0.1 应用题

1. 矩阵对角化和表象变换

(a) 对角化矩阵 L 就是去找到幺正变换 V,使得 $L = V\Lambda V^{\dagger}$,其中 Λ 是一个对角矩阵,它的对角元是本征值. V 是一个幺正矩阵,它的列矢量是本征矢,和 Λ 中的本征值一一对应. 找到一个能对角化 **Pauli** 矩阵 $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 的幺正矩阵 V,并找到 σ^x 的本征值.

通过求解其特征方程以得到 $\sigma_{(z)}^x$ 的本征值:

$$\det(\sigma^x_{(z)}-\lambda I)=\det\begin{pmatrix}-\lambda & 1\\ 1 & -\lambda\end{pmatrix}=\lambda^2-1=0,$$

解得 $\lambda = \pm 1$. 对于 $\lambda_+ = 1$ 有:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = v_2.$$

所以对应于 λ_+ 的本征矢是 $|+\rangle_{(z)}^x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$. 对于 $\lambda_- = -1$ 有

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = -1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = -v_2.$$

所以对应于 λ_- 的本征矢是 $|-\rangle_{(z)}^x = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}$. 在求解过程中已经对这些本征矢进行了归一化,所以可以得到幺正矩阵 $V = [|+\rangle_{(z)}^x, |-\rangle_{(z)}^x] = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$. 对角矩阵 Λ 对角线上依次是本征值,即

$$\Lambda = \operatorname{diag}\{\lambda_+, \lambda_-\} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \sigma^z_{(z)}$$

于是我们可以通过幺正矩阵 V 来对 $\sigma_{(z)}^x$ 进行对角化:

$$\sigma^x_{(z)} = V^\dagger \Lambda V = V^\dagger \sigma^z_{(z)} V$$

我们注意到, 对角矩阵 Λ 和 $\sigma^z_{(z)}$ 形式完全一致, 这意味着不同表象 i 下, $\sigma^i_{(i)}$ 的形式都是 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, 这就是我们通过 V 来改变表象的依据:

$$\sigma_{(z)}^x = V^\dagger \sigma_{(z)}^z V = V^\dagger \sigma_{(x)}^x V \Rightarrow \sigma_{(x)}^x = \left(V^\dagger\right)^{-1} \sigma_{(z)}^x (V)^{-1}$$

我们标记 $\sigma_{(z)}^x$ 为 σ^x 在 σ^z 表象下的矩阵. 注意 $V = V^{\dagger} = V^{-1}$, 所以

$$\sigma^x_{(x)} = V \sigma^x_{(z)} V$$

(b) 自旋 1/2 的自旋角动量算符 \vec{S} 的三个分量为 S^x , S^y , S^z . 如果采用 S^z 表象,它们的矩阵表示为 $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, 其中 $\vec{\sigma}$ 的三个分量为 Pauli 矩阵 σ^x , σ^y , σ^z . 现在考采用 S^x 表象,请列出 S^x 表象中你约定的基矢顺序,并求出在该表象下算符 \vec{S} 的三个分量的矩阵表示.

在 Sz 表象下有

$$S_{(z)}^x = \frac{\hbar}{2}\sigma_{(z)}^x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

从前文中可知, $\sigma_{(z)}^x$ 的本征矢为:

$$|+\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |-\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

用以将 S^z 表象转换为 S^x 表象的幺正矩阵为

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

在 Sz 表象中有

$$S_{(z)}^x = \frac{\hbar}{2}\sigma^x = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad S_{(z)}^y = \frac{\hbar}{2}\sigma^y = \frac{\hbar}{2}\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad S_{(z)}^z = \frac{\hbar}{2}\sigma^z = \frac{\hbar}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

因此

$$\begin{split} S_{(x)}^x &= V S_{(z)}^x V = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ S_{(x)}^y &= V S_{(z)}^y V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\ S_{(x)}^z &= V S_{(z)}^z V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \end{split}$$

在 S^x 表象中的基矢为

$$|+\rangle_{(x)}^x = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |-\rangle_{(x)}^x = \begin{pmatrix} 0\\1 \end{pmatrix}.$$

