Quantification of the magnitude of the errors of transmissivity estimates from the analysis of pumping test synthetic data performed in aquifers with complex geometry

Undergraduate Thesis - Phillipe Lima

Project

What is?

Quantify the magnitude of the errors of transmissivity estimates due to vertical flow component caused by irregular aquifer geometry

Why?

Studies analysing the pumping tests results account for heterogeneity of T or K and do not mention the irregularities of the b. (this is responsible for a minor part of the heterogeneity character)

How?

Create a numerical model of a aquifer with complex geometry. Do a monte carlo simulation to get the geometries that lead to higher errors of T estimates.

Results

v1 (basis of the next models):

steady state

domain mesh = 3000x400

IC (domain) = 0.0 head

BC (I, r, b) = 0.0 head

K aquifer = 1e-4 m/s

K bedrock = 0 m/s

storage = 1e-3

rate = -1e-2 m3/s

Questions

- (1) The pwell and owell (polylines) appears as the points that form it in the model.
- (2) DIS_TYPE of the
 Source Term block only
 works for "CONSTANT"
 and do not works for
 "CONSTANT_NEUMA
 NN"
- (3) I created a xy instead of xz model. Is this make difference? (gravitation)

Results

v2:

transient state domain mesh = 3000x400

IC (domain) = 0.0 head

BC (I, r, b) = 0.0 head

K aquifer = 1e-4 m/s

K bedrock = 0 m/s

storage = 1e-3

rate = -1e-2 m3/s

Results

v2:

transient state domain mesh = 3000x400

K aquifer = 1e-4 m/s

K bedrock = 0 m/s

storage = 1e-3

rate = -1e-2 m3/s

mean(obs/pred(K) = 2.201

ln(Ttr) = -9.21034

ln(Twtp) = -9.58408

Analytical solution using K

Observation at r = 50m

Questions

- (1) How fix the difference between analytical and obs head? or how to handle it?
- (2) confined vs
 unconfined? My
 proposal is about
 an unconfined
 aquifer but I have
 problem to execute
 this approach. I will
 go ahead with
 confined scenario.

Next steps

v3:

domain mesh = 3000x400

K aquifer = 1e-4 m/s

K bedrock = 0 m/s

storage = 1e-3

2 unfixed nodes

v4:

monte carlo simulation varying the unfixed nodes

Gamma = inscribed_radius / circumscribed_radius

Proposal Evaluator's Recommendations

Title

Methods - Make it more clear

Steps and feasibility of the project - Make it more specific and clear