

loT·인공지능·빅데이터 개론 및 실습

AI: 컴퓨터 비전

서울대학교 컴퓨터공학부 김건희

Contents

- 1 Introduction to CV
- Computer Vision Tasks
- **3** Visual Recognition

Credits: 15-385 CMU Computer Vision
Ali Farhadi's CSE 576

What is Computer Vision?

> Teach machines to do what we can do with vision (as human)

Human Vision

- > Can do amazing things like:
 - Recognize people and objects
 - Navigate through obstacles
 - Understand mood in the scene
 - Imagine stories from pictures
 - •

Human Vision

- > But still is not perfect
 - Suffers from Illusions
 - Ignores many details
 - Ambiguous description of the world
 - Does not care about accuracy of world
 - Limited memory

Computers win!

Illusion

> Necker's Cube Reversal

[출처] <u>http://www.michaelbach.de/ot/sze-Necker/index.html</u>

Illusion

> Checker Shadow Illusion - [E. H. Adelson]

Illusion

> Checker Shadow Illusion - [E. H. Adelson]

Computer Vision

What we see

What a computer sees

What is Computer Vision?

- > Teach machines to do what we can do with vision
- > Intelligent interpretation of imagery
- **→** Building an artificial Visual Cortex
- > Inverse optics
- ➤ No matter what your definition is…
 - Vision is hard
 - But is fun…

Contents

- 1 Introduction to CV
- Computer Vision Tasks
- Visual Recognition

Credits: 15-385 CMU Computer Vision
Ali Farhadi's CSE 576

Computer Vision Hierarchy

> Low-level

- Image → Image
- e.g. image processing, edge-detection, optical flow computation

> Mid-level

- Image → feature
- e.g. boundary detection, segmentation, sfm

> High-level

- Image → Semantics
- e.g. object recognition, scene understanding

Low-level Vision Examples

Deblurring

Super-resolution

Edge detection

Colorization

Mid-level Vision Examples

Boundary detection

Segmentation

Alignment

High-level Vision Examples

Image classification

Image captioning

Object detection

Pose detection

Computer Vision vs Image Processing

> Image processing

- Study image-to-image transformation
- Input and output are both images
- Image compression/restoration/enhancement

> Computer vision

- Actively use IP techniques
- The output is a description or an interpretation of image content
- High-level intelligence

Computer Vision is Interdisciplinary

Vision [출처] <u>http://en.wikipedia.org/wiki/Computer vision</u>

Contents

- 1 Introduction to CV
- Computer Vision Tasks
- **3** Visual Recognition

Credits: 15-385 CMU Computer Vision
Ali Farhadi's CSE 576

Object Recognition - Is It Really so Hard?

This is a chair

Find the chair in this image

Output of normalized correlation

Object Recognition - Is It Really so Hard?

Find the chair in this image

Pretty much garbage: simple template matching is not going to make it

Challenges 2: Illumination

Challenges 3: Occlusion

Challenges 4: Scale

[출처] slide by Fei Fei, Fergus & Torralba

Challenges 5: Deformation

Xu, Beihong 1943

Challenges 6: Background Clutter

Challenges 7: Object Intra-Class Variation

