Tout ce qu'il faut savoir en math

1 Pourcentage

- Prendre un pourcentage t % d'un quantité a: $a \times \frac{t}{100}$
- Calculer le pourcentage d'une quantité a par rapport à une quantité b: $\frac{a}{b} \times 100$
- •• Le coefficient multiplicateur CM pour une augmentation $a: CM = 1 + \frac{a}{100}$
- Le coefficient multiplicateur *CM* pour une réduction r: $CM = 1 \frac{r}{100}$
- On calcul le pourcentage d'évolution d'une quantité par : $\frac{\text{Valeur finale valeur initiale}}{\text{valeur initiale}} \times 100$
- Une quantité A augmentée n fois successivement d'un même pourcentage t devient : $A \times \left(1 + \frac{t}{100}\right)^n$
- Une quantité A diminué n fois successivement d'un même pourcentage t devient : $A \times \left(1 \frac{t}{100}\right)^n$

2 Statistiques

La **médiane** *Me* d'une série statistique est la valeur de la variable qui partage l'effectif total en deux parties égales.

Le **quartile** Q_1 est la plus petite valeur de la variable telle qu'au moins 25 % des valeurs de la série lui soient inférieures ou égales.

Le **quartile** Q_3 est la plus petite valeur de la variable telle qu'au moins 75 % des valeurs de la série lui soient inférieures ou égales.

Le **décile** D_1 est la plus petite valeur de la variable telle qu'au moins 10 % des valeurs de la série lui soient inférieures ou égales. Le **décile** D_9 est la plus petite valeur de la variable telle qu'au moins 90 % des valeurs de la série lui soient inférieures ou égales.

On définit l'écart interquartile par : $Q_3 - Q_1$ et l'intervalle interquartile par $[Q_1; Q_3]$

Le **diagramme en boîtes** représente une série statistique ainsi que sa médiane, ses quartiles et ses valeurs extrêmes (éventuellement les déciles) :

Une série statistique double de n couples $(x_i; y_i)$ se représente, dans un repère orthogonal bien choisi, par un **nuage de points**.

Le **point moyen** G est le point dont les coordonnées sont : $x_G = \bar{x} = \frac{\sum_{i=1}^n x_i}{n}$ et $y_G = \bar{y} = \frac{\sum_{i=1}^n y_i}{n}$

Selon la forme du nuage, on peut l'ajuster de manière affine, quadratique (carre/racine carree) ou grâce aux logarithmes/exponentielles (on pose, en general, $z_i = \ln(y_i)$)

Ajustement des extremes : Ajustement affine qui utilise les deux points extremes du nuage (le premier et le dernier)

Ajustement de Mayer : Ajustement affine qui utilise les deux points moyens de deux sous-nuages du nuage global.

Pour tous les ajustements affines, on peut calculer la somme des residus $\sum_{i=1}^{n} [y_i - (ax_i + b)]^2$ Ajustement par la **méthode des moindres carres**: La droite d'equation y = ax + b telle que a = y(x;y)

Ajustement par la **méthode des moindres carres** : La droite d'equation y = ax + b telle que $a = \frac{Cov(x;y)}{V(x)}$, et qui passe par le point moyen $G(\bar{x};\bar{y})$ est la droite qui rend minimale la somme des residus $\sum_{i=1}^{n} [y_i - (ax + b)]^2.$

On obtient son équation en utilisant la calculatrice (Menu STAT, CALC, REG)

3 Probabilités

L'univers Ω est l'ensemble des résultats possible d'une expérience aléatoire. Un **événement** A est une partie de Ω .

Pour tout événement
$$A$$
, $0 \le P(A) \le 1$. On a $P(\emptyset) = 0$ et $P(\Omega) = 1$

La somme des probabilités des événement élémentaires vaut 1. $p_1 + p_2 + \cdots + p_n = 1$

La probabilité d'un événement est égale à la somme des propabilité des événements élémentaires qui le composent.

Dans le cas d'équiprobabilité,
$$P(A) = \frac{Card(A)}{Card(\Omega)} = \frac{\text{Nbre de cas favorables}}{\text{Nbre de cas possibles}}$$

Pour deux événements
$$A$$
 et B , $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Si les événéments sont incompatibles $(A \cap B = \emptyset)$ alors $P(A \cup B) = P(A) + P(B)$

Pour tout événement A, on note \overline{A} l'événement contraire et $P(\overline{A}) = 1 - P(A)$

3.1 Conditionnement et indépendance

Si A et B sont deux évènements tels que $P(A) \neq 0$, on définit la probabilité conditionnelle de l'événement B sachant A par :

$$P_A(B) = \frac{P(A \cap B)}{P(A)} \quad \Leftrightarrow \quad P(A \cap B) = P(A) \times P_A(B)$$

On a alors l'arbre suivant :

