

Escola de Engenharia de São Carlos Universidade de São Paulo

1. Microeconomia

1.2 Teoria da firma e da oferta

Função de produção Curvas isoquantas Taxa marginal de substituição técnica Custos Maximização de lucro

Prof. Dr. José Eduardo Holler Branco

TEORIA DA FIRMA

Conceitos e premissas básicas:

- Processo produtivo é definido como a combinação e transformação de insumos produtivos em produtos;
- São exemplos de insumos produtivos: trabalho (L), matéria-prima (M) e capital (K);
- Funções de produção retornam o maior nível de produção que uma firma pode atingir para cada possível combinação de insumos, dado o estado da tecnologia;
- Para qualquer nível de K, o produto aumenta quando L aumenta, e vice-versa.

TEORIA DA FIRMA

Função de produção com dois insumos:

$$Q = f(L, K)$$

Onde:

Q é a quantidade produzida;

L representa a quantidade de mão de obra usada na produção;

K representa a quantidade de capital usado na produção.

TEORIA DA FIRMA

Função de Produção e Curvas de Nível (CN) Projeção das CN no plano cartesiano

CURVAS ISOQUANTAS

CURVAS ISOQUANTAS

Curto prazo:

As quantidades de um ou mais insumos não podem ser modificadas (insumos fixos). Exemplo: capital.

Longo prazo:

▶ Todos os insumos são variáveis.

PRODUÇÃO

Produção com um insumo variável

Quantidade		Produto			
Capital (K)	Trabalho (L)	Total (Q)	Médio (Q/L)	Marginal ($\Delta Q/\Delta L$)	
10	0	0			
10	I	10	10	10	
10	2	30	15	20	
10	3	60	20	30	
10	4	80	20	20	
10	5	95	19	15	
10	6	108	18	13	
10	7	112	16	4	
10	8	112	14	0	
10	9	108	12	-4	
10	10	100	10	-8	

Fonte: PINDYCK (2007)

PRODUÇÃO

> Função de produção

PRODUÇÃO

Produto Marginal (PM_g) Produto Médio (PM_e)

- Observações:
 - $PM_g = 0 \Rightarrow PT$ é máxima
 - $PM_g > PM_e \Rightarrow PM_e$ é crescente
 - $PM_g < PM_e \Rightarrow PM_e \acute{e} decrescente$
 - $PM_g = PM_e \Rightarrow PM_e \ \acute{e} \ m\acute{a}ximo$
- Lei dos rendimentos marginais decrescentes:
 - Explica o declínio do PM_g a medida que o uso de um insumo cresce e os demais permanecem constantes.

CURVAS ISOQUANTAS

Taxa Marginal de Substituição Técnica (TMST)

Em longo prazo considera-se que tanto o trabalho como o capital podem variar.

A quantidade que é possível substituir de um fator de produção por outro mantendo o mesmo nível de produção é dada pela Taxa Marginal de Substituição Técnica:

$$TMST = -\frac{\Delta K}{\Delta L}$$

Trabalho (L)
(por ano)

CURVAS ISOQUANTAS

- A variação na produção total resultante de uma variação na quantidade de trabalho é dada por $\Delta L.PM_{gL}$
- A variação na produção total resultante de uma variação na quantidade de capital, em longo prazo, é dada por $\Delta K.PM_{gk}$

Considerando que esses insumos são substitutos e que as firmar possuem restrição orçamentária, então, ao longo de uma isoquanta observa-se a seguinte relação:

$$\Delta L.PM_{gL} + \Delta K.PM_{gk} = 0 \rightarrow TMST = -\frac{\Delta K}{\Delta L} = \frac{PM_{gL}}{PM_{gk}}$$

CURVAS DE INDIFERENÇA

CURVAS ISOQUANTAS

Rendimentos de escala

Crescentes: isoquantas situam-se cada vez mais próximas

Decrescentes: isoquantas situam-se cada vez mais distantes

Fonte: PINDYCK (2007)

FUNÇÃO DE PRODUÇÃO

Definições:

- Custos fixos (CF): são custos que não variam em função do nível de produção;
- Custos variáveis (CV): variam de acordo com a variação da produção;
- Custo total (CT): custo econômico total (custos fixos mais custos variáveis);
- Custo de oportunidade: custo de renunciar uma opção de negócio para investir em outra atividade;
- Custo contábil: inclui as despesas correntes mais as despesas de depreciação, não considera o custo de oportunidade;
- Custo irreversível: despesas que não podem ser convertidas em caixa novamente.

