

1. Abel's map

2. Theta functions

3. Kronecker function

4. Striving for higher genus

1. Abel's map

2. Theta functions

3. Kronecker function

4. Striving for higher genus

Holomorphic Differentials

Existence of holomorphic differentials,

The dimension of the space of holomorphic differentials is $\dim \mathcal{H}^1 = q$, the genus of the compact Riemann surface.

Proof outline:

- dim $\mathcal{H}^1 \leq \#$ of a-cycles = g
- # of harmonic differentials = $\dim H \ge 2g$
- $h = fdz + gd\bar{z} \implies \dim H = 2\dim \mathcal{H}^1$
- $q < \dim \mathcal{H}^1 < q \implies \dim \mathcal{H}^1 = q$

Normalization & period matrix:

$$\int_{a_i} \omega_j = \delta_{ij}$$

$$\int_{b_i} \omega_j = \tau_{ij}$$

Regions used to define harmonic differentials Ber06

Abel's map

Formal definition of Abel's map

For a particular choice of a point P_0 on the fundamental domain \mathcal{L} , using the normalized harmonic differentials ω_i , we have Abel's map

$$\mathbf{u}: \mathcal{L} \mapsto \mathbb{C}^g, \quad P \qquad \qquad \mapsto \begin{pmatrix} \int_{P_0}^P \omega_1 \\ \vdots \\ \int_{P_0}^P \omega_g \end{pmatrix}$$

ImageSource

Analytic continuation beyond the fundamental domain:

$$\mathbf{u}(P+a_i) = \mathbf{u}(P) + \begin{pmatrix} \int_{a_i} \omega_1 \\ \vdots \end{pmatrix} = \mathbf{u}(P) + \begin{pmatrix} \delta_{i1} \\ \vdots \end{pmatrix}$$
$$\mathbf{u}(P+b_i) = \mathbf{u}(P) + \begin{pmatrix} \tau_{i1} \\ \vdots \end{pmatrix}$$

Abel's map at genus 1

Appropriate differential

$$\omega = dz$$

Abel's map

$$\mathbf{u}(z) = \int_0^z \omega = z$$

Fundamental domain and continuation at genus 1 **ImageSource**

What about higher genus?

- How do we represent the fundamental domain?
- What choice of differentials can we make?
- What consequences does this have for Abel's map?

1. Abel's map

2. Theta functions

3. Kronecker function

4. Striving for higher genus

Definition of the Theta function

Given a symmetric matrix τ with positive definite imaginary part, the Theta function is

$$\Theta(\vec{z},\tau) := \sum_{\vec{n} \in \mathbb{Z}^g} \exp\left(2\pi i \left[\frac{1}{2} \vec{n}^T \tau \vec{n} + \vec{n}^T \vec{z}\right]\right)$$

Definition of the Theta function

Given a symmetric matrix τ with positive definite imaginary part, the Theta function is

$$\Theta(\vec{z}, \tau) := \sum_{\vec{n} \in \mathbb{Z}^g} \exp\left(2\pi i \left[\frac{1}{2} \vec{n}^T \tau \vec{n} + \vec{n}^T \vec{z}\right]\right)$$

Definition of the Theta function

Given a symmetric matrix τ with positive definite imaginary part, the Theta function is

$$\Theta(\vec{z}, \tau) := \sum_{\vec{n} \in \mathbb{Z}^g} \exp\left(2\pi i \left[\frac{1}{2} \vec{n}^T \tau \vec{n} + \vec{n}^T \vec{z}\right]\right)$$

$$\Theta(-\vec{z}) \stackrel{\vec{n}\mapsto -\vec{n}}{=} \Theta(\vec{z})$$

Definition of the Theta function

Given a symmetric matrix τ with positive definite imaginary part, the Theta function is

$$\Theta(\vec{z}, \tau) := \sum_{\vec{n} \in \mathbb{Z}^g} \exp\left(2\pi i \left[\frac{1}{2} \vec{n}^T \tau \vec{n} + \vec{n}^T \vec{z}\right]\right)$$

$$\Theta(-\vec{z}) \stackrel{\vec{n}\mapsto -\vec{n}}{=} \Theta(\vec{z})$$

$$\Theta(\vec{z} + \vec{\lambda}) = \sum_{\vec{n} \in \mathbb{Z}^g} \exp(2\pi i \vec{n}^T \vec{\lambda}) \exp(\dots) = \Theta(\vec{z})$$

