NON-LINGAR REGRESSION TECHNIQUES

## LASSO REGRESSION

GOOD AT HANDLING COLINEAR VARIABLES
"SHRINKS" COEFFICIENTS FROM CORRELATED
VARIABLES.

#### 2 NN REGRESSOR

SIMILAR POINTS IN OUR FEATURE SPACE WILL HAVE SIMILAR OUTCOMES.

SIMPLEST NON-LINEAR MODEL.

GOOD BASELINE ERROR FOR OTHER ML

MODELS

### DECISION TREES

HIGHLY FLEXIBLE NON-LINEAR MODEL. GREAT AT ESTIMATING INTERACTIONS BETWEEN FEATURES.

PRONE TO OVERFITTING.

DIFICULT ADJUSTMENT OF HYPERPARAMET

TERS

### ENSEMBLE METHODS

CURRENT STANDARD MODELLING TECHTING US BOOSTING ALGORITHMS.

ENSEMBLE STRATEGIES BAGGING US BOOSTING

USING catboost No LIBRARY

# WHAT ARE HYPER PARAMETERS?

PARAMETERS IN A MODELS ARE THE QUANTITIES OUR MODEL ESTIMATES:

\*THE SLOPE & INTERCEPT OF A REGRESSION

\* NODE VARIABLES & CUT VALUES IN DECISION TREES

HYPER PARAMETERS ARE OPTIMIZATION PARAMETERS FOR EACH ML ALGORITHM

\* K-neighbors in IRNN

\* TREE DEPTH & LEAF SIZES

IN DECISION TREES

HYPERPARAMETERS REPRESENT THE TRADE-OFF BETWEE PERCISON & OVER FITTING



REAL PRECISION ~ TEST ERROR MEASURED PRECISION ~ TRAIN ERROR

WE MUST USE OPTIMIZATION TECHNIQUES TO FIND THE BEST HYPER PARAMETERS FOR EACH PROBLEM/MODEL!