Labøvelser - PRELAB, FYS1120-Elektromagnetisme

Av: Laila Andersland

8. november 2016

Del 1

PRELAB-Oppgave 1

Spenningen over en oppladet kondensator med $C=1\mu F$ som er koblet til inngangen på et voltmeter halveres på 20 sekunder. Hva er indre resistansen til voltmeteret?

Potensialforskjellen:

$$U = U_0 e^{-t/\tau}$$

Deler på U_0 og setter inn $\tau = RC$

$$\frac{U}{U_0} = e^{-t/RC}$$

$$ln(\frac{U}{U_0}) = -\frac{t}{RC}$$

Løser for R:

$$R = -\frac{t}{C} \cdot \frac{1}{\ln(U/U_0)} \tag{1}$$

Siden spenningen halveres fra iløpet av tidsforløpet:

$$U = \frac{1}{2}U_0$$

$$\frac{U}{U_0} = \frac{\frac{1}{2}U_0}{U_0}$$

$$\frac{U}{U_0} = \frac{1}{2}$$

Setter dette inn i (1):

$$R = -\frac{t}{C} \cdot \frac{1}{\ln(1/2)}$$

Med $C=1\mu F$ og tid t=20s gir dette en resistansverdi, $R=2.88\cdot 10^7\Omega$

PRELAB-Oppgave 2

Lag et MATLAB-script basert på.MATLAB-metodene polyfit og polyval som tilpasser en linje til et sett med datapunkter x,y og viser punktene og den tilpassede linjen på en figur.

```
function void = interp(x, y, degrees)
    p = polyfit(x,y,degrees);
    x1 = linspace(0, x(length(x)), 100);
    y_{int} = polyval(p, x1);
    plot(x,y, 'o', x1, y_int)
  Eksempel på bruk:
>> x=[500 700 1000 1500]
x =
         500
                     700
                                1000
                                             1500
\Rightarrow y = exp(x/500)
y =
    2.7183
              4.0552
                        7.3891
                                 20.0855
>> interp(x,y,3)
```


PRELAB-Oppgave 3

Finn et uttrykk for B dersom vi dreier spolen med konstant vinkelhastighet ω og måler den maksimale verdien ε_0 for $\varepsilon(t)$. Hva er forholdet mellom ω og t_2-t_1

Sett fra siden, med B-felt i positiv x-retning:

Figur 1: Illustrasjon av B-felt igjennom en spole.

Med N vindinger i spolen blir flukse:

$$\Phi = N \int_{A} \vec{B} \cdot d\vec{A} = NBAcos(\omega t)$$

Faradays lov gir:

$$\varepsilon = -\frac{d\Phi}{dt} = NBA\omega sin(\omega t)$$

Siden maksimale spennignen, $maks(\varepsilon) = \varepsilon_0$, og $maks(sin(\omega t)) = 1$:

$$\varepsilon_0 = NBA\omega$$

Løser for B

$$B = \frac{\varepsilon_0}{NA\omega} \tag{2}$$

Vinkelhastigheten $\omega=\frac{rad}{s}$ gir en vinkel på $0\leq \omega t\leq \pi$ Tiden vi bruker på å snu spolen π grader er t_2-t_1 , og vi får da:

$$\omega(t_2 - t_1) = \pi$$

Som gir forholdet:

$$\omega = \frac{\pi}{(t_2 - t_1)}$$

Setter dette inn i (2) og får

$$B = \frac{\varepsilon_0(t_2 - t_1)}{NA\pi}$$