Market Ineffciency, Insurance Mandate and Welfare: The U.S. Health Care Reform 2010

Juergen Jung Towson University Maryland

Chung Tran
Australian National University
Canberra

July 2011

This project was supported by grant number R03HS019796 from the Agency for Healthcare Research and Quality.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the Agency for Healthcare Research and Quality.

The U.S. health insurance system

- Mixed system:
 - Private health insurance for working population
 - Public health insurance for poor (Medicaid) and old (Medicare)
- Main issues in the current system:
 - Low coverage: 47 million uninsured in 2006 (15%)
 - High cost: 16% of GDP on Health in 2006 and close to 20% by 2015
 - Health outcomes: questionable?

Medicare Prescription Drug, Improvement, and Modernization Act (2003)

- Health Savings Accounts
- Medicare Part D (2006) for prescription drugs
- Stop imports of generic drugs
- Restrict Medicare's ability to negotiate drug prices

Affordable Care Act (2010)

- Private insurance:
 - Health insurance exchanges
 - Health insurance mandate with fines and subsidies
 - Restrictions on insurance companies
- Public insurance
 - Expansion of Medicaid
 - Cuts in Medicare
 - Financing
- Extension of government intervention with emphasis on the number of insured individuals

This paper

- A macro-economic analysis of the Obama health care reform:
 - we quantify the effects on market aggregates incl.
 - 2 analyze the financing of the reform and
 - 3 calculate the effects on welfare of various socio-economic groups
- What type of model is suitable?

Health insurance and expenditure profiles (2004/05)

Main contributions

- A stochastic dynamic general equilibrium overlapping generations model with
 - endogenous health expenditures and
 - insurance choice to

that accounts for the life-cycle patterns of

- health expenditures and
- insurance take-up rates observed in the data
- Oemonstrate the usefulness of the model by
 - quantifying the short-run and long-run effects of the Patient Protection and Affordable Care Act (2010)
 - incl. transitions and welfare analysis

Results preview

- Adverse selection \downarrow : \rightarrow almost universal coverage
- Moral hazard \uparrow : \rightarrow health care spending \uparrow by almost 6%
- To finance reform:
 - **1** 2.7% payroll tax on incomes > \$200,000
 - \bigcirc \uparrow consumption tax by about 1.1%
- Reform ↑ health capital, labor supply
- ↓ capital stock and output by up to 2%
- Welfare \uparrow for most generations along the transition: <1% of Comp.Cons.
- Insurance take-up rate mainly driven by tax penalty and not subsidies

Related literature

- Health microeconomics/metrics
 - Grossman (1972a,1972b), Grossman (2000)
- Quantitative macroeconomics/public finance
 - Ayagari (1994), Imrohoroglu et al (1995), Hugget (1996)
- Macro-health economics:
 - Exogeneous health expenditure shocks: Attanasio, Kitao and Violante (2008), Jeske and Kitao (2009), Pashchenko and Porapakkarm (2010), Janicki (2011)
 - Endogenous health expenditures and insurance: Suen (2006), Feng (2009) and Jung and Tran (2008, 2010)

Outline

- Model
- Calibration
- Policy experiments
- Conclusion

MODEL

The Model: Key Features

- Overlapping generations model with heterogeneous agents:
 - Sectors: household, firm, and government
 - Markets: consumption, labor and capital
 - Households live for multiple-periods as workers and retirees, and face period mortality shocks and labor productivity shocks
 - Incomplete financial markets
- New features:
 - Health as a durable good: consumption and investment
 - Health shocks
 - Endogenous health spending and financing
 - The health insurance system

Preferences and technology

Preferences:

$$u(c_j,l_j,s_j)$$

- Health capital:
 - service flow from health capital

$$s_j = s(h_j) \tag{1}$$

health production

$$h_{j} = h\left(m_{j}, h_{j-1}, \varepsilon_{j}\right) \tag{2}$$

health shocks

$$p_j(\varepsilon_j, \varepsilon_{j-1}) = \Pr(\varepsilon_j | \varepsilon_{j-1}, j)$$

