

GLOBAL ANALYSIS OF TRANSPOSSABLE ELEMENTS AS MOLECULAR MARKERS OF CANCER

This application claims priority to U.S. provisional application Serial No. 5 60/466,798, filed April 29, 2003, which is herein incorporated by this reference in its entirety.

FIELD OF THE INVENTION

This invention relates to the determination of expression patterns, DNA methylation 10 patterns and chromatin properties of families of transposable elements in order to detect, classify, characterize and treat cancer.

BACKGROUND

The human genome comprises numerous families of transposable elements, such as 15 DNA elements, i.e. Charlie- and Tigger groups (see Smit (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. *Current Opinion in Genetics & Development*, 9: 657-663) and retroelements, i.e., LINEs (long interspersed nuclear elements), SINES (short interspersed nuclear elements) and HERVs (human endogenous retroviruses). To date, over 50 families of retroviral elements have been 20 identified and the members of these families make up greater than 43% of the genome (See Li et al. (2001) Evolutionary analysis of the human genome. *Nature*, 409 (6822): 847-9). Some families can include hundreds to thousands of retroelements and the expression of 25 retroelements genes is normally suppressed. However, under certain conditions, such as cancer, retroelements may no longer be suppressed and expression of retroelement genes is activated, concomitant with changes in DNA methylation patterns and/or chromatin states.

The present invention provides methods of determining patterns of transposable element expression, transposable element methylation and chromatin status of transposable elements within the genome such that these patterns can be used to diagnose cancer, identify a type of cancer, classify a cancer at a particular stage and measure progression of cancer. 30 All of the methods of the present invention can be utilized to analyze full-length transposable element sequences or fragments thereof. These transposable elements include retroelements and fragments thereof as well as DNA elements and fragments thereof from mammalian species. Thus, the present invention provides methods of determining patterns of retroelement expression, retroelement methylation and chromatin status of retroelements

within the genome such that these patterns can be used to diagnose cancer, identify a type of cancer, classify a cancer at a particular stage and measure progression of cancer. Also provided are methods of determining DNA element expression, DNA element methylation and chromatin state of DNA elements within the genome such that these patterns can be
5 used to diagnose cancer, identify a type of cancer, classify a cancer at a particular stage and measure progression of cancer.

SUMMARY OF THE INVENTION

10 The present invention provides a method of determining an expression pattern of one or more families of transposable elements in a sample comprising determining expression of one or more families of transposable elements.

Also provided by the present invention is a method of assigning an expression pattern of transposable elements to a type of cancerous cell in a sample, comprising: a)
15 determining expression of one or more families of transposable elements; and b) assigning the expression pattern obtained from step a) to the type of cancerous cell in the sample.

Further provided by the present invention is a method of diagnosing cancer comprising: a) determining expression of one or more families of transposable elements in a sample to obtain an expression pattern; b) matching the expression pattern of step a) with
20 a known expression pattern for a type of cancer; and c) diagnosing the type of cancer based on matching of the expression pattern of a) with a known expression pattern for a type of cancer.

The present invention also provides a method of determining the effectiveness of an anti-cancer therapeutic in a subject comprising: a) determining expression of one or more families of transposable elements, in a sample obtained from the subject, to obtain a first expression pattern; b) administering an anti-cancer therapeutic to the subject; c) determining expression of one or more families of transposable elements in a sample obtained from the subject after administration of an anti-cancer therapeutic to obtain a second expression pattern; and d) comparing the second expression pattern with the first expression pattern
25 such that if transposable elements are differentially expressed in the second expression pattern as compared to the first expression pattern, the anti-cancer therapeutic is an effective anti-cancer therapeutic.

Also provided by the present invention is a method of determining a methylation pattern of one or more families of transposable elements in a sample comprising determining methylation of one or more families of transposable elements.

The present invention also provides a method of assigning a methylation pattern of 5 transposable elements to a type of cancerous cell in a sample, comprising: a) determining methylation of one or more families of transposable elements; and b) assigning the methylation pattern obtained from step a) to the type of cancerous cell in the sample.

Also provided by the present invention is a method of diagnosing cancer comprising: a) determining methylation of one or more families of transposable elements in 10 a sample to obtain a methylation pattern; b) comparing the methylation pattern of step a) with a known methylation pattern for a type of cancer; and c) diagnosing the type of cancer based on matching of the methylation pattern of a) with a known methylation pattern for a type of cancer.

The present invention also provides a method of determining the effectiveness of an 15 anti-cancer therapeutic in a subject comprising: a) determining methylation of one or more families of transposable elements, in a sample obtained from the subject, to obtain a first methylation pattern; b) administering an anti-cancer therapeutic to the subject; c) determining methylation of one or more families of transposable elements in a sample obtained from the subject after administration of an anti-cancer therapeutic to obtain a 20 second methylation pattern; and d) comparing the second methylation pattern with the first methylation pattern such that if there is a change in the second methylation pattern as compared to the first methylation pattern, the anti-cancer therapeutic is an effective anti-cancer therapeutic.

25

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows RT-PCR from normal and tumor ovarian samples comparing expression levels of HERV-K and HERV-W. (-) indicates a control without reverse transcriptase documenting absence of relevant DNA contamination. No Herv K or Herv W expression was detectable in this normal sample, HervW expression and even higher HervK 30 expression was detected in this ovarian carcinoma sample.

Figure 2 is a southern blot analysis of genomic DNA after digest with *MspI* (M) or its methylation-sensitive isoschizomer *HpaII* (H), resp., hybridized with a HERV-W probe spanning the putative promoter region of the element. Equal amounts of DNA were loaded per sample, i.e. *MspI/HpaII* pair. Fragment sizes range from >0.1 kb to >3.0 kb. Samples

represent ovarian carcinoma (T - malignant), ovarian adenoma (B – benign), borderline ovarian tumor (LMP) and non-tumor ovarian tissue (N). Fragments between 0.3kb and 1kb appear in most of the malignant samples in the *HpaII* digests, but not in adenoma, borderline or non-tumor samples, indicating extensive cytosine methylation of this
5 particular HervW region in non-carcinoma ovarian tissue and loss of HervW methylation in ovarian carcinoma. See region defined by arrows.

Figure 3 is a southern blot analysis of genomic DNA after digest with *MspI* (M) or its methylation-sensitive isoschizomer *HpaII* (H), resp., hybridized with a LINE1 probe spanning the putative promoter region of the element. Equal amounts of DNA were loaded
10 per sample, i.e. per *MspI/HpaII* pair. Fragment sizes range from 0.1 kb to >3.0 kb. Samples represent ovarian carcinoma (T - malignant), borderline ovarian tumor (B) and non-tumor ovarian tissue (N).

Figure 4 shows hypomethylation and expression of L1 and HERV-W elements in ovarian cancer. Genomic DNA was digested either with *MspI* (left) or *HpaII* (right), and
15 hybridized with probes specific for the promoter regions of L1 (A) or HERV-W (B) elements. The restriction enzymes *MspI* and *HpaII* recognize the sequence CCGG but *HpaII* only cuts when the recognition sequence is unmethylated at the inner cytosine (i.e., CCGG) while *MspI* is indifferent to the methylation status of the inner cytosine. Brackets indicate bands from restriction cut sites internal to the elements (B = benign cystic mass; LMP =
20 low-malignancy potential or borderline tumor; N = normal ovary. (C) Real time RT-PCR was performed to determine expression levels of LINE-1 and HERV-W elements in representative malignant and non-malignant samples. Normalized values (retroelement expression value divided by expression value of the RPS27A control gene. Shown is the average of 3 replicate assays per sample ±SE. Ribosomal protein S27A (RPS27A)
25 expression has been previously determined to be unchanged between the malignant and non-malignant samples examined in this study.

Figure 5 is an example of an array that was utilized to assess retroelements patterns in cancer cells. Each dot represents a hybridization of the labeled RNA pool (from either a cancer or control sample -in this case a cancer sample). to the "spots" representing
30 retroelement sequences. A bright color indicates that the element was expressed in this sample. The intensity of the dot is correlated with the level of expression. In this array, 3 replicate copies of the elements (spots) are aligned vertically. Different elements families are arranged side by side.

DETAILED DESCRIPTION OF THE INVENTION

The present invention may be understood more readily by reference to the following 5 detailed description of the preferred embodiments of the invention and the Examples included therein.

Before methods are disclosed and described, it is to be understood that this invention is not limited to specific methods, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments 10 only and is not intended to be limiting.

It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a nucleic acid" includes multiple copies of the nucleic acid and can also include more than one particular species of nucleic acid molecule. 15 Similarly, reference to "a cell" includes one or more cells, including populations of cells.

Analysis of Expression Patterns

The present invention provides a method of determining an expression pattern of 20 one or more families of transposable elements in a sample comprising determining expression of one or more families of transposable elements.

As used herein a "sample" can be from any organism and can be, but is not limited to, peripheral blood, plasma, urine, saliva, gastric secretion, feces, bone marrow specimens, primary tumors, metastatic tissue, embedded tissue sections, frozen tissue sections, cell 25 preparations, cytological preparations, exfoliate samples (e.g., sputum), fine needle aspirations, amnion cells, fresh tissue, dry tissue, and cultured cells or tissue. It is further contemplated that the biological sample of this invention can also be whole cells or cell organelles (e.g., nuclei). The sample can be unfixed or fixed according to standard protocols widely available in the art and can also be embedded in a suitable medium for 30 preparation of the sample. For example, the sample can be embedded in paraffin or other suitable medium (e.g., epoxy or acrylamide) to facilitate preparation of the biological specimen for the detection methods of this invention.

The sample can be from a subject or a patient. As utilized herein, the "subject" or "patient" of the methods described herein can be any animal. In a preferred embodiment,

the animal of the present invention is a human. In addition, determination of expression patterns is also contemplated for non-human animals which can include, but are not limited to, cats, dogs, birds, horses, cows, goats, sheep, guinea pigs, hamsters, gerbils, mice and rabbits.

5 The sample can comprise a cell or cells selected from the group consisting of: a carcinoma cell, a fibroma cell, a sarcoma cell, a teratoma cell, a blastoma cell, a breast tumor cell of epithelial origin, an ovarian tumor cell of epithelial, stromal or germ cell origin, mixed cell types from a tumor or any other cancer cell. The present invention also provides for the analysis of a sample comprising a normal cell or normal cells from a
10 particular tissue. The patterns obtained from normal cells can be compared to the expression patterns for cancerous cells in order to access the differences between normal and cancerous cells.

15 The term "cancer," when used herein refers to or describes the physiological condition, preferably in a mammalian subject, that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to *ras*-induced cancers, colorectal cancer, carcinoma, lymphoma, sarcoma, blastoma and leukemia. More particular examples of such cancers include squamous cell carcinoma, lung cancer, pancreatic cancer, cervical cancer, bladder cancer, hepatoma, breast cancer, prostate carcinoma, rhabdomyosarcoma, colon carcinoma, ovarian cancer and head and neck cancer. While the
20 term "cancer" as used herein is not limited to any one specific form of the disease, it is believed that the methods of the invention will be particularly effective for cancers which are found to be accompanied by changes in transposable element expression, transposable element methylation and/or changes in chromatin status of transposable elements.

25 There are numerous transposable element families that can be analyzed by the methods of the present invention, including, but not limited to, retroelement families and DNA element families. The retroelement families that can be analyzed utilizing the methods of this invention include but are not limited to, endogenous retroviruses (ERVs), short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), the vertebrate long terminal repeat (LTR)-containing elements, and the poly(A)
30 retrotransposons. The DNA element families that can be analyzed by the methods of the present invention include, but are not limited to the Mariner/Tci superfamily (e.g. human Mariner, Tigger, Marna, Golem, Zombi), hAT (hobo/Activator/Tam3) superfamily, TTAA superfamily (e.g. Looper), MITEs (e.g. MER85), MuDR superfamily (e.g. Ricksha), T2-family (E.G. Kanga 2) and others. Any combination of retroelement families and the

members of these retroelement families can be analyzed by the methods of the present invention to determine a pattern of expression, a retroelement methylation pattern and/or a retroelement chromatin status pattern. For example, one of skill in the art could analyze the expression of ERVs as well as the expression of SINEs or one of skill in the art could 5 analyze the expression of SINEs, LINEs and ERVs. As stated above, any combination of families and members of transposable element families may be analyzed to provide an expression pattern, chromatin status pattern and/or a methylation pattern. Therefore, combinations of retroelement families and DNA element families can also be also analyzed by the methods of the present invention. A publicly available database, RepBase Update, 10 contains consensus sequences of genomic repeats from different organisms that can be utilized to design the oligonucleotides utilized in the methods of the present invention. This database can be accessed at www.girinst.org. This database was utilized to identify consensus sequences for numerous retroelements which were then used to design oligonucleotide probes for the microarrays of the present invention.

15 Files were obtained from RepBase Update containing human-specific repeats (consensus sequences for transposon families). Selected RepBase files were then input into the OligoArray program, a publicly available software tool for microarray oligo-design at <http://berry.engin.umich.edu/oligoarray>, and the design algorithm was run. The BLAST algorithm at <http://www.ncbi.nlm.nih.gov/BLAST/> (Altschul SF, Gish W, Miller W, Myers 20 EW, Lipman DJ *Basic local alignment search tool.* in J Mol Biol 1990 Oct 5;215(3):403-10) was then utilized to verify compatibility of oligonucleotides in the OligoArray output file with transposon sequences in the human genome sequence (<http://www.ncbi.nlm.nih.gov/genome/guide/human/>). Selection of appropriate oligonucleotides was based on several criteria such as, the quality of match/ specificity, 25 technical parameters and the broad representation of transposable element families. Utilizing this approach, numerous oligonucleotides were designed based on these consensus sequences. The identifiers of retroelement consensus sequences and their corresponding oligonucleotide sequences which can utilized in the methods described herein, are listed in Table 1. Similar analyses can be performed to obtain consensus sequences for non- 30 retroelement transposable element sequences.

Table 1

FLA	GAGTTCGAGACCAGCCTGGGCAACATAGCGAGACCCCGTCTCTAAAAAAA	SEQ ID NO: 1
FLAM A	GGAGTTCGAGACCAGCCTGGGCAACATAGCGAGACCCCGTCTCTAAAAAAA	SEQ ID NO: 2
FLAM C	GGAGTTCGAGACCAGCCTGGGCAACATAGCGAGACCCCGTCTCTAAAAAAA	SEQ ID NO: 3
AliJo	GAGGCAGGAGGATCGCTTGAGCCCAGGAGTTCGAGGCTGCAGTGAGCTAT	SEQ ID NO: 4

AluJb	GGAGTCGAGACCAGCCTGGGCAACATGGTAAACCCCGTCTACAAAAA	SEQ ID NO: 5
AluSc	TCA CGAGGTCAAGAGATCGAGACCACCTGGCCAACATGGTAAACCCCG	SEQ ID NO: 6
AluSg	CCAACATGGTAAACCCCGTCTACTAAAATACAAAATTAGCCGGGC	SEQ ID NO: 7
AluSp	CCAGCCTGACCAACATGGAGAAACCCCGTCTACTAAAATACAAAAT	SEQ ID NO: 8
AluSq	CAACATGGTAAACCCCGTCTACTAAAATACAAAATTAGCCGGGC	SEQ ID NO: 9
AluSx	CCAACATGGTAAACCCCGTCTACTAAAATACAAAATTAGCCGGGC	SEQ ID NO: 10
AluSz	CCAACATGGTAAACCCCGTCTACTAAAATACAAAATTAGCCGGGC	SEQ ID NO: 11
AluY	GAGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 12
AluYa5	CGGGCGGATCACGAGGTAGGAGATCGAGACCACCCGGCTAAACGGTG	SEQ ID NO: 13
AluYa8	GAAACCCCGTCTACTAAAATACAAAATTAGCCGGCGTAGTGGCGG	SEQ ID NO: 14
AluYb8	AGACCATCCTGGCTAACAGGTGAAACCCCGTCTACTAAAATACAAA	SEQ ID NO: 15
AluYb9	AGACCATCCTGGCTAACAGGTGAAACCCCGTCTACTAAAATACAAA	SEQ ID NO: 16
AluYc1	GAGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 17
AluYc2	GAGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 18
AluYd3a1	CGCGTGTAGTCCCAGCTACTCGGAGAGGCTGAGGCAGGAATGGCGTGA	SEQ ID NO: 19
AluYe	ACCATCCTGGCTAACACGGTGAAACCCCGTCTACTAAAATACAAAAA	SEQ ID NO: 20
LTR26B	ATGGATTGAGGTTTCCCTCCATCTCTCATTGGCGGCCCTACGATTA	SEQ ID NO: 21
LTR26C	ACGGATTGAGGTTTCCCTCCATCTCTCATTGGCGGCCCTACGATTA	SEQ ID NO: 22
LTR26D	GGCGTATTGACTTGCTGTGCATCGGCAATGAACTTACCGGTACA	SEQ ID NO: 23
AluYa1	GAGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 24
AluYa4	CGGGCGGATCACGAGGTAGGAGACGACCATCCCGGCTAAACGGTG	SEQ ID NO: 25
AluYb3a1	GAGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 26
AluYb3a2	GAGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 27
AluYe5	ACCATCCTGGCTAACACGGTGAAACCCCGTCTACTAAAATACAAAAA	SEQ ID NO: 28
AluYf1	GAGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 29
AluYg6	GAGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 30
AluYh9	GAGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 31
AluYi6	AGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 32
AluYbc3a	AGATCGAGACCACCTGGCTAACACGGTGAAACCCCGTCTACTAAA	SEQ ID NO: 33
AluYe2	GACCATCCTGGCTAACACGGTGAAACCCCGTCTACTAAAATACAAA	SEQ ID NO: 34
AluYf2	GATCGAGACCACCTGGCTAACACAGTGAAACCCCGTCTACTAAAAAA	SEQ ID NO: 35
ALU	GAGGCAGGAGGATCGCTTGAGGCCAGGAGTTGAGGCTGAGCTAT	SEQ ID NO: 36
MIR	GGCTCTGCCACTTACTAGCTGTGACCTTGGCAAGTTACTAACCTCT	SEQ ID NO: 37
L1PA2	ATCACATGGACACAGGAAGGGAAATATCACACTCTGGGACTGTGGTGG	SEQ ID NO: 38
L1PA7	CCCTGCGGGGGGGCTGGGGCTAGGGGAGGGATAGCATTAGGAAATACC	SEQ ID NO: 39
L1PA11	TGGGCTTAATACCTAGGTGATGGGATGATCTGTGAGCAAACCCATGG	SEQ ID NO: 40
L1PA15	TCGGGTACTATGCTTATTACCTGGGTGACGAAATATCTGTACACCAAAC	SEQ ID NO: 41
L1PB1	ATCTCAGAAATCACCACTAAAGAACTTATTCTATGTAACCAAACACCACCT	SEQ ID NO: 42
L1PB3	AAGTGGGAGCTAACGCTATGGTAGCGAAAGGCATACAGAGTGGTATAATG	SEQ ID NO: 43
L1MA2	GGGAAGGGTAGTGGGGGGTTGGTAGGGAGGTGGGGATGGTAATGGGTAC	SEQ ID NO: 44
L1MA5	ATAGGGAGAGGTTGGTAATGGATACAAAATTACAGCTAGATAGGAGGAA	SEQ ID NO: 45
L1MA9	AGATCTTAAGTGTCTCACCACACAAACAAAAAATGGTAACATGTGAGGT	SEQ ID NO: 46
THE1B	CTGCACAWGCTCTTGCCTGCCCATGTAAGACGTGMCTTGTCTCCTC	SEQ ID NO: 47
MSTA	TCCCCCTGGTCTGCTCTCGTAGTGTAGTGAGTTCTCGTAGATCTGG	SEQ ID NO: 48
MSTC	GATTAATGGATTAATGGTTATCATGGAGTGGACTGGTGGCTTATAA	SEQ ID NO: 49
MLT1A	TGAGGACACAGTGAGAAGGCCGCTACAGAACCCAGGAATGAGCCCTCA	SEQ ID NO: 50
MLT1B	GGAGAAGACGCCATCTACAAGCCAAGGAGAGGCCCTAGAAGAAACCA	SEQ ID NO: 51
MLT1C	CCAGCAAACACCAGAACAGCTAGGGGAGAGGATGGAACAGATTCTCCTC	SEQ ID NO: 52
MLT1D	GGTCAGAGTCAGAGAAGGAGATGTGACGACCGAACAGAGCTGGAGTGA	SEQ ID NO: 53
MLT1E	GATTCGCTTGNCGNCANTCTTGCTGAGAGNCTCTTGTGGCTTGA	SEQ ID NO: 54
MLT1F	TGAGTCCCCCTCCACATTGAATAGGGCTGACCTGTGTGAGCAATAGAA	SEQ ID NO: 55
THE1BR	CAAGAGGTGACTTGGGTGCTGTTAAAGGCATTAGTTAAAAGGGAAAGC	SEQ ID NO: 56
MSTAR	TCTTTGATTTACAGGCTCATAGGTGGAAGGAACCTGCCTGTCTCAG	SEQ ID NO: 57
MLT1R	AGCCTGATCATGTAACAGAAANNAATAGCCTCTCTGAAAGAANACC	SEQ ID NO: 58
MLT2A1	GGGTGTTGCCAAAGGAGGTTAACATTGGACTCAGTGGCTGGGGAGAGGC	SEQ ID NO: 59
MLT2B2	TTCCAGATGAGATTAGCATTGAACTCAGCGGACTGAGTAAGAAGATGC	SEQ ID NO: 60
MLT2C2	CTCAAGACTGCAACGTTGGAAATCCCTGCTGNTTWWCAGCCTCCAAGCCT	SEQ ID NO: 61
MLT2D	GGCTAGGCTATGGTGTCCAGACGGTTGGTCAAACATTAGTCTGGGTGTT	SEQ ID NO: 62
LTR2	CAATGCTCCAGCTGATTAAGCCTCTTCCCTCATAGAACCGGTGCTAA	SEQ ID NO: 63
LTR3	GCAAGGAGCCCCCTGACCCCTTCCCAAACATACTCTTTGTCCTTGT	SEQ ID NO: 64
LTR4	ATCCTCTGTCCCACCCATTGGTCTCTCCCTGCTCCCTGATTCTGTCAACA	SEQ ID NO: 65
LTR5	ACTCAGAGGCTGGTGGGATCCTCCATATGCTGAACGTTGGTCCCCGGGC	SEQ ID NO: 66
LTR11	AACTCCGTCACTGTAATCCCAATGTAAGCAAGAAATCCAAACAGGAAA	SEQ ID NO: 67
LTR12	GCTTCATTGTAAGTCAGCGAGACCAAGAACCCACCGGAGAGAACCA	SEQ ID NO: 68
LTR13	CTTGTGTCTTATTCTACACTCTCTCGTCTCCGCACAGGGGAGAAAAA	SEQ ID NO: 69
MER1A	AAGCTTCATCTGTAATCACGCCGCTCCCCATCACTCGCATTACGCCCTG	SEQ ID NO: 70
MER1B	TGATCTGAGGTGGAACAGTTCATCCGAAACCATCCCCGCCCCCGGTC	SEQ ID NO: 71
MER2	AAAATCCACGGATGCTCAAGTCCCTGATATAAAATGGCGTAGTATTGCA	SEQ ID NO: 72
MER3	ATGTGGCTAYTGGCACTTGAAATGTGGYAGTGCAGTGAGGAACGTGAA	SEQ ID NO: 73
MER4A	GGACCTCAAGATCTTACCCCTAAACAGTTCTGTYGAMYTTCACCTTGGC	SEQ ID NO: 74
MER4B	TTGGTCTCCGCAACCCCTTATNTCATACCCGGACATTCTTCCATTGA	SEQ ID NO: 75