2. 谐振子问题

一维谐振子的哈密顿量为

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

坐标算符 x 和动量算符 p 满足对易式 $[x,p]=i\hbar$. 对动量算符和坐标算符进行重新标度

$$p = P\sqrt{\hbar m\omega}, \quad x = Q\sqrt{\frac{\hbar}{m\omega}}$$

注意新的坐标算符 Q 和动量算符 P 是无量纲的, 哈密顿量重新写为

$$H = \frac{1}{2}\hbar\omega(P^2 + Q^2)$$

引入玻色子产生和湮灭算符, a^{\dagger} 和 a.

$$a = \frac{1}{\sqrt{2}} (Q + iP), \quad a^{\dagger} = \frac{1}{\sqrt{2}} (Q - iP)$$

(a) 计算 [Q, P], $[a, a^{\dagger}]$, $[a, a^{\dagger}a]$, $[a^{\dagger}, a^{\dagger}a]$;

$$\begin{split} [Q,P] &= [\sqrt{\frac{m\omega}{\hbar}}x,\sqrt{\frac{1}{\hbar m\omega}}p] = \frac{1}{\hbar}[x,p] = \frac{1}{\hbar}i\hbar = \boxed{i}, \\ [a,a^{\dagger}] &= \left[\frac{1}{\sqrt{2}}(Q+iP),\frac{1}{\sqrt{2}}(Q-iP)\right] \\ &= \frac{1}{2}[Q+iP,Q-iP] = \frac{1}{2}\left([Q,Q]-i[Q,P]+i[P,Q]+[P,P]\right) \\ &= \frac{1}{2}[0-i\cdot i+i\cdot (-i)+0] = \boxed{1}, \\ [a,a] &= \left[\frac{1}{\sqrt{2}}(Q+iP),\frac{1}{\sqrt{2}}(Q+iP)\right] \\ &= \frac{1}{2}[Q+iP,Q+iP] = \frac{1}{2}\left([Q,Q]+i[Q,P]+i[P,Q]+[P,P]\right) \\ &= \frac{1}{2}[0+i\cdot i+i\cdot (-i)+0] = 0, \\ [a^{\dagger},a^{\dagger}] &= \left[\frac{1}{\sqrt{2}}(Q-iP),\frac{1}{\sqrt{2}}(Q-iP)\right] \\ &= \frac{1}{2}[Q-iP,Q-iP] = \frac{1}{2}\left([Q,Q]-i[Q,P]-i[P,Q]+[P,P]\right) \\ &= \frac{1}{2}(0-i\cdot i-i\cdot (-i)+0) = 0, \\ [a,a^{\dagger}a] &= a^{\dagger}[a,a]+[a,a^{\dagger}]a = a^{\dagger}\cdot 0+1\cdot a = \boxed{a}, \\ [a^{\dagger},a^{\dagger}a] &= a^{\dagger}[a^{\dagger},a]+[a^{\dagger},a^{\dagger}]a = a^{\dagger}\cdot (-1)+0\cdot a = \boxed{-a^{\dagger}}. \end{split}$$

(b) 将哈密顿量 H 用 a 和 a^{\dagger} 表示. 并求出全部能级;

$$a = \frac{1}{\sqrt{2}} (Q + iP), \quad a^{\dagger} = \frac{1}{\sqrt{2}} (Q - iP)$$

$$\Rightarrow Q = \frac{1}{\sqrt{2}} (a + a^{\dagger}), \quad P = \frac{1}{\sqrt{2}i} (a - a^{\dagger})$$

$$\Rightarrow H = \frac{1}{2} \hbar \omega (P^2 + Q^2) = \frac{1}{2} \hbar \omega \left\{ \left[\frac{1}{\sqrt{2}i} (a - a^{\dagger}) \right]^2 + \left[\frac{1}{\sqrt{2}} (a + a^{\dagger}) \right]^2 \right\}$$

