Convolutional Neural Networks – CNN/ConvNet

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution on Volume
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

CNN is about **computer vision** in every domain

Face detection & recognition

CNN is about computer vision in every domain

Diagnosis

Source: https://www.deepdiagnosis.tech/

CNN is about computer vision in every domain

Self driving car

CNN is about **Pose estimation**

Media Pipe

CNN is about computer vision in every domain

Human Action Recognition

Segmentation d'une vidéo d'assemblage : **GT en vert et prédiction en orange**.

Benmessabih et al., 2023, CESI LINEACT

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution on Volume
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

Deep Neural Network

Fully connected networks has many parameters and no spatial information

What is an image?

• A matrix of value

Intuition with Convolutional NN

Intuition with Convolutional NN

Filters are 4x4 = 16 weights

Each filter is applied on each part of the image

This is a **convolution** operation

Finally

- Each filter is a set of weights which extract local features
- For extracting different features, we use **multiple filters**

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution on Volume
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

Challenges examples

Detection Bounded boxes

Segmentation Instance segmentation

DensePose Keypoints

Panoptic segmentation (v7 labs)

Source: https://cocodataset.org/#overview

Stuff

17

Datasets

Nom	Challenges	Stats	Exemple
Coco [lien]	Detection Captions DensePose Keypoints Stuff Panoptic	330K images (>200K labeled) 1.5 million object instances 80 object categories 91 stuff categories 5 captions per image 250,000 people with keypoints	
ImageNet [Lien] [exemple]	Object localization Object detection Object detection from video Scene classification Scene parsing	Total number of non-empty synsets: 21841 Total number of images: 14,197,122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million	

Synsets: synonym set

Datasets

Nom	Challenges	Stats	Exemple
Open Images Dataset V6 [lien] [exemple]	Object Detection: predicting a tight bounding box around all object instances of 500 classes. Visual Relationship Detection: detecting pairs of objects in particular relations. Instance Segmentation: predicting the outlines of object instances from 300 classes.	 9M images annotated with image-level labels, object bounding boxes, object segmentation masks, visual relationships, and localized narratives. It contains a total of: 16M bounding boxes for 600 object classes on 1.9M images 	
KITTI [Lien]	Multi-Object Tracking Multi-Object Segmentation Object detection Depth completion Sceneflow	The Multi-Object and Segmentation (MOTS) benchmark consists of 21 training sequences and 29 test sequences	

Sites utiles

Kaggle https://www.kaggle.com/

- Contient des datasets et challenges
- Exemple: https://www.kaggle.com/c/multi-modal-gesture-recognition/overview

Papers with code <u>Datasets https://paperswithcode.com/datasets</u>

Zenodo https://www.zenodo.org/

- Pour déposer un dataset de manière scientifique
- Exemple InHARD

1- jeu de données InHARD pour la HAR non segmentées dans un contexte industriel

Protocole d'acquisition - Industrial Human Action Recognition Dataset

InHARD Acquisition

Contributions d'InHARD:

Actions industrielles

Post-Treatement

- Multi modalités
- Multi-vues
- Cas d'usage réaliste

Résultats

Nb. participants	Nb. d'instances d'action	Nb. classes	Nb. vues	Modalités	Type d'actions	Capteurs
16	4803	13 + background	3	Squelette 3D RGB x3 Squelette 2D	Industrielles	Perception Neuron 3 Caméras C920

Performance de référence de l'algorithme ST-GCN* sur InHARD segmentée

Type de données d'entrée	Accuracy (segmentée)	F1-Score (segmentée)
Données squelettes 3D	0.919	0.921
Données squelettes 2D (OpenPose)	0.864	0.863

Reconnaissance d'actions segmentée / non segmentée

Résultats LINEACT - Reconnaissance d'actions en ligne

Jeu de données	Données d'entrées	Classes	Résultats	Extraits
OAD	Positions 2D des jointures (X & Y)	10+1 (Aucune action)	Accuracy: 0.954 F1-score: 0.953	
UOW	Positions 3D des jointures (X, Y & Z)	21 + 1 (Aucune action)	Accuracy: 0.936 F1-score: 0.934 Latence : 0.047	
InHARD	Positions 3D des jointures (X, Y & Z)	13 + 1 (Aucune action)	Accuracy: 0.344 F1-score: 0.433	

