Large-Batch Training for LSTM and Beyond

speaker: Yang You

PhD candidate at UC Berkeley, advised by James Demmel

How to use thousands of nodes to train neural networks?

- Model parallelism
 - limited parallelism within a layer: layer is narrow
 - pipeline parallelism across layers: dependency between different layers
- Data parallelism
 - find a local batch size to hit the machine peak performance
 - fix the local batch size when it hits the peak performance
 - ullet increase the global batch size by k times, reduce the # iterations by k times

Success of large-batch training

Table 1: Large-batch training history

Team	Model	Baseline Batch	Large Batch	Baseline Accuracy	Large Batch Accuracy
Google ¹	AlexNet	128	1024	57.7%	56.7%
Berkeley ²	GoogleNet	32	1024	68.3%	67.8%
Amazon ³	ResNet-101	256	5120	77.8%	77.8%

¹Alex Krizhevsky, *One weird trick for parallelizing convolutional neural networks*, 2014 (Google Report)

² landola et al, FireCaffe: near-linear acceleration of deep neural network training on compute clusters, 2015 (CVPR)

³Mu Li, Scaling Distributed Machine Learning with System and Algorithm Co-design, 2017 (CMU Thesis)

Success of large-batch training

Table 2: Speedup for ImageNet training with ResNet-50.

Batch Size	epochs	Top-1 Accuracy	hardware	time
32 (He et al ⁴)	90	75.3%	M40 GPU	336h
8K (Goyal et al ⁵)	90	76.2%	256 P100 GPUs	65m
32K (You et al ⁶)	90	75.4%	2048 KNLs	20m
32K (Akiba et al ⁷)	90	74.9%	1024 P100 GPUs	15m
64K (Jia et al ⁸)	90	76.2%	2048 P40 GPUs	9m

Table 3: ImageNet training with ResNet-50: communication over network.

Batch Size	Operations	# Messages	Data Moved	Comp/Comm
32	10 ¹⁸	3.6 million	374TB	2673
32768	10 ¹⁸	3686	374GB	2.7M

⁴Kaiming He et al, *Imagenet classification with deep convolutional neural networks*, 2012

⁵Priya Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2017

⁶Yang You et al, *ImageNet training in minutes*, 2017

⁷Takuya Akiba et al, Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes, 2017

⁸Xianyan Jia et al, Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes 2018

Current problems for large-batch training

- RNN has been widely used, the current large-batch study is focused on CNN applications.
- Even for CNN applications, significant hyper-parameter tuning is required.
- Explanation for large-batch training?

sqrt (square root) scaling for learning rate

- If we increase the batch size by k times, then we increase the learning rate by \sqrt{k} times
 - to keep the variance in the gradient expectation constant⁹

Table 4: Example of sqrt scaling.

D 1 61	
Batch Size	initial learning rate
32	n
32	'/
64	$\eta imes 2^{0.5}$
128	$\eta imes 2^{1.0}$
256	$\eta imes 2^{1.5}$
512	$\eta \times 2^{2.0}$
1024	$\eta \times 2^{2.5}$

⁹Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks, 2014

Linear-Epoch Gradual Warmup (LEGW or Leg-Warmup)

- Usually, the learning rate (LR) for large batch is large, which makes the algorithm diverge at the beginning
- **Gradual Warmup Scheme**: we set the initial LR to a small value and increase it gradually to the target in a few epochs (e.g. 5 or 10).
- **LEGW**: If we increase the batch size by *k* times, then we increase the warmup epochs by *k* times (works with sqrt LR scaling)

Table 5: Example of LEGW.

Batch Size	num of warmup epochs
32	W
64	$w \times 2^1$
128	$w \times 2^2$
256	$w \times 2^3$
512	$w \times 2^4$
1024	$w \times 2^5$

Example for multi-step LR decay

- ullet The baseline uses a batch size of 1K and a peak LR of $2^{2.5}$
 - \bullet In the initial 0.3125 epochs, it gradually increases LR from 0 to $2^{2.5}$
- The peak learning rate for batch size B: $\sqrt{(B/1K)} \times 2^{2.5}$
- The warmup epochs for batch size $B: (B/1K) \times 0.3125$

Example for polynomial LR decay

- The baseline uses a batch size of 1K and a peak LR of 2^{2.5}
 - \bullet In the initial 0.3125 epochs, it gradually increases LR from 0 to $2^{2.5}$
- After warmup, the LR of iteration i is $\eta \times (1 i/I)^p$
- p is the power of polynomial decay (e.g. p = 2.0)
- I is the total number of iterations

Results for MNIST with LSTM (compared to Adam)

Adam is the best existing adaptive solver in our experiments

In this figure, lower is better

Results for PTB with LSTM (compared to Adam)

Adam is the best existing adaptive solver in our experiments

• In this figure, lower is better

Results for MNIST with LSTM (compared to tuning)

- In this figure, lower is better
- Horizontal axis is the most effective tuning region
- They run the same number of epochs for batch size = 8K

Results for MNIST with PTB (compared to tuning)

- In this figure, lower is better
- Horizontal axis is the most effective tuning region
- They run the same number of epochs for batch size = 640

Results for MNIST with LSTM (compared to tuning)

Running long enough: from 25 epochs to 100 epochs

- In this figure, lower is better
- Horizontal axis is the most effective tuning region
- ullet They run the same number of epochs for batch size $= 8 \mbox{K}$

Results for PTB with LSTM (compared to tuning)

Running long enough: from 13 epochs to 50 epochs

- In this figure, lower is better
- Horizontal axis is the most effective tuning region
- $\bullet \ \, \text{They run the same number of epochs for batch size} = 8 \text{K} \\$

Results for ImageNet training (LEGW without tuning)

Table 6: With LEGW (on top of LARS solver), we can scale the batch size to 32K for ImageNet training without tuning hype-parameters.

Batch Size	Init LR	LR scheme	Warmup	Epochs	Top-5 Accuracy
32768	$2^{5.0}$	poly power = 2	10 epochs	90	93.18%
16384	2 ^{4.5}	poly power = 2	5 epochs	90	93.43%
8192	2 ^{4.0}	poly power = 2	2.5 epochs	90	93.55%
4096	$2^{3.5}$	poly power = 2	1.25 epochs	90	93.34%
2048	$2^{3.0}$	poly power = 2	0.625 epochs	90	93.25%
1024	$2^{2.5}$	poly power = 2	0.3125 epochs	90	93.36%

State-of-the-art performance without tuning

Table 7: Speedup for ResNet-50.

Batch Size	epochs	Top-1 Accuracy	hardware	time
32 (He et al, 2012)	90	75.3%	M40 GPU	336h
8K (Goyal et al, 2017)	90	76.2%	256 P100 GPUs	65m
32K (You et al, 2017)	90	75.4%	2048 KNLs	20m
32K (Akiba et al, 2017)	90	74.9%	1024 P100 GPUs	15m
64K (Jia et al, 2018)	90	76.2%	2048 P40 GPUs	8.7m
32K (this work)	90	76.4%	TPU-v2 Pod	7m

• Followup: Mikami et al (Sony report, Nov 13, 2018)

Explanation and more results, check our tech report!

https://www.cs.berkeley.edu/~youyang/batch-lstm.pdf

