P16. A: XEP B: Pf: XEP, since P X4P, X can ex	$X \in \mathcal{O}_1$. $C \subseteq \mathcal{O}_1$, then $X \in \mathcal{O}_1$. $C \in \mathcal{O}_1$ ither he in \mathcal{O}_1 or not in \mathcal{O}_2 .
$ \begin{array}{c cccc} A & B \\ \hline T & T \\ \hline F & \begin{cases} T \\ F \end{cases} \end{array} $	hich is an implication relation.
P. 20	X \in X, where X is an arbitrary set. True \in X. (C = M\p = \{ x: M(x), (-\partial (x))\} = M.
P. v3. A B C (A v B), C (T T T T T	

P. 24
(AUB) AC = (AAC) U(BAC)
We first prove (AUB) OC & (AOC) U (BOC).
XE (AUB) MC, XE (AUB) and XE C. Then consider these two cases:
10 (10 cm) (10 cm) (10 cm)
i) $X \in A$ and $X \in C \Rightarrow X \in (A \cap C) \Rightarrow X \in (A \cap C) \cup (B \cap C)$ (AUB) $\cap C \subseteq (A \cap C) \cup (B \cap C)$
(x = A and x = B and x = C is not covered think about why!)
(x∈A and x∈B and x∈C is not covered, think about why!) Then me prome (AUB) ∩ C = (A∩C) U (B∩C).
XETANC) U(BAC), we consider these two cases:
(AUB) OC = (AUC) V (BUC) and XEC → XE(AUB) OC = (AUC) V (BUC) (AUB) OC = (AUC) V (BUC) (AUB) OC = (AUC) V (BUC) (AUB) OC = (AUB) OC = (AUB) OC = (AUB) OC = (AUC) V (BUC)
Jime if X & Y and X & Y, then X = Y, we deduce that
(AUB) / C = (A/C) U(B/C)
& On Houst's stide, page 44. all the rules can be narified by similar process.
P. >5
1. F Take x=0, y=-1, then 0+(-1)=-1<0.
ν·
3. F of a:0, a=0.
T. X Since the word "hig" is ambiguous, so we could decide whether it is true or false.
T A B B B B (A. B) = (-AB)
5. F $ \begin{array}{c cccc} A & B & A & B & \neg (-A & \neg B) \\ \hline T & T & T & T \\ \hline T & F & T & T \end{array} $ $ \begin{array}{c cccc} F & T & T & T \\ \hline F & F & F \end{array} $ $\Rightarrow A B \Leftrightarrow \neg (\neg A & \neg B)$.

0	∀ ∃ ∀ α>ο Νεβ\ n71	∪ an-c <	a, Then	me say li	an) connerg	[≽] . XA.	