#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/31, C07K 14/31, 16/12, A61K

(11) International Publication Number:

WO 99/27109

38/16, G01N 33/53

(43) International Publication Date:

3 June 1999 (03.06.99)

(21) International Application Number:

(22) International Filing Date:

PCT/US98/25246

25 November 1998 (25.11.98)

(30) Priority Data:

60/066,815 60/098,427 26 November 1997 (26.11.97) US 31 August 1998 (31.08.98) US

(71) Applicants (for all designated States except US): INHIB-ITEX, INC. [US/US]; Suite 170, 35 Technology Parkway South, Norcross, GA 30092 (US). BIORESEARCH IRELAND [IE/IE]; National Pharmaceutical Biotechnology Centre, O'Reilly Institute, Trinity College, Dublin 2 (IE). TEXAS A & M UNIVERSITY [US/US]; Institute of Bioscience and Technology, College Station, TX 77843 (US).

(71)(72) Applicants and Inventors: PATTI, Joseph, M. [US/US]; 6680 Stratford Place, Cumming, GA 30040 (US). FOSTER, Timothy, J. [IE/IE]; 70 Coolamber Park, Templeogue, Dublin 16 (IE). JOSEFSSON, Elizabet [SE/SE]; Doktor Hjorts gata 4B, S-413 23 Goteborg (SE). EIDHIN, Deirdre, Ni [IE/IE]; 15 Watkins Buildings, The Coombe, Dublin 8 (IE). HOOK, Magnus, A., O. [US/US]; 4235 Oberlin, Houston, TX 77005 (US). PERKINS, Samuel, E. [US/US]; 987 Chamboard Lane, Houston, TX 77018 (US).

(74) Agent: KNOWLES, Sherry, M.; King & Spalding, 191 Peachtree Street, Atlanta, GA 30303 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX. NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published

Without international search report and to be republished upon receipt of that report.

(54) Title: EXTRACELLULAR MATRIX-BINDING PROTEINS FROM STAPHYLOCOCCUS AUREUS



# (57) Abstract

Isolated extracellular matrix-binding proteins, designated ClfB, SdrC, SdrD and SdrE, and their corresponding amino acid and nucleic acid sequences and motifs are described. The proteins, peptides, fragments thereof or antigenic portions thereof are useful for the prevention, inhibition, treatment and diagnosis of S. aureus infection and as scientific research tools. Further, antibodies or antibody fragments to the proteins, peptides, fragments thereof or antigenic portions thereof are also useful for the prevention, inhibition, treatment and diagnosis of S. aureus infection. In particular, the proteins or antibodies thereof may be administered to wounds or used to coat biomaterials to act as blocking agents to prevent or inhibit the binding of aureus to wounds or biomaterials. ClfB is a cell-wall associated protein having a predicted molecular weight of approximately 88 kDa and an apparent molecular weight of approximately 124 kDa, which binds both soluble and immobilized fibrinogen. ClfB binds both the alpha and beta chains of fibrinogen and acts as a clumping factor. SdrD, SdrD and SdrE are cell-wall associated proteins that exhibit cation-dependent ligand binding to the extracellular matrix. It has been discovered that in the A region of SdrC, SdrD, SdrE, ClfA and ClfB, there is a highly conserved amino acid sequence that can be used to derive a consensus motif of TYTFTDYVD.

# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain .             | LS | Lesotho               | SI | Slovenia                 |
|----|--------------------------|----|---------------------|----|-----------------------|----|--------------------------|
| AM | Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                 |
| ΑT | Austria                  | FR | Prance              | LU | Luxembourg            | SN | Senegal                  |
| ΑÜ | Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland                |
| ΑZ | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG | Togo                     |
| BB | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland             | MN | Mongolia              | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of America |
| CA | Canada                   | IT | Italy               | MX | Mexico                | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan               | NE | Niger                 | VN | Vict Nam                 |
| CG | Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |    | Zanozowe                 |
| CM | Cameroon                 |    | Republic of Korea   | PL | Poland                |    |                          |
| CN | China                    | KR | Republic of Korea   | PT | Portugal              |    |                          |
| CU | Cuba                     | KZ | Kazakstan           | RO | Romania               |    | •                        |
| CZ | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |    |                          |
| DE | Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                          |
| DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                          |
| EE | Estonia                  | LR | Liberia             | SG | Singapore             |    |                          |
|    |                          |    |                     |    |                       |    |                          |

# EXTRACELLULAR MATRIX-BINDING PROTEINS FROM STAPHYLOCOCCUS AUREUS

5

The U.S. Government has rights in this invention arising out of National Institutes of Health grant number AI20624.

#### FIELD OF THE INVENTION

10

The present invention is in the fields of microbiology and molecular biology. The invention includes the isolation and use of extracellular matrix-binding proteins and genes that express the proteins from *Staphylococcus* aureus to inhibit, prevent and diagnose *S. aureus* infection.

15

#### **BACKGROUND OF THE INVENTION**

20

25

30

In hospitalized patients Staphylococcus aureus is a major cause of infections associated with indwelling medical devices, such as catheters and prostheses, and related infections of surgical wounds. A significant increase in Staphylococcus aureus isolates that exhibit resistance to most known antibiotics has been observed in hospitals throughout the world. The recent emergence of resistance to vancomycin, the last remaining antibiotic for treating methicillin-resistant Staphylococcus aureus (MRSA) infections, has emphasized the need for alternative prophylactic or vaccine strategies to reduce the risk of nosocomial S. aureus infections.

Initial localized infections of wounds or indwelling medical devices can lead to serious invasive infections such as septicemia, osteomyelitis, and endocarditis. In infections associated with medical devices, plastic and metal surfaces become coated with host plasma and extracellular matrix proteins such as fibrinogen and fibronectin shortly after implantation. The ability of *S. aureus* to adhere to these proteins is of crucial importance for initiating infection. Vascular grafts, intravenous catheters, artificial heart valves, and

cardiac assist devices are thrombogenic and prone to bacterial colonization.

S. aureus is the most damaging pathogen to cause such infections.

Fibrin is the major component of blood clots, and fibringen/fibrin is one of the major plasma proteins deposited on implanted biomaterials. Considerable evidence exists to suggest that bacterial adherence to fibrinogen/fibrin is important in the initiation of device-related infection. For example, as shown by Vaudaux et al., S. aureus adheres to in vitro plastic that has been coated with fibrinogen in a dose-dependent manner (J. Infect. Dis. 160:865-875 (1989)). In addition, in a model that mimics a blood clot or damage to a heart valve, Herrmann et al. demonstrated that S. aureus binds avidly via a fibrinogen bridge to platelets adhering to surfaces (J. Infect. Dis. 167: 312-322 (1993)). S. aureus can adhere directly to fibrinogen in blood clots formed in vitro, and can adhere to cultured endothelial cells via fibringen deposited from plasma acting as a bridge (Moreillon et al., Infect. Immun. 63:4738-4743 (1995); Cheung et al., J. Clin. Invest. 87:2236-2245 (1991)). As shown by Vaudaux et al. and Moreillon et al., mutants defective in the fibrinogen-binding protein clumping factor (ClfA) exhibit reduced adherence to fibrinogen in vitro, to explanted catheters, to blood clots, and to damaged heart valves in the rat model for endocarditis (Vaudaux et al., Infect. Immun. 63:585-590 (1995); Moreillon et al., Infect. Immun. 63: 4738-4743 (1995)).

An adhesin for fibrinogen, often referred to as "clumping factor," is located on the surface of *S. aureus* cells. The interaction between the clumping factor on bacteria and fibrinogen in solution results in the instantaneous clumping of bacterial cells. The binding site on fibrinogen is located in the C-terminus of the gamma chain of the dimeric fibrinogen glycoprotein. The affinity is very high and clumping occurs in low concentrations of fibrinogen. Scientists have recently shown that clumping factor also promotes adherence to solid phase fibrinogen, to blood clots, and to damaged heart valves (McDevitt *et al.*, *Mol. Microbiol.* 11: 237-248

30

5

10

15

20

25

(1994); Vaudaux et al., Infect. Immun. 63:585-590 (1995); Moreilion et al., Infect. Immun. 63: 4738-4743 (1995)).

The gene for a clumping factor protein, designated ClfA, has been cloned, sequenced and analyzed in detail at the molecular level (McDevitt et al., Mol. Microbiol. 11: 237-248 (1994); McDevitt et al., Mol. Microbiol. 16:895-907 (1995)). The predicted protein is composed of 933 amino acids. A signal sequence of 39 residues occurs at the N-terminus followed by a 520 residue region (region A), which contains the fibrinogen binding domain. A 308 residue region (region R), composed of 154 repeats of the dipeptide serine-aspartate, follows. The R region sequence is encoded by the 18 basepair repeat GAYTCNGAYT CNGAYAGY (SEQ ID NO: 9) in which Y equals pyrimidines and N equals any base. The C-terminus of ClfA has features present in many surface proteins of Gram-positive bacteria such as an LPDTG (SEQ ID NO: 10) motif, which is responsible for anchoring the protein to the cell wall, a membrane anchor, and positive charged residues at the extreme C-terminus.

The platelet integrin alpha IIbß3 recognizes the C-terminus of the gamma chain of fibrinogen. This is a crucial event in the initiation of blood clotting during coagulation. ClfA and alpha IIbß3 appear to recognize precisely the same sites on fibrinogen gamma chain because ClfA can block platelet aggregation, and a peptide corresponding to the C-terminus of the gamma chain (198-411) can block both the integrin and ClfA interacting with fibrinogen (McDevitt et al., Eur. J. Biochem. 247:416-424 (1997)). The fibrinogen binding site of alpha IIbß3 is close to, or overlaps, a Ca<sup>2+</sup> binding determinant referred to as an "EF hand". ClfA region A carries several EF hand-like motifs. A concentration of Ca<sup>2+</sup> in the range of 3-5 mM blocks these ClfA-fibrinogen interactions and changes the secondary structure of the ClfA protein. Mutations affecting the ClfA EF hand reduce or prevent interactions with fibrinogen. Ca<sup>2+</sup> and the fibrinogen gamma chain seem to bind to the same, or to overlapping, sites in ClfA region A.

The alpha chain of the leucocyte integrin, alpha Mß2, has an insertion of 200 amino acids (A or I domain) which is responsible for ligand binding activities. A novel metal ion-dependent adhesion site (MIDAS) motif in the I domain is required for ligand binding. Among the ligands recognized is fibrinogen. The binding site on fibrinogen is in the gamma chain (residues 190-202). It was recently reported that *Candida albicans* has a surface protein, alpha Int1p, having properties reminiscent of eukaryotic integrins. The surface protein has amino acid sequence homology with the I domain of alpha Mß2, including the MIDAS motif. Furthermore, alpha Int1p binds to fibrinogen.

ClfA region A also exhibits some degree of sequence homology with alpha Intlp. Examination of the ClfA region A sequence has revealed a potential MIDAS motif. Mutations in supposed cation coordinating residues in the DXSXS portion of the MIDAS motif in ClfA results in a significant reduction in fibrinogen binding. A peptide corresponding to the gammachain binding site for alpha MB2 (190-202) has been shown by O'Connell et al., to inhibit ClfA-fibrinogen interactions (O'Connell et al., J. Biol. Chem., in press). Thus it appears that ClfA can bind to the gamma-chain of fibrinogen at two separate sites. The ligand binding sites on ClfA are similar to those employed by eukaryotic integrins and involve divalent cation binding EF-hand and MIDAS motifs.

Scientists have recently shown that *S. aureus* expresses proteins other than ClfA that may bind fibrinogen (Boden and Flock, *Mol. Microbiol.* 12:599-606 (1994)). One of these proteins is probably the same as the broad spectrum ligand-binding protein reported by Homonylo-McGavin *et al.*, *Infect. Immun.* 61:2479-2485 (1993). Another is coagulase, as reported by Boden and Flock, *Infect. Immun.* 57:2358-2363 (1989), a predominantly extracellular protein that activates the plasma clotting activity of prothrombin. Coagulase binds prothrombin at its N-terminus and also interacts with soluble fibrinogen at its C-terminus. Cheung *et al.*, *Infect. Immun.* 63:1914-1920 (1995) have described a variant of coagulase

that binds fibrinogen. There is some evidence that coagulase can contribute, in a minor way, to the ability of *S. aureus* cells to bind fibrinogen. As shown by Wolz *et al.*, *Infect. Immun.* 64:3142-3147 (1996), in an *agr* regulatory mutant, where coagulase is expressed at a high level, coagulase appears to contribute to the binding of soluble fibrinogen to bacterial cells. Also, as shown by Dickinson *et al.*, *Infect. Immun.* 63:3143-3150 (1995), coagulase contributes in a minor way to the attachment of *S. aureus* to plasma-coated surfaces under flow. However, it is clear that clumping factor ClfA is the major surface-located fibrinogen-binding protein responsible for bacterial attachment to immobilized fibrinogen/fibrin.

The identification and isolation of additional *S. aureus* extracellular matrix binding proteins would be useful for the development of therapies, diagnosis, prevention strategies and research tools for *S. aureus* infection.

Accordingly it is an object of the present invention to provide isolated cell-wall associated extracellular matrix-binding proteins of *S. aureus* and active fragments thereof.

It is a further object of the invention to provide methods for preventing, diagnosing, treating or monitoring the progress of therapy for bacterial infections caused by *S. aureus*.

It is a further object of the present invention to provide isolated S. aureus surface proteins that are related in amino acid sequence to ClfA and are able to promote adhesion to the extracellular matrix or host cells.

It is another object of the present invention to generate antisera and antibodies to cell-wall associated extracellular matrix-binding proteins of S. aureus, or active fragments thereof.

It is a further object of the present invention to provide S. aureus vaccines, including a DNA vaccine.

It is a further object of the present invention to provide improved materials and methods for detecting and differentiating *S. aureus* organisms in clinical and laboratory settings.

5

10

15

20

25

It is a further object of the invention to provide nucleic acid probes and primers specific for *S. aureus*.

It is a further object of the invention to provide isolated extracellular matrix-binding proteins or peptides of S. aureus.

5

## SUMMARY OF THE INVENTION

10

15

20

25

30

Isolated extracellular matrix-binding proteins, designated ClfB, SdrC, SdrD and SdrE, and their corresponding amino acid and nucleic acid sequences and motifs are described. The proteins, peptides, fragments thereof or antigenic portions thereof are useful for the prevention, inhibition, treatment and diagnosis of *S. aureus* infection and as scientific research tools. Further, antibodies or antibody fragments to the proteins, peptides, fragments thereof or antigenic portions thereof are also useful for the prevention, inhibition, treatment and diagnosis of *S. aureus* infection. The proteins, peptides, peptide fragments, antibodies, or antibody fragments can be administered in an effective amount to a patient in need thereof in any appropriate manner, preferably intravenously or otherwise by injection, to impart active or passive immunity. In an alternative embodiment, the proteins or antibodies thereof can be administered to wounds or used to coat biomaterials to act as blocking agents to prevent or inhibit the binding of *S. aureus* to wounds or biomaterials.

Specifically, extracellular matrix-binding proteins from S. aureus designated as ClfB, SdrC, SdrD, and SdrE are provided.

ClfB is a fibrinogen binding protein. The nucleic acid and amino acid sequences of ClfB are provided in Figure 5. The amino acid sequence of ClfB is SEQ ID NO:1, and the nucleic acid sequence of ClfB is SEQ ID NO:2.

SdrC has been discovered to bind to several extracellular matrix proteins of the host, including for example, bone sialoprotein (BSP), decorin, plasmin, fibrinogen and vitronectin. The amino acid and nucleic

acid sequences of SdrC are SEQ ID NOS:3 and 4 respectively and are provided in Figure 7.

Another of the discovered proteins, SdrD, binds at least vitronectin. The amino acid and nucleic acid sequences of SdrD are SEQ ID NOS:5 and 6 respectively and are provided in Figure 8.

SdrE binds to extracellular matrix proteins, for example, bone sialoprotein (BSP). The amino acid and nucleic acid sequences of SdrE are SEQ ID NOS:7 and 8 respectively and are provided in Figure 9.

ClfB has a predicted molecular weight of approximately 88 kDa and an apparent molecular weight of approximately 124 kDa. ClfB is a cell-wall associated protein and binds both soluble and immobilized fibrinogen. In addition, ClfB binds both the alpha and beta chains of fibrinogen and acts as a clumping factor. SdrC, SdrD and SdrE are cell-wall associated proteins that exhibit cation-dependent ligand binding of extracellular matrix proteins such as decorin, plasmin, fibrinogen, vitronectin and BSP.

It has been discovered that in the A region of SdrC, SdrD, SdrE, ClfA, and ClfB, there is highly conserved amino acid sequence that can be used to derive a consensus TYTFTDYVD (SEQ ID NO: 18) motif (see Figure 20). The motif can be used in vaccines to impart broad spectrum immunity against bacterial infections. The motif can also be used as an antigen in the production of monoclonal or polyclonal antibodies to impart broad spectrum passive immunity. In an alternative embodiment, any combination of the variable sequence motif (T/I) (Y/F) (T/V) (F) (T) (D/N) (Y) (V) (D/N) can be used as an immunogen or antigen, or in the preparation of antibodies.

The ClfB, SdrC, SdrD and SdrE proteins or the consensus or variable motifs thereof are useful as scientific research tools to identify S. aureus binding sites on the extracellular matrix. They are further useful as research tools to promote an understanding of the mechanisms of bacterial pathology and the development of antibacterial therapies.

25

5

10

15

The ClfB, SdrC, SdrD and SdrE nucleic acid sequences or selected fragments thereof, including the sequences encoding the consensus or variable motifs, are useful as nucleic acid probes for the identification of other *S. aureus* extracellular matrix-binding proteins. Alternatively, the amino acid sequences of the proteins, or selected fragments thereof, can be used as probes to identify the corresponding nucleic acid sequences.

5

10

15

20

25

30

The ClfB, SdrC, SdrD and SdrE nucleic acid sequences or the sequences encoding the consensus or variable motifs are further useful as polynucleotides which comprise contiguous nucleic acid sequences capable of being expressed. The nucleic acid sequences may be inserted into a vector and placed in a microorganism for the production of recombinant ClfB, SdrC, SdrD and SdrE proteins or the variable or consensus amino acid motifs. This allows for the production of the gene product upon introduction of said polynucleotide into eukaryotic tissues *in vivo*. The encoded gene product preferably either acts as an immunostimulant or as an antigen capable of generating an immune response. Thus, the nucleic acid sequences in this embodiment encode an MSCRAMM (Microbial Surface Components Recognising Adhesive Matrix Molecules) immunogenic epitope, and optionally a cytokine or a T-cell costimulatory element, such as a member of the B7 family of proteins.

There are several advantages of immunization with a gene rather than its gene product. The first is the relative simplicity with which native or nearly native antigen can be presented to the immune system. A second advantage of DNA immunization is the potential for the immunogen to enter the MHC class I pathway and evoke a cytotoxic T cell response. Cell-mediated immunity is important in controlling infection. Since DNA immunization can evoke both humoral and cell-mediated immune responses, its greatest advantage may be that it provides a relatively simple method to survey a large number of S. aureus genes for their vaccine potential.

Antibodies immunoreactive with ClfB, SdrC, SdrD and SdrE proteins, or their active fragments, including with the consensus or variable

amino acid motifs, are provided herein. Vaccines or other pharmaceutical compositions containing the proteins or amino acid motifs are additionally provided herein.

Antibodies and antisera to the consensus TYTFTDYVD sequence epitope or the variable (T/I) (Y/F) (T/V) (F) (T) (D/N) (Y) (V) (D/N) sequence, specifically TYTFTNYVD (SEQ ID NO: 19) in SdrC, TYTFTDYVD (SEQ ID NO: 18) in SdrD and SdrE, TFVFTDYVN (SEQ ID NO: 20) in ClfB or IYTFTDYVN (SEQ ID NO: 21) in ClfA are provided herein. Vaccines or other pharmaceutical compositions containing the epitopes are also provided herein.

In addition, diagnostic kits containing nucleic acid molecules, the proteins, antibodies or antisera to ClfB, SdrC, SdrD, SdrE or their active fragments, including the consensus or variable amino acid motifs and the appropriate reagents for reaction with a sample are also provided.

In one embodiment of the invention, the diagnostic kit is used to identify patients or animals that have levels of antibodies to ClfB ClfB, SdrC, SdrD, or SdrE that are above a population norm. The plasma of the patients or animals can be obtained, processed, and administered to a host in need of passive immunity to *S aureus* infection.

20

5

10

## BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a schematic representation comparing features of unprocessed ClfA and ClfB proteins. S indicates the signal sequence. A indicates the conserved region (region A). P indicates the proline-rich region (repeats are indicated by gray boxes). R indicates the SD repeat region (region R). W indicates the wall-spanning region. M indicates the membrane spanning and anchoring regions. EF hand I of ClfA and its partial homologue on ClfB are indicated by black vertical bars. The MIDAS motifs are indicated by hatched (DXSXS) and narrow vertical lines (downstream T and D residues) connected by dashed lines.

Figure 2 is a schematic representation of general plasmid and probe constructions for sequencing clfB. A repeat-carrying EcoRI fragment was cloned from phage clone A1-1 into pGEM 7Z (f)+ to give pA1-1E (top), and subsequently reduced by deletion of an XbaI fragment to give pA1-1EX, which contains the entire clfB gene. A SmaI fragment containing clfB and 500 bp of upstream DNA was cloned into pCU1 for overexpression and complementation work (pA1-1EA). The HpaI probe used to screen mutants, and the hybridizing BamHI fragment are also indicated.

Figure 3 is a schematic representation showing construction of a cassette for allele replacement. *clfB* was interrupted by blunt-end cloning the Tc determinant from pT181 into the *Hpa*I site in the middle of the gene in pA1-1EX. pTS2 was then cloned into the *Sma*I site of the cassette to enable temperature sensitive propagation in *S. aureus*.

Figure 4 is a schematic representation of a physical map of the *sdrC sdrD sdrE* locus in *S. aureus* strain Newman. The extents of the plasmid clones are delineated. A6-2 is a LambdaGEM®-12 clone. pEJ1, pEJ2 and pEJ3 are A6-2 fragments subcloned in the pGEM 7Z (f) + (pEJ1 and pEJ2) and the pBluescript KS+ vector (pEJ3). pC1 is a *HindIII* fragment directly cloned from strain Newman in the pBluescript KS+ vector. Arrows indicate the direction of transcription of *sdrC*, *sdrD* and *sdrE*.

10

5

10

15

20

25

Figure 5 is the nucleic acid sequence of *clfB* and flanking DNA, and amino acid translation of the ORF. The likely start codon is double underlined, and the principal regions indicated using the abbreviations of Figure 1. Two salient features of region A, the DYSNS (SEQ ID NO: 11) of the putative MIDAS motif, and the sequence FTDYVN (SEQ ID NO: 12), the longest region of identity with ClfB, are underlined. Vertical bars indicate the repeats in the proline-rich region. An inverted repeat specifying a possible transcription termination signal is underlined.

Figure 6 is an amino acid sequence alignment of part of region A of the ClfB and ClfA proteins in the region of strongest similarity. EF hand I of ClfA is underlined. Identical residues are denoted by an asterisk; conservative substitutions are denoted by a period. The DXSXS (SEQ ID NO: 13) portion of the MIDAS motif of ClfB is double underlined.

Figure 7 is the nucleic acid sequence and amino acid translation of the *sdrC* gene. The consensus TYTFTDYVD motif, expressed in SdrC as TYTFTNYVD, the EF hands in the B repeats, and the LPXTG (SEQ ID NO: 14) motif are underlined. Major regions, such as the signal sequence (S), region A (A), B repeats (B) region R (R), the wall-spanning domain (W), and the membrane-anchoring domain (M), are indicated.

Figure 8 is the nucleic acid sequence and amino acid translation of the *sdrD* gene. The consensus TYTFTDYVD motif, the EF hands in the B repeats, and the LPXTG motif are underlined. Major regions, such as the signal sequence (S), region A (A), B repeats (B) region R (R), the wall-spanning domain (W), and the membrane-anchoring domain (M), are indicated.

Figure 9 is the nucleic acid sequence and amino acid translation of the *sdrE* gene. The consensus TYTFTDYVD motif, the EF hands in the B repeats, and the LPXTG motif are underlined. Major regions, such as the signal sequence (S), region A (A), B repeats (B) region R (R), the wall-spanning domain (W), and the membrane-anchoring domain (M), are indicated.

30

25

5

10

15

Figure 10 is a schematic diagram of the region R-containing proteins. Numerals over the proteins denote numbers of amino acids in the regions, numerals under the proteins denote the location on the amino acid sequence of the motifs counted from the beginning of the signal peptide.

Abbreviations: S: Signal peptide; A: Region A; B: B repeat; R: Region R; W.M: Wall and membrane spanning regions.

Figure 11 is a chart showing similarities between A regions ClfA, ClfB, SdrC, SdrD and SdrE. Each sequence was aligned in pairwise combinations and the percent identical residues given.

Figure 12 indicates Clustal™ multiple sequence alignments of areas of similarity of the A and B regions of the region R containing genes of strain Newman. An asterisk denotes identity of amino acids, and a colon represents increasing similarity of polarity and hydrophobicity/hydrophilicity of side chains of amino acids. Alignments 1-4 show areas from region A. Alignments 1,3 and 4 show the common motifs. Alignment 2 shows homology in the vicinity of the ClfA EF-hand (underlined), with the consensus TYTFTDYVD sequence conserved in all five genes. Alignment 5 shows the B repeats of proteins SdrC, SdrD and SdrE with possible EF hands underlined.

Figure 13 is a time-course graph of ClfB expression in S. aureus

Newman versus time, monitored by Western blotting. Shake flask cultures
were sampled at specific time intervals. A standard number of cells was used
to prepare lysates.

Figure 14 is a graph of absorbance versus concentration of ClfA/ClfB comparing the binding of increasing concentrations of biotinylated recombinant region A from ClfA and ClfB to fibrinogen coated plates. Binding to BSA-coated plates is shown as a control. The closed square symbol represents fibrinogen-ClfA; the closed circle symbol represents fibrinogen-ClfB; the open square symbol represents BSA-ClfA; the open circle symbol represents BSA-ClfB.

5

10

15

20

25

Figure 15 is a graph of cells bound versus fibrinogen concentration showing adherence of *S. aureus* Newman and mutants to fibrinogen immobilized on ELISA plates. Increasing amounts of fibrinogen were used to coat the plates, and a fixed concentration of cells from exponential phase cultures were added. The square symbol represents wild-type; the diamond symbol represents *clfA*; the circle symbol represents *clfAclfB*; the triangle symbol represents *clfAclfB*; the x symbol represents *clfAclfB*, *clfB*<sup>+</sup>.

Figure 16 is a graph of cells bound versus fibrinogen concentration showing adherence of *S. aureus* Newman and mutants to fibrinogen immobilized on ELISA plates. Increasing amounts of fibrinogen were used to coat the plates, and a fixed concentration of cells from stationary phase cultures added. The square symbol represents wild-type; the diamond symbol represents *clfA*; the circle symbol represents *clfB*; the triangle symbol represents *clfAclfB*; the x symbol represents *clfAclfB*, *clfB*<sup>+</sup>.

Figure 17 is a graph of cells bound versus IgG concentration showing effects of preincubation with anti-ClfB IgG on adherence of *S. aureus*Newman and mutants to immobilized fibrinogen. The square symbol represents wild-type; the diamond symbol represents clfA; the circle symbol represents clfB; the x symbol represents clfAclfB, clfB<sup>+</sup>.

Figure 18 is a bar graph showing adherence of *S. aureus* Newman and mutants to explanted hemodialysis tubing. Cells from two hour shake-flask cultures were used. The graph provides the means and SEM of three experiments.

Figure 19 is a bar graph showing adherence of *S. aureus* Newman and mutants to fibrinogen immobilized on PMMA (polymethylmethacrylate) coverslips. Cells from two hour shake-flask cultures were used. The graph provides the means and SEM of three experiments.

Figure 20 is a table which shows the highly conserved amino acid sequences in the A region of ClfA, ClfB, SdrC, SdrD and SdrE, which are used to provide consensus and variable motifs.

10

15

20

25

Figure 21 is a graph of absorbance versus concentration of anti-TYTFTDYVD antibodies, demonstrating the binding of increasing concentrations of the antibodies to ClfA, ClfB or BSA coated plates. BSA-coated plates are used as a control, and no significant binding is observed. The closed square symbol represents antibody bound to ClfB; the open diamond symbol represents antibody bound to ClfA; the open circle symbol represents BSA.

5

10

15

20

25

30

Figure 22 is a Western Blot which illustrates the differing specificities of ClfA and ClfB in the binding of human fibrinogen. The Western Blot was created by the separation of human fibrinogen, and later, the incubation of the nitrocellulose membrane with the A region of either biotinylated ClfA or ClfB. Biotinylated ClfA region A binds the  $\gamma$  chain of fibrinogen, as is seen in lane A2. Biotinylated ClfB region A binds to both the  $\alpha$  and  $\beta$  chains of fibrinogen, as seen in lane B2.

Figure 23 is a bar graph showing adherence of recombinant SdrC region A (SdrCA) to ten different extracellular matrix proteins, BSA, BSP, two forms of collagen, decorin, fibrinogen, fibronectin, laminin, plasmin and vitronectin. The extracellular matrix proteins were immobilized on microtiter wells. Absorbance tests revealed reactivity of SdrCA with fibrinogen, BSP, decorin, plasmin and vitronectin.

#### DETAILED DESCRIPTION OF THE INVENTION

Isolated extracellular matrix-binding proteins, designated ClfB, SdrC, SdrD and SdrE, and their corresponding amino acid and nucleic acid sequences and motifs are described. The proteins, peptides, fragments thereof or antigenic portions thereof are useful for the prevention, inhibition, treatment and diagnosis of *S. aureus* infection and as scientific research tools. Further, antibody or antibody fragments to the proteins, peptides, fragments thereof or antigenic portions thereof are also useful for the prevention, inhibition, treatment and diagnosis of *S. aureus* infection. In

particular, the proteins or antibodies, or active fragements thereof may be administered as vaccines to induce either passive or cellular immunity.

ClfB binds to at least fibrinogen.

SdrC has been discovered to bind to extracellular matrix proteins of the host, including for example, BSP, decorin, plasmin, vitronectin and fibrinogen. SdrD binds to at least vitronectin. SdrE binds to extracellular matrix proteins, for example, bone sialoprotein (BSP).

The amino acid sequence of ClfB is SEQ ID NO:1. The nucleic acid sequence encoding ClfB is SEQ ID NO:2. The nucleic acid and amino acid sequences of ClfB are also provided in Figure 5. The amino acid and nucleic acid sequences of SdrC are SEQ ID NOS:3 and 4 respectively and are provided in Figure 7. The amino acid and nucleic acid sequences of SdrD are SEQ ID NOS:5 and 6 respectively and are provided in Figure 8. The amino acid and nucleic acid sequences of SdrE are SEQ ID NOS:7 and 8 respectively and are provided in Figure 9. The term "isolated" is defined herein as free from at least some of the components with which it naturally occurs. In a preferred embodiment, an isolated component is at least 90% pure, and more preferably 95%.

ClfB has a predicted molecular weight of approximately 88 kDa and an apparent molecular weight of approximately 124 kDa. ClfB is a cell-wall associated protein and binds both soluble and immobilized fibrinogen. In addition, ClfB binds both the alpha and beta chains of fibrinogen and acts as a clumping factor. Despite the low level of identity between ClfA and ClfB, both proteins bind fibrinogen (on different chains) by a mechanism that is susceptible to inhibition by divalent cations, despite not sharing obvious metal binding motifs. The ClfB protein has been demonstrated to be a virulence factor in experimental endocarditis.

The SdrC, SdrD and SdrE proteins are related in primary sequence and structural organization to the ClfA and ClfB proteins and are localized on the cell surface. The SdrC, SdrD and SdrE proteins are cell wall-associated proteins, having a signal sequence at the N-terminus and an

30

15

10

5

15

20

LPXTG motif, hydrophobic domain and positively charged residues at the C-terminus. Each also has an SD repeat containing region R of sufficient length to allow, along with the B motifs, efficient expression of the ligand binding domain region A on the cell surface. With the A region of the SdrC, SdrD and SdrE proteins located on the cell surface, the proteins can interact with proteins in plasma, the extracellular matrix or with molecules on the surface of host cells. The Sdr proteins share some limited amino acid sequence similarity with ClfA and ClfB. Like ClfA and ClfB, SdrC, SdrD and SdrE also exhibit cation-dependent ligand binding of extracellular matrix proteins.

It was surprising to learn that the disclosed extracellular matrix-binding proteins share a unique dipeptide repeat region (region R) including predominately aspartate and serine residues. It had been reported by McDevitt et al., Mol. Microbiol. 11: 237-248 (1994); McDevitt et al., Mol. Microbiol. 16:895-907 (1995) that ClfA also has this R repeat region. He reported that that there were genes in S. epidermidus that hybridized to the gene encoding the R domain containing protein. However, McDevitt et al did not know the function of the R region and had not discovered that other cell surface proteins from S. aureus, S. hemolyticus, S. lugdenensis, S. schleriferi share this unusual motif. Therefore, in one aspect of this invention, a method is provided for the identification of genes and encoding proteins from S. aureus (other than ClfA), S. hemolyticus, S. lugdenensis, S. schleriferi useful for the prevention, treatment, and diagnosis of bacterial infection that includes using the R repeat region as an identifing probe.

The DS repeat is encoded by 18 nucleotide repeats with the consensus (where Y equals pyrimidines and N equals any base)
GAYTCNGAYT CNGAYAGY, with TCN as the first and second serine codons and AGY as the third serine codon. The R region is near the C-terminus of the proteins and typically contains between 40 and 300 DS residues, or more particularly, greater than 40, 60, 80, 100, 125, 150, 200 or 250 repeating units, of which greater than 90, 95 or even 98% of the

amino acids are D or S. The R region DS repeat varies in length between proteins, and while the R region itself does not bind extracellular matrix proteins, the R region enables the presentation of the binding regions of the protein on the cell surface of S. aureus. Thus, probes to the consensus DNA encoding the DS repeat (see above) can be used to identify other genes encoding different binding proteins essential to the attachment of S. aureus to host tissues. Antibodies to an R region can be used to discover such additional binding proteins as well.

