Time Series Anomaly Detection LSTM + AE

- 시계열 모델링을 위한 데이터구조
- RNN 및 LSTM의 기본 개념을 간략하게 살펴보고,
- LSTM+AE를 이용한 이상탐지를 수행해 봅니다.

Sequential Data

Stock Data

Sentence

Sequence of Words

데이터 전처리

✓ 주간기온을 예측하는데 과거 어느 정도의 기간이면 적절할까?

	year	week	AvgTemp
0	2010	1	-3.000000
1	2010	2	-7.500000
2	2010	3	-7.900000
3	2010	4	-2.357143
4	2010	5	-3.342857
5	2010	6	-1.800000
6	2010	7	-0.314286
7	2010	8	-2.142857
8	2010	9	4.400000
9	2010	10	7.057143

데이터 전처리①: RNN을 위한 데이터구조

✓예를 들어, 과거 4주간의 데이터로 예측할 때, x의 구조는?

	year	week	AvgTemp
0	2010	1	-3.000000
1	2010	2	-7.500000
2	2010	3	-7.900000
3	2010	4	-2.357143
4	2010	5	-3.342857
5	2010	6	-1.800000
6	2010	7	-0.314286
7	2010	8	-2.142857
8	2010	9	4.400000
9	2010	10	7.057143

데이터 전처리①: RNN을 위한 데이터구조

✓예를 들어, 과거 4주간의 데이터로 예측할 때, Y의 구조는?

데이터 전처리②:스케일링

2차원 X

3차원 X ①

3**차원** X ②

- 1) 데이터 분할
- 2) 스케일링
 - train set으로 Scaler 생성
 - 전체 데이터에 적용

- 1) 데이터 분할
- 2) 스케일링
 - train set으로 Scaler 생성
 - 전체 데이터에 적용
- 3) 2차원 → 3차원 변환

- 1) 2차원 → 3차원 변환
- 2) 데이터 분할
- 3) 스케일링
 - train set을 다시 2차원으로 변환 후 Scaler 생성 - 3차원 데이터에 적용

3차원 변환 과정에서 샘플의 초기 데이터를 사용하지 못하 게 됨.

변환 코드, 3차원 적용 코드 필 요.

데이터 전처리②:스케일링

✓ 3차원 X ①

- train : val : test 분할 후
- 스케일링
- 3차원으로 변환

✓ 문제점

■ 데이터셋의 초기 데이터 손실

	x1	x2	х3	У
	1.016235	-4.058394	-1.097158	0
	1.005602	-3.876199	-1.074373	0
	0.933933	-3.868467	-1.249954	0
	0.892311	-13.332664	-10.006578	1
train	0.020062	-3.987897	-1.248529	0
+	-0.109346	-5.071100	-2.409911	0
	-0.098179	-4.070966	-3.268804	0
	0.054564	-4.130103	-3.727432	0
	0.418907	-4.042599	-3.887028	0
OU	0.306778	-3.721405	-4.060685	0
ati	0.812949	-3.723105	-4.327446	0
validatior	1.016334	-3.009178	-4.315049	0
Sal	0.981237	-2.407708	-4.768463	0
	1.144511	-2.405206	-4.769564	0

Recurrent Neural Networks

- ✓ 문제를 해결하기 위한, 의미 있는 기간 단위로 나눔
 - 예, 과거 20일 단위(기간)의 정보를 이용하여 다음날의 주가를 예측한다. 데이터셋에서 20개의 행을 의미, timesteps = 20
- ✓ 각 단계(Time Step)별로 학습하고 결과를 다음 단계로 전달

Recurrent Neural Networks

✓ 과거의 정보를 현재에 반영해 학습하도록 설계

 h_t : hidden layer vector $(n \times 1)$.

 o_t : output vector $(n \times 1)$.

Simple RNN

✓모델링 & 학습

```
Total params: 131
                                             Trainable params: 131
1 np.random.seed(2021)
                                             Non-trainable params: 0
2 tf.random.set_seed(2021)
4 # 세션클리어
                                   Node 수(뉴런의 개수)
5 keras.backend.clear_session()
                                                                [time_step수, feature수]
7#Sequential 모델 선언 + layer 추가하기(한꺼번에)
8 model = keras.models.Sequential([
      keras.layers.SimpleRNN(10, input_shape=[None, 1]),
      keras.layers.Dense(1)
10
13 model.compile(loss="mse", optimizer=keras.optimizers.Adam(lr=0.005))
14 history = model.fit(x_train, y_train, epochs=20, validation_data=(x_val, y_val))
```

Model: "sequential"

simple_rnn (SimpleRNN)

Output Shape

(None, 10)

(None, 1)

Param #

120

Layer (type)

dense (Dense)

Deep RNN

✓모델링 & 학습

	year	week	AvgTemp	SimpleR	NN(10, input_sh	hape=[None, 1],
0	2010	1	-3.000000			
1	2010	2	-7.500000	t=1	-3.000000	$\otimes \rightarrow \triangleright $
2	2010	3	-7.900000	ι-1	-3.000000	
3	2010	4	-2.357143	t=2	-7.500000	
4	2010	5	-3.342857			
5	2010	6	-1.800000	t=3	-7.900000	⊗→ ▶
6	2010	7	-0.314286			T
7	2010	8	-2.142857	t=4	-2.357143	:
8	2010	9	4.400000			
9	2010	10	7.057143			

