Einfürung in die Algebra Hausaufgaben Blatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 30, 2023)

Problem 1. Seien G, H Gruppen und $\Phi : G \to H$ ein Homomorphismus.

- (a) Sei $g \in G$ ein Element mit Ordnung $n \in \mathbb{N}^*$. Zeigen Sie, dass ord $(\Phi(g))|n$ gilt.
- (b) Sei $N \subseteq G$. Ist dann stets auch $\Phi(N) \subseteq H$?

Proof. (a) Es gilt

$$\Phi(g)^n = \Phi(g^n) = \Phi(1_G) = 1_{H_I}$$

also $\operatorname{ord}(\Phi(g)) \leq n$. Wir beweisen die Aussage per Widerspruch. Sei $\operatorname{ord}(\Phi(g)) = p \nmid n$. Wir schreiben

$$n = qp + r$$
, $r < p$

(Division mit Rest). Es gilt dann

$$\Phi(g)^{n} = \Phi(g)^{qp+r}$$

$$= \Phi(g)^{qp} \Phi(g)^{r}$$

$$= (\Phi(g)^{p})^{q} \Phi(g)^{r}$$

$$= 1^{q} \Phi(g)^{r}$$

$$= \Phi(g)^{r}$$

$$\neq 1$$

Im letzten Schritt haben wir benutzt, dass $r , also <math>\Phi(g)^r \neq 1$, sonst wäre $\operatorname{ord}(\Phi(g)) = r$.

(b) Nein. Wir betrachten eine "Einbettung" em : $S_n \to S_m$, wobei m > n. Sei $\sigma \in S_n$. Es gilt em $(\sigma) = \sigma'$ genau dann, wenn

$$\sigma'(i) = \begin{cases} \sigma(i) & i \le n \\ i & \text{sonst.} \end{cases}$$

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Es ist klar, dass Φ ein Homomorphismus ist. Sei $\sigma_1, \sigma_2 \in S_n$, mit $\Phi(\sigma_1) = \sigma_1'$ und $\Phi(\sigma_2) = \sigma_2'$. Dann ist

$$\sigma_1' \sigma_2'(i) = \sigma_1'(i) = i \qquad n < i \le m,$$

also $\sigma_1'\sigma_2'|_{\{1,2,\dots,n\}}$ ein Element von S_n , dessen Bild $\sigma_1'\sigma_2'$ ist.

Wir wissen, dass $A_n \subseteq S_n$.

Konkretes Gegenbeispiel: Sei n=3, m=5. Wir betrachten em : $S_3 \to S_4$, und $\Phi(A_3)$, wobei $A_3 \subseteq S_3$.

Dann ist $\Phi(A_3)$ kein Normalteiler von S_4 . Unter Zweckentfremdung der Notation stellen wir A_3 und $\Phi(A_3)$ in Zykelnotation dar

$$A_3 = \Phi(A_3) = \{(123), (132)\}.$$

Es gilt auch $(14) \in S_4$ und $(14)^{-1} = (14)$.

Es gilt aber

$$(14)(123)(14) = (14)(1234) = (234) \notin \Phi(A_3),$$

also
$$\Phi(A_3) \not \preceq H$$
.

Problem 2. Seien *G* eine Gruppe und $M := \{x^2 | x \in G\}$.

- (a) Zeigen Sie, dass $N := \langle M \rangle$ ein Normailteiler von G ist.
- (b) Beweisen Sie, dass für jedes Element gN der Faktorgruppe G/N gilt: $\operatorname{ord}(gN) \leq 2$.

Proof. (a) Sei $x, y \in G$ beliebig. Es gilt $x^2 \in M$. Es ist $y^{-1}xy \in G$. Dann gilt

$$y^{-1}x^{2}y = y^{-1}xxy$$

$$= y^{-1}xyy^{-1}xy$$

$$= (y^{-1}xy)^{2}$$

$$\in M,$$

also M ist ein Normalteiler von G.

(b) Wir betrachten das Quadrat eine Linksnebenklasse. Sei $a \in G$ beliebig, also aN ist eine beliebige Linksnebenklasse.

$$aN \cdot aN = (a^2)N$$
.

Wir wissen aber, dass $a^2 \in N$ (per Definition). Weil N ein Normalteiler ist, gilt dann $a^2N = N$. Es folgt, dass $\operatorname{ord}(aN) \leq 2$.

Problem 3. Geben Sie ein Beispiel für eine Gruppe mit Untergruppen $A,B \leq G$ an, so dass

$$A \leq B$$
 und $B \leq G$

gelten, nicht jedoch $A \subseteq G$.

Hinweis: Dies zeigt, dass das Normalteiler-Sein im Allgemeinen nicht transitiv ist.

Proof. Wir betrachten $G=D_4$, $B=\left\langle r^2,s\right\rangle$ und $A=\left\langle s\right\rangle$. Wir zeigen die Eigenschaften

(i) $B \leq G$.

Es gilt $|D_4| = 8$ und $B = \{1, r^2, s, r^2s\}$, also |B| = 4, [G:B] = 2. Dann ist B stets ein Normalteiler (Bsp 2.35).

