

Aulas passadas

- Algoritmos de busca em grafos
 - Busca em Largura
 - Busca em Profundidade

Algoritmos de caminhos mínimos

• Ideia:

Minimizar (ou maximizar) um certo valor.

Por exemplo:

- Minimizar o custo ou o tempo gasto.
- Maximizar o lucro ou o ganho.

Exemplo 1

Considere uma empresa de entregas, com um centro de distribuição e um caminhão.

Problema:

Dada uma lista de endereços de entrega encontrar uma sequência que minimize a kilometragem total do caminhão para realizar todas as entregas

Modelar o problema através de grafos.

Modelar o problema através de grafos.

Vértices:

Endereços de engrega.

Arestas:

Uma rota conectando 2 endereços de entrega.

Peso/custo:

Distâncias entre as extremidades.

Sobre o exercício 8 da aula 2

Sobre o exercício 8 da aula 2

Sobre o exercício 8 da aula 2

O grafo dos estados do Brasil é definido assim: cada vértice é um dos estados da República Federativa do Brasil; dois estados são adjacentes se têm uma fronteira comum. Faça um desenho do grafo.

Quantos vértices tem o grafo? Quantas arestas? Qual é o grau médio? Existe um caminho Euleriano?

Exemplo 2

Considere um programa de GPS para o cálculo da "**melhor rota**" entre dois pontos.

Problema:

Dado um endereço de origem e destino, encontrar **um camino mínimo** entre a origem e o destino, i.e., encontrar a rota com a menor distância.

Modelar o problema através de grafos.

Vértices:

Cruzamentos entre ruas.

Arestas:

Cada trecho de rua.

Peso/custo:

- •Comprimento do trecho (em quiilometros)
- •Tempo estimado de percurso

Grafos não-ponderados

Distância entre:

h,e = 3

h,k = Infinito

Grafos ponderados

Muitas aplicações associam um **número a cada aresta**.

Esse número é o **custo/peso** da aresta, que pode ser remetido a uma característica física da conexão.

Grafos ponderados

Distância entre:

h,k = Infinito h,e = ?

Grafos ponderados

Distância entre:

Grafos ponderados

Distância entre:

h,k = Infinito h,e = 8

O comprimento de um caminho é a soma dos pesos/custos das arestas do caminho.

Busca de caminhos mínimos em grafos

- Para a busca de caminhos mínimos em grafos ponderados, há algoritmos específicos que executam a tarefa.
- Algoritmos específicos:
 - (1) Caminhos mínimos a partir de um dado vértice.
 - (2) Caminos mínimos entre todos os pares de vértices.

Caminho mínimos com origem fixa

- Dado um vértice s de um grafo ponderado, encontrar para cada vértice t (que pode ser alcançado a partir de s) um caminho mínimo de s a t.
- Todos os algoritmos para esses problemas exploram a seguinte propriedade triangular:

$$d(x,z) \le d(x,y) + d(y,z)$$

sendo d(i,j) a distância do vértice i ao vértice j.

Algoritmo eficiente para a obtenção do caminho mínimo em grafos com pesos não-negativos.

Criado por um cientista da computação chamado Edsger Dijkstra.

Entrada:

- Grafo, G.
- Vértices, s.
- Pesos, w (não-negativos).

Saída:

Caminhos mínimos a partir de s.

Inicialização:

- Atribui distância infinita para todos os vértices.
- O vértice de origem recebe distância zero (0).
- Todos os vértices são marcados como não visitados.

Enquanto houver vértices não visitados:

- Eleja o vértice não visitado com a menor distância (a partir da origem) como o vértice atual.
- Calcule a distância para todos os vértices adjacentes não visitados:
 - Se a distância é menor, substitua a distância e seu predecessor pelo vértice atual
 - Marque-o como visitado (sua distância é mínima).