The *sdr* genes are closely linked and tandemly arrayed. The Sdr proteins have both organizational and sequence similarity to ClfA and ClfB. At the N-terminus secretory signal sequences precede A regions which are approximately 500 residues in length. The A regions of the Sdr and Clf proteins exhibit only 20-30% residue identity when aligned with any other member of the family.

It has been discovered that in the A region of SdrC, SdrD, SdrE, ClfA, and ClfB, there is highly conserved amino acid sequence that can be used to derive a consensus TYTFTDYVD motif. The motif exhibits slight variation between the different proteins. This variation, along with the consensus sequence of the motif is depicted in Figure 20. In the Clf - Sdr proteins, this motif is highly conserved. The motif can be used in vaccines to impart broad spectrum cellular immunity to bacterial infections, and also can be used as an antigen in the production of monoclonal or polyclonal antibodies. Such an antibody can be used to impart broad spectrum passive immunity.

The Sdr proteins differ from ClfA and ClfB by having two to five additional 110-113 residue repeated sequences (B-motifs) located between region A and the R-region. Each B-motif contains a consensus Ca<sup>2+</sup>-binding EF-hand loop normally found in eukaryotic proteins. The structural integrity of a recombinant protein comprising the five B-repeats of SdrD was shown by bisANS fluorescence analysis to be Ca<sup>2+</sup>-dependent, suggesting that the EF-hands are functional. When Ca<sup>2+</sup> was removed the structure collapsed to an

30

5

10

15

20

unfolded conformation. The original structure was restored by addition of Ca<sup>2+</sup>. The C-terminal R-domains of the Sdr proteins contain 132-170 SD residues. These are followed by conserved wall-anchoring regions characteristic of many surface proteins of Gram positive bacteria. The *sdr* locus was present in all 31 *S. aureus* strains from human and bovine sources tested by Southern hybridization, although in a few strains it contained two rather than three genes.

In the Sdr and Clf proteins this B motif is highly conserved while a degenerate version occurs in fibronectin binding MSCRAMMS, as well as the collagen binding protein Cna. The B motifs, in conjunction with the R regions, are necessary for displaying the ligand-binding domain at some distance from the cell surface.

The repeated B motifs are one common denominator of the sub-group of SD repeat proteins described herein. These motifs are found in different numbers in the three Sdr proteins from strain Newman. There are clear distinctions between the individual B motifs. The most conserved units are those located adjacent to the R regions (SdrC B2, SdrD B5 and SdrE B3). They differ from the rest at several sites, especially in the C-terminal half. A noteworthy structural detail is that adjacent B repeats are always separated by a proline residue present in the C-terminal region, but a proline never occurs between the last B repeats and the R region. Instead this linker is characterized by a short acidic stretch. These differences are evidence that the end units have a different structural or functional role compared to the other B motifs. The N-terminal B motifs of SdrD and SdrE have drifted apart from the others, and there are numerous amino acid alterations, including small insertions and deletions whereas the remaining internal B motifs are more highly conserved. Note that each of the three Sdr proteins has at least one B motif of each kind.

The C-terminal R-domains of the Sdr proteins contain 132-170 SD residues. These are followed by conserved wall-anchoring regions characteristic of many surface proteins of Gram positive bacteria.

30

5

10

15

20

25

ClfB, SdrC, SdrD and SdrE subdomains are shown in Figure 10 and, depending on the protein, include subdomains A and B1-B5.

The terms ClfB protein, SdrC protein, SdrD protein and SdrE protein are defined herein to include ClfB, SdrC, SdrD and SdrE subdomains, and active or antigenic fragments of ClfB, SdrC, SdrD and SdrE proteins, such as consensus or variable sequence amino acid motifs. Active fragments of ClfB, SdrC, SdrD, SdrE and consensus or variable sequence amino acid motifs peptides or proteins are defined herein as peptides or polypeptides capable of blocking the binding of *S. aureus* to extracellular matrix proteins. Antigenic fragments of ClfB, SdrC, SdrD, SdrE proteins or the consensus or variable amino acid motifs are defined herein as peptides or polypeptides capable of producing an immunological response.

### **Nucleic Acid Sequences**

15

10

5

The nucleic acid sequences encoding ClfB, SdrC, SdrD, SdrE and the consensus or variable sequence amino acid motifs are useful for the production of recombinant extracellular matrix- binding proteins. They are further useful as nucleic acid probes for the detection of *S. aureus*-binding proteins in a sample or specimen with high sensitivity and specificity. The probes can be used to detect the presence of *S. aureus* in the sample, diagnose infection with the disease, quantify the amount of *S. aureus* in the sample, or monitor the progress of therapies used to treat the infection. The nucleic acid and amino acid sequences are also useful as laboratory research tools to study the organism and the disease, thus furthering the development of therapies and treatments for the disease.

25

20

It will be understood by those skilled in the art that ClfB, SdrC, SdrD, SdrE and the consensus or variable sequence amino acid motifs are also encoded by sequences substantially similar to the nucleic acid sequences provided in the sequence listing. By "substantially similar" is meant a DNA sequence which, by virtue of the degeneracy of the genetic code, is not identical with that shown in any of SEQ ID NOS:2, 4, 6, and 8, but which

still encodes the same amino acid sequence; or a DNA sequence which encodes a different amino acid sequence but retains the activities of the proteins, either because one amino acid is replaced with another similar amino acid, or because the change (whether it be substitution, deletion or insertion) does not affect the active site of the protein. In the latter case, the sequence has substantial homology to the disclosed sequence if it encodes a protein with at least 70% 80%, 90%, 95% or even 98% of the same amino acids.

Also provided herein are sequences of nucleic acid molecules that selectively hybridize with nucleic acid molecules encoding the extracellular matrix-binding proteins from *S aureus* described herein or complementary sequences thereof. By "selective" or "selectively" is meant a sequence which does not hybridize with other nucleic acids to prevent adequate detection of ClfB, SdrC, SdrD, SdrE or the consensus or variable sequence amino acid motifs. Therefore, in the design of hybridizing nucleic acids, selectivity will depend upon the other components present in a sample. The hybridizing nucleic acid should have at least 70% complementarity with the segment of the nucleic acid to which it hybridizes. As used herein to describe nucleic acids, the term "selectively hybridizes" excludes the occasional randomly hybridizing nucleic acids, and thus, has the same meaning as "specifically hybridizing". The selectively hybridizing nucleic acids of the invention can have at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, and 99% complementarity with the segment of the sequence to which it hybridizes.

The invention contemplates sequences, probes and primers which selectively hybridize to the encoding DNA or the complementary, or opposite, strand of DNA as those specifically provided herein. Specific hybridization with nucleic acid can occur with minor modifications or substitutions in the nucleic acid, so long as functional species-specific hybridization capability is maintained. By "probe" is meant nucleic acid sequences that can be used as probes or primers for selective hybridization with complementary nucleic acid sequences for their detection or

amplification, which probes can vary in length from about 5 to 100 nucleotides, or preferably from about 10 to 50 nucleotides, or most preferably about 18-24 nucleotides. Therefore, the terms "probe" or "probes" as used herein are defined to include "primers". Isolated nucleic acids are provided herein that selectively hybridize with the species-specific nucleic acids under stringent conditions and should have at least 5 nucleotides complementary to the sequence of interest as described by Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular CLONING: A LABORATORY MANUAL, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

If used as primers, the composition preferably includes at least two nucleic acid molecules which hybridize to different regions of the target molecule so as to amplify a desired region. Depending on the length of the probe or primer, the target region can range between 70% complementary bases and full complementarity and still hybridize under stringent conditions. For example, for the purpose of diagnosing the presence of the *S aureus*, the degree of complementarity between the hybridizing nucleic acid (probe or primer) and the sequence to which it hybridizes (e.g., *S. aureus* DNA from a sample) is at least enough to distinguish hybridization with a nucleic acid from other bacteria.

The nucleic acid sequences encoding ClfB, SdrC, SdrD, SdrE active fragments thereof or consensus or variable sequence amino acid motifs can be inserted into a vector, such as a plasmid, and recombinantly expressed in a living organism to produce recombinant ClfB, SdrC, SdrD and SdrE proteins or fragments thereof, such as consensus or variable sequence amino acid motifs. For example, DNA molecules producing recombinant ClfB, SdrC, and both SdrD and SdrE were deposited in plasmids pA1-1EX, pC1 and lambda phage A6-2, respectively, at the NCIMB under the Accession Nos. 40903, 40902 and 40904, respectively on October 13, 1997.

# Methods for the Detection and Identification of S. aureus

Methods of using the nucleic acids described herein to detect and identify the presence of *S. aureus* are provided. The methods are useful for diagnosing *S. aureus* infections and disease such as upper respiratory tract infections (such as otitis media, bacterial tracheitis, acute epiglottitis, thyroiditis), lower respiratory infections (such as emphysema, lung abscess), cardiac (such as infective endocarditis), gastrointestinal (such as secretory diarrhea, splenic abscess, retroperitoneal abscess), central nervous system (such as cerebral abscess), ocular (such as blepharitis, conjunctivitis, keratitis, endophthalmitis, preseptal and orbital cellulitis, darcryocystitis), kidney and urinary tract (such as epididymitis, intrarenal and perinephric abscess, toxic shock syndrome), skin (such as impetigo, folliculitis, cutaneous abscesses, cellulitis, wound infection, bacterial myositis, bone and joint (such as septic arthritis, osteomyelitis).

The method involves the steps of obtaining a sample suspected of containing S. aureus The sample may be taken from an individual, such as a wound, blood, saliva, tissues, bone, muscle, cartilage, or skin. The cells can then be lysed, and the DNA extracted, precipitated and amplified. Detection of S. aureus DNA is achieved by hybridizing the amplified DNA with a S. aureus probe that selectively hybridizes with the DNA as described above. Detection of hybridization is indicative of the presence of S. aureus.

Preferably, detection of nucleic acid (e.g. probes or primers) hybridization can be facilitated by the use of detectable moieties. For example, the probes can be labeled with biotin and used in a streptavidin-coated microtiter plate assay. Other detectable moieties include radioactive labeling, enzyme labeling, and fluorescent labeling, for example.

DNA may be detected directly or may be amplified enzymatically using polymerase chain reaction (PCR) or other amplification techniques prior to analysis. RNA or cDNA can be similarly detected. Increased or decreased expression of ClfB, SdrC, SdrD, SdrE and consensus or variable sequence amino acid motifs can be measured using any of the methods well

25

5

10

15

known in the art for the quantitation of nucleic acid molecules, such as, amplification, PCR, RT-PCR, RNase protection, Northern blotting, and other hybridization methods.

Diagnostic assays which test for the presence of the ClfB or SdrC, SdrD or SdrE proteins, peptides, motifs, fragments thereof or antibodies to any of these may also be used to detect the presence of an infection. Assay techniques for determining protein or antibody levels in a sample are well known to those skilled in the art and include methods such as radioimmunoasssay, Western blot analysis and ELISA (Enzyme-Linked Immunosorbant Assay) assays.

# **Amino Acid Sequences**

5

10

15

20

25

30

It will be understood by those skilled in the art that minor amino acid substitutions or deletions may be present in functional ClfB, SdrC, SdrD, SdrE and consensus or variable sequence amino acid motifs, peptides, proteins, or fragments thereof. The amino acid sequences set forth herein and substantially similar amino acid sequences can be used to produce synthetic ClfB, SdrC, SdrD, SdrE and consensus or variable sequence amino acid motifs, peptides, proteins or active fragments thereof. Active ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motifs, peptide or protein fragments are defined herein as ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motifs, portions or peptides that bind to extracellular matrix proteins or compete with or prevent *S. aureus* organisms from binding to extracellular matrix proteins such as decorin, plasmin, fibrinogen, vitronectin or bone sialoprotein.

When used in conjunction with amino acid sequences, the term "substantially similar" means an amino acid sequence which is not identical to SEQ ID NOS:1, 3, 5, or 7, but which produces a protein having the same functionality and retaining the activities of ClfB, SdrC, SdrD, SdrE and consensus or variable sequence amino acid motifs, either because one amino acid is replaced with another similar amino acid, or because the change

(whether it be substitution, deletion or insertion) does not affect the active site of the protein or peptide. Two amino acid sequences are "substantially homologous" when at least about 70%, (preferably at least about 80%, and most preferably at least about 90% or 95%) of the amino acids match over the defined length of the sequences.

# **Extracellular Matrix-Binding Protein Antibodies**

5

10

15

20

25

30

The isolated, recombinant or synthetic ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motifs, or peptides or active fragments thereof or fusion proteins thereof, are useful as scientific research tools to identify *S. aureus* binding sites on the extracellular matrix. This will promote an understanding of the mechanisms of bacterial pathology and the development of antibacterial therapies. Furthermore, the isolated, recombinant or synthetic protein, or antigenic portions thereof (including epitope-bearing fragments), or fusion proteins thereof can be administered to humans or animals as immunogens or antigens. It can be administered alone or in combination with an adjuvant, for the production of antisera reactive with ClfB, SdrC, SdrD, SdrE or motifs or peptides thereof. In addition, the peptides or proteins can be used to screen antisera for hyperimmune patients from whom can be derived antibodies having a very high affinity for the proteins.

Antibodies isolated from the antisera are useful for the specific detection of *S. aureus* or *S. aureus* extracellular matrix-binding proteins or as research tools. The term "antibodies" as used herein includes monoclonal antibodies, polyclonal, chimeric, single chain, bispecific, simianized, and humanized antibodies as well as Fab fragments, including the products of an Fab immunoglobulin expression library.

Monoclonal antibodies are generated by methods well known to those skilled in the art. The preferred method is a modified version of the method of Kearney, et al., J. Immunol. 123:1548-1558 (1979), which is incorporated by reference herein. Briefly, animals such as mice or rabbits

are inoculated with the immunogen in adjuvant, and spleen cells are harvested and mixed with a myeloma cell line, such as P3X63Ag8,653. The cells are induced to fuse by the addition of polyethylene glycol. Hybridomas are chemically selected by plating the cells in a selection medium containing hypoxanthine, aminopterin and thymidine (HAT). Hybridomas producing the preferred antibodies are cloned, expanded and stored frozen for future production.

5

10

15

20

25

30

Techniques for the production of single chain antibodies are known to those skilled in the art and described in U.S. Patent No. 4,946,778 and can be used to produce single chain antibodies to the proteins described herein. Phage display technology may be used to select antibody genes having binding activities for ClfB, SdrC, SdrD, SdrE, and consensus or variable sequence amino acid motifs, or antigenic portions thereof, from PCR-amplified v genes of lymphocytes from humans screened for having antibodies to ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motifs or naive libraries. Bispecific antibodies have two antigen binding domains wherein each domain is directed against a different epitope.

The antibody may be labeled directly with a detectable label for identification and quantitation of *S. aureus*. Labels for use in immunoassays are generally known to those skilled in the art and include enzymes, radioisotopes, and fluorescent, luminescent and chromogenic substances including colored particles such as colloidal gold and latex beads. Suitable immunoassays include enzyme-linked immunosorbent assays (ELISA).

Alternatively, the antibody may be labeled indirectly by reaction with labeled substances that have an affinity for immunoglobulin, such as protein A or G or second antibodies. The antibody may be conjugated with a second substance and detected with a labeled third substance having an affinity for the second substance conjugated to the antibody. For example, the antibody may be conjugated to biotin and the antibody-biotin conjugate detected using labeled avidin or streptavidin. Similarly, the antibody may be conjugated to a hapten and the antibody-hapten conjugate detected using

labeled anti-hapten antibody. These and other methods of labeling antibodies and assay conjugates are well known to those skilled in the art.

Antibodies to the disclosed proteins may also be used in production facilities or laboratories to isolate additional quantities of the protein, such as by affinity chromatography.

The proteins, or antigenic portions thereof, are useful in the diagnosis of *S. aureus* bacterial infections and in the development of anti-*S. aureus* vaccines for active or passive immunization. When administered to a wound or used to coat polymeric biomaterials *in vitro* and *in vivo*, both the proteins and antibodies thereof are useful as blocking agents to prevent or inhibit the initial binding of *S. aureus* to the wound site or biomaterials. Preferably, the antibody is modified so that it is less immunogenic in the patient to whom it is administered. For example, if the patient is a human, the antibody may be "humanized" by transplanting the complimentarity determining regions of the hybridoma-derived antibody into a human monoclonal antibody as described by Jones *et al.*, *Nature* 321:522-525 (1986) or Tempest *et al. Biotechnology* 9:266-273 (1991).

Medical devices or polymeric biomaterials to be coated with the antibodies, proteins and active fragments described herein include, but are not limited to, staples, sutures, replacement heart valves, cardiac assist devices, hard and soft contact lenses, intraocular lens implants (anterior chamber, posterior chamber or phakic), other implants such as corneal inlays, kerato-prostheses, vascular stents, epikeratophalia devices, glaucoma shunts, retinal staples, scleral buckles, dental prostheses, thyroplastic devices, laryngoplastic devices, vascular grafts, soft and hard tissue prostheses including, but not limited to, pumps, electrical devices including stimulators and recorders, auditory prostheses, pacemakers, artificial larynx, dental implants, mammary implants, penile implants, cranio/facial tendons, artificial joints, tendons, ligaments, menisci, and disks, artificial bones, artificial organs including artificial pancreas, artificial hearts, artificial limbs, and heart valves; stents, wires, guide wires, intravenous and central

26

5

10

15

20

25

venous catheters, laser and balloon angioplasty devices, vascular and heart devices (tubes, catheters, balloons), ventricular assists, blood dialysis components, blood oxygenators, urethral/ureteral/urinary devices (Foley catheters, stents, tubes and balloons), airway catheters (endotracheal and tracheostomy tubes and cuffs), enteral feeding tubes (including nasogastric, intragastric and jejunal tubes), wound drainage tubes, tubes used to drain the body cavities such as the pleural, peritoneal, cranial, and pericardial cavities, blood bags, test tubes, blood collection tubes, vacutainers, syringes, needles, pipettes, pipette tips, and blood tubing.

10

5

It will be understood by those skilled in the art that the term "coated" or "coating", as used herein, means to apply the protein, antibody, or active fragment to a surface of the device, preferably an outer surface that would be exposed to *S. aureus* infection. The surface of the device need not be entirely covered by the protein, antibody or active fragment.

15

20

## **Immunological and Pharmaceutical Compositions**

Immunological compositions, including vaccine, and other pharmaceutical compositions containing the ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motif, peptides or proteins are included within the scope of the present invention. One or more of the ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motif, peptides, proteins, or active or antigenic fragments thereof, or fusion proteins thereof can be formulated and packaged, alone or in combination with other antigens, using methods and materials known to those skilled in the art for vaccines. The immunological response may be used therapeutically or prophylactically and may provide antibody immunity or cellular immunity such as that produced by T lymphocytes such as cytotoxic T lymphocytes or CD4<sup>+</sup> T lymphocytes.

25

The immunological compositions, such as vaccines, and other pharmaceutical compositions can be used alone or in combination with other blocking agents to protect against human and animal infections caused by S.

aureus. In particular, the compositions can be used to protect humans against endocarditis or to protect humans or ruminants against mastitis caused by S. aureus infections. The vaccine can also be used to protect canine and equine animals against similar S. aureus infections.

To enhance immunogenicity, the proteins may be conjugated to a

5

10

carrier molecule. Suitable immunogenic carriers include proteins, polypeptides or peptides such as albumin, hemocyanin, thyroglobulin and derivatives thereof, particularly bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH), polysaccharides, carbohydrates, polymers, and solid phases. Other protein derived or non-protein derived substances are known to those skilled in the art. An immunogenic carrier typically has a molecular weight of at least 1,000 daltons, preferably greater than 10,000 daltons. Carrier molecules often contain a reactive group to facilitate covalent conjugation to the hapten. The carboxylic acid group or amine group of amino acids or the sugar groups of glycoproteins are often used in this manner. Carriers lacking such groups can often be reacted with an appropriate chemical to produce them. Preferably, an immune response is produced when the immunogen is injected into animals such as mice, rabbits, rats, goats, sheep, guinea pigs, chickens, and other animals, most preferably mice and rabbits. Alternatively, a multiple antigenic peptide

20

15

25

30

The ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motif, peptide, protein or proteins may be administered with an adjuvant in an amount effective to enhance the immunogenic response against the conjugate. At this time, the only adjuvant widely used in humans has been alum (aluminum phosphate or aluminum hydroxide). Saponin and its purified component Quil A, Freund's complete adjuvant and other adjuvants used in research and veterinary applications have toxicities which limit their potential use in human vaccines. However, chemically defined

comprising multiple copies of the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide may be sufficiently antigenic to

improve immunogenicity without the use of a carrier.

preparations such as muramyl dipeptide, monophosphoryl lipid A, phospholipid conjugates such as those described by Goodman-Snitkoff *et al*. *J. Immunol*. 147:410-415 (1991) and incorporated by reference herein, encapsulation of the conjugate within a proteoliposome as described by Miller *et al.*, *J. Exp. Med*. 176:1739-1744 (1992) and incorporated by reference herein, and encapsulation of the protein in lipid vesicles such as Novasome™ lipid vesicles (Micro Vescular Systems, Inc., Nashua, NH) may also be useful.

5

10

15

20

25

30

The term "vaccine" as used herein includes DNA vaccines in which the nucleic acid molecule encoding ClfB, SdrC, SdrD, SdrE and consensus or variable sequence amino acid motifs, or nucleic acid molecules which are not identical to the disclosed sequences, but which are substantially homologous thereto and encode peptides or proteins which have the same functionality and activities, or antigenic portions thereof in a pharmaceutical composition is administered to a patient. For genetic immunization, suitable delivery methods known to those skilled in the art include direct injection of plasmid DNA into muscles (Wolff et al., Hum. Mol. Genet. 1:363 (1992)), delivery of DNA complexed with specific protein carriers (Wu et al., J. Biol. Chem. 264:16985 (1989), coprecipitation of DNA with calcium phosphate (Benvenisty and Reshef, Proc. Natl. Acad. Sci. 83:9551 (1986)), encapsulation of DNA in liposomes (Kaneda et al., Science 243:375 (1989)), particle bombardment (Tang et al., Nature 356:152 (1992) and Eisenbraun et al., DNA Cell Biol. 12:791 (1993)), and in vivo infection using cloned retroviral vectors (Seeger et al., Proc. Natl. Acad. Sci. 81:5849, 1984).

Methods of Administration and Dose of Pharmaceutical Compositions

Pharmaceutical compositions containing the ClfB, SdrC, SdrD or SdrE proteins, nucleic acid molecules, antibodies, or fragments thereof may be formulated in combination with a pharmaceutical carrier such as saline, dextrose, water, glycerol, ethanol, other therapeutic compounds, and combinations thereof. The formulation should be appropriate for the mode

of administration. The compositions are useful for interfering with, modulating, or inhibiting S. aureus host cell binding interactions with the extracellular matrix.

Suitable methods of administration include, but are not limited to, topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal and intradermal administration.

5

10

15

20

25

30

For topical administration, the composition is formulated in the form of an ointment, cream, gel, lotion, drops (such as eye drops and ear drops), or solution (such as mouthwash). Wound or surgical dressings, sutures and aerosols may be impregnated with the composition. The composition may contain conventional additives, such as preservatives, solvents to promote penetration, and emollients. Topical formulations may also contain conventional carriers such as cream or ointment bases, ethanol, or olevl alcohol.

In a preferred embodiment, a vaccine is packaged in a single dosage for immunization by parenteral (i.e., intramuscular, intradermal or subcutaneous) administration or nasopharyngeal (i.e., intranasal) administration. The vaccine is most preferably injected intramuscularly into the deltoid muscle. The vaccine is preferably combined with a pharmaceutically acceptable carrier to facilitate administration. The carrier is usually water or a buffered saline, with or without a preservative. The vaccine may be lyophilized for resuspension at the time of administration or in solution.

The carrier to which the protein may be conjugated may also be a polymeric delayed release system. Synthetic polymers are particularly useful in the formulation of a vaccine to effect the controlled release of antigens. For example, the polymerization of methyl methacrylate into spheres having diameters less than one micron has been reported by Kreuter, J., MICROCAPSULES AND NANOPARTICLES IN MEDICINE AND

PHARMACOLOGY, M. Donbrow (Ed). CRC Press, p. 125-148.

Microencapsulation of the protein will also give a controlled release. A number of factors contribute to the selection of a particular polymer for microencapsulation. The reproducibility of polymer synthesis and the microencapsulation process, the cost of the microencapsulation materials and process, the toxicological profile, the requirements for variable release kinetics and the physicochemical compatibility of the polymer and the antigens are all factors that must be considered. Examples of useful polymers are polycarbonates, polyesters, polyurethanes, polyorthoesters polyamides, poly (d,l-lactide-co-glycolide) (PLGA) and other biodegradable polymers. The use of PLGA for the controlled release of antigen is reviewed by Eldridge, J.H., et al. Current Topics in Microbiology and Immunology, 146:59-66 (1989).

One typical dose for human administration is from 0.01 mg/kg to 10 mg/kg. Based on this range, equivalent dosages for heavier body weights can be determined. The dose should be adjusted to suit the individual to whom the composition is administered and will vary with age, weight and metabolism of the individual. The vaccine may additionally contain stabilizers such as thimerosal (ethyl(2-mercaptobenzoate-S)mercury sodium salt) (Sigma Chemical Company, St. Louis, MO) or physiologically acceptable preservatives.

# **Protein-Label Conjugates**

When labeled with a detectable biomolecule or chemical, the extracellular matrix-binding proteins described herein are useful for purposes such as *in vivo* and *in vitro* diagnostics and laboratory research. Various types of labels and methods of conjugating the labels to the proteins are well known to those skilled in the art. Several specific labels are set forth below. The labels are particularly useful when conjugated to a protein such as an antibody or receptor.

For example, the protein can be conjugated to a radiolabel such as, but not restricted to, <sup>32</sup>P, <sup>3</sup>H, <sup>14</sup>C, <sup>35</sup>S, <sup>125</sup>I, or <sup>131</sup>I. Detection of a label can

30

5

10

15

20

be by methods such as scintillation counting, gamma ray spectrometry or autoradiography.

Bioluminescent labels, such as derivatives of firefly luciferin, are also useful. The bioluminescent substance is covalently bound to the protein by conventional methods, and the labeled protein is detected when an enzyme, such as luciferase, catalyzes a reaction with ATP causing the bioluminescent molecule to emit photons of light.

Fluorogens may also be used to label proteins. Examples of fluorogens include fluorescein and derivatives, phycoerythrin, allo-phycocyanin, phycocyanin, rhodamine, and Texas Red. The fluorogens are generally detected by a fluorescence detector.

The protein can alternatively be labeled with a chromogen to provide an enzyme or affinity label. For example, the protein can be biotinylated so that it can be utilized in a biotin-avidin reaction, which may also be coupled to a label such as an enzyme or fluorogen. For example, the protein can be labeled with peroxidase, alkaline phosphatase or other enzymes giving a chromogenic or fluorogenic reaction upon addition of substrate. Additives such as 5-amino-2,3-dihydro-1,4-phthalazinedione (also known as Luminol") (Sigma Chemical Company, St. Louis, MO) and rate enhancers such as p-hydroxybiphenyl (also known as p-phenylphenol) (Sigma Chemical Company, St. Louis, MO) can be used to amplify enzymes such as horseradish peroxidase through a luminescent reaction; and luminogeneic or fluorogenic dioxetane derivatives of enzyme substrates can also be used. Such labels can be detected using enzyme-linked immunoassays (ELISA) or by detecting a color change with the aid of a spectrophotometer. In addition, proteins may be labeled with colloidal gold for use in immunoelectron microscopy in accordance with methods well known to those skilled in the art.

The location of a ligand in cells can be determined by labeling an antibody as described above and detecting the label in accordance with methods well known to those skilled in the art, such as immunofluorescence

30

25

5

10

15

microscopy using procedures such as those described by Warren and Nelson, *Mol. Cell. Biol.* 7: 1326-1337 (1987).

# **Screening Methods**

5

10

15

20

25

30

The ClfB, SdrC, SdrD and SdrE proteins, or fragments thereof, such as consensus or variable amino acid motifs, are useful in a method for screening materials to identify substances that inhibit *S. aureus* host cell binding interactions with the extracellular matrix. In accordance with the method for screening, the substance of interest is combined with one or more of the ClfB, SdrC, SdrD, or SdrE proteins, or fragments thereof, such as consensus or variable sequence amino acid motif peptides, and the degree of binding of the molecule to the extracellular matrix is measured or observed. If the presence of the substance results in the inhibition of binding, then the substance may be useful for inhibiting *S. aureus in vivo* or *in vitro*. The method could similarly be used to identify substances that promote *S. aureus* interactions with the extracellular matrix.

The method is particularly useful for identifying substances having bacteriostatic or bacteriocidal properties.

For example, to screen for *S. aureus* agonists or antagonists, a synthetic reaction mixture, a cellular compartment (such as a membrane, cell envelope or cell wall) containing one or more of the ClfB, SdrC, SdrD, SdrE proteins, or fragments thereof, such as consensus or variable sequence amino acid motifs, and a labeled substrate or ligand of the protein is incubated in the presence of a substance under investigation. The ability of the substance to agonize or antagonize the protein is shown by a decrease in the binding of the labeled ligand or decreased formation of substrate product. Substances that bind well and increase the rate of product formation from substrate are agonists. Detection of the rate or level of formation of product from substrate may be enhanced by use of a reporter system, such as a calorimetric labeled substrate converted to product, a reporter gene that is responsive to changes in ClfB, SdrC, SdrD, SdrE or

consensus or variable amino acid sequence motifs' nucleic acid or protein activity, and binding assays known to those skilled in the art. Competitive inhibition assays can also be used.

Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motifs' nucleic acid molecules or proteins and thereby inhibit their activity or bind to a binding molecule (such as fibrinogen) to prevent the binding of the ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motifs' nucleic acid molecules or proteins to the binding molecule. For example, a compound that inhibits ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motifs' activity may be a small molecule that binds to and occupies the binding site of the ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motif peptide or protein, thereby preventing binding to cellular binding molecules. Examples of small molecules include, but are not limited to, small organic molecules, peptides or peptide-like molecules... Other potential antagonists include antisense molecules. Preferred antagonists include compounds related to and variants or derivatives of ClfB, SdrC, SdrD, SdrE or consensus or variable sequence amino acid motif peptides or proteins.

The nucleic acid molecules described herein may also be used to screen compounds for antibacterial activity.

# Therapeutic Applications

25

30

20

5

10

15 .

In addition to the therapeutic compositions and methods described above, the ClfB, SdrC, SdrD, SdrE or consensus or variable amino acid motifs, peptides or proteins, nucleic acid molecules or antibodies are useful for interfering with the initial physical interaction between a pathogen and mammalian host responsible for infection, to mammalian extracellular matrix proteins on indwelling devices or to extracellular matrix proteins in wounds. they are further useful to block ClfB, SdrC, SdrD, SdrE, or active fragments

thereof, including consensus or variable amino acid motifs, peptide or protein-mediated mammalian cell invasion. In addition, these molecules are useful to mediate tissue damage and to block the normal progression of pathogenesis in infections.

5

### S. aureus Detection Kit

10

15

20

25

30

The invention further contemplates a kit containing one or more ClfB, SdrC, SdrD, SdrE proteins, peptides, or active fragments thereof, including consensus or variable amino acid motif- encoding nucleic acid probes. These probes can be used for the detection of S. aureus or S. aureus extracellular matrix-binding proteins in a sample. Such a kit can also contain the appropriate reagents for hybridizing the probe to the sample and detecting bound probe.

In an alternative embodiment, the kit contains one or more ClfB, SdrC, SdrD, or SdrE proteins, peptides or consensus or variable amino acid motif-specific antibodies, which can be used for the detection of S. aureus organisms or S. aureus extracellular matrix-binding proteins in a sample.

In yet another embodiment, the kit contains one or more ClfB, SdrC, SdrD or SdrE-proteins, or active fragments thereof, such as the consensus or variable sequence amino acid motifs, which can be used for the detection of S. aureus organisms or S. aureus extracellular matrix-binding antibodies in a sample.

The kits described herein may additionally contain equipment for safely obtaining the sample, a vessel for containing the reagents, a timing means, a buffer for diluting the sample, and a colorimeter, reflectometer, or standard against which a color change may be measured.

In a preferred embodiment, the reagents, including the protein or antibody, are lyophilized, most preferably in a single vessel. Addition of aqueous sample to the vessel results in solubilization of the lyophilized reagents, causing them to react. Most preferably, the reagents are sequentially lyophilized in a single container, in accordance with methods

well known to those skilled in the art that minimize reaction by the reagents prior to addition of the sample.

# **Examples**

5

The present invention is further illustrated by the following non-limiting examples, which are not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention.

### Example 1

15

10

Gene Cloning, Sequencing and Expression

A fibrinogen-binding protein gene, designated *clfB*, was isolated, cloned and sequenced as follows:

# Bacterial strains and growth conditions

20

The E. coli and S. aureus strains used for the cloning and sequencing of clfB are listed in Table 1, below. Escherichia coli was routinely grown on L-broth or agar. S. aureus was routinely grown on trypticase soy broth (Oxoid) or agar. The following antibiotics were incorporated into media where appropriate: ampicillin (Ap),  $100 \mu g/ml$ ; tetracycline (Tc),  $2 \mu g/ml$ ; chloramphenicol (Cm),  $5 \mu g/ml$ ; erythromycin (Em)  $10 \mu g/ml$ .

