ربات دنبالکننده خط (Line Follower Robot)

هدف يروژه

طراحی و پیادهسازی یک ربات دنبالکننده خط (Line Follower) با استفاده از زبان C و میکروکنترلر AVR در محیط شبیهسازی Proteus. هدف این است که ربات بتواند مسیرهای مختلف را که به صورت فایل bitmap طراحی شدهاند، به درستی و با بیشترین دقت دنبال کند.

جزئيات يروژه

- محیط شبیه سازی: Proteus و نرم افزار پایتون
 - میکروکنترلر مورد استفاده: ATmega328
- نوع ربات :دارای دو موتور DC با کنترل PWM و ۵ سنسور تشخیص خط(IR)
 - ورودی شبیه ساز:فایل تصویر مسیر به صورت track.bmp
 - · انتظار میرود دانشجو:
 - نوشتن کدهای کامل ربات به زبان C با استفاده از AVR-GCC
 - o تست کد درProteus
 - ارائه مستندات لازم

فایلهای ارائه شده به دانشجویان

- ۱. فایل پایه شبیهساز با ربات خام
- ۲. چند مسیر مختلف به صورت فایل track_easy.bmp, track_medium.bmp, track_hard.bmp
 - ۳. فایل راهنمای ورودی bitmap برای آشنایی با نحوه کارکرد سنسورها
 - ٤. ویدیو نحوه استفاده از شبیه ساز

قوانین پروژه

- ۱. دانشجو باید ربات را به گونهای طراحی کند که:
- در تمام مسیرها (از آسان تا سخت) بتواند بدون توقف یا انحراف غیرمجاز مسیر را طی کند.
 - تشخیص خروج از مسیر و بازگشت به خط را مدیریت کند.
 - کدها باید بهینه، خوانا و کامنتگذاری شده باشند.
 - ۲. استفاده از هرگونه الگوریتم آماده یا کپی از اینترنت ممنوع است.
 - ۳. دانشجو باید عملکرد پروژه را در جلسه نهایی (ارائه عملی) روی سیستم خودش با شبیهساز اجرا و دفاع کند.
 - ٤. قوانین مسیر و ساختار مسیرها (طبق استاندارد مسابقاتLine Follower):
 - o مسیر اصلی با رنگ سیاه روی زمینه سفید طراحی شده است.

- عرض خط مسیر معمولاً ثابت است.
- ممکن است مسیر دارای پیچهای تند، منحنی، خطوط مستقیم بلند، یا خطوط منقطع باشد.
 - ، برخی مسیرها شامل "چهارراه" یا "تقاطع "T هستند.
- شاخههای فرعی یا مسیرهای دوگانه ممکن است وجود داشته باشند که باید
 انتخاب صحیح انجام شود.
- خطوط منقطع ممکن است برای آزمون تشخیص مسیر در شرایط قطعی/ناپیوسته استفاده شود.
 - در بعضی مسیرها ممکن است منحنیهای متوالی، خطوط مارپیچ، یا مناطق عریض/باریک طراحی شود.
 - ⊙ توقفگاه (Stop Line) به صورت خط عرضی ضخیم (مستطیل تو پر) طراحی می شود.
- توجه داشته باشید که در شبیه ساز، شروع همیشه گوشه بالا سمت چپ می ناشد.

نحوه ارزیابی (100امتیاز)

آيتم	توضیح	امتياز
عملکرد در مسیر آسان	اجرای کامل و بدون انحراف	25
عملکرد در مسیر متوسط	اجرای روان و بدون توقف	30
عملکرد در مسیر سخت	اجرای صحیح با مدیریت پیچها	30
کیفیت و ساختار کد	خوانایی، بهینه بودن و کامنتگذاری	15
جمع کل		100

جمع امتیاز در یک عدد بین ۰ تا ۱ ضرب می شود و این عدد بنا به تشخیض تیم آموزشی از میزان تسلط شما روی پروژه و درک واقعی شما از کد است

چالشهای اختیاری با امتیاز اضافه(Bonus)

دانشجویانی که میخواهند امتیاز بیشتری کسب کنند، میتوانند یکی یا چند مورد از موارد زیر را پیادهسازی کنند:

ویژگی	توضیح	امتیاز اضافه
الگوريتمPID	استفاده از الگوریتم PID برای کنترل حرکت نرم و دقیقتر	+6
مانیتورینگ زنده	ارسال وضعیت ربات (مثل موقعیت، سرعت، خطاها) به پورت سریال	+5
سیستم توقف اضطراری	تشخیص خروج کامل از خط و توقف خودکار	+4
عبور از تقاطع یا چهارراه	شناسایی تقاطعها و انتخاب جهت درست (ساده)	+5

حداکثر امتیاز کل با بونوسها: ۱۲۰

تحويل پروژه

دانشجو باید موارد زیر را به صورت یک فایل ZIP تحویل دهد:

- فایل Proteus کامل(DSN)
- فایلهای مسیر bitmap استفادهشده
 - کد C با کامنت
 - فایل PDF شامل:
 - o **توضیح ساختار برنامه**
 - o نحوه عملكرد الگوريتم
- o چالشهایی که پیادهسازی کردهاند o