CALCULUS II ASSIGNMENT 2 SOLUTIONS

1. Compute the following trigonometric integrals:

(i)
$$\int \sin(\theta)^2 \cos(\theta)^3 d\theta$$
, (iv) $\int \tan(y)^2 dy$,
(ii) $\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$, (v) $\int \tan(z)^3 \sec(z) dz$,
(iii) $\int_0^{\pi/2} \sin(t)^2 \cos(t)^2 dt$, (vi) $\int \sin(8u) \cos(5u) du$.

Solutions. For (i), note that the exponent of $\cos(\theta)$ is odd, so we attempt to make the substitution $u = \sin(\theta)$, so that $du = \cos(\theta) d\theta$, and apply the Pythagorean identity:

$$\int \sin(\theta)^2 \cos(\theta)^3 d\theta = \int \sin(\theta)^2 \cos(\theta)^2 (\cos(\theta) d\theta)$$
$$= \int u^2 (1 - u^2) du$$
$$= \frac{1}{3} u^3 - \frac{1}{5} u^5 = \frac{1}{3} \sin(\theta)^3 - \frac{1}{5} \sin(\theta)^5.$$

For (ii), use the substitution $u = \sqrt{x}$, so that $du = dx/2\sqrt{x}$:

$$\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx = 2 \int \sin(u) \, du = -2\cos(\sqrt{x}).$$

For (iii), apply the half-angle identities to each of $sin(t)^2$ and $cos(t)^2$ in order to compute:

$$\int_0^{\pi/2} \sin(t)^2 \cos(t)^2 dt = \int_0^{\pi/2} \frac{1 - \cos(2t)}{2} \cdot \frac{1 + \cos(2t)}{2} dt$$

$$= \frac{1}{4} \int_0^{\pi/2} 1 - \cos(2t)^2 dt$$

$$= \frac{\pi}{8} - \frac{1}{4} \int_0^{\pi/2} \frac{1 + \cos(4t)}{2} dt = \frac{\pi}{8} - \frac{\pi}{16} - \frac{1}{32} \sin(4t) \Big|_0^{\pi/2} = \frac{\pi}{16}.$$

For (iv), use the Pythagorean identity $\tan(y)^2 = \sec(y)^2 - 1$ and the knowledge that $\sec(y)^2$ is the derivative of $\tan(y)$:

$$\int \tan(y)^2 \, dy = \int \sec(y)^2 - 1 \, dy = \tan(y) - y.$$

For (v), make the substitution $u = \sec(z)$ so that $du = \tan(z)\sec(z) dz$ and then use the Pythagorean identity:

$$\int \tan(z)^3 \sec(z) \, dz = \int u^2 - 1 \, du = \frac{1}{3} \sec(z)^3 - \sec(z).$$

For (vi), use one of the prosthaphaeresis formulae:

$$\int \sin(8u)\cos(5u)\,du = \frac{1}{2}\int \sin(3u) + \sin(13u)\,du = -\frac{1}{6}\cos(3u) - \frac{1}{26}\cos(13u).$$

1

2. In this Problem, we are going to compute the following relations: for positive integers n and m,

$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} 0 & \text{if } m \neq n, \\ \pi & \text{if } m = n, \end{cases}$$
$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \begin{cases} 0 & \text{if } m \neq n, \\ \pi & \text{if } m = n, \end{cases}$$
$$\int_{-\pi}^{\pi} \sin(mx) \cos(nx) dx = 0.$$

Solutions. First, let's dispense with the cases where m = n:

$$\int_{-\pi}^{\pi} \sin(mx)^2 dx = \int_{-\pi}^{\pi} \frac{1 - \cos(2mx)}{2} = \frac{x}{2} - \frac{\sin(2mx)}{2m} \Big|_{x = -\pi}^{x = \pi} = \pi,$$

$$\int_{-\pi}^{\pi} \cos(mx)^2 dx = \int_{-\pi}^{\pi} \frac{1 + \cos(2mx)}{2} = \frac{x}{2} + \frac{\sin(2mx)}{2m} \Big|_{x = -\pi}^{x = \pi} = \pi.$$

Now suppose that $m \neq n$. Using the various prosthaphaeresis formulae,

$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos((m-n)x) - \cos((m+n)x) dx$$

$$= \frac{1}{2(m-n)} \sin((m-n)x) - \frac{1}{2(m+n)} \sin((m+n)x) \Big|_{x=-\pi}^{x=\pi} = 0,$$

$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos((m-n)x) + \cos((m+n)x) dx$$

$$= \frac{1}{2(m-n)} \sin((m-n)x) + \frac{1}{2(m+n)} \sin((m+n)x) \Big|_{x=-\pi}^{x=\pi} = 0,$$

where I have used the assumption that $m \neq n$ to do the integral of $\cos((m-n)x)$; notice that in the case m = n, $\cos((m-n)x) = \cos(0) = 1$, and this recovers the half angle identities I used in the first case.

