FHT Based CQI Decoder

Abdülhakim Gültekin

QPSK

TABLE 7.1 Relationship Between Index i And Identity of Corresponding Dibit, and Other Related Matters

Index i		Amplitude binar			
	Phase of QPSK signal (radians)	Binary wave 1 $a_1(t)$	Binary wave 2 $a_2(t)$	$\begin{array}{c} Input\ dibit\\ 0 \leq t \leq T \end{array}$	
1	$\pi/4$	$+\sqrt{E/2}$	$-\sqrt{E/2}$	10	
2	$3\pi/4$	$-\sqrt{E/2}$	$-\sqrt{E/2}$	00	
3	$5\pi/4$	$-\sqrt{E/2}$	$+\sqrt{E/2}$	01	
4	$7\pi/4$	$+\sqrt{E/2}$	$+\sqrt{E/2}$	11	

Additive White Gaussian Noise

$$y(t) = x(t) + n(t)$$

- x(t): transmitted signal
- n(t): white gaussian noise
- y(t) : received signal

Gaussian Process

variance (standart deviation) -> average power mean -> dc power

• If a Gaussian process is applied to a stable linear filter, then the random process Y(t) produced at the output of the filter is also Gaussian.

$$f(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\sigma}) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(\mathbf{x} - \boldsymbol{\mu})^2/2\sigma^2}$$

 $f(x,\mu,\sigma)$ — \rightarrow normal probability density distribution

 $\mu \qquad \longrightarrow \text{ mean of } x_i$

 $\sigma \longrightarrow \text{standard deviation of } x_i$

 $\pi \longrightarrow 3.14159$

e
→ exponential constant = 2.71828

White Noise

$$S_W(f) = \frac{N_0}{2}$$

power spectral density (PSD) of white noise

$$R_W(\tau) = \frac{N_0}{2}\delta(\tau)$$

inverse Fourier transform of PSD gives the *autocorrelation function* of *white* noise

since the autocorrelation function is a weighted delta function, $R_W(\tau)=0$ at any $\tau\neq 0$, any two different white noise samples are uncorrelated, no matter how close they are taken in time

mean of *white noise* is zero (dc power is zero) variance of *white noise* is infinite (average power is infinite)

this is not physically realizable, but useful after a filtering process because it will still be a Gaussian

FIGURE 8.20 Characteristics of RC-filtered white noise. (*a*) Low-pass RC filter. (*b*) Power spectral density of output N(t). (*c*) Autocorrelation function of N(t).

SNR - BER

• SNR : signal-to-noise ratio;

$$\frac{P}{N} = \frac{average \ power \ of \ signal}{average \ power \ of \ noise} \ [unitless]$$

$$10 \log_{10} \frac{P}{N} = SNR \ in \ [dB]$$

• BER : bit error rate;

$$\frac{\textit{bit error number}}{\textit{total transmitted bits}} [\textit{unitless}]$$

CQI Encoder

• The channel quality information is first coded using a (32, O) block code. The code words of the (32, O) block code are a linear combination of the 11 basis sequences denoted $M_{i,n}$ and defined in table below.

i	$M_{i,0}$	M _{i,1}	M _{i,2}	$M_{i,3}$	M _{i,4}	$M_{i,5}$	M _{i,6}	M _{i,7}	M _{i,8}	M _{i,9}	M _{i,10}
0	1	1	0	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0	0	1	1
2	1	0	0	1	0	0	1	0	1	1	1
3	1	0	1	1	0	0	0	0	1	0	1
4	1	1	1	1	0	0	0	1	0	0	1
5	1	1	0	0	1	0	1	1	1	0	1
6	1	0	1	0	1	0	1	0	1	1	1
7	1	0	0	1	1	0	0	1	1	0	1
8	1	1	0	1	1	0	0	1	0	1	1
9	1	0	1	1	1	0	1	0	0	1	1
10	1	0	1	0	0	1	1	1	0	1	1
11	1	1	1	0	0	1	1	0	1	0	1
12	1	0	0	1	0	1	0	1	1	1	1
13	1	1	0	1	0	1	0	1	0	1	1
14	1	0	0	0	1	1	0	1	0	0	1
15	1	1	0	0	1	1	1	1	0	1	1
16	1	1	1	0	1	1	1	0	0	1	0
17	1	0	0	1	1	1	0	0	1	0	0
18	1	1	0	1	1	1	1	1	0	0	0
19	1	0	0	0	0	1	1	0	0	0	0
20	1	0	1	0	0	0	1	0	0	0	1
21	1	1	0	1	0	0	0	0	0	1	1
22	1	0	0	0	1	0	0	1	1	0	1
23	1	1	1	0	1	0	0	0	1	1	1
24	1	1	1	1	1	0	1	1	1	1	0
25	1	1	0	0	0	1	1	1	0	0	1
26	1	0	1	1	0	1	0	0	1	1	0
27	1	1	1	1	0	1	0	1	1	1	0
28	1	0	1	0	1	1	1	0	1	0	0
29	1	0	1	1	1	1	1	1	1	0	0
30	1	1	1	1	1	1	1	1	1	1	1
31	1	0	0	0	0	0	0	0	0	0	0

• The encoded CQI/PMI block is denoted by b_0 , b_1 , b_2 , b_3 , ..., b_{B-1} where B=32 and

$$b_i = \sum_{n=0}^{O-1} (o_n * M_{i,n}) \mod 2$$

where i = 0, 1, 2, ..., B - 1. O is the number of CQI bits.

Modulation – Channel Noise – Demodulation Scheme

QPSK Modulation AWGN Channel QPSK Demodulation

CQI Decoder

- Step by step decoding algorithm for more than 6 bits CQI
- i. bipolar transformation for received block $(\tilde{c}_i = 1 2 * c_i)$ where c_i received signal and i = 0, ... 31.
- ii. interleaving for \tilde{c}
- iii. constructing mask matrix M_D
- iv. bipolar transformation for each element of M_D , then interleaving for bits of rows of the matrix to obtain decoding matrix \widetilde{M}_D
- v. Multiply every bit of \widetilde{c} with corresponding bit of each row in \widetilde{M}_D

- vi. apply FHT for each row of \tilde{M}_D , and the results constitute D_{32x32} matrix
- vii. find the element which has the largest magnitude in D_{32x32} matrix
- viii. transform the row number of the element to o_7 , o_8 , o_9 , o_{10} , o_{11} bits and transform the column number of the element to o_2 , o_3 , o_4 , o_5 , o_6 bits, if the sign of the element is positive, o_1 bit is '0' and if not '1'

