

SEQUENCE LISTING

<110> OLSON, ERIC
FREY, NORBERT

<120> METHODS AND COMPOSITIONS RELATING TO MUSCLE SPECIFIC
CALCINEURIN ASSOCIATED PROTEIN (CAP)

<130> UTSD:729US

<140> UNKNOWN

<141> 2001-11-07

<150> 60/246,629

<151> 2000-11-07

<160> 12

<170> PatentIn Ver. 2.1

<210> 1

<211> 2531

<212> DNA

<213> Homo sapiens

<400> 1

gtcccagggtt caaggataaa aaccatcagg cccaaagtgcc atccatagtc catctccaga 60
gtttcctcc acaaaactggg attcatcccc gctaaaaaag cacaatctaa cagcaaggga 120
acaaaaaaaaac catgctatca cataatacta tcatgaagca gagaaaaacag caagcaacag 180
ccatcatgaa ggaagtccat gggaaatgatg ttgatggcat ggacctgggc aaaaagggtca 240
gcattccccag agacatcatg ttgaaagaat tatcccatct cagtaaccgt ggtgccaggc 300
tatttaagat gcgtcaaaga agatctgaca aatacacatt tgaaaatttc cagtatcaat 360
ctagagcaca aataaaatcac agtattgcta tgcagaatgg gaaagtggat ggaagtaact 420
tggaaagggtgg ttgcgcagcaa gcccccttga ctccctccaa caccggat ccacgaagcc 480
ctccaaatcc agacaacatt gctccaggat attctggacc actgaaggaa attcctccctg 540
aaaaattcaa caccacagct gtcccttaagt actatcaatc tccctggag caagccatta 600
gcaatgatcc ggagctttta gaggctttat atcctaaact tttcaagcct gaaggaaagg 660
cagaactgcc tgattacagg agtttaaca gggttgccac accatttggaa gttttgaaa 720
aagcatcaag aatggttaaa tttaaaggttc cagattttga gctactattt ctaacagatc 780
ccaggtttat gtcctttgtc aatccccctt ctggcagacg gtccttaat aggactccta 840
aggatggat atctgagaat attcctatag tgataaacaac cgaacctaca gatgatacca 900
ctgtaccaga atcagaagac ctatggaaag aaagttgtat gtgccacata aaactctgaa 960
tataaaaggat gctgttctac tattttact actggcaaag cacttgatt tttcattttgt 1020
agcaacaata gcaattttatg gatttccctt ttctgcacatt caatttcaat ctcagatcaa 1080
atactaataa acaatttagaa atcttacttt aaaaaactta taactcactt gtcttcattc 1140
ataattttgt ttccacccgtt tttaaagaat ccagatattt tactgaaaaa gttcagatgg 1200
aaaagtaatt gacagcttca cctttgtctc attttatatg atttattaca gtgttaagttt 1260
ttcaagtgga atctagaatc aaaatacagg gagagatatg aagacctatt cagagttca 1320
tctggggatg aaagctatgg aagatgtatg acaaattgttta ttgatggaga aatgggtgg 1380
tgtgtccctt ctggtgacca tgagaaaata atatgtttt atgaagtctt ttcatatgtc 1440
actcttagaa ttctaaagtg ctttgcactt ttcaatatgt tttgaatcat taggttaattt 1500
attctggatg atattctcca aaattcaatt cagttattat attcatttag cattaagtca 1560
aggagactga gaatgactca agggacgtca tagtaccata gttttaaagga ccaagggttg 1620

cccagaattc aagtttcaca aatcccaatg ctgtgcattg attatgttca actttatgtg 1680
tgcattctta gaagagtaag aacaaataaa gtacaccgta atatacatat aaatacattc 1740
atgttgtga gagaaggaaa gagtaagtaa tttgaattgg cagcttctt tgctaaatct 1800
ttaaattctg ttaagatcct caagtaactg gggagtacat gctttaggac acaaacaaaa 1860
acaaaggca tgaaagtatc tgaaagcaat gtagcacata tctatcgtaa tatatgtaat 1920
atattgacat aaaagacaca aactaatata aagttatagt tatatcttaa aatataattg 1980
aagaagcata tgacatataa cttatagaaa tcagtatcaa ttcccccatttcaattcag 2040
ttaagactct gtgatagatg tttatagcag agaagaaatg tctcatcaat aggaaaacta 2100
tcagataaaag tttaggagat aggaagaagg actgtgtgta gtaatgaaaa taccaagttg 2160
caacattaca tgtttacaaa aaaaatctgt gttttagtg tggaagttgg tgactgtttt 2220
aatcatcatc tagacttggta aagttagaaaa atttaaaaaa tttgctttagt aaaaatataac 2280
ccccagaaag taacaatgac aaagtattat atttatatat attattgttag agaatttgt 2340
tatttttaaa gatgtcttaa gatatcttaa ttttatttat aagttttgggt gtttacctgt 2400
tttaaaatga taatgttggc atctgtgata aactatcaat gaggctccca tcatgccatt 2460
tttggccat ttaatcttt aaaaaataaa aattaggcat attaaaaaaaaaaaaaaa 2520
aaaaaaaaaa a 2531

<210> 2
<211> 264
<212> PRT
<213> Homo sapiens

<400> 2
Met Leu Ser His Asn Thr Met Met Lys Gln Arg Lys Gln Gln Ala Thr
1 5 10 15

Ala Ile Met Lys Glu Val His Gly Asn Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Leu Glu Glu Leu Ser
35 40 45

His Leu Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Gln Ser Arg Ala Gln
65 70 75 80

Ile Asn His Ser Ile Ala Met Gln Asn Gly Lys Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Gly Ser Gln Gln Ala Pro Leu Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Asp Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Lys Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Gln Ser Pro Trp Glu Gln Ala Ile Ser Asn Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Pro Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Arg Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Met Ser Phe Val Asn
210 215 220

