# Sistemas Digitais



# Sistemas de Numeração

Sistemas Digitais 2017/2018

Pedro Salgueiro

pds@di.uevora.pt

# Sistemas de Numeração



### Sumário

- Sistemas de numeração posicionais
  - Sistema decimal
  - Sistema de numeração posicional
  - Sistema binário
  - Outras bases
- Conversão entre bases
  - Número inteiro
  - Número fraccionário
- Exercícios



### Sistema decimal

- O número 253
  - O que representa?
    - Duzentos e cinquenta e três
  - Como é decomposto?
    - Duas centenas, cinco dezenas e três unidades
    - $-2 \times 100 + 5 \times 10 + 3$
  - Isto no Sistema Decimal...



### Sistema decimal

- Quantos algarismos distintos (dígitos) existem?
  - Dez: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Quanto vale cada algarismo no número?
  - Sempre uma potência de 10
  - Depende da sua posição no número
- 253
  - 2 tem peso 10<sup>2</sup>
  - 5 tem peso 10<sup>1</sup>
  - 3 tem peso 10<sup>0</sup>
- Sistema de numeração posicional de base 10



## Sistema de numeração posicional

- Sistema de numeração onde:
  - Um número é formado por uma sequência de algarismos (dígitos)
  - Cada algarismo possui um peso de acordo com a posição que ocupa na sequência
  - O peso depende da **base** em que o número está representado
- Base b
  - Quantos dígitos?
    - **b** dígitos: 0, 1, 2, . . . b − 1
  - Que quantidade representa?
    - $d_2d_1d_0_{(b)} = d_2 * b^2 + d_1 * b^1 + d_0 * b^0$



### Sistema de numeração posicional

- Capacidade da base
  - O que é?
    - É o nº de valores inteiros que é possível representar numa base
    - Na base b, com n algarismos, podem representar-se  $b^n$  valores distintos
  - Exemplo: 3 algarismos
    - Sistema decimal (base 10)
      - Capacidade: 10<sup>3</sup> = 1000
      - Valores possíveis: 0, . . . , 10<sup>3</sup> 1
        - 0, 1, ..., 9, 10, ..., 99, 100, ..., 999
    - Base b
      - Capacidade: **b**<sup>3</sup>
      - Valores possíveis: 0 . . . b<sup>3</sup> 1
        - 0, 1, ..., b-1,  $b^1$ , ...,  $b^2-1$ ,  $b^2$ , ...,  $b^3-1$



### Sistema binário

- Sistema de numeração binário
  - Que base?

$$- b = 2$$

- Quantos dígitos?
  - **Dois:** 0, 1
- Qual a capacidade com 4 dígitos?
  - $-2^4 = 16$
  - Conseguem-se representar 16 valores: 0,1, . . ., 15
    - 0, 1, ..., 2<sup>4</sup> 1
- 1101<sub>(2)</sub> que quantidade representa?

$$-1*2^3+1*2^2+0*2^1+1*2^0=13$$



#### Sistema binário

- Definições
  - bit
    - 1 dígito binário
    - binary digit
  - byte
    - É um conjunto de 8 bits
  - bit mais significativo
    - bit com maior peso (bit mais à esquerda)
    - MSB, most significant bit
    - **1**101
  - bit menos significativo
    - bit com menor peso (bit mais à direita)
    - LSB, least significant bit
    - 1101



#### Sistema binário

- Exemplo
  - Número com 10 bits
    - Capacidade
      - $2^{10} = 1024$
    - Peso **MSB**, most significant bit
      - $1 * 2^9 = 512$
    - Valor de 1100110001<sub>(2)</sub>

```
= 1 * 2^{9} + 1 * 2^{8} + 0 * 2^{7} + 0 * 2^{6} + 1 * 2^{5} + 1 * 2^{4} + 0 * 2^{3} + 0 * 2^{2} + 0 * 2^{1} + 1 * 2^{0}
= 1 * 2^{9} + 1 * 2^{8} + 1 * 2^{5} + 1 * 2^{4} + 1 * 2^{02}
= 2^{9} + 2^{8} + 2^{5} + 2^{4} + 2^{0}
= 817
```



