# **Project for EECE 5640**

# **Yaming Zhang**

HPC performance comparison and analysis between C, Python, Golang and Julia

### **Main tasks**

- 1. Implementing vector addition and matrix multiplication on all 4 languages
- 2. Compare the performance with multithreading
- 3. Using popular matrix multiplication package BLAS and GEMM function
- 4. Try to compare the GPU performance of multiplication(C && Python only)
- 5. All the benchmarks are done by 1,000,000 items vector, 10 threads and 512 \* 512 matrix

# **Main Results**

| Functions       | С     | Python    | Golang | Julia |
|-----------------|-------|-----------|--------|-------|
| Raw VecAdd      | 7.38  | 5460.58   | 6      | 170   |
| VecAdd Parallel | 2.98  | 3.27      | 1      | 482   |
| Raw Matmul      | 592.1 | 972034.18 | 412    | 22297 |
| BLAS            | 11.73 | 82.41     | 11     | 11    |
| CUDA            | 2.13  | 16.76     |        |       |

### **Main Results**



### **C VECTOR ADD**

| <pre>[zhang.yam@d1004 C]\$ ./main</pre> |
|-----------------------------------------|
| C VECTOR: 1.000000                      |
| C VECTOR: 7.378515 ms                   |
| C VECTOR PTHREADS: 1.000000             |
| C VECTOR PTHREADS: 3.808991 ms          |
| C VECTOR OMP: 1.000000                  |
| C VECTOR OMP: 2.978213 ms               |

| Brute Force | 7.378515 ms |
|-------------|-------------|
| Pthread     | 3.808991 ms |
| OpenMP      | 2.978213 ms |

### **C MATRIX MULTIPLICATION**

| C MATMUL: 4.44488e+07                       |
|---------------------------------------------|
| C MATMUL: 592.098306 ms                     |
| C MATMUL OMP: 4.44488e+07                   |
| C MATMUL OMP: 451.520895 ms                 |
| C MATMUL BLAS: 4.44488e+07                  |
| C MATMUL BLAS: 11.729042 ms                 |
| <pre>[zhang.yam@d1004 C]\$ ./maincuda</pre> |
| C MATMUL CUDA: 4.44488e+07                  |
| C MATMUL CUDA: 2.134546 ms                  |

| Brute Force    | 592.098306 ms |
|----------------|---------------|
| OpenMP + block | 451.520895 ms |
| BLAS.GEMM      | 11.729042 ms  |
| CUDA           | 2.134546 ms   |

#### PYTHON VECTOR ADD

PYTHON VECTOR: 1.0

PYTHON VECTOR: 5460.586515 ms

PYTHON VECTOR ADD THREADING: 1.0

PYTHON VECTOR ADD THREADING: 5697.480051 ms

PYTHON VECTOR PYTORCH: 1.0

PYTHON VECTOR PYTORCH: 3.268715 ms

| Brute Force    | 5460.586515 ms |
|----------------|----------------|
| MultiThreading | 5697.480051 ms |
| Torch          | 3.268715 ms    |

# Why is Python multithreading slower?

This limitation is actually enforced by GIL. The **Python Global Interpreter Lock** (GIL) prevents threads within the same process to be executed at the same time.

GIL, is a mutex that protects access to Python objects, preventing multiple threads from executing Python bytecodes at once — Python Wiki

The GIL is necessary because Python's interpreter is **not thread-safe**. This global lock is enforced every time we attempt to access Python objects within threads. At any given time, only one thread can acquire the lock for a specific object. Therefore, CPU-bound code will have no performance gain with Python multi-threading.

## Multiprocessing?

multiprocessing is a package that supports spawning processes using an API similar to the threading module.

When you use multiprocessing to open a second process, an *entirely new instance* of Python, with its own global state, is created. That global state is not shared, so changes made by child processes to global variables will be invisible to the parent process.