Pro Leu Ser Gly Arg Arg Ser Phe Asn Arg Thr Pro Lys Gly Trp Ile
225 230 235 240

Ser Glu Asn Ile Pro Ile Val Ile Thr Thr Glu Pro Thr Asp Asp Thr
245 250 255

Thr Val Pro Glu Ser Glu Asp Leu
260

<210> 3

<211> 1207

<212> DNA

<213> Mus musculus

<400> 3

gagagccgac caccaactga gcagctggtc agatccacctt ccaccatgcc actctcagga 60
accggggccc ctaacaagag gaggaagtca agcaaactga ttatggagct cactggaggt 120
ggccggggaga gctcaggcct gaacctgggc aagaagatca gtgtcccaag ggatgtgatg 180
ttggaggagc tgccttctt taccaaccga ggctccaaga tttcaagct acggcagatg 240
cggtggaga aatttatcta tgagaatcac cccgatgtt tctctgacag ctcaatggat 300
cacttccaga agtttcttcc cacagtggga ggacagctgg agacagctgg tcagggttc 360
tcatatggca agggcagcag tgaggccag gctggcagca gtggctctgc tggacagttat 420
ggctctgacc gtcatcagca gggctctggg tttggagctg ggggttcagg tggctctggg 480
ggccaggctg gtggaggagg agctcctggc acagttagggc ttggagagcc cggatcagg 540
gaccaggcag gtggagatgg aaaacatgtc actgtgttca agacttataat ttccccatgg 600
gatcggggcca tgggggttga tcctcagcaa aaagtggAAC ttggcattga cctactggca 660
tacggtgcca aagctgaact ccccaaataat aagtccctca acaggacagc aatgccctac 720
ggtgatatg agaaggcctc caaacgcattt accttccaga tgcccaagtt tgacctgggg 780
cctctgtga gtgaaccctt ggtcctctac aaccagaacc tctccaacag gccttcttc 840
aatcgaaaccctt ctattccctg gttagctctt ggggagcatg tagactacaa cgtggatgtt 900
ggatccctt tggatggaga gacagaggag ctgtgaagtg ctcctcctg tcatgtgcat 960
cattccctt ctctgggtcc aatttgagag tggatgttgg acaggatgcc ccaactgtta 1020
atccagtatt cttgtggcaa tggagggtaa agggtgggggt ccgttgcctt tccacccttc 1080
aagttccctgc tccgaagcat ccctcctcac cagctcagag ctcccatcct gctgtaccat 1140
atgaaatctg ctctttatg gaatttctc tgccaccggta aacagtcaat aaacttcaag 1200
gaaatga 1207

<210> 4

<211> 296
<212> PRT
<213> Mus musculus

<400> 4
Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Arg Arg Lys Ser Ser
1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Arg Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu
35 40 45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
85 90 95

Gln Leu Glu Thr Ala Gly Gln Gly Phe Ser Tyr Gly Lys Gly Ser Ser
100 105 110

Gly Gly Gln Ala Gly Ser Ser Gly Ser Ala Gly Gln Tyr Gly Ser Asp
115 120 125

Arg His Gln Gln Gly Ser Gly Phe Gly Ala Gly Gly Ser Gly Gly Pro
130 135 140

Gly Gly Gln Ala Gly Gly Gly Ala Pro Gly Thr Val Gly Leu Gly
145 150 155 160

Glu Pro Gly Ser Gly Asp Gln Ala Gly Gly Asp Gly Lys His Val Thr
165 170 175

Val Phe Lys Thr Tyr Ile Ser Pro Trp Asp Arg Ala Met Gly Val Asp
180 185 190

Pro Gln Gln Lys Val Glu Leu Gly Ile Asp Leu Leu Ala Tyr Gly Ala
195 200 205

Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr Ala Met Pro
210 215 220

Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe Gln Met Pro
225 230 235 240

Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val Leu Tyr Asn
245 250 255

Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro Ile Pro Trp
260 265 270

Leu Ser Ser Gly Glu His Val Asp Tyr Asn Val Asp Val Gly Ile Pro
275 280 285

Leu Asp Gly Glu Thr Glu Glu Leu
290 295

<210> 5
<211> 1261
<212> DNA
<213> Homo sapiens

<400> 5
cggtcacagc agctcagtcc tccaaagctg ctggacccca gggagagctg accactgcc 60
gagcagccgg ctgaatccac ctccacaatg ccgccttcag gaaccccgcc ccctaataag 120
aagaggaaat ccagcaagct gatcatggaa ctcactggag gtggacagga gagctcaggc 180
ttgaacctgg gcaaaaagat cagtgtccca agggatgtga ttttggagga actgtcgctg 240
cttaccaacc ggggctccaa gatgttcaaa ctgcggcaga tgagggtgga gaagttatt 300
tatgagaacc accctgtatgt tttctctgac agctcaatgg atcacttcca gaagttcctt 360
ccaacagtgg ggggacagct gggcacagct ggtcaggat ttcatacag caagagcaac 420
ggcagaggcg gcagccaggc agggggcagt ggctctgccg gacagtatgg ctctgtatcg 480
cagcaccatc tgggctctgg gtctggagct ggggttacag gtggtcccgc gggccaggct 540
ggcaaaggag gagctgtgg cacaacaggg gtttgtgaga caggatcagg agaccaggca 600
ggcggagaag gaaaacatat cactgtttc aagacctata ttccccatg ggagcgagcc 660
atgggggttg accccacgca aaaaatggaa cttggcattt acctgtggc ctatgggccc 720
aaagctgaac ttcccaaata taagtccctt aacaggacgg caatgcccta tggtgatat 780
gagaaggcct ccaaacgcac gaccccttccag atgcccacgt ttgacccctgg gcccttgctg 840
agtgaacccc tggctctcta caacaaaaac ctctccaaaca ggcccttcttt caatcgaacc 900
cctattccct ggctgagctc tggggagcct gttagactaca acgtggatat tggcatcccc 960
ttggatggag aaacagagga gctgtggatgt gttcccttct ctgatggca tcattcccc 1020
tctctggctc caattttggag agggatgtct gaggatcaggat ccccccattgt taatccatgt 1080
tccttatggg aatggagggaa aaaaggagag atctacccctt ccattccctta ctccaagtcc 1140
ccactccacg catcccttccct caccaactca gagctccctt tctacttgct ccatatggaa 1200
cctgctcgat tatggatatt ntctgccacc agtaacagtc aataaacttc aaggaaaatg 1260
a 1261

<210> 6
<211> 299
<212> PRT
<213> Homo sapiens

<400> 6
Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Lys Arg Lys Ser Ser
1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Gln Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu

35

40

45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln			
50	55	60	
Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser			
65	70	75	80
Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly			
85	90	95	
Gln Leu Gly Thr Ala Gly Gln Gly Phe Ser Tyr Ser Lys Ser Asn Gly			
100	105	110	
Arg Gly Gly Ser Gln Ala Gly Gly Ser Gly Ser Ala Gly Gln Tyr Gly			
115	120	125	
Ser Asp Gln Gln His His Leu Gly Ser Gly Ser Gly Ala Gly Gly Thr			
130	135	140	
Gly Gly Pro Ala Gly Gln Ala Gly Lys Gly Gly Ala Ala Gly Thr Thr			
145	150	155	160
Gly Val Gly Glu Thr Gly Ser Gly Asp Gln Ala Gly Gly Glu Gly Lys			
165	170	175	
His Ile Thr Val Phe Lys Thr Tyr Ile Ser Pro Trp Glu Arg Ala Met			
180	185	190	
Gly Val Asp Pro Gln Gln Lys Met Glu Leu Gly Ile Asp Leu Leu Ala			
195	200	205	
Tyr Gly Ala Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr			
210	215	220	
Ala Met Pro Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe			
225	230	235	240
Gln Met Pro Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val			
245	250	255	
Leu Tyr Asn Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro			
260	265	270	
Ile Pro Trp Leu Ser Ser Gly Glu Pro Val Asp Tyr Asn Val Asp Ile			
275	280	285	
Gly Ile Pro Leu Asp Gly Glu Thr Glu Glu Leu			
290	295		

