

EMI FILTER/CHIP INDUCTOR CATALOG

CATALOG NO. E-06-C

Murata Electronics North America, Inc.

MURATA ELECTRONICS

Electro-Magnetic Compatibility (EMC) has never been more important than in current times. The use of electronic equipment is increasing in industrial, commercial, and consumer markets. This, combined with the increasing operating frequencies and circuit density, requires EMI filtering components for various systems to work in close proximity without radiating noise or being affected by it.

Murata Electronics EMI Filters include components such as surface mount ferrite beads, feed-thru capacitors, "T" filters, "Pi" filters, and inductors. Leaded devices include ferrite beads, feed-thru capacitors, and varistor-capacitors, common mode choke coils, and filtered connectors. Also offered is a complete line of AC filters.

Copyright © 1995 by Murata Electronics North America, Inc. All rights reserved.

This literature is not intended to provide all essential information for proper product performance in specific circumstances. Murata Electronics may make improvements and changes to the products without notice. Although effort has been made to insure accuracy, the data in this literature is suggestive only and is not warranted.

Your further inquiry is required to obtain necessary data and warnings for performance in specific product applications and manufacturing circumstances. Please confirm detailed specifications by approving our individual drawings and specification sheets.

Murata Electronics offers these products only under a limited warranty and remedy, and a general exclusion of all other liability, particularly for consequential and incidental harm and for merchantability and fitness for specific use.

TABLE OF CONTENTS

Page

SURFACE MOUNT EMI FILTERS————————————————————————————————————
Chip Ferrites .3 - 10 Chip Filters .11 - 21 Packaging & Storage .22 - 23 Soldering/Cleaning .24 - 29
SURFACE MOUNT INDUCTORS————————————————————————————————————
Chip Inductors .31 - 47 Packaging & Storage .48 - 49 Soldering .50 - 51
EMI LEADED FILTERS————————————————————————————————————
Ferrite Bead Inductors
EMI Suppression Filters
Feed-thru Capacitors72 - 76
Ferrite Products77
EMI FILTER CONNECTORS—
'D' Connectors79 - 87
VGA Connector87
Telephone Applications88 - 89
AC EMI FILTERS————————————————————————————————————
Safety Standard Recognized EMI Filters91 - 93
NOISE FILTERS—
Common Mode Choke Coil94 - 105
ENGINEERING DESIGN KITS————————————————————————————————————
EMI Filter/Inductor Design Kits106 - 109
OTHER MURATA PRODUCTS-
Miscellaneous110 - 112

ALPHA NUMERIC SERIES INDEX

SERIES PAGE	SERIES PAGE
BLA10	LQH 40 - 43, 46, 47
BLM 4 - 9	LQN 34 - 36, 39
BLO54, 55	LQP32, 33
BLR86	LQS44
BNP67	NFA14
BNX68	NFM 12, 13, 15 - 18
CUBD87	NFV65, 66
CUBN80 - 85	PLA94, 95
CUJ88, 89	PLAM100
DF 72, 73, 75	PLC71, 97, 98
DFT 76	PLE96
DS 56 - 60	PLH101, 102, 103
DSR92, 93	PLNE104
DSS56 - 60, 62 - 64	PLT 69, 70
DST58 - 60	PLM19, 20
FKOB99	TF 72 - 74
FSOC77	VFM21
LQG 37, 38, 45	VFR61

SURFACE MOUNT EMI FILTERS

Murata Electronics classifies their surface mount ferrite beads into three categories: BLM□□A, BLM□□B and BLM□□P Series.

The BLM□□A Series is intended for standard type signals, as this series provides attenuation across a broad range of frequencies.

The BLM B Series is designed specifically for higher speed signals, providing a sharper roll off after the cut-off frequency.

The BLM \cup P Series is specially adapted for power line applications due to low DC resistance and high rated current.

The BLA Series combine 4, 6 & 8 individual ferrite beads into one package, which is useful in conserving board space.

TABLE OF CONTENTS

Description	Series	EIA	Effective Frequency Range (MHz)	Equivalent	Page			
Description	Series	Size	1 10 100 1000					
	BLM11	0603						
	BLM21	0805			4 - 9			
Chip	BLM31	1206		0 0 0				
	BLM41	1806			4, 5, 8, 9			
	BLA41/62	2412		Input	10			
Array BLA81		4918		Output	10			

SURFACE MOUNT EMI FILTERS

BLM□□A Series

The BLM A Series ferrite beads provide outstanding electrical characteristics in packages as small as 0603. For noise applications covering a wide frequency range.

FEATURES

- Suitable for flow and reflow soldering
- Wide temperature range
- High Z characteristics

APPLICATIONS

■ I/O ports, DC power lines, and Signal lines

PART NUMBERING SYSTEM

Dimensions: mm	Part Number	Impedance (Ohms) (Typ.) at 100MHz	Rated Current (mA)	DCR (Ohms max.)	Operating Temperature Range	Previous P/N
603	*BLM11A121S	120		0.2		BLM11A05
0.4 ± 0.2	*BLM11A221S	220	200	0.3		BLM11A12
1.6 ± 0.15	*BLM11A601S	600		0.7		BLM11A20
	*BLM11A102S	1000	100	1.0		_
0805	*BLM21A121S	120	200	0.6	−55°C - ~	BLM21A05
0.5 ± 0.2 0.9 ± 0.3 1.25 ± 0.3	*BLM21A401S	400		1.0		BLM21A11
2.0 ± 0.3	*BLM21A601S	600		1.5		BLM21A10
	*BLM21A102S	1000		0.6		
1206 0.7 ± 0.3 1.6 ± 0.3	★BLM31A260S	26	500	0.2	+125°C	_
1.1 ± 0.3*	★BLM31A700S	70	200	0.5		BLM31A02
◆ - 3.2 ± 0.3	*BLM31A601S	600	200	1.0		BLM32A07
1806 0.7 ± 0.3 1.6 ± 0.3 1.6 ± 0.3	*BLM41A800S	80	500	0.3		BLM41A01
	*BLM41A151S	150	200	0.7		BLM41A04

^{*}Available as standard through authorized Murata Electronics Distributors.

BLM□□A Series

TYPICAL IMPEDANCE CHARACTERISTICS

SURFACE MOUNT EMI FILTERS

BLM□□B Series

The BLM□□B Series ferrite beads have been developed to pass signal frequencies from 10MHz to 100MHz while exhibiting high impedance characteristics to reduce EMI noise above these specific frequencies.

FEATURES

- Designed to reduce noise above operating frequencies from 10 to 100MHz
- High impedance characteristics
- Small size
- Suitable for flow and reflow soldering

APPLICATIONS

- Computers and peripheral equipment
- Consumer productsHigh speed circuits
- Suitable for circuits with unstable ground

PART NUMBERING SYSTEM

Dimensions: mm	Part Number	Impedance (Ohms) (Typ.) at 100MHz	Rated Current (mA)	DCR (Ohms max.)	Operating Temperature Range	Previous P/N
0603	★BLM11B750D	75		0.6		_
0.4 ± 0.2	★BLM11B141D	140	200	0.7		_
1.6 ± 0.15	*BLM11B421S	420	200	0.7		_
	*BLM11B601S	600		_		_
	*BLM11B102S	1000	100	1.2		_
805	*BLM21B050S	5	500	0.2		BLM21B03
	*BLM21B201S	200		0.7	−55° C	BLM21B30
0.5 ± 0.2 0.9 ± 0.3 1.25 ± 0.3	*BLM21B601S	★BLM21B601S 600 —	~	_		
	★BLM21B751S	750		0.7	+125° C	BLM21B20
₹2.0 ± 0.3	★BLM21B102S	1000		0.6		_
	★BLM21B222S	2200		0.8		BLM21B10
1206 0.7 ± 0.3 1.6 ± 0.3 1.1 ± 0.3	*BLM31B601S	600	200	1.0		BLM32A06

^{*}Available as standard through authorized Murata Electronics Distributors.

BLM21B Series

TYPICAL IMPEDANCE CHARACTERISTICS

SURFACE MOUNT EMI FILTERS

The BLM \cup P Series ferrite beads offer high frequency noise suppression with the capability of handling large currents for DC power line applications.

FEATURES

- Suitable high frequency noise suppression over wide frequency range
- Current rating up to 6 AMPS
- Small package size EIA STD 0603/0805/1206 and 1806
- Nickel barrier terminations provide excellent solder heat resistance
- Low DCR

APPLICATIONS

- High current DC power lines
- Circuits where a stable ground is unavailable

PART NUMBERING SYSTEM

Dimensions: mm	Part Number	Impedance (Ohms) (Typ.) at 100MHz	Rated Current (mA)	DCR (Ohms max.)	Operating Temperature Range	Previous P/N
0.4 ± 0.2 → ← □	*BLM11P300S	30	1000	0.1		BLM11P20
1.6 ± 0.15	*BLM11P600S	60	500	0.2		BLM11P10
0.5 ± 0.2	*BLM21P300S	30	3000	0.00	–55°C	-
1206 0.7 ± 0.3 1.1 ± 0.3 1.1 ± 0.3	*BLM31P500S	50	3000	0.03	- +125°C	-
1806 0.7 ± 0.3	*BLM41P600S	60	6000	0.01		BLM41P03
1.6 ± 0.3	*BLM41P750S	75	3000	0.03	A	BLM41P02
4.5 ± 0.3	★BLM41P800S	80	1000	0.15		BLM41P0

 $[\]bigstar \mbox{Available}$ as standard through authorized Murata Electronics Distributors.

TYPICAL IMPEDANCE CHARACTERISTICS

BLM11P300S

BLM11P600S

BLM21P300S

BLM31P500S

BLM41P600S

BLM41P750S

BLM41P800S

DERATING CURVE

BLA Series

The BLA Series ferrite bead arrays use board space efficiently by incorporating 4, 6, or 8 ferrite beads into one package.

PART NUMBERING

SPECIFICATIONS

DIMENSIONS: mm	Series	Impedance (Ohms) (Typ.) at 100MHz	Rated Current (mA)	Operating Temp. Range
BLA41 Series 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2	BLA41B01	70	200	−55°C ~ +125°C
1.0 ± 0.3 1.27 ± 0.1 0.4 ± 0.2 0.53 ± 0.2	BLA41B02	600	150	-55°C ~ +125°C*
BLA62 Series - 0.3 ± 0.2 2.3 ± 0.3 BLA B01 3.2 ± 0.2	BLA62B01	70	200	−55°C ~ +125°C
1.0 ± .3 \$\frac{1}{2}\$ 0.8 ± 0.1 \$\frac{1}{2}\$ 0.36 ± 0.2	BLA62B02	600	100	−55°C ~ +125°C
BLA81 Series MuRata	*BLA81B01	70	300	−55°C ~ +125°C

^{*}Available as standard through authorized Murata Electronics Distributors: Standard packaging is tape and reel.

*See Derating Curve

TYPICAL IMPEDANCE CHARACTERISTICS

Murata Electronics' single and multi-element filters provide EMI suppression at higher frequencies and are typically used in wireless applications, telecommunications and high speed digital systems.

TABLE OF CONTENTS

Description	Series EIA		Effe	ective Fre	quency (1	/IHz)	Equivalent	Page
Description	361163	Size	1	10	100	1000	Circuit	raye
	NFM40R	1205					Input Output	12
Solid Chip EMIFIL	NFM41R	1806						12
	NFM41P/46P	1806/2220					GND Ó	13
Array	NFA41R/62R	2412					Input GND	14
	NFA81R	4918					Output	
Chip EMIFIL	NFM51R	1206					Input O Output	15
for signal lines	NFM840R	1205	1			ı		18
T Tuno EMIEU	NFM60R	1206					Input Output	16
T-Type EMIFIL	NFM61R/RH	2606					GND	17
	PLM150R	1206					0000	19
Common Mode Choke	PLM250H	2014	1		-		000	20
	PLM250S	2020		1			20 04	20
Varistor Filter	VFM41R	1806	1				Input O Output	21
					1		*VFM41R Series has no direction	

NFM40/41R Series

The NFM40/41R Series is a minature chip type EMI Suppression filter based on feed-thru design. It is well suited for EMI suppression in digital circuit boards or in I/O lines of digital equipment where high density mounting is used.

FEATURES

- Miniature size 3.2mm x 1.25mm x .7mm
- Nickel barrier for solder heat resistance
- Wide frequency range of operation to several hundred MHz
- Tape and reel for auto-placement

PART NUMBERING

SPECIFICATIONS

Dimensions: mm	Part Number	Capacitance	Rated Voltage	Rated Current (mA)	Insulation Resistance	DCR (Ohms max.)	Operating Temp. Range
NFM40R Series	*NFM40R01C220	22pF ± $^{50}_{20}$ %					1-1-
	*NFM40R01C470	47pF ± 50 %				0.6	
7 ± 0.2	*NFM40R01C101	100pF ± 50 %		300			
0.95 ± 0.3	*NFM40R11C221	220pF ± $^{50}_{20}$ %	25VDC		1000MΩmin.		-55°C ~ +125°C
	*NFM40R11C471	470pF ± 50 %	23700				
	*NFM40R11C102	1000pF ± 50 %					
	*NFM40R11C222	2200pF ± 50 %					
3.2 ± 0.2	*NFM40R11C223	22000pF ± $^{80}_{20}$ %					−55°C ~ +85°C
NFM41R Series	*NFM41R01C220	22pF ± 50 %					
0.4 ± 0.3 1.4 ± 0.3 0.4 ± 0.3	*NFM41R01C470	47pF ± 50 %					
+ + + +	*NFM41R01C101	100pF ± 50 %					
0 + 0.2	*NFM41R01C221	220pF ± 50 %	100VDC	300	10000M Ω min.	0.3	-55°C ~ +125°C
4.5 ± 0.3	*NFM41R01C471	470pF ± 50 %	100000	300	TOOOOIVIS ZITIITI.	0.5	-55 6 ~ +125 6
+ 0.3	*NFM41R11C102	1000pF ± 50 %					
	*NFM41R11C222	2200pF ± 50 %					
9:1.	*NFM41R11C223	22000pF ± 50 %					

^{*}Available as standard through authorized Murata Electronics Distributors.

TYPICAL INSERTION LOSS CHARACTERISTICS

NFM41P/46P Series

The NFM41P/46P Series are high current surface mount three terminal capacitors designed for DC power line filtering. These filters provide excellent insertion loss characteristics over a broad frequency range.

FEATURES

- Excellent high frequency noise suppression beyond 1GHz
 Insertion loss of 30dB from 500KHz to 1GHz
- 6 AMP current rated
- Low profile

APPLICATIONS

- High current DC power lines
- Micro computers, peripheral equipment
- Switching power supplies

PART NUMBERING

SPECIFICATIONS

Dimensions: mm	Part Number	Capacitance	Rated Voltage	Rated Current (A)	Insulation Resistance	DCR (Ohms max.)	Operating Temp. Range
NFM41P 0.4 ± 0.3	★NFM41P11C204	0.2 <i>μ</i> F ⁺⁸⁰ %	50VDC	2	1000MΩmin.	0.04	−55°C ~ +85°C
NFM46P 1.7 ± 0.3	★NFM46P11C155	1.5 <i>μ</i> F ⁺⁸⁰ %	50VDC	6	100MΩmin.	0.01	−55°C ~ +85°C

^{*}Available as standard through authorized Murata Electronics Distributors: Standard packaging is tape and reel.

TYPICAL INSERTION LOSS CHARACTERISTICS

NFA Series

The NFA Series is a chip feed-thru capacitor filter array for surface mount applications and is excellent for high density mounting with a land pitch of 1.27mm or 0.8mm. It has only two ground terminals for 4 to 8 circuits, making it easy to design a ground pattern.

It is well suited for noise suppression in digital circuit boards or in I/O cables of digital instruments.

PART NUMBERING

	<u> </u>	NFA	81	R	00	Ç	221	<u>T1</u>	
CHIP Solid Array	NUMBER OF CIRCU 81: 8 circuit (1.27m 62: 6 circuit (0.80m 41: 4 circuit (1.27m	nm pitch) im pitch)	MINAL PITCH	TYPE Monolithic	CLA	SS IBER	CIRCUIT COMPOSITION	CAPACITANCE	PACKAGING CODE T1: Tape & Ree B1=Bulk

Dimensions: mm	Part Number	Capacitance	Rated Voltage	Rated Current (mA)	Insulation Resistance	Operating Temp. Range	Number of Circuits
NFA41R Series	★NFA41R00C220	22pF ± 50 %					
0.3 ± 0.2	*NFA41R00C470	47pF ± 50 %					
muRata P.S.O.	★NFA41R00C101	100pF ± 50 %					
NFA 102	★NFA41R00C221	220pF ± 50 %					
6.3 ± 0.3	*NFA41R00C471	470pF ± 50 %	50VDC	200	1000M Ω min.	−55°C ~ +85°C	4
1.27 ± 0.1 → 1.53 ± 0.2 (Mounted-lace) 1.3 ± 0.3 ± 0.2 (Mounted-lace) 1.4 ± 0.53 ± 0.2 (Mounted-lace) 1.5 ± 0.5 ±	★NFA41R10C102	1000pF ± 50 %					
	*NFA41R10C222	2200pF ± 50 %					
	*NFA41R10C223	22000pF ± 50 %					
	*NFA41R10C104	100000pF ± 80 %					
NFA62R Series 0.3 ± 0.2	*NFA62R00C220	22pF ± 50 %	50VDC				
	*NFA62R00C470	47pF ± 50 %					
	*NFA62R00C101	100pF ± 50 %					
6.3 ± 0.3	*NFA62R00C221	220pF ± 50 %		200	1000M Ω min.	−55°C ~ +85°C	6
\$ 1.0 ± 0.3	*NFA62R00C471	470pF ± 50 %	00120		10001112111111		0
0.8 ± 0.1 →	*NFA62R00C102	1000pF ± 50 %					
H 0.3	*NFA62R10C221	2200pF ± 50 %					
3.	★NFA62R10C223	22000pF ± 50 %					
NFA81R Series	★NFA81R00C220	22pF ± 50 %					
→ 0.8±0.2	★NFA81R00C470	47pF ± 50 %		300			
muRata 0 + ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	*NFA81R00C101	100pF ± 50 %					
NFA 223	*NFA81R00C221	220pF ± 50 %	50VDC		1000M Ω min.	-55°C ~ +125°C	8
\$1.2 ± 0.3	★NFA81R00C471	470pF ± 50 %	22420			33 3 1120 0	Ü
(Mounted-face) $0.6\pm\frac{3.5}{0.3}$ 1.27 ± 0.1 $0.5\pm\frac{3.5}{0.3}$	★NFA81R10C102	1000pF ± 50 %		200			
+ 0.3	★NFA81R10C222	2200pF ± 50 %					
0.8 ± 0.2	*NFA81R10C223	22000pF ± 50 %		300			

^{*}Available as standard through authorized Murata Electronics Distributors: Standard packaging is tape and reel.

NFM51R Series

The NFM51R Series chip is an efficient signal line noise suppression filter for high-speed digital signal lines where baseband frequencies and noise band frequencies are very close.

Murata Electronics has combined its superior ceramic technologies with a unique circuit configuration to realize outstanding noise suppression effect in these applications. The NFM51R Series assures noise reduction to meet the specifications of CISPR, FCC, etc.

APPLICATIONS

Noise suppression for compact digital instruments, laptop personal computers, HDTV, EDTV, portable VTR, etc.

PART NUMBERING

SPECIFICATIONS

Dimensione		David Number	Cut-off		Mir	nimum A	Attenuati	on (dB m	ıin.)		Rated	Rated	Operating
Dimensions:	mm	Part Number	Frequency (MHz)	10MHz	20MHz	50MHz	100MHz	200MHz	500MHz	1GHz	Voltage (VDC)	Current (mA)	Temperature Range
NFM51R Series		*NFM51R00P106	10	*	5	25	25	25	30	30			
2.3 ± 0.2	20	*NFM51R00P206	20	_	*	5	25	25	30	30			
3.2 ± 0.3	₩ ₩ ₩	*NFM51R00P506	50	_	-	*	10	30	30	30	25	200	−40°C ~
0 2 3	1.6 ± 0.2	*NFM51R10P107	100	_	_	_	*	5	20	30	23	200	+85°C
2 Gr 3 Ou	put (Output) Terminal round Terminal utput (Input) Terminal	★NFM51R20P207	200	_	_	_	_	*	10	30			
0.7 ± 0.3 0.65 ± 0.2		*NFM51R30P507	500	_	-	_	_	_	*	10			

^{*}Available as standard through authorized Murata Electronics Distributors: Standard packaging is tape and reel. ※ The NFM51R Series has no polarity.

※ 6dB max.

NFM60R Series

The NFM60R Series is an EIA standard 1206 size version of the NFM61R. Its large rated current (6A) and low voltage drop due to small DC resistance (Typ. 3 ~ $4m\Omega$) are suitable for DC power line use. The feedthrough capacitor provides excellent high-frequency characteristics. The series has excellent solder heat resistance. Both flow and reflow soldering method can be employed. (Only reflow soldering should be employed with the NFM60R20T152.)

PART NUMBERING

SPECIFICATIONS

Dimensions: mm	Part Number	Capacitance	Rated Voltage	Rated Current	Insulation Resistance	DC Resistance	Operating Temp. Range
р л р	★NFM60R00T220	22pF ± 30%					
B A B	★NFM60R00T470	47pF ± 50 %					
	★NFM60R00T101	100pF ± $^{80}_{20}$ %					
	★NFM60R00T221	220pF ± $^{50}_{20}$ %	25VDC	6A	1000M Ω min.	0.01Ω max.	-40°C ~ +85°
1.6 ± 0.3	★NFM60R10T471	470pF ± $^{50}_{20}$ %					
.10.00	★NFM60R20T152	1500pF ± 30%					
A: 1.0 ± 0.2 B: 0.7 ± 0.2	★NFM60R30T222	2200pF ± 50%					

^{*}Available as standard through authorized Murata Electronics Distributors.

TYPICAL INSERTION LOSS CHARACTERISTICS

NFM61R Series

The T-type chip, NFM61R/RH, is a 3 terminal capacitor capable of carrying the large currents (2A) required for use in DC power circuits. This chip series consists of a T-type filter circuit incorporating a ferrite bead inductor for the purpose of suppressing undesirable oscillation. The heavy duty NFM61RH is an improved version of the filter for use in harsh operating conditions.

APPLICATIONS

- Switching power supplies
- Excellent high frequency noise suppression
 High current applications

PART NUMBERING

SPECIFICATIONS

Dimensions: mm	Part Number	Capacitance	Rated Voltage	Rated Current (A)	Insulation Resistance	Operating Temp. Range
	*NFM61R00T330	33pF ± 30%				
	*NFM61R00T680	68pF ± 30%				
	★NFM61R00T101	100pF ± 30%				
	★NFM61R00T181	180pF ± 30%	50VDC	2	1000M Ω min.	-25C°~ + 85°C
	★NFM61R00T361	360pF ± 20%	00100	_	100011122111111	200 , 00 0
0.7 ± 0.2 2.6 ± 0.3 0.7 ± 0.2	*NFM61R00T681	680pF ± 30%				
	★NFM61R10T102	1000pF ± 80 %				
	★NFM61R30T472	4700pF ± 80 %				
	*NFM61RH00T330	33pF ± 30%				
$.6 \pm 0.3$ 6.8 ± 0.5	★NFM61RH00T680	68pF ± 30%				
: Electrode	*NFM61RH00T101	100pF ± 30%				
	*NFM61RH00T181	180pF ± 30%	100VDC	2	1000M Ω min.	-55C°~ + 125°C
	*NFM61RH00T361	360pF ± 20%	100000	2	10001013 2111111.	330 ~ + 123 0
	★NFM61RH00T681	680pF ± 30%				
	★NFM61RH10T102	1000pF ± 80 %				
	*NFM61RH20T332	3300pF ± 80 %				

NFM61RH20T332 is specially adapted for reflow soldering. The flow soldering method should not be used.

