

Evaluating the Hardness of SAT Instances Using Evolutionary Optimization Algorithms

Alexander Semenov¹, <u>Daniil Chivilikhin¹</u>, Artem Pavlenko¹, Ilya Otpushennikov², Vladimir Ulyantsev¹, Alexey Ignatiev³

> ¹ITMO University, Saint Petersburg, Russia ²ISDCT SB RAS, Irkutsk, Russia ³Monash University, Melbourne, Australia

SAT: Boolean formulas

- \square Boolean variable $x \in \{0, 1\}$
- \Box Literals: x, $\neg x$
- □ Boolean formula: literals, braces, and logical connectives,
 e.g. ∧ (AND), ∨ (OR), NOT (¬), → (IMPLIES)

Conjunctive normal form

☐ Clause – disjunction of literals

$$(x \lor \neg y \lor z)$$

☐ Conjunctive normal form — conjunction of clauses

$$(x \lor \neg y \lor z) \land (\neg x \lor y) \land (y \lor \neg z)$$

☐ For an arbitrary Boolean formula can construct an equisatisfiable CNF [Tseitin, 1968].

The Boolean satisfiability problem (SAT)

Is a given Boolean formula (in CNF) satisfiable?

SAT is NP-complete [Cook-Levin theorem, 1971, 1973].

Some SAT instances are (very) hard. How to estimate hardness?

Hardness measures for SAT

- ☐ Analytical measures for specific classes of CNF formulas
 - □ Polynomial: 2-CNF, Horn-formulas, Schaefer's class
- Exponential lower bounds for CDCL, Resolution, etc.
 - □ Pigeon Hole Principle formulas, Parity Principle formulas, Mutilated Chessboard Principle formulas, etc.
- $lue{}$ No efficient way to assess hardness of arbitrary CNF formula C w.r.t. arbitrary SAT solver A

Hardness of hard SAT instances

- A arbitrary complete CDCL SAT solver
- C arbitrary CNF formula
- ☐ Launch a SAT solver and wait, wait, wait...
 - ☐ Heavy-tailed behavior [Gomes C., Sabharwal A. Exploiting runtime variation in complete solvers, 2021]

- Use Strong Backdoor Sets
 - [Williams et al. Backdoors to typical case complexity // IJCAI, 2003]
 - ☐ [Ansotegui et al. Measuring the hardness of SAT instances // AAAI, 2008]

ITMO UNIVERSITY

Strong Backdoor Set

- \square X set of Boolean variables
- \Box C unsatisfiable CNF formula over X
- \square $B \subseteq X$ arbitrary subset of X
- \square $\{0,1\}^{|B|}$ set of all assignments to variables from B
- □ Assignment $\beta \in \{0,1\}^{|B|}$ (e.g. $B = \{x_1, x_6, x_{10}\}, \beta = \{x_1 = 0, x_6 = 1, x_{10} = 0\}$)
- \square $C[\beta/B]$ derived from C by substitution of β

Definition 1 (Williams et al. // IJCAI 2003). Set $B \subseteq X$ is called a **Strong Backdoor Set** (SBS) for C w.r.t. poly-time sub-solver P, if for $\forall \beta \in \{0,1\}^{|B|}$ the formula $C[\beta/B]$ is reported by P to be unsatisfiable.

We can use this to assess formula hardness

Backdoor-hardness

Definition 2 (b-hardness).

- \Box C unsatisfiable CNF formula over the set of variables X
- \square *P* poly-time sub-solver
- \square $B \subseteq X \underline{\text{arbitrary SBS}}$ for C w.r.t. poly-time sub-solver P
- \square $\mu_{B,P}(C)$ total runtime of P on formulas $C[\beta/B]$, $\forall \beta \in \{0,1\}^{|B|}$

Then, backdoor-hardness of C w.r.t. P:

$$\mu_P(C) = \min_{B \in 2^X} \mu_{B,P}(C)$$

b-hardness in practice

Algorithm for minimum SBS (Williams et al.)

Enumerate all sets *B* of size 1, 2, 3, ..., check if each is an SBS:

 \square check if P solves all $C[\beta/B]$ for all $\beta \in \{0,1\}^{|B|}$

- ☐ If \exists SBS B: |B| < |X|/2, runtime complexity is $O\left(p(|C|) \cdot \left(\frac{2|X|}{\sqrt{|B|}}\right)^{|B|}\right)$
- ☐ If there is no SBS with $|B| \le 20$, the algorithm is infeasible
- \square Moreover, P is polynomial.

