Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le chapitre 15 : Calcul matriciel et le début du chapitre 16 : Polynômes, fractions rationnelles. Les exercices porteront sur le chapitre 15 : calcul matriciel. Notez que le chapitre 15 n'a pas vocation a introduire l'algèbre linéaire, mais à illustrer le chapitre sur les structures algébriques.

Chapitre 15: Calcul matriciel.

Opérations sur les matrices.

Notion de matrice à n lignes et p colonnes. Combinaison linéaire de matrices. Produit matriciel entre $\mathcal{M}_{n,p}(\mathbb{K})$ et $\mathcal{M}_{p,q}(\mathbb{K})$. (\star) Produit de matrices élémentaires. Interprétation de $AE_{i,j}$ et $E_{k,l}A$. Transposition, notation A^T . (\star) Transposée d'un produit $(AB)^T = B^TA^T$. Représentation par blocs, compatibilité avec le produit matriciel.

Matrices carrées.

Matrice identité. Structure d'anneau. Formules du binôme et de Bernoulli sous hypothèse de commutation. Matrices scalaires, symétriques, antisymétriques. (*) Décomposition symétrique/antisymétrique. Matrices diagonales, triangulaires, triangulaires strictes. Produit de matrices diagonales, de matrices triangulaires. Groupe linéaire, transposée de l'inverse. Critère d'inversibilité des matrices diagonales et triangulaires, diagonale de l'inverse.

Systèmes linéaires.

Matrices de transvection, de dilatation, de permutation. Effet par multiplication à gauche sur les lignes, par multiplication à droite sur les colonnes. Systèmes linéaires compatibles, de Cramer. Résolution de systèmes linéaires échelonnés, méthode d'échelonnement en lignes. Application à la détermination d'inverses.

Chapitre 16: Polynômes, fractions rationnelles.

Anneau $\mathbb{K}[X]$.

Opérations dans $\mathbb{K}[X]$, notion d'indéterminée, écriture $P=\sum_{k=0}^{+\infty}p_kX^k$ avec $(p_k)_{k\in\mathbb{N}}$ à support fini. Composition

de polynômes. Degré d'un polynôme non nul, convention $d(0) = -\infty$. (\star) $d(P+Q) \leq \max(d(P), d(Q))$, d(PQ) = d(P) + d(Q), $d(P \circ Q) = d(P)d(Q)$. Intégrité de $\mathbb{K}[X]$. (\star) L'ensemble des inversibles de l'anneau $\mathbb{K}[X]$ est l'ensemble des polynômes de degré 0, i.e des polynômes constants non nuls. Relation de divisibilité (\star) Caractérisation des polynômes associés. (\star) Théorème de la division euclidienne de polynômes.

* * * * *