Espaço Vetorial

Vetores no plano e no espaço

Operações com vetores

Propriedades

- i) (u+v)+w=u+(v+w),
- ii) u+v=v+u,
- iii) Existe $\mathbf{0}$ tal que $u + \mathbf{0} = u$. ($\mathbf{0}$ é chamado vetor nulo),
- iv) Existe -u tal que $u + (-u) = \mathbf{0}$,
- $v) \qquad a(u+v) = au + av,$
- (a+b)v=av+bv,
- $vii) \quad (ab)v = a(bv),$
- viii) 1.u = u.

Espaços Vetoriais

Um espaço vetorial real é um conjunto V, não vazio, com duas operações:

- 1) Soma: $V \times V \longrightarrow V$
- 2) Multiplicação por escalar $\mathbb{R} \times V \longrightarrow V$

tais que, para quaisquer $u, v, w \in V$ e $a, b \in \mathbb{R}$, as propriedades de *i*) a *viii*) sejam satisfeitas.

Obs. Se na definição acima, ao invés de termos como escalares números reais, tivermos números complexos, V será um espaço vetorial complexo.

Exemplo 1

O conjunto dos vetores do espaço:

$$V = \mathbb{R}^3 = \{(x_1, x_2, x_3) : x_i \in \mathbb{R}\}$$

Exemplo 2

Consideremos como vetores n-uplas de números reais.

$$V = \mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}\}$$

M(m,n), o conjunto das matrizes reais $m \times n$ com a soma e produto por escalar usuais.

Exemplo 4

$$V = M(2,2) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a,b,c,d \in \mathbb{R} \right\}$$

Exemplo 5

 $V=P_n$, o conjunto dos polinômios com coeficientes reais de grau menor ou igual a n (incluindo o zero).

$$P_2 = \{a_0 + a_1 x + a_2 x^2 \colon a_i \in \mathbb{R}\}\$$

Subespaços Vetoriais

Dado um espaço vetorial V, um subconjunto W, não vazio, será um subespaço vetorial de V se:

- i) Para quaisquer $u, v \in W$ tivermos $u + v \in W$
- ii) Para quaisquer $a \in \mathbb{R}$, $u \in W$ tivermos $a.u \in W$

Observações

- As condições da definição acima garatem que ao operarmos em W, não obtemos um vetor fora de W.
- 2) Qualquer subespaço W de V precisa necessariamente conter o vetor nulo.
- Todo espaço vetorial admite pelo menos dois subespaços (que são chamados de subespaços triviais), o conjunto formado somente pelo vetor nulo e o próprio espaço vetorial.

Exemplo 1

 $V = \mathbb{R}^3$ e $W \subset V$, um plano passando pela origem.

$$V = \mathbb{R}^5 \text{ e } W = \{(0, x_2, x_3, x_4, x_5); x_i \in \mathbb{R}\}$$

Exemplo 3

V = M(n, n) e W é o subconjunto das matrizes triangulares superiores.

Exemplo 4

Uma situação importante em que aparece um subespaço é obtida ao resolvermos um sistema linear homogêneo. Por exemplo:

$$\begin{cases} 2x + 4y + z = 0 \\ x + y + 2z = 0 \\ x + 3y - z = 0 \end{cases}$$

 $V = \mathbb{R}^2$ e W é uma reta deste plano que não passa pela origem.

$$V=\mathbb{R}^2$$
 e $W=\{(x,x^2);x\in\mathbb{R}\}$. Se escolhermos $u=(1,1)$ e $v=(2,4)$, temos
$$u+v=(3,5)\not\in W.$$

V = M(n, n) e W é o subconjunto de todas as matrizes em que $a_{11} \leq 0$.

Teorema

Dados W_1 e W_2 subespaços de um espaço vetorial V, a intersecção $W_1 \cap W_2$ ainda é um subespaço de V.

