MAST90105: Lab and Workshop 8

1 Lab

In this lab, you will learn how to use R to find a minimum of function and to generate random variables from a given CDF which does not have its inverse in closed form.

- 1. Function nlm() in R can be used to find a minimum of a nonlinear function.
 - a. Define a function $f(x_1, x_2) = \exp(x_1^2 + x_2^2) 2(\exp(x_1) + \exp(x_2))$ in R and use nlm() to find the minimum of this function.
 - b. As you have learned, to generate a random variable Z from a continuous distribution with given CDF $F_Z(z)$, one can follow these steps:
 - i. Generate $U \sim U(0,1)$
 - ii. Compute $Z = F_Z^{-1}(U)$

The quantile function $F_Z^{-1}(q)$ might not be available in closed form and can be computed numerically. For a strictly increasing CDF $F_Z(z)$ there exists a unique solution to the equation: $F_Z(z_q) = q$. It implies the function $G_Z(z) = (F_Z(z) - q)^2$ attains its minimum (which is zero) at $z = z_q$. The point z_q at which this minimum is attained can be found using nlm() function in R, and one can follow these steps to generate a random variable Z in this case:

- i. Generate $U \sim U(0,1)$
- ii. Compute $Z = \operatorname{argmin}_z (F_Z(z) U)^2$

Use this approach to generate a sample of size N=1000 from a continuous random variable with the PDF:

$$f_Z(z) = \begin{cases} 0.5 + z^2 + z^5, & 0 < z < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Draw a histogram of the generated data.

2. A similar approach can be used to generate a random pair (X, Y) from a continuous bivariate distribution with given joint CDF $F_{X,Y}(x,y)$. Define

$$F_{Y|X}(y|x) = \Pr(Y \le y|X = x) = \frac{\frac{\partial}{\partial x} F_{X,Y}(x,y)}{f_X(x)},$$

where $F_X(x)$ and $f_X(x)$ are the marginal CDF and PDF of X, respectively. Assuming $F_X(x)$ and $F_{Y|X}(y|x)$ are strictly increasing and continuously differentiable functions of x and y, respectively, one can follow these steps to generate a random pair (X, Y):

- a. Generate independent $U_X \sim U(0,1)$ and $U_Y \sim U(0,1)$
- b. Compute $X = F_X^{-1}(U_X)$

Trien = em / nxi

 $e(l(0)) = in \pi f \leq \ln(\pi^{x_i}/x_i!)$

$$e'(l(m) = -1) + \frac{2x_i}{\pi} = 0$$

$$f(x_{1}\theta) = \frac{1}{2} \exp(-|x_{1}\theta|) = \frac{1}{2} e^{-|x_{1}\theta|} = \prod_{i=1}^{2} e^{-|x_{i}\theta|} = \left(\frac{1}{2}\right)^{n} e^{-\frac{1}{2}|x_{i}\theta|} = \left(\frac{1}{2}\right)^{n} \frac{e^{-\frac{1}{2}|x_{i}\theta|}}{e^{\frac{1}{2}|x_{i}\theta|}}$$

This involves minimizing $\sum_{i=1}^{n} |x_i - \theta|$, which is difficult. Try n = 5 and a sample $\mathbb{C}(\theta) = \mathbb{C}(\theta) = \mathbb{C}(\theta)$

$$|X_{i}-\theta| = |X_{i}-\theta| = |X_{$$

$$x_{i}$$
- θ >0
 x_{i} - θ <0 = - $Signum(x_{i}$ - θ)
 x_{i} = θ

$$\begin{array}{c|ccc}
x_1 & x_1 - \theta & -1 \\
x_2 & x_2 - \theta & -1 \\
\hline
x_7 & x_2 - \theta & +1
\end{array}$$

c. Compute $Y = F_{Y|X}^{-1}(U_Y|X)$

The inverse CDFs F_X^{-1} and $F_{Y|X}^{-1}$ can be computed numerically using nlm() function if they are not available in closed form.

- a. Bonus: Show that the joint CDF of (X,Y) generated using the algorithm above is $F_{X,Y}$.
- b. Use this algorithm to generate a sample of size N=1000 from a continuous bivariate random variable (X, Y) with the joint PDF:

$$f_{X,Y}(x,y) = \begin{cases} x+y, & 0 < x, y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Draw a scatter plot of the generated data.