$$= \frac{1}{2} \hbar \omega \left\{ -\frac{1}{2} \left(aa - aa^{\dagger} - a^{\dagger}a + a^{\dagger}a^{\dagger} \right) + \frac{1}{2} \left(aa + aa^{\dagger} + a^{\dagger}a + a^{\dagger}a^{\dagger} \right) \right\}$$

$$= \frac{1}{2} \hbar \omega \left(a^{\dagger}a + aa^{\dagger} \right)$$

当然, 也可以利用 $[a, a^{\dagger}] = 1 \iff aa^{\dagger} = a^{\dagger}a + 1$ 将 H 变换为熟知的粒子数表象形式:

$$H = \hbar\omega \left(a^{\dagger}a + \frac{1}{2} \right)$$

所以
$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \cdots$$

(c) 在能量表象中, 计算 a 和 a^{\dagger} 的矩阵元.

能量表象的本征矢满足 $H|n\rangle = E_n|n\rangle$, 则矩阵元为

$$\begin{split} a|n\rangle &= \sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle \\ \Rightarrow \langle m|a|n\rangle &= \boxed{\sqrt{n}\delta_{m,n-1}}, \quad \langle m|a^{\dagger}|n\rangle = \boxed{\sqrt{n+1}\delta_{m,n+1}} \end{split}$$

3. 角动量耦合

两个大小相等,属于不同自由度的角动量 $\vec{J_1}$ 和 $\vec{J_2}$ 耦合成总角动量 $\vec{J} = \vec{J_1} + \vec{J_2}$,设 $\vec{J_1}^2 = \vec{J_2}^2 = j(j+1)\hbar^2$, $J^2 = J(J+1)\hbar^2$,J = 2j,2j - 1, 3j 中,3j 中,3

4. 自旋-1 模型

考虑自旋-1 体系, 自旋算符为 \vec{S} , 考虑 (\vec{S}^2, S^z) 表象, 基矢顺序为 $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$, 简记为 $|+1\rangle$, $|0\rangle$, $|-1\rangle$. 设 $\hbar=1$.

(a) 写出 S^x 和 S^z 的矩阵表示.

由于是在 (\vec{S}^2, S^z) 表象, 所以 S^z 的矩阵一定是对角矩阵. 选定基矢为 $\{|s,m\rangle\}$, 即 $|1,1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $|1,0\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$,

$$|1,-1\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
. 根据本征方程 $S^z|s,m\rangle = m|s,m\rangle$, 得到

$$S^z = \boxed{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} }$$

而对于 S^x (包括题解不要求的 S^y), 我们实际上是使用的升降算符 S^{\pm} 来定义的.

$$\begin{split} S^{+}|s,m\rangle &= \sqrt{s(s+1)-m(m+1)}|s,m+1\rangle, \\ S^{-}|s,m\rangle &= \sqrt{s(s+1)-m(m-1)}|s,m-1\rangle. \\ \Rightarrow S^{+}|1,1\rangle &= 0, \quad S^{+}|1,0\rangle = \sqrt{2}|1,1\rangle, \quad S^{+}|1,-1\rangle = \sqrt{2}|1,0\rangle, \\ S^{-}|1,1\rangle &= \sqrt{2}|1,0\rangle, \quad S^{-}|1,0\rangle = \sqrt{2}|1,-1\rangle, \quad S^{-}|1,-1\rangle = 0. \\ \Rightarrow S^{+} &= \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}, \quad S^{-} &= \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}. \\ \Rightarrow S^{x} &= \frac{1}{2} \left(S^{+} + S^{-} \right) = \boxed{\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}} \end{split}$$

(b) 考虑哈密顿量 $H(\lambda) = H_0 + \lambda V$, 其中 $H_0 = (S^z)^2$, $V = S^x + S^z$. 考虑为 λV 微扰, 利用微扰论计算微扰后的各能级和各能态, 其中能级微扰准确到二阶, 能态微扰准确到一阶.