Definições:

Custo de uso do capital: depreciação mais o custo de oportunidade, pode ser calculado por:

$$C_{cap} = (VA - VR).FRC + VR.i\%$$

Onde:

VA: Valor de aquisição do ativo produtivo

VR: Valor residual do ativo produtivo

i%: Taxa de juros que representa o custo de oportunidade

FRC: Fator de remuneração do capital

$$FRC = \frac{(1+i\%)^n \cdot i\%}{(1+i\%)^{n-1}}$$
 (n é o número de parcelas ou períodos)

Custo econômico: considera o custo de uso do capital.

Exemplo:

Nível de Produção	Custo Fixo	Custo Variável	Custo Total	Custo Marginal	Custo Total Médio
Q	CF	CV	CT = CF + CV	$CM_g = \frac{\Delta CT}{\Delta Q}$	$CM_e = \frac{CT}{Q}$
0	50	0	50		
1	50	50	100	50	100,0
2	50	78	128	28	64,0
3	50	98	148	20	49,3
4	50	112	162	14	40,5
5	50	130	180	18	36,0
6	50	150	200	20	33,3
7	50	175	225	25	32,1
8	50	204	254	29	31,8
9	50	242	292	38	32,4
10	50	300	350	58	35,0
- 11	50	385	435	85	39,5

Curva de custo de produção total

$$C = w.L + r.k$$

Onde:

C: Custo

w: custo unitário do trabalho

L: quantidade de trabalho

r: custo unitário do capital

K: quantidade de capital

 Q_1 é uma isoquanta que representa a máxima produção que pode ser obtida considerando a restrição de custo C_1 , alcançada a partir da combinação de fatores de produção A (K_1 , L_1). Potanto, o ponto A corresponde ao ponto de mínimo custo

médio:
$$\mathit{CM}_e = \frac{C_1}{Q_1}$$

Verifica-se que as condições relacionadas abaixo resulta no mínimo custo:

$$TMST = -\frac{\Delta K}{\Delta L} = \frac{w}{r} = \frac{PM_{gL}}{PM_{gK}}$$

$$\frac{PM_{gK}}{r} = \frac{PM_{gL}}{w}$$

Do ponto de vista econômico, a leitura dessa relação diz que o mínimo custo é alcançado quando cada valor gasto com insumo adicionado à produção gera uma quantidade equivalente de produto.

Caminho de expansão da firma:

Em curto prazo, a expansão da firma se dá com a variação apenas do trabalho, já que o capital permanece constante.

Não resulta no menor custo de produção.

Em longo prazo, a expansão da firma se dá ao longo das combinações de trabalho e capital que apresentam menor custo de produção.

 Custos a longo prazo com economias e deseconomias de escala

$$ESC = \frac{C(Q_1) + C(Q_2) - C(Q_1, Q_2)}{C(Q_1, Q_2)}$$

Onde:

 $C(Q_i)$: Custo para se produzir Q_i

 $C(Q_i, Q_i)$: Custo para se produzir os dois produtos conjuntamente

Se $ESC > 0 \rightarrow$ economia de escopo

Se $ESC < 0 \rightarrow$ deseconomia de escopo

Decisões de produção com mais de um insumo variável:

$$MAX Q(I_1 + I_2 + \cdots + I_n)$$

 I_i : insumos de produção

Sujeito a:

$$C_j = I_1 \cdot p_1 + I_2 \cdot p_2 + \dots + I_n \cdot p_n$$

 p_i : preços dos insumos I_i

Aplicando método dos Multiplicadores de Lagrange:

$$L = Q(I_1 + I_2 + \dots + I_n) - \lambda(I_1 \cdot p_1 + I_2 \cdot p_2 + \dots + I_n \cdot p_n - C_i)$$

Condições de primeira ordem:

$$\nabla L = 0$$

$$\frac{\partial L}{\partial I_1} = 0 \Rightarrow \frac{\partial Q}{\partial I_1} - \lambda \cdot p_i = 0$$

$$C_j = I_1 \cdot p_1 + I_2 \cdot p_2 + \dots + I_n \cdot p_n$$