TCP/IP in hardware using SME

Mark Jan Jacobi & Jan Meznik

KU

September 19, 2019

Mark siger introduktion og 2-3 saetninger "abstrakt"

Table of Contents

- Introduction
- 2 Implementation
- 3 Evaluation
- 4 Discussion and Conclusion

- 5 Future Work
- Questions
- Demonstration

Table of Contents

- Introduction
- 2 Implementation
- 3 Evaluation
- 4 Discussion and Conclusion

- 5 Future Work
- 6 Questions
- Demonstration

FPGAs are making their way into data centers to boost the computing power and the overall power efficiency.

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

September 19, 2019

4/42

Background and Motivation

Fight was realing the way the date control to best the computing pour all the conditions and motivation

Background and Motivation

Applikationer og Big-Data udregninger flytter til Cloud, drevet af store data centre.

data-centre kraever meget plads, store maengder af stroem og er svaere at vedligeholde og udvide.

DC optimerer servere for at få mest værdi muligt

Tendens til aflaste beregninger til FPGAer, fjerne overhead

FPGA er hardware kan udføre beregninger hurtigt pga. dens parallele programmerbare natur. Den er hurtigt fordi instruktioner skrives direkte ned i hardwaren

— GRAF HER —

PROBLEMET er at der kun kan vaere en begreanset antal af FPGAer i

A conventional data center architecture

Proposed disaggregated data center architecture (Weerasinghe et al. [2016])

Hvis man splitter resourcerne op, kan man takket været FPGA få bedre ydeevne på det samme areal, samt nemmere håndtering af servere og deres komponenter.

FPGA usage

The Internet

Figure: Map of about 30% of the accessible the endpoints on the Internet

The Internet Protocol Suite (TCP/IP)

TCP/IP er samling af standarder og protokoller

Link: Overførsel på det fysiske medium

Internet: bestemmer data-veje, addressering, fejl-kontrol

Transport: pålidelighed, forbindelser, kontrol flow Application: Defineret af selve applikationen

Design with the 4 layers in mind

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

September 19, 2019 10 / 42

TCP/IP in hardware using SME Introduction

Background and Motivation

Table of Contents

- Introduction
- 2 Implementation
 - SME introduction
 - Processes
 - Buffers
 - Interface signal protocol
- 3 Evaluation
- 4 Discussion and Conclusion

- 5 Future Work
- Questions
- Demonstration

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

TCP/IP in hardware using SME

Implementation

Table of Contents

SME introduction

SME(Synchronous Message Exchange) introduction

- Processes and Busses
- Higher abstraction
- Handling of clocks
- Easy testing
- Not fully feature complete with C#(No threads, no allocation)

Mark Jan Jacobi & Jan Meznik (KU)	TCP/IP in hardware using SME	September 19, 2019 12 / 42
TCP/IP in hardware using SME		Implementation SME introduction
Implementation Implementation		SME[Synchronous Message Eschange) introduction • Processes and Blasse • Right instruction • Early through • Early Vestig • Not fully feature complete with Cpi(No through, no allocation)

- What is a bus and a process
- No VHDL code
- Clocks abstracted away behind the management of processes and busses
- Testing straight in the simulator, but also in afterwards in the GHDL compiler, via an clock lookup table
- Since not feature complete, only simple structures can be used. We choose state diagrams since they are possible to make, and easy to understand

Processes

State machines

```
public class SomeProcess :

→ StateProcess

2
3
       private override async
         Task OnTickAsync()
         a();
5
6
         await ClockAsync();
7
         b();
8
         await ClockAsync();
9
         c();
10
         await ClockAsync();
11
    }
12
```

```
1
     public class SomeProcess :
        SimpleProcess
 2
 3
     // Initial state
 4
     state = A;
    protected override void
    \hookrightarrow OnTick()
 7
 8
       switch(state) {
 9
         case A:
10
           a();
11
            state = B;
          case B:
12
13
            b();
14
            state = C:
          case C:
15
16
            c();
17
            state = A;
18
19
     }
```


Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

September 19, 2019

13 / 42

TCP/IP in hardware using SME

—Implementation

State machines

- StateProcess
 Eksekvering kan stoppes når som helst(i bidder)
- SimpleProcess
 Run er en clock altid, state machine håndteres med en switchcase.
 Algoritme kan splittes op i flere bidder, men kræver en state per bid

Processes

Examples

Internet in process state machine

Transport process state machine

- Gå igennem state diagrammer
- Snak om grundlaget for de forskellige typer brug

Buffers

Why buffers?

