Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound represented by the following general

formula (I):

[wherein R^1 and R^2 independently represent <u>a</u> hydrogen atom, or a group represented by the following formula (A):

[Formula 2]

$$X^{1}-N-CH_{2}-CH_{2}-N-CH_{2}-N-CH_{2}-N-$$

(wherein X^1 , X^2 , X^3 , and X^4 independently represent a hydrogen atom, an alkyl group which may have a substituent, or a protective group for amino group, and m and n

independently represent 0 or 1), provided that R¹ and R² do not simultaneously represent a hydrogen atom; R³ and R⁴ independently represent a hydrogen atom, a C₁₋₆ alkyl group which may have a substituent, or a C₁₋₆ alkoxy group which may have a substituent; R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, and R¹² independently represent a hydrogen atom, a sulfo group, a phospho group, a halogen atom, or a C₁₋₆ alkyl group which may have a substituent; R¹³ and R¹⁴ independently represent a C₁₋₁₈ alkyl group which may have a substituent; Z¹ represents an oxygen atom, a sulfur atom, or -N(R¹⁵)- (wherein R¹⁵ represents a hydrogen atom, or a C₁₋₆ alkyl group which may have a substituent); Y¹ and Y² independently represent -C(=O)-, -C(=S)-, or -C(R¹⁶)(R¹⁷) (wherein R¹⁶ and R¹⁷ independently represent a C₁₋₆ alkyl group which may have a substituent); and M^{*} represents a counter ion in a number required for neutralizing the charge}.

- (Currently Amended) A fluorescent probe containing the compound represented by the general formula (I) according to claim 1 (except for a compound wherein any one or more of X¹, X², X³, and X⁴ represent a protective group for an amino group).
- (Currently Amended) A compound represented by the following general formula (IA):

[Formula 3]

fwherein R^{21} and R^{22} represent amino groups substituting at adjacent positions on the benzene ring, and one of the amino groups may have one alkyl group which may have a substituent; R^{23} and R^{24} independently represent \underline{a} hydrogen atom, a C_{16} alkyl group which may have a substituent, or a C_{16} alkoxy group which may have a substituent; R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{31} , and R^{32} independently represent \underline{a} hydrogen atom, \underline{a} sulfo group, \underline{a} phospho group, a halogen atom, or a C_{1-6} alkyl group which may have a substituent; R^{33} and R^{34} independently represent a C_{1-18} alkyl group which may have a substituent; Z^{21} represents \underline{a} oxygen atom, \underline{a} sulfur atom, or $-N(R^{35})$ - (wherein R^{35} represents \underline{a} hydrogen atom, or a C_{1-6} alkyl group which may have a substituent); Y^{21} and Y^{22} independently represent -C(-C)-, -C(-C)-, or $-C(R^{36})(R^{37})$ - (wherein R^{36} and R^{37} independently represent a C_{1-6} alkyl group which may have a substituent); and M^{-1} represents a counter ion in a number required for neutralizing the charge-].

4. (Currently Amended) The compound according to claim 3, wherein R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{31} , and R^{32} are hydrogen atoms, R^{33} and R^{34} are C_{1-6} alkyl groups substituted with \underline{a} sulfo group, Z^{21} is \underline{an} oxygen atom, and Y^{21} and Y^{22} are - $C(CH_3)_{2^{-}}$.

 (Currently Amended) A reagent for measurement of measuring nitrogen monoxide, which contains the compound represented by the general formula (IA) according to claim 3.

 (Currently Amended) A compound represented by the following general formula (IB):

[Formula 4]

fwherein R^{41} and R^{42} combine together to represent a group represented by -N=N-NR⁸⁸-which forms a ring at the adjacent positions on the benzene ring (wherein R^{58} represents a hydrogen atom, or a C_{1-6} alkyl group which may have a substituent), or R^{41} and R^{42} represent a combination of an amino group (which may have a C_{1-6} alkyl group which may have a substituent, or a protective group for an amino group) and a nitro group substituting at adjacent positions on the benzene ring; R^{43} and R^{44} independently represent a hydrogen atom, a C_{1-6} alkyl group which may have a substituent, or a C_{1-6} alkoxy group which may have a substituent; R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{51} , and R^{52} independently represent a hydrogen atom, a sulfo group, a phospho group, a halogen

atom, or a C_{1-6} alkyl group which may have a substituent; R^{53} and R^{54} independently represent a C_{1-18} alkyl group which may have a substituent; Z^{41} represents \underline{an} oxygen atom, \underline{a} sulfur atom, or $-N(R^{55})$ - (wherein R^{55} represents \underline{a} hydrogen atom, or a C_{1-6} alkyl group which may have a substituent); Y^{41} and Y^{42} independently represent -C(=O)-, -C(=S)-, or $-C(R^{56})(R^{57})$ - (wherein R^{56} and R^{57} independently represent a C_{1-6} alkyl group which may have a substituent); and M represents a counter ion in a number required for neutralizing the charge- $\frac{1}{2}$.

