

Stationarity and Differencing

Second-order differencing

$$y_t'' = y_t' - y_{t-1}'$$

= $(y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$

In this case, we would model the change in the changes of the original data.

C

Stationarity Through Power Transformation

An effective way to stabilize the variance across time is to apply a power transformation (square root, cube root, etc)

Autocorrelation

Also known as Serial Correlation/Lagged Correlation

Measures the relationship between a variable's current values and its historical/past values

$$r_k = rac{\sum\limits_{t=k+1}^T (y_t - ar{y})(y_{t-k} - ar{y})}{\sum\limits_{t=1}^T (y_t - ar{y})^2}.$$

t	x_t	x_{t-1} (lag 1 value)
1	13	*
2	14	13
3	8	14
4	10	8
5	16	10

It provides a confirmation that we have eliminated any remaining correlation from the residuals *and thus have a good model fit*.

15

Partial Autocorrelation

Suppose we are regressing a variable Y on other variables X1, X2, and X3, the partial correlation between Y and X3 is the amount of correlation between Y and X3 that is not explained by their common correlations with X1 and X2.

$$\frac{\text{Covariance}(y, x_3 | x_1, x_2)}{\sqrt{\text{Variance}(y | x_1, x_2)\text{Variance}(x_3 | x_1, x_2)}}$$

PAC measures correlation between X_{s} and X_{t} with the effect of "everything in the middle" removed

AR Model

- A specific type of regression model
 - Predicts a value for a variable based on past values of the same variable
 - Current observation is regressed using a set of previous observations (weighted sum of its own lagged values)

19

AR Model

- A specific type of regression model
 - Predicts a value for a variable based on past values of the same variable

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + w_t$$
:

- An important property of AR(p) models: For k>p, theoretical partial autocorrelation function is 0
 - Identification of an AR model is best done with PACF

MA Model: MA(1)

Index (t)	\widehat{y}_t	$arepsilon_t$	y_t
1	100	4	104
2	102	-2	100
3	99	2	101
4	101	6	107
5	103	3	106
6	101.5	2.5	104

Prediction: $\hat{y}_t = \phi_0 + \phi_1 \varepsilon_{t-1}$

$$\begin{split} \text{MA(2):} \quad \widehat{y}_t &= \phi_0 \ + \phi_1 \varepsilon_{t-1} + \phi_2 \varepsilon_{t-2} \\ y_t &= \phi_0 \ + \phi_1 \varepsilon_{t-1} + \phi_2 \varepsilon_{t-2} + \varepsilon_t \end{split}$$

23

MA Model

- MA model describes a time series by weighted sum of lagged residuals
- An important property of MA(q) models
- Nonzero autocorrelations for the first q lags, and zero correlations for all lags k>q
- Identification of an MA model is best done with ACF rather than PACF

ARMA Model

A combination of Autoregressive and Moving Average models

$$X_{t} = w_{t} + \sum_{i=1}^{p} \phi_{i} X_{t-i} + \sum_{j=1}^{q} \theta_{j} w_{t-j}$$

	AR(p)	MA(q)	ARMA(p,q)
ACF	Tails off	Cuts off after lag q	Tails off
PACF	Cuts off after lag p	Tails off	Tails off

31

Modelling Procedure: Summary

37

- Plot the data and identify any patterns
- If necessary, transform the data to stabilize the variance
- If the data is non-stationary, take first differences of the data until the data are stationary
- Examine the ACF and PACF: Is an ARIMA(p,d,0) or ARIMA(0,d,q) model appropriate?
- Try your chosen model(s), and use the AIC to search for a better model
- Check the residuals from your chosen model by plotting the ACF of the residuals.
 If they do not look like white noise, try a modified model
- · Once the residuals look like white noise, calculate forecasts
- For steps 3-5, use Auto ARIMA algorithm

Uses a stepwise search to traverse the model space and identifies the optimal model

37

Information Criteria

- A measure of quality of a statistical model, which attempts to accurately represent the process that generated the time series
- Information Criteria estimates the information lost by a model
- Akaike information criterion (AIC)
- Bayesian Information Criterion (BIC)
- They consist of a goodness-of-fit term plus a penalty to control over-fitting