MER4C	CCTCCCTCTTCCCCCTCCAGCCCGCTTTCCCCCTTAAATATTGAAGGCC	SEQ ID NO: 76
MER5A	GTCGGGACAGCAGCATCAGCATCACCTGGAACTTGTAGAAATGCA	SEQ ID NO: 77
MER5B	TCACTTAAARCTCYYCAGGTGATTCCAATGTGCAGCCAAGGTTG	SEQ ID NO: 78
MER6	AAGTCGAGTTCCAAGAACCTATCGACGACGTTAAGTGAGGACTTACTG	SEQ ID NO: 79
MER8	AAAATCCGCGTATAAGTGGACCCACGCACTTAAACCCGTGTTCAA	SEQ ID NO: 80
MER9	GCTGTGAGACCCCTGATTCCCCACTTCACACCTTATTTCTGTGTG	SEQ ID NO: 81
MER11A	TGATTTGCCCTGTCTGTTCTCAGAACGATGTGATCTTGTCTC	SEQ ID NO: 82
MER11B	ACTGCTGGTTTGCCTGTTGGGCATCACGGAACCTACCGACATGT	SEQ ID NO: 83
MER20	CCCCACAACAAAGAATTATCCGGCCAAAATGTCGATAGTGCCAAGGTTG	SEQ ID NO: 84
MER21	SAGCAGAGGRAAAAATGGTTGAGAGAGGTTTCTGMAAYAGRAGGGC	SEQ ID NO: 85
MER21B	CGGTCAAGAACAGGTNACAACCTGGNGCTTGCACGGTGCATCTGAAGT	SEQ ID NO: 86
MER22	TGAGTCTCCCCAAAAGTGGAGCCCTGTGATGACGAGCACAGGTCCGCCT	SEQ ID NO: 87
MER28	AAGACGANGAGGATGAAGACCTTATGATGATCCACTTCACTTAATGAA	SEQ ID NO: 88
MER30	TTTTAAGAAAGTTACGAATTGTGTTGGGCCATTCAAAGGCCATCTG	SEQ ID NO: 89
MER35	GATGAAAAGGGGATCCTGTGCAGAACACCACACTACCCATCAGAGAACAA	SEQ ID NO: 90
MER39	GGCAGGTCAATGAAACTAGAACCTCTCCCCAAAGCAAGCCATAAAAC	SEQ ID NO: 91
MER44A	AGGGTTCGGTACTATCCGGTTTCAAGGCATCCACTGGGGGCTTGGAAC	SEQ ID NO: 92
MER44C	CGCACCTCAAACGTCAAAAGTTACGGCCACAGTGCCTGATAAGTGCCTTAG	SEQ ID NO: 93
MER45	GAAATTCTAATAATTGAAACAAGGGGCCCCGATTTCACTTGCAC	SEQ ID NO: 94
MER48	TGTTGTTGTGGACGCGCTCTCGGGGTTSGAACCGAYACAAGARCCCTACA	SEQ ID NO: 95
LOR1	TCTTCCCTGGCAATAMTYRTGTCAGTGATTGGCTTCTGTGAGTGA	SEQ ID NO: 96
SVA	GGGGAAAGGTGGGAAAAGATTGAGAAATCGGATGGTGGCGTGTGTG	SEQ ID NO: 97
ALR	GTGGAGATTTCAGCCGCTTGGGTCAATGGTAGAATAGGAAATATCTC	SEQ ID NO: 98
MSR1	GGAGTCAGACCCCCCAGCCCCCTCTCCCTCAGACTCATGAGTCCAGACC	SEQ ID NO: 99
TAR1	ACTCATGGAGGGTTAGGGTTCAAGGTTGGGTTGGGTTGGGTTGGGTT	SEQ ID NO: 100
CER	GGTCTGAGTGTGTTGCCCTCACATAGGATCCAGAACACTGCTGCTGGG	SEQ ID NO: 101
BSR	TCACAATGCCCTGTAGGCAGAGCCTAGACAAGAGTTACATCACCTGGGT	SEQ ID NO: 102
HSATII	GGGTCCATTGATGATCACACTGGATTCACTTCAATTCTATTCTG	SEQ ID NO: 103
HSATI	CCACTGTCTGTGCTTCAAAAGGTCAGAACAGAGATTGNACCTTGT	SEQ ID NO: 104
R66	TGCRITTACAAACCTTAAGCTAGACACAGAGCCTGATTGGTGCCTT	SEQ ID NO: 105
SN5	CCTGACTCCTGAGTCACGTTACTGTCCCACTATACGTTAACAGGAGGGAA	SEQ ID NO: 106
HIR	AATATCAGGAACACCGGCATGTGCACTTAGGACCATGTTAATTCTCA	SEQ ID NO: 107
GGAAT	GGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAAT	SEQ ID NO: 108
KER	GGATGAGGCAGGAAAGACAGCTGAGGGTCAGAACCCAGGCAGGTCCAATG	SEQ ID NO: 109
TIGGER1	ACTCGCTGAAGGCTCAGATGATCGTTAGCATTAAACAGTATT	SEQ ID NO: 110
TIGGER2	TAAAGTTACACCGAGTGTGCTGCCCTCCTGCCCTCCCACCTCCT	SEQ ID NO: 111
GSAT	GGGACTCAGGAGGATGTTGGGGAGACAGAGGGTGAGCGTGTAGACGA	SEQ ID NO: 112
GSATX	CAGGCGGCCAGNCITTCAGGGGGAGGATGAAAGTAGGCTGGCAGGCAAAAGC	SEQ ID NO: 113
HERVL	AGGACTCTACTTCAATAGTATGGAGAACACTGATAGTCTTGGCATGAA	SEQ ID NO: 114
HERVK	CCCTGCACTTGGTTAAGACCATGGAAGTACATCGATTATAATCTCA	SEQ ID NO: 115
HERVR	AACCCAACAGTATCAGGTGCTCAGAACCGATGAGAACGCTCAAGATTGAG	SEQ ID NO: 116
HRES1	TGGTTAATGTGAACAAGGAGGAGTAGGGCCAGGTGTCAGCCAGAGG	SEQ ID NO: 117
HERVE	AAAAGTGGAGCAGAGTAAGAACACTCCCACTAAAGTGAACCTTCTCAA	SEQ ID NO: 118
HERVH	CATACCCCCCCCCAAAAATTCTACTGCCCAACACTCAACACTATT	SEQ ID NO: 119
HERVI	TTGAGGATGCTGTCACTACCTGTGCCCTAGGATTAATACAAAGCTC	SEQ ID NO: 120
LTR14	GCCTCCACTTTATGAACCTCTAACCTGTCTCTCATCCCTGTCA	SEQ ID NO: 121
HERVKC4	CCGGATCATTACAGAGTTCAATTCAATTAAACAGTTAACCCCCAAAAA	SEQ ID NO: 122
MER4I	AGAGATCAGACGAAACCTGAGACCAAGAGACTCATTTCTTAAATGCT	SEQ ID NO: 123
MER49	ACATGCATGTTGTCATAACGCATCGCTCAGGACCCACCTCATGAATAT	SEQ ID NO: 124
MER4D	CAACCCCCCTTATCTTAACACTCAAGCTGACTTCACACTCTCAGGAGACT	SEQ ID NO: 125
MER39B	GCCCTCTGTCTCTCAGTCCATTCTCCCCAGGGCTAGCCATGAAACT	SEQ ID NO: 126
IN25	TCTGGAGAAGGGATCCTGTTCCCNCTGGNCNTGGTANNCCACTGCAG	SEQ ID NO: 127
MER61	AAGCTTAATTTCTGGCCGTGTACAAGGACCCGCTTAGCTGAAC	SEQ ID NO: 128
HERV3	CAACCCCTGCCAAATGAAGAGAACTGCCCTNCATGAAGAATTAAAGT	SEQ ID NO: 129
HERV9	GCACAGAGCCATACAACATAACCCCTACTTATAGGGTTAGGAATGGCTA	SEQ ID NO: 130
HERVS71	AAACTGGACTAATGTCTTGTCCCACAGGTAGATGCTGATTTAAATAC	SEQ ID NO: 131
HSMAR1	CACTCTTCAAGCATCTCGACAATTGGAGGGAAAACGCTTCCACAA	SEQ ID NO: 132
HSMAR2	TGGTATCATCGTTACAAAGGTCTTGAACTTGTGGAGCTTATGTGA	SEQ ID NO: 133
L1	AAACACCCCCATCAAAAGTGGCAAGGATATGAACAGACACTCTCAA	SEQ ID NO: 134
L1MA10	GTGATGGTTTACGGGTGATGTCATATGTCACACTCATCAAATTGTATA	SEQ ID NO: 135
L1MB3	TCAGTTGGGAAAGATGAAAAAGTTCTGGAGATGGATGGGGTGTGGTTG	SEQ ID NO: 136
L1MB7	AGATAGTGGTGTGGTCAACTCTGTGAATATACTAAAACCACGTGA	SEQ ID NO: 137
L1MC2	ATGTTAATAATAGGGAAAATGTGTGNGGGGGGTGAGGGGGTATATGG	SEQ ID NO: 138
L1MC3	CTGTTGGAGTGGGAGGTACAGATAAGCAAGGGGAGGAGGCTAGAATGAT	SEQ ID NO: 139
L1MC4	TATTTAGGGTAANGGGCATCTGCTGCAACTTACTCTCAAATGGTC	SEQ ID NO: 140
L1MD1	GCAGGAGGGAAAGTGGGTGGCTATAAAAGGGCAACATGAGGGATCCTTG	SEQ ID NO: 141
L1MD2	GNGNGGGGAAGGGAGGTGGGTGGCTATAAAAGGGCAGCACGAGGGA	SEQ ID NO: 142
L1ME2	AGTGGTTGCCCTCTGGGGAGGGTGANTGACTGGAAAGGGCATGAGGGAAAC	SEQ ID NO: 143
L1ME3A	GGCAAAACTAATCTATGSTGTTAGAAGTCAGGATAGTGGTACCCCTGGG	SEQ ID NO: 144
LSAU	GGTGTGGAGAGCCTCAGCCGGAATTCTGTGGACGGACAGGGCACAGA	SEQ ID NO: 145

LTR1	CTAGAGGTTT GAGCAGCGGGCACTGAAGAAGCGAGCCACACCCCCATCG	SEQ ID NO: 146
LTR15	ATCCTCCTAACCCATCGGTCTCTGATTCTAAATCATCCCCAAACA	SEQ ID NO: 147
LTR8	TTTCTTATTGCAATTCCCTGTCCTGATGAATCGGCTCTGCTAGGCAG	SEQ ID NO: 148
LTR9	TAAACTCCTCGTGTGTCCTGCTAAATTTCCTGGCGCGNGACGAC	SEQ ID NO: 149
MER31	CCTGTACCTATCGCAATGGTCTGTAATAAAGTCGCCCTACCGTGCTTA	SEQ ID NO: 150
MER34	GCCCCAAACCCCTTGTCTTGTACGTTTACAATTACTCTTGT	SEQ ID NO: 151
MER41A	GCAACGTCAAGGAAGTACCCCTATGGTCTAAAAGGGGAGGCATGAATA	SEQ ID NO: 152
MER41B	TGCCATGGCAACGTCAAGGAAGTACCCCTATGGTCTAAAAGGGGAGGA	SEQ ID NO: 153
MER41C	TAGCAGAGCACATCTCCCCGTAATGTTTGGCTTATCCTAT	SEQ ID NO: 154
MER50	TGGCCCTCTCCAAGTGTACTCGCTTCCCTGCTCTGCTCTAAACT	SEQ ID NO: 155
MER63A	TTCAAGCTACCAACGTGATGTCAGTGAATGSGGAGTTGGGAAAAGATATA	SEQ ID NO: 156
MER63B	ATGTCACTGAATGSGGAGTTGGGAAGAGATGCACAGTAGCACACYATTAT	SEQ ID NO: 157
MER63C	ACAATGTAACCGGTACAGACACGACACACTTTAAGTTAACATCTGATTA	SEQ ID NO: 158
MER65A	GAATATGACATAGTTACTATGGCACGGTATCCCATTGCAATGCTCT	SEQ ID NO: 159
MER65B	ACATTGCTGACAATGTCACRAACCTAGCTACTGCAAGAGCTACT	SEQ ID NO: 160
MER66A	AGACTAGCTGAAACAGGGCCAGGGCAAAGCACCTCTCCATAAGACACAC	SEQ ID NO: 161
MER66B	CTTGAACACCAGACCAAATTGAAGACTAGCTGAAACAGGGCCAGGGCAA	SEQ ID NO: 162
MER67A	GCCTCAACCTCGGCCTATAAAGACTGAAACAAACACTAACATAGTTCTA	SEQ ID NO: 163
MER67B	CACAGAACAACTCCATCCAACCCCTGCACTAAGAGACTTGACCAAACCTC	SEQ ID NO: 164
MER67C	TCTTGAGAACATGTATGTAATGGGCTGTATCTGCTGGCTATATAAAAGG	SEQ ID NO: 165
MER68A	AACCTCTGGGACTGAGCTCTAAATGAGCTTCCCTGGTAGAACACATTCTA	SEQ ID NO: 166
MER68B	TTCCCTTGTGATCTGGCTGTATCCTTACNRGCTGCTGTAATAAAT	SEQ ID NO: 167
MER69A	CCCCAAATTGTTAAAGCTCAGGCCACAAACCTGGATCTGCCCTG	SEQ ID NO: 168
MER69B	TTACAAAATCATTGTCTATGAAGAGGGCGATCAAAGAGTATGAGCCAAA	SEQ ID NO: 169
MER70A	TGTTCTGCTCACCGGACTCAGACAAGTTGGTAAACCAGTGCACAGTGAAC	SEQ ID NO: 170
MER70B	TCNGACCCCTATCCCTGGTGGTGGCATAGTGTATGCTTGTATTCTC	SEQ ID NO: 171
MER72	GGCATGAAGCTCAATTGACATGTGCACTGTTCTCTTATAAATATTTC	SEQ ID NO: 172
MER73	GGTGACGGGGTACGACTGGGTTCAAAACAACTTATGTCAGGCCCTAAAT	SEQ ID NO: 173
MER74	GGGGGTATGGGCTGTGGTTGGTTGGATATGAAAGGCGCTCC	SEQ ID NO: 174
MER75	TGGCCGAAGATTCAATTGATGAATCCGATTTCCGAAATAGACGATTCT	SEQ ID NO: 175
MER76	TGTTGCCTTAATCGGCTNCTCTGACACCCGGCAGCTCAGCTCTCTCCA	SEQ ID NO: 176
MER77	GGTGAGCTCCCTGGTGGCAATACTCTNTGATGTTGACACATCGTT	SEQ ID NO: 177
MER80	CCATAGGCTCACCAAGACTGCCAAGGGGCCATGGCACAAAAAAGGTTA	SEQ ID NO: 178
MER82	NTGCAAATGACCGNGAAAGTGTCTCAAGTATTGATTGGGGTTACAAAT	SEQ ID NO: 179
MLT1G	CACAAATTCTTGACACTCTCCATCGAGGAGTGGGTCGGNTCCCT	SEQ ID NO: 180
PABL_A	AATAAAACTCTCCCTCCCCAGTTCATCTGCATCTCGTATTGGGCA	SEQ ID NO: 181
PABL_B	CCAGTTCATCTGCATCTCGTATTGGGCCACGAGATAAGCAGCCGACC	SEQ ID NO: 182
MER57I	GCAGTTATGGGGATACTCGGCTCTTGCACATTGGATNAGAGAACGAT	SEQ ID NO: 183
MER65I	CCTGGATAAAATTCCCCGGGAAACTTGAGGCCCATATACACGAAATTAC	SEQ ID NO: 184
MER41I	TTGTTGGGAACTCAGTTACAATAACCTCACCATACCAGTACTTCTG	SEQ ID NO: 185
PTR5	CATGCTTAAGGAGCCCTCAGCTGCACTGCACTGTGGGAAACACTGGCC	SEQ ID NO: 186
L1M2_5	CGCCTCCTCCACAAAGAAGAACCAAAATAGCGAGTAGATAATCACATT	SEQ ID NO: 187
LTR10A	TGCTCCATCTGCAGAGACGCCCTCTATAGAAGTAAATTGCGTTGCT	SEQ ID NO: 188
LTR10B	GCTGAGGAGACCTTGTCTTGGCTAGTGTGGTCTCTGAGCA	SEQ ID NO: 189
LTR10C	CAGTGTACTCTATGGCAAAACTCTCCCTCTGCCAACATCTGCTTCCCT	SEQ ID NO: 190
LTR16A	CTGCATTGCAAGCCAACTCTCCCTCTGCCAACATCTGCTTCCCT	SEQ ID NO: 191
LTR17	CCAAGAACCCAGGTCAAGAGAACACGAGGCTGCCACCATCTGGAAAGTG	SEQ ID NO: 192
MER41D	GCACGTAGGCACAGCTAGTTAGCTTACATAGACAAGACTCCTATAT	SEQ ID NO: 193
MER51A	TCCGCAACCAATCAGACGTTGCATAGGAGTGTAACTTGTAACTTCACT	SEQ ID NO: 194
MER51B	CTTACTTCGCTCTTCAATTACATAGGGCTACCCCAAGTAACCAATG	SEQ ID NO: 195
MER57A	ATCTTCAACACATGGCTGCACTGGAGTCTCTGAACCTACTCTGGTTG	SEQ ID NO: 196
MER57B	TATAAATTGGTCGACCCACGAGGCATCCCTGGAGTCTCTGAATCTGC	SEQ ID NO: 197
MER65C	CAACCTGGCTGCTGAAACTGCCTGTTGTAACCTGAAACAGTTATCT	SEQ ID NO: 198
MER83	TCTGCAGCCCAAGAACCATCCTATAAAATCTCCAGCAAGCTTGTCTCC	SEQ ID NO: 199
MER84	CATAAATGCTCTTAAGGAAAAATCACCAGCGCGCGCTCAGTCCTCTCTT	SEQ ID NO: 200
HERV16	TTGACTATGATGTGAGGGGGTAGGGCTGTTAGTAAATGAGTAAG	SEQ ID NO: 201
HERV17	GAAGGCACCCCTCCGAGGAAATCTAACCTGACGACCCCTACTAGCCC	SEQ ID NO: 202
PMER1	GTTCTAACCTTCTTAATGCCGCGGCCCTTAAATACAGTTCTGTGGGTC	SEQ ID NO: 203
MER54	TGAAAGATAACACTGTAACACCCACACCCMTCCTGAGCCCATCA	SEQ ID NO: 204
LTR18A	TGTACATACGGCTTGCCTCCCAGGCTCACTCGGCCAGAGAGAGAGTAA	SEQ ID NO: 205
LTR18B	ATGAGAGAGCTGCTGATAAAACCATATTCACCTGCCTACGGCCCCCG	SEQ ID NO: 206
LTR19A	AGAGAGTGCTCTGACTGAAATGGCCAGAACCCCCCTCTCAGGTTATT	SEQ ID NO: 207
LTR19B	GACTGKWWAGCCGCTTTCGTTCTTCTTCTTAAATTCTTACA	SEQ ID NO: 208
LTR20	AATAAATTCTGCTCYACCTCACCCCTTAATGTTGCTGCTGCATGCCATT	SEQ ID NO: 209
LTR16C	GTAACCTGCTGATAACCGCACCCCTTATGGCTTCCCTCCCTGTC	SEQ ID NO: 210
LTR21A	CTGCTTCCCTGACTGTAKGWGGGGCAGCCGRCAGGTTATAAARGCTT	SEQ ID NO: 211
LTR21B	CAATAAAGCTTGCCTGACTTTGGGCTCYCATCCCTCTCGGC	SEQ ID NO: 212
MER85	TTGAGCAGTAGGATATAAAACTCCCACATGCTTAGCGCTTCAATAATG	SEQ ID NO: 213
LTR22	GTGCYAGCTGNTAGGGCCAGCWGCGWTKAACAACTYYCTTGGWGTSTG	SEQ ID NO: 214
LTR23	CCTTAAAAACCACTGTAACTGCTGTAATTGGAGTGTATATTCAAGGGC	SEQ ID NO: 215
LTR24	AAACCTTAACCTCTCCACATTGGAACGCTGACCCATTCCCTGGAGCT	SEQ ID NO: 216

HERV23	GTCCTGCCCCCAACCATGTGAGATAGAGCCATCTGGGAATGAGCTTA	SEQ ID NO: 217
HERV18	AGCAGGAATATTAGTGGTGAGTTGCTCCCTGATTGTTGCTGTGCC	SEQ ID NO: 218
MER87	ACTTAUTGGCTGCGWGGCGTGAGCAGTACCACTGGATTCACTTACA	SEQ ID NO: 219
MER74A	AATGGCAGTCGCTCTCTGATCTGTTGGCCTTACCATACCTGAATAAT	SEQ ID NO: 220
MER74B	CTTTCAATGGCAGTCGCTCTCTGATCTGTTGGCCTTACCATACCTSAAT	SEQ ID NO: 221
MER88	AGGGGAACCTGTGGCAGGGACCCAGCTTACACTGGTGCACCTGGTCA	SEQ ID NO: 222
MER54B	GAGCCCAGTCGCTAGGGGGAGAGATGGCTTAAGTCTTATCTGGC	SEQ ID NO: 223
MER31A	GGCTCCTGAACCTCTCTAGGCCATCTGTGACTTCCTTGTAAAATCC	SEQ ID NO: 224
MER31B	GCCCTGTCTGGCCTGCWTAGCCAGTTAGCAAGAACCTGCTAAGT	SEQ ID NO: 225
MER67D	ATCCACCTGCCTTGTTCAGNGGAGTTGAGTTCAANCTAACCCTA	SEQ ID NO: 226
MER31I	GATGATTCACTGGCCTTAATGAACAAAGGCMACCCAACAAGAAAATG	SEQ ID NO: 227
CHARLIE1	TTCCACATTGCAACTAACCTTAAGAAAACCTTACCACTTGTGAGTTTGGT	SEQ ID NO: 228
CHARLIE1A	CACCGCAACTAACCTTAAGAAAACCTTACCACTTGTGAGTTTGGTGTAGT	SEQ ID NO: 229
CHARLIE1B	CAGTGGAGTTTCCAGAGGCTACATGACGTGATGTCGAAACGATGTA	SEQ ID NO: 230
CHARLIE2	TAAAATTCTGGGGGAATGGAAATGGAAATACGAGTTCAAGGAGAAAAA	SEQ ID NO: 231
MER30B	CAATCTTGGCTTCCCTGGGCCACATTGGAAAGAAGAATTGCTTGGCC	SEQ ID NO: 232
MER45B	CCGCATACGAGTTAAATGCTTATATTGCAATTAAACTGGCATTGCA	SEQ ID NO: 233
MER45C	GCGAGTATCCCCGTGCCGAGGGAGCGTGACATTAAATAGCAAATAAAA	SEQ ID NO: 234
LTR25	CTCTCGCTGRCAAGAGAGCTTCTTCACTTAAACTTCACTCC	SEQ ID NO: 235
LTR26	TCTCAGTGTAAATTGGCTGTACTGGCAGTGGCATATGAACTGTGTTGG	SEQ ID NO: 236
HERVK9I	ATCCCAGACTCTGGAGAAGTAGCTCACCGTGAACAGCTGCCCTGGT	SEQ ID NO: 237
HERVH48I	TCTCTCAAGAATACCCCCAAAATTAAAGTTTCTTCTCAAGGTGCCA	SEQ ID NO: 238
MER11C	CCTGTGATCTGCCCTGCCTTCACTTGCCTTGTGATATTCTATTACCYTG	SEQ ID NO: 239
MER11D	TTCATCCCCATGTGACCATCTCACCTCATAATCAAATGACCCCTAAATCCC	SEQ ID NO: 240
LTR10D	GGCGACTGGCAAGGAGAAGCACCCCTTGCAGAAGTAAAATTGCTT	SEQ ID NO: 241
LTR14A	CCACACTCGCGATGGCCCCCTGGTCCCACTTCTCTCAAACGTCTT	SEQ ID NO: 242
LTR14B	TTTGCAGCCTCCATACTTAGCGTTGGCCCCCTGGACCCACTTCTCTC	SEQ ID NO: 243
LTR27	GTGGGACAAGAATGGGAATCAGTGCAACAGGCCAGACTTGGCTGGAA	SEQ ID NO: 244
LTR28	ATTGATCCCCACCCCTCACCTATTACATACATACCCCCCTTCTAATT	SEQ ID NO: 245
LTR29	TTAATCAATCTGCCNTTGTAGTGTATTTCAGCGAACCTTCAGGGGGC	SEQ ID NO: 246
LTR30	CTTTTTCTCTGGCCGATCCGTGTCCTCWCTCGCCGGCGCWGC	SEQ ID NO: 247
LTR31	TTTCTCTTGCAAAACCCATCGTCACAGTGATTGRCCTACTGCGCGGG	SEQ ID NO: 248
MER61B	ACCCCTTCCCTGACTGATTCTCTGAATAATGCCACCTGCGCACTGGG	SEQ ID NO: 249
MER61C	CCGACCCGCCCAACAAGTGTACATCAGATGCTTGTGCAAGTGAGGG	SEQ ID NO: 250
MER92A	CGCTGCCCACTGTCTTCACTGGTCTCTAYCYCTCCCTATAA	SEQ ID NO: 251
MER92B	TTCTGCCCTGAACCTTGAGATGCTTGTGAGATCTATGGTCAAGCGCTTC	SEQ ID NO: 252
MER92C	TATCTACCCCCCTCTATAAAAGTCCAGGCAAAACCACCCCTGCCAGACA	SEQ ID NO: 253
MER93	GCCCTGGGTTCCCTACGTAAGCAAACCGAAACCTAACTCAGNCGTTCTA	SEQ ID NO: 254
MLT1H	CACAGATGCATGAGGGAGGCCAGCCGAGACCAAGAAGAACCCCCAGCTGA	SEQ ID NO: 255
L1P_MA2	GAACCCAGAAACAAATCCATACATYACAGCGAACCTATTGACAAAG	SEQ ID NO: 256
LTR32	ATGTAAGTCCCCAATAAACCCCTATGCTCATTGCTGCTGGCTGGGTCT	SEQ ID NO: 257
GOLEM	GCACAAACGACGAAATGCCCTAACGACGCAATTCTCAGAACGTATCCCCGT	SEQ ID NO: 258
ZOMBI	TAGTGACACCTTGTCTTGTGTTCAATGTACACAAACTTGTCTTCA	SEQ ID NO: 259
ZOMBI_A	CGGATTTCAAGATTTGGGATGCTCAACCGGTAAGTATAATGCAAATATT	SEQ ID NO: 260
ZOMBI_B	NCTGCCAGNCACNACAGNTGTGCACCTNGNTGGCARAGANACTGACAC	SEQ ID NO: 261
LTR33	CGCTGTTGCTAGCCCCGGGGTGTTCACCATCCCTGTTGGTTCCCTTA	SEQ ID NO: 262
L1PA12_5	AAGTCAGCTCAAATAAAGACCCCTGCACAAAGCCTCGGCCGGTAAAAC	SEQ ID NO: 263
L1PA16_5	GACAGCCANACAATAGACAGCCTGTCATAGANATAGCCACACAATAA	SEQ ID NO: 264
L1PBA_5	AAGAATCTGAACAGCAGCCCTGAGTCCCAGATCTCCCTCTGACATAGT	SEQ ID NO: 265
L1PBB_5	AATCTACCCACCTGCTTGTGACARCTGGTYYTACCCAKGGAYACCTC	SEQ ID NO: 266
L1M3A_5	AAGAAAATCATWTCACATCAARGGAGTCCCCTATGGCTATCAGCAGATT	SEQ ID NO: 267
L1M3B_5	AGTGGMAACTCTCATCAGCCCAGGGATCTRACAGGAGAAGGTCTTCTCCC	SEQ ID NO: 268
L1M3C_5	YACATCMATAAGAAAAGGCTGAGAGAGYCCCGAAATCCCTAGCCAGGCTG	SEQ ID NO: 269
L1M3D_5	GTCGCGCTACGCTGATANGATTNANCATACCCATTGCTCGCGACTGC	SEQ ID NO: 270
L1MB6_5	CACTCAGTGCAGAACAGCATTACCTGGGGGATTGTTGAAAACAWTTA	SEQ ID NO: 271
L1MCA_5	TGAAAGTGGACTTGGATTAGTTGAAATGTATATTGCAAACCTAGGGCA	SEQ ID NO: 272
L1MCB_5	CTGACACCTACAGCTACGCAAACAGTAAACACAGTCTAACCTAGGCCA	SEQ ID NO: 273
L1MEA_5	ACCACAGCCACTGGAAAAGACTGGGGAAAATCCGGGAAAAGGAGAGGCCAG	SEQ ID NO: 274
L1MEC_5	ACAAAAAAATCCAGCACCCAACAAGGTAAAATTACAATGTCTGGCATCC	SEQ ID NO: 275
L1ME_ORF2	TCGTGACCTGGGYTAGGCAAWGATTCTTAGATATGACACMAAAAGCAC	SEQ ID NO: 276
MER89	AAGCTCTGAATAAAATAGCCTTGTCTCTCATTTGGTGGCTTCAATT	SEQ ID NO: 277
MER90	CCTCGCTGCARCGAGCAATAACCCAACCTGTCACCACAGGTGTTC	SEQ ID NO: 278
CHARLIE3	ACAGCAACCAAAACGAGATTACGGAGTAGACTGGACATAAGCAACACACT	SEQ ID NO: 279
MER91B	ATAATGACAATTCTCAACAGATGGCAGTAAAGTGTCTGGAGGAGGGC	SEQ ID NO: 280
HARLEQUIN	CCTGTAATTCTTCAATGATAAAAAGCTCATCGCTACCTTAGTTCACCA	SEQ ID NO: 281
CHESHIRE	TGCCCTTCAAGCAATGAATATGCTCAATTNAATCATATGCTCGTGTATTG	SEQ ID NO: 282
GOLEM_A	GAAAATTGCCATTGACGCCATTCTAGAAGCTACAGGTTGACCAATT	SEQ ID NO: 283
GOLEM_B	TCCTGCAAGCTCCATTGAGTGCYCTACAGGTTGACCAATT	SEQ ID NO: 284
LTR34	TGTGTCTGGCTCGCTTCCCGGACATGCCCTAAAGCTGGCTTAAAT	SEQ ID NO: 285
LTR35	CGTGTAAATTCTGAGACGAGCCAGGAACCTGTTGGCNNTAACAA	SEQ ID NO: 286
LTR36	CCTGTAATTCTCCCCCTAACGCTAGCTTGGAAATAAAAGTCACCTT	SEQ ID NO: 287

