Математический анализ 1.

Направление 38.03.01 Экономика

Семинар 5. Эквивалентность функций и их порядки малости

1. Используя таблицы эквивалентностей, вычислите пределы:

$$(1) \lim_{x \to 0} \frac{x^3 \cdot \ln(1 + 3\sqrt[3]{x}) \cdot \sqrt[6]{\sqrt{1 + 128x^{10}} - 1}}{(1 - \cos(x^2)) \cdot (2^x - 1)}; \quad (2) \lim_{x \to 2} \frac{(\sqrt{x + 2} - 2)\ln(x^2 - 3)}{\sin(x - 2)\sin(\pi x)};$$

(3)
$$\lim_{x \to 0} \frac{\cos(2x) - \cos(3x)}{x[\sin(4x) - \sin(2x)]}$$

2. Найдите такие числа A и α , что

$$\sqrt{4x^3 + 20x^2 + x - 1} - \sqrt{4x^3 - 6x^2 + 3x + 6} \sim Ax^{\alpha}$$
 при $x \to \infty$.

- 3. Чему равен предел $\lim_{x\to 0} \frac{o(x^4)}{x^3}$?
- 4. Можно ли вычислить предел $\lim_{x\to 0} \frac{o(x)}{x^3}$?
- 5. Упростите выражение $1 2x + x^2 + x^3 x^6 + o(x^2)$:
 - (1) при $x \to 0$; (2) при $x \to \infty$.
- 6. При $x \to 0$ упростите выражение:

$$(1) [1+x+o(x^2)][1+2x^2+o(x^2)][1+3x^2+o(x^2)]; (2) [1+x+x^2+o(x^2)][2+2x+3x^2+o(x^2)].$$

7. Используя эквивалентности и порядки малости, вычислите пределы:

$$(1) \lim_{x \to 0} \frac{\sin(2x) - \ln(1+3x)}{\sqrt{1+3x} - \sqrt[3]{1+4x}}; \ (2) \lim_{x \to 0} \frac{\cos(x)\cos(2x)\cos(4x) - 1}{\sin(x)\sin(3x)}; \ (3) \lim_{x \to 1} \frac{\sqrt[3]{x+7} - \sqrt{x+3}}{\ln(1+x) - \ln(1+x^2)}.$$

8. С помощью техники o-малых решите задачи:

(1)
$$\lim_{x\to 0} \frac{(1+nx)^m - (1+mx)^n}{x}$$
, $m,n\in\mathbb{N}$; (2) задачу 2.

9. Используя эквивалентности и порядки малости, вычислите пределы:

(1)
$$\lim_{x \to 0} \frac{\sqrt[3]{1 + \frac{x}{3}} - \sqrt[4]{1 + \frac{x}{4}}}{1 - \sqrt{1 - \frac{x}{2}}};$$
 (2) $\lim_{x \to 0} \frac{\sqrt[m]{1 + ax} \sqrt[n]{1 + bx} - 1}{x}, a, b \in \mathbb{R}, m, n \in \mathbb{N};$

(3)
$$\lim_{x\to 0} \frac{1-\cos x \cos(2x)\cos(3x)}{1-\cos x}$$
; (4) $\lim_{x\to \frac{\pi}{3}} \frac{\operatorname{tg}^3 x - 3\operatorname{tg} x}{\cos(x+\frac{\pi}{6})}$; (5) $\lim_{x\to 0} \frac{\sqrt{\cos x} - \sqrt[3]{\cos x}}{\sin^2 x}$.

10. Покажите, что f(x) – бесконечно малая при $x\to 0$ функция, и найдите такую функцию g(x) вида Ax^n , что $f(x)\sim g(x)$ при $x\to 0$:

(1)
$$f(x) = 3\sin^2 x^2 - 5x^5$$
; (2) $f(x) = \sqrt{4 - x^4} + x^2 - 2$; (3) $f(x) = \sin(\sqrt{x^2 + 9} - 3)$.

11. Покажите, что f(x) – бесконечно большая при $x \to x_0$ функция, и найдите такую функцию g(x) вида Ax^n , что $f(x) \sim g(x)$ при $x \to x_0$:

1

(1)
$$f(x) = \frac{x^5}{2x^2 + x + 1}$$
, $x_0 = \infty$; (2) $f(x) = \sqrt{x^4 + x + 1}$, $x_0 = \infty$;

(3)
$$f(x) = \frac{\sqrt{x}}{\sqrt{x+2} - 2\sqrt{x+1} + \sqrt{x}}, x_0 = +\infty.$$

- 12. Для каждого из следующих выражений определите (с обоснованием), является ли оно верным или нет:
 - (1) $x^2 = o(x)$ при $x \to 0$; (2) $x^2 = o(x)$ при $x \to \infty$;
 - (3) $x = o(x^2)$ при $x \to 0$; (4) $x = o(x^2)$ при $x \to \infty$;
 - (5) $\sqrt{x^2 + x} x = o(1)$ при $x \to +\infty$; (6) $\sqrt{x^2 + x} x = o(1)$ при $x \to -\infty$;
 - (7) $\ln(1+e^x) = o(1)$ при $x \to +\infty$; (8) $\ln(1+e^x) = o(1)$ при $x \to -\infty$.
- 13. Найдите функцию g(x) вида Ax^n такую, что $f(x) \sim g(x)$ при $x \to x_0$:
 - (1) $f(x) = \frac{x^2 \arctan x}{x^5 + x^2 + 1}$, $x_0 = 0$, $x_0 = +\infty$;
 - (2) $f(x) = \sqrt{x^2 + 1} x$, $x_0 = +\infty$, $x_0 = -\infty$.
- 14. Используя технику замены на эквивалентные величины, найдите пределы:

(1)
$$\lim_{x\to 0} \frac{\sin^2(3x)\ln(1-\sin(2x))}{(1-\cos(4x))(2^x-1)}$$
; (2) $\lim_{x\to 1} \frac{(\sqrt{3+x}-2)\sin(\pi x)}{(\log_2(x)-1)(2^x-2)}$.

15. Используя технику порядков малости, найдите пределы:

(1)
$$\lim_{x\to 0} \frac{\sin(x^2) - \cos x + 1}{x(\sqrt{1+4x} - \ln(1+3x) - 1)};$$
 (2) $\lim_{x\to 0} \frac{(\sqrt[4]{1+4x} - \sqrt[3]{1+6x})(e^{x^3} - 1)}{\sqrt{1+x^4} - \cos^2(x^2)};$

(3)
$$\lim_{x\to 5} \frac{\sqrt{x-1} - \sqrt[3]{x+3}}{\log_5(x) - 1}$$
; (4) $\lim_{x\to 0} \frac{\sqrt[4]{1+x^2} + x^3 - 1}{\ln\cos x}$;

(5)
$$\lim_{x \to 0} \frac{(\sin 2x - 2 \operatorname{tg} x)^2 + (1 - \cos 2x)^3}{\operatorname{tg}^7 6x + \sin^6 x}.$$