Les événements A et B sont **indépendants** lorsque la réalisation de l'un n'influe pas sur la réalisation de l'autre. On a alors :

$$P_A(B) = P(B)$$
 ou $P_B(A) = P(A)$ \Rightarrow $P(A \cap B) = P(A) \times P(B)$

3.2 Variable aléatoire

On définit une variable aléatoire X sur Ω lorsqu'on associe un nombre réel aux événements de Ω . La loi de probabilité de la variable aléatoire X est la fonction $k \mapsto P(X = k)$, souvent présentée dans un tableau :

valeurs possibles	x_1	x_2	 x_n	ot	$n + n + \dots + n = 1$
probabilité	p_1	p_2	 p_n		$p_1 + p_2 + \dots + p_n = 1$

L'espèrence mathématique de cette loi est le nombre noté E(X) défini par :

$$E(X) = p_1 x_1 + p_2 x_2 + \dots + p_n x_n$$

3.3 Répétition d'épreuve

Lorsque qu'on répète plusieurs fois et de manière indépendante une expèrience n'ayant que deux issues (succès et échec), S de probabilité p et \bar{S} de probabilité q = 1 - p, on effectue une **expérience de Bernouilli**.

Sur l'ensemble des répétitions, on peut compter le nombre de succès à l'aide d'un arbre. Ne pas oublier que l'évènement contraire de « obtenir au moins un succès » est « obtenir que des échec ».

4 Algèbre

4.1 Le second degré

 $P(x) = ax^2 + bx + c$ le trinôme du second degré. Le **discriminant** $\Delta = b^2 - 4ac$

Si $\Delta > 0$,

l'équation P(x) = 0 admet **deux** racines réelles distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

Factorisation:

$$P(x) = a(x - x_1)(x - x_2)$$

Le **signe** de P(x) est du signe de a à l'extérieur des racines et du signe de-a à l'intérieur.

Si $\Delta = 0$,

l'équation P(x) = 0 admet **une unique racine** réelle « double » :

$$x_0 = \frac{-b}{2a}$$

Factorisation:

$$P(x) = a(x - x_0)^2$$

Le **signe** de P(x) s'annule en x_0 et est du signe de a ailleurs.

Si $\Delta < 0$,

l'équation P(x) = 0 n'admet pas de racine réelle

On ne peut pas factoriser P(x)

Le **signe** de P(x) est du signe de a.

4.2 Domaine de définition d'une fonction

Il faut exclure les valeurs qui annulent le dénominateur.

$$\sqrt{u(x)}$$
 existe ssi $u(x) \ge 0$

$$ln(u(x))$$
 existe ssi $u(x) > 0$

Les conditions peuvent se cumuler d'où des sytèmes et des intersections d'intervalles.

4.3 Limites et asymptotes

On étudie les limites d'une fonction aux bornes de son ensemble de définition. On peut utiliser alors :

- Les limites des fonctions élémentaires : $(\lim_{x \to \infty} x^2 = +\infty)$
- Les limites de comparaison (théorème des gendarmes)
- Les opérations sur les limites (somme, produit et quotient). Attention aux formes indéterminées $\left(+\infty-\infty, 0\times\infty, \frac{\infty}{\infty} \text{ et } \frac{0}{0}\right)$
- ightharpoonup La limite en $\pm \infty$ d'un polynôme est celle de son terme du plus haut degré.
- La limites en ±∞ d'une fonction rationnelle est celle de son quotient simplifié des termes du plus haut degré.
- Les limites par croissance comparées (cf exponentielle et logarithmes)

Asymptote verticale

Si $\lim_{x \to a} f(x) = \pm \infty$, la droite d'équation x = a est asymptote verticale à \mathcal{C}_f .

Il faut en général étudier la limite à gauche et à droite de a.

Asymptote horizontale

Si $\lim_{x \to \pm \infty} f(x) = \ell$, la droite d'équation $y = \ell$ est asymptote horizontale à \mathcal{C}_f .

Asymptote oblique

Si $\lim_{x \to \pm \infty} [f(x) - (ax + b)] = 0$, la droite d'équation y = ax + b est asymptote oblique à \mathcal{C}_f en $+\infty$, $-\infty$.

Position relative : il faut étudier le signe de f(x) - (ax + b).

4.4 Théorème des valeurs intermédiaires

Si f est une fonction est dérivable (donc continue) et strictement monotone sur l'intervalle [a,b], alors pour toute valeur k comprise entre f(a) et f(b), l'équation f(x) = k admet une **unique** solution sur l'intervalle [a,b]. Ce théorème s'étend aux cas d'intervalles ouverts et aux bornes infinie

Cas de f(x) = 0: Si f est une fonction est dérivable (donc continue) et strictement monotone sur l'intervalle [a, b] et si f(a)f(b) < 0, alors il existe une unique solution α à l'équation f(x) = 0 dans l'intervalle [a, b].

