

Longitudinal Data Fall 2015

Chapter 7

Mixed, Random Effects, Random Coefficients, Multilevel, ... Models

<u>Instructors</u>

Nick Jewell (jewell@berkeley.edu)

Robin Mejia (mejia@nasw.org)

Many names, some more general

- Mixed Models (most general)
- Random effects models
- Random Coefficient Models
- Hierarchical Linear Models (HLM's)
- Multilevel models (MLM's)
- Nested modeling

What's being "Mixed"?

- A mixed model has two types of effects, <u>fixed and random</u>.
- A <u>fixed effect</u> means that all levels of the variable are contained in the data and the effect is universal to all in the target population – parameters.
- A <u>random effect</u> means that the levels (effects) of the variable comprise random samples of the levels (effects) in the target population – random variables.
- Consider a treatment effect. Fixed, Random, Both?

Motivation for using MLM's (mixed models)

- It allows different subjects to have different responses to a treatment, risk variable, etc., thus has intuitive appeal.
- Rarely interesting, but can also provide postestimation estimates of the random effects.
- You get the entire data-generating distribution.
 - Use the virtues of having a likelihood.
 - Can simulate data from the resulting parameter estimates
 - In contrast with other approaches that only target a specific aspect of the data-generating distribution.

Estimation of coefficients using mixed models

- As we've showed in class and homework, random effects models imply certain variance-covariance structures.
- For instance, a simple random effects model results in equal correlation (exchangeable or compound symmetry) among all observations measured on the same subject.
- We know that if the variance-covariance matrix (V) is known, then the most efficient estimate of the coefficients is weighted-least squares:

$$\hat{\beta} = (X^T W X)^{-1} X^T W \mathbf{Y}$$

where $W = V^{-1}$.

Estimation of coefficients using mixed models, cont.

- The Mixed Linear Model procedure works by:
 - 1. Converting the random effects model into its implied variance-covariance matrix, *V*,
 - 2. starting with the independent model (OLS) it gets residuals and then estimates *V* based on this model,
 - 3. creates weight matrix as $W = \hat{V}^{-1}$
 - 4. does weighted least squares and gets residuals,
 - 5. repeats until convergence.
- The SE's the procedure return come from:

$$\hat{\text{var}}(\hat{\beta}_{\hat{V}}) = (X^T W X)^{-1} = (X^T \hat{V}^{-1} X)^{-1}$$

Model Based inference

When deriving the inference on coefficients, $SE(\hat{\beta})$ the estimating procedure assumes that the variance-covariance model of the outcome implied by the model IS CORRECT (i.e., it's always naïve, not "robust").

The Simplest Example.

■ The Model:

$$Y_{ij} = \mu + \alpha_i + e_{ij}$$

- \blacksquare $E(\alpha_i)=0$, $E(e_{ij})=0$, $E[\alpha_i e_{ij}]=0$.
- Var(α_i)= σ^2_{α} .
- $Var(e_{ij}) = \sigma^2_e$.
- What are the fixed and random effects in this model?

Likelihood

lacksquare Given $\alpha_{i:}$

$$f(Y_{ij} \mid \alpha_i) = \phi \left(\frac{Y_{ij} - \alpha_i - \mu}{\sigma_e^2} \right), f(\vec{Y}_i \mid \alpha_i) = \prod_{j=1}^{n_i} \phi \left(\frac{Y_{ij} - \alpha_i - \mu}{\sigma_e^2} \right)$$

Likelihood of observed data (for one unit) is:

$$f(\vec{Y}_i) = \int_{\alpha} f(\vec{Y}_i \mid \alpha) f(\alpha) d\alpha = \int_{\alpha} \prod_{j=1}^{n_i} \phi \left(\frac{Y_{ij} - \alpha - \mu}{\sigma_e^2} \right) \phi \left(\frac{\alpha}{\sigma_\alpha^2} \right) d\alpha$$

Random Intercepts and Random Associations

- The Model: $Y_{ij} = (\beta_0 + \beta_{0i}) + (\beta_1 + \beta_{1i})x_{ij} + e_{ij}$
- $E(\beta_{0i})=0, E(\beta_{1i})=0, E(e_{ij})=0.$
- $Var(\beta_{0i}) = \sigma_0^2, Var(\beta_i^1) = \sigma_1^2, Var(e_{ii}) = \sigma^2$
- $cov(\beta_{0i}, \beta_{1i}) = \sigma_{12}, cov(\beta_{0i}, e_{ij}) = 0, cov(\beta_{1i}, e_{ij}) = 0.$
- What are the fixed and random effects in this model?