#### Sistema binário

#### Potências de 2

- Designações conhecidas
  - K: kilo

$$-2^{10} = 1024$$

- Potência de 2 que mais se aproxima de 1000
- M: mega

$$-2^{20} = 2^{10} * 2^{10} = 1024 * 1K = 1M$$

G: giga

$$-2^{30} = 2^{20} * 2^{10} = 1024 * 1M = 1G$$

T: tera

$$-2^{40} = 2^{30} * 2^{10} = 1024 * 1G = 1T$$

• P: peta

$$-2^{50} = 2^{40} * 2^{10} = 1024 * 1T = 1P$$

| n  | 2 <sup>n</sup> |
|----|----------------|
| 0  | 1              |
| 1  | 2              |
| 2  | 4              |
| 3  | 8              |
| 4  | 16             |
| 5  | 32             |
| 6  | 64             |
| 7  | 128            |
| 8  | 256            |
| 9  | 512            |
| 10 | 1024           |



### **Outras** bases

- Sistema hexadecimal
- Sistema octal



#### Sistema hexadecimal

- Que base?
  - B = 16
- Quantos dígitos?
  - Dezasseis: 0, 1, ..., 9, A, B, C, D, E, F

$$-A_{(16)} = 10_{(10)}$$

- ...

$$- F_{(16)} = 15_{(10)}$$

- Qual a capacidade com 4 dígitos?

$$-16^4 = 65536 \rightarrow 0 \dots 65535$$

- **1AC4**<sub>(16)</sub> que quantidade representa?
  - $1 * 16^3 + 10 * 16^2 + 12 * 16^1 + 4 * 16^0 = 4096 + 2560 + 192 + 4 = 6852$



### Sistema octal

- Que base?
  - b = 8
- Quantos dígitos?
  - Oito: 0, 1, 2, 3, 4, 5, 6, 7
- Qual a capacidade com 4 dígitos?
  - $8^4 = 4096 \rightarrow 0 \dots 4095$
- 1274<sub>(8)</sub> que quantidade representa?
  - $1 * 8^3 + 2 * 8^2 + 7 * 8^1 + 4 * 8^0 = 512 + 128 + 56 + 4 = 700$



### Conversão entre bases

- Número inteiro
- Número fraccionário



#### Número inteiro

- Valor de um número inteiro
  - Indica a quantidade representada
  - A que valor corresponde a representação d<sub>3</sub>d<sub>2</sub>d<sub>1</sub>d<sub>0 (b)</sub>?
    - Converte-se da base **b** para decimal

$$- d_3 d_2 d_1 d_0_{(b)} = d_3 * b^3 + d_2 * b^2 + d_1 * b^1 + d_0 * b^0$$

Exemplo

$$- 1036_{(7)} = 1 * 7^{3} + 0 * 7^{2} + 3 * 7^{1} + 6 * 7^{0}$$
$$= 343 + 0 + 21 + 6$$
$$= 370$$



- Representação de um número inteiro
  - Representa uma determinada quantidade
  - A representação depende da base
  - Qual a representação do número d<sub>3</sub>d<sub>2</sub>d<sub>1</sub>d<sub>0</sub> na base b?
    - Converte-se do sistema decimal para a base b
    - Utiliza-se o método das divisões sucessivas



- Método das divisões sucessivas
  - Retêm-se os restos das sucessivas divisões inteiras e dos quocientes entretanto obtidos por b, até obter quociente nulo
  - Peso dos algarismos
    - O menos significativo é aquele resultante da primeira divisão efectuada
    - O mais significativo é aquele resultante da última divisão efectuada



- Método das divisões sucessivas Exemplo
  - Qual a representação de 136<sub>(10)</sub> na base 2?
    - fazem-se divisões inteiras sucessivas por dois, retendo o resto

| quociente | resto |       | $136_{(10)} = 10001000_{(2)}$ |
|-----------|-------|-------|-------------------------------|
| 136       | 0     | ← LSB | (10)                          |
| 68        | 0     |       |                               |
| 34        | 0     |       |                               |
| 17        | 1     |       |                               |
| 8         | 0     |       |                               |
| 4         | 0     |       |                               |
| 2         | 0     |       |                               |
| 1         | 1     | ← MSB |                               |
| 0         |       |       |                               |