<210> 7

<211> 982

<212> DNA

<213> Mus musculus

<400> 7

attcggcaca tgggatcgag ggaccatgcc gttccaggtt caaggataaa acccattggg 60
ccatagtgcc gtcatttcc acttcagtg cttctcca caattggat tcacccctgc 120
tggaaaagcgc acgctgacag caa~~g~~ggaaaca aaaaactatg ctatcacata gtccatgg 180
gaagcaaagg aaacagcaag catcagccat cacgaaggaa atccatggac atgatgttga 240
cgccatggac ctggggaaaa aagtttagcat ccccagagac atcatgatag aagaattgtc 300
ccatTTcagt aatcg~~t~~gggg ccaggctgtt taagatgcgt caaagaagat ctgacaata 360
cacctt~~g~~aa aatttccagt atgaatctag agcacaatt aatcacaata tcgccatgca 420
gaatgggaga gttgatggaa gcaacctgga aggtggctca cagcaaggcc cctcaactcc 480
gcccaacacc cccgatccac gaagcccccc aaatccagag aacatcgac caggatattc 540
tggaccactg aaggaaattc ctcctgaaag gtttaacacg acggccgttc ctaagtacta 600
ccggtctcca tgggagcagg cgattggcag cgatccggag ctcctggagg ctttgtaccc 660
aaaactttc aagcctgaag gaaaagcaga actgcgggat tacaggagct ttaacagggt 720
tgccactcca ttggaggtt ttgaaaaagc atcaaaaatg gtcaaattca aagttccaga 780
tttgaacta ctgctgctga cagatcccag gttcttggcc ttgccaatc ctcttcggg 840
cagacgatgc tttaacaggg cgccaaaggg gtgggtatct gagaatatcc ccgtcgtgat 900
cacaactgag cctacagaag acgccactgt accggaatca gatgacctgt gagagggaa 960
ctggggatgc cacaggaagt tc 982

<210> 8

<211> 264

<212> PRT

<213> Mus musculus

<400> 8

Met Leu Ser His Ser Ala Met Val Lys Gln Arg Lys Gln Gln Ala Ser
1 5 10 15

Ala Ile Thr Lys Glu Ile His Gly His Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Ile Glu Glu Leu Ser
35 40 45

His Phe Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Glu Ser Arg Ala Gln
65 70 75 80

Ile Asn His Asn Ile Ala Met Gln Asn Gly Arg Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Gly Ser Gln Gln Gly Pro Ser Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Glu Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Arg Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Arg Ser Pro Trp Glu Gln Ala Ile Gly Ser Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Arg Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Lys Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Leu Ala Phe Ala Asn
210 215 220

Pro Leu Ser Gly Arg Arg Cys Phe Asn Arg Ala Pro Lys Gly Trp Val
225 230 235 240

Ser Glu Asn Ile Pro Val Val Ile Thr Thr Glu Pro Thr Glu Asp Ala
245 250 255

Thr Val Pro Glu Ser Asp Asp Leu
260

<210> 9

<211> 3330

<212> DNA

<213> Homo sapiens

<400> 9

gggacgccac gcaactctca gcttcccgac agaggtgtta atcttgaggg tctaagattc 60
cctccgtcct attgaggtcc catcctctca ggatgatccc caaggagcag aaggggccag 120
tcatggctgc catggggac ctcactgaac cagtcctac gctggacctg ggcaagaagc 180
tgagcgtgcc ccaggacactg atgatggagg agctgtcact acgcaacaac agaggtccc 240
tcctcttcca gaagaggcag cgccgtgtgc agaagttcac tttcgagtt gcagccagcc 300
agcgggcgtat gctggccgga agcgcagga ggaagggtac tggAACAGCG gagtcggggaa 360
cggttgccaa tgccaatggc cctgaggggc cgaactaccg ctcggagctc cacatttcc 420
cgccctcacc cggggcctca ctcgggggtc ccgaggcgc ccaccctgca gccgccccctg 480
ctgggtgcgt ccccccccccc agcgcctgg cgccaggcta tgccggagccg ctgaaggcg 540
tcccgccaga gaagttcaac cacaccgcca tccccaaagggt ctaccgctgc ccttggcagg 600
agtctgtcag ctaccggac taccagagcg atggccgaag tcacacccccc agccccaacg 660
actaccgaaa ttcaacaag accccgggtc catttggagg acccctcgat gggggcactt 720
ttcccaggcc aggcacccccc ttcatcccg agccctcag tggcttggaa ctccctccgtc 780
tcagacccag cttcaacaga gtggcccagg gctgggtccg taacctccca gagtccgagg 840
agctgttagcc ctagcctgaa tcttcagttc cccagtcgtg ggggcctggg aacatccgga 900
gccaagactt gtggacagca cttcacagtt gaagaaggc cttcacacac aaaacctgtat 960
tgcaaatggc ttcatgggtc accaagttca gtcgtcccaa aacatgggtg tgttcaaaa 1020
ttacctgggg atgttggcc aaatccagac aactggactg tcccagactt gcagcatcag 1080
agtctcctga gtcgaggaat ctgtatttt aatagcaacc agggccgggt gtcgtggctc 1140

