112.5        | 25.1          | 95.3                                  | 94.8            |        |
| III. 3009 (W64A×A297)(B14×B21).....    | 112.3        | 24.7          | 89.9                                  | 93.2            |        |
| III. 1559B (WF9×Oh51A)(M14×Oh28).....  | 111.3        | 25.0          | 90.2                                  | 94.9            |        |
| III. 1952 (W64A×A545)(M14×B14).....    | 110.3        | 25.4          | 90.4                                  | 95.9            |        |
| III. 1936 (WF9×Hy2)(M14×B14).....      | 107.9        | 25.9          | 86.8                                  | 94.6            |        |
| III. 1961 (W64A×A239)(B14×A545).....   | 107.4        | 24.9          | 87.7                                  | 95.5            |        |
| III. 1969A (WF9×R165)(R168×B14).....   | 106.9        | 27.8          | 95.2                                  | 95.1            |        |
| III. 1958 (Oh26A×M14)(B14×A545).....   | 106.7        | 23.6          | 87.3                                  | 96.6            |        |
| III. 1955 (W64A×B14)(M14×A297).....    | 105.8        | 23.1          | 86.0                                  | 95.0            |        |
| III. 1957 (W64A×B14)(M14×A545).....    | 105.7        | 24.4          | 87.0                                  | 93.1            |        |
| III. 1555A (WF9×Oh51A)(L224×Oh28)..... | 100.1        | 23.3          | 85.3                                  | 94.5            |        |
| III. 1277 (WF9×M14)(L205×187-2).....   | 94.7         | 24.2          | 83.7                                  | 95.9            |        |
| <b>Average</b> .....                   | <b>110.9</b> | <b>25.2</b>   | <b>90.1</b>                           | <b>95.4</b>     |        |
| Number in range                        |              |               | Difference necessary for significance |                 |        |
| 2.....                                 |              |               | N.S.                                  | 2.0             | N.S.   |
| 3-5.....                               |              |               | N.S.                                  | 2.2             | N.S.   |
| 6-10.....                              |              |               | N.S.                                  | 2.3             | N.S.   |
| 11-21.....                             |              |               | N.S.                                  | 2.4             | N.S.   |

(Table is continued on next page)

Table 3.—DeKalb—continued

| Entry                                           | Pedigree | Acre yield   | Moisture in grain | Erect plants   | Stand          |
|-------------------------------------------------|----------|--------------|-------------------|----------------|----------------|
| <b>DOUBLE CROSSES OF 600 MATURITY—concluded</b> |          |              |                   |                |                |
|                                                 |          | <i>bu.</i>   | <i>per ct.</i>    | <i>per ct.</i> | <i>per ct.</i> |
| <b>1960 results</b>                             |          |              |                   |                |                |
| III. 1277 (WF9×M14)(I.205×187-2).....           |          | 106.5        | 25.4              | 87.0           | 93.1           |
| III. 1555A (check) (WF9×Oh51A)(I.224×Oh28)..... |          | 104.8        | 25.5              | 93.3           | 92.4           |
| III. 1559B (WF9×Oh51A)(M14×Oh28).....           |          | 106.3        | 26.9              | 87.2           | 93.1           |
| III. 1861 (WF9×M14)(I.224×Oh28).....            |          | 95.5         | 23.5              | 77.1           | 86.3           |
| III. 1863 (WF9×M14)(I.205×Oh43).....            |          | 108.0        | 30.0              | 94.4           | 93.1           |
| III. 1936 (WF9×Hy2)(M14×B14).....               |          | 98.9         | 30.3              | 89.6           | 89.3           |
| III. 1952 (W64A×A545)(M14×B14).....             |          | 98.9         | 28.5              | 95.1           | 93.9           |
| III. 1955 (W64A×B14)(M14×A297).....             |          | 94.9         | 25.6              | 93.4           | 90.1           |
| III. 1957 (W64A×B14)(M14×A545).....             |          | 100.1        | 26.2              | 92.1           | 86.3           |
| III. 1958 (Oh26A×M14)(B14×A545).....            |          | 104.2        | 24.9              | 92.7           | 93.9           |
| III. 1959 (W64A×M14)(B14×A297).....             |          | 104.8        | 26.3              | 96.8           | 94.6           |
| III. 1960 (W64A×M14)(B14×A545).....             |          | 110.8        | 26.8              | 94.1           | 90.9           |
| III. 1961 (W64A×A239)(B14×A545).....            |          | 97.3         | 27.2              | 94.2           | 91.6           |
| III. 1962 (W64A×A297)(B14×A545).....            |          | 113.4        | 25.5              | 95.1           | 93.9           |
| III. 1969A (WF9×R165)(R168×B14).....            |          | 103.1        | 29.9              | 96.5           | 90.9           |
| III. 3009 (W64A×A297)(B14×B21).....             |          | 103.1        | 27.2              | 94.8           | 87.8           |
| III. 3152 (WF9×M14)(B14×Oh43).....              |          | 110.0        | 28.5              | 96.7           | 90.1           |
| III. 3173 (A545×N24)(B14×Oh43).....             |          | 106.9        | 29.8              | 95.0           | 89.3           |
| III. 3174 (A297×Oh43)(B37×Oh28).....            |          | 107.3        | 28.5              | 93.8           | 87.1           |
| III. 3301 (M14×Oh43)(R168×B14).....             |          | 110.4        | 28.2              | 98.2           | 93.9           |
| III. 3302A-1 (W64A×M14)(R172×B14).....          |          | 114.1        | 26.8              | 94.6           | 97.7           |
| III. 3303 (M14×Oh43)(R172×B14).....             |          | 116.6        | 28.5              | 96.0           | 96.2           |
| III. 3313 (W64A×Oh43)(L12×B14).....             |          | 106.6        | 27.2              | 97.5           | 91.6           |
| III. 6201 (WF9×B14)(R53×Oh7).....               |          | 92.6         | 25.1              | 82.9           | 85.6           |
| III. 6202 (W64A×Oh43)(Oh51×R53).....            |          | 83.7         | 23.7              | 86.4           | 84.0           |
| <b>Average</b> .....                            |          | <b>103.9</b> | <b>27.0</b>       | <b>92.5</b>    | <b>91.0</b>    |
| Number in range                                 |          |              |                   |                |                |
| 2.....                                          |          | 4.7          | 1.0               | 2.5            | N.S.           |
| 3-5.....                                        |          | 5.3          | 1.1               | 2.8            | N.S.           |
| 6-10.....                                       |          | 5.6          | 1.1               | 3.0            | N.S.           |
| 11-15.....                                      |          | 5.7          | 1.2               | 3.1            | N.S.           |
| 16-25.....                                      |          | 5.8          | 1.2               | 3.1            | N.S.           |
| Difference necessary for significance           |          |              |                   |                |                |

(Table is continued on next page)

Table 3.—DeKalb—continued

| Entry                                      | Pedigree | Acre yield                            | Moisture in grain | Erect plants   | Stand          |
|--------------------------------------------|----------|---------------------------------------|-------------------|----------------|----------------|
| <b>DOUBLE CROSSES OF 700 MATURITY</b>      |          |                                       |                   |                |                |
|                                            |          | <i>bu.</i>                            | <i>per ct.</i>    | <i>per ct.</i> | <i>per ct.</i> |
| <b>Summary: 1958-1960</b>                  |          |                                       |                   |                |                |
| III. 3152 (WF9×M14)(B14×Oh43).....         |          | 120.5                                 | 28.7              | 86.4           | 92.9           |
| III. 1936 (WF9×Hy2)(M14×B14).....          |          | 119.6                                 | 27.0              | 83.8           | 93.9           |
| AES 702 (WF9×Hy2)(M14×C103).....           |          | 105.1                                 | 28.3              | 78.6           | 97.4           |
| III. 21 (WF9×38-11)(Hy2×187-2).....        |          | 104.3                                 | 27.2              | 71.9           | 97.1           |
| III. 1277 (WF9×M14)(I.205×187-2).....      |          | 102.1                                 | 26.8              | 67.8           | 97.0           |
| <b>Average</b> .....                       |          | <b>110.3</b>                          | <b>27.6</b>       | <b>77.7</b>    | <b>95.7</b>    |
| Number in range                            |          | Difference necessary for significance |                   |                |                |
| 2-5.....                                   |          | <b>N.S.</b>                           | <b>N.S.</b>       | <b>N.S.</b>    | <b>N.S.</b>    |
| <b>Summary: 1959-1960</b>                  |          |                                       |                   |                |                |
| III. 3382 (WF9×R109B)(B14×Oh43).....       |          | 119.1                                 | 28.5              | 93.8           | 94.3           |
| III. 3381 (WF9×R71)(B14×Oh43).....         |          | 116.8                                 | 28.0              | 93.5           | 93.5           |
| III. 3270 (WF9×Oh43)(R74×R168).....        |          | 115.5                                 | 28.1              | 95.8           | 97.0           |
| III. 3303 (M14×Oh43)(R172×B14).....        |          | 114.5                                 | 27.2              | 92.0           | 92.4           |
| III. 3275 (WF9×Oh43)(R114×R168).....       |          | 110.6                                 | 27.1              | 95.1           | 96.3           |
| III. 1936 (WF9×Hy2)(M14×B14).....          |          | 110.1                                 | 24.4              | 89.7           | 90.9           |
| III. 3266 (WF9×Oh43)(R74×R109B).....       |          | 109.8                                 | 28.2              | 89.1           | 88.1           |
| III. 3152 (WF9×M14)(B14×Oh43).....         |          | 109.5                                 | 27.2              | 92.8           | 89.4           |
| III. 3383 (WF9×M14)(R172×Oh43).....        |          | 109.4                                 | 27.2              | 87.3           | 94.3           |
| III. 3265 (WF9×Oh43)(R71×R109B).....       |          | 107.5                                 | 28.4              | 94.8           | 94.7           |
| III. 21 (WF9×38-11)(Hy2×187-2).....        |          | 98.7                                  | 25.0              | 83.1           | 97.0           |
| AES 702 (WF9×Hy2)(M14×C103).....           |          | 92.0                                  | 25.9              | 89.2           | 96.2           |
| III. 1277 (WF9×M14)(I.205×187-2).....      |          | 90.2                                  | 24.9              | 86.8           | 95.5           |
| <b>Average</b> .....                       |          | <b>108.0</b>                          | <b>26.9</b>       | <b>91.0</b>    | <b>93.8</b>    |
| Number in range                            |          | Difference necessary for significance |                   |                |                |
| 2-13.....                                  |          | <b>N.S.</b>                           | <b>N.S.</b>       | <b>N.S.</b>    | <b>N.S.</b>    |
| <b>1960 results</b>                        |          |                                       |                   |                |                |
| AES 702 (WF9×Hy2)(M14×C103).....           |          | 92.1                                  | 26.4              | 85.8           | 92.4           |
| AES 703 (WF9×Oh43)(B14×B38).....           |          | 112.0                                 | 33.1              | 97.4           | 89.3           |
| AES 704 (WF9×Oh43)(B14×B37).....           |          | 111.4                                 | 32.7              | 98.4           | 93.9           |
| AES 705 (WF9×B14)(C103×Oh43).....          |          | 97.2                                  | 32.1              | 97.5           | 90.9           |
| III. 21 (WF9×38-11)(Hy2×187-2).....        |          | 112.4                                 | 24.9              | 89.6           | 94.6           |
| III. 1277 (WF9×M14)(I.205×187-2).....      |          | 97.5                                  | 26.9              | 93.4           | 92.4           |
| III. 1922 (WF9×Hy2)(R71×R105).....         |          | 89.0                                  | 33.4              | 97.2           | 81.8           |
| III. 1936 (WF9×Hy2)(M14×B14).....          |          | 103.3                                 | 27.3              | 95.4           | 81.8           |
| III. 1968 (WF9×B14)(R163×R169).....        |          | 118.6                                 | 27.3              | 92.9           | 90.1           |
| III. 1969 (WF9×B14)(R165×R168).....        |          | 93.0                                  | 28.1              | 93.3           | 90.9           |
| III. 3022 (WF9×B14)(N22A×Oh43).....        |          | 99.1                                  | 32.4              | 97.7           | 96.9           |
| III. 3029 (WF9×B14)(Oh43×Oh45).....        |          | 95.5                                  | 32.8              | 99.1           | 93.1           |
| III. 3042 (WF9×B14)(B40×Oh45).....         |          | 106.6                                 | 31.9              | 95.3           | 96.2           |
| III. 3152 (check) (WF9×M14)(B14×Oh43)..... |          | 103.8                                 | 30.0              | 93.2           | 80.3           |
| III. 3182A (WF9×R105)(R151×R154).....      |          | 100.6                                 | 27.7              | 94.9           | 89.3           |
| III. 3265 (WF9×Oh43)(R71×R109B).....       |          | 110.4                                 | 28.4              | 95.8           | 90.9           |
| III. 3266 (WF9×Oh43)(R74×R109B).....       |          | 96.7                                  | 30.1              | 92.2           | 80.3           |
| III. 3270 (WF9×Oh43)(R74×R168).....        |          | 106.0                                 | 31.1              | 97.6           | 94.6           |
| III. 3275 (WF9×Oh43)(R114×R168).....       |          | 103.2                                 | 28.5              | 98.4           | 93.9           |
| III. 3303 (M14×Oh43)(R172×B14).....        |          | 100.1                                 | 29.2              | 94.7           | 84.8           |
| III. 3315A (WF9×Hy2)(R109B×B14).....       |          | 85.9                                  | 32.6              | 94.9           | 93.1           |
| III. 3347 (H49×H55)(R74×R101).....         |          | 112.9                                 | 31.3              | 92.5           | 94.6           |
| III. 3381 (WF9×R71)(B14×Oh43).....         |          | 110.5                                 | 31.5              | 96.3           | 87.1           |
| III. 3382 (WF9×R109B)(B14×Oh43).....       |          | 116.8                                 | 31.5              | 94.9           | 89.3           |
| III. 3383 (WF9×M14)(R172×Oh43).....        |          | 96.8                                  | 29.6              | 90.7           | 88.6           |
| <b>Average</b> .....                       |          | <b>102.9</b>                          | <b>30.0</b>       | <b>94.8</b>    | <b>90.0</b>    |
| Number in range                            |          | Difference necessary for significance |                   |                |                |
| 2.....                                     |          | <b>16.4</b>                           | <b>3.0</b>        | <b>6.5</b>     | <b>N.S.</b>    |
| 3-5.....                                   |          | <b>18.2</b>                           | <b>3.3</b>        | <b>7.2</b>     | <b>N.S.</b>    |
| 6-10.....                                  |          | <b>19.3</b>                           | <b>3.5</b>        | <b>7.6</b>     | <b>N.S.</b>    |
| 11-15.....                                 |          | <b>19.7</b>                           | <b>3.6</b>        | <b>7.8</b>     | <b>N.S.</b>    |
| 16-20.....                                 |          | <b>20.0</b>                           | <b>3.7</b>        | <b>7.9</b>     | <b>N.S.</b>    |
| 21-25.....                                 |          | <b>20.1</b>                           | <b>3.7</b>        | <b>7.9</b>     | <b>N.S.</b>    |

(Table is continued on next page)

Table 3.—DeKalb—continued

| Entry                                                      | Acre yield  | Moisture in grain | Erect plants | Stand       |
|------------------------------------------------------------|-------------|-------------------|--------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS, SUMMARY: 1959-1960</b> |             |                   |              |             |
|                                                            | bu.         | perct.            | perct.       | perct.      |
| <b>Inbred lines crossed with (WF9 × Oh43)</b>              |             |                   |              |             |
| R71.....                                                   | 99.7        | 30.1              | 94.3         | 88.2        |
| R74.....                                                   | 98.7        | 29.1              | 95.5         | 81.0        |
| R76.....                                                   | 101.2       | 28.8              | 81.4         | 83.4        |
| R78.....                                                   | 99.4        | 29.4              | 91.4         | 88.4        |
| R84.....                                                   | 92.9        | 25.8              | 83.8         | 83.3        |
| R101.....                                                  | 96.0        | 26.4              | 90.5         | 88.3        |
| R104.....                                                  | 99.2        | 28.0              | 91.0         | 81.4        |
| R109B.....                                                 | 99.9        | 28.5              | 96.8         | 83.0        |
| R112.....                                                  | 101.8       | 28.9              | 96.5         | 85.2        |
| R113.....                                                  | 99.3        | 26.7              | 90.3         | 89.5        |
| R114.....                                                  | 99.4        | 27.3              | 95.8         | 84.3        |
| R134.....                                                  | 110.9       | 28.7              | 93.9         | 83.1        |
| R135.....                                                  | 91.7        | 29.8              | 87.5         | 85.6        |
| R151.....                                                  | 107.6       | 28.8              | 90.9         | 89.1        |
| R154.....                                                  | 104.1       | 27.4              | 90.6         | 91.3        |
| R158.....                                                  | 96.7        | 26.2              | 92.4         | 89.5        |
| R159.....                                                  | 100.2       | 30.5              | 93.1         | 83.3        |
| R166.....                                                  | 89.7        | 25.6              | 88.4         | 87.6        |
| R168.....                                                  | 96.0        | 25.5              | 96.2         | 99.5        |
| R172.....                                                  | 98.5        | 28.1              | 92.4         | 96.8        |
| R180.....                                                  | 93.6        | 29.9              | 88.2         | 84.2        |
| R181.....                                                  | 106.2       | 24.6              | 86.0         | 82.0        |
| R182.....                                                  | 98.8        | 26.6              | 97.6         | 84.5        |
| R183.....                                                  | 89.2        | 28.7              | 89.9         | 85.5        |
| R192.....                                                  | 94.7        | 29.1              | 93.6         | 88.6        |
| R193.....                                                  | 101.0       | 29.4              | 94.1         | 87.3        |
| R194.....                                                  | 97.9        | 30.1              | 88.1         | 83.6        |
| R195.....                                                  | 96.0        | 27.7              | 91.3         | 88.2        |
| R196.....                                                  | 98.4        | 26.5              | 97.3         | 85.4        |
| R197.....                                                  | 99.7        | 33.6              | 91.4         | 90.0        |
| R198.....                                                  | 100.2       | 30.6              | 92.4         | 84.1        |
| <b>Average.....</b>                                        | <b>98.7</b> | <b>28.3</b>       | <b>91.7</b>  | <b>86.6</b> |
| <b>Inbred lines crossed with (WF9 × B37)</b>               |             |                   |              |             |
| R71.....                                                   | 92.3        | 30.0              | 96.0         | 89.2        |
| R74.....                                                   | 89.5        | 30.2              | 97.4         | 80.7        |
| R76.....                                                   | 92.3        | 29.5              | 89.5         | 86.1        |
| R78.....                                                   | 90.9        | 30.3              | 85.8         | 92.5        |
| R84.....                                                   | 83.6        | 26.4              | 81.7         | 87.0        |
| R101.....                                                  | 88.1        | 25.3              | 87.7         | 88.2        |
| R104.....                                                  | 91.1        | 27.9              | 81.4         | 92.3        |
| R109B.....                                                 | 96.8        | 29.5              | 98.4         | 86.0        |
| R112.....                                                  | 97.4        | 29.7              | 97.5         | 89.9        |
| R113.....                                                  | 97.3        | 28.6              | 95.4         | 87.7        |
| R114.....                                                  | 98.1        | 30.3              | 96.4         | 87.3        |
| R134.....                                                  | 100.2       | 30.5              | 95.6         | 82.9        |
| R135.....                                                  | 90.1        | 30.2              | 85.5         | 82.0        |
| R151.....                                                  | 106.0       | 30.2              | 92.4         | 89.1        |
| R154.....                                                  | 99.6        | 27.4              | 87.9         | 92.8        |
| R158.....                                                  | 93.8        | 28.0              | 93.9         | 80.1        |
| R159.....                                                  | 89.0        | 30.9              | 96.6         | 94.9        |
| R166.....                                                  | 90.8        | 28.4              | 92.1         | 91.5        |
| R168.....                                                  | 101.3       | 26.5              | 99.6         | 92.8        |
| R172.....                                                  | 94.3        | 28.2              | 96.9         | 93.1        |
| R180.....                                                  | 94.7        | 30.3              | 97.5         | 81.2        |
| R181.....                                                  | 100.1       | 26.4              | 90.5         | 93.6        |
| R182.....                                                  | 86.6        | 26.7              | 94.7         | 76.7        |
| R183.....                                                  | 75.7        | 29.6              | 98.1         | 90.0        |
| R192.....                                                  | 97.1        | 28.8              | 91.0         | 85.6        |
| R193.....                                                  | 94.0        | 29.7              | 95.8         | 86.8        |
| R194.....                                                  | 97.0        | 31.9              | 95.7         | 88.3        |
| R195.....                                                  | 98.2        | 27.1              | 90.9         | 84.6        |
| R196.....                                                  | 102.0       | 29.0              | 94.2         | 87.7        |
| R197.....                                                  | 105.9       | 32.9              | 84.6         | 86.0        |
| R198.....                                                  | 91.9        | 32.4              | 89.5         | 90.4        |
| <b>Average.....</b>                                        | <b>94.4</b> | <b>29.1</b>       | <b>92.6</b>  | <b>87.6</b> |

