Q-Step: Week 5 Lecture

Bivariate Relationships

Spyros Kosmidis

Oxford

February 11, 2022

Roadmap

Previously

- Research Design
- Concepts and Measurement
- Descriptive Statistics and Visualization

Today

- Bivariate Relationships
 - ▶ Conditional means
 - Correlation
 - ► OLS regression

Next Week

Multivariate OLS regression

Q: What was the mean level of turnout in 2017 in Brexit and Remain constituencies?

Q: What was the mean level of turnout in 2017 in Brexit and Remain constituencies?

Q: What was the mean level of turnout in 2017 in Brexit and Remain constituencies?

Let's plot constituency turnout for Brexit and Remain constituencies:

Q: What was the mean level of turnout in 2017 in Brexit and Remain constituencies?

Let's plot constituency turnout for Brexit and Remain constituencies:

Q: What was the mean level of turnout in 2017 in Brexit and Remain constituencies?

Let's plot constituency turnout for Brexit and Remain constituencies:

What do you observe (if anything)?

Q: What was the mean level of turnout in 2017 in Brexit and Remain constituencies?

Let's plot constituency turnout for Brexit and Remain constituencies:

What do you observe (if anything)?

The mean level of turnout for all regions was 68.75%

Turnout in Brexit and Remain Areas (2017)

```
summary(brseat$Turnout[brseat$Year1==2017])
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                            Max.
    53.02 65.42 69.16 68.75 72.39 79.52
##
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 70.13509
```

Turnout in Brexit and Remain Areas (2017)

median(brseat\$Turnout[brseat\$Year1==2017 & brseat\$remain==0])

[1] 68.50045

median(brseat\$Turnout[brseat\$Year1==2017 & brseat\$remain==1])


```
mean(brseat$Turnout[brseat$Year1==2017])
## [1] 68.74995
mean(brseat$Turnout[brseat$Year1==2015])
## [1] 66.38139
```

mean(brseat\$Turnout[brseat\$Year1==2017])

[1] 68.74995

mean(brseat\$Turnout[brseat\$Year1==2015])

[1] 66.38139

remain


```
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 70.13509
```

```
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 70.13509
mean(brseat$Turnout[brseat$Year1==2015 & brseat$remain==0])
## [1] 65.28172
mean(brseat$Turnout[brseat$Year1==2015 & brseat$remain==1])
  [1] 68.3166
```

- Simple and intuitive way to understand data
- Extremely easy to calculate and visualise
- Powerful but constrained by the categorical conditions
- What if you have continuous variables that might be related?

- Correlation
 - ► It shows direction and strength

- Correlation
 - ▶ It shows direction and strength
- But bad for predictions

- Correlation
 - ▶ It shows direction and strength
- But bad for predictions
- Only Bivariate

- Correlation
 - ▶ It shows direction and strength
- But bad for predictions
- Only Bivariate
- The coefficient runs from -1 to +1
 - ▶ 0 means no correlation
 - ▶ 1 means perfect positive correlation
 - ▶ -1 means perfect negative correlation

- Correlation
 - ► It shows direction and strength
- But bad for predictions
- Only Bivariate
- The coefficient runs from -1 to +1
 - 0 means no correlation
 - ▶ 1 means perfect positive correlation
 - ▶ -1 means perfect negative correlation
- The software gives you two important measures
 - ► A confidence interval (i.e. a range of correlation values)
 - ► A p-value, i.e. a probability that the correlation is random

• Is there a correlation between educational qualifications and Brexit?

• Is there a correlation between educational qualifications and Brexit?

```
##
## Pearson's product-moment correlation
##
## data: brexit$leave and brexit$noqual
## t = 11.697, df = 377, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4380723 0.5862924
## sample estimates:
## cor</pre>
```

0.5160348

##

• Is there a correlation between educational qualifications and Brexit?

```
## Pearson's product-moment correlation
##
## data: brexit$leave and brexit$noqual
## t = 11.697, df = 377, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4380723 0.5862924
## sample estimates:
## cor</pre>
```

$$Cor(x,y) = \frac{Cov(x,y)}{sd(x)sd(y)}$$
 where $Cov(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1}$

 This coefficient suggests that the higher the proportion of residents in a given locality without ANY educational qualifications the larger the vote share for Leave

0.5160348

Interpretation

- Regression
 - ► Good for Prediction and Explanation
 - ► Both Bivariate and Multivariate
 - ► The most widely used technique

- Regression
 - ► Good for Prediction and Explanation
 - ► Both Bivariate and Multivariate
 - ► The most widely used technique
- Key Logic

$$Y_i = \alpha + \beta X_i$$

- Regression
 - ► Good for Prediction and Explanation
 - ► Both Bivariate and Multivariate
 - ► The most widely used technique
- Key Logic

$$Y_i = \alpha + \beta X_i$$

We try to find the best line β that minimizes the amount of 'error' in the predictions.

