Maël Auzias

ENSIBS - UBS

October 2014

Figure: teaching.auzias.net

Network Computing courses

Course details

Evaluation

- ► Short test at the beginning of every lesson (5 min)?
- Project
- ► Final exam (1 hour)
- ► All same weighting

Material

► Slides available at teaching.auzias.net (github too)

Course details

Objectives

- ► How do *computers* communicate?
- What are the mechanisms under an HTTP request or a telegram message?
- Networks are all around us, better study them!

Network Computing courses

Presentation Outline

Introduction

Definitions and presentation Network classification HTTP request/response example Models overview (OSI and TCP/IP)

Layers

Data Link Network IP addressing

Introduction

Definitions and presentation

Definitions

- ▶ Network: an interconnected group or system
- ► Internet: world wide interconnected system of networks RFC791 (September 1981)
- ▶ **IP:** Internet **Protocol** provides the functions necessary to deliver a package of bits from a source to a destination over a network
- ► (world wide) Web: network consisting of a collection of Internet websites using HTTP

Network Computing courses

Introduction

L Definitions and presentation

Definitions

- ▶ Router: network hardware providing routing services
- ► Routing: algorithm processed to decide where to forward a packet
- ► Forwarding: action of moving a packet from one NIC to another
- ▶ NIC: Network Interface Card
- ➤ **Switch (hub):** network **hardware** connecting systems using packet switching
- ► Packet switching: forward-like method regardless of the content (destination-based)
- ► NAT: Network Address Translation, router modifying IP address into another IP address.

Network Computing courses

Introduction

Definitions and presentation

Definitions

- ► HTTP: Hypertext Transfer Protocol, application-level protocol for distributed, collaborative, hypermedia information systems draft HTTP2 (July 2014)
- ► FTP: File Transfer Protocol promotes sharing of files, encourages the use of remote computers RFC959 (October 1985)
- ► **TCP:** Transmission Control **Protocol** is intended for use as a highly reliable host-to-host RFC761 (January 1980)
- ▶ **UDP:** User Datagram **Protocol** provides a procedure for application programs to send messages to other programs with a minimum of protocol mechanism RFC768 (August 1980)
- ► RFC: Request For Comments (Internet Draft (ID), RFC, Internet Standard)

Network Computing courses

Introduction

Definitions and presentation

Definitions

- ► Node (network): any entity that can send packets to/receive packets from a network through a NIC
- ▶ Client: computer able to send requests to a server
- ▶ Request: application message destined for a server (order)
- ▶ **Server: computer** able to respond a client's requests
- ▶ Response: application message destined for a client (result)
- ► Fat client: application where most functions are processed by the client itself
- ► Thin client: application where most functions are carried out on a central server

Network Computing courses
Introduction
Network classification

What kind of network is it?

► **BAN:** Body Area Network

► PAN: Personal Area Networks

► (W)LAN: (Wireless) Local Area Networks (home, office, school or airport)

▶ MAN: Metropolitan Area Networks, can cover a whole city

▶ WAN: Wide Area Networks cover a broad area (Internet)

Network Computing courses
Introduction
Network classification

Topologies

- ► Point-to-point: two entities directly connected to each other (tunnel).
- ▶ **Ring:** data go around the ring, unidirectional way network.
- ► **Mesh:** all nodes cooperate in the distribution of data in the network¹.
- ► **Star:** all messages go through the same central node, reducing network failure.
- ▶ Fully connected: all nodes are connected to all other nodes.
- ► Line: bidirectional link between two nodes. Node can only send packet going through its neighbors.
- ▶ **Bus:** all nodes are connected to the same media. Only one can send a packet at a time, which all others then receive.
- ▶ Tree: hierarchical topology, such as a binary tree.

Network Computing courses
Introduction
Network classification

Topologies

Figure: upload.wikimedia.org

Network Computing courses
Introduction
Network classification

Bonus

Figure: Disconnected MANET illustration [?]

¹Hong Kong protesters use a mesh network to organize

Network Computing courses _Introduction

└─ Network classification

Bonus

Figure: Store-carry-and-forward [?]

Network Computing courses Introduction

∟ Network classification

Bonus

Figure: Store-carry-and-forward [?]

Bonus

Figure: Store-carry-and-forward [?]

