

Linear projections

In this course, we will make use of conditional expectations to define the linear projection of one stochastic variable onto another.

The linear projection of \mathbf{y} onto the space spanned by \mathbf{x} , the so-called range space, denoted $\mathcal{R}(\mathbf{x})$, is defined as

$$E\{\mathbf{y}|\mathbf{x}\} = \mathbf{a} + \mathbf{B}\mathbf{x}$$

where $\mathbf{a} \in \mathcal{R}(\mathbf{x})$ and **B** is a deterministic matrix of appropriate dimension.

LUND

Linear projections

In this course, we will make use of conditional expectations to define the linear projection of one stochastic variable onto another.

The linear projection of \mathbf{y} onto the space spanned by \mathbf{x} , the so-called range space, denoted $\mathcal{R}(\mathbf{x})$, is defined as

$$E\{\mathbf{y}|\mathbf{x}\} = \mathbf{a} + \mathbf{B}\mathbf{x}$$

where $\mathbf{a} \in \mathcal{R}(\mathbf{x})$ and **B** is a deterministic matrix of appropriate dimension.

The geometrical interpretation is quite helpful. For instance, from it, we can conclude the so-called *principle of orthogonality*, stating that

$$C\{\mathbf{y} - E\{\mathbf{y}|\mathbf{x}\}, \mathbf{x}\} = \mathbf{0}$$

That is, the error vector $\mathbf{e} = \mathbf{y} - E\{\mathbf{y}|\mathbf{x}\}\$ is uncorrelated with \mathbf{x} .

Linear projections

Let **z** denote the concatenated vector

$$\mathbf{z} = \left[egin{array}{ccc} \mathbf{x}^T & \mathbf{y}^T \end{array}
ight]^T$$

having mean $E\{\mathbf{z}\} = \left[\begin{array}{cc} \mathbf{m}_{\mathbf{x}}^T & \mathbf{m}_{\mathbf{y}}^T \end{array}\right]^T$ and covariance matrix

$$\mathbf{R_z} = \left[egin{array}{cc} \mathbf{R_x} & \mathbf{R_{x,y}} \ \mathbf{R_{y,x}} & \mathbf{R_y} \end{array}
ight]$$

Then, the linear projection of y onto x, can be expressed as

$$E\{\mathbf{y}|\mathbf{x}\} = \mathbf{m_y} + \mathbf{R_{y,x}}\mathbf{R_x^{-1}}(\mathbf{x} - \mathbf{m_x})$$

This will be the optimal linear projection, i.e., the projection that yields the minimum prediction error variance among all linear projections. Furthermore, the difference $\mathbf{e} = \mathbf{y} - E\{\mathbf{y}|\mathbf{x}\}$ will have the variance

$$V\left\{\mathbf{e}|\mathbf{x}\right\} = \mathbf{R}_{\mathbf{y}} - \mathbf{R}_{\mathbf{y},\mathbf{x}} \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{R}_{\mathbf{y},\mathbf{x}}^* = E\left\{V\left\{\mathbf{y}|\mathbf{x}\right\}\right\}$$

If ${\bf x}$ and ${\bf y}$ are Normal distributed, then ${\bf e}$ and ${\bf x}$ are independent; otherwise, they are uncorrelated.