$(\infty,1)$ 圏の理論のモデルについて

よの

2024年3月31日

第5回 すうがく徒のつどい 2024年3月31日

1/36

● 1 圏から高次圏へ

② (∞,1) 圏のモデル

3 モデル圏論

 $oldsymbol{4}$ $(\infty,1)$ 圏の理論のモデルの等価性

第5回 すうがく徒のつどい 2024年3月31日

2/36

1 1 圏から高次圏へ

② (∞,1) 圏のモデル

❸ モデル圏論

 $oldsymbol{4}$ $(\infty,1)$ 圏の理論のモデルの等価性

定義 1.1 (1 圏)

次の条件を満たすクラスの組 $\mathcal{C} = (\mathrm{Ob}(\mathcal{C}), \mathrm{Mor}(\mathcal{C}))$ を 1 圏 (1-category) という.

id り と恒等射の存在性 ● = = = = =

• 恒等射公理

• 結合性公理

2 巻

1射の間に「2射」が存在するような圏の例を挙げる.

例 1.2

- 小圏の圏 Cat における 1 射 (関手 $F,G:\mathcal{C}\to\mathcal{D}$) の間には、自然変換 $F\Rightarrow G$ が存在する.
- 位相空間の圏 Top における 1 射 (連続写像 $f, g: X \to Y$) の間には、ホモトピー $f \Rightarrow g$ が存在する.

このような圏は1圏として扱うと不都合が生じることがある.

注意 1.3

 Cat における次の図式の可換性は H = GF を意味している.

しかし、関手は「自然同型を除いて一意」に定義されるべきであり、自然同型の違いは許すべきであった。

Cat では、1 圏が持っていない「2 射 (=1 射の間の射)」の構造まで考える必要がある.

高次の射の可逆性

1 射だけでなく、2 射 (1 射の間の射) が存在するような圏を 2 圏 (2-category) という. より一般に、n 射までの構造を持つような圏を n 圏 (n-category) という.

注意 1.4

 Cat を 1 圏としてみなすことの不都合さは見たが、2 射としてすべての自然変換をとることも不自然である. 1 つまり、この図式の可換性は「関手の一致」や「自然変換の存在」ではなく、「自然同型の存在」を意味するべきである.

Cat は 1 圏としては tight すぎる一方で、一般の自然変換まで考えることは loose すぎる.

例 1.5

Top における 2 射はホモトピーであったが、これは自然に可逆である。(逆向きのホモトピーを考えればよい。) 更に、ホモトピーのホモトピー (3 射) なども考えれるが、これらはすべて可逆である。

6 / 36

 $^{^1}$ 関手は「自然同型の違いを除いて」一致するべきであって,「自然変換の違いを除いて」考えることはほとんどない.

(n,k) 圏および (∞,k) 圏

多くの高次圏では高次の射は可逆なので、ある k 射以降がすべて可逆であるような n 圏が重要である。

定義 1.6 ((n, k) 圏)

(k+1) 射以降の射がすべて可逆であるような n 圏を (n,k) 圏 ((n,k)-category) という.

例 1.7

- 通常の亜群は (1,0) 圏である.
- 通常の圏は (1,1) 圏である.
- Cat や Top は (2,1) 圏である (とみなす).

(n,k) 圏の定義において, $n \to \infty$ としたものが (∞,k) 圏である.

定義 $1.8 ((\infty, k)$ 圏)

k を固定したときの (n,k) 圏の集まりを (∞,k) 圏 $((\infty,k)$ -category) という.

本稿の主題は k=1 とした $(\infty,1)$ 圏である. つまり, 2 射以上がすべて可逆な ∞ 圏である.

第 5 回 すうがく徒のつどい 2024 年 3 月 31 日

1 1 圏から高次圏へ

② (∞,1) 圏のモデル

❸ モデル圏論

 $oldsymbol{4}$ $(\infty,1)$ 圏の理論のモデルの等価性

第5回 すうがく徒のつどい

位相的圏と単体的圏

 $(\infty,1)$ 圏は 2 射以上はすべて可逆であったので、射の集まりとして「Hom 空間」を考える方法が挙げられる. つまり、 $(\infty,1)$ 圏は「空間」で豊穣された圏であると考える.

