Измерение

$$\frac{B(J/\psi{\to}K^+K^-)}{B(J/\psi{\to}\mu^+\mu^-)}$$

с детектором BES-3

Николаев Иван

29 июня 2015 г.

- Ровно четыре заряженных трека из места встречи:
 - ullet Число заряженных треков $N_q=4$
 - ullet Летят из места встречи: |z| < 10 см, $r_{xy} < 1$ см.
 - ullet На большие углы: $|\cos heta| < 0.8$
- Требуем ровно два разнозаряженных кандадата в пионы:
 - $p(\pi^{\pm}) < 0.45 \text{ FaB}$
 - $3.0 < M_{rec}(\pi^+\pi^-) < 3.2 \text{ F}$

- Остальные два разнозаряженных каон или мюон кандадаты:
 - $\circ 1.0 < p(K^{\pm}, \mu^{\pm}) < 2.0$ ГэВ
 - E/p < 0.8

Измерение

- Кинематическая реконструкция по полному четырёхимпульсу с предварительным уточнением вершины в гипотезе мюонов или каонов.
 - $\bullet \ \chi^2_{kin}(KK) < 40$
 - $\chi^2_{kin}(\mu\mu) < 40$
- \blacksquare Идентификация по dE/dx и TOF;

•
$$\chi^2_{pid}(pid) = \sum_{track} \chi^2_{dEdx}(pid) + \chi^2_{TOF}(pid)$$

- $\bullet \ \chi^2_{pid}(KK) < 20$
- $\chi^2_{pid}(\mu\mu) < 20$

© Разделение $\mu^+\mu^-$, K^+K^- : Случай $\mu^+\mu^-$:

•
$$\chi^2_{kin}(\mu\mu) < \chi^2_{kin}(KK)$$

$$\bullet \ \chi^2_{pid}(\mu\mu) < \chi^2_{pid}(KK)$$

•
$$E/p < 0.8$$

Случай $\mu^{+}\mu^{-}$:

$$\bullet \ \chi^2_{kin}(\mu\mu) < \chi^2_{kin}(KK)$$

$$\quad \quad \bullet \quad \chi^2_{pid}(\mu\mu) < \chi^2_{pid}(KK)$$

•
$$E/p < 0.26$$

Фоны

- Пучковый
- Космика
- lacktriangle Распады $\psi(2S)$
- Континуум

Inclusive Monte Carlo 2009, KK-channel

#	count	final state	decay topology
1	1	$\pi\pi\mu\mu$	$\psi(2S) \to \pi^+ \pi^- (J/\psi \to \mu^+ \mu^-)$
2	2	$\pi\pi KK$	$\psi(2S) \to (\bar{K}^*(892)^0 \to \pi^+ K^-)(K_0^*(1430)^0 \to \pi^- K^+) + c.c.$
3	2	$\pi\pi KK$	$\psi(2S) \to (\rho(770)^0 \to \pi^+\pi^-)K^+K^-$
4	2	$\pi\pi KK$	$\psi(2S) \to \pi^+ K^- (K_2^* (1430)^0 \to \pi^- K^+) + c.c.$
5	14	$\pi\pi KK$	$\psi(2S) \to (\bar{K}^*(892)^{\bar{0}} \to \pi^+ K^-)(K_2^*(1430)^0 \to \pi^- K^+) + c.c.$
6	24	$\pi\pi KK$	$\psi(2S) \to (K^*(892)^0 \to \pi^- K^+)(\bar{K}^*(892)^0 \to \pi^+ K^-)$
7	25	$\pi\pi KK$	$\psi(2S) \to \pi^+\pi^-K^+K^-$
8	27	$\pi\pi KK$	$\psi(2S) \to K^-(K_1(1270)^+ \to (\rho(770)^0 \to \pi^+\pi^-)K^+) + c.c.$
9	53	$\pi\pi KK$	$\psi(2S) \to K^-(K_1(1270)^+ \to \pi^+\pi^-K^+) + c.c.$
10	73	$\pi\pi KK$	$\psi(2S) \to \pi^+ K^- (K^*(892)^0 \to \pi^- K^+) + c.c.$
11	112	$\pi\pi KK$	$\psi(2S) \to K^-(K_1(1270)^+ \to \pi^+(K^*(892)^0 \to \pi^-K^+)) + c.c.$
12	248	$\pi\pi KK$	$\psi(2S) \to K^{-}(K_{1}(1270)^{+} \to \pi^{+}(K_{0}^{*}(1430)^{0} \to \pi^{-}K^{+})) + c.c.$
13	2801	$\pi\pi KK$	$\psi(2S) \to \pi^{+}\pi^{-}(J/\psi \to K^{+}K^{-})$

