

NMEA Reference Manual

SiRF Technology, Inc. 148 East Brokaw Road San Jose, CA 95112 U.S.A. Phone: +1 (408) 467-0410

Phone: +1 (408) 467-0410 Fax: +1 (408) 467-0420

www.SiRF.com

1050-0042 January 2005, Revision 1.3

SiRF, SiRFstar, and SiRF plus orbit design are registered in the U.S. Patent and Trademark Office. This document contains information on a product under development at SiRF. The information is intended to help you evaluate this product. SiRF reserves the right to change or discontinue work on this product without notice.

NMEA Reference Manual

Copyright © 1996-2005 SiRF Technology, Inc. All rights reserved.

No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system without the prior written permission of SiRF Technology, Inc. unless such copying is expressly permitted by United States copyright law. Address inquiries to Legal Department, SiRF Technology, Inc., 148 East Brokaw Road, San Jose, California 95112, United States of America.

About This Document

This document contains information on SiRF products. SiRF Technology, Inc. reserves the right to make changes in its products, specifications and other information at any time without notice. SiRF assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document, including, but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights. SiRF makes no warranties, either express or implied with respect to the information and specifications contained in this document. Performance characteristics listed in this data sheet do not constitute a warranty or guarantee of product performance. All terms and conditions of sale are governed by the SiRF Terms and Conditions of Sale, a copy of which you may obtain from your authorized SiRF sales representative.

Getting Help

If you have any problems contact your SiRF representative or call or send an e-mail to the SiRF Technology support group:

phone +1 (408) 467-0410 e-mail support@sirf.com

Contents

Preface	ix
1. Output Messages	1-1
GGA —Global Positioning System Fixed Data	1-2
GLL—Geographic Position - Latitude/Longitude	1-3
GSA—GNSS DOP and Active Satellites	1-4
GSV—GNSS Satellites in View	1-5
MSS—MSK Receiver Signal	1-5
RMC—Recommended Minimum Specific GNSS Data	1-6
VTG—Course Over Ground and Ground Speed	1-7
ZDA—SiRF Timing Message	1-7
150—OkToSend	1-8
2. Input Messages	2-1
Transport Message	2-1
NMEA Input Messages	2-2
100 SatSarialPort	2 2

101—NavigationInitialization	2-3
102—SetDGPSPort	2-4
103—Query/Rate Control	2-5
104—LLANavigationInitialization	2-6
105—Development Data On/Off	2-6
106—Select Datum	2-7
MSK—MSK Receiver Interface	2-8

Figures

Tables

Table 1-1	NMEA Output Messages	1-1
Table 1-2	Supported NMEA Output Messages	1-2
Table 1-3	GGA Data Format	1-2
Table 1-4	Position Fix Indicator	1-3
Table 1-5	GLL Data Format	1-3
Table 1-6	GSA Data Format.	1-4
Table 1-7	Mode 1	1-4
Table 1-8	Mode 2	1-4
Table 1-9	GSV Data Format	1-5
Table 1-10	MSS Data Format	1-5
Table 1-11	RMC Data Format	1-6
Table 1-12	VTG Data Format.	1-7
Table 1-13	ZDA Data Format	1-7
Table 1-14	OkToSend Message Data Format.	1-8
Table 2-1	Transport Message parameters	2-1
Table 2-2	NMEA Innut Messages	2-2

Table 2-3	Supported NMEA Input Messages	2-2
Table 2-4	Set Serial Port Data Format	2-3
Table 2-5	Navigation Initialization Data Format	2-3
Table 2-6	Reset Configuration - Non SiRFLoc Platforms	2-4
Table 2-7	Reset Configuration - SiRFLoc Specific	2-4
Table 2-8	Set DGPS Port Data Format	2-4
Table 2-9	Query/Rate Control Data Format (See example 1)	2-5
Table 2-10	Messages	2-5
Table 2-11	LLA Navigation Initialization Data Format	2-6
Table 2-12	Reset Configuration	2-6
Table 2-13	Development Data On/Off Data Format	2-7
Table 2-14	Select Datum Data Format	2-7
Table 2-15	RMC Data Format	2-8

Preface

All SiRF product support a subset of the NMEA-0183 standard for interfacing marine electronic devices as defined by the National Marine Electronics Association (NMEA).

