under Graduate Hon

SetTheory 7

白永乐

202011150087

202011150087@mail.bnu.edu.c

2023年12月28日

SPETION. For cardinal λ , we cansider $\aleph_{\lambda+\omega}$. Easily $\operatorname{cf}(\aleph_{\lambda+\omega})=\operatorname{cf}(\lambda+\omega)=\operatorname{cf}(\omega)=$ $\aleph_0 < \aleph_{\lambda+\omega}$, and $\aleph_{\lambda+\omega} \ge \lambda + \omega \ge \lambda$.

ROBEM I Prove that there are arbitrarily large singular cardinals

SOUTHON. For cardinal
$$\lambda$$
, we let $x_0 = \lambda, x_{n+1} = \aleph_{x_n}$. Now consider $\kappa = \sup_{n \in \omega} x_n$. Easily κ is limit ordinal, so $\aleph_{\kappa} = \sup_{\alpha < \kappa} \aleph_{\alpha} = \sup_{n \in \omega} \aleph_{x_n} = \sup_{n \in \omega} \aleph_{x_{n+1}} = \kappa$.

BOBEM II There are arbitrarily large singular cardinals \aleph_{α} such that $\aleph_{\alpha} = \alpha$.

And since
$$\kappa = \bigcup_{n \in \omega} x_n$$
, we get $\mathrm{cf}(\kappa) \leq \omega$. Easily $\kappa \geq x_2 = \aleph_{\aleph_{\lambda}} \geq \aleph_{\aleph_0} > \omega$. So we get $\kappa > \mathrm{cf}(\kappa)$. So κ is singular.

2.
$$\operatorname{cf}(\aleph_{\alpha}) = \operatorname{cf}(\alpha)$$
 for limit ordinal α .
3. $\operatorname{cf}(\aleph_{\alpha+1}) = \aleph_{\alpha+1}$.

3.
$$\operatorname{cf}(\aleph_{\alpha+1}) = \aleph_{\alpha+1}$$
.

SOLITO: 1. First we prove
$$cf(\alpha+\beta) \leq cf(\beta)$$
. Consider $\theta : cf(\beta) \to \beta$ is unbound. Then we let $\tau : cf(\beta) \to \alpha + \beta, x \mapsto \alpha + \theta(x)$. Easily we get τ is unbound. So

we get $cf(\alpha + \beta) \le cf(\beta)$.

Second we prove
$$\operatorname{cf}(\alpha+\beta) \geq \operatorname{cf}(\beta)$$
. Consider $\theta : \operatorname{cf}(\alpha+\beta) \to \alpha+\beta$ is unbound.
Now we consider $B := \{x \in \alpha + \beta : x \geq \alpha\}$ and $A = \theta_{-1}[B]$. Easily we get $B \cong \beta$, and ordertype(A) $\leq \operatorname{cf}(\alpha+\beta)$. And $\theta \upharpoonright A : A \to B$ is unbounded, so

easily we get $cf(\beta) \le cf(\alpha + \beta)$.

Finally we get
$$cf(\alpha + \beta) = cf(\beta)$$
.
2. First we prove $cf(\aleph_{\alpha}) \leq cf(\alpha)$. Assume $\theta : cf(\alpha) \to \alpha$ is unbound. Consider

 $\tau: \mathrm{cf}(\alpha) \to \aleph_{\alpha}, x \mapsto \aleph_{\theta(x)}$. Since α is limit ordinal, we get $\aleph_{\alpha} = \sup_{\beta < \alpha} \aleph_{\beta}$. So we get τ is unbounded. So we get $cf(\aleph_{\alpha}) \leq \alpha$.

Second we prove $cf(\alpha) \leq cf(\aleph_{\alpha})$. Assume $\theta : cf(\aleph_{\alpha}) \to \aleph_{\alpha}$ is unbounded. Let $f: \mathbb{O}\mathrm{rd} \to \mathbb{O}\mathrm{rd}, f(x) := \min\{y \in \mathbb{O}\mathrm{rd} : \aleph_y \geq x\}. \text{ Let } \tau : \mathrm{cf}(\aleph_\alpha) \to \alpha, x \mapsto \alpha$

 $f(\theta(x))$. Since $\theta(x) < \aleph_{\alpha} = \sup_{\beta < \alpha} \aleph_{\beta}$, we get $\exists \beta < \alpha, \theta(x) < \aleph_{\beta}$. So we get $f(\theta(x)) \leq \beta < \alpha$. So τ is well-defined. Easily to get τ is unbounded. So we

get $cf(\aleph_{\alpha}) \leq cf(\alpha)$. Finally we get $cf(\aleph_{\alpha}) = cf(\alpha)$. **BOBEM** IV Assume GCH, prove that for cardinal $\lambda, \kappa > \omega$, we have:

$$\kappa^{\lambda} = \begin{cases} \kappa & \lambda < \operatorname{cf}(\kappa) \\ \kappa^{+} & \operatorname{cf}(\kappa) \leq \lambda \leq \kappa \\ \lambda^{+} & \kappa < \lambda \end{cases}$$
SPETION. Use MI to κ . For $\kappa = \omega$, when $\lambda = \omega$ we get $\kappa^{\lambda} = 2^{\omega} = \omega^{+}$. When

