This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

11 Veröffentlichungsnummer:

0 135 472

A₂

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84810353.7

22) Anmeldetag: 19.07.84

(5) Int. Cl.4: C 07 D 239/42

C 07 D 239/46, C 07 D 239/52 C 07 D 239/56, C 07 D 401/12 A 01 N 43/54

30 Priorität: 25.07.83 CH 4049/83

(43) Veröffentlichungstag der Anmeldung: 27.03.85 Patentblatt 85/13

Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI LU NL SE

71 Anmelder: CIBA-GEIGY AG
Postfach

CH-4002 Basel(CH)

(72) Erfinder: Hubele, Adolf, Dr. Obere Egg 9 CH-4312 Magden(CH)

(72) Erfinder: Zondler, Helmut, Dr. Oberwilerstrasse 49 CH-4103 Bottmingen(CH)

Erfinder: Riebli, Peter Bünten 17 CH-4446 Buckten(CH)

(2) Erfinder: Eckhardt, Wolfgang, Dr. Breslaustrasse 14 D-7850 Lörrach(DE)

N-(2-Nitrophenyl)-2-aminopyrimidin-Derivate, deren Herstellung und Verwendung.

(57) Es werden neue N(2-Nitrophenyl)-2-amino-pyrimidin-Derivate der allgemeinen Formel I beschrieben,

worin R₁ und R₂ für Wasserstoff, NO₂ oder CF₃ stehen mit der Massgabe, dass nur R₁ oder R₂ für NO₂ stehen kann; R₃ Halogen bedeutet; R4 für Wasserstoff oder die Gruppe -C(O)R' steht, wobei R' unsubstituiertes oder durch Halogen, C1-C3-Alkoxy oder C1-C3-Alkylthio substituiertes C1-C4-Alkyl bedeutet; Rs, Rs und R7 unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, Rhodano, C1-C12-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfoxyl, C₃-C₆-Alkenyl, C₃-C₆-Haloskenyl, C₃-C₆-Alkinyl, C3-C6-Haloalkinyl, C3-C6-Alkenyloxy, C3-C6-Haloalkenyloxy, C3-C8-Alkenylthio, C3-C8-Alkinyloxy, C3-C8-Haloalkinyloxy, durch Halogen, Cyano und/oder C1-C4-Alkoxy substituiertes C1-C8-Alkyl, unsubstituiertes oder durch Halogen substituiertes C1-C8-Alkoxy, dessen Alkyiteil gegebenenfalls durch ein oder mehrere einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe Q-(E),-(X),m stehen, wobei n für 0 oder 1 steht, m für 0 oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, C₁-C₃-Alkyl, CF₃ und/oder C₁-C₃-Alkoxy substituiertes Phenyl oder einen gesättigten oder ungesättigten heterocyclischen Rest mit einem oder mehreren Heteroatom steht, E eine C₁-C₃ Alkylenbrücke bedeutet und X für Sauerstoff oder Schwefel steht.

Es werden ferner Methoden zur Herstellung dieser Produkte offenbart sowie agrochemische Mittel, die als Wirkstoff eine dieser Verbindungen enthalten. Ferner wird ihr Einsatz auf dem Agrargebiet bzw. verwandten Gebieten beschrieben.

CIBA-GEIGY AG
Basel (Schweiz)

5-14515/+

N-(2-Nitrophenyl)-2-aminopyrimidin-Derivate, deren Herstellung und Verwendung

Die vorliegende Erfindung betrifft neue N(2-Nitrophenyl)-2-aminopyrimidin-Derivate der nachstehenden Formel I.

Die Erfindung betrifft ferner die Herstellung dieser Substanzen sowie agrochemische Mittel, die als Wirkstoff mindestens eine dieser Verbindungen enthalten. Die Erfindung betrifft ebenso die Herstellung der genannten Mittel sowie die Verwendung der Wirkstoffe oder der Mittel zur Bekämpfung von schädlichen Mikroorganismen, vorzugsweise pflanzenschädigenden Pilzen und Bakterien.

Bei den erfindungsgemässen Verbindungen handelt es sich um solche der allgemeinen Formel I:

$$R_{2} \xrightarrow{R_{1}} NO_{2}$$

$$R_{1} \xrightarrow{R_{4}} NO_{2} \xrightarrow{R_{7}} R_{7}$$

$$R_{1} \xrightarrow{R_{4}} R_{5}$$

$$R_{1} \xrightarrow{R_{4}} R_{5}$$

worin

 R_1 und R_2 für Wasserstoff, NO_2 oder CF_3 stehen, mit der Massgabe, dass nur R_1 oder R_2 für NO_2 stehen kann;

R₃ Halogen bedeutet;

R₄ für Wasserstoff oder die Gruppe -C(O)R' steht, wobei R' unsubstituiertes oder durch Halogen, C₁-C₃-Alkoxy oder C₁-C₃-Alkylthio substituiertes C₁-C₄-Alkyl bedeutet;

C:

R₅, R₆ und R₇ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, Rhodano, C₁-C₁₂-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfoxyl, C₃-C₆-Alkenyl, C₃-C₆-Haloalkenyl, C₃-C₆-Alkinyl, C₃-C₆Haloalkinyl, C₃-C₆-Alkenyloxy, C₃-C₆-Haloalkenyloxy, C₃-C₆-Alkenylthio, C₃-C₆-Alkinyloxy, C₃-C₆-Haloalkinyloxy, durch Halogen, Cyano und/oder C1-C4-Alkoxy substituiertes C1-C8-Alkyl, unsubstituiertes oder durch Halogen substituiertes C₁-C₈-Alkoxy, dessen Alkylteil gegebenenfalls durch ein oder mehrere einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe $Q-(E)_n-(X)_m$ stehen, wobei n für 0 oder 1 steht, m für 0 oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, C1-C3-Alkyl, CF3 und/oder C1-C3-Alkoxy substituiertes Phenyl oder einen gesättigten oder ungesättigten heterocyclischen Rest mit einem oder mehreren Heteroatomen steht, E eine C₁-C₃-Alkylenbrücke bedeutet und X für Sauertoff oder Schwefel steht.

Unter dem Begriff Alkyl selbst oder als Bestandteil eines anderen Substituenten, wie Alkoxy, Haloalkyl, Haloalkoxy etc., sind je nach Zahl der angegebenen Kohlenstoffatome beispielsweise die folgenden geradkettigen oder verzweigten Gruppen zu verstehen: Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl usw. sowie ihre Isomeren, wie z.B. Isopropyl, Isobutyl, tert.-Butyl, Isopentyl usw. Die Vorsilbe Halo in der Bezeichnung eines Substituenten bedeutet hier und im folgenden, dass dieser Substituent einfach bis perhalogeniert auftreten kann. Halogen und Halo stehen stellvertretend für Fluor, Chlor, Brom oder Jod. Haloalkyl steht somit für einen einfach bis perhalogenierten Alkylrest, wie z.B. CHC1₂, CH₂F, CC1₃, CH₂C1, CHF₂, CH₂CH₂Br, C₂C1₅, CHBr, CHBrC1 usw., vorzugsweise für CF3. Alkenyl steht z.B. für Propenyl-(1), Allyl, Butenyl-(1), Butenyl-(2) oder Butenyl-(3) sowie Ketten mit mehreren Doppelbindungen. Cycloalkyl steht je nach Zahl der genannten Kohlenstoffatome z.B. für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl usw. Alkinyl bedeutet z.B. Propinyl-(2), Propargyl, Butinyl-(1), Butinyl-(2) usw., vorzugsweise Propargyl.

Unter einem gesättigten oder ungesättigten heterocyclischen Rest mit einem oder mehreren Heteroatomen soll hier und im folgenden vorzugsweise ein gesättigter oder ungesättigter fünf- oder sechsgliedriger Heterocyclus verstanden werden mit ein bis drei gleichen oder verschiedenen Heteroatomen, wie z.B. Sauerstoff, Stickstoff oder Schwefel. Typische Vertreter derartiger Heterocyclen sind: Tetrahydrofuran, Furan, Tetrahydrothiophen, Thiophen, Pyrrolidin, Pyrrol, Pyrrolin, Pyrazol, Imidazol, Pyrazolin, Oxazol, Thiazol, Isoxazol, Isothiazol, Pyran, Dihydropyran, Tetrahydropyran, Thiopyran, Dihydrothiopyran, Tetrahydropyran, Tetrahydropyridazin, Tetrahydropyridazin, Pyrimidin, Dihydropyrimidin, Tetrahydropyrimidin, Pyrazin, Dihydropyrimidin, Tetrahydropyrimidin, Tetrahydropyrazin, Tetrahydropyrazin, Morpholin, Thiazin, Dihydrothiazin, Tetrahydrothiazin, Piperazin und Triazin. C₁-C₃-Alkylen steht z.B. für folgende Gruppen: -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH(CH₃)-CH₂-, -CH(CH₃)-, -CH₃-, -CH(CH₃)-, -CH(CH₃)-, -CH(CH₃-, -CH₃-, -CH₃-, -CH

Die Verbindungen der Formel I sind bei Raumtemperatur Oele, Harze oder überwiegend kristalline Feststoffe, die sich durch sehr wertvolle biozide Eigenschaften auszeichnen. Sie lassen sich beispielsweise auf dem Agrarsektor oder verwandten Gebieten präventiv und kurativ zur Bekämpfung phytopathogen Schädlingen, wie z.B. Pilzen oder Bakterien einsetzen. Die erfindungsgemässen Wirkstoffe der Formel I zeichnen sich in weiten Anwendungskonzentrationen durch eine hohe biozide Aktivität und grosse Wirkungsbreite aus und können problemlos insbesondere im Agrarbereich eingesetzt werden.

Folgende Wirkstoffgruppen sind auf Grund ihrer ausgeprägten bioziden, insbesondere pflanzenfungiziden Aktivität bevorzugt:

Gruppe Ia: Verbindungen der Formel I,

worin R_1 , R_2 , R_3 und R_4 die unter Formel I angegebenen Bedeutungen haben und R_5 , R_6 und R_7 unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, $C_1^{-C_6}$ -Alkyl, Cyclopentyl, Cyclohexyl, $C_1^{-C_3}$ -

-Alkylthio, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfoxyl, C_3 - C_4 -Alkenyl, Propargyl, durch Halogen, Cyano und/oder C_1 - C_3 -Alkoxy substituiertes C_1 - C_3 -Alkyl, C_1 - C_6 -Alkoxy, dessen Alkylteil durch ein bis 2 einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe Q- $(E)_n$ - $(X)_m$ -stehen, worin n für 0 oder 1 und m für 0 oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, Methyl, CF_3 oder Methoxy substituiertes Phenyl oder eine Pyridylgruppe steht, E für eine Methylenbrücke steht und X Sauerstoff oder Schwefel bedeutet.

Gruppe Ib: Verbindungen der Formel I,

worin R₁, R₂ und R₃ die unter Formel I angegebenen Bedeutungen haben, R₄ für Wasserstoff steht und R₅, R₆ und R₇ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, C₁-C₆-Alkyl, Cyclopentyl, Cyclohexyl, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfoxyl, C₃-C₄-Alkenyl, Propargyl, durch Halogen, Cyano und/oder C₁-C₃-Alkoxy substituiertes C₁-C₃-Alkyl, C₁-C₆-Alkoxy, denen Alkylteil durch ein bis 2 einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe Q-(E)_n-(X)_m-stehen, worin n für O oder 1 und m für O oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, Methyl, CF₃ oder Methoxy substituiertes Phenyl oder eine Pyridylgruppe steht, E für eine Methylenbrücke steht und X Sauerstoff oder Schwefel bedeutet.

