CAPM APT

Linear Factor Models

Wang Wei Mun

Lee Kong Chian School of Business Singapore Management University

October 7, 2018

Efficient Frontier with Riskless Asset

- $n \ge 2$ risky assets and riskless asset with return R_f
- Let **R** be $n \times 1$ vector of expected returns for risky assets
- Let **V** be $n \times n$ is covariance matrix of returns for risky assets
- Let **w** be $n \times 1$ vector of portfolio weights for risky assets
- Weights for frontier portfolio with expected return R_p :

$$\mathbf{w} = \lambda \mathbf{V}^{-1} (\mathbf{R} - R_f \mathbf{e}); \qquad \lambda = \frac{R_p - R_f}{\zeta - 2\alpha R_f + \delta R_f^2};$$
$$\alpha = \mathbf{R}' \mathbf{V}^{-1} \mathbf{e}; \qquad \zeta = \mathbf{R}' \mathbf{V}^{-1} \mathbf{R}; \qquad \delta = \mathbf{e}' \mathbf{V}^{-1} \mathbf{e}$$

Tangency Portfolio

Efficient frontier is also called capital market line (CML):

$$R_p = R_f + \left(\zeta - 2\alpha R_f + \delta R_f^2\right)^{\frac{1}{2}} \sigma_p$$

• Let \mathbf{w}_m be portfolio weights for frontier portfolio with zero weight in riskless asset, so $\mathbf{e}'\mathbf{w}_m = 1$:

$$\mathbf{w}_m = \lambda_m \mathbf{V}^{-1} (\mathbf{R} - R_f \mathbf{e}); \qquad \lambda_m = \frac{1}{\alpha - \delta R_f}$$

• "Tangency" portfolio is point where efficient frontier is tangent to risky-asset-only frontier when $R_f < R_{mv} = \alpha/\delta$

Capital Asset Pricing Model

- Assume that all investors hold mean-variance efficient portfolios, agree on $\bf R$ and $\bf V$, and can borrow and lend at R_f
- Then tangency portfolio represents aggregate portfolio of risky assets, or market portfolio
- Previously, assumed that all investors are "price takers", in sense that allocation choices have no effect on asset prices
- Now assume that asset prices adjust to produce market equilibrium, where supply of risky assets equals demand
- This capital asset pricing model (CAPM) is example of endowment economy, in which asset supply is fixed and asset prices (and returns) adjust to produce market equilibrium

Security Market Line

• Let R_m be expected market return, and let $\vec{\sigma}_m$ be $n \times 1$ vector of covariances between asset returns and market return:

$$\vec{\sigma}_m = \mathbf{V}\mathbf{w}_m = \lambda_m (\mathbf{R} - R_f \mathbf{e});$$

$$\sigma_m^2 = \mathbf{w}_m' \mathbf{V} \mathbf{w}_m = \lambda_m (R_m - R_f)$$

Divide and rearrange to get security market line (SML):

$$\mathbf{R} - R_f \mathbf{e} = \frac{\vec{\sigma}_m}{\sigma_m^2} (R_m - R_f) = \vec{\beta} (R_m - R_f)$$

• Here $\vec{\beta}$ is $n \times 1$ vector such that $\beta_i \equiv \sigma_{im}/\sigma_m^2$, where σ_{im} is covariance of return between *i*'th asset and market portfolio

Realised Returns – Part 1

• Let $\tilde{\nu}_i$ and $\tilde{\nu}_m$ be unexpected components of *i*'th asset return and market return respectively, and use result for CAPM:

$$\begin{split} \tilde{R}_{i} &= R_{i} + \tilde{\nu}_{i} \\ &= R_{f} + \beta_{i} \left(R_{m} - R_{f} \right) + \tilde{\nu}_{i} \\ &= R_{f} + \beta_{i} \left(\tilde{R}_{m} - \tilde{\nu}_{m} - R_{f} \right) + \tilde{\nu}_{i} \end{split}$$