- Fixes segmentation
- Processes can get data at their leisure

Hvorfor bruer vi buffers?

Buffers

Memory segments

Traces | State of the state of

Mark Jan Jacobi & Jan Meznik (KU)	TCP/IP in hardware using SME	September 19, 2019 16 / 42
TCP/IP in hardware using SME		Implementation turner
On the in hardware using Sivil		Memory segments
61-60-6102 — Implementation		Separat Louisy Table 1

- Reason behind?
 - Segment handling
 - References to other segment to concatting of segments later

Buffers

Memory dictionary

Snak om input

Buffers

Memory dictionary

Insert element 8: Key 5 have 3 elements:

[4, 8, 18]

at index:

[2, 6, 7]

Snak om input

Buffers

Memory dictionary

Snak om input

Buffers

Some problems with the memory dictionaries!

Number of iterations

Transition of the state of the

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

TCP/IP in hardware using SME

Implementation

Implementation

September 19, 2019 18 / 4 Implementation tolers yields with the memory dictiournal Some yields with the memory dictiournal states.

Overflow!

- Kør løkken en gang per clock
- Brug en anden model end en linked list, måske et fast offset?

Buffers

Some problems with the memory dictionaries!

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

TCP/IP in hardware using SME

Implementation

Implementation

Implementation

Number of iterations

Overflow!

- Kør løkken en gang per clock
- Brug en anden model end en linked list, måske et fast offset?

Buffers

Some problems with the memory dictionaries!

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

TCP/IP in hardware using SME

Implementation

Implementation

Overflow!

- Kør løkken en gang per clock
- Brug en anden model end en linked list, måske et fast offset?

Buffers

Some problems with the memory dictionaries!

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

Implementation

Implementation

September 19, 2019 18 / 42
Implementation
Some prolifem with the neutral distinction

Some prolifem with the neutral distinction

Some prolifem in the neutral distinction in the neutr

Overflow!

- Kør løkken en gang per clock
- Brug en anden model end en linked list, måske et fast offset?

Buffers

Some problems with the memory dictionaries!

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

September 19, 2019

18 / 42

TCP/IP in hardware using SME Implementation

Implementation

Overflow!

- Kør løkken en gang per clock
- Brug en anden model end en linked list, måske et fast offset?

Buffers

Some problems with the memory dictionaries!

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

September 19, 2019

10 / 40

TCP/IP in hardware using SME Limplementation

Implementation

Overflow!

- Kør løkken en gang per clock
- Brug en anden model end en linked list, måske et fast offset?

Interface signal protocol

Identifying the scenarios

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

September 19, 2019

19 / 42

TCP/IP in hardware using SME Implementation

mpiementation

Implementation

Management of the control of the con

Data skal overføres hurtigst muligt, og det må ikke gå tabt

2 scenarier: fra "compute" til buffer, og omvendt

- CP kan ikke vente
- BP har stor buffer, og consumer starter transaktion

Interface signal protocol

Interface signal protocol

Buffer-Producer: Inspired by AXI4

Mark Jan Jacobi & Jan Meznik (KU)	TCP/IP in hardware using SME	September 19, 2019 21 / 42
TCP/IP in hardware using SME		Implementation Interface signal protocol
61-60 Implementation		Buller-Producer: Inspired by AXX4
Implementat	ion	Gds scharge

Interface signal protocol

Streaming consecutive bytes can be a challenge!

Interface signal protocol

Buffer-Producer (BP) Producer Consumer

Table of Contents

- Introduction
- 2 Implementation
- Evaluation
 - Setup
 - Test
 - Validation
- 4 Discussion and Conclusion

- 5 Future Work
- 6 Questions
- Demonstration

Graph file simulation

- Full input output
- Does not take latency between packets into account
- Simplifies test cases

Definer send og receive bedre

Hop til illustrationen på næste slide nå du snakker om det!

