

HEIGHT FILTRATION ON FLAG BUNDLES OVER A CURVE

Yue Chen, Yulin Wu and Haoyang Yuan Supervisor: Binggang Qu

Height filtration and successive minima

Let K be either a number field or K = k(C) where C is a projective smooth curve over a field k. Let X/K be a projective variety of dimension d and L be an adelic line bundle on X. These data induce an Arakelov height function h_L on X ([**Zhang1994SMALLPA**], see also [**Yuan2011AlgebraicD**] §9 for a survey). A typical case is the geometric height, which is the one we concern in this project. Let C be a smooth projective curve over a field k and let K = k(C) be its function field. Let $\mathcal{X} \longrightarrow C$ be a projective flat morphism with \mathcal{X} integral, and let \mathcal{L} be a line bundle on \mathcal{X} . Consider the following diagram

$$X \longrightarrow \mathcal{X}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} K \longrightarrow C$$

and define a height function $h_{\mathcal{L}}: X(\overline{K}) \to \mathbb{R}$ associated to \mathcal{L} by

$$x \mapsto \frac{\overline{\{x\}} \cdot \mathcal{L}}{\deg(x)},$$

where $\{x\}$ is the cloure of x in \mathcal{X} and $(-\cdot -)$ means taking the intersection number. If K is a number field, the height function can be defined similarly by arithmetic intersection theory. Assume L is ample. Let $Z_t(X, h_{\overline{L}})$ be the Zariski closure of the set $\{x \in X(\overline{K}) : h_{\overline{L}}(x) < t\}$. Note that

 $\bullet t \longmapsto Z_t(X, h_{\overline{L}})$ is an increasing filtration of Zariski closed subsets.

 $\bullet Z_t(X, h_{\overline{L}}) = X$ when $t \gg 0$ and $Z_t(X, h_{\overline{L}}) = \emptyset$ when $t \ll 0$. Since Zariski topology on X is Noetherian, the filtration $Z_t(X, h_{\overline{L}})$ gives a finite filtration $X_0 = X \supseteq X_1 \supseteq X_2 \supseteq \cdots \supseteq X_r = \emptyset$, the height filtration. Its jumping points $\zeta_i(X, h_{\overline{L}}) = \inf \{t : Z_t(X, h_{\overline{L}}) = X_{i-1}\}$ are called the *successive*

The goal of this project is to compute the height filtration and successive minima on flag varieties over function fields K = k(C) when char(k) = p.

On flag bundle

minima.

For any linear algebraic group Γ/k , a principal Γ -bundle on C is a variety Fequipped with a right action of Γ and a Γ -equivariant smooth morphism $F \longrightarrow C$ such that the map

$$F \times_C (C \times \Gamma) \longrightarrow F \times_C F, \quad (f, (x, g)) \longmapsto (f, fg)$$

is an isomorphism. Attached to any principal Γ -bundle F, one has the degree map

$$deg(F): X(\Gamma) \longrightarrow \mathbb{Z}, \quad \lambda \longmapsto \langle deg(F), \lambda \rangle = deg(F \times_{\Gamma} k_{\lambda}).$$

Here deg $(F \times_{\Gamma} k_{\lambda})$ is the degree of the line bundle $F \times_{\Gamma} k_{\lambda}$ on the curve C. Let H be a closed subgroup of a linear algebraic group Γ/k . A reduction of structure group of F to H is a pair (F_H, φ) where F_H is a principal H-bundle and $\varphi: F_H \times_H \Gamma \cong F$ is an isomorphism. By the universal property of the quotient F/H, the assignment to any section $\sigma: C \longrightarrow F/H$ the reduction σ^*F of F to H is a one-one correspondence between reductions of structure group of F to H and sections of $F/H \longrightarrow C$.

Let F be a principal G-bundle on C for the connected reductive group G. Note that for any parabolic subgroup $P \subseteq G$ with Levi subgroup L_P , the natural inclusion

$$X(P) \longrightarrow X(L_P) \longrightarrow X(Z(L_P))$$

becomes an isomorphism after tensoring with Q. Thus we have

$$X(T)_{\mathbb{Q}} \longrightarrow X(Z(L_P))_{\mathbb{Q}} = X(P)_{\mathbb{Q}}$$

and by taking duals, we get the so-called slope map $X(P)^{\vee}_{\mathbb{Q}} \longrightarrow X(T)^{\vee}_{\mathbb{Q}}$ introduced in [23, §2.1.3]. Let F_P be a reduction of F to P. By applying the slope map to deg (F_P) we can define $\langle \deg(F_P), \lambda \rangle$ for any $\lambda \in X(T)$.

