Algorithm Efficiency and Sorting Burak Öztürk 21901841 Section 1 Assignment 1

Question 1

Part 1

• T(n) = 3T(n/3) + n, where T(1) = 1 and n is an exact power of 3.

Substitute T(n/3) for 3T(n/9) + n/3 by substituting n for n/3 in the original function. T(n/3) = 3T(n/9) + n/3

$$T(n) = 3(3*T(n/9) + n/3) + n$$

= 9T(n/9) + n + n
= 9T(n/9) + 2n

$$T(n/9) = 3T(n/27) + n/9$$

$$T(n) = 9(3T(n/27) + n/9) + 2n$$

$$= 27T(n/27) + n + 2n$$

$$= 27T(n/27) + 3n$$

Keep substituting until $n/3^k$ becomes 1. (k is an integer as $0 < k <= log_3(n)$)

Since $3^k = n$ and T(1) = 1 function becomes

$$T(n) = n + kn = n + nlog_3(n)$$

Therefore $O(T(n)) = O(nlog_3n)$

• $T(n) = 2T(n-1) + n^2$, where T(1) = 1.

Substitute T(n-1) for $2T(n-2) + (n-1)^2$ by substituting n^2 for $(n-1)^2$ in the original function. $T(n-1) = 2T(n-2) + (n-1)^2$

$$T(n) = 2(2T(n-2) + (n-1)^2) + n^2$$
$$= 4T(n-2) + 2(n-1)^2 + n^2$$

$$T(n-2) = 2T(n-3) + (n-2)^2$$

$$T(n) = 4T(n-2) + 2(n-1)^2 + n^2$$

= 4(2T(n-3) + (n-2)^2) + 2(n-1)^2 + n^2
= 8T(n-3) + 4(n-2)^2 + 2(n-1)^2 + n^2

Keep substituting until n-k becomes 1. (k is an integer as 0 < k < n)

$$T(n) = 2T(n-1) + n^{2} \qquad \qquad k = 1$$

$$= 4T(n-2) + 2(n-1)^{2} + n^{2} \qquad \qquad k = 2$$

$$= 8T(n-3) + 4(n-2)^{2} + 2(n-1)^{2} + n^{2} \qquad \qquad k = 3$$
...
$$T(n) = 2^{n-1}T(1) + \sum_{i=1}^{k-1} (2^{i})(n-i)^{2} \qquad \qquad k = n-1$$

$$= ((2^{n}-4)(n-1)^{2})/2 + 2^{n-1}$$

Therefore $O(T(n)) = O(n^22^n)$

• T(n) = 3T(n/4) + nlogn, where T(1) = 1 and n is an exact power of 4.

Substitute T(n/4) for $3T(n/16) + (n/4)\log(n/4)$ by substituting n for n/4 in the original function. $T(n/4) = 3T(n/16) + (n/4)\log(n/4)$

$$T(n) = 3(3*T(n/16) + (n/4)\log(n/4)) + n\log n$$

= 9T(n/16) + (3n/4)\log(n/4) + n\log n

$$T(n/16) = 3T(n/64) + (n/16)log(n/16)$$

$$T(n) = 9(3T(n/64) + (n/16)\log(n/16)) + (3n/4)\log(n/4) + n\log n$$
$$= 27T(n/64) + (9n/16)\log(n/16) + (3n/4)\log(n/4) + n\log n$$

Keep substituting until $n/4^k$ becomes 1. (k is an integer as $0 < k \le \log_4(n)$)

$$\begin{split} \mathsf{T}(\mathsf{n}) &= \mathsf{3}\mathsf{T}(\mathsf{n}/4) + \mathsf{nlogn} & \mathsf{k} = 1 \\ &= \mathsf{9}\mathsf{T}(\mathsf{n}/16) + (\mathsf{3}\mathsf{n}/4)\mathsf{log}(\mathsf{n}/4) + \mathsf{nlogn} & \mathsf{k} = 2 \\ &= 2\mathsf{7}\mathsf{T}(\mathsf{n}/64) + (\mathsf{9}\mathsf{n}/16)\mathsf{log}(\mathsf{n}/16) + (\mathsf{3}\mathsf{n}/4)\mathsf{log}(\mathsf{n}/4) + \mathsf{nlogn} & \mathsf{k} = 3 \\ & \dots & & \dots \\ & \mathsf{T}(\mathsf{n}) &= (\mathsf{3}^{\,\mathsf{k}})\mathsf{T}(\mathsf{n}/4^{\,\mathsf{k}}) + \sum_{i=1}^{k-1} (3^i * n/4^{\,\mathsf{k}}) \mathsf{log}(\mathsf{n}/4^{\,\mathsf{k}}i) & \mathsf{k} = \mathsf{log}_4(\mathsf{n}) \end{split}$$

Therefore $O(T(n)) = O(n\log^2 n)$ since $(3^k)T(n/4^k)$ is a number smaller than $n = (4^k)T(n/4^k)$ and $\log_4 n$ terms are all at nlogn complexity.

