# IMPI ÉMENTATIONS TEMPS RÉFL D'UN RÉCEPTEUR OUASI-CYCLIC SHORT PACKET (OCSP)

#### Camille MONIÈRE

Lab-STICC, CNRS UMR 6285, Université de Bretagne Sud, 56100 Lorient, France, Email: camille.moniere@univ-ubs.fr

IMS, CNRS UMR 5218, Université de Bordeaux, 33400 Talence, France, Email : camille.moniere@ims-bordeaux.fr

04/01/2023















IMPLÉMENTATIONS TEMPS RÉFI D'UN RÉCEPTEUR OCSP

C MONIÈRE

Avant-propos

Introduction



Introduction

Cette thèse s'est déroulée sous la direction d'Emmanuel BOUTILLON<sup>1</sup>, et l'encadrement de Bertrand LE GAL<sup>2</sup>.

Ces travaux de thèse ont été financé par l'Agence Nationale de la Recherche (ANR)

Ouasi-Cyclic Short Packet (OCSP), identifiant ANR-19-CF25-0013-01.

française, et s'inscrivent ainsi dans le projet



OF FINANCÉ PAR

<sup>1.</sup> Pr. Lab-STICC, CNRS UMR 6285, Université de Bretagne Sud, 56100 Lorient, France, Email : emmanel.boutillon@univ-ubs.fr

<sup>2.</sup> MCF, IMS, CNRS UMR 5218, Université de Bordeaux, 33400 Talence, France, Email : bertrand.legal@ims-bordeaux.fr

Introductio

QCSP

Étude algorithmique

. Implémentations

Expériences grandeur-natures

Conclusion

- 1. Introduction
- 2. QCSP
- 3. Étude algorithmique
- 4. Implémentations
- 5. Expériences grandeur-natures
- 6. Conclusion

#### Sommaire

#### 1. Introduction

Contexte Le projet Quasi-Cyclic Short Packet (QCSP) IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction Contexte

Le projet Quasi-Cycli Short Packet (QCSP)

QCSF

Étude algorithmique

. Implémentations

Evnériences

grandeur-natui

onclusion

**Avant-propos** 

Sommaire

Introduction
Contexte

Short Packet (Q

QCSF

Étude algorithmique

Implémentations

Expériences

Conclusion



# 6G WFi 5G

NFC zigbee



Portée

#### IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

sommaire

Contexte

Le projet Quasi-Cyclic
Short Packet (OCSP)

CCB

Étude algorithmique

mplémentations

Expériences

onclusion



#### Sommaire

#### 2. QCSP

**Principes** Émission Détection **Synchronisation** 

Décodage

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

QCSP

# **Principes**

TODO

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Principes

# Émission

#### TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propo:

ommaire

Introduction

QCSF

Princip

Émission

Détection

Décodage

Étude algorithmique

angoritimique

mplémentations

xpériences

Conclusion

## Détection

#### TODO

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Détection

## **Synchronisation**

#### **TODO**

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

# Décodage

**TODO** 

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Décodage

Étude algorithmique

#### 3. Étude algorithmique

Sensibilité à un facteur d'échelle Corrélation glissante dans le temps (*Time sliding*)

## Sensibilité à un facteur d'échelle

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction

QCS

Étude algorithmique Sensibilité à un facteur d'échelle

temps (*Time sliding*)

Implémentations

Expériences grandeur-natures

Conclusion

# Corrélation glissante dans le temps (*Time sliding*)

**TODO** 

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Corrélation glissante dans

le temps (Time sliding)

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

50.....

Introducti

QCSP

Étude algorithmique

**Implémentations** 

L'émetteur

Le détecteur

xpériences randeur-natures

onclusion

Bibliography

4. Implémentations L'émetteur Le détecteur

#### L'émetteur

**TODO** 

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

L'émetteur

#### Le détecteur

TODO

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Étude du parallélisme

#### IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Les corrélations

#### **TODO**

Expériences grandeur-natures

5. Expériences grandeur-natures En ville En mer

#### En ville

**TODO** 

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

En ville

#### En mer

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommane

Introduction

QCSF

Étude algorithmique

Implémentations

Expériences

randeur-nature

n ville n mer

onclusion

liography

Sommaire

Introducti

OCED

QCSF

Étude algorithmique

Implémentation:

Expériences grandeur-natures

Conclusion

Synthèse

Perspectives futures

libliography

6. Conclusion
Synthèse
Perspectives futures

## Conclusion

**TODO** 

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

## Conclusion

**TODO** 

**IMPLÉMENTATIONS** TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Perspectives futures

Introduction

CSP

Étude algorithmique

Implémentation:

Expériences grandeur-nature

Conclusio

- [1] O. ABASSI, « Etude Des Décodeurs LDPC Non-Binaires, » thèse de doct., 2014.
- [2] O. ABASSI et al., « Non-Binary Low-Density Parity-Check Coded Cyclic Code-Shift Keying, » in 2013 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, avr. 2013, p. 3890-3894. DOI: 10.1109/WCNC.2013.6555196.
- [3] N. ABRAMSON, «THE ALOHA SYSTEM: Another alternative for computer communications, » in *Proceedings of the November 17-19, 1970, Fall Joint Computer Conference on AFIPS '70 (Fall),* Houston, Texas: ACM Press, 1970, p. 281. DOI: 10.1145/1478462.1478502.
- [4] AHMED ABDMOULEH, « Non-Binary LDPC Codes Associated to High Order Modulations, » Theses, Université de Bretagne Sud, sept. 2017. adresse: https://tel.archives-ouvertes.fr/tel-01769283.
- E. ARIKAN, « Channel Polarization : A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels, » *IEEE Transactions on Information Theory*, t. 55, no 7, p. 3051-3073, juill. 2009, ISSN: 0018-9448, 1557-9654. DOI: 10.1109/TIT.2009.2021379.
- [6] ARM, NEON Programmer's Guide, 1.0. ARM, 2013. adresse: https://documentation-service.arm.com/.
- [7] A. Azarı et al., « Grant-Free Radio Access for Short-Packet Communications over 5G Networks, » in GLOBECOM 2017 2017 IEEE Global Communications Conference, Singapore : IEEE, déc. 2017, p. 1-7, ISBN : 978-1-5090-5019-2. DOI : 10.1109/GLOCOM. 2017. 8255054.
- [8] P. BARONTI et al., « Wireless sensor networks : A survey on the state of the art and the 802.15.4 and ZigBee standards, » Computer Communications, t. 30, no 7, p. 1655-1695, mai 2007, ISSN: 01403664. DOI: 10.1016/j.comcom.2006.12.020.
- [9] M. A. BEN TEMIM et al., « A New LoRa-like Transceiver Suited for LEO Satellite Communications, » Sensors, t. 22, n<sup>o</sup> 5, p. 1830, fév. 2022, ISSN: 1424-8220. DOI: 10.3390/s22051830.
- [10] C. Berrou et al., « Near Shannon Limit Error-Correcting Coding and Decoding : Turbo-codes. 1, » in *Proceedings of ICC*'93 IEEE International Conference on Communications, t. 2, Geneva, Switzerland : IEEE, 1993, p. 1064-1070, ISBN:
  978-0-7803-0950-0. DOI: 10.1109/ICC.1993.397441.

CSP

tude lgorithmique

mplémentatior

xpériences randeur-nature

Conclusio

- [11] S. BEYME et al., « Efficient computation of DFT of Zadoff-Chu sequences, » Electronics Letters, t. 45, no 9, p. 461, 2009, ISSN 10135194, DOI: 10.1049/e1. 2009. 3330
- [12] T. BJERREGAARD et al., « A survey of research and practices of Network-on-chip, » ACM Computing Surveys, t. 38, n<sup>o</sup> 1, p. 1, juin 2006, ISSN: 0360-0300, 1557-7341. DOI: 10.1145/1132952.1132953.
- [13] L. S. Blackford et al., « An Updated Set of Basic Linear Algebra Subprograms (BLAS), » ACM Transactions on Mathematical Software, t. 28, nº 2, p. 135-151, 2002.
- [14] B. BLOESSL et al., « mSync : Physical Layer Frame Synchronization without Preamble Symbols, » IEEE Transactions on Mobile Computing, t. 17, n° 10, p. 2321-2333, oct. 2018, ISSN : 1536-1233, 1558-0660, 2161-9875. DOI : 10.1109/TMC.2018.2808968.
- [15] C. BOCKELMANN et al., «Towards Massive Connectivity Support for Scalable mMTC Communications in 5G Networks,»

  IEEE Access, t. 6, p. 28 969-28 992, 2018, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2837382.
- [16] M. BOSSERT, Channel Coding for Telecommunications. Chichester, England; New York: Wiley, 1999, ISBN: 978-0-471-98277-7.
- [17] M. Braun et al., « RFNoC: RF Network-on-Chip, » Proceedings of the GNU Radio Conference, t. 1, no 1, sept. 2016. adresse: https://pubs.gnuradio.org/index.php/grcon/article/view/3.
- [18] A. CASSAGNE et al., « A Flexible and Portable Real-time DVB-S2 Transceiver Using Multicore and SIMD CPUs, » in 2021 11th International Symposium on Topics in Coding (ISTC), août 2021, p. 1-5. DOI: 10.1109/ISTC49272.2021.9594063.
- [19] E. CASSEAU et al., «C- BASED RAPID PROTOTYPING FOR DIGITAL SIGNAL PROCESSING, » in EUSIPCO, Turkey: EUSIPCO, 2005, p. 1-4. adresse: https://hal.archives-ouvertes.fr/hal-00080466.
- [20] J. CASTIÑEIRA MOREIRA et al., Essentials of Error-Control Coding. West Sussex, England: John Wiley & Sons, 2006, ISBN: 978-0-470-03571-9.
- [21] Cellular IoT Evolution & digitization | Whitepaper, jan. 2019. adresse: https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-iot-evolution-for-industry-digitalization.

