Resumo de Curvas e Superfícies

Sumário

Curvas, Reta tangente e Comprimento de arco

Difeomorfismo e Reparametrização

Ângulo e Curvatura

Teorema Fundamental das Curvas Planas

Curvas Regulares no \mathbb{R}^3

Teorema Fundamental das Curvas Espaciais

Superfícies Regulares

Superfícies e Atlas

Espaços topológicos \mathbb{R}^n Parte I

Espaços topológicos \mathbb{R}^n Parte II

Primeira forma fundamental

Curvas, Reta tangente e Comprimento de arco

Definição 1 Uma curva parametrizada em \mathbb{R}^n é uma aplicação $\gamma: I \to \mathbb{R}^n$ sendo $I \subset \mathbb{R}$ aberto.

Definição 2 O conjunto imagem de γ , $\gamma(I) \subset \mathbb{R}^n$ é dito o **traço** de γ .

Definição 3 (Vetor tangente) Seja $\gamma: I \to \mathbb{R}^n$ com $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$ com $\gamma_i(y)$ diferenciáveis $\forall i, i = 1 \dots n, o \ vetor$

$$\gamma'(t) = (\gamma_1'(t), \dots, \gamma_n'(t))$$

 \acute{e} chamado **vetor tangente de** γ em t

Definição 4 (Curvas regulares) Seja $\gamma(t): I \to \mathbb{R}^n$ uma curva parametrizada diferenciável. Diz-se que γ é regular, quando $\gamma'(t) \neq 0$, $\forall t \in I$.

Definição 5 (Reta tangente) Seja γ uma curva regular, então a **reta tangente** de γ no ponto $t_0 \in I$ é aquela que contém o ponto $\gamma(t)$ e é paralela ao vetor $\gamma'(t)$, ou seja

$$r(\lambda) = \gamma(t_0) + \lambda \gamma'(t_0)$$

Definição 6 (Comprimento de arco) O comprimento de arco de α , de $\alpha(a)$ até $\alpha(b)$ definido por $L_a^b(\alpha)$ é

$$L_a^b(\alpha) = \int_a^b \|\alpha'(t)\| dt$$

Definição 7 Se $\gamma:(a,b)\to\mathbb{R}^n$ é uma c.p.¹, sua **velocidade no ponto** $\gamma(t)$ é $\|\gamma'(t)\|$, e a curva é dita com **velocidade unitária** se $\|\gamma'(t)\|=1$, $\forall t\in(a,b)$ e é parametrizada por comprimento de arco.

Teorema 1 Toda curva regular pode ser reparametrizada por comprimento de arco.

Difeomorfismo e Reparametrização

Definição 8 (Difeomorfismo) Dado os conjuntos abertos $U \subset \mathbb{R}^n$ e $V \subset \mathbb{R}^n$. Uma bijeção $f: U \to V$ é dita difeomorfismo quando f e f^{-1} são diferenciáveis.

Definição 9 (Reparametrização) A curva $\beta(s)$ é dita uma reparametrização de $\alpha(t): I \subset \mathbb{R} \to \mathbb{R}^2$ regular quando dados $I_0 \subset \mathbb{R}$ e $\phi: I_0 \to I$ difeomorfismo. Temos $\beta(S) = \alpha(\phi(S))$).

Definição 10 Seja $\alpha(t):(a,b)\to\mathbb{R}^2$ r $\beta(S):(c,d)\to\mathbb{R}^2$. Então

- $\beta(S)$ é uma reparametrização positiva de α se $\phi'(S) > 0$, $\forall S$
- $\beta(S)$ é uma reparametrização negativa de α se $\phi'(S) < 0$. $\forall S$

Definição 11 Qualquer reparametrização de uma c.p. regular é regular (i.e. difeomorfismos preservam regularidade).

Propriedade 1 A função L (comprimento de arco) é um difeomorfismo.

Definição 12 Toda curva regular $\alpha: I \to \mathbb{R}^2$ admite reparametrização por comprimento de arco.