• T(n) = 3T(n/2) + 1, where T(1) = 1 and n is an exact power of 2.

Substitute T(n/2) for 3T(n/4) + 1 by substituting n for n/2 in the original function. T(n/2) = 3T(n/4) + 1

$$T(n) = 3(3T(n/4) + 1) + 1$$
$$= 9T(n/4) + 3 + 1$$
$$= 9T(n/4) + 4$$

$$T(n/4) = 3T(n/8) + 1$$

$$T(n) = 9T(n/4) + 4$$

= $9(3T(n/8) + 1) + 4$
= $27T(n/8) + 13$

Keep substituting until $n/2^k$ becomes 1. (k is an integer as $0 < k \le \log_2(n)$)

$$T(n) = 3T(n/2) + 1 k = 1$$

$$= 9T(n/2) + 3 + 1 k = 2$$

$$= 27T(n/64) + 9 + 3 + 1 k = 3$$
...
$$T(n) = (3^{k})T(n/2^{k}) + \sum_{i=0}^{k-1} 3^{i} k = \log_{2}(n)$$

$$= 3^{k} + (3^{k}-1)/2$$

Therefore $O(T(n)) = O(3^{logn}) = O(n^{log3})$

Part 2

Array: [5, 6, 8, 4, 10, 2, 9, 1, 3, 7]

Bubble Sort

Sorted and unsorted parts separated with | and swap candidates bolded and selected with parentheses. S means swap is carried out.

Pass 1:

[(5, 6) , 8, 4, 10, 2, 9, 1, 3, 7]
[5, (6, 8) , 4, 10, 2, 9, 1, 3, 7]
[5, 6, (8, 4) , 10, 2, 9, 1, 3, 7] S
[5, 6, 4, (8, 10) , 2, 9, 1, 3, 7]
[5, 6, 4, 8, (10, 2) , 9, 1, 3, 7] S
[5, 6, 4, 8, 2, (10, 9) , 1, 3, 7] S
[5, 6, 4, 8, 2, 9, (10, 1) , 3, 7] S
[5, 6, 4, 8, 2, 9, 1, (10, 3) , 7] S
[5, 6, 4, 8, 2, 9, 1, 3, (10, 7)] S
[5, 6, 4, 8, 2, 9, 1, 3, 7 10]

Pass 2:

Pass 3:

[(5, 4) , 6, 2, 8, 1, 3, 7 9, 10] S
[4, (5, 6) , 2, 8, 1, 3, 7 9, 10]
[4, 5, (6, 2) , 8, 1, 3, 7 9, 10] S
[4, 5, 2, (6, 8) , 1, 3, 7 9, 10]
[4, 5, 2, 6, (8, 1) , 3, 7 9, 10] S
[4, 5, 2, 6, 1, (8, 3) , 7 9, 10] S
[4, 5, 2, 6, 1, 3, (8, 7) 9, 10] S
[4, 5, 2, 6, 1, 3, 7 8, 9, 10]

Pass 4:

[(4, 5) , 2, 6, 1, 3, 7 8, 9, 10]
[4, (5, 2) , 6, 1, 3, 7 8, 9, 10] S
[4, 2, (5, 6) , 1, 3, 7 8, 9, 10]
[4, 2, 5, (6, 1), 3, 7 8, 9, 10] S
[4, 2, 5, 1, (6, 3) , 7 8, 9, 10] S
[4, 2, 5, 1, 3, (6, 7) 8, 9, 10]
[4, 2, 5, 1, 3, 6 7, 8, 9, 10]

Pass 5:

Pass 6:

Pass 7:

[(2, 1) , 3, 4 5, 6, 7, 8, 9, 10] S
[1, (2, 3) , 4 5, 6, 7, 8, 9, 10]
[1, 2, (3, 4) 5, 6, 7, 8, 9, 10]
[1, 2, 3 4, 5, 6, 7, 8, 9, 10]

Pass 8:
[(1, 2) , 3 4, 5, 6, 7, 8, 9, 10]
[1, (2, 3) 4, 5, 6, 7, 8, 9, 10]
[1, 2 3, 4, 5, 6, 7, 8, 9, 10]

Finalized array:

Pass 9:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[(1, 2) | 3, 4, 5, 6, 7, 8, 9, 10]

• Selection sort:

Sorted and unsorted parts separated with | values that will be swapped with last element of unsorted array are bolded and selected with parentheses.

