EXERCICE N°1 (Le corrigé)

Soit x et y deux réels tels que x < -5 et y < 7. Que peut-on en déduire pour les expressions suivantes ?

$$x < -5$$

$$\Leftrightarrow 2x < -10$$

On a **multiplié** chaque membre par un nombre **strictement positif**.

Donc on a **pas changé le sens** de l'inégalité.

2)
$$-3 v$$

$$y < 7$$

$$\Leftrightarrow -3y > -21$$

On a **multiplié** chaque membre par un nombre strictement négatif.

Donc on a **changé le sens** de l'inégalité.

3)
$$x+y$$

$$x < -5 \text{ et } y < 7$$

$$donc x + y < -5 + 7$$

On a utilisé la **propriété** n°3

$$\Leftrightarrow x+y < 2$$

EXERCICE N°2 (Le corrigé)

Soit x un nombre réel tel que $x \le 2$ et y un nombre réel tel que $y \le -6$ Que peut-on en déduire pour les expressions suivantes ?

$$x \le 2$$

$$\Leftrightarrow 3x \le 6$$

On a **multiplié** chaque membre par un nombre **strictement positif**.

Donc on a pas changé le sens de l'inégalité.

4)
$$2x+3y$$

$$x \le 2$$

$$\Leftrightarrow 2x \le 4$$
Et
$$y \le -6$$

$$\Leftrightarrow 3x \le -18$$
Donc
$$2x+3y \le 4+(-18)$$

$$\Leftrightarrow 2x+3y \le -14$$

On a utilisé la **propriété** n°3

2)
$$-4 y$$

$$y \le -6$$

$$\Leftrightarrow -4 \ y \ge 24$$

On a **multiplié** chaque membre par un nombre **strictement négatif**.

Donc on a **changé le sens** de l'inégalité.

5)
$$-x-2y$$

$$x \le 2$$

$$\Leftrightarrow -x \ge -2$$
Et
$$y \le -6$$

$$\Leftrightarrow -2y \ge 12$$
Donc
$$-x + (-2y) \ge -2 + 12$$

 $\Leftrightarrow -x-2y \ge 10$ Il est important de comprendre qu'on a bien **utilisé** la **propriété** n°3 et que nous n'avons pas soustrait des inégalités.

3)
$$x+y$$

$$x \le 2 \text{ et } y \le -6$$

$$\text{donc } x + y \le 2 + (-6)$$

On a utilisé la **propriété** n°3

$$\Leftrightarrow x + y \leq -4$$

EXERCICE N°3 (Le corrigé)

Un triangle ABC est tel que AB=4, AC<5,2 et BC<6Que peut-on dire du périmètre du triangle ABC?

Posons
$$P_{ABC} = AB + AC + BC$$
.

$$P_{ABC} = 4 + AC + BC$$

De plus AC < 5,2 et BC < 6

On en déduit que : P_{ABC} < 4+5,2+6

Ainsi
$$P_{ABC} < 15,2$$

EXERCICE N°4 (Le corrigé)

Donner tous les nombres entiers relatifs n tels que :

1)
$$-1,2 \le n < 3$$

$$-1$$
; 0; 1 et 2

On ne prend pas 3 car l'inégalité est stricte.

2)
$$-4 \le n < 3.7$$

$$-4$$
; -3 ; -2 ; -1 ; 0 ; 1 ; 2 et 3

On prend 4 car l'inégalité est large.

EXERCICE N°5

(Le corrigé)

Pour chaque implication, dire si elle vraie au fausse.

1)
$$x > 6 \Rightarrow x > 5$$

Vrai x>6 et 6>5 donc x>5

On appelle cela *la transitivité* de l'inégalité.

4)
$$x > -1 \implies x \ge -1$$

Vrai

Un nombre strictement supérieur à -1 est supérieur ou égal à -1 (Même si il ne sera jamais égal à -1 ...)

$$2) x \leq 3 \Rightarrow x > 2$$

Faux

Par exemple : pour x=00 est inférieur ou égal à 3 mais 0 n'est pas strictement supérieur à 2.

Pour démontrer qu'une assertion est fausse, il suffit de proposer un contre-exemple.

5)
$$-2 \le x \le 0 \implies x \le 0$$

Vrai

Tous les nombres compris entre -2 et 0 inclus sont bien inférieurs ou égaux à 0.

3)
$$x \leq 4 \Rightarrow x < 4$$

Faux

Par exemple : pour x=44 est inférieur ou égal à 4 mais 4 n'est pas strictement supérieur à 4.

6)
$$2 \le x \le 5 \implies 0 \le x \le 7$$

Vrai

Tous les nombres compris entre 2 et 5 inclus sont compris entre 0 et 7

On retiendra que « le plus restrictif implique le moins restrictif ».