acgcctgtca tcccagcact ttgggaggcc gaggcaggag gatcacctga ggtcaggagt 1200
 tttagagcca gtctggccaa aatagtggaa ccccgtcgct actaaaaata caaaaatgag 1260
 tcggacatgg tggtgcatgc ctgtaatccc agctacttgg gaggctgaga caggagaatc 1320
 acttgaacta ggaggcagag gttgcagtga gccagattg cgccactgca ccccgccctg 1380
 gacaacagag tgagactcct tctcaaaagt aaataaataa atagcaaccca gtactccagg 1440
 tgattccagc ataacttac catggttgt gtcattagga gtccacatcc acacctctgc 1500
 tcttcctgt tcctgttagt tacactcccc cggtgacagg gtgctactg gcaccccatc 1560
 ttccctgtgaa taactcaaata aattagaaaaa tgttcccttt actgagatgc agttggtctt 1620
 catctattca tgctctaaac agttcctaag cgctgactgt ggcctagaca ctgccaggcc 1680
 cgggcctcga ggaggaaaag acagttaggga agacattata gagcatgaag tcaccataat 1740
 tttccctaaa gcatgcttat tgacaattga ggaacaaagt gttgggagca gaagaaggag 1800
 tccctcaccc taggtgtgag atgggattct ggaagcttcc tgaaggatt gagtgggacc 1860
 ttgtgggagg cgtgagagtc catgaagggg gtgtgagggg gagggttattt ctggaaagtg 1920
 gaccagcatg tgcaaaaata tggaactgag cacgggtgca ggggtttctg cagaaggag 1980
 aaggctgtgc tagaggagcc agtgagggcc agcatgggt gggcttact aaggaaatgg 2040
 ggaagggttt agtgtgggt ctgtctgggt gctgtgtggg ggcctatattt gagaagggtt 2100
 atgccagaag ccaggaagcc tgcacggat gaggccatgg gaatggagag aaggggccac 2160
 ccaactggca cctaacacca caggtgcaaa gtgggggtct tattaagatt cttttttcc 2220
 actccattt ggcaggctg cttaaagtgg tggtgatgt gatgtatgt atggcagctt 2280
 tatatcgagt gcctcagtgc ttgggctggt agtagttct ctacatatct tatttctaatt 2340
 tctcagaaca accctgagag aaagatattt ttgtccccac tttacagatg tggatattt 2400
 ggccaaaagg aggaagtgac ttccagggg cagacaccaa atggaaatct gattccagt 2460
 gatgtctttt ttcaagtgcac tggtggtca atgcccactc gctctgaaat catctgact 2520
 tgcgtccctg cttggagtt tagaagttga gtgcaggctt gggagtcaga ctggatgggg 2580
 tagttctaa ctctgcact gctagccgga tgaacttgag caagtcattt cacatctccg 2640
 agcctctgtt tctccaagtg taagatgagg acaagtataa aacctcctt atgggtttgt 2700
 tgcgtccctg cttggagtt tagaagttga gtgcaggctt gggagtcaga ctggatgggg 2760
 actgctgctc taggctggaa aagttttct tgcactggat gcagcatgag aagctggctg 2820
 ctaagatgtc actgggggtc actaaagctg aagcctgaa gaaagcctct cattgctgta 2880
 gagctctccc tgcctctctc tctggggcg atggggaaagg tcaggagtcc agccattcc 2940
 cagggtgtgt gggatagcga ttgcattttc cttttgtct ggagttcac tcccttctg 3000
 ggtcccaagg gcccaatggc ctgacttttta gaattgctt caattgggtt tttctttga 3060
 atttgggggc tgccatttaa acccagggtt ccatgagctg aagaccagcc attcaagaat 3120
 ctgaaaagta gacaagagga ctccagttgc ctcaggttg ttctgctgt ctctggaaag 3180
 taactgcagc caccaggat gaaaaggagc ctggggggaa gaccactgca cccaaaacaa 3240
 atcctttctt cttctgagaa tgtgacttt tctgggtttg taaaaaagaa aaaaaaaaaaag 3300
 aatgctcatt gtaaaaaaaaaa aaaaaaaaaaaa 3330

<210> 10
 <211> 251
 <212> PRT
 <213> Homo sapiens

<400> 10
 Met Ile Pro Lys Glu Gln Lys Gly Pro Val Met Ala Ala Met Gly Asp
 1 5 10 15

Leu Thr Glu Pro Val Pro Thr Leu Asp Leu Gly Lys Lys Leu Ser Val
 20 25 30

Pro Gln Asp Leu Met Met Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
 35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ala Ala Ser Gln Arg Ala Met Leu Ala Gly Ser Ala Arg Arg
65 70 75 80

Lys Val Thr Gly Thr Ala Glu Ser Gly Thr Val Ala Asn Ala Asn Gly
85 90 95

Pro Glu Gly Pro Asn Tyr Arg Ser Glu Leu His Ile Phe Pro Ala Ser
100 105 110

Pro Gly Ala Ser Leu Gly Gly Pro Glu Gly Ala His Pro Ala Ala Ala
115 120 125

Pro Ala Gly Cys Val Pro Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala
130 135 140

Glu Pro Leu Lys Gly Val Pro Pro Glu Lys Phe Asn His Thr Ala Ile
145 150 155 160

Pro Lys Gly Tyr Arg Cys Pro Trp Gln Glu Phe Val Ser Tyr Arg Asp
165 170 175

Tyr Gln Ser Asp Gly Arg Ser His Thr Pro Ser Pro Asn Asp Tyr Arg
180 185 190

Asn Phe Asn Lys Thr Pro Val Pro Phe Gly Gly Pro Leu Val Gly Gly
195 200 205

Thr Phe Pro Arg Pro Gly Thr Pro Phe Ile Pro Glu Pro Leu Ser Gly
210 215 220

Leu Glu Leu Leu Arg Leu Arg Pro Ser Phe Asn Arg Val Ala Gln Gly
225 230 235 240

Trp Val Arg Asn Leu Pro Glu Ser Glu Glu Leu
245 250

<210> 11

<211> 913

<212> DNA

<213> Mus musculus

<400> 11

gtcggactgc aatagacaca caggccataa aactccagct tccccactga agtgttaatc 60
ttgggggtct gacatttctt cccatctact gtggcccccac caggatgatc cccaaaggagc 120
agaaggagcc agtgatggct gtccccgggg accttgcgtga accagtccct tcgctggacc 180
tgggaaagaa gctgagcgtg cctcaggacc taatgataga ggagctgtct ctacgaaaca 240
accgcggatc cctcctcttt cagaagaggc agcgccgggt gcagaagttt accttgagc 300
tatcagaaag tttgcaggcc atcctggcga gtagtgcccg agggaaagtg gctggcagag 360

cggcgcaggc aacggttccc aatggcttgg aggagcagaa ccaccactcc gagacgcacg 420
tgttccaggc gtcacctggg gaccccgga tcaccatct ggagcagcg gggactgggt 480
cgggtccgtag tccaagcgcc ctggcaccag gctatgcaga gcccttgaag ggcgtccac 540
cggagaagtt caaccacact gccatcccc aaggctaccg gtcccttgg caggagttca 600
ccagctacca agactactcg agtggcagca gaagtacac tcccatcccc cgagactatc 660
gcaacttcaa caagacccc gtgccattt gaggaccca cgtgagggag gccattttcc 720
acgcaggcac ccccttgc cggagtcct tcaagtggctt ggaacttctc cgcctcagac 780
ccaatttcaa cagggttgct cagggttggg tccggaagct cccggagtct gaggaactgt 840
agcctcagcc tgaagctaca attccctggg ctcaagaaac atgcttgtct tgaaaaaaaaa 900
aaaaaaaaaaa aaa 913

<210> 12
<211> 245
<212> PRT
<213> Mus musculus

<400> 12

Met Ile Pro Lys Glu Gln Lys Glu Pro Val Met Ala Val Pro Gly Asp
1 5 10 15

Leu Ala Glu Pro Val Pro Ser Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Ile Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ser Glu Ser Leu Gln Ala Ile Leu Ala Ser Ser Ala Arg Gly
65 70 75 80