Finalized array:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Part 3

Worst case for Quicksort algorithm is the situation where the pivot (which is selected as first element of the array) is the biggest or smallest of the list. In that case, Quicksort algorithm will have time function as T(n) = T(n-1) + 2n. (T(n-1) is for recursion with one less item and 2n is for comparison and swaps)

$$T(n) = T(n-1) + 2n$$

$$= T(n-2) + 2(n-1) + 2n$$
...
$$T(n) = T(1) + 4 + 6 + ... + 2n$$

$$= 1 + 4 + 6 + ... + 2n$$

$$= (n(n+1)) - 1$$

Therefore $O(T(n)) = O(n^2)$ for worst case of Quicksort.

Question 2

D:\bilkent\3rd	IYear\CS202\Homework	s\HW1\Project\output.exe	
[0, 1, 2, 3,	4, 5, 6, 7, 8,	9, 10, 11, 12, 13,	14, 15]
[0, 1, 2, 3,	4, 5, 6, 7, 8,	9, 10, 11, 12, 13,	14, 15]
[0, 1, 2, 3,	4, 5, 6, 7, 8,	9, 10, 11, 12, 13,	14, 15]
[0, 1, 2, 3,	4, 5, 6, 7, 8,	9, 10, 11, 12, 13,	14, 15]
	Analysis of In		
_	Time Elapsed	compCount	moveCount
14000	118.999900 ms	48860744	48874748
18000	202.545300 ms	80597277	80615281
22000	293.000200 ms	120841515	120863519
26000	393.999900 ms	169328606	169354611
30000	518.000100 ms	225450703	225480708
34000	665.531000 ms	289297649	289331654
	834.573800 ms	361250294	361288299
42000	1047.823100 ms	443136381	443178386
Part b - Time	Analysis of Me	rgeSort	
Array Size	Time Elapsed	compCount	moveCount
14000	2.023700 ms	175345	387232
18000	1.966200 ms	231893	510464
22000	2.955400 ms	290033	638464
26000	3.982800 ms	348899	766464
30000	4.012100 ms	408723	894464
34000	4.988400 ms	469135	1024928
38000	4.999500 ms	530813	1160928
42000	6.000000 ms	593023	1296928
Dant c - Time	Analysis of Qu	ickSont	
	Time Elapsed	compCount	moveCount
	2.007100 ms		380819
	2.000200 ms	300929	462225
22000	2.063300 ms	395300	591768
26000	2.936200 ms	474481	735140
30000	3.061500 ms	541077	866089
34000	4.000200 ms	666791	1021597
38000	5.002100 ms	757953	1167367
42000	4.992700 ms	802249	1258183
Part d - Time	Analysis of Ra	div Sort	
	Time Elapsed	compCount	moveCount
14000	1.001200 ms	0	0
18000	1.999400 ms	ø	ø
22000	0.999000 ms	ø	ø
26000	3.037800 ms	9	ø
30000	1.999400 ms	0	0
34000	2.999500 ms	0	0
38000	3.000200 ms	0	0
42000	2.999800 ms	0	0

Array sizes are increased 12000 each to make time measurement possible.

Question 3

Graphs:

There are four separate graphs because in all-in-one graph, Selection Sort's massive times were dominating all other algorithms.

First of all, in all measurements, results are always very close to an integer like 0,1,2. This happens because the library I used to measure time is not very precise but still the increase trend can be seen as expected.

Selection Sort has $O(n^2)$ complexity, therefore it has an upwards curve as expected. But not as sharp as $y = x^2$, because it's actual time function is $T(n) = n^2/2 - n/2$ therefore curve is softer than x^2 .

MergeSort and QuickSort are similar but QuickSort seems faster. This has to be a measuring mistake because two reasons:

- 1) QuickSort's worst case is $O(n^2)$ and MergeSort's is O(nlogn), therefore $T_{QuickSort} >= T_{MergeSort}$ has to be true for all situations.
- 2) For all array sizes, QuickSort always have more key comparisons and moves.

But they both have close to nlogn curves.

Radix sort is pretty inaccurate unfortunately but it has a O(n) curve.