Annex 1: Top 10 significant results by cluster

June 8, 2024

Contents

1	Q3.1	1 Top 10	up-r	egulat	ted t	ranscı	ripts	witho	out a	adjus	teme	ent i	for o	conf	ond	\mathbf{ant}	effe	ct		4
	1.1	Cluster 0																		 4
	1.2	Cluster 1																		 4
	1.3	Cluster 2																		 4
	1.4	Cluster 3																		 5
	1.5	Cluster 4																		5
	1.6	Cluster 5																		5
	1.7	Cluster 6																		5
	1.8	Cluster 7																		6
	1.9	Cluster 8																		6
		Cluster 9																		6
		Cluster 1				 														6
		Cluster 1																		7
		Cluster 1																		7
		Cluster 1																		7
		Cluster 1																		8
		Cluster 1																		
		Cluster 1																		8
																				8
		Cluster 1																		9
		Cluster 1																		9
		Cluster 1																		9
		Cluster 2																		9
		Cluster 2																		10
		Cluster 2																		10
		Cluster 2																		10
		Cluster 2																		10
		Cluster 2																		 11
		Cluster 2																		 11
		Cluster 2																	 •	 11
		Cluster 2																		 11
		Cluster 2																		12
		Cluster 3																		 12
	1.32	Cluster 3	1 .																	 12
				_							_		_							
2	•	Top 10	-	_			-		•											12
	2.1	Cluster 0																		12
	2.2	Cluster 1																	 •	 12
	2.3	Cluster 2																		 12
	2.4	Cluster 3																	 •	 12
	2.5	Cluster 4																		 13
	2.6	Cluster 5																		 13
	2.7	Cluster 6																		 13
	2.8	Cluster 7																		 13
	2.9	Cluster 8																		 13
		Cluster 9																		 13
	2.11	Cluster 1	0 .																	 14
	2.12	Cluster 1	1 .																	 14
	2.13	Cluster 1	2																	14

	2.14 Cluster 13												 	14
	2.15 Cluster 14												 	14
	2.16 Cluster 15												 	15
	2.17 Cluster 16													15
	2.18 Cluster 17											 		15
	2.19 Cluster 18													15
	2.20 Cluster 19												 	16
	2.21 Cluster 20												 	16
	2.22 Cluster 21												 	16
	2.23 Cluster 22												 	16
	2.24 Cluster 23												 	16
	2.25 Cluster 24													16
	2.26 Cluster 25													16
	2.27 Cluster 26													
														17
	2.28 Cluster 27												 	17
	2.29 Cluster 28												 	17
	2.30 Cluster 29												 	17
	2.31 Cluster 30												 	17
	2.32 Cluster 31													
	2.92 Clubtel 91												 	
3	Q3.2 Top 10 u	ın-regi	ılated	nath	wavs	witho	out ac	liustem	ent fo	or conf	ondan	t effect		18
•	3.1 Cluster 0			_	-			-						18
														18
	3.3 Cluster 10												 	18
	3.4 Cluster 11												 	19
	3.5 Cluster 12												 	19
	3.6 Cluster 13												 	19
	3.7 Cluster 14												 	20
	3.8 Cluster 15													20
	3.9 Cluster 16													20
	3.10 Cluster 17												 	21
	3.11 Cluster 18												 	21
	3.12 Cluster 19												 	21
	3.13 Cluster 2												 	22
	3.14 Cluster 20												 	22
	3.15 Cluster 21												 	22
	3.16 Cluster 22												 	23
	3.17 Cluster 23												 	23
	3.18 Cluster 24													23
	3.19 Cluster 25												 	24
	3.20 Cluster 26												 	24
	3.21 Cluster 27												 	24
	3.22 Cluster 28												 	25
	3.23 Cluster 29												 	25
	3.24 Cluster 3													25
	3.25 Cluster 30												 	26
	3.26 Cluster 31												 	
													 	26
														26
	3.27 Cluster 4												 	
													 	27
	3.27 Cluster 4												 	27 27
	3.27 Cluster 4 3.28 Cluster 5												 	
	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7												 	27 27
	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7 3.31 Cluster 8												 	27 27 28
	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7												 	27 27
4	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7 3.31 Cluster 8 3.32 Cluster 9												 	27 27 28 28
4	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7 3.31 Cluster 8 3.32 Cluster 9 Q3.2 Top 10 to		lated	path	ways	with	adjus	tement		onfonc		fect	 	27 27 28 28 28
4	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7 3.31 Cluster 8 3.32 Cluster 9 Q3.2 Top 10 to 4.1 Cluster 0	ıp-regu	lated		ways	with	adjus	tement	for c	onfonc		fect		27 27 28 28 28 28
4	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7 3.31 Cluster 8 3.32 Cluster 9 Q3.2 Top 10 u 4.1 Cluster 0 4.2 Cluster 1		ılated			with	adjus	tement	for c	onfond	lant ef	fect		27 28 28 28 28 28 29
4	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7 3.31 Cluster 8 3.32 Cluster 9 Q3.2 Top 10 u 4.1 Cluster 0 4.2 Cluster 1 4.3 Cluster 2		ılated		 ways	with	adjus	tement	for c	onfond	lant ef	fect		27 27 28 28 28 28
4	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7 3.31 Cluster 8 3.32 Cluster 9 Q3.2 Top 10 u 4.1 Cluster 0 4.2 Cluster 1		ılated	path	ways	with	adjus	tement	for c	onfond	lant ef	fect		27 28 28 28 28 28 29
4	3.27 Cluster 4 3.28 Cluster 5 3.29 Cluster 6 3.30 Cluster 7 3.31 Cluster 8 3.32 Cluster 9 Q3.2 Top 10 u 4.1 Cluster 0 4.2 Cluster 1 4.3 Cluster 2		ılated	Dath	 aways 	with	adjus	tement	for c	onfonc	lant ef	fect	 	27 27 28 28 28 28 29 29

