CURS 0x01

BLAISE PASCAL (1623 - 1662)

În 1642, când încă nu avea 19 ani, crează Pascaline:

- un calculator mecanic
- capabil de adunări/scăderi (utilizat pentru calcul de taxe)
- nu a fost o mașină practică
- mai puţin de 50 au fost create
- era utilizată pe post de "jucărie" pentru aristocrație

OBS: limbajul Pascal e numit în onoarea lui

GOTTFRIED WILHELM VON LEIBNIZ (1646 – 1716)

Două contribuții majore:

- studiază sistemul binar
- extinde mașina lui Pascal, adăugând operațiile de înmulțire și împărțire tot o mașină mecanică creată în 1673

GEORGE BOOLE (1815 – 1864)

Scrie "The Laws of Thought" (1854)

Introduce logica booleană și analizează operațiile de bază

- negaţia
- · conjuncția
- disjuncția
- disjuncția exclusivă

Toate acestea stau la baza teoriei informației

CHARLES BABBAGE (1791 – 1871)

- proiectează Mașina Diferențială Nr. 2 (Difference Engine No. 2)
 - + doar teoretic, design-ul este realizat de abia în 1991
 - + totuși, este prima mașină de calcul (mecanică) programabilă
- prototipurile sale aveau deja peste 13 tone
- este considerat "tatăl calculatoarelor moderne"

ADA LOVELACE (1815 – 1852)

- colaboratoare a lui Babbage
- scrie primul program, calculează numere Bernoulli
- nu existau limbaje de programare, dar ea a descris o serie de pași care sa fie executați de o mașină
- este considerată primul "programator"

KONRAD ZUSE (1910 – 1995)

- introduce o serie de calculatoare: Z1, Z2, Z3 și Z4
- primele prototipuri în 1940-1941
- foloseşte sistemul binar
- instrucțiunile sunt stocate pe o bandă
- introduce reprezentarea și calculul în virgulă mobilă
- face aproape totul în izolare (1936-1945)

ALAN TURING (1912 – 1954)

- celebru pentru publicul larg pentru contribuția lui în spargerea rapidă a mesajelor Enigma utilizând mașina "The Bombe"
 Practic, mașina făcea un brute-force search pentru a reduce numărul de posibilități în decriptarea mesajelor
- introduce Maşina Turing
 Un model teoretic pentru a implementa orice algoritm
 Conceptul de Turing-complete
 Intuiția: un sistem care poate recunoaște și analiza seturi de reguli pentru
 manipularea datelor (o cantitate infinită, teoretic)
- introduce Testul Turing

The imitation game: "The original question, 'Can machines think!' I believe to be too meaningless to deserve discussion" A. Turing

JOHN VON NEUMANN (1903 – 1957)

- considerat unul dintre cei mai buni matematicieni ai ultimului secol, aduce contributii în numeroase domenii
- ajută la crearea primul calculator electronic ENIAC (Electronic Numerical Integrator And Computer), 1939-1944
- îmbunătățește ENIAC ajutând la crearea EDVAC (Electronic Discrete Variable Automatic Computer), sistemul este binar și are programe stocate
- introduce arhitectura von Neumann

CLAUDE SHANNON (1916 – 2001)

- considerat "părintele teoriei informaţiei"
- trei contribuții excepționale:
 - 1. demonstrează faptul că probleme de logică Booleană pot fi rezolvate cu circuite electronice
 - 2. teorema de eşantionare Shannon-Nyquist (de la analog la digital și înapoi, fără a pierde ceva)
 - 3. inventează teoria informației

Dennis Ritchie

- creatorul limbajului C
- a contribuit la crearea sistemului de operare Unix
- a contribuit la crearea limbajului B (un precursor al C)

Ken Thompson

- a contribuit la crearea limbajelor Go sau B (un precursor al C)
- a contribuit la crearea sistemului de operare Plan 9

Brian Kernighan

- a contribuit la crearea sistemului de operare Unix
- coautor al primei cărți despre limbajul de programare C "The C Programming Language"

Larry Page + Sergey Brin

creatorii Google

Richard Wesley Hamming

• codurile Hamming

Margaret Hamilton

• programatoarea care a scris majoritatea codului sursă pentru aselenizarea din 1969 (programul Apollo)

Steve Jobs

• cofondatorul și CEO-ul firmei Apple Computer

Ron Rivest + Adi Shamir + Leonard Adelman

· creatorii algoritmului RSA

Linus Torvalds

- creatorul sistemului de operare Linux
- creatorul version control system git

Grace Hopper

• a contribuit la dezvoltarea primelor limbaje de programare high-level, cum ar fi COBOL

Al-Khwarizmi

- cuvântul "algoritm" este format prin alterarea numelui său "Al-Khawarizmi". •
- Conceptele sale matematice stau la baza modelelor de calculatoare digitale introduse de Alan Turing şi John Von Neumann.