8/18

Inclusive Monte Carlo 2009, $\mu\mu$ -channel

#	count	final state	decay topology
1	1	$\gamma\pi\pi\pi\pi$	$\psi(2S) \to \pi^+\pi^-(J/\psi \to \gamma(f_2(1270) \to \pi^+\pi^-))$
2	1	$ee\mu\mu\gamma\gamma\gamma$	$\psi(2S) \to (\pi_0 \to e^+e^-\gamma)(\pi_0 \to \gamma\gamma)(J/\psi \to \mu^+\mu^-)$
3	1	$\mu\mu\mu\mu\mu\gamma$	$\psi(2S) \to (\eta \to \mu^+ \mu^- \gamma)(J/\psi \to \mu^+ \mu^-)$
4	1	$\pi\pi\pi\pi$	$\psi(2S) \to \pi^+\pi^-\pi^+\pi^-$
5	1	$ee\mu\mu\gamma$	$\psi(2S) \to (\eta \to e^+e^-\gamma)(J/\psi \to \mu^+\mu^-)$
6	1	$\gamma \pi \pi \pi \pi$	$\psi(2S) \to \pi^+\pi^-(J/\psi \to \gamma(f_2(2150) \to \pi^+\pi^-))$
7	2	$\pi\pi\pi\pi$	$\psi(2S) \to \pi^+(b_1(1235)^- \to \pi^-(\omega(782) \to \pi^+\pi^-)) + c.c.$
8	2	$\mu\mu$	$\psi(2S) \to \mu^+\mu^-$
9	3	$\pi\pi\pi\pi$	$\psi(2S) \to \pi^-(a_2(1320)^+ \to (\rho(770)^0 \to \pi^+\pi^-)\pi^+) + c.c.$
10	5	$\gamma \pi \pi \pi \pi$	$\psi(2S) \to \pi^+\pi^-(J/\psi \to \gamma(f_4(2050) \to \pi^+\pi^-))$
11	13	$\pi\pi\pi\pi$	$\psi(2S) \to (\rho(770)^0 \to \pi^+\pi^-)\pi^+\pi^-$
12	77	$\mu\mu\gamma\pi\pi$	$\psi(2S) \to (\eta \to \gamma \pi^+ \pi^-)(J/\psi \to \mu^+ \mu^-)$
13	589	$\pi\pi\pi\pi$	$\psi(2S) \to \pi^+\pi^-(J/\psi \to \pi^+\pi^-)$
14	675597	$\mu\mu\pi\pi$	$\psi(2S) \to \pi^+ \pi^- (J/\psi \to \mu^+ \mu^-)$

Доля фона: 697/675597 = 0.1%

Fit to recoil mass: Modified double Crystal Ball function

$$f_{CB}(x) = \begin{cases} D_{l}e^{\kappa_{l}x}, & -\infty & x < -\gamma_{l} \\ A_{l}(B_{l} - x)^{-n_{l}}, & -\gamma_{l} & x < -\alpha_{l} \\ A_{el} \exp(\alpha_{el}x), & -\alpha_{l} < x < -\alpha_{el} \\ \exp(-x^{2}/2), & -\alpha_{el} < x < \alpha_{er} \\ A_{er} \exp(-\alpha_{er}x), & \alpha_{el} < x < -\alpha_{r} \\ A_{r}(B_{r} + x)^{-n_{r}}, & \alpha_{r} < x < \gamma_{r} \\ D_{r}e^{-\kappa_{r}x}, & x < \infty \end{cases}$$
(1)

$$A_{er,el} = \exp(\alpha_{er,el}^2/2)$$

$$B_{r,l} = n_{r,l}/\alpha_{er,el} - \alpha_{r,l}$$

$$D_{r,l} = \frac{A_{r,l}e^{\kappa_{r,l}\gamma_{r,l}}}{(B_{r,l}+\gamma_{r,l})^{n_{r,l}}}$$
(2)