- Human capital:
 - accumulation

$$e_j = e(h_{j-1}, \epsilon_j)$$
 for $j = \{1, ..., J_1\}$

productivity shocks

$$\pi_i(\epsilon_i, \epsilon_{i-1}) = \Pr(\epsilon_i | \epsilon_{i-1}, j)$$

Health insurance

- A private health insurance market for workers
 - Private insurers with two plans: individual and group
 - Group insurance offers provided by employers with a probability

$$\omega_{GI}(i_{GI,j},i_{GI,j-1}) = \Pr(i_{GI,j}|i_{GI,j-1},income)$$

- Health insurance choice: endogenous
 - $in_j = 0$: no insurance
 - $in_i = 1$: individual based insurance
 - $in_i = 2$: group based insurance (if offered via employer)
- A public insurance program for retirees (Medicare): no insurance choice

Household health expenditures

- The total health expenditure: $p_m m$
- Worker's out of pocket health expenditures:

$$o^{W}\left(m_{j}\right) = \begin{cases} p_{m,nolns}m & \text{if } in_{j} = 0,\\ \min\left[p_{m,lns}m_{j}, \gamma + \rho\left(p_{m,lns}m_{j} - \gamma\right)\right] & \text{if } in_{j} = 1,2 \end{cases}$$

Retiree's out of pocket health expenditures:

$$o^{R}\left(m_{j}\right) = \min\left[p_{m,Med}m_{j}, \gamma^{Med} + \rho^{Med}\left(p_{m,Med}m_{j} - \gamma^{Med}\right)\right]$$

Household problem: Timing of events

Worker's dynamic optimization problem

$$V\left(x_{j}\right) = \max_{\left\{c_{j}, l_{j}, m_{j}, a_{j+1}, in_{j+1}\right\}} \left\{u\left(c_{j}, s_{j}, l_{j}\right) + \beta\pi_{j} E_{\varepsilon_{j+1}, \epsilon_{j+1}, i_{GI} \mid \varepsilon_{j}, \epsilon_{j}, i_{GI}}\left[V\left(x_{j+1}\right)\right]\right\}$$

s.t.

$$\left(1 + \tau^{C}\right) c_{j} + (1 + g) a_{j+1} + o^{W}\left(m_{j}\right) + 1_{\left\{in_{j+1} = 1\right\}} p\left(j, h\right) + 1_{\left\{in_{j+1} = 2\right\}} p$$

$$= w\left(1 - l_{j}\right) e\left(h_{j-1}, \epsilon_{j}\right) + R\left(a_{j} + T^{Beq}\right) + Insprofit_{1} + Insprofit_{2} - Tax_{j} + T^{SI}_{j}$$

$$0 \le a_{j+1}$$

$$s_{j} = s\left(h_{j}\right)$$

$$h_{j} = h\left(m_{j}, h_{j-1}, \epsilon_{j}\right)$$

Worker's dynamic optimization problem 2

where

$$\begin{split} & \textit{Tax}_{j} & = & \tilde{\tau}\left(\tilde{y}_{j}^{W}\right) + \left(\tau^{\textit{Soc}} + \tau^{\textit{Med}}\right)\left(w\left(1 - l_{j}\right) e\left(h_{j-1}, \epsilon_{j}\right) - \mathbf{1}_{\left\{\textit{in}_{j+1} = 2\right\}}p\right) \\ \\ & \tilde{y}_{j}^{W} & = & \begin{cases} & w\left(1 - l_{j}\right) e\left(h_{j-1}, \epsilon_{j}\right) + ra_{j} + rT^{\textit{Beq}} + \textit{Insprofit}_{1} + \textit{Insprofit}_{2} \\ \\ & -0.5\left(\tau^{\textit{Soc}} + \tau^{\textit{Med}}\right)\left(w\left(1 - l_{j}\right) e\left(h_{j-1}, \epsilon_{j}\right) - \mathbf{1}_{\left\{\textit{in}_{j+1} = 2\right\}}p\right) - \mathbf{1}_{\left\{\textit{in}_{j+1} = 2\right\}}p \\ \\ & T_{j}^{\textit{SI}} & = & \max\left[0, \underline{c} + \textit{Tax}_{j} - w\left(1 - l_{j}\right) e\left(h_{j-1}, \epsilon_{j}\right) - R\left(a_{j} + T^{\textit{Beq}}\right) - \textit{InsP}_{1} - \textit{InsP}_{2}\right] \end{split}$$

Retiree's dynamic optimization problem

$$V\left(x_{j}\right) = \max_{\left\{c_{j}, m_{j}, a_{j+1}\right\}} \left\{u\left(c_{j}, s_{j}\right) + \beta \pi_{j} E_{\varepsilon_{j+1}, \varepsilon_{j+1} \mid \varepsilon_{j}, \varepsilon_{j}} \left[V\left(x_{j+1}\right)\right]\right\}$$

s.t.

