

**GROUP 3** 

# Anti-Money Laundering Detection with Graph Neural Networks (GNN)

# TABLE OF CONTENTS

| 01 | Introduction   |
|----|----------------|
| 02 | Survey         |
| 03 | Data           |
| 04 | Methods        |
| 05 | Implementation |
| 06 | Results        |
| 07 | Conclusion     |

### I. Introduction

- Sophisticated financial crime: Money laundering is a complex and widespread financial crime.
- Global threat: It poses a significant threat to the global financial system.
- Concealment of illegal origins: Involves processes to hide the origins of money obtained through illegal activities.
- Examples of illegal activities: Such activities include drug trafficking, terrorism, fraud, and corruption.

## Example

| Trans.<br>ID | Timestamp         |   |   | Target<br>Account | Amount | Currency | Payment<br>type |             |
|--------------|-------------------|---|---|-------------------|--------|----------|-----------------|-------------|
| 0            | 3 MAY 2019 12:45  | 1 | Α | 1                 | С      | 1400     | USD             | Cheque      |
| 1            | 15 MAY 2019 07:34 | 2 | В | 1                 | С      | 710      | EUR             | ACH         |
| 2            | 18 MAY 2019 16:55 | 3 | E | 1                 | С      | 950      | USD             | Credit card |
| 3            | 1 JUN 2019 10:06  | 1 | С | 3                 | D      | 1200     | CHF             | Wire        |
| 4            | 27 JUN 2019 13:18 | 3 | E | 3                 | D      | 2300     | EUR             | Credit card |
| 5            | 7 JUL 2019 11:14  | 3 | D | 1                 | A      | 1100     | USD             | Credit card |
| 6            | 14 JUL 2019 09:37 | 2 | В | 3                 | E      | 650      | USD             | ACH         |
| 7            | 20 JUL 2019 14:02 | 3 | E | 3                 | D      | 2500     | USD             | Wire        |



Figure 1 Financial transactions in (a) tabular format and in (b) graph format.

All laundering in the data follows one of these 8 patterns. As with other aspects of this data noted above, knowing all the transcation involved in particular laundering patterns is an immense challenge with real data.



## **II.Survey**

This survey examines key studies that have contributed to the understanding and development of GNNs in the context of AML detection:









Realistic Synthetic Financial Transactions for Anti-Money Laundering Models: discusses synthetic financial datasets that enhance AML model training without privacy concerns, allowing for better exploration of complex laundering patterns.

Provably Powerful Graph Neural Networks for Directed Multigraphs: explores GNNs for directed multigraphs, showcasing their effectiveness in modeling complex financial relationships and detecting hidden illicit activities.

Scalable Graph Learning for Anti-Money Laundering: focuses on the scalability of Graph Convolutional Networks (GCNs), showing how they reduce computational burdens while effectively modeling financial networks.

Graph Attention Networks: how attention mechanisms improve detection accuracy by focusing on key parts of the network.



## III. DATA

- HI-Large\_Patterns.txt
- HI-Large\_Trans.csv
- HI-Medium\_Patterns.txt
- HI-Medium\_Trans.csv
- HI-Small\_Patterns.txt
- HI-Small\_Trans.csv
- LI-Large\_Patterns.txt
- LI-Large\_Trans.csv
- LI-Medium\_Patterns.txt
- LI-Medium\_Trans.csv
- LI-Small\_Patterns.txt
- LI-Small\_Trans.csv



#### 6 datasets here divided into two groups:

- Group HI (Higher Illicit Ratio)
- Group LI (Lower Illicit Ratio)

Two files for each of the six datasets:

- .csv: Transactions
- .txt: Laundering Pattern Transactions

|               |           |           |           |           | Amount   | Receiving | Amount   | Payment   | Payment     |               |
|---------------|-----------|-----------|-----------|-----------|----------|-----------|----------|-----------|-------------|---------------|
| Timestamp     | From Bank | Account   | To Bank   | Account   | Received | Currency  | Paid     | Currency  | Format      | Is Laundering |
| 1/1/2019 0:22 | 800319940 | 8004ED620 | 808519790 | 872ABC810 | 120.92   | US Dollar | 120.92   | US Dollar | Credit Card | 0             |
| 1/1/2019 0:05 | 8021ADE00 | 80238F220 | 9A7F59FA0 | A23691240 | 33.97    | US Dollar | 33.97    | US Dollar | Credit Card | 1             |
| 1/1/2019 0:14 | 801946100 | 8023F0980 | 83585F5A0 | 948893910 | 79.20    | US Dollar | 79.20    | US Dollar | Credit Card | 0             |
| 1/1/2019 0:05 | 80010C840 | 800122AA0 | 80010C840 | 800122AA0 | 8,834.09 | Euro      | 10351.64 | US Dollar | ACH         | 0             |
| 1/1/2019 0:05 | 80010C840 | 800122AA0 | 80010CF20 | 80012DA00 | 8,834.09 | Euro      | 8834.09  | Euro      | ACH         | 0             |
| 1/1/2019 0:08 | 80010CF20 | 80012DA00 | 80010CF20 | 80012DA00 | 9,682.16 | US Dollar | 8262.75  | Euro      | ACH         | 0             |
| 1/1/2019 0:08 | 80010CF20 | 80012DA00 | 80010BD60 | 80011E460 | 9,682.16 | US Dollar | 9682.16  | US Dollar | ACH         | 0             |
| 1/1/2019 0:03 | 800319940 | 800466670 | 80029A010 | 8002F6F20 | 9,125.22 | US Dollar | 9125.22  | US Dollar | ACH         | 0             |

#### **Other Currencies**

Yuan Mexican Peso Yen Brazilian Real Indian Rupee Swiss Franc

Ruble Shekel

UK Pound Saudi Riyal

Canadian Dollar Bitcoin

Australian Dollar

#### **Other Formats**

Wire Cheque Cash







## 1. Why Apply Graph Neural Networks (GNNs)?



Graph Neural Networks (GNNs) provide a powerful alternative to traditional methods by leveraging the structure of financial transaction networks.