TYPICAL INSERTION LOSS CHARACTERISTICS

^{*}Available as standard through authorized Murata Electronics Distributors.

NFM840R Series

The NFM840R Series is a high performance EMI suppression filter which suppresses noise while limiting waveform distortion.

Available in three different values with cut-off frequencies ranging from 20MHz to 100MHz.

FEATURES

- Use of a distributed circuit constant allows a smooth change of impedance, preventing reflection of signal and distortion of wave shape
- The NFM840R Series is effective where ground is unstable, because the resistance element in the filter absorbs noise
- STD EIA size
- Steep attenuation characteristics

APPLICATIONS

Suppression of noise in interface line or clock line of digital equipment (such as personal computers, word processors).

PART NUMBERING

SPECIFICATIONS

		Nominal		Attenu	ation (50	3kΩ line) (dB min.)	Rated	Rated	Insulation	Operating
Dimensions: mm	Part Number	Cut-off Frequency (MHz)	20MHz	50MHz	100MHz	200MHz	500MHz	DCR (Typ.)	Current ①-③ (mA)	Voltage ① ③ - ② (VDC)	$\begin{array}{c} \text{Resistance} \\ \textcircled{1} \ \textcircled{3} - \textcircled{2} \\ \textbf{M} \Omega \ \text{min.} \end{array}$	Temp. *2 (°C)
NFM840R Series	*NFM840R01G101	20	*1	6	10	15	25	100Ω	20			
125 ± 0.2	★NFM840R01G470	50	_	*1	6	10	20	100Ω	20	25	1000	-55 to +125
① ③ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	*NFM840R01H100	100	-	_	*1	3	10	220Ω	15			

^{*1:6}dB max.

TYPICAL INSERTION LOSS CHARACTERISTICS

^{*}Available as standard through authorized Murata Electronics Distributors.

DERATING

^{*2:} Please derate the maximum current, as shown next page for temperatures above 85°C.

PLM150R Series

The PLM150R SMT common mode choke uses Murata's unique monolithic technology process. High impedance characteristics provide excellent noise suppression in a small, compact size (3.2 x 1.6 x 1.15mm) to remove common mode noise.

FEATURES

- Prevents common mode noise on signal lines in data communication equipment or digital equipment.
- Low leakage flux due to its full monolithic structure
- Suitable for auto-placement

APPLICATIONS

Prevention of common mode noise on signal lines in personal computers, computer peripheral equipment, facsimiles, digital telephones, etc.

DIMENSIONS: mm

SPECIFICATIONS

Part Number	Rated	Common Mode	Rated	Withstand	Insulation	Operating
	Current (mA)	Impedance	Voltage	Voltage	Resistance	Temp. Range
*PLM150R01	200	280Ω (at 100MHz)	50VDC	125VDC (1 minute)	100M Ω min.	−55°C ~ +85°C

^{*}Available as standard through authorized Murata Electronics Distributors.

TYPICAL IMPEDANCE CHARACTERISTICS

EQUIVALENT CIRCUIT

PLM250H/S Series

The PLM250H/S is a series of wire wound chip common mode choke coils. Large current and high coupling are combined in a small chip structure to provide superior noise suppression while maintaining signal integrity.

FEATURES

- High impedance enables great noise suppression
- Large rated current enables power line use
- Does not damage high speed signal due to high coupling common mode choke coil structure
- Automatic placement
- Specially adapted for reflow soldering

APPLICATIONS

- Common mode noise suppression of signal lines in high speed digital equipment
- Common mode noise suppression of DC power lines in AC adapter

DIMENSIONS: mm

PART NUMBERING

SPECIFICATIONS

Part Number	Rated Current (A)	Impedance (Ω) (Typ.) at 100MHz	DC Resistance (Ω) max.	Rated Voltage (VDC)	Withstand Voltage (VDC)	Insulation Resistance (M Ω) min.	Operating Temp. Range (°C)
*PLM250H10	0.2	4000	3.0				
*PLM250S20	0.5	3000	0.3				
*PLM250S30	1.0	1500	0.1	50	125 (1 minute)	10	−25° to +85°
*PLM250S40	1.5	1000	0.06		,		
*PLM250S50	2.0	350	0.04				

TYPICAL IMPEDANCE CHARACTERISTICS

EQUIVALENT CIRCUIT

^{*}Available as standard through authorized Murata Electronics Distributors: Standard packaging is tape and reel.

VFM41R Series

The VFM41R Series is an 1806 size, three terminal varistor-capacitor designed to remove ESD surges as well as provide EMI filtering. This filter provides excellent insertion loss characteristics exceeding 1GHz.

FEATURES

- Suitable for high frequency noise suppression exceeding 1GHz. The insertion loss performance is equivalent to conventional three terminal capacitors.
- Provides protection against surges and ESD in applications such as automotive equipment, portable electronic equipment, (such as notebook computers), telecommunications equipment, etc.

PART NUMBERING

DIMENSIONS: mm

SPECIFICATIONS

Part Number	Capacitance Value	Rated Voltage	Varistor Voltage	Rated Current (mA)	Insulation Resistance in Ohms	Operating Temperature Range
*VFM41R01C222N16-27	2200pF +/- 30%	16VDC	27V +/- 5V	200	10M min.	-40°C ~ +125°C

^{*}Available as standard through authorized Murata Electronics Distributors.

TYPICAL INSERTION LOSS CHARACTERISTICS

SURFACE MOUNT EMI FILTERS PACKAGING & STORAGE

						Sold	ering		F	Packaging Units	
Product I	Product Name		Dimensions (mm)		Flow Soldering	Reflow Soldering	Taping Width	φ180mm Reel	ϕ 330mm Reel	Bulk (Bag)	
				w	Т	Flow	Reflov	Taping			
	BLM11		1.6	0.8	0.8	0	0	8	4,000	_	1,000
	BLM21 (BLM21A222S/ BLM21B222S)		2.0	1.25	0.9	0	0	8	4,000 (3,000)	10,000 (—)	1,000
	BLM31 (BLM31P500S/ BLM31A700S)		3.2	1.6	1.1 (1.6)	0	0	8	3,000 (2,500)	10,000 (8,000)	1,000
	BLM41		4.5	1.6	1.6	0	0	12	2,500	8,000	1,000
	BLA81		12.5	4.5	1.2	0	0	24	1,000		100
	BLA62/41		6.3	3.2	1.0	0	0	12	1,000	_	100
Chip	NFM40R		3.2	1.25	0.7	0	0	8	4,000	_	1,000
EMI Suppression Filter	NFM41R/41P		4.5	1.6	1.0	0	0	12	4,000	_	1,000
(EMIFIL®)	NFA81R	The state of the s	12.5	4.5	1.2	0	0	24	1,000	_	100
	NFA62R/NFA41R	5	6.3	3.2	1.0	0	0	12	1,000	_	100
	NFM60R		3.2	1.6	1.6	0	0	8	2,000	_	500
	NFM61R/61RH		6.8	1.6	1.6	0	0	12	2,500	8000	500
	NFM51R		3.2	1.6	1.8	0	0	8	2,000	i	_
	NFM46P		5.7	5.0	2.2	_	0	12	500		100
	NFM840	•	3.2	1.25	0.7	0	0	8	4,000	_	100
	PLM150		3.2	1.6	1.2	0	0	8	3,000		100
	PLM250H	S	5.0	3.6	4.2	_	0	12	400	3.000	100
	PLM250S		5.0	5.0	4.5	_	0	12	400	3,000	100
	VFM41R		4.5	1.6	1.25	0	0	12	2,500	_	1,000

REEL DIMENSIONS

		ϕ 180mm Reel	ϕ 330mm Reel
	Α	178 ± 2	328 ± 2
	В	50 (r	nin.)
	C	φ 13 ±	0.5
w	8mm Width Tape	10 ±	1.5
VV	12mm Width Tape	14 ±	1.5

 ϕ : Diameter

Unit: mm

STORAGE REQUIREMENTS

Be sure to observe the following storage requirements to prevent damage to the soldering of exposed electrode.

- The maximum ambient temperature and relative humidity in which these parts can be stored are 40°C and 70%, respectively. Please note that package deformation may result from storage in ambient temperature exceeding 40°C.
- Do not unpack the polyethylene bag prior to using the product. Also, after unpacking, promptly reseal or store in a desiccant containing a drying agent.
- 3. Do not store in areas where harmful gases containing sulfur or chlorine are present.

TAPE SPECIFICATIONS

- All tape packaging conforms to JIS C 0806 specifications. Dimensions are described separately for each product.
- Tape is wound clockwise. When tape is pulled toward the user, the feeding hole is observable on the right side of the tape.

SURFACE MOUNT EMI FILTERS PACKAGING

PLASTIC TAPE DIMENSIONS (EIA-J : RC-1009B)

BLM/BLA/NFM/NFA/PLM/VFM

(8mm width Plastic tape, BLM11 uses Paper tape)

Part	(Cavity Si	ze	Packaging Unit (pcs/reel)				
Number	Α	В	C	φ180mm	φ 330mm			
BLM11	1.85	1.05	1.1	4000	_			
BLM21 (BLM21A222S/ BLM21B222S)	2.25	1.45	1.05 (1.3)	4000 (3000)	10000 (—)			
BLM31 (BLM31P500S/ BLM31A700S)	3.5	1.9	1.3 (1.75)	3000 (2500)	10000 (8000)			
NFM51R/60R	3.6	1.9	2.0	2000	_			
PLM150R	3.5	1.9	1.3	3000	_			
NFM40R	3.4	1.4	0.85	4000	-			
NFM840R	3.4	1.4	0.85	4000	_			

BLM41, NFM41R/41P, NFM61R/61RH, VFM41

(12mm width Plastic tape)

Part	Cavity Size
Package Unit a	nd Cavity Size

Part	(Cavity Si	ze	Packaging Unit (pcs/reel				
Number	Α	В	С	ф 180mm	ф 330mm			
BLM41	4.8	1.9	1.75	2500	8000			
NFM41R/41P	4.8	1.8	1.1	4000	_			
NFM61R/61RH	7.2	1.9	1.75	2500	8000			
VFM41R	4.8	1.8	1.35	2500	_			

BLA62/41, NFA62R/41R, NFM46P, PLM250R/H

(12mm width Plastic tape)

D 1	1 1 11	10 "	0.
Package	Ullil all	u Cavily	SIZE

Part	(Cavity Siz	ze	Packaging Unit (pcs/reel)			
Number	Α	В	С	φ180mm	φ 330mm		
BLA62/41	6.6	3.5	1.13	1000	_		
NFA62R/41R			,,,,				
NFM46P	6.0	5.3	2.5	500	_		
PLM250R (PLM250H)	5.5 (5.4)	5.4 (4.1)	4.7 (4.4)	400	3000		

NFA81R, BLA81

(24mm width Plastic tape)

EMIFIL® MOUNTING INSTRUCTIONS®

1. Standard Land Pattern Dimensions

The capacitor type chip EMI suppression filters (NFM/NFA Series) suppress noise by conducting the high frequency noise element to ground. Therefore, to obtain maximum performance from these filters, the ground pattern should be made as large as possible during the PCB design stage.

As shown below, one side of the PCB is used for chip mounting, and the other is used for grounding. Small diameter feedthrough holes are then used to connect the grounds on each side of the PCB. This reduces the high-frequency impedance of the grounding and maximizes the filter's performance.

2. Solder Paste Printing and Adhesive Application

When reflow soldering the chip EMI suppression filter, the printing must be conducted in accordance with the following cream solder printing conditions.

If too much solder is applied, the chip will be prone to receive mechanical and thermal stress from the PCB and may crack.

In contrast, if too little solder is applied, there is the potential that the termination strength will be insufficient, creating the potential for detachment.

Standard land dimensions should be used for resist and copper foil patterns.

When flow soldering the EMI suppression filter, apply the adhesive in accordance with the following conditions.

If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering.

Unit: mm

Series	Solder Paste Printing	Adhesive Application
BLM11 BLM21 BLM31 BLM41	 Ensure that solder is applied smoothly to a minimum height of 0.2mm-0.3mm at the end surface of the part. Coat the solder paste a thickness of 100µm-200µm. 	• Coating amount is illustrated in the following diagram. a: 20 ~ 70µm b: 30 ~ 35µm c: 50 ~ 105µm Chip solid Inductor Bonding agent PCB Bonding agent
BLA41 BLA62 BLA81	 Coat the solder paste a thickness of 100μm-200μm (BLA41B01), 150μm (BLA62B01), and 200μm (BLA81B01). Use 60 : 40 solder for pattern printing. 	Apply 0.5mg to 0.9mg of bonding agent at each chip.
	BLA41B01/ BLA62B02 BLA81B01 5.5 1.0 9 3 1 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Bonding agent
NFM40R NFM41R NFM41P NFM840R	 Coat the solder paste a thickness of 100μm-150μm (NFM40R) and 100μm-200μm (NFM41R/41P). Use 60 : 40 solder for pattern printing. 	 Apply 0.1mg for NFM41R/41P/VFM41R and 0.06mg fo NFM40R of bonding agent at each chip.
VFM41R	NFM40R/840 NFM41R/41P/VFM41R	Bonding agent Coating position of bonding agent
NFA41R NFA62R NFA81R	 Coat the solder paste a thickness of 150µm (NFA62R/41R) and 200µm (NFA81R). Use 60 : 40 solder for pattern printing. 	 Apply 0.5mg to 0.9mg for NFA81R and 0.25 to 0.6mg for NFA62R/41R of bonding agent at each chip, and ensure not to cover electrodes.
	NFM41R NFA62R NFA81R 5.5 1.0 5.5 1.0 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Bonding agent

SOLDERING METHODS

3. Standard Soldering Conditions

Use flow and reflow soldering methods only. Use standard soldering conditions when soldering chip EMI suppression filters.

In cases where several different parts are soldered, each having different soldering conditions, use those conditions requiring the least heat and minimum time.

SOLDERING TEMPERATURE AND TIME

To prevent external electrode solder leaching and performance deterioration, solder within the temperature and time combinations illustrated in the following graphs. If soldering is repeated, please note that the allowed time is the accumulated time.

Allowable Flow Soldering Temperature and Time BLM: 260 (0°) BLA PLM150R **Temperature** 250 NFM60R NFM61R NFM61RH 240 VFM41R \\ NFM40R/41R/41P/840R \\ NFA \\ NFM51R/52R \\ 15 20 5 10 Time (sec.) Allowable Reflow Soldering Temperature and Time NFM60R NFM61R NFM61RH Temperature (°C) 260 250 240 VFM41R BLA PLM150R PLM250 BLM11/21/31/41 NFM40B/41B/41P/46P/840F 230 NFM51R/52R

Solder: 60:40 solder.

Flux : Use Rosin-based flux, but not strong acidic flux-

(with chlorine content exceeding 0.20wt%) when using RA type solder, clean products sufficiently to avoid remaining flux.

SOLDERING CONDITIONS

Series	Pre-heating (150°C)	Soldering Time (T)	Soldering Temp (°C)		
BLM		10 sec. max.			
BLA, NFA NFM40R/41R/41P/840R NFM51R NFM60R/61R(H) VFM41R PLM150R	60 sec. min.	5 sec. max.	250		
NFM52R		3 sec. max.	240		

Reflow Solder

Series	Pre-heating	Soldering Time						
Series	(150°C)	(T1)(183°C)	(T2)(230°C)					
NFM60R/61R(H)			250°C, 20 sec. max					
BLM			20 sec. max.					
BLA, NFA NFM40R/41R/840R NFM41P/46P NFM51R/52R VFM41R PLM150R/250	60 sec. min.	60 sec. max.	10 sec. max.					

REWORKING WITH SOLDERING IRON

The following conditions must be strictly followed when using a soldering iron.

Soldering iron : 30W max.
Tip temperature : 280°C max.
Soldering time : 10 seconds max.

Do not allow the tip of the soldering iron to directly

contact the chip.

SURFACE MOUNT EMI FILTERS CLEANING & STORAGE

4. Cleaning

The following conditions should be observed when cleaning chip EMIFIL®

- (1) Cleaning Temperature: 60°C max. (40°C max. for CFC alternatives and alcohol cleaning agents).
- (2) Ultrasonic

Output: 20W/I max. Duration: 5 minutes max. Frequency: 28kHz to 40kHz

(3) Cleaning agent

The following list of cleaning agents have been tested on the individual components. Evaluation of final assembly should be completed prior to production.

- 1. CFC alternatives and alcohol cleaning agents.
 - Isopropyl alcohol (IPA)
 - HCFC-225
- 2. Aqueous cleaning agent
 - Surface active agent (Clean Thru 750H)
 - Hydrocarbon (Techno Cleaner 335)
 - High grade alcohol (Pine Alpha ST-100S)
 - Alkaline saponifier (Aqua Cleaner 240-cleaner should be diluted within 20% using deionized water).
- (4) Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agent has been removed with deionized water).
- (5) Some products may become slightly whitened. However, product performance or usage is not affected. For additional cleaning methods, please contact Murata Engineering.

5. Operating Environment

Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

6. Storage and Handling Requirements

- Storage temperature: -10°C to +40°C
 Relative humidity: 30 to 70%
 Avoid sudden changes in temperature and humidity.
- (2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

Murata Electronics' Chip Inductors are ultra small, high performance inductors. They feature a low direct current resistance and outstanding high frequency characteristics. Each series has a unique structure specifically designed with a wide range of values suitable for various applications such as cellular mobile phone, pagers, radio communication equipment and audio equipment.

TABLE OF CONTENTS

Application		Features		P/N	EIA	Inductance Range (H)
Аррисации		reatures	Special Features	F/N	Size	1n 10n 100n 1u 10u 100u 1m 10m
				LQP11	0603	32,
for Resonant	Higher frequency	High QHigh Self	• Tight Tolerance for high frequency use •Thin profile	LQP21	0805	32,
Circuit	use	Resonant Frequency	•Thin profile	LQP31	1206	32,
				LQN21A	0805	34
				LQN1A	1206	35,
				LQN2A	1210	35,
	General use	• High Q	Monolithic Design Small Size	LQG21N	0805	37, 3
				LQN1H	1206	39,
				LQH1N	1206	40,
				LQH3N	1210	41, 4
		h		LQH4N	1812	42, 4
			• Tight tolerance+/-2% • Magnetic Shield	LQS33	1214	44
				LQG21C	0805	45
or Choke Coil		Low DC resistance	Monolithic Design	LQH1C	1206	46, 4
		Large Curre	ent Capacity	LQH3C	1210	46,4

LQP11A/21A/31A Series

The LQP Series is comprised of chip coils with a tight inductance tolerance, ±2%, achieved in a small chip area. Murata achieves this by forming the coil with precision film technology.

This coil is excellent in the high-frequency circuits of radio communication equipment.

PART NUMBERING

			Inductance			0		DC	Self-	Allowable	Operatin
Dimensions: mm	Part Number	Nominal Value (nH)	Tolerance (%)	Test Frequency (MHz)	Peak Value (Typ.)	Min. Value	Test Frequency (MHz)	Resistance (Ω max.)	resonant Frequency (MHz min.)	Allowable Current (mA)	Temp. Range (°C)
LQP11A Series	*LQP11A1N3C14	1.3			180			0.3		300	
	*LQP11A1N5C14	1.5			140			0.3		300	
	*LQP11A1N8C14	1.8		500	120				6000		
	*LQP11A2N2C14	2.2			95			0.4	6000	250	
A A + -	*LQP11A2N7C14	2.7			90			0.4		250	
0.8 ± 0.1	★LQP11A3N3C14	3.3	±0.2nH		85						
	*LQP11A3N9C14	3.9			80			0.5	5900		
-	*LQP11A4N7C14	4.7			75			0.5	5200	200	
1.6 ± 0.1	★LQP11A5N6C14	5.6			65		500	0.6	4700		
	*LQP11A6N8C14	6.8			00		500	0.7	4300		
	*LQP11A8N2C14	8.2			57			0.8	3600		
7 7 5	*LQP11A10NG(J)14	10.0			55			4.0	3400	150	
0.5 ± 0.1	*LQP11A12NG(J)14	12.0			50	17		1.0	3000		
→	*LQP11A15NG(J)14	15.0			45	17		1.3	2700		
0.2 min.	*LQP11A18NG(J)14	18.0			39			1.5	2300		
	*LQP11A22NG(J)14	22.0			38			1.9	2100	100	
	*LQP11A27NG(J)14	27.0			32			2.4	1900	100	
	★LQP11A33NG(J)14	33.0			30			2.8	1700		-40°C - +85°C
LQP21A Series	*LQP21A22NG(J)14	22	±2%		42			0.9	1800	200	
	★LQP21A27NG(J)14	27	(±5%)		40			1.1	1600	200	
	★LQP21A33NG(J)14	33			39			1.5	1500		
↑ 1.25 ± 0.1	*LQP21A39NG(J)14	39			36		300	1.5	1300	150	
<u> </u>	*LQP21A47NG(J)14	47		300	35			1.7	1200		
2.0 ± 0.1	*LQP21A56NG(J)14	56			34			2.9	1100		
\$ ± 0.1	*LQP21A68NG(J)14	68			32			3.7	1000	100	
± ± ± €	*LQP21A82NG(J)14	82			31			4.5	900		
0.2 min.	*LQP21AR10G(J)14	100			24			6.0	700	90	
QP31A Series	*LQP31A4N7J04	4.7	-		69						
EQI SIA Series	*LQP31A6N8J04	6.8	±5		63				2000	250	
0.25 min 1.0 min Electrode	*LQP31A10NG(J)04	10						1			
0.25 min. 1.9 min.	*LQP31A12NG(J)04	12		500	62	20	500			230	
A 70	*LQP31A15NG(J)04	15							1000		
1.6 ± 0.15	*LQP31A18NG(J)04	18			53			2	100000	160	
9.1	*LQP31A22NG(J)04	22	± 2					,			
3.2 ± 0.15	*LQP31A27NG(J)04	27	(± 5)		48						
3.2 I U.13	*LQP31A33NG(J)04	33			45						
▲ 0	*LQP31A47NG(J)04	47		200	41	10	200	5	850	100	
↑ 0.05 ± 0.1	*LQP31A68NG(J)04	68		200	34		10 200				
0.0	*LQP31AR10G(J)04	100			30	-		7	650	70	

^{*}Available as standard through authorized Murata Electronics Distributors.

LQP11A/21A/31A Series

TYPICAL ELECTRICAL CHARACTERISTICS Q-FREQUENCY CHARACTERISTICS

INDUCTANCE-FREQUENCY CHARACTERISTICS

LQN21A Series

The LQN21A Series consists of air-core chip coils using a subminiature alumina core as a bobbin. The high Q value at high frequencies and high self-resonant frequencies make this coil perfect for use in the high frequency circuits of communications equipment.

