Chapter 1

Basic Notions

1. Vector Spaces

Exercise 1.1. Let $\mathbf{x} = (1,2,3)^{\mathrm{T}}$, $\mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}$ and $\mathbf{z} = (4,2,1)^{\mathrm{T}}$. Compute $2\mathbf{x}$, $3\mathbf{y}$, $\mathbf{x} + 2\mathbf{y} - 3\mathbf{z}$.

Proof. Little calculation reveals that

$$2\mathbf{x} = \begin{pmatrix} 2\\4\\6 \end{pmatrix}, \quad 3\mathbf{y} = \begin{pmatrix} 3y_1\\3y_2\\3y_3 \end{pmatrix}, \quad \mathbf{x} + 2\mathbf{y} - 3\mathbf{z} = \begin{pmatrix} 2y_1 - 11\\2y_2 - 4\\2y_3 \end{pmatrix}$$

Exercise 1.2. Which of the following sets (with natural addition and multiplication by a scalar) are vector spaces? Justify your answers.

1. The set of all continuous functions on the interval [0,1];

2. The set of all non-negative functions on the interval [0,1];

3. The set of all polynomials of degree *exactly n*;

4. The set of all symmetric $n \times n$ matrices, i.e. the set of matrices $A = \{a_{j,k}\}_{j,k=1}^n$ such that $A^T = A$.

Proof.

1. Let C[0,1] be the set of all continuous functions on [0,1]. For any $f,g\in C[0,1]$ and $\alpha\in\mathbb{R}$, we define

$$(f+g)(x) := f(x) + g(x)$$
 and $(\alpha f)(x) := \alpha \cdot f(x)$

for each $x \in [0,1]$. Therefore, $(\mathcal{C}[0,1],+,\cdot)$ is closed under addition and scalar multiplication. It's immediate to see that all the eight properties of vector space are all satisfied, that is

$$\circ f + g = g + f$$

$$\circ f + (g + h) = (f + g) + h$$

$$\circ f + 0 = f$$

$$\circ f + (-f) = 0$$

$$\circ 1f = f$$

$$\circ \alpha(\beta f) = (\alpha \beta)f$$

$$\circ (\alpha + \beta)f = \alpha f + \beta f$$

$$\circ \alpha(f + g) = \alpha f + \beta g$$

Note that the function $0 \in C[0,1]$ such that 0(x) = 0 for each $x \in [0,1]$.

2. Let \mathcal{B} is the set of all non-negative functions on [0,1]. Then $(\mathcal{B},+\cdot)$ is not a vector space because it's not closed under scalar multiplication, i.e. if $f \in \mathcal{B}$, hence f > 0 yet

$$-f = (-1) \cdot f < 0.$$

(Even if we restrict the scalar be to positive real numbers, this set still won't be a vector space, because it fails to have an inverse.)

- 3. Let \mathcal{P} be the set of all polynomials of degree exactly n, then $(\mathcal{P}, +, \cdot)$ is *not* a vector space, because the additive indentity is the polynomial 0. However, $0 \notin \mathcal{P}$.
- 4. Let $\operatorname{sym}(n)$ be the set of all symmetric $n \times n$ matrices. The addition and scalar multiplication are defined as an *entrywise* operations. Hence, $\operatorname{sym}(n)$ is closed under (+) and (\cdot) . The additive indentity is the matrix

$$\mathbf{0} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & & \ddots & \\ 0 & 0 & \cdots & 0 \end{pmatrix} \in \operatorname{sym}(n).$$

We could easily see that all the eight properties of vector spaces are all satisfied.

Exercise 1.3. True or false:

- 1. Every vector space contains a zero vector; (True.)
- 2. A vector space can have more than one zero vector; (**False.** The zero vector is unique.)
- 3. An $m \times n$ matrix has m rows and n columns; (**True.**)
- 4. If f and g are polynomials of degree n, then f + g is also a polynomial of degree n. (**False.** consider t^n and $t t^n$.)
- 5. If f and g are polynomials of degree atmost n, the f+g is also a polynomial of degree atmost n. (**True.**)

3

Exercise 1.4. Prove that a zero vector **0** of a vector space *V* is unique.

Proof. Suppose that **a** and **b** are the zero vectors of V. From the *Axioms of Vector Space*, we obtain that

$$\mathbf{a} = \mathbf{a} + \mathbf{b}$$
 (b is the zero vector)
= $\mathbf{b} + \mathbf{a}$ (commutitativity)
= \mathbf{b} (a is the zero vector)

Hence, a zero vector of a vector space is unique, and we usually denote it by $\mathbf{0}$.

