Chapter 9: Word embedding

deeplearning.ai

NLP and Word Embeddings

Outline

- Introduction to Word Embeddings
 - Word representation
 - Using word embeddings
 - Properties of word embeddings
 - Embedding matrix
- Learning Word Embeddings: Word2vec & GloVe
 - Learning word embeddings
 - Word2Vec
 - Negative sampling
 - GloVe word vectors
- Applications using Word Embeddings
 - Sentiment classification
 - Debiasing word embeddings

Word representation

Word representation

V = [a, aaron, ..., zulu, <UNK>]

1-hot representation

Man (5391)	Woman (9853)	King	Queen (7157)		Orange (6257)
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
: → 1	0	1 :	0	0 0	0
	$\Rightarrow \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$
Octo	09853		1	1	Ţ

[V] = 10,000

I want a glass of orange _____.

I want a glass of apple_____.

Featurized representation: word embedding

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)	
1 Gender			-0.95	0.97	0.00	0.01	
300 Royal	0.0	0.62	0.93	0.95	-0.01	0.00	
Age	0.03	0.02	0.7	0.69	0.03	-0.02	!
Food	6.04	(D. D)	0.02	0.01	0.95	0.97	
Size Cost				I want	a glass of o	range juic	_•
M. Orly Merso	5391	e 9853		1 want	a grass of a	pple juice. Andrew	v Ne

Visualizing word embeddings

Using word embeddings

Named entity recognition example

Transfer learning and word embeddings

- 1. Learn word embeddings from large text corpus. (1-100B words)

 (Or download pre-trained embedding online.)
- 2. Transfer embedding to new task with smaller training set.

 (say, 100k words) → 10,000 → 300
 - 3. Optional: Continue to finetune the word embeddings with new data.

Properties of word embeddings

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	$\overline{\left(-1\right) }$	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97
	@5391 @man	e woman	2 0	emon - e	$\sim \sim $	
Man ->	Woman a	King >	i Queen	Cking - ea	ucen ~ [-2]	
6	2 man - Qwoman	~ Cking -	C ?			

Analogies using word vectors

 $e_{man} - e_{woman} \approx e_{king} - e_{y} e_{w}$

300 D Find word wi arg mox

Sim (Qw, exing-emon + ewoman) 30-75%

Cosine similarity

$$\Rightarrow sim(e_w, e_{king} - e_{man} + e_{woman})$$

Man:Woman as Boy:Girl

Ottawa:Canada as Nairobi:Kenya

Big:Bigger as Tall:Taller

Yen:Japan as Ruble:Russia

Embedding matrix

In practice, use specialized function to look up an embedding.

> Embelling

Learning word embeddings

Other context/target pairs

Context

I want a glass of orange juice to go along with my cereal.

skip grom

Context: Last 4 words.

4 words on left & right

Last 1 word

Nearby 1 word

a glass of orage : to go dy with

Orange ?

glass

Word2Vec

Skip-grams

I want a glass of orange juice to go along with my cereal.

Model

Vocab size = 10,000k

Andrew Ng

Problems with softmax classification

$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$
Hierahil rotton.

$$\sum_{j=1}^{10,000} e^{\theta_j^T e_c}$$

Avin

How to sample the context c?

Negative sampling

Defining a new learning problem

I want a glass of orange juice to go along with my cereal.

Model

Softmax:
$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

$$P(y=1|c,t) = \sigma(0,000)$$
Orange (3257)
$$O_{(327)} \rightarrow E \rightarrow e_{(327)}$$
Orange (3257)

context target? word orange iuice king book Loisos pivol problem Andrew Ng

Selecting negative examples

+	\sim	
$\underline{\text{context}}$	word target?	
orange	juice 1	the, of, and,
orange	king 0	
orange	book 0	
orange	the 0	
orange	\circ of \circ	
	T	
$P(\omega_i) =$	f(v:)	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0,000) F(w; 3/4	(V)
	j=, 1-(wj)	

GloVe word vectors

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

Model

A note on the featurization view of word embeddings

			$\boldsymbol{\mathcal{O}}$			
	-		Woman			
_		(5391)	(9853)	(4914)	(7157)	
` G∈	ender	-1	1	-0.95	0.97	
L Rc	yal	0.01	0.02	0.93	0.95	

0.95 0.01 0.02 0.93

Age 0.02 0.69 0.03 0.70 Food

0.09 0.01 0.01 0.02

minimize
$$\sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i - b_j' - \log X_{ij})^2$$

$$(A0_i)^T (A^T e_j) < 0.7447e_j$$

Sentiment classification

Sentiment classification problem

 $x \rightarrow y$

The dessert is excellent.

Service was quite slow.

Good for a quick meal, but nothing special.

Completely lacking in good taste, good service, and good ambience.

Simple sentiment classification model

Andrew Ng

RNN for sentiment classification softmax $a^{<4>}$ $a^{<2>_1}$ $|a^{<3>}|$ <10> e_{3882} e_{330} e_{1852} e_{4966} e_{4427} in nany-to-one Completely lacking good ambience obsent

Debiasing word embeddings

The problem of bias in word embeddings

Man:Woman as King:Queen

Man:Computer_Programmer as Woman:Homemaker X

Father:Doctor as Mother: Nurse X

Word embeddings can reflect gender, ethnicity, age, sexual orientation, and other biases of the text used to train the model.

Addressing bias in word embeddings

1. Identify bias direction.

3. Equalize pairs.

-> gradnoth - gradfart

and boy