25

TABLE 1. Bacterial strains used in the present study

| 5  | Bacterial strain E. coli | Genotype                                                                                                    | Relevant properties/<br>Use in present study                                                          | Source/reference                                                            |
|----|--------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|    | C600                     | F', lacY1, leuB6,<br>supE44, thi-1, thr-1,<br>tonA21                                                        | Propagation of lambda recombinants                                                                    | Appleyard, Genetics 39:440-452 (1954)                                       |
|    | DH5α                     | deoR, endA1, gyrA96,                                                                                        | Recombination deficient,<br>host strain for plasmids<br>and for DNA sequencing                        | J. Mol. Biol.                                                               |
|    | JM101                    | supE, thi-1, (lac-<br>proAB), [F' traD36,<br>proAB, lac1°ZM15]                                              | Host strain for plasmid<br>bank and for sequencing                                                    | Stratagene (L. Jolla, CA)                                                   |
|    | LE392                    | F, $(r_k^-, m_k^+)$ , galK2,<br>galT22, hsdR574,<br>lacY1 or (lacIZY)6,<br>metB1, supE44,<br>supF58, trpR55 | Propagation of lambda recombinants                                                                    | Promega Corp.                                                               |
| 10 | XL-1 Blue                |                                                                                                             | [F' proAB, lacI°ZM15,<br>Tn10(tc')], endA1,<br>gyrA96, hsdR17, lac,<br>recA1, relA1, supE44,<br>thi-1 |                                                                             |
|    | S. aureus                |                                                                                                             |                                                                                                       |                                                                             |
|    | Newman                   |                                                                                                             | Strong adherence to fibrinogen                                                                        | NCTC 8178; Duthie and Lorenz, J. Gen. Microbiol. 6: 95-107 (1952)           |
|    | DU5876                   |                                                                                                             | clfA2::Tn917, Em-                                                                                     | McDevitt et al.,<br>Mol. Microbiol.<br>11:237-248 (1994)                    |
|    | DU5943                   |                                                                                                             | clfB::Tcr, Tcr                                                                                        | described herein                                                            |
| 15 | DU5944                   |                                                                                                             | clfAclfB, Emr, Tcr                                                                                    | described herein                                                            |
|    | DU5874                   |                                                                                                             | spa::Tcr                                                                                              | Protein A-defective                                                         |
|    |                          | ·                                                                                                           |                                                                                                       | mutant of<br>NewmanMcDevitt et<br>al., Mol. Microbiol.<br>16:895-907 (1995) |
|    | ∆ map                    |                                                                                                             |                                                                                                       | M c D e v i t t, unpublished                                                |
|    | 8325-4                   |                                                                                                             | NCTC 8325 cured of prophages                                                                          | •                                                                           |
|    | ISP546                   |                                                                                                             | <i>agr</i> ::Tn <i>551</i>                                                                            | 8325-4 agrBrown<br>and Pattee, Infect.<br>Immun. 30:36-42<br>(1980)         |

RN4220 Restriction deficient Kreiswirth et al., derivative of 8325-4 Nature 305:709-712 (1983)**V8** V8 protease ATCC 27733 producer, produces PV leukocidin Cowan 1 Classic protein A ATCC 12598 producer, adheres well to fibrinogen and fibronectin RN4282 TSST-1 producer Kreiswirth et al., 1983 (as 3-14) Phillips Collagen binding strain Patti et al., Infect. Immun. 62: 152-161 (1994)V13 Septicaemia isolate O'Reilly et al., Mol. Microbiol. 4: 1947-1955 (1990) **GH13** Methicillin resistant Poston and Li Saw Hee, J. Med. Microbiol. 34:193-201 (1991) Pl Rabbit virulent strain Sherertz et al., J. Infect. Dis. 167: 98-106 (1993) M60 Anderson, Zentralbl Bovine mastitis isolate Bakteriol Parasitenkd Infektionskr Hyg Abt. 1 Orig Reihe A 5(Suppl.): 783-790 (1976)

# DNA manipulation

5

10

15

Unless otherwise specified, DNA manipulations were done according to standard methods as described by Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY. New York, John Wiley and Sons (1987) and Sambrook et al., Molecular Cloning: A laboratory manual, 2nd ed. Cold Spring Harbour, New York, Cold Spring Harbour Laboratory Press (1989). Enzymes for DNA manipulation were obtained from New England Biolabs (Beverly, MA) and Promega (Madison, WI), and used as directed by the manufacturer. Genomic DNA from S. aureus Newman was prepared according to methods of Muller et al., Infect. Immun. 61:551-558 (1993).

Smaller scale preparations were made by lysing cells in phosphate buffered saline (PBS) containing 12 µg/ml lysostaphin and 20 mM EDTA (ethylenediaminetetraacetic acid), followed by protease K treatment (500 µg/ml in 1% SDS) for 1 hour at 60°C, extraction with phenol and chloroform, and dialysis against 10mM Tris HCL, pH 8.0, 1mM EDTA. Plasmid DNA was prepared from S. aureus according to the method of Vriesema et al., Appl. Environ. Microbiol. 62:3527-3529 (1996). E. coli plasmid DNA for use in polymerase chain reaction (PCR) and sequencing was routinely made by the modified alkaline lysis method of Feliciello and Chinali, Anal. Biochem. 212:394-401 (1993), and occasionally by large scale isolation and dye-buoyant density centrifugation. Screening of E. coli transformants for chimeric plasmids was routinely done by the rapid colony lysis procedure of Le Gouill and Dery, Nucl. Acids Res. 19:6655 (1994).

### Cloning of repeat-containing loci

5

10

15

20

25

30

A genomic library of *S. aureus* Newman was constructed in the LambdaGEM-12 replacement vector (obtained as prepared *Xho*I half-site arms from Promega Madison, WI)) according to the manufacturer's instructions. Oligonucleotide probes specific for regions A and R of *S. aureus* Newman were made by polymerase chain amplification of these regions from the cloned gene on pCF14, as described by McDevitt and Foster, *Microbiology* 141:937-943 (1995), and random-primer labeled with [alpha-<sup>32</sup>P]dATP using the Promega Prime-a-Gene<sup>TM</sup> kit (Promega). The bank was screened by Southern blotting, using an overnight hybridization temperature of 65°C. Selected clones were single plaque purified twice, and plate-lysate stocks made for storage and for inoculation of liquid cultures for the large-scale preparation of phage for DNA isolation.

A 3.87-kb *HindIII* fragment containing homology to region R DNA was cloned from the genome of *S. aureus*. *HindIII*-cleaved genomic DNA in the range of 3-4 kb was excised from an agarose gel, purified, and ligated to the pBluescript cloning vector. Plasmids were transformed into *E. coli* 

JM101 and identification of a recombinant *E. coli* containing a region R DNA insert was identified by PCR screening. PCR products were generated using primers specific for region R DNA. Individual colonies within a pool producing a positive PCR reaction were then analyzed for their potential to generate a PCR product. One transformant, pC1, was identified and found to contain the 3.87-kb fragment with homology to region R.

# **DNA** sequencing

5

10

15

20

25

30

The DNA sequence of *clfB* was obtained from pA1-1EX, a plasmid containing a fragment subcloned from recombinant phage A1-1 into pGEM 7Z (f)+. Nested deletions were made using the Erase-a-Base<sup>TM</sup> Kit (Promega). The Flash Dye Primer Sequencing Kit (Genpak) was used for sequencing in a Model 373A sequencing system (Applied Biosystems, Foster City, CA). Confirmatory sequencing in the forward direction was carried out. Double stranded sequencing of *sdrD* and *sdrE* was done on the subclones pEJ1, pEJ2 and pEJ3, containing fragments subcloned from recombinant phage A6-2 in pGEM 7Z (f)+, by nested deletions and primer walking. Automated sequence analysis of *sdrC* and the 5' end of *sdrD* on plasmid clone pC1 was performed. Sequence analysis was performed on both strands by primer extension to known sequences.

# Screening of S. aureus strains for clfB homologues

A probe specific for the region A-encoding portion of *clfB* was made by excising a 614 bp internal *Acc*I fragment from pA1-1EX, purifying from an agarose gel using the GENECLEAN II<sup>rd</sup> kit (BIO 101 Inc., La Jolla, CA), and labeling with [alpha-<sup>32</sup>P]dATP as described in Figure 2. A probe was similarly made to distal regions of the gene (encoding region R, the wall and membrane-spanning regions, and about 100 bp of downstream DNA), using a 1.2 kb *Bam*HI fragment from pA1-1EX. *Hin*dIII digests of genomic DNA from a panel of strains were Southern blotted and screened using these probes.

# Expression of clfB region A

Region A (encoding residues S45 to N542) of *clfB* was amplified from pA1-1EX by PCR using the following primers:
(SEQ ID NO:15)

Forward:

5

10

15

20

25

5' CGAGGATCCTCAGGACAATCGAACGATACAACG 3' (SEQ ID NO:16)

Reverse: 5' CGAGGTACCATTTACTGCTGAATCACC 3'.

Cleavage sites for BamHI and KpnI (underlined) were appended to the 5' ends of the respective primers to introduce these sites into the product and facilitate its cloning into expression vectors. The forward primer was subsequently found to include a single base mismatch (G, underlined), changing an E codon to a G codon. Reaction mixtures (50  $\mu$ l) contained 2 mM dNTPs, 1.5 mM MgCl<sub>2</sub>, 1 ng pA1-1EX, 50 nM primers and 1.25 U Tag polymerase in standard Promega (Madison, WI) Tag reaction buffer. Amplification proceeded in a Perkin Elmer Cetus (Foster City, CA) thermocycler with an initial denaturation at 94°C for 4 minutes, followed by 30 cycles with denaturation at 94°C for 1 minute, annealing at 50°C, and extension at 72°C for 1.5 minutes, with minimum heating and cooling between steps. The final extension was for 10 minutes. A single product was obtained, which was purified using the Wizard™ PCR purification kit (Promega). The product was initially cloned into the His-tag expression vector pQE30. However, because high-level expression was not obtained in this system, the product was recloned into an alternative vector, the GST fusion vector pGEX-KG, between the BamHI and HindIII sites. The recombinant protein was recovered from lysates by affinity chromatography on glutathione-sepharose (GST Gene Fusion System™, Pharmacia, Piscataway, NJ) and from the glutathione-S-transferase fusion partner by thrombin cleavage.

### Cloning of repeat carrying loci

A library of *S. aureus* Newman genomic DNA was made using the replacement lambda vector LambdaGEM<sup>TM</sup>-12. About 10 000 plaques were screened using the region R-specific probe. Of the 60 positive plaques retained, 26 were purified and counter-screened with a *clfA* region A-specific probe. One plaque hybridized with the latter, indicating that it contained the *clfA* gene; of the remaining, non-hybridizing plaques, three were selected at random, and the DNA isolated. The DNA was cut with several restriction enzymes and analyzed by Southern blotting using the region R probe. Clones A1-1 and A2-3 appeared to contain overlapping sequences. Restriction mapping and Southern blotting indicated that these clones contained a single region R homologue. Clone A6-2 was found to contain three region R homologues, since cleavage with *Eco*RV yielded three fragments hybridizing to the region R probe.

Clone A1-1 was chosen for more detailed study, as the hybridizing fragment was slightly longer than in clone A2-3. A 7.4 kb *Eco*RI fragment containing the repeat region was subcloned from lambda clone A1-1 into plasmid pGEM 7Z f(+) to generate plasmid pA1-1E. This insert was reduced to approximately 3 kb by excision of a 4.4 kb *Xba*I segment to form pA1-1EX as shown in Figures 2 and 3.

Clone A6-2 was restriction mapped and fragments subcloned into plasmid vectors for sequencing as shown in Figure 4. Southern blotting with the region R probe and preliminary sequencing suggested that there were three tandemly arrayed genes carrying region R encoding sequences. On A6-2 there were two complete ORFs, *sdrD* and *sdrE*, and one incomplete ORF, *sdrC*.

The two complete ORFs were sequenced on fragments subcloned from lambdaA6-2 into plasmid vectors pGEM7Z f(+) (subclones pEJ1 and pEJ2) and pBluescript KS+ (subclone pEJ3). sdrC was cloned separately from S. aureus genomic DNA. A 3.87-kb HindIII fragment of strain Newman was cloned directly into plasmid pBluescript KS+, generating

15

10

5

20

25

clone pC1 (Figure 4). This clone, containing a region R DNA insert, was identified by PCR screening. The sequence of *sdrC* and the 162 bp at the 5' end of *sdrD* were determined from pC1.

Plasmid pA1-1EX, carrying the *clfB* gene, was deposited at the National Collections of Industrial and Marine Bacteria on October 13, 1997 under the Accession No. 40903. Plasmid pC1, carrying the gene for *sdrC*, was deposited at the National Collections of Industrial and Marine Bacteria under the Accession No. NCIMB 40902 on October 13, 1997 and a recombinant lambda phage A6-2, carrying the *sdrD* and *sdrE* genes, was deposited at the NCIMB on October 13, 1997 under the Accession No. NCIMB 40904. All deposits comply with the terms of the Budapest Treaty.

### Features of ClfB

5

10

15

20

25

30

The translated open reading frame (ORF) contained within pA1-1EX is shown in Figure 5. The ORF shows features reminiscent of secreted proteins of Gram positive cocci. Although the entire ORF is shown in Figure 5, the start codon is unlikely to be the N codon. There is no ATG codon at the 5' end of the ORF. However, GTG and TTG are occasionally used as translational start codons in S. aureus, although methionine is the actual amino acid residue inserted, e.g., the fibronectin binding proteins (GTG), and protein A (TTG). The first TTG codon (L) may well be the initiation codon, as a possible ribosome binding site, GGAG, is suitably located upstream, starting at position -12. The N-terminal 44 amino acid residue region thus predicted has properties similar to signal sequences of secreted proteins of Gram positive cocci, i.e., an initial stretch of 19 mostly polar residues, with an overall positive charge, followed by 18 neutral residues with a high content of hydrophobic residues, and finally a short stretch of mainly polar residues with a good consensus cleavage site, AOA-S.

If the above prediction of the signal sequence is correct, region A of ClfB is 498 residues long, and shows 26.3% residue identity with the

equivalent region in ClfA, or 44.4% homology when conservative substitutions are included. The most marked stretch of amino acid similarity between ClfA and ClfB occurs between residues 314-329 (ClfA) and 304-319 (ClfB), with 7 identical and 5 conserved residues. In ClfA, the stretch overlaps the C-terminal half of a putative Ca<sup>2+</sup> binding loop, EF hand I, required for fibrinogen binding as shown in Figure 6. The sequence DYSNS, which obeys the consensus for the N-terminal moiety of a MIDAS motif, occurs a short distance upstream. Accordingly, the downstream sequence was inspected for D and T residues to complete the motif. D and T occur frequently throughout the protein, and T 339 is suitably located, 63 residues downstream. However, the consensus would require a D residue 14-23 residues downstream from the T, and in the present case, the nearest D residues are 9 or 28 residues away (D 348 and D 367).

5

10

15

20

25

At the C-terminal end of region A, a prominent proline-rich region occurs (21/42 residues are P; as shown in Figure 5). There is a 14-residue repeat within this sequence. The DNA encoding the P-rich repeats is highly conserved. Of the three base substitutions, only one results in an amino acid replacement, a conservative substitution of S for T.

Region R is somewhat shorter in *clfB* than in *clfA* (272 residues instead of 308). The region R encoding sequence comprises the 18-bp consensus repeat observed in the equivalent part of *clfA*.

Following region R is a short stretch of predominantly hydrophilic residues, containing the distinctive LPETG motif near its C-terminal end, presumably the cell sorting signal. The C-terminal region of the predicted protein shows strong homology with the corresponding region in ClfA, with an initial stretch of mostly hydrophobic residues and a final stretch rich in positively charged residues, reminiscent of membrane spanning and anchoring domains, respectively. The general organization of ClfA and ClfB is compared in Figure 1.

A putative transcription termination signal occurs 3' to *clfB*. No open reading frames occur within 260 bp 5' or 200 bp 3', suggesting that the gene is not part of an operon.

### Features of SdrC, SdrD and SdrE

The DNA sequences and the translated amino acid sequences of sdrC, sdrD and sdrE are shown in Figures 7, 8 and 9. Each predicted protein has a putative signal sequence, an approximately 500 residue "region A" with limited homology to region A of ClfA (see Figure 10), variable numbers of B repeats, an SD repeat containing region R, an LPXTG cell wall sorting motif, a hydrophilic membrane anchor, and positively charged residues at the extreme C terminus.

The organization of the five region R containing proteins is shown in Figure 10. The A regions of SdrC, SdrD and SdrE have limited sequence similarity to each other and to those of ClfA and ClfB as shown in Figure 11. Alignments of those sequences more strongly conserved between all five proteins are shown in Figure 12. The consensus motif TYTFTDYVD overlaps the EF hand 1 motif of ClfA (alignment 2, Figure 12). This region of ClfA has been shown to be of crucial significance in its ligand (fibrinogen) binding activity as described by O'Connell et al.,

J. Biol. Chem., 273:6821-6829 (1998), and may also be of importance in the biological activity of the new proteins.

The three proteins SdrC, SdrD and SdrE form a separate subgroup of region R containing proteins: in addition to regions R and A they contain variable numbers of B repeats, located between region A and region R. The B repeats are 110-113 amino acids long and show considerable similarity (alignment 5, Figure 12). The repeats SdrC B2, SdrD B5 and SdrE B3 adjacent to region R are 93-95% identical. There is a strongly conserved EF hand near the N-terminal end of each repeat.

clfB homologues in other S. aureus strains

5

10

15

20

Nine strains of S. aureus were screened for the clfB gene by Southern blotting. Genomic DNA was cut to completion with HindIII, and probed with an internal 0.6 kb AccI fragment of the region A coding sequence of clfB, shown in Figure 2. The probe recognized a single HindIII fragment varying from 2 to 3 kb in length in all nine strains, indicating that each possesses a single clfB allele. A probe made from the region R and distal regions of clfB recognized an identical band in all strains, indicating that the clfB homologues in other strains also contain region R.

Expression of clfB

5

10

15

20

25

30

The portion of clfB encoding region A was amplified by PCR using primers incorporating suitable 5' restriction sites, and cloned into the E. coli expression vector pGEX-KG. A protein of 94.3 kDa was detected in lysates of induced bacteria. The GST-ClfB fusion protein was immobilized on a glutathione sepharose affinity column, cleaved with thrombin, and examined by SDS-PAGE. The predominant band was 42 kDa, whereas the calculated molecular weight of region A is 54 kDa. This protein was used to raise antibody in rabbits, to probe Western blots of cell lysates made from strain Newman grown under a variety of conditions, as described below. The antibody failed to detect any antigens in lysates made from plate cultures. statically grown broth cultures, or shake-flask cultures grown to stationary phase. A single 124-kDa band was detected in lysates made from exponential phase shake-flask cultures of strain Newman and derivatives. If it is assumed that processing removes the signal sequence and the C-terminal portion of the protein from the last G of the LPETG, the predicted molecular weight of ClfB is 88.3 kDa. In a time-course of ClfB production by a shake-flask culture of strain Newman, the ClfB protein was most abundant in the early exponential phase and showed a sharp decline toward the end of exponential phase, after which levels became undetectable. The results of the time-course study are shown in Figure 13.

# Example 2

# Production of Anti-ClfB Serum

Antibodies to recombinant region A were raised in two young New Zealand white rabbits (2 kg) showing no prior reaction with E. coli or S. aureus antigens in Western blots. Injections, given subcutaneously, contained 25  $\mu$ g of the antigen, diluted to 500 ml in phosphate buffered saline (PBS) emulsified with an equal volume of adjuvant. The initial injection contained Freund's complete adjuvant; the two to three subsequent injections, given at two-week intervals, contained Freund's incomplete adjuvant. When the response to the recombinant protein was judged adequate, the rabbits were bled, serum recovered, and total IgG purified by affinity chromatography on protein A sepharose (Sigma Chemical Co., St. Louis, MO).

### SDS-PAGE and Western blotting

Samples were analyzed by SDS-PAGE in 10 or 12% acrylamide gels. Isolated proteins and E. coli cell lysates were prepared for electrophoresis by boiling for five minutes in denaturation buffer. For S. aureus, cells were suspended to an OD600 of 40 units in 100 mM PBS containing 10 mM EDTA. To each 500 μl sample, 40 μl protease inhibitors (Complete<sup>TM</sup> cocktail, Boehringer Mannheim, Indianapolis, IN), 5 µl each of DNAse and RNAse (from 10 mg/ml stocks, Sigma Chemical Co.), and 60 µl of a 2 mg/ml lysostaphin stock (Ambicin L™ recombinant lysostaphin, Applied Microbiology Inc., Tarrytown, NY) were then added and the suspension incubated in a 37°C water bath until it cleared. The samples were then processed as usual. Gels were stained with Coomassie blue or transferred to Nytran™ membrane by Western blotting in the Bio-Rad Semidry™ system (Bio-Rad Laboratories, Richmond, CA). For detection of native ClfB in S. aureus, blots were processed using the BM Chemiluminescence Detection System™ (POD) of Boehringer Mannheim, according to the manufacturer's instructions. Primary anti-ClfB antibody was used at a 1/1000 dilution, for

5

10

15

20

a two hour incubation at room temperature. Protein A conjugated with horse radish peroxidase (Sigma Chemical Co.) was used to detect bound antibody, diluted 1/2000 for a one hour incubation at room temperature. Blots requiring less sensitivity were treated in a similar way, except that 5% skim milk was used as a blocking agent, and the blots were developed using chloronaphthol and hydrogen peroxide.

To determine whether ClfB is cell wall-associated, whole cells from an exponential phase culture were treated with lysostaphin in buffer supplemented with 30% raffinose to stabilize the protoplasts. The protoplasts were harvested, and the protoplasts and supernatant analyzed separately by Western blotting. ClfB protein was detected only in the supernatant, indicating that all ClfB was cross-linked to the peptidoglycan, and could be released by lysostaphin without disruption of the protoplast.

ClfB expression was enhanced by growth in rich media, such as tryptone soy broth or brain heart infusion.

Several S. aureus strains known to contain clfB alleles were screened for ClfB production by Western blotting. Cultures were harvested in early exponential phase to maximize expression. Of the nine strains examined, 8325-4, RN4282, and V13 expressed immunoreactive antigens of similar size and intensity to that of Newman, whereas strains GH13 and P1 had very weak bands of this size. Strains P1, Cowan and M60 expressed smaller immunoreactive antigens which may be degradation products. Strains V8 and Phillips expressed no detectable ClfB protein. Strain RN4220, which was derived from 8325-4, expressed exceptionally high levels of ClfB.

25

30

5

10

15

20

# Example 3

Immunoassay for ClfB Using Biotinylated Recombinant ClfB Region A

The DNA encoding region A of *clfB* (encoding residues S45 to N542) was amplified from genomic DNA of *S. aureus* Newman using the following primers:

(SEQ ID NO:17)

Forward:

5

10

15

20

25

30

5' CGAAAGCTTGTCAGAACAATCGAACGATACAACG 3'

(SEO ID NO:16)

Reverse: 5' CGAGGATCCATTTACTGCTGAATCACC 3'

Cleavage sites for *HindIII* and *BamHI* (underlined) were appended to the 5' ends of the respective primers to facilitate cloning of the product into the His-tag expression vector pV4. Cloning employed *E. coli* JM101 as a host strain. The recombinant region A was purified by nickel affinity chromatography.

# Enzyme linked immunosorbent assay (ELISA)

Immulon 1<sup>™</sup> plates (Dynatech™, Dynal, Inc., Great Neck, NY) were coated overnight with 100 μl of 10 μg/ml human fibrinogen (Chromogenix). They were then blocked with 200 μl of 5 mg/ml bovine serum albumin (BSA) for one hour. The plates were then incubated for three hours with 100 μl biotinylated ClfB (His-tag recombinant region A) diluted to 0.1-10 μg/ml. They were then given three five-minute washes with PBS containing 0.02% Tween 20 and 1 mg/ml BSA. The plates were then incubated for one hour with 100 μl of a 1/10 000 dilution of streptavidin conjugated with alkaline phosphatase (Boehringer Mannheim, Indianapolis, IN), and washed as before. The plates were then developed for 30 minutes at 37°C with 100 μl of 1 M diethanolamine, pH 9.8, containing 1 mg/ml p-nitrophenyl phosphate (Sigma Chemical Co.). Plates coated with BSA only were used as negative controls. The absorbance was measured at 405 nm.

# Western affinity blotting

A 20  $\mu$ g quantity of human fibrinogen (Chromogenix) was subjected to SDS-PAGE on a 15% acrylamide gel for two hours. Proteins were transferred to nitrocellulose at 100 V for two hours. The membrane was blocked overnight in PBS containing 10% nonfat dry milk. The blot was

then incubated with 2.5 μg/ml biotinylated ClfB (His-tag recombinant region A) for one hour with shaking, the biotinylation being performed with EZ link-sulfo-NHS-LC-Biotin<sup>™</sup> (Pierce, Rockford, IL). The blot was then given three five-minute washes in PBS containing 0.1% Tween 20. The blot was then incubated for one hour with avidin conjugated with horseradish peroxidase (Boehringer Mannheim) at a 1/200,000 dilution. The blot was then washed as before, and developed using the enhanced chemiluminescence system of Amersham (Little Chalfont, Bucks, UK). The band profile was compared with that obtained by subjecting fibrinogen to SDS-PAGE and Coomassie Blue staining.

In a Western affinity blot, in which biotinylated purified ClfB region A was used to probe blotted fibrinogen, a comparison with a lane of stained fibrinogen indicated that ClfB bound the alpha and beta-chains of fibrinogen. No bands were seen when ClfB was omitted. This experiment shows an important difference with ClfA, which is known to bind to the gamma-chain of fibrinogen.

# Example 4

# Mutagenesis of clfB

20

25

5

10

15

An insertion mutation in clfB was created by introducing a fragment containing a Tc resistance marker into the middle of the gene on pA1-1EX as shown in Figure 3. The 2.35-kb HindIII fragment from pT181 was filled in with Klenow enzyme, and blunt-end ligated into the HpaI site of pA1-1EX. Plasmid pTS2, with temperature sensitive replication and a Cm' marker, was cloned into this construct at the SmaI site by cleaving with AvaI. This cloning step was carried out in E. coli, and transformants were selected on Ap and incubated at 30°C to avoid selection of revertants to temperature independence. The plasmid was then purified and transformed into S. aureus RN4220 by electroporation and Tc<sup>1</sup> transformants selected at 30°C. Five independent broth cultures grown at 30°C were diluted 1/100 in fresh medium without antibiotics, and grown at 42°C for six hours or 18

hours. The cultures were then diluted 1/100 and incubated at 42°C for another time period. Six such dilutions and incubations were made, by which time Tc resistance had declined to approximately 1/1000 colony forming units (CFU). The cultures were then diluted to give approximately 100 CFU per plate on medium containing Tc, and incubated overnight at 37°C. Colonies which were Tc<sup>r</sup> but Cm<sup>s</sup> were presumed to have undergone a double crossover event between the plasmid and host genome, leading to replacement of the wild-type gene with the mutated one, with subsequent loss of the plasmid. Five hundred colonies were screened per culture. Eleven presumptive mutants were isolated from four of the five cultures. Four representative mutants were selected and genomic DNA isolated. Mutant DU5944, deficient in both *clfA* and *clfB*, was constructed by transducing *clfA2*::Tn917 from strain DU5876 into *clfB* mutant DU5943, selecting for Em<sup>r</sup>.

To determine whether mutations known to affect exoprotein expression influenced *clfB*, strain 8325-4 and the *agr* mutant ISP546 were compared. No significant differences in the level or dynamics of ClfB expression were noted.

To determine the role of ClfB in bacteria-fibrinogen interactions, a clfB mutant of strain Newman was constructed by allele replacement as shown in Figure 2. Genomic DNA of the mutant was digested with BamHI and subjected to Southern blotting with a labeled 1.3 kb HpaI fragment from plasmid pA1-1E containing the 5' half of clfB and about 150 bp of upstream sequence. A single band hybridized in each case, but as expected, the band was 2.35 kb longer in the mutant than in the wild-type. The mutation was initially isolated in RN4220 and then transduced into strain Newman, forming strain DU5943.

# Overexpression of ClfB and complementation of clfB mutation

Overproduction of ClfB was enabled by subcloning a SmaI fragment containing the clfB gene and 500 bp of upstream DNA from pA1-1E into the

10

15

20

25

high copy number shuttle plasmid pCU1. The construct was then transformed into strain RN4220 and transduced into strain Newman. Transductants were selected on Cm. Southern and Western blotting confirmed that the high copy number was maintained in strain Newman, and that ClfB was produced at higher than wild-type levels, indicating that the upstream DNA contained the promoter necessary for expression of the clfB gene. Transduction of the construct into clfB mutants restored ClfB synthesis to higher than wild-type levels. The construct was also transduced into clfAclfB double mutants for use in complementation studies.

10

15

5

transferred by transduction from strain DU5876 into the *clfB*::Tc<sup>r</sup> mutant DU5943, forming DU5944. The wild-type *clfB*<sup>+</sup> gene was cloned into shuttle plasmid pCU1 to give plasmid pA1-1EA, which was introduced into the *clfAclfB* mutant by transduction to test complementation. Western blotting with anti-ClfB serum showed that the ClfB protein was missing in mutant DU5943. It was expressed at a higher level than the wild-type in mutants carrying the complementing plasmid pA1-1EA, indicating

overexpression of the protein due to gene dosage effect.

To create a clfAclfB double mutant, a clfA::Tn917 mutation was

20

25

# Example 5 ClfB Binding Assays

# Clumping assays

The role of ClfB in binding of *S. aureus* cells to soluble fibrinogen was investigated in clumping assays. Clumping assays were carried out in Sarstedt<sup>m</sup> flat-bottomed multiwell test plates, using 50- $\mu$ l volumes of human fibrinogen (Calbiochem Corp. (San Diego, CA) plasminogen free, > 95% pure), diluted serially two-fold in PBS from a starting concentration of 1 mg/ml. *S. aureus* cultures were washed once in PBS, resuspended to a final OD<sub>600</sub> of 6, and 20  $\mu$ l added to each well. Control wells contained PBS only. The plates were agitated briskly for five minutes and visually examined for clumping. The clumping titer was the lowest concentration of

fibrinogen at which clumping occurred. The results are set forth in Table 2, below. Results are the mean of concurrent duplicate assays.

5

Table 2. Clumping titres of *S. aureus* Newman and mutants from different culture phases

10

15

20

25

30

| Strain              | Clumping titer, $\mu g/ml$ fibrinogen |                  |  |
|---------------------|---------------------------------------|------------------|--|
|                     | Exponential phase                     | Stationary phase |  |
| Wild-type           | 0.98                                  | 0.98             |  |
| clfA                | 3.91                                  | > 1000.00        |  |
| clfB                | 1.95                                  | 0.98             |  |
| clfA clfB           | >1000.00                              | > 1000.00        |  |
| clfA clfB (pA1-1EA  | ; 2.93                                | 250.00           |  |
| clfB <sup>+</sup> ) |                                       |                  |  |

The clumping titers of *clfA* and *clfB* single mutants were very similar to wild-type when exponential phase cultures were used. However, the double *clfAclfB* mutant failed to form clumps, even at the highest fibrinogen concentration. In contrast, the double mutant carrying the wild-type *clfB* gene on pA1-1EA formed clumps with almost the same avidity as the wild-type. These data show unambiguously that ClfB is a clumping factor.

The difference in clumping titer between the single mutants was much greater when stationary phase cultures were used, where only ClfA is present on cells. The wild-type strain and single clfB mutant had identical titers. The single clfA mutant failed to clump, and was thus indistinguishable from the double mutant. Interestingly, there was a slight restoration of clumping when the double mutant was complemented with the overexpressed  $clfB^+$  gene. This probably reflects over expression of the protein.

# Plate adherence assays

WO 99/27109

To determine whether ClfB can promote bacterial attachment to immobilized fibrinogen, strains were tested for fibrinogen binding in a microtiter plate adherence assay. Binding of cells to fibrinogen immobilized on plates was measured by the assay of Wolz et al., Infect. Immun. 64:3142-3147 (1996). Fibrinogen was diluted in carbonate buffer (15 mM Na<sub>2</sub>CO<sub>3</sub>, 35 mM NaHCO<sub>3</sub>, 3.2  $\mu$ M NaN<sub>3</sub>, pH 9.6) and 100  $\mu$ l used to coat 96-well flat-bottomed ELISA plates (Immulon 4™, Dynatech) overnight at 4°C. Control wells contained carbonate buffer only. After washing in 150 mM NaCl, 0.05% Tween 20™ surfactant, the plates were blocked for one hour at 37°C in 1% BSA, 0.05% Tween in PBS. After washing as before, 100 μl of a cell suspension (OD600 of 0.4 in PBS) was added, and the plates incubated for two hours at 37°C. After gentle washing by hand, adherent cells were fixed by adding 100 µl of 25% aqueous formaldehyde, and incubating at room temperature for at least 30 minutes. The plates were then washed gently once more, stained with crystal violet, washed again, and the plates read by ELISA reader at 570 nm. To avoid inter-assay variation, experiments were designed so that a single plate provided a complete set of results.

The pattern of adherence strongly reflected that obtained in clumping assays (Figure 15). Assays in which the concentration of cells was varied indicated that binding was approximately half the maximum value at a cell density of 0.4 OD (except for the double mutant), and this cell density was subsequently used routinely. Wild-type, clfA, clfB mutants and clfAclfB (pA1-1EA) showed a fibrinogen concentration-dependent increase in binding (Figure 16). This increase was less marked for the clfB mutant (expressing ClfA) than for the clfA mutant (expressing ClfB), suggesting that ClfB may be a less avid and/or abundant receptor. With stationary phase cells, the clfB mutant continued to behave like the wild-type strain, whereas the clfA mutant bound much less avidly. As with clumping, adherence was slightly

30

54

5

10

15

20

higher with the complemented double mutant, presumably due to a gene dosage effect.

The clumping and adherence assays show that ClfB mediates binding both to soluble and immobilized fibringen, closely resembling the activity of ClfA.

The binding of increasing concentrations of biotinylated purified region A from ClfA and ClfB to solid phase fibrinogen was compared in a direct ELISA. The results are shown in Figure 14. The adherence profiles of the two proteins were very similar, especially at the lower concentrations. At the highest concentration, binding of ClfA was approximately 50% greater than that of ClfB. Neither protein bound to BSA.

# Effect of anti-ClfB antibody on bacterial adherence to immobilized fibrinogen

To study inhibition of fibrinogen binding by IgG, the cells used for the assay were preincubated with serial two-fold dilutions of purified IgG in PBS, starting with a concentration of 500  $\mu$ g/ml. Preincubation was for two hours at 37°C in Sarstedt<sup>TM</sup> multiwell test plates, and the cells were then transferred to ELISA plates coated with fibrinogen (2.5  $\mu$ g/ml) and blocked as before. The rest of the assay was as before.

