WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUB	LISHED	UN	DER THE PATENT COOPERATIO	ON TREATY (PC1)
(51) International Patent Classification 5:		(11) International Publication Number:	WO 93/13225
C12Q 1/68, C07H 21/04	A1	(43) International Publication Date:	8 July 1993 (08.07.93)
(21) International Application Number: PCT. (22) International Filing Date: 21 December 19	/US92/11 992 (21.12	Ì	(81) Designated States: CA, JP, KR, E CH, DE, DK, ES, FR, GB, G PT, SE).	European patent (AT, BE, R, IE, IT, LU, MC, NL,
(30) Priority data: 07/813,585 23 December 1991 (2	3.12.91)	US	Published With international search report	
(71) Applicant: CHIRON CORPORATION [U Horton Street, Emeryville, CA 94608 (US).	S/US]; 4	560		
(72) Inventors: KOLBERG, Janice, A.; 131 Scotts Hercules, CA 94547 (US). URDEA, Mich Bunce Meadow Road, Alamo, CA 94507 (iael, S.;	ad, 100	·	
(74) Agents: KENNEDY, Bill et al.; Morrison & Page Mill Road, Palo Alto, CA 94304 (US	Foerster,).	755		
(54) Title: HTLV-1 PROBES FOR USE IN SOI	UTION I	РНА	SE SANDWICH HYBRIDIZATION	ASSAYS
(57) Abstract				
Novel DNA probe sequences for detection described. Amplified nucleic acid hybridization a	of HTLV ssays usin	-1 in	a sample in a solution phase sandwice probes are exemplified.	h hybridization assay are

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BJ BR CA CF CH CI CM CS CZ DE DK ST	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Cate d'Ivoire Canneroun Czechoslovakta C'zech Republic Germany Denmark Spain Fioland	FR GA GB GN GR HU IE IT JP KP KR LU MC MG MG MM	France Gabon United Kingdom Guinea Greece Hungary Ireland Italy Japan Denocratic People's Republic of Korea Republic of Korea Kazakhstan Liechtenstein Sri Lanka Luxembourg Monaco Madagasear Mali Mongolia	MR MW NL NO NZ PL PT RO RU SD SE SK SN SU TD TG UA US VN	Mauritania Malawi Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Slovak Republic Senegal Soviet Union Chad Togo Ukraine United States of America Viet Nam
--	--	---	---	--	---

HTLV-1 PROBES FOR USE IN SOLUTION PHASE SANDWICH HYBRIDIZATION ASSAYS

DESCRIPTION

10 Technical Field

5

20

This invention is in the field of nucleic acid hybridization assays. More specifically, it relates to novel nucleic acid probes for detecting HTLV-1.

15 Background Art

HTLV-1 is a human lymphotrophic retrovirus which causes adult T-cell leukemia/lymphoma and tropic spastic paraparesis/HTLV-1-associated myelopathy. These HTLV-1 associated diseases are endemic in Japan and the Caribbean, with sporadic occurrences in the U.S. Detection of HTLV-1 is typically done by immunological or polymerase chain reaction assays (see, e.g., Meytes, et

Commonly owned U.S. 4,868,105 describes a solution phase nucleic acid sandwich hybridization assay in which analyte nucleic acid is first hybridized in solution to a labeling probe set and to a capturing probe set in a first vessel. The probe-analyte complex is then transferred to a second vessel that contains a solid-

al., Lancet 336(8730):1533-1535, 1990).

ophase-immobilized probe that is substantially complementary to a segment of the capturing probes. The segments hybridize to the immobilized probe, thus removing the complex from solution. Having the analyte in the form of an immobilized complex facilitates

35 subsequent separation steps in the assay. Ultimately,

35

single stranded segments of the labeling probe set are hybridized to labeled probes, thus permitting the analyte-containing complex to be detected via a signal generated directly or indirectly from the label.

Commonly owned European Patent Application 5 (EPA) 883096976 discloses a variation in the assay described in U.S. 4,868,105 in which the signal generated by the labeled probes is amplified. The amplification involves the use of nucleic acid multimers. multimers are branched polynucleotides that are 10 constructed to have a segment that hybridizes specifically to the analyte nucleic acid or to a nucleic acid (branched or linear) that is bound to the analyte and iterations of a second segment that hybridize specifically to the labeled probe. In the assay 15 employing the multimer, the initial steps of hybridizing the analyte to label or amplifier probe sets and capturing probe sets in a first vessel and transferring the complex to another vessel containing immobilized nucleic acid that will hybridize to a segment of the 20 capturing probes are followed. The multimer is then hybridized to the immobilized complex and the labeled probes in turn hybridized to the second segment iterations on the multimer. Since the multimers provide a large number of sites for label probe attachment, the 25 signal is amplified. Amplifier and capture probe sequences are disclosed for Hepatitis B virus, Neisseria gonorrhoeae, penicillin and tetracycline resistance in N. gonorrhoeae, and Chlamydia trachomatis.

Commonly owned copending application Serial No. 558,897, filed 27 July 1990, describes the preparation of large comb-type branched polynucleotide multimers for use in the above-described solution phase assay. The combs provide greater signal enhancement in the assays than the smaller multimers.

Disclosure of the Invention

One aspect of the invention is a synthetic oligonucleotide useful as an amplifier probe in a sandwich hybridization assay for HTLV-1 nucleic acid comprising a first segment having a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid, and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide acid multimer.

Another aspect of the invention is a synthetic oligonucleotide useful as a capture probe in a sandwich hybridization assay for HTLV-1 nucleic acid comprising a first segment having a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid; and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase.

Another aspect of the invention is a solution sandwich hybridization assay for detecting the presence of HTLV-1 nucleic acid in a sample, comprising

(a) contacting the sample under hybridizing conditions with an excess of (i) an amplifier probe oligonucleotide comprising a first segment having a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) a capture probe oligonucleotide comprising a first segment having a nucleotide sequence that is substantially complementary to a segment of HTLV-1 nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

5

10

15

20

25

20

25

30

35

:

- (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;
- (c) thereafter separating materials not bound to the solid phase;
 - (d) contacting the product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;
 - (e) removing unbound multimer;
- (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
 - (h) detecting the presence of label in the solid phase complex product of step (g).

Another aspect of the invention is a kit for the detection of HTLV-1 nucleic acid in a sample comprising in combination

- (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment having a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;
 - (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment having a nucleotide sequence that is substantially complementary to a segment of HTLV-1 nucleic acid and a second segment that is substantially

complementary to an oligonucleotide bound to a solid phase;

(iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide; and

(iv) a labeled oligonucleotide.

10

20

25

30

35

5

Modes for Carrying Out the Invention

Definitions

"Solution phase nucleic acid hybridization

assay" intends the assay techniques described and claimed in commonly owned U.S. Patent No. 4,868,105 and EPA
883096976.

A "modified nucleotide" intends a nucleotide monomer that may be stably incorporated into a polynucleotide and which has an additional functional group. Preferably, the modified nucleotide is a 5'-cytidine in which the N⁴-position is modified to provide a functional hydroxy group.

An "amplifier multimer" intends a branched polynucleotide that is capable of hybridizing simultaneously directly or indirectly to analyte nucleic acid and to a multiplicity of polynucleotide iterations (i.e., either iterations of another multimer or iterations of a labeled probe). The branching in the multimers is effected through covalent bonds and the multimers are composed of two types of oligonucleotide units that are capable of hybridizing, respectively, to analyte nucleic acid or nucleic acid hybridized to analyte nucleic acid and to a multiplicity of labeled probes. The composition and preparation of such

FU1/ U374/ 11343

10

multimers are described in EPA 883096976 and U.S. Serial No. 558,897 filed 27 July 1990, the disclosures of which are incorporated herein by reference.

The term "amplifier probe" is intended as a branched or linear polynucleotide that is constructed to have a segment that hybridizes specifically to the analyte nucleic acid and iterations of a second segment that hybridize specifically to an amplifier multimer.

The term "capture probe" is intended as an oligonucleotide having a segment substantially complementary to a nucleotide sequence of the target DNA and a segment that is substantially complementary to a nucleotide sequence of a solid-phase-immobilized probe.

"Large" as used herein to describe the combtype branched polynucleotides of the invention intends a
molecule having at least about 15 branch sites and at
least about 20 iterations of the labeled probe binding
sequence.

"Comb-type" as used herein to describe the

structure of the branched polynucleotides of the
invention intends a polynucleotide having a linear
backbone with a multiplicity of sidechains extending from
the backbone.

A "cleavable linker molecule" intends a

molecule that may be stably incorporated into a

polynucleotide chain and which includes a covalent bond
that may be broken or cleaved by chemical treatment or
physical treatment such as by irradiation.

all nucleic acid sequences disclosed herein are
written in a 5' to 3' direction. Nucleotides are
designated according to the nucleotide symbols
recommended by the IUPAC-IUB Biochemical Nomenclature
Commission. All nucleotide sequences disclosed are
intended to include complementary sequences unless
otherwise indicated.

Solution Phase Hybridization Assay

The general protocol for the solution phase sandwich hybridizations is as follows. The analyte nucleic acid is placed in a microtiter well with an excess of two single-stranded nucleic acid probe sets: 5 (1) a set of capture probes, each having a first binding sequence substantially complementary to the analyte and a second binding sequence that is substantially complementary to nucleic acid bound to a solid support, for example, the well surface or a bead, and (2) a set of 10 amplifier probes (branched or linear), each having a first binding sequence that is capable of specific binding to the analyte and a second binding sequence that is capable of specific binding to a segment of the multimer. The resulting product is a three component 15 nucleic acid complex of the two probes hybridized to the analyte by their first binding sequences. The second binding sequences of the probes remain as single-stranded segments as they are not complementary to the analyte. This complex hybridizes to the immobilized probe on the 20 solid surface via the second binding sequence of the capture probe. The resulting product comprises the complex bound to the solid surface via the duplex formed by the oligonucleotide bound to the solid surface and the second binding sequence of the capture probe. Unbound 25 materials are then removed from the surface such as by washing.

The amplification multimer is then added to the bound complex under hybridization conditions to permit the multimer to hybridize to the available second binding sequence(s) of the amplifier probe of the complex. The resulting complex is then separated from any unbound multimer by washing. The labeled oligonucleotide is then added under conditions which permit it to hybridize to the substantially complementary oligonucleotide units of

30

WO 93/13225 PC1/USY2/11343

-8-

the multimer. The resulting immobilized labeled nucleic acid complex is then washed to remove unbound labeled oligonucleotide, and read.

2

The analyte nucleic acids may be from a variety of sources, e.g., biological fluids or solids, and may be 5 prepared for the hybridization analysis by a variety of means, e.g., proteinase K/SDS, chaotropic salts, etc. Also, it may be of advantage to decrease the average size of the analyte nucleic acids by enzymatic, physical or chemical means, e.g., restriction enzymes, sonication, 10 chemical degradation (e.g., metal ions), etc. ments may be as small as 0.1 kb, usually being at least about 0.5 kb and may be 1 kb or higher. The analyte sequence is provided in single-stranded form for analysis. Where the sequence is naturally present in 15 single-stranded form, denaturation will not be required. However, where the sequence may be present in double-stranded form, the sequence should be denatured. Denaturation can be carried out by various techniques, such as alkali, generally from about 0.05 to 0.2 M 20 hydroxide, formamide, salts, heat, enzymes, or combinations thereof.

The first binding sequences of the capture probe and amplifier probe that are substantially complementary to the analyte sequence will each be of at least 15 nucleotides, usually at least 25 nucleotides, and not more than about 5 kb, usually not more than about 1 kb, preferably not more than about 100 nucleotides. They will typically be approximately 30 nucleotides.

They will normally be chosen to bind to different sequences of the analyte. The first binding sequences may be selected based on a variety of considerations. Depending upon the nature of the analyte, one may be interested in a consensus sequence, a sequence associated

with polymorphisms, a particular phenotype or genotype, a particular strain, or the like.

ż

10

35

The number of different amplifier and capture probes used influences the sensitivity of the assay, because the more probe sequences used, the greater the signal provided by the assay system. Furthermore, the use of more probe sequences allows the use of more stringent hybridization conditions, thereby reducing the incidence of false positive results. Thus, the number of probes in a set will be at least one capture probe and at least one amplifier probe, more preferably two capture and two amplifier probes, and most preferably 5-100 capture probes and 5-100 amplifier probes.

Oligonucleotide probes for HTLV-1 were designed 15 by aligning the nucleotide sequences of the pol gene of HTLV-1 Japanese and Caribbean isolates and HTLV-2 available from GenBank. Regions of greatest homology between HTLV-1 isolates were chosen for capture probes, while regions of lesser homology were chosen as amplifier 20 Thus, as additional strains or isolates of HTLVprobes. 1 are made available, appropriate probes made be designed by aligning the sequence of the new strain or isolate with the nucleotide sequences used to design the probes of the present invention, and choosing regions of greatest homology for use as capture probes, with regions 25 of lesser homology chosen as amplifier probes. capture probes of the presently preferred configuration form two clusters, with the amplifier probes clustered between the two capture probe clusters. The nucleotide 30 sequences of the presently preferred probe sets are shown in the examples.

The second binding sequences of the capture probe and amplifier probe are selected to be substantially complementary, respectively, to the oligonucleotide bound to the solid surface and to a

Richardson and Gumport, <u>Nucl. Acids Res.</u> (1983) <u>11</u>:6167; Smith et al., <u>Nucl. Acids. Res.</u> (1985) <u>13</u>:2399; Meinkoth and Wahl, <u>Anal. Biochem.</u> (1984) <u>138</u>:267. The labels may be bound either covalently or non-covalently to the substantially complementary sequence. Labels which may be employed include radionuclides, fluorescers, chemiluminescers, dyes, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, enzyme subunits, metal ions, and the like. Illustrative specific labels include fluorescein, rhodamine, Texas red, phycoerythrin, umbelliferone, luminol, NADPH, α - β -galactosidase, horseradish peroxidase, alkaline phosphatase, etc.

5

10

30

35

The ratio of capture probe and amplifier probe to anticipated moles of analyte will each be at least stoichiometric and preferably in excess. This ratio is 15 preferably at least about 1.5:1, and more preferably at least 2:1. It will normally be in the range of 2:1 to 106:1. Concentrations of each of the probes will generally range from about 10⁻⁵ to 10⁻⁹ M, with sample nucleic acid concentrations varying from 10⁻²¹ to 10⁻¹² M. 20 hybridization steps of the assay will generally take from about 10 minutes to 20 hours, frequently being completed in about 1 hour. Hybridization can be carried out at a mildly elevated temperature, generally in the range from 25 about 20°C to 80°C, more usually from about 35°C to 70°C, particularly 65°C.

The hybridization reactions are usually done in an aqueous medium, particularly a buffered aqueous medium, which may include various additives. Additives which may be employed include low concentrations of detergent (0.01 to 1%), salts, e.g., sodium citrate (0.017 to 0.17 M), Ficoll, polyvinylpyrrolidone, carrier nucleic acids, carrier proteins, etc. Nonaqueous solvents may be added to the aqueous medium, such as dimethylformamide, dimethylsulfoxide, alcohols, and

WO 93/13225 PC1/U374/11343

-12-

formamide. These other solvents are generally present in amounts ranging from 2 to 50%.

