Expected Utility Thm. With "reasonable" preferences, \exists a bernoulli fx u s.t. $L \succeq L' \Leftrightarrow \sum p_i u_i \geq \sum p'_i u_i$. (choose lottery with higher expected utility)

SD - $G(x) \le F(x) \forall x$ (1st - function always "under") $\int_{-\infty}^{s} G(x) dx \le \int_{-\infty}^{s} F(x) d$ (2nd - function mostly under)

Risk Aversion $\frac{-u''(s)}{u'(s)}$ ARA $\frac{-u''(s) \cdot s}{u'(s)}$ RRA

Treasure chest type questions - 1. sort in order of highest $\frac{pr_i}{c_i}$ to lowest 2 try in order until success or $\frac{pr_i}{c_i} < \frac{1}{c_i}$

to lowest. 2. try in order until success or $\frac{pr_i}{c_i} < \frac{1}{value}$. CE - lottery gives x or y with prob p and 1-p. Then u[CE] = pu(x) + (1-p)(u(y)).

Bayes
$$p(s|z) = \frac{p(z|s)p(s)}{\sum_t p(z|t)p(t)}$$
 states(s,t) signals(z) $\frac{p(s|z)}{p(t|z)} = \frac{p(z|s)}{p(z|t)} \frac{p(s)}{p(t)}$ posterior = likelihood ratio·priors

Cookbook - 1. Draw decision tree, fill in payoffs and nature probs 2. Solve by BI, take EU at N-moves and max at decision nodes 3. Write induced utilities at each now terminal node, repeat until at start 4. write out complete contingency plan.

V(I) =informed payoff-uninformed payoff-cost of getting info

Game Solutions $IDDS \subset SPNE \subset NE \subset CE/RE SPNE$ rules out NE not obtainable by BI

Generalized BI - 1. Find all NE at any irreducible terminal subgame 2. Write out reduced game with a NE payoff vector replacing subgame 3. Iterate until start, always at least one SPNE

Incomplete Info (Harsanyi) - 1. Specify types and connect with N-move, drawing relevant info sets 2. Assume common prior for N-move 3. Solve for NE(BNE) and SPNE(PBE) by normal methods.

Given beliefs μ and strategy profile $\sigma \to 1$) μ is the Bayesian posterior given common prior and σ . 2) each component of σ is a BR to μ . 1+2 is a BNE, and is a PBE if 1+2 hold in every subgame.

Repeated Games - For known finite number of repetitions of the Prisoner's dilemma stage game, always-defect is the unique NE. For infinite number of repetitions, grim can sustain cooperation in NE if $\delta > \delta_0$.

Folk Thm - any feasible payoff vector that dominates the NE is achievable as a SPNE if players are sufficiently patient.

Coop Games 2+ players, transferable utility. Start with characteristic fx V (typically list of outcomes of all possible K). Convex ftn - If $S \subset T$ and $i \in N-T$, $\nu(S \cup i)-\nu(s) \leq \nu(T \cup i)-\nu(T)$

Core - Coalition K blocks allocation u if $\sum_{i \in K} u_i < v(K)$ i.e. if they can do better by themselves. Core is all allocations unblocked by any K. Shapley Value - $\phi(v)$ exists(possibly empty),

unique, and pareto optimal.

	1	2	3
123	0	1	1
132	0	0	2
213	1	0	1
231	2	0	0
312	2	0	0
321	2	0	0
$\phi(v)$	7/6	1/6	4/6

	1 /	1	1
Exa	mple:V(i) =	=0	
V(12)	2) = 1, V(1	3) = 2	
V(2)	3) = 0, V(1)	123) = 2.	Then the
core	is half of si	de of simp	$lex (100 \le$
$x_1 \leq$	$\leq 200, x_2 =$	$=0,0 \leq x$	$c_3 \leq 100$).
Note	e that $\phi(v)$	is outside	e the core.

