Установка рабочей среды - <u>Jupyter Notebook и Anaconda | Программирование на Питоне (dmitrymakarov.ru)</u>

Также можно работать онлайн в JupyterLite

1. Предсказание цен на квартиры с помощью метода линейной регрессии

Задача: Определить стоимость квартиры в зависимости от площади

Исходной код ниже в задание Excel файлы в моем репозитории в GitHub

Регрессия – задача предсказать величину конкретного признака объекта в числовом выражении используя имеющиеся данные по другим признакам объекта.

Знаем		
Площадь (кв.м.)	Цена (млн. руб.)	
28	2,4	
42	3,7	
45	3,9	
56	4,5	
68	5,7	
75	6,4	
90	7,8	
Находим	формулу	
f (x)	Y = aX + b	
Предска	зываем	
34	?	
49	?	

3н	аем
Рост (см)	Вес (кг)
158	49
160	53
160	58
173	67
175	77
182	80
184	91
Находим	формулу
f (x)	Y = aX + b
Предска	азываем
176	?
186	?

Знаем	
Площадь торг.зала (квм)	Продажи (млн)
250	35
160	18
320	38
203	22
545	67
482	60
195	21
Находим фор	омулу
f(x)	Y = aX + b
Предсказы	ваем
230	?
420	?

J. L. STEDNING

Задача регрессии: Определить стоимость квартиры в зависимости от площади

Знаем		
Площадь (кв.м.)	Цена (млн. руб.)	
28	3,1	
42	3,8	
45	3,9	
52	4,4	
56	4,5	
68	5,9	
70	5,6	
75	6,4	
90	7,3	
	улу зависимости (x)	
Предска	зываем	
34	?	
49	?	

Linney

Задача регрессии: Определить стоимость квартиры в зависимости от плошали

В линейной зависимости используется формула прямой:

Наша задача – найти коэффициенты а, b

Aleman

Задача регрессии:
Определить стоимость квартиры в
зависимости от плошади

В линейной зависимости используется формула прямой:

Наша задача – найти коэффициенты a, b

J. Lanning


```
#!/usr/bin/env python
# coding: utf-8

# In[1]:

# импортируем библиотеки и модули

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn import linear_model

# In[2]:

# загружаем и визуализируем данные

# In[3]:

df = pd.read_excel('pricel.xlsx')

# In[4]:

df

# In[12]:

get_ipython().run_line_magic('matplotlib', 'inline')
```

```
plt.scatter(df.area, df.price, color='red', marker='^')
plt.xlabel('площадь (кв.м.)')
plt.ylabel('стоимость (млн.руб)')
reg = linear model.LinearRegression() #создали модель
reg.fit(df[['area']],df.price) #обучаем модель на наших данных
reg.predict([[120]])
reg.predict(df[['area']])
```

```
get ipython().run line magic('matplotlib', 'inline')
plt.scatter(df.area, df.price, color='red', marker='^')
plt.xlabel('площадь (кв.м.)')
plt.ylabel('стоимость (млн.руб)')
plt.plot(df.area, reg.predict(df[['area']]))
pred = pd.read excel('prediction price.xlsx')
pred
pred.head(3)
p = reg.predict(pred) # предсказываем цены для новых квартир из нового файла
р
pred['predicted prices'] = p
```

```
pred

# In[40]:

pred.to_excel('new.xlsx', index=False) # сохраняем файл в Excel без первой колонки

# In[]:
```

Самостоятельное задание:

- 1) Найти зависимость ВВП России от цен на нефть на основе исторических данных
- 2) Загрузить файл gdprussia.xlsx в ваш ноутбук на Jupyter
- 3) Отобразить данные в виде графика
- 4) Обучить модель с помощью алгоритма линейной регрессии
- 5) Предсказать ВВП в зависимости от разных цен на нефть

2. Предсказание ВВП от цен на нефть с помощью Линейной Регрессии

Используем данные с файла gdprussia.xlsx (в репозитории можно скачать)

```
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# Импортируем модули и библиотеки
# In[3]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
# In[5]:
df = pd.read_excel('gdprussia.xlsx')
# In[24]:
df
# In[11]:
get_ipython().run_line_magic('matplotlib', 'inline')
```

```
plt.scatter(df.oilprice, df.gdp)
plt.xlabel('oil price (US$)')
plt.ylabel('GDP, Russia (bln US$)')
reg.fit(df[['oilprice']], df.gdp)
reg.predict(df[['oilprice']])
get_ipython().run_line_magic('matplotlib', 'inline')
plt.scatter(df.oilprice, df.gdp)
plt.xlabel('oil price (US$)')
plt.ylabel('GDP, Russia (bln US$)')
plt.plot(df.oilprice, reg.predict(df[['oilprice']]))
reg.predict([[150]])
reg = linear model.LinearRegression()
```

```
reg.predict(df[['year','oilprice']])
# In[23]:
reg.predict([[2025,100]])
# In[]:
```