SDSC3001 Assignment 2

2024.10.31

1. (20 points) Suppose $A \in \mathbb{R}^{t \times d}$ ($d \gg t$) is a random projection matrix where each entry A_{ij} is independently sampled from a standard normal distribution $\mathcal{N}\left(0,1\right)$. Let a_i^T be the i-th row of A. Prove that the rows of A are nearly orthogonal to each other, that is, $\Pr\{\forall i \neq j, \frac{a_i^T a_j}{d} \leq \epsilon\} \geq 1 - \frac{t^2}{2\epsilon^2 d}$. (Hint: use the Chebyshev's inequality)

Solution:

Denote $x = (x_1, x_2, ..., x_d)$ and $y = (y_1, y_2, ..., y_d)$, where $x_i, y_i \sim \mathcal{N}(0, 1)$ for all i. Then by Chebyshev's inequality:

$$Pr(\frac{x^T y}{d} \ge \epsilon) \le \frac{Var(\frac{x^T y}{d})}{\epsilon^2} = \frac{\sum_{i=1}^d Var(x_i y_i)}{d^2 \epsilon^2}$$
$$= \frac{Var(x_1 y_1)}{d \epsilon^2}$$
$$= \frac{1}{d \epsilon^2}$$

Solution:

By Union Bound:

$$Pr(\exists i \neq j, \frac{a_i^T a_j}{d} \ge \epsilon) \le \sum_{i \neq j} Pr(\frac{a_i^T a_j}{d} \ge \epsilon)$$

$$\le C_t^2 \frac{1}{d\epsilon^2}$$

$$\le \frac{t^2}{2d\epsilon^2}$$

where $C_t^2 = {t \choose 2}$ is the number of combination. Then:

$$Pr(\forall i \neq j, \frac{a_i^T a_j}{d} \leq \epsilon) \geq 1 - \frac{t^2}{2d\epsilon^2}$$

- 2. (30 points) Given an undirected graph $G=\langle V,E\rangle$, we hope to partition V into two disjoint sets V_1 and V_2 such that $cut\ (V_1,V_2)=|\{(u,v)\mid u\in V_1,v\in V_2,(u,v)\in E\}|$ is large. Suppose we randomly, uniformly, and independently assign each node $u\in V$ to V_1 or V_2 .
- 2.1 (6 **points**) Let X_{uv} be an indicator for the edge $(u,v) \in E$. $X_{uv} = 1$ if (u,v) is a cut edge and $X_{uv} = 0$ otherwise. Show that the indicators X_{uv} 's for all edges are not mutually independent.
- 2.2 (9 **points**) Show that the indicators X_{uv} 's for all edges are pairwise independent.
- 2.3 (15 **points**) Prove that if we generate k random and independent partitions of V, with probability at least $1-\frac{1}{k}$, among the k random partitions we have a partition V_1 and V_2 such that $cut(V_1,V_2)\geq \frac{|E|-\sqrt{|E|}}{2}$.

2.1 (6 **points**) Let X_{uv} be an indicator for the edge $(u,v) \in E$. $X_{uv} = 1$ if (u,v) is a cut edge and $X_{uv} = 0$ otherwise. Show that the indicators X_{uv} 's for all edges are not mutually independent.

Solution:

$$Pr(X_{uv} = 0) = Pr(X_{uv} = 1) = \frac{1}{2}$$

$$Pr(X_{bc} = 1 | X_{ab} = 1, X_{ac} = 1) = 0 \neq \frac{1}{2}$$

2.2 (9 **points**) Show that the indicators X_{uv} 's for all edges are pairwise independent.

Solution:

$$Pr(X_{ac} = 1|X_{ab} = 0) = Pr(X_{ac} = 0|X_{ab} = 0) = \frac{1}{2}$$

 $Pr(X_{ac} = 1|X_{ab} = 1) = Pr(X_{ac} = 0|X_{ab} = 1) = \frac{1}{2}$

2.3 (15 **points**) Prove that if we generate k random and independent partitions of V, with probability at least $1-\frac{1}{k}$, among the k random partitions we have a partition V_1 and V_2 such that $cut(V_1,V_2)\geq \frac{|E|-\sqrt{|E|}}{2}$.

Solution:

Denote a set of edges $E = \{e_1, e_2, ..., e_m\}$ and k partitions $\{(V_1^{(1)}, V_2^{(1)}), (V_1^{(2)}, V_2^{(2)}), ..., (V_1^{(k)}, V_2^{(k)})\}.$

Let $X^{(i)} = \sum_{j=1}^m X_{e_j}^{(i)}$, where $X_{e_j}^{(i)} = X_{e_j}(V_1^{(i)}, V_2^{(i)})$. We have $E(X^{(i)}) = \frac{m}{2}$.

