[SOT_SUM25] Combinatorics & Graph Theory

Vo Ngoc Tram Anh May 5, 2025

Contents

Co	onter	nts		1
1	Bas	ic Com	lbinatorics	2
	1.1	Inclusi	on-Exclusion Principle	2
	1.2		matical induction & recurrence	2
	1.3		hole principle & Ramsey theory	2
	1.4		ng rules & Stirling number of type 1 & type 2	2
	1.5		tation & Combination	$\frac{1}{2}$
		1.5.1	Consecutive 2 Dice Rolls	$\frac{1}{2}$
		1.5.2	Simultaneous 2 Dice Rolls	$\overline{4}$
		1.5.3	Consecutive n Dice Rolls	6
		1.5.4	Prime and Composite	6
		1.5.5	Even and Odd	7
2	Bas	ic Grai	oh Theory	9
_	2.1	_	representation	9
	2.2		Algorithm	9
		2.2.1	Basic DFS & BFS	9
		2.2.2	DFS & BFS for grid	9
		2.2.3	Important algorithms	9
3	CSI	ES Prol	blem List	10
	3.1		Algorithms	10
		3.1.1	Counting Rooms	10
		3.1.2	Labyrinth	12
		3.1.3	Building Roads	13
		3.1.4	Message Routes	14
		3.1.4	Building Teams	15
		3.1.6	Round Trip	15
		3.1.7	Monsters	

1 Basic Combinatorics

- 1.1 Inclusion-Exclusion Principle
- 1.2 Mathematical induction & recurrence
- 1.3 Pigeonhole principle & Ramsey theory
- 1.4 Counting rules & Stirling number of type 1 & type 2
- 1.5 Permutation & Combination

1.5.1 Consecutive 2 Dice Rolls

https://github.com/vntanh1406/Graph_SUM2025/blob/main/Combinatorics/Consecutive2DiceRolls.cpp

Let the sample space be denoted by Ω .

We consider the experiment of rolling two distinguishable six-sided dice in sequence. Each die has 6 possible outcomes, and since the rolls are independent and ordered, the sample space consists of all ordered pairs (i, j) where $i, j \in \{1, 2, 3, 4, 5, 6\}$.

Therefore, the total number of outcomes is: $|\Omega| = 6 \cdot 6 = 36$

a)

• Let A_1 be the event that both dice show the same number of dots. This corresponds to the set of outcomes: $A_1 = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$

So,
$$P(A_1) = \frac{6}{36} = \frac{1}{6}$$

• Let A_2 be the event that both dice show different numbers of dots. Since there are 6 outcomes with the same number, there are: 36-6=30 outcomes with different numbers

So:
$$P(A_2) = \frac{30}{36} = \frac{5}{6}$$

b)

Even numbers on a die: $\{2,4,6\}$ Odd numbers on a die: $\{1,3,5\}$

- Let B_1 be the event that both dice have the same parity:
 - Both even: $3 \cdot 3 = 9$ outcomes
 - Both odd: $3 \cdot 3 = 9$ outcomes

Total favorable outcomes: 9+9=18. So: $P(B_1)=\frac{18}{36}=\frac{1}{2}$

- Let B_2 be the event that the two numbers have different parity:
 - First even, second odd: $3 \cdot 3 = 9$ outcomes
 - First odd, second even: $3 \cdot 3 = 9$ outcomes

Total favorable outcomes: 9+9=18. So: $P(B_2)=\frac{18}{36}=\frac{1}{2}$

c)

Prime numbers on a die: $\{2, 3, 5\}$ Composite numbers on a die: $\{4, 6\}$

• Let C_1 be the event that the numbers on both dice are prime numbers:

Both prime:
$$3 \cdot 3 = 9$$
 outcomes. So: $P(C_1) = \frac{9}{36} = \frac{1}{4}$

- Let C_2 be the event that the numbers on both dice are composite numbers: Both composite: $2 \cdot 2 = 4$ outcomes. So: $P(C_2) = \frac{4}{36} = \frac{1}{9}$
- Let C₃ be the event that at least one of the two dice shows a prime number.
 The number of outcomes where neither die shows a prime number, or both dice show non-prime numbers: 3 · 3 = 9 (non-prime: {1, 4, 6})