M. Dallel, V. Havard, Y. Dupuis, and D. Baudry. 2022. A Sliding Window Based Approach With Majority Voting for Online Human Action Recognition using Spatial Temporal Graph Convolutional Neural Networks. In 2022 7th International Conference on Machine Learning Technologies (ICMLT)

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution Reminder
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

Mathematical operation of two greyscale images Im et k, notée Im * k, defined as (Perret, 2017):

$$\forall (x,y) \in \mathbb{Z}^2, (Im * k)(x,y) = \sum_{i} \sum_{j} Im(i,j) \cdot k(x-i,y-j)$$

8_1	20	5 1	3	0	4	9	1
41		6		5	3	0	7
2_1		4	4	7	6	1	9
9	7	3	2	9	9	2	9
6	1	7	0	0	7	8	7
3	2	9	8	4	8	9	8
6	4	8	9	6	5	7	4
7	6	5	3	3	4	1	3

Mathematical operation of two greyscale images Im et k, notée Im * k, defined as (Perret, 2017):

$$\forall (x,y) \in \mathbb{Z}^2, (Im * k)(x,y) = \sum_{i} \sum_{j} Im(i,j) \cdot k(x-i,y-j)$$

8_1	20	5 1	3	0	4	9	1
4_1	5 ₀			5	3	0	7
2_1		4	4	7	6	1	9
9	7	3	2	9	9	2	9
6	1	7	0	0	7	8	7
3	2	9	8	4	8	9	8
6	4	8	9	6	5	7	4
7	6	5	3	3	4	1	3

$$(8*-1) + (2*0) + (5*1)$$

$$(4*-1) + (5*0) + (6*1)$$

$$(2*-1) + (9*0) + (4*1)$$

$$= -1$$

Mathematical operation of two greyscale images Im et k, notée Im * k, defined as (Perret, 2017):

$$\forall (x,y) \in \mathbb{Z}^2, (Im * k)(x,y) = \sum_{i} \sum_{j} Im(i,j) \cdot k(x-i,y-j)$$

8_1	20	5 ₁	3	0	4	9	1
41	5 ₀			5	3	0	7
2_1		4	4	7	6	1	9
9	7	3	2	9	9	2	9
6	1	7	0	0	7	8	7
3	2	9	8	4	8	9	8
6	4	8	9	6	5	7	4
7	6	5	3	3	4	1	3

$$(8*-1) + (2*0) + (5*1)$$

$$(4*-1) + (5*0) + (6*1)$$

$$(2*-1) + (9*0) + (4*1)$$

$$= -1$$

Mathematical operation of two greyscale images Im et k, notée Im * k, defined as (Perret, 2017):

$$\forall (x,y) \in \mathbb{Z}^2, (Im * k)(x,y) = \sum_{i} \sum_{j} Im(i,j) \cdot k(x-i,y-j)$$

8	2_1	5 ₀	3	0	4	9	1
4	5 ₋₁			5	3	0	7
2	9_1			7	6	1	9
9	7	3	2	9	9	2	9
6	1	7	0	0	7	8	7
3	2	9	8	4	8	9	8
6	4	8	9	6	5	7	4
7	6	5	3	3	4	1	3

$$(2*-1) + (5*0) + (3*1)$$

$$(5*-1) + (6*0) + (6*1)$$

$$(9*-1) + (4*0) + (4*1)$$

$$= 3$$

Mathematical operation of two greyscale images Im et k, notée Im * k, defined as (Perret, 2017):

$$\forall (x,y) \in \mathbb{Z}^2, (Im * k)(x,y) = \sum_{i} \sum_{j} Im(i,j) \cdot k(x-i,y-j)$$

8	2	5 ₋₁	30	0 1	4	9	1
4	5	6_1	60	5 ₁	3	0	7
2	9	41	40	7	6	1	9
9	7	3	2	9	9	2	9
6	1	7	0	0	7	8	7
3	2	9	8	4	8	9	8
6	4	8	9	6	5	7	4
7	6	5	3	3	4	1	3

$$(5*-1) + (3*0) + (0*1)$$

$$(6*-1) + (6*0) + (5*1)$$

$$(4*-1) + (4*0) + (7*1)$$

$$= 3$$

Mathematical operation of two greyscale images Im et k, notée Im * k, defined as (Perret, 2017):

$$\forall (x,y) \in \mathbb{Z}^2, (Im * k)(x,y) = \sum_{i} \sum_{j} Im(i,j) \cdot k(x-i,y-j)$$