Reminder of our GEE analysis: Association of Baseline Covariate (Age) on CD4 count.

- Binary age $(X_{ij}) = 0$ (<40) or 1 (>40)
- Fit simple linear model:

$$E[Y_{ij} | X_{ij} = x_i] = \beta_0 + \beta_1 x_i$$

Compare results of Models A-D

	Naive	Robust
Unweighted OLS	Α	В
Weighted LS	С	D

Summary of Results of Association of Baseline Covariate (Age) on CD4 count

	β_0 (SE)	
	Naive	Robust
Unweighted OLS	225.9 (9.9)	225.9 (12.6)
Weighted LS	225.9 (13.3)	225.9 (12.6)
	β_1 (SE)	
	Naive	Robust
Unweighted OLS	24.24 (14.2)	24.24 (19.3)
Weighted LS	24.24 (19.2)	24.24 (19.3)

Random Effects Model of CD4 vs. Baseline Age

Fit simple random effects model:
 with same assumptions as above

$$Y_{ij} = \beta_0 + \beta_{0i} + \beta_1 X_{ij} + e_{ij}$$

```
. xtreg cd4 binage, i(id) re
                                         Number of obs = 594
Random-effects GLS regression
Group variable (i): id
                                         Number of groups = 297
R-sq: within = .
                                         Obs per group: min = 2
     between = 0.0054
                                                      avg = 2.0
     overall = 0.0049
                                                      max =
                                        Wald chi2(1) = 1.59
Random effects u i ~ Gaussian
corr(u i, X) = 0 (assumed)
                                        Prob > chi2 = 0.2075
    cd4 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
est of \beta_1 binage 24.2404 19.22938 1.26 0.207 -13.44848 61.92928
est of \beta_0 _cons 225.902 13.38962 16.87 0.000 199.6588 252.1451
    sigma u | 157.74218 estimate of \sigma^2_0
    sigma e | 71.379705 estimate of
       rho | .83003801 (fraction of variance due to u i)
```

Association of Time-Varying Covariate (Viral Load) on CD4 count.

- Binary VL: $X_{ij} = 0$ (<2000) or 1 (>2000) all subjects included have one low and one high VL.
- Fit simple linear model:

$$E[Y_{ij} | X_{ij} = x_i] = \beta_0 + \beta_1 x_{ij}$$

Compare results of Models A-D

	Naive	Robust
Unweighted OLS	Α	В
Weighted LS	С	D

Summary of Results of Association of Time Varying Covariate (VL) on CD4 count (note, different data that last lecture)

Unweighted OLS Weighted LS	β ₀ (SE) Naive 355.1(21.7) 355.1(21.7)	Robust 355.1(23.6)) 355.1(22.9)
	β₁(SE) Naive	Robust
Unweighted OLS	-79.3(30.7)	-79.3(17.1)
Weighted LS	-79.3(17.0)	-79.3(17.1)
t-test (difference)	-79.3(17.1)	

Random Effects Model of CD4 vs. $log_{10}(viral load)$

Fit simple random effects model:
 with same assumptions as above

$$Y_{ij} = \beta_0 + \beta_{0i} + \beta_1 X_{ij} + e_{ij}$$

```
. xtreg cd4 medvl, i(id) re
                                         Number of obs = 174
Random-effects GLS regression
Group variable (i): id
                                         Number of groups =
                                                                 87
R-sq: within = 0.0000
                                         Obs per group: min = 2
     between = 0.0000
                                                      avg = 2.0
     overall = 0.0370
                                                      max =
Random effects u i ~ Gaussian
                                        Wald chi2(1) = 21.44
corr(u i, X) = 0 (assumed)
                                        Prob > chi2 = 0.0000
       cd4 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     medvl | -79.34483 17.13523 -4.63 0.000 -112.9293 -45.76039
     _cons | 355.0805 21.80987 16.28 0.000 312.3339 397.827
    sigma u | 169.148 estimate of \sigma^2_0
    sigma e | 113.0146 estimate of \sigma^2
       rho | .69136617 (fraction of variance due to u i)
```

Multiple and varying observations per person CD4 (Y) vs. continuous (log) Viral Load (X)

$$E[Y_{ij} \mid X_{i1} = x_{i1}, X_{ij} = x_{ij}] = \beta_0 + \beta_1 x_{i1} + \beta_2 (x_{ij} - x_{i1})$$

- $-\beta_2$ represents the expected change in Y given a change in X_{ij} relative to the baseline value (X_{i1}) longitudinal effect.
- $-\beta_1$ represents the expected difference in average Y across two sub-populations that differ by their baseline values, X_{i1} cross-sectional effect.