The *NMEA Reference Manual* provides details of NMEA messages developed and defined by SiRF. It does not provide information about the complete NMEA-0183 interface standard.

Who Should Use This Guide

This manual was written assuming the user has a basic understanding of interface protocols and their use.

How This Guide Is Organized

This manual contains the following chapters:

Chapter 1, "Output Messages" defines SiRF developed NMEA output messages.

Chapter 2, "Input Messages" defines SiRF developed NMEA input messages.

Related Manuals

You can refer to the following document for more information:

- NMEA-0183 Standard For Interfacing Marine Electronic Devices
- SiRF Binary Protocol Reference Manual
- SiRF Evaluation Kit User Guide
- SiRF System Development Kit User Guide

Contacting SiRF Technical Support

Address:

SiRF Technology Inc. 148 East Brokaw Road San Jose, CA 95112 U.S.A.

SiRF Technical Support:

Phone: +1 (408) 467-0410 (9 am to 5 pm Pacific Standard Time)

Email: support@sirf.com

General enquiries:

Phone: +1 (408) 467-0410 (9 am to 5 pm Pacific Standard Time)

Email: gps@sirf.com

Output Messages

Table 1-1 lists each of the NMEA output messages specifically developed and defined by SiRF for use within SiRF products.

Table 1-1 NMEA Output Messages

Option	Description
GGA	Time, position and fix type data.
GLL	Latitude, longitude, UTC time of position fix and status.
GSA	GPS receiver operating mode, satellites used in the position solution, and DOP values.
GSV	The number of GPS satellites in view satellite ID numbers, elevation, azimuth, and SNR values.
MSS	Signal-to-noise ratio, signal strength, frequency, and bit rate from a radio-beacon receiver.
RMC	Time, date, position, course and speed data.
VTG	Course and speed information relative to the ground.
ZDA	PPS timing message (synchronized to PPS).
150	OK to send message.

A full description of the listed NMEA messages are provided in the following sections.

Table 1-2 provides a summary of SiRF NMEA output messages supported by the specific SiRF platforms.

Table 1-2 Supported NMEA Output Messages

Message	GSW2	SiRFXTrac	SiRFLoc	GSW3
GGA	Yes	Yes	Yes	Yes
GLL	Yes	Yes	Yes	Yes
GSA	Yes	Yes	Yes	Yes
GSV	Yes	Yes	Yes	Yes
MSS	Yes	No	No	No
RMC	Yes	Yes	Yes	Yes
VTG	Yes	Yes	Yes	Yes
ZDA	2.3.2 and above	No	No	No
150	2.3.2 and above	No	No	No

Note – GSW2 software only outputs NMEA version 2.20 (and earlier). XTrac and GSW3 software have conditional defines (UI_NMEA_VERSION_XXX) to allow a choice between NMEA 2.20 and 3.00. The file NMEA_SIF.H contains the NMEA version defines.

GGA —Global Positioning System Fixed Data

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 1-3 contains the values for the following example:

\$GPGGA, 161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000*18

Table 1-3 GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	161229.487		hhmmss.sss
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Position Fix Indicator	1		See Table 1-4
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude	9.0	meters	
Units	M	meters	
Geoid Separation		meters	
Units	M	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*18		
<cr> <lf></lf></cr>			End of message termination

Table 1-4 Position Fix Indicator

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3-5	Not supported
6	Dead Reckoning Mode, fix valid

Note – A valid position fix indicator is derived from the SiRF Binary M.I.D. 2 position mode 1. See the *SiRF Binary Protocol Reference Manual*.

GLL—Geographic Position - Latitude/Longitude

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 1-5 contains the values for the following example:

\$GPGLL, 3723.2475,N,12158.3416,W,161229.487,A,A*41

Table 1-5 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
UTC Time	161229.487		hhmmss.sss
Status	A		A=data valid or V=data not valid
Mode	A		A=Autonomous, D=DGPS, E=DR
			(Only present in NMEA version 3.00)
Checksum	*41		
<cr> <lf></lf></cr>			End of message termination

Output Messages 1-3

GSA—GNSS DOP and Active Satellites

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 1-6 contains the values for the following example:

GPGSA, A, 3, 07, 02, 26, 27, 09, 04, 15, , , , , 1.8, 1.0, 1.5*33

Table 1-6 GSA Data Format

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	A		See Table 1-7
Mode 2	3		See Table 1-8
Satellite Used ¹	07		Sv on Channel 1
Satellite Used ¹	02		Sv on Channel 2
Satellite Used ¹			Sv on Channel 12
PDOP	1.8		Position Dilution of Precision
HDOP	1.0		Horizontal Dilution of Precision
VDOP	1.5		Vertical Dilution of Precision
Checksum	*33		
<cr> <lf></lf></cr>			End of message termination

^{1.} Satellite used in solution.