The stringency of the hybridization medium may be controlled by temperature, salt concentration, solvent system, and the like. Thus, depending upon the length and nature of the sequence of interest, the stringency will be varied.

Depending upon the nature of the label, various techniques can be employed for detecting the presence of the label. For fluorescers, a large number of different fluorometers are available. For chemiluminescers, luminometers or films are available. With enzymes, a fluorescent, chemiluminescent, or colored product can be provided and determined fluorometrically, luminometrically, spectrophotometrically or visually. The various labels which have been employed in immunoassays and the techniques applicable to immunoassays can be employed with the subject assays.

Kits for carrying out amplified nucleic acid hybridization assays according to the invention will comprise in packaged combination the following reagents: the amplifier probe or set of probes; the capture probe or set of probes; the amplifier multimer; and an appropriate labeled oligonucleotide. These reagents will typically be in separate containers in the kit. The kit may also include a denaturation reagent for denaturing the analyte, hybridization buffers, wash solutions, enzyme substrates, negative and positive controls and written instructions for carrying out the assay.

The following examples further illustrate the invention. These examples are not intended to limit the invention in any manner.

5

10

15

20

25

EXAMPLES

Example I

Synthesis of Comb-type Branched Polynucleotide

This example illustrates the synthesis of a comb-type branched polynucleotide having 15 branch sites and sidechain extensions having three labeled probe binding sites. This polynucleotide was designed to be used in a solution phase hybridization as described in EPA 883096976.

All chemical syntheses of oligonucleotides were performed on an automatic DNA synthesizer (Applied Biosystems, Inc., (ABI) model 380 B). Phosphoramidite chemistry of the beta cyanoethyl type was used including 5'-phosphorylation which employed Phostel™ reagent (ABN).

Standard ABI protocols were used except as indicated.

Where it is indicated that a multiple of a cycle was used (e.g., 1.2 cycle), the multiple of the standard amount of amidite recommended by ABI was employed in the specified cycle. Appended hereto are the programs for carrying out cycles 1.2 and 6.4 as run on the Applied Biosystems Model

A comb body of the following structure was first prepared:

25 3'T₁₈(TTX')₁₅GTTTGTGG-5'

380 B DNA Synthesizer.

(RGTCAGTp-5')15

wherein X' is a branching monomer, and R is a periodate cleavable linker.

The portion of the comb body through the 15 (TTX') repeats is first synthesized using 33.8 mg aminopropyl-derivatized thymidine controlled pore glass (CPG) (2000 Å, 7.4 micromoles thymidine per gram support) with a 1.2 cycle protocol. The branching site nucleotide was of the formula:

10

15

20

where R² represents

25

For synthesis of the comb body (not including sidechains), the concentration of beta cyanoethylphosphoramidite monomers was 0.1 M for A, C, G and T, 0.15 M for the branching site monomer E, and 0.2 M for Phostel[™] reagent. Detritylation was done with 3% trichloroacetic acid in methylene chloride using stepped flowthrough for the duration of the deprotection. At the conclusion the 5' DMT was replaced with an acetyl group.

Cleavable linker R and six base sidechain extensions of the formula 3'-RGTCAGTp (SEQ ID NO:1) were synthesized at each branching monomer site as follows. The base protecting group removal (R² in the formula above) was performed manually while retaining the CPG support in the same column used for synthesizing the comb body. In the case of R² = levulinyl, a solution of 0.5 M hydrazine hydrate in pyridine/glacial acetic acid (1:1 v/v) was introduced and kept in contact with the CPG support for 90 min with renewal of the liquid every 15 min, followed by extensive washing with pyridine/glacial acetic acid (1:1 v/v) and then by acetonitrile. After the deprotection the cleavable linker R and six base sidechain extensions were added using a 6.4 cycle.

10

25

30

35

In these syntheses the concentration of phosphoramidites was 0.1 M (except 0.2 M R and Phostel* reagent; R was 2-(4-(4-(2-Dimethoxytrityloxy)ethyl-)phenoxy 2,3-di(benzoyloxy)-butyloxy)phenyl)ethyl-2-cyanoethyl-N,N-diisopropylphosphoramidite).

Detritylation is effected with a solution of 3% trichloroacetic acid in methylene chloride using continuous flowthrough, followed by a rinse solution of toluene/chloromethane (1:1 v/v). Branched polynucleotide chains were removed from the solid supports automatically in the 380B using the cycle "CE NH3." The ammonium hydroxide solution was collected in 4 ml screw-capped Wheaton vials and heated at 60°C for 12 hr to remove all base-protecting groups. After cooling to room temperature the solvent was removed in a Speed-Vac evaporator and the residue dissolved in 100 μ l water.

3' backbone extensions (segment A), sidechain extensions and ligation template/linkers of the following structures were also made using the automatic synthesizer:

3' Backbone extension 3'-TCCGTATCCTGGGCACAGAGGTGCp-5' (SEQ ID NO:2) Sidechain extension 3'-GATGCG(TTCATGCTGTTGGTGTAG)₃-5' (SEQ ID NO:3)

5 Ligation
template for
linking 3'
backbone
extension 3'-AAAAAAAAAAGCACCTp-5' (SEQ ID NO:4)

Ligation template for linking sidechain
extension 3'-CGCATCACTGAC-5' (SEQ ID NO:5)

The crude comb body was purified by a standard polyacrylamide gel (7% with 7 M urea and 1X TBE running buffer) method.

The 3' backbone extension and the sidechain extensions were ligated to the comb body as follows. comb body (4 pmole/ μ l), 3' backbone extension (6.25 pmole/ μ l), sidechain extension (93.75 pmole/ μ l), 20 sidechain linking template (75 pmoles/ μ l) and backbone linking template (5 pmole/ μ l) were combined in 1 mM ATP/ 5 mM DTT/ 50 mM Tris-HCl, pH 8.0/ 10 mM MgCl₂/ 2 mM spermidine, with 0.5 units/ μ l T4 polynucleotide kinase. The mixture was incubated at 37°C for 2 hr, then heated in a water bath to 95°C, and then slowly cooled to below 25 35°C over a 1 hr period. 2 mM ATP, 10 mM DTT, 14% polyethylene glycol, and 0.21 units/ μ l T4 ligase were added, and the mixture incubated for 16-24 hr at 23°C. The DNA was precipitated in NaCl/ethanol, resuspended in 30 water, and subjected to a second ligation as follows. The mixture was adjusted to 1 mM ATP, 5 mM DTT, 14% polyethylene glycol, 50 mM Tris-HCl, pH 7.5, 10 mM MgCl₂, 2 mM spermidine, 0.5 units/ μ l T4 polynucleotide kinase, and 0.21 units/ μ l T4 ligase were added, and the mixture

incubated at 23°C for 16-24 hr. Ligation products were then purified by polyacrylamide gel electrophoresis.

After ligation and purification, a portion of the product was labeled with ³²P and subjected to cleavage at the site of R achieved by oxidation with aqueous NaIO₄ for 1 hr. The sample was then analyzed by PAGE to determine the number of sidechain extensions incorporated by quantitating the radioactive label in the bands on the gel. The product was found to have a total of 45 labeled probe binding sites.

Example II

Procedure for HTLV-1 Assay

A "15 X 3" amplified solution phase

nucleic acid sandwich hybridization assay format is used in this assay. The "15 x 3" designation derives from the fact that the format employs two multimers: (1) an amplifier probe having a first segment (A) that binds to HTLV-1 and a second segment (B) that hybridizes to (2) an amplifier multimer having a first segment (B*) that hybridizes to the segment (B) and fifteen iterations of a segment (C), wherein segment C hybridizes to three labeled oligonucleotides.

The amplifier and capture probe segments and their respective names used in this assay are as follows.

HTLV-1 Amplifier Probes

HTLV.7 (SEQ ID NO:6)

5

10

GGTCTGGGTGTCAAYCTGGGCTTTAATTACGGG

30 HTLV.8 (SEQ ID NO:7)
ATCTAGTARAGCTTCGATAGTCTTTGGGTGGCT
HTLV.9 (SEQ ID NO:8)
GGCTATCGGAAGGACTGTCATGTCTGCTCCTGT
HTLV.10 (SEQ ID NO:9)

35 TGTRTTTTTGAGGGGGAGTATTACTTGAGAACAA

HTLV.11 (SEQ ID NO:10)
ATCTTGGGTTTGGCCCCCTGCCCCTAAYACGGA
HTLV.12 (SEQ ID NO:11)

TATTAGCACAGGAAGGGAGGTGAGCTTAAAGTG

- 5 HTLV.13 (SEQ ID NO:12)
 TAAAACAATAGGCGTYGTCCGGAAAGGGAGGCG
 HTLV.14 (SEQ ID NO:13)
 CYAGTTGTTTTTGGTATCAACTAGGCAAGATGT
- HTLV.15 (SEQ ID NO:14)

 10 GCATTGTTGTAAGGCATCRCGACCTATGATGGC

 HTLV.16 (SEQ ID NO:15)

 CCYTTTTGCCTCAGGGAGGTACAGGACGCCYTG

HTLV.17 (SEQ ID NO:16)
RGCTGGCGCCTGTATTGGCAAGATTACAGGCGG

- 15 HTLV.18 (SEQ ID NO:17)
 GGGGGGCCTTGGGAGGTGTTCTAGYCCAAGGAC
 HTLV.19 (SEQ ID NO:18)
 GGCGTTCTGGTTTAAAGGGAACTGGCTGATTTS
 HTLV.20 (SEQ ID NO:19)
- 20 GGGCCTTCCGGACCAAGTGTTGCAAGGCCTGGA
 HTLV.21 (SEQ ID NO:20)
 GCCCGGTGTAGGRTTCGATATGGCCTGCCTCCA
 HTLV.22 (SEQ ID NO:21)
 CYTTTTTAACTGGGAATACTGGGTTATTYCCTG
- 25 HTLV.23 (SEQ ID NO:22)
 GCAGGTCGTGGATGAATCGCCAGGTTCCATTGG
 HTLV.24 (SEQ ID NO:23)
 ATGAGAGRTCTATGGTTAGAGAGTTAGTGGCCC
 HTLV.25 (SEQ ID NO:24)
- GGCTGGACAAGTCAGGGGGCCCCGGGGAAGATG
 HTLV.26 (SEQ ID NO:25)
 CTATAGTTTGYAAGTGGGCTAGTGTRGTTGGCA
 HTLV.27 (SEQ ID NO:26)
 GTARGGGGATTTGGAAAAAGGCGTCTYTAAGGT
- 35 HTLV.28 (SEQ ID NO:27)

-19-CAGTGAAAGCAAAGTAGGGCTGGAACTGTTTAG HTLV.29 (SEQ ID NO:28) TAGTGCCGGGGCCGTAGTTACACTGCTGTGGGA HTLV.30 (SEQ ID NO:29) 5 TAAACCCTTGGGGTAGTACTYTCCAGGCGTATC HTLV.31 (SEQ ID NO:30) CCAGCTGCATTTCGAACAGGGTGGGACTATTTT HTLV.32 (SEQ ID NO:31) GGAARGCTTGCCGAATGGGCTGCAGGATATGGG 10 HTLV.33 (SEQ ID NO:32) TGTCATCCATGTACTGAAGAATAGTGCATTGGG HTLV.34 (SEQ ID NO:33) GYAGGTCCKCATGGGAGGGGCTTGCYAGGAGAA HTLV.35 (SEQ ID NO:34) 15 TTAGGGAAGCCATTGTGGCCTCTGAGAGTAGTW HTLV.36 (SEQ ID NO:35) TTTTGTTTTCGGACACAGGCAACCCATGGGAGA HTLV.37 (SEQ ID NO:36) CTAGGAACTTAATTGTTCCAGGGGTTTGCTGGG

HTLV.37 (SEQ ID NO:36)

CTAGGAACTTAATTGTTCCAGGGGTTTGCTGGG

HTLV.38 (SEQ ID NO:37)

CATAAGTGAGGTGATTRGGTGAAATTATYTGCC

HTLV.39 (SEQ ID NO:38)

AGCGGGACCGTATAGGTACCKTGGGGACTGCAT

HTLV.40 (SEQ ID NO:39)

25 CGCCAAGTAGGGCTTGAAGTTCAGGTAGCGCCC
HTLV.41 (SEQ ID NO:40)
AGGTAGGAGTTCCTTTGGAGACCCACTGAATCT
HTLV.42 (SEQ ID NO:41)
AGGCACAGTAGAGACTGTGAAGGGGCTGGCGTA

30

HTLV-1 Capture Probes

HTLV.1 (SEQ ID NO:42)
TCTGGTTCTGGGATAGTGGGCTTTAGGCGGGGG
HTLV.2 (SEQ ID NO:43)

35 GGGAGRTCTAATAGGAGGGCATCYTCCTCTGGC

HTLV.3 (SEQ ID NO:44)
CCTATGRAGTITTITGGGTGTGGRATGTCRGCG
HTLV.4 (SEQ ID NO:45)
CTGTAATGTGGGGGGGGGGGGGGTTAAACCTCCCCC

- 5 HTLV.5 (SEQ ID NO:46)

 AATAGATGYTGGGTCTTGGTTARGAARGACTTG

 HTLV.6 (SEQ ID NO:47)

 CCGACGGGCGGGATCTAACGGTATAACTGGCAG

 HTLV.43 (SEQ ID NO:48)
- ATATTTGGTCTCGGGGATCAGTATGCCTTTGTA
 HTLV.44 (SEQ ID NO:49)
 GCACTAATGATTGAACTTGAGAAGGATTTAAAT
 HTLV.45 (SEQ ID NO:50)
 TGCGGCAGTTCTGTGACAGGGCCTGCCGCAGCT
- 15 HTLV.46 (SEQ ID NO:51)

 CCCCTAGGAGGGGCAGGGTTTGGACTAGTCTAC

 HTLV.47 (SEQ ID NO:52)

 CAGTRGTGGTGCCAGTGAGGGTCAGCATAATAG

 HTLV.48 (SEQ ID NO:53)
- 20 CAAGTGGCCACTGCTSCTTGGACTGGAACACYA

Each amplifier probe contains, in addition to the sequences substantially complementary to the HTLV-1 sequences, the following 5' extension complementary to a segment of the amplifier multimer,

AGGCATAGGACCCGTGTCTT (SEQ ID NO:54).

Each capture probe contains, in addition to the sequences substantially complementary to HTLV-1 DNA, the following downstream sequence complementary to DNA bound to the solid phase (XT1*),

CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:55).

1 U.1 U.J.

Microtiter plates were prepared as follows. White Microlite 1 Removawell strips (polystyrene microtiter plates, 96 wells/plate) were purchased from Dynatech Inc. Each well was filled with 200 μ l 1 N HCl and incubated at room temperature for 15-20 min. The plates were then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The wells were then filled with 200 μ l 1 N NaOH and incubated at room temperature for 15-20 min. The plates were again washed 4 times with 1X PBS and the wells aspirated to remove liquid.

