Elementi di Informatica (Lezione III, parte I) Rappresentazione delle informazioni: La codifica dei numeri

Rappresentazione dei numeri

- ➤ All'interno dei computer, a causa dei vincoli tecnologici, per rappresentare qualsiasi tipo di numero, si *utilizzano sempre un numero fisso di cifre binarie*.
- ➤ Su tutti i computer si utilizzano:

16 bit (2 byte)

32 bit (4 byte)

➤ In alcuni casi si può arrivare a **64 bit** (**8 byte**) o più a seconda del tipo di processore.

Rappresentazione dei numeri (cont.)

- > Tutti i numeri vengono distinti in tre categorie:
 - Interi senza segno (interi positivi).
 - Interi con segno (interi positivi e negativi).
 - Reali (numeri positivi e negativi con virgola).
- ➤ Ogni categoria viene rappresentata in modo differente.

Rappresentazione con numero fisso di cifre (1)

- ➤ Per comprendere il meccanismo alla base della rappresentazione con un numero fisso di cifre partiamo da un esempio:
 - Qual è il numero più grande rappresentabile con 4 cifre?

In base 10: **9999**

In base 2: $1111 = 15_{10}$

In base 16: **FFFF = 65535_{10}**

In base 8: $7777 = 4095_{10}$

Rappresentazione con numero fisso di cifre (2)

 \triangleright In generale si avrà, con n cifre:

In base 10: $9999 = 10^4 - 1$

In base 2: $1111 = 2^4 - 1$

In base 16: **FFFF** = $16^4 - 1$

In base 8: $7777 = 8^4 - 1$

Rappresentazione con numero fisso di cifre (3)

Quindi vale la seguente *regola* nel caso di numeri interi positivi:

Nella base di numerazione *b* disponendo di *n* cifre si possono rappresentare soltanto i numeri

da 0 a
$$b^n - 1$$

Rappresentazione dei numeri interi senza segno

- Per calcolare il valore massimo ammesso occorre applicare la regola $2^n 1$ (dove n vale 16 o 32)
 - Nella rappresentazione a 16 bit i possibili valori saranno compresi tra

 Nella rappresentazione a 32 bit i possibili valori saranno compresi tra

0 e 4.294.967.295

Numeri interi con segno (1)

- ➤ Per rappresentare i numeri con il loro segno (interi positivi e negativi) esistono due possibili modi. Il primo è il seguente:
 - Dati n bit, un bit si riserva al segno e gli altri n-1 sono destinati al numero
 - Ad esempio, considerando 8 bit e ponendo il primo bit a sinistra 0 per il + e 1 per il avremo:

$$0000\ 0101_2 = +\ 5_{10}$$
$$1000\ 0101_2 = -\ 5_{10}$$

Numeri interi con segno (2)

Questo tipo di rappresentazione prende il nome di:Rappresentazione in

modulo e segno

Anche se semplice, possiede però un grosso difetto: esistono due zeri.

Numeri interi con segno (3)

➤ Utilizzando *n* bit e riservandone uno al segno, l'applicazione della formula precedente porterà:

da
$$-(2^{n-1}-1)$$
 a $2^{n-1}-1$

(dove *n* vale al solito 16 o 32).

Numeri interi con segno (4)

➤ Seguendo il ragionamento precedente, i possibili valori nel caso di 16 bit saranno quindi compresi tra

➤ Nel caso dei 32 bit si avrà:

Numeri interi con segno (5)

- ➤ Il secondo modo per rappresentare i numeri con il loro segno (interi positivi e negativi) è quello del *complemento a due*:
 - Con n bit si possono rappresentare i numeri da

$$-2^{n-1}$$
 a $2^{n-1}-1$

• Dato un numero composto da *n* bit, la rappresentazione in complemento a due si ottiene invertendo gli 1 in 0 e gli 0 in 1, e poi sommando 1 al risultato ottenuto.

Numeri interi con segno (6)

- ➤ È presente un solo zero!
- > Tutti i numeri positivi cominciano con 0 mentre quelli negativi cominciano con 1.
- Complementando si passa dal valore positivo allo stesso valore negativo e viceversa (ad esclusione del -4).
 - Codificare –3 in complemento a due:
 - si considera +3 in binario,
 - si invertono le cifre : 100,
 - si somma 1, ottenendo 101;
 - e viceversa da 101 si ottiene 011.