¹curva parametrizada

Ângulo e Curvatura

Definição 13 (Função Ângulo) Dada uma curva diferenciável $\gamma: I \to S^1$, onde S^1 é o círculo de \mathbb{R}^2 com centro na origem e raio 1, diz-se que $\theta: I \to \mathbb{R}$ é uma **função-ângulo** de γ , quando

$$\gamma(s) = (\cos(\theta(s)), \sin(\theta(s)), \forall s \in I$$

Definição 14 (Curvatura) Seja $\alpha: I \to \mathbb{R}$ unit-speed. Designando-se o vetor tangente de α em $s \in I$ por T(s), podemos afirmar que a curva $T(s) = I \to S^1$ admite função ângulo

$$T(s) = (cos(\theta(s)), sen(\theta(s)), \forall s \in I$$

Daí a **curvatura** de α em $s \in I$ é definida por

$$K(s) = \theta'(s) = det(\alpha'(s), \alpha''(s))$$

Teorema Fundamental das Curvas Planas

Teorema 2 (Função-ângulo diferenciável) Seja $\gamma: I \to S^1$ uma curva diferenciável. Então, γ admite uma função ângulo $\theta: I \to \mathbb{R}$, a qual é diferenciável. Além disso, toda função-ângulo de γ , a qual é diferenciável, difere de θ por uma constante.

Corolário 2.1 Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}$ e seja $\beta(s) = \alpha(\theta(s))$ a parametrização por comprimento de arco de α , a curvatura de α em $t \in I$ é $K_{\alpha}(t)$, e, por definição é a curvatura de β em $\theta^{-1}(t)$, isto é

$$K_{\alpha} := K_{\beta}(\theta^{-1}(t))$$

Definição 15 (Diedro de Frenet) Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^2$ uma curva regular parametrizada por comprimento de arco. Dado $s \in I$, o vetor N(s) = JT(s) é dito o vetor normal de α em $s \in I$. A base ortonormal de \mathbb{R}^2 formado por T(s) e N(s) é chamada **Dietro de Frenet** em s.

Definição 16 (Movimento Rígido) $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ é dita movimento rígido, quando preserva distancia, isto é, para quaisquer $p, q \in \mathbb{R}^2$

$$\|\Phi(p) - \Phi(q)\| = \|p - q\|$$

Teorema 3 Seja $\Phi: A+p_0$ um movimento rígido direto de \mathbb{R}^2 e $\alpha: I \to \mathbb{R}^2$ uma curva regular parametrizada por comprimento de arco. Então, $\beta = \Phi \circ \alpha: I \to \mathbb{R}^2$ é uma curva regular de \mathbb{R}^2 , parametrizada por comprimento de arco, tal que

$$K_{\alpha}(s) = K_{\beta}(s) \ \forall s \in I$$

Teorema 4 (Teorema Fundamental da Teoria Local das Curvas Planas) Sejam I um intervalo aberto da reta $e K : I \to \mathbb{R}$ uma função diferenciável.

- 1. Então existe uma curva diferenciavel $\alpha: I \to \mathbb{R}^2$, unit-speed, cuja função curvatura coincide com K.
- 2. Além disso, para toda $\beta: I \to \mathbb{R}^2$, unit-speed, que cumpre $K_{\beta} = K$, existe um movimento rígido $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\alpha = \Phi \circ \beta$

Curvas Regulares no \mathbb{R}^3

Definição 17 (Curvas no \mathbb{R}^3) As curvas diferenciáveis no \mathbb{R}^3 , são definidas de forma análoga ao \mathbb{R}^2 , isto é, uma curva no \mathbb{R}^3 é uma aplicação diferenciável de um intervalo I (aberto) em \mathbb{R}^3 , da forma

$$\alpha(t) = (x(t), y(t), z(t)), \ t \in I$$

Onde x, y e z são diferenciáveis, e a curva é dita **regular** quando

$$\alpha'(t) = (x'(t), y'(t), z'(t)) \neq (0, 0, 0), \ t \in I$$

Propriedade 2 De forma análoga vale para \mathbb{R}^3 que

- Comprimento de arco é invariável por reparametrização.
- Toda curva regular admite reparametrização unit-speed ($\|\alpha'(t)\| = 1$).

Definição 18 (Curvatura no \mathbb{R}^3) Dada uma curva $\alpha: I \to \mathbb{R}$ regular parametrizada por comprimento de arco, a **curvatura** de α em $s \in I$ é definida como

$$K_{\alpha}(s) = \|\alpha''(s)\|$$

Definição 19 (2-regular) Seja uma curva regular $\alpha: I \to \mathbb{R}^3$ unit-speed, e $K_{\alpha}(s) > 0, \forall s$, ou seja, $\alpha''(s) \neq 0, \forall s$. Então dizemos que α é **2-regular**.