MLT2A2	CAGACTGAAGGCTGCACTGTYGGCTCCCTACCTTGAGGTTGGGACT	SEQ ID NO: 288
HAL1	GNAGGGATGGGACTGCTTTCGTNATAAGCCTGTAGNACTATTGACT	SEQ ID NO: 289
MER66I	CTGGGCCCTTAGATCAGGTATCCAGAGATTTACTCCTCCGGTAG	SEQ ID NO: 290
LTR37A	TTCCTCCCCACTGTGGAAAAAGCAGTTGCNTCYATTGCAAATTC	SEQ ID NO: 291
LTR37B	GGGAATGTACCTNTGTAATTGCTATTACTATTGATTAGGGCCAG	SEQ ID NO: 292
CHARLIE5	ACGTTTCTCACCGATATCACAGCATTAAGAACAGCTAAATTGAAGC	SEQ ID NO: 293
TIGGER5	TTAAGGTAGGCTAGGCTAACGCTATGATGTCGGTAGGTTAGGTGATTAA	SEQ ID NO: 294
TIGGER5 A	GTTTCTACTGAATGTATCGCTTCGACCATCGTAAAGTTGAAAAT	SEQ ID NO: 295
TIGGER5 B	GTTTACCCCTCGTATCGCGGGCTGACTGGARCTGCGGYTCAGTGYCGC	SEQ ID NO: 296
LTR38	ATCTCCCCTGCTAGCATTGATTAATAAGCTGCTTCCTTCACCAC	SEQ ID NO: 297
LOOPER	ATGACAGTTGATGAGCAGTTAGTGCATTCAAAGGATATTGCCATTTCG	SEQ ID NO: 298
HERVK22I	GCGCCTGACAGACCTGTTGCTGCACACATCTGACTCTTCATCAACAAA	SEQ ID NO: 299
MER51I	ACCACCCCTGGTCATTAAGGAGCTACCCCTGTCCTCATTAGAHAGAGCAGG	SEQ ID NO: 300
MLT1I	GAGCAGAGCCCCAGCCGCGATGGACATGAGCATGAGCAAGAAAT	SEQ ID NO: 301
LTR41	AGGGTAGTGGCTGCTCTTATATCGTATTCCTATATTCTTAGAGTT	SEQ ID NO: 302
MER52A	CAATAAGCTCTCTTCGGCTTGCTACCCCTCACTTGTCCCGTACCTC	SEQ ID NO: 303
MER52B	TCTCTCTGAGCTGTTCTATCGCTCAATAAGCTCCTTCATCTGCTC	SEQ ID NO: 304
MER52C	AGGATGGCCAGAGGACAAAGRGGGCAGAGAGACAATGGACWGGAATGACC	SEQ ID NO: 305
MER94	GCCTGGACAGTCCTGGTTATRCCTGTTGCTCTGGCGTAATTATAA	SEQ ID NO: 306
CHARLIE6	GAGGGGNAACCACACAAAAAGAGNAGGCTAATAAGTGGCAAATAAGC	SEQ ID NO: 307
LTR39	TTTCTCCCGCTGAAAAATCTCGGTGTSATGTTGGTTACTGGCCCGG	SEQ ID NO: 308
LTR40A	TCTCTGACCCAGGAGTCTCGTGTCTCTGCCAGCATCCATGAAACTGTGG	SEQ ID NO: 309
LTR40B	TCTCTGACCCAGGAGTCTCATGTCCTCTGCCAGCATCCATGAAACTGTGG	SEQ ID NO: 310
HERVL 40	TGCTGGATGCTCTGTTAGTAGCCTTAATTAAATGCTNTATGAGACA	SEQ ID NO: 311
LTR9B	GTGTCGTTTATCTAAATCGCGCGAGGACCAAGGACCTGGTTCCTC	SEQ ID NO: 312
HUERS-P3	CTCCAATGGTCTGCAGACCGAACACACATAGACACGCCATTCTCCA	SEQ ID NO: 313
HUERS-P3B	GAGATSAATCAAATCATTGACAGGCTCAGGAAAATGCCGCTTCAGC	SEQ ID NO: 314
HUERS-P2	TAGACACAGGNAAGAGACCTGGAGCTNAGTAGCACCGTGAAGCCC	SEQ ID NO: 315
LTR20B	TCGCTCCAAACCTCACCCCTTGTCATGCTCTTAATTCTGGTCG	SEQ ID NO: 316
HERVG25	CTRAGRACCCCTAAACCCAGCCTRRGARAARTCTTAACGTGTTNCTA	SEQ ID NO: 317
LTR42	CTTCTTCTTGGAAATCCCAACTGGCCCATCTCAGGANGGTTGGGYA	SEQ ID NO: 318
LTR43	TCYTTGCAATAAAATRCTCTATGTCATCTCTTGCTGTGTCTC	SEQ ID NO: 319
LTR44	GTGTGTCTCCCAGGTCAATCCTCACATTGGCTTCCAATAAACCTTAT	SEQ ID NO: 320
MER95	GCTCTCCGGTTCGCARCTGTWTTCTYATTGATGACAATAAAACT	SEQ ID NO: 321
L1MC5	TAATGACACCATRGGGATGCAATCAGCAAAATCCAGACTGGGAAACT	SEQ ID NO: 322
MLT1J	ATGGAGCAGAGCTGCCATACAGCCCTGGACTGCCTACCTCTAGACTCT	SEQ ID NO: 323
HERVFH21	CAAGACATGATGCTACTCCAAGAATACCGACGGCTCCAGAACAGCAGTC	SEQ ID NO: 324
ZOMBI C	AAACTCATTTGGCAGAAAACCTGACCTGAACGTGATATGAGGCTATTAT	SEQ ID NO: 325
MER96	AATTAAAGGAGGCACTCACTCTCAGGGTGTGCAAGTGCAGGTGCGCAT	SEQ ID NO: 326
LTR45	GCCCACCTCTGTCCTTGCTGGCGGTTTGCAATAAGCCTTCTT	SEQ ID NO: 327
LTR46	TCTGGCATTAAAGCTGGTCCCCCACYTYRCAGGTTNTGCTGGATATAA	SEQ ID NO: 328
MER99	GCTTCAACTTGATGTCAGTGGATTCTCGAATCAGTAATGTCCTATG	SEQ ID NO: 329
RICKSHA	AATACGGTTCTGCTGCTCATAACTGTATTACCCGTGCGACTGTCTTATTAGT	SEQ ID NO: 330
MER96B	CTCAGGCTCAGTATGAGTNGACACTGCACAGTTRCTGATCCTGTATTA	SEQ ID NO: 331
MLT1K	TCTTGGCACCACGNGGAGAGAGCCTGCTGAGAATGAAGCCAACACAGAG	SEQ ID NO: 332
HERVK31	CCCTGGACCACTAAAGCACCACATTAACATCTATATGTTAGTCCTG	SEQ ID NO: 333
LTR22A	CGCTGCATACCTGTCGAGTACTCATTCATCCATCGGTCGGCCAGGG	SEQ ID NO: 334
LTR47A	ACACAGACGTTCTGTTGTAAGTCCCTATTAAATGTTCTCTGA	SEQ ID NO: 335
LTR47B	TCTTCTGCGTTGGGGTCATTTGCATATACGGCCCTTCACGAAACA	SEQ ID NO: 336
MER101	TTCGTTTACACCGAAGGCTGCATCTCCCGGTTGCAAACTGTTACTG	SEQ ID NO: 337
LTR48	CAAGTCATTCTGCTGAGTACTCATTCATCCATCGGTCGGCCAGGG	SEQ ID NO: 338
LTR48B	TAATCATCTCTCTGTGATTCCCCCATGCTATGACGTTAAATAAATT	SEQ ID NO: 339
LTR49	TGCCCTTGTCAAGTTGATTTCAAGCGAACCTCAGAGGGCGAAGGGAA	SEQ ID NO: 340
LTR8A	CTCTTCTTATTGCAATGCCATGGCTTTGTCGAGCGGGCAGGAA	SEQ ID NO: 341
MER41E	GTAGAAGCCCCAAACCCYMTGGCGCAACTCWCTCTTGTAGTATGCCCG	SEQ ID NO: 342
MLT2E	TCCCCCCTCCAGACCTTCACTTCCCAGCTCTCCCACAAATTGATAAGG	SEQ ID NO: 343
LTR50	TCTCTGTTAAAATAACTGGTGTGGTTCTGTCTCTCTGACTGGACCT	SEQ ID NO: 344
LTR51	TCTTGAAGAGAGAGGCCCTTGGCTATGCCAGAGACTATCTTCCCA	SEQ ID NO: 345
MER103	GTGCAATTGGAATCTCCAAGAGGGAAATAGTAGTGCAGTRTTCCAA	SEQ ID NO: 346
MER104	TTAACATCTGAAATCGGGATGCATCTAACATCGATGGCATGTCAAG	SEQ ID NO: 347
CHESHIRE A	ACAACGGCAGAGTTGAGTAGTGCAGAGAGACCGTATGGCCGCAAAGC	SEQ ID NO: 348
CHESHIRE B	ACAACGGCAGAGTTGAGTAGTGCAGAGAGACCGTATGGCCGCAAAGC	SEQ ID NO: 349
HUERS-P1	ATCTGCTTCTGCCCTGCCAGAGACCCACTGTGAATTACCATTTGGAG	SEQ ID NO: 350
LTR45B	GTATGGCTTCGCATCAGGCAAGCAGNNAGCCATTGATGCTTRGAACA	SEQ ID NO: 351
LTR52	ATACCCCTCTGGTGTGGCATCATCAGCTTAAACATCCAAACCAA	SEQ ID NO: 352
MER105	GCCCTAAGGCATTCATTGATGTAATGAATTAACTCTCTCTATGCATC	SEQ ID NO: 353
LTR53	CATCTGTCCAGTGGGTGTCATGTGTTARCCATCCCCATAACCTAG	SEQ ID NO: 354
LTR54	TATAAAGCCAACCTCTGTCAGCTCATYGAACACTCATTCTATT	SEQ ID NO: 355
MER106	TGTGGTATTAATAACTAGAGACAGAAACTAAAACCATGGCTCAGGCTGCT	SEQ ID NO: 356
MER107	TTCTACTTATCACTAGAGACAGAAACTAAAACCATGGCTCAGGCTGCT	SEQ ID NO: 357
MER44B	ACTTAATAATGGCCCCAAAGCGCAAGAGTAGTGTGCTGGCATATTGTTA	SEQ ID NO: 358

MER61I	CTACTGACAGCAGGGGAGATAGGGCATACTGTGGTAGAGCGGATAATTCC	SEQ ID NO: 359
HERVL68	CCCTGGAAGGCCTTCAGGTCACTTAACTTGCCAGAGTTGTGCTG	SEQ ID NO: 360
MER83B	CCTCTTGAGACAGCCCCCTCTGCTGTGCTGCCAGACCTTC	SEQ ID NO: 361
MER83C	GCACGTAGCCCCCTCCAGTACAACCCATAAAACTCCCTCAGCCCC	SEQ ID NO: 362
MLT1L	GAAAGAACCTGGTCCCTGATGATATCGTTGAGCCGTAATTAAACCAAC	SEQ ID NO: 363
MLT2F	ATCAGACGCARAGAACAGCCTAACAGGACTGCTTAACCAGCTCCCAC	SEQ ID NO: 364
LTR55	TCAATCTTTCCTGATCAGCCCCCAAATCCCTRAACCCCTCACAC	SEQ ID NO: 365
LTR56	CTCTTGGCTTAAACCACTGTAACTGCTGCTAATTGGAGTGT	SEQ ID NO: 366
LTR57	GAGTGCCCTGTATGTAAGCTCTAATAAAACTCATCTACTTATCAAGCTGGA	SEQ ID NO: 367
LTR58	AGCCGCAAGCCTATTAACCTGCCAGAGAAAATGGTTGGCTGGTGT	SEQ ID NO: 368
LTR59	ATTTTCCTRGRGTGCCCCCAAGCTGGCTCAGTAAACCTCGATGNTTG	SEQ ID NO: 369
MER4BI	CTGANAGGATAAAAGATAACCTCGTACAAGCCTCCGGGTATAACTCC	SEQ ID NO: 370
MER50I	AAAATGGCTTCCCTGGGTTCTCCCTTTAGGCCACTGGTTAGTCTCC	SEQ ID NO: 371
LOR1I	TCCAATACAGGTGTGACGTTTACCTCATCATTATCCCACAAACGCC	SEQ ID NO: 372
LTR26E	TCGGTGTATTGACTGTCGGCGCATGGGCCACAAACCTTACGGTCACA	SEQ ID NO: 373
LTR16A1	CTGCCCTATCCTGCTCCCTCACTCCCTACAAGTTCTCTGAGAGCAC	SEQ ID NO: 374
LTR24B	TCTTGGAACTGTGYTCCNGGGGGNNCATCNTCAAACCTTGCACCTG	SEQ ID NO: 375
LTR16D	CCCGCTCTGCTCCCTCCCTTTATCTTACAGGNTTCCCCTAATAA	SEQ ID NO: 376
LTR60	CTTCAARAAAATCYGACATCATAAAAACCCCGTGCAGACTCTCAGGGCT	SEQ ID NO: 377
MLT1E1	GTAGGCAGAATTCTAAGATGGCCCCAAGATTCCCACCCCTGGTGTACA	SEQ ID NO: 378
MLT1J1	TAGCCAACGGAATGTAAGCAGAAGTGTGCGCCACTTCCAGGCCGG	SEQ ID NO: 379
MLT1J2	CCTGAGTCACTACNNTGGAGGAGAGGCCACCCGACAGAACCNCA	SEQ ID NO: 380
LTR1B	TCRGCRTRGGRCRGTAGAGARGANTCAGCCGCTGGAYNGGCCAACTCC	SEQ ID NO: 381
MER109	TGCCRRTCATNCTGGCATNGTCAGGACTAGGTAMGGTCTCGDCCAATG	SEQ ID NO: 382
MLT1E2	GCCCCCCTAAAGATGTCCATGCCCTAATCCCTGGAACCTGTGAATATGTTA	SEQ ID NO: 383
LTR22B	CACTGGCTGGTCGGCAACTGTACAGCACTCCCTGGGAGTCTGTAAGC	SEQ ID NO: 384
MLT1G1	TTTCCAAAGATGGCCGCAACAATATCTCCATCCCACATGCTCTTAC	SEQ ID NO: 385
L1MCC_5	GCCCATTCCAGGCTAAATACTATTACCTCATGCTCTACTGTTCT	SEQ ID NO: 386
MER110	CTGCCTCATGTCGGCCACCAATCCAAGCTTATGTCAAAACTCTGC	SEQ ID NO: 387
HERVK11I	CAAGAATCTCGCGTAAATCAGAGAGAACGAAACGCTTATCGCCAT	SEQ ID NO: 388
HERVK14I	AATAAAAAGGCTGGACAAGATATGGTGGAGGGATGCACATACAAAGAG	SEQ ID NO: 389
HERVK13I	CAGCGCTCCACGGAGTCCAATGAAAAACTCGAAGGCCAGCGACAAGCAA	SEQ ID NO: 390
HERVK14CI	CTCATAGCTCTATAATGCCATTGAACACCAGTGGAGAGACGATTAGACGT	SEQ ID NO: 391
LTR14C	ACCGCCACTGCTACACATTTATGAACTGACTCACGAGTTCTCTTCACT	SEQ ID NO: 392
LTR61	ATCCACTGAGCTGGTGCACCTAAAATAAACATCTCTGTATT	SEQ ID NO: 393
HERV49I	CTCAATTGTTCTCCCTCTGGCTATCTCATCTAAACACCTCTA	SEQ ID NO: 394
HERV15I	ATAGAGGCAGTAGTAAACCGAACACTACCATGCTATTGACGGCTTAAAC	SEQ ID NO: 395
LTR62	CAAANATGTTGGACCTGGTTATCTGACCTTGCRTGCTCACGACACA	SEQ ID NO: 396
LTR64	GGCTATAGGCNTYCTCAGTCTACAGTCCTCAGTAAGACTCTGAATAAA	SEQ ID NO: 397
MER112	CCAGACCAGTGGCTTCAAACCTTTTGACTATGACCCACAGTAAGAAA	SEQ ID NO: 398
MER113	AAGCACCAAACGTGAGACTTTCCCTGATGTAATCAGAAGGATTGAAAGA	SEQ ID NO: 399
MER110A	TTACCCAATCTTAATCAAGCCCCACATTGAAAGACCTGCCCTAAATCAG	SEQ ID NO: 400
LTR33A	CTTCTGCTGGTCAATCTCTGGGTCACCTGNTTCCCTGTT	SEQ ID NO: 401
MLT1F1	CCCCGGCCGACATCTGACTGCAACCTCTGAGAGACCTGAGCCAGAAC	SEQ ID NO: 402
SATR1	ACACCCCCCCCSTACVCCCCACMCCCCCTGTGATATTGTCGTAATATCA	SEQ ID NO: 403
MER115	TTAAATATTTAGACATATGGTATGTTGGCCTCCATTGACTCTTGCCTT	SEQ ID NO: 404
MER117	GCACAGGAGGGGGAAAGTAGCAGCANATATGCTATGTTGACATCCCTG	SEQ ID NO: 405
MER20B	TAGGTGCAAGCATCTGACTACTCATTATGTCCTAGTGTAGTCATGCC	SEQ ID NO: 406
LTR65	TCCATGGTCTCTGGTGTGCACTCCCTCATTGCAATAAGTCATAAAA	SEQ ID NO: 407
LTR38B	TGAAGYGGTTGCTTGGATAGGAATCYGGCCRCCTCCCTTACTAGTTT	SEQ ID NO: 408
CR1_HS	GGATTGACAGCAGATCAMGGGAAGTAGCAGCANATATGCTATGTTGACATCCCTG	SEQ ID NO: 409
L1ME4	GTGGGATGGACAGGGATGGGAGGGACTGACTTTCACTGTATAACCTTT	SEQ ID NO: 410
MLT1H1	TGGACCCCTCAGACCAAGCCCCATCTGCCAGCTGAATACCACTGAGTACCT	SEQ ID NO: 411
LTR2B	GGGACAGAAATTGTCGACTCGGGAGCTCGGATTTAAGGCAGTAGCTT	SEQ ID NO: 412
MER101B	CCAGAAACCACTCCCCACAAGCCCCACTAGAAACAAACATCTGACAGAGA	SEQ ID NO: 413
MER45R	TAGCCNATAAAATACTCTAACAGCTCCAGNAACAGTGTGATCAGCAAGAA	SEQ ID NO: 414
MLT1G2	TTAAACATGGCCGAAATTCTTGACACTCTCTCATTGAGANGTGG	SEQ ID NO: 415
MSTA1	CTTGCCTCTCTCACCATGTCATCTGCACACCTGGCTCCCTTCC	SEQ ID NO: 416
LTR6A	GAATTCTGCTCAAAGTGGCGTTCTCTATAACTCGCTGGTTACAACA	SEQ ID NO: 417
L3	GGTCTGGAAACCATGTCATATGAGGAACGGTTGAAGGAACGGGGATGTT	SEQ ID NO: 418
LTR66	TGCCATTACGTGGATAAAGCTTGTACCTTAAAGGTATTGTTGTTG	SEQ ID NO: 419
PRIMA41	ACCTTTGTCGGAACCTGGAGTTATGAAACGACCCCTCACCACACCGATGCT	SEQ ID NO: 420
MARNA	TATNGCCTCCAAGGTGACTACTTGAAGGGGACAACACTCATTTGGATG	SEQ ID NO: 421
MER119	TTACTGAGACACTAAGGGCGCGTGAACCGAGAAAGTTGGGAAACCTCTG	SEQ ID NO: 422
LTR67	GTTCTCCAGCCCTCCCGAGATTCTGTGAGCTACCCAAATATCCTTAAATA	SEQ ID NO: 423
L1M3DE_5	CGGGCNGATTGGTAGACATCCNTCTCTAACAGGAGGGCCAGTGTGACAAGAC	SEQ ID NO: 424
RICKSHA_0	CTCTTATGGACTATCTCGTGCATTGCCATTAATCTATCCCTGAAATAT	SEQ ID NO: 425
MER4E	AGGGGTCTGGGAGTCATGCCCTACAAACCATTAATCTCATCAGATGGG	SEQ ID NO: 426
MER104A	ACCTTCGCGTTCAAGAACCATTAAGGACCATTTGAGGAAGGA	SEQ ID NO: 427
LTR40C	TGCTCATGCTGCTTGCTGTGACATGAGTAATAAAGTCCTTGTCTGAC	SEQ ID NO: 428
LTR54B	TGCTCAAGACTTACAAAAGCCAACTGCTCTGCCATGCCAGCGGAG	SEQ ID NO: 429

