

DL Exercise 4: PyTorch and Classification Challenge

Katharina Breininger, Mingxuan Gu, Noah Maul, Zhaoya Pan, Luca Reeb, Florian Thamm Sulaiman Vesal, Tobias Würfl, Zijin Yang Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-N�rnberg

Goal of this exercise

- Get to know a widely used deep learning framework: PyTorch
- Implement & train two widely architectures: AlexNet and ResNet18
- Classification on **real** data: Images from solar panels

Goal of this exercise

- Get to know a widely used deep learning framework: PyTorch
- Implement & train two widely architectures: AlexNet and ResNet18
- Classification on **real** data: Images from solar panels
- Challenge yourself & your colleagues!

Organizational

Part I: Classification with PyTorch - Mandatory

- Implementation & training of PyTorch architectures
- No oral presentation, BUT: submission of trained models in submission system (later more)
- Goal: reach mean F1 score of > 0.60 for both architectures
- Deadline: TBA

Organizational

Part II: Challenge - Optional, but highly encouraged

- Try to find & train the best architecture & model for this task!
- Compete with your colleagues!
- Deadline: TBA

Source: Designed by Freepik

Data set: Identification of defects in solar panels

- Solar moduls are composed of cells
- Are subject to degradation (transport, wind, hail, ...)
- Different defects, e.g., cracks or inactive regions

Data set: Identification of defects in solar panels

- Solar moduls are composed of cells
- Are subject to degradation (transport, wind, hail, ...)
- Different defects, e.g., cracks or inactive regions
- Task: Automatically determine which defect(s) a module has
- Panel can have no or multiple defects → multi-label problem!

Data set: Identification of defects in solar panels

- Solar moduls are composed of cells
- Are subject to degradation (transport, wind, hail, ...)
- Different defects, e.g., cracks or inactive regions
- Task: Automatically determine which defect(s) a module has
- Panel can have no or multiple defects → multi-label problem!

Figure: Left: Crack on a polycristalline module: Middle: Inactive region: Right: Cracks and inactive regions on a monocristalline module

Normalization

- The normalization of your implementation has to match the normalization of our test server
- At test time, we calculate mean μ and standard deviation σ of the intensity over all test samples
- Then, we normalize every pixel x by $x^* = \frac{x-\mu}{\sigma}$
- Please make sure that you implement the normalization accordingly

Deep Learning in Pytorch

We will use **Pytorch** to define and train neural network architectures.

- Developed by Facebook's Al Research lab
 - Open-source
 - Extensive Python interface
- Allows to easily define computational graphs
 - Operations based on tensors
 - Closely resembles NumPy API
 - Automatic differentiation to support efficient gradient computations (Autograd)
 - Various optimization algorithms to help training neural networks
- + GPU acceleration!

Deep Learning in Pytorch

- Pytorch layer API resembles structure of our framework
- Extensive documentation and "getting started" guides
- Short Hands-On will follow after Ex. 3 submission
- Sources online e.g.:
 - 60-min blitz with Jupyter notebooks
 - Pytorch with Examples
 - Overview of all tutorials

Submission to online tool

- After training, make sure to save a checkpoint of your best performing model
- Online submission tool will be made available on **Friday**, 24.01.
- Website: https://lme156.informatik.uni-erlangen.de/dl-challenge
- Only available from within the university network
- Same teams (max. 2) as before allowed

Submission to online tool: Registration

Register with your email and student id.

Submission to online tool: Team

If you work in a team: One of you has to create a new team, the other has to join.

Submission to online tool: Submit model

Submit trained models (zip-file generated by train.py) by uploading them. You may submit multiple models.

THE CHALLENGE

Improve on the baseline by ResNet:

- Adapt architectures/try out new architectures
- Pretraining?
- · Regularization?
- Data augmentation?
- Use your creativity!
- Best model from each team will be tested on independent data after the challenge deadline
- Best participants will receive a winner's certificate and a prize!

12

THE CHALLENGE

Improve on the baseline by ResNet:

- Adapt architectures/try out new architectures
- Pretraining?
- Regularization ?
- Data augmentation?
- Use your creativity!
- Best model from each team will be tested on independent data after the challenge deadline
- Best participants will receive a winner's certificate and a prize!
- May the best machine learners win!