Chapter 11

Greedy Algorithms

CS 473: Fundamental Algorithms, Spring 2011 March 1, 2011

11.1 Problems and Terminology

11.2 Problem Types

11.2.0.1 Problem Types

- (A) Decision Problem: Is the input a YES or NO input? Example: Given graph G, nodes s, t, is there a path from s to t in G?
- (B) Search Problem: Find a solution if input is a YES input. Example: Given graph G, nodes s, t, find an s-t path.
- (C) Optimization Problem: Find a best solution among all solutions for the input. Example: Given graph G, nodes s, t, find a shortest s-t path.

11.2.0.2 Terminology

- (A) A problem Π consists of an infinite collection of inputs $\{I_1, I_2, \ldots, \}$. Each input is referred to as an instance.
- (B) The size of an instance I is the number of bits in its representation.
- (C) For an instance I, sol(I) is a set of feasible solutions to I. Typical implicit assumption: given instance I and $y \in \Sigma^*$, there is a way to check (efficiently!) if $y \in sol(I)$. In other words, problem is in NP.
- (D) For optimization problems each solution $s \in sol(I)$ has an associated value. Typical implicit assumption: given s, can compute value efficiently.

11.2.0.3 Problem Types

(A) Decision Problem: Given I output whether $sol(I) = \emptyset$ or not.

- (B) Search Problem: Given I, find a solution $s \in sol(I)$ if $sol(I) \neq \emptyset$.
- (C) Optimization Problem: Given I,
 - (A) Minimization problem. Find a solution $s \in sol(I)$ of minimum value
 - (B) Maximization problem. Find a solution $s \in sol(I)$ of maximum value
 - (C) Notation: opt(I): interchangeably (when there is no confusion) used to denote the value of an optimum solution or some fixed optimum solution.

11.3 Greedy Algorithms: Tools and Techniques

11.3.0.4 What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

- (A) make decision incrementally in small steps without backtracking
- (B) decision at each step is based on improving *local or current* state in a myopic fashion without paying attention to the *global* situation
- (C) decisions often based on some fixed and simple priority rules

11.3.0.5 Pros and Cons of Greedy Algorithms

Pros:

- (A) Usually (too) easy to design greedy algorithms
- (B) Easy to implement and often run fast since they are simple
- (C) Several important cases where they are effective/optimal
- (D) Lead to a first-cut heuristic when problem not well understood Cons:
- (A) Very often greedy algorithms don't work. Easy to lull oneself into believing they work
- (B) Many greedy algorithms possible for a problem and no structured way to find effective ones

CS 473: Every greedy algorithm needs a proof of correctness

11.3.0.6 Greedy Algorithm Types

Crude classification:

- (A) Non-adaptive: fix some ordering of decisions a priori and stick with the order
- (B) Adaptive: make decisions adaptively but greedily/locally at each step Plan:
- (A) See several examples
- (B) Pick up some proof techniques

11.4 Interval Scheduling

Interval Scheduling

Input A set of jobs with start and finish times to be scheduled on a resource (example: classes and class rooms)

Goal Schedule as many jobs as possible

(A) Two jobs with overlapping intervals cannot both be scheduled!

11.4.1 The Algorithm

11.4.1.1 Greedy Template

```
R is the set of all requests X is empty (* X will store all the jobs that will be scheduled *) while R is not empty \operatorname{\mathbf{do}} choose \ i \in R add i to X remove from R all requests that overlap with i return the set X
```

Main task: Decide the order in which to process requests in R

ES SP FC EF

11.4.1.2 Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.

Back Counter

11.4.1.3 Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

Back Counter

11.4.1.4 Fewest Conflicts

Process jobs in that have the fewest "conflicts" first.

Back Counter

11.4.1.5 Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.

11.4.2 Correctness

11.4.2.1 Optimal Greedy Algorithm

```
R is the set of all requests X is empty (* X will store all the jobs that will be scheduled *) while R is not empty choose i \in R such that finishing time of i is least add i to X remove from R all requests that overlap with i return X
```

Theorem 11.4.1 The greedy algorithm that picks jobs in the order of their finishing times is optimal.

