ISLR Notes

TBD

2021

Contents

Ab	oout	5							
1	Introduction 1.1 An Overview of Statistical Learning	10 11							
2	Statistical Learning 2.1 2.1 What Is Statistical Learning? 2.2 2.2 Assessing Model Accuracy 2.3 2.3 Lab: Introduction to R 2.4 2.4 Exercises	13 13 21 23 27							
3	Linear Regression 3.1 Simple linear regression	57 57 60 66							
4	Classification	67							
5	Resampling Methods	69							
6	Model Selection and Regularization	71							
7	Moving Beyond Linearity	73							
8	3 Tree Based Methods								
9	Support Vector Machines								
10	Unsupervised Learning	79							

4 CONTENTS

About

Notes and solutions for the exercises in the book: *An Introduction to Statistical Learning with Applications in R (1st edition)* by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani (website: https://www.statlearning.com/)

License

This work, as a whole, is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International License

6 CONTENTS

Chapter 1

Introduction

1.1 An Overview of Statistical Learning

"Statistical learning refers to a vast set of tools for understanding data."

- Supervised: Using statistical models to predict or estimate outputs based on inputs.
- Unsupervised: Finding relationships between variables and structure in the data

1.2 Data sets

Example data used in the book

- Wages
- Stock Market Data
- Gene Expression Data

1.2.1 Wages

Used for regression problem examples such as predicting wage based on age and education

glimpse(Wage)

```
## Rows: 3,000
## Columns: 11
                                                   <int> 2006, 2004, 2003, 2003, 2005, 2008, 2009, 2008, 2006, 2004,~
## $ year
## $ age
                                                   <int> 18, 24, 45, 43, 50, 54, 44, 30, 41, 52, 45, 34, 35, 39, 54,~
                                                   <fct> 1. Never Married, 1. Never Married, 2. Married, ~ Married, ~
## $ maritl
## $ race
                                                   <fct> 1. White, 1. White, 1. White, 3. Asian, 1. White, 1. White,~
## $ education <fct> 1. < HS Grad, 4. College Grad, 3. Some College, 4. College ~
## $ region
                                                   <fct> 2. Middle Atlantic, 2. Middle Atlantic, 2. Middle Atlantic,~
                                                   <fct> 1. Industrial, 2. Information, 1. Industrial, 2. Informatio~
## $ jobclass
## $ health
                                                   <fct> 1. <=Good, 2. >=Very Good, 1. <=Good, 2. >=Very Good, 1. <=~
## $ health_ins <fct> 2. No, 2. No, 1. Yes, 1.
## $ logwage
                                                   <dbl> 4.318063, 4.255273, 4.875061, 5.041393, 4.318063, 4.845098,~
                                                   <dbl> 75.04315, 70.47602, 130.98218, 154.68529, 75.04315, 127.115~
## $ wage
```


1.2. DATA SETS 9

1.2.2 Stock Market Data

Used for classification problem examples with categorical or qualitative output, such as predicting whether a stock index will either increase or decrease on any given day.

Daily percentage change of S&P 500 stock index and 5 prior days

glimpse(Smarket)

```
## Rows: 1,250
## Columns: 9
## $ Year
               <dbl> 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, ~
## $ Lag1
               <dbl> 0.381, 0.959, 1.032, -0.623, 0.614, 0.213, 1.392, -0.403, 0.~
               <dbl> -0.192, 0.381, 0.959, 1.032, -0.623, 0.614, 0.213, 1.392, -0~
## $ Lag2
## $ Lag3
               <dbl> -2.624, -0.192, 0.381, 0.959, 1.032, -0.623, 0.614, 0.213, 1~
               <dbl> -1.055, -2.624, -0.192, 0.381, 0.959, 1.032, -0.623, 0.614, ~
## $ Lag4
## $ Lag5
               <dbl> 5.010, -1.055, -2.624, -0.192, 0.381, 0.959, 1.032, -0.623, ~
## $ Volume
               <dbl> 1.1913, 1.2965, 1.4112, 1.2760, 1.2057, 1.3491, 1.4450, 1.40~
## $ Today
               <dbl> 0.959, 1.032, -0.623, 0.614, 0.213, 1.392, -0.403, 0.027, 1.~
## $ Direction <fct> Up, Up, Down, Up, Up, Up, Down, Up, Up, Up, Up, Down, Down, Up, ~
```


1.2.3 Gene Expression Data

Used for examples of clustering problems such as identifying related groups of cancer cells based on observed characteristics.

```
str(NCI60)
```

```
## List of 2
## $ data: num [1:64, 1:6830] 0.3 0.68 0.94 0.28 0.485 ...
## ..- attr(*, "dimnames")=List of 2
## ...$ : chr [1:64] "V1" "V2" "V3" "V4" ...
## ...$ : chr [1:6830] "1" "2" "3" "4" ...
## $ labs: chr [1:64] "CNS" "CNS" "CNS" "RENAL" ...
```

1.3 History

A brief timeline for the development of statistical learning

- 1800's Linear Regression (Method of Least Squares)
- 1936 Linear Discriminant Analysis developed to predict qualitative values
- 1940s Logistic Regression developed to predict qualitative values
- 1970s Generalized Linear Models including both logistic and linear regression
- 1980s Classification and Regression Trees
- 1986 Generalized Additive Models
- Present day (2001) Machine Learning

11

1.4 Other Considerations

"How Eugenics Shaped Statistics: Exposing the damned lies of three science pioneers.

1.5 Matrix Notation

Conventions used in the book

- n number of observations in a sample
- p number of variables
- lacksquare X an n imes p matrix
 - where x_{ij} represents the element in the *i*th row and the *j*th column.
 - x_i represents a single observation (row) as a vector with length p. Note that vectors are written vertically by convention in math notation.
 - \mathbf{x}_j represents a single variable (column) as a vector with length n. Note that the bold face font is used to distinguish columns (\mathbf{x}_3) from rows (x_3).
- The ^T superscript operator denotes the transpose of a matrix or vector, where row and column indices are reversed such that the resulting matrix or vector will have p rows and/or n columns.

Examples

A matrix of elements

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$

A row vector

$$x_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}$$

A column vector

$$\mathbf{x}_j = \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

• A matrix represented as a collection of column vectors

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_i)$$

A transposed matrix. Rows become columns and columns become rows

$$\mathbf{X}^{T} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{p1} & x_{p2} & \dots & x_{pn} \end{pmatrix}$$

• A transposed row vector. Again, vector elements are listed vertically by default, so this presentation shows the new orientation.

$$x_i^T = (x_{i1}, x_{i2}, \dots, x_{ip})$$

• A matrix represented as a collection of row vectors

$$\mathbf{X} = \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{pmatrix}$$

Chapter 2

Statistical Learning

2.1 **2.1 What Is Statistical Learning?**

Motivating example:

Suppose that we are statistical consultants hired by a client to provide advice on how to improve sales of a particular product. ... our goal is to develop an accurate model that can be used to predict sales on the basis of the three media budgets.

glimpse(Advertising)


```
Advertising %>%

ggplot(mapping = aes(x = radio, y = sales)) +

geom_point(alpha = 0.25, shape = 1) +

theme_bw() +

geom_smooth(formula = y~x, method = "lm", se = FALSE)
```



```
Advertising %>%

ggplot(mapping = aes(x = newspaper, y = sales)) +

geom_point(alpha = 0.25, shape = 1) +

theme_bw() +

geom_smooth(formula = y~x, method = "lm", se = FALSE)
```


Input Variables: These are the variables we know and can use to build our model. Also known as *predictors*, independent variables, or features. Denoted using the symbol X_n .

Output Variable: This is the variable we are trying to predict with the model. Also known as a *response*, or *dependent variable*. Typically denoted as Y.

More generally: $Y = f(X) + \epsilon$

Where Y is the quantitative response and f is a function of $X_1,...,X_p$ (of p different predictors) and ϵ is some random **error term**.

Assumptions:

- f is **systematic** in its relationship to Y
- ullet ϵ is independent of X
- ullet ϵ has mean zero

Another example: Income and education may appear related, but the exact relationship is unknown. Note that some of the observations are above the linear interpolated line, while some are below it. The difference is ϵ

```
Income1 %>%
    ggplot(mapping = aes(x = Education, y = Income)) +
    geom_point(color = "red") +
        geom_smooth(formula = y~x, method = "lm", se = FALSE) +
    theme_bw()
```


2.1.1 2.1.1 Why Estimate f?

There are two main reasons to estimate f:

- Prediction
- Inference

2.1.1.1 Prediction

Consider: $\hat{Y} = \hat{f}(X)$

If X is known, we can predict \hat{Y} by this equation. Don't be too concerned with the exact functional form of \hat{f} , as long as it yields accurate predictions of Y.

The accuracy of \hat{Y} depends on two quantities:

- **Reducible error**: This is error that comes with the model. We can potentially address this error by improving the accuracy of the model.
- Irreducible error: This is error introduced to the model, because ϵ , by definition, cannot be explained by X

Why is irreducible error larger than zero? Consider the estimate \hat{f} and a prediction $\hat{Y} = \hat{f}(X)$. Let \hat{f} and X be fixed. Then:

$$E(Y - Y^2) = E[f(X) + \epsilon - \hat{f}(X)]^2$$
$$= [f(X) - \hat{f}(X)]^2 + Var(\epsilon)$$

Where $E(Y-Y^2)$ is the **expected value** of the squared difference between the predicted and actual value of Y, and Var(X) is the **variance** associated with the error term ϵ .

2.1.1.2 Inference:

When used for inference, the aim is not to use estimate f for predictions, but rather to understand how some response Y is affected by the changes in $X_1, ..., X_p$.

- Which predictors are associated with the response?: Identifying the important predictors is the aim here.
- What is the relationship between the response and each predictor?: This can be positive, negative, or depend on the values of other predictors, depending on how complicated the model is.
- Can the relationship between Y and each predictor be summarized using a linear equation?

Examples:

Prediction: A Company using a model to identify target customers for a direct-marketing campaign. The company is not interested in the model, they just want a function form that will help them.

Inference: Modeling customer purchases of specific brands of products. The model is aimed toward explaining which components of the model affect probability of a purchase.

Functional form: In many cases, a **linear model** allows for a relatively interpretable form, but may not be as flexible or accurate as other models.

2.1.2 How Do We Estimate f?

There are many different approaches to estimating f, which all share certain characteristics and terms.

• Training Data: This is the data used to train or teach our model how to estimate \hat{f} . In general, most estimation methods can be characterized as either **parametric** or **non-parametric**.

2.1.2.1 Parametric Methods:

Involves a two-step model-base approach:

1. Assume functional form.

Example: $f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$ (This is a *linear* model)

2. After model selection, identify the procedure to estimate the parameters of the model. For linear models, this would be the method of estimating β_0 , β_1 , ... etc such that:

$$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n$$

The most common approach with linear models is the **(Ordinary) least squares** method. The parametric method reduces estimation to determining a set of **parameters** that create the best fit for an assumed functional form.

Pros:

Assuming the form makes estimation simpler!

Potential Cons:

- We don't know the true f, and we could be way off!
- We can choose more flexible models to address this, but...
- More flexible models lead to more parameters to estimate, and potentially overfitting.

2.1.2.2 Non-parametric Methods

Pro: Do not make assumptions about functional form.

Con: Require a large number of observations to obtain an estimate of f

2.1.3 The Trade-Off Between Prediction Accuracy and Model Interpretability

```
plot(0:10,
    type = 'n',
   xlim = c(0, 10),
   xaxt = 'none',
   ylim = c(0, 10),
   yaxt = 'none',
   xlab = "Flexibility",
   ylab = "Interpretability")
axis(1, at = c(1, 8.75), labels = c("Low", "High"))
axis(2, at = c(1, 8.75), labels = c("Low", "High"))
text(x=1, y=9.5, "Subset Selection", font=1)
text(x=1, y=8.5, "Lasso", font=1)
text(x=3.25, y=6.75, "Least Squares", font=1)
text(x=4.75, y=5, "Generalized Additive Models", font=1)
text(x=4.75, y=4.5, "Trees", font=1)
text(x=8.75, y=3, "Bagging, Boosting", font=1)
text(x=7.5, y=1.25, "Support Vector Machines", font=1)
```


Method	Pro	Con
Linear Regression	Easy to interpret	Relatively inflexible
Thin Plate Splines	Very flexible	Difficult to understand
lasso	More interpretable	less flexible

Flexibility

less interpretable

2.1.4 Supervised Versus Unsupervised Learning

GAMs

Most statistical learning problems fall into one of two categories: supervised or unsupervised.

more flexible

Supervised Learning: For each observation of the predictor measurements X_i , there is an associated response measurement Y_i . These are models where we want to predict **outcomes**.

Unsupervised Learning: For each observation of the predictor measurements X_i , there is **No** associated response measurement $Y_i(!)$ - In this scenario, it is not possible to fit a linear regression, since there is no associated Y_i .

2.1.4.1 Cluster Analysis

One way to understand unsupervised models is through **cluster analysis**. The goal of this type of analysis is to determine whether $x_i, ..., x_n$ fall into relatively distinct groups.

Note:

- Clustering methods are imprecise They cannot assign all points to their correct group.
- If there are p variables, then p(p-1)/2 scatterplots can be made, this is why automated clustering methods are important.
- There are instances where it is not clear whether a problem is *supervised* or *unsupervised* Some *Y*'s exist, but not all. These are referred to as *semi-supervised learning problems*.

borrowed from: https://rpubs.com/aephidayatuloh/clustervisual

2.1.5 Regression Versus Classification Problems

- Problems with a quantitative response value (numeric) are referred to as regression problems.
- Problems with a *qualitative response* a value in one of *K* different classes, are referred to as *classification* problems.
- Qualitative responses are also referred to as categorical values.

2.2 2.2 Assessing Model Accuracy

There is no free lunch in statistics: no one method dominates all others over all possible data sets. On a particular data set, one specific method may work best, but some other method may work better on a similar but different data set.

2.2.1 **2.2.1 Measuring the Quality of Fit**

When using regressions, quality of fit is most commonly assessed by mean squared error (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

 $\hat{f}(x_i)^2$ is the prediction.

The *training* MSE will be small if the predicted responses are close to the true responses, and larger if the estimates of the predictions are farther from the true responses.

Examples:

- If we are interested in stock prices based on the previous 6 months, we really only care about how well the algorithm predicts *tomorrow's price*.
- If we train a model on diabetes patient's clinical measurements, we are only concerned with how well the model predicts *future* diabetes patients.

Mechanically: If we fit our method on training observations $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, we use those observations to fit $\hat{f}(x_1), \hat{f}(x_2), \dots, \hat{f}(x_n)$.

The aim here is to compute an $\hat{f}(x_0)$ which is closest to the real unseen y_0 observation, the test data.

2.2.1.1 How do we choose our model?

If we have test data available (not used for training/estimating \hat{f}), we can simply choose the method which minimizes MSE on that test data. If we do not have testing data, we can choose the model which minimizes MSE for our training data, but there is no guarantee that a method with the smallest training MSE will result in the smallest test MSE.

Note: As model flexibility increases, the training MSE will decrease, but this does not imply that the $test\ MSE$ will similarly decrease. When a method yields a small training MSE and a large test MSE, we are overfitting our data.

2.2.2 The Bias-Variance Trade-Off

It is possible to prove that the expected test MSE can be decomposed into the sum of three quantities: the variance of $\hat{f}(x_0)$, the squared bias of $\hat{f}(x_0)$, and the variance of the error terms ϵ .

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

To achieve a low expected test error, it is necessary to select a method that results in *low variance* and *low bias*. It's also important to understand that the MSE will never be lower than the $Var(\epsilon)$, the irreducible error.

Variance refers to the amount \hat{f} would change if we used different testing data. Generally, more flexible models have higher variance.

Bias is the error introduced by using a simple model to approximate potentially complex functions. More flexible models generally have less bias.

The Bias-Variance trade-off is the challenge of identifying a model which has both low variance and low bias.

2.2.3 The Classification Setting

In the classification context, many of the concepts above still apply, with minor differences because the y_0 is no longer a number value, but instead a qualitative value. The most common approach for gauging the accuracy of a qualitative \hat{f} is the training *error rate*:

$$\frac{1}{n}\sum_{i=1}^{n}I(y_i\neq\hat{y_i})$$

Where $\hat{y_i}$ is the predicted value for the ith observation using the function \hat{f} ,

 $I(y_i \neq \hat{y}_i)$ is an *indicator variable*, equal to 1 if $y_i \neq \hat{y}_i$ and zero if not. This computes the fraction of incorrect classifications

As with regression methods, the our aim should be to reduce the test error rate.

2.2.3.1 The Bayes Classifier

There is a special case in which it can be shown that the test error rate is minized by assigning each observation to it's most likely class, based on it's predictor values.

This case is called the Bayes Classifier

$$Pr(Y = j|X = x_0)$$

This is the *conditional probability* that assigns a probability that Y=j, given the observed value x_0 . In two class problems, this amounts to an assignment between two classes, *class one* if $Pr(Y=1|X=x_0)>0.5$, and class two otherwise. A scenario in which the decision boundary is set to exactly 50% is called a *Bayes Decision Boundary*.

