```
In [1]: %matplotlib inline
       %config IPCompleter.greedy=True
       import pandas as pd
       import numpy as np
       import seaborn as sns
       from sklearn import metrics
       import matplotlib.pyplot as plt
       data = pd.read_csv('train.csv')
       test = pd.read_csv('test.csv')
       print('Data Set', data.shape)
       print('Test Set', test.shape)
       Data Set (891, 12)
       Test Set (418, 11)
In [2]: print('Data Set \n', data.isnull().sum())
       print('----')
       print('Test Set \n', test.isnull().sum())
       Data Set
       PassengerId
                     0
       Survived
                     0
                    0
       Pclass
                   0
       Name
       Sex
                  177
       Age
       SibSp
                   0
                    0
       Parch
                   0
       Ticket
       Fare
                    0
       Embarked
       dtype: int64
       Test Set
       PassengerId 0
                     0
       Pclass
                   0
       Name
       Sex
                   86
       Age
       SibSp
                    0
      Parch
                    0
       Ticket
                    1
       Fare
                   327
       Cabin
       Embarked
                    0
       dtype: int64
```

In [3]: data.head() Out[3]: Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked Braund, 0 1 0 3 male 22.0 0 A/5 21171 7.2500 ٤ Mr. Owen 1 NaN Harris Cumings, Mrs. John Bradley C 1 2 1 0 PC 17599 71.2833 C85 female 38.0 1 (Florence Briggs Th... Heikkinen, STON/O2. 2 3 ٤ 1 female 26.0 7.9250 Miss. NaN 3101282 Laina Futrelle, Mrs. Jacques female 35.0 ٤ 3 4 1 1 0 113803 53.1000 C123 Heath (Lily May Peel) Allen, Mr. 5 0 William male 35.0 373450 8.0500 NaN ٤ Henry In [4]: test.head() Out[4]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S	
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q	
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S	

In []:

Visualization

```
In [5]: sns.set()

In [6]: def bar_ch(para,tf):
    survived = data[data['Survived']==1][para].value_counts()
    dead = data[data['Survived']==0][para].value_counts()
    df = pd.DataFrame([survived,dead])
    df.index=['Survived','Dead']
    df.plot(kind='bar',stacked = tf,figsize =(10,5))
```


Females are more likely to Survive than male

Out Of survived 1st Class has more Survival Chance and 2nd has the least. 3rd class are most likely to have died

In [12]: data.Sex.replace(['male','female'],[1,0],inplace = True)
 test.Sex.replace(['male','female'],[1,0],inplace = True)
 data.head()

Out[12]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	0	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	1	35.0	0	0	373450	8.0500	NaN	S

In []:

```
In [13]: data['Title'] = data['Name'].str.extract(' ([A-Za-z]+)\.', expand=False)
         data['Title'].value counts()
         test['Title'] = test['Name'].str.extract(' ([A-Za-z]+)\.', expand=False)
         test['Title'].value_counts()
Out[13]: Mr
                   240
         Miss
                    78
         Mrs
                    72
                    21
         Master
                     2
         Col
                     2
         Rev
         Dona
                     1
                     1
         Ms
                     1
         Name: Title, dtype: int64
```

In [14]: bar_ch('Title',True)

0: Mr,Dr 1:Miss,Ms 2:Mrs,Lady 3:Master 4:Rev,Col,Major,Mlle,Don,Cap,Sir,Mme,Countess,Jonkheer,Dona

```
In [16]: data.drop('Name',axis = 1,inplace = True)
    test.drop('Name',axis = 1,inplace = True)
    data.drop('Ticket',axis = 1,inplace = True)
    test.drop('Ticket',axis = 1,inplace = True)
```

```
In [17]: data.Embarked.replace(['S','C','Q'],[0,1,2],inplace = True)
    test.Embarked.replace(['S','C','Q'],[0,1,2],inplace = True)
    data.head()
```

Out[17]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked	Title
0	1	0	3	1	22.0	1	0	7.2500	NaN	0.0	0
1	2	1	1	0	38.0	1	0	71.2833	C85	1.0	2
2	3	1	3	0	26.0	0	0	7.9250	NaN	0.0	1
3	4	1	1	0	35.0	1	0	53.1000	C123	0.0	2
4	5	0	3	1	35.0	0	0	8.0500	NaN	0.0	0

S:0 C:1 Q:2

```
In [20]: data['Embarked'].fillna(3,inplace = True)
test['Embarked'].fillna(3,inplace = True)
```

```
In [21]: data.isnull().sum()
```

