CONTENTS MATH3322 Notes

MATH3322 - Matrix Computation

Taught by Jianfeng Cai

Notes by Aaron Wang

Contents

1	March 22nd, 2019	2
	1.1 Eigenvalue Decomposition	2
	1.2 Characteristic Polynomial	3
	1.3 Special Case: Symmetric Matrix and SPD Matrix	5
2	March 27th, 2019	5
	2.1 Computation of Eigenvalue Decomposition	5
	2.2 Power Iteration	6
	2.3 Analysis of Power Iteration	7
3	March 29th, 2019	10
	3.1 Inverse Power Iteration	10
4	April 3rd, 2019	11
	4.1 Shifted Inverse Power Iteration Part 2	11
	4.2 Simultaneous Iteration	12
	4.3 QR algorithm for Eigenvalue Decomposition	13
	4.4 Practical Implementation of QR Algorithm	14
5	April 12th, 2019	14
	5.1 QR Algorithm for Non-Symmetric Matrix	14
	5.2 Case Studies C - Applications of Eigenvalue Decomposition	17
6	April 24th, 2019	18
	6.1 Case Studies 3	18
	6.2 Singular Value Decomposition (SVD)	19
7	April 26th, 2019	20
	7.1 SVD	20
Tn	dev	91

1 March 22nd, 2019

1.1 Eigenvalue Decomposition

Definition 1.1. Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. A non-zero vector x is an **eigenvector** of A with $\lambda \in \mathbb{C}$ being the corresponding **eigenvalue** if:

$$Ax = \lambda x$$
.

- Even if A is a real matrix, its eigenvalue and eigenvectors can be complex
- The set of eigenvalues of A is called the spectrum of A. The spectral radius $\rho(A)$ is the maximum value $|\lambda|$ over all eigenvalues of A.
- If (λ, x) is an eigenpair of A, then:

$$(\lambda^2, x)$$
 is a eigenpair of A^2
 $(\lambda - \sigma, x)$ is a eigenpair of $A - \sigma I$
 $\left(\frac{1}{\lambda - \sigma}, x\right)$ is a eigenpair of $(A - \sigma I)^{-1}$.

Proof. Since (λ, x) is an eigenpair of A, $Ax = \lambda x$ Multiplying both sides by A from the left:

$$A \cdot Ax = \lambda Ax \implies A^2 x = \lambda Ax = \lambda \cdot \lambda x = \lambda^2 x.$$

$$Ax - \sigma x = \lambda x - \sigma x \implies (A - \sigma I) x = (\lambda - \sigma) x$$

$$\implies x = (\lambda - \sigma) (A - \sigma I)^{-1} x \implies (A - \sigma I)^{-1} x.$$

Definition 1.2. Two matrices A and B are **similar** with each other if there exists a nonsingular matrix T such that

$$B = TAT^{-1}.$$

Theorem 1.3

If A and B are similar, then A and B have the same eigenvalues.

Proof. Since A, B are similar, $B = TAT^{-1}$, which implies $A = T^{-1}BT$. If (λ, x) is an eigenpair of A, then $Ax = \lambda x$, so that

$$T^{-1}BTx = \lambda x \implies B(Tx) = \lambda(Tx)$$
.

Thus, (λ, Tx) is an eigenpair of B. i.e. any eigenvalue of A is an eigenvalue of B. The reverse is similar.

Definition 1.4. An eigenvalue decomposition of a square matrix $A \in \mathbb{R}^{n \times n}$ is a factorization

$$A = X\Lambda X^{-1},$$

where $X \in \mathbb{C}^{n \times n}$ is non-singular and $\Lambda \in \mathbb{C}^{n \times n}$ is diagonal.

• If $A \in \mathbb{R}^{n \times n}$ admits an eigenvalue decomposition, then

$$AX = X\Lambda$$
.

If we rewrite $X = [x_1 x_2 \dots x_n]$ with $x_i \in \mathbb{C}^n$ the *i*-th column of x, and $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2 \dots, \lambda_n) = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$ with $\lambda_i \in \mathbb{C}$ being the *i*-th diagonal of Λ , then

$$A[x_1x_2...x_n] = [x_1x_2...x_n] \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

$$A[x_1x_2...x_n] = [x_1x_2...x_n] \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

$$\implies [Ax_1 A x_2 \dots A x_n] = [\lambda_1 x_1 \lambda_2 x_2 \dots \lambda_n x_n].$$

$$\implies Ax_i = \lambda_i x_i, \quad i = 1, 2 \dots, n.$$

In other words (λ_i, x_i) , i = 1, 2, ..., n are eigenpairs of A.

- Since X is nonsingular, x_i are linearly independent. So, x_i are n independent eigenvectors, which span \mathbb{C}^n .
- Eigenvalue decomposition implies $X^{-1}AX = \Lambda$, so that we also say A is diagonalizable.
- Eigenvalue decomposition does not always exist, as a square matrix $A \in \mathbb{R}^{n \times n}$ does not always have n independent eigenvectors.
- Though $A \in \mathbb{R}^{n \times n}$ is real, the eigenvalue decomposition may be complex.

1.2 Characteristic Polynomial

Definition 1.5. The characteristic polynomial of $A \in \mathbb{R}^{n \times n}$ denoted P_A is a degree n polynomial defined by

$$P_A(z) = \det(zI - A)$$
, where $z \in \mathbb{C}$.

Let (λ_1, x) be an eigenpair of A. Then $Ax = \lambda x$, which is equivalent to:

$$(\lambda I - A) x = 0.$$

Since x is non-zero, $\lambda I - A$ has a non-zero solution. Therefore, $\lambda I - A$ is singular. That is $\det(\lambda I - A) = P_A(\lambda) = 0$. Thus, λ is an eigenvalue of A iff $P_A(\lambda) = 0$, and the corresponding eigenvector x are non-zero solutions of $(\lambda I - A)x = 0$.