(Table is continued on next page)

Table 3.—DeKalb—continued

| Entry                                            | Acre yield  | Moisture in grain | Erect plants                          | Stand       |
|--------------------------------------------------|-------------|-------------------|---------------------------------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS, SUMMARY:</b> |             |                   |                                       |             |
| 1959-1960—continued                              |             |                   |                                       |             |
|                                                  | bu.         | perct.            | perct.                                | perct.      |
| <b>Inbred lines crossed with (B41 × Oh7A)</b>    |             |                   |                                       |             |
| R71.....                                         | 85.8        | 32.7              | 83.3                                  | 89.1        |
| R74.....                                         | 105.0       | 31.4              | 92.1                                  | 84.1        |
| R76.....                                         | 95.6        | 31.3              | 73.1                                  | 90.4        |
| R78.....                                         | 79.9        | 31.6              | 72.2                                  | 88.1        |
| R84.....                                         | 66.5        | 27.8              | 79.2                                  | 94.1        |
| R101.....                                        | 82.9        | 25.9              | 83.6                                  | 92.7        |
| R104.....                                        | 89.6        | 29.5              | 83.3                                  | 89.5        |
| R109B.....                                       | 94.3        | 33.2              | 86.9                                  | 91.8        |
| R112.....                                        | 86.7        | 32.4              | 96.0                                  | 91.4        |
| R113.....                                        | 85.6        | 28.7              | 95.8                                  | 88.6        |
| R114.....                                        | 88.7        | 30.5              | 92.0                                  | 95.0        |
| R134.....                                        | 98.3        | 33.4              | 91.2                                  | 81.8        |
| R135.....                                        | 71.6        | 34.1              | 86.3                                  | 93.1        |
| R151.....                                        | 102.2       | 28.6              | 80.4                                  | 90.4        |
| R154.....                                        | 100.2       | 29.3              | 88.9                                  | 84.5        |
| R158.....                                        | 89.0        | 28.1              | 90.7                                  | 89.8        |
| R159.....                                        | 82.3        | 33.9              | 95.7                                  | 89.5        |
| R166.....                                        | 79.0        | 30.4              | 71.5                                  | 92.2        |
| R168.....                                        | 97.4        | 27.5              | 97.1                                  | 89.5        |
| R172.....                                        | 93.0        | 29.5              | 89.5                                  | 87.7        |
| R180.....                                        | 82.6        | 31.4              | 76.8                                  | 89.9        |
| R181.....                                        | 99.7        | 25.6              | 80.4                                  | 90.8        |
| R182.....                                        | 91.2        | 29.5              | 91.6                                  | 89.1        |
| R183.....                                        | 82.3        | 30.3              | 94.3                                  | 87.4        |
| R192.....                                        | 81.9        | 30.0              | 84.6                                  | 88.3        |
| R193.....                                        | 86.7        | 30.4              | 89.6                                  | 92.2        |
| R194.....                                        | 70.8        | 33.9              | 87.5                                  | 92.2        |
| R195.....                                        | 80.1        | 27.3              | 93.7                                  | 95.0        |
| R196.....                                        | 84.0        | 30.9              | 85.4                                  | 90.5        |
| R197.....                                        | 92.0        | 31.7              | 82.1                                  | 95.8        |
| R198.....                                        | 84.1        | 33.9              | 74.5                                  | 94.1        |
| <b>Average.....</b>                              | <b>87.4</b> | <b>30.5</b>       | <b>86.1</b>                           | <b>90.3</b> |
| <b>Single-cross testers</b>                      |             |                   |                                       |             |
| WF9×Oh43.....                                    | 100.5       | 29.6              | 94.8                                  | 85.4        |
| WF9×B37.....                                     | 87.3        | 31.1              | 97.6                                  | 90.4        |
| B41×Oh7A.....                                    | 65.2        | 34.1              | 55.7                                  | 92.8        |
| <b>Average.....</b>                              | <b>84.3</b> | <b>31.6</b>       | <b>82.7</b>                           | <b>89.5</b> |
| Number in range                                  |             |                   | Difference necessary for significance |             |
| 2.....                                           | N.S.        | 7.5               | 8.0                                   | N.S.        |
| 3-5.....                                         | N.S.        | 8.4               | 8.9                                   | N.S.        |
| 6-10.....                                        | N.S.        | 9.0               | 9.5                                   | N.S.        |
| 11-20.....                                       | N.S.        | 9.5               | 10.0                                  | N.S.        |
| 21-31.....                                       | N.S.        | 10.0              | 10.6                                  | N.S.        |

(Table is continued on next page)

Table 3.— DeKalb—continued

| Entry                                                                    | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand       |
|--------------------------------------------------------------------------|---------------|----------------------|-----------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS, SUMMARY:<br/>1959-1960—continued</b> |               |                      |                 |             |
|                                                                          | bu.           | perct.               | perct.          | perct.      |
| <b>Mean of inbred lines crossed with three testers</b>                   |               |                      |                 |             |
| R71.....                                                                 | 92.6          | 30.9                 | 91.2            | 88.9        |
| R74.....                                                                 | 97.8          | 30.3                 | 95.1            | 82.0        |
| R76.....                                                                 | 96.4          | 29.9                 | 81.4            | 86.6        |
| R78.....                                                                 | 90.1          | 30.5                 | 83.2            | 89.7        |
| R84.....                                                                 | 81.0          | 26.7                 | 81.7            | 88.2        |
| R101.....                                                                | 89.0          | 25.9                 | 87.3            | 89.8        |
| R104.....                                                                | 93.3          | 28.5                 | 85.3            | 87.8        |
| R109B.....                                                               | 97.1          | 30.4                 | 94.1            | 87.0        |
| R112.....                                                                | 95.3          | 30.4                 | 96.7            | 88.9        |
| R113.....                                                                | 94.1          | 28.1                 | 93.9            | 88.6        |
| R114.....                                                                | 95.5          | 29.4                 | 94.8            | 88.9        |
| R134.....                                                                | 103.2         | 30.9                 | 93.6            | 82.6        |
| R135.....                                                                | 84.5          | 31.4                 | 86.5            | 86.9        |
| R151.....                                                                | 105.3         | 29.3                 | 88.0            | 89.5        |
| R154.....                                                                | 101.4         | 28.1                 | 89.2            | 89.6        |
| R158.....                                                                | 93.2          | 27.5                 | 92.4            | 86.5        |
| R159.....                                                                | 90.6          | 31.8                 | 95.2            | 89.3        |
| R166.....                                                                | 86.6          | 28.2                 | 84.0            | 90.5        |
| R168.....                                                                | 98.2          | 26.5                 | 97.7            | 94.0        |
| R172.....                                                                | 95.3          | 28.6                 | 93.0            | 92.6        |
| R180.....                                                                | 90.4          | 30.6                 | 87.6            | 85.2        |
| R181.....                                                                | 102.0         | 25.5                 | 85.7            | 88.8        |
| R182.....                                                                | 92.2          | 27.7                 | 94.7            | 83.5        |
| R183.....                                                                | 82.4          | 29.5                 | 94.1            | 87.7        |
| R192.....                                                                | 91.3          | 29.3                 | 89.8            | 87.6        |
| R193.....                                                                | 93.9          | 29.9                 | 93.2            | 88.8        |
| R194.....                                                                | 88.6          | 32.0                 | 90.5            | 88.1        |
| R195.....                                                                | 91.5          | 27.4                 | 92.0            | 89.3        |
| R196.....                                                                | 94.8          | 28.8                 | 92.3            | 87.9        |
| R197.....                                                                | 99.3          | 32.8                 | 86.1            | 90.7        |
| R198.....                                                                | 92.1          | 32.3                 | 85.5            | 89.6        |
| <b>Average.....</b>                                                      | <b>93.5</b>   | <b>29.3</b>          | <b>90.2</b>     | <b>88.2</b> |
| <b>THREE-WAY CROSSES AND STANDARDS: 1960 RESULTS</b>                     |               |                      |                 |             |
| <b>Inbred lines crossed with (WF9 × Oh43)</b>                            |               |                      |                 |             |
| R71.....                                                                 | 90.5          | 31.7                 | 92.6            | 81.7        |
| R74.....                                                                 | 98.5          | 31.0                 | 97.9            | 70.4        |
| R76.....                                                                 | 94.7          | 30.5                 | 89.4            | 75.7        |
| R78.....                                                                 | 88.3          | 31.2                 | 92.8            | 84.8        |
| R84.....                                                                 | 91.5          | 26.2                 | 84.9            | 80.2        |
| R101.....                                                                | 89.9          | 27.1                 | 89.1            | 82.5        |
| R104.....                                                                | 98.5          | 29.7                 | 98.0            | 70.4        |
| R109B.....                                                               | 94.2          | 30.0                 | 97.0            | 76.4        |
| R112.....                                                                | 93.1          | 31.5                 | 97.0            | 78.0        |
| R113.....                                                                | 89.9          | 28.5                 | 95.9            | 82.5        |
| R114.....                                                                | 93.7          | 29.8                 | 98.8            | 77.2        |
| R134.....                                                                | 93.7          | 30.1                 | 94.1            | 77.2        |
| R135.....                                                                | 88.9          | 33.3                 | 95.5            | 84.0        |
| R151.....                                                                | 89.9          | 30.4                 | 96.3            | 82.5        |
| R154.....                                                                | 84.1          | 29.5                 | 93.6            | 90.8        |
| R158.....                                                                | 89.9          | 27.5                 | 92.6            | 82.5        |
| R159.....                                                                | 95.8          | 31.8                 | 96.9            | 74.2        |
| R166.....                                                                | 88.3          | 25.4                 | 89.2            | 84.8        |
| R168.....                                                                | 77.7          | 27.3                 | 99.2            | 99.9        |
| R172.....                                                                | 80.9          | 30.0                 | 91.4            | 95.4        |
| R180.....                                                                | 94.2          | 32.2                 | 89.3            | 76.4        |
| R181.....                                                                | 96.9          | 27.5                 | 94.8            | 72.7        |
| R182.....                                                                | 92.1          | 27.6                 | 99.0            | 79.5        |
| R183.....                                                                | 93.7          | 30.5                 | 99.1            | 77.2        |
| R192.....                                                                | 90.5          | 30.8                 | 96.1            | 81.7        |
| R193.....                                                                | 91.5          | 31.5                 | 95.0            | 80.2        |
| R194.....                                                                | 96.3          | 31.4                 | 95.7            | 73.4        |
| R195.....                                                                | 91.0          | 30.0                 | 93.0            | 81.0        |
| R196.....                                                                | 94.7          | 27.3                 | 98.1            | 75.7        |
| R197.....                                                                | 88.3          | 36.5                 | 95.8            | 84.8        |
| R198.....                                                                | 95.3          | 32.8                 | 96.9            | 74.9        |
| <b>Average.....</b>                                                      | <b>91.5</b>   | <b>30.0</b>          | <b>94.7</b>     | <b>80.3</b> |

(Table is continued on next page)

Table 3.—DeKalb—continued

| Entry                                                              | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand       |
|--------------------------------------------------------------------|---------------|----------------------|-----------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS:<br/>1960 RESULTS—continued</b> |               |                      |                 |             |
|                                                                    | bu.           | perct.               | perct.          | perct.      |
| <b>Inbred lines crossed with (WF9 × B37)</b>                       |               |                      |                 |             |
| R71.....                                                           | 85.1          | 30.4                 | 94.1            | 89.3        |
| R74.....                                                           | 85.7          | 31.4                 | 95.7            | 88.6        |
| R76.....                                                           | 92.1          | 31.4                 | 89.4            | 79.5        |
| R78.....                                                           | 84.1          | 31.6                 | 86.9            | 90.8        |
| R84.....                                                           | 91.0          | 27.3                 | 77.1            | 81.0        |
| R101.....                                                          | 90.5          | 25.2                 | 87.0            | 81.7        |
| R104.....                                                          | 86.2          | 28.9                 | 83.0            | 87.8        |
| R109B.....                                                         | 92.6          | 31.1                 | 98.0            | 78.7        |
| R112.....                                                          | 89.4          | 32.4                 | 97.2            | 83.3        |
| R113.....                                                          | 92.1          | 31.7                 | 97.0            | 79.5        |
| R114.....                                                          | 92.1          | 32.1                 | 94.7            | 79.5        |
| R134.....                                                          | 95.3          | 32.3                 | 97.0            | 74.9        |
| R135.....                                                          | 88.9          | 33.5                 | 87.0            | 84.0        |
| R151.....                                                          | 89.9          | 31.0                 | 93.4            | 82.5        |
| R154.....                                                          | 84.6          | 28.6                 | 94.2            | 90.1        |
| R158.....                                                          | 95.8          | 29.8                 | 96.7            | 74.2        |
| R159.....                                                          | 83.5          | 33.2                 | 98.4            | 91.6        |
| R166.....                                                          | 86.2          | 29.8                 | 93.8            | 87.8        |
| R168.....                                                          | 85.1          | 27.5                 | 100.0           | 89.3        |
| R172.....                                                          | 85.7          | 29.3                 | 98.2            | 88.6        |
| R180.....                                                          | 96.9          | 32.3                 | 98.1            | 72.7        |
| R181.....                                                          | 85.1          | 28.7                 | 91.5            | 89.3        |
| R182.....                                                          | 89.9          | 28.5                 | 93.2            | 82.5        |
| R183.....                                                          | 88.3          | 30.1                 | 98.2            | 84.8        |
| R192.....                                                          | 92.6          | 29.8                 | 93.4            | 78.7        |
| R193.....                                                          | 93.1          | 31.0                 | 99.0            | 78.0        |
| R194.....                                                          | 89.4          | 33.2                 | 95.7            | 83.3        |
| R195.....                                                          | 94.7          | 29.0                 | 91.0            | 75.7        |
| R196.....                                                          | 91.5          | 30.8                 | 94.4            | 80.2        |
| R197.....                                                          | 93.1          | 34.1                 | 89.1            | 78.0        |
| R198.....                                                          | 88.9          | 33.4                 | 94.5            | 84.0        |
| <b>Average.....</b>                                                | <b>89.7</b>   | <b>30.6</b>          | <b>93.4</b>     | <b>82.9</b> |
| <b>Inbred lines crossed with (B41 × Oh7A)</b>                      |               |                      |                 |             |
| R71.....                                                           | 89.5          | 33.8                 | 79.7            | 83.3        |
| R74.....                                                           | 95.9          | 33.4                 | 92.3            | 74.2        |
| R76.....                                                           | 88.9          | 32.3                 | 71.2            | 84.0        |
| R78.....                                                           | 91.6          | 32.1                 | 81.0            | 80.2        |
| R84.....                                                           | 83.6          | 27.0                 | 77.6            | 91.6        |
| R101.....                                                          | 85.7          | 25.9                 | 86.1            | 88.6        |
| R104.....                                                          | 90.0          | 30.9                 | 91.5            | 82.5        |
| R109B.....                                                         | 87.3          | 35.2                 | 82.9            | 86.3        |
| R112.....                                                          | 84.1          | 35.0                 | 96.8            | 86.3        |
| R113.....                                                          | 90.5          | 31.2                 | 97.2            | 81.7        |
| R114.....                                                          | 82.5          | 32.5                 | 93.6            | 93.1        |
| R134.....                                                          | 99.1          | 35.6                 | 95.3            | 69.6        |
| R135.....                                                          | 85.7          | 37.6                 | 82.5            | 88.6        |
| R151.....                                                          | 88.9          | 29.1                 | 84.0            | 84.0        |
| R154.....                                                          | 95.9          | 31.2                 | 94.9            | 74.2        |
| R158.....                                                          | 86.8          | 29.0                 | 89.5            | 87.0        |
| R159.....                                                          | 90.0          | 34.8                 | 96.2            | 82.5        |
| R166.....                                                          | 86.8          | 31.6                 | 79.2            | 87.0        |
| R168.....                                                          | 90.0          | 28.5                 | 97.2            | 82.5        |
| R172.....                                                          | 91.6          | 31.8                 | 92.0            | 80.2        |
| R180.....                                                          | 89.5          | 33.6                 | 81.4            | 83.3        |
| R181.....                                                          | 88.4          | 27.5                 | 85.3            | 84.8        |
| R182.....                                                          | 89.5          | 30.9                 | 90.1            | 83.3        |
| R183.....                                                          | 90.5          | 31.6                 | 93.9            | 81.7        |
| R192.....                                                          | 90.0          | 30.6                 | 84.6            | 82.5        |
| R193.....                                                          | 86.8          | 32.6                 | 92.0            | 87.0        |
| R194.....                                                          | 86.8          | 33.8                 | 84.6            | 87.0        |
| R195.....                                                          | 83.1          | 27.2                 | 91.0            | 92.3        |
| R196.....                                                          | 87.9          | 33.0                 | 86.6            | 85.5        |
| R197.....                                                          | 82.5          | 32.6                 | 80.9            | 93.1        |
| R198.....                                                          | 84.1          | 36.0                 | 84.5            | 90.8        |
| <b>Average.....</b>                                                | <b>88.5</b>   | <b>31.9</b>          | <b>87.6</b>     | <b>84.5</b> |