定義 2.1 (位相的圏)

 ${
m CS}$ 豊穣圏 2 を位相的圏 (topological category) という. 位相的圏と位相的関手のなす圏を ${
m Cat}_{
m Top}$ と表す.

定義 2.2 (単体的圏)

 Set_{Δ} 豊穣圏 3 を単体的圏 (simplicial category) という. 単体的圏と単体的関手のなす圏を Cat_{Δ} と表す.

豊穣圏を用いた定義は非常に簡明であり、豊穣圏論の一般論を使えることは利点である。しかし、 $(\infty,1)$ 関手圏の定義など、実際に扱うことは困難な場合が多い、 4

²CS はコンパクト生成弱 Hausdorff 位相空間の圏であり、Top よりも性質がよい.

 $^{^3}$ Set $_\Delta$ の「空間らしさ」は分かりづらいが,Dold-Kan 対応や, $({
m Set}_\Delta)_{
m Quillen}$ と $({
m Top})_{
m KQ}$ が Quillen 同値であることから,イメージを掴むことができる (かも).

 $^{^4\}mathrm{Cat}_\Delta$ 上の Bergner モデル構造が Cartesian モデル圏でないという理由もある.

単体的集合

Joyal や Lurie は「擬圏」が $(\infty,1)$ 圏の枠組みとして適切であることを見抜いた. 5

定義 2.3 (単体圏)

有限線形順序集合と狭義順序を保つ写像のなす圏を単体圏 (simplex category) といい, Δ と表す.

定義 2.4 (単体的集合)

関手 $\Delta^{\mathrm{op}} \to \mathrm{Set}$ を単体的集合 (simplicial set) という. 単体的集合の圏を Set_{Δ} と表す.

第5回 すうがく徒のつどい

 $^{^5}$ Boardman と Vogt により,擬圏は弱 Kan 複体 (weak Kan complex) として調べられていたが,これが $(\infty,1)$ 圏のモデルであると見抜いたのは Joyal である (はず).

単体的集合

Kan 拡張を用いて、特徴的な2つの随伴が得られる.

注意 2.5 (ホモトピー圏をとる関手と脈体)

埋め込み $\Delta \hookrightarrow \mathbb{C}$ at から Kan 拡張を用いることで、次の随伴 (h, N) が得られる.

注意 2.6 (幾何学的実現と特異単体)

関手 $\Delta[-]:\Delta\to Top$ から Kan 拡張を用いることで、次の随伴 (|-|,Sing) が得られる.

小圏の脈体

圏論は単体的集合の特殊な場合と思うことができる.

定理 2.7

脈体 $N: Cat \rightarrow Set_{\Delta}$ は忠実充満である.

小圏の脈体はリフト性質で特徴づけることができる.

定理 2.8

単体的集合 S に対して、次は同値である。

- S はある小圏 C の脈体 N(C) と自然同型である.
- 任意の $n \ge 2$ と 0 < i < n に対して、次の図式は一意なリフトを持つ.

Kan 複体

位相空間論における CW 複体に対応する単体的集合のクラスを定義する.

定義 2.9 (Kan 複体)

任意の $n \geq 2$ と $0 \leq i \leq n$ に対して、次の図式がリフト条件を持つ単体的集合 S を Kan 複体 (Kan complex) という.

例 2.10

任意の位相空間 X に対して、特異単体 $\mathrm{Sing}(X)$ は Kan 複体である.

次の意味で、位相空間のホモトピー論は単体的集合の枠組みにおいて考えてもよい。

定理 2.11 (Milnor, Giever)

- 任意の位相空間 X に対して, $|Sing(X)| \to X$ は位相空間の弱ホモトピー同値である.
- 任意の単体的集合 S に対して, $S o \mathrm{Sing}(|S|)$ は Kan 弱同値 (単体的集合の弱ホモトピー同値) である.