Gruppe Ic: Verbindungen der Formel I,

worin R₁ für NO₂ oder CF₃ steht; R₂ für NO₂ oder CF₃ steht; mit der Massgabe, dass nur R₁ oder R₂ NO₂ sein kann;

 R_3 Chlor bedeutet; R_4 für Wasserstoff steht; R_6 Wasserstoff bedeutet und R_5 und R_7 unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, $C_1^{-C_3}$ -Alkyl, $C_1^{-C_3}$ -Haloalkyl, $C_1^{-C_3}$ -Alkoxy, $C_1^{-C_3}$ -Haloalkoxy, unsubstituiertes oder durch Halogen substituiertes Phenoxy, $OCH_2^{OCH}_3$, $OC_2^{H_4}OCH_3$, $OCH_2^{OC}_2^{H_5}$, $OC_2^{H_4}OC_2^{H_5}$, $OC_2^{H_5}OC_2^{H_5}OC_2^{H_5}$, $OC_2^{H_5}OC_2^{H_$

Gruppe Id: Verbindungen der Formel I, worin

- R₁ für NO₂ oder CF₃ steht;
- R₂ für NO₂ oder CP₃ steht; mit der Massgabe, dass nur R₁ oder R₂ NO₂ sein kann;
- R, Halogen bedeutet;
- R₄ für Wasserstoff oder die Gruppe -C(0)R' steht, wobei R! unsubstituiertes oder durch Halogen, C₁-C₃-Alkoxy oder C₁-C₃-Alkylthio substituiertes C₁-C₄-Alkyl bedeutet;

R₅, R₆ und R₇ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, Rhodano, C₁-C₁₂-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfoxyl, C₃-C₆-Alkenyl, C₃-C₆-Haloalkenyl, C3-C6-Alkinyl, C3-C6-Haloalkinyl, durch Halogen, Cyano und/oder C_1 - C_4 -Alkoxy substituiertes C_1 - C_8 -Alkyl, unsubstituiertes oder durch Halogen substituiertes C_1 - C_8 -Alkoxy, dessen Alkylteil gegebenenfalls durch ein oder mehrere einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe $Q-(E)_n-(X)_m$ stehen, wobei n für 0 oder 1 steht, m für 0 oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, C₁-C₃-Alkyl, CF₃ und/oder C₁-C₃-Alkoxy substituiertes Phenyl oder einen gesättigten oder ungesättigten heterocyclischen Rest mit einem oder mehreren Heteroatomen steht, E eine C₁-C₃ Alkylenbrücke bedeutet und X für Sauerstoff oder Schwefel steht.

Besonders bevorzugte Einzelsubstanzen sind z.B.:

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4,6-dichlorpyrimidin (Verb. Nr. 1.1),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-chlor-6trichlormethylpyrimidin (1.11),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4,6-dimethylpyrimidin (1.15),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-trichlor-methyl-6-(methoxyethoxy)pyrimidin (1.6),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-methoxy-6-(2-pyridylthio)pyrimidin (1.2),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-trichlor-methyl-6-(ethoxyethoxyethoxy)pyrimidin (1.4),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-methoxy-6-(4"-chlorphenoxy)pyrimidin (1.8),

Die Verbindungen der Formel I werden erfindungsgemäss dadurch hergestellt, dass man eine Verbindung der Formel II

$$R_{2} \xrightarrow{NO_{2}} -Z$$

$$R_{1}$$
(II)

in Gegenwart einer Base mit einem Pyrimidin-Derivat der Formel III

$$Y - \bullet \qquad \qquad \begin{array}{c} R_7 \\ N - \bullet \\ R_5 \end{array}$$
 (III)

zu einer Verbindung der Formel I'

(=

$$R_{2} \xrightarrow{N_{2}} NN_{2} \xrightarrow{N_{1}} NH \xrightarrow{N_{2}} R_{5}$$

$$R_{1} \xrightarrow{N_{1}} R_{5}$$

$$R_{2} \xrightarrow{N_{1}} R_{5}$$

$$R_{1} \xrightarrow{N_{2}} R_{5}$$

(IV)

umsetzt, und letztere zur Herstellung N-acylierter Derivate mit einem reaktionsfähigen Derivat der Carbonsäure IV

K-acyliert, wobei die Substituenten R_1 bis R_7 die unter Formel I angegebenen Bedeutungen haben und Z und Y für NH_2 oder Halogen stehen, wobei in dem Fall, in dem Z für Halogen steht, Y NH_2 bedeutet und in dem Fall in dem Z für NH_2 steht, Y Halogen bedeutet.

Für die Herstellung der Verbindungen der Formel I bzw. I' sind folgende Reaktionsbedingungen vorteilhaft:

Die N-Alkylierung von (II) mit (III) zu (I'), sowie die N-Acylierung von (I') mit (IV) zu (I) erfolgen unter Halogenwasserstoffabspaltung. Die Reaktionstemperaturen liegen bei der N-Alkylierung zwischen -20° und 150°C, vorzugsweise -20° und +30°C, bei der N-Acylierung zwischen 0° und +180°C, vorzugsweise 0° und 150°C bzw. am Siedepunkt des Lösungsmittels bzw. Lösungsmittelgemisches. In beiden Fällen ist die Verwendung von säurebindenden Mitteln bzw. Kondensationsmitteln vorteilhaft. Als solche kommen organische und anorganische Basen in Betracht, z.B. tertiäre Amine wie Trialkylamine (Trimethylamin, Triethylamin, Tripropylamin usw.), Pyridin und Pyridinbasen (4-Dimethylaminopyridin, 4-Pyrrolidylaminopyridin usw.), Oxide und Hydroxide, Carbonate und Hydrogencarbonate von Alkali- und Erdalkalimetallen sowie Alkaliacetate.

Entstehender Halogenwasserstoff kann in manchen Fällen auch mittels Durchleiten von Inertgas, z.B. Stickstoff aus dem Reaktionsgemisch vertrieben werden.

Die Reaktionen können in Anwesenheit von reaktionsinerten Lösungsoder Verdünnungsmitteln durchgeführt werden. In Frage kommen beispielsweise aliphatische und aromatische Kohlenwasserstoffe wie
Benzol, Toluol, Xylole, Petrolether; halogenierte Kohlenwasserstoffe
wie Chlorbenzol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Tetrachlorethylen; Ether und etherartige Verbindungen
wie Dialkylether (Diethylether, Diisopropylether, tert.-Butylmethylether usw.), Anisol, Dioxan, Tetrahydrofuran; Nitrile wie Acetonitril, Pripionitril; N,N-dialkylierte Amide wie Dimethylformamid;

(}

Dimethylsulfoxid; Ketone wie Aceton, Diethylketon, Methylethylketon und Gemische solcher Lösungsmittel untereinander. In manchen Fällen kann das Acylierungs- oder Alkylierungsmittel selbst als Lösungs-mittel dienen.

Die Gegenwart eines Reaktionskatalysators wie Dimethylformamid kann von Vorteil sein.

Die Reaktion (II) und (III) kann auch in einem wässrigen Zweiphasensystem nach dem allgemein bekannten Prinzip der Phasentransferkatalyse durchgeführt werden.

Für die organische, mit Wasser nicht mischbare Phase kommen dabei z.B. folgende Lösungsmittel im Frage: Aliphatische und aromatische Kohlenwasserstoffe, wie Pentan, Hexan, Cyclohexan, Petrolether, Ligroin, Benzol, Toluol, Xylole usw., halogenierte Kohlenwasserstoffe, wie Dichlormethan, Chloroform, Tetrachlorkohlenstoff, Ethylendichlorid, 1,2-Dichlorethan, Tetrachlorethylen usw. oder aliphatische Ether, wie Diethylether, Diisopropylether, t-Butylmethylether usw.. Beispiele geeigneter Phasentransfer-Katalysatoren sind: Tetraalkylammoniumhalogenide, -hydrogensulfate oder -hydroxide wie Tetrabutylammoniumchlorid, -bromid; Tetrapropylammoniumchlorid, -bromid, -jodid; usw.. Als Phasentransfer-Katalysatoren kommen auch Phosphonium-Salze in Betracht. Die Reaktionstemperaturen liegen im allgemeinen zwischen -30° und 130°C, bzw. am Siedepunkt des Lösungsmittels oder Lösungsmittelgemisches.

Im übrigen kann bei der Herstellung aller hierin genannten Ausgang-, Zwischen- und Endprodukte können grundsätzlich, sofern nicht ausdrücklich im einzelnen spezifiziert, ein oder mehrere reaktions- inerte Lösungs- oder Verdünnungsmittel anwesend sein. In Frage kommen beispielsweise aliphatische und aromatische Kohlenwasserstoffe wie Benzol, Toluol, Xylole, Petrolether; halogenierte Kohlenwasserstoffe wie Chlorbenzol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Tetrachlorethylen; Ether und etherartige Ver-

bindungen wie Dialkylether (Diethylether, Diisopropylether, tert.—Butylmethylether usw.), Anisol, Dioxan, Tetrahydrofuran; Nitrile wie Acetonitril, Propionitril; N,N-dialkylierte Amide wie Dimethylformamid; Dimethylsulfoxid; Ketone wie Aceton, Diethylketon, Mcthylethylketon und Gemische solcher Lösungsmittel untereinander. In manchen Fällen kann es auch von Vorteil sein, wenn die Reaktion oder Teilschritte einer Reaktion unter Schutzgasatmosphäre und/oder absoluten Lösungsmitteln durchgeführt werden. Als Schutzgase eignen sich inerte Gase wie Stickstoff, Helium, Argon oder in gewissen Fällen auch Kohlendioxid.

Das beschriebene Herstellungsverfahren ist,einschliesslich aller Teilschritte, ein wichtiger Bestandteil der vorliegenden Erfindung.

Es wurde überraschend festgestellt, dass Verbindungen der Formel I ein für praktische Bedürfnisse sehr günstiges biozides Spektrum gegen Pilze und Bakterien insbesondere gegen phytopathogene Pilze und Bakterien aufweisen. Sie besitzen sehr vorteilhafte kurative, systemische und insbesondere präventive Eigenschaften und lassen sich zum Schutz von zahlreichen Kulturpflanzen einsetzen. Mit den Wirkstoffen der Formel I können an Pflanzen oder an Pflanzenteilen (Früchte, Blüten, Laubwerk, Stengel, Knollen, Wurzeln) von unterschiedlichen Nutzkulturen die auftretenden Schädlinge eingedämmt oder vernichtet werden, wobei auch später zuwachsende Pflanzenteile vor phytopathogenen Mikroorganismen und Insekten verschont bleiben. Ferner können Akarina und unerwünschte Pflanzenarten erfolgreich mit den Wirkstoffen der Formel I bekämpft werden.

Als Mikrobizide sind die Wirkstoffe der Formel I z.B. gegen die den folgenden Klassen angehörenden phytopathogenen Pilze wirksam: Fungi imperfecti (z.B. Botrytis, Helminthosporium, Fusarium, Septoria, Cercospora und Alternaria); Basidiomyceten (z.B. die Gattungen Hemileia, Rhizocotonia, Puccinia); insbesondere wirken sie gegen die Klasse der Ascomyceten (z.B. Venturia, Podosphaera, Erysiphe, Monilinia, Uncinula). Ueberdies wirken die Verbindungen der Formel I systemisch. Sie können ferner als Beizmittel zur Behandlung von Saatgut (Früchte,

(∄

Knollen, Körner) und Pflanzenstecklingen zum Schutz von Pilzinfektionen sowie gegen im Edrboden auftretende phytopathogene Pilze eingesetzt werden.

Die Erfindung betrifft somit auch Schädlingsbekämpfungsmittel sowie deren Verwendung auf den Agrarsektor oder verwandten Gebieten.

Darüberhinaus schliesst die vorliegende Erfindung auch die Herstellung dieser Mittel ein, die gekennzeichnet ist durch das innige
Vermischen der Aktivsubstanz mit einem oder mehreren hierin beschriebenen Substanzen bzw. Substanzgruppen. Eingeschlossen ist auch
ein Verfahren zur Behandlung von Pflanzen, das sich durch Applikation
der Verbindungen der Formel I bzw. der neuen Mittel auszeichnet.

