#### SISTEMA DE CONTROL DE RIEGO AUTOMATIZADO

# MANUAL TÉCNICO

Integrantes del equipo:

Joseph Sebastián Cristiano Beltrán – Scrum Master / Backend

Jhostyn Nicolás Cristiano Beltrán – Frontend

Juan Pablo Daza Alcázar – Base de Datos

Nicolás Salgado Reyes – Base de Datos

Instructor:

Iván Malaver

MANUAL TECNICO "SCRA"

29 de Agosto de 2025

SERVICIO NACIONAL DE APRENDIZAJE "S.E.N.A."

Centro de Biotecnología Agropecuaria

# ÍNDICE

| 1. Objetivos del Proyecto                                 | 5  |
|-----------------------------------------------------------|----|
| 2. Herramientas utilizadas para el desarrollo del sistema | 5  |
| 3. Alcance del Proyecto                                   | 6  |
| 4. Introducción                                           | 6  |
| 5. Requerimientos Funcionales                             | 7  |
| 6. Requerimientos No Funcionales                          | 7  |
| 7. Desarrollo de los Sprints                              | 7  |
| 8. Roles y Perfiles de Usuario                            | 8  |
| 9. Proceso de Aseguramiento de Calidad                    | 8  |
| 10. Restricciones Técnicas                                | 8  |
| 11. Manual UML                                            | 9  |
| ADMINISTRADOR                                             | 9  |
| SISTEMA DE CONTROL                                        | 10 |
| HORA DE REGADO                                            | 11 |
| SELECCIONAR CULTIVO                                       | 12 |
| SIMULADOR DE RIEGO                                        | 13 |
| SECUENCIAS                                                |    |
| COMPONENTES                                               |    |
| 12.Revisión del Proyecto (Review – 29/08/2025)            |    |
| 13. Conclusiones y Recomendaciones Técnicas               | 18 |
| 14. Modelo Entidad-Relación                               | 19 |

# LISTA DE TABLAS

| Tabla 1. Caso de uso Administrador       | 9  |
|------------------------------------------|----|
| Tabla 2. Caso de uso Sistema de control  | 10 |
| Tabla 3. Caso de uso Hora de regado      | 11 |
| Tabla 4. Caso de uso Seleccionar cultivo | 12 |
| Tabla 5. Caso de uso Simulador de riego  | 13 |
| Tabla 6. Explicación ilustraciones       | 14 |
| Tabla 7. Diagrama de secuencia           | 15 |
| Tabla 8. Acciones                        | 16 |
| Tabla 9. Componentes                     | 17 |

# **ILUSTRACIONES**

| Fig. 1 Caso de uso Administrador       | 9  |
|----------------------------------------|----|
| Fig. 2 Caso de uso Sistema de control  | 10 |
| Fig. 3 Caso de uso Hora de regado      | 11 |
| Fig. 4 Caso de uso Seleccionar cultivo | 12 |
| Fig. 5 Caso de uso Simulador de riego  | 13 |
| Fig. 6 Diagrama de secuencia           | 15 |
| Fig. 7 Diagrama de componentes         | 17 |
| Fig. 8 Modelo Entidad-relación         | 19 |

## 1. Objetivos del Proyecto

Diseñar e implementar un sistema de riego automatizado que optimice el uso del agua en los cultivos.

Facilitar la administración del riego mediante interfaces claras y usables.

Incorporar un modelo de control flexible que permita simulaciones y configuraciones personalizadas.

Documentar todo el proceso técnico bajo estándares profesionales.

# 2. Herramientas utilizadas para el desarrollo del sistema

# MySQL

Sistema de gestión de bases de datos relacional (RDBMS).

Permite almacenar y organizar la información de usuarios, cultivos, horarios de riego y configuraciones del sistema de forma segura y eficiente.

#### Visual Studio Code (VS Code)

Editor de código multiplataforma.

Facilita el desarrollo del sistema con múltiples extensiones que permiten programar en distintos lenguajes (Python, PHP, JavaScript) y manejar conexiones a bases de datos.

# Python

Lenguaje de programación de alto nivel.

Se utiliza en la lógica del sistema para procesar datos, controlar el riego automatizado y realizar cálculos relacionados con la eficiencia del agua y tiempos de ejecución.

# 3. Alcance del Proyecto

Objetivo: Automatizar el sistema de riego basado en parámetros de humedad del suelo y predicciones meteorológicas.

o Componentes Principales: Sensores de humedad, sistema de riego automatizado, plataforma web.

o Restricciones: Implementación limitada a cultivos de hasta 100 hectáreas. o Dependencias: Integración con sistema meteorológico y ERP agrícola.

#### 4. Introducción

El presente manual técnico describe el desarrollo del proyecto Sistema de Riego

Automatizado, cuyo propósito es gestionar de manera eficiente el recurso hídrico en

cultivos agrícolas. El documento recopila los acuerdos, decisiones técnicas, diseño de base

de datos, casos de uso y revisiones de los sprints realizados bajo la metodología Scrum.