4.7	Cluster 6																	 		30
4.8	Cluster 7																	 		31
4.9	Cluster 8																	 		31
4.10	Cluster 9																	 		31
4.11	Cluster 10																	 		32
4.12	Cluster 11																	 		32
4.13	Cluster 12																	 		32
4.14	Cluster 13																	 		33
4.15	Cluster 14																	 		33
4.16	Cluster 15																	 		33
4.17	Cluster 16																	 		34
4.18	Cluster 17																	 		34
4.19	Cluster 18																	 		34
4.20	Cluster 19																	 		35
4.21	Cluster 20																	 		35
4.22	Cluster 21																	 		35
4.23	Cluster 22																	 		36
4.24	Cluster 23																	 		36
4.25	Cluster 24																	 		36
4.26	Cluster 25																	 		37
4.27	Cluster 26																	 		37
	Cluster 27																	 		37
4.29	Cluster 28																	 		38
	Cluster 29																	 		38
	Cluster 30																	 		38
4 22	Cluster 31																			30

1 Q3.1 Top 10 up-regulated transcripts without adjustement for confondant effect

1.1 Cluster 0

	gene	log2FoldChange	padj
1	ENSG00000210156.1	2.5397	0.0000
2	ENSG00000281181.1	2.3406	0.0000
3	ENSG00000124159.15	1.8320	0.0000
4	ENSG00000223609.7	1.8241	0.0000
5	ENSG00000210140.1	1.6348	0.0000
6	ENSG00000202538.1	1.5935	0.0000
7	ENSG00000118972.1	1.5324	0.0000
8	ENSG00000086506.2	1.4671	0.0000
9	ENSG00000158578.18	1.4460	0.0000
_10	ENSG00000206172.8	1.4459	0.0000

Table 1: Top 10 up-regulated transcripts for cluster 0 $\,$

1.2 Cluster 1

	gene	log2FoldChange	padj
1	ENSG00000210156.1	2.2671	0.0000
2	ENSG00000281181.1	1.8488	0.0000
3	ENSG00000281383.1	1.4370	0.0000
4	ENSG00000202538.1	1.3242	0.0000
5	ENSG00000164821.4	1.2449	0.0000
6	ENSG00000259384.6	1.2218	0.0000
7	ENSG00000137392.9	1.1493	0.0000
8	ENSG00000172232.9	1.1267	0.0000
9	ENSG00000110245.11	1.0570	0.0000
10	ENSG00000279691.1	1.0513	0.0000

Table 2: Top 10 up-regulated transcripts for cluster 1 $\,$

1.3 Cluster 2

	gene	log2FoldChange	padj
1	ENSG00000210156.1	2.1983	0.0000
2	ENSG00000281181.1	1.9498	0.0000
3	ENSG00000210140.1	1.5320	0.0000
4	ENSG00000281383.1	1.4409	0.0000
5	ENSG00000262902.1	1.1566	0.0000
6	ENSG00000202538.1	1.1543	0.0000
7	ENSG00000179751.6	1.1436	0.0000
8	ENSG00000137392.9	1.0442	0.0000
9	ENSG00000168928.12	1.0308	0.0000

Table 3: Top 10 up-regulated transcripts for cluster 2

1.4 Cluster 3

	gene	log 2 Fold Change	padj
1	ENSG00000210154.1	2.0926	0.0000
2	ENSG00000202538.1	1.5827	0.0000
3	ENSG00000200879.1	1.4256	0.0000
4	ENSG00000259710.1	1.3485	0.0000
5	ENSG00000277581.1	1.3335	0.0000
6	ENSG00000267703.1	1.3278	0.0000
7	ENSG00000260799.1	1.3239	0.0000
8	ENSG00000169429.10	1.3133	0.0000
9	ENSG00000237070.1	1.2797	0.0000
10	ENSG00000118972.1	1.2757	0.0000

Table 4: Top 10 up-regulated transcripts for cluster 3 $\,$

1.5 Cluster 4

	gene	log2FoldChange	padj
1	ENSG00000158578.18	2.9068	0.0000
2	ENSG00000213934.6	2.9066	0.0000
3	ENSG00000260592.1	2.8063	0.0000
4	ENSG00000169877.9	2.7608	0.0000
5	ENSG00000188536.12	2.6596	0.0000
6	ENSG00000196565.13	2.4875	0.0000
7	ENSG00000215182.8	2.4850	0.0000
8	ENSG00000206177.6	2.4165	0.0000
9	ENSG00000261039.2	2.3931	0.0000
10	ENSG00000095752.6	2.3751	0.0000

