STAT 593 Robust statistics: Depth and robust estimators

Joseph Salmon

http://josephsalmon.eu

Télécom Paristech, Institut Mines-Télécom &

University of Washington, Department of Statistics (Visiting Assistant Professor)

Outline

Depth

Estimators based on depth

Table of Contents

Depth

Definition

Visualization

Properties

Estimators based on depth

1D case (p = 1)

Here, $X = [x_1, \dots, x_n]$ is 1-dimensional : $\forall i \in [n], x_i \in \mathbb{R}$

Definition

For a fixed dataset X and for any point $x \in \mathbb{R}$, we defined the depth^1 of x w.r.t. X as

$$depth_1(x, X) = \min(\#\{i \in [n] : x_i \le x\}, \#\{i \in [n] : x_i \ge x\})$$

Interpretation: the depth of a point in a dataset X is the minimum number of data points x_i on the left and on the right of x.

- ▶ depth₁(x, X) = 0 if $x > \max_{i=1,...,n} (x_i)$ or $x < \min_{i=1,...,n} (x_i)$
- ▶ depth₁(x, X) = 1 if² $x = \max_{i=1,...,n} (x_i)$ or $x = \min_{i=1,...,n} (x_i)$
- ▶ depth₁(Med_n(x), X) $\approx \frac{n}{2}$

¹J. W. Tukey. "Mathematics and the picturing of data". In: *Proceedings of the International Congress of Mathematicians, Vancouver, 1975.* Vol. 2. 1975, pp. 523–531.

²when extrema are reached by only one point

Notation: for a dataset X and a vector u, $\langle u, X \rangle$ is the dataset: $\langle u, X \rangle = [\langle u, x_1 \rangle, \dots, \langle u, x_n \rangle]$

Definition

For a fixed dataset X and for any point $x\in\mathbb{R}^o,$ we defined the depth of x w.r.t. X as

$$\operatorname{depth}_p(x,X) = \min_{\|u\|=1} \operatorname{depth}_1(\langle u,x\rangle,\langle u,X\rangle)$$

<u>Notation</u>: for a dataset X and a vector u, $\langle u, X \rangle$ is the dataset: $\langle u, X \rangle = [\langle u, x_1 \rangle, \dots, \langle u, x_n \rangle]$

Definition

For a fixed dataset X and for any point $x\in\mathbb{R}^o,$ we defined the depth of x w.r.t. X as

$$\begin{split} \operatorname{depth}_p(x,X) &= \min_{\|u\|=1} \operatorname{depth}_1(\langle u,x\rangle,\langle u,X\rangle) \\ &= \min_{\|u\|=1} \#\{i \in [n] : \langle u,x_i\rangle \leq \langle u,x\rangle\}) \end{split}$$

<u>Notation</u>: for a dataset X and a vector u, $\langle u, X \rangle$ is the dataset: $\langle u, X \rangle = [\langle u, x_1 \rangle, \dots, \langle u, x_n \rangle]$

Definition

For a fixed dataset X and for any point $x \in \mathbb{R}^o$, we defined the depth of x w.r.t. X as

$$\begin{split} \operatorname{depth}_p(x,X) &= \min_{\|u\|=1} \operatorname{depth}_1(\langle u,x\rangle,\langle u,X\rangle) \\ &= \min_{\|u\|=1} \#\{i \in [n] : \langle u,x_i\rangle \leq \langle u,x\rangle\}) \\ &= \min_{\|u\|=1} \#\{i \in [n] : x_i \in H_{u,x}\}) \end{split}$$

where we write $H_{u,x}=\{y\in\mathbb{R}^p:\langle u,y\rangle\leq\langle u,x\rangle\}$ for the half-space parametrized by a point x and a direction u, with $\|u\|=1$

<u>Notation</u>: for a dataset X and a vector u, $\langle u, X \rangle$ is the dataset: $\langle u, X \rangle = [\langle u, x_1 \rangle, \dots, \langle u, x_n \rangle]$

