Lattice properties of acyclic pipe dreams Propriétés de treillis des arrangements de tuyaux acycliques

Pipe dreams

Noémie Cartier

18 octobre 2023

Directed by:

Florent Hivert, LISN, Université Paris-Saclay Vincent Pilaud, CNRS, LIX, École Polytechnique

Subword complexes

Pipe dreams 0000 0000 Extension to Coxeter groups

O

OO

Lattices and lattice quotients

Qu'est-ce qu'un treillis ?

Lattices and lattice quotients

Qu'est-ce qu'un treillis ?

Ensemble partiellement ordonné ou **poset** : muni d'une relation d'ordre

réflexive

$$x \leq x$$

transitive

$$x \leqslant y, \ y \leqslant z \Rightarrow x \leqslant z$$

antisymétrique

$$x \leq y, \ y \leq x \Rightarrow x = y$$

Pipe dreams

Ensemble partiellement ordonné ou poset: muni d'une relation d'ordre

réflexive

$$x \leq x$$

transitive

$$x \leqslant y, \ y \leqslant z \Rightarrow x \leqslant z$$

antisymétrique

$$x \leqslant y, \; y \leqslant x \Rightarrow x = y$$

Pipe dreams

Weak order and simple reflections

Ensemble partiellement ordonné ou poset: muni d'une relation d'ordre

réflexive

$$x \leq x$$

transitive

$$x \le y, \ y \le z \Rightarrow x \le z$$

antisymétrique

$$x \leqslant y, \ y \leqslant x \Rightarrow x = y$$

Extension linéaire : ordre total compatible avec l'ordre partiel

Qu'est-ce qu'un treillis ?

Un poset (X, \leq) est un **treillis** si toute paire $a, b \in X$ possède :

- un **join** ou borne supérieure $a \lor b$;
- un **meet** ou borne inférieure $a \wedge b$.

Qu'est-ce qu'un treillis ?

Pipe dreams

Un poset (X, \leq) est un **treillis** si toute paire $a, b \in X$ possède :

- **un join** ou borne supérieure $a \vee b$;
- un **meet** ou borne inférieure $a \wedge b$.

Exemples classiques:

- le **treillis booléen** $(\mathcal{P}(A),\subseteq)$: union et intersection;
- l'ordre de divisibilité sur les entiers positifs : PGCD et PPCM

\equiv relation d'équivalence sur X treillis est une congruence de treillis si :

$$x \equiv x' \\ y \equiv y'$$
 \iff $x \lor y \equiv x' \lor y' \\ x \land y \equiv x' \land y'$

Pipe dreams

$$a \lor c = c \not\equiv d = b \lor c$$

 \equiv relation d'équivalence sur X treillis est une congruence de treillis si :

Pipe dreams

$$\begin{array}{ccc} x \equiv x' & \longleftrightarrow & x \vee y \equiv x' \vee y' \\ y \equiv y' & \longleftrightarrow & x \wedge y \equiv x' \wedge y' \end{array}$$

 \Rightarrow quotient de treillis X/\equiv : poset induit par \leqslant sur les classes d'équivalence de ≡

Ordre faible sur les permutations :

Ordre faible sur les permutations :

Défini par l'inclusion sur les ensembles d'inversions :

$$inv(\omega) := \{i < j \text{ and } \omega^{-1}(i) > \omega^{-1}(j)\} \rightarrow (1,2) \in inv(24135)$$

Ordre faible sur les permutations :

Défini par l'inclusion sur les ensembles d'inversions :

$$inv(\omega) := \{i < j \text{ and } \omega^{-1}(i) > \omega^{-1}(j)\} \rightarrow (1,2) \in inv(24135)$$

L'ordre faible sur \mathfrak{S}_n est un **treillis** (Guilbaud-Rosenstiehl, '63).