Example 1.6

 $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. The characteristic polynomial is:

$$P_A(z) = \det \left(zI - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right) = \det \left(\begin{bmatrix} z & -1 \\ 0 & z \end{bmatrix} \right) = z^2.$$

Therefore, $P_A(\lambda) = \lambda^2 = 0 \implies \lambda_1 = \lambda_2 = 0$ are the eigenvalues of A. For eigenvectors, solve (0I - A) = 0, i.e.

$$\begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} x = 0 \implies x = \begin{bmatrix} q \\ 0 \end{bmatrix}.$$

As there is only one independent eigenvector, A is not diagonalizable (i.e. no eigenvalue decomposition.

Example 1.7

 $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. The characteristic polynomial is:

$$P_A(z) = \det \left(\begin{bmatrix} z & 1 \\ -1 & z \end{bmatrix} \right) = z^2 + 1.$$

Therefore, $P_A(\lambda) = \lambda^2 + 1 = 0 \implies \lambda_1 = i$, $\lambda_2 = -i$ are the eigenvalues. For eigenvector of $\lambda_1 = i$, solve (iI - A)x = 0, i.e.

$$\begin{bmatrix} i & 1 \\ -1 & i \end{bmatrix} x = 0 \implies x = \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \quad \alpha \in \mathbb{C}.$$

Therefore, a corresponding eigenvector is $x_i = \begin{bmatrix} i \\ 1 \end{bmatrix}$.

For eigenvector of $\lambda_2 = -i$:

$$\begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} x = 0 \implies x = \beta \begin{bmatrix} i \\ -1 \end{bmatrix} \quad \beta \in \mathbb{C}.$$

The corresponding eigenvector is $x_2 = \begin{bmatrix} i \\ -1 \end{bmatrix}$.

Define
$$X = \begin{bmatrix} x_1 & x_2 \end{bmatrix} = \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix} = \begin{bmatrix} i & \\ & -i \end{bmatrix}, X^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2}i & -\frac{1}{2} \end{bmatrix},$$

Therefore $A = X\Lambda X^{-1}$

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix} \begin{bmatrix} i \\ -i \end{bmatrix} \begin{bmatrix} -\frac{1}{2}i & \frac{1}{2} \\ -\frac{1}{2}i & -\frac{1}{2} \end{bmatrix}.$$

This shows that a real matrix may have a complex eigenvalue decomposition.

Remark 1.8 — However, we don't usually solve the characteristic equation, as polynomial root-finding is not numerically stable in general.

1.3 Special Case: Symmetric Matrix and SPD Matrix

Assume $A \in \mathbb{R}^{n \times n}$ is symmetric. Then

1. The eigenvalues of A are real.

Proof. Let (λ, x) be an eigenpair of A. Then, $Ax = \lambda x$. Multiply both sides by $x^* \equiv \overline{x^T}$ (conjugate transpose) from the left:

$$x^*Ax = \lambda x^*x \implies \lambda = \frac{x^*Ax}{x^*x}.$$

- x^*Ax is real because $\overline{x^*Ax} = \overline{(x^*Ax)^T} = \overline{x^TA^T\overline{x}} = x^*Ax$
- x^*x is also real, because $\overline{x^*x} = \overline{(x^*x)^T} = \overline{x^T\overline{x}} = x^*x$.
- As such, $\lambda = \frac{x^*Ax}{x^*x}$ is real.

2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

3. A is always diagonalizable, and the eigenvalue decomposition has a special form

$$A = Q\Lambda Q^T$$

where $Q \in \mathbb{R}^{n \times n}$ is orthonormal and $\Lambda \in \mathbb{R}^{n \times n}$ is diagonal.

- 4. If A is SPD, then all eigenvalues are positive.
- 5. If A is SPSD, then all eigenvalues are non-negative.

Proof. Let (λ, x) a be an eigenpair of A. then $Ax = \lambda x$, and λ, x are real. So

$$x^T A x = \lambda x^T x \implies \lambda = \frac{x^T A x}{x^T x} > 0.$$

if A is SPD. If A is SPSD, then $\lambda = \frac{x^T A x}{x^T x} \ge 0$, since $x^T A x \ge 0$.

2 March 27th, 2019

2.1 Computation of Eigenvalue Decomposition

For simplicity, we assume that $A \in \mathbb{R}^{n \times n}$ is symmetric, so that all eigenvalues/eigenvectors are real. Let λ_i i = 1, 2, ..., n be the eigenvalues of A, which are sorted in magnitude, i.e.

$$|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|.$$

The corresponding eigenvectors are denoted by q_i . We have

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

5

satisfying $Q^TQ = Q^T = I$.

2.2 Power Iteration MATH3322 Notes

Definition 2.1. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. For a given vector $x \in \mathbb{R}^n$, the **Rayleigh** Quotient is defined by

$$r(x) = \frac{x^T A x}{x^T x}.$$

If x is an eigenvector,

$$r(x) = \frac{x^T A x}{x^T x} = \frac{\lambda x^T x}{x^T x} = \lambda,$$

i.e. r(x) is an eigenvalue.

The eigenvalues are critical points of r(x), with $\nabla r(x) = 0$. It can be proven that

$$\min_{i} \lambda_i = \min_{x \neq 0} r(x).$$

Remark 2.2 — This can be extended to non-symmetric matrices/ matrices or eigenvalues that are complex.

2.2 Power Iteration

Purpose: Find λ_1 and its associated eigenvector x_1 , with $||x_1||_2 = 1$.