5

10

15

20

Poly(phe-lys) was purchased from Sigma Chemicals, Inc. This polypeptide has a 1:1 molar ratio of phe:lys and an average m.w. of 47,900 gm/mole. It has an average length of 309 amino acids and contains 155 amines/mole. A 1 mg/ml solution of the polypeptide was mixed with 2M NaCl/1X PBS to a final concentration of 0.1 mg/ml (pH 6.0). 100 μ L of this solution was added to each well. The plate was wrapped in plastic to prevent drying and incubated at 30°C overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

The following procedure was used to couple the oligonucleotide XT1* to the plates. Synthesis of XT1* was described in EPA 883096976. 20 mg disuccinimidyl suberate was dissolved in 300 μ l dimethyl formamide 25 26 OD_{260} units of XT1* was added to 100 $\mu\mathrm{l}$ coupling buffer (50 mM sodium phosphate, pH 7.8). The coupling mixture was then added to the DSS-DMF solution and stirred with a magnetic stirrer for 30 min. An NAP-25 column was equilibrated with 10 mM sodium 30 phosphate, pH 6.5. The coupling mixture DSS-DMF solution was added to 2 ml 10 mM sodium phosphate, pH 6.5, at 4°C. The mixture was vortexed to mix and loaded onto the equilibrated NAP-25 column. DSS-activated XT1* DNA was eluted from the column with 3.5 ml 10 mM sodium 35

10

30

35

phosphate, pH 6.5. 5.6 OD_{260} units of eluted DSS-activated XT1* DNA was added to 1500 ml 50 mM sodium phosphate, pH 7.8. 50 μ l of this solution was added to each well and the plates were incubated overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Final stripping of plates was accomplished as follows. 200 μ L of 0.2N NaOH containing 0.5% (w/v) SDS was added to each well. The plate was wrapped in plastic and incubated at 65°C for 60 min. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The stripped plate was stored with desiccant beads at 2-8°C.

Test samples were prepared as follows. 15 HTLV-1-infected MT-2 cells or uninfected HuT cells (Human T cell lymphoma cells) were used directly in the assay below or were extracted with a standard phenol:chloroform extraction procedure (See, for example, Sambrook, et al., Molecular Cloning: A Laboratory Manual, 1989, Cold Spring 20 Harbor Press, Cold Spring Harbor, NY). Negative controls were Dulbecco's Modified Eagle's Medium (DMEM), negative human serum (neg. HS), buffer (10 mM Tris-HCl, pH 8.0), and distilled H_2O . 60 μ l P-K Buffer (2 mg/ml proteinase K in 10 mM Tris-HCl, pH 8.0/0.15 M NaCl/10 mM EDTA, pH 25 8.0/1% SDS/ 40μ g/ml sonicated salmon sperm DNA) was added to a microfuge tube for each sample to be assayed. 50 μ l of test sample was added to each tube.

A cocktail of the HTLV-1-specific amplifier and capture probes listed above was added to each well (10 fmoles of each probe/tube in 25 μ l, diluted in 1 N NaOH). The tubes were incubated at 65°C for 30 min.

 $65~\mu l$ neutralization buffer was then added to each tube (0.77 M 3-(N-morpholino)propane sulfonic acid/1.845 M NaCl/0.185 M sodium citrate). After mixing, the tubes were incubated at 65°C overnight. Condensation

10

15

20

segment of the multimer and so as to not be encountered by endogenous sequences in the sample/analyte. The second binding sequence may be contiguous to the first binding sequence or be spaced therefrom by an intermediate noncomplementary sequence. The probes may include other noncomplementary sequences if desired. These noncomplementary sequences must not hinder the binding of the binding sequences or cause nonspecific binding to occur.

The capture probe and amplifier probe may be prepared by oligonucleotide synthesis procedures or by cloning, preferably the former.

It will be appreciated that the binding sequences need not have perfect complementarity to provide homoduplexes. In many situations, heteroduplexes will suffice where fewer than about 10% of the bases are mismatches, ignoring loops of five or more nucleotides. Accordingly, as used herein the term "complementary" intends exact complementarity wherein each base within the binding region corresponds exactly, and "substantially complementary" intends 90% or greater homology.

The labeled oligonucleotide will include a sequence substantially complementary to the repeated 25 oligonucleotide units of the multimer. The labeled oligonucleotide will include one or more molecules ("labels"), which directly or indirectly provide a detectable signal. The labels may be bound to individual members of the substantially complementary sequence or may be present as a terminal member or terminal tail 30 having a plurality of labels. Various means for providing labels bound to the oligonucleotide sequences have been reported in the literature. See, for example, Leary et al., Proc. Natl. Acad. Sci. USA (1983) 80:4045; Renz and Kurz, <u>Nucl. Acids Res</u>. (1984) <u>12</u>:3435; 35

was centrifuged off the walls of each tube and the contents of the tubes transferred to microtiter wells prepared as above. The microtiter plates were incubated at 65°C for 4 hr.

After an additional 10 min at room temperature, the contents of each well are aspirated to remove all fluid, and the wells washed 2X with washing buffer (0.1% SDS/0.015 M NaCl/ 0.0015 M sodium citrate).

The amplifier multimer is then added to each

well (20 fmoles in 50 µl in 50% horse serum/(0.06 M

NaCl/0.06 M sodium citrate/0.1% SDS mixed 1:1 with 4X

SSC/0.1% SDS/.5% "blocking reagent" (Boehringer Mannheim,

catalog No. 1096 176). After covering plates and

agitating to mix the contents in the wells, the plates

are incubated for 30 min at 55°C. After a further 5 min

period at room temperature, the wells are washed as

described above.

Alkaline phosphatase label probe, disclosed in EP 883096976, is then added to each well (20 fmoles in 50 μ l/well). After incubation at 55°C for 15 min, and 5 min at room temperature, the wells are washed twice as above and then 3X with 0.015 M NaCl/0.0015 M sodium citrate.

20

An enzyme-triggered dioxetane (Schaap et al., Tet. Lett. (1987) 28:1159-1162 and EPA Pub. No. 0254051), obtained from Lumigen, Inc., was employed. 50 µl Lumiphos 530 (Lumigen) was added to each well. The wells were tapped lightly so that the reagent would fall to the bottom and gently swirled to distribute the reagent evenly over the bottom. The wells were covered and incubated at 37°C for 40 min.

Plates are then read on a Dynatech ML 1000 luminometer. Output is given as the full integral of the light produced during the reaction.

Results are shown in the Table below. These results indicate the ability to detect HTLV-1 DNA in both

extracted and unextracted infected cells, and no crosshybridization with components of the uninfected controls.

		<u>Table</u>	
Sample	# Cells	Sample Prep	Luminometer Reading
MT-2	106	extracted	48.68
HuT 78	10 ⁶	extracted	1.91
MT-2	10 ⁶	unextracted	27.39
HuT-78	10 ⁶	unextracted	2.37
DMEM	0	unextracted	1.75
Neg. HS	0	unextracted	1.07
Tris	0	unextracted	1.39
H ₂ O	0	unextracted	1.02

Example 3

Detection of HTLV-1 RNA

HTLV-1 RNA is detected using essentially the same procedure as above with the following modifications.

20 A standard curve of HTLV-1 RNA is prepared by serially diluting HTLV-1 virus stock in normal human serum to a range between 125 to 5000 TCID50/ml. A proteinase K solution is prepared by adding 10 mg proteinase K to 5 ml HTLV-1 capture diluent (53 mM Tris-25 HCl, pH 8/ 10.6 mM EDTA/ 1.3% SDS/ 16 μ g/ml sonicated salmon sperm DNA/ 5.3X SSC/ 1 mg/ml proteinase K) made 7% in formamide stored at -20°C. Equimolar mixtures of capture probes and label probes are added to the proteinase K solution such that the final concentration 30 of each probe was 1670 fmoles/ml. After addition of 30 μ l of the probe/proteinase K solution to each well of microtiter plates prepared as above, 10 μ l of appropriate virus dilutions are added to each well. Plates are covered, shaken to mix and then incubated at 65°C for 16 35 hr.

Plates are removed from the incubator and cooled on the bench top for 10 min. The wells are washed 2X as described in Example 2 above. The 15 X 3 multimer is diluted to 1 fmole/µl in Amp/Label diluent (prepared by mixing 2.22 ml DEPC-treated H₂O (DEPC is diethylpyrocarbonate), 1.35 ml 10% SDS, 240 µl 1 M Tris pH 8.0, 20 µl horse serum, adjusted to 2 mg/ml in proteinase K and heated to 65°C for 2 hr, then added to 240 µl of 0.1 M PMSF and heated at 37°C for 1 hr, after which is added 4 ml DEPC-H₂O, 4 ml 10 % SDS and 8 ml 20X SSC). The diluted 15 X 3 multimer is added at 40 µl/well, the plates sealed, shaken, and incubated at 55°C for 30 min.

The plates are then cooled at room temperature for 10 minutes, and washed as described above. Alkaline phosphatase label probe is diluted to 2.5 fmoles/ μ l in Amp/Label diluent and 40 μ l added to each well. Plates are covered, shaken, and incubated at 55°C for 15 min.

Plates are cooled 10 min at room temperature, washed 2X as above and then 3X with 0.15 M NaCl/0.015 M sodium citrate. Substrate is added and luminescence measured as above.

Modifications of the above-described modes for carrying out the invention that are obvious to those of skill in biochemistry, nucleic acid hybridization, and related fields are intended to be within the scope of the following claims.

20

SEQUENCE LISTING

(1) G	ENERAL	INFORMATION	:
-------	--------	-------------	---

- (i) APPLICANT: Kolberg, Janice A.Urdea, Michael S.
 - (ii) TITLE OF INVENTION: HTLV-1 PROBES FOR USE IN SOLUTION PHASE SANDWICH HYBRIDIZATION ASSAYS
 - (iii) NUMBER OF SEQUENCES: 55
- 10 (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Morrison & Foerster
 - (B) STREET: 755 Page Mill Road
 - (C) CITY: Palo Alto
 - (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 94304-1018
- 15 (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/813,585
 - (B) FILING DATE: 18-DEC-1991
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Thomas E. Ciotti
 - (B) REGISTRATION NUMBER: 21,013
 - (C) REFERENCE/DOCKET NUMBER: 22300-20238.00

25

20

- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 415-813-5600
 - (B) TELEFAX: 415-494-0792
 - (C) TELEX: 706141
- 30 (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
	TGACTGR	
	(2) INFORMATION FOR SEQ ID NO:2:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	CGTGGAGACA CGGGTCCTAT GCCT	2
	(2) INFORMATION FOR SEQ ID NO:3:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	GATGTGGTTG TCGTACTTGA TGTGGTTGTC GTACTTGATG TGGTTGTCGT ACTTGCGTAG	6
	(2) INFORMATION FOR SEQ ID NO:4:	,
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
30	TCCACGAAAA AAAAAA	16
	(2) INFORMATION FOR SEQ ID NO:5:	•
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	CAGTCACTAC GC	12
5	(2) INFORMATION FOR SEQ ID NO:6:	,
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	٠
. 10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	GGTCTGGGTG TCAAYCTGGG CTTTAATTAC GGG	33
	(2) INFORMATION FOR SEQ ID NO:7:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
20		
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	ATCTAGTARA GCTTCGATAG TCTTTGGGTG GCT	33
	(2) INFORMATION FOR SEQ ID NO:8:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	GGCTATCGGA AGGACTGTCA TGTCTGCTCC TGT	33
	(2) INFORMATION FOR SEQ ID NO:9:	•
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid	•

(C) STRANDEDNESS: single (D) TOROLOGY: linear

	-	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
Þ	TGTRTTTTTG AGGGGAGTAT TACTTGAGAA CAA	33
	(2) INFORMATION FOR SEQ ID NO:10:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
15	ATCTTGGGTT TGGCCCCCTG CCCCTAAYAC GGA	33
	(2) INFORMATION FOR SEQ ID NO:11:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	TATTAGCACA GGAAGGGAGG TGAGCTTAAA GTG	33
25	(2) INFORMATION FOR SEQ ID NO:12:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	TAAAACAATA GGCGTYGTCC GGAAAGGGAG GCG	33
	(2) INFORMATION FOR SEQ ID NO:13:	
35		

	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	,
	CYAGTTGTTT TTGGTATCAA CTAGGCAAGA TGT	33
	(2) INFORMATION FOR SEQ ID NO:14:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	GCATTGTTGT AAGGCATCRC GACCTATGAT GGC	33
	(2) INFORMATION FOR SEQ ID NO:15:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
<i>2. J</i>	CCYTTTTGCC TCAGGGAGGT ACAGGACGCC YTG	33
	(2) INFORMATION FOR SEQ ID NO:16:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
35	RGCTGGCGCC TGTATTGGCA AGATTACAGG CGG	33

	(2) INFORMATION FOR SEQ ID NO:17:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	GGGGGGCCTT GGGAGGTGTT CTAGYCCAAG GAC	33
10	(2) INFORMATION FOR SEQ ID NO:18:	·
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
	GGCGTTCTGG TITAAAGGGA ACTGGCTGAT TTS	33
	(2) INFORMATION FOR SEQ ID NO:19:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	GGGCCTTCCG GACCAAGTGT TGCAAGGCCT GGA	33
	(2) INFORMATION FOR SEQ ID NO:20:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	

WO 93/13225

	GCCCGGTGTA GGRTTCGATA TGGCCTGCCT CCA	33
	(2) INFORMATION FOR SEQ ID NO:21:	33
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
10		33
	(2) INFORMATION FOR SEQ ID NO:22:	33
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	GCAGGTCGTG GATGAATCGC CAGGTTCCAT TGG	33
20	(2) INFORMATION FOR SEQ ID NO:23:	33
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	ATGAGAGRTC TATGGTTAGA GAGTTAGTGG CCC	
30	(2) INFORMATION FOR SEQ ID NO:24:	33
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	4
35 .		•

	(XI) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
	GGCTGGACAA GTCAGGGGGC CCGGGGGAAG ATG	33
	(2) INFORMATION FOR SEQ ID NO:25:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
	CTATAGTTTG YAAGTGGGCT AGTGTRGTTG GCA	33
	(2) INFORMATION FOR SEQ ID NO:26:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	33
	(2) INFORMATION FOR SEQ ID NO:27:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
30	CAGTGAAAGC AAAGTAGGGC TGGAACTGTT TAG	33
	(2) INFORMATION FOR SEQ ID NO:28:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	TAGTGCCGGG GCCGTAGTTA CACTGCTGTG GGA	33 ,
5	(2) INFORMATION FOR SEQ ID NO:29:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	TAAACCCTTG GGGTAGTACT YTCCAGGCGT ATC	33
	(2) INFORMATION FOR SEQ ID NO:30:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	CCAGCTGCAT TTCGAACAGG GTGGGACTAT TTT	33
	(2) INFORMATION FOR SEQ ID NO:31:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
	GGAARGCTIG CCGAATGGGC TGCAGGATAT GGG	33
	(2) INFORMATION FOR SEQ ID NO:32:	-
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid	٠