MIR3	GGAAGCAGTGGTATACTGGAAAGAACAACTGGACTAGGAGTCAGGAGA	SEQ ID NO: 430
MLT1G3	CCAGCTGTCAGTCATCCCCAGCCTCTNNCAGYCMTCCCCAGCCTCAAG	SEQ ID NO: 431
MSTA2	CCACTCCCCCTTGACCTCTGCCCCAGGAAACAAGCATTCTGTCTCAA	SEQ ID NO: 432
L1MD1_5	TTTGAGAACTGAACTAAAGGATAGACCCTACCCAGGTCCAGACTGCC	SEQ ID NO: 433
LTR10E	ARTGCTAATTTCTTGCAGCACCGAGGAACAAGCATTCTGTCTCAA	SEQ ID NO: 434
LTR24C	TCTCTGGAGTCTGTCTCTGAATGGCATTCCCAGCTTNACTTGA	SEQ ID NO: 435
MLT1C1	TGGAGTGTGAGCATAGCCAAAGGAATGCCAGCAGCCAGGACACAGA	SEQ ID NO: 436
MSTD	GTGGGTTTGTATAAAAGNAAGTTCGGCCCCCTTGTCTCTCNCTC	SEQ ID NO: 437
LTR68	ATCTTACGTCTATACATTCATGTCTCAGGAGGCTAGGGCTTTAC	SEQ ID NO: 438
L1MED_5	TAACAAACCCAGTGGATAGGTNAACAGCAGATTAGANACAGCTGAAGAGA	SEQ ID NO: 439
L1ME5	ACTGAAAGGAAATACACCAAATGTTAACAGTGGTATCTCTGGTGG	SEQ ID NO: 440
TIGGER6A	TAGAAGAAATAGCTGACCGTGGGAATGTTGACACTGCCGCCATTGAGAG	SEQ ID NO: 441
MER51C	AGACCAAATCCTTCATCCAGATAAGGGTAGCCAATAGGAACCTCAAAG	SEQ ID NO: 442
LTR6B	CCGGCTAAATAAACCGGACTCTTAATCGTCTCAAAGTGTGGCGCTTTC	SEQ ID NO: 443
MER21A	TCCACAGTCTGGCTCACTAACATCCCATAGGCCATTGTACAGTCTTGT	SEQ ID NO: 444
MER34B	CCACAAAGTTGCTGCCCTAGAGACTCAAAGTCCTTGTCTTGTCTGTC	SEQ ID NO: 445
LTR3B	AGTTCTTTGTCTTAAGTTTCACTCTGCGTCTGCCCCCTCGTTCA	SEQ ID NO: 446
MER54A	AGGCGGTTGATAAGGAGATACTGGATGACCCACATTGAGGAACCTGGG	SEQ ID NO: 447
MER74C	GCTTTCATCTATCCGAGTGTCTGTTGTGCCCCGCACTAAAAGAA	SEQ ID NO: 448
ERVL	AAGAGTAAACATCACTCAAGGACTTACCTCCCTTGTGGGAAGGGT	SEQ ID NO: 449
HERVL74	AAATACCCCNAATAATTGATGTCAAACTGACGCTCAAGACANAAGGGT	SEQ ID NO: 450
MER83AI	TAAGTCCCACACTGGGATTAGTCACGTAACCTCTGACCGACTAAC	SEQ ID NO: 451
MER83BI	TCTCGATGAGTTCTTCTCAGCAAGATCAAATACCTAAAGTCCCACA	SEQ ID NO: 452
MER84I	ATTTCCCTTCTTGAGACCCCAATAGGCAGCAGTAGACATGAGCATGG	SEQ ID NO: 453
LTR75	TAATAAACTGTCTGAATCTAAAGTGGCTGTTGATCTTACCAAGCCGA	SEQ ID NO: 454
L1PA7_5	CACCGAGCTAGCTGACGGAGTTTTTTCGTAACCCAGTGGCGCCTG	SEQ ID NO: 455
L1PA13_5	CTTAGCCCTAGGGGAACTGTCGGACCTGAACTCTGCAACGGCGGTCTTC	SEQ ID NO: 456
L1M1_5	AAGAAACAAATAACATACAATGGAGCTCCAATACGTCGGCAGCAGACT	SEQ ID NO: 457
L1M2A_5	CATGTCAGACCCGACACAAAGAGGGATCCCCCTGGCTAAGTCTCCCATT	SEQ ID NO: 458
L1M1B_5	CCCATCGGGACGGGAGCGCTCTGATTGTTACTAGACCCGAGGCAAC	SEQ ID NO: 459
L1MB3_5	AAAGGGGTGGGATGGAGCTGAAAGGAGCAGAGTTTGTATGTTATTG	SEQ ID NO: 460
L1MDB_5	CACAAAAGTAGGCCAGGACCTGCATGCTAAACCTAAACAGGGTACTGCC	SEQ ID NO: 461
L1HS	CACAGGAAGGGGAATATCACACTCTGGGACTGTGGTGGGTCGGGGAG	SEQ ID NO: 462
L1PA3	AACACATGGACACAGGAAGGGGAACATCACACACCCGGGCTTGTGGG	SEQ ID NO: 463
L1PA4	AACACATGGACACAGGAAGGGGAACATCACACACCCGGGCTTGTGGG	SEQ ID NO: 464
L1PA5	GAACACTTGGACACAGGAAGGGGAACATCACACACCCGGGCTTGTGGG	SEQ ID NO: 465
L1PA6	GAGAAATACCTAATGTAATGACGAGTTGATGGGTGACGACGGGTTGA	SEQ ID NO: 466
L1PA8	AGGACAAATACCTAATGCTGGGCTTAAACCTAGATGACGGGTTGA	SEQ ID NO: 467
L1PA10	ATAGCTAATGCTGGGCTTAAACCTAGGTGATGGGTTGATAGGTGC	SEQ ID NO: 468
L1PA12	CTTAATACCTGGGTGATGAAAATACCTGACAACAAACCCCCATGACACA	SEQ ID NO: 469
L1PA13	TACCTGGGTGATGAAAATACCTGACAACAAACCCCCATGACACAAGTT	SEQ ID NO: 470
L1PA14	GGGAGAGGAGCAGAAAAGATAACTTGGGACTGGGCTTAAACCTGGG	SEQ ID NO: 471
L1PA16	TGGGTGATGGGATCCTGTAACCCAAACCTCAGCATCACGCAATATACC	SEQ ID NO: 472
L1PB2	ATCTCAGAAATCACCCTAAAGAACCTTACCATGTAACCAACCCACCT	SEQ ID NO: 473
L1PB4	KTACACTAAAAGCCCAGACTCACCCTACGCAATATATCCATGAA	SEQ ID NO: 474
L1MA1	ATTCTCCATGATGTGCTTACATTGCACTGCCTGTATCAAACATCT	SEQ ID NO: 475
L1MA3	GCTGGGAAGGGTAGTGGGTGGGGGAAGTGGGATGGTTATGGGTAC	SEQ ID NO: 476
L1MA4	GGAGGGGGGAATGAAGAGAGGTTGTTAATGGGTACAAAAATACAGTTA	SEQ ID NO: 477
L1MA4A	GAGGACTTGAATGTCACACATAGAAATGATAAATACTCGAGGTGA	SEQ ID NO: 478
L1MA5A	TGGGAAGGGTAGGGGAAGGGGGATAGGGGAGAGATTGTTAAAGGATA	SEQ ID NO: 479
L1MA6	ATAGGAGGAATAAGTCTGGTCTTATTGACAGTAGGGTACTATAGT	SEQ ID NO: 480
L1MA7	ATGGGGAGATGTTGTCAAAGGGTACAAAGTTCTGTTAGACAGGAGGAA	SEQ ID NO: 481
L1MA8	TGCTNATGGCCCACACTGGCCACTCTGTGAACACAGTAACAAAGTTG	SEQ ID NO: 482
L1MB1	GAATGGGGAGTTGCTGTTCAATGGGTATAAAGTTCTGTTATGCAAGAT	SEQ ID NO: 482
L1MB2	GGGTATAGAGTTCTGTTGCAAGATGAAAAAGTTCTGGAGATCGTTG	SEQ ID NO: 484
L1MB4	TGGTGATGGGGACACAMTGTGAATGTTACTTAACTGCCACTGAATTGTA	SEQ ID NO: 485
L1MB5	AGGGGAATGGGAGTGACTGCTTAATGGGTACGGGGTTCTTGGG	SEQ ID NO: 486
L1MB8	GGAATGGGGAGTGAATGGGTACGGGGTTCTTGGGATGATG	SEQ ID NO: 487
L1ME1	GGTGGGGNAGGGGTTGACTACAAAGGGGATAGGGAACTTTGGGG	SEQ ID NO: 488
L1ME3	ATAGTGGTACCTTGGGGAGGGTTATTGACTGGGAAGGGGATGAGGG	SEQ ID NO: 489
L1ME4A	GACTGGAAAGGAAATACACCAAATGTTAACAGTGGTATCTCTGGGTG	SEQ ID NO: 490
L1MC1	TTGATAGTGGGGAGGCTGTGCATGTGTGGGGCAGGGGTATATGGAA	SEQ ID NO: 491
L1MD3	ACCCATAACCCAGTCTAATCATGAGAAACATCAGACAAACCCAAATTG	SEQ ID NO: 492
HAL1B	AGAGGAGAGGTGGAAGGAAGTATGAGAGTGTCTATCTCATCTTCAT	SEQ ID NO: 493
L1MA9_5	AGACCCAGGGTCAAGCTGCTTCTGGGAGCAGACTGGCTAGGCTAGTCC	SEQ ID NO: 494
L1MDA_5	AAGAAGGAATCTGGAACATCAGGAAGGAAGAAACATAGTAAGAACG	SEQ ID NO: 495
L1MEB_5	GGCAGAAACTGGAGGGAGTCGACACCTGGAAAGGAAGGGATWGCAACGGAG	SEQ ID NO: 496
TIGGER5A	TTAAGGTAGGCTAGGCTAAGCTATGATGTTGGTAGGTTAGGTGTATTAA	SEQ ID NO: 497
TIGGER6B	AGGCAACCCATCAAGAACATTANGCAAAAAGATGAGGATCACAAAGT	SEQ ID NO: 498
TIGGER7	TCGGATGGAACGCAGCATTAAAGTCACCCATATGATCAATGAAGGATTAC	SEQ ID NO: 499
MER44D	CCTCACTTCATCTCATCACGTAGGCATTATCATCTCACATCATCACAA	SEQ ID NO: 500

MER69C	ATCGACGAAGATAACATAAAAACACTATAATACGCCACTACAACGAGGACAT	SEQ ID NO: 501
MER106B	TATTATGTTGATCCTCACTGCCTGTGACTTGGCTTGCAATTAGTTATGGCAGA	SEQ ID NO: 502
CHARLIE2A	GATTGGTTGACAATGAGGACTGGCTTGCAATTAGTTATGGCAGA	SEQ ID NO: 503
CHARLIE2B	TTAATNCACCTTGTAAAGCCCTATACTTACTAGTGGCCCAATACCTTCT	SEQ ID NO: 504
CHARLIE7	ACTTAGAACAGACCTTCGAATCGCTGTATCACAAAGTGTAAACCAAGA	SEQ ID NO: 505
CHARLIE8	ATTATGTTACCTGCCTGGCCCTGTAGGCATTGAGTTGCGACCCCTG	SEQ ID NO: 506
CHARLIE8A	ATTATGTTACCTGCCTGGCCCTGTAGGCATTGAGTTGCGACCCCTG	SEQ ID NO: 507
MER63D	ACAATGTAACGGCTACAGAACACACTTTAACGTTAATCTGCATTA	SEQ ID NO: 508
MER97A	TGTAAAAAATGATCCGCTCTGGGTGCGAATACGCTAGGTACGCCACTG	SEQ ID NO: 509
MER97B	CCAGTGGTATGNTTWGTTGCTGGCTAAATTGACCTTGTGAGACGTTT	SEQ ID NO: 510
MER97C	TGTAAAAAATGATCCGCTCTGGGTGCGAATACGCTAGGTACGCCACTG	SEQ ID NO: 511
MER6B	GTTCTTGGAAACTGCAGCTTAAGCGAAACGACGTACAGCAGGCTCTCGA	SEQ ID NO: 512
ZAPHOD	ATTGCCGGCCCATCAACAGAACACCCAGACATGTGCAATAATAATTAAAT	SEQ ID NO: 513
TIGGER9	GCCAGTCAGATTACCGCANTGCCATGTTCTGTCTGACAGCGNTGT	SEQ ID NO: 514
HERVL66I	CTCCGTGCTTACCCCTGTATCTGAACTATCATCACTATGCCCTCCCCA	SEQ ID NO: 515
THE1A	TTTATCAGGGTTTCCGCTTTCGCTTCTCCTCATTTCTCTGCCGCC	SEQ ID NO: 516
THE1C	GTGCCCCACCCAAATCTCATCTGAATTGTTAGTCCCATAATCCCCACG	SEQ ID NO: 517
MSTB	TGTTAGTTACCGCGAGATCTGGTTTTAAAGAGTNTGGCACCTCCCC	SEQ ID NO: 518
MSTB1	CTTCTCTCTCGCCATGTGATCTGCACACGCCGCTCCCCCTACACCT	SEQ ID NO: 519
MLT1AR	TCAGTCTGCTCCCATCTCGGCTGCCGTTAGNTGGCTCAAGTGGG	SEQ ID NO: 520
MLT1CR	AAGGTGCGGGCTGGTTCTCGCTTATAGTAAATGCGAGAGGAA	SEQ ID NO: 521
MER104B	CCTTCGCGTTTCACTTAAACAAACATTAAAGGACCAATTGAGGAAGGAA	SEQ ID NO: 522
MER104C	TGAAGGCAGGAGAAATTGCCNAATCCNCGGAATAGATGAAAGAAATTTC	SEQ ID NO: 523
HSTC2	TNATGAGACTCCTCGCAAGACTCCATCAGCGAACCAATTGACACTTT	SEQ ID NO: 524
L2A	ACGCTCTCCCCCAGATATCCACGGCTSGCTCCYTCACCTCMTCAGG	SEQ ID NO: 525
L2B	CCTGCCACTCTGGGTTATMATTGTCGKNGCANGTCTGCTCCCCACT	SEQ ID NO: 526
MER51D	TTTGTGGGACACCAAGAGCCTGGAACCTGCACRGCAACAKCTGTAACA	SEQ ID NO: 527
MER5C	TGGACCACTGCTAGTCTGCAAAACTTTGTTACAGTCCATGATAAGATA	SEQ ID NO: 528
HERVK11DI	CCCGGTGCTGAAGTTTAAAGCGGTATCTGAGGGTTATGATAATCTCAA	SEQ ID NO: 529
LTR69	GAAAAGTCGGGCTGGGGAGCTGTTACTAGGACCACCAAGACCCCC	SEQ ID NO: 530
HERV30I	AAAAAAGGAGCTGAACACTCAGAACCCCTGAAATATGTTAACCAATGGA	SEQ ID NO: 531
HERV19I	CATAGCAGGAATAATGGTTACTAACAGAAAATAACACATGGGCCCTTCCA	SEQ ID NO: 532
LTR19C	TCACTCTGTGTTGTTGCTCCGCGACCTCGATCTCTTGCCGTGAGACC	SEQ ID NO: 533
HERV46I	ACCCACTGCTTCAAAACCCAAACCCCTGATTACAGCNCCCCATTGGCAG	SEQ ID NO: 534
HERV52I	TNAATAAGACATGGCACATTCTGATCATCCATCAACATCAGGGTGAAT	SEQ ID NO: 535
MER89I	GCTCTGCGCAGCCGCTCTCATCAGATGATGCCATGATGATAACACA	SEQ ID NO: 536
MER110I	GACAATGGCTNTCTCTCGANTCAGNTGGGNTGAAGATGACCAAAGGAGAAAT	SEQ ID NO: 537
MER21I	ATCCTGTTGNTGTAAGGGATTCACTGGTTGAAANCAGGGAGTGGCC	SEQ ID NO: 538
PABL AI	GCGCTCAAAGGGTAGTTAACTGGATCGATGCCGGAGCCTATTGTTT	SEQ ID NO: 539
PABL BI	CTCGGGTCTGGCATCTTGAGGCATGGCATAACGTTATGTTG	SEQ ID NO: 540
MER52AI	ACNCCCANGGGATTATCTACTCCCCAAACAGCTATCTCTTCAAAGT	SEQ ID NO: 541
HERV57I	AGCCATGGCTACGTTAGACCTGTATAGTTCTCCCTCATACCCCA	SEQ ID NO: 542
MER70I	GGGCATATGAAATGGAGCTAGCTTCTGTAAGGGGATATCTGGGTTGGGG	SEQ ID NO: 543
HERV38I	CGGATGGGTTGGAGTGTCTCGCTGATCGGATCGTGTGTTG	SEQ ID NO: 544
L1M2B_5	CTTCTCTACCCACTGCACACTACNYCTGACTCTGGGCCAAGCACATGC	SEQ ID NO: 545
L1M2C_5	ACACCCCAATGAACTGACACCAAGACCAATTATAACAAATAAGTTTCC	SEQ ID NO: 546
HERVFH19I	CTGGAGCAGTCCCAAAATAGACGGGATTAGATCTTATAACGGCTGAA	SEQ ID NO: 547
HERV70_I	CTCAGTGGCAGATGGTAGAGGTCAAGAGAGGAGACACTAGCAACCAGG	SEQ ID NO: 548
LTR70	TCTTGCTCCCAGGTTAAATCTNAAGCTGRRCAAATAAAACTGCTA	SEQ ID NO: 549
MER120	AGATGTGGACTCAAGATTCTATGGGGAAACTGTGTTCTTAGTAA	SEQ ID NO: 550
REP522	TGATTGCTGGCAGCTGAGGTGGTTAAGGGTGTATCCTGGGGCTGCA	SEQ ID NO: 551
LTR71A	TTAAAGTCTCGCTTCACTGTTCTCGGTCTCTGAGTCCATTCTT	SEQ ID NO: 552
LTR71B	CATTAAGTCTCACTTCTGCTGTTCTCGGTCTCTGAGTCCATTCTT	SEQ ID NO: 553
LTR12B	CCCACCAAGGAAGAAACTCCGGACACATCTGAACATCTGAAGGAACAA	SEQ ID NO: 554
MER121	AGCACTTTTCCCCCTTAATTTAAACCCATGTGTATTCAGGGAA	SEQ ID NO: 555
MER122	TGCAGTTGGTGGCGACAGAGACTGTAGTGTGGCTGGAGTGGTAGGAGGG	SEQ ID NO: 556
LTR7A	AAAGCTTATGTCACACAAAGCGTGTGGTCTCTCACACGGAC	SEQ ID NO: 557
LTR7B	ACAGCCTTGTGTCACACAAAGCGTGTGGTCTCTCACACGGAC	SEQ ID NO: 558
MER51E	GATTAGGCAGCAYACAGGCCACATCTCACTCTGTGATAACAAAGACAGA	SEQ ID NO: 559
MER41F	CAGGAGAATAGAAAATTCCAGGCAGCAGTTACATGACTAGCAAAAGGA	SEQ ID NO: 560
LTR2C	AAAGATAAAATGCCAGACAACTTGGCACCAACACCCYGGCCCTAGGAGTT	SEQ ID NO: 561
LTR38C	ACACCTCACTCTTGTATTTGGCTCTTCTACAAGCGGCAAGCAGCYG	SEQ ID NO: 562
LTR72	AACTGTATTCTCATGGAGAGTCGTTACTCACCAAGGYGAATRAACC	SEQ ID NO: 563
MER65D	TAAAAGCTTCCCTTACCTCCCTCTCAGATGATCTGGCTTGC	SEQ ID NO: 564
ALR1	TGAGGCCTTCGTTGGAAACGGGATTCCTCATATAATGCTAGACAGAAGA	SEQ ID NO: 565
LTR1C	GGTCCAGCATTCTGCTCCGGTCCCGCACTCACTCGCTTGATGCT	SEQ ID NO: 566
LTR45C	TCTCACAAGCAGAGGGAGTTCACTGAGTGTGTTCTT	SEQ ID NO: 567
LTR76	GATGTTAAGTCTGCTGGGCTGAGTCACATCAAAAGATCCTCCTGTT	SEQ ID NO: 568
MER72B	TTTCACAATGCACTCCCTCTAAACACTGACCACCATCTGGACTGGT	SEQ ID NO: 569
ALR2	GTGAAGGGATAATTGGGAGCTATTGAGGCATATGGTAAAAAGAAAATA	SEQ ID NO: 570
LTR1D	GTTCCAGCACTCATGCACTCCAGTTCCACCTCGTTACTCACATGCTCC	SEQ ID NO: 571