Algorithm 2.3 1. Choose $y^{(0)} \in \mathbb{R}^n$ s.t. $||y^{(0)}||_2 = 1$.

2. for k = 1, 2, ..., n

$$z^{(k)} = Ay^{(k-1)}$$

$$y^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2}$$

$$\mu^{(k)} = \frac{\left(y^{(k)}\right)^T A y^{(k)}}{\left(y^{(k)}\right)^T y^{(k)}} = \left(y^{(k)}\right)^T A y^{(k)}.$$

Remark 2.4 — $y^{(k)}$ is an approximation to $\pm x_1$, $\mu^{(k)}$ is an approximation to λ_1 .

Figure 1

- Assume $(2, x_1)$, $(1, x_2)$ are two eigenpairs of $A \in \mathbb{R}^{2 \times 2}$ (so that $x_1 \perp x_2$).
- Assume $y^{(0)} = \frac{1}{\sqrt{2}} (x_1 + x_2)$

• k = 1:

$$z^{(1)} = Ay^{(0)} = A\left(\frac{1}{\sqrt{2}}(x_1 + x_2)\right) = \frac{1}{\sqrt{2}}(Ax_1 + Ax_2) = \frac{1}{\sqrt{2}}(2x_1 + x_2).$$
$$y^{(1)} = \frac{1}{\sqrt{5}}(2x_1 + x_2).$$

Note that $y^{(k)}$ approaches x_1 more than x_2 . :

• k+1:

$$z^{(k+1)} = Ay^{(k)} = A\left(\frac{1}{\sqrt{2^{2k}+1}}\left(2^kx_1 + x_2\right)\right) = \frac{1}{\sqrt{2^{2k}+1}}\left(2^{k+1}x_1 + x_2\right).$$

If the component of x_1 is non-zero, then it will converge to x_1 , i.e. as long as $y^{(0)}$ is not a multiple of x_2 , it will converge to x_1 .

Claim 2.5. Power iteration may not be convergent:

Example 2.6

Assume $(1, x_1)$, $(-1, x_2)$ are two eigenpairs of $A \in \mathbb{R}^{2 \times 2}$. Assume $y^{(0)} = \frac{1}{\sqrt{2}}(x_1 + x_2)$.

$$k = 1 : z^{(1)} = Ay^{(0)} = \frac{1}{\sqrt{2}} (x_1 - x_2).$$

$$y^{(1)} = \frac{1}{\sqrt{2}} (x_1 - x_2).$$

$$k = 2 : z^{(2)} = \frac{1}{\sqrt{2}} (x_1 + x_2)$$

$$y^{(2)} = \frac{1}{\sqrt{2}} (x_1 + x_2).$$

which just repeats itself.

Remark 2.7 — Try with $(-2, x_1)$, $(1, x_2)$. Does not converge, but we can get the direction of x_1 since both x_1 and $-x_1$ are eigenvectors.

Remark 2.8 — Power iteration may not converge to (λ_1, x_1) , e.g. $y^{(0)} = x_2$. This is because there is no x_1 component.

2.3 Analysis of Power Iteration

We will show $|\langle y^{(k)}, x \rangle| \to 1$. It is the same as $1 - \langle y^{(k)}, x_1 \rangle^2 \to 0$, $k \to \infty$

Theorem 2.9

Assume $A \in \mathbb{R}^{n \times n}$ is symmetric and $|\lambda_1| > |\lambda_2|$ (otherwise they might be amplified at the same rate).

If $\langle y^{(0)}, x_1 \rangle \neq 0$, then $\exists C_0 > 0$ depending on $y^{(0)}$ only such that

$$(1 - \langle y^{(k)}, x_1 \rangle^2)^{\frac{1}{2}} \le C_0 \left| \frac{\lambda_2}{\lambda_1} \right|^k \to 0$$
, as $k \to \infty$.

Consequently,

•
$$\min\{\|y^{(k)} - x_1\|_2, \|y^{(k)} + x_1\|_2\} \le \sqrt{2}C_o \left|\frac{\lambda_2}{\lambda_1}\right|^k$$
, i.e. $y^{(k)} \to \pm x_1$

•
$$|\mu^{(k)} - \lambda_1| \le 2\sqrt{2}C_o \left|\frac{\lambda_2}{\lambda_1}\right|^k \to 0$$

Proof. Note that

$$y^{(k)} = \frac{A^k y^{(0)}}{\|A^k y^{(0)}\|_2}.$$

Let $A = X\Lambda X^T$ be the eigenvalue decomposition of A. Then

$$A^k = X\Lambda X^T X\Lambda X^T \dots X\lambda X^T = X\Lambda^k X^T.$$

So

$$A^k y^{(0)} = X \Lambda^k X^T y^{(0)} = X \Lambda^k v$$

$$A^k y^{(0)} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1^k v_1 \\ \vdots \\ \lambda_n^k v_n \end{bmatrix} = \sum_{i=1}^n \lambda_i^k v_i x_i, \ v_i \in \mathbb{R}, \ x_i \in \mathbb{R}^n.$$

