P est vénifiée Enfin 4=-12-22+32 et donc m=3, E,=E,=-1 et E,=1 P est donc vérifiée Hérédité. Fixons n dans IN tel que P soit vraie Démontrons P Grace à P $n = \sum_{i=1}^{m} \mathcal{E}_{i} i^{2}$ Ainsi, $n + 4 = \left(\sum_{i=1}^{m} (\epsilon_i i^2) + 4\right)$ En utilisant l'égalité préademment démontrée en a), $n + 4 = \left(\sum_{i=1}^{m} E_{i} i^{2}\right) + (m+1)^{2} - (m+2)^{2} - (m+3)^{2} + (m+4)^{2}$ Soit, en posant $\mathcal{E}_{m+1} = \mathcal{E}_{m+4} = 1$ et $\mathcal{E}_{m+2} = \mathcal{E}_{m+3} = -1$ $n + 4 = \sum_{i=1}^{m+4} 8_{i}i^{2}$ EL m+4 < n+7 car, grâce à P, m < n+3 C'est exactement P Nous venons ainsi de démantrer cette propriété pour $x \in IN$ $(0=0^2)$. En prenant les opposés des coefficients $\mathcal{E}_{i,j}$ l'vient que cette propriété est viaix pour $x \in \mathbb{Z}$. Exercice 36 Soit n dans IN*, if vient: $\sum_{K=1}^{n} (2K-1) = n + 2n - 1$ Soit, n $\sum_{K=1}^{n} (2K-1) = n^2$