擬圏

単体的集合の枠組みにおいて、圏論は「脈体」で、位相空間のホモトピー論は「Kan 複体」によって表すことができた。 これらはともにリフト性質によって特徴づけることができたが、2 つの相違点がある。

- 脈体のリフトは内部角体 (0 < i < n) に対してのみだが、Kan 複体のリフトは外部角体 (i = 0, n) に対しても課す.
- 脈体のリフトは一意だが、Kan 複体のリフトは一意性を課していない。

脈体と Kan 複体の共通の一般化として, 擬圏の定義を得る.

定義 2.12 (擬圏)

任意の $n \geq 2$ と 0 < i < n に対して、次のリフト条件を満たす単体的集合 ${\mathbb C}$ を擬圏 (quasi-category) という.

$$\begin{array}{c} \Lambda[n,i] \xrightarrow{\nearrow} \emptyset \\ \downarrow \\ \Delta[n] \end{array}$$

例 2.13

- ullet 任意の Kan 複体は擬圏である. 特に, 任意の位相空間 X に対して, 特異単体 $\mathrm{Sing}(X)$ は擬圏である.
- 任意の小圏 C に対して, 脈体 N(C) は擬圏である.

擬圏は $(\infty,1)$ 圏のモデルである

擬圏において、射の合成は「可縮な空間の選択を除いて」一意に定まる.

定理 2.14 (Joyal)

単体的集合 € に対して、次は同値である。

- Cは擬圏である。
- 包含 $\Lambda_1^2 \hookrightarrow \Delta^2$ が定める単体的集合の射

$$\operatorname{Fun}(\Delta^2, \mathcal{C}) \to \operatorname{Fun}(\Lambda_1^2, \mathcal{C})$$

は自明な Kan ファイブレーションである.

対象 $x \ge y$ をつなぐ射のなす単体的集合を x から y への射空間とみなす.

定義 2.15 (射空間)

擬圏 ${\mathcal C}$ の対象 x,y に対して, 単体的集合 ${
m Hom}_{{\mathcal C}}(x,y):=\{x\} imes_{{\mathcal C}}{
m C}^{\Delta^1} imes_{{\mathcal C}}\{y\}$ を x から y への射空間 (space of morphisms) という.

定理 2.16

擬圏 ${\mathbb C}$ の対象 x,y に対して, 単体的集合 ${
m Hom}_{{\mathbb C}}(x,y)$ は ${\it Kan}$ 複体である.

以上から、擬圏は $(\infty,1)$ 圏のモデルと見ることができる.

単体的空間

擬圏は脈体と Kan 複体に対する共通の一般化として、単体的「集合」の枠組みにおいて拡張条件を用いて定義された. 一方、 完備 Segal 空間は単体的「空間」の枠組みにおける $(\infty,1)$ 圏のモデルである.

定義 2.17 (単体的空間)

関手 $\Delta^{\mathrm{op}} \to \mathrm{Set}_\Delta$ を単体的空間 (simplicial space) という. 単体的空間の圏を sSpace と表す.

単体的集合 S の n 単体 S_n は集合であるが、単体的空間 X の n 単体 X_n は単体的集合である.

注意 2.18

積-Fun 随伴より、 $\operatorname{Fun}(\Delta^{\operatorname{op}},\operatorname{Set}_{\Delta})\cong\operatorname{Fun}(\Delta^{\operatorname{op}}\times\Delta^{\operatorname{op}},\operatorname{Set})$ が成立する.

埋め込み $Set_{\Delta} \hookrightarrow sSpace$ を用いて標準的単体を定義する.

定義 2.19 (単体的集合関手(の境界))

- $\Delta[n]$ を離散単体的集合とみなすことで定める単体的空間 F(n) を n 次空間関手 (n-th space functor) という.
- $\partial \Delta[n]$ を離散単体的集合とみなすことで定める単体的空間 $\partial F(n)$ を n 次空間関手の境界 (boundary of n-th space functor) という.

