BANGALORE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UVCE, BENGALURU B.Tech. PROGRAMME IN COMPUTER SCIENCE AND ENGINEERING

Course Code	18CIPC502								
Category	Engineering Science Courses : Professional Core								
Course title	ARTIFICIAL INTELLIGENCE - THEORY								
Scheme and	No. of Hours/Week								
Credits	L	T	P	SS	Credits	Semester - V CSE/ISE			
	4	0	0	0	4				
CIE Marks: 50	SEE Marks: 50		Total Max. Marks: 100			Duration of SEE: 03 Hour			
Prerequisites (if	any): NII								

COURSE OBJECTIVES:

The course will enable students to

- 1. Learn the concepts of Artificial Intelligence.
- 2. Understand the methods of solving problems using Artificial Intelligence.
- Acquire the concepts of knowledge representation.
- Design knowledge planning concepts.
- 5. Acquire different AI learning methods.

UNIT I: INTRODUCTION TO AI

09 Hours

Introduction to AI, Intelligent Agents: Agents and Environment; Rationality; Nature of Environment; Structure of Agents. Problem-Solving: Problem-Solving Agents, Searching Solutions, Search Strategies, Heuristic Functions.

UNIT II: PROBLEM-SOLVING BY SEARCHING

10 Hours

Classical Search: Local Search Algorithms, Searching Nondeterministic Actions, Partial Observations; AI Search: Games, Optimal Decision in Games, Alpha-Beta Pruning, Real-Time Decisions, Stochastic Games, Other Games; Constraint Satisfaction Problems: Introduction and Inferences, Backtracking and Local Search.

UNIT III: KNOWLEDGE REPRESENTATION

10 Hours

Logical Agents: Knowledge Based Agents, Logic, Propositional Logic. First-Order Logic: Representation, Syntax and Semantics, Usage, Knowledge Engineering. Inference In First-Order Logic: Inference, Unification, Lifting, Chaining, Resolution.

UNIT IV: KNOWLEDGE PLANNING

09 Hours

Planning: Classical Planning, Algorithms For Planning State Space Search, Graphs, Planning Approaches and Analysis. Hierarchical Planning, Non-Deterministic Domain, Multi-agent Planning. Knowledge Representation: Ontological Engineering, Categories and Objects, Events, Mental Events and Objects, Reasoning.

UNIT V: LEARNING 10 Hours

Introduction to Learning, Supervised Learning, Learning Decision Trees, Regression And Classification With Linear Models, Artificial Neural Networks, Nonparametric Models, Support Vector Machines, Ensemble Learning Machine Learning, Explanation-Based Learning, Learning Using Relevance Information; Reinforcement Learning.

TEXT BOOKS:

- "Artificial Intelligence: A Modern Approach" by Stuart Russell, Peter Norvig, 3rd Edition, Pearson Education, 2010.
- "Artificial Intelligence" by Elaine Rich, Kevin Knight, Shiva Shankar B Nair: Tata McGraw Hill 3rd edition, 2013.

REFERENCE BOOKS:

- 1. "Artificial Intelligence", by George F Luger, 5th Edition Pearson Education, 2009.
- Artificial Intelligence: foundations of computational agents, by David Poole, Alan Mackworth, 2nd Edition, Cambridge University Press, 2017.

e-BOOKS/ONLINE RESOURCES:

- 1. Artificial Intelligence MIT: https://courses.esail.mit.edu/6.034f/ai3/rest.pdf.
- 2. https://epub.uni-regensburg.de/13629/1/ubr06078 ocr.pdf.
- Lecture Notes in Artificial Intelligence Springer: https://www.springer.com/series/1244.

MOOCs:

- 1. Artificial Intelligence -http://www.nptelvideos.in/2012/11/artificial-intelligence.html.
- 2. https://www.edx.org/course/introduction-to-artificial-intelligence-ai-2.
- 3. The quest for artificial intelligence-a history of ideas and achievements-Cambridge University Press: http://ai.stanford.edu/~nilsson/QAI/qai.pdf.

COURSE OUTCOMES:

The students at the end of the course, will be able to

- CO1: Describe the modern view of AI as the study of agents.
- CO2: Apply AI search Models and Generic search strategies for problem solving.
- CO3: Write Logic for representing Knowledge and Reasoning of AI systems.
- CO4: Design different planning strategies for knowledge presentations.
- CO5: Design different learning algorithms for improving the performance of AI systems.

SCHEME OF EXAMINATION:

CIE – 50 Marks	Test I (Any Three Units) - 20 Marks Quiz 5 Ma		25 Marks	Total: 50 Marks
	Test II (Remaining Two Units) - 20 Quiz II – Marks 5 Marks		25 Marks	
SEE – 100 Marks	Q1 (Compulsory): MCQs or Short and questions for 15 Marks covering entire syl	15 Marks	Total: 100 Marks	
	Q2 & Q3 from Units which have 08 compulsory.	17 * 2 = 34 Marks		
	Q4 or Q5, Q6 or Q7 and Q8 or Q9 for which have 10 Hours shall have Internal C	17 * 3 = 51 Marks		

Note: SEE shall be conducted for 100 Marks and the Marks obtained is scaled down to 50 Marks.