Definition of the Theta function

Given a symmetric matrix τ with positive definite imaginary part, the Theta function is

$$\Theta(\vec{z},\tau) := \sum_{\vec{n} \in \mathbb{Z}^g} \exp\left(2\pi i \left[\frac{1}{2} \vec{n}^T \tau \vec{n} + \vec{n}^T \vec{z}\right]\right)$$

$$\begin{split} \Theta(-\vec{z}) &\overset{\vec{n}\mapsto -\vec{n}}{=} \Theta(\vec{z}) \\ \Theta(\vec{z}+\vec{\lambda}) = \sum_{\vec{n}\in\mathbb{Z}^g} \exp(2\pi i \vec{n}^T \vec{\lambda}) \exp(\ldots) = \Theta(\vec{z}) \\ \Theta(\vec{z}+\tau\vec{\lambda}) = \begin{bmatrix} \text{shift } \vec{n} \\ \text{use } \tau \text{ symmetry} \end{bmatrix} = \exp\left(2\pi i \left[-\frac{1}{2} \vec{\lambda}^T \tau \lambda - \vec{\lambda}^T \vec{z}\right]\right) \Theta(\vec{z}) \end{split}$$

Theta function on a compact Riemann surface

Definition of Theta function on a compact Riemann surface

For a compact Riemann surface $\mathcal M$ of genus g, with period matrix au and Abel's map $\mathbf u$, we can identify

$$\theta: \mathcal{M} \mapsto \mathbb{C}$$

$$P \mapsto \Theta(\mathbf{u}(P))$$

$$\theta(P + a_i) = \theta(P)$$

$$\theta(P + b_i) = \exp\left(2\pi i \left[-\frac{1}{2}\tau_{ii} - \mathbf{u}_i(P)\right]\right)\theta(P)$$

Theta function at genus 1

$$\begin{split} \theta(z) &= \sum_{n \in \mathbb{Z}} \exp(2\pi i [\frac{1}{2}n^2\tau + nz]) \\ \theta(z) &= \theta(-z) \\ \theta(z+1) &= \theta(z) \\ \theta(z+\tau) &= \theta(z) \end{split}$$

Cha22

What about higher genus?

• What does the Theta function look like at higher genus?

Definition of Theta function with characteristics

Consider vectors $\epsilon, \epsilon' \in \mathbb{R}^g$. We can then define the Theta function with characteristics ϵ, ϵ' as

$$\Theta\begin{bmatrix}\epsilon\\\epsilon'\end{bmatrix}(\vec{z}) := \exp\left(2\pi i \left[\frac{1}{8}\epsilon^T \tau \epsilon + \frac{1}{2}\epsilon^T \vec{z} + \frac{1}{4}\epsilon^T \epsilon'\right]\right) \Theta(\vec{z} + \frac{\epsilon'}{2} + \frac{\tau \epsilon}{2})$$

Definition of Theta function with characteristics

Consider vectors $\epsilon, \epsilon' \in \mathbb{R}^g$. We can then define the Theta function with characteristics ϵ, ϵ' as

$$\Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix}(\vec{z}) := \exp\left(2\pi i \left[\frac{1}{8}\epsilon^T \tau \epsilon + \frac{1}{2}\epsilon^T \vec{z} + \frac{1}{4}\epsilon^T \epsilon' \right]\right) \Theta(\vec{z} + \frac{\epsilon'}{2} + \frac{\tau \epsilon}{2})$$

Definition of Theta function with characteristics

Consider vectors $\epsilon, \epsilon' \in \mathbb{R}^g$. We can then define the Theta function with characteristics ϵ, ϵ' as

$$\Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix}(\vec{z}) := \exp\left(2\pi i \left[\frac{1}{8}\epsilon^T \tau \epsilon + \frac{1}{2}\epsilon^T \vec{z} + \frac{1}{4}\epsilon^T \epsilon' \right]\right) \Theta(\vec{z} + \frac{\epsilon'}{2} + \frac{\tau \epsilon}{2})$$

$$\Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (\vec{z} + \vec{\alpha} + \tau \vec{\beta}) = \exp\left(2\pi i \left[\frac{1}{2} (\epsilon^T \vec{\alpha} - \vec{\beta}^T \epsilon') - \frac{1}{2} \beta^T \tau \beta - \vec{\beta} \vec{z} \right] \right) \Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (\vec{z})$$