Connectivity of Financial Transactions:

- Nodes: nodes represent entities such as bank accounts, individuals, or companies.
- Edges: Edges represent the financial transactions between these entities.

#### Typical Patterns in Financial Networks:

- Fan-Out Patterns: This occurs when a single account disperses funds across multiple other accounts.
- Fan-In Patterns: This pattern is observed when multiple accounts funnel funds into a single account.
- Circular Patterns: funds are cycled between accounts, often through multiple layers of transactions
   9/18

### 2. Overview of Graph Attention Networks (GAT)



## 3. Application of GAT to the AML





# 4. Comparison with GCN and GIN

#### **GRAPH CONVOLUTIONAL NETWORKS (GCN):**

- 1. Architecture: Aggregates neighbor information through convolution, applying a linear transformation and non-linear activation.
- 2. Limitations: Treats all neighbors equally, which may overlook crucial patterns in detecting money laundering.

#### **GRAPH ISOMORPHISM NETWORKS (GIN):**

- Architecture: GINs use summation for neighbor aggregation, followed by an MLP, enabling them to capture subtle differences in graph structures.
- Strengths: Highly expressive in distinguishing structural properties of graphs, though this can increase computational complexity, especially in large-scale graphs.

#### **COMPARATIVE ANALYSIS:**

- Performance:
- GAT: Excels in weighting important transactions, ideal for detecting AML.
- GCN: Faster and more scalable but may miss key patterns.
- GIN: Strong in distinguishing complex structures, but computationally intensive.
- Scalability:
- GCN: Best for large graphs due to faster training.
- GAT: Captures subtle patterns but may require more resources.
- GIN: Powerful but resource-heavy, especially with complex graphs.

## 5. Evaluation Metric:

F1 Score: Essential for imbalanced data, balancing precision (correctly flagged illicit transactions) and recall (accurately detecting illicit transactions). A high F1 score indicates effective detection with minimal false positives.



## Implementation

- 1. Data Loading and Preprocessing+ Label Encoding+ Timestamp Normalization
  - + Unique Identifiers
  - 3. GAT Model Architecture
    - + Input Layer
    - + GAT Layers
    - + Output Layer

```
class GAT (torch.nn.Module):
   def init (self, in channels, hidden channels, out channels,
heads):
        super(). init ()
        self.conv1 = GATConv(in channels, hidden channels, heads,
dropout=0.6)
        self.conv2 = GATConv(hidden channels * heads,
int(hidden channels/4), heads=1, concat=False, dropout=0.6)
        self.lin = Linear(int(hidden channels/4), out channels)
        self.sigmoid = nn.Sigmoid()
   def forward(self, x, edge index, edge attr):
        x = F.dropout(x, p=0.6, training=self.training)
        x = F.elu(self.conv1(x, edge index, edge attr))
        x = F.dropout(x, p=0.6, training=self.training)
        x = F.elu(self.conv2(x, edge index, edge attr))
        x = self.lin(x)
        x = self.sigmoid(x)
        return x
```

#### 2. Graph Construction

#### + Node features

#### + Edge features

## Implementation

- 4. Training the Model+ Attention Mechanism
  - + Optimization

```
model = GAT(in channels=data.num features, hidden channels=16,
out channels=1, heads=8)
model = model.to(device)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
split = T.RandomNodeSplit(split='train_rest', num_val=0.1, num_test=0)
data = split(data)
train loader = loader = NeighborLoader(
    data,
    num neighbors=[30] * 2,
    batch size=256,
    input nodes=data.train mask,
test loader = loader = NeighborLoader(
    data,
    num neighbors=[30] * 2,
    batch size=256,
    input nodes=data.val mask,
```

## 5. Model Evaluation

```
for i in range(epoch):
   total loss = 0
   model.train()
   for data in train loader:
       optimizer.zero grad()
       data.to(device)
       pred = model(data.x, data.edge index, data.edge attr)
       ground truth = data.y
       loss = criterion(pred, ground truth.unsqueeze(1))
       loss.backward()
       optimizer.step()
       total loss += float(loss)
   if epoch%10 == 0:
       print(f"Epoch: {i:03d}, Loss: {total loss:.4f}")
       model.eval()
       acc = 0
       total = 0
       with torch.no grad():
            for test data in test loader:
                test data.to(device)
                pred = model(test_data.x, test_data.edge_index,
test data.edge attr)
                ground truth = test data.y
                correct = (pred ==
ground truth.unsqueeze(1)).sum().item()
                total += len(ground truth)
                acc += correct
            acc = acc/total
            print('accuracy:', acc)
```



### 4. Comparative Analysis









## Conclusion



- Potential of GNNs: The study shows that GNNs can enhance Anti-Money Laundering (AML) systems beyond traditional methods.
- Comparison of GNN
   Architectures: GAT outperforms
   GCN and GIN in money laundering detection due to its ability to identify complex patterns.



• Successful Application: GNNs help reduce false positives and improve regulatory compliance in financial institutions.

• Synthetic Data from IBM: Using synthetic data is a safe and effective way to develop GNN models.



- Future Research: Focus on improving GNNs for real-time financial environments and integrating them with other techniques.
- Contribution to the Field: The study makes a significant contribution to applying machine learning in finance and enhancing AML.

## THANKYOU!