Therefore, the number of favorable outcomes: 36-9=27. So: $P(C_3)=\frac{27}{36}=\frac{3}{4}$

• Let C_4 be the event that at least one of the two dice shows a composite number. The number of outcomes where neither die shows a composite number, or both dice show non-composite numbers: $4 \cdot 4 = 16$ (non-composite: $\{1, 2, 3, 5\}$)

Therefore, the number of favorable outcomes: 36 - 16 = 20. So: $P(C_4) = \frac{20}{36} = \frac{5}{9}$

d) Let D be the event that one of the two numbers is a divisor or a multiple of the other. Let each outcome be represented as an ordered pair (a,b), where $a,b \in \{1,2,3,4,5,6\}$. We are interested in counting the number of outcomes where: $a \mid b$ or $b \mid a$ The valid pairs:

- When a = 1: b = 1, 2, 3, 4, 5, 6 (6 outcomes)
- When a = 2: b = 1, 2, 4, 6 (4 outcomes)
- When a = 3: b = 1, 3, 6 (3 outcomes)
- When a = 4: b = 1, 2, 4 (3 outcomes)
- When a = 5: b = 1, 5 (2 outcomes)
- When a = 6: b = 1, 2, 3, 6 (4 outcomes)

Total favorable outcomes: 6 + 4 + 3 + 3 + 2 + 4 = 22. So: $P(D) = \frac{22}{36} = \frac{11}{18}$

- e) Let E_n be the event that the sum of the two dice is equal to n. For $n \in \{2, 3, ..., 12\}$, we define the function: $f(n) = \min\{n-1, 6\} - \max\{n-6, 1\} + 1$ This function counts the number of integer pairs $(a, b) \in \{1, 2, 3, 4, 5, 6\}^2$ such that a+b=n.
- The smallest possible sum is 1+1=2, and the largest is 6+6=12, so $n\in\{2,3,\ldots,12\}$.
- For a fixed n, valid pairs (a, b) must satisfy: $a \in [\max(1, n 6), \min(6, n 1)]$, and then b = n a.
- Therefore, the number of such values of a is: $f(n) = \min(n-1,6) \max(n-6,1) + 1$
- This formula works because:
 - $-\min(n-1,6)$ gives the largest possible value of a such that $b=n-a\geq 1$
 - $-\max(n-6,1)$ gives the smallest possible value of a such that $b=n-a\leq 6$
 - The total number of integers a in that interval is: upper bound lower bound +1

So:
$$P(E_n) = \frac{f(n)}{36} \cdot \mathbf{1}_{\{2 \le n \le 12\}}$$

1.5.2 Simultaneous 2 Dice Rolls

https://github.com/vntanh1406/Graph_SUM2025/blob/main/Combinatorics/Consecutive2DiceRolls.cpp

Let the sample space be denoted by Ω .

We consider the experiment of rolling two indistinguishable six-sided dice simultaneously. Each die has 6 possible outcomes, and since the dice are indistinguishable and rolled at the same time, the sample space consists of all unordered pairs (i,j) where $i,j \in \{1,2,3,4,5,6\}$ and $i \leq j$.

Therefore, the total number of outcomes is: $|\Omega| = 6 + {6 \choose 2} = 21$

a)

• Let A_1 be the event that both dice show the same number of dots. This corresponds to the set of outcomes: $A_1 = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$

So, $P(A_1) = \frac{6}{21} = \frac{2}{7}$

• Let A_2 be the event that both dice show different numbers of dots. Since there are 6 outcomes with the same number, there are: 21-6=15 outcomes with different numbers

So: $P(A_2) = \frac{15}{21} = \frac{5}{7}$

b)

Even numbers on a die: $\{2,4,6\}$ Odd numbers on a die: $\{1,3,5\}$

• Let B_1 be the event that both dice have the same parity:

- Both even: $3 + \binom{3}{2} = 6$ outcomes

- Both odd: $3 + \binom{3}{2} = 6$ outcomes

Total favorable outcomes: 6+6=12. So: $P(B_1)=\frac{12}{21}=\frac{4}{7}$

ullet Let B_2 be the event that the two numbers have different parity:

Total favorable outcomes: $3 \cdot 3 = 9$. So: $P(B_2) = \frac{9}{21} = \frac{3}{7}$

c)

Prime numbers on a die: {2,3,5} Composite numbers on a die: {4,6}

• Let C_1 be the event that the numbers on both dice are prime numbers:

Both prime: $3 + {3 \choose 2} = 6$ outcomes. So: $P(C_1) = \frac{6}{21} = \frac{2}{7}$

• Let C_2 be the event that the numbers on both dice are composite numbers:

Both composite: $2 + \binom{2}{2} = 3$ outcomes. So: $P(C_2) = \frac{3}{21} = \frac{1}{7}$

• Let C_3 be the event that at least one of the two dice shows a prime number.

