

Product Preview TI DN 2509930 Rev A June 2008

DLP® Discovery™ .55 XGA 2xLVDS 12° Type X DMD

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

In no event shall TI be liable for any special, incidental, consequential or indirect damages however caused, arising in anyway from the sale or use of the TI products. Products purchased from a TI authorized distributor are subject to the distributor's terms and conditions of sale.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components unless otherwise stated, this documentation and its intellectual content is copyrighted or provided under license and may not be distributed in any form without the express written permission of Texas Instruments Incorporated.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("critical applications"). TI semiconductor products are not designed, authorized, or warranted to be suitable for use in life–support devices or systems or other critical applications. Inclusion of TI products in such applications is understood to be fully at the customer's risk.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Table 1. Revision History					
Rev	Date	Section	Summary Of Changes		
Α	xx/xx/2006	All	Initial Release		

Table 2. Product Description						
DMD Part #	Mechanical ICD	Description				
*1076N631cW	2507499	0.55 inch diagonal spatial light modulator of aluminum micro-mirrors. Pixel array size is (1024 x 768) in a Square Grid Pixel Arrangement. Low Voltage Differential Signaling (LVDS) data interface, Double Data Rate (DDR). Pixel Architecture is SPD with DarkChip2™.				

Figure 1. Part Number Description

Device Status:

A lead alpha character of "X" implies the device has been released for restricted sales only. When no lead alpha character (*) is present, the device has been released for unrestricted sales.

	Table 3. Pin Descriptions				
Pin Name	Description	Type			
D_AN(15:0)	LVDS pair for Data Bus A (15:0)	i			
D_AP(15:0)	EVDS pail for Data Bus A (15.0)	'			
D_BN(15:0)	LVDS pair for Data Bus B (15:0)	ı			
D_BP(15:0)					
DCLK_AN DCLK_AP	LVDS pair for Data Clock A	I			
DCLK_BN					
DCLK_BP	LVDS pair for Data Clock B	l			
SCTRL_AN	a LVDC pair for Carial Control (Cyro) A				
SCTRL_AP	LVDS pair for Serial Control (Sync) A	ı			
SCTRL_BN	LVDS pair for Serial Control (Sync) B	1			
SCTRL_BP	- EVBO pair for contain (cyrro) B	·			
	Non Josia compatible Mirror Dies Deset signals				
	 Non-logic compatible Mirror Bias Reset signals Connected directly to the array of pixel mirrors 				
MBRST(15:0)	Hard to half an advance the advance	I			
	 Used to noid or release the mirrors Bond Pads connect to an internal pull-down resistor 				
	Data Bandwidth Mode Select				
MODE_A	Bond Pad connects to an internal pull-down circuit	1			
111002_71	Refer to for DLP® system board connection information	•			
	Data Bandwidth Mode Select				
MODE_B	Bond Pad connects to an internal pull-down circuit				
	Refer to for DLP® system board connection information				
PWRDNZ	Active Low Device Reset				
FVVNDINZ	Bond Pad connects to an internal pull-down circuit	I			
SCPCLK	Serial Communications Port Clock Input				
JOI OLIK	Bond Pad connects to an internal pull-down circuit	'			
	Serial Communications Port Data Input				
SCPDI	Synchronous to the rising-edge of SCPCLK	I			
	Bond Pad connects to an internal pull-down circuit				
	Serial Communications Port Active Low Enable				
SCPENZ	Synchronous to the rising-edge of SCPCLK	l			
00000	Bond Pad connects to an internal pull-down circuit				
SCPDO	Serial Communications Port Output	0			
EVCC	Do Not Connect on the DLP® system board	PWR			
	Power supply for Low Voltage CMOS logic				
VCC (Note)	 Power supply for normal high voltage at mirror address electrodes 	PWR			
VCCI (Note)	Power supply for Low Voltage CMOS LVDS interface	PWR			
	Power supply for High Voltage CMOS logic				
VCC2 (Note)	 Power supply for riight voltage civics logic Power supply for stepped high voltage at mirror address electrodes 	PWR			
VSS (Note)	Common return for all power	PWR			
== (,,,,,,	Total for an portor				

Note: VCC2, VCCI, VCC, and VSS power supplies are required for all DMD operating modes.

