

Álgebra y Geometría Analítica I

Práctica de Relaciones -Relaciones de Equivalencia

18. Debemos determinar si las colecciones dadas son o no particiones de cada conjunto A. Recordemos:

Una **partición** P de un conjunto A es una colección de conjuntos no vacíos $\{X_1, X_2, \ldots\}$ tales que

- (i) Si $i \neq j$, $X_i \cap X_j = \emptyset$.
- (ii) $\forall a \in A, \exists X_i \in P \text{ tal que } a \in X_i, \text{ esto es equivalente a decir } A \subseteq \bigcup_{i \in I} X_i.$
- d) $A=\mathbb{Z},\,A_n=\{-n,n\},\,n\in\mathbb{N}_0.$ Sea $P_d=\bigcup_{n\in\mathbb{N}_0}A_n.$

Debemos chequear si se verifican (i) y (ii).

(i) Si $i \neq j$, $\lambda A_i \cap A_j = \emptyset$?

Para probar esto, supongamos por el absurdo que $A_i \cap A_j \neq \emptyset$, es decir que existe $a \in A_i \cap A_j$.

Entonces $a \in A_i = \{-i, i\} \land a \in A_j = \{-j, j\} \Rightarrow (a = i \lor a = -i) \land (a = j \lor a = -j)$. Veamos las distintas posibilidades para que ocurra esto:

- Supongamos que $a = i \land a = j \Rightarrow i = j$, esto está en contradicción con la hipótesis $i \neq j$.
- Supongamos que $a=i \wedge a=-j \Rightarrow i=-j$, pero como $i,j \in \mathbb{N}_0$ la única posibilidad es que i=j=0, esto está en contradicción con la hipótesis $i\neq j$.
- Los casos $a = -i \land a = j$ y $a = -i \land a = -j$ son análogos.

Estas contradicciones surgen de suponer que $A_i \cap A_j \neq \emptyset$.

Por lo tanto $A_i \cap A_j = \emptyset$.

(ii) $\forall a \in A$, $\mathbf{\dot{c}} \exists A_i \in P$ tal que $a \in A_i$?

Sea $a \in A = \mathbb{Z}$, tenemos:

- Si $a \in \mathbb{N}_0$ entonces $a \in A_a = \{-a, a\}$.
- Si no, es decir si $a \in \mathbb{Z} \setminus \mathbb{N}_0$, entonces a < 0. Tendríamos -a > 0 y entero, con lo que $-a \in \mathbb{N}_0$. Luego $a \in A_{-a} = \{a, -a\}$.

Por lo tanto, $\forall a \in A, \exists A_i \in P \text{ tal que } a \in A_i.$

Podemos concluir que P_d sí es una partición de A.

e) $A=\mathbb{R},\,A_n=(-n,n^2),\,n\in\mathbb{Z}.$ Sea $P_e=igcup_{n\in\mathbb{Z}}A_n.$

¿ P_e es una partición de A?

Debemos chequear si se verifican (i) y (ii).

(i) Si $i \neq j$, $\lambda A_i \cap A_j = \emptyset$?

Esto no se verifica, puesto que por ejemplo $A_2 \cap A_{-2} = (2,4) \cap (-2,4) = (2,4) \neq \emptyset$. Por lo tanto, $\exists i \neq j$ tal que $A_i \cap A_j \neq \emptyset$.

Con esto podemos concluir que P_e no es una partición de A.

g) Arreglar enunciado: $A=\mathbb{C},\,An=\{z\in\mathbb{C}:n-1<|z|\leq n\}\;n\in\mathbb{N}.$

 Analizar si la relación dada es de equivalencia y en caso de serlo describir su conjunto cociente.

Recordemos:

- \mathcal{R} es una relacion de **equivalencia** si es reflexiva, simétrica y transitiva.
- Llamaremos **conjunto cociente** de A por \mathcal{R} al conjunto:

$$A|_{\mathcal{R}} = \{[a] : a \in A\}$$

donde

$$[a] = \{x \in A : (a, x) \in \mathcal{R}\}\$$

b) $A = \mathbb{Z}$, $x\mathcal{R}y \Leftrightarrow x - y$ es un entero par.

Veamos si se verifican las propiedades reflexiva, simétrica y transitiva.

■ ¿R es reflexiva?

Sea $a \in A = \mathbb{Z}$ arbitrario. ¿aRa?

Como a - a = 0 entero par $\Rightarrow a\mathcal{R}a$.

