$Gal(\overline{E}/E)$ as a geometric fundamental group

Arun Soor

Abstract

These are notes for a learning seminar talk on diamonds. These notes basically lifted from other places. The main references are [Wei17] and [SW20]. All typos are my own!

1 Plan

Let $\mathbf{Q}_p \subseteq E \subseteq \mathbf{C}_p$ be complete field extensions with E/\mathbf{Q}_p finite. Let $\pi \in o_E$ be a uniformizer, let $\mathbf{F}_q/\mathbf{F}_p$ be the residue field of E.

- Using Lubin-Tate theory we will construct the perfectoid open unit disk $\widetilde{\mathbf{D}}_{\mathbf{C}_p}$ over \mathbf{C}_p which is an E-vector space object in perfectoid spaces. Then $\widetilde{\mathbf{D}}_{\mathbf{C}_p}^* := \widetilde{\mathbf{D}}_{\mathbf{C}_p} \setminus \{0\}$ carries an action of E^{\times}
- We will prove that the diamond $Z := \widetilde{\mathbf{D}}_{\mathbf{C}_p}^{*,\diamond}/E^{\times}$ has $\pi_1^{\text{\'et}}(Z) \cong \operatorname{Gal}(\overline{E}/E) =: G_E$. Therefore G_E is a geometric fundamental group. Here the adjective geometric refers to the fact that $\widetilde{\mathbf{D}}_{\mathbf{C}_p}^*$ is defined over an algebraically closed field.

The proof roughly goes as follows.

- In addition to the obvious structural morphism to $\operatorname{Spa}(\mathbf{C}_p^{\flat}, o_{\mathbf{C}_p^{\flat}})$ the space $(\widetilde{\mathbf{D}}_{\mathbf{C}_p}^{\star})^{\flat}$ also lives over the perfectoid field $E_{\infty}^{\flat} = \mathbf{F}_q((X^{1/q^{\infty}}))$.
- One notices that the "unquotiented" adic Fargues–Fontaine curve is an untilt of $(\widetilde{\mathbf{D}}_{\mathbf{C}_n}^*)^{\flat}$ over E_{∞}^{\flat} :

$$(\widetilde{\mathbf{D}}_{\mathbf{C}_p}^*)^{\flat} \cong (Y_E \widehat{\otimes} E_{\infty})^{\flat}. \tag{1}$$

This is o_E^{\times} -equivariant (o_E^{\times} acts on E_{∞} by the Lubin–Tate character). The action of π on the right corresponds to $\varphi^{-1}\otimes 1$ on the left up to absolute Frobenius. This shows that

$$\widetilde{\mathbf{D}}_{\mathbf{C}_p}^{*,\diamond}/E^{\times} = (X_E)^{\diamond} \tag{2}$$

where $X_E = Y_E/\varphi^{\mathbf{Z}}$ is the Fargues-Fontaine curve.

• Therefore it suffices to classify finite étale covers of X_E . For this we will use the classification of vector bundles on the Fargues–Fontaine curve X_E together with the correspondence

 $\{\text{f\'et covers } f: X' \to X\} \leftrightarrow \{\text{fin. loc. free } \mathcal{O}_X\text{-algebras w. perfect trace pairing}\}.$

sending $[f: X' \to X] \mapsto f_*\mathcal{O}_{X'}$ and inverse given by the relative spectrum. In other words we want to show that when $X = X_E$, every object on the right-hand has trivial underlying vector bundle.

As a corollary of the "Main Theorem" there is a correspondence

{connected fét deg
$$n$$
 covers of $\widetilde{\mathbf{D}}_{\mathbf{C}_p}^{*,\diamond}/E^{\times}$ } \leftrightarrow {deg n field extensions E'/E }. (3)

Time permitting, I'll try to describe the cover on the left corresponding to an E'/E on the right.

2 Perfectoid spaces arising as adic generic fibers.

Lemma 2.1. Let K be a nonarchimedean field with pseudo-uniformizer ϖ , let R be a flat o_K -algebra which is adic and complete for a f.g. ideal $I \ni \varpi$. Say $I = (f_1, \ldots, f_r, \varpi)$. Set

$$S_n := R\langle f_1^n/\varpi, \dots, f_r^n/\varpi \rangle, \quad R_n := S_n[1/\varpi], \quad R_n^+ := int. \ clos.(S_n \subseteq R_n).$$
 (4)

Then $\operatorname{Spa}(R,R)_{\eta} = \underline{\lim} \operatorname{Spa}(R_n, R_n^+).$

Proof. We will show that the functor of points is the same. Looking at the definition of $\operatorname{Spa}(R,R)_{\eta}$ as the fiber over $\operatorname{Spa}(K,o_K) \to \operatorname{Spa}(o_K,o_K)$, we see its (T,T^+) points are continuous o_K -linear homomorphisms $g:R\to T^+$. The $g(f_i)$ are topologically nilpotent and hence $g(f_i)^n\subseteq \varpi T^+$ for some n and all i. So g extends to $S_n\to T^+$ and we get $(R_n,R_n^+)\to (T,T^+)$ by taking completions and integral closures and inverting ϖ (in the right order).