17

Summary of Results of Association of Time-Varying Covariate (VL) on CD4 count – multiple observations per person

	$\beta_0(SE)$	
	Naive	Robust
Unweighted OLS	618.9(11.6)	618.9(35.2)
Weighted LS	509.1(31.2)	509.1(32.9)
	$\beta_1(SE)$	
	Naive	Robust
Unweighted OLS	-83.7(3.0)	-83.7(8.3)
Weighted LS	-52.7(7.4)	-52.7(7.7)
	$\beta_2(SE)$	
	Naive	Robust
Unweighted OLS	-99.2(2.4)	-99.2(6.8)
Weighted LS	-54.7(2.2)	-54.7(3.2)

General Method for Choosing Random Effects/Correlation Model

- Choose fixed effects model more elaborate the better.
- For every combination of random effects and correlation you would consider, fit the model using the same fixed effects model, record Aikake Information Criterion (AIC) – which is a fit statistic penalized by the number of parameters.
- Choose the model with the smallest AIC.

AIC = -2*loglik+2*p, p is the number of parameters

$$Y_{ij} = \beta_{0} + \beta_{0i} + \beta_{1}X_{i1} + \beta_{2}(X_{ij} - X_{i1}) + e_{ij}$$

$$\sigma_{\beta_{0i}}^{2} = \text{var}(\beta_{0i}), \ \sigma_{e}^{2} = \text{var}(e_{ij})$$

. mixed cd4 logvlbase logvlchange || id:, stddev

,	Log likelihood	d = -43826.581						ni2(2) chi2		832.00
		Coef.						[95%	Conf.	Interval]
$\hat{eta}_{\scriptscriptstyle 1}$	·	-52.05566						-67.97	7349	-36.13782
\hat{eta}_2	logvlchange	-53.47144	1.85	5169	-28.8	2 (0.000	-57.10	751	-49.83538
$\hat{eta}_{\scriptscriptstyle 0}$	_cons	506.5567						439.1	L361	573.9774
		cts Parameters								
	id: Identity	$\hat{\sigma}_{eta_{0i}}$ sd(_cons	' +	186	. 629	6.76		173.8		200.3615
	$\hat{\sigma}$	e sd(Residual)) 	108.3	3884	.9402				
	LR test vs. li	near regression	on: c	 hibar2	2(01) =	- -	37.72	== ==== Prob >= 0	chibar2	2 = 0.0000

Intraclass Correlation Coefficient and Measure of Fit (AIC)

. estat icc

Residual intraclass correlation

Level		[95% Conf.	-
	•	.719203	

$$\frac{\hat{\sigma}_{\beta_{0i}}^{2}}{\hat{\sigma}_{\beta_{0i}}^{2} + \hat{\sigma}_{e}^{2}} = \frac{\text{Estimated Between Subject Variance}}{\text{Total Variance} = \text{var}(Y_{ij})}$$

. estat ic

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
.	7053	·	-43826.58	5 	87663.16	87697.47

Re-do with Robust Standard Errors

. mixed cd4 logvlbase logvlchange || id:, stddev cluster(id) (Std. Err. adjusted for 406 clusters in id) Robust cd4 | Coef. Std. Err. z P>|z| [95% Conf. Interval] logvlchange | -53.47144 3.163293 -16.90 0.000 -59.67138 -47.2715 cons | 506.5567 33.09145 15.31 0.000 441.6987 571.4148 Robust Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] id: Identity sd(_cons) | 186.629 9.162828 169.5072 205.4802 sd(Residual) | 108.3884 3.435494 101.8598 115.3354

$$X_{ij} = (\beta_0 + \beta_{0i}) + \beta_1 X_{i1} + (\beta_2 + \beta_{2i})^* (X_{ij} - X_{i1}) + e_{ij}$$

$$Coefficient$$

$$\sigma_{\beta_{0i}}^2 = var(\beta_{0i}), \ \sigma_{\beta_{2i}}^2 = var(\beta_{2i}), \sigma_e^2 = var(e_{ij}), \sigma_{10} = cov(\beta_{0i}, \beta_{2i})$$
Model