8	2	5_1	3 ₀	01	4	9	1
4	5	6 ₋₁		5 ₁	3	0	7
2	9	4_1	40	7	6	1	9
9	7	3	2	9	9	2	9
6	1	7	0	0	7	8	7
3	2	9	8	4	8	9	8
6	4	8	9	6	5	7	4
7	6	5	3	3	4	1	3

-1	3	3	0	2	-4	
2	9	-8	-6	18	-7	
3	11	-2	-16	5	-3	
-1	0	6	-14	-6	0	
-9	-10	14	-3	-14	1	
-6	-8	9	3	-4	2	

Mathematical operation of two greyscale images Im et k, notée Im * k, defined as (Perret, 2017):

$$\forall (x,y) \in \mathbb{Z}^2, (Im * k)(x,y) = \sum_{i} \sum_{j} Im(i,j) \cdot k(x-i,y-j)$$

8	2	5	3	0	4	9	1
4	5	6	6	5	3	0	7
2	9	4	4	7	6	1	9
9	7	3	2	9	9	2	9
6	1	7	0	0	7	8	7
3	2	9	8	4	8	9	8
6	4	8	9	6	5	7	4
7	6	5	3	3	4	1	3

 $egin{array}{cccc} w_1 & w_2 & w_3 \ w_4 & w_5 & w_6 \ w_7 & w_8 & w_9 \ \end{array}$

k

-1	3	3	0	2	-4	
2	9	-8	-6	18	-7	
3	11	-2	-16	5	-3	
-1	0	6	-14	-6	0	
-9	-10	14	-3	-14	1	
-6	-8	9	3	-4	2	

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution on Volume
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

Width x height x channels/depth

Convolution on Volume: example on RGB image

Convolution on Volume: example on RGB image

*

Convolution on Volume: example on RGB image

*

Convolution on Volume: example on RGB image

*

Convolution on Volume: example on RGB image

*

Only in 2 dimensions

Convolution on Volume: example on RGB image

*

Example for detecting vertical gradient on Red channel of the input volume

Convolution on Volume: example on RGB image

Stride=1

*

*

Convolution on Volume explained by (Arat, 2017)

Output

Source, (ARAT, 2017)

Convolution on Volume: notation

Convolution on Volume: summary of notation

• If an input volume [l-1] is treated by a convolutional layer at depth [l], the result is an output volume at depth [l]

Input Volume properties

- $n_H^{[l-1]}$ nb lines (ex: 256)
- $n_W^{[l-1]}$ nb columns (ex: 256)
- $n_c^{[l-1]}$ nb channels / depth (ex: 32)

 $n_H^{[l-1]} \times n_W^{[l-1]} \times n_c^{[l-1]}$ 256 × 256 × 32

Filter / kernel properties

- $f^{[l]}$ filter size (ex: $5 \times 5 \times 32$)
- $n_c^{[l]}$ number of filters (ex: 64)
- $p^{[l]}$ padding size (ex: 0)
- *s*^[*l*] stride (ex: 2)

$$f^{[l]} \times f^{[l]} \times n_c^{[l-1]}$$

$$5 \times 5 \times 32$$

$$#filter = n_c^{[l]} = 64$$

Output volume properties

•
$$n_H^{[l]} = \frac{n_H^{[l-1]} + 2 p^{[l]} - f^{[l]}}{s^{[l]}} + 1$$

- $n_W^{[l]}$ same as above
- $n_c^{[l]}$ nb channels / depth (ex: 64)

$$n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$$

$$125 \times 125 \times 64$$

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution on Volume
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

$$n_H^{[l]} = \frac{n_H^{[l-1]} + 2 p^{[l]} - f^{[l]}}{s^{[l]}} + 1$$

Conv2D is "**NHWC**" by default. It means: **N samples** x **Height** x **Width** x **C Channels**

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution on Volume
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

Max Pooling

Pooling is about **reducing dimension** while **keeping information**.

