Lab11 - Advanced Graph

#A - Dijkstra

总结:

有向有权图,从一个vertex到各个vertex的最短距离(最短路径),该题是dijk裸题。dijk强调每一步都寻找距离初始点距离最短的点(而不涉及集合)。本质上与prim相同,都是bfs+二叉堆,复杂度为O((|V|+|E|)log|V|)。

Information

Time Limit	Memory Limit	Data Amount	Problem Type	
2000ms	128MiB	10	Tradition	

Description

This is a model of Dijkstra algorithm.

Given a **directed weighted** graph, where the starting point is 1. please print the values of shortest path from 1 to each vertex.

Input

The first line contains two integers *n*,*m*: number of vertexes, number of edges.

For the next m lines, each line contains 3 integers: x, y, z, representing an edge $x \to y$ with weight z.

Output

n integers.

The *i*-th integer is the value of shortest path from 1 to *i*.

If *i* is unreachable from 1, please print -1.

Sample Test Data

Input #1

- 4 6 1 3 1 2 1 2
- 4 2 3
- 4 2 3 3 3 4
- 1 2 5
- 3 4 6

Output #1

Tips

For 100% cases: 1 <= n <= 10000, 0 <= m <= 100000, 1 <= z <= 100.

It's guaranteed that there are no duplicate edges in the graph.

#B - Prim

Information

Time Limit	Memory Limit	Data Amount	Problem Type	
2000ms	128MiB	10	Tradition	

总结:

无向有权图,从一个点到其它点的最短距离(最短路径),该题是prim算法裸题。prim强调,每一步都寻找距离集合最短的点(而不是初始点)。本质上与dijk相同,都是bfs+二叉堆,复杂度为 O((|V|+|E|)log|V|)

Description

This is a model of prim algorithm.

Given an **weighted undirected** graph, please calculate the value of the minimum spanning tree.

Input

The first line contains two integers n,m*: number of vertexes, number of edges.

For the next m lines, each line contains 3 integers: x, y, z, representing an edge $x \to y$ with weight z.

Output

The answer.

Sample Test Data

Input #1

5 5

1 2 1

2 3 2

3 4 3

4 5 4 2 5 1

Output #1

7

Data Limit

For 100% cases: 1 <= n <= 5000, 0 <= m <= 100000, 1 <= z <= 100.

It's guaranteed that there are no duplicate edges in the graph.

#C - Kosaraju

总结:

Kosaraju用来求SCC(Strongly connected Component)。思路是先求反图拓扑序,再根据反图拓扑序在原图中跑dfs

Information

Time Limit	Memory Limit	Data Amount	Problem Type	
2000ms	128MiB	4	Tradition	

Description

This is a model of Kosaraju algorithm.

Given an **directed** graph, please determine if the whole graph is a SCC.

Input

The first line contains two integers *n*, *m*: number of vertexes, number of edges.

For the next mm lines, each line contains two integers: x, y, representing an edge $x \to y$.

Output

If yes, print "Yes"; otherwise print "No".

Sample Test Data

Input #1

4 6

1 3

2 1

4 2

3 3

2
4

Output #1

Yes

Data Limit

For 100% cases: 1 <= n <= 10000, 0 <= m <= 100000.

It's guaranteed that there are no duplicate edges in the graph.

#D 被砍了

#E - Shortest path counting

Information

Time Limi	t Memory Limi	t Data Amoun	t Problem Type
2000ms	128MiB	10	Tradition

Description

Given a **undirected unweighted** graph, where the starting point is 1. please print the **total number** of shortest path from 1 to each vertex.

Input

The first line contains two integers *n*, *m*: number of vertexes, number of edges.

For the next m lines, each line contains 2 integers: x, y, representing an edge x-y.

Output

n integers.

The i-th integer is the number of shortest path from 1 to i.

The answer is modulo 100003.

If *i* is unreachable from 1, please print 0.

Note that 1 is always reachable from 1.

Sample Test Data

Input #1

4 5					
1 3					
2 1					
4 2					
1 2					
3 4					

Output #1

1			
2			
1			
3			

Data Limit

For 100% cases: 1 <= n <= 10000, 0 <= m <= 100000, 0 < z < 101.