$$H_0|s, m\rangle = (S^z)^2 |s, m\rangle = m^2 |s, m\rangle$$

 $\Rightarrow E_{-1}^{(0)} = 1, \quad E_0 = 0, \quad E_1 = 1$

注意到 m^2 会带来 $m=\pm 1$ 的简并, 所以后续计算时会涉及简并态的微扰处理. 首先观察简并态, 简并态矢张

成独立子空间,于是求解这个子空间中 V 的矩阵:

$$\begin{split} V_{\text{sub}} &= \begin{pmatrix} \langle 1,1|V|1,1\rangle & \langle 1,1|V|1,-1\rangle \\ \langle 1,-1|V|1,1\rangle & \langle 1,-1|V|1,-1\rangle \end{pmatrix} \\ \langle 1,1|V|1,1\rangle &= \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \langle 1,1|V|1,-1\rangle &= \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \langle 1,-1|V|1,1\rangle &= 0, \\ \langle 1,-1|V|1,-1\rangle &= \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \Rightarrow V_{\text{sub}} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \end{split}$$

注意到计算得到的子空间中 V_{sub} 完成了对角化, 这说明沿用的 $|s,m\rangle$ 基矢已经是 "好量子态". 所以回归到非简并微扰论的方法. 一阶能量修正各为

$$\begin{split} E_1^{(1)} &= \langle 1, 1 | V | 1, 1 \rangle = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \boxed{1}, \\ E_0^{(1)} &= \langle 1, 0 | V | 1, 0 \rangle = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \boxed{0}, \\ E_{-1}^{(1)} &= \langle 1, -1 | V | 1, -1 \rangle = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \boxed{-1}, \end{split}$$

二阶能量修正由公式 $E_m^{(n)} = \sum_{n \neq m} \frac{|\langle n|V|m\rangle|^2}{E_m^{(0)} - E_n^{(0)}}$ 给出:

$$\begin{split} E_1^{(2)} &= \frac{|\langle 1,0|V|1,1\rangle|^2}{E_1^{(0)}-E_0^0} + \frac{|\langle 1,-1|V|1,1\rangle|^2}{E_1^{(0)}-E_{-1}^{(0)}} = \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{1-0} + \frac{0^2}{1-1} = \boxed{\frac{1}{2}}, \\ E_0^{(2)} &= \frac{|\langle 1,1|V|1,0\rangle|^2}{E_0^{(0)}-E_1^{(0)}} + \frac{|\langle 1,-1|V|1,0\rangle|^2}{E_0^{(0)}-E_{-1}^{(0)}} = \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{0-1} + \frac{0^2}{0-(-1)} = \boxed{-\frac{1}{2}}, \\ E_{-1}^{(2)} &= \frac{|\langle 1,0|V|1,-1\rangle|^2}{E_{-1}^{(0)}-E_0^{(0)}} + \frac{|\langle 1,1|V|1,-1\rangle|^2}{E_{-1}^{(0)}-E_1^{(0)}} = \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{-1-0} + \frac{0^2}{1-1} = \boxed{-\frac{1}{2}}. \end{split}$$

可见, 只要在 $E_i^{(1)} - E_j^{(1)} = 0$ 时分子也为 0, 我们就可以无视分母为 0 的问题. 接下来是对态函数的微扰修正.

一所修正由
$$|m\rangle^{(1)} = \sum_{n\neq m} |n\rangle \frac{\langle n|V|m\rangle}{E_m^{(0)} - E_n^{(0)}}$$
 给出:
$$|1,1\rangle^{(1)} = |1,0\rangle \frac{\langle 1,0|V|1,1\rangle}{E_1^{(0)} - E_0^{(0)}} + |1,-1\rangle \frac{\langle 1,-1|V|1,1\rangle}{E_1^{(0)} - E_{-1}^{(0)}} = |1,0\rangle \frac{1}{\sqrt{2}} \frac{1}{1-0} + |1,-1\rangle \cdot 0$$

$$= \frac{1}{\sqrt{2}} |1,0\rangle$$

$$|1,0\rangle^{(1)} = |1,1\rangle \frac{\langle 1,1|V|1,0\rangle}{E_0^{(0)} - E_1^{(0)}} + |1,-1\rangle \frac{\langle 1,-1|V|1,0\rangle}{E_0^{(0)} - E_{-1}^{(0)}} = |1,1\rangle \frac{1}{\sqrt{2}} \frac{1}{0-1} + |1,-1\rangle \frac{1}{\sqrt{2}} \cdot \frac{1}{0-(-1)}$$

