Berechnung von Gleichstrommotoren

March 4, 2023

1 Berechnung von Gleichstrommotoren

1.1 Physikalische Größen

Größe	Einheit	Symbol	Kommentar
Spannung	V	U	Spannung am Motor
Nennspannung	V	$U_{ m N}$	Spannung, bei der alle
			Motorkennwerte
			ermittelt werden
Gegeninduzierte	V	$U_{ m ind}$	Spannung, die durch die
Spannung			Bewegung der
			Leiterschleifen im
			Magnetfeld induziert
			wird
Strom	A	I	Betriebsstrom
Leerlaufstrom	A	I_0	Strom ohne Last
Haltestrom	A	$I_{ m H}$	Strom im Blockadefall
(stall current)			
Drehmomentkonstante	m Nm/A	$k_{ m M}$	Linearitätskonstante,
			Verhältnis aus
			Drehmoment und
			Motorstrom
EMK-Konstante	$ m V~/~min^{-1}$	$k_{ m E}$	Linearitätskonstante,
(Motorkon-			Verhältnis aus
stante)			gegeninduzierter
			Spannung und
			Drehzahl, auch
			Generatorkonstante
			genannt
Drehzahlkonstante	$\mathrm{min}^{-1} \ / \ \mathrm{V}$	$k_{ m n}$	Kehrwert von $k_{\rm E}$
Drehfrequenz	$_{ m Hz}$	f	
Drehzahl	\min^{-1}	n	
Leerlaufdrehzahl	$\min_{n} \frac{-1}{n}$	n_0	
Winkelgeschwindigkeit	$\frac{\text{rad}}{\text{s}}$	ω	
Ohmscher	$\dot{\Omega}$	R	Terminal Resistance
Widerstand			
Drehmoment	Nm	M	

Größe	Einheit	Symbol	Kommentar
Haltemoment	Nm	$M_{ m H}$	Drehmoment bei
			Blockfahrt (im
			Blockadefall)
Reibmoment	Nm	$M_{ m R}$	Moment, das durch die
			Lager und
			Kommutierung entsteht
Drehmoment	Nm	$M_{ m meff}$	
bei max.			
Wirkungsgrad			
Leistung	\mathbf{W}	P	
Leistung bei	\mathbf{W}	$P_{ m max}$	
höchstem			
Wirkungsgrad			
Wirkungsgrad	-	η	Wirkungsgrad ist immer
			<1
max.	-	$\eta_{ m max}$	
Wirkungsgrad			

1.2 Berechnung von Motorkennlinien

Für die Berechnung der Kennlinien werden folgende Eingangsgrößen benötigt:

- die Nennspannung $U_{\rm N}$
- der Motorwiderstand R
- der Leerlaufstrom I_0
- die Drehmomentkonstante $k_{\rm M}$

1.2.1 Drehmomentbereich zwischen Reibmoment und Haltemoment

Mit diesen Größen lassen sich zunächst Reibmoment M_{R} und Haltemoment M_{H} berechnen:

$$M_{\rm R} = k_{\rm M} \cdot I_0$$

$$M_{\rm H} = k_M \cdot (I_{\rm H} - I_0)$$

 $_{
m mit}$

$$I_{\rm H} = \frac{U_{\rm N}}{R}$$

Die Kennlinien werden über dem Drehmoment aufgetragen, das Werte zwischen 0 und $M_{\rm H}$ annehmen kann.

Je nach Arbeitspunkt des Motors kann es auch sinnvoll sein, das Reibmoment aus den Herstellerangaben bei maximalem Wirkungsgrad zu berechnen:

$$I(\eta_{\rm max}) = \frac{M(\eta_{\rm max}) - M_{\rm R}}{k_{\rm M}}$$

daraus folgt:

$$M_{\rm R} = I(\eta_{\rm max})k_{\rm M} - M(\eta_{\rm max})$$

1.2.2 Der Motorstrom in Abhängigkeit des Drehmoments

Mit Hilfe von $M_{\rm R}$ kann der Motorstrom $I_{\rm M}$ in Abhängigkeit vom Drehmoment M berechnet werden:

$$I_{\rm M}(M) = \frac{M + M_{\rm R}}{k_{\rm M}}$$

1.2.3 Der Motorstrom und -spannung in Abhängigkeit der Kreisfrequenz

Der im Motor fließende Strom wird bestimmt durch die Motorspannung $U_{\rm N}$ reduziert um die Drehzahlabhängige gegeninduzierte Spannung:

$$I_{\rm M} = \frac{U_{\rm N} - U_{\rm ind}}{R} = \frac{U_{\rm N} - k_{\rm M}\omega}{R}$$