Table 5: Top 10 up-regulated transcripts for cluster 4

1.6 Cluster 5

	gene	log 2 Fold Change	padj
1	ENSG00000210156.1	2.3618	0.0000
2	ENSG00000210154.1	2.2689	0.0000
3	ENSG00000281181.1	1.9596	0.0000
4	ENSG00000108342.12	1.6685	0.0000
5	ENSG00000281383.1	1.4671	0.0000
6	ENSG00000118972.1	1.4470	0.0000
7	ENSG00000202538.1	1.4464	0.0000
8	ENSG00000210140.1	1.4281	0.0000
9	ENSG00000164821.4	1.2934	0.0000
_10	ENSG00000172232.9	1.2923	0.0000

Table 6: Top 10 up-regulated transcripts for cluster 5 $\,$

1.7 Cluster 6

	gene	$\log 2$ FoldChange	padj
1	ENSG00000248713.1	1.2854	0.0000
2	ENSG00000073737.16	1.0690	0.0000
3	ENSG00000223617.1	1.0666	0.0000
4	ENSG00000231013.1	1.0187	0.0000

Table 7: Top 10 up-regulated transcripts for cluster 6

1.8 Cluster 7

	gene	log2FoldChange	padj
1	ENSG00000281181.1	2.2393	0.0000
2	ENSG00000202538.1	2.1307	0.0000
3	ENSG00000174697.4	2.0061	0.0000
4	ENSG00000281383.1	1.8399	0.0000
5	ENSG00000181092.9	1.6299	0.0000
6	ENSG00000254211.5	1.6232	0.0000
7	ENSG00000124159.15	1.5154	0.0008
8	ENSG00000130876.11	1.4476	0.0000
9	ENSG00000187288.10	1.4213	0.0000
10	ENSG00000166819.11	1.4000	0.0000

Table 8: Top 10 up-regulated transcripts for cluster 7 $\,$

1.9 Cluster 8

	gene	log 2 Fold Change	padj
1	ENSG00000110680.12	2.7624	0.0000
2	ENSG00000229807.10	2.6810	0.0000
3	ENSG00000270641.1	2.3376	0.0008
4	ENSG00000134240.11	2.2957	0.0000
5	ENSG00000180053.7	2.2034	0.0000
6	ENSG00000283378.1	2.0152	0.0000
7	ENSG00000279431.1	1.8317	0.0001
8	ENSG00000178233.17	1.7337	0.0000
9	ENSG00000257647.1	1.6973	0.0000
10	ENSG00000073737.16	1.6461	0.0000

Table 9: Top 10 up-regulated transcripts for cluster 8

1.10 Cluster 9

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.3534	0.0000
2	ENSG00000281181.1	2.0067	0.0000
3	ENSG00000140465.13	1.5961	0.0000
4	ENSG00000179914.4	1.4568	0.0000
5	ENSG00000202538.1	1.4368	0.0000
6	ENSG00000210140.1	1.4310	0.0000
7	ENSG00000102854.15	1.2138	0.0000
8	ENSG00000086506.2	1.1990	0.0000
9	ENSG00000169347.16	1.1893	0.0000
_10	ENSG00000108342.12	1.1760	0.0000

Table 10: Top 10 up-regulated transcripts for cluster 9 $\,$

1.11 Cluster 10

No significant transcript

1.12 Cluster 11

	gene	log 2 Fold Change	padj
1	ENSG00000210191.1	3.8454	0.0000
2	ENSG00000223609.7	3.6328	0.0000
3	ENSG00000086506.2	3.2895	0.0000
4	ENSG00000179914.4	2.9044	0.0000
5	ENSG00000281181.1	2.6384	0.0000
6	ENSG00000158578.18	2.5955	0.0000
7	ENSG00000260592.1	2.5845	0.0000
8	ENSG00000213934.6	2.5189	0.0000
9	ENSG00000176840.11	2.5185	0.0000
10	ENSG00000283907.1	2.4638	0.0000

Table 11: Top 10 up-regulated transcripts for cluster 11 $\,$

1.13 Cluster 12

	gene	log 2 Fold Change	padj
1	ENSG00000281181.1	2.3840	0.0000
2	ENSG00000202538.1	1.8674	0.0000
3	ENSG00000151365.2	1.5169	0.0000
4	ENSG00000146678.9	1.4277	0.0000
5	ENSG00000174697.4	1.3273	0.0000
6	ENSG00000006128.11	1.2608	0.0000
7	ENSG00000128510.10	1.2010	0.0000
8	ENSG00000283907.1	1.1917	0.0000
9	ENSG00000215182.8	1.1266	0.0000
10	ENSG00000211660.3	1.1219	0.0000

