GANs

Fred Bunt, Jack Roddy

4.5 years of progress on faces

Unsupervised learning

- In supervised learning, we are trying to learn P(y|x)
 - For example, we learn to predict some class (y) given an input image (x)

Unsupervised learning

- In supervised learning, we are trying to learn P(y|x)
 - For example, we learn to predict some class (y) given an input image (x)

- In unsupervised learning, we are trying to learn P(x)
 - We are trying to approximate the distribution across images

What is a GAN?

- Two networks trained together
 - One network is a "generator"
 - The other is a "discriminator"

What is a GAN?

- Two networks trained together
 - One network is a "generator"
 - The other is a "discriminator"
- The generator is like a counterfeiter, and the discriminator is like the police
- The generator tries to fabricate convincing output, and the discriminator tries to label output as real or fake

Objective functions

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

Objective functions

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

$$\max_{D} V(D) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

$$\min_{C} V(G) = \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

$$\max_{D} V(D) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

$$\max_{D} V(D) = \underbrace{\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})]}_{} + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

 $\log D(m{x})$ - Log probability that x is a real image

Log probability that x is a real image

$$\mathbb{E}_{oldsymbol{x} \sim p_{ ext{data}}(oldsymbol{x})}[\log D(oldsymbol{x})]$$

Average of the log probability for all real images in our dataset

$$\log D(\boldsymbol{x})$$

- Log probability that x is a real image

$$\mathbb{E}_{oldsymbol{x} \sim p_{ ext{data}}(oldsymbol{x})}[\log D(oldsymbol{x})]$$

Average of the log probability for all real images in our dataset

$$\max_D V(D) = \mathbb{E}_{m{x} \sim p_{ ext{data}}(m{x})}[\log D(m{x})]$$
 - Try to maximize this expected value

$$\max_{D} V(D) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

$$\max_{D} V(D) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$
recognize real images better recognize generated images better

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

Generator objective

$$\min_{G} V(G) = \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

Generator objective

$$\min_{G} V(G) = \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

Optimize G that can fool the discriminator the most.

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

Training - initial conditions

- Generator poorly approximates the true distribution
- Discriminator doesn't do the best job

Training - discriminator

- Generator hasn't changed
- Discriminator has been trained to better recognize fake images

Training - generator

- Generator trained to better approximate the true distribution
- Discriminator has not changed

Optimal solution

- Generator distribution is indistinguishable from the true distribution
- Discriminator can't tell the difference

Thinking more about the latent input variables

 Why do we want to establish distinct, prior distributions over the input variables Z?

What do the input variables eventually end up representing?

DCGAN

DCGAN architecture

Walking through the latent variable space

Walking through the latent variable space

Latent Space Vector Arithmetic

Latent space vector arithmetic

Face Pose Transformation

Face Pose Transformation

Reusable Representations

- Trained GAN on Imagenet-1k
- Extracted convolutional layers from discriminator
- Used them as input to new linear classifier model
- 82.8% accuracy on CIFAR-10

CycleGANs

- Two generators
- Two discriminators
- Cyclic relation between the generators

CycleGAN

CycleGANs

CycleGANs

