- 1. Най-малка е стойността на:
- **A)** $6\sqrt{3}$
- **Б)** $5\sqrt{4}$
- **B)** $5\sqrt{3}$
- Γ) $\sqrt{74}$
- **2.** Първият член на аритметичната прогресия a_1, a_2, a_3, \dots , за която $a_3 = 10$ и $a_5 = 16$, е:
- **A)** 4

Б) 21

B) 3

Γ) 13

- **3.** Стойността на израза $\sqrt[3]{27} + 4^{-2} + 4^{\frac{1}{2}}$ е:
- **A)** $5\frac{1}{16}$
- **b**) $11\frac{1}{2}$
- **B**) $\frac{1}{8}$

- Γ) 11 $\frac{1}{16}$
- **4.** Ако x_1 и x_2 са корените на уравнението $x^2 10x + 18 = 0$, то стойността на израза $3(x_1 + x_2) x_1 x_2$ е:
- **A)** 2

Б) 48

B) -48

Γ) 12

- **5.** Решенията на уравнението $\sqrt{7-x} = x-1$ са:
- **A)** –2

Б) 3

- **B)** -2 и 3
- Γ) 4
- 6. Графиката на коя от функциите има само една обща точка с абсцисната ос?
- **A)** $f(x) = x^2 10x + 25$
- **B)** $f(x) = x^2 + 5x + 25$
- **B)** $f(x) = x^2 + 25x + 25$
- Γ) $f(x) = x^2 5x + 25$
- **7.** Дефиниционното множество на израза $\frac{2x+3}{x^2+1}$ е:
- **A)** $(-\infty; -1) \cup (-1; +\infty)$

b) $(-\infty;1)\cup(1;+\infty)$

B) $(-\infty; +\infty)$

 Γ) $\left(-\infty; -\frac{3}{2}\right) \cup \left(-\frac{3}{2}; +\infty\right)$

8. Aко $AB \parallel CD$, $AD = 15 \, cm$, $BC = 12 \, cm$ и $AO = 3 \, cm$,

то дължината на отсечката ВО е:

Б)
$$\frac{12}{5}$$
 cm

B)
$$\frac{5}{12}$$
 cm

$$\Gamma$$
) $\frac{4}{15}$ cm

9. Решенията на неравенството $\frac{x^2 - 5x + 4}{x - 4} \ge 0$ са:

A)
$$x \in [1;+\infty)$$

b)
$$x \in (-\infty; +\infty)$$

B)
$$x \in (-\infty; 1]$$

B)
$$x \in (-\infty; +\infty)$$
 B) $x \in (-\infty; 1]$ Γ) $x \in [1; 4) \cup (4; +\infty)$

10. Най-голяма е стойността на:

A)
$$\log_2 8$$

b)
$$\log_2 \frac{1}{4}$$

B)
$$\log_2 2$$

$$\Gamma$$
) $\log_2 \frac{1}{16}$

11. Средното аритметично на извадката 6; 5,5; 5,5; 5,5; 5,5; 4,5; 3,5; 4 е:

12. Изчислете $\operatorname{tg} \alpha$, ако $\sin \alpha = \frac{3}{5}$ и $90^{\circ} < \alpha < 180^{\circ}$.

A)
$$\frac{4}{3}$$

b)
$$-\frac{4}{3}$$

B)
$$-\frac{3}{4}$$

$$\Gamma$$
) $\frac{3}{4}$

13. Изразът $2\cos^2\alpha - \cos 2\alpha$ е тъждествено равен на:

A)
$$\cos \alpha$$

b)
$$\sin \alpha$$

14. В равнобедрен триъгълник АВС дължината на основата AB е 10 cm, а височината $CH(H \in AB)$ към нея е 12 cm. Периметърът на триъгълника е:

15. Равностранен триъгълник АВС вписан в окръжност с център O и радиус $R=2\sqrt{3}$ *cm* . Да се намери дължината на страната на триъгълника.

b) 6*cm*

•0

 Γ) $3\sqrt{3}$ cm

16. Около трапец ABCD с основи $AB = 9 \, cm$ и $CD = 3 \, cm$ може да се опише окръжност. Намерете лицето на трапеца, ако ъгълът при голямата му основа е 60° .

- **A)** $9 cm^2$ **B)** $18 cm^2$ **F)** $18\sqrt{3} cm^2$
- 17. Две от страните на триъгълник са с дължини $10 \ cm$ и $20 \ cm$, а ъгълът между тях е 60° . Дължината на радиуса на описаната около триъгълника окръжност е:
- **A)** 6 cm
- **b**) 8 cm
- **B)** 10 cm
- **Γ**) 12 cm

18. Даден е успоредник ABCD, за който $BD \perp AD$, $AD = 3 \, cm$ и $BD = 4 \, cm$. Дължината на диагонала AC е равна на:

- **A)** $2\sqrt{13}$ cm
- **B)** $3\sqrt{2} \ cm$ **B)** $2\sqrt{21} \ cm$ **Г)** $3\sqrt{3} \ cm$

- 19. В равнобедрен трапец АВСО диагоналът АС дели височината DH $(H \in AB)$ на отсечки $DN = 4 \, cm$ и NH = 1 cm. Ако малката основа на трапеца е CD = 6 cm, то дължината на голямата основа AB е:
- **A)** 12 cm
- **Б)** 10*ст*
- **B)** 11*cm*
- Γ) 9 cm

20. Дължините на диагоналите на ромба АВСО се отнасят както 3:4, а лицето му е 48 cm^2 . Дължината на страната на ромба е:

- **b)** $5\sqrt{2} \ cm$ **b)** $6\sqrt{2} \ cm$ Γ) $7\sqrt{2} \ cm$

Отговорите на задачите от 21. до 25. вкл. запишете в свитъка за свободните отговори!

- **21.** Частното на геометрична прогресия е q=3, а сумата на първите три члена е $S_3=65$. Намерете петия член на прогресията.
- **22.** Да се реши неравенството $1 \frac{2}{x-3} > \frac{2}{x}$.
- **23.** В правоъгълен $\triangle ABC$ ($\angle C = 90^\circ$) ъглополовящата AL ($L \in BC$) дели височината CD ($D \in AB$) на отсечки $CM = 5\,cm$ и $MD = 4\,cm$. Намерете дължината на катета AC.

24. Дължината на радиуса на описаната около равнобедрен триъгълник ABC (AC = BC) окръжност е $3\sqrt{3}$ cm, а дължината на височината към основата AB е $4\sqrt{3}$ cm. Намерете дължината на бедрото на триъгълника.

25. В един кашон 6% от наличните 50 мобилни телефони имат дефект. Каква е вероятността от два случайно избрани мобилни телефона от кашона и двата да са дефектни?

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. вкл. запишете в свитъка за свободните отговори!</u>

26. Да се реши системата:
$$\begin{vmatrix} x^2 + y^2 = 5 \\ xy = 2. \end{vmatrix}$$

- **27.** За хокеен мач треньорът има на разположение двама вратари, шест защитници и осем нападатели. По колко различни начина може да се образува началната шестица играчи, ако в нея задължително влизат един вратар, двама защитници и трима нападатели?
- **28.** В $\triangle ABC$ е вписана окръжност, която се допира до страната BC в точка D. Ако AD = DB, BC = 9 cm и $\cos \angle ABC = \frac{2}{3}$, да се намери дължината на страната AB.