Because x_i are othronormal,

$$||A^k y^{(0)}||_2^2 = \sum_{i=1}^n \lambda_i^{2k} v_1^2 = \sum_{i=1}^n |\lambda_i|^{2k} |v_i|^2 = |\lambda_1|^{2k} |v_1|^2 (1 + \dots) \ge (|\lambda_1|^k |v_1|)^2$$

and

$$\langle y^{(k)}, x_1 \rangle^2 = \frac{1}{\|A^k y^{(0)}\|_2^2} \langle A^k y^{(0)}, x_1 \rangle^2 = \frac{1}{\|A^k y^{(0)}\|_2^2} \langle \sum_{i=1}^n \lambda_i^k v_i x_i, x_1 \rangle^2 = \frac{1}{\|A^k y^{(0)}\|_2^2} \left(\lambda_1^k v_1\right)^2.$$

$$\leq \left|\frac{\lambda_2^{2k}}{\lambda_1}\right| \left(\left|\frac{v_2}{v_1}\right|^2 + \left|\frac{v_3}{v_1}\right|^2 + \left|\frac{v_4}{v_1}\right|^2 + \dots + \left|\frac{v_n}{v_1}\right|^2\right) = C_0^2 \left|\frac{\lambda_2^k}{\lambda_1^k}\right|.$$

Thus

$$\sqrt{1 - \langle y^{(k)}, x_1 \rangle^2} \le C_0 \left| \frac{\lambda_2}{\lambda_1}^k \right|.$$

Because $C_0 < +\infty$, as $v_1 = \angle x_1, y^{(0)} \neq 0$ by assumption,

$$\sqrt{1 - \langle y^{(k)}, x_1 \rangle^2} \le C_0 \left| \frac{\lambda_2}{\lambda_1}^k \right| \to 0$$
, as $k \to \infty$.

$$\langle y^{(k)}, x_1 \rangle^2 \ge 1 - C_0^2 \left| \frac{\lambda_2}{\lambda_1}^{2k} \right| \implies \langle y^{(k)}, x_1 \rangle^2 \le ||y^{(k)}||_2^2 ||x_1||_2^2 = 1.$$

So

$$1 - C_0^2 \left| \frac{\lambda_2}{\lambda_1}^{2k} \right| \le 1.$$

If $\langle y^{(k)}, x_1 \rangle \geq 0$, then

$$||y^{(k)} - x_1||_2 = \sqrt{||y^{(k)}||_2^2 + ||x_1||_2^2 - 2\langle y^{(k)}, x_1 \rangle} = \sqrt{2 - 2\langle y^{(k)}, x_1 \rangle} \le \left(2 - 2\sqrt{1 - C_0^2 \left| \frac{\lambda_2}{\lambda_1}^{2k} \right|} \right)^{\frac{1}{2}}.$$

I give up will do this later

Remark 2.10 — 1. $\langle y^{(k)}, x_1 \rangle = \cos \theta$. Genearlly,

$$\cos \angle(x,y) = \frac{\langle x,y \rangle}{\|x\|_2 \|y\|_2}.$$

- 2. The convergence rate depends on $\left|\frac{\lambda_2}{\lambda_1}\right| < 1$, the smaller $\left|\frac{\lambda_2}{\lambda_1}\right|$, the faster the convergence. When $|\lambda_1| = |\lambda_2|$, the power iteration may not converge.
- 3. When $\langle y^{(0)}, x_1 \rangle = 0$, then $C_0 = +\infty$, so y will not converge to λ_1 .
- 4. In power iteration, only one matrix-product and several vector operations are used, the ocst per step is $O(n^2)$. If we want an approximate eigenvalue/eigenvector of error ϵ , we need to choose k, s.t.

$$C \left| \frac{\lambda_2}{\lambda_1} \right|^{\frac{k}{2}} \le \epsilon \implies \left| \frac{\lambda_1}{\lambda_2} \right|^{\frac{k}{2}} \ge \frac{c}{\epsilon}.$$

$$\frac{k}{2} \log \left| \frac{\lambda_1}{\lambda_2} \right| \ge \log \left(\frac{c}{\epsilon} \right) \implies k \ge \frac{\log \left(\frac{c}{\epsilon} \right)}{\log \left(\left| \frac{\lambda_1}{\lambda_2} \right| \right)} \sim O \left(\log \left(\frac{1}{\epsilon} \right) \right).$$

Then the total computational cost is

$$O\left(\log\left(\frac{1}{\epsilon}\right) \cdot n^2\right).$$

5. Only the matrix-cector product involving A is needed. This means that A is not needed explicitly, only the subroutine to compute Ax is sufficient.

March 29th, 2019 MATH3322 Notes

3 March 29th, 2019

3.1 Inverse Power Iteration

If λ_i , $i \in 1, ..., n$ with $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$ are eigenvalues of A, then $\frac{1}{\lambda_i}$ are eigenvalues of A^{-1} and

 $\frac{1}{|\lambda_1|} \le \frac{1}{|\lambda_2|} \le \dots \le \frac{1}{|\lambda_n|}.$

Therefore, we can apply power iteration to A^{-1} to get λ_n and hence x_n . This is called the inverse power iteration.

Algorithm 3.1 1. Choose $y^{(0)} \in \mathbb{R}^n$ s.t. $||y^{(0)}||_2 = 1$

2. for $k = 1, 2, \dots$

$$z^{(k)} = A^{-1}y^{(k-1)}$$
$$y^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2}$$
$$\mu^{(k)} = (y^{(k)})^T A y^{(k)}.$$

Remark 3.2 — 1. From the convergence of power iteration, if:

- $\langle y^{(0)}, x_n \rangle \neq 0$
- $\frac{1}{|\lambda_n|} > \frac{1}{|\lambda_{n-1}|}$ (i.e. $|\lambda_n| < |\lambda_{n-1}|$)
- A^{-1} is symmetric (always true because A is symmetric.

then the limit of the iteration is:

$$y^{(k)} \to \pm x_n, \quad \mu^{(k)} \to \lambda_n,$$

with a rate $\left(\frac{|\lambda_n|}{|\lambda_{n-1}|}\right)^{\frac{k}{2}}$

2. We need to solve $Az^{(k)} = y^{(k-1)}$ in each iteration, which can be done by Gaussian Elimination. But we only need to compute A = LU before the iteration and then, in each iteration, we obtain:

$$z^{(k)} = U^{-1}L^{-1}y^{(k-1)},$$

which is just a forward and backward substitution.