Table 1-7 Mode 1

Value	Description
M	Manual—forced to operate in 2D or 3D mode
A	2D Automatic—allowed to automatically switch 2D/3D

Table 1-8 Mode 2

Value	Description
1	Fix not available
2	2D (<4 SVs used)
3	3D (>3 SVs used)

GSV—GNSS Satellites in View

Table 1-9 contains the values for the following example:

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71

\$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41

Table 1-9 GSV Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Number of Messages ¹	2		Range 1 to 3
Message Number ¹	1		Range 1 to 3
Satellites in View	07		
Satellite ID	07		Channel 1 (Range 1 to 32)
Elevation	79	degrees	Channel 1 (Maximum 90)
Azimuth	048	degrees	Channel 1 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
Satellite ID	27		Channel 4 (Range 1 to 32)
Elevation	27	degrees	Channel 4 (Maximum 90)
Azimuth	138	degrees	Channel 4 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
Checksum	*71		
<cr> <lf></lf></cr>			End of message termination

 $^{1.\} Depending\ on\ the\ number\ of\ satellites\ tracked,\ multiple\ messages\ of\ GSV\ data\ may\ be\ required.$

MSS—MSK Receiver Signal

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 1-10 contains the values for the following example:

\$GPMSS, 55,27,318.0,100,1,*57

Table 1-10 MSS Data Format

Name	Example	Units	Description
Message ID	\$GPMSS		MSS protocol header
Signal Strength	55	dB	SS of tracked frequency
Signal-to-Noise Ratio	27	dB	SNR of tracked frequency
Beacon Frequency	318.0	kHz	Currently tracked frequency
Beacon Bit Rate	100		bits per second
Channel Number	1		The channel of the beacon being used if a multi-channel beacon receiver is used
Checksum	*57		
<cr> <lf></lf></cr>			End of message termination

Output Messages 1-5

Note – The MSS NMEA message can only be polled or scheduled using the MSK NMEA input message. See "MSK—MSK Receiver Interface" on page 2-8.

RMC—Recommended Minimum Specific GNSS Data

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 1-11 contains the values for the following example:

\$GPRMC, 161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*10

Table 1-11 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	161229.487		hhmmss.sss
Status ¹	A		A=data valid or V=data not valid
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Speed Over Ground	0.13	knots	
Course Over Ground	309.62	degrees	True
Date	120598		ddmmyy
Magnetic Variation ²		degrees	E=east or W=west
Mode	A		A=Autonomous, D=DGPS, E=DR
Checksum	*10		
<cr> <lf></lf></cr>			End of message termination

 $^{1.\} A\ valid\ status\ is\ derived\ from\ the\ SiRF\ Binary\ M.I.D\ 2\ position\ mode\ 1.\ See\ the\ \emph{SiRF\ Binary\ Protocol\ Reference\ Manual}.$

SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

VTG—Course Over Ground and Ground Speed

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description.

Table 1-12 contains the values for the following example:

\$GPVTG, 309.62,T, ,M,0.13,N,0.2,K,A*23

Table 1-12 VTG Data Format

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	degrees	Measured heading
Reference	T		True
Course		degrees	Measured heading
Reference	M		Magnetic ¹
Speed	0.13	knots	Measured horizontal speed
Units	N		Knots
Speed	0.2	km/hr	Measured horizontal speed
Units	K		Kilometers per hour
Mode	A		A=Autonomous, D=DGPS, E=DR
Checksum	*23		
<cr> <lf></lf></cr>			End of message termination

SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

ZDA—SiRF Timing Message

Outputs the time associated with the current 1 PPS pulse. Each message is output within a few hundred ms after the 1 PPS pulse is output and tells the time of the pulse that just occurred.

