

⑫ 公開特許公報 (A)

平1-132844

⑬ Int. Cl. 4

D 02 G 3/20
A 01 G 1/00

識別記号

303

庁内整理番号

6936-4L
A-8602-2B

⑭ 公開 平成1年(1989)5月25日

審査請求 未請求 発明の数 2 (全4頁)

⑮ 発明の名称 ロックウール培地材およびその製造方法

⑯ 特願 昭62-288781

⑰ 出願 昭62(1987)11月16日

⑱ 発明者 朝井 紀明 長野県上水内郡牟礼村大字牟礼396番地 日アス鉱織株式会社内

⑲ 発明者 永井 正幸 長野県上水内郡牟礼村大字牟礼396番地 日アス鉱織株式会社内

⑳ 発明者 中村 千春 長野県上水内郡牟礼村大字牟礼396番地 日アス鉱織株式会社内

㉑ 出願人 日アス鉱織株式会社 長野県上水内郡牟礼村大字牟礼396番地

㉒ 代理人 弁理士 綿貫 隆夫 外1名

明細書

1. 発明の名称 ロックウール培地材およびその
製造方法

2. 特許請求の範囲

1. ロックウール繊維を撚り合わせて、直径1mm～8mm、長さ3cm～15cmのひも状に形成したことを特徴とするロックウール培地材。

2. ロックウールを固めるための熱硬化性のレジンを含んだ所定量のロックウール綿をひも状に撚り合わせた後、加熱して固めることを特徴とするロックウール培地材の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は植物栽培用培地として用いられるロックウール培地材およびその製造方法に関する。

(従来の技術およびその問題点)

植物栽培用の培地として用いられるロックウールは一般にはロックウール繊維をレジンを用いて85Kg/m³程度の密度に固めて成るものである。このロックウール培地はきわめて保水性がたかく、

体積の70%～90%程度の水分を保有する能力がある。このロックウールは、きうり、トマト等の通常の野菜を栽培している際には問題とならないが、蘭等のように過度の湿度を嫌うような植物にあっては、水分が多量に保持されるためにかえって培地として適さない。そのため、蘭等の過湿を嫌う植物の栽培にロックウールを使用した際は水管理がむずかしいという問題点があった。

このように、培地に水分が過度に含まれることを抑える目的で、本発明者はロックウールを粒状に形成したロックウール微粒綿をすでに開発している(特願昭62-25415号)。このロックウール微粒綿は、培地として使用した際、ロックウールの粒子間に空隙が形成されることによって、含水率を減少させる効果を有するものであり、また、土壤と混合して使用できる等の効果を有するものであるが、水分の含有率でみると、含水率を50%程度までは引き下げるができるものの、十分満足できるだけ引き下げるには至っていない。

そこで、本発明は上記問題点に鑑みてなされた

ものであり、その目的とするところは、蘭等の過湿を嫌う植物にも好適に使用することができる含水率の低いロックウール培地材およびこのロックウール培地材を容易に得ることのできる製造方法を提供するにある。

(問題点を解決するための手段)

本発明は上記目的を達成するため次の構成をそなえる。

すなわち、ロックウール繊維を燃り合わせて、直径1mm～8mm、長さ3cm～15cmのひも状に形成したことを特徴とし、また

ロックウールを固めるための熱硬化性のレジンを含んだ所定量のロックウール綿をひも状に燃り合わせた後、加熱して固めることを特徴とする。

(作用)

次に作用について述べる。

ロックウールを燃り合わせてひも状に形成したことにより、各ひも状のロックウールは水分を吸って膨潤することが少なく、ロックウール培地材自体に含有される水分量が少なくなること、また、

このロックウール培地材を容器内に収容した際には、ロックウール培地材が複雑に入り組んで収容されるから容器内に空間部分が多く形成されることにより、全体として培地の含水率を低下させることができる。

(実施例)

以下本発明の好適な実施例を添付図面に基づいて詳細に説明する。

第1図は、本発明に係るロックウール培地材の実施例を示す説明図である。同図で示すように本発明のロックウール培地材10はロックウールを燃り合わせて、太さ5mm、長さ5cm程度のひも状に形成したものである。そして、このひも状のロックウール培地材はかなり固めに縮まった状態で燃り合わせてある。

前記ロックウール培地材10は所定量の綿状のロックウールをレジンを混ぜて燃り合わせたもので、太さおよび長さはまちまちであり、また、その形状も直線状でなく湾曲しており、先端部は先細状となっている。

このロックウール培地材10はたとえば、鉢等の容器に詰めて使用することができるが、第1図に示すように個々のロックウール培地材10はいろいろな曲がったひも状に形成されているから、容器内に収納した際は、複雑に入り組んで収納され、これにより各ロックウール培地材10間にかなりの空隙を保つようにして収納される。これによって、容器内で空間部分が占める体積を大きくすることができる。

また、前記ひも状のロックウール培地材10は前述したように縮まった状態に密に燃り合わせてあるから、ロックウール培地材10が水分を吸って膨潤せず、その結果1本1本のひも状のロックウール培地材それぞれに保有される水分量も少なくなる。

第2図はこのロックウール培地材10と他の培地材料の保水力を検定するために、各種培地材に対して土柱法(PF 1.5)によって保水力を検定した結果を示すグラフである。このグラフでa～iは異なる9種の培地材に対するグラフであり、各

