- [§5.1] 3. (a) $P(1) = "1^2 = \frac{1(1+1)(2\cdot 1+1)}{6}$ "
 - (b) $1^2 = 1$ and $\frac{1(1+1)(2\cdot 1+1)}{6} = \frac{6}{6} = 1$. Thus P(1) is true.
 - (c) $P(k) = {}^{n}1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$, for some positive integer k.
 - (d) $P(k) \to P(k+1)$ is true for all positive integers k.
 - (e) Assume P(k) is true for some positive integer k. It will be shown that P(k+1) is true, namely, that

$$1^{2} + 2^{2} + \dots + (k+1)^{2} = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

is also true. Adding $(k+1)^2$ to both sides of the equation in P(k) gives

$$1^{2} + \dots + k^{2} + (k+1)^{2} \stackrel{\text{IH}}{=} \frac{k(k+1)(2k+1)}{6} + (k+1)^{2} \quad \text{by the inductive hypothesis}$$

$$= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^{2}}{6}$$

$$= \frac{(k+1)(k(2k+1) + 6(k+1))}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}.$$

Thus P(k+1) follows from P(k). This completes the inductive step.

- (f) Part (b) shows P(1) is true and part (e) shows $\forall k \in \mathbb{Z}^+ \ (P(k) \to P(k+1))$ is true. By the principle of mathematical induction, $\forall n \in \mathbb{Z}^+ \ P(n)$ is true.
- 6. Proof by induction. Let $P(n) = "1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1"$ for all $n \in \mathbb{Z}^+$. Basis step. P(1) is true: $1 \cdot 1! = 1$ and (1+1)! 1 = 1.

Inductive step. Assume P(k) is true for some $k \in \mathbb{Z}^+$. It will be shown that P(k+1) is true, namely, that

$$1 \cdot 1! + 2 \cdot 2! + \dots + (k+1) \cdot (k+1)! = (k+2)! - 1$$

is also true. Adding $(k+1) \cdot (k+1)!$ to both sides of the equation in P(k) gives

$$1 \cdot 1! + \dots + k \cdot k! + (k+1) \cdot (k+1)! \stackrel{\text{IH}}{=} (k+1)! - 1 + (k+1) \cdot (k+1)! \quad \text{by the ind. hyp.}$$

$$= \underbrace{(k+1)! \cdot (1 + (k+1))}_{1 \cdots (k+1)(k+2)} - 1$$

$$= (k+2)! - 1$$

Thus P(k+1) follows from P(k). This completes the inductive step.

By the principle of mathematical induction, P(n) is true for all $n \in \mathbb{Z}^+$. \square

10. (a) The formula is

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

\overline{n}	expression value
1	1/2
2	2/3
3	3/4
4	4/5

(b) Proof by induction. Let $P(n) = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ for all $n \in \mathbb{Z}^+$.

Basis step. P(1) is true: $\frac{1}{1(1+1)} = \frac{1}{2}$ and $\frac{1}{1+1} = \frac{1}{2}$.

Inductive step. Assume P(k) is true for some $k \in \mathbb{Z}^+$. It will be shown that P(k+1) is true, namely, that

$$\frac{1}{1\cdot 2} + \dots + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

is also true. Adding $\frac{1}{(k+1)(k+2)}$ to both sides of the equation in P(k) gives

$$\frac{1}{1\cdot 2} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} \stackrel{\text{IH}}{=} \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} \quad \text{by the ind. hyp.}$$

$$= \frac{k(k+2)+1}{(k+1)(k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{k+2}$$

Thus P(k+1) follows from P(k). This completes the inductive step. By the principle of mathematical induction, P(n) is true for all $n \in \mathbb{Z}^+$. \square

- 18. (a) $P(2) = "2! < 2^2$ "
 - (b) 2! = 2, which is less than $2^2 = 4$.
 - (c) $P(k) = "k! < k^k"$ for some integer k > 1.
 - (d) $P(k) \to P(k+1)$ is true for all positive integers k > 1.
 - (e) Assume P(k) is true for some integer k > 1. It will be shown that P(k+1) is true, namely, that

$$(k+1)! < (k+1)^{k+1}$$

is also true. Multiplying both sides of the equation in P(k) by (k+1) gives

$$k!(k+1) \stackrel{\text{IH}}{<} k^k(k+1)$$
 by the ind. hyp.
$$< (k+1)^k(k+1)$$

$$= (k+1)^{k+1}$$

Thus P(k+1) follows from P(k). This completes the inductive step.

(f) Part (b) shows P(2) is true and part (e) shows $(P(k) \to P(k+1))$ is true for all integers k > 1.

By the principle of mathematical induction, P(n) is true for all integers n > 1.

21. Proof by induction. Let $P(n) = 2^n > n^2$ for all integers n > 4.

Basis step. P(5) is true: $2^5 = 32$ is greater than $5^2 = 25$.

Inductive step. Assume P(k) is true for some integer k > 4. It will be shown that P(k+1) is true, namely, that

$$2^{k+1} > (k+1)^2$$

is also true. Multiplying both sides of the equation in P(k) by 2 gives

$$2^k 2 \stackrel{\text{IH}}{>} 2k^2$$

by the inductive hypothesis. Now, observe that (since k > 4)

$$(k+1)^2 = k^2 + 2k + 1$$

 $< k^2 + 3k$
 $< k^2 + k^2$

where the final term on the right hand side is equal to $2k^2$. Hence

$$2^k 2 = 2^{k+1} > 2k^2 > (k+1)^2$$

and so P(k+1) follows from P(k). This completes the inductive step.

By the principle of mathematical induction, P(n) is true for all integers n > 4. \square

32. Proof by induction. Let $P(n) = "3 | (n^3 + 2n)"$ for all $n \in \mathbb{Z}^+$.

Basis step. P(1) is true: $1^3 + 2 \cdot 1 = 3$, which is divisible by 3.

