1.
$$c' = 0$$
, $c = const$

2.
$$(x^n)' = nx^{n-1}$$

3.
$$\left(a^{x}\right)' = a^{x} \cdot \ln a$$

4.
$$\left(e^{x}\right)' = e^{x}$$

$$5. \left(\log_a x\right)' = \frac{1}{x \ln a}$$

$$6. \left(\ln x \right)' = \frac{1}{x}$$

7.
$$(\sin x)' = \cos x$$

8.
$$(\cos x)' = -\sin x$$

$$9. \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

10.
$$(tgx)' = \frac{1}{\cos^2 x}$$

11.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

13.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

14.
$$(\arctan x)' = \frac{1}{1+x^2}$$

15.
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$

$$16. \left(\sinh x \right)' = \cosh x$$

$$17. (\operatorname{ch} x) = \operatorname{sh} x$$

18.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

19.
$$(\operatorname{th} x)' = -\frac{1}{\operatorname{sh}^2 x}$$

Шпаргалка

Формулы приведения

$$\operatorname{Fin}\left(\frac{\pi}{\lambda} + x\right) = \cos x \qquad \operatorname{COS}\left(\frac{\pi}{\lambda} + x\right) = -\sin x$$

$$\operatorname{Fin}\left(\pi + x\right) = -\sin x \qquad \operatorname{COS}\left(\pi + x\right) = -\cos x$$

$$\operatorname{Fin}\left(\frac{3\pi}{\lambda} + x\right) = -\cos x \qquad \operatorname{COS}\left(\frac{3\pi}{\lambda} + x\right) = \sin x$$

$$\operatorname{Fin}\left(2\pi + x\right) = \sin x \qquad \operatorname{COS}\left(2\pi + x\right) = \cos x$$

Производные

$x^{\alpha} = \alpha x^{\alpha-1}$	vinx = cox	$arcsin x^{1} = \frac{1}{\sqrt{1-x^{2}}}$
$a^{x} = a^{x} \ln a$	$\cos x^{1} = - \sin x$	$arccorx^{\dagger} = \frac{-1}{\sqrt{1-x^{\lambda}}}$
$e^{x} = e^{x}$	tgx = toix	$aretgx' = \frac{1}{1+x^{2}}$
$ln x = \frac{1}{x}$	$ctgx^1 = \frac{-1}{\sin^2 x}$	$arcetg x' = \frac{-1}{1 + x^2}$
$log_a x = \frac{1}{x lna}$		

Эквивалентность при $x o 0$	Равенство при $x o 0$
$\sin x \sim x$	$\sin x = x + o(x)$
$\operatorname{sh} x \sim x$	sh x = x + o(x)
$\operatorname{tg} x \sim x$	tg x = x + o(x)
$\arcsin x \sim x$	$\arcsin x = x + o(x)$
$\operatorname{arctg} x \sim x$	arctg x = x + o(x)
$1-\cos x \sim x^2/2$	$1 - \cos x = x^2/2 + o(x^2)$
$\operatorname{ch} x - 1 \sim x^2/2$	$ch x - 1 = x^2/2 + o(x^2)$
$e^x - 1 \sim x$	$e^x - 1 = x + o(x)$
$\ln(1+x) \sim x$	$ \ln(1+x) = x + o(x) $
$(1+x)^{\alpha} - 1 \sim \alpha x$	$(1+x)^{\alpha} = 1 + \alpha x + o(x)$
$a^x - 1 \sim x \ln a$	$a^x = 1 + x \ln a + o(x), \ a > 0, \ a \neq 1$

Шпаргалка

Тригонометрические формулы

$$a^{6} = e^{\ln a^{6}}$$
 $\log_{a} b = \frac{\ln b}{\ln a}$
 $\ln a^{6} = b \ln a$ $\ln(xy) = \ln x + \ln y$
 $a = \ln e^{a}$ $\ln \frac{x}{y} = \ln x - \ln y$

Mna + Mnb =
$$\lambda Mn \frac{a+b}{\lambda} \cos \frac{a-b}{\lambda}$$

Mna - Mnb = $\lambda \cos \frac{a+b}{\lambda} \sin \frac{a-b}{\lambda}$
 $\cos a + \cos b = \lambda \cos \frac{a+b}{\lambda} \cos \frac{a-b}{\lambda}$
 $\cos a - \cos b = -\lambda \sin \frac{a+b}{\lambda} \sin \frac{a-b}{\lambda}$
Mna $\sin b = \frac{1}{\lambda} (\cos (a-b) - \cos (a+b))$
 $\cos a \cos b = \frac{1}{\lambda} (\cos (a-b) + \cos (a+b))$
 $\sin a \cos b = \frac{1}{\lambda} (\sin (a+b) + \sin (a-b))$

Графики

Таблица эквивалентных	бесконечно малых функций (х→0)
$sin x \sim x$	$tg x \sim x$
$arcsin x \sim x$	$arctg x \sim x$
$1 - \cos x \sim \frac{x^2}{2}$	$ln(1+x) \sim x$
$log_a(1+x) \sim \frac{x}{lna}$	$(1+x)^n-1 \sim nx$
$a^x - 1 \sim x \ln a$	$\sqrt[m]{1+x}-1\sim\frac{x}{m}$
$e^x - I \sim x$	

квадрат суммы	$(a+b)^2 = a^2 + 2ab + b^2$
квадрат разности	$(a-b)^2 = a^2 - 2ab + b^2$
разность квадратов	$a^2-b^2=(a+b)(a-b)$
куб суммы	$(a+b)^3=a^3+3a^2b+3ab2+b^3$
куб разности	$(a-b)^3=a^3-3a^2b+3ab2-b^3$
сумма кубов	$a^3 + b^=(a+b)(a^2 - ab + b^2)$
разность кубов	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$