Born To Be Gradient Predicting Exceptions of Compound Tensing in Korean

Hyunjung Lee

OCP 2019, University of Verona

17 January 2019

Nutshell

How to deal with exceptionality?

- Compound Tensing (CT) in Korean unexpectedly fails to apply to certain Noun-Noun compounds (Jun 2001; Zuraw 2011; Ito 2014; Kim 2016).
- Should this exceptionality be dealt with the grammar or through lexicalization?

Gradient Symbolic Representation

- I argue for an account in terms of **Gradient Symbolic Representations** (**GSR**; Smolensky and Goldrick, 2016, Rosen 2016).
- The intrinsic property of GSR captures the nature of gradient inclination for CT, which is impossible with other systems.

Learnability

An error-driven algorithm also shows tat the scalar activities are learnable.

Introduction Data Proposal Learnability Conclusion

Data

3 / 31

Laryngeal contrasts

- Korean has a three-way distinction in terms of laryngeal contrast in obstruents
- (1)

 - $\begin{array}{llll} \text{(a)} & /\text{pul}/ & \rightarrow [\textbf{pul}] & \text{`fire'} \\ \text{(b)} & /\text{p}^{\textbf{h}}\text{ul}/ & \rightarrow [\textbf{p}^{\textbf{h}}\text{ul}] & \text{`grass'} \\ \text{(c)} & /\text{p'ul}/ & \rightarrow [\textbf{p'ul}] & \text{`horn'} \\ \end{array}$

Laryngeal contrasts

- Korean has a three-way distinction in terms of laryngeal contrast in obstruents
- (1)

 - (a) $/pul/ \rightarrow [pul]$ 'fire' (b) $/p^hul/ \rightarrow [p^hul]$ 'grass' (c) $/p'ul/ \rightarrow [p'ul]$ 'horn'

Compound Tensing

■ Compound Tensing (CT) :

When a **compound** consist of two nouns, W_A and W_B , initial plain obstruents of W_B s undergo junctural processes including **obstruent tensification**.

(2)

(a)
$$/h\epsilon/ + /pic/ \rightarrow [h\epsilon.\mathbf{p}'it]$$
 post Vowel
(b) $/kailil/ + /pi/ \rightarrow [ka.il.\mathbf{p}'i]$ post Lateral
(c) $/pom/ + /pi/ \rightarrow [pom.\mathbf{p}'i]$ post Nasal
(d) $/pok/ + /pi/ \rightarrow [pok.\mathbf{p}'i]$ post obstruent

Exceptionality

■ 23% noun-noun compounds exceptioanlly does not undergo CT in a random fashion

(Jun 2015; Zuraw 2011; Ito 2014; Kim 2016).

(3)

	Regular Pattern			Exception	
(a)	/hε/ + /pap/	→ [hε. p' ap]	(e)	/koŋ/ + /pap/	→ [koŋ. p ap]
(b)	/he/ + /kuks'u/	→ [hε.k'uks'u]	(f)	/koŋ/ + /kuks'u/	→ [koŋ. k uk.s'u]
(c)	/pipim/ + /pap/	→ [pi.pim. p' ap]	(g)	/pipim/ + /kuks'u/	→ [pi.pim.kuk.s'u]
(d)	/koŋ/ + /karu/	→ [koŋ. k' a.ru]	(h)	/hɛ/ + /toci/	→ [hε.to.ci]

■ 23% noun-noun compounds exceptioanlly does not undergo CT in a random fashion

(Jun 2015; Zuraw 2011; Ito 2014; Kim 2016).

(3)

	Regular Pattern			Exception	
(a)	/hε/ + /pap/	→ [hε. p' ap]	(e)	/koŋ/ + /pap/	→ [koŋ.pap]
(b)	/hɛ/ + /kuks'u/	→ [hε.k'uks'u]	(f)	/koŋ/ + /kuks'u/	→ [koŋ.kuk.s'u]
(c)	/pipim/ + /pap/	→ [pi.pim. p' ap]	(g)	/pipim/ + /kuks'u/	→ [pi.pim.kuk.s'u]
(d)	/koŋ/ + /karu/	→ [koŋ. k' a.ru]	(h)	/hɛ/ + /toci/	→ [hε.to.ci]

The compound tensing exhibit continuum of gradient preferences depending on **both the conjuncts** W^A , W^B in the compound.