(Table is concluded on next page)

Table 3.—DeKalb—concluded

| Entry                                                              | Pedigree | Acre yield  | Moisture in grain | Erect plants | Stand       |
|--------------------------------------------------------------------|----------|-------------|-------------------|--------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS:<br/>1960 RESULTS—concluded</b> |          |             |                   |              |             |
| <b>Single-cross testers</b>                                        |          |             |                   |              |             |
| WF9×Oh43.....                                                      |          | 97.0        | 31.3              | 94.7         | 72.7        |
| WF9×B37.....                                                       |          | 90.6        | 34.2              | 98.2         | 81.8        |
| B41×Oh7A.....                                                      |          | 85.3        | 34.2              | 64.4         | 88.6        |
| <b>Average.....</b>                                                |          | <b>91.0</b> | <b>33.2</b>       | <b>85.8</b>  | <b>81.1</b> |
| <b>Standards</b>                                                   |          |             |                   |              |             |
| III. 1851 (C103×38-11)(Oh7×CI.21E).....                            |          | 85.8        | 32.6              | 94.0         | 88.6        |
| III. 3049 (Hy2×WF9)(R71×R109B).....                                |          | 80.5        | 32.3              | 90.5         | 95.4        |
| III. 3152A (M14×B14)(WF9×Oh43).....                                |          | 90.6        | 30.0              | 98.2         | 81.8        |
| III. 3347 (R74×R101)(H49×H55).....                                 |          | 83.1        | 34.8              | 91.6         | 93.2        |
| <b>Average.....</b>                                                |          | <b>85.0</b> | <b>32.4</b>       | <b>93.6</b>  | <b>89.8</b> |
| Number in range                                                    |          |             |                   |              |             |
| 2.....                                                             |          | N.S.        | 10.9              | 9.9          | N.S.        |
| 3-5.....                                                           |          | N.S.        | 12.2              | 11.1         | N.S.        |
| 6-10.....                                                          |          | N.S.        | 13.0              | 11.8         | N.S.        |
| 11-20.....                                                         |          | N.S.        | 13.7              | 12.4         | N.S.        |
| 21-31.....                                                         |          | N.S.        | 13.9              | 12.6         | N.S.        |
| <b>Mean of inbred lines crossed with three testers</b>             |          |             |                   |              |             |
| R71.....                                                           |          | 88.4        | 32.0              | 88.8         | 84.8        |
| R74.....                                                           |          | 93.4        | 32.0              | 95.4         | 77.7        |
| R76.....                                                           |          | 92.0        | 31.5              | 83.4         | 79.8        |
| R78.....                                                           |          | 88.0        | 31.6              | 87.0         | 85.3        |
| R84.....                                                           |          | 88.8        | 26.8              | 79.9         | 84.3        |
| R101.....                                                          |          | 88.7        | 26.1              | 87.5         | 84.3        |
| R104.....                                                          |          | 91.6        | 29.9              | 90.9         | 80.3        |
| R109B.....                                                         |          | 91.4        | 32.1              | 92.6         | 80.5        |
| R112.....                                                          |          | 88.9        | 33.0              | 97.0         | 82.5        |
| R113.....                                                          |          | 90.9        | 30.5              | 96.8         | 81.3        |
| R114.....                                                          |          | 89.4        | 31.5              | 95.8         | 83.3        |
| R134.....                                                          |          | 96.0        | 32.8              | 95.5         | 74.0        |
| R135.....                                                          |          | 87.8        | 34.9              | 88.4         | 85.6        |
| R151.....                                                          |          | 89.6        | 30.2              | 91.3         | 83.0        |
| R154.....                                                          |          | 88.2        | 29.8              | 94.3         | 85.1        |
| R158.....                                                          |          | 90.9        | 28.8              | 93.0         | 81.3        |
| R159.....                                                          |          | 89.8        | 33.3              | 97.2         | 82.8        |
| R166.....                                                          |          | 87.2        | 29.0              | 87.4         | 86.6        |
| R168.....                                                          |          | 84.3        | 27.8              | 98.8         | 90.6        |
| R172.....                                                          |          | 86.1        | 30.4              | 93.9         | 88.1        |
| R180.....                                                          |          | 93.6        | 32.7              | 89.6         | 77.5        |
| R181.....                                                          |          | 90.2        | 27.9              | 90.6         | 82.3        |
| R182.....                                                          |          | 90.5        | 29.0              | 94.2         | 81.8        |
| R183.....                                                          |          | 90.9        | 30.8              | 97.1         | 81.3        |
| R192.....                                                          |          | 91.1        | 30.4              | 91.5         | 81.0        |
| R193.....                                                          |          | 90.5        | 31.7              | 95.4         | 81.8        |
| R194.....                                                          |          | 90.9        | 32.8              | 92.1         | 81.3        |
| R195.....                                                          |          | 89.7        | 28.8              | 91.7         | 83.0        |
| R196.....                                                          |          | 91.4        | 30.4              | 93.1         | 80.5        |
| R197.....                                                          |          | 88.0        | 34.4              | 88.7         | 85.3        |
| R198.....                                                          |          | 89.4        | 34.1              | 92.0         | 83.3        |
| <b>Average.....</b>                                                |          | <b>89.9</b> | <b>30.9</b>       | <b>92.0</b>  | <b>82.6</b> |

Table 4.—DOUBLE CROSSES OF 800 MATURITY  
Tested at Galesburg, 1960

| Entry                                                          | Pedigree | Acre<br>yield | Moisture<br>in grain | Erect<br>plants                       | Stand  |
|----------------------------------------------------------------|----------|---------------|----------------------|---------------------------------------|--------|
| 1960 results                                                   |          |               |                      |                                       |        |
|                                                                |          | bu.           | perct.               | perct.                                | perct. |
| AES 705 (WF9×B14)(C103×Oh43) . . . . .                         |          | 94.8          | 24.6                 | 97.8                                  | 92.0   |
| AES 809 (WF9×P8)(C103×Oh43) . . . . .                          |          | 95.6          | 27.4                 | 85.7                                  | 84.0   |
| AES 810 (WF9×H50)(Oh7B×Oh45) . . . . .                         |          | 106.8         | 27.2                 | 95.7                                  | 86.0   |
| III. 1421 (check) (WF9×Hy2)(P8×Oh7) . . . . .                  |          | 111.9         | 27.3                 | 87.0                                  | 89.3   |
| III. 1983 (WF9×38-11)(Hy2×B14) . . . . .                       |          | 105.2         | 24.0                 | 90.0                                  | 86.6   |
| III. 1996 (Hy2×Oh7)(B14×C103) . . . . .                        |          | 107.2         | 26.0                 | 92.7                                  | 90.6   |
| III. 3042 (WF9×B14)(B40×Oh45) . . . . .                        |          | 108.8         | 26.2                 | 89.7                                  | 96.6   |
| III. 3049 (WF9×Hy2)(R71×R109B) . . . . .                       |          | 91.5          | 26.7                 | 90.5                                  | 85.3   |
| III. 3080 (WF9×Hy2)(R101×Oh451) . . . . .                      |          | 94.1          | 25.2                 | 74.8                                  | 90.0   |
| III. 3160 (WF9×Oh7)(B14×Oh43) . . . . .                        |          | 115.6         | 26.3                 | 96.8                                  | 84.6   |
| III. 3183 (WF9×R154)(R105×R153) . . . . .                      |          | 100.3         | 28.1                 | 87.5                                  | 88.6   |
| III. 3237 (WF9×R101)(R151×R154) . . . . .                      |          | 115.0         | 24.7                 | 92.9                                  | 81.3   |
| III. 3244 (WF9×R151)(R105×R153) . . . . .                      |          | 104.1         | 26.6                 | 87.9                                  | 93.3   |
| III. 3291 (WF9×P8)(B14×Oh43) . . . . .                         |          | 108.1         | 25.3                 | 96.5                                  | 92.6   |
| III. 3294 (WF9×P8)(Hy2×C103) . . . . .                         |          | 104.1         | 28.0                 | 89.6                                  | 96.6   |
| III. 3343 (H49×H55)(R71×R74) . . . . .                         |          | 118.4         | 28.9                 | 90.4                                  | 98.0   |
| III. 3346 (H49×H55)(R71×R168) . . . . .                        |          | 130.2         | 27.9                 | 97.1                                  | 80.0   |
| III. 3348 (H49×H55)(R74×R109B) . . . . .                       |          | 125.4         | 26.7                 | 89.6                                  | 89.3   |
| III. 3351 (H49×H55)(R109B×R168) . . . . .                      |          | 108.6         | 26.6                 | 91.4                                  | 93.3   |
| III. 3384 (WF9×Oh41)(Hy2×Oh7) . . . . .                        |          | 93.4          | 24.3                 | 78.0                                  | 91.3   |
| III. 8001 (Hy2×R138)(Oh7×Oh7B) . . . . .                       |          | 114.1         | 28.0                 | 84.6                                  | 88.0   |
| III. 8002 <sup>a</sup> [(Hy2×B14)Hy2][(Oh7×C103)Oh7] . . . . . |          | 119.6         | 26.1                 | 89.4                                  | 94.0   |
| III. 8003 (WF9×Oh7)(H55×C103) . . . . .                        |          | 120.6         | 26.2                 | 93.4                                  | 90.0   |
| III. 8004 (WF9×Hy2)(R74×B14) . . . . .                         |          | 93.0          | 27.1                 | 93.0                                  | 86.0   |
| U.S. 13 (WF9×38-11)(Hy2×L317) . . . . .                        |          | 119.9         | 27.6                 | 89.8                                  | 88.0   |
| Average . . . . .                                              |          | 108.3         | 26.5                 | 90.1                                  | 89.4   |
| Number in range                                                |          |               |                      | Difference necessary for significance |        |
| 2 . . . . .                                                    |          | 16.1          | N.S.                 | 8.5                                   | N.S.   |
| 3-5 . . . . .                                                  |          | 17.8          | N.S.                 | 9.5                                   | N.S.   |
| 6-10 . . . . .                                                 |          | 18.9          | N.S.                 | 10.0                                  | N.S.   |
| 11-15 . . . . .                                                |          | 19.4          | N.S.                 | 10.3                                  | N.S.   |
| 16-20 . . . . .                                                |          | 19.6          | N.S.                 | 10.4                                  | N.S.   |
| 21-25 . . . . .                                                |          | 19.7          | N.S.                 | 10.5                                  | N.S.   |

\* Back-cross hybrid.

Table 5.—DOUBLE CROSSES OF 700 MATURITY  
Tested at Peoria, 1958-1960

| Entry                                      | Pedigree | Acre<br>yield                         | Moisture<br>in grain | Erect<br>plants | Stand       |
|--------------------------------------------|----------|---------------------------------------|----------------------|-----------------|-------------|
| <b>Summary: 1958-1960</b>                  |          |                                       |                      |                 |             |
|                                            |          | bu.                                   | perct.               | perct.          | perct.      |
| III. 3022 (WF9×B14)(N22A×Oh43).....        |          | 107.3                                 | 22.0                 | 93.5            | 93.1        |
| III. 3029 (WF9×B14)(Oh43×Oh45).....        |          | 103.8                                 | 22.7                 | 93.4            | 91.7        |
| III. 3042 (WF9×B14)(B40×Oh45).....         |          | 102.0                                 | 24.0                 | 90.2            | 93.1        |
| III. 1968 (WF9×B14)(R163×R169).....        |          | 100.1                                 | 20.9                 | 87.9            | 93.7        |
| AES 703 (WF9×Oh43)(B14×B38).....           |          | 99.2                                  | 21.7                 | 94.9            | 92.3        |
| III. 1969 (WF9×B14)(R165×R168).....        |          | 98.6                                  | 20.7                 | 90.8            | 95.3        |
| AES 705 (WF9×B14)(C103×Oh43).....          |          | 96.8                                  | 23.0                 | 90.3            | 94.6        |
| III. 21 (WF9×38-11)(Hy2×187-2).....        |          | 95.7                                  | 20.4                 | 76.7            | 93.3        |
| AES 704 (WF9×Oh43)(B14×B37).....           |          | 93.1                                  | 21.9                 | 97.8            | 90.4        |
| AES 702 (WF9×Hy2)(M14×C103).....           |          | 92.3                                  | 21.4                 | 87.5            | 90.6        |
| <b>Average</b> .....                       |          | <b>98.9</b>                           | <b>21.9</b>          | <b>90.3</b>     | <b>92.8</b> |
| Number in range                            |          | Difference necessary for significance |                      |                 |             |
| 2-10.....                                  |          | N.S.                                  | N.S.                 | N.S.            | N.S.        |
| <b>Summary: 1959-1960</b>                  |          |                                       |                      |                 |             |
| III. 3347 (H49×H55)(R74×R101).....         |          | 98.3                                  | 25.2                 | 86.4            | 89.6        |
| III. 3022 (WF9×B14)(N22A×Oh43).....        |          | 95.3                                  | 23.9                 | 95.6            | 91.3        |
| III. 3182A (WF9×R105)(R151×R154).....      |          | 90.5                                  | 24.3                 | 75.0            | 93.7        |
| III. 3029 (WF9×B14)(Oh43×Oh45).....        |          | 87.8                                  | 24.2                 | 97.0            | 87.6        |
| AES 703 (WF9×Oh43)(B14×B38).....           |          | 87.1                                  | 23.9                 | 94.8            | 90.5        |
| III. 1968 (WF9×B14)(R163×R169).....        |          | 86.8                                  | 22.9                 | 87.2            | 90.6        |
| III. 3042 (WF9×B14)(B40×Oh45).....         |          | 86.7                                  | 25.7                 | 91.5            | 90.0        |
| III. 1969 (WF9×B14)(R165×R168).....        |          | 85.4                                  | 22.3                 | 90.3            | 93.0        |
| III. 21 (WF9×38-11)(Hy2×187-2).....        |          | 83.0                                  | 21.6                 | 85.2            | 92.1        |
| AES 702 (WF9×Hy2)(M14×C103).....           |          | 81.2                                  | 22.5                 | 92.6            | 86.7        |
| III. 3315A (WF9×Hy2)(R109B×B14).....       |          | 79.9                                  | 22.5                 | 94.1            | 89.0        |
| AES 705 (WF9×B14)(C103×Oh43).....          |          | 79.7                                  | 25.6                 | 93.0            | 91.9        |
| AES 704 (WF9×Oh43)(B14×B37).....           |          | 75.4                                  | 23.5                 | 97.6            | 86.4        |
| <b>Average</b> .....                       |          | <b>85.9</b>                           | <b>23.7</b>          | <b>90.8</b>     | <b>90.2</b> |
| Number in range                            |          | Difference necessary for significance |                      |                 |             |
| 2.....                                     |          | N.S.                                  | 2.4                  | 9.8             | N.S.        |
| 3-5.....                                   |          | N.S.                                  | 2.6                  | 10.7            | N.S.        |
| 6-13.....                                  |          | N.S.                                  | 2.7                  | 11.0            | N.S.        |
| <b>1960 results</b>                        |          |                                       |                      |                 |             |
| AES 702 (WF9×Hy2)(M14×C103).....           |          | 64.6                                  | 23.5                 | 92.4            | 79.5        |
| AES 703 (WF9×Oh43)(B14×B38).....           |          | 72.8                                  | 26.0                 | 95.8            | 87.1        |
| AES 704 (WF9×Oh43)(B14×B37).....           |          | 65.5                                  | 24.8                 | 97.3            | 80.3        |
| AES 705 (WF9×B14)(C103×Oh43).....          |          | 66.9                                  | 28.9                 | 88.0            | 88.6        |
| III. 21 (WF9×38-11)(Hy2×187-2).....        |          | 77.7                                  | 22.4                 | 82.2            | 90.9        |
| III. 1277 (WF9×M14)(L205×187-2).....       |          | 63.5                                  | 23.2                 | 89.7            | 81.0        |
| III. 1922 (WF9×Hy2)(R71×R105).....         |          | 78.8                                  | 26.6                 | 95.6            | 87.8        |
| III. 1936 (WF9×Hy2)(M14×B14).....          |          | 47.4                                  | 23.8                 | 86.8            | 97.7        |
| III. 1968 (WF9×B14)(R163×R169).....        |          | 64.4                                  | 25.5                 | 82.8            | 87.8        |
| III. 1969 (WF9×B14)(R165×R168).....        |          | 66.6                                  | 23.9                 | 87.4            | 90.1        |
| III. 3022 (WF9×B14)(N22A×Oh43).....        |          | 74.4                                  | 26.2                 | 95.6            | 89.3        |
| III. 3029 (WF9×B14)(Oh43×Oh45).....        |          | 67.8                                  | 26.1                 | 96.3            | 83.3        |
| III. 3042 (WF9×B14)(B40×Oh45).....         |          | 59.1                                  | 27.6                 | 86.6            | 84.8        |
| III. 3152 (check) (WF9×M14)(B14×Oh43)..... |          | 67.5                                  | 23.5                 | 94.4            | 83.3        |
| III. 3182A (WF9×R105)(R151×R154).....      |          | 63.2                                  | 25.1                 | 81.7            | 90.9        |
| III. 3265 (WF9×Oh43)(R71×R109B).....       |          | 70.1                                  | 26.6                 | 94.6            | 87.8        |
| III. 3266 (WF9×Oh43)(R74×R109B).....       |          | 68.3                                  | 28.0                 | 92.9            | 86.3        |
| III. 3270 (WF9×Oh43)(R74×R168).....        |          | 69.2                                  | 24.1                 | 95.7            | 84.8        |
| III. 3275 (WF9×Oh43)(R114×R168).....       |          | 75.3                                  | 23.3                 | 97.5            | 83.3        |
| III. 3303 (M14×Oh43)(R172×B14).....        |          | 84.1                                  | 24.1                 | 94.9            | 88.6        |
| III. 3315A (WF9×Hy2)(R109B×B14).....       |          | 65.7                                  | 23.2                 | 94.6            | 83.3        |
| III. 3347 (H49×H55)(R74×R101).....         |          | 84.2                                  | 26.8                 | 83.2            | 83.3        |
| III. 3381 (WF9×R71)(B14×Oh43).....         |          | 61.4                                  | 25.4                 | 89.7            | 84.0        |
| III. 3382 (WF9×R109B)(B14×Oh43).....       |          | 73.4                                  | 27.1                 | 94.4            | 79.5        |
| III. 3383 (WF9×M14)(R172×Oh43).....        |          | 74.5                                  | 24.4                 | 98.2            | 90.9        |
| <b>Average</b> .....                       |          | <b>69.1</b>                           | <b>25.2</b>          | <b>91.5</b>     | <b>86.2</b> |
| Number in range                            |          | Difference necessary for significance |                      |                 |             |
| 2.....                                     |          | 15.9                                  | 3.2                  | 11.3            | N.S.        |
| 3-5.....                                   |          | 17.6                                  | 3.6                  | 12.5            | N.S.        |
| 6-10.....                                  |          | 18.7                                  | 3.8                  | 13.2            | N.S.        |
| 11-15.....                                 |          | 19.1                                  | 3.9                  | 13.6            | N.S.        |
| 16-20.....                                 |          | 19.4                                  | 3.9                  | 13.7            | N.S.        |
| 21-25.....                                 |          | 19.5                                  | 3.9                  | 13.8            | N.S.        |