L'overflow

- ➤ Per questioni tecnologiche tutti i computer, senza alcuna eccezione, trattano i numeri sempre con un numero fisso di cifre binarie (ad esempio 16, 32 o più).
- ➤ Quando l'elaboratore esegue un'operazione il cui risultato eccede il numero di cifre permesso, la computazione si arresta immediatamente e viene segnalato l'errore di **OVERFLOW.**

L'overflow (cont.)

Ad esempio se la rappresentazione è a 32 bit senza segno e si vuole eseguire la seguente operazione:

La computazione si arresta immediatamente.

Rappresentazione dei numeri con virgola

- ➤ I numeri con la virgola vengono rappresentati mediante la *notazione scientifica* o in virgola mobile.
- Anche i numeri interi possono sempre essere espressi come numeri con virgola attraverso la notazione scientifica.

Rappresentazione dei numeri con virgola (cont.)

Numero	Notazione Scientifica	Parte decimale (mantissa)	Exp
250	$0,25 \times 10^3$	25	3
-83,76	-0.8376×10^{2}	-8376	2
0,05	0,5x10 ⁻¹	5	-1
55.640.350	0,5564035x10 ⁸	5564035	8

Rappresentazione dei numeri con virgola (cont.)

Parte decimale (mantissa)	Exp
25	3
-8376	2
5	-1
5564035	8

Con la notazione scientifica ogni numero viene memorizzato solo come mantissa (parte decimale senza lo 0 e la virgola) e con l'esponente (senza la base): si risparmia spazio.

Rappresentazione dei numeri con virgola (cont.)

Fine

Elementi di Informatica (Lezione III, parte II) Rappresentazione delle informazioni: Codifica di dati multimediali

Ma il mondo non è tutto "scritto"!

- > I caratteri alfanumerici non costituiscono le uniche informazioni utilizzate dagli elaboratori.
 - Le applicazioni *multimediali* utilizzano ed elaborano informazioni contenenti:
 - immagini,
 - suoni,
 - filmati.

La codifica dei dati multimediali

L'informazione per gli umani ha un carattere analogico....

In termini tecnici si tratta di "SEGNALI"

- ➤ Un segnale analogico si può:
 - CAMPIONARE
 - Per un suono: misurare l'intensità ogni centesimo di secondo.
 - Per una immagine : misurare i colori ogni millimetro quadrato.
 - RAPPRESENTARE con un numero.

La codifica delle immagini (1)

- Esistono numerose tecniche che vengono utilizzate per la memorizzazione e l'elaborazione di un'immagine.
- ➤ Consideriamo un'immagine in bianco e nero, senza ombreggiature o livelli di chiaroscuro.

La codifica delle immagini (2)

L'immagine viene suddivisa mediante una griglia formata da righe orizzontali e verticali a distanza costante.

La codifica delle immagini (3)

- ➤ Ogni quadrato prende il nome di **pixel** (**picture element**) e viene codificato in binario secondo la seguente convenzione:
 - Il simbolo 0 viene utilizzato per la codifica di un pixel corrispondente ad un quadrato in cui il bianco è predominante.
 - Il simbolo 1 viene utilizzato per la codifica di un pixel corrispondente ad un quadratino in cui il nero è predominante.

La codifica delle immagini (4)

➤ Per convenzione la griglia dei pixel è ordinata dal basso verso l'alto e da sinistra verso destra.

0	1	0	0	0	0	0 28
0	1	1	0	0,19	0	0
0,	1,	1	1	1	0	0
0,	0,	0,	0,4	0,	06	0,

La figura sarà rappresentata dalla stringa binaria: 0000000 0111100 0110000 0100000

La codifica delle immagini (5)

- ➤ Dato che il contorno della figura non sempre coincide con la griglia si ottiene un'approssimazione della figura originaria.
 - Riconvertendo la stringa:
 - $-\ 0000000\ 0111100\ 0110000\ 0100000$

si avrà:

La codifica delle immagini (6)

➤ La rappresentazione sarà più fedele all'aumentare del numero di pixel.

➤ La *dimensione* dell'immagine è espressa come numero di pixel nel formato *righe* x *colonne*.

Gradazioni di grigio

- ➤ Per codificare immagini con diversi livelli di grigio si usa una rappresentazione binaria: ad ogni livello di grigio corrisponde una sequenza di bit.
 - Ad esempio, utilizzando quattro bit si possono rappresentare $2^4 = 16$ livelli di grigio, mentre con otto bit ne possiamo distinguere $2^8 = 256$.