El uso de sistemas automatizados en la agricultura moderna se ha convertido en una necesidad, debido a la optimización de recursos y al control preciso de las condiciones de riego. Mediante el uso de sensores, controladores y software especializado, este proyecto busca ofrecer una solución integral que permita mejorar la productividad y sostenibilidad en los cultivos.

### **5. Requerimientos Funcionales**

o RF01: Monitoreo en tiempo real de la humedad del suelo y control del riego. o RF02: Integración con sistema meteorológico para previsión de riego.

#### 6. Requerimientos No Funcionales

o RNF 01: Accesibilidad móvil para controlar el riego.

o RNF 02: Bajo consumo energético.

#### 7. Desarrollo de los Sprints

#### **7.1 Sprint 1** (11/08/2025):

Identificación de entidades y relaciones

Se identificaron las entidades principales del sistema, como cultivos, administradores y operadores, junto con sus relaciones en el modelo entidad-relación. Este paso permitió establecer la base estructural de la base de datos.

#### **7.2 Sprint 2** (15/08/2025):

Definición del modelo UML y roles

En este sprint se elaboró el modelo UML preliminar que permitió visualizar la interacción entre los componentes del sistema. Además, se asignaron los roles de cada integrante del equipo, definiendo responsabilidades técnicas clave.

#### **7.3 Sprint 3** (18/08/2025):

Definición de tablas y base de datos

Durante este sprint se construyó la base de datos inicial siguiendo el diagrama entidadrelación. Las tablas fueron normalizadas para asegurar consistencia e integridad referencial.

## **7.4 Sprint 4** (25/08/2025):

Definición de casos de uso

Se aprobaron los siguientes casos de uso por parte del Scrum Master y el cliente

## 8. Roles y Perfiles de Usuario

o Perfil 1: Administrador - Configura el sistema de riego.

o Perfil 2: Operador - Monitorea y ajusta el riego.

## 9. Proceso de Aseguramiento de Calidad

o Planes de Prueba: Validación de sensores de humedad y control de riego. o Herramientas: Simuladores de riego y clima.

#### 10. Restricciones Técnicas

o Plataforma Objetivo: Web y dispositivos móviles.

o Lenguajes de Programación: Python, JavaScript o Bases de Datos: MySQL.

#### 11. Manual UML



Fig. 1 Caso de uso Administrador

Tabla 1. Caso de uso Administrador

| Nombre:                                                                     | Sistema De Control De Riego "SCRA"                        |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------|--|
|                                                                             | ADMINISTRADOR                                             |  |
| Descripción: Uso e                                                          | Descripción: Uso exclusivo del administrador              |  |
|                                                                             |                                                           |  |
| Caso de uso:                                                                | Configuración de administrador                            |  |
| Descrinción: Config                                                         | guración de permisos y herramientas que el operador pueda |  |
| Descripcion. Configuración de permisos y nerramientas que el operador pueda |                                                           |  |
| usar                                                                        |                                                           |  |
| Actores                                                                     | Administrador                                             |  |
| Actores                                                                     | Administrator                                             |  |
|                                                                             |                                                           |  |



Fig. 2 Caso de uso Sistema de control

Tabla 2. Caso de uso Sistema de control

| Nombre:                                                                          | Sistema De Control De Riego "SCRA" |  |
|----------------------------------------------------------------------------------|------------------------------------|--|
|                                                                                  | SISTEMA DE CONTROL                 |  |
| Descripción: Uso exclusivo del administrador                                     |                                    |  |
| Caso de uso:                                                                     | Sistema de control                 |  |
| Descripción: Configuración de permisos y herramientas que el operador pueda usar |                                    |  |
| Actores                                                                          | Administrador                      |  |



Fig. 3 Caso de uso Hora de regado

Tabla 3. Caso de uso Hora de regado

| Nombre:                                                    | Sistema De Control De Riego "SCRA" |  |
|------------------------------------------------------------|------------------------------------|--|
|                                                            | HORA DE REGADO                     |  |
| Descripción: Configuración del usuario                     |                                    |  |
| Caso de uso:                                               | Hora de Regado                     |  |
| Descripción: El usuario puede configurar la hora de regado |                                    |  |
| Actores                                                    | Operador                           |  |



Fig. 4 Caso de uso Seleccionar cultivo

Tabla 4. Caso de uso Seleccionar cultivo

| Nombre:                                                                       | Sistema De Control De Riego "SCRA" |  |
|-------------------------------------------------------------------------------|------------------------------------|--|
|                                                                               | SELECCIONAR CULTIVO                |  |
| Descripción: Configuración del Usuario                                        |                                    |  |
| Caso de uso:                                                                  | Configuración de administrador     |  |
| Descripción: El usuario selecciona los cultivos y la hora de regado requerida |                                    |  |
| Actores                                                                       | Operador                           |  |