Table 6.—DOUBLE CROSSES OF 700 MATURITY  
Tested at Ashkum, 1960

| Entry                                      | Pedigree | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand  |
|--------------------------------------------|----------|---------------|----------------------|-----------------|--------|
| 1960 results                               |          |               |                      |                 |        |
|                                            |          | bu.           | perct.               | perct.          | perct. |
| AES 702 (WF9×Hy2)(M14×C103).....           |          | 62.6          | 21.4                 | 88.0            | 95.4   |
| AES 703 (WF9×Oh43)(B14×B38).....           |          | 76.1          | 25.6                 | 95.5            | 90.1   |
| AES 704 (WF9×Oh43)(B14×B37).....           |          | 83.9          | 24.3                 | 95.0            | 91.6   |
| AES 705 (WF9×B14)(C103×Oh43).....          |          | 80.1          | 24.1                 | 96.0            | 94.6   |
| III. 21 (WF9×38-11)(Hy2×187-2).....        |          | 77.7          | 21.9                 | 92.9            | 97.7   |
| III. 1277 (WF9×M14)(L205×187-2).....       |          | 81.4          | 22.0                 | 90.6            | 88.6   |
| III. 1922 (WF9×Hy2)(R71×R105).....         |          | 71.7          | 26.5                 | 95.2            | 90.9   |
| III. 1936 (WF9×Hy2)(M14×B14).....          |          | 81.5          | 24.0                 | 96.1            | 97.7   |
| III. 1968 (WF9×B14)(R163×R169).....        |          | 85.2          | 19.1                 | 89.5            | 93.1   |
| III. 1969 (WF9×B14)(R165×R168).....        |          | 87.8          | 20.3                 | 89.2            | 96.2   |
| III. 3022 (WF9×B14)(N22A×Oh43).....        |          | 80.7          | 23.6                 | 97.7            | 95.4   |
| III. 3029 (WF9×B14)(Oh43×Oh45).....        |          | 84.4          | 21.1                 | 96.4            | 86.3   |
| III. 3042 (WF9×B14)(B40×Oh45).....         |          | 83.6          | 24.2                 | 91.2            | 97.7   |
| III. 3152 (check) (WF9×M14)(B14×Oh43)..... |          | 84.0          | 21.5                 | 91.7            | 93.1   |
| III. 3182A (WF9×R105)(R151×R154).....      |          | 80.8          | 23.3                 | 89.4            | 92.4   |
| III. 3265 (WF9×Oh43)(R71×R109B).....       |          | 85.9          | 25.8                 | 97.7            | 96.9   |
| III. 3266 (WF9×Oh43)(R74×R109B).....       |          | 89.2          | 23.7                 | 96.0            | 99.2   |
| III. 3270 (WF9×Oh43)(R74×R168).....        |          | 89.7          | 24.0                 | 92.6            | 96.2   |
| III. 3275 (WF9×Oh43)(R114×R168).....       |          | 77.8          | 22.7                 | 91.5            | 98.4   |
| III. 3303 (M14×Oh43)(R172×B14).....        |          | 81.9          | 22.2                 | 94.5            | 97.7   |
| Average.....                               |          | 81.9          | 23.2                 | 93.3            | 94.8   |
| Number in range                            |          |               |                      |                 |        |
| 2.....                                     |          |               |                      | N.S.            | N.S.   |
| 3-5.....                                   |          |               |                      | N.S.            | N.S.   |
| 6-10.....                                  |          |               |                      | N.S.            | N.S.   |
| 11-15.....                                 |          |               |                      | N.S.            | N.S.   |
| 16-25.....                                 |          |               |                      | N.S.            | N.S.   |
| Difference necessary for significance      |          |               |                      |                 |        |
|                                            |          |               |                      | 3.4             | 3.4    |
|                                            |          |               |                      | 3.8             | 3.8    |
|                                            |          |               |                      | 4.0             | 4.0    |
|                                            |          |               |                      | 4.1             | 4.1    |
|                                            |          |               |                      | 4.2             | 4.2    |

Table 7.—DOUBLE CROSSES OF 800 MATURITY  
Tested at Stanford, 1960

| Entry                                        | Pedigree | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand       |
|----------------------------------------------|----------|---------------|----------------------|-----------------|-------------|
| 1960 results                                 |          |               |                      |                 |             |
|                                              |          | bu.           | perct.               | perct.          | perct.      |
| AES 705 (WF9×B14)(C103×Oh43).....            |          | 105.7         | 21.8                 | 96.8            | 90.1        |
| AES 809 (WF9×P8)(C103×Oh43).....             |          | 97.5          | 21.2                 | 97.4            | 93.1        |
| AES 810 (WF9×H50)(Oh7B×Oh45).....            |          | 105.2         | 19.5                 | 98.4            | 87.8        |
| III. 1421 (check) (WF9×Hy2)(P8×Oh7).....     |          | 94.7          | 19.0                 | 98.3            | 93.9        |
| III. 1983 (WF9×38-11)(Hy2×B14).....          |          | 116.2         | 17.6                 | 96.9            | 100.0       |
| III. 1996 (Hy2×Oh7)(B14×C103).....           |          | 105.8         | 20.4                 | 96.7            | 90.9        |
| III. 3042 (WF9×B14)(B40×Oh45).....           |          | 108.0         | 20.7                 | 97.6            | 93.9        |
| III. 3049 (WF9×Hy2)(R71×R109B).....          |          | 90.4          | 20.1                 | 98.2            | 90.1        |
| III. 3080 (WF9×Hy2)(R101×Oh451).....         |          | 104.8         | 21.3                 | 93.8            | 96.9        |
| III. 3160 (WF9×Oh7)(B14×Oh43).....           |          | 113.9         | 18.0                 | 99.1            | 88.6        |
| III. 3183 (WF9×R154)(R105×R153).....         |          | 92.0          | 20.8                 | 100.0           | 83.3        |
| III. 3237 (WF9×R101)(R151×R154).....         |          | 102.0         | 16.4                 | 96.6            | 90.9        |
| III. 3244 (WF9×R151)(R105×R153).....         |          | 86.4          | 20.7                 | 100.0           | 92.4        |
| III. 3291 (WF9×P8)(B14×Oh43).....            |          | 119.0         | 21.3                 | 96.2            | 100.0       |
| III. 3294 (WF9×P8)(Hy2×C103).....            |          | 99.0          | 20.0                 | 92.8            | 96.2        |
| III. 3343 (H49×H55)(R71×R74).....            |          | 110.2         | 21.5                 | 98.2            | 90.1        |
| III. 3346 (H49×H55)(R71×R168).....           |          | 121.6         | 20.8                 | 99.1            | 92.4        |
| III. 3348 (H49×H55)(R74×R109B).....          |          | 117.2         | 22.3                 | 99.2            | 96.2        |
| III. 3351 (H49×H55)(R109B×R168).....         |          | 108.3         | 22.2                 | 96.8            | 95.4        |
| III. 3384 (WF9×Oh41)(Hy2×Oh7).....           |          | 99.9          | 19.1                 | 96.6            | 89.3        |
| III. 8001 (Hy2×R138)(Oh7×Oh7B).....          |          | 110.8         | 20.3                 | 96.0            | 93.1        |
| III. 8002 [(Hy2×B14)Hy2][(Oh7×C103)Oh7]..... |          | 108.6         | 19.2                 | 98.3            | 95.4        |
| III. 8003 (WF9×Oh7)(H55×C103).....           |          | 113.2         | 19.0                 | 97.5            | 92.4        |
| III. 8004 (WF9×Hy2)(R74×B14).....            |          | 96.7          | 20.4                 | 99.1            | 92.4        |
| U.S. 13 (WF9×38-11)(Hy2×L317).....           |          | 97.0          | 18.5                 | 95.3            | 99.2        |
| <b>Average.....</b>                          |          | <b>105.0</b>  | <b>20.1</b>          | <b>97.4</b>     | <b>93.0</b> |
| Number in range                              |          |               |                      |                 |             |
| 2.....                                       |          | N.S.          | 2.0                  | N.S.            | N.S.        |
| 3-5.....                                     |          | N.S.          | 2.3                  | N.S.            | N.S.        |
| 6-10.....                                    |          | N.S.          | 2.4                  | N.S.            | N.S.        |
| 11-25.....                                   |          | N.S.          | 2.5                  | N.S.            | N.S.        |
| Difference necessary for significance        |          |               |                      |                 |             |

Table 8.—DOUBLE CROSSES OF 850 MATURITY  
Tested at Bowen, 1960

| Entry                                        | Pedigree | Acre yield | Moisture in grain                     | Erect plants | Stand |
|----------------------------------------------|----------|------------|---------------------------------------|--------------|-------|
| 1960 results                                 |          |            |                                       |              |       |
| AES 805 (WF9×38-11)(C103×Oh45).....          | 80.3     | 21.5       | 79.9                                  | 90.9         |       |
| III. 1332 (WF9×38-11)(Hy2×Oh7).....          | 104.2    | 20.8       | 87.8                                  | 91.6         |       |
| III. 1570 (check) (WF9×38-11)(Hy2×Oh41)..... | 94.0     | 20.9       | 84.5                                  | 93.9         |       |
| III. 1660 (Oh7×Cl.21E)(K4×K201).....         | 115.4    | 27.8       | 78.5                                  | 87.8         |       |
| III. 1976 (Oh7×Cl.21E)(38-11×Oh41).....      | 94.5     | 23.3       | 88.0                                  | 88.6         |       |
| III. 1978 (WF9×Oh7A)(C103×38-11).....        | 87.6     | 21.7       | 89.0                                  | 75.0         |       |
| III. 1996 (Hy2×Oh7)(C103×B14).....           | 104.2    | 21.6       | 88.9                                  | 88.6         |       |
| III. 3154 (K201×Cl.21E)(R132×R134).....      | 94.1     | 27.8       | 86.9                                  | 75.7         |       |
| III. 3190 (K201×C103)(Ky126×Oh7B).....       | 109.4    | 24.1       | 81.8                                  | 90.9         |       |
| III. 3344 (H49×H55)(R71×R105).....           | 106.2    | 25.2       | 93.9                                  | 86.3         |       |
| III. 3347 (H49×H55)(R74×R101).....           | 104.5    | 22.1       | 89.3                                  | 86.3         |       |
| III. 3348 (H49×H55)(R74×R109B).....          | 102.5    | 24.8       | 96.7                                  | 93.9         |       |
| III. 3350 (H49×H55)(R101×Oh41).....          | 91.6     | 23.3       | 95.2                                  | 94.6         |       |
| III. 3351 (H49×H55)(R109B×R168).....         | 102.4    | 22.7       | 84.8                                  | 88.6         |       |
| III. 3354 (H49×H51)(R71×R105).....           | 91.5     | 24.1       | 84.1                                  | 94.6         |       |
| III. 3357 (H49×H51)(R74×R101).....           | 94.7     | 22.9       | 94.7                                  | 90.1         |       |
| III. 3367 (WF9×R74)(Oh7×Cl.21E).....         | 109.1    | 22.9       | 92.1                                  | 87.1         |       |
| III. 3373 (WF9×C103)(R101×Oh41).....         | 83.9     | 21.7       | 88.5                                  | 86.3         |       |
| III. 6021 (R75×R76)(R84×K4).....             | 91.7     | 20.6       | 86.8                                  | 92.4         |       |
| III. 6052 (R78×38-11)(R84×K4).....           | 89.1     | 21.9       | 74.5                                  | 87.8         |       |
| III. 8005 (H49×H55)(B14×C103).....           | 93.8     | 22.9       | 91.4                                  | 87.1         |       |
| Ind. 851 (H49×H55)(H59×B14).....             | 103.3    | 24.9       | 86.5                                  | 86.3         |       |
| Ind. 873 (H49×H52)(H59×B14).....             | 98.3     | 24.0       | 93.7                                  | 87.8         |       |
| Ind. 874 (H49×H52)(H59×H60).....             | 88.9     | 22.3       | 90.3                                  | 95.4         |       |
| U.S. 13 (WF9×38-11)(Hy2×L317).....           | 67.0     | 21.1       | 78.3                                  | 90.9         |       |
| Average .....                                | 96.1     | 23.1       | 87.4                                  | 88.7         |       |
| Number in range                              |          |            | Difference necessary for significance |              |       |
| 2.....                                       | N.S.     | 1.7        | 10.5                                  | 9.2          |       |
| 3-5.....                                     | N.S.     | 1.9        | 11.6                                  | 10.2         |       |
| 6-10.....                                    | N.S.     | 2.0        | 12.3                                  | 10.8         |       |
| 11-15.....                                   | N.S.     | 2.0        | 12.6                                  | 11.1         |       |
| 16-20.....                                   | N.S.     | 2.1        | 12.7                                  | 11.2         |       |
| 21-25.....                                   | N.S.     | 2.1        | 12.8                                  | 11.3         |       |

Table 9.—DOUBLE CROSSES OF 850 MATURITY AND 900 MATURITY AND THREE-WAY CROSSES AND STANDARDS  
Tested at Urbana, 1958-1960

| Entry                                  | Pedigree | Acre yield                            | Moisture in grain | Erect plants | Stand       |
|----------------------------------------|----------|---------------------------------------|-------------------|--------------|-------------|
| <b>DOUBLE CROSSES OF 850 MATURITY</b>  |          |                                       |                   |              |             |
|                                        |          | bu.                                   | perct.            | perct.       | perct.      |
| <b>Summary: 1958-1960</b>              |          |                                       |                   |              |             |
| U.S. 13 (WF9×38-11)(Hy2×L317)          |          | 97.4                                  | 21.4              | 89.0         | 95.6        |
| III. 6052 (R78×38-11)(R84×K4)          |          | 95.9                                  | 21.9              | 85.7         | 94.2        |
| III. 1570 (WF9×38-11)(Hy2×Oh41)        |          | 95.1                                  | 21.2              | 93.4         | 93.7        |
| III. 6021 (R75×R76)(R84×K4)            |          | 92.9                                  | 20.9              | 91.0         | 96.2        |
| III. 1976 (Oh7×Cl.21E)(38-11×Oh41)     |          | 92.4                                  | 20.9              | 93.3         | 94.1        |
| III. 1978 (WF9×Oh7A)(C103×38-11)       |          | 90.9                                  | 22.0              | 90.7         | 92.5        |
| III. 1332 (WF9×38-11)(Hy2×Oh7)         |          | 90.7                                  | 20.3              | 97.7         | 95.8        |
| III. 1996 (Hy2×Oh7)(C103×B14)          |          | 88.6                                  | 20.2              | 96.3         | 90.3        |
| AES 805 (WF9×38-11)(C103×Oh45)         |          | 81.1                                  | 21.7              | 94.7         | 93.1        |
| <b>Average</b>                         |          | <b>91.7</b>                           | <b>21.2</b>       | <b>92.4</b>  | <b>93.9</b> |
| Number in range                        |          | Difference necessary for significance |                   |              |             |
| 2-9                                    |          | N.S.                                  | N.S.              | N.S.         | N.S.        |
| <b>Summary: 1959-1960</b>              |          |                                       |                   |              |             |
| III. 3350 (H49×H55)(R101×Oh41)         |          | 102.9                                 | 23.8              | 92.9         | 96.2        |
| III. 3347 (H49×H55)(R74×R101)          |          | 97.9                                  | 22.4              | 96.1         | 88.6        |
| III. 3357 (H49×H51)(R74×R101)          |          | 92.1                                  | 23.4              | 95.8         | 91.5        |
| III. 3354 (H49×H51)(R71×R105)          |          | 91.8                                  | 25.1              | 87.6         | 92.1        |
| III. 3344 (H49×H55)(R71×R105)          |          | 90.8                                  | 24.6              | 95.9         | 92.9        |
| III. 3367 (WF9×R74)(Oh7×Cl.21E)        |          | 89.2                                  | 21.8              | 95.3         | 90.5        |
| III. 3351 (H49×H55)(R109B×R168)        |          | 87.0                                  | 23.3              | 94.0         | 95.8        |
| III. 6052 (R78×38-11)(R84×K4)          |          | 85.7                                  | 23.7              | 91.3         | 96.3        |
| U.S. 13 (WF9×38-11)(Hy2×L317)          |          | 84.4                                  | 22.7              | 94.2         | 95.1        |
| III. 6021 (R75×R76)(R84×K4)            |          | 83.2                                  | 22.2              | 95.5         | 95.2        |
| III. 1976 (Oh7×Cl.21E)(38-11×Oh41)     |          | 82.5                                  | 21.4              | 96.2         | 92.9        |
| III. 1570 (WF9×38-11)(Hy2×Oh41)        |          | 82.1                                  | 22.2              | 95.8         | 93.6        |
| III. 3373 (WF9×C103)(R101×Oh41)        |          | 80.7                                  | 21.3              | 95.2         | 93.2        |
| III. 3348 (H49×H55)(R74×R109B)         |          | 80.7                                  | 24.7              | 93.2         | 90.5        |
| III. 1332 (WF9×38-11)(Hy2×Oh7)         |          | 76.6                                  | 21.1              | 99.1         | 95.0        |
| III. 1978 (WF9×Oh7A)(C103×38-11)       |          | 74.1                                  | 23.6              | 98.9         | 89.1        |
| III. 1996 (Hy2×Oh7)(C103×B14)          |          | 73.5                                  | 21.0              | 95.9         | 87.9        |
| AES 805 (WF9×38-11)(C103×Oh45)         |          | 63.6                                  | 22.8              | 97.3         | 91.7        |
| <b>Average</b>                         |          | <b>84.4</b>                           | <b>22.8</b>       | <b>95.0</b>  | <b>92.7</b> |
| Number in range                        |          | Difference necessary for significance |                   |              |             |
| 2-18                                   |          | N.S.                                  | N.S.              | N.S.         | N.S.        |
| <b>1960 results</b>                    |          |                                       |                   |              |             |
| AES 805 (WF9×38-11)(C103×Oh45)         |          | 77.6                                  | 27.4              | 98.1         | 84.8        |
| III. 1332 (WF9×38-11)(Hy2×Oh7)         |          | 93.9                                  | 24.7              | 99.0         | 90.1        |
| III. 1570 (check)(WF9×38-11)(Hy2×Oh41) |          | 89.9                                  | 26.2              | 97.1         | 87.8        |
| III. 1660 (Oh7×Cl.21E)(K4×K201)        |          | 76.5                                  | 22.8              | 100.0        | 83.3        |
| III. 1976 (Oh7×Cl.21E)(38-11×Oh41)     |          | 79.0                                  | 23.7              | 100.0        | 87.8        |
| III. 1978 (WF9×Oh7A)(C103×38-11)       |          | 95.6                                  | 27.1              | 100.0        | 81.0        |
| III. 1996 (Hy2×Oh7)(C103×B14)          |          | 72.6                                  | 24.0              | 100.0        | 77.2        |
| III. 3154 (K201×Cl.21E)(R132×R134)     |          | 106.3                                 | 27.7              | 98.3         | 87.8        |
| III. 3190 (K201×C103)(Ky126×Oh7B)      |          | 82.1                                  | 28.1              | 100.0        | 79.5        |
| III. 3344 (H49×H55)(R71×R105)          |          | 92.7                                  | 25.4              | 96.7         | 88.6        |
| III. 3347 (H49×H55)(R74×R101)          |          | 94.0                                  | 26.4              | 100.0        | 82.5        |
| III. 3348 (H49×H55)(R74×R109B)         |          | 71.8                                  | 28.3              | 94.5         | 81.8        |
| III. 3350 (H49×H55)(R101×Oh41)         |          | 103.8                                 | 25.3              | 99.2         | 93.1        |
| III. 3351 (H49×H55)(R109B×R168)        |          | 93.1                                  | 26.4              | 100.0        | 91.6        |
| III. 3354 (H49×H55)(R71×R105)          |          | 92.5                                  | 26.8              | 99.0         | 85.6        |
| III. 3357 (H49×H51)(R74×R101)          |          | 85.8                                  | 26.2              | 100.0        | 86.3        |
| III. 3367 (WF9×R74)(Oh7×Cl.21E)        |          | 92.6                                  | 24.1              | 100.0        | 81.8        |
| III. 3373 (WF9×C103)(R101×Oh41)        |          | 79.4                                  | 24.5              | 100.0        | 87.8        |
| III. 6021 (R75×R76)(R84×K4)            |          | 106.4                                 | 25.0              | 100.0        | 92.4        |
| III. 6052 (R78×38-11)(R84×K4)          |          | 108.1                                 | 27.0              | 100.0        | 100.0       |
| III. 8005 (H49×H55)(B14×C103)          |          | 86.7                                  | 28.0              | 100.0        | 89.3        |
| Ind. 851 (H49×H55)(H59×B14)            |          | 95.2                                  | 23.8              | 99.1         | 93.1        |
| Ind. 873 (H49×H52)(H59×B14)            |          | 101.0                                 | 24.1              | 100.0        | 94.6        |
| Ind. 874 (H49×H52)(H59×H60)            |          | 84.5                                  | 24.8              | 98.2         | 89.3        |
| U.S. 13 (WF9×38-11)(Hy2×L317)          |          | 99.7                                  | 26.7              | 100.0        | 90.9        |
| <b>Average</b>                         |          | <b>90.4</b>                           | <b>25.8</b>       | <b>99.2</b>  | <b>87.5</b> |
| Number in range                        |          | Difference necessary for significance |                   |              |             |
| 2-25                                   |          | N.S.                                  | N.S.              | N.S.         | N.S.        |