Definição 20 (Triedro de Frenet) Para α 2-regular, seja $T(s) = \alpha'(s)$ (vetor tangente), $N(s) = \frac{\alpha''(s)}{\|\alpha''(s)\|}$ (vetor normal) e $B(s) = T(s) \times N(s)$ (vetor binormal). Desse modo estabelecemos um referencial chamado Triedro de Frenet formado pelos vetores $\{T(s), N(s), B(s)\}$, onde,

$$\left\{ \begin{array}{l} B(s) = T(s) \times N(s) \\ N(s) = B(s) \times T(s) \\ T(s) = N(s) \times B(s) \end{array} \right.$$

Definição 21 (Curvatura e Torção) Seja uma curva α 2-regular em \mathbb{R}^3 não necessariamente parametrizada por comprimento de arco, então a curvatura e a torção de α são definidas respectivamente como

$$K_{\alpha}(t) = \frac{\|\alpha''(t) \times \alpha'(t)\|}{\|\alpha'(t)\|^3}$$

$$\mathcal{T}(t) = \frac{\langle (\alpha'(t) \times \alpha''(t)), \alpha'''(t) \rangle}{\|\alpha'(t) \times \alpha''(t)\|^2}$$

Teorema 5 Seja $\alpha: I \to \mathbb{R}^3$ uma curva 2-regular unit-speed, então

$$\alpha \notin plana \iff \mathcal{T}(s) \equiv 0, \ \forall s \in I$$

Teorema Fundamental das Curvas Espaciais

Teorema 6 (Teorema Fundamental da Teoria Local das Curvas Espaciais) Sejam I um intervalo aberto, $K: I \to \mathbb{R}$ uma função positiva diferenciável e $\mathcal{T}: I \to \mathbb{R}$ uma função diferenciável

- 1. Então existe uma curva diferenciavel $\alpha: I \to \mathbb{R}^3$, unit-speed, tal que K e \mathcal{T} concedem com a curvatura e torção de α respectivamente
- 2. Além disso, $\forall \beta: I \to \mathbb{R}^3$, unit-speed, que cumpre $K_{\beta} = K$ e $\mathcal{T}_{\beta} = \mathcal{T}$ existe um movimento rígido $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\alpha(s) = \Phi(\beta(s))$

Superfícies Regulares

Definição 22 (Superfícies Regulares) Um conjunto $S \subset \mathbb{R}^3$ é dito uma superfície regular, quando é localmente difeomorfo a \mathbb{R}^2 . Mais precisamente, quando, $\forall p \in S$, exite um difeomorfismo

$$X:U\subset\mathbb{R}^2\to V\subset S$$

onde U é um aberto de \mathbb{R}^2 e V é um aberto relativo de S. A aplicação X é dita, então uma parametrização local de S em p.

Definição 23 Sendo o difeomorfismo de uma superfície da forma

$$X(u,v) = (x(u,v), y(u,v), z(u,v)), (u,v) \in V$$

definimos as derivadas parciais de X como sendo

$$X_u(u,v) = \left(\frac{\partial x}{\partial u}(u,v), \frac{\partial y}{\partial u}(u,v), \frac{\partial z}{\partial u}(u,v)\right)$$

$$X_v(u,v) = \left(\frac{\partial x}{\partial v}(u,v), \frac{\partial y}{\partial v}(u,v), \frac{\partial z}{\partial v}(u,v)\right)$$

e se X_u e X_v são L.I. então produzem um plano tangente no ponto p.

Propriedade 3 Se S é uma superfície regular temos que:

- (a) A aplicação X(u,v)=(x(u,v),y(u,v),z(u,v)) é diferenciável de C^{∞} quando $x,\ y$ e z tem derivadas parciais de todas as ordens.
- (b) Para todo $q:(u,v) \in U$, a diferencial de X em q, $dX_q:\mathbb{R}^2 \to \mathbb{R}^3$ é injetiva, nesse caso, garante-se a existência do plano tangente T_pS .