The Bayes classifier always yields the lowest possible test error rate, since it will assign classification based on the highest probability outcome. The *Bayes error rate* is defined as:

$$1 - \mathrm{E} \max_{j} \Pr(Y = j|X)$$

This error rate can also be described as the ratio of classifications that end up on the "wrong" side of the decision boundary.

2.2.3.2 K-Nearest Neighbors

For real data, we do not know the conditional distribution of Y given X, so computing the Bayes classifier is impossible. One method is to estimate the distribution with the *highest estimated probability*. One method is the K-Nearest Neighbors (KNN) approach.

The KNN classifier first identifies the K points closest to x_0 , represented by N_0 . It then estimates the probability for class j as a fraction of the observations in N_0 whose response is equal to j.

$$Pr(Y = j | X = x_0) = \frac{1}{k} \sum_{i \in N_0} I(y_i = j)$$

The KNN method then applies the Bayes rule and classifies x_0 to the class with the highest probability.

The choice of K can have a drastic effect on the classification outcomes. Choosing a K that is too low will yield a too-flexible model, with high variance and low bias. Conversely, a K that is too high will result in a rigid classifier, with lower variance but higher bias.

2.3 2.3 Lab: Introduction to R

2.3.1 Basic Commands

To run a function called function, we type function(input). Objects are defined and then can be called by themselves.

```
# create a vector of numbers with the c() function
x <- c(1,3,2,5)
x
## [1] 1 3 2 5
print(x)</pre>
```

We can check the length of an object in R using the length() function.

```
length(x) # 4
```

[1] 4

[1] 1 3 2 5

The matrix() function can be used to create matrices of any size.

```
x <- matrix(data=c(1,2,3,4),nrow=2,ncol=2)
x</pre>
```

```
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
```

[2,] 1.414214 2.000000

The sqrt() function returns the square root of an object passed to it.

```
sqrt(x) # 4

## [,1] [,2]
## [1,] 1.000000 1.732051
```

The rnorm() function generates a vectors of random normal variables. We can use the cor() function to compute the correlation between two vectors.

```
x <- rnorm(50)
y = x * rnorm(5, mean = 50, sd = .1)
```

2.3.2 **2.3.2 Graphics**

plot() is the primary plotting function in base R. plot(x,y) will produce a plot with the vector x on the x-axis, and y on the y-axis.

```
plot(x, y)
```


 $useful\ functions:$

```
mean()
```

- var()
- sqrt()
- sd()
- pdf()
- jpeg()
- dev.off()

```
■ seq()
```

```
x <- seq(1, 10)
y <- x
f <- outer(x, y, function(x, y) cos(y) / (1+x^2))
contour(x, y, f)</pre>
```


2.3.3 **2.3.3 Indexing Data**

Indexing is useful for inspecting specific parts of whatever data we are working with.

```
A <- matrix(1:16,4,4)
Α
##
         [,1] [,2] [,3] [,4]
## [1,]
            1
                 5
                       9
                            13
## [2,]
            2
                  6
                      10
                            14
                 7
## [3,]
            3
                            15
                      11
## [4,]
                      12
                            16
```

To access the third element of the second column:

```
A[2, 3] # Row 2, Column 3
```

[1] 10

We can also access multiple rows or columns of data at once:

```
A[c(2:4), 3] # Rows 2 through 4, in Column 3
```

[1] 10 11 12

2.3.4 **2.3.4 Loading Data**

To work with data in R, the first step is to load it into your session. The read.table() function can be used for this. There are lots of other functions you can use to read data into your session, including those from external packages.

```
Auto <- read.table("data/Auto.data")
head(Auto)

## V1 V2 V3 V4 V5 V6 V7 V8

## 1 mpg cylinders displacement horsepower weight acceleration year origin

## 2 18.0 8 307.0 130.0 3504. 12.0 70 1
```

```
## 3 15.0
                   8
                             350.0
                                         165.0
                                                 3693.
                                                                11.5
                                                                        70
                                                                                 1
## 4 18.0
                   8
                                         150.0
                                                 3436.
                                                                11.0
                                                                        70
                                                                                 1
                             318.0
## 5 16.0
                   8
                             304.0
                                         150.0
                                                 3433.
                                                                12.0
                                                                        70
                                                                                 1
                   8
                             302.0
## 6 17.0
                                         140.0
                                                                10.5
                                                                        70
                                                                                 1
                                                3449.
##
                              ۷9
## 1
                            name
## 2 chevrolet chevelle malibu
## 3
              buick skylark 320
## 4
             plymouth satellite
## 5
                  amc rebel sst
## 6
                    ford torino
```

2.3.4.1 Troubleshooting

It is a good idea to visually inspect your data before and after loading it into your R session. In this case, we have loaded the Auto.data incorrectly, and R assumes there are no column name values. To fix this:

```
Auto <- read.table("data/Auto.data",

# argument for a header

header = T,

# convert "?" strings to NA

na.strings = "?")
```

Other useful functions:

- na.omit() - dim()

2.3.5 Additional Graphical and Numerical Summaries

We can use the plot() function to create *scatterplots* of quantitative variables. When using this function, it is necessary to specify the dataset name:

```
plot(x = as.factor(Auto$cylinders), y = Auto$mpg)
```


In the graph above, cylinder is converted in a factor variable, since there are only a specific number of possible

2.4. 2.4 EXERCISES 27

values. If the variable on the x-axis is categorical, boxplots will automatically be drawn on the plot.

```
# There are many plot options available
hist(Auto$mpg, col = "purple",
    breaks = 15,
    main = "Histogram of Miles per Gallon", xlab = "MPG")
```

Histogram of Miles per Gallon

2.4 2.4 Exercises

2.4.1 Conceptual

2.4.1.1 1.

For each of parts (a) through (d), indicate whether we would generally expect the performance of a flexible statistical learning method to be better or worse than an inflexible method. Justify your answer.

- (a) The sample size n is extremely large, and the number of predictors p is small.
- > A flexible model would benefit from the large sample and would fit the data better.
 - (b) The number of predictors p is extremely large, and the number of observations n is small.
 - > A flexible model would perform worse here and overfit because of the small n.
 - (c) The relationship between the predictors and response is highly non-linear.

 > In this case, a more flexible model would perform better than an inflexible one.
 - (d) The variance of the error terms, i.e. $\sigma^2 = Var(\epsilon)$, is extremely high. > A flexible method would do worse in this situation, because it would fit to the noise in the error terms.

2.4.1.2 2.

Explain whether each scenario is a classification or regression problem, and indicate whether we are most interested in inference or prediction. Finally, provide n and p.

- (a) We collect a set of data on the top 500 firms in the US. For each firm we record profit, number of employees, industry and the CEO salary. We are interested in understanding which factors affect CEO salary. > Regression. n=500, p=3 profit, employees, and industry.
- (b) We are considering launching a new product and wish to know whether it will be a success or a failure. We collect data on 20 similar products that were previously launched. For each product we have recorded whether it was a success or failure, price charged for the product, marketing budget, competition price, and ten other variables.
 - > Classification, the outcome variable will be either be 'success' or a 'failure'. n=20, p=13 price, marketing budget, competition price, and the 10 other variables.

2.4.1.3 3.

We now revisit the bias-variance decomposition.

(a) Provide a sketch of typical (squared) bias, variance, training error, test error, and Bayes (or irreducible) error curves, on a single plot, as we go from less flexible statistical learning methods towards more flexible approaches. The x-axis should represent the amount of flexibility in the method, and the y-axis should represent the values for each curve. There should be five curves. Make sure to label each one.

An exercise left to the reader.

(b) Explain why each of the five curves has the shape displayed in part (a).

The squared bias decreases monotonically as model flexibility increases. The variance increases monotonically as model flexibility increases. The training MSE declines as model flexibility increases. The test MSE initially declines, but begins to increase again as it starts to overfit. The irreducible error is constant at a level > 0.

2.4.1.4 4.

You will now think of some real-life applications for statistical learning.

- (a) Describe three real-life applications in which classification might be useful. Describe the response, as well as the predictors. Is the goal of each application inference or prediction? Explain your answer.
- Mortgage Loan application approvals. Response: Loan Approval/Denial. Predictors: Credit score, income, location.
- Disease detection. Response: Disease classification. Predictors: Health, genetic markers, sex.
- Product success. Response: Whether a product is successful or not. Predictors: Competitor price, market share.
- (b) Describe three real-life applications in which regression might be useful. Describe the response, as well as the predictors. Is the goal of each application inference or prediction? Explain your answer.

Discuss!

c) Describe three real-life applications in which cluster analysis might be useful.

Discuss!

2.4.1.5 5.

What are the advantages and disadvantages of a very flexible (versus a less flexible) approach for regression or classification? Under what circumstances might a more flexible approach be preferred to a less flexible approach? When might a less flexible approach be preferred?

2.4. 2.4 EXERCISES 29

2.4.1.6 6.

Describe the differences between a parametric and a non-parametric statistical learning approach. What are the advantages of a parametric approach to regression or classification (as opposed to a non-parametric approach)? What are its disadvantages?

2.4.1.7 7.

The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

\overline{Obs}	X_1	X_2	X_3	\overline{Y}
1	0	3	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

Suppose we wish to use this data set to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

- (a) Compute the Euclidean distance between each observation and the test point, $X_1 = X_2 = X_3 = 0$.
- (b) What is our prediction with K=1? Why?
- (c) What is our prediction with K=3? Why?
- (d) If the Bayes decision boundary in this problem is highly non-linear, then would we expect the best value for K to be large or small? Why?

2.4.2 Applied

2.4.2.1 8

This exercise relates to the College data set, which can be found in the file College.csv. It contains a number of variables for 777 different universities and colleges in the US. The variables are

- Private: Public/private indicator
- Apps: Number of applications received
- Accept: Number of applicants accepted
- Enroll: Number of new students enrolled
- Top10perc: New students from top 10% of high school class
- Top25perc: New students from top 25% of high school class
- F. Undergrad: Number of full-time undergraduates
- P.Undergrad: Number of part-time undergraduates
- Outstate: Out-of-state tuition
- Room.Board: Room and board costs
- Books: Estimated book costs
- Personal: Estimated personal spending
- PhD:Percent of faculty with Ph.D.'s
- Terminal:Percent of faculty with terminal degree
- S.F.Ratio: Student/faculty ratio
- perc.alumni: Percent of alumni who donate

- Expend: Instructional expenditure per student
- Grad.Rate: Graduation rate

Before reading the data into R, it can be viewed in Excel or a text editor.

(a) Use the read.csv() function to read the data into R. Call the loaded data college. Make sure that you have the directory set to the correct location for the data.

```
if(!file.exists("data/Collage.csv")){
   download.file("https://www.statlearning.com/s/College.csv", destfile = "data/College.csv")
}
college <- read.csv("data/College.csv")</pre>
```

(b) Look at the data using the fix() function. You should notice that the first column is just the name of each university. We don't really want R to treat this as data. However, it may be handy to have these names for later. Try the following commands:

```
# fix(college)
# add first column as rownames
rownames(college) <- college[, 1]
college <- college[, -1]</pre>
```

(c) i. Use the summary() function to produce a numerical summary of the variables in the data set.

summary(college)

```
##
      Private
                             Apps
                                             Accept
                                                              Enroll
##
    Length:777
                        Min.
                                    81
                                         Min.
                                                 :
                                                     72
                                                          Min.
                                                                  :
                                                                     35
                               :
##
    Class : character
                        1st Qu.:
                                   776
                                         1st Qu.:
                                                    604
                                                          1st Qu.: 242
##
    Mode :character
                        Median: 1558
                                         Median: 1110
                                                          Median: 434
##
                        Mean
                               : 3002
                                         Mean
                                                : 2019
                                                          Mean
                                                                  : 780
                                                          3rd Qu.: 902
##
                        3rd Qu.: 3624
                                         3rd Qu.: 2424
##
                               :48094
                                         Max.
                                                 :26330
                                                          Max.
                                                                  :6392
##
      Top10perc
                       Top25perc
                                       F.Undergrad
                                                        P. Undergrad
##
           : 1.00
                     Min.
                            : 9.0
                                      Min.
                                              :
                                                139
                                                       Min.
                                                                    1.0
##
    1st Qu.:15.00
                     1st Qu.: 41.0
                                      1st Qu.:
                                                992
                                                       1st Qu.:
                                                                   95.0
    Median :23.00
                     Median: 54.0
                                      Median: 1707
                                                                  353.0
##
                                                       Median:
                                            : 3700
##
    Mean
           :27.56
                     Mean
                            : 55.8
                                      Mean
                                                       Mean
                                                                  855.3
##
    3rd Qu.:35.00
                     3rd Qu.: 69.0
                                      3rd Qu.: 4005
                                                       3rd Qu.:
                                                                  967.0
           :96.00
                            :100.0
                                             :31643
##
    Max.
                     Max.
                                      Max.
                                                       Max.
                                                               :21836.0
##
       Outstate
                       Room.Board
                                         Books
                                                          Personal
                                                              : 250
##
    Min.
           : 2340
                     Min.
                            :1780
                                     Min.
                                            : 96.0
                                                       Min.
##
    1st Qu.: 7320
                     1st Qu.:3597
                                     1st Qu.: 470.0
                                                       1st Qu.: 850
##
   Median: 9990
                     Median:4200
                                     Median : 500.0
                                                       Median:1200
##
    Mean
           :10441
                     Mean
                            :4358
                                     Mean
                                            : 549.4
                                                              :1341
                                                       Mean
##
    3rd Qu.:12925
                     3rd Qu.:5050
                                     3rd Qu.: 600.0
                                                       3rd Qu.:1700
           :21700
##
                             :8124
                                            :2340.0
                                                               :6800
    Max.
                     Max.
                                     Max.
                                                       Max.
##
         PhD
                         Terminal
                                         S.F.Ratio
                                                         perc.alumni
                             : 24.0
##
    Min.
           : 8.00
                      Min.
                                       Min.
                                              : 2.50
                                                        Min.
                                                                : 0.00
##
    1st Qu.: 62.00
                      1st Qu.: 71.0
                                       1st Qu.:11.50
                                                        1st Qu.:13.00
##
    Median : 75.00
                      Median: 82.0
                                       Median :13.60
                                                        Median :21.00
           : 72.66
                             : 79.7
                                              :14.09
                                                               :22.74
    Mean
                      Mean
                                       Mean
                                                        Mean
##
    3rd Qu.: 85.00
                      3rd Qu.: 92.0
                                       3rd Qu.:16.50
                                                        3rd Qu.:31.00
           :103.00
                             :100.0
                                              :39.80
                                                                :64.00
##
    Max.
                      Max.
##
        Expend
                       Grad.Rate
##
   Min.
           : 3186
                     Min.
                           : 10.00
    1st Qu.: 6751
                     1st Qu.: 53.00
##
```

2.4. 2.4 EXERCISES 31

```
## Median: 8377 Median: 65.00
## Mean: 9660 Mean: 65.46
## 3rd Qu::10830 3rd Qu:: 78.00
## Max: :56233 Max: :118.00
```

(c) ii. Use the pairs() function to produce a scatterplot matrix of the first ten columns or variables of the data. Recall that you can reference the first ten columns of a matrix A using A[,1:10].

```
pairs(college[, 1:10])
```

Error in pairs.default(college[, 1:10]): non-numeric argument to 'pairs'

(c) iii. Use the plot() function to produce side-by-side boxplots of Outstate versus Private.

```
plot(as.factor(college$Private), college$Outstate, xlab = "Private", ylab = "Out-of-state Tuition")
```


Private

(c) v. Create a new qualitative variable, called Elite, by binning the Top10perc variable. We are going to divide universities into two groups based on whether or not the proportion of students coming from the top 10% of their high school classes exceeds 50%.

```
Elite <- rep("No",nrow(college))
Elite[college$Top10perc>50]="Yes"
Elite <- as.factor(Elite)
college=data.frame(college,Elite)</pre>
```

Use the summary() function to see how many elite universities there are. Now use the plot() function to produce side-by-side boxplots of Outstate versus Elite.

```
summary(college$Elite)

## No Yes
## 699 78

plot(as.factor(college$Elite), college$Outstate, xlab = "Elite", ylab = "Out-of-state Tuition")
```


(c) v. Use the hist() function to produce some histograms with differing numbers of bins for a few of the quantitative variables. You may find the command par(mfrow=c(2,2)) useful: it will divide the print window into four regions so that four plots can be made simultaneously. Modifying the arguments to this function will divide the screen in other ways.

```
par(mfrow=c(2,2))
hist(college$Top10perc)
hist(college$F.Undergrad, breaks = 15)
hist(college$S.F.Ratio, breaks = 5)
hist(college$Room.Board, breaks = 10)
```

2.4. 2.4 EXERCISES 33

Histogram of college\$Top10perc

Histogram of college\$F.Undergrad

Histogram of college\$S.F.Ratio

Histogram of college\$Room.Board

(c) vi. Continue exploring the data, and provide a brief summary of what you discover.