Network Computing courses

Introduction

Network classification

Bonus

Figure: Store-carry-and-forward [?]

Introduction

LHTTP request/response example

HTTP request/response example

Enter getbootstrap.com in your browser

Source	Destination	Protocol	Length Info
192.168.0.48			76 Standard query 0x4797 A getbootstrap.com
208.67.222.222	192.168.0.48	DNS	108 Standard query response 0x4797 A 192.30.252.154 A 192.30.252.153

Figure: DNS request/response

Source	Destination	Protocol	Length Info
127.0.0.1			74 36159 > http [SYN] Seq=0 Win=43690 Len=0 MSS=65495 SACK PERM=1 TSval=12
127.0.0.13	127.0.0.1	TCP	74 http > 36159 [SYN, ACK] Seq=0 Ack=1 Win=43690 Len=0 MSS=65495 SACK_PERM
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=1 Ack=1 Win=43776 Len=0 TSval=122257 TSecr=12225
127.0.0.1	127.0.0.13	HTTP	356 GET /index.html HTTP/1.1
127.0.0.13	127.0.0.1	TCP	66 http > 36159 [ACK] Seq=1 Ack=291 Win=44800 Len=0 TSval=122259 TSecr=122
127.0.0.13	127.0.0.1	HTTP	354 HTTP/1.1 200 OK (text/html)
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=291 Ack=289 Win=44800 Len=0 TSval=122259 TSecr=1
127.0.0.1	127.0.0.13	HTTP	357 GET /favicon.ico HTTP/1.1
127.0.0.13	127.0.0.1	HTTP	565 HTTP/1.1 404 Not Found (text/html)
127 0 0 1	127 0 0 13	TCP	66 36150 > http://dckil.seg-502 Ack-700 Win-45052 Lon-0 TSval-122260 TSecr-1

Figure: HTTP request/response

Network Computing courses

Introduction

LHTTP request/response example

More like this...

Figure: wikimedia.org

Network Computing courses

Introduction

HTTP request/response example

How do messages reach their destination?

Figure: acenk90.files.wordpress.com

Network Computing courses

Introduction

Models overview (OSI and TCP/IP)

How does it work? From signal to application...

Figure: OSI model

Introduction

└ Models overview (OSI and TCP/IP)

N^{th} layer communicate with N^{th} layer..

Figure: layer to layer

Network Computing courses

Introduction

Models overview (OSI and TCP/IP)

One single protocol, one single layer

Network Computing courses

Introduction

└ Models overview (OSI and TCP/IP)

.. thanks to 3-th layers

Figure: layers and routing

Network Computing courses

Introduction

└─Models overview (OSI and TCP/IP)

Encapsulation

Figure: Encapsulation

```
Network Computing courses \[ \  \  \  \  \] Layers
```

Presentation Outline

ntroduction

Definitions and presentation Network classification HTTP request/response example Models overview (OSI and TCP/IP) Physical

Layers

Data Link Network IP addressing

Network Computing courses

Layers
Physical

Hardware medium

- ► IEEE 802.3 (a.k.a. Ethernet): <100Gbit/s
- ► IEEE 802.11 (a.k.a. Wi-Fi): <50 Mbit/s (802.11ad goes up to 6.75 Gbit/s)
- ► IEEE 802.15.1 (a.k.a. Bluetooth): <1 Mbit/s
- ► IEEE 802.15.4 (a.k.a. ZigBee): <250 kbit/s
- ► IEEE 802.16 (a.k.a. Wi-Max): <40 Mbit/s
- ► IEEE 1394 (a.k.a. Firewire): <3200 Mbit/s
- ▶ USB, serial port such as RS-232...

Network Computing courses

Layers
Physical

Aims

- ► Interface data link layer,
- ► (De)Encode,
- ► Transmit: 1 after 0 (after 0 or 1, after 0... or 1)

Network Computing courses

Layers
Left Physical

Hardware medium: IEEE 802.3 (Ethernet)

Figure: RJ45 connector

Layers
Physical

Hardware medium: IEEE 802.15.1 (Bluetooth)

Figure: Bluetooth card

Network Computing courses

Layers

∟ Physical

Hardware medium: IEEE 802.16 (Wi-Max)

Figure: Wi-Max antenna

Network Computing courses

 $\mathrel{\mathrel{\bigsqcup}}_{\mathsf{Layers}}$

∟_{Physical}

Hardware medium: IEEE 802.15.4 (ZigBee)

