Graphs

Ms. Sarika Dharangaonkar,
Assistant Professor,
Information Technology Department, KJSCE

Formal definition of graphs

• A graph *G* is defined as follows:

$$G=(V,E)$$

V(G): a finite, nonempty set of vertices

E(*G*): a set of edges (pairs of vertices)

Directed vs. undirected graphs

 When the edges in a graph have no direction, the graph is called undirected

Directed vs. undirected graphs (cont.)

 When the edges in a graph have a direction, the graph is called directed (or digraph)

 $V(Graph2) = \{1,3,5,7,9,11\}$ $E(Graph2) = \{(1,3),(3,1),(5,9),(9,11),(5,7),(9,9),(11,1)\}$

Examples for Graph

complete graph

$$V(G_1)=\{0,1,2,3\}$$

 $V(G_2)=\{0,1,2,3,4,5,6\}$
 $V(G_3)=\{0,1,2\}$

incomplete graph

$$E(G_1)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$$

 $E(G_2)=\{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\}$
 $E(G_3)=\{<0,1>,<1,0>,<1,2>\}$

complete undirected graph: n(n-1)/2 edges complete directed graph: n(n-1) edges

Graph terminology

• <u>Adjacent nodes</u>: two nodes are adjacent if they are connected by an edge

- Path: a sequence of vertices that connect two nodes in a graph
- Complete graph: a graph in which every vertex is directly connected to every other vertex

Graph terminology (cont.)

 What is the number of edges in a complete directed graph with N vertices?

(a) Complete directed graph.

Graph terminology (cont.)

• What is the number of edges in a complete undirected graph with N vertices?

N * (N-1) / 2

(b) Complete undirected graph.

Graph terminology (cont.)

 Weighted graph: a graph in which each edge carries a value

Degree

- ☐ The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - the out-degree of a vertex v is the number of edges that have v as the tail

undirected graph

 G_3

ADT for Graph

functions: for all $graph \in Graph$, v, v_1 and $v_2 \in Vertices$

Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no incident edge.

Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between v1 and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it are removed

Graph DeleteEdge(*graph*, *v*₁, *v*₂)::=return a graph in which the edge (*v*₁, *v*₂) is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else return FALSE

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

Graph Representations

- Adjacency Matrix
- Adjacency Lists

Adjacency Matrix

- \square Let G=(V,E) be a graph with n vertices.
- □ The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- □ If the edge (v_i, v_j) is in E(G), $adj_mat[i][j]=1$
- □ If there is no such edge in E(G), adj_mat[i][j]=0
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

CHAPTER 6 14

Example

	Α	В	С	D	Ε
Α	0	1	0	1	0
A B C D E	0	0	0	1	0
С	0	1	0	0	0
D	0	0	0	0	1
Е	_0	0	1	0	0_

(a) Directed graph

(b) Directed graph with loop

(c) Undirected graph

(d) Weighted graph

Data Structures for Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list.

Figure 13.17 Graph G and its adjacency list

An undirected graph with n vertices and e edges ==> n head nodes and 2e list no

Graph Traversal

- Traversing a graph, we mean the method of examining the nodes and edges of the graph.
- There are two standard methods of graph traversal these two methods are:
- <u>Methods:</u> Depth-First-Search (DFS) or Breadth-First-Search (BFS)
- <u>Problem:</u> find a path between two nodes of the graph (e.g., Austin and Washington)

Depth First Search (DFS)

- The depth-first search algorithm progresses by expanding the starting node of G and then going deeper and deeper until the goal node is found, or until a node that has no children is encountered.
- When a dead-end is reached, the algorithm backtracks, returning to the most recent node that has not been completely explored.
- Travel as far as you can down a path
- Back up *as little as possible* when you reach a "dead end" (i.e., next vertex has been "marked" or there is no next vertex)
- DFS can be implemented efficiently using a *stack*

