Skriftlig eksamen i Dynamiske Modeller Vinteren 2013 - 2014

VALGFAG

Fredag den 24. januar 2014

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog må man ikke medbringe eller anvende lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

2. årsprøve 2014 S-2DM ex

Skriftlig eksamen i Dynamiske Modeller

Fredag den 24. januar 2014

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. For ethvert $a \in \mathbf{C}$ betragter vi fjerdegradspolynomiet $P_a : \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P_a(z) = z^4 + (5-a)z^3 + (8-5a)z^2 + (4-8a)z - 4a.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} + (5-a)\frac{d^3x}{dt^3} + (8-5a)\frac{d^2x}{dt^2} + (4-8a)\frac{dx}{dt} - 4ax = 0$$

og

$$(**) \frac{d^4x}{dt^4} + 4\frac{d^3x}{dt^3} + 3\frac{d^2x}{dt^2} - 4\frac{dx}{dt} - 4x = 48e^{2t}.$$

- (1) Vis, at tallene z = -1 og z = a er rødder i polynomiet P_a .
- (2) Bestem samtlige rødder i polynomiet P_a for et vilkårligt $a \in \mathbb{C}$, og angiv røddernes multiplicitet.
- (3) Bestem den fuldstændige løsning til differentialligningen (*) for ethvert $a \in \mathbf{R}$.
- (4) For hvilke $a \in \mathbf{R}$ er differentialligningen (*) globalt asymptotisk stabil?
- (5) Bestem den fuldstændige løsning til differentialligningen (**).

Opgave 2. Vi betragter 3×3 matricen

$$A = \left(\begin{array}{ccc} 5 & -1 & -1 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{array}\right)$$

og vektordifferentialligningen

(§)
$$\frac{d\mathbf{z}}{dt} = A\mathbf{z}.$$

- (1) Idet det oplyses, at $\lambda=2$ er en egenværdi for matricen A, skal man finde matricens øvrige egenværdier og bestemme egenrummene for enhver af egenværdierne.
- (2) Bestem den fuldstændige løsning for vektordifferentialligningen (§).
- (3) Bestem den specielle løsning $\tilde{\mathbf{z}} = \tilde{\mathbf{z}}(t)$ til vektordifferentialligningen (§), så betingelsen $\tilde{\mathbf{z}}(0) = (1, 2, 3)$ er opfyldt.

Opgave 3. Vi betragter vektorfunktionen $\mathbf{f}: \mathbf{R}^2 \to \mathbf{R}^2$ givet ved

$$\forall (x,y) \in \mathbf{R}^2 : \mathbf{f}(x,y) = (x^2 + y^2, 2xy).$$

- (1) Bestem Jacobimatricen (funktionalmatricen) $D\mathbf{f}(x,y)$ for vektorfunktionen \mathbf{f} i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (2) Bestem de punkter $(x, y) \in \mathbf{R}^2$, hvor Jacobimatricen $D\mathbf{f}(x, y)$ er regulær.
- (3) Betragt vektoren $v_0 = (1,0)$.

Løs ligningen

$$\begin{pmatrix} u \\ v \end{pmatrix} = \mathbf{f}(v_0) + D\mathbf{f}(v_0) \begin{pmatrix} x - 1 \\ y \end{pmatrix}$$

med hensyn til (x, y).

Opgave 4. Vi betragter funktionen $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2y + y^2,$$

og korrespondancen $F: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$F(x) = \begin{cases} \{0\}, & \text{for } x < 0\\ [0, 1], & \text{for } 0 \le x < 1\\ [0, 2], & \text{for } x \ge 1 \end{cases}$$

- (1) Vis, at korrespondancen F har afsluttet graf egenskaben.
- (2) Vis, at korrespondancen F ikke er nedad hemikontinuert.
- (3) Vis, at korrespondancen F er opad hemikontinuert.
- (4) Bestem en forskrift for værdifunktionen $V: \mathbf{R} \to \mathbf{R}$, som er defineret ved forskriften

$$\forall x \in \mathbf{R} : V(x) = \max\{f(x, y) \mid y \in F(x)\}.$$

(5) Bestem en forskrift for maksimumskorrespondancen $M: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall x \in \mathbf{R} : M(x) = \{ y \in F(x) \mid V(x) = f(x, y) \}.$$