TRIANGLES ISOMÉTRIQUES ET TRIANGLES **SEMBLABLES**

Activités de rappel

Pour chaque cas, une ou plusieurs affirmations sont exactes. Lesquelles ?

		(A)	(B)	(C)	(D)
1	ABC est un triangle tel que : $\widehat{ABC} = 60^{\circ}$ et $\widehat{ACB} = 60^{\circ}$, donc	ABC est un triangle rectangle en A	ABC est un triangle équilatéral	BAC = 120°	BAC = 60°
2	Dans la figure ci-contre, si (AB) // (CF) alors	$\widehat{AEF} = 100^{\circ}$	BEC = 100°	$\widehat{\mathrm{BEC}} = 80^{\circ}$	$\widehat{AEF} = 60^{\circ}$
3	Dans la figure ci-dessous, (%) est un cercle de centre O. On a	DFB = 35°	FDE = 240°	FBE = 60°	ÊBF = 120°
4	Dans la figur ci-contre, on a	<u>ECB</u> = 50°	(ED) // (CB)	$\widehat{ADE} = 60^{\circ}$	ABC est un triangle isocèle
5	Dans la figure ci-dessous, on a	(DE) // (AC)	$\frac{DE}{AC} = \frac{1}{3}$	$\frac{DE}{AC} = \frac{1}{2}$	$\widehat{\text{BDE}} = \widehat{\text{BAC}}$

Activité 2

Dans la figure ci-contre, ABCD est un parallélogramme. Déterminer la mesure de l'angle \widehat{CAB} .

Activité 3

Dans la figure ci-contre, calculer les longueurs BC, AE et AC.

Sur la figure ci-contre, ABC est un triangle et (D) est une droite extérieure au triangle.

- 1) Construire A'B'C' le symétrique du triangle ABC par rapport à la droite (D).
- 2) Comparer les longueurs des côtés correspondants suivants :

[AB] et [A'B']; [AC] et [A'C']; [BC] et [B'C'].

3) Comparer les mesures des angles correspondants suivants :

 \widehat{ABC} et $\widehat{A'B'C'}$; \widehat{BAC} et $\widehat{B'A'C'}$; \widehat{BCA} et $\widehat{B'C'A'}$.

4) Conclure.

Cours

20 min

I. Triangles isométriques

Définition

Deux triangles isométriques sont deux triangles superposables.

Exemple:

Sur la figure ci-dessous, ABCD est un rectangle. Les triangles ABC et ACD sont isométriques.

Propriété

Si deux triangles sont isométriques, alors

Remarque:

Si deux triangles sont isométriques, alors

.....

Attention:

Deux triangles dont les angles sont deux à deux de même mesure

.....

Cas d'isométrie :

Propriété 1 : (1er cas d'isométrie)

Si deux triangles ont, alors ces deux triangles sont isométriques.

Exemple:

Sur la figure ci-contre, ABCD est un parallélogramme.

On a

Donc les triangles ABD et BCD sont alors isométriques.

Application

20 min

Exercice 1:

ABCD est un parallélogramme, et I le point d'intersection de ses diagonales. Que peut-on dire des triangles ABI et CDI ? De même, que peut-on dire des triangles BCI et AID ?

Exercice 2:

ABC est un triangle isocèle en A, E est le symétrique de B par rapport à A et F est le symétrique de C par rapport à A.

C

Montrer que les deux triangles ABC et AEF sont isométriques.

Sur la figure ci-contre, montrer que les triangles MKP et MPN sont isométriques.

Propriété 2 : (2ème cas d'isométrie)

Si deux triangles ont

Exemple:

ABC est un triangle isocèle en A.

I, J et K sont les milieux respectifs des côtés [AB], [BC] et [AC].

On a

Donc les triangles IBJ et KCJ sont isométriques.

20 min

ABC est un triangle rectangle et isocèle en A, M est le milieu de [BC].

Montrer que ABM et ACM sont deux triangle isométriques.

Activité d'introduction) 🙌 15 min

Sur la figure ci-contre, montrer que les triangles ADB et BDC sont isométriques.

20 min

Propriété 3 : (3^{ème} cas d'isométrie)

Si deux triangles ont

Exemple:

Dans la figure ci-contre, A, B, C et D sont des points d'un cercle (C) tels que AB = CD et M est l'intersection de (AC) et (BD).

On a

Donc les triangles ABM et DCM sont isométriques.

20 min

(%) est un cercle de centre M. Les points A, B, C et D appartiennent au cercle (%) tel que AB = CD.

Montrer que les deux triangles ABM et CDM sont isométriques.

Sur la figure ci-contre, on a (AB) // (DC).

1) Comparer les mesures des angles correspondants suivants :

$$\widehat{ABO}$$
 et \widehat{DCO} ; \widehat{OAB} et \widehat{ODC} ; \widehat{BOA} et \widehat{COD} ;

 \underline{OA} $\underline{\hspace{0.1cm}}$ OB 2) Montrer que :

20 min

I. Triangles semblables

Définition

Deux triangles sont semblables si leurs angles correspondants sont deux à deux de même mesure.

