Logika dla Informatyków (zaawansowana) Lista zadań nr 12

Rodzinę $\mathcal{Y} \subset \mathcal{P}(A)$ nazywamy ultrafiltrem na A, jeśli jest ona filtrem (to znaczy nie zawiera zbioru pustego, oraz jest zamknięta ze względu na operację brania nazdbiorów i operację skończonego przecięcia) oraz jeśli jest maksymalna, ze względu na inkluzję, w rodzinie wszystkich filtrów zawartych w $\mathcal{P}(A)$.

Zadanie 1. Rozwiaż Zadanie 533 z MdZ.

Zadanie 2. Niech $\mathcal{Y} \subset \mathcal{P}(A)$ będzie filtrem. Pokaż, że jest on ultrafiltrem na A wtedy tylko wtedy gdy dla każdego $B \subseteq A$ dokładnie jeden ze zbiorów B oraz $A \setminus B$ należy do \mathcal{Y} .

Zadanie 3. Udowodnij że istnieje niegłówny ultrafiltr na \mathbb{N} . Wskazówka: skorzystaj z Lematu Kuratowskiego – Zorna.

Niech of teraz \mathcal{F} będzie ustalonym niegłównym filtrem na \mathbb{N} . Dla danych dwóch ciągów $\bar{a}, \bar{b} \in \mathbb{N}^{\mathbb{N}}$ niech $\bar{a} \cong_{\mathcal{F}} \bar{b}$ wtedy i tylko wtedy gdy $\{i : a_i = b_i\} \in \mathcal{F}$.

Zadanie 4. Udowodnij, że $\cong_{\mathcal{F}}$ jest relacją równoważności.

Zbiór $\bar{\mathbb{N}} = \mathbb{N}^{\mathbb{N}}/\cong_{\mathcal{F}}$ nazywamy zbiorem niestandardowych liczb naturalnych. Dla $\bar{a}, \bar{b} \in \mathbb{N}^{\mathbb{N}}$ zdefiniujmy $[\bar{a}]_{\cong_{\mathcal{F}}} \leq_{\mathcal{F}} [\bar{b}]_{\cong_{\mathcal{F}}}$ wtedy i tylko wtedy gdy $\{i: a_i \leq b_i\} \in \mathcal{F}$.

Zadanie 5. Pokaż, że powyższa definicja relacji $\leq_{\mathcal{F}}$ jest poprawna.

Zadanie 6. Pokaż, że $\leq_{\mathcal{F}}$ jest liniowym porządkiem, kazdy element ma w nim następnik, istnieje element najmniejszy, oraz każdy element oprócz najmniejszego ma poprzednik.

Zadanie 7. W sposób analogiczny do porządku $\leq_{\mathcal{F}}$ zdefiniuj na zbiorze niestandardowych liczb naturalnych funkcje $+_{\mathcal{F}}$ i $\times_{\mathcal{F}}$, to znaczy mnożenie i dodawanie elementów. Pokaż, że tak zdefiniowane dodawanie i mnożenie spełniają prawa łączności, przemienności i rozdzielności mnożenia względem dodawania.

Zadanie 8. Czy w porządku $\leq_{\mathcal{F}}$ istnieją nieskończone ciągi zstępujące? Czy każdy podzbiór zbioru niestandardowych liczb naturalnych ma element najmniejszy?

Zadanie 9. Gdzie w rozwiązaniach Zadań 4–8 korzystamy istotnie z założenia że ultrafiltr \mathcal{F} jest niegłówny?

Zadanie 10. Pokaż, że z Twierdzenia Knastera-Tarskiego o Punkcie Stałym (wprowadzonego na wykładzie po prostu jako Twierdzenie o Punkcie Stałym) magicznie łatwo wynika Twierdzenie Cantora-Bernsteina (mówiące, jak pamiętamy, że jeśli istnieją funkcje różnowartościowe $f: C \to D$ i $g: D \to C$ to istnieje bijekcja między C i D). W tym celu rozważ funkcję F, która zbiorowi $X \subseteq C$ przyporządkowuje: $C \setminus g(D \setminus f(X))$.