FEATURES

- Broad inductance range (3.3nH to 220nH)
- Tight inductance tolerance
- EIA standard 0805 size
- High self-resonant frequencyHigh Q characteristics

PART NUMBERING

LC	М	21	<u>A</u>	3N3	D	04
TYPE LQN: Non-epoxy coated	SIZE 21 : 2.0 x	1.5mm (0805)	CORE MATERIAL A : Alumina	INDUCTANCE CODE 3N3: 3.3nH	TOLERAN D: ± 0.5r J: ± 5%	

			Inductanc	е		Q :	*1		%2		
				Test	Peak	Mini	mum Value	DC	Self-	Allowable	Operating
Dimensions: mm	Part Number	Nominal Value (nH)	Tolerance	Frequency (MHz)	Value (Typ.)	Q Value	Test Frequency (MHz)	Resistance $(\Omega \text{ max.})$	resonant Frequency (MHz min.)	Current (mA)	Temp. Range
	*LQN21A3N3D04	3.3				10		0.07	6000	910	
	★LQN21A6N8D04	6.8	± 0.5nH		70	20		0.11	5400	680	
	★LQN21A8N2D04	8.2		80	20		0.12	3900	630		
	★LQN21A10NJ04	10			80			0.04	3300	1320	−25°C to +85°C
1.5 ± 0.2 1.5 ± 0.2	★LQN21A12NJ04	12			65			0.15	3200	680	
	★LQN21A15NJ04	15			60	30	250	0.17	2700	630	
	★LQN21A18NJ04	18	-					0.14	2600	690	
	★LQN21A22NJ04	22		100	70			0.10	2100	720	
JOSHU - V//////	★LQN21A27NJ04	27						0.24	2300	540	
0.2 1.5 ± 0.2	★LQN21A33NJ04	33			65			0.20	1900	570	
	★LQN21A39NJ04	39	± 5%		80			0.17	1700	600	
	★LQN21A47NJ04	47	± 3%		55		200	0.31	1600	450	
	★LQN21A56NJ04	56			70	40		0.34	1500	430	
*	★LQN21A68NJ04	68			65			0.31	1200	460	
0.5 min.	★LQN21A82NJ04	82			60			0.42	1100	320	
min. '''''	★LQN21AR10J04	100			00		150	0.38	750	350	
	★LQN21AR12J04	120			50		150	0.51	750	280	
	*LQN21AR15J04	150			35	30		0.34	350	420	
	*LQN21AR18J04	180			35	25	100	0.64	300	250	
	*LQN21AR22J04	220			50	35	100	0.70	500	240	

^{※1:} Measured with LCR meter YHP4191A, measuring tap 16193A.

^{*}Available as standard through authorized Murata Electronics Distributors.

^{※ 2:} Measured with Network Analyzer HP8753C.

LQN1A/2A Series

The LQN1A and LQN2A Series are comprised of air-core chip coils having sub-miniature alumina core bobbins. These coils are excellent in high-frequency video and communication applications because of their high Q values at high frequencies and high self-resonant frequencies.

LQN1A

The sub-miniature dimensions (3.2 x 1.6 x 1.8mm) allow parallel mounting on 2.5mm centers. A high self-resonant frequency makes these coils effective for applications from 100MHz up to 3GHz.

LQN2A

This series comprises a wound type chip coil with a minimum thickness of merely 1.6mm. A high self-resonant frequency makes these coils effective for applications ranging from 100MHz up to 1,000MHz.

PART NUMBERING

	LQN 1	A	23N J	04	<u>M00</u>	_
TYPE LQN: Non-epoxy coated	SIZE 1: 3.2 x 1.6mm (1206) 2: 3.2 x 2.5mm (1210)	CORE MATERIAL A : Alumina	INDUCTANCE CODE 8N8: 8.8nH 23N: 23nH R10: 100nH	TOLERANCE J: ± 5% K: ± 10% M: ± 20%	ELECTRODE MATERIAL 04 : Nickel Alloy Metallization	MARKING M00 : Unmarked

			Inductan	e		-	Q		Self-		
Dimensions	Part Number	Nominal Value (nH)	Tolerance (%)	Measurement Frequency	Peak Value (typ.)	Min. Value	Measurement Frequency	DC Resistance (Ω)	resonant Frequency (MHz min.)	Allowable Current (mA)	Operating Temp. Range
LQN1A Series	★LQN1A8N8J(K)04	8.8				50		0.029 ± 40%		750	
2.3 ± 0.2	★LQN1A15NJ(K)04	14.7	± 5	100MHz	100	0	436MHz	0.035 ± 40%		680	-25°C - +85°C
	*LQN1A17NJ(K)04	17						0.037 ± 40%	1000	650	
	★ LQN1A23NJ(K)04	23						0.046 ± 40%		590	
	★LQN1A27NJ(K)04	27						0.051 ± 40%		560	
	*LQN1A33NJ(K)04	33						0.057 ± 40%		530	
3.2 ± 0.3	★LQN1A39NJ(K)04	39	(± 10)			60		0.067 ± 40%		490	
6 ± 0.2	*LQN1A47NJ(K)04	47			90			0.110 ± 40%		380	
0.7 0.7 min.	★LQN1A56NJ(K)04	56			90			0.140 ± 40%	-	330	
	*LQN1A64NJ(K)04	64			80			0.180 ± 40%		290	
min.	*LQN1A84NJ(K)04	84			70			0.280 ± 40%		240	
	*LQN1AR10J(K)04	100			70			0.300 ± 40%	900	230	

^{*}Available as standard through authorized Murata Electronics Distributors.

LQN1A/2A Series

SPECIFICATIONS

Dimensions	Part Number	Inductance			Q				Self-		
		Nominal Value (nH)	Tolerance (%)	Measurement Frequency	Peak Value (typ.)	Min. Value	Measurement Frequency	ΩC Resistance $(\Omega \ max.)$	resonant Frequency (MHz min.)	Allowable Current (mA)	Operating Temp. Range
2.5 ± 0.2 2.5 ± 0.2 2.5 ± 0.2 2.5 ± 0.2 2.5 ± 0.2 2.5 ± 0.2 2.7 0.7 0.7 0.7 0.7 min. min.	*LQN2A10NM(K)04	10	± 20 (± 10) ± 20	100MHz	90	30	200MHz	0.25	1000	770	-25°C -85°C
	*LQN2A18NM04	18			85	40		0.25	1000	680	
	*LQN2A22NM(K)04	22	± 20 (± 10)		80	30		0.25	1000	410	
	*LQN2A33NM(K)04	33			80			0.25	900	490	
	*LQN2A39NM(K)04	39			75			0.25	900	370	
	*LQN2A47NM(K)04	47			80	40		0.3	600	550	
	*LQN2A56NM(K)04	56			75	,,,		0.3	800	340	
	*LQN2A68NM(K)04	68			60			0.3	500	500	
	*LQN2A82NM(K)04	82			50			0.3	600	300	
	*LQN2AR10K04	100	± 10	25MHz	55	30	100MHz	0.4	400	380	
	*LQN2AR12K04	120			50			0.4	350	410	
	*LQN2AR15K04	150			45			0.5	300	400	
	*LQN2AR18K04	180			45			0.5	300	370	
	*LQN2AR22K04	220			40			0.6	280	360	

^{*}Available as standard through authorized Murata Electronics Distributors.

TYPICAL ELECTRICAL CHARACTERISTICS

LQG21N Series

The LQG21N Series are magnetically shielded chip coils which were developed from Murata Electronics' multilayer process technology and magnetic materials. It is one-quarter the size of conventional chip coils and has high reliability.

PART NUMBERING

DIMENSIONS: mm

		Inductance		(1	DC	Self-	Allowable	Operating
Part Number	Nominal Value (µH)	Tolerance (%)	Measurement Frequency	Nominal Value (min.)	Measurement Frequency	Resistance (Ω)	resonant Frequency (MHz min.)	Current (mA)	Temp. Range
*LQG21NR10K04	0.10					0.17±50%	340		
★LQG21NR12K04	0.12					0.19±50%	310		
★LQG21NR15K04	0.15					0.21±50%	270		
★LQG21NR18K04	0.18			20		0.23±50%	250	250	
★LQG21NR22K04	0.22					0.25±50%	220		
★LQG21NR27K04	0.27		25 MHz		25 MHz	0.28±50%	200		
★LQG21NR33K04	0.33					0.32±50%	180		
★LQG21NR39K04	0.39					0.35±50%	165	200	
★LQG21NR47K04	0.47					0.38±50%	150	200	
★LQG21NR56K04	0.56			25		0.42±50%	140		−25°C
★LQG21NR68K04	0.68	± 10				0.48±50%	125	150	~
★LQG21NR82K04	0.82					0.54±50%	115		+85°C
★LQG21N1R0K04	1.0					0.28±50%	107		
★LQG21N1R2K04	1.2					0.31±50%	97	50	
*LQG21N1R5K04	1.5					0.34±50%	87	50	
*LQG21N1R8K04	1.8					0.38±50%	80		
*LQG21N2R2K04	2.2		10 MHz	30	10 MHz	0.42±50%	71		
★LQG21N2R7K04	2.7					0.46±50%	66		
★LQG21N3R3K04	3.3					0.54±50%	59	30	
★LQG21N3R9K04	3.9					0.59±50%	53		
★LQG21N4R7K04	4.7					0.70±50%	47		

^{*}Available as standard through authorized Murata Electronics Distributors.

LQG21N Series

TYPICAL ELECTRICAL CHARACTERISTICS

40

Temperature (°C)

60 80

-20

INDUCTANCE-CURRENT CHARACTERISTICS

LQN1H Series

Chip coil LQN1H Series is a wire wound type chip coil which applies a high frequency ferrite core. Its high Q value at 30MHz ~ 150MHz and low DC resistance are suitable for high frequency resonator circuits use.

APPLICATION

Voltage controlled oscillator, trap, filter circuit built-in mobile communication equipment, cordless phones, various radio equipment, FM radio tuners, TV tuners (VHF low), VIF circuits, etc.

PART NUMBERING

	LQN			54N	K	04	МОО	7
TYPE LQN: Without Coating		(1.6mm (1206)	APPLICATION H : High Frequenc Application	су	INDUCTANCE 54N: 54nH	TOLERANCE K: ±10%	ELECTRODE MATERIAL 04 : Nickel Alloy Metalization	MARKING M00 : Unmarked

SPECIFICATIONS

			Inductan	ce		Q		DC.	Self-	Allowable	Operating
Dimensions	Part Number	Nominal Value (nH)	Tolerance (%)	Measurement Frequency	Peak Value (typ.)	Nominal Value (min.)	Measurement Frequency	DC Resistance (Ω)	resonant Frequency (MHz min.)	Current (mA)	Temp. Range
LQN1H Series	★LQN1H54NK04	54			65	50		0.035 ± 30%	800	920	
2.3 ± 0.2 1.6 ± 0.2	★LQN1H95NK04	95			75			0.047 ± 30%	650	790	
2.3 ± 0.2	★LQN1HR14K(J)04	145			80			0.061 ± 30%	500	700	
8 H O O O O	★LQN1HR21K(J)04	215						0.11 ± 30%	430	520	
	★LQN1HR29K(J)04	290	± 10	1MHz			100MHz	0.17 ± 30%	360	420	−25°C ~
3.2 ± 0.3	★LQN1HR39K(J)04	390	(± 5)	IIVITZ	0.5	60	TUUIVITZ	0.26 ± 30%	300	330	+85°C
+ 0.2	★LQN1HR50K(J)04	500			85			0.44 ± 30%	270	260	
9.	★LQN1HR61K(J)04	610						0.48 ± 30%	240	250	
0.7 0.7 min.	★LQN1HR75K(J)04	750						0.79 ± 30%	220	190	
min. ''''''	★LQN1HR88K(J)04	880			90			0.86 ± 30%	200	180	

^{*}Available as standard through authorized Murata Electronics Distributors.

TYPICAL Q-FREQUENCY CHARACTERISTICS

LQH1N/3N/4N

The chip coil LQH/LQN Series comprises subminiature chip inductors wound on a special ferrite core made possible by an automatic winding technique developed by Murata Electronics. These inductors have a high Q at high frequencies and low DC resistance, making them suited for enhancing the performance of electronic circuits in video, communications and audio equipment.

I QH1N

The sub-miniature dimensions (3.2 x 1.6 x 1.8mm) allow parallel mounting on 2.5mm centers. This series is suitable for portable audio-visual equipment.

I OH3N

High Q value makes the series suitable for circuits up to 100MHz in frequency. This series is excellent for video equipment.

LQH(N)4N

This series is available with high inductance values and high current capacity. At $10\mu H$, up to 450mA designs are possible, resulting in excellent performance when the series is used as a choke coil.

PART NUMBERING

			Inductance			Q		Self-		
Dimensions: mm	Part Number	Nominal Value (µH)	Tolerance (%)	Measurement Frequency	Nominal Value (min.)	Measurement Frequency	DC Resistance (Ω)	resonant Frequency (MHz min.)	Allowable Current (mA)	Operating Temp. Range
OHAN O .	*LQH1NR15M(K)04	0.15			20		0.39±40%	250	250	
QH1N Series	*LQH1NR22M(K)04	0.22			20		0.43±40%	250	240	
	★LQH1NR33M(K)04	0.33					0.45±40%	250	230	1
	*LQH1NR47M(K)04	0.47	± 20			25MHz	0.83±40%	200	215	
	*LQH1NR56M(K)04	0.56	(± 10)		30		0.61±40%	180	200	
	*LQH1NR68M(K)04	0.68	(± 10)				0.67±40%	160	190	
	*LQH1NR82M(K)04	0.82					0.73±40%	120	185	
	*LQH1N1R0M(K)04	1.0					0.49±30%	100	175	
	★LQH1N1R2M(K)04	1.2					0.9±30%	90	165	
	★LQH1N1R5M(K.J)04	1.5	★ ± 20			10MHz	1.0±30%	75	155	
	★LQH1N1R8M(K.J)04	1.8	★(± 10)			TOWNIZ	1.6±30%	60	150	
2.3 ± 0.2	★LQH1N2R2M(K.J)04	2.2	★(± 10)				0.7±30%	50	140	
	★LQH1N2R7M(K.J)04	2.7	^ (± 3)				0.55±30%	43	135	
3	★LQH1N3R3M(K.J)04	3.3					1.4±30%	38	130	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	★LQH1N3R9M(K.J)04	3.9	★ ± 20		35		1.5±30%	35	125	-25°C
Temminos.	★LQH1N4R7M(K.J)04	4.7			- 00	01411	1.7±30%	31	120	~
2 ± 0.3	★LQH1N5R6M(K.J)04	5.6	★(± 10)	1MHz		8MHz	1.8±30%	28	115	+85°C
T 205 10	★LQH1N6R8M(K.J)04	6.8	(± 5)				2.0±30%	25	110	
1.6 ± 0.2	*LQH1N8R2M(K.J)04	8.2					2.2±30%	23	105	
	★LQH1N100K(J)04	10					2.5±30%	20	100	
0.7 0.7	*LQH1N120K(J)04	12				5MHz	2.7±30%	18	95	
n. min. min.	*LQH1N150K(J)04	15				SIVINZ	3.0±30%	16	90	
	★LQH1N180K(J)04	18					3.4±30%	15	85	
	★LQH1N220K(J)04	22					3.1±30%	14	85	
	★LQH1N270K(J)04	27	★± 10				3.4±30%	13	85	
	★LQH1N330K(J)04	33	(± 5)				3.8±30%	12	80	
	*LQH1N390K(J)04	39	(± J)				7.2±30%	11	55	1
	*LQH1N470K(J)04	47			40	2.5MHz	8.0±30%	10	55	
	*LQH1N560K(J)04	56			0.20		8.9±30%	9.0	50	
	*LQH1N680K(J)04	68					9.9±30%	8.5	50	
	*LQH1N820K(J)04	82					11±30%	7.5	45	
	*LQH1N101K(J)04	100					12±30%	7.0	45	

^{*}Available as standard through authorized Murata Electronics Distributors.

LQH1N/3N/4N Series

			Inductance			Q	DC	Self-	A11	
Dimensions: mm	Part Number	Nominal Value (μΗ)	Tolerance (%)	Measurement Frequency	Nominal Value (min.)	Measurement Frequency	Resistance (Ω) max.	resonant Frequency (MHz min.)	Allowable Current (mA)	Operating Temp. Range
Selection 1	★LQH3NR10M04	0.10			20		0.25	200	700	
QH3N Series	★LQH3NR18M04	0.18			20		0.25	200	650	
	★LQH3NR27M04	0.27			25		0.25	200	600	
	★LQH3NR39M04	0.39			23	25.2MHz	0.25	200	530	
	★LQH3NR56M04	0.56	± 20				0.25	160	530]
	★LQH3NR68M04	0.68			30		0.25	160	470	
	*LQH3NR82M04	0.82					0.25	120	450	1
	★LQH3N1R0M04	1.0					0.5	100	445	
	*LQH3N1R2M04	1.2					0.6	100	425	
	*LQH3N1R5M(K)04	1.5					0.6	75	400	
	*LQH3N1R8M(K)04	1.8					0.7	60	390	
	*LQH3N2R2M(K)04	2.2					0.8	50	370	
	*LQH3N2R7M(K)04	2.7			20		0.9	43	320	
	*LQH3N3R3M(K)04	3.3	★ ± 20				1.0	38	300	
	*LQH3N3R9M(K)04	3.9	(± 10)				1.1	35	290	
± 0.2	*LQH3N4R7M(K)04	4.7					1.2	31	270	
24	*LQH3N5R6M(K)04	5.6					1.3	28	250	
5.0 + 0.2	*LQH3N6R8M(K)04	6.8					1.5	25	240	
N+ [V//////]	*LQH3N8R2M(K)04	8.2				1MHz	1.6	23	225	-25°C ~ +85°C
.3	*LQH3N100K(J)04	10		1MHz			1.8	20	190	
and 4	*LQH3N120K(J)04	12			25		2.0	18	180	
+ 0.2	*LQH3N150K(J)04	15					2.2	16	170	
2.5 ± 0.2	*LQH3N180K(J)04	18			35		2.5	15	165	
0.7	*LQH3N220K(J)04	22					2.8	14	150	
min.	*LQH3N270K(J)04	27					3.1	13	125	
	*LQH3N330K(J)04	33					3.5	12	115	
	*LQH3N390K(J)04	39					3.9	11	110	
	*LQH3N470K(J)04	47					4.3	11	100	
	*LQH3N560K(J)04	56					4.9	10	85	
	*LQH3N680K(J)04	68	★ ± 10				5.5	9.0	80	
	*LQH3N820K(J)04	82	(± 5)				6.2	8.5	70	
	*LQH3N101K(J)04	100			40		7.0	8.0	80	
	*LQH3N121K(J)04	120					8.0	7.5	75	
	*LQH3N151K(J)04	150					9.3	7.0	70	
	*LQH3N181K(J)04	180					10.2	6.0	65	
	*LQH3N221K(J)04	220				796kHz	11.8	5.5	65	
	*LQH3N271K(J)04	270				/ 90KHZ	12.5	5.0	65	
	*LQH3N331K(J)04	330					13.0	5.0	65	-
	*LQH3N391K(J)04	390				_	22.0	5.0	50	
	*LQH3N471K(J)04	470			50		25.0	5.0	45	
	*LQH3N561K(J)04	560		1kHz			28.0	5.0	40	

^{*}LQH3N561K(J)04 560

*Available as standard through authorized Murata Electronics Distributors.

SURFACE MOUNT INDUCTORS

LQH1N/3N/4N Series

			Inductance			Q	DC	Self-	Allowable	Onorotin
Dimensions: mm	Part Number	Nominal Value (μ H)	Tolerance (%)	Measurement Frequency	Nominal Value (min.)	Measurement Frequency	$\begin{array}{c} \text{Resistance} \\ (\Omega) \\ \text{max}. \end{array}$	resonant Frequency (MHz min.)	Allowable Current (mA)	Operatin Temp. Range
	LQH4N1R0M04	1.0					0.20	120		
QH4N/LQN4N Series	LQH4N1R2M04	1.2					0.20	100		
	LQH4N1R5M04	1.5						85		
	LQH4N1R8M04	1.8	* ± 20		20		0.30	75		
	LQH4N2R2M04	2.2	A 1 20		20			62	500	
	LQH4N2R7M04	2.7					0.32	53	300	
	LQH4N3R3M04	3.3					0.35	47		
	LQH4N3R9M04	3.9					0.38	41		
	LQH4N4R7M(K)04	4.7					0.40	38		
	LQH4N5R6M(K)04	5.6	★ ± 20				0.47	33		
	LQH4N6R8M(K)04	6.8	★ (± 10)		30		0.50	31	450	
	LQH4N8R2M(K)04	8.2				1MHz	0.56	27	450	
	*LQH4N100K(J)04	10				1101112	0.56	23	400	
	*LQH4N120K(J)04	12					0.62	21	380	
	*LQH4N150K(J)04	15		1MHz			0.73	19	360	
	*LQH4N180K(J)04	18		1101112			0.82	17	340	
3.6 ± 0.2	*LQH4N220K(J)04	22					0.94	15	320	
0.1	★LQH4N270K(J)04	27			35		1.1	14	300	
5.6 ± 0.2	*LQH4N330K(J)04	33					1.2	12	270	-25°C
%.	*LQH4N390K(J)04	39					1.4	11	240	~
4.5 ± 0.3	*LQH4N470K(J)04	47					1.5	10	220	+85°C
	*LQH4N560K(J)04	56					1.7	9.3	200	
3.2 ± 0.2	★LQH4N680K(J)04	68					1.9	8.4	180	
3.2.2	*LQH4N820K(J)04	82					2.2	7.5	170	
***	*LQH4N101K(J)04	100					2.5	6.8	160	
0 1.0 1.0 n. min. min.	*LQH4N121K(J)04	120	★ ± 10				3.0	6.2	150	
	★LQH4N151K(J)04	150	(± 5)				3.7	5.5	130	
	★LQH4N181K(J)04	180					4.5	5.0	120	
	★LQH4N221K(J)04	220					5.4	4.5	110	
	★LQH4N271K(J)04	270				796kHz	6.8	4.0	100	
	★LQH4N331K(J)04	330					8.2	3.6	95	
	★LQH4N391K(J)04	390					9.7	3.3	90	
	★LQH4N471K(J)04	470			40		11.8	3.0	80	
	★LQH4N561K(J)04	560					14.5	2.7	70	
	★LQH4N681K(J)04	680					17.0	2.5	65	
	★LQH4N821K(J)04	820					20.5	2.2	60	
	★LQH4N102K(J)04	1000		1kHz			25.0	2.0	50	
	★LQH4N122K(J)04	1200					30.0	1.8	45	
	★LQH4N152K(J)04	1500				252kHz	37.0	1.6	40	
	★LQN4N182K(J)04	1800					45.0	1.5	35	
	*LQN4N222K(J)04	2200					50.0	1.3	30	

^{*}Available as standard through authorized Murata Electronics Distributors.

LQH1N/3N/4N

TYPICAL ELECTRICAL CHARACTERISTICS

Q-FREQUENCY CHARACTERISTICS

INDUCTANCE-TEMPERATURE CHARACTERISTICS

INDUCTANCE-CURRENT CHARACTERISTICS

COUPLING FACTOR

LQS33N Series

The LQS33N is a series of closed, magnetically shielded chip inductors wound on ferrite bobbins developed by Murata Electronics. Their high Q value virtually eliminates interference with nearby circuits. This, combined with their tight inductance tolerance; make's these chip inductors excellent in resonance circuits.

