Discrete Math - T1

October 16, 2019

- 1. Determine whether each of the following sentences is a statement.
 - (a) y + 3 is a positive integer
 - i. NO
 - (b) 128 = 26
 - i. YES
 - (c) x = 26
 - i. NO
 - (d) Is 2 a positive number?
 - i. NO
- 2. Give the negation of the following statement.
 - (a) $2 + 7 \le 11$
 - i. 2 + 7 > 11
 - (b) 2+1=3
 - i. $2 + 1 \neq 3$
 - (c) 2 is an even integer and 8 is an odd integer.
 - i. 2 is NOT an even integer OR 8 is NOT an odd number
 - (d) Today is Wednesday
 - i. Today is NOT Wednesday
- 3. Let p, q, r be the propositions
 - p: You have a flu.
 - q: You miss the final exam.
 - r : You pass the course
 - (a) $p \lor q \lor r$
 - i. You have a flu OR you miss the final exam OR you pass the course.
 - (b) $(p \wedge q) \vee (\sim q \wedge r)$

- i. You have a flu AND you miss the final exam OR you DO NOT miss the final exam AND you pass the course.
- (c) $\sim p \wedge \sim q \wedge r$
 - i. You DO NOT have a flu, AND you DO NOT miss the final exam, AND you pass the course.
- 4. Let h: "John is healthy." w: "John is wealthy." s: "John is wise." Use the indicated letters and logical connectors to represent the following compound statements.
 - (a) John is healthy and wealthy.
 - i. $h \wedge w$
 - (b) John is healthy and not wise.
 - i. $h \wedge \sim s$
 - (c) John is healthy and wealthy but not wise.
 - i. $h \wedge w \wedge \sim s$
 - (d) John is not wealthy but he is healthy and wise.
 - i. $\sim w \wedge h \wedge s$
 - (e) John is either wealthy or healthy, or both.
 - i. $w \vee h$
 - (f) John is wealthy or he is healthy but not wealthy and healthy.
 - i. $w \vee h$
 - (g) John is neither healthy nor wealthy.
 - i. $\sim h \land \sim w$
 - (h) John is neither healthy, wealthy, nor wise.
 - i. $\sim h \land \sim w \land \sim s$
- 5. Determine the truth or falsity of each of the following statement.
 - (a) 2 > 3 and 3 is a positive integer.
 - i. False AND True $\equiv False$
 - (b) 2 < 3 or 3 is not a positive integer.
 - i. True OR False $\equiv True$
 - (c) 2 is a prime but 3 is not a prime.
 - i. $T \wedge F \equiv False$
 - (d) It is not true that 2 is not a prime or 3 is prime.
 - i. $\sim (F \vee T) \equiv False$
 - (e) It is false that 2 is prime or multiple of 4 (Ask later: $\sim T \vee F$)
 - i. $\sim (T \wedge F) \equiv True$.

6. Find the truth value of each proposition if p and r are true and q is false.

$$p = T$$
$$r = T$$
$$q = F$$

(a)
$$\sim p \wedge (q \vee r)$$

$$\sim T \wedge (F \vee T) \equiv \sim T \wedge T$$
$$\equiv F$$

(b)
$$p \wedge (\sim (q \lor \sim r))$$

$$\begin{split} p \wedge (\sim (q \vee \sim r)) &\equiv T \wedge (\sim (F \vee \sim T)) \\ &\equiv T \wedge (\sim F) \\ &\equiv T \wedge T \\ &\equiv T \end{split}$$

(c)
$$(r \land \sim q) \lor (p \land r)$$

$$(r \land \sim q) \lor (p \land r) \equiv (T \land \sim F) \lor (T \land T)$$
$$\equiv (T \land T) \lor T$$
$$\equiv T \lor T$$
$$\equiv T$$

(d)
$$(q \wedge r) \wedge (p \wedge \sim r)$$

$$(q \wedge r) \wedge (p \wedge \sim r) \equiv (F \wedge T) \wedge (T \wedge \sim T)$$
$$\equiv F \wedge (T \wedge F)$$
$$\equiv F \wedge F$$
$$\equiv F$$

 $7.\,$ Construct a truth table for the following compound statements.

