++ maybe Dirichlet non-zero (i.e. positive) and scale to 1? +++

1 Green's theorem stuff

We wrote the terms in * and ** into vector form as (*, **), but it should have been * + **. I think it has to be a sum, since the term we start out with in the cost functional is the scalar quantity

$$\frac{1}{2} \int_{\Omega} \nabla \times \mathbf{w}^{2} d\mathbf{x} = \frac{1}{2} \int_{\Omega} \left(\frac{\partial w_{2}}{\partial x_{1}} - \frac{\partial w_{1}}{\partial x_{2}} \right)^{2} d\mathbf{x}
= \int_{\Omega} \frac{1}{2} \frac{\partial w_{2}}{\partial x_{1}} \frac{\partial w_{2}}{\partial x_{1}} - \frac{\partial w_{2}}{\partial x_{1}} \frac{\partial w_{1}}{\partial x_{2}} + \frac{1}{2} \frac{\partial w_{1}}{\partial x_{2}} \frac{\partial w_{2}}{\partial x_{1}} d\mathbf{x}.$$

We take the derivative with respect to h_1 , h_2

$$\begin{split} & \int_{\Omega} \frac{\partial h_2}{\partial x_1} \frac{\partial w_2}{\partial x_1} - \frac{\partial h_2}{\partial x_1} \frac{\partial w_1}{\partial x_2} - \frac{\partial w_2}{\partial x_1} \frac{\partial h_1}{\partial x_2} + \frac{\partial h_1}{\partial x_2} \frac{\partial w_1}{\partial x_2} d\mathbf{x} \\ &= \int_{\Omega} \frac{\partial h_2}{\partial x_1} \left(\frac{\partial w_2}{\partial x_1} - \frac{\partial w_1}{\partial x_2} \right) + \frac{\partial h_1}{\partial x_2} \left(\frac{\partial w_1}{\partial x_2} - \frac{\partial w_2}{\partial x_1} \right) d\mathbf{x} \\ &= \int_{\Omega} \frac{\partial}{\partial x_1} \left(h_2 \frac{\partial w_2}{\partial x_1} - h_2 \frac{\partial w_1}{\partial x_2} \right) - \left(h_2 \frac{\partial^2 w_2}{\partial x_1^2} - h_2 \frac{\partial^2 w_1}{\partial x_1 x_2} \right) \\ &+ \frac{\partial}{\partial x_2} \left(h_1 \frac{\partial w_1}{\partial x_2} - h_1 \frac{\partial w_2}{\partial x_1} \right) - \left(h_1 \frac{\partial^2 w_1}{\partial x_2^2} - h_1 \frac{\partial^2 w_2}{\partial x_1 x_2} \right) d\mathbf{x}. \end{split}$$

Applying Green's theorem, we get

$$\begin{split} & \int_{\partial\Omega} \left(h_2 \frac{\partial w_2}{\partial x_1} - h_2 \frac{\partial w_1}{\partial x_2} \right) dx_1 + \left(h_1 \frac{\partial w_1}{\partial x_2} - h_1 \frac{\partial w_2}{\partial x_1} \right) dx_2 \\ & - \int_{\Omega} \left(h_2 \frac{\partial^2 w_2}{\partial x_1^2} - h_2 \frac{\partial^2 w_1}{\partial x_1 x_2} \right) + \left(h_1 \frac{\partial^2 w_1}{\partial x_2^2} - h_1 \frac{\partial^2 w_2}{\partial x_1 x_2} \right) d\mathbf{x}. \end{split}$$

Rewriting the boundary terms we get

$$\int_{\partial\Omega} \nabla \times \mathbf{w} h_2 dx_1 - \nabla \times \mathbf{w} h_1 dx_2$$

$$- \int_{\Omega} \left(h_2 \frac{\partial^2 w_2}{\partial x_1^2} - h_2 \frac{\partial^2 w_1}{\partial x_1 x_2} \right) + \left(h_1 \frac{\partial^2 w_1}{\partial x_2^2} - h_1 \frac{\partial^2 w_2}{\partial x_1 x_2} \right) d\mathbf{x}.$$

