Sarcasm* Detection in News Headlines Dataset

Dana Faiez, March 2021

Motivation:

- Detecting sarcasm is challenging even for human; can a machine do as good/ better?
- Can we do better than off-the-shelf BERT classifier, using Bi/LSTM architecture?
- Detecting sarcasm in relation to voice assistants may be useful because it can:
 - be a way to receive feedback from user,
 - strengthen the personal element between voice assistants and user.

What is sarcasm?

Sarcasm involves the use of language to mean something other than its literal meaning, but always with the intention to mock or criticize someone or something.

Sarcasm can take different forms such as:

- 1. **Ironic** (statements or citations contrary to what one expects)
- 2. Satire (A humor that draws attention to political/social issues)
- 3. Self-description (Act of denigrating yourself as a means of humor)
- 4. Flattery (Insincere praise)

Challenges in detecting sarcasm:

- Context dependent
- Sometimes requires knowing
 - the speaker/author
 - time / place / current events / culture
 - relationship between the speaker and listener
 - tone and facial expression of the speaker/author which we lose in text

Challenges regarding dataset:

- Twitter / reddit forums, relying on self-annotation:
 - spelling mistakes
 - noisy due to mistakes in labels/hashtags
- News Headlines dataset, relying on authors of TheOnion/HuffPost:
 - both websites focus on news *
 - smaller dataset than twitter dataset

Dataset:

News Headlines dataset

collected from two news website:

- TheOnion (sarcastic/ironic versions of current events)
- HuffPost (real/non-sarcastic news)

Ave number of words in a sentence in sarcastic / non-sarcastic set ≈ 9

Number of punctuations in each set:

Sarcastic	Non-sarcastic
nuclear bomb detonates during rehearsal for 'spider-man' musical.	ted cruz hits the panic button: 'we could lose both houses of congress'
whale regrets eating 290,000 plastic poker chips that fell off container ship.	donald trump heading for a series of wins in the northeast, polls say
'right to live life in complete, stunned horror', added to constitution	the lawsuit against black lives matter and the central meaning of the first amendment

Related work:

Results from Naive Bayes, Decision Tree, Random Forest models

Pulkit Mehndiratta, Devpriya Soni

Related work:

Results from NN, RNN, CNN, Attention

Using the news headline dataset:

	Embedding/Model	Accuracy
<u>Harshita Pandey</u>	Embeddig layer + Dense layer architecture	87%
	Glove embedding + LSTM	82%
NC State ECE	BERT classifier	92%

Using the Twitter dataset:

Process:

Prepare data Prepare data Train, tune HP Evaluate **Process data** for BERT for training • Clean Tokenize • Split data HParam Eval. test data Normalize* • Balance [CLS], [SEP] Tensorboard Other metrics • Token ID Checkpoints • Set up metrics Padding **Segment ID Attention mask**

Here are the main parts of the code

```
# Getting and cleaning the data
start_time = time.time()
n = 22692

df = load_data(n)

df = balanced_data(df)

df = shuffle_data(df)

sentences, labels = get_sentences_labels(df)
```