• Thus the total computational cost is:

$$O(n^3) + O\left(n^2 \cdot \log\left(\frac{1}{\epsilon}\right)\right)$$

for an ϵ -solution, $(O(n^3))$ for the LU decomposition

April 3rd, 2019 MATH3322 Notes

3. If $|\lambda_n|$ is very close to 0, then, A is very close to singular, meaning that the solution of $Az^{(k)} = y^{(k-1)}$ may have a large error. However, we can still get a very accurate solution.

4 April 3rd, 2019

4.1 Shifted Inverse Power Iteration Part 2

Let λ_i , i = 1, 2, ..., n with $|\lambda_1| \le |\lambda_2| \le ... \le |\lambda_n|$ be eigenvalues of A. Note that $(\lambda_i - \mu)^{-1}$ are eigenvalues of $(A - \mu I)^{-1}$.

Thus we can apply the power iteration to $(A - \mu I)^{-1}$:

Algorithm 4.1

Choose $y^{(0)} \in \mathbb{R}^n$ s.t. $||y^{(0)}||_2 = 1$

For k = 1, 2, ...

- $z^{(k)} = (A \mu I)^{-1} y^{(k-1)}$ (Done by solving $(A \mu I) z^{(k)} = y^{(k-1)}$.
- $y^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2}$.
- $\mu^{(k)} = (y^{(k)})^T A y^{(k)}$ (the Rayleigh Quotient of A)
- 1. This iteration is the "shifted inverse power iteration"
- 2. To make the iteration converge to (λ_i, x_i) , the following has to be satisfied:
 - (a) μ is chosen s.t. $\frac{1}{|\lambda_i \mu|}$ is the largest among $\frac{1}{|\lambda_i \mu|}$

Figure 2: Choosing μ to guarantee convergence

- (b) $\langle y^{(0)}, x_i \rangle \neq 0$. (or else it will converge to another eigenvector.
- (c) The convergence rate depends on:

$$\frac{\frac{1}{|\lambda_j' - \mu|}}{\frac{1}{|\lambda_i - \mu|}} = \frac{|\lambda_j - \mu|}{|\lambda_j' - \mu|}$$

, where $\frac{1}{|\lambda_i' - \mu|}$ is the second largest among $\frac{1}{|\lambda_i - \mu|}$ and

$$|\lambda_j - \mu| < |\lambda_j' - \mu|.$$

(d) For an ϵ - precision solution, the computational complexity is

$$O(n^3) + O\left(\log \frac{1}{\epsilon} \cdot n^2\right),$$

since we only compute the LU decomposition of $(A - \mu I)$ once.

To accelerate the shifted power iteration, we can also use an adaptive shift (if we shift μ to be closer to the target eigenpair, it will converge faster).

Algorithm 4.2 (Rayleigh Quotient Iteration)

Choose $y^{(0)} \in \mathbb{R}^n$ s.t. $||y^{(0)}||_2 = 1$ $\mu^{(0)} = (y^{(0)})^T A y^{(0)}$

For k = 1, 2, ...

- $z^{(k)} = (A \mu^{(k-1)}I)^{-1}y^{(k-1)}$ (Done by solving $(A \mu I)z^{(k)} = y^{(k-1)}$.
- $y^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2}$.
- $\mu^{(k)} = (y^{(k)})^T A y^{(k)}$ (the Rayleigh Quotient of A)

i.e. we choose μ to be close to the desired eigenvalue.

- This converges to some eigenpair (λ_i, x_i) such that λ_i is close to $\mu^{(0)}$.
- This Rayleigh Quotient iteration converges very fast (cubic).
- However since $(A \mu^{(k-1)}I)$ is changing, we have to calculate the LU decomposition each time.
- However, this will only converge to one eivenpair.

4.2 Simultaneous Iteration

To compute r eigenpairs:

Algorithm 4.3

Choose $Y^{(0)} \in \mathbb{R}^{n \times r}$ s.t. $(Y^{(0)})^T (Y^{(0)}) = I$ For k = 1, 2, ...

- $\bullet \ Z^{(k)} = AY^{(k-1)}$
- Set $Y^{(k)}$ to be the Q matrix in the QR decomposition of $Z^{(k)}$.
- $\mu_i^{(k)} = (y_i^{(k)})^T A y_i^{(k)}$, where $y_i^{(k)}$ is the *i*-th column of $Y^{(k)}$

Under some assumption, we have:

$$||y_i^{(k)} - \pm x|| \le C\rho^k, i = 1, \dots, r,$$

where $\rho = \max_{i=1,\dots,r} \frac{|\lambda_i+1|}{\lambda_i} < 1$ and $|\mu_i^{(k)} - \lambda_i| \le C\rho^k$

4.3 QR algorithm for Eigenvalue Decomposition

We set r = n in the simultaneous power iteration

$$Z^{(k)} = AY^{(k-1)}$$

$$Y^{(k)}R^{(k)} = Z^{(k)}.$$

i.e. let $Z^{(k)} = Y^{(k)}R^{(k)}$ be the QR decomposition of $Z^{(k)}$. Eliminating $Z^{(k)}$, we have

$$Y^{(k)}R^{(k)} = AY^{(k-1)} \iff (Y^{(k)})^T AY^{(k-1)} = R,$$

because $(Y^{(k)})^T Y^{(k)} = Y^{(k)} (Y^{(k)})^T = I$.