Richard Stallman

- a contribuit la proiectul GNU
- a sprijinit dezvoltarea unor concepte precum copyleft, GPL și open source

Guido van Rossum

• creatorul limbajului de programare Python

Bjarne Stroustrup

• creatorul limbajului de programare C++

Donald E. Knuth

- este autorul lucrării "The Art of Computer Programming"
- a contribuit la dezvoltarea analizei riguroase a complexității computaționale a algoritmilor și a sistematizat tehnicile matematice formale pentru aceasta

Barbara Liskov

- Liskov substitution principle
- · a contribuit în domeniul distributed computing

IDEILE MARI

- de la mecanic la electric
- de la o mașină care face un singur lucru automat, la o mașină care este programabilă
- design modular
- teorie despre ce este posibil pe aceste mașini
- dorința de a face lucrurile optim, la limită și fără risipă

SISTEMUL BINAR

$$\mathbf{x} = \sum_{i=0}^{N-1} b_i B^i$$

 $\begin{array}{ll} \mbox{bitul } b_0 & \mbox{se numește Least Significant Bit (LSB)} \\ \mbox{bitul } b_{N-1} & \mbox{se numește Most Significant Bit (MSB)} \end{array}$

Regula generală: când trecem din baza B în baza Bp trebuie doar să grupăm noul număr în câte p cifre

exemplu: $(4837103)_{10}$ = $("4" "83" "71" "3")_{100}$

OBS: Cifrele sunt cele din din baza la care ne raportăm ex: Baza 2 => cifrele sunt 0 si 1

Baza 11 => cifrele sunt de la 0 la 10

SISTEMUL HEXADECIMAL

0 _{hex}	=	0 _{dec}	=	0 _{oct}	0	0	0	0
1 _{hex}	II	1 _{dec}	II	1 _{oct}	0	0	0	1
2 _{hex}	Ш	2 _{dec}	Ш	2 _{oct}	0	0	1	0
3 _{hex}	II	3 _{dec}	11	3 _{oct}	0	0	1	1
4 _{hex}	II	4 _{dec}	Ш	4 _{oct}	0	1	0	0
5 _{hex}	II	5 _{dec}	11	5 _{oct}	0	1	0	1
6 _{hex}	II	6 _{dec}	Ш	6 _{oct}	0	1	1	0
7 _{hex}	II	7 _{dec}	Ш	7 _{oct}	0	1	1	1
8 _{hex}	II	8 _{dec}	Ш	10 _{oct}	1	0	0	0
9 _{hex}	Ш	9 _{dec}	Ш	11 _{oct}	1	0	0	1
A _{hex}	II	10 _{dec}	Ш	12 _{oct}	1	0	1	0
B _{hex}	Ш	11 _{dec}	Ш	13 _{oct}	1	0	1	1
C _{hex}	II	12 _{dec}	Ш	14 _{oct}	1	1	0	0
D _{hex}	=	13 _{dec}	=	15 _{oct}	1	1	0	1
E _{hex}	II	14 _{dec}	=	16 _{oct}	1	1	1	0
F _{hex}	=	15 _{dec}	=	17 _{oct}	1	1	1	1

Numere întregi negative

bit b _i :	1	1	1	1	0	0	0	1
								20

$$\mathbf{x} = -b_{N-1} 2^{N-1} + \sum_{i=0}^{N-1} b_i B^i$$

zecimal
7
6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
-7
-8

Algoritm pentru reprezentarea numerelor negative în sistem binar

- 1. reprezentăm în binar abs(numar)
- 2. inversam toţi biţii
- 3. adunăm 1

ex:

1.
$$39 = 00100111$$

3.
$$+1 = 11011001 = -2^7 + 2^6 + 2^4 + 2^3 + 2^0 =$$

= $-128 + 64 + 16 + 8 + 1 = -39$

Algoritm pentru calcularea rapidă a numerelor negative în sistem binar

- 1. dacă primul bit este 1 => este un nr negativ
- 2. inversam toţi biţii
- 3. adunăm 1
- 4. punem -1 în fața numărului obtinut

ex:

2. 00010001

3.
$$00010010 = 2^4 + 2^1 = 16 + 2 = 18$$

4. => -18

Operații logice

- NOT (negația)
- AND (conjuncția)
- OR (disjuncția)
- XOR (disjuncția exclusivă)

X	Y	X XOR Y
0	0	0
0	1	1
1	0	1
1	1	0