

SÍLABO CONCRETO ARMADO II

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: IX SESIÓN ACADÉMICA DE INVIERNO

I. CÓDIGO DEL CURSO : 09028609040

II. CRÉDITOS : 04

III.REQUISITOS : 09027508040 Concreto Armado I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es de naturaleza teórico-práctico permite al estudiante: Conocer los conceptos y principios básicos para diseñar estructuras complejas, aplicando el Código ACI y La NTE-060. El curso se desarrolla mediante las siguientes unidades de aprendizaje: I. Diseño de Cimentaciones, muros de contención y losas armadas en dos sentidos. II. Diseño de muros de corte, vigas en torsión y escaleras.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Arthur Nilson. (2011). Diseño de Estructuras de Concreto. Colombia: Ed. Mc Graw Hill.
- Edward Nawy.2010). Concreto Reforzado, un enfoque básico. México: Ed. Prentice Hall.
- Park R. & Paulay.T. (2008). Estructuras de Concreto Reforzado. México: Ed. Limusa
- T.Harmsen. (2009). Diseño de Estructuras de Concreto Armado. Perú: Ed. PUCP

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: DISEÑO DE CIMENTACIONES, MUROS DE CONTENCION Y LOSAS ARMADAS EN DOS SENTIDOS.

OBJETIVOS DE APRENDIZAJE:

- Elaborar una metodología para diseñar cimentaciones, muros y losas.
- Evaluar la representación adecuada de los diseños mediante planos.

PRIMERA SEMANA

Primera sesión:

Cimentaciones. Consideraciones generales. Tipos de cimentaciones. Presión efectiva. Diseño de zapatas de muros.

Segunda sesión:

Ejercicios prácticos.

SEGUNDA SEMANA

Primera sesión:

Diseño de zapatas aisladas y concéntricas. Dados de apoyo. Detallado.

Segunda sesión:

Cimentación en límite de propiedad: Cimentación conectada, dimensionamiento y análisis. Diseño de zapata y viga de conexión.

TERCERA SEMANA

Primera sesión:

Ejercicios prácticos y detallados

Segunda sesión:

Práctica calificada 1

CUARTA SEMANA

Primera sesión:

Cimentación en límite de propiedad: Cimentación combinada, dimensionamiento y análisis. Diseño de la losa y vigas transversales.

Segunda sesión:

Ejercicios prácticos y detallados.

QUINTA SEMANA

Primera sesión:

Muros de contención: Empuje de suelos, estabilidad de muro y juntas.

Estabilidad de muros de gravedad, análisis y diseño de muros de contención de concreto armado en voladizo

Segunda sesión:

Ejercicios prácticos y detallados.

SEXTA SEMANA

Primera sesión:

Análisis y diseño de muros de contención con contrafuertes.

Segunda sesión:

Práctica calificada 2

SÉPTIMA SEMANA

Primera sesión:

Diseño de losas armadas en dos sentidos: Dimensionamiento de los espesores, aspectos generales. Análisis: método directo y de pórtico equivalente.

Segunda sesión:

Diseño de losas armadas en dos sentidos con vigas y sin vigas.

Ejercicios prácticos y detallados.

OCTAVA SEMANA

Examen Parcial

UNIDAD II: DISEÑO DE MUROS DE CORTE, VIGAS EN TORSION Y ESCALERAS

OBJETIVOS DE APRENDIZAJE:

- Elaborar una metodología para diseñar muros, vigas por torsión y escaleras.
- Evaluar la representación adecuada de los diseños mediante planos.

NOVENA SEMANA

Primera sesión:

Diseño de muros de corte: generalidades, muros de sótanos y muros de corte.

Segunda sesión:

Diseño de muros por el método simplificado, y por corte y flexión.

DÉCIMA SEMANA

Primera sesión:

Ejercicios prácticos y detallados.

Segunda sesión:

Diseño de vigas en torsión: Generalidades y análisis

UNDÉCIMA SEMANA

Primera sesión:

Ejercicios prácticos y detallados.

Segunda sesión:

Práctica calificada 3

DUODÉCIMA SEMANA

Primera sesión:

Diseño de viga con torsión y cortante

Segunda sesión:

Ejercicios prácticos y detallados.

DECIMOTERCERA SEMANA

Primera sesión:

Diseño de escaleras: Generalidades, escaleras longitudinales.

Segunda sesión:

Diseño de escaleras: generalidades, escaleras autoportantes

DECIMOCUARTA SEMANA

Primera sesión:

Ejercicios prácticos y detallados.

Segunda sesión:

Práctica calificada 4.

DECIMOQUINTA SEMANA

Primera sesión:

Diseño de escaleras: Generalidades, escaleras helicoidales

Segunda sesión:

Ejercicios prácticos y detallados.

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de Actas a la Oficina de Registros Académicos.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Sistema Multimedia para la exposición de clases y Laboratorio de computo con hardware y software adecuado para el Análisis Estructural Asistido por Computadora.

Materiales: Planoteca de Estructura, Planos Digitales

XI. EVALUACIÓN

PF= 0.30*PE+0.30*EP+0.40*EF

PE= (P1+P2+P3+P4) /4

Donde:

PF = Promedio final

P1...P4= Prácticas calificadas

EP = Examen parcial

EF = Examen Final

PE = Promedio de evaluaciones

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería civil.	К		
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos			
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas y restricciones económicas, ambientales, sociales, políticas, éticas, de salubridad y seguridad.			
(d)	Trabajar adecuadamente en un equipo multidisciplinario.			
(e)	Identificar, formular y resolver problemas de ingeniería civil.			
(f)	Comprensión de lo que es la responsabilidad ética y profesional.			
(g)	Comunicarse, con su entorno, en forma efectiva.			
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.			
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.			
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil			
(k)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines			

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
		3	2	0

b) Sesiones por semana: Dos sesiones.

c) **Duración**: 5 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

Ing. Enoch Maguiña Rodríguez.

XV. FECHA:

La Molina, julio de 2018.