$$\left(1+\tau^{C}\right)c_{j}+\left(1+g\right)a_{j+1}+o^{R}\left(m_{j}\right)+p^{Med} = R\left(a_{j}+T_{j}^{Beq}\right)-Tax_{j}+T_{j}^{Soc}+T_{j}^{Sl}$$

$$0 \leq a_{j+1}$$

where

$$\begin{aligned} & \textit{Tax}_{j} & = & \tilde{\tau}\left(\tilde{y}_{j}^{R}\right) \\ & \tilde{y}_{j}^{R} & = & \textit{ra}_{j} + rT_{j}^{\textit{Beq}} \\ & T_{j}^{\textit{SI}} & = & \max\left[0,\underline{c} + o^{R}\left(m_{j}\right) + \textit{Tax}_{j} - R\left(a_{j} + T_{j}^{\textit{Beq}}\right) - T_{j}^{\textit{Soc}}\right] \end{aligned}$$

Firms and insurance companies

Firms:

$$\max_{\{K,L\}} \left\{ F(K,L) - qK - wL \right\}, \text{ given } (q,w)$$

Insurance companies:

$$(1 + \omega_{ins}) \sum_{j=2}^{J_1} \mu \int \left[1_{\{in_j(x_j)=1\}} (1 - \rho) \max(0, p_{m,lns} m_j(x_j) - \gamma) \right] d\Lambda(x_j)$$

$$= (1 + r) \sum_{j=1}^{J_1} \mu \int \left(1_{\{in_j(x_j)=1\}} p(j, h) \right) d\Lambda(x_j)$$

$$(1 + \omega_{ins}) \sum_{j=2}^{J_1} \mu \int \left[1_{\{in_j(x_j)=2\}} (1 - \rho) \max(0, p_{m,lns} m_j(x_j) - \gamma) \right] d\Lambda(x_j)$$

$$= (1 + r) \sum_{j=1}^{J_1} \mu \int \left(1_{\{in_j(x_j)=2\}} p \right) d\Lambda(x_j)$$

Government I

Bequests:

$$\sum\nolimits_{j=1}^{J} \mu_{j} \int T_{j}^{Beq}\left(x\right) d\Lambda_{j}\left(x\right) = \sum\nolimits_{j=1}^{J} \tilde{\mu}_{j} \int a_{j}\left(x\right) d\Lambda_{j}\left(x\right)$$

Social Security:

$$\begin{split} & \sum\nolimits_{j = {J_{\!\!\boldsymbol{1}}} + 1}^J {{\mu _j}} \int {T_j^{Soc} \left(x \right)d{\Lambda _j}\left(x \right)} \\ & = & \sum\nolimits_{j = 1}^{{J_{\!\!\boldsymbol{1}}}} {{\mu _j}} \int {\tau ^{Soc} \left({we\left({j,h_j,\epsilon } \right) - 1_{\left\{ {i{n_{j + 1}} = 2} \right\}} p} \right)d{\Lambda _j}\left(x \right)} \end{split}$$

Government II

Medicare:

$$\sum_{j=J_{1}+1}^{J} \mu_{j} \int \left(1 - \rho^{Med}\right) \max\left(0, m_{j}\left(x\right) - \gamma^{Med}\right) d\Lambda_{j}\left(x\right)$$

$$= \sum_{j=1}^{J_{1}} \mu_{j} \int \tau^{Med} \left(we\left(j, h_{j}, \epsilon\right) - 1_{\left\{in_{j+1}=2\right\}} p\right) d\Lambda_{j}\left(x\right)$$

$$+ \sum_{j=J_{1}+1}^{J} \mu_{j} \int p_{j}^{Med} d\Lambda_{j}\left(x\right)$$

General government budget:

$$G + \sum_{j=1}^{J} \mu_{j} \int T_{j}^{SI}(x_{j}) d\Lambda(x_{j})$$

$$= \sum_{j=1}^{J} \mu_{j} \int Tax_{j}(x_{j}) d\Lambda(x_{j}) + \sum_{j=1}^{J} \mu_{j} \int \tau^{C} c(x_{j}) d\Lambda(x_{j})$$

A competitive equilibrium

Given the transition probability matrices and the exogeneous government policies, a competitive equilibrium is a collection of sequences of distributions of household decisions, aggregate capital stocks of physical and human capital, and market prices such that

- Agents solve the consumer problem
- The F.O.Cs of firms hold
- The budget constraints of insurances companies hold
- All markets clear
- All the government programs and the general budget clear
- The distribution is stationary

