

3 TO 8 LINE DECODER LATCH

- HIGH SPEED:
 - t_{PD} = 16ns (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25$ °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 237

The M74HC237 is an high speed CMOS 3 TO 8 LINE DECODER fabricated with silicon gate C^2 MOS technology.

When \overline{GL} goes from low to high, the address present at the select inputs (A, B, C) is stored in the latches. As long as \overline{GL} remains high no address changes will be recognized. Output enable controls, G1 and $\overline{G2}$ control the state of the outputs independently of the select or

ORDER CODES

PACKAGE	TUBE	T&R			
DIP	M74HC237B1R				
SOP	M74HC237M1R	M74HC237RM13TR			
TSSOP		M74HC237TTR			

latch-enable inputs. All of the outputs are low unless G1 is high and G2 is low. The M74HC237 is ideally suited for the implementation of glitch-free decoders in stored-address applications in bus oriented systems.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 2, 3	A, B, C	Data Inputs
4	GL	Latch Enable Input
5	G2	Data Enable Input (Active LOW)
6	G1	Data Enable Input (Active HIGH)
15, 14, 13, 12, 11, 10, 9, 7	Y0 to Y7	Decoder Outputs
8	GND	Ground (0V)
16	V_{CC}	Positive Supply Voltage

TRUTH TABLE

		INP	UTS						OUT	PUTS			
	ENABLE SELECT				•				0011	7013			
GL	G2	G1	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Х	L	X	Х	Х	L	L	L	L	L	L	L	L
Х	Н	Х	Х	Х	Х	L	L	L	L	L	L	L	L
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L
L	L	Н	L	L	Н	L	Н	L	L	L	L	L	L
L	L	Н	L	Н	L	L	L	Н	L	L	L	L	L
L	L	Н	L	Н	Н	L	L	L	Н	L	L	L	L
L	L	Н	Н	L	L	L	L	L	L	Н	L	L	L
L	L	Н	Н	L	Н	L	L	L	L	L	Н	L	L
L	L	Н	Н	Н	L	L	L	L	L	L	L	Н	L
L	L	Н	Н	Н	Н	L	L	L	L	L	L	L	Н
Н	L	Н	Χ	Χ	Х	Outputs corresponding to stored address H: all others L							

X : Don't Care

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
V _I	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t _r , t _f		V _{CC} = 4.5V	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

DC SPECIFICATIONS

	Parameter	7	Test Condition	Value							
Symbol		v _{cc}		Т	A = 25°	C	-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	V _{IH} High Level Input Voltage	2.0		1.5			1.5		1.5		
		4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
	6.0				1.8		1.8		1.8		
011 0	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μА
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μА

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		1	est Condition				Value				
Symbol	Parameter	v _{cc}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0			30	75		95		110	
	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay	2.0			60	180		225		270	
	Time (A, B, C - Y)	4.5			19	36		45		54	ns
		6.0			16	31		38		46	
t _{PLH} t _{PHL}	Propagation Delay	2.0			45	140		175		210	
	Time (G1 - Y)	4.5			15	28		35		42	ns
		6.0			13	24		30		36	
t _{PLH} t _{PHL}	PHL Propagation Delay	2.0			45	140		175		210)
	Time (G2 - Y)	4.5			15	28		35		42	ns
		6.0			13	24		30		36	
t _{PLH} t _{PHL}	Propagation Delay	2.0			65	190		240		285	
	Time (GL - Y)	4.5			21	38		48		57	ns
		6.0			18	32		41		48	
$t_{W(L)}$	Minimum Pulse	2.0			10	75		95		110	
, ,	Width (GL)	4.5			6	15		19		22	ns
		6.0			6	13		16		19	
t _s	Minimum Set-up_	2.0			12	50		65		75	
	Time (A, B, C - GL)	4.5			3	10		13		15	ns
		6.0			2	9		11		13	
t _h	Minimum Hold	2.0				25		30		40	
	Time (A, B, C - GL)	4.5				5		6		8	ns
		6.0				5		5		7	

CAPACITIVE CHARACTERISTICS

		Test Condition		Value							
Symbol	Symbol Parameter	V _{CC}	V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			52						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load.

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

$\textbf{WAVEFORM 2: SETUP AND HOLD TIME, MINIMUM PULSE WIDTH ($\overline{\textbf{GL}}$)} (f=1 \text{MHz}; 50\% \text{ duty cycle})$

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
a1	0.51			0.020					
В	0.77		1.65	0.030		0.065			
b		0.5			0.020				
b1		0.25			0.010				
D			20			0.787			
E		8.5			0.335				
е		2.54			0.100				
e3		17.78			0.700				
F			7.1			0.280			
I			5.1			0.201			
L		3.3			0.130				
Z			1.27			0.050			

SO-16 MECHANICAL DATA

DIM		mm.			inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.				
Α			1.75			0.068				
a1	0.1		0.2	0.003		0.007				
a2			1.65			0.064				
b	0.35		0.46	0.013		0.018				
b1	0.19		0.25	0.007		0.010				
С		0.5			0.019					
c1			45°	(typ.)	•					
D	9.8		10	0.385		0.393				
Е	5.8		6.2	0.228		0.244				
е		1.27			0.050					
e3		8.89			0.350					
F	3.8		4.0	0.149		0.157				
G	4.6		5.3	0.181		0.208				
L	0.5		1.27	0.019		0.050				
М			0.62			0.024				
S			8° (max.)							

TSSOP16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.9	5	5.1	0.193	0.197	0.201		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

