CLIPS

Communication & Localization with Indoor Positioning Systems

Università di Padova

MANUALE UTENTE 1.00

Versione
Data Redazione
Redazione
Verifica
Approvazione
Uso
Distribuzione

1.00 2016-05-08 Eduard Bicego

Davide Castello Esterno Prof. Vardanega Tullio Prof. Cardin Riccardo

Miriade S.p.A.

Diario delle modifiche

Versione	Data	Autore	Ruolo	Descrizione
0.01	2016-05-01	Eduard Bicego	Amministratore	Aggiunta struttura documento

Indice

1	Intr	oduzione 1
	1.1	Panoramica generale
2	Stru	ımenti di sviluppo 2
	2.1	SDK
	2.2	JDK
	2.3	Gradle
3	Con	nponenti esterne 3
	3.1	SQLite
	3.2	AltBeacon
	3.3	JGraphT
	3.4	Gson
	3.5	Dagger
	3.6	Picasso
4	Fun	zionalità 4
	4.1	Localizzazione utente
		4.1.1 Panoramica
	4.2	Interfaccia grafica
	4.3	Presenter
		4.3.1 Rilevamento beacon
	4.4	Costruzione grafo
	4.5	Gestione preferenze
	4.6	Gestione delle mappe
	4.7	Navigazione
		4.7.1 Panoramica
		4.7.2 Interfaccia grafica
	4.8	Presenter
		4.8.1 Costruzione grafo
		4.8.2 Calcolo percorso
		4.8.3 Bussola
		4.8.4 Navigazione
	4.9	Area sviluppatore
A	Fon	damenti di Android 8
	A.1	Ciclo di vita di un'applicazione
	A.2	Activity
	-	A.2.1 Ciclo di vita

Manuale utente

A.3	Service															8
A.4	Ciclo di vita															8

Elenco delle figure

1 Introduzione

1.1 Panoramica generale

CLIPS è un'applicazione che offre funzionalità riguardanti la navigazione guidata all'interno di edifici, attraverso l'utilizzo di dispositivi mobile Android e dei beacon.

Tale applicazione è stata svilupparta per avere la possibilità di accedere alle informazioni per raggiungere una specifica area di interesse di un edificio offrendo indicazione testuali, sonore e visuali. Questo manuale ha lo scopo di illustrare le parti che compongono tale applicazione e il modo in tale applicazione è stata sviluppata.

2 Strumenti di sviluppo

2.1 SDK

Framework di sviluppo per applicazioni Android.

- Vesione SDK 24.4.1;
- Versione build tools 23.0.3;
- Versione target SDK 23;
- Versione minima SDK 19.

2.2 JDK

Insieme di strumenti di sviluppo per applicazioni Java.

• Vesione oraclejdk8.

2.3 Gradle

Sistema open source per l'automazione dello sviluppo basato su Groovy.

• Vesione oraclejdk8.

3 Componenti esterne

3.1 SQLite

Libreria che implementa un DBMS SQL transazionale senza la necessità di un server. Viene utilizzata per salvare e gestire le mappe scaricate e installate nel dispositivo e il relativo contenuto.

• Versione utilizzata 3.9.2

3.2 AltBeacon

Libreria che permette ai sistemi operativi mobile di interfacciarsi ai Beacon, offrendo molteplici funzionalità. Viene utilizzata per permettere la comunicazione tra l'applicativo Android e i Beacon.

• Versione utilizzata 2.02

3.3 JGraphT

Libreria Java che fornisce funzionalità matematiche per modellare grafi. Viene utilizzata per la rappresentazione delle mappe e per il calcolo dei percorsi.

• Versione utilizzata 0.9.1

3.4 Gson

Libreria Java che fornisce funzionalità per la gestione di oggetti JSON. Tale libreria è utilizzata la gestione del download delle mappe da remoto.

• Versione utilizzata 2.6.2

3.5 Dagger

Libreria Android utilizzata per effettuare la dependency injection. Viene utilizzata per la creazione dei singleton.

• Versione utilizzata 2.0

3.6 Picasso

Libreria per la gestione delle immagini in remoto. Viene utilizzata per scaricare le immagini utilizzate durante la navigazione.

• Versione utilizzata 2.5.2

4 Funzionalità

Nella presente sezione vengono spiegate nel dettaglio le componenti dell'applicazione e il loro scopo, presentate per funzionalità offerte dall'applicazione. Ogni funzionalità viene prima descritta in una sottosezione "Panoramica" e successivamente in sottosezioni che approfondiscono gli aspetti che compongono la funzionalità.