Example 2.2. Spa $(o_K[\![X]\!], o_K[\![X]\!])_{\eta}$ is the rigid open unit disk.

Lemma 2.3. Let K be a perfectoid field of characteristic 0 with pseudo-uniformizer ϖ . Let R be an o_K -algebra which is adic and complete for a f.g. ideal I. Assume that R/ϖ is semiperfect. Then $(\operatorname{Spa}(R,R))^{\flat}_{n^{\flat}}$ and $\operatorname{Spa}(R,R)_{\eta}$ are perfectoid and

$$\operatorname{Spa}(R^{\flat}, R^{\flat})_{\eta^{\flat}} = (\operatorname{Spa}(R, R))_{\eta^{\flat}}^{\flat} = (\operatorname{Spa}(R, R)_{\eta})^{\flat}. \tag{5}$$

Proof. I will give the covers by affinoid perfectoids without justification. For details see [Wei17]. Let f_1, \ldots, f_r be generators for an ideal of definition of R^{\flat} . The cover is given as in Lemma 2.1:

$$\operatorname{Spa}(R^{\flat}, R^{\flat})_{n^{\flat}} = \lim_{n \to \infty} \operatorname{Spa}(R_{n}^{\flat}, R_{n}^{\flat, +}), \tag{6}$$

where $R_n^{\flat} = R^{\flat} \langle f_i^n/\varpi \rangle [1/\varpi]$, and

$$\operatorname{Spa}(R,R)_{\eta} = \varinjlim \operatorname{Spa}(R_n, R_n^+), \tag{7}$$

where $R_n = R\langle f_i^{\sharp,n}/\varpi \rangle [1/\varpi]$. Further, one has $\operatorname{Spa}(R_n, R_n^+)^{\flat} = \operatorname{Spa}(R_n^{\flat}, R_n^{\flat,+})$. \square

3 The perfectoid open unit disk

Lubin–Tate theory. Let $\phi(X) \in o_E[\![X]\!]$, be a Frobenius power series (meaning $\phi = \pi X \pmod{X}$) and $\phi = X^q \pmod{\pi}$). Let $F_{\phi}(X,Y) \in o_E[\![X,Y]\!]$ be the corresponding Lubin–Tate formal group law with $\phi \in \operatorname{End}(F_{\phi})$. Then there is $[.]_{\phi} : o_E \to \operatorname{End}(F_{\phi})$ with $[\pi]_{\phi} = \phi$ and $[a]_{\phi} = aX + \ldots$. We define

$$\mathcal{F}_n := \{ z \in \mathfrak{m}_{\mathbf{C}_p} : [\pi^n]_{\phi}(z) = 0 \}, \quad E_n := E(\mathcal{F}_n),$$
 (8)

and we define E_{∞} to be the completion of $\bigcup_n E_n$. Lubin–Tate theory asserts that the Tate module $\mathcal{F}_{\infty} := \varprojlim_n \mathcal{F}_n$ is free of rank 1 as an o_E -module so that the choice of basis element determines a character $\chi_E : \operatorname{Gal}(E_{\infty}/E) \to o_E^{\times}$, which turns out to be an isomorphism. The field E_{∞} is perfected with tilt

$$E_{\infty}^{\flat} = \mathbf{F}_q((X^{1/q^{\infty}})), \text{ and } o_{E_{\infty}^{\flat}} = \mathbf{F}_q[[X^{1/q^{\infty}}]].$$
 (9)

Example 3.1. When $E = \mathbf{Q}_p$ one takes $\pi = p$, $\phi = (1+X)^p - 1$, then $F_{\phi}(X,Y) = (X+1)(Y+1) - 1$ is the multiplicative law and $[a]_{\phi} = (1+X)^a - 1$ for $a \in \mathbf{Z}_p$. We obtain $\mathcal{F}_n = \{\zeta - 1 : \zeta^{p^n} = 1\}$ and $E_n = \mathbf{Q}_p(\zeta_{p^n})$, and χ_E is the cyclotomic character. (One can do almost the same thing for unramified extensions E/\mathbf{Q}_p).

