第二章 数列极限

§ 1 数列极限概念

1.
$$a_n = \frac{1 + (-1)^n}{n}, n = 1, 2, \dots, a = 0$$

(1) 对下列 ε 分别求出极限定义中相应的 N:

$$\epsilon_1 = 0.1, \epsilon_2 = 0.01, \epsilon_3 = 0.001;$$

- (2) 对 ϵ_1 , ϵ_2 , ϵ_3 可找到相应的 N, 这是否证明了 a_n 趋于 0? 应该怎样做才对?
 - (3) 对给定的 ε 是否只能找到一个 N?

解 (1) 当
$$\epsilon_1 = 0.1$$
 时,要使 $|a_n - 0| = \frac{1 + (-1)^n}{n} \leqslant \frac{2}{n} < 0.1$ 只要取 $N_1 = 20$

同理,当 $\epsilon_2=0.01$, $\epsilon_3=0.001$ 时,只要取 $N_2=200$, $N_3=2000$ 即可.

(2) 没有证明 $\frac{1+(-1)^n}{n}$ 趋于 0, 正确的做法应该是:

对 $\forall \epsilon > 0$,都能找到相应的 N 才行. 即由 $|a_n - 0| \leq \frac{2}{n} < \epsilon$ 求得 $N = [\frac{2}{\epsilon}] + 1$,这时才能下结论: $\lim_{n \to \infty} \frac{1 + (-1)^n}{n} = 0$.

- (3) 对给定的 ϵ 若能找到一个合适的 N_0 , 那么一切大于 N_0 的正整数都可以作为定义中的 N, 所以有无穷多个 N.
 - 2. 按 ϵN 定义证明:

(1)
$$\lim_{n\to\infty} \frac{n}{n+1} = 1$$
 (2) $\lim_{n\to\infty} \frac{3n^2 + n}{2n^2 - 1} = \frac{3}{2}$ (3) $\lim_{n\to\infty} \frac{n!}{n^n} = 0$

(4)
$$\lim_{n \to \infty} \sin \frac{\pi}{n} = 0$$
 (5) $\lim_{n \to \infty} \frac{n}{a^n} = 0 (a > 1)$

证 (1) 因为
$$\left|\frac{n}{n+1}-1\right|=\frac{1}{n+1}<\frac{1}{n}$$
, 所以对于任意的 $\epsilon>0$,

取
$$N = \left[\frac{1}{\varepsilon}\right] + 1$$
,则当 $n > N$ 时, $\left|\frac{n}{n+1} - 1\right| < \varepsilon$,所以 $\lim_{n \to \infty} \frac{n}{n+1} = 1$

(2) 因为 $\left|\frac{3n^2 + n}{2n^2 - 1} - \frac{3}{2}\right| = \frac{2n+3}{2(2n^2-1)} < \frac{2n+2n}{2(2n^2-1)} < \frac{2n+2n}{2(2n^2-1)}$

$$\frac{2n+2n}{2(2n^2-2)} < \frac{1}{n-1} (n>2).$$
所以,任给 $\epsilon > 0$,取 $N = \max \left\{ 2, \left[\frac{1}{\epsilon} \right] + 1 \right\}$,

当
$$n > N$$
 时有 $\left| \frac{3n^2 + n}{2n^2 - 1} - \frac{3}{2} \right| < \varepsilon$, 故 $\lim_{n \to \infty} \frac{3n^2 + n}{2n^2 - 1} = \frac{3}{2}$.

(3) 因为
$$|\frac{n!}{n^n} - 0| = \frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \cdots \cdot \frac{n}{n} \leqslant \frac{1}{n}, n = 1, 2, \cdots,$$

从而对任给的 $\epsilon > 0$,取 $N = \left[\frac{1}{\epsilon}\right] + 1$,则当 n > N 时,

有
$$|\frac{n!}{n^n} - 0| \leqslant \frac{1}{n} < \varepsilon$$
,所以 $\lim_{n \to \infty} \frac{n!}{n^n} = 0$.

(4) 因为
$$|\sin \frac{\pi}{n} - 0| < \frac{\pi}{n} < \frac{4}{n}$$
,所以,任给 $\epsilon > 0$,取 $N = \left[\frac{4}{\epsilon}\right] + 1$,

当
$$n > N$$
 时有 $|\sin \frac{\pi}{n} - 0| < \epsilon$, 所以 $\lim_{n \to \infty} \sin \frac{\pi}{n} = 0$.

(5) 因为
$$a > 1$$
, 令 $a = 1 + \lambda$, $(\lambda > 0)$, 则 $a^n = (1 + \lambda)^n$

$$= 1 + n\lambda + \frac{1}{2}n(n-1)\lambda^2 + \cdots + \lambda^n > \frac{1}{2}n(n-1)\lambda^2$$

$$\left|\frac{n}{a^n}-0\right| < \frac{2n}{n(n-1)\lambda^2} = \frac{2}{(n-1)\lambda^2}.$$

对任给的 $\epsilon > 0$,取 $N = \left[\frac{2}{\epsilon \lambda^2} + 1\right]$,当 n > N 时,

有
$$|\frac{n}{a^n} - 0| = \frac{n}{a^n} < \frac{2}{(n-1)\lambda^2} < \varepsilon$$
,所以 $\lim_{n \to \infty} \frac{n}{a^n} = 0$.

3. 根据例 2,例 4,例 5 的结果求出下列极限,并指出哪些是无穷小数列.

(1)
$$\lim_{n\to\infty} \frac{1}{\sqrt{n}}$$
 (2) $\lim_{n\to\infty} \sqrt[n]{3}$ (3) $\lim_{n\to\infty} \frac{1}{n^3}$ (4) $\lim_{n\to\infty} \frac{1}{3^n}$

(5)
$$\lim_{n\to\infty} \frac{1}{\sqrt{2^n}}$$
 (6) $\lim_{n\to\infty} \sqrt[n]{10}$ (7) $\lim_{n\to\infty} \frac{1}{\sqrt[n]{2}}$

解 根据例
$$2 \lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0(\alpha > 0), \exists m : (1), (3) 为 0;$$

根据例 4 $\lim_{n\to\infty} q^n = 0(|q| < 1)$ 知:(4),(5) 为 0;

根据例 5 $\lim_{n \to \infty} \sqrt[n]{a} = 1(a > 0)$ 知:(2),(6),(7) 为 1;

其中(1),(3),(4),(5) 是无穷小数列.

4.证明:若 $\lim_{n\to\infty} a_n = a$,则对任一正整数 k,有 $\lim_{n\to\infty} a_{n+k} = a$.

证明 若 $\lim_{n\to\infty} a_n = a$,则由定义知:任给 $\epsilon>0$,存在 N,当 n>N时, $|a_n-a|<\epsilon$. 于是当 n>N时, $|a_n+k>n>N$. 所以 $|a_{n+k}-a|<\epsilon$,故 $\lim_{n\to k} a_{n+k}=a$.

- 5. 试用定义 1'证明:
- (1) 数列 $\{\frac{1}{n}\}$ 不以 1 为极限; (2) 数列 $\{n^{(-1)^n}\}$ 发散.

解 设 $\{a_n\}$ 是一数列,a是确定的数,若 $\exists \epsilon_0 > 0$,对 $\forall N > 0$, 总 $\exists n_0 > N$,使得 $|a_{n_0} - a| \ge \epsilon_0$,则 a 不是 $\{a_n\}$ 极限.

(1) 对于常数 $1, \exists \epsilon_0 = \frac{1}{2} > 0, \forall$ 自然数 $N, \& \exists n_0 = N+1 > N,$ 使得 $|\frac{1}{n_0} - 1| = \frac{N}{N+1} \geqslant \frac{1}{2},$ 所以数列 $\{\frac{1}{n}\}$ 的极限不是 1.

(2) 当
$$n = 2k$$
 时 $a_n = 2k$ $\therefore \lim_{k \to \infty} a_k = +\infty$

- 二极限不存在,发散.
- 6. 证明定理 2.1,并应用它证明数列 $\{1 + \frac{(-1)^n}{n}\}$ 的极限是 1.

