Vectores complejos

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

9 de febrero de 2024

Agenda de Vectores Complejos

- Números Complejos
- 2 Algebra de números complejos
- Vectores y números complejos
- Productos de vectores y números complejos
- 5 Expresiones de números complejos
- Recapitulando

Números Complejos

• Un número complejo, z, es:

$$z=a+ib$$
 con $a,b\in\mathbb{R}$ \Rightarrow $\left\{egin{array}{ll} a
ightarrow & ext{parte real} \ b
ightarrow & ext{parte imaginaria} \end{array}
ight.$

Números Complejos

• Un número complejo, z, es:

$$z=a+ib$$
 con $a,b\in\mathbb{R}$ \Rightarrow $\left\{egin{array}{ll} a
ightarrow & ext{parte real} \ b
ightarrow & ext{parte imaginaria} \end{array}
ight.$

 Cada número complejo, z tendrá asociado un número complejo conjugado, z* tal que:

$$z = a + ib \Leftrightarrow z^* = a - ib,$$

$$\downarrow \downarrow$$

$$(z^*)^* = z \wedge z \cdot z^* = a^2 + b^2,$$

claramente: $z \cdot z^* \ge 0 \ \Rightarrow \ |z|^2 = |z^*|^2 = z \cdot z^* = a^2 + b^2$.

Números Complejos

• Un número complejo, z, es:

$$z=a+ib$$
 con $a,b\in\mathbb{R}$ \Rightarrow $\left\{egin{array}{ll} a
ightarrow & ext{parte real} \ b
ightarrow & ext{parte imaginaria} \end{array}
ight.$

 Cada número complejo, z tendrá asociado un número complejo conjugado, z* tal que:

$$z = a + ib \iff z^* = a - ib,$$

$$\downarrow \downarrow$$

$$(z^*)^* = z \land z \cdot z^* = a^2 + b^2,$$

claramente:
$$z \cdot z^* \ge 0 \ \Rightarrow \ |z|^2 = |z^*|^2 = z \cdot z^* = a^2 + b^2$$
.

• no existe relación de orden entre los números complejos: $z_1 \not> z_2 \quad \lor \quad z_1 \not< z_2$

• Dos números complejos serán iguales si sus partes reales e imaginarios lo son: $z_1 = z_2 \Rightarrow (a_1 + ib_1) = (a_2 + ib_2) \Rightarrow a_1 = a_2 \land b_1 = b_2$.

- Dos números complejos serán iguales si sus partes reales e imaginarios lo son: $z_1 = z_2 \Rightarrow (a_1 + ib_1) = (a_2 + ib_2) \Rightarrow a_1 = a_2 \land b_1 = b_2$.
- Se suman dos números complejos sumando sus partes reales y sus partes imaginarias: $z_3 = z_1 + z_2 \Rightarrow$ $(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2) = a_3 + ib_3$,
- El conjugado de un número complejo cambia el signo a la parte imaginaria $(a_1+ib_1)^*=(a_1-ib_1)$ y claramente $z+z^*=2$ Re z, también $z-z^*=2$ Im z. Igualmente es inmediato comprobar que: $(z_1+z_2)^*=z_1^*+z_2^*$.

- Dos números complejos serán iguales si sus partes reales e imaginarios lo son: $z_1 = z_2 \Rightarrow (a_1 + ib_1) = (a_2 + ib_2) \Rightarrow a_1 = a_2 \land b_1 = b_2$.
- Se suman dos números complejos sumando sus partes reales y sus partes imaginarias: $z_3 = z_1 + z_2 \Rightarrow$ $(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2) = a_3 + ib_3$,
- El conjugado de un número complejo cambia el signo a la parte imaginaria $(a_1+ib_1)^*=(a_1-ib_1)$ y claramente $z+z^*=2$ Re z, también $z-z^*=2$ Im z. Igualmente es inmediato comprobar que: $(z_1+z_2)^*=z_1^*+z_2^*$.
- Se multiplican números complejos por escalares $z_3 = \alpha z_1 \implies \alpha(a_1 + ib_1) = \alpha a_1 + i(\alpha b_1)$.

