

矩阵理论

电子科大 2023 级数院研究生课程笔记系列

作者:康豪

组织: SMS, UESTC

时间: Sept 1, 2023

版本: 1.0

目录

第1章	线性代数基础	2
1.1	线性空间与子空间	2
1.2	空间分解与维数定理	2
1.3	商空间	3
1.4	线性流形与凸包	3
1.5	特征值与特征向量	4
1.6	初等矩阵和酉变换	5
1.7	欧式空间上的度量	5
1.8	酉空间的分解和投影	6
1.9	Kronecker 乘积	7
第1	章 练习	8
第2章	向量与矩阵的范数	9
2.1	向量的范数	9
2.2	矩阵的范数	9
2.3	算子范数	9
2.4	酉不变范数	9
2.5	矩阵的测度	9
2.6	范数的应用	9
第 2	章 练习	9
2.7	总结	9
盆 3 音	矩阵的分解	11
3.1	矩阵的三角分解	
3.2	矩阵的谱分解	
		-11
	Hermite 矩阵及其分解	
3.3	Hermite 矩阵及其分解	11
3.3 3.4	矩阵的最大秩分解	11 11
3.3 3.4 3.5	矩阵的最大秩分解	11 11 11
3.3 3.4 3.5 3.6	矩阵的最大秩分解	11 11 11 11
3.3 3.4 3.5	矩阵的最大秩分解	11 11 11 11
3.3 3.4 3.5 3.6	矩阵的最大秩分解	11 11 11 11
3.3 3.4 3.5 3.6 3.7	矩阵的最大秩分解 矩阵的奇异值分解 习题三 总结	11 11 11 11 11
3.3 3.4 3.5 3.6 3.7 第4章	矩阵的最大秩分解	11 11 11 11 11
3.3 3.4 3.5 3.6 3.7 第 4章 4.1	矩阵的最大秩分解	11 11 11 11 11 13
3.3 3.4 3.5 3.6 3.7 第4章 4.1 4.2	矩阵的最大秩分解	11 11 11 11 11 13 13
3.3 3.4 3.5 3.6 3.7 第 4章 4.1 4.2 4.3	矩阵的最大秩分解	11 11 11 11 13 13 13
3.3 3.4 3.5 3.6 3.7 第4章 4.1 4.2 4.3 4.4	矩阵的最大秩分解。 矩阵的奇异值分解。 习题三 总结 特征值的估计与摄动 特征值界的估计 Gerschgorin 圆盘定理 Gerschgorin 定理的推广 Hermite 矩阵特征值的变分特征	11 11 11 11 13 13 13 13
3.3 3.4 3.5 3.6 3.7 第 4 章 4.1 4.2 4.3 4.4	矩阵的最大秩分解。 矩阵的奇异值分解。 习题三 总结 特征值的估计与摄动 特征值界的估计 Gerschgorin 圆盘定理 Gerschgorin 定理的推广 Hermite 矩阵特征值的变分特征 摄动定理	11 11 11 11 13 13 13 13 13
3.3 3.4 3.5 3.6 3.7 第 4 章 4.1 4.2 4.3 4.4 4.5 4.6 4.7	矩阵的最大秩分解 矩阵的奇异值分解 习题三 总结 特征值的估计与摄动 特征值界的估计 Gerschgorin 圆盘定理 Gerschgorin 定理的推广 Hermite 矩阵特征值的变分特征 摄动定理 习题四	11 11 11 11 13 13 13 13 13 13 13
3.3 3.4 3.5 3.6 3.7 第 4章 4.1 4.2 4.3 4.4 4.5 4.6 4.7	矩阵的最大秩分解 .	11 11 11 11 13 13 13 13 13 13 13 13
3.3 3.4 3.5 3.6 3.7 第 4 章 4.1 4.2 4.3 4.4 4.5 4.6 4.7	矩阵的最大秩分解 .	11 11 11 11 13 13 13 13 13 13 13 13 15

