Мат Fuck, Ряды Ярослав Лисняк

Основные понятия

Пусть дан ряд $a_1, a_2, ..., a_n, ...$ Будем всегда обозначать его частичную сумму как $S_n := \sum_{i=1}^n a_i$.

Определение: ряд называется сходящимся с суммой S, если существует $S = \lim_{n \to \infty} S_n$.

Сходимость, очевидно, не зависит от выбрасывания конечного числа слагаемых.

Заметим, что: $a_n = S_n - S_{n-1}$.

Необходимое условие сходимости: если ряд сходится, то $a_n \to 0$.

По критерию Коши мы помним, что последовательность сходится iff она фундаментальна. Отсюда можем вывести критерий сходимости для рядов:

Критерий Коши: для сходимости ряда необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall m > 0, n > N : |S_{n+m} - S_n| < \varepsilon$$

Следствие: из абсолютной сходимости следует обычная сходимость. Если есть обычная сходимость, но нет абсолютной, то ряд сходится **условно**.

Ряды a_n и $cb_n, c \in \mathbb{R}$ сходятся и расходятся одновременно.

Из сходимости a_n, b_n следует сходимость $(a_n + b_n)$.

Для сходимости ряда $a_n \geqslant 0$ необходимо и достаточно, чтобы последовательность частичных сумм была ограничена.

Принципы сравнения.

Пусть нам даны 2 ряда $a_n, b_n \geqslant 0$. Если существует c > 0 такой что начиная с какого-то $n: a_n \leqslant cb_n$, то из сходимости b_n следует сходимость a_n , а из расходимости a_n следует расходимость b_n .

Пусть для рядов $a_n,b_n\geqslant 0$ $\exists\lim \frac{a_n}{b_n}=L,$ тогда a_n,b_n сходятся и расходятся одновременно.

Пусть для рядов $a_n, b_n \geqslant 0$ выполнено:

$$\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$$

Тогда из сходимости b_n следует сходимость a_n , а из расходимости a_n расходимость b_n .

Пусть $a_n > 0$ и монотонно убывает к нулю. Тогда ряды a_n и $2^n a_{2^n}$ сходятся или расходятся одновременно.

Мат Fuck, Ряды Ярослав Лисняк

Признаки сравнения.

Признак Даламбера: $\mathcal{D}_n := \frac{a_{n+1}}{a_n}$. Если для достаточно больших N верно, что $\mathcal{D}_n \leqslant q < 1$, то ряд сходится. Если же $\mathcal{D}_n \geqslant 1$, то ряд расходится.

Признак Даламбера в предельной форме: Пусть если $\mathcal{D} := \lim \mathcal{D}_n < 1$, ряд сходится, если же $\mathcal{D} > 1$ то ряд расходится, если $\mathcal{D} = 1$, то мы не можем ничего сказать.

Признак Коши: $C_n := (a_n)^{1/n}$. Если для достаточно больших N верно, что $C_n \leqslant q < 1$, то ряд сходится. Если же $C_n \geqslant 1$, то ряд расходится.

Признак Коши в предельной форме: Пусть если $C := \lim C_n < 1$, ряд сходится, если же C > 1 то ряд расходится, если C = 1, то мы не можем ничего сказать.

Чтобы сравнивать не с геометрическими прогрессиями, а с более "узкими"
рядами вида $n^{-\sigma}$, введём:

Признак Раабе: $a_n > 0, \mathcal{R}_n := n(\frac{a_n}{a_{n+1}} - 1)$. Если $\mathcal{R} \geqslant r > 1$, то ряд сходится, если же $\mathcal{R}_n \leqslant 1$, то расходится.

Признак Раабе в предельной форме: пусть $\mathcal{R} := \lim \mathcal{R}_n$, если $\mathcal{R} > 1$ – ряд сходится, если $\mathcal{R} < 1$, то ряд расходится.

Признак Гаусса:

Признак Ермакова: Пусть нам дана невозрастающая f>0 и мы анализируем ряд f(n). $E(x):=\frac{e^x f(e^x)}{f(x)}$. Если при достаточно больших x: $E(x)\leqslant \lambda <1$, то ряд сходится, если $E(x)\geqslant 1$, то расходится.

Интегральный признак: Пусть есть непрерывная, монотонная, стремящаяся к нулю f > 0. Пусть также $J := \int\limits_1^\infty f(t)dt$. Тогда сходимость ряда f(n) одновременна со сходимостью несобственного интеграла J.

Определение: пусть $k \to n_k$ – биекция $\mathbb{N} \to \mathbb{N}$. Перестановкой ряда $\sum a_k$ называется ряд $\sum a_{n_k}$.

Утверждение: сумма абсолютно сходящегося ряда не меняется от перестановок.

Признак сохранения суммы и сходимости: если в перестановке n_k ряда a_k для любого $k: |n_k - k| < K \in \mathbb{N}$, то эта перестановка не меняет сходимости и суммы ряда.

Утверждение: если в условно сходящемся ряде заменить все члены одного знака на нули, он будет расходиться.

Определение: ряд, представимый в одном из двух видов:

$$\sum (-1)^n p_n, \quad \sum (-1)^{n+1} p_n, p_n \geqslant 0$$

называется знакочередующимся.

Признак Лейбница: если модули членов знакочередующегося ряда образуют бесконечно малую монотонно убывающую последовательность, то ряд сходится.

Мат Fuck, Ряды Ярослав Лисняк

Тождество Абеля: (дискретный аналог интегрирования по частям) пусть a_n, b_n – произвольные числовые последовательности. Пусть $S_n = C + \sum_{i=1}^n a_k$, тогда верно соотношение:

$$\sum_{k=n}^{n+p} a_k b_k = S_{n+p} b_{n+p} - b_n S_{n-1} - \sum_{k=n}^{n+p-1} S_k (b_{k+1} - b_k)$$

Признак Дирихле: пусть $b_n > 0$ монотонно убывает к нулю, а S_n ряда a_n ограничены. Тогда ряд $\sum a_n \cdot b_n$ сходится.

Следствие: признак Абеля: пусть $b_n > 0$ монотонно убывает и ограничена, а ряд a_n сходится. Тогда сходится и $\sum a_n \cdot b_n$.

Произведение рядов: есть множество способов обхода. Для удобной визуализации можно построить бесконечную таблицу в (i,j)-й клетке которой будет стоять произведение $a_i \cdot b_j$. Произведение абсолютно сходящихся рядов не зависит от алгоритма обхода, чего по теореме Римана нельзя сказать об условно сходящихся рядах.

Теорема:
$$\sum |a_n| = A < \infty, \sum |b_n| = B < \infty,$$
 тогда $\left(\sum a_n\right) \left(\sum b_n\right) = AB.$