Cells from exponential phase cultures of wild-type and mutant Newman strains were preincubated with increasing concentrations of purified anti-ClfB IgG, and adherence to plastic surfaces coated with 2.5  $\mu$ g/ml fibrinogen examined. The results are shown in Figure 17. Binding of the *clfB* mutant was not inhibited, and binding of wild-type cells was almost unaffected, even at the highest antibody concentration. However, binding of the *clfA* mutant showed an IgG concentration-dependent decrease, with an IC<sub>50</sub> of 16  $\mu$ g/ml. The double mutant carrying *clfB*<sup>+</sup> on a complementing plasmid was also inhibited by the antibody, although the IC<sub>50</sub> was higher (50  $\mu$ g/ml), presumably because more ClfB was being expressed on the cell surface.

30

25

5

10

15

# Effect of divalent cations on bacterial adherence to immobilized fibrinogen

The effect of metal ions on fibrinogen binding was studied in a similar manner, preincubating the cells with serial two-fold dilutions of MgCl<sub>2</sub>, MnCl<sub>2</sub> or MgCl<sub>2</sub> in TBS (50 mM Tris HCl, pH 7.5, 150 mM NaCl), starting with a concentration of 50 mM. TBS was used instead of PBS, which causes precipitation of both calcium and manganese. Since the cells bound less well under these conditions, the starting cell concentration was doubled.

10

15

5

It is known that the interaction of ClfA and fibrinogen is inhibited by Ca<sup>2+</sup> and Mn<sup>2+</sup>, but not Mg<sup>2+</sup> ions. The effect of divalent cations on ClfB-promoted adherence to fibrinogen was thus tested. Preincubation of exponential phase cells of the wild-type strain and the *clf* mutants with CaCl<sub>2</sub> inhibited binding to fibrinogen. Those strains expressing ClfB alone showed greater sensitivity than the mutant expressing ClfA alone (*clfB*). The IC<sub>50</sub> for the wild-type strain and the *clfB* mutant were 17 and 14 mM, respectively, whereas for the *clfA* mutant and the *clfB*<sup>+</sup> complemented double mutant the IC<sub>50</sub> was 1.05 and 0.60 mM, respectively. MnCl<sub>2</sub> also inhibited attachment of the wild-type strain and mutants, with a stronger effect on strains expressing only *clfB*. The IC<sub>50</sub> for the wild-type and the *clfB* mutant was 3.3 and 6.4 mM, respectively, whereas for the *clfA* mutant and the double mutant carrying *clfB*+ on a complementing plasmid the IC<sub>50</sub> was 0.35 and 1.26 mM respectively. MgCl<sub>2</sub> had no effect on binding below 12.5 mM.

25

20

Thus, *clfB* promoted adherence of bacteria to immobilized fibrinogen is inhibited by Ca<sup>2+</sup> and Mn<sup>2+</sup> at similar concentrations to ClfA-promoted adherence. However, the mechanisms are likely to be different since ClfB does not contain a homologue of EF hand I implicated in Ca<sup>2+</sup> promoted modulation of ClfA-fibrinogen interactions.

# Platelet-fibrin clot adherence assay

Adherence to platelet-fibrin clots was measured using a modification of an assay employed by Moreillon et al., Infect. Immun. 63: 4738-4743 (1995). Fresh canine blood was collected on 10% sodium citrate buffer (Sigma Chemical Co.), and centrifuged at 3000 x g for 10 minutes at room temperature. The plasma fraction was removed and placed in a clean tube. Platelet-fibrin clots were made by mixing 0.5 ml volumes of plasma with 0.1 ml volumes of 0.2 mM CaCl<sub>2</sub> in 35 mm petri dishes. Thrombin (0.1 ml of 500 U/ml Sigma bovine thrombin) was then added, mixed in quickly, and the clots allowed to form. To measure bacterial adherence, 2 ml of PBS containing 5 x 103 cfu/ml of bacteria (from a BHI-grown exponential phase culture) was added to each dish, and the dishes shaken for three minutes on an orbital shaker. The inoculum was drained off and the clots washed twice for five minutes each with 2 ml of PBS. The clots were then overlaid with 3 ml of molten TSA, incubated for 15 hours at 37°C, and the colonies counted. The bacterial suspension used as an inoculum was spread on TSA plates to obtain a total viable count, and the percentage of bound inoculum calculated. Results represent means of 6-10 plates per strain, and were analyzed statistically using the student's T test.

The *clfB* mutation reduced adherence when compared to the wild-type strain Newman, as did the *clfA* mutation which was previously shown by Moreillon *et al.* to have significantly reduced adherence in this model.

### Assay for adherence to haemodialysis tubing

In order to demonstrate that ClfB could serve as an adhesin for S. aureus in biomaterial-related infections, explanted human haemodialysis tubing was tested for promotion of bacterial adherence in vitro. The tubing was coated with a complex mixture of host plasma proteins including fibrinogen and fibronectin.

These experiments employed sections of haemodialysis tubing removed from patients 3 to 3.5 hours after implantation. Cultures were

30

5

10

15

20

grown for two hours with shaking. Results, showing means with SEM of three experiments, are shown in Figure 19.

# Assay for adherence to fibrinogen-coated PMMA coverslips

Adherence of *S. aureus* Newman and mutants to fibrinogen-coated polymethylmethacrylate (PMMA) coverslips was measured as described by Greene *et al.*, *Mol. Microbiol.* 17:1143-1152 (1995), except that the coverslips were coated with pure fibrinogen (1  $\mu$ g/ml). Cultures for the assay were grown for two hours with shaking. Results, showing the means and SEM of triplicate experiments, are shown in Figure 18.

The pattern of adherence to the tubing segments resembled the pattern of binding seen for immobilized fibrinogen in a parallel assay for adherence to fibrinogen immobilized on PMMA coverslips. The single clfA mutants had slightly lower levels of adherence compared to the wild-type whereas the double clfAclfB mutant was reduced to approximately 30% of wild-type level. Complementation of the single clfB mutant with the clfB gene on pA1-1EA restored binding to greater than wild-type levels, whereas complementation of the double mutant with the same plasmid restored binding only to the same level as the single clfA mutant.

20

25

5

10

15

### Example 6

#### ClfB as a Virulence Factor in Experimental Endocarditis

Clumping factor A was shown to be a virulence factor promoting adherence to damaged heart valves in the rat model of experimental endocarditis of Moreillon *et al.*, *Infect. Immun.* 63:4738-4743 (1995). Therefore, the role of ClfB in this infection was tested by comparing the infection rate of a *clfB* mutant and the mutant carrying the complementing  $clfB^+$  plasmid. Rats were infected intravenously at an ID<sub>60</sub> with 5 x 10<sup>3</sup> cfu. 61% of the wild-type control animals' valves were infected (n = 13), whereas only 30% of the *clfB* mutant infected animals were colonized (n = 20). In contrast 77% (n = 9) of the complemented mutant became infected.

This clearly shows that ClfB is an adhesin and potential virulence factor in the endocarditis model.

### Example 7

# Generation of TYTFTDYVD peptide antibodies.

The nanopeptide, TYTFTDYVD, was synthesized in multiple antigen peptide format (MAP; Research Genetics, Inc., Huntsville, AL). The peptide was conjugated to KLH according to manufacturers' directions (Pierce). Two female New Zealand White rabbits were immunized subcutaneously with the KLH-TYTFTDYVD conjugate emulsified with Freund's Complete Adjuvant. The rabbits were boosted 3 weeks later by subcutaneous injection of KLH-TYTFTDYVD adjuvanted with Freunds Incomplete. A third boost was administered subcutaneously with KLH-TYTFTDYVD in PBS. The animals were analyzed for TYTFTDYVD specific antibodies 21 days after the final boost. For purification of antibodies, antisera was diluted 1:1 with Tris-HCl pH 8.0 and passed over a Protein A-Sepharose® column. After sequential washes with Tris-HCl pH 8.0, 0.5 M sodium chloride, the bound antibodies were eluted in 3.5 M MgCl<sub>2</sub>, and dialyzed into PBS.

Immulon-2 microtiter plates (Dynex Technologies, Chantilly, VA) were coated for 2 hr at room temperature with 1  $\mu$ g ClfA, ClfB, or BSA. The protein coated plates were washed three times with PBS, 0.05% Tween 20 and then blocked with PBS, 1% BSA. The blocked plates were washed three times with PBS, 0.05% Tween 20. Fifty  $\mu$ l of the purified rabbit KLH-TYTFTDYVD antibodies were serially diluted in PBS and added to the microtiter plate and incubated at 25°C on a rocker platform. The wells were washed three times with PBS, 0.05% Tween 20 and the secondary antibody was added to the wells and incubated for 1 hr at room temperature. The secondary antibody was alkaline phosphatase-conjugated goat anti-rabbit IgG (Bio-Rad), diluted 3000-fold in PBS. ELISA plates were developed for 1 hr at 37°C with 1 mg/ml p-nitrophenyl phosphate (Sigma) in 1 M diethanolamine, 0.5 mM MgCl<sub>2</sub>, pH 9.8, and quantified at 405 nm on a Perkin Elmer HTS 7000 Bio-Assay reader.

5

10

15

20

The data is shown in Figure 21. These data indicate that the anticonsensus sequence TYTFTDYVD antibodies significantly bind to ClfA and ClfB proteins, but not to the control protein, BSA.

5

# **EXAMPLE 8**

# Passive Immunization with Rabbit ClfB IgG

The DNA encoding region A of *clfB* (encoding residues S45 to N542) was amplified from genomic DNA of *S. aureus* Newman using the following primers: (SEQ ID NO:17)

10

Forward: 5' CGAAAGCTTGTCAGAACAATCGAACGATACAACG

(SEQ ID NO:16)

3'

Reverse: 5' CGAGGATCCATTTACTGCTGAATCACC 3'

15

Cleavage sites for *HindIII* and *BamHI* (underlined) were appended to the 5' ends of the respective primers to facilitate cloning of the product into the Histag expression vector pV4. Cloning employed *E. coli* JM101 as a host strain. The recombinant region A was purified by nickel affinity chromatography. Antibodies were raised in rabbits with the purified recombinant A region according to standard procedures. Anti-ClfB A region IgG was purified by affinity chromatography on a Protein A sepharose column.

20

Twenty Swiss Webster mice (23-28 g) were used to determine if passive immunization with purified rabbit anti-ClfB A region IgG could prevent infection mediated by a methicillin resistant *S. aureus*.

25

Methicillin resistant *S. aureus* strain 601 was cultured on blood agar plates. A single colony was then inoculated into 10 mls of BHI broth and incubated at 37 °C overnight. The culture was diluted to a 1:100 dilution, placed into 10 ml of fresh BHI and grown to an optical density (O.D.) of 1.5-2.0. The culture was then centrifuged and washed in 1 x PBS. The culture was resuspended in 1 x PBS containing 5% BSA and 10% dimethyl sulfoxide (DMSO)

and kept frozen at -20°C. The bacterial solution was thawed, washed, diluted in PBS, and adjusted to the appropriate concentrations before dosing the mice.

The mice were divided into four treatment groups (5 mice per treatment group). Mice were assigned to treatment groups as follows:

| Antibody/Bacteria                | Dose CFU/mouse         | No. of Mice |
|----------------------------------|------------------------|-------------|
| 1 Normal rabbit IgG/S. aureus    | 3.81 x 10 <sup>7</sup> | 5           |
| 2 Normal rabbit IgG/S. aureus    | 7.62 x 10 <sup>7</sup> | 5           |
| 3 Rabbit anti-ClfB IgG/S. aureus | 3.81 x 10 <sup>7</sup> | 5           |
| 4 Rabbit anti-ClfB IgG/S. aureus | 7.62 x 10 <sup>7</sup> | 5           |

10

5

On day -1, ten mice were administered 10 mg rabbit anti-ClfB region A lgG and 10 mice were given 10 mg normal rabbit IgG. Both antibodies were given via intraperitoneal (i.p.) injection. On day 0, all mice were infected intravenously (i.v.) with either 3.81 x 10<sup>7</sup> CFUS. aureus or 7.62 x 10<sup>7</sup> CFUS. aureus.

15

Systemic infection was measured by evaluation of body weight loss. Body weight loss is one of the primary parameters that is evaluated when cases of illness and injury are being assessed in mice. The body weight of each animal was recorded on Day -1 and every other day thereafter, including terminal sacrifice. The animals were weighed to the nearest 0.1 gram.

20

Mice injected with normal rabbit IgG displayed a significantly larger weight loss at the end of the experiment compared to mice passively immunized with rabbit anti-ClfB region A IgG (see table below). In addition, pathological evaluation of the mice at necropsy revealed a greater number of lesions and foci of infection in the kidneys from the mice receiving normal rabbit IgG compared to the kidneys from mice that were immunized with anti-ClfB region A IgG.

|        | % Change in body weight (mean)   |                                  |                                  |                       |
|--------|----------------------------------|----------------------------------|----------------------------------|-----------------------|
| Day of | Normal IgG/                      | Anti-ClfB lgG/                   | Normal IgG/                      | Anti-ClfB IgG /       |
| Study  | S. aureus 3.81 x 10 <sup>7</sup> | S. aureus 3.81 x 10 <sup>7</sup> | S. aureus 7.62 x 10 <sup>1</sup> | S. aureus 7.62 x 10 7 |
| -1     | 0                                | 0                                | 0                                | 0                     |
| 1      | 2.9                              | 3.6                              | 3.9                              | 5.8                   |
| 3      | 10                               | 5.1                              | 8.5                              | 8.2                   |
| 5      | 8.3                              | 1.5                              | 8.0                              | 6.6                   |

10

15

20

5

# **EXAMPLE 9**

# ClfB Region A Binds $\alpha$ and $\beta$ chains of Human Fibrinogen

Human fibrinogen ( $20\mu g$ ; Chromogenix) was separated by SDS-PAGE on a 15% acrylamide gel for 2 hours. Proteins were transferred to nitrocellulose at 100 V for 2h. The membranes were blocked overnight in PBS containing 10% non-fat dry milk and then incubated with 2.5  $\mu g/ml$  biotinylated ClfB or ClfA region A protein for lh with shaking. They were then given 3 x 5 mm washes with PBS containing 0.1% Tween 20 and incubated for 1 hr with avidin conjugated horseradish peroxidase (Boehringer Mannheim:1:100,000 dilution). The filters were washed as before and developed using enhanced chemilluminescence (Amersham). The Western Blot (Figure 22) illustrates the binding of biotinylated ClfA to the  $\gamma$  chain fo fibrinogen and the binding of biotinylated ClfB to the  $\alpha$  and  $\beta$  chains of fibrinogen.

### **EXAMPLE 10**

25

# ClfB Region A binds 75kD and 50kD Proteins from Human Rhabdomyosarcoma Cell Line

Human Rhabdomyosarcoma Cells were lysed with the SDS-PAGE running buffer and varying amounts (2-10  $\mu$ l) of the protein lysate were separated by SDS-PAGE on a 15% acrylamide gel for 2h. Proteins were transferred to nitrocellulose at 100 V for 2h. The membranes were blocked overnight in PBS containing 10% non-fat dry milk and then incubated with 2.5  $\mu$ g/ml biotinylated ClfB or ClfA region A protein for 1 hr with constant shaking. They were then given 3 x 5 min washes with PBS containing 0.1%

Tween 20 and incubated for 1 hr with avidin conjugated horseradish peroxidase (Boehringer Mannheim; 1:100,000 dilution). The filters were washed as before and developed using enhanced chemilluminescence (Amersham). Two major bands were seen at 50kD and 75kD that reacted with the biotinylated ClfB region A protein.

# **CLAIMS**

| 5 | We | clain | ı. |
|---|----|-------|----|

1. An isolated nucleic acid molecule encoding a fibrinogen-binding protein that binds both the alpha and beta fibrinogen chains, wherein the fibrinogen-binding protein is isolated from *S. aureus*.

10

- 2. The isolated nucleic acid molecule of Claim 1, wherein the nucleic acid encodes the amino acid sequence of SEQ ID NO:1.
- 3. The isolated nucleic acid of Claim 1, comprising the sequence of SEQ ID NO:2.
  - 4. The isolated nucleic acid of Claim 1, comprising a sequence that selectively hybridizes to the sequence of SEQ ID NO:2.

20

- 5. A vector comprising the isolated nucleic acid of Claim 1.
- 6. The vector of Claim 5 in a living organism that is capable of expressing the nucleic acid.

- 7. An isolated nucleic acid molecule encoding an extracellular matrix-binding protein that has a TYTFTDYVD motif, wherein the protein is isolated from S. aureus and is not ClfA.
- 8. The isolated nucleic acid of Claim 7, which encodes amino acid sequences selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7.

9. The isolated nucleic acid of Claim 7 comprising a sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.

- 10. The isolated nucleic acid of Claim 7, comprising a sequence that selectively hybridizes to a sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.
  - 11. A vector that comprises the isolated nucleic acid of Claim 7.
- 10 12. The vector of Claim 11 in a living organism that is capable of expressing the isolated nucleic acid.

5

15

20

- 13. An isolated, recombinant or synthetic protein that binds both the  $\alpha$  and  $\beta$  chains of fibrinogen.
- 14. The protein of Claim 13, wherein the protein has an amino acid sequence comprising the sequence of SEQ ID NO:1.
- 15. The protein of Claim 13, encoded by a nucleic acid sequence comprising the sequence of SEQ ID NO:2.
  - 16. The protein of Claim 13, encoded by a nucleic acid sequence comprising a sequence that selectively hybridizes to the sequence of SEQ ID NO:2.
- 17. The protein of Claim 13, expressed from a vector in a living organism, wherein the vector contains a nucleic acid sequence comprising the sequence of SEQ ID NO:2.
- 18. An isolated, recombinant or synthetic protein that exhibits cation-30 dependent ligand-binding and has a consensus TYTFTDYVD motif, wherein the protein is isolated from S. aureus and is not ClfA.

19. The protein of Claim 18, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7.

5

20. The protein of Claim 18, encoded by a nucleic acid sequence comprising a sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.

10

21. The protein of Claim 18, encoded by a nucleic acid sequence comprising a sequence that selectively hybridizes to a sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.

15

- 22. The protein of Claim 18, expressed from a vector in a living organism, wherein the vector contains a nucleic acid sequence comprising a sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.
  - 23. The protein of Claim 13 in a pharmaceutically acceptable carrier.

20

- 24. The protein of Claim 18 in a pharmaceutically acceptable carrier.
- 25. The protein of Claim 13 immobilized on a solid phase.

25

26. The protein of Claim 18 immobilized on a solid phase.

27. An isolated antibody or antibody fragment to a nucleic acid molecule encoding a fibrinogen-binding protein that binds both the alpha and beta fibrinogen chains, wherein the fibrinogen-binding protein is isolated from S. aureus.

30

28. An isolated antibody or antibody fragment to the sequence TYTFTDYVD.

29. An isolated antibody or antibody fragment to a protein that binds both the  $\alpha$  and  $\beta$  chains of fibrinogen.

- 5
- 30. The antibody or antibody fragment of claim 29 that binds to an amino acid sequence comprising the sequence of SEQ ID NO:1.
- 31. An antibody or antibody fragment to a protein or protein fragment that has a consensus TYTFTDYVD motif, wherein the protein is isolated from S. aureus and is not ClfA.

10

32. The antibody or antibody fragment of of claim 31, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7.

15

33. A diagnostic kit comprising a protein or protein fragment that binds to both the  $\alpha$  and  $\beta$  chains of fibrinogen.

34. A diagnostic kit comprising an antibody or antibody fragment to a protein or protein fragment that binds to both the  $\alpha$  and  $\beta$  chains of fibrinogen.

20

35. A diagnostic kit comprising a protein or protein fragment that has a consensus TYTFTDYVD motif, wherein the protein is isolated from S. aureus and is not ClfA.

25

36. A diagnostic kit comprising an antibody or antibody fragment to a protein or protein fragment that has a consensus TYTFTDYVD motif, wherein the protein is isolated from *S. aureus* and is not ClfA.

30

37. Use of a pharmaceutical composition comprising a protein selected from the group consisting of ClfB, SdrC, SdrD, SdrE, and an active fragment thereof for the treatment of *S. aureus* infection in a patient.

38. The use of Claim 37, wherein the infection is septicemia, osteomyelitis, mastitis or endocarditis.

5

39. Use of a pharmaceutical composition comprising a protein selected from the group consisting of ClfB, SdrC, SdrD, SdrE, or an active fragments thereof to inhibit the binding of *S. aureus* to the extracellular matrix to treat or prevent an S. aureus infection in a patient.

10

40. Use of an effective amount of a pharmaceutical composition comprising an antibody or antibody fragment to a protein selected from the group consisting of ClfB, SdrC, SdrD, SdrE or an active fragment thereof to treat or prevent an S. aureus infection in a patient.

15

41. Use of a composition comprising a protein selected from the group consisting of ClfB, SdrC, SdrD, SdrE, or a fragment thereof to coat a medical device to reduce the *S. aureus* infection of an indwelling medical device.

20

42. The use of Claim 41 wherein the medical device is selected from the group consisting of vascular grafts, vascular stents, intravenous catheters, artificial heart valves, and cardiac assist devices.

25

43. Use of a composition comprising a protein selected from the group consisting of ClfB, SdrC, SdrD, SdrE, or an active fragment, subdomain or encoding gene thereof to induce an immunological response in a patient.

30

44. Use of the DS (aspartate serine) repeat region or a gene encoding it as an identifing probe for the identification of genes and encoding proteins from Staphylococcus aureus (other than ClfA), S. hemolyticus, S. lugdenensis, and S. schleriferi useful for the prevention, treatment, or diagnosis of bacterial infection.



SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)

S

 $\mathbf{z}$ 

Д

K

H

H

Ø

Ω

Z

Ø

W

Z

H

Z

ď

ß

Н

K

O

K

aataagtattcgattagacgttttacagt

Z S Н × Д H K Ö Z

KYSIRRFTV 22

Z

¥

aggtaccacatcagtaatagtaggggcaactatactatitgggataggcaatcaicaagca CAAGCTTCAGAACAATCGAACGATACAAC

耳 Z O Н U Ē٤ Н H Ø U Ø ŋ

K

Q

Д

闰

Н

Σ

Z

Z

M

闰

ASEQSNDIT 52

CAATTAAATACAACGGCTAATGATACATC

L N T T A N D T S 82

TGATATTAGTGCAAACACAGTGCGAATGTAGATAGCACAACAAAACCAATGTCTACA

CAAACGAGCAATACCACTACAACAGAGCC

TSNTTTTEP 112

**AGCTTCAACAAATGAAACACCTCAACCGACGGCAATTAAAAATCAAGCAACTGCTGCAAAA** 

ATGCAAGAtCAAACTGTTCCTCAAGAAGG

d K H Ø O Z K Н ď H Q Д Н 回 Z H ß

F1G. 54

H

μ

曰

142 ტ CTTAAAAATTCTCAAACATTAGATTTACC 더 O) Д > Н O Ω

S Z H ď Ø Z ď S Q T L D L P 172 Z Ø

**ACAATCATCACCACAAACGATTTCCAATGCGCAAGGAACTAGTAAACCAAGTGTTAGAACG AGAGCTGTACGTAGTTTAGCTGTTGCTGA** 

S Д K Ø H U 202 Q Ø LAVAE Z Ø Ø Ø ø Ø A Ø

accegtagtaatgctgctgatgctaaaggtacaaatgtaaatgataaagt

K A Z Z FKLEKTTFD 232 H ŋ **AATTTCAAGTTAGAAAAGACTACATTTGA** X Z > >

Ø

K

CCCTAATCAAAGTGGTAACACATTTATGGCGGCAAATTTTACAGTGACAGATAAAGTGAAA TCAGGGGATTATTTACAGCGAAGTTACC

Ω H > H 됴 Z 262 Ø A K L P Σ F <u>ෆ</u> Ø K O U Z

<u> Agatagtttaactggtaatggaggcgtggattattctaattcaaataacgatgccaatt</u> GCAGACATTAAAAGTACGAATGGCGATGT

 $\mathbf{Z}$ H Z Z Ø Ø Ω Ö Ö ŋ Н Ø

TGTAGCTAAAGCAACATATGATATCTTGACTAAGACGTATACATTTGTCTTTACAGATTAT GTAAATAATAAAGAAAATATTAACGGACA

Ēų H H 322 K Н U Н Z Z ď Z

**ATTTTCATTACCTTTATTTACAGACCGAGCAAGGCACCTAAATCAGGAACATATGATGCG** aatattaatattgcggatgaaatgtttaa

Ö S 又 K ď Z ĸ Ω Σ H 闰 됴 Д Н Н ß

R

Taataaaattacttataactatagttcgccaattgcaggaattgataaaccaaatggcgcg 352 AACATTTCTTCTCAAATTATTGGTGTAGA

A U Z р K D Ö K ρι G V Ø Ø SOLI

382

TACAGCTTCAGGTCAAACACATACAAGCAAACAGTATTTGTTAACCCTAAGCAACGAGTT TTAGGTAATACGTGGGTGTATATTAAAGG

K Д > 412 Ø R G K H H T W T O1 **ප Z** 

Q

Ctaccaagataaaatcgaagaaagtagcggtaaagtaagtgctacagatacaaaactgaga ATTTTTGAAGTGAATGATACATCTAAATT

K Н K H D H K Ø > O ß Ŋ Ø 回 回 Ω Н z > 曰

Н

×

**ATCAGATAGCTACTATGCAGATCCAAATGACTTAAACGAAGTAACAGACCAATTT** 442 aaaaatctattatgagcatccaaa

Д

A

TGTAGCTAGTATTAAATTTGGTGATATTACTAAAACATATGTAGTATTAGTAGAAGGGCAT ſτι Q A H > 回 又 Н Z Ø Д TACGACAATACAGGTAAGAACTTAAAAAC Z ρ A S S

耳 G 国 > H > > H H K H U Z 垣 M U Z Ø Ω

TCAGGTTATTCAAGAAATGTTGATCCTGTAACAAATAGAGACTACAGTATTTCGGTTGG **AATAATGAGAATGTTGTACGTTATGGTGG** 

S × Д 4 Z 532 H Z 曰 0 Н 闰

3

Ü

闰

TGGAAGTGCTGATGGTGATTCAGCAGTAAATCCGAAAGACCCCAACTCCAGGGCCGCCGGTT 4 GACCCAGAACCAAGTCCAGACCCAGAACC

Д H Д A K 562 Д Z Ø A O A R ß Ö

ρ

ρι

U

ð

Agaaccaaaccagaaccaagaccagacccagaaccggaaccaagcccagacccg GATCCGGATTCGGATTCAGACAGTGACTC

Д S р 闰 Д 闰 Д Д Ø Ø Д 闰 A Д A A Д S щ 回

Ø

**AGGCTCAGACAGCGCTCAGATAGCGACTCAGAATCAGATAGCGATTCGGATTCG** agaatcagatagggattcagaatcagatagcgactcagattcagatagcgattcagattca S Ø A S S Q Ω ß Ø Ω Д ß S 曰 A Ø Ø 622 652 A Д ß Ø Ø GACAGTGATTCAGATTCAGACAGCGACTC GATAGCGATTCAGATTCAGATAGCGATTC Ω Ω Ŋ ល Ø Ø O 闰 Ω S Ø Ø ß A SDSD D S D ß Ø Ø Ø Ŋ C

GGATTCAGACAGTGATTCAGATTCAGACGGGCTCAGAATCAGATAGCGACTCAGAATCA GATAGTGAGTCAGATTCAGACAGTGACTC

A Ø A Ø 回 Ø 682 Ω Ø Ø Ω D S D ഗ Ω ß S D S A ß 回 Ω Ø ß

Ø

闰

S

GGACTCAGACAGTGATTCAGACTCAGATAGCGATTCAGACTCAGATAGCGATTCAGATTCA GACAGCGACTCAGATTCAGACAGCGACTC

Ø Ø Д Ø 712 Д Ø Ø A SDSD Ŋ S S S Ω ა ე Ø Ω

Ø

A

Ø

Д

**AGACTCAGATAGCGACTCAGACTCAGACTGCGACTCAGATTCAGATAGCGATTCAGACTCA** GACAGCGACTCAGACTCAGACAGCGACTC

A S Ω Ø Ω Ø Д Ø 742 Ø Ø D S D Ø Д ß Ŋ S S S മ വ

**AGACTCAGATAGCGACTCAGATTCAGATTCGGATTCAGACTCAGACAGCGACTCAGATTCA** GATAGCGATTCGGACTCAGACAGCGATTC

F1G. 5E

闰

Ø

X

Ω

AGATTCAGACAGGACTCAGACTCGGATAGCGATTCAGATTCAGATAGCGATTCGGATTCA S Ω S D S Д S Ω ß Ω ഗ GACAGTGATTCAGATTCAGACAGCGACTC Ω Ω ß Ø Д Д Ø ß Ω Ω Ø ß Ω Ω

Ø A Ø Ω S A Ŋ Д S 802 Ω Ø ß Ω Ω ß Ø Ω S Ø Ω Д S Ŋ Ω Ø S

**AGACTCGGATAGCGACTCAGACTCAGACAGCGATTCAGACTCAGATAGCGACTCAGACTCG** GATAGCGACTCGGATTCAGATAGCGACTC

Q S Д Ŋ Ω ß 832 A Ø Ω W S Ω Ø Q ß S D Ŋ Ø

S

D

Ø

A AGACTCAGATAGTGACTCCGATTCAAGAGTTACACCACCAAATAATGAACAGAAAGCACCA K × O 回 Z Z Д Д > TCAAATCCTAAAGGTGAAGTAAACCATTC Ø Ø 闰 Ŋ Д Ø Z S

862

S

Taataaggtatcaaaacacacaaactgatgctttaccagaaacaggagataagggggaa AACACAAATGCAACTTTATTTGGTGCAAT

H Д 892 H K O

Gatggcattattaggatcattactattgtttagaaaacgcaaggatcataaagaaaa GCGTAAATACTTTTTAGGCCGAATACAT

闰

K

耳

Д

O

K

4

K

吖

Œ

Н

Н Н S O Н Н ď Σ

A 913

<u>TTGTATTCGG</u>TTTTTTTGTTGAAATGATTTTAAAGTGAATTGATTAAGCGTAAAATGTTG ATAAAGTAGAATTAGAAAGGGGTCATGAC

GTATGGCTTATATTTCATTAAACTATTCACCAACAATTGGTATGCATCAAAATTTGAC

AGTCATTTTACCGGAAGAACGAGAATTC

| DV <u>DYSNS</u> NNTMPIADIKSTNGDVVAKATYDILTKTYTFVFTDYVNNKENINGQF<br>SLPLFT 329 | -VTSTAKVPPIMAGDQVLANGVIDSDGVVIYTFTDYVNTKDDVKATL | TMPAYI 339 | * * * * * * * * * * * * * * * * * * * * | *           |      | F/G 6 |
|-------------------------------------------------------------------------------|-------------------------------------------------|------------|-----------------------------------------|-------------|------|-------|
| ClfB                                                                          | ClfA                                            |            |                                         |             |      |       |
| SUBS                                                                          | 31111                                           | UTE        | //<br>SH                                | 47<br>EET ( | RULE | 26)   |

R **ATGAATAATAAAAGACAGCAACAATAGAAAAGGCATGATACCAAATCGATTAAACAAAT** GCTTCAATTTTAGTAGGACAACATTGATTTTTGGGTTAAGTGGTCATGAAGCTAAAGCGG TCAAAAAATGAAACGACAGCCCCAAGTGAGAATAAAACAACTAAAAAAGTTGATAGTCGTC GCAGATCAGCCTAAAGTGACAATGAGTGATAGTGCAACAGTTAAAGAAACTAGTAGTAACA **CAATCTACTACAAAACTAGCAATGTAACAACAAATGATAAATCATCAACTACATATAGTA** K K Z Ø Ø Н K Δ S K 回 H Z 田 闰 Д Ö 又 Ø Н > Σ Н O U ď 120 30 06 9 Ŀı Ø Z ĸ Д Н 闰 TTTCGATAAGAAGTATTCTGTAGGTACT CAGAACATACGAATGGAGAATTAAATCAA ATGAAACTGATAAAGTAATTTAACACAA **AACTAAAAGACAATACGCAAACTGCAACT** TGCAATCACCACAAAACGCTACAGCTAAT F1G. Н Z GI E H T N G E L NO S Ø L K D N T Q T AT Q S P Q N A T AN H U > > K H K Н щ K 闰 Z A Z Ø

GCAAAAGATGTTTCAACTACACCTAAACAACGACTATTAAACCAAGAACTTTAAATCGCA CAAGGAACAAATGTTAATGATAAGTACATTTTTCAAATATTGACATTGCGATTGATAAAG Gaattttgggcaacttcaagtgatgttttaaaattaaaattacacaatccaatg **AAATATGGTCAATATTTCCGTCCAGGATCAGTAAGATTACCTTCACAAACTCAAAATTTAT** GGTATTTATGATAGTACAACAACACAACATATACTTTTTACGAACTATGTAGATCAAT S X × O Z Ω Z Н H Н O H H K H 召 Ø Н Q S Д Д Ø K Н K Д Ω Z Н Н Z H S Н ĸ 150 Y T 180 210 240 270 300 H Н K Ŀ > Н H Н TGGCAGTGAATACTGTTGCAGCTCCACAA 二 GACATGTTAATCAGACTACTGGTAAAACT Ŋ **CTGTTAAAGAGGGCGATACATTTACTTTT** ATAATGCCCAAGGTAATATTATTGCAAAA H ATACAAATGTTAGAGGTAGCTTTGAACAA × PQ > KT ΤĒ <u>ک</u> U AK Ø Z Д X ρį U Z Ŀ Н Ω Ø Н Ø K H H Н S Z H Ø H > E D D Ŀ H ഗ Z Ö ഗ × > × H A Q G O Z > Ø K K ď H O Z Д 曰 Z H A V H Ω Z Ö K Z ტ 回 H > Z

