情報工学実験Ⅱ(電子回路)

電源回路とスイッチング回路 実験上の留意点

実験4.4ーブレッドボードの使い方

- ●V_{cc}とGNDをブレッドボードの縦の列に集約する.
- ●回路上のV_{cc}やGNDはこの部分に 接続する.
- ●回路上のV_{cc}やGNDに当たる部分を 相互に導線で接続しない.

実験4.4ー素子の取り扱い

◆トランジスタやLEDの取り扱い

- ●トランジスタやLEDのリード線を無理に曲げない.
- ●トランジスタやLEDの端子をデータシートで確認する.
 - →2SC1815の端子は外形から判断する. データシートの 図は素子を 下から見た図 になっている.
 - →LEDは外形またはリード線の長さで判断する.
 - →外形が真円になっていない場合がある.

◆抵抗の選定

- ●設計値と同じ値のものがあることは少ない.
- ●安全な方向(流れる電流が少なくなるように)で近い値の ものを用いる.
- ●実測により抵抗値を確認する.
 - →部品棚に正しい抵抗が入っているとは限らない.
 - →後の測定で測定した抵抗値を利用する.
 - →測定値は有効数字3桁で求める.

実験4.4ー回路の作製手順(1)

(1)電源部の実装

- ●回路図は実験テキスト図4のとおりとする.
- ●変圧器の出力端子は8 Vとする.
- ●平滑回路に使用するコンデンサについては、前回の実験の結果から決定する.
- ●平滑回路(三端子レギュレータの入力)はブレッドボード上に実装する.
- ●電解コンデンサの極性を確認する.→誤った場合には、破裂のおそれがある.
- ●三端子レギュレータから得られた出力をブレッドボード上に 設定したV_{cc}ーGND間に供給する.
- ●オシロスコープでV_{cc}の波形を観測し、波形と電圧値を確認する.
 - →直流5 Vになっているか.

実験4.4ー回路の作製手順(2)

(2)LED単体の動作確認

- ●20個のLEDそれぞれについて, 点灯の可否, 点灯色を 確認する.
- ●確認用の回路は下図のとおりとする.
- ●電源には <u>直流5Vの出力が確認された</u> 電源回路を用いる.

実験4.4ー回路の作製手順(3)

(3)LED点灯回路の実装

- ●1群ずつ実装し、その都度、接続と動作を確認する.
- ●V_{cc}ーGND間が短絡していないかテスタで確認する.
 - →この短絡は最も大きな電流が流れ、大きな事故に つながるおそれがある.
- ●保護抵抗が適切に接続されていることを確認する.
 - →これを誤ると、LEDに過電流が流れ、破損のおそれがある。
- ●動作を確認する.
 - \rightarrow スイッチング回路の入力(ベース抵抗)を V_{cc} に接続すればLEDが点灯する.
 - →実際に入力される電圧より少し高いが,過電流になるほどではない.

実験4.4ー回路の作製手順(4)

(4)H8タイニーI/Oボードへの電源の供給

- ●ブレッドボード上のV_{cc}およびGNDと 接続する.
- ●太めの線のICテストクリップを用いる.
- ●マイコンボードのCN4(電源スイッチの 隣にある2ピンのピンヘッダ)に接続する.
 - →極性をよく確認する.
 - →IN(9V)と標記されているが, ここには5 Vを供給する.
 - →過電圧または逆電圧の供給はマイ コンボードを破損するおそれが ある.

実験4.4ー回路の作製手順(5)

(5)マイコンのI/Oポートとスイッチング回路の接続

- ●細めの線のICテストクリップを用いる.
- ●I/Oポートは実験テキスト図5の

A (P50) : CN1-14

B (P51) : CN1-15

C (P52) : CN1-16

D (P53) : CN1-17

を用いる.

(6)H8タイニーI/OボードとPCの接続

- ●シリアルポートを用いて通信をさせる.
- ●ターミナルエミュレータTeraTermを用いる.

マイコン上のプログラムの機能一概要

◆機能の概要

- ●I/Oポートを出力端子とするシフトレジスタ動作をする.
- ●シフトのクロックはタイマ割り込みによる自動クロックと テンキー入力による手動クロックの2種類を利用できる.
- ●出力ポートは最大で8ポートまで利用できる.
- ●テンキー入力により以下の制御ができる.
 - →シフト方向の切り替え
 - →初期状態の変更
 - →クロック周期の変更(自動クロック時)
 - →方向別のクロック入力(手動クロック時)
 - →出力ポート数の変更

◆起動時の動作

- ●T=1.0[s]の自動クロックによる右シフト動作
- ●出力ポート数:4
- ●1ポートのみ"H", 他のポートは"L"

マイコン上のプログラムの機能ーキー操作

◆自動クロック時

●4: 左シフトに切り替える

●6:右シフトに切り替える

●8:クロック周期短縮

●2:クロック周期延長

◆手動クロック時

●4:左に1回シフトさせる

●6:右に1回シフトさせる

◆共通

●5:自動/手動クロックの切り替えをする

●9: 出力ポート数と初期状態の変更

●0:初期状態に戻す

実験4.5一測定方法

電流は電流計を用いて測定せず,測定したい電流が流れる抵抗の 両端の電圧から計算する.

→電流計の内部抵抗の影響を避けるため

(1)ベース電流 I_B

- ●ベース抵抗に加わる電圧 V_Bを測定し、それより計算する.
 →抵抗値は回路の作製の際に測定している.
- (2)コレクタ電流 Ic
 - ●並列に接続された各枝路の電流 I_{c1}, I_{c2}, …の和で求める.
 - ●並列に接続された各枝路の電流は I_{c1} , I_{c2} , …は,各枝路に接続された保護抵抗に加わる電圧 V_{c1} , V_{c2} , …を測定し,それより計算する.
 - →抵抗値は回路の作製の際に測定している.
- (3)直列に接続されたLEDの順電圧の総和 V_{F(all)}
 - ●並列に接続された各枝路ごとに測定する.