Fig. 5 Caso de uso Simulador de riego

Tabla 5. Caso de uso Simulador de riego

| Nombre:                                                                               | Sistema De Control De Riego "SCRA" |  |
|---------------------------------------------------------------------------------------|------------------------------------|--|
|                                                                                       | SIMULADOR DE RIEGO                 |  |
| Descripción: Prueba de funcionamiento                                                 |                                    |  |
| Caso de uso:                                                                          | Configuración de administrador     |  |
| Descripción: El usuario puede generar simulacros para verificar el funcionamiento del |                                    |  |
| sistema                                                                               |                                    |  |
| Actores                                                                               | Operador                           |  |

Tabla 6. Explicación ilustraciones

| Tabla o. Explication flustraciones                                                                                                                                           |                                                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| ADMINISTRADOR                                                                                                                                                                | OPERADOR                                                                                                                                    |  |
| Muñeco de palo: Representa la manera en la que el operador puede interactuar siguiendo una serie de pasos que sirven como instructivo para el cuidado de su cosecha.         | Muñeco de palo: Es la forma en la cual se administran los datos y los servicios que se ofrecen para realizarlos correctamente.              |  |
| Línea sencilla: Es el primer paso que realiza el usuario                                                                                                                     | Línea sencilla: es la base en la cual se identifican los datos y servicios requeridos para realizar una serie de procedimientos necesarios. |  |
| Líneas con flecha: Son una serie de pasos<br>en la cual una es regida por otra y es<br>esencial para el manejo, el control de toda<br>la información y son indispensables.   | Línea con flecha: relacionan toda la información ingresada para analizarla de una manera adecuada y precisa.                                |  |
| Círculos azules: son las fases y los procesos realizados según la interacción dada, cada uno es dependiente de otro y son necesarios para llevar a cabo un proceso adecuado. | Círculos azules: son los datos necesarios y las actividades para realizar un proceso correcto basado en la información ingresada            |  |



Fig. 6 Diagrama de secuencia

Tabla 7. Diagrama de secuencia

| Nombre:                                                                              | Sistema De Control De Riego "SCRA" |  |
|--------------------------------------------------------------------------------------|------------------------------------|--|
|                                                                                      | SECUENCIAS                         |  |
| Descripción: Retiro por solicitud propia muestra el diagrama de secuencia al momento |                                    |  |
| en que se radique la solicitud de retiro por solicitud propia del usuario            |                                    |  |
| Descripción: Los registros del usuario deben estar de acuerdo con la solicitud       |                                    |  |
| Actores                                                                              | Usuario                            |  |
| Acción del Actor                                                                     | Respuesta del Sistema              |  |

# Tabla 8. Acciones

| Este diagrama de secuencia se inicia | Genera una información al           |
|--------------------------------------|-------------------------------------|
| cuando es radicada la solicitud al   | usuario, para que estén autorizados |
| sistema control                      |                                     |

|                                         | realizar las actividades que le          |
|-----------------------------------------|------------------------------------------|
|                                         | correspondan.                            |
|                                         |                                          |
| Genera una presentación con la          | Al realizar la presentación requerida    |
| información necesaria para mostrar      | genera un apartado con la información    |
| información necesaria                   | los usuarios                             |
|                                         |                                          |
| Envía información para inicio del Riego | Se genera un acto administrativo el cual |
|                                         | genera los motivos y requerimientos de   |
|                                         | la solicitud                             |



Fig. 7 Diagrama de componentes

Tabla 9. Componentes

| Nombre:                                                                        | Sistema De Control De Riego "SCRA" |
|--------------------------------------------------------------------------------|------------------------------------|
|                                                                                | COMPONENTES                        |
| Descripción: Usuario/Persona encargada de autorizar la gestión de cambios      |                                    |
| Descripción: Retiro por solicitud propia muestra el diagrama de componentes al |                                    |
| momento de ingresar la solicitud                                               |                                    |
| Actores                                                                        | Usuario                            |

# 12. Revisión del Proyecto (Review – 29/08/2025)

En el primer ciclo de revisión se constata que el equipo ha cumplido con los objetivos de los cuatro primeros sprints.

El modelo entidad-relación está definido y validado.

El modelo UML y los roles están documentados.

Las tablas de base de datos fueron diseñadas e integradas.

Los casos de uso están aprobados por el cliente.

Conclusión: El proyecto avanza de acuerdo con lo planificado y con la documentación técnica necesaria para futuras fases de desarrollo.

## 13. Conclusiones y Recomendaciones Técnicas

El sistema de riego automatizado ha demostrado ser una solución viable y escalable para la gestión eficiente del recurso hídrico. La aplicación de metodologías ágiles como Scrum permitió mantener un control continuo del avance y adaptarse a cambios en los requerimientos.

#### Recomendaciones:

- Integrar sensores de humedad y caudalímetros para un control en tiempo real más preciso.
- Implementar notificaciones móviles que alerten sobre incidencias en el sistema.

- Realizar pruebas de estrés en la base de datos para asegurar rendimiento en escenarios con gran volumen de datos.
- Ampliar la documentación técnica con manuales de usuario y guías de mantenimiento preventivo.

#### 14. Modelo Entidad-Relación



Fig. 8 Modelo Entidad-relación