Table 4. Absolute Maximum Ratings Note 1							
Parameters		Min	Max	Units			
LVCMOS Logic Supply voltage: VCC	Note 2	- 0.5	4	VDC			
LVCMOS LVDS Interface Supply voltage: VCCI	Note 2	- 0.5	4	VDC			
Supply Voltage Delta VCCI – VCC	Note 5		0.3	VDC			
Mirror Electrode and HVCMOS voltage: VCC2	Note 2	- 0.5	9	VDC			
Input voltage: MBRST(15:0)	Note 2	- 28	28	V			
Input voltage: other inputs	Note 2 Note 3 Note 4	- 0.5	VCC + 0.3	VDC			
Input Differential Voltage: V _{ID}			700	mV			
High level output current @ Voh = 2.4v : I _{OH}			- 20	mA			
Low level output current @ Vol = 0.4v : I _{OL}			15	mA			
Clock Frequency: DCLK_A and DCLK_B			230	MHz			
Operating Temperature:	Note 6						
 Reference Locations 1 and 2 in Figure 2 Reference Locations 3 and Array in Figure 2 	Note 7 Note 8	10 10	65 65	°C °C			
Differential Temperature:							
 Location 1 minus Location 3 in Figure 2 Location 2 minus Location 3 in Figure 2 			10 10	°C °C			
Storage Temperature (non-operating): Reference Locations 1, 2, and 3 in Figure 2		- 40	80	°C			
Operating Relative Humidity (non-condensing)		0	95	%			
Storage Relative Humidity (non-condensing)		0	95	%			

Note: VCC2, VCCI, VCC, and VSS (GND) power supplies are required for all DMD operating modes.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the DMD. This is a stress rating only and functional operation of the DMD at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this product spec is not implied. Exposure to absolute maximum rated conditions for extend periods may affect device reliability.

Note 2:

All voltage values are with respect to GND (VSS) VCC2, VCCI, VCC, and VSS (GND) power supplies are required for all DMD operating modes.

Note 3:

Excludes Mirror Bias Reset inputs MBRST(15:0)

Note 4:

This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. LVDS differential inputs must not exceed $|V_{ID}| = 700$ mV or damage may result to the internal termination resistors.

Note 5:

To prevent excess current, | VCCI - VCC | should be less than 0.3v

Note 6:

The DMD can be operated between 0° C and 10° C at power-up for a maximum period of 10 minutes without damage.

Note 7:

The Type-X DMD can be used in projectors up to and including 3000 screen lumens. It shall not be used in projectors exceeding 3000 screen lumens.

Note 8:

Active array temperature cannot be measured directly; therefore it must be computed analytically from measurement points on the outside of the Type-X carrier, the carrier thermal resistance, the electrical power, and the illumination heat load. The relationship between array temperature and the reference frame temperature, thermocouple location 3 (TC3) in Figure 2, is provided by the following equations.

$$T_{array} = T_{frame} + (Q_{array} \bullet R_{array-to-frame})$$

$$Q_{array} = (0.00274 \bullet SL) + 2.0$$

Where:

 T_{array} = computed array temperature (°C)

 T_{frame} = measured frame temperature (°C) (TC3 location)

Q_{array} = Total DMD array power (electrical + absorbed) (watts)

R_{array-to-frame} = DMD Type-X carrier thermal resistance from array to outside frame (°C/watt)

SL = measured screen lumens

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating frequencies. The nominal electrical power dissipation to use when calculating array temperature is 2.0 Watts. The absorbed power from the illumination source is variable and depends on the operating state of the mirrors and the intensity of the light source. The equations shown above are valid for a 1-Chip DMD system with a projection efficiency from the DMD to the screen of 87%. The constants 0.00274 is based on array characteristics. It assumes a spectral efficiency of 300 lumens/watt for the projected light and llumination distribution of 83.7% on the active array, and 16.3% on the array border and window aperture.