4.5 Dérivée et primitives

Si pour tout $x \in I$, f'(x) > 0 alors f est **strictement croissante** sur I.

Si pour tout $x \in I$, f'(x) < 0 alors f est **strictement décroissante** sur I.

Une **primitive** sur l'intervalle I d'une fonction f continue sur I est une fonction F définie et dérivable sur I, telle que :

$$\forall x \in I, \quad F'(x) = f(x)$$

Les primitives sont définies à une constante près.

Fonction	Dérivée	D_f'
f(x) = k	f'(x) = 0	\mathbb{R}
f(x) = x	f'(x) = 1	\mathbb{R}
$f(x) = x^n n \in \mathbb{N}^*$	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
$f(x) = \frac{1}{x^n} n \in \mathbb{N}^*$	$f'(x) = -\frac{n}{x^{n+1}}$	\mathbb{R}^*
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	\mathbb{R}_+^*
$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$	\mathbb{R}_+^*
$f(x) = e^x$	$f'(x) = e^x$	\mathbb{R}

Fonction	Primitive	D_F
f(x) = k	F(x) = kx	\mathbb{R}
f(x) = x	$F(x) = \frac{x^2}{2}$	\mathbb{R}
$f(x) = x^n$	$F(x) = \frac{x^{n+1}}{n+1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	$F(x) = \ln x$	\mathbb{R}_+^*
$f(x) = \frac{1}{x^n}$	$F(x) = -\frac{1}{(n-1)x^{n-1}}$	$\mathbb{R}_+^*, \ \mathbb{R}^*$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$	\mathbb{R}_+^*
$f(x) = e^x$	$F(x) = e^x$	\mathbb{R}

Dérivée	Formule
de la somme	(u+v)'=u'+v'
de ku	(ku)' = ku'
du produit	(uv)' = u'v + uv'
de l'inverse	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$
du quotient	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
de la puissance	$(u^n)' = nu'u^{n-1}$
de la racine	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$
du logarithme	$(\ln u)' = \frac{u'}{u}$
de l'exponentielle	(exp(u))' = u'exp(u)

Primitive	Formule
de la somme	$\int (u+v) = \int u + \int v$
de ku	$\int (ku) = k \int u$
de <i>u'uⁿ</i>	$\int u'u^n = \frac{u^{n+1}}{n+1}$
$de \frac{u'}{u}$	$\int \frac{u'}{u} = \ln u $
$de \frac{u'}{u^n} n \neq 1$	$\int \frac{u'}{u^n} = -\frac{1}{(n-1)u^{n-1}}$
de $\frac{u'}{\sqrt{u}}$	$\int \frac{u'}{\sqrt{u}} = 2\sqrt{u}$
de $u'e^u$	$\int u'e^u = e^u$

4.6 Représentation de la fonction et du nombre dérivé

Lorsque f est dérivable en a, la courbe représentative \mathcal{C}_f de la fonction f admet au point A(a, f(a)) une tangente de coefficient directeur f'(a) dont l'équation est :

$$y = f'(a)(x - a) + f(a)$$

Le coefficient directeur de la tangente est la valeur du nombre dérivé. Ce coefficient se lit sur la courbe en calculant le quotient $\frac{\Delta y}{\Delta x}$.

4.7 La fonction logarithme et la fonction exponentielle

Fonction logarithme

 $\ln x$ est définie sur]0; $+\infty$ [

On a:

$$\ln 1 = 0 \quad \text{et} \quad \ln e = 1$$

$$\ln(ab) = \ln a + \ln b \quad , \quad \ln \frac{1}{b} = -\ln b$$

$$\ln \frac{a}{b} = \ln a - \ln b \quad , \quad \ln a^n = n \ln a$$

 $\ln'(x) = \frac{1}{x}$. La fonction ln est strictement croissante sur]0; $+\infty[$.

Х	0	1		е		+∞
1 x			+			
lnx	- 80	0	_	1_	_	+∞

 e^x où exp(x) est définie sur \mathbb{R} $e \simeq 2,718$ On a :

$$e^{0} = 1$$
 et $e^{1} = e$
 $e^{a+b} = e^{a} \times e^{b}$, $e^{-a} = \frac{1}{e^{a}}$
 $e^{a-b} = \frac{e^{a}}{e^{b}}$, $(e^{a})^{n} = e^{na}$

Fonction exponentielle

 $(e^x)' = e^x$. La fonction e^x est strictement croissante sur \mathbb{R} .