PART NUMBERING

SPECIFICATIONS

			Inductance			Q		DC	Self-	Allowable	Operating
Dimensions	Part Number	Nominal Value (μΗ)	Tolerance (%)	Measurement Frequency (MHz)	Peak Value (typ.)	Min. Value	Measurement Frequency	Resistance (Ω)	resonant Frequency (MHz min.)	Current (mA)	Temp. Range
QS33 Series	LQS33N1R0G(J)04	1.0			85			0.19 ± 30%	120		
Lagoo Series	LQS33N1R2G(J)04	1.2			85			0.22 ± 30%	100	70	
	LQS33N1R5G(J)04	1.5			85			0.26 ± 30%	80	70	
	LQS33N1R8G(J)04	1.8			85			0.28 ± 30%	70		
	LQS33N2R2G(J)04	2.2			90			0.33 ± 30%	60		
$3.5 \pm {0.3 \atop 0.2}$	LQS33N2R7G(J)04	2.7		7.96	90	60	7.96MHz	0.39 ± 30%	55	50	
3.5 ± 0.2	LQS33N3R3G(J)04	3.3		7.90	90	00	7.9010102	0.43 ± 30%	50	50	
	LQS33N3R9G(J)04	3.9			90			0.45 ± 30%	45		
0.5	LQS33N4R7G(J)04	4.7			90			0.52 ± 30%	40		
# L	LQS33N5R6G(J)04	5.6			90			0.56 ± 30%	37	30	
3.2 ± 0.3	LQS33N6R8G(J)04	6.8			90			0.62 ± 30%	35	30	-25°C
5.2 ± 0.2	LQS33N8R2G(J)04	8.2	±2		90			0.69 ± 30%	32		-25 0
DIKT DIKE	LQS33N100G(J)04	10	(±5)		90			0.94 ± 30%	30		+85°C
	LQS33N120G(J)04	12			90			1.1 ± 30%	27	15	100 0
UI IU	LQS33N150G(J)04	15			90	70		1.2 ± 30%	25	13	
	LQS33N180G(J)04	18			90	70		1.3 ± 30%	23		1=
	LQS33N220G(J)04	22			90			1.5 ± 30%	20		
0.7 0.7 0.7	LQS33N270G(J)04	27			95			1.7 ± 30%	18		
nin. min. min.	LQS33N330G(J)04	33		2.52	95		2.52MHz	2.4 ± 30%	16		
	LQS33N390G(J)04	39			95			2.6 ± 30%	15		
	LQS33N470G(J)04	47			95			3.0 ± 30%	14	10	
	LQS33N560G(J)04	56			100	80		3.3 ± 30%	13		
	LQS33N680G(J)04	68			100			5.3 ± 30%	12		
	LQS33N820G(J)04	82			100			5.8 ± 30%	11		
	LQS33N101G(J)04	100			100			6.6 ± 30%	10		

TYPICAL ELECTRICAL CHARACTERISTICS

Q-FREQUENCY CHARACTERISTICS 120 100 80 0 60 40 20 0.1 0.5 1 5 10 50 100 Frequency (MHz)

INDUCTANCE-TEMPERATURE CHARACTERISTICS

INDUCTANCE-CURRENT CHARACTERISTICS

COUPLING FACTOR

The LQG21C Series is a magnetically shielded chip coil developed with Murata's expertise in multilayer process technology and magnetic materials. With less than half the DC resistance of our conventional monolithic chip coils, it still achieves high inductance values.

FEATURES

- The inductor has ultra low DC resistance.
- This series covers an inductance range from 1.0 µH to 47µH.
- Magnetically shielded construction provides excellent crosstalk characteristics.
- Compact (2.0mm x 1.25mm) and light weight
- Low inductance drift during soldering, environmental tests, etc.
- Outstanding solder heat resistance. Either flow or reflow soldering

APPLICATIONS

Low current power line (for choke use)

PART NUMBERING

SPECIFICATIONS

			Indu	ctance		Self-resona	nt Frequency		
Dimensions: mm	Part Number	Nominal Value (µH)	Tolerance	Measurement Frequency	DC Resistance (max. Ω)	Typical (MHz)	Minimum (MHz)	Allowable Current (mA)	Operating Temp. Range
0.5 ± 0.3 Electrode	*LQG21C1R0N00	1.0			0.10	150	75	60	
H	*LQG21C2R2N00	2.2			0.17	100	50	40	
2.0 ± 0.3 1.25 ± 0.2	*LQG21C4R7N00	4.7	±30%	1 MHz	0.30	70	35	30	−40°C ~
	*LQG21C100N00	10			0.50	45	24	15	+85°C
Part Number H LQG21C1R0N~100N 0.9 ± 0.2	*LQG21C220N00	22			0.65	20	16	13	
LQG21C1R0N~100N 0.9 ± 0.2 LQG21C220N~470N 1.25 ± 0.2	*LQG21C470N00	47			1.20	_	7.5	7	

^{*}Available as standard through authorized Murata Electronics Distributors.

TYPICAL IMPEDANCE FREQUENCY CHARACTERISTICS

LQH1C/3C Series

The LQH1C and LQH3C Series are subminiature chip coils with low DC resistance, high current capacity and high impedance characteristics. These features are made possible by the development of Murata Electronics' own automatic winding and multilayer techniques. They are excellent for use as choke coils in DC power supply circuits.

LQH1C

The sub-miniature dimensions (3.2 x 1.6 x 1.8mm) allow parallel mounting on 2.5mm centers. Despite their small size, at $0.12\mu H$ these coils have a maximum current rating of 970mA.

LQH3C

The low DC resistance means high current and high inductance.

PART NUMBERING

			Inductance		DC	Self-resona	ant Frequency	Allowable	Onevetica
Dimensions: mm	Part Number	Nominal Value (μ H)	Tolerance (%)	Measurement Frequency	Resistance (Ω)	Typical	Min. Value (MHz)	Current (mA)	Operating Temp. Range
_QH1C Series	*LQH1CR12M04	0.12			0.08 ± 40%	900	250	970	
2.3 ± 0.2 1.6 ± 0.2	*LQH1CR22M04	0.22			0.10 ± 40%	570	250	850	
N A	*LQH1CR47M04	0.47	±20		0.15 ± 40%	310	180	700	
2.	*LQH1C1R0M04	1.0			0.28 ± 30%	190	100	510	−25°C
□ □ □ □	*LQH1C2R2M04	2.2		1 MHz	0.41 ± 30%	110	50	430	~
3.2 ± 0.3	*LQH1C4R7M04	4.7	1	1	0.65 ± 30%	67	31	340	+85°C
PM 18	*LQH1C100K04	10			1.3 ± 30%	42	20	230	
1.6 ± 0.2	*LQH1C220K04	22	±10		3.0 ± 30%	26	14	160	
4 > 4 > 4 >	*LQH1C470K04	47	210		8.0 ± 30%	18	10	100	
0.7 0.7 0.7 min. min. min.	*LQH1C101K04	100			12.0 ± 30%	12	7	80	
QH3C Series	*LQH3C1R0M04	1.0			0.09 ± 30%	150	96	800	
. Wilde Selles	*LQH3C2R2M04	2.2	±20		0.13 ± 30%	100	64	600	
	★LQH3C4R7M04	4.7			0.20 ± 30%	66	43	450	
	*LQH3C100K04	10			0.44 ± 30%	40	26	300	
	★LQH3C220K04	22		1 MHz	0.71 ± 30%	27	19	250	-25°C
2.5 ± 0.2	★LQH3C470K04	47		1 111112	1.3 ± 30%	19	15	170	~
NA CONTRACTOR OF THE PROPERTY	★LQH3C101K04	100			3.5 ± 30%	13	10	100	+85°C
	★LQH3C221K04	220	±10		8.4 ± 30%	8.5	6.8	70	
	★LQH3C331K04	330			10.0 ± 30%	7.0	5.6		
3.2 ± 0.3	★LQH3C391K04	390			17.0 ± 30%	6.6		60	
	★LQH3C471K04	470		1kHz	19.0 ± 30%	6.2	5.0	00	
2.5 ± 0.2	★LQH3C561K04	560		TKIIZ	22.0 ± 30%	5.7			
	★LQH3CR15M24	0.15		=	0.028 ± 30%	650	400	1450	
0.7 0.7 0.7 min. min. min.	★LQH3CR27M24	0.27			0.034 ± 30%	450	250	1250	
Lunci me lunci	★LQH3CR47M24	0.47	±20%		0.042 ± 30%	300	150	1100	−25°C
	*LQH3C1R0M24	1.0	±20 /0	1MHz	0.060 ± 30%	200	100	1000	~
	★LQH3C2R2M24	2.2			0.097 ± 30%	120	64	790	+85°C
	★LQH3C4R7M24	4.7			0.15 ± 30%	77	43	650	
	*LQH3C100K24	10	±10		0.30 ± 30%	50	26	450	

^{*}Available as standard through authorized Murata Electronics Distributors.

LQH1C/3C Series

TYPICAL ELECTRICAL CHARACTERISTICS

IMPEDANCE FREQUENCY CHARACTERISTICS

LQH1C Series

LQH3C Series

DIRECT CURRENT CHARACTERISTICS

LQH1C Series

LQH3C Series

SURFACE MOUNT INDUCTORS PACKAGING & STORAGE

						Sold	ering		P	ackaging Units	
Pr	oduct Name	Appearance	С	Dimensions (mm)		Flow Soldering	Reflow Soldering	Taping Width	ϕ 180mm Reel	φ330mm Reel	Bulk (Bag)
			L	w	Т	Flow	Reflo	Taping			
	LQG21N/C		2.0	1.25	0.9	0	0	8	4,000	_	1,000
	LQG21N (2.7~ 4.7μH)		2.0	1.25	1.25	0	0	8	3,000	_	1,000
	LQG21C (22 ~ 47μH)		2.0	1.25	1.25	0	0	8	3,000	_	1,000
	LQH1N/LQN1H/1C		3.2	1.6	1.8	0	0	8	2,000	_	_
	LQH3N/3C		3.2	2.5	2.0	0	0	8	2,000	_	-
Chip Coil	LQH (N) 4N		4.5	3.2	2.6	0	0	12	500	2,500	_
	LQS33N	\Diamond	3.2	3.5	1.8	_	0	12	1,000	_	_
	LQN1A		3.2	1.6	1.8	0	0	8	2,000	_	_
	LQN2A		3.2	2.5	1.6	0	0	8	2,500	_	_
	LQN21A	8	2.0	1.5	1.7	0	0	8	2,000	_	_
	LQP11A		1.6	0.8	0.5	_	0	8	2,000	_	_
	LQP21A		2.0	1.25	0.5	_	0	8	2,000	-	_
	LQP31A		3.2	1.6	0.5	_	0	8	2,000	_	_

REEL DIMENSIONS

		ϕ 180mm Reel	ϕ 330mm Reel
	Α	178 ± 2	328 ± 2
	В	50 (r	nin.)
	C	φ 13 ±	0.5
w	8mm Width Tape	10 ±	1.5
VV	12mm Width Tape	14 ±	1.5
: D	iameter		Unit : m

STORAGE REQUIREMENTS

Be sure to observe the following storage requirements to prevent damage to the soldering of exposed electrode.

- The maximum ambient temperature and relative humidity in which these parts can be stored are 40°C and 70%, respectively. Please note that package deformation may result from storage in ambient temperature exceeding 40°C.
- Do not unpack the polyethylene bag prior to using product. Also, after unpacking, promptly reseal or store in a desiccant containing a drying agent.
- Do not store in areas where harmful gases containing sulfur or chlorine are present.

TAPE SPECIFICATIONS

- All tape packaging conforms to JIS C 0806 specifications. Dimensions are described separately for each product.
- Tape is wound clockwise. When tape is pulled toward the user, the feeding hole is observable on the right side of the tape.

SURFACE MOUNT INDUCTORS PACKAGING

PLASTIC TAPE DIMENSIONSThe Chip Coil Series are packaged in plastic tape.

LQG21N, LQH1N/1C, LQN1A/2A, LQN1H LQH3N/3C, LQP21A/31A, LQN21A

Series	а	b	С	Packaging Unit ϕ 180mm Reel
LQG21N/C	1.55	2.3	1.05 /1.3	4000
LQH1N/LQH1C LQN1H/LQN1A	1.9	3.6	2.0	2000
LQN2A	2.9	3.6	1.8	2500
LQH3N/LQH3C	2.9	3.6	2.2	2000
LQP11A	1.6	2.4	0.75	2000
LQP21A	1.3	2.1	0.75	2000
LQP31A	1.9	3.6	0.9	2000
LQN21A	1.75	2.3	2.0	2000

Unit: mm

LQS33N, LQH(N)4N

8mm type

12mm type

				Packaç	ging Unit
Series	a	b	С	φ180mm Reel	ϕ 330mm Reel
LQS33N	3.9	3.7	1.9	1000	_
LQH(N)4N	3.6	4.9	2.9	500	2500

Unit: mm

SURFACE MOUNT INDUCTORS SOLDERING

SOLDERING METHOD

2. Soldering Conditions

Chip coils can be flow or reflow soldered. (LQS33N and LQP21A/31A should be reflow soldered only.) Please contact Murata Electronics regarding other soldering methods.

The volume of solder can cause minor fluctuations in inductance value. Therefore, control the amount of solder carefully for LQP21A/31A soldering.

SOLDERING TEMPERATURE AND TIME

Solder within the temperature and time combinations illustrated in the following graphs. If soldering is repeated, please note that the allowed time is the accumulated time.

Recommended Solder: Use H60A, H63A, (JIS Z 3282) or equivalent. Use rosin-based flux, but not strongly acidic flux (with chlorine content exceeding 0.2wt%)

REWORKING WITH SOLDERING IRON

A preheating of 150°C for 1 minute is required. Do not directly touch the ceramic element with the tip of the soldering iron. The reworking soldering conditions are as follows.

RECOMMENDED SOLDERING CONDITIONS

Soldering Iron Power Output : 30W max. Temperature of soldering iron tip: 280°C Diameter of soldering iron end : 3.0mm max. Soldering time : within 3 sec.

3. Cleaning Conditions

Cleaning liquid : isopropyl alcohol. Immersion cleaning : Within 5 minutes at 40°C or lower

temperature. Vapor cleaning Within 3 minutes.

Ultrasonic cleaning: Shall be applied with the following

conditions.

Please avoid making the resonance phenomenon at the mounted products

and P.C.B. 20w/ℓ max.

Power Frequency : 28kHz~40kHz Time : 5 minutes max.

4. Resin Coating

When coating the chip with resin, the curing stress of the resin may change the coil's electrical or mechanical characteristics. Therefore, the resin material should be carefully selected to minimize its influence on coils.

5. Operating Environment

Do not use products in chemical atmosphere such as chlorine gas, acid or sulfide gas.

6. Storage Conditions

Storage temperature: -10°C to +40°C Relative humidity : 30 to 70%

Avoid sudden changes in temperature and humidity

SURFACE MOUNT INDUCTORS SOLDERING

STANDARD LAND DIMENSIONS

Based on more than 30 years of ceramic and ferrite technology experience, Murata Electronics' full range of leaded EMI filters have been designed to meet today's electronic industry requirements.

Murata's leaded devices consist of ferrite bead inductors, feed-thru capacitors, 3 terminal capacitors, varistor/capacitors common mode chokes and block filters.

TABLE OF CONTENTS

Danasiation	0		Effective	e Frequen	cy (MHz)		Equivalent	
Description	Series	.1	1	10	100	1000	Circuit	Page
Ferrite Bead	BLO						· · · · · · · · · · · · · · · · · · ·	54, 55
3-Terminal	DS(S)306						5 2000 Cape o	50.00
Capacitor	DS(S/T)310/H						Ţ	56 - 60
3-Terminal	VFR303	1	1				~~~	
Varistor/	DSS706							61 - 64
Capacitor	DSS710	1					6	
Suppression	NFV510		1		NAME OF THE OWN	333	0	65, 66
Filter	NFV610							00, 00
Block	BNP							67
Filter	BNX						- 000 1 000	68
Common Mode	PLT				os we		• • • • • • • • • • • • • • • • • • • •	69 - 71
Chokes	PLC						• 000	69 - 71
	Sub Mini DF/TF						P	
Feed-Thru	TF318/H/418						· · · · ·	70 70
Capacitor	DF553/572							72 - 76
	DFT301/304							
Ferrite	FS				CHIC		· · · · · · · · · · · · · · · · · · ·	77

BL01, BL02 & BL03 Series

APPLICATIONS

Micro computer, switching regulators, digital control equipment, car radios, car stereos, etc.

Ferrite beads are used for noise suppression in car radios, digital control equipment and for the prevention of spurious oscillation in radio frequency amplifiers. These ferrite bead inductors are devices which can effectively be used on printed circuit boards where high component density is essential. Taped and reeled types are also available for automatic insertion. Radial leaded units can be classified into two types — one using a single ferrite bead and the other using two ferrite beads.

FEATURES

- High component density potential
- Double bead BL02RN2 types offered for more effective noise suppression
- Taped and reeled radial and axial types for automatic insertion can be provided as well as ammo packaging.
- Axial lead version BL01RN1-A62 available

PART NUMBERING

DIMENSIONS: mm

SPECIFICATIONS

	Item	Characteristics
Permeability	(μi)	550
Saturation Magnetic	(Bs)	3100 (gauss)
Residual Magnetic F	ux Density (Brs)	1700 (gauss)
Coercive Force	(Hc)	0.3 (Oe)
Curie Point	(Tc)	130 (°C)
Temp. Coefficient	$(\alpha \mu r)$	20 x 10 ⁻⁶
Relative Loss Factor	(DF/μi)	13 x 10 ⁻⁶
neialive Luss Factur	(ΔΓ7μ1)	0.5 (MHz)
Resistivity	(ρ)	10 ⁷ (Ω ^{-cm})
Max. Rated Current	BL01 and BL02 (A) (Bulk)	7A
	BL01 and BL02 (A) (Taped)	6A
	BL03 (Taped or Bulk)	6A

^{*}Available as standard through authorized Murata Electronics Distributors.

CONFIGURATIONS

Part Number	Form			
*BL01RN1-A62	Axial, Single bead			
*BL01RN1-A62B1	Axial, Single bead, Bent			
*BL01RN1-A62T5	Axial, Single bead, Taped			
*BL01RN1-A63T6	Axial, Single bead, Taped			
*BL02RN1-R62	Radial, Single bead			
*BL02RN2-R62	Radial, Double bead			
*BL02RN1-R62T4	Radial, Single bead, (Ammo)			
*BL02RN2-R62T4	Radial, Double bead, (Ammo)			
*BL03RN2-R62	Radial, Double bead			
*BL03RN2-R62T4	Radial, Double bead, Ammo			

Operating Temperature: -25°C to +85°C

BL01, BL02 & BL03 Series

TYPICAL IMPEDANCE CHARACTERISTICS

TAPE DIMENSIONS: mm

** $A63T6 = 26^{+1.5}_{-0}$

RADIAL LEAD TYPE BL02/BL03 SERIES BL02RN1-R62T4

BL02RN2-R62T4/BL03RN2-R62T4 **⊸** ΔS

P₀→

Item	Code	Dimensio	ons: mm
Pitch of Component	Р	.500	12.7
Pitch of Sprocket Hole	P ₀	12.7 :	± 0.2
Lead Spacing	F	5.0	+0.8 -0.2
Length from Hole Center to Lead	P ₁	3.85	± 0.7
Length from Hole Center to Component Center	P ₂	6.35 :	± 1.3
Width of Body	D	BL02RN1 BL02RN2 BL03RN2	7.5 max. 9.0 max. 8.3 max.
Height of Bead	Н	BL02 BL03	7.5 max. 6.5 max.
Deviation along Tape, Left or Right	ΔS	±1	.0
Carrier Tape Width	W	18.0 :	± 0.5
Position of Sprocket Hole	W ₁	9.0	+0 -0.5
Lead Length	H ₁	T2=16.5 T3=20.6 T4=18.5	0 ± 0.5
Protrusion Length	ℓ	+0.5 to	o −1.0
Diameter of Sprocket Hole	D ₀	4.0 ±	: 0.1
Lead Diameter	d	0.6	60
Total Tape Thickness	t	0.7 ±	0.2
Deviation Across Tape	Δh	±1.0	max.
Portion to Cut in Case of Defect	L	11.0) +0 -1.0
Hold Down Tape Width	W_0	12.0 :	± 0.5
Hold Down Tape Position	W ₂	1.5 ±	: 1.5
Body Thickness	Т	BL02 BL03	3.4 ± 0.2 2.3 max.

EMI SUPPRESSION FILTER COMPACT DISC-TYPE

DS306 & DSS306 Series

APPLICATIONS

- Computer and peripherals interfaces
- Compact digital equipment
 Compact PPC, electronic typewriters, other electronic equipment and appliances
- Helps all electronic equipment and appliances meet FCC, VDE and CISPR regulations
- STD footprint for high density mounting

PART NUMBERING

SPECIFICATIONS

		Сар	acitor	Ferrite	The second of the second	Insertion
Part Number	Capacitance	W.V.	T.C. -25 to +85°C	Beads	Dimensions	Loss
*DS306-55Y5S220M50	22pF ± 20%		±22%			
DS306-55Y5S330M50	33pF ± 20%		±22%			
DS306-55Y5S470M50	47pF ± 20%		±22%			
DS306-55Y5S101M50	100pF ± 20%	FOVDO	±22%	None	Fig. 4	Fig. 4
DS306-55Y5S271M50	270pF ± 20%	50VDC	±22%	None	Fig. 1	Fig. 4
DS306-55Y5S102M50	1000pF ± 20%		±22%			
DS306-55Y5S222M50	2200pF ± 20%		±22%			
DS306-55FZ103Z50	10000pF + 80%, -20%		+30%, -85%			
DSS306-55Y5S220M100	22pF ± 20%		±22%			
DSS306-55Y5S330M100	33pF ± 20%		±22%			
DSS306-55Y5S470M100	47pF ± 20%		±22%			
DSS306-55Y5S101M100	100pF ± 20%		±22%			
DSS306-55Y5S151M100	150pF ± 20%		±22%			
DSS306-55Y5S221M100	220pF ± 20%	100VDC	±22%	Internal	Fig. 2	Fig. 5
DSS306-55Y5S271M100	270pF ± 20%		±22%	IIILEITIAI	riy. Z	rig. 5
DSS306-55Y5S471M100	470pF ± 20%		±22%			
DSS306-55Y5S102M100	1000pF ± 20%		±22%			
DSS306-55Y5U222Z100	2200pF + 80%, -20%		+22%, -56%			
DSS306-55FZ103N100	10000pF ± 30%		+30%, -85%			
DSS306-55F223Z16	22000pF + 80%, -20%	16VDC	+30%, -80%			
DSS306-351Y5S220M100	22pF ± 20%		±22%			
DSS306-351Y5S330M100	33pF ± 20%		±22%			
DSS306-351Y5S470M100	47pF ± 20%		±22%			
DSS306-351Y5S101M100	100pF ± 20%		±22%			
DSS306-351Y5S151M100	150pF ± 20%		±22%			
DSS306-351Y5S221M100	220pF ± 20%	100VDC	±22%	Internal	Fig. 0	Fin C
DSS306-351Y5S271M100	270pF ± 20%		±22%	Internal	Fig. 3	Fig. 6
DSS306-351Y5S471M100	470pF ± 20%		±22%			
DSS306-351Y5S102M100	1000pF ± 20%		±22%			
DSS306-351Y5U222Z100	2200pF + 80%, -20%		+22%, -56%			
DSS306-351FZ103N100	10000pF ± 30%		+30%, -85%			
DSS306-351F223Z16	22000pF + 80%, -20%	16VDC	+30%, -80%			

Note: "55" in part number denotes Bulk packaging. For Taped Product, replace with appropriate number from chart on page 60. All units are rated 6 amp. *Available as standard through authorized Murata Electronics Distributors.

EMI SUPPRESSION FILTER COMPACT DISC-TYPE

DS306 & DSS306 Series

DIMENSIONS: mm

DSS306-55 Series Fig. 2

DSS306-351 Series Fig. 3

TYPICAL INSERTION LOSS CHARACTERISTICS

DSS306-55 Series Fig. 5

DSS306-351 Series Fig. 6

EMI SUPPRESSION FILTERS DISC-TYPE

DS310/H, DST310/H & DSS310/H Series

Disc-type EMIFIL® DS310, DST310 and DSS310 are T-type EMI suppression filters. The disc-type EMIFIL increases the self-resonant frequency of the capacitor by attaching two lead wires to one of the electrodes of the capacitor and increases the insertion loss by adding inductance to the lead in the DST and DSS types only. Frequencies to be suppressed can be selected by choosing the capacitance. They are also recommended for use as by-pass capacitors.