Exemplo 1

 $V = \mathbb{R}^3$. $W_1 \cap W_2$ é a reta de interseção dos planos W_1 e W_2 .

Exemplo 2

V = M(n, n). $W_1 = \{\text{matrizes triangulares superiores}\}$

 $W_2 = \{\text{matrizes triangulares inferiores}\}$

Então $W_1 \cap W_2$ = {matrizes diagonais}

 W_1 e W_2 são retas que passam pela origem. Então $W_1 \cap W_2 = \{0\}$ e $W_1 \cup W_2$ é o feixe formado pelas duas retas, que não é subespaço vetorial de \mathbb{R}^3

Exemplo 4

(Soma de subespaços): Sejam W_1 e W_2 subespaços de um espaço vetorial V. Então o conjunto $W_1 + W_2 = \{v \in V; v = w_1 + w_2, w_1 \in W_1 \ e \ w_2 \in W_2\}$ é subespaço de V.

Exemplo 5

No exemplo anterior, $W=W_1+W_2$ é o plano que contém as duas retas.

Se $W_1 \subset \mathbb{R}^3$ é um plano e W_2 é uma reta contida neste plano, ambos passando pela origem, $W_1 + W_2 = W_1$

Exemplo 7

$$W_1 = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \right\} \in W_2 = \left\{ \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix} \right\}, \text{ onde } a, b, c, d \in \mathbb{R}.$$

Então
$$W_1 + W_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right\} = M(2,2)$$

Quando $W_1 \cap W_2 = \{0\}$, então $W_1 + W_2$ é chamado soma direta de W_1 com W_2 , denotado por $W_1 \oplus W_2$.

Combinação Linear

Definição

Sejam V um espaço vetorial real (ou complexo), $v_1, v_2, \cdots, v_n \in V$ e a_1, \cdots, a_n números reais (ou complexos). Então o vetor

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$$

é um elemento de V ao que chamamos combinação linear de v_1 , \cdots , v_n

Uma vez fixados vetores v_1, \cdots, v_n em V, o conjunto W de todos os vetores de V que são combinação linear destes, é um subespaço vetorial. W é chamado subespaço gerado por v_1, \cdots, v_n e usamos a notação

$$W = [v_1, \cdots, v_n]$$

Exemplo 1

 $V = \mathbb{R}^3$, $v \in V$, $v \neq 0$. Então $[v] = \{av: a \in \mathbb{R}\}$, isto é, [v] é a reta que contem o vetor v.

Se $v_1, v_2 \in \mathbb{R}^3$ são tais que $av_1 \neq v_2$ para todo $\alpha \in \mathbb{R}$, então $[v_1, v_2]$ será o plano que passa pela origem e contem v_1 e v_2 .

Exemplo 3

 $V = \mathbb{R}^2$, $v_1 = (1,0)$, $v_2 = (0,1)$. Logo $V = [v_1, v_2]$ pois, dado $v = (x,y) \in V$, temos (x,y) = x(1,0) + y(0,1), ou seja, $v = xv_1 + yv_2$.

$$v_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Então
$$[v_1, v_2] = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

Dependência e Independência Linear

Definição

Sejam V um espaço vetorial e $v_1, v_2, \dots, v_n \in V$. Dizemos que o conjunto $\{v_1, \dots, v_n\}$ é linearmente independente (LI), ou que os vetores são LI, se a equação

$$a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$$

implica que $a_1=a_2=\cdots=a_n=0$. No caso em que exista algum $a_i\neq 0$ dizemos que $\{v_1,\cdots,v_n\}$ é linearmente dependente (LD), ou que os vetores v_1,v_2,\cdots,v_n são LD.

Teorema

 $\{v_1, \cdots, v_n\}$ é LD se, e somente se um destes vetores for uma combinação linear dos outros.

Exemplo 1

 $V = \mathbb{R}^3$. Sejam $v_1, v_2 \in V$. $\{v_1, v_2\}$ é LD se e somente se v_1 e v_2 estiverem na mesma reta que passa pela origem. $(v_1 = \lambda v_2)$.

