Exercises on project estimation

Situation

- We aim at estimating the resources needed for developing the following project
- \triangleright S = 60,000 NCSS (medium size)
- Some requirements are rigid
- The software can be developed in any programming language
- A similar (but not the same) project has been developed
- The software will be exploited by Web interface
- ▶ The software needs a small but reliable database

- Estimate the needed effort by applying the basic and the intermediate CoCoMo models
 - Cost in person-months
 - Delivery time
 - Cost in Euros

Exercise 1 – basic model

- We consider it a semi-detached project
- Cost in person-months:
- $K_m = (3.0 \times S_k)^{1.12}$
- $K_m = (3.0 \times 60)^{1.12} = 335 \text{ person-months}$
- Delivery time:
- $t_d = (2.5 \times K_m)^{0.35}$
- $t_d = (2.5 \times 335)^{0.35} = 10.55$ months
- Cost in Euros = person-months x month-cost = 335 x 5000 = 1675 k€

Exercise 1 – intermediate model

- We consider it a semi-detached project
- Nominal cost in person-months
- $K_n = (3.0 \times S_k)^{1.12} = 335 \text{ person-months}$
- Cost drivers
 - ▶ LEXP = 0.95
 - The software can be developed in **any** programming language, so the developers can choose the most known
 - ▶ AEXP = 0.91
 - A similar (but not the same) project has been developed
 - TIME = 1
 - It is a Web application, there are no specific runtime performance requirements
 - RELY = 1.15
 - The software needs a small but **reliable** database
 - DATA = 0.94
 - The software needs a **small** but reliable database
- Product of the cost drivers = 0.93

UNIMORE UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Exercise 1 – intermediate model (2)

- Cost in person-months:
- Arr K_m= K_n x 0.93 = 312 person-months
- Delivery time:
- $t_d = (2.5 \times K_m)^{0.35}$
- $t_d = (2.5 \times 312)^{0.35} = 10.28 \text{ months}$
- Cost in Euros = person-months x month-cost = 312 x 5000 = 1560 k€

- Starting from the previous results of needed personmonths, apply the Putnam model to estimate the delivery time given an E factor of 15000
- How does the K varies if we schedule a delivery time of 0.5, I, and I.5 years?
- Note: Putnam model considers person-years

Exercise 2 – delivery time

- Time to delivery: $t_d = \left(\frac{S}{E K^{1/3}}\right)^{\frac{3}{4}}$
- Effort from CoCoMo basic model
 - ► K = 335 person-months = 28 person-years
 - S = 60000 NCSS
 - E = 15000
 - ▶ t_d = 1,239862089 years \rightarrow 1 year and 3 months
- ▶ Effort from CoCoMo intermediate model
 - K = 312 person-months = 26 person-years
 - S = 60000 NCSS
 - E = 15000
 - ▶ t_d = 1,262813133 years \rightarrow 1 year and 3 months

Person years invested:
$$K = \left(\frac{S}{E t_d^{4/3}}\right)^3$$

 $K_d = K * 0.39$

t _d	K	K _d
0.5	1024	400
1	64	25
1.5	12	5

- Given the following scheduling for the project activities in weeks, build the PERT diagram and apply the CPM to:
 - ▶ Calculate t_{min}, t_{max} for each node
 - Calculate the project duration
 - Identify the critical activities
 - Calculate the slack of each non critical activity
- What happens if the G activity is delayed of I week?

Exercise 3 - scheduling

Given the following scheduling for the project activities, build the PERT diagram and apply the CPM to calculate the project duration and t_{min}, t_{max} for each node

Activity	Precedence	to	tm	tp	
Α		2	3	4	
В		4	5	12	
С	Α	2	2	3	
D	B,C	3	5	7	
E	D	3	3	9	
F	Е	3	3	3	
G	B,C	4	10	10	
Н	F,G	2	3	4	

Exercise 3 – expected time

First, we must calculate the expected times for each activity

Activity	Precedence	to	tm	tp	te
Α		2	3	4	3
В		4	5	12	6
С	Α	2	2	3	2
D	В,С	3	5	7	5
E	D	3	3	9	4
F	Е	3	3	3	3
G	В,С	4	10	10	9
Н	F,G	2	3	4	3

Exercise 3 – PERT diagram

▶ Then we must build the PERT AOA diagram

Exercise $3 - t_{min}$ and t_{max}

▶ We calculate t_{min} and t_{max} for each node

Exercise 3 – critical path

We calculate the critical path

Exercise 3 – slacks and summary

- - A = 4 (0 + 3) = 1 week
 - C = 6 (3 + 2) = 1 week
 - G = 18 (6 + 9) = 3 weeks
- If the G activity is delayed of I week it does not affect the total duration of the project
- Project duration = 21 weeks
- Critical activities = B,D,E,F,H

- Given the following activities, define the precedence, estimate the duration for each activity, then build the PERT diagram and apply the CPM to:
 - ightharpoonup Calculate t_{min} , t_{max} for each node
 - Calculate the project duration
 - Identify the critical activities
 - Calculate the slack of each non critical activity

Exercise 4 - activities

- Organize a conference with 4 speakers
- A. Decide the content in collaboration with the city administration
- B. Define the 4 speakers
- Decide the date with the speakers
- D. Reserve the room
- E. Print the flyers
- F. Order the desk and the chairs for the room
- G. Distribute the flyers
- H. Print the posters for the room
- Arrange the room with desk, chairs, posters