- Regression
 - ► Good for Prediction and Explanation
 - ► Both Bivariate and Multivariate
 - ► The most widely used technique
- Key Logic

$$Y_i = \alpha + \beta X_i$$

We try to find the best line β that minimizes the amount of 'error' in the predictions.

We will cover the "error" part shortly.

OLS regression: Example

OLS regression: An example

The OLS output in R

```
##
## Call:
## lm(formula = brexit$leave ~ brexit$noqual)
##
## Residuals:
##
      Min 1Q Median 3Q
                                    Max
## -34.855 -3.593 1.971 5.958 24.182
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 29.33773 2.08661 14.06 <2e-16 ***
## brexit$noqual 1.04234 0.08911 11.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.945 on 377 degrees of freedom
## Multiple R-squared: 0.2663, Adjusted R-squared: 0.2643
## F-statistic: 136.8 on 1 and 377 DF, p-value: < 2.2e-16
```

The OLS output in Papers

Table 1:

_	Dependent variable:
	leave
noqual	1.042***
	(0.089)
Constant	29.338***
	(2.087)
Observations	379
R^2	0.266
Adjusted R ²	0.264
Residual Std. Error	8.945 (df = 377)
F Statistic	136.828^{***} (df = 1; 37)

OLS Regression: A Second Example

```
##
## Call:
## lm(formula = brexit$leave ~ brexit$income)
##
## Residuals:
##
      Min 1Q Median 3Q
                                    Max
## -29.804 -5.471 1.452 5.837 23.010
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 90.853597 3.644753 24.93 <2e-16 ***
## brexit$income -0.070581  0.006767 -10.43  <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.289 on 360 degrees of freedom
    (17 observations deleted due to missingness)
##
## Multiple R-squared: 0.232, Adjusted R-squared: 0.2299
## F-statistic: 108.8 on 1 and 360 DF, p-value: < 2.2e-16
```

OLS Regression: A Second Example

OLS Regression: A Second Example

Table 2:

_	Dependent variable:
	leave
income	-0.071***
	(0.007)
Constant	90.854***
	(3.645)
Observations	362
R^2	0.232
Adjusted R ²	0.230
Residual Std. Error	9.289 (df = 360)
F Statistic	108.780*** (df = 1; 360)

Back to Example 1, How to fit the line

$$Y_i = \alpha + \beta X_i$$

$$Y_i = \alpha + \beta X_i$$

- How do we interpret the OLS coefficient?
 - ► A unit increase in X produce a coefficient increase in Y

$$Y_i = \alpha + \beta X_i$$

- How do we interpret the OLS coefficient?
 - ► A unit increase in X produce a coefficient increase in Y
- How do we interpret the constant?
 - ► The constant gives the mean value of Y when X equals to 0

$$Y_i = \alpha + \beta X_i$$

- How do we interpret the OLS coefficient?
 - ► A unit increase in X produce a coefficient increase in Y
- How do we interpret the constant?
 - ► The constant gives the mean value of Y when X equals to 0
- What is the standard error of a coefficient?
 - ▶ It is a measure of dispersion of our estimates (more in week 7)

$$Y_i = \alpha + \beta X_i$$

- How do we interpret the OLS coefficient?
 - ► A unit increase in X produce a coefficient increase in Y
- How do we interpret the constant?
 - ► The constant gives the mean value of Y when X equals to 0
- What is the standard error of a coefficient?
 - ▶ It is a measure of dispersion of our estimates (more in week 7)
- What is a p-value?
 - ▶ The p-value is our test of statistical significance (In practice, if p > 0.05 then there is no statistically significant effect)
 - ► In the Week 7 lecture I will give you a more precise of interpretation and a clearer discussion of where it comes from.

Next week

- We will be moving to multivariate relationships
- I will begin with a recap of what we did today and then expand on multivariate OLS
- We will be interpreting more models and we will also look at additional regression checks (e.g model fit)
- Until then, make sure you work on the lab worksheets!

Thank You