NBS - Given threat point, NBS is pareto optimal (on NE frontier) max $g(u, v) = (u - \bar{u})(v - \bar{v})$. Ex-

ample: Feasible utilities given by $20-u^2=v$ and $(\bar{u},\bar{v})=(2,2)$. max g=(u-2)(v-2). Plug in $v\to (u-2)(18-u^2)=u^2+18u-36$. Then $\frac{dg}{du}=-3u^2+4u+18=0$. This gives u^* , plug in for v^* .

Evo Games Describes ongoing strategic interaction.

2-pop example:
$$U(I,r) = 2r - 1$$

$$U(D,r) = 2 - 6r \rightarrow r = \frac{3}{8}$$

$$W(A,s) = 2 - 10s$$

$$W(B,s) = s - 1 \rightarrow s = \frac{1}{9} \text{ Then}$$
 these are the breaks in state space (1x1 unit square).
$$\frac{B}{I} = \frac{G}{I} = \frac{1,-8}{I} = \frac{-1,0}{I} = \frac{1,-8}{I} =$$

Monopolistic normal problem: max qp(q)-c(q). Take derivative w.r.t q and solve. parametric example: $p=a-bq_T$

const. $\cos t = cq_j$ $q_{-j} = \frac{q_{T-q_j}}{J-1}$ avg. of other firms (n=J). In stack. leader gets twice as much, but total profits < Cournot. Better to be 2nd in Bertrand. $q^m < q^c < q^s < q^b = q^{comp}$.

	monop	cournot	stack
q_1	$\frac{1}{2} \frac{a-c}{b}$	$\frac{1}{3} \frac{a-c}{b}$	$\frac{1}{2} \frac{a-c}{b}$
q_2		$\frac{1}{3} \frac{a-c}{b}$	$\frac{1}{4} \frac{a-c}{b}$
q_T	$\frac{1}{2} \frac{a-c}{b}$	$\frac{2}{3}\frac{a-c}{b}$	$\frac{3}{4} \frac{a-c}{b}$
π_1	$\frac{1}{4} \frac{(a-c)^2}{b}$	$\frac{1}{9} \frac{(a-c)^2}{b}$	$\frac{1}{8} \frac{(a-c)^2}{b}$
π_2		$\frac{1}{9} \frac{(a-c)^2}{b}$	$\frac{1}{16} \frac{(a-c)^2}{b}$
π_T	$\frac{1}{4} \frac{(a-c)^2}{b}$	$\frac{2}{9} \frac{(a-c)^2}{b}$	$\frac{3}{16} \frac{(a-c)^2}{b}$

Entry Games -

Stage 1:[in with cost K,out]. Stage 2:K is sunk, J entrants. Cournot: Stage 1:[1,0]. Stage 2:get $\pi_j^{NE} - K$ if in, 0 if out. From parametric case: $\pi_j^{NE} - K = \frac{(a-c)^2}{b(J+1)^2} - K$. J must be s.t. $\frac{(a-c)^2}{b(J+1)^2} \approx K$, then can solve for J so that if anyone else enters, it is unprofitable.

Adverse Selection - Asymmetric Info. Ex: Seller knows quality $\theta=$ value to buyer. Seller values at $r(\theta).\Theta(p)=\{\theta:r(\theta)\leq p\}$ is the subset of sellers willing to sell at price p. Then a competitive eqm. in a market with asymmetric info is $(p^*,\Theta\ (p^*)$ s.t. $p^*=E(\theta|\theta\in\Theta^*)$ and $\Theta(p^*)=\{\theta:r(\theta)\leq p^*\}$ (i.e. expected quality among those that are selling is the price). Used car ex $\theta=[2,3]$. $\theta=[2,3]$. Then $\theta=[2,3]$. Then $\theta=[2,3]$. Then $\theta=[2,3]$ solving for p gives $\theta=[2,2]$. and $\theta=[2,2]$. 80% market failure.