The perfectoid open unit disk. We define $\mathbf{D}_E := \mathrm{Spa}(o_E[\![X]\!], o_E[\![X]\!])_\eta$ and

$$R_E := \left(\varinjlim_{\phi} o_E \llbracket X \rrbracket \right)_{(\pi, X)}^{\wedge} \quad \text{so that} \quad \operatorname{Spa}(R_E, R_E) = \varprojlim_{\operatorname{Spa}(\phi)} \operatorname{Spa}(o_E \llbracket X \rrbracket, o_E \llbracket X \rrbracket).$$

$$(10)$$

Then $\widetilde{\mathbf{D}}_E := \operatorname{Spa}(R_E, R_E)_{\eta}$ is an E-vector space objects in adic spaces. If $\widetilde{\mathbf{D}}_{\mathbf{C}_p}$ denotes the base-change of $\widetilde{\mathbf{D}}_E$ from E to \mathbf{C}_p then $\widetilde{\mathbf{D}}_{\mathbf{C}_p}$ then by Lemma 2.3 one has

•
$$\widetilde{\mathbf{D}}_{\mathbf{C}_p} = \operatorname{Spa}(R_{\mathbf{C}_p}, R_{\mathbf{C}_p})_{\eta}$$
 is perfected and $(\widetilde{\mathbf{D}}_{\mathbf{C}_p})^{\flat} = \operatorname{Spa}(R_{\mathbf{C}_p}^{\flat}, R_{\mathbf{C}_p}^{\flat})_{\eta^{\flat}}$.

In order to make the connection to the Fargues–Fontaine curve later, let us describe this tilt a little more explicitly. The special fiber $\operatorname{Spa}(R_E, R_E)_s$ equals

$$\lim_{\overline{\langle . \rangle_q}} \operatorname{Spa}(\mathbf{F}_q[\![X]\!], \mathbf{F}_q[\![X]\!]) \cong \operatorname{Spa}(\mathbf{F}_q[\![X^{1/q^{\infty}}]\!], \mathbf{F}_q[\![X^{1/q^{\infty}}]\!]), \tag{11}$$

or if you prefer $\mathbf{F}_q \widehat{\otimes}_{o_E} R_E = \mathbf{F}_q [\![X^{1/q^{\infty}}]\!]$. We use this isomorphism in the second line below:

$$\operatorname{Spa}(o_{\mathbf{C}_{p}^{\flat}}\widehat{\otimes}_{\mathbf{F}_{q}}\mathbf{F}_{q}[X^{1/q^{\infty}}]) \cong \varprojlim_{\langle . \rangle^{q}} \operatorname{Spa}(o_{\mathbf{C}_{p}^{\flat}}/\varpi o_{\mathbf{C}_{p}^{\flat}}\widehat{\otimes}_{\mathbf{F}_{q}}\mathbf{F}_{q}[X^{1/q^{\infty}}])$$

$$\cong \varprojlim_{\langle . \rangle^{q}} \operatorname{Spa}(R_{\mathbf{C}_{p}}/\varpi R_{\mathbf{C}_{p}}) = \operatorname{Spa}(R_{\mathbf{C}_{p}}^{\flat}).$$
(12)

In the first line we used that $\mathbf{F}_q[X^{1/q^{\infty}}]$ is perfect. In other words, passing to generic fibers and deleting 0, we obtained an isomorphism

$$\operatorname{Spa}(o_{\mathbf{C}_{n}^{\flat}}\widehat{\otimes}_{\mathbf{F}_{q}}o_{E_{\infty}^{\flat}})_{\eta}\setminus\{\pi=\varpi=0\}\cong\widetilde{\mathbf{D}}_{\mathbf{C}_{p}}^{*,\flat}.\tag{13}$$

This isomorphism is equivariant for the action of o_E^{\times} (on the left from tilting the Lubin–Tate character, and on the right from tilting the o_E^{\times} action). There is a minor subtlety in matching up the Frobenius on $o_{\mathbf{C}_p^{\flat}}$ with the action of π on the right [Wei17, Lemma 4.0.9]. Conceptually, we've given a different presentation of the diamond $\widetilde{\mathbf{D}}_{\mathbf{C}_n}^{*,\diamond}/E^{\times}$.