The number of outcomes where neither die shows a prime number, or both dice show non-prime numbers: $3 + \binom{3}{2} = 6$ (non-prime: $\{1, 4, 6\}$)

Therefore, the number of favorable outcomes: 21-6=15. So: $P(C_3)=\frac{15}{21}=\frac{5}{7}$

4

- Let C₄ be the event that at least one of the two dice shows a composite number.
 The number of outcomes where neither die shows a composite number, or both dice show non-composite numbers: 4 + (⁴₂) = 10 (non-composite: {1, 2, 3, 5})
 Therefore, the number of favorable outcomes: 21 10 = 11. So: P(C₄) = ¹¹/₂₁
- d) Let D be the event that one of the two numbers is a divisor or a multiple of the other. Let each outcome be represented as an unordered pair (a,b), where $a,b \in \{1,2,3,4,5,6\}$. We are interested in counting the number of outcomes where: $a \mid b$ or $b \mid a$ The valid pairs:
- When a = 1: b = 1, 2, 3, 4, 5, 6 (6 outcomes)
- When a = 2: b = 2, 4, 6 (3 outcomes)
- When a = 3: b = 3, 6 (2 outcomes)
- When a = 4: b = 4 (1 outcome)
- When a = 5: b = 5 (1 outcome)
- When a = 6: b = 6 (1 outcome)

Total favorable outcomes: 6 + 3 + 2 + 1 + 1 + 1 = 14. So: $P(D) = \frac{14}{21} = \frac{2}{3}$

- e) Let E_n be the event that the sum of the two dice is equal to n. For $n \in \{2, 3, ..., 12\}$, we define the function: $f(n) = \left\lfloor \frac{\min\{n-1, 6\} \max\{n-6, 1\}}{2} \right\rfloor + 1$ This function counts the number of unordered integer pairs $(a, b) \in \{1, 2, 3, 4, 5, 6\}^2$ such that a + b = n and $a \le b$.
- The smallest possible sum is 1+1=2, and the largest is 6+6=12, so $n \in \{2,3,\ldots,12\}$.
- For a fixed n, valid unordered pairs (a, b) must satisfy:

$$a \in \left[\max(1, n - 6), \left\lfloor \frac{n}{2} \right\rfloor\right], \quad b = n - a, \text{ and } a \le b$$

• Therefore, the number of such values of a is given by:

$$f(n) = \left| \frac{\min(n-1,6) - \max(n-6,1)}{2} \right| + 1$$

- This formula works because:
 - $\min(n-1,6)$ gives the largest possible value of a such that $b=n-a\in[1,6]$
 - $\max(n-6,1)$ gives the smallest possible value of a such that $b=n-a\in[1,6]$
 - We divide the range by 2 and take floor to count only unordered pairs (i.e., $a \leq b$)
 - Adding 1 accounts for inclusive bounds

So:
$$P(E_n) = \frac{f(n)}{21} \cdot \mathbf{1}_{\{2 \le n \le 12\}}$$
.

1.5.3 Consecutive n Dice Rolls

https://github.com/vntanh1406/Graph_SUM2025/blob/main/Combinatorics/ConsecutiveNDiceRolls.ipynb

Let the sample space be denoted by Ω .

We consider the experiment of rolling n distinguishable six-sided dice in sequence. Each die has 6 possible outcomes, and since the rolls are independent and ordered, the sample space consists of all ordered pairs (i, j) where $i, j \in \{1, 2, 3, 4, 5, 6\}$.

Therefore, the total number of outcomes is: $|\Omega| = 6^n$

a) Let A be the event that all dice show the same number of dots.

This corresponds to the set of outcomes where $x_1 = x_2 = \cdots = x_n$.

