

planetmath.org

Math for the people, by the people.

ideals in matrix algebras

Canonical name IdealsInMatrixAlgebras
Date of creation 2013-03-22 13:59:28
Last modified on 2013-03-22 13:59:28
Owner mathcam (2727)
Last modified by mathcam (2727)

Numerical id 10

Author mathcam (2727)

Entry type Topic Classification msc 15A30 Let R be a ring with 1. Consider the ring $M_{n\times n}(R)$ of $n\times n$ -matrices with entries taken from R.

It will be shown that there exists a one-to-one correspondence between the (two-sided) ideals of R and the (two-sided) ideals of $M_{n\times n}(R)$.

For $1 \le i, j \le n$, let E_{ij} denote the $n \times n$ -matrix having entry 1 at position (i, j) and 0 in all other places. It can be easily checked that

$$E_{ij} \cdot E_{kl} = \begin{cases} 0 & \text{iff} & k \neq j \\ E_{il} & \text{otherwise.} \end{cases}$$
 (1)

Let \mathfrak{m} be an ideal in $M_{n\times n}(R)$.

Claim. The set $\mathfrak{i} \subseteq R$ given by

$$\mathfrak{i} = \{ x \in R \mid x \text{ is an entry of } A \in \mathfrak{m} \}$$

is an ideal in R, and $\mathfrak{m} = M_{n \times n}(\mathfrak{i})$.

Proof. $\mathbf{i} \neq \emptyset$ since $0 \in \mathbf{i}$. Now let $A = (a_{ij})$ and $B = (b_{ij})$ be matrices in \mathfrak{m} , and $x, y \in R$ be entries of A and B respectively, say $x = a_{ij}$ and $y = b_{kl}$. Then the matrix $A \cdot E_{jl} + E_{ik} \cdot B \in \mathfrak{m}$ has x + y at position (i, l), and it follows: If $x, y \in \mathbf{i}$, then $x + y \in \mathbf{i}$. Since \mathbf{i} is an ideal in $M_{n \times n}(R)$ it contains, in particular, the matrices $D_r \cdot A$ and $A \cdot D_r$, where

$$D_r := \sum_{i=1}^n r \cdot E_{ii}, r \in R.$$

thus, $rx, xr \in \mathfrak{i}$. This shows that \mathfrak{i} is an ideal in R. Furthermore, $M_{n \times n}(\mathfrak{i}) \subseteq \mathfrak{m}$.

By construction, any matrix $A \in \mathfrak{m}$ has entries in i, so we have

$$A = \sum_{1 \le i, j \le n} a_{ij} E_{ij}, a_{ij} \in \mathfrak{i}$$

so $A \in m_{n \times n}(i)$. Therefore $\mathfrak{m} \subseteq M_{n \times n}(i)$.

A consequence of this is: If F is a field, then $M_{n\times n}(F)$ is simple.