CCD

tude Ilgorithmique

implémentation

xpériences

Conclusion

- [22] F. CERQUEIRA et al., « A Comparison of Scheduling Latency in Linux, PREEMPT-RT, and LITMUS RT, », 2013.
- [23] R. CHAUVAT et al., « Efficient LDPC-coded CCSK Links for Robust High Data Rates GNSS, » IEEE Transactions on Aerospace and Electronic Systems, p. 1-13, 2022, ISSN: 1557-9603. DOI: 10.1109/TAES.2022.3190819.
- [24] A. CHECKO et al., « Cloud RAN for Mobile Networks—A Technology Overview, » IEEE Communications Surveys & Tutorials, t. 17, no 1, p. 405-426, sept. 2015, ISSN: 1553-877X. DOI: 10.1109/COMST.2014.2355255.
- [25] C.-S. CHOI et al., « LoRa Based Renewable Energy Monitoring System with Open IoT Platform, » in 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA: IEEE, Jan. 2018, p. 1-2. DOI: 10.23919/ELINFOCOM, 2018. 8330550.
- [26] K. CHUGG et al., « MLSE for an Unknown Channel .I. Optimality Considerations, » *IEEE Transactions on Communications*, t. 44, no 7, p. 836-846, juill. 1996, ISSN: 00906778. DOI: 10.1109/26.508303.
- [27] D. CHU, « Polyphase Codes with Good Periodic Correlation Properties (Corresp.), » *IEEE Transactions on Information Theory*, t. 18, no 4, p. 531-532, juill. 1972, ISSN: 1557-9654. DOI: 10.1109/TIT.1972.1054840.
- [28] VOLPIN, LÉA et al., « Efficient LoRa-like Transmitter Stacks for SDR Applications, » in *Proceedings of the IEEE International Conference on Circuits and Systems (ICECS)*, Glasgow, UK, oct. 2022, P-P.
- [29] P. Coussy et al., *High-Level Synthesis : From Algorithm to Digital Circuit*, 1. éd. Berlin : Springer Science + Business media B.V. 2008. ISBN : 978-1-4020-8588-8.
- [30] D. AKOPIAN, « Fast FFT based GPS satellite acquisition methods, » *IEE Proceedings Radar, Sonar and Navigation*, t. 152, n<sup>o</sup> 4, p. 277-286, août 2005, ISSN: 1350-2395. DOI: 10.1049/ip-rsn: 20045096.
- [31] M. DAVEY et al., « Low-density parity check codes over GF(q), » *IEEE Communications Letters*, t. 2, n<sup>o</sup> 6, p. 165-167, juin 1998, ISSN: 1089-7798. DOI: 10.1109/4234.681360.
- [32] J. Day et al., «The OSI Reference Model, » Proceedings of the IEEE, t. 71, no 12, p. 1334-1340, déc. 1983, ISSN: 1558-2256. DOI: 10.1109/PROC.1983.12775.

- [33] Y. DELOMIER et al., « Model-Based Design of Flexible and Efficient LDPC Decoders on FPGA Devices, » *Journal of Signal Processing Systems*, fév. 2020, poi: 10.1007/s11265-020-01519-0.
- [34] Y. DELOMIER et al., « Model-Based Design of Hardware SC Polar Decoders for FPGAs, » ACM Transactions on Reconfigurable Technology and Systems (TRETS), t. 13, n° 2, mai 2020. adresse: https://hal.archives-ouvertes.fr/hal-02612069.
- [35] C. DENG et al., « IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities, » IEEE Communications Surveys & Tutorials, t. 22, no 4, p. 2136-2166, 2020, ISSN: 1553-877X. DOI: 10.1109/COMST.2020.3012715.
- [36] R. DHAR et al., «Supporting Integrated MAC and PHY Software Development for the USRP SDR, » in 2006 1st IEEE Workshop on Networking Technologies for Software Defined Radio Networks, sept. 2006, p. 68-77. DOI: 10.1109/SDR.2006.4286328.
- [37] S. K. DHURANDHER et al., « QDV: A Quality-of-Security-Based Distance Vector Routing Protocol for Wireless Sensor Networks Using Ant Colony Optimization, » in 2008 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, oct. 2008, p. 598-602. doi: 10.1109/WiMob.2008.61.
- [38] G. DILLARO et al., « Cyclic code shift keying: A low probability of intercept communication technique, » IEEE Transactions on Aerospace and Electronic Systems, t. 39, no 3, p. 786-798, Juill. 2003, ISSN: 0018-9251. DOI: 10.1109/TAES. 2003. 1238736.
- [39] G. Durisi et al., « Toward Massive, Ultrareliable, and Low-Latency Wireless Communication With Short Packets, » Proceedings of the IEEE, t. 104, n° 9, p. 1711-1726, sept. 2016, ISSN: 0018-9219, 1558-2256. DOI: 10.1109/ JPROC. 2016. 2537298.
- [40] ETTUS RESEARCH, USRP Hardware Driver and USRP Manual: Table Of Contents, adresse: https://files.ettus.com/manual/.
- [41] M. FINGEROFF, *High-Level Synthesis Blue Book.* New Jersey: Xlibris Corporation, 2010, ISBN: 978-1-4500-9724-6 978-1-4500-9723-9.