Signalling - N-move θ , I sends message $m(\theta)$ and U picks action a(m) after forming beliefs $\mu(\theta|m)$. PBE is $[m^*, a^*, \mu]$ s.t. 1. $m^* \in \operatorname{argmax} u_s(m, a^*; \theta) \forall \theta$ (for every possible state, send m that max u given U's BR to m). 2. $a^* \in \operatorname{argmax} \sum_{\theta} \mu \cdot u_r(a, m; \theta)$ (pick a that max EV) 3. μ is consistent with Bayes given N-move and m^*

Kinds of PBE - 1. Separating (each state θ a different m^*) 2. pooling (m^* constant) 3. partial pooling (not 1:1) 4. hybrid (mixed). For separating, a false message must be too costly if not true (i.e. sending H when state is L).

Beer and Quiche example:

	1's Plan	2's assesments	2's b.r.	Optimal for 1?			
Separating Equilibria							
A)	$I \longrightarrow L; II \longrightarrow R$	r = 1; q = 0	$L \longrightarrow U; R \longrightarrow U$	YES			
B)	$I \longrightarrow R; II \longrightarrow L$	r = 0; q = 1	$L \longrightarrow D; R \longrightarrow D$	YES			
	Pooling Equilibria						
C)	$I \longrightarrow L; II \longrightarrow L$	$r = \frac{1}{2}; q = ?$					
			$L \longrightarrow D; R \longrightarrow U$	YES			
		Case $q > \frac{1}{3}$	$L \longrightarrow D; R \longrightarrow D$	$NO (I \longrightarrow R)$			
D)	$I \longrightarrow R; II \longrightarrow R$	$r = ?; q = \frac{1}{2}$ Case $r < \frac{2}{3}$	$L \longrightarrow D; R \longrightarrow D$	$NO(II \longrightarrow L)$			
		Case $r > \frac{2}{3}$	$L \longrightarrow U; R \longrightarrow D$	YES			

Then there are 2 separating eqm: 1. Type I plays L, II plays R, and player 2 always plays U. (r=1, q=0) 2. Type I plays R, II plays L, and player 2 always plays D. (r=0, q=1).

There are 2 pooling eqm: 1. Both types play L, player 2 plays D when observes L and U when observes R $(r=\frac{1}{2}, q<\frac{1}{3})$

Screening - U moves first and provides "menu" of choices to induce I to reveal info

P/A Model - $max_e \ EU_P \ \text{s.t.} \ IC[e] : EU_A(e) \ge EU_A(\tilde{e}) \forall e \in$ $\{e_L, e_H\}$ and $PC : EU_A(e) \ge \bar{u}_A\}$. $u_A = v(w) - g(e)$. $u_P = v(e) + v(e)$ $E(\pi|e) - E(w|e)$. $f(\pi|e_H) \text{FOSD} f(\pi|e_L)$. Reduces to P minimize wage schedule that induces e_H :

wage schedule that includes e_H . $L = -\int w(\pi)f(\pi|e_H)d\pi + \gamma[\int v(w(\pi))f(\pi|e_H)d\pi - \bar{u}_A] + \mu[\int v(w(\pi))[(f(\pi|e_H) - f(\pi|e_L)]d\pi - g(e_H) + g(e_L)]$ FOC w.r.t $w(\pi)$ gives: $\frac{1}{v'(w(\pi))} = \gamma + \mu(1 - \frac{f(\pi|e_L)}{f(\pi|e_H)})$. Case 0: e is observable - only one level of effort, wage = $1/\mu$. Case 1: e unobservable, but A is risk neutral. LHS is 1, and $\gamma = 1, \mu = 0$. Case 2: If not, γ is the base pay and μ is extent of effort-based bonus.

Assorted Info, just in case PDF of normal
$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$
 CDF $C(x) = \frac{1}{\sqrt{2\pi}}\int e^{t^2/2}dt$

General monopoly vs. Cournot FOC: $p'(q^m)q^m + p(q^m) = c$ vs. $p'(q_T)^{\underline{q_T}}_{\underline{J}} + p(q_T) = c$ (non-zero profit $\pi_i = pq - qmc$)