• Define $\tilde{\epsilon}_i = \tilde{\nu}_i - \beta_i \tilde{\nu}_m$ to obtain relation between realised asset return and contemporaneous realised market return:

$$\tilde{R}_{i} - R_{f} = \beta_{i} \left(\tilde{R}_{m} - R_{f} \right) + \tilde{\epsilon}_{i}$$

Realised Returns - Part 2

- Here \tilde{R}_m represents **risk factor** for (systematic) market risk, which captures effect of market risk on realised asset return
- Hence β_i represents degree of asset's exposure to market risk
- Notice that $\tilde{\epsilon}_i$ is uncorrelated with realised market return:

$$Cov(\tilde{R}_{m}, \tilde{\epsilon}_{i}) = Cov(\tilde{R}_{m}, \tilde{\nu}_{i}) - \beta_{i}Cov(\tilde{R}_{m}, \tilde{\nu}_{m})$$

$$= Cov(\tilde{R}_{m}, \tilde{R}_{i}) - \beta_{i}Cov(\tilde{R}_{m}, \tilde{R}_{m})$$

$$= 0$$

• Hence $\tilde{\epsilon}_i$ represents risk factor for idiosyncratic risk

Market Model

Allow for non-zero intercept to obtain market model:

$$\tilde{R}_i - R_f = \alpha_i + \beta_i \left(\tilde{R}_m - R_f \right) + \tilde{\epsilon}_i$$

- Notice that market model represents linear regression model, with (excess) asset return as dependent variable and (excess) market return as explanatory variable
- Slope coefficient from market model regression provides convenient estimate of asset beta, while intercept coefficient provides empirical test of CAPM

Idiosyncratic Risk

 Decompose variance of asset return into systematic and idiosyncratic portions:

$$\mathsf{Var}\Big(ilde{R}_i\Big) = \mathsf{Var}\Big(eta_i ilde{R}_m + ilde{\epsilon}_i\Big) = eta_i^2\sigma_m^2 + \sigma_{\epsilon_i}^2$$

- Idiosyncratic risk can be almost eliminated by combining individual assets into well-diversified portfolio
- Optimal for investors to hold combination of market portfolio and riskless asset, which avoids exposure to idiosyncratic risk
- Hence idiosyncratic risk will not be "priced", in sense that investors will not be compensated for bearing idiosyncratic risk

Market Price of Risk - Part 1

• Let $\rho_{im} = \sigma_{im}/\sigma_i\sigma_m$ be correlation of return between asset i and market portfolio, so that $\beta_i = \rho_{im}\sigma_i/\sigma_m$:

$$R_i - R_f = \rho_{im}\sigma_i\left(\frac{R_m - R_f}{\sigma_m}\right) = \rho_{im}\sigma_i S_m$$

- Here $S_m = (R_m R_f)/\sigma_m$ is Sharpe ratio of market portfolio, which represents market price of systematic risk
- Let w_{mi} be i'th element of \mathbf{w}_m and let \mathbf{v}_i be i'th row of \mathbf{V} :

$$\frac{\partial \sigma_m^2}{\partial w_{mi}} = \frac{\partial \mathbf{w}_m' \mathbf{V} \mathbf{w}_m}{\partial w_{mi}} = 2 \mathbf{v}_i \mathbf{w}_m = 2 \sum_{j=1}^n w_{mj} \sigma_{ij}$$

Market Price of Risk - Part 2

• Use $\tilde{R}_m = \sum_{j=1}^n w_{mj} \tilde{R}_j$ to determine covariance of returns:

$$\sigma_{im} = \text{Cov}\Big(\tilde{R}_i, \tilde{R}_m\Big) = \text{Cov}\left(\tilde{R}_i, \sum_{j=1}^n w_{mj}\tilde{R}_j\right) = \sum_{j=1}^n w_{mj}\sigma_{ij}$$