Plotting Student/Faculty ratio and the percent of alumni who donate does not show clear relationship that I thought would show up. etc etc discuss.

2.4.2.2 9.

This exercise involves the Auto data set studied in the lab. Make sure that the missing values have been removed from the data.

```
Auto <- read.table("data/Auto.data", header = T, na.strings = "?")
Auto <- na.omit(Auto)
str(Auto)
## 'data.frame':
                   392 obs. of 9 variables:
                 : num 18 15 18 16 17 15 14 14 14 15 ...
##
   $ mpg
## $ cylinders : int 8 8 8 8 8 8 8 8 8 ...
                        307 350 318 304 302 429 454 440 455 390 ...
## $ displacement: num
   $ horsepower : num
                        130 165 150 150 140 198 220 215 225 190 ...
                 : num 3504 3693 3436 3433 3449 ...
##
   $ weight
## $ acceleration: num 12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
## $ year
                 : int 70 70 70 70 70 70 70 70 70 70 ...
## $ origin
                 : int 1 1 1 1 1 1 1 1 1 1 ...
## $ name
                 : chr "chevrolet chevelle malibu" "buick skylark 320" "plymouth satellite" "amc rebe
## - attr(*, "na.action")= 'omit' Named int [1:5] 33 127 331 337 355
    ..- attr(*, "names")= chr [1:5] "33" "127" "331" "337" ...
```

(a) Which of the predictors are quantitative, and which are qualitative?

Cylinders, origin, and name are the qualitative variables. The rest of the variables are quantitative.

(b) What is the range of each quantitative predictor? You can answer this using the range() function.

```
# this is a fancy way to do this
vars <- setdiff(names(Auto), c("cylinders", "origin", "name"))</pre>
sapply(vars, function(v) range(Auto[v]), USE.NAMES = T)
         mpg displacement horsepower weight acceleration year
## [1,] 9.0
                         68
                                     46
                                           1613
                                                          8.0
                                                                 70
## [2,] 46.6
                        455
                                    230
                                           5140
                                                         24.8
 (c) What is the mean and standard deviation of each quantitative predictor?
sapply(Auto[, vars], mean, USE.NAMES = T)
##
             mpg displacement
                                                    weight acceleration
                                  horsepower
                                                                                   year
                                                                               75.97959
##
       23.44592
                     194.41199
                                   104.46939
                                                2977.58418
                                                                 15.54133
sapply(Auto[, vars], sd, USE.NAMES = T)
##
             mpg displacement
                                  horsepower
                                                     weight acceleration
                                                                                   year
##
                   104.644004
                                   38.491160
                                                849.402560
                                                                 2.758864
                                                                               3.683737
 (d) Now remove the 10th through 85th observations. What is the range, mean, and standard deviation of each
     predictor in the subset of the data that remains?
new_auto \leftarrow Auto[-c(10:85)]
```

 2.4. 2.4 EXERCISES 35

```
sapply(new_auto[, vars], mean, USE.NAMES = T)
##
            mpg displacement
                                                  weight acceleration
                                horsepower
                                                                                year
##
       23.44592
                    194.41199
                                 104.46939
                                              2977.58418
                                                              15.54133
                                                                            75.97959
sapply(new_auto[, vars], sd, USE.NAMES = T)
##
            mpg displacement
                                 horsepower
                                                  weight acceleration
                                                                                year
##
       7.805007
                   104.644004
                                 38.491160
                                              849.402560
                                                              2.758864
                                                                            3.683737
```

(e) Using the full data set, investigate the predictors graphically, using scatterplots or other tools of your choice. Create some plots highlighting the relationships among the predictors. Comment on your findings.

```
pairs(Auto)
```

```
## Error in pairs.default(Auto): non-numeric argument to 'pairs'
```

(f) Suppose that we wish to predict gas mileage (mpg) on the basis of the other variables. Do your plots suggest that any of the other variables might be useful in predicting mpg ? Justify your answer.

```
cor(Auto$weight, Auto$horsepower)

## [1] 0.8645377

cor(Auto$weight, Auto$displacement)

## [1] 0.9329944
```

2.4.2.3 10.

This exercise involves the Boston housing data set.

(a) To begin, load in the Boston data set. The Boston data set is part of the MASS library in R.

```
library(MASS)
```

```
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
Boston
```

```
##
           crim
                    zn indus chas
                                             rm
                                                  age
                                                           dis rad tax ptratio black
                                     nox
## 1
        0.00632
                 18.0
                       2.31
                                0 0.5380 6.575
                                                 65.2
                                                       4.0900
                                                                 1 296
                                                                          15.3 396.90
## 2
        0.02731
                  0.0
                       7.07
                                0 0.4690 6.421
                                                 78.9
                                                       4.9671
                                                                 2 242
                                                                          17.8 396.90
## 3
        0.02729
                  0.0
                       7.07
                                0 0.4690 7.185
                                                 61.1
                                                       4.9671
                                                                 2 242
                                                                          17.8 392.83
                        2.18
                                                                 3 222
## 4
        0.03237
                  0.0
                                0 0.4580 6.998
                                                 45.8
                                                       6.0622
                                                                          18.7 394.63
## 5
        0.06905
                  0.0
                        2.18
                                0 0.4580 7.147
                                                 54.2
                                                       6.0622
                                                                          18.7 396.90
                                                                 3 222
## 6
        0.02985
                  0.0
                       2.18
                                0 0.4580 6.430
                                                 58.7
                                                       6.0622
                                                                 3 222
                                                                          18.7 394.12
                                                                 5 311
## 7
        0.08829
                       7.87
                                                       5.5605
                                                                          15.2 395.60
                 12.5
                                0 0.5240 6.012
                                                 66.6
## 8
        0.14455
                 12.5
                       7.87
                                0 0.5240 6.172
                                                 96.1
                                                       5.9505
                                                                 5 311
                                                                          15.2 396.90
                 12.5
                                                                 5 311
## 9
        0.21124
                       7.87
                                0 0.5240 5.631 100.0
                                                       6.0821
                                                                          15.2 386.63
        0.17004
                       7.87
                                0 0.5240 6.004
                                                 85.9
                                                       6.5921
                                                                 5 311
                                                                          15.2 386.71
## 10
                 12.5
## 11
        0.22489
                 12.5
                       7.87
                                0 0.5240 6.377
                                                 94.3
                                                       6.3467
                                                                 5 311
                                                                          15.2 392.52
## 12
        0.11747
                 12.5
                        7.87
                                0 0.5240 6.009
                                                 82.9
                                                       6.2267
                                                                 5 311
                                                                          15.2 396.90
## 13
        0.09378
                 12.5
                       7.87
                                0 0.5240 5.889
                                                 39.0 5.4509
                                                                 5 311
                                                                          15.2 390.50
## 14
        0.62976
                  0.0 8.14
                                0 0.5380 5.949
                                                 61.8 4.7075
                                                                 4 307
                                                                          21.0 396.90
## 15
        0.63796
                  0.0 8.14
                                0 0.5380 6.096 84.5 4.4619
                                                                 4 307
                                                                          21.0 380.02
```

##	16	0.62739	0.0	8.14	0	0.5380	5 834	56.5	4.4986	4	307	21 0	395.62
##		1.05393	0.0	8.14		0.5380		29.3	4.4986		307		386.85
##		0.78420	0.0	8.14		0.5380		81.7	4.2579		307		386.75
##		0.80271	0.0	8.14		0.5380		36.6	3.7965		307		288.99
##		0.72580	0.0	8.14		0.5380		69.5	3.7965		307		390.95
##		1.25179	0.0	8.14		0.5380		98.1	3.7979		307		376.57
##		0.85204	0.0	8.14		0.5380		89.2	4.0123		307		392.53
##		1.23247	0.0	8.14		0.5380		91.7	3.9769		307		396.90
##		0.98843		8.14		0.5380			4.0952		307		394.54
	2 4 25	0.75026	0.0			0.5380							394.33
			0.0	8.14		0.5380		94.1	4.3996		307		
	26	0.84054	0.0	8.14				85.7	4.4546		307		303.42
	27	0.67191	0.0	8.14		0.5380		90.3	4.6820		307		376.88
	28	0.95577	0.0	8.14		0.5380		88.8	4.4534		307		306.38
	29	0.77299	0.0	8.14		0.5380		94.4	4.4547		307		387.94
	30	1.00245	0.0	8.14		0.5380		87.3	4.2390		307		380.23
	31	1.13081	0.0	8.14		0.5380		94.1	4.2330		307		360.17
	32	1.35472	0.0	8.14		0.5380			4.1750		307		376.73
	33	1.38799	0.0	8.14		0.5380		82.0	3.9900		307		232.60
##		1.15172	0.0	8.14		0.5380		95.0	3.7872		307		358.77
##		1.61282	0.0	8.14		0.5380		96.9	3.7598		307		248.31
##		0.06417	0.0	5.96		0.4990		68.2	3.3603		279		396.90
##		0.09744	0.0	5.96		0.4990		61.4	3.3779		279		377.56
##		0.08014	0.0	5.96		0.4990		41.5	3.9342		279		396.90
##		0.17505	0.0	5.96		0.4990		30.2	3.8473		279		393.43
##		0.02763	75.0	2.95		0.4280		21.8	5.4011		252	18.3	395.63
##	41	0.03359	75.0	2.95	0	0.4280	7.024	15.8	5.4011		252	18.3	395.62
##	42	0.12744	0.0	6.91	0	0.4480	6.770	2.9	5.7209		233	17.9	385.41
##	43	0.14150	0.0	6.91	0	0.4480	6.169	6.6	5.7209	3	233	17.9	383.37
##	44	0.15936	0.0	6.91	0	0.4480	6.211	6.5	5.7209	3	233	17.9	394.46
##	45	0.12269	0.0	6.91	0	0.4480	6.069	40.0	5.7209	3	233	17.9	389.39
##	46	0.17142	0.0	6.91	0	0.4480	5.682	33.8	5.1004	3	233	17.9	396.90
##	47	0.18836	0.0	6.91	0	0.4480	5.786	33.3	5.1004	3	233	17.9	396.90
##	48	0.22927	0.0	6.91	0	0.4480	6.030	85.5	5.6894	3	233	17.9	392.74
##	49	0.25387	0.0	6.91	0	0.4480	5.399	95.3	5.8700	3	233	17.9	396.90
##	50	0.21977	0.0	6.91	0	0.4480	5.602	62.0	6.0877	3	233	17.9	396.90
##	51	0.08873	21.0	5.64	0	0.4390	5.963	45.7	6.8147	4	243	16.8	395.56
##	52	0.04337	21.0	5.64	0	0.4390	6.115	63.0	6.8147	4	243	16.8	393.97
##	53	0.05360	21.0	5.64	0	0.4390	6.511	21.1	6.8147	4	243	16.8	396.90
##	54	0.04981	21.0	5.64	0	0.4390	5.998	21.4	6.8147	4	243		396.90
##	55	0.01360	75.0	4.00	0	0.4100	5.888	47.6	7.3197	3	469	21.1	396.90
##	56	0.01311	90.0	1.22	0	0.4030	7.249	21.9	8.6966	5	226	17.9	395.93
##	57	0.02055	85.0	0.74	0	0.4100	6.383	35.7	9.1876	2	313	17.3	396.90
##	58	0.01432	100.0	1.32	0	0.4110	6.816	40.5	8.3248	5	256	15.1	392.90
##	59	0.15445	25.0	5.13	0	0.4530	6.145	29.2	7.8148	8	284	19.7	390.68
##	60	0.10328	25.0	5.13	0	0.4530	5.927	47.2	6.9320	8	284	19.7	396.90
##	61	0.14932	25.0	5.13	0	0.4530	5.741	66.2	7.2254	8	284	19.7	395.11
##	62	0.17171	25.0	5.13	0	0.4530	5.966	93.4	6.8185	8	284	19.7	378.08
##	63	0.11027	25.0	5.13	0	0.4530	6.456	67.8	7.2255		284	19.7	396.90
	64	0.12650	25.0	5.13		0.4530		43.4	7.9809		284		395.58
	65	0.01951	17.5	1.38		0.4161		59.5	9.2229		216		393.24
##	66	0.03584	80.0	3.37		0.3980		17.8	6.6115		337		396.90
	67	0.04379	80.0	3.37		0.3980		31.1	6.6115		337		396.90
##		0.05789	12.5	6.07		0.4090		21.4	6.4980		345		396.21
##		0.13554	12.5	6.07		0.4090		36.8	6.4980		345		396.90
		J. 1000 F	-2.0	2.01	•		J. J.J. I	55.0	5.1000	-	- 10	10.0	223.00

##	70	0.12816	12.5	6.07	0	0.4090	5.885	33.0	6.4980	4	345	18.9	396.90
##		0.08826		10.81		0.4130		6.6	5.2873		305		383.73
##		0.15876		10.81		0.4130		17.5	5.2873		305		376.94
##		0.09164		10.81		0.4130		7.8	5.2873		305		390.91
	74	0.19539		10.81		0.4130		6.2	5.2873		305		377.17
##	75	0.07896		12.83		0.4370		6.0	4.2515		398		394.92
##		0.09512		12.83		0.4370		45.0	4.5026		398		383.23
##		0.10153		12.83		0.4370		74.5	4.0522		398		373.66
##		0.08707		12.83		0.4370		45.8	4.0905		398		386.96
##		0.05646		12.83		0.4370		53.7	5.0141		398		386.40
##		0.08387		12.83		0.4370		36.6	4.5026		398		396.06
##		0.04113	25.0	4.86		0.4260		33.5	5.4007		281		396.90
##		0.04462	25.0	4.86		0.4260		70.4	5.4007		281		395.63
##		0.03659	25.0	4.86		0.4260		32.2	5.4007		281		396.90
##		0.03551	25.0	4.86		0.4260		46.7	5.4007		281		390.64
##		0.05059	0.0	4.49		0.4490		48.0	4.7794		247		396.90
##		0.05735	0.0	4.49		0.4490		56.1	4.4377		247		392.30
##		0.05188	0.0	4.49		0.4490		45.1	4.4272		247		395.99
##		0.07151	0.0	4.49		0.4490		56.8	3.7476		247		395.15
##		0.05660	0.0	3.41		0.4890		86.3	3.4217		270		396.90
##		0.05302	0.0	3.41		0.4890		63.1	3.4145		270		396.06
##		0.04684	0.0	3.41		0.4890		66.1	3.0923		270		392.18
##		0.03932	0.0	3.41		0.4890		73.9	3.0921		270		393.55
##		0.04203		15.04		0.4640		53.6	3.6659		270		395.01
##		0.02875		15.04		0.4640		28.9	3.6659		270		396.33
##		0.04294		15.04		0.4640		77.3	3.6150		270		396.90
##		0.12204	0.0	2.89		0.4450		57.8	3.4952		276		357.98
##		0.11504	0.0	2.89		0.4450		69.6	3.4952		276		391.83
##		0.12083	0.0	2.89		0.4450		76.0	3.4952		276		396.90
##		0.08187	0.0	2.89		0.4450		36.9	3.4952		276		393.53
	100	0.06860	0.0	2.89		0.4450		62.5	3.4952		276		396.90
	101	0.14866	0.0	8.56		0.5200		79.9	2.7778		384		394.76
	102	0.11432	0.0	8.56		0.5200		71.3	2.8561		384		395.58
	103	0.22876	0.0	8.56		0.5200		85.4	2.7147		384	20.9	70.80
	104	0.21161	0.0	8.56		0.5200		87.4	2.7147		384		394.47
	105	0.13960	0.0	8.56		0.5200		90.0	2.4210		384		392.69
	106	0.13262	0.0	8.56		0.5200		96.7	2.1069		384		394.05
	107	0.17120	0.0	8.56	_	0.5200		91.9	2.2110	_	384		395.67
	108	0.13117	0.0	8.56		0.5200		85.2	2.1224		384		387.69
	109	0.12802	0.0	8.56		0.5200		97.1	2.4329		384		395.24
	110	0.26363	0.0	8.56		0.5200		91.2	2.5451		384		391.23
	111	0.10793	0.0	8.56		0.5200		54.4	2.7778		384		393.49
	112	0.10084		10.01		0.5470		81.6	2.6775		432		395.59
	113	0.12329		10.01		0.5470		92.9	2.3534		432		394.95
	114	0.22212		10.01		0.5470		95.4	2.5480		432		396.90
	115	0.14231		10.01		0.5470		84.2	2.2565		432		388.74
	116	0.17134		10.01		0.5470		88.2	2.4631		432		344.91
	117	0.13158		10.01		0.5470		72.5	2.7301		432		393.30
	118	0.15098		10.01		0.5470		82.6	2.7474		432		394.51
	119	0.13058		10.01		0.5470		73.1	2.4775		432		338.63
	120	0.14476		10.01		0.5470		65.2	2.7592		432		391.50
	121	0.06899		25.65		0.5810		69.7	2.2577		188		389.15
	122	0.07165		25.65		0.5810		84.1	2.1974		188		377.67
	123	0.09299		25.65		0.5810		92.9	2.0869		188		378.09
			J. J		•					_			3.2.00