Table 12: Top 10 up-regulated transcripts for cluster 12

1.14 Cluster 13

	gene	log2FoldChange	padj
1	ENSG00000140465.13	2.4286	0.0000
2	ENSG00000281181.1	2.0570	0.0000
3	ENSG00000118972.1	1.7030	0.0000
4	ENSG00000281383.1	1.6919	0.0000
5	ENSG00000283907.1	1.5013	0.0000
6	ENSG00000283209.1	1.4903	0.0000
7	ENSG00000004939.13	1.4224	0.0000
8	ENSG00000272799.1	1.4140	0.0000
9	ENSG00000279691.1	1.4105	0.0000
_10	ENSG00000262902.1	1.4102	0.0000

Table 13: Top 10 up-regulated transcripts for cluster 13 $\,$

1.15 Cluster 14

	gene	$\log 2$ FoldChange	padj
1	ENSG00000281181.1	1.7916	0.0007
2	ENSG00000137392.9	1.7267	0.0010
3	ENSG00000202538.1	1.5840	0.0002
4	ENSG00000170890.13	1.3837	0.0015
5	ENSG00000170827.9	1.2792	0.0005
6	ENSG00000010438.16	1.1808	0.0003
7	ENSG00000162438.11	1.1525	0.0005
8	ENSG00000073737.16	1.1220	0.0001
9	ENSG00000250746.1	1.0015	0.0001

Table 14: Top 10 up-regulated transcripts for cluster 14 $\,$

1.16 Cluster 15

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.2148	0.0000
2	ENSG00000140465.13	2.0216	0.0000
3	ENSG00000281181.1	1.7257	0.0000
4	ENSG00000086506.2	1.4677	0.0000
5	ENSG00000179914.4	1.3641	0.0000
6	ENSG00000202538.1	1.3487	0.0000
7	ENSG00000169429.10	1.2953	0.0000
8	ENSG00000266378.1	1.2936	0.0000
9	ENSG00000210195.2	1.2886	0.0000
10	ENSG00000169245.5	1.2805	0.0000

Table 15: Top 10 up-regulated transcripts for cluster 15 $\,$

1.17 Cluster 16

	gene	log2FoldChange	padj
1	ENSG00000210191.1	2.8695	0.0000
2	ENSG00000210156.1	2.6294	0.0000
3	ENSG00000086506.2	2.5888	0.0000
4	ENSG00000158578.18	2.2732	0.0000
5	ENSG00000206172.8	2.2046	0.0000
6	ENSG00000004939.13	2.1860	0.0000
7	ENSG00000260592.1	2.1850	0.0000
8	ENSG00000169877.9	2.1849	0.0000
9	ENSG00000213934.6	2.1419	0.0000
10	ENSG00000188536.12	2.1169	0.0000

Table 16: Top 10 up-regulated transcripts for cluster 16 $\,$

1.18 Cluster 17

	gene	log2FoldChange	padj
1	ENSG00000281181.1	5.1242	0.0000
2	ENSG00000281383.1	3.7459	0.0000
3	ENSG00000202538.1	3.3581	0.0000
4	ENSG00000124159.15	2.5998	0.0000
5	ENSG00000086506.2	2.4133	0.0000
6	ENSG00000105664.10	2.2957	0.0000
7	ENSG00000223609.7	2.2255	0.0002
8	ENSG00000171951.4	1.9575	0.0000
9	ENSG00000095752.6	1.8639	0.0000
10	ENSG00000149948.13	1.7847	0.0000

Table 17: Top 10 up-regulated transcripts for cluster 17 $\,$

1.19 Cluster 18

	gene	log2FoldChange	padj
1	ENSG00000128965.11	1.3977	0.0000
2	ENSG00000103888.16	1.1822	0.0002
3	ENSG00000248923.1	1.1284	0.0012

Table 18: Top 10 up-regulated transcripts for cluster 18

1.20 Cluster 19

	gene	log2FoldChange	padj
1	ENSG00000172179.11	2.4814	0.0000
2	ENSG00000259384.6	2.3679	0.0000
3	ENSG00000176840.11	2.1539	0.0000
4	ENSG00000229859.9	1.8912	0.0001
5	ENSG00000104826.12	1.7859	0.0000
6	ENSG00000140465.13	1.7765	0.0000
7	ENSG00000232810.3	1.7700	0.0000
8	ENSG00000262902.1	1.7638	0.0000
9	ENSG00000172232.9	1.7377	0.0000
10	ENSG00000170827.9	1.7109	0.0000

Table 19: Top 10 up-regulated transcripts for cluster 19 $\,$

1.21 Cluster 20

	gene	log2FoldChange	padj
1	ENSG00000202538.1	1.5443	0.0000
2	ENSG00000279431.1	1.2265	0.0000
3	ENSG00000283265.1	1.1354	0.0000
4	ENSG00000180053.7	1.1228	0.0000
5	ENSG00000108759.3	1.1075	0.0001
6	ENSG00000214940.8	1.1061	0.0002
7	ENSG00000257647.1	1.0312	0.0000
8	ENSG00000229807.10	1.0274	0.0006
9	ENSG00000122735.15	1.0225	0.0000
10	ENSG00000235832.2	1.0216	0.0000

