2022-2023 MP2I

13. Structures algébriques usuelles, corrigé

Exercice 1. (m) Soit E = [0, 1]. On définit la loi * sur E par $\forall x, y \in E, x * y = x + y - xy$.

1) * est clairement commutative $(\forall x,y\in E,\ x*y=y*x)$. Pour l'associativité, si on prend $x,y,z\in E$:

$$x*(y*z) = x*(y+z-yz) = x+y+z-yz-x(y+z-yz) = x+y+z-yz-xy-xz+zyz.$$

Un calcul similaire montre que (x*y)*z = x+y+z-xy-yz-xz+xyz ce qui prouve l'associativité.

Il ne reste plus qu'à montrer que E est stable par * (pour avoir une lci). Si on prend $x, y \in [0, 1]$, alors on a tout d'abord :

$$x * y = x(1 - y) + y.$$

Puisque $1-y \ge 0$, $x \ge 0$ et $y \ge 0$, on a bien $x * y \ge 0$. De plus, on a aussi :

$$x * y = x(1 - y) + y = x(1 - y) + y - 1 + 1 = (x - 1)(1 - y) + 1.$$

Puisque $x-1 \le 0$ et $1-y \ge 0$, on a donc $x * y \le 1$. On a donc bien $x * y \in [0,1]$ ce qui prouve que E est stable par *.

2) On cherche $e \in E$ tel que $\forall x \in E$, x*e = e*x = x. On remarque que $e = 0 \in E$ convient. Pour trouver les éléments inversibles, si on fixe $x \in E$, on cherche $y \in E$ tel que x*y = y*x = 0. On étudie donc l'équation :

$$x + y - xy = 0 \Leftrightarrow y(1 - x) = -x.$$

On remarque que x=1 n'est pas inversible (on obtient une absurdité). Pour $x\in [0,1[$, on trouve comme inverse potentiel $y=\frac{x}{x-1}$. Or, pour $x\in]0,1[$, on a x>0 et x-1<0. On a donc y<0, ce qui entraine que $y\notin E$. On en déduit donc finalement que 0 est le seul élément inversible pour * dans E.

Montrer que * possède un élément neutre. Quels sont les éléments de E inversibles pour *?

Exercice 2.

- 1) Puisque x et y commutent et que * est associtative, on a (x*y)*(x*y) = (x*x)*(y*y) = x*y. On a donc bien x*y idempotent.
- 2) On suppose que x est idempotent et inversible. On a donc x*x=x et puisque x^{-1} existe, en multipliant par x^{-1} à droite, on obtient $x*x*x^{-1}=x*x^{-1}$, ce qui entraine que x*e=e (on note e l'élément neutre). On a donc x=e, ce qui entraine $x^{-1}=e$. Puisque e*e=e, on a bien x^{-1} est idempotent.

Exercice 3. On a clairement $Z(G) \subset G$. On a $e \in Z(G)$ car $\forall x \in G$, x * e = x et e * x = x donc e * x = x * e. Supposons à présent que $x_1, x_2 \in G$. On a alors pour tout $y \in G$ en utilisant l'associativité de * et le fait que x_1 et x_2 commutent avec tous les éléments de G:

$$(x_1 * x_2) * y = x_1 * (x_2 * y)$$

$$= x_1 * (y * x_2)$$

$$= (x_1 * y) * x_2$$

$$= (y * x_1) * x_2$$

$$= y * (x_1 * x_2).$$

On a donc $x_1 * x_2 \in Z(G)$.

Enfin, si $x \in Z(G)$, alors, pour tout $y \in G$, on a x * y = y * x. En multipliant par x^{-1} à gauche, on obtient $y = x^{-1} * y * x$. En multipliant par x^{-1} à droite, on obtient à présent $y * x^{-1} = x^{-1} * y$. On en déduit que $x^{-1} \in Z(G)$.

On a donc bien que Z(G) est un sous-groupe de G.

Exercice 4. On a $1 \in \mathbb{U}_1$ par exemple donc $1 \in \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$. Soient $z_1, z_2 \in \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$. Il existe alors n_1 et n_2 dans \mathbb{N}^* tels que $z_1 \in \mathbb{U}_{n_1}$ et $z_2 \in \mathbb{U}_{n_2}$. On a donc $z_1^{n_1} = 1$ et $z_2^{n_2} = 1$. On en déduit alors que :

$$(z_1 z_2)^{n_1 n_2} = (z_1^{n_1})^{n_2} ((z_2)^{n_2})^{n_1} = 1.$$

On a donc $z_1z_2 \in \mathbb{U}_{n_1n_2}$ d'où $z_1z_2 \in \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$.

