Forgómozgás vizsgálata

Mérést végezte: Kalló Bernát \Diamond Mérőtárs: Magony Miklós

Mérés dátuma: 2012. 03. 28. Leadás dátuma: 2012. 04. 11.

A mérés célja. Két, rögzített tengely körül forgó merev test (egy függőleges tengelyű alumínium korong és egy vízszintes tengelyű rézhenger) mozgását vizsgáljuk külső forgatónyomaték hatására. Megmérjük a szöggyorsulását, ebből kiszámoljuk tehetetlenségi nyomatékukat, és összevetjük a geometriájuk alapján számítottal.

A mérés leírása. A függőleges tengely körül szabadon forgó próbatestet egy orsóra tekert fonálon keresztül egy csigán lelógó súly húzza. Két különböző próbatestet vizsgálunk 6-6 különböző húzósúllyal, és megmérjük a kötél gyorsulását.

1. ábra. A mérési összeállítás

A két testre felírt mozgásegyenletek:

$$\Theta\beta = Kr - M_s$$

$$ma = mg - K$$

$$a = r\beta,$$

ahol r a fonaltárcsa sugara, Θ a tehetetlenségi nyomaték, m a húzósúly tömege, β a szöggyorsulás, K a kötélerő, M_s pedig a súrlódásból eredő fékezőnyomaték. Innen:

$$\Theta\beta + M_s = mr(g - r\beta) \tag{1}$$

$$\beta = \frac{a}{r}$$

Mérési adatok. Az 1. táblázatban látható a kísérletek eredménye. A 2. táblázatban a próbatestek méreteit ill. tömegét láthatjuk. A korong sugarát R-rel, magasságát h-val jelöltük, a rúd sugarát ϱ -val, hosszát pedig l-lel.

Kiértékelés. Ábrázoljuk az $y = mr(g - r\beta)$ mennyiséget a $x = \beta$ függvényében, így (1) alapján az egyenes meredeksége Θ lesz, y-tengelymetszete pedig M_s

	rúd	korong	
m (kg)	$a(\mathrm{m/s^2})$	$a(\mathrm{m/s^2})$	
	$19 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	
0,150	$19 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	
	$19 \cdot 10^{-4}$	$6 \cdot 10^{-4}$	
	$26 \cdot 10^{-4}$	$9 \cdot 10^{-4}$	
0,200	$26 \cdot 10^{-4}$	$9 \cdot 10^{-4}$	
	$26 \cdot 10^{-4}$	$9 \cdot 10^{-4}$	
0,250	$34 \cdot 10^{-4}$	$12 \cdot 10^{-4}$	
	$34 \cdot 10^{-4}$	$11 \cdot 10^{-4}$	
	$34 \cdot 10^{-4}$	$12 \cdot 10^{-4}$	
	$41 \cdot 10^{-4}$	$16 \cdot 10^{-4}$	
0,300	$41 \cdot 10^{-4}$	$16 \cdot 10^{-4}$	
0,500	$41 \cdot 10^{-4}$	$16 \cdot 10^{-4}$	
	$48 \cdot 10^{-4}$	$20 \cdot 10^{-4}$	
0,350	$47 \cdot 10^{-4}$	$20 \cdot 10^{-4}$	
	$46 \cdot 10^{-4}$	$19 \cdot 10^{-4}$	
	$53 \cdot 10^{-4}$	$25 \cdot 10^{-4}$	
0,400	$53 \cdot 10^{-4}$	$24 \cdot 10^{-4}$	
	$53 \cdot 10^{-4}$	$25 \cdot 10^{-4}$	

1. táblázat. A kísérletek eredményei

	m (kg)	$r\left(\mathrm{m}\right)$	$R\left(\mathbf{m}\right)$	$h\left(\mathbf{m}\right)$	$l\left(\mathrm{m}\right)$	$\varrho\left(\mathrm{m}\right)$
korong	1,5085	$2,45\cdot 10^{-3}$	0,10963	0,01490		_
rúd	0,8455	$2,45\cdot 10^{-3}$	_	_	0,2505	0,01100
fonaltárcsa	$8,5 \cdot 10^{-3}$					

2. táblázat. Próbatestek adatai

2. ábra. A rúd szöggyorsulása

3. ábra. A korong szöggyorsulása

Az adatokra a GNUPLOT programmal illesztettünk egyenest. A kapott meredekségek $(\Theta_{mért})$ a 3. táblázatban találhatók.

