SOUTENANCE DE MÉMOIRE DE MASTER OPTION: ALGÈBRE COMMUTATIVE ET CRYPTOGRAPHIE SPÉCIALITÉ: THÉORIE DES FILTRATIONS

KABLAM Edjabrou Ulrich Blanchard

Université NANGUI ABROGOUA UFR Sciences Fondamentales Appliquées

10 Juillet 2024

THÈME : DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES

Directeur de Mémoire : Mr. ASSAN Abdoulaye, M.C. Encadrant scientifique : Mr. BROU Kouadjo Pierre, M.A.

PLAN DE PRÉSENTATION

- INTRODUCTION
- DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATION BONNES
- CONCLUSION

INTRODUCTION

 $I_nI_m\subset I_{n+m}$.

FILTRATIONS

(i) $f = (I_n)_{n \in \mathbb{Z}} \in \mathbb{F}(A)$, décroissante pour l'inclusion et vérifiant $I_0 = A$ et

(ii) Une filtration $f=(I_n)_{n\in\mathbb{Z}}$ est dite I-bonne si pour tout $n\in\mathbb{N},\quad II_n\subseteq I_{n+1}$ et s'il existe k un entier tel que pour tout $n\geqslant k$, $II_n=I_{n+1}$.

INTRODUCTION

PROPRIÉTÉ DES FILTRATIONS I-ADIQUES

INTRODUCTION

ÉLÉMENT ENTIER ET RÉDUCTION

- (i) Un élément x de A est dit entier sur f s'il existe un entier $m \in \mathbb{N}$ tel que : $x^m + a_1 x^{m-1} + \cdots + a_m = x^m + \sum_{i=1}^m a_i x^{m-i} = 0$, $m \in \mathbb{N}^*$ où $a_i \in I_i$, $\forall i = 1, \dots, m$.
- (ii) f est une β -réduction de g si :
 - a) $f \leq g$
 - b) $\exists k \geq 1 \text{ tel que } J_{n+k} = I_n J_k, \forall n \geq k.$

INTRODUCTION FRONDES

Soient $\varphi = (M_n)_{n \in \mathbb{Z}} \in \mathbb{F}(M)$, f - compatible, avec $f \in \mathbb{F}(A)$. φ est f - bonne s'il existe un entier naturel $N \geqslant 1$ tel que :

$$\forall n > N, M_n = \sum_{p=1}^{N} I_{n-p} M_p$$

INTRODUCTION PROBLÉMATIQUE ET ANNONCE DU PLAN

- (i) Comment étendre les résultats des filtrations l-adiques aux filtrations bonnes ?
- (ii) Comment la dépendance intégrale et la réduction interagissent-elles avec les filtrations bonnes ?

- INTRODUCTION
- DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

ÉNONCE

Théorème Principal (1/11)

Soient $f=(I_n)_{n\in\mathbb{N}}\leq g=(J_n)_{n\in\mathbb{N}}$ des filtrations sur l'anneau A. Nous considérons les assertions suivantes :

- (i) f est une réduction de g.
- (ii) $J_n^2 = I_n J_n$ pour tout n assez grand.
- (iii) I_n est une réduction de J_n pour tout n assez grand.
- (iv) Il existe un entier $s \ge 1$ tel que pour tout $n \ge s$, $J_{s+n} = J_s J_n$, $I_{s+n} = I_s I_n$, $J_s^2 = I_s J_s$, $J_{s+p} I_s = I_{s+p} J_s$ pour tout p = 1, 2, ..., s-1
- (v) Il existe un entier $k \ge 1$ tel que $g^{(k)}$ est I_k bonne

ÉNONCE

Théorème Principal (2/11)

- (vi) Il existe un entier $r \ge 1$ tel que $f^{(r)}$ est une réduction de $g^{(r)}$.
- (vii) Pour tout entier $m \ge 1$ tel que $f^{(m)}$ est une réduction de $g^{(m)}$.
- (viii) g est entière sur f.
 - (ix) g est fortement entière sur f.
 - (x) g est f fine.

ÉNONCE

Théorème Principal (3/11)

- (xi) g est f bonne.
- (xii) g est faiblement f bonne.
- (xiii) Il existe un entier $N \ge 1$ tel que $t_N g \le f \le g$
- (xiv) Il existe un entier $N \ge 1$ tel que $t_N g' \le t_N f'$ où f' est la clôture intégrale de f.
- (xv) P(f) = P(g), où P(f) est la clôture prüférienne de f.

