Ungleichungen von Kraft & McMillan Proseminar Informationstheorie

Phil Pützstück

November 23, 2018

Motivation

- Gesehen, dass eindeutig bzw. sofort dekodierbare Codes sehr nützlich sind.
- Wann bzw. unter welchen Bedingungen existieren diese?
- ▶ Insbesondere: Wortlängen und Größe des Code-Alphabets
- Vorgestellte Ungleichungen geben untere Schranken für diese

Überblick

- ► Zusammenhang Codes und Bäume
- Ungleichung von Kraft
- Ungleichung von McMillan
- ► Bemerkungen / Zusammenfassung

Code als Baum: \mathcal{T}_r^h

Höhe $h \in \mathbb{N}$, Verzweigungsgrad $r \in \mathbb{N}$.

Beispiel r = 3, h = 2, Baum \mathcal{T}_3^2 :

Code als Baum: \mathcal{T}_r^h

Höhe $h \in \mathbb{N}$, Verzweigungsgrad $r \in \mathbb{N}$.

Beispiel r = 3, h = 2, Baum \mathcal{T}_3^2 :

▶ Für $v_w \in V(\mathcal{T}_r^h)$ gilt $height(v_w) = |w|$.

Code als Baum: \mathcal{T}_r^h

Höhe $h \in \mathbb{N}$, Verzweigungsgrad $r \in \mathbb{N}$.

Beispiel r = 3, h = 2, Baum \mathcal{T}_3^2 :

- ▶ Für $v_w \in V(\mathcal{T}_r^h)$ gilt $height(v_w) = |w|$.
- ▶ Für $v_w, v_{w'} \in V(\mathcal{T}_r^h)$ gilt $v_w \leq v_{w'} \iff w \sqsubseteq w'$.

Ungleichung von Kraft

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1$$

Ungleichung von Kraft

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1$$

Annahmen:

- ► Anzahl Code-Wörter *q* > 1
- ▶ Wortlängen $0 < \ell_1 \le \ell_2 \le \cdots \le \ell_q$ aufsteigend sortiert
- ▶ Code-Alphabet von C ist [0, r-1]

Richtung " $\sum_{k=1}^q \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1 \implies \mathcal{C}$ existiert".

Bekannt: C sofort dekodierbar $\iff C$ Präfixcode.

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: $\mathcal C$ sofort dekodierbar $\iff \mathcal C$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$.

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$. Betrachte T_2^3

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$. Betrachte \mathcal{T}_2^3

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$. Betrachte \mathcal{T}_2^3 $w_1 = 0$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$. Betrachte \mathcal{T}_2^3 $w_1 = 0$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$. Betrachte $\mathcal{T}_2^3 \setminus v_0$ $w_1 = 0$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$. Betrachte $\mathcal{T}_2^3 \setminus v_0$ $w_1 = 0$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$. Betrachte $\mathcal{T}_2^3 \setminus v_0$ $w_1 = 0, w_2 = 11$.

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q=3, r=2, \ell=(1,2,3)$. Betrachte $\mathcal{T}_2^3 \setminus v_0$

 $w_1 = 0$, $w_2 = 11$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$. Betrachte $(\mathcal{T}_2^3 \setminus v_0) \setminus v_{11}$ $w_1 = 0, w_2 = 11,$

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$. Betrachte $(\mathcal{T}_2^3 \setminus v_0) \setminus v_{11}$ $w_1 = 0, w_2 = 11,$

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q=3, r=2, \ell=(1,2,3)$. Betrachte $(\mathcal{T}_2^3 \setminus v_0) \setminus v_{11}$

 $w_1 = 0$, $w_2 = 11$, $w_3 = 101$

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1 \implies \mathcal{C}$ existiert".

Bekannt: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Beispiel: $q = 3, r = 2, \ell = (1, 2, 3)$.

 $w_1 = 0$, $w_2 = 11$, $w_3 = 101$

- ightharpoonup zz: Auswahl von w_i aus Baum möglich.
- ▶ Via endlicher Induktion über i.
- $h := \ell_{max}$

Ungleichung von Kraft: "⇒": Induktionsanfang

- zz: Auswahl von w; aus Baum möglich.
- ▶ Via endlicher Induktion über i.
- $ightharpoonup h := \ell_{max}$

i = 1:

lacksquare Wähle $oldsymbol{v_w} \in V(\mathcal{T}_r^h), height(oldsymbol{v_w}) = \ell_1$

Ungleichung von Kraft: "⇒": Induktionsanfang

- zz: Auswahl von w; aus Baum möglich.
- ▶ Via endlicher Induktion über i.
- $h := \ell_{max}$

i = 1:

- lacksquare Wähle $v_w \in V(\mathcal{T}_r^h), height(v_w) = \ell_1$
- ightharpoonup Setze $w_1:=w$, dann $|w_1|=\ell_1$

Ungleichung von Kraft: "⇒": Induktionsanfang

- zz: Auswahl von w; aus Baum möglich.
- ▶ Via endlicher Induktion über i.
- $ightharpoonup h := \ell_{max}$

i = 1:

- lacksquare Wähle $v_w \in V(\mathcal{T}_r^h), height(v_w) = \ell_1$
- ightharpoonup Setze $w_1:=w$, dann $|w_1|=\ell_1$
- lacksquare Entferne Nachfolger; $\mathcal{T}:=\mathcal{T}_r^h\setminus v_w$

 \mathcal{T}_r^h :

▶ Teilbaum der Höhe ℓ_1 entfernt

- lacktriangle Teilbaum der Höhe ℓ_1 entfernt
- $ightharpoonup \mathcal{T}_1$ noch $r^h r^{h-\ell_1}$ Blätter

- lacktriangle Teilbaum der Höhe ℓ_1 entfernt
- $ightharpoonup \mathcal{T}_1$ noch $r^h r^{h-\ell_1}$ Blätter

Weiter gilt:

$$r^{h} - r^{h-\ell_{1}} = r^{h} \left(1 - \sum_{k=1}^{1} \frac{1}{r^{\ell_{k}}} \right)$$

- ▶ Teilbaum der Höhe ℓ_1 entfernt
- $ightharpoonup \mathcal{T}_1$ noch $r^h r^{h-\ell_1}$ Blätter

Weiter gilt:

$$r^{h} - r^{h-\ell_1} = r^{h} \left(1 - \sum_{k=1}^{1} \frac{1}{r^{\ell_k}} \right)$$
$$> r^{h} \left(1 - \sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \right)$$

- ▶ Teilbaum der Höhe ℓ_1 entfernt
- $ightharpoonup \mathcal{T}_1$ noch $r^h r^{h-\ell_1}$ Blätter

Weiter gilt:

$$r^{h} - r^{h-\ell_1} = r^{h} \left(1 - \sum_{k=1}^{1} \frac{1}{r^{\ell_k}} \right)$$
$$> r^{h} \left(1 - \sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \right) \ge 0$$

Induktionsvorraussetzungen für $i \in [1, q - 1]$:

- $\forall j \in [1,i] : |w_j| = \ell_j$
- ▶ $\{w_j \mid j \in [1, i]\}$ Präfix-Code
- ightharpoonup | leaves(\mathcal{T}_j)| > 0

Induktionsvorraussetzungen für $i \in [1, q - 1]$:

$$\forall j \in [1,i] : |w_j| = \ell_j$$

▶
$$\{w_j \mid j \in [1, i]\}$$
 Präfix-Code

$$ightharpoonup |leaves(\mathcal{T}_j)| > 0$$

Dann:

Induktionsvorraussetzungen für $i \in [1, q - 1]$:

$$\forall j \in [1,i] : |w_j| = \ell_j$$

▶
$$\{w_j \mid j \in [1, i]\}$$
 Präfix-Code

$$ightharpoonup |leaves(\mathcal{T}_j)| > 0$$

Dann:

► Knoten v_w der Höhe $\ell_{i+1} \leq h$

Induktionsvorraussetzungen für $i \in [1, q - 1]$:

- $\forall j \in [1,i] : |w_j| = \ell_j$
- ▶ $\{w_j \mid j \in [1, i]\}$ Präfix-Code
- $ightharpoonup |leaves(\mathcal{T}_j)| > 0$

Dann:

- ► Knoten v_w der Höhe $\ell_{i+1} \le h$
- Setze $w_{i+1} := w$, da $|w_{i+1}| = \ell_{i+1}$

Für $j \in [1, i]$:

ightharpoonup Knoten "unter" v_{w_i} bereits entfernt

Für $j \in [1, i]$:

- ► Knoten "unter" v_{w_i} bereits entfernt
- ▶ Damit $v_{w_i} \not\leq v_{w_{i+1}}$, also auch $w_i \not\sqsubseteq w_{i+1}$

- ▶ Damit $\{w_i \mid j \in [1, i+1]\}$ wieder Präfix-Code
- ▶ Falls i + 1 = q: Setze $C := \{w_j \mid j \in [1, i + 1]\}$

- ▶ Damit $\{w_i \mid j \in [1, i+1]\}$ wieder Präfix-Code
- ▶ Falls i + 1 = q: Setze $C := \{w_j \mid j \in [1, i + 1]\}$
- ▶ Falls i + 1 < q: Entferne Nachfolger: $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$