证 充分性 因为 $\{a_n-a\}$ 是无穷小数列,于是由定义知:对任意的正数 ϵ ,一定存在自然数 N, 当 n>N 时, $|(a_n-a)-0|=|a_n-a|<\epsilon$,所以 $\lim_{n\to\infty}a_n=a$.

必要性 因为 $\lim_{n\to\infty} a_n = a$,由极限定义知,对 $\forall \epsilon > 0$, \exists 自然数 N, $\exists n > N$ 时, $|a_n - a| = |(a_n - a) - 0| < \epsilon$.

所以 $\lim_{n\to\infty} (a_n-a)=0$,即 $\{a_n-a\}$ 是无穷小数列.

因为 $|1 + \frac{(-1)^n}{n} - 1| \leq \frac{1}{n}$ 且 $\{\frac{1}{n}\}$ 是无穷小数列,

从而 $\{1+\frac{(-1)^n}{n}-1\}$ 是无穷小数列.

故由定理 2.1 知,1 是数列 $\{1 + \frac{(-1)^n}{n}\}$ 的极限.

7. 证明:若 $\lim_{n\to\infty} a_n = a$,则 $\lim_{n\to\infty} |a_n| = |a|$,当且仅当 a 为何值时反之也成立.

证 任给 $\varepsilon > 0$,由 $\lim_{n \to \infty} a_n = a$ 知:存在 N,当 n > N 时, $|a_n - a| < \varepsilon$,故当 n > N 时 $||a_n| - |a|| \le |a_n - a| < \varepsilon$, 所以 $\lim_{n \to \infty} |a_n| = |a|$.

当且仅当,当 a=0 时,反之成立.

8. 按 $\epsilon - N$ 定义证明.

$$(1) \lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0 \qquad (2) \lim_{n \to \infty} \frac{1+2+\cdots+n}{n^3} = 0$$

(3) $\lim_{n\to\infty} a_n = 1$,其中

$$a_n = egin{cases} rac{n-1}{n}, & n
ightharpoonup n
ightharpoonup m
ightharpoonup n
ightharpoonup n$$

证 (1) 因为 $|\sqrt{n+1}-\sqrt{n}|=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2\sqrt{n}}$,所以任给 $\epsilon>0$,可取 $N=[\frac{1}{4\epsilon^2}]+1$,则当 n>N 时, $|\sqrt{n+1}-\sqrt{n}|$

$$<\frac{1}{2\sqrt{n}}<\varepsilon.$$
 $\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=0$

$$(2) 因为 \left| \frac{1+2+\cdots+n}{n^3} \right| = \frac{n(n+1)}{2n^3} \leqslant \frac{n+n}{2n^2} = \frac{1}{n}, \text{所以任给}$$

$$\varepsilon > 0, 可取 N = \left[\frac{1}{\varepsilon} \right] + 1, \text{ if } n > N \text{ if } , \left| \frac{1+2+\cdots+n}{n^3} \right| \leqslant \frac{1}{n} < \varepsilon.$$

(3) 任给
$$\epsilon > 0$$
, 当 n 为奇数时, $|a_n - 1| = |\frac{\sqrt{n^2 + n}}{n} - 1| = \frac{\sqrt{n^2 + n} - n}{n} = \frac{1}{\sqrt{n^2 + n} + n} < \frac{1}{n}$; 当 n 为偶数时, $|a_n - 1| = \frac{n - 1}{n} - 1| = \frac{1}{n}$, 取 $N = [\frac{1}{\epsilon}] + 1$,则当 $n > N$ 时, $f(a_n - 1) < \epsilon$,因此 $\lim_{n \to \infty} a_n = 1$.

§ 2 收敛数列的性质

1. 求下列极限

$$(1) \lim_{n \to \infty} \frac{n^3 + 3n^2 + 1}{4n^3 + 2n + 3}$$

$$(2) \lim_{n\to\infty} \frac{1+2n}{n^2}$$

(3)
$$\lim_{n \to \infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}}$$
 (4)
$$\lim_{n \to \infty} (\sqrt{n^2 + n} - n)$$

$$(4) \lim_{n\to\infty} (\sqrt{n^2+n}-n)$$

(5)
$$\lim_{n\to\infty} (\sqrt[n]{1} + \sqrt[n]{2} + \dots + \sqrt[n]{10})$$
 (6) $\lim_{n\to\infty} \frac{\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}}{\frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}}$

(1) 原式 =
$$\lim_{n \to \infty} \frac{1 + \frac{3}{n} + \frac{1}{n^3}}{4 + \frac{2}{2} + \frac{3}{3}} = \frac{1}{4}$$

(2) 原式 =
$$\lim_{n \to \infty} (\frac{1}{n^2} + \frac{2}{n}) = 0$$

(3) 原式 =
$$\lim_{n \to \infty} \frac{(-\frac{2}{3})^n + 1}{(-2) \cdot (-\frac{2}{3})^n + 3} = \frac{1}{3}$$

(4) 原式 =
$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n} + 1}} = \frac{1}{2}$$

$$(5)$$
 原式 = $1+1+\cdots+1=10$

(6) 原式 =
$$\lim_{n \to \infty} \frac{\frac{1}{2} \cdot \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}}}{\frac{1}{3} \cdot \frac{1 - (\frac{1}{3})^n}{1 - \frac{1}{3}}} = 2$$

2. 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ 且 a < b. 证明: 存在正数 N, 使得当 n > N 时有 $a_n < b_n$.

证明 取 $\epsilon_0 = \frac{1}{2}(b-a) > 0$,根据两个已知条件分别存在 N_1, N_2 ,当 $n > N_1$ 时, $|a_n - a| < \epsilon_0$,从而 $a_n < a + \epsilon_0 = \frac{1}{2}(a+b)$; 当 $n > N_2$ 时, $|b_n - b| < \epsilon_0$,从而 $b_n > b - \epsilon_0 = \frac{1}{2}(a+b)$. 取 $N = \max\{N_1, N_2\}$,当 n > N 时,必有 $a_n < \frac{1}{2}(a+b) < b_n$ 因此,当 n > N 时有 $a_n < b_n$.

3. 设 $\{a_n\}$ 为无穷小数列, $\{b_n\}$ 为有界数列. 证明: $\{a_nb_n\}$ 为无穷小数列.

证明:由 $\{b_n\}$ 有界知,必存在 M>0,使 $\|b_n\| \leq M$, $n=1,2,\cdots$ 由 $\{a_n\}$ 为无穷小数列知,对 $\forall \epsilon>0$,必 $\exists N$, 当 n>N 时, $\|a_n\| < \frac{\varepsilon}{M}$,因此当 n>N 时, $\|a_nb_n-0\| = \|a_n\| \|b_n\| < \frac{\varepsilon}{M} \cdot M = \varepsilon$, 所以 $\lim_{n \to \infty} a_nb_n = 0$,即 $\{a_nb_n\}$ 为无穷小数列.

4. 求下列极限.

