PROGRAMACIÓN DINÁMICA CONTINUA ESTOCÁSTICA

Objetivo— El estudiante, al finalizar el caso de estudio, debe ser explicar detalladamente los principios básicos de la metodología y ser capaz de aplicarla a la optimización de sistemas simples.

Tipo de actividad— Grupo de estudio.

Formato— Grupos de tres (3) personas.

Duración—30 min.

Descripción — Se desea optimizar la operación de un sistema de generación conformado por una planta hidráulica y una planta térmica. La información detallada del sistema es la siguiente:

Planificación: 4 etapas.

Planta hidráulica: Vol. máximo (V*) = 100, Caudal máx. turbinado (Q*) = 50, Factor conversión (ρ) = 1

Volumen inicial (Vo) = 75. Se tiene en cuenta la falta de conocimiento sobre la hidrología

futura. Para ello, se consideran dos posibilidades para los aportes de cada etapa.

Etapa (p)	$A_{p,1}$	$A_{p,2}$
1	18	23
2	14	16
3	11	13
4	16	20

Generación máxima (G^*) = 45, Costo combustible (CC) = 15. Planta térmica:

ġjdvelasq@unal.edu.co

https://goo.gl/prkjAq

RG https://goo.gl/vXH8jy

https://github.com/jdvelasq

Costo racionamiento (CR) = 1000 para todas las etapas. Racionamiento:

Demanda: 50 para todas las etapas

Definición de variables:

V_p	Volumen al final de la etapa p .
\dot{Q}_p	Caudal turbinado en la etapa p .
S_p	Volumen vertido en la etapa p .
GH_p	Generación hidráulica en la etapa p .

 A_n Aporte en la etapa p.

Generación térmica en la etapa p. G_{v} Energía racionada en la etapa p.

Función de costo inmediato para la etapa p. FCI_{p} FCF_{p} Función de Costo Futuro para la etapa p.

SOLUCIÓN

Se discretiza el volumen inicial del embalse al principio de la etapa en $V = \{0, 25, 50, 75, 100\}$.

ETAPA 4

Para cada volumen inicial de embalse en la etapa 4 –o sea el volumen final de la Etapa 3: $V_3 = \{0, 25, 50, 75, 100\}$ se soluciona el modelo de la Etapa 4 con $FCF_4(V_4) = 0$ para cada uno de los aportes considerados. El costo futuro
es el promedio de los costos para cada volumen considerado

$$\min z = +1000 R_4 + 15 G_4 + FCF_4(V_4), \qquad S/a: \begin{cases} +R_4 + G_4 & +Q_4 & = 50 \\ & +V_4 + Q_4 + S_4 & = A_{4,i} + V_3 \\ & +Q_4 & \leq 50 \\ & \leq 45 \end{cases}$$

V(3)	A(4)	R(4)	G(4)	V(4)	Q(4)	S(4)	FCI(4)	FCF(4)	FCF(3)	PROM
0	16	0	34	0	16	0	510	0	510	480
U	20	0	30	0	20	0	450	0	450	400
25	16	0	9	0	41	0	135	0	135	105
23	20	0	5	0	45	0	75	0	75	103
50	16	0	0	8	50	8	0	0	0	0
30	20	0	0	10	50	10	0	0	0	U
75	16	0	0	20,5	50	20,5	0	0	0	0
/3	20	0	0	22,5	50	22,5	0	0	0	O
100	16	0	0	33	50	33	0	0	0	0
100	20	0	0	35	50	35	0	0	0	U

ETAPA 3

$$\min z = +1000 \, R_3 \quad +15 \, G_3 \quad +FCF_3(V_3), \quad \text{S/a:} \begin{cases} +R_3 & +G_3 & & +Q_3 & & =50 \\ & & +V_3 & +Q_3 & +S_3 & =A_{3,i}+V_2 \\ & & & +Q_3 & & \leq 50 \\ & & +G_3 & & \leq 45 \end{cases}$$

V(2)	A(3)	R(3)	G(3)	V(3)	Q(3)	S(3)	FCI(3)	FCF(3)	FCF(2)	PROM
0	11	0	39	0	11	0	585	480	1065	1050
U	13	0	38	1	12	0	575	460	1035	1030
25	11	0	31	17	19	0	460	230	690	675
23	13	0	30	18	20	0	450	210	660	073
50	11	0	3	14	47	0	39	276	315	300
50	13	0	2	15	48	0	29	256	285	300
75	11	0	0	36	50	0	0	59	59	55
73	13	0	0	38	50	0	0	50	50	55
100	11	0	0	50	50	11	0	0	0	0
100	13	0	0	50	50	13	0	0	0	U

ETAPA 2

$$\min z = +1000 \, R_2 \quad +15 \, G_2 \quad +FCF_2(V_2), \quad \text{S/a:} \begin{cases} +R_2 & +G_2 & +Q_2 & =50 \\ & +V_2 & +Q_2 & +S_2 & =A_{2,i} +V_1 \\ & & +Q_2 & \leq 50 \\ & +G_2 & \leq 45 \end{cases}$$

V(1)	A(2)	R(2)	G(2)	V(2)	Q(2)	S(2)	FCI(2)	FCF(2)	FCF(1)	PROM
0	14	0	45	9	5	0	675	915	1590	1575
U	16	0	45	11	5	0	675	885	1560	13/3
25	14	0	45	34	5	0	675	540	1215	1200
23	16	0	45	36	5	0	675	510	1185	1200
F0	14	0	23	37	27	0	348	492	840	825
50	16	0	22,55	38,55	27,45	0	338,3	471,7	810	625
75	14	0	0	39	50	0	0	465	465	450
/3	16	0	0	41	50	0	0	435	435	430
100	14	0	0	64	50	-2E-15	0	162,6	163	152
100	16	0	0	66	50	0	0	142,9	143	153

ETAPA 1

$$\min z = +1000 \, R_1 \quad +15 \, G_1 \quad +FCF_1(V_1) \quad \text{S/a:} \begin{cases} +R_1 & +G_1 & & +Q_1 & & =50 \\ & & +V_1 & +Q_1 & +S_1 & =A_{1,i}+V_0 \\ & & & +Q_1 & & \leq 50 \\ & & & +G_1 & & \leq 45 \end{cases}$$

V(0)	A(1)	R(1)	G(1)	V(1)	Q(1)	S(1)	FCI(1)	FCF(1)	FCF(0)	PROM
75	18	0	32	75	18	0		455	930	902
/3	23	0	25	73	25	0	382	473	855	092

Nota: Los valores de las variables del modelo dependen de cada aporte y volumen considerados, de tal forma que pueden calcularse valores promedio por cada etapa, varianzas y percentiles de confiabilidad.