LA FISICA DELLA VELA A GENTLE INTRODUCTION

Andrea Vitaletti

DISCLAIMER

- I'm an engineer ... sorry for that ③
- I'm a modest sailor ... sorry also for that ③
- A lot of simplifications
- I tried to credit the work by others on links. If something is missing, first of all I'm really sorry, then please point it out

EVOLUZIONE

source and source

LE ANDATURE

COMINCIAMO DA UN TRENO TRAINATO DA UNA FUNE!

Next slides inspired by this video

CHI SONO I BINARI?

LA FUNE?

VENTO IN POPPA

AL PIÙ LA VELOCITÀ DEL VENTO

AL PIÙ LA VELOCITÀ DEL VENTO

Forza minore:

- La vela intercetta meno vento
- Forza perpendicolare alla vela non parallela al moto

PIÙ DELLA VELOCITÀ DEL VENTO

Il vento apparente genera forza propulsiva

LA VELA È UN'ALA

ALA ESPOSTA AD UN FLUSSO D'ARIA

L'ALA DEVIA IL FLUSSO

LA PORTANZA (LIFT) PER LA NASA

Lift occurs when a moving flow of gas is turned by a solid object. The flow is turned in one direction, and the lift is generated in the opposite direction, according to Newton's Third Law of action and reaction. Because air is a gas and the molecules are free to move about, any solid surface can deflect a flow. For an aircraft wing, both the upper and lower surfaces contribute to the flow turning. Neglecting the upper surface's part in turning the flow leads to an incorrect theory of lift.

- NIENTE FLUIDO (ARIA), NIENTE PORTANZA
- NIENTE MOVIMENTO, NIENTE PORTANZA

ISAAC NEWTON (1642-1726)

SPOSTARE IL FLUSSO

La portanza è la forza generata dallo spostamento del flusso d'aria

$$F = ma = mrac{(V_1 - V_0)}{t_1 - t_0}$$

LO ABBIAMO SPERIMENTATO DA PICCOLI

SPERIMENTIAMOLO DA GRANDI

QUALCHE APPROSSIMAZIONE

Nota che: $\frac{\Delta V}{V} \simeq \frac{\Delta h}{c}$

$$m = \rho \mathrm{Vol} = \rho c L v \Delta t = \rho A v \Delta t$$

Quindi: $F=ma=mrac{\Delta V}{\Delta t}\simeq
ho Av\Delta trac{rac{v\Delta h}{c}}{\Delta t}=
ho v^2Arac{\Delta h}{c}$

NIENTE MALE

$$F =
ho v^2 A rac{\Delta h}{c}$$

- ρ è la densita dell'aria
- $ullet v^2$ è il quadrato della velocità
- A è la superficie dell'ala
- $\frac{\Delta h}{c}$ è l'angolo d'attacco

HYDROFOIL: LA VELA SOTTO!!!

LA DENSITÀ!

$$F =
ho v^2 A rac{\Delta h}{c}$$

Materiale	Densità (kg/m³)
Abete	700
Acciaio	7860
Acqua a 0 °C	999,8
Acqua a 4 °C	1000
Acqua a 20 °C	998,2
Acqua di mare	1025
Alcool etilico	794
Alluminio	2600-2750
Anidride carbonica	1,98
Argento	10500
Aria	1,293
Basalto	2800-2950
Benzina	700-720
Calcestruzzo	2200-2600
Carta	970
Cenere	900
Cera (paraffina)	950
Cemento Portland	3150
Diamante	3550
Elio	0,179
Ferro	7880
Gesso	2300
Ghiaccio a 0 °C	917
Iridio	22610
Latte a 15 °C	1029-1034
Marmo	2500-2800
Mercurio	13590

DANIEL BERNOULLI (1700-1782)

PRESSIONE STATICA E DINAMICA

ECCO PERCHÈ!

$$p_t = p_s + p_d = costante$$

PROBABILMENTE LO USATE SPESSO!

UN SEMPLICE ESEMPIO

IN SINTESI

GIOCHIAMOCI

UN ERRORE CONSOLIDATO

"Longer Path" or "Equal Transit" Theory

SVELIAMO IL MISTERO

Airflow across a wing

I DUE FLUSSI NON ARRIVANO INSIEME!

LA REALTÀ È MOLTO COMPLESSA

XFlow Simulations of Sailing Manoeuvers

BASTA BERNOULLI?

DEFINIZIONE DI PORTANZA DELLA NASA

Lift occurs when a moving flow of gas is turned by a solid object. The flow is turned in one direction, and the lift is generated in the opposite direction, according to Newton's Third Law of action and reaction... any solid surface can deflect a flow. For an aircraft wing, both the upper and lower surfaces contribute to the flow turning. Neglecting the upper surface's part in turning the flow leads to an incorrect theory of lift.

PORTANZA E ANGOLO DI ATTACCO

EFFETTO COANDA

The Coanda Effect Used to Blow Out Candle

HENRY COANDA (1886-1972)

EFFETTO COANDA

EFFETTO COANDA SULL'ALA

... ecco perchè ha un profilo arrotondato!

A QUESTO PUNTO NON RESTA CHE COSTRUIRE UN ALA