Green's Theorem can be written as

$$\int_{\partial\Omega}Ldx+Mdy=\int_{\partial\Omega}\left(M,-L\right)\cdot\left(dy,-dx\right)=\int_{\partial\Omega}\left(M,-L\right)\cdot\mathbf{n}ds,$$

where $ds = \sqrt{dx^2 + dy^2}$ and **n** chosen such that it is normalized and perpendicular to (dx, dy). Therefore, we have

$$\int_{\partial\Omega} \nabla \times \mathbf{w} h_2 dx_1 - \nabla \times \mathbf{w} h_1 dx_2 = \int_{\partial\Omega} \nabla \times \mathbf{w} \left(-h_1, -h_2 \right) \cdot \left(dx_2, -dx_1 \right)$$
$$= \int_{\partial\Omega} \nabla \times \mathbf{w} \left(-h_1, -h_2 \right) \cdot \left(\frac{dx_2}{ds}, -\frac{dx_1}{ds} \right) ds,$$

Consider the boundary term from my derivation

$$\int_{\partial\Omega} (\nabla \times \mathbf{w}) \, \mathbf{h}_{\perp} \cdot \mathbf{n} ds$$

$$= \int_{\partial\Omega} (\nabla \times \mathbf{w}) (h_2, -h_1) \cdot (n_1, n_2) ds. \tag{1}$$

These two formulations agree if $n_1 = \frac{dx_1}{ds}$ and $n_2 = \frac{dx_2}{ds}$. However, this doesn't quite make sense to me, since these are not normal to dx_1 and dx_2 .

1.1 Quick reminder on what I've done

We know that

$$\nabla \times \mathbf{w} = \nabla \cdot \mathbf{w}_{\perp},$$

where $\mathbf{w}_{\perp} = (w_2, -w_1)$, the result of a rotation of \mathbf{w} by $\pi/2$. The Lagrangian included a term of the form

$$\mathcal{L}(\rho, \mathbf{w}, q) = \dots \frac{\eta}{2} \int_0^T \int_{\Omega} (\nabla \cdot \mathbf{w}_{\perp})^2 d\mathbf{x} dt \dots$$

For the adjoint equation, we find the usual results. We take the derivative with respect to \mathbf{w}

$$\mathcal{L}_{\mathbf{w}}(\rho, \mathbf{w}, q)\mathbf{h} = \int_{0}^{T} \int_{\Omega} \dots + \eta \left(\nabla \cdot \mathbf{h}_{\perp} \right) \left(\nabla \cdot \mathbf{w}_{\perp} \right) d\mathbf{x} dt.$$

Then we integrate by parts (or divergence theorem) to get

$$\mathcal{L}_{\mathbf{w}}(\rho, \mathbf{w}, q)\mathbf{h} = \int_{0}^{T} \int_{\Omega} \dots - \eta \nabla \left(\nabla \cdot \mathbf{w}_{\perp} \right) \cdot \mathbf{h}_{\perp} d\mathbf{x} dt + \int_{0}^{T} \int_{\partial \Omega} \eta \left(\nabla \cdot \mathbf{w}_{\perp} \right) \mathbf{h}_{\perp} \cdot \mathbf{n} d\mathbf{x} dt.$$

2 Paper Examples

Source Control Neumann

We choose

$$\rho_0 = 0.25$$

$$V_{ext} = 1.5 \sin(\pi x_2/5) \cos(\pi x_1/5 + \pi/5)$$

$$\hat{\rho} = 0.25(1-t) + t(0.25 \sin(\pi (x_1-2)/2) \sin(\pi (x_2-2)/2) + 0.25)$$

We choose the domain $[-1,1]^2$ with a time horizon (0,1). We have N=20, n=11. With $\beta=10^{-3}$ we solve this problem in 333 seconds. When $\kappa=1$, the cost functional is J=0.015, $J_1=0.021$ and $J_2=0.9946$. (We compare this against the result with $\beta=10^3$, where we get J=0.0153. For $\beta=10^{-5}$ we get $J=8.5366\times 10^{-4}$, see Figure 4.) Figure 2 displays the results, Figure 1 shows the external potential acting on the particles.

