

Chapter 7

Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

the barrel effect

the capacity of a barrel is determined not by the longest wooden bars, but by the shortest

Nontrivial applications / reductions.

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more ...

Minimum Cut Problem

Flow network.

- Abstraction for material flowing through the edges.
- G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- [capacity]
- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ [conservation] e out of v

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$

- [capacity]
- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ [conservation]
 - e out of v

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.
$$v(f) = \sum_{e \text{ out of } s} f(e)$$
by flow conservation, all terms
$$= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30 \Rightarrow Flow value \leq 30

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B) \quad \blacksquare$$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

> Value of flow = 28 Cut capacity = 28 \Rightarrow Flow value \leq 28

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 0

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

\(\) locally optimality \(\neq \) global optimality

Residual Graph

Original edge: $e = (u, v) \in E$.

Flow f(e), capacity c(e).

Residual edge.

- "Undo" flow sent.
- e = (u, v) and $e^{R} = (v, u)$.
- Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

Forward edge

Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Backward edge

Augmenting path

Def. An augmenting path is a simple s->t path in the residual graph G_f

Def. The bottleneck capacity of an augmenting path P is the minimum residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G_f , then after calling $f' \leftarrow Augment(f,c,P)$, the resulting f is flow and

$$v(f') = v(f) + bottleneck(G_f, P)$$

Augmenting Path Algorithm

```
Augment(f, c, P) {
  b ← bottleneck(P)
  foreach e ∈ P {
    if (e ∈ E) f(e) ← f(e) + b forward edge
    else f(eR) ← f(eR) - b
  reverse edge
}
return f
}
```

```
Ford-Fulkerson(G, s, t, c) {
   foreach e ∈ E f(e) ← 0
   G<sub>f</sub> ← residual graph

while (there exists augmenting path P) {
   f ← Augment(f, c, P)
     update G<sub>f</sub>
   }
   return f
}
```

Ford-Fulkerson Algorithm

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

- Pf. We prove both simultaneously by showing TFAE (the following are equivalent):
 - (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 - (ii) Flow f is a max flow.
 - (iii) There is no augmenting path relative to f.
- (i) \Rightarrow (ii) This was the corollary to weak duality lemma. (Slide 17)
- (ii) \Rightarrow (iii) We show contrapositive.
- Let f be a max flow. If there exists an augmenting path, then we can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii)
$$\Rightarrow$$
 (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of $f, t \notin A$.

f(e) = 0, if not, there will be a backward edge in $G_{\rm f}$, Violate no augmenting paths in $G_{\rm f}$

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$= \sum_{e \text{ out of } A} \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B) \quad \blacksquare$$

If not, there will be a forward edge in $G_{\rm f}$, Violate no augmenting paths in $G_{\rm f}$

original network

Running Time

Assumption. All capacities are integers between 1 and $C = \sum_{e \text{out of } s} c(e)$

Invariant. Every flow value f(e) and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \le C$ iterations. Pf. Each augmentation increase value by at least 1.

To find an s-t path in G_f , say by BFS,O(m+n) with $m \ge n/2$, Procedure augment(f,P) takes O(n), as the path has at most n-1 edges

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant.

Chapter 7

Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

7.3 Choosing Good Augmenting Paths

Choosing good augmenting paths

Use care when selecting augmenting paths

- Some choices lead to exponential algorithms
- Clever choice lead to polynomial algorithms

Pathology. When edge capacities can be irrational, no guarantee that Ford-Fulkerson terminates (or converges to a maximum flow)!

Goal. Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations

Figure Parts (a) through (d) depict four iterations of the Ford-Fulkerson Algorithm using a bad choice of augmenting paths: The augmentations alternate between the path P_1 through the nodes s, u, v, t in order and the path P_2 through the nodes s, v, u, t in order.

Choosing good augmenting paths

Choose augmenting paths with:

- Max bottleneck capacity ("fattest"). ← how to find?
- Sufficiently large bottleneck capacity. ← next
- Fewest edges. ← ahead

Capacity-scaling algorithm

Overview. Choosing augmenting paths with "large" bottleneck capacity.

• Maintain scaling parameter Δ .