4 The Fargues–Fontaine curve.

We recall the construction of the Fargues–Fontaine curve from Ken's talk. Actually, it can be constructed as the generic fiber of a formal scheme. We may define $B^{b,+} := W_{o_E}(o_{\mathbf{C}_p^b})$ where the subscript o_E denotes ramified Witt vectors, equipped with the usual $(\pi, [\varpi])$ -adic topology. Then $B^{b,+}$ is an o_E -algebra and, as is usual for Witt vector constructions, is equipped with a Frobenius endomorphism coming from the Frobenius on $o_{\mathbf{C}_p^b}$. We define

$$Y_E := \operatorname{Spa}(B^{b,+}, B^{b,+})_{\eta} \setminus \{\pi = [\varpi] = 0\} \text{ and } X_E := Y_E / \varphi^{\mathbf{Z}}.$$
 (14)

We note that $(W_{o_E}(o_{\mathbf{C}_p^{\flat}}) \otimes_{o_E} o_{E_{\infty}})/\pi = o_{\mathbf{C}_p^{\flat}} \widehat{\otimes}_{\mathbf{F}_q} o_{E_{\infty}}/\pi$, so that by taking $\varinjlim_{(.)^q}$ we obtain $(B^{b,+} \widehat{\otimes}_{o_E} o_{E_{\infty}})^{\flat} = o_{\mathbf{C}_p^{\flat}} \otimes_{\mathbf{F}_q} o_{E_{\infty}^{\flat}}$. Hence by Lemma 2.3 and the previous section one has

$$(Y_E \widehat{\otimes}_E E_{\infty})^{\flat} = \operatorname{Spa}(o_{\mathbf{C}_p^{\flat}} \widehat{\otimes}_{\mathbf{F}_q} o_{E_{\infty}^{\flat}})_{\eta} \setminus \{\pi = \varpi = 0\} \cong \widetilde{\mathbf{D}}_{\mathbf{C}_p}^{*,\flat}, \tag{15}$$

via an o_E^* -equivariant isomorphism. We will continue to ignore the minor subtlety in matching up the φ and π actions. Hence we obtain an isomorphism

$$\pi_1^{\text{\'et}}(\widetilde{\mathbf{D}}_{\mathbf{C}_n}^{*,\diamond}/E^{\times}) \cong \pi_1^{\text{\'et}}(X_E).$$
 (16)

4.1 The Fargues–Fontaine curve is geometrically simply connected

Finally, we will prove that $\pi_1^{\text{\'et}}(X_E) \cong G_E$. For this we recall the Dieudonné–Manin classification of vector bundles on X_E . We let $\check{E} := W_{o_E}(\overline{\mathbf{F}}_q)[1/\pi]$ denote the maximal unramified extension of E. Note that Y_E lies over $\operatorname{Spa}(\check{E})$ and the Frobenius endomorphism φ of Y_E lies over that of \check{E} , so we get $X_E \to \check{E}/\varphi^{\mathbf{Z}}$. Therefore, we can pull back vector bundles on $\check{E}/\varphi^{\mathbf{Z}}$.

Vector bundles on $E/\varphi^{\mathbb{Z}}$ are called *isocrystals*. This is (by definition) the same as a finite-dimensional E-vector space M equipped with the data of an isomorphism $\varphi_M: \varphi^*M \xrightarrow{\sim} M$. The pullback of (M, φ_M) amounts to the φ -equivariant vector bundle $(\mathcal{O} \otimes_E M, \varphi \otimes \varphi_M)$ on Y_E which we regard as a vector bundle $\mathcal{E}(M)$ on X_E .

The category of isocrystals is semisimple and there is a bijection $\lambda \mapsto M(\lambda)$ between (reduced) rationals and isomorphism classes of simples. For such we define $\mathcal{O}(\lambda) := \mathcal{E}(M(-\lambda))$. For example $\mathcal{O}(0) = \mathcal{O}_{X_E}$. Now we can state the classification of vector bundles on the curve:

Theorem 4.1. • Every vector bundle \mathcal{E} on X_E is isomorphic to a vector bundle of the form $\bigoplus_{i=1}^n \mathcal{O}(\lambda_i)$ for a unique sequence of rational numbers $\lambda_1 \leq \cdots \leq \lambda_n$.

• If $\lambda_i = d_i/r_i$ in reduced form then

$$\mathcal{O}(\lambda_1) \otimes \mathcal{O}(\lambda_2) \cong \mathcal{O}(\lambda_1 + \lambda_2)^{\oplus (r_1, r_2)}.$$
 (17)

• The global sections are

$$H^{0}(X_{E}, \mathcal{O}(\lambda)) \cong \begin{cases} a \ Banach-Colmez \ space & if \lambda > 0, \\ E, & if \lambda = 0, \\ 0, & if \lambda < 0. \end{cases}$$
 (18)

Theorem 4.2. The Fargues–Fontaine curve is geometrically simply connected.