Als Zielkulturen für den hierin offenbarten mikrobiziden Einsatz gelten im Rahmen dieser Erfindung beispielsweise folgende Pflanzenarten:

Getreide; (Weizen, Gerste, Roggen, Hafer, Reis, Sorghum und Verwandte); Rüben: (Zucker- und Futterrüben); Kern-, Stein- und Beerenobst: (Aepfel, Birnen, Pflaumen, Pfirsiche, Mandeln, Kirschen, Erd-,
Him- und Brombeeren); Hülsenfrüchte: (Bohnen, Linsen, Erbsen, Soja);

Oelkulturen: (Raps, Senf, Mohn, Oliven, Sonnenblumen, Kokos, Rizinus,
Kakao, Erdnüsse); Gurkengewächse: (Kürbis, Gurken, Melonen); Fasergewächse: (Baumwolle, Flachs, Hanf, Jute); Citrusfrüchte: (Orangen,
Zitronen, Pampelmusen, Mandarinen); Gemüsesorten: (Spinat, Kopfsalat,
Spargel, Kohlarten, Möhren, Zwiebeln, Tomaten, Kartoffeln, Paprika);
Lorbeergewächse: (Avocado, Cinnamonum, Kampfer) oder Pflanzen wie Mais,
Tabak, Nüsse, Kaffee, Zuckerrohr, Tee, Weinreben, Hopfen, Bananenund Naturkautschukgewächse sowie Zierpflanzen (Compositen).

Wirkstoffe der Formel I werden üblicherweise in Form von Zusammensetzungen verwendet und können gleichzeitig oder nacheinander mit
weiteren Wirkstoffen auf die zu behandelnde Fläche oder Pflanze
gegeben werden. Diese weiteren Wirkstoffe können sowohl Düngemittel,
Spurenelement-Vermittler oder andere das Pflanzenwachstum beeinflussende Präparate sein. Es können aber auch selektive Herbizide,
Insektizide, Fungizide, Bakterizide, Nematizide, Molluskizide oder

Gemische mehrerer dieser Präparate sein, zusammen mit gegebenenfalls weiteren in der Formulierungstechnik üblichen Trägerstoffen, Tensiden oder anderen applikationsfördernden Zusätzen.

Geeigente Träger und Zusätze können fest oder flüssig sein und entsprechen den in der Formulierungstechnik zweckdienlichen Stoffen, wie z.B. natürlichen oder regenerierten mineralischen Stoffen, Lösungs-, Dispergier-, Netz-, Haft-, Verdickungs-, Binde- oder Düngemitteln.

Ein bevorzugtes Verfahren zum Aufbringen eines Wirkstoffes der Formel I bzw. eines agrochemischen Mittels, das mindestens einen dieser Wirkstoffe enthält, ist das Aufbringen auf das Blattwerk (Blattapplikation). Anzahl der Applikationen und Aufwandmenge richten sich dabei nach dem Befallsdruck für den entsprechenden Erreger (Pilzsorte). Die Wirkstoffe der Formel I können aber auch über den Erdboden durch das Wurzelwerk in die Pflanze gelangen (systemische Wirkung), indem man den Standort der Pflanze mit einer flüssigen Zubereitung tränkt oder die Substanzen in fester Form in den Boden einbringt, z.B. in Form von Granulat (Bodenapplikation). Die Verbindungen der Formel I können aber auch auf Samenkörner aufgebracht werden (Coating), indem man die Körner entweder mit einer flüssigen Zubereitung des Wirkstoffs tränkt oder sie mit einer festen Zubereitung beschichtet. Darüberhinaus sind in besonderen Fällen weitere Applikationsarten möglich, so z.B. die gezielte Behandlung der Pflanzenstengel oder der Knospen.

Die Verbindungen der Formel I werden dabei in unveränderter Form oder vorzugsweise zusammen mit den in der Formulierungstechnik üblichen Hilfsmittel eingesetzt und werden daher z.B. zu Emulsionskonzentraten, streichfähigen Pasten, direkt versprühbaren oder verdünnbaren Lösungen, verdünnten Emulsionen, Spritzpulvern, löslichen Pulvern, Stäubemitteln, Granulaten, durch Verkapselungen in z.B. polymeren Stoffen in bekannter Weise verarbeitet. Die Anwendungsverfahren wie Versprühen, Vernebeln, Verstäuben, Verstreuen, Bestreichen oder Giessen werden gleich wie die Art der Mittel den angestrebten Zielen und den gegebenen

 \bigcirc

Verhältnissen entsprechend gewählt. Günstige Aufwandmengen liegen im allgemeinen bei 50 g bis 5 kg Aktivsubstanz (AS) je ha; bevorzugt 100 g bis 2 kg AS/ha, insbesondere bei 200 g bis 600 g AS/ha.

Die Formulierungen d.h. die den Wirkstoff der Formel I und gegebenenfalls einen festen oder flüssigen Zusatzstoff enthaltenden Mittel,
Zubereitungen oder Zusammensetzungen werden in bekannter Weise hergestellt, z.B. durch inniges Vermischen und/oder Vermahlen der Wirkstoffe mit Streckmitteln, wie z.B. mit Lösungsmitteln, festen Trägerstoffen, und gegebenenfalls oberflächenaktiven Verbindungen
(Tensiden).

Als Lösungsmittel können in Frage kommen: Aromatische Kohlenwasserstoffe, bevorzugt die Fraktionen C₈ bis C₁₂, wie z.B. Xylolgemische oder substituierte Naphthaline, Phthalsäureester wie Dibutyl- oder Dioctylphthalat, aliphatische Kohlenwasserstoffe wie Cyclohexan oder Paraffine, Alkohole und Glykole sowie deren Ether und Ester, wie Ethanol, Ethylenglykol, Ethylenglykolmonomethyl- oder Ethylether, Ketone wie Cyclohexanon, stark polare Lösungsmittel wie N-Methyl-2-pyrrolidon, Dimethylsulfoxid oder Dimethylformamid, sowie gegebenenfalls epoxydierte Pflanzenöle wie epoxydiertes Kokosnussöl oder Sojaöl; oder Wasser.

Als feste Trägerstoffe, z.B. für Stäubemittel und dispergierbare Pulver, werden in der Regel natürliche Gesteinsmehle verwendet, wie Calcit, Talkum, Kaolin, Montmorillonit oder Attapulgit. Zur Verbesserung der physikalischen Eigenschaften können auch hochdisperse Kieselsäure oder hochdisperse saugfähige Polymerisate zugesetzt werden. Als gekörnte, adsorptive Granulatträger kommen poröse Typen wie z.B. Bimsstein, Ziegelbruch, Sepiolit oder Bentonit, als nicht sorptive Trägermaterialien z.B. Calcit oder Sand in Frage. Darüberhinaus kann eine Vielzahl von vorgranulierten Materialien anorganischer oder organischer Natur wie insbesondere Dolomit oder zerkleinerte

Pflanzenrückstände verwendet werden. Besonders vorteilhafte, applikationsfördernde Zuschlagstoffe, die zu einer starken Reduktion der Aufwandmenge führen können, sind ferner natürliche (tierische oder pflanzliche) oder synthetische Phospholipide aus der Reihe der Kephaline und Lecithine, wie z.B. Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylcholin, Sphingomyelin, Phosphatidylinosit, Phosphatidylglycerin, Lysolecithin, Plasmalogene oder Cardiolipin, die man beispielsweise aus tierischen oder pflanzlichen Zellen, insbesondere aus Hirn, Herz, Leber, Eidotter oder Sojabohnen gewinnen kann. Verwendbare Handelsmischungen sind z.B. Phosphatidylcholin-Mischungen. Synthetische Phospholipide sind z.B. Dioctanoylphosphatidylcholin und Dipalmitoylphosphatidylcholin.

Als oberflächenaktive Verbindungen kommen je nach Art des zu formulierenden Wirkstoffes der Formel I nichtionogene, kation- und/oder anionaktive Tenside mit guten Emulgier-, Dispergier- und Netzeigenschaften in Betracht. Unter Tensiden sind auch Tensidgemische zu verstehen.

Geeignete anionische Tenside können sowohl sog. wasserlösliche Seifen, als auch wasserlösliche synthetische oberflächenaktive Verbindungen sein.

Als Seifen seien die Alkali-, Erdalkali- oder gegebenenfalls substituierten Ammoniumsalze von höheren Fettsäuren (C₁₀-C₂₂), wie z.B. die Na- oder K-Salze der Oel- oder Stearinsäure, oder von natürlichen Fettsäuregemischen, die z.B. aus Kokosnuss- oder Talgöl gewonnen werden können. Ferner sind auch die Fettsäure-methyllaurinsalze zu erwähnen.

Häufiger werden jedoch sog. synthetische Tenside verwendet, insbesondere Fettsulfonate, Fettsulfate, sulfonierte Benzimidazolderivate oder Alkylsulfonate.

(:

Die Fettsulfonate oder -sulfate liegen in der Regel als Alkali-, Erdalkali- oder gegebenenfalls substituierte Ammoniumsalze vor und weisen einen Alkalirest mit 8 bis 22 C-Atomen auf, wobei Alkyl auch den Alkylteil von Acylresten einschliesst, z.B. das Na- oder Ca-Salz der Ligninsulfonsäure, des Dodecylschwefelsäureesters oder eines aus natürlichen Fettsäuren hergestellten Fettalkoholsulfatgemisches. Hierher gehören auch die Salze der Schwefelsäureester und Sulfonsäuren von Fettalkohol-Ethylenoxyd-Addukten. Die sulfonierten Benzimidazolderivate enthalten vorzugsweise 2-Sulfonsäuregruppen und einen Fettsäurerest mit 8-22 C-Atomen. Alkylarylsulfonate sind z.B. die Na-, Ca- oder Triethanolaminsalze der Dodecylbenzolsulfonsäure, der Dibutylnaphthalinsulfonsäure, oder eines Naphthalinsulfonsäure-Formaldehydkondensationsproduktes.

Ferner kommen auch entsprechende Phosphate wie z.B. Salze des Phosphorsäureesters eines p-Nonylphenol-(4-14)-Ethylenoxyd-Adduktes in Frage.

Als nichtionische Tenside kommen in erster Linie Polyglykoletherderivate von aliphatischen oder cycloaliphatischen Alkoholen, gesättigten oder ungesättigten Fettsäuren und Alkylphenolen in Frage, die 3 bis 30 Glykolethergruppen und 8 bis 20 Kohlenstoffatome im (aliphatischen) Kohlenwasserstoffrest und 6 bis 18 Kohlenstoffatome im Alkylrest der Alkylphenole enthalten können.

Weitere geeignete nichtionische Tenside sind die wasserlöslichen,
20 bis 250 Aethylenglykoläthergruppen und 10 bis 100 g Propylenglykolethergruppen enthaltenden Polyethylenoxidaddukte an Polypropylenglykol, Aethylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit 1 bis 10 Kohlenstoffatomen in der Alkylkette.
Die genannten Verbindungen enthalten üblicherweise pro PropylenglykolEinheit 1 bis 5 Ethylenglykoleinheiten.

Als Beispiele nichtionischer Tenside seien Nonylphenolpolyethoxy-ethanole, Ricinusölpolyglykolether, Polypropylen-Polyethylenoxydaddukte, Tributylphenoxypolyethylenethanol, Polyethylenglykol und Octylphenoxypolyethoxyethanol erwähnt.

Ferner kommen auch Fettsäureester von Polyoxyethylensorbitan wie das Polyoxyethylensorbitan-trioleat in Betracht.

Bei den kationischen Tensiden handelt es sich vor allem um quartäre Ammoniumsalze, welche als N-Substituenten mindestens einen Alkylrest mit 8 bis 22 C-Atomen enthalten und als weitere Substituenten niedrige, gegebenenfalls halogenierte Alkyl-, Benzyl- oder niedrige Hydroxyalkylreste aufweisen. Die Salze liegen vorzugsweise als Halogenide, Methylsulfate oder Ethylsulfate vor, z.B. das Stearyl-trimethylammoniumchlorid oder das Benzyldi(2-chlorethyl)ethyl-ammoniumbromid.

Die in der Formulierungstechnik gebräuchlichen Tenside sind u.a. in folgenden Publikationen beschrieben:

"Mc Cutcheon's Detergents and Emulsifiers Annual" BC Publishing Corp., Ringwood New Jersey, 1981; Helmut Stache "Tensid-Taschenbuch" Carl Hanser-Verlag München/Wien 1981.

Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99%, insbesondere 0,1 bis 95% Wirkstoff der Formel I, 99,9 bis 1%, insbesondere 99,8 bis 5% eines festen oder flüssigen Zusatzstoffes und 0 bis 25%, insbesondere 0,1 bis 25% eines Tensides.

Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbaucher in der Regel verdünnte Mittel.

Die Mittel können auch weitere Zusätze wie Stabilisatoren, Entschäumer, Viskositätsregulatoren, Bindemittel, Haftmittel sowie Dünger oder andere Wirkstoffe zur Erzielung spezieller Effekte enthalten.

Derartige agrochemische Mittel sind ein Bestandteil der vorliegenden Erfindung.

Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung, ohne dieselbe einzuschränken. Temperaturen sind in Celsiusgraden angegeben. Prozente und Teile beziehen sich auf das Gewicht. Darüberhinaus werden folgende Symbole verwendet:

h = Stunde; d = Tag; min = Minute; RT = Raumtemperatur;
 N - Normalität; abs = absolut, wasserfrei, DMSO = Dimethylsulfoxid;
 DMF = Dimethylformamid. Druckangaben erfolgen in Millibar mb, oder
 Bar b.

Beispiel H1: Herstellung von

(:

 \bigcirc

$$F_3^{C-\bullet} \stackrel{NO_2}{\stackrel{\bullet}{\longrightarrow}} \stackrel{N=\bullet}{\stackrel{\bullet}{\longrightarrow}} \stackrel{C1}{\stackrel{N}{\longrightarrow}} \stackrel{(\text{Verb. Nr. 1.1})}{\stackrel{\bullet}{\longrightarrow}} \stackrel{NO_2}{\stackrel{\bullet}{\longrightarrow}} \stackrel{C1}{\stackrel{\bullet}{\longrightarrow}} \stackrel{(\text{Verb. Nr. 1.1})}{\stackrel{\bullet}{\longrightarrow}} \stackrel$$

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4,6-dichlor-pyrimidin

Eine Lösung von 15 Teilen 4,6-Dichlor-2-amino-pyrimidin in 400 ml Tetrahydrofuran wird bei Raumtemperatur unter Rühren portionsweise mit 13,2 Teilen 85Zigen, pulverisiertem Kaliumhydroxid versetzt, wobei die Temperatur innerhalb einer halben Stunde auf 23° ansteigt. Das Reaktionsgemisch wird auf 5° abgekühlt, und zu der beigen Suspension werden innerhalb von 1 Stunde 28 Teile 2,4-Dichlor-3,5-dinitro-benzotrifluorid in 80 ml Tetrahydrofuran zugetropft, wobei sich die Suspension rot verfärbt. Nach 15 stündigem Rühren bei Raumtemperatur

wird das Reaktionsgemisch auf Eiswasser gegossen, mit 10 ml konzentrierter Salzsäure angesäuert und zweimal mit je 200 ml Essigsäureethylester extrahiert. Die vereinigten Extrakte werden zweimal mit je 100 ml Wasser gewaschen, über Natriumsulfat getrocknet, filtriert und eingedampft. Die zurückbleibende Kristallmasse wird aus 400 ml Isopropanol umkristallisiert; gelbe Kristalle mit Smp. 199-200°.

Analog den vorstehend beschriebenen Arbeitsweisen werden auch die nachfolgend aufgezählten Verbindungen der Formel I hergestellt:

Tabelle 1: Verbindungen der Formel

Verb. Nr.	^R 5 .	R ₆	R ₇	physikalische Konstante [°C]
1.1	C1	н	C1	Smp. 198-200
1.2	осн ₃	н	-S-(2-Pyridyl)	Smp. 67-70
1.3	н	н	н	Smp. 189-191
1.4	cc1 ₃	н	$-0c_2H_4Oc_2H_4Oc_2H_5$	Smp. 54-59
1.5	CH ₃	н	C1	Smp. 172-174
1.6	cc1 ₃	н	-ос ₂ н ₄ осн ₃	Smp. 130-133
1.7	CH ₃	н	осн _з	Smp. 209-210 Zers.
1.8	OCH ³	н	-0-[C ₆ H ₄ C1(4)]	Smp. 53-58
1.9	C1	н	оснз	Smp. 180-181
1.10	осн ₃	н	-0-[C ₆ H ₄ C1(4)]	Smp. 133-137
1.11	C1	н	CC13	Smp. 161-163
1.12	cc1 ₃	н	-S-(2-Pyridy1)	Smp. 189-192,5
1.13	осн ₃	н	CH ₂ OCH ₃	Smp. 103-106
1.14	CH ₃	н	OCHF ₂	Smp. 147-148
1.15	CH ₃	н	CH ₃	Smp. 155-156
1.16	осн ₃	н	och ₃	Smp. 169-171
1.17	осн ₃	н	SC ₄ H ₉ -n	Smp. 103-104
1.18	CH ₃	н	н	Smp. 164-165
	<u> </u>	1	<u> </u>	<u> </u>

(:

Tabelle 1: (Fortsetzung)

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
1.19	CF ₃	CH ₃	Н	Smp. 126-129
1.20	CF ₃	н	CH ₃	Smp. 145-147
1.21	SCH ₃	CN	н	
1.22	осн ₃	. CN	н	Smp. 152-158
1.23	с ₂ н ₅	н	н	
1.24	H	OC ₄ H ₉ -i	н	
1.25	осн ₂ осн ₃	Н	OCH ₂ OCH ₃	
1.26	C1	J	2 3 Н	
1.27	J	н	J	
1.28	CH ³	CN	so ₂ cн ₃	*
1.29	OCH ^{3.}	J	CH ₂ F	ab 87° Zers.
1.30	с ₆ н ₅	н	H	
1.31	н	och ₃	н	
1.32	ос ₂ н ₅	н	СН ₂ F	Smp. 118-120
1.33	CH ₃	NO ₂	so ₂ ch ₃	
1.34	C4H9-n	NO.√	H &	
1.35	OCH ₃	н	OC ₂ H ₅	
1.36	СН ₃	Н	C ₃ H ₇ -n	
1.37	Br	Н	3 / H	
1.38	C1	न	H	
1.39	Cl	. H	s (o) CH ₃	
			3	

Tabelle 1: (Fortsetzung)

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
1.40	Н	о-с ₆ н ₅	Н	
1.41	C1	н	C6H13-n	
1.42	H	oc ₃ H ₇ -n	н	
1.43	oc ₂ H ₅	н	н	
1.44	och ₃	н	сн ₂ ос ₂ н ₅	Smp. 104-106
1.45	oc ₄ H ₉ -n	н	ос ₄ н ₉ -п	
1.46	C1	н	so ₂ сн ₃	
1.47	Cl	осн	н	
1.48	SC ₂ H ₅	н	sc ₂ H ₅	
1.49	CH ₃	н	sc ₆ H ₅	
1.50	сн ₂ осн ₃	н	н	
1.51	оснз	NO ₂	, н	
1.52	C1	н	CH ₂ C1	Harz
1.53	C1	^{ОС} 6 ^Н 5	н	
1.54	C1	CN	оснз	Smp. 211-212
1.55	осн	Cl	н	
1.56	C1	s(o)CH ₃	н	
1.57	н	SCH ₂ -C ₆ H ₅	н	
1.58	С ₆ н ₅	CH ₃	H	
1.59	scH3	н	н	
1.60	oc ₂ H ₅	NO ₂	H	

(#

Tabelle 1: (Fortsetzung)

Verb. Nr.	R ₅	^R 6	R ₇	physikalische Konstante [°C]
1.61	н	CH2-C6H5	Н	
1.62	C1	Н	с ₂ н ₅	S== 1/3 1/0
1.63	осн ₃	н	CH ₂ F	Smp. 147-148 Smp. 111-112
1.64	C1	н	oc ₂ H ₅	
1.65	СH ₂ OC ₂ H ₅	OC ₂ H ₅	. н	
1.66	н	SCH ₃	н	
1.67	och ₃	J	н	·
1.68	C1 .	so ₂ cH ₃	н	
1.69	осн ₃	F	н	·
1.70	C1	Н	SCN	
1.71	^C 2 ^H 5	н	C1	Smp. 147-148
1.72	C1	ос ₂ н ₅	н	
1.73	so2c2H5	Н	н	
1.74	C1	н	CH ₂ OCH ₃	
1.75	C 1	H		Smp. 97-98
1.76	C1	NO2	OCH ₂ CH=CH ₂ CH ₃	
1.77	н	C ₆ H ₅	H	
78	CH3	NO ₂	CH ₃ O	
.79	CH3	C ₂ H ₅	н 🔍	
.80	Br	н	CH ₃	
			3	

Tabelle 1: (Fortsetzung)

Verb.	R ₅	R ₆	R ₇	physikalische Konstante (°C)
1.81	cc1 ₃	н	cc1 ₃	
1.82	н	C1	н	
1.83	CH ₃	вН	нЧ	·
1.84	0C ₄ H ₉ -n	н	CH ₃	£.
1.85	C1	CH ₃	Н	
1.86	сн ₃	c1y	нQ	
1.87	н	NO ₂	н	semikristallin
1.88	Cl	Br	Cl	semikristallin
1.89	осн ₂ -с ₆ н ₅	н	F	
1.90	C1	н	oc ₃ H ₇ −i	
(1.91)	CH ₃	c1 ¥	сн ₃ Q	
1.92	н	S-C ₆ H ₅	н	
1.93	CH ₂ Br	Br	CH ₂ Br	
1.94	с ₂ н ₅	CH ₃	н	·
1.95	CH ₃ L	сиЧ	нО	
1.96	F	н	F	
1.97	н	F	н	
1.98	C1 .	СН ₂ -С ₆ Н ₅	н	
1.99	C ₆ H ₅	CN	н	
1.100	C1	CH ₂ C ₆ H ₅	Cl	
		· .		

Tabelle 1: (Fortsetzung)

Verb. Nr.	^R 5	R ₆	R ₇	physikalische Konstante [°C]
1.101	C1	SCH ₃	н	
1.102	Cl	C ₆ H ₅	C1	
1.103	CH ₃	NO ₂	SCH ₃	
1.104	C1	CH ₂ CH ₂ C1	CH ₃	
1.105	CH ₃	Br	C ₆ H ₅	
1.106	C1	с ₂ н ₅	cı	
1.107	ci [©]	Br	Сн ₃	
1.108	CH ₃	J	CH ₃	
1.109	C1	CH ₃	CH ₃	
1.110	сн3	Br ^t ∫	CH ₃ L	·
1.111	C1	с ₂ н ₅	CH ₃	
1.112	Cl	сн ₃	C1	
1.113	C1	C4H9-n	C1	
.114	C1 .	н	OCH ₂ C = CH	Smp. 129-130
.115	C1	CH ₂ C≡CH	с ₆ н ₅	
.116	оснз	CH ₃	CH ³	
.117	C1/S	CH2CH2CN'	CH ₃	
.118	Cl	осн3	сн ₂ осн ₃	
.119	C13	C1 ⁻	CH ₃	
.120	осн ₃	с ₂ н ₅	OCH ₃	
			-	

Tabelle 1: (Fortsetzung)

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante (°C)
1.121	CH ₃	Br	C ₃ H ₇ -n	·
1.122	C1	oc ₂ H ₅	Cl	
1.123	осн ₃	осн ₃	CH ₃	
1.124	ос ₂ н ₅	oc ₂ H ₅	ос ₂ н ₅	·
1.125	CH ₃	CN .	sch ₃	
1.126	C1	CN	CH ₃	
1.127	CH ₃	Br	sch ₃	
1.128	C1	C ₆ H ₄ C1(4)	C1	
1.129	C1	oc ₂ H ₅	CH2OC2H5	
1.130	СH ₃	Br	ос ₆ н ₅	
1.131	осн ₃	CH ₃	осн ₃	
1.132	SCH ₃	с ₆ н ₅	SCH ₃	
1.133	C1	осн	C1	
1.134	och ₃	осн ₃	CH ₂ OCH ₃	
1.135	C1	CH ₂ -C ₆ H ₅	осн	
1.136	осн ₃	Br	CH ₃	
1.137	C1	с ₂ н ₄ осн ₃	сн ³	
1.138	осн ₃	с ₂ н ₄ ос ₂ н ₅	сн ₃	
1.139	C1	C ₆ H ₄ (OCH ₃)(4)	C1	
1.140	C1	C ₅ H ₁₁ -n	C1	
1.141	C ₅ H ₁₁ -n	Н	н .	
1.142	CH ₃	CN	-s(o)CH ₃	