- 7. (Currently Amended) The compound according to claim 6, wherein R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹, and R⁵² are hydrogen atoms, R⁵³ and R⁵⁴ are C₁₋₆ alkyl groups substituted with <u>a</u> sulfo group, Z⁴¹ is <u>an</u> oxygen atom, and Y⁴¹ and Y⁴² are C(CH₃)₂-.
- (Currently Amended) A method for measuring nitrogen monoxide, which
 comprises (a) the step of reacting the compound represented by the general formula (IA)
 according to claim-3 with nitrogen monoxide;

wherein R²¹ and R²² represent amino groups substituting at adjacent positions on the

benzene ring, and one of the amino groups may have one alkyl group which may have a substituent; R^{23} and R^{24} independently represent a hydrogen atom, a C_{1-6} alkyl group which may have a substituent, or a C_{1-6} alkoxy group which may have a substituent; R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{31} , and R^{32} independently represent a hydrogen atom, a sulfogroup, a phospho group, a halogen atom, or a C_{1-6} alkyl group which may have a substituent; R^{33} and R^{34} independently represent a C_{1-18} alkyl group which may have a substituent; Z^{21} represents an oxygen atom, a sulfur atom, or $-N(R^{35})$, wherein R^{35} represents a hydrogen atom, or a C_{1-6} alkyl group which may have a substituent; Y^{21} and Y^{22} independently represent -C(=O), -C(=S), or $-C(R^{36})(R^{37})$, wherein R^{36} and R^{37} independently represent a C_{1-6} alkyl group which may have a substituent; and M^{27} represents a counter ion in a number required for neutralizing the charge; and (b) the step-of detecting the compound of the general formula (IB)

wherein R^{41} and R^{42} combine together to represent a group represented by -N=N-NR⁵⁸-which forms a ring at the adjacent positions on the benzene ring, wherein R^{58} represents a hydrogen atom, or a $C_{1:6}$ alkyl group which may have a substituent, or R^{41} and R^{42} represent a combination of an amino group which may have a $C_{1:6}$ alkyl group which may have a substituent, or a protective group for an amino group; and a nitro group

substituting at adjacent positions on the benzene ring; R^{43} and R^{44} independently represent a hydrogen atom, a C_{1-6} alkyl group which may have a substituent, or a C_{1-6} alkoxy group which may have a substituent; R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{51} , and R^{52} independently represent a hydrogen atom, a sulfo group, a phospho group, a halogen atom, or a C_{1-6} alkyl group which may have a substituent; R^{53} and R^{54} independently represent a C_{1-18} alkyl group which may have a substituent; R^{53} and R^{54} independently represent a C_{1-18} alkyl group which may have a substituent; R^{55} represents a hydrogen atom, or a R^{55} composite the may have a substituent; R^{55} independently represent R^{55} and R^{57} independently represent a R^{57} independently represent a R^{57} and R^{57} independently represent a R^{57} and R^{57} independently represent a R^{57} alkyl group which may have a substituent; and R^{57} independently represent a R^{57} alkyl group which may have a substituent; and R^{57} independently represent a R^{57} and R^{57} independently represent a R^{57} alkyl group which may have a substituent; and R^{57} independently represent a R^{57} and R^{57} independently represen

according to claim 6-{wherein R^{41} and R^{42} combine together to represent a group represented by -N=N-NR⁵⁸- which forms a ring at the adjacent positions on the benzene ring (wherein R^{58} represents a hydrogen atom, or a C_{1-6} alkyl group which may have a substituent) produced in the step (a).

(Currently Amended) A compound represented by the following general formula (IC):

[Formula 5]

[wherein R^{61} and R^{62} independently represent <u>a</u> hydrogen atom, or a group represented by the following formula (B):

[Formula 6]

$$\begin{array}{c} X^{62} \\ X^{61} - N - \left\{ CH_2 - CH_2 - N \right\}_{p} - \left\{ CH_2 - CH_2 - N \right\}_{q} \\ X^{63} & X^{64} \end{array} \tag{B}$$

(wherein X^{61} , X^{62} , X^{63} , and X^{64} independently represent \underline{a} hydrogen atom, an alkyl group which may have a substituent, or a protective group for amino group, and p and q independently represent 0 or 1), provided that R^{61} and R^{62} do not simultaneously represent \underline{a} hydrogen atom, and when R^{61} and R^{62} simultaneously represent a group represented by the formula (B), in at least one of the groups represented by the formula (B), either p or q, or both represent 1; R^{63} and R^{64} independently represent \underline{a} hydrogen atom, a C_{1-6} alkyl group which may have a substituent; or a C_{1-6} alkoxy group which may have a substituent; R^{65} , R^{66} , R^{67} , R^{68} , R^{69} , R^{70} , R^{71} , and R^{72} independently represent \underline{a} hydrogen atom, \underline{a} sulfo group, \underline{a} phospho group, a halogen atom, or a C_{1-6} alkyl group which may have a substituent; R^{73} and R^{74} independently represent a C_{1-18} alkyl group

which may have a substituent; Z^{61} represents an oxygen atom, a sulfur atom, or -N(R^{75})-(wherein R^{75} represents a hydrogen atom, or a C_{1-6} alkyl group which may have a substituent); Y^{61} and Y^{62} independently represent -C(=O)-, -C(=S)-, or -C(R^{76})(R^{77})-(wherein R^{76} and R^{77} independently represent a C_{1-6} alkyl group which may have a substituent); and M represents a counter ion in a number required for neutralizing the charge].

- 10. (Currently Amended) A fluorescent probe for zinc containing the compound represented by the general formula (IC) according to claim 9 (except for a compound wherein any one or more of X⁶¹, X⁶², X⁶³, and X⁶⁴ are protective group for amino group).
- 11. (Currently Amended) A zinc complex formed from the compound represented by the general formula (IC) according to claim 9 (except for a compound wherein any one or more of X⁶¹, X⁶², X⁶³, and X⁶⁴ are protective group for amino group), and a zinc ion.
- 12. (Currently Amended) A method for measuring zinc ions, which comprises (a) the step of reacting the compound represented by the aforementioned general formula (IC) according to claim 9 (except for a compound wherein any one or more of X^{61} , X^{62} , X^{63} , and X^{64} are protective group for amino group) with a zinc ion, and (b) the step of measuring fluorescence intensity of a zinc complex produced in the step (a).