- ▶ Damit $\{w_i \mid j \in [1, i+1]\}$ wieder Präfix-Code
- ▶ Falls i + 1 = q: Setze $C := \{w_j \mid j \in [1, i + 1]\}$
- ▶ Falls i+1 < q: Entferne Nachfolger: $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$
- ▶ Dann $|leaves(\mathcal{T}_{i+1})| > 0$, denn:

$$r^h - \sum_{k=1}^{i+1} r^{h-\ell_k}$$

- ▶ Damit $\{w_i \mid j \in [1, i+1]\}$ wieder Präfix-Code
- ▶ Falls i + 1 = q: Setze $C := \{w_i \mid j \in [1, i + 1]\}$
- ▶ Falls i + 1 < q: Entferne Nachfolger: $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$
- ▶ Dann $|leaves(\mathcal{T}_{i+1})| > 0$, denn:

$$r^{h} - \sum_{k=1}^{l+1} r^{h-\ell_{k}} > r^{h} - \sum_{k=1}^{q} r^{h-\ell_{k}}$$

- ▶ Damit $\{w_i \mid j \in [1, i+1]\}$ wieder Präfix-Code
- ▶ Falls i + 1 = q: Setze $C := \{w_i \mid j \in [1, i + 1]\}$
- ▶ Falls i + 1 < q: Entferne Nachfolger: $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$
- ▶ Dann $|leaves(\mathcal{T}_{i+1})| > 0$, denn:

$$r^{h} - \sum_{k=1}^{i+1} r^{h-\ell_{k}} > r^{h} - \sum_{k=1}^{q} r^{h-\ell_{k}}$$

$$= r^h \left(1 - \sum_{\underline{k=1}}^q \frac{1}{r^{\ell_k}} \right) \geq 0$$

- ▶ Damit $\{w_i \mid j \in [1, i+1]\}$ wieder Präfix-Code
- ▶ Falls i + 1 = q: Setze $C := \{w_i \mid j \in [1, i + 1]\}$
- ▶ Falls i + 1 < q: Entferne Nachfolger: $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$
- ▶ Dann $|leaves(\mathcal{T}_{i+1})| > 0$, denn:

$$r^{h} - \sum_{k=1}^{i+1} r^{h-\ell_{k}} > r^{h} - \sum_{k=1}^{q} r^{h-\ell_{k}}$$

$$= r^{h} \left(1 - \sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}} \right) \geq 0$$

Vorraussetzungen für I.S. erfüllt, Induktion vollendet. Sofort dekodierbares C für r, q, l konstruierbar.

Zeige: $\mathcal C$ sofort dekodierbar \Longrightarrow Ungleichung gilt für Parameter

 $i \in [1, q]$. L_i 's paarweise disjunkt.

 ${\sf Zeige:} \ \mathcal{C} \ \mathsf{sofort} \ \mathsf{dekodierbar} \implies \mathsf{Ungleichung} \ \mathsf{gilt} \ \mathsf{für} \ \mathsf{Parameter}$

 $ightharpoonup i \in [1, q]$. L_i 's paarweise disjunkt.

- ▶ $L_i \cap L_j = \emptyset$ für $i \neq j$.
- $|L_i| = r^{h-\ell_i}$

$$r^h \geq \left| \bigcup_{i \in [1,q]} L_i \right|$$

$$ightharpoonup L_i \cap L_i = \emptyset$$
 für $i \neq j$.

$$|L_i| = r^{h-\ell_i}$$

$$r^{h} \geq \left| \bigcup_{i \in [1,q]} L_{i} \right| = \sum_{i=1}^{q} |L_{i}| = \sum_{i=1}^{q} r^{h-\ell_{i}} = r^{h} \sum_{i=1}^{q} \frac{1}{r^{\ell_{i}}}$$

- $ightharpoonup L_i \cap L_i = \emptyset$ für $i \neq j$.
- $|L_i| = r^{h-\ell_i}$

$$r^h \geq \left| \bigcup_{i \in [1,q]} L_i \right| = \sum_{i=1}^q |L_i| = \sum_{i=1}^q r^{h-\ell_i} = r^h \sum_{i=1}^q \frac{1}{r^{\ell_i}}$$
 $\iff \sum_{i=1}^q \frac{1}{r^{\ell_i}} \leq 1$

Ungleichung von Kraft

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1$$

- Beweis konstruktiv
- Untere Schranke für Wortlänge, Alphabetgröße

Ungleichung von Kraft

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1$$

- Beweis konstruktiv
- Untere Schranke für Wortlänge, Alphabetgröße

- ▶ Bekannt: sofort dekodierbar ⇒ eindeutig dekodierbar
- Schwächere Kriterien?