Lys Val Ala Gly Arg Ala Ala Gln Ala Thr Val Pro Asn Gly Leu Glu
85 90 95

Glu Gln Asn His His Ser Glu Thr His Val Phe Gln Gly Ser Pro Gly
100 105 110

Asp Pro Gly Ile Thr His Leu Gly Ala Ala Gly Thr Gly Ser Val Arg
115 120 125

Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala Glu Pro Leu Lys Gly Val
130 135 140

Pro Pro Glu Lys Phe Asn His Thr Ala Ile Pro Lys Gly Tyr Arg Cys
145 150 155 160

Pro Trp Gln Glu Phe Thr Ser Tyr Gln Asp Tyr Ser Ser Gly Ser Arg
165 170 175

Ser His Thr Pro Ile Pro Arg Asp Tyr Arg Asn Phe Asn Lys Thr Pro
180 185 190

Val Pro Phe Gly Gly Pro His Val Arg Glu Ala Ile Phe His Ala Gly
195 200 205

Thr Pro Phe Val Pro Glu Ser Phe Ser Gly Leu Glu Leu Leu Arg Leu
210 215 220

Arg Pro Asn Phe Asn Arg Val Ala Gln Gly Trp Val Arg Lys Leu Pro
225 230 235 240

Glu Ser Glu Glu Leu
245

human CAP-1

MLSHNTMMKQRKQQATAIMKEVHGNDVGMDLGKKVSI PRDIMLEELSHLSNRGARLFKM
60
RQRSDKYTFENFQYQSRAQINHSIAMQNGKVDGSNILEGGSQQAPLTPPNTPDPRSPPNP
120
DNIAPGYSGPLKEIPPEKFNTTAVPKYYQSFWEQAI SNDPELLEALYPLFKPEGKAELP
180
DYRSFNRVATPFGFEKASRMVKFKVPDFELLLTDPREMSEFNPLSGRRSFNRTPKGWI
240
SENIPIVITTEPTDDTTVPESEDL

FIG. 1A

mouse CAP-1

MLSHSAMVKQRKQQASAITKEI HGDVGMDLGKKVSI PRDIMIEELSHFSNRGARLFKM
60
RQRSDKYTFENFQYESRAQINHNIAQMONGRVDGGSNILEGGSQQGPSTPPNTPDPRSPPNP
120
ENIAPGYSGPLKEIPPERNTTAVPKYYRSPWEQAIGSDPELLEALYPLFKPEGKAELR
180
DYRSFNRVATPFGFEKASKMVKFKVPDFELLLTDPRFALAFANPLSGRRCFNRAPKGWV
240
SENIPVVITTEPTEDATVPESDL

FIG. 1B

human CAP-2

MPLSGTPAPNKKRKSSKLTIMELITGGQESSGLNLGKKISVPRDVMLEELSLLTNRGSKMF
60
KLRQMRVEKEFIYENHPDVFSDDSSMDHFQKFLPTVGGQLGTAGQGF SYSKSNGRGGSQAGG
120
SGSAGQYGSDDQQHHLGSAGGTGGPAGQAGRGAAGTAGVGETGSDQAGGEGKHKITV
180
FKTYISPWERAMGVDPQQKMELGIDLLAYGAKAELPKYKSFNRTAMPYGGYEKASKRMTF
240
QMPKFDLGPLLSEPLVLYNQNOLSNRPSFNRTIPWLSSEGEPEVDYNVDIGIPILDGETEEL

FIG. 1C

mouse CAP-2

MPLSGTPAPNKKRKSSKLTIMELITGGGRESSGLNLGKKISVPRDVMLEELSLLTNRGSKMF
60
KLRQMRVEKEFIYENHPDVFSDDSSMDHFQKFLPTVGGQLETAGQGF SYGKGSSEGGQAGSSG
120
SAGQYGSDRHQQGSGFGAGGSGGQQAGGGAPGTVGLGEPGSGDQAGGDGKHVTVFKT
180
YISPWDRAAMGVDPQQKVELGIDLLAYGAKAELPKYKSFNRTAMPYGGYEKASKRMTFQMP
240
KFDLGPLLSEPLVLYNQNOLSNRPSFNRTIPWLSSEGEHVVDYVGIPILDGETEEL