11.4.2.2 Proving Optimality

- (A) Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
- (B) For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then O = X? Not likely! Instead we will show that |O| = |X|

11.4.2.3 Proof of Optimality: Key Lemma

Lemma 11.4.2 Let i_1 be first interval picked by Greedy. There exists an optimum solution that contains i_1 .

Proof: Let O be an arbitrary optimum solution. If $i_1 \in O$ we are done.

Claim: If $i_1 \notin O$ then there is exactly one interval $j_1 \in O$ that conflicts with i_1 . (proof later)

(A) Form a new set O' by removing j_1 from O and adding i_1 , that is $O' = (O - \{j_1\}) \cup \{i_1\}$.

Figure 11.1: Since i_1 has the earliest finish time, any interval that conflicts with it does so at $f(i_1)$. This implies j_1 and j_2 conflict.

- (B) From claim, O' is a feasible solution (no conflicts).
- (C) Since |O'| = |O|, O' is also an optimum solution and it contains i_1 .

11.4.2.4 Proof of Claim

Claim 11.4.3 If $i_1 \notin O$ then there is exactly one interval $j_1 \in O$ that conflicts with i_1 .

Proof:

- (A) Suppose $j_1, j_2 \in O$ such that $j_1 \neq j_2$ and both j_1 and j_2 conflict with i_1 .
- (B) Since i_1 has earliest finish time, j_1 and i_1 overlap at $f(i_1)$.
- (C) For same reason j_2 also overlaps with i_1 at $f(i_1)$.
- (D) Implies that j_1, j_2 overlap at $f(i_1)$ contradicting the feasibility of O.

See figure in next slide.

11.4.2.5 Figure for proof of Claim

11.4.2.6 Proof of Optimality of Earliest Finish Time First

Proof:[Proof by Induction on number of intervals] **Base Case:** n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let I be an instance with n intervals

I': I with i_1 and all intervals that overlap with i_1 removed

G(I), G(I'): Solution produced by Greedy on I and I'

From Lemma, there is an optimum solution O to I and $i_1 \in O$.

```
Let O' = O - \{i_1\}. O' is a solution to I'.

|G(I)| = 1 + |G(I')| \quad \text{(from Greedy description)}
\geq 1 + |O'| \quad \text{(By induction, } G(I') \text{ is optimum for } I'\text{)}
= |O|
```

11.4.3 Running Time

11.4.3.1 Implementation and Running Time

```
Initially R is the set of all requests X is empty (* X will store all the jobs that will be scheduled *) while R is not empty  \begin{array}{c} \textit{choose } i \in R \textit{ such that finishing time of } i \textit{ is least} \\ \textit{if } i \textit{ does not overlap with requests in } X \\ & \textit{add } i \textit{ to } X \\ & \textit{remove } i \textit{ from } R \\ \\ \textbf{return the set } X \end{array}
```

- (A) Presort all requests based on finishing time. $O(n \log n)$ time
- (B) Now choosing least finishing time is O(1)
- (C) Keep track of the finishing time of the last request added to A. Then check if starting time of i later than that
- (D) Thus, checking non-overlapping is O(1)
- (E) Total time $O(n \log n + n) = O(n \log n)$

11.4.4 Extensions and Comments

11.4.4.1 Comments

- (A) Interesting Exercise: smallest interval first picks at least half the optimum number of intervals.
- (B) Instead of maximizing the total number of requests, associate *value/weight* with each job that is scheduled. Try to schedule jobs to maximize total value/weight. No greedy algorithm. Will be seen later in this course to illustrate dynamic programming.
- (C) All requests need not be known at the beginning. Such *online* algorithms are a subject of research

11.4.5 Interval Partitioning

11.4.6 The Problem

11.4.6.1 Scheduling all Requests

Input A set of lectures, with start and end times

Figure 11.2: A schedule requiring 4 classrooms

Figure 11.3: A schedule requiring 3 classrooms

Goal Find the minimum number of classrooms, needed to schedule all the lectures such two lectures do not occur at the same time in the same room.

