Quantifying the non-reported new daily cases of COVID-2019 by region in Spain at a real-time

The present outbreak of COVID-19 disease, caused by the SARS-CoV-2 virus, has put the planet in quarantine. On January 30, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a "public health emergency of international concern", and then a pandemic on March 11.

Spain has become the fifth country worldwide with more infected cases, officially registering over thousands of cases in a short time. Although many critical and severe measures have been considered from the authorities to lessen the impact of the outbreak and help flatten the curve, they rely on numbers that could be unreliable and therefore misrepresent the implications of such pandemic.

Counts in Spain due to the protocols used for testing, mainly include individuals with severe symptoms. The authorities have juste announced a new protocol with rapid tests to be implemented in a few days elpais.com.

Given the nature of our data, we can guess that the estimated number of cases that we are finding are in fact potentially severe cases, and presumably the size of the infected population (asymptomatic) is even higher.

Accordingly, the current analysis aims to update the situation concerning COVID-19 daily, and particularly quantify the potential under-reporting in the official registered cases by region in Spain. Results herein can help to have a more realistic picture of the pandemic at a real time as well as to more accurately estimate essential measures such as the basic reproduction number or the fatality rate that are used for practitioners and politicians to make decisions.

The data for the analysis have been extracted from eldiario.es, where official data are gathered.

Notice that this analysis con be easily reproduced for other countries.

Figure 1 (a): Daily COVID-19 cases from 27-02-2020 to 15-03-2020

Figure 1 (b): Daily COVID-19 cases from 27-02-2020 to 15-03-2020

	minimum	mean	median	maximum	standard deviation	dispersion index
Andalucia	0.00	24.28	6.00	168.00	43.90	79.36
Aragon	0.00	8.22	1.50	67.00	15.87	30.64
Asturias	0.00	7.61	1.50	45.00	12.35	20.05
Canarias	0.00	6.06	3.00	20.00	7.35	8.93
Cantabria	0.00	2.83	0.00	20.00	5.59	11.01
Castilla Leon	0.00	16.22	4.00	77.00	24.61	37.34
Catalunya	0.00	39.72	9.00	206.00	64.30	104.10
Extremadura	0.00	5.28	0.50	29.00	9.68	17.74
Galicia	0.00	10.83	0.50	80.00	21.79	43.82
La Rioja	0.00	16.67	13.00	53.00	17.70	18.80
Navarra	0.00	10.17	0.00	46.00	16.39	26.42
Pais Vasco	0.00	38.94	14.00	213.00	55.17	78.16

Table 1: Summary of the daily COVID-19 cases from 27-02-20 to 15-03-2020 by region in Spain

If the under-reporting is ignored, the daily counts can be appropriately modeled following: $exp(\alpha_0 + \alpha_1 t)$, since the number of daily COVID-19 cases overtime properly growths exponentially according to Figure 1.

However, if we consider that the official number of daily cases does not reflect the total number of cases (e.g., a proportion of the cases is not observed, and thus the data are misreported), the model above does not make any sense, and therefore a more appropriate alternative should be considered.

We shall base all the subsequent analysis in a model introduced by Fernández-Fontelo et al. (2016).

In that model, two different processes are considered: X_n which is the true process but unobserved (latent), and Y_n which is observed and potentially under-reported. In this application, the latent process is assumed to be Poisson distributed with time-dependent rate, $\lambda_t = exp(\beta_0 + \beta_1 t)$. The observed process will always be

lower or equal than the latent process (due to the under-reporting) in such a way that Y_n will be equal than X_n (non under-reporting) with probability $1-\omega$; or Y_n is $q\circ X_n$ with probability ω . Parameters ω and q quantify the overall frequency and intensity of the phenomenon, which roughly speaking describe respectively the number of times the observed counts are not equal to the real ones, and the distance between the real and observed processes.

	\$\alpha\$	\$\beta_0\$	\$\beta_1\$	\$\omega\$	\$q\$	AIC
Andalucia		0.3743	0.2655	0.7874	0.3439	110.8
s.e. (Andalucia)		0.3507	0.0201	0.1086	0.0417	
Aragon		-0.2069	0.2448	0.8377	0.2833	112.9
s.e. (Aragon)		0.6403	0.0364	0.1197	0.0553	
Asturias		-1.9017	0.3227	0.5688	0.4518	87.8
s.e. (Asturias)		0.6221	0.0367	0.2033	0.1007	
Canarias		0.2726	0.1543	0.425	0.132	93.3
s.e. (Canarias)		0.6265	0.0394	0.1701	0.0829	
Cantabria		1.4576	0.0828	0.8316	0.0622	70
s.e. (Cantabria)		0.5173	0.0322	0.0888	0.0248	
Castilla Leon		-1.2767	0.3368	0.7334	0.596	107.3
s.e. (Castilla Leon)		0.3915	0.0236	0.172	0.0457	
Catalunya		0.0924	0.299	0.518	0.3607	152.9
s.e. (Catalunya)		0.2401	0.0146	0.133	0.0393	
Extremadura		-0.2634	0.2013	0.6358	0.0496	70.1
s.e. (Extremadura)		0.6768	0.0409	0.1241	0.0315	
Galicia		-3.0049	0.4176	0.5457	0.3375	94.4
s.e. (Galicia)		0.6433	0.0379	0.189	0.0658	
La Rioja		1.214	0.1717	0.5492	0.2488	148.7
s.e. (La Rioja)		0.2564	0.0175	0.1199	0.0365	
Navarra		-0.5038	0.2567	0.6267	0.1715	115.9
s.e. (Navarra)		0.5673	0.0351	0.1439	0.0456	
Pais Vasco		-0.1955	0.3327	0.3879	0.3776	127.2
s.e. (Pais Vasco)		0.2757	0.0198	0.1633	0.036	

Table 2: Estimates of under-reporting parameters by region in Spain

Using the Viterbi algorithm, the model also enables reconstructing the most likely sequence of real COVID-19 cases throughout the study. This allows us to have an estimated time series of truly daily cases and evaluate the impact of under-reporting over measures such as the basic reproduction number. Figure 2 shows the observed and reconstructed series over time by region.

Figure 2 (a): Observed and truly daily cases

Figure 2 (b): Observed and truly daily cases

Using the Viterbi algorithm, the model also enables reconstructing the most likely sequence of real COVID-19 cases throughout the study. This allows us to have an estimated time series of truly daily cases and evaluate the impact of under-reporting over measures such as the basic reproduction number. Figure 2 shows the observed and reconstructed series over time by region.

Table 3 shows the percentages of means counts that are not covered by the official registers. Thus, the highest the rate, the lower is the coverage, and therefore the severe is the impact of the under-reporting.

It is instructive to see what the difference would be on epidemic spread by fitting an epidemic model to the reconstructed series of counts and the observed counts recorded by public agencies. We fit the classic SIR (Susceptible-Infectious-Recovered) model. Table 4 shows the basic reproduction rate by using the reconstructed series (RE) and the observed (RR).

	observed mean	true mean	% not covered
Andalucia	24.28	40.50	40.05
Aragon	8.22	16.28	49.49
Asturias	7.61	9.50	19.88
Canarias	6.06	7.22	16.15
Cantabria	2.83	9.89	71.35
Castilla Leon	16.22	22.61	28.26
Catalunya	39.72	50.56	21.43
Extremadura	5.28	8.17	35.37
Galicia	10.83	14.44	25.00
La Rioja	16.67	25.00	33.33
Navarra	10.17	14.50	29.88
Pais Vasco	38.94	56.56	31.14

Table 3: Estimate mean of non-coverage of cases of COVID-19 in Spain