()

 Θ

Tabelle 1: (Fortsetzung)

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
1.143	C1	н	SCH3	zähe Masse
1.144	CH ₃	J	CH ₃	Harz
1.145	C1	н	SCH ₂ CH = CH ₂	Harz
1.146	C1	н	OCH ₂ CF ₃	
1.147	C1	C1	C1 2 3	·
1.148	C1	Br	OCH3	
1.149	C1	Br	oc ₂ H ₅	·
1.150	C1	Br	OC ₃ H ₇ -i	
1.151	C1	Br	OC ₄ H ₉ -sek.	
1.152	C1	Br	OCH ₂ CF ₃	·
1.153	C1	Br	OCH ₂ CH ₂ C1	
1.154	C1	Br	OCH ₂ CH ₂ Br	
1.155	C1	Br	OCHF ₂	
1.156	C1	Br	OCH ₂ CH ₂ OCH ₃	
1.157	C1	Br	SC ₂ H ₅	
1.158	C1	Br	SC ₃ H ₇ -i	
1.159	C1	Br	OC(CH ₃) ₂ C = CH	·
1.160	Cl	Br	OCH ₂ -Phenyl	
1.161	C1	Br	SCN	·
1.162	Cl	Br	OCH ₂ C ≡ CH	
1.163	C1	Br	OCH ₂ CH = CH ₂	

Tabelle 2: Verbindungen der Formel

Verb. Nr.	R ₃	R ₅	R ₆	R ₇	physikalische Konstante [°C]
2.1	F	C1	н	C1	Harz
2.2	J	C1	н	C1	Harz
2.3	Br	F	CH ₃	F	
2.4	Br	C1	CH ₃	C1	
2.5	F	C1	OC ₂ H ₅	C1	
2.6	J	с ₂ н ₅	H	н	
2.7	F	C1	^{СН} 2 ^{-С} 6 ^Н 5	C1	
2.8	Br	^{ОС} 2 ^Н 5	H	н	
2.9	Br	C1	NO.2	scн ₃	
2.10	F	Cl	C1	СН _З	
2.11	Br	C1	F	H	
2.12	F	sch ₃	CN	H	
2.13	F H	осн _з сн _з	CN H	н ^{СН} З	Smp. 200-202

Tabelle 3: Verbindungen der Formel

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
3.1	C1	н	OCH ₂ F	Harz
3.2	C1	н	C1	
3.3	SCH ₃	CN	. н	
3.4	осн ₃	CN	н	
3.5	CH ₃	CH ₃	н	
3.6	осн ₃	Br	н .	
3.7	ос _з н ₇ -і	н	ос _з н ₇ -і	
3.8	CH ₃	CN	н	
3.9	oc ₂ oc ₂ H ₅	н	СН _З	
3.10	sc ₂ H ₅	Н	CH ₃	
3.11	ос ₂ н ₅	Н	F	
3.12	осн ₃	ос ₂ н ₅	н	
3.13	осн ₃	J	Сн ₂ ғ	Harz
3.14	сн3	CN	S(0)CH ₃	
3.15	ос ₂ н ₅	н	CH ₃	
3.16	С ₄ Н ₉ -і	н	н	
3.17	C1	CH ₃	н	
3.18	.C1	· H	н	

Tabelle 3: (Fortsetzung)

Verb.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
3.19	с ₆ н ₅	CN	н	
3.20	н	СH ₂ -С ₆ H ₅	н	
3.21	CH ₃	CN	so ₂ cH ₃	
3.22	C ₃ H ₇ -n	н	н	
3.23	C1	осн ₃	Н	
3.24	сн ₂ осн ₃	н	CH ₃	
3.25	CHBr ₂	Br	н	
3.26	OCH ₃	осн ₃	H	
3.27	C1	н	sc ₂ H ₅	
3.28	CH ₃	NO ₂	so ₂ сн ₃	
3.29	sc ₃ H ₇ -i	Н	СН ₃	
3.30	C1	F	н	
3.31	ос ₂ н ₅	OCH ³	н	-
3.32	CH ₃	н	SC ₃ H ₇ -n	
3.33	осн3	н	н	
3.34	CH ₃	с ₂ н ₄ ос ₂ н ₅	н	
3.35	C1	н	so ₂ ch ₃	
3.36	oc ₂ H ₅	NO ₂	н	
3.37	осн3	F	H .	
3.38	CH3	Н	SCH ₃	
3.39	C4H9-n	н	CH3	
3.40	sc ₂ H ₅	н	н .	

<u>C</u>

Tabelle 3: (Fortsetzung)

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
3.41	C1	н	ос ₂ н ₅	
3.42	C1	SO ₂ CH ₃	н	
3.43	^C 3 ^H 7 ⁻ⁱ	н	н	
3.44	н	C ₄ H ₉ -n	н	
3.45	CH ₂ OCH ₃	och ₃	н	
3.46	н	CN	н	
3.47	C1	ос ₂ н ₅	н	
3.48	SO2C2H5	н		
3.49	CH ₃	н	о-с ₆ н ₅	
3.50	осн ₂ -с ₆ н ₅	н	F	
3.51	C1	н	scн ₃	
3.52	F	н .	F	
3.53	C1	^{СН} 2 ^{-С} 6 ^Н 5	с ₆ н ₅	
3.54	н	Br	н	
3.55	C1	SCH ₃	Н	
3.56	cc1 ₃	н	CC13	
3.57	н	с ₃ н ₇ -і	н	
3.58	СН ₃	H	CF ₃	
3.59	Cl	s-c ₆ H ₅	н	
3.60	oc ₃ H ₇ -i	Н	CH ₃	
			J	

Tabelle 3: (Fortsetzung)

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
3.61	C1	н	SCN	
3.62	сн ₂ -с ₆ н ₅	Н	CH ₃	
3.63	C1	^{СН} 2 ^{-С} 6 ^Н 5	C1	
3.64	SCH ₂ -C ₆ H ₅	Н	CH3	
3.65	C1	Br	C1	
3.66	C1	сн ₂ -с ₆ н ₅	сн ₃	
3.67	oc ₂ H ₅	н	CH ₂ F	Harz
3.68	C1	^С 6 ^Н 5	Cl	
3.69	_ C1	C1	C1	
3.70	H	СH ₃	н	
3.71	SCH ₂ -C ₆ H ₅	н	SCH ₂ -C ₆ H ₅	
3.72	och ₃	н	сн ₂ ос ₂ н ₅	Harz
3.73	C1	CH ₃	C1	
3.74	н	ос ₄ н ₉	н	
3.75	C1	ос ₂ н ₅	Cl	
3.76	C1	C1	сн ₃	
3.77	C1	C ₅ H ₉ -n	CH ₃	
3.78	SCH ₃	H	sch ₃	
3.79	. C1	с ₄ н ₉ -п	C1	
3.80	н	С ₄ Н ₉ -п ОС ₄ Н ₉ -sek.	н	

Tabelle 3: (Fortsetzung)

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
3.81	C1	Н	СН ₂ С1	
3.82	CH ₃	с ₆ н ₅	CH ₃	
3.83	CH ₃	CH ₃	CH ₃	
3.84	н	Cyclohexyl	н	
3.85	sc ₃ H ₇ -n	н	sc ₃ H ₇ -n	
3.86	н	ос ₂ н ₅	н	
3.87	C1	CN	OCH ₃	
3.88	OCH ₃	н	CH ₂ F	
3.89	осн ₃	осн ₃	осн ₃	
3.90	с ₂ н ₅	Н	C1	
3.91	CN	н	СН ₃	
3.92	C1	NO ₂	осн ₃	
3.93	н	ос ₂ н ₄ осн ₃	н	
3.94	C1	н	с ₆ н ₅	
3.95	CH ₃	сн ₂ -сн-сн ₂	CH ₃	
3.96	^C 6 ^H 5	н	C ₆ H ₅	
3.97	sc ₄ H ₉ -n	н	CH ₃	
3.98	CH ₃	Н	с ₆ н ₅	
3.99	Br	н	Br	
3.100	ос ₂ н ₅	н	ос ₂ н ₅	
			ر 2	

Tabelle 3: (Fortsetzung)

();

Verb.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
3.101	н	сн ₂ осн ₃	н	
3.102	C1	осн ₃	C1	
3.103	осн	н	SCH ₃	
3.104	C1	осн ₃	CH ₃	
3.105	C1	C ₃ H ₇ -n	С ₆ Н ₅	
3.106	C1	C ₆ H ₃ C1 ₂ (2,4)	C1	
3.107	C1	н	sc _{3^H7⁻ⁿ}	
3.108	C1	C ₆ H ₄ (CH ₃)(4)	C1	
3.109	Cl	Br	CH ₃	
3.110	C1	с ₂ н ₅	C1	
3.111	C 1	с ₆ н ₄ (осн ₃)(4)	C1	·
3.112	C1	CH ₃	с ₆ н ₅	
3.113	C ₆ H ₄ (CF ₃)(4)	CN	н	
3.114	C1	C ₆ H ₄ (NO ₂)(4)	C1	
3.115	Cl	н	SCH ₃	
3.116	C1	н	OCH ₂ CH = CH ₂	Harz
3.117	C ₆ H ₁₃ -n	н	н	
3.118	C1	н	OCH ₂ C≘ CH	
3.119	C1	н	SCH ₃	

Tabelle 3: (Fortsetzung)

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
3.120	C1	C1	осн ₃	
3.121	Cl	C1	OC ₂ H ₅	
3.122	Cl	C1	OC ₄ H ₉ -sek.	
3.123	C1	C1	OC ₄ H ₉ -tert.	
3.124	Cl	C1	OCH ₂ CF ₃	
3.125	Cl	C1	OCHF ₂	*
3.126	C1	Cl	OCH ₂ CH ₂ C1	
3.127	C1	C1	осн ₂ сн ₂ ос ₂ н ₅	
3.128	C1	Cl	$OC(CH_3)_2C = CH$	semikristallin
3.129	C1	C1	OCH ₂ -Pheny1	
3.130	C1	Cl	SCN	
3.131	C1	C1	sc ₂ H ₅	
3.132	C1	C1	sc ₃ H ₇ -i	
3.132	C1	Cl	OCH ₂ C ≡ CH	
3.133	C1	C1	OCH ₂ C = CH ₂	-

Tabelle 4: Verbindungen der Formel

Verb. Nr.	R ₁	R2	R ₃	R4	R5	R6	R7	physikalische Konstante [°C]
5.1	NO ₂	CF ₃	C1	с(о)сн ³	c1	н	C1	
5.2	CF3	NO ₂	C1	c(0) CH ₃	13	==	ជ	1
5.3	NO ₂	CF ₃	C1	C(0)CH2C1	CI	u_6H ⁵ 2	ជ	
5.4	NO ₂	c_{F_3}	13	c(0)cH ₂ ocH ₃	13	CH ₃	C1	
5.5	NO2	CF ₃	C1	c(0) CH ₃	ដ	0C ₂ H' ₅	CJ	
5.6	CF ₃	NO ₂	. CI	c(0)cH ₂ oc ₂ H ₅	C1	CH ₃	ជ	
5.7	CF ₃	NO ₂	C1	с(о)сн ₂ осн ₃	ฮ	CN	CH ₃	
5.8	NO ₂	CF ₃	C1	с(о)сн ₃	SCH ₃	CN	æ	
5.9	NO ₂	CF ₃	C1	c(0)cH ₃	OCH ₃	S	m	