#### Références V

- [42] M. FITZ, « Further results in the fast estimation of a single frequency, » IEEE Transactions on Communications, t. 42, no 2/3/4, p. 862-864, fév. 1994, ISSN: 0090-6778, pot: 10, 1109/TCOMM, 1994, 588190.
- [43] M. J. FLYNN, «Some Computer Organizations and Their Effectiveness, » IEEE Transactions on Computers, t. C-21, no 9, p. 948-960, sept. 1972, ISSN: 0018-9340. DOI: 10.1109/TC.1972.5009071.
- [44] M. FLYNN, «Very High-Speed Computing Systems, » Proceedings of the IEEE, t. 54, no 12, p. 1901-1909, 1966, ISSN: 0018-9219, DOI: 10.1109/PROC.1966.5273.
- [45] M. FRIGO et al., « The Design and Implementation of FFTW3, » Proceedings of the IEEE, t. 93, no 2, p. 216-231, fév. 2005, ISSN: 1558-2256, pol: 10.1109/JPROC. 2004. 840301.
- [46] T. FUJITA et al., « A Burst Modulation/Demodulation Method for Short-Packet Wireless Communication Systems, » in
- [47] R. GALLAGER, «Low-density parity-check codes, » IEEE Transactions on Information Theory, t. 8, no 1, p. 21-28, jan. 1962, ISSN: 0018-9448, pot: 10.1109/TTT. 1962, 1057683.
- [48] D. Godard, «Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems, » IEEE Transactions on Communications, t. 28, no 11, p. 1867-1875, nov. 1980, ISSN: 0096-2244. DOI: 10.1109/TCIM. 1980. 1894608.
- [49] C. GOURSAUD et al., « Dedicated networks for IoT: PHY / MAC state of the art and challenges, » EAI Endorsed Transactions on Internet of Things, t. 1, n° 1, p. 150597, oct. 2015, ISSN: 2414-1399. DOI: 10.4108/eai.26-10-2015.150597.
- [50] R. GUPTA et al., « High-Level Synthesis: A Retrospective, » in *High-Level Synthesis*, P. Coussy et al., éd., Dordrecht: Springer Netherlands, 2008, p. 13-28, ISBN: 978-1-4020-8587-1 978-1-4020-8588-8. DOI: 10.1007/978-1-4020-8588-8. 2.
- [51] HackRF One Great Scott Gadgets, adresse: https://greatscottgadgets.com/hackrf/one/.
- [52] M. D. HILL et al., « Amdahl's Law in the Multicore Era, » Computer, t. 41, nº 7, p. 33-38, juill. 2008, ISSN: 1558-0814. DOI: 10.1109/MC.2008.209.
- [53] G. J. HOLZMANN et al., *The Early History of Data Networks*. IEEE Computer Society Press, 1995.

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

mmaire

Introduction

SP.

tude lgorithmique

mplémentations

Expériences grandeur-natures

Conclusion

- **[54]** I. Hoypis et al., « Sionna : An Open-Source Library for Next-Generation Physical Layer Research. », 2022, poi : 10.48550/ARXIV.2203.11854.
- [55] « IEEE Standard for Low-Rate Wireless Networks. » IEEE, rapp. tech. poi: 10.1109/IEEESTD.2020.9144691.
- « IEEE Standard for Low-Rate Wireless Networks-Amendment 2: Low Power Wide Area Network (LPWAN) Extension to **[56]** the Low-Energy Critical Infrastructure Monitoring (LECIM) Physical Layer (PHY), » IEEE, rapp. tech. DOI: 10 1109/TEFESTD 2020 9206104
- I. III. « Software Radio Architecture Evolution : Foundations, Technology Tradeoffs, and Architecture Implications, » IEICE Transactions on Communications, t. E83B, p. 1165-1173, juin 2000.
- **[58]** R. IMAD et al., « Blind Frame Synchronization and Phase Offset Estimation for Coded Systems, » in 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, juill. 2008. p. 11-15. doi: 10.1109/SPAWC.2008.4641560.
- **[59]** R. IMAD et al., « Frame Synchronization Techniques for Non-Binary LDPC Codes over GF(q), » in 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA: IEEE, déc. 2010, p. 1-6, ISBN: 978-1-4244-5636-9, DOI: 10.1109/GLOCOM.2010.5683422.
- [60] INTEL®, Architecture Instruction Set Extensions Programming Reference, juin 2022, adresse: https://cdrdv2.intel.com/v1/dl/getContent/671368?explicitVersion=true.
- [61] C.-L. I et al., « Recent Progress on C-RAN Centralization and Cloudification, » IEEE Access, t. 2, p. 1030-1039, 2014, ISSN: 2169-3536 DOI: 10 1109/ACCESS 2014 2351411
- [62] « ISM radio band, » Wikipedia, oct. 2022. adresse : https://en.wikipedia.org/w/index.php?title=ISM radio band&oldid=1116815889.
- « ISO/IEC/IEEE International Standard Floating-point Arithmetic, » ISO/IEC 60559:2020(E) IEEE Std 754-2019, p. 1-86, mai 2020, por: 10, 1109/TEFESTD, 2020, 9091348.
- R. KASTNER et al., Parallel Programming for FPGAs, mai 2018, arXiv: 1805.03648 [cs], addresse: **[64]** http://arxiv.org/abs/1805.03648.

