3 – Linguagens Livres de Contexto

Aula 16

Sumário

- Capítulo 3 Linguagens Livres de Contexto
 - 3.1. Gramáticas Livres de Contexto
 - 3.1.1. Árvore de Derivação
 - 3.1.2. Ambiguidade
 - 3.1.3. Simplificação de Gramáticas Livres de Contexto
 - 3.1.4. Recursão à Esquerda
 - 3.2. Forma Normal de Chomsky
 - 3.3. Forma Normal de Greibach
 - 3.4. Recursão à esquerda
 - 3.5. Autômato com pilha

- Linguagens livre de contexto
 - Pode ser associadas a um formalismo do tipo AUTOMATO
 - No caso, autômato com pilha
- Autômato com pilha
 - Análogo ao automato finito
 - Inclui uma <u>pilha</u> como <u>memoria auxiliar</u>
 - Não determinísta!

- Não determinismo
 - Importante e necessário
 - Aumenta o poder computacional de um AP
 - O reconhecimento só é possível por um <u>AP-não-determinista</u>

Estrutura

- Fita
 - análoga à do autômato finito
- Pilha
 - memória auxiliar
 - pode ser usada para leitura e gravação
- Unidade de Controle
 - reflete o estado corrente da máquina
 - possui: cabeça de fita e cabeça de pilha
- Programa, Função Programa ou Função de Transição comanda
 - leitura da fita
 - leitura e gravação da pilha
 - define o estado da máquina

Pilha

- Ela é independente da entrada
- Não possui limite máximo de tamanho
 - "Tão grande quanto se queira"
 - Baseada na noção de conjunto *infinitamente contável*

Pilha

- Último símbolo gravado é o primeiro a ser lido
- Base: fixa e define o seu início
- *Topo*: variável e define a posição do último símbolo gravado

Pilha

- Cada célula armazena um símbolo do alfabeto auxiliar
 - pode ser igual ao alfabeto de entrada
- Leitura ou gravação é sempre no topo
- Não possui tamanho fixo, nem máximo
 - tamanho corrente: tamanho da palavra armazenada
 - valor inicial: vazio (palavra vazia)

Unidade de controle

Número finito e predefinido de estados

Cabeça da Fita

- unidade de leitura: acessa uma célula da fita de cada vez
- move <u>exclusivamente</u> para a <u>direita</u>
- pode testar se a entrada foi completamente lida

Cabeça da Pilha

unidade de leitura e gravação

Cabeça da Pilha: leitura e gravação

- Leitura
 - Move para a direita ("para <u>baixo</u>") ao ler um símbolo
 - Acessa <u>um símbolo</u> de cada vez, sempre do topo
 - Exclui o símbolo lido
 - Pode testar se a pilha está vazia
- Gravação
 - Move para a esquerda ("para <u>cima</u>") ao gravar
 - Pode gravar uma palavra composta por mais de um símbolo
 - Símbolo do topo é o mais à esquerda da palavra gravada

Critérios de parada

- Estado final
 - Pára quando atingir um estado final
 - Inicialmente a pilha é vazia
- Pilha vazia
 - Pára quando quando a pilha estiver vazia

Definição Matemática:

$$M = (\Sigma, Q, \delta, q0, F, V)$$

- Σ, é um alfabeto de simbolos de entrada
- Q, é o conjunto de estados possíveis do automato (finito)
- δ, é uma função de transição

δ: Q × (Σ U { ε, ? }) × (V U { ε, ? }) → 2 Q×V*
$$δ(p, x, y) = \{ (q 1, v 1),...,(q n, v n) \}$$

- q0, estado inicial
- F, subconjunto de Q, conjunto dos estados finais
- V, alfabeto auxiliar ou alfabeto da pilha

Exemplo – transição ou função programa

• $\delta(p, x, y) = \{ (q, v) \}$

Características da função programa

- "?"
 - indica teste de pilha vazia
- leitura de ε indica
 - movimento vazio da fita ou pilha (não lê, nem move a cabeça)
 - não-determinístico: basta que o movimento seja vazio na fita
- gravação de ε
 - nenhuma gravação é realizada na pilha (e não move a cabeça)

Exemplo 1 – Duplo balanceamento

• $M 1 = (\{ a, b \}, \{ q0, q1, qf \}, \delta 1, q0, \{ qf \}, \{ B \})$

Exemplo 1 – Duplo balanceamento

• $M 1 = (\{ a, b \}, \{ q0, q1, qf \}, \delta 1, q0, \{ qf \}, \{ B \})$

Exercicio 1

• $\{a^n b^k c^{n+k} \mid n, k \ge 0\}$

Exercicio 2

• $\{a^n b^k c^{n-k} \mid n, k \ge 0\}$

Exercicio 3

• $\{a^n b^{n+k} c^k \mid n, k \ge 0\}$

Exercicio 4

- Crie uma gramática Livre de contexto para a linguagem
 - $\ \ \{a^n \ b^k \ | \ n, \ k \geq 0\}$

Exercicio 5

- Crie uma gramática Livre de contexto para a linguagem
 - $\ \ \{a^n \ b^k \ c^{n+k} | \ n, \ k \geq 0\}$