Introduction to the Yoneda's Lemma

Yuxiang Zhang

Wuhan University

Category

Definition (Category)

A category $\mathcal C$ consist of the following datas:

- (1) a collection of objects : $X, Y, Z \in obj(\mathcal{C})$;
- (2) a collection of morphisms :f,g,h such that
 - (a) For any morphism *f*, there exists specific domain and codomain;
 - (b) For any $X \in obj(\mathcal{C})$, there exists identity morphism $1_X : X \to X$;
 - (c) Morphisms have composition.

which satisfies the following conditions:

$$\forall f: X \rightarrow Y, \ f 1_X = 1_Y f = f,$$

$$f(gh) = f(gh).$$

We denote all morphisms $f: X \to Y$ by $Hom_{\mathcal{C}}(X, Y)$, and it should be a set here(locally small).

We define a subcategory $\mathcal{D} \subset \mathcal{C}$ whose objects contained in $obj(\mathcal{C})$ and $Hom_{\mathcal{D}}(X,Y) \subset Hom_{\mathcal{C}}(X,Y)$ for all $X \in obj(\mathcal{D})$. If in this case, $Hom_{\mathcal{D}}(X,Y) = Hom_{\mathcal{C}}(X,Y)$, we call it full subcategory.

We will omit the subscript of $Hom_{\mathcal{C}}(X, Y)$, if it is clear from the context.

Example

- (1) **Sets,Group**. They belong to the concrete categroy in which every object has a underlying set structure.
- (2) a group G indeuces a category BG, which has only one object denoted by *, and the elements in G are morphisms in BG.

(3)

$$\omega$$
 : obj : $0,1,\cdots$
$$\mathit{Mor}:\mathit{Hom}(i,j) = \begin{cases} \xi^i_j & i\leqslant j \\ \varnothing & \mathit{others} \end{cases}$$

Functor

We can regard a functor as a morphism between categories.

Definition (Functor)

A functor $F: \mathcal{C} \to \mathcal{D}$ consists of the following datas:

- (1) An object $Fc \in \mathcal{D}$ for each $c \in \mathcal{C}$;
- (2) A morphism $Ff: Fc \to Fc' \in \mathcal{D}$ for each $f: c \to c' \in \mathcal{C}$ and satisfies the following conditions:
- (a) For each composable pair $f, g \in Mor(C)$, $Fg \cdot Ff = F(g \cdot f)$;
- (b) For any $c \in \mathcal{C}$, $F(1_C) = 1_{F(C)}$.

Example

- (1) Forgetful functor.
- (2) $X: BG \to \mathbf{Sets}$. It has a unique image object in $\mathcal C$ denoted by X, and morphisms $g_*: X \to X$. It defines a left action of the group G on X.
- (3) C is a locally small category, and for any $c \in C$. We have a functor represented by c:

Natural Transformation

Definition (Natural Transformation)

Let $F, G : \mathcal{C} \rightrightarrows \mathcal{D}$ be two parallel functor, a natural transformation $\alpha : F \Rightarrow G$ consist of :

· a morphism $\alpha_c : Fc \to Gc$ in \mathcal{D} for each $c \in \mathcal{C}$ which calls the component of α .

and for any $f: c \to c'$ in C, the following diagram commute:

$$Fc \xrightarrow{\alpha_c} Gc$$

$$Ff \downarrow \qquad \qquad \downarrow Gf$$

$$Fc' \xrightarrow{\alpha_{c'}} Gc'$$

Now we know all the concepts in Yoneda's Lemma, so we present it here first.

Theorem (Yoneda's Lemma)

For any functor $F: \mathcal{C} \to \textbf{Sets}$, \mathcal{C} is locally small, then for each $c \in \mathcal{C}$, there exists a bijection:

$$\Phi_{F,c}: Nat(Hom_{\mathcal{C}}(c,-),F) \longrightarrow Fc$$

$$\alpha \mapsto \alpha_c(1_c)$$

and $\Phi_{F,c}$ natural in F and c.

We probe into some examples that will be used to explain the Yoneda's Lemma.

