Clayton Seitz

cwseitz@iu.edu cwseitz.github.io

RESEARCH INTERESTS

I combine deep learning with stochastic optical reconstruction microscopy to achieve precise localization microscopy in vitro. During my doctoral studies, I have developed a host of probabilistic image models to achieve reconstructions of nuclear protein complexes far below the diffraction limit. I apply these models to densely labeled nuclear proteins to achieve fast super-resolution in living cells. This involves a broad array of theoretical tools from statistical physics, information theory, and Bayesian statistics.

EDUCATION

Doctor of Philosopy, Physics

Purdue University, Indianapolis, IN, 2024

Thesis: Untitled

Master of Science, Biophysics

University of Chicago, Chicago, IL, 2021

Thesis: Stable cell assembly formation in excitatory-inhibitory neuronal networks

Bachelor of Science, Magna Cum Laude, Physics

Purdue University, Indianapolis, IN, 2019

Minor: Mathematics

Bachelor of Science, Magna Cum Laude, Informatics

Luddy School of Informatics, Computing, and Engineering, Indiana University Bloom-

ington, 2019

Concentration: Mathematics

SOFTWARE SKILLS

Python, PyTorch, C/C++, Git, LaTeX, Bash, Linux

EXPERIENCE

Research Assistant

2019-2021

Indiana University - Purdue University, Indianapolis, IN

- Develop an image processing software pipeline for high-throughput quantification of images in fluorescence microscopy
- Utilize high performance computing clusters for image segmentation, single particle tracking, and image registration

Undergraduate Research Assistant

2019-2020

Indiana University - Purdue University, Indianapolis, IN

- Utilize time-correlated single photon counting (TCSPC) to characterize the sub-Poissonian emission of organic quantum dots dispersed in a thin film of poly-methyl methacrylate (PMMA)
- Design and utilize a 3-color imaging protocol to perform single-molecule imaging of mRNA transcripts in human epithelial kidney and osteosarcoma cells

Undergraduate Tutor

2018-2019

Indiana University - Purdue University, Indianapolis, IN

 Tutored undergraduate students in introductory physics courses covering classical mechanics, classical electromagnetism, circuit analysis, and modern physics

AWARDS

NIH Graduate Training Fellowship University of Chicago, Chicago, IL

2020

Travel Award and Lightning Talk Invitation Physical Sciences in Oncology - Minneapolis, MN 2019

Hudson and Holland Scholarship for Diversity and Inclusion

2013-2017

Indiana University, Bloomington, IN

Founders Scholar

2013-2017

Indiana University, Bloomington, IN

Cigital Scholarship

2016-2017

Indiana University, Bloomington, IN

PUBLICATIONS Maelle Locatelli[†], Josh Lawrimore[†], Hua Lin[†], Sarvath Sanaullah, Clayton Seitz, Dave Segall, Paul Kefer, Salvador Moreno Naike, Benton Lietz, Rebecca Anderson, Julia Holmes, Chongli Yuan, George Holzwarth, Bloom Kerry, Jing Liu, Keith D Bonin, Pierre-Alexandre Vidi. DNA damage reduces heterogeneity and coherence of chromatin motions. PNAS. 2022

> Mengdi Zhang, Clayton Seitz, Garrick Chang, Fadil Iqbal, Hua Lin, and Jing Liu A guide for single-particle chromatin tracking in live cell nuclei. Cell Biology International. January 2022.

> Wenting Wu, Faroog Syed, Edward Simpson, Chih-Chun Lee, Jing Liu, Garrick Chang, Chuanpeng Dong, Clayton Seitz, Decio L. Eizirik, Raghavendra G. Mirmira, Yunlong Liu, Carmella Evans-Molina; Impact of Proinflammatory Cytokines on Alternative Splicing Patterns in Human Islets. Diabetes 1 January 2022; 71 (1): 116 - 127

> Clayton Seitz, Hua Lin, Keith Bonin, Pierre-Alexandre Vidi, and Jing Liu. Quantifying the spatiotemporal dynamics of dUTP labeled chromatin during the DNA damage response. Biophysical Society Annual Conference 2020

> Clayton Seitz, Hua Lin, Keith Bonin, Pierre-Alexandre Vidi, and Jing Liu. Quantifying the spatiotemporal dynamics of dUTP labeled chromatin during the DNA damage response. Physical Sciences in Oncology Annual Conference 2019

> Clayton Seitz, Andrew Reeser, Fangjia Li, and Jing Liu. Machine learning methods in image based transcriptomics at single molecule resolution. Biophysical Society Annual Conference 2019