Rozwiązania niektórych z około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej (i jednego nie aż tak trudnego, jak się o nim mówi)

Numeracja zadań jak w zbiorze z 2017 roku

Wrocław, 28 marca 2017

1 Języki i automaty

1.1 Synchronizacja automatów częściowych Zadanie 40.

Odp: NIE.

Rysunek 1: $csync(\{1,2\}) \supset \{a\}$; $csync(\{1,3\}) \supset \{b\}$; $csync(\{1,2\}) \supset \{c\}$. Natomiast $csync(Q) = \emptyset$.

Zadanie 41.

W obydwu podpunktach wystarczy zbadać funkcję

$$\begin{split} F: 2^Q \times \Sigma &\longrightarrow 2^Q \\ F(S,a) &= \{\delta(q,a): \ q \in S\}. \end{split}$$

Oczywiście $s \in csync(S) \iff |\widehat{F}(S,s)| = 1$, gdy zdefiniujemy \widehat{F} w naturalny sposób. Ponadto $1 \leqslant |F(A,a)| \leqslant |A|$, zatem $1 \leqslant |\widehat{F}(S,p)| \leqslant |S|$ dla dowolnego prefiksu p słowa s, czyli $\widehat{F}(S,p)$ może przyjmować co najwyżej $\sum_{k=1}^{|S|} \binom{|Q|}{k}$ różnych wartości. Oznaczmy tę liczbę jako M.

Dla |s| > M istnieją prefiksy p_1 i p_2 słowa $s = p_1s_1 = p_2s_2$, $|p_1| < |p_2|$, takie że $\widehat{F}(S, s_1) = \widehat{F}(S, s_2)$ (Zasada Szufladkowa). Wtedy oczywiście $\widehat{F}(S, s) = \widehat{F}(S, p_1s_2)$, przy czym $|p_1s_2| < |s|$.

W zwiazku z powyższym $csync(Q) \neq \emptyset \iff \exists s \in S | s | \leqslant M$. Dokładne odpowiedzi wynikają z tego wprost, po podstawieniu za S a) dowolniego trzyelementowego zbioru stanów b) Q.

Zadanie 42.

Wystarczy rozwiązać M, L i XL wynikają w prosty sposób. Wskazówka jest myląca.

Zbudujmy automat (częściowy) z trzech cykli, ułożonych jeden nad drugim, każdy długości m. Trzy stany, ułożene jeden nad drugim, będą stanowiły nasz początkowy zbiór S

Naszym celem jest, aby co jedną literę zmieniał się stan na górnym cyklu, co m liter stan na drugim, a co m^2 na trzecim. Zapenimy też, że synchro-

nizacja będzie mogła nastąpić dopiero po przejściu przez dolny stan całego cyklu (czyli $\,m^3$ krokach).

Możemy to wymusić w następujący sposób:

przy czym pętelki z literą a są przy każdym stanie na drugim dysku, a pętelki z literami a,b są przy każdym stanie na trzecim dysku.

Możliwość synchronizacji zapeniamy przez dodanie przejść z przedostatnich stanów na każdym dysku do pierwszego stanu dolnego dysku. Oznaczenie ich specjalną "literką synchronizacji", jak d, zapewni nam, że skorzystać z niej będzie można dopiero gdy dolny stan dojdzie do przedostatniego miejsca na dolnym dysku (co następuje dopiero po m^3 krokach:

Zauważmy teraz, że ten automat (zanim dojedzie do synchronizacji) jed-

noznacznie wyznacza słowo, dla którego funkcja przejścia jest określona dla wszystkich stanów z S:

$$s = ((a^{m-1}b)^{m-1}c)^{m-1}d$$

Takie s synchronizuje S i nie istnieje żadne krótsze od niego. Nietrudno wyliczyć, że jest ono odpowiednio długie.

Co do wersji L i XL, wystarczy zauważyć, że:

- 1. To samo rozumowanie można zastosować dla dowolnie wielu cykli, otrzymując wielomian dowolnie dużego stopnia.
- 2. Potrzebny nam alfabet, który ma k+1 liter (gdzie k jest liczbą cykli). Ale dowolny alfabet można zamienić na dwuliterowy, zapisując jego l-tą literę w postaci $0^l 1$. To działa.

Dodatkowo, dodając pętle z literką przejścia na przedostatnich stanach każdego cyklu, zamienimy nasz automat na taki, który synchronizuje wszystkie stany (pierwszy stan każdego cyklu "zjada" wszystkie kolejne w pierwszym przejściu cyklu):

1.2 Transducery

Zadanie 77.