For the final integral, notice that for any positive m and n, the function $\sin(mx)\cos(nx)$ is odd. Thus the integral of this function along the symmetric interval $[-\pi,\pi]$ vanishes by the work in the previous assignment!

3. Use the trigonometric substitution $x = 3\sin(\theta)$ to evaluate

$$\int_0^1 x^2 \sqrt{9 - x^2} \, dx.$$

Be careful about the bounds of integration once you do your substitution: what must θ be when x = 0 or x = 1?

Solution. The substitution $x = 3\sin(\theta)$ gives rise the differential equality $dx = 3\cos(\theta) d\theta$. Moreover, to get the bounds of integration:

- for the lower bound, $0 = x = 3\sin(\theta)$, so $\sin(\theta) = 0$, thus $\theta = 0$; and
- for the upper bound, $1 = x = 3\sin(\theta)$, so $\sin(\theta) = 1/3$, so $\theta = \arcsin(1/3)$.

Thus

$$\begin{split} \int_0^1 x^2 \sqrt{9 - x^2} \, dx &= \int_0^{\arcsin(1/3)} 9 \sin(\theta)^2 \sqrt{9(1 - \sin(\theta)^2)} \cdot 3 \cos(\theta) \, d\theta \\ &= 81 \int_0^{\arcsin(1/3)} \sin(\theta)^2 \cos(\theta)^2 \, d\theta \\ &= \frac{81}{4} \int_0^{\arcsin(1/3)} 1 - \cos(2\theta)^2 \, d\theta \\ &= \frac{81}{4} \arcsin(1/3) - \frac{81}{8} \int_0^{\arcsin(1/3)} 1 - \cos(4\theta) \, d\theta \\ &= \frac{81}{8} \arcsin(1/3) + \frac{81}{32} \sin(4 \arcsin(1/3)). \end{split}$$

Ah, this number is much uglier than I hoped for: I number I wanted in the square root in the original integrand. Oh well, not all computations lead to pretty numbers.

- **4.** Sometimes you are going to have to do some manipulations before being able to perform a trigonometric substitution. Here is an example:
 - (i) Write the polynomial $3-2x-x^2$ in the form $a-(x+b)^2$, for some numbers a and b, by completing the square.
 - (ii) Do the substitution u = x + b followed by a trigonometric substitution to evaluate the integral

$$\int \sqrt{3-2x-x^2} \, dx.$$

Solution. To complete the square, you can equate the target form $a - (x + b)^2$ with the form $3 - 2x - x^2$ that we already have. Then a comparison of coefficients will allow you to solve for a and b. Specifically, equating the coefficients on the two sides of

$$3-2x-x^2 = a-(x+b)^2 = (a-b^2)-2bx-x^2$$

yields the equations 2b = 2 and $a - b^2 = 3$. The first equation immediately implies b = 1; inputting this into the second equation then gives a = 4. Therefore

$$3-2x-x^2=4-(x+1)^2$$
.

Now consider the substitution u = x + 1 in the integral in (ii):

$$\int \sqrt{3-2x-x^2} \, dx = \int \sqrt{4-(x+1)^2} \, dx = \int \sqrt{4-u^2} \, dx$$

and in this form, we may perform the trigonometric substitution $u = 2\sin(\theta)$ that we know and love:

$$\int \sqrt{4 - u^2} \, du = \int \sqrt{4(1 - \sin(\theta)^2)} \cdot 2\cos(\theta) \, d\theta$$
$$= 4 \int \cos(\theta)^2 \, d\theta$$
$$= 2\theta + \sin(2\theta).$$

Tracing through our substitutions, we see that $\theta = \arcsin((x+1)/2)$ so

$$\int \sqrt{3 - 2x - x^2} \, dx = 2\arcsin\left(\frac{x+1}{2}\right) + \sin\left(2\arcsin\left(\frac{x+1}{2}\right)\right)$$

which may be simplified a bit further by applying some double angle identities to the final term.

5. Given a circle of radius a, its circumference is $2\pi a$ and its area is πa^2 .

- (i) Compute the integral $\int_0^a 2\pi r \, dr$.
- (ii) Thinking about polar coordinates, try to explain how the computation in (i) is a way of computing the area of a circle of radius r.

As an analogy, it might be helpful to think about how the integral

$$\int_0^1 x \, dx$$

computes the area of the right triangle

where the vertices are at (0,0), (0,1), and (1,1).

Solution. For (i), compute:

$$\int_0^a 2\pi r \, dr = \pi r^2 \bigg|_{r=0}^{r=a} = \pi a^2.$$

One way to interpret this is that we are computing the area of a circle in polar coordinates by drawing a series of concentric circles with radii ranging from 0 to a within the area of the larger circle of radius a. One of these circles have circumference $2\pi r$ and adding all these together will make up the area of the circle.