Examen ISEC / 11 mai 2023 / durée 2h

- Documents autorisés.
- Il y a deux exercices indépendants. Ce sujet est recto-verso.
- Toute affirmation devra être justifiée (répondre juste « oui » ou « non » vaut zéro).

1 KEM basé sur Elgamal

Un Key Encapsulation Mechanism (KEM) est un mécanisme cryptographique à clef publique constitué de quatre algorithmes :

Setup À partir d'un paramètre de sécurité λ , produit des paramètres publics pp. Ceux-ci définissent des ensembles de clefs publiques \mathcal{PK} , de clefs privées \mathcal{SK} de clefs « encapsulées » \mathcal{K} et de chiffrés \mathcal{C} . Les trois autres algorithmes décrits ci-dessous reçoivent pp en argument de manière implicite.

KeyGen Produit une paire de clefs $(pk, sk) \in \mathcal{PK} \times \mathcal{SK}$.

Encaps À partir d'une clef publique $pk \in \mathcal{PK}$, renvoie une paire $(k, c) \in \mathcal{K} \times C$.

Decaps À partir d'une clef secrète $sk \in SK$ et d'un chiffré $c \in C$, renvoie $k \in K$.

Moralement, l'opération $\mathbf{Encaps}(pk)$ génère un message aléatoire k, puis en effectue le chiffrement avec la clef publique pk pour obtenir un chiffré c — cela renvoie à la fois k et c.

Pour que le KEM soit correct, il faut que pour toute paire de clefs $pk, sk \leftarrow KeyGen(pp)$, et pour toute paire $k, c \leftarrow Encaps(pk)$, on ait bien Decaps(sk, c) = k.

- ▶ Question 1: Expliquez comment on peut combiner un KEM et un algorithme de chiffrement symétrique pour réaliser du chiffrement à clef publique.
- ▶ Question 2: Proposez une manière de réaliser un KEM en utilisant la fonction RSA (indice : le Setup ne fait rien).

On s'intéresse maintenant à un KEM basé sur le chiffrement Elgamal. L'opération **setup** produit un entier g d'ordre q modulo p (comme pour le chiffrement Elgamal normal). L'opération **Encaps** fonctionne en tirant r uniformément au hasard modulo q, puis calcule $k \leftarrow g^r$ et $c \leftarrow h^r$ (h est la clef publique).

- ▷ Question 3: Expliquez comment fonctionnent KeyGen et Decaps.
- \triangleright Question 4: Quels sont les ensembles $\mathcal{PK}, \mathcal{SK}, \mathcal{K}$ et \mathcal{C} ?
- ▶ Question 5: Justifiez que le KEM proposé est correct.
- ▶ Question 6: Quel est l'intérêt de cette construction par rapport au chiffrement Elgamal normal?
- \triangleright Question 7: En 2023, quels doivent être les tailles minimales (en bits) de p et q?
- ▶ Question 8: Expliquez le fonctionnement détaillé de Setup.
- ⊳ Question 9: Pour un adversaire, à quels problèmes algorithmiques correspondent : 1) le fait de calculer sk à partir de pk (et pp bien sûr); 2) le fait de calculer k à partir de c et pk (et pp bien sûr), sachant que k, c ← Encaps(pk).

La sécurité sémantique du KEM est définie par le « jeu » suivant, qui est paramétré par un bit b:

- Un challenger génère des paramètres publics $pp \leftarrow \mathbf{Setup}(\lambda)$ et calcule $pk, sk \leftarrow \mathbf{KeyGen}(pp)$
- L'adversaire reçoit pp et pk; il peut ensuite adresser des requêtes au challenger. Pour chacune d'entre elles :
 - Le challenger calcule $k_0, c \leftarrow \mathbf{Encaps}(pk)$, puis il tire uniformément au hasard k_1 dans \mathcal{K} .
 - L'adversaire reçoit (k_b, c) .
- L'adversaire émet un bit \hat{b} (moralement, il « gagne » si $b = \hat{b}$).