										_			
	124	0.15038		25.65		0.5810		97.0	1.9444		188		370.31
	125	0.09849		25.65		0.5810		95.8	2.0063		188		379.38
	126	0.16902		25.65		0.5810		88.4	1.9929		188		385.02
	127	0.38735		25.65		0.5810		95.6	1.7572		188		359.29
	128	0.25915		21.89		0.6240		96.0	1.7883		437		392.11
	129	0.32543		21.89		0.6240		98.8	1.8125		437		396.90
##	130	0.88125	0.0	21.89	0	0.6240	5.637	94.7	1.9799	4	437		396.90
##	131	0.34006	0.0	21.89	0	0.6240	6.458	98.9	2.1185	4	437		395.04
##	132	1.19294	0.0	21.89	0	0.6240	6.326	97.7	2.2710	4	437	21.2	396.90
##	133	0.59005	0.0	21.89	0	0.6240	6.372	97.9	2.3274	4	437	21.2	385.76
##	134	0.32982	0.0	21.89	0	0.6240	5.822	95.4	2.4699	4	437	21.2	388.69
##	135	0.97617	0.0	21.89	0	0.6240	5.757	98.4	2.3460	4	437	21.2	262.76
##	136	0.55778	0.0	21.89	0	0.6240	6.335	98.2	2.1107	4	437	21.2	394.67
##	137	0.32264	0.0	21.89	0	0.6240	5.942	93.5	1.9669	4	437	21.2	378.25
##	138	0.35233	0.0	21.89	0	0.6240	6.454	98.4	1.8498	4	437	21.2	394.08
##	139	0.24980	0.0	21.89	0	0.6240	5.857	98.2	1.6686	4	437	21.2	392.04
##	140	0.54452	0.0	21.89	0	0.6240	6.151	97.9	1.6687	4	437	21.2	396.90
##	141	0.29090	0.0	21.89	0	0.6240	6.174	93.6	1.6119	4	437	21.2	388.08
##	142	1.62864	0.0	21.89	0	0.6240	5.019	100.0	1.4394	4	437	21.2	396.90
##	143	3.32105	0.0	19.58	1	0.8710	5.403	100.0	1.3216	5	403	14.7	396.90
##	144	4.09740	0.0	19.58	0	0.8710	5.468	100.0	1.4118	5	403	14.7	396.90
##	145	2.77974	0.0	19.58	0	0.8710	4.903	97.8	1.3459	5	403	14.7	396.90
##	146	2.37934	0.0	19.58	0	0.8710	6.130	100.0	1.4191	5	403	14.7	172.91
##	147	2.15505	0.0	19.58	0	0.8710	5.628	100.0	1.5166	5	403	14.7	169.27
##	148	2.36862	0.0	19.58	0	0.8710	4.926	95.7	1.4608	5	403	14.7	391.71
##	149	2.33099	0.0	19.58	0	0.8710	5.186	93.8	1.5296	5	403	14.7	356.99
##	150	2.73397	0.0	19.58	0	0.8710	5.597	94.9	1.5257	5	403	14.7	351.85
##	151	1.65660	0.0	19.58	0	0.8710	6.122	97.3	1.6180	5	403	14.7	372.80
##	152	1.49632	0.0	19.58	0	0.8710	5.404	100.0	1.5916	5	403	14.7	341.60
##	153	1.12658	0.0	19.58	1	0.8710	5.012	88.0	1.6102	5	403	14.7	343.28
##	154	2.14918	0.0	19.58	0	0.8710	5.709	98.5	1.6232	5	403	14.7	261.95
##	155	1.41385	0.0	19.58	1	0.8710	6.129	96.0	1.7494	5	403	14.7	321.02
##	156	3.53501	0.0	19.58	1	0.8710	6.152	82.6	1.7455	5	403	14.7	88.01
##	157	2.44668	0.0	19.58	0	0.8710	5.272	94.0	1.7364	5	403	14.7	88.63
##	158	1.22358	0.0	19.58	0	0.6050	6.943	97.4	1.8773	5	403	14.7	363.43
##	159	1.34284	0.0	19.58	0	0.6050	6.066	100.0	1.7573	5	403	14.7	353.89
##	160	1.42502	0.0	19.58	0	0.8710	6.510	100.0	1.7659	5	403	14.7	364.31
##	161	1.27346	0.0	19.58	1	0.6050	6.250	92.6	1.7984	5	403	14.7	338.92
##	162	1.46336	0.0	19.58	0	0.6050	7.489	90.8	1.9709	5	403	14.7	374.43
##	163	1.83377	0.0	19.58	1	0.6050	7.802	98.2	2.0407	5	403	14.7	389.61
##	164	1.51902	0.0	19.58	1	0.6050	8.375	93.9	2.1620	5	403	14.7	388.45
##	165	2.24236	0.0	19.58	0	0.6050	5.854	91.8	2.4220	5	403	14.7	395.11
##	166	2.92400	0.0	19.58	0	0.6050	6.101	93.0	2.2834	5	403	14.7	240.16
	167	2.01019		19.58	0	0.6050	7.929	96.2	2.0459		403		369.30
##	168	1.80028		19.58	0	0.6050	5.877	79.2	2.4259		403	14.7	227.61
	169	2.30040		19.58		0.6050		96.1	2.1000		403		297.09
	170	2.44953		19.58		0.6050		95.2	2.2625		403		330.04
	171	1.20742		19.58		0.6050		94.6	2.4259		403		292.29
	172	2.31390		19.58		0.6050		97.3	2.3887		403		348.13
	173	0.13914	0.0	4.05		0.5100		88.5	2.5961		296		396.90
	174	0.09178	0.0			0.5100		84.1	2.6463		296		395.50
	175	0.08447	0.0			0.5100		68.7	2.7019		296		393.23
	176	0.06664	0.0	4.05		0.5100		33.1	3.1323		296		390.96
	177	0.07022	0.0	4.05		0.5100		47.2	3.5549		296		393.23
••			•		•				·	•			