Esempi di toni di grigio

1 bit 2 toni

2 bit 4 toni

8 bit 256 toni

L'uso del colore

- ➤ Il colore viene generato dalla composizione di tre *colori primari*: Red, Green, Blue (video RGB)
- Ad ogni colore primario si associa una possibile sfumatura o *gradazione* mediante un'opportuna sequenza di bit.
 - Utilizzando 2 bit per ogni colore primario si possono ottenere 4 gradazioni per ognuno di essi, cioè 64 colori.
 - Un pixel richiede quindi un byte circa (6 bit) in questa maniera.

L'uso del colore (cont.)

- ➤ Utilizzando 4 bit per ogni colore primario si ottengono 16 gradazioni per ognuno di essi, cioè 4096 colori differenti.
 - Un pixel richiede quindi circa due byte (12 bit) di informazione.
- Utilizzando 8 bit per ogni colore primario si ottengono 256 gradazioni per ognuno di essi, cioè 16,8 milioni di colori circa.
 - Un pixel richiede quindi tre byte di informazione.

Risoluzione

- ➤ Il numero di pixel per unità di area indica la *"risoluzione"* con cui si è campionata l'immagine.
- ➤ II numero di pixel presenti sul video (*colonne* x *righe*) prende il nome di risoluzione dello schermo.
 - Risoluzioni tipiche sono: 640x480 800x600 1024x768
 - La dimensione dell'immagine sarà:

	16 bit	32 bit
640x480	600 KB	~ 1,2 MB
800x600	~938 KB	~ 1,9 MB
1024x768	~ 1,6 MB	3MB

Formati delle immagini

- Codifica raster o bitmap.
 - Ogni punto rappresenta un'informazione indipendente.
 - GIF.
 - JPEG,
 - BMP.
- ➤ Codifiche *ibride* (raster/vettoriale).
 - Ogni elemento geometrico primitivo viene specificato individualmente.
 - Postscript,
 - PDF (Portable Document Format).

Codifica di filmati video

- ➤ Un filmato è una sequenza di immagini statiche (dette fotogrammi o *frames*).
 - Codifica normale (dei singoli frames).
 - 3 minuti di video con 24 frames/sec,
 - * minimo 16 frame/s per non percepire i singoli fotogrammi.
 - Risoluzione singolo frame : 200x100, 16 bit/pixel.
 - Memoria necessaria: (3*60*24) (200*100*2) ~ 165 MB.
 - Codifica differenziale.
 - È inefficiente codificare completamente ogni frame.
 - Alcuni frames si codificano interamente, altri solo nelle parti che differiscono da quelli adiacenti.

Formati video

- ➤ MPEG (Moving Picture Experts Group)
 - · Costituisce uno standard.
 - Molto efficiente ma complesso.
- ➤ QuickTime
 - Proposto da Apple.
 - Meno efficiente ma più semplice.
- ➤ Indeo AVI
 - Proposto da Intel, usato da MicroSoft.
 - È il più inefficiente.

Codifica di suoni

- ➤ Il segnale acustico viene digitalizzato.
 - Dimensioni medie:
 - un minuto di audio con qualità CD musicale stereo occupa da 1MB a 10MB a seconda della codifica impiegata.

➤ Codifiche standard:

- WAV (MS-Windows),
- MIDI
- MP3

Formati sonori

➤ MIDI:

- Codifica le note e gli strumenti che devono eseguirle.
- · Solo musica, non voce.
- Richiede un sintetizzatore o "campioni" per la riproduzione (non utilizzabile "direttamente").
- Molto efficiente.

➤ MP3:

- MPEG layer 3: variante MPEG per i suoni.
- · Grande diffusione.
- · Molto efficiente.

Ma quanto spazio ci vuole?

- ➤ I bit costano!
- > Trasmettere i bit costa!
- ➤ Gli uomini però hanno linguaggi "ridondanti"
 - Esempio : Dmn è mrcld e nn c sn lzn d prgrmmzn
 - È un messaggio poco chiaro ma decodificabile...
 E occupa meno caratteri (e meno bit) di "Domani è mercoledì e non ci sono lezioni di programmazione".
- ➤ IDEA: compressione!!!!

Fine