4.1 Localizzazione utente

4.1.1 Panoramica

L'applicazione offre la funzionalità di localizzare l'utente all'interno di un edifico in cui risiedono i beacon riconosciuti dall'applicazione e di mostrare semplici informazioni sull'edifico.

La localizzazione utente avviene seguendo le seguenti fasi:

- 1. l'utente avvia l'applicazione;
- 2. l'applicazione avvia il monitoring per poter rilevare i beacon circostanti;
- 3. l'applicazione reperisce l'identificativo major;
- 4. l'applicazione si accerta che i beacon rilevati siano pertinenti all'applicazione attraverso un confronto tra major rilevato e major dei beacon nel database locale:
- 5. se il beacon è riconosciuto ed esiste un match nel database locale:
 - viene costruito il grafico dal database;
 - vengono mostrate all'utente semplici informazioni sull'edificio;
- 6. se il beacon è riconosciuto e non esiste un match nel database locale:
 - viene segnalato all'utente che la mappa dell'edificio non è scaricata nel device;
 - l'utente se lo desidera è reindirizzato alla gestione delle mappe;
- 7. se il beacon non è riconosciuto:
 - viene ignorato.

4.2 Interfaccia grafica

Componenti interne

Package:

Classi:

Componenti esterne

Classi SDK:

??? Immagine dell'applicazione nella home vuota

??? Immagine dell'applicazione nella home con le informazioni dell'edificio

??? Immagini dell'applicazione nella home vuota con messaggio di avviso mappa non disponibile nel device

4.3 Presenter

??? Activity

4.3.1 Rilevamento beacon

Per il rilevamento interno

Componenti interne

Package: model, beacon, dataaccess;

Classi: BeaconManagerAdapter

Componenti esterne

Classi JDK: PriorityQueue;

Classi SDK: Intent, LocalBroadcastManager, Service, Binder,

LocalBroadcastManager;

Classi AltBeacon: BeaconManager, BootstrapNotifier, BeaconConsumer, RangeNotifier, Region, BeaconParser, DistanceCalculator, Beacon.

La classe BeaconManagerAdapter si occupa di effettuare il ranging e il monitoring dei beacon circostanti. Essa estende un Service (vedi appendice)per cui presenta un ciclo di vita così gestito:

I principali metodi sono:

•

•

•

Classe AltBeacon: ??? Classe AltBeacon: ???

4.4 Costruzione grafo

4.5 Gestione preferenze

Settings utilizzo

4.6 Gestione delle mappe

4.7 Navigazione

4.7.1 Panoramica

La funzionalità di navigazione è resa disponibile dalle componenti dei package:

- navigator;
- beacon;
- compass;
- dataaccess;
- setting.

Esse permettono di guidare l'utente all'interno di un edificio. La navigazione è gestita attraverso queste fasi:

- 1. l'utente interagendo con l'interfaccia grafica avvia la navigazione;
- 2. la business logic dell'applicazione costruisce un grafo;
- 3. alle componenti di navigator viene passato il grafo;
- 4. viene calcolato il percorso utilizzando la libraria JgraphT;
- 5. vengono restituite le informazioni necessarie per guidare l'utente verso la destinazione da lui scelta;
- 6. l'interfaccia mostra all'utente le informazioni.

4.7.2 Interfaccia grafica

4.8 Presenter

4.8.1 Costruzione grafo

Componenti coinvolte:

Package: dataacess, dao, service;

Classi: ;

Componenti esterne: .

La costruzione del grafo avviene MapGraph dal database parti del grafo spiegare package graph

4.8.2 Calcolo percorso

4.8.3 Bussola

Componenti coinvolte

Package: compass;

Classi: Compass.

Componenti esterne

Classi SDK: SensorManager, Sensor, SensorEventListener.

4.8.4 Navigazione

Componenti interne

Package: navigator, graph, edge, vertex, area;

Classi: .

Componenti esterne

 ${\bf Classi~JGraphT:~Simple Directed Weighted Graph, Dijkstra Path Finder,\\ Default Weighted Edge;}$

Classi JDK: Exception.

4.9 Area sviluppatore

i

A Fondamenti di Android

- A.1 Ciclo di vita di un'applicazione
- A.2 Activity
- A.2.1 Ciclo di vita
- A.3 Service

Tipologie di service

unbind service

A.4 Ciclo di vita