PART NUMBERING

		Ca	pacitor	Familia		lussution
Part Number	Capacitance	W.V.	T.C. -25°C to +85°C	Ferrite Beads	Dimensions	Insertion Loss
FOR GENERAL AP	PLICATIONS					
*DS310-55Y5S271M100	270pF ± 20%	100V				
*DS310-55Y5S222M100	2200pF ± 20%	100V	±22%	None	Fig. 1	Fig. 4
★DS310-55Y5S223S50	22000pF + 50%, -20%	50V	±22/0	None	rig. i	1 lg. 4
★DS310-55Y5S104M16	100000pF ± 20%	16V				
*DST310-55Y5S271M100	270pF ± 20%	100V				
*DST310-55Y5S222M100	2200pF ± 20%	100V	±22%	External	Fig. 2	Fig. 5
*DST310-55Y5S223S50	22000pF + 50%, -20%	50V				
*DSS310-55Y5S220M100	22pF ± 20%	100V				
*DSS310-55Y5S470M100	47pF ± 20%	100V				
*DSS310-55Y5S101M100	100pF ± 20%	100V	±22%	Internal	Fig. 3	Fig. 6
*DSS310-55Y5S271M100	270pF ± 20%	100V	±22 /0	morna	, ig. 0	, ig. 0
*DSS310-55Y5S222M100	2200pF ± 20%	100V				
*DSS310-55Y5S223S50	22000pF + 50%, -20%	50V				
FOR AUDIO CIRCU	ITS (LOW DISTORTIO	N TYPE)				
*DSS310-55BL222M100	2200pF ± 20%	100V	±10%	Internally	Fig. 3	Fig. 9
*DSS310-55DL223S50	22000pF ± 50%, -20%	50V	+20%, -30%	internally	rig. 5	rig. 9

Part Number	Capacitance	T.	C.	Ferrite	Dimensions*	Insertion
r art Number	Сараспансе	-25°C to +85°C	-40°C to +105°C	Beads	Dillensions	Loss
FOR HIGH TEMPERA	TURE APPLICAT	IONS				
★DS310H-55B220M250				None	Fig. 1	Fig. 7
★DST310H-55B220M250	22pF ± 20%			External	Fig. 2	Fig. 8
★DSS310H-55B220M250				Internal	Fig. 3	Fig. 10
★DS310H-55B101M250				None	Fig. 1	Fig. 7
*DST310H-55B101M250	100pF ± 20%		±20%	External	Fig. 2	Fig. 8
★DSS310H-55B101M250		±10%		Internal	Fig. 3	Fig. 10
★DS310H-55B271M250		11070		None	Fig. 1	Fig. 7
★DST310H-55B271M250	270pF ± 20%			External	Fig. 2	Fig. 8
★DSS310H-55B271M250				Internal	Fig. 3	Fig. 10
★DS310H-55B222M250				None	Fig. 1	Fig. 7
★DST310H-55B222M250	2200pF ± 20%		±30%	External	Fig. 2	Fig. 8
★DSS310H-55B222M250				Internal	Fig. 3	Fig. 10

^{*}Note: DS_310 Series Footprint for Bulk and Tape & Reel are different. Consult your local Murata Electronics Sales Office. Current rating is 7 Amps for bulk packaged units, 6 Amps for tape and reel.

^{*}Available as standard through authorized Murata Electronics Distributors.

Note: DS 310 Series Footprint for Bulk and Tape are different. Consult your local Murata Electronics Sales Office for details.

EMI SUPPRESSION FILTERS TAPE & REEL

DS□306, DS□310/310H Series

PART NUMBERING, DS306 & DSS310 SERIES

TAPE & REEL CODES

Co	Н	
Straight Leads	Crimped Leads	Tape & Reel
91	_	20.0
92	421	16.5
93	431	18.5

^{*}Three types of H dimensions (lead length) are available for various types of insertion machines.

TAPE DIMENSIONS: mm

*DS306-91 Type *DS310-91 Type

DST310-91 Type

*DSS306-91 Type

*DSS306-431 Type

*DSS310-91 Type

(Taping for DSS type is only DSS310-91 Type)

Item	Code	Dimensions: mm	Remarks
Taping Pitch	Р	12.7	Product Inclination ΔS Determines Tolerance
Guide Pitch	Po	12.7 ± 0.2	
Hole Center to Lead	P ₁	3.85 ± 0.7	
Hole Center to Component Center	P ₂	6.35 ±1.3	Shift in Tape in Direction of Feed
		7.0 [9.5]	DS max.
Diameter of Body	D	8.0 [9.5]	DST max.
		8.0 [12]	DSS max.
Deviation of Body Center	ΔS	0 ± 1.0	
Width of Base Tape	W	18.0 ± 0.5	
Feed Hole Position to Capacitor Lead	W ₁	9.0 +0 -0.5	Tape Widthwise Shift
Protrusion Length	ℓ	+0.5 to -1.0	
Diameter of Feed Hole	D_0	4.0 ± 0.1	
Diameter of Lead	d	0.6	
Total Thickness of Tape	t ₁	0.7 ± 0.2	Includes Thickness
iotal filickliess of Tape	t ₂	1.5 max.	of Bonding Tape
Deviation Across Tape	Δh_1	1.0 max.	
Deviation Across Tape	Δh_2	1.0 max.	
Length of Snipped Lead	L	11.0 +0 -1.0	
Width of Hold Position	W _o	12.0 ± 0.5	
Hold-down Tape Position	W ₂	1.5 ± 1.5	
Lead Distance Between Reference and Bottom Planes	Н	18.5 ± 1.0	16.5 & 20.0mm Lengths are also available
Lead Spacing	F	5.0 +0.8 -0.2	
Lead Spacing	F ₁	2.5 +0.4	

^{[].....}DS□310 Series

PACKAGING TYPE AND NUMBERS

Part Number	Quantity (Pcs.)				
r art Number	Flat Pack	Reel			
DS□306 Series	2000	-			
DS310/310H Series	2000				
DST310/310H Series	_	1000**			
DSS310/310H Series	_	800			

^{*}Available as standard through authorized Murata Electronics Distributors.

EMI SUPPRESSION FILTER WITH SEMICONDUCTOR SURGE **PROTECTION**

VFR303 Series

The VFR303 Series is an EMI suppression filter with a built-in varistor function designed to protect semiconductors, such as C-MOS and TTI, from ESD surge rushes. The VFR303 series works well as EMI suppression filter.

FEATURES

- Absorbs ESD surges, provides IC protection.Excellent signal line EMI suppression filter.
- Thin and low height enables high density mounting.

APPLICATIONS

Elimination of noise and protection of semiconductors in office automation equipment, including computers and their peripheral equipment, copy machines, and communication terminals.

PART NUMBERING

DIMENSIONS: mm

TYPICAL INSERTION LOSS CHARACTERISTICS (3K Ω)

Part Number	Capacitance (1kHz) (Between Terminals 1-2)	Varistor Voltage	DC Resistance (Ω) (Between Terminals 1-3)	Rated Voltage (Between Terminals 1-2)	Rated Current (Between Terminals 1-3)	Operating Temp. Range
★ VFR303-351 AZ 25	130pF ± 20%	50V ± 20%	200 to 500Ω	25VDC	20mA	−25 to +85°C

^{*}Available as standard through authorized Murata Electronics Distributors.

EMI SUPPRESSION FILTERS EMI-GUARD VARISTOR-CAPACITOR

DSS706 Series

The EMI-GUARD™ DSS706 Varistor-Capacitor is a three-terminal filter which suppresses noise emmission from electronic equipment while controlling incoming surges of static electricity. Its small size enables 2.5mm pitch mounting.

APPLICATIONS

Elimination of noise and protection of semiconductors in office automation equipment, including computers, peripheral equipment, copy machines, and communication terminals.

FEATURES

- Protects circuits from electrical surges and acts as a filter for signal lines.
- Effectively suppresses high-frequency noise from signal lines. (Performance equivalent to conventional three-terminal capacitor.)
- Small size enables it to be mounted at 2.5mm pitch. Three-terminal structure leads to superior high-frequency characteristics.
- Built-in ferrite bead provides excellent EMI suppression.

PART NUMBERING

DIMENSIONS: mm

TYPICAL INSERTION LOSS CHARACTERISTICS

Part Number	Capacitance	Capacitance Temp. Char.	Rated Voltage	Max. Rated Current	Varistor Voltage	Peak Pulse Current	Operating Temp. Range
*DSS706-351D221M25-50	220pF ± 20%	+20%, -30%	25VDC	6 Amps	50 ± 20%	100A	-40 to +105°C

^{*}Available as standard through authorized Murata Electronics Distributors

EMI SUPPRESSION FILTERS EMI-GUARD VARISTOR-CAPACITOR

DSS710 Series

The DSS710 EMI-GUARD uses a capacitor element which provides the varistor function. This varistor-capacitor not only works as a bypass capacitor but also lets high-voltage surges flow to ground.

The varistor-capacitor used in the DSS710 EMI-GUARD has a 3-lead structure, so that its high frequency functions are substantially better than those of conventional capacitors. Furthermore, it is combined with ferrite bead to form a T-shaped filter circuit that most effectively suppresses EMI.

The DSS710 EMI-GUARD efficiently removes fast-rising transients and high-frequency EMI above 50 or 60 MHz which conventional capacitors and varistor-capacitors are incapable of removing.

Varistor-capacitors are used even where conventional EMI-filters fail. They are self-healing and effective in circuits having 500-600V impulses.

PART NUMBERING

DIMENSIONS: mm

Note: Footprint for Bulk and Tape & Reel are different. Consult your local Murata Electronics Sales Office.

SPECIFICATIONS

Part Number	★DSS710 D223 S 12-22
Capacitance	22000pF ⁺⁵⁰ ₋₂₀ %
DF	5.0% max.
nsulation Resistance	1 M Ω min.
c (max.)	7 A
Rated Voltage	12 VDC
Varistor Voltage	22 VDC ± 20% (V1mA)
Voltage Nonlinear Factor	1.25 max. (V10mA/V1mA)
Temperature Characteristics	⁺²⁰ _{−30} % (−25°C to +85°C)
Operating Temperature Range	-40°C to +100°C
nductance	0.8μH x 2 (1KHz)

^{*}Available as standard through authorized Murata Electronics Distributors.

TYPICAL INSERTION LOSS CHARACTERISTICS

VOLTAGE - CURRENT CURVE

EMI SUPPRESSION FILTERS EMI-GUARD VARISTOR-CAPACITORS

DSS710 Series

3-TERMINAL STRUCTURE

The reason the 3-terminal structure provides excellent high frequency characteristics.

Bypass capacitors should logically be able to remove more noise as frequency increases. In actual fact, the electrodes and lead wires of the capacitor have series inductance as shown in Fig. 3, and this causes an LC resonance when the frequency is between 1 MHz and 50 MHz. As a result, when the frequency is higher than the self-resonance frequency, the noise suppression capability of the bypass capacitor is drastically reduced because the capacitor functions as inductor. To solve this problem, the DSS series has one side of the capacitor electrodes connected to two lead wires. This eliminates the series inductance to the capacitor. Furthermore, a ferrite bead is attached to each lead wire to form a T-shaped filter, thus providing efficient noise suppression.

NOISE ABSORPTION EFFECT OF EMI-GUARD

SCALE:

200V/Div.

10NS/Div.

Waveform when EMI-GUARD is not used. (surge from a noise simulator)

Waveform after the noise passes through EMI-GUARD. Protection of circuitry is achieved.

The EMI-GUARD is capable of removing even 1200V surges and will withstand 2000V impulses.

APPLICATIONS

Systems	Lines to be connected to	Effects
Engine Controllers	Power lines, I/O for low-frequency current	Protection of systems from excessive voltage. Prevents ignition noise, lightning surges, etc. from causing malfunctions.
Automobile Audio Equipment	Power lines, audio output lines	Protection of system from excessive voltage. Prevents ignition noise from influencing audio current.
Computers	Power lines, I/O lines for low-frequency current	Protection of systems from excessive voltage. Prevents radiation and conduction noise.
DC Motors	Power lines	Prevention of brush noise.

EMI SUPPRESSION FILTERS for HIGH SPEED DIGITAL APPLICATIONS

NFV510 Series

The NFV510 Series is an effective noise suppression filter for high-speed digital signal lines where the frequencies of signal and noise components are very close.

Murata Electronics has combined its superior inductor and capacitor technologies with a unique circuit configuration to realize outstanding noise suppression characteristics.

FEATURES

- Steep attenuation characteristics make this filter most suitable as a suppressor for unwanted radiation in signal lines. Insertion loss approaches 100dB per decade.
- High attenuation is obtained through the use of unique high performance inductors.
- 4 types classified by cut-off frequencies from 10MHz to 100MHz allow selection of optimum noise suppression.
- Shorter lead lengths are available.

APPLICATIONS

Noise suppression for RGB signal lines, digital image equipment, computer terminals, digital TV's, etc.

INSERTION LOSS MEASURING CIRCUIT

DIMENSIONS: mm

SPECIFICATIONS

Part Number	Cut-off	Minimum Attenuation (dB)						Rated Voltage	Rated Current
rait Nullibel	Frequency	10MHz	20MHz	50MHz	100MHz	200MHz	500MHz	(V)	(mA)
*NFV510-655 T2A 106	10MHz	*	15	40	45	40	15	100	200
NFV510-655 T2A 206	20MHz	_	*	25	45	50	20	100	200
*NFV510-655 T2A 506	50MHz	_	_	*	15	40	20	100	200
*NFV510-655 T2A 107	100MHz	_	_	_	*	15	35	100	200

*6dB Temperature Range: -25°C to +85°C

TYPICAL INSERTION LOSS CHARACTERISTICS

*Available as standard through authorized Murata Electronics Distributors.

COMPARISON WITH CONVENTIONAL THREE-TERMINAL CAPACITORS

EMI SUPPRESSION FILTERS for HIGH SPEED DIGITAL APPLICATIONS

NFV610 Series

APPLICATIONS

Computers and peripherals, instrumentation and process controls, telecommunications equipment, consumer electronics. This high performance noise suppression filter utilizes a unique circuit design and a total components concept to provide exceptional performance in high speed, high impedance digital signal lines. It uses considerably more components than previously available filters so that the high input and output impedances of digital IC's can be matched. This impedance matching greatly reduces the waveform distortions, created by reflections and ringing, that are apparent with conventional filters.

FEATURES

- Suppresses reflections and ringing
- High attenuation over wide frequency spectrum
- Undistorted waveform reduces high frequency noise generating signal components
- High voltage rating provides reliability in strong electromagnetic fields
- Six models with cut-off frequencies from 10-200MHz allow circuit optimization
- Ideal for digital high impedance lines to separate noise from signal when frequencies are close

DIMENSIONS: mm

SPECIFICATIONS

◆13.0 max.◆ ★ 6.5 max.	Part Numbe
2.0 max. NFV 610 1.0MHz0.2A 11.0 max. Recommended	*NFV610-655 T2
Mounting Hole	*NFV610-655 T2
1.0 max. 3 x 0.8 1.0 ± 0	*NFV610-655 T2
25.0 min. 25.5 ± 0.2 2.5 ±	*NFV610-655 T2
① ② ③ 0.6 Dia.	† NFV610-655 T2
*Short leads can be made on order.	† NFV610-655 T2
Input TerminalGround TerminalOutput Terminal	*6dB max. **6d †=Non-Standard

Part Number	Cut-off Frequency	Minimum Attenuation (dB)						
Part Number		10MHz	20MHz	50MHz	100MHz	200MHz	500MHz	1000MHz
*NFV610-655 T2A 106	10MHz	*	3	10	20	35	25	=
*NFV610-655 T2A 206	20MHz	_	*	3	10	15	25	_
*NFV610-655 T2A 506	50MHz	_	_	*	3	10	25	-
*NFV610-655 T2A 107	100MHz	_	_	_	*	3	15	_
† NFV610-655 T2A 157	150MHz	-	_		**	_	6	10
† NFV610-655 T2A 207	200MHz	_	_	_	_	*	3	6

TYPICAL INSERTION LOSS CHARACTERISTICS 10 NEV610-655 T2A 106 20 NFV610-655 T2A 206 Attenuation (dB) NFV610-655 T2A 506 30 NFV610-655 T2A 107 NFV610-655 T2A 207 40 NFV610-655 T2A 157 50 60 0.1 1.0 10.0 100.0 1000.0 Frequency (MHz)

INSERTION LOSS MEASURING CIRCUIT

Temperature Range: -25°C to +85°C

*Measurement is performed by using 50Ω-3KΩ measuring circuits in order to match operating conditions of the digital signal circuit.

^{*}Available as standard through authorized Murata Electronics Distributors.

EMI SUPPRESSION FILTERS BLOCK FILTERS

BNP002/004 Series

Block-type BNP002 filters completely eliminate noise from extremely wide frequency bands. The BNP002 is ideal for eliminating noise in logic signal circuits and is designed to perform superbly through the use of through-type barrier layer capacitors, and bead inductors.

Each block contains a number of compact EMI suppression filters. In addition, the input/output terminals and the grounding terminal are aligned in the same direction, thus permitting fast and easy assembly on any type of PC board.

APPLICATIONS

Noise elimination from signal lines and DC power sources in engine control units, digital equipment and computer terminals.

- Since all noise in parallel signal lines can be eliminated by one filter block, minimum board space is utilized.
- There are no connections in the feed-thru current circuits, thus ensuring highly reliable performance.
- Both the input/output terminals and the grounding terminal are aligned in the same direction, permitting fast and easy installation on any type of PC board.

FEATURES

- The EMIFIL BNP002 incorporates feed-thru type barrier layer capacitors in Pi circuits, obtaining significantly large insertion losses over an extremely wide frequency range from 15MHz up to 1GHz.
- The cut-off frequency is designed to be at several MHz, which is ideal for eliminating noise from any circuit in which the signal frequency and the noise frequency are relatively close together.

DIMENSIONS: mm

SPECIFICATIONS

Item		Specifications			
Part Number	*BNP002-02	★BNP002-03	★BNP004-02		
Number of Circuits	2	3	2		
Circuit Construction		π			
Operating Temperature Range	-40°C to +100°C				
Rated Voltage	50VDC				
Withstand Voltage	300	125VDC			
Maximum Current Capacity	10ADC				
Insulation Resistance	1000M Ω min.				
DC Resistance	0.05Ω max., (20°C to 25°C)				
Insertion Loss		00MHz: 40dB 25°C) min.	300MHz to 1GH: 40dB min.		

EQUIVALENT CIRCUIT

*Available as standard through authorized Murata Electronics Distributors.

RECOMMENDED P.C. BOARD PATTERN

EMI SUPPRESSION FILTERS BLOCK FILTERS

FEATURES

- The EMIFIL BN X002 incorporates feed-thru-type barrier layer capacitor and a chip capacitor which are interconnected. This combination enables the BNX002 to achieve a significantly large insertion loss throughout the extremely wide frequency range of 0.5MHz to 1GHz, which covers the AM and UHF-TV broadcast frequency bands.
- Non polarized but care must be taken to ensure that terminal with inductor on ground line faces EMI source.

BNX002/003/005 Series

Block-type BNX002 filters completely eliminate noise from extremely wide frequency bands. The BNX002 is perfect for use in DC power circuits and is designed to perform superbly—through the use of through-type barrier layer capacitors, monolithic chip capacitors and bead inductors.

Each block contains a number of compact EMI suppression filters. In addition, the input/output terminals and the grounding terminal are aligned in the same direction, thus permitting fast and easy assembly on any type of PC board.

APPLICATIONS

Noise elimination from signal lines and DC power sources in a variety of switching power sources, engine control units, digital equipment and computer terminals.

- The filter is extremely compact since only one filter block is needed to completely eliminate noise from both the positive and ground lines.
- There are no connections in the feed-thru current circuits, thus ensuring highly reliable performance.
- Both the input/output terminals and the grounding terminal are aligned in the same direction, permitting fast and easy installation on any type of PC board.

DIMENSIONS: mm

SPECIFICATIONS

Item		Specifications			
Part Number	★BNX002-01	★BNX003-01	★BNX005-01		
Operating Temperature Range		-30°C to +85°C			
Rated Voltage	50VDC	150VDC	50VDC		
Test Voltage	125VDC	375VDC	125VDC		
Maximum Current Capacity	10	15ADC			
Insulation Resistance	1000M Ω min.				
Insertion Loss	1MHz to 1GHz 40dB min.	5MHz to 1GHz 40dB min.	1MHz to 1GHz 40dB min.		
	20°C to 25°C Line Impedance=50Ω				

EQUIVALENT CIRCUIT

^{*}Available as standard through authorized Murata Electronics Distributors.

RECOMMENDED P.C. BOARD PATTERN

EMI SUPPRESSION FILTERS DC COMMON MODE CHOKE COIL

PLT Series

DIMENSIONS: mm

PART NUMBERING

TYPES

Part Number	Inductance (µH) min.	Self-resonance Frequency (MHz)*	Code
★PLT0R53C	0.5	1000 min.	В
*PLT1R53C	1.5	250	А
*PLT2003C	20.0	10	С

^{*}Typical Value

SPECIFICATIONS

Item	Rating
Rated Voltage	50VDC
Rated Current	3A
Withstand Voltage	125VDC (1 to 5 seconds)
Operating Temp. Range	-25°C to +60°C

[★]Available as standard through authorized Murata Electronics Distributors.

Compact, lightweight, common mode choke coil for DC power supplies for common mode noise suppression from several MHz to several hundred MHz.

FEATURES

- Ideal for suppression of common mode noise in high frequencies ranging from several MHz to several hundred MHz.
- PCB mount type makes mounting simple.
- Only negligible influence on 10MHz high frequency signals (PLT0R53C only).

APPLICATIONS

To meet FCC regulations on digital equipment such as computers and computer terminal equipment.

To meet VDE regulations on hand-held digital appliances using AC adaptors (suppression of unwanted radiation from power cords).

Suppression of radiated noise from cable between AC adaptors and sets.

Suppression of radiated noise from DC power supply and interface cables.

PLT09H Series

FEATURES

- Extended self-resonant frequency
- Meets FCC, CISPR, VCCI noise requirements
- High current rating 3A max.
- High density mounting

APPLICATIONS

Switching power supplies, digital equipment, CTV, VCR, ECR and other electronic equipment and appliances.

DIMENSIONS: mm

CIRCUIT DIAGRAM

SPECIFICATIONS

Rated Voltage	50VDC
Withstand Voltage (between coils)	125VDC (1 min.)
Rated Current (Amps)	3.0
Insulation Resistance	$10 M\Omega$ min. (100VDC 1 minute)
DC Resistance (Ω) max.	0.03
Inductance min.	20μΗ
Operating Temperature Range	−25°C to +60°C
Temperature Char. (Inductance)	20°C +80 % (-25°C ~ +60°C)

PART NUMBERING

TYPICAL INSERTION LOSS CHARACTERISTICS

*Available as standard through authorized Murata Electronics Distributors.

APPLICATIONS

NOISE FILTERS DC COMMON MODE CHOKE COIL

FEATURES

- Suppresses common mode noise in the AM band (525 to 1605KHz) and the FM band (76 to 108 MHz)
- Easily mounted
- Compact and light weight
- Very little inductance drop with increased load current

APPLICATIONS

Prevention of mixing of broadcast signals in circuits for multi-functional telephones, PBX and FAX.

Suppression of EMI interference from AM and FM signals.

PART NUMBERING

DIMENSIONS: mm

SPECIFICATIONS

Rated Voltage		150VDC
Withstand Voltage		375VDC
Rated Current		300mA
Insulation Resistance		100M Ω min.
DC Resistance		0.5Ω max.
Inductance		1.5mH min.
Self-resonant Frequency*	first	1.5MHz
	second	95MHz
Operating Temperature Range		−25°C to +85°C

^{*}Available as standard through authorized Murata Electronics Distributors.