Out[21]: PassengerId 0 0 Survived 0 Pclass 0 Age 0 SibSp 0 Parch Fare 0 Cabin 687 Embarked 0 Title 0

dtype: int64

```
In [22]: data['Cabin'] = data['Cabin'].str[:1]
    data['Cabin']
```

Out[22]:	0	NaN				
	1	С				
	2	NaN				
	3	С				
	4	NaN				
	5	NaN				
	6	E				
	7	NaN				
	8	NaN				
	9	NaN				
	10	G				
	11	С				
	12	NaN				
	13	NaN				
	14	NaN				
	15	NaN				
	16	NaN				
	17	NaN				
	18	NaN				
	19	NaN				
	20	NaN				
	21	D				
	22	NaN				
	23	А				
	24	NaN				
	25	NaN				
	26	NaN				
	27	С				
	28	NaN				
	29	NaN				
	861	NaN				
	862	D				
	863	NaN				
	864	NaN				
	865	NaN				
	866	NaN				
	867	A				
	868	NaN				
	869	NaN				
	870	NaN				
	871	D				
	872	В				
	873	NaN				
	874	NaN				
	875	NaN				
	876	NaN				
	877	NaN				
	878	NaN				
	879	C				
	880	NaN				
	881	NaN				
	882	NaN				
	883	NaN				
	884	NaN				
	885	NaN				
	886	NaN				
	887	B				
	888	NaN				
	889	C				
	890	NaN	T on	0.01	al+	ob = = = =
	Name:	cabin,	Length:	o9⊥,	arype:	object

```
In [23]: test['Cabin'] = test['Cabin'].str[:1]
         data.Cabin.value_counts()
Out[23]: C
              59
              47
         В
              33
         D
         Ε
              32
         Α
              15
              13
         F
         G
               4
         Т
               1
         Name: Cabin, dtype: int64
In [24]: bar_ch('Cabin',True)
          140
                                                                              B
                                                                               C
          120
                                                                               D
                                                                               Е
                                                                               F
          100
                                                                             - A
                                                                            G
           80
                                                                            _____T
           60
           40
           20
            0
                                                                Dead
In [25]: data.Cabin.replace(['A','B','C','D','E','F','G','T'],[0,0.4,0.8,1.2,1.6,2.0,2.4,2.
         8], inplace = True)
         data['Cabin'].fillna(data.groupby('Title')['Cabin'].transform('median'),inplace = T
         test.Cabin.replace(['A','B','C','D','E','F','G','T'],[0,0.4,0.8,1.2,1.6,2.0,2.4,2.
         8], inplace = True)
         test['Cabin'].fillna(data.groupby('Title')['Cabin'].transform('median'),inplace = T
         rue)
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 11 columns):
                        891 non-null int64
         PassengerId
         Survived
                        891 non-null int64
         Pclass
                        891 non-null int64
                        891 non-null int64
         Sex
                        891 non-null float64
                        891 non-null int64
         SibSp
         Parch
                        891 non-null int64
                        891 non-null float64
         Fare
         Cabin
                        891 non-null float64
         Embarked
                        891 non-null float64
         Title
                        891 non-null int64
         dtypes: float64(4), int64(7)
         memory usage: 76.6 KB
```

In []:	
In []:	

```
In [26]: print('Data Set \n', data.isnull().sum())
    print('-----xxxx-----')
    print('Test Set \n', test.isnull().sum())
    data.Fare
```

Data Set	
PassengerId	0
Survived	0
Pclass	0
Sex	0
Age	0
SibSp	0
Parch	0
Fare	0
Cabin	0
Embarked	0
Title	0
dtype: int64	
XXXX	
Test Set	
PassengerId	0
Pclass	0
Sex	0
Age	0
SibSp	0
Parch	0
Fare	0
Cabin	0
Embarked	0
Title	0
dtype: int64	