Table 1-13 contains the values for the following example:

\$GPZDA,181813,14,10,2003,00,00*4F

Table 1-13 ZDA Data Format

Name	Example	Units	Description
Message ID	\$GPZDA		ZDA protocol header
UTC time	181813		Either using valid IONO/UTC or estimated from default leap seconds
Day	14		01 TO 31
Month	10		01 TO 12
Year	2003		1980 to 2079
Local zone hour	00	knots	Offset from UTC (set to 00)
Local zone minutes	00		Offset from UTC (set to 00)
Checksum			
<cr> <lf></lf></cr>			End of message termination

Output Messages 1-7

150—OkToSend

This message is being sent out during the trickle power mode to communicate with an outside program such as SiRFDemo to indicate whether the receiver is awake or not.

Table 1-14 contains the values for the following examples:

1. OkToSend

\$PSRF150,1*3F

2. not OkToSend

\$PSRF150,0*3E

Table 1-14 OkToSend Message Data Format

Name	Example	Units	Description
Message ID	\$PSRF150		PSRF150 protocol header
OkToSend	1		1=OK to send, 0=not OK to send
Checksum	*3F		
<cr> <lf></lf></cr>			End of message termination

Input Messages

NMEA input messages enable you to control the Evaluation Receiver while in NMEA protocol mode. The Evaluation Receiver may be put into NMEA mode by sending the SiRF binary protocol message "Switch to NMEA Protocol - Message I.D. 129" (see the SiRF Binary Protocol Reference Manual). This can be done by using a user program or by using the SiRFSDemo software and selecting Switch to NMEA Protocol from the Action menu (see the SiRF Evaluation Kit User Guide or the SiRFDemo User Guide). If the receiver is in SiRF binary mode, all NMEA input messages are ignored. Once the receiver is put into NMEA mode, the following messages may be used to command the module.

Transport Message

Table 2-1 describes the transport message parameters.

Table 2-1 Transport Message parameters

Start Sequence	Payload	Checksum	End Sequence
\$PSRF <mid>1</mid>	Data ²	*CKSUM ³	$\langle CR \rangle \langle LF \rangle^4$

- $1.\ Message\ Identifier\ consisting\ of\ three\ numeric\ characters.\ Input\ messages\ begin\ at\ MID\ 100.$
- 2. Message specific data. Refer to a specific message section for <data>...<data> definition.
- CKSUM is a two-hex character checksum as defined in the NMEA specification, NMEA-0183
 Standard For Interfacing Marine Electronic Devices. Use of checksums is required on all input messages.
- 4. Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is hex 0D 0A. Because \r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the message and cause the receiver to process that input message.

Note – All fields in all proprietary NMEA messages are required, none are optional. All NMEA messages are comma delimited.

NMEA Input Messages

Table 2-2 describes the NMEA input messages.

Table 2-2 NMEA Input Messages

Message	MID^1	Description
SetSerialPort	100	Set PORT A parameters and protocol
NavigationInitialization	101	Parameters required for start using X/Y/Z ²
SetDGPSPort	102	Set PORT B parameters for DGPS input
Query/Rate Control	103	Query standard NMEA message and/or set output rate
LLANavigationInitialization	104	Parameters required for start using Lat/Lon/Alt ³
Development Data On/Off	105	Development Data messages On/Off
Select Datum	106	Selection of datum to be used for coordinate
		transformations.
MSK Receiver Interface	MSK	Command message to a MSK radio-beacon receiver.

^{1.} Message Identification (MID).

Note – NMEA input messages 100 to 106 are SiRF proprietary NMEA messages. The MSK NMEA string is as defined by the NMEA 0183 standard.

Table 2-3 provides a summary of supported SiRF NMEA input messages by the specific SiRF platforms.

Table 2-3 Supported NMEA Input Messages

	SiRF Software Options				
Message ID	GSW2	SiRFXTrac	SiRFLoc		
100	Yes	Yes	Yes		
101	Yes	No	Yes		
102	Yes	No	No		
103	Yes	Yes	Yes		
104	Yes	No	Yes		
105	Yes	Yes	Yes		
106	Yes	Yes	Yes		
MSK	Yes	No	No		

100—SetSerialPort

This command message is used to set the protocol (SiRF binary or NMEA) and/or the communication parameters (Baud, data bits, stop bits, and parity). Generally, this command is used to switch the module back to SiRF binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and the Evaluation Receiver restarts using the saved parameters.

^{2.} Input coordinates must be WGS84.

^{3.} Input coordinates must be WGS84.