Let
$$A^{(k)} = (Y^{(k)})^T A Y^{(k)}$$
, then

$$A^{(k-1)} = (Y^{(k-1)})^T A Y^{(k-1)} = (Y^{(k-1)})^T Y^{(k)} R^{(k)}.$$

Since $(Y^{(k-1)})^T Y^{(k)}$ is orthogonal and $R^{(k)}$ is upper triangular, $A^{(k)}$ is just an orthogonal square matrix. Note that

$$A^{(k)} = (Y^{(k)})^T A Y^{(k)} = (Y^{(k)})^T A Y^{(k-1)} (Y^{(k-1)})^T Y^{(k)} = R^{(k)} (Y^{(k-1)})^T Y^{(k)}.$$

This means that after getting the QR decomposition of $A^{(k-1)}$, we swap the two matrices to get $A^{(k)}$.

Algorithm 4.4 (QR Algorithm)

Choose initial guess $A^{(0)}=(Q^{(0)})^T\forall Q^{(0)},$ e.g. $Q^{(0)}=I\implies A^{(0)}=A.$ For $k=1,2,\ldots$

- Compute the QR decomposition: $A^{(k-1)} = Q^{(k)}R^{(k)}$.
- Set $A^{(k)} = R^{(k)}Q^{(k)}$.

Remark 4.5 — 1. Note that
$$A^{(k)} = R^{(k)}Q^{(k)} = (Q^{(k)})^T A^{(k-1)}Q^{(k)}$$
. By induction $A^{(k)} = (Q^{(k)})^T \cdots (Q^{(1)})^T (A^{(0)})^T A Q^{(0)}Q^{(1)} \cdots Q^{(k)} \implies A^{(k)}$ is similar to A as $Q^{(0)}Q^{(1)}\cdots$ is an orthogonal matrix.

2. Since $Y^{(k)}$ is expected to converge to the eigenvectors of A,

$$A^{(k)} = (Y^{(k)})^T A Y^{(k)} \text{ is expected to converge to } \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

It can be proven that if the eigenvalues of A are well separated, then $A^{(k)} \to \Lambda$ and $Q^{(0)} \cdots Q^{(k)}$ converges to the eigenvectors of A.

3. Since QR decomposition and matrix-matrix product costs $O(n^3)$, the total computational cost is

 $O(kn^3)$, where k is the number of iteration needed.

Note that if k iterations is done (or if $k \sim O(n)$), then it will be $O(n^4)$, which is expensive.

Note that even though the QR decomposition is not unique, it will still work since the QR have similar properties/structure.

4.4 Practical Implementation of QR Algorithm

The idea is to choose $Q^{(0)}$ such that $A^{(0)}$ is "well structured". This will allow QR decomposition to be done in $O(n^2)$. For our purpose, this "structure" is to be tridiagonal.

Thus this implementation has two phases:

- 1. Find $Q^{(0)}$ such that $A^{(0)} = (Q^{(0)})^T A Q^{(0)}$ is tridiagonal.
- 2. QR decomposition of tridiagonal matrices is done in $O(n^2)$ and so that $A^{(k)}$ preserves the tridiagonal structure.

Algorithm 4.6 (Phase 1)

We will use the Householder transformation.

1. Let P_1 be the Householder transform s.t.

$$P_{1} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & H_{1} & \\ 0 & & & \\ \end{bmatrix} : \begin{bmatrix} \times & \times & \cdots & \times \\ \times & \times & \cdots & \times \\ \vdots & \vdots & \ddots & \\ \times & \times & & \times \\ \end{bmatrix} \rightarrow \begin{bmatrix} \Delta & \Delta & \cdots & \Delta \\ \times & \times & \cdots & \times \\ 0 & & & \\ \vdots & \vdots & \ddots & \\ 0 & \times & & \times \\ \end{bmatrix}.$$

Then $P_1AP_1^T$

dsfont

5 April 12th, 2019

5.1 QR Algorithm for Non-Symmetric Matrix

ullet Phase 1: We can not reduce A to a tridiagonal matrix. Instead we reduce A to an upper Hessenberg Matrix

Definition 5.1. A **Hessenberg matrix** is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal.

$$\begin{bmatrix} 1 & 0 \\ 0 & H_1 \end{bmatrix} A = \begin{bmatrix} \times & \times & \cdots & \times \\ \times & \times & \cdots & \times \\ 0 & \times & \cdots & \times \\ \vdots & \vdots & \cdots & \vdots \\ 0 & \times & \cdots & \times \end{bmatrix} \implies \begin{bmatrix} 1 & 0 \\ 0 & H_1 \end{bmatrix} A \begin{bmatrix} 1 & 0 \\ 0 & H_1 \end{bmatrix}^T = \begin{bmatrix} \times & \times & \cdots & \times \\ \times & \times & \cdots & \times \\ 0 & \times & \cdots & \times \\ \vdots & \vdots & \cdots & \vdots \\ 0 & \times & \cdots & \times \end{bmatrix}$$

$$Q^{(0)}A\left(Q^{(0)}\right)^{T} = \begin{bmatrix} \times & \times & \cdots & \times \\ \times & \times & \cdots & \times \\ 0 & \times & \cdots & \times \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \times \end{bmatrix}$$

which is a Hessenberg Matrix.

