Particle spectrograph

Wave operator and propagator

	${\mathcal R}_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\mathscr{R}_0^{\sharp 1}$
${\cal A}_{0}^{\#1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i\sqrt{2}kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\mathcal{A}_{0}^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$

	$\mathcal{A}_{2}^{\#1}_{\alpha\beta}$	$f_{2}^{\#1}_{\alpha\beta}$	$\mathcal{A}_{2}^{\#1}{}_{\alpha\beta\chi}$	
$\mathcal{A}_{2}^{\sharp 1} \dagger^{lpha eta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0	
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\mathcal{A}_{2}^{\sharp 1}\! +^{lphaeta\chi}$	0	0	<u>t</u> 1 2	

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} =$	$= 0 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \tau^{\beta \chi} = \partial_{\chi} \partial^{\chi} \partial_{\beta} \tau^{\alpha \beta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi}$	3
$\tau_1^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} =$	$= 0 \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta}$ - 2 $ik \sigma_{2+}^{\#1\alpha\beta}$	$==0 -i (4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \delta = 0$	
Total constraints/	gauge generators:	16

	0	0		<u>1</u> 2	S ==
					$\iiint (\frac{1}{6} \left(2 \left(t_1 - 2 t_3\right) \mathcal{A}^{\alpha \prime}_{ \alpha} \mathcal{A}^{ \theta}_{\prime \theta} + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 4 t_1 \mathcal{A}^{ \theta}_{ \theta} \partial_{\prime} f^{\alpha \prime} +$
					$8t_3 \mathcal{A}_{\alpha \theta}^{\theta} \partial_{i} f^{\alpha i} + 4t_1 \mathcal{A}_{i \theta}^{\theta} \partial^{i} f^{\alpha}_{\alpha} - 8t_3 \mathcal{A}_{i \theta}^{\theta} \partial^{i} f^{\alpha}_{\alpha} -$
					$2t_1\partial_{\scriptscriptstyle I} f^\theta_{\theta}\partial^{\prime} f^\alpha_{\alpha} + 4t_3\partial_{\scriptscriptstyle I} f^\theta_{\theta}\partial^{\prime} f^\alpha_{\alpha} - 2t_1\partial_{\scriptscriptstyle I} f^{\alpha_I}\partial_{\theta} f_\alpha^{\theta} +$
					$4t_3\partial_{i}f^{\alpha i}\partial_{\theta}f_{\alpha}^{\ \theta}+4t_1\partial^{i}f^{\alpha}_{\ \alpha}\partial_{\theta}f_{i}^{\ \theta}-8t_3\partial^{i}f^{\alpha}_{\ \alpha}\partial_{\theta}f_{i}^{\ \theta}-$
				1	$6t_1\partial_{\alpha}f_{i\theta}\partial^{\theta}f^{\alpha i}-3t_1\partial_{\alpha}f_{\theta i}\partial^{\theta}f^{\alpha i}+3t_1\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha i}+$
,	0	0	$\frac{1}{k^2 r_2 - t_1}$		$3t_1 \partial_{\theta} f_{\alpha_l} \partial^{\theta} f^{\alpha_l} + 3t_1 \partial_{\theta} f_{l\alpha} \partial^{\theta} f^{\alpha_l} +$
	0	0	0		$6t_1 \mathcal{A}_{\alpha\theta_I} (\mathcal{A}^{\alpha_I\theta} + 2\partial^{\theta} f^{\alpha_I}) + 8r_2 \partial_{\beta} \mathcal{A}_{\alpha_I\theta} \partial^{\theta} \mathcal{A}^{\alpha\beta_I} -$
⁴ 3	I m				$4 r_2 \partial_{\beta} \mathcal{A}_{\alpha\theta_i} \partial^{\theta} \mathcal{A}^{\alpha\beta_i} + 4 r_2 \partial_{\beta} \mathcal{A}_{i\theta\alpha} \partial^{\theta} \mathcal{A}^{\alpha\beta_i} -$
2 k²)² i	$\frac{2k^2}{2k^2)^2t}$	0	0		$2 r_2 \partial_{i} \mathcal{A}_{\alpha\beta\theta} \partial^{\theta} \mathcal{A}^{\alpha\beta i} + 2 r_2 \partial_{\theta} \mathcal{A}_{\alpha\beta i} \partial^{\theta} \mathcal{A}^{\alpha\beta i} -$
(1+	(1+2				$4 r_2 \partial_{\theta} \mathcal{A}_{\alpha_{I}\beta} \partial^{\theta} \mathcal{A}^{\alpha\beta_{I}} + 6 r_5 \partial_{\iota} \mathcal{A}_{\theta \kappa}^{\kappa} \partial^{\theta} \mathcal{A}_{\alpha}^{\alpha_{I}} -$
) ⁻ t3) ² t ₃				$6r_5\partial_{\theta}\mathcal{A}_{l\kappa}^{\kappa}\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha_l}-6r_5\partial_{\alpha}\mathcal{A}_{\alpha}^{\alpha_l\theta}\partial_{\kappa}\mathcal{A}_{l\theta}^{\kappa}+$
1+2 <i>k</i> -	$i\sqrt{2}k$ $1+2k^2)^2$	0	0		$12 r_5 \partial^{\theta} \mathcal{A}^{\alpha_{l}}{}_{\alpha} \partial_{\kappa} \mathcal{A}_{,\theta}^{\kappa} + 6 r_5 \partial_{\alpha} \mathcal{A}^{\alpha_{l}\theta} \partial_{\kappa} \mathcal{A}_{\theta}^{\kappa}, -$
<u> </u>	+-	+2+	-1-		$12 r_5 \partial^{\theta} \mathcal{A}^{\alpha_l}_{\alpha} \partial_{\kappa} \mathcal{A}_{\theta_l}^{\kappa}))[t, x, y, z] dz dy dx dt$
)	1	1	$\sigma_0^{\#1}$		