(Table is continued on next page)

Table 9.— Urbana — continued

| Entry                                           | Pedigree | Acre yield | Moisture in grain                     | Erect plants | Stand  |
|-------------------------------------------------|----------|------------|---------------------------------------|--------------|--------|
| <b>DOUBLE CROSSES OF 900 MATURITY</b>           |          |            |                                       |              |        |
|                                                 |          | bu.        | perct.                                | perct.       | perct. |
| <b>Summary: 1959-1960</b>                       |          |            |                                       |              |        |
| III. 3364 (CI.21E×K201)(R74×R101).....          | 93.0     | 22.2       | 83.2                                  | 93.9         |        |
| III. 3355 (H49×H51)(R71×R109B).....             | 92.1     | 20.5       | 90.3                                  | 97.6         |        |
| III. 3360 (H49×H51)(R101×Oh41).....             | 92.0     | 21.0       | 83.4                                  | 97.0         |        |
| III. 1856 (CI.21E×K201)(Oh7×38-11).....         | 86.8     | 22.4       | 88.1                                  | 98.3         |        |
| III. 1851 (Oh7×CI.21E)(38-11×C103).....         | 78.8     | 20.5       | 93.2                                  | 98.1         |        |
| Average.....                                    | 88.5     | 21.3       | 87.6                                  | 97.0         |        |
| Number in range                                 |          |            | Difference necessary for significance |              |        |
| 2-5.....                                        |          |            | N.S.                                  | N.S.         | N.S.   |
| <b>1960 results</b>                             |          |            |                                       |              |        |
| AES 904 (white) (K64×Mo22)(T111×T115).....      | 88.7     | 26.8       | 90.6                                  | 97.7         |        |
| III. 1349 (K155×K201)(38-11×Mo940).....         | 94.4     | 22.4       | 78.3                                  | 89.3         |        |
| III. 1539A (K201×CI.21E)(38-11×CI.7).....       | 97.4     | 23.1       | 77.2                                  | 97.7         |        |
| III. 1657 (K201×CI.21E)(K4×Oh7).....            | 106.5    | 24.1       | 76.5                                  | 100.0        |        |
| III. 1660 (Oh7×CI.21E)(K4×K201).....            | 99.3     | 24.2       | 79.2                                  | 96.2         |        |
| III. 1851 (check) (Oh7×CI.21E)(38-11×C103)..... | 95.2     | 21.3       | 89.8                                  | 96.9         |        |
| III. 1856 (CI.21E×K201)(Oh7×38-11).....         | 104.6    | 23.2       | 81.8                                  | 100.0        |        |
| III. 3129 (K201×38-11)(R101×Mo01930).....       | 106.4    | 20.4       | 80.6                                  | 96.2         |        |
| III. 3133 (K201×38-11)(R127×Mo0221).....        | 98.4     | 21.9       | 81.2                                  | 93.9         |        |
| III. 3135 (K201×38-11)(R71A×Mo0221).....        | 107.2    | 20.6       | 76.8                                  | 94.6         |        |
| III. 3140 (K201×38-11)(CI.21E×Ky126).....       | 82.4     | 22.6       | 76.9                                  | 89.3         |        |
| III. 3154 (K201×CI.21E)(R132×R134).....         | 95.1     | 23.6       | 76.8                                  | 93.9         |        |
| III. 3190 (K201×C103)(Ky126×Oh7B).....          | 95.6     | 22.5       | 81.5                                  | 87.8         |        |
| III. 3193 (38-11×K12)(K201×Oh7B).....           | 113.8    | 22.7       | 87.8                                  | 98.4         |        |
| III. 3198A (K201×Ky126)(N82481×Oh7B).....       | 84.7     | 22.8       | 73.7                                  | 97.7         |        |
| III. 3204A (K201×Ky126)(C103×K12).....          | 95.6     | 24.5       | 82.2                                  | 91.6         |        |
| III. 3210 (CI.21E×Ky126)(C103×K12).....         | 83.7     | 24.7       | 85.2                                  | 95.4         |        |
| III. 3214 (K201×Ky126)(K12×Oh7B).....           | 97.6     | 23.1       | 77.5                                  | 87.8         |        |
| III. 3251 (K201×38-11)(K11×Ky126).....          | 106.9    | 23.1       | 85.9                                  | 97.7         |        |
| Ind. 3355 (H49×H51)(R71×R109B).....             | 111.8    | 21.4       | 84.8                                  | 99.2         |        |
| III. 3360 (H49×H51)(R101×Oh41).....             | 104.7    | 22.2       | 80.4                                  | 95.4         |        |
| III. 3364 (CI.21E×K201)(R74×R101).....          | 114.7    | 22.2       | 76.3                                  | 93.1         |        |
| III. 9001 (Oh7×CI.21E)(CI.7×C103).....          | 89.8     | 21.5       | 75.8                                  | 88.6         |        |
| Ind. 851 (H49×H55)(H59×B14).....                | 102.0    | 22.0       | 73.8                                  | 93.9         |        |
| Ind. 874 (H49×H52)(H59×H60).....                | 113.3    | 20.7       | 83.9                                  | 99.2         |        |
| Average.....                                    | 99.6     | 22.7       | 80.6                                  | 94.9         |        |
| Number in range                                 |          |            | Difference necessary for significance |              |        |
| 2.....                                          |          |            | N.S.                                  | N.S.         | N.S.   |
| 3-5.....                                        |          |            | N.S.                                  | N.S.         | N.S.   |
| 6-10.....                                       |          |            | N.S.                                  | N.S.         | N.S.   |
| 11-25.....                                      |          |            | N.S.                                  | N.S.         | N.S.   |

(Table is continued on next page)

Table 9.—Urbana—continued

| Entry                                                      | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand       |
|------------------------------------------------------------|---------------|----------------------|-----------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS, SUMMARY: 1959-1960</b> |               |                      |                 |             |
|                                                            | bu.           | perct.               | perct.          | perct.      |
| <b>Inbred lines crossed with (WF9 × Oh43)</b>              |               |                      |                 |             |
| R71.....                                                   | 88.9          | 20.4                 | 94.2            | 86.8        |
| R74.....                                                   | 55.5          | 22.9                 | 96.8            | 60.5        |
| R76.....                                                   | 88.5          | 21.8                 | 91.1            | 84.2        |
| R78.....                                                   | 76.9          | 22.9                 | 87.4            | 77.5        |
| R84.....                                                   | 81.5          | 22.4                 | 94.6            | 88.3        |
| R101.....                                                  | 92.1          | 20.2                 | 89.0            | 94.6        |
| R104.....                                                  | 78.1          | 20.1                 | 95.2            | 79.1        |
| R109B.....                                                 | 75.9          | 22.6                 | 96.9            | 72.9        |
| R112.....                                                  | 88.9          | 21.1                 | 90.3            | 86.2        |
| R113.....                                                  | 73.2          | 20.4                 | 93.8            | 77.9        |
| R114.....                                                  | 72.7          | 20.2                 | 97.9            | 82.5        |
| R132.....                                                  | 91.9          | 21.6                 | 86.8            | 95.4        |
| R134.....                                                  | 91.5          | 22.0                 | 97.0            | 88.5        |
| R151.....                                                  | 83.4          | 22.0                 | 96.0            | 75.5        |
| R154.....                                                  | 78.2          | 23.0                 | 84.9            | 71.9        |
| R158.....                                                  | 87.1          | 20.5                 | 96.3            | 91.3        |
| R159.....                                                  | 65.6          | 22.5                 | 99.2            | 75.1        |
| R166.....                                                  | 79.6          | 21.9                 | 81.8            | 81.1        |
| R168.....                                                  | 91.5          | 19.4                 | 93.3            | 90.5        |
| R172.....                                                  | 83.8          | 20.5                 | 95.6            | 79.5        |
| R180.....                                                  | 79.2          | 22.4                 | 90.9            | 84.7        |
| R181.....                                                  | 92.1          | 18.1                 | 91.4            | 87.4        |
| R182.....                                                  | 66.5          | 19.9                 | 97.5            | 73.3        |
| R183.....                                                  | 70.7          | 23.3                 | 98.4            | 86.8        |
| R192.....                                                  | 92.9          | 23.4                 | 93.9            | 93.2        |
| R193.....                                                  | 83.1          | 21.7                 | 89.8            | 86.0        |
| R194.....                                                  | 90.0          | 21.7                 | 90.7            | 93.7        |
| R195.....                                                  | 80.2          | 18.2                 | 96.8            | 86.5        |
| R196.....                                                  | 87.8          | 20.7                 | 96.7            | 91.9        |
| R197.....                                                  | 91.3          | 24.2                 | 90.5            | 84.5        |
| R198.....                                                  | 95.6          | 23.5                 | 90.7            | 91.5        |
| <b>Average.....</b>                                        | <b>82.4</b>   | <b>21.4</b>          | <b>93.1</b>     | <b>83.8</b> |
| <b>Inbred lines crossed with (WF9 × B37)</b>               |               |                      |                 |             |
| R71.....                                                   | 95.9          | 23.0                 | 96.2            | 90.7        |
| R74.....                                                   | 87.2          | 23.6                 | 96.0            | 85.5        |
| R76.....                                                   | 82.1          | 21.6                 | 96.4            | 85.8        |
| R78.....                                                   | 81.1          | 21.8                 | 88.7            | 87.7        |
| R84.....                                                   | 68.6          | 21.3                 | 96.7            | 85.9        |
| R101.....                                                  | 91.3          | 21.4                 | 98.0            | 89.2        |
| R104.....                                                  | 89.3          | 21.0                 | 87.3            | 93.8        |
| R109B.....                                                 | 75.0          | 23.6                 | 94.9            | 82.7        |
| R112.....                                                  | 85.2          | 21.8                 | 93.9            | 86.7        |
| R113.....                                                  | 76.0          | 21.1                 | 97.2            | 85.1        |
| R114.....                                                  | 74.6          | 22.8                 | 95.5            | 83.7        |
| R132.....                                                  | 85.9          | 21.7                 | 81.2            | 82.4        |
| R134.....                                                  | 85.6          | 23.3                 | 99.6            | 84.9        |
| R151.....                                                  | 93.8          | 24.8                 | 94.7            | 88.7        |
| R154.....                                                  | 97.9          | 21.9                 | 90.0            | 95.2        |
| R158.....                                                  | 61.7          | 21.5                 | 96.8            | 67.0        |
| R159.....                                                  | 80.0          | 22.6                 | 98.8            | 93.8        |
| R166.....                                                  | 88.8          | 21.5                 | 94.6            | 87.4        |
| R168.....                                                  | 88.0          | 19.2                 | 99.2            | 89.3        |
| R172.....                                                  | 84.1          | 22.1                 | 99.2            | 87.8        |
| R180.....                                                  | 77.2          | 22.0                 | 97.2            | 83.2        |
| R181.....                                                  | 92.4          | 21.2                 | 98.7            | 88.8        |
| R182.....                                                  | 79.2          | 20.2                 | 98.4            | 92.3        |
| R183.....                                                  | 64.4          | 24.6                 | 99.2            | 80.3        |
| R192.....                                                  | 88.5          | 24.4                 | 98.0            | 90.0        |
| R193.....                                                  | 78.3          | 24.2                 | 93.0            | 86.5        |
| R194.....                                                  | 88.4          | 24.4                 | 96.7            | 92.8        |
| R195.....                                                  | 80.6          | 21.1                 | 96.4            | 85.3        |
| R196.....                                                  | 80.0          | 21.5                 | 93.6            | 86.4        |
| R197.....                                                  | 92.7          | 24.1                 | 89.0            | 90.8        |
| R198.....                                                  | 81.4          | 25.4                 | 94.9            | 86.7        |
| <b>Average.....</b>                                        | <b>83.1</b>   | <b>22.4</b>          | <b>95.1</b>     | <b>87.0</b> |

(Table is continued on next page)

Table 9.— Urbana — continued

| Entry                                                                      | Acre yield  | Moisture in grain | Erect plants | Stand       |
|----------------------------------------------------------------------------|-------------|-------------------|--------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS, SUMMARY:<br/>1959-1960 — continued</b> |             |                   |              |             |
| <b>Inbred lines crossed with (B41 × Oh7A)</b>                              |             |                   |              |             |
| R71.....                                                                   | 101.6       | 26.3              | 93.7         | 95.0        |
| R74.....                                                                   | 91.2        | 26.8              | 95.2         | 90.0        |
| R76.....                                                                   | 85.5        | 26.3              | 92.0         | 90.4        |
| R78.....                                                                   | 69.9        | 22.9              | 74.8         | 75.6        |
| R84.....                                                                   | 63.6        | 23.7              | 97.9         | 85.1        |
| R101.....                                                                  | 81.1        | 23.4              | 98.3         | 95.4        |
| R104.....                                                                  | 86.9        | 23.7              | 94.4         | 82.4        |
| R109B.....                                                                 | 60.2        | 27.1              | 96.7         | 72.0        |
| R112.....                                                                  | 74.7        | 24.4              | 92.6         | 81.4        |
| R113.....                                                                  | 70.1        | 23.7              | 97.8         | 88.2        |
| R114.....                                                                  | 71.8        | 21.9              | 94.4         | 82.5        |
| R132.....                                                                  | 72.9        | 24.9              | 84.4         | 80.6        |
| R134.....                                                                  | 79.4        | 26.0              | 95.2         | 84.6        |
| R151.....                                                                  | 85.4        | 24.9              | 93.2         | 81.5        |
| R154.....                                                                  | 83.3        | 23.8              | 78.4         | 79.5        |
| R158.....                                                                  | 65.1        | 24.5              | 99.2         | 75.6        |
| R159.....                                                                  | 65.7        | 26.4              | 98.1         | 83.6        |
| R166.....                                                                  | 93.9        | 25.1              | 79.0         | 97.3        |
| R168.....                                                                  | 71.7        | 21.3              | 98.4         | 66.3        |
| R172.....                                                                  | 71.8        | 23.7              | 96.6         | 73.4        |
| R180.....                                                                  | 78.6        | 24.4              | 95.2         | 86.0        |
| R181.....                                                                  | 76.3        | 22.3              | 88.5         | 73.3        |
| R182.....                                                                  | 62.4        | 23.0              | 99.6         | 71.0        |
| R183.....                                                                  | 63.1        | 26.7              | 96.3         | 81.5        |
| R192.....                                                                  | 71.2        | 26.3              | 88.1         | 76.8        |
| R193.....                                                                  | 76.1        | 24.1              | 94.4         | 82.8        |
| R194.....                                                                  | 74.6        | 26.2              | 94.4         | 88.7        |
| R195.....                                                                  | 64.4        | 22.9              | 96.4         | 73.3        |
| R196.....                                                                  | 77.2        | 23.8              | 95.1         | 81.5        |
| R197.....                                                                  | 77.1        | 28.0              | 94.1         | 83.2        |
| R198.....                                                                  | 78.8        | 27.4              | 94.1         | 90.9        |
| <b>Average.....</b>                                                        | <b>75.8</b> | <b>24.7</b>       | <b>93.1</b>  | <b>82.2</b> |
| <b>Single-cross testers</b>                                                |             |                   |              |             |
| WF9 × Oh43.....                                                            | 91.5        | 21.7              | 93.5         | 90.7        |
| WF9 × B37.....                                                             | 83.4        | 23.6              | 94.5         | 92.8        |
| B41 × Oh7A.....                                                            | 71.2        | 28.0              | 82.8         | 90.4        |
| <b>Average.....</b>                                                        | <b>82.0</b> | <b>24.4</b>       | <b>90.3</b>  | <b>91.3</b> |
| Number in range                                                            |             |                   |              |             |
| 2.....                                                                     | N.S.        | 7.7               | N.S.         | 11.0        |
| 3-5.....                                                                   | N.S.        | 8.6               | N.S.         | 12.2        |
| 6-10.....                                                                  | N.S.        | 9.2               | N.S.         | 13.0        |
| 11-20.....                                                                 | N.S.        | 9.7               | N.S.         | 13.7        |
| 21-31.....                                                                 | N.S.        | 9.8               | N.S.         | 13.9        |
| Difference necessary for significance                                      |             |                   |              |             |

(Table is continued on next page)