Definition

For a fixed dataset X and for any point $x \in \mathbb{R}^o$, we defined the depth of x w.r.t. X as

$$\begin{split} \operatorname{depth}_p(x,X) &= \min_{\|u\|=1} \operatorname{depth}_1(\langle u,x\rangle,\langle u,X\rangle) \\ &= \min_{\|u\|=1} \#\{i \in [n] : \langle u,x_i\rangle \leq \langle u,x\rangle\}) \\ &= \min_{\|u\|=1} \#\{i \in [n] : x_i \in H_{u,x}\}) \end{split}$$

where we write $H_{u,x}=\{y\in\mathbb{R}^p:\langle u,y\rangle\leq\langle u,x\rangle\}$ for the half-space parametrized by a point x and a direction u, with $\|u\|=1$

 $\underline{\text{Interpretation}}$: this is the least depth of x after any projection of the dataset on a space of dimension 1.

Visualization:

Visualization:

Visualization: depth₁($\langle u, x \rangle, \langle u, X \rangle$) = 0

Visualization:

Visualization:

Visualization: depth₁($\langle u, x \rangle, \langle u, X \rangle$) = 2

•

•

•

Super-level set depth

Proposition

For any dataset X the super-level set of $x\mapsto \operatorname{depth}_p(x,X)$, *i.e.*, the sets $\{x\in\mathbb{R}^p:\operatorname{depth}_p(x,X)\geq t\}$ for any $t\geq 0$, are convex.

Proof: see Donoho and Gasko (1992)

Proposition

The set $\{x \in \mathbb{R}^p : \operatorname{depth}_p(x, X) \geq 1\}$ is the convex hull of the points x_1, \ldots, x_n .

Growth

Proposition

For any dataset X and Y, and any point x:

$$\operatorname{depth}_p(x, X) \le \operatorname{depth}_p(x, X \cup Y)$$

Interpretation: the depth is non-decreasing w.r.t. merging datasets.

Growth

Proposition

For any dataset X and Y, and any point x:

$$\operatorname{depth}_p(x, X) \le \operatorname{depth}_p(x, X \cup Y)$$

Interpretation: the depth is non-decreasing w.r.t. merging datasets.

Growth

Proposition

For any dataset X and Y, and any point x:

$$\operatorname{depth}_p(x, X) \le \operatorname{depth}_p(x, X \cup Y)$$

Interpretation: the depth is non-decreasing w.r.t. merging datasets.

Proposition

For any $\mu \in \mathbb{R}^p$ and any non-singular matrix Σ

$$\operatorname{depth}_p(\Sigma x + \mu, \Sigma X + \mu) = \operatorname{depth}_p(x, X)$$

Proposition

For any $\mu \in \mathbb{R}^p$ and any non-singular matrix Σ

$$\operatorname{depth}_p(\Sigma x + \mu, \Sigma X + \mu) = \operatorname{depth}_p(x, X)$$

Proof of proposition:

Fact 1: depth_p
$$(x + \mu, X + \mu) = depth_p(x, X)$$
 for any μ

Proposition

For any $\mu \in \mathbb{R}^p$ and any non-singular matrix Σ

$$\operatorname{depth}_p(\Sigma x + \mu, \Sigma X + \mu) = \operatorname{depth}_p(x, X)$$

Proof of proposition:

Fact 1: depth_p
$$(x + \mu, X + \mu) = depth_p(x, X)$$
 for any μ

$$\operatorname{depth}_p(x+\mu,X+\mu) = \min_{\|u\|=1} \#\{i \in [n] : \langle u,x_i+\mu\rangle \leq \langle u,x+\mu\rangle\})$$

Proposition

For any $\mu \in \mathbb{R}^p$ and any non-singular matrix Σ

$$\operatorname{depth}_p(\Sigma x + \mu, \Sigma X + \mu) = \operatorname{depth}_p(x, X)$$

Proof of proposition:

Fact 1: depth_p
$$(x + \mu, X + \mu) = depth_p(x, X)$$
 for any μ

$$\begin{split} \operatorname{depth}_p(x+\mu,X+\mu) &= \min_{\|u\|=1} \#\{i \in [n] : \langle u,x_i + \mu \rangle \leq \langle u,x + \mu \rangle\}) \\ &= \min_{\|u\|=1} \#\{i \in [n] : \langle u,x_i \rangle \leq \langle u,x \rangle\}) \end{split}$$

Proposition

For any $\mu \in \mathbb{R}^p$ and any non-singular matrix Σ

$$\operatorname{depth}_p(\Sigma x + \mu, \Sigma X + \mu) = \operatorname{depth}_p(x, X)$$

Proof of proposition:

Fact 1: depth_p
$$(x + \mu, X + \mu) = depth_p(x, X)$$
 for any μ

$$\begin{aligned} \operatorname{depth}_p(x+\mu,X+\mu) &= \min_{\|u\|=1} \#\{i \in [n] : \langle u,x_i + \mu \rangle \leq \langle u,x + \mu \rangle\}) \\ &= \min_{\|u\|=1} \#\{i \in [n] : \langle u,x_i \rangle \leq \langle u,x \rangle\}) \\ &= \operatorname{depth}_p(x,X) \end{aligned}$$

<u>Fact 2</u>: depth_p $(\Sigma x, \Sigma X) = \operatorname{depth}_p(x, X)$ for Σ non-singular

<u>Fact 2</u>: depth_p $(\Sigma x, \Sigma X) = \operatorname{depth}_p(x, X)$ for Σ non-singular

$$\langle u, \Sigma x_i \rangle \le \langle u, \Sigma x \rangle \iff \langle \Sigma^\top u, x_i \rangle \le \langle \Sigma^\top u, x \rangle$$

<u>Fact 2</u>: depth_p $(\Sigma x, \Sigma X) = \operatorname{depth}_p(x, X)$ for Σ non-singular

$$\langle u, \Sigma x_i \rangle \le \langle u, \Sigma x \rangle \iff \langle \Sigma^\top u, x_i \rangle \le \langle \Sigma^\top u, x \rangle$$
$$\iff \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x_i \rangle \le \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x \rangle$$

<u>Fact 2</u>: depth_p $(\Sigma x, \Sigma X) = \operatorname{depth}_p(x, X)$ for Σ non-singular

Proof of Fact 2:

$$\begin{split} \langle u, \Sigma x_i \rangle & \leq \langle u, \Sigma x \rangle \iff \langle \Sigma^\top u, x_i \rangle \leq \langle \Sigma^\top u, x \rangle \\ & \iff \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x_i \rangle \leq \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x \rangle \\ & \iff x_i \in H_{\varphi(u),x} \text{ where } \varphi(u) := \frac{\Sigma^\top u}{\|\Sigma^\top u\|} \end{split}$$

and φ is bijective over $\{u \in \mathbb{R}^p : ||u|| = 1\}, \ \varphi^{-1}(v) = \frac{(\Sigma^{-1})^\top u}{\|(\Sigma^{-1})^\top u\|}$

<u>Fact 2</u>: depth_p $(\Sigma x, \Sigma X) = \operatorname{depth}_p(x, X)$ for Σ non-singular

$$\begin{split} \langle u, \Sigma x_i \rangle &\leq \langle u, \Sigma x \rangle \iff \langle \Sigma^\top u, x_i \rangle \leq \langle \Sigma^\top u, x \rangle \\ &\iff \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x_i \rangle \leq \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x \rangle \\ &\iff x_i \in H_{\varphi(u),x} \text{ where } \varphi(u) := \frac{\Sigma^\top u}{\|\Sigma^\top u\|} \end{split}$$

and
$$\varphi$$
 is bijective over $\{u \in \mathbb{R}^p : \|u\| = 1\}$, $\varphi^{-1}(v) = \frac{(\Sigma^{-1})^\top u}{\|(\Sigma^{-1})^\top u\|}$

$$\operatorname{depth}_{p}(\Sigma x, \Sigma X) = \min_{\|u\|=1} \#\{i \in [n] : \langle u, \Sigma x_{i} \rangle \leq \langle u, \Sigma x \rangle\}$$

