

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Complete Response - II

Course Instructors:

Manav Bhatnagar, Subashish Dutta, Debanjan Bhaumik, Harshan Jagadeesh

Department of Electrical Engineering, IITD

Complete Response

- If source (excitation) is exponential/sinusoidal:
 - Forced response composed of exponentials present in source signal
 - Natural response composed of exponentials depending on circuit components.
- EXCEPT when there are common modes
- For other excitations, ONLY

Complete Response = Natural Response + Forced Response

 $V_S(t) = 5e^{-t}$ with R = 4 Ω , L = 1 H, C = 1/3 F, i(0)=1 A, di/dt(0) = 3 A/s. What is i(t) for t >=0?

 $V_S(t) = 5e^{-t}$ with R = 4 Ω , L = 1 H, C = 1/3 F, i(0)=1 A, di/dt(0) = 3 A/s. What is i(t) for t >=0?

The impedance function is

$$Z(\alpha) = \frac{\alpha^2 LC + \alpha RC + 1}{\alpha C} = \frac{\alpha^2 + 4\alpha + 3}{\alpha}$$

$$\alpha = -1$$

$$Z(\alpha) = 0$$

$$V_S(t) = 5e^{-t}$$
 with R = 4 Ω , L = 1 H, C = 1/3 F, i(0)=1 A, di/dt(0) = 3 A/s. What is i(t) for t >=0?

The impedance function is

$$Z(\alpha) = \frac{\alpha^2 LC + \alpha RC + 1}{\alpha C} = \frac{\alpha^2 + 4\alpha + 3}{\alpha}$$

$$\alpha = -1$$

$$Z(\alpha) = 0$$

$$i(t) = \frac{V_s(t)}{Z(\alpha)} = ??$$

$$V_S(t) = 5e^{-t}$$
 with R = 4 Ω , L = 1 H, C = 1/3 F, i(0)=1 A, di/dt(0) = 3 A/s. What is i(t) for t >=0?

The impedance function is

$$Z(\alpha) = \frac{\alpha^2 LC + \alpha RC + 1}{\alpha C} = \frac{\alpha^2 + 4\alpha + 3}{\alpha}$$

$$\alpha = -1$$

$$Z(\alpha) = 0$$

 We cannot determine i(t) using Impedance function.

What is the problem?

The problem is because the inherent 'exponentials' in the natural response get excited by the source. In the current example, both natural response and source have e^{-t} component.

What is the problem?

The problem is because the inherent 'exponentials' in the natural response get excited by the source. In the current example, both natural response and source have e^{-t} component. In such a case, the actual response of the circuit would have e^{-t} and te^{-t} . How is this ?

Solution to our example

The complete response will be $(A_1 + A_2t)e^{-t} + A_3e^{-3t}$

Particular Solution and Initial Conditions

- $V_S(t) = 5e^{-t}$ with R = 4 Ω , L = 1 H, C = 1/3 F, i(0)=1 A, di/dt(0) = 3 A/s.
- $i(t) = (A_1 + A_2t)e^{-t} + A_3e^{-3t}$ $\frac{di}{dt} = (-A_1 + A_2 A_2t)e^{-t} 3A_3e^{-3t}$ $\frac{d^2i}{dt^2} = (A_1 2A_2 + A_2t)e^{-t} + 9A_3e^{-3t}$

$$i(0) = A_1 + A_3 = 1$$

$$\frac{di}{dt}(0) = -A_1 + A_2 - 3A_3 = 3$$

Particular Solution and Initial Conditions

- $V_S(t) = 5e^{-t}$ with R = 4 Ω , L = 1 H, C = 1/3 F, i(0)=1 A, di/dt(0) = 3 A/s.
- $i(t) = (A_1 + A_2 t)e^{-t} + A_3 e^{-3t}$ $\frac{di}{dt} = (-A_1 + A_2 A_2 t)e^{-t} 3A_3 e^{-3t}$ $\frac{d^2i}{dt^2} = (A_1 2A_2 + A_2 t)e^{-t} + 9A_3 e^{-3t}$