 $V=\mathbb{R}^3$. Sejam $v_1,v_2,v_3\in V$. $\{v_1,v_2,v_3\}$ é LD se estes três vetores estiverem no mesmo plano, que passa pela origem.

Exemplo 3

 $V=\mathbb{R}^2$, $e_1=(1,0)$ e $e_2=(0,1)$. Os vetores e_1 e e_2 são LI, pois

$$a_1e_1 + a_2e_2 = 0$$

 $a_1(1,0) + a_2(0,1) = (0,0)$
 $(a_1,a_2) = (0,0)$
 $a_1 = 0 \text{ e } a_2 = 0$

De modo análogo, vemos que para $V=\mathbb{R}^3$, $e_1=(1,0,0)$, $e_2=(0,1,0)$ e $e_3=(0,0,1)$. Então e_1 , e_2 e e_3 são LI.

Exemplo 5

$$V = \mathbb{R}^2$$
. $\{(1,-1), (1,0), (1,1)\} \in LD$, pois $\frac{1}{2}(1,-1) - 1.(1,0) + \frac{1}{2}(1,1) = (0,0)$

Base de um espaço Vetorial

Definição

Um conjunto $\{v_1, \cdots, v_n\}$ de vetores de V será uma base de V se

- i) $\{v_1, \dots, v_n\}$ é LI
- ii) $[v_1, \cdots, v_n] = V$

Exemplo 1

 $V=\mathbb{R}^2$, $e_1=(1,0)$ e $e_2=(0,1)$. $\{e_1,e_2\}$ é base de V, conhecida como base canônica de \mathbb{R}^2 .

O conjunto $\{(1,1), (0,1)\}$ também é uma base de $V = \mathbb{R}^2$.

 $\{(0,1),\ (0,2)\}$ não é base de \mathbb{R}^2 , pois é um conjunto LD.

Exemplo 3

 $V = \mathbb{R}^3$. $\{(1,0,0),\ (0,1,0),\ (0,0,1)\}$ é uma base de \mathbb{R}^3 . Esta é a base canônica de \mathbb{R}^3 . Podemos mostrar que

- i) $\{e_1, e_2, e_3\} \in LI$
- ii) $(x, y, z) = xe_1 + ye_2 + ze_3$

Exemplo 4

 $\{(1,0,0),\ (0,1,0)\}\$ não é base de \mathbb{R}^3 . É LI, mas não gera todo \mathbb{R}^3 , isto é, $[(1,0,0),\ (0,1,0)]\neq\mathbb{R}^3$.

$$V = M(2, 2)$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ é uma base de V .

Teorema

Sejam v_1, v_2, \dots, v_n vetores não nulos que geram um espaço vetorial V. Então, dentre estes vetores podemos extrair uma base de V.

Teorema

Seja um espaço vetorial V gerado por um conjunto finito de vetores v_1, v_2, \cdots, v_n . Então, qualquer conjunto com mais de n vetores é necessariamente LD (e, portanto, qualquer conjunto LI tem no máximo n vetores)

Corolário

Qualquer base de um espaço vetorial tem sempre o mesmo número de elementos. Este número é chamado dimensão de V, e denotado $\dim V$.

Exemplo 1

 $V = \mathbb{R}^2$. $\{(1,0), (0,1)\}$ e $\{(1,1), (0,1)\}$ são bases de V. Então $\dim V = 2$

 $dim \mathbb{R}^3 = 3$

Exemplo 3

V = M(2,2). Como vimos no exemplo 5 da seção anterior, uma base de V tem 4 elementos.

Então dim V = 4.

Teorema

Qualquer conjunto de vetores LI de um espaço vetorial V de dimensão finita pode ser completado de modo a formar uma base de V.

Corolário

Se dim V = n, qualquer conjunto de n vetores LI formará uma base de V.