GTTGCATTTGCGAAACGTAAAATGCAACAACTGATAAAACAGCTTATAAAATGGAAGTAA **ATCATTGTCGATTATGGTAATAAAAAGCACACCGCTTATTTCAAGTACAAACTATATTA** TTCAAAATTTACGAAGTGACAGATCAAATCAATTTGTGGATAGTTTCACCCCTGATACTT GATGTTATTATAGTAATGATAATAAACAGCTACAGTCGATTTAATGAAAGGCCAAACAA GTTGCTTATCCAGATAATAGTTCAACAGATAATGGAAAAATTGATTATACTTTAGACACTG H 闰  $\Sigma$ Z Ö 又 H H H X S F4 Σ R Ø Ŀ Н Ø H Н H Ω Ω 又 Н Q > Ω щ K Ŀ H 330 360 390 420 450 O) Н O Ø H ď H Z CTTTAGGTAATGATACATATAGCGAAGAA ACAATGAAGATTTATCGCGTAATATGACT **GATATAAATTTAATCCAAATGCAAAAAA**C CAAAACTTAAAGATGTTACTGATCAATTC H GCAGCAATAAACAATACATCATTCAACAA **ACAAAACTAAATATAGTTGGTCAAATAGT** × Ø Ø 回回 EΨ H Z K D QF 700 I I K Z Z Д Z TX DISRN N P N A 又 Z Ω LKDVT Ö SNKOY Ø K 闰 Ø Z ٦ ي 曰 U

H Ω Н H **B1**> × Ω Н 又 Ö 480 Z Q SZ S S Ø Z Ø Ω

ACTATGTATGGGAAGATACAAATAAAGAT

C Z K K O Ω Ö 510 Z ď H 2 Ø Z ഗ H U YVWED Z > Z Ø

GGTAAACAAGATGCCAATGAAAAAGGGATTAAAGGTGTTTATGTCATTCTTAAAGATAGTA

S U K ACGGTAAAGAATTAGATCGTACGACAACA ტ K ANE Q 0

540 LL H æ Ω 闰

GATGAAAATGGTAAATATCAGTTCACTGGTTTAAGCAATGGAACTTATAGTGTAGAGTTTT CAACACCAGCCGGTTATACACCGACAACT

H O দ Ø × × U Z 回

Ŀ

闰

S

H

Ö

Z

Ø 570 TT Д H P A G Y

**AAGACGCTGACAACATGACATTAGATAGT** 

H Н Ö Ω ß Q ď Ω Ω H <u>ෆ</u> Z

009

**B2>** 

Σ

Д

Ω

GGATTCTACAAAACACCCAAAATATAGTTTAGGTGATTATGTTTGGTACGACAGTAATAAAG ATGGTAAACGAGATTCGACTGAAAAAGGA

F1G

K

U

Z

Ø

Ω

attaaaggtgttaaagttactttgcaaaacgaaaaggcgaagtaattggtacaac **AATTTAGATAGTGGTAAATACAAAGTTATCTTTGAAAAACCTGGTGGCTTAACTCAAACAG** 闰 Z H Ø H Ö Ω × Н Z > 回 > U × Ω K 630 099 U 闰 Н Z CAGATGAAATGGTAAATACCGCTTTGAT GTACAAATACAACTGAAGATGATAAAGAT O) KG Ø K Y R FD Н × 旦 K Д Ø H r S A K K U 闰 M Ē Д Ö C

숲

H

Q

H

Н

Ö

ď

Д

又

回

Ŀı

Н

> ₽

K

K

O

S

Ω

Н

Ω

Д

闰

Z

U

069

GCCGATGGTGGCGAAGTTGATGTAACAATTACGGATCATGATGATTTCACACTTGATAATG GACTCAGATTCTGACAGCGATTCAGACTCAGATAGCGACTCAGATTCAGATAGCGACTCAG Z A Н H H Q A 二 Ω 720 H Н GCTACTACGAAGAAGAACATCAGATAGC H DS > Ø Ω > 闰 闰 闰 U 闰 Ö Д

ATTCAGACAGCGATTCAGACAGCGACTCA

Ø Д Ø Д ß Ω ß 750 Ω Ø DS Ω Ø W Ω A ß ß Ω Ω Ŋ Ø Ω Ω ß Ø

GACTCAGATAGCGATTCAGATTCAGACAGCGACTCAGACTCAGACAGCAATTCAGACTCGG ATAGCGACTCAGACTCAGATAGCGACTCA

F1G. 7E

K

U

| S O  | Ω       | တ   | Ω   | S                             | Ω           | S      | Ω   | ß    | SDSDSDSDSDSDS   | တ   | Ω   | ഗ   | Ω   | W   | Z   | ഗ   | Д   | Ø                                                             |
|------|---------|-----|-----|-------------------------------|-------------|--------|-----|------|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|---------------------------------------------------------------|
| _    |         | ß   | Ω   | W                             | D S DS      | ഗ      | DS  |      | 780             | 0   |     |     |     |     |     |     |     |                                                               |
| Ä    | H       | AGC | GAC | CTCZ                          | <b>AGAC</b> | TCZ    | GAT | 'AGC | GAT             | TCA | GAT | TCA | GAT | AGC | GAT | TCG | GAC | GATTCGGATAGCGACTCAGACTCAGATAGCGATTCAGATTCAGATAGCGATTCGGACTCAG |
| 5    | H       | CAG | AT  | ACAGTGATTCAGATTCAGACTCAGATAGC | SACI        | CAG    | ATA | ည၅   |                 |     |     |     |     |     |     |     |     |                                                               |
| —    | $\circ$ | ß   | Ω   | ß                             | Ω           | Ø      | Ω   | ഗ    | SDSDSDSDSDSDSDS | Ø   | Q   | ß   | Ω   | Ø   | Ω   | Ø   | Ω   | ß                                                             |
|      |         | ß   | Д   | ß                             | Ω           | D S DS | DS  |      | 810             | 0   |     |     |     |     |     |     |     |                                                               |
| 7 14 | AT      | TCI | GAC | CAGO                          | GAT         | TCZ    | GAC | TCA  | GAC             | AGC | GAC | TCA | GAC | TCA | GAC | AGT | GAT | GACTCAGATTCTGACAGCGATTCAGACTCAGACAGCGACTCAGACTCAGACAGTGATTCAG |
|      | S       | 909 | AC. | ATTCAGACAGCGACTCAGATTCAGATAGC | PATT        | CAG    | ATA | S    |                 |     |     |     |     |     |     |     |     |                                                               |

GACTCAGACTCAGATAGCGACTCAGACTCAGATAGCGACTCAGACTCGGATAGCGATTCAG S Ω Ø Ω Ø Ω ß Ω Ø 840 Ω Ø ATTCAGACAGCGACTCAGATTCAGATAGC Ω DS ഗ Ø Д Ø Ø Ω Ω ഗ ß Ω Ω Ø

Ø Ω Ø 870 Ω Ø Ω DS Ø Ø Ω Ø Ω Ø

ß

Ω

Ø

Ω

S

A

GATTCGGACTCAGACAACGACTCAGATTCAGATAGCGATTCAGATTCAGATGCAGGTAAAC K Ω Ø Ω ATACTCCGGCTAAACCAATGAGTACGGTT

Ø Ω Ø Ω Ø 7 Ø Ø Ω Σ Z Ω S Ø Д S

 $\Delta$ 

aaagatcagcataaaacagctaaagcattaccagaaacaggtagtgaaaataattcaaF/G. 7F

Ø

|                     | Z                             |            |                         | 47            |
|---------------------|-------------------------------|------------|-------------------------|---------------|
|                     | Z                             |            |                         | U             |
|                     | Z                             |            | AAA                     | ×             |
|                     | 臼                             |            | AAT                     | Z             |
|                     | Ø                             | ·          | CAA                     | C             |
|                     | Ö                             |            | GGTCGTCGTAAAAACAAAATAAA | ×             |
|                     | H                             |            | AAA                     | ×             |
|                     | ы                             | 0          | CGT                     | 2             |
|                     | O.                            | 930        | CGT                     | 2             |
| TC<br>T             | П                             |            | GGT                     | Ü             |
| TAT                 | K                             | LF         | TIC                     | Ē             |
| GAT                 | K                             | υ          | TCA                     | ഗ             |
| GIG                 | Ø                             | ტ          | TTG                     | Н             |
| I'TAT'TCGGTGGATTATT | K T A K A L P E T G S E N N N | L F G G LF | CATTATTGTCATTC          | SILSFGRRKKONK |
| TAT                 | ĸ                             | H          | TCA                     | ഗ             |
| CAI                 | Ħ                             |            | GGA                     |               |
| S. S. S.            | H O                           | ტ          | TTA                     | Н             |
| ATAATGGCACA         | Ω                             | Z          | GCGGCATTAGGZ            | A A L G       |
| ATA                 | ×                             | N G T      | ව්ටව                    | Ø             |
|                     |                               |            |                         |               |

F1G. 7G

Ggaaataaagttgcaactgccaaatcagatgagcaagcttcaccaaaatctacga

ATGAAGATTTAAACACTAAACAAACTATA

atgctaaacagagaaataaacggcaataacaaggaaaggcatggtatccaatcgattaa ggaacagcatcaattttagtaggtacaacattaatttttggtctggggaaccaagaagcaa na parcearge de la composición del composición de la composición delación de la composición delación della composición de la composición della composición d aatcaaaaagaaatggtatcatctcaaggtaatgaaacgacttcaaatggaataaattaa Н K 闰 Z Q S Z Ω O Ö Z  $\mathbf{z}$ Н K Ø Ö r Д H × Ē Ø K Ø 闰 120 30 09 06 8 Z **ATAAATTTTCGATTAGAAAGTACACAGTG** H AGGCTGCAGAAGTACTAATAAAGAATTG Z r TAAATCAAGAGACAATACTAAAAATGAT TAGAAAAAGAAAGTGTACAATCTACCACT S T N K EL K N O S III ß Ö Ø K Ø r v Ø Ø > M 回 Н Ω ß Ø 闰 K A A E N O N 因 ス 回 K Ø H 闰

C

Ø

K

<u> Agtaatcaagagggttacaacctgatttgcaagagaataaatcagtggtaaatgttcaac</u> GCCAAAACTGAATCAACTACATTAAATGTTAAAAGTGATGCTATCAAGAGTAATGATGAAA aatgaaaataatgcagatatcattttgccaaaaagtacagcacctaaacgttgaatacaa H 闰 Ø A K Z Z Д > Ø S > K K ß H Q K 日 Z A Ω 团 Ø 150 180 210 Ø Ø X K Н > Caactaatgaggaaacaaaaaggtagat **CTCTTGTTGATAACAATAGTAATTCAAAT** GAATGCGTATAGCAGCAGTACAGCCATCA Ω Z М Н Ø Ø Ø K Н H Z Z ď 闰 Ø 闰 Z 回 曰 O) H > Д Z Z 闰 U

**TCAACAGAGGCTAAAAATGTTAATGATTTAATCACATCAAATACAACATTAACTGTCGTTG** 240 ATGCAGATAAAACAATAAAATCGTACCA A Ø Н æ

Z

H

K

X

Д

ď

H

Ø

K

ρ

Н

Ω

4

Z

Z

闰

H H Z ß 270 VP Z Z Z K Ø 闰 H

GCCCAAGATTATTTATCATTAAAATCACAAATTACAGTTGATGACAAAGTTAAATCAGGTG ATTATTTCACAATTAAATACTCAGATACA

> K Д A 300 S DT K Ø Ø

70/47

| A                                                              | •                             |                 |            | Ē                                                              | 4                |                |
|----------------------------------------------------------------|-------------------------------|-----------------|------------|----------------------------------------------------------------|------------------|----------------|
| וניכא                                                          | }                             | Δ               | 4          | 700                                                            |                  | Z              |
| האק<br>דאק                                                     |                               | ב               | 1          | ተሞተ                                                            | i<br>i<br>i      | দি             |
| AAA                                                            |                               | ×               | 1          | מטט                                                            |                  | ĸ              |
| ATT                                                            |                               | Н               | l          | TAT.                                                           |                  | Q              |
| GAT                                                            |                               | Д               | )          | TT.                                                            |                  | >              |
| GGT(                                                           |                               | Ö               | )          | PAT(                                                           |                  | >4             |
| ATT(                                                           |                               | LNPEDIKNIGDIKDP |            | PAT.                                                           | ,                | NITYTETDYVDRFN |
| AAT.                                                           |                               | z               |            | ACA(                                                           |                  | E              |
| AAA                                                            |                               | ×               | 0          | rtt2                                                           |                  | Ŀ              |
| ATT.                                                           |                               | Н               | 330        | ACA!                                                           |                  | E              |
| BAT                                                            | A.                            | A               |            | [AT2                                                           | LI               | ×              |
| BAA(                                                           | CAA                           | 臼               | AK         | ACA:                                                           | AA!              | E              |
| SCG                                                            | CTG                           | Д               | A T AK     | ATT2                                                           | TAATTATTCAATT    | н              |
| AAT(                                                           | CGA(                          | z               | <b>4</b> ! | LTA                                                            | ATT2             | н              |
| TTG                                                            | I'TG                          | н               | Н          | AAT                                                            | LTA              | z              |
| GGA                                                            | CAA                           | ប               | E          | AAT                                                            | AA               | z              |
| TAT                                                            | AAA(                          | ×               |            | 3CA                                                            | <b>1</b> GG(     | A.             |
| STA                                                            | 3TG                           | >               | רח         | ACT(                                                           | YAA!             | E              |
| CAA                                                            | ATG(                          | A Q V Y G       | N<br>C     | PAT                                                            | [AC              | H D T A N      |
| GTACAAGTATATGGATTGAATCCGGAAGATATTAAAAATATTGGTGATATTAAAAGATCCAA | ATAATGGTGAAACAATTGCGACTGCAAAA | >               | z          | CATGATACTGCAAATAATTTAATTACATATACATTTACAGATTATGTTGATCGATTTAAATT | CTGTACAAATGGGAAT | Ħ              |
|                                                                | •                             |                 |            | _                                                              |                  | `              |

TATATGGATGCTGATACAATTCCTGTTAGTAAAAACGATGTTGAGTTTAATGTTACGATAG attcaatatccagattatgttgtaaatgagaaaattcaattggatcagcgttcactgaaa Z Ħ 闰 Ω Z 390 M GTAATACTACAAAAAACAACTGCTAAC Ø AN Ω ď Ω Σ

360

SI

Ö

闰 H Ēų K S C Ø Z 420 闰 **CAGTTTCACATGTTGGAAATAAAGAAAT** E N G N K >

CCAGGGTACTATAAACAAACGATTTATGTAAATCCATCGGAAAATTCTTTAACAAATGCCA **AACTAAAAGTTCAAGCTTACCACTCAAGT** 

Z H Н S Z 闰 Ø μ 450 Z > SS H ෆ

TATCCTAATAATATCGGGCAAATAAATAAAGATGTAACAGATATAAAAATATATCAAGTTC CTAAAGGTTATACATTAAATAAAGGATAC

GATGTGAATACTAAAGAGCTTACAGATGTAACAAATCAATACTTGCAGAAAATTACATATG GGAAATGCAGATTCTGCTTATGTTGTAATGGTTAATACAAAATTCCAATATACAAATAGCG K O Н A H Q > Z 480 510 A H K > GCGACAACAATAGCGCTGTTATTGATTTT **AAAGCCCAACACTTGTTCAAATGGCTACT** A DF GK H Н 딜 H Z H

**B1** 

Ø

Q

Ŀı

K

H

Z

Σ

Ø

Z

ტ · 540

AT

 $\Sigma$ 

**TTATCTTCAACAGGTAATAAATCCGTTTCTACTGGCAATGCTTTAGGATTTACTAATAACC AAAGTGGCGGAGCTGGTCAAGAAGTATAT** 

Н K O 570 H Ø A G Q E VY Ø K U <u>ი</u> ß ß

Z

Z

[I

O

aaaattggtaactacgtatgggaagatactaataaaaacggtgttcaagaattaggagaaa **AAGGCGTTGGCAATGTAACTGTAACTGTA** 

国 0 × 009 Z ? 曰 T Z > z U Z Ċ Н U

**TTTGATAATAATACAAATACAAAGTAGGAGAAGCAGTTACTAAAGAAGATGGGTCATACT** TGATTCCAAACTTACCTAATGGAGATTAC

F1G. 8D

B2

|                 | •      | Ķ                                                    |                      |                   |        |
|-----------------|--------|------------------------------------------------------|----------------------|-------------------|--------|
| Ħ               |        | AAT                                                  |                      | Z                 |        |
| Ø               |        | GGT                                                  |                      | Ö                 |        |
| ប               |        | CAA                                                  |                      | 0                 | t      |
| NTKVGEAVTKEDGSY |        | <b>ACTTACCAAAAGGTTATGAAGTAACCCCTTCAAAAAAAGGTAATA</b> |                      | E V T P S K O G N |        |
| 闰               |        | TCA                                                  |                      | Ø                 |        |
| K               |        | CCT                                                  |                      | Д                 |        |
| H               |        | ACC                                                  |                      | H                 |        |
| >               |        | GTA                                                  |                      | >                 |        |
| K               | 0      | GAA                                                  |                      | 回                 | 0      |
| 闰               | 63(    | TAT                                                  |                      | þ                 | 099    |
| ტ               |        | GGT                                                  | CI                   | ប                 |        |
| >               | DY     | AAA                                                  | <b>AAACGGCTTATCT</b> | N L P K G         | LS     |
| ×               | ტ      | CCA                                                  | CCI                  | Д                 | N G LS |
| Ħ               | r<br>G | TT                                                   | ACG                  | Н                 | Z      |
| Z               | Д      | AAA                                                  | CAZ                  | Z                 | ß      |
| H               | н      | CGTGTAGAATTTTCAA                                     | ACGAAGAATTAGATTCZ    | Ø                 | A      |
| FONNT           | z      | LLI                                                  | TAG                  | ᡆ                 | н      |
| Z               | Д      | AGA?                                                 | AA                   | 闰                 | 臼      |
| Ω               | н      | rg Tz                                                | PAAC                 | >                 | 闰      |
| Ŀ               | Н      | CGI                                                  | ACC                  | <b>%</b>          | z      |
|                 |        |                                                      |                      |                   |        |

**TCAGTTATTACAGTTAATGGCAAAGATAACTTATCTGCAGACTTAGGTATTTACAAACCTA** Ø Z **AATACAACTTAGGTGACTATGTCTGGGAA** Ω K Ö Z

Gatacaaataaaatggtatccaagaccaagatgaaaaaggtatatctggcgtaacggtaa Н O Н Д Ø 069 CATTAAAAGATGAAAACGGTAACGTGTTA V WE L G D

Ö Ø O K 回 720 Д 0 0 Z z U ប K D E Z M Н

**AAAACAGTTACAACAGACGCTGATGGCAAATATAAATTTACTGATTTAGATAATGGTAATT ATAAAGTTGAATTTACTACACCAGAAGGC** 

Н A H ᡆ X 750 K <sub>O</sub> E E Ω H Ŀ 闰

TATACACCGACTACAGTAACATCTGGTAGCGACATTGAAAAAGACTCTAATGGTTTAACAA CAACAGGTGTTATTAATGGTGCTGATAAC

| E               | 1           |     | <b>SATICTACAAAACACCAAAATATAATTITAGGTAATTATATGGG</b> | )<br>}                     | 3            | 3      |
|-----------------|-------------|-----|-----------------------------------------------------|----------------------------|--------------|--------|
| ۲               | I           |     | AT:                                                 |                            | >            | •      |
| U               | )           |     | ΓAΤ                                                 |                            | >            | )      |
| Z               | ;           |     | AAT                                                 |                            | 2            | i      |
| Ø               | !           |     | GTZ                                                 |                            | <sub>U</sub> | )      |
| Ω               |             |     | TAC                                                 |                            | Н            | ļ      |
| F H G N S O H H |             |     | AATI                                                |                            | PKYNLGNYVW   |        |
| 臼               |             |     | PATZ                                                |                            | þ            |        |
| Н               | _           | B3> | AA                                                  |                            | ×            | _      |
|                 | က           | m   | CAZ                                                 |                            | Д            | 210    |
| Ø               |             |     | CAC                                                 | Ħ                          | H            |        |
| T S G S T       | NC          |     | YAAZ                                                | GGTAAGCAGGAT               | F Y K T      | 9      |
| Ø               | G A DN      |     | PACZ                                                | <b>IGCZ</b>                | þ            | G K OD |
| EH              | 70          |     | LTCI                                                | TAZ                        | ĺΞŧ          | P4     |
| >               |             |     | GA1                                                 | TGG                        | U            | 0      |
| T \             | <b>4</b>    |     | GTG                                                 | AGA                        | ß            | Д      |
|                 | H           |     | ATA                                                 | TAA                        | Д            | M      |
| Д               | >           |     | TAG                                                 | AAA                        | L D          | Z      |
| YTPT            | T T G V I N |     | ATGACATTAGATAGTGG                                   | <b>AAGATACAAATAAAGAT</b> ( |              | EDINKD |
| ×               | H           | ÷   | TGA                                                 | AGA                        | M            | Q      |
|                 | H           |     | Ø                                                   | A                          |              | 闰      |
|                 |             |     |                                                     |                            |              |        |

TCAACTGAAAAAGGTATTTCAGGCGTAACAGTTACATTGAAAAATGAAAACGGTGAAGTTT U Z 闰 Z K Н H H TACAAACAACTAAAACAGATAAAGATGGT > D K DG U ß T K U 떼 O

**AAATATCAATTTACTGGATTAGAAAATGGAACTTATAAAGTTGAATTCGAAACACCATCAG** 840

K × 870 U GTTACACACCAACACAGTAGGTTCAGGA Z S 回 GYTPTQVG Н Ö H

Ø

ρ

曰

ſτι

闰

**ACTGATGAAGGTATAGATTCAAATGGTACATCAACAGGTGTCATTAAAGATAAAGATA** ACGATACTATTGACTCTGGTTTCTACAAA

Н > Ö H H 900 ß H U Z Ŀ Ø Ö Ø Н A Ö 闰 Д

K

B4>

CCGACTTACAACTTAGGTGACTATGTATGGGAAGATACAAATAAAAACGGTGTTCAAGATA AAGATGAAAAGGGCATTTCAGGTGTAACA

| K D E K G I S G VT 930  GTTACGTTAAAAGATGAAAACGACAAAGTTTTAAAAACGTTACAACAGATGAAAATGGTA  AATATCAATTCACTGATTTAAACAATGGA  V T L K D E N D K V L K T V T D E N G  K Y Q F T D L N NG 960  ACTTATAAAGTTCAAATGGTTAA  T Y K V E F E T P S G Y T P T S V T S G  N D T E K D S N GL 990                                         | 0        |    | ATGGTA |     | r<br>U     |     | CTGGAA |     | დ<br>ტ        |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|--------|-----|------------|-----|--------|-----|---------------|----|
| K D E K G I S G VT 930  GTTACGTTAAAAGATGAAACGACAAAGTTTTAAAAACGATACAATAAAAACGATTACAATGAATG                                                                                                                                                                                                                            | >        |    | GAAA   |     | 闰          |     | ACTI   |     | Ħ             |    |
| K D E K G I S G VT 930 GTTACGTTAAAAGATGAAAACGACAAAGTTTTAAAAACAACAACAACAACAACAACAATGGA  V T L K D E N D K V L K T V T T T N Y Q F T D L N NG 960 ACTTATAAAGTTGAATTCGAGACACCATCAGGTTATACAACTTCAAATGGTTTA  ATGATACTGAAAAAGATTCTAATGGTTTA  T Y K V E F E T P S G Y T P T S N D T S N GL 990                              | Ö        |    | GAT    |     | Д          |     | GTA    |     | >             |    |
| K D E K G I S G VT 930 GTTACGTTAAAAGATGAAAACGACAAAGTTTTAAAAAAACGTTACAATTCACTGATTTAAACGACAAAGGTTTTAAAAAACGTTACAATTACAATTCAATTTAAAACGATTATAAAACGTTATAAACGATTCAATTCGAGACACCATCAGGTTATAAAGATTCTAATGGTTTA  ACTTATAAAAGATTCTAATGGTTTA  ATGATACTGAAAAAGATTCTAATGGTTTA  T Y K V E F E T P S G Y T P T N D T Y K D S N GL 990 | Z        |    | ACA    |     | H          |     | TCA    |     | Ø             |    |
| K D E K G I S G VT 930  GTTACGTTAAAAGATGAAAACGACAAAGTTTTAAAAACAGT  AATATCAATTCACTGATTTAAACAATGGA  V T L K D E N D K V L K T V  K Y Q F T D L N NG 960  ACTTATAAAGTTCGAGACACCATCAGGTTATACACCZ  ATGATACTGAAAAGATTCTAATGGTTTA  T Y K V E F E T P S G Y T P  N D T E K D S N GL 990                                      | M        |    | PACZ   |     | H          |     | AACI   |     | H             |    |
| K D E K G I S G VT 930 GTTACGTTAAAAGATGAAAACGACAAAGTTTTAAAAAC AATATCAATTCACTGATTTAAACAATGGA  V T L K D E N D K V L K T K Y Q F T D L N NG 960 ACTTATAAAGTTGAATTCGAGACACCATCAGGTTATAC ATGATACTGAAAAGATTCTAATGGTTTA  T Y K V E F E T P S G Y T N D T E K D S N GL 990                                                  | Z        |    | AGT    |     | >          |     | ACCZ   |     | Д             |    |
| K D E K G I S G VT 930 GTTACGTTAAAAGATGAAAACGACAAAGTTTTAAA AATATCAATTCACTGATTTAAACAATGGA V T L K D E N D K V L K K Y Q F T D L N NG 960 ACTTATAAAGTTGAATTCGAGACACCATCAGGTTA ATGATACTGAAAAGATTCTAATGGTTTA T Y K V E F E T P S G Y N D T E K D S N GL 990                                                              | F        |    | AAC.   |     | H          |     | TAC    |     | H             |    |
| K D E K G I S G VT 90 GTTACGTTAAAAGATGAAAACGACAAAGTTTT AATATCAATTCACTGATTTAAACAATGGA V T L K D E N D K V L K Y Q F T D L N NG 90 ACTTATAAAGTTGAATTCGAGACACCATCAGG ATGATACTGAAAAGATTCTAATGGTTTA T Y K V E F E T P S G N D T E K D S N GL 99                                                                           | A        | 30 | AAA    |     | K          | 90  | LTA    |     | <b>, &gt;</b> | 90 |
| K D E K G I S G VT GTTACGTTAAAAGATGAAAACGACAAAGT AATATCAATTCACTGATTTAAACAATGGA V T L K D E N D K V K Y Q F T D L N NG ACTTATAAAGTTGAATTCGAGACACCATC ATGATACTGAAAAAGATTCTAATGGTTTA T Y K V E F E T P S N D T E K D S N GL                                                                                             | 曰        | 6  | TTI/   |     | H          | ð   | AGG    |     |               | 9. |
| K D E K G I S G VT GTTACGTTAAAAGATGAAAACGACAA AATATCAATTCACTGATTTAAACAAT V T L K D E N D K K Y Q F T D L N NG ACTTATAAAGTTGAATTCGAGACACC ATGATACTGAAAAAGATTCTAATGGT T Y K V E F E T P N D T E K D S N GL                                                                                                             | 3        |    | AGT    | GGA | >          |     | ATC.   | LTA | Ø             |    |
| K D E K G I S G GTTACGTTAAAAGATGAAAACGAAATTCACTGATTTAAACGATTAAAACGTTAAAACGTTGAATTCGAGACATGATTCTAATTCGAGACATGATACTGAAAAAAAA                                                                                                                                                                                           | >        | M  | CAA    | AAT | K          | NG  | ACC    | GGT | Д             | GL |
| K D E K G I S GTTACGTTAAAAGATGAAAA AATATCAATTCACTGATTAA V T L K D E N K Y Q F T D L ACTTATAAAGTTGAATTCGA ATGATACTGAAAAAGATTCT T Y K V E F E N D T E K D S                                                                                                                                                            | ×        | ტ  | CGA    | AAC | Ω          | Z   | GAC    | AAT | H             | Z  |
| K D E K G I GTTACGTTAAAAGATGA AATATCAATTCACTGAT V T L K D E K Y Q F T D ACTTATAAAGTTGAATT ATGATACTGAAAAGAT T Y K V E F N D T E K D                                                                                                                                                                                   | <b>A</b> | S  | AAA    | TTA | Z          | Н   | CGA    | TCI | 田             | Ø  |
| K D E K G GTTACGTTAAAAGA AATATCAATTCACT V T L K D K Y Q F T ACTTATAAAGTTGA ATGATACTGAAAAA T Y K V E N D T E K                                                                                                                                                                                                        | <b>.</b> | Н  | TGA    | GAT | 田          | Д   | ATT    | GAT |               | A  |
| K D E K GTTACGTTAAA AATATCAATTC V T L K K Y Q F ACTTATAAAGT ATGATACTGAA T Y K V                                                                                                                                                                                                                                      | H<br>-   | ប  | AGA    | ACT | Д          | H   | TGA    | AAA | E             | ĸ  |
| K D E GTTACGTT AATATCAP V T I K Y Q ACTTATAP ATGATACT I K K K W W W W W W W W W W W W W W W W                                                                                                                                                                                                                        | <b>%</b> | K  | 'AAA   | TTC | ×          | Įzi | AGI    | GAA | >             | 闰  |
| K D GTTAC AATAJ K Y K Y ACTTP ATGAJ N D                                                                                                                                                                                                                                                                              |          | ы  | GTT    | CAA | H          | O1  | TAA    | ACT | ×             | E  |
| H M P A A A E L Z                                                                                                                                                                                                                                                                                                    | <u>.</u> | P  | TAC    | TAI | -          | Ħ   | TI     | GAT | <b>P</b> 1    | Д  |
|                                                                                                                                                                                                                                                                                                                      | -4       | M  | 5      | AA  | <i>i</i> > | ×   | AC     | AI  | H             | Z  |

ACAACAACAGGTGTCATTAAAGATGCAGATAACATGACATTAGACAGTGGTTTCTATAAAA **CACCAAAATATAGTTTAGGTGATTATGTT B5**2

O Ø A Н H × 1020 A ď 7 Ω Ω K U Н Н Ø O H

TGGTACGACAGTAATAAAGACGGCAAACAAGATTCAACTGAAAAAAGGTATCAAAGATGTTA **AAGTTACTTTATTAAATGAAAAAGGCGAA** 

O 띠 H S 1050 Д 0 GK K Ω 曰 M Z Z Н တ н H

GTAATTGGAACAACTAAAACAGATGAAAATGGTAAATACTGCTTTGATAATTAGATAGCG GTAAATACAAAGTTATTTTTGAAAAGCCT

F1G. 8G

25/47

|                                 |              | 71                                                           | `                             |            |            | <b>9</b> 1                                                   |
|---------------------------------|--------------|--------------------------------------------------------------|-------------------------------|------------|------------|--------------------------------------------------------------|
| V.                              | )            | יטטט                                                         |                               | ŗ          | )          | יביכים                                                       |
| <b>C</b>                        | 1            | しませ                                                          | í<br>)                        | U          | )          | 14 A                                                         |
| ۲.                              | ı            | ZAT(                                                         |                               | Д          | )          | A D                                                          |
| Z                               | í            | 3CA(                                                         |                               | Ø          | }          | ZAC.                                                         |
| Q                               | )            | BAT(                                                         |                               | Д          |            | AGCC                                                         |
| Ŀ                               | ł            | AAA(                                                         |                               | K          |            | PATA                                                         |
| K T D E N G K Y C F D N I N G K | ì            | GAT                                                          |                               | TEDDKDADGG |            | rca(                                                         |
| ×                               |              | GAT                                                          |                               | Ω          |            | ACA!                                                         |
| ×                               | 1080         | GAA                                                          |                               | 回          | 10         | GAA                                                          |
| ტ                               | 10           | ACT                                                          |                               |            | 1110       | GAA                                                          |
| z                               |              | ACA                                                          | AT                            | H          |            | GAA                                                          |
| 딘                               | KP           | AAT                                                          | ATG                           | Z          | H          | TAC                                                          |
| A                               | F E KP       | ACA                                                          | ATC                           | T C T D T  | А          | TAC                                                          |
| H                               | Ēų           | GGT                                                          | 992                           | ŋ          | H          | ည္သည္                                                        |
| K                               | П            | ACA                                                          | TTA                           | H          | н          | PAAT                                                         |
| H                               | >            | CAA                                                          | CAA                           | Ø          | H          | GAT                                                          |
| H                               | ×            | AACZ                                                         | TAZ                           | H          | >          | CTI                                                          |
| ტ                               | ×            | TI                                                           | 3ACC                          | Н          | Ω          | ACA                                                          |
| VIGT                            | GKYKV        | GCTGGCTTAACACAAACAGGTACAAATACAACTGAAGATGATAAAGATGCAGATGGTGGT | AAGTTGACGTAACAATTACGGATCATGAT | A G L T    | EVDVTITDHD | GATTTCACACTTGATAATGGCTACTACGAAGAAGAACATCAGATAGCGACTCAGATTAGC |
| >                               | <sub>O</sub> | GC                                                           | AA(                           | K          | 闰          | GAT                                                          |
|                                 |              |                                                              |                               |            |            |                                                              |

GACTCAGATAGTGATTCAGACTCGGATAGCGATTCAGATTCAGACAGCGATTCAGATTCAG GATAGTGATTCAGACTCAGATAGCGACTCAGATTCAGACAGCGACTCAGATTCAGACAGCG S Ø Ø A A Ø Ø A А Ø Ø Д 闰 Ø 1170 1140 闰 闰 Ø ACAGCGACTCAGATTCAGACAGAGACTCA ATAGCGATTCAGATTCAGACAGAGACTCA DS Ω S D S D R DS Ø ጁ U A S Ŋ Z Ŋ Н S ß

Д Ø Ω Ø А Ø 1200 Д Ø ACTCAGACTCAGATAGTGATTCAGACTCA Ω SDS Ø S Ø S **(2)** A S Ø

GATAGCGACTCAGATTCGGATAGCGACTCAGATTCAGACAGCGACTCAGACTCGGATAGTG attcagactcagatagcgactcagactcaF/G

SHEET (RULE 26)