Proposal: decomposition-hardness

Definition (d-hardness).

- \Box C arbitrary CNF formula over X
- \square $B \subseteq X$ arbitrary subset of X
- \Box A <u>arbitrary deterministic complete</u> SAT solver
- \Box $t_A(C[\beta/B])$ running time of A on C
- \Box **Decomposition hardness** of C w.r.t. to A:

$$\mu_A(C) = \min_{B \in 2^X} \mu_{B,A}(C),$$

where

$$\mu_{B,A}(C) = \sum_{\beta \in \{0,1\}^{|B|}} t_A(C[\beta/B])$$

Our contribution

- 2. Algorithm to seek set *B* with minimal d-hardness.
- \square (ε, δ) -approximation of $\mu_{B,A}(C)$
- Evolutionary optimization on Boolean hypercube
- 3. Demonstrate practical applicability.

Probabilistic expression of $\mu_{B,A}(C)$

- 1. Connect with $B \in 2^X$ a random variable ξ_B :
- \square for $\beta \in \{0,1\}^{|B|}$, $\xi_B(\beta) = \text{(running time of } A \text{ on } C[\beta/B]\text{)}$
- 2. ξ_B has finite spectrum $S(\xi_1, ..., \xi_M)$ and distribution: $P(\xi_B) = \left\{\frac{s_1}{2^{|B|}}, ..., \frac{s_M}{2^{|B|}}\right\}$, where $s_i, i \in \{1, ..., M\}$ is the number of $\beta \in \{0, 1\}^{|B|}$: $\xi_B(\beta)$ has value ξ_i .

$$\mu_{B,A}(C) = \sum_{\beta \in \{0,1\}^{|B|}} t_A(C[\beta/B]) = \sum_{i=1}^{M} \xi_i \cdot s_i = 2^{|B|} \sum_{i=1}^{M} \xi_i \cdot \frac{s_i}{2^{|B|}} = 2^{|B|} \cdot E[\xi_B].$$

$$0 < E[\xi_B] < \infty$$

Monte Carlo estimation of $\mu_{B,A}(C)$

 $\mu_{BA}(C) = 2^{|B|} \cdot E[\xi_B] < \infty$, so we can estimate it with Monte Carlo¹ method.

Theorem 1 $((\varepsilon, \delta)$ -approximation of $\mu_{B,A}(C)$)

- \Box C arbitrary unsatisfiable CNF formula over X
- \Box A deterministic complete SAT solver
- \square $B \subseteq X$ arbitrary subset of X

For any
$$\varepsilon, \delta > 0$$
, for $N > \frac{Var(\xi_B)}{\varepsilon^2 \cdot \delta \cdot E[\xi_B]}$ and $\tilde{\mu}_{B,A}(C) = \frac{2^{|B|}}{N} \cdot \sum_{j=1}^{N} \xi^j$ we have:

$$Pr[(1-\varepsilon) \cdot \mu_{B,A}(C) \le \tilde{\mu}_{B,A}(C) \le (1+\varepsilon) \cdot \mu_{B,A}(C)] \ge 1-\delta$$

Estimating d-hardness in practice

Replace $E[\xi_B]$ and $Var(\xi_B)$ with statistical counterparts

1.
$$E[\xi_B] \to \text{sample mean } \overline{\xi_B} = \frac{1}{N} \cdot \sum_{j=1}^N \xi^j \text{ for sample } \xi^1, \dots, \xi^N$$

2.
$$Var(\xi_B) \rightarrow unbiased sample variance s^2(\xi_B) = \frac{1}{N-1} \cdot \sum_{j=1}^{N} (\xi^j - \overline{\xi_B})^2$$

3. Select
$$N > \frac{s^2(\xi_B)}{\varepsilon^2 \cdot \delta \cdot \overline{\xi_B}^2}$$

Estimation of d-Hardness via Evolutionary Optimization Algorithms

ITMO UNIVERSITY MONASH University

Estimation of d-Hardness via **Evolutionary Optimization Algorithms**

- 1. Solution representation
- 2. Fitness function
- 3. Mutation operator
- 4. Crossover operator

Solution representation

Candidate solution	Representation
$B \subseteq X$	$\lambda_B \in \{0,1\}^n \lambda_B = (\lambda_1,, \lambda_N) \begin{cases} \lambda_i = 1 \ if \ x_i \in B \\ \lambda_i = 0 \ if \ x_i \notin B \end{cases}$
$X = \{x_1, x_2, x_3, x_4, x_5\}$ $B = \{x_1, x_3, x_5\}$	$\lambda_B = (1, 0, 1, 0, 1)$