There are exactly 6 such outcomes (all 1's, all 2's, ..., all 6's), so: $P(A) = \frac{6}{6^n}$

b) Let B be the event that all dice show different numbers of dots.

This is only possible when $1 \le n \le 6$ (since there are only 6 distinct values from 1 to 6).

- If n > 6 or n < 2, then clearly: P(B) = 0
- For $2 \le n \le 6$: The number of favorable outcomes as the number of one-to-one mappings from n dice to 6 values, i.e., number of permutations: $P(6,n) = 6 \cdot 5 \cdot 4 \cdots (6-n+1)$. So: $P(B) = \frac{P(6,n)}{6^n} = \frac{6!}{(6-n)! \cdot 6^n}$
- c) Let C be the event that all dice have the same parity.
- All even: 3^n outcomes
- All odd: 3^n outcomes

Total favorable outcomes: $2 \cdot 3^n$. So: $P(C) = \frac{2 \cdot 3^n}{6^n} = \frac{1}{2^{n-1}}$

1.5.4 Prime and Composite

https://github.com/vntanh1406/Graph_SUM2025/blob/main/Combinatorics/PrimeAndComposite.ipynb

Let $A_n = \{1, 2, \dots, n\} \subset N^*$ be the set of the first n positive integers.

Let $m \in N^*$, and suppose we randomly select m distinct elements from A_n .

Let $T = \binom{n}{m}$ be the total number of ways to choose m distinct elements from A_n . Suppose $k \in \{0, 1, ..., m\}$

6

a)

Let:

- $d_e = \left\lfloor \frac{n}{2} \right\rfloor$ be the number of even numbers in A_n ,
- $d_o = n d_e$ be the number of odd numbers in A_n ,

We have the following probabilities:

- $P_{\text{All even}} = \frac{\binom{d_e}{m}}{T}$
- $P_{\text{All odd}} = \frac{\binom{d_o}{m}}{T}$

- $P_{\text{At least one even}} = 1 P_{\text{All odd}} = 1 \frac{\binom{d_o}{m}}{T}$
- $P_{\text{At least one odd}} = 1 P_{\text{All even}} = 1 \frac{\binom{d_e}{m}}{T}$
- $P_{\text{Exactly k even}} = \frac{\binom{d_e}{k} \cdot \binom{d_o}{m-k}}{T}$
- $P_{\text{Exactly k odd}} = \frac{\binom{d_o}{k} \cdot \binom{d_e}{m-k}}{T}$
- $P_{\text{At least k even}} = \frac{1}{T} \sum_{i=k}^{m} {d_e \choose i} \cdot {d_o \choose m-i}$
- $P_{\text{At least k odd}} = \frac{1}{T} \sum_{i=k}^{m} {d_o \choose i} \cdot {d_e \choose m-i}$

b)

Let:

- $p = \pi(n)$: the number of prime numbers less than or equal to n
- $c = n 1 \pi(n)$: the number of composite numbers in A_n

We have the following probabilities:

- $P_{\text{All prime}} = \frac{\binom{p}{m}}{T}$
- $P_{\text{All composite}} = \frac{\binom{c}{m}}{T}$
- $P_{\text{At least one prime}} = \frac{1}{T} \sum_{i=1}^{m} {p \choose i} \cdot {n-p \choose m-i} = 1 \frac{{c \choose m} + {c \choose m-1}}{T}$
- $P_{\text{At least one composite}} = \frac{1}{T} \sum_{i=1}^{m} {c \choose i} \cdot {n-c \choose m-i} = 1 \frac{{p \choose m} + {p \choose m-1}}{T}$
- $P_{\text{Exactly k prime}} = \frac{\binom{p}{k} \cdot \binom{n-p}{m-k}}{T}$
- $P_{\text{Exactly k composite}} = \frac{\binom{c}{k} \cdot \binom{n-c}{m-k}}{T}$
- $P_{\text{At least k prime}} = \frac{1}{T} \sum_{i=k}^{m} {p \choose i} \cdot {n-p \choose m-i}$
- $P_{\text{At least k composite}} = \frac{1}{T} \sum_{i=k}^{m} {c \choose i} \cdot {n-c \choose m-i}$

