

Figure 1: Q — Bipolar Polar Junction Transistor: (a) NPN transistor; (b) PNP transistor.

 $fREEDA^{TM}Form:$ bjtpnp: $\langle instance\ name \rangle\ n_1\ n_2\ n_3\ \langle parameter\ list \rangle$

 n_1 is the base node

 n_2 is the collector node

 n_3 is the emitter node

SPICE Form:

Qname NCollector NBase NEmitter [NSubstrate] ModelName [Area] [OFF] [IC=Vbe,Vce] where

NCollector is the collector node.

NBase is the base node.

NEmitter is the emitter node.

NSubstrate is the optional substrate node. If not specified, then the ground is used as the

substrate node. If *NSubstrate* is a name as allowed in it must be enclosed in

square brackets, e.g. [NSubstrate], to distinguish it from ModelName.

ModelName is the model name.

Area is the area factor. If the area factor is omitted, a value of 1.0 is assumed.

(Units: none; Optional; Default: 1; Symbol: Area)

OFF indicates an (optional) initial condition on the device for the dc analysis. If specified the dc operating point is calculated with the terminal voltages set to zero. Once convergence is obtained, the program continues to iterate to obtain the exact value of the terminal voltages. The OFF option is used to enforce

the solution to correspond to a desired state if the circuit has

more than one stable state.

IC is the optional initial condition specification using $IC=V_{BE}$, V_{CE} is intended for use with the UIC option on the .TRAN line, when a transient analysis is desired starting from other than the quiescent operating point. See the .IC line description for a better way to set transient initial conditions.

Example:
bjtpnp:Q20 10 50 0
bjtpnp:QFAST IC=0.65,15.0
bjtpnp:Q5PUSH 10 29 14 200 MODEL1

Model Parameters:

Name	Description	Units	Default
AREA	Current multiplier		1.0
BF	Ideal maximum forward beta (B_F)		100.0
BR	Ideal maximum reverse beta (B_R)		1.0
C2	Base-emitter leakage saturation coefficient		I_{SE}/I_{S}
C4	Base-collector leakage saturation coefficient		(I_{SC}/I_S)
CJC	Base collector zero bias p-n capacitance (C_{JC})	F	0.0
CJE	Base emitter zero bias p-n capacitance (C_{JE})		0.0
EG	Bandgap voltage (E_G)	eV	1.11
FC	Forward bias depletion capacitor coefficient (F_C)		0.5
IKF	Corner of forward beta high-current roll-off (I_{KF})	A	10^{-10}
IKR	Corner for reverse-beta high current roll off (I_{KR})		10^{-10}
IS	Transport saturation current (I_S)	A	10^{-16}
ISC	Base collector leakage saturation current (I_{SC})	A	0.0
ISE	Base-emitter leakage saturation current (I_{SE})	A	0.0
IRB	Current at which RB falls to half of R_{BM} (I_{RB})	A	10^{-10}
ITF	Transit time dependency on IC (I_{TF})	A	0.0
MJC	Base collector p-n grading factor (M_{JC})		0.33
MJE	Base emitter p-n grading factor (M_{JE})		0.33
NC	Base-collector leakage emission coefficient (N_C)		2.0
NE	Base-emitter leakage emission coefficient (N_E)		1.5
NF	Forward current emission coefficient (N_F)		1.0
NR	Reverse current emission coefficient (N_R)		1.0
RB	Zero bias base resistance (R_B)	Ω	0.0
RBM	Minimum base resistance (R_{BM})	Ω	R_B
RE	Emitter ohmic resistance (R_E)	Ω	0.0
RC	Collector ohmic resistance (R_C)	Ω	0.0
T	Operating Temperature T	K	300
TF	Ideal forward transit time (T_S)	secs	0.0
TNOM	Nominal temperature (T_{NOM})	K	300
TR	Ideal reverse transit time (T_R)	S	0.0
TRB1	RB temperature coefficient (linear) (T_{RB1})		0.0
TRB2	RB temperature coefficient (quadratic) (T_{RB2})		0.0
TRC1	RC temperature coefficient (linear) (T_{RC1})		0.0
TRC2	RC temperature coefficient (linear) (T_{RC2})		0.0
TRE1	RE temperature coefficient (linear) (T_{RE1})		0.0
TRE2	RE temperature coefficient (quadratic) (T_{RE2})		0.0
TRM1	RBM temperature coefficient (linear) (T_{RM1})		0.0
TRM2	RBM temperature coefficient (quadratic) (T_{RM2})		0.0

Name	Description	Units	Default
VA	alternative keyword for VAF (V_A)	V	10^{-10}
VAF	Forward early voltage (V_{AF})	V	10^{-10}
VAR	Reverse early voltage (V_{AR})		10^{-10}
VB	alternative keyword for VAR (V_B)		10^{-10}
VJC	Base collector built in potential (V_{JC})	V	0.75
VJE	Base emitter built in potential (V_{JE})	V	0.75
VTF	Transit time dependency on VBC (V_{TF})	V	10^{-10}
XCJC	Fraction of CBC connected internal to RB (X_{CJC})		1.0
XTB	Forward and reverse beta temperature coefficient (X_{TB})		0.0
XTF	Transit time bias dependence coefficient (X_{TF})		0.0
XTI	IS temperature effect exponent (X_{TI})		3.0