Exercise 1.5. What is the zero matrix of the space $M_{2\times 3}$?

Answer. In the space $M_{2\times 3}$, the zero matrix is

$$\mathbf{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercise 1.6. Prove that the additive inverse of a vector space is unique.

Proof. Let \mathbf{a} be an arbitrary vector. Assume the \mathbf{a} has two inverses, namely \mathbf{x} and \mathbf{y} . Hence

$$\begin{aligned} x &= x + 0 \\ &= x + (a + y) \\ &= (x + a) + y \\ &= 0 + y \\ &= y. \end{aligned} \qquad \begin{aligned} &(y \text{ is an inverse}) \\ &\text{(associativity)} \\ &(x \text{ is an inverse}) \end{aligned}$$

Therefore, the inverse of any vector $\mathbf{a} \in V$ is unique, and is usually denoted by $-\mathbf{a}$.

Exercise 1.7. Prove that $0\mathbf{v} = \mathbf{0}$ for any vector $\mathbf{v} \in V$.

Proof. Let $\mathbf{v} \in V$ and \mathbf{b} is an inverse of $0\mathbf{v}$. Therefore,

$$0 = 0\mathbf{v} + b$$

$$= (0+0)\mathbf{v} + b$$

$$= (0\mathbf{v} + 0\mathbf{v}) + b \qquad \text{(distributivity)}$$

$$= 0\mathbf{v} + (0\mathbf{v} + b) \qquad \text{(associativity)}$$

$$= 0\mathbf{v} + \mathbf{0} \qquad \text{(b is an inverse of } 0\mathbf{v})$$

$$= 0\mathbf{v}$$

for any $\mathbf{v} \in V$.

Exercise 1.8. Prove that for any vector \mathbf{v} its additive inverse $-\mathbf{v}$ is given by $(-1)\mathbf{v}$.

Proof. As proved in the above exercise for any $\mathbf{v} \in V$,

$$\mathbf{0} = 0\mathbf{v} = (1-1)\mathbf{v} = \mathbf{v} + (-1)\mathbf{v}$$

where the last equallity derives from the distributive property. Because $-\mathbf{v}$ is the inverse of \mathbf{v} , then

$$-\mathbf{v} = -\mathbf{v} + \mathbf{0}$$

$$= -\mathbf{v} + [\mathbf{v} + (-1)\mathbf{v}]$$

$$= (-\mathbf{v} + \mathbf{v}) + (-1)\mathbf{v}$$

$$= (-1)\mathbf{v}$$

as desired.

2. Linear Combination, bases

Exercise 2.1. Find the basis in the space of 3×2 matrices $M_{3\times 2}$.

Answer. The basis of $M_{3\times 2}$ has six vetors,

$$\mathbf{e_1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{e_2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{e_3} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix},$$

$$\mathbf{e_4} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{e_5} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{e_6} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Exercise 2.2. True or false:

- a) Any set containing a zero vector is linearly dependent;
- b) A basis must contain 0;
- c) subsets of linearly dependent sets are linearly dependent;
- d) subsets of linearly independent sets are linearly independent;
- e) if $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n = 0$ then all scalars α_k are zero.

Answer.

a) **True.** because **0** can be represented as a linear combination of the other vectors (simply put all the scalars to 0).

5

- b) No. if so, they must be linearly dependent, which is not a base.
- c) No. Take for example the system of linearly dependent $\{e_1, e_2, e_3\}$ where $e_1 = (1,0)$, $e_2 = (0,1)$ and $e_3 = (1,1)$. The subset $\{e_1, e_2\}$ is a basis, which is clearly not linearly dependent.
- d) True. Suppose that the system $\{v_1, \ldots, v_p\}$ is a subset of the linearly independent system $\{v_1, \ldots, v_p, \ldots, v_n\}$. Let α_k the real numbers such that $\alpha_1 v_1 + \cdots + \alpha_p v_p = 0$ hence

$$\alpha_1 \mathbf{v_1} + \dots + \alpha_p \mathbf{v_p} + 0 \mathbf{v_{p+1}} + \dots + 0 \mathbf{v_n} = \mathbf{0}.$$

Because the system $\{\mathbf{v_1},\ldots,\mathbf{v_p},\ldots,\mathbf{v_n}\}$ is linearly independent, therefore all the scalars $\alpha_k=0$. Thus, the system $\{\mathbf{v_1},\ldots,\mathbf{v_p}\}$ is also linearly independent.

e) No. It's true only when $\{v_1, \ldots, v_n\}$ are linearly independent.

