

Lista de Exercícios 3: F 129

2º Semestre de 2012

R. Urbano/L. E. Araújo.

Método dos Mínimos Quadrados e Propagação de Erros

Questão 1.

O Método dos Mínimos Quadrados (MMQ) que utilizamos mais frequentemente nas aulas de laboratório de F-129 até agora tem sido aplicado para o caso de uma simples reta do tipo y(x) = ax + b. Porém, deve-se notar que o método é mais geral e pode ser utilizado para ajustes de funções mais complexas, principalmente quando os parâmetros a e b ainda são constantes.

Suponha que queremos obter um ajuste para a curva $y(x) = ax^3 + bx$, com $a \in b$ constantes.

- i. Utilize o MMQ para encontrar o sistema de equações que determina os coeficientes a e b.
- ii. Diga como deveria fazer para encontrar os erros de *a* e *b* neste caso. Não é necessário encontrar os erros ou resolver o sistema.

<u>Dica</u>: Escreva a função apropriada e encontre os parâmetros a e b tais que a função seja mínima. Demonstre claramente seu raciocínio. Explique todos os símbolos que utilizar.

Questão 2.

A diferença de potencial V nos terminais de um resistor ôhmico foi medida em função da corrente elétrica I. Os resultados obtidos estão mostrados na Tabela 1.

Tabela 1: Diferença de Potencial $V_i[V]$ medida para cada corrente $I_i[A]$ aplicada no resistor.

i	$(V \pm \sigma v)[V]$	$(I \pm \sigma_I)$ [A]
1	7.1 ± 0.9	0.05 ± 0.05
2	9.6 ± 0.7	$0,10 \pm 0,08$
3	$16,9 \pm 0,5$	0.15 ± 0.09
4	$21,0 \pm 0,5$	0.2 ± 0.1
5	$25,4 \pm 0,2$	0.25 ± 0.09
6	$28,1 \pm 0,2$	0.30 ± 0.07
7	$35,7 \pm 0,3$	0.35 ± 0.08
8	$39,0 \pm 0,4$	0.4 ± 0.1

Para um resistor ôhmico de resistência R, a relação entre a tensão e a corrente é dada pela **Lei de Ohm**:

V = RI.

- a) Em um papel milimetrado, faça um gráfico de V vs. I indicando as barras de erro.
- b) Usando o Método dos Mínimos Quadrados, determine, a partir do coeficiente angular, o valor de $R \pm \sigma_R$.
- c) Discuta sobre o valor do coeficiente linear encontrado. Ele está dentro do esperado considerando sua incerteza?

Questão 3. Módulo de Young

Desejamos identificar o tipo de material que compõe uma barra cilíndrica de comprimento $L=(100,0\pm0,1)$ cm e de raio $r=(10,00\pm0,01)$ mm. Para isto, propõe-se um experimento no qual considera-se que a barra tem um comportamento elástico para certa faixa de comprimentos, isto é, satisfaz a **Lei de Hooke**. Sendo assim, a barra é puxada de forma a produzir uma pequena elongação ΔL . Os dados obtidos estão mostrados na Tabela 2 abaixo:

a) Monte uma Tabela com 8 colunas: uma para a elongação (x_i) , força (y_i) , erro da força (σ_i) , inverso do erro da força $(\omega_i = 1/\sigma_i^2)$ e os fatores para o cálculo da Regressão Linear através do MMQ $(\omega_i x_i, \omega_i y_i, \omega_i x_i y_i e \omega_i x_i^2)$.

Tabela 2: Medidas para a barra cilíndrica. F é a força necessária para produzir uma elongação ΔL .

i	$(F \pm \sigma_F)[kN]$	ΔL [mm]
1	60.0 ± 0.5	1,00
2	$30,00 \pm 0,05$	0,50
3	$5,00 \pm 0,01$	0,08

b) Calcule Δ .

c) Calcule os coeficientes linear e angular com seus respectivos erros. Comente o significado físico do coeficiente

linear. Determine também qual é a constante elástica da barra com o respectivo erro.

d) Sabe-se que a força F aplicada é relacionada com a constante de Young Y por:

$$\frac{F}{A} = Y \frac{\Delta L}{L}$$

onde A é a área da secção transversal perpendicular à força F, ΔL é a elongação, L é o comprimento da barra e, Y é o modulo de Young. Encontre então a equação que relaciona a constante elástica da mola e o módulo de Young Y.

- e) Determine o módulo de Young com seu respectivo erro.
- f) De acordo com a Tabela 3 abaixo, identifique o material que a barra é feita?

