Семинар 12

- Затухающие механические колебания
- Вынужденные механические колебания

Определить период T затухающих колебаний, если период T_0 собственных колебаний системы равен 1 с и логарифмический декремент колебаний θ =0,628.

Omeem: T = 1,005 c

Колебательная система совершает затухающие колебания с частотой v=1000 Гц. Определить частоту v_0 собственных колебаний, если резонансная частота $v_{pes}=998$ Гц.

Ombem: $v_0 = 1002 \, \Gamma y$

Гиря массой m=500 г подвешена к спиральной пружине жесткостью k=20 H/м и совершает упругие колебания в некоторой среде. Логарифмический декремент колебаний $\theta=0,004$. Определить число N полных колебаний, которые должна совершить гиря, чтобы амплитуда колебаний уменьшилась в n=2 раза. За какое время t произойдет это уменьшение?

Ombem: N = 173; t = 2 мин 52 c

Найти добротность математического маятника длины l = 50 см, если за $\Delta t = 5.2$ мин его энергия колебаний уменьшается в $\eta = 4.0 \times 10^{-4}$ раз.

Omeem: $Q = 1.3 \times 10^2$

Ombem: $\beta = 0.1 \text{ c}^{-1}$; $A_{pes} = 5 \text{ cM}$

Амплитуды вынужденных гармонических колебаний при частоте v_1 =400 Гц и v_1 =600 Гц равны между собой. Определить резонансную частоту v_{pes} . Затуханием пренебречь.

Omeem: $v_{pes} = 510 \, \Gamma y$

На каком расстоянии х от центра С надо подвесить тонкий однородный стержень длины l, чтобы период его малых колебаний был наименьшим?

Omeem: $x = l/\sqrt{12}$.

Найти период малых колебаний системы (рис. 1), если радиус блока R, его момент инерции относительно оси вращения І, масса грузика т и жесткость пружины к.Нить по блоку не скользит, трения в его оси нет.

Рис. 1

Ombem: T = 2,17 c

Под действием вынуждающей силы $F_x = F_m$ со ω осциллятор совершает установившиеся колебания по закону $x = A\cos(\omega t - \varphi)$. Найти работу вынуждающей силы за период.

Omeem: $A_F = \pi A F_m \sin \varphi$.