The Curry-Howard Isomorphism

Introduction

Some Background

A Three-way Correspondence

Reflections

Introduction

An example

$$\frac{A \to B \quad A}{B}$$
Modus ponens

$$\frac{f:A \to B \quad x:A}{fx:B}$$
Function application

◆ The Curry-Howard Isomorphism

A Three-way Correspondence

Intuitionistic Logic

- Syntactically, reductio ad absurdum (RAA) is not a rule in the natural deduction system of IL.
- The law of excluded middle $\varphi \lor \neg \varphi$ and double negation elimination $\neg \neg \varphi \to \varphi$ are no longer axioms.

Simply Typed Lambda Calculus

- ◆ A family of prototype programming languages
- Simply typed lambda calculus with function types λ^{\rightarrow}
 - \triangleright Types $\sigma ::= \iota \mid \sigma \rightarrow \sigma$
 - \triangleright Terms $M ::= x \mid \lambda x.M \mid MM$
- Three kinds of equivalence
 - $\triangleright \alpha$ -equivalence $\lambda x. M =_{\alpha} \lambda y. [y/x]M$
 - \triangleright β -equivalence $(\lambda x. M)N =_{\beta} [N/x]M$
 - \triangleright η -equivalence $\lambda x. Mx =_{\eta} M$

Cartesian Closed Categories

A CCC is a category with the following extra structure:

- lack A terminal object *unit* with unique arrow **One**^A for every A
- Object map \times , function $\langle \cdot, \cdot \rangle$, and arrows Proj_1 and Proj_2 satisfying $\operatorname{Proj}_i \circ \langle f_1, f_2 \rangle = f_i$ and $\langle \operatorname{Proj}_1 \circ g, \operatorname{Proj}_2 \circ g \rangle = g$
- ◆ Object map \rightarrow , function **Curry**, and arrow **App** satisfying **App** \circ ⟨**Curry**(h) \circ **Proj**₁, **Proj**₂⟩ = h and **Curry**(**App** \circ ⟨k \circ **Proj**₁, **Proj**₂⟩) = k

Encoding Proofs in Typed Lambda Terms

- Every proof leads to a type derivation
- Every type-derivation brings a well-typed lambda term
- Therefore, every proof can be encoded in a well-typed lambda term
 - assumptions are encoded in type context
 - proofs of theorems are encoded in closed terms

Encoding Proofs in Typed Lambda Terms

• Example – Theorem $\varphi \to (\psi \to \varphi)$

$$\frac{\frac{\overline{\varphi} \vdash \overline{\varphi}}{\varphi, \quad \psi \vdash \overline{\varphi}}(add)}{\varphi \vdash \qquad \psi \rightarrow \varphi} (\rightarrow I) \\
\vdash \qquad \qquad \varphi \rightarrow (\psi \rightarrow \varphi)} (\rightarrow I)$$

The proof of theorem $\varphi \to (\psi \to \varphi)$ is encoded in combinator $\mathbf{K} \equiv \lambda x : \varphi \cdot \lambda y : \psi \cdot x : \varphi \to (\psi \to \varphi)$

Decoding Well-typed Lambda Terms

- Every well-typed lambda term uniquely determines a type derivation
- Every type derivation leads to a proof (by erasing terms)
- By decoding a well-typed lambda term, we obtain a proof
 - Rebuild the type derivation of the term
 - Erase all the terms in the derivation

Decoding Well-typed Lambda Terms

• Example – Combinator $\mathbf{K} \equiv \lambda x : \varphi \cdot \lambda y : \psi \cdot x : \varphi \rightarrow (\psi \rightarrow \varphi)$

$$\frac{\frac{\overline{\varphi} \vdash \overline{\varphi}}{\varphi, \quad \psi \vdash \overline{\varphi}}(add)}{\varphi \vdash \qquad \psi \rightarrow \varphi} (\rightarrow I) \\
\vdash \qquad \qquad \varphi \rightarrow (\psi \rightarrow \varphi) (\rightarrow I)$$

♦ The proof of theorem φ → (ψ → φ) is obtained by decoding the combinator $\mathbf{K} \equiv \lambda x : φ . \lambda y : ψ . x : φ → (ψ → φ)$

Some Correspondence

- Propositions correspond to types
 - propositional connectives

 type constructors
 - > set of propositions ≅ set of simple types
- Proofs correspond to terms
 - natural deduction system
 typing rules
 - ➤ normalization \(\sime\) reduction
- Some typical questions
 - proof checking
 type checking
 - ➤ provability \(\colon\) inhabitation