CALIBRATION

Parameterization

Preferences:

$$u(c, l, s) = \frac{\left(\left(c^{\eta} l^{1-\eta}\right)^{\kappa} s^{1-\kappa}\right)^{1-\sigma}}{1-\sigma}$$

• Health services:

$$s_j = h_j$$

• Health capital accumulation:

$$h_{j} = i\left(m_{j}, h_{j-1}, arepsilon_{j}
ight) = \overbrace{\phi_{j}m_{j}^{\xi}}^{ ext{Smooth}} + \overbrace{\left(1 - \delta_{j}\right)h_{j-1}}^{ ext{Trend}} + \overbrace{arepsilon_{j}}^{ ext{Disturbance}}$$

• Human capital:

$$e_j = e(\epsilon_j)^{\chi} (h_{j-1}^{\theta})^{1-\chi} \text{ for } j = \{1, ..., J_1\}$$

Calibration

Baseline Parameters				
Demographics:	Health Production:	Insurance:		
$J_1 = 9$	$\phi(j) \in \{0.47, 1.30\}$	$\gamma=1.7\%$ of median income		
$J_2 = 5$	$\xi = 0.22$	ho=29%		
n = 1.2%		$\gamma^{ extit{Med}} = 6\%$ of elderly's aver health spending		
		$ ho^{Med} = 34\%$		
Preferences:	Health Productivity:	Premium: exogenously dependent of ages and health		
$\sigma = 2.5$	$ heta=0$, $\chi=0.9$			
$\kappa = 0.79$				
$\eta = 0.35$				
$\beta=1.0125$				
Technology:				
$\alpha = 0.33$				
$\delta=9\%$				
g = 2%				

- lacktriangle Depreciation rates of health capital δ_i from MEPS data
- Markov switching probabilities of health shocks, productivity shocks, and group insurance offers from MEPS data
- Magnitudes of health shocks and productivity shocks from MEPS as well

The model vs. the data

POLICY EXPERIMENTS

Patient Protection and Affordable Care Act (2010)

WITHIN A YEAR

• Provide a \$250 rebate this year to Medicare prescription drug beneficiaries whose initial benefits run out.

90 days after enactment:

 Would provide immediate access to high-risk pools for people with no insurance because of pre-existing conditions

Six months after enactment:

- Bar insurers from denying people coverage when they get sick
- Bar insurers from denying coverage to children with pre-existing conditions
- Bar insurers from imposing lifetime caps on coverage
- Require insurers to allow people to stay on their parents' policies until they turn 26

Patient Protection and Affordable Care Act (2010)

2011

 Require individual and small group market plans to spend 80 percent of premium dollars on medical services. Large group plans would have to spend at least 85 percent

2013

 Increase the Medicare payroll tax and expand it to dividend, interest and other unearned income for singles earning more than \$200,000 and joint filers making more than \$250,000

2014

- Provide subsidies for families earning up to 400 percent of poverty level, currently about \$88,000 a year, to purchase health insurance
- Require most employers to provide coverage or face penalties
- Require most people to obtain coverage or face penalties

2018

Impose a 40 percent excise tax on high-end insurance policies.

2019

Expand health insurance coverage to 32 million people

Our experiments

Starting from benchmark we implement:

- Mandate: Agents who do not buy health insurance face a tax penalty of 2.5% of their income
- Insurance Exchange: Agents with income between 133% and 400% of the FPL get a subsidy to help them buy insurance
- Expansion of Medicaid: Agents with income < 133% of federal poverty level get free insurance</p>
- No screening Insurance companies can't price discriminate
- Financing:
 - payroll tax on the rich (income > 200k)
 - consumption tax, or
 - 6 fixed tax (let exogenous gov't consumption adjust)

Aggregate effects

	Benchmark	$ au_{V}$
Capital: K	100.000	99.256
Weekly hours worked:	39.673	39.799
Health capital: H	100.000	101.103
Human capital: Hk	100.000	100.145
Output: Y	100.000	99.850
Medical spending: $p_m * M$	100.000	106.423
Workers insured in %	61.777	92.864
Consumption: C	100.000	97.929
Consumption tax: τ^{C}	5.724	6.877
Payroll tax: τ^V	0.000	2.562
Wages: w	100.000	99.706
Welfare	-100.000	-99.813

Table: Steady state result with health as consumption good only $\theta = 0$.

