Definitionen

1. Permutation: Eine Anordnung aller Elemente einer endlichen Menge heißt Permutation.

Ausführlicher: Eine bijektive Abbildung einer endlichen Menge M auf sich selbst nennt man Permutation der Menge.

Es gibt also |M|! Permutationen von M.

Die Menge aller Permutationen der Menge $\{1,\ldots,n\}$ bezeichnen eir mit S_n . Es gilt somit $|S_n|=n!$.

2. k-Permutation: Eine k-Permutation einer endlichen Menge S ist eine Permutation einer k-elementigen Teilmenge von S.

Die Anzahl aller k-Permutationen einer n-elementigen Menge wird mit $\left[\frac{n}{L}\right]$ bezeichnet. (auch: $(n)_k$)

Die Anzahl der k-elementigen Teilmenge einer n-elementigen Menge wird mit $(\frac{n}{k})$ bezeichnet. Dies ist der Binomial-koeffizient gesprochen "n über k"

koeffizient gesprochen "n über k" $(\frac{n}{k})$ kann auch als $\frac{n!}{k!\cdot(n-k)}$ dargestellt werden.

Beispiel:

Sei $S = \{1, 2, 3\}$

Die 2-Permutation von S ist also:

(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)

Der Binomialkoeffizient hier ist: $(\frac{n}{k}) = (\frac{3}{2}) = 3$

3. Begriffserklärungen Wahrscheinlichkeitstheorie:

- Der Ereignisraum $\Omega := \{\omega_1, \omega_2, \dots, \omega_n\}$. Hier: endlich und diskret.
- Die Menge der Ereignisse $\mathcal{A} = \mathcal{P}(\Omega)$, also die Potenzmenge von Ω .
- Das Wahrscheinlichkeitsmaß $P: \mathcal{P}(\Omega) \to \mathbb{R}$ ordnet jedem Ereignis $A \in \mathcal{P}(\Omega)$ seine Wahrscheinlichkeit P(A) zu.
- Ein Laplace-Versuch ist ein Zufallsversuch mit endlich vielen und gleich wahrscheinlichen Ergebnissen. Beispiel: Münzwurf, Würfel
- Bei Laplace-Versuchen wird das Wahrscheinlichkeitsmaß durch eine Abzählregel definiert (Ereignis $A \in \mathcal{P}(\Omega)$):

$$P(A) = \frac{|A|}{|\Omega|}$$

Also: P(A) ist das Verhältnis von der Anzahl der (für A) günstigen Fälle und der Anzahl aller insgesamt möglichen Fälle.

• Man benötigt kombinatorische Prinzipien, um |A| zu bestimmen.

Pascal'sche Gleichung: $(\frac{n}{k}) = (\frac{n-1}{k-1}) + (\frac{n-1}{k})$