Example (sequence functor)

Define a functor:

$$F: \omega \to \mathbf{Sets}$$
 $obj: n \mapsto F_n$
 $Mor: \xi_{n+1}^n \mapsto f_{n,n+1}(: F_n \to F_{n+1})$

for some $k \in \mathbb{N}$,

$$Hom_{\omega}(k,-) = \begin{cases} \varnothing & n < k \\ \xi_n^k & n \geqslant k \end{cases}$$

Then let us check out what conditions $\alpha: Hom_{\omega}(k, -) \Rightarrow F$ a natual transformation should satisfied:

Example (sequence functor)

First of all, its naturality:

* denotes a singleton Hom(k, n). If n < k, α_n is trivial.

If $n \ge k$, since * is a singleton, so α_n uniquely determines a element in F_n denoted by $\bar{\alpha}_n$. By the commutativity of the diagram, we have:

$$\bar{\alpha}_{k+1} = f_{k,k+1}(\bar{\alpha}_k)$$

So $\bar{\alpha}_{k+1}$ is determined by $\bar{\alpha}_k$. Continue recursion as above we get:

$$\bar{\alpha}_{n+1} = f_{k,n+1}(\bar{\alpha}_k) = f_{k,n+1}(\alpha_k(1_k))$$

Example (sequence functor)

so this natural transformation is uniquely determined by the representing object k.

Example (functor on category BG)

Assume that $G, X : BG \to \mathbf{Sets}$ be two functors, and $G = Hom_{BG}(*, -)$, so G(*) is exactly the group G, and X define a left action on X(*).

Consider the natural transformation $\eta: G \Rightarrow X$, it has only one component $\eta(*) = \eta$, for any $h, g \in G$:

$$G \xrightarrow{h} G \xrightarrow{g} G$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad X$$

$$X \xrightarrow{h_*} X \xrightarrow{g_*} X$$

Example (functor on category BG)

Namely, we have $\eta(gh) = g_* \cdot \eta(h)$. If we choose h = e (the identity element in G):

$$\eta(g) = g_* \cdot \eta(e)$$

so the natrual transformation η is uniquely determined by the identity morphism of the component at representing object * (there is only one object), and $\eta(e)$ can be any element in X(*).

Through above examples, it is obivious that for any natural transformation $\alpha: Hom_{\mathcal{C}}(c,-) \Rightarrow F$, it corresponds to an unique element in the image of F on the representing object c. Conversely, for any element in Fc, we can construct a nat from $Hom_{\mathcal{C}}(c,-)$ to F.

Proof

Proof of Yoneda's Lemma.

We directly prove that :

$$\Phi_{F,c}: Nat(Hom_{\mathcal{C}}(c,-),F) \longrightarrow Fc$$

$$\alpha \mapsto \alpha_c(1_c)$$

is a bijection.

1.Injection:Let $\alpha_c(1_c) = \eta_c(1_c)$, by the naturality of α , we have:

$$\begin{array}{ccc} \textit{Hom}(c,c) & \xrightarrow{\alpha_c} \textit{Fc} \\ & \downarrow_{f_*} & \textit{Ff} \\ \textit{Hom}(c,d) & \xrightarrow{\alpha_d} \textit{Fd} \end{array}$$

The same for η . Chasing 1_c we obtain:

Proof of Yoneda's Lemma.

$$\alpha_d(f) = \eta_d(f)$$

for any $f \in Hom(c, d)$, $d \in C$. So $\alpha = \eta$.

2. Surjectivity: Let $x \in Fc$, we construct a natural formation:

$$\beta: \mathit{Hom}(c,-) \to \mathit{F}$$

and $\beta_d: f \mapsto Ff(x)$. So $\beta_c(1_c) = x$. Let verify that β is natrual. For any morphism $g: b \to b' \in \mathcal{C}$, we gonna prove that the following diagram commutes:

$$\begin{array}{ccc} Hom(c,b) & \stackrel{\beta_b}{\longrightarrow} Fb \\ \downarrow^{g_*} & & Fg \downarrow \\ Hom(c,b') & \stackrel{\beta_{b'}}{\longrightarrow} Fb' \end{array}$$

Proof of Yoneda's Lemma.

For any $h \in Hom(c, b)$, by the definition of β :

$$Fg(\beta_b(h)) = Fg(Fh(x)) = F(gh)(x) = \beta_{b'}(g_*(h))$$

So β is a natural transformation.