$$= \frac{1}{\sqrt{2}} (-|1,1\rangle + |1,-1\rangle)$$

$$|1,-1\rangle^{(1)} = |1,1\rangle \frac{\langle 1,1|V|1,-1\rangle}{E_{-1}^{(0)} - E_1^{(0)}} + |1,0\rangle \frac{\langle 1,0|V|1,-1\rangle}{E_{-1}^{(0)} - E_0^{(0)}} = |1,1\rangle \cdot 0 + |1,0\rangle \frac{1}{\sqrt{2}} \cdot \frac{1}{-1-0}$$

$$= \frac{-\frac{1}{\sqrt{2}} |1,0\rangle}{ |1,0\rangle}$$

总结:

$$E_{1} = 1 + 1\lambda + \frac{1}{2}\lambda^{2} + o(\lambda^{2})$$

$$E_{0} = 0 + 0\lambda - \frac{1}{2}\lambda^{2} + o(\lambda^{2})$$

$$E_{-1} = 1 - 1\lambda - \frac{1}{2}\lambda^{2} + o(\lambda^{2})$$

$$|1, 1\rangle = |1, 1\rangle + \frac{\lambda}{\sqrt{2}}|1, 0\rangle + o(\lambda)$$

$$|1, 0\rangle = |1, 0\rangle + \frac{\lambda}{\sqrt{2}}(-|1, 1\rangle + |1, -1\rangle) + o(\lambda)$$

$$|1, -1\rangle = |1, -1\rangle - \frac{\lambda}{\sqrt{2}}|1, 0\rangle + o(\lambda)$$

对于这类可以使用矩阵形式讨论的问题, 还有一种笨办法, 就是直接严格对角化含 λ 微扰的哈密顿量, 然后进行 Taylor 展开得到各级数. 但是在三阶矩阵下的计算已经非常复杂, 所以还是建议使用一般微扰论方法, 毕竟考试时是会给出公式的.

5. 均匀电子气

考虑三维相互作用均匀电子气, 哈密顿量为 $H=H_0+H_I$. 考虑系统体积为 $V=L^3$, 每个方向的系统尺寸为 L. 采用箱归一化, 所以 \vec{k} 是离散的, $\vec{k}=\frac{2\pi}{L}(n_x,n_y,n_z)$, n_x , n_y , n_z 为整数. 采用二次量子化的语言, 可给出哈密顿量在动量空间的形式. H_0 为单体部分:

$$H_0 = \sum_{\vec{k}\sigma} \varepsilon_{\vec{k}} c_{\vec{k}\sigma}^{\dagger} c_{\vec{k}\sigma}$$

其中 $\varepsilon_{\vec{k}}=\frac{\hbar^2\vec{k}^2}{2m}$ 是自由电子的色散关系. 用 ε_F 表示费米能, k_F 表示费米波矢的大小. H_I 为两体相互作用部分,

$$H_{I} = \frac{1}{2V} \sum_{\vec{k}_{1}, \vec{k}_{2}, \vec{q}} \sum_{\sigma \sigma'} v(q) c^{\dagger}_{\vec{k}_{1} + \vec{q}, \sigma} c^{\dagger}_{\vec{k}_{2} - \vec{q}, \sigma'} c_{\vec{k}_{2} \sigma'} c_{\vec{k}_{1} \sigma}$$

v(q) 是相互作用 v(x) 的傅里叶变换形式, $q = |\vec{q}|, x = |\vec{x}|,$

$$v(q) = \frac{1}{V} \int v(x) e^{-i\vec{q}\cdot\vec{x}} \mathrm{d}^3\vec{x}$$

这里我们考虑短程势, 也就是说 v(q=0) 不发散.

