课程名称

高等数学B期末 考试学期 09-10-3 得分

考试时间长度 150 分钟

适用专业 选修高数 B 的各专业 考试形式

闭卷

 =	三	四	五	六	七

. 填空题(本题共 9 小题,每小题 4 分,满分 36 分)

1. 幂级数
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n \cdot 2^n}$$
 的收敛域为 $[-1,3)$;

3. 已知两条直线
$$\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-1}{m}$$
 与 $x = y = 3z$ 相交, $m = \underline{\qquad}$;

4. 交换积分次序
$$\int_0^1 dx \int_{x-1}^{\sqrt{1-x^2}} f(x,y) dy = \underline{\int_{-1}^0 dy \int_0^{y+1} f(x,y) dx + \int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx}$$
;

某下的三次积分
$$\int_0^{\pi} d\varphi \int_0^{\frac{\pi}{2}} \sin\theta d\theta \int_0^2 f(r^2) r^2 dr$$
;

語:
$$L$$
 为由点 $A(2,1,2)$ 到原点 $O(0,0,0)$ 的直线段, 则曲线积分 $\int_L (x+y+z)^2 ds$ 之值为 25

7. 已知
$$(axy^3 - y^2 \cos x) dx + (1 + by \sin x + 3x^2y^2) dy$$
 为某个二元函数 $f(x, y)$ 的全微分,则 $a=2$, $b=-2$

8. 设
$$\mathbf{r} = \{x, y, z\}, r = |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$$
, 则散度 div(e'r) = $e'(3+r)$;

9.设 Σ 是锥面
$$z = \sqrt{x^2 + y^2}$$
 (0 ≤ z ≤ 1) 下侧,则

$$\iint 3x dy \wedge dz + 2y dz \wedge dx + (z-1) dx \wedge dy = \underline{2\pi}.$$

二. 计算下列各题(本题共 4 小题,每小题 7 分,满分 28 分)

10. 设
$$z = z(x, y)$$
 是由方程 $ze^z = xe^y + ye^x$ 所确定的隐函数,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$

卟 沎

$$\frac{\partial z}{\partial x}(1+z)e^{z} = e^{y} + ye^{x}, \frac{\partial z}{\partial x} = \frac{e^{y-z} + ye^{x-z}}{1+z}, \frac{\partial z}{\partial y} = \frac{e^{x-z} + xe^{y-z}}{1+z}$$

11. 计算二重积分
$$\iint_D y dx dy$$
, 其中 $D = \{(x, y) | x^2 + y^2 \ge 2, x^2 + y^2 \le 2y \}$.

$$\iint_{D} y dx dy = 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin \theta d\theta \int_{\sqrt{2}}^{2\sin \theta} \rho^{2} d\rho = \frac{2}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (8\sin^{3} \theta - 2\sqrt{2}) \sin \theta d\theta = \frac{\pi}{2}$$

12. 计算
$$\int_0^{\sqrt{2}} e^{-y^2} dy \int_0^y e^{-x^2} dx + \int_{\sqrt{2}}^2 e^{-y^2} dy \int_0^{\sqrt{4-y^2}} e^{-x^2} dx$$
.
$$D = \{(x, y) | x^2 + y^2 \le 4, 0 \le x \le y \},$$
原式 = $\iint_D e^{-(x^2 + y^2)} dx dy = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_0^2 e^{-\rho^2} \rho d\rho = \frac{\pi}{8} (1 - e^{-4})$

13. 计算三重积分
$$\iint_{\Omega} e^y dx dy dz$$
, 其中 Ω 由曲面 $x^2 - y^2 + z^2 = 1$, $y = 0$, $y = 2$ 所围成.
$$\sum_{y} : x^2 + z^2 \le 1 + y^2, 0 \le y \le 2,$$

$$\iiint_{\Omega} e^y dx dy dz = \int_0^2 e^y dy \iint_{\Sigma_y} dx dz = \pi \int_0^2 (1 + y^2) e^y dy = 3\pi (e^2 - 1)$$

三 (14). (本题满分 7 分) 求由抛物面 $x^2 + y^2 = 2z$ 与平面 z = 1, z = 2 所围成的密度均匀 (密度 $\mu = 1$) 的立体对 z 轴的转动惯量.