Si $z \in \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$, alors il existe $n \in \mathbb{N}^*$ tel que $z \in \mathbb{U}_n$ et puisque \mathbb{U}_n est un groupe pour la loi \times , on a $z^{-1} \in \mathbb{U}_n$ et donc $z^{-1} \in \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$.

On en déduit que $\bigcup_{n\in\mathbb{N}^*}\mathbb{U}_n$ est un groupe. Ce n'est par contre pas égal à \mathbb{U} . En effet, posons $z=e^{2i\pi\sqrt{2}}$. Supposons par l'absurde que $z\in\bigcup_{n\in\mathbb{N}^*}\mathbb{U}_n$. Il existe alors $n\in\mathbb{N}^*$ tel que $z\in\mathbb{U}_n$ et donc tel que $z^n=1$. Or, on a :

$$z^n = 1 \Leftrightarrow e^{2i\pi\sqrt{2}n} = 1 \Leftrightarrow 2\pi\sqrt{2}n \equiv 0 \ [2\pi].$$

Ceci entraine que $\exists p \in \mathbb{Z} \ / \ 2\pi\sqrt{2}n = p2\pi$, soit que $\sqrt{2} = \frac{p}{n}$. On a alors $\sqrt{2} \in \mathbb{Q}$: absurde! On a donc $z \notin \bigcup_{n \in \mathbb{N}} \mathbb{U}_n$ alors que $z \in \mathbb{U}$ (car |z| = 1 car pour tout $\theta \in \mathbb{R}$, $|e^{i\theta}| = 1$).

Exercice 5.

- 1) Remarquons déjà que aHa^{-1} est bien défini car $a \in G$ est inversible et donc a^{-1} existe bien. On a de plus puisque G est stable par * que pour tout $x \in H \subset G$, $a*x*a^{-1} \in G$. On a donc $aHa^{-1} \subset G$. On va alors utiliser la caractérisation des sous-groupes :
- aHa^{-1} est non vide (il contient par exemple le neutre e car $e \in H$ et $a*e*a^{-1} = a*a^{-1} = e$).
- Enfin, si $x, y \in aHa^{-1}$, alors par définition il existe $x_2, y_2 \in H$ tels que $x = a * x_2 * a^{-1}$ et $y = a * y_2 * a^{-1}$. y est alors dans G et est inversible. On a alors:

$$y^{-1} = (a * y_2 * a^{-1})^{-1} = (a^{-1})^{-1} * y_2^{-1} * a^{-1} = a * y_2 * a^{-1}.$$

On en déduit par associativité de * que :

$$x * y^{-1} = a * x_2 * a^{-1} * a * y_2^{-1} * a^{-1} = a * x_2 * y_2^{-1} * a^{-1}.$$

Enfin, puisque $x_2 * y_2^{-1} \in H$ (car H est un groupe), on a bien $x * y^{-1} \in aHa^{-1}$.

Ces deux points entrainent que H est un sous groupe de G.

2) Montrons que aH = H si et seulement si $a \in H$.

Supposons dans un premier temps que aH = H soit un sous groupe de G. On a alors $e \in aH$ donc il existe $x \in H$ tel que e = a * x, ce qui entraine que $a = x^{-1}$. Puisque $x \in H$ et que H est un groupe, on en déduit que $x^{-1} \in H$, d'où $a \in H$.

Réciproquement, supposons que $a \in H$. On remarque alors que $aH \subset H$ (car H est stable par *). Réciproquement, si $x \in H$, on a $x = a*(a^{-1})*x$, ce qui entraine que $x \in aH$ (car $a^{-1}*x \in H$ puisque a et x sont dans H).

Exercice 6. Soient $x, y \in G$. On remarque que x * x = e donc $x^{-1} = x$ et de meme $y^{-1} = y$. On a alors :

$$x * y = (x * y)^{-1} = y^{-1} * x^{-1} = y * x.$$

G est donc un groupe commutatif.