Por lo tanto \mathcal{R} es reflexiva (1).

■ ¿R es simétrica?

Sean $a, b \in A = \mathbb{Z}$ arbitrarios tales que $a\mathcal{R}b$, $\lambda b\mathcal{R}a$?

 $a\mathcal{R}b\Rightarrow a-b$ es un entero par, esto es a-b=2x con $x\in\mathbb{Z}$.

Luego, b-a=-(a-b)=-2x=2(-x) siendo $(-x)\in\mathbb{Z}$, es decir b-a es entero par $\Rightarrow b\mathcal{R}a$.

Por lo tanto \mathcal{R} es simétrica (2).

■ ¿R es transitiva?

Sean $a, b, c \in A = \mathbb{Z}$ arbitrarios tales que $a\mathcal{R}b$ y $b\mathcal{R}c$, ¿ $a\mathcal{R}c$?

De la misma manera que pensamos el item anterior,

$$a\mathcal{R}b \Rightarrow a - b = 2x \text{ con } x \in \mathbb{Z}.$$

$$b\mathcal{R}c \Rightarrow b-c=2y \text{ con } y \in \mathbb{Z}.$$

$$\mathsf{Luego},\, a-c=a+ \underbrace{\mathbf{0}-c} = a \underbrace{-\mathbf{b}+\mathbf{b}} - c = 2x+2y = 2(x+y) \ \mathsf{siendo} \ (x+y) \in \mathbb{Z} \Rightarrow a\mathcal{R}c.$$

Por lo tanto \mathcal{R} es transitiva (3).

De (1),(2) y (3) resulta \mathcal{R} una relación de equivalencia.

Ahora veamos su conjunto cociente.

Sea
$$a \in A = \mathbb{Z}$$
.

• Si a es par entonces $a\mathcal{R}b$, $\forall b$ entero par, en efecto,

$$a \operatorname{par} \Rightarrow a = 2x \operatorname{con} x \in \mathbb{Z}.$$

$$b \text{ par} \Rightarrow b = 2y \text{ con } y \in \mathbb{Z}.$$

Luego,
$$a - b = 2x - 2y = 2(x - y) \operatorname{con}(x - y) \in \mathbb{Z} \Rightarrow a\mathcal{R}b$$
.

Por lo tanto $a\mathcal{R}b$, $\forall b$ entero par.

• Si a es impar entonces $a\mathcal{R}b$, $\forall b$ entero impar, en efecto,

$$a \text{ impar} \Rightarrow a = 2x + 1 \text{ con } x \in \mathbb{Z}.$$

$$b \text{ impar} \Rightarrow b = 2y + 1 \text{ con } y \in \mathbb{Z}.$$

Luego,
$$a - b = 2x + 1 - (2y + 1) = 2x + 1 - 2y - 1 = 2(x - y) \text{ con } (x - y) \in \mathbb{Z} \Rightarrow a\mathcal{R}b$$
.

Por lo tanto $a\mathcal{R}b$, $\forall b$ entero impar.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I

Como ya vimos todas las posibilidades, podemos concluir que $A|_{\mathcal{R}} = \{[0], [1]\}$ o bien podemos escribirlo como $\mathbb{Z}|_{\mathcal{R}} = \{$ enteros pares, enteros impares $\}$.

e) $A = \mathbb{R}, x\mathcal{R}y \Leftrightarrow xy \geq 0.$

Veamos que R NO es de equivalencia, pues no verifica la propiedad transitiva.

 $\forall a, b, c \in A = \mathbb{Z}$ tales que $a\mathcal{R}b$ y $b\mathcal{R}c$, ¿ $a\mathcal{R}c$?

NO, pues existen $-1, 0, 1 \in \mathbb{Z}$ tales que:

$$-1\mathcal{R}0$$
 pues $-1.0 = 0 \ge 0$. $0\mathcal{R}1$ pues $0.1 = 0 \ge 0$.

Sin embargo, -1 $\Re 1$ (no se relaciona) pues -1.1 = -1 < 0.

Por lo tanto \mathcal{R} no es de equivalencia.