Definition of Theta function with characteristics

Consider vectors $\epsilon, \epsilon' \in \mathbb{R}^g$. We can then define the Theta function with characteristics ϵ, ϵ' as

$$\Theta\begin{bmatrix}\epsilon\\\epsilon'\end{bmatrix}(\vec{z}) := \exp\left(2\pi i \left[\frac{1}{8}\epsilon^T \tau \epsilon + \frac{1}{2}\epsilon^T \vec{z} + \frac{1}{4}\epsilon^T \epsilon'\right]\right) \Theta(\vec{z} + \frac{\epsilon'}{2} + \frac{\tau \epsilon}{2})$$

$$\Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (\vec{z} + \vec{\alpha} + \tau \vec{\beta}) = \exp\left(2\pi i \left[\frac{1}{2}(\epsilon^T \vec{\alpha} - \vec{\beta}^T \epsilon') - \frac{1}{2}\beta^T \tau \beta - \vec{\beta}\vec{z}\right]\right) \Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (\vec{z})$$

$$\Theta\begin{bmatrix} \epsilon + 2\eta \\ \epsilon' + 2\eta' \end{bmatrix} (\vec{z}) = \exp(\pi i \epsilon^T \eta') \Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (\vec{z}) \quad , \quad \eta, \eta' \in \mathbb{Z}^g$$

Definition of Theta function with characteristics

Consider vectors $\epsilon, \epsilon' \in \mathbb{R}^g$. We can then define the Theta function with characteristics ϵ, ϵ' as

$$\Theta\begin{bmatrix}\epsilon\\\epsilon'\end{bmatrix}(\vec{z}) := \exp\left(2\pi i \left[\frac{1}{8}\epsilon^T \tau \epsilon + \frac{1}{2}\epsilon^T \vec{z} + \frac{1}{4}\epsilon^T \epsilon'\right]\right) \Theta(\vec{z} + \frac{\epsilon'}{2} + \frac{\tau \epsilon}{2})$$

$$\Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (\vec{z} + \vec{\alpha} + \tau \vec{\beta}) = \exp\left(2\pi i \left[\frac{1}{2}(\epsilon^T \vec{\alpha} - \vec{\beta}^T \epsilon') - \frac{1}{2}\beta^T \tau \beta - \vec{\beta}\vec{z}\right]\right) \Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (\vec{z})$$

$$\Theta\begin{bmatrix} \epsilon + 2\eta \\ \epsilon' + 2\eta' \end{bmatrix} (\vec{z}) = \exp(\pi i \epsilon^T \eta') \Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (\vec{z}) \quad , \quad \eta, \eta' \in \mathbb{Z}^g$$

$$\Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (-\vec{z}) = \exp(\pi i \epsilon^T \epsilon') \Theta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix} (\vec{z}) \quad , \quad \epsilon, \epsilon' \in \mathbb{Z}^g$$

Odd theta functions and zeros

(Application) Decomposing meromorphic functions

Rough outline of how to reproduce a function with divisor $(f) = \sum n_i P_i$

$$\begin{bmatrix} \text{Find function } t(z) \\ \text{such that } t(0) = 0 \end{bmatrix} \rightarrow \begin{bmatrix} g(z) = \prod t(P-P_i)^{n_i} \\ \text{respecting possible periodicity} \end{bmatrix} \rightarrow \left(\frac{f}{g}\right) = \emptyset \rightarrow \frac{f}{g} = \text{const.}$$

At genus 0:

At genus 1

At higher genus:

1. Abel's map

2. Theta functions

3. Kronecker function

4. Striving for higher genus

kronecker

1. Abel's map

2. Theta functions

3. Kronecker function

4. Striving for higher genus

ETH zürich

motivation

References