Value of status and significance

Status	State of the node	Description
1	Ready	The initial state of the node N
2	Waiting	Node N is placed on the queue or stack and waiting to be processed
3	Processed	Node N has been completely processed

DFS Algorithm:

- Step 1: SET STATUS = 1 (ready state) for each node in G
- Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)
- Step 3: Repeat Steps 4 and 5 until STACK is empty
- Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)
- Step 5: Push on the stack all the neighbours of N that are in the ready state (whose STATUS = 1) and set their STATUS = 2 (waiting state)
- [END OF LOOP]
- Step 6: EXIT

Example of DFS

Solution:

(a) Push H onto the stack.

STACK: H

(b) Pop and print the top element of the STACK, that is, H. Push all the neighbours of H onto the stack that are in the ready state. The STACK now becomes

PRINT: H

STACK: E, I

(c) Pop and print the top element of the STACK, that is, I. Push all the neighbours of I onto the stack that are in the ready state. The STACK now becomes

PRINT: I

STACK: E, F

(d) Pop and print the top element of the STACK, that is, F. Push all the neighbours of F onto the stack that are in the ready state. (Note F has two neighbours, c and H. But only c will be added, as H is not in the ready state.) The STACK now becomes

PRINT: F

STACK: E, C

(e) Pop and print the top element of the STACK, that is, c. Push all the neighbours of c onto the stack that are in the ready state. The STACK now becomes

PRINT: C

STACK: E, B, G

(f) Pop and print the top element of the STACK, that is, G. Push all the neighbours of G onto the stack that are in the ready state. Since there are no neighbours of G that are in the ready state, no push operation is performed. The STACK now becomes

PRINT: G

STACK: E, B

(g) Pop and print the top element of the STACK, that is, B. Push all the neighbours of B onto the stack that are in the ready state. Since there are no neighbours of B that are in the ready state, no push operation is performed. The STACK now becomes

PRINT: B

STACK: E

(h) Pop and print the top element of the STACK, that is, E. Push all the neighbours of E onto the stack that are in the ready state. Since there are no neighbours of E that are in the ready state, no push operation is performed. The STACK now becomes empty.

PRINT: E

STACK:

Since the STACK is now empty, the depth-first search of G starting at node H is complete and the nodes which were printed are:

Applications of Depth-First Search Algorithm

- Depth-first search is useful for:
- Finding a path between two specified nodes, u and v, of an unweighted graph.
- Finding a path between two specified nodes, u and v, of a weighted graph.
- Finding whether a graph is connected or not.
- Computing the spanning tree of a connected graph.

Breadth-First-Searching (BFS)

- Breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores all the neighboring nodes.
- Then for each of those nearest nodes, BFS explores their unexplored neighbour nodes, and so on, until it finds the goal.
- Look at all possible paths at the same depth before you go at a deeper level
- Back up as far as possible when you reach a "dead end" (i.e., next vertex has been "marked" or there is no next vertex)

BFS Algorithm:

- Step 1: SET STATUS = 1 (ready state) for each node in G
- Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)
- Step 3: Repeat Steps 4 and 5 until QUEUE is empty
- Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).
- Step 5: Enqueue all the neighbours of N that are in the ready state (whose STATUS = 1) and set their STATUS = 2 (waiting state)
- [END OF LOOP]
- Step 6: EXIT

Example:

Adjacency lists

A: B, C, D

B: E

C: B, G

D: C, G

E: C, F

F: C, H

G: F, H, I

H: E, I

I: F

Solution:

(a) Add A to QUEUE and add NULL to ORIG.

FRONT = 0	QUEUE = A
REAR = 0	ORIG = \0

(b) Dequeue a node by setting FRONT = FRONT + 1 (remove the FRONT element of QUEUE) and enqueue the neighbours of A. Also, add A as the ORIG of its neighbours.

FRONT = 1	QUEUE = A	В	С	D
REAR = 3	ORIG = \O	Α	Α	Α

(c) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of B. Also, add B as the ORIG of its neighbours.

