

## invertible ideal is finitely generated

 ${\bf Canonical\ name} \quad {\bf Invertible Ideal Is Finitely Generated}$ 

Date of creation 2015-05-06 14:44:03 Last modified on 2015-05-06 14:44:03

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 10

Author pahio (2872) Entry type Theorem Classification msc 13B30

Related topic InvertibilityOfRegularlyGeneratedIdeal

**Theorem.** Let R be a commutative ring containing regular elements. Every http://planetmath.org/FractionalIdealOfCommutativeRinginvertible fractional ideal  $\mathfrak a$  of R is finitely generated and http://planetmath.org/RegularIdealregular, i.e. regular elements.

*Proof.* Let T be the total ring of fractions of R and e the unity of T. We first show that the inverse ideal of  $\mathfrak{a}$  has the unique http://planetmath.org/QuotientOfIdealsque presentation  $[R':\mathfrak{a}]$  where  $R':=R+\mathbb{Z}e$ . If  $\mathfrak{a}^{-1}$  is an inverse ideal of  $\mathfrak{a}$ , it means that  $\mathfrak{a}\mathfrak{a}^{-1}=R'$ . Therefore we have

$$\mathfrak{a}^{-1} \subseteq \{t \in T : t\mathfrak{a} \subseteq R'\} = [R' : \mathfrak{a}],$$

so that

$$R' = \mathfrak{a}\mathfrak{a}^{-1} \subseteq \mathfrak{a}[R' : \mathfrak{a}] \subseteq R'.$$

This implies that  $\mathfrak{a}\mathfrak{a}^{-1} = \mathfrak{a}[R':\mathfrak{a}]$ , and because  $\mathfrak{a}$  is a cancellation ideal, it must that  $\mathfrak{a}^{-1} = [R':\mathfrak{a}]$ , i.e.  $[R':\mathfrak{a}]$  is the unique inverse of the ideal  $\mathfrak{a}$ .

Since  $\mathfrak{a}[R':\mathfrak{a}]=R'$ , there exist some elements  $a_1,\ldots,a_n$  of  $\mathfrak{a}$  and the elements  $b_1,\ldots,b_n$  of  $[R':\mathfrak{a}]$  such that  $a_1b_1+\cdots+a_nb_n=e$ . Then an arbitrary element a of  $\mathfrak{a}$  satisfies

$$a = a_1(b_1a) + \dots + a_n(b_na) \in (a_1, \dots, a_n)$$

because every  $b_i a$  belongs to the ring R'. Accordingly,  $\mathfrak{a} \subseteq (a_1, \ldots, a_n)$ . Since the converse inclusion is apparent, we have seen that  $\{a_1, \ldots, a_n\}$  is a finite of the invertible ideal  $\mathfrak{a}$ .

Since the elements  $b_i$  belong to the total ring of fractions of R, we can choose such a regular element d of R that each of the products  $b_id$  belongs to R. Then

$$d = a_1(b_1d) + \dots + a_n(b_nd) \in (a_1, \dots, a_n) = \mathfrak{a},$$

and thus the fractional ideal  $\mathfrak{a}$  contains a regular element of R, which obviously is regular in T, too.

## References

[1] R. GILMER: Multiplicative ideal theory. Queens University Press. Kingston, Ontario (1968).