Théorème Principal (4/11)

On a les résultats suivants :

(1)

RÉSULTATS

- (a) f est une réduction de g si et seulement si pour tout entier $m \ge 1$ tel que $f^{(m)}$ est une réduction de $g^{(m)}$.
- (b) Il existe un entier $k \ge 1$ tel que $g^{(k)}$ est I_k bonne si et seulement s'il existe un entier $r \ge 1$ tel que $f^{(r)}$ est une réduction de $g^{(r)}$.
- (c) g est entière sur f si et seulement si P(f) = P(g)

RÉSULTATS

Théorème Principal (5/11)

On a les résultats suivants :

(1)

- (d) Si $J_n^2 = I_n J_n$ pour tout n assez grand alors I_n est une réduction de J_n pour tout n assez grand.
- (e) S'il existe un entier $s \ge 1$ tel que pour tout $n \ge s$, $J_{s+n} = J_s J_n$, $I_{s+n} = I_s I_n$, $J_s^2 = I_s J_s$, $J_{s+p} I_s = I_{s+p} J_s$ pour tout p = 1, 2, ..., s-1 alors f est une réduction de g.
- (f) Si f est une réduction de g alors il existe un entier $k \ge 1$ tel que $g^{(k)}$ est $I_k bonne$

RÉSULTATS

Théorème Principal (6/11)

On a les résultats suivants :

- (1)
- (g) Si g est fortement entière sur f alors :
 - Pour tout entier $m \ge 1$ tel que $f^{(m)}$ est une réduction de $g^{(m)}$.
 - g est faiblement f bonne.
 - Il existe un entier $N \ge 1$ tel que $t_N g \le f \le g$

Théorème Principal (7/11)

On a les résultats suivants :

(1)

RÉSULTATS

- (h) f est une réduction de $g \implies g$ est f fine $\implies g$ est f f bonne
- (i) g est f $bonne \implies g$ est faiblement f $bonne \implies$ II existe un entier $N \ge 1$ tel que $t_N g \le f \le g$

RÉSULTATS

Théorème Principal (8/11)

On a les résultats suivants :

- (2) Si de plus on suppose A noethérien, alors :
 - (j) Il existe un entier $s \ge 1$ tel que pour tout $n \ge s$, $J_{s+n} = J_s J_n$, si et seulement s'il existe un entier $N \ge 1$ tel que $t_N g' \le t_N f'$ où f' est la clôture intégrale de f.
- (k) f est une réduction de g si $J_n^2 = I_n J_n$ pour tout n assez grand.
- (I) f est une réduction de $g \implies g$ est fortement entière sur $f \iff g$ est faiblement f bonne.

Théorème Principal (9/11)

On a les résultats suivants :

RÉSULTATS

- (3) Par ailleurs, si f est noethérienne, alors A est noethérien et les assertions suivantes sont équivalentes :
- (m) I_n est une réduction de J_n pour tout n assez grand \iff g est f fine \iff g est f – bonne \iff g est faiblement f – bonne \iff II existe un entier $N \ge 1$ tel que $t_N g \le f \le g$

Théorème Principal (10/11)

On a les résultats suivants :

RÉSULTATS

- (4) Si f et g sont noethériennes alors nous avons :
- (n) I_n est une réduction de J_n pour tout n assez grand $\implies g$ est entière sur $f \iff g$ est fortement entière sur f
- (o) Il existe un entier $r \ge 1$ tel que $f^{(r)}$ est une réduction de $g^{(r)} \implies g$ est fortement entière sur f

Théorème Principal (11/11)

On a les résultats suivants :

RÉSULTATS

(5) Si f est fortement noethérienne et g est noethérienne alors les quinze

(15) assertions sont équivalentes et dans ce cas g est fortement noethérienne.

Démonstration

RÉSULTATS

1) (i) \iff (vii). Supposons f est une réduction de g et choisissons un entier k, $k\geqslant 1$ tel que $J_{k+n}=J_kI_n$ pour tout $n\geqslant k$. Pour un tel entier k et pour tout $m\geqslant 1$, $J_{mk}=J_k^pJ_{(m-p)k}$ pour tout $p=1,2,\cdots,m$ alors pour tout entiers $m\ge 1$ et $n\ge k$, $J_{m(k+n)}=J_{mk}I_{mn}$, ce qui entraı̂ne que pour tout entier $m\ge 1$ tel que $f^{(m)}$ est une réduction de $g^{(m)}$. La réciproque est évidente.

Démonstration

RÉSULTATS

 $(v)\Longrightarrow (vi)$. Supposons qu'il existe un entier $k\ge 1$ tel que $g^{(k)}$ est I_k — bonne. Posons $f^{(k)}=(H_n)$; $g^{(k)}=(K_n)$; $H_n=I_{nk}$; $K_n=J_{nk}$; $H_1=I_k$; Par hypothèse, $H_1K_n\subseteq K_{n+1}$ pour tout entier n et il existe un entier $n_0\ge 1$ tel que $H_1K_n=K_{n+1}$ pour tout $n\ge n_0$. Pour tout entier $m\ge 0$, $K_{n_0+m}=H_1^mK_{n_0}\subseteq H_mK_{n_0}\subseteq K_{n_0+m}$. Donc $K_{n_0+m}=K_{n_0}H_m$ pour tout entier m. Donc $f^{(k)}$ est une réduction de $g^{(k)}$.

