Теорема Зигмонди

Гусев Антон Сергеевич

Пусть нам даны числа a > b. Обозначим $d_n = a^n - b^n$, $s_n = a^n + b^n$.

Теорема 1 (Зигмонди —). Для любого n у d_n есть простой делитель, которого нет у d_k при k < n, кроме случаев

- 1. $n = 2, a + b = 2^l$. Тогда $2 \mid a b$ и других делителей у a + b нет.
- 2. n=6, a=2, b=1. Тогда у 63 простые делители 3 (встречается при n=2) и 7 (n=3).

Теорема 2 (Зигмонди +). То же, что и 1, для s_n . Исключение — n=3, a=2, b=1.

Обозначим $ord_p(x) = ord_{p_i}(p_1^{\alpha_1} \cdot \ldots \cdot p_n^{\alpha_n}) = \alpha_i$.

Лемма 3 (об уточнении показателя). Пусть $a,b,n\in\mathbb{N},p\in\mathbb{P},p\mid a-b,p\nmid a,p\nmid b$. Тогда:

- 1. Если p > 2, то $ord_n(a^n b^n) = ord_n(a b) + ord_n(n)$.
- 2. Если p = 2, то это верно при условии, что $4 \mid a b$.

Доказательство. Рассмотрим несколько случаев:

- 1. Пусть $p \nmid n$. Тогда $a^n b^n = (a b)(a^{n-1} + a^{n-2}b + \ldots + b^{n-1})$. Докажем, что вторая скобка не делится на p. Так как $a \equiv b \mod p$, то эта скобка сравнима с $a^{n-1}n$, но $p \nmid a, p \nmid n$.
- 2. Пусть p=n. Тогда ясно, что вторая скобка делится на p (там p слагаемых, каждое сравнимо с 1). Пусть a-b=pk. Если $p\mid k$, то это верно (аналогично предыдущему пункту). Значит, $p\nmid k$. Тогда пусть k=px-m. Значит,

$$a^{p-1} + a^{p-2}b + \dots + b^{p-1} \equiv a^{p-1} + a^{p-2}(a+mp) + \dots + (a+mp)^{p-1} \mod p^2.$$

Посмотрим на $a^{p-1-t}(a+pm)^t \mod p^2$. В разложении этого по биному почти все слагаемые делятся на p^2 , остаётся $a^{p-1}+a^{p-2}pmt$. Когда мы сложим все такие слагаемые, мы получим $pa^{p-1}+a^{p-2}pm\frac{p(p-1)}{2} \mod p^2$ и первое слагаемое не делится на p^2 при p>2, а второе делится. Если же p=2, то это тоже работает, потому что m=0.

Завершение доказательства. Пусть $n = p^r s, p \nmid s$ и r > 0. Тогда

$$ord_{p}\left(a^{n}-b^{n}\right)=ord_{p}\left(\left(a^{p^{r-1}}s\right)^{p}-\left(b^{p^{r-1}}s\right)^{p}\right)=1+ord_{p}\left(a^{\frac{n}{p}}-b^{\frac{n}{p}}\right).$$

Индукция по r.

Многочлены деления круга

Рассмотрим $P(x)=x^n-1$. Заметим, что корни этого многочлена — точки, которые делят единичную комплексную окружность на n равных частей. Рассмотрим такое α , что $(\cos\alpha+i\sin\alpha)^n=1$. Тогда по формуле Муавра получается $\alpha=\frac{2\pi k}{n}$. Тогда если рассмотреть x_1 — корень с самым маленьким положительным аргументом, то получится $x_j=x_1^j$ для всех остальных корней. Можно записать $\xi_n=x_1$. Тогда обозначим **многочлен деления круга** —

$$\Phi_n(x) = \prod_{k=1; (k,n)=1}^n (x - \xi_n^k).$$

Примеры

- $\Phi_1(x) = x 1$.
- $\Phi_2(x) = x (-1) = x + 1$.
- $\Phi_3(x) = \frac{x^3 1}{x 1} = x^2 + x + 1.$
- $\Phi_4(x) = (x-i)(x+i) = x^2 + 1$.

Лемма 4. $\varphi(n) = \sum_{d|n} \varphi(d)$.

Доказательство. Рассмотрим дроби $\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}$ и сократим их. Тогда для каждого $d \mid n$ дробей со знаменателем d будет $\varphi(d)$.

Лемма 5. $x^n - 1 = \prod_{d|n} \Phi_d(x)$.