CIRCUIT DIAGRAM

^{*}Typical value

FEED-THRU CAPACITORS

SUBMINIATURE FEED-THRU CAPACITORS DF220, DF221(H), DF430, TF240(H) & DF331(H) Series

Since the input and output terminals of these feed-thru capacitors are isolated and the inductance on the grounded side is very small, they can be used effectively to very high frequencies.

These devices are suitable for suppression of radiation from TV tuners, car radios, car stereos and transmission devices and provide enhanced protection from external noise sources.

These subminiature feed-thrus, which may be incorporated in 2.54mm pitch connectors, are ideal for miniature electronic equipment.

FEATURES

- The use of barrier layer capacitors has resulted in smaller size and larger capacity than possible with conventional capacitors.
- The nickel alloy electrode is resistant to soldering heat and is free from migration in high humidity environments.
- Compact electronic devices can be achieved by incorporating this capacitor with a 2.54mm pitch packaging density – such as installation in connectors.
- Simple construction allows mass production assembly techniques.

DIMENSIONS: mm

Part	Lead		
Number	L ₁	L ₂	
F221(H)-601	10.0 ± 1.0	20.0 ± 1.0	
DF221(H)-602	221(H)-602 20.0 ± 1.0		

Part	Lead		
Number	L ₁	L ₂	
TF240(H)-601	10.0 ± 1.0	20.0 ± 2.0	
TF240(H)-602	5.0 ± 1.0	12.0 ± 1.0	
TF240(H)-603	5.0 ± 1.0	7.0 ± 1.0	

Part	Lead		Solder for mounting	
Number	L ₁	L ₂	on the chassis plate	
DF331(H)-812	6.5 ± 1.0	9.5 ± 1.0	Provided	
DF331(H)-895	6.5 ± 1.0	9.5 ± 1.0	None	
DF331(H)-805	14.0 ± 1.0	20.0 ± 1.0	Provided	

Note: Other lead wire lengths are available. Please contact your nearest Sales Office for more detail.

ECIFICATIONS	D1220,	DF221(H), I	51 400, 11	2-10(11)	0, 2, 00,	,
				Inserti	on Loss at 25°C	(Typ.)
Part Number*	Cap. Value	Cap. Tol.	WVDC	10MHz	100MHz	1GHz
DF220						
DF220-00SL020U50	2pF	+0, -100%	50V		_	1
DF220-00SL150M50	15pF	±20%	50V	_	_	6
DF220-00SL220M50	22pF	±20%	50V	_	_	7
DF220-00YN430M50	43pF	±20%	50V	_	1	15
DF220-00B121M50	120pF	±20%	50V	_	3	20
DF220-00B221M50	220pF	±20%	50V	_	7	25
DF220-00B471M50	470pF	±20%	50V	_	12	30
DF220-00E102Z50	1000pF	+80, -20%	50V	3	18	35
DF220-00SS152GMV50	1500pF	+200, -0%	50V	5	20	40
DF221(H)						
DF221-□□□SL020U50	2pF	+0, -100%	50V		_	_
0F221-□□□SL150M50	15pF	±20%	50V	_	_	6
0F221-□□□SL220M50	22pF	±20%	50V	_	_	7
DF221-□□□YN430M50	43pF	±20%	50V	_	1	15
DF221-□□□B121M50	120pF	±20%	50V	_	3	20
DF221-□□□B221M50	220pF	±20%	50V	_	7	25
DF221(H)-□□□B(E)471M50	470pF	±20%	50V	_	12	30
DF221(H)-□□□E(F)102Z50	1000pF	+80, -20%	50V	3	18	35
0F221-□□□SS152GMV50	1500pF	+200, -0%	50V	5	20	40
DF430						
0F430-0SS332GMV50	3300pF	+200, -0%	50V	10	25	45
F240(H)						
F240-□□□SL020D50	2pF	±0.5pF	50V	 s	_	_
F240-□□□SL220M50	22pF	±20%	50V	_	_	7
F240-□□□B331M50	330pF	±20%	50V	_	10	27
F240(H)-□□□E(F)102GMV50	1000pF	+200, -0%	50V	3	18	35
F240-□□□SS332Z50	3300pF	+80, -20%	50V	10	25	45
DF331(H)						
0F331-□□□SL010P50	1pF	+100, -0%	50V		_	_
0F331-□□□SL100G50	10pF	±2pF	50V	_	_	_
0F331-□□□SL220M50	22pF	±20%	50V		_	7
0F331-□□□SL330M50	33pF	±20%	50V	_	<u>—</u> :	12
DF331-□□□YN470M50	47pF	±20%	50V	_	_	15
DF331-□□□YN101M50	100pF	±20%	50V		2	19

[•]Operating Temp. Range: Std. = −25°C to +85°C, H = −55°C to +125°C • Insulation Resistance: 1000MΩ min. *□□□ — See DIMENSIONS

For other capacitance values, consult your local Muarata Electronics Sales Office.

^{*}Available as standard through authorized Murata Electronics Distributors.

TF318(H) & TF418 Series

These feed-thru capacitors are designed for high frequency requirements, by-pass applications in VHF and UHF communications equipment and noise filters for car radios, car stereos and two-way radios.

These devices feature simple construction, small size and nickel plated electrodes.

They are migration free and have high thermal strength, mechanical strength and resistance to soldering heat. Ease of mounting makes them ideal for new and conventional feed-thru applications.

DIMENSIONS: mm

Type	Lead Dia.	L ₁	L ₂
★TF318(H)-850		25.0 ± 2.0	30.0 ± 2.0
★TF318(H)-853	0.8	14.0 ± 1.0	15.0 ± 1.0
★TF318(H)-855		9.5 ± 0.5	11.0 ± 0.5
★TF318(H)-053	1.0	11.0 ± 1.0	16.5 ± 1.0
★TF318(H)-055	1.0	7.0 ± 0.7	6.2 ± 0.7
★TF318(H)-450	1.4	4.5 +1.0 -0.5	7.5 ± 1.0
★TF318(H)-452	1.4	7.0 ± 1.0	9.0 ± 1.0

Type	Lead Dia.	L ₁	L ₂	
★ TF418-452	1.4	7.2 ± 1.0	8.8 ± 1.0	
★TF418-454	1.4	10.2 ± 1.0	13.8 ± 1.0	

SPECIFICATIONS

Part Number	Cap.	Cap. Tol.	Temp. Char.	Rated Voltage
★TF318- □SL100G50	10pF	± 2pF	SL	50VDC
★TF318- □SL220M50	22pF	± 20%	SL	50VDC
★TF318- □SL330M50	33pF	± 20%	SL	50VDC
★TF318- □SL470M50	47pF	± 20%	SL	50VDC
★TF318- □ YN101M50	100pF	± 20%	YN	50VDC
★TF318- □ B271M50	270pF	± 20%	В	50VDC
★ TF318(H)-□B(F)471M50	470pF	± 20%	В	50VDC
★TF318- □ E102GMV50	1000pF	+200 %	Е	50VDC
★TF318- □E152P50	1500pF	+100 % - 0 %	Е	50VDC

Part Number	Cap.	Cap. Tol.	Temp. Char.	Rated Voltage
★TF418- □E102GMV300	1000pF	+200 %	E	300VDC
★TF418- □E152P300	1500pF	+100 %	Е	300VDC

☐ Denotes configurations shown above. Examples:

TF318-450B271M50 TF418-452E102GMV300

Operating temperature:

Std: -25°C to +85°C H Series: -55°C to +125°C

PART NUMBERING

^{*}Available as standard through authorized Murata Electronics Distributors.

FEED-THRU CAPACITORS DISC TYPE FOR INDUSTRIAL APPLICATIONS

DF553 & DF572 Series

Feed-thru capacitors DF553 and DF572 for industrial application are disc-type feed-thrus mounted in a case and epoxy sealed. They are suitable for microwave repeaters and measuring instruments, and for preventing unnecessary feed-back between circuits, suppressing external noise, and preventing emission of radiation.

Unlike cylindrical capacitors, these disc-type capacitors do not exhibit reduction in insertion loss caused by coaxial resonance. They are applicable to a wide frequency range including the UHF band.

FEATURES

- Provide ideal separation of circuits with excellent shielding qualities.
- Eliminate reduction in insertion loss caused by coaxial resonance. The capacitor is effective in UHF band and above due to minimal lead inductance.
- Epoxy sealing has excellent moisture resistance and reliability characteristics

Screw-mount DF553 type can be installed with the use of nuts or directly mounted on chassis with threaded holes. Solder-mount DF572 type can be directly solder mounted on chassis and PC boards.

DIMENSIONS: mm

TYPICAL INSERTION LOSS CHARACTERISTICS

SPECIFICATIONS

Part Number	★DF553F102P50	*DF572-10F102P500
Capacitance Value	1000pF	1000pF
Capacitance Tolerance	+100 %	+100 % - 0 %
Rated Voltage	50VDC	500VDC
Dielectric Strength	125VDC	1250VDC
Insulation Resistance	10000M Ω	10000MΩ
Temperature Characteristic	+30 % -80 %	+30 % -80 %
Maximum Feed-Thru Current	10A DC	15A DC
Operating Temperature Range	−25°C to +85°C	-25°C to +85°C

^{*}Available as standard through authorized Murata Electronics Distributors.

FEED-THRU CAPACITORS HIGH FREQUENCY APPLICATIONS

DFT301 & DFT304 Series

The DFT301 Series uses monolithic feed-thru capacitors and the DFT304 Series uses barrier layer feed-thru capacitors resulting in compact sized, large capacitance, high frequency devices. They are very suitable for applications in microwave repeaters, communications, broadcast equipment and measuring instruments for elimination of external noise, prevention of emission of radiated noise and for the prevention of unnecessary feedback between circuits.

FEATURES

- Provides ideal separation of circuits with excellent shielding qualities.
- Provides large capacitance values in epoxy sealed metal bushings, minimizing reduction in insertion loss caused by coaxial resonance.
- Miniaturized screw mount styles that can be installed with mounting nuts or directly mounted on chassis with threaded holes.
- Provides high insertion loss to 1GHz and beyond in the case of the DFT301 and up to 10GHz in the DFT304 Series.
- Provides relatively high feed-thru current ratings.
- Ceramic capacitors utilized exhibit very stable temperature characteristics.

DIMENSIONS: mm

SPECIFICATIONS

Part Number*	Marking	Cap. Value	Cap. Tolerance	Rated Voltage	Dielectric Strength	Rated Current	Insulation Resistance (min.)	Temperature Characteristics	Operating Temperature Range
*DFT301-801 X7R 103S 50	None	10000pF	+50, -20%	50VDC	125VDC	10ADC	10000ΜΩ	±15%	−55 °C to +125°C
*DFT301-801 X7R 472S 50	В	4700pF	+50, -20%	50VDC	125VDC	10ADC	10000ΜΩ	±15%	−55 °C to +125°C
*DFT301-801 X7R 102S 50	С	1000pF	+50, -20%	50VDC	125VDC	10ADC	10000ΜΩ	±15%	−55 °C to +125°C
*DFT304-803 SS332Z 50	None	3300pF	+80, -20%	50VDC	125VDC	7ADC	1000ΜΩ	±22%	−55 °C to +125°C

^{*801 —} Without hardware; 851 — With hardware

Torque for fastening nuts: DFT301 3.5 to 4.0 kg/cm² DFT304 3.5 to 4.0 kg/cm²

TYPICAL INSERTION LOSS CHARACTERISTICS

^{*}Available as standard through authorized Murata Electronics Distributors.

The unique FSOC ferrite cores provide high frequency EMI noise suppression for split and flat cables and find wide application in computers and peripherals to several hundreds of MHz. They are exceptionally easy to install and extremely effective.

FEATURES

- Extremely effective EMI noise prevention
- Wide application in data processing equipment
- Simple installation
- No soldered connections

PART NUMBERING

DIMENSIONS: mm SPECIFICATIONS

	Part Number	Impedance (Ω) (100 MHz)
18.8 ± 0.5 → 6.3 - 23.8 ± 0.6 → 15.0 ± 0.4	*FS0C240RT	77
2.15 8.05 - 22.25 - 27.0 12.4	*FSOC270RN	60
2.3	*F\$0C290PB	62
4 35.0 ± 1.0 + 40.0 ± 1.0 + 12.0 ± 0.6	*FSOC400RT	80
35.0 • 7.7 = 1.5 41.2 • 15.0	*FSOC410RN	70
1.9 48.0 12.0 12.7	*FSOC600RN	72

FLAT CABLE CORES

^{*}Available as standard through authorized Murata Electronics Distributors.

OTES			

Murata Electronics' connectors are used to remove unwanted EMI noise and voltage surges at the I/O ports in a convenient single package.

Widely used in products ranging from computers, POS equipment, telecommunication devices and peripheral equipment, eliminate the need for additional filtering on the PCB.

Products include miniature D-Sub connectors (industry std. size), VGA connectors and RJ-11/RJ-45 connectors for telecommunication applications.

TABLE OF CONTENTS

Description	Series	Effective Frequency (MHz)			Dago		
Description Serie:	361163	.1	1	10	100	1000	Page
Miniature D Connector	CUBN						80 - 85
Ferrite Retainer	BLR				,		86
VGA Connector	CUBD						87
Phone Connector	CNJ		ı				88, 89

EMI FILTER CONNECTORS MINIATURE 'D' CONNECTORS

CUBN09/15/25 Series

APPLICATIONS

Personal computers, displays, monitors, printers, modems, land and mobile communications. POS (bar-code reader control units).

These filter connectors are low cost 'D' type subminiature designs, equipped with Murata Electronics feed-thru capacitors and shielding. They provide excellent noise suppression over a wide frequency range because of their unique construction. Dimensions are almost identical to ordinary 'D' subminiature designs without filters and are recommended for computer peripherals and other digital and communication equipment.

FEATURES

- Low cost
- Wide frequency range insertion loss
- Discrete feed-thru capacitor allows for incorporation of filters on only lines designated.
- Compatible with conventional 'D' connectors and has almost identical external dimensions as connectors without filters.
- When the noise suppression is required after circuit design is finished, it is easy to replace conventional connectors with the CUBN Series.
- Tabs on the shield assure good ground.
- UL recognized insulation material (UL94V-0) is used.

FILTER TYPES C and L

North European I American Row Pito		Footprint* tch (mm)	Capacitance
Std.	2.84	2.54	
001	021	031	2000pF + 125%, -25%
002	022	032	1000pF + 80%, -20%
003	023	033	500pF ± 30%
004	024	034	250pF ± 30%
005	025	035	120pF ± 30%
006	026	036	43pF ± 30%

FILTER TYPES V and LV

North American	European Row Pitc		Capacitance
Std.	2.84	2.54	
001	021	031	3300pF +200%, -0% Varistor Voltage: 24VDC min.

FILTER TYPES N and F

North American	European Row Pito		Terminal
Std.	2.84	2.54	Configuration
001	021	031	

*See page 81 for pin configuration. Note: 2.54mm Row Pitch not available for Filter Types L, LV and F.

EMI FILTER CONNECTORS SPECIFICATIONS

CUBN Series

ELECTRICAL (EXCEPT V/LV TYPE)

Number of Lines	CUBN 9, 15, 25
Operating Temperature	−25°C to +85°C
Rated Voltage	100VDC
Test Voltage	250VDC
Rated Current	5A max.
Insulation Resistance	1000M Ω min.

TYPICAL INSERTION LOSS CHARACTERISTICS

(Based on MIL-STD-220)

MECHANICAL

MATERIALS

Part	Material
Front Shell	Steel (Tin Plated)
Rear Shell	Steel (Nickel Plated)
Front Insert	Polyamide (UL94V-0)
Contracts*	Phosphor Bronze–Gold Plated, $0.2\mu m$ min. on contacts, Solder Coated over Nickel Plating on PCB terminals.
Retainer	Polyamide (UL94V-0)
Jack Screws	Steel (Nickel Plated)

^{*0.76}µm Gold Plating available on special order.

JACK SCREW

TERMINAL LENGTHS: mm

SELF-LOCKING HARDWARE (SYMBOL 'K')

DIMENSIONS: mm

EUROPEAN FOOTPRINT (CUBN Series — Please contact Murata Electronics for further information.)

RECOMMENDED PC BOARD MOUNTING HOLES DIMENSIONS (STANDARD STRAIGHT AND RIGHT ANGLE)

CUBN09 Series

DIMENSIONS: mm

^{*}Available as standard through authorized Murata Electronics Distributors.

EMI FILTER CONNECTORS MINIATURE 'D' CONNECTORS

CUBN15 Series

^{*}Available as standard through authorized Murata Electronics Distributors.

CUBN25 Series

DIMENSIONS: mm

[★]Available as standard through authorized Murata Electronics Distributors.

EMI FILTER CONNECTORS VARISTOR-CAPACITOR 'D' CONNECTORS

CUBN Series

The CUBN 'D' Connector Series is available with an integral varistor-capacitor on each line and with a shielded shell. They are highly recommended in those applications requiring both EMI filtering and high voltage surge protection.

FEATURES

- Good insertion loss characteristics over a wide frequency range
- Provides circuit protection by passing high voltage surges to ground
- Dimensions almost identical to conventional non-filtered connectors
- Can directly replace conventional connector when filtering under surge protection is required
- UL94V-0 material is used as modulator

SPECIFICATIONS

Number of Lines	9, 15, 25
Rated Voltage	16 VDC
Rated Current	5 ADC
Varistor Voltage (V1mA)	24 VDC min.
Capacitance	3300pF +200, -0%
Insulation Resistance	1 MΩ min.
Operating Temperature Range	-25°C to +85°C

TYPICAL INSERTION LOSS CHARACTERISTICS

HIGH VOLTAGE PULSE CHARACTERISTICS

PULSE-VOLTAGE BREAKDOWN CHARACTERISTICS

PRODUCT AVAILABILITY CHART

Number of Lines	9				15				25						
Terminal Configuration	PT ST	PG SG	PN SN	PY SY	PH SH	PT ST	PG SG	PN SN	PY SY	PH SH	PT ST	PG SG	PN SN	PY SY	PH SH
CUBN Series	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

O = Available

EMI FILTER CONNECTORS 'D' CONNECTORS

BLR Series

The new BLR EMI filtering device is designed to replace the retainer/pin alignment device on popular pcb-mounted 'D' connectors and provides a means of adding an inductor in series with each pin/lead for noise suppression. With its small overall size and easy installation, the BLR, in addition to improving performance, reduces pcb space requirements and costs.

FEATURES

- One device places an inductor in series with each connector pin
- Lines up connector pins
- Effective in both low and high impedance circuits
- UL recognized case (UL94V-0)

DIMENSIONS: mm

Part Number	Α	В
BLRB09RN001	18.0	2.74
BLRB15RN001	26.0	2.74
*BLRB25RN001	40.0	2.76

TYPICAL IMPEDANCE CHARACTERISTICS

EXAMPLES OF APPLICATIONS AND INSERTION LOSS CHARACTERISTICS

Combination with filter connector (CUBN)

This combination offers excellent insertion loss characteristics.

For improving on insertion loss when a combination of filter connector and large value capacitor is used.

Using the BLR Series prevents parallel resonance and offers excellent filtering effect from low to high frequencies.

^{*}Available as standard through authorized Murata Electronics Distributors.

EMI FILTER CONNECTORS VGA CONNECTOR

CUBD Series

DIMENSIONS: mm

RECOMMENDED MOUNTING HOLE DIMENSIONS

The CUBD double density D-Sub connector is equipped with Murata Electronics feed-thru capacitors, providing excellent noise suppression over a wide range.

Dimensions of this D-connector are almost identical to ordinary high density D-sub miniature designs without filters. They are recommended for noise suppression in minicomputers, personal computers; their peripherals, including VGA interface, modems and other communications equipment, also testers and other digital equipment.

FEATURES

- Wide range insertion loss can be obtained with feed-thru capacitors design.
- This discrete feed-thru capacitor allows filters to be incorporated only on the lines designated.
- This D-connector is compatible with the conventional high density D-connector. CUBD Series can replace conventional type connectors.
- UL recognized material (UL94V-0)
- The snap-lock shape enables proper grounding when soldering.

TYPICAL INSERTION LOSS CHARACTERISTICS

EQUIVALENT CIRCUIT DIAGRAM (for single circuit)

SPECIFICATIONS

Part Number	Capacitance	Operating Temp. Range	Number of Lines	Rated Voltage	Rated Current	Test Voltage	Insulation Resistance
CUBD15SH15C005NC	120pF 30%						
CUBD15SH15C006NC	47pF 30%	−25°C ~ +85°C	15	50 VDC	1 ADC	125 VDC	500MΩ min
CUBD15SH15C006NC	47pF ± 30% (RGB lines – pins 1, 2 & 3) 2200pF ⁺⁶⁰ ₋₄₀ % (pins 4, 5,15)	−25°C ~ +85°C	15	30 VDC	TADO	120 000	0001112 111111

CUJ Series

FEATURES

- Ideal for suppression of common mode noise at high frequencies
- Effective even with poor ground
- Decreases PCB space requirements
- UL recognized (UL94V-0) case material

APPLICATIONS

- Multi-function telephones
- Security telephones
- Modems
- Fax systems

SPECIFICATIONS

	CUJ62H02F005	CUJ64H04F005			
Number of Lines	2 (Opening is for 6 line capability)	4 (Opening is for 6 line capability)			
Operating Temperature	−25°C to) +60°C			
Rated Voltage (Between Lines)	150VDC				
Rated Current	1AI	1ADC			
Tested Voltage (Between Lines)	375\	/DC			
Insulation Resistance (Between Lines)	10ΜΩ	min.			
Impedance (Pin 3 & 4)	_	80Ω (at 100 MHz) min.			

DIMENSIONS: mm

CIRCUIT DIAGRAMS

*Available as standard through authorized Murata Electronics Distributors.

TYPICAL INSERTION LOSS*

EMI FILTER CONNECTORS FOR TELEPHONE APPLICATIONS

CUJ88 Series

DIMENSIONS: mm

TYPICAL INSERTION LOSS CHARACTERISTICS

*Available as standard through authorized Murata Electronics Distributors.

The CUJ88 modular jack has EMI noise suppression filters and surge absorption circuit. This provides noise suppression for ISDN equipment and surge protection at the interface connector simultaneously.

FEATURES

- Varistor protects equipment from high voltage surge conducted along cables and wiring.
- Built-in inductors provide effective noise suppression over a wide frequency range.
- UL94V-0 material
- Requires much less space than using non-filtered modular jack with discrete PCB filters for surge protection and noise suppression.

APPLICATIONS

Digital Telephone, FAX and ISDN equipment, LAN equipment.

SPECIFICATIONS

Part Number	★ CUJ88H08VB001
Rated Voltage	50 VDC
Rated Current	200 mADC
Varistor Voltage	Between line and earth : 200V min.
Operating Temp. Range	−25°C ~ +60°C
mpedance (Typ.)	600Ω (at 100MHz)

EQUIVALENT CIRCUIT DIAGRAM

PCB LAYOUT

DTES	

EMI (Electro Magnetic Interference) suppression filters for AC power lines eliminate noise entering equipment from commmercial power lines or noise generated from electronic equipment.

To eliminate these noise problems, Murata Electronics has combined its ceramic dielectric technology and ferrite technology to produce high-performance AC EMI suppression filters. Available in a variety of configurations, they allow the user to select the suitable filter to the level noise, frequency of noise and electrical requirements. The AC filter components include common mode chokes, normal mode chokes and AC 3 terminal capacitors.