Out[26]:	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 863 864 865 866 870 871 872 873 874 875 876 8775 8775 8775 8775 8775 8775 8	7.2500 71.2833 7.9250 53.1000 8.0500 8.4583 51.8625 21.0750 11.1333 30.0708 16.7000 26.5500 8.0500 31.2750 7.8542 16.0000 29.1250 13.0000 13.0000 13.0000 13.0000 13.0000 29.1250 26.0000 13.0000 7.2250 26.0000 21.0750 31.3875 7.2250 263.0000 7.8792 7.8958 11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958 83.1583 26.0000			
	874 875 876 877 878	24.0000 7.2250 9.8458 7.8958 7.8958			
	879 880 881 882 883 884 885 886	83.1583 26.0000 7.8958 10.5167 10.5000 7.0500 29.1250 13.0000			
	887 888 889 890 Name:	30.0000 30.0000 23.4500 30.0000 7.7500 Fare, Length:	891,	dtype:	float64

```
In [27]: train_test_data = [data, test]
          for dataset in train test data:
              dataset.loc[ dataset['Age'] <= 18, 'Age'] = 0,</pre>
              dataset.loc[(dataset['Age'] > 18) & (dataset['Age'] <= 26), 'Age'] = 1,</pre>
              dataset.loc[(dataset['Age'] > 26) & (dataset['Age'] <= 36), 'Age'] = 2,</pre>
              dataset.loc[(dataset['Age'] > 36) & (dataset['Age'] <= 62), 'Age'] = 3,</pre>
              dataset.loc[ dataset['Age'] > 62, 'Age'] = 4
          for dataset in train test data:
              dataset.loc[ dataset['Fare'] <= 20, 'Fare'] = 0,</pre>
              dataset.loc[(dataset['Fare'] > 20) & (dataset['Fare'] <= 50), 'Fare'] = 1,</pre>
              dataset.loc[(dataset['Fare'] > 50) & (dataset['Fare'] <= 100), 'Fare'] = 2,</pre>
              dataset.loc[ dataset['Fare'] > 100, 'Fare'] = 3
 In [ ]:
 In [ ]:
In [28]: from sklearn.neighbors import KNeighborsClassifier
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.naive_bayes import GaussianNB
          from sklearn.svm import SVC
          from sklearn.model selection import KFold
          from sklearn.model selection import cross val score
          from sklearn.model selection import train test split
          k fold = KFold(n splits=10, shuffle=True, random state=0)
In [29]: data.head()
Out [29]:
             Passengerld Survived Pclass Sex Age SibSp Parch Fare Cabin Embarked Title
          0
                                                            0.0
          1
                     2
                                                                 8.0
                             1
                                   1
                                        0
                                           3.0
                                                  1
                                                        0
                                                            2.0
                                                                           1.0
                                                                                2
          2
                     3
                             1
                                   3
                                          1.0
                                                        0
                                                            0.0
                                                                 8.0
                                                                           0.0
          3
                     4
                             1
                                    1
                                        0
                                           2.0
                                                  1
                                                        0
                                                           2.0
                                                                 8.0
                                                                          0.0
                                                                                2
                     5
                                                           0.0
                                                                                0
                             0
                                   3
                                           2.0
                                                  0
                                                        0
                                                                 8.0
                                                                          0.0
In [30]: | #data['Embarked'].fillna(0,inplace =True)
          data['Embarked'].isnull().sum()
```

```
Out[30]: 0
```

PassengerId 1.000000 -0.005007 -0.035144 0.042939 0.030334 -0.057527 -0.001652 0.008879 -0.046331 Survived -0.005007 1.000000 -0.338481 -0.543351 -0.087806 -0.035322 0.081629 0.307955 0.100103 **Pclass** -0.035144 -0.338481 1.000000 0.131900 -0.308406 0.083081 -0.717085 0.073562 0.018443 -0.543351 0.138022 Sex 0.042939 0.131900 1.000000 -0.114631 -0.245489 -0.221484 -0.004948 0.030334 -0.087806 -0.308406 0.138022 1.000000 -0.254139 -0.165578 0.121114 -0.164087 Age SibSp -0.057527 -0.035322 0.083081 -0.114631 -0.254139 1.000000 0.414838 0.282011 0.176299 Parch -0.001652 0.081629 0.018443 -0.245489 -0.165578 0.414838 1.000000 0.289405 0.130914 Fare 0.008879 0.307955 -0.717085 -0.221484 0.121114 0.282011 0.289405 1.000000 -0.025128 0.100103 0.073562 -0.004948 -0.164087 0.176299 0.130914 -0.025128 1.000000 Cabin -0.046331 **Embarked** -0.029906 0.118026 0.028566 -0.128526 -0.012726 -0.063794 -0.082144 0.021382 -0.071008 Title -0.003799 0.424745 -0.150894 -0.539596 -0.150649 0.270532 0.336259 0.226943 0.179240

```
In [2]: ## sib parch not req
```