(1)
$$\lim_{n\to\infty} \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} \right)$$

(2) $\lim_{n\to\infty} (\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdot \dots \cdot 2\sqrt[n]{2})$ (3) $\lim_{n\to\infty} \left(\frac{1}{2} + \frac{3}{2^2} + \dots + \frac{2n-1}{2^n} \right)$
(4) $\lim_{n\to\infty} \sqrt[n]{1-\frac{1}{n}}$ (5) $\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2} \right)$

(6)
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}\right)$$
解 (1) 原式= $\lim_{n\to\infty} \left[\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)\right]$

$$= \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = 1$$
(2) $\because \sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdot \dots \cdot \sqrt[2^n]{2} = 2^{\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}} = 2^{\frac{1}{2^n}} = \frac{2}{\frac{1}{2^n}}$
 $m1 < 2^{\frac{1}{2^n}} < 2^{\frac{1}{n}} = \sqrt[n]{2} \to 1 (n \to \infty)$ \therefore 原式 = $\lim_{n\to\infty} \frac{2}{2^{\frac{1}{n}}} = 2$
(3) $\Leftrightarrow a_n = \frac{1}{2} + \frac{3}{2^2} + \dots + \frac{2n-1}{2^n}$
 $y = \frac{1}{2^n} = \frac{1}{2^n} = \frac{1}{2^n} = \frac{2n+3}{2^n}$

$$= 3 - \frac{2n+3}{2^n} \quad \therefore$$
 原式 = $\lim_{n\to\infty} \left(3 - \frac{2n+3}{2^n}\right) = 3$
(4) 当 $n > 2$ 时, $\frac{1}{2} < 1 - \frac{1}{n} < 1$, $\lim_{n\to\infty} \sqrt{\frac{1}{2}} = \lim_{n\to\infty} \sqrt[n]{1} = 1$
由迫敛性定理知, $\lim_{n\to\infty} \sqrt[n]{1 - \frac{1}{n}} = 1$
(5) 由于 $0 < \frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2} < \frac{1}{n^2} + \frac{1}{n^2} + \dots + \frac{1}{n^2}$

$$= \frac{n+1}{n^2} = \frac{1}{n} + \frac{1}{n^2} \to 0 (n \to \infty)$$
 由迫敛性定理知, 原式 = 0
(6) 由于 $\frac{n}{\sqrt{n^2+n}} < \frac{n}{\sqrt{n^2+1}} = 1$ 由迫敛性定理知, 原式 = 1
 $\frac{n}{\sqrt{n^2+n}} = \lim_{n\to\infty} \frac{n}{\sqrt{n^2+1}} = 1$ 由迫敛性定理知, 原式 = 1
5. 设 $\frac{1}{2^n}$ 中一个是收敛数列, 另一个是发散数列.

证明 $\{a_n \pm b_n\}$ 是发散数列.又问 $\{a_n b_n\}$ 和 $\{\frac{a_n}{b_n}\}$ ($b_n \neq 0$)是否必为发散数列?

证明 不妨设 $\lim_{n\to\infty} a_n = a$, $\{b_n\}$ 发散. 假设 $\{a_n + b_n\}$ 收敛于 b. 则由极限性质知 $b_n = \{a_n + b_n\} - a_n$ 收敛于 b - a, 即 $\lim_{n\to\infty} b_n = b - a$. 这与 $\{b_n\}$ 发散相矛盾, 故 $\{a_n + b_n\}$ 发散. 同理可得 $\{a_n - b_n\}$ 发散. $\{a_n b_n\}$ 与 $\{\frac{a_n}{b_n}\}$ ($b_n \neq 0$)不一定发散.

例如若取 $\{a_n\}=\{\frac{1}{n}\},\{b_n\}=\{n\},则\{a_n\}$ 收敛, $\{b_n\}$ 发散,但 $\{a_nb_n\},\{\frac{a_n}{b_n}\}$ 都收敛.

6. 证明以下数列发散

$$(1)\{(-1)^n \frac{n}{n+1}\} \qquad (2)\{n^{(-1)^n}\} \qquad (3)\{\cos \frac{n\pi}{4}\}$$
证 $(1) \diamondsuit a_n = (-1)^n \frac{n}{n+1} \quad \text{则} \lim_{n \to \infty} a_{2n} = 1, \lim_{n \to \infty} a_{2n-1} = -1$
由定理 $2.8 \, \text{知}, \{(-1)^n \frac{n}{n+1}\} \, \text{发散}.$

- (2) 因为 $\{n^{(-1)^n}\}$ 为无界数列,由定理 2.3 知, $\{n^{(-1)^n}\}$ 发散.
- $(3) \diamondsuit a_n = \cos \frac{n\pi}{4}$ 则 $\lim_{k \to +\infty} a_{8k} = \lim_{k \to \infty} \cos 2k\pi = 1$, $\lim_{k \to \infty} a_{8k+4} = \lim_{k \to \infty} \cos (2k+1)\pi = -1$ 由定理 2.8 知 $\{\cos \frac{n\pi}{4}\}$ 发散.
- 7. 判断下列结论是否成立.(若成立,说明理由;若不成立,举出反例)
 - (1) 若 $\{a_{2k-1}\}$ 和 $\{a_{2k}\}$ 都收敛,则 $\{a_n\}$ 收敛.
- (2) 若 $\{a_{3k-2}\}$, $\{a_{3k-1}\}$, $\{a_{3k}\}$ 都收敛, 且有相同极限, 则 $\{a_n\}$ 收敛.
 - 解 (1) 不成立. 例如:(-1)"
- (2) 由于 $\{a_{3k}\}$ 收敛,设 $\lim_{n\to\infty}a_{3k}=a$,而 $\{a_{3k}\}$ 中含有 $\{a_{3k-1}\}$ 的子列. 所以 $\{a_{3k-1}\}$ 中有一个子列收敛于 $\{a_{3k-1}\}$ 收敛,由定理2.8知 $\{a_{3k-1}\}$ 收敛于 $\{a_{3k-1}\}$ 收敛于 $\{a_{3k-2}\}$ 的子列, $\{a_{3k-2}\}$ 也收

敛于a,所以 $\{a_n\}$ 收敛于a.

8. 求下列极限

$$(1) \lim_{n \to \infty} \frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} \qquad (2) \lim_{n \to \infty} \frac{1}{n!} \sum_{n=1}^{n} P!$$

(3)
$$\lim_{n\to\infty} [(n+1)^{\alpha} - n^{\alpha}], (0 < \alpha < 1)$$

(4)
$$\lim_{n\to\infty} (1+\alpha)(1+\alpha^2)\cdots(1+\alpha^{2^n})$$
, $|\alpha|<1$

解 (1) 因为
$$0 < \frac{1}{2} \cdot \frac{3}{4} \cdot \cdot \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{1 \cdot 3}} \cdot \frac{3}{\sqrt{3 \cdot 5}} \cdot \cdot \cdot$$

$$\frac{2n-1}{\sqrt{(2n-1)(2n+1)}} = \frac{1}{\sqrt{2n+1}} \rightarrow 0 (n \rightarrow \infty)$$

由迫敛性定理知
$$\lim_{n\to\infty} \frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} = 0$$

(2) 因为当
$$n > 2$$
 时, $n! < \sum_{p=1}^{n} P! = 1! + 2! + \dots + (n-2)! + (n-1)! + n! < (n-2)(n-2)! + (n-1)! + n! < 2(n-1)! + n!所以$

当
$$n > 2$$
 时 $1 < \frac{1}{n!} \sum_{n=1}^{n} P! < \frac{2(n-1)!}{n!} + 1 = \frac{2}{n} + 1 \rightarrow 1 (n \rightarrow \infty)$ 由

追敛性定理知,
$$\lim_{n\to\infty} \frac{1}{n!} \sum_{p=1}^{n} P! = 1$$

(3) 因为
$$-1 < \alpha - 1 < 0$$
,所以 $(1 + n)^{\alpha - 1} < n^{\alpha - 1}$

$$\mathbb{P}(1+n)^{\alpha} < n^{\alpha-1}(n+1) = n^{\alpha-1} + n^{\alpha}$$

因此有
$$0 < (1+n)^a - n^a < n^{a-1}$$
,且 $\lim_{n \to \infty} n^{a-1} = 0$

由迫敛性定理知,原式 = 0

(4) 因为
$$(1-\alpha)(1+\alpha)(1+\alpha^2)\cdots(1+\alpha^{2^n})=1-\alpha^{4^n}$$

因此
$$\lim_{n\to\infty} (1+\alpha)(1+\alpha^2)\cdots(1+\alpha^{2^n}) = \lim_{n\to\infty} \frac{1-\alpha^{4^n}}{1-\alpha} = \frac{1}{1-\alpha}$$

9. 设
$$a_1, a_2, \dots, a_m$$
 为 m 个正数,证明:

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max\{a_1, a_2, \dots, a_m\}$$

证 设
$$\max\{a_1, a_2, \dots, a_m\} = a_i, 1 \leq j \leq m$$

则
$$a_j = \sqrt[n]{a_j^n} < \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} \leqslant a_j \sqrt[n]{m} \rightarrow a_j(n \rightarrow \infty)$$

由追敛性定理知

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = a_j = \max\{a_1, a_2, \dots, a_m\}$$
10. 设 $\lim_{n\to\infty} a_n = a$,证明:

$$(1) \lim_{n \to \infty} \frac{[na_n]}{n} = a \qquad (2) 若 a > 0, a_n > 0, \text{则} \lim_{n \to \infty} \sqrt[n]{a_n} = 1$$

证 (1) 因为 $na_n - 1 < [na_n] \le na_n$,

所以
$$a_n - \frac{1}{n} = \frac{na_n - 1}{n} < \frac{[na_n]}{n} \leqslant a_n$$

又因为 $\lim_{n \to \infty} (a_n - \frac{1}{n}) = a$,故 $\lim_{n \to \infty} \frac{[na_n]}{n} = a$.