MER34C	TCCGTGTCACCTCCCCATAACTGGCCTTCCCCACACCCCTCTTCTTGT	SEQ ID NO: 572
MER50B	ACTCCCCTAAACACACTGCGCGTGCTCAATTCCCAGGGTAAGGAGGGCAC	SEQ ID NO: 573
HERVP71A_1	AATTGTGGCAGGAGTCTAACAGCAGTGGATGTTGATTATCCCTTGTG	SEQ ID NO: 574
LTR27B	TTGCCAACCCCTTCCGATTGATTCTCTGAATAATGCCCTTAAACCA	SEQ ID NO: 575
LTR12C	CACAGAAGGAAGAAACTCCGAACACATCCGAACATCAGAAGGAACAAAC	SEQ ID NO: 576
LTR43B	CAGTCGGTGTCTCACYYTGGAGCAGCCNYGCTCTGACTCAGCTGTCA	SEQ ID NO: 577
LTR72B	CCCTTGTAAATCCTCTTGGTTGTGTCATTGGACTGTCACTGGCAAG	SEQ ID NO: 578
LTR77	GGGACAAGAACACTGACCTTGCTAACTAAGGAGTAAGAAGACTGCAACA	SEQ ID NO: 579
L1PREC1	GTCAAAGTGCTTCATTAATGGGTCTGTTCCCTGTGCCACCCAAGTGG	SEQ ID NO: 580
MER2B	TCATTACACGGATTCAATGTAGTACTYGGTGTATGGCAAATTCAAGTTT	SEQ ID NO: 581
MER93B	CTATAAAAGCCTCCCCCTGCATTCCCTCGGTGGAGCTCCGAACCACTT	SEQ ID NO: 582
SATR2	TGTACACCCCTGTGATATTTCGTAATATCCTAGGGGATGTTACTCCCA	SEQ ID NO: 583
GOLEM_C	GGGNAATGANTGATATTCACTGAAATGGTGTGCTGGGACATTGGGTTCCAT	SEQ ID NO: 584
MLT1A1	CCCTCTAGAGGATGCACTWCAAGGYGCCATCTGGAAAGCAGAGASCA	SEQ ID NO: 585
L1PREC2	TGGCTGAACACTCCAGAACAGTGGCTCTCGCTTCTCGGAGGGAGC	SEQ ID NO: 586
BLACKJACK	CATCCAAACAAAGCTCGCATATTCTACCCAACGATATAGAACGCTGTAGTTG	SEQ ID NO: 587
L1M2A1_5	GCCCACCCACCCATCACAGCTTCAAGCAACACCAACATGGACTGTTGG	SEQ ID NO: 588
MLT1E1A	TGGAAGAGGATTCTAACGCTCAGATGAGAACACAGCCCTAGCCAACACCT	SEQ ID NO: 589
MER4E1	TTCTTCCAGACCCCTCCAACTCTAAAGAGATTAACTAAGATCTGAATAGG	SEQ ID NO: 590
PRIMA4_I	CGTGACCTCTAGGAATGAGCCTTCTAGTGTATGGGGACCTAACCTCT	SEQ ID NO: 591
PRIMA4_LTR	TTTAAATTGGAGCCCTAAAATCATCTCGGAGAAAGGCAATAGACCTGT	SEQ ID NO: 592
L1M4B	AAAACAANCACNANGAGCCGGGGGGGGGAATCAGTATCCAGGTTGCTA	SEQ ID NO: 593
L1PA14_5	CACACAGACAGCAGATTAGGGCTAACCTGGCAAGGATACAGCTGTCTGC	SEQ ID NO: 594
LTR13A	TCTCTTGTCTTGTCTTATTATTACAACTCTCGTCTCCGACACG	SEQ ID NO: 595
HAL1C	AACCACAACATNAGAGGACCCANCACTCCTCTACCACCAAAACAAAC	SEQ ID NO: 596
HERVIP10F	AGAGGCTCATAGAAATGGCACTTACTAAAACCTCCCTAACATCCTCCA	SEQ ID NO: 597
MLT1F2	CNGATCCTCCCTCNAGTTGAGCCTTGAGATGAGACTGCAGTCCTGGCTG	SEQ ID NO: 598
MLT1FR	TTTGGACCCCCAAAATTCTACTGGCAGGAAGCAGGGCTGAGAAAACACTC	SEQ ID NO: 599
HERVIP10FH	CAGAGGCTCATAAAACGGCACTTACTAAAACCTCCCTAACATCCTCC	SEQ ID NO: 600
LTR10F	TTCCCTCCCTTGTCCAGGGTGTGCGCTCACCATGCTCATCTGTGAGGGT	SEQ ID NO: 601
MER34B_I	CTAAAGACACTTGTGCTCAGACCTAGAAATCTTCATGGCTGCCAT	SEQ ID NO: 602
MER57A_I	CTGGAAGGCCTATGCACCTAATAATAGAACCTCATGTATCTCCGCTACT	SEQ ID NO: 603
PRIMAX_I	AATTAACCAAGGCTTTAAAATTCCCTGGCAAAAGCTCTCCATTGGTT	SEQ ID NO: 604
MER75B	CATITCCCCTTGGCCCAAGAATACTCTTGTCTAATCCTAATGTAACA	SEQ ID NO: 605
MLT2B3	CCCAAGGTGGTTGGCATTGAGAATGATGGGCTGCCAGGTGTG	SEQ ID NO: 606
MER66C	AGGATCTGGTCCAGACAGGATAAGTAAGAACNRGCAAGAACAGCAG	SEQ ID NO: 607
MER52D	CACNGCTCCACACTGRTTNNCCTTGGCAGGNNTGGATCNAGGNCTTG	SEQ ID NO: 608
MER41G	TGCTTGTCAATAAAAGCTTCTGCCTTTCGCTTCATTCTGACTCATCCT	SEQ ID NO: 609
MER21C	AGGAGCATCTTGTCTAATATTGGTCTTGTACCTGACAC	SEQ ID NO: 610
LTR20C	CCAACCTCACCCCTTGTGTCATGCTCTTAATTCTGGTTGTGAGAC	SEQ ID NO: 611
L1PBA1_5	TCTGTTGCGGGAGAAGTTCTGACTTACCTGGAGCTGAGTCAAKTTAG	SEQ ID NO: 612
L1MB4_5	AATCTCATGTCAAAAAAACACTAGCTGAACACAAGCTAAGGAACAGAGAC	SEQ ID NO: 613
LTR73	TTGACACTCACTTCGGTTGTATTGGCTCTGACACCAAAACAGGG	SEQ ID NO: 614
HARLEQUINL_TR	GGGAGGAGACCAACCCCTCATATTGTCTTATGCCCAATTCTGCCCTAAA	SEQ ID NO: 615
LTR12D	CACCAAGAAGGAAGAAACTCCGGACACATCTGAACATCTGAAGGAACAAAC	SEQ ID NO: 616
LTR12E	CACTCCTGAAGTCAGCGAGACCACAGAACCCACCGGGAGGAACAAACAACT	SEQ ID NO: 617
MLT2B4	GTAAGAGAGAATTCTCCTGCCTGACTGCCTTGAACTGGGACATCGGTC	SEQ ID NO: 618
MER9B	TAACAACATGTTTGTGCTGAGATAATCAGCCAGAGCCTTCTRCT	SEQ ID NO: 619
SVA2	GAAGTGCACAGCCTGTGTTGATCTTCTGCCCTCCCCAAGTGGCATTT	SEQ ID NO: 620
HERV39	TCTTGCTCTAAACTGCATACAAACAGGCCACCCAGCCAAGAGGAATTAT	SEQ ID NO: 621
MLT1H2	CCCAGCTGCCATGCTAAAGAACGCTCAGGCTAGACTATTGGATGATGAGA	SEQ ID NO: 622
LTR10G	GCTGAGAAAACCTTGCCTGAGTGTGGTTCACTTGTGGGACCAAGCA	SEQ ID NO: 623
MER4A1	CAGAAACTCAAAGAATGCAACCATTGTCTCTCACCTACCTGTGACCTG	SEQ ID NO: 624
MER4D1	CTCTAGTATAGCATCACATGACAGATAGCAGGCCCTGAAAGAAATCAAAG	SEQ ID NO: 625
THE1D	CNTCTCTCCTGCCGCTTGTGAAGAAGGTGCTTGCCTCCCTTGCCT	SEQ ID NO: 626
LTR5B	CCTCCGTATGCTGAGGCCGGTCCCTGGGGCCACTGTCTTCTCTATA	SEQ ID NO: 627
MER46	TTGAGTATCCTTATCCAAAATGCTGGGACCCAGAAGTGTTCGGATTT	SEQ ID NO: 628
CHARLIE4	GTGACTCCACATGTTAATGGCTTATTCAAGCTAACGAGCATCTACTATC	SEQ ID NO: 629
CHARLIE9	CGTTGCAACGTGACAGTTCATGCTAACGGATCCGTGCGATGCACTGTAT	SEQ ID NO: 630
TIGGER8	NGTCNATTGTTGACTTACACACATTGACTTCCATACACGTTTCAGGA	SEQ ID NO: 631
MER5A1	TACTGAATCAGAACATCTGCCTTAAACAAGATCCCCAGGTGATTCATATGC	SEQ ID NO: 632
KANGA2_A	TTGGCCCANAAAACTTTNTGAATCTCTCATGGGAAAATTGGGAGATC	SEQ ID NO: 633
FORDPREFE_CT	TTCACGTGCACTGATTGGACAATAACAAATACGTAAGTACCTCTTCT	SEQ ID NO: 634
FORDPREFE_CT_A	ACTTAGAAAATTCGAGGAAGGCACTCCAAAGCAGCGGGTCCCTGAGGC	SEQ ID NO: 635
LTR16E	ACGCATCACCTGCAATTGCTTCCCATCCTCCCTGCCTCACTTCCCTTT	SEQ ID NO: 636
L1PA17_5	CGAAGCCAAACGATCATACACAAACATACACCAAGCTCATCCCTCAAGGG	SEQ ID NO: 637
CHARLIE10	AGTAGCGCTGTCAATCCAACCTAGATTAAGATAAGTAAACAGCAAGA	SEQ ID NO: 638
THE1B	CGCCATGATTGTGAGGCCCTCCAGCCATGTTGAGTCATTAA	SEQ ID NO: 639
MSTA	ATGATTGTAAGTTCCGTAGGGCTCCCCAGAAGCCGAGCAGATGCCAGCA	SEQ ID NO: 640

MSTC	ATCGGGCCCTCGACCTTGGACTTCCCAGCCTCCAGAACTGTAAGAAATA	SEQ ID NO: 641
MLT1A	GCCGTCTACGAACCAGGGAATGAGCCCTCACAGAGAACTGAATCTGCCGG	SEQ ID NO: 642
MLT1B	GCCATCTACAAGCCAAGGAGAGAGGGCTCAGAAGAAACCAACCTGCCGA	SEQ ID NO: 643
MLT1C	CATGGAACAGATTCTCCCTCACAGCCTCAGAAGGAACCAACCTGCCGA	SEQ ID NO: 644
MLT1D	TAGCCCAGTGGAGACCCATTTCGGACTTCTGACCTCCAGAACGTGAAGATA	SEQ ID NO: 645
MLT1E	TTGTGAGACCTCTGAGCAGAGGACCCAGCTAAGCTGTGCCGGACTCCTG	SEQ ID NO: 646
MLT1F	CATCTTGACTGCAACCTCATGAGAGACCCCTGAGGCCAGAACACCCAGTA	SEQ ID NO: 647
MLT2A1	GTTCCTCAGTTTGGGACTCGGACTGGCTCTCTGCTCCAGCTTGCA	SEQ ID NO: 648
MLT2B2	TCACGTGAGCCAATTCCCTAATAAATCYCYTCTATCCATCTTATGGTT	SEQ ID NO: 649
MLT2C2	CCACAATCGCGTGAGCCAATTCTAAAATAATCTCTACACACAC	SEQ ID NO: 650
MLT2D	TCTGCCTGCCGTGATNGTCTCGAACTGGAATATCAGCTTGCGGATTITG	SEQ ID NO: 651
MER4A	TAAGASCAAGCTGRCCCCGACCACCTGGGCACATGTCGTCAGGACCTC	SEQ ID NO: 652
MER4B	CTAAAATGTATAAASCAAGCTGRCCCCGACCACCTGGGCACATGTKG	SEQ ID NO: 653
MER4C	ATTGAAGCCCCATCCTGGAGAAAGGCACAGACACAGATGTT	SEQ ID NO: 654
MER9	GCTGTGAGACCCCTGATTTCCCACTTACACCTCTATATTCTGTGTG	SEQ ID NO: 655
MER11A	CACGGCTCTACCGATATGTGATGTCACCCYGGAGGCCAGCTGAAAT	SEQ ID NO: 656
MER11B	CCGGATRCCCAGCTTAAATTTCTCTTTGTACTCTGCCCTTATT	SEQ ID NO: 657
MER39	GGTCTTGGGTCTTCATTCTGAAGGCTCCATGTCACGTTAAACTTGA	SEQ ID NO: 658
MER48	TGTTGTTGTGGACGCGCTCTCGGGGTTSGAACCGAYACAAGARCCCTACA	SEQ ID NO: 659
LOR1	TCTTCTTGGCAATAMTYRTTGTCTAGTGGCTTCTGTGAGTGA	SEQ ID NO: 660
MER49	TGCGGGATGCCACCTTGCAGGCTGTAACCTTATAAGAAATAAGTCT	SEQ ID NO: 661
MER39B	TGCTTCTTCTCCWATTAATCTGCCCTTGTTSAGTTGATTTCACTGAAM	SEQ ID NO: 662
MER61	AAGCCTAAWTTTCTGTGGCCGTGTGACAAGGACCCGCTTAGCTGAAC	SEQ ID NO: 663
MER31	CCTGTACCTATCGCAATGGCTCTGAATAAAAGTCTGCCCTACCGTGTTA	SEQ ID NO: 664
MER34	GCCGGAAACTCTAAGAGGGTAGAGGWAAAATTCTCYCTNCCATGG	SEQ ID NO: 665
MER41C	TTTACACTGTGAATCACCTCTGAATTCTTCTGCACTGAGATCCAAGAAC	SEQ ID NO: 666
MER50	TGCTCTAAACTTGCCTCGGTCTCTTCTGCCCTTGTGCCCTCAGTCG	SEQ ID NO: 667
MER65A	GAATATGCACATAGTTACTATGGCACGCGTATTCCCATGCAATGCTCT	SEQ ID NO: 668
MER65B	GTGTATGCCCAAATTGCAATTCTGTTCTCACATGTTATTCCCAAATAA	SEQ ID NO: 669
MER66A	AGCCGCTTCAATAAAAGTTGCTGCTAATACCAACARCTGCCCTGAAT	SEQ ID NO: 670
MER66B	AGCCGCTTCAATAAAAGTTGCTGCTAATACCAACARCTGCCCTGAAT	SEQ ID NO: 671
MER67A	ATTCTCCCTTAAACGCCCCAGTCACCTCTGCACAAATCGAAGCTGAGCT	SEQ ID NO: 672
MER67B	CCTCATTCTCCCTTAAACGCCCCAGTCACCTCTGCACAAATTGGAATGG	SEQ ID NO: 673
MER67C	TAGCAGATTGCCGTGTGCGCATCACATTCTGGTTAATGCTTATTCAA	SEQ ID NO: 674
MER68A	CCCTGTGAGTCTCCCTAGCGAATCACCGAACCTGGGGTGGCTTGGAAC	SEQ ID NO: 675
MER68B	TTCCCTTGTGATCTGGCTGTATCTTACNRTGTCGCTGTAATAAAT	SEQ ID NO: 676
MER70A	TGTTCTGCTCACCGGACTCAGACAAGTTGGTAACCAGTCACAGTGAAC	SEQ ID NO: 677
MER70B	TCNGACCCATTCCCTGGTGGTGGCATAGTGTGATGATCTTGTATTCTC	SEQ ID NO: 678
MER72	GCTGCAACCCTTATGAGAAATAAGCTCTCTTCCAAATTATGAAACC	SEQ ID NO: 679
MER73	GGTGACGGGGTACGACTGGGTTCAAACAACCTATGTCAGGCCAAAAAT	SEQ ID NO: 680
MER74	AAGCATGATAACAAKYTGCTGTGATGAAACGGATGCCAAATAGWC	SEQ ID NO: 681
MER76	TGTTGCCCTAAATCGGCTNCTCTGCACACCCGGCAGCTCAGCTCTCC	SEQ ID NO: 682
MER77	CTCTAGCGAATCACTGAACCTGAGGGTGGCTGGGGACCCCCGACACA	SEQ ID NO: 683
MLT1G	GGGTCTTGTACTGCCCGATACCAACGTGGACAGAGWAACTRCCAGCT	SEQ ID NO: 684
PABL_A	AAAAAAACTCTCTCTCCCCAGTTCATCTGCATCTGTTATTGGGCCA	SEQ ID NO: 685
PABL_B	CCAGTCATCGCATCTGTTATTGGGCCACGAGAAATAAGCAGCCCGACC	SEQ ID NO: 686
MER41D	ATAAACTTGTCTTCTCACTGTACTCCGCACTCGCCTGAAATTCTTCC	SEQ ID NO: 687
MER51A	CTCTGTTTGTGCTTATTCTTCTGCTTTGTTGTGCGTTTGT	SEQ ID NO: 688
MER51B	CTCTGTTTGTGCTTATTCTTCTGCTTTGTTGTGCGTTTGT	SEQ ID NO: 689
MER57A	ATCTTCTACACATGGCTGACTGGAGTCTCTGAACCTACTCTGGTTCTG	SEQ ID NO: 690
MER57B	TATAAAATTGGCCGACACAGGGCATCCCTGGAGTCTCTGAAATCTG	SEQ ID NO: 691
MER65C	ACCTCCAACCTCTCTTGTGCTTACCTGGACATACCGAAGACCACTGGTCT	SEQ ID NO: 692
MER83	ACAACGTCTTGGTAAATTATTTACCTCCCGGCCACCGGCCCCAGAT	SEQ ID NO: 693
MER54	TGAAAGATAACACTGTAACACACCCACACAMCTCCCTGGAGCCCATCA	SEQ ID NO: 694
MER87	ACTTACTGGCTGTCWGCGGTGAGCAGTACCAAGCTTGTGATTCACTG	SEQ ID NO: 695
MER74A	AATGGCAGTCGTCCTCTGATGTCGTTGGCCTTACCATACCTGAAATAAT	SEQ ID NO: 696
MER74B	CTTTCAATGGCAGTCGTCCTGATCTGTTGGCCTTACCATACCTSAAT	SEQ ID NO: 697
MER88	AGGGGAACCTGGCAGGGACAGCCTTACACACTGGTCACCTGGTCA	SEQ ID NO: 698
MER54B	AGCCATTGGGTGTTGAGAACTGGAACTGTGTCAGGGTGACTGAG	SEQ ID NO: 699
MER31A	AAATTCCCACCTGCCCATGCTGTTACCGAGTTGAGCCAACTCTCTCC	SEQ ID NO: 700
MER31B	TCCCCACCTGTCCTGCTGTTACCGAGTTGAGCCAACTCTCTCC	SEQ ID NO: 701
MER67D	ATCCACCTGCCATTGTTACGGAGTTCAANCTCTAACCCCTA	SEQ ID NO: 702
MER11C	TTGACTCTGCCCCATTCTCAAGCCAGCCAGCCTAGGGAAATA	SEQ ID NO: 703
MER11D	ACTATCTGTTGTCATTCTCAACCTGCCGATCCGCCAGCTAGGAG	SEQ ID NO: 704
MER61B	CGCCCAATAAAATTCTGCTCCTCACCTTCAATGTCGCGCWGCTAATC	SEQ ID NO: 705
MER61C	GKGACAAGAACCCGGGTTAGCTGAACTAAGGAGCAAATYCTGCAWCA	SEQ ID NO: 706
MER92A	GTTCTGAGGTGGAGCGTCTCCCTATTGCAATAGTCTTTGAATAAA	SEQ ID NO: 707
MER92B	TTCTGCCTGAACCTTGAGATGCTTGAGATCTTGTGAGCGTCTC	SEQ ID NO: 708
MER92C	TATCTACCCCTTCCCTATAAAAGTCCAAGGCAAACCAACCTGCCGAGACA	SEQ ID NO: 709
MER93	CTTCCTCATNCACCYTATAAAAGCCTTCCCTCAAGCCCTCCGGCGGAG	SEQ ID NO: 710
MLT1H	CACAGATGCATGAGGGAGCCAGCCAGAAGAACCAACCCAGCTGA	SEQ ID NO: 711

MER89	AAGCTCTGAATAAAAGCCTTGTCTTCATTGGKTGGCTTCATT	SEQ ID NO: 712
MER90	CCTCGCTGCARCGAGCAATAAACCCAACTTGTCAACCACAGGTGTTTC	SEQ ID NO: 713
MLT2A2	TGTGGACTTCACCTTGTATCGTGTGAGTCATAACTCTTAATAAACTC	SEQ ID NO: 714
MLT1I	GAGCAGAGCCCCAGCCGACCCCGCATGGACATGTAGCATGAGCAAGAAAT	SEQ ID NO: 715
MER52B	GCCACAGAGGTTCCGGCCAGAAAAGCGACACCCAAGGATCCCAGACA	SEQ ID NO: 716
MER52C	ACACTAAATAAGCTCTTCGTCCTTCACCTTGCTGC	SEQ ID NO: 717
MER95	TTGARGCTCCGGTTCCGARCTGTWCTTCTCTYATTGTATGCACAAAT	SEQ ID NO: 718
MLT1J	ATGGAGCAGAGCTGCCATACCAGCCCTGGACTGCCTACCTCTAGACTTCT	SEQ ID NO: 719
MLT1K	AGCTACCCCTGGACTTTCACTTACGTGAACCAATAATTCCCTTTTG	SEQ ID NO: 720
MER101	TTCGTTTACACCGAAGGCTGCATCTCCCGTTGCAAACGTGTTACTG	SEQ ID NO: 721
MER41E	TTTCTGACTCATCCTGAATTCCCTCTCGCGATGGTGTCAAGAGCCTGGA	SEQ ID NO: 722
MLT2E	TCCCCCTCCAGACCTTCACTCCCCAGCTCCCTCCACAATTGTATAAGG	SEQ ID NO: 723
MLT1E1	TGATTTCACTGTGAGACCCCTGAGCAGAGGACCCAGCTAACCGCTG	SEQ ID NO: 724
MLT1J1	AGCCACTGTACATTTGGGTTTATTGTTACAGCAGTAGCGTTACCTT	SEQ ID NO: 725
MLT1J2	CCTGAGTCACTACNTGGAGGAGAGCCCACACCCGACAGAACCNCA	SEQ ID NO: 726
MLT1E2	TTGATTCGGGCTTGTGAGACCCCTGAGCAGAGAACCCAGCCGAGCCCACC	SEQ ID NO: 727
MLT1G1	TGCCCAAATTGCACTTGTGAGCAAATAAATGATTGTTGTTAA	SEQ ID NO: 728
MER110	CTCAGCTTGTGATCACAGGTTTNTTTCTGGTGGCTTTGGG	SEQ ID NO: 729
MER110A	TGGTGCCTCYCCCTTACACAGTAAGCAATAAAACTCAGCTTGTCTTATCA	SEQ ID NO: 730
MLT1F1	GAGAGACCCCTGAGCCAGAACACCCAGCTAACGTCGCTCCGAATTCTGA	SEQ ID NO: 731
MER101B	GGCTGTCTCCCTGGTTGCAAACCTGTTACTGGAATAACTCTCTC	SEQ ID NO: 732
MLT1G2	CCCTGCTGTGCCCCCTGTCGAATTCTGACCCACAGAATCCGTGAGCATAA	SEQ ID NO: 733
MSTA1	AGATGCTCGCACCATGCTTTGTCCAGGCCAGAAYTATGAGCCAAT	SEQ ID NO: 734
MLT1G3	AGCCTTCAAGTCTCCAGCTGAGGCCCCAGACATCATGGAGCAGAGACA	SEQ ID NO: 735
MSTA2	TGCCCTGAACCTCCCAGCCTGCAGAACCATGAGCTAAATAAACCTCTT	SEQ ID NO: 736
MLT1C1	GCCTCCAGAGGGAGCATGGCCCTGTCGACACCTTKGATTTCAGCCAGTG	SEQ ID NO: 737
MSTD	GATGACGCAGCAAGAAGGCCCTCACCGAGATGCCGCNCWCWTGATCTGG	SEQ ID NO: 738
MER51C	TCTCGCTTAAATAAATTCTGCTTGCCTGCTTGTGTTCTGTGTTTATT	SEQ ID NO: 739
MER21A	TGGTGTGAGAGCAGAGGAAAAAACACGGTTTGGAGAGAGTTTCCGAAACA	SEQ ID NO: 740
MER34B	TCTGTCTTGTGTTACAGGGGCTATTCCAACTAAGAACCTTATGAGGGTTG	SEQ ID NO: 741
MER54A	TATCTGGATCGACCAATTGAGGAACACTGGGAGGGCGGAGAACTGGAAA	SEQ ID NO: 742
MER74C	GCCTTCATCTATCCGAGTGTCACTGTGTTGTGCCCCATCAAAAGAA	SEQ ID NO: 743
THE1A	CTCATTTCCCTTGGCCCGCATGTAAGAAGTGCCTTCGCCCTCCGC	SEQ ID NO: 744
THE1C	ATGTGAAGAAGGACGTGTTGCTCCCTCCGCCATGATTGTAAGITTC	SEQ ID NO: 745
MSTB	ATGATTGNAAGCTTCTGAGGCCCTACCGAGAACCGAGCATGGCG	SEQ ID NO: 746
MSTB1	GCCATGCTTGTACAGCCTGAGCAGAACCGTGAGCCAAATAAACCTCTT	SEQ ID NO: 747
MER51E	CTGTGGAGTGTACTTCTGCTTCAATAAAATCTGTCCTCGTTACTNCGTT	SEQ ID NO: 748
MER41F	TGGGTGGCACACAGTCCGAGAAATCTCACCTTTCCAGGAATCTC	SEQ ID NO: 749
MER65D	TAAAAGCTCCCTTACCCCTCCCTTCAGATGCATCTGTCGCTGCCA	SEQ ID NO: 750
MER72B	TCTTTACCCCTCCCTAAAGTGCCTCTCAGCTCTGAGGC	SEQ ID NO: 751
MER34C	TTGTTACAGGGGTCTGTCCTCAGCTAACGAAACTATGAAAGGGTAGAGGAGAAA	SEQ ID NO: 752
MER50B	GATATGCCGYGGTAACTCAGGGTAACTCGGATCTTCACCCGGTAACA	SEQ ID NO: 753
MER93B	CTATAAAAGCTCCCCCTTGCATTCCTCGGTGGAGCTCCGAAACACTT	SEQ ID NO: 754
MLT1A1	CATCTGGAGACAGCAGAGASCAGGCCCTACCAAGAACACAAACCTGCTGN	SEQ ID NO: 755
MLT1E1A	CTTGTGAGACCTGTGAGCAGAGGACCCAGCTAAGCTGTGCCAGACTCTG	SEQ ID NO: 756
MER4E1	TCACGGGCCATGGTCACTCATATTGGCTCAGAAATAATCTCTCAAATA	SEQ ID NO: 757
PRIMA4 LTR	TTTAAATTGGAGCCCTAAAAATCATCTCGGAGAAAGGCATAGACCTGT	SEQ ID NO: 758
MLT1F2	ACACCTTGATTGCAGCCTGTGAGAGAGACCCCTGAGCCAGAACACCAACTA	SEQ ID NO: 759
MLT2B3	CTTCTCAGCCTCCATAATCAAGTGAAGCCATTCCCCTAAATAATCCCCTC	SEQ ID NO: 760
MER66C	GAGCAGTACCGTCAATAAAAGATTGCTCTAACACCATCTGGCTCACCC	SEQ ID NO: 761
MER52D	CTCAGGCAAAGGHACCACHGGHCACAGAGGTTCTGGCCAGAAAAGBGAC	SEQ ID NO: 762
MER41G	TGCTTGCAATAAAAGCTTCTGCCCTCGCTTCTGACTCATCCCT	SEQ ID NO: 763
MER21C	TGAGGATCTGATGCAACTCCAGGGTAGATAGTGTCAAGATTGAATTAA	SEQ ID NO: 764
MLT2B4	CCTGGGTCTCCAGCTTGCCTACCCCTGCAGATCTGGGACTTCTCAG	SEQ ID NO: 765
MER9B	TAATATGTGGGCTAAACACTCTGTTGTGGCTCTGAGCTGTGAGGCTGTT	SEQ ID NO: 766
MLT1H2	TACACCATGTGGAGCAGAAGAACACCCAGCTGAGGCCAGCCAACACAGA	SEQ ID NO: 767
MER4A1	AAAACCAAGCTGTCTGACCACCTGGGCACATGTGTCAGGACCTCC	SEQ ID NO: 768
MER4D1	TCANAGGCCATGGTCACTCATATTGGCTCAGAATAATCTCTCAAATA	SEQ ID NO: 769
THE1D	TGCTTGCTTCCCTTGGCTCTGCCATGATTGTAAGTTCCCTGAGGCCT	SEQ ID NO: 770

The expression patterns of the present invention can be evaluated by utilizing high-density expression arrays or microarrays. As defined herein, "microarray" can be a chip, a glass slide or a nylon membrane comprising different types of material, such as, but not limited to, nucleic acids, proteins or tissue sections. By utilizing microarray technology, a plurality of transposable element sequences from transposable element families can be

analyzed simultaneously to obtain expression patterns. One of skill in the art can design a microarray chip or glass slide that contains the representative nucleic acid sequences of all of the members of a particular transposable element family or the nucleic acid sequences of select members of a particular transposable element family. An array can also contain the 5 nucleic acid sequences of selected transposable elements from one or more families. Array design will vary depending on the transposable element families and the sequences from these families being analyzed. One of skill in the art will know how to design or select an array that contains the transposable element sequences associated with a particular type of cancer. Such microarrays can be obtained from commercial sources such as Affymetrix, or 10 the microarrays can be synthesized. Methods for synthesizing such arrays containing nucleic acid sequences are known in the art. See, for example, U.S. Patent No. 6,423,552, U.S. Patent No. 6,355,432 and U.S. Patent No. 6,420,169 which are hereby incorporated in their entireties by this reference.

