Study of Pentaquark and $\Lambda(1405)$

H. Nemura * and C. Nakamoto †

* Advanced Meson Science Laboratory, DRI, RIKEN, Wako, Saitama 351-0198, Japan

† Suzuka National College of Technology, Suzuka, Mie 510-0294, Japan

Abstract. We perform a five-body calculation for pentaquark $(q^4\bar{q})$ state of $\Lambda(1405)$ as well as the three-body calculations for the ground state baryons and the $\Lambda(1405)$, and two-body calculations for mesons. The hamiltonian, which reproduces reasonably well the energies of ground state baryons $(N, \Lambda, \Sigma, \Xi \text{ and } \Delta)$ and mesons (π, K, ρ, K^*) , includes kinetic energy of semi-relativistic form, linear confinement potential, and the simplest form of color-magnetic interaction with Gaussian form factor. Flavor symmetry breaking $(m_s > m_{u,d})$ is taken into account. The energy calculated for $(q^4\bar{q})$ state of $\Lambda(1405)$ is lower than the energy for the (q^3) state. The present result suggests that the $\Lambda(1405)$ is a pentaquark-dominated state if the color-magnetic potential plays a leading role of the quark-quark and quark-antiquark interactions.

INTRODUCTION

The $\Lambda(1405)$, $J^{\pi}=\frac{1}{2}^{-}$, has the smallest mass in the negative parity states of the baryon spectrum. Several constituent quark-model studies have been mentioning that the contribution of $(q^4\bar{q})$ configurations could be large in the $\Lambda(1405)$ [1, 2]. If this is the case, all of the five quarks may occupy their lowest $(0s)^5$ orbits, since an antiquark has the intrinsic negative parity. If we assume that the flavor SU(3) is an exact symmetry, one can find that two kinds of the $(q^4\bar{q})$ states for $\Lambda(1405)$,

$$|\Lambda(1405)\rangle = [5]_R[222]_C[222]_F[32]_S,$$
 (1)

give strongly attractive color-magnetic interactions: (The subscripts (*RCF* and *S*) stand for the position coordinates, color, flavor and spin space, respectively.)

$$\left\langle \sum_{i < j} (\lambda_i^C \cdot \lambda_j^C) (\sigma_i \cdot \sigma_j) \right\rangle = \begin{cases} 16 & (\text{ for } [22]_S \text{ of } (q^4)), \\ 80/3 & (\text{ for } [31]_S \text{ of } (q^4)), \end{cases}$$
 (2)

where λ^C stands for the color SU(3) generator, and σ is Pauli matrices for the spin. These attractive forces make lower the mass of the $(q^4\bar{q})$ state than that of the (q^3) . However, the flavor symmetry is manifestly broken. A precise five-body calculation as well as the three-body calculation should be performed in order to clarify whether the mass of $(q^4\bar{q})$ state for the $\Lambda(1405)$ is still smaller than that of (q^3) state, even if the flavor symmetry breaking is taken into account. Therefore, the purpose of this study is to describe a five-body calculation of pentaquark $(q^4\bar{q})$ state for the $\Lambda(1405)$.

TABLE 1. Parameters of the present model.

$m_{u,d}$	$m_{\scriptscriptstyle S}$	V_0	C	α	Λ	
0.34 GeV	0.5508 GeV	0.4534 GeV	$0.08265 (GeV)^2$	1.08	0.204 fm	

INTERACTIONS AND METHOD

The hamiltonian is given by

$$H = \sum_{i=1}^{A} \sqrt{m_i^2 + \mathbf{p}_i^2} + \sum_{i < j} V_{ij}^{(\text{conf})} + \sum_{i < j} V_{ij}^{(\text{CM})}, \qquad \left(\text{with } \sum_{i=1}^{A} \mathbf{p}_i = 0 \right),$$
 (3)

where m_i and \mathbf{p}_i are the mass and the momentum operator of the *i*-th quark (or antiquark). The two-body $(qq \text{ or } q\bar{q})$ interaction consists of a confinement potential and a color-magnetic potential:

$$V_{ij}^{(\text{conf})} = \left(-\frac{3}{8}\right) \left(\lambda_i^C \cdot \lambda_j^C\right) \left(-V_0 + Cr_{ij}\right), \quad \text{and}$$
 (4)

$$V_{ij}^{(\text{CM})} = -\alpha \frac{2\pi}{3m_i m_j} \left(\frac{\lambda_i^C}{2} \cdot \frac{\lambda_j^C}{2} \right) \left(\sigma_i \cdot \sigma_j \right) \times \frac{1}{\left(2\sqrt{\pi}\Lambda \right)^3} \exp\left\{ -\frac{r_{ij}^2}{4\Lambda^2} \right\}, \tag{5}$$

where $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ is the interparticle coordinate. The delta-function in the color-magnetic potential is replaced by a Gaussian form factor with the size parameter Λ . All of the parameters of the present hamiltonian are given in Table 1.