Un quotient de treillis de l'ordre faible : treillis de Tamari (Tamari, '62)

Un quotient de treillis de l'ordre faible : treillis de Tamari (Tamari, '62)

Structure de données : arbre binaire de recherche

0000000

Un quotient de treillis de l'ordre faible : treillis de Tamari (Tamari, '62)

Pipe dreams

Structure de données : arbre binaire de recherche

Opération d'équilibrage : la rotation (Adelson-Velsky-Landis, '62)

0000000

Un quotient de treillis de l'ordre faible : treillis de Tamari (Tamari, '62)

Structure de données : arbre binaire de recherche

Des permutations aux arbres binaires : l'insertion dans un ABR

0000000

Weak order and simple reflections

Un quotient de treillis de l'ordre faible : treillis de Tamari (Tamari, '62)

0000000

Weak order and simple reflections

Un quotient de treillis de l'ordre faible : treillis de Tamari (Tamari, '62)

L'algorithme d'insertion dans les ABR définit un morphisme de treillis (Hivert-Novelli-Thibon, '05).

Un quotient de treillis de l'ordre faible : treillis de Tamari (Tamari, '62)

$$UabV \lessdot UbaV$$

 $31245 \lessdot 31425$

$$UabV \lessdot UbaV$$
 $31245 \lessdot 31425$ $\omega \lessdot \omega au_i$ with $\omega(i) < \omega(i+1)$

$$UabV \lessdot UbaV$$
 $31245 \lessdot 31425$ $\omega \lessdot \omega au_i ext{ with } \omega(i) \lessdot \omega(i+1)$

$$\Rightarrow$$
 importance of generating set $S = \{ \tau_i = (i, i+1) \mid 1 \leqslant i < n \}$

$$UabV \lessdot UbaV$$
 $31245 \lessdot 31425$
 $\omega \lessdot \omega \tau_i \text{ with } \omega(i) \lessdot \omega(i+1)$

$$\Rightarrow$$
 importance of generating set $S = \{\tau_i = (i, i+1) \mid 1 \leqslant i < n\}$

Computing products:
$$\tau_3\tau_2\tau_1\tau_2\tau_3\tau_2\tau_1 = ?$$

Cover relations of the weak order:

$$UabV \lessdot UbaV$$
 $31245 \lessdot 31425$ $\omega \lessdot \omega \tau_i \text{ with } \omega(i) < \omega(i+1)$

 \Rightarrow importance of generating set $S = \{\tau_i = (i, i+1) \mid 1 \leqslant i < n\}$

Computing products: $\tau_3\tau_2\tau_1\tau_2\tau_3\tau_2\tau_1 = ?$

Sorting network ↔ simple reflections product

Words on simple reflections

Weak order and simple reflections

Properties of words on *S*:

■ minimal length for ω : $\ell(\omega) = |\operatorname{inv}(\omega)|$ (reduced words)

Words on simple reflections

Properties of words on S:

■ minimal length for ω : $\ell(\omega) = |\operatorname{inv}(\omega)|$ (reduced words)

Properties of words on *S*:

■ minimal length for ω : $\ell(\omega) = |\operatorname{inv}(\omega)|$ (reduced words)

 $\blacksquare \ \pi \leqslant \omega \ \text{iff} \ \omega = \pi \sigma \ \text{and} \ \ell(\omega) = \ell(\pi) + \ell(\sigma) \colon \pi \ \text{is a prefix of} \ \omega$

Pipe dreams

Weak order and simple reflections

Properties of words on *S*:

■ minimal length for ω : $\ell(\omega) = |\operatorname{inv}(\omega)|$ (reduced words)

- $\pi \leqslant \omega$ iff $\omega = \pi \sigma$ and $\ell(\omega) = \ell(\pi) + \ell(\sigma)$: π is a **prefix** of ω
- if $\pi \leq \omega$ then any reduced expression of ω has a reduced expression of π as a **subword**

$SC(Q, \omega)$ the **subword complex** on Q representing ω :

- ground set: indices of Q
- facets: complements of reduced subwords representing ω

(Knutson-Miller, '04)

$SC(Q, \omega)$ the **subword complex** on Q representing ω :

- ground set: indices of *Q*
- \blacksquare facets: complements of reduced subwords representing ω

(Knutson-Miller, '04)

An example:

Facet $\{1, 2, 3, 8, 9\}$ of $SC(\tau_4\tau_3\tau_2\tau_1\tau_4\tau_3\tau_2\tau_4\tau_3\tau_4, 25143)$

Pipe dreams

Subwords and flips

Fix Q word on $S, \omega \in \mathfrak{S}_n$ $SC(Q, \omega)$ the **subword complex** on Q representing ω :

