1 Distributions

Distribution	Bernoulli	Binomial	Geometric	Poisson	Exponential	Uniform	Normal
PDF	$\theta^x (1-\theta)^{1-x}$	$\binom{n}{k}\theta^k(1-\theta)^{n-k}$	$(1-\theta)^{x-1}\theta$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\frac{1}{\lambda}e^{\frac{-x}{\lambda}}$	$\frac{1}{b-a}$	$\frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$
E[X]	θ	$n\theta$	$\frac{1}{\theta}$	λ	λ	$\frac{a+b}{2}$	μ
Var[X]	$\theta(1-\theta)$	$n\theta(1-\theta)$	$\frac{1-\theta}{\theta^2}$	λ	λ^2	$\frac{(b-a)^2}{12}$	σ^2

2 Hypothesis Testing

H_0	H_A	Test Statistic	Rejection Region
	$\mu_1 < \mu_2$		$Z < -z_{\alpha}$
$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$Z = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$	$Z > z_{\alpha}$
	$\mu_1 \neq \mu_2$	$(\text{known }\sigma)$	$ Z > z_{\alpha/2} $
	$\mu_1 < \mu_2$		$t < -t_{\alpha}$
$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$t = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{\sqrt{s_1^2 / n_1 + s_2^2 / n_2}}$	$t > t_{\alpha}$
	$\mu_1 \neq \mu_2$	$(\text{unknown } \sigma)$	$ t > t_{n-1,\alpha/2} $
	$\pi_1 < \pi_2$		$Z < -z_{\alpha}$
$\pi_1 = \pi_2$	$\pi_1 > \pi_2$	$Z = \frac{(\hat{\pi}_1 - \hat{\pi}_2) - (\pi_1 - \pi_2)}{\sqrt{\frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}}}$	$Z > z_{\alpha}$
	$\pi_1 \neq \pi_2$	V 11 12	$ \mathbf{Z} > \mathbf{z}_{\alpha/2} $