Sample Calculation:

Screen lumens = 2000 lumens

 $T_{frame} = 55.0 C$

 $Q_{array} = (0.00274 \cdot 2000) + 2.0 = 7.48 \text{ watts}$

 $T_{array} = 55.0 \, ^{\circ}\text{C} + (7.48 \, \text{watts} \bullet 0.7 \, ^{\circ}\text{C/watt}) = 60.2 \, ^{\circ}\text{C}$

Figure 2. DMD Thermocouple Locations

	Table 5. Recommended	l Operating	Condition	ns		
Parameters			Min	Nom	Max	Units
VCC	LVCMOS Logic Supply voltage	Note 12	3.0	3.3	3.6	V
VCCI	LVCMOS LVDS Interface Supply voltage	Note 12	3.0	3.3	3.6	V
	Supply Voltage Delta VCCI – VCC	Note 11		0	0.3	V
VCC2	Mirror Electrode and HVCMOS voltage	Note 12	8.25	8.5	8.75	V
V _{MBRST}	Mirror Bias / Reset voltage	Note 9	- 27		26.5	V
T _C	Operating Case temperature	Note 1	25		45	°C
ILL _{UV}	Illumination, wavelength < 395nm	Note 13			0.68	mW/cm ²
ILL _{IR}	Illumination, wavelength > 800nm	Note 14				mW/cm ²
LVCMOS para	· • • • • • • • • • • • • • • • • • • •					
V _{IH}	High level Input voltage	Note 2	1.7	2.5	VCC + 0.3	V
V _{IL}	Low level Input voltage	Note 2	- 0.3		0.7	V
I _{OH}	High level Output current @ Voh = 2.4v				- 20	mA
I _{OL}	Low level Output current @ Vol = 0.4v				15	mA
T _{PWRDNZ}	PWRDNZ pulse width	Note 8	10			ns
SCP paramete	•	Note 7				
f _{SCPCLK}	SCP Clock frequency	Note 3	50		500	kHz
T _{SCP_SKEW}	Time between valid SCPDI and rising-edge of SCPCLK	11010 0	- 300		300	ns
T _{SCP_DELAY}	Time between valid SCPDO and rising –edge of SCPCLK	Note 3 Note 5			960	ns
T _{SCP_NEG_ENZ}	Time between falling–edge of SCPENZ and the first rising –edge of SCPCLK	Note 3 Note 6	30			ns
T _{SCP_PW_ENZ}	SCPENZ inactive pulse width (high level)		1			1/f _{SCPCLK}
T _{SCP_OUT_EN}	Time required for SCP output buffer to recover after SCPENZ (from tri-state)				1.5	ns
T_r , T_f	Rise/Fall Time (20% to 80%)				200	ns
400MHz LVDS	parameters	Note 4				
$ V_{ID} $	Input Differential Voltage (absolute value)	Note 10	100	400	600	mV
V _{CM}	Common Mode Voltage	Note 10		1200		mV
V _{LVDS}	LVDS Voltage	Note 10	0		2000	mv
Z _{LINE}	Line Differential Impedance (PWB/trace)		90	100	110	Ω
T _r	Rise Time (20% to 80%)		100		400	ps
T _f	Fall Time (20% to 80%)		100		400	ps
Z _{IN}	Internal Differential Termination Resistance		95		105	Ω
T _{LVDS_RSTZ}	Time required for LVDS receivers to recover from PWRDNZ				10	ns

Operating case temperature limits apply to the Array and Thermocouple location points 1, 2, 3, referenced in Figure 2

Note 2:

Tester Conditions for V_{IH} and V_{IL} : Frequency = 60MHz. Maximum Rise/Fall Time = 2.5ns @ (20% - 80%)

Note 3:

The SCP clock is a gated clock. Duty cycle shall be 50% + /- 10%. This parameter is related to the frequency of DCLK_A and DCLK_B, which are assumed to be 400MHz. f_{DCLK} less than 400 MHz will impact the maximum f_{SCPCLK} range.