注意 2.20

単体的空間 X に対して、単体的集合の同型 $\operatorname{Map}_{\operatorname{sSpace}}(F(n),X) \cong X_n$ が存在する.

2024年3月31日

Reedy ファイブラント

単体的空間に「空間」の性質を特徴づける条件が Reedy ファイブラントである.

Set A 上の Quillen モデル構造において、Kan 複体はファイブラント対象である.

このモデル構造から sSpace 上に Reedy モデル構造が定まる.

よって、Reedy モデル構造におけるファイブラント対象は「空間」のように思える.

定義 2.21 (Reedy ファイブラント)

X を単体的空間とする. 任意の $n,l \geq 0$ と $0 \leq i \leq n$ に対して, 次の単体的集合の射

$$\operatorname{Map}_{sSpace}(F(n), X) \to \operatorname{Map}_{sSpace}(\partial F(n), X)$$

が Kan ファイブレーションのとき, X を Reedy ファイブラント (Reedy fibrant) という.

Reedy ファイブラントの n 単体は「空間」である.

定理 2.22

Reedy ファイブラント X に対して, X_n は Kan 複体である.

例 2.23

任意の $n \ge 0$ に対して, F(n) は Reedy ファイブラントである.

Segal 空間

Reedy ファイブラントに「圏」の性質を特徴づけるものとして、Segal 条件を定義する. 単体的集合の枠組みにおいて、圏の脈体は Segal 条件を用いて特徴づけることができる.

定理 2.24

単体的集合 S に対して,次は同値である.

- ullet S はある小圏 ${\mathbb C}$ の脈体 ${
 m N}({\mathbb C})$ と自然同型である.
- 任意の $n \geq 2$ に対して, $\varphi_n: S_n \to S_1 \times_{S_0} \cdots \times_{S_0} S_1$ は同型である.

単体的集合の Segal 条件を単体的空間の枠組みおいて考える.

定義 2.25 (Segal 空間)

X を Reedy ファイブラントとする. 任意の $n \geq 2$ に対して, 次の単体的集合の射

$$\varphi_n: X_n \to X_1 \times_{X_0} \cdots \times_{X_0} X_1$$

が Kan 弱同値のとき、X を Segal 空間 (Segal space) という.

例 2.26

任意の小圏 C に対して、脈体 N(C) は Segal 空間である.

Segal 空間における射空間

Segal 空間における対象や射を定義する.

定義 2.27 (対象)

Segal 空間 X に対して, X_0 の点を X の対象 (object) という.

定義 2.28 (射空間)

Segal 空間 X の対象 x,y に対して、単体的集合 $\max_X(x,y)$ を次のプルバックで定義し、X の射空間 (mapping space) という. $\max_X(x,y)$ の元を x から y への射 (morphism) という.

$$\max_{X}(x,y) \to X_1$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta^0 \xrightarrow[(x,y)]{} X_0 \times X_0$$

Segal 空間における射空間は「空間」である.

注意 2.29

Segal 空間 X の任意の対象 x,y に対して, $\max_X(x,y)$ は Kan 複体である.

Segal 空間における射の合成

Segal 空間において、射の合成は「可縮な空間の選択を除いて」一意に定まる.

補題 2.30

Segal 空間 X の任意の対象 x_0, \cdots, x_n に対して, 次の単体的集合の射

$$\operatorname{map}_X(x_0, \dots, x_n) \to \operatorname{map}_X(x_0, x_1) \times \dots \times \operatorname{map}_X(x_{n-1}, x_n)$$

は自明な Kan ファイブレーションである.