Solution:

We should prove the following inequality:

$$Pr(\max\{X^{(1)}, X^{(2)}, ...X^{(k)}\} \ge \frac{m - \sqrt{m}}{2}) \ge 1 - \frac{1}{k}$$

Denote $Z = \frac{1}{k} \sum_{i=1}^{k} X^{(i)} \le \max\{X^{(1)}, X^{(2)}, ..., X^{(k)}\}$, we can prove:

$$Pr(Z \ge \frac{m - \sqrt{m}}{2}) \ge 1 - \frac{1}{k}$$

 $\Leftrightarrow Pr(Z - \frac{m}{2} \le \frac{-\sqrt{m}}{2}) \le \frac{1}{k}$

where Z is the mean number of cut edges in each partition.

$$E(Z) = \frac{m}{2}$$

Solution:

Target:
$$Pr(Z - \frac{m}{2} \le \frac{-\sqrt{m}}{2}) \le \frac{1}{k}$$

Proof: By using Chebyshev's inequality and setting $\epsilon = \frac{\sqrt{m}}{2}$, we have:

$$Pr(Z - E(Z) \le -\epsilon) \le \frac{Var(Z)}{\epsilon^2}$$

$$\Leftrightarrow Pr(Z - \frac{m}{2} \le -\frac{\sqrt{m}}{2}) \le \frac{4Var(Z)}{m}$$

$$\Leftrightarrow Pr(Z - \frac{m}{2} \le -\frac{\sqrt{m}}{2}) \le \frac{1}{k}$$

$$Var(Z) = \frac{m}{4k}$$

Solution:

$$Var(Z) = Var(\frac{1}{k} \sum_{i=1}^{k} X^{(i)}) = \frac{Var(X^{(1)})}{k}$$

$$Var(X^{(1)}) = Var(\sum_{j=1}^{m} X^{(1)}_{e_j})$$

$$= E((\sum_{j=1}^{m} X^{(1)}_{e_j})^2) - E[(\sum_{j=1}^{m} X^{(1)}_{e_j})]^2$$

$$= E(\sum_{j=1}^{m} (X^{(1)}_{e_j})^2) + 2\sum_{i < j} E(X^{(1)}_{e_i} X^{(1)}_{e_j}) - (\frac{m}{2})^2$$

$$= \frac{m}{2} + 2C_m^2 \cdot \frac{1}{2} \cdot \frac{1}{2} - (\frac{m}{2})^2$$

$$= \frac{m}{4}$$

So we get:
$$Var(Z) = \frac{m}{4k}$$

- 3. (50 points) Write code to compute PageRank values of nodes in the DBLP network used in Assignment 1. You are required to upload your code for this question. Set $\alpha=0.15$.
- 3.0 Implement the power iteration method. Initialize the PageRank vector as $\pi^{(0)} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$ where n is the number of nodes. Let $\pi^{(t)}$ be the PageRank vector obtained after the t-th iteration and $\pi^{(t)}_v$ be the PageRank value of node v after the t-th iteration. The power iteration method can be regarded as applying the following updating rule for iterations.

$$\pi_v^{(t)} = (1-lpha)\left(\sum_{u \in N(v)} \pi_u^{(t-1)} imes rac{1}{d_u}
ight) + rac{lpha}{n}$$

Apply the power iterations and return $\pi=\pi^{(t)}$ as the PageRank vector if the t-th iteration is the first time that $\forall v, \ \left|\pi_v^{(t)}-\pi_v^{(t-1)}\right|\leq 10^{-9}$. π is regarded as the ground truth PageRank vector in the following questions.

- 3.1 (25 **points**) Implement the Monte Carlo method. Simulate M random walks as follows. (1) Randomly pick a node as the starting point. (2) At each step, stop with probability α and with probability $1-\alpha$, jump to a random neighbor of the current node. Let f_v be the number of random walks terminated at the node v. Use $\frac{f_v}{M}$ to estimate the PageRank value of v. Denote by π_v the PageRank value of v computed by the power iteration method. The difference between π and the PageRank vector approximated by the Monte Carlo method can be regarded as $\sum_v \left| \pi_v \frac{f_v}{M} \right|. \text{ Vary } M \text{ and report the values of } \sum_v \left| \pi_v \frac{f_v}{M} \right| \text{ when } M = 2n, \ 4n, \ 6n, \ 8n, \ 10n.$
- 3.2 (15 **points**) In the above Monte Carlo method, we only use the stopping node to approximate PageRank which is wasteful as all the non-stopping nodes in random walks are ignored. Let s_v be the number of times that v appears in the M random walk. Use $\frac{\alpha s_v}{M}$ to estimate the PageRank value of v. Report the values of $\sum_v \left| \frac{\alpha s_v}{M} \pi_v \right|$ when $M = 2n, \ 4n, \ 6n, \ 8n, \ 10n$.
- 3.3 (10 **points**) Show that $\frac{\alpha s_v}{M}$ is an unbiased estimation of π_v (the ground truth PageRank value of v), that is, $E\left[\frac{\alpha s_v}{M}\right]=\pi_v$.