#### PYTHON MATRIX MULTIPLICATION

PYTHON MATMUL: 44448768.0

PYTHON MATMUL: 972034.182517 ms

PYTHON MATMUL TORCH: 44448768.0

PYTHON MATMUL TORCH: 82.407801 ms

Using CUDA Right Now...

PYTHON MATMUL CUDA: 44448768.0

PYTHON MATMUL CUDA: 16.757489 ms

| Brute Force | 972034.182517 ms |
|-------------|------------------|
| Torch       | 82.407801 ms     |
| CUDA        | 16.757489 ms     |

# Why does PyTorch or Numpy matmul so fast?

Docs > torch



#### **BLAS and LAPACK Operations**

addbmm

Performs a batch matrix-matrix product of matrices stored in batch1 and batch2, with a reduced add step (all matrix multiplications get accumulated along the first dimension).

addmm

Performs a matrix multiplication of the matrices mat1 and mat2.

# **GoLang: Goroutine vs Thread**

| Goroutine                                                                                           | Thread                                                                                            |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Goroutines are managed by the go runtime.                                                           | Operating system threads are managed by kernel.                                                   |
| Goroutine are not hardware dependent.                                                               | Threads are hardware dependent.                                                                   |
| Due to the presence of channel one goroutine can communicate with other goroutine with low latency. | Due to lack of easy communication medium inter-threads communicate takes place with high latency. |
| Goroutine does not have ID because go does not have Thread Local Storage.                           | Threads have their own unique ID because they have Thread Local Storage.                          |
| Goroutines are cheaper than threads.                                                                | The cost of threads are higher than goroutine.                                                    |

#### **GOLANG VECTOR ADD**

GOLANG VECTOR: 1.000000

GOLANG VECTOR: 6 ms

GOLANG VECTOR GOROUTINE: 1.000000

GOLANG VECTOR GOROUTINE: 1 ms

| Brute Force | 6 ms |
|-------------|------|
| Goroutine   | 1 ms |

### **GOLANG MATMUL**

GOLANG MATMUL: 44448768.000000

GOLANG MATMUL: 412 ms

GOLANG MATMUL GOROUTNE ROW: 44448768.000000

GOLANG MATMUL GOROUTNE ROW: 412 ms

GOLANG MATMUL GOROUTNE POINT: 44448768.000000

GOLANG MATMUL GOROUTNE POINT: 575 ms

| Brute Force     | 412 ms |
|-----------------|--------|
| Goroutine Row   | 412 ms |
| Goroutine Point | 575 ms |

### **GOLANG MATMUL**

GOLANG MATMUL: 44448768.000000

GOLANG MATMUL: 288 ms

GOLANG MATMUL GOROUTNE ROW: 44448768.000000

GOLANG MATMUL GOROUTNE ROW: 65 ms

GOLANG MATMUL GOROUTNE POINT: 44448768.000000

GOLANG MATMUL GOROUTNE POINT: 219 ms

GOLANG MATMUL BLAS: 44448768.000000

GOLANG MATMUL BLAS: 11 ms

| Brute Force     | 288 ms |
|-----------------|--------|
| Goroutine Row   | 65 ms  |
| Goroutine Point | 219 ms |
| BLAS            | 11 ms  |

### Take a glance at BLAS GEMM code in Golang

```
// dgemmParallel computes a parallel matrix multiplication by partitioning
// a and b into sub-blocks, and updating c with the multiplication of the sub-block
// In all cases,
//A = [A_11 A_12 ... A_1]
        A 21 A 22 ... A 2i
        A i1 A i2 ... A ii]
// and same for B. All of the submatrix sizes are blockSize ×blockSize except
// at the edges.
// In all cases, there is one dimension for each matrix along which
// C must be updated sequentially.
// Cij = \sum k Aik Bki, (A * B)
// Cij = \sum k Aki Bkj, (A<sup>T</sup> * B)
// Cij = \sum k Aik Bjk, (A * BT)
// \text{Cij} = \sum_{k} (A^T * B^T)
// This code computes one {i, i} block sequentially along the k dimension.
// and computes all of the {i, j} blocks concurrently. This
// partitioning allows Cij to be updated in-place without race-conditions.
// Instead of launching a goroutine for each possible concurrent computation,
// a number of worker goroutines are created and channels are used to pass
// available and completed cases.
```