Semistablity and canonical reduction

Definition 1 A principal G-bundle F on C is called semistable if for any parabolic subgroup P, any reduction F_P of F to P and any dominant character λ of P which is trivial on Z(G), we have $\langle \deg(F_P), \lambda \rangle \leq 0$.

We say F is strongly semistable if for any non-constant finite morphism $f: C' \to C$, the pullback f^*F is semistable.

Definition 2 Let F be a principal G-bundle on C. A reduction F_Q of F to a parabolic subgroup Q is called canonical if the following two conditions hold:

- The principal L_Q bundle $F_Q \times_Q L_Q$ is semistable, where L_Q is the Levi $subgroup \ of \ Q.$
- For any non-trivial character λ of Q which is non-negative linear combination of simple roots, $\langle \deg(F_Q), \lambda \rangle > 0$.

We say F_O is strongly canonical if for any non-constant finite morphism $f: C' \to C$, the pullback $f^*(F_O)$ is canonical.

Remark 1 When $G = GL_n$, this semistability recovers the one for vector bundles; The canonical reduction is equivalent to the Harder-Narasimhan filtration of vector bundles.

Remark 2 If the base field is of charateristic 0, then there is no difference between semistability (resp. canonical reduction) and strongly semistability (resp. strongly canonical reduction).

Computation of HN filtration

Let V be any Q-representation of highest weight $\lambda \in X^*(T)$ and let $V = \bigoplus_{\nu} V[\nu]$ be its weight decomposition. Furthermore, let F_Q be the canonical reduction of F. We define a filtration V_{\bullet} on the vector space V:

For any rational number $q \in \mathbb{Q}$, we define the subspace V_q as the sum of weight spaces

$$V_q := igoplus_{\langle \deg F_Q,
u
angle \geq q} V[\iota$$

Clearly, $V_{q'} \subseteq V_q$ whenever $q' \geq q$. We will consider the subspaces V_q only for the finitely many $q \in \mathbb{Q}$ where a jump occurs, i.e., only for those q such that $V_{q'} \subsetneq V_q$ for all q' > q. Let q_0 be the smallest and q_1 the largest rational number occurring among such q. Then V_{q_1} is the smallest nonzero filtration step, and V_{q_0} equals V.

Then, by twisting the Q-subrepresentations V_q above by F_P , we obtain a filtration V_{\bullet,F_Q} of the vector bundle $V_{F_G} = F_G \times^G V$ by subbundles

$$0 \neq V \left[\lambda + \mathbb{Z}R_M\right]_{F_M} = \bigoplus_{\nu \in \lambda + \mathbb{Z}R_M} V[\nu] = V_{q_1, F_Q} \subsetneq \cdots \subsetneq V_{q, F_Q} \subsetneq \cdots \subsetneq V_{q_0, F_Q} = V_{F_G}.$$

Improving the result of Schieder, we proved that:

Proposition 1 Assume the reduction F_Q is the strongly canonical reduction, then the filtration V_{\bullet,F_O} of the vector bundle V_{F_G} is the Harder-Narasimhan filtration of V_{F_G} .

Here, we used following facts: [1] If F is a strongly semistable M-bundle and $\rho: M \to H$ is a homomorphism that maps the connected component of the center of M into that of H, then $F \times^M H$ is a semistable H-bundle. & E is a vector bundle and $0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_r = E$ is filtration of subbundles. If E_i/E_{i-1} is semistable of slope $\mu(E)$ for all i, then E is semistable.

Height lower bound on Schubert cells

Let F be a principal G-bundle with strong canonical reduction F_O to some parabolic subgroup $Q \subseteq G$. Let $P \subseteq G$ be a parabolic subgroup. Set $\mathcal{X} = F/P$ and $X = \mathcal{X}_K$.

A character $\lambda: P \longrightarrow \mathbb{G}_m$ is called strictly anti-dominant if the natural pairing $\langle \alpha^{\vee}, \lambda \rangle < 0$ for any $\alpha \in \Delta \backslash \Delta_P$. Let $\lambda : P \longrightarrow \mathbb{G}_m$ be a strictly anti-dominant character. Then the line bundle $M_{\lambda} = G \times_P k_{\lambda}$ on G/P is ample. Therefore $\mathcal{L}_{\lambda} = F \times_G M_{\lambda}$ is a relatively ample line bundle on $\mathcal{X} = F \times_G G/P$ and induces a height function $h_{\mathcal{L}_{\lambda}}$.