The key channels of effects

- Savings effect: self-insurance vs. market insurance
- Moral hazard effect: lower effective price of health services
- Tax effect: higher tax rates
- General equilibrium effect: wage and interest rates

$$\begin{split} &\left(1+\tau^{C}\right)c_{j}+\left(1+g\right)a_{j+1}+o^{W}\left(m_{j}\right)\\ &+1_{\left\{in_{j+1}=1\right\}}\left(1-subsidy\right)p+1_{\left\{in_{j+1}=2\right\}}p+1_{\left\{in_{j+1}=0\right\}}Penalty\\ &=\left(1-\tau^{V}\right)w\left(1-l_{j}\right)e\left(h_{j-1},\epsilon_{j}\right)+R\left(a_{j}+T^{Beq}\right)\\ &+Insprofit_{1}+Insprofit_{2}-Tax_{j}+T^{SI}_{j}-\tau^{LS}, \end{split}$$

Aggregate efficiency effects: 4 key channels

	Benchmark	$ au_{m{V}}$
1. Savings effect:		
Capital: K	100.000	99.256
2. Moral hazard effect:		
Medical spending: $p_m * M$	100.000	106.423
3. Tax/Redistribution effect:		
Consumption tax: τ^{C}	5.724	6.877
Payroll tax: τ^V	0.000	2.562
Subsidy in % of GDP:	0.000	0.261
Š		
4. General equilibrium effect:		
Wages: w	100.000	99.706

Table: Steady state result with health as consumption good only $\theta = 0$.

Welfare effects

- Negative efficiency effects
 - Capital drops
 - Output drops
 - Household income drops (w decrease)
 - Consumption of C drops
- Positive insurance effects
 - More insured, improved risk sharing
 - Increases in medical spending
 - Increases in health capital H
 - If H is productive, it has a positive effect on output

Welfare effects

Benchmark	$ au_{V}$
Negative welfare effects:	
100.000	99.256
39.673	39.799
100.000	99.850
100.000	97.929
Positive welfare effects:	
61.777	92.864
100.000	106.423
100.000	101.103
100.000	100.145
Overall welfare effect:	
-100.000	-99.813
	Negative welfare effects: 100.000 39.673 100.000 100.000 Positive welfare effects: 61.777 100.000 100.000 100.000 Overall welfare effect:

Welfare effects over transitions: payroll tax

Welfare effects over transitions: payroll tax

Welfare effects over transitions: payroll tax

[3] Comp. Cons. per Lifetime Consumption (in %)

Financing the reform 1

We distinguish between three possible taxes to finance the subsidies:

- τ_V : payroll tax on the rich (income > 200k)
- \triangle_{Cg} : adjustment in residual government consumption (net of tax effect)
- \bullet τ_C : consumption tax

Aggregate effects

	Benchmark	[1] τ_V	[2] Δ_{Cg}	[3] τ_C
Capital: K	100.000	99.256	99.661	99.646
Weekly hours worked:	39.673	39.799	39.816	39.816
Health capital: <i>H</i>	100.000	101.103	101.192	101.189
Human capital: <i>Hk</i>	100.000	100.145	100.283	100.282
Output: Y	100.000	99.850	100.077	100.072
Consumption: C	100.000	97.929	99.650	98.300
Medical spending: $p_m M$	100.000	106.423	106.776	106.708
Workers insured in %	61.777	92.864	95.988	95.988
Payroll tax: τ^V	0.000	2.562	0.000	0.000
Consumption tax: $ au^{C}$	5.724	6.877	5.724	7.198
Govt consumption in % of GDP:	16.500	16.500	15.911	16.500
Subsidy in % of GDP:	0.000	0.261	0.260	0.261
Penalty in % of GDP:	0.000	0.078	0.041	0.041
Wages: w	100.000	99.706	99.795	99.790
Welfare	-100.000	-99.813	-99.302	-99.698

Aggregate efficiency effects: four key channels

	Benchmark	[1] τ_V	[2] Δ_{Cg}	[3] <i>τ</i> _C
1. Savings effect:	·			
Capital: <i>K</i>	100.000	99.256	99.661	99.646
2. Moral hazard effect:				
Medical spending: $p_m * M$	100.000	106.423	106.776	106.708
3. Tax/Redistribution effect:				
Consumption tax: τ^{C}	5.724	6.877	5.724	7.198
Payroll tax: τ^V	0.000	2.562	0.000	0.000
•				
4. General equilibrium effect:				
Wages: w	100.000	99.706	99.795	99.790