A Three-way Correspondence

$\lambda^{unit, imes, o}$ or $\lambda^{ o}$

 $\lambda^{unit,\times,\rightarrow}$

terminal type unit product types $\sigma \times \tau$ function types $\sigma \to \tau$

CCCs

terminal object *unit*

products $A \times B$

exponentials $A \rightarrow B$

- \bullet λ^{\rightarrow} is as expressive as $\lambda^{unit,\times,\rightarrow}$
 - \triangleright product $\sigma_1 \times ... \times \sigma_n \cong \text{sequence } \sigma_1, ..., \sigma_n$
 - Function $f: \sigma \times \tau \to \rho \cong \bar{f}: \sigma \to (\tau \to \rho)$
 - Function $g: \sigma \to (\tau \times \rho) \cong g_1: \sigma \to \tau$ and $g_2: \sigma \to \rho$

Interpreting Well-typed Terms as Morphisms

Given a cartesian closed category \mathcal{C} with some object constants

the interpretation of type expressions

$$\triangleright$$
 $C[[\iota]] = \hat{b}$

the interpretation of type contexts

$$\triangleright$$
 $C[\emptyset] = unit$

Interpreting Well-typed Terms as Morphisms

the interpretation of well-typed terms

Given
$$\Gamma \triangleright M: \sigma$$
, $\mathcal{C}[\Gamma \triangleright M: \sigma]: \mathcal{C}[\Gamma] \rightarrow \mathcal{C}[\sigma]$

- \triangleright $\mathcal{C}[\Gamma \triangleright MN:\tau] =$

$$\operatorname{App}^{\mathcal{C}\llbracket\sigma\rrbracket,\mathcal{C}\llbracket\tau\rrbracket}\circ\langle\mathcal{C}\llbracket\Gamma\rhd M:\sigma\to\tau\rrbracket,\mathcal{C}\llbracket\Gamma\rhd N:\sigma\rrbracket\rangle$$

- \triangleright $\mathcal{C}[\![\Gamma \rhd \lambda x : \sigma. M : \sigma \to \tau]\!] = Curry(\mathcal{C}[\![\Gamma, x : \sigma \rhd M : \tau]\!])$
- $\geq \mathcal{C}[\![\Gamma_1, x : \sigma, \Gamma_2 \rhd M : \tau]\!] = \mathcal{C}[\![\Gamma_1, \Gamma_2 \rhd M : \tau]\!] \circ \chi_f^{[\![\Gamma_1, x : \sigma, \Gamma_2]\!]}$

Soundness

Theorem (Soundness) Given any well typed terms M and N,

if
$$\Gamma \triangleright M \equiv_{\alpha\beta\eta} N : \sigma$$
, then $\llbracket \Gamma \triangleright M : \sigma \rrbracket = \llbracket \Gamma \triangleright N : \sigma \rrbracket$ in every *CCC*.

Soundness (cont.)

Proof

- α -equivalence: $\lambda x.M =_{\alpha} \lambda y.[y/x]M$ no term-variable name appears in the calculations
- igoplus eta-equivalence: $(\lambda x. M)N =_{\beta} [N/x]M$ $\llbracket \Gamma \rhd (\lambda x: \sigma. M)N : \tau \rrbracket = \llbracket \Gamma \rhd [N/x]M : \tau \rrbracket$
 - $ightharpoonup App \circ \langle Curry(h) \circ Proj_1, Proj_2 \rangle = h$
 - Substitution Lemma
- Φ η-equivalence: $λx.Mx =_η M$ [Γ ▷ λx: σ. Mx : τ] = [Γ ▷ M : σ → τ]
 - \triangleright Curry(App $\circ \langle k \circ \text{Proj}_1, \text{Proj}_2 \rangle) = k$

Completeness

Theorem (Completeness) Given any $\Gamma \rhd M : \sigma$ and $\Gamma \rhd N : \sigma$, there exists a CCC $\mathcal C$ such that if $\mathcal C[\![\Gamma \rhd M : \sigma]\!] = \mathcal C[\![\Gamma \rhd N : \sigma]\!]$, then $\Gamma \rhd M \equiv_{\alpha\beta\eta} N : \sigma$.

Completeness (cont.)

