# Piggyback CrowdSensing (PCS): Energy Efficient Crowdsourcing of Mobile Sensor Data by Exploiting Smartphone App Opportunities Nicholas D. Lane et.al.

Presented by Shanhe Yi

Computer Science
College of William and Mary

Feburary 10, 2014



# Outline

Introduction

Some LATEX Examples
Tables and Figures
Mathematics



# Outline

Introduction

Some LATEX Examples
Tables and Figures
Mathematics



### Introduction

- ► Your introduction goes here!
- ▶ Use itemize to organize your main points.

### Examples

Some examples of commonly used commands and features are included, to help you get started.



# Outline

Introduction

## Some LATEX Examples

Tables and Figures Mathematics



# Tables and Figures

- ▶ Use tabular for basic tables see Table 1, for example.
- You can upload a figure (JPEG, PNG or PDF) using the files menu.
- ► To include it in your document, use the includegraphics command (see the comment below in the source code).

| ltem    | Quantity |
|---------|----------|
| Widgets | 42       |
| Gadgets | 13       |

Table 1: An example table.



### Readable Mathematics

Let  $X_1, X_2, \ldots, X_n$  be a sequence of independent and identically distributed random variables with  $\mathsf{E}[X_i] = \mu$  and  $\mathsf{Var}[X_i] = \sigma^2 < \infty$ , and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables  $\sqrt{n}(S_n - \mu)$  converge in distribution to a normal  $\mathcal{N}(0, \sigma^2)$ .