Evaluation

-Evaluation

Setup

Senario

- Real life scenario
- Test at high workloads
- Remove garbage
- Respond to packet
- Differ between concurrent connections

Fortæl kun om hvad vi vil have, ikke hvad vi har lavet af test

Evaluation Test

The test

- 17283 packets in total
- Two "sessions"
- 640*2 UDP packets that needs a response
- 640 well formed UDP packets with no session (discard)
- Rest of data is "background noise" (TCP packets with state, data, etc)
- Total data sent through: 1832958 bytes
- 1.83 Million clocks used

Evaluation

Validation

Latency calculations:

n_D: The number of bytes in the data part of the protocol. This excludes both headers from transport and internet.

 $n_{\rm I}$: The internet header size.

 $n_{\rm T}$: The transport header size.

n: The total packet size.

From packet to user

$$6+n_{\mathtt{I}}+2n_{\mathtt{T}}+3n_{\mathtt{D}}$$

From user to packet

$$8 + 2n_{\rm I} + 3n_{\rm T} + 4n_{\rm D}$$

Mark Jan Jacobi & Jan Meznik (KU)

September 19, 2019

30 / 42

TCP/IP in hardware using SME

—Evaluation

valuation series are considered by the size of the si

Bufferen kan ikke videresende data dirrekte, da den skal gemme segmentet først

Evaluation

Validation

Outgoing packet validation:

Protocol ikke sat korrekt, destination ip ikke sat korrekt

- Introduction
- 2 Implementation
- 3 Evaluation
- 4 Discussion and Conclusion

- 5 Future Work
- 6 Questions
- Demonstration

Discussion

Estimated performance:

Improving the performance:

$$1~\text{Byte}*10~\text{MHz}=80~\text{Mbps}$$

Mark Jan Jacobi & Jan Meznik (KU)	TCP/IP in hardware using SME		September 19, 2019	33 / 42
T.CD /ID : 1			Discussion	
TCP/IP in hardware u	ising SME		Estimated performance: Improving the	he performance:
Discussion and Co	1		1 Byte + 10 MHz = 80 Mbps	se performance:
	ciusion			
60				
Discussion				
☐ □Discussion				
0				

Discussion

Estimated performance:

1~Byte*10~MHz=80~Mbps

Improving the performance:

Discussion

Estimated performance:

 $1~\mathrm{Byte}*10~\mathrm{MHz}=80~\mathrm{Mbps}$

Improving the performance:

Mark Jan Jacobi & Jan Meznik (KU)	TCP/IP in hardware using SME	September 19, 2	019 33 / 42
T60 /10	. 0.45	Discussion	
TCP/IP in hardware u	Estimated performance:		
Discussion and Cor		1 Byte + 10 MHz = 80 Mbps	Improving the performance:
□ Discussion and Co	nclusion	1 Byte + 10 MHz = 20 Mups	
— Discussion and Col			drawne in
6 -			LAM Merchan
☐ Discussion			
×			ind O'Febr

Conclusion

Conclusion

- Many design alterations, layered design worked best
- All 17283 ingoing packets parsed correctly
- Few easily fixable errors in outgoing packets
- SME was great for implementation, albeit with a few small errors and bugs

Design: Distribueret hukommelse er effektiv og giver funktionalitet

SME: C# nemt og hurtigt Simulationen gjorde udviklingen hurtigere Manglende features (structs), manglende library

- Introduction
- 2 Implementation
- 3 Evaluation
- 4 Discussion and Conclusion

- 5 Future Work
 - Firewall
 - TCP
- 6 Questions
- Demonstration

Mark Jan Jacobi & Jan Meznik (KU)

TCP/IP in hardware using SME

TCP/IP in hardware using SME

Future Work

Table of Contents

Table of Contents

Future Work

Firewall

Integration med buffere. Hvad ville det indebære

Future Work

Implementing TCP

- Introduction
- 2 Implementation
- 3 Evaluation
- 4 Discussion and Conclusion

- 5 Future Work
- 6 Questions
- Demonstration

Bibliography

[1] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf. Disaggregated fpgas: Network performance comparison against bare-metal servers, virtual machines and linux containers. In 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pages 9–17, Dec 2016. doi: 10.1109/CloudCom.2016.0018.

- Introduction
- 2 Implementation
- 3 Evaluation
- 4 Discussion and Conclusion

- 5 Future Work
- 6 Questions
- Demonstration

Demonstration

Mark Jan Jacobi & Jan Meznik (KU)	TCP/IP in hardware using SME	September 19, 2019 41 / 42
	TCP/IP in hardware using SME	
Demonstration		
60-6	on	Demonstration
Demonstration		

