基于ARIMA模型的万科公司股票收盘价研究

山西财经大学 石琳枫

摘 要: 为研究预测房地产股票短期股价, 选取万科公司2019年1月15日到2020年2月10日股票收盘价共254个样本数据为研究对象, 首先利用ADF平稳性检验来判断时间序列是否平稳, 然后, 对前242个数据用R语言建立ARIMA模型, 并基于该模型对后12个数据进行预测结果的检验。结果表明, 构建的ARIMA模型能较准确地预测万科A的短期股价, 预测结果可以为投资者和政府部门的决策作为参考。

关键词:股票收盘价;万科A;平稳性检验;ARIMA模型;模型预测

中图分类号: F830.91 文献标识码: A

DOI: 10.12245/j.issn.2096-6776.2021.03.16

1 研究现状

在许多西方发达资本主义国家,学者对经济预测进行了深入的研究,已经构建了较为成熟的理论和体系。J.H.Stock(1996)在时间序列的经济预测方面取得了重大进展。时间序列预测是基于对经济过程的理解,然后利用历史经验规律,做出未来的预测。经济预测已经广泛应用于各领域,其中就包括制定货币和财政政策、国家和地方预算等。经济预测的关键要素包括:选择适合当前问题的预测模型,评估和传递与预测相关的不确定性,并防范模型的不稳定性[1]。LIU和MORLEY(2009)认为传统计量经济模型存在产生严重偏差的可能。基于该问题,学者们尝试不断地改进传统计量模型,其中就包括基于GARCH的股票价格预测模型[2]。Lam等人(2013)选取2011年6月至2012年10月收集的每日库存记录用于模型建设,用神经网络方法针对大同煤矿公司的短期股价趋势进行了预测,研究结果表明,该模型可以预测股票价格的走势[3]。

目前国内学者对股票价格预测已经进行了较深入的研究。孔华强(2006)为研究深证100和上证180的波动性,运用EGARCH(1,1)-M模型对所研究指数进行了拟合^[4]。 江涛(2010)基于GARCH(1,1)模型度量和分析了股票市场的风险问题,认为市场风险是影响市场收益率的一个主要因素^[5]。李嘉松(2017)以沪深300指数为例,使用Eviews软

件建立ARIMA模型,指出造成其实际值和预测值之间有差异的原因,为投资者提供沪深300指数的预测方法,来作为未来进行股票投资和金融衍生产品投资的参考^[6]。王惠星等(2017)建立时间序列模型对上证50指数数据进行定量分析,在分析的基础上开展对指数未来趋势的预测,结果发现该模型对小样本投资组合的市场走势具有较好的模拟效果^[7]。张颖超等(2019)在建立ARIMA(4,1,4)模型的基础上,尝试利用该模型预测股价的变动趋势,结果表明,预测效果与预测的时间范围有关,在短期内预测精确度较高,而在长期预测效果欠佳^[8]。

2 实证研究

2.1 数据采集

本文选取深圳证券交易所的万科A股票收盘价作为研究对象,研究期间为2019年1月15日到2020年2月10日共254个样本数据。本文用R语言做统计分析,将前242个数据进行建模,最后12个数据用于预测对比,检验模型预测的准确性。数据来源为雅虎财经网站。

2.2 数据预处理

将原始序列记为X,做其序列图,可以看出,在研究期间万科股票收盘价在震荡中有一个上升的趋势,导致该序列不平稳。本文通过差分对其进行平稳化处理。用统计软

件做出一阶差分后的时序图(如图1所示),可以从图中看出 新的序列在零的周围波动,基本平稳,偶尔会出现一些极 大和极小值。从而初步判断一阶差分后的序列是平稳时 间序列,要对万科公司股票收盘价建立d=1的ARIMA模 型,再基于该模型预测将来万科公司股票价格。

通过上述操作,即利用一阶差分后的序列图,仅能够 对序列的平稳性作出初步判断。所以接下来需要进行单位 根检验,深入判断序列的平稳性。若存在单位根,则无法 通过检验,不能进一步建立模型。对本文的时间序列进行 ADF平稳性检验。若时间序列是非平稳的,可以用差分法 消除单位根,得到平稳序列。

在建模之前有必要通过单位根检验来验证时间序列 的平稳性,若不存在单位根则时间序列是平稳的。在此我 们所用检验方法为R语言tseries包中的adf.test函数。如表1 所示,ADF检验结果表示原始时间序列是不稳定的。一阶 差分后的万科公司股票收益率数据是稳定的,因此需要 拟合一阶差分模型。至此,上述内容是我们对文本数据进 行的基本分析,并且已经对数据进行了平稳化处理。接下 来是本文模型构建与具体分析过程。

表1 ADF平稳性检验结果

变量	ADF 值	P值	结论
close	-2.8283	0.2274	不稳定
dclose	-5.5917	0.01	稳定

2.3 模型定阶

根据上述分析,利用一阶差分可以将非平稳的单序 列数据处理成平稳的时间序列,所以我们选择ARIMA(p、 d、q)模型对数据进行建模分析。首先需要对模型进行定 阶(如图2所示)。为了确定模型的阶数,接下来需要估计 ARIMA模型里的p、d和q三个参数。从前面可以得到选择 一阶差分的数据,则d=1。对于图中的万科公司股票收盘 价一阶差分序列dclose,在滞后1阶、3阶、6阶时有比较大的 自相关系数,并且在滞后1阶、3阶、6阶时,其偏自相关系数 也比较显著。

