SISTEMI OPERATIVI E LAB. (A.A. 13-14) – 18 GIUGNO 2014

IMPORTANTE:

- 1) Fare il login sui sistemi in modalità Linux usando il proprio **username** e **password**, attivare syncexam.sh e passare in modalità testuale.
- 2) I file prodotti devono essere collocati in un **sottodirettorio** (che deve essere nella directory studente_XXX) che deve essere creato e avere nome **ESAME18Giu14-1-01.** FARE ATTENZIONE AL NOME DEL DIRETTORIO, in particolare alle maiuscole e ai trattini indicati. Verrà penalizzata l'assenza del direttorio con il nome indicato e/o l'assenza dei file nel direttorio specificato, al momento della copia automatica del direttorio e dei file. **ALLA SCADENZA DEL TEMPO A DISPOSIZIONE VERRÀ INFATTI ATTIVATA UNA PROCEDURA AUTOMATICA DI COPIA, PER OGNI STUDENTE DEL TURNO, DEI FILE CONTENUTI NEL DIRETTORIO SPECIFICATO.**
- 3) Il tempo a disposizione per la prova è di **75 MINUTI** per lo svolgimento della sola parte C e di **120 MINUTI** per lo svolgimento di tutto il compito.
- 4) Non è ammesso **nessun tipo di scambio di informazioni** né verbale né elettronico, pena la invalidazione della verifica.
- 5) L'assenza di commenti significativi verrà penalizzata, così come la manxanza del <u>makefile!</u>
- 6) AL TERMINE DELLA PROVA È INDISPENSABILE CONSEGNARE IL TESTO DEL COMPITO (ANCHE IN CASO CHE UNO STUDENTE SI RITIRI): IN CASO CONTRARIO, NON POTRÀ ESSERE EFFETTUATA LA CORREZIONE DEL COMPITO MANCANDO IL TESTO DI RIFERIMENTO.

Esercizio

Si realizzi un programma concorrente per UNIX che deve avere una parte in Bourne Shell e una parte in C.

La <u>parte in Shell</u> deve prevedere tre parametri: il primo deve essere il **nome assoluto di un direttorio** che identifica una gerarchia (**G**) all'interno del file system; il secondo deve essere una stringa (**S**) e il terzo parametro deve essere considerato un numero intero **X** strettamente positivo e strettamente minore di **255**. Il programma deve cercare nella gerarchia **G** specificata tutti i direttori che contengono almeno **un** file con lunghezza in linee pari a **X** e il cui nome contenga la stringa **S** all'interno (cioè la stringa **S** NON deve essere né all'inizio né alla fine del nome del file). Si riporti il nome assoluto di tali direttori sullo standard output e quindi i nomi di tutti i file trovati (**F1, F2, ... FN**). Quindi, <u>chiesta conferma all'utente</u>, in ogni direttorio trovato si deve invocare la parte in **C**, passando come parametri i **nomi dei file trovati (F1, F2, ... FN**) e la loro lunghezza in linee **X**.

La <u>parte in C</u> accetta un numero *variabile* di parametri **N+1** (**maggiore o uguale a 2**, *da controllare*) che rappresentano i primi **N** i nomi assoluti di file **F1...FN** e l'ultimo la lunghezza in linee dei file (**X**, *da non controllare*).

Il processo padre deve innanzitutto creare **X** file nella directory /tmp il cui nome deve essere "1", "2" fino a **X** e quindi deve generare **N** processi figli (**P0 ... PN-1**): ogni processo figlio è associato al corrispondente file **Fi**. Ognuno di tali processi figli esegue concorrentemente, leggendo tutte le **X** linee del file associato **Fi**: per ogni linea letta, il figlio **Pi** deve comunicare al padre prima la <u>lunghezza</u> della linea corrente compreso il terminatore di linea (come *int*) e quindi la linea stessa. Il padre ha il compito di ricevere, rispettando l'ordine dei file, per prima cosa il valore <u>lunghezza</u> (come *int*) inviato da ogni figlio **Pi** e quindi, **usando in modo opportuno questo valore**, deve ricevere la linea corrente. Il padre ha il compito di scrivere ogni linea ricevuta sul file creato corretto e rispettando l'ordine dei file; quindi, nel file "/tmp/1", il padre deve scrivere la prima linea inviata dal processo figlio **P0** e letta dal file **F1**, quindi la prima linea inviata dal processo figlio **P1** e letta dal file **F2** e così via fino alla prima linea inviata dal processo figlio **PN-1** e letta dal file **FN**; per gli altri file creati deve procedere in maniera analoga.

Al termine, ogni processo figlio **Pi** deve ritornare al padre il valore corrispondente alla lunghezza media delle linee del proprio file associato **Fi** e il padre deve stampare su standard output il PID di ogni figlio e il valore ritornato.