1.5.5 Even and Odd

https://github.com/vntanh1406/Graph_SUM2025/blob/main/Combinatorics/EvenAndOdd.ipynb

Let $a, b \in Z$ with a < b, and let $n, k \in N^*$ such that $n \ge 2$ and $k \le n$. Define the set $A = \{a, a+1, a+2, \ldots, b\} \subset Z$ with total size N = |A| = b-a+1. Let:

- $d_o = \left\lfloor \frac{b-a}{2} \right\rfloor + 1$ be the number of odd numbers in A_n
- $d_e = N d_o$
- T be the total number of possible selections.

a)

- Distinct $(T = \binom{N}{2})$:
 - Probability that both numbers have the same parity: $P_{\text{same parity}} = \frac{\binom{d_e}{2} + \binom{d_o}{2}}{T}$
 - Probability that the two numbers have different parity: $P_{\text{different parity}} = \frac{d_e \cdot d_o}{T}$
- With replacement $(T = N^2)$:
 - Probability that both numbers have the same parity: $P_{\text{same parity}} = \frac{d_e^2 + d_o^2}{T}$
 - Probability that the two numbers have different parity: $P_{\text{different parity}} = \frac{2 \cdot d_e \cdot d_o}{T}$

b) Suppose $d_e, d_o \ge n$

• Distinct $(T = \binom{N}{n})$:

$$-P_{\text{all even}} = \frac{\binom{d_e}{n}}{T}$$

$$-P_{\text{all odd}} = \frac{\binom{d_o}{n}}{T}$$

$$-P_{\text{same parity}} = \frac{\binom{d_e}{n} + \binom{d_o}{n}}{T}$$

$$-P_{\text{exactly } k \text{ even}} = \frac{\binom{d_e}{k} \cdot \binom{d_o}{n-k}}{T}$$

$$-P_{\text{exactly } k \text{ odd}} = \frac{\binom{d_o}{k} \cdot \binom{d_e}{n-k}}{T}$$

$$-P_{\text{at least } k \text{ even}} = \frac{1}{T} \sum_{i=k}^{n} \binom{d_e}{i} \cdot \binom{d_o}{n-i}$$

$$-P_{\text{at least } k \text{ odd}} = \frac{1}{T} \sum_{i=k}^{n} \binom{d_o}{i} \cdot \binom{d_e}{n-i}$$

• With replacement $(T = N^n)$:

$$-P_{\text{all even}} = \frac{d_e^n}{T}$$

$$-P_{\text{all odd}} = \frac{d_o^n}{T}$$

$$-P_{\text{same parity}} = \frac{d_e^n + d_o^n}{T}$$

$$-P_{\text{exactly } k \text{ even}} = \frac{\binom{n}{k} \cdot d_e^k \cdot d_o^{n-k}}{T}$$

$$-P_{\text{exactly } k \text{ odd}} = \frac{\binom{n}{k} \cdot d_o^k \cdot d_e^{n-k}}{T}$$

$$-P_{\text{at least } k \text{ even}} = \frac{1}{T} \sum_{i=k}^n \binom{n}{i} \cdot d_e^i \cdot d_o^{n-i}$$

$$-P_{\text{at least } k \text{ odd}} = \frac{1}{T} \sum_{i=k}^n \binom{n}{i} \cdot d_o^i \cdot d_e^{n-i}$$

2 Basic Graph Theory

 $\label{link-to-com-vntanh1406/Graph_SUM2025/tree/main/BasicGraphTheory} Link to C++ Sources: https://github.com/vntanh1406/Graph_SUM2025/tree/main/BasicGraphTheory$

2.1 Graph representation

- Adjacency Matrix to Edge List: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/AdjacencyMatrixToEdgeList.cpp
- Adjacency Matrix to Adjacency List: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/AdjacencyMatrixToAdjacencyList.cpp
- Edge List to Adjacency Matrix: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/EdgeListToAdjacencyMatrix.cpp
- Edge List to Adjacency List: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/EdgeListToAdjacencyList.cpp
- Adjacency List to Adjacency Matrix: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/AdjacencyListToAdjacencyMatrix.cpp
- Adjacency List To Edge List: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/AdjacencyListToEdgeList.cpp

