IEI & CONP (=> TIEI & NP) TIEI = DEI (Divisible en independientes) DEI: Dado un grafo G y KEIN > 0 retorna si E> Se puede particionar G en conjuntos independientes de vértices de tamaño > K OBS: 2 conjuntos de vértices son independientes si no existe una arista que conecte un vértice de un conjunto con un vértice del otro conjunto.
DEI: Dado un grafo G y KeIN > 0 retorna si Ex Se puede particionar G en conjuntos independientes de vértices de tamaño > K OBS: 2 conjuntos de vértices son independientes si no existe una arista que conecte un vértice de un conjunto con un vértice
DEI: Dado un grafo G y KeIN > 0 retorna si Ex Se puede particionar G en conjuntos independientes de vértices de tamaño > K OBS: 2 conjuntos de vértices son independientes si no existe una arista que conecte un vértice de un conjunto con un vértice
Se puede particionar 6 en conjuntos independientes de vértices de tamaño > K OBS: 2 conjuntos de vértices son independientes si no existe una arista que conecte un vértice de un conjunto con un vértice
vértices de tamaño > K OBS: 2 conjuntos de vértices son independientes si no existe una arista que conecte un vértice de un conjunto con un vértice
OBS: 2 conjuntos de vértices son independientes si no existe una arista que conecte un vértice de un conjunto con un vértice
una arista que conecte un vértice de un conjunto con un vértice
una arista que conecte un vértice de un conjunto con un vértice
del otro conjunto.
QVQ: DEI ENP
Certificado: conjuntos C.,, Cr
Verificador:
· Uci = V(G) Los conjuntos C,, Cr son una · Ci n C; = Ø Vi,j, izj } partición de V(G)
· \$(u,v) ∈ E(G) tq u ∈ Ci ~ v ∈ Cj ~ i ≠ j } Conjuntos independientes
• VISiSr #Ci > K
Todas operaciones polinomiales => Verificador polinomial
⇒ DEI € NP
⇒ IEI € CONP

QVQ DEI ENPC

3-Coloreo ENPC: 3-Coloreo DEI

Buscamos una transformación t:(G>>> (G',K) para transformar instancias de 3-Coloreo en instancias de DEI.

Necesitamos un K que fuerce a DEI armar solo 3 conjuntos de vértices. A su vez, como no sabemos la distribución de 3-Coloreo para algún grafo G, hay que permitir cualquier asignación de colores, y en particular el caso extremo donde G no tiene aristas y se pueden pintar todos los vértices del mismo color.

Tomamos K=n siendo n=1Y(G)1.

$$V(G') = V(G) \cup \{M_1, ..., M_{2n}\}$$

 $E(G') = E(G)$

G'es G con zn vértices nuevos sin conectar.

(➾)

Suponemos que G es 3 coloreable => existen a lo sumo 3 conjuntos independientes de vértices en G (pueden haber menos).

DEI busca conjuntos de tamaño > K. Como |V(G')|= 3K solo puede encontrar 1, z ó 3 conjuntos, pero no más. Los vértices que agregamos a G' no están conectados con ningún otro vértice, por lo que DEI puede colocarlos en cualquier conjunto. Entonces DEI responde si.

(<=))																		
Sup	one	nos	4	ve	6'	es .	divi	sible	e e	n u	วกวุ่น	in to	s i	nde	eno	lien	les	de	
tar	laño)	, K	Por	r lo	ex	pue	sto	en	(=	>)	solo	ρι	ede	ho	ber	٠١,	z ó	3
ωn	Inn;	. وم	Si	wir	-am	o S	sol	o k	y 2e	ért	ice:	2 9	e G	, é	sto:	s es	star		
divi	ti do	ς ε	en i	a h	> \$1	OMI	3	w	70n	tos	in	depe	endi	ent	ટડ ,	ent	on c	es	se
pue	den	ω	lote	ear	W	O	10	Sur	10	3 0	olor	es	(56	e al	ign	a	ו אנ	color	•
dist	tni-	0	6	ada	COY	า่วบท	10)	, E	nto	nce	ટક	Ge	Zς	3 cc	lore	do	k.		