Доказательство. Если мы докажем, что у них совпадают степень, старший коэффициент и корни, то мы докажем это. У обоих многочленов старший коэффициент 1 и степень n (потому что у Φ_m степень $\varphi(m)$). Набор корней x^n-1 — это ξ_n^k для разных k. Заметим, что $\xi_n^k=\xi_{n/t}^{k/t}$. Тогда если взять t = (n, k), то это число будет корнем $\Phi_{n/t}(x)$.

Лемма 6. У Φ_n целые коэффициенты.

Доказательство. Индукция по n.

База. n = 1, 2.

Переход $n \leq k \to n = k+1$. По 5 мы знаем, что $x^{k+1}-1 = \prod_{d|k+1} \Phi_d(x)$, то есть $\Phi_{k+1} = \frac{xk+1-1}{\prod \Phi_{\cdots}}$ и у знаменателя целые коэффициенты по предположению индукции. Заметим, что когда мы будем делить многочлен $\mathbb{Q}[x]$ на другой многочлен $\mathbb{Q}[x]$, получим $\mathbb{Q}[x]$ (если поделится нацело). Значит, у Φ_{k+1} рациональные коэффициенты. Теперь у нас $x^{k+1} - 1 = \Phi_{k+1}(x)g(x), g(x) \in \mathbb{Z}[x]$. Вынесем из произведения t — общий знаменатель всех коэффициентов Φ_{k+1} . Пусть $p \mid t$ и в обоих многочленах есть коэффициент, который не делится на р. Тогда рассмотрим минимальный такой коэффициент $a_i x^i$ и минимальный аналогичный коэффициент $b_i x^j$. Тогда коэффициент при x^{i+j} должен делиться на p, но он не делится — противоречие. В g(x) есть такой коэффициент (потому что старший член 1), значит, все коэффициенты Φ_{k+1} делятся на p. Значит, на самом деле $\Phi_{k+1} \in \mathbb{Z}[x]$.

Лемма 7 (Критерий Эйзенштейна). Пусть у P(x) все коэффициенты, кроме старшего, кратны p, и свободный член не делится на p^2 . Тогда P(x) неприводим над \mathbb{Q} .

Доказательство. Пусть $P(x) = \sum a_i x^i = (\sum b_i x^j) (\sum c_k x^k)$. Ровно один из коэффициентов b_0 и c_0 делится на p. Пусть $p \mid b_0$. Заметим, что $p \nmid b_m$, значит, можно рассмотреть минимальное такое i, что b_i не кратно p. Тогда коэффициент при x^i у P(x) не может делиться на p — противоречие.

Лемма 8. $\Phi_p(x)$ неприводим над \mathbb{Q} . **Доказательство.** $\Phi_p(x) = \frac{x^p-1}{x-1} = x^{p-1} + \ldots + x + 1$. Подставим x = y+1. Тогда у получившегося многочлена свободный член будет равен p, а все остальные, кроме старшего, кратны p, что противоречит 7.

Лемма 9. Пусть $n \in \mathbb{N}, p \in \mathbb{P}$. Тогда

$$\Phi_{np}(x) = \begin{cases} \Phi_n(x^p), p \mid n \\ \frac{\Phi_n(x^p)}{\Phi_n(x)}, p \nmid n \end{cases}$$

Доказательство. Пусть $p \mid n$. Тогда у этих многочленов одинаковый старший член 1 и одинаковая степень $\varphi(np)$. Посмотрим на их корни. У первого многочлена это точки, делящие окружность на np частей, но не на меньшее количество, а у второго те же самые точки.

Теперь пусть $p \nmid n$. Старший коэффициент у них снова 1. Степень $\Phi_{np}(x)$ равна $\varphi(n)(p-1)$, степень $\Phi_n(x^p)$ равна $p\varphi(n)$, степень $\Phi_n(x)$ равна $\varphi(n)$. Докажем про корни. Корни $\Phi_{np}(x)$ — те точки, номера которых взаимно просты с np, а корни Φ_n — те, которые взаимно просты с nи делятся на p. Тогда у произведения корни — все точки, номера которых взаимно просты с n.

Пример использования леммы. Лемма позволяет посчитать любое Φ_n через Φ_p :

$$\Phi_{12}(x) = \Phi_6(x^2) = \frac{\Phi_3(x^4)}{\Phi_3(x^2)} = \frac{x^8 + x^4 + 1}{x^4 + x^2 + 1}.$$

Лемма 10. Пусть $k \mid n$. Тогда $\Phi_n(a)(a^k-1) \mid a^n-1$. Доказательство.

$$a^{n} - 1 = \prod_{d|n} \Phi_{d}(a) = \Phi_{n}(a) \cdot \prod_{d|n,d < n} \Phi_{d}(a),$$

причём в правом произведении есть множитель $a^k - 1$.