		目录
5.3	矩阵的微分和积分	15
5.4	一阶线性常系数微分方程组	15
5.5	习题五	15
5.6	总结	15
第6章	广义逆矩阵	16
6.1	矩阵的单边逆	16
6.2	广义逆矩阵 A^-	16
6.3	自反广义逆矩阵 A_r^-	16
6.4	A^- 的计算方法	16
6.5	M-P 广义逆矩阵 A^{\dagger}	16
6.6	A^\dagger 的计算方法	16
6.7	广义逆矩阵的应用	16
6.8	习题六	16
6.9	总结	16
第7章	非负矩阵理论	17
7.1	非负矩阵的基本不等式	17
7.2	正矩阵	17
7.3	非负矩阵和不可约非负矩阵	17
7.4	素矩阵	17
7.5	随机矩阵	17
7.6	习题七	17
7.7	总结	17
附录 A		18

前言

矩阵理论是数学的一个重要分支,在多种工程学科中有极其重要的应用。本门课程以电子科技大学《矩阵理论》为主要参考教材,同时参考了 R.A.Horn, C.R.Johnson 等学者所著的经典教材 *Matrix Analysis* 以及其他书籍,本笔记是由作者根据教学内容编写。

笔记的 LaTeX 模板来自 *ElegantLatex* 团队编写的作品 *elegantbook*,该系列风格优雅、功能齐全,被各类讲义、笔记编著者广泛采纳,实为佳作。

封面图片为船底座大星云,由韦伯望远镜拍摄,图片来自 NASA 官网。

第1章 线性代数基础

本章主要介绍课程中需要用到的线性代数基础知识。

1.1 线性空间与子空间

定义 1.1 (线性空间的定义)

设 V 是一非空集合,P 是一个数域,在集合 V 中定义加法运算,即对于 V 中任意两元 α , β , 在 V 中都有 唯一的一个元 ν 与他们对应,称 ν 为 α 与 β 的和,记 ν = α + β . 在数域 P 与集合 V 的元素间定义数量 乘法运算,即对于数域 P 的任一数 k 和 V 中任一元 α , 在 V 中都有唯一元 δ 与它们对应,称 δ 为 k 与 α 的数量乘积,记为 δ = $k\alpha$. 如果加法与数量乘法满足下述规则:

- 1. $\alpha + \beta = \beta + \alpha$;
- 2. $\alpha + \beta + \nu = \alpha + \beta + \nu$;
- 3. 在集合 V 中有一个元 0, 对于 V 中任一元 α , 有 $\alpha + 0 = \alpha$;
- 4. 对于 V 中的每一个元 α , 都有 V 中的元 β , 使得 $\alpha + \beta = 0$ (称 β 为 α 的负元, 记 $\beta = -\alpha$);
- 5. $1\alpha + \alpha$;
- 6. $kl\alpha = kl\alpha$;
- 7. $(k+l)\alpha = k\alpha + l\alpha$;
- 8. $k(\alpha + \beta) = k\alpha + k\beta$.

则称 V 为数域 P 上的线性空间 (其中 $k,l \in P$, 而 $\alpha,\beta \in V$), 其中的元素常称为向量。

定义 1.2 (线性空间的基与维数)

•

定义 1.3 (线性空间的子空间)

.

1.2 空间分解与维数定理

定义 1.4 (子空间的和)

•

定理 1.1 (维数定理)

v

定理 1.2

设 V_1, V_2 是线性空间 V 的子空间,则下列命题互相成立:

- 1. $V_1 + V_2$ 是直和;
- 2. 零向量的表法唯一. 即由 $0 = \alpha_1 = \alpha_2 (\alpha_i \in V_i)$, 必有 $\alpha_1 = 0, \alpha_2 = 0$;
- 3. $V_1 \cap V_2 = \{\mathbf{0}\}$.

推论 1.1

设 V_1, V_2 是线性空间 V 的子空间, 令 $W = V_1 + V_2$, 则

$$\mathbf{W} = V_1 \oplus V_2 \Leftrightarrow \dim \mathbf{W} = \dim(V_1) + \dim(V_2)$$
(1.1)

定理 1.3

设 $V_1, V_2, ..., V_s$ 是线性空间 V 的子空间,则下列命题互相成等价:

- 1. $W = \sum V_i$ 是直和;
- 2. 零向量的表法唯一.
- 3. $V_i \cap \left(\sum_{j \neq i} V_j\right) = |0|, 1 \le i \le s;$
- 4. $\dim(W) = \sum \dim(V_i)$.

