1. Determine if the following polynomials are irreducible in $\mathbb{Q}[x]$.

(a)
$$f(x) = 4x^5 + 28x^4 + 7x^3 - 28x^2 + 14$$

Solution: We can apply Eisenstein's Criterion directly with p=7 to show that f(x) is irreducible in $\mathbb{Q}[x]$.

(b) $g(x) = x^p + p^2 mx + (p-1)$ where $p \in \mathbb{Z}$ is a prime and $m \in \mathbb{Z}$.

Solution: Consider g(x+1). Notice,

$$g(x+1) = (x+1)^p + p^2 m(x+1) + (p-1)$$

$$= x^p + \binom{p}{1} x^{p-1} + \dots + \binom{p}{p-1} x + p^2 mx + p^2 m + p$$

$$= x^p + \binom{p}{1} x^{p-1} + \dots + \binom{p}{p-1} x + p^2 mx + p(pm+1).$$

We can see immediately that each non-leading coefficient divides p. It remains to show that $p^2 \mid p(pm+1)$, which is equivalent to $p \mid pm+1$. This follows as

$$pm + 1 \equiv 1 \pmod{p}$$
.

Hence, Eisenstein's Criterion with p gives g(x+1) is irreducible in $\mathbb{Q}[x]$, so g(x) is irreducible in $\mathbb{Q}[x]$.

(c) $h(x) = x^4 + 4x^3 + 4x^2 + 4x + 5$

Solution: We can simplify h with the Binomial Theorem. Notice,

$$h(x) = x^4 + 4x^3 + 4x^2 + 4x + 5$$
$$= (x+1)^4 - 2x + 4.$$

Now, consider h(x-1), we have

$$h(x-1) = x^4 - 2(x-1)^2 + 4$$
$$= x^4 - 2(x^2 - 2x + 1) + 4$$
$$= x^4 - 2x^2 + 4x + 2$$

and here, h(x-1) satisfies Eisenstein's Criterion with p=2. It follows that h(x) is irreducible in $\mathbb{Q}[x]$.

2. Let $F \subseteq K \subseteq E$ be fields. If E/K and K/F are algebraic, prove that E/F is also algebraic.

Solution:

Proof. This result follows immediately as

$$[E:F] = [E:K][K:F]$$

and $E/_K$ and $K/_F$ are finite extensions, so $E/_F$ is also a finite extension.

Assignment 1 January 14, 2018

3. Let F be a field. Let α, β be algebraic over F with the minimal polynomial f(x) and g(x) respectively. Prove that f(x) is irreducible over $F(\beta)[x]$ if and only if g(x) is irreducible over $F(\alpha)[x]$.

Solution: Since both directions follow a symmetric proof, it suffices to show one direction, so suppose f(x) is irreducible over $F(\beta)[x]$. We have that $[F(\alpha,\beta):F(\beta)]=\deg(f)$. Also, since g(x) is the minimal polynomial of β over F[x], we have that $[F(\beta):F]=\deg(g)$. It follows that $[F(\alpha,\beta):F]=$

4. (a) Prove that $\alpha = \sqrt[3]{7} + 2i$ is algebraic over \mathbb{Q} .

Solution:

(b) Prove that both $\sqrt[3]{7}$ and 2i are elements of $\mathbb{Q}(\alpha)$.

Solution:

(c) Compute $[\mathbb{Q}(\alpha) : \mathbb{Q}]$.

Solution:

(d) Write down the minimal polynomial in $\mathbb{Q}[x]$ for α .

Solution:

- 5. Let E_F be a field extension and K, L be intermediate fields. Let KL denote the smallest subfield of E containing both K and L. Suppose E_F is finite.
 - (a) Prove that all elements of KL are of the form $\sum_{i=1}^{r} k_i l_i$, where $k_i \in K, l_i \in L$ and $r \in \mathbb{N}$.

Solution:

(b) Prove that $[KL:K] \leq [L:F]$.

Solution:

(c) Give and example of fields $F \subseteq K, L \subseteq E$ which satisfy [KL : K] < [L : F].

Solution:

6. Prove that e is transcendental.

Solution: Consider the function $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ with $a_0, a_n \neq 0$ and $a_i \in \mathbb{Z}$ for all $i = 0, \ldots, n$. Now, we assume for a contraction that f(e) = 0.