第2章 数据的表示和运算

主要内容:

- (一) 数制与编码
 - 1. 进位计数制及其相互转换
 - 2. 真值和机器数
 - 3. BCD 码
 - 4. 字符与字符串
 - 5. 校验码
- (二) 定点数的表示和运算
 - 1. 定点数的表示: 无符号数的表示; 有符号数的表示。
 - 2. 定点数的运算 : 定点数的位移运算; 原码定点数的加/减运算; 补码定点数的加/减运算; 定点数的乘/除运算; 溢出概念和判别方法。
- (三) 浮点数的表示和运算
 - 1. 浮点数的表示 : 浮点数的表示范围; IEEE754 标准
 - 2. 浮点数的加/减运算
- (四) 算术逻辑单元 ALU
 - 1. 串行进位加法器和并行进位加法器
 - 2. 算术逻辑单元 ALU 的功能和机构

檢約 6 n 自強不息 ◎ 厚瓜茑学 知们合一

2.4 算术逻辑单元ALU

计算机组成原理 丁男

- ➤ ALU部件是运算器中的主要组成部分,又称为多功能函数发生器,主要用于完成各种算术运算和逻辑运算。
- ➤ ALU的算术运算部件包含加法器、减法器、乘法器、除法器、增量器(+1)、减量器(-1)、BCD码运算器等组件。
- ➤ ALU的主要工作是根据CPU的指令要求执行各种指定的运算, 如加法、减法、乘法、除法、比较、逻辑、移位等操作。

依依 6 n 自強不息 ◎ 厚瓜茑学 知们合一

2.4. 串行进位加法器和并行进位加法器

中华人民共和国成立70周年

一位半加器

➤ 实现两个一位二进制数相加的电路, 称为半加器。 半加器有两个输入端(被加数和加数), 两个输 出端(和与进位)

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

梅纳 6 n 自強不息 ●厚瓜茑学 取补合-

半加器逻辑表达式

> 半加器的逻辑表达式如下

和: S=A ⊕ B

进位: C=AB

▶ 用一个异或门和一个与门即可实现半加器。

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

像份 8 n 自然不息 ◎ 厚瓜莲学 知 1 合一

一位全加器

▶ 当多位二进制数据相加时,对每一位而言,除了有被加数和加数之外,还有从低位送来的进位,考虑到进位的加法器称为全加器。

依依 on 自強不息 ◎ 厚卧笔学 知》合一

全加器真值表

A	В	Ci	Si	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

梅的 \$ 11 自然不息 ◎ 厚化笔学 知 1 合一

全加器逻辑表达式

➤ 化简 S=A⊕B⊕C C=AB+BC_i+AC_i

			_	
Α	В	Ci	S	C _o
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
在仙	8 n 4	谁不且	A (I	金零 和

全加器电路的实现

$C_o = AB + BC_i + AC_i$

功能表

A	В	C _{n-1}	S	C_n	
0	0	0	0	0	
0	0	1	1	0	
1	0	0	1	0	
1	0	1	0	1	
0	1	0	1	0	
0	1	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
l			l		

(a) 功能表

(b) 逻辑图

(c) 逻辑图

西地中 日本小学 風ないある はん

n位串行进位加法器

- > 多位二进制数据的加法可用多个全加器来完成。
- ▶参加运算的两组数据并行加入,进位信号串行传递,称为n位串行进位加法器,或波形进位加法器。 器。

进位产生函数: $G_i = A_i B_i$

进位传递函数:

以 4 位全加器为例,每一位的进位表达式为

$$C_0 = G_0 + P_0 C_{-1} = \overline{G_0} \cdot \overline{P_0 C_{-1}}$$

 $C_1 = G_1 + P_1 C_0$

$$C_2 = G_2 + P_2 C_1$$

$$C_3 = G_3 + P_3 C_2$$

设与非门的级延迟时间为 P_v

4位 全加器产生进位的全部时间为 $8P_v$

n位全加器产生进位的全部时间为 $2nP_v$

依依 n 自然不息 ◎ 厚瓜茑学 知》合一

串行进位加法器的特点

- >串行进位加法器,逻辑电路比较简单;
- ▶但是最高位的加法运算,一定要等到所有低位的加法完成之后才能进行,低位的进位要逐步的传递到高位,逐级产生进位,因此运算速度比较慢。

每份的N 自強不息圖摩伽篤學 加利合一

并行进位加法器

- ▶加法器的最长运算时间主要是由进位信号的传递时间决定的,而每个全加器本身的求和延迟只是次要因素。很明显,提高并行加法器速度的关键是尽量加快进位产生和传递的速度。
- ➤ 并行加法器可以同时对数据的各位进行相加,一般用n个全加器来实现2个操作数的各位同时相加。 其操作数的各位是同时提供的.