自由电子气零温下处于电子填充到费米能 ε_F 的费米海态(Fermi sea state), 简记为 FS, 利用费米子产生算符作用 到真空态上可以表示 FS 态为

$$|\mathbf{FS}\rangle = \prod_{k < k_F, \sigma} c_{\vec{k}\sigma}^{\dagger} |0\rangle$$

(a) 考虑零温下的自由电子气,计算总粒子数 N 和粒子数密度 n,计算总能量 $E^{(0)}$ 并把总能量密度 $E^{(0)}/V$ 表示成粒子数密度 n 的函数.

使用分离变量法, 求解自由电子气的薛定谔方程 $\frac{\hbar^2 \hat{k}^2}{2m} \psi = E \psi$. 于是能量本征值为 $\frac{\hbar^2 k^2}{2m} = \sum_i \frac{\hbar^2 k_i^2}{2m}$. 其中 $k_i = \frac{\sqrt{2mE_i}}{\hbar}$. 由于使用了箱归一化, 即有边界条件 $k_i l_i = n_i \pi(n_i \in \mathbb{N}^*)$, 代入即得

$$E = \frac{\hbar^2}{2m} \left[\sum_i^3 \left(\frac{\pi}{l_i} \right)^2 n_i^2 \right] = \frac{\hbar^2 \pi^2}{2m} \left(\sum_i^3 \frac{n_i^2}{l_i^2} \right)$$

每个波矢 $\vec{k} = \left(\frac{\pi}{l_x}n_x, \frac{\pi}{l_y}n_y, \frac{\pi}{l_z}n_z\right)$ 都是在 \vec{k} 空间中的一个格点, 这种格点所占据的 \vec{k} 空间体积为

$$\begin{split} &\prod_i \frac{\pi}{l_i} = \frac{\pi^3}{l_x l_y l_z} = \frac{\pi^3}{V}, \text{ 其中 } V \text{ 代表了物质在 } \vec{x} \text{ 空间的体积(实体积). } \\ &\text{ 电子是全同费米子, 每个格点上(每个状态) 能且只能容纳两个电子. 而费米-狄拉克分布为 } f(\epsilon) = \frac{1}{1+e^{\beta(\epsilon-\mu)}}. \\ &\text{ 绝对零度}(\beta \to \infty)\text{ 下, 电子可占据的最高能级即为费米能级 } \lim_{\beta \to \infty} \mu = \varepsilon_F, \text{ 对应波矢 } |k| \leq k_F. \text{ 由于前面讨论 } k_i \in \mathbb{N}^*, \text{ 因此 } k \leq k_F \text{ 在 } \vec{k} \text{ 空间中会形成 } \frac{1}{8} \text{ 球体. 由于题解要求, 我们略去讨论各原子贡献的自由电子数目, 而是直接使用总粒子(电子)数 } N: \end{split}$$

$$\frac{1}{8} \left(\frac{4}{3} \pi k_F^3 \right) = \frac{N}{2} \left(\frac{\pi^3}{V} \right)$$

其中 N 除以 2 是因为泡利不相容原理. 具体到题目中, 有 $l_i = L, \forall i$, 于是进一步化简得到

$$\boxed{N = \frac{k_F^3 V}{3\pi^2}, \quad \frac{N}{V} = \boxed{n = \frac{k_F^3}{3\pi^2}}}$$

接下来计算总能量. 由于 N 充分大,使得电子的态能遍布整个 $\frac{1}{8}$ 费米球,于是求和化为积分形式,即有 $E_{\text{tot}} = \sum_{i}^{k \leq k_F} \frac{\hbar^2}{2n}$ 其中 f(k) 是态密度,表示在同一能量 $\frac{\hbar^2 k^2}{2m}$ 上的电子数目,所以这就要求我们对电子态密度进行计算. 对于半 径为 k,厚度为 dk 的 $\frac{1}{8}$ 球壳,在这个球壳上电子的能量都是相同的. 而这个球壳的体积为 $\frac{1}{8}(4\pi k^2 dk)$,又已知 每个格点体积为 $\frac{\pi^3}{V}$,因此球壳中电子数目为