## 180 0.06642 0.0 4.05 0 0.5100 6.860 74.4 2.9153 5 266 16.6 391.27 ## 181 0.06588 0.0 2.46 0 0.4880 6.980 58.4 2.8290 3 193 17.8 395.56 ## 182 0.06888 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 395.56 ## 182 0.06888 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 395.96 ## 183 0.09103 0.0 2.46 0 0.4880 6.145 592.2 2.7006 3 193 17.8 395.90 ## 185 0.08038 0.0 2.46 0 0.4880 6.563 95.6 2.8470 3 193 17.8 395.90 ## 185 0.06047 0.0 2.46 0 0.4880 6.563 95.6 2.8470 3 193 17.8 395.90 ## 186 0.06047 0.0 2.46 0 0.4880 6.563 95.6 2.8470 3 193 17.8 391.01 ## 187 0.05602 0.0 2.46 0 0.4880 7.831 53.6 3.2797 3 193 17.8 391.01 ## 188 0.70875 45.0 3.44 0 0.4370 6.553 68.8 3.2797 3 193 17.8 391.01 ## 189 0.12579 45.0 3.44 0 0.4370 6.556 29.1 4.5667 5 398 15.2 393.8 ## 190 0.08370 45.0 3.44 0 0.4370 6.556 29.1 4.5667 5 398 15.2 393.8 ## 191 0.09068 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 393.94 ## 191 0.09068 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 397.7 68 ## 191 0.09681 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 397.9 ## 191 0.00691 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 397.6 ## 191 0.00691 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 397.6 ## 191 0.00691 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 397.6 ## 191 0.00691 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 397.6 ## 191 0.00691 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 390.3 ## 191 0.00691 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 390.3 ## 191 0.00691 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 390.3 ## 191 0.00718 80.0 1.52 0 0.4040 7.276 36.3 7.090 2 329 12.6 364.3 ## 191 0.00378 80.0 1.52 0 0.4040 7.276 36.7 7.000 2 329 12.6 364.3 ## 192 0.03788 80.0 1.52 0 0.4040 7.287 34.1 7.3090 2 329 12.6 364.3 ## 201 0.03778 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 17.0 396.90 ## 202 0.03445 80.5 0.0 1.59 0 0.4040 7.076 3.6 7.3 3.9454 4 277 18.6 390.5 ## 203 0.02177 82.5 2.03 0 0.4040 7.287 3.3 3.9454 4 277 18.6 390.5 ## 203 0.032179 80.5 0.0 10.59 0 0.4890 5.344 1	##	178	0.05425	0.0	4.05	0	0.5100	6.315	73.4	3.3175	5	296	16.6	395.60
## 1812 0.06588 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 395.56 ## 183 0.09103 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 394.12 ## 184 0.10008 0.0 2.46 0 0.4880 6.53 95.6 2.8470 3 193 17.8 394.12 ## 185 0.08308 0.0 2.46 0 0.4880 6.563 95.6 2.8470 3 193 17.8 394.12 ## 186 0.08047 0.0 2.46 0 0.4880 6.553 95.6 2.8470 3 193 17.8 395.90 ## 187 0.05602 0.0 2.46 0 0.4880 6.553 95.6 2.8470 3 193 17.8 395.90 ## 187 0.05602 0.0 2.46 0 0.4880 6.553 95.6 2.8470 3 193 17.8 395.90 ## 188 0.07875 45.0 3.44 0 0.4370 6.556 29.1 4.5867 5 398 15.2 383.87 ## 189 0.12579 45.0 3.44 0 0.4370 6.556 29.1 4.5867 5 398 15.2 382.84 ## 190 0.0986 45.0 3.44 0 0.4370 6.556 29.1 4.5867 5 398 15.2 382.84 ## 191 0.0986 45.0 3.44 0 0.4370 6.951 21.5 6.4798 5 398 15.2 387.49 ## 191 0.0986 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 387.49 ## 191 0.0986 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 389.71 ## 193 0.0691 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 389.71 ## 194 0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 393.37 ## 195 0.0131 80.0 0.46 0 0.4220 7.875 32.0 5.6444 4 255 14.4 394.23 ## 197 0.04011 80.0 1.52 0 0.4040 7.287 34.1 7.3090 2 329 12.6 396.30 ## 198 0.03768 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 396.30 ## 201 0.03160 85.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 396.90 ## 201 0.03160 85.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 396.90 ## 201 0.03160 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 396.90 ## 202 0.03465 82.5 2.03 0 0.4150 7.683 32.2 5.1180 4 224 14.7 395.78 ## 203 0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 395.36 ## 204 0.03510 95.0 1.47 0 0.4030 7.135 13.9 7.6534 3 0.407 17.0 36.6 3.40 1 1.40	##	179	0.06642	0.0	4.05				74.4					
## 1812 0.06588 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 395.56 ## 183 0.09103 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 394.12 ## 184 0.10008 0.0 2.46 0 0.4880 6.53 95.6 2.8470 3 193 17.8 394.12 ## 185 0.08308 0.0 2.46 0 0.4880 6.563 95.6 2.8470 3 193 17.8 394.12 ## 186 0.08047 0.0 2.46 0 0.4880 6.553 95.6 2.8470 3 193 17.8 395.90 ## 187 0.05602 0.0 2.46 0 0.4880 6.553 95.6 2.8470 3 193 17.8 395.90 ## 187 0.05602 0.0 2.46 0 0.4880 6.553 95.6 2.8470 3 193 17.8 395.90 ## 188 0.07875 45.0 3.44 0 0.4370 6.556 29.1 4.5867 5 398 15.2 383.87 ## 189 0.12579 45.0 3.44 0 0.4370 6.556 29.1 4.5867 5 398 15.2 382.84 ## 190 0.0986 45.0 3.44 0 0.4370 6.556 29.1 4.5867 5 398 15.2 382.84 ## 191 0.0986 45.0 3.44 0 0.4370 6.951 21.5 6.4798 5 398 15.2 387.49 ## 191 0.0986 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 387.49 ## 191 0.0986 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 389.71 ## 193 0.0691 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 389.71 ## 194 0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 393.37 ## 195 0.0131 80.0 0.46 0 0.4220 7.875 32.0 5.6444 4 255 14.4 394.23 ## 197 0.04011 80.0 1.52 0 0.4040 7.287 34.1 7.3090 2 329 12.6 396.30 ## 198 0.03768 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 396.30 ## 201 0.03160 85.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 396.90 ## 201 0.03160 85.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 396.90 ## 201 0.03160 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 396.90 ## 202 0.03465 82.5 2.03 0 0.4150 7.683 32.2 5.1180 4 224 14.7 395.78 ## 203 0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 395.36 ## 204 0.03510 95.0 1.47 0 0.4030 7.135 13.9 7.6534 3 0.407 17.0 36.6 3.40 1 1.40	##	180	0.05780	0.0	2.46	0	0.4880	6.980	58.4	2.8290	3	193	17.8	396.90
## 182 0.06888	##	181		0.0	2.46	0	0.4880	7.765	83.3	2.7410	3	193	17.8	395.56
## 184 0.09103	##	182		0.0	2.46	0	0.4880	6.144	62.2	2.5979	3	193	17.8	396.90
## 185 0.08308	##	183		0.0	2.46	0	0.4880	7.155	92.2	2.7006	3	193	17.8	394.12
## 186 0.08308	##	184		0.0	2.46				95.6					
## 186 0.06047 0.0	##	185		0.0	2.46	0	0.4880	5.604	89.8					
## 187 0.05602	##	186	0.06047	0.0	2.46	0	0.4880	6.153	68.8					
## 188 0.07875	##	187	0.05602	0.0	2.46									
## 189					3.44	0	0.4370	6.782		3.7886				
## 190				45.0										
## 191 0.09068 45.0 3.44 0 0.4370 6.951 21.5 6.4798 5 398 15.2 377.68 ## 192 0.06911 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 397.18 ## 193 0.08664 45.0 3.44 0 0.4370 7.173 26.3 6.4798 5 398 15.2 399.71 ## 194 0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 393.37 ## 195 0.01439 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 376.70 ## 196 0.01381 80.0 0.46 0 0.4220 7.875 32.0 5.6484 4 255 14.4 394.23 ## 197 0.04011 80.0 1.52 0 0.4040 7.278 34.1 7.3090 2 329 12.6 396.90 ## 198 0.04666 80.0 1.52 0 0.4040 7.107 36.6 7.3090 2 329 12.6 396.90 ## 198 0.04666 80.0 1.52 0 0.4040 7.107 36.6 7.3090 2 329 12.6 396.90 ## 198 0.03150 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 17.0 396.90 ## 201 0.01778 95.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 396.90 ## 201 0.03150 95.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 396.90 ## 202 0.03445 82.5 2.03 0 0.4160 6.162 38.4 6.2700 2 348 14.7 393.77 ## 203 0.02177 82.5 2.03 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.78 ## 204 0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.78 ## 205 0.02009 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 395.38 ## 204 0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 395.58 ## 206 0.2599 0 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 394.87 ## 207 0.2269 0 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 394.87 ## 208 0.25199 0 0.0 10.59 1 0.4890 5.891 22.3 3.9454 4 277 18.6 396.93 ## 210 0.43571 0 0.0 10.59 1 0.4890 5.804 5.91 1 4.354 4 277 18.6 396.93 ## 210 0.43571 0 0.0 10.59 1 0.4890 5.805 5.25 4.3549 4 277 18.6 396.93 ## 211 0.43587 0 0.0 10.59 1 0.4890 5.805 5.25 4.3549 4 277 18.6 396.93 ## 212 0.37578 0 0 10.59 1 0.4890 5.805 5.3 3.454 4 277 18.6 395.93 ## 212 0.37578 0 0 10.59 1 0.4890 5.805 5.3 3.8751 4 277 18.6 395.24 ## 212 0.37578 0 0 10.59 1 0.4890 5.805 5.3 3.454 4 277 18.6 395.24 ## 212 0.37578 0 0 10.59 1 0.4890 5.805 5.3 3.454 4 277 18.6 395.24 ## 212 0.35809 0 0 1.59 0 0.4890 5.805 5.3 3.454 4 277 18.6 395.24 ## 212 0.4565 0 0 0 10.59 0 0.4890 5.805 5.3 3.454 4 277 18.6 395.24 ## 212 0.4565 0 0														
## 192 0.06911 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 389.71 ## 194 0.08664 45.0 3.44 0 0.4370 7.178 26.3 6.4798 5 398 15.2 389.49 ## 194 0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 393.37 ## 195 0.01439 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 376.70 ## 196 0.01381 80.0 0.466 0 0.4220 7.875 32.0 5.6484 4 255 14.4 394.23 ## 197 0.04011 80.0 1.52 0 0.4040 7.287 34.1 7.3990 2 329 12.6 354.31 ## 198 0.04666 80.0 1.52 0 0.4040 7.287 34.1 7.3990 2 329 12.6 354.31 ## 199 0.03768 80.0 1.52 0 0.4040 7.274 38.3 7.3990 2 329 12.6 354.31 ## 200 0.03180 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 17.0 396.90 ## 201 0.01778 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 17.0 384.30 ## 202 0.03445 82.5 2.03 0 0.4150 6.162 38.4 6.2700 2 348 14.7 392.78 ## 203 0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 392.78 ## 205 0.02009 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.58 ## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 394.87 ## 207 0.22669 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 394.87 ## 208 0.25199 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 394.87 ## 210 0.13642 0.0 10.59 1 0.4890 6.366 52.5 4.3549 4 277 18.6 394.37 ## 211 0.17446 0.0 10.59 1 0.4890 5.940 92.1 3.8771 4 277 18.6 394.37 ## 212 0.37578 0.0 10.59 1 0.4890 5.940 92.1 3.8771 4 277 18.6 395.24 ## 211 0.17446 0.0 10.59 1 0.4890 5.940 92.1 3.8771 4 277 18.6 395.24 ## 212 0.37578 0.0 10.59 0 0.4890 5.34 100. 3.8750 4 277 18.6 393.35 ## 213 0.07013 0.0 10.59 1 0.4890 5.940 92.1 3.8771 5 276 16.4 392.80 ## 214 0.14052 0.0 10.59 1 0.4890 5.960 92.1 3.8771 5 276 16.4 392.80 ## 215 0.28955 0.0 10.59 0 0.4890 6.365 52.1 3.5875 4 277 18.6 393.43 ## 216 0.19802 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 393.43 ## 217 0.04660 0.0 10.59 1 0.4890 6.064 59.1 3.8771 5 276 16.4 392.80 ## 218 0.07013 0.0 10.59 1 0.4890 6.064 59.1 3.8771 5 276 16.4 392.80 ## 219 0.11625 0.0 10.59 0 0.4890 6.365 52.1 3.8494 4 277 18.6 393.63 ## 219 0.1069 0.0 1.389 1 0.5500	##	191												
## 193 0.08664 45.0 3.44 0 0.4370 7.178 26.3 6.4798 5 398 15.2 390.49 ## 194 0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 376.70 ## 195 0.01439 60.0 2.93 0 0.4010 6.804 18.8 6.2196 1 265 15.6 376.70 ## 196 0.01381 80.0 0.46 0 0.4220 7.875 32.0 5.6484 4 255 14.4 394.23 ## 197 0.04011 80.0 1.52 0 0.4040 7.287 34.1 7.3090 2 329 12.6 396.90 ## 199 0.03768 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 394.20 ## 199 0.03768 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 392.20 ## 201 0.01778 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 17.0 396.90 ## 201 0.01778 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 17.0 396.90 ## 201 0.03456 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 393.77 ## 203 0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 393.78 ## 204 0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.78 ## 205 0.02009 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 390.55 ## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 396.90 ## 210 0.43571 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 394.87 ## 208 0.25199 0.0 10.59 1 0.4890 5.891 22.3 3.9454 4 277 18.6 394.87 ## 209 0.13587 0.0 10.59 1 0.4890 5.344 10.00 3.8750 4 277 18.6 393.25 ## 211 0.17446 0.0 10.59 1 0.4890 5.344 10.00 3.8750 4 277 18.6 393.52 ## 212 0.37578 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 393.53 ## 214 0.14052 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 393.52 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.8556 4 277 18.6 393.52 4 271 18.6 395.24 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.8556 4 277 18.6 393.53 4 271 18.6 395.24 ## 212 0.4560 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 393.53 4 271 18.6 395.34 4 277 18.6 393.63 4 271 18.6 395.24 4 277 18.6 393.53 4 271 18.6 395.24 4 277 18.6 393.63 4 270 3758 50	##	192												
## 194 0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 393.37 ## 195 0.01439 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 393.37 ## 197 0.04011 80.0 0.46 0 0.4220 7.875 32.0 5.6484 4 255 15.6 376.70 1 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
## 195														
## 196														
## 197														
## 198														
## 199						0	0.4040	7.107						
## 200													12.6	392.20
## 201 0.01778 95.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 384.30 ## 202 0.03445 82.5 2.03 0 0.4150 6.162 38.4 6.2700 2 348 14.7 393.77 ## 203 0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 395.38 ## 204 0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.78 ## 205 0.02009 95.0 2.68 0 0.4161 8.034 31.9 5.1180 4 224 14.7 390.55 ## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 396.90 ## 207 0.22969 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 394.87 ## 208 0.25199 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 389.43 ## 210 0.43571 0.0 10.59 1 0.4890 6.046 59.1 4.2392 4 277 18.6 389.43 ## 211 0.17446 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 393.25 ## 212 0.37578 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 395.90 ## 213 0.21719 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 390.94 ## 215 0.28955 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 390.94 ## 217 0.04560 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 393.63 ## 218 0.07013 0.0 13.89 1 0.5500 6.82 85.1 3.4211 5 276 16.4 392.80 ## 219 0.11069 0.0 13.89 1 0.5500 6.82 85.1 3.4211 5 276 16.4 392.80 ## 219 0.11069 0.0 13.89 1 0.5500 6.951 93.8 2.8893 5 276 16.4 392.74 ## 222 0.40771 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 1 0.5070 6.618 80.8 3.2211 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 1 0.5070 6.618 80.8 3.2211 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 380.30 ## 224 0.61470 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 380.30 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 1					1.47	0	0.4030	6.975						
## 202 0.03445 82.5 2.03 0 0.4150 6.162 38.4 6.2700 2 348 14.7 393.77 ## 203 0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 395.38 ## 204 0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.78 ## 205 0.02009 95.0 2.68 0 0.4161 8.034 31.9 5.1180 4 224 14.7 390.55 ## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 396.90 ## 207 0.22969 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 3894.87 ## 208 0.25199 0.0 10.59 0 0.4890 6.064 59.1 4.2392 4 277 18.6 389.43 ## 210 0.43571 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 396.90 ## 211 0.17446 0.0 10.59 1 0.4890 5.804 88.6 3.6650 4 277 18.6 393.25 ## 212 0.37578 0.0 10.59 1 0.4890 5.804 88.6 3.6650 4 277 18.6 393.25 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 395.24 ## 214 0.14052 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 395.24 ## 215 0.28955 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 393.65 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 219 0.11069 0.0 13.89 1 0.5500 5.850 6.842 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.818 85.1 3.4211 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 1 0.5500 5.818 85.1 3.4211 5 276 16.4 393.74 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 224 0.61470 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.34 ## 224 0.61470 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 395.36 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 395.36 ## 226 0.52693 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 387.38 ## 228 0.44238 0														
## 203														
## 204 0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.78 ## 205 0.02009 95.0 2.68 0 0.4161 8.034 31.9 5.1180 4 224 14.7 390.55 ## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 396.90 ## 207 0.22969 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 389.43 ## 208 0.25199 0.0 10.59 1 0.4890 6.364 59.1 4.2392 4 277 18.6 389.43 ## 209 0.13587 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 389.43 ## 211 0.17446 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 393.25 ## 212 0.37578 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 393.25 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 395.24 ## 214 0.14052 0.0 10.59 1 0.4890 5.412 9.8 3.5875 4 277 18.6 389.38 ## 216 0.28955 0.0 10.59 0 0.4890 5.412 9.8 3.5875 4 277 18.6 389.38 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 389.36 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.35809 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.35809 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.35809 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.35809 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.35809 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.35809 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.40771 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.35809 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 222 0.40771 0.0 6.20 1 0.5500 6.783 97.77 3.2721 8 307 17.4 395.24 ## 222 0.40771 0.0 6.20 1 0.5070 6.618														
## 205 0.02009 95.0 2.68 0 0.4161 8.034 31.9 5.1180 4 224 14.7 390.55 ## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 396.90 ## 207 0.22969 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 3894.87 ## 208 0.25199 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 381.32 ## 210 0.43571 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 381.32 ## 211 0.17446 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 393.25 ## 212 0.37578 0.0 10.59 1 0.4890 5.800 92.1 3.8771 4 277 18.6 393.25 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6650 4 277 18.6 395.24 ## 214 0.14052 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 395.94 ## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 ## 215 0.28955 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 383.68 ## 218 0.07013 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 219 0.11669 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 219 0.11669 0.0 13.89 1 0.5500 5.881 58.5 2.8817 8 307 17.4 396.90 ## 222 0.40771 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.35809 0.0 6.20 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 222 0.40771 0.0 6.20 1 0.5500 6.6373 92.4 3.3633 5 276 16.4 395.74 ## 222 0.40771 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 396.90 ## 222 0.40771 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 396.90 ## 224 0.61470 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.726 78.3 2.8944 8 307 17.4 396.90 ## 226 0.52693 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 396.90 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 385.05 ## 228 0.42380 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 380.34														
## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 396.90 ## 207 0.22969 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 394.87 ## 208 0.25199 0.0 10.59 1 0.4890 5.783 72.7 4.3549 4 277 18.6 389.43 ## 209 0.13587 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 381.32 ## 210 0.43571 0.0 10.59 1 0.4890 5.960 92.1 3.8770 4 277 18.6 396.90 ## 211 0.17446 0.0 10.59 1 0.4890 5.960 92.1 3.8771 4 277 18.6 396.90 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6650 4 277 18.6 390.94 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 ## 215 0.28955 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 1 0.5500 5.981 33.8 2.8893 5 276 16.4 392.80 ## 221 0.35809 0.0 13.89 1 0.5500 5.951 33.8 2.8893 5 276 16.4 392.78 ## 221 0.35809 0.0 6.20 1 0.5500 5.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.642 85.1 3.4211 5 276 16.4 392.78 ## 212 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 395.24 ## 224 0.61470 0.0 6.20 1 0.5070 6.648 80.8 3.2721 8 307 17.4 396.90 ## 224 0.61470 0.0 6.20 0.5040 8.725 83.0 2.8944 8 307 17.4 385.05 ## 225 0.31533 0.0 6.20 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 228 0.4238 0.0 6.20 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 228 0.4238 0.0 6.20 0.5040 8.040 86.5 3.2157 8 307 17.4 385.05 ## 228 0.4238 0.0 6.20 0.5040 8.040 86.5 3.2157 8 307 17.4 385.05 ## 228 0.4238 0.0 6.20 0.5040 8.040 86.5 3.2157 8 307 17.4 385.05 ## 228 0.41238 0.0 6.20 0.5040 7.686 17.0 3.3751 8 307 17.4 387.38 ## 228 0.4238 0.0 6.20 0.5040 6.504 6.552 21.4 3.3751	##	205		95.0	2.68									
## 207														
## 208	##	207	0.22969	0.0	10.59	0	0.4890	6.326					18.6	394.87
## 209 0.13587 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 381.32 ## 210 0.43571 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 396.90 ## 211 0.17446 0.0 10.59 1 0.4890 5.960 92.1 3.8771 4 277 18.6 393.25 ## 212 0.37578 0.0 10.59 1 0.4890 5.960 92.1 3.8771 4 277 18.6 395.24 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 ## 215 0.28955 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 393.63 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 1 0.5500 5.864 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 393.74 ## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.961 88.5 2.8617 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.640 87.3 2.721 8 307 17.4 395.24 ## 225 0.31533 0.0 6.20 0 0.5070 6.6164 91.3 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 228 0.41238 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.668 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 7.666 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34														
## 210 0.43571 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 396.90 ## 211 0.17446 0.0 10.59 1 0.4890 5.960 92.1 3.8771 4 277 18.6 393.25 ## 212 0.37578 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 395.24 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 ## 215 0.28955 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 348.93 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.961 88.5 2.8617 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.649 87.3 2.721 8 307 17.4 395.24 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 382.00 ## 228 0.41238 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 382.00 ## 228 0.41238 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 382.00 ## 228 0.41238 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 382.00 ## 228 0.41238 0.0 6.20 0 0.5040 7.668 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 7.666 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 7.666 17.0 3.3751 8 307 17.4 377.51	##	209	0.13587	0.0	10.59	1	0.4890	6.064	59.1				18.6	381.32
## 211 0.17446 0.0 10.59 1 0.4890 5.960 92.1 3.8771 4 277 18.6 393.25 ## 212 0.37578 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 395.24 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 ## 215 0.28955 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 348.93 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 392.78 ## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 391.70 ## 223 0.62356 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 396.90 ## 225 0.38214 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 228 0.41238 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51	##	210		0.0	10.59				100.0	3.8750			18.6	396.90
## 212 0.37578 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 395.24 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 ## 215 0.28955 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 348.93 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 392.78 ## 220 0.11425 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 224 0.61470 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 385.05 ## 227 0.38214 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 377.51	##	211		0.0	10.59								18.6	393.25
## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 ## 215 0.28955 0.0 10.59 0 0.4890 5.412 9.8 3.5875 4 277 18.6 348.93 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89	##	212	0.37578	0.0	10.59	1	0.4890	5.404	88.6	3.6650	4	277	18.6	395.24
## 215 0.28955 0.0 10.59 0 0.4890 5.412 9.8 3.5875 4 277 18.6 348.93 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 1 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 396.90 ## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 227 0.38214 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34				0.0	10.59	1	0.4890	5.807	53.8		4	277	18.6	390.94
## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 396.90 ## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 227 0.38214 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 387.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	214	0.14052	0.0	10.59	0	0.4890	6.375	32.3	3.9454	4	277	18.6	385.81
## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 396.90 ## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 227 0.38214 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 387.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	215	0.28955	0.0	10.59	0	0.4890	5.412	9.8	3.5875	4	277	18.6	348.93
## 218 0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 396.90 ## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	216	0.19802	0.0	10.59	0	0.4890	6.182	42.4	3.9454				
## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 396.90 ## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 387.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	217	0.04560	0.0	13.89	1	0.5500	5.888	56.0	3.1121	5	276	16.4	392.80
## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 387.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	218	0.07013	0.0	13.89	0	0.5500	6.642	85.1	3.4211	5	276	16.4	392.78
## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	219	0.11069	0.0	13.89	1	0.5500	5.951	93.8	2.8893	5	276	16.4	396.90
## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	220	0.11425	0.0	13.89	1	0.5500	6.373	92.4	3.3633	5	276	16.4	393.74
## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	221	0.35809	0.0	6.20	1	0.5070	6.951	88.5	2.8617	8	307	17.4	391.70
## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	222	0.40771	0.0	6.20	1	0.5070	6.164	91.3	3.0480	8	307	17.4	395.24
## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	223	0.62356	0.0	6.20	1	0.5070	6.879	77.7	3.2721	8	307	17.4	390.39
## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	224	0.61470	0.0	6.20	0	0.5070	6.618	80.8	3.2721	8	307	17.4	396.90
## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	225	0.31533	0.0	6.20	0	0.5040	8.266	78.3	2.8944	8	307	17.4	385.05
## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	226	0.52693	0.0	6.20	0	0.5040	8.725	83.0	2.8944	8	307	17.4	382.00
## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	227	0.38214	0.0	6.20	0	0.5040	8.040	86.5	3.2157	8	307	17.4	387.38
## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34	##	228	0.41238	0.0	6.20	0	0.5040	7.163	79.9	3.2157	8	307	17.4	372.08
	##	229	0.29819	0.0	6.20	0	0.5040	7.686	17.0	3.3751	8	307	17.4	377.51
## 231 0.53700 0.0 6.20 0 0.5040 5.981 68.1 3.6715 8 307 17.4 378.35	##	230	0.44178	0.0	6.20	0	0.5040	6.552	21.4	3.3751	8	307	17.4	380.34
	##	231	0.53700	0.0	6.20	0	0.5040	5.981	68.1	3.6715	8	307	17.4	378.35