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

5		
	TGTCATCCAT GTACTGAAGA ATAGTGCATT GGG	3
	(2) INFORMATION FOR SEQ ID NO:33:	J
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
15	GYAGGTCCKC ATGGGAGGGG CTTGCYAGGA GAA	33
	(2) INFORMATION FOR SEQ ID NO:34:	33
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34: TTAGGGAAGC CATTGTGGCC TCTGAGAGTA GTW	
25		33
	(2) INFORMATION FOR SEQ ID NO:35: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(-) toronogr: Illear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
	TTTTGTTTC GGACACAGGC AACCCATGGG AGA	33
35	(2) INFORMATION FOR SEQ ID NO:36:	

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
	CTAGGAACIT AATTGTTCCA GGGGTTTGCT GGG	33
	(2) INFORMATION FOR SEQ ID NO:37:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
	CATAAGTGAG GTGATTRGGT GAAATTATYT GCC	33
	(2) INFORMATION FOR SEQ ID NO:38:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
45	AGCGGGACCG TATAGGTACC KTGGGGACTG CAT	33
	(2) INFORMATION FOR SEQ ID NO:39:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
35	CGCCAAGTAG GGCTTGAAGT TCAGGTAGCG CCC	33

	(2) INFORMATION FOR SEQ ID NO:40:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
	AGGTAGGAGT TCCTTTGGAG ACCCACTGAA TCT	33
10	(2) INFORMATION FOR SEQ ID NO:41:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	-
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
	AGGCACAGTA GAGACTGTGA AGGGGCTGGC GTA	33
	(2) INFORMATION FOR SEQ ID NO:42:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
	TCTGGTTCTG GGATAGTGGG CTTTAGGCGG GGG	33
	(2) INFORMATION FOR SEQ ID NO:43:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	

	GGGAGRICIA ATAGGAGGGC ATCYTCCTCT GGC	33
	(2) INFORMATION FOR SEQ ID NO:44:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
10	CCTATGRAGT TTTTTGGGTG TGGRATGTCR GCG	33
	(2) INFORMATION FOR SEQ ID NO:45:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	33
20	CTGTAATGTG GGGGGGGAGG TTAAACCTCC CCC	33
20	(2) INFORMATION FOR SEQ ID NO:46:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
	ANTAGATGYT GGGTCTTGGT TARGAARGAC TTG	33
30	(2) INFORMATION FOR SEQ ID NO:47:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
	CCGACGGGCG GGATCTAACG GTATAACTGG CAG	33
	(2) INFORMATION FOR SEQ ID NO:48:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
	ATATTTGGTC TCGGGGATCA GTATGCCTTT GTA	33
	(2) INFORMATION FOR SEQ ID NO:49:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	•	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
20	GCACTAATGA TIGAACTTGA GAAGGATTIA AAT	33
	(2) INFORMATION FOR SEQ ID NO:50:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
30	TGCGGCAGTT CTGTGACAGG GCCTGCCGCA GCT	3:
	(2) INFORMATION FOR SEQ ID NO:51:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(x1) SEQUENCE DESCRIPTION: SEQ 1D NO:51:	
	CCCCTAGGAG GGGCAGGGTT TGGACTAGTC TAC	33 ,
5	(2) INFORMATION FOR SEQ ID NO:52:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
	CAGTRGTGGT GCCAGTGAGG GTCAGCATAA TAG	33
	(2) INFORMATION FOR SEQ ID NO:53:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
	CAAGTGGCCA CTGCTSCTTG GACTGGAACA CYA	33
	(2) INFORMATION FOR SEQ ID NO:54:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
	AGGCATAGGA CCCGTGTCTT	20
	(2) INFORMATION FOR SEQ ID NO:55:	•
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid	•

-41-

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

CTTCTTTGGA GAAAGTGGTG

Listings of All

Cycles, Procedures, and Sequences

Used to Synthesize the 15X Comb

Contained on the 3½* floppy disk for the 380B DNA Synthesizer

COMPLETE FILE DIFTT YY VERSION 2.20

OISK NAME: !SX CCMB DATE: Aug 27, 199

TIME: 13:50

						•				*
FILE NAME	LAS	T AC	CESS	CAI	E CREATED	FILE NAME	Las	T ACCESS	SAT	E CREATED
				F	TILE TYPE:	SYNTHESIS CYC	LE			
6.4XSC-5 1.2XD-6 ssceaf3 10ceaf3	38 38 31 31	27. 07. 07.	1991 1991 1990 1990 1990	08 08 01 01	27, 1991 27, 1991 27, 1990 07, 1990 07, 1990	6.4XS-5 1.2X-6 ceaf3 hpaf3 rnaaf3	38 38 31 31	27, 1991 27, 1991 07, 1990 07, 1990 07, 1990	28 01 01 01	27, 1991 27, 1991 07, 1990 07, 1990 07, 1990
10rnaaf3 caf3 10haf3 10rnaf3 caaf1	01 01 01	07, 07, 07,	1 990 1 990 1 990 1 990 1 990	01 01 01 01	07, 1990 07, 1990 07, 1990 07, 1990 07, 1990	10ceaf1	01 01 01 01	07, 1990 07, 1990 07, 1990 07, 1990 07, 1990	01 01 01 01	07, 1990 07, 1990 07, 1990 07, 1990 07, 1990
hpafl rnaafl sscofl 10cofl rnafl	01 01 01 01	07, 07, 07,	1990 1990 1990 1990 1990	01 01 01 01	07, 1990 07, 1990 07, 1990 07, 1990 07, 1990	10hpafi 10rnaafi cofi 10hpfi 10rnafi	01 01 01 01	07, 1990 07, 1990 07, 1990 07, 1990 07, 1990	01 01	07, 1990 07, 1990 07, 1990 07, 1990 07, 1990
				F	ILE TYPE:	BOTTLE CHANGE	PRO	CEDURE		
be 16 be 14 be 12 be 10 be 8a be 6	97 97 97 97 97	01. 01. 01. 01. 01.	1 986 1 986 1 986 1 986 1 986 1 986 1 986 1 986	07 07 07 07 07 07 07	01, 1986 01, 1986 01, 1986 01, 1986 01, 1986 01, 1986	be 13 be 11 be 9	07 07 07 07 07	01, 1986 01, 1986 01, 1986 01, 1986 01, 1986 01, 1986 01, 1986 01, 1986 01, 1986	07 07 07 07 07 07	01. 1986 01. 1986 01. 1986 01. 1986 01. 1986 01. 1986 01. 1986 01. 1986
deproe deprhp	10	98, 98,	199 9 199 0	08 10 10	Z7, 1991 08, 1990 08, 1990 08, 1990	END PROCEDURE CE NH3 depree!0 deprhp!0 deprna!0	08 10 10	08, 1990	10 10	27, 1991 08, 1990 08, 1990 08, 1996
					,	BEGIN PROCEDU				
STO PREP	38	27,	1991			phosees			07	01, 1986
ciean003	97	01.	1986			SHUT-DOWN PRO	يالكار	KE		
		- <u>-</u> -				ONA SEQUENCES			·····	
15X-2	88	27,	1991	88	27, 1991	_ ISX-I	88	27, 1991	98	27, 1991

CYCLE NAME:

5.4XSC-5

NUMBER OF STEPS: 176

DATE:

Aug 27, 199

TIME:

STEP	FUNCTION			
NUMBER	# NAME	STEP	STEP ACTIVE FOR BASES	SAFE
MANDEN	<u> → NHDE</u>	HHE	A 6 C T 5 5 7	STEP
1	10 #18 To Waste	3	Yes Yes Yes Yes Yes Yes Yes	.,
2	9 \$18 To Column	10	Yes Yes Yes Yes Yes Yes	Yes
3	2 Reverse Flush	S	Yes Yes Yes Yes Yes Yes	Yes
4	I Block Flush	3	Yes Yes Yes Yes Yes Yes	Yes
5	S Advanca FC	ī	Yes Yes Yes Yes Yes Yes Yes	Yes
8	29 Phos Pres	3	Yes Yes Yes Yes Yes Yes	Yes
. 7	+45 Group I On	i	Yes Yes Yes Yes Yes Yes Yes	Yes
8	90 TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
9	19 B+TET To Col 1	8	Yes Yes Yes Yes Yes Yes Yes	Yes
10	90 TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yes
11	-46 Group 1 Off	i	Yes Yes Yes Yes Yes Yes Yes	Yes
12	+47 Group 2 On	i	Yes Yes Yes Yes Yes Yes Yes	Yes
13	90 TET To Column	1 Ø	Yes Yes Yes Yes Yes Yes Yes	Yes
14	20 6+TET To Col 2	8	Yes Yes Yes Yes Yes Yes Yes	Yes
15	90 TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yes
16	-48 Group 2 Off	ī	Yes Yes Yes Yes Yes Yes	Yes
17	+49 Group 3 On	1	Yes Yes Yes Yes Yes Yes	Yes
18.	90 TET To Column	10		Yes
19	21 B+TET To Col 3	8	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes
20	90 TET To Column	4		Yes
5	10 121 10 GG1EMA	4	Yes Yees Yes Yes Yes Yes Yes	Ye
21	-50 Group 3 Off	1	Yes Yes Yes Yes Yes Yes	Yes
22	4 Wait	15	Yes Yes Yes Yes Yes Yes Yes	Yes
23	+45 êroup l On	1	Yes Yes Yes Yes Yes Yes Yes	Yes
24	90 TET To Column	10	Yes Yes Yes Yes Yes Yes	Yes
25	19 8+TET To Col 1	8	Yes Yes Yes Yes Yes Yes Yes	Yes
26	90 TET To Column	4	Yes Yes Yes Yes Yes Yes	Yes
27	-46 Group 1 Off	1.	Yas Yes Yas Yas Yes Yes Yes	Yes
28	+47 Group 2 On	ī	Yes Yes Yes Yes Yes Yes Yes	Yes
29	90 TET To Column	10	Yes Yes Yos Yes Yes Yes Yes	Yes
30	' 28 B+TET To Col Z	8	Yas Yes Yes Yes Yes Yes Yes	Yes
31	99 TET To Column	4	Yes Yes Yes Yes Yes Yes	Yes
32	-48 Group Z Off	1	Yes Yes Yes Yes Yes Yes Yes	Yas
33	+49 Group 3 On	i	Yes Yes Yes Yes Yes Yes	Yes
34	90 TET To Column	10	Yas Yas Yas Yas Yas Yas	Yes
35	21 8+TET To Col 3	8	Yes Yes Yes Yes Yes Yes	Yes
36	98 TET To Column	' 4	Yes Yes Yes Yes Yes Yes	Yes
37	-50 Group 3 Off	ĭ	Yes Yes Yes Yes Yes Yes	Yes #
38	4 Wait	3 0	Yes Yes Yes Yes Yes Yes	Yes
39	+45 Group I On	ī	Yes Yes Yes Yes Yes Yes	Yes
48	90 TET To Column	10	Yes Yes Yes Yes Yes Yes	Yes -
41	19 B+TET To Col 1	8	Yes Yes Yes Yes Yes Yes	Yes
42	90 TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yas-
43	-46 Group Off	Í	Yes Yes Yes Yes Yes Yes	Yes

(Continued next page.)

CYCLE NAME: 5.4XSC-5

NUMBER OF STEPS: 175

STEP	FUNCTION	STEP	STEP ACTIVE FOR BASES	
NUMBER	# NAME	TIME	A G C T 5 5 7	SAFE STEP
44				<u> </u>
45	+47 Group 2 On	= !	Yes Yes Yes Yes Yes Yes Yes	Yes
45	90 TET To Column 20 8+TET To Col 2	10	Yes Yes Yes Yes Yes Yes Yes	Yes
47		8	Yes Yes Yes Yes Yes Yes Yes	Yes
48	90 TET To Column	4	Yes Yes Yes Yes Yes Yes	Yes
49		1	Yes Yes Yes Yes Yes Yes Yes	Yes
50	+49 Group 3 On 90 TET To Column	1	Yes Yes Yes Yes Yes Yes Yes	Yes
51	· 21 B+TET To Col 3	. 10	Yes Yes Yes Yes Yes Yes	Yes
52	90 TET To Column	8	Yes Yes Yes Yes Yes Yes Yes	Yes
53	-50 Group 3 Off	4	Yes Yes Yes Yes Yes Yes	Yes
54	4 Wait	1	Yes Yes Yes Yes Yes Yes Yes	Yes
55	+45 Group 1 On	30	Yes Yes Yes Yes Yes Yes	Yes
58	90 TET To Column	1.	Yes Yes Yes Yes Yes Yes Yes	Yes
57	19 8+TET To Col 1	10	Yes Yes Yes Yes Yes Yes Yes	Yes
58	90 TET To Column	8	Yes Yes Yes Yes Yes Yes Yes	Yes
59	-46 Group Off	4	Yes Yes Yes Yes Yes Yes Yes	Yes
50	+47 Group 2 On	!	Yes Yes Yes Yes Yes Yes Yes	Yes
61	90 TET To Column	1	Yes Yes Yes Yes Yes Yes	Yes
62	20 B+TET To Col 2	. 8	Yes Yes Yes Yes Yes Yes Yes	Yes
63	90 TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yes
64	-48 Group 2 Off	-	Yes Yes Yes Yes Yes Yes	Yes
65	+49 Group 3 On	1	Yes Yes Yes Yes Yes Yes	Yes
58	90 TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
57	21 8+TET To Col 3	8	Yes Yes Yes Yes Yes Yes	Yes
68	90 TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yes
69	-50 Group 3 Off	i	Yes Yes Yes Yes Yes Yes	Yes
79	4 Wait	30	Yes Yes Yes Yes Yes Yes	Yes
71	+45 Group 1 On	1	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes
72	90 TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
73	19 B+TET To Col 1	8	Yes Yes Yes Yes Yes Yes	Yes
74	90 TET To Column	ĭ	Yes Yes Yes Yes Yes Yes	Yes
75	-46 Group Off	i	Yes Yes Yes Yes Yes Yes	Yes
76	'+47 Group 2 On	i	Yes Yes Yes Yes Yes Yes Yes	eoY Yes
77	98 TET To Column	10	Yes Yes Yes Yes Yes Yes	Yes
78	28 B+TET To Cal Z	8	Yas Yas Yas Yas Yas Yas Yas	Yes
79	90 TET To Column	4	Yes Yes Yes Yes Yes Yes	Yes
80	-48 Group 2 Off	1	Yes Yes Yes Yes Yes Yes	Yes
81	+49 Group 3 On	1	Yes Yes Yes Yes Yes Yes	Yes
92	90 TET To Column	' 10	Yes Yes Yes Yes Yes Yes	Yes
83	21 8+TET To Col 3	8	Yes Yes Yes Yes Yes Yes	Yes
84	90 TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yes
85	-50 Group 3 Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes
86	4 Wait	38	Yes Yes Yes Yes Yes Yes	Yes
87	+45 Group I On	t	Yes Yes Yes Yes Yes Yes	Yes
88	90 TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes_

(Continued next page.)

