

Human Computer Interaction

Discussion Session 3: Humans II

Prof. Dr. Björn Eskofier Machine Learning & Data Analytics (MaD) Lab Summer term 2024

Human Computer Interaction | Discussion Session 3 Summer 2024

Recap and Example: Model Human Processor

Summer 2024

Model Human Processor

From Computer Science 498bpb, Psychology of HCI

Where do you have evidence / examples that this model is in place?

Attention – Have you seen the Gorilla?

https://www.youtube.com/watch?v=vJG698U2Mvo&ab_ch annel=DanielSimons

Wickens Model

Four dimensions are:

- Processing stages
- Perceptual modalities
- Visual channels
- Processing codes

Implications

 Tasks that use different resources are easier to do than tasks that require
 "more" of one resources

Listening to 2 conversations?

Searching a photo while listening?

Source: Wickens, C. D.: Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science. S.159–177, 2002.

Human Computer Interaction | Discussion Session 3

Calculate the Total Interference of the Tasks "Rural-Curve Driving" and "Auditory IVT".

- Use the given Conflict Matrix
- Define the Demand Vectors (maximum entry = 3)
- Calculate the Total Demand, the Total Conflict and Total Interference

	V_f	V _a	$\mathbf{A}_{\mathbf{s}}$	$\mathbf{A_v}$	C_s	$C_{\mathbf{v}}$	R_s	R_v
$V_{\mathbf{f}}$	0.8		0.6	0.4	0.7	0.5	0.4	0.2
Va		0.8	0.4	0.6	0.5	0.7	0.2	0.4
$\mathbf{A_s}$			0.8	0.4	0.7	0.5	0.4	0.2
$\mathbf{A_v}$				0.8	0.5	0.7	0.2	0.4
C_s					0.8	0.6	0.6	0.4
$\mathbf{C}_{\mathbf{v}}$						0.8	0.4	0.6
\mathbf{R}_{s}							0.8	0.6
\boldsymbol{R}_{v}								1.0

Define Demand Vectors for the tasks: Maximum entry is 3

	V _f	Va	As	Α _v	Cs	Cv	Rs	R_V	
Rural-Curve Driving	1	2	0	0	1	0	2	0	
Auditory IVT	0	0	0	2	0	2	0	2	

Human Computer Interaction | Discussion Session 3

Define Demand Vectors for the tasks: Maximum entry is 3 sum of all entries 1+2+1+2

nr of resources

8 entries

	<u>V</u> f	Va	As	A _v	Cs	Cv	Rs	R_V	
Rural-Curve Driving	1	2	0	0	1	0	2	0	0.75
Auditory IVT	0	0	0	2	0	2	0	2	0.75

Calculate Total Demand:

Total Demand (TD) = 0.75 + 0.75 = 1.5

Sum of 1 Se2 - Total Demod.

Wickens Model

Calculate Total Conflict:

Rural-Curve Driving

1 2 0 0 1 0 2 0

			V_f	V_{a}	A_s	$\mathbf{A}_{\mathbf{v}}$	C_s	$\mathbf{C}_{\mathbf{v}}$	R_s	R_{v}
	0	$V_{\mathbf{f}}$	0.8	0.6	0.6	0.4	0.7	0.5	0.4	0.2
	0	Va		0.8	0.4	0.6	0.5	0.7	0.2	0.4
 	0	$\mathbf{A}_{\mathbf{s}}$			0.8	0.4	0.7	0.5	0.4	0.2
Auditory IVT	2	$\mathbf{A}_{\mathbf{v}}$				0.8	0.5	0.7	0.2	0.4
ditc	0	C_s					0.8	0.6	0.6	0.4
¥	2	$C_{\mathbf{v}}$						0.8	0.4	0.6
	0	$R_{\rm s}$							0.8	0.6
	2	$\boldsymbol{R_v}$								1.0

4360264814

Calculate Total Conflict:

Rural-Curve Driving

1 2 0 0 1 0 2 0

			V_{f}	V _a	A_s	A_v	C_s	$C_{\mathbf{v}}$	R _s	R _v
	0	$^{\mathrm{J}}\!\Lambda$	0.8	0.6	0.6	0.4	0.7	0.5	0.4	0.2
	0	Va		0.8	0.4	0.6	0.5	0.7	0.2	0.4
5	0	A_s			0.8	0.4	0.7	0.5	0.4	0.2
Auditory IVT	2	$\mathbf{A_v}$				0.8	0.5	0.7	0.2	0.4
adite	0	C_s					0.8	0.6	0.6	0.4
A	2	$C_{\mathbf{v}}$						0.8	0.4	0.6
	0	R_s							0.8	0.6
	2	R_{ν}								1.0

Calculate Total Conflict:

Rural-Curve Driving

2 0 0 1 0 2 0

			V_{f}	V _a	A_s	A_v	C_s	$C_{\mathbf{v}}$	R _s	R _v
	0	$^{\rm j}_\Lambda$	0.8	0.6	0.6	0.4	0.7	0.5	0.4	0.2
	0	Va		0.8	0.4	0.6	0.5	0.7	0.2	0.4
<u> </u>	0	$\mathbf{A_s}$			0.8	0.4	0.7	0.5	0.4	0.2
Auditory IVT	2	$\mathbf{A_v}$				0.8	0.5	0.7	0.2	0.4
aditc	0	C_s					0.8	0.6	0.6	0.4
A	2	$C_{\mathbf{v}}$						0.8	0.4	0.6
	0	$R_{\rm s}$							0.8	0.6
	2	R_{ν}								1.0

Calculate Total Conflict:

Rural-Curve Driving

1 2 0 0 1 0 2 0

			V_{f}	V _a	A_s	A_v	C_s	$\mathbf{C}_{\mathbf{v}}$	R_s	R_{v}
	0	$^{\mathrm{J}}\!\Lambda$	0.8	0.6	0.6	0.4	0.7	0.5	0.4	0.2
	0	Va		0.8	0.4	0.6	0.5	0.7	0.2	0.4
<u> </u>	0	A_s			0.8	0.4	0.7	0.5	0.4	0.2
Auditory IVT	2	$\mathbf{A}_{\mathbf{v}}$				0.8	0.5	0.7	0.2	0.4
adite	0	C_s					0.8	0.6	0.6	0.4
¥	2	$\mathbf{C}_{\mathbf{v}}$						0.8	0.4	0.6
	0	$R_{\rm s}$							0.8	0.6
	2	$\boldsymbol{R_{v}}$								1.0

Total Conflict (TC) = 0.5 + 0.2 + 0.4 = 1.1

Sun of intersections for both.

Total Conflict:

$$TC = 1.1$$

TD= Sum raking it 3.

Scaling of TC needed:

Maximum TD = 6 (all entries of the tasks = 3)

• Maximum TC = 20 (sum over all cells) \rightarrow overwhelms TD

	<u>V</u> f	Va	As	A _v	Cs	Cv	Rs	Rv	
Demand Task 1	3	3	3	3	3	3	3	3	3
Demand Task 2	3	3	3	3	3	3	3	3	3
									6

	V_f	V _a	$\mathbf{A_s}$	$\mathbf{A}_{\mathbf{v}}$	C_s	$C_{\mathbf{v}}$	R_s	R _v
$V_{\mathbf{f}}$	0.8	0.6	0.6	0.4	0.7	0.5	0.4	0.2
Va		0.8	0.4	0.6	0.5	0.7	0.2	0.4
$\mathbf{A_s}$			0.8	0.4	0.7	0.5	0.4	0.2
$\mathbf{A}_{\mathbf{v}}$				0.8	0.5	0.7	0.2	0.4
C					0.8	0.6	0.6	0.4
$\mathbf{c}_{\mathbf{v}}$						0.8	0.4	0.6
$R_{\rm s}$							0.8	0.6
$\mathbf{R}_{\mathbf{v}}$								1.0

