BINUS University

Academic Career: Undergraduate / Master /	Doctoral *)	Class Prog Internation Class*)	gram: pal/Regular/ Smart Program / Global	
☑ Mid Exam □ Short Term Exam	☐ Final Exam ☐ Others Exam :	Term : Odd/ Even / Short *)		
☑ Kemanggisan □ Senayan	☑ Alam Sutera☑ Bekasi☐ Bandung☐ Malang	Academic 2020 / 20		
Faculty / Dept. :	School of Computer Science	Deadline	Day / : Jumat / 6 Nov 2020 Date Time : 13:00 - 16:20 (200 menit)	
Code - Course :	COMP6153 - Operating Systems	Class	: All Class	
Lecturer :	Team	Exam Type	: Online	
*) Strikethrough the unnec	essary items			
	The penalty for CHEATING	is DROP OU	IT!!!	

I. Essay (100%)

1. Process and Interrupts (10%)

Misalkan terdapat suatu proses yang sedang dieksekusi, meminta untuk membaca data dari *disk*. Jelaskan apa yang terjadi tahap demi tahap. Kaitkan jawaban anda dengan register-register pada sistem komputer dan *process state* yang bersangkutan. (Catatan: minimal ada 4 tahap).

2. Multiprocessors and Embedded System (15%)

a. Anda membuat 2 program yang harus memproses data yang cukup besar, sekitar 1 juta *record*. Anda melakukan pengetesan program menggunakan data yang sedikit dan mengambil kesimpulan sbb:

Proses 1: membutuhkan 1 ms untuk baca, 5 ms untuk proses dan 1 ms untuk tulis.

Proses 2: membutuhkan 3 ms untuk baca, 2 ms untuk proses dan 2 ms untuk tulis.

Karena anda memiliki sedikit informasi mengenai multiprosesor, maka anda memikirkan untuk menggunakan 2 prosesor, agar dapat jalan secara parallel. Hitunglah penghematan waktu yang anda dapatkan jika menggunakan 2 prosesor. Bandingkan ke dua hasil tersebut. Apa kesimpulan anda tentang multi prosesor? (10%)

b. *Embedded system* biasanya membutuhkan satu atau beberapa sensor. Jelaskan mengapa sistem tersebut membutuhkan sensor. Berikan contoh aplikasinya untuk menguatkan penjelasan anda. (5%)

3. Threads (15%)

Walaupun dengan menggunakan 1 prosesor, penggunaan thread tetap lebih efisien dibandingkan penggunaan multi proses. Namun tentunya menggunakan 2 prosesor akan lebih efisien lagi. Jelaskan

Verified by,	_
Bayu Kanigoro (D3366) and sent to Program on Oct 20, 2020	

secara detail dan jelas, yang dimaksud dengan pernyataan itu beserta alasan dan pembuktiannya.

4. Concurrency (20%)

a. (5%)

Bandingkan **Semaphore** dan **Binary Semaphore**.

b. (15%)

Bagaimana <u>Semaphore</u> dan/atau <u>Binary Semaphore</u> dapat digunakan untuk sinkronisasi proses. Berikan contoh aplikasinya.

5. Process Scheduling (20%)

Anda sedang membangun sebuah Sistem Operasi dan berencana menggunakan algoritma <u>multilevel</u> <u>feedback</u> untuk penjadwalan proses. Anda akan menggunakan 3 antrian. Antrian pertama menggunakan Round Robin dengan quantum = 4 dan antrian ke 2 menggunakan round robin dengan quantum = 8 sedangkan antrian 3 menggunakan FCFC. Menggunakan data dibawah ini, hitunglah ratarata waktu proses dan rata-rata waktu tunggu. Apa yang dapat anda simpulkan dengan menggunakan penjadwalan *multilevel feedback*?

Process	Waktu	Waktu CPU
	Datang	
Α	0	25
В	2	6
С	5	35
D	6	8

6. Deadlock (20%)

a. (12%)

Pada suatu saat tertentu pada sebuah sistem komputer, kondisi penggunaan sumber daya untuk proses A, B, C dan D adalah sbb:

Proses	Sumber Daya			
	Р	Q	R	S
Α	1	0	1	1
В	1	2	0	1
С	1	2	0	2
D	2	2	2	2

Pada komputer tersebut, terdapat 5 unit sumber daya P, 6 unit sumber daya Q, 4 unit sumber daya R, dan 6 unit sumber daya S. Di awal, setiap proses mendeklarasikan kebutuhan sumber dayanya agar proses dapat diselesaikan sbb:

Proses	Sumber Daya			
	Р	Q	R	S
Α	2	1	3	1
В	2	3	1	1
С	1	2	0	3
D	4	3	3	2

Verified by,

Bayu Kanigoro (D3366) and sent to Program on Oct 20, 2020

Dengan menggunakan algoritma Banker, tentukan apakah terjadi deadlock, jika tidak tentukan urutan jalannya proses.

b. (8%)

Lima proses berjalan pada sebuah sistem dan melakukan permintaan ataupun sedang memakai sumber daya dengan urutan permintaan / pemakaian sbb:

Proses A sedang menggunakan sumber daya R dan dan meminta sumber daya S dan T

Proses B sedang menggunakan sumber daya S dan dan meminta sumber daya T

Proses C sedang menggunakan sumber daya T dan dan meminta sumber daya R

Proses D sedang menggunakan sumber daya U dan dan meminta sumber daya V dan T

Proses E sedang menggunakan sumber daya W dan dan meminta sumber daya V

Gambarkan <u>Resource Allocation graph</u> dan tentukan apakah terjadi <u>deadlock</u>. Jika ya, sebutkan proses dan sumber daya yang terlibat.

-- Selamat Mengerjakan --

Verified by,

Bayu Kanigoro (D3366) and sent to Program on Oct 20, 2020