Mathematisches Institut Universität München Prof. Heinrich Steinlein Thomas Vogel

Analysis I (MIA) im SS 07 2. Klausur

14. Juli 2007, 10-12 Uhr

Hinweise:

- 1. Schreiben Sie auf **jedes** Blatt, das Sie abgeben, Ihren Namen **in Druck-schrift**. Füllen Sie das Scheinformular auf der nächsten Seite aus.
- 2. Bearbeiten Sie verschiedene Aufgaben auf verschiedenen Blättern. Wenn Sie mehr Papier brauchen, dann melden Sie sich bitte.
- 3. Auf jede Aufgabe gibt es 10 Punkte.

	viei Erioig:						
Name: .			·/				
Aufgabe	1	2	3	4	5	6	Summe
Punkte							

Aufgabe 1: Es sei $(a_n) = ((-1)^{n+1} + 2^{-n})$. Man zeige

- a) 1 ist ein Häufungspunkt von (a_n) .
- b) Kein a > 1 ist Häufungspunkt von (a_n) .
- c) Was folgt aus a) und b) für $\limsup (a_n)$?

Lösung:

- a) Wir betrachten $a_{2n-1}=(1+2^{-2n+1})$. Wegen $\lim_{n\to\infty}2^{-2n+1}=0$ konvergiert die Teilfolge $(a_{2n-1})_{n\in\mathbb{N}}$ von (a_n) gegen 1. Also ist 1 ein Häufungspunkt von (a_n) .
- b) Sei a > 1 und $\varepsilon := (a 1)/2$. Wegen

$$a_n - 1 = (-1)^{n+1} - 1 + 2^{-n}$$

 $\leq 2^{-n}$

und weil $\lim_{n\to\infty} 2^{-n}=0$ gibt es nur endlich viele $n\in\mathbb{N}$, so dass $a_n\geq 1+\varepsilon$. Wegen der Wahl von ε ist a>1 kein Häufungspunkt von (a_n) .

c) Es folgt $\limsup (a_n) = 1$, denn $1 = \max \{a \in \mathbb{R} \mid a \text{ Häufungspunkt von } (a_n)_{n \in \mathbb{N}} \}$, vgl III.2.9.

Name:.....

Aufgabe 2: Man untersuche folgende Reihen auf Konvergenz:

a)
$$\sum_{j=0}^{\infty} \frac{j^2}{(3+(-1)^j)^j}$$

b)
$$\sum_{j=1}^{\infty} \frac{j^2}{\binom{j+2}{3}}$$

c)
$$\sum_{j=1}^{\infty} (-1)^j \frac{j^2}{\binom{j+2}{3}}$$

Lösung:

a) Wir wenden das Wurzelkriterium an. Wir berechnen

$$\sqrt[n]{\frac{n^2}{(3+(-1)^n)^n}} = \frac{\sqrt[n]{n^2}}{3+(-1)^n}$$
$$= \frac{(\sqrt[n]{n})^2}{3+(-1)^n}.$$

Wegen $\lim_{n\to\infty} \sqrt[n]{n} = 1$ (aus der Vorlesung) folgt

$$\lim \sup \left(\sqrt[n]{\frac{n^2}{(3+(-1)^n)^n}} \right) = \frac{1}{\lim \inf(3+(-1)^n)} = \frac{1}{2} < 1.$$

Die Reihe konvergiert also nach dem Wurzelkriterium.

b) Es gilt für $j \in \mathbb{N}$

$$\frac{j^2}{\binom{j+2}{3}} = \frac{6j^2}{(j+2)(j+1)j}$$
$$= \frac{6j}{(j+2)(j+1)}$$
$$\ge \frac{6j}{3j \cdot 2j} = \frac{1}{j}.$$

Die Reihe $\sum_{j=1}^{\infty} \frac{1}{j}$ ist divergent, nach dem Vergleichskriterium ist also auch $\sum_{j=1}^{\infty} \frac{j^2}{\binom{j+2}{3}}$ divergent.

c) Das Vorzeichen der Summanden in der Reihe alterniert. Ausserdem

gilt:

$$\frac{\frac{(j+1)^2}{\binom{(j+1)+2}{3}}}{\frac{j^2}{\binom{j+2}{3}}} = \frac{(j+1)^2}{j^2} \cdot \frac{3!j(j+1)(j+2)}{3!(j+1)(j+2)(j+3)}$$
$$= \frac{(j+1)^2}{j(j+3)}$$
$$= \frac{j^2 + 2j + 1}{j^2 + 2j + j}$$
$$< 1.$$

Also ist die Folge der Batraege der Koeffizienten der Reihe monoton fallend. Wegen

$$\left| \frac{j^2}{\binom{j+2}{3}} \right| = \frac{6}{(1+2/j)(j+1)}$$

$$\leq \frac{2}{j}$$

ist die Koeffizientenfolge eine Nullfolge. Die Reihe konvergiert also nach dem Leibnizkriterium.

Aufgabe 3: Man beweise: Die Menge der Dezimalbrüche

$$M := \{0, a_1 a_2 \dots \mid a_1, a_2, \dots \in \{0, 5\}\}$$

ist überabzählbar.

