数理逻辑第四次作业

1

用自然推理规则证明下列断言:

1. $\neg \exists x A(x) \vdash \dashv \forall x \neg A(x)$

证"上"方向: $\neg \exists x A(x) \vdash \forall x \neg A(x)$

$$A(z) \vdash A(z) \tag{(e)}$$

$$A(z) \vdash \exists x A(x) \tag{3^+}$$

$$\vdash A(z) \to \exists x A(x) \qquad (\to^+)$$

$$\neg \neg A(z) \vdash A(z) \to \exists x A(x)$$
 (+)

$$\neg \neg A(z), \neg A(z) \vdash \neg \neg A(z) \tag{(e)}$$

$$\neg \neg A(z), \neg A(z) \vdash \neg A(z) \tag{(e)}$$

$$\neg \neg A(z) \vdash A(z) \tag{\neg^-}$$

$$\neg \neg A(z) \vdash \exists x A(x) \tag{\rightarrow^{-}}$$

$$\neg \exists x A(x), \neg \neg A(z) \vdash \exists x A(x) \tag{+}$$

$$\neg \exists x A(x), \neg \neg A(z) \vdash \neg \exists x A(x) \tag{(e)}$$

$$\neg \exists x A(x) \vdash \neg A(z) \tag{\neg^-}$$

$$\neg \exists x A(x) \vdash \forall x \neg A(x) \tag{\forall^{+}}$$

证 \dashv 方向: $\forall x \neg A(x) \vdash \neg \exists x A(x)$

$$(1) \qquad \forall x \neg A(x) \vdash \forall x \neg A(x) \qquad (\in)$$

$$(2) \qquad \forall x \neg A(x) \vdash \neg A(z) \qquad (\forall^{-})$$

$$(3) \qquad \forall x \neg A(x), A(z) \vdash \neg A(z) \qquad (+)$$

$$(4) \qquad \forall x \neg A(x), A(z) \vdash A(z) \qquad (\in)$$

$$(5) \qquad \forall x \neg A(x), \exists x A(x) \vdash \neg A(z) \qquad (\exists^{-} (3))$$

(6)
$$\forall x \neg A(x), \exists x A(x) \vdash A(z) \qquad (\exists^{-} (4))$$

$$\forall x \neg A(x) \vdash \neg \exists x A(x) \tag{\neg^+}$$

2. $\exists x A(x) \to B \vdash \exists \forall x (A(x) \to B)$, 其中 x 不在 B 中证 \vdash 方向: $\exists x A(x) \to B \vdash \forall x (A(x) \to B)$

$$A(z) \vdash A(z) \tag{(e)}$$

$$A(z) \vdash \exists x A(x) \tag{3^+}$$

$$(\exists x A(x)) \to B, A(z) \vdash \exists x A(x)$$
 (\exists^+)

$$(\exists x A(x)) \to B, A(z) \vdash (\exists x A(x)) \to B$$
 (\in)

$$(\exists x A(x)) \to B, A(z) \vdash B \tag{\to^-}$$

$$(\exists x A(x)) \to B \vdash A(z) \to B \tag{\to^+}$$

$$(\exists x A(x)) \to B \vdash \forall x (A(x) \to B) \tag{\forall^+}$$

证 \dashv 方向: $\forall x(A(x) \to B) \vdash (\exists x A(x)) \to B$

$$\forall x (A(x) \to B) \vdash \forall x (A(x) \to B) \tag{(e)}$$

$$\forall x (A(x) \to B) \vdash A(z) \to B \tag{\forall^{-}}$$

$$\forall x (A(x) \to B), A(z) \vdash A(z) \to B \tag{\forall^{-}}$$

$$\forall x (A(x) \to B), A(z) \vdash A(z) \tag{(e)}$$

$$\forall x (A(x) \to B), A(z) \vdash B \tag{\to^-}$$

$$\forall x (A(x) \to B), \exists x A(x) \vdash B \tag{\exists^-}$$

$$\forall x (A(x) \to B) \vdash (\exists x A(x)) \to B \qquad (\to^+)$$

 $\mathbf{2}$

证明下列断言:

1. $\vdash \forall x \forall y r(x, y) \rightarrow \forall x r(x, x)$

$$\forall x \forall y r(x, y) \vdash \forall x \forall y r(x, y) \tag{(e)}$$

$$\forall x \forall y r(x, y) \vdash \forall y r(u, y) \tag{\forall^{-}}$$

$$\forall y r(u, y) \vdash \forall y r(u, y) \tag{(e)}$$

$$\forall y r(u, y) \vdash r(u, u) \tag{\forall^{-}}$$

$$\forall x \forall y r(x, y) \vdash r(u, u) \tag{Tr}$$

$$\forall x \forall y r(x, y) \vdash \forall x r(x, x) \tag{\forall^{+}}$$

$$\vdash \forall x \forall y r(x, y) \to \forall x r(x, x) \tag{\rightarrow^+}$$

其中 u 不在 $\forall x \forall y r(x,y)$ 中出现。

2. $\vdash \forall x A(x) \rightarrow \forall x (A(x) \lor B(x))$

$$\forall x A(x) \vdash \forall x A(x) \tag{(e)}$$

$$\forall x A(x) \vdash A(z) \tag{\forall^{-}}$$

$$(\forall x A(x)) \vdash A(z) \lor B(z) \tag{\lor^+}$$

$$(\forall x A(x)) \vdash \forall x (A(x) \lor B(x)) \tag{\forall^{+}}$$

$$\vdash (\forall x A(x)) \to \forall x (A(x) \lor B(x)) \tag{\rightarrow^+}$$

 $3. \vdash (\exists x A(x) \rightarrow \forall x B(x)) \rightarrow \forall x (A(x) \rightarrow B(x))$

$$A(z) \vdash A(z) \tag{(e)}$$

$$A(z) \vdash \exists x A(x) \tag{\exists^+}$$

$$(\exists x A(x)) \to (\forall x B(x)), A(z) \vdash \exists x A(x) \tag{+}$$

$$(\exists x A(x)) \to (\forall x B(x)), A(z) \vdash (\exists x A(x)) \to (\forall x B(x)) \tag{(e)}$$

$$(\exists x A(x)) \to (\forall x B(x)), A(z) \vdash \forall x B(x) \tag{\rightarrow^{-}}$$

$$(\exists x A(x)) \to (\forall x B(x)), A(z) \vdash B(z) \tag{\forall^{-}}$$

$$(\exists x A(x)) \to (\forall x B(x)) \vdash A(z) \to B(z) \tag{\Rightarrow^+}$$

$$(\exists x A(x)) \to (\forall x B(x)) \vdash \forall x (A(x) \to B(x)) \tag{\forall^+}$$

$$\vdash ((\exists x A(x)) \to (\forall x B(x))) \to \forall x (A(x) \to B(x)) \quad (\to^+)$$

 $4. \vdash \exists y (r(y) \rightarrow \forall y r(y))$

借助了定理 $\neg \exists x A(x) \vdash \forall x \neg A(x)$, $\neg (A \rightarrow B) \vdash A$ 和 $\neg (A \rightarrow B) \vdash \neg B$ 。

$$(1) \qquad \neg \exists y (r(y) \to \forall y r(y)) \vdash \forall y \neg (r(y) \to \forall y r(y)) \qquad (\neg \exists x A(x) \vdash \forall x \neg A(x))$$

$$(2) \qquad \neg \exists y (r(y) \to \forall y r(y)) \vdash \neg (r(z) \to \forall y r(y)) \tag{\forall^{-}}$$

$$(3) \qquad \neg(r(z) \to \forall y r(y)) \vdash r(z) \qquad (\neg(A \to B) \vdash A)$$

$$(4) \qquad \neg(r(z) \to \forall y r(y)) \vdash \neg \forall y r(y) \qquad (\neg(A \to B) \vdash \neg B)$$