- Dos números complejos serán iguales si sus partes reales e imaginarios lo son: $z_1 = z_2 \Rightarrow (a_1 + ib_1) = (a_2 + ib_2) \Rightarrow a_1 = a_2 \land b_1 = b_2$.
- Se suman dos números complejos sumando sus partes reales y sus partes imaginarias: $z_3 = z_1 + z_2 \Rightarrow (a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2) = a_3 + ib_3$,
- El conjugado de un número complejo cambia el signo a la parte imaginaria $(a_1+ib_1)^*=(a_1-ib_1)$ y claramente $z+z^*=2$ Re z, también $z-z^*=2$ Im z. Igualmente es inmediato comprobar que: $(z_1+z_2)^*=z_1^*+z_2^*$.
- Se multiplican números complejos por escalares $z_3 = \alpha z_1 \Rightarrow \alpha(a_1 + ib_1) = \alpha a_1 + i(\alpha b_1)$.
- Se multiplican números complejos entre si, con cuidado que $i^2 = -1$: $z_3 = z_1 z_2 \Rightarrow (a_1 + ib_1) \cdot (a_2 + ib_2) = (a_1 a_2 b_1 b_2) + i(a_1 b_2 + b_1 a_2)$, también es inmediato comprobar que $(z_1 z_2)^* = z_1^* z_2^*$.

- Dos números complejos serán iguales si sus partes reales e imaginarios lo son: $z_1 = z_2 \Rightarrow (a_1 + ib_1) = (a_2 + ib_2) \Rightarrow a_1 = a_2 \land b_1 = b_2$.
- Se suman dos números complejos sumando sus partes reales y sus partes imaginarias: $z_3 = z_1 + z_2 \Rightarrow$ $(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2) = a_3 + ib_3$,
- El conjugado de un número complejo cambia el signo a la parte imaginaria $(a_1+ib_1)^*=(a_1-ib_1)$ y claramente $z+z^*=2$ Re z, también $z-z^*=2$ Im z. Igualmente es inmediato comprobar que: $(z_1+z_2)^*=z_1^*+z_2^*$.
- Se multiplican números complejos por escalares $z_3 = \alpha z_1 \implies \alpha(a_1 + ib_1) = \alpha a_1 + i(\alpha b_1)$.
- Se multiplican números complejos entre si, con cuidado que $i^2 = -1$: $z_3 = z_1 z_2 \Rightarrow (a_1 + ib_1) \cdot (a_2 + ib_2) = (a_1 a_2 b_1 b_2) + i(a_1 b_2 + b_1 a_2)$, también es inmediato comprobar que $(z_1 z_2)^* = z_1^* z_2^*$.
- Se dividen números complejos racionalizando frcaciones $z_3 = \frac{z_1}{z_2} \Rightarrow \frac{(a_1+ib_1)}{(a_2+ib_2)} = \frac{(a_1+ib_1)}{(a_2+ib_2)} \frac{(a_2-ib_2)}{(a_2-ib_2)} = \frac{a_1a_2+b_1b_2}{(a_2^2+b_2^2)} + i\frac{b_1a_2-a_1b_2}{(a_2^2+b_2^2)}$,

• Un número complejo puede ser representado por una dupla de números $z = (a + ib) \iff z = (a, b)$.

- Un número complejo puede ser representado por una dupla de números $z = (a + ib) \iff z = (a, b)$.
- La representación geométrica de z^* (complejo conjugado de z) es la reflexión de z respecto al eje real.

- Un número complejo puede ser representado por una dupla de números $z = (a + ib) \iff z = (a, b)$.
- La representación geométrica de z^* (complejo conjugado de z) es la reflexión de z respecto al eje real.
- $|z| = \sqrt{zz^*}$ viene a ser la distancia del punto (0,0) al punto (x,y), es la longitud o norma del vector (x,y).

- Un número complejo puede ser representado por una dupla de números $z = (a + ib) \iff z = (a, b)$.
- La representación geométrica de z^* (complejo conjugado de z) es la reflexión de z respecto al eje real.
- $|z| = \sqrt{zz^*}$ viene a ser la distancia del punto (0,0) al punto (x,y), es la longitud o norma del vector (x,y).
- En el plano real podemos ver que: $z = x + iy \iff r = \sqrt{zz^*} = |z| = \sqrt{x^2 + y^2}$ $z = r(\cos(\theta) + i \sin(\theta)), \text{ con: } \begin{cases} r = \sqrt{zz^*} = |z| = \sqrt{x^2 + y^2} \\ \tan(\theta) = \frac{y}{x}, \text{ donde } -\pi \le \theta \le \pi \end{cases}$

- Un número complejo puede ser representado por una dupla de números $z = (a + ib) \iff z = (a, b)$.
- La representación geométrica de z^* (complejo conjugado de z) es la reflexión de z respecto al eje real.
- $|z| = \sqrt{zz^*}$ viene a ser la distancia del punto (0,0) al punto (x,y), es la longitud o norma del vector (x,y).
- En el plano real podemos ver que: $z = x + iy \iff r = \sqrt{zz^*} = |z| = \sqrt{x^2 + y^2}$ $z = r(\cos(\theta) + i \sin(\theta)), \text{ con:} \begin{cases} r = \sqrt{zz^*} = |z| = \sqrt{x^2 + y^2} \\ \tan(\theta) = \frac{y}{x}, \text{ donde } -\pi \le \theta \le \pi \end{cases}$
- Con esta interpretación tendremos:

$$x = Re \ z$$
 \rightleftharpoons componente real del vector z o parte real de z $y = Im \ z$ \rightleftharpoons componente imaginaria del vector z o parte ima $r = \sqrt{zz^*} = |z|$ \rightleftharpoons módulo, magnitud o valor absoluto de z \rightleftharpoons ángulo polar o de fase del número complejo z