(a)
$$(p \lor q) \lor (q \lor r)$$

	p	q	r	$(p \veebar q)$	$(q \veebar r)$	$(p \veebar q) \veebar (q \veebar r)$
	0	0	0	0	0	0
	0	0	1	0	1	1
	0	1	0	1	1	0
i.	0	1	1	1	0	1
	1	0	0	1	0	1
	1	0	1	1	1	0
	1	1	0	0	1	1
	1	1	1	0	0	0

(b) $(p \downarrow q) \land (q \downarrow r)$

	p	q	r	$(p \downarrow q)$	$(q\downarrow r)$	$(p\downarrow q)\wedge (q\downarrow r)$
	0	0	0	1	1	1
	0	0	1	1	0	0
	0	1	0	0	0	0
i.	0	1	1	0	0	0
	1	0	0	0	1	0
	1	0	1	0	0	0
	1	1	0	0	0	0
	1	1	1	0	0	0

(c) $(p|q) \wedge r$

	p	q	r	(p q)	$(p q) \wedge r$
	0	0	0	1	0
	0	0	1	1	1
	0	1	0	1	0
i.	0	1	1	1	1
	1	0	0	1	0
	1	0	1	1	1
	1	1	0	0	0
	1	1	1	0	0

(d) $(p|q) \vee (p|r)$

	p	q	r	(p q)	(p r)	$(p q) \vee (p r)$
	0	0	0	1	1	1
	0	0	1	1	1	1
	0	1	0	1	1	1
i.	0	1	1	1	1	1
	1	0	0	1	1	1
	1	0	1	1	0	1
	1	1	0	0	1	1
	1	1	1	0	0	0

8. Determine which of the pairs of statement forms are logically equivalent. Justify your answers using truth tables.

Note: The ideal solution is to place both the statements in one table. But we do not have enough space.

(a) $\sim (p \wedge (\sim (p \wedge q)))$ and $p \wedge (\sim q \wedge \sim p)$

	p	q	$(p \land q)$	$\sim (p \land q)$	$p \wedge (\sim (p \wedge q))$	$\sim (p \land (\sim (p \land q)))$
	0	0	0	1	0	1
i.	0	1	0	1	0	1
	1	0	0	1	1	0
	1	1	1	0	0	1

	p	q	$\sim q$	$\sim p$	$\sim q \wedge \sim p$	$p \wedge (\sim q \wedge \sim p)$
	0	0	1	1	1	0
ii.	0	1	0	1	0	0
	1	0	1	0	0	0
	1	1	0	0	0	0

iii.
$$(p \land (\sim (p \land q))) \not\equiv p \land (\sim q \land \sim p)$$

(b) $(p \downarrow p) \downarrow (q \downarrow q)$ and $p \land q$

	p	q	$(p \downarrow p)$	$(q \downarrow q)$	$(p\downarrow p)\downarrow (q\downarrow q)$	$p \wedge q$
	0	0	1	1	0	0
i.	0	1	1	0	0	0
	1	0	0	1	0	0
	1	1	0	0	1	1

ii.
$$(p \downarrow p) \downarrow (q \downarrow q) \equiv p \land q$$

(c) $(p \lor q) \land r$ and $(p \land r) \lor (q \land r)$

	p	q	r	$(p \veebar q)$	$(p \veebar q) \wedge r$	$(p \wedge r)$	$(q \wedge r)$	$(p \wedge r) \veebar (q \wedge r)$
	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0
	0	1	0	1	0	0	0	0
i.	0	1	1	1	1	0	1	1
	1	0	0	1	0	0	0	0
	1	0	1	1	1	1	0	1
	1	1	0	0	0	0	0	0
	1	1	1	0	0	1	1	0