Observação: por sempre escolher como próximo vértice a ser analisado aquele que parece a melhor opção, o algoritmo é chamado de **guloso (Greedy)**

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	∞

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	∞
1	{a}	0	1	∞	3	10

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	∞
1	{a}	0	1	∞	3	10
2	{a,b}	0	1	6	3	10

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	00
1	{a}	0	1	∞	3	10
2	{a,b}	0	1	6	3	10
3	{a,b,d}	0	1	5	3	9

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	∞
1	{a}	0	1	∞	3	10
2	{a,b}	0	1	6	3	10
3	{a,b,d}	0	1	5	3	9
4	{a,b,d,c}	0	1	5	3	6

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	00
1	{a}	0	1	∞	3	10
2	{a,b}	0	1	6	3	10
3	{a,b,d}	0	1	5	3	9
4	{a,b,d,c}	0	1	5	3	6
5	{a,b,d,c,e}	0	1	5	3	6

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	∞

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	∞
1	{b}	2	0	3	6	∞

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	œ	∞
1	{b}	2	0	3	6	∞
2	{b,a}	2	0	3	6	6

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	∞
1	{b}	2	0	3	6	∞
2	{b,a}	2	0	3	6	6
3	{b,a,c}	2	0	3	5	6

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	00	œ	∞	∞	∞
1	{b}	2	0	3	6	œ
2	{b,a}	2	0	3	6	6
3	{b,a,c}	2	0	3	5	6
4	{b,a,c,d}	2	0	3	5	6

iteração	Vértices visitados	a.dis	b.dis	c.dis	d.dis	e.dis
0	{}	∞	∞	∞	∞	∞
1	{b}	2	0	3	6	∞
2	{b,a}	2	0	3	6	6
3	{b,a,c}	2	0	3	5	6
4	{b,a,c,d}	2	0	3	5	6
5	{b,a,c,d,e}	2	0	3	5	6

Dijkstra(G,s,w)

```
Para cada vértice v em G
v.dis = INFINITO
v.pre = -1
s.dis = 0
T = todos os vértices de G
```

```
Enquanto T≠ VAZIO faça
    u = vértice em T com menor distância
    se u.dist==INFINITO
        Sai do laço
    remove u de T
    Para cada vizinho v de u
        d = u.dist + w(u,v)
        Se d<v.dist
        v.dist = d
        v.pre = u</pre>
```



```
Para cada vértice v em G
v.dis = INFINITO
v.pre = -1
s.dis = 0
T = todos os vértices de G
```


iteração	Vértices visitados	s.dis	t.dis	x.dis	y.dis	z.dis
0	{}	∞	∞	∞	∞	∞

```
Enquanto T≠VAZIO faça
    u = vértice em T com menor distância
    Se u.dist==INFINITO
        Sai do laço
    remove u de T
    Para cada vizinho v de u
        d = u.dist + w(u,v)
        Se d<v.dist
        v.dist = d
        v.pre = u</pre>
```


iteração	Vértices visitados	s.dis	t.dis	x.dis	y.dis	z.dis
0	{}	∞	∞	∞	∞	∞
1	{s}	0	10	∞	5	∞

```
Enquanto T≠VAZIO faça
    u = vértice em T com menor distância
    Se u.dist==INFINITO
        Sai do laço
    remove u de T
    Para cada vizinho v de u
        d = u.dist + w(u,v)
        Se d<v.dist
        v.dist = d
        v.pre = u</pre>
```


iteração	Vértices visitados	s.dis	t.dis	x.dis	y.dis	z.dis
0	{}	∞	∞	∞	∞	∞
1	{s}	0	10	∞	5	∞
2	{s,y}	0	8	14	5	7

```
Enquanto T≠VAZIO faça
    u = vértice em T com menor distância
    Se u.dist==INFINITO
        Sai do laço
    remove u de T
    Para cada vizinho v de u
        d = u.dist + w(u,v)
        Se d<v.dist
        v.dist = d
        v.pre = u</pre>
```


iteração	Vértices visitados	s.dis	t.dis	x.dis	y.dis	z.dis
0	{}	∞	∞	∞	∞	∞
1	{s}	0	10	∞	5	∞
2	{s,y}	0	8	14	5	7
3	{s,y,z}	0	8	13	5	7

```
Enquanto T≠VAZIO faça
    u = vértice em T com menor distância
    Se u.dist==INFINITO
        Sai do laço
    remove u de T
    Para cada vizinho v de u
        d = u.dist + w(u,v)
        Se d<v.dist
        v.dist = d
        v.pre = u</pre>
```