2.2 Search Algorithm

2.2.1 Basic DFS & BFS

- Basic Depth First Search: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/BasicDFS.cpp
- Basic Breadth First Search: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/BasicBFS.cpp
- Counting Connected Components: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/CountingConnectedComponents.cpp
- Find Path From s to e: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/FindPath Basic.cpp

2.2.2 DFS & BFS for grid

- Counting Connected Components and Checking Path Existence: https://github.com/ vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/BFS_DFS_OnGrid.cpp
- Find The Shortest Path: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/FindShortestPath.cpp

2.2.3 Important algorithms

- Topological Sort: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/TopologicalSort.cpp
- Detect Cycles in Undirected Graph: https://github.com/vntanh1406/Graph_SUM2025/blob/main/BasicGraphTheory/UndirectedGraphCycle.cpp

3 CSES Problem List

3.1 Graph Algorithms

3.1.1 Counting Rooms

Problem Description

- https://cses.fi/problemset/task/1192
- The task is to determine the number of rooms in a building.
- A room is defined as a maximal connected area of floor tiles (denoted by '.') in a 2D map.
- We can move up, down, left, and right between adjacent floor tiles. Wall tiles are represented by '#' and cannot be walked through.
- Input:
 - The first line contains two integers n and m ($1 \le n, m \le 1000$), denoting the height and width of the map.
 - The next n lines each contain a string of m characters representing the map.
- Output: The number of distinct rooms.
- Example

Input	Output
5 8	
#######	
###	3
####.#.#	3
###	
#######	

Algorithm Explanation

- https://cses.fi/paste/6fa005ccb9388ed1c2d9a9/
- Use DFS to find the number of connected components in a grid where we treat floor tiles '.' as nodes in a graph. (2 floor tiles are connected if they are adjacent: up/down/left/right).
- Implementation:
 - n, m: the dimensions of the grid (height and width).
 - grid: a vector of strings representing the map, where each character is either '.' (floor) or '#' (wall).
 - visited[n][m]: a 2D boolean array used to track visited floor tiles.
 - dx[4], dy[4]: Two arrays representing the relative movement in four directions:
 - * Up: (-1,0)
 - * Down: (+1,0)

- * Left: (0, -1)
- * Right: (0, +1)

void dfs(int x, int y)

- * Given a starting floor tile at position (x, y):
 - 1. Mark visited[x][y] = true.
 - 2. For each of the 4 directions:
 - New coordinates (nx, ny) = (x + dx[i], y + dy[i]).
 - · If (nx, ny) is within bounds, not visited, and is a floor tile, recursively call dfs(nx, ny).

- Main loop:

- * Iterate over all grid cells.
- * For each unvisited floor tile:
 - · Call DFS from that tile to explore its connected room.
 - · Increment the room counter.
- Time complexity: The algorithm visits each cell at most once, and each DFS runs in time proportional to the number of floor tiles in a room. Hence, the overall complexity is $\mathcal{O}(n \cdot m)$.
- Step-by-Step Example (using the sample input): We visualize the grid and track DFS visits:

Initial Grid:

#	#	#	#	#	#	#	#
#			#				#
#	#	#	#		#		#
#			#				#
#	#	#	#	#	#	#	#

Room 1: Start DFS at (1,1)

DFS visits: $(1,1) \rightarrow (1,2)$

 \rightarrow Room 1 completed. Total rooms = 1

Room 2: Start DFS at (1,4)

DFS visits: $(1,4) \to (2,4) \to (3,4) \to (3,5) \to (3,6) \to (2,6) \to (1,6) \to (1,5)$

 \rightarrow Room 2 completed. Total rooms = 2

Room 3: Start DFS at (3,1)

DFS visits: $(3,1) \rightarrow (3,2)$

 \rightarrow Room 3 completed. Total rooms = 3

3.1.2 Labyrinth

Problem Description

- https://cses.fi/problemset/task/1193
- There is a map of a labyrinth, and we need to find the shortest path from a start point A to an endpoint B.
- Movement is allowed in four directions: up, down, left, right.
- The labyrinth is represented by a grid:
 - '.' denotes an empty tile (floor).
 - '#' denotes a wall.
 - 'A' is the starting point.
 - 'B' is the target.

• Input:

- The first line contains two integers n and m ($1 \le n, m \le 1000$), the dimensions of the map.
- The next n lines contain m characters each, describing the map.