Table 9.— Urbana — continued

| Entry                                                  | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand       |
|--------------------------------------------------------|---------------|----------------------|-----------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS, SUMMARY:</b>       |               |                      |                 |             |
| 1959-1960 — continued                                  |               |                      |                 |             |
|                                                        | bu.           | perct.               | perct.          | perct.      |
| <b>Mean of inbred lines crossed with three testers</b> |               |                      |                 |             |
| R71.....                                               | 95.5          | 23.2                 | 94.7            | 90.8        |
| R74.....                                               | 78.0          | 24.4                 | 96.0            | 78.7        |
| R76.....                                               | 85.4          | 23.2                 | 93.2            | 86.8        |
| R78.....                                               | 76.0          | 22.5                 | 83.6            | 80.3        |
| R84.....                                               | 72.9          | 22.5                 | 96.4            | 86.4        |
| R101.....                                              | 88.2          | 21.7                 | 95.0            | 93.1        |
| R104.....                                              | 84.8          | 21.6                 | 92.3            | 85.1        |
| R109B.....                                             | 70.4          | 24.5                 | 96.2            | 75.9        |
| R112.....                                              | 82.9          | 22.4                 | 92.3            | 84.8        |
| R113.....                                              | 73.1          | 21.7                 | 96.3            | 83.7        |
| R114.....                                              | 73.0          | 21.6                 | 95.9            | 82.9        |
| R132.....                                              | 83.6          | 22.7                 | 84.1            | 86.1        |
| R134.....                                              | 85.5          | 23.8                 | 97.3            | 86.0        |
| R151.....                                              | 87.5          | 23.9                 | 94.6            | 81.9        |
| R154.....                                              | 86.5          | 22.9                 | 84.4            | 82.2        |
| R158.....                                              | 71.3          | 22.2                 | 97.4            | 78.0        |
| R159.....                                              | 70.4          | 23.9                 | 98.7            | 84.2        |
| R166.....                                              | 87.4          | 22.8                 | 85.1            | 88.6        |
| R168.....                                              | 83.7          | 20.0                 | 97.0            | 82.0        |
| R172.....                                              | 79.9          | 22.1                 | 97.1            | 80.2        |
| R180.....                                              | 78.3          | 22.9                 | 94.4            | 84.6        |
| R181.....                                              | 86.9          | 20.5                 | 92.9            | 83.2        |
| R182.....                                              | 69.4          | 21.1                 | 98.5            | 78.9        |
| R183.....                                              | 66.1          | 24.9                 | 98.0            | 82.9        |
| R192.....                                              | 84.2          | 24.7                 | 93.3            | 86.7        |
| R193.....                                              | 79.2          | 23.3                 | 92.5            | 85.1        |
| R194.....                                              | 84.3          | 24.1                 | 93.9            | 91.7        |
| R195.....                                              | 75.1          | 20.7                 | 96.5            | 81.7        |
| R196.....                                              | 81.7          | 22.0                 | 95.1            | 86.6        |
| R197.....                                              | 87.0          | 25.4                 | 91.2            | 86.1        |
| R198.....                                              | 85.3          | 25.4                 | 93.2            | 89.7        |
| <b>Average.....</b>                                    | <b>80.4</b>   | <b>22.9</b>          | <b>93.8</b>     | <b>84.4</b> |

(Table is continued on next page)

Table 9.—Urbana—continued

| Entry                                                | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand         |
|------------------------------------------------------|---------------|----------------------|-----------------|---------------|
| <b>THREE-WAY CROSSES AND STANDARDS: 1960 RESULTS</b> |               |                      |                 |               |
|                                                      | <i>bu.</i>    | <i>perct.</i>        | <i>perct.</i>   | <i>perct.</i> |
| <b>Inbred lines crossed with (WF9 × Oh43)</b>        |               |                      |                 |               |
| R71.....                                             | 87.4          | 20.8                 | 97.1            | 78.0          |
| R74.....                                             | 49.4          | 23.2                 | 100.0           | 34.8          |
| R76.....                                             | 90.1          | 22.0                 | 98.8            | 81.0          |
| R78.....                                             | 76.8          | 23.0                 | 100.0           | 65.9          |
| R84.....                                             | 90.8          | 23.1                 | 98.3            | 81.8          |
| R101.....                                            | 99.4          | 19.8                 | 94.4            | 91.6          |
| R104.....                                            | 76.1          | 19.6                 | 100.0           | 65.1          |
| R109B.....                                           | 74.1          | 22.2                 | 98.7            | 62.9          |
| R112.....                                            | 89.4          | 21.8                 | 100.0           | 80.3          |
| R113.....                                            | 76.1          | 20.2                 | 100.0           | 65.1          |
| R114.....                                            | 84.1          | 20.6                 | 100.0           | 74.2          |
| R132.....                                            | 100.1         | 22.2                 | 100.0           | 92.4          |
| R134.....                                            | 93.4          | 22.4                 | 100.0           | 84.8          |
| R151.....                                            | 71.4          | 21.6                 | 100.0           | 59.8          |
| R154.....                                            | 66.8          | 24.1                 | 100.0           | 54.5          |
| R158.....                                            | 94.1          | 21.2                 | 99.1            | 85.6          |
| R159.....                                            | 71.4          | 22.9                 | 100.0           | 59.8          |
| R166.....                                            | 80.8          | 21.6                 | 100.0           | 70.4          |
| R168.....                                            | 93.4          | 19.5                 | 99.0            | 84.8          |
| R172.....                                            | 76.8          | 20.3                 | 100.0           | 65.9          |
| R180.....                                            | 86.1          | 22.7                 | 97.9            | 76.5          |
| R181.....                                            | 89.4          | 17.6                 | 100.0           | 80.3          |
| R182.....                                            | 69.4          | 19.7                 | 100.0           | 57.6          |
| R183.....                                            | 87.4          | 24.5                 | 100.0           | 78.0          |
| R192.....                                            | 97.4          | 23.4                 | 100.0           | 89.4          |
| R193.....                                            | 87.4          | 22.5                 | 100.0           | 78.0          |
| R194.....                                            | 98.1          | 21.1                 | 100.0           | 90.1          |
| R195.....                                            | 88.1          | 20.8                 | 100.0           | 78.8          |
| R196.....                                            | 96.1          | 20.7                 | 100.0           | 87.9          |
| R197.....                                            | 88.1          | 25.2                 | 94.3            | 78.8          |
| R198.....                                            | 96.1          | 23.3                 | 98.3            | 87.9          |
| <b>Average.....</b>                                  | <b>81.8</b>   | <b>21.7</b>          | <b>99.2</b>     | <b>74.9</b>   |
| <b>Inbred lines crossed with (WF9 × B37)</b>         |               |                      |                 |               |
| R71.....                                             | 96.1          | 22.3                 | 100.0           | 87.8          |
| R74.....                                             | 86.8          | 23.5                 | 97.5            | 77.2          |
| R76.....                                             | 90.1          | 21.1                 | 99.0            | 81.0          |
| R78.....                                             | 88.8          | 21.3                 | 99.2            | 79.6          |
| R84.....                                             | 86.1          | 21.1                 | 99.1            | 76.5          |
| R101.....                                            | 92.8          | 20.6                 | 100.0           | 84.1          |
| R104.....                                            | 99.4          | 20.2                 | 95.2            | 91.6          |
| R109B.....                                           | 86.1          | 22.9                 | 98.1            | 76.5          |
| R112.....                                            | 91.4          | 21.8                 | 99.0            | 82.5          |
| R113.....                                            | 86.1          | 21.1                 | 100.0           | 76.5          |
| R114.....                                            | 84.1          | 24.0                 | 100.0           | 74.2          |
| R132.....                                            | 82.1          | 21.1                 | 96.5            | 71.9          |
| R134.....                                            | 88.8          | 23.5                 | 100.0           | 79.5          |
| R151.....                                            | 91.4          | 26.1                 | 100.0           | 82.5          |
| R154.....                                            | 102.1         | 21.8                 | 100.0           | 94.7          |
| R158.....                                            | 60.1          | 22.2                 | 96.8            | 47.0          |
| R159.....                                            | 99.4          | 21.9                 | 100.0           | 91.6          |
| R166.....                                            | 90.1          | 20.6                 | 100.0           | 81.0          |
| R168.....                                            | 93.4          | 18.2                 | 100.0           | 84.8          |
| R172.....                                            | 89.4          | 21.8                 | 100.0           | 80.3          |
| R180.....                                            | 82.8          | 23.0                 | 100.0           | 72.7          |
| R181.....                                            | 92.1          | 21.8                 | 100.0           | 83.3          |
| R182.....                                            | 96.1          | 20.1                 | 100.0           | 87.9          |
| R183.....                                            | 80.8          | 25.0                 | 100.0           | 70.4          |
| R192.....                                            | 92.8          | 25.1                 | 100.0           | 84.1          |
| R193.....                                            | 88.8          | 26.0                 | 100.0           | 79.5          |
| R194.....                                            | 96.8          | 23.5                 | 100.0           | 88.6          |
| R195.....                                            | 88.8          | 21.8                 | 100.0           | 79.5          |
| R196.....                                            | 87.4          | 20.7                 | 100.0           | 78.0          |
| R197.....                                            | 96.8          | 24.2                 | 96.5            | 88.6          |
| R198.....                                            | 91.4          | 26.1                 | 100.0           | 82.5          |
| <b>Average.....</b>                                  | <b>89.7</b>   | <b>21.8</b>          | <b>99.3</b>     | <b>80.5</b>   |

(Table is continued on next page)

Table 9.—Urbana—continued

| Entry                                                              | Pedigree | Acre yield   | Moisture in grain                     | Erect plants | Stand       |
|--------------------------------------------------------------------|----------|--------------|---------------------------------------|--------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS:<br/>1960 RESULTS—continued</b> |          |              |                                       |              |             |
|                                                                    |          | bu.          | perct.                                | perct.       | perct.      |
| <b>Inbred lines crossed with (B41 × Oh7A)</b>                      |          |              |                                       |              |             |
| R71                                                                |          | 100.1        | 26.1                                  | 96.2         | 92.4        |
| R74                                                                |          | 92.1         | 28.1                                  | 100.0        | 83.3        |
| R76                                                                |          | 92.8         | 27.1                                  | 100.0        | 84.1        |
| R78                                                                |          | 72.1         | 21.7                                  | 84.5         | 60.6        |
| R84                                                                |          | 86.1         | 24.7                                  | 100.0        | 76.5        |
| R101                                                               |          | 100.1        | 23.0                                  | 99.1         | 92.4        |
| R104                                                               |          | 87.4         | 24.7                                  | 100.0        | 78.0        |
| R109B                                                              |          | 67.4         | 27.5                                  | 100.0        | 55.3        |
| R112                                                               |          | 80.1         | 25.1                                  | 95.8         | 69.7        |
| R113                                                               |          | 89.4         | 22.9                                  | 98.3         | 80.3        |
| R114                                                               |          | 83.4         | 21.9                                  | 100.0        | 73.5        |
| R132                                                               |          | 80.1         | 25.4                                  | 100.0        | 69.7        |
| R134                                                               |          | 85.4         | 26.1                                  | 98.1         | 75.7        |
| R151                                                               |          | 80.8         | 24.6                                  | 95.5         | 70.4        |
| R154                                                               |          | 76.8         | 24.3                                  | 100.0        | 65.9        |
| R158                                                               |          | 72.1         | 25.4                                  | 100.0        | 60.6        |
| R159                                                               |          | 82.8         | 27.3                                  | 98.9         | 72.7        |
| R166                                                               |          | 103.4        | 25.5                                  | 99.2         | 96.2        |
| R168                                                               |          | 66.8         | 21.5                                  | 100.0        | 54.5        |
| R172                                                               |          | 70.8         | 24.3                                  | 100.0        | 59.1        |
| R180                                                               |          | 87.4         | 24.6                                  | 100.0        | 78.0        |
| R181                                                               |          | 69.4         | 22.5                                  | 100.0        | 57.6        |
| R182                                                               |          | 64.8         | 23.2                                  | 100.0        | 52.3        |
| R183                                                               |          | 81.4         | 28.0                                  | 97.9         | 71.2        |
| R192                                                               |          | 72.8         | 26.5                                  | 98.8         | 61.3        |
| R193                                                               |          | 82.1         | 24.6                                  | 100.0        | 71.9        |
| R194                                                               |          | 91.4         | 26.5                                  | 98.0         | 82.5        |
| R195                                                               |          | 68.8         | 23.8                                  | 100.0        | 56.8        |
| R196                                                               |          | 81.4         | 23.6                                  | 100.0        | 71.2        |
| R197                                                               |          | 87.4         | 29.2                                  | 97.3         | 78.0        |
| R198                                                               |          | 94.1         | 29.1                                  | 99.0         | 85.6        |
| <b>Average</b>                                                     |          | <b>82.3</b>  | <b>25.1</b>                           | <b>98.6</b>  | <b>72.2</b> |
| <b>Single-cross testers</b>                                        |          |              |                                       |              |             |
| WF9 × Oh43                                                         |          | 94.0         | 23.4                                  | 100.0        | 86.4        |
| WF9 × B37                                                          |          | 96.8         | 25.3                                  | 100.0        | 88.6        |
| B41 × Oh7A                                                         |          | 91.4         | 28.9                                  | 93.6         | 81.8        |
| <b>Average</b>                                                     |          | <b>94.1</b>  | <b>25.9</b>                           | <b>97.9</b>  | <b>85.6</b> |
| <b>Standards</b>                                                   |          |              |                                       |              |             |
| III. 1851 (C103 × 38-11)(Oh7 × CI.21E)                             |          | 102.7        | 28.0                                  | 100.0        | 95.4        |
| III. 3049 (Hy2 × WF9)(R71 × R109B)                                 |          | 99.3         | 25.4                                  | 99.2         | 90.9        |
| III. 3152A (M14 × B14)(WF9 × Oh43)                                 |          | 100.0        | 20.4                                  | 99.2         | 93.2        |
| III. 3347 (R74 × R101)(H49 × H55)                                  |          | 100.7        | 25.2                                  | 100.0        | 93.2        |
| <b>Average</b>                                                     |          | <b>100.7</b> | <b>24.8</b>                           | <b>99.6</b>  | <b>93.2</b> |
| Number in range                                                    |          |              | Difference necessary for significance |              |             |
| 2                                                                  |          | 14.8         | 11.4                                  | 4.5          | 16.7        |
| 3-5                                                                |          | 16.5         | 12.7                                  | 5.0          | 18.7        |
| 6-10                                                               |          | 17.5         | 13.6                                  | 5.3          | 19.9        |
| 11-20                                                              |          | 18.5         | 14.4                                  | 5.6          | 21.0        |
| 21-31                                                              |          | 19.5         | 15.1                                  | 6.0          | 22.2        |

(Table is concluded on next page)

Table 9.—Urbana—concluded

| Entry                                                              | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand       |
|--------------------------------------------------------------------|---------------|----------------------|-----------------|-------------|
| <b>THREE-WAY CROSSES AND STANDARDS:<br/>1960 RESULTS—concluded</b> |               |                      |                 |             |
| <b>Mean of inbred lines crossed with three testers</b>             |               |                      |                 |             |
| R71.....                                                           | 94.5          | 23.1                 | 97.8            | 86.1        |
| R74.....                                                           | 76.1          | 24.9                 | 99.2            | 65.1        |
| R76.....                                                           | 91.0          | 23.4                 | 99.3            | 82.0        |
| R78.....                                                           | 79.2          | 22.0                 | 94.6            | 68.7        |
| R84.....                                                           | 87.6          | 23.0                 | 99.1            | 78.2        |
| R101.....                                                          | 97.4          | 21.1                 | 97.9            | 89.4        |
| R104.....                                                          | 87.6          | 21.5                 | 98.4            | 78.2        |
| R109B.....                                                         | 75.9          | 24.2                 | 98.9            | 64.9        |
| R112.....                                                          | 87.0          | 22.9                 | 98.3            | 77.5        |
| R113.....                                                          | 83.9          | 21.4                 | 99.5            | 74.0        |
| R114.....                                                          | 83.9          | 22.2                 | 100.0           | 74.0        |
| R132.....                                                          | 87.4          | 22.9                 | 98.8            | 78.0        |
| R134.....                                                          | 89.2          | 24.0                 | 99.4            | 80.0        |
| R151.....                                                          | 81.2          | 24.1                 | 98.5            | 70.9        |
| R154.....                                                          | 81.9          | 23.4                 | 100.0           | 71.7        |
| R158.....                                                          | 75.4          | 22.9                 | 98.6            | 64.4        |
| R159.....                                                          | 84.5          | 24.0                 | 99.6            | 74.7        |
| R166.....                                                          | 91.4          | 22.6                 | 99.7            | 82.5        |
| R168.....                                                          | 84.5          | 19.7                 | 99.7            | 74.7        |
| R172.....                                                          | 79.0          | 22.1                 | 100.0           | 68.4        |
| R180.....                                                          | 85.4          | 23.4                 | 99.3            | 75.7        |
| R181.....                                                          | 83.6          | 20.6                 | 100.0           | 73.7        |
| R182.....                                                          | 76.8          | 21.0                 | 100.0           | 65.9        |
| R183.....                                                          | 83.2          | 25.8                 | 99.3            | 73.2        |
| R192.....                                                          | 87.7          | 25.0                 | 99.6            | 78.3        |
| R193.....                                                          | 86.1          | 24.4                 | 100.0           | 76.5        |
| R194.....                                                          | 95.4          | 23.7                 | 99.4            | 87.1        |
| R195.....                                                          | 81.9          | 22.1                 | 100.0           | 71.7        |
| R196.....                                                          | 88.3          | 21.7                 | 100.0           | 79.0        |
| R197.....                                                          | 90.8          | 26.2                 | 96.0            | 81.8        |
| R198.....                                                          | 93.9          | 26.2                 | 99.1            | 85.3        |
| <b>Average.....</b>                                                | <b>85.5</b>   | <b>23.1</b>          | <b>99.0</b>     | <b>75.9</b> |