Proof

- Construct one category \mathcal{C} from λ^{\rightarrow}
 - Objects sequences of types
 - [] terminal object
 - $[\sigma_1, ..., \sigma_m]$ products of $[\sigma_i] \vec{\sigma}_m$
 - Morphisms tuples of equivalence classes of terms

$$\langle \{\vec{x}_m : \vec{\sigma}_m \rhd N_i : \tau_i | \Gamma \rhd N_i = M_i : \tau_i \} | i = 1, ..., n \rangle : \vec{\sigma}_m \to \vec{\tau}_n$$

- $igoplus \mathcal{C}$ is cartesian closed (the most difficult part)
- $\bullet \quad \mathcal{C}[\![\Gamma \rhd M \colon \sigma]\!] = \langle \{\Gamma \rhd N \colon \sigma | \Gamma \rhd N = M \colon \sigma\} \rangle$ If \mathcal{C} satisfies $[\![\Gamma \rhd M \colon \sigma]\!] = [\![\Gamma \rhd N \colon \sigma]\!],$ then $\Gamma \rhd M \equiv_{\alpha\beta\eta} N \colon \sigma.$

Reflections

◆ A connection between very diverse mathematical subjects

Reflections

- The C.H. isomorphism can be extended to stronger logics,
 more expressive languages and richer categories
 - First order logic

 Dependent types
 - PCF ≅ Category of domains
 - **>** ...

Reflections

◆ The C.H. isomorphism helps to prove theorems in each field

Q: Is the inhabitation problem in Dependent Types decidable?

A: No, it is undecidable.

- Inhabitation ≅ Provability
- ➤ Dependent Types \(\sime\) First Order Logic
- Provability in First Order Logic is undecidable

The Curry-Howard Isomorphism

Thank you for your listening!

Questions?

Appendix

Connectives VS. Type Constructors

Formulas in	Types in
intuitionist propositional logic	full simply-typed lambda calculus
False formula ⊥	Initial type $null$
True formula ⊤ (¬⊥)	Terminal type unit
Implication $\varphi_0 o \varphi_1$	Function type $\sigma_0 ightarrow \sigma_1$
Conjunction $\varphi_0 \wedge \varphi_1$	Product type $\sigma_0 \times \sigma_1$
Disjunction $arphi_0 \lor arphi_1$	Sum type $\sigma_0 + \sigma_1$

Appendix

◆ Natural Deduction System VS. Typing Rules

Natural deduction in	Typing rules in
intuitionist propositional logic	full simply-typed lambda calculus
${\Gamma_{1},\varphi,\Gamma_{2}\vdash\varphi}Axiom$	$\frac{1}{\Gamma_1, x: \sigma, \Gamma_2 \vdash x: \sigma} Var$
$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \to I$	$\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash \lambda x. M: \sigma \to \tau} \to I$
$\frac{\Gamma \vdash \varphi \to \psi, \ \Gamma \vdash \varphi}{\Gamma \vdash \psi} \to E$	$\frac{\Gamma \vdash M : \sigma \to \tau, \ \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \to E$
$\frac{\Gamma \vdash \varphi, \ \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \land I$	$\frac{\Gamma \vdash M : \sigma, \ \Gamma \vdash N : \tau}{\Gamma \vdash \langle M, N \rangle : \sigma \times \tau} \times I$

Appendix

◆ Natural Deduction System VS. Typing Rules (cont.)

$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \land E_1$	$\frac{\Gamma \vdash M: \sigma \times \tau}{\Gamma \vdash \operatorname{Proj}_{1}^{\sigma,\tau} M: \sigma} \times E_{1}$
$\Gamma \vdash \varphi \land \psi$	$\Gamma \vdash M: \sigma \times \tau$
$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \land E_2$	$\frac{\Gamma \vdash \operatorname{Proj}_{2}^{\sigma,\tau} M \colon \tau}{\Gamma \vdash \operatorname{Proj}_{2}^{\sigma,\tau} M \colon \tau} \times E_{2}$
$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \lor I_1$	$\Gamma \vdash M : \sigma$
$\Gamma \vdash \varphi \lor \psi$	$\overline{\Gamma} \vdash \operatorname{Inleft}^{\sigma,\tau} M : \sigma + \tau + I_1$
$\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \lor I_2$	$\Gamma \vdash M : \tau$
$\Gamma \vdash \varphi \lor \psi \lor I_2$	$\overline{\Gamma \vdash \operatorname{Inright}^{\sigma,\tau} M : \sigma + \tau} + I_1$
$\Gamma \vdash \varphi \lor \psi, \Gamma \vdash \varphi \to \chi, \Gamma \vdash \psi \to \chi \lor E$	$\frac{\Gamma \vdash M: \sigma + \tau, \Gamma \vdash N: \sigma \to \rho, \Gamma \vdash P: \tau \to \rho}{\Gamma \vdash \sigma} + E$
$\Gamma \vdash \chi$	$\Gamma \vdash Case^{\sigma,\tau,\rho}MNP:\rho$