Таблица 14. Варианты индивидуальных заданий.

№	Алгоритм задания 1	Алгоритм задания 3
1	Простой вставки (Insertion sort)	Простого выбора (Selection sort)
2	Простого обмена (Exchange sort)	Простой вставки (Insertion sort)
3	Простого выбора (Selection sort)	Простого обмена (Exchange sort)

Отчёт:

В отчёте по каждой сортировке необходимо привести словесное описание алгоритма и его блок-схему, а также программный код (с комментариями), результаты тестирования на массиве n=10 и контрольных прогонов на массивах длиной 100, 1000, 10000, 100000 и 1000000 элементов.

По каждому пункту в заданиях 1-3 приведите полученные результаты в виде таблиц A, B и C и графиков.

По итогам каждого задания сформулируйте соответствующие выводы.

В выводах по всей работе опишите, какие знания, умения и практические навыки получены в ходе выполнения практической работы.

11.3. Практическая работа 3

Тема: «Асимптотический анализ эффективности на примерах алгоритмов сортировки».

Задание 1. Эмпирическая оценка эффективности алгоритмов в среднем случае. Требования по выполнению задания

1. Разработать алгоритм ускоренной сортировки, определенной в варианте (табл. 17), реализовать код на языке С++. Сформировать таблицу 1.1 результатов эмпирической оценки сложности сортировки по формату табл. 15 для массива, заполненного случайными числами. Определить ёмкостную сложность алгоритма.

Таблица 15. Сводная таблица результатов

n	Т(п), мс	$T_{II}(n)=C_{\phi}+M_{\phi}$
100		
1000		
10000		
100000		
1000000		

1. Разработать алгоритм быстрой сортировки, определенной в варианте (приложение 1), реализовать код на языке C++. Сформировать таблицу 2.1 результатов эмпирической оценки сортировки по формату табл. 15 для массива, заполненного случайными числами. Определить ёмкостную сложность алгоритма.

- 2. Представить на графике зависимости $T_{\Pi}(\mathbf{n}) = \mathbf{C}_{\phi} + \mathbf{M}_{\phi}$ для двух анализируемых алгоритмов.
- 3. На основе анализа полученных данных определите наиболее эффективный из алгоритмов в среднем случае.

Задание 2. Асимптотический анализ сложности алгоритмов.

Требования по выполнению задания:

- 1. Провести дополнительные прогоны программы на рабочих массивах, отсортированных а) строго в убывающем и б) строго возрастающем порядке значений элементов. Заполнить по соответствующие таблицы 1.2, 1.3, 2.2, 2.3 для каждого алгоритма по формату табл. 15. Сделайте вывод о зависимости (или независимости) алгоритмов сортировок от исходной упорядоченности массива на основе результатов, представленных в таблицах.
- 2. На основе анализа кода этих алгоритмов определить, если это возможно, формулы $T_{\scriptscriptstyle T}(n)$ функций роста в лучшем и худшем случае. Добавьте в таблицы 1.2, 1.3, 2.2, 2.3 столбец $T_{\scriptscriptstyle T}(n)$ =C+M и заполните соответствующими расчётными значениями.
- 3. Получить асимптотическую оценку обоих алгоритмов в худшем случае (сверху) и в лучшем случае (снизу). Получите (если это возможно) асимптотически точную оценку вычислительной сложности алгоритма.
 - При невозможности получения асимптотической оценки привести справочную информацию.
 - Для наиболее эффективного алгоритма простой сортировки по вашему варианту предыдущей практической работы получить асимптотическую оценку сложности.

Общие результаты свести в табл. 16.

Таблица 16. Сводная таблица результатов

	Асимптотическая сложность алгоритма			
А неорити	Наихудший	Наилучший	Средний слу-	Ёмкостная
Алгоритм	случай	случай	чай (точная	сложность
	(сверху)	(снизу)	оценка)	
Простой				
Усовершен-				
ствованный				
Быстрый				

Сделать вывод о наиболее эффективном алгоритме из трёх.

Отчёт:

В отчёте по каждой сортировке необходимо привести словесное описание алгоритма и его блок-схему, а также программный код (с комментариями), результаты тестирования на массиве n=10 и контрольных прогонов на массивах длиной 100, 1000, 10000, 100000 и 1000000 элементов.

По итогам выполнения каждого задания сформулируйте соответствующие выводы.

В выводах по всей работе опишите, какие знания, умения и практические навыки получены в ходе выполнения практической работы.

Таблица 17. Варианты индивидуальных заданий

Вариант	Усовершенствованный	Быстрый алгоритм
	алгоритм	
1	Сортировка обменами с	Простое слияние
	условием Айверсона	
2	Шейкерная сортировка	Простое слияние
3	Шейкерная с условием Ай-	Простое слияние
	версона	
4	Сортировка Шелла со сме-	Простое слияние
	щениями Д. Кнута. Способ	
	1	
5	Шелла со смещениями Д.	Простое слияние
	Кнута. Способ 2	
6	Шелла со смещениями Р.	Простое слияние
	Седжвика.	
7	Пирамидальная сорти-	Простое слияние
	ровка	
8	Турнирная сортировка	Простое слияние
9	Сортировка обменами с	Быстрая сортировка (Хоара)
	условием Айверсона	

10	Шейкерная сортировка	Быстрая сортировка (Хоара)
11	Шейкерная с условием Ай-	Быстрая сортировка (Хоара)
	версона	
12	Сортировка Шелла со сме-	Быстрая сортировка (Хоара)
	щениями Д. Кнута. Способ	
	1	
13	Шелла со смещениями Д.	Быстрая сортировка (Хоара)
	Кнута. Способ 2	
14	Шелла со смещениями Р.	Быстрая сортировка (Хоара)
	Седжвика.	
15	Пирамидальная сорти-	Быстрая сортировка (Хоара)
	ровка	
16	Турнирная сортировка	Быстрая сортировка (Хоара)

11.4. Практическая работа 4

Тема: «Алгоритмы внешних сортировок».

Задание 1. Разработать программу и применить алгоритм внешней сортировки *прямого слияния* к сортировке файла данных варианта по значению ключевого поля (табл. 8). Ключ в структуре записи варианта — подчеркнутое поле.

- 1) Файл данных варианта предварительно подготовить в тестовом файле с помощью любого тестового редактора.
- 2) Так как записи должны перемещаться, то удобнее хранить данные в двоичном файле, записи которого имеют фиксированную длину. Создать двоичный файл из записей, представленных в текстовом файле.
- 3) Разработать программу (функцию или несколько) сортировки.
- 4) Отладить программу, определить практическую сложность алгоритма для файлов с увеличивающимся количеством записей.
- 5) Сформировать таблицу результатов, указав количество записей и время сортировки.

Алгоритм сортировки прямого слияния для файлов

Фаза разделения:

- 1. Открыть файл А как входной.
- 2. Открыть файлы В и С как выходные(для записи).
- 3. Считываемые из А записи попеременно записываем в файлы В и С.
- 4. Закрываем файлы А, В, С.

Фаза слияния:

- 1. Открыть файл А как выходкой (для записи).
- 2. Открываем файлы В и С как входные (для чтения).