DCDIR: A DEEP CROSS-DOMAIN RECOMMENDATION SYSTEM FOR COLD START USERS IN INSURANCE DOMAIN

Ye Bi Liqiang Song Mengqiu Yao Zhenyu Wu Jianming Wang Jing Xiao Ping An Technology Shenzhen Co., Ltd

Speaker: Ye Bi

- 1 Introduction
 - Challenges
 - Contributions
- 2 DCDIR
 - Framework
 - Target Domain
 - Source Domain
- 3 Results
 - Dataset
 - Performance
- 4 Q&A

About the Speaker

- Senior Algorithm Engineer in Ping An Technology Shenzhen Co., Ltd
- Major Research Direction:
 Deep Learning, Recommendation System, Knowledge
 Graph

Introduction

PingAn Jinguanjia is one of the most popular comprehensive applications in China. In addition to traditional e-commerce products, it also provides financial products.

(a) Home Page

(b) Nonfinanacial Domain

(c) Insurance Domain

- 1 Introduction
 - Challenges
 - Contributions
 - Framework
 - Target Domain
 - Source Domain
 - Dataset
 - Performance

Challenges

Recommending insurance products online is challenging

- Insurance policies are so complex that ordinary users are relatively lack of knowledge to understand them.
- Insurance products are typically bought to be used for a long time period (e.g. one year for car insurance), so there exists data sparsity and cold start problem.

- 1 Introduction
 - Challenges
 - Contributions
 - Framework
 - Target Domain
 - Source Domain
 - Dataset
 - Performance

Contributions

Our contributions in this paper are as follows:

- To the best of our knowledge, this is the first work to utilize crossdomain mechanism to give personalized recommendations for cold start users in insurance domain.
- For the complexity of insurance products, we design a meta-path based method to learn more effective latent user and item features. revealing reasons behind recommendations.
- We conduct experiments on our company's scenarios, the results prove the efficacy of DCDIR over several baselines.

- Challenges
- Contributions

- 2 DCDIR
 - Framework
 - Target Domain
 - Source Domain
 - Dataset
 - Performance

Framework

To provide recommendations to cold start users, we propose DCDIR. As shown in Figure 1, DCDIR contains three main parts: learning user latent features in two domain, mapping of user latent features.

Figure 1: The Framework of DCDIR

- Challenges
- Contributions

- 2 DCDIR
 - Framework
 - Target Domain
 - Source Domain
 - Dataset
 - Performance

Target Domain

- Pretrain KG by TransD
- Generate meta-paths connecting interacted items and target item
- Select high-quality meta-paths
- Model each meta-path by GRU

Target Domain

We properly design two meta-paths based on our scenario, where we fix entity type and path length.

Figure 2: Meta-Path Example

Target Domain

We use top-K sampling module to select K useful paths. For a given path $p_{e_1,e_L} = [e_1, e_2, \dots, e_L]$, we define a score function:

$$s_{e_1,e_L} = \operatorname{softmax}(\frac{P}{|\mathcal{N}\mathcal{I}_u^t|}) + \frac{e_L^T}{\|e_L\|} \sum_{i=1}^{L-1} \frac{e_i}{\|e_i\|},$$

where P is e_1 's position in \mathcal{NI}_u^t . The first part is to measure interaction time, the second part is to measure the similarity between the path and the target item.

- Challenges
- Contributions

- 2 DCDIR
 - Framework
 - Target Domain
 - Source Domain
 - Dataset
 - Performance

Source Domain

Suppose there are n words in i's content c_i . We utilize word2vec to obtain word vectors, which are represented as $\{\boldsymbol{w}_k^i\}_{k=1}^n$. Then we get the final item embedding by:

$$i = \text{max-pooling}(\text{concat}(\{\boldsymbol{w}_k^i\}_{k=1}^n)).$$

To model user latent feature \boldsymbol{u}^s , we employ GRU over \mathcal{NI}_u^s , and let $\boldsymbol{u}^s = \boldsymbol{h}_n^{\text{GRU}}\left(\mathcal{NI}_u^s\right)$

- Challenges
- Contributions
- Framework
- Target Domain
- Source Domain

- Results
 - Dataset
 - Performance

Dataset

We build and release a sub-dataset (named JGJISNF) from a comprehensive e-commerce dataset that contains about 20 million users pursue logs from June 1st 2018 to May 31th 2019.

Table 1: Statistics of the JGJISNF dataset.

IS-domain (Target domain)		NF-domain (Source domain)	
#Items	42	#Items	3,836
#Interactions	300,000	#Interactions	600,000
#KG relations	7		
#KG enitities	77		
#KG triples	282		
#Overlapped-users		21,016	
#Training-sequences		12,437	
#Test-sequences		4,218	
#Validation-sequences		4,298	

- Challenges
- Contributions
- Framework
- Target Domain
- Source Domain

- 3 Results
 - Dataset
 - Performance

Performance

Table 2: Performance comparison in Recall@3 and NDCG.

η	10%		20%	
Method	NDCG	Recall@3	NDCG	Recall@3
BPR	0.27011	0.06418	0.27105	0.06518
GRU4REC	0.23923	0.02143	0.25964	0.07768
EMCDR-BPR	0.27343	0.07291	0.27342	0.07291
EMCDR-GRU	0.26775	0.11794	0.26801	0.11794
DCDIR-V1	0.34781(-4.66%)	0.17321(-6.28%)	0.35196	0.18016
DCDIR-V2	0.36278(-13.05%)	0.19159(-27.60%)	0.37021	0.19388
DCDIR	0.39394(-3.95%)	0.25185(-5.31%)	0.39741	0.25227
DCDIR vs. best	8.59%	26.23%	7.35%	24.96%

Performance

Table 3: Performance comparison in Recall@3 and NDCG (cont.).

η	50%		100%	
Method	NDCG	Recall@3	NDCG	Recall@3
BPR	0.27133	0.06451	0.27325	0.07124
GRU4REC	0.30725	0.09611	0.30623	0.08602
EMCDR-BPR	0.27342	0.07325	0.27347	0.07325
EMCDR-GRU	0.29056	0.11996	0.31288	0.12298
DCDIR-V1	0.35653	0.18078	0.36481	0.18481
DCDIR-V2	0.40273	0.24504	0.40925	0.26461
DCDIR	0.40773	0.26268	0.41016	0.26597
DCDIR vs. best	1.24%	7.20%	0.22%	0.51%

Performance

Table 4: Ablation study of path number and path strategy.

ISKG module		Metrics		
parameter	value	NDCG	Recall@3	
path_num	10	0.36611	0.18207	
	20	0.39394	0.25185	
	30	0.38435	0.18541	
path_strategy	'topk'	0.39394	0.25185	
	'random'	0.34624	0.16065	

Q&A

If you have any questions, please email to magicyebi@163.com

Acknowledgments

Thank you for your attention!