3.0 Implement the power iteration method. Initialize the PageRank vector as $\pi^{(0)} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$ where n is the number of nodes. Let $\pi^{(t)}$ be the PageRank vector obtained after the t-th iteration and $\pi^{(t)}_v$ be the PageRank value of node v after the t-th iteration. The power iteration method can be regarded as applying the following updating rule for iterations.

$$\pi_v^{(t)} = (1-lpha)\left(\sum_{u \in N(v)} \pi_u^{(t-1)} imes rac{1}{d_u}
ight) + rac{lpha}{n}$$

Apply the power iterations and return $\pi=\pi^{(t)}$ as the PageRank vector if the t-th iteration is the first time that $\forall v, \ \left|\pi_v^{(t)}-\pi_v^{(t-1)}\right|\leq 10^{-9}$. π is regarded as the ground truth PageRank vector in the following questions.

iteration: 73

3.814575012893011e-09

iteration: 74

3.1457518718232364e-09

iteration: 75

2.5943392343618293e-09

iteration: 76

2.1404505567411334e-09

iteration: 77

1.7660575941852868e-09

iteration: 78

1.4577264963265498e-09

iteration: 79

1.203278289893443e-09

iteration: 80

9.93633356130934e-10

3.1 (25 **points**) Implement the Monte Carlo method. Simulate M random walks as follows. (1) Randomly pick a node as the starting point. (2) At each step, stop with probability α and with probability $1-\alpha$, jump to a random neighbor of the current node. Let f_v be the number of random walks terminated at the node v. Use $\frac{f_v}{M}$ to estimate the PageRank value of v. Denote by π_v the PageRank value of v computed by the power iteration method. The difference between π and the PageRank vector approximated by the Monte Carlo method can be regarded as $\sum_v \left| \pi_v - \frac{f_v}{M} \right|. \text{ Vary } M \text{ and report the values of } \sum_v \left| \pi_v - \frac{f_v}{M} \right| \text{ when } M = 2n, \ 4n, \ 6n, \ 8n, \ 10n.$

M	Result
2n	0.5421
4n	0.3826
6n	0.3112
8n	0.2702
10n	0.2415

3.2 (15 **points**) In the above Monte Carlo method, we only use the stopping node to approximate PageRank which is wasteful as all the non-stopping nodes in random walks are ignored. Let s_v be the number of times that v appears in the M random walk. Use $\frac{\alpha s_v}{M}$ to estimate the PageRank value of v. Report the values of $\sum_v \left| \frac{\alpha s_v}{M} - \pi_v \right|$ when $M = 2n, \ 4n, \ 6n, \ 8n, \ 10n$.

М	Result
2n	0.2617
4n	0.1847
6n	0.1513
8n	0.1305
10n	0.1164

3.3 (10 **points**) Show that $\frac{\alpha s_v}{M}$ is an unbiased estimation of π_v (the ground truth PageRank value of v), that is, $E\left[\frac{\alpha s_v}{M}\right]=\pi_v$.

Solution:

Denote $S = [s_1, s_2, ..., s_n]^T$ as the result in M random walks and S^1 the result in 1 random walk. We have:

$$E(S) = ME(S^1)$$

Let $a_v^{(i)} = \begin{cases} 1, & \text{if the } i^{th} \text{ node in the random walk is } v \\ 0, & \text{otherwise} \end{cases}$

$$S^{1} = \left[\sum_{i=1}^{\infty} a_{1}^{(i)}, \sum_{i=1}^{\infty} a_{2}^{(i)}, ..., \sum_{i=1}^{\infty} a_{n}^{(i)}\right]^{T}$$

$$= \left[a_{1}^{(1)}, a_{2}^{(1)}, ..., a_{n}^{(1)}\right]^{T} + \left[a_{1}^{(2)}, a_{2}^{(2)}, ..., a_{n}^{(2)}\right]^{T} + ...$$
(27)

Solution:

$$\begin{split} E(S^1) &= \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T + (\alpha - 1)P\left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T + (\alpha - 1)^2 P^2 \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T + ... \\ &= \left(I + (\alpha - 1)P + (\alpha - 1)^2 P^2 + ...\right) \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T \\ &= \left(I - (\alpha - 1)P\right)^{-1} \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T \\ &= \left(1 - \alpha\right) P\pi + \alpha \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T \\ &\implies \pi = \alpha (I - (1 - \alpha)P)^{-1} \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T \\ &\implies \pi = \alpha E(S^1) \\ &\implies \pi = E(\frac{\alpha S}{M}) \end{split}$$

(geometric sequence)