Teorema

Se U e W são subespaços de um espaço vetorial V que tem dimensão finita, então $dim\ U \leq dim\ V$ e $dim\ U \leq dim\ V$. Alem disso,

$$dim (U + W) = dim U + dim W - dim (U \cap W)$$

Teorema

Dada uma base $\beta = \{v_1, v_2, \cdots, v_n\}$ de V, cada vetor de V é escrito de maneira única como combinação linear de v_1, v_2, \cdots, v_n .

Definição

Sejam $\beta = \{v_1, v_2, \cdots, v_n\}$ base de V e $v \in V$ onde $v = a_1v_1 + a_2v_2 + \cdots + a_nv_n$. Chamamos estes números a_1, a_2, \cdots, a_n de coordenadas de v em relação a base β e denotamos por

$$[\mathbf{v}]_{\beta} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

$$V = \mathbb{R}^2$$
. $\beta = \{(1,0), (0,1)\}$.

$$(4,3) = 4(1,0) + 3(0,1).$$

Portanto
$$[(4,3)]_{\beta} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Se
$$\beta' = \{(1,1), (0,1)\}$$
, então $(4,3) = x(1,0) + y(0,1)$. O resultado é $x = 4$ e $y = -1$.

Então
$$(4,3) = 4(1,0) - 1(0,1)$$
, donde $[(4,3)]_{\beta'} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$

Considere: $V = \{(x, y, z); x + y - z = 0\}$ e $W = \{(x, y, z); x = y\}$. Determine V + W.

Observe que a solução deste sistema não é única,

uma vez que 4 vetores no \mathbb{R}^3 é necessariamente LD

Observe que

$$V = [(1, 0, 1), (0, 1, 1)]$$

$$W = [(1, 1, 0), (0, 0, 1)]$$

Então
$$V + W = [(1,0,1), (0,1,1), (1,1,0), (0,0,1)]$$

Com

 $\alpha = x$

 $\beta = y$

 $\gamma = 0$

 $\delta = z - x - y$

Portanto $V + W = \mathbb{R}^3$.

 $\dim \mathbb{R}^3 = \dim V + \dim W - \dim (V \cap W)$. Temos que $\dim (V \cap W) = 1$.

Vamos determinar $V \cap W$

$$V \cap W = \{(x, y, z); x + y - z = 0 \ e \ x = y\}$$

$$V \cap W = \{(x, y, z); x = y = z/2\}$$

$$V \cap W = [(1, 1, 1/2)]$$

Mudança de base

Sejam $\beta = \{u_1, ..., u_n\}$ e $\beta' = \{w_1, ..., w_n\}$ duas bases ordenadas de um mesmo espaço vetorial V. Dado um vetor $v \in V$, podemos escrevê-lo como:

e (§)
$$\mathbf{v} = x_1 \mathbf{u}_1 + ... + x_n \mathbf{u}_n$$

 $\mathbf{v} = y_1 \mathbf{w}_1 + ... + y_n \mathbf{w}_n$

Como podemos relacionar as coordenadas de v em relação à base β ,

$$[\mathbf{v}]_{\beta} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

com as coordenadas do mesmo vetor v em relação à base β' ,

$$[\mathbf{v}]_{\beta'} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Já que $\{u_1, ..., u_n\}$ é base de V, podemos escrever os vetores w_i como combinação linear dos u_j , isto é,

$$\begin{cases} \mathbf{w}_{1} = a_{11}\mathbf{u}_{1} + a_{21}\mathbf{u}_{2} + \dots + a_{n1}\mathbf{u}_{n} \\ \mathbf{w}_{2} = a_{12}\mathbf{u}_{1} + a_{22}\mathbf{u}_{2} + \dots + a_{n2}\mathbf{u}_{n} \\ \vdots & \vdots & \vdots \\ \mathbf{w}_{n} = a_{1n}\mathbf{u}_{1} + a_{2n}\mathbf{u}_{2} + \dots + a_{nn}\mathbf{u}_{n} \end{cases}$$