20k total sentences after balancing the dataset


```
# Tokenizing
input_ids = tokenizer_inptID(sentences)
MAX_LEN = get_max_len(input_ids)
print("MAX_LEN:",MAX_LEN)
                                               MAX LEN = 57 tokens; used later for padding
# Input ID, Segment ID, and attention mask
partition_size = 5000
input_ids_pad = []; start = 0
for i in range(1, 5):
 m = partition_size*i
 input ids pad.extend(list(padding(input_ids[start:m], MAX_LEN)))
  start = m
input_ids = np.array(input_ids_pad)
attention_masks, segments_ids = Create_segmentsids_attentionmasks(input_ids)
# Get the embeddings
partition size = 5000
res = []; start = 0
input_ids_list = list(input_ids)
for i in range(1,5):
 m = partition_size*i
  print("start")
 temp = get_embedding(input_ids_list[start:m], segments_ids[start:m], attention_masks[start:m])
  print("Done i:", i)
  res_append(temp)
  start = m
encoded_layers = torch.cat(res,dim=0)
```

```
#normalizing data
def normalize(norm_option, embedding):
    input = []
    if norm_option == 'min_max_scaler': #[0,1]
        min_max_scaler = preprocessing.MinMaxScaler()
        embedding = np.array([min_max_scaler.fit_transform(sent) for sent in embedding])

elif norm_option == 'max_abs_scaler': #[-1,1] #
    max_abs_scaler = preprocessing.MaxAbsScaler()
    embedding = np.array([max_abs_scaler.fit_transform(sent) for sent in embedding])

elif norm_option == 'Unit_norm':
    embedding = np.array([preprocessing.normalize(sent, norm='l2') for sent in embedding])
return embedding
```

```
start_time = time.time()
# metric
metric = [keras.metrics.BinaryAccuracy(name='accuracy'), keras.metrics.AUC(name='auc')]
####### Hyper param tuning ######

#Clear any logs from previous runs
!rm -rf ./logs/*

HP_NUM_UNITS = hp.HParam('num_units', hp.Discrete([40,70]))
HP_DROPOUT = hp.HParam('dropout', hp.Discrete([0.70]))
HP_OPTIMIZER = hp.HParam('optimizer', hp.Discrete(['AdaDelta']))
HP_L_RATE = hp.HParam('learning_rate', hp.Discrete([1.0]))
HP_DROPOUT_lstm = hp.HParam('dropout_lsm', hp.Discrete([0.15]))
hp_dict = {'hidden_units' : HP_NUM_UNITS, 'dropout': HP_DROPOUT, 'optimizer': HP_OPTIMIZER, 'lr':HP_L_RATE, 'dropout_lstm': HP_DROPOUT_lstm}
batch_size = 32
epochs = 10
```

```
def run(logdir, hparams, xtrain, ytrain, xval, yval, xtest, ytest, path_session, best_weights, eval, arch_name):
 with tf.summary.create_file_writer(logdir).as_default():
   hp.hparams(hparams) # record the values used in this trial
   model = build model(MAX LEN, batch size, epochs, metric, hparams, arch name)
   dot img file = '/content/model 1.png'
    tf.keras.utils.plot model(model, to file = dot img file, show shapes=True)
   if eval==False:
      out_model = fit_model(model, xtrain, ytrain, xval, yval, batch_size, epochs, path_session, logdir, hparams)
     valacc = (out model.history['val accuracy'])
     valauc = (out_model.history['val_auc'])
     print('val_acc:', valacc[-1], 'val_auc:', valauc[-1])
     tf.summary.scalar('accuracy', valacc[-1], step = epochs)
    else:
     model.load_weights(best_weights)
      loss test, acc test, auc test = model.evaluate(xtest, ytest, batch size, verbose=1)
     print("loss test:", loss test, "acc test:", acc test, "auc test:", auc test)
     pred = model.predict(xtest)
     print("len of test dataset:", len(pred))
      for thresh in np.linspace(0.3, 0.7, num=5):
        pred temp = [int(prob > thresh) for prob in pred]
        print("#### Threshold: ####" , thresh)
        (tn, fp, fn, tp) = confusion(pred temp, ytest)
        print("False predictions of non-sarcasm:", fn)
        print("False predictions of sarcasm:", fp)
        print("True predictions of non-sarcasm:", tn)
        print("True predictions of sarcasm:", tp)
        print("Precision:", get_precision(pred_temp, ytest))
        print("Recall:", get_recall(pred_temp, ytest))
        print("F1:", get_F1(pred_temp, ytest))
        print("Accuracy:", get_accuracy(pred_temp, ytest))
        print('\n')
    return model
```

```
def run_tensorboard(hp_dict, best_weights, eval, arch_name, norm, norm_options):
 session num = 0
 for num_units in hp_dict['hidden units'].domain.values:
   for dropout_rate in hp_dict['dropout'].domain.values:
       for opt in hp_dict['optimizer'].domain.values:
         for learning_rate in hp_dict['lr'].domain.values:
           for dropout rate lstm in hp dict['dropout lstm'].domain.values:
               hparams = {
                   HP_NUM_UNITS : num_units,
                   HP_DROPOUT : dropout_rate,
                   HP OPTIMIZER: opt,
                   HP_L_RATE : learning_rate,
                   HP_DROPOUT_lstm : dropout_rate_lstm,
               # Preperaing the data for training
               embedding = encoded layers.numpy()
               if norm == True:
                 for norm_option in norm_options:
                   embedding = normalize(norm_options, embedding)
                   x_train, y_train, x_val, y_val, x_test, y_test = split(embedding, labels)
                   run name = "run-%d" % session num
                   print('---- Starting trial ----: %s' % run name)
                   print({h.name: hparams[h] for h in hparams})
                   path session = "file " + str(session num) + ".hdf5" # Best weights are saved here for each set of
hyperparameters
```