• Hence $\rho_{im}\sigma_i$ represents marginal increase in (systematic) market risk from marginal increase in weight on asset i:

$$\frac{\partial \sigma_{m}}{\partial w_{mi}} = \frac{1}{2\sigma_{m}} \frac{\partial \sigma_{m}^{2}}{\partial w_{mi}} = \frac{1}{\sigma_{m}} \sum_{i=1}^{n} w_{mj} \sigma_{ij} = \frac{\sigma_{im}}{\sigma_{m}} = \rho_{im} \sigma_{i}$$

CAPM without Riskless Asset - Part 1

 If all investors hold mean-variance efficient portfolios, then market portfolio will also be mean-variance efficient:

$$\mathbf{w}_{m} = \frac{\zeta \mathbf{V}^{-1} \mathbf{e} - \alpha \mathbf{V}^{-1} \mathbf{R}}{\zeta \delta - \alpha^{2}} + \left(\frac{\delta \mathbf{V}^{-1} \mathbf{R} - \alpha \mathbf{V}^{-1} \mathbf{e}}{\zeta \delta - \alpha^{2}} \right) R_{m}$$

• Let \tilde{R}_p be return for any portfolio of risky assets:

$$\begin{aligned} \mathsf{Cov}\Big(\tilde{R}_p, \tilde{R}_m\Big) &= \mathbf{w}_p' \mathbf{V} \mathbf{w}_m = \frac{\zeta - \alpha R_p}{\zeta \delta - \alpha^2} + \left(\frac{\delta R_p - \alpha}{\zeta \delta - \alpha^2}\right) R_m \\ &= \frac{\zeta - \alpha R_m}{\zeta \delta - \alpha^2} + \left(\frac{\delta R_m - \alpha}{\zeta \delta - \alpha^2}\right) R_p \end{aligned}$$

CAPM without Riskless Asset - Part 2

Rearrange to get equation for portfolio expected return:

$$R_{p} = \frac{\alpha R_{m} - \zeta}{\delta R_{m} - \alpha} + \text{Cov}\left(\tilde{R}_{p}, \tilde{R}_{m}\right) \frac{\zeta \delta - \alpha^{2}}{\delta R_{m} - \alpha}$$
$$= \frac{\alpha R_{m} - \zeta}{\delta R_{m} - \alpha} + \beta_{p} \left(\frac{\zeta \delta - \alpha^{2}}{\delta R_{m} - \alpha}\right) \sigma_{m}^{2}$$

• Let R_{zm} be expected return for frontier portfolio that is orthogonal to market portfolio, and use $R_{mv} = \alpha/\delta$:

$$R_{zm} = R_{mv} - \frac{\zeta \delta - \alpha^2}{\delta^2 (R_m - R_{mv})} = \frac{\alpha R_m - \zeta}{\delta R_m - \alpha}$$

CAPM without Riskless Asset - Part 3

Use equation for variance of return for market portfolio:

$$\left(\frac{\zeta\delta - \alpha^2}{\delta R_m - \alpha}\right)\sigma_m^2 = \frac{\zeta\delta - \alpha^2}{\delta (R_m - R_{mv})} \left[\frac{1}{\delta} + \frac{\delta (R_m - R_{mv})^2}{\zeta\delta - \alpha^2}\right]$$
$$= R_m - R_{mv} + \frac{\zeta\delta - \alpha^2}{\delta^2 (R_m - R_{mv})}$$
$$= R_m - R_{zm}$$

Substitute to get result of Black's zero-beta CAPM:

$$R_p = R_{zm} + \beta_p \left(R_m - R_{zm} \right)$$

Arbitrage Opportunity

- Arbitrage portfolio is portfolio that requires zero initial investment (i.e., long positions are financed by short positions)
- Arbitrage opportunity exists when payoff of arbitrage portfolio is (non-strictly) positive in all states, and strictly positive in at least one state
- If arbitrage portfolio provides riskless payoff, then arbitrage opportunity exists unless payoff is zero
- Equivalently, arbitrage opportunity exists unless riskless return on regular portfolio is equal to risk-free rate
- Absence of arbitrage implies law of one price: different assets with same payoffs must have same price