Table 20: Top 10 up-regulated transcripts for cluster $20\,$

1.22 Cluster 21

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.4511	0.0000
2	ENSG00000210156.1	2.3969	0.0000
3	ENSG00000281181.1	2.0040	0.0000
4	ENSG00000140465.13	1.6920	0.0000
5	ENSG00000118972.1	1.6193	0.0000
6	ENSG00000086506.2	1.4118	0.0000
7	ENSG00000169877.9	1.3559	0.0000
8	ENSG00000169245.5	1.3555	0.0000
9	ENSG00000004939.13	1.3089	0.0000
10	ENSG00000206172.8	1.3087	0.0000

Table 21: Top 10 up-regulated transcripts for cluster 21 $\,$

1.23 Cluster 22

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.5675	0.0000
2	ENSG00000086506.2	2.0612	0.0000
3	ENSG00000202538.1	1.9462	0.0000
4	ENSG00000239839.6	1.6974	0.0000
5	ENSG00000223609.7	1.6815	0.0000
6	ENSG00000004939.13	1.6800	0.0000
7	ENSG00000213934.6	1.6040	0.0000
8	ENSG00000200879.1	1.6010	0.0000
9	ENSG00000149516.13	1.5871	0.0000
10	ENSG00000164821.4	1.5807	0.0000

Table 22: Top 10 up-regulated transcripts for cluster 22

1.24 Cluster 23

	gene	log2FoldChange	padj
1	ENSG00000229828.2	1.2181	0.0000
2	ENSG00000279431.1	1.2089	0.0000
3	ENSG00000223617.1	1.0312	0.0000
4	ENSG00000257647.1	1.0287	0.0000
5	ENSG00000163082.9	1.0038	0.0000

Table 23: Top 10 up-regulated transcripts for cluster 23

1.25 Cluster 24

	gene	log2FoldChange	padj
1	ENSG00000210154.1	2.3879	0.0000
2	ENSG00000210156.1	2.2983	0.0000
3	ENSG00000281181.1	2.0785	0.0000
4	ENSG00000281383.1	1.5831	0.0000
5	ENSG00000210140.1	1.4668	0.0000
6	ENSG00000202538.1	1.3899	0.0000
7	ENSG00000108342.12	1.3539	0.0000
8	ENSG00000181143.15	1.2888	0.0000
9	ENSG00000179914.4	1.2834	0.0000
10	ENSG00000137392.9	1.2742	0.0000

Table 24: Top 10 up-regulated transcripts for cluster 24

1.26 Cluster 25

	gene	log2FoldChange	padj
1	ENSG00000279431.1	1.0949	0.0000
2	ENSG00000073737.16	1.0196	0.0000

Table 25: Top 10 up-regulated transcripts for cluster 25 $\,$

1.27 Cluster 26

	gene	log 2 Fold Change	padj
1	ENSG00000210156.1	2.2537	0.0000
2	ENSG00000281181.1	1.9725	0.0000
3	ENSG00000118972.1	1.5372	0.0000
4	ENSG00000210140.1	1.4536	0.0000
5	ENSG00000163435.15	1.3491	0.0000
6	ENSG00000140465.13	1.3345	0.0000
7	ENSG00000137392.9	1.3111	0.0000
8	ENSG00000202538.1	1.2916	0.0000
9	ENSG00000210154.1	1.2621	0.0000
_10	ENSG00000168928.12	1.2578	0.0000

Table 26: Top 10 up-regulated transcripts for cluster 26 $\,$

1.28 Cluster 27

	gene	log2FoldChange	padj
1	ENSG00000281181.1	1.4906	0.0000
2	ENSG00000202538.1	1.3269	0.0000
3	ENSG00000279431.1	1.0137	0.0000

Table 27: Top 10 up-regulated transcripts for cluster 27 $\,$

1.29 Cluster 28

	gene	log 2 Fold Change	padj
1	ENSG00000210156.1	2.2717	0.0000
2	ENSG00000281181.1	2.0990	0.0000
3	ENSG00000223609.7	2.0563	0.0000
4	ENSG00000169429.10	1.7391	0.0000
5	ENSG00000281383.1	1.6064	0.0000
6	ENSG00000158578.18	1.5576	0.0000
7	ENSG00000202538.1	1.5280	0.0000
8	ENSG00000169245.5	1.5146	0.0000
9	ENSG00000118972.1	1.5026	0.0000
10	ENSG00000086506.2	1.5020	0.0000

Table 28: Top 10 up-regulated transcripts for cluster $28\,$

1.30 Cluster 29

	gene	log2FoldChange	padj
1	ENSG00000223609.7	3.3655	0.0000
2	ENSG00000202538.1	3.2211	0.0000
3	ENSG00000124159.15	2.6905	0.0000
4	ENSG00000105664.10	2.5587	0.0000
5	ENSG00000158578.18	2.4258	0.0000
6	ENSG00000086506.2	2.3888	0.0000
7	ENSG00000261039.2	2.3035	0.0000
8	ENSG00000171951.4	2.1793	0.0000
9	ENSG00000095752.6	2.1411	0.0000
10	ENSG00000106483.11	2.1102	0.0000