$$i(0) = A_1 + A_3 = 1$$

$$\frac{di}{dt}(0) = -A_1 + A_2 - 3A_3 = 3$$

$$L\frac{d^{2}i}{dt^{2}} + R\frac{di}{dt} + \frac{1}{C}i = \frac{d}{dt}V_{s}$$

$$-5e^{-t} = \left((A_{1} + A_{2}t)e^{-t} + A_{3}e^{-3t} \right)$$

$$+4\left((-A_{1} + A_{2} - A_{2}t)e^{-t} - 3A_{3}e^{-3t} \right)$$

$$+3\left((A_{1} - 2A_{2} + A_{2}t)e^{-t} + 9e^{-3t} \right)$$

$$= -2A_{2}e^{-t} \implies A_{2} = 2.5$$

$$A_1 = 1.75, \ A_2 = 2.5, \ A_3 = -0.75$$

 $i(t) = (1.75 + 2.5t)e^{-t} - 0.75e^{-3t}$

1. Express the source signal as a combination of exponential signals (complex exponents allowed).

1. Express the source signal as a combination of exponential signals (complex exponents allowed). Let the set of exponents be $\{a_1, a_2, ..., a_k\}$.

1. Express the source signal as a combination of exponential signals (complex exponents allowed). Let the set of exponents be $\{a_1, a_2, ..., a_k\}$. In our example, we had the input signal as $5e^{-t}$, therefore the set is $\{a_1 = -1\}$.

1. Express the source signal as a combination of exponential signals (complex exponents allowed). Let the set of exponents be $\{a_1, a_2, ..., a_k\}$. For our example, $\{a_1 = -1\}$. Note: Repeated entries will not appear here. However, a signal of type $t^n e^{at}$ may appear.

1. Express the source signal as a combination of exponential signals (complex exponents allowed). Let the set of exponents be $\{a_1, a_2, ..., a_k\}$. For our example, $\{a_1 = -1\}$. Note: Repeated entries will not appear here. However, a signal of type $t^n e^{at}$ may appear.

For each e^{at} , find the maximum 'n' such that $t^n e^{at}$ appears. Make (n+1) copies of the exponent in the set of exponents for source.

Eg:
$$(3t^2+2)e^{-t}+te^{-2t}+2e^{-4t} \implies \{-1,-1,-1,-2,-2,-4\}$$

2. Determine the differential equation governing the circuit behavior. Solve for the roots associated polynomial. Let the set be $\{b_1, b_2, ..., b_n\}$

2. Determine the differential equation governing the circuit behavior. Solve for the roots associated polynomial. Let the set be $\{b_1, b_2, \dots, b_n\}$. Remember repeated roots deserve repeated mention.

In our example problem, the polynomial is

$$s^2 + 4s + 3 = 0$$
 $\implies e^{-t}, e^{-3t}$

Thus, set corresponding to natural response is $\ \{-1,-3\}$

- 2. Determine the differential equation governing the circuit behavior. Solve for the roots associated polynomial. Let the set be $\{b_1, b_2, ..., b_n\}$ Remember repeated roots deserve repeated mention. [In our example this set is $\{-1,-3\}$]
- 3. Combine both the sets, and count the number of time any entry is repeated.

- 2. Determine the differential equation governing the circuit behavior. Solve for the roots associated polynomial. Let the set be $\{b_1, b_2, ..., b_n\}$ Remember repeated roots deserve repeated mention. [In our example this set was $\{-1,-3\}$]
- 3. Combine both the sets, and count the number of time any entry is repeated.

$$\{-1\} + \{-1, -3\} \rightarrow \{-1, -1, -3\}$$

- 2. Determine the differential equation governing the circuit behavior. Solve for the roots associated polynomial. Let the set be $\{b_1, b_2, ..., b_n\}$ Remember repeated roots deserve repeated mention. [In our example this set was $\{-1,-3\}$]
- 3. Combine both the sets, and count the number of time an entry is repeated. [{-1,-1,-3} in our example]
- 4. For each entry α repeated k times, the response will have

$$(A_{\alpha_1} + A_{\alpha_2}t + \dots + A_{\alpha_k}t^{k-1})e^{\alpha t}$$

- 2. Determine the differential equation governing the circuit behavior. Solve for the roots associated polynomial. Let the set be $\{b_1, b_2, ..., b_n\}$ Remember repeated roots deserve repeated mention. [In our example this set is $\{-1,-3\}$]
- 3. Combine both the sets, and count the number of time an entry is repeated. [{-1,-1,-3} in our example]
- 4. For each entry α repeated k times, the response will have

$$(A_{\alpha_1} + A_{\alpha_2}t + \dots + A_{\alpha_k}t^{k-1})e^{\alpha t}$$

For our example, complete response was $(A_1 + A_2t)e^{-t} + A_3e^{-3t}$