AIC准则可以用来确定模型的阶数,AIC值越大, 表示模型拟合度越低。我们分别计算ARIMA(1,1,1)、 ARIMA(3, 1, 1), ARIMA(6, 1, 1), ARIMA(1, 1, 3), ARIMA(3, 1,3)、ARIMA(6,1,3)、ARIMA(1,1,6)、ARIMA(3,1,6),以及 ARIMA(6,1,6)模型的AIC值,结果分别为2408.47、2409.44、 2410.63, 2409.3, 2407.42, 2408.79, 2411.73, 2409.17, 2412.98,

图1 万科公司股票收盘价及其一阶差分图

图2 确定模型的阶数

由此可知,AIC值最小的模型为ARIMA(3,1,3)。

2.4 模型参数估计

在此,我们利用拟合度最优的ARIMA(3,1,3)模型对数据进行拟合,然后估计模型参数,并且通过计算t比,发现所有的系数均显著,结果如表2所示。

表2 ARIMA(3, 1, 3)模型的参数估计结果表

	ar1	ar2	ar3	ma1	ma2	ma3
估计值	-0.7015	-0.9025	-0.7150	0.730	0.9133	0.8339
标准差	0.1788	0.0368	0.1731	0.151	0.0284	0.1507
t 比	-3.9227	-24.5076	-4.1314	4.8354	32.1629	32.1629

根据表2的参数估计结果,最后得到如下股票价格的 ARIMA(3,1,3)模型:

$$\begin{split} X_t &= 0.7015 X_{t-1} + 0.9025 X_{t-2} + 0.715 X_{t-3} + \varepsilon_t + 0.73 \varepsilon_{t-1} \\ &+ 0.0133 \varepsilon_{t-2} + 0.8339 \varepsilon_{t-3} \end{split}$$

2.5 残差检验

模型是否可行,还需要对模型残差部分进行分析,检验模型残差部分的相关性是否被充分提取,在R语言中使用函数tsdiag来检验。结果表明残差标准差基本都在[-1,1]之间,残差的自回归都为0(两虚线内),模型的残差部分不存在相关性,说明模型拟合得很好。Ljung-Box检验的p值都在0.05之上,检验通过,可用于万科公司股票收盘价的预测。

2.6 结果预测

选定ARIMA(3,1,3)后,用R语言中的predict函数可以进行预测。在此,我们选择万科公司股票12天的实际收盘价与预测的收盘价进行比较,来检测模型预测的准确性和有效性。比较结果从2020年1月15日到2020年2月6日的12天里,其股票收盘价实际值分别为3237.81、3221.1、

3222.53、3243.82、3198.08、3207.12、3118.92、2878.14、2916.57、2953.01、3003.81和3013.74、预测值分别为3262.145、3268.785、3255.143、3253.904、3262.338、3267.295、3257.092、3253.745、3261.757、3266.452、3258.320和3254.058。

从以上数据中可以看到,本文拟合的ARIMA(3,1,3)模型能够较好地预测万科A短期的收盘价格,相对误差较小。

3 结语

本文以万科企业股份有限公司的股票收盘价为研究对象,通过实证研究,利用ARIMA模型对万科公司的收盘价序列进行了拟合,并进行了误差分析。通过ADF平稳性检验得出原始时间序列不平稳,进行一阶差分后的时间序列是平稳的,可以进一步用R语言拟合ARIMA时间序列模型,通过一阶差分平稳时序的ACF和PACF图确定模型可能的阶数,并利用AIC准则选取了合适的ARIMA模型,并且该模型通过了残差检验,说明模型的残差部分的相关性已经被充分提取,可以用于万科公司股票收盘价的预测。

从实证结果来看,在2020年1月15日到2020年2月10日的数据预测中,相对误差最高为13.05%,最小的误差为0.75%,且预测结果都要比实际值大。但整体来看,ARIMA模型能够较好地拟合和预测股票的收盘价格,可以应用于房地产业股票预测。另外,对于一月份数据的预测结果相对误差总体比二月份的小,这可能是由于受新冠疫情影响,全国房地产行业的开发及销售规模有所下降导致,而本文拟合的ARIMA模型对该信息的吸收不充分,对于万科公司的股票价格依然是不断上升的预测结果,这一点经济复苏以后该模型的预测效果可能会更好一些。

参考文献

- [1] J.H.Stock.Timeseries:Economic Forecasting, 1996:15721–15724.
- [2] Liu W,Morley B.Volatility forecasting in the Hang Seng Index using the GARCH approach [J] .Asia— Pacific Financial Markets, 2009, 16(01).
- [3] Cao Wen, Han Ying, Lam Sarah S.IIE Annual Conference. Proceedings, Short—Term Stock Price Trend Prediction of an Emerging Market Using Neural Networks, 2013.
- [4] 孔华强.金融市场波动率模型及实证研究[D].北京:首都经济贸易大学,2006.
- [5] 江涛.基于GARCH与半参数法VaR模型的证券市场风险的度量和分析:来自中国上海股票市场的经验证据[J].金融研究,2010(06):103-111.
- [6] 李嘉松.基于ARIMA模型的沪深300指数预测及误差因素分析[J].赤峰学院学报,2017(33).
- [7] 王惠星,林嘉喜.基于ARIMA模型的上证50指数的分析及预测[[].时代金融,2017(24):143—144.
- [8] 张颖超,孙英隽.基于ARIMA模型的上证指数分析与预测的实证研究[[].经济研究导刊,2019(11):131—135.