曲線は以下の培地材に対応する。a=ピートモス(100Kg/m³)、b=水苔(15Kg/m³)、c=ロックウール培地材、キュア済み(76.4Kg/m³)、d=ロックウールポット(85Kg/m³)、e=鹿沼土(410Kg/m³)、f=バーライト(300Kg/m³)、g=バーミキュライト(216Kg/m³)、h=ロックウール微粒綿(180Kg/m³)、i=ロックウール培地材、未キュア(111Kg/m³)。

このグラフからわかるようにキュア処理がなされた前記ロックウール培地材10を使用することにより、最大飽和量を30～40%W/V程度にまで下げることができた。

そして、このように含水率を下げることができた結果、蘭等の過湿を嫌う植物であってもこのロックウール培地材10を使用することによって良好に生育させることが容易に可能となる。

とくに、このロックウール培地材は常に60%程度の空気相を保有しているので、根腐れ等の問題を回避することができ、蘭等の生育に好適に使用できる。

なお、上述したロックウール培地材10を製造する際は、所定量の綿状のロックウールを燃り合わせて形成されるが、第3図に示すように、たとえば、上下に並置されたコンベヤベルト間にロックウールを通過させて燃り合わせることができる。第3図で12および14はコンベヤベルトであり、16はコンベヤベルト12上に載置されるロックウール綿である。このロックウール綿16はあらかじめ、適宜長さの細長い形状に形成され、ロックウール綿を固めるためのレジンが含浸されている。このロックウール綿16はコンベヤベルト12上を移送され、コンベヤベルト14との間で挿圧され、コンベヤベルト12、14間の摩擦によって燃り合わせて前方に移送される。こうして、燃り合わせたひも状に形成されたロックウールを加熱して固めることにより、前記ロックウール培地材10を得ることができる。なお、第3図の例では、コンベヤベルト12と14とは進行方向が逆方向にセットされ、コンベヤベルト12の移送速度はロックウール綿16を前方に移送するた

めにコンベヤベルト16の循環速度よりも大きく設定してある。

なお、ロックウール培地材10の太さは燃り合わせる際に使用するロックウール綿16の量を調節することによって簡単に変えることができ、また、ロックウール綿16の長さを変えることによってロックウール培地材10の長さを変えることができる。

このように、ロックウール培地材10の太さあるいは長さを変えることによって、水分の含有率を適宜変えることができるので、種々の栽培植物に適したロックウール培地材10を提供することができる。これによって、さらに水管理を容易にすることができる。

なお、ロックウール綿を燃り合わせる方法は上述した例に限定されるものではなく、公知の種々の方法が使用可能である。

以上、本発明について好適な実施例を挙げて種々説明したが、本発明はこの実施例に限定されるものではなく、発明の精神を逸脱しない範囲内で

多くの改変を施し得るのはもちろんのことである。
(発明の効果)

本発明のロックウール培地材は、上述したように、ロックウールを燃り合わせたひも状に形成されているので、このロックウール培地材を容器に収容した場合の水分の含有率が従来のロックウール培地に比較して大きく低下させることができる。これにより、蘭等の過湿を嫌う植物の栽培にこのロックウール培地材を好適に使用することができる。

また、このロックウール培地材はロックウール綿を燃り合わせるだけできわめて容易に製造することができ、容易に量産することができる等の著効を奏する。

4. 図面の簡単な説明

第1図は本発明に係るロックウール培地材を示す説明図、第2図は種々の培地についての含水率を示すグラフ、第3図はロックウール培地材の製造方法を示す説明図である。

10・・・ロックウール培地材、

12、14・・・コンベヤベルト、
16・・・ロックウール綿。

特許出願人

日アス鉱業株式会社

代表者 小杉 彰

代理人 (7762) 弁理士
綿貫 隆夫 (他)
印

第 1 図

第 3 図

第 2 図

(%W/V)

PAT-NO: JP401132844A
DOCUMENT-IDENTIFIER: JP 01132844 A
TITLE: ROCK WOOL MEDIUM MATERIAL
AND PRODUCTION THEREOF
PUBN-DATE: May 25, 1989

INVENTOR-INFORMATION:

NAME	COUNTRY
ASAI, NORIAKI	N/A
NAGAI, MASAYUKI	N/A
NAKAMURA, CHIHARU	N/A

ASSIGNEE-INFORMATION:

NAME	COUNTRY
NICHIASU KOSEN KK	N/A

APPL-NO: JP62288781

APPL-DATE: November 16, 1987

INT-CL (IPC): D02G003/20 , A01G001/00

US-CL-CURRENT: 47/9 , 47/FOR.100

ABSTRACT:

PURPOSE: To obtain a rock wool medium material having a little water content and a large air phase, and suitable for growing an orchid, etc., by twisting the rock wool fiber to form a string like state having a specific size.

CONSTITUTION: This rock wool medium material 10 is obtained by twisting the rock wool fiber to form a string like state having 1-8 mm diameter and 3-15 cm length. Further, it is preferable to contain a thermosetting resin in the rock wool fiber and heating to solidify after forming it as the string like state.

COPYRIGHT: (C)1989, JPO