Fitness function

Mutation operator

 \blacksquare Flip each bit with probability 1/n, n = |X|

$$\lambda_B$$
 1 2 3 4 5 6 7 1 0 1 1 0 1

$$B = \{x_1, x_3, x_4, x_5, x_7\}$$

Heavy-tailed mutation operator1

- □ Flip each bit with probability Λ/n , n=|X|
- \square Λ value of random variable with Power-Law distribution $D_{n/2}^{\beta}$

Mutation operator

 \blacksquare Flip each bit with probability 1/n, n = |X|

$$\lambda_B$$
 1 2 3 4 5 6 7 1 0 1 1 0 1

$$B = \{x_1, x_3, x_4, x_5, x_7\}$$

Mutation operator

 \blacksquare Flip each bit with probability 1/n, n = |X|

$$B = \{x_1, x_3, x_4, x_5, x_7\}$$

$$B' = \{x_1, x_2, x_3, x_4, x_7\}$$

Two-point crossover operator

		2		_			
λ_{B_1}	1	0	1	1	1	0	1

1	2	3	4	5	6	7	_
0	1	0	1	0	1	1	λ_{B_2}

Two-point crossover operator

(1+1)-Evolutionary Algorithm

$$\lambda_{B} \leftarrow (1, 2, ..., |X|)$$
 $f^{\text{best}} \leftarrow F(\lambda_{B})$
while (¬terminate()) do
$$\lambda_{B'} \leftarrow \text{mutate}(\lambda_{B})$$
 $f' \leftarrow F(\lambda_{B'})$
if $f' < f^{\text{best}}$ then
$$\lambda_{B} \leftarrow \lambda_{B'}$$
 $f^{\text{best}} \leftarrow f'$

#	B	λ_B	$F(\lambda_B)$
1	7	(1,1,1,1,1,1)	10^{10}
2	6	(0,1,1,1,1,1,1)	10 ⁹
3	5	(0,1,1,1,1,1,0)	10 ⁸
4	4	(0, 1, 1, 0, 1, 1, 0)	10 ⁷
5	3	(0,0,1,0,1,1,0)	10^6
6	4	(1,0,0,0,1,1,1)	10^3

- 1. GA: Standard Genetic Algorithm
- 2. FEA: Fast Genetic Algorithm [Doerr et al.]

••

50 4 (1,0,0,0,1,1,1) 10^3

24

EvoGuess: framework for d-hardness estimation and decomposition set search

ITMO UNIVERSITY

- https://github.com/ctlab/evoguess
- Python
- PySAT^{1,2} for SAT solving

Benchmarks

- 1. sgen [Ivor Spence. Weakening cardinality constraints creates harder satisfiability benchmarks // ACM J. Exp. Algorithmics, 2015].
- $|X| \in \{150, 200\}$
- 2. Equivalence checking tests

Equivalence checking tests

- \square CNF formula C is constructed from circuits S_1 and S_2 using Tseitin transformations
- \square $S_1 \cong S_2 \leftrightarrow C$ is unsatisfiable
- □ Inputs of S_1 and S_2 form the set $X^{in} \subset X$, $X^{in} = \{x_1, ..., x_n\}$
- \square X^{in} SBS w.r.t. Unit Propagation, $|X^{\text{in}}| \le 200$
- \square S_1 and S_2 : sorting algorithms^{2,3} of any d l-bit numbers

S_1	S_2	$S_1 \mathbf{vs} S_2$
Bubble sorting	Selection sorting	$BvS_{l,d}$
Bubble sorting	Pancake sorting	$BvP_{l,d}$
Pancake sorting	Selection sorting	$PvS_{l,d}$

Experimental setup

- \square Measure $t_A(C)$ in number of Unit Propagations
 - Reproducibility
 - Cross-platform

- SAT solvers
 - ☐ Glucose 3 (g3)
 - ☐ CaDiCaL (cd)

Experimental setup

- 1. Search for set B with minimal $\mu_{B,A}(C)$.
 - Up to 12 hours wall-clock time
 - \Box Up to 5 nodes \times 36 threads (Intel Xeon E5-2695 2.1 GHz)

x8

- 2. Solve all $2^{|B|}$ formulas $C[\beta/B]$ defined by found set B. $2^{|B|}$ formulas $C[\beta/B]$
 - Single-thread
 - Multi-thread

