INTEGRATED GRADUATE DEVELOPMENT PROGRAMME

MSc Telecommunications; Internet Engineering; Wireless and Optical Communications

RF System Design

Prof. Christos Masouros
University College London

Tel: 0207-679 7965

e-mail: c.masouros@ucl.ac.uk

Outline

- RF Equipment considerations
- BaseBand (BB) processing
- Spectrum efficiency
- Probability of Error
- Modulation tradeoffs
- MIMO systems
- Satellite Communications
- Link budget example problem

This Video: RF Transceivers

- RF components
- BaseBand processing

Equipment considerations

• Tx and Rx block diagram at terminal station

Up conversion

Baseband: $m(t) = M \cdot \cos(\omega_m t + \phi)$

Carrier: $c(t) = A \cdot \sin(\omega_c t + \phi_c)$

Passband: $y(t) = \frac{AM}{2} \left[\sin((\omega_c + \omega_m)t + \phi) + \sin((\omega_c - \omega_m)t - \phi) \right]$

Baseband Processing

These take care of small scale fading

This Video: RF Transceivers

Channel estimation

- What is the relation between the received r and transmit x signals?
- How do I estimate the channel?
- What waveform do I ideally transmit?

Channel Estimation

$$r = x \otimes h$$

Carefully selected Pilot symbols with good autocorrelation

Channel Estimation – How it works

Correlation of Tx and Rx signals = Convolution of channel with pilot autocorrelation function

$$y(t) = r(t) \circledast x(t)$$

$$= [x(t) \otimes h(t)] \circledast x(t)$$

$$= [x(t) \circledast x(t)] \otimes h(t)$$

*: Correlation

Channel Estimation – How it works

Correlation of Tx and Rx signals = Convolution of channel with pilot autocorrelation function

Need pilots with good autocorrelation function (close to impulse)

*: Correlation

Frequency- and Time- Division Duplex (FDD, TDD) Transmission Modes

- BS and MU transmit on different frequencies
- Uplink and downlink channels are highly uncorrelated
- MU needs to estimate downlink channel and feed back to BS

- BS and MU transmit on the same frequency
- Uplink and downlink channels are highly correlated
- BS can accurately estimate the downlink channel during uplink reception

This Video: RF Transmission

- Additive White Gaussian Noise
- Bit Error Rate

Additive White Gaussian Noise (AWGN)

$$r = s + n$$

$$n \sim \mathcal{N}(\mu, \sigma^2)$$

Characterised by:

 μ : mean

 σ : standard deviation

 σ^2 : variance

 $N_0=2\sigma^2$: Noise spectral density

$$p_n(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Probability of Error

Bipolar baseband signal:

signal + noise:

Probability of Error – Binary antipodal example

$$r = s + n$$
 3.5

$$p_e = p(r < 0 | s = \sqrt{E_b}) = \int_{-\infty}^{0} p_r(x) dx = \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \sqrt{E_b})^2}{2\sigma^2}} dx$$

$$p_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \qquad (N_0 = 2\sigma^2) \qquad Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty \exp\left(-\frac{u^2}{2}\right) du$$

$$p_e = f(SNR)$$

This Video: RF Transmission

Modulation Tradeoffs

Tradeoffs of modulation

 $SE = log_2M$ (bits/symbol)

equivalently: 1 Transmit power required for given BER

Spectral efficiency → Bandwidth requirements

SE: bps / Hz: Rate / Bandwidth

Baseband!

Gross pass band bandwidth required (double-sideband modulation):

$$BW = 2 \times (Rate / SE)$$

Example:

For a 1.5 Gbit/sec data rate:

- BPSK requires 3GHz (SE=1b/s/Hz)
- QPSK: 1.5 GHz (SE=2b/s/Hz)
- 16QAM: 750 MHz (SE=4b/s/Hz)
- 64QAM: 500 MHz (SE=6b/s/Hz)

Error performance for different modulation techniques in an AWGN channel (no fading)

Effect of multipath fading on error performance

Comparison of Modulation Schemes

Modulation Scheme	Bandwidth efficiency C/B (bits/symbol)	Log2(C/B)	Error-free (BER ~10 ⁻⁶) E _b /N _o in AWGN
128 QAM	7	2.8	24dB
16 QAM	4	2	15dB
8 PSK	3	1.6	14.5dB
4 PSK	2	1	10dB
4 QAM	2	1	10dB
BFSK	1	0	13dB
BPSK	1	0	10.5dB

Design guide: - high order modulation ~ minimize BW / maximise Rate - low order modulation ~ minimize BER / minimize tx power

This Video: MIMO Systems

Antenna Configurations

Single-Input-Single-Output (SISO) antenna system

Channel capacity:
$$C = BW \times \log_2 \left(1 + \frac{P}{N_0}\right)$$
 (in b/s)

- Theoretically, the 1Gbps rate can be achieved using this configuration if you are allowed to use much power and as much BW as you so please!
- Extensive research has been done on SISO under power and BW constraints. A combination of smart modulation, coding and multiplexing techniques have yielded good results but far from the 1Gbps barrier

$$C \le BW \times \min(M, N) \times \log_2\left(1 + \frac{P}{N_0}\right)$$

Up to a $\min(M, N)$ factor increase!!

Multiple Antenna Links

h_{ij}: Complex Gaussian random variable that models fading gain between the i-th transmit and j-th receive antenna

Gains - Multiple Antenna Links

Diversity gain: transmit the same signal from all antennas to compensate for 'bad' channels

Spatial multiplexing gain :

transmit independent signals from different antennas → higher data

tx

This Video: Satellite Communications

SatComs vital for IoT - Coverage

Connecting remote assets -

remote facility monitoring real-time asset management unmanned sites and offshore platforms.

Remote sensor networks -

satellite-based sensor networks to support offshore exploration.

Transportation infrastructure -

Broadband connectivity on trains, cargo vehicles and maritime vessels.

Developing sustainable cities -

smart grids in remote regions reliable backup network for critical services such as safety and security.

Connected Cars - safety (emergency calling and airbag deployment notifications) everywhere.

Satellite Telecommunications

ITU satellite service definitions:

- Broadcast satellite services (BSS)
- Mobile satellite services (MSS)

Only FSS considered here

Service Type	Freq Band GHz	Band	Allocated
	(up/down link)	Designation	Bandwidth GHz
FSS	6/4	C band	1.0
	14/12 (or 11)	Ku band	1.1
	30/20	K band	3.5
BSS	14/12	DBS band	0.8
	18/12	DBS band	0.8
MSS	1.6/1.5	L band	34/29 MHz

Geostationary Global Coverage

- First proposed by Arthur C Clarke in an article in Wireless World
- Three satellites in geostationary orbit provide global coverage
- Used for long distance links
- Ideal for global Broadcasting
- + Easy link establishment just point the antenna to a satellite, no Doppler shift
- High Path loss, long delays

Long distance relaying

Satellite Positions

Satellites positioned over the Atlantic, Pacific and Indian oceans

Summary

- Link budget
- RF Equipment considerations
- BB Processing
- Spectrum efficiency
- Probability of Error
- Modulation tradeoffs
- MIMO systems
- Satellite communications