Substituindo em (§) temos:

$$\mathbf{v} = y_1 \mathbf{w}_1 + \dots + y_n \mathbf{w}_n$$

$$= y_1 (a_{11} \mathbf{u}_1 + \dots + a_{n1} \mathbf{u}_n) + \dots + y_n (a_{1n} \mathbf{u}_1 + \dots + a_{nn} \mathbf{u}_n)$$

$$= (a_{11} y_1 + \dots + a_{1n} y_n) \mathbf{u}_1 + \dots + (a_{n1} y_1 + \dots + a_{nn} y_n) \mathbf{u}_n$$

Mas $v = x_1u_1 + ... + x_nu_n$, e como as coordenadas em relação a uma base são únicas, temos:

$$x_1 = a_{11}y_1 + a_{12}y_2 + ... + a_{1n}y_n$$

 $\vdots \qquad \vdots \qquad \vdots$
 $x_n = a_{n1}y_1 + a_{n2}y_2 + ... + a_{nn}y_n$

Em forma matricial

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Isto é, denotando

$$|I|_{\beta}^{\beta'} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

temos

$$[\mathbf{v}]_{\beta} = [I]_{\beta}^{\beta'} [\mathbf{v}]_{\beta'}$$

A matriz $[I]_{\beta}^{\beta'}$ é chamada matriz de mudança da base β' para a base β .

Sejam $\beta = \{(2, -1), (3, 4)\}$ e $\beta' = \{(1, 0), (0, 1)\}$ bases de \mathbb{R}^2 .

Procuremos, inicialmente, $[I]^{\beta'}_{\beta}$.

Podemos usar esta matriz para encontrar, por exemplo, $[v]_{\beta}$ para v = (5, -8).

Inversa da matriz mudança de base

escrevendo os u_i em função dos w_j , chegaremos à relação:

$$[\mathbf{v}]_{\boldsymbol{\beta}'} = [I]_{\boldsymbol{\beta}'}^{\boldsymbol{\beta}} [\mathbf{v}]_{\boldsymbol{\beta}}$$

Um fato importante é que as matrizes $[I]^{\beta}_{\beta'}$ e $[I]^{\beta'}_{\beta}$ são inversíveis e

$$([I]_{\beta}^{\beta'})^{-1} = [I]_{\beta'}^{\beta}$$

No exemplo anterior podemos obter $[I]_{\beta}^{\beta'}$ a partir de $[I]_{\beta'}^{\beta}$.

Exemplo 2

Consideremos em R^2 a base $\beta = \{e_1, e_2\}$ e a base $\beta' = \{f_1, f_2\}$, obtida da base canônica β pela rotação de um ângulo θ . Dado um vetor $v \in R^2$ de coordenadas

$$[\mathbf{v}]_{\beta} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

em relação à base β, quais são as coordenadas

$$[\mathbf{v}]_{\boldsymbol{\beta}'} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

em relação à base β'? Temos então

$$\mathbf{v} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

= $y_1 \mathbf{f}_1 + y_2 \mathbf{f}_2$

e queremos calcular

$$[\mathbf{v}]_{\boldsymbol{\beta}'} = [I]_{\boldsymbol{\beta}'}^{\boldsymbol{\beta}} [\mathbf{v}]_{\boldsymbol{\beta}}$$

ou seja, temos que achar a matriz $[I]^{\beta}_{\beta'}$.

$$[I]_{\beta'}^{\beta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Como subexemplo, quando $\theta = \frac{\pi}{3}$, para $\mathbf{v} = (-2, 3)$, isto é

$$\mathbf{v} = -2\mathbf{e}_1 + 3\mathbf{e}_2$$
, temos $[\mathbf{v}]_{\beta'} = \begin{bmatrix} -\frac{2}{3} \\ 3 \end{bmatrix}$