- ground set: indices of Q
- facets: complements of reduced subwords representing ω

An example:

Weak order and simple reflections

Facet $\{1, 2, 3, 8, 9\}$ of $SC(\tau_4\tau_3\tau_2\tau_1\tau_4\tau_3\tau_2\tau_4\tau_3\tau_4, 25143)$

Pipe dreams

Weak order and simple reflections

Structure given by flips: from one facet to another

Structure given by flips: from one facet to another

Subword complexes

Pipe dreams 0000 0000

A very special case

Q: triangular word

and $\omega=1$ n (n-1) ... 2

A very special case

Q: triangular word

and
$$\omega=1$$
 n $(n-1)$ \dots 2

A very special case

Q: triangular word

and
$$\omega=1$$
 n $(n-1)$... 2

 \Rightarrow this is the Tamari lattice!

A very special case

Why the Tamari lattice?

A binary tree appears on the pipe dream \rightarrow bijection

Why the Tamari lattice?

A binary tree appears on the pipe dream \rightarrow bijection

Tree rotations \equiv flips \rightarrow lattice isomorphism (Woo, 2004)

Can we find other lattice quotients of parts of the weak order with pipe dreams?

•000

Weak order and simple reflections

First extension: choose any exit permutation ω .

•000

Weak order and simple reflections

First extension: choose any exit permutation ω .

Contact graph:

vertices: pipes

 \blacksquare edges: from a to b if $a \not - b$ appears in the picture

Weak order and simple reflections

First extension: choose any exit permutation ω .

Contact graph:

- vertices: pipes
- \blacksquare edges: from a to b if $a \leftarrow b$ appears in the picture

Acyclic contact graph ← vertex of **brick polytope** (Pilaud–Santos, '12)

First extension: choose any exit permutation ω .

What are the linear extensions of acyclic contact graphs?

Pipe dreams

0000

First extension: choose any exit permutation ω .

What are the linear extensions of acyclic contact graphs?

Pipe dreams

- if $\pi \notin [id, \omega]$ then π is **not** a linear extension
- if $\pi \in [id, \omega]$ then π is a linear extension of exactly one pipe dream

First extension: choose any exit permutation ω .

What are the linear extensions of acyclic contact graphs?

Pipe dreams

- if $\pi \notin [id, \omega]$ then π is **not** a linear extension
- if $\pi \in [id, \omega]$ then π is a linear extension of exactly one pipe dream
- \Rightarrow surjective map $\operatorname{Ins}_{\omega}$ from $[\operatorname{id}, \omega]$ to acyclic pipe dreams $\Sigma(\omega)$

First extension: choose any exit permutation ω .

What are the linear extensions of acyclic contact graphs?

Pipe dreams

- if $\pi \notin [id, \omega]$ then π is **not** a linear extension
- if $\pi \in [id, \omega]$ then π is a linear extension of **exactly one pipe dream**
- \Rightarrow surjective map Ins_ω from $[\mathsf{id},\omega]$ to acyclic pipe dreams $\Sigma(\omega)$

Theorem (Bergeron–C.–Ceballos–Pilaud)

For any $\omega \in \mathfrak{S}_n$, the ascending flip graph on $\Sigma(\omega)$ is a **lattice quotient** of the weak order interval $[id, \omega]$.

The map $Ins_{\omega} : [id, \omega] \mapsto \Sigma(\omega)$ is a **lattice morphism**.

Two algorithms to compute $Ins_{\omega}(\pi)$: (for $\omega=21543$ and $\pi=21435$)

■ insertion algorithm (pipe by pipe)

Pipe dreams

Two algorithms to compute $Ins_{\omega}(\pi)$: (for $\omega=21543$ and $\pi=21435$)

■ insertion algorithm (pipe by pipe)

sweeping algorithm (cell by cell)

An example: $\omega = 31542$

0000

Generalized pipe dreams

Weak order and simple reflections

Second extension: other sorting networks

Second extension: other sorting networks

alternating sorting networks

Pipe dreams

•000

Generalized pipe dreams

Second extension: other sorting networks

Second extension: other sorting networks

 $Ins_{F,\omega}$ is still well defined on $[id,\omega]$, BUT...