3.Naturality: We prove that $\Phi_{F,c}$ is natural in c, namely for any morphism $f: c \to d \in \mathcal{C}$:

$$Nat(Hom(c, -), F) \xrightarrow{\Phi_{F,c}} Fc$$

$$\downarrow^{(f^*)^*} \qquad Ff \downarrow$$

$$Nat(Hom(d, -), F) \xrightarrow{\Phi_{F,d}} Fd$$

Proof of Yoneda's Lemma.

We should evaluate on $\alpha: Hom(c,-) \Rightarrow F$. Going clockwise we get $Ff(\alpha_c(1_c))$. Going counter clockwise: $(\alpha f^*)_d(1_d) = \alpha_d(f)$. So they are equal by the naturality of α .

Next we prove that $\Phi_{F,c}$ is natural in F. Given any natural transformation $\beta: F \Rightarrow G$, consider the following diagram:

$$\begin{array}{c} \textit{Nat}(\textit{Hom}(c,-),\textit{F}) \xrightarrow{\Phi_{\textit{F},c}} \textit{Fc} \\ \downarrow \beta_* & \beta_c \\ \textit{Nat}(\textit{Hom}(c,-),\textit{G}) \xrightarrow{\Phi_{\textit{G},c}} \textit{Gc} \end{array}$$

Also we evaluate on $\alpha: Hom(c, -) \Rightarrow F$:

$$\Phi_{G,c}(\beta \cdot \alpha) = (\beta \cdot \alpha)_c(1_c) = \beta_c(\alpha_c(1_c)) = \beta_c(\Phi_{F,c}(\alpha))$$

So we complete the proof.

Application

Now we are going to use Yoneda's Lemma to prove a theorem which is of great importance in homological algebra.

Definition

Let $\mathcal C$ be a category. For $c,d\in\mathcal C$, and if there exists morphisms $f\colon c\to d$ and $g\colon d\to c$ such that $fg=1_d,\ gf=1_c$, then we say c is isomorphic to d, denoted by $c\cong d$, and f,g is isomorphisms.

Definition

Let $\alpha: F \Rightarrow G$ be a nat, and $F, G: \mathcal{C} \to \mathcal{D}$. If for any $c \in \mathcal{C}$, α_c is a isomorphism, then we say that F is natural isomorphic to G, and α is a naturally isomorphism.

In the following parts, we assume \mathcal{C} be a category, and $c,c^{'}\in\mathit{obj}(\mathcal{C})$

Lemma

Let $\alpha: Hom_{\mathcal{C}}(c,-) \to Hom_{\mathcal{C}}(c^{'},-)$ be a natural transformation, then for all $d \in obj(\mathcal{C})$, we have $\alpha_d = f^*$. $f = \alpha_c(1_c) : c^{'} \to c$. Moreover, f is unique.

Proof: For any $d \in C$, and $g \in Hom(c, d)$. We use the following commutable diagram:

$$Hom(c, c) \xrightarrow{\alpha_c} Hom(c', c)$$

$$\downarrow^{g_*} \qquad \qquad g_* \downarrow$$
 $Hom(c, d) \xrightarrow{\alpha_d} Hom(c', d)$

Lemma

Chasing 1_c we obtain:

$$\alpha_d(g) = g_*(f) = gf = f^*(g)$$

So $\alpha = f^*$. The uniqueness assertion follows from the injectivity of the $\Phi_{Hom(c',-),c}$.

Theorem

If $Hom_{\mathcal{C}}(c, -)$ and $Hom_{\mathcal{C}}(c', -)$ are naturally isomorphic functors, then $c \cong c'$.

Proof.

Let

$$\alpha: \mathsf{Hom}(c,-) o \mathsf{Hom}(c',-) \quad , \beta: \mathsf{Hom}(c',-) o \mathsf{Hom}(c,-)$$

be two natural isomorphisms.

Proof.

And $(\alpha\beta)_d=1_{Hom(c',d)},\ (\beta\alpha)_d=1_{Hom(c,d)}$. Let $\alpha_d=f^*$ and $\beta_d=g^*$ by Lemma. Observe that

$$(\beta\alpha)_c = \beta_c\alpha_c = g^*f^* = (fg)^* = 1_c^*$$

By the uniqueness in Lemma, we get $fg=1_c$. The same reason we have $gf=1_{c'}$, so $c\cong c'$.

Reference:

- 1. Emily Riehl, Category theory in context.
- 2. Rotman, An Introduction to homological Algebra.