Table 2-4 contains the input values for the following example:

Switch to SiRF binary protocol at 9600,8,N,1 \$P\$RF100,0,9600,8,1,0*0C

Table 2-4 Set Serial Port Data Format

Name	Example	Units	Description
Message ID	\$PSRF100		PSRF100 protocol header
Protocol	0		0=SiRF binary, 1=NMEA
Baud	9600		4800, 9600, 19200, 38400
DataBits	8		8,71
StopBits	1		0,1
Parity	0		0=None, 1=Odd, 2=Even
Checksum	*0C		
<cr> <lf></lf></cr>			End of message termination

^{1.} SiRF protocol is only valid for 8 data bits, 1stop bit, and no parity.

101—NavigationInitialization

This command is used to initialize the Evaluation Receiver by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the Evaluation Receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the Evaluation Receiver to acquire signals quickly.

Table 2-5 contains the input values for the following example:

Start using known position and time.

\$P\$RF101,-2686700,-4304200,3851624,96000,497260,921,12,3*1C

Table 2-5 Navigation Initialization Data Format

Name	Example	Units	Description
Message ID	\$PSRF101		PSRF101 protocol header
ECEF X	-2686700	meters	X coordinate position
ECEF Y	-4304200	meters	Y coordinate position
ECEF Z	3851624	meters	Z coordinate position
ClkOffset	96000	Hz	Clock Offset of the Evaluation Receiver ¹
TimeOfWeek	497260	seconds	GPS Time Of Week
WeekNo	921		GPS Week Number
ChannelCount	12		Range 1 to 12
ResetCfg	3		See Table 2-6 and Table 2-7
Checksum	*1C		
<cr> <lf></lf></cr>			End of message termination

^{1.} Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 is used.

Input Messages 2-3

Table 2-6 Reset Configuration - Non SiRFLoc Platforms

Hex	Description
0x01	Hot Start— All data valid
0x02	Warm Start—Ephemeris cleared
0x03	Warm Start (with Init)—Ephemeris cleared, initialization data loaded
0x04	Cold Start—Clears all data in memory
0x08	Clear Memory—Clears all data in memory and resets the receiver back to factory defaults

Table 2-7 Reset Configuration - SiRFLoc Specific

Hex	Description
0x00	Perform a hot start using internal RAM data. No initialization data is used.
0x01	Use initialization data and begin in start mode. Uncertainties are 5 seconds time accuracy and 300 km position accuracy. Ephemeris data in SRAM is used.
0x02	No initialization data is used, ephemeris data is cleared, and warm start performed using remaining data in RAM.
0x03	Initialization data is used, ephemeris data is cleared, and warm start performed using remaining data in RAM.
0x04	No initialization data is used. Position, time and ephemeris are cleared and a cold start is performed.
0x08	No initialization data is used. Internal RAM is cleared and a factory reset is performed.

102—SetDGPSPort

This command is used to control the serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. If a DGPS receiver is used that has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and the receiver restarts using the saved parameters.

Table 2-8 contains the input values for the following example:

Set DGPS Port to be 9600,8,N,1.

\$PSRF102,9600,8,1,0*12

Table 2-8 Set DGPS Port Data Format

Name Example Units		Units	Description		
Message ID	\$PSRF102		PSRF102 protocol header		
Baud	9600		4800, 9600, 19200, 38400		
DataBits	8		8,7		
StopBits	1		0,1		
Parity	0		0=None, 1=Odd, 2=Even		
Checksum	*12				
<cr> <lf></lf></cr>			End of message termination		

103—Query/Rate Control

This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

Table 2-9 contains the input values for the following examples:

- 1. Query the GGA message with checksum enabled \$PSRF103,00,01,00,01*25
- Enable VTG message for a 1 Hz constant output with checksum enabled \$PSRF103,05,00,01,01*20
- 3. Disable VTG message \$P\$RF103,05,00,00,01*21

Table 2-9 Query/Rate Control Data Format (See example 1)

Name	Example	Units	Description	
Message ID	\$PSRF103		PSRF103 protocol header	
Msg	00		See Table 2-10	
Mode	01		0=SetRate, 1=Query	
Rate	00	seconds	Output—off=0, max=255	
CksumEnable	01		0=Disable Checksum, 1=Enable Checksum	
Checksum	*25			
<cr> <lf></lf></cr>			End of message termination	

Table 2-10 Messages

Value	Description
0	GGA
1	GLL
2	GSA
3	GSV
4	RMC
5	VTG
6	MSS (If internal beacon is supported)
7	Not defined
8	ZDA (if 1PPS output is supported)
9	Not defined

Note – In TricklePower mode, update rate is specified by the user. When switching to NMEA protocol, the message update rate is also required. The resulting update rate is the product of the TricklePower Update rate and the NMEA update rate (i.e., TricklePower update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds, $(2 \times 5 = 10)$).