像的 an 自強不息 ◎ 厚瓜茑学 知们合一

并行先行(超前)进位链

进位传递函数: $P_i = A_i + B_i$

进位产生函数: $G_i = A_i B_i$

n 位加法器的进位同时产生 以 4 位加法器为例

$$C_0 = G_0 + P_0 C_{-1}$$
 当 G_i 和 P_i 形成后,只需 $C_1 = G_1 + P_1 C_0 = G_1 + P_1 G_0 + P_1 P_0 C_{-1}$ 2.5P_y 产生全部进位 $C_2 = G_2 + P_2 C_1 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_{-1}$ $C_3 = G_3 + P_3 C_2 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_{-1}$

并行进位加法器

- 为了提高运算速度,减少延迟时间,可以采用并行进位法, 也叫超前进位或先行进位。
- 并行进位加法器的运算速度很快,形成最高进位输出的延迟时间很短,但是以增加硬件逻辑线路为代价。
- 对于长字长的加法器,往往将加法器分成若干组,在组内采用并行进位,组间则采用串行进位或并行进位,由此形成多种进位结构。
 - 单级先行进位:单级先行进位方式将n位字长分为若干组,每组内采用并行进位方式,组与组之间则采用串行进位方式。
 - 多级先行进位: 多级先行进位在组内和组间都采用先行进位方式。

每份 \$ n 自然不息 ◎ 厚瓜茑学 知》合一

计算机组成原理 丁男

(1)单级分组先行进位链

n 位全加器分若干小组,组内的进位同时产生,组与组之间采用串行进位 以 n = 16 为例

 $10t_{v}$

产生 C₁₅~ C₁₂

先行进位加法器

16位单级先行进位加法器

依依 on 自然不息@厚瓜笃学 知》合一

(2)二级分组进位链

n 位全加器分若干大组,大组中又包含若干 小组。每个大组中小组的最高位进位同时产生。 大组与大组之间采用串行进位。

以 n=32 为例

4.2.2 多功能算术逻辑部件的编码

中华人民共和国成立70周年

- > ALU -- 进行多种算术运算和逻辑运算
- > 基本逻辑结构是超前进位加法器
- > SN74181基本原理(4位)

M: 状态控制端

 $S_0 \sim S_3$ 运算选择控制端

 $A_3 \sim A_0$: 参加运算的两个数

 $B_3 \sim B_0$:

 C_n : 低位进位输入

C_{n+4}: 芯片组进位信号

 $F_3 \sim F_0$: 运算结果

P: 芯片组的条件进位信号

G: 芯片组的绝对进位信号

像份的 自然不息圖摩伽盖学 如外合一

- ▶ 它能执行16种算术运算和16种逻辑运算;
- ➤ M是状态控制端,M=H,执行逻辑运算; M=L执行算术 运算。
- ➤ So ~S3是运算选择端,它决定电路执行哪种算术运算或逻辑运算。

每份的1 自強不息 靈厚低笔學 加利合一

				正逻辑			
So S1 S2 S3		S ₃	M=H	M=L算术运算			
				逻辑运算	Cn=1	Cn=0	
L	L	L	L	$\overline{\mathbf{A}}$	A	A+1	
L	L	L	H	$\overline{\mathbf{A}}+\overline{\mathbf{B}}$	- $A+B$	(A+B)加1	
L	L	H	L	•B	A+B	(A+B)加1	
L	L	H	H	"0"	减1	"0"	
L	H	L	L	•B	Ā加(A•B)	A加(A•B)加1	
L	H	${f L}$	H	$\overline{\mathbf{B}}$	(A•B)加(A+B)	(A•B)加(A+B)加1	
L	H	H	L	A⊕B	A减B减1	A减B	
L	H	H	H	A•B	— (A•B)减1		
H	L	L	L	$\overline{\mathbf{A}}$ + \mathbf{B}	АДД(А•В)	A加(A•B)加1	
H	L	${f L}$	H	$\overline{\mathbf{A} \oplus \mathbf{B}}$	АДВ	ADDBD 1	
H	L	H	L	В	(A•B)加(A+B)	(A•B)加(A + B)加1	
H	L	H	H	A•B	(A•B)减1	(A•B)	
H	H	L	L	"1"	ADĪA	АЛПАЛП1	
H	H	L	H	\mathbf{A} + $\mathbf{\overline{B}}$	A加(A+B)	A加(A+B)加1	
H	H	H	L	A+B	A切(A+B)	A 力 (A+B) 力 [1	
H	H	H	H	\mathbf{A}	A减1	\mathbf{A}	
hП·	在4-	₽ ₩	•	+・逻辑加	1 .	A 4 N A 45 A B 面 和 (4 等 等 6)	

加: 算术加; +: 逻辑加

梅纳 5 n 自強不息 ◎ 厚瓜莲学 知们合一

(a) 逻辑图

用4片ALU构成的16位ALU

74181电路: 4位超前进位ALU芯片 74182电路: 超前进位扩展器芯片

计算机组成原理 丁男

同理:

用两个16位全先行进位部件74182和8个74181可级连组成32位ALU电路。

用4个16位全先行进位部件(74182)和16个74181可级连组成64 位ALU电路。

例如AMD公司的AM29332为32位ALU, Intel公司的Pentium处理器中,32位ALU仅是芯片内的一部分电路。

◆a) 用8片74181构成的32位行波进位的ALU

称为单级先行进位的ALU——只有74181片内四位为先行进位,用前一级芯片的进位输出作为下一级芯片的进位输入端,片内先行进位,片间串行进位,运算速度慢。

梅纳的N 自強不息●厚任羔学 拟们合一

b)用8片74181和2片74182构成的32位两级并行ALU。是小组内部并行、大组内并行、大组间串行进位的32位加法器,运算速度较快。

檢約 6 n 自強不息 ◎ 厚瓜茑学 知们合一

*C) 用8片74181和3片74182构成的32位并行ALU