Podpunkt 1: definiujemy $\sigma_{Mealy} = \sigma_{Moore} \circ \delta$. Reszta zostaje. Podpunkt 2: definiujemy (dla transducera Mealy'ego $\langle \Sigma, \Sigma_1, Q, q_0, \delta, \sigma_{Mealy} \rangle$)

- 1. $Q' = Q \times \Sigma \cup q'_0$. Stan (q, a) = stan do którego doszlibyśmy w starym automacie ze stanu q wczytując literę a. Stan q'_0 dodatkowy stan początkowy.
- 2. $\delta'((q, a), b) = (\delta(q, a), b) \text{ dla pary } (q, a) \in Q \times \Sigma$ $\delta'(q'_0, a) = (q_0, a)$
- 3. $\sigma_{Moore}((q, a)) = \sigma_{Mealy}(q, a)$ $\sigma_{Moore}(q'_0) = \varepsilon$

Otrzymujemy transducer Moore'a $\langle \Sigma, \Sigma_1, Q', q'_0, \delta', \sigma_{Moore} \rangle$ równoważny z pierwotnym t. Mealy'ego.

Dowód w obu przypadkach zapewne angażuje Zasadę Indukcji Matematycznej względem długości słowa.

Zadanie 78.

bso. (77) zajmijmy się transducerem Mealy'ego $\langle \Sigma, \Sigma_1, Q, q_0, \delta, \sigma_{Mealy} \rangle$, który świadczy że $A \leqslant_{reg} B$. Niech przy okazji $A_B = \langle \Sigma_1, Q^B, q_0^B, F^B, \delta^B \rangle$ będzie DFA rozpoznającym B. Definiujemy $\delta'(q,a) = \widehat{\delta^B}(q,\sigma_{Mealy}(q,a))$. Udajemy, że jesteśmy słowem z języka B i chodzimy po automacie A_B . Wtedy $\langle \Sigma, Q^B, q_0^B, F^B, \delta' \rangle$ jest DFA rozpoznającym A (d-d. indukcyjny względem długości słowa).

Zadanie 79.

Definiujemy transducer Mealy'ego T_{Mealy} :

- 1. $\Sigma = \{1, 2, 3, ..., n\}$
- 2. $Q = \Sigma$
- 3. $q_0 = 1$
- 4. $\delta(q, a) = a$
- 5. $\Sigma_1 = Q \times \Sigma$
- 6. $\sigma_{Mealy} = Id$

Niech $T_{Moore} = \langle \Sigma, \Sigma_1, Q', q'_0, \delta', \sigma_{Moore} \rangle$ będzie transducerem Moore'a równoważnym z T_{Mealy} .

Obserwacja 1. Możemy założyć, że każdy stan z Q' jest osiągany przez DFA stowarzyszony z T_{Moore} . W przeciwnym razie możemy usunąć te stany, a powstały T'_{Moore} wciąż będzie równoważny z T_{Mealy} .

Obserwacja 2. $s \in Im(\sigma_{Mealy}) \Rightarrow |s| = 1$. $Zatem \ s \in Im(\sigma_{Moore}) \Rightarrow |s| = 1$.

Gdyby było $|Q'| < n^2$, to $Im(\sigma_{Mealy}) \nsubseteq Im(\sigma_{Moore})$. Niech $s \in Im(\sigma_{Mealy}) \setminus Im(\sigma_{Moore})$. s = (k, l) dla pewnych $k, l \in \Sigma$. Rozważmy słowo t = kl. Wtedy $f_{T_{Mealy}}(t) = \sigma_{Mealy}(1, k)\sigma_{Mealy}(k, l) = (1, k)(k, l)$. Załóżmy nie wprost, że $f_{T_{Moore}}(t) = f_{T_{Mealy}}(t)$. Jest to równoważne (obs. 2) z tym, że $\sigma_{Moore}(\delta'(q'_0, k)) = \sigma_{Mealy}(1, k)$ oraz $\sigma_{Moore}(\hat{\delta'}(q'_0, kl)) = \sigma_{Mealy}(k, l) = (k, l)$. Druga równość stoi w jawnej sprzeczności z naszym założeniem, że $(k, l) \notin Im(\sigma_{Moore})$.

Zadanie 80.

Zdaje się, że świadczy o tym następujący transducer Mealy'ego:

1.
$$\Sigma = \{(,),[,],\langle,\rangle\}$$

2.
$$Q = \{q_0\}$$

3.
$$q_0 = q_0$$

4.
$$\delta \equiv q_0$$

5.
$$\Sigma_1 = \{(,),[,]\}$$

6.
$$\sigma_{Mealy}(q_0, (/)) = ((/))$$

 $\sigma_{Mealy}(q_0, [/]) = [[/]]$
 $\sigma_{Mealy}(q_0, (/)) = [(/)]$

Dowód pozostawiamy Czytelnikowi jako ćwiczenie.