(ii) $A \subseteq B$.

Wir betrachten $x^{-1}Ax$ für $x \in B$. Für $x \in \{1, s\}$ ist es klar. Für $x \in \{r^2, r^2s\}$ muss wir direkt das Produkt mit $x^{-1}sx$ berechnen.

Es gilt

$$r^{-2}sr^2 = sr^4 = s,$$

 $(r^2s)^{-1} = sr^2$ (man kann das durch direktes Multiplikation verifizieren)

$$sr^2ssr^2 = sr^4 = s.$$

Insgesamt ist $A \subseteq B$.

(iii) $A \not \supseteq G$.

Es gilt $r^{-1}sr = r^{-2}s = r^2s \neq 0$. Wenn wir $D_4 \subseteq S_{\mathbb{C}}$ betrachten, ist $r^2s(1_{\mathbb{C}}) = -1$, wobei $1_{\mathbb{C}}$ das 1 in \mathbb{C} ist (also nicht das neutrale Element in $\mathrm{Sym}_{\mathbb{C}}$).

Problem 4. Zeigen Sie, dass

$$S_n = \langle (12), (123 \dots n) \rangle$$

für jedes $n \in \mathbb{N}^*$ gilt.

Proof. Wir zeigen, dass Elemente mit bestimmte Formen Elemente von $\langle (12), (123...n) \rangle$ sind. Im Beweis begründen wir alle Schritte mit "Sonst wäre $\langle (12), (123...n) \rangle$ keine Gruppe, weil es nicht abgeschlossen wäre".

Außerdem bedeutet hier Addition immer die Addition in $\mathbb{Z}/n\mathbb{Z}$, aber durch 1 verschoben, also die mögliche Ergebnisse sind $1, 2, \dots n$ statt $0, 1, \dots, n-1$. Wir bezeichnen (12) = s und $(123 \dots n) = T$.

(i) Alle Transpositionen (i(i+1)). Die Proposition ist

$$T^x s T^{n-x} = ((x+1)(x+2)).$$

Es gilt

$$T^{n-x} = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ 1 + (n-x) & 2 + (n-x) & \dots & n-1 + (n-x) & n + (n-x) \end{pmatrix}.$$

Dann ist

$$sT^{n-x} = \begin{pmatrix} 1 & \dots & 1+x & 2+x & \dots & n \\ 1+(n-x) & \dots & 2 & 1 & \dots & 2n-x \end{pmatrix},$$

also

$$T^{x}sT^{n-x} = \begin{pmatrix} 1 & \dots & 1+x & 2+x & \dots & n \\ 1+(n-x)+x & \dots & 2+x & 1+x & \dots & 2n-x+x \end{pmatrix}$$
$$= \begin{pmatrix} 1 & \dots & 1+x & 2+x & \dots & n \\ 1+n & \dots & 2+x & 1+x & \dots & 2n \end{pmatrix}$$
$$= \begin{pmatrix} 1 & \dots & 1+x & 2+x & \dots & n \\ 1 & \dots & 2+x & 1+x & \dots & n \end{pmatrix}$$

(ii) Alle Transpositionen (i(i+k)), für alle $i \in \{1,2,\ldots,n\}$ und $k \in \{1,2,\ldots,n-1\}$. Wir beweisen es per Induktion über k. Wir wissen es schon für k=1. Jetzt nehmen wir an, dass alle Transpositionen $i(i+k') \in \langle (12)(123\ldots n) \rangle$ für alle $i \in \{1,2,\ldots,n\}$ und $k' \in \{1,2,\ldots,k-1\}$.

Wir betrachten (i(i+k)) für i beliebig. Ziel:

$$(i(i+k)) = (i(i+k-1))((i+k-1)(i+k))(i(i+k-1)).$$
(1)

Wir betrachten die Wirkung auf i, i + k - 1 und i + k. Es ist klar, dass keine andere Zahlen nicht davon bewegt werden. Es gilt

$$\begin{split} &(i(i+k-1))((i+k-1)(i+k))(i(i+k-1))i\\ &= (i(i+k-1))((i+k-1)(i+k))(i+k-1)\\ &= (i(i+k-1))(i+k)\\ &= i+k\\ &(i(i+k-1))((i+k-1)(i+k))(i(i+k-1))(i+k)\\ &= (i(i+k-1))((i+k-1)(i+k))(i+k)\\ &= (i(i+k-1))(i+k-1)\\ &= i\\ &(i(i+k-1))((i+k-1)(i+k))(i(i+k-1))(i+k-1)\\ &= i\\ &= (i(i+k-1))((i+k-1)(i+k))i\\ &= (i(i+k-1))i\\ &= (i(i+k-1))i\\ &= (i(i+k-1))i\\ \end{split}$$

also die Gleichheit in (1) gilt.

(iii) Alle Elemente $\sigma \in S_n$.

Wir schreiben ein beliebiges Element $\sigma \in S_n$ als Produkt von Transpositionen. Weil alle Transpositionen Elemente von $\langle (12)(123...n) \rangle$ sind, müssen dann $\sigma \in \langle (12)(123...n) \rangle$ auch.