<u>Fact 2</u>: depth_p $(\Sigma x, \Sigma X) = \operatorname{depth}_p(x, X)$ for Σ non-singular

Proof of Pact 2:
$$\langle u, \Sigma x_i \rangle \leq \langle u, \Sigma x \rangle \iff \langle \Sigma^\top u, x_i \rangle \leq \langle \Sigma^\top u, x \rangle \\ \iff \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x_i \rangle \leq \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x \rangle \\ \iff x_i \in H_{\varphi(u),x} \text{ where } \varphi(u) := \frac{\Sigma^\top u}{\|\Sigma^\top u\|} \\ \text{and } \varphi \text{ is bijective over } \{u \in \mathbb{R}^p : \|u\| = 1\}, \ \varphi^{-1}(v) = \frac{(\Sigma^{-1})^\top u}{\|(\Sigma^{-1})^\top u\|} \\ \text{depth}_p(\Sigma x, \Sigma X) = \min_{\|u\| = 1} \#\{i \in [n] : \langle u, \Sigma x_i \rangle \leq \langle u, \Sigma x \rangle\} \\ = \min_{\|u\| = 1} \#\{i \in [n] : x_i \in H_{\varphi(u),x}\}$$

<u>Fact 2</u>: depth_p $(\Sigma x, \Sigma X) = \operatorname{depth}_p(x, X)$ for Σ non-singular

$$\begin{split} \langle u, \Sigma x_i \rangle & \leq \langle u, \Sigma x \rangle \iff \langle \Sigma^\top u, x_i \rangle \leq \langle \Sigma^\top u, x \rangle \\ & \iff \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x_i \rangle \leq \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x \rangle \\ & \iff x_i \in H_{\varphi(u),x} \text{ where } \varphi(u) := \frac{\Sigma^\top u}{\|\Sigma^\top u\|} \\ \text{and } \varphi \text{ is bijective over } \{u \in \mathbb{R}^p : \|u\| = 1\}, \ \varphi^{-1}(v) = \frac{(\Sigma^{-1})^\top u}{\|(\Sigma^{-1})^\top u\|} \\ \text{depth}_p(\Sigma x, \Sigma X) = \min_{\|u\| = 1} \#\{i \in [n] : \langle u, \Sigma x_i \rangle \leq \langle u, \Sigma x \rangle\} \\ = \min_{\|u\| = 1} \#\{i \in [n] : x_i \in H_{\varphi(u),x}\} \\ = \min_{\|u\| = 1} \#\{i \in [n] : x_i \in H_{u,x}\} \end{split}$$

<u>Fact 2</u>: depth_p $(\Sigma x, \Sigma X) = \operatorname{depth}_p(x, X)$ for Σ non-singular

$$\begin{split} \langle u, \Sigma x_i \rangle &\leq \langle u, \Sigma x \rangle \iff \langle \Sigma^\top u, x_i \rangle \leq \langle \Sigma^\top u, x \rangle \\ &\iff \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x_i \rangle \leq \langle \frac{\Sigma^\top u}{\|\Sigma^\top u\|}, x \rangle \\ &\iff x_i \in H_{\varphi(u),x} \text{ where } \varphi(u) := \frac{\Sigma^\top u}{\|\Sigma^\top u\|} \end{split}$$

and
$$\varphi$$
 is bijective over $\{u \in \mathbb{R}^p : \|u\| = 1\}$, $\varphi^{-1}(v) = \frac{(\Sigma^{-1})^\top u}{\|(\Sigma^{-1})^\top u\|}$

$$\begin{aligned} \operatorname{depth}_p(\Sigma x, \Sigma X) &= \min_{\|u\|=1} \#\{i \in [n] : \langle u, \Sigma x_i \rangle \leq \langle u, \Sigma x \rangle\} \\ &= \min_{\|u\|=1} \#\{i \in [n] : x_i \in H_{\varphi(u),x}\} \\ &= \min_{\|u\|=1} \#\{i \in [n] : x_i \in H_{u,x}\} \\ &= \operatorname{depth}_p(x, X) \end{aligned}$$

