LINK LAYER: WIRED AND WIRELESS

Multi-Access Communication

Bandwidth sharing: two approaches

- contention-free
 - → main: TDMA, FDMA, mixture of FDMA + TDMA, CDMA
 - \rightarrow other: token ring, FDDI, SDMA
 - \rightarrow note: OFDM is a special case of FDMA
- contention-based
 - \rightarrow main: CSMA/CD, CSMA/CA
 - \rightarrow used in Ethernet, WLAN, RFID, etc.

Also called MAC (medium access control)

Now: multi-access link, hence need for names or addresses

- \rightarrow 48-bit address hardware address
- \rightarrow separate from IP address: software address
- \rightarrow ultimately all IP addresses need to be translated to MAC addresses

Contention-free MAC:

- \rightarrow emphasis on orderly deterministic sharing
- \rightarrow reservation of network resources by manager
- \rightarrow typically centralized
- \rightarrow e.g., TDMA: who gets what time slots
- \rightarrow e.g., FDMA: who gets what carrier frequency
- \rightarrow e.g., CDMA: who gets what code

Contention-based MAC:

- \rightarrow single carrier frequency shared by multiple devices
- \rightarrow orderly in the sense that devices obey rules, i.e., follow protocol
- \rightarrow unorderly in the sense that "you get what you get"
- \rightarrow performance is variable since resources are not reserved
- → simultaneous access: collision
- \rightarrow likely results in corrupted bits

Thus requires

- \rightarrow error detection (e.g., checksum)
- → error correction (e.g., ARQ, FEC)

Contention-free MAC: we already know TDMA, FDMA, CDMA

→ specific real-world examples will be discussed for wireless systems

Look at contention-based MAC.

Basic features:

- when NIC has data to send
 - \rightarrow just send: called multiple access (MA)
 - \rightarrow only send if link is idle: carrier sense (CS)
- if two or more users send at the same time, data can become corrupted
 - → interference between electromagnetic waves makes decoding bits difficult at receiver
 - \rightarrow e.g., bit flips
 - \rightarrow called collision

Collision need not always cause bit flips

 \rightarrow if two packets collide and one packet has much stronger signal strength than the other: stronger packet may be successfully decoded

- \rightarrow because of different power levels
- \rightarrow called capture effect
- \rightarrow "survival of the strongest"

Clearly much less orderly than contention-free MACs.

Simplest content-based MAC: MA

- \rightarrow just send if there is something to send
- \rightarrow not even CS

Used in real systems?

- \rightarrow yes!
- \rightarrow ALOHA (early 1970s)
- → packet network connecting Univ. of Hawaii island campuses
- \rightarrow deployed system solving real-world problem
- $\rightarrow \sim 40$ years before boom of wireless data networks
- → visionary work by Norman Abramson
- → later adopted by Ethernet (Metcalfe), and today, WLANs

Question: why not use carrier sense (CS)?

Additional features:

• NIC can detect if someone else is using the channel

- \rightarrow carrier sense (CS)
- \rightarrow rule: if someone else talks, don't talk
- → imposes gentlemanly (i.e., cooperative) behavior
- \rightarrow not always practically feasible
- NIC can detect if collision has occurred
 - \rightarrow called collision detection (CD)
 - \rightarrow not always feasible: especially wireless
- NIC attempts to avoid collision by sending probe packet
 - \rightarrow called collision avoidance (CA)
 - \rightarrow probe packet reserves bandwidth for following data packet
 - \rightarrow problem with this method?

Two example real-world systems:

→ Ethernet: MA, CS, CD

 \longrightarrow WLAN: MA, CS, CA

Why not just use TDMA, FDMA or CDMA?

When is it better to use TDMA, FDMA, CDMA?

Benefits of contention-based MAC:

- when not too many users, faster response time
 - \rightarrow minimal coordination overhead
 - \rightarrow e.g., in TDMA need to request and reserve slots
 - → management/signaling packets incur delay and consume bandwidth
- decentralized
 - \rightarrow minimal configuration overhead
 - \rightarrow to join: just send
 - \rightarrow except for security concerns (e.g., Purdue's PAL)
 - \rightarrow a good idea?

Drawbacks of contention-based MAC:

- when many users share, degraded throughput
 - \rightarrow collision wastes bandwidth
- lack of QoS (quality of service) assurances
 - \rightarrow "you get what you get"
 - \rightarrow called best effort
 - \rightarrow problematic for real-time traffic (e.g., VoIP, video conferencing)
 - \rightarrow IEEE 802.11 WLAN standard has provisions to support telephony: not used in practice

When to use what?

→ contention-free vs. contention-based