Figure: ZigBee card

Network Computing courses

Layers

└ Physical

Hardware medium: IEEE 1394 (Firewire)

Figure: Firewire connector

Network Computing courses

Layers

Physical

Encoding

- ► MLT3 (Multi-Level Transmit): state change for 1s over 3 levels, stay in the same state for 0s
- ► AMI (Alternate Mark Inversion): state 0 for 0s, state +/-1 for 1s
- ► Manchester: voltage transition (rising/falling edge mean 1/0)
- ▶ BMC (Biphase Mark Code): change its state for 1s, stay on the same state for 0s
- ▶ and so on...

Network Computing courses Layers

∟ Physical

Encoding: Alternate Mark Inversion

Figure: Alternate Mark Inversion

Network Computing courses

Layers

∟ Physical

Encoding: Multi-Level Transmit

Figure: Multi-Level Transmit

Network Computing courses

Layers
Left Physical

Encoding: Manchester

Figure: Manchester

Network Computing courses $\mathrel{\sqsubseteq}_{\mathsf{Layers}}$

 $\vdash_{\mathsf{Physical}}$

Encoding: Biphase Mark Code

Figure: Biphase Mark Code

Network Computing courses

 $\mathrel{\mathrel{\sqsubseteq}_{\mathsf{Layers}}}$ $\mathrel{\sqsubset_{\mathsf{Physical}}}$

Error detection

- ▶ Repetition (hum...)
- ► Parity (XOR)
- Checksum
- ► CRC (Cyclic redundancy check): with a polynomial divison
- ► Hash
- ▶ and so on...

Network Computing courses

Layers

∟ Physical

Transmitting

Figure: Amplitude and phase modulation

Network Computing courses

Layers ∟ Physical

Error correcting

- ► Repetition (again)
- ► Hamming
- ▶ MDPC (Multidimensional parity-check code)

∟_{Physical}

Correction: MDPC

Raw data to send: 0x01 02 03 04

0×01	0×02	0×03
0×03	0×04	0×07
0×04	0×06	

Figure: Data received with MDPC

Data sent (with MDPC): 0x01 02 03 03 04 07 04 06

Network Computing courses

 $\mathrel{\mathrel{\sqsubseteq}_{\mathsf{Layers}}}$

L Data Link

Layer composition (of its two sublayers)

- 1. Logical Link Control (LLC):
 - ▶ end to end flow control
 - ▶ end to end error control
 - ▶ (transmitting/receiving) protocols, over MAC sublayer, multiplexing
- 2. Media Access Control (MAC):
 - physical (hardware) addressing
 - collision detection and retransmission
 - data packet scheduling (and queuing)
 - QoS
 - VLAN

Network Computing courses

Layers

L Data Link

Aims

- ► Interface network layer,
- ▶ Delivery to unique(?) hardware addresses,
- Framing,
- Data transfer

Network Computing courses Lavers L Data Link

Carrier Sense Multiple Access with Collision Avoidance

Figure: CSMA CA

Layer 2 Ethernet packet

MAC dest. (6)	MAC src. (6)	VLAN tag* (4)	Ethertype (2)
Payload (42-1500)	Frame check s	sequence (4)	

Figure: Layer 2 Ethernet packet

optional, Content (size in bytes)

Ethertype 0x	Protocol
0800	IPv4
0806	ARP
0842	Wake-on-LAN
86dd	IPv6

Figure: Data received with MDPC

Network Computing courses

Layers

L Data Link

ARP example

0000	ff	ff	ff	ff	ff	ff	fa	ba	00	ab	ab	af	80	06	00	01
0010	80	00	06	04	00	01	fa	ba	00	ab	ab	af	ac	11	22	37
0020	00	00	00	00	00	00	ac	11	00	f9	00	00	00	00	00	00
0030	00	00	00	00	00	00	00	00	00	00	00	00				

Figure: ARP request

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

```
Network Computing courses
```

Layers

LData Link

ARP example

```
        0000
        ff
        ff
        ff
        ff
        ff
        fa
        ba
        00
        ab
        ab
        06
        00
        01

        0010
        08
        00
        06
        04
        00
        01
        fa
        ba
        00
        ab
        ab
        af
        ac
        11
        22
        37

        0020
        00
        00
        00
        00
        ac
        11
        00
        f9
        00
        00
        00
        00

        0030
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
```