Table of Contents

Depth

Estimators based on depth Non-robust estimators Robust estimators

Maximal depth

Definition

For a dataset X, the **deepest observation level** is

$$k^+(X) = \max_{i=1,\dots,n} \operatorname{depth}_p(x_i, X)$$

Similarly, the depth of X is the largest depth reached by any point (not necessarily an observation)

$$k^*(X) = \max_{x \in \mathbb{R}^p} \operatorname{depth}_p(x, X)$$

Rem: the points reaching such depth level are affine invariant

Special values

Special values can be reached by the depth of the dataset $k^*(X)$:

- $k^*(X) \leq \frac{n}{2}$
- ▶ $k^*(X) = 0$: the dataset X is contained in a (affine) hyperplane : $\{x_1, \dots, x_n\} \subset \{y \in \mathbb{R}^p : \langle u, y \rangle = \langle u, x \rangle\}$ for some u with ||u|| = 1 and $x \in \mathbb{R}^p$
- ▶ $k^*(X) = 1$: there is no x_i in the (relative) interior of $\operatorname{conv}(x_1, \dots, x_n)$, the convex hull of the points x_1, \dots, x_n .

Sub-optimal approach

Definition

$$T_{(k)}(X) = \operatorname{Ave}\{x_i : \operatorname{depth}_p(x_i, X) \ge k\}$$

 $^{^3}$ D. L. Donoho and M. Gasko. "Breakdown properties of location estimates based on halfspace depth and projected outlyingness". In: *Ann. Statist.* 20.4 (1992), pp. 1803–1827.

Sub-optimal approach

Definition

$$T_{(k)}(X) = \operatorname{Ave}\{x_i : \operatorname{depth}_p(x_i, X) \ge k\}$$

Rem: we write Ave for the averaging operator.

Theorem

The breakdown point for the (affine equivariant) estimator $T_{(k)}(X)$ is bounded by the deepest observation level:

$$\varepsilon^*(T_{(k)}(X), X) = \frac{k^+(X)}{k^+(X) + n}$$

Sketch of proof: put the additional $k^+(X)$ points at the same location, and arbitrary far³.

³D. L. Donoho and M. Gasko. "Breakdown properties of location estimates based on halfspace depth and projected outlyingness". In: *Ann. Statist.* 20.4 (1992), pp. 1803–1827.

Outlyingness measure

Remind the notation: $\langle u, X \rangle = [\langle u, x_1 \rangle, \dots, \langle u, x_n \rangle]$

Definition

The outlyingness of a point x w.r.t. a data set is defined as

$$r_p(x, X) = \max_{\|u\|=1} \frac{|\langle u, x \rangle - \operatorname{Med}_n(\langle u, X \rangle)|}{\operatorname{MAD}_n \langle u, X \rangle}$$

Optimal robust estimator

We say that $x_1, \ldots, x_n \in \mathbb{R}^p$ are in **general position** whenever no more than p points lie in an affine hyperplane (an affine subspace of dimension p-1).

_____Theorem

Provided that x_1, \ldots, x_n are in general position, the estimator

$$\hat{t}_w(X) = \frac{\displaystyle\sum_{i=1}^n w(x_i,X)x_i}{\displaystyle\sum_{i=1}^n w(x_i,X)}, \quad \text{ with weights } \quad w(x_i,X) = \frac{1}{r_p(x_i,X)}$$

is affine equivariant with breakdown point $\varepsilon^* = \frac{n-2p+1}{2n-2p+1}$, if $n \geq 2p$.

Proof: see Donoho (1982)

Computational aspects

The problem of computing $\operatorname{depth}_p(x_1, X)$ NP-hard⁴!

A review for computational challenges computing depth is given in Chen et al. (2013), see also Dyckerhoff and Mozharovskyi (2016) and Mozharovskyi (2016)

- ▶ 1D : cost is O(n) to compute depth₁(x, X); simply count how many points are greater/smaller that x in X.
- ▶ 2D : cost is⁵ $O(n \log(n))$ to compute $\operatorname{depth}_2(x, X)$
- **...**

⁴D. S. Johnson and F. P. Preparata. "The densest hemisphere problem". In: *Theoret. Comput. Sci.* 6.1 (1978), pp. 93–107.