TABLE OF CONTENTS

	Dundant Name	Carles		Effectiv	e Frequenc	у		Dama
	Product Name	Series	10K 100	(1M	10M	100M	1G	Page
	AC 3-Terminal Capacitor	DSR						92, 93
Coll	Standard Type	PLA, PLE, PLC20, FKOB						94 - 99
Common Mode Choke Coil	High Performance in a Compact Package Type	PLAM						100
COMITIO	Wide Band Type	PLH11, PLH14H, PLH20H, PLH20HM						101 - 103
N	Normal Mode Choke Coil	PLNE						104

AC EMI FILTERS SAFETY STANDARD RECOGNIZED EMIFIL® FOR AC POWER SUPPLIES

DSR Series

The DSR Series is a 3-terminal capacitor (EMIFIL®) for AC power supplies. Its combination of 3-terminal structure and ferrite beads results in better attenuation (over 20dB in the radio frequency band) compared to conventional 2-terminal capacitors. They are also UL, CSA, VDE, SEMKO and BSI recognized.

DIMENSIONS: mm

Part Number	W	Н	T	L
DSR1100	16.0 max.	15.0 max.	11.0 max.	
DSR1120	16.0 max.	16.0 max.	11.0 max.	6.0 ± 0.2
DSR1150	18.0 max.	19.0 max.	11.0 max.	

RATINGS

Item	Ratings		
Rated Current	7A (AC)		
Insulation Resistance	10000 MΩ min.		
Operating Temperature Range	-25°C to +85°C		

INSERTION LOSS CHARACTERISTICS (TYP.)
Capacitance: 3000pF. The dotted line shows conventional capacitor.

MARKING

Item		Marking
VDE Approved Mark	565-1	
UL Recognized Mark	<i>PL</i>	
CSA Monogram	43	FAM3
SEMKO Approved Mark	(2)	EA@3 302M 84
Type Designation	EA	(S) (S) (A)
Nominal Capacitance	3-Digits	91 565-1
Capacitance Tolerance	Symbol	
Manufacturer's Name	@ 3	

Standard Number	Recognition Number
VDE565-1	68365
UL 1414	E37921
CSA C22.2 No. 1	LR36214
SEMKO 101 SS443 0414	8736197 8736198
BS415	7354

Part Number	-	O T-1	Recognized Standards						
	Temp. Char.	Cap. Value (pF)	Cap. Tol. (%)	UL 1414	CSA C22.2 No. 1	SEMKO	BS 415	VDE 565-1	Rated Voltage*
*DSR1100-56 E222MVA2-EA	E (+20%)	2200	±20	•	•	•	•	•	VA2
*DSR1120-56 E302MVA2-EA	Е	3000	±20	•	•	•	•	•	VA2
*DSR1150-56 E472MVA2-EA	E	4700	±20	•	•	•	•	•	VA2
★ DSR1100-56 FZ472P VA2-EA	FZ (+30%)	4700	+100, -0	•	•	•	•	_	VA2

^{*}VA2: for VDE565-1, SEMKO, BSI ...250VAC for UL1414, CSA C22.2 No. 1 ...125VAC

^{*}Available as standard through authorized Murata Electronics Distributors.

SAFETY STANDARD RECOGNIZED EMIFIL® FOR AC POWER SUPPLIES

DSR Series

EQUIVALENT CIRCUIT

TYPICAL APPLICATION

RECOMMENDED P.C. BOARD PATTERNS

MOUNTING EFFECT (Procedure for suppression of radiated noise from power supply cord.)

AC COMMON MODE CHOKE COIL

PLA Series

APPLICATIONS

Switching power supplies, color TV's, VTR's, ECR and other electronic equipment.

The PLA Series is a common mode choke coil effective for asymmetric waves (unbalanced noise). This circuit is applicable to color TV's, VTR's, switching power supplies, power supply circuit boards and others. It is particularly effective for preventing even the slightest amount of noise in compact electronic equipment.

FEATURES

- Compact, lightweight construction incorporating a highly permeable ferrite core
- Operates effectively in a frequency range of 0.1 to 16MHz. Compared to toroidal cores, it attenuates a very wide range of low frequencies from 0.1 to 6MHz.
- Negligibly small reduction in inductance due to load current
- Flame-retardant materials and very simple construction assure safety and dependability.
 Suitable for noise reduction per FCC and CISPR
- requirements.

PART NUMBERING

DIMENSIONS: mm

CIRCUIT DIAGRAM

TEST CIRCUIT

PLA Series

RATINGS

Item	Specification
Rated Voltage	250 VAC
Withstand Voltage (Between Coils)	2000 VAC, one minute
Insulation Resistance	100 M Ω min.
Temperature Characteristic (Inductance Change)	+80 -50 %
Cemperature Rise	60°C max.
Operating Temperature Range	-25°C to +60°C
Storage Temperature Range	−25°C to +85°C

TYPICAL INSERTION LOSS CHARACERISTICS

SPECIFICATIONS

Part Number	Rated Current (Arms)	Direct Current Resistance (Ω max.)	Inductance L ₁ , L ₂ (mH min.)	Inductance Difference L ₁ - L ₂ (mH max.)	Self- resonant Frequency (MHz)*
*PLA□3330R3R01B1	0.3	3.5	33.0	0.3	0.15
*PLA□2230R4R01B1	0.4	2.0	22.0	0.25	0.2
*PLA□1530R5R01B1	0.5	1.5	15.0	0.15	0.25
*PLA□1030R5R01B1	0.5	1.5	10.0	0.15	0.3
*PLA□8020R5R01B1	0.5	1.0	8.0	0.1	0.3
*PLA□5020R6R01B1	0.6	0.7	5.0	0.1	0.4
*PLA□6020R8R01B1	0.8	0.5	6.0	0.1	0.4
*PLA□3021R0R01B1	1.0	0.35	3.0	0.05	0.5
*PLA□2021R0R01B1	1.0	0.3	2.0	0.05	0.7
*PLA□1021R0R01B1	1.0	0.25	1.0	0.05	1.0
*PLA□3221R2R01B1	1.2	0.3	3.2	0.08	0.5
*PLA□1522R0R01B1	2.0	0.2	1.5	0.05	0.9
*PLA□1022R0R01B1	2.0	0.15	1.0	0.05	1.0

^{*}Available as standard through authorized Murata Electronics Distributors.

*Typical

PLE Series

FEATURES

- Meets FCC, CISPR, VDE noise regulations.
- Compact yet with large inductance. Allows common noise suppression from 10KHz.
- Effective for noise suppression in wide bands.
- Horizontally installed ferrite cores reduce height and are extremely suitable for equipment where height is limited.

APPLICATIONS

Switching power supplies, equipment incorporating microcomputers, digital equipment, CTV, VTR, ECR and other electronic equipment and appliances.

DIMENSIONS: mm

SPECIFICATIONS

Part Number	Inductance (mH) min.	Rated Current (Arms)	DC Resistance (Ω) max.	Self Resonant Frequency (MHz)*
*PLE25H-3030R5	30	0.5	1.2	0.1
*PLE25H-2230R7	22	0.7	1.0	0.1
*PLE25H-1531R	15	1.0	0.7	0.1
*PLE25H-1131R3	11	1.3	0.6	0.15
*PLE25H-8021R5	8	1.5	0.4	0.2
*PLE25H-3022R	3	2.0	0.2	0.25
*PLE25H-2023R	2	3.0	0.1	0.4

^{*}The self-resonant value is the typical value.

RATINGS

Item	Rating
Rated Voltage	250VAC
Withstand Voltage (between coils)	2000 VAC, one minute
Insulation Resistance (between coils: 500VDC 1 minute)	100M Ω min.
Operating Temperature Range	−25°C to +60°C
Temp. Characteristics (Inductance)	$20^{\circ}\text{C} ^{+80}_{-50}\%$ at the above temperature

TYPICAL INSERTION LOSS CHARACTERISTICS

^{*}Available as standard through authorized Murata Electronics Distributors.

PLC Series

FEATURES

- Meets FCC, CISPR, VDE noise regulations.Compact yet with large inductance. Allows common noise suppression from 10KHz.
- Effective for noise suppression in wide bands.
- Horizontally installed ferrite cores reduce height and are extremely suitable for equipment where height is limited.

APPLICATIONS

Switching power supplies, equipment incorporating microcomputers, digital equipment, CTV, VTR, ECR and other electronic equipment and appliances.

DIMENSIONS: mm

CIRCUIT DIAGRAM

RATINGS

Item	Rating
Rated Voltage	250VAC
Withstand Voltage (between coils)	2000VAC, one minute
Insulation Resistance (between coils : 500VDC 1 minute)	100M Ω min.
Operating Temperature Range	−25°C to +60°C
Temp. Characteristics (Inductance)	**************************************

SPECIFICATIONS - PLC Series

Part Number	Inductance (mH) min.	Rated Current (Arms)	DC Resistance (Ω) max.	Self- resonant Frequency (MHz)*
*PLC20A7030R5D01B1	70	0.5	3.0	0.1
*PLC20A3031R0D01B1	30	1.0	1.0	0.2
*PLC20A1131R5D01B1	11	1.5	0.4	0.3
*PLC20A6522R0D01B1	6.5	2.0	0.2	0.4
*PLC20A3023R0D01B1	3	3.0	0.1	0.7
*PLC20B7030R5D01B1	70	0.5	3.0	0.1
*PLC20B3031R0D01B1	30	1.0	1.0	0.2
*PLC20B1131R5D01B1	11	1.5	0.4	0.3
*PLC20B6522R0D01B1	6.5	2.0	0.2	0.4
*PLC20B3023R0D01B1	3	3.0	0.1	0.7

*The self-resonant value is the typical value.

AC COMPONENTS

Available as standard through authorized Murata Electronics Distributors.

PLC Series

TYPICAL INSERTION LOSS CHARACTERISTICS

COMMON MODE CHOKE COIL SELECTION

HOW TO USE COMMON MODE CHOKE COIL

No.	Name	Purpose
1	Line bypass capacitor	Elimination of common mode noise and normal mode noise
2	Common mode choke coil	Elimination of common mode noise
3	Across-the-line capacitor	Elimination of normal mode noise

SELECTION METHOD

Selection by rated current and inductance

Inductance	Current [A]								
(mH)	0.5	0.6	0.7	1	1.3	1.5	2	2.5	3
0.8			F	KOB TYP	E				
1.5						100 - 100 -			
2		PLA							
3		TYPE							
5		131							
6.5				PLE					
8				TYPE					
11									
15									
22							CUS	STOM	
30		Pl	PLC20 TYPE			MADE			
70									

Selection by noise regulations

Series Name		Regulation	
ocrics Name	FCC	CISPR	VDE
PLA	0	0	
FKOB	0		
PLE	0	0	0
PLC	0	0	0

EFFECT OF MOUNTING OF COMMON MODE CHOKE COIL

Noise level when using common mode choke coil

OPERATING CIRCUIT

FKOB Series

FEATURES

- Meets FCC noise requirements
- Compact design achieved by the use of highly permeable ferrite material
- Excellent frequency characteristics, useable from 100 KHz to several tens of MHz
- Less temperature and less effect on the environment with equipment temperature held to 30°C or less
- Negligible reduction to inductance due to load current
- The filter's construction and the insulation material used satisfy the requirements of applicable safety standards (i.e., UL standard).

DIMENSIONS: mm

The FKOB Series is a common mode choke coil, effective for asymmetric wave (unbalanced noise), used chiefly for preventing noise in color TV or VTR.

The filter is discretely mounted on the power source PC board together with a capacitor to serve as a noise prevention circuit. Filters of this type are also used in quantities for noise prevention in small electronic devices and power sources where use of a full-scale noise filter is impractical due to the limited space in such compact devices. Though the noise prevention of this kind of filter differs with the capacitor in parallel, it permits incorporation of a filter circuit consisting of at least one coil and capacitor on the board.

APPLICATIONS

For prevention of internally generated noise

Switching sources, Thyristor control devices, Contact noise and Ultrasonic wave devices.

For prevention of external noise

Microcomputer (digital equipment), CTV, VTR, ECR. Electronic scales. POS.

PART NUMBERING

CIRCUIT DIAGRAM

TYPICAL INSERTION LOSS CHARACTERISTICS

SPECIFICATIONS

Part Number	Inductance	RDC (Ω max.)	Rated Voltage (VAC)	Rated Current (Arms)	Frequency at Self-resonance MHz (Typ.)	Lead Pitch A / B	Lead Length ℓ
★FKOB160MH02	250	< 0.05	250	2.5	5	8 / 10	10
★FKOB160MH06	250	< 0.05	250	2.5	5	13 / 10	4.5
★FKOB160MH25*	600	< 0.08	250	2.5	4	8 / 10	10
★FKOB160MH13*	600	< 0.08	250	2.5	4	13 / 10	4.5
★FKOB160MH23*	800	< 0.08	250	2.5	4	8 / 10	10
★FKOB160MH14	800	< 0.08	250	2.5	4	13 / 10	4.5
★FKOB160MH26*	1000	< 0.10	250	1.5	2.5	8 / 10	10
FKOB160MH16	1000	< 0.10	250	1.5	2.5	13 / 10	4.5
★FK0B160MH24*	1500	< 0.12	250	1.5	1.5	8 / 10	10
★FKOB160MH15	1500	0.12	250	1.5	1.5	13 / 10	4.5

^{*}Available as standard through authorized Murata Electronics Distributors.

NOISE FILTERS AC COMMON MODE CHOKE COIL

PLAM Series

FEATURES

- Twice the inductance in same size package as
- currently available inductors.

 Meets or exceeds VCCI, FCC and CISPR EMI/RFI specifications. (TüV recognized)
- Unique case design allows high density packaging.
- High withstand voltage assures reliability and safety.

APPLICATIONS

Switching power supplies, microprocessor-controlled equipment and other industrial and consumer devices.

DIMENSIONS: mm

CIRCUIT DIAGRAM

PART NUMBERING

SPECIFICATIONS

Item	Specification 250 VAC (UL, IEC) 125 VAC (CSA)		
Rated Voltage			
Withstand Voltage (Between Coils)	2000 VAC, one minute		
Insulation Resistance	100 M Ω min. (500 VDC 1 minute)		
Temperature Characteristic (Inductance Change)	*80 % (-25°C to +60°C, 20°C base)		
Operating Temperature Range	−25°C to +60°C		
Storage Temperature Range	-25°C to +85°C		

TYPICAL INSERTION LOSS CHARACTERISTICS

SPECIFICATIONS

Part Number	Rated Current (Arms)	Direct Current Resistance (Ω) max.	Inductance L ₁ , L ₂ (mH min.)	Inductance Difference L ₁ -L ₂ (mH max.)	Self- resonant Frequency (MHz)*
★PLAM2930R5	0.5	3.0	29.0	0.25	0.2
★PLAM2230R6	0.6	2.0	22.0	0.20	0.2
PLAM1030R9	0.9	0.9	10.0	0.15	0.3
PLAM4621R3	1.3	0.5	4.6	0.10	0.5
★PLAM2321R9	1.9	0.2	2.3	0.05	0.7

^{*}Available as standard through authorized Murata Electronics Distributors.

NOISE FILTERS AC COMMON MODE CHOKE COIL HIGH FREQUENCY

PLH11 Series

FEATURES

- High-performance ferrite core provides excellent frequency characteristics
- Ideal for suppressing conduction and radiation noise to meet VCCI, FCC, CISPR, VDE noise regulations
 Suitable for application when no ground is available, when
- Suitable for application when no ground is available, when the ground is unstable or when a by-pass capacitor (e.g. a three-terminal capacitor) cannot be used because of leakage-current limitations
- Wide application possible for suppressing noise from AC power supplies, DC power supplies and signal lines
- Compact and lightweight
- Three configurations vertical core, horizontal core, or cased core

APPLICATIONS

TV's, VCR's. Equipment incorporating microcomputers (digital equipment). Communications systems

PART NUMBERING

DIMENSIONS: mm

RATINGS

Item	Specifications	
Rated Voltage	250 VAC	
Withstand Voltage (Between Coils)	2000 VAC, one minute	
Insulation Resistance (Between Coils : 500 VDC)	100 M Ω min.	
Temperature Characteristic (Inductance Change)	+80 % (-25°C to +60°C, 20°C base)	
Operating Temperature Range	-25°C to +60°C	

SPECIFICATIONS

Part Number	Rated Current (Arms)	Direct Current Resistance (Ω max.)	Inductance L ₁ , L ₂ (µH min.)	Inductance Difference L ₁ -L ₂ (µH max.)
★PLH11 □1811R2P01B1	1.2	0.15	180	20
*PLH11□1511R5P01B1	1.5	0.10	150	15
*PLH11□8002R2P01B1	2.2	0.07	80	10
*PLH11□6003R3P01B1	3.3	0.05	60	10

^{*}Available as standard through authorized Murata Electronics Distributors.

CIRCUIT DIAGRAM

TYPICAL INSERTION LOSS CHARACTERISTICS

NOISE FILTERS AC COMMON MODE CHOKE COIL BROAD BAND

PLH Series

FEATURES

Excellent noise suppression achieved by combining the best characteristics of conventional bobbin and toroidal types.

Assembled with three-terminal (AC line) capacitor DSR Series, highly reliable filter circuits can be designed for effective suppression of noise ranging from several hundred KHz to several hundred MHz.

■ Meets VCCI, FCC and CISPR noise regulations.

Available in various rated currents to as high as 6A.

- Case structure allows sufficient insulation distance between other components, thus enabling high-densitymounting. (PLH20H Series)
- PLH20HM Series are magnetically shielded low leakage flux types.

APPLICATIONS

Switching power supplies, equipment incorporating microcomputers (digital equipment), and other electronic equipment and appliances.

DIMENSIONS: mm

RATINGS

Item	Specifications
Rated Voltage	250 VAC
Withstand Voltage (between coils)	2000 VAC, one minute
Operating Temperature Range	−25°C to +60°C
Insulation Resistance (between coils : 500VDC)	100 MΩ min.
Temperature Characteristics (Inductance)	+80 % (-25°C to +60°C, 20°C base)

^{*}Available as standard through authorized Murata Electronics Distributors.

CIRCUIT DIAGRAM

NOISE FILTERS AC COMMON MODE CHOKE COIL BROAD BAND (continued)

*muRata*PLH Series

SPECIFICATIONS

Part Number	Inductance (mH) min.	Rated Current (Arms)	DC Resistance (Ω) max.
PLH14H-4020R5	4.0	0.5	3.0
PLH14H-2420R8	2.4	0.8	1.0
PLH14H-8011R7	0.8	1.7	0.5
PLH14H-4013R0	0.4	3.0	0.1
*PLH20H-9021R0 *PLH20HM-9021R0	9.0	1.0	1.0
*PLH20H-4622R0 *PLH20HM-4622R0	4.6	2.0	0.3
*PLH20H-2523R0 *PLH20HM-2523R0	2.5	3.0	0.1
*PLH20H-8016R0 *PLH20HM-8016R0	0.8	6.0	0.1

(PLH20HM Series are low leakage flux type).

INSERTION LOSS CHARACTERISTICS (TYP.)

PART NUMBERING

^{*}Available as standard through authorized Murata Electronics Distributors.

PLNE Series

FEATURES

- High permeability core assures compliance to EMI specifications.
- Unique construction, inductance, bandwidth design replaces multiple series-connected toroidal inductors.
- Excellent impulse noise suppression characteristics.
- Four terminal construction provides high shock and vibration resistance.
- Unique case construction allows high density packaging.

APPLICATIONS

Input line filtering for switching power supplies. DC line filtering in auto and similar applications. Suppression of differential-mode noise in thyristor phase control and other similar systems.

DIMENSIONS: mm

PART NUMBERING

SPECIFICATIONS

	Part Number	Inductance (μ H)	Rated Current (Arms)	Circuit Diagram
-	★PLNE-2021R5	2000	1.5	
	★ PLNE-1022R0	1000	2.0	0 0 0 0
Standar Type	★PLNE-5513R0	550	3.0	
S	★PLNE-2514R0	250	4.0	

^{*}Available as standard through authorized Murata Electronics Distributors.

INSERTION LOSS CHARACTERISTICS (TYP.)

NOTES ON COMMON MODE CHOKE COIL/ NORMAL MODE CHOKE COIL

PRECAUTION

Operating Current

Operating current should not exceed components' rated value. Even if operating current is under the rated value, adequate ventilation is required to avoid excessive heat generated within the component and from surrounding heat sources. Maximum allowable temperature of components windings (ambient temperature + winding temperature rise) is 120°C.

Inrush Current

Inrush current should not exceed 10 times rated current within 1/4 cycle of 50/60Hz commercial power line. Inrush current should be limited to a maximum of 10 seconds between inrush intervals.

If these conditions are exceeded, excessive heat may cause fumes or permanent damage to the component.

NOTICE

Magnetic Flux Leakage

Common mode choke coils and normal mode choke coils generate small amounts of magnetic flux leakage that may adversely affect equipment operation according to component arrangement. Testing should be completed on final assembly to ensure equipment performance is not effected.

Coil Humming Noise

Magnetic flux generated between coil and core or between the common mode choke windings creates repulsive power between the coil windings. This repulsive power causes the coil winding to vibrate and create a humming noise. The amount of hum produced by the coil is proportionate to the amount of harmonic distortion generated by the operating current. This does not influence the electrical performance of the coils, but it should be considered and tested in actual circuit application.

Soldering Flux

Rosin-based flux is to be used. Do not use strong acidic flux with halide content exceeding 0.2 wt% (chlorine conversion value).

Soldering Conditions

(1) Flux, Solder

Rosin-based flux should be used. Do not use strong acidic flux with halide content exceeding 0.2wt% (chlorine conversion value).

Use 63/37 solder (Sn 63%/Pb 37%) or 60/40 solder (Sn 60%/Pb 40%).

(2) Flow Soldering

Products should be soldered by flow method under the following conditions.

Item	Condition
Soldering Temp.	240 to 260°C
Soldering Time	less than 5 sec.

Cleaning

Avoid cleaning product due to non-waterproof construction.

Storage and Handling Requirement

(1) Storage period

Product should be used within 12 months after receiving. Solderability should be checked if this period is exceeded.

(2) Storage conditions

Storage temperature : -10°C to +40°C Relative humidity : 30 to 70%

Avoid sudden changes in temperature and humidity. Chemical exposure to sulfur, chlorine gas or acid may cause oxidation of lead terminals resulting in poor solderability or corrosion of component windings.

(3) Handling conditions

Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock.