(continue next slide)

```
model = run('logs/hptune_2/' + run_name, hparams, x_train, y_train, x_val, y_val, x_test, y_test,
path_session, best_weights, eval, arch_name)
                    session_num += 1
                    print("\n")
                else:
                 print("____norm_option___:" + " not normalizing")
                 x_train, y_train, x_val, y_val, x_test, y_test = split(embedding, labels)
                 run_name = "run-%d" % session_num
                 print('---- Starting trial ----: %s' % run_name)
                  print({h.name: hparams[h] for h in hparams})
                  path_session = "file_" + str(session_num) + ".hdf5" # Best weights are saved here for each set of
hyperparameters
                 model = run('logs/hptune_2/' + run_name, hparams, x_train, y_train, x_val, y_val, x_test, y_test,
path_session, best_weights, eval, arch_name)
                 session num += 1
                 print("\n")
 return model
###### Tune Hyperparameter on Validation Dataset and Save the Best Weights ######
#norm_options = ['min_max_scaler', 'max_abs_scaler','Unit_norm']
model = run_tensorboard(hp_dict, best_weights=None, eval = False, arch_name = 'bilstm', norm = False, norm_options =
['Unit_norm']) #'attention', 'bilstm', 'lstm'
print("time to train/evaluate:\n")
print("%s" % (time.time() - start_time))
```

x_train	(18000, 47, 768)
x_validation	(1000, 47, 768)
x_test	(1000, 47, 768)


```
####### Evaluating on Test Dataset ######
HP_NUM_UNITS = hp.HParam('num_units', hp.Discrete([40]))
HP_DROPOUT = hp.HParam('dropout', hp.Discrete([0.7]))
HP_DROPOUT = hp.HParam('dropout', hp.Discrete(['AdaDelta']))
HP_LRATE = hp.HParam('learning_rate', hp.Discrete([1.0]))
HP_DROPOUT_lstm = hp.HParam('dropout_lsm', hp.Discrete([0.15]))

hp_dict_opt = {'hidden_units' : HP_NUM_UNITS, 'dropout': HP_DROPOUT, 'optimizer': HP_OPTIMIZER,
'lr':HP_L_RATE, 'dropout_lstm': HP_DROPOUT_lstm}

best_weights = None ## add the file with best weights here
best_weights='/content/file_0.hdf5'

#model = run_tensorboard(hp_dict_opt, x_train, y_train, x_test, y_test, best_weights, eval = True, arch_name = 'bilstm')
model = run_tensorboard(hp_dict, best_weights=best_weights, eval = True, arch_name = 'bilstm', norm = False,
norm options = ['Unit norm'])
```

Results:

LSTM:

	Training data	Validation	Test data
Loss	0.25	0.26	0.28
Accuracy	90.1%	89.3%	88.7%
Precision			88.7%
Recall			89.2%
F1			88.9%

0.8 min / epoch on CPU

BiLSTM:

	Training data	Validation	Test data
Loss	0.16	0.25	0.30
Accuracy	93.8%	90.2%	89.5%
Precision			92.3%
Recall			86.8%
F1			89.4%

1.3 min / epoch on CPU

Most important words (using frequency of words in each dataset, excluding stop-words)

non-sarcastic dataset:

sarcastic dataset:

Most important words (using TfidfVectorizer)

non-sarcastic dataset:

sarcastic dataset:

Functions used in the main code

```
def load_data(n):
 def clean_text(headline):
           headline = re.sub(r"[,.;@_#?!\"&$:]+", ' ', headline)
           headline = re.sub(r"\s+", ' ', headline)
           return headline
 srcsm_json = requests.get('https://storage.googleapis.com/laurencemoroney-blog.appspot.com/sarcasm.json')
 sentences_clean = []
 labels = []
 i=0
 for item in srcsm_json.json():
     if i<n:
       sentences_clean.append(clean_text(item['headline']))
        labels.append(item['is_sarcastic'])
        i+=1
 df = pd.DataFrame({'text' : sentences_clean[:], 'label':labels[:]})
 # label 0: not-sarcastic; label 1: sarcastic
 return df
```

```
News Dataset ####
def balanced data(df):
 # Make data balanced:
 ## Get the number of sarcastic vs non-sarcastic rows
 def get diff classes(df):
    count_list = list(df['label'].value_counts())
    return count list[0]-count list[1]
 diff = get_diff_classes(df)
 def plot_data_count(df, title):
    f, ax = plt.subplots(1)
    sns.set style('whitegrid')
    sns.countplot(x='label',data=df, palette='YlGnBu r', ax=ax)
    ax.set_xticklabels(["Non-sarcastic","Sarcastic"])
    ax.set(title = title, xlabel='Label', ylabel='Counts')
 if diff !=0:
    plot_data_count(df, 'Counts of non/sarcastic data before balancing')
    print('Before balancing the data, (non-sarcasic - sarcasic) sentences :', get_diff_classes(df))
    if diff>0: datatype = 0 # remove from non-sarcasic class
    else: datatype = 1 # remove from sarcasic class
    np.random.seed(0)
   drop indices = np.random.choice(df[df['label'] == datatype].index, abs(diff), replace=False)
    df = df.drop(drop_indices)
    print('After balancing the data, (non-sarcasic - sarcasic) sentences :', get_diff_classes(df))
    plot_data_count(df, 'Counts of non/sarcastic data after balancing')
 print("df.info():\n",df.info())
 print("There are", len(df), "total sentences.\n")
  return df
```

```
#### Shuffling Dataset ####
def shuffle_data(df):
    df = df.reindex(np.random.permutation(df.index))
    print("Top 10 sentences and labels:\n", df.head(10))
    return df

def get_sentences_labels(df):
    sentences = df['text'].tolist()
    labels = df['label'].tolist()
    return sentences, labels
```

```
# bert-base-uncased : 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on lower-cased English text.
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
def tokenizer_inptID(sentences):
 # Tokenize all of the sentences and map the tokens to thier word IDs.
  input_ids = []
  for sent in sentences:
     # `encode` will:
         (1) Tokenize the sentence.
         (2) Prepend the `[CLS]` token to the start (with ID 101).
         (3) Append the `[SEP]` token to the end (with ID 102).
         (4) Map tokens to their IDs.
     encoded_sent = tokenizer.encode(
                         sent,
                         add_special_tokens = True,
                                                      Example text = "this is troublesome"
     input_ids.append(encoded_sent)
                                          tokenized: [CLS], 'this', 'is', 'troubles', '##ome', [SEP]]
  return input_ids
                                               input_ids: [[101, 2023, 2003, 13460, 8462, 102]]
# Get the length of the longest encoded sentence
def get_max_len(input_ids):
```

MAX_LEN = max([len(sen) for sen in input_ids])

return MAX_LEN

```
def padding(input_ids, MAX_LEN):
 # Pad our input tokens with value 0.
 # "post" indicates that we want to pad and truncate at the end of the sequence, as opposed to the beginning.
 input_ids = pad_sequences(input_ids, maxlen=MAX_LEN, dtype="long",
                          value=0, truncating="post", padding="post")
                     tokenized: [[CLS], 'this', 'is', 'troubles', '##ome', [SEP]]; e.g. MAX_LEN = 7
 return input_ids
                          input_ids after padding: [[ 101 2023 2003 13460 8462 102 0]]
                                                                   segments_ids: [[0, 0, 0, 0, 0, 0, 0]]
def Create_segmentsids_attentionmasks(input_ids):
                                                                 attention masks: [[1, 1, 1, 1, 1, 1, 0]]
 attention masks = []
 seaments ids = []
 # For each sentence...
 for id_sent in input_ids:
     # Create the attention mask:
     ## If a token ID is 0, then it's padding, then set the mask to 0 otherwise it's a real token, set the mask to 1.
     att_mask = [int(token_id > 0) for token_id in id_sent]
     # Create the segmentation embeddings:
     segm id = [0 for token id in id sent]
```

attention_masks.append(att_mask)
segments_ids.append(segm_id)