Teorema 7 (Função Inversa) Seja F diferenciável e $p \in A$ tal que dF_p é injetora. Então existe uma vizinhança $U \subset A$ de p. Tal que F(U) é aberto em \mathbb{R}^n e a restrição F_U é um difeomorfismo de U sobre F(U).

Superfícies e Atlas

Definição 24 (Definição de Superfície) O subconjunto S de \mathbb{R}^3 é uma superfície se $\forall p \in S$, existe um aberto U em \mathbb{R}^2 e um aberto W em \mathbb{R}^3 contendo p tal que $S \cap W$ é homeomorfo a U.

Definição 25 (Atlas) Uma coleção de parametrizações que cobrem uma superfície S é dita atlas de S e cada uma das parametrizações é dita uma carta.

Definição 26 (Curvas regulares enquanto subconjuntos) Diz-se que um subconjunto $C \subset \mathbb{R}^3$ é uma curva regular, quando para cada $p \in C$, existe um intervalo aberto $I \subset \mathbb{R}$ e um difeomorfismo $\alpha : I \to \alpha(I) \subset C$ em que $\alpha(I)$ é um aberto relativo de C.

Definição 27 (Valor Regular) Dados um aberto $O \subset \mathbb{R}^3$ e uma função diferenciável $\varphi : O \to \mathbb{R}$. Dizemos que $q \in \mathbb{R}$ é valor regular de φ quando $\forall p \in \varphi^-1(\{q\}) \subset O$ a derivada

$$d\varphi_p:\mathbb{R}^3\to\mathbb{R}$$

é não nula, isto é, $\nabla \varphi(p) \neq 0$

Propriedade 4 A **imagem inversa** de um valor regular de uma função diferenciável definida em um aberto do \mathbb{R}^3 , quando não vazia, é uma superfície regular.

Espaços topológicos \mathbb{R}^n Parte I

Definição 28 (Bola aberta) Dado $a \in \mathbb{R}^n$ e um número real r > 0, a **bola aberta** de centro a e raio r em \mathbb{R}^n é o conjunto

$$B(a,r) = \{x \in \mathbb{R}^n \mid ||x - a|| \le r\}$$

e respectivamente definimos bola fechada como

$$B(a,r) = \{x \in \mathbb{R}^n \mid ||x - a|| \ge r\}$$

Definição 29 (Conjunto Limitado) Um conjunto é dito limitado quando existe uma bola que o contém, ou seja,

$$\exists a \in \mathbb{R}^n \text{ e } r > 0 \text{ t.q. } X \subset B(a,r)$$

Definição 30 (Aplicação limitada) Dado um conjunto A uma aplicação $f: A \to \mathbb{R}^n$ é dita limitada quando seu conjunto imagem é limitada.

Definição 31 (Conjunto aberto) Um conjunto $A \subset \mathbb{R}^n$ é dito **aberto** quando $\forall a \in A \exists r > 0$ tal que $B(a,r) \subset A$ (e a é dito ponto interior de A).

Definição 32 (Aplicação aberta) Diz-se que uma aplicação $f: \mathbb{R}^n \to \mathbb{R}^m$ é aberta quando $\forall A \subset \mathbb{R}^n$ aberto, $f(A) \subset \mathbb{R}^m$ é aberto.

Propriedade 5 (Propriedades dos abertos) Propriedades fundamentais dos conjuntos abertos

- 1. O conjunto vazio e o espaço \mathbb{R}^n são abertos.
- 2. A intersecção de uma família finita de abertos é aberta.
- 3. A união de uma família qualquer de abertos é aberta.

Definição 33 (Espaço topológico) Um espaço topológico é um par (X,T) em que X é um conjunto e T é uma família de subconjuntos de X, chamados abertos, que satisfazem as propriedades acima. Diz-se, então, que a família T define uma topologia

Teorema 8 Uma sequência (X_k) em \mathbb{R}^n converge para $a \in \mathbb{R}^n$ se, e somente se, $\forall r > 0$, $\exists k_0 \in \mathbb{N}$ tal que se $k \geq k_0$ então $x_k \in B(a,r)$.

Definição 34 (Conjunto fechado) Um conjunto $F \subset \mathbb{R}^n$ é dito **fechado** quando seu complementar é aberto.