\Diamond

1.3 商空间

定义 1.5 (同余)

*

性质

性质

性质

定义 1.6 (同余类)

*

性质

性质

定义 1.7 (商集)

.

1.4 线性流形与凸包

定义 1.8 (线性流形)

定理 1.4

 \Diamond

定理 1.5

 \Diamond

定理 1.6

<u>м</u>

定理 1.7

 $^{\circ}$

推论 1.2

 \Diamond

定理 1.8	\Diamond
定理 1.9	\Diamond
定义 1.9 (凸集)	
定理 1.10	\heartsuit
定义 1.10 (凸包)	
定理 1.11	*
	<u> </u>
1.5 特征值与特征向量	
定义 1.11 (特征值与特征向量) 设 $A \in \mathbb{C}^{n \times n}$,如果存在 $\lambda \in C$ 和非零向量 $x \in \mathbb{C}^n$,使 $Ax = \lambda x$,则 λ 叫做 A 的特征值, x 属于特征值 λ 的特征向量。	: 叫做 A 的从
定理 1.12 设 $A \in C^{n \times n}$ 有 r 个不同的特征值 $\lambda_1,,\lambda_2$,其代数重数分别为 $n_1,,n_r$,则必存在可逆矩阵 使得	车 $P \in C^{n \times n}$,
$P^{-1}AP = J = \operatorname{diag}(J_1(\lambda_1), \cdots, J_r(\lambda_r)),$	(1.2)
矩阵 J 叫做 A 的 Jordan 标准形. 定义 1.12 (可对角化矩阵)	\heartsuit
	*
定理 1.13	
定义 1.13 (特征值与特征向量的等价定义)	*
定理 1.14	\Diamond
定理 1.15	\heartsuit
定理 1.16	
	$\qquad \qquad \heartsuit \bigg]$

 \Diamond

定理 1.17

设 $n \times n$ 矩阵 $A = A^H, B = B^H$, 且 B 是正定的,则 B 共轭向量系 $x_1, x_2, ..., x_n$ 具有以下性质:

- 1. $x_i \neq 0$;
- 2. x_1, x_2, \dots, x_n 线性无关;
- 3. λ_i 与 x_i 满足方程 $Ax_i = \lambda_i Bx_i (i = 1, 2, \dots, n)$;
- 4. 若记 $X = (x_1, x_2, \dots, x_n)$,则 $X^H B X = E, X^H A X = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

1.6 初等矩阵和酉变换

定义 1.20 (距离)	4
性质	
性质	
定义 1.21 (正交)	
性质	4,0)
定理 1.21	♥
定理 1.22	×)
	\Diamond
定理 1.23	\Diamond
定理 1.24	♥
推论 1.3	
	\Diamond
定理 1.25	\Diamond
定义 1.22 (n 维平行多面体的体积)	•
定理 1.26	*
	\heartsuit
定理 1.27	\Diamond
定理 1.28	\heartsuit
定理 1.29	
	\heartsuit
1.8 酉空间的分解和投影	
定义 1.23 (不变子空间)	
	*
定理 1.30	\Diamond
推论 1.4	m

定理 1.31	
是理1.31	\Diamond
推论 1.5	
	\Diamond
推论 1.6	
	∇
定义 1.24 (正交补子空间)	
	*
定理 1.32	
	\heartsuit
定义 1.25 (投影算子)	•
	*
定理 1.33	
	\heartsuit
定理 1.34	\Diamond
定理 1.35	\heartsuit
	v
定义 1.26 (正交投影)	*
North and	
定理 1.36	\Diamond
1.9 Kronecker 乘积	
定义 1.27 (张量积)	
	*
定理 1.37	<u></u>
	\heartsuit
定理 1.38	\Diamond
	V
定理 1.39 (Stephanos)	\heartsuit
	V
推论 1.7	\heartsuit
	v
定义 1.28 (k 和)	

定理 1.40 (Stephanos)

 \sim

定义 1.29 (向量化算符)

.

