

(c)  $y = x^3$  on  $\mathbb{R}$ (d)  $y = 1/x^3$  on (0,1](a) uniformly continuous, Because  $y = \chi^3$  is continuous on  $\mathbb{R}$  and [0,1] is closed and bounded. (b) uniformly continuous,

b) uniformly continuous, Let E>0 and fix it. Take  $\delta=\frac{E}{3}$ .

Let 
$$x,y \in (0,1)$$
 be arbitrary with  $|x-y| < \delta$   
Then  $|x^3-y^3| = |x-y| |x^2 + xy + y^2| < \frac{\epsilon}{3} \cdot 3 = \epsilon$   
(c) not uniformly continuous.

Take z = 1Let  $\delta > 0$  be arbitrary - Take  $x = \sqrt{\frac{\varepsilon}{\delta}}$   $(x+\frac{\delta}{3})^3 - x^3 = \frac{\delta}{3}[(x+\frac{\delta}{3})^2 + (x+\frac{\delta}{3})x + x^2] > \frac{\delta}{3} \cdot 3x^2$ So not uniformly continuous.  $= \delta x^2 = \varepsilon$ 

(d) not uniformly continuous.

Tale 
$$\varepsilon = 1$$
Let  $6>0$  be arbitrary, Take  $x=min(1-\frac{8}{3}, \sqrt{\frac{\varepsilon}{3}})$ .

Then  $|\xi_{\lambda}|^{2} - (\frac{1}{x+\frac{2}{3}})^{3}| = \frac{(7+\frac{2}{3})^{2} - x^{3}}{x^{3}(x+\frac{5}{3})^{3}}$ 
So for the same as (c),  $(x+\frac{5}{3})^{2} - x^{3} > \frac{1}{3} - 3x^{2} = \varepsilon$ 
So  $|\xi_{\lambda}|^{2} - (\frac{1}{x+\frac{1}{3}})^{2}| > \varepsilon$  and  $x^{3}(x+\frac{1}{3})^{3} \le 1$ 

(3) Prove that if there is a > 0 such that the continuous function  $f : [0, \infty) \to \mathbb{R}$  is uniformly continuous on  $[a, \infty)$ , then f is uniformly continuous.

Since [0, a] is close, f is uniformly continuous on [0, a] Let <u>270</u> Then there is some  $\delta_1 > 0$  st.  $|f(x) - f(y)| < \frac{\mathcal{E}}{\mathcal{I}}$  wherever  $|x-y| < \delta_1$  with  $x, y \in [0, \infty]$ and some \$2 >0 5.6. If w-fcy) < = whenever We take  $\delta = \min(\delta_1, \delta_2)$   $1x-y|<\delta_2$  with  $x,y \in [0,\infty)$ Now let x, y \( \int \text{Lo}, \( \infty \right) \) be arbitrony with  $|x-y| < \delta$ . There are three cases in total. Case 1 7, y ∈ [0, a]. Since 1x-y/<8, => |fox)-f(y) | < \frac{x}{2} < \xi Carez xiy & Ta, as). Since 1x-yl < 62 |foxtfy)|<\frac{\xi}{\xi}<\xi Case 3 One of x,y is in [0, a] and the other is in WLOG assume x Eto, a), y E(a, ao) [a, ao) Since 1x-y1<8 => 1x-a1=a-x < 8, 1y-a1=y-a<8 So f(x)-f(a) ( \frac{1}{2}, H(a)-f(y) ( \frac{2}{2}) = If(x)-f(y) < (f(x)-f(a)) +(f(a)-f(y)) < E Since |fix-fix)|< & in every case and & is arbitrary, we have proved f is uniterally continuous. [

Proof Suppose f is continuous and is uniformly continuous

on (a, ob) for some a >0

suppose that there is  $\epsilon > 0$  such that f is uniformly continuous on  $V_{\epsilon}(a) \cap A$ . (a) Prove that for any two sequences  $(a_n)$  and  $(b_n)$  in A that converge to a, we have  $\lim f(a_n) = \lim f(b_n).$ (b) Prove that there is a continuous function  $g: A \cup \{a\} \to \mathbb{R}$  such that  $g \upharpoonright A = f$ . (We describe this by saying that "f extends continuously to  $A \cup \{a\}$ .") hwsQ: ctn function f如果在某个 limit pt. a 处局和 uni.ctn 见 引从将 ctriby 延伸到 dom(f) U(a) by (g(a)=linf(a) (a) Proof Assume the hypothesis. 俊文这种行 Write limfan)=L Let 2270 be arbitrary. Since (an), (bn) -a, >NEN s.t.  $|a_n-a| \subset \varepsilon$  and  $|b_n-a| \subset \varepsilon$  whenever  $n \geqslant N_1$   $\implies G_n, b_n \in V_{\varepsilon}(G) \cap A$  whenever  $n \geqslant N_1$ Since f is uniformly continuous on VECOUNA,