RÉSULTATS

Démonstration

 $(vi) \Longrightarrow (v).$

Supposons qu'il existe un entier $r \ge 1$ tel que $f^{(r)}$ est une réduction de $g^{(r)}$. Il suffit de montrer que si f est une réduction de g alors il existe $k \ge 1$ tel que $g^{(k)}$ est $I_k - bonne$.

Posons un entier k, $k \geqslant 1$ tel que $J_{k+n} = J_k I_n$ pour tout $n \geqslant k$. Pour un tel entier k et pour tout $m \geqslant 1$, $J_{mk} = J_k^p J_{(m-p)k}$ pour tout $p = 1, 2, \dots, m$, alors pour tout entiers $m \ge 1$ et $J_{k(m+1)} = J_{mk} I_k$, donc $g^{(k)}$ est $I_k - bonne$.

RÉSULTATS

Démonstration

 $(viii) \iff (xv).$

Si g est entière sur f alors $f \leq g \leq P(f)$, ainsi

$$P(f) \le P(g) \le P(P(f)) = P(f)$$
, donc $P(g) = P(f)$.

Réciproquement si P(f) = P(g) alors $g \le P(g) = P(f)$ et donc g est entière sur f.

 $(ii) \Longrightarrow (iii)$. Évident.

RÉSULTATS

Démonstration

$$(iv) \Longrightarrow (i).$$

Supposons qu'il existe un entier $s \ge 1$ tel que pour tout $n \ge s$, $J_{s+n} = J_s J_n$, $J_{s+n} = I_s J_n$, $J_s^2 = I_s J_s$, $J_{s+n} I_s = I_{s+n} J_s$ pour tout

$$p = 1, 2, ..., s - 1.$$

Posons $n \ge 2s$ et n = qs + p avec $0 \le p < s$.

Alors
$$J_{s+n} = J_{(q-2)s+2s+(s+p)} = J_s^{q-2} J_{2s+(s+p)} = J_s^{q-2} J_s^2 J_{s+p} =$$

Alors
$$J_{s+n} = J_{(q-2)s+2s+(s+p)} = J_s$$
 $J_{2s+(s+p)} = J_s$ $J_{s}J_{s+p} = J_{s}J_{s+p} =$

$$J_s^{s-1}I_sJ_{s+p}=J_s^{s-1}J_sI_{s+p}=J_s^{s-1}I_{s+p}=J_sI_s^{s-1}I_{s+p}\subseteq J_sI_n\subseteq J_{s+n}.$$

Par suite $J_{s+n}=J_sI_n$ pour tout $n\geq 2s$. Donc $J_{2s+n}=J_{2s}I_n$ pour tout

Par suite $J_{s+n} = J_s I_n$ pour tout $n \ge 2s$. Donc $J_{2s+n} = J_{2s} I_n$ pour tout $n \ge 2s$. D'où f est une réduction de g.

RÉSULTATS

Démonstration

$$(i) \Longrightarrow (v)$$

Évident car $(vi) \Longrightarrow (v)$.

$$(ix) \Longrightarrow (viii)$$

Évident

$$(ix) \Longrightarrow (xii) \Longrightarrow (xiii)$$
 en utilisant la proposition 3.6 (5)

RÉSULTATS

Démonstration

$$(i) \Longrightarrow (x).$$

Supposons que f est une réduction de g.

Pour tout entier n > N = 2k - 1, posons n = qk + r, avec 0 < r < k où k est $k \ge 1$ tel que $J_{k+n} = J_k I_n$ pour tout $n \ge k$. Pour un tel entier k et pour tout $m \ge 1$, $J_{mk} = J_k^p J_{(m-p)k}$ pour tout $p = 1, 2, \dots, m$ Alors $J_n = J_{k(q-1)}I_{k+r}$.

Alors
$$J_n = J_{k(q-1)}I_{k+r}$$
.

Ainsi
$$1 \le k+r < 2k-1$$
, $J_n \subseteq \sum_{p=1}^N I_p J_{n-p} \subseteq J_n$, d'où $J_n = \sum_{p=1}^N I_p J_{n-p}$ pour

tout
$$n \ge N = 2k - 1$$
.

Ce qui prouve que g est f – fine.

$$(x) \Longrightarrow (xi)$$
 car toute filtration f-bonne est f-fine

$$(xi) \Longrightarrow (xii)$$
 en utilisant la proposition 3.6 (1)

- INTRODUCTION
- ② DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

CONCLUSION BILAN ET PERSPECTIVES

- 1 Propriétés des f₁ et réduction minimale des filtrations bonnes
- 2 Étendre ces résultats aux autres classes de filtration.

MERCI POUR VOTRE AIMABLE ATTENTION

