

Discrete Structures (Monsoon 2022)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
https://sites.google.com/view/iitkgpakdas/

Recap: Functions

Function

Definition

A function or mapping or map or transformation is defined by two sets X and Y, and a rule (relation) f which assigns to each element of X to exactly one element of Y.

In other words, a (binary) relation f from X to Y is called a function from X to Y, if each element of X is related to exactly one element of Y.

- The set X is called the domain and Y the co-domain (range) of the function f.
- The image $y \in Y$ (y in Y) of an element $x \in X$ is denoted by y = f(x).
- For a function f from set X to set Y is $f: X \to Y$, if $y \in Y$, then a pre-image of y is an element $x \in X$ for which f(x) = y.
- The set of all elements in *Y* which have at least one pre-image is called the *image* of *f*, denoted by Im(f).

Function

• Consider the sets $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$, and the relation (rule) f from X to Y defined as f(a) = 2, f(b) = 4, f(c) = 1.

- The pre-image of 2 is a.
- Note that 3 does not have any pre-image.
- The image of f is $Im(f) = \{1, 2, 4\}$.
- $f(X) = \text{Image of } f = \text{Im}(f) = \{f(x) | x \in X\} \subseteq Y$

NOTE: All functions are RELATIONS; however, a relation may or may not be a FUNCTION

Functions

Definition (Partial Function)

A **partial function** $f: X \to Y$ is a rule which assigns to every element $x \in D$ (D is a proper subset of X, that is, $D \subset X$) a unique value in Y.

Types of Functions

Definition (One-to-One Function)

A function $f: X \to Y$ is **1-1 (one-to-one) or injective** if each element in the co-domain Y is the image of at most one element in the domain X.

In other words, $f: X \to Y$ is 1-1 if distinct elements in the domain X have distinct images in the co-domain Y, i.e., if $a, b \in X$ such that $a \neq b$, then $f(a) \neq f(b)$ or, equivalently, if f(a) = f(b), then a = b.

If a function $f: X \to Y$ is NOT 1-1, it is called **many-one** function.

Definition (Onto Function)

A function $f: X \to Y$ is **onto or surjective**, if each element in the co-domain Y is the image of at least one element in the domain X. In other words, $f: X \to Y$ is called onto if Im(f) = Y.

Definition (Bijective Function)

A function $f: X \to Y$ is **bijective**, if it is both 1-1 and onto.

Types of Functions

Theorem

If a function $f: X \to Y$ is 1-1, then $f: X \to Im(f)$ is a bijection.

Theorem

If a function $f: X \to Y$ is 1-1, and X and Y are finite sets of the same size, that is, |X| = |Y|, then $f: X \to Y$ is a bijection.

Types of Functions

- Let $f: X \to Y$ is a function with |X| = m and |Y| = n. Then
 - ▶ The total number of functions from X to Y is n^m
 - ► The total number of injective (1-1) functions from X to Y with m < n is ${}^{n}C_{m}.m!$
 - ► The total number of surjective (onto) functions from X to Y with m > n is

where the Stirling number is given by

$$S(m,m)=S(m,1)=1$$

$$S(m,n) = n.S(m-1,n) + S(m-1,n-1)$$

▶ The total number of bijective functions from X to Y with m = n is n!

Definition (Permutation)

Let S be a finite set of elements. A permutation p on S is a bijection from S to itself (i.e., $p: S \to S$).

Example: Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. A permutation $p : S \rightarrow S$ is defined as follows:

$$p(1) = 3, p(2) = 5, p(3) = 9, p(4) = 4, p(5) = 7, p(6) = 1,$$

$$p(7) = 2, p(8) = 6, p(9) = 8$$

• A permutation $p: S \to S$ on a finite set $S = \{a_1, a_2, \dots, a_n\}$ is displayed as an array:

$$p = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ p(a_1) & p(a_2) & \cdots & p(a_n) \end{pmatrix}$$

where $p(a_i)$ is the p-image of a_i .

Definition (Identity Permutation)

The permutation which maps each element of S onto itself is said to be the *identity permutation* and is denoted by I. Thus, if $S = \{a_1, a_2, \dots, a_n\}$, then

$$I = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

Multiplication of Permutations

- Let $f: S \to S$ and $g: S \to S$ be two permutations on S. Since range.f = dom.g, where range.f and dom.g denote the range of f and domain of g respectively, the composition is defined.
- Since f and g are both bijective, $g \circ f : S \to S$ is also bijective. Therefore, $g \circ f$ is a permutation on S. Similarly, $f \circ g$ is also a permutation on S.
- The products gf and fg are defined by the composite g ∘ f and f ∘ g, respectively.