Exercice 7. (m) Soit $G = \mathbb{R}^* \times \mathbb{R}$ et * la loi définie par :

$$\forall (x,y), (x',y') \in G, (x,y) * (x',y') = (xx',xy'+y).$$

- 1) On trouve comme élément neutre (1,0) (fonctionne des deux côtés). La stabilité par * ne pose aucun problème. L'associativité est un peu pénible à écrire mais ne pose pas de souci. En résolvant (x,y)*(x',y')=(1,0), on trouve que $(x,y)^{-1}=\left(\frac{1}{x},-\frac{y}{x}\right)$ qui est bien dans G (on vérifie que cette formule fonctionne également à gauche). Enfin, pour la non commutativité, on a par exemple (1,2)*(2,1)=(2,3) et (2,1)*(1,2)=(2,5) donc G n'est pas un groupe commutatif.
- 2) On a clairement $\mathbb{R}_+^* \times \mathbb{R} \subset \mathbb{R}^* \times \mathbb{R}$. L'élément neutre (1,0) est également dans $\mathbb{R}_+^* \times \mathbb{R}$ et $\mathbb{R}_+^* \times \mathbb{R}$ est stable pour la loi * (en effet, si x et x' sont strictements positifs, alors xx' aussi et donc $(x,y)*(x',y') \in \mathbb{R}_+^* \times \mathbb{R}$. Enfin, on avait trouvé comme inverse de (x,y) le couple $(\frac{1}{x},-\frac{y}{x})$ et si x>0, alors $\frac{1}{x}>0$ donc l'inverse est également dans $\mathbb{R}_+^* \times \mathbb{R}$. On a donc bien un sous-groupe de (G,*).

Exercice 8. La commutativité de * ne pose pas de problème. Pour l'associativité, on calcule :

$$(x_1 * x_2) * x_3 = \left(\frac{x_1 + x_2}{1 + x_1 x_2}\right) * x_3$$

$$= \frac{\frac{x_1 + x_2}{1 + x_1 x_2} + x_3}{1 + \frac{x_1 x_3 + x_2 x_3}{1 + x_1 x_2}}$$

$$= \frac{x_1 + x_2 + x_3 + x_1 x_2 x_3}{1 + x_1 x_2 + x_1 x_3 + x_2 x_3}.$$

On trouve exactement le même résultat pour $x_1 * (x_2 * x_3)$ donc la loi est associative. On vérifie sans difficulté que 0 est élément neutre pour la loi *. Il reste à vérifier la stabilité de G par * et l'existence d'un inverse à tout élément de G.

Pour la stabilité, fixons $y \in]-1,1[$ et étudions la fonction $f:x\mapsto \frac{x+y}{1+xy}$ sur]-1,1[. Cette fonction est bien définie et dérivable sur cet intervalle. On a pour tout $x\in]-1,1[$:

$$f'(x) = \frac{1 - y^2}{(1 + xy)^2} > 0.$$

Ceci entraine que f est strictement croissante. Or, on a $\lim_{x\to -1} f(x) = -1$ et $\lim_{x\to 1} f(x) = 1$. On a donc bien f à valeurs dans]-1,1[, ce qui entraine que G est stable pour la loi *.

On remarque enfin que si $x \in]-1,1[$, alors on a x*(-x)=(-x)*x=0 et que $-x \in]-1,1[$. Tous les éléments de G sont donc inversibles pour *. On a donc bien (G,*) qui est un groupe commutatif.

Exercice 9. Union de groupes. Si $G_1 \subset G_2$, on a $G_1 \cup G_2 = G_2$ qui est donc bien un groupe. On raisonne de même si $G_2 \subset G_1$. Le seul sens qui pose problème est la réciproque.

Supposons par la contraposée que G_1 n'est pas inclus dans G_2 et que G_2 n'est pas inclus dans G_1 et montrons que $G_1 \cup G_2$ n'est pas un groupe. Soit $a \in G_1$ tel que $a \notin G_2$ et $b \in G_2$ tel que $b \notin G_1$. Considérons c = a * b.

On a $c \notin G_1$. En effet, par l'absurde, si $c \in G_1$, alors puisque $a \in G_1$, on a $a^{-1} \in G_1$ (car G_1 est un groupe) et donc $a^{-1} * c \in G_1$ (car G_1 est un groupe). On a donc $b \in G_1$: absurde!

De même, on a $c \notin G_2$ (on multiplie par b^{-1} à droite pour avoir une absurdité).

On a donc a et b dans $G_1 \cup G_2$ et $a * b \notin G_1 \cup G_2$. $G_1 \cup G_2$ n'est donc pas un groupe.

Exercice 10. Soit (G, *) un groupe non commutatif dont l'élément neutre est noté e. Soit $n \in \mathbb{N}^*$ tel que $(a * b)^n = e$.

On peut réécrire cette égalité comme (a*b)*(a*b)*...*(a*b) = e, ou en utilisant l'associativité, on a alors a*(b*a)*(b*a)*...*(b*a)*b = e, c'est à dire $a*(b*a)^{n-1}*b = e$. On peut alors multiplier cette égalité par a^{-1} à gauche. On obtient $(b*a)^{n-1}*b = a^{-1}$. On multiplie ensuite par a à droite, ce qui donne $(b*a)^n = e$.

