S. Vasuum D21PC35

HIA!

1. To find out spring constant, & of springs

2. To find frequency of oscillation of spring mass system

APPARATUS:

Springs of different spring constants, weight harger, slotted weights, stop watch.

FORMULA:

Spring constant, & = Restoring force Mm Extension

Time period, T = 2TT (m/B)

where,

m = mass (kg)

& = spring constant (M/m)

Frequency, F = + HZ

DIAGRAM :

MODEL GRAPH:

PROCEDURE: (To colculate spring readbotant)

. The spring is suspended vertically from the rigid support.

· A meter scale is kept vertically garallel to the spring

· A dead wight (No) is suspended to the spring and the neading on the meter scale is noted.

. Now slotted weights (50g) are loaded one by one and the loading reading is noted for each case.

. Weights are added till manimum load is reached.

· Now, weights are removed one by one and the unload reading is noted fore each case.

. The mean is calculated for noted readings

. Extension 'l' is calculated by subtracting reading of dead weight from reading of corresponding slotted mass.

. For each case, spring constant 'k' is calculated.

. Their average gives the spring constant in (N/m).

· A graph is drawn with load along n axis and extension along y-comes. The inverse of slope of graph gurs k.
PROCEDURE: (To calculate frequency of oscillations)

· Note initial position of spring using a meter scale when a

diad wight is Ranged.

· Pull the string downwards and note the final position and let it exclose.

· using a stopwatch , note time taken by the spring for a fixed number of oscillations .

. Repeat the same procedure for various slotted weights and note it in the table and calculate frequency of oscillations.

TABULATION:

Determination of spring constant:												
5.40	(3) Worr	H0828 (Rg)m	mg (M)	Pointer Reader 1x'em	Pointer Reading 'y' cm	Hean 2= xty 2	Extension 'l' in cm	Extension 12' in m	Spring constant R = mg/L (N/m)			
1.	Ho	0	0	1.5	1.4	1.45	٥	0	0			
2 ·	W0450	0.05	0.49	2.9	3	2.95	1.5	0.015	32.667			
3.	Mayloo	0.1	0 .98	4.3	4.3	4.3	2.85	0.0285	34.386			
4.	H&HISO	0.15	1.47	5.7	5.7	5.7	4. 25	0.0425	34.538			
5.	Myoo	0.2	1.96	7.1	7.2	7.15	5.7	0.057	34.386			
6.	H2+380	6.25	2.45	8.5	8.5	q·5	7.05	0.805	34.752			

Hear spring constant = 34.1558 N/m

To dete	in.	breque	ncy of	ssci	llation of spe	ing mass 81	istem:
S. NO	The second second second second second	Time Period for 20 oxillations			Time period for 1	Time Period for 1 oscillation T= 211 \mathrew{M} (8)	+ monuesay
			Trial 2	Hean	(%)	1-411/18	F=VTHY
1 prings	1	14.7	14.7	14.7	0.735	0.7398	1.3517
opring 2	\	12.6	13.6	12.6	59.0	0.6312	1.5842
spring in	\	19.3	19. 3	19.3	0 .965	0.9724	1.0283


```
CALCULATION:
```

Mean =
$$\frac{x+y}{2} = \frac{1.5+1.4}{2} = 1.45$$
 em

Mean =
$$\frac{x+y}{2} = \frac{2.9+3}{2} = 2.95 \text{ cm}$$

Mean =
$$\frac{x+y}{2} = \frac{4.3+4.3}{2} = 4.3 \text{ cm} \pm \frac{1}{2}$$

v) H₀ + 200 = 0.2kg

I road = mg = 1.96N

Hean =
$$\frac{x+y}{2}$$
 = $\frac{7\cdot1+7\cdot2}{1+7\cdot2}$ = $\frac{7\cdot500}{1}$

(= $\frac{7\cdot15}{1\cdot45}$ = $\frac{7\cdot1+7\cdot2}{2}$ = $\frac{7\cdot500}{1}$

R = mg/l = $\frac{1\cdot96}{0.057}$ = $\frac{8.5}{2}$ = $\frac{8.5}{2}$

Vi) W₀ + $\frac{8.5}{2}$ = $\frac{8.5}{2}$ = $\frac{8.5}{2}$

Vi) W₀ + $\frac{8.5}{2}$ = $\frac{8.5}{2}$ = $\frac{8.5}{2}$

R = $\frac{8.5}{2}$ = $\frac{8.5}{2}$ = $\frac{8.5}{2}$

R = $\frac{8.5}{2}$ = $\frac{1.45}{2}$ = $\frac{9.5}{2}$ =

$$R = mg |_{e} = \frac{q.8}{0.099} = 98.9898 N/m$$

Time period
$$2\pi \sqrt{\frac{1}{R}} = 2\times 3.14 \times \sqrt{\frac{1}{98.9898}}$$

Frequency =
$$1/T = \frac{1}{0.6312} = 1.5842 \text{ Hz}$$

Both in series :

Time period =
$$\frac{19.3}{20} = 0.9658$$

$$k = mg/l = \frac{9.8}{0.235} = 41.7021 N/m$$

Time period
for 1 oscillation =
$$2\pi\sqrt{\frac{m}{R}} = 6.28 \times \frac{1}{41.7021}$$

RESULT :

Hear spring constant of spring = 34.1588 N/m
Theoretical value of spring constant is approximately equal to the experimental value.

Specing 1:

Time period for = 0.7398 &

0.7398 & is approximately aqual to experimental value

Frequency of spring 1 = 1.3517 Hy

Spring 2:

Time period of , escillation = 0.9724 & 0.6312
0.6312
0.97248 is approximately equal to experimental value = 0.638
Frequency of spring = 1.5842 Hz.

Both in series:

Time period for 1 oscillation = 0.97248.

0.97248 is approximately equal to emperimental value 0.9658

Frequency of both springs in series = 1.0283 Hg.