• Output:

- First print "YES" if a path exists, and "NO" otherwise.
- If a path exists, print its length and then a string consisting of the steps: L, R, U, D.

• Example

Input	Output
5 8	
#######	YES
#.A##	
#.##.#B#	9 LDDRRRRRU
##	LDDIMMINO
#######	

Algorithm Explanation:

- https://cses.fi/paste/261fd1d6d36a0c05c32743/
- Initialize:
 - visited[i][j] = false for all cells
 - -d[i][j] = 0 (distance from 'A')
 - parent[i][j] = previous cell in path

• BFS(start):

- Enqueue start cell, mark as visited
- While queue not empty:

- * Dequeue (x, y)
- * For each direction (U, L, R, D): If neighbor (nx, ny) is valid and unvisited:
 - · Mark visited, set parent, update distance
 - · If cell is 'B': stop search

• Trace Path:

- If distance to 'B' is 0: print "NO"
- Else:
 - * Backtrack from 'B' to 'A' using parent
 - * Record directions (U, L, R, D)
 - * Reverse the path and print "YES", distance, and path
- Time Complexity: $\mathcal{O}(n \cdot m)$

3.1.3 Building Roads

Problem Description

- https://cses.fi/problemset/task/1666
- Given *n* cities and *m* roads, determine the minimum number of new roads required to connect all cities, and specify which roads to build. Each existing road connects two different cities.

• Input:

- The first line contains two integers n and m ($1 \le n \le 10^5, 1 \le m \le 2 \cdot 10^5$) (the number of cities and existing roads).
- The next m lines contain two integers a and b $(1 \le a, b \le n)$ (meaning there is a road between cities a and b).

• Output:

- First, print an integer k (the minimum number of new roads needed).
- Then print k lines, each containing two integers u and v, indicating a road to build between cities u and v.
- Any valid solution is accepted.
- Example

Input	Output
4 2	1
1 2	0.2
3 4	2 3

Algorithm Explanation

- https://cses.fi/paste/bdeee055189e59e5c2f5d8/
- Use DFS to find all connected components.
- For each new component found, save a representative city.

- To connect the components:
 - If there are k components, we need k-1 roads.
 - Connect representative cities linearly: res[i] with res[i+1].
- Time Complexity: $\mathcal{O}(n+m)$

3.1.4 Message Routes

Problem Description

- https://cses.fi/problemset/task/1667
- n computers and m connections.
- Each connection links two distinct computers directly.
- Check if there is a path exists from computer 1 to computer n, find the minimum number of computers on the route, and output one such route.

• Input:

- The first line contains two integers n and m
- Then follow m lines, each with two integers a and b: there is a connection between computers a and b.

• Output:

- If there exists a route from computer 1 to computer n, first print k, then print k space-separated integers representing the computers along this path.
- If no such route exists, print IMPOSSIBLE.

• Example

Input	Output
5 5	
5 5 1 2	
1 3	3
1 4	1 4 5
2 3 5 4	
5 4	

Algorithm Explanation

- https://cses.fi/paste/4e4274bd1cea72b6c2f69d/
- The problem is to find the shortest path from node 1 to node n in an undirected graph.
- Use BFS starting from node 1 to:
 - Mark visited nodes (visited[i]).
 - Record the parent of each node during traversal (parent[i]) to reconstruct the path.
 - Count the number of steps from the start node to each node (d[i]).

- After BFS:
 - If visited[n] is false, there is no path from 1 to n, so the output is IMPOSSIBLE.
 - Otherwise, we reconstruct the shortest path using the parent[] array starting from node n back to 1.
 - Finally, we print the path length (d[n] + 1, because the path includes both endpoints), and the path in correct order.
- Time Complexity: O(n+m)

3.1.5 Building Teams

Problem Description

• https://cses.fi/problemset/task/1668/

Algorithm Explanation

https://cses.fi/paste/4ac88035ca891502c2f78e/

3.1.6 Round Trip

Problem Description

• https://cses.fi/problemset/task/1669

Algorithm Explanation

• https://cses.fi/paste/c716877ebfb8afaec307d9/

3.1.7 Monsters

Problem Description

• https://cses.fi/problemset/task/1194

Algorithm Explanation

https://cses.fi/paste/1a35c0381d423f67c3084e/