. mixed cd4 logvlbase logvlchange || id: logvlchange, stddev cov(unstruct)

â	cd4	Coef.	Std. Err	. z	P> z	[95% Conf.	Interval]
$\beta_{1 \log n}$	/lbase	-66.69168	6.935967	-9.62	0.000	-80.28593	-53.09743
eta_2 lægvlæ	change		2.975448		0.000		-48.32892
$ ho_0$	_cons 	553 . 9275 	28.89506	19.17 	0.000	497.2942	610.5607
Rando 	om-effect	ts Parameters	Est:	imate St	 d. Err. 	[95% Conf.	Interval]
id: Uns	structur						
	$\sigma_{\beta^{2i}}$:	sd(logvlc~e eta_{0i} sd(_cons) 41.1	14181 2.	911627	35.81322	47.26323
	. 0	eta_{0i} sd(_cons) 164	.0304 6.	245377	152.2353	176.7394
$\hat{\operatorname{cor}}(\beta_{0i},\beta_{2i})$	corr(lo	ogvlc~e,_cons) 588	36842 .0	676882 	7057546	4403184
	$\hat{\sigma}_{_{e}}$	sd(Residual) 104	.7828 .9	310012	102.9739	106.6235
LR test	t vs. lin	near regressi	on:	chi2(3) =	7729.27	Prob > chi	2 = 0.0000

23

Fit Statistics

. estat ic

Akaike's information criterion and Bayesian information criterion

BIC	AIC	df	ll(model)	ll(null)	 Obs	Model
87423.63	87375.61	7	-43680.8		7053	.

Re-do with Robust Estimated of Variance

. mixed cd4 logvlbase logvlchange || id: logvlchange, stddev cov(unstruct) cluster(id) (Std. Err. adjusted for 406 clusters in id) Robust cd4 | Coef. Std. Err. z > |z| [95% Conf. Interval] logvlbase | -66.69168 7.022014 -9.50 0.000 -80.45458 -52.92879 logvlchange | -54.16069 3.008829 -18.00 0.000 -60.05789 -48.26349 cons | 553.9275 30.89291 17.93 0.000 493.3785 614.4765 Robust Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] id: Unstructured sd(logvlc~e) | 41.14181 3.762318 34.39086 49.21797 sd(_cons) | 164.0304 8.518709 148.1557 181.6061 corr(logvlc~e,_cons) | -.5886842 .0836119 -.7289279 -.4010203 sd(Residual) | 104.7828 3.357696 98.40426 111.5748

Model	Parameter	Estimate	SE(Naïve)	SE(Robus	st)
	β_0	506.5	34.4	33.1	
Simple Random Effects	β_1	-52.1	8.1	7.8	
omple Random Encots	β_2	-53.5	1.8	3.2	
$Y_{ij} = \beta_0 + \beta_{0i} + \beta_1 X_{i1} + \beta_2 (X_{ij} - X_{i1}) + e_{ij}$	$SD(\beta_{0i})$	186.6	6.8	9.2	
	SD(e _{ij})	108.4	0.94	3.4	
	ICC	0.75	0.014	N/A	
Fit Statistic	AIC	87663			
	β_0	553.9	28.9	30.9	
Random Coefficients	β_1	-66.7	6.9	7.0	
	eta_2	-54.2	3.0	3.0	
$Y_{ij} = (\beta_0 + \beta_{0i}) + \beta_1 X_{i1} + (\beta_2 + \beta_{2i})(X_{ij} - X_{i1}) + e_{ij}$	$SD(\beta_{0i})$	164.0	6.2	8.5	
	$SD(\beta_{2i})$	41.1	2.9	3.8	
	SD(e _{ij})	104.8	0.93	3.4	
	$Cor(\beta_{0i,}\beta_{2i})$	-0.59	0.068	0.084	
Fit Statistic	AIC	87375	Smaller than above	***	26

Using Estimated Random Coefficients Distributions

$$Y_{ij} = (\beta_0 + \beta_{0i}) + \beta_1 X_{i1} + (\beta_2 + \beta_{2i})(X_{ij} - X_{i1}) + e_{ij}$$

- This estimated distribution of β_{2i} can be used to estimate the quartiles of the longitudinal effect of changes in log10 viral load across the population.
- Specifically, the estimated distribution of the longitudinal effect is ~ Normal with mean -54.2 and standard deviation 41.1.