11.4.7 The Algorithm

11.4.7.1 Greedy Algorithm

```
Initially R is the set of all requests d=0 (* number of classrooms *) while R is not empty choose i\in R such that start time of i is earliest if i can be scheduled in some class-room k\leq d schedule lecture i in class-room k else allocate a new class-room d+1 and schedule lecture i in d+1 d=d+1
```

What order should we process requests in? According to start times (breaking ties arbitrarily)

11.4.8 Correctness

11.4.8.1 Depth of Lectures

Definition 11.4.4 (A) For a set of lectures R, k are said to be in conflict if there is some time t such that there are k lectures going on at time t.

(B) The depth of a set of lectures R is the maximum number of lectures in conflict at any time.

11.4.8.2 Depth and Number of Class-rooms

Lemma 11.4.5 For any set R of lectures, the number of class-rooms required is at least the depth of R.

Proof: All lectures that are in conflict must be scheduled in different rooms.

11.4.8.3 Number of Class-rooms used by Greedy Algorithm

Lemma 11.4.6 Let d be the depth of the set of lectures R. The number of class-rooms used by the greedy algorithm is d.

Proof:

- (A) Suppose the greedy algorithm uses more that d rooms. Let j be the first lecture that is scheduled in room d+1.
- (B) Since we process lectures according to start times, there are d lectures that start (at or) before j and which are in conflict with j.
- (C) Thus, at the start time of j, there are at least d+1 lectures in conflict, which contradicts the fact that the depth is d.

11.4.8.4 Figure

11.4.8.5 Correctness

Observation 11.4.7 The greedy algorithm does not schedule two overlapping lectures in the same room.

Theorem 11.4.8 The greedy algorithm is correct and uses the optimal number of classrooms.

11.4.9 Running Time

11.4.9.1 Implementation and Running Time

```
Initially R is the set of all requests d=0 (* number of classrooms *) while R is not empty choose i\in R such that start time of i is earliest if i can be scheduled in some class-room k\leq d schedule lecture i in class-room k else allocate a new class-room d+1 and schedule lecture i in d+1 d=d+1
```

- (A) Presort according to start times. Picking lecture with earliest start time can be done in O(1) time.
- (B) Keep track of the finish time of last lecture in each room.
- (C) Checking conflict takes O(d) time. With priority queues, checking conflict takes $O(\log d)$ time.
- (D) Total time = $O(n \log n + nd) = O(n \log n + n \log d) = O(n \log n)$

11.5 Scheduling to Minimize Lateness

11.5.1 The Problem

11.5.1.1 Scheduling to Minimize Lateness

- (A) Given jobs with deadlines and processing times to be scheduled on a single resource.
- (B) If a job i starts at time s_i then it will finish at time $f_i = s_i + t_i$, where t_i is its processing time. d_i : deadline.
- (C) The lateness of a job is $l_i = \max(0, f_i d_i)$.
- (D) Schedule all jobs such that $L = \max l_i$ is minimized.

11.5.1.2 A Simpler Feasibility Problem

(A) Given jobs with deadlines and processing times to be scheduled on a single resource.

	1	2	3	4	5	6
t_i	3	2	1	4	3	2
d_i	6	8	9	9	14	15

									l_1			$= 2$ l_5			5 =	0	l	$l_4 = 6$			
											_1	L			\downarrow				\downarrow		
	3		2			6					5					4					
()	1	2	3	;	4	5	(3	7	8	3	9	10	11	12	13	14	15	,	

- (B) If a job i starts at time s_i then it will finish at time $f_i = s_i + t_i$, where t_i is its processing time.
- (C) Schedule all jobs such that each of them completes before its deadline (in other words $L = \max_i l_i = 0$).

Definition 11.5.1 A schedule is feasible if all jobs finish before their deadline.