0000

Weak order and simple reflections

Second extension: other sorting networks

alternating sorting networks alternating shapes

 $Ins_{F,\omega}$ is still well defined on [id, ω], BUT...

- \blacksquare some linear extensions can be outside of [id, ω]
- the flip graph is not always the image of the weak order

Second extension: other sorting networks

Pipe dreams

 $Ins_{F,\omega}$ is still well defined on $[id,\omega]$, BUT...

- \blacksquare some linear extensions can be outside of [id, ω]
- the flip graph is not always the image of the weak order

Restrictions:

- $\Sigma_F(\omega)$ contains **strongly acyclic** pipe dreams
- order on $\Sigma_F(\omega)$: acyclic order (weaker than flip order)

Theorem (C.)

Weak order and simple reflections

For any alternating shape F and $\omega \in \mathfrak{S}_n$ sortable on F, the acyclic order on $\Sigma_F(\omega)$ is a **lattice quotient** of the weak order interval $[id, \omega]$. The map $Ins_{F,\omega}$: $[id,\omega] \mapsto \Sigma_F(\omega)$ is a **lattice morphism**.

Pipe dreams

0000

Theorem (C.)

Weak order and simple reflections

For any alternating shape F and $\omega \in \mathfrak{S}_n$ sortable on F, the acyclic order on $\Sigma_F(\omega)$ is a **lattice quotient** of the weak order interval $[id, \omega]$. The map $Ins_{F,\omega}$: $[id, \omega] \mapsto \Sigma_F(\omega)$ is a **lattice morphism**.

Pipe dreams

0000

Acyclic order ↔ skeleton of (part of) the Brick polyhedron

Theorem (C.)

Weak order and simple reflections

For any alternating shape F and $\omega \in \mathfrak{S}_n$ sortable on F, the acyclic order on $\Sigma_F(\omega)$ is a **lattice quotient** of the weak order interval [id, ω]. The map $Ins_{F,\omega} : [id, \omega] \mapsto \Sigma_F(\omega)$ is a **lattice morphism**.

Pipe dreams

0000

Acyclic order ↔ skeleton of (part of) the Brick polyhedron

Theorem (C.)

If the maximal permutation $\omega_0 = n (n-1) \dots 21$ is sortable on F, then any linear extension of a pipe dream on F with exit permutation ω is in $[id, \omega]$, and all acyclic pipe dreams are strongly acyclic.

 $\mathsf{Ins}_{F,\omega}$

Weak order and simple reflections

Pipe dreams

0000

Weak order and simple reflections

Further generalization: Coxeter groups

symmetric group \mathfrak{S}_n	Coxeter group W
simple transpositions	simple reflections
weak order	
subword complexes	
pair of pipes	root in Φ
P#	root cone
$\pi \in lin(P)$	root conf. $\subseteq \pi(\Phi^+)$

•0

Work in progress...

Theorem (BCCP)

Weak order and simple reflections

For any word Q on S and $w \in W$ sortable on Q, the map $lns_{Q,w}$ is **well-defined** on the weak order interval [e, w].

00

Weak order and simple reflections

Work in progress...

Theorem (BCCP)

For any word Q on S and $w \in W$ sortable on Q, the map $Ins_{Q,w}$ is **well-defined** on the weak order interval [e, w].

Theorem (Jahn-Stump, 2022)

If the Demazure product of Q is w_0 , then for any $w \in W$ the application $Ins_Q(w,\cdot)$ is surjective on acyclic facets of SC(Q,w).

Theorem (BCCP)

Weak order and simple reflections

For any word Q on S and $w \in W$ sortable on Q, the map $Ins_{Q,w}$ is **well-defined** on the weak order interval [e, w].

Theorem (Jahn-Stump, 2022)

If the Demazure product of Q is w_0 , then for any $w \in W$ the application $Ins_Q(w,\cdot)$ is surjective on acyclic facets of SC(Q,w).

Conjecture

If Q is an alternating word on S and $w \in W$ is sortable on Q, then the application $Ins_{Q,w}: [e,w] \mapsto SC(Q,w)$ is a **lattice morphism** from the weak order on [e, w] to the Brick polyhedron of SC(Q, w).

Weak order and simple reflections

Thank you for your attention!

Merci pour votre attention!