Propriedade 6 (Propriedades dos fechados) Propriedades fundamentais dos conjuntos fechados

- 1. O conjunto vazio e o espaço \mathbb{R}^n são fechados.
- 2. A intersecção de uma família qualquer de fechados é um conjunto fechado.
- 3. A união de uma família finita de fechados é fechado.

Definição 35 (Aplicação fechada) Diz-se que uma aplicação $f : \mathbb{R}^n \to \mathbb{R}^m$ é fechada quando leva fechados de \mathbb{R}^n em fechados de \mathbb{R}^m .

Definição 36 (Aderência) Um ponto $a \in \mathbb{R}^n$ é dito **aderente** a um conjunto $X \subset \mathbb{R}^n$ se existe uma sequência de pontos de X que convergem para a.

Definição 37 (Fecho) O **fecho** de X, denotado por \overline{X} , é o conjunto formado por todos os pontos de \mathbb{R}^n que são aderentes a X.

Teorema 9 $F \subset \mathbb{R}^n$ é fechado $\iff \overline{F} = F$.

Definição 38 (Bordo) A fronteira (ou bordo) de um conjunto $X \subset \mathbb{R}^n$ é o conjunto $\partial X = \overline{X} \cap \overline{\mathbb{R}^n - X}$.

Espaços topológicos \mathbb{R}^n Parte II

Definição 39 (Aberto relativo) Sejam X subconjunto de \mathbb{R}^n e $A \subset X$. Diz-se que A é aberto relativo a X ou aberto relativamente à X quando existe um aberto $U \subset \mathbb{R}^n$ tal que $A = U \cap C$.

Definição 40 (Cisão) Uma cisão de um conjunto $X \subset \mathbb{R}^n$ é uma decomposição do mesmo em dois conjuntos disjuntos que são ambos, abertos em X, isto é, $A, B \subset \mathbb{R}^n$ tais que

- $X = A \cup B$
- $A \cap B = \emptyset$
- A e B abertos em X

Definição 41 (Conexidade) Um conjunto $X \subset \mathbb{R}^n$ é dito **conexo** se a única cisão que admite é a trivial $(X = X \cup \emptyset)$ caso contrario é dito desconexo.

Definição 42 (Homeomorfismo) Diz-se que dois espaços (X_1, T_1) e (X_2, T_2) . São **homeomorfos** quando existe bijeção $\varphi: X_1 \to X_2$ tal que para quaisquer abertos $A_1 \in T_1$ e $A_2 \in T_2$ tem-se que $\varphi(A_1) \in T_2$ e $\varphi^{-1}(A_2) = T_1$. Logo φ é dito **homeomorfismo**.

Definição 43 (Continuidade) Dados $X,Y \subset \mathbb{R}^n$, $f: X \to Y$ é continua em $a \in X$ se $\forall \varepsilon > 0$, $\exists \delta > 0$ tal que $x \in X$ e $||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \varepsilon$.

Teorema 10 Dados $X \subset \mathbb{R}^n$ e $Y \subset \mathbb{R}^m$ uma bijeção $f: X \to Y$ é um homeomorfismo se e só se f e f^{-1} são continuas.

Definição 44 (Isomorfismo) \acute{E} uma aplicação que preserva uma estrutura e pode ser revertida com uma aplicação inversa.

Primeira forma fundamental

Teorema 11 (Teorema da função inversa) Seja $F:U\subset\mathbb{R}^n\to\mathbb{R}^m$ diferenciável e $dF_p:\mathbb{R}^n\to\mathbb{R}^m$ isomorfismo. Então, existem abertos $V\subset U$ e $W\subset F(U)$, tais que se $p\in V$, então $F(p)\in W$ e $F|_v:V\to W$ é um difeomorfismo.

Definição 45 (Vetor tangente) Dado um ponto p de uma superfície regular S, diz-se que $w \in \mathbb{R}^n$ é um **vetor tangente** a S em p, se existe uma curva $\alpha : (-\varepsilon, \varepsilon) \to S$, $\varepsilon > 0$, tal que, $\alpha(0) = p$ e $\alpha'(0) = w$.

