Formulario PEP I Física 2 Profesor Rubén Montecinos

Definición 1 (Movimiento rectilíneo uniforme acelerado) Movimiento en linea recta con aceleración constante y velocidad variable.

$$\vec{r(t)} = \vec{r_i} + \vec{v_i} \cdot \triangle t + \frac{1}{2} \cdot \vec{a} \cdot (\triangle t)^2$$

$$\vec{v(t)} = v_i + \vec{a} \cdot \triangle t$$

En el eje x (con dirección \hat{i}):

$$x(t) = x_i + v_{x,i} \cdot \triangle t + \frac{1}{2} \cdot a_x \cdot (\triangle t)^2$$
$$v_x(t) = v_{x,i} + a_x \cdot \triangle t$$
$$a_x = cte.$$

En el eje y (con dirección \hat{j}):

$$y(t) = y_i + v_{y,i} \cdot \triangle t + \frac{1}{2} \cdot a_y \cdot (\triangle t)^2$$
$$v_y(t) = v_{y,i} + a_y \cdot \triangle t$$
$$a_y = cte.$$

Nota: Generalmente la aceleración en el eje y es la aceleración de gravedad $g=9.8~[\frac{m}{s^2}]$

Definición 2 (Periodo y frecuencia) Periodo: Tiempo en que la partícula realiza una vuelta. Frecuencia: Cantidad de vueltas en un segundo.

$$T = \frac{1}{f}$$

Donde T es el periodo y f la frecuencia.

Definición 3 (Velocidad lineal o tangencial) Velocidad de la partícula que se encuentra en M.C.U, su dirección es tangencial al punto de la circunferencia que se encuentra.

$$V = \frac{2\pi R}{T} = 2\pi R f$$

Donde V es la velocidad tangencial y R el radio de la circunferencia.

Nota: Para el movimiento circular el camino que recorre una partícula es un arco de la circunferencia definido como

$$S=R\theta$$

Donde θ es el ángulo del movimiento.

Definición 4 (Velocidad angular) Razón de cambio angular por unidad de tiempo.

$$\omega = \frac{\triangle \theta}{\triangle t} = \frac{2\pi}{T} = 2\pi f = \frac{v}{R}$$

Donde ω corresponde a la velocidad angular y $\triangle \theta$ a la variación de ángulo en el giro

Definición 5 (Aceleración centrípeta) Aceleración provocada por una fuerza centrípeta, cuya dirección es radial y sentido hacia el centro de la circunferencia de giro.

$$a_c = \frac{v^2}{R} = \omega^2 R$$

Donde a_c es la aceleración centrípeta.

Definición 6 (Momentum Lineal) Cantidad vectorial de movimiento de un objeto.

$$\vec{P} = m \cdot \vec{v}$$

Donde \vec{P} es el vector momentum lineal, m la masa y \vec{v} el vector velocidad del objeto.

Definición 7 (Choque elástico) Choque entre objetos donde la energía se conserva y cumple que:

$$\sum K_{antes} = \sum K_{despues}$$

$$\sum \vec{P_{antes}} = \sum \vec{P_{despues}}$$

Donde K_{antes} es la energía cinética antes de la colisión, $K_{despues}$ es la energía cinética después de la colisión, P_{antes} es el vector momentum antes de la colisión y $P_{despues}$ es el vector momentum después de la colisión.

Definición 8 (Choque inelastico) Choque entre objetos donde la energía no se conserva pero si su momentum.

$$\sum K_{antes} \neq \sum K_{despues}$$

$$\sum \vec{P_{antes}} = \sum \vec{P_{despues}}$$

Esto supone entonces que existe una perdida o ganancia de energía, por lo que existe un trabajo $\triangle K = W$.

- Si W > 0 entonces el sistema gana energía.
- ullet Si W<0 entonces el sistema pierde energía.

Definición 9 (Centro de masa) Posición definida en relación a un objeto o a un sistema de objetos donde se representa la masa total del sistema.

$$\vec{r_{cm}} = \frac{\sum_{i} m_i \cdot \vec{r_i}}{\sum_{i} m_i}$$

Donde $\vec{r_{cm}}$ es el vector posición del centro de masa, r_i las posiciones de cada objeto del sistema y m_i la masa de cada uno de los objetos del sistema.

Análogamente, la velocidad del centro de masa.

$$\vec{v_{cm}} = \frac{\sum_{i} m_i \cdot \vec{v_i}}{\sum_{i} m_i}$$

Donde $\vec{v_{cm}}$ es el vector velocidad del centro de masa y v_i el vector velocidad de cada objeto del sistema.

Resumen unidades

Magnitud Física	Unidad (S.I)
Periodo	Segundo (s)
Frecuencia	Hertz ($Hz = 1/s$)
Velocidad	m/s
Velocidad angular	rad/s
Aceleración centrípeta	m/s^2
Momentum lineal	$(Kg \cdot m)/s$
Energía cinética	Joule (J)
Posición CM	Metro (m)
Velocidad CM	m/s

Table 1: Unidades de magnitudes física utilizadas