CHAPTER

Stock Valuation

Key Concepts and Skills

- Understand how stock prices depend on future dividends and dividend growth
- Be able to compute stock prices using the dividend growth model
- Understand how growth opportunities affect stock values
- Understand valuation comparables
- Understand how stock markets work

Chapter Outline

- 9.1 The Present Value of Common Stocks
- 9.2 Estimates of Parameters in the Dividend-Discount Model
- 9.3 Growth Opportunities

 The Dividend Growth Model and the NPVGO Model
- 9.4 Comparables
- 9.5 Valuing the Entire Firm
- 9.6 The Stock Markets (SELF-STUDY)

Valuation Principle

- First Principle:
 - Intrinsic Value (or Fair Price) of a financial security = PV of expected future cash flows over its life discounted at the appropriate rate.
- To value a security, we need to:
 - Estimate future cash flows:
 - Size (how much) and
 - Timing (when)
 - Discount future cash flows at an appropriate rate:
 - The rate should be appropriate to the risk presented by the security.
 - Recall: The Opportunity Cost Principle in determining the appropriate discount rate in PV calculations (Chapter 4).

Intrinsic Value Analysis

 The use of the intrinsic value (fair price) as the benchmark in identifying mispriced stock.

 If market price < intrinsic value, i.e., NPV>0, the stock is underpriced → BUY!

 If market price > intrinsic value, i.e., NPV<0, the stock is overpriced → SELL!

9.1 The PV of Common Stocks

- The value of any asset is the present value of its expected future cash flows.
- Stock ownership produces cash flows from:
 - Dividends
 - Capital Gains
- Valuation of Different Types of Stocks
 - Zero Growth
 - Constant Growth
 - Differential Growth

Case 1: Zero Growth

Assume that dividends will remain at the same level forever

$$Div_1 = Div_2 = Div_3 = \cdots$$

• Since future cash flows are constant, the value of a zero growth stock is the present value of a perpetuity:

$$V_0 = \frac{\text{Div}_1}{(1+R)^1} + \frac{\text{Div}_2}{(1+R)^2} + \frac{\text{Div}_3}{(1+R)^3} + \cdots$$

$$V_0 = \frac{\text{Div}}{R}$$

Case 2: Constant Growth

Assume that dividends will grow at a constant rate, *g*, forever, *i.e.*,

$$Div_1 = Div_0(1+g)$$

$$Div_2 = Div_1(1+g) = Div_0(1+g)^2$$

$$\text{Div}_3 = \text{Div}_2(1+g) = \text{Div}_0(1+g)^3$$

Since future cash flows grow at a constant rate forever, the value of a constant growth stock is the present value of a growing perpetuity:

$$V_0 = \frac{\text{Div}_1}{R - g}$$

Constant Growth Example

- Suppose Big D, Inc., just paid a dividend of \$.50. It is expected to increase its dividend by 2% per year. If the market requires a return of 15% on assets of this risk level, how much should the stock be selling for?
- $V_0 = .50(1 + .02) / (.15 .02) = 3.92

- Assume that dividends will grow at different rates in the foreseeable future and then will grow at a constant rate thereafter.
- To value a Differential Growth Stock, we need to follow this 3-step procedure:
 - 1. Estimate future dividends in the foreseeable future, i.e., during the FINITE abnormal growth stage, N.
 - 2. Estimate the future stock price when the stock becomes a Constant Growth Stock at the end of the abnormal growth stage, VN.
 - 3. Compute the total present value of the estimated future dividends during the *finite* abnormal growth stage (step 1) and future stock price that captures the value of the infinite series of dividends during the *infinite* normal growth stage (step 2).

• Assume that dividends will grow at rate g_1 for N years and grow at rate g_2 thereafter.