Figure: ARP request

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

Network Computing courses

 $\mathrel{\sqsubseteq}_{\mathsf{Layers}}$

L Data Link

ARP example

```
      0000
      fa
      ba
      00
      ab
      ab
      af
      be
      be
      00
      00
      eb
      eb
      08
      06
      00
      01

      0010
      08
      00
      06
      04
      00
      01
      be
      be
      00
      00
      eb
      eb
      ac
      11
      00
      f9

      0020
      fa
      ba
      00
      ab
      ab
      af
      ac
      11
      22
      37
      00
      00
      00
      00
      00

      0030
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
```

Figure: ARP reply

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

```
Network Computing courses

Layers

Data Link
```

ARP example

Figure: ARP reply

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

Network Computing courses

Layers

Network

Concepts

- ► IP addressing fundamentals,
- ► Classfull IP addressing,
- ▶ Subnet and VLSM (Variable length subnet masks),
- ► CIDR (Classless inter-domain routing),
- Routing,
- ► IPv6.

Network Computing courses

Layers

∟_{Network}

Aims

- ► Interface transport layer,
- ► Host addressing,
- ► End-to-end packet transmission (data link? Connectionless? Switch? Router?),
- ► Routing, load balancing

Network Computing courses

Layers

Network

IP addressing fundamentals

IP addressing fundamentals

Masks

- ► Separates network and host bits,
- ► MSB **always** are ones and then zeros! 255.254.255.0 is not possible,
- ▶ Indicates how many bits are used for the network part:
 - ► A 8-bit mask leaves 24 bits for the hosts,
 - ► A 16-bit mask leaves 16 bits for the hosts,
 - ► A 24-bit mask leaves 8 bits for the hosts.
 - ► A N-bit mask leaves 32-N bits for the hosts.
- ► Two different masks (differences seen further):
 - Network mask,
 - Subnet mask.

Network Computing courses

Layers

└ Network

IP addressing fundamentals

Is that an address?

- ► Network address,
- ► Hosts,
- ► Broadcast address.

Within the same network

- ► All addresses have the same network bits,
- ► Network address has zeros for host bits: x.x.x.0*,
- ► All hosts have different host bits: x.x.x.[0-1]*,
- ▶ Broadcast address has ones for host bits: x.x.x.1*.

Network Computing courses

Layers

∟_{Network}

IP addressing fundamentals

Network Computing courses

Layers

└ Network

IP addressing fundamentals

Mask /24	255	255	255	0
254 hosts	11111111	11111111	11111111	00000000
Network address	192	168	1	0
Network address	11000000	10101000	0000001	00000000
First host	192	168	1	1
I II'SL IIOSL	11000000	10101000	00000001	00000001
Last host	192	168	1	254
Last 110st	11000000	10101000	0000001	11111110
Broadcast address	192	168	1	255
Dioaucast address	11000000	10101000	00000001	111111111

Figure: IP address example 1

IP addressing fundamentals

Mask /16	255	255	0	0
65.534 hosts	11111111	11111111	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First host	172	64	0	1
I II'SL IIOSL	10101100	01000000	00000000	0000001
Last host	172	64	255	254
Last 110st	10101100	01000000	11111111	11111110
Broadcast address	172	64	255	255
Dioaucast address	10101100	01000000	11111111	11111111

Figure: IP address example 2

Network Computing courses

Lavers

└ Network

IP addressing fundamentals

Public addresses

- ► Most of IP addresses
- ► Registered ISP and large organizations inherit blocks of public addresses from IANA²
- ▶ Usage of not registered public addresses is forbidden.

Private addresses

- ▶ Privates addresses are A, B and C classes (not all, see after)
- ► No registration needed
- ▶ Not routed across the Internet
- ▶ Proxy, NAT and private addresses solved IPv4 shortage.

Layers

∟_{Network}

IP addressing fundamentals

Formula: how many hosts with a N-bit mask?

 $2^{32-N}-2$, the -2 moves out network and broadcast addresses which are not hosts.