Exercice 11.

Tout d'abord (\mathbb{R}^*, \times) est bien un groupe (de neutre 1). On a $\varphi(1) = 1^2 = 1$ et pour $x, y \in \mathbb{R}^*$, $\varphi(x \times y) = (xy)^2 = x^2y^2 = \varphi(x) \times \varphi(y)$. On en déduit que φ est un morphisme de groupe.

On a alors $\ker(\varphi) = \{x \in \mathbb{R}^* / \varphi(x) = 1\} = \{-1, \} \text{ et } \operatorname{Im}(\varphi) = \{x^2, x \in \mathbb{R}^*\} = R_+^*.$

Exercice 12. Puisque φ est un morphisme de groupe, on a $\forall x, y \in \mathbb{R}$, $\varphi(x+y) = \varphi(x)\varphi(y)$. Fixons $y \in \mathbb{R}$. Puisque φ est dérivable, on en déduit en dérivant par rapport \tilde{A} x que :

$$\forall x \in \mathbb{R}, \ 1 \times \varphi'(x+y) = \varphi'(x)\varphi(y).$$

En x = 0, on obtient alors que pour tout $y \in \mathbb{R}$, $\varphi'(y) = \varphi'(0)\varphi(y)$. En posant $\alpha = \varphi'(0) \in \mathbb{R}$, on en déduit que φ est solution de l'équation différentielle homogène :

$$\varphi' - \alpha \varphi = 0.$$

On en déduit qu'il existe $\lambda \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}$, $\varphi(x) = ke^{\alpha x}$. Or, puisque φ est un morphisme de groupe, on a $\varphi(0) = 1$ (φ envoie le neutre de (\mathbb{R} , +) sur le neutre de (\mathbb{R}^* , ×)). On a donc k = 1.

On en déduit finalement qu'il existe $\alpha \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}$, $\varphi(x) = e^{\alpha x}$. On peut alors vérifier réciproquement que pour tout $\alpha \in \mathbb{R}$, $x \mapsto e^{\alpha x}$ est bien un morphisme de groupe de $(\mathbb{R}, +)$ dans (\mathbb{R}_+^*, \times) .

Exercice 13. On a tout d'abord $0 \in n\mathbb{Z}$ (car $0 = n \times 0$) donc $n\mathbb{Z} \neq \emptyset$. On a clairement $n\mathbb{Z} \subset \mathbb{Z}$. Enfin, si $x, y \in n\mathbb{Z}$, alors, il existe $k_1, k_2 \in \mathbb{Z}$ tels que $x = nk_1$ et $y = nk_2$. On a alors :

$$x - y = n(k_1 - k_2)$$

avec $k_1 - k_2 \in \mathbb{Z}$. On en déduit que $x - y \in n\mathbb{Z}$. Par caractérisation des sous-groupes, on en déduit que $n\mathbb{Z}$ est un sous-groupe de \mathbb{Z} (et c'est donc un groupe).

Posons pour $x \in \mathbb{Z}$, $\varphi(x) = nx$. On a φ qui est bien définie de \mathbb{Z} dans $n\mathbb{Z}$ et on a $\forall x, y \in \mathbb{Z}$, $\varphi(x+y) = n(x+y) = nx + ny = \varphi(x) + \varphi(y)$. φ est donc bien un morphisme de groupe. C'est de plus clairement un isomorphisme. En effet, elle est injective car si $nx_1 = nx_2$, alors $x_1 = x_2$ car $n \neq 0$ et si $y \in n\mathbb{Z}$, alors on a $x = \frac{y}{n} \in \mathbb{Z}$ et $\varphi(x) = y$ d'où la surjectivité. On a donc bien \mathbb{Z} et $n\mathbb{Z}$ qui sont isomorphes.

Exercice 14. Supposons par l'absurde qu'il existe φ un morphisme de groupe bijectif de $(\mathbb{Z}, +)$ dans $(\mathbb{Z}^2, +)$. On a alors $\varphi(0) = (0, 0)$. On a ensuite $\varphi(1) = (k_1, k_2)$ avec $k_1, k_2 \in \mathbb{Z}$. On montre alors par récurrence que pour $n \in \mathbb{N}$, $\varphi(n) = (nk_1, nk_2)$. Ensuite, on a que si n < 0:

$$\varphi(n) = \varphi(-(-n)) = -\varphi(-n) = -(-nk_1, -nk_2) = (nk_1, nk_2).$$

On en déduit finalement que pour $n \in \mathbb{Z}$, $\varphi(n) = (nk_1, nk_2)$. Ceci entraine que si $k_1 \neq 0$, le point (0,1) n'est pas atteint par φ (car on a pour $n \neq 0$, $\varphi(n) = (nk_1, nk_2)$ et $nk_1 \neq 0$ et $\varphi(0) = (0,0) \neq (0,1)$. Si $k_1 = 0$, c'est cette fois le point (1,0) qui n'est pas atteint (car pour $n \in \mathbb{Z}$, $\varphi(n) = (0, nk_2)$).