Workshop 2

- a. A random sample X_1, \ldots, X_n of size n is taken from a Poisson distribution with 1. mean $\lambda > 0$.
 - i. Show the maximum likelihood estimator of λ is $\hat{\lambda} = \bar{X}$.
 - ii. Suppose with n=40 we observe 5 zeros, 7 ones, 12 twos, 9 threes, 5 fours, 1 five, and 1 six. What is the maximum likelihood estimate of λ .
 - b. Find the maximum likelihood estimator, $\hat{\theta}$, if X_1, \dots, X_n is a random sample from the following probability density function:

$$f(x;\theta) = (1/2)\exp(-|x-\theta|), -\infty < x < \infty, 0 < \theta < \infty$$

This involves minimizing $\sum_{i=1}^{n} |x_i - \theta|$, which is difficult. Try n = 5 and a sample 6.1, -1.1, 3.2, 0.7, 1.7. Then deduce the MLE.

2. Let $f(x;\theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta \in \Omega = \{\theta : 0 < \theta < \infty\}$ and let X_1, \ldots, X_n denote a random sample from this distribution. Note that

The p.d.f. of
$$X$$
 for $\theta = 1/2$ and $\theta = 2$.

- a. Sketch the p.d.f. of X for $\theta = 1/2$ and $\theta = 2$.
- b. Show that $\hat{\theta} = -n/\ln\left(\prod_{i=1}^n X_i\right)$ is the maximum likelihood estimator of θ .
- c. For each of the following three sets of observations from this distribution compute the maximum likelihood estimates and the methods of moments estimates.

<i>X</i>	Y	Z
0.0256	0.9960	0.4698
0.3051	0.3125	0.3675
0.0278	0.4374	0.5991
0.8971	0.7464	0.9513
0.0739	0.8278	0.6049
0.3191	0.9518	0.9917
0.7379	0.9924	0.1551
0.3671	0.7112	0.0710
0.9763	0.2228	0.2110
0.0102	0.8609	0.2154
$\left(\sum_{i=1}^{n} \ln \sum_{i=1}^{n} x_{i}\right)$	$(x_i) = -3.7401$	-18.2063 $\sum_{i=1}^{n} y_i$

- 3. Let X_1, \ldots, X_n be a random sample from the exponential distribution whose p.d.f. is TI D EXPL-Xi/D) $f(x;\theta) = (1/\theta) \exp(-x/\theta), \ 0 < x < \infty, \ 0 < \theta < \infty.$
 - a. Show that \bar{X} is an unbiased estimator of θ .
 - b. Show that the variance of \bar{X} is θ^2/n . What is a good estimate of θ if a random sample of size 5 yielded the values 3.5, 8.1, 0.9, 4.4 and 0.5?
- 4. Let X_1, \ldots, X_n be a random sample from a distribution having finite variance σ^2 . Show that

$$S^{2} = \sum_{i=1}^{n} \frac{\left(X_{i} - \bar{X}\right)^{2}}{n-1}$$

is an unbiased estimator of σ^2 . HINT: Write

$$S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right)$$

and compute $E(S^2)$.

5. Let X_1, \ldots, X_n be a random sample of size n from the distribution with p.d.f. $f(x; \theta) = (1/\theta)x^{(1-\theta)/\theta}, 0 < x < 1$.

- a. Show the mean of X is $E(X) = 1/(1+\theta)$.
- b. Show the maximum likelihood estimator of θ is

$$\hat{\theta} = -\frac{1}{n} \sum_{i=1}^{n} \ln X_{i} = \underbrace{\left\{ \left(-\frac{1}{n} \sum_{i=1}^{n} \prod_{i} X_{i} \right) \right\}}_{= -\frac{1}{n} \sum_{i=1}^{n} \left[\prod_{i} X_{i} \right]$$

- c. Is the MLE unbiased? (You can do this using integration by parts combined with rules about expectation of the sample mean.)
- d. Show the method of moments estimator of θ is

mator of
$$\theta$$
 is
$$\widetilde{\theta} = \frac{1 - \overline{X}}{\overline{X}}.$$

$$= \int_{\mathbb{R}} \left(\ln X \right) - \int_{\mathbb{R}} \ln X dx - \int_{\mathbb{R}} \ln X$$

- a. A random sample X_1, \ldots, X_n of size n is taken from a Poisson distribution with mean $\lambda > 0$.

 i. Show the maximum likelihood estimator of λ is $\hat{\lambda} = \bar{X}_{12}$ 1.