(4) Let  $A \subseteq \mathbb{R}$ , let  $f: A \to \mathbb{R}$  be a continuous function, and suppose  $a \in A' \setminus A$ . Further

38-0 st. |f(bn) - f(an) | < = whenever |an-bn| < & Since linear)= Im (bn), aNz EN s.t. lan-bal<s whenever n=N2 = |fcbn-fcan| < \frac{\xi}{2} whenever n > Nz And since limfan = U, =N3 = IN s.t. |fan) - U | < == whenever n>N3 Take N=max {N1, N2, N3}

then If(bn)-f(an) < If(bn)-f(an) + If(an)-61 < == Ez Whenever N≥N Since Ez is arbitrary, it proves that limfan)=limflbn) (b) let  $g(x) = \begin{cases} f(x), & x \in A \\ \lim_{x \to a} f(x), & x = a \end{cases}$ Then gIA = f Now we show that g is continuous-Since a ∈ A' and dom(g) = AU{a} = a = (dom(g)) Also,  $\lim_{x \to a} g(x) = \lim_{x \to a} f(x) = g(a)$ , so g is continuous at a Since g is continuous at a and on A, g is continuous on dom(g), so g is continuous.

(5) Show that "a composition of uniformly continuous functions is uniformly continuous." That is, prove that if  $f:A\to\mathbb{R}$  and  $g:B\to\mathbb{R}$  are uniformly continuous, where  $\operatorname{ran}(f)\subseteq B$ , then  $g\circ f:A\to\mathbb{R}$  is uniformly continuous.

| hw53两个unictn. 设施的composition 据eunictn.的 |                                                                                                       |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                         | <b>♥</b>                                                                                              |
| nof                                     | let 270                                                                                               |
|                                         | Fix $\delta_1 > 0$ st. $ g(a) - g(b)  < \varepsilon$ whenever $ a - b  < \delta_1$ where $a, b \in B$ |
|                                         | Fix 8,20 st.  f(x)-f(y) <8, whenever  x-y <82                                                         |
|                                         | So for all xixeA with 1x-y1<82  f(x)-f(x) <81                                                         |
|                                         |                                                                                                       |

] |g(f(xx) - g(f(xx))| < \varepsilon | (x) | \leftarrow \varepsilon | \leftarrow \varepsilon | \leftarrow \varepsilon | \varepsilon \varepsilon | \v

6) Find the derivatives of the following functions using the definition of derivative: (a) y = 1/x (b)  $y = x^3$ 

(a) 
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h - x}{h}$$

$$\int f'(x) = \lim_{h \to 0} \frac{f(x(h))}{h} = \lim_{h \to 0} \frac{x_1 f h - x_2}{h}$$

$$\lim_{h \to 0} \frac{x_2 - (x_1 f h)}{h} = \lim_{h \to 0} \frac{-h}{h}$$

$$= \lim_{h \to 0} \frac{\pi - (x+h)}{\pi (x+h)} \cdot \frac{1}{h} = \lim_{h \to 0} \frac{-h}{\pi (x+h)} \cdot \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{-1}{\pi (x+h)} = -\frac{1}{x^2}$$

$$(b) f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x+h)^3 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{3\pi^2h + 3\pi h^2 + h^3}{h} = \lim_{h \to 0} (3\pi^2 + 3\pi h + h^3)$$

$$= 3\pi^{2} + 0 = 3\pi^{2}$$

$$= 3\pi^{2} + 0 = 3\pi^{2}$$

$$= 3\pi^{2} + 0 = 3\pi^{2}$$

(7) Define the function 
$$f: \mathbb{R} \to \mathbb{R}$$
 by  $f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}; \\ x^3 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$  Find all points where  $f$  is continuous and all points where  $f$  is differentiable. (No instifuction needed.)

continuous, and all points where 
$$f$$
 is differentiable. (No justification needed.)

f is continuous only at  $x=0$ 
and differentiable only at  $x=0$ 

- (8) Show that if  $|f(x) f(y)| \le (x y)^2$  for all  $x, y \in \mathbb{R}$ , then the function  $f : \mathbb{R} \to \mathbb{R}$  must be a constant function.