FIG. 1D

FIG. 1E

human CAP-1

10 20 30 40 50 60 70 80 90 100
 GTCCCCAGGTTCAAGGATAAANAAAATCAGGCCAAGTGCATCCATAGTCATCTCCAGAGTCTTCCCTACAAACTGGGATTATCCCCTGGCTMAAAGA
 CAGGGTCTCAAGTCCATTGGGTAGCTGGGTTAGGTACAGGAGGTTCTCAGAAGGAGGTTGTTGACCTTAAGTGCGGACTTCTCAGGTA
 110 120 130 140 150 160 170 180 190 200
 CACAATCTAACAGCAAGGAACAAAAAAACATGCTATCACATAATACATGATGAAGCAGAGAAAACACCAAGCAGCACGCCATCATGAAGGAAGTCCAT
 GTGTTAGATGTCGTTCCCTGTTGGTAGCTAGTAGTGTATTATGATACTACTCTGCTCTTGTGCTGCGTAGTACTCTCTTCAGGTA
 210 220 230 240 250 260 270 280 290 300
 GGAATGATGTTGATGGCATGCCGACCCAAAAGGCTGACGATCCCAGAGACATCATGGAGAAGATTATCCCATCTCGTAGTACCCGTTGGCCGCG
 CCTTTACTACAACTACCCGACTCGGACCGTTTCCAGCTGCTAGGGGCTCTGTAGTACAACTCTTAATAGGGTAGACTCATGGCACCCAGGTCG
 310 320 330 340 350 360 370 380 390 400
 TATTTAAGATGGCTCAAGAACAGATCTGACAAACATTTGAGAATTTCTAGTCAATCTAGAGCACAAATAATCAGCTATTGCTATGAGAATGG
 ATAAATCTACCGCAGTTCTTAGCTAGTGTAACTTTAAAGGCTAGTAGTGTGTTTATAGTGTCTACGATACCGTCTTAC
 410 420 430 440 450 460 470 480 490 500
 GAAAGTGGATGGAAGTAACCTGGAGGTGGTGCAGCAAGGCCCTTGACTCTCCAACACCCAGATCCACGAGGCCCTCAAATCCAGAACACATT
 CTTCACCTACCTTCACTGAAACCTTCCACCAACCGCTGTCGGGGAACTTGAGGAGGGTTGTGGGCTCTAGGTGCTTCGGGAGGTTAGGCTGTTGAA
 510 520 530 540 550 560 570 580 590 600
 GCTCCAGGATATTCTGGACCACTGAGGAATTTCTCTGAAACACCCAGCTGCTCTAGTACTATCATCTCCCTGGGAGAACCCCTGGTGGTA
 CGAGGCTCTATAAGGCTGGTACTCTTAAAGGAGACTTTAGTGTGTTGACAGGGATCTAGTATAGGGACCCCTGGTGGTA
 610 620 630 640 650 660 670 680 690 700
 GCAATGATCCGGAGCTTTAGGGCTTATATCTAACTTTCAACCTGAGGAAGGAGCAACTGGCTGATTACAGGAGCTTAAACAGGGTTGGCG
 CGTTACTAGGCTCGAAATCTCCGAAATAGGATTGAAAGTGTGGACTCTCTCTGGTCTGACGGACTAATGCTCCGAAATTTGGCCACCGGTC
 710 720 730 740 750 760 770 780 790 800
 ACCATTGAGGGTTTGTGAAAGACATCAAGATGGTAAATTAAAGTCTCAGATTTGAGCTACTATTGCTAACAGATCCAGGTTATGCTCTTGTG
 TGGTAAACCTCAAACTTTCTGAGTCTTACCAATTAAACGCTAAACTCGATGATAACGATTTGCTAGGGTCCAAATACAGGAAACAG
 810 820 830 840 850 860 870 880 890 900
 AAATCCCTTCTGGCAGACGGCTTAACTAGGACTCTTCAAGGATGATATCTGAGAATATTCTCTATAGTGTAAACACCGAACCTACAGATGATCCA
 TTAGGGGAAAGACCTGCTCCAGGAAATTCTCTGAGTCTTACCTAGACTCTTAAAGGATATCACTATTGTGGCTGGATGCTACTATGGT
 910 920 930 940 950 960 970 980 990 1000
 CTGTACCAAGATCAGAAAGCCTATGAAAGAAAGTTGATGTCGCCACATAAAACTCTGAATATAAAACTGCTGTTCTACTATTAAACTACTGGCAAG
 GACATGGCTTACTGCTCTGGAGTACTTTCTACACAGGTTGAGCTTAACTAGTGTAACTTACAGGATGACGATGATAAAATGGTGTGACCGTTC
 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
 CACTTCGATTTCTAGTGTAGCAACAACTACAAATTAGTGTGTTCTCTGACATTCACTTCACTCAGATCAAAACTAAATAACAAATTAGAA
 GTGACGCTAAAAGTAATCTCGTGTGTTATCGTAAATCACTAAAGGAAAGACTGTAAGTTAAAGGATAGCTGTTAGTGTGTTATGTTAATCTT
 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200
 ATCTTACTTAAACCTTAACTACTCTGCTCTCATCTAAATTGTTTACCTGGTTAAAGGATCAGATGTTACTCTGCTGAAACAGGTTCTAGTAC
 TAAAGTAATTTGAAATTGAGTGAACAGAGTAAGTATAACAAAGATGAGGCAAAATTCTTCTAGGTCTATAATGACGTTTCAAGTCTACC
 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300
 AAAAGTAATTGACAGCTTACCTTGTCTATTTTATGATTATTACAGTGTAACTTTCTAGTGAATCTAGATAAAACAGGAGGAGATGAT
 TTCTCATTACTGTCGAGGTAACAGAGTAATATAATGTCACATCTAAAGTCTTACCTAGTGTGTTTATGCTTCTCTCTATAC
 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400
 AAGACCTTACAGAGTTCTGGGATGAAAGCTATGGAGATGATGTCACAAATGTTAGTGTGAGGAAATTGTTGGTGTGCTCTCTGGTACCCA
 TTCTGGATAAGTCACAGTAGACCCCTACTTCGATACCTCTACTACAGTGTAACTACCTCTTACCAACACAGGAAACGACTCTG
 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500
 TGAGAAATAATGTTGAGTGTGCTTCTCTTCTACTCTACTCTAGTAACTCTAAAGTGTGTTCTGACTCTTCAATAGTGTGTTGAATCTAGTAA
 ACTCTTCTTATACAGAACACTCTAGAAGAAATGAGTGTGAGAATCTTACGAAAGTGTGAAAGTTACAACTTACAGTGTGTTTATGCTTCTCT
 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
 ATTCTGGGATATCTCCAAAATCTACCTGTTTATATCTTACCTGGGATTAAGTGTAACTTACAGTGTGAGGAGACTGAGTGTGAGGGACCTGAGTAC
 TAAGACCTTATAGGAGTTAAGTGTAACTTACAGTGTGAGGAGACTGAGTGTGAGGGACCTGAGTGTGAGGGACCTGAGTAC
 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700
 GTTTTGGGACCAAGGTTGGCCAGAATTCAGTTTCAACAAATCCAACTGCTGTCATTGTTATGTCACCTTATGTTGCTGTTCTGAAAGAGTAAG
 CAAATTCCTGGTCCACAGGGCTTAAAGTCAAGTGTGTTAGGGTACGACAGCTAACTAAACAGTGTGAAATACACGTAAGAATCTCTCATTC
 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800
 AACAAATAAGTACCGTAAATACATATAACATCTGGTGTGAGGAGGAGGAAAGAGTGTGAAATTTGAGGTTGAGGAGGAGGAGGAGGAGGAGGAG
 TTGTTTATTCAGTGTGCTTATATGTTATTTGTTAGTGTGAGTACACAAACT
 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900
 TTAAATCTGTTAAGGCTCAAGTGTGGGAGTACATGGGAGTACATGCTTGGAGACACAAACAAAAGGGCTGAGAGTCTGAAAGCAATGAGCACA
 ATTAAAGACATCTAGGAGTTCTGACCCCTACTGTCACAAATCTGTTGTTTGTGTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT
 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
 TCTATCGTAATATATGTAATATATGACATAAAAGACACAAACTAAATAAAAGTGTAGTTATCTAAATATGAAATCTGAAAGCATAAGCATAATA
 AGATAGCATTATATACATTTACATCTGTTTCTGTTTCTGTTTCTGTTTCTGTTTCTGTTTCTGTTTCTGTTTCTGTTTCTGTTTCTGTTTCTGTT
 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
 CTTATCGAAATCTGAACTTCTCCCTTCACTTCACTGTTAGTGTGAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGT
 GAATCTTCTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAG
 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200
 ATCGATAAGTTAGGAGATAGGAGAAGGGACTCTGTTAGTGTGAAATACAGGAACTTACAGGAACTTACAGGAACTTACAGGAACTTACAGGAA
 TAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAG
 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300
 GTGGAACTGGTGTGACTGTTAATCATCATCTAGACTGTTAGTGTGAGGAAATTTTAAAGGATCTTAAAGGATCTTAAAGGATCTTAAAGGATCT
 CACCTTCACCCACTGACAAATTAGTGTGAGTGTGACAACTTACCTTAAAGGATCTTAAAGGATCTTAAAGGATCTTAAAGGATCTTAAAGGATCT
 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400
 CAAAGTATATTTAT
 GTTCTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAG
 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500
 TTTAAATCTACTTACACCCCTAGACACATTTGAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAG
 AAAATTTACTTACACCCCTAGACACATTTGAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAGTGTGTTAG
 2510 2520 2530
 TATTAAAAA

