Differential Equations. Week 8

Remainder from the Week 7.

Construct the Green's function for a given boundary value problems.

1. (Filippov 764)
$$y'' = f(x), y(0) = 0, y(1) = 0.$$

2. (Filippov 767)
$$y'' - y = f(x), y'(0) = 0, y'(2) + y(2) = 0.$$

3. (Filippov 772)
$$y'' = f(x), y(0) = 0, y|_{x\to\infty}$$
 is bounded.

Find eigenvalues and eigenfunctions.

4. (Filippov 782)
$$y'' = \lambda y$$
, $y(0) = 0$, $y(l) = 0$.

5. (Filippov 783)
$$y'' = \lambda y$$
, $y'(0) = 0$, $y'(l) = 0$.

6. (Filippov 784)
$$y'' = \lambda y$$
, $y(0) = 0$, $y'(l) = 0$.

Study singular points of the given equations and systems. Draw the trajectories.

1. (Filippov 961)
$$y' = \frac{2x+y}{3x+4y}$$

2. (Filippov 963)
$$y' = \frac{y-2x}{y}$$

3. (Filippov 967)
$$y' = \frac{y-2x}{2y-3x}$$

4. (Filippov 971)
$$\begin{cases} \dot{x} = 3x \\ \dot{y} = 2x + y \end{cases}$$

5. (Filippov 975)
$$\begin{cases} \dot{x} = -2x - 5y \\ \dot{y} = 2x + 2y \end{cases}$$

6. (Filippov 977)
$$\begin{cases} \dot{x} = 3x - 2y \\ \dot{y} = 4y - 6x \end{cases}$$