  PL Assume the hypothesis
  - Let  $y \in \mathbb{R}$  be arbitrary and fix it. Let  $x \in \mathbb{R}$  be arbitrary Consider the function  $g(x) = \frac{f(x) - f(y)}{x - v}$ 
    - Since  $|f(x)-f(y)| \leq (x-y)^2$  for all  $x \in \mathbb{R}$ ,  $|f(x)| \leq |f(x-y)| \text{ for all } x \in \mathbb{R}$
  - )  $0 \le |g(x)| \le |\pi y|$  for all  $x \in \mathbb{R}$ 
    - So  $|in|g(x)| \le |im|x-y| = D$  by Squeeze Thm, |implying| |im|g(x)| = D, |implying| |im|g(x)| = D,
      - Since y is arbitrary, it proves that f is a constant function.
- (9) Prove that if f and g are differentiable on  $\mathbb{R}$ , f(0) = g(0), and  $f'(x) \leq g'(x)$  for all  $x \in \mathbb{R}$ , then  $f(x) \leq g(x)$  for all  $x \geq 0$ .
  - hws  $\mathfrak{G}$  by  $f(\alpha) = g(\alpha)$ A  $f(x) \leq g'(x)$  for all  $x \geq a$ 
    - $f(x) \leq g(x)$  for all  $x \geq a$

Proof let 
$$h(x) = f(x) - g(x)$$
 for all  $x \in \mathbb{R}$   
 $S = h(x) = f(x) - g(x) \le 0$ 

So h is a decreasing function on IR Since h(0) = f(0) - g(0) = 0,

for any XER, we have  $h\infty \leq 0$ 

So  $f(x)-g(x) \le 0$ ,  $f(x) \le g(x)$  for all  $x \ge 0$ . In each part below, either prove that the given statement is true for all such functions f, or else give a counterexample (and show your counterexample works) if it could be false for *some* such function f.

- (a) If  $f:[a,b] \to \mathbb{R}$  is differentiable on [a,b], then f is bounded on [a,b].
- (b) If  $f:[a,b] \to \mathbb{R}$  is differentiable on [a,b], then f' is bounded on [a,b].
- (c) If  $f:(a,b)\to\mathbb{R}$  is differentiable and bounded on (a,b), then f' is bounded on (a,b).
- (d) If  $f:(a,b)\to\mathbb{R}$  is differentiable on (a,b) and f' is bounded on (a,b), then f is bounded on (a,b).

Pf Since f is differentiable on [a,b], it is continuous on [a,b] which is closed and bounded, by the extreme

value thm,  $\exists \%$ , yo  $\in [a,b]$  s.t.  $f(x) \leq f(y) \leq f(y)$  for all  $x \in [a,b]$ . So  $\sup(f[a,b]) = f(y)$ ,  $\inf(f[a,b]) = f(x)$ 

(b) False. Counterexample  $f(x) = \begin{cases} \pi^2 \sin \pi^2, \pi \neq 0 \\ 0, \pi = \end{cases}$ is differentiable on E-1,1] for x=0,  $f'(x)=\lim_{x\to 0}\frac{f(x)-f(0)}{x}=\lim_{x\to 0}\pi\sin(\frac{1}{x})$ for  $x \neq 0$ ,  $f(x) = 2x \sin(x^{\frac{1}{2}}) - \frac{2\cos(x^{\frac{1}{2}})}{x}$  which is unbounded since  $2 \times \sin(\pi i) \rightarrow 0$  as  $\pi \rightarrow 0$ .

but  $-\frac{2 \cos(\pi i)}{\pi}$  is unbounded as  $\pi \rightarrow 0$ . (for any M70, we can always find x70 s.t.  $2\cos(\frac{1}{4})$  is close to ) and  $\frac{2\cos(\frac{1}{4})}{x} > M$ (c) False. By the same counterexample in (b), while we restrict fix) on (4,1) (d) True. PF Assume the hypothesis, So |f(x)| < M for some Myo for all KE (C.b) Let G<m<n<br/>
So by EVT, JKEIM, NS.t. f(k)>fox for all BEIMA) let x∈(a,b) be arbitrary.

Since f is continuous and differentiable between of and D, 3c between x and k st. |f'(c) |= f(x)-f(k)

So  $f(x) - f(k) \leq M(x-k)$  $f(x) \leq M(x-k) + f(k)$ 

So MCa-K)+fck) < fcx) < MCb-k)+fck) for all x ∈ (ab) n

(a) if  $f'(x) \ge 0$  for all  $x \in (a, b)$ , then f is increasing on (a, b);

differentiable. In class, we stated the following facts:

(b) if f'(x) > 0 for all  $x \in (a, b)$ , then f is strictly increasing on (a, b);

For each of (a) and (b), either prove the converse implication or give a counterexample to show that it does not hold.

