Table des matières

1	Exp	erime	nt 1 - State Vector - 1 qubit	1
	1.1	State	Vector - 1 Qubit	1
			Base H with full Z rotation	
		1.1.2	Base H with no-full Z rotation	2
		1.1.3	Base 0	

Chapitre 1

Experiment 1 - State Vector - 1 qubit

On est trop souvent imprécis lorsqu'on fait une citation.

Quelqu'un, un jour.

Full 1st experiment explanation

1.1 State Vector - 1 Qubit

1.1.1 Base H with full Z rotation

Code

```
print("Launch!")
  qc.h(init_q)
  for w in range (max_shots):
       for i in range(shots):
           qc.rx(-pi/(shots-i), init_q)
5
           qc.rz(pi/(shots/8), init_q)
6
           z, z_north, z_south = complex_cal(qc, statevector_sim)
           if z != 0:
                if z_north != 0:
9
                    tab_temp[0].append(z)
10
                    tab_temp[1].append(z_north)
11
                if z_south != 0:
12
                    tab\_temp[0].append(z)
13
                    tab_temp[2].append(z_south)
14
       qc.barrier()
15
16
       if (w + 1) \% 5 == 0:
17
           print("Full circuit bloch :", w+1, "/", max_shots)
18
   print("Done!")
```

Run 1 full circuit block only

Run 10 full circuit block only

Figure 1.1 – Resulting of 1000 data statevector

Run 100 full circuit block only

Figure 1.2 – Resulting of 10000 data statevector

1.1.2 Base H with no-full Z rotation

Code

```
print("Launch!")
qc.h(init_q)
```

```
for w in range(max_shots):
       for i in range(shots):
4
           qc.rx(-pi/(shots-i), init_q)
5
           qc.rz(pi/(shots/8), init_q)
6
           z, z_north, z_south = complex_cal(qc, statevector_sim)
           if z != 0:
8
                if z_north != 0:
9
                    tab_temp[0].append(z)
10
                    tab_temp[1].append(z_north)
11
                if z_south != 0:
12
                    tab\_temp[0].append(z)
13
                    tab_temp[2].append(z_south)
14
       qc.barrier()
15
16
       if (w + 1) \% 5 == 0:
17
            print("Full circuit bloch :", w+1, "/", max_shots)
18
19
   print("Done!")
20
```

Run 1 full circuit block only

Run 10 full circuit block only

FIGURE 1.3 – Resulting of 1000 data statevector

Run 100 full circuit block only

1.1.3 Base 0

Code

```
print("Launch!")
for w in range(max_shots):
    for i in range(shots):
        qc.rx(-pi/(shots-i), init_q)
```


Figure 1.4 – Resulting of 1000 data statevector

```
qc.rz(pi/(shots/8), init_q)
5
           z, z_north, z_south = complex_cal(qc, statevector_sim)
6
           if z != 0:
                if z_north != 0:
                    tab\_temp[0].append(z)
9
                    tab_temp[1].append(z_north)
10
                if z_south != 0:
11
                    tab\_temp[0].append(z)
12
                    tab_temp[2].append(z_south)
13
       qc.barrier()
14
15
       if (w + 1) \% 5 == 0:
16
           print("Full circuit bloch : ", w+1, "/", max_shots)
17
18
   print("Done!")
19
```

Totototo

Run 10 full circuit block only

Run 100 full circuit block only

Figure 1.5 – Resulting of 1000 data statevector

Figure 1.6 – Resulting of 10000 data state vector