CYCLE NAME: 5.4XSC-5 NUMBER OF STEPS: 175

STEP NUMBER		UNCTION NAME	STEP TIME						BASE S	5 7	SAFE STEP
33	19	8+TET To Col 1	_ 8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
90	90	TET To Column	4.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
91	-46		1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
92	+47		1	Yes							
93	98	TET To Calumn	10	Yes							
94	28	8+TET To Cal 2	. 8							Yes	
95	90	TET To Column	4							Yes	
95	· -48	Group Z Off	Ť	Yes							
97	+49	Group 3 On	1	Yes							
98	90	TET To Column	10	Yes							
99	21	8+TET To Col 3	8	Yes							Yes
100	90	TET To Column	4							Yes	
101	-58	Group 3 Off	1							Yes	
102	4	Wait	30							Yes	
103	+45	Group I On	1	Yes							
104	90	TET To Calumn	10	Yes							
105	19	B+TET To Cal 1	8	Yes							
105	98	TET To Column	4	Yes							
107	-46		t	Yes							Yes
108	+47	Group Z On	t	Yes							Yes
105:	90	TET To Column	10	Yes							
118	20	8+TET To Col 2	8	Yes	Yes	Yes	Yas	Yes	Yes	Yes	Yes
111	98		4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
112	-48	- -	ſ	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
113	+49	·	1	Yes	Yes	Yes	Yes	Yes	Y 85	168	
114	98	TET To Column	10	Yes	Yes	Yes	Yes	163	163	163	Yes Yes
115	21	B+TET To Col 3	8:	Yes	Yes	Tes	Tas	183	163	163	Yes
116	98	TET To Column	4	Yes Yes	163	103	783	183	103	163	Yes
117	-50		<u> </u>	Yes	163	163	163	103	1 0 3 V = 0	Vac	Yes
118	4		39	Yes	763	162	1.63	7 4 4	Vee	Yas	Yes
119	+45		I.	Yes	105	163	103	Vac	Ves	Yes	Yes
120	98		10	Yes	103	162	163	Ves	Vas	Yes	Yes
121		B+TET To Cal 1	8	Yes	163	103	700	Vac	Ves	Yes	Yes
122	90		4 -	Yes	168	143	703	Vac	Ves	Vas	Yes
123		Group Off	1	Yes	163	103	Vaa	Yes	Yas	Yes	Yes
124		Group 2 On	į .	Yes	163	V	Ves	Yes	Yes	Yes	Yes
125	98	TET To Column	18	Yes	103	Vas	Vac	Yes	Yes	Yes	Yes
125	29		, B	Yes	Van	Ves	Vas	Yes	Yes	Yes	Yes
127		TET To Column	ì	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
128	-48		•	Yes	Ves	Yes	Yes	Yes	Yes	Yes	Yes
129	+49 98	6roup 3 On TET To Column	19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes '
13 0 131	21	8+TET To Col 3	8	Yes	Yes	Yes	Yes	Yas	Yes	Yes	Yas
132	90	TET To Column	. 4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
133		Group 3 Off	ĭ	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes -

⁽Continued next page.)

CYCLE NAME: 5.4XSC-5 NUMBER OF STEPS: 176

STEP	FUNCTION	STEP	STEP ACTIVE FOR BASES	
NUMBER	# - NAME	TIME	A 5 C T 5 5 7	SAFE
			<u> </u>	STEP
134	4 Wait	-30	Yes Yes Yes Yes Yes Yes	Yes
135	10 #18 To Waste	S	Yes Yes Yes Yes Yes Yes	Yes
136	Z Reverse flush	5	Yes Yes Yes Yes Yes Yes	
137	1 Block Flush	4	Yes Yes Yes Yes Yes Yes	Yes Yes
138	81 #15 To Waste	3	Yes Yes Yes Yes Yes Yes	Yes
139	13 #15 To Column	22	Yes Yes Yes Yes Yes Yes	Yes
140	10 \$18 To Waste	5~	Yes Yes Yes Yes Yes Yes Yes	Yes
141	· 4 Wait	· 30	Yes Yes Yes Yes Yes Yes Yes	Yas
142	2 Reverse Flush	6	Yes Yes Yes Yes Yes Yes	Yes
143	i Block Flush	4	Yes Yes Yes Yes Yes Yes Yes	Yes
144	9 #18 To Column	10	Yes Yes Yes Yes Yes Yes	Yes
145	34 Flush to Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
146	9 \$18 To Column	10	Yes Yes Yes Yes Yes Yes	Yes
147	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
148	9 #18 To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
149	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes
150	9 #18 To Column	10	Yas Yes Yes Yas Yes Yes Yes	Yes
151	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
152	1 Block Flush	4	Yes Yes Yes Yes Yes Yes	Yes
153	33 Cycle Entry	t	Yes Yes Yes Yes Yes Yes Yes	Yes
154	6 Waste-Port	1	Yes Yes Yes Yes Yes Yes	Yes
155	. 37 Relay 3 Pulse	. 1	Yes Yes Yes Yes Yes Yes Yes	Yes
156	82 #14 To Waste	3	Yes Yes Yes Yes Yes Yes	Yes
157	30 #17 To Waste	3	Yes Yes Yes Yes Yes Yes Yes	Yes
158	10 \$18 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
159	9 \$18 To Column	20	Yes Yes Yes Yes Yes Yes	Yes
160	11 \$17 To Column	60	Yes Yes Yes Yes Yes Yes	No
161	14 #14 To Column	20	Yes Yes Yes Yes Yes Yes Yes	No
162	2 Reverse Flush	7	Yes Yes Yes Yes Yes Yes	No
163 164	11 \$17 To Column	15	Yes Yes Yes Yes Yes Yes	No
165	34 Flush to Waste	_	Yes Yes Yes Yes Yes Yes	No
166	11 \$17 To Column	IS	Yes Yes Yes Yes Yes Yes	No
157	' 2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	No.
168	14 #14 To Column .34 Flush to Weste		Yes Yes Yes Yes Yes Yes Yes	No
169	· · · · · · · · · · · · · · · · · · ·	16	Yes Yes Yes Yes Yes Yes	No
170	7 Waste-Sciile 9 \$18 To Column	1	Yes Yes Yes Yes Yes Yes	Yes
171		. 18	Yes Yes Yes Yes Yes Yes	Yes
172		, 5	Yes Yes Yes Yes Yes Yes	Yes
173		. 10	Yes Yes Yes Yes Yes Yes	Yes
174		5	Yes Yes Yes Yes Yes Yes	Yes
175		10	Yes Yes Yes Yes Yes Yes	Yes
175		5	Yes Yes Yes Yes Yes Yes	Yas
• • •	1 Block Flush	3	Yes Yes Yes Yes Yes Yes	Yes

CYCLE NAME:

7.4Y5-5

CYCLE NAME: 5.4X5-5 NUMBER OF STEPS: 132

## STEP FUNCTION STEP STEP ACTIVE FOR BASES SAFE				•	
### A 6 C T 5 S 7 STEP ### A		FUNCTION	STEP	CTED ACTIVE COR BASES	
### ### ### ### ### ### ### ### ### ##	NUMBER	# NAME		A C C	
45 90 IET To Column 46 20 B-TET To Col 2 47 90 TET To Column 48 -48 Group 2 Off 49 TET To Column 49 Yes Yes Yes Yes Yes Yes Yes Yes 49 +49 Group 3 On 50 91 IET To Column 40 Yes Yes Yes Yes Yes Yes Yes 50 90 IET To Column 51 21 B-TET To Col 3 52 98 TET To Column 53 -58 Group 3 Off 54 4 Watt 55 -45 Group 1 On 56 90 IET To Column 57 19 B-TET To Column 58 -48 Group 3 Off 59 TET To Column 59 TET To Column 50 TET To Column 50 TET To Column 51 Yes Yes Yes Yes Yes Yes Yes 52 Yes 53 -58 Group 1 On 54 Yes Yes Yes Yes Yes Yes 55 Yes 56 Ter To Column 57 19 B-TET To Column 58 TET To Column 59 TET To Column 59 TET To Column 59 TET To Column 50 TET To Column 50 TET To Column 51 Yes Yes Yes Yes Yes Yes Yes 52 Yes 53 TET To Column 54 Yes Yes Yes Yes Yes Yes 55 Yes 56 Ter To Column 57 Tes Yes 58 Tes Yes 59 TET To Column 59 TET To Column 50 TET To Column 50 TET To Column 51 Yes Yes Yes Yes Yes Yes 51 Yes 52 Tes 53 Tes 54 Server 55 Tes 56 Tes 57 Tes 58 Tes 58 Tes 59 TET To Column 50 Tes 59 Tes 50 Tes				3 5	STEP
### ### ### ### ### ### ### ### ### ##			= 1	YAR YAR YAR YAR YAR YAR YAR	
## 1	-	90 TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	
48		20 B+TET To Col 2	_	Yes Yes Yes Yes Yes Yes	
49 Feeu 3 On 1 Yes			4	Yes Yes Yes Yes Yes Yes	
### SPECIAL STATE 1 Yes	-		1	Yes Yes Yes Yes Yes Yes	
Simple S			ŧ	Yes Yes Yes Yes Yes Yes	
ST		TO TO SOUTHWIN	18	YAS YAS YAS YAS YAS YAS	
Same		- 10. 10 00. 3	. 8	Yes Yes Yes Yes Yes Yes	
1			4	Yes Yes Yes Yes Yes Yes	
### ### ### ### ### ### ### ### ### ##		-50 Group 3 Off		Yes Yes Yes Yes Yes Yes Yes	
### ### ### ### ### ### ### ### ### ##	-		30	YAS YAS VAR VAR VAR VAR	
### ### ### ### ### ### ### ### ### ##				Yes Yes Yes Yes Yes Yes	
Second Column Second Second Second Column Second C		30 TET To Column	10	Yes Yes Yes Yes Yes Yes	
Second Off 1 Yes			8	Yes Yes Yes Yes Yes Yes Yes	
### Group 2 On 1 Yes		e. in actability		Yes Yes Yes Yes Yes Yes	
61 90 TET TO COLUMN 62 20 9+TET TO COLUMN 63 90 TET TO COLUMN 64 -48 Group 2 Off 65 90 TET TO COLUMN 66 90 TET TO COLUMN 67 21 8+TET TO COLUMN 68 90 TET TO COLUMN 69 90 TET TO COLUMN 60 90 TET TO COLUMN 60 90 TET TO COLUMN 61 90 TET TO COLUMN 62 90 TET TO COLUMN 63 90 TET TO COLUMN 64 90 TET TO COLUMN 65 90 TET TO COLUMN 66 90 TET TO COLUMN 67 21 8+TET TO COL 3 8 Yes			1	Yes Yes Yes Yes Yes Yes Yes	
52			1	Yes Yes Yes Yes Yes Yes Yes	
### Second 1 Off 1 Yes		90. TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	
64 -48 Group 2 Off Yes Yes Yes Yes Yes Yes Yes Yes Yes Fes Yes Yes Yes Yes Yes Yes Yes Yes Yes Y		20 9+TET To Col 2	8	Yes Yes Yes Yes Yes Yes Yes	
### ### ### ### ### ### ### ### ### ##			4	Yes Yes Yes Yes Yes Yes Yes	
Fig. 1			1	Yes Yes Yes Yes Yes Yes Yes	_
### 10 Collann			1	Yes Yes Yes Yes Yes Yes	
### 1 ### 1			10	Yes Yes Yes Yes Yes Yes Yes	
59 -50 Group 3 Off Yes		21 8+TET To Col 3	8	Yes Yes Yes Yes Yes Yes Yes	
70 4 Wait 30 Yes			4	Yes Yes Yes Yes Yes Yes Yes	
71 +45 Group On Yes			1		
72 90 TET To Column 10 Yes			30	Yes Yes Yes Yes Yes Yes Yes	
73 19 8+TET To Col : 8 Yes			1	Yes Yes Yes Yes Yes Yes	
74 99 TET To Column 4 Yes		90 TET To Column	1 0	Yes Yes Yes Yes Yes Yes Yes	
75 -46 Group Off 1 Yes		19 8+TET To Col 1	8	Yes Yes Yes Yes Yes Yes Yes	
76 '+47 Group Z On Yes			4	Yes Yes Yes Yes Yes Yes	
77 98 TET To Column 10 Yes			1	Yes Yes Yes Yes Yes Yes Yes	
78			1.		
79 99 TET To Column 4 Yes		30 TET To Column		Yes Yes Yes Yes Yes Yes Yes	
## 121 To Column ## Yes		29 STIET TO COL Z	8	Yes Yes Yes Yes Yes Yes	
81	-		4	Yes Yes Yes Yes Yes Yes	
82 90 TET To Column 10 Yes Yes Yes Yes Yes Yes Yes Yes 83 21 8+TET To Col 3 8 Yes			1	Yes Yes Yes Yes Yes Yes	
83 21 8+TET To Col 3 8 Yes			. 1	Yes Yes Yes Yes Yes Yes	
84 90 TET To Column 4 Yes			16	Yes Yes Yes Yes Yes Yes	_
## 121 10 Column ## Yes			-	Yes Yes Yes Yes Yes Yes	
86 4 Wait 30 Yes		TO TOOM!			
87 +45 Group On 1 Yes			-		
88 90 TET To Column 19 Yes Yes Yes Yes Yes Yes Yes				Yos Yos Yos Yos Yos Yos	
TO SELECTION TO VAN					
		of tel to column	10	Yes Yes Yes Yes Yes Yes	Yes

(Continued next page.)