Lösung : Aus II.4.2. folgt, dass verschiedene Dezimalbrüche aus M auch verschiedene reelle Zahlen darstellen.

Angenommen M ist abzählbar. Dann gibt es eine Folge $(x_n)_{n\in\mathbb{N}}$, so dass jeder Dezimalbruch aus M genau einmal in der Folge vorkommt. Wir schreiben

$$x_n = 0, a_1^{(n)} a_2^{(n)} a_3^{(n)} \dots$$

Wir setzen $\hat{a}_i := 5 - a_i^{(i)}$ und betrachten den Dezimalbruch

$$\hat{x} = 0, \hat{a}_1 \hat{a}_2 \ldots \in M.$$

Nach der Annahme gibt es ein $N \in \mathbb{N}$, so dass $x_N = \hat{x}$. Diese beiden Dezimalbrüche stimmen aber an der N-ten Stelle nach dem Komma nicht überein repräsentieren also verschiedene reelle Zahlen.

Name:.....

Aufgabe 4: Sei c > 1. Man zeige, dass die Reihe $\sum_{j=1}^{\infty} \frac{1}{x^{j}+1}$ gleichmäßig auf $[c, \infty[\subset \mathbb{R} \text{ konvergiert. Man folgere daraus die lokal gleichmäßige Konvergenz auf <math>]1, \infty[$.

Lösung: Wir benutzen das Weierstraßkriterium (II.5.4). Für alle $x \in [c, \infty[$ und $j \in M$ gilt

$$\left| \frac{1}{x^j + 1} \right| < \frac{1}{x^j}$$

$$< c^{-j}.$$

Wegen c>1 konvergiert die Reihe $\sum_{j=1}^{\infty}c^{-j}$. Nach dem Weierstraßkriterium konvergiert $\sum_{j=1}^{\infty}\frac{1}{x^{j}+1}$ gleichmäßig auf $]c,\infty[$.

Sei nun $x \in]1, \infty[$ und $r = \frac{x-1}{2} > 0$. Dann liegt der Ball $K_r(x)$ in $[1+r,\infty[$. Auf letzterem Intervall konvergiert die Reihe gleichmäßig, also auch auf $K_r(x)$. Also ist die Reihe lokal gleichmäßig konvergent auf $]1,\infty[$.

Aufgabe 5:

- a) Sei $\sum_{j=0}^{\infty} a_j z^j$ eine Reihe mit Konvergenzradius $\rho \in \mathbb{R}^+$. Zeige, dass ρ^2 der Konvergenzradius der Potenzreihe $\sum_{j=0}^{\infty} a_j^2 z^j$ ist.
- b) Wir betrachten die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n := \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right) \cdot \ldots \cdot \left(\frac{1}{2} - n\right)}{n!}.$$

Beweise, dass die Potenzreihe $\sum_{n=0}^{\infty} a_n z^n$ auf $K_1(0) \subset \mathbb{C}$ konvergiert.

Lösung:

a) Nach dem Satz von Cauchy-Hadamard gilt

$$\rho^{-1} = \limsup \sqrt[n]{|a_n|}.$$

Dann gilt aber auch $\rho^{-2} = \limsup \sqrt[n]{|a_n^2|}$. Wieder nach dem Satz von Cauchy-Hadamard ist der Konvergenzradius von $\sum_{j=0}^{\infty} a_j^2 z^j$ also ρ^2 .

b) Sei $z \in \mathbb{C}$ mit |z| < 1. Es gilt

$$\left| \frac{a_{n+1}z^{n+1}}{a_n z^n} \right| = \frac{n!|z|}{(n+1)!} \cdot \left| \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right) \cdot \dots \cdot \left(\frac{1}{2} - n - 1\right)}{\frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right) \cdot \dots \cdot \left(\frac{1}{2} - n\right)} \right|$$
$$= \frac{n+1/2}{n+1} |z|.$$

Also gilt $\lim_{n\to\infty}\left|\frac{a_{n+1}z^{n+1}}{a_nz^n}\right|=|z|<1$. Die Reihe konvergiert nach dem Quotientenkriterium.

Aufgabe 6: Es sei

$$\begin{split} M := &]0, 2] \times]0, 2] \\ &= \{ (x_1, x_2) \in \mathbb{R}^2 \, | \, 0 < x_1 \le 2 \text{ und } 0 < x_2 \le 2 \}. \end{split}$$

Man zeige:

- a) $(0,1) \in \overline{M}$
- b) $(1,1) \in \mathring{M}$

Lösung:

- a) Die Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n=(1/n,1)\in\mathbb{R}^2$ liegt in M und konvergiert gegen (0,1). Also $(0,1)\in\overline{M}$.
- b) Der Ball $K_1((1,1))$ liegt ganz in M, denn falls $(x,y) \in K_1((1,1))$ und $(x,y) \notin M$ würde gelten

$$|x-1| \ge 1$$
 oder $|y-1| \ge 1$.

Dann erhält man den Widerspruch 1>|(x,y)-(1,1)| (weil (x,y) im 1–Ball um (1,1) liegt) und $|(x,y)-(1,1)|\geq 1$.

Also liegt ein offener Ball um (1, 1) ganz in M, das bedeutet insbesondere (1, 1) $\in \mathring{M}$