L'avantage de l'adversaire est défini par $\Delta = \left| \Pr(\hat{b} = 1 \mid b = 1) - \Pr(\hat{b} = 1 \mid b = 0) \right|$. On considère que le KEM est sémantiquement sûr si tout adversaire efficace (qui fonctionne en temps polynomial en λ) n'a qu'un avantage négligeable, c'est-à-dire asymptotiquement plus faible que l'inverse de n'importe quel polynôme en λ .

- ▷ Question 10: Expliquez en quelques phrases l'intérêt de cette notion de sécurité.
- ▶ Question 11: Montrez que si l'adversaire pouvait *prévoir* la valeur de k dans la prochaine invocation de Encaps, alors le KEM ne pourrait pas être sémantiquement sûr (ceci justifie l'idée que les k sont aléatoires).
- ▶ Question 12: Quel lien y a-t-il entre la sécurité sémantique du KEM basé sur Elgamal décrit ci-dessus et le problème Diffie-Hellman décisionnel (justifiez).

2 Fonction de hachage de Chaum, van Heijst et Pfitzmann

Cet exercice étudie une fonction de hachage « prouvablement sûre » (mais jamais utilisée en pratique).

Considérons un nombre premier q de n bits, choisi de telle sorte que p=2q+1 est premier lui aussi. On prend également deux générateurs de α et β du groupe \mathbb{Z}_p^{\times} . On considère la famille de fonctions (indexée par p, α, β) qui prend en entrée deux nombres x et y dans \mathbb{Z}_q et qui renvoie :

$$H(x,y) = \alpha^x \beta^y \mod p$$

- \triangleright Question 13: Quelle sont les tailles (en bits) de l'entrée de H et de sa sortie?
- \triangleright Question 14: Quelle est (en fonction de n) la complexité asymptotique du de l'évaluation de H?
- \triangleright Question 15: Comment faire pour hacher des messages arbitrairement longs sans augmenter n?
- \triangleright Question 16: Expliquez de façon détaillée comment faire pour produire les « paramètres » (p, α, β) .

Comme on a supposé que α était une racine primitive, alors on sait qu'il existe λ tel que $\beta = \alpha^{\lambda} \mod p$.

- \triangleright Question 17: Pour un adversaire à qui (p, α, β) sont imposés, déterminer λ est-il facile?
- \triangleright Question 18: Montrez que si on connaît la valeur de λ , alors on peut produire des *collisions* sur H efficacement (rappel : une collision, ce sont deux entrées différentes qui produisent la même sortie).

L'objectif des questions suivantes est de montrer la réciproque : si on arrive à trouver une seule collision, alors on est capable de calculer λ efficacement.

- ⊳ Question 19: Expliquez pourquoi ceci garantit de manière « prouvée » la résistance aux collisions de la fonction.
- ▶ Question 20: Supposons qu'on ait une collision sur H, c'est-à-dire deux paires $(x,y) \neq (u,v)$ telles que H(x,y) = H(u,v). Justifiez qu'on a alors $\lambda(v-y) (x-u) \equiv 0 \mod p 1$.
- \triangleright Question 21: On pose $d \leftarrow \text{PGCD}(v-y,p-1)$. Montrez que d est strictement inférieur à q (on peut supposer sans perte de généralité que v-y>0).
- \triangleright Question 22: En utilisant le lemme de Gauss, justifier que d vaut soit 1, soit 2 (Rappel. Lemme de Gauss : si a divise bc et que a est premier avec b, alors a divise c).
- \triangleright Question 23: Dans le cas où d=1, justifiez qu'il n'y a qu'une seule valeur de λ possible, et expliquez comment on peut la calculer facilement.

On traite maintenant le cas moins agréable où d=2.

- ▷ Question 24: Montrez que $\lambda = 0$ et $\lambda = 1$ sont des solutions de $\lambda(v y) (x u) = 0$ mod 2.
- ▶ Question 25: Concluez-en (à l'aide du théorème des restes chinois) qu'il y a deux valeurs de λ qui sont solutions modulo p-1. Comment fait-on pour calculer celle qui est telle que $\beta = \alpha^{\lambda}$?