FIG. 2A

mouse CAP-1

10 20 30 40 50 60 70 80 90 100
 ATTCGGCACATGGGATCGAGGGACCATGCCGTTCCAGGTCAAGGATAAAAACCCATTGGGCCATAGTGGCGTCATATTCACCTTCAGTGCCCTCTCCA
 TAAGCGGTACCCCTACGCTCCCTGGTACGGCAAGGTCAAGTCCATTGGTAACCCGTATCACGGCAGTATAAGGTGGAAGTCACGGAAAGGAGGT
 110 120 130 140 150 160 170 180 190 200
 CAATGGGATTACCCCCCTGCTGAAAAGGCCACGCTGACAGCAAGGGAAACAAAAAAACTATGCTATCACATAGTGGCATGGTAAGCAAGGAAACAGCAAG
 GTTAACCCCTAAGTGGGGACGACTTTCCGGTCCGACTGTGGTCCCTGGTTTGATACGATAGTGTATCACGGTACCCACTTCGTTCTTGTGCGTC
 210 220 230 240 250 260 270 280 290 300
 CTCACCCATCACGAGGAAATCCATGGCACATGATGGTACCCCATGGCACCTGGCAAAAAGTACCCATCCCAGAGACATCAGATAAGAAATTGTC
 GTAGTGGTAGTGCTTCTTGGTACCTGTACTACAACGTGGTACCTGGCCGGTTTCAATCGTAGGGGTCTGTAGTACTATCTCTAACAG
 310 320 330 340 350 360 370 380 390 400
 CCATTCAGTAATCGTGGGCCAGGGTGTAAAGATGGCTCAAAGAAGATCTGACAAATACACCTTTGAAATTTCACTGAACTAGAGCACAAATT
 GGTAAAGTCATTAGCACCCGGTCCGACAAATTCTACCGAGTTCTAGACTGTTATGTGGAACCTTAAAGGTCAACTTAGATCTGTCTTAA
 410 420 430 440 450 460 470 480 490 500
 AATCACAAATACGGCATGAGATGGGAGACTGTGATGGAGCAACCTGGAGGTGGCTCACAGCAAGGCCCTCAACTCCGCCAACACCCCGATCCAC
 TTAGTGTATAGGGTAGCTCTTACCCCTCACTACCCCTGGACCTTCAACCCGGAGTGTGGTCCGGAGGTGAGGGGGTTGTGGGGCTAGGTG
 510 520 530 540 550 560 570 580 590 600
 GAAGCCCCAAATCCAGAGAACATGCCACAGGATACTGGACCACTGAAGGAAATTCCTCTGAAAGGTTAACGAGGGCTTCAAGTACTA
 CTTCGGGGGTTAGGTCTCTGTAGCGTGGCTATAAGACTGGTACTCTCTTAAAGGAGACTTCCAAATTTGCTGCCCCAAGGATTGATGAT
 610 620 630 640 650 660 670 680 690 700
 CGGGTCCATGGGAGCAGGGATGGCAGGGATCGGGAGCTCCGGAGCTTGTACCCAAAATTTCAAGCTGAGGAAAGCAGAACTGGGGAT
 GCCAGAGGTACCCCTGCTCGTAAACGGTCTAGGGCTCGGACCTGGAAACATGGTTTCAAAAGTGGACTCTCTTGTGCTTGAACCCCTA
 710 720 730 740 750 760 770 780 790 800
 TACAGGAGCTTAAAGGGTGGCACTCCATTGGAGGTGAAAGCATAAAATGGTCAAATTCAAGTTCAGATTGAACTACTGTGCTGAA
 ATGCTCTGAAATTGCTAACGGTGAGGTAAACCTCAAATTTTGTAGTTTACAGTTAAAGTGTCTAAAACCTGATGACGACGACT
 810 820 830 840 850 860 870 880 890 900
 CAGATCCAGGTCTGGCTTGGCAATCTCTTGGCGAGACGGATGCTTAAACAGGGCCCAAAGGGTGGTATCTGAGAAATATCCCCGTGCTGAT
 GTCTAGGGTCAAGAACGGAAACGGTAGAGAGAAAGCCGCTGCTACGAAATGCTCCGGTTCCCCACCCATAGACTTATAGGGGCAAGCACT
 910 920 930 940 950 960 970 980
 CACAACGTGAGCTACAGAGAACGCCACTGTACCGGAATCAGATGACCTGTGAGAGGGAAAGCTGGGATGCCACAGGAAGTTC
 GTGTTGACTCGGATGTCTTGTGGTGCACATGGCTTACTGACACTCTCCCTGGACCCCTACGGTGTCTTCAAG

FIG. 2B

human CAP-2

CGGTACAGC AGCTCAGTCC TCCAAAGCTG CTGGACCCCCA GGGAGAGCTG ACCACTGCC GAGCAGCCGG CTGAATCCAC CTCCACAATG CCCCTCTCAG
100
GAACCCCGGC CCCTAATAAG AAGAGGAAT CCAGCAAGCT GATCATGGAA CTCACCTGGAG GTGGACAGGA GAGCTCAGGC TTCAACCTGG GCAAAAAGAT
200
CAGTGTCCTCA AGGGATGTGA TGTTGGAGGA ACTTGTCGCTG CTTACCAACC GGGGCTCCAA GATGTTCAA CTGGGGCAGA TGAGGGTGG AAGTTTATT
300
TATGAGAACCC ACCTGTATGT TTTCTCTGAC AGCTCAATGG ATCACTTCCA GAAGTTCTT CCAACAGTGG GGGCACAGCT GGGCACAGCT GGTCAGGGAT
400
TCTCATACAG CAAGACCAAC GGCAGAGGGCG GCAGCCAGGC AGGGGGCAGT GGCTCTGCCG GACAGTATGG CTCTGATCAG CAGCACCATC TGGGCTCTGG
500
GTCTGGAGCT GGGGGTACAG GTGGTCCCCC GGGCCAGGCT GGCAGAGGGAG GAGCTGCTGG CACACAGGGG GTTGGTGAGA CAGGATCAGG AGACCAGGCA
600
GGCGGAGAAG GAAAACATAT CACTGTGTTA AAGACCTATA TTTCCCCATG GGAGCGAGCC ATGGGGTTG ACCCCCAGCA AAAATGGAA CTTGGCATTC
700
ACCTGCTGGC CTATGGGGCC AAAGCTGAAC TTCCCAAATA TAAGTCCTTC AACAGGACGG CAATGCCCTA TGGTGGATAT GAGAAGGCCT CCAACGCAT
800
GACCTTCCAG ATGCCCAAGT TTGACCTGGG GCCCTTGCTG AGTGAACCCC TGGTCCCTTA CAACCAAAAC CTCTCCAACA GGCCTCTTT CAATCGAACC
900
CCTATTCCTT GGCTGAGCTC TGGGGAGCCT GTAGACTACA ACGTGGATAT TGGCATCCCC TTGGATGGAG AACAGAGGA GCTGTGAGGT GTTCCCTCT
1000
CTGATTTGCA TCATTTCCCCC TCTCTGGCTC CAATTTGGAG A