▶ 24-bit mask: $2^{32-24} - 2 = 2^8 - 2 = 254$ hosts

▶ 16-bit mask: $2^{32-16} - 2 = 2^{16} - 2 = 65.534$ hosts

▶ 8-bit mask: $2^{32-8} - 2 = 2^{24} - 2 = 16.777.214$ hosts

Network Computing courses

Layers

∟_{Network}

Classful IP Addressing

Class	А	В	С
First octet	1 - 126	128 - 191	192 - 223
First octet 0b	0*	10*	110*
Network mask	255.0.0.0	255.255.0.0	255.255.255.0
NELWORK IIIask	/8	/16	/24
IP addresses range	1.0.0.0	128.0.0.0	192.0.0.0
ir addresses range	126.0.0.0	191.255.0.0	223.255.255.0
Private range	10.0.0.0	176.16.0.0	192.168.0.0
r rivate range	10.255.255.255	176.31.255.255	192.168.255.0
Number of hosts	16.777.214	65.534	254

Figure: Three main classes

Where did 127.0.0.0/8 go ?!

²Internet Assigned Numbers Authority

Network Computing courses $\bigsqcup_{\mathsf{Lavers}}$

└ Network

Classful IP Addressing

Class D

► First octet: 224 - 239

► First octet pattern: 1110*

► Theses IP addresses are multicast addresses.

Class E

Everything left

► Experimental class.

Network Computing courses

Layers

└ Network

Classful IP Addressing

- ► Class A (16 m-addresses) and B (65 k-adresses) are too large!
- ► Class C (254 addresses) is manageable. A and B are not, and then not fully utilized... That's a waste of IP addresses!

Means to limit the number of nodes on a network (regardless of the class) and, thus, improve the manageability, are needed. Three means for it:

- Subnet,
- ► VLSM (Variable Length Subnet Mask),
- ► CIDR (Classless Inter-Domain Routing).

Network Computing courses

Layers

∟_{Network}

Classful IP Addressing

Reserved addresses

- ▶ 0.0.0.0 used in routing (seen further)
- ► 127.0.0.0/8: loopback addresses (127.0.0.1 127.255.255.254).

Network Computing courses

Layers

∟_{Network}

Subnet and VLSM

- ► Class A (16 m-addresses) and B (65 k-adresses) are too large!
- ► Class C (254 addresses) is manageable. A and B are not, and then not fully utilized... That's a waste of IP addresses!

Subnet and VLSM

Mask /16	255	255	0	0
65.534 hosts	11111111	11111111	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First host	172	64	0	1
1 1151 11051	10101100	01000000	00000000	0000001
Last host	172	64	255	254
Last 110st	10101100	01000000	11111111	11111110
Broadcast address	172	64	255	255
Dioaucast address	10101100	01000000	11111111	11111111

Figure: IP address example 2

Network Computing courses

Layers

 $\mathrel{\sqsubseteq_{\mathsf{Network}}}$

Subnet and VLSM

Mask /10	255	192	0	0
4.194.302 hosts	11111111	11000000	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First host	172	64	0	1
1 1151 11051	10101100	01000000	00000000	0000001
Last host	172	127	255	254
Last 110st	10101100	01111111	11111111	11111110
Broadcast address	172	127	255	255
Divaucast address	10101100	01111111	11111111	11111111

Figure: IP address example 4

Network Computing courses

Layers

∟ Network

Subnet and VLSM

Mask /12	255	240	0	0
1.048.574 hosts	11111111	11110000	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First host	172	64	0	1
1 1151 11051	10101100	01000000	00000000	00000001
Last host	172	79	255	254
Last 110st	10101100	01001111	11111111	11111110
Broadcast address	172	79	255	255
Dioaucast address	10101100	01001111	11111111	11111111

Figure: IP address example 3

Network Computing courses

Layers

∟_{Network}

Subnet and VLSM

Mask /31	255	255	255	254
0 host	11111111	11111111	11111111	11111110
Network address	172	64	0	254
Network address	10101100	01000000	00000000	1111111 <mark>0</mark>
First host	172	64	0	?
I IISt IIOSt	10101100	01000000	00000000	1111111?
Last host	172	64	255	?
Last 110st	10101100	01000000	00000000	1111111?
Broadcast address	172	64	255	255
Dioducast address	10101100	01000000	00000000	11111111

Figure: IP address example 5

Layers

└ Network

Subnet and VLSM

Mask /30	255	255	255	252
2 hosts	11111111	11111111	11111111	11111100
Network address	172	64	0	252
ivetwork address	10101100	01000000	00000000	111111100
First host	172	64	0	253
I II'SL IIOSL	10101100	01000000	00000000	111111101
Last host	172	64	255	254
Last 110st	10101100	01000000	00000000	111111110
Broadcast address	172	64	255	25 5
Dioaucast address	10101100	01000000	00000000	1111111111

Figure: IP address example 6

Network Computing courses

Layers

└ Network

CIDR

Classless Inter-domain Routing?