Note 4:

For timing parameters, refer to Table 9

Note 5:

This parameter is related to the frequency of DCLK_A and DCLK_B, which are assumed to be 400MHz. Use $T_{SCP_DELAY} = (1/f_{DCLK})^*(384)$ for f_{DCLK} less than 400 MHz. f_{DCLK} less than 400 MHz will impact the maximum f_{SCPCLK} range.

Note 6:

This parameter is related to the frequency of DCLK_A and DCLK_B, which are assumed to be 400MHz. Use $T_{SCP_NEG_ENZ} = (1/f_{DCLK})^*(12)$ for f_{DCLK} less than 400 MHz. f_{DCLK} less than 400 MHz will impact the maximum f_{SCPCLK} range.

Note 7:

For all Serial Communications Port (SCP) operations, DCLK_A and DCLK_B are required.

Note 8:

PWRDNZ input pin resets the SCP and disables the LVDS receivers. PWRDNZ input pin overrides SCPENZ input pin and tri-states the SCPDO output pin.

Note 9:

The positive voltage level of this input waveform must be optimized for DMD performance. Each DMD is assigned a bias voltage bin letter, which is marked on the DMD Type-X carrier in the approximate location shown in Figure 3. See the appropriate Hardware and Software ICDs and the electrical reference design schematic for implementation details. The bin letters in Table 6 correspond to the positive voltage levels shown.

Table 6. V _B Bias Voltage Bins						
Bin Designation	Min (V)	Max (V)				
E	25.5	26.5				

Note 10:

See . $V_{LVDS} = V_{CM} + /- |1/2V_{ID}|$, where V_{CM} is bounded by the voltage values of V_{LVDS} and $|V_{ID}|$.

Note 11:

To prevent excess current, | VCCI - VCC | should be less than 0.3v

Note 12:

VCC2, VCCI, VCC, and VSS (GND) power supplies are required for all DMD operating modes.

Note 13:

UV light (<395nm) power density may degrade or reduce DMD performance over time when significant power densities are illuminating the DMD. Consult with TI or TI authorized distributor for applications requiring UV light.

Note 14:

Infrared (IR) Illumination > 800nm has not been well characterized by TI. IR illumination is not known to degrade DMD performance, but has not been characterized or qualified by TI. Therefore, Min and Max ILL_{IR} is not specified.

DMD Marking Locations

The device marking is shown in Figure 3 below. The marking will include both human-readable information and a 2-dimensional matrix code. The human-readable information is described in Figure 3. The 2-dimensional matrix code is an alpha-numeric character string that contains the DMD part number, Part 1 of Serial Number, and Part 2 of Serial Number. The first character of the DMD Serial Number (part 1) is the manufacturing year. The second character of the DMD Serial Number (part 1) is the manufacturing month. The last character of the DMD Serial Number (part 2) is the bias voltage bin letter.

Example: *1076-631cW GHXXXXX LLLLLLM

Figure 3. DMD Marking Locations

Table 7. Electrical Characteristics For Recommended Operating Conditions								
	Parameters	Test Condition	Min	Max	Units			
V _{OH}	High level output voltage		$VCC = 3 V$ $I_{OH} = -20 \text{ mA}$	2.4		V		
V _{OL}	Low level output voltage		VCC = 3.6 V $I_{OL} = 15 \text{ mA}$		0.4	V		
loz	Output high impedance current		VCC = 3.6 V		10	uA		
I _{IL}	Low level input current		$VCC = 3.6 V$ $V_1 = 0$		- 60	uA		
I _{IH}	High level input current	Note 1	VCC = 3.6 V V _I = VCC		200	uA		
I _{CC}	ICC current	Note 2	VCC = 3.6 V		750	mA		
I _{CCI}	ICCI current	Note 2	VCCI = 3.6 V		450	mA		
I _{CC2}	ICC2 current		VCC2 = 8.75 V		25	mA		
	Electrical input power				3.4	W		

