Corps finis.

Exercice 1. Décrire les éléments des anneaux suivants et en dresser les tables d'addition et de multiplication :

$$\mathbf{F}_2[X]/(X^2+1)$$
; $\mathbf{F}_2[X]/(X^2+X+1)$; $\mathbf{F}_2[X]/(X^3+X+1)$.

Lesquels de ces anneaux sont-ils des corps?

Exercice 2. Pour quels entiers $1 \le n \le 100$ existe-t-il un corps de cardinal n?

Exercice 3. Soit $P = X^4 + X + 1 \in \mathbf{F}_2[X]$. On note $\mathbf{K} = \mathbf{F}_2[X]/(P)$ et $\alpha = \mathrm{cl}(X) \in \mathbf{K}$.

1. Montrer que K est un corps. Quelle est sa caractéristique?

Donner une base du \mathbf{F}_2 -espace vectoriel \mathbf{K} . Quel est le cardinal de \mathbf{K} ?

- **2.** Quel est l'inverse de l'élément $1 + \alpha + \alpha^2$ dans le groupe multiplicatif \mathbf{K}^* ?
- 3. Montrer que α est une racine primitive de l'unité de K.

Exercice 4. Soit $P = X^3 - X + 1 \in \mathbf{F}_3[X]$. On note $\mathbf{K} = \mathbf{F}_3[X]/(P)$ et $\alpha = \mathrm{cl}(X) \in \mathbf{K}$.

1. Montrer que K est un corps. Quelle est sa carctéristique?

Donner une base du \mathbf{F}_3 -espace vectoriel \mathbf{K} . Quel est le cardinal de \mathbf{K} ?

- 2. Quels sont les ordres (multiplicatifs) possibles des éléments de K^* ? De $K^*\backslash F_3$?
- 3. Le but de cette question est de montrer que α est une racine primitive de l'unité de K.
 - a) Montrer que $\alpha^{13} = -1$ si et seulement si P divise le polynôme $X(X-1)^4 + 1$ dans $\mathbf{F}_3[X]$.
 - b) Conclure.
- **4.** Le polynôme $Q = X^4 + X^3 + X^2 + X + 1$ a-t-il des racines dans $\mathbf{K}[X]$?

Exercise 5. Soit $P = X^2 + X + 2 \in \mathbf{F}_5[X]$. On note $\mathbf{K} = \mathbf{F}_5[X]/(P)$ et $\alpha = \mathrm{cl}(X) \in \mathbf{K}$.

1. Montrer que K est un corps. Quelle est sa caractéristique?

Donner une base du \mathbf{F}_5 -espace vectoriel \mathbf{K} . Quel est le cardinal de \mathbf{K} ?

- **2.** Exprimer toutes les puissances distinctes de α dans la base décrite ci-dessus. Quel est l'ordre de α dans le groupe \mathbf{K}^* ?
- **3.** Quels sont les éléments $a \in \mathbf{K}$ tels que $a^5 = a$? En déduire que si un polynôme $Q \in \mathbf{F}_5[X]$ admet une racine $a \in \mathbf{K}$, alors a^5 est aussi racine de Q.
- **4.** Montrer que pour tout $a \in \mathbf{K}$, on a : $a + a^5 \in \mathbf{F}_5$ et $a \times a^5 \in \mathbf{F}_5$. En déduire le polynôme minimal de a dans $\mathbf{F}_5[X]$.
- 5. Factoriser le polynôme $X^{25} X$ dans $\mathbf{F}_5[X]$ et donner les racines dans \mathbf{K} de chaque facteur.

Exercice 6. Soit **K** un corps fini de caractéristique p > 3, et soit $P = X^2 - X + 1 \in \mathbf{K}[X]$.

- **1.** Soit $a \in \mathbf{K}$. Montrer que a est une racine de P si et seulement si a est d'ordre 6 dans \mathbf{K}^* .
- **2.** En déduire une condition nécessaire et suffisante sur $b \in \mathbf{K}$ pour que b soit racine du polynôme $Q = X^4 X^2 + 1$.
- **3.** Montrer que Q a 0 ou 4 racines distinctes dans \mathbf{K} .

- **4.** Qu'en est-il pour $K = F_{73}$? $K = F_{89}$?
- 5. Donner l'exemple d'un corps ${\bf K}$ dans lequel P possède deux racines distinctes mais Q n'a pas de racine.

