OSM Lab Boot Camp Math Problem Set 6

Harrison Beard

30 July 2018

Exercise 9.1.

Prove that an unconstrained linear objective function is either constant or has no minimum.

Solution. text.

Exercise 9.2.

Prove that if $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{A} \in \mathrm{M}_{m \times n}\left(\mathbb{R}\right)$, then the problem of finding an $\mathbf{x}^* \in \mathbb{R}^n$ to minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$ is equivalent to minimizing

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - 2\mathbf{b}^{\mathsf{T}}\mathbf{A}\mathbf{x}.\tag{9.21}$$

In Voume 1, Chapter 3 we use projections to prove that this is equivalent to solving the normal equation

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}.$$

Use the first- and second-order conditions to give a different proof that minimizing (9.21) is equivalent to solving the normal equation.

Solution. text.

Exercise 9.3.

For each of the multivariabel optimization methods we ahve discussed in this section, list the following:

- (*i*). The basic idea of the method, including how it differs from the other methods in the list. Include any geometric description you can give of the method.
- (ii). What types of optimization problems it can solve and cannot solve.
- (iii). Relative strengths of the method.
- (iv). Relative weaknesses of the method.

Solution.

- (i). text
- (ii). text

- (iii). text
- (iv). text

Exercise 9.4.

Let $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{Q}\mathbf{x} - \mathbf{b}^\mathsf{T}\mathbf{x}$, where $\mathbf{Q} \in M_{m \times n}(\mathbb{R})$ satisfies $\mathbf{Q} > 0$ and $\mathbf{b} \in \mathbb{R}^n$. Show that the Method of Steepest Descent (that is, gradient descent with optimal line search), converges in one step (that is, $\mathbf{x}_1 = \mathbf{Q}^{-1}\mathbf{b}$), if and only if \mathbf{x}_0 is chosen such that $\mathbf{D}f(\mathbf{x}_0)^\mathsf{T} = \mathbf{Q}\mathbf{x}_0 - \mathbf{b}$ is an eigenvector of \mathbf{Q} (and α_0 satisfies (9.2)).

Solution. text.

Exercise 9.5.

Assume that $f: \mathbb{R}^n \to \mathbb{R}$ is \mathcal{C}^1 . Let $\{\mathbf{x}_k\}_{k=0}^{\infty}$ be defined by the Method of Steepest Descent. Show that if $\mathbf{x}_{k+1} - \mathbf{x}_k$ is orthogonal to $\mathbf{x}_{k+2} - \mathbf{x}_{k+1}$ for each k.

Solution. text.

Exercise 9.6.

Write a Python/NumPy routine for implementing the steepest descent method for quadratic functions (see Example 9.2.3).

Given a small number ε , given Numpy arrays \mathbf{x}_0, \mathbf{b} of length n, and given an $n \times n$ matrix $\mathbf{Q} > 0$, your code should return a close approximation to a local minimizer \mathbf{x}^* of $f = \mathbf{x}^\mathsf{T} \mathbf{Q} \mathbf{x} - \mathbf{b}^\mathsf{T} \mathbf{x} + c$.

For the stopping criterion, use the condition $\|\mathbf{D}f(\mathbf{x}_k)\|$ for some small value of ε .

Solution. text.

code here

Exercise 9.7.

Write a simple Python/NumPy method for computing $\mathbf{D}f$ using forward differences and a step size of $\sqrt{\mathrm{Rerr}_f}$. It should accept a callable function $f:\mathbb{R}^n\to\mathbb{R}$, a point $\mathbf{x}\in\mathbb{R}^n$, and an estimate $\mathrm{Rerr}_f>\varepsilon$ for the maximum relative error of f near \mathbf{x} . It should return an estimate for $\mathbf{D}f(\mathbf{x})$.

Solution. text.

code here

Page 2/4

Exercise 9.8.

Use your differentiation method from the previous problem to construct a simple Python/NumPy method for implementing the steepest descent method for arbitrary functions, using the secant method (Exercise 6.15) for the line search.

Your method should accept a callable function f, a starting value \mathbf{x}_0 , a small number ε , a NumPy array \mathbf{x}_0 of length n, and return a close approximation to a local minimizer \mathbf{x}^* of f.

For the stopping criterion, use the condition $\|\mathbf{D}f(\mathbf{x}_k)\|$.

Solution. text.

code here

Exercise 9.9.

