

# T4-IA



Gustavo Oliveira nº46395, Berke Balci nº64498, Semiha Çetintaş nº64751

Évora, 19 de junho de 2025



# Considere o problema:

Considere que tem um tabuleiro de 3X3 com 8 peças. Um robot com um braço que se pode mover no tabuleiro entre casas adjacentes. O robot pode agarrar a peça da casa onde está, mas só pode segurar uma peça de cada vez. O robot largar a peça que tem na mão na casa onde está se a casa estiver vazia.

No inicio o braço do robot está na posição da peça 1 e no final está posição da casa vazia .

## A - Construa um vocabulário (condições e ações) para modelar este problema.

#### Fluentes:

- pos(R, X, Y) O robô está na posição (X, Y) do tabuleiro.
- na\_mao(N) O robô está a segurar a peça de número N.
- mao\_vazia O robô não está a segurar nenhuma peça.
- $\bullet$  peca(N, X, Y) A peça N está na posição (X,Y) do tabuleiro.
- vazio(X, Y) A casa (X,Y) está vazia (não contém peça).

#### Condições:

• adjacente(X1, Y1, X2, Y2) – O robô está na posição (X,Y) do tabuleiro. é um fluente.

# Ações:

- mover(X1, Y1, X2, Y2)) move o robot para posição (X,Y)
- agarra (N, X, Y) O robô agarra a peça de número N.
- larga (N, X, Y) O robô não larga a peça de número N.

# B - Descreva este problema na notação STRIPS usando o vocabulário proposto.

- precondições, delList e adList.

```
• mover(X1, Y1, X2, Y2))
```

- pré-condições

\* adjacente(X1, Y1, X2, Y2)

\* pos(R, X, Y)

 $- \ \mathtt{addList}$ 

\* pos(R, X, Y)

- deList

\* pos(R, X, Y)

• agarra(N, X, Y)

- pre-condições

\* mao\_vazia



```
* peca(N, X, Y)
    * pos(R, X, Y)
- addList
    * na_mao(N)
    * vazio(X,Y)
```

- deList
  - \* mao\_vazia
  - \* peca(N, X, Y)
- larga(N, X, Y)
  - pre-condições
    - \* na\_mao(N)
    - \* vazia(X,Y)
    - \* pos(R, X, Y)
  - addList
    - \* mao\_vazia
    - \* peca(N, X, Y)
  - deList
    - \* na\_mao(N)
    - \* vazio(X,Y)

#### C - Represente o estado inicial deste problema com o seu vocabulário.

```
estado\_inicial ( [pos(R,1,1), mao\_vazia, peca(1,1,1), peca(2,2,1), peca(3,3,1), p
                                                     (4,1,2), vazio(2,2), peca(5,3,2), peca(6,1,3), peca(7,2,3), peca(8,3,3)])
```

#### D - Represente o estado final deste problema com o seu vocabulário.

```
estado_final([peca(1,1,1), peca(2,2,1), peca(3,3,1), peca(4,1,2), peca(5,2,2), pe
                                                            (8,3,2), peca(6,1,3), peca(7,2,3) pos(R,3,3), mao_vazia])
```

## E - Como é que o pop (planeador de ordem parcial) resolveria o problema de ir do estado inicial ao estado final.

- 1 Indique o conjunto de passos, de links e a ordem entre os passos.
- 2 Para cada passo indique os links que ameaçam e a sua resolução (promoção ou despromoção)

# Resolução:



# 1. Conjunto de passos (ações):

- S0 Estado inicial
- A1 mover(1,1, 2,1)
- A2 mover(2,1, 3,1)
- A3 mover(3,1, 3,2)
- A4 agarra(5, 3,2)
- A5 mover(3,2, 2,2)
- A6 larga(5, 2,2)
- A7 mover(2,2, 3,2)
- A8 mover(3,2, 3,3)
- A9 agarra(8, 3,3)
- A10 mover(3,3, 3,2)
- A11 larga(8, 3,2)
- A12 mover(3,2, 3,3)
- SG Estado final

#### 2. Links causais:

- ${ t SO} o { t pos(R,1,1)} o { t A1}$
- A1  $\rightarrow$  pos(R,2,1)  $\rightarrow$  A2
- A2  $\rightarrow$  pos(R,3,1)  $\rightarrow$  A3
- $A3 \rightarrow pos(R,3,2) \rightarrow A4$
- ${ t S0} 
  ightarrow { t peca(5,3,2)} 
  ightarrow { t A4}$
- ${ t SO} 
  ightarrow { t mao\_vazia} 
  ightarrow { t A4}$
- $A4 \rightarrow na\_mao(5) \rightarrow A5$
- A5  $\rightarrow$  pos(R,2,2)  $\rightarrow$  A6
- A6  $\rightarrow$  peca(5,2,2)  $\rightarrow$  SG
- A6 ightarrow mao\_vazia ightarrow A9
- A7  $\rightarrow$  pos(R,3,2)  $\rightarrow$  A8
- A8  $\rightarrow$  pos(R,3,3)  $\rightarrow$  A9
- ${ t S0} 
  ightarrow { t peca(8,3,3)} 
  ightarrow { t A9}$
- A9 ightarrow na\_mao(8) ightarrow A10
- A10  $\rightarrow$  pos(R,3,2)  $\rightarrow$  A11
- A11  $\rightarrow$  peca(8,3,2)  $\rightarrow$  SG
- A11 ightarrow mao\_vazia ightarrow SG
- A12  $\rightarrow$  pos(R,3,3)  $\rightarrow$  SG

## 3. Ordem parcial dos passos:



# 4. Ameaças e resolução:

- Nenhuma ameaça identificada aos links causais.
- $\bullet\,$  Nenhuma promoção ou despromoção necessária.