性质

性质

定理 1.41

 \Diamond

推论 1.8

 \sim

定理 1.42 (K 积的拟交换性)

 \bigcirc

●第1章练习●

- 1. 设 $A \in C^{m \times n}$ 则
 - (a). $N(A) = N(A^{H}A), N(A^{H}) = N(AA^{H});$
 - (b). $R(A) = R(AA^{H}), R(A^{H}) = R(A^{H}A);$
 - (c). $\operatorname{rank}(A) = \operatorname{rank}(A^{H}A) = \operatorname{rank}(AA^{H}).$

解

- (a). 设对任意 $x \in N(A)$, 则 Ax = 0, 两边同时左乘 A^H , 得 $A^HAx = A^H0 = 0$; 反之,对 $x \in N(A^HA)$ 且 $x \notin N(A)$, 有 $A^HAx = 0$, 即存在 $y = Ax \neq 0$, 使 $A^Hy = 0$, 即 $y \in R(A)$ 且 $y \in N(A^H)$, 矛盾. 故 $N(A) = N(A^HA)$; 同理, $N(A^H) = N(AA^H)$;
- (b). 若 $y \in R(A)$,假设 $y \notin R(A^H A)$,故不存在 z,使得 $y = AA^H z$,即不存在 $x = A^H z$,使得 y = Ax,与 $y \in R(A)$ 矛盾,所以 $y \in R(A^A)$. 反之,若 $y \in R(AA^H)$,则存在 z,使得 $y = AA^H z$,即存在 $x = A^H z$,使得 y = Ax,故 $y \in R(A)$. 综上, $R(A) = R(AA^H)$,同理 $R(A^H) = R(A^H A)$.
- (c). 由于 rank(A) = dimR(A), 由 (2) 可知 $rank(A) = rank(A^HA) = rank(AA^H)$

第2章 向量与矩阵的范数

- 2.1 向量的范数
- 2.2 矩阵的范数
- 2.3 算子范数
- 2.4 酉不变范数
- 2.5 矩阵的测度
- 2.6 范数的应用

●第2章练习◆

- 1. 设 $a_1, a_2, ..., a_n$ 均为正数, $x \in C^n$,且 $x = (x_1, x_2, ..., x_n)^T$. 证明函数 $f(x) = [\Sigma]$ 解 1. 由于 $a_1, a_2, ..., a_n$ 均为正数,正定性成立; 2. 设 $k \in C^n$,f(kx)
- 2. exercise 2
- 3. exercise 3

2.7 总结

图 2.1: 第二章内容思维导图

第3章 矩阵的分解

- 3.1 矩阵的三角分解
- 3.2 矩阵的谱分解
- 3.3 Hermite 矩阵及其分解
- 3.4 矩阵的最大秩分解
- 3.5 矩阵的奇异值分解
- 3.6 习题三
- 3.7 总结

图 3.1: 第三章内容思维导图

第4章 特征值的估计与摄动

- 4.1 特征值界的估计
- 4.2 Gerschgorin 圆盘定理
- 4.3 Gerschgorin 定理的推广
- 4.4 Hermite 矩阵特征值的变分特征
- 4.5 摄动定理
- 4.6 习题四
- 4.7 总结

图 4.1: 第四章内容思维导图

第5章 矩阵分析

- 5.1 矩阵序列与矩阵级数
- 5.2 矩阵函数
- 5.3 矩阵的微分和积分
- 5.4 一阶线性常系数微分方程组
- 5.5 习题五
- 5.6 总结

图 5.1: 第五章内容思维导图

第6章 广义逆矩阵

- 6.1 矩阵的单边逆
- **6.2** 广义逆矩阵 A⁻
- 6.3 自反广义逆矩阵 A_r^-
- **6.4** A⁻ 的计算方法
- **6.5 M-P 广义逆矩阵** A[†]
- **6.6** A[†] 的计算方法
- 6.7 广义逆矩阵的应用
- 6.8 习题六
- 6.9 总结

第7章 非负矩阵理论

- 7.1 非负矩阵的基本不等式
- 7.2 正矩阵
- 7.3 非负矩阵和不可约非负矩阵
- 7.4 素矩阵
- 7.5 随机矩阵
- 7.6 习题七
- 7.7 总结

附录 A