Arbitrage Pricing Theory

- Arbitrage pricing theory (APT) is single-period asset pricing model developed by Stephen Ross in 1976
- CAPM uses market equilibrium to derive derive asset-pricing relation, while APT uses absence of (asymptotic) arbitrage and law of one price
- Unlike CAPM, APT does not impose restrictions on investor preferences or return distribution
- Unlike CAPM, APT allows for multiple systematic risk factors (but also does not specify nature of systematic risk factors)
- Suppose there exist $k \ge 1$ systematic risk factors, which drive realised returns of n > k linearly independent risky assets

Linear Factor Model

Assume that realised asset returns follow linear factor model:

$$\tilde{R}_i = a_i + \sum_{z=1}^k b_{iz} \tilde{f}_z + \tilde{\epsilon}_i$$

- Here \tilde{f}_z is mean-zero random realisation of z'th systematic risk factor, while $\tilde{\epsilon}_i$ is mean-zero random realisation of idiosyncratic risk factor for i'th asset
- Then a_i represents expected return for i'th asset, while b_{iz} represents sensitivity to (or "loading on") z'th risk factor

Risk Factors

 Assume that systematic risk factors have unit variance and are uncorrelated with one another:

$$E\left[\tilde{f}_{z}^{2}\right]=1; \qquad E\left[\tilde{f}_{x}\tilde{f}_{z}\right]=0 \quad \forall \quad x\neq z$$

 Idiosyncratic risk factors are uncorrelated with systematic risk factors, and also uncorrelated across assets:

$$E\left[\tilde{\epsilon}_{i}\tilde{f}_{z}\right]=0; \qquad E\left[\tilde{\epsilon}_{i}\tilde{\epsilon}_{j}\right]=0 \quad \forall \quad i\neq j$$

• Assume that idiosyncratic risk is finite: $E\left[\widetilde{\epsilon}_{i}^{2}\right]=s_{i}^{2}< S^{2} \ orall \ i$

Asymptotic Arbitrage - Part 1

- Suppose that economy contains n risky assets
- Let a; be expected return on i'th asset
- Let σ_{ij} be covariance of return between i'th and j'th assets
- Construct arbitrage portfolio with amount W_i^n invested in each asset, such that $\sum_{i=1}^n W_i^n = 0$
- Consider sequence of arbitrage portfolios for n = 2, 3, ...
- Asymptotic arbitrage opportunity exists when:
 - Portfolio payoff becomes certain as $n \to \infty$, and
 - Portfolio expected payoff is always bounded above zero

Asymptotic Arbitrage - Part 2

 Portfolio payoff becomes certain when variance of portfolio payoff disappears as n becomes large:

$$\lim_{n\to\infty}\left\{\sum_{i=1}^n\sum_{j=1}^nW_i^nW_j^n\sigma_{ij}\right\}=0$$

Portfolio expected payoff is always bounded above zero:

$$\sum_{i=1}^{n} W_i^n a_i > 0 \qquad \forall \qquad n \ge 2$$

APT Pricing Rule - Part 1

 If no asymptotic arbitrage opportunities exist, then expected asset returns must be given by:

$$a_i = \lambda_0 + \sum_{z=1}^k b_{iz} \lambda_z + \nu_i$$

- Here λ_z represents risk premium for z'th risk factor, while ν_i represents "pricing error" for i'th asset
- If riskless asset exists, then λ_0 is approximately equal to risk-free rate: $R_f = \lambda_0 + \nu_f$

APT Pricing Rule - Part 2

 Moreover, pricing errors must sum to zero, and be orthogonal to factor sensitivities:

$$\sum_{i=1}^{n} \nu_i = 0;$$
 $\sum_{i=1}^{n} b_{iz} \nu_i = 0 \quad \forall \quad z = 1, \dots, k$