Deep RNN

✓모델링&학습

	year	week	AvgTemp
0	2010	1	-3.000000
1	2010	2	-7.500000
2	2010	3	-7.900000
3	2010	4	-2.357143
4	2010	5	-3.342857
5	2010	6	-1.800000
6	2010	7	-0.314286
7	2010	8	-2.142857
8	2010	9	4.400000
9	2010	10	7.057143

SimpleRNN(10, input_shape=[None, 1], return_sequences=True) SimpleRNN(10, return_sequences=False), -3.000000 t=1 -7.500000 t=2 -7.900000 t=3 -2.357143

RNN의 Vanishing Gradient 문제

- ✓ 극복하기 위해서 고안된 것이 바로 LSTM
- ✓ RNN의 hidden state에 cell state(장기 기억 메모리)를 추가한 구조

LSTM + AE

AE와 LSTM+AE 코드 구조 비교

AE

```
6 # Encoder
7 input_layer = Input(shape=(input_dim, ))
8 encoder = Dense(32, activation="relu")(input_layer)
9 encoder = Dense(16, activation="relu")(encoder)
10 # Decoder
11 decoder = Dense(32, activation="relu")(encoder)
12 decoder = Dense(input_dim)(decoder)
13 autoencoder = Model(inputs=input_layer, outputs=decoder)
14 autoencoder.summary()
```

Model: "model_1"

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 59)]	0
dense_4 (Dense)	(None, 32)	1920
dense_5 (Dense)	(None, 16)	528
dense_6 (Dense)	(None, 32)	544
dense_7 (Dense)	(None, 59)	1947

LSTM + AE

```
1 # Encoder
2 input_layer = Input(shape=(timestep, n_features))
3 encoder = LSTM(32, return_sequences=True)(input_layer)
4 encoder = LSTM(16, return_sequences=False)(encoder)
5 encoder = RepeatVector(timestep)(encoder)
6 # Decoder
7 decoder = LSTM(16, return_sequences=True)(encoder)
8 decoder = LSTM(32, return_sequences=True)(decoder)
9 decoder = TimeDistributed (Dense(n_features))(decoder)
10 lstm_ae = Model(inputs=input_layer, outputs=decoder)
11 lstm_ae.summary()
```

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 10, 59)]	0
lstm_6 (LSTM)	(None, 10, 32)	11776
lstm_7 (LSTM)	(None, 16)	3136
repeat_vector_1 (RepeatYect or)	(None, 10, 16)	0
lstm_8 (LSTM)	(None, 10, 16)	2112
lstm_9 (LSTM)	(None, 10, 32)	6272
time_distributed_1 (TimeDis tributed)	(None, 10, 59)	1947

LSTM + AE 구조

return_sequences

✓ return_sequences

- True: 입력 데이터의 차원 유지, 각 timestep 마다 생성된 hidden state 값을 사용.
- False : 입력 데이터의 차원이 1차원으로 줄어 듬. 가장 마지막 timestep 에 의해 만들어진 hidden state 값을 사용.

```
# Encoder
input_layer = Input(shape=(timestep, n_features))
encoder = LSTM(128, return_sequences=True)(input_layer)
encoder = LSTM(64, return_sequences=False)(encoder)
encoder = RepeatVector(timestep)(encoder)
```


Return_sequences = False

RepeatVector

✓ RepeatVector(timestep)

- return_sequences = False로 1차원이 된 데이터를
- 다음 LSTM으로 넘기기 위해 timestep 수 만큼 2차원 형태로 Replication.
- Encoder와 Decoder를 연결하는 bridge 역할

```
# Encoder
input_layer = Input(shape=(timestep, n_features))
encoder = LSTM(128, return_sequences=True)(input_layer)
encoder = LSTM(64, return_sequences=False)(encoder)
encoder = RepeatVector(timestep)(encoder)
```


Encoder

```
# Encoder
input_layer = Input(shape=(timestep, n_features))
1 encoder = LSTM(128, return_sequences=True)(input_layer)
2 encoder = LSTM(64, return_sequences=False)(encoder)
3 encoder = RepeatVector(timestep)(encoder)
```


②의 Output 을 압축된 특징벡터라고 부른다. → 다른 지도학습이나 비지도 학습을 위해 사용될 수 있음.

TimeDistributed

- 이전 레이어에서 출력된 피처 수와 동일한 길이의 벡터를 생성하고,
- Input 데이터의 feature 수 만큼 복제하여 행렬을 생성.
- Input의 shape 와 동일하게 출력

```
# Decoder
decoder = LSTM(64, return_sequences=True)(encoder)
decoder = LSTM(128, return_sequences=True)(decoder)
decoder = TimeDistributed(Dense(n_features))(decoder)
```


Decoder

- Decoder는 encoder 구조의 역(inverse) 입니다.
- 마지막은 Input 과 동일한 구조로 Output 을 만들어 냅니다.

```
# Decoder

decoder = LSTM(64, return_sequences=True)(encoder)

decoder = LSTM(128, return_sequences=True)(decoder)

decoder = TimeDistributed(Dense(n_features))(decoder)
```


LSTM + AE 구조 - Review

LSTM + AE 구조의 변형

