Prostowniki trójfazowe

Prostownik trójfazowy mostkowy.

W zastosowaniach przemysłowych rozwiązania prostowników trójfazowych są dominujące. Prostowniki jednofazowe stosuje się jedynie przy niskich mocach. Zaletą układów trójfazowych jest uzyskanie większych mocy, mniejszych tętnień przy podobnych parametrach elementów. Na rys. 1 pokazano typowy układ trójfazowego mostka prostowniczego.

Rys. 1. Prostownik trójfazowy diodowy – mostkowy.

Do analizy mostka trójfazowego wprowadzimy schemat zastępczy pokazany na rys 2.b . Zastępcze napięcie V_d jest napięciem wyjściowym nieobciążonego mostka, bez kondensatora C_d ($C_d = 0$, $R_o = \infty$, $i_d = 0$).

Diody D1, D3, D5 pozwalają otrzymać w punkcie P największą dodatnią wartość U_{Pn} napięć fazowych U_{an} , U_{bn} , U_{cn} . Podobnie diody D4, D6, D2 dają w punkcie N największą ujemną wartość U_{Nn} napięć fazowych.

Sterowanie tyrystorowe silników komutatorowych prądu stalęgo(DC) - prostowniki trójfazowe

Rys. 2a. Napięcie wyjściowe bez kondensatorów i obciążenia ($C_d = \theta$ i z $i_d \rightarrow \theta$).

Rys. 2.b. Trójfazowy prostownik – schemat zastępczy.

Rys. 2.c. Przebieg prądu i_d .

Napięcie na wyjściu mostka jest różnicą $V_d = U_{Pn} - U_{Nn}$. Jak widać na rysunku 2.a każda z diod górnej grupy D1, D3, D5 przewodzi przez 120^0 cyklu, podobnie diody grupy dolnej D2, D4, D6. Przewodzenie obu grup przesunięte jest w fazie o 60^0 . W rezultacie pulsacja napięcia wyjściowego jest sześciokrotnie wyższa od częstotliwości sieci.

W schemacie zastępczym indukcyjność wynosi $2L_s$, gdyż prąd płynie zawsze przez dwie indukcyjności fazowe L_s reprezentujące impedancję sieci. Układ zastępczy zakłada, że prąd opada do zera w każdym 60^0 przedziale. Przyjęcie dużej wartości C_d pozwala przyjąć przybliżenie $U_d(t) \approx V_d$.

Sterowanie tyrystorowe silników komutatorowych prądu stalęgo(DC) - prostowniki trójfazowe

Często w prostownikach trójfazowych umieszcza się indukcyjność L_d , dla zmniejszenia tętnień napięcia i pobieranego prądu, jak pokazano na rys. 3.

Rys. 3. Trzyfazowy prostownik; skończona indukcyjność L_d : a) schemat ideowy, b) schemat równoważny, c) nieciągły prąd i_d , d) ciągły prąd i_d .

Można obliczyć minimalną wartość indukcyjności L_d aby otrzymać, ciągły przepływ prądu i_d , dla zadanej wartości średniej I_d dla napięcia sieci V_{LL} (wartość skuteczna napięcia międzyfazowego) o pulsacji ω .

Otrzymana wartość:

$$L_{d,min} = \frac{0.013 \cdot V_{LL}}{\omega \cdot I_d}$$

Przy ciągłym przepływie prądu i_d średnią wartość napięcia wyjściowego V_d otrzymujemy ze scałkowania (rys. 3) :

$$A_d = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \sqrt{2}V_{LL} \cdot \cos(\omega t) d(\omega t) = \sqrt{2}V_{LL}$$

$$V_{d} = \frac{A_{d}}{\frac{1}{3}\pi} = \frac{3\sqrt{2}}{\pi}V_{LL} = 1,35V_{LL}$$

Sterowanie tyrystorowe silników komutatorowych prądu stalęgo(DC) - prostowniki trójfazowe
Na rvs. 4 pokazano zależność napiecia wyjściowego od wartości indukcyjnośc

Na rys. 4 pokazano zależność napięcia wyjściowego od wartości indukcyjności zastępczej (przejście od nieciągłości prądu do prądu ciągłego).

Rys. 4. Zależność napięcia wyjściowego od wartości indukcyjności zastępczej.

Na rys. 5. pokazano prąd w przewodzie fazowym dla nieciągłego i ciągłego prądu w dławiku L_d przy założeniu $L_s=0$.

Rys. 5. Przebiegi prądu w przewodzie fazowym, a) nieciągły prąd dławika , b) ciągły prąd dławika.