Productos de vectores y números complejos

- Los vectores complejos se multiplican y se ¡ dividen !
 - $(a_1, b_1)(a_2, b_2) = (a_1a_2 b_1b_2, a_1b_2 + b_1a_2)$
 - $\bullet \ \frac{(a_1,b_1)}{(a_2,b_2)} = \left(\frac{a_1a_2+b_1b_2}{(a_2^2+b_2^2)}, \frac{b_1a_2-a_1b_2}{(a_2^2+b_2^2)}\right).$

Productos de vectores y números complejos

- Los vectores complejos se multiplican y se ¡ dividen !
 - $(a_1,b_1)(a_2,b_2)=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)$

$$\bullet \ \frac{(a_1,b_1)}{(a_2,b_2)} = \left(\frac{a_1a_2+b_1b_2}{(a_2^2+b_2^2)}, \frac{b_1a_2-a_1b_2}{(a_2^2+b_2^2)}\right).$$

- Los productos escalar y vectorial nos llevan a:
 - $\mathbf{a} \cdot \mathbf{a} = (a^i)^* a_i$ siempre será un número real.
 - $z_1 \cdot z_2 = Re(z_1 z_2^*) = Re(z_1^* z_2)$ y en componentes $\mathbf{a} \cdot \mathbf{b} = (a^i)^* b_i$
 - $\bullet \ \mathbf{a} \cdot \mathbf{b} = (\mathbf{b} \cdot \mathbf{a})^*.$
 - $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda^* \mathbf{a} \cdot \mathbf{b}$.
 - $\mathbf{a} \cdot (\lambda \mathbf{b}) = \lambda \ \mathbf{a} \cdot \mathbf{b}$.
 - $z_1 \times z_2 = Im(z_1^*z_2) = -Im(z_1z_2^*)$.

Expresiones de números complejos

• Tenemos tres formas de representar un número complejo:

$$z = x + iy \iff z = |z|(\cos(\theta) + i \sin(\theta)) \iff z = |z|e^{i\theta}$$
.

Expresiones de números complejos

• Tenemos tres formas de representar un número complejo:

$$z = x + iy \iff z = |z| (\cos(\theta) + i \sin(\theta)) \iff z = |z| e^{i\theta}$$
.

• La forma polar (y la de Euler), es ambigua, ya que: $z = r(\cos(\theta) + i\sin(\theta)) = r(\cos(\theta + 2n\pi) + i\sin(\theta + 2n\pi)),$ $n = 0, \pm 1, \pm 2, \pm 3, \dots$

Expresiones de números complejos

• Tenemos tres formas de representar un número complejo:

$$z = x + iy \iff z = |z| (\cos(\theta) + i \sin(\theta)) \iff z = |z| e^{i\theta}$$
.

- La forma polar (y la de Euler), es ambigua, ya que: $z = r(\cos(\theta) + i\sin(\theta)) = r(\cos(\theta + 2n\pi) + i\sin(\theta + 2n\pi)),$ $n = 0, \pm 1, \pm 2, \pm 3, \dots$
- Las sumas de números complejos se plantean más fácilmente en su forma cartesiana. La multiplicación y división serán directas en la forma de Euler. Si $z_1 = |z_1|e^{i\theta_1}$ y $z_2 = |z_2|e^{i\theta_2}$, entonces: $z_1z_2 = |z_1|e^{i\theta_1}|z_2|e^{i\theta_2} = |z_1||z_2|e^{i(\theta_1+\theta_2)} = |z_1z_2|(\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2))$.
- La división será:

$$\frac{z_1}{z_2} = \frac{|z_1|e^{i\theta_1}}{|z_2|e^{i\theta_2}} = \frac{|z_1|}{|z_2|}e^{i(\theta_1 - \theta_2)} = \frac{|z_1|}{|z_2|}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)).$$

• A partir de la relación o fórmula de Euler se puede demostrar: $z^n = |z|^n (e^{i\theta})^n = |z|^n e^{in\theta} \Rightarrow |z|^n (\cos(\theta) + i\sin(\theta))^n = |z|^n (\cos(n\theta) + i\sin(n\theta))$,

① Números complejos z = a + ib con a parte real b parte imaginarias. Su complejo conjugado $z^* = z = a - ib$