Ø

A

S

Д

Ø

Д

Ø

Д

Ø

Д

Ø

1260

HT

| SDSDSDSDSDSDS | 1230      |          | GATAGCGATTCAGATTCAGACTCAGACTCAGACAGACAGCGATTCAGACTCAGACAGCG |                               |
|---------------|-----------|----------|-------------------------------------------------------------|-------------------------------|
| ശ             |           |          | TCAG                                                        | S.                            |
| Д             | DS        |          | GAC                                                         | ACTCAGACTCAGATGCAGGTAAGCACACA |
| ß             | Ø         |          | 'AGC                                                        | AGG                           |
| Ω             | S D S DS  |          | GAT                                                         | GIZ                           |
| Ø             | S         | <b>A</b> | TCA                                                         | CAG                           |
| Ω             |           | įΣ       | GAT                                                         | ATG                           |
| S             | ß         |          | TCA                                                         | CAG                           |
| A             | D S D S D |          | GAT                                                         | ACT                           |
| D<br>S<br>D   | Ø         |          | AGC                                                         | CAG                           |
| Ω             | Ω         |          | GAI                                                         | ACI                           |
|               |           |          |                                                             |                               |

CCTGTTAAACCAATGAGTACTAATAAGACCATCACAATAAAGCAAAAGCATTACCAGAAA ρ 4 K K CAGGTAATGAAATAGCGGCTCAAATAAC

K Z 1290 二 A Z Н Ø Ø X Д

K 4 O Ŀ Н Н Н Ø Ö H K K Ŀ Ö U AAAAACAAAATAAA Н

GCAACGTTATTTGGCGGATTATTCGCAGCATTAGGATCATTATTGTTATTCGGTCGTCGTA

H

atgattaacagggataataaaaggcaataacaaaaagggtatgatttcaaatcgcttaa acaaattttcgattagaaagtatactgta

K Z Ø H Σ U K K K Σ

ggaactgcatcgattttagtaggtacgacattgatttttggtctagggaaccaagaagcta **AAGCTGCTGAAACACTAGTACAGAAAT** 

闰 O Z Ü Н U Ŀı Н Н TEN U Н Н Ø 闰 Ø K Ö

GCAAAACAAGATGATGCAACGACTAGTGATAATAAGAAGTAGTGTCGGAAACTGAAAATA 9 ATTCGACAACAGAAATAATTCAACAAAT

闰 Ø > 回 K Z A Ø E N ď Ω Δ O1 S K

Z

闰

H

CCAATTAAGAAAGAAATACTGATTCACAACCAGAAGCTAAAAAAAGAATCAACTTCAT

90

L

CAAGTACTCAAAACAGCAAAATAACGTT K X Н

S 闰 K K K 曰 Α 120 O1 Ø N Н N O O Z H ᄓ Ŋ

ATAAAACTGCGACAGAAGATACATCTGTT

94

| E N V K P S T<br>SATGTAACTACAAAACCATCTA | D V T T K P S ATTCACAACCAACCAACCAACCAACCAACCAAACCAAA                                                                   | N S Q P Q P H                                                                  | AACTTAAAATAATCCTGAGA<br>E L K N N P E                                                                                                                  | CAAGTGTTGCACCAAAACGTG                                 | T S V A P K R<br>TTAAAGTGACGAAGCAA                                | I K V T K Q T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TT AG                                   | I L E E K K A P N N T N D V T T K P S<br>T S E P S T S E IQ 180<br>ACAAAACCAACTACACTCTACAAATATTGAAAATTCACAACCGCAACCAAC | CTTCAAAAGTAGACAATCAAGTTACAGAT  T K P T T P Q E S T N I E  S K V D N Q V TD 210 | GCAACTAATCCAAAAGTAAATGTGTCAAAAGAAGAACTTAAAAATAATCCTGAGA  AATTAAAAGAATTGGTTAGAAATGATAGC  AT N P K E P V N V S K E E L K N N P E  K L K E L V R N DS 240 | ATCATTCAACTAAACCAGTTGCTACAGCT(AAAAAATGCGCTTTGCAGTTGCA | V N A K M R F A VA 270  CAACCAGCAGTTGCTTCAAACAATGTAAATGATTTAATTAA | LCARAGE TRANSPORT OF THE TOTAL |

| <b>IGATATTGAATATGATACAGAGTTTTACAATTGACAATAAAA</b> | i              |           |
|---------------------------------------------------|----------------|-----------|
| CGCATGACGGTAAA                                    | AGGCGATACAATGA | C N C C H |
| GCGCATGACGGTAAA                                   | GGCGATACAA     | A H D     |
| GCGCATGACGGTAAA                                   | GGCGATACAA     | מ         |
| AGCGCATGACGGTAAA                                  | CGATACAA       | A H D     |

TATGATAAGAATGTAATTCCTTCGGATTTAACAGATAAAATGATCCTATCGATATTACTG 又 Z A H 4 ij 7 330 4 4 ATCCATCAGGAGAGGTCATTGCTAAAGGA Σ H A U

H A Н Д А Z K Д 360 H A KG Ø > <u>ម</u> Z

**ACATTTGATAAAGCAACTAAGCAAATCACATATACATTTACAGACTATGTAGATAAATATG AAGATATAAATCACGCTTAACTCTATAT** 

Q H Ŀ H 390 × R L T LY ď Ŋ K Ω Ēι

**TCGTATATTAGATAAAAACAGTTCCAAATGAGACAAGTTTGAATTTAACATTTGCTACAG** CAGGTAAAGAACAAGCCAAAATGTCACT

ᡆ H Н Z Н Ø 420 回 S Q N VT × Ω 闰

TAGATGAAGATAAGCAAACTATTGAACAA

Ø O Н Z Ø Д U 耳 Σ Д A O)

450 인 O Ω 臼

CAAATTTATGTTAACCCATTGAAAAATCAGCAACCAACTTAAAGTTGATATAGCTGGTA GTCAAGTAGATGATTATGGAAATATTAAA

TATTANA F/G 90

30/97

|                                           | E.                                                            |                                           | _                                                          |
|-------------------------------------------|---------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|
| L K K S A T N T K V D I A G<br>G N IK 480 | Cattattgaccaaaatacagaaataaaggttatataaagttaact<br>Caaagtaataga | z                                         | ATCTATGATTTTAGTCAATACGATGTTAACAAGTCAATTTGATAATAAAAATCATTTA |
| K                                         | GTT                                                           | >                                         | [CA                                                        |
| н                                         | AAA(                                                          | K                                         | AA                                                         |
| Ω                                         | [AT                                                           | þ                                         | AAZ                                                        |
| >                                         | TI                                                            | >                                         | ATZ                                                        |
| ×                                         | <b>₩</b>                                                      | ×                                         | ATA                                                        |
| E                                         | TTA?                                                          | Н                                         | TT                                                         |
| z                                         | AA.                                                           | 闰                                         | AAT                                                        |
| H O                                       | ACAC                                                          | H (                                       | GTC                                                        |
| A 480                                     | A.A.T.                                                        | N<br>510                                  | CAZ                                                        |
| Ø                                         | CAAJ                                                          | OI                                        | TA                                                         |
| X X                                       | CATTATTGACCA<br>CAAAGTAATAGA                                  | I I D Q N T E I K V Y K V N<br>Q S NR 510 | 3AT(                                                       |
| L K K<br>G N IK                           | ATT                                                           | I I D<br>Q S NR                           | 3AA(                                                       |
| н <sub>b</sub>                            | ATT                                                           | На                                        | PAC                                                        |
| ъ.                                        | ACC.                                                          | E d                                       | AA                                                         |
| z                                         | 16CC                                                          | ω<br>T                                    | GTC                                                        |
| > 0                                       | SGTZ                                                          | L C                                       | TIT                                                        |
| × D                                       | LATO<br>LACA                                                  | N<br>Z                                    | ATT                                                        |
| Q I Y V N P<br>Q V D D Y                  | SGA.                                                          | i<br>i<br>i<br>i                          | ATC                                                        |
| လ<br>လ                                    | CTAGGAAATGGTAGCAC(<br>CTGATCAACAATTGCCT(                      | H<br>D<br>G                               | ATC1                                                       |
| <b>U</b> _3 ·                             |                                                               | Ø                                         | ~ `                                                        |
|                                           |                                                               |                                           |                                                            |

GATATTAATTCAGCCTATATTATCAAAGTTGTTAGTAAATATACACCTACATCAGATGGCG 540 **AACTAGATATTGCCCAAGGTACTAGTATG** Ę Ø

S

K

K

Z

Ω

더

Q

Ø

H

闰

O)

Ŋ

Ŀı

GTAATAATGTAGCAACATTGGATTTTGGT

ρι 570 SM U A O Ą ß, H Q I

S

H

**Agaacaactgataaatatggttattataattatgcaggatattcaaacttcatggtaactt** CTAATGACACTGGCGGTGGCGACGGTACT

U Ø 009 <u>ෆ</u> K Ö A

Z

Ø

B1>

ACGGTGTTCAAGGTACAGATTCAAAAGAA

F1G. 90

|                                         |                    | Ø                                                             | <b> </b>                      |             |           | ຼັບ                                                           | )                             |             |             |
|-----------------------------------------|--------------------|---------------------------------------------------------------|-------------------------------|-------------|-----------|---------------------------------------------------------------|-------------------------------|-------------|-------------|
| ×                                       |                    | GTA                                                           |                               | >           |           | CTI                                                           |                               | Н           |             |
| Ω                                       |                    | TCA                                                           |                               | Ø           |           | TAT                                                           |                               | þ           | l           |
| >                                       |                    | AAA                                                           |                               | K           |           | GGA                                                           |                               | ט           |             |
| Q                                       |                    | ACA                                                           |                               | H           |           | ACT(                                                          |                               | E           |             |
| 闰                                       |                    | ACT.                                                          |                               | H           |           | CA                                                            |                               | Д           |             |
| M                                       |                    | 3GT                                                           |                               | ტ           |           | ACG(                                                          |                               | H           |             |
| >                                       |                    | 3AC                                                           |                               | Ω           |           | PAA                                                           |                               | 闰           |             |
| ×                                       |                    | SCGC                                                          |                               | LTYPDGTTKSV |           | TTC                                                           |                               | VKFETTPTGYL |             |
| Ω                                       | 0                  | PAC(                                                          |                               | Ħ           | 0         | AAA                                                           |                               | ×           | _           |
| ტ                                       | 630                | ACT                                                           |                               | H           | 099       | 3TT2                                                          |                               | >           | 069         |
| н                                       |                    | TTA                                                           | FC<br>FC                      | н           |           | ACA(                                                          | HS                            | H           |             |
| ×                                       | 五                  | ACA                                                           | AAT                           | Н           | E4<br>E4  | rat/                                                          | ATG(                          | I X I       | 90          |
| ×                                       | S                  | GTT                                                           | ATG                           | I V I       | H Y EF    | ACT                                                           | CTG                           | H           | T T DG      |
| н                                       | ۵                  | TTA                                                           | ATT                           | Н           | <b>E</b>  | GAA                                                           | CAA                           | 回           | F           |
| ×                                       | E                  | GTT                                                           | GTC                           |             |           | GGA                                                           | GAA                           | ប           |             |
| V K P E E K L Y K I G D Y V W E D V D K | Ŋ                  | AAC                                                           | ATG                           | K P M A N V | T D A N G | GAC                                                           | ATG                           | D<br>D      | z           |
| 回                                       | d                  | GCA                                                           | CTA                           | K           | K         | AAA                                                           | TAA                           | ĸ           | <b>&gt;</b> |
| Д                                       | <b>&gt;</b>        | ATG                                                           | ATG                           | Z           | ۵         | TTG                                                           | AAG                           | н           | <b>K</b>    |
| ĸ                                       | Ö                  | CCA                                                           | CAG                           | Д           | E         | GGT                                                           | CAA                           | 0<br>0      | H           |
| >                                       | D G V O G T D S KE | AAACCAATGGCAAACGTTTTAGTTAACTTAACTTACCCGGACGGTACTACAAAATCAGTAA | GAACAGATGCTAATGGTCATTATGAATTC | M           | <b>4</b>  | GGTGGTTTGAAAGACGGAGAAACTTATACAGTTAAATTCGAAACGCCAACTGGATATCTTC | CAACAAAAGTAAATGGAACAACTGATGGT | Ŋ           | PTKVNG      |

**B2**>

GAAAAAGACTCAAATGGTAGTTCGGTTACTGTTAAATTAATGGTAAAGATGATATGTCTT S A K O Z X TAGATACTGGTTTTTACAAAGAACCTAAA Ø Ø U Ø

TACAACTTAGGTGACTATGTGGGAAGATACTAATAAGATGGTATCCAAGATGCAAATG 720 AGCCAGGAATCAAAGATGTTAAGGTTACA

E PK

K

C)

Z 750 闰 K VT I K D Д O д С Z

TTAAAAGATAGTACTGGAAAAGTTATTGGTACAACTACTACTGATGCCTCGGGTAAATATA

**AATTTACAGATTTAGATAATGGTAACTAT** F16.

|             |          | ě  |                                                                                                                                           |                               |                  |                                         |             |                                                 |     |          |          |                         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                       |
|-------------|----------|----|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|-----------------------------------------|-------------|-------------------------------------------------|-----|----------|----------|-------------------------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|
| 4           | <b>a</b> |    | CTTGATAACGGATACTTCGAAGAAGATACATCAGACAGCGATTCAGATACGATACATAGAAGATACATAGAAGATACATCAGAGAGACACAAGAAGAAGATACATCAGAGAGACAGAGAGAAGATACATCAGACAGA | SACI                          | c                | <b>a</b>                                | E           | -HIL                                            | ı   | ر<br>1   | į        | CAGACAGCGATTCAGATAGCGAC | •        | a<br>a   | TCAGACTCAGACAGCGACTCAGATTCAGATTCGGATTCGGACTCAGATAGCGATTCGGACTCAGATAGCGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGGATTCGATTCGGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCAGATTCGATTCGATTCGATTCAGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCGATTCAGATTCGATTCAGATTCGATTCAGATTCGATTCAGATTCGATTCAGATTCGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTCAGATTC | ATT.                                              | c        | <b>a</b> | TCAGATTCAGACAGCGATTCAGACTCAGATAGCGACTCAGACTCAGACTCAGACTCAGACTCAGATTCAGACTCAGATAGCGACTCAGACTCAGATAGCGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCAGACTCACACACA | A.T.T.                                        |                       |
| <b>&gt;</b> | >        |    | È                                                                                                                                         | TOT                           | Č                | S D S D S D S D S D S D S D S D S D S D |             | <b>1</b>                                        | Ø   |          | į        | )<br>)                  | Ø        |          | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,<br>5                                            | Ø        |          | r<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S<br>S<br>S                                   |                       |
| Ŀ           | 3        |    | E                                                                                                                                         | 71.46                         | ב                | 3                                       | K           | ا                                               | 4   | <b>J</b> |          | AT.                     | Ç        | ۵        | Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1) <b>1</b>                                       | ۲        | <b>1</b> | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTW                                           |                       |
| נ           | 9        |    | ر<br>د<br>د                                                                                                                               | Š                             | U                | 2                                       | ני          | ֓֞֝֝֝֓֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֓֓֓֡֓֡֓֓֡֓֓֡֓֓֡֓֡֓֡֓֡֓ |     | D.       | 000      | ا<br>ا<br>ا             | Č        | Q        | נ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֝֝<br>֓֞֞֞֞֞֞֞֞ | ŭ        | 2        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>1<br>5                                   |                       |
| ני          | )        |    | ر<br>ا                                                                                                                                    | ֚֚֭֭֭֚֭֚֡֝֟֝֟֝֟֝֟֝֟֝֓֓֓֓֟֝    | _                | )                                       | 4 T         | 4 T C 3                                         | ב   | <b>1</b> | KE       | WI.W                    | <b>c</b> | <b>1</b> | 8 T P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                 | <b>C</b> | _<br>}   | ر<br>د<br>د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ֡֝֝֝֟֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֓֡ |                       |
| <b>C</b>    | 1        |    | ر<br>الاي                                                                                                                                 | 5                             | V.               | )                                       | ر<br>الای   | 5                                               | ŭ   |          | ָר<br>ק  | 9<br><b>5</b>           | U        | 2        | ر<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   | U.       | `<br>)   | ر<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>5                                        |                       |
| A           | :        |    |                                                                                                                                           | 7                             | ב                | )                                       | <u>т</u> т. | †<br>†<br>†                                     | ב   |          | Ę        | 116                     | <b>ر</b> | )        | TO A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                                                 | D.       |          | Д<br>Д                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                             |                       |
| Q           | ì        |    | ָרָבָי<br>ה                                                                                                                               |                               | Ø                | )                                       | A D         | }                                               | V.  |          | ا<br>الا | )<br>(;                 | V.       | `<br>}   | S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )<br>)                                            | S S      | ,<br>}   | A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | j                                             |                       |
| ×           |          |    | ACA<br>ACA                                                                                                                                |                               |                  | ١ _                                     | ACT         | <b>!</b>                                        |     |          | E C A    | 7                       | <b>C</b> |          | ATT(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |          | _        | ACT(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>;</u><br>}                                 |                       |
| Д           | 930      |    | CAG                                                                                                                                       |                               | S                | 960                                     | 929         |                                                 | C C | 066      | ひして      | )<br>)                  | V)       | 1020     | 305<br>306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   | S        | 1050     | 3CG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;<br>)<br>)                                   | (7                    |
| Ω           |          | 14 | CAT                                                                                                                                       | Ų                             | H                |                                         | ACA         | ט                                               |     |          | A C      | Ü                       | Ω (      | 1        | ATA(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3                                                |          | • •      | \TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i<br>                                         | $\widetilde{\varrho}$ |
| 闰           | FI       |    | ATA                                                                                                                                       | CAGACAGCGACTCAGACTCAGACAGCGAC | Д                | SD                                      | CAG         | CGA                                             | Ø   |          | CAG      | CGA                     | S        | Ω        | CAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CGA(                                              | S        | 0        | AG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GAC                                           | F16. 96               |
| H           | -        |    | AAG                                                                                                                                       | CAG                           | 田                | Ø                                       | ATT         | TAG                                             | А   | U)       | ACT      | TAG                     | 0        | SD       | ATT(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l'AG                                              | 0.       | SD       | ACT(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PAG                                           | 1                     |
| H           | A        |    | AAG                                                                                                                                       | AGA                           | 曰                | Q                                       | CAG         | AGA                                             | ຶ   | Д        | AG       | <b>GA</b>               | F0       | Д        | AG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GA                                                | Д        | Ω        | AGZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GA1                                           |                       |
|             | Q        |    | S<br>S                                                                                                                                    | Ę,                            | _                | Ø                                       | TT          | TCT                                             | -   | Ø        | TTC      | DI<br>L                 | U)       | ß        | CTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TCA                                               | Ø        | ß        | ITC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ICA                                           |                       |
| Z           | Ħ        |    | CTI                                                                                                                                       | GAC                           | i <del>z</del> i | Ω                                       | IGA         | BAC                                             | A   | Ω        | GA       | ÄC                      | Ω        | D        | S. S. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AC                                                | Д        | Ω        | GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AC                                            |                       |
| H           | Д        |    | ITA                                                                                                                                       | Ę.                            | Ħ                | S                                       | AG          | CA(                                             | S Q | Ø        | AG       | 2                       | Ø        | Ø        | AGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAG                                               | D<br>S   | Ø        | AGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAG                                           |                       |
| >           | H        |    | 1955;                                                                                                                                     | ACT                           | N G Y F          | Ω                                       | GAC         | ATT                                             | Ω   | А        | GAT      | ATT                     | Ω        | Д        | GAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATT                                               | Ω        | D        | GAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACT                                           |                       |
| H           | н        |    | AAC                                                                                                                                       | 000                           | Z                | S                                       | TCA         | 929                                             | Ø   | Ø        | TCA      | ອນອ                     | Ø        | S<br>Q   | TCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BCG                                               | W        | ß        | ICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                           |                       |
| Q           | H        |    | GAI                                                                                                                                       | ACA                           | A                | Ω                                       | GAC         | ACA                                             | Δ   | D        | GAT      | ACA                     | Д        | Д        | GAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACA                                               | Ω        | A        | BAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACA(                                          |                       |
| H           | >        |    | CII                                                                                                                                       | CAG                           | н                | ß                                       | TCA         | CGGACAGCGATTCAGACTCAGATAGCGAC                   | Ø   | ß        | TCA      | CAG                     | Ø        | ເ        | TCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAGACAGCGATTCAGACTCAGATAGCGAC                     | മ        | S<br>I   | [CA(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAGACAGCGACTCAGATAGCGAC                       |                       |
| •           |          |    |                                                                                                                                           |                               |                  |                                         |             |                                                 |     |          | 2        | 41                      | 47       | ,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |          |          | * '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                       |

| 0                                      | ACA                                                | _                                       |
|----------------------------------------|----------------------------------------------------|-----------------------------------------|
| <b>H</b>                               | AG2                                                | -                                       |
| Ø                                      | FI<br>S                                            | U                                       |
| Ω                                      | GAT                                                | ב                                       |
| Ø                                      | AGT                                                | V.                                      |
| Ω                                      | GAC                                                | ב                                       |
| Ø                                      | rc <b>a</b> (                                      | V.                                      |
| Ω                                      | 3AC!                                               | D                                       |
| Ø                                      | I'C'A'                                             | S                                       |
| 90 D                                   | 3AC                                                | Q                                       |
| S D<br>1080                            | <b>AGC</b> (                                       | Ø                                       |
| Ω                                      | GAT!                                               | Ω                                       |
| DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS | W> TCAGATTCAGACACTCAGACTCAGATAGCGACTCAGACTCAGACAGA | T N T N T N T N T N T N T N T N T N T N |
| S D SD SD SD                           | GAC                                                | Д                                       |
| လ                                      | Y<br>TCA<br>CAG                                    | Ø                                       |
| Ω                                      | W><br>GACT                                         | Ω                                       |
| ຜ                                      | AGC<br>366                                         | Ø                                       |
| A O                                    | TCAGATTCAGACAGCG<br>GCGATTCAGACTCGGA               | Д                                       |
| S<br>S                                 | rcac                                               | Ø                                       |
| O O                                    | FAT                                                | Ω                                       |
|                                        | CAC                                                | Ŵ                                       |
| Ø                                      | H (1)                                              |                                         |
|                                        |                                                    | ;                                       |
|                                        |                                                    |                                         |

**ACACCTGTTAAACCAATGAGTACTAATAAAGACCATCACAATAAAGCAAAAGCATTACCAG** 1110 **AAACAGGTAGTGAAAATAACGGCTCAAAT** KH Ö æ Ω Ø Д W Ω

K H Ø 闰 K

K

K

Ø

K

Z

田

S

**AACGCAACGTTATTTGGTGGATTATTTGCAGCATTAGGTTCATTATTGTTATTCGGTCGTC** 24 Ö Ē Н Н H Ø U Н K ď Ē O GCAAAAAACAAAACAAA Н

1166



WO 99/27109

F/G. 11

| %    | CIfB | SdrC | SdrD | SdrE |
|------|------|------|------|------|
| CIfA | 27   | 20   | 24   | 25   |
| CIfB |      | 24   | 25   | 23   |
| SdrC |      |      | 24   | 23   |
| SdrD |      |      |      | 30   |

37/17

|    |                 |                 |                 |                 |                 |     |       | 7                        | - α                      | ) <b>~</b>               | t o                      | v 4                      | <b>1</b>       |        |            |            |            |          |            |
|----|-----------------|-----------------|-----------------|-----------------|-----------------|-----|-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------|--------|------------|------------|------------|----------|------------|
|    |                 |                 |                 |                 |                 |     |       | 347                      | 378                      | ) (<br>) 2               | 1 0                      | 324                      | )              |        |            |            | 124        |          |            |
|    | 296             | 330             | 269             | 241             | 278             |     |       | YTETDYVD                 | YTETDYVD                 | FVFTDYVN                 | YTETNAM                  | YTETDYVN                 | ***            |        |            | l          | F16. 12A   |          |            |
|    | YFTIK           | TMTIN           | YFTAK           | TFTFK           | TFKIT           | •   |       | ANNLIT                   | TKOIT                    | TKTYT                    | TATAL                    | GN-VI                    | ••             |        | 472        | 501        | 438        | 398      | 440        |
|    | TVDDKVKSGDYFTIK | TIDNKVKKGDTMTIN | TVTDKVKSGDYFTAK | TIDDSVKEGDTFTFK | SVPNSAVKGDTFKIT | * * |       | ETIATAKHDTANNLITYTFTDYVD | EVIAKGTEDKATKOITYTETDYVD | DVVAKATYDILTKTYTFVFTNYVN | NIIAKGIYDSTTNTTTTNTTTNVV | QVLANGVIDSDGN-VIYTFTDYVN | *              |        | TDIKIYQVPK | TEIKVYKVNS | TKLRIFEVND | FKIYEVTD | TSIKVYKVDN |
|    | 282             | 316             | 246             | 227             | 264             |     |       | 324                      | 355                      | 291                      | 266                      | 302                      |                |        | 463        | 492        | 429        | 391      | 431        |
| Η. | SdrD            | SdrE            | CLFB            | SdrC            | ClfA            |     | ς: IB | SdrD                     | SdrE                     | $\smile_l$               | Sdrc                     |                          | <b># 5 6 6</b> | ,<br>M | SdrD       | SdrE       | ClfB       | SdrC     | ClfA       |
|    |                 |                 |                 |                 |                 |     | 300   | 0111                     | UI                       | _ 31                     |                          | ו (אנ                    | JLE 26         | ))     |            |            |            |          |            |

831

720

|          |        | EVIDQ 461 F/G 12B | DVTDQ 419 | DVTNS 461 | *** |     |     | KYNLGDYVWEDTNKDGKODANEKGIKGVYVII.KDSNGK-FI | DRITTDENGKYOFIGLS 552 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | GTTETDENGKYRFDNLD 663 |        | GEAVTKEDGSYLIPNLP 626 | C      | KTVTTDADGKYKFTDLD 737 | KYNLGNYVWEDTNKDGKODSTEKGISGVTVTI.KNENGE-177 | QTTKTDKDGKYQFTGLE 848 | c      | TANK MARKET STATE OF THE STATE |
|----------|--------|-------------------|-----------|-----------|-----|-----|-----|--------------------------------------------|-----------------------|---------------------------------------|-----------------------|--------|-----------------------|--------|-----------------------|---------------------------------------------|-----------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| о<br>О т | ן<br>ה | 457 E             | 415 r     | 457 D     | ••  |     |     | 496                                        | 536                   | 607                                   | 647                   | 569    | 610                   | 681    | 721                   | 792                                         | 832                   | 902    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |        | CIEB              | SdrC      | ClfA      |     |     | 55. | SdrCB1                                     | 47                    | SdrCB2                                |                       | SdrDB1 |                       | SdrDB2 |                       | SdrDB3                                      |                       | SdrDB4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |        |                   |           | S         | UBŞ | TIT | UTE | SH                                         | / /<br>EET            | (RL                                   | ILE                   | 26)    |                       |        |                       |                                             |                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 1052<br>647<br>759                                                                                                                                                                                  | 698                                                                                                                    | 593<br>703                                                                                                                             | 668                                                                                                                         | 68<br>88                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| KTVTTDENGKYQFTDLN 958  KYSLGDYVWYDSNKDGKODSTEKGIKDVKVTLLNEKGE-VI GTTKTDENGKYCFDNLD 1069  LYKIGDYVWEDVDKDGVOGTDSKEKPMANVLVTLTYPDGTT KSVRTDANGHYEFGGLK 664  KYNLGDYVWEDTNKDGIODANEPGIKDVKVTLKDSTGK-VI | GTTTTDASGKYKFTDLD 776  KYSLGDYVWYDSNKDGKODSTEKGIKDVTVTLQNEKGE-VI GTTKTDENGKYRFDNLD 886  *.:*:*** * : * : * : . * : . * | NG-TYSVEFST-PAGYTPTTANVGTDDAVDSDGLTTTGVIKDA<br>DNMTLDSGFYKTP- 606<br>SG-KYKVIFEK-PAGLTQTGTNTTEDD-KDADGGEVDVTITDH<br>DDFTLDNGYYEEET 717 | 27 NG-DYRVEFSNLPKGYEVTPSKQGNNEELDSNGLSSVITVNGK 6<br>59 DNLSADLGIYKP 680<br>88 NG-NYKVEFTT-PEGYTPTTVTSGSDIEKDSNGLTTTGVINGA 7 | DNMILDSGFIKTP- 791 NG-TYKVEFET-PSGYTPTQVGSGTDEGIDSNGTSTTGVIKDK DNDTIDSGFYKP 901 F/G /2C |
| 942<br>1013<br>1053<br>607<br>648                                                                                                                                                                   | 760<br>830<br>870                                                                                                      | 553<br>594<br>664<br>704                                                                                                               | 627<br>669<br>738                                                                                                           | 849<br>890                                                                              |
| SdrDB5<br>SdrEB1<br>SdrEB2                                                                                                                                                                          | SGLEB3                                                                                                                 | SdrCB1                                                                                                                                 | SdrDB1                                                                                                                      | SdrDB3                                                                                  |
|                                                                                                                                                                                                     | SUBSTITUTESH                                                                                                           | ( ' '                                                                                                                                  |                                                                                                                             |                                                                                         |

| 000                                         | )                   | 1109                                         | )<br>)<br>!         | 706                                         |                    | מומ                                         | )<br>              | 900                                         | )                    |                                          |
|---------------------------------------------|---------------------|----------------------------------------------|---------------------|---------------------------------------------|--------------------|---------------------------------------------|--------------------|---------------------------------------------|----------------------|------------------------------------------|
| NG-TYKVEFET-PSGYTPTSVTSGNDTEKDSNGLTTTGVIKDA | DNMTLDSGFYKTP- 1012 | SG-KYKVI FEK-PAGLTQTGTNTTEDD-KDADGGEVDVTITDH | DDFTLDNGYYEEET 1123 | DGETYTVKFET-PTGYLPTKVNGTTDGEKDSNGSSVTVKINGK | DDMSLDTGFYKEP- 719 | NG-NYTVEFET-PAGYTPTVKNTTADD-KDSNGLTTTGVTKDA | DNMTLDRGFYKTP- 829 | SG-KYKVIFEK-PAGLTQTVTNTTEDD-KDADGGEVDVTTTPH | 7 DDFTLDNGYFEEDT 940 | **** * * * * * * * * * * * * * * * * * * |
| 959                                         | 1000                | 1070                                         | 1110                | 665                                         | 707                | 777                                         | 817                | 887                                         | 927                  |                                          |
| SdrDB4                                      |                     | SdrDB5                                       |                     | SdrEB1                                      | ,                  | SdrEB2                                      |                    | Sdreb3                                      |                      |                                          |
|                                             |                     | 9                                            | SUB                 | STI                                         | rut                | ESH                                         | 1 EE               | /<br>T (Ri                                  | ULE                  | 26)                                      |

=16. 12D





PCT/US98/25246







SUBSTITUTE SHEET (RULE 26)



FIG. 19

SUBSTITUTE SHEET (RULE 26)

FIG. 20

| PROTEIN           |     |     |     | 1 | MOTIF |     |   |   |     |
|-------------------|-----|-----|-----|---|-------|-----|---|---|-----|
| CIfA              | I   | Υ   | Т   | F | Т     | D   | Y | ٧ | N   |
| CIfB              | T   | F   | ٧   | F | Т     | D   | Y | V | N   |
| SdrC              | Т   | Y   | Т   | F | Т     | N   | Y | V | D   |
| SdrD              | - T | Y   | Т   | F | Ţ     | D   | Y | ٧ | D   |
| SdrE              | T   | Y   | Т   | F | Т     | D   | Y | ٧ | D   |
| CONSENSUS         | T   | Y   | T   | F | T     | D   | Y | ٧ | D   |
| VARIABLE<br>MOTIF | T/I | Y/F | T/V | F | Τ     | D/N | Y | ٧ | D/N |









## SEQUENCE LISTING

<110> Foster, Timothy J.
Eidhinn, Deirdre N.
Hook, Magnus A.O.
Perkins, Samuel L.

