Numerical Analysis assignment No. 3

B6TB1505 Daichi HAYASHI (Ohnishi Lab.)

Oct. 24th, 2019.

1 Assignment Content

To investigate Δx dependence of the Trapezoid method and the Simpson $\frac{1}{3}$ method. The governing equation (exact solution) is

$$I = \int_{3.1}^{3.9} \frac{1}{x} dx = \ln \left| \frac{3.9}{3.1} \right| = 0.229574441645... \tag{1}$$

2 Resultsit and Discussions

The results of both methods is shown as Table 1. I used Python code which was distributed in the class. And I investigated at $\max = 9, 51, 81, 201, 401, 801, 8001, 80001$.

Table 1 Results

Δx	$\log(\Delta x)$	imax	$\log(\varepsilon)$ of the Trapeziod	$\log(\varepsilon)$ of the Simpson $1/3$
0.1	-1.0	9	-4.50	-7.67
0.016	-1.80	51	-6.09	-10.8
0.01	-2.0	81	-6.50	-11.7
0.004	-2.40	201	-7.29	-13.3
0.002	-2.70	401	-7.89	-14.5
0.001	-3.0	801	-8.50	-16.1
0.0001	-4.0	8001	-10.5	-15.5
0.00001	-5.0	80001	-12.5	-16.0

The last 3 lines from the result of the Simpson method (under the single line), there is no decreasing of error. This is highly possible to be Machine Zero. Therefore, I don't plot the last 3 lines of result. I use just the 5 lines above.

From the 5 results, I made fitting line by using Least–squares method. In the method, the fitting line is written by y = Ax + b, and the parameter r is Correlation coefficient. The fitting result is shown as Table 2. Since both |r| > 0.999, the fitting is right.

Table 2 Fitting line parameters

	Trapezoid	Simpson $1/3$
A	1.994	4.028
В	-2.505	-3.618
\mathbf{r}	0.999995	0.99988

And plot result and fitting line are shown in Figure 1. From these result, the Simpson 1/3 method's slope is 2 times steeper, so Simpson 1/3 converges faster than Trapezoid.

Figure 1 Plots from results and fitting line.