	232	0.46296	0.0	6.20		0.5040		76.9	3.6715		307		376.14
##	233	0.57529	0.0	6.20	0	0.5070	8.337	73.3	3.8384	8	307	17.4	385.91
##	234	0.33147	0.0	6.20	0	0.5070	8.247	70.4	3.6519	8	307	17.4	378.95
##	235	0.44791	0.0	6.20	1	0.5070	6.726	66.5	3.6519	8	307	17.4	360.20
##	236	0.33045	0.0	6.20	0	0.5070	6.086	61.5	3.6519	8	307	17.4	376.75
##	237	0.52058	0.0	6.20	1	0.5070	6.631	76.5	4.1480	8	307	17.4	388.45
##	238	0.51183	0.0	6.20	0	0.5070	7.358	71.6	4.1480	8	307	17.4	390.07
##	239	0.08244	30.0	4.93	0	0.4280	6.481	18.5	6.1899	6	300	16.6	379.41
##	240	0.09252	30.0	4.93	0	0.4280	6.606	42.2	6.1899	6	300		383.78
##	241	0.11329	30.0	4.93		0.4280		54.3	6.3361		300		391.25
##	242	0.10612	30.0	4.93		0.4280		65.1	6.3361		300		394.62
##	243	0.10290	30.0	4.93		0.4280		52.9	7.0355		300		372.75
##	244	0.12757	30.0	4.93		0.4280		7.8	7.0355		300		374.71
##	245	0.20608	22.0	5.86		0.4310		76.5	7.9549		330		372.49
##	246							70.3			330		
		0.19133	22.0	5.86		0.4310			7.9549				389.13
##	247	0.33983	22.0	5.86		0.4310		34.9	8.0555		330		390.18
##	248	0.19657	22.0	5.86		0.4310		79.2	8.0555		330		376.14
##	249	0.16439	22.0	5.86		0.4310		49.1	7.8265		330		374.71
		0.19073	22.0	5.86		0.4310		17.5	7.8265		330		393.74
		0.14030	22.0	5.86		0.4310		13.0	7.3967		330		396.28
	252	0.21409	22.0	5.86		0.4310		8.9	7.3967		330		377.07
##	253	0.08221	22.0	5.86		0.4310		6.8	8.9067	7	330	19.1	386.09
##	254	0.36894	22.0	5.86		0.4310		8.4	8.9067	7	330		396.90
##	255	0.04819	80.0	3.64	0	0.3920	6.108	32.0	9.2203		315	16.4	392.89
##	256	0.03548	80.0	3.64	0	0.3920	5.876	19.1	9.2203	1	315	16.4	395.18
##	257	0.01538	90.0	3.75	0	0.3940	7.454	34.2	6.3361	3	244	15.9	386.34
##	258	0.61154	20.0	3.97	0	0.6470	8.704	86.9	1.8010	5	264	13.0	389.70
##	259	0.66351	20.0	3.97	0	0.6470	7.333	100.0	1.8946	5	264	13.0	383.29
##	260	0.65665	20.0	3.97	0	0.6470	6.842	100.0	2.0107	5	264	13.0	391.93
##	261	0.54011	20.0	3.97	0	0.6470	7.203	81.8	2.1121	5	264	13.0	392.80
##	262	0.53412	20.0	3.97	0	0.6470	7.520	89.4	2.1398	5	264	13.0	388.37
##	263	0.52014	20.0	3.97	0	0.6470	8.398	91.5	2.2885	5	264	13.0	386.86
##	264	0.82526	20.0	3.97	0	0.6470	7.327	94.5	2.0788	5	264	13.0	393.42
	265	0.55007	20.0	3.97		0.6470		91.6	1.9301		264		387.89
		0.76162	20.0	3.97		0.6470		62.8	1.9865		264		392.40
	267	0.78570	20.0	3.97		0.6470		84.6	2.1329		264		384.07
	268	0.57834	20.0	3.97		0.5750		67.0	2.4216		264		384.54
	269	0.54050	20.0	3.97		0.5750		52.6	2.8720		264		390.30
	270	0.09065	20.0	6.96		0.4640		61.5	3.9175		223		391.34
	271	0.29916	20.0	6.96		0.4640		42.1	4.4290		223		388.65
	272	0.16211	20.0	6.96		0.4640		16.3	4.4290		223		396.90
	273	0.11460	20.0	6.96		0.4640		58.7	3.9175		223		394.96
	274	0.22188	20.0	6.96		0.4640		51.8	4.3665		223		390.77
	275	0.22188	40.0			0.4470		32.9	4.0776		254		396.90
				6.41									
	276	0.09604	40.0	6.41		0.4470		42.8	4.2673		254		396.90
	277	0.10469	40.0	6.41		0.4470		49.0	4.7872		254		389.25
	278	0.06127	40.0	6.41		0.4470		27.6	4.8628		254		393.45
	279	0.07978	40.0	6.41		0.4470		32.1	4.1403		254		396.90
	280	0.21038	20.0	3.33		0.4429		32.2	4.1007		216		396.90
	281	0.03578	20.0	3.33		0.4429		64.5	4.6947		216		387.31
	282	0.03705	20.0	3.33		0.4429		37.2	5.2447		216		392.23
	283	0.06129	20.0	3.33		0.4429		49.7	5.2119		216		377.07
	284	0.01501	90.0	1.21		0.4010		24.8	5.8850		198		395.52
##	285	0.00906	90.0	2.97	0	0.4000	7.088	20.8	7.3073	1	285	15.3	394.72

##	286	0.01096	55.0	2.25	0	0.3890	6 453	31.9	7.3073	1	300	15 3	394.72
	287	0.01965	80.0	1.76		0.3850		31.5	9.0892		241		341.60
	288	0.03871	52.5	5.32		0.4050		31.3	7.3172		293		396.90
	289	0.03571	52.5	5.32		0.4050		45.6	7.3172		293		396.90
	290	0.04390	52.5	5.32		0.4050					293		371.72
								22.9	7.3172				
	291	0.03502	80.0	4.95		0.4110		27.9	5.1167		245		396.90
	292	0.07886	80.0	4.95		0.4110		27.7	5.1167		245		396.90
	293	0.03615	80.0	4.95		0.4110		23.4	5.1167		245		396.90
	294	0.08265		13.92		0.4370		18.4	5.5027		289		396.90
	295	0.08199		13.92		0.4370		42.3	5.5027		289		396.90
	296	0.12932		13.92		0.4370		31.1	5.9604		289		396.90
	297	0.05372		13.92		0.4370		51.0	5.9604		289		392.85
##	298	0.14103	0.0	13.92	0	0.4370	5.790	58.0	6.3200	4	289	16.0	396.90
##	299	0.06466	70.0	2.24		0.4000		20.1	7.8278	5	358	14.8	368.24
##	300	0.05561	70.0	2.24	0	0.4000	7.041	10.0	7.8278	5	358	14.8	371.58
##	301	0.04417	70.0	2.24	0	0.4000	6.871	47.4	7.8278	5	358	14.8	390.86
##	302	0.03537	34.0	6.09	0	0.4330	6.590	40.4	5.4917	7	329	16.1	395.75
##	303	0.09266	34.0	6.09	0	0.4330	6.495	18.4	5.4917	7	329	16.1	383.61
##	304	0.10000	34.0	6.09	0	0.4330	6.982	17.7	5.4917	7	329	16.1	390.43
##	305	0.05515	33.0	2.18	0	0.4720	7.236	41.1	4.0220	7	222	18.4	393.68
##	306	0.05479	33.0	2.18	0	0.4720	6.616	58.1	3.3700	7	222	18.4	393.36
##	307	0.07503	33.0	2.18	0	0.4720	7.420	71.9	3.0992	7	222	18.4	396.90
##	308	0.04932	33.0	2.18	0	0.4720	6.849	70.3	3.1827	7	222	18.4	396.90
##	309	0.49298	0.0	9.90	0	0.5440	6.635	82.5	3.3175	4	304	18.4	396.90
##	310	0.34940	0.0	9.90	0	0.5440	5.972	76.7	3.1025	4	304	18.4	396.24
##	311	2.63548	0.0	9.90	0	0.5440	4.973	37.8	2.5194	4	304	18.4	350.45
##	312	0.79041	0.0	9.90	0	0.5440	6.122	52.8	2.6403	4	304	18.4	396.90
##	313	0.26169	0.0	9.90	0	0.5440	6.023	90.4	2.8340	4	304	18.4	396.30
##	314	0.26938	0.0	9.90	0	0.5440	6.266	82.8	3.2628		304		393.39
##	315	0.36920	0.0	9.90	0	0.5440	6.567	87.3	3.6023		304	18.4	395.69
##	316	0.25356	0.0	9.90	0	0.5440	5.705	77.7	3.9450	4	304	18.4	396.42
##	317	0.31827	0.0	9.90	0	0.5440	5.914	83.2	3.9986	4	304	18.4	390.70
	318	0.24522	0.0	9.90	0	0.5440	5.782	71.7	4.0317	4	304	18.4	396.90
	319	0.40202	0.0	9.90	0	0.5440	6.382	67.2	3.5325		304		395.21
	320	0.47547	0.0	9.90	0	0.5440	6.113	58.8	4.0019		304		396.23
	321	0.16760	0.0	7.38		0.4930		52.3	4.5404		287		396.90
	322	0.18159	0.0	7.38		0.4930		54.3	4.5404		287		396.90
	323	0.35114	0.0	7.38		0.4930		49.9	4.7211		287		396.90
	324	0.28392	0.0	7.38		0.4930		74.3	4.7211		287		391.13
	325	0.34109	0.0	7.38		0.4930		40.1	4.7211		287		396.90
	326	0.19186	0.0	7.38		0.4930		14.7	5.4159		287		393.68
	327	0.30347	0.0	7.38		0.4930		28.9	5.4159		287		396.90
	328	0.24103	0.0	7.38		0.4930		43.7	5.4159		287		396.90
	329	0.06617	0.0	3.24		0.4600		25.8	5.2146		430		382.44
	330	0.06724	0.0	3.24		0.4600		17.2	5.2146		430		375.21
	331	0.04544	0.0	3.24		0.4600		32.2	5.8736		430		368.57
	332	0.05023	35.0	6.06		0.4379		28.4	6.6407		304		394.02
	333	0.03466	35.0	6.06		0.4379		23.3	6.6407		304		362.25
	334	0.05083	0.0	5.19		0.5150		38.1	6.4584		224		389.71
	335	0.03083	0.0	5.19		0.5150		38.5	6.4584		224		389.40
	336					0.5150		34.5			224		396.90
	337	0.03961 0.03427	0.0	5.19		0.5150		46.3	5.9853 5.2311		224		396.90
				5.19									
	338	0.03041	0.0	5.19		0.5150		59.6	5.6150		224		394.81
##	339	0.03306	0.0	5.19	U	0.5150	0.059	37.3	4.8122	5	224	20.2	396.14

шш	240	0.05407	0 0	E 10	^	0 5150	E 00E	1E 1	4 0100		004	20. 0	206 00
	340	0.05497	0.0	5.19		0.5150		45.4	4.8122		224		396.90
	341	0.06151	0.0	5.19		0.5150		58.5	4.8122		224		396.90
	342	0.01301	35.0	1.52		0.4420		49.3	7.0379		284		394.74
	343	0.02498	0.0	1.89		0.5180		59.7	6.2669		422		389.96
	344	0.02543	55.0	3.78		0.4840		56.4	5.7321		370		396.90
	345	0.03049	55.0	3.78		0.4840		28.1	6.4654		370		387.97
##	346	0.03113	0.0	4.39	0	0.4420	6.014	48.5	8.0136	3	352	18.8	385.64
##	347	0.06162	0.0	4.39	0	0.4420	5.898	52.3	8.0136	3	352	18.8	364.61
##	348	0.01870	85.0	4.15	0	0.4290	6.516	27.7	8.5353	4	351	17.9	392.43
##	349	0.01501	80.0	2.01	0	0.4350	6.635	29.7	8.3440	4	280	17.0	390.94
##	350	0.02899	40.0	1.25	0	0.4290	6.939	34.5	8.7921	1	335	19.7	389.85
##	351	0.06211	40.0	1.25	0	0.4290	6.490	44.4	8.7921	1	335	19.7	396.90
##	352	0.07950	60.0	1.69	0	0.4110	6.579	35.9	10.7103	4	411	18.3	370.78
##	353	0.07244	60.0	1.69	0	0.4110	5.884	18.5	10.7103	4	411	18.3	392.33
##	354	0.01709	90.0	2.02		0.4100			12.1265		187		384.46
##	355	0.04301	80.0	1.91		0.4130			10.5857		334		382.80
	356	0.10659	80.0	1.91		0.4130			10.5857		334		376.04
	357	8.98296		18.10		0.7700		97.4	2.1222		666		377.73
	358	3.84970		18.10		0.7700		91.0	2.5052		666		391.34
	359	5.20177		18.10		0.7700		83.4	2.7227		666		395.43
	360	4.26131		18.10		0.7700		81.3	2.5091		666		390.74
	361	4.54192		18.10		0.7700		88.0	2.5182		666		374.56
	362	3.83684		18.10		0.7700		91.1	2.2955		666		350.65
	363	3.67822		18.10		0.7700		96.2	2.1036		666		380.79
	364	4.22239		18.10		0.7700		89.0	1.9047		666		353.04
	365	3.47428		18.10		0.7180		82.9	1.9047		666		354.55
	366	4.55587		18.10		0.7180		87.9	1.6132		666		354.70
	367	3.69695		18.10		0.7180		91.4	1.7523		666		316.03
	368	13.52220		18.10		0.6310			1.5106		666		131.42
	369	4.89822		18.10		0.6310			1.3325		666		375.52
	370	5.66998		18.10		0.6310		96.8	1.3567		666		375.32
	371	6.53876									666		
	372			18.10 18.10		0.6310		97.5	1.2024		666		392.05
		9.23230							1.1691 1.1296				366.15 347.88
	373	8.26725		18.10		0.6680		89.6			666 666		396.90
		11.10810 18.49820		18.10					1.1742				
##				18.10		0.6680			1.1370		666		396.90
		19.60910		18.10		0.6710		97.9	1.3163		666		396.90
		15.28800		18.10		0.6710		93.3	1.3449		666		363.02
		9.82349		18.10		0.6710		98.8	1.3580		666		396.90
		23.64820		18.10		0.6710		96.2			666		396.90
		17.86670		18.10		0.6710			1.3861		666		393.74
		88.97620		18.10		0.6710		91.9	1.4165		666		396.90
		15.87440		18.10		0.6710		99.1	1.5192		666		396.90
	383	9.18702		18.10		0.7000			1.5804		666		396.90
	384	7.99248		18.10		0.7000			1.5331		666		396.90
		20.08490		18.10		0.7000		91.2	1.4395		666		285.83
		16.81180		18.10		0.7000		98.1	1.4261		666		396.90
		24.39380		18.10		0.7000			1.4672		666		396.90
		22.59710		18.10		0.7000		89.5	1.5184		666		396.90
		14.33370		18.10		0.7000			1.5895		666		372.92
	390	8.15174		18.10		0.7000		98.9	1.7281		666		396.90
	391	6.96215		18.10		0.7000		97.0	1.9265		666		394.43
##	392	5.29305		18.10		0.7000		82.5	2.1678	24	666	20.2	378.38
##	393	11.57790	0.0	18.10	0	0.7000	5.036	97.0	1.7700	24	666	20.2	396.90

шш	204	0	C 1 17C	0 0	10 10	^	0 0000	C 100	00.0	1 7010	0.4	ccc	00 0	206 00
	394		64476		18.10		0.6930		92.6	1.7912		666		396.90
			35980		18.10		0.6930		94.7	1.7821	24	666		396.90
##	396	8.	71675	0.0	18.10	0	0.6930	6.471	98.8	1.7257	24	666	20.2	391.98
##	397	5.3	87205	0.0	18.10	0	0.6930	6.405	96.0	1.6768	24	666	20.2	396.90
##	398	7.	67202	0.0	18.10	0	0.6930	5.747	98.9	1.6334	24	666	20.2	393.10
##	399	38.	35180	0.0	18.10	0	0.6930	5.453	100.0	1.4896	24	666	20.2	396.90
	400		91655		18.10		0.6930		77.8	1.5004		666		338.16
			04610		18.10		0.6930			1.5888		666		396.90
			23620		18.10		0.6930			1.5741		666		396.90
	403		59571		18.10		0.6930			1.6390		666		376.11
##	404	24.	80170	0.0	18.10		0.6930		96.0	1.7028	24	666	20.2	396.90
##	405	41.	52920	0.0	18.10	0	0.6930	5.531	85.4	1.6074	24	666	20.2	329.46
##	406	67.	92080	0.0	18.10	0	0.6930	5.683	100.0	1.4254	24	666	20.2	384.97
##	407	20.	71620	0.0	18.10	0	0.6590	4.138	100.0	1.1781	24	666	20.2	370.22
##	408	11.	95110	0.0	18.10	0	0.6590	5.608	100.0	1.2852	24	666	20.2	332.09
	409		40389		18.10		0.5970		97.9	1.4547		666		314.64
			43830		18.10		0.5970			1.4655		666		179.36
			13580		18.10		0.5970			1.4130		666	20.2	2.60
			05070		18.10		0.5970			1.5275		666	20.2	35.05
			81100		18.10		0.5970			1.5539		666	20.2	28.79
##	414	28.	65580	0.0	18.10	0	0.5970	5.155	100.0	1.5894	24	666	20.2	210.97
##	415	45.	74610	0.0	18.10	0	0.6930	4.519	100.0	1.6582	24	666	20.2	88.27
##	416	18.	08460	0.0	18.10	0	0.6790	6.434	100.0	1.8347	24	666	20.2	27.25
##	417	10.	83420	0.0	18.10	0	0.6790	6.782	90.8	1.8195	24	666	20.2	21.57
##	418	25.	94060	0.0	18.10	0	0.6790	5.304	89.1	1.6475	24	666	20.2	127.36
##	419	73.	53410	0.0	18.10	0	0.6790	5.957	100.0	1.8026	24	666	20.2	16.45
##	420	11.	81230		18.10		0.7180		76.5	1.7940	24	666	20.2	48.45
			08740		18.10		0.7180			1.8589		666		318.75
	422		02259		18.10		0.7180		95.3	1.8746		666		319.98
			04820		18.10		0.6140		87.6	1.9512		666		291.55
	424		05042							2.0218		666	20.2	
					18.10		0.6140		85.1					2.52
	425		79212		18.10		0.5840		70.6	2.0635		666	20.2	3.65
			86030		18.10		0.6790		95.4	1.9096		666	20.2	7.68
##	427	12.	24720	0.0	18.10	0	0.5840	5.837	59.7	1.9976	24	666	20.2	24.65
##	428	37.	66190	0.0	18.10	0	0.6790	6.202	78.7	1.8629	24	666	20.2	18.82
##	429	7.	36711	0.0	18.10	0	0.6790	6.193	78.1	1.9356	24	666	20.2	96.73
##	430	9.	33889	0.0	18.10	0	0.6790	6.380	95.6	1.9682	24	666	20.2	60.72
##	431	8.	49213	0.0	18.10	0	0.5840	6.348	86.1	2.0527	24	666	20.2	83.45
			06230		18.10		0.5840		94.3	2.0882		666	20.2	81.33
	433		44405		18.10		0.5840		74.8	2.2004		666	20.2	97.95
	434		58107		18.10		0.7130		87.9	2.3158		666		100.19
			91340		18.10		0.7130		95.0	2.2222		666		100.13
			16040		18.10		0.7400		94.6	2.1247		666		109.85
			42080		18.10		0.7400		93.3	2.0026		666	20.2	27.49
			17720		18.10		0.7400			1.9142		666	20.2	9.32
			67810		18.10		0.7400		87.9	1.8206		666	20.2	
##	440	9.	39063	0.0	18.10	0	0.7400	5.627	93.9	1.8172	24	666	20.2	396.90
##	441	22.	05110	0.0	18.10	0	0.7400	5.818	92.4	1.8662	24	666	20.2	391.45
##	442	9.	72418	0.0	18.10	0	0.7400	6.406	97.2	2.0651	24	666	20.2	385.96
##	443	5.	66637	0.0	18.10	0	0.7400	6.219	100.0	2.0048	24	666	20.2	395.69
##	444		96654		18.10	0	0.7400	6.485	100.0	1.9784		666		386.73
##	445		80230		18.10		0.7400		96.6	1.8956		666		240.52
			67180		18.10		0.7400		94.8	1.9879		666		43.06
	447		28807		18.10		0.7400		96.4	2.0720		666		318.01
ππ	T-T1	0.	20001	0.0	10.10	U	J. 1 700	J.J-1	JJ. 1	2.0120	27	500	20.2	510.01