• Idea: keep only maximum value in a neighbourhood

Max Pooling only reduce the volume dimension but do not modify volume values.

Max Pooling

Pooling is about **reducing dimension** while **keeping information**.

• Idea: keep only maximum value in a neighbourhood

Max Pooling only reduce the volume dimension but do not modify volume values.

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution on Volume
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

CNNs for classification

Here is the principle of CNNs architecture for classification

- Feature learning with a series of convolutions
- **Non-linearity** with activation function (generally ReLU)
- Reduce dimension with Max Pooling

CNNs for classification

- Feature learning with a series of convolutions
- Non-linearity with activation function (generally ReLU)
- Reduce dimension with Max Pooling

• Classification with Dense layer

CNNs for classification


```
def create_model_v2(input_shape = (28,28,3), summary=False, loss_fn_to_use =
                tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)):
   model = tf.keras.models.Sequential([
       tf.keras.layers.Conv2D(16, (3, 3), strides=(1,1), input_shape=input_shape,
                              padding="valid", activation="relu"),
       tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same'),
       tf.keras.layers.Conv2D(32, (5, 5), strides=(2,2), padding="valid", activation="relu"),
       tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same'),
       tf.keras.layers.Flatten(),
       tf.keras.layers.Dense(10)
    loss_fn = loss_fn_to_use
   model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy',
                                   tf.metrics.SparseCategoricalAccuracy()])
    if summary:
       model.summary()
    return model
```


CNNs for classification: from low level to high level features

Layers goes from low level to high level features

Low level features

Lines, edges and dark spots

Conv layer 1

Mid level features

Eyes, Nose, Ears Conv layer 2

High level features

Facial structure
Conv layer 3

Summarizing Tensor Flow CNNs

- 1. Convolutions apply filters to generate feature maps
- 2. Non-linearity often ReLU
- 3. Pooling: down sampling on each feature map
- **4. Flatten:** for getting a 1 dimensional vector

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution on Volume
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

Analyse des résultats : Modalités (RGB/ E-SK/ 3D SK)

Etude comparative des **modalités** utilisées sur les bases **InHARD-3**, **InHARD-4** et **InHARD-13**.

Method	Dataset	Modality	F1@10	F1@25	F1@50	Edit	MoF
C2F-TCN	InHARD-3	RGB	49,9	38,51	12,83	57,9	50,13
GSK-C2F(p)	InHARD-3	E-SK	68.31	65,23	49,23	80.21	80.45
GSK-C2F(p)	InHARD-3	3D SK	74.68	73.42	56.96	81.47	84.82
C2F-TCN	InHARD-4	RGB	28,2	17,7	8,52	53,23	32,57
GSK-C2F(p)	InHARD-4	E-SK	80.13	70,19	49,06	74.67	67.39
GSK-C2F(p)	InHARD-4	3D SK	81.76	75.50	57.62	76.98	70.28
C2F-TCN	InHARD-13	RGB	26,70	19,12	6,77	35,92	34,28
GSK-C2F(p)	InHARD-13	E-SK	67.83	62.47	43.16	62.84	59.77
GSK-C2F(p)	InHARD-13	3D SK	81.121	80.86	71.37	74.37	73.86

Segmentation temporelle de la vidéo "P13-R02" de InHARD-13

Segmentation d'une vidéo d'assemblage : GT en vert et prédiction en orange.

Analyse des résultats : Modalités (RGB/ E-SK/ 3D SK)

Etude comparative des **modalités** utilisées sur les bases **InHARD-3**, **InHARD-4** et **InHARD-13**.

Method	Dataset	Modality	F1@10	F1@25	F1@50	Edit	MoF
C2F-TCN	InHARD-3	RGB	49,9	38,51	12,83	57,9	50,13
GSK-C2F(p)	InHARD-3	E-SK	68.31	65,23	49,23	80.21	80.45
GSK-C2F(p)	InHARD-3	3D SK	74.68	73.42	56.96	81.47	84.82
C2F-TCN GSK-C2F(p) GSK-C2F(p)	InHARD-4 InHARD-4	RGB E-SK 3D SK	28,2 80.13 81.76	17,7 70,19 75.50	8,52 49,06 57.62	53,23 74.67 76.98	32,57 67.39 70.28
C2F-TCN	InHARD-13	RGB	26,70	19,12	6,77	35,92	34,28
GSK-C2F(p)	InHARD-13	E-SK	67.83	62.47	43.16	62.84	59.77
GSK-C2F(p)	InHARD-13	3D SK	81.121	80.86	71.37	74.37	73.86