Dies lässt sich umstellen zu dem mehr gebräulichen Zusammenhang:

$$U_{\rm N} = R \cdot I_{\rm M} + k_{\rm M} \cdot \omega$$

1.2.4 Die Drehzahl in Abhängigkeit des Motorstroms

Die Winkelgeschwindigkeit bzw. Keisfrequenz ω ist mit der Drehzahl n über den Zusammenhang

$$\omega = 2\pi f = \frac{2\pi}{60 \frac{\text{s}}{\text{min}}} n = \frac{\pi}{30} \frac{\text{min}}{\text{s}} \cdot n$$

verknüpft. Damit ergibt sich für die Motordrehzahl

$$n = \frac{U_{\rm N} - R \cdot I_{\rm M}}{k_{\rm M}} \cdot \frac{30}{\pi} \frac{\rm s}{\rm min}$$

1.2.5 Leistungen und Wirkungsgrad in Abhängigkeit der Drehzahl

Die elektrische Leistung ist

$$P_{\rm el} = U_{\rm N} \cdot I_{\rm M}$$

Die mechanische Leistung für Drehbewegungen ist gegeben durch

$$P_{\text{mech}} = M \cdot \omega = M \cdot \frac{\pi}{30} \frac{\min}{\text{s}} \cdot n$$

Die Wirkungsgrad η ist das Verhältnis aus mechanischer Leistung zu eingetragener elektrischer Leistung

$$\eta = \frac{P_{\rm mech}}{P_{\rm el}}$$

Dabei gilt stets $\eta < 1$. Die Verlustleitung $P_{\rm V} = P_{\rm el} - P_{\rm mech} = (1-\eta) \cdot P_{\rm el}$ wird in durch den elektrischen Widerstand und Reibung als Wärme abgegeben und führt mit der Zeit zur Erwärmung des Motors.

1.2.6 Berechnung des Drehmoments bei maximalem Wirkungsgrades

Bestimmung von η_{\max} Zur Bestimmung des maximalen Wirkungsgrades wird η zunächst als Funktion von M berechnet. Hierzu werden P_{mech} und P_{el} als Funktion des Drehmoments ausgedrückt

$$P_{\rm mech}(M) = M \cdot \omega(M) = M \cdot \frac{U_{\rm N} - R \cdot I_{\rm M}(M)}{k_{\rm M}}$$

mit $I_{\mathrm{M}}(M) = \frac{M + M_{\mathrm{R}}}{k_{\mathrm{M}}}$ erhält man durch ausmultiplizieren

$$P_{\rm mech}(M) = -\frac{R}{k_{\rm M}^2}M^2 + M\left(-\frac{R}{k_{\rm M}^2}M_{\rm R} + \frac{U_{\rm N}}{k_{\rm M}}\right)$$

Mit der Substitution $a=-\frac{R}{k_{\rm M}^2}$ und $b=\frac{U_{\rm N}}{k_{\rm M}}$ erhält man vereinfacht

$$P_{\rm mech}(M) = aM^2 + M(aM_{\rm R} + b)$$

Für die elektrische Leistung als Funktion von M ergibt sich

$$P_{\rm el}(M) = U_{\rm N} \cdot I_{\rm M}(M) = \frac{U_{\rm N}}{k_{\rm M}}(M+M_{\rm R}) = b \cdot (M+M_{\rm R})$$

Der Wert von $\eta(M)$ wird maximal wenn die Steigung des Verlaufs 0 wird, d.h.

$$\frac{\partial \eta}{\partial M} = 0$$

Diese partielle Ableitung lässt sich einfach über die Quotientenregel darstellen

$$\frac{\partial \eta}{\partial M} = \frac{\frac{\partial P_{\text{mech}}}{\partial M} \cdot P_{\text{el}} - \frac{\partial P_{\text{el}}}{\partial M} \cdot P_{\text{mech}}}{P_{\text{el}}^2}$$

Der Ausdruck wird 0 wenn der Zähler 0 wird, d.h wenn

$$\frac{\partial P_{\text{mech}}}{\partial M} \cdot P_{\text{el}} = \frac{\partial P_{\text{el}}}{\partial M} \cdot P_{\text{mech}}$$

Die einzelnen Ableitungen sind von einfacher Gestalt

$$\frac{\partial P_{\rm mech}}{\partial M} = 2aM + aM_{\rm R} + b$$

und

$$\frac{\partial P_{\rm el}}{\partial M} = b$$

Durch Einsetzen und Ausmultiplizieren erhält man am Ende eine quadratische Gleichung

$$M^2 + 2MM_{\rm R} + M_{\rm R}^2 + \frac{b}{a}M_{\rm R} = 0$$

$$M^2 + 2MM_{\rm R} + M_{\rm R}^2 - (M_{\rm H} - M_{\rm R}) \cdot M_{\rm R} = 0$$

$$M^2 + MM_{\rm R} - M_{\rm H}M_{\rm R} + 2M_{\rm R}^2 = 0$$

Diese lässt sich einfach mit der p-q-Formel lösen (die negative Lösung wird als unphysikalisch verworfen):

$$M_{\rm meff} = -M_{\rm R} + \sqrt{\underbrace{\frac{U_{\rm N}}{R}k_{\rm M}}_{=(M_{\rm H}+M_{\rm R})}M_{\rm R}}$$

Das heißt

$$M_{\rm meff} = \sqrt{M_{\rm H} M_{\rm R} + M_{\rm R}^2} - M_{\rm R}$$

An dieser Stelle wird häufig der Abzug von $M_{\rm R}$ vernachlässigt, weil der Term klein gegenüber der Wurzel ist.