⁵P. J. Rousseeuw and I. Ruts. "Algorithm AS 307: Bivariate location depth". In: J. R. Stat. Soc. Ser. C. Appl. Stat. 45.4 (1996), pp. 516–526.

Alternative estimator: Minimum Volume Ellipsoid (MVE)⁶⁷

Definition

For any constant c > 0 and $h \in [n]$, \hat{t}_n is the MVE(h, c) location estimator (and scatter estimator C_n) are defined by :

$$\begin{split} (\hat{t}_n, \hat{C}_n) &\in \mathop{\arg\min}_{t \in \mathbb{R}^p, C \in \mathcal{S}^n_{++}} \det(C) \\ \text{s.t.} \quad &\#\{i \in [n] : (x_i - t)^\top C^{-1}(x_i - t) \leq c\} \geq h \end{split}$$

where \mathcal{S}^p_{++} is the set of positive definite matrices of size p

the ellipsoid hence created should cover at least h points

⁶P. J. Rousseeuw. "Least median of squares regression". In: *J. Amer. Statist. Assoc.* 79.388 (1984), pp. 871–880.

⁷S. Van Aelst and P. J. Rousseeuw. "Minimum volume ellipsoid". In: Wiley Interdisciplinary Reviews: Computational Statistics 1.1 (2009), pp. 71–82.

Properties of MVE

 $ightharpoonup \hat{t}_n$ is affine equivariant

Properties of MVE

- $ightharpoonup \hat{t}_n$ is affine equivariant
- $ightharpoonup \hat{C}_n(AX) = A^{ op}\hat{C}_nA$ for any non singular A

Properties of MVE

- $ightharpoonup \hat{t}_n$ is affine equivariant
- $ightharpoonup \hat{C}_n(AX) = A^{ op}\hat{C}_nA$ for any non singular A
- \hat{t}_n and \hat{C}_n both have asymptotically $\varepsilon^* = \frac{1}{2}$ when X is in general position⁸.

References I

- Chen, D., P. Morin, and U. Wagner. "Absolute approximation of Tukey depth: theory and experiments". In: Comput. Geom. 46.5 (2013), pp. 566–573.
- Donoho, D. L. "Breakdown properties of multivariate location estimators". PhD thesis. Harvard University, 1982.
 - Donoho, D. L. and M. Gasko. "Breakdown properties of location estimates based on halfspace depth and projected outlyingness".
 In: Ann. Statist. 20.4 (1992), pp. 1803–1827.
 - Dyckerhoff, R. and P. Mozharovskyi. "Exact computation of the halfspace depth". In: *Computational Statistics & Data Analysis* 98 (2016), pp. 19–30.
- Johnson, D. S. and F. P. Preparata. "The densest hemisphere problem". In: *Theoret. Comput. Sci.* 6.1 (1978), pp. 93–107.
- Lopuhaä, H. P. and P. J. Rousseeuw. "Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices". In: *Ann. Statist.* 19.1 (1991), pp. 229–248.

References II

- Mozharovskyi, P. "Tukey depth: linear programming and applications". In: arXiv preprint arXiv:1603.00069 (2016).
- Rousseeuw, P. J. "Least median of squares regression". In: *J. Amer. Statist. Assoc.* 79.388 (1984), pp. 871–880.
- Rousseeuw, P. J. and I. Ruts. "Algorithm AS 307: Bivariate location depth". In: J. R. Stat. Soc. Ser. C. Appl. Stat. 45.4 (1996), pp. 516–526.
- Tukey, J. W. "Mathematics and the picturing of data". In: Proceedings of the International Congress of Mathematicians, Vancouver, 1975. Vol. 2. 1975, pp. 523–531.
- Van Aelst, S. and P. J. Rousseeuw. "Minimum volume ellipsoid". In: Wiley Interdisciplinary Reviews: Computational Statistics 1.1 (2009), pp. 71–82.