ii.
$$(p \lor q) \land r \equiv (p \land r) \lor (q \land r)$$

9. Use truth table to determine each of the statement forms below is a tautology, contradiction or contingency.

(a)
$$((\sim p \land q) \land (q \land r)) \land \sim q$$

	p	q	r	$\sim p$	$(\sim p \land q)$	$(q \wedge r)$	$((\sim p \land q) \land (q \land r))$	$\sim q$	$((\sim p \land q) \land (q \land r)) \land $
	0	0	0	1	0	0	0	1	0
	0	0	1	1	0	0	0	1	0
	0	1	0	1	1	0	0	0	0
i.	0	1	1	1	1	1	1	0	0
	1	0	0	0	0	0	0	1	0
	1	0	1	0	0	0	0	1	0
	1	1	0	0	0	0	0	0	0
	1	1	1	0	0	1	0	0	0

ii.
$$\dots ((\sim p \land q) \land (q \land r)) \land \sim q \equiv c \text{ (contradiction)}$$

(b) $(\sim p \lor q) \lor (p \land \sim q)$

	p	q	$\sim p$	$(\sim p \lor q)$	$\sim q$	$(p \land \sim q)$	$(\sim p \vee q) \vee (p \wedge \sim q)$
	0	0	1	1	1	0	1
i.	0	1	1	1	0	0	1
	1	0	0	0	1	1	1
	1	1	0	1	0	0	1

ii.
$$(\sim p \lor q) \lor (p \land \sim q) \equiv t \text{ (Tautology)}$$

10. Simplify the following statements using law of logical equivalences.

(a)
$$(p \lor q) \land \sim (\sim p \land q)$$

$$(p \lor q) \land \sim (\sim p \land q) \equiv (p \lor q) \land (p \lor \sim q)$$

$$\equiv (p+q) (p+\bar{q})$$

$$\equiv pp + pq + pq + p\bar{q}$$

$$\equiv p + pq + p\bar{q}$$

$$\equiv p (1 + q + \bar{q})$$

$$\equiv p (1)$$

$$\equiv p$$

(b)
$$((p \lor q) \land (p \lor \sim q)) \lor q$$

$$\begin{split} ((p \lor q) \land (p \lor \sim q)) \lor q &\equiv ((p+q) \, (p+\bar{q})) + q \\ &\equiv (pp + pq + p\bar{q} + q\bar{q}) + q \\ &\equiv (p \, (1+q+\bar{q}) + 1) + q \\ &\equiv (p \, (1)) + q \\ &\equiv p + q \\ &\equiv p \lor q \end{split}$$

11. Use the law of logical equivalences to verify the following logical equivalences.

(a)
$$p \lor q \lor (\sim p \land \sim q \land r) \equiv p \lor q \lor r$$

i. LHS (Using a lot of OR distributive law)

$$p + q + \bar{p}\bar{q}r \equiv p + \bar{p}\bar{q}r + q$$

$$\equiv p + \bar{p}(\bar{q}r) + q$$

$$\equiv (p + \bar{p})(p + \bar{q}r) + q$$

$$\equiv 1(p + \bar{q}r) + q$$

$$\equiv p + (q + \bar{q}r)$$

$$\equiv p + ((q + \bar{q}) \cdot (q + r))$$

$$\equiv p + (q + r)$$

$$\equiv p + q + r$$

$$\equiv RHS$$

(b)
$$\sim (p \downarrow q) \equiv (\sim p | \sim q)$$

i. LHS

$$\begin{array}{c} \sim (p \downarrow q) \equiv \sim (\sim (p \vee q)) \\ \equiv p \vee q \end{array}$$

ii. RHS

$$\begin{split} (\sim p|\sim q) &\equiv \sim (\sim p \land \sim q) \\ &\equiv \sim (\sim p \land \sim q) \\ &\equiv (p \lor q) \text{ (DeMorgan's)} \\ &\equiv LHS \end{split}$$