(2) 由 § 1 例 5 知,对 \forall 的实数 a > 0,都有 $\lim_{n \to \infty} \sqrt[n]{a} = 1$.由于 $\lim_{n \to \infty} a_n = a > 0$,则存在两正数 h, k,当 n 充分大时,使 $h < a_n < k$,所以 $\sqrt[n]{h} < \sqrt[n]{a_n} < \sqrt[n]{k}$.又由 $\lim_{n \to \infty} \sqrt[n]{h} = \lim_{n \to \infty} \sqrt[n]{k} = 1$,故 $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$.

§ 3 数列极限存在的条件

1. 利用
$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$
,求下列极限:

(1)
$$\lim_{n \to \infty} (1 - \frac{1}{n})^n$$
 (2) $\lim_{n \to \infty} (1 + \frac{1}{n})^{n+1}$

(3)
$$\lim_{n\to\infty} (1+\frac{1}{n+1})^n$$
 (4) $\lim_{n\to\infty} (1+\frac{1}{2n})^n$ (5) $\lim_{n\to\infty} (1+\frac{1}{n^2})^n$

解 (1) 原式 =
$$\lim_{n \to \infty} \left(\frac{n-1}{n} \right)^n$$

= $\lim_{n \to \infty} \frac{1}{\left[\left(1 + \frac{1}{n-1} \right)^{n-1} \cdot \left(1 + \frac{1}{n-1} \right) \right]}$
= $\frac{1}{\lim_{n \to \infty} \left[\left(1 + \frac{1}{n-1} \right)^{n-1} \cdot \left(1 + \frac{1}{n-1} \right) \right]} = \frac{1}{e}$

(2) 原式 =
$$\lim_{n \to \infty} (1 + \frac{1}{n})^n (1 + \frac{1}{n}) = e$$

(3) 原式 =
$$\lim_{n \to \infty} (1 + \frac{1}{n+1})^{n+1} \cdot (1 + \frac{1}{n+1})^{-1} = e$$

(4) 原式 =
$$\lim_{n \to \infty} (1 + \frac{1}{2n})^{2n \cdot \frac{1}{2}} = \sqrt{\lim_{n \to \infty} (1 + \frac{1}{2n})^{2n}} = \sqrt{e}$$

(5) 原式 =
$$\lim_{n \to \infty} (1 + \frac{1}{n^2})^{n^2 \cdot \frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{(1 + \frac{1}{n^2})^{n^2}} = 1$$

注 以上的(4) 与(5) 用到事实 $\lim_{n \to \infty} a_n = a > 0$, 则 $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$

2. 试问下面的解题方法是否正确:

求 lim 2"

解 设 $a_n = 2^n$ 及 $\lim_{n \to \infty} a_n = a$,由于 $a_n = 2a_{n-1}$,两边取极限 $(n \to \infty)$ 得 a = 2a,所以 a = 0.

答 不正确.

因为只有证明了 $\{a_n\}$ 的极限存在以后才能设 $\lim_{n\to\infty} a_n = a \cdot m \cdot \{2^n\}$ 是递增且无上界的数列,它的极限不存在,所以以上解法不正确.

- 3. 证明下列数列极限存在并求其值:
- (1) $\mbox{if } a_1 = \sqrt{2}, a_{n+1} = \sqrt{2a_n}, n = 1, 2, \cdots$

(2)
$$\mbox{id} a_1 = \sqrt{c(c > 0)}, a_{n+1} = \sqrt{c + a_n}, n = 1, 2, \cdots$$

$$(3)a_n = \frac{c^n}{n!}(c > 0), n = 1, 2, \cdots$$

证明
$$(1)a_1 = \sqrt{2} < 2$$
, 设 $a_n < 2$, 则 $a_{n+1} = \sqrt{2a_n} < 2$,

所以
$$\{a_n\}$$
 有上界 2, 而 $a_{n+1} - a_n = \sqrt{2a_n} - a_n = \frac{a_n(2 - a_n)}{\sqrt{2a_n} + a_n} > 0$

因之 $\{a_n\}$ 是递增且有上界的数列. 由单调有界定理知 $\{a_n\}$ 极限存在,设其为a,对等式 $a_{n+1}=\sqrt{2a_n}$ 令 $n\to\infty$ 取极限,有 $a^2=2a$,解之得 $a_1=0$ (舍去), $a_2=2$,故 $\lim a_n=2$

(2) 由
$$a_1 = \sqrt{c} > 0$$
 知 $a_1 = \sqrt{c} < \sqrt{a_1 + c} = a_2$, 设 $a_k < a_{k+1}$, 即 $a_k < \sqrt{a_k + c}$,则 $a_k + c < \sqrt{a_k + c} + c = a_{k+1} + c$, 从而 $\sqrt{a_k + c} < \sqrt{a_{k+1} + c}$,即 $a_{k+1} < a_{k+2}$.

由数学归纳法知,对 \forall 的自然数 n,有 $a_n < a_{n+1}$,即 $\{a_n\}$ 递增;又 当 c > 0 时, $a_1 = \sqrt{c} < 1 + \sqrt{c}$,设 $a_n < 1 + \sqrt{c}$,则 $a_{n+1} = \sqrt{a_n + c} < \sqrt{1 + \sqrt{c} + c} < \sqrt{1 + 2\sqrt{c} + c} = 1 + \sqrt{c}$, $\{a_n\}$ 有上界 $1 + \sqrt{c}$ 故由单调有界定理知: $\{a_n\}$ 极限存在,设其为 a,对 $a_{n+1}^2 = a_n + c$ 两端令 $n \to \infty$ 取极限,得 $a^2 = a + c$,解得 $a = \frac{1 \pm \sqrt{1 + 4c}}{2}$,由于 $a_n > 0$,所以 a > 0,故 $\lim_{n \to \infty} a_n = \frac{1 + \sqrt{1 + 4c}}{2}$.

$$a_{n+1} - a_n = \frac{C^{n+1}}{(n+1)!} - \frac{C^n}{n!} = \frac{C^n}{n!} (\frac{C}{n+1} - 1)$$

取自然数 N,使 C < N,从而当 n > N时, $a_{n+1} - a_n = \frac{C}{n!} (\frac{C}{n+1} - 1) < 0$, 故 $\{a_n\}$ (不计前 N 项) 为递减数列;又 $a_1 = c > 0$, $a_n = \frac{c^n}{n!} > 0$,可见 $\{a_n\}$ 有下界.

由单调有界定理知, $\{a_n\}$ 极限存在,设其为a,对 $a_{n+1}=a_n\cdot\frac{C}{n+1}$ 两边令 $n\to\infty$ 取极限, $a=a\cdot 0$,故 $\lim_{n\to\infty}a_n=0$.

4. 利用 $\{(1+\frac{1}{n})^n\}$ 为递增数列的结论,证明 $\{(1+\frac{1}{n+1})^n\}$ 为递增数列.

证
$$\Upsilon(1+\frac{1}{n+1})^n = (1+\frac{1}{n+1})^{n+1} \frac{1}{1+\frac{1}{n+1}}$$

$$= (1+\frac{1}{n+1})^{n+1}(1-\frac{1}{n+2})$$
又 $\{(1+\frac{1}{n})^n\}$ 为递增数列,所以 $\Big[(1+\frac{1}{n+1})^{n+1}\Big]$ 递增,
而 $\{1-\frac{1}{n+2}\}$ 递增.所以 $\{(1+\frac{1}{n+1})^n\}$ 为递增数列.