ELEMENT Model

Figure 2: Schematic of the BJT Model $\,$

Standard Calculations

The physical constants used in the model evaluation are

k	Boltzman's constant	$1.380622610^{-23}\;\mathrm{J/K}$
q	electronic charge	$1.602191810^{-19}~\mathrm{C}$

Absolute temperatures (in kelvins, K) are used. The thermal voltage

$$V_{TH}(T_{NOM}) = k \ T_{NOM}/q. \tag{1}$$

Current Characteristics

The base-emitter current,

$$I_{BE} = I_{BF}/\beta_F + I_{LE} \tag{2}$$

the base-collector current,

$$I_{BC} = I_{BR}/\beta_R + I_{LC} \tag{3}$$

and the collector-emitter current,

$$I_{CE} = I_{BF} - I_{BR}/K_{QB} \tag{4}$$

where the forward diffusion current,

$$I_{BF} = I_S \left(e^{V_{BE}/(N_F V_{TH})} - 1 \right)$$
 (5)

the nonideal base-emitter current,

$$I_{LE} = I_{SE} \left(e^{V_{BE}/(N_E V_{TH})} - 1 \right) \tag{6}$$

the reverse diffusion current,

$$I_{BR} = I_S \left(e^{V_{BC}/(N_R V_{TH})} - 1 \right) \tag{7}$$

the non-ideal base-collector current,

$$I_{LC} = I_{SC} \left(e^{V_{BC}/(N_C V_{TH})} - 1 \right) \tag{8}$$

and the base charge factor,

$$K_{QB} = 1/2 \left[1 - V_{BC}/V_{AF} - V_{BE}/V_{AB} \right]^{-1} \left(1 + \sqrt{1 + 4\left(I_{BF}/I_{KF} + I_{BR}/I_{KR}\right)} \right)$$
(9)

Thus the conductive current flowing into the base,

$$I_B = I_{BE} + I_{BC} \tag{10}$$

the conductive current flowing into the collector,

$$I_C = I_{CE} - I_{BC} \tag{11}$$

and the conductive current flowing into the emitter,

$$I_C = I_{BE} + I_{CE} \tag{12}$$

Capacitances

 $C_{BE} = Area(C_{BE\tau} + C_{BEJ})$ where the base-emitter transit time or diffusion capacitance

$$C_{BE\tau} = \tau_{F,EFF} \partial I_{BF} / \partial V_{BE}$$

$$(13)$$

the effective base transit time is empirically modified to account for base puchout, space-charge limited current flow, quasi-saturation and lateral spreading which tend to increase τ_F

$$\tau_{F,EFF} = \tau_F \left[1 + X_{TF} (3x^2 - 2x^3) e^{(V_{BC}/(1.44V_{TF}))} \right]$$
(14)

and $x = I_{BF}/(I_{BF} + AreaI_{TF})$.

The base-emitter junction (depletion) capacitance

$$C_{BEJ} = \begin{cases} C_{JE} \left(1 - V_{BE} / V_{JE} \right)^{-M_{JE}} & V_{BE} \le F_C V_{JE} \\ C_{JE} \left(1 - F_C \right)^{-(1 + M_{JE})} \left(1 - F_C (1 + M_{JE}) + M_{JE} V_{BE} / V_{JE} \right) & V_{BE} > F_C V_{JE} \end{cases}$$
(15)

The base-collector capacitance, $C_{BC} = Area(C_{BC\tau} + X_{CJC}C_{BCJ})$ where the base-collector transit time or diffusion capacitance

$$C_{BC\tau} = \tau_R \partial I_{BR} / \partial V_{BC} \tag{16}$$

The base-collector junction (depletion) capacitance

$$C_{BCJ} = \begin{cases} C_{JC} \left(1 - V_{BC} / V_{JC} \right)^{-M_{JC}} & V_{BC} \le F_C V_{JC} \\ C_{JC} \left(1 - F_C \right)^{-(1 + M_{JC})} \left(1 - F_C (1 + M_{JC}) + M_{JC} V_{BC} / V_{JC} \right) & V_{BC} > F_C V_{JC} \end{cases}$$
(17)

The capacitance between the extrinsic base and the intrinsic collector

$$C_{BX} = \begin{cases} Area(1 - X_{CJC})C_{JC} (1 - V_{BX}/V_{JC})^{-M_{JC}} & V_{BX} \le F_C V_{JC} \\ (1 - X_{CJC})C_{JC} (1 - F_C)^{-(1 + M_{JC})} & V_{BX} > F_C V_{JC} \\ \times (1 - F_C(1 + M_{JC}) + M_{JC} V_{BX}/V_{JC}) \end{cases}$$
(18)

Buqs:

Parameters: OFF and IC are not functional.

Version:

2002.09.01

Credits:

Name Affiliation Date

Senthil Velu North Carolina State University Sept 2002 NC STATE UNIVERSITY

Publications:

 C. Christoffersen, S. Velu and M. B. Steer, "A Universal Parameterized Nonlinear Device Model Formulation for Microwave Circuit Simulation," 2002 IEEE Int. Microwave Symp. Digest, June 2002, pp 2189-2192.