格点数
$$\times$$
 2 = $\frac{\frac{1}{8}(4\pi k^2 dk)}{\frac{\pi^3}{V}} \times 2 = \frac{k^2 V}{\pi^2} dk = f(k) dk$

因此总能量为

$$E^{(0)} = \int_0^{k_F} \frac{\hbar^2 k^2}{2m} \frac{k^2 V}{\pi^2} dk = \frac{\hbar^2 V}{2m\pi^2} \int_0^{k_F} k^4 dk = \frac{\hbar^2 V}{2m\pi^2} \frac{k_F^5}{5} = \boxed{\frac{\hbar^2 V k_F^5}{10m\pi^2}}$$

反解粒子数密度表达式得到 $k_F(n)$, 代入 $E^{(0)}$ 计算总能量密度:

$$k_F = (3\pi^2 n)^{\frac{1}{3}}$$

$$\frac{E^{(0)}}{V} = \frac{\hbar^2 k_F^5}{10m\pi^2} = \frac{\hbar^2}{10m\pi^2} \cdot (3\pi^2 n)^{\frac{5}{3}} = \boxed{\frac{(3n)^{\frac{5}{3}}\hbar^2 \pi^{\frac{4}{3}}}{10m}}$$

- (b) 计算能量的一阶修正 $E^{(1)} = \langle \mathbf{FS} | H_I | \mathbf{FS} \rangle$.
- (c) 利用 Hatree Fock 平均场近似,并假设平均场参数是自旋对角的,并且保持了自旋对称性,以及平移对称性,因此我们期待 $\left\langle c_{\vec{k}\sigma}^{\dagger}c_{\vec{k}'\sigma'}\right\rangle = \left\langle c_{\vec{k}\sigma}^{\dagger}c_{\vec{k}\sigma}\right\rangle \delta_{\vec{k},\vec{k}'}\delta_{\sigma,\sigma'}$,以及 $\left\langle c_{\vec{k}\uparrow}^{\dagger}c_{\vec{k}\uparrow}\right\rangle = \left\langle c_{\vec{k}\downarrow}^{\dagger}c_{\vec{k}\downarrow}\right\rangle$. 计算系统总能量,并与 $E^{(0)}+E^{(1)}$ 比较大小.

6. 量子转子模型

量子转子的角度坐标 $\theta \in [0, 2\pi)$, 注意 $\theta \pm 2\pi$ 和 θ 是等价的. 用 $|\theta\rangle$ 表现 $\hat{\theta}$ 算符的本征态, $|\theta \pm 2\pi\rangle$ 和 $|\theta\rangle$ 是相同的态. 定义量子转子的转动算符为 $\hat{R}(\alpha)$,

$$\hat{R}(\alpha) = \int_{0}^{2\pi} d\theta |\theta - \alpha\rangle\langle\theta|$$

所以 $\hat{R}(\alpha)|\theta\rangle = |\theta - \alpha\rangle$, 并且 $\hat{R}(2\pi)$ 是单位算符.

转动算符 $\hat{R}S(\alpha)$ 是一个幺正算符,它的产生子为厄米算符 \hat{N} ,与量子转子的角动量算符 \hat{L} 的关系为 $\hat{L}=\hbar\hat{N}$,所以 $\hat{R}(\alpha)=e^{i\hat{N}\alpha}$,在 $\hat{\theta}$ 表象下可求得 $\hat{N}=-i\frac{\partial}{\partial a}$.

考虑一个特定的量子转子模型,它的哈密顿量为

$$H = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 - g \cos \left(2\hat{\theta} \right)$$

其中 $g\cos\left(2\hat{\theta}\right)$ 是一个小的外势,可以当成微扰处理。假设 $|N\rangle$ 是算符 \hat{N} 的本征态,本征值为 N,即 $\hat{N}|N\rangle=N|N\rangle$ 。可计算出 $|N\rangle$ 用 $|\theta\rangle$ 展开为

$$|N\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} e^{iN\theta} |\theta\rangle$$

(a) 利用 $\hat{R}(2\pi)$ 是单位算符证明 N 必须是整数.