- B. KHAILANY et al., « A Modular Digital VLSI Flow for High-Productivity SoC Design, » in Proceedings of the 55th Annual Design Automation Conference, sér. DAC '18, New York, NY, USA: Association for Computing Machinery, 2018, ISBN: 978-1-4503-5700-5, por: 10.1145/3195970.3199846.
- **[661** N. KHAIRUDIN et al., « Implementing Root Raised Cosine (RRC) Filter for WCDMA Using Xilinx, », p. 203-207, avr. 2011. DOI: 10 1109/TCFDSA 2011 5959095
- [67] A. KHALIFEH et al., « A Survey of 5G Emerging Wireless Technologies Featuring LoraWAN, Sigfox, NB-ToT and LTE-M, » in 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), mars 2019, p. 561-566. doi: 10.1109/WiSPNET45539.2019.9032817.
- S. KIM et al., « A Delay-Robust Random Access Preamble Detection Algorithm for LTE System, » in 2012 IEEE Radio and [68] Wireless Symposium, Santa Clara, CA, USA: IEEE, jan. 2012, p. 75-78, ISBN: 978-1-4577-1155-8 978-1-4577-1153-4 978-1-4577-1154-1 por 10 1109/RWS 2012 6175341
- [69] L. Kong et al., « Millimeter-Wave Wireless Communications for IoT-Cloud Supported Autonomous Vehicles: Overview, Design, and Challenges, w IEEE Communications Magazine, t. 55, no 1, p. 62-68, jan, 2017, ISSN: 0163-6804, DOI: 10.1109/MCOM.2017.1600422CM.
- A. KOREN et al., « Modelling an Energy-Efficient ZigBee (IEEE 802.15.4) Body Area Network in IoT-based Smart Homes, » in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), mai 2018, p. 0356-0360, por : 10, 23919/MTPRO, 2018, 8400068.
- **[71]** E. Kreinar, « RFNoC Neural Network Library using Vivado HLS, » Proceedings of the GNU Radio Conference, t, 2, no 1, p. 7-7. sept. 2017. adresse: https://pubs.gnuradio.org/index.php/grcon/article/view/27.
- A. LAVRIC et al., « Long Range SigFox Communication Protocol Scalability Analysis Under Large-Scale, High-Density Conditions. » IEEE Access, t. 7, p. 35 816-35 825, 2019, ISSN: 2169-3536, DOI: 10.1109/ACCESS, 2019, 2903157.
- B. LE GAL et al., « High-Throughput FFT-SPA Decoder Implementation for Non-Binary LDPC Codes on x86 Multicore **[73]** Processors, \* Journal of Signal Processing Systems, t, 92, no 1, p, 37-53, ian, 2020, ISSN: 1939-8018, 1939-8115, poi; 10 1007/511265-019-01447-8

#### Références VIII

- IMPLÉMENTATIONS TEMPS RÉFI D'UN RÉCEPTEUR OCSP
  - C MONIÈRE
- Avant-propos
- Introduction

- Bibliography

- G. LIVA et al., « Codes on High-Order Fields for the CCSDS next Generation Uplink. » in 2012 6th Advanced Satellite [74] Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC), sept. 2012. p. 44-48, pot: 10, 1109/ASMS-SPSC, 2012, 6333104.
- [75] G. LIVA et al., «Short Turbo Codes over High Order Fields, » IEEE Transactions on Communications, t, 61, no 6. p. 2201-2211, juin 2013, ISSN: 0090-6778, DOI: 10.1109/TC0MM. 2013. 041113. 120539.
- LORENZO ORTEGA ESPLUGA, « Signal Optimization for Galileo Evolution, » Thesis, Toulouse, INPT, nov. 2019. adresse: http://www.theses.fr/2019INPT0118.
- R. MAIDEN et al., Build More Cost-Effective and More Efficient 5G Radios with Intel Agilex FPGAs (WP-01312-1.0), Manual, INTEL. Intel Programmable Solution Group.
- **[78]** C. MARCHAND et al., « Hybrid Check Node Architectures for NB-LDPC Decoders, » IEEE Transactions on Circuits and Systems I: Regular Papers, t. 66, no 2, p. 869-880, fév. 2019, ISSN: 1558-0806, DOI: 10.1109/TCST. 2018. 2866882.
- [79] B. MARTINEZ et al., « Exploring the Performance Boundaries of NB-IoT. » IEEE Internet of Things Journal, t. 6, no 3, p. 5702-5712, juin 2019, ISSN: 2327-4662, poi: 10.1109/JIOT. 2019. 2904799.
- E. MARTIN et al., « GAUT : An Architectural Synthesis Tool for Dedicated Signal Processors, » in Proceedings of EURO-DAC [80] 93 and EURO-VHDL 93- European Design Automation Conference, sept. 1993, p. 14-19, poi : 10.1109/FURDAC.1993.410610.
- G. MARTIN et al., « High-Level Synthesis: Past, Present, and Future, » IEEE Design & Test of Computers, t. 26, no 4, p. 18-25. [81] iuill, 2009, ISSN: 1558-1918, poi: 10.1109/MDT, 2009, 83.
- **[82]** C. MAYROMOUSTAKIS et al., éd., Advances in Mobile Cloud Computing and Big Data in the 5G Era (Studies in Big Data). Springer International Publishing, 2017, ISBN: 978-3-319-45143-5, poi: 10.1007/978-3-319-45145-9.
- G. D. MICHELL, « High-Level Synthesis of Digital Circuits, » in Advances in Computers, t. 37, Elsevier, 1993, p. 207-283, ISBN: 978-0-12-012137-3, DOI: 10.1016/S0065-2458(08)60406-4.
- I. MITOLA. «The Software Radio Architecture. » IEEE Communications Magazine. t, 33, no 5, p, 26-38, mai 1995. ISSN: [84] 1558-1896 por 10 1109/35 393001