	448	9.92485		18.10		0.7400		96.6	2.1980		666		388.52
##	449	9.32909		18.10		0.7130		98.7	2.2616	24	666		396.90
##	450	7.52601	0.0	18.10	0	0.7130	6.417	98.3	2.1850	24	666	20.2	304.21
##	451	6.71772	0.0	18.10	0	0.7130	6.749	92.6	2.3236	24	666	20.2	0.32
##	452	5.44114	0.0	18.10	0	0.7130	6.655	98.2	2.3552	24	666	20.2	355.29
##	453	5.09017	0.0	18.10	0	0.7130	6.297	91.8	2.3682	24	666	20.2	385.09
##	454	8.24809	0.0	18.10	0	0.7130	7.393	99.3	2.4527	24	666	20.2	375.87
	455	9.51363		18.10		0.7130		94.1	2.4961		666	20.2	6.68
	456	4.75237		18.10		0.7130		86.5	2.4358		666	20.2	50.92
	457	4.66883		18.10		0.7130		87.9	2.5806		666	20.2	10.48
	458	8.20058		18.10		0.7130		80.3	2.7792		666	20.2	3.50
	459										666		
		7.75223		18.10		0.7130		83.7	2.7831				272.21
	460	6.80117		18.10		0.7130		84.4	2.7175		666		396.90
	461	4.81213		18.10		0.7130		90.0	2.5975		666		255.23
	462	3.69311		18.10		0.7130		88.4	2.5671		666		391.43
##	463	6.65492	0.0	18.10		0.7130		83.0	2.7344	24	666		396.90
##	464	5.82115	0.0	18.10	0	0.7130	6.513	89.9	2.8016	24	666	20.2	393.82
##	465	7.83932	0.0	18.10	0	0.6550	6.209	65.4	2.9634	24	666	20.2	396.90
##	466	3.16360	0.0	18.10	0	0.6550	5.759	48.2	3.0665	24	666	20.2	334.40
##	467	3.77498	0.0	18.10	0	0.6550	5.952	84.7	2.8715	24	666	20.2	22.01
##	468	4.42228	0.0	18.10	0	0.5840	6.003	94.5	2.5403	24	666	20.2	331.29
##	469	15.57570	0.0	18.10	0	0.5800	5.926	71.0	2.9084	24	666	20.2	368.74
##	470	13.07510		18.10		0.5800		56.7	2.8237	24	666	20.2	396.90
	471	4.34879		18.10		0.5800		84.0	3.0334		666		396.90
	472	4.03841		18.10		0.5320		90.7	3.0993		666		395.33
	473	3.56868		18.10		0.5800		75.0	2.8965		666		393.37
	474	4.64689		18.10		0.6140		67.6	2.5329		666		374.68
	475										666		
		8.05579		18.10		0.5840		95.4	2.4298				352.58
	476	6.39312		18.10		0.5840		97.4	2.2060		666		302.76
	477	4.87141		18.10		0.6140		93.6	2.3053		666		396.21
		15.02340		18.10		0.6140		97.3	2.1007		666		349.48
		10.23300		18.10		0.6140		96.7	2.1705		666		379.70
##	480	14.33370		18.10	0	0.6140	6.229	88.0	1.9512	24	666	20.2	383.32
##	481	5.82401	0.0	18.10	0	0.5320	6.242	64.7	3.4242	24	666	20.2	396.90
##	482	5.70818	0.0	18.10	0	0.5320	6.750	74.9	3.3317	24	666	20.2	393.07
##	483	5.73116	0.0	18.10	0	0.5320	7.061	77.0	3.4106	24	666	20.2	395.28
##	484	2.81838	0.0	18.10	0	0.5320	5.762	40.3	4.0983	24	666	20.2	392.92
##	485	2.37857	0.0	18.10	0	0.5830	5.871	41.9	3.7240	24	666	20.2	370.73
##	486	3.67367	0.0	18.10	0	0.5830	6.312	51.9	3.9917	24	666	20.2	388.62
##	487	5.69175	0.0	18.10	0	0.5830	6.114	79.8	3.5459		666		392.68
	488	4.83567		18.10		0.5830		53.2	3.1523		666		388.22
	489	0.15086		27.74		0.6090		92.7	1.8209		711		395.09
	490	0.18337		27.74		0.6090		98.3	1.7554		711		344.05
	491	0.20746		27.74		0.6090		98.0	1.8226		711		318.43
	492	0.10574		27.74		0.6090		98.8	1.8681		711		390.11
						0.6090							
	493	0.11132		27.74				83.5	2.1099		711		396.90
	494	0.17331	0.0	9.69		0.5850		54.0	2.3817		391		396.90
	495	0.27957	0.0	9.69		0.5850		42.6	2.3817		391		396.90
	496	0.17899	0.0	9.69		0.5850		28.8	2.7986		391		393.29
	497	0.28960	0.0	9.69		0.5850		72.9	2.7986		391		396.90
	498	0.26838	0.0	9.69		0.5850		70.6	2.8927		391		396.90
##	499	0.23912	0.0	9.69	0	0.5850	6.019	65.3	2.4091		391	19.2	396.90
##	500	0.17783	0.0	9.69	0	0.5850	5.569	73.5	2.3999	6	391	19.2	395.77
##	501	0.22438	0.0	9.69	0	0.5850	6.027	79.7	2.4982	6	391	19.2	396.90

```
## 502 0.06263
                  0.0 11.93
                               0 0.5730 6.593 69.1 2.4786
                                                               1 273
                                                                        21.0 391.99
## 503 0.04527
                  0.0 11.93
                               0 0.5730 6.120 76.7 2.2875
                                                               1 273
                                                                        21.0 396.90
## 504
                  0.0 11.93
       0.06076
                               0 0.5730 6.976 91.0 2.1675
                                                              1 273
                                                                        21.0 396.90
                  0.0 11.93
                               0 0.5730 6.794 89.3 2.3889
                                                               1 273
                                                                        21.0 393.45
## 505 0.10959
## 506 0.04741
                  0.0 11.93
                               0 0.5730 6.030 80.8 2.5050
                                                              1 273
                                                                        21.0 396.90
##
       1stat medv
## 1
        4.98 24.0
## 2
        9.14 21.6
## 3
        4.03 34.7
## 4
        2.94 33.4
## 5
        5.33 36.2
        5.21 28.7
## 6
## 7
       12.43 22.9
## 8
       19.15 27.1
## 9
       29.93 16.5
## 10
     17.10 18.9
## 11
       20.45 15.0
## 12
       13.27 18.9
## 13
      15.71 21.7
## 14
        8.26 20.4
## 15
      10.26 18.2
## 16
        8.47 19.9
        6.58 23.1
## 17
## 18
       14.67 17.5
## 19
      11.69 20.2
## 20
      11.28 18.2
## 21
       21.02 13.6
## 22
      13.83 19.6
## 23
      18.72 15.2
      19.88 14.5
## 24
## 25
       16.30 15.6
## 26
       16.51 13.9
## 27
       14.81 16.6
## 28
      17.28 14.8
## 29
       12.80 18.4
## 30
      11.98 21.0
## 31
      22.60 12.7
## 32
     13.04 14.5
## 33
       27.71 13.2
      18.35 13.1
## 34
## 35
      20.34 13.5
## 36
        9.68 18.9
       11.41 20.0
## 37
        8.77 21.0
## 38
## 39
       10.13 24.7
        4.32 30.8
## 40
        1.98 34.9
## 41
## 42
        4.84 26.6
## 43
        5.81 25.3
        7.44 24.7
## 44
## 45
        9.55 21.2
## 46
      10.21 19.3
## 47
       14.15 20.0
## 48 18.80 16.6
```

```
## 49 30.81 14.4
## 50
      16.20 19.4
## 51
      13.45 19.7
## 52
        9.43 20.5
## 53
        5.28 25.0
## 54
        8.43 23.4
## 55
      14.80 18.9
        4.81 35.4
## 56
## 57
        5.77 24.7
## 58
        3.95 31.6
## 59
        6.86 23.3
        9.22 19.6
## 60
      13.15 18.7
## 61
## 62
       14.44 16.0
## 63
        6.73 22.2
## 64
        9.50 25.0
## 65
        8.05 33.0
        4.67 23.5
## 66
## 67
      10.24 19.4
## 68
        8.10 22.0
## 69
       13.09 17.4
## 70
        8.79 20.9
        6.72 24.2
## 71
## 72
        9.88 21.7
## 73
        5.52 22.8
## 74
        7.54 23.4
## 75
        6.78 24.1
## 76
        8.94 21.4
## 77
      11.97 20.0
## 78
      10.27 20.8
## 79
       12.34 21.2
## 80
        9.10 20.3
## 81
        5.29 28.0
        7.22 23.9
## 82
        6.72 24.8
## 83
        7.51 22.9
## 84
## 85
        9.62 23.9
## 86
        6.53 26.6
## 87
       12.86 22.5
## 88
        8.44 22.2
## 89
        5.50 23.6
        5.70 28.7
## 90
## 91
        8.81 22.6
## 92
        8.20 22.0
## 93
        8.16 22.9
        6.21 25.0
## 94
## 95
       10.59 20.6
## 96
        6.65 28.4
      11.34 21.4
## 97
## 98
        4.21 38.7
## 99
        3.57 43.8
## 100 6.19 33.2
## 101 9.42 27.5
## 102 7.67 26.5
```

```
## 103 10.63 18.6
## 104 13.44 19.3
## 105 12.33 20.1
## 106 16.47 19.5
## 107 18.66 19.5
## 108 14.09 20.4
## 109 12.27 19.8
## 110 15.55 19.4
## 111 13.00 21.7
## 112 10.16 22.8
## 113 16.21 18.8
## 114 17.09 18.7
## 115 10.45 18.5
## 116 15.76 18.3
## 117 12.04 21.2
## 118 10.30 19.2
## 119 15.37 20.4
## 120 13.61 19.3
## 121 14.37 22.0
## 122 14.27 20.3
## 123 17.93 20.5
## 124 25.41 17.3
## 125 17.58 18.8
## 126 14.81 21.4
## 127 27.26 15.7
## 128 17.19 16.2
## 129 15.39 18.0
## 130 18.34 14.3
## 131 12.60 19.2
## 132 12.26 19.6
## 133 11.12 23.0
## 134 15.03 18.4
## 135 17.31 15.6
## 136 16.96 18.1
## 137 16.90 17.4
## 138 14.59 17.1
## 139 21.32 13.3
## 140 18.46 17.8
## 141 24.16 14.0
## 142 34.41 14.4
## 143 26.82 13.4
## 144 26.42 15.6
## 145 29.29 11.8
## 146 27.80 13.8
## 147 16.65 15.6
## 148 29.53 14.6
## 149 28.32 17.8
## 150 21.45 15.4
## 151 14.10 21.5
## 152 13.28 19.6
## 153 12.12 15.3
## 154 15.79 19.4
## 155 15.12 17.0
## 156 15.02 15.6
```

```
## 157 16.14 13.1
## 158 4.59 41.3
## 159 6.43 24.3
## 160 7.39 23.3
## 161 5.50 27.0
## 162 1.73 50.0
## 163 1.92 50.0
## 164 3.32 50.0
## 165 11.64 22.7
## 166 9.81 25.0
## 167 3.70 50.0
## 168 12.14 23.8
## 169 11.10 23.8
## 170 11.32 22.3
## 171 14.43 17.4
## 172 12.03 19.1
## 173 14.69 23.1
## 174 9.04 23.6
## 175 9.64 22.6
## 176 5.33 29.4
## 177 10.11 23.2
## 178 6.29 24.6
## 179 6.92 29.9
## 180 5.04 37.2
## 181 7.56 39.8
## 182 9.45 36.2
## 183 4.82 37.9
## 184 5.68 32.5
## 185 13.98 26.4
## 186 13.15 29.6
## 187 4.45 50.0
## 188 6.68 32.0
## 189 4.56 29.8
## 190 5.39 34.9
## 191 5.10 37.0
## 192 4.69 30.5
## 193 2.87 36.4
## 194 5.03 31.1
## 195 4.38 29.1
## 196 2.97 50.0
## 197 4.08 33.3
## 198 8.61 30.3
## 199 6.62 34.6
## 200 4.56 34.9
## 201 4.45 32.9
## 202 7.43 24.1
## 203 3.11 42.3
## 204 3.81 48.5
## 205 2.88 50.0
## 206 10.87 22.6
## 207 10.97 24.4
## 208 18.06 22.5
## 209 14.66 24.4
```

210 23.09 20.0

```
## 218 9.69 28.7
## 219 17.92 21.5
## 220 10.50 23.0
## 221 9.71 26.7
## 222 21.46 21.7
## 223 9.93 27.5
## 224 7.60 30.1
## 225 4.14 44.8
## 226
       4.63 50.0
## 227
       3.13 37.6
## 228 6.36 31.6
## 229 3.92 46.7
## 230 3.76 31.5
## 231 11.65 24.3
## 232 5.25 31.7
## 233 2.47 41.7
## 234 3.95 48.3
## 235 8.05 29.0
## 236 10.88 24.0
## 237 9.54 25.1
## 238 4.73 31.5
## 239 6.36 23.7
## 240 7.37 23.3
## 241 11.38 22.0
## 242 12.40 20.1
## 243 11.22 22.2
## 244 5.19 23.7
## 245 12.50 17.6
## 246 18.46 18.5
## 247 9.16 24.3
## 248 10.15 20.5
## 249 9.52 24.5
## 250 6.56 26.2
## 251 5.90 24.4
## 252
       3.59 24.8
## 253
       3.53 29.6
## 254
       3.54 42.8
## 255
       6.57 21.9
## 256
       9.25 20.9
## 257
       3.11 44.0
## 258
       5.12 50.0
## 259
       7.79 36.0
       6.90 30.1
## 260
## 261 9.59 33.8
## 262 7.26 43.1
## 263 5.91 48.8
## 264 11.25 31.0
```

211 17.27 21.7 ## 212 23.98 19.3 ## 213 16.03 22.4 ## 214 9.38 28.1 ## 215 29.55 23.7 ## 216 9.47 25.0 ## 217 13.51 23.3

```
## 265 8.10 36.5
## 266 10.45 22.8
## 267 14.79 30.7
## 268 7.44 50.0
## 269 3.16 43.5
## 270 13.65 20.7
## 271 13.00 21.1
## 272 6.59 25.2
## 273 7.73 24.4
## 274 6.58 35.2
## 275 3.53 32.4
## 276 2.98 32.0
## 277
       6.05 33.2
## 278 4.16 33.1
## 279 7.19 29.1
## 280 4.85 35.1
## 281 3.76 45.4
## 282 4.59 35.4
## 283 3.01 46.0
## 284 3.16 50.0
## 285 7.85 32.2
## 286 8.23 22.0
## 287 12.93 20.1
## 288 7.14 23.2
## 289 7.60 22.3
## 290 9.51 24.8
## 291 3.33 28.5
## 292 3.56 37.3
## 293 4.70 27.9
## 294 8.58 23.9
## 295 10.40 21.7
## 296 6.27 28.6
## 297 7.39 27.1
## 298 15.84 20.3
## 299 4.97 22.5
## 300 4.74 29.0
## 301 6.07 24.8
## 302 9.50 22.0
## 303 8.67 26.4
## 304 4.86 33.1
## 305 6.93 36.1
## 306 8.93 28.4
## 307
       6.47 33.4
## 308 7.53 28.2
## 309 4.54 22.8
## 310 9.97 20.3
## 311 12.64 16.1
## 312 5.98 22.1
## 313 11.72 19.4
## 314 7.90 21.6
## 315 9.28 23.8
## 316 11.50 16.2
## 317 18.33 17.8
```