Table 10.—DOUBLE CROSSES OF 850 AND 900 MATURITY  
Tested at Greenfield, 1960

| Entry                                           | Pedigree    | Acre yield  | Moisture in grain                     | Erect plants | Stand |
|-------------------------------------------------|-------------|-------------|---------------------------------------|--------------|-------|
| 1960 results, 850 maturity series               |             |             |                                       |              |       |
| AES 805 (WF9×38-11)(C103×Oh45).....             | 89.7        | 20.7        | 97.0                                  | 75.0         |       |
| Ill. 1332 (WF9×38-11)(Hy2×Oh7).....             | 79.1        | 20.1        | 97.5                                  | 73.4         |       |
| Ill. 1570 (check) (WF9×38-11)(Hy2×Oh41).....    | 67.1        | 21.2        | 95.8                                  | 88.6         |       |
| Ill. 1660 (Oh7×CI.21E)(K4×K201).....            | 103.0       | 25.3        | 95.4                                  | 62.8         |       |
| Ill. 1978 (Oh7×CI.21E)(38-11×Oh41).....         | 80.3        | 22.9        | 90.6                                  | 79.5         |       |
| Ill. 1978 (WF9×Oh7A)(C103×38-11).....           | 77.6        | 20.8        | 100.0                                 | 65.9         |       |
| Ill. 1996 (Hy2×Oh7)(C103×B14).....              | 84.4        | 20.4        | 94.2                                  | 84.0         |       |
| Ill. 3154 (K201×CI.21E)(R132×R134).....         | 88.6        | 27.2        | 88.9                                  | 61.3         |       |
| Ill. 3190 (K201×C103)(Ky126×Oh7B).....          | 102.9       | 26.6        | 96.9                                  | 74.2         |       |
| Ill. 3344 (H49×H55)(R71×R105).....              | 107.4       | 24.5        | 98.3                                  | 90.9         |       |
| Ill. 3347 (H49×H55)(R74×R101).....              | 100.9       | 22.3        | 100.0                                 | 70.4         |       |
| Ill. 3348 (H49×H55)(R74×R109B).....             | 96.6        | 23.8        | 100.0                                 | 78.7         |       |
| Ill. 3350 (H49×H55)(R101×Oh41).....             | 86.2        | 22.2        | 95.4                                  | 75.0         |       |
| Ill. 3351 (H49×H55)(R109B×R168).....            | 84.3        | 22.1        | 94.4                                  | 78.7         |       |
| Ill. 3354 (H49×H51)(R71×R105).....              | 76.4        | 22.3        | 100.0                                 | 81.0         |       |
| Ill. 3357 (H49×H51)(R74×R101).....              | 90.9        | 21.3        | 95.6                                  | 88.6         |       |
| Ill. 3367 (WF9×R74)(Oh7×CI.21E).....            | 125.0       | 25.3        | 98.0                                  | 78.7         |       |
| Ill. 3373 (WF9×C103)(R101×Oh41).....            | 76.8        | 21.4        | 98.0                                  | 75.7         |       |
| Ill. 6021 (R75×R76)(R84×K4).....                | 71.7        | 21.1        | 98.1                                  | 71.2         |       |
| Ill. 6052 (R78×38-11)(R84×K4).....              | 79.2        | 21.2        | 90.1                                  | 76.5         |       |
| Ill. 8005 (H49×H55)(B14×C103).....              | 91.0        | 23.8        | 96.5                                  | 69.6         |       |
| Ind. 851 (H49×H55)(H59×B14).....                | 83.3        | 21.9        | 97.3                                  | 86.3         |       |
| Ind. 873 (H49×H52)(H59×B14).....                | 96.4        | 22.8        | 96.8                                  | 68.9         |       |
| Ind. 874 (H49×H52)(H59×H60).....                | 86.1        | 21.7        | 98.3                                  | 83.3         |       |
| U.S. 13 (WF9×38-11)(Hy2×L317).....              | 78.8        | 19.9        | 92.5                                  | 74.2         |       |
| <b>Average</b> .....                            | <b>88.1</b> | <b>22.5</b> | <b>96.2</b>                           | <b>76.5</b>  |       |
| Number in range                                 |             |             | Difference necessary for significance |              |       |
| 2.....                                          | 20.8        | 2.0         | 6.1                                   | N.S.         |       |
| 3-5.....                                        | 23.1        | 2.2         | 6.8                                   | N.S.         |       |
| 6-10.....                                       | 24.5        | 2.4         | 7.2                                   | N.S.         |       |
| 11-15.....                                      | 25.1        | 2.4         | 7.4                                   | N.S.         |       |
| 16-20.....                                      | 25.4        | 2.4         | 7.5                                   | N.S.         |       |
| 21-25.....                                      | 25.5        | 2.5         | 7.5                                   | N.S.         |       |
| 1960 results, 900 maturity series               |             |             |                                       |              |       |
| AES 904 (white) (K64×Mo22)(T111×T115).....      | 94.0        | 27.3        | 94.5                                  | 98.4         |       |
| Ill. 1349 (K155×K201)(38-11×Mo940).....         | 90.6        | 21.3        | 93.6                                  | 96.2         |       |
| Ill. 1539A (K201×CI.21E)(38-11×CI.7).....       | 75.9        | 24.8        | 87.5                                  | 84.8         |       |
| Ill. 1657 (K201×CI.21E)(K4×Oh7).....            | 95.2        | 24.5        | 93.1                                  | 98.4         |       |
| Ill. 1660 (Oh7×CI.21E)(K4×K201).....            | 74.9        | 24.6        | 94.4                                  | 90.1         |       |
| Ill. 1851 (check) (Oh7×CI.21E)(38-11×C103)..... | 94.1        | 23.2        | 94.5                                  | 96.2         |       |
| Ill. 1856 (CI.21E×K201)(Oh7×38-11).....         | 93.9        | 23.7        | 88.1                                  | 90.1         |       |
| Ill. 3129 (K201×38-11)(R101×Mo01930).....       | 88.8        | 22.2        | 90.5                                  | 96.2         |       |
| Ill. 3133 (K201×38-11)(R127×Mo0221).....        | 81.0        | 22.7        | 88.3                                  | 85.6         |       |
| Ill. 3135 (K201×38-11)(R71×AX Mo0221).....      | 65.1        | 22.3        | 93.9                                  | 87.8         |       |
| Ill. 3140 (K201×38-11)(CI.21E×Ky126).....       | 79.4        | 26.7        | 91.3                                  | 93.9         |       |
| Ill. 3154 (K201×CI.21E)(R132×R134).....         | 90.0        | 24.6        | 91.5                                  | 97.7         |       |
| Ill. 3190 (K201×C103)(Ky126×Oh7B).....          | 82.1        | 24.6        | 91.1                                  | 93.1         |       |
| Ill. 3193 (38-11×K12)(K201×Oh7B).....           | 77.0        | 24.9        | 91.4                                  | 90.1         |       |
| Ill. 3198A (K201×Ky126)(N82481×Oh7B).....       | 82.6        | 24.4        | 89.5                                  | 93.9         |       |
| Ill. 3204A (K201×Ky126)(C103×K12).....          | 83.0        | 26.2        | 91.4                                  | 96.9         |       |
| Ill. 3210 (CI.21E×Ky126)(C103×K12).....         | 79.0        | 25.9        | 91.5                                  | 91.6         |       |
| Ill. 3214 (K201×Ky126)(K12×Oh7B).....           | 78.1        | 23.4        | 92.1                                  | 87.1         |       |
| Ill. 3251 (K201×38-11)(K11×Ky126).....          | 84.5        | 24.1        | 94.5                                  | 95.4         |       |
| Ill. 3355 (H49×H51)(R71×R109B).....             | 86.4        | 21.2        | 96.1                                  | 96.2         |       |
| <b>Average</b> .....                            | <b>84.9</b> | <b>24.0</b> | <b>92.7</b>                           | <b>92.9</b>  |       |
| Number in range                                 |             |             | Difference necessary for significance |              |       |
| 2-25.....                                       | N.S.        | N.S.        | N.S.                                  | N.S.         |       |

Table 11.—DOUBLE CROSSES OF 900 MATURITY  
Tested at Brownstown, 1958-1960

| Entry                                          | Pedigree    | Acre yield                            | Moisture in grain | Erect plants | Stand  |
|------------------------------------------------|-------------|---------------------------------------|-------------------|--------------|--------|
| <b>Summary: 1958-1960</b>                      |             |                                       |                   |              |        |
|                                                |             | bu.                                   | perct.            | perct.       | perct. |
| III. 3198A (K201 × Ky126)(N82481 × Oh7B).....  | 96.6        | 19.3                                  | 76.6              | 94.0         |        |
| III. 3190 (K201 × C103)(Ky126 × Oh7B).....     | 94.7        | 19.7                                  | 82.4              | 91.8         |        |
| III. 1660 (Oh7 × CI.21E)(K4 × K201).....       | 93.1        | 21.1                                  | 80.3              | 96.1         |        |
| III. 3193 (38-11 × K12)(K201 × Oh7B).....      | 88.6        | 18.5                                  | 80.6              | 94.5         |        |
| III. 1856 (K201 × CI.21E)(Oh7 × 38-11).....    | 88.6        | 19.8                                  | 80.5              | 97.9         |        |
| III. 3214 (K201 × Ky126)(K12 × Oh7B).....      | 87.4        | 20.2                                  | 67.9              | 90.7         |        |
| III. 1851 (Oh7 × CI.21E)(38-11 × C103).....    | 86.9        | 18.7                                  | 77.6              | 99.5         |        |
| III. 1539A (K201 × CI.21E)(38-11 × CI.7).....  | 86.4        | 19.3                                  | 88.9              | 95.7         |        |
| III. 3204A (K201 × Ky126)(C103 × K12).....     | 86.3        | 20.6                                  | 84.1              | 94.7         |        |
| III. 3210 (CI.21E × Ky126)(C103 × K12).....    | 86.3        | 20.7                                  | 85.6              | 94.9         |        |
| III. 3135 (K201 × 38-11)(R71A × Mo0221).....   | 85.9        | 18.3                                  | 82.8              | 91.8         |        |
| III. 3129 (K201 × 38-11)(R101 × Mo01930).....  | 82.8        | 18.7                                  | 84.8              | 97.0         |        |
| III. 3133 (K201 × 38-11)(R127 × Mo0221).....   | 82.0        | 19.4                                  | 83.0              | 93.5         |        |
| III. 3140 (K201 × 38-11)(CI.21E × Ky126).....  | 80.7        | 20.3                                  | 86.2              | 89.4         |        |
| <b>Average</b> .....                           | <b>87.6</b> | <b>19.6</b>                           | <b>81.5</b>       | <b>94.4</b>  |        |
| Number in range                                |             | Difference necessary for significance |                   |              |        |
| 2.....                                         | 7.7         | .8                                    | N.S.              | N.S.         |        |
| 3-5.....                                       | 8.5         | .9                                    | N.S.              | N.S.         |        |
| 6-14.....                                      | 9.0         | .9                                    | N.S.              | N.S.         |        |
| <b>Summary: 1959-1960</b>                      |             |                                       |                   |              |        |
| AES 904 (white) (K64 × Mo22)(T111 × T115)..... | 83.2        | 23.2                                  | 45.4              | 95.8         |        |
| III. 3198A (K201 × Ky126)(N82481 × Oh7B).....  | 78.1        | 20.8                                  | 68.1              | 91.7         |        |
| III. 3154 (K201 × CL21E)(R132 × R134).....     | 75.9        | 22.8                                  | 63.1              | 92.3         |        |
| III. 1660 (Oh7 × CI.21E)(K4 × K201).....       | 74.1        | 22.2                                  | 72.2              | 95.9         |        |
| III. 3190 (K201 × C103)(Ky126 × Oh7B).....     | 73.9        | 20.8                                  | 73.7              | 88.2         |        |
| III. 3135 (K201 × 38-11)(R71A × Mo0221).....   | 69.7        | 19.3                                  | 73.4              | 87.6         |        |
| III. 3214 (K201 × Ky126)(K12 × Oh7B).....      | 69.7        | 21.8                                  | 52.3              | 85.1         |        |
| III. 1851 (Oh7 × CI.21E)(38-11 × C103).....    | 68.5        | 19.9                                  | 67.8              | 100.0        |        |
| III. 3193 (38-11 × K12)(K201 × Oh7B).....      | 68.5        | 20.0                                  | 71.3              | 93.3         |        |
| III. 1856 (K201 × CI.21E)(Oh7 × 38-11).....    | 68.4        | 21.2                                  | 71.8              | 97.4         |        |
| III. 3251 (K201 × 38-11)(K11 × Ky126).....     | 68.0        | 20.7                                  | 75.5              | 92.8         |        |
| III. 1539A (K201 × CI.21E)(38-11 × CI.7).....  | 67.8        | 21.0                                  | 83.0              | 93.8         |        |
| III. 3133 (K201 × 38-11)(R127 × Mo0221).....   | 66.4        | 20.9                                  | 77.0              | 89.7         |        |
| III. 3360 (H49 × H51)(R101 × Oh41).....        | 65.3        | 19.2                                  | 71.8              | 91.7         |        |
| III. 3204A (K201 × Ky126)(C103 × K12).....     | 65.3        | 22.0                                  | 76.4              | 92.3         |        |
| III. 3129 (K201 × 38-11)(R101 × Mo01930).....  | 64.9        | 20.2                                  | 79.7              | 95.8         |        |
| III. 3210 (CI.21E × Ky126)(C103 × K12).....    | 63.5        | 22.2                                  | 79.4              | 91.8         |        |
| III. 3355 (H49 × H51)(R71 × R109B).....        | 63.1        | 19.9                                  | 74.4              | 95.3         |        |
| <b>Average</b> .....                           | <b>69.3</b> | <b>21.0</b>                           | <b>71.3</b>       | <b>92.3</b>  |        |
| Number in range                                |             | Difference necessary for significance |                   |              |        |
| 2.....                                         | 13.2        | 1.3                                   | 17.5              | N.S.         |        |
| 3-5.....                                       | 14.5        | 1.4                                   | 19.3              | N.S.         |        |
| 6-10.....                                      | 15.1        | 1.5                                   | 20.1              | N.S.         |        |
| 11-19.....                                     | 15.4        | 1.5                                   | 20.4              | N.S.         |        |

(Table is concluded on next page)

Table 11.—Brownstown—concluded

| Entry                                           | Pedigree | Acre yield     | Moisture in grain                     | Erect plants     | Stand            |
|-------------------------------------------------|----------|----------------|---------------------------------------|------------------|------------------|
| 1960 results                                    |          |                |                                       |                  |                  |
|                                                 |          | <i>bushels</i> | <i>per cent.</i>                      | <i>per cent.</i> | <i>per cent.</i> |
| AES 904 (white) (K64×Mo22)(T111×T115).....      |          | 44.9           | 22.8                                  | 19.9             | 93.1             |
| III. 1349 (K155×K201)(38-11×Mo940).....         |          | 34.3           | 20.0                                  | 57.1             | 94.8             |
| III. 1539A (K201×C1.21E)(38-11×C1.7).....       |          | 43.3           | 19.8                                  | 76.7             | 90.5             |
| III. 1657 (K201×C1.21E)(K4×Oh7).....            |          | 36.8           | 20.6                                  | 34.1             | 89.7             |
| III. 1660 (Oh7×C1.21E)(K4×K201).....            |          | 48.1           | 21.9                                  | 58.8             | 94.0             |
| III. 1851 (check) (Oh7×C1.21E)(38-11×C103)..... |          | 40.1           | 18.7                                  | 55.5             | 100.0            |
| III. 1856 (C1.21E×K201)(Oh7×38-11).....         |          | 44.6           | 20.3                                  | 56.4             | 95.7             |
| III. 3129 (K201×38-11)(R101×Mo01930).....       |          | 43.3           | 19.3                                  | 74.5             | 93.1             |
| III. 3133 (K201×38-11)(R127×Mo0221).....        |          | 36.4           | 20.1                                  | 71.0             | 83.7             |
| III. 3135 (K201×38-11)(R71A×Mo0221).....        |          | 43.8           | 18.6                                  | 64.1             | 79.4             |
| III. 3140 (K201×38-11)(C1.21E×Ky126).....       |          | 30.0           | 21.2                                  | 67.4             | 71.7             |
| III. 3154 (K201×C1.21E)(R132×R134).....         |          | 49.5           | 22.1                                  | 50.2             | 87.1             |
| III. 3190 (K201×C103)(Ky126×Oh7B).....          |          | 42.9           | 19.7                                  | 61.4             | 82.0             |
| III. 3193 (38-11×K12)(K201×Oh7B).....           |          | 41.2           | 19.0                                  | 62.2             | 88.8             |
| III. 3198A (K201×Ky126)(N82481×Oh7B).....       |          | 51.4           | 19.7                                  | 62.6             | 86.3             |
| III. 3204A (K201×Ky126)(C103×K12).....          |          | 36.8           | 21.3                                  | 64.0             | 87.1             |
| III. 3210 (C1.21E×Ky126)(C103×K12).....         |          | 38.3           | 21.0                                  | 67.5             | 90.5             |
| III. 3214 (K201×Ky126)(K12×Oh7B).....           |          | 41.4           | 21.2                                  | 36.4             | 75.2             |
| III. 3251 (K201×38-11)(K11×Ky126).....          |          | 38.8           | 19.4                                  | 69.1             | 88.0             |
| III. 3355 (H49×H51)(R71×R109B).....             |          | 37.7           | 18.2                                  | 62.3             | 92.3             |
| <b>Average</b> .....                            |          | <b>41.5</b>    | <b>20.0</b>                           | <b>58.1</b>      | <b>88.6</b>      |
| Number in range                                 |          |                | Difference necessary for significance |                  |                  |
| 2.....                                          |          |                | N.S.                                  | 1.8              | 24.9             |
| 3-5.....                                        |          |                | N.S.                                  | 2.0              | 27.7             |
| 6-10.....                                       |          |                | N.S.                                  | 2.1              | 29.3             |
| 11-15.....                                      |          |                | N.S.                                  | 2.2              | 30.0             |
| 16-20.....                                      |          |                | N.S.                                  | 2.2              | 30.5             |
| 21-25.....                                      |          |                | N.S.                                  | 2.2              | 30.6             |

Table 12.— DOUBLE CROSSES OF 900 MATURITY  
Tested at Carbondale, 1960

| Entry                                           | Pedigree | Acre<br>yield | Moisture<br>in grain                  | Erect<br>plants | Stand  |
|-------------------------------------------------|----------|---------------|---------------------------------------|-----------------|--------|
| 1960 results                                    |          |               |                                       |                 |        |
|                                                 |          | bu.           | perct.                                | perct.          | perct. |
| AES 904 (white) (K64×Mo22)(T111×T115).....      | 103.0    | 28.7          | 100.0                                 | 72.5            |        |
| III. 1349 (K155×K201)(38-11×Mo940).....         | 96.9     | 25.6          | 99.1                                  | 86.6            |        |
| III. 1539A (K201×CI.21E)(38-11×CI.7).....       | 106.0    | 27.1          | 98.1                                  | 89.1            |        |
| III. 1657 (K201×CI.21E)(K4×Oh7).....            | 100.6    | 26.9          | 100.0                                 | 78.3            |        |
| III. 1660 (Oh7×CI.21E)(K4×K201).....            | 95.9     | 28.8          | 100.0                                 | 70.8            |        |
| III. 1851 (check) (Oh7×CI.21E)(38-11×C103)..... | 104.6    | 26.2          | 100.0                                 | 80.8            |        |
| III. 1856 (CI.21E×K201)(Oh7×38-11).....         | 96.3     | 27.4          | 98.3                                  | 87.5            |        |
| III. 3129 (K201×38-11)(R101×Mo01930).....       | 91.8     | 24.6          | 100.0                                 | 73.3            |        |
| III. 3133 (K201×38-11)(R127×Mo0221).....        | 105.5    | 25.7          | 100.0                                 | 80.0            |        |
| III. 3135 (K201×38-11)(R71A×Mo0221).....        | 87.2     | 25.6          | 97.2                                  | 70.0            |        |
| III. 3140 (K201×38-11)(CI.21E×Ky126).....       | 98.6     | 30.2          | 100.0                                 | 78.3            |        |
| III. 3154 (K201×CI.21E)(R132×R134).....         | 111.1    | 27.2          | 98.1                                  | 90.0            |        |
| III. 3190 (K201×C103)(Ky126×Oh7B).....          | 106.9    | 25.0          | 100.0                                 | 84.1            |        |
| III. 3193 (38-11×K12)(K201×Oh7B).....           | 103.7    | 24.1          | 100.0                                 | 81.6            |        |
| III. 3198A (K201×Ky126)(N82481×Oh7B).....       | 106.8    | 28.7          | 99.0                                  | 82.5            |        |
| III. 3204A (K201×Ky126)(C103×K12).....          | 91.2     | 30.3          | 99.0                                  | 67.5            |        |
| III. 3210 (CI.21E×Ky126)(C103×K12).....         | 95.1     | 33.1          | 100.0                                 | 73.3            |        |
| III. 3214 (K201×Ky126)(K12×Oh7B).....           | 95.6     | 28.4          | 100.0                                 | 75.8            |        |
| III. 3251 (K201×38-11)(K11×Ky126).....          | 103.2    | 25.5          | 97.2                                  | 84.1            |        |
| III. 3355 (H49×H51)(R71×R109B).....             | 95.5     | 22.2          | 98.1                                  | 87.5            |        |
| III. 3360 (H49×H51)(R101×Oh41).....             | 114.8    | 24.9          | 100.0                                 | 85.0            |        |
| III. 3364 (CI.21E×K201)(R74×R101).....          | 98.3     | 26.2          | 100.0                                 | 80.8            |        |
| III. 9001 (Oh7×CI.21E)(CI.7×C103).....          | 99.2     | 23.3          | 100.0                                 | 71.6            |        |
| Ind. 851 (H49×H55)(H59×B14).....                | 100.6    | 27.3          | 99.1                                  | 80.0            |        |
| Ind. 874 (H49×H52)(H59×H60).....                | 111.5    | 22.8          | 99.0                                  | 90.8            |        |
| Average.....                                    | 100.8    | 26.6          | 99.3                                  | 80.0            |        |
| Number in range                                 |          |               | Difference necessary for significance |                 |        |
| 2.....                                          |          |               | N.S.                                  | 5.1             | N.S.   |
| 3-5.....                                        |          |               | N.S.                                  | 5.6             | N.S.   |
| 6-10.....                                       |          |               | N.S.                                  | 5.9             | N.S.   |
| 11-15.....                                      |          |               | N.S.                                  | 6.1             | N.S.   |
| 16-25.....                                      |          |               | N.S.                                  | 6.2             | N.S.   |

