State sequences of reaction systems

Antonio E. Porreca

Aix-Marseille Université & Laboratoire d'Informatique et Systèmes Lttps://aeporreca.org

Note: in this lecture we discuss the context-independent behaviour of RS unless otherwise specified

Power set functions

$$f: 2^S \rightarrow 2^S$$

power set function

$$f(\varnothing) = f(S) = \varnothing$$
 boundary condition

Computing (or implementing) power set functions by RS

Theorem

 $f = \operatorname{res}_{\mathcal{A}}$ for some \mathcal{A}

f is a boundary power set function

Proof idea

Computing power set functions by RS with restricted resources

$$(R, \{y\}, P)$$
 inhibitor-minimal (only 1 inhibitor)

$$(\{x\}, \{y\}, P)$$
 resource-minimal (only 1 reactant and 1 inhibitor)

How does minimality restrict the class of functions computed (or implemented) by RS?

Subadditive functions

$$f(X \cap Y) \subseteq f(X) \cup f(Y)$$

intersection-subadditive

Examples

$$(\{a,b\},\{c,d\},\{a,b\})$$

Not union-subadditive

$$\operatorname{res}_{\mathcal{A}}(\{a\} \cup \{b\}) = \operatorname{res}_{\mathcal{A}}(\{a,b\}) = \{a,b\}$$

$$\uparrow \hookrightarrow \operatorname{res}_{\mathcal{A}}(\{a\}) \cup \operatorname{res}_{\mathcal{A}}(\{b\}) = \varnothing$$

Examples

$$(\{a,b\},\{c,d\},\{a,b\})$$

Not intersection-subadditive

$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\} \cap \{a, b, d\}) = \operatorname{res}_{\mathcal{A}}(\{a, b\}) = \{a, b\}$$

$$\operatorname{res}_{\mathcal{A}}(\{a, b, c\}) \cup \operatorname{res}_{\mathcal{A}}(\{a, b, d\}) = \emptyset$$

f is union-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some reactant-minimal \mathcal{A}

f is intersection-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some inhibitor-minimal \mathcal{A}

Theorem

f is union- and intersection-subadditive

 $f = \operatorname{res}_{\mathcal{A}}$ for some resource-minimal \mathcal{A}

Dynamics of RS:

state sequences

Dynamics

Dynamics

Dynamics

An example of interesting dynamics: implementing binary counters

Implementing binary counters

Incrementing binary counters

Reactions for incrementing binary counters

Binary counters \rightarrow long paths

Binary counters \rightarrow long cycles

General computable dynamics: simulating Turing machines

Turing machines (with bounded tape)

$$egin{array}{lll} q&a&
ightarrow&q&b&
ho\ q&b&
ightarrow&r&a&
ho\ r&a&
ightarrow&q&a&
ho\ r&b&
ightarrow&r&a&
ho \end{array}$$

Turing machines (with bounded tape)

Encoding as reaction system

Encoding as reaction system

Encoding as reaction system

Preserving the tape

$$(\{a_1\}, \{q_1, r_1\}, \{a_1\}) \qquad (\{b_1\}, \{q_1, r_1\}, \{b_1\})$$

$$(\{a_2\}, \{q_2, r_2\}, \{a_2\}) \qquad (\{b_2\}, \{q_2, r_2\}, \{b_2\})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$(\{a_7\}, \{q_7, r_7\}, \{a_7\}) \qquad (\{b_7\}, \{q_7, r_7\}, \{b_7\})$$

Computation step

res_A
$$\{a_1, b_2, b_3, a_4, a_5, a_6, b_7, q_3\}$$

 $\{a_1, b_2, a_3, a_4, a_5, a_6, b_7, q_4\}$

Dynamics of the same complexity

High-level dynamics of resource-minimal RS

Simulating power of minimal RS

It turns out that resource-minimal RS are powerful enough to simulate arbitrary RS, if we allow a less strict notion of simulation