KNN

```
x train, x test, y train, y test = train test split(data[['Pclass', 'Sex', 'Age', 'Fare
         ','Cabin','Embarked','Title']] ,data['Survived'] ,test size = 0.35,random state =
         4)
In [34]:
         \#res = []
         #for n in range (3,30):
         knn = KNeighborsClassifier(n neighbors = 13)
         knn.fit(x_train,y_train)
         y_pred = knn.predict(x_test)
         #acc =metrics.accuracy score(knn.predict(x test),y test)
         #res.append(acc)
         #plt.plot([x for x in range(3,30)],res)
         metrics.accuracy_score(knn.predict(x_test),y_test)
Out[34]: 0.8237179487179487
In [95]: prediction = knn.predict(test[['Pclass','Sex','Age','Fare','Cabin','Embarked','Titl
         e']])
         sol = pd.DataFrame({
In [96]:
                  "PassengerId": test["PassengerId"],
                  "Survived": prediction
              })
```

In [97]: sol

Out[97]:

	Passengerld	Survived
0	892	0
1	893	1
2	894	0
3	895	0
4	896	0
5	897	0
6	898	1
7	899	0
8	900	1
9	901	0
10	902	0
11	903	0
12	904	1
13	905	0
14	906	1
15	907	1
16	908	0
17	909	0
18	910	0
19	911	1
20	912	0
21	913	1
22	914	1
23	915	0
24	916	1
25	917	0
26	918	1
27	919	0
28	920	0
29	921	0
388	1280	0
389	1281	1
390	1282	0
391	1283	1
392	1284	1
393	1285	0
394	1286	0
395	1287	1
396	1288	0

```
In [98]: sol.to_csv('sol6.csv', index=False)
```

LOGISTIC REGRESSION

```
In [35]: from sklearn.linear model import LogisticRegression
In [36]: | lr = LogisticRegression()
         lr.fit(x_train,y_train)
         prediction3 = lr.predict(test[['Pclass','Sex','Age','Fare','Cabin','Embarked','Titl
          e']])
         metrics.accuracy_score(lr.predict(x_test),y_test)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\logistic.py:432:
         FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solv
         er to silence this warning.
           FutureWarning)
Out[36]: 0.8173076923076923
In [106]: prediction3
Out[106]: array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0,
                 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
                 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
                 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1,
                 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
                 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1,
                 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
                 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
                 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1,
                 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
                 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
                 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0,
                 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
                 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1,
                 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0],
                dtype=int64)
In [107]: sol4 = pd.DataFrame({
                  "PassengerId": test["PassengerId"],
                  "Survived": prediction3
              })
In [108]: sol4.to csv('sol.csv',index=False)
```

SVM

```
In [37]: sm = SVC()
         sm.fit(data[['Pclass','Sex','Age','Fare','Cabin','Embarked','Title']],data['Survive
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:193: FutureWarnin
         g: The default value of gamma will change from 'auto' to 'scale' in version 0.22
         to account better for unscaled features. Set gamma explicitly to 'auto' or 'scal
         e' to avoid this warning.
           "avoid this warning.", FutureWarning)
Out[37]: SVC(C=1.0, cache size=200, class weight=None, coef0=0.0,
             decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
             kernel='rbf', max_iter=-1, probability=False, random_state=None,
             shrinking=True, tol=0.001, verbose=False)
In [38]: | pred svm = sm.predict(test[['Pclass','Sex','Age','Fare','Cabin','Embarked','Title
         ']])
         metrics.accuracy_score(sm.predict(x_test),y_test)
Out[38]: 0.8653846153846154
In [40]: subb = pd.DataFrame({
                 "PassengerId": test["PassengerId"],
                 "Survived": pred_svm
             })
         subb.to_csv('submission1.csv', index=False)
```

In [37]: subb

Out[37]:

	Passengerld	Survived
0	892	0
1	893	0
2	894	0
3	895	0
4	896	1
5	897	0
6	898	1
7	899	0
8	900	1
9	901	0
10	902	0
11	903	0
12	904	1
13	905	0
14	906	1
15	907	1
16	908	0
17	909	0
18	910	0
19	911	0
20	912	0
21	913	1
22	914	1
23	915	0
24	916	1
25	917	0
26	918	1
27	919	0
28	920	0
29	921	0
388	1280	0
389	1281	0
390	1282	0
391	1283	1
392	1284	0
393	1285	0
394	1286	0
395	1287	1
396	1288	0

SVM model gave the hightest accuracy(86.538)

hence svm model was submitted in the competition which gave us a score of 0.799 and a rank of #1592 at the time of submission

In []:	
In []:	