Note 1 : includes LVCMOS pins only excludes LVDS pins and MBRST(15:0) pins

Note 2: To prevent excess current, $| \mbox{ VCCI} - \mbox{ VCC} |$ should be less than 0.3v

Table 8. Capacitance at Recommended Operating Conditions							
	Parameters	Test Condition	Min	Max	Units		
Cı	Input Capacitance	f = 1 MHz		10	pf		
Co	Output Capacitance	f = 1 MHz		10	pf		
C _{IM}	MBRST(15:0) Input Capacitance	f = 1 MHz (1024 x 768) array all inputs interconnected	160	210	pf		

Table 9. LVDS Critical Timing							
Parame	Parameter				Тур	Max	Units
T _C	Clock Cycle	DCLK_A	LVDS pair	2.5			ns
T _C	Clock Cycle	DCLK_B	LVDS pair	2.5			ns
T _W	Pulse Width	DCLK_A	LVDS pair	1.19	1.25		ns
T _W	Pulse Width	DCLK_B	LVDS pair	1.19	1.25		ns
Ts	Setup Time	D_A(15:0) before DCLK_A	LVDS pair	0.35			ns
Ts	Setup Time	D_B(15:0) before DCLK_B	LVDS pair	0.35			ns
T _s	Setup Time	SCTRL_A before DCLK_A	LVDS pair	0.35			ns
Ts	Setup Time	SCTRL_B before DCLK_B	LVDS pair	0.35			ns
T _H	Hold Time	D_A(15:0) after DCLK_A	LVDS pair	0.35			ns
T _H	Hold Time	D_B(15:0) after DCLK_B	LVDS pair	0.35			ns
T _H	Hold Time	SCTRL A after DCLK A	LVDS pair	0.35			ns
T _H	Hold Time	SCTRL_B after DCLK_B	LVDS pair	0.35			ns
T _{SKEW}	Skew Time	Channel B relative to Channel A	LVDS pair	- 1.25		+ 1.25	ns

Channel A (Bus A):

- DCLK_AN
- DCLK_AP
- SCTRL_AN
- SCTRL_AP
- D_AN(15:0)
- D_AP(15:0)

Channel B (Bus B):

- DCLK_BN
- DCLK_BP
- SCTRL_BN
- SCTRL_BP
- D_BN(15:0)
- D_BP(15:0)

Table 10. Physical Parameters							
Parameter			Nom	Max	Units		
Number of Columns			1024				
Number of Rows			768				
Mirror (Pixel) Pitch			10.8		um		
Total Width of Active Mirror Array			11.059		mm		
Total Height of Active Mirror Array			8.294		mm		
Active Array Border	Note 1		POM				
Active Array Border Size			10		mirrors/side		

The structure and qualities of the border around the active array includes a band of partially functional mirrors called the "Pond Of Mirrors" (POM). These mirrors are structurally and/or electrically prevented from tilting toward the bright or "on" state but still require an electrical bias to tilt toward "off."

Table 11. Thermal Parameters						
Parameter	Min	Nom	Max	Unit		
Thermal Resistance	Note 1					
 Active area to case 	Note 1			0.7	°C/W	

Note 1:

The DMD is designed to conduct absorbed and dissipated heat to the back of the Type-X carrier where it can be removed by an appropriate heat sink. The heat sink and cooling system must be capable of maintaining the carrier within the specified operational temperatures.

The total heat load on the DMD is largely driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array.

Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

Table 12. Optical Parameters								
Parameter		Min	Nom	Max	Unit			
Mirror Tilt – half angle Variation device to device	Note 1	11	12	13	Degrees			
Axis of Rotation with respect to System DatumsVariation device to device	Figure 4	44	45	46	Degrees			
Mirror Metal Specular Reflectivity (420nm – 700nm)			89.4		%			
DMD Efficiency (420nm – 700nm)	Note 2		68		%			
Window Material Designation Type-X			Corning Eagle 2000 or XG					
Window Refractive Index			1.5090					
Minimum Window Transmittance Tmin measured at all angles 0 – 30 AOI (single pass) over the wavelength range (420nm – 680nm)		97			%			
Average Window Transmittance Tave measured at all angles 0 – 30 AOI (single pass) over the wavelength range (420nm – 680nm)		99			%			
Average Window Transmittance Tave measured at all angles 30 – 45 AOI (single pass) over the wavelength range (420nm – 680nm)		97			%			
Window Flatness per 25mm				4	fringes			

Note 1: Mirror Tilt

Limits on variability of mirror tilt half angle are critical in the design of the accompanying optical system. Variations in tilt angle within a device may result in apparent non-uniformities, such as line pairing and image mottling, across the projected image. Variations in the average tilt angle between devices may result in colorimetry and system contrast variations. The specified limits represent the tolerances of the tilt angles within a device.

Note 2: DMD Efficiency

The overall DMD efficiency includes window transmittance, active area fill factor, active area mirror specular reflectivity, and diffraction efficiency. It is defined as that percentage of light incident upon the mirror array that is specularly reflected from the mirror array. The measurement is made with all mirrors in the full on-state without electronic duty cycle effects (i.e. measure using 100% duty cycle).

Figure 4. Mirror Tilt Axis Orientation

Table 13. Optical Interface and System Image Quality							
Parameter		Min	Nom	Max	Unit		
	Note 1						

Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in a) through c) below:

a) Numerical Aperture and Stray Light Control.

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the projection lens. The mirror tilt angle defines DMD capability to separate the "ON" optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle, objectionable artifacts in the display's border and/or active area could occur.

b) Pupil Match.

TI's optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within two degrees of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display's border and/or active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

c) Illumination Overfill.

The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the average flux level in the active area. Depending on the particular system's optical architecture, overfill light may have to be further reduced below the suggested 10% level in order to be acceptable.

TI ASSUMES NO RESPONSIBILITY FOR IMAGE QUALITY ARTIFACTS OR DMD FAILURES CAUSED BY OPTICAL SYSTEM OPERATING CONDITIONS EXCEEDING LIMITS DESCRIBED ABOVE.

Mechanical dimensions and tolerances are shown in the Mechanical ICD drawing referenced in Table 2.

Table 14. System Interface Parameters							
Parameter		Min	Nom	Max	Unit		
Maximum Load to be Applied to the	Figure 5						
Thermal Interface area				25	lbs		
Electrical Interface areas 1 and 2	Each Area			12.5	lbs		

Figure 5. System Interface Loads

Figure 6. DMD Type-X Carrier Pins - Bottom View

Electrostatic Discharge Immunity

All external signals on the DMD are protected from damage by electrostatic discharge, and are tested in accordance with JESD22-A114-B Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

Table 15. DMD ESD Protection Limits						
Type-X Carrier Pin Type	Voltage (maximum)	Units				
Input	2000	V				
Output	2000	V				
Power	2000	V				
All MBRST	< 250	V				

Notes on Handling

All CMOS devices require proper Electrostatic Discharge (ESD) handling procedures.

Refer to drawing #2506185 DMD Handling Specification, for precautions to protect the DMD from ESD and to protect the DMD's glass and electrical contacts.

Refer to drawing #2504640 DMD Glass Cleaning Procedure, for correct and consistent methods for cleaning the glass of the DMD, in such a way that the anti reflective coatings on the glass surface are not damaged.