Proof. Let $X:=X_E$ and $\mathcal{O}:=\mathcal{O}_X$. As observed at the beginning of the talk, it suffices to show that every finite locally free \mathcal{O} -algebra \mathcal{A} with perfect trace pairing $\mathcal{A}\otimes\mathcal{A}\to\mathcal{O}$ has trivial underlying vector bundle. Let us say that $\mathcal{A}=\bigoplus_i \mathcal{O}(\lambda_i)$ for $\lambda_1\leq\cdots\leq\lambda_s$. Because the vector bundle \mathcal{A} is self-dual one has $\deg(\mathcal{A})=\deg(\mathcal{A}^\vee)=-\deg(\mathcal{A})$, which reads $(\prod_i r_i)(\sum_i \lambda_i)=-(\prod_i r_i)(\sum_i \lambda_i)$ and so $\sum_i \lambda_i=0$. Let $\lambda:=\lambda_s\geq 0$. Assume (for a contradiction) that $\lambda>0$. The multiplication gives $\mathcal{A}\otimes\mathcal{A}\to\mathcal{A}$ which restricts to $\mathcal{O}(\lambda)\otimes\mathcal{O}(\lambda)\to\mathcal{A}$ which gives a global section

$$f \in \text{Hom}(\mathcal{O}(\lambda) \otimes \mathcal{O}(\lambda), \mathcal{A}) = H^0(X, \mathcal{A} \otimes \mathcal{O}(-2\lambda))^{\oplus r},$$
 (19)

which must be zero because the latter has all negative slopes. We conclude that every $f \in H^0(X, \mathcal{O}(\lambda)) \subseteq H^0(X, \mathcal{A})$ satisfies $f^2 = 0$. Because \mathcal{A} is a finite étale \mathcal{O} -algebra, $H^0(X, \mathcal{A})$ is reduced we must then have $H^0(X, \mathcal{O}(\lambda)) = 0$, so $\lambda < 0$, contradiction. So all $\lambda_i = 0$ and the underlying vector bundle of \mathcal{A} is trivial.

5 Explicit description of finite étale covers of $\widetilde{\mathbf{D}}_{\mathbf{C}_p}^{*,\diamond}/E^{\times}$

The previous constructions depended on the field E. We will no longer suppress this dependence in our notation, so let $Z_E := \widetilde{\mathbf{D}}_{E,\mathbf{C}_n}^{*,\diamond}/E^{\times}$.

We will show that a finite extension E'/E of fields induces a "norm" morphism of diamonds $N_{E'/E}: Z_{E'} \to Z_E$ which fits into a commutative square

$$\pi_1^{\text{\'et}}(Z_{E'}) \longleftrightarrow \pi_1^{\text{\'et}}(Z_{E'})
\downarrow \qquad \qquad \downarrow
G_{E'} \longleftrightarrow G_E$$
(20)

Arun Soor

The following sketch can be found in the Berkeley notes. Let n = [E': E]. We note that $\mathbf{D}_{\check{E}'}$ is a rigid p-divisible group of height n and dimension 1. By the work of [Hed10] we may take its "nth exterior power" which is a rigid p-divisible group of dimension 1 and height one, so isomorphic to $\widehat{\mathbf{G}}_{m,o_{\check{E}'}}$ and so we obtain an alternating map $\lambda: \mathbf{D}_{\check{E}'}^n \to \widehat{\mathbf{G}}_{m,o_{\check{E}'}}$. If one chooses an o_E -basis α_1,\ldots,α_n for $o_{E'}$ then we may define $N_{E'/E}(x) := \lambda(\alpha_1 x,\ldots,\alpha_n x)$ which gives $N_{E'/E}: \mathbf{D}_{E',\mathbf{C}_p} \to \mathbf{D}_{E,\mathbf{C}_p}$ after base change. By construction $N_{E'/E}(\alpha x) := N_{E'/E}(\alpha)N_{E'/E}(x)$ so we get $N_{E'/E}: \widetilde{\mathbf{D}}_{E',\mathbf{C}_p} \to \widetilde{\mathbf{D}}_{E,\mathbf{C}_p}$ which is equivariant for the norm map $E' \to E$, so finally we get $Z_{E'} \to Z_E$.

References

- [Hed10] Seyed Mohammad Hadi Hedayatzadeh. Exterior Powers of Barsotti-Tate Groups. PhD thesis, ETH Zurich, 2010.
- [SW20] Peter Scholze and Jared Weinstein. Berkeley lectures on p-adic geometry, volume 207 of Ann. Math. Stud. Princeton, NJ: Princeton University Press, 2020.
- [Wei17] Jared Weinstein. $Gal(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ as a geometric fundamental group. *Int. Math. Res. Not. IMRN*, (10):2964–2997, 2017.