Tabela 3: Módulo de Young para diferentes materiais.

Material	Aço	Alumínio	Vidro	Concreto	Madeira	Osso	Poliestireno
$Y(10^9 \text{ N/m}^2)$	200 ± 0.05	70	65	30	13	9	3

Questão 4. Associação de Molas

Foi realizado um experimento de F 129 para se determinar as constantes de mola equivalentes de um arranjo de duas molas. As molas 1 e 2 usadas tiveram suas constantes de mola individualmente determinadas como sendo $K_1 = (13,09 \pm 0,02)N/m$ e $K_2 = (14,33 \pm 0,02)N/m$. No experimento com as molas arranjadas em *série* e *paralelo*, foi utilizado o <u>método estático</u> e foram obtidos os seguintes dados dispostos na Tabela 4:

Tabela 4: Associação de Molas: ΔL é a elongação máxima do conjunto de molas em metros e P = mg é a força peso das massas presas às molas em Newton, considerando $g = (9.8 \pm 0.2)$ m/s².

Molas	em Série	Molas em Paralelo		
ΔL (m)	Peso (N)	ΔL (m)	Peso (N)	
0,068	$0,463 \pm 0,005$	0,016	$0,463 \pm 0,005$	
0,107	$0,735 \pm 0,005$	0,027	$0,735 \pm 0,005$	
0,148	$1,010 \pm 0,005$	0,036	$1,010 \pm 0,005$	
0,164	$1,115 \pm 0,005$	0,041	$1,115 \pm 0,005$	
0,200	$1,356 \pm 0,005$	0,050	$1,356 \pm 0,005$	

A partir destes dados:

- a) Faça um gráfico de P vs. ΔL em um papel milimetrado para cada uma das associações de molas, em *série* e em *paralelo*. Utilize o MMQ para encontrar a melhor reta que ajusta os dados e, consequentemente, as constantes de mola experimentais $K_{paralelo}^{\rm exp}$ e $K_{série}^{\rm exp}$ do conjunto com suas respectivas incertezas. Explicite todos os passos de seus cáculos.
- b) A partir dos valores de K_1 e K_2 , calcule **analiticamente** o valor de $K_{paralelo}^{calc}$ e $K_{s\acute{e}rie}^{calc}$ esperado **com as respectivas incertezas devidamente propagadas**.
- c) Compare **graficamente** os valores de $K_{paralelo}$ e $K_{s\'erie}$ calculados analiticamente e determinados experimentalmente pelo MMQ usando os resultados de (a) e (b). Dentro da barra de erro, podemos dizer que os valores concordam entre si? Justifique sua resposta.

Questão 5. Colisões em 2D

Em um experimento de colisão similar ao realizado em laboratório de F 129, uma esfera de aço de massa $m_I = (62,0 \pm 0,1)$ g desce ao longo de uma rampa e colide contra uma segunda esfera de massa $m_2 = (35,0 \pm 0,1)$ g que está inicialmente em repouso no final da rampa.

Após o choque, as esferas descrevem um movimento de projétil sob a ação da gravidade. A posição em que as esferas atingem a mesa do experimento é marcada numa cartolina branca com papel carbono. Foram feitos 5 lançamentos para um mesmo parâmetro de impacto. A Figura 1 mostra as posições das esferas 1 e 2 depois do choque na cartolina. Os círculos que circunscrevem as manchas de ambas as esferas têm raio igual a 1 cm. O tempo de queda das esferas é $t = (0.25 \pm 0.02)$ s.

- a. Determine os vetores velocidade ${\bf v}=({\bf v}_x\pm\Delta{\bf v}_x)~{\bf x}+({\bf v}_y\pm\Delta{\bf v}_y)~{\bf y}$ de cada esfera após o choque.
- b. Determine os vetores quantidades de movimento $\mathbf{p} = (p_x \pm \Delta p_x) \mathbf{x} + (p_y \pm \Delta p_y) \mathbf{y}$ de cada esfera após o choque usando os resultados do item anterior e $m_i \pm \Delta m_i$ de cada esfera.
- c. Antes do choque, o momento linear da esfera 1 foi medido como sendo $\mathbf{p}_0 = [(9.5 \pm 0.2) \, \mathbf{x} + (0.0 \pm 0.3) \, \mathbf{y}]$ (kg·cm/s). Determine se houve ou não conservação de momento linear no choque.

Figura 1: Manchas feitas pelas esferas na cartolina ao caírem na mesa após a colisão. O eixo x indica a direção de movimento da esfera 1 antes de colidir com a esfera 2. A colisão ocorre na origem O dos eixos.