Geopandas2

Data analysis with GeoPandas

Kunal Khurana

2023 - 01 - 07

Table of contents

Geocoding

```
process of converting name of a place or an address to a location on a Map example location=[54, 15];
```

```
Latidute coordinate, 54 (ranges from -90 to 90 degrees); positive value - northern hemisphere
```

Longitude coordinate, 15 (ranges from -180 to 180 degrees; positive value- eastern hemisphere

```
geolocator = Nominatim (user_agent = 'Kunal Khurana')
location = geolocator.geocode('Taj Mahal')
```

```
print(location.point)
  print(location.address)
27 10m 30.027s N, 78 2m 31.5645s E
Taj Mahal, Taj East Gate Road, Taj Ganj, Agra, Agra District, Uttar Pradesh, 282004, India
  point = location.point
  print("Latitude:", point.latitude)
  print("Longitude:", point.longitude)
Latitude: 27.1750075
Longitude: 78.04210126365584
  # top universities
  universities = pd.read_csv('data_for_all_courses\\top_universities.csv')
  universities.head()
                              Name
                           0 University of Oxford
                           1 University of Cambridge
                           2 Imperial College London
                           3 ETH Zurich
                           4 UCL
  # using lambda function to apply geocoder to every row in DataFrame
  def my_geocoder(row):
      #use try/excepth where geocoding is unsuccessful
          point = geolocator.geocode(row).point
          return pd.Series({'Latitude': point.latitude, 'Longitude': point.longitude})
      except:
          return None
  universities[['Latitude', 'Longitude']] = universities.apply(lambda x: my_geocoder(x['Name
```

print(f"{(1-sum(np.isnan(universities['Latitude'])) / len(universities)) * 100}% of addres

95.0% of addresses were geocoded!

	Name	Latitude	Longitude	geometry
0	University of Oxford	51.758708	-1.255668	POINT (-1.25567 51.75871)
1	University of Cambridge	52.210946	0.092005	POINT (0.09200 52.21095)
2	Imperial College London	51.498959	-0.175641	POINT (-0.17564 51.49896)
3	ETH Zurich	47.413218	8.537491	POINT (8.53749 47.41322)
4	UCL	51.521785	-0.135151	POINT (-0.13515 51.52179)

```
# create a map
m = folium.Map(location = [20, 79], titles = 'openstreetmap', zoom_start=2)

# add points
for idx, row in universities.iterrows():
    Marker([row['Latitude'], row['Longitude']], popup= row['Name']).add_to(m)

# display
m
```

<folium.folium.Map at 0x1d8c284c110>

GeoDataFrame Table joins

```
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
europe = world.loc[world.continent == "Europe"].reset_index(drop = True)
```

C:\Users\Khurana_Kunal\AppData\Local\Temp\ipykernel_13672\2106073632.py:1: FutureWarning: The
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))

europe.head()

	pop_est	continent	name	iso_a3	gdp_md_est	geometry
0	144373535.0	Europe	Russia	RUS	1699876	MULTIPOLYGON (((180.00000 71.51571, 180
1	5347896.0	Europe	Norway	NOR	403336	MULTIPOLYGON (((15.14282 79.67431, 15.5
2	67059887.0	Europe	France	FRA	2715518	MULTIPOLYGON (((-51.65780 4.15623, -52.2
3	10285453.0	Europe	Sweden	SWE	530883	POLYGON ((11.02737 58.85615, 11.46827 59.
4	9466856.0	Europe	Belarus	BLR	63080	POLYGON ((28.17671 56.16913, 29.22951 55.

```
europe_stats = europe[['name', 'pop_est', 'gdp_md_est']]
europe_boundaries = europe [['name', 'geometry']]
```

europe_stats.head()

	name	pop_est	gdp_md_est
0	Russia	144373535.0	1699876
1	Norway	5347896.0	403336
2	France	67059887.0	2715518
3	Sweden	10285453.0	530883
4	Belarus	9466856.0	63080

europe_boundaries.head()

	name	geometry
0	Russia	MULTIPOLYGON (((180.00000 71.51571, 180.00000
1	Norway	MULTIPOLYGON (((15.14282 79.67431, 15.52255 80
2	France	MULTIPOLYGON (((-51.65780 4.15623, -52.24934 3
3	Sweden	POLYGON ((11.02737 58.85615, 11.46827 59.43239
4	Belarus	POLYGON ((28.17671 56.16913, 29.22951 55.91834

```
# use'name' to merge europe_boundaries and europe_stats
europe2 = europe_boundaries.merge(europe_stats, on= 'name')
europe2.head()
```

	name	geometry	pop_est	gdp_md_est
0	Russia	MULTIPOLYGON (((180.00000 71.51571, 180.00000	144373535.0	1699876
1	Norway	MULTIPOLYGON (((15.14282 79.67431, 15.52255 80	5347896.0	403336
2	France	MULTIPOLYGON (((-51.65780 4.15623, -52.24934 3	67059887.0	2715518
3	Sweden	POLYGON ((11.02737 58.85615, 11.46827 59.43239	10285453.0	530883
4	Belarus	POLYGON ((28.17671 56.16913, 29.22951 55.91834	9466856.0	63080

Spatial join

```
joining data based on geometry

# match universities to countries

european_universities = gpd.sjoin(universities, europe2)
```

C:\Users\Khurana_Kunal\AppData\Local\Temp\ipykernel_13672\546710102.py:3: UserWarning: CRS m Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.