Inductive step. Assume P(k) is true for some $k \in \mathbb{Z}^+$. It will be shown that P(k+1) is true, namely, that

$$3 | ((k+1)^3 + 2(k+1))$$

is also true. Algebraic manipulation gives

$$\begin{split} (k+1)^3 + 2(k+1) &= k^3 + 3k^2 + 5k + 3 \\ &= \underbrace{k^3 + 2k}_{\text{dividend in } P(k)} + 3(k^2 + k + 1), \end{split}$$

where the bracketed term is divisible by 3 by the inductive hypothesis, and the remaining term is divisible by 3 because it is an integer multiple of 3.

Thus the entire sum is divisible by 3, and P(k+1) follows from P(k). This completes the inductive step.

By the principle of mathematical induction, P(n) is true for all $n \in \mathbb{Z}^+$. \square

38. Proof by induction. Let $P(n) = "A_j \subseteq B_j$ for $j = 1, ..., n \Rightarrow \bigcup_{j=1}^n A_j \subseteq \bigcup_{j=1}^n B_j$ for all $n \in \mathbb{Z}^+$.

Basis step. P(1) is true: $A_1 \subseteq B_1 \Rightarrow \bigcup_{j=1}^1 A_j \subseteq \bigcup_{j=1}^1 B_j$ because the union of one set is itself. Inductive step. Assume P(k) is true for some $k \in \mathbb{Z}^+$. It will be shown that P(k+1) is true, namely, that

$$A_{k+1} \subseteq B_{k+1} \Rightarrow \bigcup_{j=1}^{k+1} A_j \subseteq \bigcup_{j=1}^{k+1} B_j$$

is also true. It suffices to show $\bigcup_{j=1}^{k+1} A_j \subseteq \bigcup_{j=1}^{k+1} B_j$ is true.

First, observe that

$$\bigcup_{j=1}^{k+1} A_j = \left(\bigcup_{j=1}^k A_j\right) \cup A_{k+1} \quad \text{and} \quad \bigcup_{j=1}^{k+1} B_j = \left(\bigcup_{j=1}^k B_j\right) \cup B_{k+1}.$$

Next, denote an arbitrary element $x \in \bigcup_{j=1}^{k+1} A_j$; equivalently,

$$\left(x \in \bigcup_{j=1}^{k} A_j\right) \vee \left(x \in A_{k+1}\right).$$

Case 1. Suppose $x \in \bigcup_{j=1}^k A_j$.

By the inductive hypothesis and by the definition of a subset, $x \in \bigcup_{j=1}^k B_j$. Case 2. Suppose $x \in A_{k+1}$.

By the premise in P(k+1) and by the definition of a subset, $x \in B_{k+1}$.

Hence

$$\left(x \in \bigcup_{j=1}^{k} B_j\right) \vee \left(x \in B_{k+1}\right);$$

equivalently, $x \in \bigcup_{j=1}^{k+1} B_j$. Now since

$$x \in \bigcup_{j=1}^{k+1} A_j \Rightarrow x \in \bigcup_{j=1}^{k+1} B_j$$

is true, it must also be true (by the definition of a subset) that

$$\bigcup_{j=1}^{k+1} A_j \subseteq \bigcup_{j=1}^{k+1} B_j,$$

so P(k+1) follows from P(k). This completes the inductive step.

By the principle of mathematical induction, P(n) is true for all integers $n \in \mathbb{Z}^+$. \square

49. The assertion that the first k and last k horses overlap,

$$\underbrace{1,2,3,\ldots,k}_{\text{same color}}, k+1$$
 and $\underbrace{1,2,3,\ldots,k,k+1}_{\text{same color}},$

is false when k=1. Then no horses exist between 1 and k+1, which may be different colors.

- [§5.2] 3. (a) $P(8) = 1 \cdot 3\mathfrak{c} + 1 \cdot 5\mathfrak{c}$ $P(9) = 3 \cdot 3\mathfrak{c} + 0 \cdot 5\mathfrak{c}$ $P(10) = 0 \cdot 3\mathfrak{c} + 2 \cdot 5\mathfrak{c}$
 - (b) P(n) is true for $8 \le n \le k$ where $k \ge 10$ and n, k are integers.
 - (c) $[P(8) \land P(9) \land P(10) \land \cdots \land P(k)] \rightarrow P(k+1)$ for every integer $k \ge 10$.
 - (d) If $k \geq 10$, then

$$k+1 = \underbrace{(k-2)}_{\geq 8} +3.$$

By the inductive hypothesis, P(k-2) is true. The above equation shows that by adding one 3ϕ stamp, P(k+1) is true.

- (e) The basis step in part (a) and the inductive step in part (d) have been completed, so by strong induction, P(n) is true for all positive integers $n \ge 8$.
- 7. Any dollar amount in \mathbb{N} except \$1 and \$3 can be formed.

\$2 is one \$2 bill. \$4 is two \$2 bills. Let P(n) be the statement that any integer $n \ge 5$ dollars can be formed using just \$2 and \$5 bills.

Proof (by strong induction).

Basis step. $P(5) = 0 \cdot \$2 + 1 \cdot \5 $P(6) = 3 \cdot \$2 + 0 \cdot \5 .

Inductive step. The inductive hypothesis is the statement that P(j) is true for all $5 \le j \le k$ where $k \ge 6$ and j, k are integers.

Since $k-1 \ge 5$, P(k-1) is true by the inductive hypothesis. Since k-1 dollars can be formed, k+1 dollars can be formed by adding one \$2 bill.

Thus P(k+1) is true. This completes the inductive step.

By strong induction, P(n) is true for all integers $n \geq 5$. \square