Using Estimated Longitudinal Effect Distribution to exam how it might vary in population

Estimated IQR then is

$$(\hat{\beta}_2 - Z_{0.75} * \hat{\sigma}_{\beta_{2i}}, \hat{\beta}_2 + Z_{0.75} * \hat{\sigma}_{\beta_{2i}})$$

or,


```
. display "("-54.2-invnormal(0.75)*41.1 " , , , -54.2+invnormal(0.75)*41.1 " )"  (-81.921529 \text{ , } -26.478471 \text{ )}
```

Strength Data

- Subjects randomized to one of 3 treatments
 - 1. No training (tx=1)
 - 2. Weight training with light weights and high repetition (tx=2)
 - 3. Weight training with heavy weights and low repetition (tx=3)
- Subjects were followed for 7 weeks and a measure of muscle strength was recorded each week.
- The questions of interest are
 - 1. Does weight training have any impact on strength?
 - 2. Is there a difference between tx 2 and 3?
 - 3. Which training program works quickest to increase strength?

Strength Data

	id	tx	У	time
1.	1	1	85	1
2.	1	1	85	2
3.	1	1	86	3
4.	1	1	85	4
5.	1	1	87	5
6.	1	1	86	6
7.	1	1	•	7
8.	2	1	80	1
9.	2	1	79	2
10.	2	1	•	3
11.	2	1	78	4
12.	2	1	78	5
13.	2	1	79	6
14.	2	1	•	7

Mixed Model I for Strength Data

First, the Model (X_{ij} , time of ijth measurement, Tx_i is the treatment assignment for ith person).

$$Y_{ij} = (\beta_0 + \beta_{0i}) + \beta_1 X_{ij} + \beta_2 I(Tx_i = 1) + \beta_3 I(Tx_i = 2) + \beta_4 I(Tx_i = 1) * X_{ij} + \beta_5 I(Tx_i = 2) * X_{ij} + e_{ij}$$

- $E(\beta_{0i})=0, E(e_{ij})=0.$
- $Var(\beta_{0i}) = \sigma^2_0$, $Var(e_{ij}) = \sigma^2$
- $\mathbf{cov}(\beta_{0i}, e_{ij}) = 0.$
- What are the fixed and random effects in this model?

STATA for Strength Data - XTREG

```
. gen tx1 = tx==1
. gen tx2 = tx==2
. gen tx1time = tx1*time
. gen tx2time = tx2*time
. xtmixed y tx1 tx2 time tx1time tx2time || id:, stddev
Computing standard errors:
                                Number of obs = 370
Mixed-effects ML regression
Group variable: id
                                Number of groups = 57
                                 Obs per group: min = 5
                                           avg = 6.5
                                           max =
                                Wald chi2(5) = 69.34
                               Prob > chi2 = 0.0000
Log likelihood = -663.52557
      y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
      time | .3038536 .0482746 6.29 0.000 .2092371 .3984701
   tx1time | -.3731916 .0680399 -5.48 0.000 -.5065475 -.2398358
```

tx2time | -.0611408 .0714343 -0.86 0.392 -.2011495 .0788679

cons | 81.0185

.6810689 118.96 0.000 79.68363 82.35337

Variance Components

```
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
id: Identity
              sd(cons) | 2.977532 .284653 2.468774 3.591134
            sd(Residual) | 1.074968 .042967 .9939687 1.162569
LR test vs. linear regression: chibar2(01) = 571.45 \text{ Prob} >= \text{chibar2} = 0.0000
. estat icc
Residual intraclass correlation
          ______
                  Level | ICC Std. Err. [95% Conf. Interval]
                    id | .8846894 .0212074 .8361909 .9201994
. estat ic
Akaike's information criterion and Bayesian information criterion
     Model | Obs ll(null) ll(model) df AIC BIC
                    . -663.5256 8 1343.051 1374.359
        . 1 370
```

STATA for Strength Data, cont.