Tabelle 5: Verbindungen der Formel

$$CF_3 - \sqrt{\begin{array}{c} & & \\ &$$

Verb. Nr.	R ₅	R ₆	R ₇	physikalische Konstante [°C]
5.1	C1	Н	SCH ₃	
5.2	C1	н	SCH ₂ CH = CH ₂	
5.3	C1	н	OCH ₂ CH = CH ₂	
5.4	C1	н	OCH ₂ C ≡ CH	
5.5	C1	Br	осн	
5.6	C1	Cl	oc ₂ H ₅	
5.7	C1	Br	OCH ₂ CF ₃	
5.8	C1	, C1	OCH ₂ CH ₂ C1	
5.9	C1	Cl	осн ₂ ғ	
5.10	Cl	C1	sc ₂ H ₅	
5.11	C1	C1	OC(CH ₃) ₂ C ≡ CH	
5.12	C1 `	Br	OCH ₂ -Phenyl	
5.13	Cl	Br	SCN	
5.14	Н	Cl	осн ₂ сн ₂ вг	
5.15	C1	Br	сн ₂ осн ₃	

sowie die Verbindung

zähe Masse Verb. Nr. 6.1

Formulierungsbeispiele für flüssige Wirkstoffe der Formel I (Z = Gewichtsprozent

Fl. Emulsions-Konzentrate	a)	b)	c)
Wirkstoff aus den Tabellen	25%	40%	50 %
Ca-Dodecylbenzolsulfonat	5%	8%	63
Ricinusöl-polyethylenglykolether (36 Mol Ethylenoxid)	5%	-	-
Tributylphenoyl-polyethylenglykol- ether (30 Mol Ethylenoxid)	-	12%	47
Cyclohexanon	-	15%	20%
Xylolgemisch	65 Z	25%	20%

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

F2. Lösungen	a)	ъ)	c)	d)
Wirkstoff aus den Tabellen	80 %	10%	5 %	95 %
Ethylenglykol-monomethyl-ether	20%	-	_	_
Polyethylenglykol M G 400	-	70%	_	
N-Methyl-2-pyrrolidon		20%	_	_
Epoxydiertes Kokosnussöl	-	_	1%	5 %
Benzin (Siedegrenzen 160-190°C)	-	_	94%	_
(MG = Molekulargewicht)				

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

F3. Granulate	a)	b)
Wirkstoff aus den Tabellen	5%	10%
Kaolin	94%	_
Hochdisperse Kieselsäure	17	-
Attapulgit	_	90%

Der Wirkstoff wird in Methylenchlorid gelöst, auf den Träger aufgesprüht und das Lösungsmittel anschliessend im Vakuum abgedampft.

F4. Stäubemittel	a) .	b)
Wirkstoff aus den Tabellen	27	5 %
Hochdisperse Kieselsäure	1%	5 %
Talkum	97%	-
Kaolin	-	90%

Durch inniges Vermischen auf Trägerstoffe mit dem Wirkstoff erhält man gebauchsfertige Stäubemittel.

Formulierungsbeispiele für feste Wirkstoffe der Formel I (% = Gewichtsprozent)

F5. Spritzpulver	a)	b)	c)
Wirkstoff aus den Tabellen	25%	50%	75%
Na-Ligninsulfonat	5 %	5 %	٠ _
Na-Laurylsulfat	37		5%
Na-Diisobutylnaphthalinsulfonat	_	6 %	10%
Octylphenolpolyethylenglykolether (7-8 Mol Ethylenoxid)	-	2%	_
Hochdisperse Kieselsäure	5 %	10%	10%
Kaolin	62%	27%	-

Der Wirkstoff wird mit den Zusatzstoffen gut vermischt und in einer geeigneten Mühle gut vermahlen. Man erhält Spritzpulver, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen lassen.

F6. Emulsions-Konzentrat	
Wirkstoff aus den Tabellen	10%
Octylphenolpolyethylenglykolether (4-5 Mol Ethylenoxid)	3%
Ca-Dodecylbenzolsulfonat	3 z
Ricinusölpolyglykolether (35 Mol Ethylenoxid)	4%
Cyclohexanon	30 Z
Xylolgemisch	50%

Aus diesem Konzentrat können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

F7. Stäubemittel	a)	• •
Wirkstoff and in the	ه.	ъ)
Wirkstoff aus den Tabellen	5%	87
Talkum	0.55	3.3
77 7 *	95 %	-
Kaolin	_	92 %

Man erhält anwendungsfertige Stäubemittel, indem der Wirkstoff mit den Träger vermischt auf einer geeigneten Mühle vermahlen wird.

F8. Extruder Granulat

Wirkstoff aus den Tabellen	
	10%
N-Ligninsulfonat	2%
Carboxymethylcellulose	17
	1%
Kaolin	87%

Der Wirkstoff wird mit den Zusatzstoffen vermischt, vermahlen und mit Wasser angefeuchtet. Dieses Gemisch wird extrudiert und anschliessend im Luftstrum getrocknet.

F9. Umhüllungs-Granulat

Wirkstoff aus den Tabellen 3% Polyethylenglykol (M G 200) 3% Kaolin 94%

(MG = Molekulargewicht)

Der fein gemahlene Wirkstoff wird in einem Mischer auf das mit Polyethylenglykol angefeuchtete Kaolin gleichmässig aufgetragen. Auf diese Weise erhält man staubfreie Umhüllungs-Granulate.

F10. Suspensions-Konzentrat

Wirkstoff aus den Tabellen	40%
Ethylenglykol	10%
Nonylphenolpolyethylenglykolether (15 Mol Ethylenoxid)	6 %
N-Ligninsulfonat	10%
Carboxymethylcellulose	1%
37% ige wässrige Formaldehyd-Lösung	0,2%
Silikonöl in Form einer 75% igen	
wässrigen Emulsion	0,8%
Wasser	32%

Der fein gemahlene Wirkstoff wird mit den Zusatzstoffen innig vermischt. Man erhält so ein Suspensions-Konzentrat, aus welchem durch Verdünnen mit Wasser Suspensionen jeder gewünschten Konzentration hergestellt werden können.

Biologische Beispiele:

Beispiel Bl: Wirkung gegen Puccinia graminis auf Weizen

a) Residual-protektive Wirkung

Weizenpflanzen wurden 6 Tage nach der Aussaat mit einer aus Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (0,02% Aktivsubstanz)
besprüht. Nach 24 Stunden wurden die behandelten Pflanzen mit einer

Uredosporensuspension des Pilzes infiziert. Nach einer Inkubation während 48 Stunden bei 95-100% relativer Luftfeuchtigkeit und ca. 20°C wurden die infizierten Pflanzen in einem Gewächshaus bei ca. 22°C aufgestellt. Die Beurteilung der Rostpustelnentwicklung erfolgte 12 Tage nach der Infektion.

b) Systemische Wirkung

Zu Weizenpflanzen wurden 5 Tage nach Aussaat eine aus Spritzpulver des Wirkstoffes hergestellte Spritzbrühe gegossen (0,006% Aktivsubstanz bezogen auf das Bodenvolumen). Nach 48 Stunden wurden die behandelten Pflanzen mit einer Uredosporensuspension des Pilzes infiziert. Nach einer Inkubation während 48 Stunden bei 95-100% relativer Luftfeuchtigkeit und ca. 20°C wurden die infizierten Pflanzen in einem Gewächshaus bei ca. 22°C aufgestellt. Die Beurteilung der Rostpustelnentwicklung erfolgte 12 Tage nach der Infektion.

Verbindungen aus der Tabelle zeigten gegen Puccinia-Pilze eine sehr gute Wirkung. Unbehandelte aber infizierte Kontrollpflanzen zeigten einen Puccinia-Befall von 100%. Unter anderen hemmten die Verbindungen 1.1 bis 1.19, 1.22, 1.32, 1.44, 1.52, 1.54, 1.62, 1.63, 1.71, 1.75, 1.88, 1.114, 1.143, 1.144, 1.145, 2.2, 3.1, 3.13, 3.72, 3.116 und 3.128 den Puccinia-Befall auf 0 bis 15%.

Beispiel B2: Wirkung gegen Cersopora arachidicola auf Erdnusspflanzen

Residual-protektive Wirkung

10-15 cm hohe Erdnusspflanzen wurden mit einer aus Spritzpulver der Wirksubstanz hergestellten Spritzbrühe (0,006 Aktivsubstanz) besprüht und 48 Stunden später mit einer Konidiensuspension des Pilzes infiziert. Die infizierten Pflanzen wurden während 72 Stunden bei ca. 21°C und hoher Luftfeuchtigkeit inkubiert und anschliessend bis zum Auftreten der typischen Blattflecken in einem Gewächshaus aufgestellt.

Die Beurteilung der fungiziden Wirkung erfolgt 12 Tage nach der Infektion basierend auf Anzahl und Grösse der auftretenden Flecken.

Im Vergleich zu unbehandelten, aber infizierten Kontrollpflanzen (Anzahl und Grösse der Flecken = 100%), zeigten Erdnusspflanzen, die mit Wirkstoffen aus den Tabellen behandelt wurden, einen stark reduzierten Cercospora-Befall. So verhinderten die Verbindungen 1.1 bis 1.19, 1.22, 1.32, 1.44, 1.52, 1.54, 1.62, 1.63, 1.71, 1.75, 1.88, 1.114, 1.143, 1.144, 1.145, 2.2, 3.1, 3.13, 3.72, 3.116 und 3.128 in obigen Versuchen das Auftreten von Flecken fast vollständig (0-10%).

Beispiel B3: Wirkung gegen Erysiphae graminis auf Gerste a) Residual-protektive Wirkung

Ca. 8 cm hohe Gerstenpflanzen wurden mit einer aus Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (0,002% Aktivsubstanz) besprüht. Nach 3-4 Stunden wurden die behandelten Pflanzen mit Konidien des Pilzes bestäubt. Die infizierten Gerstenpflanzen wurden in einem Gewächshaus bei ca. 22°C aufgestellt und der Pilzbefall nach 10 Tagen beurteilt.

b) Systemische Wirkung

Zu ca. 8 cm hohen Gerstenpflanzen wurde eine aus Spritzpulver des Wirkstoffes hergestellte Spritzbrühe gegossen (0,006% Aktivsubstanz bezogen auf das Erdvolumen). Es wurde dabei darauf geachtet, dass die Spritzbrühe nicht mit den oberirdischen Pflanzenteilen in Berührung kam. Nach 48 Stunden wurden die behandelten Pflanzen mit Konidien des Pilzes bestäubt. Die infizierten Gerstenpflanzen wurden in einem Gewächshaus bei ca. 22°C aufgestellt und der Pilzbefall nach 10 Tagen beurteilt.

Verbindungen der Formel I zeigten gute Wirkung gegen Erysiphe-Pilze. Unbehandelte, aber infizierte Kontrollpflanzen zeigten einen Erysiphe-Befall von 100%. Unter anderen Verbindungen aus den Tabellen 1 und 2 hemmten den Pilzbefall bei Gerste auf weniger als 30%.

Beispiel B4: Residual-protektive Wirkung gegen Venturia inaequalis auf Apfeltrieben.

Apfelstecklinge mit 10-20 cm langen Frischtrieben wurden mit einer aus Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (0,006% Aktivsubstanz) besprüht. Nach 24 Stunden wurden die behandelten Pflanzen mit einer Konidiensuspension des Pilzes infiziert. Die Pflanzen wurden dann während 5 Tagen bei 90-100% relativer Luftfeuchtigkeit inkubiert und während 10 weiteren Tagen in einem Gewächshaus bei 20-24°C aufgestellt. Der Schorfbefall wurde 15 Tage nach der Infektion beurteilt. Verbindungen aus den Tabellen 1 und 2 hemmten den Krankheitsbefall auf weniger als 25%. Unbehandelte aber infizierte Kontrolltriebe wurden dagegen 100% befallen.

Beispiel B5: Wirkung gegen Botrytis cinerea auf Bohnen Residual protektive Wirkung

Ca. 10 cm hohe Bohnen-Pflanzen wurden mit einer aus Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (0,02% Aktivsubstanz) besprüht. Nach 48 Stunden wurden die behandelten Pflanzen mit einer Konidiensuspension des Pilzes infiziert. Nach einer Inkubation der infizierten Pflanzen während 3 Tagen bei 95-100% relativer Luftfeuchtigkeit und 21°C erfolgte die Beurteilung des Pilzbefalls. Die Verbindungen aus der Tabelle hemmten in vielen Fällen die Pilzinfektion sehr stark. Bei einer Konzentration von 0,02% erwiesen sich z.B. die Verbindungen 1.1, 1.2, 1.4, 1.6, 1.8, 1.11, 1.15 und 2.2 als voll wirksam. Der Krankheitsbefall lag bei 0 bis 8%. Der Botrytis-Befall unbehandelter aber infizierter Bohnenpflanzen betrug 100%.