- though not necessarily largest
- Let $G_f(\Delta)$ be the part of the residual graph containing only those edges with capacity $\geq \Delta$.
- Any augmenting path in $G_f(\Delta)$ has bottleneck capacity $\geq \Delta$.


```
Scaling Max-Flow
  Initially f(e) = 0 for all e in G
  Initially set \Delta to be the largest power of 2 that is no larger
          than the maximum capacity out of s: \Delta \leq \max_{e \text{ out of } s} c_e
     While \Delta > 1
         While there is an s-t path in the graph G_f(\Delta)
            Let P be a simple s-t path in G_f(\Delta)
            f' = \operatorname{augment}(f, P)
            Update f to be f' and update G_f(\Delta)
        Endwhile
        \Delta = \Delta/2
     Endwhile
Return f
```

Capacity-scaling algorithm: proof of correctness

Assumption: All edge capacities are integers between 1 and C.

Invariant. The scaling parameter Δ is a power of 2.

Pf. Initially a power of 2 (largest power of $2 \le C$); each phase divides Δ by exactly 2.

Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual capacity $c_f(e)$ is an integer.

Pf. Same as for genetic Ford-Fulkerson.

Theorem. If capacity-scaling algorithm terminates, then f is a max flow.

Pf.

- By integrality invariant, when $\Delta = 1 \rightarrow G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths.
- Result follows augmenting path theorem.

Capacity-scaling algorithm: analysis of running time

Lemma 1. There are $1 + \lfloor \log_2 C \rfloor$ scaling phases.

Pf. Initial $C/2 < \Delta \le C$; Δ decreases by a factor of 2 in each iteration.

Lemma 2. Let f be the flow at the end of a Δ -scaling phase, then the max-flow value $\leq v(f) + m\Delta$.

Pf. Next slide.

Lemma 3. There are \leq 2m augmentations per scaling phase. of a 2 Δ -scaling phase Pf.

or equivalently, at the end f a 2 ∆-scaling phase

- Let f be the flow at the beginning of a Δ -scaling phase.
- Lemma 2 → max-flow value \leq v(f) + m(2 Δ).
- Each augmentation in a Δ -scaling phase increases v(f) by at least Δ .

Theorem. The capacity-scaling algorithm takes $O(m^2 \log C)$ time. Pf.

- Lemma 1 + Lemma 3 \rightarrow O(mlogC) augmentations.
- Finding an augmenting path takes O(m) time.

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a \triangle -scaling phase, then the max-flow value $\leq v(f) + m\triangle$.

Pf.

- We show there exists a cut(A,B) such that $cap(A,B) \le v(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.

Residual capacity:
$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

Shortest augmenting path

- Q. How to choose next augmenting path in Ford-Fulkerson?
- A. Pick one that uses the fewest edges.

can find via BFS

SHORTEST-AUGMENTING-PATH(G)

FOREACH $e \in E$: $f(e) \leftarrow 0$.

 $G_f \leftarrow$ residual network of G with respect to flow f.

WHILE (there exists an $s \rightarrow t$ path in G_f)

$$P \leftarrow \text{Breadth-First-Search}(G_f).$$

 $f \leftarrow AUGMENT(f, c, P)$.

Update G_f .

RETURN f.

Chapter 7

Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

7.5 Bipartite Matching

Matching

Matching.

- Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Max matching: find a max cardinality matching.

Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

matching

1-2', 3-1', 4-5'

R

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Max flow formulation.

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
 - Direct all edges from L to R, and assign infinite (or unit) capacity.
 - Add source s, and unit capacity edges from s to each node in L.
 - Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching: Proof of Correctness

Theorem. value of max flow in G' = Max cardinality matching in G.

Pf. \leq

- Given max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has cardinality k.

Bipartite Matching: Proof of Correctness

Theorem. value of max flow in G' = Max cardinality matching in G. Pf. \geq

- Let f be a max flow in G' of value k.
- Integrality theorem \Rightarrow k is integral and can assume f is 0-1.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in L and R participates in at most one edge in M
 - |M| = k: apply flow-value lemma to cut $(L \cup s, R \cup t)$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

Perfect Matching

Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly we must have |L| = |R|.
- What other conditions are necessary?
- What conditions are sufficient?

Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$, has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$. Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching:

$$N(S) = \{ 2', 5' \}.$$

Hall's marriage theorem

Theorem. [Frobenius 1917, Hall 1935] Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then, graph G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Pf. \Rightarrow This was the previous observation.

No perfect matching:

R

$$N(S) = \{ 2', 5' \}.$$

Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?

- Generic augmenting path: $O(mn \text{ val}(f^*)) = O(mnC)$.
- Capacity scaling: O(m² log C).

Non-bipartite matching.

- Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
- Blossom algorithm: O(n⁴). [Edmonds 1965]
- Best known: $O(m n^{1/2})$. [Micali-Vazirani 1980]

Chapter 7

Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

7.6 Disjoint Paths in Directed and Undirected Graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \sim t$ paths.

Ex. Communication networks.

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \sim t$ paths.

Ex. Communication networks.

Max-flow formulation. Assign unit capacity to every edge.

Theorem. Max number of edge-disjoint $s \sim t$ paths = value of max flow. Pf. \geq

- Suppose there are k edge-disjoint $s \sim t$ paths P1, ..., Pk.
- Set f(e) = 1 if e participates in some path P_j ; else set f(e) = 0.
- Since paths are edge-disjoint, f is a flow of value k. •

Max-flow formulation. Assign unit capacity to every edge.

Theorem. Max number of edge-disjoint $s \sim t$ paths = value of max flow. Pf. \leq

- Suppose max flow value is k.
- Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by flow conservation, there exists an edge (u, v) with f(u, v) = 1
 - continue until reach t, always choosing a new edge
- \blacksquare Produces k (not necessarily simple) edge-disjoint paths

can eliminate cycles to get simple paths in O(mn) time if desired (flow decomposition)

Network connectivity

Def. A set of edges $F \subseteq E$ disconnects t from s if every $s \sim t$ path uses at least one edge in F.

Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint $s \sim t$ paths equals the min number of edges whose removal disconnects t from s.

Pf. ≤

- Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
- Every $s \sim t$ path uses at least one edge in F.
- Hence, the number of edge-disjoint paths is $\leq k$.

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint $s \sim t$ paths equals the min number of edges whose removal disconnects t from s.

Pf. ≥

- Suppose max number of edge-disjoint paths is k.
- Then value of max flow = k.
- Max-flow min-cut theorem \Rightarrow there exists a cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- \bullet | F| = k and disconnects t from s.

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Max-flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Observation. Two paths P1 and P2 may be edge-disjoint in the digraph but not edge-disjoint in the undirected graph.

if P1 uses edge (u, v)and P2 uses its antiparallel edge (v, u)

Max-flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e': either f(e) = 0 or f(e') = 0 or both. Moreover, integrality theorem still holds.

Pf. [by induction on number of such pairs]

- Suppose f(e) > 0 and f(e') > 0 for a pair of antiparallel edges e and e'.
- Set $f(e) = f(e) \delta$ and $f(e') = f(e') \delta$, where $\delta = \min \{ f(e), f(e') \}$.
- f is still a flow of the same value but has one fewer such pair

Max-flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e': either f(e) = 0 or f(e') = 0 or both. Moreover, integrality theorem still holds.

Theorem. Max number of edge-disjoint $s \sim t$ paths = value of max flow. Pf. Similar to proof in digraphs; use lemma.

Chapter 7

Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

7.7 Extensions to Maximum-Flow Problem

Multiple sources and sinks

Def. Given a digraph G = (V, E) with edge capacities $c(e) \ge 0$ and multiple source nodes and multiple sink nodes, find max flow that can be sent from the source nodes to the sink nodes.

Multiple sources and sinks: max-flow formulation

- Add a new source node s and sink node t.
- For each original source node s_i add edge (s, s_i) with capacity ∞ .
- For each original sink node t_i , add edge (t_i, t) with capacity ∞ .

Claim. 1-1 correspondence betweens flows in G and G'.

Circulation with supplies and demands

Def. Given a digraph G = (V, E) with edge capacities $c(e) \ge 0$ and node demands d(v), a circulation is a function f(e) that satisfies:

For each $e \in E$: $0 \le f(e) \le c(e)$ (capacity)

For each
$$v \in V$$
: $\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (flow conservation)

Circulation with supplies and demands: max-flow formulation

- Add new source s and sink t.
- For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
- For each v with d(v) > 0, add edge (v, t) with capacity d(v).

Claim. G has circulation iff G' has max flow of value $D = \sum_{v: d(v)>0} d(v) = \sum_{v: d(v)<0} d(v)$

flow network G'

7

8

Supply

Saturates all edges leaving s and entering t

11

10

10

11

demand

Circulation with supplies and demands

Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V, E, c, d), there does not exist a circulation iff there exists a node partition (A, B) such that $\sum_{v \in B} d(v) > cap(A, B)$.

Pf sketch. Look at min cut in G'.

demand by nodes in B exceeds
supply of nodes in B plus
max capacity of edges going from A to B

Previous slide: G has circulation iff G' has max flow of value == max flow == min cut