318 15.94 19.8

```
## 319 10.36 23.1
## 320 12.73 21.0
## 321 7.20 23.8
## 322 6.87 23.1
## 323 7.70 20.4
## 324 11.74 18.5
## 325 6.12 25.0
## 326 5.08 24.6
## 327 6.15 23.0
## 328 12.79 22.2
## 329 9.97 19.3
## 330 7.34 22.6
## 331 9.09 19.8
## 332 12.43 17.1
## 333 7.83 19.4
## 334 5.68 22.2
## 335 6.75 20.7
## 336 8.01 21.1
## 337 9.80 19.5
## 338 10.56 18.5
## 339 8.51 20.6
## 340 9.74 19.0
## 341 9.29 18.7
## 342 5.49 32.7
## 343 8.65 16.5
## 344 7.18 23.9
## 345 4.61 31.2
## 346 10.53 17.5
## 347 12.67 17.2
## 348 6.36 23.1
## 349 5.99 24.5
## 350 5.89 26.6
## 351 5.98 22.9
## 352 5.49 24.1
## 353
       7.79 18.6
## 354 4.50 30.1
## 355 8.05 18.2
## 356 5.57 20.6
## 357 17.60 17.8
## 358 13.27 21.7
## 359 11.48 22.7
## 360 12.67 22.6
## 361 7.79 25.0
## 362 14.19 19.9
## 363 10.19 20.8
## 364 14.64 16.8
## 365 5.29 21.9
## 366 7.12 27.5
## 367 14.00 21.9
## 368 13.33 23.1
## 369 3.26 50.0
## 370 3.73 50.0
## 371 2.96 50.0
## 372 9.53 50.0
```

373 8.88 50.0 ## 374 34.77 13.8 ## 375 37.97 13.8 ## 376 13.44 15.0 ## 377 23.24 13.9 ## 378 21.24 13.3 ## 379 23.69 13.1 ## 380 21.78 10.2 ## 381 17.21 10.4 ## 382 21.08 10.9 ## 383 23.60 11.3 ## 384 24.56 12.3 ## 385 30.63 8.8 ## 386 30.81 7.2 ## 387 28.28 10.5 ## 388 31.99 7.4 ## 389 30.62 10.2 ## 390 20.85 11.5 ## 391 17.11 15.1 ## 392 18.76 23.2 ## 393 25.68 9.7 ## 394 15.17 13.8 ## 395 16.35 12.7 ## 396 17.12 13.1 ## 397 19.37 12.5 ## 398 19.92 8.5 ## 399 30.59 5.0 ## 400 29.97 6.3 ## 401 26.77 5.6 ## 402 20.32 7.2 ## 403 20.31 12.1 ## 404 19.77 8.3 ## 405 27.38 8.5 ## 406 22.98 5.0 ## 407 23.34 11.9 ## 408 12.13 27.9 ## 409 26.40 17.2 ## 410 19.78 27.5 ## 411 10.11 15.0 ## 412 21.22 17.2 ## 413 34.37 17.9 ## 414 20.08 16.3 ## 415 36.98 7.0 ## 416 29.05 7.2 ## 417 25.79 7.5 ## 418 26.64 10.4 ## 419 20.62 8.8 ## 420 22.74 8.4 ## 421 15.02 16.7 ## 422 15.70 14.2 ## 423 14.10 20.8 ## 424 23.29 13.4 ## 425 17.16 11.7

426 24.39 8.3

```
## 427 15.69 10.2
## 428 14.52 10.9
## 429 21.52 11.0
## 430 24.08 9.5
## 431 17.64 14.5
## 432 19.69 14.1
## 433 12.03 16.1
## 434 16.22 14.3
## 435 15.17 11.7
## 436 23.27 13.4
## 437 18.05 9.6
## 438 26.45 8.7
## 439 34.02 8.4
## 440 22.88 12.8
## 441 22.11 10.5
## 442 19.52 17.1
## 443 16.59 18.4
## 444 18.85 15.4
## 445 23.79 10.8
## 446 23.98 11.8
## 447 17.79 14.9
## 448 16.44 12.6
## 449 18.13 14.1
## 450 19.31 13.0
## 451 17.44 13.4
## 452 17.73 15.2
## 453 17.27 16.1
## 454 16.74 17.8
## 455 18.71 14.9
## 456 18.13 14.1
## 457 19.01 12.7
## 458 16.94 13.5
## 459 16.23 14.9
## 460 14.70 20.0
## 461 16.42 16.4
## 462 14.65 17.7
## 463 13.99 19.5
## 464 10.29 20.2
## 465 13.22 21.4
## 466 14.13 19.9
## 467 17.15 19.0
## 468 21.32 19.1
## 469 18.13 19.1
## 470 14.76 20.1
## 471 16.29 19.9
## 472 12.87 19.6
## 473 14.36 23.2
## 474 11.66 29.8
## 475 18.14 13.8
## 476 24.10 13.3
## 477 18.68 16.7
## 478 24.91 12.0
## 479 18.03 14.6
## 480 13.11 21.4
```

```
## 481 10.74 23.0
## 482 7.74 23.7
## 483 7.01 25.0
## 484 10.42 21.8
## 485 13.34 20.6
## 486 10.58 21.2
## 487 14.98 19.1
## 488 11.45 20.6
## 489 18.06 15.2
## 490 23.97 7.0
## 491 29.68 8.1
## 492 18.07 13.6
## 493 13.35 20.1
## 494 12.01 21.8
## 495 13.59 24.5
## 496 17.60 23.1
## 497 21.14 19.7
## 498 14.10 18.3
## 499 12.92 21.2
## 500 15.10 17.5
## 501 14.33 16.8
## 502 9.67 22.4
## 503 9.08 20.6
## 504 5.64 23.9
## 505 6.48 22.0
## 506 7.88 11.9
```

Now the data set is contained in the object Boston. Read about the data set:

?Boston

How many rows are in this data set? How many columns? What do the rows and columns represent?

```
nrow(Boston) # 506
```

```
## [1] 506
length(Boston) # 14 columns
```

```
## [1] 14
```

The rows represent suburbs of Boston, and each column is a different variable.

(b) Make some pairwise scatterplots of the predictors (columns) in this data set. Describe your findings.

```
par(mfrow = c(2, 2))
plot(Boston$nox, Boston$medv)
plot(Boston$rm, Boston$indus)
plot(Boston$age, Boston$black)
plot(Boston$dis, Boston$crim)
```


- (c) Are any of the predictors associated with per capita crime rate? If so, explain the relationship.
- (d) Do any of the suburbs of Boston appear to have particularly high crime rates? Tax rates? Pupil-teacher ratios? Comment on the range of each predictor.

hist(Boston\$crim)

Histogram of Boston\$crim

(e) How many of the suburbs in this data set bound the Charles river?

sum(Boston\$chas)

[1] 35

Linear Regression

What is linear regression?

- "a very simple approach for supervised learning"
- "a useful tool for predicting a quantitative response"
- widely used statistical learning method
- a special case of more generalized learning methods
- Useful for answering many different types of questions

Advantages

- 1. Simplicity
 - Conceptual: based on averages (or "expectations" in econometrics)
 - Procedural: there are closed form solutions for estimating parameters
- Interpretable
 - There are meaningful visualizations and interpretations of model results
 - It is possible to address many types of questions, and apply statistical tests to judge results including:
 - 1. Is there a relationship between predictors and response variables?
 - 2. How strong is the relationship?
 - 3. Which predictors are related to the response?
 - 4. How accurate are the estimated model parameters?
 - 5. How accurate are the predictions generated by the model?
 - 6. Is the model a good fit?
 - 7. Are there interactions among the predictors?

3.1 Simple linear regression

Simple linear regression predicts a quantitative response y on the basis of a single predictor, x, assuming that there is a linear relationship between y and x in the form:

$$y = \beta_0 + \beta_1 x + \epsilon$$
or
$$y \approx \beta_0 + \beta_1 x$$

Read as: "regressing y on x", "regressing y onto x", or "y is approximately modeled as a linear function of x"

This equation describes the *population regression line*: the best linear approximation of the true relationship between y and x. The model parameters (or coefficients), β_0 and β_1 , are unknown constants and the error term, ϵ , is not measurable in practice.

- y: the observed true value of y
- β_0 : the intercept, or the expected value of y, when x is 0
- β_1 : the slope, or the expected change in y per unit change in x, or $\frac{\Delta y}{\Delta x}$
- ϵ : irreducible error, or variation in y that can not be accounted for $\overline{\text{by}}$ the model

3.1.1 **Estimating Coefficients**

In practice β_0 and β_1 are unknown constants that must be estimated based on available data using some procedure.

- Each (x_i, y_i) pair represents an example observation drawn from the population of possibilities for the joint distribution of X and Y.
- Based on many (n) examples, develop estimates for $\hat{\beta}_0$ and $\hat{\beta}_1$.
- Then compute \hat{y}_i , which is the value for y_i predicted by the model based on x_i (where $i \in \{1 \dots n\}$).

$$\hat{y}_i \approx \hat{\beta}_0 + \hat{\beta}_1 x_i$$

The prediction is an approximation is unlikely to be exactly equal to the actual value. The difference is called the residual. For a particular example observation, i, the residual is computed as:

$$e_i = y_i - \hat{y}_i$$

Better estimates of the parameters β_0 and β_1 will yield better predictions for y and, therefore, smaller residuals. The residual sum pf squares (RSS) is a measure of the overall magnitude of the prediction error for a particular set of coefficients and training data. The lower the RSS, the better the estimates should be (assuming the model is correctly specified, etc.).

$$RSS = \sum_{i}^{n} e_{i}^{2}$$

$$= \sum_{i}^{n} (y_{i} - \hat{y}_{i})^{2}$$

$$= \sum_{i}^{n} (y_{i} - \hat{\beta}_{0} + \hat{\beta}_{1}x_{i})^{2}$$

Minimizing the RSS is accomplished by choosing appropriate values for $\hat{\beta}_0$ and $\hat{\beta}_1$, which are estimates for the true (but unknown) population parameters, β_0 and β_1 . This method is referred to as the least squares approach in the text.

3.1.2 Simulated Data Example

```
set.seed(20210707)
```

- $\begin{tabular}{ll} \bullet & {\rm model:} \ y=\beta_0+\beta_1x+\epsilon \\ \bullet & {\rm parameters:} \ \beta_0=2 \ {\rm and} \ \beta_1=3. \end{tabular}$

Simulate drawing a sample from the population by generating data

```
# Number of observations
n <- 100
# random variable x
x \leftarrow runif(n)
# True slope and intercept of line
beta \leftarrow c(2, 3)
# irreducible error
epsilon <- rnorm(n)</pre>
```

```
# True value of y
y <- beta[1] + beta[2] * x + epsilon</pre>
```

First few rows of the simulated data sample

```
tibble(y, x, epsilon) %>%
  head() %>%
  kable(booktabs = TRUE)
```

у	Х	epsilon
4.299174	0.8543299	-0.2638157
1.188886	0.1168752	-1.1617401
5.271001	0.6867674	1.2106981
3.357570	0.0163384	1.3085549
2.984540	0.3480136	-0.0595011
4.802275	0.6009924	0.9992976

Minimize RSS to compute least squares estimates for $\hat{\beta_0}$ and $\hat{\beta_1}$

```
# residual sum of squares formula
rss <- function(...) {
   beta <- c(...)
   sum((y - (beta[1] + beta[2] * x))^2)
}</pre>
```

Try guessing the parameters that will minimize RSS for the sample

```
rss(0, 1)
rss(1, 2)
rss(2, 3)
rss(1.8, 3.3)

tibble(beta_0 = c(0, 1, 2, 1.8), beta_1 = c(1, 2, 3, 3.3)) %>%
    group_by(beta_0, beta_1) %>%
    mutate(RSS = rss(beta_0, beta_1)) %>%
    ungroup() %>%
    kable()
```

beta_0	beta_1	RSS
0.0	1.0	1094.7367
1.0	2.0	363.2831
2.0	3.0	102.3890
1.8	3.3	101.1695

Surprisingly (perhaps) using $\hat{\beta}_0=2$ and $\hat{\beta}_1=3$ does not yield the lowest RSS for the sample data even though these are the exact parameters β_0 and β_1 used to generate the sample observations. This is because irreducible error component is not observed and our sample size is limited.

Instead of guessing we can use R to automatically choose beta to minimize RSS. The optim() can do this.

```
fit <- optim(par = c(0, 1), fn = rss)
fit$par</pre>
```

```
## [1] 1.778687 3.545284
```

3.1.3 Closed-form solution

Applying some algebra and calculus to the RSS formula yields the following exact solutions for estimating $\hat{\beta_0}$ and $\hat{\beta_1}$ that will minimize RSS

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

```
b1 <- sum((x - mean(x)) * (y - mean(y))) / sum((x - mean(x))^2)
b1

## [1] 3.544119

b0 <- mean(y) - (b1 * mean(x))
b0

## [1] 1.779281
```

Estimated model using least squares method:

```
\hat{y} = 1.78 + 3.54 \ x
```

 $lm(y \sim x)$

We can also use the lm() function to estimate the parameters

```
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 1.779 3.544
```

3.2 Assessing Accuracy of Coefficients

The goal is to estimate pthe arameters of the actual population regression function based on a sample

Since we have estimated our parameters based on a sample, there is likely to be some error.

```
e <- matrix(rnorm(n, sd = sd), ncol = 1, dimnames = list(NULL, "e"))

# Compute y
y <- X %*% t(beta) + e
colnames(y) <- "y"

# Return a data frame, drop the constant
data.frame(cbind(y, X, e))[, -2]
}

#test <- simulate_data(beta = c(2, 3), n = 1000)
#test</pre>
```

Here is a plot of linear function with the parameters we estimated, compared with the population regression function.

```
# Replicate Figure 3.3

# Generate 1 sample and plot
simulate_data(beta = c(2, 3), n = 100, sd = 3) %>%
ggplot(mapping = aes(x = x_1, y = y)) +
    geom_abline(slope = 3, intercept = 2, color = "red") +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE, size = 0.5) +
    scale_x_continuous(limits = c(-2, 2)) +
    scale_y_continuous(limits = c(-10, 10)) +
    labs(title = "Population Regression Line and Estimated Regression Line")
```

```
## Warning: Removed 44 rows containing non-finite values (stat_smooth).
```

`geom_smooth()` using formula 'y ~ x'

Warning: Removed 44 rows containing missing values (geom_point).

Population Regression Line and Estimated Regression Line

Resampling several times, we find that we end up with several estimated functions (sets of parameters)

```
# Generate 10 samples and plot
map_df(1:10, ~ simulate_data(beta = c(2, 3), n = 100, sd = 3), .id = "sample") %>%
    mutate(sample = as.factor(as.numeric(sample))) %>%
ggplot(mapping = aes(x = x_1, y = y, color = sample)) +
    geom_abline(slope = 3, intercept = 2, color = "red") +
    geom_smooth(method = "lm", se = FALSE, size = 0.5) +
    scale_x_continuous(limits = c(-2, 2)) +
    scale_y_continuous(limits = c(-10, 10)) +
    labs(title = "Regression lines for 10 simulated datasets")
```

```
## `geom_smooth()` using formula 'y ~ x'
```

Warning: Removed 549 rows containing non-finite values (stat_smooth).

Regression lines for 10 simulated datasets

How can we assess accuracy? Statisics!

```
pmap_dfr(
    expand.grid(n = c(10, 50, 100), k = c(10, 50, 100), N = 10000, mean = 0),
    generate_sample_means
) %>%
    law_of_large_n_gridplot_dots()
```

The sample mean approximates the population mean


```
pmap_dfr(
    expand.grid(n = c(10, 50, 100), k = c(10, 50, 100), N = 10000, mean = 0),
    generate_sample_means
) %>%
    law_of_large_n_gridplot_density()
```

The sample mean converges to the population mean


```
pmap_dfr(
    expand.grid(n = c(10, 50, 100), k = c(10, 50, 100), N = 10000, mean = 0),
    generate_sample_means
) %>%
    law_of_large_n_gridplot()
```

The sample mean converges to the population mean

3.3 Assesing the Accuracy of the Model

Classification

Resampling Methods

Model Selection and Regularization

Moving Beyond Linearity

Tree Based Methods

Support Vector Machines

Unsupervised Learning