FRONT = 2	QUEUE = /	A B	С	D	Е
REAR = 4	ORIG =	\0 A	А	А	В

(d) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of c. Also, add c as the ORIG of its neighbours. Note that c has two neighbours B and G. Since B has already been added to the queue and it is not in the Ready state, we will not add B and only add G.

FRONT = 3	QUEUE = A	В	С	D	Е	G
REAR = 5	ORIG = \O	Α	А	А	В	С

(e) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of D. Also, add D as the ORIG of its neighbours. Note that D has two neighbours C and G. Since both of them have already been added to the queue and they are not in the Ready state, we will not add them again.

FRONT = 4	QUEUE = A	В	С	D	Е	G
REAR = 5	ORIG = \O	Α	Α	А	В	С

(f) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of E. Also, add E as the ORIG of its neighbours. Note that E has two neighbours c and F. Since c has already been added to the queue and it is not in the Ready state, we will not add c and add only F.

FRONT = 5	QUEUE = A	В	С	D	Е	G	F
REAR = 6	ORIG = \0	А	А	А	В	С	Е

(g) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of G. Also, add G as the ORIG of its neighbours. Note that G has three neighbours F, H, and I.

FRONT = 6	QUEUE = A	В	С	D	Е	G	F	Н	I
REAR = 9	ORIG = \O	Α	Α	Α	В	С	Е	G	G

Since F has already been added to the queue, we will only add H and I. As I is our final destination, we stop the execution of this algorithm as soon as it is encountered and added to the QUEUE. Now, backtrack from I using ORIG to find the minimum path P. Thus, we have P as $A \rightarrow C \rightarrow G \rightarrow I$.

Applications of Breadth-First Search Algorithm

Breadth-first search can be used to solve many problems such as:

- Finding all connected components in a graph G.
- Finding all nodes within an individual connected component.
- Finding the shortest path between two nodes, u and v, of an unweighted graph.
- Finding the shortest path between two nodes, u and v, of a weighted graph.

Depth First Search: v0, v1, v3, v7, v4, v5, v2, v6

Breadth First Search: v0, v1, v2, v3, v4, v5, v6, v7

Topological Sorting

- Topological sorting is a way of arranging the nodes (or vertices) of a directed graph in a linear order such that for every directed edge from node A to node B, node A comes before node B in the ordering.
- In simpler terms, it's like making a list of tasks where some tasks depend on others. For example, if task A needs to be done before task B, topological sorting will arrange the tasks so that A comes before B. This is commonly used in scenarios like:
 - Scheduling jobs based on dependencies (like prerequisites in a course plan).
 - Determining the order of compilation in programming (certain files must be compiled before others).

- Topological order: linear ordering of vertices of a graph
- A topological sort takes a directed acyclic graph and produces a linear ordering of all its vertices such that if the graph G contains an edge (v,w) then the vertex v comes before the vertex w in the ordering.

Topological Sort

Topological sort can be given as:

- A, B, C, D, E
- A, B, C, E, D
- A, C, B, D, E
- A, C, B, E, D

Topological sort can be given as:

- A, B, D, C, E, F
- A, B, D, C, F, E
- A, B, C, D, E, F
- A, B, C, D, F, E

A, B, F, E, D

Topological sort can be given as:

- A, B, C, F, D, E, C
- A, B, C, D, E, F, G
- A, B, C, D, F, E, G
- A, B, D, C, E, F, G

A, B, D, C, F, E, G

Algorithm

- 1. Compute the indegrees of all vertices
- 2. Find a vertex U with indegree 0 and print it (store it in the ordering)
 - If there is no such vertex then there is a cycle and the vertices cannot be ordered. Stop.
- 3. Remove U and all its edges (U,V) from the graph.
- 4. Update the indegrees of the remaining vertices.
- 5. Repeat steps 2 through 4 while there are vertices to be processed.