Exercice: (5 pt)

1/ Soit la permutation σ de S_{10} définie par :

 \mathbf{a} / Décomposer σ en un produit de transpositions.

Solution : La décomposition de σ en produit de transpositions est donnée par :

$$\sigma = \tau_{1,3}\tau_{3,4}\tau_{2,5}\tau_{5,7}\tau_{6,10}\tau_{10,8} = (1,3)(3,4)(2,5)(5,7)(6,10)(10,8).$$
 (1.5 pt)

b/ Déduire la signature de σ .

Solution : Il y a six transpositions dans la décomposition de σ , on en déduit que $\varepsilon(\sigma) = (-1)^6 = 1$. **(0.5 pt)**

c/ Déterminer σ^{-1} .

Solution : La permutation σ^{-1} est donnée par (en utilisant la définition de σ) :

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 7 & 1 & 3 & 2 & 8 & 5 & 10 & 9 & 6 \end{pmatrix},$$
 (1 **pt**)

On peut aussi utiliser la décomposition de σ en produit de transpositions (on rappelle que l'inverse d'une transposition est elle même) :

$$\sigma^{-1} = (\tau_{1,3}\tau_{3,4}\tau_{2,5}\tau_{5,7}\tau_{6,10}\tau_{10,8})^{-1} = \tau_{10,8}\tau_{6,10}\tau_{5,7}\tau_{2,5}\tau_{3,4}\tau_{1,3}.$$

2/ Soit $A = (a_{ij})_{1 \le i,j \le 10} \in M_{10}(\mathbb{R}).$

 \mathbf{a} / Donner la formule explicite donnant det A (i.e. : définition du déterminant).

Solution : La formule est donnée par :

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} a_{3\sigma(3)} a_{4\sigma(4)} a_{5\sigma(5)} a_{6\sigma(6)} a_{7\sigma(7)} a_{7\sigma(7)} a_{8\sigma(8)} a_{9\sigma(9)} a_{10\sigma(10)}$$

$$= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^{10} a_{i\sigma(i)}.$$
 (1 pt)

b/ En déduire le signe correspondant au terme $a_{1,3}a_{2,5}a_{3,4}a_{4,1}a_{5,7}a_{6,10}a_{7,2}a_{8,6}a_{9,9}a_{10,8}$. Solution: On remarque en utilisant la permutation σ donnée dans la question 1/que:

 $a_{1,3}a_{2,5}a_{3,4}a_{4,1}a_{5,7}a_{6,10}a_{7,2}a_{8,6}a_{9,9}a_{10,8} = a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)}a_{4\sigma(4)}a_{5\sigma(5)}a_{6\sigma(6)}a_{7\sigma(7)}a_{7\sigma(7)}a_{8\sigma(8)}a_{9\sigma(9)}a_{10\sigma(10)},$

donc le signe correspondant au terme $a_{1,3}a_{2,5}a_{3,4}a_{4,1}a_{5,7}a_{6,10}a_{7,2}a_{8,6}a_{9,9}a_{10,8}$ est la signature de σ qui est positif d'après la question 1/b. (1 pt)