iteração	Vértices visitados	s.dis	t.dis	x.dis	y.dis	z.dis
0	{}	∞	∞	∞	∞	∞
1	{s}	0	10	∞	5	8
2	{s,y}	0	8	14	5	7
3	{s,y,z}	0	8	13	5	7
4	{s,y,z,t}	0	8	9	5	7

```
Enquanto T≠VAZIO faça
    u = vértice em T com menor distância
    Se u.dist==INFINITO
        Sai do laço
    remove u de T
    Para cada vizinho v de u
        d = u.dist + w(u,v)
        Se d<v.dist
        v.dist = d
        v.pre = u</pre>
```


iteração	Vértices visitados	s.dis	t.dis	x.dis	y.dis	z.dis
0	{}	00	∞	∞	∞	∞
1	{s}	0	10	∞	5	∞
2	{s,y}	0	8	14	5	7
3	{s,y,z}	0	8	13	5	7
4	${s,y,z,t}$	0	8	9	5	7
5	${s,y,z,t,x}$	0	8	9	5	7

Algoritmo de Floyd-Warshall (caminhos mínimos entre todos os pares de vértices)

Caminhos mínimos entre todos os pares de vértices

- O algoritmo de Floyd-Warshall encontra as distâncias entre todos os pares de vértices em um grafo.
- Os **pesos** devem ser **não-negativos**.
- Este algoritmo é útil em aplicações onde é necessária a criação de uma matriz de distâncias.
- O algoritmo, primeiramente modifica a matriz de adjacência:
 Atribui infinito a todos os pares de vértices sem conexão, exceto a diagonal principal.

```
FloydWarshall(MAdj):
  D = Madj
  para cada linha i em MAdj
    para cada coluna j em MAdj
      se (Madj[i,j]==0 e i!=j) // sem conexão?
                dist[i,j] = INFINITO
  N = numero de linhas de Madj
  para k igual a 1 até N
    para i igual a 1 até N
      para j iqual a 1 até N
           se D[i,j] > D[i,k]+D[k,j]
               D[i,j] = D[i,k]+D[k,j]
             Desigualdade Triangular
                                         Em qualquer triângulo, tem-se
                                         a < b + c, b < a + c e c < a + b.
```

Matriz de adjacência

	1	2	3	4	5
1	0	5	0	2	0
2	5	0	1	0	0
3	0	1	0	1	0
4	2	0	1	0	10
5	0	0	0	10	0

Matriz simétrica com zeros na diagonal

Matriz de distâncias (D)

	1	2	3	4	5
1	0	5	00	2	00
2	5	0	1	00	00
3	00	1	0	1	00
4	2	00	1	0	10
5	00	00	00	10	0

K=1

	1	2	3	4	5
1	0	5	00	2	00
2	5	0	1	00	00
3	00	1	0	1	00
4	2	00	1	0	10
5	00	00	00	10	0

	1	2	3	4	5
1	0	5	00	2	00
2	5	0	1	7	00
3	00	1	0	1	00
4	2	7	1	0	10
5	00	00	00	10	0

$$D[2,1] > D[2,1] + D[1,1]$$
 ? Não $D[2,2] > D[2,1] + D[1,2]$? Não $D[2,3] > D[2,1] + D[1,3]$? Não $D[2,4] > D[2,1] + D[1,4]$? SIM $D[2,4] = 5 + 2 = 7$ $D[2,5] > D[2,1] + D[1,5]$? Não

$$D[4,2] > D[4,1] + D[1,2]$$
 ? SIM $D[4,2] = 2+5=7$

K=2

	1	2	3	4	5
1	0	5	00	2	00
2	5	0	1	7	00
3	00	1	0	1	00
4	2	7	1	0	10
5	00	00	00	10	0

...

$$D[3,1] > D[3,2] + D[2,1]$$
 ? SIM $D[3,1] = 1 + 5 = 6$

...

