Economic Forecasting

Time series data

Sebastian Fossati

University of Alberta | E493 | 2023

Outline

- 1 Time series data
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise
- 7 Your turn

Time series data

Examples

- daily IBM stock prices
- monthly rainfall
- quarterly Australian beer production
- annual Google profits

Where can we find time series data?

Where can we find time series data?

FRED

Where can we find time series data?

Google Trends

Your turn

A time series is stored in a ts object in R:

- a list of numbers
- information about times those numbers were recorded

Year	Observation
2012	123
2013	39
2014	78
2015	52

 $y \leftarrow ts(c(123,39,78,52), start = 2012)$

For observations that are more frequent than once per year, add a frequency argument.

E.g., monthly data stored as a numerical vector z:

$$y \leftarrow ts(z, freq = 12, start = c(2003,1))$$

Time series object: ts(data, frequency, start)

Type of data	frequency	start example
Annual		
Quarterly		
Monthly		
Weekly		

Time series object: ts(data, frequency, start)

Type of data	frequency	start example
Annual	1	1995
Quarterly		
Monthly		
Weekly		

Time series object: ts(data, frequency, start)

Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly		
Weekly		

10

Time series object: ts(data, frequency, start)

Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Weekly		

10

Time series object: ts(data, frequency, start)

Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Weekly	52.18	c(1995,23)
• • •		
	 	

Canadian GDP


```
# read canada quarterly real qdp data
data <- read.csv("data/NAEXKP01CA0661S.csv", header = TRUE)</pre>
cangdp <- ts(data$NAEXKP01CAQ661S, start = 1961, freq = 4)</pre>
# display some observations
window(cangdp, start = c(2001,1), end = c(2005,4))
##
        Otr1 Otr2 Otr3 Otr4
## 2001 84.43 84.65 84.59 85.11
  2002 86.37 86.87 87.62 88.11
## 2003 88.60 88.46 88.80 89.41
## 2004 90.05 91.12 92.20 92.86
## 2005 93.18 93.84 95.00 95.94
```

Canadian Real GDP

Your turn

Update the Canadian real GDP time series to include the latest observations available (you should be able to get data up to 2022Q3).

Outline

- 1 Time series data
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise
- 7 Your turn

Time plots

Time plots

```
# drug sales
 autoplot(a10) + ylab("$ million") + xlab("Year") +
   ggtitle("Antidiabetic drug sales")
     Antidiabetic drug sales
   30 -
uoillim $
   10 -
                                    Year
```


Outline

- 1 Time series data
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise
- 7 Your turn

Seasonal data

Seasonal data

Seasonal data

Seasonal subseries plots

Seasonal subseries plots

Remarks:

- data for each season collected together in time plot as separate time series
- enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized
- in R: ggsubseriesplot()
- see also ggseasonplot()

Outline

- 1 Time series data
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise
- 7 Your turn

Trend: pattern exists when there is a long-term increase or decrease in the data

Seasonal: pattern exists when a series is influenced by seasonal factors (eg, the quarter of the year, the month, or day of the week)

Cyclic: pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years)

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Time series data
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Autocorrelation
- 6 White noise
- 7 Your turn

Autocorrelation

Covariance and correlation: measure extent of linear relationship between two variables (y and x).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series *y*.

We measure the relationship between:

- y_t and y_{t-1}
- y_t and y_{t-3}
- etc.

Autocorrelation

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Define

$$c_k = \frac{1}{T} \sum_{t=k+1}^T (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and
$$r_k = c_k/c_0$$

- \blacksquare r_1 indicates how successive values of y relate to each other
- \blacksquare r_2 indicates how values two periods apart relate to each other
- etc.

Remarks:

- r₄ is higher than for the other lags due to the seasonal pattern in the data: the peaks tend to be 4 quarters apart
- $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks
- together, the autocorrelations at lags 1, 2, ..., make up the autocorrelation or ACF
- and the plot is known as a correlogram

Trend and seasonality in ACF plots

Remarks:

- when data have a trend, the autocorrelations for small lags tend to be large and positive
- when data are seasonal, the autocorrelations will be larger at the seasonal lags (ie, at multiples of the seasonal frequency)
- when data are trended and seasonal, you see a combination of these effects

Aus monthly electricity production

Aus monthly electricity production

Aus monthly electricity production

Time plot shows clear trend and seasonality.

The same features are reflected in the ACF.

- the slowly decaying ACF indicates trend
- the ACF peaks at lags 12, 24, 36, ..., indicate seasonality of length 12

Google stock price

Google stock price

Outline

- 1 Time series data
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise
- 7 Your turn

Example: White noise

Example: White noise

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise should lie within $\pm 1.96/\sqrt{T}$
- if this is not the case, the series may not WN
- common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF (these are the *critical values*)

Example:

T = 36 and so critical values at $\pm 1.96/\sqrt{36}$ = ± 0.327 .

All autocorrelation coefficients lie within these limits, the data appear to be white noise.

Outline

- 1 Time series data
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise
- 7 Your turn