ليعطف الدر ما 11

CYCLE NAME: 5.4XS-5 NUMBER OF STEPS: 132

STEP NUMBER	FUNCTION NAME	STEP TIME	STEP ACTIVE FOR BASES	SAFE
		1105	A G C T S G 7	STEP
. 89	19 8+TET To Cal 1	- 0		•
90	90 TET To Column	- 8	Yes Yes Yes Yes Yes Yes Yes	Yes
91	-46 Group Off	4	Yes Yes Yes Yes Yes Yes Yes	Yes
92	+47 Group 2 On	!	Yes Yes Yes Yes Yes Yes Yes	Yes
93	90 TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
94	20 8+TET To Col 2		Yes Yes Yes Yes Yes Yes	Yes
95	90 TET To Column	8	Yes Yes Yes Yes Yes Yes Yes	Yes
98		. 4	Yas Yas Yas Yes Yes Yes Yes	Yes
97		ſ	Yes Yes Yes Yes Yes Yes Yes	Yes
38		1	Yes Yes Yes Yes Yes Yes Yes	Yes
99		10	Yes Yes Yes Yes Yes Yes Yes	Yes
100		8	Yes Yes Yes Yes Yes Yes Yes	Yes
181	90 TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yes
102	-50 Group 3 Off	Į l	Yes Yes Yes Yes Yes Yes Yes	Yes
	4 Wait	30	Yes Yes Yes Yes Yes Yes Yes	Yes
103	+45 Group I On	1	Yes Yes Yes Yes Yes Yes	Yes
104	90 TET To Column	1 🛭	Yes Yes Yes Yes Yes Yes Yes	Yes
105	19 B+TET To Col 1	8	Yes Yes Yes Yes Yes Yes	Yes
186	90 TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yes
107	-46 Group I Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes
108	+47 Group Z On	l	Yes Yes Yes Yes Yes Yes Yes	Yes
109	90 TET To Column	18	Yes Yes Yes Yes Yes Yes Yes	Yes
110	20 B+TET To Col 2	8	Yes Yes Yes Yes Yes Yes	Yas
111	90 TET To Calumn	4	Yas Yes Yes Yes Yes Yes Yes	Yes
112	-48 Group 2 Off	ī	Yes Yes Yes Yes Yes Yes Yes	Yes
113	+49 Group 3 On	1	Yes Yes Yes Yes Yes Yes Yes	Yes
114	90 TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
115	21 B+TET To Col 3	8	Yes Yes Yes Yes Yes Yes Yes	Yes
116	90 TET To Calumn	4	Yes Yes Yes Yes Yes Yes	Yes
117	-50 Group 3 Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes
118	4 Walt	30	Yes Yes Yes Yes Yes Yes Yes	Yes
119	+45 Group I On	1	Yes Yes Yes Yes Yes Yes	Yes
120	90 TET To Column	10	Yes Yes Yes Yes Yes Yes	Yes
121	' 19 8+TET To Col I	8	Yes Yes Yes Yes Yes Yes Yes	Yes
122	50 TET To Column	4	Yes Yes Yes Yes Yes Yes	Yes
123	-46 Group I Off	ſ	Yes Yes Yes Yes Yes Yes	Yes
124	+47 Group 2 On	1	Yes Yes Yes Yes Yes Yes	Yes .
125	90 TET To Column	10	Yes Yes Yes Yes Yes Yes	Yes
126	20 B+TET To Col Z	8	Yes Yes Yes Yes Yes Yes Yes	Yes
127	98 TET To Column	' 4	Yes Yes Yes Yes Yes Yes	Yes
128	-48 Group Z Off	ĭ	Yes Yes Yes Yes Yes Yes	
129	+49 Group 3 On	i	Yes Yes Yes Yes Yes Yes	Yas
130	90 TET To Column	10	Yes Yes Yes Yes Yes Yes	Yes
131	21 B+TET To Col 3	8	Yes Yes Yes Yes Yes Yes	Yes
132	99 TET To Column	4	Yes Yes Yes Yes Yes Yes	Yes
133	-50 Group 3 Off	i	Yes Yes Yes Yes Yes Yes	Yes
	3 411	•		Yes_

(Continued next page.)

CYCLE NAME: 5.4XS-5 NUMBER OF STEPS: 132

			•	
STEP	FUNCTION	STEP	STEP ACTIVE FOR BASES	
NUMBER	#- NAME	TIME	A S C T S S 7	SAFE
134				STEP
135	4 Wait	=0	Yes Yes Yes Yes Yes Yes Yes	٧
136	16 Cap Prep	3	Yes Yes Yes Yes Yes Yes Yes	Yes
137	10 218 To Waste	3	Yes Yes Yes Yes Yes Yes	Yes
138	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
139	Block Flush	4	Yes Yes Yes Yes Yes Yes	Yes
140	91 Cap To Column	22	Yes Yes Yes Yes Yes Yes	Yes
141	10 \$18 To Wasta	. 3	Yes Yes Yes Yes Yes Yes Yes	Yes
142	· 4 Wait	30	Yes Yes Yes Yes Yes Yes Yes	Yes
143	2 Reverse Flush	S	Yes Yes Yes Yes Yes Yes Yes	Yes
144	Block Flush	4	Yes Yes Yes Yes Yes Yes Yes	Yes
145	81 #15 To Waste	3	Yes Yes Yes Yes Yes Yes Yes	Yes
146	13 #15 To Column	22	Yes Yes Yes Yes Yes Yes	Yes
147	10 #18 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
148	4 Wait	30	Yes Yes Yes Yes Yes Yes	Yes
149	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes. Yes
150	1 Block Flush	4	Yes Yes Yes Yes Yes Yes Yes	Yes
151	9 \$18 To Column	10	Yes Yes Yes Yes Yes Yes	Yes
152	34 Flush to Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
153	9 \$18 To Column	10	Yes Yes Yes Yes Yes Yes	Yes
154	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes
155	9 \$18 To Column	10	Yes Yes Yes Yes Yes Yes	Yes
155	2 Reverse Flush 9 #18 To Column	5	Yes Yes Yes Yes Yes Yes	Yes
157		10	Yes Yes Yes Yes Yes Yes Yes	Yes
158		5	Yes Yes Yes Yes Yes Yes Yes	Yes
159	1 Block Flush	4	Yes Yes Yes Yes Yes Yes Yes	Yes
160	33 Cycle Entry 6 Weste-Port	1	Yes Yes Yes Yes Yes Yes	Yes
161		ţ	Yes Yes Yes Yes Yes Yes	Yes
162	37 Relay 3 Pulse 8Z #14 To Waste	. 1	Yes Yes Yes Yes Yes Yes Yes	Yes
163		3	Yes Yes Yes Yes Yes Yes	Yes
154		3	Yes Yes Yes Yes Yes Yes	Yes
165	10 #18 To Waste 9 #18 To Column	5	Yes Yes Yes Yes Yes Yes Yes	Yes
166		20	Yes Yes Yes Yes Yes Yes	Yes
167	11 \$17 To Column	60	Yes Yes Yes Yes Yes Yes	No
168	2 Reverse Flush	20	Yes Yes Yes Yes Yes Yes	No
169	11 817 To Column	7	Yes Yes Yes Yes Yes Yes Yes	No
170	34 Flush to Weste	15	Yes Yes Yes Yes Yes Yes Yes	No
171	11 817 To Column	.5	Yes Yes Yes Yes Yes Yes Yes	No
172	2 Reverse Flush	, 15	Yes Yes Yes Yes Yes Yes	No
173	14 #14 To Column	5	Yes Yes Yes Yes Yes Yes	No
174	34 Flush to Westo	20	Yes Yes Yes Yes Yes Yes Yes	No
175	7 Waste-Sottle	10	Yes Yes Yes Yes Yes Yes	No .
176	9 218 To Column	1	Yes Yes Yes Yes Yes Yes	Yes
177 .	2 Reverse Flush	18	Yes Yes Yes Yes Yes Yes	Yes
178	9 \$18 To Column	5	Yes Yes Yes Yes Yes Yes	Yes
	wearii	1.0	Yes Yes Yes Yes Yes Yes	Yes -
0				•

⁽Continued next page.)

Page S

CYCLE NAME: 5.4XS-5

NUMBER OF STEPS: 132

STEP NUMBER	FUNCTION * NAME	STEP TIME	STEP ACTIVE FOR BASES A G C T S S 7	SAFE STEP
179 180 181 182	Z Reverse Flush 3 \$18 To Column 2 Reverse Flush 1 Block Flush	5 10 5	Yes	Yes Yes Yes Yes

Page |

CYCLE NAME: 1.2X0-6

NUMBER OF STEPS: 128 OATE:

TI

Aug 27, 139 4:00

TIME:	14	:0

STEP	Ė	UNCTION	STEP		STEP	ACT	IVE	FOR	BASE	3	SAFE
NUMBER	_=	NAME	HME	A	- 5		T	5		7	STEP
		440 7 11 1	•								
1	10	#18 To Waste	2							Yes	Yes
2 3	9 2		9							Yes	Yes
4		Reverse Flush	5							Yes	Yes
5	1 5	Block Flush	3		Yes						Yes
		Advance FC	· <u>1</u>							Yes	Yes
5 7	. 28	Phos Prep	. 3		Yes						Yes
8	+45	Group ! On	1		Yes						Yes
-	90	TET To Column	6		Yes						Yes
9	19	8+TET To Col 1	6		Yes						Yes
10	90	TET To Column	3		Yes						Yes
11	19	B+TET To Col 1	3		Yes						Yes
12	90	TET To Column	3		Yes						Yes
13	19	B+TET To Col 1	3		Yes						Yes
14	9	\$18 To Column	1		Yes						Yes
15	-46	Group 1 Off	1		Yes						Yes
16	+47	Group 2 On	1		Yes						Yes
17	10	\$18 To Waste	4		Yes						Yes
18	1	Block Flush	3		Yes						Yes
19	90	TET To Column	6		Yes						Yes
20	ZO	8+TET To Col 2	6		Yes	_				-	Yes
21	90	TET To Column	3		Yes						Yes
22	20	8+TET To Col Z	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
23	90	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
24	20	8+TET To Col Z	3	Yes	Yes	Yos	Yes	Yes	Yes	Yes	Yes
25	9	#18 To Column	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
26	-48	Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2.7	+49	Group 3 On	1	Yes	Yes	Yes	Yes	Yos	Yes	Yes	Yes
28	19	\$18 To Waste	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
29	1	Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yas
30	90	TET To Column	6	Yes	Yes	Yas	Yes	Yes	Yes	Yes	Yes
31	' 21	8+TET To Col 3	6		Yes						Yes
32	90	TET To Column	3		Yes						Yes
33	21	8+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
34	90	TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
35	21	8+TET To Col 3	3		Yes						Yes
36	3	\$18 To Column	. 1		Yes						Yes
37	-58	Group 3 Off	' 1		Yes						Yes
38	4	Weit	29	Yes	Yes	Yes	Yes	Yes		Yes	Yes
39	2	Reverse Flush	5						Yes		Yes
40	10	\$18 To Weste	2						Yes		Yes
41	9	\$18 To Column	9						Yes		Yes
42	2	Reverse Flush	5						Yes		Yes
43	10	\$18 To Weste	3						Yes		Yes

CYCLE NAME: 1.2XO-S NUMBER OF STEPS: 128

	••			
STEP	FUNCTION	STEP	STEP ACTIVE FOR BASES	
NUMBER	# NAME	TIME	A G C T S S 7	SAFE
	•			STEP .
14	1 Block Flush	- 3	Yes	Yes
45	+45 Group I On	1	Yes	Yes
46	90 TET To Column	6	Yes	Yes
47	19 8+TET To Cal 1	8	Yes	Yes
48	90 TET To Column	3	Yes	Yes
49	19 8+TET To Cal I	3	Yes	Yes
50 ~•	90 TET To Column	. 3	Yes	Yes
SI	· 19 8+TET To Col 1	. 3	Yes	Yes
52	3 \$18 To Column	1	Yes	Yes
53	-46 Group L Off	1	Yes	Yes
54	+47 Sroup 2 On	1	Yes	Yes
55	10 #18 To Waste	4	Yes	Yes
5 6	1 Block Flush	3	Yes	Yes
57	90 TET To Column	6	Yes	Yes
58 ⁻	ZØ B+TET To Col 2	6	Yes	Yes
59	90 TET To Column	3	Yes	Yes
60	20 B+TET To Cal 2	3	Yes	Yes
51 57	90 TET To Column	3	Yes	Yes
62 63	20 B+TET To Col Z	3	Yes	Yes
64	9 \$18 To Column	I.	Yes	Yes
	-48 Group 2 Off	i	Yes	Ye
s 65				
65°	+49 Group 3 On 10 \$18 To Wasta	1 '	Yes	Yes
67 67		4	Yes	Yes
68	1 Block Flush 90 TET To Column	3	Yes	Yes
63		6	Yes	Yes
78		6	Yes	Yes
71	90 TET To Column 21 8+TET To Col 3	3	Yes	Yes
72	90 TET To Column	3	Yes	Yes
73	21 8+TET To Col 3	3	Yes	Yas
74	9 \$18 To Column	3	Yes	Yes
75	1-58 Group 3 Of?	1	Yes	Yes
76	4 Wait	1	Yes	Yes
77	16 Cap Pres	20 3	Yes	Yes
78	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes
79	l Block Flush	3	Yes Yes Yes Yes Yes Yes	Yes
88	91 Cap To Column	12	Yes Yes Yes Yes Yes Yes Yes	Yes
81	10 \$18 To Waste	' 3	Yes Yes Yes Yes Yes Yes	Yes
82	4 Wait		Yes Yes Yes Yes Yes Yes	Yes .
83	2 Roverso Flush		Yes Yes Yes Yes Yes Yes	Yes
84	81 #15 To Waste		Yes Yes Yes Yes Yes Yes	Yes _
85	13 \$15 To Column		Yes Yes Yes Yes Yes Yes Yes	Yes
86	18 \$18 To Waste		Yes Yes Yes Yes Yes Yes	Yes
87	4 Wait		Yes Yes Yes Yes Yes Yes	Yes_
88	2 Reverse Flush		Yes Yes Yes Yes Yes Yes	Yes
	•	_		

⁽Continued next page.)