 Finally, mean squared pricing errors must disappear as n becomes large:

$$\lim_{n\to\infty}\left\{\frac{1}{n}\sum_{i=1}^n\nu_i^2\right\}=0$$

• Consider regression of $\mathbf{a}=(a_1,\ldots,a_n)'$ on set of explanatory variables given by $\mathbf{b}_z=(b_{1z},\ldots,b_{nz})'$ for $z=1,\ldots,k$:

$$\mathbf{a} = \lambda_0 + \sum_{z=1}^k \lambda_z \mathbf{b}_z + \vec{\nu}$$

- Here λ_0 is intercept coefficient while λ_z 's are slope coefficients
- Then $\vec{\nu} = (\nu_1, \dots, \nu_n)'$ is vector of regression residuals:

$$\sum_{i=1}^{n} \nu_{i} = 0;$$
 $\sum_{i=1}^{n} b_{iz} \nu_{i} = 0 \quad \forall \quad z = 1, \dots, k$

 Consider arbitrage portfolio where amount of investment is proportional to relative pricing error:

$$W_i^n = \frac{\nu_i}{\sqrt{n\sum_{i=1}^n \nu_i^2}}$$

• Use $\sum_{i=1}^{n} b_{iz} \nu_i = 0$ to get payoff for arbitrage portfolio:

$$\tilde{R}_{p} = \sum_{i=1}^{n} W_{i}^{n} \tilde{R}_{i} = \frac{1}{\sqrt{n \sum_{i=1}^{n} \nu_{i}^{2}}} \left[\sum_{i=1}^{n} \nu_{i} \left(a_{i} + \tilde{\epsilon}_{i} \right) \right]$$

• Use $E[\tilde{\epsilon}_i] = 0$ to get expected payoff for arbitrage portfolio:

$$E\left[\tilde{R}_{p}\right] = \frac{1}{\sqrt{n\sum_{i=1}^{n}\nu_{i}^{2}}} \left[\sum_{i=1}^{n}\nu_{i}a_{i}\right]$$

• Substitute for a_i and use $\sum_{i=1}^n \nu_i = \sum_{i=1}^n b_{iz} \nu_i = 0$:

$$E\left[\tilde{R}_{p}\right] = \frac{1}{\sqrt{n\sum_{i=1}^{n}\nu_{i}^{2}}} \left[\sum_{i=1}^{n}\nu_{i}^{2}\right] = \left[\frac{1}{n}\sum_{i=1}^{n}\nu_{i}^{2}\right]^{\frac{1}{2}} > 0$$

Deviation from mean for payoff of arbitrage portfolio:

$$\tilde{R}_p - E\left[\tilde{R}_p\right] = \frac{1}{\sqrt{n\sum_{i=1}^n \nu_i^2}} \left[\sum_{i=1}^n \nu_i \tilde{\epsilon}_i\right]$$

• Use $E[\tilde{\epsilon}_i \tilde{\epsilon}_j] = 0$ and $E[\tilde{\epsilon}_i^2] = s_i^2$ to get variance of deviation from mean for payoff of arbitrage portfolio:

$$E\left[\left(\tilde{R}_p - E\left[\tilde{R}_p\right]\right)^2\right] = \frac{\sum_{i=1}^n \nu_i^2 s_i^2}{n \sum_{i=1}^n \nu_i^2} < \frac{S^2}{n}$$

 Variance of deviation from mean disappears as n becomes large, so payoff of arbitrage portfolio becomes riskless:

$$\lim_{n\to\infty} \tilde{R}_{p} = E\Big[\tilde{R}_{p}\Big] = \left[\frac{1}{n}\sum_{i=1}^{n}\nu_{i}^{2}\right]^{\frac{1}{2}}$$

• Absence of asymptotic arbitrage requires that payoff be zero:

$$\lim_{n\to\infty}\left\{\frac{1}{n}\sum_{i=1}^n\nu_i^2\right\}=0$$