Table 29: Top 10 up-regulated transcripts for cluster 29

1.31 Cluster 30

-	gene	log2FoldChange	padj
1	ENSG00000210195.2	1.7112	0.0000

Table 30: Top 10 up-regulated transcripts for cluster 30

1.32 Cluster 31

No significant transcript

2 Q3.1 Top 10 up-regulated transcript with adjustement for confondant effect

2.1 Cluster 0

	gene	log2FoldChange	padj
1	ENSG00000223609.7	1.1369	0.0002

Table 31: Top 10 up-regulated transcripts for cluster 0 with adjustement for confondant effect

2.2 Cluster 1

No significant transcript

2.3 Cluster 2

No significant transcript

2.4 Cluster 3

	gene	log2FoldChange	padj
1	ENSG00000270640.1	1.8560	0.0000
2	ENSG00000215182.8	1.3792	0.0000
3	ENSG00000264204.2	1.1567	0.0000
4	ENSG00000159261.10	1.1012	0.0015
5	ENSG00000200879.1	1.0460	0.0002
6	ENSG00000095752.6	1.0370	0.0000

Table 32: Top 10 up-regulated transcripts for cluster 3 with adjustement for confondant effect

2.5 Cluster 4

	gene	log2FoldChange	padj
1	ENSG00000171951.4	2.6749	0.0000
2	ENSG00000159261.10	2.5414	0.0001
3	ENSG00000223609.7	2.5085	0.0000
4	ENSG00000095752.6	2.2721	0.0000
5	ENSG00000261039.2	2.0630	0.0001
6	ENSG00000268941.2	2.0243	0.0003
7	ENSG00000106541.11	1.9935	0.0002
8	ENSG00000149948.13	1.8640	0.0002
9	ENSG00000124159.15	1.7444	0.0007
10	ENSG00000106483.11	1.4863	0.0000

Table 33: Top 10 up-regulated transcripts for cluster 4 with adjustement for confondant effect

2.6 Cluster 5

	gene	log 2 Fold Change	padj
1	ENSG00000163435.15	1.0765	0.0000

Table 34: Top 10 up-regulated transcripts for cluster 5 with adjustement for confondant effect

2.7 Cluster 6

No significant transcript

2.8 Cluster 7

	gene	$\log 2$ FoldChange	padj
1	ENSG00000174697.4	2.0496	0.0000
2	ENSG00000151365.2	1.7741	0.0000
3	ENSG00000181092.9	1.6654	0.0000
4	ENSG00000254211.5	1.6275	0.0000
5	ENSG00000187288.10	1.5227	0.0000
6	ENSG00000166819.11	1.4918	0.0000
7	ENSG00000130876.11	1.3605	0.0000
8	ENSG00000166828.2	1.3040	0.0001
9	ENSG00000133317.14	1.2826	0.0000
10	ENSG00000145824.12	1.1655	0.0000

Table 35: Top 10 up-regulated transcripts for cluster 7 with adjustement for confondant effect

2.9 Cluster 8

	gene	log2FoldChange	padj
1	ENSG00000229807.10	2.2735	0.0009
2	ENSG00000246375.2	1.7102	0.0000
3	ENSG00000162763.3	1.5895	0.0006
4	ENSG00000283378.1	1.5257	0.0010
5	ENSG00000241054.1	1.3848	0.0006
6	ENSG00000198734.10	1.2633	0.0001
7	ENSG00000250061.5	1.1986	0.0007

Table 36: Top 10 up-regulated transcripts for cluster 8 with adjustement for confondant effect

2.10 Cluster 9

No significant transcript

2.11 Cluster 10

	gene	log2FoldChange	padj
1	ENSG00000219073.7	1.1604	0.0001
2	ENSG00000142789.19	1.0556	0.0003

Table 37: Top 10 up-regulated transcripts for cluster 10 with adjustement for confondant effect

2.12 Cluster 11

	gene	log2FoldChange	padj
1	ENSG00000277247.1	2.8346	0.0000
2	ENSG00000189410.11	2.1225	0.0001
3	ENSG00000223609.7	1.9738	0.0014
4	ENSG00000149948.13	1.8667	0.0001
5	ENSG00000086506.2	1.8515	0.0014
6	ENSG00000124875.9	1.7872	0.0001
7	ENSG00000239839.6	1.7854	0.0014
8	ENSG00000163435.15	1.6569	0.0009
9	ENSG00000229604.2	1.6353	0.0000
10	ENSG00000101670.11	1.6247	0.0006

Table 38: Top 10 up-regulated transcripts for cluster 11 with adjustement for confondant effect

2.13 Cluster 12

	gene	log2FoldChange	padj
1	ENSG00000151365.2	1.4695	0.0000
2	ENSG00000174697.4	1.4452	0.0000
3	ENSG00000202538.1	1.2194	0.0000
4	ENSG00000105880.4	1.1673	0.0000
5	ENSG00000254211.5	1.1559	0.0000
6	ENSG00000181092.9	1.1122	0.0000
7	ENSG00000146678.9	1.0632	0.0005
8	ENSG00000215182.8	1.0605	0.0001
9	ENSG00000006128.11	1.0396	0.0000
_10	ENSG00000166819.11	1.0377	0.0000

Table 39: Top 10 up-regulated transcripts for cluster 12 with adjustement for confondant effect