Welfare effects

	Benchmark	[1] τ_V	[2] Δ_{Cg}	[3] τ_{C}
	Negative welfare effects:			
1. Capital: <i>K</i>	100.000	99.256	99.661	99.646
2. Weekly hours worked:	39.673	39.799	39.816	39.816
3. Output: Y	100.000	99.850	100.077	100.072
4. Consumption: C	100.000	97.929	99.650	98.300
	Positive welfare effects:			
1. Workers insured in %	61.777	92.864	95.988	95.988
2. Medical spending: $p_m M$	100.000	106.423	106.776	106.708
3. Health capital: H	100.000	101.103	101.192	101.189
4. Human capital: Hk	100.000	100.145	100.283	100.282
	Overall welfare effect:			
Welfare	-100.000	-99.813	-99.302	-99.698

No penalty

	Benchmark	[1] τ_V	[2] Δ_{Cg}	[3] τ_C
Capital: K	100.000	100.200	100.266	100.243
Weekly hours worked:	39.673	39.276	39.374	39.374
Health capital: <i>H</i>	100.000	100.264	100.445	100.444
Human capital: Hk	100.000	99.214	99.522	99.522
Output: Y	100.000	99.538	99.767	99.759
Medical spending: $p_m M$	100.000	103.326	105.205	105.197
Workers insured in %	61.777	60.124	65.678	65.677
Consumption: C	100.000	100.042	100.591	99.693
Consumption tax: τ^{C}	5.724	6.178	5.724	6.678
Payroll tax: $ au^{ extbf{ extit{V}}}$	0.000	3.199	0.000	0.000
Govt consumption in % of GDP:	16.500	16.500	16.123	16.500
Interest rate: R in %	4.077	3.907	3.935	3.936
Wages: w	100.000	100.327	100.246	100.238
Welfare	-100.000	-99.470	-99.272	-99.531

No subsidy

	Benchmark	[1] τ_V	[2] Δ_{Cg}	[3] τ_C
Capital: K	100.000	98.443	98.452	98.427
Weekly hours worked:	39.673	39.433	39.446	39.445
Health capital: <i>H</i>	100.000	101.097	101.171	101.167
Human capital: <i>Hk</i>	100.000	99.531	99.660	99.657
Output: Y	100.000	99.171	99.259	99.249
Medical spending: $p_m M$	100.000	105.959	106.482	106.447
Workers insured in %	61.777	93.516	95.703	95.703
Consumption: C	100.000	97.172	98.775	97.410
Consumption tax: τ^{C}	5.724	6.950	5.724	7.215
Payroll tax: $ au^{m{V}}$	0.000	2.150	0.000	0.000
Govt consumption in % of GDP:	16.500	16.500	15.925	16.500
Interest rate: R in %	4.077	4.040	4.045	4.046
Wages: w	100.000	99.638	99.598	99.591
Welfare	-100.000	-99.941	-99.458	-99.862

Health as investment good

	Benchmark	$[1] au_V$	[2] Δ_{Cg}	$[3] \tau_C$
Capital: K	100.000	98.901	98.973	98.945
Weekly hours worked:	39.684	39.776	39.802	39.798
Health capital: <i>H</i>	100.000	101.053	101.129	101.127
Human capital: <i>Hk</i>	100.000	99.931	100.268	100.262
Output: Y	100.000	99.590	99.839	99.825
Medical spending: $p_m M$	100.000	105.895	106.173	106.136
Workers insured in %	63.355	95.428	98.431	98.431
Consumption: C	100.000	97.811	99.701	98.124
Consumption tax: τ^{C}	5.507	6.690	5.414	7.111
Payroll tax: $ au^{m{V}}$	0.000	3.752	0.000	0.000
Govt consumption in % of GDP:	16.500	16.500	15.833	16.500
Wages: w	100.000	99.659	99.572	99.565
Welfare	-100.000	-99.844	-99.335	-99.797

Table: Steady state result with health as investment good $\theta=0.5$

Conclusion

- Construct a heterogeneous agents macro-model with health as a durable good
- Account for life-cycle patterns of health expenditures and private insurance take up rates
- Assess the macroeconomic effects of the Obama health care reform 2010

Future work on macro-health economics

- Immediate:
 - Re-calibrate
 - Sensitivity analysis
- Model:
 - A structural estimation of the health production function
 - Health capital and endogenous survival probabilities
- Future work:
 - Incomplete markets and optimal public health insurance with endogenous health capital
 - Life cycle consumption puzzle: the role of health