X1		
x2		
х3	х3	
x4	x4	
x5	x5	CNF C
x6	Set I	
x7		

4	2121 10	ormu	las C	[R/R]]	
	х3	x4	х5	C'		
	0	0	0	C' ₁		
	0	0	1	C' ₂		
	0	1	0	C' ₃		
	0	1	1	C' ₄		$2^{ B }$ runs
	1	0	0	C' ₅		
	1	0	1	C' ₆		
	1	1	0	C' ₇		(29)
	1	1	1	C' ₈		

Comparison with Williams algorithm with non-polynomial sub-solver

- \square $C: PvS_{4,7}$
- \Box |*B*| \in {1, 2, 3}

Use Williams algorithm to search for sets *B* with minimal d-hardness

|B|

d-hardness estimations CNF formulas

Instance	X	Solver A	Algorithm	B	$\mu_{B,A}/10^3$	$r_{B,A}$
		g3	FEA	3	2,190,213	0.792
		g3	FEA	4	2,250,504	0.814
$\mathtt{PvS}_{4,7}$	3244	g3	GA	5	3,319,314	1.201
		g3	GA	6	3,333,915	1.206
		cd	FEA	3	595,695	1.043
		g3	FEA	5	101,371	0.424
$\mathtt{sgen}_{150}^{1001}$	150	cd	FEA	6	244,191	0.763
\mathtt{sgen}_{150}	150	g3	GA	6	114,821	0.480
		cd	GA	7	247,947	0.775
$\mathtt{sgen}_{150}^{101}$	150	g3	FEA	8	122,796	0.438
\mathtt{sgen}_{150}	130	cd	GA	7	131,557	0.470
$\mathtt{sgen}_{150}^{200}$	150	g3	GA	7	151,275	0.569
\mathtt{sgen}_{150}	150	cd	GA	6	229,705	0.541
DC	2124	g3	GA	3	460,944	1.140
$\mathtt{BvS}_{4,7}$	2134	g3	FEA	3	449,325	1.112
DD	2060	g3	FEA	3	726,080	1.049
$\mathtt{BvP}_{4,7}$	2060	g3	GA	3	771,521	1.115

Decomposition rate

$$r_{B,A}(C) = \frac{\mu_{B,A}(C)}{t_A(C)}$$

often,
$$r_{B,A}(C) < 1$$

Dependence of ε from iteration (sgen, g3)

- \square ε < 0.1 most of the time
- **□** When |B| is small, $\mu_{B,A}(C)$ is computed exactly (ε = 0).

ITMO UNIVERSITY

d-hardness estimation accuracy (PvS_{4,7,} g3)

|B|

Speedup when using set B to solve weakened CNF formulas

Instance	B	Solver	1 thread	2 threads	4 threads	8 threads	16 threads	32 threads	36 threads
$\mathtt{sgen}_{150}^{101}$	8	g3	2.3	4.6	8.8	16.8	31.3	37.0	37.0
	13	cd	1.9	3.9	7.7	14.9	29.4	56.9	62.6
$\mathtt{sgen}_{150}^{200}$	8	g3	1.6	3.3	6.2	12.2	22.3	29.9	29.9
$\mathtt{sgen}_{150}^{200}$	8	g3	1.8	3.6	7.1	13.3	25.5	36.2	36.2
	7	g3	2.2	4.4	8.5	15.8	28.0	28.8	28.8
	8	cd	1.3	2.6	5.0	9.6	19.1	22.8	22.8

$$speedup = \frac{\text{# of UPs used by SAT solver on original CNF}}{\text{maximum # of UPs used by all threads}}$$

Conclusion & Future Work

- ☐ Proposed d-hardness for unsatisfiable SAT formulas w.r.t. an deterministic SAT solver.
- \square Proposed an (ε, δ) -approximation algorithm for d-hardness estimation.
- Demonstrated effectiveness on several families of SAT formulas.
- ☐ Future work
 - Estimate the usefulness of cubes in Cube and Conquer
 - Extend the proposed ideas to existing algorithms based on proof systems strictly stronger than resolution: cutting planes, dual-rail based MaxSAT

Acknowledgements

- This work was supported by the Ministry of Science and Higher Education of Russian Federation, research project no. 075-03-2020-139/2 (goszadanie no. 2019-1339).
- Ilya Otpuschennikov's research was funded by Ministry of Science and Higher Education of Russian Federation, project with no. of state registration: 121041300065-9.

Thank you.

chivdan@itmo.ru

@chivdan

https://github.com/ctlab/evoguess

ITSMOre than a UNIVERSITY