Ceci entraine qu'il n'y a pas d'isomorphisme de $(\mathbb{Z}, +)$ dans $(\mathbb{Z}^2, +)$.

Exercice 15.

1) On a $3 \in \mathbb{Z}$. Supposons qu'il existe $x \in \mathbb{Z}$ tel que 3 = x + x. On a alors $x = \frac{3}{2} \notin \mathbb{Z}$: absurde! On en déduit que $(\mathbb{Z}, +)$ ne vérifie pas (D).

Soit à présent $x \in \mathbb{Q}$. On a alors $\frac{x}{2} \in \mathbb{Q}$ et $x = \frac{x}{2} + \frac{x}{2}$. On en déduit que \mathbb{Q} vérifie la propriété (D).

2) Soit φ un isomorphisme entre G_1 et G_2 . Supposons que G_1 vérifie la propriété (D) et montrons que G_2 la vérifie. Soit $y_1 \in G_2$. Il existe alors (puisque φ est un isomorphisme) $x_1 \in G_1$ tel que $y_1 = \varphi(x_1)$. Puisque G_1 vérifie (D), il existe $x_2 \in G_1$ tel que $x_1 = x_2 *_1 x_2$. Puisque φ est un morphisme, on a alors :

$$y_1 = \varphi(x_1) = \varphi(x_2) *_2 \varphi(x_2).$$

En posant alors $y_2 = \varphi(x_2) \in G_2$, on a alors $y_1 = y_2 *_2 y_2$ ce qui entraine bien que G_2 vérifie (D).

Par l'absurde, s'il existait un isomorphisme entre $(\mathbb{Z}, +)$ et $(\mathbb{Q}, +)$, alors puisque \mathbb{Q} vérifie la propriété (D), \mathbb{Z} la vérifierait aussi ce qui n'est pas le cas d'après la première question. Il n'existe donc pas un tel isomorphisme.

- 3) Applications.
 - a) \mathbb{R}^* ne vérifie pas (D) car $-1 \in \mathbb{R}^*$ et il n'existe pas de $x \in \mathbb{R}^*$ tel que $-1 = x^2$ (car $x^2 > 0$). Par contre, \mathbb{R}_+^* vérifie la propriété (D) car si $x \in \mathbb{R}_+^*$, alors $x = \sqrt{x} \times \sqrt{x}$ et $\sqrt{x} \in \mathbb{R}_+^*$. D'après la question 2, on en déduit que \mathbb{R}^* et \mathbb{R}_+^* ne sont pas isomorphes.
 - b) Comme on l'a vu, (\mathbb{R}^*, \times) ne vérifie pas (D). Cependant, (\mathbb{C}^*, \times) la vérifie car pour tout $z \in \mathbb{C}^*$, il existe $z_2 \in \mathbb{C}^*$ tel que $z = z_2^2$ (car tout complexe admet une racine carrée dans \mathbb{C} , on peut le reprouver en passant par la forme exponentielle car $\rho e^{i\theta} = (\sqrt{\rho}e^{i\theta/2})^2$). D'après la question 2, on en déduit que \mathbb{R}^* et \mathbb{C}^* ne sont pas isomorphes.

Exercice 16. On pose $\varphi: \left\{ \begin{array}{ll} \mathbb{R}_+^* \times \mathbb{U} & \to & \mathbb{C}^* \\ (x,u) & \to & xu \end{array} \right.$. φ est bien définie car $xu \neq 0$ car $x \neq 0$ et $u \neq 0$. On a $\varphi(1,1) = 1$ et pour $(x_1,u_1), (x_2,u_2) \in \mathbb{R}_+^* \times \mathbb{U}$, on a :

$$\varphi((x_1, u_1) * (x_2, u_2)) = \varphi(x_1 x_2, u_1 u_2)
= x_1 x_2 u_1 u_2
= x_1 u_1 \times x_2 u_2
= \varphi(x_1, u_1) \times \varphi(x_2, u_2).$$

On en déduit que φ est un morphisme de groupe. Enfin, on sait que pour tout $z \in \mathbb{C}^*$, il existe un unique r > 0 (le module) et un unique $z_0 \in \mathbb{U}$ ($z_0 = e^{i\theta}$ où θ est l'argument) tel que $z = rz_0 = \varphi(r, z_0)$. On a donc bien que φ est bijectif. On a donc construit un isomorphisme entre $\mathbb{R}_+^* \times \mathbb{U}$ et \mathbb{C}^* , ce qui prouve que (\mathbb{C}^*, \times) est isomorphe au groupe produit $(\mathbb{R}^*_+ \times \mathbb{U})$.