#### Références IX

- [85] CAMILLE MONIÈRE et al., « Efficient Software and Hardware Implementations of a QCSP Communication System, » in Design and Architecture for Signal and Image Processing, KAROL DESNOS et al., éd., t. 13425, Cham: Springer International Publishing, juin 2022, p. 29-41, ISBN: 978-3-031-12747-2 978-3-031-12748-9, DOI: 10.1007/978-3-031-12748-9 3.
- [86] CAMILLE MONIÈRE et al., « Implémentations Logicielles et Matérielles Efficientes d'une Chaîne de Communications QCSP, » in Conférence Francophone d'informatique En Parallélisme, Architecture et Système, comPAS'2022, Amiens, France, iuill. 2022. adresse : https://hal.archives-ouvertes.fr/hal-03699091.
- [87] CAMILLE MONIÈRE et al., « Time Sliding Window for the Detection of CCSK Frames, » in IEEE Workshop on Signal Processing Systems (SiPS'2021), Combria, Portugal: IEEE, oct. 2021, p. 99-104, poi: 10.1109/SiPS52927.2021.00026.
- [88] R. Mort et al., « Non-Binary Polar Codes Using Reed-Solomon Codes and Algebraic Geometry Codes, » in 2010 IEEE Information Theory Workshop, DublinI, Ireland: IEEE, août 2010, p. 1-5, ISBN: 978-1-4244-8262-7. DOI: 10.1109/CTG. 2010. 5592755
- [89] K.-H. Noo et al., « Cube-Split: A Structured Grassmannian Constellation for Non-Coherent SIMO Communications, » arXiv:1905.08745 [cs, math], Juin 2020. arXiv:1905.08745 [cs, math]. adresse: http://arxiv.org/abs/1905.08745.
- [90] N. NIKAEIN et al., « OpenAirInterface: An Open LTE Network in a PC, » in Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, 2014, p. 305-308.
- [92] OPEN SERVICE SIGNAL B2B, BeiDou Navigation Satellite System Signal In Space Interface Control Document, juill. 2020. adresse: http://www.beidou.gov.cn/xt/gfxz/202008/P020200803362059116442.pdf.
- [93] OpenStreetMap, adresse: https://www.openstreetmap.org/copyright.
- [94] M. R. PALATTELLA et al., « Internet of Things in the 5G Era: Enablers, Architecture, and Business Models, » IEEE Journal on Selected Areas in Communications, t. 34, no 3, p. 510-527, mars 2016, ISSN: 1558-0008. DOI: 10. 1109/ ISAC 2016. 2525418.

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction

SP

tude lgorithmique

**Implémentations** 

Expériences grandeur-nature

onclusion

Étude algorithmique

mplémentations

xpériences randeur-natures

onclusion

- [95] H. D. PFISTER et al., « Accumulate-Repeat-Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity, » IEEE Transactions on Information Theory, t. 53, no 6, p. 2088-2115, juin 2007. ISSN: 1557-9654. pol: 10.1109/ITIT. 2007. 896873.
- [96] S. PFLETSCHINGER et al., « Getting Closer to MIMO Capacity with Non-Binary Codes and Spatial Multiplexing, » in 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA: IEEE, déc. 2010, p. 1-5, ISBN: 978-1-4244-5636-9. doi: 10.1109/GLOCOM.2010.5684077.
- [97] V. PIGNOLY et al., « Fair Comparison of Hardware and Software LDPC Decoder Implementations for SDR Space Links, » in 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), nov. 2020, p. 1-4. DOI: 10.1109/ICECS49266.2020.9294906.
- [98] Y. POLYANSKIY, « Asynchronous Communication: Exact Synchronization, Universality, and Dispersion, » IEEE Transactions on Information Theory, t. 59, n° 3, p. 1256-1270, mars 2013, ISSN: 0018-9448, 1557-9654. DOI: 10.1109/TITI. 2012. 2230682.
- [99] C. POULLIAT et al., « Design of Non Binary LDPC Codes Using Their Binary Image: Algebraic Properties, » in 2006 IEEE International Symposium on Information Theory, Seattle, WA: IEEE, juill. 2006, p. 93-97, ISBN: 978-1-4244-0505-3 978-1-4244-0504-6, pol: 10. 1109/ISTI. 2006. 261681.
- [100] Quasi Cyclic Small Packet Oct 2019 Oct 2023, adresse: https://qcsp.univ-ubs.fr/.
- [101] A. R. et al., « GNU Radio Based Control System, » in 2012 International Conference on Advances in Computing and Communications, août 2012, p. 259-262. DOI: 10.1109/ICACC.2012.59.
- [102] M. RADY et al., «A Historical Twist on Long-Range Wireless: Building a 103 km Multi-Hop Network Replicating Claude Chappe's Telegraph, » Sensors, t. 22, nº 19, p. 7586, oct. 2022, ISSN: 1424-8220. DOI: 10.3390/s22197586.
- [103] H. RAHBARI et al., « Exploiting Frame Preamble Waveforms to Support New Physical-Layer Functions in OFDM-Based 802.11 Systems, » IEEE Transactions on Wireless Communications, t. 16, n<sup>o</sup> 6, p. 3775-3786, juin 2017, ISSN: 1536-1276. DOI: 10.1109/TWC.2017.2688405.