Beispiel B6: Wirkung gegen Phytophthora infestans auf Tomatenpflanzen a) Residual-protektive Wirkung

Tomatenpflanzen wurden nach 3-wöchiger Anzucht mit einer aus Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (0,06% Aktivsubstanz) besprüht. Nach 24 Stunden wurden die behandelten Pflanzen
mit einer Sporangiensuspension des Pilzes infiziert. Die Beurteilung
des Pilzbefalls erfolgte nach einer Inkubation der infizierten
Pflanzen während 5 Tagen bei 90-100% relativer Luftfeuchtigkeit
und 20°C.

b) Systemische Wirkung

Zu Tomatenpflanzen wurde nach 3-wöchiger Anzucht eine aus Spritzpulver des Wirkstoffes hergestellte Spritzbrühe gegossen (0,06%
Aktivsubstanz bezogen auf das Erdvolumen). Es wurde dabei darauf
geachtet, dass die Spritzbrühe nicht mit den oberirdischen Pflanzenteilen in Berührung kam. Nach 48 Stunden wurden die behandelten
Pflanzen mit einer Sporangiensuspension des Pilzes infiziert. Die
Beurteilung des Pilzbefalls erfolgte nach einer Inkubation der
infizierten Pflanzen während 5 Tagen bei 90-100% relativer Luftfeuchtigkeit und 20°C.

Unter anderen zeigten in obigen Versuchen die Verbindungen Nr. 1.1, 1.2, 1.4, 1.6, 1.8 bis 1.20, 1.22, 1.29, 1.44, 1.63, 1.75, 1.88, 1.43 bis 1.1145, 2.2, 3.1 und 3.116 eine sehr gute systemische Wirkung. Gegenüber unbehandelten Kontrollpflanzen (100% Befall) bewirkten diese Verbindungen eine fast vollständige Unterdrückung des Pilzbefalls (0 bis 5%).

Beispiel B7: Wirkung gegen Plasmapora viticola auf Reben a) Residual-protektive Wirkung

Im 4-5 Blattstadium wurden Rebensämlinge mit einer aus Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (0,06% Aktivsubstanz) besprüht. Nach 24 Stunden wurden die behandelten
Pflanzen mit einer Sporangiensuspension des Pilzes infiziert.
Nach einer Inkubation während 6 Tagen bei 95-100% relativer Luft-

feuchtigkeit und 20°C wurde der Pilzbefall beurteilt.

b) Residual-kurative Wirkung

Im 4-5 Blattstadium wurden Rebensämlinge mit einer Sporangiensuspension des Pilzes infiziert. Nach einer Inkubation während 24 Stunden
in einer Feuchtkammer bei 95-100% relativer Luftfeuchtigkeit und
20°C wurden die infizierten Pflanzen getrocknet und mit einer aus
Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (0,06%
Aktivsubstanz) besprüht. Nach dem Antrocknen des Spritzbelages
wurden die behandelten Pflanzen wieder in die Feuchtkammer gebracht.
Die Beurteilung des Pilzbefalls erfolgte 6 Tage nach der Infektion.

Verbindungen aus den Tabellen zeigten gegen Plasmopara viticola auf Regen eine sehr gute fungizide Wirkung, insbesondere die Wirkstoffe Nr. 1.1, 1.4, 1.6, 1.8 und 1.11 bewirkten eine vollständige Unterdrückung des Pilzbefalls (0 bis 5%).

Beispiel B8: Wirkung gegen Piricularia oryzae auf Reispflanzen Residual-protektive Wirkung

Reispflanzen wurden nach zweiwöchiger Anzucht mit einer aus Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (0,02% Aktivsubstanz) besprüht. Nach 48 Stunden wurden die behandelten Pflanzen
mit einer Konidiensuspension des Pilzes infiziert. Nach 5 Tagen
Inkubation bei 95-100% relativer Luftfeuchtigkeit und 24°C wurde
der Pilzbefall beurteilt.

Reispflanzen, die mit einer Spritzbrühe behandelt worden sind, die als Aktivsubstanz eine der Verbindungen 1.1, 1.4, 1.6, 1.8 und 2.2 enthielt, zeigten im Vergleich zu unbehandelten Kontrollpflanzen (100% Befall) weniger als 10% Pilzbefall.

Patentansprüche für die Vertragsstaaten: GB, BE, DE, FR, IT, LU, NL, SE, CH, LI.

1. Verbindungen der allgemeinen Formel I

$$R_{2} \xrightarrow{R_{1}} NO_{2} \xrightarrow{N=0} R_{7}$$

$$R_{1} \xrightarrow{R_{4}} N-0 \xrightarrow{R_{5}} R_{5}$$
(1)

worin

 R_1 und R_2 für Wasserstoff, NO_2 oder CF_3 stehen, mit der Massgabe, dass nur R_1 oder R_2 für NO_2 stehen kann;

R, Halogen bedeutet;

R₄ für Wasserstoff oder die Gruppe -C(0)R' steht, wobei R' unsubstituiertes oder durch Halogen, C₁-C₃-Alkoxy oder C₁-C₃-Alkylthio substituiertes C₁-C₄-Alkyl bedeutet;

 $^{
m R}_{
m 5}$, $^{
m R}_{
m 6}$ und $^{
m R}_{
m 7}$ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, Rhodano, C₁-C₁₂-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfoxyl, C₃-C₆-Alkenyl, C₃-C₆-Haloalkenyl, C₃-C₆-Alkinyl, C₃-C₆-Haloalkinyl, C₃-C₆-Alkenyloxy, C₃-C₆-Haloalkenyloxy, C₃-C₆-Alkenylthio, C₃-C₆-Alkinyloxy, C₃-C₆-Haloalkinyloxy, durch Halogen, Cyano, und/oder C1-C4-Alkoxy substituiertes C₁-C₈-Alkyl, unsubstituiertes oder durch Halogen substituiertes C₁-C₈-Alkoxy, dessen Alkylteil gegebenenfalls durch ein oder mehrere einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe $Q-(E)_n-(X)_m$ stehen, wobei n für O oder 1 steht, m für 0 oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, C₁-C₃-Alkyl, CF₃ und/oder C₁-C₃-Alkoxy substituiertes Phenyl oder einen gesättigten oder ungesättigten heterocyclischen Rest mit einem oder mehreren Heteroatomen steht, E eine C_1 - C_3 Alkylenbrücke bedeutet und X für Sauerstoff oder Schwefel steht.

2. Verbindungen der Formel I nach Anspruch 1, dadurch gekennzeichnet, dass

 R_1 für NO_2 oder CF_3 steht; R_2 für NO_2 oder CF_3 steht; mit der Massgabe, dass nur R_1 oder R_2 NO_2 sein kann;

R₃ Halogen bedeutet;

 R_4 für Wasserstoff oder die Gruppe -C(0)R' steht, wobei R' unsubstituiertes oder durch Halogen, C_1 - C_3 -Alkoxy oder C_1 - C_3 -Alkylthio substituiertes C_1 - C_4 -Alkyl bedeutet;

R₅, R₆ und R₇ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyàno, Rhodano, C₁-C₁₂-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfoxyl, C₃-C₆-Alkenyl, C₃-C₆-Haloalkinyl, durch Halogen, Cyano und/oder C₁-C₄-Alkoxy substituiertes C₁-C₈-Alkyl, unsubstituiertes oder durch Halogen substituiertes C₁-C₈-Alkoxy, dessen Alkylteil gegebenenfalls durch ein oder mehrere einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe Q-(E)_n-(X)_m stehen, wobei n für O oder 1 steht, m für O oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, C₁-C₃-Alkyl, CF₃ und/oder C₁-C₃-Alkoxy substituiertes Phenyl oder einen gesättigten oder ungesättigten heterocyclischen Rest mit einem oder mehreren Heteroatomen steht, E eine C₁-C₃ Alkylenbrücke bedeutet und X für Sauerstoff oder Schwefel steht.

3. Verbindungen der Formel I nach Anspruch 2, dadurch gekennzeichnet, dass R₁, R₂, R₃ und R₄ die unter Formel I angegebenen Bedeutungen haben und R₅, R₆ und R₇ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, C₁-C₆-Alkyl, Cyclopentyl, Cyclohexyl, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfoxyl, C₃-C₄-Alkenyl, Propargyl, durch Halogen, Cyano und/oder C₁-C₃-Alkoxy substituiertes C₁-C₃-Alkyl, C₁-C₆-Alkoxy, dessen Alkylteil durch ein bis 2 einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe Q-(E)_n-(X)_m stehen, worin n für 0 oder 1 und m für 0 oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, Methyl, CF₃ oder Methoxy substituiertes Phenyl oder eine Pyridylgruppe steht, E für eine Methylenbrücke steht und X Sauerstoff oder Schwefel bedeutet.

- 4. Verbindungen der Formel I nach Anspruch 3, dadurch gekennzeichnet, dass R₁, R₂ und R₃ die unter Formel I angegebenen Bedeutungen haben, R₄ für Wasserstoff steht, und R₅, R₆ und R₇ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, C₁-C₆-Alkyl, Cyclopentyl, Cyclohexyl, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfoxyl, C₃-C₄-Alkenyl, Propargyl, durch Halogen, Cyano und/oder C₁-C₃-Alkoxy substituiertes C₁-C₃-Alkyl, C₁-C₆-Alkoxy, dessen Alkylteil durch ein bis 2 einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe Q-(E)_n-(X)_m stehen, worin n für O oder 1 und m für O oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, Methyl, CF₃ oder Methoxy substituiertes Phenyl oder eine Pyridylgruppe steht, E für eine Methylenbrücke steht und X Sauerstoff oder Schwefel bedeutet.
- 5. Verbindungen der Formel I nach Anspruch 4, dadurch gekennzeichnet, dass R₁ für NO₂ oder CF₃ steht; mit der Massgabe, dass nur R₁ oder R₂ NO₂ sein kann; R₂ für NO₂ oder CF₃ steht; R₃ Chlor bedeutet; R₄ für Wasserstoff steht; R₆ Wasserstoff bedeutet und R₅ und R₇ unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, C₁-C₃-Alkyl, C₁-C₃-Haloalkyl, C₁-C₃-Alkoxy, C₁-C₃-Haloalkoxy, unsubstituiertes oder durch Halogen substituiertes Phenoxy, OCH₂OCH₃, OC₂H₄OCH₃, OCH₂OC₂H₅, OC₂H₄OC₂H₅, OC₂H₄OC₂H₅, OC₂H₄OC₂H₅, oder -S-(2-Pyridyl) stehen.
- 6. Eine Verbindung der Formel I nach Anspruch 1, ausgewählt aus der Reihe:
- N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylpheny1)-2-amino-4,6-dichlorpyrimidin (Verb. Nr. 1.1),
- N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-chlor-6-trichlormethylpyrimidin (1.11),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4,6-dimethylpyrimidin (1.15),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-trichlormethyl-6-(methoxyethoxy)pyrimidin (1.6),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-methoxy-6-(2-pyridylthio)-pyrimidin (1.2),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-trichlormethyl-6-(ethoxyethoxyethoxy)pyrimidin (1.4) und

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-methoxy-6-(4"-chlorphenoxy)-pyrimidin (1.8).

7. Verfahren zur Herstellung von Verbindungen der Formel I, dadurch gekennzeichnet, dass man eine Verbindung der Formel II

$$R_{2} \xrightarrow{R_{2}} NO_{2}$$

$$R_{1}$$
(II)

in Gegenwart einer Base mit einem Pyrimidin-Derivat der Formel III

$$Y - \bullet \qquad \qquad \begin{array}{c} R_7 \\ & -R_6 \end{array}$$
 (III)

zu einer Verbindung der Formel I*

$$R_{2} \xrightarrow{R_{2}} NO_{2} NH \xrightarrow{N_{1}} R_{5}$$

$$R_{1} NO_{2} NH \xrightarrow{N_{2}} R_{5}$$

$$R_{1} NH \xrightarrow{R_{5}} R_{5}$$

umsetzt, und letztere zur Herstellung N-acylierter Derivate mit einem reaktionsfähigen Derivat der Carbonsäure IV

N-acyliert, wobei die Substituenten R_1 bis R_7 die unter Formel I angegebenen Bedeutungen haben und Z und Y für NH_2 oder Halogen stehen, wobei in dem Fall, in dem Z für Halogen steht, Y NH_2 bedeutet und in dem Fall in dem Z für NH_2 steht, Y Halogen bedeutet.