Table 13.—DOUBLE CROSSES OF 900 MATURITY  
Tested at Wolf Lake, 1960

| Entry                                           | Pedigree    | Acre yield  | Moisture in grain                     | Erect plants | Stand  |
|-------------------------------------------------|-------------|-------------|---------------------------------------|--------------|--------|
| 1960 results                                    |             |             |                                       |              |        |
|                                                 |             | bu.         | perct.                                | perct.       | perct. |
| AES 904 (white) (K64×Mo22)(T111×T115).....      | 69.3        | 20.6        | 91.8                                  | 80.3         |        |
| III. 1349 (K155×K201)(38-11×Mo940).....         | 61.3        | 17.8        | 88.0                                  | 89.3         |        |
| III. 1539A (K201×Cl.21E)(38-11×Cl.7).....       | 61.4        | 17.1        | 72.1                                  | 82.5         |        |
| III. 1657 (K201×Cl.21E)(K4×Oh7).....            | 64.1        | 18.8        | 84.3                                  | 87.8         |        |
| III. 1660 (Oh7×Cl.21E)(K4×K201).....            | 67.2        | 18.6        | 74.8                                  | 90.9         |        |
| III. 1851 (check) (Oh7×Cl.21E)(38-11×C103)..... | 59.7        | 17.3        | 90.6                                  | 90.9         |        |
| III. 1856 (Cl.21E×K201)(Oh7×38-11).....         | 55.9        | 18.0        | 66.7                                  | 87.1         |        |
| III. 3129 (K201×38-11)(R101×Mo01930).....       | 78.2        | 17.9        | 87.1                                  | 91.6         |        |
| III. 3133 (K201×38-11)(R127×Mo0221).....        | 86.8        | 18.4        | 84.1                                  | 85.6         |        |
| III. 3135 (K201×38-11)(R71A×Mo0221).....        | 67.2        | 17.5        | 88.9                                  | 76.5         |        |
| III. 3140 (K201×38-11)(Cl.21E×Ky126).....       | 74.7        | 18.5        | 76.9                                  | 87.8         |        |
| III. 3154 (K201×Cl.21E)(R132×R134).....         | 82.3        | 20.3        | 78.4                                  | 90.9         |        |
| III. 3190 (K201×C103)(Ky126×Oh7B).....          | 66.8        | 17.5        | 83.3                                  | 88.6         |        |
| III. 3193 (38-11×K12)(K201×Oh7B).....           | 66.4        | 18.6        | 82.6                                  | 92.4         |        |
| III. 3198A (K201×Ky126)(N82481×Oh7B).....       | 66.1        | 18.0        | 70.4                                  | 83.3         |        |
| III. 3204A (K201×Ky126)(C103×K12).....          | 59.6        | 19.0        | 92.9                                  | 84.8         |        |
| III. 3210 (Cl.21E×Ky126)(C103×K12).....         | 70.2        | 18.5        | 86.5                                  | 89.3         |        |
| III. 3214 (K201×Ky126)(K12×Oh7B).....           | 50.0        | 18.2        | 84.4                                  | 80.3         |        |
| III. 3251 (K201×38-11)(K11×Ky126).....          | 64.3        | 19.9        | 84.6                                  | 94.6         |        |
| III. 3355 (H49×H51)(R71×R109B).....             | 82.2        | 18.9        | 87.7                                  | 87.8         |        |
| III. 3360 (H49×H51)(R101×Oh41).....             | 73.3        | 18.6        | 76.2                                  | 93.1         |        |
| III. 3364 (Cl.21E×K201)(R74×R101).....          | 81.4        | 19.7        | 83.0                                  | 85.6         |        |
| III. 9001 (Oh7×Cl.21E)(Cl.7×C103).....          | 61.1        | 17.4        | 76.9                                  | 91.6         |        |
| Ind. 851 (H49×H55)(H59×B14).....                | 76.9        | 18.6        | 82.7                                  | 78.0         |        |
| Ind. 874 (H49×H52)(H59×H60).....                | 70.6        | 17.9        | 70.9                                  | 99.2         |        |
| <b>Average.....</b>                             | <b>68.7</b> | <b>18.5</b> | <b>81.8</b>                           | <b>87.6</b>  |        |
| Number in range                                 |             |             | Difference necessary for significance |              |        |
| 2.....                                          |             |             | N.S.                                  | 1.8          | N.S.   |
| 3-5.....                                        |             |             | N.S.                                  | 2.0          | N.S.   |
| 6-10.....                                       |             |             | N.S.                                  | 2.1          | N.S.   |
| 11-15.....                                      |             |             | N.S.                                  | 2.2          | N.S.   |
| 16-20.....                                      |             |             | N.S.                                  | 2.2          | N.S.   |
| 21-25.....                                      |             |             | N.S.                                  | 2.2          | N.S.   |

# DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX TO TABLES

(The order of the single crosses does not indicate  
which should be used as seed or pollen parent.)

| Hybrid                    | Pedigree                             | Table No.            |
|---------------------------|--------------------------------------|----------------------|
| AES 702 (III. 1790).....  | (C103 × M14) (Hy2 × WF9).....        | 3, 5, 6              |
| AES 703 (III. 3019A)..... | (WF9 × Oh43) (B14 × B38).....        | 3, 5, 6              |
| AES 704 (III. 3016A)..... | (WF9 × Oh43) (B14 × B37).....        | 3, 5, 6              |
| AES 705 (III. 3011).....  | (C103 × Oh43) (WF9 × B14).....       | 3, 4, 5, 6, 7        |
| AES 805 (III. 1770).....  | (C103 × Oh45) (WF9 × 38-11).....     | 8, 9, 10             |
| AES 809.....              | (C103 × Oh43) (P8 × WF9).....        | 4, 7                 |
| AES 810.....              | (WF9 × H50) (Oh7B × Oh45).....       | 4, 7                 |
| AES 904W.....             | (K64 × Mo22) (T111 × T115).....      | 9, 10, 11, 12, 13    |
| III. 21.....              | (Hy2 × 187-2) (WF9 × 38-11).....     | 3, 5, 6              |
| III. 1277.....            | (M14 × WF9) (I.205 × 187-2).....     | 2, 3, 5, 6           |
| III. 1332.....            | (Hy2 × Oh7) (WF9 × 38-11).....       | 8, 9, 10             |
| III. 1349.....            | (K155 × K201) (38-11 × Mo940).....   | 9, 10, 11, 12, 13    |
| III. 1421.....            | (WF9 × Hy2) (P8 × Oh7).....          | 4, 7                 |
| III. 1539A.....           | (38-11 × Cl.7) (K201 × Cl.21E).....  | 9, 10, 11, 12, 13    |
| III. 1555A.....           | (WF9 × Oh51A) (I.224 × Oh28).....    | 2, 3                 |
| III. 1559B.....           | (M14 × Oh28) (WF9 × Oh51A).....      | 2, 3                 |
| III. 1570.....            | (Hy2 × Oh41) (WF9 × 38-11).....      | 8, 9, 10             |
| III. 1657.....            | (K201 × Cl.21E) (K4 × Oh7).....      | 9, 10, 11, 12, 13    |
| III. 1660.....            | (K4 × K201) (Oh7 × Cl.21E).....      | 8, 9, 10, 11, 12, 13 |
| III. 1851.....            | (C103 × 38-11) (Oh7 × Cl.21E).....   | 9, 10, 11, 12, 13    |
| III. 1856.....            | (38-11 × Oh7) (K201 × Cl.21E).....   | 9, 10, 11, 12, 13    |
| III. 1861.....            | (WF9 × M14) (I.224 × Oh28).....      | 2, 3                 |
| III. 1863.....            | (WF9 × M14) (I.205 × Oh43).....      | 2, 3                 |
| III. 1922.....            | (Hy2 × WF9) (R71 × R105).....        | 3, 5, 6              |
| III. 1936.....            | (Hy2 × WF9) (M14 × B14).....         | 2, 3, 5, 6           |
| III. 1952.....            | (M14 × B14) (A545 × W64A).....       | 2, 3                 |
| III. 1955.....            | (M14 × A297) (B14 × W64A).....       | 2, 3                 |
| III. 1957.....            | (M14 × A545) (B14 × W64A).....       | 2, 3                 |
| III. 1958.....            | (M14 × Oh26A) (B14 × A545).....      | 2, 3                 |
| III. 1959.....            | (M14 × W64A) (B14 × A297).....       | 2, 3                 |
| III. 1960.....            | (M14 × W64A) (B14 × A545).....       | 2, 3                 |
| III. 1961.....            | (B14 × A545) (A239 × W64A).....      | 2, 3                 |
| III. 1962.....            | (B14 × A545) (A297 × W64A).....      | 2, 3                 |
| III. 1968.....            | (R163 × R169) (WF9 × B14).....       | 3, 5, 6              |
| III. 1969.....            | (R165 × R168) (WF9 × B14).....       | 3, 5, 6              |
| III. 1969A.....           | (R165 × WF9) (R168 × B14).....       | 2, 3                 |
| III. 1976.....            | (38-11 × Oh41) (Oh7 × Cl.21E).....   | 8, 9, 10             |
| III. 1978.....            | (C103 × 38-11) (WF9 × Oh7A).....     | 8, 9, 10             |
| III. 1983.....            | (Hy2 × B14) (WF9 × 38-11).....       | 4, 7                 |
| III. 1996.....            | (C103 × B14) (Hy2 × Oh7).....        | 4, 7, 8, 9, 10       |
| III. 3009.....            | (B14 × B21) (A297 × W64A).....       | 2, 3                 |
| III. 3022.....            | (WF9 × B14) (N22A × Oh43).....       | 3, 5, 6              |
| III. 3029.....            | (WF9 × B14) (Oh43 × Oh45).....       | 3, 5, 6              |
| III. 3042.....            | (WF9 × B14) (B40 × Oh45).....        | 3, 4, 5, 6, 7        |
| III. 3049.....            | (Hy2 × WF9) (R71 × R109B).....       | 4, 7                 |
| III. 3080.....            | (Hy2 × WF9) (R101 × Oh45I).....      | 4, 7                 |
| III. 3129.....            | (R101 × Mo01930) (38-11 × K201)..... | 9, 10, 11, 12, 13    |
| III. 3133.....            | (R127 × Mo0221) (38-11 × K201).....  | 9, 10, 11, 12, 13    |
| III. 3135.....            | (R71A × Mo0221) (38-11 × K201).....  | 9, 10, 11, 12, 13    |
| III. 3140.....            | (38-11 × K201) (Ky126 × Cl.21E)..... | 9, 10, 11, 12, 13    |

(Index is concluded on next page)

## Index to tables — concluded

| Hybrid           | Pedigree                                  | Table No.            |
|------------------|-------------------------------------------|----------------------|
| III. 3152.....   | (M14 × WF9) (B14 × Oh43).....             | 2, 3, 5, 6           |
| III. 3154.....   | (R132 × R134) (K201C × Cl.21E).....       | 8, 9, 10, 11, 12, 13 |
| III. 3160.....   | (WF9 × Oh7) (B14 × Oh43).....             | 4, 7                 |
| III. 3173.....   | (B14 × Oh43) (A545 × N24).....            | 2, 3                 |
| III. 3174.....   | (B37 × Oh28) (A297 × Oh43).....           | 2, 3                 |
| III. 3182A.....  | (R105 × WF9) (R151 × R154).....           | 3, 5, 6              |
| III. 3183.....   | (R105 × R153) (R154 × WF9).....           | 4, 7                 |
| III. 3190.....   | (C103 × K201) (Ky126 × Oh7B).....         | 8, 9, 10, 11, 12, 13 |
| III. 3193.....   | (38-11 × K12) (K201 × Oh7B).....          | 9, 10, 11, 12, 13    |
| III. 3198A.....  | (N82481 × Oh7B) (K201 × Ky126).....       | 9, 10, 11, 12, 13    |
| III. 3204A.....  | (C103 × K12) (K201 × Ky126).....          | 9, 10, 11, 12, 13    |
| III. 3210.....   | (C103 × K12) (Ky126 × Cl.21E).....        | 9, 10, 11, 12, 13    |
| III. 3214.....   | (K201 × Ky126) (K12 × Oh7B).....          | 9, 10, 11, 12, 13    |
| III. 3237.....   | (R101 × WF9) (R151 × R154).....           | 4, 7                 |
| III. 3244.....   | (R105 × R153) (R151 × WF9).....           | 4, 7                 |
| III. 3251.....   | (38-11 × K201) (K11 × Ky126).....         | 9, 10, 11, 12, 13    |
| III. 3265.....   | (R71 × R109B) (WF9 × Oh43).....           | 3, 5, 6              |
| III. 3266.....   | (R74 × R109B) (WF9 × Oh43).....           | 3, 5, 6              |
| III. 3270.....   | (R74 × R168) (WF9 × Oh43).....            | 3, 5, 6              |
| III. 3275.....   | (R114 × R168) (WF9 × Oh43).....           | 3, 5, 6              |
| III. 3291.....   | (P8 × WF9) (B14 × Oh43).....              | 4, 7                 |
| III. 3294.....   | (C103 × Hy2) (P8 × WF9).....              | 4, 7                 |
| III. 3301.....   | (M14 × Oh43) (R168 × B14).....            | 2, 3                 |
| III. 3302A1..... | (M14 × W64A) (R172 × B14).....            | 2, 3                 |
| III. 3303.....   | (M14 × Oh43) (R172 × B14).....            | 3, 5, 6              |
| III. 3313.....   | (L12 × B14) (Oh43 × W64A).....            | 2, 3                 |
| III. 3315A.....  | (Hy2 × WF9) (R109B × B14).....            | 3, 5, 6              |
| III. 3343.....   | (R71 × R74) (H49 × H55).....              | 4, 7                 |
| III. 3344.....   | (R71 × R105) (H49 × H55).....             | 8, 9, 10             |
| III. 3346.....   | (R71 × R168) (H49 × H55).....             | 4, 7                 |
| III. 3347.....   | (R74 × R101) (H49 × H55).....             | 3, 5, 6, 8, 9, 10    |
| III. 3348.....   | (R74 × R109B) (H49 × H55).....            | 4, 7, 8, 9, 10       |
| III. 3350.....   | (R101 × Oh41) (H49 × H55).....            | 8, 9, 10             |
| III. 3351.....   | (R109B × R168) (H49 × H55).....           | 4, 7, 8, 9, 10       |
| III. 3354.....   | (R71 × R105) (H49 × H51).....             | 8, 9, 10             |
| III. 3355.....   | (R71 × R109B) (H49 × H51).....            | 9, 10, 11, 12, 13    |
| III. 3357.....   | (R74 × R101) (H49 × H51).....             | 8, 9, 10             |
| III. 3360.....   | (R101 × Oh41) (H49 × H51).....            | 9, 10, 11, 12, 13    |
| III. 3364.....   | (R74 × R101) (K201 × Cl.21E).....         | 9, 10, 11, 12, 13    |
| III. 3367.....   | (R74 × WF9) (Oh7 × Cl.21E).....           | 8, 9, 10             |
| III. 3373.....   | (C103 × WF9) (R101 × Oh41).....           | 8, 9, 10             |
| III. 3381.....   | (R71 × WF9) (B14 × Oh43).....             | 3, 5, 6              |
| III. 3382.....   | (R109B × WF9) (B14 × Oh43).....           | 3, 5, 6              |
| III. 3383.....   | (M14 × WF9) (R172 × Oh43).....            | 3, 5, 6              |
| III. 3384.....   | (Hy2 × Oh7) (WF9 × Oh41).....             | 4, 7                 |
| III. 6021.....   | (R75 × R76) (R84 × K4).....               | 8, 9, 10             |
| III. 6052.....   | (R78 × 38-11) (R84 × K4).....             | 8, 9, 10             |
| III. 6201.....   | (R53 × Oh7) (WF9 × B14).....              | 2, 3                 |
| III. 6202.....   | (R53 × Oh51) (Oh43 × W64A).....           | 2, 3                 |
| III. 8001.....   | (Hy2 × R138) (Oh7 × Oh7B).....            | 4, 7                 |
| III. 8002.....   | [(Hy2 × B14) Hy2] [(Oh7 × C103) Oh7]..... | 4, 7                 |
| III. 8003.....   | (WF9 × Oh7) (H55 × C103).....             | 4, 7                 |
| III. 8004.....   | (WF9 × Hy2) (R74 × B14).....              | 4, 7                 |
| III. 8005.....   | (H49 × H55) (B14 × C103).....             | 8, 9, 10             |
| III. 9001.....   | (Oh7 × Cl.21E) (Cl.7 × C103).....         | 9, 10, 11, 12, 13    |
| Ind. 851.....    | (H49 × H55) (H59 × B14).....              | 8, 9, 10, 11, 12, 13 |
| Ind. 873.....    | (H49 × H52) (H59 × B14).....              | 8, 9, 10             |
| Ind. 874.....    | (H49 × H52) (H59 × H60).....              | 8, 9, 10, 11, 12, 13 |
| U.S. 13.....     | (WF9 × 38-11) (Hy2 × L317).....           | 4, 7, 8, 9, 10       |









UNIVERSITY OF ILLINOIS-URBANA

Q.630.7IL68  
BULLETIN. URBANA  
868 1981

C008



3 0112 019530341