Announcements

- The website for the class is at Desire2Learn:
 - courses.uscden.net
- Handout: course syllabus (also posted on D2L)
- First discussion session will be tomorrow (Wed.), 12:00 12:55 PM, OHE 122
- My office hours this week will be:
 - Wed. 3:30 5:00 PM (and every week)
 - Fri. 2:30 4:00 PM (usual time will be 11:00 AM 12:30 PM Fridays)

Reading

- Murphy Ch. 1 (lightly)

Today's Lecture

- Introduction to the course and to machine learning
- Administrative information
- Examples (classification and regression)

AMD OUTPUTS (e.g., CATEGORIES, OR VALUES).

TYPICALLY, THIS RELATIONSHIP IS UNKNOWN

IN ADVANCE.

—> MACHINE CEARNS FROM DATA

—> CAN GENERALIZE TO NEW DATA.

HOW DO WE KNOW WHETHER THE MACHINE

HAS ACTUALLY LEARNED?

—> TEST IT ON PREVIOUSLY UNSEEN DATA.

—> TRY | NEW POINT (NEW INPUT) —

MACHINE COULD GET RIGHT OUTPUT BYCHANCE.

COULD USE MORE DATA POINTS IN A TEST SET.
-) WE WILL USE PROBABILITY TO HELP US
EV ALUATE.
"SIGNALS"-
- OFTEN FROM A PHYSICAL QUANTITY, USING A
SENSOR OR TRANSDUCER.
- OFTEN PROCESS THE DATA BEFORE INPUT TO THE
MC SYSTEM.

"FOUNDATIONS"-
PRINCIPLES UNDERLYING ML TECHNIQUES
"METHODS"-
TECHNIQUES (COMMON ASPECTS), ALGORITHMS
FORM.L
[SYLLABUS- ADMIMSTRATIVE PARTS]

EX. CLASSIFICATION	PROBLEM -
VARIETY	
VARIETY 1R15 RECOGNIT	MON.

FEATURES :

1/P of CLASSIFIER

$$\hat{y} = \hat{y}(x) = 10f$$
 { setosa, versicolor,
Virginica}

SEE- EX. TRAINING DATA.

Murphy Fig. 1.3. Iris flower types

(b) versicolor

(a) setosa

Murphy Fig. 1.4. 2D feature-space plots of Iris data. Diagonal plots are histograms.

EX. OF REG	RESSION -
APARTMENT	RENT NEAR BEACH
INPUTS:	LIVING AREA (59- Ft.)
	NUMBER OF ROOMS
$\overline{\lambda} =$	DISTANCE FROM BEACH
	FURNISHED OR NOT
OUTPUT: y	$=f(x_i)=PREDICTED RENT($)$

	FOR GIVEN INPUT Xi.
	