- 8. Mittel zur Bekämpfung oder Verhütung eines Befalls durch phytopathogene Schädlinge, dadurch gekennzeichnet, dass es als mindestens eine aktive Komponente eine Verbindung der Formel I zusammen mit üblichen Zuschlagstoffen und Trägermaterialien enthält.
- 9. Mittel gemäss Anspruch 8, dadurch gekennzeichnet, dass es als mindestens eine aktive Komponente eine Verbindung der Formel I gemäss Anspruch 2 enthält.
- 10. Mittel zur Bekämpfung von Mikroorganismen gemäss Anspruch 8, dadurch gekennzeichnet, dass es als mindestens eine aktive Komponente eine Verbindung der Formel I gemäss einem der Ansprüche 3 bis 6 enthält.
- 11. Verfahren zur Bekämpfung oder Verhütung eines Befalls von Kulturpflanzen durch phytopathogene Schädlinge, dadurch gekennzeichnet, dass man eine Verbindung der Formel I auf die Pflanze oder deren Standort appliziert.

FO 7.5 HL/hc*

Patentansprüche für den Vertragsstaat AT

1. Verfahren zur Herstellung von Verbindungen der Formel I

$$R_{2} \xrightarrow{NO_{2}} NO_{2} \xrightarrow{N} R_{7} -R_{6}$$

$$R_{1} \xrightarrow{R_{4}} R_{4} \xrightarrow{R_{5}} R_{5}$$

$$(1)$$

worin

 R_1 und R_2 für Wasserstoff, NO_2 oder CF_3 stehen, mit der Massgabe, dass nur R_1 oder R_2 für NO_2 stehen kann;

R, Halogen bedeutet;

R₄ für Wasserstoff oder die Gruppe -C(O)R' steht, wobei R' unsubstituiertes oder durch Halogen, C₁-C₃-Alkoxy oder C₁-C₃-Alkylthio substituiertes C₁-C₄-Alkyl bedeutet;

 R_5 , R_6 und R_7 unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, Rhodano, C₁-C₁₂-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkylthio, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfoxyl, C₃-C₆-Alkenyl, C₃-C₆-Haloalkenyl, C₃-C₆-Alkinyl, C₃-C₆Haloalkinyl, C₃-C₆-Alkenylenoxy, C₃-C₆-Haloalkenyloxy, C₃-C₆-Alkenylthio, C₃-C₆-Alkinyloxy, C₃-C₆-Haloalkinyloxy, durch Halogen, Cyano und/oder C1-C4-Alkoxy substituiertes C₁-C₈-Alkyl, unsubstituiertes oder durch Halogen substituiertes C₁-C₈-Alkoxy, dessen Alkylteil gegebenenfalls durch ein oder mehrere einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe Q-(E) $_{
m n}$ -(X) $_{
m m}$ stehen, wobei n für O oder 1 steht, m für 0 oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, C₁-C₃-Alkyl, CF₃ und/oder C₁-C₃-Alkoxy substituiertes Phenyl oder einen gesättigten oder ungesättigten heterocyclischen Rest mit einem oder mehreren Heteroatomen steht, E eine C_1 - C_3 -Alkylenbrücke bedeutet und X für Sauertoff oder Schwefel steht, dadurch gekennzeichnet,

dass man eine Verbindung der Formel II

$$R_{2} \xrightarrow{\text{NO}_{2}} -Z$$

$$R_{1}$$
(II)

in Gegenwart einer Base mit einem Pyrimidin-Derivat der Formel III

$$Y - \cdot N = \cdot R_7$$

$$Y - \cdot R_6$$

$$R_5$$
(III)

zu einer Verbindung der Formel I'

$$R_{2} \xrightarrow{N_{1}} NO_{2} \qquad N_{1} \xrightarrow{N_{1}} R_{5} \qquad (I')$$

umsetzt, und letztere zur Herstellung N-acylierter Derivate mit einem reaktionsfähigen Derivat der Carbonsäure IV

N-acyliert, wobei die Substituenten R₁ bis R₇ die unter Formel I angegebenen Bedeutungen haben und Z und Y für NH₂ oder Halogen stehen, wobei in dem Fall, in dem Z für Halogen steht, Y NH₂ bedeutet und in dem Fall in dem Z für NH₂ steht, Y Halogen bedeutet.

2. Verfahren nach Anspruch 1, zur Herstellung von Verbindungen der Formel I, worin

- R, für NO, oder CF, steht;
- $^{\rm R}_{\rm 2}$ für NO $_{\rm 2}$ oder CF $_{\rm 3}$ steht; mit der Massgabe, dass nur R $_{\rm 1}$ oder R $_{\rm 2}$ NO $_{\rm 2}$ sein kann;
- R, Halogen bedeutet;

()

 R_4 für Wasserstoff oder die Gruppe -C(0)R' steht, wobei R' unsubstituiertes oder durch Halogen, C_1 - C_3 -Alkoxy oder C_1 - C_3 -Alkylthio substituiertes C_1 - C_4 -Alkyl bedeutet;

R₅, R₆ und R₇ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, Rhodano, C_1-C_{12} -Alkyl, C_3-C_8 -Cycloalkyl, C_1-C_8 -Alkylthio, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfoxyl, C₃-C₆-Alkenyl, C₃-C₆-Haloalkenyl, C_3-C_6 -Alkinyl, C_3-C_6 -Haloalkinyl, C_3-C_6 -Alkenyloxy, C₃-C₆-Haloalkenyloxy, C₃-C₆-Alkenylthio, C₃-C₆-Alkinyloxy, C₃-C₆-Haloalkinyloxy, durch Halogen, Cyano, und/oder C1-C2-Alkoxy substituiertes C1-C8-Alkyl, unsubstituiertes oder durch Halogen substituiertes C1-C8-Alkoxy, dessen Alkylteil gegebenenfalls durch ein oder mehrere einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe $Q-(E)_{n}-(X)_{m}$ stehen, wobei n für 0 oder 1 steht, m für 0 oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, C₁-C₃-Alkyl, CF₃ und/oder C₁-C₃-Alkoxy substituiertes Phenyl oder einen gesättigten oder ungesättigten heterocyclischen Rest mit einem oder mehreren Heteroatomen steht, E eine C_1 - C_3 Alkylenbrücke bedeutet und X für Sauerstoff oder Schwefel steht.

3. Verfahren nach Anspruch 2, zur Herstellung von Verbindungen worin R₁, R₂, R₃ und R₄ die unter Formel I angegebenen Bedeutungen haben und R₅, R₆ und R₇ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, C₁-C₆-Alkyl, Cyclopentyl, Cyclohexyl, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfoxyl, C₃-C₄-Alkenyl, Propargyl, durch Halogen, Cyano und/oder C₁-C₃-Alkoxy substituiertes C₁-C₃-Alkyl, C₁-C₆-Alkoxy, dessen Alkylteil durch ein bis 2 einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe Q-(E)_n-(X)_m stehen, worin n für O oder 1 und m für O oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, Methyl, CF₃ oder Methoxy substituiertes Phenyl oder eine Pyridylgruppe steht, E für eine Methylenbrücke steht und X Sauerstoff oder Schwefel bedeutet.

- 4. Verfahren nach Anspruch 3, zur Herstellung von Verbindungen der Formel I, worin R₁, R₂ und R₃ die unter Formel I angegebenen Bedeutungen haben, R₄ für Wasserstoff steht, und R₅, R₆ und R₇ unabhängig voneinander für Wasserstoff, Halogen, Nitro, Cyano, C₁-C₆-Alkyl, Cyclopentyl, Cyclohexyl, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfoxyl, C₃-C₄-Alkenyl, Propargyl, durch Halogen, Cyano und/oder C₁-C₃-Alkoxy substituiertes C₁-C₃-Alkyl, C₁-C₆-Alkoxy, dessen Alkylteil durch ein bis 2 einzelne Sauerstoffatome unterbrochen ist oder für die Gruppe Q-(E)_n-(X)_m stehen, worin n für 0 oder 1 und m für 0 oder 1 steht, Q für ein unsubstituiertes oder durch Halogen, Nitro, Methyl, CF₃ oder Methoxy substituiertes Phenyl oder eine Pyridylgruppe steht, E für eine Methylenbrücke steht und X Sauerstoff oder Schwefel bedeutet.
- 5. Verfahren nach Anspruch 4, zur Herstellung von Verbindungen der Formel I, worin R₁ für NO₂ oder CF₃ steht; mit der Massgabe, dass nur R₁ oder R₂ NO₂ sein kann; R₂ für NO₂ oder CF₃ steht; R₃ Chlor bedeutet; R₄ für Wasserstoff steht;

 R₆ Wasserstoff bedeutet und R₅ und R₇ unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, C₁-C₃-Alkyl, C₁-C₃-Haloalkyl, C₁-C₃-Alkoxy, C₁-C₃-Haloalkoxy, unsubstituiertes oder durch Halogen substituiertes Phenoxy, OCH₂OCH₃, OC₂H₄OCH₃, OCH₂OC₂H₅, OC₂H₄OC₂H₅, OC₂H₄OC₂H₅, OC₂H₄OC₂H₅, oder -S-(2-Pyridyl) stehen.
- 6. Verfahren nach Anspruch 1, zur Herstellung einer Verbindung der Formel I, ausgewählt aus der Reihe:
- N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4,6-dichlorpyrimidin (Verb. Nr. 1.1),
- N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylpheny1)-2-amino-4-chlor-6-trichlormethylpyrimidin (1.11),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4,6-di-methylpyrimidin (1.15),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-trichlormethyl-6-(methoxyethoxy)pyrimidin (1.6),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-methoxy-6-(2-pyridylthio)-pyrimidin (1.2),

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-trichlormethyl-6-(ethoxyethoxyethoxy)pyrimidin (1.4) und

N-(3'-Chlor-2',6'-dinitro-4'-trifluormethylphenyl)-2-amino-4-methoxy-6-(4"-chlorphenoxy)-pyrimidin (1.8).

- 7. Mittel zur Bekämpfung oder Verhütung eines Befalls durch Schädlinge, dadurch gekennzeichnet, dass es als mindestens eine aktive Komponente eine Verbindung der Formel I zusammen mit üblichen Zuschlagstoffen und Trägermaterialien enthält.
- 8. Mittel gemäss Anspruch 7, dadurch gekennzeichnet, dass es als mindestens eine aktive Komponente eine Verbindung der Formel I gemäss Anspruch 2 enthält.
- 9. Mittel zur Bekämpfung von Mikroorganismen gemäss Anspruch 7, dadurch gekennzeichnet, dass es als mindestens eine aktive Komponente eine Verbindung der Formel I gemäss einem der Ansprüche 3 bis 5 enthält.
- 10. Mittel nach Anspruch 7, dadurch gekennzeichnet, dass es 0,1 bis 99% eines Wirkstoffs der Formel I, 99,9 bis 1% eines festen oder flüssigen Zusatzstoffes und 0 bis 25% eines Tensides enthält.

- 11. Mittel nach Anspruch 7, dadurch gekennzeichnet, dass es 0,1 bis 95% eines Wirkstoffs der Formel I, 99,8 bis 5% eines festen oder flüssigen Zusatzstoffes und 0,1 bis 25% eines Tensids enthält.
- 12 Verfahren zur Herstellung eines wie in Anspruch 7 beanspruchten agrochemischen Mittel, dadurch gekennzeichnet, dass man mindestens eine gemäss Anspruch 1 definierte Verbindung der Formel I mit geeigneten festen oder flüssigen Zusatzstoffen und Tensiden innig vermischt.
- 13. Verfahren zur Bekämpfung oder Verhütung eines Befalls von Kulturpflanzen durch phytopathogene Schädlinge, dadurch gekennzeichnet, dass man eine Verbindung der Formel I auf die Pflanze oder deren Standort appliziert.

FO 7.5 HL/hc*