Seminar Approximation Algorithms

ANSWuSVþ(U)M

Zeno Adrian Weil

 $16 \mathrm{th}~\mathrm{May}~2023$

Supervisor: Dr Giovanna Varricchio

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

1 Introduction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Function SMatch for the Asymmetric Additive NSW problem

```
Input: set \mathcal{A} = \{1, ..., n\} of agents with weights \eta_i \forall i \in \mathcal{A}, set \mathcal{G} = \{1, ..., m\}
                        indivisible items, additive valuations v_i \colon \mathcal{P}(\mathcal{G}) \to \mathbb{R}^+_{>0} where v_i(\mathcal{S}) is the
                        valuation of agent i \in \mathcal{A} for each item set \mathcal{S} \subset \mathcal{G}
      Output: \frac{1}{2n}-approximation \boldsymbol{x}=(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n) of an optimal allocation
 1 \boldsymbol{x}_i \leftarrow \emptyset \quad \forall i \in \mathcal{A}
 \mathbf{2} \ u_i \leftarrow v_i \Big( \mathcal{G}_{i,[2n+1:m]} \Big) \quad \forall i \in \mathcal{A}
 \mathbf{3} \ \mathcal{W} \leftarrow \{ \ n \cdot \log(v_i(j) + \frac{u_i}{n}) \ \big| \ i \in \mathcal{A}, j \in \mathcal{G} \ \}
                                                                                                                                                          ⊳graph weights
  4 G \leftarrow (\mathcal{A}, \mathcal{G}, \mathcal{W})
                                                                                                                                                    ⊳bipartite graph
  5 \mathcal{M} \leftarrow \texttt{max\_weight\_matching}(G)
  6 \boldsymbol{x}_i \leftarrow \{j \mid (i,j) \in \mathcal{M}\} \quad \forall i \in \mathcal{A}
  7 \mathcal{G}^{\text{rem}} \leftarrow \mathcal{G} \setminus \{ j \mid (i, j) \in \mathcal{M} \}
  8 while \mathcal{G}^{\text{rem}} \neq \emptyset do
              \mathcal{W} \leftarrow \{\, \eta_i \cdot \log(v_i(j) + v_i(\boldsymbol{x}_i)) \mid i \in \mathcal{A}, j \in \mathcal{G}^{\text{rem}} \,\}
              G \leftarrow (\mathcal{A}, \mathcal{G}^{\text{rem}}, \mathcal{W})
10
              \mathcal{M} \leftarrow \texttt{max\_weight\_matching}(G)
11
              \boldsymbol{x}_i \leftarrow \boldsymbol{x}_i \cup \{j \mid (i,j) \in \mathcal{M}\} \quad \forall i \in \mathcal{A}
12
             \mathcal{G}^{\text{rem}} \leftarrow \mathcal{G}^{\text{rem}} \setminus \{j \mid (i,j) \in \mathcal{M}\}
13
14 end while
15 return x
```

```
Function RepReMatch for the Asymmetric Submodular NSW problem
       Input: set \mathcal{A} = \{1, ..., n\} of agents with weights \eta_i \forall i \in \mathcal{A}, set \mathcal{G} = \{1, ..., m\}
                            indivisible items, additive valuations v_i \colon \mathcal{P}(\mathcal{G}) \to \mathbb{R}^+_{>0} where v_i(\mathcal{S}) is the
                            valuation of agent i \in \mathcal{A} for each item set \mathcal{S} \subset \mathcal{G}
       Output: \frac{1}{2n\log n}-approximation \boldsymbol{x}^{\text{III}}=(\boldsymbol{x}_1^{\text{III}},\dots,\boldsymbol{x}_n^{\text{III}}) of an optimal allocation
       Phase I:
  1 \boldsymbol{x}_i^{\mathrm{I}} \leftarrow \emptyset \quad \forall i \in \mathcal{A}
  \mathbf{2} \mathcal{G}^{\text{rem}} \leftarrow \mathcal{G}
  3 for t = 0, ..., \lceil \log n \rceil - 1 do
                if \mathcal{G}^{\mathrm{rem}} \neq \emptyset then
  4
                         \mathcal{W} \leftarrow \{ \eta_i \cdot \log(v_i(j)) \mid i \in \mathcal{A}, j \in \mathcal{G} \}
  \mathbf{5}
                         G \leftarrow (\mathcal{A}, \mathcal{G}, \mathcal{W})
   6
                         \mathcal{M} \leftarrow \texttt{max\_weight\_matching}(G)
   7
                         \begin{aligned} \boldsymbol{x}_{i}^{\mathrm{I}} \leftarrow \boldsymbol{x}_{i}^{\mathrm{I}} \cup \{j\} & \forall (i,j) \in \mathcal{M} \\ \mathcal{G}^{\mathrm{rem}} \leftarrow \mathcal{G}^{\mathrm{rem}} \setminus \{j \mid (i,j) \in \mathcal{M} \} \end{aligned} 
   8
  9
10
                end if
11 end for
       Phase II:
12 x_i^{\text{II}} \leftarrow \emptyset \quad \forall i \in \mathcal{A}
13 while \mathcal{G}^{\text{rem}} \neq \emptyset do
                \mathcal{W} \leftarrow \{ \eta_i \cdot \log(v_i(\boldsymbol{x}_i^{\mathrm{II}} \cup \{j\})) \mid i \in \mathcal{A}, j \in \mathcal{G} \}
                 G \leftarrow (\mathcal{A}, \mathcal{G}, \mathcal{W})
15
                \mathcal{M} \leftarrow \texttt{max\_weight\_matching}(G)
16
                oldsymbol{x}_i^{\mathrm{II}} \leftarrow oldsymbol{x}_i^{\mathrm{II}} \cup \{j\} \quad orall (i,j) \in \mathcal{M}
                \mathcal{G}^{\text{rem}} \leftarrow \mathcal{G}^{\text{rem}} \setminus \{ j \mid (i, j) \in \mathcal{M} \}
19 end while
       Phase III:
20 \mathcal{G}^{\text{rem}} \leftarrow \bigcup_{i \in \mathcal{A}} x_i^{\text{I}}
                                                                                                  >release items allocated in first phase
21 \mathcal{W} \leftarrow \{ \, \eta_i \cdot \log(v_i(\boldsymbol{x}_i^{\mathrm{II}} \cup \{j\})) \mid i \in \mathcal{A}, j \in \mathcal{G} \, \}
22 G \leftarrow (\mathcal{A}, \mathcal{G}, \mathcal{W})
\mathbf{23}\ \mathcal{M} \leftarrow \mathtt{max\_weight\_matching}(G)
24 \boldsymbol{x}_{i}^{\mathrm{III}} \leftarrow \boldsymbol{x}_{i}^{\mathrm{II}} \cup \{j\} \quad \forall (i,j) \in \mathcal{M}
25 \mathcal{G}^{\mathrm{rem}} \leftarrow \mathcal{G}^{\mathrm{rem}} \setminus \{j \mid (i,j) \in \mathcal{M}\}
```

26 $x^{\text{III}} \leftarrow \text{arbitrary_allocation}(\mathcal{A}, \mathcal{G}^{\text{rem}}, x^{\text{III}}, (v_i)_{i \in \mathcal{A}})$

27 return x^{III}