Fonction logarithme	Fonction exponentielle
$\lim_{x \to +\infty} \frac{\ln x}{x} = 0 , \lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$ $\lim_{x \to 0^+} x \ln x = 0 , \lim_{x \to 0^+} x^n \ln x = 0$	$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty , \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$ $\lim_{x \to -\infty} x e^x = 0 , \lim_{x \to -\infty} x^n e^x = 0$

4.8 Equations et inéquations mêlant logarithmes et exponentielles

Elles se traitent en utilisant la stricte **croissance** des fonctions logarithme et exponentielle. Si a et b sont deux réel positifs alors :

$$\ln a = \ln b \iff a = b \text{ et } \ln a < \ln b \iff a < b$$

Si a et b sont deux réels quelconques alors :

$$e^a = e^b \Leftrightarrow a = b \text{ et } e^a < e^b \Leftrightarrow a < b$$

4.9 Fonction exponentielle en base *a*

Pour tout réel positif a et pour tout nombre réel b, on définit : $a^b = e^{b \ln a}$.

- •• Si a > 1, la fonction a^x est strictement croissante sur \mathbb{R} .
- •• Si 0 < a < 1, la fonction a^x est strictement décroissante sur \mathbb{R} .

4.10 Calcul intégral et calcul d'aires

Toutes les fonctions f et g sont continues sur [a,b] donc intégrable sur [a,b]. F désigne une primitive de la fonction f.

L'intégrale de f entre a et b est le nombre défini par :

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

On a les propriétés suivantes :

$$\int_{a}^{a} f(x)dx = 0 \quad \text{et} \quad \int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx \quad \text{relation de Chasles}$$

$$\int_{a}^{b} (af(x) + bg(x)) dx = a \int_{a}^{b} f(x)dx + b \int_{a}^{b} g(x)dx \quad \text{linéarité de l'intégrale}$$
Si $f(x) \ge 0$ sur $[a, b]$ alors $\int_{a}^{b} f(x)dx \ge 0$ La réciproque est fausse
Si $f(x) \ge g(x)$ sur $[a, b]$ alors $\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$

La valeur moyenne de f sur [a,b] $\mu = \frac{1}{b-a} \int_a^b f(x) dx$

Primitive définie par une intégrale : $G(x) = \int_a^x f(t)dt$ primitive qui s'annule en a

Calcul d'aire

Si $f(x) \ge 0$ sur [a, b], le domaine délimitée par \mathcal{C}_f , l'axe des abscisses et les droites d'équation x = a et x = b, est donné, en unité d'aire (ua) par :

$$\int_{a}^{b} f(x) \mathrm{d}x$$

Si f(x) < 0 sur [a, b], $\int_a^b f(x) dx$ sera l'opposé de l'aire du domaine défini ci-dessus.

Si $f(x) \le g(x)$ sur [a,b], l'aire du domaine limité par \mathscr{C}_f , \mathscr{C}_g et les droite d'équations x=a et x=b vaut : $\int_a^b (f(x)-g(x)) \, \mathrm{d}x$

5 Suite

Suites arithmétiques	Suite géométriques			
(utilisées pour des variations absolues)	(utilisées pour des variations relatives (en %)			
Définition : $u_{n+1} = u_n + r$ et un premier terme.	Définition : $u_{n+1} = q \times u_n$ et un premier terme.			
r est la raison	q est la raison			
Terme général :	Terme général :			
$u_n = u_0 + nr$ ou $u_n = u_p + (n-p)r$	$u_n = u_0 \times q^n$ ou $u_n = u_p \times q^{n-p}$			
Somme des termes :	Somme des termes :			
$S_n = u_0 + u_1 + \dots + u_n = (n+1) \times \frac{u_0 + u_n}{2}$	$S_n = u_0 + u_1 + \dots + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$			
D'une façon générale :	D'une façon générale : $1-q$			
$S_n = \text{Nbre de termes} \times \frac{\Sigma \text{ termes extrèmes}}{2}$	$1 - q^{\text{Nbre de termes}}$			
2	$S_n = 1^{\text{er}} \text{ terme} \times \frac{1 - q^{\text{Nbre de termes}}}{1 - q}$			

Limites de suites : On examine le comportement des termes u_n lorsque n tend vers $+\infty$.

On dit que la suite (u_n) **converge**, si la limite des termes u_n est finie soit $\lim_{n\to+\infty} u_n = \ell$.

Dans tous les autres cas, on dit que la suite (u_n) **diverge** : soit $\lim_{n\to+\infty} u_n = \pm \infty$ soit $\lim_{n\to+\infty} u_n$ n'existe pas (exemple $(-1)^n$)

Thèorème : Une suite **géométrique** de raison q :

- •• Converge vers 0 si -1 < q < 1 et $\lim_{n \to +\infty} q^n = 0$
- Diverge vers $\pm \infty$ si q > 1 et $\lim_{n \to +\infty} q^n = +\infty$
- $\bullet \bullet$ est constante si q = 1
- •• n'admet pas de limite si $q \le -1$