Exercise 2.3. Recall, that a matrix is called *symmetric* if $A^{T} = A$. Write down a basis in the space of *symmetric* 2×2 matrices (there are many possible answers). How many elements are there in the basis.

Answer. A basis of of this space is $\{e_1, e_2, e_3\}$ where

$$\mathbf{e_1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{e_2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{e_3} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

There are 3 vectors in this basis.

Exercise 2.4. Write down a basis for the space of

- a). 3×3 symmetric matrices;
- b). $n \times n$ symmetric matrices;
- c). $n \times n$ antisymmetric matrices.

Answer.

a). the basis of 3×3 matrices contains 6 vectors, namely

$$\mathbf{e_1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{e_2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{e_3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{e_4} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{e_5} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad \mathbf{e_6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

b). For the $n \times n$ symmetric matrices, we are going to prove that the basis of this space contains $\frac{n(n+1)}{2}$ vectors. It's easy to see that this is true for n=2 and n=3. Let's assume this is true for some integer n. Therefore, the numbers of vectors in a basis of an $(n+1) \times (n+1)$ symmetric matrices is

Exercise 2.5. Let a system of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ be linearly independent but not generating. Show that it is possible to find a vector \mathbf{v}_{r+1} such that the system $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}$ is linearly independent.

Proof. Because the system $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ is not generating, therefore there exists a vector \mathbf{v}_{r+1} such that \mathbf{v}_{r+1} cannot be represented as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$. Let α_i be the scalars such that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_r \mathbf{v}_r + \alpha_{r+1} \mathbf{v}_{r+1} = \mathbf{0}$$
 (1.1)

Now we have to prove that all the scalars are all zero. If $\alpha_{r+1} \neq 0$ then

$$\mathbf{v}_{r+1} = -\sum_{i=1}^{r} \frac{\alpha_i}{\alpha_{r+1}} \cdot \mathbf{v}_i,$$

meaning \mathbf{v}_{r+1} is the linear combination of the other vectors, a contradiction. Hence α_{r+1} must equals to zero. So the r+1 term in the equation (1.1) vanishes. And because the system $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ is linearly independent, all the scalars $\alpha_i = 0$ for all $i = 0, 1, \ldots, r$. Thus, the system

$$\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r, \mathbf{v}_{r+1}$$

is also linearly independent.

Exercise 2.6. Is it possible that vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$ are linearly dependent, but the vectors $\mathbf{w_1} = \mathbf{v_1} + \mathbf{v_2}$, $\mathbf{w_2} = \mathbf{v_2} + \mathbf{v_3}$ and $\mathbf{w_3} = \mathbf{v_3} + \mathbf{v_1}$ are linearly *independent*.

Proof. It's not possible, and we're going to prove this assertion via contradiction. Assume that there are such vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ satisfying the above conditions. Then there are numbers $x, y, z \in \mathbb{R}$ such that

$$|x| + |y| + |z| > 0$$
 and $x\mathbf{v}_1 + y\mathbf{v}_2 + z\mathbf{v}_3 = \mathbf{0}$.

By letting

$$a = x + y - z$$
, $b = y + z - x$, $c = z + x - y$

we obtain that

$$a\mathbf{w}_1 + b\mathbf{w}_2 + c\mathbf{w}_3 = (x\mathbf{w}_1 + y\mathbf{w}_1 - z\mathbf{w}_1) + (y\mathbf{w}_2 + z\mathbf{w}_2 - x\mathbf{w}_2) + (x\mathbf{w}_3 + z\mathbf{w}_3 - y\mathbf{w}_3)$$

= $2x\mathbf{v}_1 + 2y\mathbf{v}_2 + 2z\mathbf{v}_3$
= $\mathbf{0}$.

2.. LINEAR COMBINATION, BASES

Since $\{\mathbf w_1, \mathbf w_2, \mathbf w_3\}$ are linearly independent, we must have a=b=c=0. Hence

$$\begin{cases} x+y-z=0\\ y+z-x=0\\ z+x-y=0 \end{cases}$$

adding all the 3 eqations, x+y+z=0. Substituting back to the system of eqations above we get

$$x = y = z = 0$$

which contradicts to the fact that |x| + |y| + |z| > 0.

7