► Wait! What is routing?

Network Computing courses

Layers

∟_{Network}

	Netmask	CIDR	hosts
255.255.255.255	11111111.111111111.111111111.11111111	/32	single address
255.255.255.254	11111111.111111111.111111111.11111110	/31	Unusable
255.255.255.252	11111111.111111111.111111111.11111100	/30	2
255.255.255.248	11111111.111111111.111111111.11111000	/29	6
255.255.255.240	11111111.111111111.111111111.11110000	/28	14
255.255.255.224	11111111.111111111.111111111.11100000	/27	30
255.255.255.192	11111111.111111111.11111111.11000000	/26	62
255.255.255.128	11111111.111111111.111111111.10000000	/25	126
255.255.255.0	11111111.111111111.11111111.00000000	/24	254
255.255.254.0	11111111.11111111.111111110.00000000	/23	510
255.255.252.0	11111111.111111111.111111100.00000000	/22	1.022
255.255.248.0	11111111.11111111.11111000.00000000	/21	2.046
255.255.240.0	11111111.111111111.11110000.00000000	/20	4.094
255.255.224.0	11111111.111111111.11100000.00000000	/19	8.190
255.255.192.0	11111111.11111111.11000000.00000000	/18	16.382
255.255.128.0	11111111.111111111.10000000.00000000	/17	32.766
255.255.0.0	11111111.111111111.00000000.00000000	/16	65.534
255.254.0.0	11111111.111111110.00000000.00000000	/15	131.070
255.252.0.0	11111111.111111100.00000000.00000000	/14	262.142
255.248.0.0	11111111.11111000.00000000.00000000	/13	524.286
255.240.0.0	11111111.11110000.00000000.00000000	/12	1.048.574
255.224.0.0	11111111.11100000.00000000.00000000	/11	2.097.152
255.192.0.0	11111111.11000000.00000000.00000000	/10	4.194.302
255.128.0.0	11111111.10000000.00000000.00000000	/9	8.388.606
255.0.0.0	11111111.00000000.00000000.00000000	/8	16.777.214
254.0.0.0	11111110.00000000.00000000.00000000	/7	33.554.430
252.0.0.0	11111100.00000000.00000000.00000000	/6	67.108.862
248.0.0.0	11111000.00000000.00000000.00000000	/5	134.217.726
240.0.0.0	11110000.00000000.00000000.00000000	/4	268.435.454
224.0.0.0	11100000.00000000.00000000.00000000	/3	536.870.910
192.0.0.0	11000000.000000000.00000000.00000000	/2	1.073.741.822
128.0.0.0	1000000.00000000.0000000.00000000	/1	2.147.483.646
0.0.0.0	0000000.0000000.0000000.0000000	/0	IP space

Figure: Subnet mask cheat sheet

Network Computing courses

Layers

└ Network

Routing Principles

Algorithm processed to decide where to forward a packet

Any router must

- know where any packet should be directed
- ▶ send directly the packets to the packet's destination if the router and the destination are on the same network

Any node

- on any network can communicate directly with all the nodes within the same network
- ► can connect to any node using its gateway
- needs to be aware of its gateway to communicate with nodes on other networks

```
Network Computing courses

Layers

Network
```

Routing Principles

Route

- Destination
- Gateway
- Masks
- Metric

```
>sudo route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.254 0.0.0.0 UG 0 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
```

Figure: Routing table

Network Computing courses

Layers

Network

Routing Principles

Example

What would the routing table of this router will look like?

Network Computing courses
Layers
Network

Routing Principles

```
>sudo route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.254 0.0.0.0 UG 0 0 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
```

Figure: Routing table

0.0.0.0 ?

- ▶ Default address
- ▶ Default route
- Default gateway

```
Network Computing courses

Layers

Network
```

Routing Principles

Static or dynamic?

