

Projet numérique: Effet Ramsauer– Townsend

Physique moderne Pré ing 2 MI-03 groupe 3E ABDELAZIZ Boumiz JORON Noémie VETTORETTO Lucie SAIDI Narymen

SOMMAIRE

- Résolution analytique pour les états stationnaires
- Comparaison et étude des prédictions graphiques avec celles des états stationnaires
- Comparaison et étude pour les paquets d'ondes

Équation de Schrödinger stationnaire

$$-\hbar^2 / (2m) * d^2\psi(x)/dx^2 + V(x)\psi(x) = E\psi(x)$$

$$\Rightarrow d^2\psi(x)/dx^2 + (2m/\hbar^2)(E - V(x))\psi(x) = 0$$

$$k_1 = \sqrt{2mE} / \hbar$$

$$k_2 = \sqrt{(2m(E + V_0))} / \hbar$$

Région I: x < a/2, V(x) = 0

Équation: $d^2\psi_1(x)/dx^2 + k_1^2\psi_1(x) = 0$

Solution: $\psi_1(x) = A_1 e^{ik_1x} + B_1 e^{-ik_1x}$

Région II : a/2 < x < a/2, $V(x) = -V_0$

Équation: $d^2\psi_2(x)/dx^2 + k_2^2\psi_2(x) = 0$

Solution: $\psi_2(x) = A_2 e^{ik_2x} + B_2 e^{-ik_2x}$

Région III : x > a/2, V(x) = 0

Solution: $\psi_3(x) = A_3 e^{ik_1x}$

On pose x = a/2

On pose x = -a/2

A exp(-i k_1 a/2)+ B exp(i k_1 a/2)= C exp(-i k_2 a/2)+ D exp(i k_2 a/2) k_1 (A exp(-i k_1 a/2) - D exp(i k_1 a/2))= k_2 (C exp(-i k_2 a/2) - D exp(i k_2 a/2))

Par résolution de système on trouvera:

$$C = F \exp(-i (k_1 - k_2) a/2)(1 + k_1)$$

2 k_2

A = F exp(i k_2 a) [exp(-i k_2 a)(2 +
$$\frac{k_2}{k_1}$$
 + $\frac{k_1}{k_2}$ + exp(i k_2 a)(2 - $\frac{k_2}{k_1}$ - $\frac{k_1}{k_2}$

D = F exp(i (k_2 k_1)+ a/2)(1 -
$$\frac{k_1}{k_2}$$

B = F exp(i k_2 a) [exp(-i k_2 a)(2 -
$$\frac{k_2}{k_1}$$
 + exp(i k_2 a)(2 - $\frac{k_2}{k_1}$ + $\frac{k_1}{k_2}$ + exp(i k_2 a)(2 - $\frac{k_2}{k_1}$ + $\frac{k_1}{k_2}$

Coefficient de transmission et de réflexion

$$T = |F|^{2} = 4$$

$$|A|^{2} \quad 4 \cos^{2}(k_{2}a) + (k_{2}^{2} - k_{1}^{2}) * \sin^{2}(k_{2}a)$$

$$(k_{1} k_{2})^{2}$$

$$R = |B|^{2} = \frac{((k_{2}^{2} - k_{1}^{2})^{2} * \sin^{2}(k_{2} a)}{(k_{1} k_{2})^{2}}$$

$$4 \cos^{2}(k_{2} a) + \frac{((k_{2}^{2} - k_{1}^{2})^{2} * \sin^{2}(k_{2} a)}{(k_{1} k_{2})^{2}}$$

Etude des états stationnaires

Etude du paquet d'onde