Az illesztett egyenes meredekségének hibaszámítását a téglalap módszerrel végezzük: az egyenestől való függőleges maximális abszolút eltérés kétszeresét elosztjuk a legnagyobb és a legkisebb vízszintes értékek különbségével:

$$\Delta\Theta_{\text{mért}} = \frac{2\max_{i}|y_i - (x\Theta_{\text{mért}} + M_s)|}{x_{max} - x_{min}},$$

az így kapott eredmény lesz a meredekség bizonytalansága. Az így kapott $\Delta\Theta_{\text{mért}}$ szintén a 3. táblázatban van.

Ha a tárgyak méretei alapján is kiszámítjuk a tehetetlenségi nyomatékokat a $\Theta_{\text{rúd}} = \frac{1}{4} m \varrho^2 + \frac{1}{12} m l^2$ ill. $\Theta_{\text{korong}} = \frac{1}{2} m R^2$ képletek alapján, akkor a 3. táblázatban a $\Theta_{\text{szám}}$ oszlopban található eredményeket kapjuk.

Tekintsük úgy, hogy a tárgyak tehetetlenségi nyomatékának számításánál az egyetlen hibaforrás a tömegmérés volt, és a tömegmérés relatív hibája egyezik a $\Theta_{\text{szám}}$ relatív hibájával, vagyis

$$\Delta\Theta_{\text{szám}} = \Theta_{\text{szám}} \cdot \frac{\Delta m}{m}$$

A tömegmérés hibakorlátját pedig tekintsük az orsó tömegével egyezőnek. Ekkor a 3. táblázat $\Delta\Theta_{\rm sz\acute{a}m}$ oszlopában található értékeket kapjuk.

Eredmények. Az eredmények az abszolút és relatív hibákkal együtt az alábbi táblázatban vannak:

	$\Theta_{\mathrm{m\acute{e}rt}}(\mathrm{kg}\mathrm{m}^2)$	$\Delta\Theta_{ m m\acute{e}rt}({ m kg}{ m m}^2)$	$\delta\Theta_{ m m\acute{e}rt}$	$\Theta_{\rm sz\acute{a}m}({\rm kgm^2})$	$\Delta\Theta_{\rm sz\acute{a}m}({\rm kgm^2})$	$\delta\Theta_{ m sz\acute{a}m}$
korong	$8,0\cdot 10^{-3}$	$1,5 \cdot 10^{-3}$	19%	$9,06 \cdot 10^{-3}$	$5,1\cdot 10^{-5}$	0,56%
rúd	$4,27 \cdot 10^{-3}$	$2,5 \cdot 10^{-4}$	5,9%	$4,447 \cdot 10^{-3}$	$4.5 \cdot 10^{-5}$	1,01%

3. táblázat. Az eredmények

Grafikusan ábrázolva, a hibákkal együtt:

4. ábra. Az eredmények grafikusan

Diszkusszió. A grafikonon jól látszik, hogy a számított értékek hibája jóval kisebb, mint a mért értékeké, de a mért értékek hibahatárán belül van a számított érték. Tehát feltehetőleg jól mértünk és számoltunk.

Mindkét esetben a mért érték kisebb a számítottnál. Ez lehet akár véletlen is (pl. a szoftver kerekítései miatt), de lehet, hogy valamilyen szisztematikus hibát nem vettünk figyelembe. A kísérletben talán a legérzékenyebb mennyiség a fonaltárcsa sugara volt. Úgy vettük, hogy a fonaltárcsa sugarával megegyező a kötélerő erőkarja, de valójában a fonalnak is van egy vastagsága, néhány tized milliméter, és ennek a felét még hozzá kellene adni r-hez, hogy pontosabb eredményt kapjunk. Újraszámoltam az eredményeket úgy, hogy r-hez 1 ill. 2 tized millimétert hozzáadtam, így első esetben a rúd, második esetben pedig mindkét test $\Theta_{\text{mért}}$ -je nagyobb lett a $\Theta_{\text{szám}}$ -nál, tehát ez okozhatta a szisztematikus hibát.