FIG. 2C

mouse CAP-2

100
GCCGGGGAGA GCGGACCAAC AACTGAGCAG CTGGTCAGAT CCACCTCCAC CATGCCACGC TCAGGAACCC CGGGCCCTAA CAAGAGGAGG AAGTCAGCA
200
AACTGATTAT GGACCTCACT GGAGGTGCCCG CGGAGAGCTC AGCCCTGAAC CTGGCCAAGA AGATCAGTGT CCCAAGGGAT GTGATGTTGG AGGAGCTGTC
300
CCTTCTTACC AACCGAGGCT CCAAGATGTT CAAGCTACCG CAGATGCCGG TGGAGAAATT TATCTATGAG AATCACCCCC ATGTTTCTC TGACAGCTCA
400
ATGGATCACT TCCAGAAGTT TCTTCCACA GTGGGGAGAC AGCTGGAGAC AGCTGGTCAG GGCTCTCAT ATGGCAAGGG CAGCACTGGA GGCCAGGCTG
500
GCAGCAGTGG CTCTGCTGGA CAGTATGGCT CTGACCGTCA TCAGCAGGGC TCTGGTTTG GAGCTGGGG TTCAGGTGGT CCTGGGGCCC AGGCTGGTGG
600
AGGAGGAGCT CCTGGCACAG TAGGGCTTGG AGAGCCCGGA TCAGGTGACC AGGCAGGTGG AGATGGAAAA CATGTCACTG TGTTCAAGAC TTATATTCC
700
CCATGGGATC GGGCCATGGG GGTTGATCCT CAGCAAAAG TGGAACCTGG CATTGACCTA CTGGCATAACG GTGCCAAAGC TGAACCCCC AAATATAAGT
800
CCTTCAACAG GACAGCAATG CCCTACGGTG GATATGAGAA GCCCTCCAAA CGCATGACCT TCCAGATGCC CAAGTTGAC CTGGGGCCTC TGCTGACTGA
900
ACCCCTGGTC CTCTACAAACC AGAACCTCTC CAACAGGCCT TCTTCAATC GAACCCSTAT TCCCTGGTTG AGCTCTGGGG AGCATGTAGA CTACAACGTG
1000
GATGTTGGTA TCCCCTTGGA TGGAGAGACA GAGGAGCTGT GAAGTGCCTC CTCCCTGTCAT GTGCATCATT TCCCCCTCTC GGTTCCAATT TGAGAGTGG
1100
TGCTGGACAG GATGCCCAAATCTC AGTATCTTG TGGCAATGGA GGGTAAAGGG TGGGGTCCGT TGCCCTTCCA CCCTCAAGT CCCTGCTCCG
AAGCATCCCT CCTCACCAAGC TCAGAGCTCC CATCCTGCTG TACCATATGG AATCTGCTCT TTTATGGAAT TTCT

FIG. 3

FIG. 4A

FIG. 4C

FIG. 4B

FIG. 4D

FIG. 4E

FIG. 5A

FIG. 5B

7

FIG. 6A

FIG. 6B

FIG. 6C

BEST AVAILABLE COPY

FIG. 8

Calsarcin-3

BEST AVAILABLE COPY

FIG. 9

BEST AVAILABLE COPY

FIG. 10

FIG. 11

BEST AVAILABLE COPY

FIG. 12

BEST AVAILABLE COPY

ClustalW Formatted Alignments

calsarcin-3	1	M P . . K Q P M A G D L T P V P T I D L G K R S V P D M F E I S I R N N R	47
calsarcin-2	1	N P L S C T P A P N K R S S K M E T G G Q F S S G I N L G K R S V P R D M I E I S I L I N R	55
calsarcin-1	1	N L S H N T M V K Q Q A M K E H G . N V D G D L G K R S P R D M L E I S H L S N R	53
calsarcin-3	48	G S L L F Q K R Q R R V Q K F T F E L A A S Q R A M L A G S A R R K V G T V A N A N G P E G P N Y	102
calsarcin-2	56	G S K N F K R Q N R V Q K F I E N H P D V . F S D S M D B F Q K F T P V G C O T G Q Q F S . Y S	108
calsarcin-1	54	G K R L F K R Q R R S D K V T F E N . . . F Q Y Q S R A Q I N H S I M Q N G K V D . . . G . . .	94
calsarcin-3	103	R S E L I F P A S P G A S L Q G P E G H P A A P A G C V P S P S A A P G Y E P I R O P P . . .	152
calsarcin-2	109	K S N Q S G G S Q Q G G S Q Q H H L G . . . S C G A Q G T Q G P A O Q A G K O G A A G	158
calsarcin-1	95	S N L E G G S Q Q . . . A P L P P N T P B P R S P F N . . . F D N A P G Y S G P L K T P P . . .	136
calsarcin-3	153 E K F N U T A P K G Y Q C P W Q E F S Y R D Y Q S D G R S	183
calsarcin-2	159	T T Q V G E T Q S G D Q A G G E G K H I I V F K T Y I S P W E R A G V D P Q Q K M E L G I D E L A Y Q A K A	213
calsarcin-1	137 E K F N T A V P K Y Y Q S P W E Q A S N D P E L L E A L Y P K L F K P E G K A	177
calsarcin-3	184	H T T P S P N D Y R N F N X T P P F G G P L V G G . . . T F P P R P . . . G T P F I T E P S Q I E L F R L R	231
calsarcin-2	214	E I P . . . K Y S F N R T A P P G G E K A S S R N T F O V P K F D L G P L L S E P L V L N G N E S R	265
calsarcin-1	178	E I P . . . D Y R S F N R V A T P F G G E K A S R M A K F K V P D F E L L L E T D P R F M S E N N P L S R	229
calsarcin-3	232	P S F N R V A Q G W R N L P E S . . . E F L	251
calsarcin-2	266	P S F N R T P I P W S S G E P D Y N V D I G I P L D G . E E F L	299
calsarcin-1	230	R S F N R T P R G W S E N I P V I T T E P T D D T T V P F F D L	264

FIG. 13