CB N° 11 - GEOMETRIE DANS L'ESPACE - SUJET 1

EXERCICE 1

Soit \mathscr{S} la surface de \mathbb{R}^3 d'équation

$$x^2 + y^2 - z^2 = 0$$

- 1. Déterminer les points réguliers de \mathscr{S} .
- 2. Démontrer qu'en un point régulier M(a,b,c) une équation du plan tangent à $\mathscr S$ est

$$ax + by - cz = 0$$

EXERCICE 2

Soit Σ la surface de \mathbb{R}^3 d'équation

$$(x^2 + y^2 + z^2 + 3)^2 - 16(x^2 + y^2) = 0$$

- 1. Démontrer que Σ est régulière.
- **2.** Donner en A(3,0,0) une équation du plan tangent à Σ .

EXERCICE 3

Soit Γ la courbe paramétrée

$$\left\{ \begin{array}{ll} x=t^2\\ y=t+1\\ z=t^2-t+1 \end{array} \right.,\quad t\in\mathbb{R}$$

- 1. Montrer que Γ est plane. Déterminer \vec{u} , un vecteur normal au plan contenant Γ .
- 2. Déterminer un paramétrage puis une équation cartésienne du cylindre \mathscr{C} de section droite Γ , c'est à dire de directrice Γ et de direction normale au plan contenant Γ .

Spé PT B CB111 - 2017-2018

CB N° 11 - GEOMETRIE DANS L'ESPACE - SUJET 2

EXERCICE 1

Soit \mathscr{S} la surface de \mathbb{R}^3 d'équation

$$x^2 - y^2 + z^2 = 0$$

- 1. Déterminer les points réguliers de \mathscr{S} .
- 2. Démontrer qu'en un point régulier M(a,b,c) une équation du plan tangent à $\mathscr S$ est

$$ax - by + cz = 0$$

EXERCICE 2

Soit Σ la surface de \mathbb{R}^3 d'équation

$$(x^2 + y^2 + z^2 + 1)^2 - 16(x^2 + y^2) = 0$$

- 1. Démontrer que Σ est régulière.
- **2.** Donner en $A(1,0,\sqrt{2})$ une équation du plan tangent à Σ .

EXERCICE 3

Soit Γ la courbe paramétrée

$$\left\{ \begin{array}{l} x=t^2 \\ y=t+1 \\ z=-t^2-t+1 \end{array} \right., \quad t\in\mathbb{R}$$

- 1. Montrer que Γ est plane. Déterminer \vec{u} , un vecteur normal au plan contenant Γ .
- 2. Déterminer un paramétrage puis une équation cartésienne du cylindre \mathscr{C} de section droite Γ , c'est à dire de directrice Γ et de direction normale au plan contenant Γ .

Spé PT B CB111 - 2017-2018