Series Tests

1. Limit Test

Theorem 1. Let (a_n) be an infinite series, if $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

It is important to know that the reverse is not true.

Theorem 2. Let (a_n) be an infinite series, if $\lim_{n\to\infty} a_n \neq 0$ or doesn't exist, then $\sum_{n=1}^{\infty} a_n$ diverges.

Exercises:

Justify if the following series converge or diverge.

1.
$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$$

1.
$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$$
 2.
$$\sum_{n=1}^{\infty} (\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}})$$

3.
$$\sum_{n=2}^{\infty} \frac{1}{n^3 - n}$$

2. Integral Test

Theorem 3. Let (a_n) be an infinite series, and f(x) is a continuous function defined on $(0, \infty)$. If for all positive integer n, we have $a_n = f(n)$, then by integral test, we say $\sum_{n=1}^{\infty} a_n$ converges if the followings hold:

- 1. $f(x) \ge 0$ for all $n \ge 1$.
- 2. f(x) is decreasing on (a, ∞) for some $a \ge 1$, and $\lim_{n\to\infty} f(x) = 0$.
- 3. $\int_{1}^{\infty} f(x)dx$ converges.

Exercises: Justify if the following series converge or diverge. 1. $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ 2.

$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$

3.
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

4. Find the values of p, such that the series $\sum_{n=1}^{\infty} n(1+n^2)^p$ is convergent.

3. Comparison Test

Theorem 4. Let $(a_n), (b_n)$ be **positive**, infinite series with the property that $a_n \leq b_n$, then

If
$$\sum_{n=1}^{\infty} b_n$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.

If
$$\sum_{n=1}^{\infty} a_n$$
 is divergent, then $\sum_{n=1}^{\infty} b_n$ is divergent.

Exercises: Justify if the following series converge or diverge.

1.
$$\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$$

$$2. \sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$

Theorem 5. Let $(a_n), (b_n)$ be **positive**, infinite series, if $\lim_{n\to\infty} \frac{a_n}{b_n}$ exists, then both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converges or diverges.

Exercises: Justify if the following series converge or diverge.

1.
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 3}$$

$$2. \sum_{n=1}^{\infty} \sin(\frac{1}{n^2})$$

4. Alternating Series Test

Theorem 6. Let (b_n) be an infinite series where $b_n \ge 0$ for all n, if $b_{n+1} \le b_n$ and $\lim_{n\to\infty} b_n = 0$, then $\sum_{i=1}^{\infty} (-1)^n b_n$ and $\sum_{i=1}^{\infty} (-1)^{n+1} b_n$ converge.

Exercises: Justify if the following series converge or diverge.

1.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

1.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$
 2. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3 + 1}$

Definition:

Let (a_n) be an infinite series, the sum $\sum_{n=1}^{\infty} a_n$ is called **absolutely convergent** if $\sum_{n=1}^{\infty} |a_n|$ converges. Series that converge but not absolutely converge are called **conditionally convergent**.

Exercise : Test the sum $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$.

5. Ratio Test and Root Test

Theorem 7. Let (a_n) be an infinite series, define $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$, then:

- (1) If L < 1, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (2) If L > 1, then $\sum_{n=1}^{\infty} a_n$ is divergent.
- (3) If L = 1, then the ratio test is **inconclusive**

Exercises: Justify if the following series converge or diverge.

1.
$$\sum_{n=1}^{\infty} \frac{(-10)^n}{4^{2n+1}(n+1)}$$

$$2. \sum_{n=1}^{\infty} \frac{n^n}{n!}$$

Theorem 8. Let (a_n) be an infinite series, define $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$, then:

- (1) If L < 1, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (2) If L > 1, then $\sum_{n=0}^{\infty} a_n$ is divergent.
- (3) If L = 1, then the root test is inconclusive

Exercises: Justify if the following series converge or diverge.

1.
$$\sum_{n=1}^{\infty} \frac{n^{n+1}}{3^{2n+1}}$$

More series tests like Dirichlet's test, Abel's test, Weierstrass M-test, are beyond the slope of this course and hence will not be introduced. You can look it up if you are interested.

6. Strategy for Testing Series

- (1) If (a_n) is of the form $\frac{1}{n^p}$, then, we should know that $\sum a_n$ converges for p>1 and diverges for $p \leq 1$, also if (a_n) is a geometric series, then we can use the formula to find its sum.
- (2) If (a_n) has a form which is similar to p-series or geometric series, then we can try to use comparison test.
- (3) If $\lim_{n\to\infty} a_n \neq 0$, then (a_n) is divergent.
- (4) If $(a_n) = (-1)^n b_n$, then we shall apply alternating series test.
- (5) If inside (a_n) there are terms like n!, or some products related to n, then we shall consider ratio test.
- (6) If $a_n = (b_n)^n$. then we shall consider root test.
- (7) If $a_n = f(n)$ for some positive elementary function f(x), if it is easy to integrate f(x), we shall consider integral test.

Exercises: Justify if the following series converge or diverge.

1.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 1}}{3n^3 + 4n^2 + 2}$$

2.
$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{(2n)!}$$
 3.
$$\sum_{n=1}^{\infty} \frac{n \ln(n)}{(1+n)^3}$$

$$3. \sum_{n=1}^{\infty} \frac{n \ln(n)}{(1+n)^2}$$

4.
$$\sum_{n=1}^{\infty} \frac{\sin(2n)}{1+2^n}$$

5.
$$\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$$

$$6. \sum_{n=1}^{\infty} \frac{1}{n + n \cos^n(n)}$$

$$7. \sum_{n=1}^{\infty} \frac{1}{\tan(n)}$$

$$8. \sum_{n=1}^{\infty} \frac{5^n}{3^n + 4^n}$$

9.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n^2+1}}$$

7. Power Series, Radius of Convergence and Interval of Convergence

Theorem 9. For any given power series $a_n = \sum_{n=0}^{\infty} c_n (x-a)^n$, there are only three possibilities:

- (1) The series converges only when x = a;
- (2) The series converges for all x;
- (3) There exists a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R. In this case, R is called the **radius of convergence**. The interval of convergence is one of (a-R,a+R); (a-R,a+R); [a-R,a+R); [a-R,a+R], depending on the convergence of boundary points.

Exercises:

- 1. For what values of x is the series $\sum_{n=0}^{\infty} n! x^n$ convergent?
- 2. For what values of x is the series $J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$ convergent?
- 3. Find the radius of convergence and the interval of convergence of the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{n}}$