(4)

(a)
$$/h\epsilon/$$
 + $/pap/$ \rightarrow $[h\epsilon.p'ap]$
(b) $/h\epsilon/$ + $/kuks'u/$ \rightarrow $[h\epsilon.k'uks'u]$
(c) $/h\epsilon/$ + $/kali/$ \rightarrow $[h\epsilon.ka.li]$
(d) $/pipim$ + $/pap/$ \rightarrow $[pi.pim.p'ap]$
(e) $/pipim$ + $/kuks'u/$ \rightarrow $[pi.pim.kuk.s'u]$
(f) $/pipim$ + $/kali/$ \rightarrow $[pi.pim.ka.li]$
(g) $/ko\eta/$ + $/pap/$ \rightarrow $[ko\eta.pap]$
(h) $/ko\eta/$ + $/kuks'u/$ \rightarrow $[ko\eta.kuk.s'u]$
(i) $/ko\eta/$ + $/kali/$ \rightarrow $[ko\eta.ka.li]$

The compound tensing exhibit continuum of gradient preferences depending on **both the conjuncts** W^A , W^B in the compound.

(4)

Introduction

Compound Tensing

(a)
$$/h\epsilon/$$
 + $/pap/$ \rightarrow $[h\epsilon.p'ap]$
(b) $/h\epsilon/$ + $/kuks'u/$ \rightarrow $[h\epsilon.k'uks'u]$
(c) $/h\epsilon/$ + $/kali/$ \rightarrow $[h\epsilon.ka.li]$
(d) $/pipim$ + $/pap/$ \rightarrow $[pi.pim.p'ap]$
(e) $/pipim$ + $/kuks'u/$ \rightarrow $[pi.pim.kuk.s'u]$
(f) $/pipim$ + $/kali/$ \rightarrow $[pi.pim.ka.li]$
(g) $/ko\eta/$ + $/pap/$ \rightarrow $[ko\eta.pap]$
(h) $/ko\eta/$ + $/kuks'u/$ \rightarrow $[ko\eta.kuk.s'u]$
(i) $/ko\eta/$ + $/kali/$ \rightarrow $[ko\eta.ka.li]$

Proposal 000000000

Gradient Pattern of Tensing

The compound tensing exhibit continuum of gradient preferences depending on both the conjuncts W^A, W^B in the compound.

(4)

(a)
$$/h\epsilon/$$
 + $/pap/$ \rightarrow $[h\epsilon.p'ap]$
(b) $/h\epsilon/$ + $/kuks'u/$ \rightarrow $[h\epsilon.k'uks'u]$
(c) $/h\epsilon/$ + $/kali/$ \rightarrow $[h\epsilon.ka.li]$
(d) $/pipim$ + $/pap/$ \rightarrow $[pi.pim.p'ap]$
(e) $/pipim$ + $/kuks'u/$ \rightarrow $[pi.pim.kuk.s'u]$
(f) $/pipim$ + $/kali/$ \rightarrow $[pi.pim.ka.li]$
(g) $/kon/$ + $/pap/$ \rightarrow $[kon.pap]$
(h) $/kon/$ + $/kuks'u/$ \rightarrow $[kon.kuk.s'u]$
(i) $/kon/$ + $/kali/$ \rightarrow $[kon.ka.li]$

Gradient Pattern of Tensing

The compound tensing exhibit continuum of gradient preferences depending on **both the conjuncts** W^A , W^B in the compound.

(4)

(a)
$$/h\epsilon/$$
 + $/pap/$ \rightarrow $[h\epsilon.p'ap]$
(b) $/h\epsilon/$ + $/kuks'u/$ \rightarrow $[h\epsilon.k'uks'u]$
(c) $/h\epsilon/$ + $/kali/$ \rightarrow $[h\epsilon.ka.li]$
(d) $/pipim$ + $/pap/$ \rightarrow $[pi.pim.p'ap]$
(e) $/pipim$ + $/kuks'u/$ \rightarrow $[pi.pim.kuk.s'u]$
(f) $/pipim$ + $/kali/$ \rightarrow $[pi.pim.ka.li]$
(g) $/kon/$ + $/pap/$ \rightarrow $[kon.pap]$
(h) $/kon/$ + $/kuks'u/$ \rightarrow $[kon.kuk.s'u]$
(i) $/kon/$ + $/kali/$ \rightarrow $[kon.ka.li]$

Gradient Pattern of Tensing

The compound tensing exhibit continuum of gradient preferences depending on **both the conjuncts W^A, W^B** in the compound.

Proposal

The compound tensing exhibit continuum of gradient preferences depending on **both the conjuncts W^A, W^B** in the compound.

■ The compound tensing exhibit continuum of **gradient preferences** depending on **both the conjuncts** W^A , W^B in the compound.

The compound tensing exhibit continuum of gradient preferences depending on **both the conjuncts W^A, W^B** in the compound.