Input Messages 2-5

104—LLANavigationInitialization

This command is used to initialize the Evaluation Receiver by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly.

Table 2-11 contains the input values for the following example:

Start using known position and time.

\$PSRF104,37.3875111,-121.97232,0,96000,237759,1946,12,1*07

Table 2-11 LLA Navigation Initialization Data Format

Name	Example	Units	Description
Message ID	\$PSRF104		PSRF104 protocol header
Lat	37.3875111	degrees	Latitude position (Range 90 to -90)
Lon	-121.97232	degrees	Longitude position (Range 180 to -180)
Alt	0	meters	Altitude position
ClkOffset	96000	Hz	Clock Offset of the Evaluation Receiver ¹
TimeOfWeek	237759	seconds	GPS Time Of Week
WeekNo	1946		Extended GPS Week Number (1024 added)
ChannelCount	12		Range 1 to 12
ResetCfg	1		See Table 2-12
Checksum	*07		
<cr> <lf></lf></cr>			End of message termination

 $^{1.\} Use\ 0\ for\ last\ saved\ value\ if\ available.\ If\ this\ is\ unavailable,\ a\ default\ value\ of\ 96,000\ is\ used.$

Table 2-12 Reset Configuration

Hex	Description
0x01	Hot Start— All data valid
0x02	Warm Start—Ephemeris cleared
0x03	Warm Start (with Init)—Ephemeris cleared,
	initialization data loaded
0x04	Cold Start—Clears all data in memory
0x08	Clear Memory—Clears all data in memory and
	resets receiver back to factory defaults

105—Development Data On/Off

Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables the you to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range.

Table 2-13 contains the input values for the following examples:

1. Debug On

\$PSRF105,1*3E

2. Debug Off

\$PSRF105,0*3F

Table 2-13 Development Data On/Off Data Format

Name	Example	Units	Description		
Message ID	ssage ID \$PSRF105		PSRF105 protocol header		
Debug	1		0=Off, 1=On		
Checksum	*3E				
<cr> <lf></lf></cr>			End of message termination		

106—Select Datum

GPS receivers perform initial position and velocity calculations using an earth-centered earth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid) defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984) which provides a worldwide common grid system that may be translated into local coordinate systems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid worldwide.)

Table 2-14 contains the input values for the following examples:

1. Datum select TOKYO_MEAN

\$PSRF106,178*32

Table 2-14 Select Datum Data Format

Name	Example	Units	Description
Message ID	\$PSRF106		PSRF106 protocol header
Datum	178	78 21=WGS84	
			178=TOKYO_MEAN
			179=TOKYO_JAPAN
			180=TOKYO_KOREA
			181=TOKYO_OKINAWA
Checksum	*32		
<cr> <lf></lf></cr>			End of message termination

Input Messages 2-7

MSK—MSK Receiver Interface

Table 2-15 contains the values for the following example:

\$GPMSK, 318.0,A,100,M,2,*45

Table 2-15 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPMSK		MSK protocol header
Beacon Frequency	318.0	kHz	Frequency to use
Auto/Manual Frequency ¹	A		A : Auto, M : Manual
Beacon Bit Rate	100		Bits per second
Auto/Manual Bit Rate ¹	M		A : Auto, M : Manual
Interval for Sending \$MSS ²	2	sec	Sending of MSS messages for status

^{1.} If Auto is specified the previous field value is ignored.

Note – The NMEA messages supported by the Evaluation Receiver does not provide the ability to change the DGPS source. If you need to change the DGPS source to internal beacon, use the SiRF binary protocol and then switch to NMEA.

