Practice Exercises:

Exercise 1: Create a "Table of Values" for each of the toolkit functions using at least 5 values of x. Then construct your own graph. Does your graph resemble the ones in this section? Make sure to select both positive and negative x values **when appropriate** in order to practice calculator operations with negative numbers. [When are negative values of x not appropriate?]

Exercise 2: Given a ball thrown vertically upward according to the formula

$$h(x) = 0.5 + 27.2x - 4.9x^2$$

- a) A line is **tangent** to the curve at x = 0.5 seconds. What is the y coordinate of the point where the tangent line and the curve intersect?
- b) A line is **secant** to the curve and passes through (1, _____) and (0, ______). What are the y coordinates of the two points?
- c) Find the slope of the secant line in b)
- d) Use this number to estimate the speed of the ball at 0.5 seconds.
- e) Is this a "reliable" estimate, given that the actual speed of the ball is 22.3 meters/second, 0.5 second after being thrown?

Exercise 3: What is the slope of the secant line through the given two points for $y = x^2$, where the two points are

- a) the point (3, 9) and a second point with x = 2.97
- b) the point (3, 9) and a second point with x = 3.02

Use this information to estimate the slope at x = 3

Sketch the graph of $y = x^2$ for x between 2 and 4

Exercise 4: What is the slope of the line through the given two points for $y = x^2 + x - 2$, where the two points are

- a) the point (2, 4) and a second point with x = 1.97
- b) the point (2, 4) and a second point with x = 2.02

Use this information to estimate the slope at x = 2

Sketch the graph of $y = x^2 + x - 2$ for x between 1 and 3

Exercise 5: Here we see a temperature graph on a certain day in May in Boston.

- a) What was the average change in temperature from 9 am to 3 pm?
- b) Estimate how the temperature was changing (in $\frac{^{\circ}F}{hour}$) at 10 am?
- c) Same question but at 6 pm?

Exercise 6: A person standing at the side of a road was measuring the distance between themselves and a car that was traveling on a straight road.

- a) Where was the car in relation to the person at the start?
- b) What are the units of velocity/speed on this graph?
- c) What was the average velocity of the car from 0 seconds to 30 seconds?
- d) What was the average velocity of the car from 10 seconds to 25 seconds?
- e) Estimate how fast the car was traveling at
 - i. 10 seconds?
 - ii. 18 seconds?
 - iii. 25 seconds? (Hint: slope will be a negative number. To get speed, make it positive)
- f) What is happening between 15 seconds and 20 seconds?

g) Velocity is negative, while speed is positive between 20 seconds and about 27 seconds. Why? What does this mean? Hint: Look at how the distance between the car and the observer is changing.

Exercise 7: Fill in the table with appropriate units for $\frac{dy}{dx} = f'(x) = slope$.

		dx
Units for x	Units for $y = f(x)$	Units for $f'(x)$
hours	miles	
vehicles	people	
dollars	bottles of water	
days	birds (migrating)	
hours	miles per hour	
minutes	gallons	
ounces	dollars	