定義 2.31

Segal 空間 X の射 $f: x \to y, g: y \to z$ に対して、単体的集合 $\mathrm{comp}(f,g)$ を次のプルバックで定義する.

$$\begin{array}{ccc} \operatorname{comp}(f,g) & \longrightarrow & \operatorname{map}_X(x,y,z) \\ & & \downarrow & & \downarrow \\ & & \Delta^0 & \xrightarrow{(f,g)} & \operatorname{map}_X(x,y) \times \operatorname{map}_X(y,z) \end{array}$$

注意 2.32

Segal 空間 X の射 $f: x \to y, g: y \to z$ に対して, comp(f,g) は可縮な Kan 複体である.

Segal 空間における射の合成

Segal 空間において、射の合成は「ホモトピーの違いを除いて」結合的かつ単位的である.

定義 2.33 (ホモトピック)

f,g:x o y を Segal 空間 X の射とする. $f,g:\Delta^0 o \mathrm{map}_X(x,y)$ が単体的集合のホモトピックであるとき, f と g はホモトピック (homotopic) であるという.

定理 2.34

合成可能な射の組 f,g,h に対して, $(hg)f \sim h(gf)$ かつ $fid \sim f$, $idf \sim f$ である.

定義 2.35 (ホモトピー同値の空間)

Segal 空間 X に対して、ホモトピー同値のなす単体的部分集合を $X_{
m hoeauiv} \subset X_1$ と表す.

第5回 すうがく徒のつどい 2024年3月31日

完備 Segal 空間

Segal 空間において、圏の性質とホモトピー論の性質は整合的ではない。6

2 つの対象が「Segal 空間 X においてホモトピックである」ことと、「Kan 複体 X_0 においてホモトピックである」ことを同値にする必要がある。

定義 2.36 (完備 Segal 空間)

Segal 空間 X に対して、次の単体的集合の射

$$s_0: X_0 \to X_{\text{hoequiv}}$$

が Kan 弱同値のとき、X は完備 (complete) であるという.

完備性は、圏論的な同型 (対象の同型) とホモトピー論的な同値 (ホモトピー同値) が1対1に対応するような条件である.

定理 2.37

小圏 ${\mathbb C}$ に対して, 脈体 ${\mathbb N}({\mathbb C})$ が完備であることと, ${\mathbb C}$ が ${\it gaunt}$ 7 であることは同値である.

 $^{^6}$ walking isomorhism をもつ亜群 $\{0\leftrightarrow 1\}$ と 1 点圏 $\{*\}$ を比較するとよい.

 $^{^{7}}$ 圏 $^{\mathcal{C}}$ が恒等射以外の同型射を持たないとき、 $^{\mathcal{C}}$ は gaunt であるという.

相対圏

今まで見たように、 $(\infty,1)$ 圏は圏論とホモトピー論の共通の一般化であった。 よって、ホモトピーの情報を「weak equivalence の射のクラス」として持つような圏が考えられる。

定義 2.38 (相対圏)

小圏 \mathcal{C} と \mathcal{C} の wide 部分圏 \mathcal{C} W の組 (\mathcal{C},W) を相対圏 (relative category) という.

通常の圏は2つの極端な方法で相対圏とみなせる.

例 2.39 (極大と極小)

 (\mathcal{C},W) を相対圏とする. $W=\mathcal{C}$ のとき, (\mathcal{C},W) は極大 (maximal) であるといい, \mathcal{C}_{\max} と表す. W が恒等射以外の射を含まないとき, (\mathcal{C},W) は極小 (minimal) であるといい, \mathcal{C}_{\min} と表す.

相対圏の間の weak equivalence を保つような関手を定義する.

定義 2.40 (相対関手)

 $(\mathcal{C},W),(\mathcal{C}',W')$ を相対圏とする. 関手 $F:\mathcal{C}\to\mathcal{C}'$ が $F(W)\subset W'$ を満たすとき, F を相対関手 (relative functor) という.

相対圏と相対関手のなす圏を RelCat と表す、相対半順序集合と相対関手のなす圏を RelPos と表す、

第5回 すうがく徒のつどい

23 / 36

⁸圏 C の対象をすべて含むような部分圏を wide 部分圏という.

半順序集合の細分化

単体的集合の重心細分と同様に、相対半順序集合の細分化を定義する.