Quadratic (free) action

	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1^{-}lpha}^{\sharp1}$	$\sigma_{1}^{\#2}{}_{lpha}$	$ au_1^{\#1}{}_{lpha}$	τ ₁ -2 _α
$\sigma_{1}^{\#1} \dagger^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(1+k^2)^2 t_1^2}$	$-\frac{i\left(2k^{3}r_{5}\!-\!kt_{1}\right)}{(1\!+\!k^{2})^{2}t_{1}^{2}}$	0	0	0	0
$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i\sqrt{2} k}{t_1 + k^2 t_1}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5 + k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{2ik(t_1\!-\!2t_3)}{(1\!+\!2k^2)(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$
$\sigma_{1}^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{(1 + 2k^2)(3t_1t_3 + 2k^2r_5(t_1 + t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$ au_1^{\#1} \dagger^{lpha}$	0	0	0	0	0	0	0
$\tau_{1}^{#2} + \alpha$	0	0	0	$\frac{2 i k (t_1 - 2 t_3)}{(1 + 2 k^2) (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2k^2(6k^2r_5\!+\!t_1\!+\!4t_3)}{(1\!+\!2k^2)^2(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$

	$\mathcal{A}_{1}^{*\pm}\alphaeta$	$\mathcal{A}_{1}^{*2} + \alpha \beta f_{1}^{*1} + \alpha \beta$	$f_{1}^{\#_{1}}\alpha\beta$	$\mathcal{A}_{1^{-}}^{\#_{1}}$	${\cal A}_{1^-}^{\#^2}$	$f_{1^-}^{\#_1} \alpha$	$f_{1^-}^{\# 2}$
$-\alpha\beta$	$\mathcal{A}_{1}^{\#1} +^{\alpha\beta} k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\mathcal{A}_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$+^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\mathcal{A}_1^{\sharp_1} +^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$
$\mathcal{A}_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} +^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} +^{\alpha}$	0	0	0	$-rac{1}{3}$ # k (t_1 - 2 t_3)	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3) \hspace{0.2cm} 0$	0	$\frac{2}{3} k^2 (t_1 + t_3)$

Massive and massless spectra

Massive particle					
Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$				
Polarisations:	3				
Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$				
Spin:	1				
Parity:	Odd				

Massive partic	(No	
Pole residue:) mas	
Polarisations:	ssle	
Square mass:	ss pa	
Spin:	0	rticles
Parity:	Odd	les)

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0 \&\& 0 < t_3 < -t_1$