Exercice 17.

- 1) f est bien définie car pour tout $x \in G$, x^{-1} existe et est dans G car G est un groupe. On remarque que $f \circ f = \mathrm{Id}_G$ (car pour tout $x \in G$, $f(f(x)) = (x^{-1})^{-1} = x$). On en déduit que f est inversible et que $f^{-1} = f$. f est donc bien bijective.
- 2) On a toujours $f(e) = e^{-1} = e$. Montrons que f est un automorphisme si et seulement si (G, *)est un groupe commutatif. Fixons $x, y \in G$. On a alors :

$$\begin{split} f(x*y) &= f(x)*f(y) &\Leftrightarrow & (x*y)^{-1} = x^{-1}*y^{-1} \\ &\Leftrightarrow & y^{-1}*x^{-1} = x^{-1}*y^{-1} \\ &\Leftrightarrow & (y^{-1}*x^{-1})^{-1} = (x^{-1}*y^{-1})^{-1} \\ &\Leftrightarrow & x*y = y*x. \end{split}$$

On en déduit que f est un morphisme (donc un automorphisme car on sait qu'elle est bijective) si et seulement si G est un groupe commutatif.

Exercice 18.

1) On pose $\varphi: \left\{ \begin{array}{ccc} \mathbb{U}_2 \times \mathbb{U}_3 & \to & \mathbb{U}_6 \\ (z_1,z_2) & \mapsto & z_1 z_2 \end{array} \right.$ φ est clairement un morphisme de groupe $(\varphi(1,1)=1)$ et on vérifie que $\varphi((z_1,z_2)\times(z_1',z_2'))=\varphi(z_1z_1')\varphi(z_2z_2')$. φ est également bien définie car si $z_1\in\mathbb{U}_2$ et $z_2 \in \mathbb{U}_3$, alors $z_1 z_2 \in \mathbb{U}_6$ car $(z_1 z_2)^6 = z_1^6 z_2^6 = 1$.

Il reste à montrer la bijectivité. On liste tous les cas :

- $-\varphi(1,1) = 1 = e^{0i\pi/6}$
- $-\varphi(-1,1) = -1 = e^{6i\pi/6}$
- $-\varphi(1,j) = j = e^{4i\pi/6}$

- $-\varphi(-1,j^2) = -j^2 = e^{14i\pi/6} = e^{2i\pi/6}.$

On atteint donc bien tous les éléments de \mathbb{U}_6 d'où la bijectivité.

2) On remarque que pour tous les éléments de $\mathbb{U}_2 \times \mathbb{U}_2$, on a $(x,y)^2 = (x^2,y^2) = (1,1)$. Ceci est faux dans \mathbb{U}_4 (par exemple, $i^2 = -1 \neq 1$. Si les deux groupes étaient isomorphes, on aurait alors $i = \varphi(x,y)$ avec $(x,y) \in \mathbb{U}_2 \times \mathbb{U}_2$ et donc $i^2 = (\varphi(x,y))^2 = \varphi((x,y)^2) = \varphi(1,1) = 1$: absurde!

Exercice 19.

1) Soit $x \ge 0$. On a alors $x = (\sqrt{x})^2$. On a donc :

$$\varphi(x) = \varphi((\sqrt{x})^2) = (\varphi(\sqrt{x}))^2 \ge 0.$$

Soient à présent $x, y \in \mathbb{R}$ avec $x \leq y$. Il existe donc $h \geq 0$ tel que x + h = y. On a alors :

$$\varphi(y) = \varphi(x+h)$$

= $\varphi(x) + \varphi(h)$
 $\geq \varphi(x)$.

Ceci entraine que φ est croissante.

2) On a $\varphi(0) = 0$ et $\varphi(1) = 1$. Par récurrence, on prouve que $\forall n \in \mathbb{N}, \ \varphi(n) = \varphi(1+1+\ldots+1) = n\varphi(1) = n$. Puisque $\varphi(-n) = -\varphi(n)$, on a alors:

$$\forall n \in \mathbb{Z}, \ \varphi(n) = n.$$

On a enfin pour $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$:

$$q\varphi\left(\frac{p}{q}\right) = \varphi\left(q \times \frac{p}{q}\right) = \varphi(p) = p.$$

On a donc $\varphi\left(\frac{p}{q}\right) = \frac{p}{q}$. On a donc $\forall x \in \mathbb{Q}, \ \varphi(x) = x$.

