Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

Third Semester B. Tech. (CS/IT)

Winter - 2014

Course Code: SHU304

Course Name: Engineering Mathematics – III

Time: 2 Hrs. 30 Min. Max. Marks: 60

Instructions to Candidate

1) All questions are compulsory.

- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- 3) Diagrams/sketches should be given wherever necessary.
- 4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. Attempt any three:

12

(a) Prove that Particular integral of (D-m)y = f(x) is $e^{mx} \int e^{-mx} f(x) dx$ and hence find the same of the differential equation $(D^2 + 2D + 1)y = e^{-x}$

(b) Solve:
$$(D^4 - 2D^3 - 3D^2 + 4D + 4)y = x^2 e^x$$

(c) Solve:
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^2 + 2\log x$$

- Solve by method of variation of parameters the equation $y'' 2y' + 2y = e^x \tan x$.
- 2. Attempt any three:

12

(a) i) Solve $p+q = \sin x + \sin y$

(b) Solve:
$$(x-y)(px-qy) = (p-q)^2$$

(c) Using method of separation of variables, solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, $u(x,0) = 4e^{-x}$
(d) Solve $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$
Attempt any three:
(a) Using first shifting theorem prove that $L\{t\cos at\} = \frac{s^2 - a^2}{(s^2 + a^2)^2}$
(b) Evaluate

i) $\int_0^x te^{-2t} \sin t \, dt$ ii) $L\{\int_0^t \frac{e^t \sin t}{t} \, dt\}$

(c) Find the inverse Laplace transform of

i) $\frac{2s^2 - 6s + 5}{s^3 - 6s^2 + 11s - 6}$ ii) $\tan^{-1}(2/s^2)$

(d) Define Unit impulse function, Heaviside unit step function and find the relation between them

(e) State Convolution theorem and verify it for the pair of functions $f(t) = t$, $g(t) = e^{at}$.

Attempt any three:

(a) If directional derivative of $\phi = ax^2y + by^2z + cz^2x$ at $(1,1,1)$ has maximum magnitude 15 in the direction parallel to $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$. Find a,b,c.

(b) Show that $\overline{F} = (6xy + z^3)i + (3x^2 - z)j + (3xz^2 - y)k$ is irrotational. Find scalar ϕ such that $\overline{F} = \nabla \phi$.

3.

4.

- (c) Show that $\overline{F} = \frac{\overline{a} \times \overline{r}}{r^n}$ is solenoidal field, where $r = |\overline{r}|$, $\overline{r} = xi + yj + zk$ and \overline{a} be the constant vector.
- (d) Find the work done in moving a particle once round the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, z = 0 under the field of force given by $\overline{F} = (2x y + z)i + (x + y z^2)j + (3x 2y + 4z)k$ Is the field conservative?
- 5. Attempt the following:
 - (a) If $\overline{r} \times \frac{d\overline{r}}{dt} = 0$, show that \overline{r} has a constant direction.
 - The small oscillations of a certain system with two degrees of freedom are given by the equations $D^2x + 3x 2y = 0$ $D^2y + D^2x 3x + 5y = 0$ Where $D = \frac{d}{dt}$ If x = 0, y = 0, Dx = 3, Dy = 2when t = 0. Find x and y when $t = \pi/2$
 - (c) Given $L\{J_0(t)\} = \frac{1}{\sqrt{s^2 + 1}}$, then i) $\int_0^\infty J_0(t)dt = ---$ ii) $\int_0^\infty e^{-t} J_0(t)dt = ----$

Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

Third Semester B. Tech. (CS/IT)

Winter - 2016

Course Code: SHU304

Course Name: Engineering Mathematics-III

Time: 2 Hrs. 30 Min. Max. Marks: 60

Instructions to Candidate

1) All questions are compulsory.

2) Assume suitable data wherever necessary and clearly state the assumptions made.

3) Diagrams/sketches should be given wherever necessary.

- 4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. Attempt any three:

12

(a) State the formula for particular integral of the differential equation $\phi(D)y = e^{ax} V$ and hence use it to find the same for $(D^2 + 2D - 3)y = e^x \cos x$

(b) Solve:
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = \sin^2 x$$

(c) Solve:
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^2 + 2\log x$$

(d) Solve by method of variation of parameters the equation $y'' - y = e^{-2x} \cos(e^{-x})$.

2. Attempt any three:

12

(a) i) Solve
$$p^2 + q = x + \sin y$$

Cont.

ii) Solve $\sqrt{1 + p^2 - q^2} = 0$	
(b) Solve: $pqz = p^2(xq + p^2) + q^2(yp + q^2)$	
(c) Using method of separation of variables, solve	
$3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, \ u(x,0) = 4e^{-x}$	
(d) Solve $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$	
Attempt any three: State first shifting theorem. Find the Laplace transform of $\sinh 3t \cos^2 t$	12
(b) Find the Laplace transform of $\frac{1-\cos t}{t}$ and hence	
find $L\left(\frac{1-\cos t}{t^2}\right)$.	
(c) Find the Laplace transform of the triangular wave	
given by	
$f(t) = \begin{cases} t, & 0 < t < a \\ 2a - t, & a < t < 2a \end{cases} $ where $f(t + 2a) = f(t)$.	
(d) Find the inverse Laplace transform of	
i) $\frac{s^2 - 10s + 13}{(s+1)(s^2 - 5s + 6)}$ ii) $\log\left(1 - \frac{a^2}{s^2}\right)$	
Attempt any three:	12
a) Show that	
$\overline{F} = (y^2 \cos x + z^3)i + (2y \sin x - 4)j + (3xz^2 + 2)k$	
is a conservative vector field and find a function ϕ such that $\overline{F} = \nabla \phi$.	
Find the directional derivative of $\phi = x^2y + 2y^2z + 3z^2x$ at (1,1,1) in the direction	

3.

4.

(a)

(b)

parallel to
$$\frac{x}{2} = \frac{y}{-2} = \frac{z}{1}$$
.

- (c) Show that $\nabla^2 \left[\nabla \cdot \left(\frac{\overline{r}}{r^4} \right) \right] = \frac{-12}{r^6}$
- (d) Find the work done in moving a particle once around the circle C in the x-y plane if the circle has centre at the origin and radius 3 and the force field $\overline{F} = (2x y + z)i + (x + y z^2)j + (3x 2y + 4z)k$

Attempt the following:

- (a) Prove that $\overline{r} \cdot \frac{d\overline{r}}{dt} = 0$ iff \overline{r} has a constant magnitude.
- (b) Solve the following differential equation using Laplace transform $\frac{d^2y}{dt^2} 6\frac{dy}{dt} + 9y = t^2e^{3t} \text{ with } y(0) = 2, y'(0) = 6$
- (c) If r and \overline{r} have their usual meanings then prove that

i)
$$\nabla \cdot (r^n \overline{r}) = (n+3)r^n$$

ii)
$$\nabla^2 r^n = n(n+1)r^{n-2}$$

12