Dividends will grow at rate g_1 for N years and grow at rate g_2 thereafter

We can value this as the sum of:

• an *N*-year annuity growing at rate g_1

$$V_N = \frac{C}{R - g_1} \left[1 - \frac{(1 + g_1)^N}{(1 + R)^N} \right]$$

plus the discounted value of a perpetuity growing at rate g₂ that starts in year N+1

$$\frac{\left(\frac{\text{Div}_{N+1}}{R-g_2}\right)}{\left(1+R\right)^N}$$

Consolidating gives:

$$V_0 = \frac{C}{R - g_1} \left[1 - \frac{(1 + g_1)^N}{(1 + R)^N} \right] + \frac{\left(\frac{\text{Div}_{N+1}}{R - g_2} \right)}{(1 + R)^N}$$

Or, we can "cash flow" it out.

A Differential Growth Example

A common stock just paid a dividend of \$2. The dividend is expected to grow at 8% for 3 years, then it will grow at 4% in perpetuity.

What is the stock worth? The discount rate is 12%.

With the Formula

$$V_0 = \frac{\$2 \times (1.08)}{.12 - .08} \left[1 - \frac{(1.08)^3}{(1.12)^3} \right] + \frac{\left[\frac{\$2(1.08)^3(1.04)}{.12 - .04} \right]}{(1.12)^3}$$

$$V_0 = $54 \times [1 - .8966] + \frac{(\$32.75)}{(1.12)^3}$$

$$V_0 = \$5.58 + \$23.31$$

$$V_0 = $28.89$$

With Cash Flows

\$2(1.08) \$2(1.08)² \$2(1.08)³ \$2(1.08)³ (1.04)

1 2 3 4

\$2.16 \$2.33 \$2.52 + \$2.62 The constant growth phase beginning in year 4 can be valued as a growing perpetuity at time 3.

=
$$\frac{$2.16}{1.12} + \frac{$2.33}{(1.12)^2} + \frac{$2.52 + $32.75}{(1.12)^3} = $28.89$$

McGraw-Hill/Irwin

 $V_3 = \frac{\$2.62}{08} = \32.75

9.2 Estimates of Parameters

- The value of a firm depends upon its growth rate, g, and its discount rate, R.
 - Where does g come from?
 g = Retention ratio × Return on retained earnings
 i.e., g = b * ROE

Other factors being equal,

- -- The higher the growth rate, the higher the intrinsic value.
- -- The higher the ROE, the higher the intrinsic value.
- -- However, the impact of the retention ratio on the intrinsic value of a stock is NOT unidirectional!

Retention Rate and Firm Value

- An increase in the retention rate (b) will:
 - Reduce the dividend paid to shareholders
 - Increase the firm's growth rate
- These have offsetting influences on stock price
- Which one dominates?
 - If ROE > R, then increased retention increases firm value since reinvested capital earns more than the cost of capital, and vice versa.
 - Recall: For independent projects, IRR > R → NPV>0!

Where does R come from?

- The discount rate can be broken into two parts.
 - The dividend yield
 - The growth rate (in dividends)
- The discount rate can be estimated according to asset pricing models such as Capital Asset Pricing Model (CAPM); to be introduced later!
- In practice, there is a great deal of estimation error involved in estimating R.
- Other factors being equal, the higher the discount rate, R, the lower the intrinsic value of the stock.

Using the DGM to Find R

- NOTE This approach holds only if the stock is fairly priced, and hence E(R)=R!
- Start with the DGM:

$$P_0 = \frac{D_0(1+g)}{R-g} = \frac{D_1}{R-g}$$

Rearrange and solve for R:

$$\mathbf{R} = \frac{\mathbf{D}_0 (1+g)}{\mathbf{P}_0} + \mathbf{g} = \frac{\mathbf{D}_1}{\mathbf{P}_0} + \mathbf{g}$$

Note: E(R) = dividend yield + capital gains yield!

9.3 Growth Opportunities

- Growth opportunities are opportunities to invest in positive NPV projects.
- The value of a firm can be conceptualized as the sum of the value of a firm that pays out 100% of its earnings as dividends, i.e., income component, and the net present value of the growth opportunities, i.e., growth component.

$$P = \frac{EPS}{R} + NPVGO$$

The Dividend Growth Model and the NPVGO Model

- We have two ways to value a stock:
 - The dividend discount model

- The sum of its price as a "cash cow", i.e., income component, plus the per share value of its growth opportunities, i.e., growth component!
 - NOTE: Short-cut for calculating the Growth component, i.e., Price – Income component!