5. 应用柯西收敛准则,证明以下数列 [an] 收敛.

(1)
$$a_n = \frac{\sin 1}{2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{2^n}$$

(2)
$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

证明 (1) 因为 $\lim_{n\to\infty} \frac{1}{2^n} = 0$,于是对任给 $\epsilon > 0$,必存在 N,

当 n > N 时, $\frac{1}{2^n} < \varepsilon$, 所以当 n > N 时, 对任意的自然数 P, 有

$$|a_{n+p} - a_n| = |\frac{\sin(n+1)}{2^{n+1}} + \frac{\sin(n+2)}{2^{n+2}} + \dots + \frac{\sin(n+p)}{2^{n+p}}|$$

$$< \frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots + \frac{1}{2^{n+p}} = \frac{1}{2^n} (1 - \frac{1}{2^p}) < \frac{1}{2^n} < \varepsilon$$

由柯西收敛准则知{a_n}收敛.

(2) 对任给的 $\epsilon > 0$, 取 $N = \left[\frac{1}{\epsilon}\right] + 1$, 当 m > n > N 时, 有

$$|a_{m} - a_{n}| = \frac{1}{(n+1)^{2}} + \frac{1}{(n+2)^{2}} + \dots + \frac{1}{m^{2}}$$

$$< \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(m-1)m}$$

$$= \frac{1}{n} - \frac{1}{m} < \frac{1}{n} < \varepsilon$$

由柯西收敛准则知{a,}收敛.

6. 证明:若单调数列 $\{a_n\}$ 含有一个收敛子列,则 $\{a_n\}$ 收敛.

证明 不妨设 $\{a_n\}$ 递增且 $\{a_{i_k}\}$ 收敛, $\lim_{k\to\infty}a_{i_k}=a$. 而 $\{a_{i_k}\}$ 仍为递增数列,所以 $a_{i_k}\leqslant a(k=1,2,\cdots)$. 对任一 n,取 k 使 $i_k>n$. 从而 $a_n\leqslant a$,由此知对任意的自然数 n,有 $a_n\leqslant a$,从而 $\{a_n\}$ 是递增且有上界的数列,由单调有界定理知 $\{a_n\}$ 一定是收敛数列.

7. 证明: 若
$$a_n > 0$$
, 且 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = L > 1$, 则 $\lim_{n \to \infty} a_n = 0$.

证 因为 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = L > 1$,所以存在 P,使 L > P > 1.

由极限定义知,对于 $\epsilon_0 = L - P$,存在 N, 当 n > N 时, -(L - P)

$$< \frac{a_n}{a_{n+1}} - L < (L - P), 由此有 \ a_{n+1} < \frac{1}{P} a_n (n > N). 所以当 \ n > N$$

 时, $0 < a_n = \frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{N+2}}{a_{N+1}} \cdot a_{N+1} < \frac{1}{P^{n-N-1}} \cdot a_{N+1} \to 0$
 故 $\lim_{n \to \infty} a_n = 0$

8. 证明:若 $\{a_n\}$ 为递增(递减) 有界数列,则 $\lim_{n\to\infty} a_n = \sup\{a_n\} (\inf\{a_n\}).$

又问逆命题成立否?

证 因为 $\{a_n\}$ 有界,由确界原理知 $\{a_n\}$ 存在上确界,设 $\sup\{a_n\}=\eta$.由确界定义知,对任意的 $\epsilon>0$,一定存在 n_0 ,使 $\eta-\epsilon< a_{n_0}<\eta+\epsilon$. 当 $\{a_n\}$ 递增时,只要 $n>n_0$,就有 $\eta-\epsilon< a_{n_0}\leqslant a_n<\eta+\epsilon$.故 $|a_n-\eta|<\epsilon$, $(n>n_0)$,所以 $\lim_{n\to\infty}a_n=\eta=\sup\{a_n\}$.当 $\{a_n\}$ 为递减有界数列,同理可证: $\lim_{n\to\infty}a_n=\inf\{a_n\}$.逆命题不成立.

9. 利用不等式 $b^{n+1} - a^{n+1} > (n+1)a^n(b-a), b > a > 0$ 证明: $\{(1+\frac{1}{n})^{n+1}\}$ 为递减数列,并由此推出 $\{(1+\frac{1}{n})^n\}$ 为有界数列.

证 由题设不等式可得
$$b^{n+1} > a^n[(n+1)b - na].$$
令 $a = 1 + \frac{1}{n+1}, b = 1 + \frac{1}{n},$ 代入以上不等式得.
$$(1 + \frac{1}{n})^{n+1} > (1 + \frac{1}{n+1})^n[(n+1)(1 + \frac{1}{n}) - n(1 + \frac{1}{n+1})]$$

$$= (1 + \frac{1}{n+1})^n[1 + \frac{1}{n(n+1)} + \frac{2}{n+1}]$$

$$> (1 + \frac{1}{n+1})^n(1 + \frac{1}{n+1})^2 = (1 + \frac{1}{n+1})^{n+2}$$
所以 $\{(1 + \frac{1}{n})^{n+1}\}$ 是递减数列.
$$m(1 + \frac{1}{n})^n < (1 + \frac{1}{n})^{n+1} < (1 + 1)^2 = 4$$
所以 $\{(1 + \frac{1}{n})^n\}$ 为有界数列.

10. 证明:
$$|e - (1 + \frac{1}{n})^n| < \frac{3}{n}$$

提示:利用上题可知
$$e < (1+\frac{1}{n})^{n+1}$$
,又易证 $(1+\frac{1}{n})^{n+1} < \frac{2}{n} + (1+\frac{1}{n})^n$

证:(1) 先证
$$\{(1+\frac{1}{n})^{n+1}\}$$
 单调递减.(上题已证)

(2) 因
$$\{(1+\frac{1}{n})^{n+1}\}$$
 递减且 $\lim_{n\to\infty}(1+\frac{1}{n})^{n+1}=e$.

$$\{(1+\frac{1}{n})^n\}$$
 递增且 $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$,从而

$$(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}$$

$$\therefore 0 < e - (1 + \frac{1}{n})^n < (1 + \frac{1}{n})^{n+1} - (1 + \frac{1}{n})^n$$

$$= (1 + \frac{1}{n})^n [(1 + \frac{1}{n}) - 1] = (1 + \frac{1}{n})^n \times \frac{1}{n} < \frac{3}{n}$$

11. 给定两正数
$$a_1$$
 与 $b_1(a_1 > b_1)$,作出其等差中项, $a_2 = \frac{a_1 + b_1}{2}$

与等比中项
$$b_2 = \sqrt{a_1b_1}$$
, 一般地令 $a_{n+1} = \frac{a_n + b_n}{2}$, $b_{n+1} = \sqrt{a_nb_n}$, $n = 1, 2, \cdots$

证明: $\lim_{n\to\infty} a_n$ 与 $\lim_{n\to\infty} b_n$ 皆存在且相等.

证 由题设有
$$a_n > 0, b_n > 0, n = 1, 2, \dots, 所以$$

$$a_{n+1} = \frac{a_n + b_n}{2} \geqslant \sqrt{a_n b_n} = b_{n+1}.$$

$$b_{n+1} = \sqrt{a_n b_n} \geqslant \sqrt{b_n b_n} = b_n; a_{n+1} = \frac{a_n + b_n}{2} \leqslant \frac{a_n + a_n}{2} = a_n,$$

$$b_n \leq a_n \leq a_2 = \frac{a_1 + b_1}{2} < a_1, a_n \geqslant b_n \geqslant b_2 = \sqrt{a_1 b_1} > b_1.$$

所以 $\{a_n\}\{b_n\}$ 都是单调有界数列,它们的极限都存在.

设
$$\lim_{n\to\infty} a_n = a$$
, $\lim_{n\to\infty} b_n = b$, 对 $a_{n+1} = \frac{a_n + b_n}{2}$ 两端令 $n\to\infty$ 取极限, $a = \frac{a+b}{2}$, 所以 $a = b$.