- E na base 16?
  - Fazem-se divisões inteiras sucessivas por dezasseis, retendo o resto

| quociente | resto |
|-----------|-------|
| 136       | 8     |
| 8         | 8     |
| 0         |       |

$$136_{(10)} = 88_{(16)}$$

- E na base 6?
  - Fazem-se divisões inteiras sucessivas por **seis**, retendo o resto

| quociente | resto |
|-----------|-------|
| 136       | 4     |
| 22        | 4     |
| 3         | 3     |
| 0         |       |

$$136_{(10)} = 344_{(6)}$$



- Conversão entre bases **b1** e **b2** (diferentes da base 10)
  - Utiliza-se a base 10 como base intermédia:
    - 1. Encontra-se o **valor** do número representado por **b**<sub>1</sub>
      - $b_1 \rightarrow 10$ •  $d_3 d_2 d_1 d_{0 \text{ (b1)}} = d_3 * b_1^2 + d_2 * b_1^2 + d_1 * b_1^1 + d_0 * b_1^0$
    - 2. Encontra-se a sua representação na base b<sub>2</sub>
      - $10 \rightarrow b_2$ 
        - método das divisões sucessivas por b<sub>2</sub>



- Conversão directa entre bases
  - Entre as bases binária e hexadecimal
    - Não é necessário usar a base intermédia
      - 16 é a quarta potência de 2 (16 = 2<sup>4</sup>), cada dígito hexadecimal corresponde a 4 dígitos binários
    - Binária para hexadecimal
      - A partir do bit menos significativo, formar grupos de 4 bits e escrever um dígito hexadecimal por cada grupo
    - Hexadecimal para binária
      - Cada dígito hexadecimal é convertido em 4 bits
    - Exemplo
      - <u>110</u> <u>1100</u> <u>0010</u> <sub>(2)</sub> = 6C2 <sub>(16)</sub>
      - A05 (16) = 1010 0000 0101(2)



- Conversão directa entre bases
  - Entre as bases binária e octal
    - 8 é a terceira potência de 2 (8 = 2³), cada dígito octal corresponde a 3 dígitos binários
    - Exemplo
      - <u>11 011 000 010 (2)</u> = 3302 (8)
      - 705<sub>(8)</sub> = 111 000 101<sub>(2)</sub>
  - E entre as bases 3 e 9?



### Número fracionário

- Se o número tem parte fracionária
  - Conversão b₁ → 10
    - As potências são negativas para a parte fracionária

• 
$$d_0.d_1d_2d_3$$
 (b) =  $d_0 * b^0 + d_1 * b^{-1} + d_2 * b^{-2} + d_3 * b^{-3}$ 

- Conversão  $10 \rightarrow b_1$ 
  - Separa-se a parte inteira da parte fracionária
    - inteira → método das divisões sucessivas
    - fracionária → método das multiplicações sucessivas



#### Número fraccionário

- Método das multiplicações sucessivas
  - Retêm-se as partes inteiras da multiplicação por b das sucessivas partes fraccionárias, até que seja atingida a parte fraccionária nula (ou a precisão pretendida)
  - Peso dos algarismos
    - O mais significativo é aquele resultante da primeira multiplicação efetuada
    - O menos significativo é aquele resultante da última multiplicação efetuada



#### Número fraccionário

- Exemplo
  - Qual a representação de 0.375<sub>(10)</sub> na base 2?

| número | parte inteira |       |
|--------|---------------|-------|
| 0.375  | 0             | ← MSB |
| 0.75   | 1             |       |
| 0.5    | 1             | ← LSB |
| 0      |               |       |

$$0.375_{(10)} = 0.011_{(2)}$$



#### Número fraccionário

- Precisão da conversão
  - E se a parte fracionária nula não é atingida?
    - A capacidade na nova base  $b_2$  deve ser pelo menos igual à capacidade original  $b_1$

- 
$$b_2^{n2} \ge b_1^{n1}$$
  
 $n_2 \ge (n_1 \log b_1) / \log b_2$ 

Exemplos

- 201.1<sub>(3)</sub> = 20.3<sub>(10)</sub>  

$$\cdot n_2 \ge (1 \log 3) / \log 10 = 0.4771 \Rightarrow n_2 = 1$$

- 
$$0.48_{(10)} = 0.0111101_{(2)}$$
  
 $n_2 \ge (2 \log 10) / \log 2 = 6.6439 \Rightarrow n_2 = 7$ 

## Exercícios



- Converta para base 10:
  - 1. 1010101<sub>(2)</sub>
  - 2. A2D.9B<sub>(16)</sub>
  - $3.0.46_{(7)}$

- Converta para base 2:
  - 1. EA2.F5<sub>(16)</sub>
  - 2. 432.56<sub>(8)</sub>
  - 3. 2031.123(4)

- Converta para as bases 2 e 16:
  - 1. 25<sub>(10)</sub>
  - 2. 712.5<sub>(10)</sub>

- Converta para as bases 8 e 16:
  - 1. 1101101.1001101<sub>(2)</sub>
  - 2. 101110.0000111<sub>(2)</sub>