Yelp Review Based Prediction

Nguyen Duc Hien, Sherman Sze, John S Burke

Boston University CS 542: Machine Learning

August 13, 2017

Project Overview

- ► Yelp Reviews have both review text and rating stars
- ▶ Reviews are associated with one of five categories (1-5 stars)
- Predict rating of a review based on the text alone

Dataset

- Yelp Dataset Challenge
 - 4.1M reviews by 1M users for 144K businesses
 - ▶ 11 cities in Germany, Canada, U.K and U.S.
- Reviews
 - ▶ **41%** 5 stars, **25%** 4 stars, **12%** 3 stars, **8%** 2 stars, **14%** 1 star
- Our analysis
 - ▶ **50,000** reviews for **restaurants** in Phoenix
- Structure
 - JSON file where each review is an object

yelp_academic_dataset_review.json

```
"review_id":"encrypted review id",

"user_id":"encrypted user id",

"business_id":"encrypted business id",

"stars":star rating, rounded to half-stars,

"date":"date formatted like 2009-12-19",

"text":"review text",

"useful":number of useful votes received,

"funny":number of funny votes received,

"cool": number of cool review votes received,

"type": "review"
```

Data Preprocessing

- Extract relevant information from JSON file
 - "stars": review rating
 - ▶ "text": review text
- Clean text
 - Remove punctuation, numbers and symbols
- Remove stop words
 - Words without information value (Examples: "the", "to")
- Balance data across ratings
 - ▶ 20% of samples from each class for a 5-class problem (1-5 stars)

TF-IDF & Document Term Matrix

- Term Frequency scales with term occurrence in a review
- ▶ Inverse Document Frequency shrinks across all reviews
- ▶ TF-IDF builds a matrix of input arrays associated with a rating

$$tfidf(t, d, D) = tf(t, d) * idf(t, D)$$

Where t is a given term, d is a review, and D is the collection of them. The tf() and idf() operations can range from raw counts to sundry normalizations on frequencies

Support Vector Machine (SVM)

- Use 80% of data for training, 20% for testing
 - Both training and testing sets have roughly equal amounts of samples from each class
 - For a 5-class classification problem (1-5 stars), 20% of samples from each class
- Linear kernel
 - ▶ Regularization parameter C = 1
 - Achieved 58.2% accuracy
- Polynomial and Gaussian kernels
 - Was not able to complete due to computational constraints

Neural Network

- Same train-test split and data as SVM
- Multi-Layer Perceptron from sklearn
 - Sigmoid activation
 - Single hidden layer of 100 neurons because of computational cost
 - ▶ L2 regularization of 10⁻⁵
- ▶ Just over 55% and up to 60% accuracy

Analysis and Comparisons

- ▶ Random guessing is 20% accurate
- ► SVM and MLP are up to 40% better
- ▶ This matches the results of recent papers

Future Work

- Word stemming
 - Reduce words to their root form
 - "Swim", "Swimming" and "Swimmer" all share the same root
- More computational power
 - Use more data (More than 4M unused reviews) to train our models
 - ► Try more SVM kernels (Example: Gaussian kernel)
 - More layers and neurons in MLP Network
 - Tune SVM by varying parameters

Citations

- ► Prediction of rating based on review text of Yelp reviews, Channapragada & Shivaswamy
- Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, Pedregosa et al.
- Image and Data from Yelp

Conclusion

Thank You

Contributions	Project Outline
Sherman	Yelp Dataset
SVM	Data Preprocessing
Data Processing	TF-IDF and DTM
Hien	Support Vector Machine
Research of Prior Experiments	Neural Network
Report	Prior Work and Comparison
John	Future Work
MLP & Data Processing	