Test of no treatment effect, H_0 : $\beta_4 = \beta_5 = 0$

Re-do with robust SE's

. xtmixed y tx1 tx2 time tx1time tx2time || id:, stddev cluster(id) Wald chi2(5) = 33.81Prob > chi2 = 0.0000Log pseudolikelihood = -663.52557(Std. Err. adjusted for 57 clusters in id) Robust Coef. Std. Err. z P>|z| [95% Conf. Interval] tx1 | -.9568027 .9449005 -1.01 0.311 -2.808774 .8951683 tx2 | -1.148717 1.056909 -1.09 0.277 -3.22022 .9227856 time | .3038536 .0699036 4.35 0.000 .1668452 .4408621 tx1time | -.3731916 .103697 -3.60 0.000 -.576434 -.1699493 tx2time | -.0611408 .1321063 -0.46 0.643 -.3200644 .1977829 _cons | 81.0185 .7301918 110.96 0.000 79.58735 82.44965

Re-do with robust SE's

```
| Robust
| Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
| Sd(_cons) | 2.977532 .2615252 2.506646 3.536876
| Sd(Residual) | 1.074968 .0642565 .9561254 1.208583
```

```
. test tx1time tx2time
```

- (1) [y]tx1time = 0
- (2) [y]tx2time = 0

$$chi2(2) = 13.72$$

Prob > $chi2 = 0.0010$

Equivalent STATA for Strength Data, XTGEE with exchangeable

.xtgee y tx1 tx2 time tx1time tx2time, i(id) cor(exc)

GEE population- Group variable: Link: Family: Correlation:	ider Gaus	id identity Gaussian exchangeable				57 5 6.5	
Scale parameter	·:	9.91	8406	Wald ch		=	01.00
у	Coef.	Std. Err.	Z	P> z	[95% Co:	nf.	Interval]
tx1 tx2 time tx1time tx2time _cons	956994 -1.148591 .3037201 3730803 0611578 81.0188	.9684046 1.028411 .0501318 .0706584 .0741834 .6766896	-0.99 -1.12 6.06 -5.28 -0.82 119.73	0.323 0.264 0.000 0.000 0.410 0.000	-2.855033 -3.16423 .205463 511568 206554 79.6925	9 4 1 5	.9410442 .8670575 .4019767 2345924 .0842389 82.34509

38

Equivalent STATA for Strength Data, XTGEE with exchangeable

. xtcorr

	c1	c2	с3	c4	c5	c6	с7
r1	1.0000						
r2	0.8743	1.0000					
r3	0.8743	0.8743	1.0000				
r4	0.8743	0.8743	0.8743	1.0000			
r5	0.8743	0.8743	0.8743	0.8743	1.0000		
r6	0.8743	0.8743	0.8743	0.8743	0.8743	1.0000	
r7	0.8743	0.8743	0.8743	0.8743	0.8743	0.8743	1.0000

Equivalent STATA for Strength Data, XTGEE with exchangeable, robust

. xtgee y tx1 tx2 time tx1time tx2time, i(id) cor(exc) robust

GEE population-av	veraged mod	lel		Number of	obs	=	370
Group variable:			id	Number of	groups	=	57
Link:		identi	ty	Obs per o	group: min	n =	5
Family:		Gaussi	an		avg	ŋ =	6.5
Correlation:		exchangeab	le		max	=	7
				Wald chi2	2(5)	=	33.82
Scale parameter:		9.9184	06	Prob > ch	ni2	=	0.0000
		(standard	errors	adjusted	for clust	erino	g on id)
1		Semi-robust					
у І		Std. Err.			[95% Con	nf. Ir	nterval]
+ v1		9449735	 -1 ∩1		-2 809108	. — — — -	89512

V		Coef.	Semi-robust Std. Err.	Z	P> z	[95% Conf.	Interval
	· +-						
tx1	1	956994	.9449735	-1.01	0.311	-2.809108	.89512
tx2		-1.148591	1.057032	-1.09	0.277	-3.220334	.9231534
time		.3037201	.0698707	4.35	0.000	.1667761	.440664
tx1time		3730803	.1036701	-3.60	0.000	57627	1698906
tx2time		0611578	.1320877	-0.46	0.643	3200449	.1977294
_cons		81.0188	.7302755	110.94	0.000	79.58749	82.45011

Mixed Model II for Strength Data (Random Coefficients Model)

■ The Model:

$$Y_{ij} = (\beta_0 + \beta_{0i}) + (\beta_1 + \beta_{1i})X_{ij} + \beta_2 I(Tx_i = 1) + \beta_3 I(Tx_i = 2) + \beta_4 I(Tx_i = 1) * X_{ij} + \beta_5 I(Tx_i = 2) * X_{ij} + e_{ij}$$

