15.Cell Transmission Model

2020112921 刘欣豪

Consider a link with three cells. Suppose that time is divided into 1 second intervals.

- At most 10 vehicles can move from one cell to the next cell in one time step, i.e., $q_{max}\Delta t = 10$.
- ▶ The maximum number of vehicles that can fit a cell $N_i = 30$.
- $w/v_f = 2/3$
- ▶ The demand for vehicles trying to enter the link is known d(t).

Now also assume that at the downstream end, a traffic light is red from t=0 to t=9 and will turn green forever at t=10. Use the spreadsheet provided to calculate cell occupancies over time.

设置 demand by a cell pair,

A source cell numbered 00 with an infinite number of vehicles $(n_{00}(0) = \infty)$ that discharges into an empty gate cell 0 of infinite size, $N_0(t) = \infty$. The inflow capacity $Q_0(t)$ of the gate cell is set equal to the desired link input flow for next time interval t + 1.

则如图1:

图 1: 0-22s 仿真结果

附件 1: 40s 仿真完整表格

time	n00	n0	n1	n2	n3	nout
(9999	0	0	0	0	0
1	9999	10	0	0	0	0
2	9999	10	10	0	0	0
3	9999	10	10	10	0	0
4	9999	10	10	10	10	0
5	9999	10	10	10	20	0
6	9999	10	10	13. 33333	26. 66667	0
7	9999	10	10	21. 11111	28. 88889	0
8	9999	10	14. 07407	26. 2963	29. 62963	0
S	9999	10	21.60494	28. 51852	29.87654	0
10	9999	14. 40329	26. 21399	29. 42387	19. 95885	10
11	9999	21.87929	28. 35391	23. 11385	16. 65295	20
12	9999	26. 1957	24. 86054	18.80658	15. 55098	30
13	9999	25. 30559	20.82457	16. 63618	15. 18366	40
14	9999	22. 31824	18. 03231	15. 66784	15. 06122	50
15	9999	19. 46096	16. 45599	15. 26343	15. 02041	60
16	9999	17. 45765	15. 66095	15. 10141	15. 0068	70
17	9999	16. 25985				80
18	9999	15. 6119	15. 12153	15. 01429	15. 00076	90
19		15. 28499		15. 00527		100
20		15. 12836		15. 00192		110
21		15. 05625			15. 00003	120
22		15. 02409		15. 00025		130
23		15. 01012		15. 00009	15	140
24		15. 00418		15. 00003	15	150
25		15. 0017		15. 00001	15	160
26		15. 00069		15	15	170
27		15. 00027		15	15	180
28		15. 00011		15	15	190
29		15.00004	15	15		200
30		15. 00002	15	15	15	210
31		15.00001	15	15	15	220
32		15	15	15	15	230
33		15	15	15	15	240
34		15	15	15	15	250
35		15	15	15	15	260
36		15	15	15	15	270
37		15	15	15	15	280
38		15	15	15	15	290
39		15	15	15	15	300
40	9999	15	15	15	15	310

附件 2: 代码

```
1. import pandas as pd
2.
3. table = pd.read_excel('demand.xlsx')
4. table.head()
6. Q = 10
7. N = 30
8. table['n00'] = 9999
9. table.iloc[0,2:7]=0
10. table.head()
12. for i in range(len(table)):
       # 当 0s 时已初始化完毕
13.
       if i==0:
14.
15.
           continue
16.
       for j in range(2,6,1):
17.
18.
           q1 = min(10,table.iloc[i-1,j-1],2/3*(N-table.iloc[i-1,j])) #q1 为流入,q2
   为流出
           if i<=9 and j==5: #此为红灯状态
19.
20.
               q2 = 0
           elif j==5: #红灯结束但为最后一个 cell
21.
22.
               q2 = min(10,table.iloc[i-1,j])
23.
           else: #红灯结束其它 cell
24.
               q2 = min(10,table.iloc[i-1,j],2/3*(N-table.iloc[i-1,j+1]))
25.
           table.iloc[i,j] = table.iloc[i-1,j]+q1-q2
26.
       # 统计流出量
27.
       table.iloc[i,6] = table.iloc[i-1,6]+q2
28. table.to_excel('output.xlsx',index=False)
```