Topologie des evns

- I. Un peu de topologie dans $\mathscr{C}^0([0,1],\mathbb{R})$
- 1) a) Soit $f \in F$. Alors la boule ouverte de centre f, de rayon $\frac{1}{2} \int_0^1 f$ (qui est bien strictement positif) est incluse dans f. En effet, si $g \in B\left(f, \frac{1}{2} \int_0^1 f\right)$ alors $\|g f\|_{\infty} < \frac{1}{2} \int_0^1 f$ donc $f \frac{1}{2} \int_0^1 f \leqslant g \leqslant f + \frac{1}{2} \int_0^1 f$.

 Donc par croissance de l'intégrale, $\int_0^1 g \geqslant \int_0^1 f \frac{1}{2} \int_0^1 f = \frac{1}{2} \int_0^1 f > 0$ donc $g \in F$.
 - **b)** La fonction $\varphi: E \to \mathbb{R}, \ f \mapsto \int_0^1 f \text{ v\'erifie }: \text{ pour tout } f,g \in E, \ |\varphi(f)-\varphi(g)| \leqslant \int_0^1 \|f-g\|_\infty = \|f-g\|_\infty.$ Elle est donc 1-lipschitzienne, et ainsi elle est continue. Or $F=\varphi^{-1}(\mathbb{R}_+^*)$ et \mathbb{R}_+^* est un ouvert, donc F aussi.
- 2) a) Soit $f \in A$. Alors |f(0) g(0)| = 1 donc $||f g||_{\infty} \ge 1$. Donc $\mathscr{B}(g, \frac{1}{2}) \cap A = \varnothing$: g n'est pas adhérent à A pour $||.||_{\infty}$.
 - **b)** Soit f_n telle que $f_n(x) = 0$ si $x > \frac{1}{n}$ et f(x) = nx si $x \in [0, \frac{1}{n}]$. Alors $f_n \in A$ et $\|g f_n\|_1 = \int_0^{1_n} (1 nx) dx = \frac{1}{2n}$. Donc g est limite d'une suite d'éléments de A: c'est un point adhérent à A pour $\|.\|_1$.

II. Deux exercices sur la densité

1) $\mathscr{GL}_n(\mathbb{R})$ est un ouvert car image réciproque de l'ouvert \mathbb{R}^* par l'application continue det.

L'application $\lambda \mapsto \det (A - \lambda I_n)$ est polynomiale non nulle en λ donc possède un nombre fini de racine.

Par suite : $\forall A \in \mathcal{M}_n(\mathbb{R}), \forall \alpha > 0, B(A, \alpha) \cap \mathscr{GL}_n(\mathbb{R}) \neq \varnothing$.

- 2) a) Montrer que g(0) = 0, puis que $\forall x, ng(nx) = ng(x)$ puis que $\forall x, qg(qx) = qg(x)$ puis conclure par densité des rationnels.
 - **b)** Composer par le log.

III. Distance à un fermé borné

Soit l'application $u:A\to E,\,y\mapsto x-y.$ Pour tout $y,z\in A,\,\|u(y)-u(z)\|=\|y-z\|.$ Étant 1-lipschitzienne, u est continue.

L'application $v: E \to \mathbb{R}, y \mapsto \|y\|$ vérifie : pour tout $y, z \in E, |v(y) - v(z)| \leq \|y - z\|$ par inégalité triangulaire. Elle est donc elle aussi 1-lipschitzienne et continue.

Par composition $\varphi: A \to \mathbb{R}, y \mapsto ||x - y||$ est continue (on aurait pu démontrer directement qu'elle est 1-lipschitzienne).

Puisque A est fermée et bornée et que E est de dimension finie, φ est bornée et atteint ses bornes. En particulier elle a un minimum, ce qui répond aux deux questions.

IV. Norme subordonnée

- 1) u étant continue, il existe $k \in \mathbb{R}_+^*$ tel que pour tout x, $||u(x)|| \le k ||x||$. Donc $\left\{\frac{||u(x)||}{||x||}, x \in E \setminus \{0\}\right\}$ est majoré Comme il est non vide, M_1 existe. De plus, $\left\{\frac{||u(x)||}{||x||}, x \in E \setminus \{0\}\right\} = \{||u(x/||x||)||, x \in E \setminus \{0\}\} = \{||u(x)||, x \in E \text{ t.q. } ||x|| = 1\}$, donc M_2 existe, et vaut d'ailleurs M_1 . Le dernier ensemble est inclus dans \mathbb{R}_+ , non vide car u est continue, et minoré par 0, donc M_3 existe.
- 2) Nous avons déjà remarqué que $M_1 = M_2$. M_1 majore $\left\{\frac{\|u(x)\|}{\|x\|}, x \in E \setminus \{0\}\right\}$ donc pour tout x, $\|u(x)\| \leqslant M_1 \|x\|$.

 Donc $M_1 \in \{k \geqslant 0 \text{ t.q. } \forall x \in E, \|u(x)\| \leqslant k\|x\|\}$, donc $M_3 \leqslant M_1$.

 Réciproquement, soit $k \in \{k \geqslant 0 \text{ t.q. } \forall x \in E, \|u(x)\| \leqslant k\|x\|\}$. Donc si $x \neq 0, \frac{\|u(x)\|}{\|x\|} \leqslant k$. Ainsi k est un majorant de $\left\{\frac{\|u(x)\|}{\|x\|}, x \in E \setminus \{0\}\right\}$, et donc $M_1 \leqslant M_3$.

 Finalement $M_1 = M_2 = M_2$.