Ungleichung von McMillan

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer eindeutig dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$K := \sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1 \tag{1}$$

Richtung "(1) $\Longrightarrow \mathcal{C}$ existiert" durch Kraft.

Ungleichung von McMillan: Beweisidee

- ightharpoonup Zu zeigen: $K = \sum_{k=1}^q \frac{1}{r^{\ell_k}} \le 1$
- ▶ Betrachte K^n abhängig von Wortlängen für beliebiges $n \in \mathbb{N}$.
- \triangleright Finde aus Form von K^n konstante obere Schranke
- ▶ Dann muss $K \le 1$, da sonst K^n für geeignetes n größer als jede Konstante

Zu zeigen: $K \leq 1$, wobei $K = \sum_{k=1}^q \frac{1}{r^{\ell_k}}$.

Zu zeigen:
$$K \leq 1$$
, wobei $K = \sum_{k=1}^q \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^n = \left(\sum_{k=1}^q \frac{1}{r^{\ell_k}}\right)^n$$

Zu zeigen: $K \le 1$, wobei $K = \sum_{i=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^n = \left(\sum_{k=1}^q \frac{1}{r^{\ell_k}}\right)^n = \sum_{i \in [1,q]^n} \prod_{k=1}^n \frac{1}{r^{\ell_{i_k}}}$$

Zu zeigen: $K \leq 1$, wobei $K = \sum_{i=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1,q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Zu zeigen: $K \leq 1$, wobei $K = \sum_{i=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1,q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Dann für jedes $i \in [1, q]^n$:

$$n \cdot \ell_{min} \le \sum_{k=1}^{n} \ell_{i_k} \le n \cdot \ell_{max}$$

Zu zeigen: $K \leq 1$, wobei $K = \sum_{r=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1,q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Dann für jedes $i \in [1, q]^n$:

$$n \cdot \ell_{min} \le \sum_{i=1}^{n} \ell_{i_k} \le n \cdot \ell_{max}$$

Wir wollen schreiben:

$$\mathcal{K}^n \ = \ \sum_{i \in [1,q]^n} r^{-\sum_{k=1}^n \ell_{i_k}} \ = \ \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} \mathsf{N}_j \cdot r^{-j}$$

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} N_{j} \cdot r^{-j}$$

Ziel: Gleiche Summenwerte durch $N_i \in \mathbb{N}_0$ zusammenfassen

$$\mathcal{K}^n = \sum_{i \in [1,q]^n} r^{-\sum_{k=1}^n \ell_{i_k}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} rac{\mathbf{N}_j}{r^{-j}}$$

lacksquare N_j Anzahl $i\in [1,q]^n$ mit Wortlängensumme j

$$K^n = \sum_{i \in [1,q]^n} r^{-\sum_{k=1}^n \ell_{i_k}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} N_j \cdot r^{-j}$$

- ▶ N_i Anzahl $i \in [1, q]^n$ mit Wortlängensumme j
- Aquivalent: Anzahl $i \in [1, q]^n$ mit $|w_{i_1} w_{i_2} \dots w_{i_n}| = j$

$$\mathcal{K}^n = \sum_{i \in [1,q]^n} r^{-\sum_{k=1}^n \ell_{i_k}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} \mathbf{N}_j \cdot r^{-j}$$

- $ightharpoonup N_j$ Anzahl $i \in [1,q]^n$ mit Wortlängensumme j
- lacksquare Äquivalent: Anzahl $i \in [1,q]^n$ mit $|w_{i_1}w_{i_2}\dots w_{i_n}|=j$
- $ightharpoonup \mathcal{C}$ eindeutig dekodierbar \Longrightarrow Jede Code-Sequenz aus eindeutiger Auswahl $i \in [1,q]^n$

$$\mathcal{K}^n = \sum_{i \in [1,q]^n} r^{-\sum_{k=1}^n \ell_{i_k}} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} \mathbf{N}_j \cdot r^{-j}$$

- ▶ N_j Anzahl $i \in [1, q]^n$ mit Wortlängensumme j
- ightharpoonup Äquivalent: Anzahl $i \in [1, q]^n$ mit $|w_{i_1}w_{i_2}\dots w_{i_n}| = j$
- $ightharpoonup \mathcal{C}$ eindeutig dekodierbar \Longrightarrow Jede Code-Sequenz aus eindeutiger Auswahl $i \in [1,q]^n$
- $ightharpoonup r^j$ Wörter mit Länge j, nicht alles Code-Sequenzen von $\mathcal C$
- ▶ Für jedes max. ein $i \in [1, q]^n \implies N_j \le r^j$