The present invention also provides microarray slides or chips comprising 15 transposable element sequences or fragments thereof from transposable element families. As stated above, a microarray slide or chip can contain the representative nucleic acid sequences of all of the members of one or more transposable element families or the nucleic acid sequences of select members of one or more transposable element families. The present invention also provides for a kit comprising a microarray slide or chip of the present 20 invention for diagnosis of cancer, staging of cancer, other clinical applications and research applications. Utilizing the methods of the present invention, a chip(s) or glass slide(s) that specifically detect a type of cancer can be synthesized. For example, if it is known that transposable element sequences from two families are expressed in prostate cancer, a chip that contains the necessary transposable element sequences from these two families can be 25 synthesized, such that one of skill in the art can utilize a kit, containing this chip, for detecting and staging prostate cancer. Similarly, utilizing the expression patterns of transposable element sequences for breast cancer, it is possible to manufacture a kit containing a chip comprising the transposable element sequences involved in breast cancer in order to diagnose and stage breast cancer. Also, utilizing the expression patterns of 30 transposable element sequences for ovarian cancer, it is possible to manufacture a kit containing a chip comprising the transposable element sequences involved in ovarian cancer in order to diagnose and stage ovarian cancer.

Microarray techniques would be known to one of skill in the art. For example, U.S. Patent No. 6,410,229 and U.S. Patent No. 6,344,316, both hereby incorporated by this

reference, describe methods of monitoring expression by hybridization to high density nucleic acid arrays. For example, one skilled in the art would first produce fluorescent-labeled cDNAs from mRNAs isolated from cancer cells. A mixture of the labeled cDNAs from the cancer cells is added to an array of oligonucleotides representing a plurality of known transposable elements, as described above, under conditions that result in hybridization of the cDNA to complementary-sequence oligonucleotides in the array. The array is then examined by fluorescence under fluorescence excitation conditions in which transposable element polynucleotides in the array that are hybridized to cDNAs derived from the cancer cells can be detected and quantified.

The expression patterns of the present invention can also be determined by assaying for mRNA transcribed from transposable elements, assaying for proteins expressed from a mRNA, RT-PCR and northern blotting. Particular protein products translated from mRNAs transcribed by transposable element genes can be detected by utilizing immunohistochemical techniques, ELISA, 2-D gels, mass spectrometry, Western blotting, and enzyme assays.

In the present invention, patterns of expression can include one, two, three, four, five, six, seven, eight, nine, ten, twenty or more families of transposable elements and at least one, two, three, four, five, ten, fifteen, twenty, twenty-five, fifty, one hundred, two hundred, three hundred, four hundred, five hundred, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members of each transposable element family are being analyzed. For example, the present invention provides for the determination of an expression pattern of one family of transposable elements in which one, two, three, four, five, ten, fifteen, twenty, twenty five, fifty, one hundred, two hundred, three hundred, four hundred, five hundred, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members of a transposable element family are analyzed. The present invention also provides for the determination of an expression pattern of two families, wherein one, two, three, four, five, ten, fifteen, twenty, twenty five fifty, one hundred, two hundred, three hundred, four hundred, five hundred, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight

thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members are analyzed for each family. Similarly, the invention provides for the determination of an expression pattern of three families, wherein one, two, three, 5 four, five, ten, fifteen, twenty, twenty five fifty, one hundred, two hundred, three hundred, four hundred, five hundred, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members are analyzed 10 for each family. Similarly, the invention provides for the determination of an expression pattern of multiple families, for example, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 or 700 families wherein one, two, three, four, five, ten, fifteen, twenty, twenty five fifty, one hundred, two hundred, three hundred, four hundred, five hundred, one thousand, two thousand, three thousand, four thousand, five thousand, six 15 thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members are analyzed for each family.

By utilizing the methods of the present invention, a reference expression pattern can be obtained for normal tissues or cells, for particular types of cancers as well as for stages of 20 particular types of cancers. Therefore, the present invention provides a method of assigning an expression pattern of transposable elements to a type of cancerous cell in a sample, comprising: a) determining expression of one or more families of transposable elements; and assigning the expression pattern obtained from step a) to the type of cancerous cell in the sample. The present invention also provides a method of diagnosing cancer comprising: 25 a) determining expression of one or more families of transposable elements in a sample to obtain an expression pattern; b) matching the expression pattern of step a) with a known expression pattern for a type of cancer; and c) diagnosing the type of cancer based on matching of the expression pattern of a) with a known expression pattern for a type of cancer.

30 In the methods of the present invention, the expression pattern obtained from a sample taken from a subject can be obtained from outside sources, such as a testing laboratory or a commercial source. Therefore, the step of obtaining the expression pattern can be performed by one skilled artisan and the step of comparing the expression pattern can be performed by a second skilled artisan. Thus, the present invention provides a

method of diagnosing cancer comprising: a) matching a test transposable element expression pattern with a known expression pattern for a type of cancer; and b) diagnosing the type of cancer based on matching of the test expression pattern with a known expression pattern for a type of cancer.

5 For example, one of skill in the art can obtain an ovarian tumor cell and determine the expression pattern of one or more transposable element families. By determining which transposable element families are expressed as well as which members of these transposable element families are expressed, one of skill in the art can assign this pattern to an ovarian tumor cell. This can be done for an ovarian tumor cell at different stages of cancer, such
10 that a library of expression patterns are readily available to not only diagnose but stage ovarian cancer. Similarly, this can be done for any type of cancer cell, such as a carcinoma cell, a fibroma cell, a sarcoma cell, a teratoma cell, a blastoma cell, a breast tumor cell of epithelial origin, an ovarian tumor cell of epithelial, stromal or germ cell origin, mixed cell types from a tumor or any other cancer cell. By determining the expression patterns of
15 transposable elements at different stages of cancer, the skilled artisan can determine which transposable element families and which members of these families are involved in cancer and cancer progression.

Such libraries of expression patterns are useful for diagnosis, staging and treatment. For example, a sample can be obtained from a patient or subject in need of diagnosis and
20 assayed for transposable element expression. Once the expression pattern is determined according to the methods of the present invention, this expression pattern can be compared to a library of expression patterns to determine the type of cancer as well as the stage of cancer associated with the expression pattern. Once this is determined, appropriate treatment can be prescribed. In addition to identifying expression patterns for different
25 stages of cancer, the present methods are also useful for identifying expression patterns of cancer cells after therapeutic intervention. For example, a sample can be obtained from a patient or subject undergoing treatment for a cancer such as prostate cancer, lymphoma, skin cancer, GI-tract cancer or any other type of cancer. Expression patterns can be obtained and compared to expression patterns before treatment. In this way, the changes in
30 transposable element expression can be monitored such that one of skill in the art would know which transposable element families as well as which members of each family are affected by the treatment. If improvement is seen in the patient, these improvements can be attributed to changes in transposable element expression. Since the skilled artisan will have reference patterns for a normal tissue or cell, changes in transposable element expression

after treatment can be monitored to determine if the treatment results in a transposable element expression pattern that more closely resembles normal or “baseline” expression patterns. Improvements can also be monitored clinically by observing changes in tissue health, cellular changes and changes in the subject’s overall health. In this way, one of skill 5 in the art can correlate clinical changes with changes in transposable element expression.

For cancers such as breast cancer and ovarian cancer, once a tissue sample is obtained from a subject, this tissue sample can be compared to a library of tissue samples from many subjects, representing various stages of the cancerous tumor. By comparing the tissue sample to a library of tissue samples with known transposable element expression 10 patterns, one of skill in the art can tailor treatment to the individual needs of the subject. For example, if the expression pattern for the subject matches the expression pattern of a particular stage of cancer that is amenable to treatment with a chemotherapeutic agent, then the subject is a candidate for that treatment. Similarly, one of skill in the art can determine the likelihood that the subject will respond to a particular treatment by determining whether 15 or not the subject’s pattern corresponds to patterns obtained for those who have responded to treatment. In this way, treatments can be personalized to maximize the outcome while minimizing unnecessary side effects. The patterns in the libraries utilized for comparison purposes can be grouped by age, medical history or other categories in order to better determine the likelihood of response for subjects. In certain cases, the pattern obtained 20 from the subject may correspond to a pattern for a stage of cancer that does not respond to any available treatment. In cases such as these, one of skill in the art may determine that treatment may not be advisable because the subject may suffer unnecessarily with little or no likelihood of success.

As mentioned above, one of skill in the art will be able to analyze and interpret the 25 differences in expression. For example, if before treatment, certain families and members of these families are expressed, and after treatment, fewer families and/or members of these families are expressed, it can be said that this particular treatment is effective in reducing expression of these transposable elements, such that the treatment is effective in treating the cancer. In some instances, effective treatments may involve decreasing the expression of 30 certain transposable elements and increasing the expression of others. Therefore, once libraries of expression patterns are established from untreated and treated cancer subjects, one of skill in the art will know whether or not treatment is effective in a particular subject by comparing the expression pattern of a sample from the patient at different stages of treatment, with reference patterns established for the successful treatment of that particular

type of cancer. If a treatment is not successful in a particular subject, the skilled artisan will recognize this by noting that the expression pattern is not changing as expected, and other dosages, therapies or treatments can be employed.

Therefore, the present invention also provides a method of determining the effectiveness of an anti-cancer therapeutic in a subject comprising: a) determining expression of one or more families of transposable elements, in a sample obtained from the subject, to obtain a first expression pattern; b) administering an anti-cancer therapeutic to the subject; c) determining expression of one or more families of transposable elements in a sample obtained from the subject after administration of an anti-cancer therapeutic to obtain a second expression pattern; and d) comparing the second expression pattern with the first expression pattern such that if the differences between the expression patterns can be correlated with successful treatment, the anti-cancer therapeutic is an effective anti-cancer therapeutic. The changes observed between expression patterns can vary depending on the type of cancer and the stage of cancer. The changes observed can also vary depending on the size, age, weight and other physiological characteristics of the subject.

In some instances, an effective anti-cancer therapeutic will result in fewer transposable elements being expressed in the second expression pattern as compared to the first expression pattern. In other instances, there may be more transposable elements expressed in the second pattern as compared to the first expression pattern. For example, one of skill in the art can diagnose a cancer utilizing the methods of the present invention and assign a first expression pattern to a sample from a subject. The following example is not meant to be limiting and the numbering of transposable elements appears for illustrative purposes only and not for purposes of identifying any particular retroelement sequences. As an example, the first expression pattern comprises the expression of transposable elements 1, 3, 5, 7, 9 from transposable element family A, the expression of transposable elements 23, 56 and 78 from transposable element family B and the expression of transposable elements 10, 15, 25 from transposable element family C. After administration of an anti-cancer therapeutic, a second expression pattern is obtained. The second expression pattern comprises, for example, the expression of transposable elements 3, 5, 9 from family A, the expression of transposable element 23 from family B and the expression of transposable element 15 from transposable element family C. The skilled artisan, upon comparing the patterns, will determine that the anti-cancer therapeutic is effective in reducing the expression of transposable elements 1 and 7 from family A, transposable elements 56 and 78 from family B, and transposable elements 10 and 25 from transposable element family C.

The skilled artisan can continue to monitor changes throughout treatment in order to determine which transposable elements are suppressed or expressed as treatment progresses. One of skill in the art can also compare the expression pattern obtained after treatment to the expression pattern of a normal, non-cancerous cell to determine how the treatment is progressing. If the expression pattern after treatment resembles the expression pattern of a normal cell, the treatment can be said to be successful, however, the expression pattern need not be exactly like the expression pattern of a normal cell in order to deem a treatment effective. In effect, if the changes in transposable element expression after treatment are indicative of progression toward the expression pattern of a normal cell, the treatment can be said to be successful.

Analysis of Methylation Patterns

The present invention also provides methods of assessing the methylation status of transposable element sequences and its role in cancer development and progression. Thus, the present invention also provides methods for the determination of methylation patterns of transposable element sequences. By analyzing global methylation patterns of transposable element sequences and transposable element families, one of skill in the art can assign particular transposable element methylation patterns to types of cancer. Such methylation patterns can be used to diagnose, classify and stage cancer. These transposable element methylation patterns can be used in combination with transposable element expression patterns described herein to diagnose, classify and stage cancer.

Also provided by the present invention is a method of determining a methylation pattern of one or more families of transposable elements genes in a sample comprising determining methylation of one or more families of transposable elements.

In the present invention, methylation patterns can include one, two, three, four, five, six, seven, eight, nine, ten, twenty or more families of transposable elements and at least one, two, three, four, five, ten, fifteen, twenty, twenty-five, fifty, one hundred, two hundred, three hundred, four hundred, five hundred members, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members of each transposable element family. For example, the present invention provides for the determination of a methylation pattern of one family of transposable elements in which one, two, three, four, five, ten, fifteen, twenty, twenty five, fifty, one hundred, two

hundred, three hundred, four hundred, five hundred members, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members of the transposable element family are analyzed. The present invention also provides for the determination of a methylation pattern of two families, wherein one, two, three, four, five, ten, fifteen, twenty, twenty five, fifty, one hundred, two hundred, three hundred, four hundred, five hundred members, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members are analyzed for each family. Similarly, the invention provides for the determination of a methylation pattern of three families, wherein one, two, three, four, five, ten, fifteen, twenty, twenty five fifty, one hundred, two hundred, three hundred, four hundred, five hundred members, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members are analyzed for each family. Similarly, the invention provides for the determination of a methylation pattern of multiple families, for example, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 or 700 families wherein one, two, three, four, five, ten, fifteen, twenty, twenty five fifty, one hundred, two hundred, three hundred, four hundred, five hundred, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members are analyzed for each family.

By utilizing the methods of the present invention, a reference methylation pattern can be obtained for normal tissues or cells, for particular types of cancers as well as for stages of particular types of cancers. Therefore, the present invention provides a method of assigning a methylation pattern of transposable elements to a type of cancerous cell in a sample, comprising: determining the methylation pattern of one or more families of transposable elements; and assigning the methylation pattern obtained from step a) to the type of cancerous cell in the sample.

The present invention also provides a method of diagnosing cancer comprising: a) determining the methylation pattern of one or more families of transposable elements in a sample to obtain a methylation pattern; b) matching the methylation pattern of step a) with a known methylation pattern for a type of cancer; and c) diagnosing the type of cancer based 5 on matching of the methylation pattern of a) with a known methylation pattern for a type of cancer.

In the methods of the present invention, the methylation pattern obtained from a sample taken from a subject can be obtained from outside sources, such as a testing laboratory or a commercial source. Therefore, the step of obtaining the methylation pattern 10 can be performed by one skilled artisan and the step of comparing the methylation pattern can be performed by a second skilled artisan. Thus, the present invention provides a method of diagnosing cancer comprising: a) matching a test transposable element methylation pattern with a known methylation pattern for a type of cancer; and b) diagnosing the type of cancer based on matching of the test methylation pattern with a 15 known methylation pattern for a type of cancer.

For example, one of skill in the art can obtain an ovarian cancer sample and determine the methylation pattern of one or more transposable element families. By determining which transposable element families are methylated as well as which members of these transposable element families are methylated, one of skill in the art can assign this 20 methylation pattern to an ovarian cancer sample. This can be done for ovarian cancer samples at different stages of cancer, such that a library of methylation patterns are readily available to not only diagnose but stage ovarian cancer. Similarly, this can be done for any type of cancer cell, such as a carcinoma cell, a fibroma cell, a sarcoma cell, a teratoma cell, a blastoma cell, a breast tumor cell of epithelial origin, an ovarian tumor cell of epithelial, 25 stromal or germ cell origin, mixed cell types from a tumor or any other cancer cell. By determining the methylation patterns of transposable elements at different stages of cancer, the skilled artisan can determine which transposable element families and which members of these families are involved in cancer and cancer progression based on changes in DNA methylation (and/or chromatin structure).

Such libraries of expression patterns are useful for diagnosis, staging and treatment. 30 For example, a sample can be obtained from a patient or subject in need of diagnosis and assayed for transposable element methylation. Once the methylation pattern is determined according to the methods of the present invention, this methylation pattern can be compared to a library of methylation patterns to determine the type of cancer as well as the stage of

cancer associated with the methylation pattern. Once this is determined, appropriate treatment can be prescribed. In addition to identifying methylation patterns for different stages of cancer, the present methods are also useful for identifying methylation patterns of cancer cells after therapeutic intervention. For example, a sample can be obtained from a patient or subject undergoing treatment for a cancer such as prostate cancer, lymphoma, skin cancer, GI-tract cancer or any other type of cancer. Methylation patterns can be obtained and compared to methylation patterns before treatment. In this way, the changes in transposable element methylation can be monitored such that one of skill in the art would know which transposable element families as well as which members of each family are affected by the treatment. If improvement is seen in the patient, these improvements can be attributed to changes in transposable element methylation. Since the skilled artisan will have reference patterns for a normal tissue or cell, changes in transposable element methylation after treatment can be monitored to determine if the treatment results in a transposable element methylation pattern that more closely resembles normal or "baseline" methylation patterns. Improvements can also be monitored clinically by observing changes in tissue health, cellular changes and changes in the subject's overall health. In this way, one of skill in the art can correlate clinical changes with changes in transposable element methylation.

For cancers such as breast cancer and ovarian cancer, once a tissue sample is obtained from a subject, this tissue sample can be compared to a library of tissue samples from many subjects, representing various stages of the cancerous tumor. By comparing the tissue sample to a library of tissue samples with known transposable element methylation patterns, one of skill in the art can tailor treatment to the individual needs of the subject. For example, if the methylation pattern for the subject matches the methylation pattern of a particular stage of cancer that is amenable to treatment with a chemotherapeutic agent, then the subject is a candidate for that treatment. Similarly, one of skill in the art can determine the likelihood that the subject will respond to a particular treatment by determining whether or not the subject's pattern corresponds to patterns obtained for those who have responded to treatment. In this way, treatments can be personalized to maximize the outcome while minimizing unnecessary side effects. The patterns in the libraries utilized for comparison purposes can be grouped by age, medical history or other categories in order to better determine the likelihood of response for subjects. In certain cases, the pattern obtained from the subject may correspond to a pattern for a stage of cancer that does not respond to any available treatment. In cases, such as these, one of skill in the art may determine that

treatment may not be advisable because the subject may suffer unnecessarily with little or no likelihood of success.

One of skill in the art will be able to assess the differences in methylation. For example, if before treatment, certain families and members of these families are methylated, and after treatment, more families and/or members of these families are methylated, it can be said that this particular treatment is effective in suppressing transposable element methylation such that the treatment is effective in treating the cancer. In some instances, effective treatments may involve decreasing the methylation of certain transposable elements and increasing the methylation of others. Therefore, once libraries of methylation patterns are established from untreated and treated cancer subjects, one of skill in the art will know whether or not treatment is effective in a particular subject by comparing the methylation pattern of a sample from the patient at different stages of treatment, with reference patterns established for the successful treatment of that particular type of cancer. If a treatment is not successful in a particular subject, the skilled artisan will recognize this by noting that the methylation pattern is not changing as expected, i.e., the methylation pattern is not changing such that the methylation pattern more closely resembles the methylation pattern of a noncancerous or successfully treated cancer cell, and other dosages, therapies or treatments can be employed.

Therefore, the present invention also provides a method of determining the effectiveness of an anti-cancer therapeutic in a subject comprising: a) determining the methylation pattern of one or more families of transposable elements, in a sample obtained from the subject, to obtain a first methylation pattern; b) administering an anti-cancer therapeutic to the subject; c) determining the methylation pattern of one or more families of transposable elements in a sample obtained from the subject after administration of an anti-cancer therapeutic to obtain a second methylation pattern; and d) comparing the second methylation pattern with the first methylation pattern such that if the differences between the methylation patterns can be correlated with successful treatment, the anti-cancer therapeutic is an effective anti-cancer therapeutic. The changes observed between methylation patterns can vary depending on the type of cancer and the stage of cancer. The changes in methylation patterns can also vary based on the size, age, weight and other physiological characteristics of the subject.

In some instances, an effective anti-cancer therapeutic will result in fewer transposable elements being methylated in the second methylation pattern as compared to the first methylation pattern. In other instances, there may be more transposable elements

methylated in the second pattern as compared to the first methylation pattern. For example, one of skill in the art can diagnose a cancer utilizing the methods of the present invention and assign a first methylation pattern to a sample from a subject. The following example is not meant to be limiting and the numbering of transposable elements appears for illustrative purposes only and not for purposes of identifying any particular retroelement sequences. As an example, this first methylation pattern comprises the methylation of transposable elements 2, 4, 6, 8 and 10 from transposable element family A, the methylation of transposable elements 24, 57 and 79 from transposable element family B and the methylation of transposable elements 11, 16, and 26 from transposable element family C.

5 After administration of an anti-cancer therapeutic, a second methylation pattern is obtained. The second expression pattern comprises, for example, the methylation of transposable elements 2, 4, 6, 8, 10, 12 and 14 from family A, the methylation of transposable element 24, 57, 79 and 80 from family B and the methylation of transposable elements 11, 16, 26 and 32 from transposable element family C. The skilled artisan, upon comparing the

10 patterns, will determine that the anti-cancer therapeutic results in the methylation of transposable elements 12 and 14 from family A, transposable element 80 from family B, and transposable element 32 from transposable element family C. This second methylation pattern can be compared to the methylation pattern of a normal cell to see if the treatment is progressing toward a methylation pattern associated with a non-cancerous cell. This second

15 methylation pattern can also be compared to methylation patterns for different stages of the particular cancer being treated in order to determine if this pattern corresponds to an improvement or a deterioration in the subject's condition. The skilled artisan can continue to monitor changes throughout treatment in order to determine which transposable elements are methylated or non-methylated, and whether or not an improvement can be correlated to

20 changes in methylation, as treatment progresses.

25

As stated above, the methylation state of non-cancerous cells can serve as a guide to one of skill in the art in determining the effectiveness of a treatment. One of skill in the art can compare the methylation pattern obtained after treatment to the methylation pattern of a normal, non-cancerous cell to determine how the treatment is progressing. If the

30 methylation pattern after treatment resembles the methylation pattern of a normal cell, the treatment can be said to be successful, however, the methylation pattern need not be exactly like the methylation pattern of a normal cell in order to deem a treatment effective. In other words, if the changes in transposable element sequence methylation after treatment are

indicative of progression toward the methylation pattern of a normal cell, the treatment can be said to be successful.

The methylation patterns of the present invention can be correlated to transposable element expression patterns and/or chromatin status patterns described herein, such that one of skill in the art, upon obtaining a particular expression pattern and/or a chromatin status pattern, will also know what the methylation status of the sample is. Also, upon obtaining upon obtaining a particular methylation pattern, one of skill in the art will also know the expression pattern and/or chromatin status of the sample.

Methods of measuring methylation are known in the art and include, but are not limited to methylation-specific PCR, methylation microarray analysis and ChIP (a chromatin immunoprecipitation approach) analysis. Methylation can also be monitored by digestion of nucleic acid sequences with methylation sensitive and non-sensitive restriction enzymes followed by Southern blotting or PCR analysis of the restriction products (See Takai et al. "Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis" *Jpn J. Clin. Oncol.* 30(7) 306-309). One of skill in the art could also utilize methods in which genomic DNA is digested followed by PCR. (See, for example, Cartwright et al., "Analysis of Drosophila chromatin structure in vivo" *Methods in Enzymology*, Vol. 304)

Methylation-specific PCR (MSP) technology utilizes the fact that DNA in humans is methylated mainly at certain cytosines located 5' to guanosine. This occurs especially in GC-rich regions, known as CpG islands. To distinguish the methylation state of a sequence, MSP relies on differential chemical modification of cytosine residues in DNA. Treatment with sodium bisulfite converts unmethylated cytosine residues into uracil, leaving the methylated cytosines unchanged. This modification thus creates different DNA sequences for methylated and unmethylated DNA. PCR primers can then be designed so as to distinguish between these different sequences. Two sets of primers (and additional control sets of primers) are designed: one set with sequences annealing to unchanged (methylated in the genomic DNA) cytosines and the other set with sequences annealing to the altered (unmethylated in the genomic DNA) cytosines. A comparison of PCR results using the two sets of primers reveals the methylation state of a PCR product. If the primer set with the altered sequence gives a PCR product, then the indicated cytosine was unmethylated. If the primer set with the unchanged sequence gives a PCR product, then the cytosines were methylated and thus protected from alteration. Evron et al. ("Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR," *Lancet* 2001, 357: 1335-1336)

describes the use of MSP to detect breast cancer and is hereby incorporated in its entirety by this reference.