• Phase 2:

- For k = 1, 2, ...- Computer the QR Decomposition of $A^{(k)} = Q^{(k)}R^{(k)}$ $A^{(k)} = R^{(k)}Q^{(k)}$.
- Note that $A^{(k)} = R^{(k)}Q^{(k)}$ is also a hessenberg Matrix:

- For
$$A^{(k)} = R^{(k)}Q^{(k)} = R^{(k)} \left(G_k^{(1)}\right)^T \left(G_k^{(2)}\right)^T \cdots \left(G_k^{(n-1)}\right)^T$$
:

$$R^{(k)} \left(G_k^{(1)} \right)^T = \begin{bmatrix} \times & \times & \times & \cdots & \times \\ & \times & \times & \cdots & \times \\ & & \times & \cdots & \times \\ & & & \ddots & \vdots \\ & & & & \times \end{bmatrix} \begin{bmatrix} c_1 & -s_1 & \\ s_1 & c_1 & \\ & & & & I \end{bmatrix} = \begin{bmatrix} \times & \times & \times & \cdots & \times \\ + & \times & \times & \cdots & \times \\ & & \times & \cdots & \times \\ & & & \times & \cdots & \times \\ & & & & \ddots & \vdots \\ & & & & & \times \end{bmatrix}.$$

$$R^{(k)} \left(G_k^{(1)}\right)^T \left(G_k^{(2)}\right)^T = \begin{bmatrix} \times & \times & \times & \cdots & \times \\ + & \times & \times & \cdots & \times \\ & + & \times & \cdots & \times \\ & & + & \times & \cdots & \times \\ & & & \ddots & \vdots \\ & & & & \times \end{bmatrix}.$$

• The idea is to first make it a Hessenberg Matrix, and then using Givens Rotation to remove the subdiagonal, giving us a upper triangular matrix.

The computational cost for the full QR algorithm is $O(n^3) + O(n^2 \cdot k)$, where k is the number of iterations (usually O(n)).

The algorithm generates $A^{(k)}$ satisfies:

$$A^{(k)} = (Q^{(k)})^T \cdots (Q^{(0)})^T A Q^{(0)} \cdots Q^{(k)}$$

which is similar to A, meaning that $A^{(k)}$ has the same eigenvalues of A.

However, we don't expect that this gives the eigenvalue decomposition of A. This is because:

- 1. the eigenvectors A are not necessarily orthogonal. (but $Q^{(i)}$ are orthogonal matrices), meaning that $X = Q^{(0)} \cdots Q^{(k)}$ is orthogonal.
- 2. the eigenvalue decomposition of A may not exist.

This QR algorithm converges to the Schur decomposition

Definition 5.3. For any matrix $A \in \mathbb{R}^{n \times n}$, there exists $Q, S \in \mathbb{R}^{n \times n}$ such that

$$A = QSQ^T$$
,

where

- $Q \in \mathbb{R}^{n \times n}$ is orthogonal, i.e. $Q^T Q = \mathbb{Q}^T = I$.
- $S \in \mathbb{R}^{n \times n}$ is a block upper triangular matrix, with 1×1 or 2×2 diagonal blocks. (i.e., there exists a partition of S:

$$S = \begin{bmatrix} S_{11} & S_{12} & \cdots & S_{1p} \\ & S_{22} & \cdots & S_{2p} \\ & & \ddots & \\ & & & S_{pp} \end{bmatrix}$$
 S_{ii} is either 1×1 or 2×2 .

Furthermore:

- if $S_{ii} \in \mathbb{R}^{1 \times 1}$, then it is an eigenvalue of A
- if $S_{ii} \in \mathbb{R}^{2\times 2}$, then $S_{ii} = \begin{bmatrix} q & -b \\ b & a \end{bmatrix}$, with $a \pm bi$ being eigenvalues of A.
- The blocks S_{ii} can be sorted s.t.

$$|\operatorname{eig}(S_{11})| \ge |\operatorname{eig}(S_{22})| \ge \ldots \ge |\operatorname{eig}(S_{pp})|.$$

Theorem 5.4

Under mild assumption, the QR algorithm converges to the Schur decomposition, more precisely,

$$A^{(k)} \to S$$

and

$$Q^{(0)}Q^{(1)}\dots Q^{(k)} \to Q$$

We can get eigenvalues of A from S and the eigenvectors of A from Q.

Remark 5.5 — Note that when A is symmetric, the Schur decomposition is the same as the eigenvalue decomposition, as S would by symmetric and upper triangular, i.e. S is diagonal. Because of this, all eigenvalues of A are real, since $S_{ii} \in \mathbb{R}^{1 \times 1}$.

Remark 5.6 — There is no direct formula for the Schur decomposition, since it is related to the eigenvalues of the matrix, which are the roots of a polynomial, which doesn't have a general closed form solution.

Example 5.7

Consider:

$$A = \begin{bmatrix} 1 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{3}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

Since A is non-symmetric, then we would not have a unitary eivenvalue decomposition.

The Schur decomposition of A is:

$$A = QSQ^{T} = \begin{bmatrix} 1 & & & \\ & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & -1 & \\ 1 & 1 & 1 \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}.$$

So the eigenvalues of A are:

- $1 = \det(S_{22})$
- $1 \pm i = \det(S_{11})$

5.2 Case Studies C - Applications of Eigenvalue Decomposition

Case Study I: Find the roots of a polynomial p(x). Let

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + x^n.$$

There are n solutions (roots) of p(x) = 0 in \mathbb{C} . We want to find all the roots of p.

Instead of using a root finding algorithm, we will use the eigenvalue decomposition to do so:

• Construct

April 24th, 2019 MATH3322 Notes

Then:

$$\det(\lambda I - A_p = a_0 + a_1\lambda + a_2\lambda^2 + \ldots + a_{n-1}\lambda^{n-1} + \lambda^n.$$

This means that the eigenvalues of A_p are the roots of p(x), meaning we can use the QR algorithm to find eigenvalues of A_p This is widely used in available software packages.

Remark 5.8 — The reason why we might want to use the Schur decomposition to do so is because it is numerically stable due to the unitary transformation.

