REG. NO					

MANIPAL INSTITUTE OF TECHNOLOGY (Constituent Institute of Manipal University) MANIPAL-576104

V SEMESTER B.TECH.(COMPUTER SCIENCE AND ENGINEERING) DEGREE MAKE UP EXAMINATION-JANUARY 2014(10 Point Credit) SUBJECT: COMPUTER GRAPHICS (CSE 307) DATE: 07-01-2014

TIME: 3 HOURS MAX.MARKS: 50

Instructions to Candidates

- **Note:** Answer any **FIVE** full questions.
- Do not seek any clarification from the room invigilator
- Show all the steps where ever is required and assume suitably
- 1.A. Explain the operation of a delta-delta, shadow mask CRT with neat sketch.
- 1.B. List the statements needed to set up the OpenGL display window to light gray. What command would we use to set the color of the display window to black?
- 1.C. Rasterize the line segment from (-1,-1) to (-6,-7) using Bresenham's line method. (4+2+4)
- 2.A. Derive decision parameters for the midpoint ellipse algorithm assuming the start position as (0,b) and points are to be generated along the curve path in clockwise order.
- 2.B. Consider the following polygon with edges. Draw a polygon, Construct Global Edge Table, Active Edge Table when Scan Line is 6.

Edge No	Begin Vertex Co-ordinates	End Vertex Co-ordinates
1	1,1	1,4
2	1,4	3,6
3	3,6	5,5
4	5,5	7,8
5	7,8	9,3
6	9,3	10,2
7	10,2	12,6
8	12,6	12,1
9	12,1	1,1

2.C. Write a short note on 2D Rigid-Body Transformation. (5+3+2)

CSE 307 Page 1 of 2

- 3.A. Consider the line L and triangle $\triangle ABC$. The equation of line L is y=0.5(x+4). Position vectors are A=[2 4 1], B=[4 6 1] and C=[2 6 1]. Reflect the triangle $\triangle ABC$ about the line L and find the triangle $\triangle A'B'C'$.
- 3.B. Consider the Position vectors of a block are A=[1 1 2 1], B=[2 1 2 1], C=[2 2 2 1], D=[1 2 2 1], E=[1 1 1 1], F=[2 1 1 1], G=[2 2 1 1] and H=[1 2 1 1]. Perform the rotation of the block about x'-axis by an angle θ =30°, which is local x'-axis pass through the centroid of the block. The coordinates of the centroid of the block is [3/2 3/2 3/2 1]. (6+4)
- 4.A. Consider the polygon with edges are AB=[(-4 -4) (-4 2)], BC=[(-4 2) (0 2)], CD=[(0 2)(2 -1)], DE=[(2 -1)(2 -4)], EF=[(2 -4)(-1 -4)], FG=[(-1 -4) (-3 -2)] and GA=[(-3 -2)(-4 -4)]. Find the Screen coordinates of the polygon when window specified by coordinates (-6 -6) and (4 4) onto a viewport specified by coordinates (1 1) and (6 5).
- 4.B. Derive all the necessary parametric equations (inequalities) of a line between points $(x_1 \ y_1)$ and $(x_2 \ y_2)$, in terms of parameter t against clipping window boundaries.
- 4.C. What are orthogonal-projection view volume and near-far clipping planes?
- 4.D. Write atleast four differences between orthographic projection and oblique projection. (3+3+2+2)
- 5.A. Derive the parametric equation for a cubic Bezier curve.
- 5.B. Consider three points A(1 2 0), B(2 4 6) and C(3 6 20). Which point obscures the others when viewed from the point P(0 0 -10)? Explain.
- 5.C. Write the Z-Buffer algorithm and explain the performance evaluation.
- 5.D. What is halftone approximation patterns? "With n by n pixels for each grid on a bilevel system, we represent $n^2 + 1$ intensity levels" Justify your answer. (3+2+2+(1+2))
- 6.A. What you mean by local and global illumination models? Differentiate between them.
- 6.B. Write a short note on shadow.
- 6.C. Write the difference between real-time animation and frame by frame animation.
- 6.D. Briefly explain the traditional animation techniques. (3+2+2+3)

CSE 307 Page 2 of 2