题中的立体记为 Ω ,则

$$I_z = \iiint_{\Omega} (x^2 + y^2) dv = \int_1^2 dz \iint_{x^2 + y^2 \le 2z} (x^2 + y^2) d\sigma = 2\pi \int_1^2 dz \int_0^{\sqrt{2z}} \rho^3 d\rho = \frac{14}{3}\pi$$

四 (15)。(本题满分 7 分) 计算第二型曲面积分 $\iint_S x^2 dy \wedge dz + y^2 dz \wedge dx + z^2 dx \wedge dy$,其中 S 为球面 $x^2 + y^2 + z^2 = 1$ 在第二卦限部分的外侧.

共 5 页 第 3 页

$$(\cos \alpha, \cos \beta, \cos \gamma) = (x, y, z),$$

$$\iint_{s} x^{2} dy \wedge dz + y^{2} dz \wedge dx + z^{2} dx \wedge dy = \iint_{s} (x^{3} + y^{3} + z^{3}) dS$$

$$= \iint_{D} (\frac{x^{3} + y^{3}}{\sqrt{1 - x^{2} - y^{2}}} + 1 - x^{2} - y^{2}) d\sigma = \frac{\pi}{8}$$

五 (16) (本题满分 7分) 计算
$$\oint_C \frac{(x-y)dx+(x+y)dy}{x^2+y^2}$$
 , 其中 C 为 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=\left(\frac{1}{\pi}\right)^{\frac{2}{3}}$, 方向为逆时针.
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = \frac{y^2-x^2-2xy}{(x^2+y^2)^2}$$
 , 取正数 \mathcal{E} 很小,使 $C_{\varepsilon}: x^2+y^2 = \varepsilon^2$ 含于 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=\left(\frac{1}{\pi}\right)^{\frac{2}{3}}$, $\int_C \frac{(x-y)}{x^2+y^2} \frac{dx+(x+y)dy}{x^2+y^2} = 2\varepsilon^{-2}\iint_D dxdy = 2\pi$

六 (17) (**本題满分 7 分**) 将函数 $f(x) = \frac{3x}{x^2 + x - 2}$ 展开为 x - 2 的幂级数,并指明收敛域.

$$f(x) = \frac{3x}{x^2 + x - 2} = \frac{1}{x - 1} + \frac{2}{x + 2} = \frac{1}{1 + x - 2} + \frac{1}{2} \cdot \frac{1}{1 + \frac{x - 2}{4}}$$
$$= \sum_{n=0}^{\infty} (-1)^n \left(1 + \frac{1}{2^{2n+1}}\right) (x - 2)^n, x \in (1, 3)$$

七(18)(本题满分 8 分)计算由柱面 $x^2 + y^2 = 2x$ 、锥面 $2z = \sqrt{x^2 + y^2}$ 及 xOy 平面所围立体的表面积.

记 S_1 为锥面 $2z=\sqrt{x^2+y^2}$ 被柱面 $x^2+y^2=2x$ 所截部分,其面积为 A_1 ,记 S_2 为柱面 $x^2+y^2=2x$ 被锥面 $2z=\sqrt{x^2+y^2}$ 和xOy平面所截部分,其面积为 A_2 ,记为底面 S_3 ,其面积为 A_3 ,表面积 $A=A_1+A_2+A_3$

$$A = \iint_{x^2 + y^2 \le 2x} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} d\sigma + \frac{1}{2} \iint_{x^2 + y^2 = 2x} \sqrt{x^2 + y^2} ds + \pi = \left(1 + \frac{\sqrt{5}}{2}\right)\pi + 2\int_0^{\pi} \cos\frac{\theta}{2} d\theta$$
$$= \left(1 + \frac{\sqrt{5}}{2}\right)\pi + 4$$