Lorentz spaces $L^{p,q}(R,\mu)$ are an important generalization of Lebesgue spaces, where either $p \in (1,\infty)$ and $q \in [1,\infty]$ or p=q=1 or $p=q=\infty$. The corresponding r.i. function norm $\|\cdot\|_{L^{p,q}(R,\mu)}$ is defined as

$$||f||_{L^{p,q}(R,\mu)} = ||t^{\frac{1}{p} - \frac{1}{q}} f^*(t)||_{L^{q}(0,\infty)}, \ f \in \mathcal{M}^+(R,\mu).$$

However, one needs to be more careful here. The functional $\|\cdot\|_{L^{p,q}(R,\mu)}$ is not an r.i. function norm when $1 , because it is not subadditive. When <math>1 , the functional <math>\|\cdot\|_{L^{p,q}(R,\mu)}$ is merely equivalent to an r.i. function norm. More precisely, the functional

$$||f||_{L^{(p,q)}(R,\mu)} = ||f^{**}||_{L^{p,q}(0,\infty)}, f \in \mathcal{M}^+(R,\mu),$$

is an r.i. function norm, and there are positive constants C_1 and C_2 such that

$$C_1 \|f\|_{L^{(p,q)}(R,\mu)} \le \|f\|_{L^{p,q}(R,\mu)} \le C_2 \|f\|_{L^{(p,q)}(R,\mu)}$$
 for every $f \in \mathcal{M}^+(R,\mu)$,

provided that either $p \in (1, \infty)$ and $q \in [1, \infty]$ or $p = q = \infty$. The interested reader can find more information in [6, Chapter 4, Section 4] or [33]. In view of that, we will consider $L^{p,q}(R,\mu)$ an r.i. space even when 1 . Note that

$$\|\cdot\|_{L^p(R,\mu)} = \|\cdot\|_{L^{p,p}(R,\mu)}$$
 for every $p \in [1,\infty]$.

Furthermore, when $p \in (1, \infty)$ and $1 \le q_1 < q_2 \le \infty$, we have

$$L^{p,q_1}(R,\mu) \subseteq L^{p,q_2}(R,\mu),$$

regardless of whether $\mu(R) < \infty$ or not. Orlicz spaces $L^A(R,\mu)$ are another very important generalization of Lebesgue spaces. The corresponding r.i. function norm $\|\cdot\|_{L^A(R,\mu)}$ is defined as

$$||f||_{L^A(R,\mu)} = \inf\left\{\lambda > 0 : \int_R A\left(\frac{|f(x)|}{\lambda}\right) d\mu(x) \le 1\right\}, \ f \in \mathcal{M}^+(R,\mu),$$

where $A \colon [0,\infty] \to [0,\infty]$ is a Young function. A function $A \colon [0,\infty] \to [0,\infty]$ is called a Young function if it is convex, left-continuous, vanishing at 0, and not constant on the entire interval $(0,\infty)$. For example, when $p \in [1,\infty)$, we have $\|\cdot\|_{L^p(R,\mu)} = \|\cdot\|_{L^A(R,\mu)}$ with $A(t) = t^p$, $t \ge 0$. We also have $\|\cdot\|_{L^\infty(R,\mu)} = \|\cdot\|_{L^A(R,\mu)}$ with $A(t) = \infty \cdot \chi_{(1,\infty]}(t)$, $t \ge 0$. Besides the classical textbooks [6, 53], the interested reader can find more information on the contemporary theory of Orlicz spaces and in particular Orlicz–Sobolev spaces in [16, 46].

An analogue of Fatou's lemma is at our disposal in the framework of r.i. spaces. More precisely, if $\mathcal{M}(R,\mu) \ni f_k \to f$ pointwise μ -a.e., then

(2.1)
$$||f||_{X(R,\mu)} \le \liminf_{k \to \infty} ||f_k||_{X(R,\mu)}.$$

With any r.i. function norm $\|\cdot\|_{X(R,\mu)}$, there is associated another r.i. function norm, $\|\cdot\|_{X'(R,\mu)}$, defined for $g \in \mathcal{M}^+(R,\mu)$ as

(2.2)
$$||g||_{X'(R,\mu)} = \sup_{\|f\|_{X(R,\mu)} \le 1} \int_{R} |f(x)||g(x)| \, \mathrm{d}\mu(x), \ g \in \mathscr{M}^{+}(R,\mu).$$

The r.i. function norm $\|\cdot\|_{X'(R,\mu)}$ is called the associate norm of $\|\cdot\|_{X(R,\mu)}$. The resulting r.i. space $X'(R,\mu)$ is called the associate space. The definition of $\|\cdot\|_{X'(R,\mu)}$ immediately gives us that the Hölder inequality

(2.3)
$$\int_{R} |f||g| \, \mathrm{d}\mu \le ||f||_{X(R,\mu)} ||g||_{X'(R,\mu)} \quad \text{for all } f, g \in \mathscr{M}(R,\mu)$$