<120> Fibrinogen-Binding Proteins from Staphylococcus aureus

<130> 09910-0100P

<140>

<141>

<150> 60/066,815

<151> 1997-11-26

<150> 60/098,427

<151> 1998-08-31

<160> 21

<170> PatentIn Ver. 2.0

<210> 1

<211> 918

<212> PRT

<213> Staphylococcus aureus

<400> 1

Asn Gly Val Ile Phe Leu Lys Lys Arg Ile Asp Tyr Leu Ser Asn Lys

1 10 15

Gln Asn Lys Tyr Ser Ile Arg Arg Phe Thr Val Gly Thr Thr Ser Val
20 25 30

Ile Val Gly Ala Thr Ile Leu Phe Gly Ile Gly Asn His Gln Ala Gln 35 40 45

Ala Ser Glu Gln Ser Asn Asp Thr Thr Gln Ser Ser Lys Asn Asn Ala
50 55 60

Ser Ala Asp Ser Glu Lys Asn Asn Met Ile Glu Thr Pro Gln Leu Asn 65 70 75 80

Thr Thr Ala Asn Asp Thr Ser Asp Ile Ser Ala Asn Thr Asn Ser Ala 85 90 95

| Asn        | Val               | Asp        | Ser<br>100 | Thr        | Thr        | Lys        | Pro        | Met<br>105 | Ser        | Thr        | Gln        | Thr        | Ser<br>110 | Asn        | Thr        |
|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Thr        | Thr               | Thr<br>115 | Glu        | Pro        | Ala        | Ser        | Thr<br>120 | Asn        | Glu        | Thr        | Pro        | Gln<br>125 | Pro        | Thr        | Ala        |
| Ile        | <b>Lys</b><br>130 | Asn        | Gln        | Ala        | Thr        | Ala<br>135 | Ala        | Lys        | Met        | Gln        | Asp<br>140 | Gln        | Thr        | Val        | Pro        |
| Gln<br>145 | Glu               | Gly        | Asn        | Ser        | Gln<br>150 | Val        | Asp        | Asn        | Lys        | Thr<br>155 | Thr        | Asn        | Asp        | Ala        | Asn<br>160 |
| Ser        | Ile               | Ala        | Thr        | Asn<br>165 | Ser        | Glu        | Leu        | Lys        | Asn<br>170 | Ser        | Gln        | Thr        | Leu        | Asp<br>175 | Leu        |
| Pro        | Gln               | Ser        | ser<br>180 | Pro        | Gln        | Thr        | Ile        | Ser<br>185 | Asn        | Ala        | Gln        | Gly        | Thr<br>190 | Ser        | Lys        |
| Pro        | Ser               | Val<br>195 | Arg        | Thr        | Arg        | Ala        | Val<br>200 | Arg        | Ser        | Leu        | Ala        | Val<br>205 | Ala        | Glu        | Pro        |
| Val        | Val<br>210        | Asn        | Ala        | Ala        | Asp        | Ala<br>215 | Lys        | Gly        | Thr        | Asn        | Val<br>220 | Asn        | Asp        | Lys        | Val        |
| Thr<br>225 | Ala               | Ser        | Asn        | Phe        | Lys<br>230 | Leu        | Glu        | Lys        | Thr        | Thr<br>235 | Phe        | Asp        | Pro        | Asn        | Gln<br>240 |
| Ser        | Gly               | Asn        | Thr        | Phe<br>245 | Met        | Ala        | Ala        | Asn        | Phe<br>250 | Thr        | Val        | Thr        | Asp        | Lys<br>255 | Val        |
| Lys        | Ser               | Gly        | Asp<br>260 |            | Phe        | Thr        | Ala        | Lys<br>265 | Leu        | Pro        | Asp        | Ser        | Leu<br>270 | Thr        | Gly        |
| Asn        | Gly               | Asp<br>275 |            | Asp        | Tyr        | Ser        | Asn<br>280 |            | Asn        | Asn        | Thr        | Met<br>285 | Pro        | Ile        | Ala        |
| Asp        | 11e<br>290        |            | Ser        | Thr        | Asn        | Gly<br>295 |            | Val        | Val        | Ala        | Lys<br>300 | Ala        | Thr        | Tyr        | Asp        |
| Ile<br>305 |                   | Thr        | Lys        | Thr        | Tyr<br>310 |            | Phe        | Val        | Phe        | Thr<br>315 | Asp        | Tyr        | Val        | Asn        | Asn<br>320 |
| Lys        | Glu               | ı Asn      | lle        | 325        |            | Gln        | Phe        | Ser        | <b>Leu</b> |            | Leu        | Phe        | Thr        | Asp<br>335 | Arg        |
| Ala        | Lys               | : Ala      | 9rc        |            | . Ser      | Gly        | Thr        | Tyr<br>345 |            | Ala        | Asn        | Ile        | Asn<br>350 | Ile        | Ala        |

Asp Glu Met Phe Asn Asn Lys Ile Thr Tyr Asn Tyr Ser Ser Pro Ile 355 360 Ala Gly Ile Asp Lys Pro Asn Gly Ala Asn Ile Ser Ser Gln Ile Ile 375 Gly Val Asp Thr Ala Ser Gly Gln Asn Thr Tyr Lys Gln Thr Val Phe Val Asn Pro Lys Gln Arg Val Leu Gly Asn Thr Trp Val Tyr Ile Lys 405 410 Gly Tyr Gln Asp Lys Ile Glu Glu Ser Ser Gly Lys Val Ser Ala Thr 420 Asp Thr Lys Leu Arg Ile Phe Glu Val Asn Asp Thr Ser Lys Leu Ser 440 Asp Ser Tyr Tyr Ala Asp Pro Asn Asp Ser Asn Leu Lys Glu Val Thr 455 Asp Gln Phe Lys Asn Arg Ile Tyr Tyr Glu His Pro Asn Val Ala Ser 470 475 Ile Lys Phe Gly Asp Ile Thr Lys Thr Tyr Val Val Leu Val Glu Gly 485 His Tyr Asp Asn Thr Gly Lys Asn Leu Lys Thr Gln Val Ile Gln Glu Asn Val Asp Pro Val Thr Asn Arg Asp Tyr Ser Ile Phe Gly Trp Asn Asn Glu Asn Val Val Arg Tyr Gly Gly Gly Ser Ala Asp Gly Asp Ser 530 535 Ala Val Asn Pro Lys Asp Pro Thr Pro Gly Pro Pro Val Asp Pro Glu 550 555 Pro Ser Pro Asp Pro Glu Pro Glu Pro Thr Pro Asp Pro Glu Pro Ser 565 570 Pro Asp Pro Glu Pro Glu Pro Ser Pro Asp Pro Asp Pro Asp Ser Asp 580 585 Ser Asp Ser Asp Ser Gly Ser Asp Ser Asp Ser Gly Ser Asp Ser Asp

> 3 SUBSTITUTE SHEET (RULE 26)

600

| Ser        | Glu<br>610         | Ser        | Asp        | Ser        | Asp        | Ser<br>615 | qzA            | Ser        | Asp        | Ser        | Asp<br>620 | Ser        | Asp        | Ser        | Asp        |
|------------|--------------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ser<br>625 | Asp                | Ser        | Gļu        | Ser        | Asp<br>630 | Ser        | Asp            | Ser        | Glu        | Ser<br>635 | Asp        | Ser        | Asp        | Ser        | Asp<br>640 |
| Ser        | Asp                | Ser        | Asp        | Ser<br>645 | Asp        | Ser        | Asp            | Ser        | Asp<br>650 | Ser        | Asp        | Ser        | Asp        | Ser<br>655 | Asp        |
| Ser        | Asp                | Ser        | Asp<br>660 | Ser        | Asp        | Ser        | Asp            | Ser<br>665 | Asp        | Ser        | Asp        | Ser        | Glu<br>670 | Ser        | Asp        |
| Ser        | Asp                | Ser<br>675 | Glu        | Ser        | Asp        | Ser        | Glu<br>680     | Ser        | Asp        | Ser        | Asp        | Ser<br>685 | Asp        | Ser        | Asp        |
| Ser        | Asp<br>690         | Ser        | Asp        | Ser        | Asp        | Ser<br>695 | Asp            | Ser        | Asp        | Ser        | Asp<br>700 | Ser        | Asp        | Ser        | Asp        |
| Ser<br>705 | Asp                | Ser        | Asp        | Ser        | Asp<br>710 | Ser        | Asp            | Ser        | Asp        | Ser<br>715 | Asp        | Ser        | Asp        | Ser        | Asp<br>720 |
| Ser        | Asp                | Ser        | Asp        | Ser<br>725 | Asp        | Ser        | Asp            | Ser        | Asp<br>730 | Ser        | Asp        | Ser        | Asp        | Ser<br>735 | Asp        |
| Ser        | Asp                | Ser        | Asp<br>740 | Ser        | Asp        | Ser        | Asp            | Ser<br>745 | Asp        | Ser        | Asp        | Ser        | Asp<br>750 | Ser        | Asp        |
| Ser        | Asp                | Ser<br>755 |            | Ser        | Asp        | Ser        | <b>Asp</b> 760 | Ser        | Asp        | Ser        | Asp        | Ser<br>765 | Asp        | Ser        | Asp        |
| Ser        | <b>A</b> sp<br>770 |            | Asp        | Ser        | Asp        | Ser<br>775 | Asp            | Ser        | Asp        | Ser        | Asp<br>780 | Ser        | Asp        | Ser        | Asp        |
| Ser<br>785 | _                  | Ser        | Asp        | Ser        | 790        | Ser        | Asp            | Ser        | Asp        | Ser<br>795 | Asp        | Ser        | Asp        | Ser        | Asp<br>800 |
| Ser        | Asp                | Ser        | : Asp      | Ser<br>805 | Asp        | Ser        | : Asp          | Ser        | Asp<br>810 |            | Asp        | Ser        | Asp        | Ser<br>815 | Asp        |
| Ser        | Asp                | Se1        | 820        |            | : Asp      | Ser        | Asp            | Ser<br>825 |            | Ser        | Asp        | Ser        | Asp<br>830 | Ser        | Asp        |
| Ser        | : Asp              | 835        |            | Ser        | : Asp      | Ser        | 840            |            | Asp        | Ser        | : Asp      | ser<br>845 |            | Val        | Thr        |
| Pro        | Pro                |            | n Asr      | ı Glu      | ı Gln      | Lys<br>855 |                | Pro        | Ser        | : Asn      | Pro<br>860 |            | Gly        | Glu        | Val        |

## SUBSTITUTE SHEET (RULE 26)

Asn His Ser Asn Lys Val Ser Lys Gln His Lys Thr Asp Ala Leu Pro 865 870 875 880 Glu Thr Gly Asp Lys Ser Glu Asn Thr Asn Ala Thr Leu Phe Gly Ala 885 890 895 Met Met Ala Leu Leu Gly Ser Leu Leu Leu Phe Arg Lys Arg Lys Gln 900 905 910 Asp His Lys Glu Lys Ala 915 <210> 2 <211> 2969 <212> DNA <213> Staphylococcus aureus <400> 2 tagaaattga aatggagtaa tatttttgaa aaaaagaatt gattatttgt cgaataagca 60 gaataagtat togattagac gttttacagt aggtaccaca toagtaatag taggggcaac 120 tatactattt gggataggca atcatcaagc acaagcttca gaacaatcga acgatacaac 180 gcaatcttcg aaaaataatg caagtgcaga ttccgaaaaa aacaatatga tagaaacacc 240 tcaattaaat acaacggcta atgatacatc tgatattagt gcaaacacaa acagtgcgaa 300 tgtagatage acaacaaac caatgtetae acaaacgage aataccacta caacagagec 360 agcttcaaca aatgaaacac ctcaaccgac ggcaattaaa aatcaagcaa ctgctgcaaa 420 aatgcaagat caaactgttc ctcaagaagg aaattctcaa gtagataata aaacaacgaa 480 tgatgctaat agcatagcaa caaacagtga gcttaaaaaat tctcaaacat tagatttacc 540 acaatcatca ccacaaacga tttccaatgc gcaaggaact agtaaaccaa gtgttagaac 600 gagagetgta egtagtttag etgttgetga aceggtagta aatgetgetg atgetaaagg 660 tacaaatgta aatgataaag ttacggcaag taatttcaag ttagaaaaga ctacatttga 720 ccctaatcaa agtggtaaca catttatggc ggcaaatttt acagtgacag ataaagtgaa 780 atcaggggat tattttacag cgaagttacc agatagttta actggtaatg gagacgtgga 840 ttattctaat tcaaataata cgatgccaat tgcagacatt aaaagtacga atggcgatgt 900 tgtagctaaa gcaacatatg atatcttgac taagacgtat acatttgtct ttacagatta 960 tgtaaataat aaagaaaata ttaacggaca attttcatta cctttattta cagaccgagc 1020 aaaggcacct aaatcaggaa catatgatgc gaatattaat attgcggatg aaatgtttaa 1080 taataaaatt acttataact atagttogoo aattgoagga attgataaac caaatggogo 1140 qaacatttct tctcaaatta ttggtgtaga tacagcttca ggtcaaaaca catacaagca 1200 aacagtattt gttaacccta agcaacgagt tttaggtaat acgtgggtgt atattaaagg 1260 ctaccaaqat aaaatcqaaq aaaqtaqcqq taaaqtaaqt gctacagata caaaactqaq 1320 aatttttgaa gtgaatgata catctaaatt atcagatagc tactatgcag atccaaatga 1380 ctctaacctt aaagaagtaa cagaccaatt taaaaataga atctattatg agcatccaaa 1440 tgtagctagt attaaatttg gtgatattac taaaacatat gtagtattag tagaagggca 1500 ttacgacaat acaggtaaga acttaaaaac tcaggttatt caagaaaatg ttgatcctgt 1560 aacaaataga gactacagta ttttcggttg gaataatgag aatgttgtac gttatggtgg 1620 tggaagtgct gatggtgatt cagcagtaaa tccgaaagac ccaactccag ggccgccggt 1680 tgacccagaa ccaagtccag acccagaacc agaaccaacg ccagatccag aaccaagtcc 1740

```
agacccagaa ccggaaccaa gcccagaccc ggatccggat tcggattcag acagtgactc 1800
aggeteagae agegaeteag gtteagatag egaeteagaa teagatageg atteggatte 1860
agacaqtqat tcagattcag acagcgactc agaatcagat agcqattcag aatcagatag 1920
cgactcagat tcagatagcg attcagattc agatagcgat tcagattcag atagcgattc 1980
ggattcagac agtgattcag attcagacag cgactcagaa tcagatagcg actcagaatc 2040
agatagtgag tcagattcag acagtgactc ggactcagac agtgattcag actcagatag 2100
cgattcagac tcagatagcg attcagattc agacagcgac tcagattcag acagcgactc 2160
agactcagat agcgactcag actcagacag cgactcagat tcagatagcg attcagactc 2220
agacagegac teagacteag acagegacte agacteagat agegacteag atteagatag 2280
cgattcagac tcagacagcg actcagattc agatagcgat tcggactcag acagcgattc 2340
agattcagac agcgactcag actcggatag cgattcagat tcagatagcg attcggattc 2400
agacagtgat tcagattcag acagcgactc agactcggat agcgactcag actcagacag 2460
cgattcagac tcagatagcg actcagactc ggatagcgac tcggattcag atagcgactc 2520
agactcagat agtgactccg attcaagagt tacaccacca aataatgaac agaaagcacc 2580
atcaaatcct aaaggtgaag taaaccattc taataaggta tcaaaacaac acaaaactga 2640
tgctttacca gaaacaggag ataagagcga aaacacaaat gcaactttat ttggtgcaat 2700
gatggcatta ttaggatcat tactattgtt tagaaaacgc aagcaagatc ataaagaaaa 2760
agcqtaaata cttttttagg ccgaatacat ttgtattcgq ttttttttgtt gaaaatgatt 2820
ttaaagtgaa ttgattaagc gtaaaatgtt gataaagtag aattagaaag gggtcatgac 2880
gtatggctta tatttcatta aactatcatt caccaacaat tggtatgcat caaaatttga 2940
                                                                  2969
cagtcatttt accggaagaa cgagaattc
<210> 3
<211> 930
<212> PRT
<213> Staphylococcus aureus
<400> 3
Met Asn Asn Lys Lys Thr Ala Thr Asn Arg Lys Gly Met Ile Pro Asn
Arg Leu Asn Lys Phe Ser Ile Arg Lys Tyr Ser Val Gly Thr Ala Ser
             20
                                 25
Ile Leu Val Gly Thr Thr Leu Ile Phe Gly Leu Ser Gly His Glu Ala
         35
Lys Ala Ala Glu His Thr Asn Gly Glu Leu Asn Gln Ser Lys Asn Glu
                         55
Thr Thr Ala Pro Ser Glu Asn Lys Thr Thr Lys Lys Val Asp Ser Arg
                     70
                                         75
Gln Leu Lys Asp Asn Thr Gln Thr Ala Thr Ala Asp Gln Pro Lys Val
                 85
Thr Met Ser Asp Ser Ala Thr Val Lys Glu Thr Ser Ser Asn Met Gln
```

SUBSTITUTE SHEET (RULE 26)

105

100

| ser        | Pro        | 115        | Asn        | Ата        | rnr        | Ala        | 120        | GIN        | Ser               | Thr        | Thr        | Lys<br>125 |            | Ser        | Ası        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|
| Val        | Thr<br>130 | Thr        | Asn        | Asp        | Lys        | Ser<br>135 | Ser        | Thr        | Thr               | Tyr        | Ser<br>140 |            | Glu        | Thr        | Asp        |
| Lys<br>145 | Ser        | Asn        | Leu        | Thr        | Gln<br>150 | Ala        | Lys        | Asp        | Val               | Ser<br>155 | Thr        | Thr        | Pro        | Lys        | Thr<br>160 |
| Thr        | Thr        | Ile        | Lys        | Pro<br>165 | Arg        | Thr        | Leu        | Asn        | <b>Arg</b><br>170 | Met        | Ala        | Val        | Asn        | Thr<br>175 | Val        |
| Ala        | Ala        | Pro        | Gln<br>180 | Gln        | Gly        | Thr        | Asn        | Val<br>185 | Asn               | Asp        | Lys        | Val        | His<br>190 | Phe        | Ser        |
| Asn        | Ile        | Asp<br>195 | Ile        | Ala        | Ile        | Asp        | Lys<br>200 | Gly        | His               | Val        | Asn        | Gln<br>205 | Thr        | Thr        | Gly        |
|            | 210        |            |            | -          |            | 215        | Ser        |            |                   |            | 220        |            |            | _          |            |
| 225        |            |            |            |            | 230        |            | Val        |            |                   | 235        |            |            |            |            | 240        |
| -          | -          | -          |            | 245        |            | _          | Pro        | _          | 250               |            |            |            |            | 255        |            |
|            |            |            | 260        | _          |            |            | Gln        | 265        |                   |            |            |            | 270        |            |            |
| -          | -          | 275        |            |            |            |            | Thr<br>280 |            | -                 |            |            | 285        |            | -          |            |
| -          | 290        | -          |            |            |            | 295        | Gly        |            |                   |            | 300        |            | ,          |            |            |
| 305        |            | _          |            |            | 310        |            | Asp        |            |                   | 315        |            |            |            |            | 320        |
|            |            |            |            | 325        |            |            | Ser        |            | 330               |            |            |            |            | 335        |            |
|            |            |            | 340        |            |            |            | Ile        | 345        |                   |            |            |            | 350        |            |            |
| Glu        | Asp        | Leu<br>355 | Ser        | Arg        | Asn        | Met        | Thr<br>360 | Ala        | Tyr               | Val        | Asn        | Gln<br>365 | Pro        | Lys        | Asn        |

SUBSTITUTE SHEET (RULE 26)

| TNF        | 370        | Thr        | гÀг        | GIN        | Tnr        | 375        | vai        | THE        | Asn        | Leu        | 380            | _          | Tyr        | гÀз        | Phe        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|
| Asn<br>385 | Pro        | Asn        | Ala        | Lys        | Asn<br>390 | Phe        | Lys        | Ile        | Tyr        | Glu<br>395 | Val            | Thr        | Asp        | Gln        | 400        |
| Gln        | Phe        | Val        | Asp        | Ser<br>405 | Phe        | Thr        | Pro        | Asp        | Thr<br>410 | Ser        | Lys            | Leu        | Lys        | Asp<br>415 |            |
| Thr        | Asp        | Gln        | Phe<br>420 | Asp        | Val        | Ile        | Tyr        | Ser<br>425 | Asn        | Asp        | Asn            | Lys        | Thr<br>430 | Ala        | Thr        |
| Val        | Asp        | Leu<br>435 | Met        | Lys        | Gly        | Gln        | Thr<br>440 | Ser        | Ser        | Asn        | Lys            | Gln<br>445 | Tyr        | Ile        | Ile        |
| Gln        | Gln<br>450 | Val        | Ala        | Tyr        | Pro        | Asp<br>455 | Asn        | Ser        | Ser        | Thr        | <b>Asp</b> 460 | Asn        | Gly        | Lys        | Ile        |
| 465        | -          |            |            | -          | Thr<br>470 |            | -          |            | _          | 475        |                | -          |            |            | 480        |
| Tyr        | Ser        | Asn        | Val        | Asn<br>485 | Gly        | Ser        | Ser        | Thr        | Ala<br>490 | Asn        | Gly            | qzA        | Gln        | Lys<br>495 | Lys        |
| _          |            |            | 500        |            | Tyr        |            |            | 505        |            |            |                |            | 510        |            | _          |
|            |            | 515        |            |            | Lys        |            | 520        |            |            |            |                | 525        |            |            |            |
| Asp        | Ser<br>530 | Asn        | Gly        | Lys        | Glu        | Leu<br>535 | Asp        | Arg        | Thr        | Thr        | Thr<br>540     | Asp        | Glu        | Asn        | Gly        |
| Lys<br>545 | Туr        | Gln        | Phe        | Thr        | Gly<br>550 | Leu        | Ser        | Asn        | Gly        | Thr<br>555 | Tyr            | Ser        | Val        | Glu        | Phe<br>560 |
| Ser        | Thr        | Pro        | Ala        | Gly<br>565 | Tyr        | Thr        | Pro        | Thr        | Thr<br>570 | Ala        | Asn            | Val        | Gly        | Thr<br>575 | Asp        |
| Asp        | Ala        | Val        | Asp<br>580 | Ser        | Asp        | Gly        | Leu        | Thr<br>585 | Thr        | Thr        | Gly            | Val        | Ile<br>590 | Lys        | Asp        |
| Ala        | Asp        | Asn<br>595 | Met        | Thr        | Leu        | Asp        | Ser<br>600 | Gly        | Phe        | Tyr        | Lys            | Thr<br>605 | Pro        | Lys        | Tyr        |
| Ser        | Leu<br>610 | Gly        | Asp        | Tyr        | Val        | Trp<br>615 | Tyr        | Asp        | Ser        | Asn        | Lys<br>620     | Asp        | Gly        | Lys        | Arg        |

SUBSTITUTE SHEET (RULE 26)

| 625        | ser        | THE        | GIU        | гуз        | 630        | 116        | гуз         | GIÀ        | Vai        | 635        | Val        | THE        | Leu        | GLN        | 45n        |
|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu        | Lys        | Gly        | Glu        | Val<br>645 | Ile        | Gly        | Thr         | Thr        | Glu<br>650 | Thr        | Asp        | Glu        | Asn        | Gly<br>655 | Lys        |
| Tyr        | Arg        | Phe        | Asp<br>660 | Asn        | Leu        | Asp        | Ser         | Gly<br>665 | Lys        | Tyr        | Lys        | Val        | Ile<br>670 | Phe        | Glu        |
| Lys        | Pro        | Ala<br>675 | Gly        | Leu        | Thr        | Gln        | Thr<br>680  | Gly        | Thr        | Asn        | Thr        | Thr<br>685 | Glu        | Asp        | Asp        |
| Lys        | Asp<br>690 | Ala        | Asp        | Gly        | Gly        | Glu<br>695 | Val         | Asp        | Val        | Thr        | Ile<br>700 | Thr        | Asp        | His        | Asp        |
| Asp<br>705 | Phe        | Thr        | Leu        | Asp        | Asn<br>710 | Gly        | Tyr         | Tyr        | Glu        | Glu<br>715 | Glu        | Thr        | Ser        | Asp        | Ser<br>720 |
| -          |            |            |            | Asp<br>725 |            |            |             | -          | 730        | _          |            |            |            | 735        |            |
| •          |            | •          | 740        | Asp        |            | -          |             | 745        |            | -          |            | -          | 750        | •          |            |
| _          |            | 755        |            | Asp        |            |            | <b>7</b> 60 |            |            |            |            | 765        |            |            |            |
| _          | 770        |            |            | Asp        |            | 775        |             |            |            |            | 780        |            |            |            |            |
| 785        |            | _          |            | Asp        | 790        | -          |             | -          |            | 795        |            | _          |            |            | 800        |
| -          |            | -          |            | Asp<br>805 |            |            |             |            | 810        |            |            |            |            | 815        |            |
| -          |            |            | 820        | Asp        |            |            |             | 825        |            |            |            |            | 830        | _          |            |
| Asp        | Ser        | Asp<br>835 | Ser        | Asp        | Ser        | Asp        | Ser<br>840  | Asp        | Ser        | Asp        | Ser        | Asp<br>845 | Ser        | Asp        | Ser        |
| ·          | 850        | -          |            | Asp        |            | 855        |             |            |            | -          | 860        |            |            | _          |            |
| Asp<br>865 | Ser        | Asp        | Ser        | Asp        | Ser<br>870 | Asp        | Ser         | Asp        | Ser        | Asp<br>875 | Asn        | Asp        | Ser        | _          | Ser<br>880 |

```
Asp Ser Asp Ser Asp Ser Asp Ala Gly Lys His Thr Pro Ala Lys Pro
Met Ser Thr Val Lys Asp Gln His Lys Thr Ala Lys Ala Leu Pro Glu
                                905
Thr Gly Ser Glu Asn Asn Asn Ser Asn Asn Gly Thr Leu Phe Gly Gly
                            920
                                                925
Leu Phe
    930
<210> 4
<211> 2841
<212> DNA
<213> Staphylococcus aureus
<400> 4
atgaataata aaaagacagc aacaaataga aaaggcatga taccaaatcg attaaacaaa 60
ttttcgataa gaaagtattc tgtaggtact gcttcaattt tagtagggac aacattgatt 120
tttgggttaa gtggtcatga agctaaagcg gcagaacata cgaatggaga attaaatcaa 180
tcaaaaaatg aaacgacagc cccaagtgag aataaaacaa ctaaaaaagt tgatagtcgt 240
caactaaaag acaataogca aactgcaact gcagatcagc ctaaagtgac aatgagtgat 300
agtgcaacag ttaaagaaac tagtagtaac atgcaatcac cacaaaacgc tacagctaat 360
caatctacta caaaaactag caatgtaaca acaaatgata aatcatcaac tacatatagt 420
aatgaaactg ataaaagtaa tttaacacaa gcaaaagatg tttcaactac acctaaaaca 480
acgactatta aaccaagaac tttaaatcgc atggcagtga atactgttgc agctccacaa 540
caaggaacaa atgttaatga taaagtacat ttttcaaata ttgacattgc gattgataaa 600
ggacatgtta atcagactac tggtaaaact gaattttggg caacttcaag tgatgtttta 660
aaattaaaag caaattacac aatcgatgat tctgttaaag agggcgatac atttactttt 720
aaatatggto aatatttoog tooaggatoa gtaagattao ottoacaaac toaaaattta 780
tataatgccc aaggtaatat tattgcaaaa ggtatttatg atagtacaac aaacacaaca 840
acatatactt ttacgaacta tgtagatcaa tatacaaatg ttagaggtag ctttgaacaa 900
gttgcatttg cgaaacgtaa aaatgcaaca actgataaaa cagcttataa aatggaagta 960
actttaggta atgatacata tagcgaagaa atcattgtcg attatggtaa taaaaaagca 1020
caaccoctta tttcaagtac aaactatatt aacaatgaag atttatcgcg taatatgact 1080
gcatatgtaa atcaacctaa aaatacatat actaaacaaa cgtttgttac taatttaact 1140
ggatataaat ttaatccaaa tgcaaaaaac ttcaaaattt acgaagtgac agatcaaaat 1200
caatttgtgg atagtttcac ccctgatact tcaaaactta aagatgttac tgatcaattc 1260
gatgttattt atagtaatga taataaaaca gctacagtcg atttaatgaa aggccaaaca 1320
agcagcaata aacaatacat cattcaacaa gttgcttatc cagataatag ttcaacagat 1380
aatggaaaaa ttgattatac tttagacact gacaaaacta aatatagttg gtcaaatagt 1440
tattcaaatg tgaatggctc atcaactgct aatggcgacc aaaagaaata taatctaggt 1500
gactatgtat gggaagatac aaataaagat ggtaaacaag atgccaatga aaaagggatt 1560
aaaggtgttt atgtcattct taaagatagt aacggtaaag aattagatcg tacgacaaca 1620
```

gatgaaaatg gtaaatatca gttcactggt ttaagcaatg gaacttatag tgtagagttt 1680

```
tcaacaccag ccggttatac accgacaact gcaaatgtag gtacagatga tgctqtagat 1740
tetgatggae taactacaac aggtgteatt aaagacgetg acaacatgae attagatagt 1800
ggattctaca aaacaccaaa atatagttta ggtgattatg tttggtacga cagtaataaa 1860
gatggtaaac gagattcgac tgaaaaagga attaaaggtg ttaaagttac tttgcaaaac 1920
gaaaaaggcg aagtaattgg tacaactgaa acagatgaaa atggtaaata ccgctttgat 1980
aatttagata gtggtaaata caaagttatc tttgaaaaac ctgctggctt aactcaaaca 2040
ggtacaaata caactgaaga tgataaagat gccgatggtg gcgaagttga tgtaacaatt 2100
acggatcatg atgatttcac acttgataat ggctactacg aagaagaaac atcagatagc 2160
gactcagatt ctgacagcga ttcagactca gatagcgact cagattcaga tagcgactca 2220
gattcagaca gcgattcaga cagcgactca gactcagata gcgattcaga ttcagacagc 2280
gactcagact cagacagcaa ttcagactcg gatagcgact cagactcaga tagcgactca 2340
gattcggata gcgactcaga ctcagatagc gattcagatt cagatagcga ttcggactca 2400
gacagtgatt cagattcaga ctcagatagc gactcagatt ctgacagcga ttcagactca 2460
gacagegact cagactcaga cagtgattca gattcagaca gegactcaga ttcagatage 2520
gactcagact cagatagcga ctcagactca gatagcgact cagactcgga tagcgattca 2580
gattcagaca gcgactcaga ttcagatagc gattcggact cagacaacqa ctcagattca 2640
gatagcgatt cagattcaga tgcaggtaaa catactccgg ctaaaccaat gagtacggtt 2700
aaagatcagc ataaaacagc taaagcatta ccagaaacag gtagtgaaaa taataattca 2760
aataatggca cattattcgg tggattattc gcggcattag gatcattatt gtcattcggt 2820
cgtcgtaaaa aacaaaataa a
<210> 5
<211> 1315
<212> PRT
<213> Staphylococcus aureus
<400> 5
Met Leu Asn Arg Glu Asn Lys Thr Ala Ile Thr Arg Lys Gly Met Val
                                     10
Ser Asn Arg Leu Asn Lys Phe Ser Ile Arg Lys Tyr Thr Val Gly Thr
                                 25
Ala Ser Ile Leu Val Gly Thr Thr Leu Ile Phe Gly Leu Gly Asn Gln
         35
                             40
                                                 45
Glu Ala Lys Ala Ala Glu Ser Thr Asn Lys Glu Leu Asn Glu Ala Thr
     50
                         55
Thr Ser Ala Ser Asp Asn Gln Ser Ser Asp Lys Val Asp Met Gln Gln
                     70
                                         75
 65
Leu Asn Gln Glu Asp Asn Thr Lys Asn Asp Asn Gln Lys Glu Met Val
                                     90
                 85
Ser Ser Gln Gly Asn Glu Thr Thr Ser Asn Gly Asn Lys Leu Ile Glu
```

110

105

100

| Lys        | Glu               | Ser<br>115 | Val        | Gln        | Ser        | Thr        | Thr<br>120 | Gly        | Asn        | Lys        | Val        | 125        |            | . Ser      | Thi        |
|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala        | <b>Lys</b><br>130 | Ser        | Asp        | Glu        | Gln        | Ala<br>135 | Ser        | Pro        | Lys        | Ser        | Thr<br>140 |            | Glu        | Asp        | Let        |
| Asn<br>145 | Thr               | Lys        | Gln        | Thr        | Ile<br>150 | Ser        | Asn        | Gln        | Glu        | Ala<br>155 |            | Gln        | Pro        | Asp        | Leu<br>160 |
| Gln        | Glu               | Asn        | Lys        | Ser<br>165 | Val        | Val        | Asn        | Val        | Gln<br>170 | Pro        | Thr        | Asn        | Glu        | Glu<br>175 |            |
| Lys        | Lys               | Val        | Asp<br>180 | Ala        | Lys        | Thr        | Glu        | Ser<br>185 | Thr        | Thr        | Leu        | Asn        | Val<br>190 | Lys        | Ser        |
| Asp        | Ala               | Ile<br>195 | Lys        | Ser        | Asn        | Asp        | Glu<br>200 | Thr        | Leu        | Val        | Asp        | Asn<br>205 | Asn        | Ser        | Asn        |
| Ser        | Asn<br>210        | Asn        | Glu        | Asn        | Asn        | Ala<br>215 | Asp        | Ile        | Ile        | Leu        | Pro<br>220 | Lys        | Ser        | Thr        | Ala        |
| Pro<br>225 | Lys               | Arg        | Leu        | Asn        | Thr<br>230 | Arg        | Met        | Arg        | Ile        | Ala<br>235 | Ala        | Val        | Gln        | Pro        | Ser<br>240 |
| Ser        | Thr               | Glu        | Ala        | Lys<br>245 | Asn        | Val        | Asn        | Asp        | Leu<br>250 | Ile        | Thr        | Ser        | Asn        | Thr<br>255 | Thr        |
| Leu        | Thr               | Val        | Val<br>260 | Asp        | Ala        | Asp        | Lys        | Asn<br>265 | Asn        | Lys        | Ile        | Val        | Pro<br>270 | Ala        | Gln        |
| Asp        | Tyr               | Leu<br>275 | Ser        | Leu        | Lys        | Ser        | Gln<br>280 | Ile        | Thr        | Val        | Asp        | Asp<br>285 | Lys        | Val        | Lys        |
| Ser        | Gly<br>290        | Asp        | Tyr        | Phe        | Thr        | Ile<br>295 | Lys        | Tyr        | Ser        | Asp        | Thr<br>300 | Val        | Gln        | Val        | Tyr        |
| Gly<br>305 | Leu               | Asn        | Pro        | Glu        | Asp<br>310 | Ile        | Lys        | Asn        | Ile        | Gly<br>315 | Asp        | Ile        | Lys        | Asp        | Pro<br>320 |
| Asn        | Asn               | Gly        | Glu        | Thr<br>325 | Ile        | Ala        | Thr        | Ala        | Lys<br>330 | His        | Asp        | Thr        | Ala        | Asn<br>335 | Asn        |
| Leu        | Ile               | Thr        | Туг<br>340 | Thr        | Phe        | Thr        | Asp        | Tyr<br>345 | Val        | Asp        | Arg        | Phe        | Asn<br>350 | Ser        | Val        |
| Gln        | Met               | Gly<br>355 | Ile        | Asn        | Tyr        | Ser        | Ile<br>360 | Tyr        | Met        | Asp        | Ala        | Asp<br>365 | Thr        | Ile        | Pro        |