CYCLE NAME: 1.2X0-6
NUMBER OF STEPS: 123

STEP		UNCTION	STEP		STEP					5	SAFE
NUMBER	==	NAME	TIME	<u> </u>	5	<u></u>		5_	_ 5	7	STEP
89	9	#18 To Column	- 9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
30	34	Fiush to Weste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
91	3	#18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
92	2	Reverse Flusn	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
93	9	#18 To Column	9	Yas	Yes	Yes	Yes	Yes	Yes	Yes	Yes
94	Z	Reverse Flush	5	Yes	Yes	Yes	. Yes	Yes	Yes	Yes	Yes
95	1	Block Flush	3	Yas	Yes	Yes	Yes	Yes	Yes	Yes	Yes
96	33	Cycle Entry	· t	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
97	9		9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
98	2	Reverse Flusn	S	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
99	6		1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
100	30	#17 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
101	11	#17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
102	34	Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
103	1.1	#17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yas	No
104	34	Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
105	13	#17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
105	34	Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
107	11	#17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
108	34	Flush to Waste	1	Yas	Yes	Yes	Yes	Yes	Yes	Yes	No
109	11	#17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
110	34	Flush to Weste	1	Yas	Yes	Yes	Yes	Yes	Yes	Yes	No
111	11	#17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
112	34	Flush to Weste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
113	9	\$18 To Caluan	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
114	34	Flush to Weste	7	Yas	Yes	Yes	Yes	Yes	Yes	Yes	No
115	7	Weste-Bottle	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
116	9	\$18 To Column	9	Yes	rey	Yes	Yes	Yes	Yes	Yes	Yes
117		Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
118	9	\$18 To Column	9 .	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
119	2	Reverse Flush	S	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
120	1	Block Flush.	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

ال عود ۽

CYCLE NAME:

1.2X-S

NUMBER OF STEPS: 32

DATE: ORTE: TIME:

Aug 27, 199

14:02

STEP	FUNCTION	STEP	STEP ACTIVE FOR BASES	SAFE
NUMBER	# NAME	IIME	A 3 C T 5 5 7	STEP
ŧ	10 410 4 11 1	_		
2	10 \$18 To Waste 9 \$18 To Column	2	Yes Yes Yes Yes Yes Yes Yes	Yes
3	9 #18 To Column Z Reverse Flusn	3	Yes Yes Yes Yes Yes Yes Yes	Yes
4	1 Block Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
Š	5 Advance FC	3	Yes Yes Yes Yes Yes Yes Yes	Yas
6	· 28 Phos Pres	. [Yes Yes Yes Yes Yes Yes Yes	Yes
7	+45 Group I On	3	Yes Yes Yes Yes Yes Yes Yes	Yes
8	90 TET To Column	1	Yes Yes Yes Yes Yes Yes Yes	Yes
9	19 B+TET To Cal 1	6	Yes Yes Yes Yes Yes Yes Yes	Yes
10	90 TET To Column	6	Yes Yes Yes Yes Yes Yes	Yes
11	19 8+TET To Col 1	3	Yes Yes Yes Yes Yes Yes Yes	Yes
12	90 TET To Column	3 3	Yes Yes Yes Yes Yes Yes Yes	Yes
13	19 B+TET To Col 1	3	Yes Yes Yes Yes Yes Yes	Yes
14	9 \$18 To Column	1	Yes Yes Yes Yes Yes Yes	Yes
t S	-46 Group Off	i	Yes Yes Yes Yes Yes Yes	Yes
15	+47 Group 2 On	i	Yes Yes Yes Yes Yes Yes	Yes
17	10 \$18 To Waste	4	Yes Yes Yes Yes Yes Yes	Yes
18	1 Block Flush	3	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes
19	90 TET To Column	6	Yes Yes Yes Yes Yes Yes Yes	Yes
20	20 8+TET To Col Z	5	Yes Yes Yes Yes Yes Yes Yes	Yes
21	90 TET To Column	3	Yas Yas Yas Yas Yas Yas Yas	Yes
ZZ	20 B+TET To Col Z	3	Yes Yes Yes Yes Yes Yes	Yes
23	90 TET To Column	3	Yes Yes Yes Yes Yes Yes	Yes
24	28 B+TET To Cal 2	3	Yes Yes Yes Yes Yes Yes	Yes
25	9 \$18 To Column	ī	Yes Yes Yes Yes Yes Yes Yes	Yas
26	-48 Group 2 Off	f	Yes Yes Yes Yes Yes Yes Yes	Yes Yes
27	+49 Group 3 On	i	Yas Yes Yes Yes Yes Yes	Yes
28	10 \$18 To Wasta	4	Yes Yes Yes Yes Yes Yes	Yes
29	1 Block Flush	3	Yes Yes Yes Yes Yes Yes	Yes
30	90 TET To Column	6	Yes Yes Yes Yes Yes Yes Yes	Yes
31	' ZI B+TET To Col 3	6	Yes Yes Yes Yes Yes Yes Yes	Yes
32	99 TET To Column	3	Yes Yes Yes Yes Yes Yes	Yes
33	21 BHTET To Col 3	3	Yes Yes Yes Yes Yes Yes	Yes
34	90 TET To Column	3	Yes Yes Yes Yes Yes Yes	Yes
35	21 B+TET To Col 3	3	Yes Yes Yes Yes Yes Yes	Yas
35	9 \$18 To Column	, t	Yes Yes Yes Yes Yes Yes	Yas
37 70	-50 Group 3 Of?	t	Yes Yes Yes Yes Yes Yes	Yes
38 38	4 Wait	20	Yes Yes Yes Yes Yes Yes Yes	Yas
39 4 9	16 Cap Prep	3	Yes Yes Yes Yes Yes Yes Yes	Yes
41	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes "
42	Block Flush	3	Yes Yes Yes Yes Yes Yes Yes	Yes
43	91 Cap To Column	12	Yas Yas Yas Yas Yas Yas	Yes
43	19 \$18 To Weste	· 3	Yes Yes Yes Yes Yes Yes	Yes

345e 2

CYCLE NAME: 1.2X-5
NUMBER OF STEPS: 5Z

STEP Number	FUNCTION # NAME	STEP Time	STEP ACTIVE FOR BASES A G C T S S 7	SAFE
44			7 5 5 7	STEP
	4 Wait	= 8	Vac Vac Vac Vac V	
45	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
46	31 #15 To Waste	3	Yes Yes Yes Yes Yes Yes	Yes
47	13 #15 To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
48	10 \$18 To Waste	3	Yes Yes Yes Yes Yes Yes Yes	Yes
49	4 Wait	15	Yes Yes Yes Yes Yes Yes Yes	Yes
50	Z Reverse Flush	. 5	Yes Yes Yes Yes Yes Yes Yes	Yes
51	9 \$18 To Column		Yes Yes Yes Yes Yes Yes Yes	Yas
52	34 Flush to Waste	9	Yes Yes Yes Yes Yes Yes Yes	Yes
53	9 \$18 To Column	5	Yes Yes Yes Yes Yes Yes Yes	Yes
54	2 Reverse Flush	9	Yes Yes Yes Yes Yes Yes Yes	Yes
55	9 \$18 To Column	5	Yes Yes Yes Yes Yes Yes Yes	Yes
56	2 Reverse Flush	9	Yes Yes Yes Yes Yes Yes Yes	Yes
57	Block Fluan	5	Yes Yes Yes Yes Yes Yes	Yes
58	33 Cycle Entry	3	Yes Yes Yes Yes Yes Yes Yes	Yes
59	9 \$18 To Column	1	Yes Yes Yes Yes Yes Yes	Yes
60	2 Reverse Flush	9	Yes Yes Yes Yes Yes Yes Yes	Yes
61	6 Waste-Port	S	Yes Yes Yes Yes Yes Yes Yes	Yes
62		1	Yes Yes Yes Yes Yes Yes Yes	
63		3	Yes Yes Yes Yes Yes Yes	Yes
64	A POLUMN	7	Yes Yes Yes Yes Yes Yes	Yes
65		1	Yes Yes Yes Yes Yes Yes	Na
66	THE PARTY OF THE P	7	Yes Yes Yes Yes Yes Yes	No
57	A THEN TO MERIE	1	Yes Yes Yes Yes Yes Yes	No
58	11 #17 To Column	7	Yas Yes Yes Yes Yes Yes	No
69	34 Flush to Waste	1	Yes Yes Yes Yes Yes Yes	No
70	11 317 To Column	7	Yes Yes Yes Yes Yes Yes	No
71	34 Flush to Waste	1	Yes Yes Yes Yes Yes Yes	No
72	11 217 To Column	7	Yes Yes Yes Yes Yes Yes	No
73	34 Flush to Weste	1	Yes Yes Yes Yes Yes Yes	No
74	11 \$17 To Column	7	Yes Yes Yes Yes Yes Yes	No
.75	34 Flush to Weste	· 5	Yes Yes Yes Yes Yes Yes	No
_	9 818 To Column	9	Yes Yes Yes Yes Yes Yes	No
76 77	34 Flush to Weste	7	Yes Yes Yes Yes Yes Yes	No
7 <i>1</i> 78	7 Weste-Settle	i	Yes Yes Yes Yes Yes Yes	No
78 79	9 \$18 To Column	9	Yes Yes Yes Yes Yes Yes	Yes
. 4	2 Roverso Flush	Š	Yes Yes Yes Yes Yes Yes	Yes
80	9 \$18 To Column	9	Yes Yes Yes Yes Yes Yes	Yes
81	2 Reverse Flush	Š	Yes Yes Yes Yes Yes Yes	Yas
82	i Block Flush	, 3	Yes Yes Yes Yes Yes Yes	Yes
		•	100 100 100 100 100 100 100	Yes

END PROCEDURE VERSION Z.20

sage i

PROCEDURE NAME:

CAP-PRIM NUMBER OF STEPS: 27

DATE:

Aug 27, 199

TIME: .-

14:23

STEP	FUNCTION	STEP	STEP ACTIVE FOR BASES
NUMBER	# NAME	TIME	A G C T 5 5 7
ī	10 \$18 To Waste	•	
-		.2	Yes Yes Yes Yes Yes Yes
2 3		15	Yes Yes Yes Yes Yes Yes Yes
4		28	Yes Yes Yes Yes Yes Yes
5	Block Flush	4	Yes Yes Yes Yes Yes Yes Yes
6 .	15 Cap Prep	. 10	Yes Yes Yes Yes Yes Yes Yes
7	91 Cap To Column	30	Yes Yes Yes Yes Yes Yes Yes
	18 \$18 To Waste	3	Yes Yes Yes Yes Yes Yes
8	l Block Flush	4	Yes Yes Yes Yes Yes Yes Yes
9	4 Wait	300	Yes Yes Yes Yes Yes Yes
10	16 Cap Pres	10	Yes Yes Yes Yes Yes Yes Yes
11	91 Cap To Column	30	Yes Yes Yes Yes Yes Yes
12	10 \$18 To Waste.	3	Yes Yes Yes Yes Yes Yes Yes
13	1 Block Flush	4	Yes Yes Yes Yes Yes Yes
14	4 Wait	300	Yes Yes Yes Yes Yes Yes
15	2 Reverse Flush	10	Yes Yes Yes Yes Yes Yes
16	10 \$18 To Waste	3	Yes Yes Yes Yes Yes Yes
17	9 \$18 To Calumn	15	Yes Yes Yes Yes Yes Yes Yes
18	2 Reverse Flush	10	Yes Yes Yes Yes Yes Yes Yes
19	9 #18 To Column.	15	Yos Yos Yos Yas Yes Yes Yes
20	2 Reverse Flush	10	Yes Yes Yes Yes Yes Yes Yes
21	9 \$18 To Column	15	Yes Yes Yes Yes Yes Yes Yes
22	Z Reverse Flush	10	Yes Yes Yes Yes Yes Yes Yes
23	9 \$18 To Column	15	Yes Yes Yes Yes Yes Yes
24	2 Reverse Flush	10	Yes Yes Yes Yes Yes Yes Yes
25.	9 \$18 To Column	15	Yes Yes Yes Yes Yes Yes
26	2 Reverse Flush	60	Yes Yes Yes Yes Yes Yes
27	1 Block Flush	5	Yes Yes Yes Yes Yes Yes

END PROCEDURE VERSION 2.20

Bage ('

PROCEDURE NAME:

CE NH3

NUMBER OF STEPS: 27

DATE:

Aug 27, 139

TIME: 14:04

STEP NUMBER	FUNCTION # NAME	STEP Line	STEP ACTIVE FOR BASES SAFE
1234567890112345678901223456789012322345678901223456789012223456789012222345678901222234567890122223456	Reverse Flush Reverse Flush	50 17 56 18 56 18 56 18 56 18 56 18 56 66 17 56 66 18 56 66 18 56 66 18 56 66 66 66 66 66 66 66 66 66 66 66 66	A G T STEP Yes Yes Yes Yes Yes Yes Yes Yes Ye
27	42 210 Vent	10	Yes Yes Yes Yes Yes Yes Yes Yes Yes

Alphote which would compared to tre,

SEGIN PROCEDURE VERSION 2.20

Page I

PROCEDURE NAME:

STO PREP

NUMBER OF STEPS: 13

DATE:

Aug 27, 199

TIME:

: 14:05

· STEP	F	UNCTION	STEP		STEP	ACT	IVE	FOR	BASE	5	SAEF
NUMBER	_=	NAME	TAME	A	6	C	Ţ	5	_ 5	7	STEP
1	28	Phos Prep	10	Yes	Yes	Yes	Yas	Yes	Yes	Yes	Yas
2	52	A To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	53	6 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	54	C To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	55	T To Waste	. 5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
6	- 58	\$5 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	57	\$5 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	58	\$7 To Waste	S	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	61	TET To Waste	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	10	\$18 To Waste	10		Yes						Yes
11	16	Cap Pres	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	53	Cap A To Waste	S	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	60	Can B To Waste	Š	Yes	Yes	Yas	Yes	Yes	Yes	Yes	Yes
14	81	\$15 To Waste	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
15	82	#14 To Waste	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	30	\$17 To Waste	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
17	10	\$18 To Waste	15		Yes						Yes
18	1	Block Flush	15		Yes						Yes

ONA SE" "EN VERSIG. 2.20

SEQUENCE NAME: 15X-I SEQUENCE LENGTH: 71

DATE:

Aug 27, 199

TIME: . 14:07

COMMENT:

5'- 96T STT 186 TT6 TT6 TT6 TT6 TT6 TT6 TT6

DNA SEQUENCE VERSION 2.00

SEQUENCE NAME: 15X-2 SEQUENCE LENGTH: 10

DATE: Aug 27, 199 14:05

TIME:

COMMENT:

5'- 77T 6AC T65 T -3'

Claims

A synthetic oligonucleotide useful as an amplifier probe in a sandwich hybridization assay for
 HTLV-1, wherein said oligonucleotide comprises:

a first segment comprising a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid; and

a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer,

wherein said HTLV-1 nucleic acid segment is selected from the group consisting of

```
GGTCTGGGTGTCAAYCTGGGCTTTAATTACGGG (SEQ ID NO:6),
15
          ATCTAGTARAGCTTCGATAGTCTTTGGGTGGCT (SEQ ID NO:7),
          GGCTATCGGAAGGACTGTCATGTCTGCTCCTGT (SEQ ID NO:8),
          TGTRTTTTTGAGGGGAGTATTACTTGAGAACAA (SEQ ID NO:9),
          ATCTTGGGTTTGGCCCCCTGCCCCTAAYACGGA (SEQ ID NO:10),
          TATTAGCACAGGAAGGGAGGTGAGCTTAAAGTG (SEQ ID NO:11),
20
          TAAAACAATAGGCGTYGTCCGGAAAGGGAGGCG (SEQ ID NO:12),
          CYAGTTGTTTTTGGTATCAACTAGGCAAGATGT (SEQ ID NO:13),
          GCATTGTTGTAAGGCATCRCGACCTATGATGGC (SEQ ID NO:14),
          CCYTTTTGCCTCAGGGAGGTACAGGACGCCYTG (SEQ ID NO:15),
          RGCTGGCGCCTGTATTGGCAAGATTACAGGCGG (SEQ ID NO:16),
25
          GGGGGGCCTTGGGAGGTGTTCTAGYCCAAGGAC (SEQ ID NO:17),
          GGCGTTCTGGTTTAAAGGGAACTGGCTGATTTS (SEQ ID NO:18),
          GGGCCTTCCGGACCAAGTGTTGCAAGGCCTGGA (SEQ ID NO:19),
          GCCCGGTGTAGGRTTCGATATGGCCTGCCTCCA (SEQ ID NO:20),
          CYTTTTTAACTGGGAATACTGGGTTATTYCCTG (SEQ ID NO:21),
30
          GCAGGTCGTGGATGAATCGCCAGGTTCCATTGG (SEQ ID NO:22),
          ATGAGAGRTCTATGGTTAGAGAGTTAGTGGCCC (SEQ ID NO:23),
          GGCTGGACAAGTCAGGGGGCCCGGGGGAAGATG (SEQ ID NO:24),
          CTATAGTTTGYAAGTGGGCTAGTGTRGTTGGCA (SEQ ID NO:25),
          GTARGGGGATTTGGAAAAAGGCGTCTYTAAGGT (SEQ ID NO:26),
35
```

-UJ- 1 C1/ UU/a/ 11.