3) Soit $x \in \mathbb{R}$. En posant pour $n \in \mathbb{N}^*$, $x_n = \lfloor x/n \rfloor$ et $y_n = \lfloor x/n \rfloor + 1/n$, on a que $x_n, y_n \in \mathbb{Q}$ et que $x_n \le x \le y$. On en déduit par croissance de φ et d'après la question précédente que :

$$\varphi(x_n) \le \varphi(x) \le \varphi(y_n) \Leftrightarrow x_n \le \varphi(x) \le y_n.$$

Puisque (x_n) et (y_n) tendent vers x, on en déduit par passage à la limite dans les inégalités que :

$$x \le \varphi(x) \le x$$
.

On en déduit que $\forall x \in \mathbb{R}, \ \varphi(x) = x \text{ soit que } \varphi = \mathrm{Id}_{\mathbb{R}}.$

Exercice 20. Soit $x \in A$. Par hypothèse, on a $(x+1)^2 = x+1$. Ceci entraine, après développement du carré (puisque x+x=2x) que $x^2+2x+1=x+1$. Or, on a $x^2=x$. On a donc, après les différentes simplifications, que 2x=0.

Soient $x, y \in A$. On a $(x+y)^2 = x^2 + xy + yx + y^2$. Ceci entraine que $(x+y)^2 = x + xy + yx + y$. Or, on a également que $(x+y)^2 = x + y$. Après simplification, on en déduit que xy + yx = 0. On a donc yx = -xy = (-x)y. Or, puisque 2x = 0, on a x = -x. On a donc yx = xy. La loi \times est donc commutative.

Exercice 21. Soit A un anneau. Soit x est nilpotent. Il existe donc $n \in \mathbb{N}^*$ tel que $x^n = 0$. Notons n_0 le plus petit entier strictement positif vérifiant cette propriété (qui est l'indice de nilpotence de x). Un tel entier existe car on peut le définir comme le minimum de $\{n \in \mathbb{N}^* / x^n = 0\}$ qui est une partie de \mathbb{N}^* non vide.

- 1) Supposons xy nilpotent d'indice n. On a alors en utilisant l'associativité $(yx)^{n+1} = y \times (xy)^n \times x = 0$. On a donc yx nilpotent.
- 2) Supposons x et y nilpotent qui commutent. Supposons $x^n = 0$ et $y^m = 0$. Alors, on peut utiliser la formule du binome (puisque x et y commutent). On a donc :

$$(x+y)^{n+m} = \sum_{k=0}^{n+m} {n+m \choose k} x^k y^{n+m-k}.$$

Or, tous les termes de cette somme sont nuls car soit $k \ge n$ et $x^k = 0$, soit k < n et $y^{n+m-k} = 0$. On en déduit que x + y est nilpotent.

De la même façon, $(xy)^n = x^n \times y^n = 0$ (puisque $x^n = 0$). On en déduit que xy est nilpotent.

3) Supposons par l'absurde x inversible d'inverse a. On a alors $a \times x = 1$. Multiplions cette égalité par x^{n_0-1} à droite. On obtient $a \times x \times x^{n_0-1} = x^{n_0-1}$, ce qui entraine que $0 = x^{n_0-1}$: absurde! Ceci contredit la définition de l'indice de nilpotence. On en déduit que x n'est pas inversible.

7

On a par contre:

$$(1-x)\sum_{k=0}^{n_0-1} x^k = \sum_{k=0}^{n_0-1} (x^k - x^{k+1})$$

$$= 1 - x^{n_0}$$

On procède de même de l'autre côté, ce qui prouve que 1-x est inversible d'inverse $\sum_{k=0}^{n_0-1} x^k$ qui est bien un élément de A (car A est un anneau donc il est stable par sommes et multiplications).

Exercice 22. Soit $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}.$

- 1) Il est clair que les lois + et \times sont associatives et commutatives sur $\mathbb{Z}[i]$. $\mathbb{Z}[i]$ contient également 0 et 1. $(\mathbb{Z}[i], +)$ est un groupe (il est stable par addition et l'inverse de a + bi est -a bi). Il reste à montrer la stabilité pour la loi \times pour avoir une structure d'anneau. Si $a, b, c, d \in \mathbb{Z}$, on a (a+ib)(c+id) = (ac-bd) + i(ad+bc) et on a $ac-bd \in Z$ et $(ad-bc) \in \mathbb{Z}$. On a donc bien une structure d'anneau commutatif.
- 2) Raisonnons par analyse/synthèse. **Analyse**: Soit $z \in \mathbb{Z}[i]$ un élément inversible.