Introduction

\_SP

itude algorithmique

mplémentations

xpériences grandeur-natures

onclusion

Bibliography

, ii Treprint,

- [104] S. V. S. RANGANATHAN et al., « Non-binary low density parity check (NB-LDPC) codes for communication systems, » US9692451B2, juin 2017. adresse: https://patents.google.com/patent/US9692451B2/en.
- [105] JIM SKEA (UNITED KINGDOM), PRIYADARSHI R SHUKLA (INDIA), ANDY REISINGER (NEW ZEALAND), RAPHAEL et al., « Climate Change 2022, » Intergovernemantal Panel on Climate Change, rapt. tech. 6th. adresse: https://www.ipcc.ch/report/ar6/wq3/downloads/report/IPCC\_AR6\_WGIII Full Report.pdf.
- [106] B. LE GAL et al., « Multi-Gb/s Software Decoding of Polar Codes, » IEEE Transactions on Signal Processing (TSP), t. 63, n° 2, p. 349-359, jan. 2015.
- [107] B. LE GAL et al., « High-Throughput Multi-Core LDPC Decoders Based on X86 Processor, » IEEE Transactions on Parallel and Distributed Systems (TPDS), t. 27, n° 5, p. 1373-1386, mai 2016.
- [108] B. LE GAL et al., « Low-Latency and High-Throughput Software Turbo-Decoders on Multi-Core Architectures, » Annals of Telecommunications, Springer, t. 75, p. 27-42, aout 2019. adresse: https://doi.org/10.1007/15.12043-019-007277-5%0A%0A.
- [109] M. ROBERT et al., «The Software-Defined Radio as a Platform for Cognitive Radio, » in Cognitive Radio Technology, Elsevier, 2009, p. 65-103, ISBN: 978-0-12-374535-4. DOI: 10.1016/B978-0-12-374535-4.00003-5.
- [110] T. J. ROUPHAEL, « High-Level Requirements and Link Budget Analysis, » in Signal Processing for Software-Defined Radio, Elsevier, 2009, p. 87-122, ISBN: 978-0-7506-8210-7. DOI: 10.1016/B978-0-7506-8210-7.00004-7.
- [111] K. SAIED et al., « Quasi Cyclic Short Packet for asynchronous preamble-less transmission in very low SNRs, », n<sup>o</sup> Preprint, juin 2020. poi: hal-02884668.
- [112] K. SAIED, « Quasi-Cyclic Short Packet (QCSP) Transmission for IoT, » Theses, Université Bretagne Sud, mars 2022. adresse: https://hal.archives-ouvertes.fr/tel-03628626.
- [113] K. SAIED et al., « Short Frame Transmission at Very Low SNR by Associating CCSK Modulation With NB-Code, » IEEE Transactions on Wireless Communications, t. 21, no 9, p. 7194-7206, sept. 2022, ISSN: 1536-1276, 1558-2248. doi: 10.1109/TWC.2022.3156628.

Introduction

CSP

Étude algorithmique

. Implémentations

xpériences Irandeur-natures

onclusion

ibliography

- [114] K. SAIED et al., «Time-Synchronization of CCSK Short Frames, » in 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WIMob 2021), Bologna, Italy, oct. 2021. addresse; https://hal.archives-ouvertes.fr/hal-03404770.
- [115] M. SCHLÜTER et al., « Bounds on Phase, Frequency, and Timing Synchronization in Fully Digital Receivers With 1-Bit Quantization and Oversampling, » IEEE Transactions on Communications, t. 68, nº 10, p. 6499-6513, oct. 2020, ISSN: 1558-0857. DOI: 10.1109/TCOMM. 2020. 3005738.
- [116] T. SCHMIDL et al., « Robust Frequency and Timing Synchronization for OFDM, » IEEE Transactions on Communications, t. 45. n° 12. p. 1613-1621. Dec./1997. ISSN: 00906778, DOI: 10.1109/26.650240.
- [117] M. SEVER et al., « Use of GNU Radio as a Validation and Visualization Tool in Communications Electronic Support Project, » in 2020 28th Signal Processing and Communications Applications Conference (SIU), oct. 2020, p. 1-5. DOI: 10.1109/STII49456.2020.9302461.
- [118] M. SHAFI et al., « 5G : A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice, » IEEE Journal on Selected Areas in Communications, t. 35, nº 6, p. 1201-1221, juin 2017, ISSN: 1558-0008. DOI: 10. 1109/ JSAC. 2017. 2692307
- [119] S. K. SHARMA et al., « Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions, » *IEEE Communications Surveys & Tutorials*, t. 22, nº 1, p. 426-471, 2020, ISSN: 1553-877X. DOI: 10.1109/COMST. 2019.2916177.
- [120] R. S. SINHA et al., « A survey on LPWA technology : LoRa and NB-IoT, » *ICT Express*, t. 3, n<sup>o</sup> 1, p. 14-21, mars 2017, ISSN : 24059595. DOI: 10.1016/j.icte.2017.03.004.
- [121] W. SUŁEK, « Non-binary LDPC Decoders Design for Maximizing Throughput of an FPGA Implementation, » Circuits, Systems, and Signal Processing, t. 35, no 11, p. 4060-4080, nov. 2016, ISSN: 1531-5878. DOI: 10.1007/s00034-015-0235-x.
- [122] K. TAN et al., « Sora : High-Performance Software Radio Using General-Purpose Multi-Core Processors, » Communications of the ACM, t. 54, nº 1, p. 99-107, 2011.