We will see this later

Network Computing courses Lavers

∟_{Network}

CIDR

Combine 2+ networks' into one bigger to facilitate routing.

Classless Inter-domain Routing?

- ► Does a routing table having both (192.168.0.0/24, E0), (192.168.1.0/24, E0), (10.0.0.0/8, S0) can be shorten?
- Does a routing table having both (192.168.0.0/24, E0), (192.168.1.0/24, E0), (192.168.8.0/24, E0), (10.0.0.0/8, S0) can be shorten?
- ➤ Does a routing table having both (192.168.0.0/24, E0), (192.168.4.0/24, E0), (192.168.1.0/24, E1), (10.0.0.0/8, S0) can be shorten?

Network Computing courses

Layers

∟_{Network}

Routing Protocol

RIP v1

- Classful routing
- ► Periodic updates (30 sec) ..
- ▶ ..by broadcasting (!)
- ▶ Metric is hop-count (max = 15, infinite = 16)
- ► Timer (180 sec) to tag route as invalid (metric = 16)
- ▶ no subnet, no VLSM, no CIDR, no router authentication

Network Computing courses

Layers

∟ Network

Routing Protocol

▶ RIP: Routing Information Protocol

► OSPF: Open Shortest Path First

▶ EIGRP: Enhanced Interior Gateway Routing Protocol

Network Computing courses

Layers

∟_{Network}

Routing Protocol

RIP v2

- ► Classless routing
- ► Multicast (224.0.0.9)
- ▶ VLSM support
- ► Route summarization
- ► "Authentication" (MD5)

RIPng is the next RIP version for support of IPv6

Layers

└ Network

Routing Protocol

- 1. Router getting online broadcasts Request message
- 2. RIP Router send broadcasts Response message with their routing table
- 3. When Update timers (from other routers) expire routing table³ is sent again
- 4. When Invalid timer expires, the metric of the route is set to 16 (unreachable)
- 5. When Flush timer expires, the 16-metric routes are removed from the routing table
- 6. When a new router (or new metric) is sent, a Hold-down timer is started to stabilize the network.

Network Computing courses

Lavers

└ Network

Routing Protocol

EIGRP

- ► Enhanced IGRP (to support classless routing)
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ► Build a topology of the network
- Dijkstra
- Metric = f(bandwidth, load, delay, reliability)
- ► Authentication support

Network Computing courses

Layers

∟_{Network}

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ► Build a topology of the network
- Dijkstra
- ► Metric = f(hop-count, bandwidth, link reliability)
- Subdivided into area (a 32-bit number)
- Multicast
- ► Authentication support (update only from trusted routers)

Network Computing courses

Layers

∟_{Network}

IPv6

Aims

- ► Support billions of hosts (even with inefficient IP addressing)
- ▶ Reduce routing table size
- ► Simplified protocol to allow routers to process packets faster
- Better security
- ▶ Better real-time QoS
- ▶ Better multicast diffusion (scope)
- ▶ Being able to move, without changing IP address
- ▶ Make the protocol able to evolve
- ▶ Make the protocol able to coexist with newer version

³not always all the routing table

Network Computing courses
Layers

└ Network

IPv6

IPv4 vs IPv6

- ▶ not compatible
- ▶ IPv4 address: 4 octets, IPv6: 16 octets $(2^{128} = 3 \times 10^{138})$
- ▶ Packet Header, IPv6: 7 fields, IPv4:13 (faster to process)
- ▶ IP options: some required options are now optionals (faster to process)
- ► Notation:
 - ▶ 8000:0000:0000:0000:0123:4567:89AB:CDEF
 - ▶ 8000::0123:4567:89AB:CDEF
 - · ::192.168.2.3
- ► Unicast address format:

bits	48 (or more)	16 (or fewer)	64
field	routing prefix	subnet id	interface identifier

Figure: Unicast IPv6 address format

Network Computing courses

Layers

Lessons are going on!

To be continued...;)

Network Computing courses

Layers

∟_{Network}

IPv6

Figure: IPv6 adoption (among Google users)⁴

Belgium: 28%, USA and Germany: 11%

Network Computing courses

Layers

∟_{Network}

Hope you liked it and learnt about networking!

Figure: teaching.auzias.net

⁴https://www.google.com/intl/en/ipv6/statistics.html