Mit $N_i \leq r^j$ folgt:

$$K^{n} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} N_{j} r^{-j} = \sum_{j=n \cdot \ell_{min}}^{n \cdot \ell_{max}} \frac{N_{j}}{r^{j}}$$

Mit $N_i \leq r^j$ folgt:

$$egin{aligned} \mathcal{K}^n &= \sum_{j=n\cdot\ell_{min}}^{n\cdot\ell_{max}} N_j r^{-j} &= \sum_{j=n\cdot\ell_{min}}^{n\cdot\ell_{max}} rac{N_j}{r^j} \ &\leq & \sum_{j=n\cdot\ell_{min}}^{n\cdot\ell_{max}} 1 &= & n(\ell_{max}-\ell_{min})+1 \end{aligned}$$

Mit $N_i \leq r^j$ folgt:

$$egin{aligned} \mathcal{K}^n &= \sum_{j=n\cdot\ell_{min}}^{n\cdot\ell_{max}} N_j r^{-j} &= \sum_{j=n\cdot\ell_{min}}^{n\cdot\ell_{max}} rac{N_j}{r^j} \ &\leq \sum_{j=n\cdot\ell_{min}}^{n\cdot\ell_{max}} 1 &= n(\ell_{max}-\ell_{min})+1 \ &\Longrightarrow rac{\mathcal{K}^n}{n} &\leq (\ell_{max}-\ell_{min})+1 \end{aligned}$$

$$\frac{K^n}{n} \leq (\ell_{max} - \ell_{min}) + 1$$

- ▶ Code C gegeben; q = |C|, Alphabetgröße r, Wortlängen ℓ fix.
- ▶ Damit auch ℓ_{min} , ℓ_{max} , K fix.

$$\frac{K^n}{n} \le (\ell_{max} - \ell_{min}) + 1$$

- ▶ Code C gegeben; q = |C|, Alphabetgröße r, Wortlängen ℓ fix.
- ▶ Damit auch ℓ_{min} , ℓ_{max} , K fix.
- ▶ $n \in \mathbb{N}$ beliebig; Ungleichung muss für alle $n \in \mathbb{N}$ gelten.
- Nach Analysis/DSAL bekannt: nur möglich für $K \leq 1$.

$$\implies \sum_{i=1}^{q} \frac{1}{r^{\ell_i}} = K \le 1$$

Bemerkungen

Für $r, q \in \mathbb{N}, \ell \in \mathbb{N}^q$ ergibt sich:

$$\exists \mathcal{C}_{r,q,\ell}$$
 eindeutig dekodierbar \iff $\exists \mathcal{C}'_{r,q,\ell}$ sofort dekodierbar

Bemerkungen

Für $r, q \in \mathbb{N}, \ell \in \mathbb{N}^q$ ergibt sich:

$$\exists \mathcal{C}_{r,q,\ell} \text{ eindeutig dekodierbar } \iff \exists \mathcal{C}'_{r,q,\ell} \text{ sofort dekodierbar }$$

Außerdem, für festen Code $\mathcal{C}_{r,q,\ell}$:

$$\sum_{i=1}^q rac{1}{r^{\ell_i}} \leq 1$$
 $\mathcal{C}_{r,q,\ell}$ sofort dekodierbar

Bemerkungen

Für $r, q \in \mathbb{N}, \ell \in \mathbb{N}^q$ ergibt sich:

$$\exists \mathcal{C}_{r,q,\ell}$$
 eindeutig dekodierbar \iff $\exists \mathcal{C}'_{r,q,\ell}$ sofort dekodierbar

Außerdem, für festen Code $\mathcal{C}_{r,q,\ell}$:

$$\sum_{i=1}^q rac{1}{r^{\ell_i}} \leq 1$$
 $\mathcal{C}_{r,q,\ell}$ sofort dekodierbar

Beispiel: $r = 2, q = 3, \ell = (1, 2, 3)$

$$\sum_{i=1}^{q} \frac{1}{r^{\ell_i}} = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} = \frac{7}{8} < 1$$

 $C := \{0, 01, 011\}$ **nicht** sofort dekodierbar!

Zusammenfassung

- Existenz der Codes abhängig von: Alphabetgröße(r), Anzahl Codewörter(q), Codewortlängen (ℓ)
- Genauer durch Ungleichung von Kraft/McMillan:

$$\sum_{i=1}^{q} \frac{1}{r^{\ell_i}} \le 1$$

Zusammenhang/Konstruktion von Codes durch Bäume