Mote Carlo 2009

Data 2009

Таблица: Selection result

	Monte Carlo 2009	data 2009
N_{tot}^{KK}	3384	3747
N_{fit}^{KK}	2840 ± 65	3586 ± 60
N_{bg}^{KK}	544 ± 23	161 ± 13
$N_{tot}^{ec{\mu}\mu}$	676294	659534
$N_{fit}^{ ilde{\mu} ilde{\mu}}$	676294 ± 822	659534 ± 812
$N_{ba}^{J\mu\mu}$	0	0
$N_{bg}^{ hoar{\mu}} \ N_{fit}^{KK}/N_{fit}^{\mu\mu}$	$(4.20 \pm 0.09) \times 10^{-3}$	$(5.44 \pm 0.09) \times 10^{-3}$
$arepsilon_{KK}/arepsilon_{\mu\mu}$	1.063 ± 0.002	1.063 ± 0.002
$B_{KK}/B_{\mu\mu}(meas)$	$(3.95 \pm 0.09) \times 10^{-3}$	$(5.12 \pm 0.09) \times 10^{-3}$
$B_{KK}/B_{\mu\mu}(setinMC)$	4.00×10^{-3}	
$B_{KK}/B_{\mu\mu}(PDG-2014)$		$(4.53 \pm 0.29) \times 10^{-3}$
$B_{KK}/B_{\mu\mu}(BES)$		$(5.08 \pm 0.12) \times 10^{-3}$

Рис.: Далиц-плот по инвариантной массе $K\pi\pi$ (ось Y), $K\pi$ (ось X) для сигнала (слева) и фона от K1(1270) (справа)

Измерение

$$dN_{sig} = \epsilon L \sigma_{\psi(2S)} |A(x, y)BW(W)|^2 dW dx dy$$

$$dN_{bg} = \epsilon L \sigma_{\psi(2S)} |B(x, y)|^2 dW dx dy,$$
(4)

here BW(x) is Breight-Wigner function:

$$BW(W) = \frac{M\Gamma}{M^2 - W^2 - iM\Gamma};$$
(5)

$$W = M_{rec} = \sqrt{(P_{\pi^{+}} + P_{\pi^{-}})^{2}},$$

$$x = M_{\pi^{+}\pi^{-}K^{+}} = \sqrt{(P_{\pi^{+}} + P_{\pi^{-}} + P_{K^{+}})^{2}},$$

$$y = M_{\pi^{-}K^{+}} = \sqrt{(P_{\pi^{-}} + P_{K^{+}})^{2}},$$
(6)

The interference contribution proportional:

$$2|A(x,y)B(x,y)BW(M_{rec})e^{i\phi}|, (7)$$

where ϕ is an appropriate phase difference between two amplitudes.

And number of events:

$$dN_{int} = \epsilon L \sigma_{\psi(2S)} 2\cos(\phi) |A(x,y)B(x,y)| \frac{M\Gamma}{\sqrt{(M^2 - W^2)^2 + M^2\Gamma^2}} dW dx dy \tag{8}$$

$$\int_0^\infty \frac{M^2 \Gamma^2}{(M^2 - W^2)^2 + M^2 \Gamma^2} dW = \frac{\pi}{2} \Gamma$$
 (9)

$$N_{int} = \epsilon L \sigma_{\psi(2S)} 2 \sin(\phi) \Gamma \frac{\pi}{2} \int |A(x, y)B(x, y)| dx dy$$
 (10)

$$N_{sig} = \epsilon L \sigma_{\psi(2S)} \frac{\pi}{2} \Gamma \int |A(x,y)|^2 dx dy$$
 (11)

$$N_{bg} = \epsilon L \sigma_{\psi(2S)} \Delta W \int |B(x,y)|^2 dx dy$$
 (12)

$$\frac{N_{int}}{N_{sig}} = 2\sin\phi\sqrt{\frac{N_{bg}}{N_{sig}}}\frac{\pi\Gamma}{2\Delta W}\frac{\int |A(x,y)B(x,y)|dxdy}{\int |A(x,y)|^2dxdy\int |B(x,y)|^2dxdy} \tag{13} \label{eq:13}$$

Using Monte Carlo for background $\psi(2S) \to K_1(1270)X \to \pi^+\pi^-KK$ and for the signal $\psi(2S) \to J/\psi \pi^+ \pi^- \to \pi^+ \pi^- KK$ one can receive:

$$\frac{\int |A(x,y)B(x,y)|dxdy}{\int |A(x,y)|^2 dxdy \int |B(x,y)|^2 dxdy} \approx 0.5 \tag{14}$$

Then fraction of interference

$$\frac{N_{int}}{N_{sig}} \le 2 \cdot 0.5 \sqrt{\frac{N_{bg}}{N_{sig}}} \frac{\pi \Gamma}{2\Delta W} \approx 0.006 \tag{15}$$

here $\Gamma = \Gamma_{J/\psi} = 0.093$ MeV, $M = M_{J/\psi} = 3097$ MeV, $N_{bq} = 160$, $N_{sig} = 3586, \ \Delta W = 90 \ \text{MeV}$

Ближайшие планы

- Обработать 2012 год.
- Обработать континуум на 2E=3.65 GeV
- Полное моделирование фона от распадов $\psi(2S)$
- ISR фон.
- Исследовать систематику в эффективности регистрации.