Theorem

For each reaction system A there exists a resource-minimal B such that, for each state T and time n,

$$\operatorname{res}_{\mathcal{B}}^{2n}(T) = \operatorname{res}_{\mathcal{A}}^{n}(T)$$

Theorem

For each reaction system A there exists a resource-minimal B such that, for each state T and time n,

state
$$T$$
 and time n ,
$$\operatorname{res}_{\mathcal{B}}^{2n}(T) = \operatorname{res}_{\mathcal{A}}^{n}(T)$$

Theorem

For each reaction system A there exists a resource-minimal B such that, for each state T and time n,

state
$$T$$
 and time n ,
$$\operatorname{res}_{\mathcal{B}}^{2n}(T) = \operatorname{res}_{\mathcal{A}}^{n}(T)$$

$$\mathcal{A}$$
 $T_1 \longrightarrow T_2 \longrightarrow T_3 \longrightarrow T_4 \longrightarrow$

$$\mathcal{B} \qquad T_1 \longrightarrow T_2 \longrightarrow T_3 \longrightarrow T_4 \longrightarrow$$

Proof idea

$$a = (\{x, y\}, \{z\}, \{w\})$$
 $b = (\{v\}, \{z, w\}, \{z\})$

$$\{x,y\} \qquad \{v\} \qquad \{x,z\} \qquad \{x,y,v\}$$

$$\{\bar{b},\heartsuit\} \qquad \{\bar{a},\bar{b},\heartsuit\} \qquad \{\heartsuit\}$$

$$\{w\} \qquad \{z\} \qquad \varnothing \qquad \{w,z\}$$

Proof idea: given $a = (R_a, I_a, P_a)$

Reactant missing?

$$(\{x\}, \{y\}, \{\bar{a}\})$$

for
$$y \in R_a$$
, $x \in S - \{y\}$

Any inhibitor?

$$(\{x\}, \{\heartsuit\}, \{\bar{a}\})$$

for
$$x \in I_a$$

If not disabled, produce P_a

$$(\{\heartsuit\}, \{\bar{a}\}, P_a)$$

Make ♥ every other step

$$(\{x\}, \{\heartsuit\}, \{\heartsuit\})$$
 for $x \in S$

for
$$x \in S$$

Proof idea: given $a = (R_a, I_a, P_a)$

Reactant missing?

$$(\lbrace x \rbrace, \lbrace y \rbrace, \lbrace \bar{a} \rbrace)$$

for
$$y \in R_a$$
, $x \in S - \{y\}$

Any inhibitor?

$$(\{x\}, \{\heartsuit\}, \{\bar{a}\})$$

for
$$x \in I_a$$

If not disabled, produce P_a

$$(\{\heartsuit\}, \{\bar{a}\}, P_a)$$

Make ♥ every other step

$$(\{x\}, \{\heartsuit\}, \{\heartsuit\})$$
 for $x \in S$

for
$$x \in S$$

Dynamics

Dynamics

Low-level (detailed) dynamics of resource-minimal RS

Long sequences in resource-minimal reaction systems

There exists a resource-minimal reaction system with |S| = n having a terminating state sequence of length $\Theta(3^{n/4})$

Almost-minimal RS

$$(R, I, P)$$
at most 2 resources
$$|R| + |I| \le 2$$

Long sequences in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and |S| = n having a terminating state sequence of length $\Theta(3^{n/3})$

Long cycles in almost-minimal reaction systems

There exists a reaction system with at most 3 resources per reaction and |S| = n having a cycle of length $\Theta(3^{n/3})$

Long sequences generated by RS: known results

Туре	Longest sequence known
Generic	$\Theta(2^n) o optimal$
Almost-minimal	$\Theta(3^{n/3}) \approx \Theta(1.44^n)$
Resource-minimal	$\Theta(3^{n/4}) \approx \Theta(1.32^n)$

Context-sensitivity

Context as nondeterminism

Context as nondeterminism

Context as nondeterminism

Thanks for your attention! Dziękuję za uwagę!

Any questions?