Apply your code from the previous problem to the Rosenbrock function

$$f(x,y) = 100 (y - x^2)^2 + (1 - x)^2$$

with an initial guess of $(x_0, y_0) = (-2, 2)$.

Solution. text.

Exercise 9.10.

Consider the quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{Q}\mathbf{x} - \mathbf{b}^\mathsf{T}\mathbf{x}$, where $\mathbf{Q} \in \mathrm{M}_n\left(\mathbb{R}\right)$ is symmetric and positive definite and $\mathbf{b} \in \mathbb{R}^n$. Show that for any initial guess $\mathbf{x}_0 \in \mathbb{R}^n$, one iteration of Newton's method lands at the unique minimizer of f.

Solution. text.

Exercise 9.12.

Prove that if $\mathbf{A} \in \mathrm{M}_n\left(\mathbb{F}\right)$ has eigenvalues $\lambda_1, \ldots, \lambda_n$ and $\mathbf{B} = \mathbf{A} + \mu \mathbf{I}$, then the eigenvectors of \mathbf{A} and \mathbf{B} are the same, and the eigenvalues of \mathbf{B} are $\mu + \lambda_1, \mu + \lambda_2, \ldots, \mu + \lambda_n$.

Solution. text.

Exercise 9.15.

Prove the Sherman-Morrison-Woodbury formula (9.13).

(9.13). Let ${\bf A}$ be a nonsingular $n \times n$ matrix, ${\bf B}$ an $n \times \ell$ matrix, ${\bf C}$ a nonsingular $\ell \times \ell$ matrix, and ${\bf D}$ an $\ell \times n$ matrix. We have

$$(\mathbf{A} + \mathbf{BCD})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}.$$
 (9.13)

Solution. text.

Exercise 9.16.

Use (9.13) to derive (9.14).

$$\mathbf{A}_{k}^{-1} = \mathbf{A}_{k}^{-1} + \frac{\left(\mathbf{s}_{k-1} - \mathbf{A}_{k-1}^{-1} \mathbf{y}_{k-1}\right) \mathbf{s}_{k-1}^{\mathsf{T}} \mathbf{A}_{k-1}^{-1}}{\mathbf{s}_{k-1}^{\mathsf{T}} \mathbf{A}_{k-1}^{-1} \mathbf{y}_{k-1}}.$$
(9.14)

Solution, text.

Exercise 9.17.

Apply (9.13) twice to derive (9.17).

$$\mathbf{A}_{k-1}^{-1} = \mathbf{A}_k^{-1} + \frac{\left(\mathbf{s}_k^\mathsf{T} \mathbf{y}_k^\mathsf{T} \mathbf{A}_k^{-1} \mathbf{y}_k\right) \mathbf{s}_k \mathbf{s}_k^\mathsf{T}}{\left(\mathbf{s}_k^\mathsf{T} \mathbf{y}_k\right)^2} - \frac{\mathbf{A}_k^{-1} \mathbf{y}_k \mathbf{s}_k^\mathsf{T} + \mathbf{s}_k \mathbf{y}_k^\mathsf{T} \mathbf{A}_k^{-1}}{\mathbf{s}_k^\mathsf{T} \mathbf{y}_k}.$$
 (9.17)

Solution. text.

Exercise 9.18.

Let $\mathbf{Q} \in \mathbf{M}_n\left(\mathbb{R}\right)$ satisfy $\mathbf{Q} > 0$, and let f be the quadratic function $f\left(\mathbf{x}\right) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{Q}\mathbf{x} - \mathbf{b}^\mathsf{T}\mathbf{x} + c$. Given a starting point \mathbf{x}_0 and \mathbf{Q} -conjugate directions $\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1}$ in \mathbb{R}^n , show that the optimal line search solution for $\mathbf{x}_{k-1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$ (that is, the α which minimizes $\phi_k(\alpha) = f\left(\mathbf{x}_k + \alpha_k \mathbf{d}_k\right)$) is given by $\alpha_k = \frac{\mathbf{r}_k^\mathsf{T}\mathbf{d}_k}{\mathbf{d}_k^\mathsf{T}\mathbf{Q}\mathbf{d}_k}$, where $\mathbf{r}_k = \mathbf{b} - \mathbf{Q}\mathbf{x}_k$.

Solution. text.

Exercise 9.20.

Prove Lemma 9.5.5.

Lemma 9.5.5. In the Conjugate Gradient Algorithm, $\mathbf{r}_i^\mathsf{T} \mathbf{r}_k = 0$ for all i < k.

Solution. text.