Teorema 12 (Primeira forma fundamental) $Seja \ S \ uma \ superficie \ regular \ e \ p \in S.$ A primeira forma fundamental $de \ S \ em \ p$

$$I_n:T_nS\to\mathbb{R}$$

é a forma quadrática associada à restrição do produto interno canônico de \mathbb{R}^3 ao plano tangente de S em p, T_pS , isto é

$$I_n(w) = \langle w, w \rangle^2 = ||w||^2, \ w \in T_n S$$

Dada uma parametrização $X:U\subset\mathbb{R}^2\to X(U)\subset S$ de S, as funções

$$E(u,v) = \langle X_u(u,v), X_u(u,v) \rangle$$

$$F(u,v) = \langle X_u(u,v), X_v(u,v) \rangle$$

$$G(u,v) = \langle X_v(u,v), X_v(u,v) \rangle$$

São os coeficientes da primeira forma fundamental de S relativos a X, isto é, a matriz de $I_{X(u,v)}$ com respeito a base $\{X_u, X_v\}$, de $T_{X(u,v)}S$

$$\begin{bmatrix} E & F \\ F & G \end{bmatrix}$$

 $E \forall w = aX_u(u,v) + bX_v(u,v) \in T_{X_t(u,v)}S \text{ tem-se}$

$$I_{X_{\ell}(u,v)}(w) = a^2 E(u,v) + 2abF(u,v) + b^2 G(u,v)$$

Teorema 13 (Área) Seguindo a primeira forma fundamental a área de uma superfície S um certo conjunto D é dada por

$$A_S(D) = \int_D \sqrt{EG - F^2} du dv$$

Segunda forma fundamental

Definição 46 (Campo) Dada uma parametrização regular S, chama-se **campo** em S toda aplicação $f: S \to \mathbb{R}^3$

Propriedade 7 Um campo é dito:

- unitário, se $||f(p)|| = 1, \forall p \in S$.
- tangente, se $f(p) \in T_p S$, $\forall p \in S$.
- normal, se $f(p) \in T_p S^{\perp}$, $\forall p \in S$.

Definição 47 (vetor normal) Sendo S uma superfície, seja

$$X: U \subset \mathbb{R}^2 \to X(U) \subset S$$

 $\forall p \in S \text{ seja } q = X^{-1}(p), \text{ podemos então definir o vetor normal em } S \text{ no ponto } p \text{ como } N : X(U) \to \mathbb{R}^2,$ como

$$N(p) = \frac{X_u(q) \times X_v(q)}{\|X_u(q) \times X_v(q)\|}$$

Definição 48 (Superfície orientável) Uma superfície regular S é orientável quando se pode definir um campo normal unitário e diferenciável.

Definição 49 (Atlas coerente) Dada duas parametrizações de A, X e Y e p no conjunto imagem de ambas, então $Y^{-1} \circ X$ tem determinante jacobiano maior que 0 em $X^{-1}(p)$.

Teorema 14 Uma superfície regular S é orientável se, e só se, admite um atlas coerente.

Definição 50 (Aplicação normal de Gauss) Seja S uma superfície regular orientável, N campo normal unitário diferenciável em S, isto é, $||N(p)|| = 1, \forall p \in S$

$$N: S(superficie) \rightarrow E_1(esfera\ de\ raio\ 1)$$

é dita uma aplicação normal de Gauss, $\forall p \in S, T_pS = \{N(p)\}^{\perp} = T_{N(p)}E_1$, temos dN_p é um operador linear de T_pS .

Teorema 15 (Segunda forma fundamental) Seja S uma superfície regular orientável, <math>N aplicação normal de Gauss de S

$$I_p(w)\langle -dN_pw, w\rangle, \ w\in T_pS$$

Dado uma parametrização

$$\alpha: (-\varepsilon, \varepsilon) \to V \subset S$$

 $tal \ que \ \alpha(0) = p \ e \ \alpha'(0) = w, \ temos \ que, \ \forall s \in (-\varepsilon, \varepsilon), \ \langle N(\alpha(s)), \alpha'(s) \rangle = 0, \ ent \tilde{a}o$

$$\langle -dN_p w, w \rangle = \langle N(p), \alpha''(0) \rangle$$

e os coeficientes da segunda forma são

$$e(u, v) = \langle -dN_p X_u, X_u \rangle = \langle N \circ X, X_u u \rangle$$

$$f(u, v) = \langle -dN_p X_u, X_v \rangle = \langle N \circ X, X_u v \rangle$$

$$g(u,v) = \langle -dN_p X_v, X_v \rangle = \langle N \circ X, X_v v \rangle$$