Día 3: Algoritmos cuanticos I

Algoritmo de teleportación cuántica

Set-up del problema: Alice tiene un estado de qubit que desea transmitir a Bob. d'Qué protocolo debe emplear ella para lograrlo?

Se hará el circuito con el estado inicial 14;>= 14>10>10>.

il Paso 1:

ii) Paso 2:

$$\begin{aligned}
|\psi_{1}\rangle &= (\hat{I}_{0} \otimes cNOT_{12})(\hat{I}_{0} \otimes \hat{H}_{1} \otimes \hat{I}_{2})|\psi_{1}\rangle \\
&= |\psi\rangle|\beta_{\infty}\rangle \\
&= (alo\rangle+\beta|1\rangle)\left(\frac{100\rangle+1112}{12}\right) \\
&= alooo\rangle+alou2+\beta|100\rangle+\beta|1112\rangle
\end{aligned}$$

$$|\hat{\phi}|_{2} = c_{NO}L^{01} |\hat{\phi}|_{2} = c_{NO}L^{01} \left(\frac{1}{\alpha |\cos y + \alpha |\cos$$

$$\hat{H}|0\rangle = |x;+\rangle = \frac{\sqrt{2}}{\sqrt{2}}$$
 $\hat{H}|1\rangle = |x;+\rangle = \frac{\sqrt{2}}{\sqrt{2}}$

iv) Paso 4:

$$\begin{split} |\psi_{3}\rangle &= \left(\hat{H}_{0}\otimes\hat{I}\otimes\hat{I}\right)|\psi_{2}\rangle = \left(\hat{H}_{0}\otimes\hat{I}\otimes\hat{I}\right)\frac{1}{\sqrt{2}}\left(\alpha|000\rangle + \alpha|011\rangle + \beta|1210\rangle + \beta|101\rangle\right) \\ &= \frac{1}{\sqrt{2}}\left(\alpha\left(\frac{102+142}{\sqrt{2}}\right)|00\rangle + \alpha\left(\frac{102+112}{\sqrt{2}}\right)|111\rangle + \beta\left(\frac{102-142}{\sqrt{2}}\right)|100\rangle + \beta\left(\frac{102-142}{\sqrt{2}}\right)|021\rangle\right) \\ &= \frac{1}{2}\left(\alpha|000\rangle + \alpha|100\rangle + \alpha|011\rangle + \alpha|111\rangle + \beta|010\rangle - \beta|110\rangle + \beta|001\rangle - \beta|101\rangle\right) \end{split}$$

Si se hace una medición y se obtiene:

$$\begin{array}{lll} & & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Para el estado micial |4;>= 14>10>10>,

Alice	mide	Bob obtiene	Para recuperar 14), Bob requiere aplicar
M ₁	Ma		
0	0	< lo> + p11>	î (§°%°)
0	1	4 11> + B 10>	¾ (₹° ¾¹)
1	0	4 lo} - B(L)	§ (§±%°)
1	1	411> - Blo>	\$ % (\$1 % _T)

(2 M2 X M2)

Para el estado micial 14,7=14>10>11>,

Alice	mide	- Bob obtiene	Para recuperar 14>, Bob requiere aplicar
M ₁	M ₂		
0	0	< 1> + \$10>	☆ (⋛° ¾¹)
0	1	4 10> + p11>	Ĵ (ŝºẋº)
1	0	< 1> - β (0)	şx (şı Xı)
1	1	410> - BI1>	§ (§ī×o)

Tarea opcional: Resolver el protocolo de teleportación con los estados iniciales

Algoritmo de codificación superdensa

- ¿Cuanta información puede portar un qubit?
- d'Cuántos bits clásicos pueden extraerse de un qubit?

R: A lo más, un bit clásico de información por qubit (Teorema de Holevo).

Set-up del problema: Alice quiere hacerle llegar 2 bits clásicos a Bob.

Para ello, necesita 2 qubits.

Paso 1: Generación del estado de Bell, Ipoo>.

Paso 2: La decisión de Alice.

(Mo, M1)	Compuerta aplicada	
(0,0)	ş°x° • î = î•î	
(0,1)	ĝ° x̂¹ • î = x̂• î	
(1,0)	ĝ¹ ĝ° @ ĵ = ĝ @ ĵ	
(1,1)	ỗr ஜ₁ ❷ J = şஜ ❷ J	

Caso 1:
$$(M_1, M_2) = (0,0)$$

$$|\psi_2\rangle = |\hat{\mathbf{1}} \otimes \hat{\mathbf{1}}||\beta_{\infty}\rangle = \frac{|\cos\rangle + |44\rangle}{\sqrt{2}} = |\beta_{\infty}\rangle$$

Caso 2:
$$(M_1, M_2) = (0,1)$$

$$|\psi_2\rangle = |\hat{x} \otimes \hat{I}||\beta_\infty\rangle = \frac{|10\rangle + |01\rangle}{\sqrt{2}} = |\beta_\infty\rangle$$

Caso 3:
$$(M_1, M_2) = (1,0)$$

$$|\psi_2\rangle = |\hat{a} \otimes \hat{I}||\beta_{\infty}\rangle = \frac{|\cos\rangle - |44\rangle}{\sqrt{2}} = |\beta_{01}\rangle$$

Caso 4:
$$(M_1, M_2) = (1,1)$$

$$|\psi_2\rangle = (\hat{z}\hat{x} \oplus \hat{I})|\beta_{\infty}\rangle = \frac{-110\rangle + 101\rangle}{\sqrt{2}} = |\beta_{11}\rangle$$

Paso 3: Retorno a la base computacional.

$$|\psi_{2}\rangle = (\widehat{H} \oplus \widehat{I}) \operatorname{cNOT} |\beta_{00}\rangle$$

$$= (\widehat{H} \oplus \widehat{I}) \operatorname{CNOT} \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

$$= (\widehat{H} \oplus \widehat{I}) \left(\frac{|00\rangle + |10\rangle}{\sqrt{2}}\right)$$

$$= \frac{1}{2} \left(|10\rangle + |1\rangle|0\rangle + (10\rangle - |1\rangle)|0\rangle$$

$$= |00\rangle$$

$$Pr(01) = 1$$

 $Pr(00) = Pr(10) = Pr(11) = 0$

Caso 3:
$$(M_1, M_2) = (1,0)$$

$$Pr(10) = 1$$

 $Pr(00) = Pr(01) = Pr(11) = 0$

Caso 4:
$$(M_1, M_2) = (1,1)$$

Tarea opcional