*** 73/ 13443

```
CAGTGAAAGCAAAGTAGGGCTGGAACTGTTTAG (SEQ ID NO:27),
             TAGTGCCGGGGCCGTAGTTACACTGCTGTGGGA (SEQ ID NO:28),
             TAAACCCTTGGGGTAGTACTYTCCAGGCGTATC (SEQ ID NO:29),
             -CCAGCTGCATTTCGAACAGGGTGGGACTATTTT (SEQ ID NO:30),
    5
             GGAARGCTTGCCGAATGGGCTGCAGGATATGGG (SEQ ID NO:31),
             TGTCATCCATGTACTGAAGAATAGTGCATTGGG (SEQ ID NO:32),
             GYAGGTCCKCATGGGAGGGGCTTGCYAGGAGAA (SEQ ID NO:33),
             TTAGGGAAGCCATTGTGGCCTCTGAGAGTAGTW (SEQ ID NO:34),
            TTTTGTTTTCGGACACAGGCAACCCATGGGAGA (SEQ ID NO:35),
  10
            CTAGGAACTTAATTGTTCCAGGGGTTTGCTGGG (SEQ ID NO:36),
            CATAAGTGAGGTGATTRGGTGAAATTATYTGCC (SEQ ID NO:37),
            AGCGGGACCGTATAGGTACCKTGGGGACTGCAT (SEQ ID NO:38),
            CGCCAAGTAGGGCTTGAAGTTCAGGTAGCGCCC (SEQ ID NO:39),
            AGGTAGGAGTTCCTTTGGAGACCCACTGAATCT (SEQ ID NO:40),
  15
            AGGCACAGTAGAGACTGTGAAGGGGCTGGCGTA (SEQ ID NO:41).
                 2. The synthetic oligonucleotide of claim 1,
      wherein said second segment comprises the sequence
                AGGCATAGGACCCGTGTCTT (SEQ ID NO:54).
 20
                     A synthetic oligonucleotide useful as a
                3.
      capture probe in a sandwich hybridization assay for HTLV-
      1, wherein the synthetic oligonucleotide comprises:
                a first segment comprising a nucleotide
     sequence substantially complementary to a segment of
 25
     HTLV-1 nucleic acid; and
               a second segment comprising a nucleotide
     sequence substantially complementary to an
     oligonucleotide bound to a solid phase,
30
               wherein said HTLV-1 nucleic acid segment is
     selected from the group consisting of
          TCTGGTTCTGGGATAGTGGGCTTTAGGCGGGGG (SEQ ID NO:42),
          GGGAGRTCTAATAGGAGGGCATCYTCCTCTGGC (SEQ ID NO:43),
          CCTATGRAGTTTTTGGGTGTGGRATGTCRGCG (SEQ ID NO:44),
35
         CTGTAATGTGGGGGGGGGGGGTTAAACCTCCCCC (SEQ ID NO:45),
```

```
AATAGATGYTGGGTCTTGGTTARGAARGACTTG (SEQ ID NO:46),
           CCGACGGGCGGGATCTAACGGTATAACTGGCAG (SEQ ID NO:47),
          ATATTTGGTCTCGGGGATCAGTATGCCTTTGTA (SEQ ID NO:48),
          GCACTAATGATTGAACTTGAGAAGGATTTAAAT (SEQ ID NO:49),
          TGCGGCAGTTCTGTGACAGGGCCTGCCGCAGCT (SEQ ID NO:50),
 5
          CCCCTAGGAGGGCAGGGTTTGGACTAGTCTAC (SEQ ID NO:51),
          CAGTRGTGGTGCCAGTGAGGGTCAGCATAATAG (SEQ ID NO:52),
          CAAGTGGCCACTGCTSCTTGGACTGGAACACYA (SEQ ID NO:53).
                    The synthetic oligonucleotide of claim 3,
10
               4.
     wherein said second segment comprises
               CTTCTTTGGAGAAAGTGGTG (SEO ID NO:55).
                   A set of synthetic oligonucleotides useful
15
     as amplifier probes in a sandwich hybridization assay for
     HTLV-1, comprising two oligonucleotides,
               wherein each oligonucleotide comprises:
               a first segment comprising a nucleotide
     sequence substantially complementary to a segment of
20
     HTLV-1 nucleic acid; and
               a second segment comprising a nucleotide
     sequence substantially complementary to an
     oligonucleotide unit of a nucleic acid multimer,
               wherein said HTLV-1 nucleic acid segments are
25
          GGTCTGGGTGTCAAYCTGGGCTTTAATTACGGG (SEQ ID NO:6),
          ATCTAGTARAGCTTCGATAGTCTTTGGGTGGCT (SEQ ID NO:7),
          GGCTATCGGAAGGACTGTCATGTCTGCTCCTGT (SEQ ID NO:8),
          TGTRTTTTTGAGGGGAGTATTACTTGAGAACAA (SEQ ID NO:9),
30
          ATCTTGGGTTTGGCCCCCTGCCCCTAAYACGGA (SEQ ID NO:10),
          TATTAGCACAGGAAGGGAGGTGAGCTTAAAGTG (SEQ ID NO:11),
          TAAAACAATAGGCGTYGTCCGGAAAGGGAGGCG (SEQ ID NO:12),
```

CYAGTTGTTTTTGGTATCAACTAGGCAAGATGT (SEQ ID NO:13),

GCATTGTTGTAAGGCATCRCGACCTATGATGGC (SEQ ID NO:14),

```
CCYTTTTGCCTCAGGGAGGTACAGGACGCCYTG (SEQ ID NO:15),
          RGCTGGCGCCTGTATTGGCAAGATTACAGGCGG (SEQ ID NO:16),
          GGGGGGCCTTGGGAGGTGTTCTAGYCCAAGGAC (SEQ ID NO:17),
          GGCGTTCTGGTTTAAAGGGAACTGGCTGATTTS (SEQ ID NO:18),
 5
          GGGCCTTCCGGACCAAGTGTTGCAAGGCCTGGA (SEQ ID NO:19),
          GCCCGGTGTAGGRTTCGATATGGCCTGCCTCCA (SEQ ID NO:20),
          CYTTTTTAACTGGGAATACTGGGTTATTYCCTG (SEQ ID NO:21),
          GCAGGTCGTGGATGAATCGCCAGGTTCCATTGG (SEQ ID NO:22),
          ATGAGAGRTCTATGGTTAGAGAGTTAGTGGCCC (SEQ ID NO:23),
10
          GGCTGGACAAGTCAGGGGGCCCGGGGGAAGATG (SEQ ID NO:24),
          CTATAGTTTGYAAGTGGGCTAGTGTRGTTGGCA (SEQ ID NO:25),
          GTARGGGGATTTGGAAAAAGGCGTCTYTAAGGT (SEQ ID NO:26),
          CAGTGAAAGCAAAGTAGGGCTGGAACTGTTTAG (SEQ ID NO:27),
          TAGTGCCGGGGCCGTAGTTACACTGCTGTGGGA (SEQ ID NO:28),
15
          TAAACCCTTGGGGTAGTACTYTCCAGGCGTATC (SEQ ID NO:29),
          CCAGCTGCATTTCGAACAGGGTGGGACTATTTT (SEQ ID NO:30),
          GGAARGCTTGCCGAATGGGCTGCAGGATATGGG (SEQ ID NO:31),
          TGTCATCCATGTACTGAAGAATAGTGCATTGGG (SEQ ID NO:32),
          GYAGGTCCKCATGGGAGGGGCTTGCYAGGAGAA (SEQ ID NO:33),
20
          TTAGGGAAGCCATTGTGGCCTCTGAGAGTAGTW (SEQ ID NO:34),
          TTTTGTTTTCGGACACAGGCAACCCATGGGAGA (SEO ID NO:35),
          CTAGGAACTTAATTGTTCCAGGGGTTTGCTGGG (SEQ ID NO:36),
          CATAAGTGAGGTGATTRGGTGAAATTATYTGCC (SEO ID NO:37),
          AGCGGGACCGTATAGGTACCKTGGGGACTGCAT (SEQ ID NO:38),
25
          CGCCAAGTAGGGCTTGAAGTTCAGGTAGCGCCC (SEQ ID NO:39),
          AGGTAGGAGTTCCTTTGGAGACCCACTGAATCT (SEQ ID NO:40),
          AGGCACAGTAGAGACTGTGAAGGGGCTGGCGTA (SEQ ID NO:41).
```

- 6. The synthetic oligonucleotide of claim 5,
 wherein said second segment comprises
 AGGCATAGGACCCGTGTCTT (SEQ ID NO:54).
- 7. A set of synthetic oligonucleotides useful as capture probes in a sandwich hybridization assay for HTLV-1, comprising two oligonucleotides,

25

30

35

wherein each oligonucleotide comprises:
 a first segment comprising a nucleotide
sequence substantially complementary to a segment of

HTLV-1 nucleic acid; and

a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase,

wherein said HTLV-1 nucleic acid segments are

TCTGGTTCTGGGATAGTGGGCTTTAGGCGGGG (SEQ ID NO:42),
GGGAGRTCTAATAGGAGGGCATCYTCCTCTGGC (SEQ ID NO:43),
CCTATGRAGTTTTTTGGGTGTGGRATGTCRGCG (SEQ ID NO:44),
CTGTAATGTGGGGGGGGGGGGGTTAAACCTCCCCC (SEQ ID NO:45),
AATAGATGYTGGGTCTTGGTTARGAARGACTTG (SEQ ID NO:46),
CCGACGGGCGGGATCTAACGGTATAACTGGCAG (SEQ ID NO:47),
ATATTTGGTCTCGGGGATCAGTATGCCTTTGTA (SEQ ID NO:48),
GCACTAATGATTGAACTTGAGAAGGATTTAAAT (SEQ ID NO:49),
TGCGGCAGTTCTGTGACAGGGCCTGCCGCAGCT (SEQ ID NO:50),
CCCCTAGGAGGGGCAGGGTTTGGACTAGTCTAC (SEQ ID NO:51),
CAGTRGTGGTGCCAGTGAGGGCTCAGCATAATAG (SEQ ID NO:52),
CAAGTGGCCACTGCTSCTTGGACTGGAACACYA (SEQ ID NO:53).

8. The synthetic oligonucleotide of claim 7, wherein said second segment comprises

CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:55).

- 9. A solution sandwich hybridization assay for detecting the presence of HTLV-1 in a sample, comprising
- (a) contacting the sample under hybridizing conditions with an excess of (i) amplifier probes comprising the set of synthetic oligonucleotides of claim 5 and (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a

first segment comprising a nucleotide sequence that is substantially complementary to a segment of HTLV-1 nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

- (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;
- (c) thereafter separating materials not bound 10 to the solid phase;
- (d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide:
 - (e) removing unbound multimer;
- 20 (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
- 25 (h) detecting the presence of label in the solid phase complex product of step (g).
- 10. A solution sandwich hybridization assay for detecting the presence of HTLV-1 in a sample, comprising
- (a) contacting the sample under hybridizing conditions with an excess of (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment comprising a nucleotide sequence substantially complementary to a

15

25

30

35

segment of HTLV-1 nucleic acid and a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) capture probes comprising the set of synthetic oligonucleotides of claim 7;

- (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;
- (c) thereafter separating materials not bound to the solid phase;
 - (d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;
 - (e) removing unbound multimer;
- 20 (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;
 - (g) removing unbound labeled oligonucleotide;
 - (h) detecting the presence of label in the solid phase complex product of step (g).
 - 11. A kit for the detection of HTLV-1 in a sample comprising in combination
 - (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment comprising a nucleotide sequence substantially complementary to a segment of HTLV-1 nucleic acid and a second segment comprising a nucleotide

sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;

- (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment comprising a nucleotide sequence that is substantially complementary to a segment of HTLV-1 nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;
- (iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide; and
 - (iv) a labeled oligonucleotide.
 - 12. The kit of claim 11, further comprising instructions for the use thereof.

13. The kit of claim 11, wherein said set of amplifier probe oligonucleotides is the set of synthetic oligonucleotides of claim 5.

25 14. The kit of claim 11, wherein said set of capture probe oligonucleotides is the set of synthetic oligonucleotides of claim 7.

30

20

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/11345

A CLASSIFICATION OF STREET			
A. CLASSIFICATION OF SUBJECT MATTER IPC(5) :C12Q 1/68; C07H 21/04			
US CL :435/6; 536/24.3			
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) U.S.: 435/6; 536/24.3			
- C.O 433/0, 330/24.3			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Flectronic data have completed the state of			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Medline, APS, DIALOG			
January, M. D., DEALOG			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category* Citation of document, with indication, who	ere appropriate, of the relevant passages	Relevant to claim No.	
X Proc. Natl. Acad. Sci., Vo. 80, is	Proc. Natl. Acad. Sci., Vo. 80, issued 1983, Seiki et al., "Human 1.3.5.7.		
adult T-cell leukemia virus: Complete nucleotide sequence of the 2.4.6.8.0.14			
provirus genome integrated in leu	provirus genome integrated in leukemia cell DNA, pages 3618-		
3622. See sequence search results	•		
Y WO. A. 8903891 (Tirdea et al.) 05	WO, A, 8903891 (Urdea et al.) 05 May 1989, see abstract. 2,4,6,8,9-14		
Wes, 11, 6505691 (Ordea et al.) 03 May 1989, see abstract.		2,4,6,8,9-14	
Y EP, A, 0139489 (Peter) 02 May 1985, see entire document.		2,4,6,8,9-14	
		-, ., 0, 0, 5 1	
		·	
	İ		
First description (1) and (1)			
Further documents are listed in the continuation of Box C. See patent family annex.			
Special categories of cited documents: A* document defining the general state of the art which is not considered defining the general state of the art which is not considered defining the general state of the art which is not considered.			
to be part of particular relevance	principle of theory underlying the inver	ntion	
L' document which may throw doubts on priority claim(a) or which	considered novel or cannot be considere	d to involve an inventive step	
cited to establish the publication date of another citation or oth special reason (as specified)	er "Y" document of particular relevance: the	claimed invention cannot be	
O* document referring to an oral disclosure, use, exhibition or other means	cr combined with one or more other such o	top when the document is	
document published prior to the international filing date but later the the priority date claimed	being obvious to a person skilled in the art *& document member of the same patent family		
ate of the actual completion of the international search Date of mailing of the international search report			
08 February 1993			
ame and mailing address of the ISA/US Commissioner of Patents and Trademarks Authorized offices			
Box PCT Weshington, D.C. 20231 SCOTT HOUTTEMAN			
acsimile No. NOT APPLICABLE	Telephone No. (703) 308-0196	,	