

به نام خالق مهربان پاسخ سوالات میان ترم ریاضی عمومی ۱ ترم اول ۹۳

$\sum_{n=1}^{\infty} n \tan \frac{1}{n}$ (الف) . ۱
$a_n = n \tan \frac{1}{n} = \frac{\tan \frac{1}{n}}{\frac{1}{n}}$
$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{\tan\frac{1}{n}}{\frac{1}{n}} = \lim_{\frac{1}{n}\to\circ} \frac{\tan\frac{1}{n}}{\frac{1}{n}} = 1 \neq 0$
بنابراین، طبق آزمون جمله عمومی، سری واگراست.
$\sum_{n=1}^{\infty} \frac{\tanh n}{n^{r}}$ (ب
$\cdot \circ \leq a_n \leq rac{1}{n^{r}}$ ندا $\circ < anh n \leq 1$ ، داريم $a_n = rac{ anh n}{n^{r}}$
میدانیم که سری $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ طبق دستور سری فوق همساز همگراست.
در نتیجه طبق آزمون مقایسه سری همگراست.
$\sum_{n=1}^{\infty} (-1)^n \frac{1}{ne^n} \left(\mathbf{z} \right)$
$a_n = \frac{1}{ne^n} > 0$
چون ne^n صعودی است پس $\frac{1}{ne^n}$ نزولی است.
$\lim_{n\to\infty} \frac{1}{ne^n} = 0$
در نتیجه طبق آزمون سری متناوب (لایپ نیتس) سری همگراست.

۲. الف) برای x>0 داریم برای x>0 داریم برای x>0 داریم برای بیوستگی، نتیجه میشود x>0 پیوسته x>0 بنابر قضایای پیوستگی، نتیجه میشود x>0 پیوسته هستند.

به همین ترتیب برای $x<\infty$ و از پیوستگی توابع x' و x و ان پیوستگی توابع x' و x است. x'

از سوی دیگر

$$\lim_{x \to \circ^+} f(x) = \lim_{x \to \circ^+} x^{\frac{1}{x}} = \lim_{x \to \circ^+} e^{\frac{\ln x}{x}} = \circ$$

 $\lim_{x\to-\infty}e^x=\circ$ و $\lim_{x\to\circ^+}\frac{1}{x}=+\infty$ و $\lim_{x\to\circ^+}\ln x=-\infty$ زيرا $\lim_{x\to\circ} +\ln x=-\infty$ و $\lim_{x\to\circ} +\ln x=-\infty$ در نتيجه حال اگر $\lim_{x\to\infty} +1$ و $\lim_{x\to\infty} +1$ در نتيجه $\lim_{x\to\infty} +1$ يس $\lim_{x\to\infty} +1$ در نتيجه $\lim_{x\to\infty} +1$ يس $\lim_{x\to\infty} +1$ يس $\lim_{x\to\infty} +1$

 $\lim_{x \to \circ^{-}} f(x) = \lim_{x \to \circ^{-}} \sinh x^{\mathsf{T}} = \sinh(\lim_{x \to \circ^{-}} x^{\mathsf{T}}) = \sinh \circ = \circ$

زیرا $x = \circ$ در $x = \circ$ پیوسته است.

در نتیجه

$$\lim_{x\to \circ^-} f(x) = \circ = \lim_{x\to \circ^+} f(x) = f(\circ)$$

پس f در صفر نیز پیوسته است.

(۴ نمره)

(۱) نمره) بنا بر (الف) تابع f با ضابطه $f = x^{\frac{1}{x}} - \frac{1}{x}$ بر $f(x) = x^{\frac{1}{x}} - \frac{1}{x}$ نمره)

$$f(1) = 1 - \frac{1}{7} > 0$$
 نمره)

$$f(rac{1}{7}) = (rac{1}{7})^7 - rac{1}{7} < \circ$$
 نمره)

(مره) $c^{\frac{1}{c}} = \frac{1}{7}$ یعنی $f(c) = \circ$ وجود دارد که $c \in (\frac{1}{7}, 1)$ یعنی ولترانو عدد

٣. الف)

$$f'_{+}(\circ) = \lim_{h \to \circ^{+}} \frac{f(\circ + h) - f(\circ)}{h} = \lim_{h \to \circ^{+}} \frac{h^{\frac{1}{7}} \ln h}{h} = \lim_{h \to \circ^{+}} h^{\frac{1}{7}} \ln h = \circ$$
(ع نمره) $\lim_{x \to \circ^{+}} x^{r} \ln x = \circ \cdot r > \circ \cdot x$ بنابر مثال حل شده کتاب برای $f'_{-}(\circ) = \lim_{h \to \circ^{-}} \frac{f(\circ + h) - f(\circ)}{h} = \lim_{h \to \circ^{-}} \frac{h^{7} r^{h}}{h} = \lim_{h \to \circ^{-}} h^{7} = \circ \times 1 = \circ$

در نتیجه $f'(\circ)=f'(\circ)=f'(\circ)=0$ در صفر مشتق پذیر است و $f'(\circ)=f'(\circ)=f'(\circ)=0$ در نتیجه $f(x)=x^{\frac{7}{7}}\ln x$ نتیجه برای $f(x)=x^{\frac{7}{7}}\ln x$ نتیجه میگیریم $f(x)=x^{\frac{7}{7}}\ln x$ نتیجه میگیریم $f(x)=x^{\frac{7}{7}}\ln x$ نتیجه میگیریم برای f(x)=x مشتق پذیر است.

(۸ نمره)

$$f'(x) = \begin{cases} \frac{r}{r} x^{\frac{1}{r}} \ln x + x^{\frac{1}{r}} & x > 0 \\ rx r^x + x^r \ln r r^x & x \le 0 \end{cases}$$