# # problem statement To find the best fit of the dataset

```
In [1]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn import preprocessing,svm
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
```

In [2]: df=pd.read\_csv(r"C:\Users\LENOVO\Downloads\fiat500\_VehicleSelection\_Dataset (2)

## Out[2]:

|      | ID   | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       |
|------|------|--------|--------------|-------------|--------|-----------------|-----------|-----------|
| 0    | 1    | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  |
| 1    | 2    | pop    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 |
| 2    | 3    | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 |
| 3    | 4    | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 |
| 4    | 5    | pop    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 |
|      |      |        |              |             |        |                 |           |           |
| 1533 | 1534 | sport  | 51           | 3712        | 115280 | 1               | 45.069679 | 7.704920  |
| 1534 | 1535 | lounge | 74           | 3835        | 112000 | 1               | 45.845692 | 8.666870  |
| 1535 | 1536 | pop    | 51           | 2223        | 60457  | 1               | 45.481541 | 9.413480  |
| 1536 | 1537 | lounge | 51           | 2557        | 80750  | 1               | 45.000702 | 7.682270  |
| 1537 | 1538 | pop    | 51           | 1766        | 54276  | 1               | 40.323410 | 17.568270 |
|      |      |        |              |             |        |                 |           |           |

1538 rows × 9 columns

```
In [3]: df=df[['age_in_days','km']]
        df.columns=['Age','Km']
```

In [4]: df.head(10)

Out[4]:

|   | Age  | Km     |
|---|------|--------|
| 0 | 882  | 25000  |
| 1 | 1186 | 32500  |
| 2 | 4658 | 142228 |
| 3 | 2739 | 160000 |
| 4 | 3074 | 106880 |
| 5 | 3623 | 70225  |
| 6 | 731  | 11600  |
| 7 | 1521 | 49076  |
| 8 | 4049 | 76000  |
| 9 | 3653 | 89000  |
|   |      |        |

In [5]: sns.lmplot(x="Age",y="Km",data=df,order=2,ci=None)

Out[5]: <seaborn.axisgrid.FacetGrid at 0x11b30832110>



```
In [6]: df.describe()
```

### Out[6]:

|       | Age         | Km            |
|-------|-------------|---------------|
| count | 1538.000000 | 1538.000000   |
| mean  | 1650.980494 | 53396.011704  |
| std   | 1289.522278 | 40046.830723  |
| min   | 366.000000  | 1232.000000   |
| 25%   | 670.000000  | 20006.250000  |
| 50%   | 1035.000000 | 39031.000000  |
| 75%   | 2616.000000 | 79667.750000  |
| max   | 4658.000000 | 235000.000000 |

```
In [7]: df.fillna(method='ffill',inplace=True)
```

C:\Users\LENOVO\AppData\Local\Temp\ipykernel\_6124\3337295870.py:1: SettingWit hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

```
In [8]: df.info()
```

dtypes: int64(2)
memory usage: 24.2 KB

```
In [9]: df.fillna(method='ffill',inplace=True)
```

C:\Users\LENOVO\AppData\Local\Temp\ipykernel\_6124\4116506308.py:1: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

```
In [10]: x=np.array(df['Age']).reshape(-1,1)
y=np.array(df['Km']).reshape(-1,1)
```

# In [11]: df.dropna(inplace=True)

C:\Users\LENOVO\AppData\Local\Temp\ipykernel\_6124\1379821321.py:1: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [12]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

#### 0.6946203593238638

```
In [13]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [14]: df400=df[:][:400]
sns.lmplot(x="Age",y="Km",data=df400,order=1,ci=None)
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x11b40315550>



```
In [15]: x=np.array(df400['Age']).reshape(-1,1)
y=np.array(df400['Km']).reshape(-1,1)
```

```
In [16]: df400.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
```

Regression: 0.7615536976421272

```
In [17]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='g')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [18]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
```

```
Out[18]: v LinearRegression LinearRegression()
```

```
In [19]: y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("r2 score:",r2)
```

r2 score: 0.7615536976421272

# # conclusion:

This is the best fit dataset since we got accuracy value is 76%.