11.5.2 The Algorithm

11.5.2.1 Greedy Template

```
Initially R is the set of all requests curr\_time = 0 while R is not empty do choose \ i \in R curr\_time = curr\_time + t_i if (curr\_time > d_i) then return ''no feasible schedule'' return ''found feasible schedule''
```

Main task: Decide the order in which to process jobs in R

11.5.2.2 Three Algorithms

- (A) Shortest job first sort according to t_i .
- (B) Shortest slack first sort according to $d_i t_i$.
- (C) EDF = Earliest deadline first sort according to d_i .

Counter examples for first two: exercise

11.5.2.3 Earliest Deadline First

Theorem 11.5.2 Greedy with EDF rule for picking requests correctly decides if there is a feasible schedule.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma 11.5.3 If there is a feasible schedule then there is one with no idle time before all jobs are finished.

11.5.2.4 Inversions

Definition 11.5.4 A schedule S is said to have an inversion if there are jobs i and j such that S schedules i before j, but $d_i > d_j$.

Claim 11.5.5 If a schedule S has an inversion then there is an inversion between two adjacently scheduled jobs.

Proof: exercise.

11.5.2.5 Main Lemma

Lemma 11.5.6 If there is a feasible schedule, then there is one with no inversions.

Proof: [Proof Sketch] Let S be a schedule with minimum number of inversions.

- (A) If S has 0 inversions, done.
- (B) Suppose S has one or more inversions. By claim there are two adjacent jobs i and j that define an inversion.
- (C) Swap positions of i and j.
- (D) New schedule is still feasible. (Why?)
- (E) New schedule has one fewer inversion contradiction!

11.5.2.6 Back to Minimizing Lateness

Goal: schedule to minimize $L = \max_{i} l_{i}$.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such that $\max_i l_i \leq L$?

Yes! Set $d'_i = d_i + L$ for each job i. Use feasibility algorithm with new deadlines.

How can we find minimum L? Binary search!

11.5.2.7 Binary search for finding minimum lateness

```
\begin{split} L &= L_{\min} = 0 \\ L_{\max} &= \sum_i t_i \text{ // why is this sufficient?} \\ \text{While } L_{\min} &< L_{\max} \text{ do} \\ L &= \lfloor (L_{\max} + L_{\min})/2 \rfloor \\ \text{ check if there is a feasible schedule with lateness } L \\ \text{ if ''yes'' then } L_{\max} &= L \\ \text{ else } L_{\min} &= L+1 \\ \text{ end while } \end{split}
```

Running time: $O(n \log n \cdot \log T)$ where $T = \sum_i t_i$

- (A) $O(n \log n)$ for feasibility test (sort by deadlines)
- (B) $O(\log T)$ calls to feasibility test in binary search

11.5.2.8 Do we need binary search?

```
What happens in each call? 

EDF algorithm with deadlines d'_i = d_i + L. 

Greedy with EDF schedules the jobs in the same order for all L!!! 

Maybe there is a direct greedy algorithm for minimizing maximum lateness?
```

11.5.2.9 Greedy Algorithm for Minimizing Lateness

Exercise: argue directly that above algorithm is correct (see book). Can be easily implemented in $O(n \log n)$ time after sorting jobs.

11.5.2.10 Greedy Analysis: Overview

- (A) Greedy's first step leads to an optimum solution. Show that there is an optimum solution leading from the first step of Greedy and then use induction. Example, Interval Scheduling.
- (B) Greedy algorithm stays ahead. Show that after each step the solution of the greedy algorithm is at least as good as the solution of any other algorithm. Example, Interval scheduling.
- (C) Structural property of solution. Observe some structural bound of every solution to the problem, and show that greedy algorithm achieves this bound. Example, Interval Partitioning.
- (D) Exchange argument. Gradually transform any optimal solution to the one produced by the greedy algorithm, without hurting its optimality. Example, Minimizing lateness.

11.5.2.11 Takeaway Points

(A) Greedy algorithms come naturally but often are incorrect. A proof of correctness is an absolute necessity.