- 1. Using the digits 1-9, how many five digit numbers are there
 - (a) in total?

$$9^5 = 59.049$$

(b) which begin and end with an odd digit?

$$5 \times 9^3 \times 5 = 18,225$$

(c) which use only odd digits?

$$5^5 = 3.125$$

(d) which use three odd and two even digits in the order odd-even-odd?

$$5 \times 4 \times 5 \times 4 \times 5 = 2,000$$

(e) which use three odd and two even digits in any order?

$$\binom{5}{3}$$
 5³ 4² = 20,000 — the $\binom{5}{3}$ chooses where to put the three odd numbers

(f) which use three odd and two even digits in any order with no repetitions allowed?

$$\binom{5}{3}\binom{4}{2}5! = 7,200$$
 — the $\binom{5}{3}$ chooses where to put the three odd numbers

(g) if the digits must all be different?

$$9\times8\times7\times6\times5=15,120$$

(h) if the digits must be different and in increasing order?

$$\binom{9}{5} = 126$$

Bonus. What if the digits must be in increasing order but repetitions are allowed?

A brute force way is to count the different patterns of repetitions separately —

5 different 2 of a kind 3 of a kind 4 of a kind 5 of a kind 2 pair full house
$$\binom{9}{5}$$
 $\binom{9}{1}\binom{8}{3}$ $\binom{9}{1}\binom{8}{2}$ $\binom{9}{1}\binom{8}{1}$ $\binom{9}{1}\binom{7}{1}$ $\binom{9}{2}\binom{7}{1}$ $\binom{9}{2}\binom{2}{1}$

Adding these 7 terms gives 1,287.

There's a *stars and bars* (google it) formula for this: $\binom{9+5-1}{5} = \binom{13}{5} = 1,287$ where the 9 is how many different digits there are and the 5 is how many we need to choose.

- 2. Throw two dice and let *X* be the absolute difference in the numbers showing.
 - (a) What are the possible values of X?

(b) Find and sketch the graph of the probability density function f_X .

\boldsymbol{X}	0	1	2	3	4	5
f_X	6/36	10/36	8/36	6/36	4/36	2/36

(c) Carefully sketch the graph of the cumulative distribution function F_X .

3. Let *X* be the number showing when a die is thrown. Find the density function for $Y = (X-3)^2$.

6 1/6

x $f_X(x)$	v)	1 1/6	2 1/6	3 1/6	4 1/6	5 1/6
X Y	1 4	2	3	4 5 1 4	6 9	
${y}$ $f_Y(y)$	v)	0 1/6	1 2/6	4 2/6	9 1/6	

For example,
$$f_Y(4) = P(Y=4) = P(X=1) + P(X=5) = \frac{1}{6} + \frac{1}{6} = \frac{2}{6}$$

Bonus. Assume everyone in a population of size n buys one lottery ticket each week. Use these hints to find the probability someone will win twice before you win once.

(a) Let X be the event that you win in week X and nobody has won twice. Find P(X=k), k=1,2,3...n. X=k means k-1 of n-1 people won in weeks 1,2,3...k-1 and then you won — this can happen in $\binom{n-1}{k-1}$ ways. The total number of different drawings is n^k so

$$P(X=k) = {n-1 \choose k-1} \frac{1}{n^k}, \quad k=1,2,3...n$$

(b) Show the probability you win once before someone else wins twice is $\frac{1}{n+1} \left(1 + \frac{1}{n}\right)^n$. Since the events $\{X = k\}$ are exclusive

$$P(\text{you win}) = \sum_{k=1}^{n} P(X=k) = \sum_{k=1}^{n} {n-1 \choose k-1} \frac{1}{n^k} = \sum_{k=0}^{n-1} {n-1 \choose k} \frac{1}{n^{k+1}} = \frac{1}{n} \left(1 + \frac{1}{n}\right)^{n-1} = \frac{1}{n+1} \left(1 + \frac{1}{n}\right)^n$$

We have re-indexed the sum and used the Binomial Theorem

(c) What happens to $\left(1+\frac{1}{n}\right)^n$ as $n\to\infty$? What can you conclude about the lottery? From Calc I $\left(1+\frac{1}{n}\right)^n\to e$ as $n\to\infty$ so for large n, $P(\text{you win})\sim\frac{e}{n+1}$ — for even modest values of n it's almost guaranteed that someone will win the lottery twice before you win it once