Exemple:

Dans la figure ci-contre:

Les triangles ABC et MNP sont semblables car $\widehat{ABC} = \widehat{NPM}$, $\widehat{CAB} = \widehat{PMN}$ et $\widehat{BCA} = \widehat{MNP}$.

Propriété

Si deux triangles sont semblables, alors

Vocabulaire:

Deux angles égaux de deux triangles semblables sont dits angles homologues.

De même, deux côtés proportionnels sont dits côtés homologues.

Remarque: Si deux triangles sont isométriques, alors ils sont

Application

20 min

ACE est un triangle, (BD) // (CE). (voir figure).

Montrer que les triangles ABD et ACE sont semblables.

Activité d'introduction

15 min

Sur la figure ci-contre, ABC et EFG sont deux triangles tels que :

$$\widehat{ABC} = \widehat{EFG}$$
 et $\widehat{BAC} = \widehat{FEG}$.

Montrer que les triangles ABC et EFG sont semblables.

20 min

Cas de similitude:

Propriété 1: (1er cas de similitude)

Si deux triangles ont

Exemple:

Sur la figure ci-contre. On a :

$$\widehat{ABC} = \widehat{A'B'C'}$$
 et $\widehat{BCA} = \widehat{B'C'A'}$.

Donc ABC et A'B'C' sont deux triangles semblables.

20 min

ABC est un triangle rectangle en A et [AH] sa hauteur.

Montrer que les triangles BAH et ABC sont semblables.

Activité d'introduction

15 min

Sur la figure ci-contre.

- 1) Vérifier que : $\frac{AM}{AB} = \frac{AN}{AC}$
- 2) Montrer que (MN) // (BC).
- 3) En déduire que ABC et AMN sont semblables.

20 min

Propriété 2 : (2ème cas de similitude)

Si deux triangles ont

Exemple:

Sur la figure ci-contre, on a :

Donc les triangles ABC et A'B'C' sont semblables.

20 min

Montrer que les triangles ABO et MNO sont semblables.

Activité d'introduction 😽 15 min

ABC et A'B'C' sont deux triangles tels que : $\frac{A'B'}{AB} = \frac{A'C'}{AC} = \frac{B'C'}{BC}$

- 1) Construire le point M de la demi-droite [AB) et le point N de de la demi-droite [AC) tels que les deux triangles AMN et A'B'C' soient isométriques.
- 2) En déduire que ABC et A'B'C' sont semblables.

Propriété 3: (3ème cas de similitude)

Si deux triangles ont

.....

Exemple:

Sur la figure ci-contre, on a :

Donc les triangles ABC et A'B'C' sont semblables.

Cas particulier des triangles rectangles :

Pour que deux triangles rectangles soient semblables, il suffit qu'ils aient deux côtés homologues proportionnels. En particulier l'hypoténuse et un côté de l'angle droit.

Application

20 min

ABC un triangle et E un point de [AB] tels que $AE = \frac{1}{3}AB$.

La droite parallèle à (BC) passant par E coupe [AC] en F.

1) Montrer que
$$\frac{AE}{AB} = \frac{AF}{AC} = \frac{EF}{BC} = \frac{1}{3}$$

2) Montrer que les triangles ABC et AEF sont semblables.

Exercices de Soutien

EXERCICE 1:

ABC est un triangle isocèle en A, E est le symétrique de B par rapport à A et F est le symétrique de C par rapport à A.

Montrer que les deux triangles ABC et AEF sont isométriques.

EXERCICE 2:

ABC est un triangle rectangle et isocèle en A, M est le milieu de [BC]. Montrer que ABM et ACM sont deux triangle isométriques.

EXERCICE 3:

ABCD est un parallélogramme. Montrer que les triangles ABD et BCD sont isométriques.

EXERCICE 4:

Dans un triangle ABC : $\widehat{ABC} = 48^{\circ}$ et $\widehat{ACB} = 50^{\circ}$. Dans un triangle RST : $\widehat{RST} = 50^{\circ}$ et $\widehat{RTS} = 82^{\circ}$.

- 1) Calculer la mesure de l'angle \widehat{SRT} .
- 2) Est-ce que les deux triangles sont semblables ?

EXERCICE 5:

ABC est un triangle iscocèle en A. M est le milieu de [BC] et E un point de [AM].

La parallèle à (AC) passant par E coupe (BC) en N.

Montrer que les triangles ABM et MEN sont semblables.

EXERCICE 6:

ABCD est un parallélogramme. N'est un point du segment [DC] distinct de D et C.

La droite (AN) coupe (BC) en M.

- 1) Montrer que les triangles AND et ABM sont semblables.
- 2) En déduire que : $DN \times BM = AB \times AD$.