定義 2.41 (終細分化)

相対半順序集合 \mathcal{P} に対して、相対半順序集合 \mathcal{E}_t を次のように定義し、 \mathcal{P} の終細分化 (terminal subdivision) という.

- ξ_t \mathcal{P} の対象は \Re el \mathcal{P} os における mono 射 $x:[n]_{\min} \to \mathcal{P}$ $(n \geq 0)$
- ξ_t の射は次の図式を可換にするような射 $[n_1]_{\min} \rightarrow [n_2]_{\min}$

• ξ_t \mathcal{P} の weak equivalence は誘導される射 $x_1(n_1) \to x_2(n_2)$ が \mathcal{P} の weak equivalence であるような射

終細分化を与える対応は関手 ξ_t : $\Re el Pos \to \Re el Pos$ を定める. 双対的に, 始細分化 ξ_t : $\Re el Pos \to \Re el Pos$ も定義される.

定義 2.42 (2 重細分化)

相対半順序集合 \mathcal{P} に対して, $\xi\mathcal{P}:=\xi_t\xi_i\mathcal{P}$ を \mathcal{P} の 2 重細分化 (two-fold subdivion) という.

第5回 すうがく徒のつどい 2024年3月31日

24 / 36

● 1 圏から高次圏へ

- ② (∞,1) 圏のモデル
- 3 モデル圏論

 $oldsymbol{4}$ $(\infty,1)$ 圏の理論のモデルの等価性

第5回 すうがく徒のつどい

モデル圏とは

モデル圏

モデル圏とは、位相空間上のホモトピー論を抽象的に行うための枠組みである.

Quillen はホモトピー論を行うためには weak equivalence, fibration, cofibration の 3 つの射が重要であることを見抜き, この射の性質を分理化した。

これにより、位相空間の圏以外でもホモトピー論が行うことができるようになった。

例えば、位相空間の CW 近似や複体の projective resolution が、モデル圏におけるコファイブラント置換によって説明できる。

Quillen 同值

モデル圏 M に対して、ホモトピー圏 Ho(M) が定義される.

モデル圏の同値として、Quillen 同値がある。この同値はモデル圏として随伴であって、ホモトピー圏が圏同値であるような条件である。

よって, $(\infty,1)$ 圏の理論のモデルが等価であるかは, 2 つのモデル圏が Quillen 同値であるかで判断する.

第 5 回 すうがく徒のつどい 2024 年 3 月 31 日

26 / 36

単体的集合の圏上の Joyal モデル構造

単体的集合の圏における weak equivalence として, Kan 弱同値のほかに Joyal 弱同値がある.

定義 3.1 (Joyal 弱同值)

 $f:S \to T$ を単体的集合の射とする. 任意の擬圏 ${\mathbb C}$ に対して.

$$h\operatorname{Fun}(T,\mathfrak{C}) \to h\operatorname{Fun}(S,\mathfrak{C})$$

が通常の圏同値のとき、f を Joyal 弱同値 (Joyal weak equivalence) 9 という.

ファイブラント対象がちょうど擬圏であるような Set A 上のモデル構造が存在する.

定理 3.2 (Joyal モデル構造)

単体的集合の mono 射を cofibration, Joyal 同値を weak equivalence とするような, $\operatorname{Set}_{\Delta}$ 上のモデル構造が存在する. このモデル構造を $\operatorname{Set}_{\Delta}$ 上の Joyal モデル構造といい, $(\operatorname{Set}_{\Delta})_{\operatorname{Joyal}}$ と表す.

定理 3.3

(Set_A)_{Joyal} におけるファイブラント対象はちょうど擬圏である.

⁹一般には, (弱) 圏同値 ((weak) categorical equivalence) と呼ばれる.

