Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B. Tech (Make Up)

Branch

: ECE

Semester

: IV

Title of the Course

: ANALOG ELECTRONICS

Course Code

: ECB 252

Time: 3 Hours

Maximum Marks: 50

- Answers should be CLEAR AND TO THE POINT. All parts of a single question must be answered together. ELSE QUESTION SHALL NOT BE EVALUATED.
- 1. A p-n-p Ge transistor is used in the self-biasing arrangement given in figure 1, where V_{cc} = 4.5 V, R_c = 1.5 K Ω , R_e =0.27 K Ω , R_2 = 2.7 K Ω , R_1 = 27 K Ω and $|V_{BE}|$ =0.2 V. If β = 44, find:
 - (a) The stability factor, S (b) the Q-point, (c) recalculate these values (S and Q-pt) if the base spreading resistance of 690 $\boldsymbol{\Omega}$ is taken into consideration.
- 2. In the Darlington stage, shown in figure 2, V_{cc} =24 V, β_1 =24, β_2 =39, V_{BE} =0.6 V, $R_c{=}330~\Omega$ and $R_e{=}120~\Omega.$ If at the Q-point of second transistor, $V_{CE2}{=}$ 6 V, determine [5] (a) resistance value, R, (b) stability factor 'S' defined as $S=dI_C/dI_{COI}$.
- 3. Consider second collector to first emitter feedback pair configuration in figure 3. Calculate (a) Av_1 (b) Av_2 (c) Av (d) β (e) Av_f (f) R_o (g) R_{of} and (h) R_{if} for the [8x2]amplifier configuration. Assume, $R_s = 0,\ h_{fe} = 50,\ h_{ie} = 1.1$ K, $h_{re} = h_{oe} = 0$ and all transistors are identical.
- 4. The transistor in following figure 4, is connected as CE amplifier and the hparameters are given in the following table. If R_s = R_L = $1K\Omega$, find (a) Av (b) A_{vs} (c) A_I [4] and (d) AIS.

Parameters	Values
$h_{11}=h_i$	1100 Ω
$h_{12}=h_r$	2.5x10-4
$h_{21}=h_f$	50
$h_{22}=h_o$	25μA/V
1/h _o	40 K

- Show that the overall h parameters of the accompanying two-stage cascaded 5. amplifier, shown in figure 5, are: [5]
 - (a) $h_{11}=h_{11}' \frac{h'_{12}h'_{21}}{1+h'_{22}h''_{11}}h''_{11}$ (b) $h_{12}=\frac{h'_{12}h''_{12}}{1+h'_{22}h''_{11}}$ (c) $h_{21}=\frac{h'_{21}h''_{21}}{1+h'_{22}h''_{11}}$ (d) $h_{22}=h_{22}'' \frac{h''_{12}}{1+h'_{22}h''_{11}}$

- (d) $h_{22}=h_{22}"-\frac{h_{12}''h_{21}''}{1+h_{22}'h_{11}''}h_{22}'$
- Write true (T)/ false (F) against each statement. 6.

[10x0.5]

- Compensation circuits refer to resistive biasing circuits.
- Negative feedback is more suitable for amplification. (b)

- (c) Tentatively Q-point for a self-bias circuit will be at the middle of load line.
- (d) Q-point should be fixed with $V_{CEQ} < V_{CC}/2$ in order to avoid thermal runway.
- (e) The term low frequency implies the range of frequencies of the input signal in which effects of internal capacitances are considered.
- (f) CC amplifier provides current gain instead of voltage gain.
- (g) A CE transistor stage connected in series with a CB transistor stage provides the cascode combination.
- (h) Difference amplifier is used to amplify the difference between two signals.
- (i) At α -cut off frequency, the high frequency α falls to 0.707 α_0 .
- (j) At high frequency operation, h-parameters are real numbers.
- 7. Write brief notes on followings:

[2+2]

- (a) CB physical model of transistor with early feedback generator and base spreading resistance.
- (b) Transistor two port device and hybrid model.
- 8. Opt for the correct option only.

[6x1]

- (a) In a self-bias circuit, the stability increases, as the base resistance increases/decreases/remains constant.
- (b) An amplifier supplies output current proportional to the signal voltage and independent of R_S and R_L known as- trans-resistance/ trans-conductance/ current amplifier.
- (c) Physical model of transistor includes **early feedback generator/base spreading resistance /both**.
- (d) Operation of feedback network is **unidirectional/bi-directional/omni-directional**.
- (e) For an oscillator, the source of electrical input is **D.C. supply/ac source/generated noise**.
- (f) From a circuit design point of view, more practical parameter to measure transistor gain/transistor gain with feedback/transistor gain with feedback and including source.