1

1

2

1

2

1

2

Claims:

1 1. A	🕽 dual pa	cket configura	tion for wirele	ess communication,	comprising
--------	-----------	----------------	-----------------	--------------------	------------

- a first portion that is modulated according to a serial modulation; and
- a second portion that is modulated according to a parallel modulation.
 - 2. The dual packet configuration of claim 1, further comprising:
 the serial modulation comprising direct sequence spread spectrum (DSSS); and
 the parallel modulation comprising orthogonal frequency division multiplexing
 (OFDM).
 - 3. The dual packet configuration of claim 2, wherein the first portion includes a preamble and a header.
 - 4. The dual packet configuration of claim 3, wherein the preamble comprises a long preamble.
 - 5. The dual packet configuration of claim 3, wherein the preamble comprises a short preamble.
- The dual packet configuration of claim 3, the header including an OFDM mode bit.
- 7. The dual packet configuration of claim 6, the header further including a length field indicating the duration the second portion.
- 1 8. The dual packet configuration of claim, 2, the second portion further
 2 comprising:

- an OFDM synchronization pattern; 3 an ORDM signal symbol; and 4 an OFDM payload. 5 9. The dual packet configuration of claim 8, further comprising: 1 the OFDM signal symbol including a data rate section and a data count section. 2 10. The dual packet configuration of claim 2, further comprising: 1 the first portion based on a first clock fundamental; and 2 the second portion based on a second clock fundamental. 3 The dual packet configuration of claim 10, wherein the first clock 11. 1 fundamental is approximately 22 Megahertz (MHz) and the second clock fundamental is 2 approximately 20 MHz. 3 The dual packet configuration of claim 2, wherein the first and second 12. 1 portions are based on a single clock fundamental 2 The dual packet configuration of claim 12, further comprising: 13. 1 the second portion including OFDM symbols wherein each OFDM symbol 2 3 includes a guard interval with a standard number of samples for OFDM.
 - the second portion including OFDM symbols wherein each OFDM symbol

The dual packet configuration of claim 12, further comprising:

3 includes a guard interval with an increased number of samples.

14.

1	15. The dual packet configuration of claim 12, further comprising:
2	the second portion including OFDM symbols wherein each OFDM symbol
3	includes a reduced number of frequency subcarriers.
1	16. The dual packet configuration of claim 15, wherein each OFDM symbol
2	includes 48 frequency subcarriers.
1	17. The dual packet configuration of claim 15, wherein each of the frequency
2	subcarriers is a data subcarrier.
1	18. The dual packet configuration of claim 15, wherein the frequency
2	subcarriers include at least one pilot tone.
1	19. The dual packet configuration of claim 15, further comprising:
2	each of the frequency subcarriers initially comprising a data subcarrier;
3	wherein a subset of the data subcarriers is discarded and replaced with a
4	corresponding number of pilot tones for transmission, and
5	wherein upon reception the discarded data subcarriers are recreated using received
6	data.

7	
1	20. A wireless communication device that is configured to communicate using
2	a dual packet configuration, comprising:
3	a transmitter configured to transmit packets with a dual configuration;
4	a receiver configured to receive packets with a dual configuration; and
5	the dual packet configuration including first and second portions, the first portion
6	modulated according to a serial modulation method and the second portion modulated
7	according to a parallel modulation method.
1	21. The wireless communication device of claim 20, wherein the serial
2	modulation is direct sequence spread spectrum (DSSS) and the parallel modulation
3	method is orthogonal frequency division multiplexing (OFDM).
1	22. The wireless communication device of claim 21, the first portion including
2	a header with an OFDM mode bit.
1	23. The wireless communication device of claim 22, the header further
2	including a length field indicating the duration of the second portion.
1	24. The wireless communication device of claim 21, further comprising:
2	a first clock source based on a first clock fundamental, the first portion based on
3	the first clock fundamental; and
4	a second clock source based on a second clock fundamental, the second portion

based on the second clock fundamental.

1

2

- The wireless communication device of claim 24, wherein the first clock fundamental is approximately 22 Megahertz (MHz) and the second clock fundamental is approximately 20 MHz.
- 1 26. The wireless communication device of claim 21, further comprising:
- a clock source based on a clock fundamental, the first and second portions based
 on the clock fundamental.
- The wireless communication device of claim 26, wherein the second portion includes OFDM symbols, each OFDM symbol including a guard interval with a standard number of samples for OFDM.
 - 28. The wireless communication device of claim 26, wherein the second portion includes OFDM symbols, each OFDM symbol including a guard interval with an increased number of samples.
- The wireless communication device of claim 26, wherein the second portion includes OFDM symbols, each OFDM symbol including a reduced number of frequency subcarriers.
- 1 30. The wireless communication device of claim 29, wherein each of the 2 frequency subcarriers is a data subcarrier.
- 1 31. The wireless communication device of claim 29, wherein the frequency subcarriers include at least one pilot tone.

1	32. The wireless communication device of claim 29, further comprising:
2	the transmitter discarding at least one of the data subcarriers and replacing the
3	discarded data subcarriers with a corresponding number of pilot tones; and
4	the receiver regenerating the discarded data subcarriers based on received data
5	subcarriers.
1	33. The wireless communication device of claim 20, further comprising:
2	the transmitter and receiver each capable of communicating in a super short mode
3	in which only the second portion modulated according to the parallel modulation is
	\
4	utilized.
1	utilized. 34. The wireless communication device of claim 20, further comprising:
1	34. The wireless communication device of claim 20, further comprising:
1 2	34. The wireless communication device of claim 20, further comprising: the transmitter and receiver each capable of communicating in a standard mode in

frequency band.

1	36. A method of wireless communication using a dual packet configuration,
2	comprising:
3	modulating a first portion of each packet according to a serial modulation; and
4	modulating a second portion of each packet according to a parallel modulation.
1	37. The method of claim 36, further comprising:
2	the modulating a first portion of each packet comprising modulating according to
3	direct sequence spread spectrum (DSSS); and
4	the modulating a second portion of each packet comprising modulating according
5	to orthogonal frequency division multiplexing (OFDM).
1	38. The method of claim \$7, further comprising:
2	including a header with an OFIOM mode bit in the first portion; and
3	including a length field in the header indicating a duration of the second portion.
1	39. The method of claim 37, further comprising:
2	the modulating a first portion of each packet comprising modulating based on a
3	first clock fundamental; and
4	the modulating a second portion of each packet comprising modulating based on a
5	second clock fundamental.
1	40. The method of claim 37, wherein the modulating first and second portions
2	of each packet comprises modulating based on a single clock fundamental.

- 1 41. The method of claim 40, wherein the modulating the second portion of 2 each packet comprises including a guard interval with a standard number of samples for 3 each OFDM symbol.
- 1 42. The method of claim 40, wherein the modulating the second portion of 2 each packet comprises including a guard interval with an increased number of samples 3 for each OFDM symbol.
- 1 43. The method of claim 40, wherein the modulating the second portion of 2 each packet comprises including a reduced number of frequency subcarriers for each 3 OFDM symbol.
- 1 44. The method of claim 43, further comprising:
- discarding a subset of the data subcarriers;
- replacing the discarded data subcarriers with a corresponding number of pilot
- 4 tones for transmission; and
- regenerating the discarded data subcarriers based on received data.
- 1 45. The method of claim 36, further comprising:
- switching to a super short mode of operation in which only the second portion
- modulated according to the parallel modulation is utilized for communications.
- 1 46. The method of claim 36, further comprising:
- switching to a standard mode of operation in which the second portion is
- 3 modulated according to the serial modulation.