Međuispit iz Matematike 3R 19.11.2014.

1. (5 bodova) Zadana je periodična funkcija f(x) perioda duljine 2 grafom

- (a) Odredite Fourierov red S(x) funkcije f(x).
- **(b)** Odredite f(2015) S(2015).
- 2. (5 bodova) Izračunajte

$$\int_0^{+\infty} \frac{\cos(\pi t)}{1 - 4t^2} \, dt$$

pomoću prikaza funkcije

$$f(x) := \left\{ \begin{array}{ll} 2\cos\frac{x}{2}, & x \in [-\pi,\pi] \\ 0, & x \notin [-\pi,\pi]. \end{array} \right.$$

u Fourierov integral.

3. (5 bodova) Odredite za koje $s \in \mathbb{R}$ konvergira integral

$$\int_0^\infty t^2 e^{-st} \sin 2t \, dt.$$

Ako postoji, izračunajte

$$\int_0^\infty t^2 e^{-2t} \sin 2t \, dt.$$

- 4. (5 bodova) Iskažite teorem o integriranju originala, te ga dokažite:
 - (a) Pomoću teorema o konvoluciji
 - (b) Bez korištenja teorema o konvoluciji.
- 5. (5 bodova) Pomoću Laplaceove transformacije riješite sustav diferencijalnih jednadžbi

$$\begin{cases} y' = 11y - 2z \\ z' = 8y + z \end{cases}$$

uz početne uvjete y(0) = 2 i z(0) = 5.

6. (5 bodova) Pomoću Laplaceove transformacije naći struju i(t) strujnog kruga zadanog slikom gdje je C=1 i R=1. Priključeni napon e(t) zadan je grafom.

- 7. (5 bodova) Konstruirajte injekciju sa skupa \mathbb{Q} u $\mathbb{N} \times \mathbb{N}$.
- 8. (5 bodova) Na skupu \mathbb{R}^2 definiramo relaciju ρ :

$$(x_1, y_1)\rho(x_2, y_2)$$
 ako i samo ako $x_1^2 + y_1^2 = x_2^2 + y_2^2$.

- (a) Dokažite da je ρ relacija ekvivalencije i skicirajte u ravnini klasu od (1,1).
- (b) Odredite kvocijentni skup \mathbb{R}^2/ρ

Međuispit iz Matematike 3R 19.11.2014. - RJEŠENJA

1. (a) $S(x) = \frac{3}{4} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos((2n-1)\pi x) + \frac{1}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \sin(n\pi x).$

(b)
$$f(2015) = 0$$
, $S(2015) = \frac{1}{2}$, $f(2015) - S(2015) = -\frac{1}{2}$.

f(x)

$$f(x) = \int_0^\infty \frac{8}{\pi} \cdot \frac{\cos(\pi \lambda)}{1 - 4\lambda^2} \cos(\lambda x) d\lambda.$$

Uvrstimo x = 0 i dobivamo:

$$\int_0^\infty \frac{\cos \pi \lambda}{1 - 4\lambda^2} \, d\lambda = \frac{\pi}{4}.$$

3. Laplaceov integral konvergira za $s>a_0$, gdje je a_0 eksponent rasta. Budući je $|t^2\sin 2t|< t^2$ i $\lim_{t\to\infty}\frac{t^2}{e^{at}}=0$, za svaki a>0, zaključujemo da je $a_0=0$, tj. da integral konvergira za svaki s>0.

4. knjižica

5.

2.

$$Y(s) = \frac{2s - 12}{(s - 3)(s - 9)} \bullet - \circ e^{3t} + e^{9t} = y(t),$$

$$Z(s) = \frac{5s - 39}{(s - 3)(s - 9)} \bullet - 0.4e^{3t} + e^{9t} = z(t).$$

6.

$$e(t) = (t+1)u(t) + 3(1-t)u(t-1) + (2t-4)u(t-2) \circ - \bullet \cdot \frac{1}{s^2} + \frac{1}{s} - 3\frac{1}{s^2}e^{-s} + 2\frac{1}{s^2}e^{-2s} = E(s).$$

$$1/Z(s) = 1 + s, \text{ pa je } I(s) = \frac{1}{s^2} + \frac{1}{s} - 3\frac{1}{s^2}e^{-s} + 2\frac{1}{s^2}e^{-2s} + \frac{1}{s} + 1 - 3\frac{1}{s}e^{-s} + 2\frac{1}{s}e^{-2s} \bullet - \circ (t+2)u(t) - 3tu(t-1) + 2(t-1)u(t-2) + \delta(t) = i(t).$$

- 7. Za svaki $q \in \mathbb{Q}$ postoje jedinstveni $a_q \in \{1,2\}, b_q, c_q \in \mathbb{N}$ takvi da je $(b_q, c_q) = 1$ i $q = (-1)^{a_q} \frac{b_q}{c_q}$. Definiramo $f \colon \mathbb{Q} \to \mathbb{N} \times \mathbb{N}$ sa $f(q) = f((-1)^{a_q} \frac{b_q}{c_q}) = (2^{a_q} 3^{b_q}, 5^{c_q})$. Po jedinstvenosti gornjeg rastava i osnovnom teoremu aritmetike zaključujemo da je f injekcija.
- 8. (a) Klasa od (1,1) je kružnica oko ishodišta polumjera $\sqrt{2}$.
 - (b) Elementi kvocijentnog skupa su kružnice oko ishodišta, uključujući i degeneriranu kružnicu (0,0).