Class07: Machine Learning 1

Chelsea (PID:A16871799)

clustering

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans()

Let's try it on some made up data where we know data should be

```
x <- rnorm(10000,mean=3)
hist(x)</pre>
```


60 points

```
tmp <- c(rnorm(30, mean=3),rnorm(30,mean=-3))
x <- cbind(x=tmp,y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 4.434012 -1.999810
[2,] 2.787172 -3.815039
[3,] 1.422727 -4.743766
[4,] 3.220838 -2.829407
[5,] 1.850181 -1.042983
[6,] 2.174862 -1.995420
```

we can pass this to the base R functionplot(x)

```
plot(x)
```



```
k <- kmeans(x,centers=2,nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

```
Cluster means:
```

X

1 -3.072247 2.782988

2 2.782988 -3.072247

Clustering vector:

Within cluster sum of squares by cluster:

[1] 48.79995 48.79995

(between_SS / total_SS = 91.3 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

Q1: How many points are in each cluster?

k\$size

[1] 30 30

Q2 Cluster membership

k\$cluster

Q3: Cluster center

k\$centers

X y

1 -3.072247 2.782988

2 2.782988 -3.072247

Q4 plot my results

plot(x,col=k\$cluster,pch=16)

Q5. Cluster the data again with kmeans()into 4 groups and plot the results

```
k4 <- kmeans(x,centers=4,nstart=20)
plot(x,col=k4$cluster,pch=16)</pre>
```


k-means is popular mostly because it's fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups(k, or centers) you want.

#hierarchical clustering

The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

```
hc <- hclust( dist(x) )
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

```
plot(hc)
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

To find the cluster (cluster membership vector) from a hclust() result we "cut" the tree we like.

```
plot(hc)
abline(h=8,col="red")
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

```
grps <- cutree(hc, h=8)

table(grps)

grps
1 2
30 30

plot(x,col=grps,pch=16)</pre>
```


#principlal component

##PCA of UK food data

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	Х	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494

14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

#Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions? R functions such as $\dim(x)$; $\operatorname{ncol}(x)$ and $\operatorname{nrow}(x)$.

```
dim(x)
```

[1] 17 5

X

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

I need to fix that first columns

```
# Note how the minus indexing works
rownames(x) <- x[,1]
x <- x[,-1]
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2: prefer the second method that set row.names=1 because if run the first approach code block (i.e. the one with x <- x[,-1])multiple times, columns decreases one by one

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3: Changing what optional argument in the above barplot () function results in the following plot? # beside = FALSE

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


pairs(x, col=rainbow(17), pch=16)

Q5:The R code generates a matrix of pairwise scatter plots for the dataset x, and it uses 17 different colors to represent different categories of data points. If a given point lies on the diagonal for a given plot, the point is having equal distance with regards to the 2 country, so they eat same food between 2 country

##Principal Component

PCA can help us make sense of these types of dataset. Let's see how it works.

The main function in "base" R is called prcomp(). In this case we want to first take the transpose of our input x so the columns are the food types and the countries are the rows.

head(t(x))

	Cheese	Carcass_	meat	Other	meat	Fish	Fats_and	oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	otatoes	Fresl	n_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874	:	265		570			203
Scotland		566	;	171		418			220
N.Ireland		1033	}	143		355			187
	Process	sed_Veg	Fresh	fruit	Cerea	als :	Beverages	Soft_d	drinks
England		360		1102	2 :	1472	57		1374
Wales		365		1137	7	1582	73		1256
Scotland		337		957	7	1462	53		1572
N.Ireland		334		674	<u> </u>	1494	47		1506
	Alcohol	Lic_drink	s Cor	nfectio	nery				
England		3	75		54				
Wales		4	75		64				
Scotland		4	58		62				
N.Ireland		1	.35		41				

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

the "loadings" tell us how much the origonal variable in our case the foods contribute to the new variable. such as the PCs

head(pca\$rotation)

```
PC1
                                     PC2
                                                 PC3
                                                             PC4
Cheese
               -0.056955380
                             0.01601285
                                          0.02394295 -0.40938259
Carcass_meat
                0.047927628
                             0.01391582
                                          0.06367111
                                                      0.72948192
Other_meat
               -0.258916658 -0.01533114 -0.55384854
                                                      0.33100113
Fish
               -0.084414983 -0.05075495
                                         0.03906481
                                                      0.02237588
Fats_and_oils
               -0.005193623 -0.09538866 -0.12522257
                                                      0.03451216
Sugars
               -0.037620983 -0.04302170 -0.03605745
                                                      0.02494334
```

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2)
```


Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set? The main difference is in the food consumption of Fresh_fruit and alcoholic drinks

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2)
```


Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 mainly tell us about? Fresh_potatoes and soft_drinks are the 2 main features and PC2 mainly tell us about what is the second most variation in the data.