2.14 Cluster 13

	gene	log 2 Fold Change	padj
1	ENSG00000185988.11	1.3936	0.0000
2	ENSG00000272799.1	1.1348	0.0000
3	ENSG00000279281.1	1.0549	0.0005

Table 40: Top 10 up-regulated transcripts for cluster 13 with adjustement for confondant effect

2.15 Cluster 14

	gene	log 2 Fold Change	padj
1	ENSG00000010438.16	1.1909	0.0003
2	ENSG00000162438.11	1.0712	0.0013

Table 41: Top 10 up-regulated transcripts for cluster 14 with adjustement for confondant effect

2.16 Cluster 15

	gene	log 2 Fold Change	padj
1	ENSG00000223609.7	1.2400	0.0000

Table 42: Top 10 up-regulated transcripts for cluster 15 with adjustement for confondant effect

2.17 Cluster 16

	gene	log2FoldChange	padj
1	ENSG00000223609.7	1.5988	0.0000
2	ENSG00000159261.10	1.5516	0.0000
3	ENSG00000215182.8	1.4767	0.0000
4	ENSG00000237070.1	1.2521	0.0000
5	ENSG00000228495.1	1.2404	0.0000
6	ENSG00000169245.5	1.2301	0.0000
7	ENSG00000241112.1	1.2216	0.0000
8	ENSG00000206177.6	1.2016	0.0000
9	ENSG00000267703.1	1.1947	0.0000
10	ENSG00000086506.2	1.1716	0.0003

Table 43: Top 10 up-regulated transcripts for cluster 16 with adjustement for confondant effect

2.18 Cluster 17

	gene	log2FoldChange	padj
1	ENSG00000169429.10	1.7999	0.0000
2	ENSG00000149948.13	1.7278	0.0000
3	ENSG00000103888.16	1.6323	0.0000
4	ENSG00000124159.15	1.5569	0.0007
5	ENSG00000095752.6	1.5507	0.0003
6	ENSG00000281383.1	1.5111	0.0009
7	ENSG00000210196.2	1.4883	0.0003
8	ENSG00000171951.4	1.4869	0.0000
9	ENSG00000060718.20	1.4805	0.0005
10	ENSG00000166923.10	1.4775	0.0000

Table 44: Top 10 up-regulated transcripts for cluster 17 with adjustement for confondant effect

2.19 Cluster 18

	gene	log2FoldChange	padj
1	ENSG00000062038.13	1.3323	0.0002
2	ENSG00000248923.1	1.3163	0.0000
3	ENSG00000103888.16	1.2854	0.0001
4	ENSG00000135069.13	1.1049	0.0014

Table 45: Top 10 up-regulated transcripts for cluster 18 with adjustement for confondant effect

2.20 Cluster 19

	gene	log2FoldChange	padj
$\overline{1}$	ENSG00000172179.11	2.2017	0.0001
2	ENSG00000140465.13	1.5658	0.0003
3	ENSG00000176840.11	1.5456	0.0014
4	ENSG00000259384.6	1.4193	0.0012
5	ENSG00000256713.7	1.3759	0.0003
6	ENSG00000170827.9	1.3690	0.0005
7	ENSG00000104826.12	1.2968	0.0004
8	ENSG00000244921.2	1.2365	0.0000
9	ENSG00000198744.5	1.2041	0.0002
10	ENSG00000010438.16	1.1691	0.0012

Table 46: Top 10 up-regulated transcripts for cluster 19 with adjustement for confondant effect

2.21 Cluster 20

	gene	log2FoldChange	padj
1	ENSG00000215182.8	1.4007	0.0000

Table 47: Top 10 up-regulated transcripts for cluster 20 with adjustement for confondant effect

2.22 Cluster 21

	gene	log2FoldChange	padj
1	ENSG00000185988.11	1.0874	0.0001

Table 48: Top 10 up-regulated transcripts for cluster 21 with adjustement for confondant effect

2.23 Cluster 22

	gene	log2FoldChange	padj
1	ENSG00000239839.6	1.4162	0.0000
2	ENSG00000200879.1	1.0568	0.0009
3	ENSG00000237070.1	1.0291	0.0000
4	ENSG00000077274.8	1.0056	0.0002

Table 49: Top 10 up-regulated transcripts for cluster 22 with adjustement for confondant effect

2.24 Cluster 23

	gene	log 2 Fold Change	padj
1	ENSG00000174697.4	1.0171	0.0000

Table 50: Top 10 up-regulated transcripts for cluster 23 with adjustement for confondant effect

2.25 Cluster 24

No significant transcript

2.26 Cluster 25

	gene	log2FoldChange	padj
1	ENSG00000214940.8	1.1796	0.0000

Table 51: Top 10 up-regulated transcripts for cluster 25 with adjustement for confondant effect

2.27 Cluster 26

	gene	log2FoldChange	padj
1	ENSG00000163435.15	1.0422	0.0000

Table 52: Top 10 up-regulated transcripts for cluster 26 with adjustement for confondant effect

2.28 Cluster 27

No significant transcript

2.29 Cluster 28

	gene	log2FoldChange	padj
1	ENSG00000163435.15	1.1236	0.0000
2	ENSG00000159261.10	1.0506	0.0000
3	ENSG00000169429.10	1.0347	0.0000
4	ENSG00000239839.6	1.0173	0.0000