 $\lambda > \omega$, we get $\kappa^{\lambda} \geq 2^{\lambda} = \lambda^{+}$. And $\kappa^{\lambda} \leq (2^{\lambda})^{\lambda} = 2^{\lambda \times \lambda} = 2^{\lambda} = \lambda^{+}$. Now assume for $\alpha: \omega \leq \alpha < \kappa$ it's right, consider κ . • $\lambda < \operatorname{cf}(\kappa)$.

$$\alpha^{\lambda} = \begin{cases} \alpha & \lambda < \text{cf}(\alpha) \\ \alpha^{+} & \text{cf}(\alpha) \leq \lambda \leq \alpha. \end{cases}$$
 Anyway, since $\alpha, \lambda < \kappa$, we get $\alpha^{\lambda} \leq \kappa$. So we
$$\lambda^{+} \quad \alpha < \lambda$$

get
$$\kappa^{\lambda} \leq \kappa \sup_{\alpha < \kappa} \alpha^{\lambda} \leq \kappa \kappa = \kappa$$
.
• $\operatorname{cf}(\kappa) \leq \lambda \leq \kappa$.

Easily
$$\kappa^{\lambda} \leq \kappa^{\kappa} \leq 2^{\kappa \kappa} = 2^{\kappa} = \kappa^{+}$$
. Now we only need $\kappa^{+} \leq \kappa^{\lambda}$. Only need to prove $\kappa^{\mathrm{cf}(\kappa)} > \kappa$. If not, assume $f : \kappa \to {}^{\mathrm{cf}(\kappa)}\kappa$ is bijection. Assume

to prove
$$\kappa^{\operatorname{cf}(\kappa)} > \kappa$$
. If not, assume $f : \kappa \to {}^{\operatorname{cf}(\kappa)}\kappa$ is bijection. Assume $\theta : \operatorname{cf}(\kappa) \to \kappa$ is unbounded. Without loss of generality assume θ is injective. Let $\tau : \kappa \to \operatorname{cf}(\kappa), x \mapsto \min\{y \in \operatorname{cf}(\kappa) : \theta(y) \geq x\}$. Now consider $A_{\alpha} := \tau_{-1}[\alpha]$

for $\alpha < \mathrm{cf}(\kappa)$. Easily we get $\forall y \in \tau_{-1}[\alpha], \alpha > \theta(y)$. Since θ is injective, we get $\operatorname{card}(A_{\alpha}) \leq \operatorname{card}(\alpha) < \kappa$. Let $B_{\alpha} := \{f(x)(\alpha) : x \in A_{\alpha}\}$, then easily

$$\operatorname{card}(B_{\alpha}) \leq \operatorname{card}(A_{\alpha}) < \kappa$$
. Now consider $g : \operatorname{cf}(\kappa) \to \kappa, g(\alpha) := \min(\kappa \setminus B_{\alpha})$.
Since f is bijection, we get $\exists x \in \kappa, g = f(x)$. But $f(x)(\tau(x)) \in B_{\tau(x)}$, and $g(\tau(x)) = \min(\kappa \setminus B_{\tau(x)}) \notin B_{\tau(x)}$, contradiction! So we get $\kappa^{\lambda} \geq \kappa^{\operatorname{cf}(\kappa)} > \kappa$,

• $\kappa < \lambda$.

then $\kappa^{\lambda} > \kappa^{+}$.

 $\operatorname{card} P < 2^{\aleph_0}$

We get $\lambda^+ = 2^{\lambda} \le \kappa^{\lambda} \le 2^{\lambda\lambda} = 2^{\lambda} = \lambda^+$. So $\kappa^{\lambda} = \lambda^+$.

 \mathbb{R}^{OBEM} V Assume a linearly ordered set P has a countable dense subset, then

 $\mathcal{P}(A), x \mapsto \{y \in A : y < x\}$. Easily $\operatorname{card} \mathcal{P}(A) = 2^{\aleph_0}$, so we only need to prove f is injection. Assume f(x) = f(y). Without loss of generality assume $x \leq y$. If $x \neq y$, then we get x < y. Since A is dense, we get $\exists z, w \in A$ such that $x \leq z < w \leq y$. So we get $z \in f(y)$ but $z \notin f(x)$, contradiction! So we get x = y. So f is injective, so $\operatorname{card} P \leq 2^{\aleph_0}$. ROBEM VI Find the cardinal of all null sets of reals. SOUTHON. Let $\mathcal{A} \subset \mathcal{P}(\mathbb{R})$ is the set of all of null sets. Then we get $\operatorname{card} \mathcal{A} \leq$ $\operatorname{card} \mathcal{P}(\mathbb{R}) = 2^{\mathfrak{c}}$. Now we prove $\operatorname{card} \mathcal{A} \geq 2^{\mathfrak{c}}$. Consider $C \subset \mathbb{R}$ is the Canter set. We have C is null and $\operatorname{card} C = \mathfrak{c}$. So we get $\mathcal{P}(C) \subset \mathcal{A}$, then $\operatorname{card} \mathcal{A} \geq \operatorname{card} \mathcal{P}(C) =$ \mathbb{R}^{O} BEM VII Prove that \mathbb{N} is uncountable. SOLTION. Easily we have $\operatorname{card}^{\mathbb{N}}\mathbb{N}=\aleph_0^{\aleph_0}\geq 2^{\aleph_0}>\aleph_0$ is uncountable.

SOUTHON. Assume $A \subset P$ is a countable dense subset. Now consider $f: P \to P$