PROYECTO MOTAM

GUÍA DE INSTALACIÓN Y DESPLIEGUE DE LA PLATAFORMA

En esta guía se describen los pasos a seguir para instalar y desplegar los distintos componentes -software y hardware- que conforman la plataforma MOTAM.

Instalación de la pasarela – Raspberry Pi

La pasarela, consistente en la plataforma hardware *Raspberry Pi*, es la base sobre la que se despliegan tanto los sensores MOTAM como la pasarela de comunicación entre puerto serie y BLE.

ILUSTRACIÓN 1: PLATAFORMA HARDWARE RASPBERRY PI (PASARELA) CON ACTUADORES CONECTADOS POR PUERTO SERIE

A continuación, se presentan los pasos necesarios para llevar a cabo la configuración y el despliegue de la pasarela y del resto de componentes MOTAM a ejectuar sobre la misma.

ILUSTRACIÓN 2: ELEMENTOS DE LA PASARELA: PLATAFORMA HARDWARE RASPBERRY PI

CONEXIÓN DE LOS COMPONENTES HARDWARE

La conexión del receptor GPS y del lector OBD-II, dispositivos USB en los que se basan los sensores de posición y velocidad de la plataforma MOTAM, es tan simple como conectarlos a los puertos USB libres de la Raspberry Pi. El orden en el que se conecten es indiferente, y pueden ser conectados tanto con la Raspberry Pi apagada como encendida.

La transmisión mediante BLE desde la pasarela se realiza mediante un chip integrado en el actual modelo de la Raspberry Pi (Model 3B), por lo que no tenemos que preocuparnos en conectarlo ni configurarlo.

INSTALACIÓN DEL SISTEMA OPERATIVO (RASPBIAN)

Se deberán seguir los siguientes pasos:

- 1. Descargar la última versión del sistema operativo *Raspbian* desde la web (https://www.raspberrypi.org/downloads/raspbian). Elegir la opción "*Raspbian with Desktop*" para poder tener un escritorio en nuestro entorno. La versión usada en nuestro caso ha sido la "*Raspbian Stretch with Desktop*".
- 2. Descargar el programa "Win32DiskImager": https://sourceforge.net/projects/win32diskimager/
- 3. Extraer el fichero .zip una vez descargado el archivo.
- 4. Formatear la tarjeta SD. Se recomienda el uso de la herramienta SD Formatter 5.0 (https://www.sdcard.org/downloads/formatter-4/)
- 5. Volcar la imagen de Raspbian en la tarjeta SD. Para ello introducimos la tarjeta SD en el PC, abrimos Win32DiskImager, seleccionamos el fichero .img descomprimido, seleccionamos la tarjeta SD en "Device" y pulsamos en "Write".
- 6. Conectamos teclado, ratón y monitor. Enchufamos la Raspberry Pi y la instalación se realizará automáticamente, mostrándonos por pantalla el escritorio Raspbian. Ahora podemos conectarnos a la red mediante un cable de red o mediante Wifi haciendo click en el icono correspondiente.

NOTA: Las credenciales para entrar son "pi:raspberry".

Instalación de Node.JS

Para la instalación de Node.JS, entorno sobre el cual se apoya el software de la pasarela, se deben seguir los siguientes pasos en la terminal:

- 1. El primer paso es actualizar los repositorios y el software de nuestra versión de Raspbian. Para ello ejecutamos:
 - \$ sudo apt-get update && sudo apt-get upgrade
- 2. Añadimos el repositorio Debian de "nodesource.com" en el sistema. Para ello hay que descargar el script y ejecutarlo en el sistema:
 - \$ curl -sL https://deb.nodesource.com/setup 6.x | sudo -E bash -
- 3. Instalamos Node.JS versión 6 en el sistema:
 - \$ sudo apt-get install nodejs

INSTALACIÓN DE LAS DEPENDENCIAS (PAQUETES SOFTWARE)

Para instalar y configurar correctamente cada una de las dependencias necesarias para la ejecución de todos los componentes de la plataforma MOTAM, deberemos seguir los siguientes pasos:

1. En primer lugar deberemos instalar los paquetes software que gestionan el receptor GPS.

```
$ sudo apt-get install gpsd gpsd-clients
```

2. El paquete instala un servicio que escucha continuamente un socket local y ejecuta gpsd cuando algún cliente se conecta al socket. Dicho servicio interfiere con otras ejecuciones de gpsd (como las del software MOTAM), por lo que se hace necesario desactivarlo.

```
$ sudo systemctl stop gpsd.socket
$ sudo systemctl disable gpsd.socket
```

NOTA: En las nuevas versiones de Raspbian, ya vienen instalados los paquetes software relativos a Bluetooth, por lo que no es necesario instalarlos.