To use a microarray to study transposable element methylation, one of skill in the art would select for methylated and unmethylated DNA from total genomic DNA. The

5 selectively isolated DNA is then hybridized to the transposable element array either directly or after amplification and patterns between various cell types / tissue types as described earlier in the patent application.

There are several approaches for selecting methylated DNA. One method is chromatin immunoprecipitation (ChIP). Another method utilizes a column binding 10 approach and a third method involves ligation of adapters to fragmented genomic DNA and methylation-specific restriction digestion of the ligation products followed by PCR amplification.

In all cases, the selected DNA fragments are labeled by incorporation of dNTPs coupled with fluorescent dyes (for example Cy3 or Cy5 coupled dNTPs) and hybridization 15 to the microarray is performed according to standard protocols. One of skill in the art could utilize the BioPrime DNA labeling system from Life Technologies or other kits available for such labeling.

As stated above, microarray techniques would be known to one of skill in the art. For example, U.S. Patent No. 6,410,229 and U.S. Patent No. 6,344,316, both hereby.

20 incorporated by this reference, describe methods of hybridizing nucleic acids to high density nucleic acid arrays. For example, one skilled in the art would first produce fluorescent-labeled DNA isolated from the tissue of interest. A batch of labeled genomic/amplified genomic DNAs representing either one sample or a mixture of two samples from the tissue sources of interest is added to an array of oligonucleotides representing a plurality of known 25 transposable elements, as described above, under conditions that result in hybridization of the DNAs to complementary-sequence oligonucleotides in the array. The array is then examined by fluorescence under fluorescence excitation conditions in which transposable element oligonucleotides in the array that are hybridized to genomic/amplified genomic DNAs derived from the tissue of interest can be detected and quantified.

30 ChIP technology involves *in vivo* formaldehyde cross-linking of DNA and associated proteins in intact cells, followed by selective immunoprecipitation of protein-DNA complexes with specific antibodies. Such an approach allows detection of any protein at its *in vivo* binding site directly. In particular, proteins that are not bound directly to DNA or that depend on other proteins for binding activity *in vivo* can be analyzed by this method.

Since methylation involves methylation complexes that involve numerous proteins which interact with DNA, by utilizing ChIP technology, methylation complexes can be cross-linked to transposable element sequences to which they are bound and then an antibody specific to one of the proteins (i.e., one of the proteins involved in the methylation complex, such as methyltransferase or a protein having a methyl binding site, for example, MBD1) can be utilized to immunoprecipitate the methylation complex-DNA bound sequence. The complex can then be chemically released and the transposable element sequence to which it was bound can be identified. For references describing ChIP technology, see Orlando ("Mapping chromosomal proteins *in vivo* by formaldehyde crosslinked-chromatin immunoprecipitation," *TIBS* 2000, 25:99-104) and Kuo et al. ("In Vivo Cross-Linking and Immunoprecipitation for Studying Dynamic Protein:DNA Associations in a Chromatin Environment," 1999, 19: 425-433) both of which are incorporated in their entireties by this reference.

The column binding approach is used to select for methylated DNA after genomic DNA extraction. The column contains methyl-CpG-binding proteins, for example the methyl-binding domain of rat MeCP2, covalently linked to a histidine tag, then attached to a Ni-agarose matrix. Fragmented genomic DNA (digested with restriction enzymes, for example *MseI*) is run through the column. The column retains DNA containing methylated cytosines, unmethylated DNA is collected from the flow-through. Retained methylated DNA is recovered from the column. (Cross, S.H., Charlton, J.A., Nan, X. and Bird, A.P. (1994) Purification of CpG islands using a methylated DNA binding column. *Nat Genet.*, 6, 236-244 and Brock, Huang, Chen and Johnson (2001) A novel technique for the identification of CpG islands exhibiting altered methylation patterns (ICEAMP). *Nucleic Acids Research*, vol.29, no.24). The isolated DNA can be ligated to linker oligonucleotides and amplified by PCR. Fluorescence labeling and hybridization is then performed as described above.

Formaldehyde crosslinking followed by chromatin immunoprecipitation is reviewed in Orlando 2000. By addition of formaldehyde to live tissue/cells, DNA and nearby proteins are cross-linked *in vivo*, followed by sonication of the tissue/cell suspension. The DNA is fragmented in the process. Antibodies recognizing methyl-binding proteins are added and the immune complexes are collected, thereby precipitating methylated DNA with associated proteins. DNA without methyl-binding proteins will be collected from the supernatant. The cross-linking step is then reversed for both fractions, followed by a DNA purification step.

The isolated DNA can be ligated to linker oligonucleotides and amplified by PCR.

Fluorescence labeling and hybridization is then performed as described above.

Linker ligation/ Methylation-specific restriction/ PCR can also be utilized. The methods of the present invention can utilize a modified version of DMH (Differential

5 Methylation Hybridization) (References: Huang et al. 'Methylation profiling of CpG islands in human breast cancer cells' *Human Molecular Genetics* 1999, Vol.8, No.3 and Yan et al. 'Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays' *Cancer Research* 2001, 61, 8375-8380). Genomic DNA is digested with *MseI*. Then, the ends of the resulting fragments are ligated to linker oligonucleotides.

10 Ligated fragments undergo restriction digestion with methylation-sensitive enzymes *BstUI* and/or *HpaII*, followed by PCR amplification of undigested fragments. Fluorescence labeling and hybridization is then performed as described above.

A COT-1 subtractive hybridization step can be utilized at some point before labeling the DNA to separate out the highly repetitive sequences from the sample (See Craig et al. '.

15 Removal of repetitive sequences from FISH probes using PCR-assisted affinity chromatography' *Human Genetics* 1997, Vol. 100, 472-476).

Another technique, methylation-specific oligonucleotide (MSO) microarray, uses bisulfite-modified DNA as a template for PCR amplification, resulting in conversion of unmethylated cytosine, but not methylated cytosine, into thymine within CpG islands of interest. The amplified product, therefore, may contain a pool of DNA fragments with altered nucleotide sequences due to differential methylation status. A test sample is hybridized to a set of oligonucleotide arrays that discriminate between methylated and unmethylated cytosine at specific nucleotide positions, and quantitative differences in hybridization are determined by fluorescence analysis. For examples of methylation 20 microarray techniques see Gitan et al. ("Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis," *Genome Res.* 2002, 12: 158-164.), Shi et al. ("Oligonucleotide-based microarray for DNA methylation analysis: Principles and applications," *J. Cell Biochem.* 2003, 88: 138-143.), Yan et al. ("Applications of CpG island 25 microarrays for high-throughput analysis of DNA methylation," *J. Nutr.* 2002, 132: 2430S-2434S), Wei et al. ("Methylation microarray analysis of late-stage ovarian carcinomas distinguishes progression-free survival in patients and identifies candidate epigenetic 30 markers," *Clin Cancer Res.* 2002, 8: 2246-2252.), all of which are incorporated herein, in their entireties, by this reference.

Analysis of Chromatin Status

The present invention also provides methods of assessing the chromatin status of transposable element sequences and its role in cancer development and progression. Thus, the present invention also provides methods for the determination of chromatin status 5 patterns of transposable element sequences. By analyzing global chromatin status patterns of transposable element sequences and transposable element families, one of skill in the art can assign particular transposable element chromatin status patterns to types of cancer. Such chromatin status patterns can be used to diagnose, classify and stage cancer. These transposable element chromatin status patterns can be used in combination with 10 transposable element expression patterns and/or methylation patterns described herein to diagnose, classify and stage cancer.

One of the skill in the art would know how to assess chromatin status by methods standard in the art. See Orlando ("Mapping chromosomal proteins *in vivo* by formaldehyde crosslinked-chromatin immunoprecipitation," *TIBS* 2000, 25:99-104) and Kuo et al. ("*In 15 Vivo* Cross-Linking and Immunoprecipitation for Studying Dynamic Protein:DNA Associations in a Chromatin Environment," 1999, 19: 425-433) both of which are incorporated in their entireties by this reference.

As utilized herein, "chromatin status" refers to the chromosomal structure or the chromosomal accessibility or the ability of restriction enzymes to access a transposable 20 element sequence or a fragment thereof. Therefore, chromatin status patterns can contain sequences that are accessible to restriction enzymes and sequences that are not accessible to restriction enzymes.

Also provided by the present invention is a method of determining a chromatin status pattern of one or more families of transposable element genes in a sample comprising 25 determining chromatin status of one or more families of transposable elements.

In the present invention, chromatin status patterns can include one, two, three, four, five, six, seven, eight, nine, ten, twenty or more families of transposable elements and at least one, two, three, four, five, ten, fifteen, twenty, twenty-five, fifty, one hundred, two hundred, three hundred, four hundred, five hundred members, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members of each transposable element family. For example, the present invention provides for the determination of a chromatin status pattern of one family of transposable elements in

which one, two, three, four, five, ten, fifteen, twenty, twenty five fifty, one hundred, two hundred, three hundred, four hundred, five hundred members, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members of the transposable element family are analyzed. The present invention also provides for the determination of a chromatin status pattern of two families, wherein one, two, three, four, five, ten, fifteen, twenty, twenty five fifty, one hundred, two hundred, three hundred, four hundred, five hundred members, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members are analyzed for each family. Similarly, the invention provides for the determination of a chromatin status pattern of three families, wherein one, two, three, four, five, ten, fifteen, twenty, twenty five fifty, one hundred, two hundred, three hundred, four hundred, five hundred members, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members are analyzed for each family. Similarly, the invention provides for the determination of a chromatin status pattern of multiple families, for example, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 or 700 families wherein one, two, three, four, five, ten, fifteen, twenty, twenty five fifty, one hundred, two hundred, three hundred, four hundred, five hundred, one thousand, two thousand, three thousand, four thousand, five thousand, six thousand, seven thousand, eight thousand, nine thousand, ten thousand, twenty thousand, fifty thousand, one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand or five hundred thousand members are analyzed for each family.

By utilizing the methods of the present invention, a reference chromatin status pattern can be obtained for normal tissues or cells, for particular types of cancers as well as for stages of particular types of cancers. Therefore, the present invention provides a method of assigning a chromatin status pattern of transposable elements to a type of cancerous cell in a sample, comprising: determining the chromatin status pattern of one or more families of

transposable elements; and assigning the chromatin status pattern obtained from step a) to the type of cancerous cell in the sample.

The present invention also provides a method of diagnosing cancer comprising: a) determining the chromatin status pattern of one or more families of transposable elements in 5 a sample to obtain a chromatin status pattern; b) matching the chromatin status pattern of step a) with a known chromatin status pattern for a type of cancer; and c) diagnosing the type of cancer based on matching of the chromatin status pattern of a) with a known chromatin status pattern for a type of cancer.

In the methods of the present invention, the chromatin status pattern obtained from a 10 sample taken from a subject can be obtained from outside sources, such as a testing laboratory or a commercial source. Therefore, the step of obtaining the chromatin status pattern can be performed by one skilled artisan and the step of comparing the chromatin status pattern can be performed by a second skilled artisan. Thus, the present invention provides a method of diagnosing cancer comprising: a) matching a test transposable 15 element chromatin status pattern with a known chromatin status pattern for a type of cancer; and b) diagnosing the type of cancer based on matching of the test chromatin status pattern with a known chromatin status pattern for a type of cancer.

For example, one of skill in the art can obtain an ovarian cancer sample and determine the chromatin status pattern of one or more transposable element families. By 20 determining the chromosomal accessibility of transposable element families as well as the chromosomal accessibility of members of these transposable element families, one of skill in the art can assign this chromatin status pattern to an ovarian cancer sample. This can be done for ovarian cancer samples at different stages of cancer, such that a library of chromatin status patterns are readily available to not only diagnose but stage ovarian cancer. 25 Similarly, this can be done for any type of cancer cell, such as a carcinoma cell, a fibroma cell, a sarcoma cell, a teratoma cell, a blastoma cell, a breast tumor cell of epithelial origin, an ovarian tumor cell of epithelial, stromal or germ cell origin, mixed cell types from a tumor or any other cancer cell. By determining the chromatin status patterns of transposable elements at different stages of cancer, the skilled artisan can determine which 30 transposable element families and which members of these families are involved in cancer and cancer progression based on changes in chromatin structure.

Such libraries of expression patterns are useful for diagnosis, staging and treatment. For example, a sample can be obtained from a patient or subject in need of diagnosis and assayed for chromatin status. Once the chromatin status pattern is determined according to

the methods of the present invention, this chromatin status pattern can be compared to a library of chromatin status patterns to determine the type of cancer as well as the stage of cancer associated with the chromatin pattern. Once this is determined, appropriate treatment can be prescribed. In addition to identifying chromatin status patterns for

5 different stages of cancer, the present methods are also useful for identifying chromatin status patterns of cancer cells after therapeutic intervention. For example, a sample can be obtained from a patient or subject undergoing treatment for a cancer such as prostate cancer, lymphoma, skin cancer, GI-tract cancer or any other type of cancer. Chromatin status patterns can be obtained and compared to chromatin status patterns before treatment. In this

10 way, the changes in transposable element chromatin status can be monitored such that one of skill in the art would know which transposable element families as well as which members of each family are affected by the treatment. If improvement is seen in the patient, these improvements can be attributed to changes in transposable element chromatin status. Since the skilled artisan will have reference patterns for a normal tissue or cell,

15 changes in transposable element chromatin status after treatment can be monitored to determine if the treatment results in a transposable element chromatin status pattern that more closely resembles normal or "baseline" chromatin status patterns. Improvements can also be monitored clinically by observing changes in tissue health, cellular changes and changes in the subject's overall health. In this way, one of skill in the art can correlate

20 clinical changes with changes in transposable element chromatin status.

For cancers such as breast cancer and ovarian cancer, once a tissue sample is obtained from a subject, this tissue sample can be compared to a library of tissue samples from many subjects, representing various stages of the cancerous tumor. By comparing the tissue sample to a library of tissue samples with known transposable element chromatin status patterns, one of skill in the art can tailor treatment to the individual needs of the subject. For example, if the chromatin status pattern for the subject matches the chromatin status pattern of a particular stage of cancer that is amenable to treatment with a chemotherapeutic agent, then the subject is a candidate for that treatment. Similarly, one of skill in the art can determine the likelihood that the subject will respond to a particular treatment by determining whether or not the subject's pattern corresponds to patterns obtained for those who have responded to treatment. In this way, treatments can be personalized to maximize the outcome while minimizing unnecessary side effects. The patterns in the libraries utilized for comparison purposes can be grouped by age, medical history or other categories in order to better determine the likelihood of response for

subjects. In certain cases, the pattern obtained from the subject may correspond to a pattern for a stage of cancer that does not respond to any available treatment. In cases, such as these, one of skill in the art may determine that treatment may not be advisable because the subject may suffer unnecessarily with little or no likelihood of success.

5 In some instances, effective treatments may involve decreasing the chromatin accessibility of certain transposable elements and increasing the chromatin accessibility of others. Therefore, once libraries of chromatin status patterns are established from untreated and treated cancer subjects, one of skill in the art will know whether or not treatment is effective in a particular subject by comparing the chromatin status pattern of a sample from
10 the patient at different stages of treatment, with reference patterns established for the successful treatment of that particular type of cancer. If a treatment is not successful in a particular subject, the skilled artisan will recognize this by noting that the chromatin status pattern is not changing as expected, i.e., the chromatin status pattern is not changing such that the chromatin status pattern more closely resembles the chromatin status pattern of a
15 non-cancerous or successfully treated cancer cell, and other dosages, therapies or treatments can be employed.

Therefore, the present invention also provides a method of determining the effectiveness of an anti-cancer therapeutic in a subject comprising: a) determining the chromatin status pattern of one or more families of transposable elements, in a sample obtained from the subject, to obtain a first chromatin status pattern; b) administering an anti-cancer therapeutic to the subject; c) determining the chromatin status pattern of one or more families of transposable elements in a sample obtained from the subject after administration of an anti-cancer therapeutic to obtain a second chromatin status pattern; and d) comparing the second chromatin status pattern with the first chromatin status pattern such that if the differences between the chromatin status patterns can be correlated with successful treatment, the anti-cancer therapeutic is an effective anti-cancer therapeutic. The changes observed between chromatin status patterns can vary depending on the type of cancer and the stage of cancer. The changes in chromatin status patterns can also vary based on the size, age, weight and other physiological characteristics of the subject.

30 In some instances, an effective anti-cancer therapeutic will result in fewer transposable elements being accessible to restriction enzymes in the second chromatin status pattern as compared to the first chromatin status pattern. In other instances, there may be more transposable elements accessible to restriction enzymes in the second pattern as compared to the first chromatin status pattern. For example, one of skill in the art can

diagnose a cancer utilizing the methods of the present invention and assign a first chromatin status pattern to a sample from a subject. The following example is not meant to be limiting and the numbering of transposable elements appears for illustrative purposes only and not for purposes of identifying any particular transposable element sequences. As an example,

5 this first chromatin status pattern comprises the chromatin status of transposable elements 2 (accessible), 4 (not accessible), 6 (accessible), 8 (not accessible) and 10 (not accessible) from transposable element family A, the chromatin status of transposable elements 24 (not accessible), 57 (accessible) and 79 (not accessible) from transposable element family B and the chromatin status of transposable elements 11 (not accessible), 16 (accessible), and 26

10 from transposable element family C. After administration of an anti-cancer therapeutic, a second chromatin status pattern is obtained. The second chromatin status pattern comprises, for example, the chromatin status of transposable elements 2 (not accessible), 4 (not accessible), 6 (accessible), 8 (not accessible) and 10 (not accessible) from family A, the chromatin status of transposable element 24 (not accessible), 57 (not accessible) and 79 (accessible) from family B and the chromatin status of transposable elements 11 (accessible), 16 (not accessible) and 26 (not accessible) from transposable element family C. The skilled artisan, upon comparing the patterns, will determine that the anti-cancer therapeutic results in changes in the chromatin status of transposable element 2 from family A, transposable elements 57 and 79 from family B, and transposable element

15 20 11 from transposable element family C. This second chromatin status pattern can be compared to the chromatin status pattern of a normal cell to see if the treatment is progressing toward a chromatin status pattern associated with a non-cancerous cell. This second chromatin status pattern can also be compared to chromatin status patterns for different stages of the particular cancer being treated in order to determine if this pattern corresponds to an improvement or a deterioration in the subject's condition. The skilled artisan can continue to monitor changes throughout treatment in order to determine which

25 transposable elements are accessible or not accessible and whether or not an improvement can be correlated to changes in chromatin status, as treatment progresses.

As stated above, the chromatin status state of non-cancerous cells can serve as a guide to one of skill in the art in determining the effectiveness of a treatment. One of skill in the art can compare the chromatin status pattern obtained after treatment to the chromatin status pattern of a normal, non-cancerous cell to determine how the treatment is progressing. If the chromatin status pattern after treatment resembles the chromatin status pattern of a normal cell, the treatment can be said to be successful, however, the chromatin status

pattern need not be exactly like the chromatin status pattern of a normal cell in order to deem a treatment effective. In other words, if the changes in transposable element sequence chromatin status after treatment are indicative of progression toward the chromatin status pattern of a normal cell, the treatment can be said to be successful.

5 The chromatin status patterns of the present invention can be correlated to transposable element expression patterns and/or methylation patterns described herein, such that one of skill in the art, upon obtaining a particular expression pattern and/or methylation pattern, will also know what the chromatin status of the sample is. Also, upon obtaining a particular chromatin status pattern, one of skill in the art will also know the expression pattern and/or methylation pattern of the sample.

10 The methods of the present invention can also be utilized to differentiate between subtypes of cancers. For example, mantle cell lymphoma and grades I/II follicular lymphoma are subtypes of non-Hodgkin's lymphoma. Similarly, adenocarcinoma, large cell carcinoma, spindle cell carcinoma, squamous cell carcinoma, adenosquamous 15 carcinoma and small cell carcinoma are all subtypes of lung cancer. Numerous subtypes for other cancers are also known and they can be differentiated by the methods of the present invention. By utilizing the expression patterns, chromatin status patterns and/or methylation patterns of cells associated with these subtypes, the skilled artisan can make a more accurate diagnosis of a particular type of cancer. The differences in the expression patterns, 20 chromatin status and methylation patterns of the transposable element sequences allows the skilled artisan to differentiate between subtypes and thus better stage the cancer as well as administer treatment best suited for a specific cancer subtype.

25 The present invention also provides a computer system comprising a) a database including records comprising a plurality of reference retroelement expression patterns, and associated diagnosis and therapy data; and b) a user interface capable of receiving a selection of one or more test retroelement expression patterns for use in determining matches between a test retroelement expression pattern and a reference retroelement expression pattern, and displaying the records associated with matching expression patterns. The computer systems of the present invention can also include a database including records 30 comprising a plurality of reference methylation patterns, and associated diagnosis and therapy data, b) a user interface capable of receiving a selection of one or more test methylation patterns for use in determining matches between a test methylation pattern and the reference methylation pattern, and displaying the records associated with matching

expression patterns. Also provided is a computer system comprising a) a database including records comprising a plurality of reference chromatin status patterns, and associated diagnosis and therapy data; and b) a user interface capable of receiving a selection of one or more test chromatin status patterns for use in determining matches between a test chromatin status pattern and a reference chromatin status pattern, and displaying the records associated with matching expression patterns.

It will be appreciated by those skilled in the art that expression patterns, methylation patterns and/or chromatin status patterns identified from subjects can be stored, recorded, and manipulated on any medium which can be read and accessed by a computer. As used herein, the words "recorded" and "stored" refer to a process for storing information on a computer medium. A skilled artisan can readily adopt any of the presently known methods for recording information on a computer readable medium to generate a list of sequences comprising one or more of the nucleic acids of the invention. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, 15, 20, 25, 30, 50, 100, 200, 250, 300, 400, 500, 1000, 2000, 3000, 4000 or 5000 expression patterns, methylation patterns and/or chromatin status patterns of the invention or patterns identified from subjects.

Computer readable media include magnetically readable media, optically readable media, electronically readable media and magnetic/optical media. For example, the computer readable media may be a hard disc, a floppy disc, a magnetic tape, CD-ROM, DVD, RAM, or ROM as well as other types of other media known to those skilled in the art.

Embodiments of the present invention include systems, particularly computer systems which contain the sequence information described herein. As used herein, "a computer system" refers to the hardware components, software components, and data storage components used to store and/or analyze the expression patterns of the present invention or other expression patterns. The computer system preferably includes the computer readable media described above, and a processor for accessing and manipulating the data.

Preferably, the computer is a general purpose system that comprises a central processing unit (CPU), one or more data storage components for storing data, and one or more data retrieving devices for retrieving the data stored on the data storage components. A skilled artisan can readily appreciate that any one of the currently available computer

systems are suitable.

In one particular embodiment, the computer system includes a processor connected to a bus which is connected to a main memory, preferably implemented as RAM, and one or more data storage devices, such as a hard drive and/or other computer readable media
5 having data recorded thereon. In some embodiments, the computer system further includes one or more data retrieving devices for reading the data stored on the data storage components. The data retrieving device may represent, for example, a floppy disk drive, a compact disk drive, a magnetic tape drive, a hard disk drive, a CD-ROM drive, a DVD drive, etc. In some embodiments, the data storage component is a removable computer
10 readable medium such as a floppy disk, a compact disk, a magnetic tape, etc. containing control logic and/or data recorded thereon. The computer system may advantageously include or be programmed by appropriate software for reading the control logic and/or the data from the data storage component once inserted in the data retrieving device.

In some embodiments, the computer system may further comprise an expression pattern comparer for comparing the expression pattern(s) stored on a computer readable medium to expression pattern(s) stored on a computer readable medium. An "expression pattern comparer" refers to one or more programs which are implemented on the computer system to compare a nucleotide sequence with other nucleotide sequences. Similarly, programs capable of comparing methylation status patterns and chromatin status patterns
20 are also contemplated by the present invention.

This invention also provides for a computer program that correlates expression patterns with a particular stage of cancer. Similarly, the present invention also provides a computer program that correlates methylation patterns with a particular stage of cancer. Also provided is a computer program that correlates chromatin status with a particular stage
25 of cancer. The computer programs of this invention can optionally include treatment options or drug indications for subjects with expression patterns associated with cancer or the risk of developing cancer.

The present invention is more particularly described in the following examples which are intended as illustrative only since numerous modifications and variations therein
30 will be apparent to those skilled in the art.