因为 $\hat{R}(2\pi)=\mathbb{I}$, 所以有 $|\theta-2\pi\rangle=|\theta\rangle$. 对于算符 \hat{N} 的本征态 $|N\rangle$ 有

$$\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta - 2\pi\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN\theta} |\theta\rangle$$

$$\iff \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta\rangle$$

$$\iff e^{iN\theta} = e^{iN(\theta - 2\pi)} = e^{iN\theta} e^{-i2\pi N}$$

因此为了保持 θ 转动 2π 后的不变性, N 应当是整数.

(b) 考虑无微扰时的哈密顿量 $H_0=\frac{1}{2}\left(\hat{N}-\frac{1}{2}\right)^2$, 证明 $|N\rangle$ 也是 H_0 的本征态,并求出本征能量,证明每个能级都是两重简并的.

$$\begin{split} \hat{H}_0|N\rangle &= \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 |N\rangle = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 |N\rangle \Rightarrow E_N^{(0)} = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 \\ \Rightarrow N_\pm - \frac{1}{2} = \pm \sqrt{2E_N^{(0)}} \Rightarrow N_\pm = \frac{1}{2} \pm \sqrt{2E_N^{(0)}} \end{split}$$

这意味着对于任意整数 N,都对应存在着 N'=1-N 使得能级简并.

(c) 采用 $\{|N\rangle\}$ 作为基组,写出微扰项 $V=-g\cos\left(2\hat{\theta}\right)$ 的表示矩阵,并证明微扰不会连接简并的能级(即如果 $|N\rangle$ 和 $|N'\rangle$ 简并,那么 $\langle N|V|N'\rangle$). 因此尽管 H_0 的能级是简并的,我们仍然可以使用非简并微扰论.

$$\begin{split} \cos 2\hat{\theta} &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) \\ e^{i2\hat{\theta}} |N\rangle &= e^{i2\hat{\theta}} \left(\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle \right) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} e^{i2\hat{\theta}} |\theta\rangle \\ &= \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{i(N+2)\theta} |\theta\rangle = |N+2\rangle \\ \Rightarrow \cos 2\hat{\theta} |N\rangle &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) |N\rangle = \frac{1}{2} \left(|N+2\rangle + |N-2\rangle \right) \\ \Rightarrow \langle N|\hat{V}|N'\rangle &= -g\langle N|\cos 2\hat{\theta} |N'\rangle = -\frac{g}{2} \left(\langle N|N'+2\rangle + \langle N|N'-2\rangle \right) \\ &= -\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \end{split}$$

和前文一致, 如果 $|N\rangle$ 和 $|N'\rangle$ 简并, 那么 N+N'=1 使得只要 $N\in\mathbb{Z}$, 那么 $\delta\neq0$. 所以仍然可以使用非简并 微扰论.

(d) 计算每个能级 E_N 的微扰修正到 g 的二阶,并证明此时所有的能级简并仍然没有被解除.

$$\begin{split} E_N^{(1)} &= \langle N|\hat{V}|N\rangle = -\frac{g}{2} \left(\langle N|N+2\rangle + \langle N|N-2\rangle \right) = 0 \\ E_N^{(2)} &= \sum_{N' \neq N} \frac{|\langle N|\hat{V}|N'\rangle|^2}{E_N^{(0)} - E_{N'}^{(0)}} = \sum_{N' \neq N} \frac{\left(-\frac{g}{2} \left(\delta_{N,N'+2} + \delta_{N,N'-2} \right) \right)^2}{\frac{1}{2} \left(N - \frac{1}{2} \right)^2 - \frac{1}{2} \left(N' - \frac{1}{2} \right)^2} \\ &= \boxed{\frac{g^2}{(2N-3)(2N+1)}} \end{split}$$

微扰修正后的能级为

$$E_N \approx \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N-3)(2N+1)}$$

代入 N' = 1 - N 以检查能级简并性:

$$E_{N'} = \frac{1}{2} \left(1 - N - \frac{1}{2} \right)^2 + \frac{g^2}{[2(1-N)-3][2(1-N)+1]}$$
$$= \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N+1)(2N-3)} = E_N$$

所以简并度未变化.