 - ii. Suppose with n=40 we observe 5 zeros, 7 ones, 12 twos, 9 threes, 5 fours, 1 five, and 1 six. What is the maximum likelihood estimate of λ .
 - b. Find the maximum likelihood estimator, $\hat{\theta}$, if X_1, \dots, X_n is a random sample from the following probability density function:

$$f(x;\theta) = (1/2)\exp(-|x-\theta|), -\infty < x < \infty, 0 < \theta < \infty$$

This involves minimizing
$$\sum_{i=1}^{n} |x_{i} - \theta|$$
, which is difficult. Try $n = 5$ and a sample 6.1, -1.1, 3.2, 0.7, 4.7. Then deduce the MLE.

$$X_{i} = Polsion N$$

$$Y_{i} = Polsion N$$

$$Y_{i} = Polsion N$$

$$f(x;\theta) = (1/2) \exp(-|x-\theta|), -\infty < x < \infty, 0 < \theta < \infty$$

$$\iint_{i=1}^{n} \frac{1}{2} \exp(-|x_{i}-\theta|)$$

$$|\theta| = \frac{1}{2}n e^{-\frac{\pi}{2}|X_{i}-\theta|}$$

$$|n(\theta)| = \ln^{\frac{\pi}{2}n} + \ln e^{-\frac{\pi}{2}|X_{i}-\theta|} = -n\ln 2 - \frac{\pi}{2}|X_{i}-\theta|$$

$$|n(\theta)| = \ln^{\frac{\pi}{2}n} + \ln e^{-\frac{\pi}{2}|X_{i}-\theta|} = -n\ln 2 - \frac{\pi}{2}|X_{i}-\theta|$$

$$|n(\theta)| = \ln^{\frac{\pi}{2}n} = \ln^{\frac{\pi}{2}n} = -n\ln \theta$$

$$|n(\theta)| = \ln^{\frac{\pi}{2}n} = -n\ln \theta$$

$$|n($$

- 5. Let X_1, \ldots, X_n be a random sample of size n from the distribution with p.d.f. $f(x; \theta) = (1/\theta)x^{(1-\theta)/\theta}, \ 0 < x < 1.$
 - a. Show the mean of X is $E(X) = 1/(1 + \theta)$.
 - b. Show the maximum likelihood estimator of θ is

$$\hat{\theta} = -\frac{1}{n} \sum_{i=1}^{n} \ln X_i$$

- c. Is the MLE unbiased? (You can do this using integration by parts combined with rules about expectation of the sample mean.)
- d. Show the method of moments estimator of θ is

$$E(x) = \int_{0}^{1} x f(x) dx = \int_{0}^{1} \frac{1 - \bar{x}}{\bar{x}}.$$

$$= \int_{0}^{1} x f(x) dx = \int_{0}^{1} \frac{1 - \bar{x}}{\bar{x}}.$$

$$= \int_{0}^{1} x f(x) dx = \int_{0}^{1} \frac{1 - \bar{x}}{\bar{x}}.$$

$$= \int_{0}^{1} x f(x) dx = \int_$$

$$\ln(0) = -\frac{1}{6} - \frac{1}{6}z \leq \ln x$$

$$-\frac{1}{6}z \leq \log(x) + \frac{1}{6}z \leq \log(x) + \frac{1}{6}z \leq \log(x)$$

$$Q = -\frac{1}{6}z \log(x) + \frac{1}{6}z \leq \log(x)$$

4. Let X_1, \ldots, X_n be a random sample from a distribution having finite variance σ^2 . Show that

$$S^2 = \sum_{i=1}^n \frac{\left(X_i - \bar{X}\right)^2}{n-1}$$
 estimate of

is an unbiased estimator of σ^2 . HINT: Write

$$S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right)$$

and compute $E(S^2)$.

$$S^{2} = \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right) = b^{2}$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!} \left(\frac{1}{2} x^{2} - n x^{2} \right)$$

$$= \frac{1}{n!$$

("(0)= 1 = 1 = 2 = 1 (oy ()) 把自二三人的人们看儿的野好。

logx2 to when ocxic)

("(6) is negative : 1 & ss MLE

e-(xi-1) xi7,0 get MIE for M. = (xi7) (xi7) fiz min(X) -Xn