The NPVGO Model: Example

Consider a firm that has EPS of \$5 at the end of the first year, a dividend-payout ratio of 30%, a discount rate of 16%, and a return on retained earnings of 20%.

- The dividend at year one will be \$5 × .30 = \$1.50 per share.
- The retention ratio is .70 (= 1 -.30), implying a growth rate in dividends of $14\% = .70 \times 20\%$.

From the dividend growth model, the price of a share is:

$$P_0 = \frac{\text{Div}_1}{R - g} = \frac{\$1.50}{.16 - .14} = \$75$$

The NPVGO Model: Example

First, we must calculate the value of the firm as a cash cow, i.e., Income component -

$$\frac{\text{EPS}}{R} = \frac{\$5}{.16} = \$31.25$$

Second, we must calculate the value of the growth opportunities, i.e., growth component -

$$P_0 = \frac{\begin{bmatrix} -3.50 + \frac{3.50 \times .20}{.16} \end{bmatrix}}{R - g} = \frac{\$.875}{.16 - .14} = \$43.75$$

Finally,
$$P_0 = 31.25 + 43.75 = $75$$

9.4 Comparables

- Comparables are used to value companies based primarily on multiples.
- Common multiples include:
 - Price-to-Earnings
 - Enterprise Value Ratios
- Many analysts frequently relate earnings per share to price.
- The price-earnings ratio is calculated as the current stock price divided by annual EPS.
 - The Wall Street Journal uses last 4 quarter's earnings

 Price per share

 P/E ratio =

EPS

PE and NPVGO

Recall,

$$P = \frac{EPS}{R} + NPVGO$$

 Dividing every term by EPS provides the following description of the PE ratio:

$$PE = \frac{1}{R} + \frac{NPVGO}{EPS}$$

 So, a firm's PE ratio is positively related to growth opportunities (NPVGO) and negatively related to risk (R)!

Enterprise Value Ratios

- The PE ratio focuses on equity, but what if we want the value of the firm?
- Use Enterprise Value:
 - EV = market value of equity + market value of debt cash
- Like PE, we compare the value to a measure of earnings.
 From a firm level, this is EBITDA, or earnings before interest, taxes, depreciation, and amortization.
 - EBITDA represents a measure of total firm cash flow
- The Enterprise Value Ratio = EV / EBITDA

Other Comparables

- Many analysts frequently relate other variables to price, e.g.:
 - -Price/Cash Flow Ratio
 - cash flow = net income + depreciation = cash flow from operations or operating cash flow
 - Price/Sales
 - current stock price divided by annual sales per share
 - Price/Book (a.k.a. Market to Book Ratio)
 - price divided by book value of equity, which is measured as assets – liabilities

9.6 The Stock Markets (Self-Study)

- Dealers vs. Brokers
- New York Stock Exchange (NYSE)
 - Largest stock market in the world
 - License Holders (formerly "Members")
 - Entitled to buy or sell on the exchange floor
 - Commission brokers
 - Specialists
 - Floor brokers
 - Floor traders
 - Operations
 - Floor activity

NASDAQ

- Not a physical exchange computerbased quotation system
- Multiple market makers
- Electronic Communications Networks
- Three levels of information
 - Level 1 median quotes, registered representatives
 - Level 2 view quotes, brokers & dealers
 - Level 3 view and update quotes, dealers only
- Large portion of technology stocks

Stock Market Reporting

Quick Quiz

- What determines the price of a share of stock?
- What determines g and R in the DGM?
- Decompose a stock's price into income component (or cash cow; EPS/R) and growth component (NPVGO).
- Discuss the importance of the PE ratio.
- What are some of the major characteristics of NYSE and Nasdaq?