 $^{2. \} When status \ data \ is \ not \ to \ be \ transmitted \ this \ field \ is \ null.$

ADDITIONAL AVAILABLE PRODUCT INFORMATION

Part Number	Description
1050-0042	NMEA Reference Manual
1050-0041	SiRF Binary Protocol Reference Manual
1065-0136	Product Inserts
1050-0056	SiRFstarIII System Development Kit User Guide
1050-0053	GSW3 Software System Development Kit Reference Manual
1050-0054	S3SDK Board System Development Kit Reference Manual
1050-0055	GSP3 Chip System Development Kit Reference Manual
1055-1034	GSP3f Data Sheet
1055-1035	GRF3w Data Sheet
	Available on the Developer Web Site
APNT3001	SSIII System Guidelines and Considerations
APNT3002	PCB Design Guidelines for SSIII Implementations
APNT3003	Back-Up Power Operation for SSIII Architectures
APNT3004	Troubleshooting Notes for SSIII Board Development
APNT3005	Co-Location and Jamming Considerations for SSIII Integration
APNT3006	GPIO Pin Functionality for SSIII
APNT3007	I/O Message Definitions for SSIII
APNT3008	Implementing User Tasks in the SSIII Architecture
APNT3009	Effects of User Tasks on GPS Performance for SSIII
APNT3010	Advanced Power Management (APM) Considerations for SSIII
APNT3011	Multi-ICE Testing Issues for SSIII
APNT3012	Production Testing of SSIII Modules
APNT3014	Automotive Design Considerations for SSIII

SiRF Technology Inc.

148 East Brokaw
San Jose, CA 95112
Tel: +1-408-467-0410
Fax: +1-408-467-0420
Email: gps@sirf.com
Website: http://www.sirf.com

SiRF Texas

Tel: +1-972-239-6988 Fax: +1-972-239-0372 Email: SalesAmericas@sirf.com

SiRF United Kingdom

Tel: +44-1344-668390 Fax: +44-1344-668157 Email: SalesUK@sirf.com

SiRF Japan

Tel: +81 44829-2186 Fax: +81 44829-2187 Email: SalesJapan@sirf.com

SiRF France

Tel: +33-6-0717-7862 Fax: +44-1344-668157 Email: SalesFrance@sirf.com

SiRF Germany

Tel: +49-81-529932-90 Fax: +49-81-529931-70 Email: SalesGermany@sirf.com

SiRF Taiwan

Tel: +886-2-2723-7853 Fax: +886-2-2723-7854 Email: SalesAsiaPacific@sirf.com

SiRF India

Tel: +91-120-251-0256 Fax: +91-120-251-0584 Email: SalesIndia@sirf.com

NMEA Reference Manual

© 2005 SiRF Technology Inc. All rights reserved.

Products made, sold or licensed by SiRF Technology, Inc. are protected by one or more of the following United States patents: 5,488,378; 5,504,482; 5,552,794; 5,592,382; 5,638,077; 5,883,595; 5,897,605; 5,901,171; 5,917,383; 5,920,283; 6,018,704; 6,037,900; 6,041,280; 6,044,105; 6,047,017; 6,081,228; 6,114,992; 6,125,325; 6,198,765; 6,236,937; 6,249,542; 6,278,403; 6,282,231; 6,292,749; 6,297,771; 6,301,545; 6,304,216; 6,351,486; 6,351,711; 6,366,250; 6,389,291; 6,393,046; 6,400,753; 6,421,609; 6,427,120; 6,427,121; 6,453,238; and AU729,697.

Other United States and foreign patents are issued or pending. SIRF, SIRFStar, SIRF plus Orbit design are registered in the U.S. Patent and Trademark office. SnapLock, SnapStart, SingleSat, Foliage Lock, TricklePower, Push-to-Fix, WinSiRF, SiRFLoc, SiRFDRive, SiRFNav, SiRFXTrac, SiRFSoft, SoftGPS, UrbanGPS, and Multimode Location Engine are trademarks of SiRF Technology, Inc. Other trademarks are property of their respective companies.

This document contains information on SiRF products. SiRF reserves the right to make changes in its products, specifications and other information at any time without notice. SiRF assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this data sheet, including, but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights. No license, either expressed or implied, is granted to any intellectual property rights of SiRF. SiRF makes no warranties, either express or implied with respect to the information and specification contained in this document. Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance. SiRF products are not intended for use in life support systems or for life saving applications. All terms and conditions of sale are governed by the SiRF Terms and Conditions of Sale, a copy of which may obtain from your authorized SiRF sales representative.

December 2004