Total Conflict:

$$TC = 1.1$$

Scaling of TC needed:

- Maximum TD = 6 (all entries of the tasks = 3)
- Maximum TC = 20 (sum over all cells) → overwhelms TD
- Scaling Factor: $\frac{\max demand}{\max conflict} = \frac{6}{20}$ = $\frac{6}{20}$ =
- Scaled Total Conflict (STC) = $\frac{6}{20} * TC = 0.3 * 1.1 =$ **0.33**

STC = 0.33

Wickens Model

Max I char

Total Interference (TI) = TD + STC
$$=$$
 1.5 + 0.33

$$TI = 1.83$$

Note:

- Conflict Matrix can be changed (might also change the maximum Total Conflict)
- Entries for Demand Vectors can change (does not change the maximum Total Demand but the Total Interference)

Inspired by:

https://hci.rwth-aachen.de/publications/engelen2011a.pdf

does not horge.

Humans: Stereo Vision, Reading, Hearing, **Space, Territory and Emotions**

Human Computer Interaction | Discussion Session 3 Summer 2024

Stereo Vision

 Everything on a 2D display is 2D → We perceive 3D objects on a 2D display through experience

 "Real 3D" requires an image for each eye → The parallax technology

Stereo Vision

- Example: Virtual Reality Headset
 - 2 distinct displays for each eye
 - 2 different images at high frequencies + resolution
 - Real life experience

Reading

- Can you read this text:
 - I conduo't byleiee taht I culod aulacity uesdtanned waht I was rdnaieg. Unisg the icondeblire pweor of the hmuan modernid, accdeding to resect at Cmabrigde Uinervtisy, it dseno't mttaer in waht odern the Iterets in a wrod are, the olny irpoamtnt tihng is tahpclae. The reset can be a taoti mess and you can sitll raed it whoutit a phoerim. Tihe is bucseae the huamn mode deos not raed ervey litteer by istlef, but the wrod as a wlohe. Aaznmig, huh? Yaeh and I awlyas tghhuot sleling was ipmorantt! See if yuor fdreins can raed tihe too.t the freit and leat litteer be in the rhgit

Human Computer Interaction | Discussion Session 3 Summer 2024 20

Reading

➤ Such phenomena are found by conducting studies and observing people react → eye-tracking → heat map

From These images:

- ✓ Users first read in a horizontal movement
- ✓ Users move down the page and read in a second horizontal movement
- ✓ Finally, users scan the content's left side in a vertical movement

21

Hearing

- Red curves: perceived loudness of a generated sound
- Ex: at 1000Hz, the curve in the middle shows a 60 → a sine wave with 60dB intensity
- When increasing or decreasing the frequency of the sine wave, the perceived loudness changes
- Ex: for a low frequency of 30Hz we need approx. 80dB for the same 60dB loudness impression

Hearing

- The high frequency perception is affected by age
- The older you get, the higher sound pressure is required to perceive high frequencies
- The low frequency perception is not affected as severely

23

Hearing

- Selective hearing e.g. cocktail party effect
- The auditory system filters incoming information allowing selective hearing in environments with background noise
- We rely on 3 effects to locate the source:

Easily calculated

- Interaural time difference (ITD)
- Interaural intensity difference (IID)
- Head related transfer functions

 Head related transfer functions

 experience for 360° sound used also in VR

 (HRTF)

New senses for humans

https://www.ted.com/talks/david_eagleman_can_we_create_new_senses_for_humans

Emotion - Affordance Theory

Affordance is the perceived possibility for action

 Objective properties that imply action possibilities (how we can use things) independent of the individual (Gibson)

Perceived Affordance includes experience of an individual (Norman)

http://doi.org/10.1145/301153.301168

Thank you for your attention!

Are there questions

Summer 2024