Multiplication of Permutations

If

$$f = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ f(a_1) & f(a_2) & \cdots & f(a_n) \end{pmatrix}$$

and

$$g = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ g(a_1) & g(a_2) & \cdots & g(a_n) \end{pmatrix}$$

then

$$fg = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ f[g(a_1)] & f[g(a_2)] & \cdots & f[g(a_n)] \end{pmatrix}$$

and

$$gf = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ g[f(a_1)] & g[f(a_2)] & \cdots & g[f(a_n)] \end{pmatrix}$$

Inverse of a permutation

• The inverse of $p: S \to S$, where $S = \{a_1, a_2, \dots, a_n\}$ is

$$p^{-1} = \begin{pmatrix} p(a_1) & p(a_2) & \cdots & p(a_n) \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

where

$$p = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ p(a_1) & p(a_2) & \cdots & p(a_n) \end{pmatrix}$$

If

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix}$$

then

$$p^{-1} = \begin{pmatrix} 3 & 5 & 4 & 2 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

$$= \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{array}\right)$$

Definition (Cycle)

Let $S = \{a_1, a_2, \dots, a_n\}$. A permutation $f : S \to S$ is said to be a cycle of length r or an r-cycle, if there are r elements $a_{i_1}, a_{i_2}, \dots, a_{i_r}$ in S such that

$$f(a_{i_1}) = a_{i_2}, f(a_{i_2}) = a_{i_3}, \dots, f(a_{i_{r-1}}) = a_{i_r}, f(a_{i_r}) = a_{i_1}, \text{ and } f(a_j) = a_{i_1}, j \neq i_1, i_2, \dots, i_r.$$

The cycle is denoted by $(a_{i_1} \ a_{i_2} \cdots a_{i_r})$ or by $(a_{i_2} \ a_{i_3} \cdots a_{i_r} \ a_{i_1})$ or any other form provided the elements appear in a fixed cyclic order.

Index Laws

- $f^m.f^n = f^{m+n}$
- $(f^m)^n = f^{mn}$

hold for integral values of m and n.

- By the law $f^m g^m = (fg)^m$ does not hold, since $fg \neq gf$, in general.
- The identity permutation

$$I = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

on a set $S = \{a_1, a_2, \dots, a_n\}$, is the product of n cycles $(a_1), (a_2), \dots, (a_n)$, each of length 1.

Definition (Transposition)

A 2-cycle is called a transposition.

Definition (Even Permutation)

If a permutation contains even number of transpositions, it is called an even permutation.

Definition (Odd Permutation)

If a permutation contains odd number of transpositions, it is called an odd permutation.

Problem. Examine whether the permutation

$$p = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 6 & 3 & 1 \end{array}\right)$$

is odd or even.

Solution. Given *p* can be written as

$$p = \left(\begin{array}{ccccc} 1 & 2 & 4 & 6 & 3 & 5 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{array}\right)$$

Since p has four transpositions, that is, even number of transpositions, therefore it is EVEN.

Problem. Prove that $(1\ 2\ 3 \cdots n) \circ (1\ i) = (1\ i+1\ i+2 \cdots n) \circ (2\ 3 \cdots i-1\ i)$.

Solution.

LHS =
$$(1 \ 2 \ 3 \cdots n) \circ (1 \ i)$$

= $\begin{pmatrix} 1 \ 2 \ 3 \cdots i-1 & i & i+1 \cdots n \\ 2 \ 3 \ 4 \cdots & i & i+1 & i+2 \cdots 1 \end{pmatrix}$
 $\begin{pmatrix} 1 \ 2 \ 3 \cdots i-1 & i & i+1 \cdots n \\ i \ 2 \ 3 \cdots i-1 & 1 & i+1 \cdots n \end{pmatrix}$
= $\begin{pmatrix} 1 \ 2 \ 3 \cdots i-1 & i & i+1 \cdots n \\ i+1 \ 3 \ 4 \cdots & i & 2 & i+2 \cdots 1 \end{pmatrix}$
= $\begin{pmatrix} 1 \ i+1 \cdots n \ 2 \ 3 \ 4 \cdots & i-1 \ i \\ i+1 \ i+2 \cdots & 1 \ 3 \ 4 \ 5 \cdots & i \ 2 \end{pmatrix}$
= $(1 \ i+1 \ i+2 \cdots n) \circ (2 \ 3 \ 4 \cdots i-1 \ i)$
= RHS.