Left CRS: None

Right CRS: EPSG:4326

european_universities = gpd.sjoin(universities, europe2)

```
# check the crs for europe2
europe2.crs
```

<Geographic 2D CRS: EPSG:4326>

Name: WGS 84

Axis Info [ellipsoidal]:

Lat[north]: Geodetic latitude (degree)Lon[east]: Geodetic longitude (degree)

Area of Use: - name: World.

- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble

- Ellipsoid: WGS 84

- Prime Meridian: Greenwich

```
# lets provide same crs value to universities
universities = universities.set_crs('epsg: 4326')

european_unviersities = gpd.sjoin(universities, europe2)
european_universities.head()
```

	Name	Latitude	Longitude	geometry
0	University of Oxford	51.758708	-1.255668	POINT (-1.25567 51.75871)
1	University of Cambridge	52.210946	0.092005	POINT (0.09200 52.21095)
2	Imperial College London	51.498959	-0.175641	POINT (-0.17564 51.49896)
4	UCL	51.521785	-0.135151	POINT (-0.13515 51.52179)
5	London School of Economics and Political Science	51.514261	-0.116734	POINT (-0.11673 51.51426)

We located 95 universities.

Out of 95, 89 of the universities were located in Europe in 15 different countries.

european_universities.head()

	Name	Latitude	Longitude	geometry
0	University of Oxford	51.758708	-1.255668	POINT (-1.25567 51.75871)
1	University of Cambridge	52.210946	0.092005	POINT (0.09200 52.21095)
2	Imperial College London	51.498959	-0.175641	POINT (-0.17564 51.49896)
4	UCL	51.521785	-0.135151	POINT (-0.13515 51.52179)
5	London School of Economics and Political Science	51.514261	-0.116734	POINT (-0.11673 51.51426)

Potentially suitable areas for starbucks

```
# for maps visualization
def embed_map(m, file_name):
    from IPython.display import IFrame
    m.save(file_name)
    return IFrame(file_name, width='100%', height='500px')

starbucks = pd.read_csv('data_for_all_courses\starbucks_locations.csv')
starbucks.head()
```

	Store Number	Store Name	Address	City
0	10429-100710	Palmdale & Hwy 395	14136 US Hwy 395 Adelanto CA	Ade
1	635-352	Kanan & Thousand Oaks	5827 Kanan Road Agoura CA	Ago
2	74510 - 27669	Vons-Agoura Hills $\#2001$	5671 Kanan Rd. Agoura Hills CA	Ago
3	29839 - 255026	Target Anaheim T-0677	8148 E SANTA ANA CANYON ROAD AHAHEIM CA	AH.
4	23463-230284	Safeway - Alameda 3281	2600 5th Street Alameda CA	Ala

```
# print individual missing values
  print(f"The DataFrame starbucks has {starbucks.isnull().sum()} missing values")
The DataFrame starbucks has Store Number
Store Name
Address
City
                0
                5
Longitude
Latitude
                5
dtype: int64 missing values
  # printing missing rows
  missing_value_rows = starbucks[starbucks.isnull().any(axis=1)]
  print(missing_value_rows)
                                 Store Name \
     Store Number
         5406-945 2224 Shattuck - Berkeley
153
154
          570-512
                                 Solano Ave
155 17877-164526 Safeway - Berkeley #691
```

```
156 19864-202264
                            Telegraph & Ashby
157
        9217-9253
                              2128 Oxford St.
                                 Address
                                               City Longitude Latitude
      2224 Shattuck Avenue Berkeley CA
                                           Berkeley
153
                                                            {\tt NaN}
                                                                       NaN
154
        1799 Solano Avenue Berkeley CA
                                           Berkeley
                                                            {\tt NaN}
                                                                       NaN
155
       1444 Shattuck Place Berkeley CA
                                           Berkeley
                                                            {\tt NaN}
                                                                       NaN
     3001 Telegraph Avenue Berkeley CA
156
                                           Berkeley
                                                            \mathtt{NaN}
                                                                       NaN
157
        2128 Oxford Street Berkeley CA
                                           Berkeley
                                                            {\tt NaN}
                                                                       NaN
  # print total missing values
  print(f"The DataFrame starbucks has {starbucks.isnull().sum().sum()} missing values")
```

