12	650401701593	เฉลิมพล สามบุญรอด

1. ผูกมวล m_1 และ m_2 ที่ปลายทั้งสองของเชือก แล้วนำไปพันรอบทรงกระบอกมวล M รัศมี R ดังภาพ ทรงกระบอกหมุนได้คล่องไม่มีแรงเสียดทาน และเชือกมีมวลน้อยมากไม่ลื่นไถลบน ทรงกระบอก กำหนดให้ $m_1 = 0.5 \ kg$, $m_2 = 1.0 \ kg$, $M = 2 \ kg$, $R = 10 \ cm$

 m_1 m_2 m_1 m_2 m_1 m_2

ให้หา ก) ความเร็วเชิงเส้นของมวล m_2 ขณะตกกระทบพื้น

> ข) ความเร็วมุมของรอก ขณะ m_2 ตกกระทบพื้น

และ H = 1.2 เมตร

ค) พลังงานจลน์ของระบบ ขณะ m_2 ตกกระทบพื้น

$$n)$$
 an firs $v = wR$

$$w = \frac{4.84}{0.1}$$

$$w = 48.4$$

 $m19 = 0.5 \times 9.8 = 4.9 \text{ N}$ $m29 = 0.1 \times 9.8 = 9.8 \text{ N}$ $m10 \times 5 = ma \text{ (1+)}$ $m11 \times 5 = ma \text{ (1+)}$ $m11 \times 5 = ma \text{ (1+)}$ $m11 \times 7 = 1.5 \text{ M}$ $m11 \times 7 = 1.5 \text{ M}$ $m11 \times 7 = 1.5 \text{ M}$ $m12 \times 7 = 1.5 \text{ M}$ $m13 \times 7 = 1.5 \text{ M}$ $m14 \times 7 = 1.5 \text{ M}$ $m15 \times 7 = 1.5 \text{ M}$

 $(T_1)T_2)X = 1 mX(a)$

 $T_1-T_2 = \frac{1}{\chi}(\chi)(\alpha)$

T1-T2 = 01 → 3

P) k7/211 = k900 + k47am1 + k47am2 $= \frac{1}{2} \left(\frac{1}{2} \times 2 \times (0.1)^{2} \right) \left(48 \frac{2}{4} \right) + \frac{1}{2} (0.5) (4.94)^{2}$ $+ \frac{1}{2} (1) (4.84)^{2}$ = 29.282