Laboratorio No. 3 - Ejercicio 2

Conversión de Autómata Finito a Expresión Regular usando el Lema de Arden

Jonathan Zacarias carnet:231104 Universidad del Valle de Guatemala Facultad de Ingeniería Ingeniería en Ciencia de la Computación

4 de agosto de 2025

1. Análisis del Autómata

Del diagrama proporcionado en el enunciado, identificamos los siguientes elementos:

1.1. Estados

- q_0 : Estado inicial
- $q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, q_{11}$: Estados del autómata
- q₁₁: Estado de aceptación (representado con doble círculo)

1.2. Transiciones Identificadas

Analizando cuidadosamente el diagrama, las transiciones son:

$$q_0 \xrightarrow{\varepsilon} q_1 \qquad (1)$$

$$q_1 \xrightarrow{0} q_2 \qquad (2)$$

$$q_1 \xrightarrow{\varepsilon} q_3 \qquad (3)$$

$$q_2 \xrightarrow{\varepsilon} q_4 \qquad (4)$$

$$q_3 \xrightarrow{\varepsilon} q_4 \qquad (5)$$

$$q_4 \xrightarrow{A} q_5 \qquad (6)$$

$$q_4 \xrightarrow{\varepsilon} q_6 \qquad (7)$$

$$q_5 \xrightarrow{\varepsilon} q_{10} \qquad (8)$$

$$q_6 \xrightarrow{\varepsilon} q_7 \qquad (9)$$

$$q_7 \xrightarrow{\varepsilon} q_8 \qquad (10)$$

$$q_8 \xrightarrow{\varepsilon} q_9 \qquad (11)$$

$$q_9 \xrightarrow{\varepsilon} q_{10} \qquad (12)$$

$$q_{10} \xrightarrow{\varepsilon} q_{11} \qquad (13)$$

$$q_{11} \xrightarrow{D} q_{11} \text{ (bucle)}$$

$$q_{11} \xrightarrow{\varepsilon} q_{11} \text{ (bucle)}$$

2. Aplicación del Lema de Arden

2.1. Formulación del Sistema de Ecuaciones

Para cada estado q_i , escribimos la ecuación:

$$q_i = \sum (\text{símbolo} \times \text{estado_origen}) + \text{términos_epsilon}$$

$$q_{0} = \varepsilon \text{ (estado inicial)}$$

$$q_{1} = \varepsilon \cdot q_{0} = q_{0}$$

$$q_{2} = 0 \cdot q_{1}$$

$$q_{3} = \varepsilon \cdot q_{1} = q_{1}$$

$$q_{4} = \varepsilon \cdot q_{2} + \varepsilon \cdot q_{3} = q_{2} + q_{3}$$

$$q_{5} = A \cdot q_{4}$$

$$q_{6} = \varepsilon \cdot q_{4} = q_{4}$$

$$q_{7} = \varepsilon \cdot q_{6} = q_{6}$$

$$q_{8} = \varepsilon \cdot q_{7} = q_{7}$$

$$q_{9} = \varepsilon \cdot q_{8} = q_{8}$$

$$q_{10} = \varepsilon \cdot q_{5} + \varepsilon \cdot q_{9} = q_{5} + q_{9}$$

$$q_{11} = \varepsilon \cdot q_{10} + D \cdot q_{11} + \varepsilon \cdot q_{11}$$

$$(16)$$

$$(17)$$

$$(18)$$

$$(20)$$

$$(21)$$

$$(22)$$

$$(23)$$

$$(24)$$

$$(25)$$

$$(26)$$

$$(27)$$

2.2. Resolución del Estado Final

Para q_{11} :

$$q_{11} = q_{10} + (D + \varepsilon) \cdot q_{11} \tag{28}$$

Aplicando el **Lema de Arden**: Si X = A + BX, entonces $X = AB^*$

- $A = q_{10}$
- $B = (D + \varepsilon)$

Por lo tanto:

$$q_{11} = q_{10} \cdot (D + \varepsilon)^* \tag{29}$$

Como $(D + \varepsilon)^* = D^*$ (la cadena vacía ya está incluida en la clausura de Kleene):

$$q_{11} = q_{10} \cdot D^* \tag{30}$$

2.3. Resolución Hacia Atrás

Para q_{10} :

$$q_{10} = q_5 + q_9 \tag{31}$$

Siguiendo las transiciones ε :

$$q_9 = q_8 = q_7 = q_6 = q_4 \tag{32}$$

$$q_5 = A \cdot q_4 \tag{33}$$

Sustituyendo:

$$q_{10} = A \cdot q_4 + q_4 = (A + \varepsilon) \cdot q_4 \tag{34}$$

Como $A + \varepsilon$ representa .^A o nada":

$$q_{10} = A? \cdot q_4 \tag{35}$$

Para q_4 :

$$q_4 = q_2 + q_3 (36)$$

$$q_2 = 0 \cdot q_1 \tag{37}$$

$$q_3 = q_1 \tag{38}$$

Sustituyendo:

$$q_4 = 0 \cdot q_1 + q_1 = (0 + \varepsilon) \cdot q_1 = 0? \cdot q_1 \tag{39}$$

Para q_1 :

$$q_1 = q_0 = \varepsilon \tag{40}$$

Por lo tanto:

$$q_4 = 0? \cdot \varepsilon = 0? \tag{41}$$

2.4. Composición Final

Sustituyendo hacia arriba:

$$q_4 = 0? (42)$$

$$q_{10} = A? \cdot q_4 = A? \cdot 0? \tag{43}$$

$$q_{11} = q_{10} \cdot D^* = A? \cdot 0? \cdot D^* \tag{44}$$

3. Resultado Final

Expresión Regular: A?0?D*

3.1. Interpretación

La expresión regular A?0?D* significa:

- A?: Opcionalmente una 'A'
- 0?: Seguido opcionalmente de un '0'
- lacktriangle D^* : Seguido de cero o más 'D's

3.2. Lenguaje Aceptado

El autómata acepta las siguientes cadenas:

Tipo	Cadenas
Básicas	ε , A, 0, D, DD, DDD,
Combinaciones	A0, AD, ADD, ADDD,
Con cero	0D, 0DD, 0DDD,
Completas	A0D, A0DD, A0DDD,

Cuadro 1: Ejemplos de cadenas aceptadas por el autómata

3.3. Verificación

Los caminos en el autómata que conducen a la aceptación son:

- 1. Camino directo: $q_0 \rightarrow q_1 \rightarrow q_3 \rightarrow q_4 \rightarrow q_6 \rightarrow q_7 \rightarrow q_8 \rightarrow q_9 \rightarrow q_{10} \rightarrow q_{11}$ acepta ε
- 2. Con símbolo 0: $q_0 \to q_1 \to q_2 \to q_4 \to \dots \to q_{11}$ acepta cadenas que comienzan con 0
- 3. Con símbolo A: $q_0 \to q_1 \to q_3 \to q_4 \to q_5 \to q_{10} \to q_{11}$ acepta cadenas que contienen A
- 4. Bucles en q_{11} : Permiten agregar cualquier cantidad de D's al final

4. Conclusión

Mediante la aplicación sistemática del Lema de Arden, hemos demostrado que el autómata finito dado acepta exactamente el lenguaje descrito por la expresión regular:

 $A?0?D^*$

Esta expresión captura todas las combinaciones posibles de caminos a través del autómata, considerando las transiciones epsilon que permiten opcionalidad en los símbolos A y 0, seguidos de cualquier cantidad de símbolos D.