

kogito: A Commonsense Knowledge Inference Toolkit

Mete Ismayilzada, Antoine Bosselut

What is kogito?

kogito is an open-source, modular and extensible python toolkit to generate commonsense knowledge inferences from text.

What is commonsense knowledge?

Commonsense knowledge consists of **implicit**, but commonly known facts about the everyday world such as "Lemons are sour".

Head Extraction

First, potential relevant concepts called knowledge heads are extracted from the text using dependency parses produced from spaCy. Users can methods.

Where would I use it?

If you would like to integrate rich commonsense knowledge about the world relevant to your use-case, then kogito offers all-in-one solution.

Relation Matching

Then, extracted knowledge heads are matched with relevant knowledge relations from ATOMIC and CONCEPTNET using heuristic or model-based matching algorithms. Users can also define arbitrary relation matching methods.

Knowledge Inference

Once we have knowledge head and relation pairs, we run them through knowledge models such as COMET to produce commonsense knowledge inferences also known as **knowledge tails**. Users can also

Inference Filtering

Optionally, in order to make the generated commonsense inferences (facts) more relevant to a provided context, we employ a commonsense fact linker model to filter out irrelevant facts. Users can define **custom** linker models as well.

Knowledge Graph

Finally, the resulting collection of knowledge (head, relation, tail) triplets also known as a knowledge graph is returned. This graph can be saved and later loaded for further processing. These abstractions allow for standardized I/O.

Custom Relations

In addition to the pre-defined relations, kogito also offers a way to define and use **custom new relations** via a technique called symbolic knowledge distillation (West et al.) from large language models such as GPT-3.

Figure on the right shows the technique conceptually for a new relation called xWishes (what does the PersonX wish?)