Bei vollständiger Rechnung ergibt sich schließlich durch Einsetzen und Umformen

$$\eta_{\rm max} = 1 - 2 \frac{\sqrt{M_{\rm H} M_{\rm R} + M_{\rm R}^2}}{M_{\rm H} + M_{\rm R}} + \frac{M_{\rm R}}{M_{\rm H} + M_{\rm R}}$$

Vernachlässigt man die Reibmomente in den Nennern und das quadratische Reibmoment unter der Wurzel erhält man:

$$\eta_{\rm max} \approx 1 - 2\sqrt{\frac{M_{\rm R}}{M_{\rm H}}} + \frac{M_{\rm R}}{M_{\rm H}} = \left(1 - \sqrt{\frac{M_{\rm R}}{M_{\rm H}}}\right)^2$$

Ersetzt man in der exakten Lösung die Momente durch die Ströme über die Beziehungen

$$M_{\rm H} = k_{\rm M} \cdot (I_{\rm H} - I_0)$$

und

$$M_{\rm R} = k_{\rm M} \cdot I_0$$

heben sich viele Terme auf und man erhält exakt:

$$\eta_{\rm max} = \left(1 - \sqrt{\frac{I_0}{I_{\rm H}}}\right)^2$$

1.3 Berechnung der maximalen Leistung

Die maximale Leistung ergibt sich, wenn die Steigung von $P_{\rm mech}$ verschwindet,

$$\frac{\delta P_{\text{mech}}}{\delta M} = 0$$

Mit den selben Substitutionen wie oben (insbesondere das $-\frac{b}{a}=M_{\rm H}+M_{\rm R}$) erhält man das Drehmoment bei der maximalen mechanischen Leistung

$$M_{\rm Pmax} = \frac{1}{2} M_{\rm H}$$

und damit erhält man

$$P_{\rm mech,max} = \frac{a}{4}M_{\rm H}^2 + \frac{a}{2}M_{\rm H}M_{\rm R} + \frac{b}{2}M_{\rm H}$$

1.4 Formelsammlung

Winkelgeschwindigkeit:

$$\omega = 2\pi f = \frac{2\pi}{60 \frac{\text{s}}{\text{min}}} n = \frac{\pi}{30} \frac{\text{min}}{\text{s}} \cdot n$$

Motorspanning:

$$U = R \cdot I + k_{\rm M} \cdot \omega$$

Gegeninduzierte Spannung:

$$U_{\mathrm{ind}} = n \cdot k_{\mathrm{E}} = \frac{n}{k_{\mathrm{n}}} = \frac{\pi}{30} \frac{\mathrm{min}}{\mathrm{s}} \cdot n \cdot k_{\mathrm{M}} = k_{\mathrm{M}} \cdot \omega$$

Drehmoment:

$$M = k_{\rm M} \cdot I_{\rm M} - M_{\rm R}$$

elektrische Leistung:

$$P_{\rm el} = U \cdot I = U \cdot \frac{M + M_{\rm R}}{k_{\rm M}}$$

mechanische Leistung:

$$P_{\rm mech} = M \cdot \omega$$

Wirkungsgrad:

$$\eta = \frac{P_{\text{mech}}}{P_{\text{el}}}$$

Leerlaufdrehzahl:

$$n_0 = k_{\rm E} \cdot U$$

1.5 Umrechnung von Einheiten

Spannung (Volt):

$$1V=1\frac{W}{A}=1\frac{J}{C}=1\frac{kg\cdot m^2}{A\cdot s}=1\frac{Nm}{As}$$

Leistung (Watt):

$$1W=1\frac{J}{s}=1\frac{kg\cdot m^2}{s^3}=1VA=1\frac{Nm}{s}$$

Kraft (Newton):

$$1N = 1 \frac{kg \cdot m}{s^2}$$

2 Kinetische Betrachtungen

2.1 Drehmoment

$$M = \theta \cdot \frac{d\omega}{dt}$$

$$\omega = 2\pi f = 2\pi n \cdot 60 \frac{s}{\min} = n \cdot \frac{\pi}{30} \frac{s}{\min}$$

$$\frac{d}{dt}\omega = \frac{\pi}{30} \frac{s}{\min} \frac{dn}{dt}$$

$$\frac{d\omega}{dt} = \frac{M}{\theta}$$

$$d\omega = \frac{M}{\theta} dt$$

$$\omega = \frac{1}{\theta} \int_{t_a}^{t_e} M(t) dt$$

$$d\alpha = \omega \cdot dt$$

$$\alpha = \int_{t_a}^{t_e} \omega dt$$