12. 设{a_n} 为有界数列,记

$$\overline{a_n} = \sup\{a_n, a_{n+1}, \cdots\}, a_n = \inf\{a_n, a_{n+1}, \cdots\}$$

证明:(1) 对任何正整数 $n, \overline{a_n} \geqslant a_n$

- $(2)\{\overline{a_n}\}$ 为递减有界数列, $\{\underline{a_n}\}$ 为递增有界数列,且对任何正整数 $n, m, \overline{a_n} \geqslant a_m$.
 - (3) 设 \overline{a} 与a 分别为{ $\overline{a_n}$ } 和{ a_n } 的极限,则 $\overline{a} \ge a$.
 - (4) $\{a_n\}$ 收敛的充要条件是 $\overline{a} = a$.

证明:(1) 由于 $\overline{a_n}$ 和 $\overline{a_n}$ 是同一数集的上下确界,所以 $\overline{a_n} \ge \underline{a_n} (n = 1,2,\cdots)$

(2) 由于 $\{a_n, a_{n+1}, \cdots\}$ $\cdots \{a_{n+1}, a_{n+2}, \cdots\}$,故 $\overline{a_n} \geqslant \overline{a_{n+1}}$,即

 $\{\overline{a_n}\}$ 递减,同理可证 $\{\underline{a_n}\}$ 递增. $\mathbb{C}\{a_n\}$ 有界,故 $\{\overline{a_n}\}$ 有界.由 $\{\overline{a_n}\}$ 递减, $\{\underline{a_n}\}$ 递增知,对任意的自然数 m,n,当 m < n 时, $\overline{a_n} \geqslant \underline{a_n} \geqslant \underline{a_m}$,当 $m \geqslant n$ 时,由 $\overline{a_n}$, $\underline{a_m}$ 的定义仍有 $\overline{a_n} \geqslant \underline{a_m}$.

(3) 因为对任意的自然数 $m, n, \overline{a_n} \ge \underline{a_m}$,从而 $\{\overline{a_n}\}$ 有下界, $\{\overline{a_n}\}$ 有上界,由单调有界定理知 $\{\overline{a_n}\}$, $\{a_n\}$ 的极限存在,且

$$\overline{a} = \lim_{n \to \infty} \overline{a_n} \geqslant \lim_{n \to \infty} \underline{a_n} = \underline{a}$$
, $\mathbb{P}[\overline{a}] \geqslant \underline{a}$

(4) 必要性 设 $\lim_{n \to \infty} a_n = a$,则对 $\forall \varepsilon > 0$,存在 N, $\exists n > N$ 时,

$$|a_n - a| < \frac{\varepsilon}{2}$$
,即 $a - \frac{\varepsilon}{2} < a_n < a + \frac{\varepsilon}{2}$,从而当 $n > N$ 时,

$$\overline{a_n} = \sup\{a_n, a_{n+1}, \dots\} \leqslant a + \frac{\varepsilon}{2}, \underline{a_n} = \inf\{a_n, a_{n+1}, \dots\} \geqslant a - \frac{\varepsilon}{2},$$

所以
$$0 \le \overline{a} - \underline{a} \le (a + \frac{\varepsilon}{2}) - (a - \frac{\varepsilon}{2}) = \varepsilon$$
,

由 ϵ 的任意性知a = a

充分性:设 $\overline{a} = \underline{a} = a, \varepsilon > 0$,则对充分大的自然数 n,有 $a - \varepsilon < \underline{a} \le a_n \le \overline{a} < a + \varepsilon$ 从而 $|a_n - a| < \varepsilon$

故 $\{a_n\}$ 的极限存在(且等于 a).

总练习题

1. 求下列数列的极限

(1)
$$\lim_{n \to \infty} \sqrt[n]{n^3 + 3^n}$$
 (2) $\lim_{n \to \infty} \frac{n^5}{e^n}$ (3) $\lim_{n \to \infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$ 解 (1) 当 $n > 3$ 时, $n^3 < 3^n$, 所以

$$3 = \sqrt[n]{3^n} < \sqrt[n]{n^3 + 3^n} < 3 \cdot \sqrt[n]{2} \rightarrow 3(n \rightarrow \infty).$$

由迫敛性定理知, $\lim_{n\to\infty} \sqrt[n]{n^3+3^n} = 3$.

(2)
$$\mbox{iff } a_n = \frac{n^5}{e^n}, \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{n^5}{e^n} \cdot \frac{e^{n+1}}{(n+1)^5}$$

$$= \lim_{n \to \infty} e \cdot (\frac{n}{n+1})^5 = e > 1, 由 § 3 习题 7 结论知$$

$$\therefore \lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n^5}{e^n} = 0$$

$$(3) \lim_{n\to\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$

$$= \lim_{n\to\infty} \left[\left(\sqrt{n+2} - \sqrt{n+1} \right) - \left(\sqrt{n+1} - \sqrt{n} \right) \right]$$

$$= \lim_{n \to \infty} \left[\frac{1}{\sqrt{n+2} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1} + \sqrt{n}} \right] = 0$$

2. 证明:

(1)
$$\lim_{n\to\infty} n^2 q^n = 0 (|q| < 1)$$
 (2) $\lim_{n\to\infty} \frac{\lg n}{n^a} = 0 (a \geqslant 1)$

$$(3) \lim_{n\to\infty}\frac{1}{\sqrt[n]{n!}}=0$$

证 (1) 当
$$q = 0$$
 时, $n^2 q^n = 0$, $\lim_{n \to \infty} n^2 q^n = 0$,

当
$$|q| \neq 0$$
 时,令 $|q| = \frac{1}{p}$,则 $p > 1$.

设
$$p = 1 + h, h > 0.$$
 由 $(1 + h)^n > \frac{1}{3!}n(n-1)(n-2)h^3(n > 2)$

得
$$0 < |n^2q^n| = \frac{n^2}{(1+h)^n} < \frac{6}{h^3} \cdot \frac{n^2}{n(n-1)(n-2)}$$

$$=\frac{6}{h^3}\cdot\frac{1}{n(1-\frac{1}{n})(1-\frac{2}{n})}\to 0(n\to\infty)$$

由迫敛性知 $\lim_{n \to \infty} n^2 q^n = 0$

(2) 任给 $\varepsilon > 0,10^{\varepsilon} > 1, \overline{m}\sqrt{n} \rightarrow 1(n \rightarrow \infty)$,故存在 $N, \stackrel{}{\to} n > N$ 时, $1 < \sqrt[n]{n} < 10^{\varepsilon}$,取对数后得 $0 < \frac{\lg n}{n} < \varepsilon(n > N)$ 故 $\lim_{n \rightarrow \infty} \frac{\lg n}{n} = 0$.从而当 $\alpha \geqslant 1$ 时,由 $0 < \frac{\lg n}{n^{\alpha}} \leqslant \frac{\lg n}{n} \rightarrow 0(n \rightarrow \infty)$ 及迫敛性定理知, $\lim_{n \rightarrow \infty} \frac{\lg n}{n^{\alpha}} = 0$

- (3) 对任给的 $\varepsilon > 0$,令 $M = \frac{1}{\varepsilon}$,由 § 1 习题 2(3) 知, $\lim_{n \to \infty} \frac{M^n}{n!} = 0$. 故对 $\varepsilon_0 = 1$,存在自然数 N,使得当 n > N 时, $\frac{M^n}{n!} < 1$,即 $\frac{1}{n!} < \varepsilon^n$. 所以当 n > N 时,有 $0 < \frac{1}{\sqrt[n]{n!}} < \varepsilon$,故 $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$ 3. 设 $\lim_{n \to \infty} a_n = a$,证明:
- $(1) \lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a(又阿由此等式能否反过来推出 \lim_{n \to \infty} a_n = a)$
- (2) 若 $a_n > 0$, $(n = 1, 2, \cdots)$, 则 $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$ 证 (1) 因为 $\lim_{n \to \infty} a_n = a$, 故对任意的 $\varepsilon > 0$, 必存在 N_1 ,

 当 $n > N_1$ 时, $|a_n - a| < \varepsilon$, 于是当 $n > N_1$ 时 $\left| \frac{a_1 + a_2 + \cdots + a_n}{n} - a \right| = \left| \frac{a_1 - a + a_2 - a + \cdots + a_n - a}{n} \right|$ $\leq \frac{1}{n} (|a_1 - a| + |a_2 - a| + \cdots + |a_{N_1 + 1} - a| + |a_{N_1 + 2} - a| + \cdots + |a_n - a|)$

而
$$\lim_{n\to\infty} \frac{N_1 m}{n} = 0$$
. 于是对已给的 $\varepsilon > 0$,存在 N_2 , 当 $n > N_2$ 时, $\frac{N_1 m}{n} < \varepsilon$.