単体的空間の圏上の Rezk モデル構造

定義 3.4 (Rezk 弱同值)

 $f: X \to Y$ を単体的空間の射とする. 任意の完備 Segal 空間 W に対して,

$$\operatorname{Map}_{sSpace}(Y, W) \to \operatorname{Map}_{sSpace}(X, W)$$

が Kan 弱同値のとき、f を Rezk 弱同値 (Rezk weak equivalence) という.

ファイプラント対象がちょうど完備 Segal 空間であるような sSpace 上のモデル構造が存在する.

定理 3.5 (Rezk モデル構造)

単体的空間の mono 射を cofibration, Rezk 弱同値を weak equivalence とするような, sSpace 上のモデル構造が存在する. このモデル構造を sSpace 上の Rezk モデル構造といい, (sSpace)_{Rezk} と表す. ¹⁰

定理 3.6

(sSpace)_{Rezk} におけるファイブラント対象はちょうど完備 Segal 空間である.

 $^{^{10}}$ 一般には、 $(sSpace)_{Rezk}$ は $(sSpace)_{Reedy}$ の Bousfield 局所化を用いて定義される.

相対圏の圏上の Barwick-Kan モデル構造

随伴によってモデル構造がリフトされる.この定理を用いて,相対圏の圏上のモデル構造を定義する.

定理 3.7

 $\mathfrak C$ をコファイブラント生成なモデル圏, $F:\mathfrak C\rightleftarrows\mathfrak D:G$ を随伴とする. (F,G) がいい条件を満たすとき, 次のような $\mathfrak D$ 上のモデル構造が存在する.

- weak equivalence は G での像が C における weak equivalence となるような D の射
- fibration は G での像が C における fibration となるような D の射

随伴 (N_{ξ}, K_{ξ}) を用いて、 $(sSpace)_{Reedy}$ から $\Re Cat$ 上にモデル構造をリフトすることができる.

定理 3.8 (Barwick-Kan モデル構造)

 N_{ξ} の像が Reedy 弱同値である相対関手を weak equivalence, N_{ξ} の像が Reedy ファイブレーションであるような相対関手を fibration とするような, \Re Rel \Re 上のモデル構造が存在する.

第5回 すうがく徒のつどい 2024 年 3 月 31 日

29 / 36

このモデル構造を RelCat 上の Barwick-Kan モデル構造といい, (RelCat)BK と表す.

1 1 圏から高次圏へ

② (∞,1) 圏のモデル

❸ モデル圏論

 $oldsymbol{4}$ $(\infty,1)$ 圏の理論のモデルの等価性

位相的圏と単体的圏の等価性

幾何学的実現と特異単体の随伴は豊穣圏の間の随伴にリフトする.

注意 4.1

随伴 $|-|: Set_{\Delta} \rightleftarrows Top: Sing$ は、随伴 $|-|: Cat_{\Delta} \rightleftarrows Cat_{Top}: Sing$ を定める.

本質的には次の命題から従う.

定理 4.2

いいモノイダルモデル圏の Quillen 随伴 $F: \mathbf{A} \rightleftarrows \mathbf{A}': G$ は, Quillen 随伴 $F: (\operatorname{Cat}_{\mathbf{A}})_{\operatorname{Berg}} \leftrightarrows (\operatorname{Cat}_{\mathbf{A}'})_{\operatorname{Berg}}: G$ を定める. 更に, Quillen 同値からは Quillen 同値が定まる.

 $\operatorname{Cat}_{\Delta}$ と $\operatorname{Cat}_{\operatorname{Top}}$ は Bergner モデル構造として Quillen 同値である.

定理 4.3 ([Bergner, 2005])

随伴 $|-|: \operatorname{Cat}_{\Delta} \rightleftarrows \operatorname{Cat}_{\operatorname{Top}} : \operatorname{Sing}$ は次の Quillen 同値を定める.

$$|-|: (\operatorname{Cat}_{\Delta})_{\operatorname{Berg}} \rightleftarrows (\operatorname{Cat}_{\operatorname{Top}})_{\operatorname{Berg}} : \operatorname{Sing}$$

擬圏と位相的圏の等価性

Set_A と Cat_A の随伴を Kan 拡張を用いて構成する.