Exercise 7. Soit $P = X^3 + X^2 + X - 1 \in \mathbb{F}_5[X]$. On note $\mathbb{K} = \mathbb{F}_5[X]/(P)$ et $\alpha = \operatorname{cl}(X) \in \mathbb{K}$.

1. Montrer que K est un corps. Quelle est sa caractéristique?

Donner une base du \mathbf{F}_5 -espace vectoriel \mathbf{K} . Quel est le cardinal de \mathbf{K} ?

- **2.** Quels sont les ordres possibles des éléments de K^* ? De $K^*\backslash F_5$?
- 3. Combien existe-t-il de racines primitives de l'unité dans K?
- 4. Montrer, sans effectuer de calculs, que α^4 est d'ordre 31. En déduire une racine primitive de l'unité de K. Quel est son polynôme minimal?

Exercice 8. 1. Donner la liste des polynômes unitaires irréductibles de degré 2 de $\mathbf{F}_3[X]$.

- **2.** Soit $P = X^4 + X 1 \in \mathbf{F}_3[X]$. On pose $\mathbf{K} = \mathbf{F}_3[X]/(P)$, et $\alpha = \mathrm{cl}(X) \in \mathbf{K}$.
 - a) Montrer que K est un corps. Quelle est sa caractéristique?
 - b) Donner une base du F₃-espace vectoriel K. Quel est le cardinal de K?
- 3. On s'intéresse ici au groupe multiplicatif K*.
 - a) Quels sont les ordres possibles des éléments de K^* ? De $K^*\backslash F_3$?
 - b) Combien le corps K admet-il de racines primitives de l'unité?
- 4. On cherche ici à montrer que α est une racine primitive de l'unité dans K.
 - a) Donner une condition nécessaire et suffisante sur α^{40} pour que α soit une racine primitive de l'unité dans \mathbf{K} .
 - **b)** Calculer α^{13} (on pourra calculer α^4 puis α^{12}).
 - c) Calculer α^{40} et conclure.
- 5. On cherche ici à factoriser le polynôme P dans le corps \mathbf{K} .
 - a) Montrer que α , α^3 , α^9 , α^{27} sont des éléments de K deux à deux distincts.
 - **b)** Montrer que pour tout entier naturel i on a : $P(X^{3^i}) = (P(X))^{3^i}$
 - (On pourra raisonner par récurrence sur i.)
 - c) Donner la décomposition de P en facteurs irréductibles dans $\mathbf{K}[X]$.
 - d) En déduire les racines dans **K** du polynôme $P_1 = -X^4 + X^3 + 1$.
- **6.** a) Quelles sont les racines dans **K** du polynôme $Q = X^4 + X^3 + X^2 + X + 1$?
 - **b)** Même question avec $R = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$.

Exercice 9. Alice et Bob décident d'utiliser le protocole de **Diffie-Helman**. Ils rendent public le couple (\mathbf{K}, α) de l'exercice 4. Alice choisit a = 9 et transmet α^9 à Bob. Ce dernier choisit un entier b et renvoie à Alice $\alpha^b = 2 + \alpha + 2\alpha^2$.

- 1. Quelle est la clef secrète d'Alice et Bob?
- **2.** Alice souhaite faire passer à Bob le message $M=2+\alpha^2$. Que transmet-elle?
- 3. En réponse, elle reçoit 2α . Quel était le message de Bob?

Exercice 10. Utilisant l'exercice 3., Alice rend publics le corps \mathbf{K} , la racine primitive de l'unité $\alpha \in \mathbf{K}$ et l'élément $1 + \alpha^2 \in \mathbf{K}$ (correspondant ainsi au triplet (\mathbf{K}, g, g^e) du cours). Bob envoie des messages à Alice en utilisant l'algorithme de El Gamal.

- 1. Bob veut coder le messge $M=1+\alpha$ en utilisant x=3. Que transmet-il à Alice?
- **2.** Même question avec $M = \alpha + \alpha^3$ et x = 4.
- **3.** Vous décidez de casser le code d'Alice. Ceci fait, vous interceptez le message $(\alpha^3, \alpha^3 + \alpha^2 + \alpha)$, c'est-à-dire le couple (g^x, Mg^{xe}) . Quel était le message M de Bob?