取
$$N = \max\{N_1, N_2\}$$
,则当 $n > N$ 时 $|\frac{a_1 + a_2 + \cdots + a_n}{n} - a| < 2\varepsilon$,

所以
$$\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n} = a$$
 其逆不真. 例如 $a_n = (-1)^n$ 不收敛,

$$\underline{\mathbf{H}}\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=0$$

(2) 因为对任意的自然数 $n, a_n > 0$, 所以当 $a \neq 0$ 时,

$$\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{a}.$$

$$\mathbb{X}\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n}$$

由(1) 知
$$\lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = a$$
,

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \lim_{n \to \infty} \frac{1}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \frac{1}{\frac{1}{a_n}} = a$$

所以
$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$$

当 a = 0 时,对 $\forall \epsilon > 0$,存在 N_1 ,使得当 $n > N_1$ 时, $0 < a_n < \epsilon$, 于是当 $n > N_1$ 时,

$$\begin{aligned} 0 &< \sqrt[n]{a_1 a_2 \cdots a_n} = \sqrt[n]{a_1 a_2 \cdots a_{N_1}} \cdot \sqrt[n]{a_{N_1 + 1} a_{N_1 + 2} \cdots a_n} \\ &< \sqrt[n]{a_1 a_2 \cdots a_{N_1}} \varepsilon^{\frac{n - N_1}{n}} = \sqrt[n]{a_1 a_2 \cdots a_{N_1}} \cdot \varepsilon^{-N_1} \cdot \varepsilon \end{aligned}$$

由于 $\lim_{n\to\infty} \sqrt[n]{a_1 a_2 \cdots a_{N_1} \cdot \varepsilon^{-N_1}} = 1$,从而存在 N_2 ,使得当 $n > N_2$ 时.

$$\sqrt[n]{a_1 a_2 \cdots a_{N_1} \varepsilon^{-N_1}} < 2$$
,故当 $n > N = \max\{N_1, N_2\}$ 时,必有

$$0 < \sqrt[n]{a_1 a_2 \cdots a_n} < 2\varepsilon$$
,因此 $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = 0$

4. 应用上题的结论证明下列各题:

(1)
$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n} = 0$$
 (2) $\lim_{n \to \infty} \sqrt[n]{a} = 1(a > 0)$

(3)
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$
 (4) $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$

(5)
$$\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = e$$
 (6) $\lim_{n\to\infty} \frac{1+\sqrt{2}+\sqrt[3]{3}+\cdots+\sqrt[n]{n}}{n} = 1$

(7) 若
$$\lim_{n\to\infty} \frac{b_{n+1}}{b_n} = a(b_n > 0)$$
,则 $\lim_{n\to\infty} \sqrt[n]{b_n} = a$

(8) 若
$$\lim_{n\to\infty} (a_n - a_{n-1}) = d$$
,则 $\lim_{n\to\infty} \frac{a_n}{n} = d$.

证 (1) 由 3(1) 知
$$\lim_{n\to\infty} \frac{1+\frac{1}{2}+\cdots+\frac{1}{n}}{n} = \lim_{n\to\infty} \frac{1}{n} = 0$$

(2)
$$\diamondsuit a_1 = a, a_n = 1 (n = 2, 3, \dots)$$
 $\text{Mim } a_n = 1$

且
$$\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n}$$
,由 3(2) 知 $\lim_{n \to \infty} \sqrt[n]{a} = 1$

(3) 由于
$$n = 1 \cdot \frac{2}{1} \cdot \frac{3}{2} \cdots \frac{n}{n-1}$$
, 且 $\lim_{n \to \infty} \frac{n}{n-1} = 1$, 由 3(2) 知 $\lim_{n \to \infty} \sqrt[n]{n} = 1$.

(4)
$$\Leftrightarrow a_n = \frac{1}{n}$$
 $n = 1, 2, \dots, \text{plim} \frac{1}{n} = 0, \text{ in } 3(2) \text{ in } 3(2)$

$$\lim_{n\to\infty}\frac{1}{\sqrt[n]{n!}}=\lim_{n\to\infty}\sqrt[n]{a_1a_2\cdots a_n}=0$$

$$(5) \diamondsuit a_n = \frac{n^n}{n!} \quad n = 1, 2, \dots, \text{ } \lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = \lim_{n \to \infty} \sqrt[n]{a_n}$$

$$= \lim_{n \to \infty} \sqrt{\frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdots \frac{a_n}{a_{n-1}}} = \lim_{n \to \infty} (1 + \frac{1}{n-1})^{n-1} \overline{\mathbb{M}}$$

$$\lim_{n\to\infty} \frac{a_n}{a_{n-1}} = \lim_{n\to\infty} (1 + \frac{1}{n-1})^{n-1} = e \quad \text{if } 3(2) \not \exists \lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = e$$

(6) 由 3(1) 及 4(3) 知
$$\lim_{n \to \infty} \frac{1 + \sqrt{2} + \dots + \sqrt[n]{n}}{n} = 1$$

(7) 因为
$$\sqrt[n]{b_n} = \sqrt[n]{\frac{b_1}{b_0} \cdot \frac{b_2}{b_1} \cdots \frac{b_n}{b_{n-1}}} (b_0 = 1), 且 \lim_{n \to \infty} \frac{b_{n+1}}{b_n} = a$$
,由

$$3(2)$$
 知 $\lim_{n \to \infty} \sqrt[n]{b_n} = a$

$$(8) \frac{a_n}{n} = \frac{(a_2 - a_1) + (a_3 - a_2) + \dots + (a_n - a_{n-1})}{n-1} \cdot \frac{n-1}{n} + \frac{a_1}{n}$$

且 $\lim_{n\to\infty}(a_n-a_{n-1})=d$.由 3(1)知 $\lim_{n\to\infty}\frac{a_n}{n}=d$.

5. 证明:若 $\{a_n\}$ 为递增数列, $\{b_n\}$ 为递减数列,且 $\lim_{n\to\infty}(a_n-b_n)=0$,则 $\lim_{n\to\infty}a_n$ 与 $\lim_{n\to\infty}b_n$ 存在且相等.

证 由于 $\lim_{n\to\infty} (a_n - b_n) = 0$,从而 $\{a_n - b_n\}$ 有界.

不妨设 $A \leq a_n - b_n \leq B$,其中A,B为常数.再由 $\{a_n\}$ 递增, $\{b_n\}$ 递减知 $a_n \leq B + b_n \leq B + b_1$, $b_n \geq a_n - B \geq a_1 - B$.从而 $\{a_n\}\{b_n\}$ 都是单调有界数列,它们极限存在,而

 $\lim_{n\to\infty}(a_n-b_n)=\lim_{n\to\infty}a_n-\lim_{n\to\infty}b_n=0, \text{ fiv }\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n.$

6. 设数列 $\{a_n\}$ 满足:存在正数 M,对一切 n 有

$$A_n = |a_2 - a_1| + |a_3 - a_2| + \dots + |a_n - a_{n-1}| \le M$$
证明 $\cdot |a_n|$ 与 $\{A_n\}$ 都收敛.

证 由 $A_n = |a_2 - a_1| + |a_3 - a_2| + \dots + |a_n - a_{n-1}|$ 知 $A_{n+1} - A_n = |a_{n+1} - a_n| \ge 0$,且 $A_n \le M$,所以 $\{A_n\}$ 为递增有上界的数列,故 $\{A_n\}$ 收敛.