For $w \in W_O \backslash W/W_P$, write $C_w = F_O \times_O QwP/P$, $\mathcal{X}_w = F_O \times_O \overline{QwP}/P$, $C_w = \overline{QwP}/P$ $\mathcal{C}_{w,K}$ and $X_w = \mathcal{X}_{w,K}$.

Proposition 2 For any $x \in C_w(K)$, $h_{\mathcal{L}_{\lambda}}(x) \geq \langle \deg F_O, w\lambda \rangle$.

Main theorem A

Theorem 1 Assume the strongly canonical reduction of F exists. The height filtration of $h_{\mathcal{L}_{\lambda}}$ on F/P is given by successively deleting Schubert cells $C_w =$ $(F_Q \times_Q QwP/P)_K$ for $w \in W_Q \backslash W/W_P$, i.e.

$$Z_t = X \setminus \coprod_{\langle \deg(F_Q), w\lambda \rangle \ge t} C_w = \coprod_{\langle \deg(F_Q), w\lambda \rangle < t} C_w.$$

In particular, successive minima are $\zeta_w = \langle \deg(F_Q), w\lambda \rangle$ and Zhang's successive minima are $e_i = \min \{ \zeta_w : \ell(w) = \dim G/P - i + 1 \}$ where

$$\ell(w) = \max_{\sigma \in W_Q w W_P} \min_{\tau \in \sigma W_P} \ell(\tau).$$

Main theorem B

In general, a theorem by Langer [2] shows for a principal G-bundle F (might not admits a strongly canonical reduction), the strongly canonical reduction exists for $(\operatorname{Fr}^n)^*F$, when n is sufficiently large.

We have a cartesian diagram

$$(\operatorname{Fr}^{n})^{*}F/P \xrightarrow{\phi} F/P$$

$$\downarrow \qquad \qquad \downarrow$$

$$C \xrightarrow{\operatorname{Fr}^{n}} C$$

Here Fr is the absolute Frobenius on C.

Suppose n is large enough such that $(Fr^n)^*F$ has strongly canonical reduction, then we have:

Theorem 2 The height filtration of $h_{\mathcal{L}_{\lambda}}$ on F/P is given by the image of the height filtration of the height filtration of $(Fr^n)^*F/P$, the successive minima are $\frac{1}{n^n}$ of the successive minima of $(Fr^n)^*F/P$.

References

[1] S. Ramanan and A. Ramanathan. "Some Remarks on the Instability Flag". In: Tohoku Mathematical Journal 36.2 (1984).

[2] Adrian Langer. "Semistable principal G-bundles in positive characteristic". In: Duke Mathematical Journal 128.3 (2005), pp. 511–540.

[3] François Ballaÿ. "Successive minima and asymptotic slopes in Arakelov geometry". In: Compos. Math. 157.6 (2021), pp. 1302–1339. ISSN: 0010-437X,1570-5846. [4] Lucien Szpiro, Emmanuel Ullmo, and Shousong Zhang. "Equirépartition des petits points". In: Inventiones mathematicae 127 (1997), pp. 337–347.

[5] Shou-wu Zhang. "Equidistribution of small points on abelian varieties". In: Annals of Mathematics 147 (1998), pp. 159–165.

[6] Xinyi Yuan. "Algebraic dynamics, canonical heights and Arakelov geometry". In: Fifth International Congress of Chinese Mathematicians. Part 1, 2. Vol. 51, pt. 1, 2. AMS/IP Stud. Adv. Math. Amer. Math. Soc., Providence, RI, 2012, pp. 893–929. ISBN: 978-0-8218-7555-1.

[7] Shouwu Zhang. "Small points and adelic metrics". In: J. Algebraic Geom. 4.2 (1995), pp. 281–300. ISSN: 1056-3911,1534-7486. [8] Adrian Langer. "Semistable sheaves in positive characteristic". In: Annals of mathematics (2004), pp. 251–276.

[9] Yangyu Fan, Wenbin Luo, and Binggang Qu. Height Filtrations and Base Loci on Flag Bundles over a Curve. 2024. arXiv: 2403.06808 [math.NT]. [10] Schieder and Simon. "The Harder-Narasimhan stratification of the moduli stack of (G)-bundles via Drinfeld's compactifications". In: Selecta Mathematica 21.3 (2015), pp. 763–831.