注意 4.4

関手 $\mathfrak{C}[\Delta^-]:\Delta \to \operatorname{Cat}_\Delta$ を $\mathfrak{C}[\Delta^-]([n]):=\mathfrak{C}[\Delta^n]$ で定義する. Kan 拡張から, 次の随伴 $(\mathfrak{C},\mathfrak{N})$ が得られる.

定理 4.5 ([Bergner, 2007])

随伴 $\mathfrak{C}: \operatorname{Set}_{\Delta} \rightleftarrows \operatorname{Cat}_{\Delta}: \mathfrak{N}$ は次の Quillen 同値を定める.

$$\mathfrak{C}: (\operatorname{Set}_{\Delta})_{\operatorname{Joyal}} \rightleftarrows (\operatorname{Cat}_{\Delta})_{\operatorname{Berg}}: \mathfrak{N}$$

完備 Segal 空間と擬圏の等価性

sSpace と Set_{\(\Delta\)} の随伴を Kan 拡張を用いて構成する.

注意 4.6

[n] により自由生成される亜群の脈体を $\Delta'[n]$ と表す.関手 $t:\Delta \times \Delta \to \operatorname{Set}_{\Delta}$ を $t([m],[n]):=\Delta[m] \times \Delta'[n]$ で定義する. Kan 拡張から、次の随伴 (t_1,t^1) が得られる.

定理 4.7 ([Joyal and Tierney, 2006])

随伴 $(t_!,t^!)$ は次の Quillen 同値を定める.

$$t_! : (sSpace)_{Rezk} \rightleftarrows (Set_{\Delta})_{Joyal} : t^!$$

完備 Segal 空間と相対圏の等価性

sSpace と RelCat の随伴を Kan 拡張を用いて構成する.

注意 4.8

関手 $[-]_{\mathrm{m,m}}^{\xi}:\Delta imes\Delta o\Re$ elCat を $[-]_{\mathrm{m,m}}^{\xi}([n],[m]):=\xi([n]_{\min} imes[m]_{\max})$ で定義する. Kan 拡張から,次の随伴 (K_{ξ},N_{ξ}) が得られる.

定理 4.9 ([Barwick and Kan. 2011])

随伴 $(K_{\mathcal{E}}, N_{\mathcal{E}})$ は次の Quillen 同値を定める.

$$K_{\varepsilon}: (\mathrm{sSpace})_{\mathrm{Rezk}} \rightleftarrows (\mathrm{RelCat})_{\mathrm{BK}}: N_{\varepsilon}$$

まとめ

本稿で紹介した Quillen 同値をまとめる.

次の Quillen 同値の列が存在する. (上矢印が左 Quillen 同値)

$$(\operatorname{\mathcal{R}elCat})_{\operatorname{BK}} \xrightarrow[N_{\xi}]{K_{\xi}} (\operatorname{sSpace})_{\operatorname{Rezk}} \xrightarrow[t^{!}]{t_{!}} (\operatorname{\mathcal{S}et}_{\Delta})_{\operatorname{Joyal}} \xrightarrow[\mathfrak{N}]{\mathfrak{C}} (\operatorname{Cat}_{\Delta})_{\operatorname{Berg}} \xrightarrow[\operatorname{Sing}]{|-|} (\operatorname{Cat}_{\mathfrak{I}_{\operatorname{Op}}})_{\operatorname{Berg}}$$

参考文献I

```
[Barwick and Kan, 2011] Barwick, C. and Kan, D. M. (2011).
Relative categories: Another model for the homotopy theory of homotopy theories.
```

[Bergner, 2005] Bergner, J. E. (2005).

A model category structure on the category of simplicial categories.

[Bergner, 2007] Bergner, J. E. (2007). Three models for the homotopy theory of homotopy theories. Topology, 46(4):397–436.

[Joyal and Tierney, 2006] Joyal, A. and Tierney, M. (2006). Quasi-categories vs segal spaces.