

Cycle Ingénieur 3ème Année – Option GSE

Fabrice Muller

Polytech'Nice Sophia – Département Electronique

Fabrice.Muller@unice.fr http://www.polytech.unice.fr/~fmuller/

Copyright © F. Muller 2005-2010

Ch1 - 1 -

- Ch1 Overview of System Design Using SystemC
 - Ch2 Overview of SystemC
 - Ch3 Data Types
 - Ch4 Modules
 - Ch5 Notion of Time
 - Ch6 Concurrency
 - Ch7 Predefined Channels
 - Ch8 Structure
 - Ch9 Communication
 - Ch10 Custom Channels and Data
 - Ch11 Transaction Level Modeling

Copyright © F. Muller

Overview of System Design Using SystemC

Overview of System Design Using SystemC

Copyright © F. Muller 2005-2010

Electronic Systems Now

- Blend of Hardware and Software
 - CoDesign (Concurrent Design)
 - Embedded Systems
- Software / Firmware
 - Bottleneck (communication)
- Easier to create heterogeneous concurrency than to use it!

Copyright © F. Muller 2005-2010

Overview of System Design Using SystemC

Soft versus Hard

- CPU (ARM11)
- FPGA (VirtexII Pro, V4, V5)
- ASSP (Application-Specific Standard Product)
- ASIC (Application-Specific Integrated Circuit)
- SoC, MPSoC
- Hybrid

Copyright © F. Muller 2005-2010

Overview of System Design Using SystemC

Ch1 - 5 -

Performance

FPGA versus DSP/CPU

SYSTEM C

♦ ASIC
■ Platform ASIC

Ch1 - 6 -

ASICs on the road to extinction?

Copyright © F. Muller 2005-2010

Overview of System Design Using SystemC

Ch1 - 7 -

Copyright © F. Muller 2005-2010

Overview of System Design Using SystemC

Ch1 - 8 -

Time spent on different phases in a typical SoC design project

System Level Design

- Drastic power reduction
- Abandon the pure synchronous path
- Self-Correcting architectures
- Demands System-Level approach
 - High Level of abstraction
 - Early on validation
 - Delay decision into Hardware and/or Software part
 - Language ??

anguage Comparison

Copyright © F. Muller Overview of System Design Using SystemC

(SYSTEM C™ Ch1 - 12 -

Facing Design Complexity

- SystemC supports several techniques for addressing the complexity
 - Abstraction
 - Design reuse
 - Team discipline
 - Project reuse
 - Automation

Facing Design Complexity **Design Reuse**

- Reuse has emerged as the dominant productivity technique for RTL and software design
- Reuse will continue to be a major component of any new methodology to address increased complexity
- Platform based design is an evolution of design reuse to higher levels of abstraction

Copyright © F. Muller 2005-2010

