- 4 角 θ の回転を表わす行列を $R(\theta)$ とする . すなわち $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ とする . 2 次正方行列 X で , $X^3 = R(\theta)$ をみたすものはどれだけあるかを考えたい .
- (i) 行列 X が $X^3=R(\theta)$ をみたせば,X は逆行列をもち,かつ $R(\theta)X=XR(\theta)$ が 成立することを示せ.
- (ii) 行列 X が,ある角 α の回転を表わす行列 $R(\alpha)$ と,左上が正、左下が 0 であるような行列 T との積であるとする.すなわち $X=R(\alpha)T$,ただし $T=\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$,a>0 とする. このとき,もし X が $R(\theta)X=XR(\theta)$ をみたし,さらに θ が π の整数倍でなければ,a=c,b=0 であることを示せ.
- (iii) 一般に,逆行列をもつ任意の行列 X は,ある角 α の回転を表わす行列 $R(\alpha)$ と,左上が正,左下が 0 であるような行列 T との積 $X=R(\alpha)T$ として表わされる.行列に対応する 1 次変換を考えることによって,このことを示せ.
- (iv) $X^3=R(\theta)$ をみたす行列 X は, θ が π の整数倍でなければ,ちょうど 3 個存在 し, θ が π の整数倍ならば,無限に多く存在することを示せ.