K=3

Т	2	3	4	5
0	5	6	2	00
5	0	1	7	00
6	1	0	1	00
2	7	1	0	10
00	∞	∞	10	0
	5 6 2	0 5 5 6 1 2 7	0 5 6 5 0 1 6 1 0 2 7 1	0 5 6 2 5 0 1 7 6 1 0 1 2 7 1 0

```
D[1,1] > D[1,3]+D[3,1] ? Não
D[1,2] > D[1,3]+D[3,2] ? Não
D[1,3] > D[1,3]+D[3,3] ? Não
D[1,4] > D[1,3]+D[3,4] ? Não
D[1,5] > D[1,3]+D[3,5] ? Não
```

$$D[2,1] > D[2,3]+D[3,1]$$
 ? Não $D[2,2] > D[2,3]+D[3,2]$? Não $D[2,3] > D[2,3]+D[3,3]$? Não $D[2,4] > D[2,3]+D[3,4]$? SIM $D[2,4]=1+1=2$ $D[2,5] > D[2,3]+D[3,5]$? Não

. . .

$$D[4,2] > D[4,3] + D[3,4]$$
 ? SIM $D[4,2] = 1 + 1 = 2$

. . .

	1	2	3	4	5
1	0	5	6	2	00
2	5	0	1	2	00
3	6	1	0	1	8
4	2	2	1	0	10
5	00	00	00	10	0

```
\begin{array}{l} \dots \\ D[1,2] > D[1,4] + D[4,2] ? \text{SIM} \quad D[1,2] = 2 + 2 = 4 \\ D[1,3] > D[1,4] + D[4,3] ? \text{SIM} \quad D[1,3] = 2 + 1 = 3 \\ D[1,5] > D[1,4] + D[4,5] ? \text{SIM} \quad D[1,5] = 2 + 10 = 12 \\ \dots \\ D[2,1] > D[2,4] + D[4,1] ? \text{SIM} \quad D[2,1] = 2 + 2 = 4 \\ D[2,5] > D[2,4] + D[4,5] ? \text{SIM} \quad D[2,5] = 2 + 10 = 12 \\ \dots \\ D[3,1] > D[3,4] + D[4,1] ? \text{SIM} \quad D[3,1] = 1 + 2 = 3 \\ D[3,5] > D[3,4] + D[4,5] ? \text{SIM} \quad D[3,5] = 1 + 10 = 11 \\ \end{array}
```

. . .

$$D[5,1] > D[5,4] + D[4,1]$$
 ? SIM $D[5,1] = 10 + 2 = 12$
 $D[5,2] > D[5,4] + D[4,2]$? SIM $D[5,2] = 10 + 2 = 12$
 $D[5,3] > D[5,4] + D[4,3]$? SIM $D[5,3] = 10 + 1 = 11$

K=5

	1	2	3	4	5
1	0	4	3	2	12
2	4	0	1	2	12
3	3	1	0	1	11
4	2	2	1	0	10
5	12	12	11	10	0

Não houve modificações

Página interessante

Floyd-Warshall All-Pairs Shortest Pairs Algorithm

http://www.pms.ifi.lmu.de/lehre/compgeometry/Gosper/shortest_path/shortest_path.html

III. Atividade Prática

Atividade Prática

Questão 1

- a) Para cada grafo, simule o algoritmo de Dijkstra e determine as distâncias a todos os vértices, considerando como origem o vértice 1.
- b) Para cada grafo, simule o algoritmo de Floyd-Warshall e determine as distâncias entre todos os pares de vértices (matriz de distâncias)

Atividade Prática

Questão 2: Considere um grafo orientado e ponderado que seja representado pela matriz de adjacência abaixo.

Simule o algoritmo de Dijkstra e determine as distâncias a todos os vértices, considerando como origem o vértice 1.

$$A = \begin{bmatrix} 0 & 9 & 0 & 0 & 0 & 14 & 15 & 0 \\ 0 & 0 & 23 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 19 \\ 0 & 0 & 6 & 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 11 & 0 & 0 & 0 & 16 \\ 0 & 0 & 18 & 0 & 30 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 20 & 0 & 0 & 44 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$