NOTA2: (solo para probar el funcionamiento). Si queremos ejecutar un cliente GPS, deberemos introducir los siguientes comandos, donde /dev/ttyUSBO es el puerto del receptor GPS.

```
$ sudo gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock
$ cgps -s
```

COPIA DE LOS FICHEROS/COMPONENTES DE LA PLATAFORMA MOTAM

Todos los ficheros/componentes de la plataforma MOTAM a ejecutar sobre la plataforma Raspberry Pi se encuentran en el siguiente repositorio Git:

https://github.com/nicslabdev/MOTAM

Por lo tanto, tan sólo hace falta copiar el contenido de este repositorio al directorio que vamos a crear, y en el cual estarán todos los ficheros relacionados con el proyecto MOTAM "/home/pi/MOTAM"

```
$ git clone https://github.com/nicslabdev/MOTAM /home/pi/MOTAM
```

PERMISOS NECESARIOS PARA LA EJECUCIÓN

Algunos scripts en los que se apoya el código principal necesitan permisos de ejecución para poder ser ejecutados. Para ello ejecutamos:

```
$ sudo chmod +x /home/pi/MOTAM/usbDiscovery
$ sudo chmod +x /home/pi/MOTAM/Start.sh
```

Instalación de los módulos Node.JS

Los módulos necesarios para el funcionamiento de nuestro código de Node. JS se encuentran especificados en el fichero "package. json". Por tanto, para instalarlos, solo es necesario ejecutar:

```
$ npm install
```

Creación de acceso directo en escritorio

Se procede a colocar un acceso directo en el escritorio con el objetivo de que no sea necesario el uso de ratón y teclado para ejecutar el programa principal. Una vez colocado, bastará con pulsar dos veces desde la pantalla táctil de la Raspberry Pi para ejecutarlo.

\$ mv /home/pi/MOTAM/MOTAM /home/pi/Desktop

INSTALACIÓN DE LA PLATAFORMA HARDWARE ARDUINO/GENUINO 101

La plataforma hardware Genuino 101 es la base sobre la que se despliegan los actuadores visual, luminoso y sonoro de la plataforma MOTAM. La conexión entre esta plataforma y la pasarela se realiza mediante puerto serie a través de un cable USB, aunque se ha proyectado que en futuras versiones esta conexión sea realizada mediante tecnologías inalámbricas.

Los componentes empleados en esta plataforma son los siguientes:

ILUSTRACIÓN 3: COMPONENTES DE LA PLATAFORMA HARDWARE ARDUINO/GENUINO 101

A continuación, se presentan los pasos necesarios para llevar a cabo la instalación, configuración y despliegue de los componentes MOTAM a ejecutar en esta plataforma hardware.

ILUSTRACIÓN 4: PLATAFORMA HARDWARE ARDUINO/GENUINO 101

CONEXIÓN DE LOS COMPONENTES HARDWARE

La conexión de los distintos actuadores de la plataforma MOTAM acoplados a la placa de desarrollo Arduino/Genuino 101 se ha llevado a cabo a través de la plataforma Grove (de Seeed-Studio), que ofrece un sistema de conexión modular (y listo para usar) con una gran variedad de componentes electrónicos.

La citada interfaz Grove va insertada en los pines de la placa de desarrollo Arduino/Genuino 101.

El esquema de conexión usado para conectar los distintos actuadores a la plataforma hardware Arduino/Genuino 101

ILUSTRACIÓN 5: ESQUEMA DE CONEXIÓN ENTRE LOS COMPONENTES GROVE Y LA PLATAFORMA ARDUINO/GENUINO 101

Instalación del entorno de desarrollo Arduino

Para la programación en Arduino de nuestra plataforma, será necesario instalar el Arduino IDE

- 1. Descargar e instalar el IDE oficial de Arduino desde la web de Arduino. En este caso hemos empleado la versión 1.8.4. https://www.arduino.cc/en/main/software
- 2. Descargamos los sketch y las librerías necesarias desde GENUINO101
- 3. Instalamos las librerías descargadas en nuestro entorno de desarrollo Arduino. Para ello, copiamos el contenido de la carpeta "libreries" en la carpeta de las librerías instaladas de nuestro Arduino IDE, normalmente situada en "C:\Users\usuario\Documents\Arduino\libraries"
- 4. Instalamos los drivers para Arduino/Genuino 101. Para ello, arrancamos el Arduino IDE y nos vamos a "Herramientas Placa Gestor de tarjetas...". En el buscador ponemos "Intel Curie Boards" y seleccionamos e instalamos el paquete que incluye las tarjetas Arduino/Genuino 101.

PROGRAMACIÓN DEL MICROCONTROLADOR

- 1. Conectamos por USB el Arduino/Genuino 101 al PC.
- 2. Abrimos el IDE de Arduino haciendo doble click en el sketch que queremos instalar. En nuestro caso "Display_Light_Sound_Actuators_Genuino101.ino"

- 3. Configuramos el IDE. Es posible que esto tengamos que hacerlo cada vez que conectemos la placa por USB al PC:
 - a. Nos vamos a Herramientas/Placa y seleccionamos "Arduino/Genuino 101".
 - b. Nos vamos a Herramientas/Puerto y seleccionamos aquel en el que se haya detectado "Arduino/Genuino 101".
- 4. Pulsamos sobre el botón "Subir" para iniciar la compilación y subida del software al microcontrolador de la placa de desarrollo.

PONER EN FUNCIONAMIENTO LOS ACTUADORES

Para poner en funcionamiento esta plataforma hardware, basta con conectarla mediante un cable USB a un puerto USB libre de la pasarela. Cuando se ejecute el programa principal de la pasarela, se establecerá automáticamente una conexión mediante puerto serie.

INSTALACIÓN