# Take a glance at BLAS GEMM code in Golang

```
// wg is used to wait for all
var wg sync.WaitGroup
wg.Add(parBlocks)
defer wg.Wait()
for i := 0; i < m; i += blockSize {
    for j := 0; j < n; j += blockSize {</pre>
        workerLimit <- struct{}{}</pre>
        go func(i, j int) {
            defer func() {
                wg.Done()
                <-workerLimit
            }()
            leni := blockSize
            if i+leni > m {
                leni = m - i
            if j+lenj > n {
            cSub := sliceView64(c, ldc, i, j, leni, lenj)
```

### Take a glance at BLAS GEMM code in Golang

On a computer with a hierarchical memory the blocked form can be much more efficient than the point form if the blocks fit into the high speed memory, as much less data transfer is required.

So BLAS takes advantages of blocked algorithms and parallelism

#### JULIA VECTOR ADD

```
[zhang.yam@d1027 JULIA]$ JULIA_NUM_THREADS=2 julia main.jl
JULIA VECTOR: 1.0000003330100622
JULIA VECTOR threads: 1.0000003330100622
JULIA VECTOR threads: 245 milliseconds

[zhang.yam@d1027 JULIA]$ JULIA_NUM_THREADS=8 julia main.jl
JULIA VECTOR: 1.0000003330100622
JULIA VECTOR: 172 milliseconds
JULIA VECTOR threads: 1.0000003330100622
JULIA VECTOR threads: 482 milliseconds
```

[zhang.yam@d1027 JULIA]\$ JULIA NUM THREADS=16 julia main.jl

| # of threads | time   |
|--------------|--------|
| 2            | 245 ms |
| 8            | 482 ms |
| 16           | 534 ms |

JULIA VECTOR: 1.0000003330100622
JULIA VECTOR: 159 milliseconds
JULIA VECTOR threads: 1.0000003330100622
JULIA VECTOR threads: 534 milliseconds

### **JULIA Matmul**

JULIA MATMUL: 4.4448768e7

JULIA MATMUL: 22297 milliseconds

JULIA MATMUL LA: 4.4448768e7

JULIA MATMUL LA: 633 milliseconds

JULIA MATMUL BLAS: 4.4448768e7

JULIA MATMUL BLAS: 11 milliseconds

| Brute Force | 22297 ms |
|-------------|----------|
| LA pkg      | 633 ms   |
| BLAS        | 11 ms    |

### Other functions in JULIA

There are still many other functions in Julia that could help us explore more on High Performance Computing, like MPI.jl, CUDA.jl and so on.

### Conclusion

C and Golang bothe have extreme performance on high performance computing and normal running time. And Golang even runs faster than C thanks to the lightweight goroutines of Golang. That is maybe the reason why Golang has been so popular these years.

Python has the worst performance among all of the 4 languages. Even with CUDA and GPU, the running time of matrix multiplication is slower than CUDA in C. But thanks to Python's package Pytorch, we could use GPUs easily on the cluster and do difficult tensor processing of machine learning and deep learning.

The running time of using BLAS library is similar among C, Golang and Julia. That's mainly because the implementation of BLAS is similar among all the languages with blocked algorithms and parallelism to increase cache locality.

Julia's performance is not so impressive on basic vector addition and matrix multiplication but Julia does have a variety of packages that support HPC, like BLAS, LAPACK, MPI.jl, CUDA.jl and so on. There's more than we could imagine to explore more into Julia.

# **Thank You!**