11) Let (a,b) be a nonempty open interval in  $\mathbb{R}$ , and suppose the function  $f:(a,b)\to\mathbb{R}$  is

 $f(x) > 0 \implies f strictly 1, (\pm )$ Universe: if f is increasing on (a,b)

then f'(x)>0 for all  $\pi \in (a,b)$ 

If Assume the hypothesis. Let x ∈ (a,b) be arbitrary So  $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 

Suppose for antradiction that f'(x) < v

Consider 
$$\mathcal{E} = -\frac{f(x)}{2}$$

Since  $\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} = f(x)$ ,  $\exists some $>0 st.$ 

$$\left|\frac{f(x+h)-f(x)}{h} - f(x)\right| < \mathcal{E} \text{ whenever}}{0 < h < 8}$$

$$\Rightarrow -\frac{3}{2}f(x) < \frac{f(x+h)-f(x)}{h} < \frac{-f(x)}{2} < 0$$

But since  $h > 0 \Rightarrow f(x+h) \neq f(x)$ 

$$\Rightarrow \frac{f(x+h)-f(x)}{h} > 0 \Rightarrow contradicts$$

So  $f(x) \geq 0$ 

Since  $\pi$  is arbitrary, the converse is proved.

(b) Converse: if  $f$  is shictly increasing on  $(a,b)$  then  $f'(x) > 0$  for all  $x \in (a,b)$ 

Counterexample  $f(x) = x^3$  is shidly increasing on  $(a,b)$  But  $f'(0) = 0$ 

(12) Let  $f: \mathbb{R} \to \mathbb{R}$  be a differentiable function. Prove that if  $\lim_{x \to \infty} f(x)$  and  $\lim_{x \to \infty} f'(x)$  both exist, then  $\lim_{x \to \infty} f'(x) = 0$ . \_ 如果 ling for) 和 ling for) 都存在则 定有 ling for) 和 Assume the hypothesis and suppose for contradiction that limf(x)=M + D Write  $\lim_{x\to\infty} f(x) = U$ let OCECM then FINEN s.t. Ifin-LICE And AMEN St. |fix)-MCE whereor x>N2 So fix E (M-E, M+E) for all x >N2 Take N = max {N1, N2}, SO L-E < f(N) < C+ED and fixo>M-E for all x>N Consider  $\pi = N + \frac{2E}{M-5}$ By MUT,  $a \in (M, x)$  st.  $f(c) = \frac{f(x)}{x}$ So f(π) - f(ν) > (m-ε)· (π-ν)  $= (M-\varepsilon) L_{M-\varepsilon}^{2\varepsilon} = 2\varepsilon$ = for > Lte @ OD contradicts, which completes the proof of

(13) Let  $f: \mathbb{R} \to \mathbb{R}$  be a function, let  $a \in \mathbb{R}$ , and suppose that f is differentiable at a. For each of the following statements, either prove the statement if it must be true, or else give a counterexample (and show your counterexample works) if it could be false. (a) If f'(a) > 0, then there is  $\delta > 0$  such that f(x) > f(a) for all  $x \in (a, a + \delta)$ . (b) If f'(a) > 0, then there is  $\delta > 0$  such that f is strictly increasing on  $(a, a + \delta)$ . (a) True 如果F在a处(diffb Proof Assume the hypothesis 且f(a)70,别立 Than lim fixt-fca) >0 (a, at NEML, f. Let  $\varepsilon = \frac{1}{2}f(\alpha)$ => = 6>0 st. |f(x)-f(a) | < E whenever TE(QIATS) So  $\frac{f(x)-f(c)}{x-a} > \frac{1}{2}f(a)$  whenever  $\pi \in (a/a+\delta)$ Since on (a, a+b), 7-a >0 -> for)-for>D i.e. fix) > f(a) wherever RE(G, a+S) (b) True Proof Use the same of as in a) let a < 1/2 < 2 < a+8 be arbitrary So  $\frac{f(\chi_2)-f(\chi_1)}{\chi_2-\chi_1}=f(c)$  for some  $c\in(\chi_1,\chi_2)$  by

By Cal, f'(L) > 0, so  $\frac{f(x_2 + f(x_1))}{x_2 - x_1} > 0$ Since  $x_2 > x_1 \implies f(x_2) - f(x_1) > 0$  so  $f(x_2) > f(x_1)$ Since  $x_1, x_2$  is arbitrary, x > y implies  $f(x_1) > f(y_1)$ on (a, a+b)This finishes the proof that f is strictly increasing on (a, a+b)

Optional Challenge Problems:

(14) Let  $(a_n)$  be an increasing sequence of real numbers, and let  $(b_n)$  be a decreasing sequence of real numbers such that  $a_m < b_n$  for all  $m, n \in \mathbb{N}$ . On the midterm exam you were asked to show that

$$\bigcap_{n\in\mathbb{N}} [a_n,b_n] \neq \emptyset.$$

Is it necessarily true that

$$\bigcap_{n\in\mathbb{N}}(a_n,b_n) \neq \emptyset?$$

Either prove that this is true or else give a counterexample.

(15) Does there exist an open set  $U \subseteq \mathbb{R}$  such that  $\mathbb{Q} \subseteq U$  and  $\mathbb{R} \setminus U$  is uncountable?