EMI FILTER DESIGN KITS

SURFACE MOUNT FILTERS

- For surface mount applications
- Extremely small size
- For DC applications

★KIT-EK115B

Part No.	Qty.	Product Type
BLM11A12 BLM21A05 BLM21A10 BLM21B03 BLM32A06 BLM41A01	100 100 100 20 40 40	Chip Ferrite Bead
BLA81B01 BLA62B01 BLA41B01	5 5 5	Ferrite Bead Array
NFA81R10C222 NFA62R10C222 NFA41R10C222	5 5 5	Chip Feed-Thru Capacitor
NFM51R00P506 NFM51R10P107 NFM51R10P107 NFM51R30P507 NFM51R30P507 NFM52R00P106 NFM40R01C220 NFM40R01C470 NFM40R01C101 NFM40R11C221 NFM40R11C471 NFM40R11C102 NFM40R11C222 NFM40R11C222 NFM40R11C223 NFM41P11C204 NFM61R00T101 NFM61R00T101 NFM61R00T161 NFM61R00T361 NFM61R10T102 NFM61R10T102	10 10 10 10 10 10 30 30 30 30 30 30 30 10 10 10	Chip Suppression Filter

LEADED PCB FILTERS

- PCB application
- Various applications
- Wide selection of values available
- AC/DC applications
- Leaded devices

★KIT-EK055A

Part No.		Qty.	Туре
BLO1RN1-A62 BLO2RN2-R62		30 30	Ferrite Bead Inductor
DSS306-55Y5S470M100 Y5S101M100 Y5S471M100 Y5S102M100 Y5U22Z100 FZ 103N100 F 223Z16	100VDC 100VDC 100VDC 100VDC 100VDC 100VDC 16VDC	20 20 20 20 20 20 20 20	Disc Type EMI/FIL
DSS710D223S12-22	12VDC	10	3 Terminal Varistor-Capacitor
VFR303-351AZ25	25VDC	10	EMI GUARD for Semiconductor Protect Function
BNX002-01	50VDC	5	Broad Band Power Supply Filter
BNP002-02	50VDC	5	Block Type Filter
NFV510-655T2A106 206 506 107 NFV610-655T2A106 206 506 107	100VDC 100VDC 100VDC 100VDC 100VDC 100VDC 100VDC 100VDC	66666666	Signal Line Noise Filter

★KIT-EK055A (continued)

OVZ10-551A221			Туре
431	140VAC 180VDC 275VAC 350VDC	10	ZnO Surge Absorber
DSR1100-56E222MVA2-E DSR1150-56E472MVA2-E		10 10	AC Three Terminal Capacitor
PLH20H-9021R0 -2523R0 -8016R0 PLH14H-4020R5 -2420R8 -4013R0 PLH11A1811R2P01B1 1511R5P01B1 6003R3P01B1 PLAA3030R3D01B1 7020R7D01B1 1022R0RR1B1	250 VAC 250 VAC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Common Mode Choke Coil

*STANDARD DISTRIBUTOR ITEMS

COMPUTING DEVICES

- For PCB application
- For DC signal line filtering
- Wide selection of values

★KIT-EK015C

Part No.		Qty.	Туре	
BNX002-01		3	DC Powerline Filter	
BNP002-03		3	Signal Line Filter	
DF221-601SS152GMV5	0	30	Subminiature Semiconducto	
BL01RN1-A62		50	Ferrite Bead Inductors	
BL02RN2-R62		50		
BL03RN2-R62		50		
BLM31A02		20	Chip Ferrite Bead	
BLM41A04		20		
DS306-55Y5S470M	50V	20		
DS306-55Y5S101M	50V	20		
DS306-55Y5S271M	50V	20	3 Lead Disc Filter	
DS306-55Y5S102M	50V	20	o Lead Disc i liter	
DS306-55Y5S222M	50V	20		
DS306-55FZ103Z	50V	20		
DSS306-55Y5S220M 100V DSS306-55Y5S470M 100V		50		
		50	3 Lead Disc Filter	
DSS306-55Y5S101M	100V	50	With Ferrites	
DSS306-55Y5S221M	100V	50		
DSS306-55Y5S471M	100V	50		
DSS306-55Y5S102M 100V DSS306-55Y5U222Z 100V		50	3 Lead Disc Filter	
		50	With Ferrites	
DSS306-55FZ103N	100V	50	vviiii reffiles	
DSS306-55FZ223Z	16V	50		
DS310-55Y5S223S	50V	20	3 Lead Disc Filter	
DS310-55Y5S104M	16V	20	o Lead Disc Filler	
DSS310-55Y5S2220M	100V	20		
DSS310-55Y5S470M	100V	20		
DSS310-55Y5S101M	100V	20	3 Lead Disc Filter	
DSS310-55Y5S271M	100V	20	With Ferrites	
DSS310-55Y5S222M	100V	20		
DSS310-55Y5S223S	100V	20		
DSS710-D223S12-22		5	Varistor/Capacitor	
NFV610-655T2A106	100V	5	·	
NFV610-655T2A206	100V	5	Naiss Commission Fitt	
NFV610-655T2A506	100V	5	Noise Suppression Filter	
NFV610-655T2A107	100V	5		

POWERLINE

- For AC power line filtering
- Small size
- Broad selection of products

★KIT-EK025B

Part No.	Qty.	Туре	
PLAA1022R0R01B1	2	Compact Common Mode	
PLAA3021R0R01B1		Choke Coil, Non-Case Type	
PLAA5020R6R01B1	2	, , , , , , , , , , , , , , , , , , ,	
PLAC8020R5R01B1	2	Case-Type	
PLH11A6003R3P01B1	2	High Frequency	
PLH11A1511R5P01B1	2	Common Mode Choke Coil	
PLE25H-1531R	1		
PLE25H-2023R	1	Common Mode Choke Coil	
PLC20A3031R0D01B1	1	Common Mode Charle Com	
PLC20B7030R5D01B1	1		
DSR1100-56E222M VA2-EA	10	Safety Standard Recognized	
DSR1120-56 E302M VA2-EA	10	EMIFIL® For AC Power Supplies	
DSR1150-56 E472M VA2-EA	10	Safety Standard Recognized	
DSR1100-56 FZ472P VA2-EA	10	EMIFIL® For AC Power Supplies	
PLT1R53C	5	Common Mode Choke Coil	
BNX002-01	5	DC Power Line Filter	
BL02RN2-R62	50	Ferrite Bead	

KIT-EK025C

Part No.	Qty.	Туре	
PLAA1522R0R01	2		
PLAA3221R2R01	2		
PLAB1530R5R01	2		
PLAC3330R3R01	2	Compact Common Mode	
PLAA8512R0D01	2	Choke	
PLAA3221R0D01	2		
PLAB1030R5D01	2		
PLAC3030R3D01	2		
PLAM2321R9	1		
PLAM4621R3	1		
PLAM1030R9	1		
PLAM2930R5	1		
PLE25H-2023R	1		
PLC20A3023R0D01	1		
PLC20B3031R0D01	1	and the land of the second	
PLH11A8002R2P01	1	Common Mode Choke Coil	
PLH11B1811R2P01	1		
PLH14H-4013R0	1		
PLH14H-8011R7	1		
PLH14H-2420R8	1		
PLH14H-4020R5	1		
PLH20H-2523R0	1		
PLH20H-9021R0	1	Handone	
PLNE-1022R0	2	Normal Mode Choke	
PLT09H-2003R	4	DC Common Mode Choke	
BNX002-01	4	Block Filter	
BL02RN2-R62	50	Ferrite Beads	
DSR1100-56E222M VA2	10	3 Terminal AC	
DSR1120-56E302M VA2	10	Filters	

INDUCTORS—CHIP

- Miniature Size
- Available in ferrite and ceramic cores
- Wide standard inductance range 10nH to 2200µH
- High Q at frequencies to 100MHz for ferrite cores and to 1GHz for ceramic core.

★KIT-EKLQ015A

Part No.	Qty.	Туре		
LQN2A10NM04	50			
LQN2A18NM04	50			
LQN2A22NM04	50			
LQN2A33NM04	50			
LQN2A39NM04	50			
LQN2A47NM04	50			
LQN2A56NM04	50	1210 Chip Inductor		
LQN2A68NM04	50	12 to Only mudclor		
LQN2A82NM04	50			
LQN2AR10K04	50			
LQN2AR12K04	50			
LQN2AR15K04	50			
LQN2AR18K04	50			
LQN2AR22K04	50			
LQH3NR10M04K	40			
LQH3NR18M04K	40			
LQH3NR27M04K	40			
LQH3NR39M04K	40	1210 Chip Inductor		
LQH3NR56M04K	40			
LQH3NR68M04K	40			
LQH3NR82M04K	40			
LQH3C1R0M04	30			
LQH3C2R2M04	30			
LQH3C4R7M04	30			
LQH3C100K04	30			
LQH3C220K04	30	1210 Chip Inductor		
LQH3C470K04	30			
LQH3C101K04	30			
LQH3C221K04	30			
LQH3C331K04	30			

★KIT-FKI Q016A

Part No.	Qty.	Туре			
LQP31A4N7J04	20				
LQP31A6N8J04	20				
LQP31A10NG04	20				
LQP31A15NG04	20				
LQP31A22NG04	20	1206 Chip Inductor			
LQP31A33NG04	20				
LQP31A47NG04	20				
LQP31A68NG04	20				
LQP31AR10G04	20				
LQN1A8N8J04	20				
LQN1A15NJ04	20				
LQN1A17NJ04	20				
LQN1A23NJ04	20				
LQN1A27NJ04	20	1206 Chip Inductor			
LQN1A33NJ04	20				
LQN1A39NJ04	20	1206 Chip mauctor			
LQN1A47NJ04	20				
LQN1A56NJ04	20				
LQN1A64NJ04	20				
LQN1A84NJ04	20				
LQN1AR10J04	20				
LQH1NR15M04	20				
LQH1NR22M04	20				
LQH1NR33M04	20	1206 Chip Inductor			
LQH1NR47M04	20				
LQH1NR56M04	20				

EMI FILTER DESIGN KITS

INDUCTORS—CHIP

★KIT-EKLQ016A (continued)

Part No.	Qty.	Туре	
LQH1NR68M04	20		
LQH1NR82M04	20		
LQH1N1R0M04	20	1206 Chip Inductor	
LQH1N1R2M04	20		
LQH1N1R5K04	20		
LQH1CR12M04	20		
LQH1CR22M04	20		
LQH1CR47M04	20		
LQH1C1R0M04	20		
LQH1C2R2M04	20	1206 Chip Inductor	
LQH1C4R7M04	20	1200 Chip inductor	
LQH1C100K04	20		
LQH1C220K04	20		
LQH1C470K04	20		
LQH1C101K04	20		

★KIT-EKLQ025A

Part No.	Qty.	Туре
LQH3N1R0M04	30	
LQH3N1R2M04	30	
LQH3N1R5M04	30	
LQH3N1R8M04	30	
LQH3N2R2M04	30	
LQH3N2R7M04	30	
LQH3N3R3M04	30	
LQH3N3R9M04	30	
LQH3N4R7M04	30	
LQH3N5R6M04	30	
LQH3N6R8M04	30	
LQH3N8R2M04	30	
LQH3N100K04	30	
LQH3N120K04	30	
LQH3N150K04	30	1210 Chip Inductor
LQH3N180K04	30	713-217-92 1 - 947-104 1 - 1-30 0-30-0-3 1-27-10-3
LQH3N220K04	30	
LQH3N270K04	30	
LQH3N330K04	30	
LQH3N390K04	30	
LQH3N470K04	30	
LQH3N560K04	30	
LQH3N680K04	30	
LQH3N820K04	30	
LQH3N101K04	30	
LQH3N121K04	30	
LQH3N151K04	30	
LQH3N181K04	30	
LQH3N221K04	30	
LQH3N271K04	30	
LQH3N331K04	30	
LQH3C1R0M04	20	
LQH3C2R2M04	20	
LQH3C4R7M04	20	
LQH3C100K04	20	
LQH3C220K04	20	1210 Chip Inductor
LQH3C470K04	20	
LQH3C101K04	20	
LQH3C221K04	20	
LQH3C331K04	20	

★ KIT-EKLQ025A (continued)

Part No.	Qty.	Туре
LQH4N391K04	20	
LQH4N471K04	20	
LQH4N561K04	20	
LQH4N681K04	20	
LQH4N821K04	20	1812 Chip Inductor
LQH4N102K04	20	1012 Only inductor
LQH4N122K04	20	
LQH4N152K04	20	
LQN4N182K04	20	
LQN4N222K04	20	

★KIT-EKLQ026A

Part No.	Qty.	Туре
LQH1N1R0M04 LQH1N1R2M04 LQH1N1R5K04 LQH1N1R8K04 LQH1N1R8K04 LQH1N2R2K04 LQH1N2R7K04 LQH1N3R3K04 LQH1N3R9K04 LQH1N4R7K04 LQH1N5R6K04 LQH1N5R6K04 LQH1N5R04 LQH1N5R04 LQH1N100J04 LQH1N120J04 LQH1N120J04 LQH1N120J04 LQH1N120J04 LQH1N180J04 LQH1N180J04 LQH1N270J04 LQH1N30J04 LQH1N30J04 LQH1N30J04 LQH1N30J04 LQH1N30J04 LQH1N80J04	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1206 Chip Inductor
LQH1CR12M04 LQH1CR22M04 LQH1CR47M04 LQH1C1R0M04 LQH1C2R2M04 LQH1C4R7M04 LQH1C100K04 LQH1C220K04 LQH1C470K04 LQH1C470K04 LQH1C101K04	20 20 20 20 20 20 20 20 20 20 20 20 20	1206 Chip Inductor
LQH3C1R0M04 LQH3C2R2M04 LQH3C4R7M04 LQH3C100K04 LQH3C220K04 LQH3C470K04 LQH3C101K04 LQH3C21K04 LQH3C331K04	20 20 20 20 20 20 20 20 20 20	1210 Chip Inductor

^{*}STANDARD DISTRIBUTOR ITEMS

Technical Notes

TEMPERATURE CHARACTERISTICS/CODE

EIA TEMPERATURE CHARACTERISTICS/CODE

Min. 0	lin. Operating Temp.		Max. Operating Temp.		ap. Tolerance
X	−55°C	2	+45°C	С	±2.2%
Υ	-30°C	4	+65°C	D	±3.3%
Z	-10°C	5	+85°C	Е	±4.7%
		6	+105°C	F	±7.5%
		7	+125°C	Р	±10%
				R	±15%
				S	±22%
				Т	+22%, -33%
				U	+22%, -56%
				٧	+22%, -82%

Note: 1. MMC uses "EIA-J" for the Japanese domestic market and EIA for the foreign

EIA-J TEMPERATURE CHARACTERISTICS

	Operating Temp. Range	Standard Temp.	Cap. Tolerance
В	−25°C to +85°C	20°C	±10%
С	−25°C to +85°C	20°C	±20%
D	−25°C to +85°C	20°C	+20, -30%
Е	−25°C to +85°C	20°C	+20, -55%
F	−25°C to +85°C	20°C	+30, -80%

TYPICAL INSERTION LOSS

MEASURING CIRCUIT (MIL-STD-220A)

INSERTION LOSS = 20 LOG $\frac{B_{(v)}}{C_{(v)}}$ in dB

(dB) AND INSERTION LOSS

CIRCUIT MODULE (Hybrid IC)

COMPONENTS FOR MOUNTING ON HYBRID IC'S:

A highly functional and integrated circuit can be realized by integrating various chip components and semiconductors on one substrate. Murata Electronics not only has the technology to put these components together on the substrate, but Murata also supplies the components. Again, this relates to the vertical integration and known quality theme of Murata Hybrid IC. Murata now offers many existing circuit designs such as Current Detectors, DC/DC Converters, RC/C Modules, and Active Filters as well as custom circuit design support to meet specific customer needs.

FEATURES

- Reduce PCB complexity and size
- Reduce assembly and testing time
- Increase flexibility of REDESIGN and NEXT GENERATION DESIGN
- Shipped as 100% fully tested module/function
- Good high frequency and heat dissipation characteristics
- Reduce TIME TO MARKET and INVENTORY LOGISTICS COSTS

	Dradust Nama		Appearance	Dimensions (mm)		
	Product Name			L	W	T
	уре	GRM36(0402)		1.0	0.5	0.5
	on T	GRM39(0603)		1.6	0.8	0.8
	inati			2.0 1		0.7
	Term	GRM40(0805)			1.25	1.0
	Nickel Barriered Termination Type					1.25
	arrie					0.7
	ke B	GRM42-6(1206)		3.2	1.6	1.0
	Nic					1.25
	ies	GRM420(0603)		1.6	0.8	0.8
	Ser	GRM425(0805)		2.0	1.25	0.7
	rtion	GNIVI423(0003)				1.0
	Low Distortion Series	GRM430(1206)			0.7	
	J WC			3.2	1.6	1.0
Chip	ت					1.2
Monolithic Ceramic		GR39(0603)		1.6	0.8	0.8
Capacitor		GR40(0805)		3.2	1.25 1.6 2.5	0.7
	be					1.0
	n Ty					1.2
	Silver Termination Type	GR42-6(1206)				0.7
	i iii					1.0
	er Te					1.2
	Silve	GR42-2(1210)				1.2
		GR43-2(1812)		4.5	3.2	2.0
		GR44-1(2220)		5.7	5.0	2.0
	S	G1177 1(2220)		3.2	0.0	1.2
	Serie	GR235(1210)			2.5	1.5
	Smoothing Series				2.0	2.0
	oothi					2.0
Smc		GR240(1812)		4.5	3.2	2.5

Product Name		Annogranos	Dimensions (mm)			
		Appearance	L	W	T	
	es	GR245(2220)		5.7	5.0	2.0
	Seri	Gh245(2220)		5.7	5.0	2.7
	hing	GR250(3225)		8.0	6.3	2.0 2.7
Chip	Smoothing Series	GR255(4032)		10.0	8.0	3.0
Monolithic	S	GR260(5040)		12.5	10.0	3.0
Ceramic	>	GRH706		1.25	1.0	1.2
Capacitor	uenc	GRH708		2.0	1.25	1.45
	Freq	GRH710		3.2	2.5	1.9
	High Frequency Series	GRH110		1.4	1.4	1.65
		GRH111		2.8	2.8	2.8
01-1-0		TZV02	0	3.2	2.3	1.4
Chip Ceramic Trimmer Capacitor		TZC03	P	4.5	3.2	1.6
Timinor oupdon	0,	TZBX4		4.5	4.0	3.0
		RVG3A01/08	P	3.5	3.0	01 : 1.5 08 : 1.85
Chip Trimmer		RVG4J03/04		4.5	3.8	1.75
Potentiometer		RVG4H01	-	4.5	3.8	1.5
		RVG4M		4.7	4.0	2.0
		LQG21N	8	2.0	1.25	0.9 1.25
		LQH1N/1C		3.2	1.6	1.8
		LQH3N/3C		3.2	2.5	2.0
Chip Coil		LQH4N/LQN4N		4.5	3.2	2.6
		LQM32C	9	3.2	2.5	2.5
		LQS33N	♦	3.2	3.5	1.8
		LQN1A	-	3.2	1.6	1.6
		LQN2A	-	3.2	2.5	1.6
		LQP21A		2.0	1.25	0.5
		LQP31A		3.2	1.6	0.5

CIRCUIT MODULE (Hybrid IC)

Product Name		Annoovanoo	Dimensions (mm)			
		Appearance	L	W	T	
		BLM11		1.6	0.8	0.8
		BLM21		2.0	1.25	0.9
		BLM32	6 6 B	3.2	1.6	1.1
		BLM31		3.2	1.6	1.6
		BLM41		4.5	1.6	1.6
		BLA81	Comment of the Commen	12.5	4.5	1.2
Chip		BLA62/41	00	6.3	3.2	1.0
EMI Suppression F	ilter	BLM550R	9	3.2	2.5	2.5
(EMIFIL®)		NFM40R	8	3.2	1.25	0.7
		NFM41R/41P		4.5	1.6	1.0
		NFA81R		12.5	4.5	1.2
		NFA62R/41R	00	6.3	3.2	1.0
		NFM61R/61RH	130	6.8	1.6	1.6
		NFM51R		3.2	1.6	1.8
		NFM52R	4	5.0	2.5	3.0
Chip Ceramic	AM	PFBF455JR		7.0	4.8	2.4
Filter (CERAFIL®) FM		SFECA10.7		6.9	2.9	1.5
Chip Ceramic Discriminator		CDAC10.7		3.9	2.9	1.5
		CSBF□J(429-500)		8.5	7.5	3.3
		CSBF□J(700-1250)	200	6.0	5.0	2.3
		CSAC□MGC		7.0	φ2	.8
Chip		CSAC□MGCM	80	7.0	2.8	2.8
Ceramic Resonato (CERALOCK®)		CSACS□MT/MX	(Fee)	4.7	4.1	1.6
(OLTALOGIC)		CSTC□MG		8.0	2.5	1.9
		CSTCS□MG		6.4	2.8	1.6
		CSTCS□MT/MX		4.7	4.1	1.6
Chip Monolithic Delay Line		LDH36	00	6.3	5.0	2.5
		LDH46		10.0	6.3	4.0
Chip PTC Thermistor		PTH9C22		2.0	1.25	1.0
Chip NTC Thermistor		NTH5G		2.0	1.25	0.9
Chip Active Filter		AFZ□□□YM		5.0	4.0	1.0

	Product Name		Annaaranaa	Dimensions (mm)		
			Appearance	L	W	Т
	Gigafil [®]	DFC2R886 P002-7A2 ** 3	-	12.0	10.0	4.5
		LFD40	trum)	8.0	5.0	2.5
		LFC35	^	5.7	5.0	2.2
	Chip Monolithic	LFE35	(ma)	5.7	5.0	2.5
	LC Filter/	LFH29	9	4.5	2.0	1.7
	Chip Monolithic Micro Filter	LFC30	m	4.5	3.2	1.5
	WIICIO I IIICI	LFJ30	9	4.5	3.2	2.0
		LFK30	\tag{\tag{1}}	4.5	3.2	2.0
		SAFC(SC45)		5.0	4.5	1.7
	Chin CAW Filter	SAFC(SC59)		9.1	4.8	1.8
±	Chip SAW Filter	SAFC(SC79)	Sept.	9.1	7.1	2.0
SMD For Communication Equipment		SAFC(SC713)	to the same	13.3	6.5	2.0
quib	Chip Ceramic Filter (CERAFIL®)	CFBF455		7.0	6.0	3.0
n E		SFPC455	^	7.0	8.4	5.0
catic		CFUCG455		6.0	7.5	4.0
inn	Tiller (OLNATIL)	SFGCG455		6.0	7.5	4.0
mu		CFEC10.7M		6.9	2.9	1.5
Š		CE072		7.0	7.0	3.0
2	Isolator	CE070	\Diamond	7.0	7.0	4.0
S		CE071/CE070A		7.0	7.0	3.0
	Ohio Manalikhia	LDC35		5.7	5.0	2.2
	Chip Monolithic Hybrid Coupler	LDC33	@ @ @	5.0	4.0	2.2
	riyona ooapici	LDC30		4.5	3.2	2.2
	Coaxial	MM4329-2700□□□	\$	4.5	4.0	2.15
	Connector	MM6329-2700□□□		3.4	3.4	1.58
		MQE000/720		12.4	10.4	4.0
	VCO	MQE500		10.1	7.4	2.5
		MQE300	-	15.3	9.7	4.0
	PLL Module	HFQ350	Samuel .	13.5	11.4	2.7
	Mixer Module	HFQ130		15.8	11.7	3.7
	RF Amplifier	HFQ601	THE	5.5	4.2	3.5

CUSTOM CIRCUIT MODULE DESIGN (Hybrid ICs)

Murata Electronics offers custom Thick Film Circuit Module design engineering and production capabilities. Our advanced computer aided design and manufacturing (CAD/CAM) systems allow us to respond to your various needs with quality and speed. If you have an application that could use our established Thick Film Technology, please contact us for engineering consultation.

ORDERING INFORMATION

Please provide the following information when inquiring about custom modules:

- · Functional description of circuit
- Application
- Schematic
- · Bill of materials
- Package type preferred (SIP or DIP or SMD)
- Package dimensions (L x W x H) (max.)
- · Your target cost for module
- · Your development schedule requirements
- · Your production schedule
- Expected annual usage (EAU)
- Your technical contact, phone #, and fax #

^{*}Note: One of our design engineers will contact you to discuss the design following our own preliminary evaluation. We will suggest the most cost effective methods to achieve your objectives together with the applicable technology. The design up to final production remains flexible and changes may be made to meet changing requirements.

OTES	

NOTES			
-			
Name of the state			
-			
3			

S		a salahari da s	

NOTES		

OTHER MURATA PRODUCTS

For Technical Information, call— Regional Sales Offices

Midwest: (810) 348-9975

Northwest: (310) 436-8700

Southwest: (310) 436-8700

Northeast: (617) 356-4155

Southeast: (404) 436-1300

For Catalog Information, call—1-800-831-9172

Marketing Communications 2200 Lake Park Drive Smyrna, Georgia 30080 Telex: 26-1301

Fax: 404-436-3030