(6) Gradient patterns for compounding tensing

(6) Gradient patterns for compounding tensing

Gradient Pattern of Tensing

(6) Gradient patterns for compounding tensing

Introduction Data Proposal Learnability Conclusion

○○○○○● ○○○○○○○ ○○○○

Gradient Pattern of Tensing

Gradient Pattern of Tensing

There is no way in standard rule-based (Chomsky and Halle, 1968) or Optimality theory frameworks (Prince and Smolensky, 1993) where features are binary or privative, to give a word a feature that will determine its precise degree of preference for CT.

Lee University of Leipzig Born to be gradient 17 January 2019

10 / 31

troduction Data **Proposal** Learnability Conclusion

Proposal

Gradient Symbolic Representation

- Symbols in a linguistic representation can have different activities:
 'Symbols are discrete but their degree of presence in a given linguistic representation is continuously gradient' (Smolensky and Goldrick, 2016, 2)
- (Continuous) Numerical strength from 0 to 1 can be associated to input
- Output elements are all fully active (1) as descrete forms

Gradient Symbolic Representation

Gradient Symbolic Representation

- The underlying structure is grammatically computed inside Harmonic Grammar (Legendre et al. 1990)
- It can predict lexical exceptions :
 - Elements in the underlying representation of a morpheme can be too weak to undergo/trigger a certain process
 - Elements associated with different activity can be **strong enough** to undergo/trigger the same process

■ I suggest that each edge of nouns in Korean may have **floating feature [cg]** (Zoll 1996) with **gradient activitity** in the underlying structures (Rosen 2016, 2018)

 CT occurs by the coalescence of two stem-specific, partially activated floating [cg] features and docking to the root node

(8) ... • [cg]₁^{A,B}

■ Only when the additive combination of these features $[cg]^{A,B}$ exceeds some threshold Σ does tensing occur.

(9) A hierarchy of 5-level of activation values for compounding tensing

■ Only when the additive combination of these features $[cg]^{A,B}$ exceeds some threshold Σ does tensing occur.

(9) A hierarchy of 5-level of activation values for compounding tensing

Constraints

- Max[cg]: Input must have output correspondents.
 It rewards underlying activity that makes it to the surface.
- i.e., the more strength the feature bears, the more rewards it induces when it realizes
 - IDENT[cg]: The specification for the feature [cg] of an input segment must be preserved in its output correspondent.
- → i.e., It penalizes the feature change
- UNIFORMITY[cg]: No feature [cg] in the output has multiple correspondents in the input.
- → i.e., 'No coalescence'

Optimization

- This analysis accounts for the gradient nature of CT.
- The Harmony of the representation τ is :

(10)
$$H(r) = 1 \cdot \mathbb{C}_{\text{Max[cg]}}(r) - 0.6 \cdot \mathbb{C}_{\text{Ident[cg]}}(r) - 0.1 \cdot \mathbb{C}_{\text{Uniformity[cg]}}(r)$$

 The candidate with maximal harmony in its candidate set is the optimal output

Optimization: Compound Tensing

$$W_A : /pipim/ - \tau : 0.4, W_B : /pap/ - \tau : 0.4$$

(11)
$$T_1$$
. $pipim + pap \rightarrow [pi.pim.p'ap]$

		i m	[cg] _{0.4}	[cg] ^y _{0.4}	 р	MAX ([c.g]) w = 100	IDENT $([c.g])$ $w = -60$	Uniformity $([c.g])$ $w = -10$	Н
	O ₁ :		 m		 p				0
188	O ₂ :		i m	[cg] ₁ ^{x,y}	 p	 (0.4+0.4)	1	1	10

■ The sum of additive feature [cg] from two conjuncts are **strong enougth** to undergo CT

Lee University of Leipzig

Optimization : No Compound Tensing

$$W_A : /pipim/ - \tau : 0.4, W_B : /kuksu/ - \tau : 0.2$$

(12)
$$T_2$$
. $pipim + kuksu \rightarrow [pi.pim.kuk.s'u]$

		 m	[cg] _{0.4}	[cg] _{0.2}	 	-	MAX ([c.g]) w = 100	IDENT ([c.g]) w = -60	Uniformity $([c.g])$ $w = -10$	Н
13.	O ₁ :		i		; 					0
	O ₂ :		m m	[cg] ₁ ^{x,y}	 		(0.4+0.2)	1	1	-10

■ The total sum of the feature [cg] of 'pipim' and 'kuksu' is **too weak** to undergo tensification.

Introduction Data Proposal Learnability Conclusion

OOOOOO OOOOOO OOOO

Why Gradience?

Why Gradience?

Not only do words that occur as **the second conjunct** of a compound exhibit gradient preferences for [cg], but **the first conjunct** in the compound also arguably exhibits the same kind of **gradient preference for triggering tensing** in the word that follows it.