The DataFrame starbucks has 10 missing values

We are removing missing values from the starbucks None dataframe.

```
# checking
print(starbucks.isnull().sum())

Store Number 0
Store Name 0
Address 0
City 0
Longitude 0
Latitude 0
dtype: int64
```

inference

All the missing values are in Berkley city.

```
# create geocoder that adds latitude and longitude values
  geolocator = Nominatim (user_agent = "Kunal Khurana ")
  def my_geocoder(row):
      point = geolocator.geocode(row).point
      return pd.Series({'Latitude': point.latitude, 'Longitude': point.longitude})
  berkley_locations = missing_value_rows.apply(lambda x: my_geocoder(x['Address']), axis = 1
  starbucks.update(berkley_locations)
  starbucks.describe
<bound method NDFrame.describe of</pre>
                                                                        Store Name \
                                         Store Number
      10429-100710
                             Palmdale & Hwy 395
1
                         Kanan & Thousand Oaks
           635-352
2
      74510-27669
                       Vons-Agoura Hills #2001
                         Target Anaheim T-0677
3
      29839-255026
      23463-230284
                        Safeway - Alameda 3281
2816 14071-108147
                    Hwy 20 & Tharp - Yuba City
                    Yucaipa & Hampton, Yucaipa
2817
        9974-98559
     79654-108478
                          Vons - Yucaipa #1796
2818
      6438-245084
2819
                                  Yucaipa & 6th
2820
        6829-82142
                     Highway 62 & Warren Vista
                                       Address
                                                         City Longitude \
0
                 14136 US Hwy 395 Adelanto CA
                                                                 -117.40
                                                     Adelanto
1
                    5827 Kanan Road Agoura CA
                                                                 -118.76
                                                       Agoura
2
               5671 Kanan Rd. Agoura Hills CA
                                                Agoura Hills
                                                                 -118.76
      8148 E SANTA ANA CANYON ROAD AHAHEIM CA
3
                                                      AHAHEIM
                                                                 -117.75
                   2600 5th Street Alameda CA
                                                                 -122.28
4
                                                     Alameda
. . .
                                                          . . .
                                                                     . . .
2816
        1615 Colusa Hwy, Ste 100 Yuba City CA
                                                   Yuba City
                                                                 -121.64
2817
            31364 Yucaipa Blvd., A Yucaipa CA
                                                     Yucaipa
                                                                 -117.12
2818
                33644 YUCAIPA BLVD YUCAIPA CA
                                                     YUCAIPA
                                                                 -117.07
2819
          34050 Yucaipa Blvd., 200 Yucaipa CA
                                                     Yucaipa
                                                                 -117.06
     57744 29 Palms Highway Yucca Valley CA
2820
                                                Yucca Valley
                                                                 -116.40
      Latitude
0
         34.51
```

```
1
         34.16
2
         34.15
         33.87
3
         37.79
2816
         39.14
2817
        34.03
        34.04
2818
2819
        34.03
        34.13
2820
[2816 rows x 6 columns]>
  starbucks.info()
<class 'pandas.core.frame.DataFrame'>
Index: 2816 entries, 0 to 2820
Data columns (total 6 columns):
                  Non-Null Count Dtype
    Column
                   _____
    -----
    Store Number 2816 non-null
0
                                  object
 1
    Store Name
                  2816 non-null
                                  object
 2
   Address
                  2816 non-null
                                  object
3
                  2816 non-null
                                   object
    City
 4
    Longitude
                  2816 non-null
                                   float64
5
    Latitude
                  2816 non-null
                                   float64
dtypes: float64(2), object(4)
memory usage: 154.0+ KB
  # base map
  m_base = folium.Map(location= [37.88, -122.26], tiles='openstreetmap', zoom_start = 12)
  # add markers
  for idx, row in starbucks[starbucks['City']=='Berkeley'].iterrows():
      Marker([row['Latitude'], row['Longitude']]).add_to(m_base)
  # display
  m_base
<folium.folium.Map at 0x1d8c3d7f410>
```

starbucks.head()

	Store Number	Store Name	Address	Cit
0	10429-100710	Palmdale & Hwy 395	14136 US Hwy 395 Adelanto CA	Ade
1	635 - 352	Kanan & Thousand Oaks	5827 Kanan Road Agoura CA	Ago
2	74510 - 27669	Vons-Agoura Hills $\#2001$	5671 Kanan Rd. Agoura Hills CA	Ago
3	29839 - 255026	Target Anaheim T-0677	8148 E SANTA ANA CANYON ROAD AHAHEIM CA	AH
4	23463-230284	Safeway - Alameda 3281	2600 5th Street Alameda CA	Ala