Petite Classe 4

Quantification de l'energie

1 Le puits infini à une dimension

On considère une particule de masse m dans un puits de potentiel unidimensionnel délimité par des barrières de hauteur infinie situées en x=0 et x=L:

$$V(x) = \begin{cases} +\infty & \text{pour } x < 0 \\ 0 & \text{pour } x \in [0, L] \\ +\infty & \text{pour } x > L \end{cases}$$

1.1 États stationnaires

- Q1 On peut chercher des solutions réelles sans perte de généralité. Écrire la solution générale réelle de l'équation de Schrödinger indépendante du temps d'énergie E dans le potentiel V.
- **Q2** À l'aide des conditions aux bords, montrer que le spectre des énergies permises est discret. On notera E_n le n-ième niveau d'énergie, et on exprimera E_n en fonction de n, m, L et \hbar .
- Q3 Utiliser la condition de normalisation des fonctions d'onde pour montrer que les fonctions d'onde stationnaires $\psi_n(x)$ d'énergies respectives E_n peuvent s'écrire

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) \tag{4.1}$$

Justifier pourquoi on peut prendre n > 0.

- Q4 Comparer l'état fondamental (le minimum d'énergie) au cas classique. Interpreter.
- **Q5** Calculer $\langle x \rangle$, $\langle x^2 \rangle$ pour l'état stationnaire $\psi_n(x)$ à l'aide de l'expression explicite des fonctions d'onde pour déduirer Δx . Interprétez l'expression obtenue à grand n.
- **Q6** (Facultatif) Évaluer de même $\langle p \rangle$ et $\langle p^2 \rangle$, puis Δp (on pourra astucieusement s'épargner le calcul explicite d'intégrales en utilisant le théorème d'Ehrenfest et en remarquant que $\hat{H} = \frac{\hat{p}^2}{2\pi n}$).
- **Q7** (Facultatif) Vérifier que le principe d'incertitude est satisfait. Quel état est le plus proche de la limite de Heisenberg?

États non stationnaires

On considère une particule préparée, à l'instant t=0, dans une superposition

$$\psi(x,t=0) = \frac{1}{\sqrt{2}} \left[\psi_1(x) + \psi_2(x) \right] \tag{4.2}$$

 $\psi_1(x)$ et $\psi_2(x)$ étant les fonctions d'onde associées aux 2 états de plus basse énergie du puits infini de l'exercice précédent.

- **Q1** Calculer $\psi(x,t)$. Si on effectue une mesure de l'énergie sur ce système au temps t, quels sont les résultats possibles et avec quelles probabilités? Quelle est la valeur moyenne de l'énergie et son écart-type?
- **Q2** Calculer la position moyenne $\langle x(t) \rangle$ au temps t. On donne l'égalité

$$\int_0^L x \, \psi_1(x) \psi_2(x) \, dx = \frac{2}{L} \int_0^L x \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{2\pi x}{L}\right) \, dx = -\frac{16L}{9\pi^2}$$

que les plus rapides pourront vérifier. Quelle est la fréquence et l'amplitude des oscillations?

Q3 Comment les calculs précédents sont-ils modifiés si on ajoute un facteur de phase $e^{i\phi}$ (ϕ étant une constante réelle) dans l'équation (4.2) devant ψ_2 par exemple? Une telle phase est-elle observable?

$\mathbf{2}$ Etat fondamental de l'atome d'hydrogène

Les niveaux d'énergie des états à symétrie sphérique de l'atome d'hydrogéne s'obtiennent par le calcul à une dimension suivant. On considére un éléctron de masse m dans un potentiel V(x) tel que

$$V(x) = \begin{cases} +\infty & \text{pour } x \le 0\\ -\frac{e^2}{4\pi\epsilon_0 x} & \text{pour } x > 0 \end{cases}$$

e étant la charge élementaire de l'électron. On posera $\alpha = e^2/(4\pi\epsilon_0\hbar c) = 1/137$, la constante de structure fine (sans dimension) où c est la vitesse de la lumière.

Q1 On considére la fonction d'onde suivante :

$$\psi(x) = \begin{cases} 0 & \text{pour } x \le 0\\ 2a^{-3/2}xe^{-\frac{x}{a}} & \text{pour } x > 0 \end{cases}$$

On pourra vérifier que cette fonction est correctement normalisée connaissant l'égalité $\int_0^{+\infty} x^n e^{-\frac{2x}{a}} dx = n! \left(\frac{a}{2}\right)^{n+1}.$

Montrer qu'on peut choisir la valeur de a pour que $\psi(x)$ soit solution stationnaire de l'hamiltonien à une dimension.

- Q2 Calculer la valeur propre E correspondante et interpreter le résultat.
- Q3 Calculer numériquement E et a. On pourra prendre $mc^2 = 5.11 \times 10^5$ eV et $\hbar c = 197$ eV.nm. Que deviennent E et a pour $\hbar \to 0$ ou $m \to 0$? Commenter.