Case Study II: Ranking webpages. Once agian we have

$$\Pi = \frac{1-p}{n}1 + pA\Pi$$
$$(I-pA)\Pi = \frac{1-p}{n}1$$
$$(I-pA)\Pi = \frac{1-p}{n}11^{T}\Pi$$
$$(pA + \frac{1-p}{n}11^{T})\Pi = \Pi.$$

This is in the form of an eigenvalue problem

6 April 24th, 2019

6.1 Case Studies 3

Let

- $W = [w_{ij}]$
- $D = \operatorname{diag}(W_1)$

Define L = D - W. Computer the eigenvector x_{n-1} corresponding to λ_{n-1} , the 2nd smallest eigenvalue of L. Define:

$$S = \{i \mid x_{n-1}(i) > 0\}$$

and

$$S^C = \{i \mid x_{n-1}(i) \le 0\}.$$

However, this method doesn't work well, as it tends to produce unbalanced groups, with one being huge and the other tiny. A better cut would be a "normalized cut".

To make the two groups have similar sizes, define the size of a group:

$$Vol(A) = \sum_{\substack{i \in A \\ j \in V}} w_{ij}.$$

Definition 6.1. A normalized cut of A and B is:

$$N_{cut}(A, B) = \frac{\operatorname{cut}(A, B)}{\operatorname{Vol}(A)} + \frac{\operatorname{cut}(A, B)}{\operatorname{Vol}(B)}.$$

This is minimized if and only if cut(A, B) is minimized and Vol(A) and Vol(B) are similar. However, this is not solvable, so we just solve:

$$\min_{S\subseteq V} N_{vut}(S, \overline{S}), \quad \text{where } \overline{S} = V \setminus S.$$

This again cannot be efficiently solved, so it can be solved approximately by an eigenvector/eigenvalue solver:

Define $z \in \mathbb{R}^m$ by:

$$z_i = \begin{cases} \frac{1}{\operatorname{Vol}(S)} & \text{if } i \in S \\ -\frac{1}{\operatorname{Vol}(\overline{S})} & \text{if } i \not \in S \end{cases} .$$

Then

$$z^T L z = Z^T (D - W) z.$$

6.2 Singular Value Decomposition (SVD)

If $A \in \mathbb{R}^{n \times n}$ is symmetric, then

$$A = U\Lambda U^T$$
,

where $U \in \mathbb{R}^{n \times n}$ satisfies $U^T U = U U^T = I$ and $\Lambda \in \mathbb{R}^{n \times n}$ is diagonal. This allows A to be it numerically stable.

However, this only only applies if A is a square and symmetric matrix. As such, we would like to extend the decomposition to any matrix, regardless of if they are square or symmetric. This is SVD.

Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ be an arbitrary real matrix (we can generalize this to m < n and complex matrix). We will make use of the following facts:

• Since $A^TA \in \mathbb{R}^{n \times n}$ is square, symmetric, and SPSD, there exists an eigenvector decomposition of A^TA .

Let $(\lambda_i, v_i), i = 1, 2, \dots, n$ be the eigenpairs of A^{TA} , with

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq 0.$$

So

$$A^T A = V \Lambda V^T, V = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ \lambda_n & & \end{bmatrix}.$$

• $A^T \in \mathbb{R}^{m \times m}$ is also square, symmetric, and SPSD.

April 26th, 2019 MATH3322 Notes

Theorem 6.2

Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{m \times m}$. Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of BA. Then the eigenvalues of AB are

$$\lambda_1, \lambda_2, \dots, \lambda_n, \underbrace{0, \dots, 0}_{\text{m-n 0's}}.$$

By this theorem, the eigenvalues of

7 April 26th, 2019

7.1 SVD

Let $A \in \mathbb{R}^{m \times n}$ (with $m \ge n$). Following from the previous lecture we have that the eigenvalues of AA^T are:

$$\lambda_1, \lambda_2, \ldots, \lambda_n, 0, 0, \ldots, 0$$

with corresponding eigenvectors:

$$u_1, u_2, \ldots, u_n, u_{n+1}, \ldots u_m.$$

Them:

$$AA^{T} = \begin{bmatrix} u_{1} & u_{2} & \dots & u_{n} & u_{n+1} & \dots \end{bmatrix} \begin{bmatrix} \lambda_{1} \end{bmatrix} = U\Lambda U^{T}.$$

$$(AA^{T})(Av_{1}) = A(A^{T}Av_{i}) = A(\lambda_{i}v_{i}) = \lambda_{i}(Av_{i})$$

$$\Rightarrow Av_{i} \text{ is an eigenvector of } AA^{T} \text{ with eigenvalue } \lambda_{i}$$

$$\Rightarrow Av_{i} = \sigma_{i}u_{i}, \quad i = 1, 2, \dots, n \quad (a).$$

$$(A^{T}A)(A^{T}v_{1}) = A^{T}(AA^{T}v_{i}) = A^{T}(\lambda_{i}v_{i}) = \lambda_{i}(A^{T}v_{i})$$

$$\Rightarrow A^{T}u_{i} \text{ is an eigenvector of } A^{T}A \text{ with eigenvalue } \lambda_{i}$$

$$\Rightarrow A^{T}v_{i} = \tilde{\sigma}_{i}u_{i}, \quad i = 1, 2, \dots, n \quad (b).$$

Let's find σ_i and $tilde\sigma_i$:

$$(b) \implies v_i^T A^T u_i = \tilde{\sigma}_i v_i^T v_i = \tilde{\sigma}_i.$$

$$(a) \implies u_i^T A v.$$

Index

characteristic polynomial, 3 eigenvalue decomposition, 2 power iteration, 6 Rayleigh quotient, 6 similar matrices, 2