Figure 1: V_{ext} corresponding to results in Figure 2.

For $\kappa = -1$ we get J = 0.013, $J_1 = 0.017$ and $J_2 = 0.8846$. The result can be seen in Figure 3.(We compare this against the result with $\beta = 10^3$, where we get J = 0.0171. For $\beta = 10^{-5}$ we get $J = 8.0800 \times 10^{-4}$, see Figure 5.) We can see that the control behaviour for $\kappa = -1$ is very different to the one for $\kappa = 1$, since the repulsion supports the drive towards $\hat{\rho}$, while the attraction counteracts it. For both cases we can observe that the control works harder in regions with steep external potential.

Source Control Dirichlet

We choose

$$\rho_0 = 0.25 \cos(\pi x_1/2) \cos(\pi x_2/2)$$

$$V_{ext} = (1 - t)(-\cos(\pi x_1/2) \sin(\pi x_2/2) + 1)$$

$$\hat{\rho} = 0.25 \cos(\pi x_1/2) \cos(\pi x_2/2)(1 - t) - t \sin(\pi x_1) \sin(\pi x_2/2 - \pi/2)$$

Figure 2: Optimal ρ and cost w, $\kappa = 1$, $\beta = 10^{-3}$

We choose the domain $[-1,1]^2$ with a time horizon (0,1). We have N=20, n=11. For $\beta=10^{-3}, \kappa=1$ we get $J=0.0268, J_1=0.0096$ and $J_2=43.9790$. (vs $\beta=10^3$, where J=0.1709.) For $\beta=10^{-3}, \kappa=1$ we get $J=0.0257, J_1=0.0089$ and $J_2=42.4812$. (vs $\beta=10^3$, where J=0.1707.) Both example take around 60 to 80 seconds to solve.

Flow Control Neumann

We choose

$$\rho_0 = 0.25$$

$$V_{ext} = ((x_1 + 0.3)^2 - 1)((x_1 - 0.4)^2 - 0.5)((x_2 + 0.3)^2 - 1)((x_2 - 0.4)^2 - 0.5)$$

$$\hat{\rho} = (1 - t)0.25 + t(1/1.3791) \exp(-2((x_1 + 0.2)^2 + (x_2 + 0.2)^2))$$

We choose the domain $[-1,1]^2$ with a time horizon (0,1). We have N=20, n=11. For $\beta=10^{-3}, \kappa=1$ we get $J=0.0059, J_1=0.0033$ and $J_2=8.4178$ (compare to $\beta=10^3$ with J=0.0336). For $\kappa=-1$ we get $J=0.0030, J_1=0.0019$ and $J_2=4.1185$ (compare to $\beta=10^3$ with J=0.0214).

Figure 3: Optimal ρ and cost $w,\,\kappa=-1,\,\beta=10^{-3}.$

Flow Control Dirichlet

For this example we need more points. In the following N=25, but that's still not enough. We choose

$$\rho_0 = (0.25\pi)^2 \cos(\pi x_1/2) \cos(\pi x_2/2)$$

$$\hat{\rho} = (1 - t)(0.25\pi)^2 \cos(\pi x_1/2) \cos(\pi x_2/2) + t(0.5(0.25\pi)^2 \sin(\pi x_1) \sin(\pi x_2/2 - \pi/2))$$

Figure 4: Optimal ρ and cost $w,\,\kappa=1,\,\beta=10^{-5}.$

Figure 5: Optimal ρ and cost $w, \kappa = -1, \beta = 10^{-5}$.

Figure 6: V_{ext} corresponding to results in Figure 7.

Figure 7: Optimal ρ and cost $w, \kappa = 1$.

Figure 8: Optimal ρ and cost w, $\kappa = -1$.

Figure 9: V_{ext} corresponding to results in Figure 10.

Figure 10: Optimal ρ and cost w, $\kappa=1$.

Figure 11: Optimal ρ and cost $w, \kappa = -1$.

Figure 12: Optimal ρ and cost $w, \kappa = 1$.

Figure 13: Optimal ρ and cost w, $\kappa = -1$.

Figure 14: Target ρ .