Il existe alors $z' \in \mathbb{Z}[i]$ tel que zz' = 1. On remarque alors, en considérant les modules que |z||z'| = 1. Un de ces deux éléments a donc un module inférieur ou égal à 1. Supposons par exemple que z = a + ib soit de module inférieur ou égal à 1. On a donc $a^2 + b^2 \le 1$ avec $a, b \in \mathbb{Z}$. On en déduit que a et b sont à valeurs dans $\{-1,0,1\}$ (car a et b sont des entiers relatifs). Ceci entraine que a et b ne peuvent également pas être égaux à 1 en même temps (on aurait alors un module égal à $\sqrt{2}$). On peut donc alors tester toutes les valeurs possibles :

- si a = b = 0, z n'est pas inversible.
- si $a = \pm 1$ et b = 0, on a $z = \pm 1$ qui est inversible d'inverse $z' = \pm 1$.
- si a=0 et $b=\pm 1$, on a $z=\pm i$ qui est inversible d'inverse $z'=\pm i$.

Synthèse: on a testé toutes les possibilités. On a donc montré que les éléments inversibles de $\mathbb{Z}[i]$ sont 1, -1, i, -i.

Exercice 23. Posons $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}, (a, b) \in \mathbb{Q}^2\}$. Montrons qu'il s'agit d'un sous-corps de $(\mathbb{R}, +, \times)$.

- $\mathbb{Q}[\sqrt{2}]$ est non vide (il contient 0, 1, etc.) et $\mathbb{Q}[\sqrt{2}] \subset \mathbb{R}$.
- $(\mathbb{Q}[\sqrt{2}], +)$ est un sous-groupe de $(\mathbb{R}, +)$. Il contient le neutre 0, il est bien stable par addition et par passage à l'opposé.
- Vérifions que $(\mathbb{Q}[\sqrt{2}] \setminus \{0\}, \times)$ est un sous-groupe de (\mathbb{R}^*, \times) . Il contient le neutre 1. Il est stable par produit : si $x, y \in \mathbb{Q}[\sqrt{2}]$, il existe $a, b, c, d \in \mathbb{Q}$ tels que $x = a + b\sqrt{2}$ et $y = c + d\sqrt{2}$. On a alors $xy = (ac + 2bd) + (ad + bc)\sqrt{2}$ avec $ac + 2bd \in \mathbb{Q}$ et $ad + bc \in \mathbb{Q}$. Il est également stable par passage à l'inverse. Si $x \in \mathbb{Q}[\sqrt{2}] \setminus \{0\}$, il existe $a, b \in \mathbb{Q}$ tels que $x = a + b\sqrt{2}$. On a alors $x \neq 0$ (sinon on aurait $\sqrt{2} \in \mathbb{Q}$: absurde!), $(a b\sqrt{2} \neq 0$ pour la même raison) et :

$$\frac{1}{x} = \frac{1}{a + b\sqrt{2}}$$

$$= \frac{a - b\sqrt{2}}{a^2 - 2b^2}$$

$$= \frac{a}{a^2 - 2b^2} + \frac{-b}{a^2 - 2b^2}\sqrt{2}.$$

On a $\frac{a}{a^2-2b^2} \in \mathbb{Q}$ et $\frac{-b}{a^2-2b^2} \in \mathbb{Q}$. $\mathbb{Q}[\sqrt{2}] \setminus \{0\}$ est donc stable par passage à l'inverse. On a donc vérifié que $(\mathbb{Q}[\sqrt{2}] \setminus \{0\}, \times)$ est un sous-groupe de (\mathbb{R}^*, \times) .

On a donc montré que $(\mathbb{Q}[\sqrt{2}], +, \times)$ est un sous-corps de \mathbb{R} .

Exercice 24. Soit K un sous-corps de $(\mathbb{Q},+,\times)$. On a donc $1\in K$. Puisque K est un corps, c'est en particulier un anneau donc pour tout $n\in\mathbb{Z},\,n\in K$. De plus, K^* est stable par passage à l'inverse donc en particulier, pour tout $n\in\mathbb{Z}^*,\,\frac{1}{n}\in K$. Toujours puisque K est un anneau, on a alors pour tout $p\in\mathbb{Z},\,\frac{p}{n}\in K$. Puisque n est quelconque dans \mathbb{Z}^* , on en déduit que $\mathbb{Q}\subset K$. Puisque $K\subset\mathbb{Q}$ par définition d'un sous corps, on en déduit que $K=\mathbb{Q}$.