#### Références XIII

- **[123]** I. TAPPAREL et al., « An Open-Source LoRa Physical Layer Prototype on GNU Radio, » in 2020 IFFE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). mai 2020. p. 1-5. DOI: 10 1109/SPAWC48557 2020 9154273
- [124] TBEU, Theu/Matio, avr. 2020. adresse: https://github.com/theu/matio.
- **[125]** M.-T. Tran. « Towards Hardware Synthesis of a Flexible Radio from a High-Level Language, » These de Doctorat, Rennes 1. nov. 2018. adresse: https://www.theses.fr/2018REN1S072.
- [126] K. TRIFUNOVIC et al., « Polyhedral-Model Guided Loop-Nest Auto-Vectorization, » in 2009 18th International Conference on Parallel Architectures and Compilation Techniques, sept. 2009, p. 327-337, poi : 10, 1109/PACT, 2009, 18,
- [127] A, VOICILA et al., « Low-Complexity Decoding for Non-Binary LDPC Codes in High Order Fields, » IEEE Transactions on Communications, t. 58, no 5, p. 1365-1375, mai 2010, ISSN: 0090-6778, DOI: 10.1109/TCOMM.2010.05.070096.
- **[128]** P. WALK et al., « MOCZ for Blind Short-Packet Communication : Practical Aspects. » IEEE Transactions on Wireless Communications, t. 19, no 10, p. 6675-6692, oct. 2020, ISSN: 1536-1276, 1558-2248, pot: 10, 1109/TWC, 2020, 3004588.
- **[129]** I. S. WALTHER, « A unified algorithm for elementary functions, » in Proceedings of the May 18-20, 1971, Spring Joint Computer Conference on - AFIPS '71 (Spring), Atlantic City, New Jersey: ACM Press, 1971, p. 379, DOI: 10.1145/1478786.1478840.
- **[130]** R. WILSON, Intel FlexRAN Reference Designs Deployed in 5G Infrastructure, juin 2018.
- **[131]** G. Wu et al., « Low Complexity Time-Frequency Synchronization for Transform Domain Communications Systems, » in 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), juill. 2015, p. 1002-1006, por: 10.1109/ChinaSIP.2015.7230555.
- **[132]** A. M. Wygunski et al., « Revolutionizing Software Defined Radio : Case Studies in Hardware, Software, and Education, » *IEEE Communications Magazine*, t. 54, no 1, p. 68-75, jan. 2016, ISSN: 1558-1896, DOI: 10.1109/MCOM.2016.7378428.
- **[133]** XILINX, Vitis High-Level Synthesis User Guide UG1399 (v2021.1), 2021.
- **[134]** XILINX, Vivado Desian Suite User Guide: High-Level Synthesis (UG902), 2019.

IMPLÉMENTATIONS TEMPS RÉFI D'UN RÉCEPTEUR OCSP

C MONIÈRE

Avant-propos

Introduction

#### Références XIV

- IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP
  - C. MONIÈRE
- Avant-propos
- -----
- Introduction
- QCSP
- Étude algorithmique
- Implémentations
- Expériences grandeur-natures
- Conclusion
- Bibliography

- [135] I. ZECENA et al., « Evaluating the Performance and Energy Efficiency of N-Body Codes on Multi-Core CPUs and GPUs, » in 2013 IEEE 32and International Performance Computing and Communications Conference (IPCCC), déc. 2013, p. 1-8. DOI: 10.1109/PCCC.2013.6742789.
- [136] ZHENZHEN YE et al., « A Synchronization Design for UWB-Based Wireless Multimedia Systems, » IEEE Transactions on Broadcasting t. 56, no 2, p. 211-225, juin 2010, ISSN: 0018-9316, 1557-9611, pot: 10, 1109/TBC, 2010, 2042499.
- [137] G. ZHOU et al., « An Embedded Solution to Visual Mapping for Consumer Drones, » in 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, juin 2014, p. 670-675, pol; 10, 1109/CVPRW, 2014, 102.