

A Logarithmic Lower Bound for Oblivious RAM (for all parameters)

August 20, 2021 Wei-Kai Lin

Ilan Komargodski

Access pattern Leaks data

Frequency, Correlation

ORAM, Correctness

ORAM operations (array):

* Update(i, Work)

* Query(i)

"Online": Answer a query before next

ORAM, Security

Any sequence of Update / Query

ORAM, Parameters

64-bit program:

Array of n entries, each b bits

ORAM (array):

Network packets:

Each cell w bits

ORAM, Efficiency

Lower Bound Proof

1. Update

2. Query

Previous work: "Hard" sequence [Larsen-Nielsen'18]

Previous work: "Hard" sequence

If $w \gg 100 \, b$, then I/O $\ll 0.01$? Too good to be true!

b-bit ORAM size nw-bit

Key Idea: Random Queries

Main Technical Lemma

Main Technical Lemma

Main Technical Lemma

ORAM size n

1. Update random values $x_1, x_2, x_3, x_4, ..., x_n$

2. Query **random** entries

 $r_1, r_2, r_3, r_4, \dots, r_{nb/w}$

Short

High prob:

Intersection

 $=\Omega\left(\frac{nb}{w}\right)$ cells

High prob:

 $\geq \Omega(1)$ I/O per Query

Boost by Security, Recursively

1. Update random values $x_1, x_2, x_3, x_4, ..., x_n$

2. Query **random** entries $r_1, r_2, r_3, r_4, \dots, r_{nb/w}$

Main lemma (this hard sequence):

With high prob: intersection =
$$\Omega\left(n \cdot \frac{b}{w}\right)$$
 cells

Main result (any ORAM):

Any
$$b \ge w$$
, I/O = $\Omega\left(\log n / \log \frac{b}{w}\right)$

- Unconditional (not "balls-and-bins" model)
- Computational (ORAM may use any crypto)

Challenge to main lemma

1. Update random values $x_1, x_2, x_3, x_4, ..., x_n$

2. Query **random** entries $r_1, r_2, r_3, r_4, \dots, r_{nb/w}$

With high prob: intersection = $\Omega\left(n \cdot \frac{b}{w}\right)$ cells

Suppose not, then exists ORAM: Intersection $\leq 0.01 \ n \cdot \frac{b}{w}$

$$x_1, x_2, x_3, x_4, \dots, x_n$$

To < 0.99 nb bits (impossible)

Alice (impossible compress)

[Pătraşcu,Demaine'06]

- 1. If Intersection of $(x_1, ..., x_n; r_1, r_2, ..., r_{nb/w})$ is large, then output $(x_1, ..., x_n)$ directly; Else, continue.
- 2. Write small Intersection (of cell contents, 0.01nb bits)
- 3. Pick random t from 1 to nb/w.
- 4. For each i from 1 to n:

If Query $(r_1, r_2, ..., r_{t-1}, i)$ can NOT be answered by small Intersection, then Write x_i

Analysis, simplified

- *X*, *Y* independent random variables
- Y^* random variable, independent and identically distributed to Y
- f(x, y) arbitrary Boolean function

Then:

$$\Pr[f(X,Y^*) = 1 \mid f(X,Y) = 1]$$
 $\geq \Pr[f(X,Y) = 1]$

A "win" makes it more likely to "win"

Main result (any ORAM):

Any
$$w \ge b$$
, I/O = $\Omega\left(\log n / \log \frac{w}{b}\right)$ (extends to multi-server setting)

Open problems:

- Remaining gap (for computational security)
- Lower/upper bound for
 - Weaker notions (eg, differential-private ORAMs)
 - Stronger notions (eg, statistical security)

Related **new results**:

- ORAM with Worst-Case Logarithmic Overhead (Crypto2021)
- Optimal Oblivious Parallel RAM

Thank you!