Tarea moral: Matrices invertibles, álgebra lineal I

Elsa Fernanda Torres Feria

Semestre 2020-4

1. Verifica que $GL_n(F)$ es en efecto un grupo con operación la multiplicación de matrices.

Para asegurar que $GL_n(F)$ es un grupo con operación la multiplicación de matrices, hay que verificar la cerradura, la asociatividad, y encontrar el elemento neutro y el inverso.

Demostración

Sean A,B,D $\in GL_n(F)$

a) Cerradura

Para mostrar que el producto AB es invertible, necesitamos una matriz $C \in M_n(F)$ tal que:

$$(AB)C = I_n$$

Sabemos que A y B son invertibles, entonces existen A^{-1} y B^{-1} . Definimos a $C = B^{-1}A^{-1}$ la cual cumple que:

$$(AB)C = ABB^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

- \therefore C=AB $\in GL_n(F)$.
- c) Elemento neutro

Notemos que la notación del grupo es $GL_n(F)$, es decir que son matrices cuadradas de nxn. En la tarea moral anterior se probó que la matriz I_n actúa como el elemento neutro en la multiplicación de matrices.

d) Elemento inverso

Como $A \in GL_n(F)$, entonces existe A^{-1} y por definición cumple que:

$$AA^{-1} = A^{-1}A = I_n$$

Además A^{-1} es única.

2. Explica por qué la matriz O_n no es invertible.

Solución.

Por definición, decimos que una matriz $A \in M_n(F)$ es invertible si existe una matriz $B \in M_n(F)$ tal que:

$$AB = BA = I_n$$

Sea $A = O_n$, cualquier matriz que multipliquemos por O_n dará como resultado O_n , es decir:

$$O_n B = BO_n = O_n$$

- $\therefore O_n$ no es invertible.
- 3. Generaliza el penúltimo problema a una matriz de tamaño nxn con puros unos sobre la diagonal:

Sea la matriz
$$A \in M_n(F)$$
: $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$.

Demuestre que A es invertible y encuentre su inversa.

Solución

Realicemos el producto:

$$AX = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + \cdots + x_n \\ x_2 + \cdots + x_n \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ \vdots \\ b_n \end{pmatrix}$$

$$\Rightarrow x_1 + x_2 + \cdots + x_n = b_1$$

:

$$x_n = b_n \tag{1}$$

Esta última igualdad nos da el primer valor para la solución y podemos usarlo para obtener los otros valores en las igualdades anteriores al sustituirlo:

$$x_n + x_{n-1} = b_{n-1}$$

Sustituimos

$$b_n + x_{n-1} = b_{n-1}$$

$$\Rightarrow x_{n-1} = b_{n-1} - b_n \tag{2}$$

$$x_{n-2} = b_{n-2} - x_{n-1} - x_n = b_{n-2} - (b_{n-1} - b_n) - b_n$$
(3)

$$=b_{n-2}-b_{n-1} (4)$$

Y si hacemos esto sucesivamente obtendremos el último término:

$$x_1 = b_1 - b_2 (5)$$

De manera general tenemos que: $x_i = b_i - b_{i+1}$ para $i \in \{1, 2, \dots, n-1\}$ y para i = n tenemos $x_n = b_n$.

Tenemos entonces la solución del sistema:

$$A^{-1}b = x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 - b_2 \\ b_2 - b_3 \\ \vdots \\ b_n - b_{n-1} \\ b_n \end{pmatrix}$$

Nos fijamos entonces en los coeficientes que deberían multiplicar al vector b para obtener las entradas del vector X en términos de las entradas del vector b y tenemos que A^{-1} es:

$$A^{-1} = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$
 (6)