DÔKAZOVÉ ÚLOHY O DELITEĽNOSTI

A. Priame dôkazy (vynímaním deliteľa pred zátvorku)

9. $\forall n \in \mathbb{N}$; $6/n^3 + 11n (d.ú.)$

Pomôcka: stačí dokázať, že je deliteľné 2 (n=2k a n=2k+1) a 3 (n=3k, n=3k+1, n=3k+2) zároveň podobne ako v úlohe 13

13. $\forall n \in \mathbb{N}$; 12/n⁵ - n³ <=> $\forall n \in \mathbb{N}$; 3/n⁵ - n³ a 4/n⁵ - n³

Č. je del. 12 práve vtedy, keď je deliteľné 3 a 4

A) dokazujem, že platí $3/(n^5 - n^3) = n^3 \cdot (n^2 - 1)$

<u>Prípad A1:</u> n = 3k => $n^3 \cdot (n^2 - 1) = (3k)^3 \cdot [(3k)^2 - 1] = 27k^3 \cdot [9k^2 - 1] = 3.9 \cdot k^3 \cdot [9k^2 - 1] = 3/(n^5 - n^3)$

<u>Prípad A2: n = 3k+1</u> => n^3 .($n^2 - 1$) = $(3k+1)^3$.[$(3k+1)^2$ -1] = = $(3k+1)^3$.[$9k^2 + 6k + 1 - 1$] = $(3k+1)^3$.[$9k^2 + 6k$] = $3.(3k+1)^3$.[$3k^2 + 2k$] => $3/(n^5 - n^3)$

 $\frac{\text{Pripad A3: } n = 3k+2}{=(3k+2)^3.[9k^2+12k+4-1]} = > n^3.(n^2-1) = (3k+2)^3.[9k^2+12k+3] = 3.(3k+1)^3.[3k^2+6k+1] = > 3/(n^5-n^3)$

Dokázali sme deliteľnosť číslom 3.

B) dokazujem, že platí $4/(n^5 - n^3) = n^3 \cdot (n^2 - 1)$

<u>Prípad B1:</u> n = 2k => $n^3 \cdot (n^2 - 1) = (2k)^3 \cdot [(2k)^2 - 1] = 8k^3 \cdot [4k^2 - 1] = 4 \cdot 2 \cdot k^3 \cdot [4k^2 - 1] = 8k^3 \cdot [4k^2 - 1] = 4 \cdot 2 \cdot k^3 \cdot [4k^2 - 1] = 8k^3 \cdot [4k^2 - 1] = 4 \cdot 2 \cdot k^3 \cdot [4k^2 - 1] = 8k^3 \cdot [4k^2 - 1] = 4 \cdot 2 \cdot k^3 \cdot [4k^2 - 1] = 8k^3 \cdot [4k^2 - 1] = 4 \cdot 2 \cdot k^3 \cdot [4k^2 - 1] = 8k^3 \cdot [4k^2 - 1] = 4 \cdot 2 \cdot k^3 \cdot [4k^2 - 1] = 8k^3 \cdot [4k^2 - 1] = 4 \cdot 2 \cdot k^3 \cdot [4k^2 - 1] = 4$

 $\frac{\text{Pr\'ipad B2: } n = 2k+1}{=(2k+1)^3.[4k^2+4k+1-1]} = > n^3.(n^2-1) = (2k+1)^3.[4k^2+4k+1-1] = (2k+1)^3.[4k^2+4k+1-1] = (2k+1)^3.[4k^2+4k] = 4.(3k+1)^3.[k^2+1] => 4/(n^5-1)$

Dokázali sme deliteľnosť číslom 4.

Keďže je deliteľné č. 3 aj 4, je deliteľné aj číslom 12. => VETA PLATÍ

B. Nepriame dôkazy viet

6. \forall n \in N; $5/n^2 + 1 \Rightarrow 10 \dagger n$ (D.ú.)

Pomôcka: Po vytvorení obmeny stačí dokázať pre n=10k

7. $\forall n \in \mathbb{N}$; 10 $\dagger n \Rightarrow$ 20 $\dagger n$ (D.ú.)

Pomôcka: Po vytvorení obmeny stačí dokázať pre n=20k