- ① Números complejos z = a + ib con a parte real b parte imaginarias. Su complejo conjugado $z^* = z = a - ib$
- 2 Algebra de números complejos:
 - igualdad $(a_1 + ib_1) = (a_2 + ib_2) \Rightarrow a_1 = a_2 \land b_1 = b_2$.
 - suma $(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2) = a_3 + ib_3$,
 - Conjugado $(a_1 + ib_1)^* = (a_1 ib_1)$ y $z + z^* = 2 \operatorname{Re} z$, también $z z^* = 2 \operatorname{Im} z$.
 - $z_3 = z_1 z_2 \Rightarrow (a_1 + ib_1) \cdot (a_2 + ib_2) = (a_1 a_2 b_1 b_2) + i(a_1 b_2 + b_1 a_2)$,
 - División $z_3 = \frac{z_1}{z_2} \Rightarrow \frac{(a_1+ib_1)}{(a_2+ib_2)} = \frac{(a_1+ib_1)}{(a_2+ib_2)} \frac{(a_2-ib_2)}{(a_2-ib_2)} = \frac{a_1a_2+b_1b_2}{(a_2^2+b_2^2)} + i\frac{b_1a_2-a_1b_2}{(a_2^2+b_2^2)}$

- **1** Números complejos z = a + ib con a parte real b parte imaginarias. Su complejo conjugado $z^* = z = a ib$
- 2 Algebra de números complejos:
 - igualdad $(a_1 + ib_1) = (a_2 + ib_2) \Rightarrow a_1 = a_2 \land b_1 = b_2$.
 - suma $(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2) = a_3 + ib_3$,
 - Conjugado $(a_1+ib_1)^*=(a_1-ib_1)$ y $z+z^*=2\operatorname{Re} z$, también $z-z^*=2\operatorname{Im} z$.
 - $z_3 = z_1 z_2 \Rightarrow (a_1 + ib_1) \cdot (a_2 + ib_2) = (a_1 a_2 b_1 b_2) + i(a_1 b_2 + b_1 a_2),$
 - División $z_3 = \frac{z_1}{z_2} \Rightarrow \frac{(a_1+ib_1)}{(a_2+ib_2)} = \frac{(a_1+ib_1)}{(a_2+ib_2)} \frac{(a_2-ib_2)}{(a_2-ib_2)} = \frac{a_1a_2+b_1b_2}{(a_2^2+b_2^2)} + i\frac{b_1a_2-a_1b_2}{(a_2^2+b_2^2)}$,
- **3** Vectores Complejos: dupla de números $z = (a + ib) \iff z = (a, b)$.
 - Los vectores complejos se multiplican y se ¡ dividen !
 - Productos escalar/vectorial $\mathbf{a} \cdot \mathbf{b} = (\mathbf{b} \cdot \mathbf{a})^* \equiv (a^i)^* b_i$ y $z_1 \times z_2 = Im(z_1^* z_2) = -Im(z_1 z_2^*)$.

- ① Números complejos z = a + ib con a parte real b parte imaginarias. Su complejo conjugado $z^* = z = a - ib$
- Algebra de números complejos:
 - igualdad $(a_1 + ib_1) = (a_2 + ib_2) \Rightarrow a_1 = a_2 \land b_1 = b_2$.
 - suma $(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2) = a_3 + ib_3$,
 - Conjugado $(a_1 + ib_1)^* = (a_1 ib_1)$ y $z + z^* = 2 \text{Re } z$, también $z - z^* = 2 \text{ Im } z$.
 - $z_3 = z_1 z_2 \Rightarrow (a_1 + ib_1) \cdot (a_2 + ib_2) = (a_1 a_2 b_1 b_2) + i(a_1 b_2 + b_1 a_2)$
 - División $z_3 = \frac{z_1}{z_2} \Rightarrow \frac{(a_1+ib_1)}{(a_2+ib_2)} = \frac{(a_1+ib_1)}{(a_2+ib_2)} \frac{(a_2-ib_2)}{(a_2-ib_2)} = \frac{a_1a_2+b_1b_2}{(a_2^2+b_2^2)} + i\frac{b_1a_2-a_1b_2}{(a_2^2+b_2^2)}$,
- **3** Vectores Complejos: dupla de números $z = (a + ib) \iff z = (a, b)$.
 - Los vectores complejos se multiplican y se i dividen!
 - Productos escalar/vectorial $\mathbf{a} \cdot \mathbf{b} = (\mathbf{b} \cdot \mathbf{a})^* \equiv (a^i)^* b_i$ y $z_1 \times z_2 = Im(z_1^*z_2) = -Im(z_1z_2^*)$.
- Tenemos tres formas de representar un número complejo:

$$z = x + iy \iff z = |z|(\cos(\theta) + i\sin(\theta)) \iff z = |z|e^{i\theta}$$
.