University of Toronto- Time series club Lecture 2 Introduction to function fitting

Lim, Kyuson

05/18/2022

Today's outline

Understand function fitting: parametric and nonparametric methods.

Function fitting

- ▶ Model an output as a function of many inputs,
 - ► Transcriptomic profiles -> Chance of developing disease.
 - Loss triangle -> Loss reserving.
 - Songs profiles -> Song(s) recommendation.
 - ► Image pixels -> What is in the image.
- Let $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^T$ be all the inputs.
- Let $f(x_i)$ be input to output relationship.

A diagram

▶ We allow y_i to be different from $f(x_i)$, perturbed by an observation-specific noise ϵ_i .

$$y_i = f(\mathbf{x}_i) + \epsilon_i.$$

Why this decomposition

- frepresents systematic information that inputs provide about y_i.
- ϵ_i source of variation whose source is unknown (random error term which is independent of inputs and has mean zero).

Why estimate f?

- Why not just visualize the data?
 - ▶ We want quantitative estimates, not visual summaries.
- ► Reason 1: Prediction
 - Inputs may be much easier to collect than output.
 - Not typically concerned with the exact form of \hat{f} .
- ► Reason 2: Inference
 - We may care about the form of f. i.e. is there particular inputs relevant at all?

Estimation and prediction

- \triangleright In practice, we don't know f.
- We estimate it from the data and denote it \hat{f} .
- ▶ To predict y_i for some input x_i , we'd use $\hat{y}_i = \hat{f}(x_i)$.

Source of error

The process introduce two source of errors.

- ▶ Reducible error/Approximation error: \hat{f} isn't close to f.
 - ► This error is reducible (using a better algorithm).
- ▶ Irreducible error: y_i isn't close to $f(x_i)$.
 - Incur this error even f is known.

Source of error

The process introduce two source of errors.

- ▶ Reducible error/Approximation error: \hat{f} isn't close to f.
 - ▶ This error is reducible (using a better algorithm).
- ▶ Irreducible error: y_i isn't close to $f(x_i)$.
 - Incur this error even *f* is known.

Source of errors

If we consider the training set, then the decomposition of the average, or expected value, of the squared difference between the actual value of Y and the predicted $\hat{Y} = \hat{f}(X)$ is as follows.

$$\mathbb{E}\left(Y - \hat{Y}\right)^{2} = \mathbb{E}\left[f(X) + \epsilon - \hat{f}(X)\right]^{2}$$

$$= \mathbb{E}\left(\left[f(X) - \hat{f}(X)\right]^{2}\right) + \mathbb{V}(\epsilon)$$
Reducible . (1)

- ▶ If \hat{f} and X are fixed, $E\left[f(X) \hat{f}(X)\right]^2 = \left[f(X) \hat{f}(X)\right]^2$.
- ▶ We will learn techniques for estimating *f* by minimizing the reducible error.

Extending the diagram

- ▶ The function fitting applies to high-dimensional x_i and general y_i .
- ▶ Here x_i are two dimensional (year, age) and f is a two dimensional surface.

Extending the diagram

▶ Here the response y_i is binary (green and red).

References

- ► Function Fitting Intro by Kris Sankaran.
- ► **ISLR** Sections 2.1, 2.2, 3.2, 3.5.