EXAMPLES

Expression changes

Semi-quantitative RT-PCR was performed to quantify changes in expression from 5 different HERV families, as well as LINEs and SINEs, amongst a small set of malignant, benign, and borderline tumors and non-cancerous ovarian tissue samples. Figure 1 shows the upregulation of HERV-K and HERV-W families in a cancer sample, compared with a non-cancer sample.

10 Methylation status

Methylation levels of HERV-W, and L1 were compared among different ovarian samples. Ten micrograms of genomic DNA were digested either with a methylation sensitive restriction enzyme (*HpaII*) or with its methylation insensitive isoschizomer (*MspI*). These enzymes recognize the palindromic sequence CCGG, which is found in diverse 15 positions in the promoter regions of these retroelements. Digestion is carried out overnight at 37°C with 10 to 16 excess of needed enzyme to ensure complete digestion of the DNA. A control for DNase contamination is included by incubating the same amount of DNA with buffer and water without the enzyme. Digested DNA is run on an agarose gel and transferred to a nylon membrane with NaOH. Membranes are then prehybridized for 1 hour 20 with 10 mg of herring sperm DNA per every milliliter of Church buffer, and hybridized overnight at 65°C with probes for HERV-K, HERV-W or L1 respectively.

Probe design was based on the hypothesis that relevant DNA methylation changes, if any, would include the predicted promoter regions of retrotransposons.

Figure 2 shows the results obtained after using a probe for the promoter region of 25 HERV-W. After digestion with *MspI* different bands with approximately the same sizes are observed in cancer, benign, borderline (LMP) and non-cancerous (Non-Cr) samples. After digestion with the methylation sensitive restriction enzyme *HpaII*, the bands are weaker but still present in most of the cancer samples, while most of the bands, and specially the smaller ones, are absent in the benign, borderline and non-cancerous samples. This result 30 indicates that some methylation has been lost in the cancer samples.

Southern blot analysis, LINE1 probe

Figure 3 shows a Southern blot analysis of genomic DNA after digest with *MspI* (M) or its methylation-sensitive isoschizomer *HpaII* (H), resp., hybridized with a LINE1

probe spanning the putative promoter region of the element. Equal amounts of DNA were loaded per sample, i.e. per *MspI/HpaII* pair. Fragment sizes range from 0.1 kb to >3.0 kb. Samples represent ovarian carcinoma (T - malignant), borderline ovarian tumor (B) and non-tumor ovarian tissue (N).

5 Fragments between 1.4-2kb as well as 0.4-0.7kb (arrows) in *HpaII* digests appear more pronounced in the malignant tissue samples compared to the non-tumor samples, indicating extensive cytosine methylation of this particular LINE1 region in non-carcinoma ovarian tissue and loss of LINE1 methylation in some ovarian carcinoma samples.

10 Southern Blot images are consistent with hypomethylation of Herv-W and LINE1 elements, respectively, in ovarian carcinoma versus normal ovarian tissue. The changes are more pronounced for Herv-W and more consistent among carcinoma samples. There is some heterogeneity for the effect among the samples tested, which will be correlated with clinical history of the tumors and treatment responses.

EXAMPLE II

15 Wide-spread hypomethylation of CpG dinucleotides is characteristic of many cancers. Retrotransposons have been identified as potential targets of hypomethylation during cellular transformation. The following example provides the results of an examination of the methylation status of CpG dinucleotides associated with the L1 and HERV-W retrotransposons in benign and malignant human ovarian tumors. A reduction in 20 the methylation of CpG dinucleotides was found within the promoter regions of these retroelements in malignant relative to non-malignant ovarian tissues. Consistent with these results, it was also found that relative L1 and human endogenous retrovirus-W (HERV-W) expression levels are elevated in representative samples of malignant vs. non-malignant ovarian tissues.

25 The results of a preliminary examination of the methylation status of CpG dinucleotides associated with two representative families of retrotransposons in benign and malignant human ovarian tumors is provided herein. L1 is the most abundant family of human LINE elements comprising about 17% of the genome [22]. Human Endogenous Retrovirus-W (HERV-W) is a family LTR retrotransposons consisting of ~140 full-length or truncated elements randomly dispersed throughout the human genome [23]. These results demonstrate that large numbers of both families of retrotransposons are hypomethylated in ovarian carcinomas. It is further demonstrated that relative levels of both L1 and HERV-W expression are elevated in representative samples of malignant vs. non-malignant ovarian tissues. The findings presented herein are consistent with the hypothesis that

retrotransposons are a major target of global hypomethylation associated with cellular transformation.

To test the hypothesis that L1 and HERV-W elements may experience reduced methylation in malignant ovarian carcinomas, a restriction-enzyme based assay was utilized
5 to compare the methylation status of CpG dinucleotides located within the promoter regions of these elements in a series of malignant and non-malignant ovarian tissues. The restriction enzymes *MspI* and *HpaII* both recognize the sequence CCGG but *HpaII* only cuts when the recognition sequence is unmethylated at the inner cytosine (i.e., CCGG) while *MspI* is indifferent to the methylation status of the inner cytosine

10 Figure 4A & B displays Southern blots of *HpaI* and *MspI* digested genomic DNA isolated from tissue samples and hybridized against probes homologous to regions encompassing the promoter regions of each family of elements. The *HpaII/MspI* restriction sites located within the promoter regions of both L1 and HERV-W elements are polymorphic among family members. By aligning the promoter regions of both families of
15 elements present in the consensus human genome [<http://genome.ucsc.edu/>] and identifying the *HpaII/MspI* sites present, it was estimated that the expected size range of restriction fragments within the elements to be between ~100 - 700 bp and ~1500 - 3000 bp for L1 elements and between ~100 - 500 bp for HERV-W elements. Larger sized fragments representing partial digestions and/or polymorphic *HpaII/MspI* sites located within the
20 elements or in regions flanking the elements are also visible.

The results presented in Figure 4 A & B show that *MspI*-generated bands within the expected size range of internal fragments were visible in digestions of DNA from all tissue samples. In contrast, *HpaII*-generated fragments within the expected size range were only visible in digestions of DNA from the malignant samples. These results are indicative of a
25 consistent reduction in the methylation of CpG dinucleotides within the promoter regions of both L1 and HERV-W elements in the malignant tissue. The fact that the number and intensity of *HpaII* generated bands in the malignant samples is significantly less than generated by *MspI* digestion indicates that some L1 and HERV-W elements remain hypermethylated in the malignant samples. Regardless, this is the first report of the
30 hypomethylation of L1 elements in ovarian carcinomas and of the hypomethylation of HERV-W in any human cancer.

As noted above, hypomethylation of retroelement promoter regions can be expected to result in a localized relaxation of chromatin structure and a corresponding increased element expression [e.g., 10]. In order to test this prediction in these samples, total RNA

was extracted from representative samples of two malignant and two non-malignant ovarian tissues and quantitative Real Time RT-PCR was conducted. Two replicate assays were run for each tissue sample. The results shown in Figure 4C indicate a significant average increase in both L1 and HERV-W expression in the malignant vs. non-malignant ovarian 5 tissues examined.

Hypomethylation is generally associated with the relaxation of chromatin structure, an increased accessibility of transcription factors and a consequent elevation in levels of expression [27]. These findings are generally consistent with these prior results. Since transcription is a rate limiting step in retrotransposition [11], hypomethylation might be 10 expected to result in an increase in retrotransposon insertion mutations. While there have been occasional reports of L1 and other retrotransposon insertion mutations implicated in cancer development in humans [e.g, 28], this may not be as significant a factor as it apparently is in the mouse [29], perhaps because most L1 and other retrotransposon sequences in the human genome are believed to be truncated or otherwise transpositionally 15 defective [30].

Another possible consequence of the hypomethylation of retroelements in humans is the opportunity it provides for ectopic pairing and recombination among homologous elements dispersed throughout the genome. The unequal-crossover events typically associated with ectopic recombination might well account for at least some of the various 20 chromosomal aberrations and aneuploid events characteristic of human malignancies. Indeed, direct evidence of such an effect has recently been documented in mice [31, 32]. In humans, L1 retrotransposition events have been shown to induce various forms of 25 chromosomal instabilities [33] and L1 and other retrotransposon sequences have frequently been linked with a variety of chromosomal aberrations associated with human cancers [e.g, 34].

A third possible consequence of the hypomethylation of retroelements in cancer cells is the potential regulatory impact of the release of methylation complexes known to be bound to these elements in post-embryonic somatic cells [e.g, 35]. Although little is currently understood concerning the factors that determine the relative affinity of 30 methylation complexes for DNA target sequences, retrotransposons are known to be high affinity targets [e.g, 10]. Complexes released from retroelements may initiate a cascade of regulatory changes by binding to other lower affinity target sites and possibly resulting in the down regulation of genes essential for DNA repair and genome stability.

Tissue samples, DNA extraction, Southern hybridization

Bulk ovarian tissue samples were surgically removed and placed in RNA later (Ambion, Austin, TX) in the operating room within 1 minute of removal from the patients. The pathological and clinical information of each sample is as follows: Sample #11 (Age 5 43), Adenocarcinoma (papillary serous, poorly differentiated, Stage IIc); Sample #18 (Age 34), Adenocarcinoma (endometroid, well differentiated, Stage IIb); Sample #19 (Age 57), Adenocarcinoma (papillary serous, poorly differentiated, Stage IIc); Sample #21 (Age 80), Malignant mixed mullerian; Sample #23 (Age 52), Adenocarcinoma (papillary serous, poorly differentiated, Stage IIa); Sample #29 (Age 66), Adenocarcinoma (papillary serous, poorly differentiated, Stage III); Sample #15 (Age 54), Serous borderline /low-malignancy potential; Sample #31 (Age 40), Benign cystic masses; Sample #16 (Age 53), Normal ovary; Sample #89 (Age 53), Normal ovary. . This study was approved by the Institutional Review Board of the University of Georgia and of Northside Hospital (Atlanta), from which the samples were obtained.

15 Genomic DNA was extracted by proteinase K digestion of 20-25 mg of bulk ovarian tissue and phenol-chlorophorm extraction. DNA was ethanol precipitated and re-suspended in water. Ten micrograms of genomic DNA were digested overnight at 37°C with 10 to 16 excess amount of either *HpaII* [methylation sensitive restriction enzyme] or *MspI* [not sensitive for methylation at internal cytosine]. These enzymes recognize the sequence 20 CCGG, which is found in diverse positions in the promoter regions of these retroelements. Digested DNA was resolved on an agarose gel and transferred to a nylon membrane (Hybond N; Amersham-Biosciences, Piscataway, NJ) with NaOH. Membranes were prehybridized for 1 hour with 10 mg/ml of herring sperm DNA in Church buffer [0.5M NaH₂PO₄, 7% SDS and 10M EDTA] and hybridized overnight at 65°C in the same buffer 25 with 100-200ng of probe DNA labeled with [α -³²P]dCTP using a Nick Translation Kit (Roche, Indianapolis, IN). Filters were washed twice for 15 min in 2xSSC and 0.1% SDS and then twice for 30 min in 1x SSC and 0.1% SDS at 65°C and exposed to Phosphorimager screens (Molecular Dynamics, Sunnyvale, CA).

The HERV-W probe was designed in the LTR region, downstream of the putative 30 TTAAAT box. PCR was performed on genomic DNA with forward primer HERVF 5'-CCACCACTGCTTTGCCAC-3' (SEQ ID NO: 771) and reverse primer HERVR 5'-GCCTCGTGTCTCTGACCTGGGG-3' (SEQ ID NO: 772), producing a 304 bp fragment. The LINE1 probe for the promoter region was designed according to Takai et al [18]. PCR

was performed on genomic DNA with forward primer L1F 5'-
CGGGTGATTCTGCATTC-3' (SEQ ID NO: 773) and reverse primer L1R 5'-
GACATTTAAGTCTGCAGAGG-3' (SEQ ID NO: 774), giving a product of 540 bp. PCR
products were cloned into pCR2.1-TOPO and transformed into TOP10 E.coli cells
5 (Invitrogen, Carlsbad, CA). Plasmids were extracted (Qiaprep Spin Miniprep Kit, Qiagen,
Valencia, CA) and sequenced. Subsequent PCR reactions were performed on cloned
plasmid DNA for both HERV-W and LINE1, and gel extracted PCR products were used as
hybridization probes.

10 **RNA extraction, Quantitative real time RT-PCR**

Total RNA was extracted using Trizol Reagent (Invitrogen, Carlsbad, CA) and 2-5 µg of total RNA were reverse transcribed into first-strand cDNA using the Thermoscript RT-PCR system (Invitrogen, Carlsbad, CA) in a final volume of 20 µl. The HERV-W primers used were: forward; 5'-TTGGCGGTATCACAAACCTCT-3' (SEQ ID NO: 775)
15 reverse; 5'-GTGACGATTCCGGATTGA-3' (SEQ ID NO: 776); (product size:230 bp)
based on the HERV-W sequence (GeneBank accession no. AC000064). The LINE-1
primers were: forward 5'-TCATAAAGCAAGTCCTCAGTGACC-3' (SEQ ID NO: 777);
reverse 5'-GGGGTGGAGAGTTCTGTAGATGTC-3' (SEQ ID NO: 778) (product size:165
bp) based on the LINE-1 sequence (GeneBank accession no. M80343). Real-time
20 monitoring of PCR reactions was performed using the DNA Engine Opticon 2 System (MJ
Research, Waltham, MA) and the SYBR Green iQ dye (BioRad, Hercules, CA) [24]. For
each reaction, the amount of a target and of an endogenous control (Ribosomal Protein
S27A) were determined using a calibration curve and the amount of target molecule was
divided by the amount of endogenous reference to obtain a normalized target value [25].
25 RPS27A has been previously identified as a valid control gene in expression studies
conducted among human malignant and control tissues [26]. In addition, microarray
analyses were utilized to independently verify that RPS27A expression levels are constant
among the samples examined in this study. Separate calibration (standard) curves for
RPS27A, HERV-W and LINE-1 were constructed using serial dilutions of total cDNA from
30 normal human ovarian tissue (purchased from Ambion, Austin, TX). Standards for HERV-
W, LINE-1 and RPS27A were defined to contain an arbitrary starting concentration, and
serial dilutions were used to construct the standard curve. Standard curve calibrations were
included in each assay.

Microarray Analysis of Cancer Cells

Table 2 shows a ranking of relative retroelement expression values comparing benign (control) vs. malignant (cancer) samples obtaining via microarray analysis on a gene chip (Figure 5). The results of this experiment show that some retroelement familes show a significant increase in expression in cancer (Stage III ovarian carcinoma) vs. controls (negative values in Comparison Rank column), some show no net change (values in Comparison Rank column around 0) and some show a decrease in net levels (positive value in Comparison Rank column). The changes in expression can be due to changes in chromatin structure. Thus, this data set shows that there is a heterogeneous response in changes in chromatin structure in stage III tumors. This example utilizing stage III tumor samples is not limited to a particular stage or type of cancer and is merely illustrative of the kind of changes in retroelement expression that can be analyzed by the methods of the present invention in order to diagnose, stage and treat any type of cancer.

Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Genename		B77log	B53log	C141log	C154log	Comparison Rank
L1ME1	LINE1, ME1 subfamily	1.35077862	1.78180622	1.69332148	1.64623708	-0.306105083
ALU_C	SINE element	0.68972892	0.9183396	0.80555819	0.87181976	-0.166204761
LTR5_C	long terminal repeat	1.94516871	1.56669724	1.03574106	1.95720687	0.282267811
L1MA4A	LINE1, MA4A subfamily	1.55470712	2.1847541	1.72191098	1.71634687	0.335083736
HERVL74	Human endogenous retrovirus, subfamily L	2.1348742	1.70081483	1.97225587	0.94321787	0.444734906
L1MD1_5_B	LINE1, MD1 subfamily	1.72196204	2.2003511	1.81762843	1.58184923	0.517665856
MIR3_C	SINE element	2.1814338	1.89379992	1.94937867	1.54700864	0.593194055
L1MB3_5	LINE1, MB3 subfamily	2.2090425	1.633133	1.65469321	1.42120887	0.669435686
L1PREC2_C	LINE1, PREC2 subfamily	2.55292039	2.16451509	2.15268908	1.39347057	0.721679935
HERV17_C	Human endogenous retrovirus, subfamily 17	2.96503482	1.86327413	1.81145688	1.18631188	0.749541436
TIGGER2_C	DNA transposon	2.36529271	1.63334668	1.52355074	1.33672167	0.876108867
ZAPHOD	DNA transposon	2.1513326	1.7663077	1.64906155	1.3920269	0.965355576
SVA_C	SINE-R (non retroviral retrotransposon)	2.2227769	1.89286675	1.73386584	1.30913517	1.005075735
HERVE_C	Human endogenous retrovirus, subfamily E	2.45155247	1.77868979	1.61843377	1.53897952	1.008357796
LTR68	long terminal repeat	2.34333093	2.07355412	1.93739866	1.63957228	1.04634535
CHARLIE3_C	DNA transposon	2.35703636	1.70038524	1.48926233	1.37092819	1.092369458
L1PA2_C	LINE1, PA2 subfamily	2.16239562	2.31209291	1.97830497	1.45958445	1.096598938
THE1A_C	MaLR-mammalian LTR retrotransposon	2.00541667	1.93515248	1.74245596	1.15032661	1.118514825
HERVK_C	Human endogenous retrovirus, subfamily K	2.0061171	2.15653499	1.82253452	1.40105752	1.161079999
L1_C	LINE1	2.49301356	2.34060322	2.02819922	1.25668997	1.185293378
L3_C	LINE3	2.35638086	2.00908158	1.74395501	1.54420679	1.392505357
MLT2A1_C	MaLR-mammalian LTR retrotransposon	2.40138399	2.03382426	1.77178165	1.60782029	1.404321263
L1MC3_C	LINE1, MC3 subfamily	2.40070124	2.12369076	1.75851006	1.38915384	1.506101383
HAL1B	non-autonomous derivative of LINE1	2.24611928	2.11701552	1.76240173	1.29920584	1.553805998
LTR17_C	terminal repeat	1.83016919	1.99673012	1.70364718	1.66104849	1.562573711
MER74C	MaLR-mammalian LTR retrotransposon	2.10832145	2.03572708	1.61778714	1.04521613	1.623238292
L1PA7_C	LINE1, PA7 subfamily	2.36314897	2.35395921	1.96388533	1.42191829	1.707997573
LTR6A	long terminal repeat	1.86476687	2.15684185	1.54696871	1.4465473	1.852173244
MER119	non-autonomous retroelement	2.08618876	1.8328609	1.55129333	1.51283891	2.071811546
HERVL_C	Human endogenous retrovirus, subfamily L	2.39027926	2.12124503	1.74133356	1.64196556	2.165501757
TIGGER1_C	DNA transposon	2.07714571	2.0604822	1.80109953	1.57511768	2.218870626
MIR_C	mammalian-wide interspersed repeat	2.1449389	2.2361877	1.82011015	1.62411927	2.3063887
THE1BR_C	MaLR-mammalian LTR retrotransposon	2.0698519	2.07895536	1.72412613	1.67293527	8.816162784

Ranking of genes as computed by the noise to signal ratio derived from mean expression levels at three positions
 derived from mean expression levels at three positions
 on a log2 scale: Differential expression between cancer and benign
 and benign

TABLE 2

References

1. Bird AP, Taggart MH: **Variable patterns of total DNA and rDNA methylation in animals.** *Nucleic Acids Res* 1980, **8**:1485-1497.
2. Whitelaw E, Martin DI: **Retrotransposons as epigenetic mediators of phenotypic variation in mammals.** *Nat Genet* 2001, **27**:361-365.
- 5 3. Robertson KD, Jones PA: **DNA methylation: past, present and future directions.** *Carcinogenesis* 2000, **21**:461-467.
4. Esteller M, Herman JG: **Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours.** *J Pathol* 2002, **196**:1-7.
- 10 5. Tycko B: **DNA and alterations in cancer: genetic and epigenetic alterations.** In: Edited by M E. pp. 333-349: Natick: Eaton Publishing; 2000: 333-349.
6. Ehrlich M: **DNA methylation in cancer: too much, but also too little.** *Oncogene* 2002, **21**:5400-5413.
7. Jones PA, Baylin SB: **The fundamental role of epigenetic events in cancer.** *Nat Rev Genet* 2002, **3**:415-428.
- 15 8. Qu G, Dubeau L, Narayan A, Yu MC, Ehrlich M: **Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential.** *Mutat Res* 1999, **423**:91-101.
9. Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA: **DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas.** *Br J Cancer* 1999, **80**:1312-1321.
- 20 10. Lorincz MC, Schubeler D, Groudine M: **Methylation-mediated proviral silencing is associated with MeCP2 recruitment and localized histone H3 deacetylation.** *Mol Cell Biol* 2001, **21**:7913-7922.
- 25 11. Deininger PL, Batzer MA: **Mammalian retroelements.** *Genome Res* 2002, **12**:1455-1465.
12. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grahams D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A,
- 30 52

- Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, et al.: **Initial sequencing and analysis of the human genome.** *Nature* 2001, **409**:860-921.
- 5
13. Patzke S, Lindeskog M, Munthe E, Aasheim HC: **Characterization of a novel human endogenous retrovirus, HERV-H/F, expressed in human leukemia cell lines.** *Virology* 2002, **303**:164-173.
- 10
14. Depil S, Roche C, Dussart P, Prin L: **Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients.** *Leukemia* 2002, **16**:254-259.
15. Andersson AC, Svensson AC, Rolny C, Andersson G, Larsson E: **Expression of human endogenous retrovirus ERV3 (HERV-R) mRNA in normal and neoplastic tissues.** *Int J Oncol* 1998, **12**:309-313.
16. Debnik T, Gorski B, Cybulski C, Jakubowska A, Kurzawski G, Kladny J, Lubinski J: **Comparison of Alu-PCR, microsatellite instability, and immunohistochemical analyses in finding features characteristic for hereditary nonpolyposis colorectal cancer.** *J Cancer Res Clin Oncol* 2001, **127**:565-569.
- 20
17. Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL: **Quantitation of HERV-K env gene expression and splicing in human breast cancer.** *Oncogene* 2003, **22**:1528-1535.
- 25
18. Takai D, Yagi Y, Habib N, Sugimura T, Ushijima T: **Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis.** *Jpn J Clin Oncol* 2000, **30**:306-309.
19. Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA: **High frequency of alterations in DNA methylation in adenocarcinoma of the prostate.** *Prostate* 1999, **39**:166-174.
- 30
20. Dante R, Dante-Paire J, Rigal D, Roizes G: **Methylation patterns of long interspersed repeated DNA and alphoid repetitive DNA from human cell lines and tumors.** *Anticancer Res* 1992, **12**:559-563.

21. Jurgens B, Schmitz-Drager BJ, Schulz WA: **Hypomethylation of L1 LINE sequences prevailing in human urothelial carcinoma.** *Cancer Res* 1996, **56**:5698-5703.
22. Ostertag EM, Kazazian HH, Jr.: **Biology of mammalian L1 retrotransposons.** *Annu Rev Genet* 2001, **35**:501-538.
- 5 23. Kim HS, Lee WH: **Human endogenous retrovirus HERV-W family: chromosomal localization, identification, and phylogeny.** *AIDS Res Hum Retroviruses* 2001, **17**:643-648.
24. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP: **Continuous fluorescence monitoring of rapid cycle DNA amplification.** *Biotechniques* 1997, **22**:130-131, 134-138.
- 10 25. Bieche I, Onody P, Laurendeau I, Olivi M, Vidaud D, Lidereau R, Vidaud M: **Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications.** *Clin Chem* 1999, **45**:1148-1156.
- 15 26. Lee PD, Sladek R, Greenwood CM, Hudson TJ: **Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies.** *Genome Res* 2002, **12**:292-297.
27. Chandler LA, Jones PA: **Hypomethylation of DNA in the regulation of gene expression.** *Dev Biol (NY)* 1985, **5**:335-349.
- 20 28. Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, Vogelstein B, Nakamura Y: **Disruption of the APC gene by a retrotransposonal insertion of L1 sequence in a colon cancer.** *Cancer Res* 1992, **52**:643-645.
29. Kuff EL: **Intracisternal A particles in mouse neoplasia.** *Cancer Cells* 1990, **2**:398-400.
- 25 30. Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH, Jr.: **Many human L1 elements are capable of retrotransposition.** *Nat Genet* 1997, **16**:37-43.
31. Eden A, Gaudet F, Waghmare A, Jaenisch R: **Chromosomal instability and tumors promoted by DNA hypomethylation.** *Science* 2003, **300**:455-455.
- 30 32. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R: **Induction of tumors in mice by genomic hypomethylation.** *Science* 2003, **300**:489-492.

33. Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, Parmigiani G, Boeke JD: **Human I1 retrotransposition is associated with genetic instability in vivo.** *Cell* 2002, **110**:327-338.
34. Kolomietz E, Meyn MS, Pandita A, Squire JA: **The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors.** *Genes Chromosomes Cancer* 2002, **35**:97-112.
- 5 35. Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R: **A chromatin remodelling complex that loads cohesin onto human chromosomes.** *Nature* 2002, **418**:994-998.

10