Теорема 11 (Упрощение Зигмонди). Пусть b = 1. Тогда для любого n у d_n есть простой делитель, которого нет у d_k при k < n, кроме тех же двух исключений.

Лемма 12. Если 11 неверна, то $p \mid \Phi_n(a) \implies p \mid n$.

Доказательство. $p \mid \Phi_n(a) \implies p \mid a^n - 1$. Тогда если теорема 11 неверна, то $p \mid a^k - 1$ для какого-то k < n. Тогда по алгоритму Евклида можно получить, что $p \mid a^m - 1$ для какого-то $m \mid n$. Применим 10. Тогда $p(a^k - 1) \mid a^n - 1$. Тогда если p > 2 или $4 \mid a^k - 1$, то по 3 мы получим

$$ord_p(a^n - 1) = ord_p(a^k - 1) + ord_p\left(\frac{n}{k}\right) \implies p \mid \frac{n}{k} \implies p \mid n,$$

что и требовалось. Пусть p=2 и a^k-1 не делится на 4. Кроме того, $2\mid a^n-1 \implies k=1$. Тогда если 3 не работает, то $4\nmid a-1$. Значит, a=4k+3. Пусть $2\nmid n$. Тогда $ord_2(a^n-1)=ord_2(a^k-1)$, противоречие с 10.

Лемма 13. $\Phi_n(a)$ свободно от квадратов.

Доказательство. Докажем, что $p^2 \nmid \Phi_n(a)$. Пусть $n = p^{\alpha}s$. Тогда $\Phi_n(a) \cdot \left(a^{p^{\alpha-1}s} - 1\right) \mid a^{p^{\alpha}s} - 1$. Заметим, что $t \mid s$, где t — показатель $a \mod p$. Тогда знаменатель кратен p. Применим 3. Получим, что степень вхождения p в $(a^{n/p} - 1)/(a^n - 1)$ равен 1, кроме случая p = 2.

Лемма 14. Пусть $p \mid \Phi_n(a)$ и $n = p^{\alpha}s$. Тогда s — показатель a по p. Доказательство. Пусть T — показатель. Тогда

$$p\mid \Phi_n(a)\mid \frac{a^n-1}{a^{p^\alpha T}-1} \text{ и } 1\leq ord\left(\frac{a^{p^\alpha s}-1}{a^{p^\alpha T}-1}\right)=ord\left(\frac{a^s-1}{a^T-1}\right)=0.\blacksquare$$

Доказательство теоремы 11. Заметим, что по 14 если $p \mid F_n(a)$, то p — самый большой простой делитель в n. Значит, простых делителей максимум 1. Тогда по 13 $F_n(a) = p$. С другой стороны, $\Phi_n(a) = \Phi_{p^{\alpha}s}(a)$. Рассмотрим несколько случаев:

- 1. Пусть $\alpha > 1$. Тогда $\Phi_n(a) = \Phi_{n/p}(a^p) \ge a^p 1 > p$. Такого не бывает.
- 2. Пусть $\alpha = 1, a \neq 2$. Тогда $\Phi_{ps} \geq (a-1)^{\varphi(ps)} \geq 2^{p-1}$.
- 3. Пусть $\alpha=1, a=2$. Тогда $\Phi_{ps}(2)=\frac{\Phi_s(2^p)}{\Phi_s(2)}\geq \frac{(2^p-1)^{\varphi(s)}}{3^{\varphi(s)}}$. Если p>3, то такого не бывает. Если p=3, то либо n=3, либо n=6. Если p=2, то n=2.

Итак, мы доказали, что у $\Phi_n(a)$ есть «уникальный» простой делитель p. Тогда $p \mid a^n-1$ и если $p \mid a^k-1$, то $p \mid \Phi_v(a)$ для какого-то y — противоречие.

Доказательство теоремы 1 (идея). Обозначим $\Phi_n(a,b) = \left(\frac{b}{a}\right)^{\varphi(n)} \Phi_n(a)$. Дальше надо те же самые рассуждения провести для $\Phi_n(a,b)$.

Доказательство теоремы 2 через 1. Очевидно следует из того, что $a^k + b^k \mid a^{2k} - b^{2k}$.