The energies of various systems are calculated by the stochastic variational method (SVM)[3]. The trial function is given by a combination of basis functions:

$$\Psi = \sum_{k=1}^{K} c_k \varphi_k, \quad \text{with} \quad \varphi_k = \mathscr{A} \left\{ G(\mathbf{x}; A_k) \ v_k^{L_k} \ \left[Y_{L_k}(\hat{\mathbf{v}}_k) \times \chi_{S_k} \right]_{JM} \eta_{kIM_I} \xi_{k(00)} \right\}.$$
(6)

Here \mathscr{A} is an antisymmetrizer acting on the identical particles. For the spin (χ_k) , the isospin (η_k) , and the color (ξ_k) functions, all possible configurations are taken into account. The abbreviation $\mathbf{x}=(\mathbf{x}_1,\cdots,\mathbf{x}_{A-1})$ is a set of relative coordinates. For the spatial part, the basis function is constructed by the correlated Gaussian (CG), $G(\mathbf{x};A_k)$, multiplied by the orbital angular momentum part. The CG is given by

$$G(\mathbf{x}; A_k) = \exp\left\{-\frac{1}{2} \sum_{i < j}^{A} \alpha_{kij} (\mathbf{r}_i - \mathbf{r}_j)^2\right\} = \exp\left\{-\frac{1}{2} \sum_{i,j=1}^{A-1} A_{kij} \mathbf{x}_i \cdot \mathbf{x}_j\right\}.$$
(7)

The orbital angular momentum part, which is needed to the (q^3) model of $\Lambda(1405)$, is expressed by the global vector representation. The global vector, \mathbf{v}_k , is given by a linear combination of the relative coordinates:

$$\mathbf{v}_k = \sum_{i=1}^{A-1} (u_k)_i \mathbf{x}_i. \tag{8}$$

TABLE 2. Energies of baryons and mesons, given in units of MeV. The energies of the three-body model and the five-body model for $\Lambda(1405)$ are also given.

	Baryons				Mesons				Λ(1405)		
	N	Δ	Λ	Σ	[1]	π	K	ρ	<i>K</i> *	(q^{3})	$(q^4ar{q})$
Calc.	949	1266	1116	1208	1336	141	543	771	907	1405	1292
Expt.	939	1232	1116	1193	1318	137	496	776	892	1406 ± 4	

The A_k and u_k are sets of nonlinear parameters which characterize the spatial part of the basis function. The variational parameters are optimized by a stochastic procedure. The SVM with the above CG basis produces accurate solutions. The reader is referred to Refs.[4, 5] for details and recent applications.

RESULTS AND DISCUSSION

Table 2 lists the energies of three-body calculations (ground state baryons) and of two-body calculations (mesons). All of the calculated energies reasonably well reproduce the experimental values. The table also shows the energies of the three-body model and of the five-body model for the $\Lambda(1405)$. The present (q^3) model for the $\Lambda(1405)$ happens to reproduce the correct mass. However, this is not the point in the present study.

The remarkable result is seen in the five-body model of the $\Lambda(1405)$. The energy calculated for the $(q^4\bar{q})$ state is lower than that for the (q^3) state. Therefore, the present result suggests that the $\Lambda(1405)$ is a pentaquark-dominated state if the color-magnetic potential plays a leading role of the q-q and $q-\bar{q}$ interactions. In the present model, the $(q^4\bar{q})$ state is a bound state since the energy obtained for the $(q^4\bar{q})$ state is lower than both the $\pi+\Sigma$ and the $\bar{K}+N$ thresholds, which are calculated to be 1348 MeV and 1492 MeV, respectively. More realistic model, e.g., taking account of effective meson-exchange force or coupling potential between (q^3) and $(q^4\bar{q})$, will be described in future publication. An attempt along this line has been made in Ref. [6].

ACKNOWLEDGMENTS

H. N. is supported by the Special Postdoctoral Researchers Program at RIKEN. This study was supported by Grants-in-Aid for Young Scientists (B) (No. 17740174 and No. 15740161) from the Japan Society for the Promotion of Science (JSPS).

REFERENCES

- 1. F. Brau, C. Semay, and B. Silvestre-Brac, Phys. Rev. C 66, 055202 (2002).
- 2. C. Helminen, and D. O. Riska, Nucl. Phys. A 699, 624- (2002).
- 3. Y. Suzuki, and K. Varga, *Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems*, Lecture Notes in Physics, Vol. m54 (Springer-Verlag, Berlin Heidelberg, 1998).
- 4. H. Nemura, Y. Akaishi, and Y. Suzuki, Phys. Rev. Lett. 89, 142504 (2002).

- 5. H. Nemura, S. Shinmura, Y. Akaishi and Khin Swe Myint, *Phys. Rev. Lett.* 94, 202502 (2005).
 6. C. Nakamoto, and H. Nemura, in these proceedings.