- **21.** $A = \{1, 2, 3, 4, 5, 6\}$ y $\mathcal{R} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 6)\}$ relación de equivalencia.
 - a) Veamos las relaciones de equivalencia pedidas:
 - $[1] = \{a \in A : 1\mathcal{R}a\} = \{1, 2\}.$
 - $[2] = \{a \in A : 2\mathcal{R}a\} = \{1,2\} = [1]$, y esto tiene sentido puesto que como \mathcal{R} es de equivalencia y $2 \in [1]$ debía ser necesariamente que [2] = [1].

$$[3] = \{a \in A : 3\mathcal{R}a\} = \{3\}.$$

- b) Siguiendo con el razonamiento del item anterior podemos establecer $A \mid_{\mathcal{R}} = \{[1], [3], [4], [6]\}$ también podemos escribirlo como $A|_{\mathcal{R}} = \{1,2\} \cup \{3\} \cup \{4,5\} \cup \{6\}.$
- c) $R(1) = \{1, 2\} = R^{-1}(2)$.
- 25. Consideramos la relación $\mathcal R$ en $\mathbb N$ como $x\mathcal R y \Leftrightarrow \frac xy = 2^n$ para algún $n\in\mathbb Z.$
 - a) Veamos que \mathcal{R} es de equivalencia.

Veamos que se verifican las propiedades reflexiva, simétrica y transitiva.

R es reflexiva.

Sea $x \in \mathbb{N}$ arbitrario. $\mathcal{L}x\mathcal{R}x$?

Como $\frac{x}{x} = 1 = 2^0$ con $0 \in \mathbb{Z} \Rightarrow x\mathcal{R}x$.

Por lo tanto \mathcal{R} es reflexiva (1).

■ R es simétrica.

Sean $x, y \in \mathbb{N}$ arbitrarios tales que $x\mathcal{R}y$, $\lambda y\mathcal{R}x$?

$$x\mathcal{R}y\Rightarrow rac{x}{y}=2^n$$
 para algún $n\in\mathbb{Z}.$

Luego, $\frac{y}{x} = 2^{-n}$ siendo $-n \in \mathbb{Z}$, es decir $y\mathcal{R}x$.

Por lo tanto \mathcal{R} es simétrica (2).

■ R es transitiva.

Sean $x, y, z \in \mathbb{N}$ arbitrarios tales que $x\mathcal{R}y$ e $y\mathcal{R}z$, $\lambda x\mathcal{R}z$?

De la misma manera que pensamos el item anterior,

$$x\mathcal{R}y\Rightarrow \frac{x}{n}=2^n \ \mathsf{con} \ n\in\mathbb{Z}$$

$$\begin{array}{l} x\mathcal{R}y\Rightarrow\frac{x}{y}=2^n\ \mathrm{con}\ n\in\mathbb{Z}.\\ y\mathcal{R}z\Rightarrow\frac{y}{z}=2^m\ \mathrm{con}\ m\in\mathbb{Z}. \end{array}$$

Luego,
$$\frac{x}{z}=x$$
. $\underbrace{\frac{y}{y}}_{z}$. $\frac{1}{z}=\frac{x}{y}\frac{y}{z}=2^{n}2^{m}=2^{n+m}$ siendo $n+m\in\mathbb{Z}\Rightarrow x\mathcal{R}z$.

Por lo tanto \mathcal{R} es transitiva (3).

De (1),(2) y (3) resulta \mathcal{R} una relación de equivalencia.

b) ¿Cuántas clases de equivalencia distintas hay entre [1], [2], [3] y [4]? Recordemos que dos clases de equivalencia o bien coinciden o bien no poseen intersección, entonces se tiene que si un par $(a,b) \in \mathcal{R}$ es porque [a] = [b]. Vamos viendo entonces,

$$\mathbf{\mathcal{U}}(1,2) \in \mathcal{R}$$
? $\frac{1}{2} = 2^{-1}, -1 \in \mathbb{Z} \Rightarrow (1,2) \in \mathcal{R} \Rightarrow [1] = [2].$

$$\boldsymbol{\dot{c}}(1,3) \in \mathcal{R} \textbf{?} \; \tfrac{1}{3} \neq 2^n, \, \forall n \in \mathbb{Z} \Rightarrow (1,3) \notin \mathcal{R} \Rightarrow [1] \neq [3].$$

$$\boldsymbol{ \boldsymbol{ \zeta}}(1,4) \in \mathcal{R} \boldsymbol{?} \ \tfrac{1}{4} = 2^{-2}, \ -2 \in \mathbb{Z} \Rightarrow (1,4) \in \mathcal{R} \Rightarrow [1] = [4].$$

En conclusión tenemos dos clases de equivalencia entre las dadas, éstas son [1] = [2] = [4] y [3].