Problem. Let f,g be given permutations on a finite set S on which there is a unique permutation p on S such that fp=g and there is a unique permutation q on S such that qf=g. Determine p,q, when $S=\{1,2,3\}, f=(1\ 2\ 3), g=(1\ 3\ 2).$

Solution.

- Given fp = g. Then, $f^{-1}(fp) = f^{-1}g \Rightarrow (f^{-1}f)p = f^{-1}g \Rightarrow I.p = f^{-1}.g$, since $f^{-1}.f = I$, the identity permutation. Thus, $p = f^{-1}.g = (1 \ 2 \ 3)$.
- Given qf = g. Then, $(qf).f^{-1} = g.f^{-1} \Rightarrow q.(f.f^{-1}) = g.f^{-1} \Rightarrow q.I = g.f^{-1}$, since $f.f^{-1} = I$, the identity permutation. Thus, $q = g.f^{-1} = (1 \ 2 \ 3)$.

Theorem

Let $S = \{a_1, a_2, \cdots, a_n\}$ be a finite set with n elements, $n \ge 2$. Then, there are $\frac{n!}{2}$ even permutations and $\frac{n!}{2}$ odd permutations.

Proof. Let A_n be the set of all even permutations on S and B_n the set of all odd permutations on S.

Task: We shall define a function $f: A_n \to B_n$, which we show is one-one and onto (bijective), and this will show that A_n ad B_n have the same number of elements, that is, $|A_n| = |B_n|$.

Since $n \ge 2$, we can choose a particular transposition (2-cycle) q_0 of S, say that $q_0 = (a_{n-1} \ a_n)$. We now define the function $f : A_n \to B_n$ by

$$f(p) = q_0 \cdot p, \forall p \in A_n.$$

Note that if $p \in A_n$, then p is an even permutation, and since q_0 is a transposition, so $q_0 \cdot p$ is an odd permutation (because $q_0 \circ p$ has odd number of transpositions now), and thus $f(p) \in B_n$.

Claim 1. f in one-one

Suppose now that $p_1 \in A_n$ and $p_2 \in A_n$ such that $f(p_1) = f(p_2)$. Then,

$$q_0 \cdot p_1 = q_0 \cdot p_2 \tag{1}$$

Thus, $q_0 \cdot (q_0 \cdot p_1) = q_0 \cdot (q_0 \cdot p_2)$

$$q_0 \cdot q_0 = (a_{n-1} a_n) \cdot (a_{n-1} a_n)$$
 (2)

by the associative property.

We have,
$$q_0 \cdot q_0 = (a_{n-1} \ a_n) \cdot (a_{n-1} \ a_n)$$

$$= \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-1} & a_n \\ a_1 & a_2 & \cdots & a_n & a_{n-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-1} & a_n \\ a_1 & a_2 & \cdots & a_n & a_{n-1} \end{pmatrix}$$

$$= \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-1} & a_n \\ a_1 & a_2 & \cdots & a_{n-1} & a_n \end{pmatrix}$$

$$= I, \text{ the identity permutation on } S.$$

• Claim 1. f in one-one (Cont...) From Eq. (2), we have:

$$I \cdot p_1 = I \cdot p_2$$

This implies that

$$p_1 = p_2$$

Thus, whenever $f(p_1) = f(p_2)$, then $p_1 = p_2$. Hence, f is one-one.

Claim 2. f in onto

Now, let $q \in B_n$. Then, $q_0 \cdot q \in A_n$, since q is an odd permutation. Thus,

$$f(q_0 \cdot q) = q_0 \cdot (q_0 \cdot q)$$

$$= (q_0 \cdot q_0) \cdot q$$

$$= I \cdot q$$

$$= q.$$

This shows that *f* is also onto.

Since f is both one-one and onto, f is bijective and we conclude that A_n and B_n have the same number of elements, that is, $|A_n| = |B_n|$.

Note that $A_n \cap B_n = \emptyset$ since no permutation can be both even and odd. Also, we have,

$$|A_n \cup B_n| = n!$$

Thus,

$$n! = |A_n \cup B_n|$$

$$= |A_n| + |B_n| - |A_n \cap B_n|$$

$$= |A_n| + |B_n|$$

$$= 2|A_n|$$

Then,

$$|A_n|=\frac{n!}{2}$$

and

$$|B_n|=\frac{n!}{2}$$