Lee University of Leipzig Born to be gradient 17 January 2019

21 / 31

troduction Data Proposal **Learnability** Conclusion

Learnability

The error-driven learning algorithm

(13) An Architecture of Convolutional Neural Network

Input Layer Hidden Layer 1 Hidden Layer 2 Softmax Layer Output Layer

23 / 31

The error-driven learning algorithm

Step 1: Initialization

- A learning algorithm was trained through Convolutional Neural Network (Mikolov et al. 2013)
 - It consists of 2 hidden and 1 softmax layers
- 2 Activation levels for [cg] of the W^A s and W^B s were initialized at 0.5
- Constraints Max and IDENT were initialized with unit values
- UNIFORMITY and LINEARITY have fixed values
- **5** The threshold levels for the sum values of [cg] for compounds were set at 0.7

Lee University of Leipzig

The error-driven learning algorithm

Step 2: Iteration

- The compounds $[W^A + W^B]$ are **evaluated** on each iteration to check whether each gross effect of CT is correctly derived;
 - will get a **reward** +10 if the correct pattern is derived,
 - will get a **penalty** -5 if the wrong pattern is derived
- 2 When two coalescing activations [cg] require adjusting,
 - It randomly refills the both values of [cg] by either decrementing or incrementing them (a stepsize of 0.05)
 - Max and IDENT adjust their weights slightly adjusted through a simulated-annealing process (De Vicente et al. 2003)¹

Step 3: Convergence

 After 16533 iterations (i.e., when the algorithm can predict all the training set data of CT corretly) the training of this learning was converged.

1. with a decaying temperature T and random Gaussian noise N with m=0 and s.d.=0.05

Lee University of Leipzig Born to be gradient 17 January 2019

25 / 31

Results

Results	
Average of iterations	32
Final Value of Max	1.121
Final Value of IDENT	0.69
The number of activation levels for W^A	5
The number of activation levels for W^B	5

Lee University of Leipzig

troduction Data Proposal Learnability **Conclusion**

Conclusion

Conclusion

- This **GSR analysis** can predict all the patterns of exceptional non-undergoer of Compound Tensing successfully without any redundancy rules
- The intrinsic property of GSR enables the elements to bear a scalar strength and to capture the lexical exception of alternation in the same context
- Although the distinction is not visible on the surface, there are reasons to believe that obstruents in Korean has diverse patterns of different underlying structures with a gradiently active feature [cg]
- The learning algorithm also supports that this scaler grammar is learnable

Introduction Data Proposal Learnability **Conclusion**

Contact Information

Hyunjung Lee
Univeristy of Leipzig
hyunjung.lee@uni-leipzig.de

Introduction Data Proposal Learnability **Conclusion**

References I

- De Vicente, Juan, Juan Lanchares, & Roman Hermida (2003) Placement by thermodynamic simulated annealing. *Physics Letters A* 317.5-6 415-423.
- Inkelas, Sharon & Cho, Young-Mee Yu (1994). Post-obstruent tensification in Korean and geminate inalterability. Theoretical issues in Korean linguistics, 45.
- Ito, Chiyuki (2014). Compound tensification and laryngeal co-occurrence restrictions in Yanbian Korean. Phonology 31.3, 349-398.
- Jun, Jongho. (2015) Korean n-insertion: A mismatch between data and learning. Phonology 32(3), 417 - 458.
- Kim, Seoyoung (2016) Phonological trends in Seoul Korean compound tensification. MA thesis, Seoul National University, Korea.
- Mikolov, Tomas, Sutskever, Ilya and Chen, Kai, Corrado, Greg S & Dean, Jeff (2013). Distributed Representations of Words and Phrases and their Compositionality. In *Proceedings of NIPS 2013*.
- Legendre, Geraldine, Yoshiro Miyata & Paul Smolensky (1990). Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations. *Proceedings of the 12th annual conference of the cognitive science society*. 388–395.

30 / 31

References II

- Smolensky, Paul & Matthew Goldrick (2016). Gradient symbolic representations in grammar: The case of French Liaison. ROA 1286
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through harmonic grammar, in E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, Proceedings of BLS 42 Berkeley Linguistic Society, 235–249.
- Rosen, Eric (2018). Evidence for gradient input features from Sino-Japanese compound accent. poster, presented at AMP 2018, San Diego.
- Zoll, Cheryl (1996). Parsing below the segment in a constraint-based framework, PhD thesis, UC Berkeley.
- Zuraw, Kie. (2011) Predicting sai-siot in Korean compound nouns:
 Phonological and non-phonological factors. Handout presented at the 21st
 Japanese/Korean Linguistic Conference, Seoul National University.