Segmentation temporelle de la vidéo "P13-R02" de InHARD-13

Detection: Breast Cancer Screening

McKinney, S.M., Sieniek, M., Godbole, V. *et al.* International evaluation of an Al system for breast cancer screening. *Nature* **577**, 89–94 (2020). https://doi.org/10.1038/s41586-019-1799-6

CNN-based system outperformed expert radiologists at detecting breast cancer from mammograms

breast cancer case missed by radiologist but detected by AI

Semantic segmentation with Fully Convolutionnal Networks (FCN)

J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," p. 10.

Self-drving cars: Navigation from visual perception

A. Amini, G. Rosman, S. Karaman, and D. Rus, "Variational End-to-End Navigation and Localization," arXiv:1811.10119 [cs, stat], Jun. 2019, Accessed: Jan. 10, 2021. [Online]. Available: http://arxiv.org/abs/1811.10119.

Video at: https://youtu.be/iaSUYvmCekl?t=2112

- 1. CNN/ConvNet overview
- 2. Why images ? Why Convolutional Neural Networks?
- 3. Datasets and challenges
- 4. Convolution on Volume
- 5. Simple example of ConvNet
- 6. Max Pooling
- 7. CNNs for classification
- 8. Real life ConvNet examples
- 9. Conclusion

Conclusion about Convolutional Neural Networks

Convolution on Volume

- Convolution reminder
- Volume by using several filters

width x height x channels * Sad x 3 * Width x height x channels * Sad x 3 * Sad x 3

CNN and Max Pooling

- CNN learns features on images
- Max Pooling downsample volumes
- Coding in Tensorflow

CNN usages

- Medical: Breast cancer detection
- Semantic segmentation
- Autonomous cars

References

Amini A. and Soleimany Ava, MIT 6.S191: Convolutional Neural Networks | MIT 6.S191

A. Amini, G. Rosman, S. Karaman, and D. Rus, "Variational End-to-End Navigation and Localization," arXiv:1811.10119 [cs, stat], Jun.

2019, Accessed: Jan. 10, 2021. [Online]. Available: http://arxiv.org/abs/1811.10119.

Arat M. M., Implementing 'SAME' and 'VALID' padding of Tensorflow in Python, 2017, accessible at https://mmuratarat.github.io/2019-01-17/implementing-padding-schemes-of-tensorflow-in-python, accessed January 2020

J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," p. 10.

McKinney, S.M., Sieniek, M., Godbole, V. *et al.* International evaluation of an AI system for breast cancer screening. *Nature* **577**, 89–94 (2020). https://doi.org/10.1038/s41586-019-1799-6

Ng A., Deep Learning specialization, Coursera, available at https://www.deeplearning.ai/deep-learning-specialization/, accessed in June 2017

Perret B., traitement et analyse d'images, 2017, accessible à https://perso.esiee.fr/~perretb/l5FM/TAI/convolution/index.html

References

Datasets:

A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari. The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale. IJCV, 2020.

R. Benenson, S. Popov, and V. Ferrari. Large-scale interactive object segmentation with human annotators. CVPR, 2019.

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) **ImageNet Large Scale Visual Recognition Challenge**. *IJCV*, 2015

J. Carreira, E. Noland, C. Hillier, and A. Zisserman, A Short Note on the Kinetics-700 Human Action Dataset. 2019.

Ambika Choudhury, 10 Open Datasets You Can Use For Computer Vision Projects, available at https://analyticsindiamag.com/10-open-datasets-you-can-use-for-computer-vision-projects/

- J. Fritsch, T. Kuehnl, and A. Geiger, "A New Performance Measure and Evaluation Benchmark for Road Detection Algorithms," 2013.
- A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite," 2012.
- M. Menze and A. Geiger, "Object Scene Flow for Autonomous Vehicles," 2015.
- A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets Robotics: The KITTI Dataset," International Journal of Robotics Research (IJRR), 2013.

Google Research, available at https://research.google/tools/datasets/, access on Nov. 10, 2019