Tom Vodopivec

IADS Analytics, Data Science & Decision Making Summer School 2022 2022-08-01

The Field

Artificial Intelligence > Machine Learning

(A special case of) supervised learning

But also has elements of unsupervised learning

The Reinforcement Learning Setting

The Reinforcement Learning Setting

Agent

Behaviour > Actions

Environment

States

Rewards > define the goal of the agent

Markov Decision Processes

States

Actions

Rewards

Transition probabilities

Markov Decision Processes

Trajectory (concept of time)

(Expected) return

Discount rate

Continuing vs. episodic tasks

Terminal states

Non-stationary MDPs

Partially-observable MDPs

What to Learn From?

Experience = Samples of interaction with environment

- Real (learning)
- Simulated (planning)

Exploration-exploitation trade-off

Uncertainty

How to Store Knowledge?

State-value function

Action-value function

Behaviour policy

Model (of the environment)

Representations

- Tabular vs. approximate
- Fixed vs. adaptive

4

Updating Knowledge = Learning

Goal: learn optimal policy (and optimal value function)

Generalized policy iteration

- Policy evaluation
- Policy improvement

Algorithms

- Model-based
- Model-free

Race Track Example

Algorithms

Dynamic programming

Monte Carlo

Temporal-difference learning

- Bootstrapping
- Eligibility traces

Algorithms

Dynamic programming: policy iteration, value iteration

Monte Carlo

Temporal-difference learning: TD(λ), Sarsa, Q-learning, Deep Q-learning

- Bootstrapping
- Eligibility traces

_

Algorithms

Dynamic programming: policy iteration, value iteration

Monte Carlo

Temporal-difference learning: $TD(\lambda)$, Sarsa, Q-learning, Deep Q-learning

- Bootstrapping
- Eligibility traces

Policy gradient and Actor-Critic: REINFORCE

Applications

Games: AlphaGo, AlphaZero

Scheduling tasks: optimization of memory control

Modelling bird movement

Web services / optimization

Reading Material

Quick and practical state-of-the-art:

Thomas Simonini, Deep Reinforcement Learning course

Most comprehensive and best foundations:

Richard S. Sutton and Andrew G. Barto, Reinforcement Learning, An introduction, second edition

Outstanding applications:

Silver et al., AlphaGo, AlphaGo Zero, AlphaZero

Recap

Agent, actions, environnement, state, rewards

Explore and collect experience
Representation of knowledge
Update knowledge = learn
Improve behaviour

Equations

//////

$$V(S_{t}) \leftarrow V(S_{t}) + \alpha_{n} \left[G_{t} - V(S_{t}) \right],$$

$$V_{t+1}(S_{t}) = V_{t}(S_{t}) + \alpha_{t} \left[(R_{t+1} + \gamma V_{t}(S_{t+1})) - V_{t}(S_{t}) \right].$$

$$\delta_{t} = R_{t+1} + \gamma V_{t}(S_{t+1}) - V_{t}(S_{t})$$

$$V_{t+1}(s) = V_{t}(s) + \alpha_{t} \delta_{t} E_{t}(s)$$

$$E_{t}(s) = \begin{cases} 1 & \text{if } s = S_{t} \text{ (replacing)}, \\ \gamma \lambda E_{t-1}(s) + 1 & \text{if } s = S_{t} \text{ (accumulating)}, \\ \gamma \lambda E_{t-1}(s) & \text{if } s \neq S_{t}. \end{cases}$$

$$Q(s_{t}, a_{t}) \leftarrow Q(s_{t}, a_{t}) + \alpha_{t} \left(\sum_{\text{reward discount factor}} \sum_{\text{dearned value}} \sum_{\text{old value}} \sum_{\text{old value}} \sum_{\text{old value}} \sum_{\text{old value}} \sum_{\text{dearned value}} \sum_{\text{old value}} \sum_{\text{old value}} \sum_{\text{reward discount factor}} \sum_{\text{dearned value}} \sum_{\text{old value}} \sum_{\text{reward discount factor}} \sum_{\text{dearned value}} \sum_{\text{old value}} \sum_{\text{veward discount factor}} \sum_{\text{vewa$$

estimate of optimal future value

Value Iteration, for estimating $\pi \approx \pi_*$

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Policy Iteration (using iterative policy evaluation) for es

- 1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
- 2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$
Loop for each $s \in S$:
$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta,|v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy

3. Policy Improvement $policy\text{-}stable \leftarrow true$

For each
$$s \in S$$
:
$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else