Val Ser Lys Asn Asp Val Glu Phe Asn Val Thr Ile Gly Asn Thr Thr 370 375 Thr Lys Thr Thr Ala Asn Ile Gln Tyr Pro Asp Tyr Val Val Asn Glu 390 395 Lys Asn Ser Ile Gly Ser Ala Phe Thr Glu Thr Val Ser His Val Gly 405 410 Asn Lys Glu Asn Pro Gly Tyr Tyr Lys Gln Thr Ile Tyr Val Asn Pro 425 Ser Glu Asn Ser Leu Thr Asn Ala Lys Leu Lys Val Gln Ala Tyr His 435 440 Ser Ser Tyr Pro Asn Asn Ile Gly Gln Ile Asn Lys Asp Val Thr Asp 455 Ile Lys Ile Tyr Gln Val Pro Lys Gly Tyr Thr Leu Asn Lys Gly Tyr 470 475 Asp Val Asn Thr Lys Glu Leu Thr Asp Val Thr Asn Gln Tyr Leu Gln 485 490 Lys Ile Thr Tyr Gly Asp Asn Asn Ser Ala Val Ile Asp Phe Gly Asn 500 505 Ala Asp Ser Ala Tyr Val Val Met Val Asn Thr Lys Phe Gln Tyr Thr 520 Asn Ser Glu Ser Pro Thr Leu Val Gln Met Ala Thr Leu Ser Ser Thr 535 Gly Asn Lys Ser Val Ser Thr Gly Asn Ala Leu Gly Phe Thr Asn Asn 545 550 555 Gln Ser Gly Gly Ala Gly Gln Glu Val Tyr Lys Ile Gly Asn Tyr Val 565 Trp Glu Asp Thr Asn Lys Asn Gly Val Gln Glu Leu Gly Glu Lys Gly 585 Val Gly Asn Val Thr Val Thr Val Phe Asp Asn Asn Thr Asn Thr Lys 600 Val Gly Glu Ala Val Thr Lys Glu Asp Gly Ser Tyr Leu Ile Pro Asn

615

610

| Leu<br>625 | Pro        | Asn        | GIÀ        | Asp        | 630        | Arg        | Val        | GLu               | Phe        | 635 | Asn                        | Leu        | Pro        | Lys <sub>.</sub> | G1 y<br>640 |
|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-----|----------------------------|------------|------------|------------------|-------------|
| Tyr        | Glu        | Val        | Thr        | Pro<br>645 | Ser        | Lys        | Gln        | Gly               | Asn<br>650 | Asn | Glu                        | Glu        | Leu        | Asp<br>655       | Ser         |
| Asn        | Gly        | Leu        | Ser<br>660 | Ser        | Val        | Ile        | Thr        | <b>Val</b><br>665 | Asn        | Gly | Lys                        | Asp        | Asn<br>670 | Leu              | Ser         |
| Ala        | Asp        | Leu<br>675 | Gly        | Ile        | Tyr        | Lys        | Pro<br>680 | Lys               | Tyr        | Asn | Leu                        | Gly<br>685 | Asp        | Tyr              | Val         |
| Trp        | Glu<br>690 | Asp        | Thr        | Asn        | Lys        | Asn<br>695 | Gly        | Ile               | Gln        | Asp | <b>Gl</b> n<br><b>70</b> 0 | Asp        | Glu        | Lys              | Gly         |
| 705        |            | _          |            |            | 710        |            | Leu        | _                 |            | 715 |                            |            |            |                  | 720         |
| -          |            |            |            | 725        |            |            | Asp        |                   | 730        |     |                            |            |            | 735              |             |
| •          |            | -          | 740        | _          | _          |            | Glu        | 745               |            |     |                            |            | 750        |                  |             |
|            |            | 755        |            |            |            |            | 5er<br>760 | _                 |            |     |                            | 765        |            |                  |             |
|            | 770        |            |            |            |            | 775        | Asn        | _                 |            |     | 780                        |            |            |                  |             |
| 785        | -          |            | -          | -          | 790        | •          | Lys        |                   |            | 795 |                            |            |            |                  | 800         |
|            | -          |            |            | 805        |            |            | Lys        |                   | 810        |     |                            |            |            | 815              |             |
|            |            |            | 820        |            |            |            |            | 825               |            |     |                            |            | 830        |                  |             |
|            |            | 835        |            |            | _          |            | Gly<br>840 |                   |            | ·   |                            | 845        |            |                  |             |
|            | 850        |            | -          |            |            | 855        | Phe        |                   |            |     | 860                        |            |            |                  |             |
| Thr<br>865 | GIN        | val        | GTÀ        | ser        | 61y<br>870 | rnr        | Asp        | GLU               | GTÅ        | 875 | Asp                        | Ser        | W2[]       | ату              | 880         |

Ser Thr Thr Gly Val Ile Lys Asp Lys Asp Asn Asp Thr Ile Asp Ser 885 890 895

- Gly Phe Tyr Lys Pro Thr Tyr Asn Leu Gly Asp Tyr Val Trp Glu Asp 900 905 910
- Thr Asn Lys Asn Gly Val Gln Asp Lys Asp Glu Lys Gly Ile Ser Gly 915 920 925
- Val Thr Val Thr Leu Lys Asp Glu Asn Asp Lys Val Leu Lys Thr Val 930 935 940
- Thr Thr Asp Glu Asn Gly Lys Tyr Gln Phe Thr Asp Leu Asn Asn Gly 945 950 955 960
- Thr Tyr Lys Val Glu Phe Glu Thr Pro Ser Gly Tyr Thr Pro Thr Ser 965 970 975
- Val Thr Ser Gly Asn Asp Thr Glu Lys Asp Ser Asn Gly Leu Thr Thr 980 985 990
- Thr Gly Val Ile Lys Asp Ala Asp Asn Met Thr Leu Asp Ser Gly Phe 995 1000 1005
- Tyr Lys Thr Pro Lys Tyr Ser Leu Gly Asp Tyr Val Trp Tyr Asp Ser 1010 1015 1020
- Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly Ile Lys Asp Val 1025 1030 1035 1040
- Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile Gly Thr Thr Lys
  1045 1050 1055
- Thr Asp Glu Asn Gly Lys Tyr Cys Phe Asp Asn Leu Asp Ser Gly Lys 1060 1065 1070
- Tyr Lys Val Ile Phe Glu Lys Pro Ala Gly Leu Thr Gln Thr Gly Thr 1075 1080 1085
- Asn Thr Thr Glu Asp Asp Lys Asp Ala Asp Gly Glu Val Asp Val 1090 1095 1100
- Thr Ile Thr Asp His Asp Asp Phe Thr Leu Asp Asn Gly Tyr Tyr Glu 1105 1110 1115 1120
- Glu Glu Thr Ser Asp Se

Asp Arg Asp Ser I140 1145 1150

Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Arg
1155 1160 1165

Asp Ser 1170 1180

Asp Ser 1185 1190 1195 1200

Asp Ser Asp Se

Asp Ser Asp Se

Asp Ser Asp Se

Asp Ser Asp Ser Asp Ser Asp Ala Gly Lys His Thr Pro Val Lys Pro 1250 1255 1260

Met Ser Thr Thr Lys Asp His His Asn Lys Ala Lys Ala Leu Pro Glu 1265 1270 1275 1280

Thr Gly Asn Glu Asn Ser Gly Ser Asn Asn Ala Thr Leu Phe Gly Gly
1285 1290 1295

Leu Phe Ala Ala Leu Gly Ser Leu Leu Leu Phe Gly Arg Arg Lys Lys 1300 1305 1310

Gln Asn Lys 1315

<210> 6

<211> 3945

<212> DNA

<213> Staphylococcus aureus

## <400> 6

atgctaaaca gagaaaataa aacggcaata acaaggaaag gcatggtatc caatcgatta 60 aataaatttt cgattagaaa gtacacagtg ggaacagcat caattttagt aggtacaaca 120 ttaatttttg gtctggggaa ccaagaagca aaggctgcag aaagtactaa taaagaattg 180 aacgaagcga caacttcagc aagtgataat caatcgagtg ataaagttga tatgcagcaa 240 ctaaatcaag aagacaatac taaaaatgat aatcaaaaag aaatggtatc atctcaaggt 300

```
aatgaaacga cttcaaatgg gaataaatta atagaaaaag aaagtgtaca atctaccact 360
ggaaataaag ttgaagtttc aactgccaaa tcagatgagc aagcttcacc aaaatctacg 420
aatgaagatt taaacactaa acaaactata agtaatcaag aagcgttaca acctgatttg 480
caagagaata aatcagtggt aaatgttcaa ccaactaatg aggaaaacaa aaaggtagat 540
gccaaaactg aatcaactac attaaatgtt aaaagtgatg ctatcaagag taatgatgaa 600
actcttgttg ataacaatag taattcaaat aatgaaaata atgcagatat cattttgcca 660
aaaagtacag cacctaaacg tttgaataca agaatgcgta tagcagcagt acagccatca 720
tcaacagagg ctaaaaatgt taatgattta atcacatcaa atacaacatt aactgtcgtt 780
gatgcagata aaaacaataa aatcgtacca gcccaagatt atttatcatt aaaatcacaa 840
attacagttg atgacaaagt taaatcaggt gattatttca caattaaata ctcagataca 900
gtacaagtat atggattgaa tooggaagat attaaaaata ttggtgatat taaagatoca 960
aataatggtg aaacaattgc gactgcaaaa catgatactg caaataattt aattacatat 1020
acatttacag attatgttga tcgatttaat tctgtacaaa tgggaattaa ttattcaatt 1080
tatatggatg ctgatacaat tcctgttagt aaaaacgatg ttgagtttaa tgttacgata 1140
ggtaatacta caacaaaaac aactgctaac attcaatatc cagattatgt tgtaaatgag 1200
aaaaattcaa ttggatcagc gttcactgaa acagtttcac atgttggaaa taaagaaaat 1260
ccagggtact ataaacaaac gatttatgta aatccatcgg aaaattcttt aacaaatgcc 1320
aaactaaaag ttcaagctta ccactcaagt tatcctaata atatcgggca aataaataaa 1380
gatgtaacag atataaaaat atatcaagtt cctaaaggtt atacattaaa taaaggatac 1440
gatgtgaata ctaaagagct tacagatgta acaaatcaat acttgcagaa aattacatat 1500
ggcgacaaca atagcgctgt tattgatttt ggaaatgcag attctgctta tgttgtaatg 1560
gttaatacaa aattccaata tacaaatagc gaaagcccaa cacttgttca aatggctact 1620
ttatcttcaa caggtaataa atccgtttct actggcaatg ctttaggatt tactaataac 1680
caaagtggcg gagctggtca agaagtatat aaaattggta actacgtatg ggaagatact 1740
aataaaaacg gtgttcaaga attaggagaa aaaggcgttg gcaatgtaac tgtaactgta 1800
tttgataata atacaaatac aaaagtagga gaagcagtta ctaaagaaga tgggtcatac 1860
ttgattccaa acttacctaa tggagattac cgtgtagaat tttcaaactt accaaaaggt 1920
tatgaagtaa ccccttcaaa acaaggtaat aacgaagaat tagattcaaa cggcttatct 1980.
tcagttatta cagttaatgg caaagataac ttatctgcag acttaggtat ttacaaacct 2040
aaatacaact taggtgacta tgtctgggaa gatacaaata aaaatggtat ccaagaccaa 2100
gatgaaaaag gtatatctgg cgtaacggta acattaaaag atgaaaacgg taacgtgtta 2160
aaaacagtta caacagacgc tgatggcaaa tataaattta ctgatttaga taatggtaat 2220
tataaagttg aatttactac accagaaggc tatacaccga ctacagtaac atctggtagc 2280
gacattgaaa aagactctaa tggtttaaca acaacaggtg ttattaatgg tgctgataac 2340
atgacattag atagtggatt ctacaaaaca ccaaaatata atttaggtaa ttatgtatgg 2400
gaagatacaa ataaagatgg taagcaggat tcaactgaaa aaggtatttc aggcgtaaca 2460
gttacattga aaaatgaaaa cggtgaagtt ttacaaacaa ctaaaacaga taaagatggt 2520
aaatatcaat ttactggatt agaaaatgga acttataaag ttgaattcga aacaccatca 2580
ggttacacac caacacaagt aggttcagga actgatgaag gtatagattc aaatggtaca 2640
tcaacaacag gtgtcattaa agataaagat aacgatacta ttgactctgg tttctacaaa 2700
ccgacttaca acttaggtga ctatgtatgg gaagatacaa ataaaaacgg tgttcaagat 2760
aaagatgaaa agggcatttc aggtgtaaca gttacgttaa aagatgaaaa cgacaaagtt 2820
ttaaaaacag ttacaacaga tgaaaatggt aaatatcaat tcactgattt aaacaatgga 2880
acttataaag ttgaattcga gacaccatca ggttatacac caacttcagt aacttctgga 2940
aatgatactg aaaaagattc taatggttta acaacaacag gtgtcattaa agatgcagat 3000
aacatgacat tagacagtgg tttctataaa acaccaaaat atagtttagg tgattatgtt 3060
tggtacgaca gtaataaaga cggcaaacaa gattcaactg aaaaaggtat caaagatgtt:3120
aaagttactt tattaaatga aaaaggcgaa gtaattggaa caactaaaac agatgaaaat 3180
```

PCT/US98/25246 WO 99/27109

ggtaaatact gctttgataa tttagatagc ggtaaataca aagttatttt tgaaaagcct 3240 gctggcttaa cacaaacagg tacaaataca actgaagatg ataaagatgc agatggtggc 3300 qaagttqacq taacaattac ggatcatgat gatttcacac ttgataatgg ctactacgaa 3360 gaagaaacat cagatagcga ctcagattcg gacagcgact cagattcaga cagagactca 3420 qactcagata gtgattcaga ctcggatagc gattcagatt cagacagcga ttcagattca 3480 gatagegatt cagatteaga cagagaetea gatagtgatt cagaeteaga tagegaetea 3540 gattcagaca gcgactcaga ttcagacagc gactcagact cagatagtga ttcagactca 3600 gatagegaet cagattegga tagegaetea gatteagaea gegaeteaga eteggatagt 3660 gattcagact cagatagcga ctcagactca gatagcgatt cagattcaga tagcgactca 3720 gactcagaca gcgattcaga ctcagacagc gactcagact cagatgcagg taagcacaca 3780 cctgttaaac caatgagtac tactaaagac catcacaata aagcaaaagc attaccagaa 3840 acaggtaatg aaaatagcgg ctcaaataac gcaacgttat ttggcggatt attcgcagca 3900 3945 ttaggatcat tattgttatt cggtcgtcgt aaaaaacaaa ataaa <210> 7 <211> 1166 <212> PRT

<213> Staphylococcus aureus

<400> 7

Met Ile Asn Arg Asp Asn Lys Lys Ala Ile Thr Lys Lys Gly Met Ile

Ser Asn Arg Leu Asn Lys Phe Ser Ile Arg Lys Tyr Thr Val Gly Thr 30 25 20

Ala Ser Ile Leu Val Gly Thr Thr Leu Ile Phe Gly Leu Gly Asn Gln 45 35 40

Glu Ala Lys Ala Ala Glu Asn Thr Ser Thr Glu Asn Ala Lys Gln Asp 55

Asp Ala Thr Thr Ser Asp Asn Lys Glu Val Val Ser Glu Thr Glu Asn 75 70

Asn Ser Thr Thr Glu Asn Asn Ser Thr Asn Pro Ile Lys Lys Glu Thr 95 90 85

Asn Thr Asp Ser Gln Pro Glu Ala Lys Lys Glu Ser Thr Ser Ser Ser 105 100

Thr Gln Lys Gln Gln Asn Asn Val Thr Ala Thr Thr Glu Thr Lys Pro 125 120 115

Gln Asn Ile Glu Lys Glu Asn Val Lys Pro Ser Thr Asp Lys Thr Ala 130

Thr Glu Asp Thr Ser Val Ile Leu Glu Glu Lys Lys Ala Pro Asn Asn

SUBSTITUTE SHEET (RULE 26)

| 145        |            |            |            |            | 150        |                 |            |            |            | 155        | 5                 |            |            |            | 16         |
|------------|------------|------------|------------|------------|------------|-----------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|
| Thr        | Asn        | Asn        | Asp        | Val<br>165 |            | Thr             | Lys        | Pro        | Ser<br>170 |            | : Se              | r Gli      | ı Pro      | 5 Se:      |            |
| Ser        | Glu        | Ile        | Gln<br>180 | Thr        | Lys        | Pro             | Thr        | Thr<br>185 |            | Gln        | Glı               | ı Sei      | Th:        |            | n Ile      |
| Glu        | Asn        | Ser<br>195 | Gln        | Pro        | Gln        | Pro             | Thr<br>200 |            | Ser        | Lys        | Val               | Asp<br>205 | Asn        | Glr        | ı Val      |
| Thr        | Asp<br>210 | Ala        | Thr        | Asn        | Pro        | Lys<br>215      | Glu        | Pro        | Val        | Asn        | Val<br>220        |            | Lys        | Glu        | ı Glu      |
| Leu<br>225 | Lys        | Asn        | Asn        | Pro        | Glu<br>230 | Lys             | Leu        | Lys        | Glu        | Leu<br>235 |                   | Arg        | Asn        | Asp        | Ser<br>240 |
| Asn        | Thr        | Asp        | His        | Ser<br>245 | Thr        | Lys             | Pro        | Val        | Ala<br>250 | Thr        | Ala               | Pro        | Thr        | Ser<br>255 |            |
| Ala        | Pro        | Lys        | Arg<br>260 | Val        | Asn        | Ala             | Lys        | Met<br>265 | Arg        | Phe        | Ala               | Val        | Ala<br>270 | Gln        | Pro        |
| Ala        | Ala        | Val<br>275 | Ala        | Ser        | Asn        | Asn             | Val<br>280 | Asn        | Asp        | Leu        | Ile               | Lys<br>285 | Val        | Thr        | Lys        |
| Gln        | Thr<br>290 | Ile        | Lys        | Val        | Gly        | Asp<br>295<br>` | Gly        | Lys        | Asp        | Asn        | Val<br>300        | Ala        | Ala        | Ala        | His        |
| Asp<br>305 | Gly        | Lys        | Asp        | Ile        | Glu<br>310 | Tyr             | Asp        | Thr        | Glu        | Phe<br>315 | Thr               | Ile        | Asp        | Asn        | Lys<br>320 |
| Val        | Lys        | Lys        | Gly        | Asp<br>325 | Thr        | Met             | Thr        | Ile        | Asn<br>330 | Tyr        | Asp               | Lys        | Asn        | Val<br>335 | Ile        |
| Pro        | Ser        | Asp        | Leu<br>340 | Thr        | Asp        | Lys             | Asn        | Asp<br>345 | Pro        | Ile        | Asp               | Ile        | Thr<br>350 | Asp        | Pro        |
| Ser        | Gly        | Glu<br>355 | Val        | Ile        | Ala        | Lys             | Gly<br>360 | Thr        | Phe        | Asp        | Lys               | Ala<br>365 | Thr        | Lys        | Gln        |
| Ile        | Thr<br>370 | Tyr        | Thr        | Phe        | Thr        | Asp<br>375      | Tyr        | Val        | Asp        | Lys        | <b>Tyr</b><br>380 | Glu        | Asp        | Ile        | Lys        |
| Ser<br>385 | Arg        | Leu        | Thr        | Leu        | Tyr<br>390 | Ser             | Tyr        | Ile        | Asp        | Lуs<br>395 | Lys               | Thr        | Val        | Pro        | Asn<br>400 |
| Glu        | Thr        | Ser        | Leu        | Asn        | Leu        | Thr             | Phe.       | Ala        | Thr        | Ala        | Gly               | Lys        | Glu        | Thr        | Ser        |

| 105 | 410 | 415 |
|-----|-----|-----|
|     |     |     |

Gln Asn Val Thr Val Asp Tyr Gln Asp Pro Met Val His Gly Asp Ser 420 425 430

Asn Ile Gln Ser Ile Phe Thr Lys Leu Asp Glu Asp Lys Gln Thr Ile 435 440 445

Glu Gln Gln Ile Tyr Val Asn Pro Leu Lys Lys Ser Ala Thr Asn Thr 450 455 460

Lys Val Asp Ile Ala Gly Ser Gln Val Asp Asp Tyr Gly Asn Ile Lys 465 470 475 480

Leu Gly Asn Gly Ser Thr Ile Ile Asp Gln Asn Thr Glu Ile Lys Val 485 490 495

Tyr Lys Val Asn Ser Asp Gln Gln Leu Pro Gln Ser Asn Arg Ile Tyr 500 505 510

Asp Phe Ser Gln Tyr Glu Asp Val Thr Ser Gln Phe Asp Asn Lys Lys 515 520 525

Ser Phe Ser Asn Asn Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser 530 535 540

Ala Tyr Ile Ile Lys Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly 545 550 555 560

Glu Leu Asp Ile Ala Gln Gly Thr Ser Met Arg Thr Thr Asp Lys Tyr 565 570 575

Gly Tyr Tyr Asn Tyr Ala Gly Tyr Ser Asn Phe Ile Val Thr Ser Asn 580 585 590

Asp Thr Gly Gly Asp Gly Thr Val Lys Pro Glu Glu Lys Leu Tyr
595 600 605

Lys Ile Gly Asp Tyr Val Trp Glu Asp Val Asp Lys Asp Gly Val Gln 610 615 620

Gly Thr Asp Ser Lys Glu Lys Pro Met Ala Asn Val Leu Val Thr Leu 625 630 635 640

Thr Tyr Pro Asp Gly Thr Thr Lys Ser Val Arg Thr Asp Ala Asn Gly 645 650 655

His Tyr Glu Phe Gly Gly Leu Lys Asp Gly Glu Thr Tyr Thr Val Lys

|            |                   |            | 660        |            |                    |            |                   | 665        |            |            |            |            | 670        | )          |                   |
|------------|-------------------|------------|------------|------------|--------------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|-------------------|
| Phe        | Glu               | Thr<br>675 | Pro        | Thr        | Gly                | Tyr        | <b>Leu</b><br>680 | Pro        | Thr        | Lys        | Val        | Asn<br>685 |            | Thr        | Thr               |
| Asp        | Gly<br>690        | Glu        | Lys        | Asp        | Ser                | Asn<br>695 | Gly               | Ser        | Ser        | Val        | Thr<br>700 | Val        | Lys        | Ile        | Asn               |
| Gly<br>705 | Lys               | Asp        | Asp        | Met        | Ser<br>710         | Leu        | Asp               | Thr        | Gly        | Phe<br>715 | Туг        | Lys        | Glu        | Pro        | Lys<br>720        |
| Tyr        | Asn               | Leu        | Gly        | Asp<br>725 | Tyr                | Val        | Trp               | Glu        | Asp<br>730 | Thr        | Asn        | Lys        | Asp        | Gly<br>735 |                   |
| Gln        | Asp               | Ala        | Asn<br>740 | Glu        | Pro                | Gly        | Ile               | Lys<br>745 | Asp        | Val        | Lys        | Val        | Thr<br>750 | Leu        | Lys               |
| Asp        | Ser               | Thr<br>755 | Gly        | Lys        | Val                | Ile        | Gly<br>760        | Thr        | Thr        | Thr        | Thr        | Asp<br>765 | Ala        | Ser        | Gly               |
| Lys        | <b>Tyr</b><br>770 | Lys        | Phe        | Thr        | Asp                | Leu<br>775 | Asp               | Asn        | Gly        | Asn        | Tyr<br>780 | Thr        | Val        | Glu        | Phe               |
| Glu<br>785 | Thr               | Pro        | Ala        | Gly        | Туг<br><b>7</b> 90 | Thr        | Pro               | Thr        | Val        | Lys<br>795 | Asn        | Thr        | Thr        | Ala        | Asp<br>800        |
| Asp        | Lys               | Asp        | Ser        | Asn<br>805 | Gly                | Leu        | Thr               | Thr        | Thr<br>810 | Gly        | Val        | Ile        | Lys        | Asp<br>815 | Ala               |
| Asp        | Asn               | Met        | Thr<br>820 | Leu        | Asp                | Arg        | Gly               | Phe<br>825 | Tyr        | Lys        | Thr        | Pro        | Lys<br>830 | Tyr        | Ser               |
| Leu        | Gly               | Asp<br>835 | Tyr        | Val        | Trp                | Tyr        | Asp<br>840        | Ser        | Asn        | Lys        | Asp        | Gly<br>845 | Lys        | Gln        | Asp               |
| Ser        | Thr<br>850        | Glu        | Lys        | Gly        |                    | Lys<br>855 | Asp               | Val        | Thr        | Val        | Thr<br>860 | Leu        | Gln        | Asn        | Glu               |
| Lys<br>865 | Gly               | Glu        | Val        | Ile        | Gly<br>870         | Thr        | Thr               | Lys        | Thr        | Asp<br>875 | Glu        | Asn        | Gly        | Lys        | <b>Tyr</b><br>880 |
| Arg        | Phe               | Asp        | Asn        | Leu<br>885 | Asp                | Ser        | Gly               | Lys        | Tyr<br>890 | Lys        | Val        | Ile        | Phe        | Glu<br>895 | Lys               |
| Pro        | Ala               | Gly        | Leu<br>900 | Thr        | Gln                | Thr        | Val               | Thr<br>905 | Asn        | Thr        | Thr        | Glu        | Asp<br>910 | Asp        | Lys               |
| Asp        | Ala               | Asp        | Gly        | Gly        | Glu                | Val        | Asp               | Val        | Thr        | Ile        | Thr        | Asp        | His        | Asp        | qzA               |

915 920 925

Phe Thr Leu Asp Asn Gly Tyr Phe Glu Glu Asp Thr Ser Asp Ser Asp 930 935 940

- Ser Asp 945 955 960
- Ser Asp 965 970 975
- Ser Asp 980 985 990
- Ser Asp 995 1000 1005
- Ser Asp 1010 1015 1020
- Ser Asp 1025 1030 1035 1040
- Ser Asp 1045 1050 1055
- Ser Asp 1060 1065 1070
- Ser Asp 1075
- Ser Asp 1090 1095 1100
- Ser Asp Ala Gly Lys His Thr Pro Val Lys Pro Met Ser Thr Thr Lys 1105 1110 1115 1120
- Asp His His Asn Lys Ala Lys Ala Leu Pro Glu Thr Gly Ser Glu Asn 1125 1130 1135
- Asn Gly Ser Asn Asn Ala Thr Leu Phe Gly Gly Leu Phe Ala Ala Leu 1140 1145 1150
  - Gly Ser Leu Leu Leu Phe Gly Arg Arg Lys Lys Gln Asn Lys 1155 1160 1165

<210> 8 <211> 3498 <212> DNA <213> Staphylococcus aureus

## <400> 8 atgattaaca gggataataa aaaggcaata acaaaaaagg gtatgatttc aaatcgctta 60 aacaaatttt cgattagaaa gtatactgta ggaactgcat cgattttagt aggtacgaca 120 ttgatttttg gtctagggaa ccaagaagct aaagctgctg aaaacactag tacagaaaat 180 gcaaaacaag atgatgcaac gactagtgat aataaagaag tagtgtcgga aactgaaaat 240 aattcgacaa cagaaaataa ttcaacaaat ccaattaaga aagaaacaaa tactgattca 300 caaccagaag ctaaaaaaga atcaacttca tcaagtactc aaaaacagca aaataacgtt 360 acagctacaa ctgaaactaa gcctcaaaac attgaaaaag aaaatgttaa accttcaact 420 gataaaactg cgacagaaga tacatctgtt attttagaag agaagaaagc accaaataat 480 acaaataacg atgtaactac aaaaccatct acaagtgaac catctacaag tgaaattcaa 540 acaaaaccaa ctacacctca agaatctaca aatattgaaa attcacaacc gcaaccaacg 600 ccttcaaaag tagacaatca agttacagat gcaactaatc caaaagaacc agtaaatgtg 660 tcaaaagaag aacttaaaaa taatcctgag aaattaaaag aattggttag aaatgatagc 720 aatacagatc attcaactaa accagttgct acagctccaa caagtgttgc accaaaacgt 780 gtaaacgcaa aaatgcgctt tgcagttgca caaccagcag cagttgcttc aaacaatgta 840 aatgatttaa ttaaagtqac gaagcaaaca atcaaagttq qcqatqqtaa agataatqtq 900 gcagcagcgc atgacggtaa agatattgaa tatgatacag agtttacaat tgacaataaa 960 gtcaaaaaag gcgatacaat gacgattaat tatgataaga atgtaattcc ttcggattta 1020 acagataaaa atgatcctat cgatattact gatccatcag gagaggtcat tgctaaagga 1080 acatttgata aagcaactaa gcaaatcaca tatacattta cagactatgt agataaatat 1140 gaagatataa aatcacgctt aactctatat tegtatattg ataaaaaaac agttecaaat 1200 gagacaagtt tgaatttaac atttgctaca gcaggtaaag aaacaagcca aaatgtcact 1260 gttgattatc aagatccaat ggtccatggt gattcaaaca ttcaatctat ctttacaaaa 1320 ttagatgaag ataagcaaac tattgaacaa caaatttatg ttaacccatt gaaaaaatca 1380 gcaaccaaca ctaaagttga tatagctggt agtcaagtag atgattatgg aaatattaaa 1440 ctaggaaatg gtagcaccat tattgaccaa aatacagaaa taaaggttta taaagttaac 1500 tctgatcaac aattgcctca aagtaataga atctatgatt ttagtcaata cgaagatgta 1560 acaagtcaat ttqataataa aaaatcattt agtaataatg tagcaacatt ggattttggt 1620 gatattaatt cagcctatat tatcaaagtt gttagtaaat atacacctac atcagatggc 1680 gaactagata ttgcccaagg tactagtatg agaacaactg ataaatatgg ttattataat 1740 tatgcaggat attcaaactt catcgtaact tctaatgaca ctggcggtgg cgacggtact 1800 gttaaacctg aagaaaagtt atacaaaatt ggtgactatg tatgggaaga cgttgataaa 1860 gacggtgttc aaggtacaga ttcaaaagaa aaaccaatgg caaacgtttt agttacatta 1920 acttacccgg acggtactac aaaatcagta agaacagatg ctaatggtca ttatgaattc 1980 ggtggtttga aagacggaga aacttataca gttaaattcg aaacgccaac tggatatctt 2040 ccaacaaaag taaatggaac aactgatggt gaaaaagact caaatggtag ttcggttact 2100 gttaaaatta atggtaaaga tgatatgtct ttagatactg gtttttacaa agaacctaaa 2160 tacaacttag gtgactatgt atgggaagat actaataaag atggtatcca agatgcaaat 2220 gagccaggaa tcaaagatgt taaggttaca ttaaaagata gtactggaaa agttattggt 2280 acaactacta ctgatgcctc gggtaaatat aaatttacag atttagataa tggtaactat 2340 acagtagaat ttgaaacacc agcaggttac acgccaacgg ttaaaaaatac tacagctgat 2400

gataaagatt ctaatggttt aacaacaaca ggtgtcatta aagatgcaga taatatgaca 2460 ttagacaggg gtttctataa aacaccaaaa tacagtttag gtgattatgt ttggtacgac 2520

```
agtaataaag acggcaaaca agattcaact gaaaaaggta tcaaagatgt gacagttaca 2580
ttgcaaaacg aaaaaggcga agtaattgga acaactaaaa cagatgaaaa tggtaaatat 2640
cgtttcgata atttagatag cggtaaatac aaagttattt ttgaaaagcc tgctggctta 2700
acacaaacag ttacaaatac aactgaagat gataaagatg cagatggtgg cgaagttgac 2760
gtaacaatta cggatcatga tgatttcaca cttgataacg gatacttcga agaagataca 2820
teagacageg atteagacte agatagtgae teagacageg acteagacte agacagegae 2880
tcagactcag acagtgattc agattcagac agcgactcag attcagatag cgactcagat 2940
teggacageg atteagacte agatagegae teagatteag atagegatte agacteagae 3000
agcgactcag attragatag cgattcggac tragaragcg attragactr agatagcgar 3060
tragactrag aragregate agattragat agregating actragatag regartragat 3120
tcagacagcg attcagactc agatagcgac tcagattcag acagcgattc agactcagat 3180
agcgactcag actcagacag tgattcagat tcagacagcg actcagactc agatagcgac 3240
tcagattcag acagcgactc agactcagat agcgactcag actcagacag tgattcagac 3300
agcgattcag actcggatgc aggaaaacat acacctgtta aaccaatgag tactactaaa 3360
gaccatcaca ataaagcaaa agcattacca gaaacaggta gtgaaaataa cggctcaaat 3420
aacqcaacqt tatttggtgg attatttgca gcattaggtt cattattgtt attcggtcgt 3480
                                                                  3498
cgcaaaaaac aaaacaaa
<210> 9
<211> 18
<212> DNA
<213> Staphylococcus aureus
<400> 9
                                                                  18
gaytcngayt cngayagy
<210> 10
<211> 5
<212> PRT
<213> Staphylococcus aureus
<400> 10
Leu Pro Asp Thr Gly
<210> 11
<211> 5
<212> PRT
<213> Staphylococcus aureus
<400> 11
Asp Tyr Ser Asn Ser
<210> 12
<211> 6
```

```
<212> PRT
   <213> Staphylococcus aureus
   <400> 12
   Phe Thr Asp Tyr Val Asn
<210> 13
   <211> 5
   <212> PRT
  <213> Staphylococcus aureus
   <400> 13
   Asp Xaa Ser Xaa Ser
    1
   <210> 14
   <211> 5
   <212> PRT
   <213> Staphylococcus aureus
   <400> 14
   Leu Pro Xaa Thr Gly
   <210> 15
   <211> 33
   <212> DNA
   <213> Staphylococcus aureus
   <400> 15
                                                                      33
   cgaggatcct caggacaatc gaacgataca acg
   <210> 16
   <211> 27
   <212> DNA
   <213> Staphylococcus aureus
   <400> 16
                                                                      27
   cgaggtacca tttactgctg aatcacc
   <210> 17
   <211> 34
   <212> DNA
   <213> Staphylococcus aureus
```

34

```
<400> 17
cgaaagcttg tcagaacaat cgaacgatac aacg
<210> 18
<211> 9
<212> PRT
<213> Staphylococcus aureus
<400> 18
Thr Tyr Thr Phe Thr Asp Tyr Val Asp
<210> 19
<211> 9
<212> PRT
<213> Staphylococcus aureus
<400> 19
Thr Tyr Thr Phe Thr Asn Tyr Val Asp
<210> 20
<211> 9
<212> PRT
<213> Staphylococcus aureus
<400> 20
Thr Phe Val Phe Thr Asp Tyr Val Asn
<210> 21
<211> 9
<212> PRT
<213> Staphylococcus aureus
<400> 21
Ile Tyr Thr Phe Thr Asp Tyr Val Asn
```