return attention_masks, segments_ids

```
def get embedding(input ids, segments ids, attention masks):
 # Convert the list of IDs to a tensor of IDs
 #[torch.LongTensor] is an int64 data type value.
 #[torch.Tensor] is a float32 data type value.
 model = BertModel.from_pretrained('bert-base-uncased', output hidden states=False)
 input_ids_tensor = torch.tensor(input_ids)
 segments_tensors = torch.tensor(segments_ids)
 attention_tensors = torch.tensor(attention masks)
 # Set the device to GPU (cuda) if available, otherwise stick with CPU
 device = 'cuda' if torch.cuda.is available() else 'cpu'
 model = model.to(device)
  input_ids = input_ids_tensor.to(device)
 segments_tensors = segments_tensors.to(device)
 attention_tensors = attention_tensors.to(device)
 # Put the model in "evaluation" mode, meaning feed-forward operation.
 model.eval()
 with torch.no grad():
     outputs = model(input ids, token type ids=segments tensors, attention mask=attention tensors)
     # Transformers models always output tuples.
     # The first element is the hidden state of the last layer of the Bert model
     encoded_layers = outputs[0]
                             tokenized: [CLS], 'this', 'is', 'troubles', '##ome', [SEP]]
                        input_ids after padding: [[ 101 2023 2003 13460 8462 102 0]]
  return encoded_layers
                                  output embedding is of torch.Size ([1, 7, 768])
```

```
def split(embedding, labels):
    rand_state = 0

    x_train, x_test, y_train, y_test = train_test_split(embedding, labels, test_size=0.1, random_state=rand_state,
    stratify=labels)
    x_test, x_val, y_test, y_val = train_test_split(x_test, y_test, test_size=0.5, random_state=rand_state,
    stratify=y_test)

return x_train, y_train, x_val, y_val, x_test, y_test
```

```
def build model(MAX LEN, batch_size, epochs, metric, hparams, arch_name):
  if arch_name == 'lstm':
    model = Sequential()
    model.add(LSTM(hparams[HP NUM UNITS], input shape=(MAX LEN,768), return sequences = False,
activation='tanh',recurrent dropout = hparams[HP_DROPOUT lstm]))
    #model.add(LSTM(hparams[HP_NUM_UNITS], return_sequences = False, activation='tanh', recurrent_dropout
=hparams[HP_DROPOUT_lstm]))
    model.add(Dropout(hparams[HP DROPOUT]))
    #model.add(Dense(hparams[HP_NUM_UNITS], activation='tanh'))
    #model.add(Dropout(hparams[HP DROPOUT]))
    model.add(Dense(1, activation="sigmoid"))
  elif arch name == 'bilstm':
    model = Sequential()
    model.add(Bidirectional(LSTM(hparams[HP_NUM_UNITS], return_sequences=False, activation='tanh',
    recurrent_dropout = hparams[HP_DROPOUT_lstm]), input_shape=(MAX_LEN,768)))
    #model.add(Bidirectional(LSTM(hparams[HP_NUM_UNITS], return_sequences = False, activation='tanh'
    ,recurrent dropout=0.15)))
    model.add(Dropout(hparams[HP_DROPOUT]))
    #model.add(Dense(50, activation='tanh'))
    #model.add(Dropout(hparams[HP DROPOUT]))
    model.add(Dense(1, activation="sigmoid"))
```

(continue next slide)

```
else: raise ValueError("unexpected architecture name: %r" % (arch_name,))
  loss = keras.losses.BinaryCrossentropy(from_logits=False)
 optimizer_name = hparams[HP_OPTIMIZER]
  learning_rate = hparams[HP_L_RATE]
  if optimizer_name == "adam":
      optimizer = tf.keras.optimizers.Adam(learning_rate = learning_rate)
  elif optimizer_name == "AdaDelta":
      optimizer = tf.keras.optimizers.Adadelta(learning_rate = learning_rate, rho=0.9, epsilon=1e-06, name="Adadelta")
  else:
      raise ValueError("unexpected optimizer name: %r" % (optimizer_name,))
 model.compile(loss = loss, optimizer = optimizer, metrics = metric)
 model.summary()
  return model
```

```
def evaluate(model, x_test, y_test, batch_sizem):
    print("evaluate on test dataset:\n")
    loss_test, acc_test, auc_test = model.evaluate(x_test, y_test, batch_size, verbose=1)
    return loss_test, acc_test, auc_test
```

```
def confusion(preds, labels):
  tn, fp, fn, tp = confusion_matrix(labels, preds).ravel()
  return tn, fp, fn, tp
def get_precision(preds, labels):
 tn, fp, fn, tp = confusion(preds, labels)
  return tp / (tp + fp)
def get_recall(preds, labels):
  tn, fp, fn, tp = confusion(preds, labels)
  return tp / (tp + fn)
def get_F1(preds, labels):
 precision = get_precision(preds, labels)
  recall = get_recall(preds, labels)
  F1= 2*(precision*recall)/(precision+recall)
  return F1
def get_accuracy(preds, labels):
  tn, fp, fn, tp = confusion(preds, labels)
 accuracy = (tn+tp)/(fp+fn+tn+tp)
  return accuracy
```