(5)
$$\neg \exists y (r(y) \rightarrow \forall y r(y)) \vdash r(z)$$
 (Tr (2)(3))

(6)
$$\neg \exists y (r(y) \rightarrow \forall y r(y)) \vdash \neg \forall y r(y)$$
 (Tr (2)(4))

$$(7) \qquad \neg \exists y (r(y) \to \forall y r(y)) \vdash \forall y r(y) \tag{\forall^{+} (5)}$$

(8)
$$\vdash \exists y (r(y) \to \forall y r(y)) \tag{\neg^-}$$

定理 $\neg (A \rightarrow B) \rightarrow A$ 证明:

(1)
$$A, \neg A, \neg B \vdash A$$
 (\in)
(2) $A, \neg A, \neg B \vdash \neg A$ (\in)
(3) $A, \neg A \vdash B$ ($\neg \neg$)
(4) $\neg A \vdash A \to B$ ($\rightarrow \neg$)
(5) $(A \to B), \neg (A \to B), \neg A \vdash (A \to B)$ (\in)
(6) $(A \to B), \neg (A \to B), \neg A \vdash \neg (A \to B)$ (\in)
(7) $(A \to B), \neg (A \to B) \vdash A$ ($\neg \neg$)
(8) $\neg (A \to B), \neg (A \to B) \vdash A$ ($\rightarrow \neg$)
(9) $\neg (A \to B), \neg (A \to B), \neg$

定理 $\neg(A \rightarrow B) \rightarrow \neg B$ 证明:

$$A, B \vdash B \qquad (\in)$$

$$B \vdash A \to B \qquad (\to^+)$$

$$\neg (A \to B), B \vdash A \to B \qquad (+)$$

$$\neg (A \to B), B \vdash \neg (A \to B) \qquad (\in)$$

$$\neg (A \to B) \vdash \neg B \qquad (\neg^+)$$

定理 $\neg \exists x A(x) \rightarrow \forall x \neg A(x)$ (书上命题 5.3.3 第 2 条) 证明:

$$\neg A(z) \vdash \neg A(z) \tag{\in}$$

$$\neg A(z) \vdash \forall x \neg A(x) \tag{\forall^{+}}$$

$$\neg \forall x \neg A(x), \neg A(z) \vdash \forall x \neg A(x) \tag{+}$$

$$\neg \forall x \neg A(x), \neg A(z) \vdash \neg \forall x \neg A(x) \tag{(e)}$$

$$\neg \forall x \neg A(x) \vdash A(z) \tag{\neg^-}$$

$$\neg \forall x \neg A(x) \vdash \exists x A(x) \tag{\exists^+}$$

$$\neg \exists x A(x), \neg \forall x \neg A(x) \vdash \exists x A(x) \tag{+}$$

$$\neg \exists x A(x), \neg \forall x \neg A(x) \vdash \neg \exists x A(x) \tag{(e)}$$

$$\neg \exists x A(x) \vdash \forall x \neg A(x) \tag{\neg^-}$$

推理规则 (¬+) 的证明:

$$(\neg^+): \frac{\Sigma, A \vdash B}{\Sigma \vdash \neg A}$$

$$(1) \Sigma, \neg \neg A \vdash \Sigma (\in)$$

$$(2) \qquad \neg \neg A, \neg A \vdash \neg \neg A \qquad (\in)$$

$$(3) \qquad \neg \neg A, \neg A \vdash \neg A \qquad (\in)$$

$$\neg \neg A \vdash A \tag{\neg^-}$$

$$(5) \Sigma, \neg \neg A \vdash A (+ (4))$$

$$\Sigma, A \vdash B \tag{假设}$$

(7)
$$\Sigma, \neg \neg A \vdash B \qquad (\operatorname{Tr}(5)(6))$$

(8)
$$\Sigma, \neg \neg A \vdash \neg B$$
 (ibid)

$$(9) \Sigma \vdash \neg A (\neg^- (7)(8))$$