由于 $\{A_n\}$ 收敛,由柯西收敛准则,对任给的 $\epsilon > 0$,存在N,当m > n > M时, $A_m - A_n \mid < \epsilon$. 故当 m > n > M 时,

$$|a_{m} - a_{n}| = |a_{m} - a_{m-1} + a_{m-1} - a_{m-2} + \dots + a_{n+1} - a_{n}|$$

$$\leq |a_{m} - a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots + |a_{n+1} - a_{n}|$$

$$= |A_{m} - A_{n}| < \varepsilon$$

可见, $\{a_n\}$ 满足柯西收敛准则条件,所以 $\{a_n\}$ 收敛.

7.
$$\Re a > 0, \sigma > 0, a_1 = \frac{1}{2}(a + \frac{\sigma}{a}), a_{n+1} = \frac{1}{2}(a_n + \frac{\sigma}{a_n})$$

 $n = 1, 2, \cdots$

证明:数列 $\{a_n\}$ 收敛,且其极限为 $\sqrt{\sigma}$.

故{a,} 有下界,又因为

$$a_{n+1} = \frac{1}{2}(a_n + \frac{\sigma}{a_n}) = \frac{a_n}{2}(1 + \frac{\sigma}{a_n^2}) \leqslant \frac{a_n}{2}(1 + \frac{\sigma}{\sigma}) = a_n, n = 1, 2, \cdots$$
可见 $\{a_n\}$ 递减. 所以 $\{a_n\}$ 存在极限,即 $\{a_n\}$ 收敛.

设 $\lim_{n\to\infty} a_n = A$,由 $a_n > 0$ 知 $A \geqslant 0$,由 $a_{n+1} = \frac{1}{2}(a_n + \frac{\sigma}{a_n})$ 知 $2a_{n+1}a_n = a_n^2 + \sigma$,两边令 $n \to \infty$ 取极限得 $2A^2 = A^2 + \sigma$,解之得

 $A_1 = -\sqrt{\sigma}(\mathbf{\hat{\Xi}}, A_2) = \sqrt{\sigma}$.

故 $\lim_{n \to \infty} a_n = \sqrt{\sigma}$.

8. 设
$$a_1 > b_1 > 0$$
,记 $a_n = \frac{a_{n-1} + b_{n-1}}{2}$, $b_n = \frac{2a_{n-1}b_{n-1}}{a_{n-1} + b_{n-1}}$
 $n = 2.3.$ …

证明:数列 $\{a_n\}$ 与 $\{b_n\}$ 的极限都存在且等于 $\sqrt{a_1b_1}$.

$$\text{ iff } \quad (1) \ b_2 = \frac{2a_1b_1}{a_1 + b_1} \leqslant \frac{2a_1b_1}{2\sqrt{a_1b_1}} = \sqrt{a_1b_1} < \frac{a_1 + b_1}{2} = a_2$$

设 $a_{n-1} > b_{n-1}$ 则 $4a_{n-1}b_{n-1} < (a_{n-1} + b_{n-1})^2$,且

$$\frac{a_n}{b_n} = \frac{a_{n-1} + b_{n-1}}{2} \cdot \frac{a_{n-1} + b_{n-1}}{2a_{n-1}b_{n-1}} = \frac{(a_{n-1} + b_{n-1})^2}{4a_{n-1}b_{n-1}} > 1$$

所以对一切的自然数 n,有 $a_n > b_n$

(2) 由于
$$a_{n+1} - a_n = \frac{a_n + b_n}{2} - a_n = \frac{b_n - a_n}{2} < 0$$

$$b_{n+1} - b_n = \frac{2a_n b_n}{a_n + b_n} - b_n = \frac{b_n (a_n - b_n)}{a_n + b_n} > 0$$

所以 $\{a_n\}$ 递减, $\{b_n\}$ 递增.

(3) 结合(1)(2) 知; $\{a_n\}$ 递减有下界 b_1 , $\{b_n\}$ 递增有上界 a_1 , 从而 $\{a_n\}\{b_n\}$ 极限存在.

设
$$\lim_{n\to\infty} a_n = a$$
, $\lim_{n\to\infty} b_n = b$. 由 $a_{n+1} = \frac{a_n + b_n}{2}$ 知 $a = b$, 又由 $a_{n+1}b_{n+1} = \frac{a_n + b_n}{2} \cdot \frac{2a_nb_n}{a_n + b_n} = a_nb_n = a_{n-1}b_{n-1} = \cdots = a_1b_1$ 知 $a^2 = a_1b_1$ 所以 $a = b = \sqrt{a_1b_1}$.

- 9. 按柯西收敛准则叙述数列 $\{a_n\}$ 发散的条件,并用它证明下列数列 $\{a_n\}$ 是发散的:
- (1) $a_n = (-1)^n n$ (2) $a_n = \sin \frac{n\pi}{2}$ (3) $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ 解 数列 $\{a_n\}$ 发散的充要条件:存在 $\epsilon_0 > 0$,对 \forall 的自然数 N,都存在 $n_0 > m_0 > N$,使 $|a_{n_0} a_{m_0}| \ge \epsilon_0$
- (1) 取 $\epsilon_0 = \frac{1}{2}$,对任意的自然数 N,取 $n_0 = N + 3$, $m_0 = N + 1$, 则

$$\begin{split} \mid a_{n_0} - a_{m_0} \mid &= \mid (-1)^{N+3} (N+2) - (-1)^{N+1} (N+1) \mid \\ &= \mid (-1)^{N+1} \mid \mid (-1)^2 (N+2) - (N+1) \mid = 1 > \epsilon_0 \end{split}$$
 所以 $\{(-1)^n n\}$ 发散.

(2) 取
$$\epsilon_0 = \frac{1}{2}$$
,对 \forall 的 $N > 0$,取 $n_0 = 2N + 1$, $m_0 = 2N$,则
$$|a_{n_0} - a_{m_0}| = |\sin\frac{(2N+1)\pi}{2} - \sin\frac{2N\pi}{2}|$$

$$= |(-1)^N - 0| = 1 > \epsilon_0$$

所以 $\{\sin \frac{n\pi}{2}\}$ 发散.

(3) 取
$$\epsilon_0 = \frac{1}{2}$$
,对 $\forall N > 0$,取 $m_0 > N$, $n_0 = 2m_0$,则
$$|a_{n_0} - a_{m_0}| = \frac{1}{m_0 + 1} + \frac{1}{m_0 + 2} + \dots + \frac{1}{2m_0} > m_0 \cdot \frac{1}{2m_0}$$

$$= \frac{1}{2} = \epsilon_0 \quad \text{所以} \{1 + \frac{1}{2} + \dots + \frac{1}{n}\} \text{ 发散}.$$

10. 设
$$\lim_{n\to\infty} a_n = a$$
, $\lim_{n\to\infty} b_n = b$. 记

$$S_n = \max\{a_n, b_n\}, T_n = \min\{a_n, b_n\}, n = 1, 2, \dots$$

证明:(1) $\lim_{n\to\infty} S_n = \max\{a,b\}$;(2) $\lim_{n\to\infty} T_n = \min\{a,b\}$

提示:参考第一章总练习题1.

证 (1) 若 a = b,则 $\max\{a,b\} = \min\{a,b\} = a$,

令
$$C_n = \begin{cases} a_n & \text{if } n = 2k - 1 \text{ 时} \\ b_n & \text{if } n = 2k \text{ H} \end{cases}$$
 $k = 1, 2, \cdots$

则 $\lim_{n\to\infty} C_n = a$, 而 $\{S_n\}$, $\{T_n\}$ 都是 C_n 的一个子列, 由定理 2.8 知,

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} T_n = a.$$

(2) 若 $a \neq b$,不妨设 a > b. 由保号性定理知,存在自然数 N,

当n > N时 $a_n > b_n$,于是

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} a_n = a = \max\{a,b\}$$

$$\lim_{n\to\infty} T_n = \lim_{n\to\infty} b_n = b = \min\{a,b\}$$