- $E(\beta_{0i})=0$, $E(\beta_{1i})=0$, $E(e_{ij})=0$.
- $Var(\beta_{0i}) = \sigma^2_0$, $Var(\beta_{1i}) = \sigma^2_1$, $Var(e_{ij}) = \sigma^2$
- \blacksquare cov(β_{0i} , β_{1i})= σ_{12} , cov(β_{0i} , e_{ij})=0, cov(β_{1i} , e_{ij})=0,

Model II

. xtmixed y tx1 tx2 time tx1time tx2time || id: time, stddev cov(un) Mixed-effects ML regression Number of obs = 370 Number of groups = 57 Group variable: id Obs per group: min = 5 avg = 6.5max = 7Wald chi2(5) = 26.99Prob > chi2 = 0.0001Log likelihood = -621.59666y | Coef. Std. Err. z > |z| [95% Conf. Interval] tx1 | -.8791863 .9353663 -0.94 0.347 -2.712471 .954098 tx2 | -1.033765 .9932793 -1.04 0.298 -2.980556 .9130267 time | .3360225 .0821817 4.09 0.000 .1749494 .4970957 tx1time | -.4004078 .1169682 -3.42 0.001 -.6296614 -.1711543 tx2time | -.101627 .123829 -0.82 0.412 -.3443273 .1410734 cons | 80.93097 .6536334 123.82 0.000 79.64987 82.21207

Model II, cont

	•			
Random-effects Parameters				
id: Unstructured	+ 			
sd(time)	.3337638	.0395831	.2645392	.4211031
sd(_cons)	2.907665	.2887834	2.393342	3.532515
corr(time,_cons)			4144803	.1534946
	.8151804	.0360695	.7474643	
LR test vs. linear regression	: chi2(3)			
. estat icc				
Conditional intraclass correla	ation			
Level	ICC			
	.9271284			
Note: ICC is conditional on ze	ero values of 1	random-effect	s covariates.	
. estat ic Akaike's information criterion	_			
Model Obs ll(n	ull) ll(model	L) df	AIC	
·	-621.596			1302.328

Model II, cont

. test tx1time tx2time

Model II, robust SE

. xtmixed y tx1 tx2 time tx1time tx2time || id: time, stddev cov(un)
 cluster(id)

```
(Std. Err. adjusted for 57 clusters in id)
                     Robust
           Coef. Std. Err. z P>|z| [95% Conf. Interval]
            -.8791863 .9320558 -0.94
                                    0.346 - 2.705982 .9476095
      tx1
                                   0.327 -3.1001 1.03257
      tx2 | -1.033765  1.054272  -0.98
    time | .3360225 .0760073 4.42
                                  0.000 .1870509 .4849942
                    .1064014 -3.76 0.000 -.6089508 -.1918649
   tx1time | -.4004078
   tx2time | -.101627
                    .1363948 -0.75 0.456 -.3689559 .165702
     cons | 80.93097
                    .7207356 112.29 0.000
                                         79.51836 82.34359
                            Robust
 Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
id: Unstructured
              sd(time) | .3337638 .0417162 .2612461 .4264112
              sd(cons) | 2.907665 .2469605 2.461774 3.434319
         ---<u>45</u>
            sd(Residual) | .8151804 .044396 .732649 .9070089
```

Comparison of Results for Strength Data

Variable	Coef.	SE Simple Random Effects Model	SE GEE exch., not robust	SE GEE exch., robust	Coef. Random Coeff. Model	SE Random Coeff. Model
tx1	-0.96	0.975	0.968	0.945	-0.878	0.935
tx2	-1.15	1.035	1.028	1.057	-1.034	0.993
time	0.30	0.048	0.050	0.070	0.336	0.082
tx1time	-0.37	0.068	0.071	0.104	-0.400	0.117
tx2time	-0.06	0.071	0.074	0.132	-0.102	0.124
_cons	81.02	0.681	0.677	0.730	80.931	0.654
AIC	1343				1263	

General Method for Choosing Random Effects/Correlation Model

- Choose fixed effects model more elaborate the better.
- For every combination of random effects and correlation you would consider, fit the model using the same fixed effects model, record Aikake Information Criterion (AIC) – which is a fit statistic penalized by the number of parameters.
- Choose the model with the smallest AIC.

AIC = -2*loglik+2*p, p is the number of parameters