Table 53: Top 10 up-regulated transcripts for cluster 28 with adjustement for confondant effect

2.30 Cluster 29

	gene	log2FoldChange	padj
1	ENSG00000183813.6	3.8872	0.0000
2	ENSG00000102468.10	2.9228	0.0000
3	ENSG00000257894.2	2.2761	0.0001
4	ENSG00000178773.14	2.2342	0.0000
5	ENSG00000261039.2	1.9669	0.0000
6	ENSG00000202538.1	1.9596	0.0002
7	ENSG00000167105.7	1.9554	0.0000
8	ENSG00000215182.8	1.9496	0.0002
9	ENSG00000095752.6	1.9404	0.0000
10	ENSG00000146678.9	1.9214	0.0008

Table 54: Top 10 up-regulated transcripts for cluster 29 with adjustement for confondant effect

2.31 Cluster 30

	gene	log 2 Fold Change	padj
1	ENSG00000210195.2	1.1028	0.0000

Table 55: Top 10 up-regulated transcripts for cluster 30 with adjustement for confondant effect

2.32 Cluster 31

No significant transcript

3 Q3.2 Top 10 up-regulated pathways without adjustement for confondant effect

3.1 Cluster 0

	pathway	padj	NES
1	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0028	1.7165
	RRNA EXPRESSION		
2	REACTOME AMINE LIGAND BINDING RECEPTORS	0.0020	1.6721
3	REACTOME NUCLEOTIDE SALVAGE	0.0051	1.6072
4	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0027	1.6020
5	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0039	1.5645
6	REACTOME ACTIVATION OF RAC1	0.0066	1.5489
7	REACTOME GRB2 EVENTS IN ERBB2 SIGNALING	0.0086	1.4917
8	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0068	1.4024
9	REACTOME ARACHIDONIC ACID METABOLISM	0.0087	1.3710
10	REACTOME AUTOPHAGY	0.0053	1.3372

Table 56: Top 10 up-regulated pathways for cluster 0 $\,$

3.2 Cluster 1

	pathway	padj	NES
1	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0051	1.6022
2	REACTOME ACTIVATION OF PPARGC1A PGC 1ALPHA BY PHOS-	0.0065	1.5865
	PHORYLATION		
3	REACTOME INTERACTION BETWEEN L1 AND ANKYRINS	0.0061	1.5646
4	REACTOME CARNITINE METABOLISM	0.0069	1.5270
5	REACTOME INSULIN RECEPTOR RECYCLING	0.0098	1.5189
6	REACTOME BLOOD GROUP SYSTEMS BIOSYNTHESIS	0.0093	1.5058
7	REACTOME SIGNALING BY NTRK3 TRKC	0.0101	1.4768
8	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0045	1.4231
9	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0095	1.4120
10	REACTOME SIGNALING BY INSULIN RECEPTOR	0.0072	1.3514

Table 57: Top 10 up-regulated pathways for cluster 1 $\,$

3.3 Cluster 10

	pathway	padj	NES
1	REACTOME ECM PROTEOGLYCANS	0.0003	1.8699
2	REACTOME ESR MEDIATED SIGNALING	0.0003	1.6754
3	REACTOME RHO GTPASE CYCLE	0.0003	1.4632
4	REACTOME DISEASES OF SIGNAL TRANSDUCTION BY GROWTH	0.0003	1.4534
	FACTOR RECEPTORS AND SECOND MESSENGERS		
5	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0000	1.4521
	RHOBTB3		
6	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0001	1.4417
7	REACTOME METABOLISM OF RNA	0.0001	1.4093
8	REACTOME CELL CYCLE	0.0003	1.3543
9	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0003	1.3402
10	REACTOME INNATE IMMUNE SYSTEM	0.0003	1.2778

Table 58: Top 10 up-regulated pathways for cluster 10

3.4 Cluster 11

	pathway	padj	NES
1	REACTOME CHONDROITIN SULFATE BIOSYNTHESIS	0.0026	1.7024
2	REACTOME GRB2 EVENTS IN ERBB2 SIGNALING	0.0029	1.6670
3	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0023	1.6533
4	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0033	1.6504
	RRNA EXPRESSION		
5	REACTOME SHC1 EVENTS IN ERBB4 SIGNALING	0.0036	1.6413
6	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0034	1.6227
7	REACTOME ACTIVATION OF RAC1	0.0063	1.6013
8	REACTOME PHASE 4 RESTING MEMBRANE POTENTIAL	0.0049	1.5312
9	REACTOME SHC1 EVENTS IN ERBB2 SIGNALING	0.0045	1.5225
10	REACTOME KERATINIZATION	0.0051	1.4067

Table 59: Top 10 up-regulated pathways for cluster 11

3.5 Cluster 12

	pathway	padj	NES
1	REACTOME INWARDLY RECTIFYING K CHANNELS	0.0129	1.6755
2	REACTOME TRANSCRIPTIONAL REGULATION OF TESTIS DIFFER-	0.0129	1.6597
	ENTIATION		
3	REACTOME THROMBIN SIGNALLING THROUGH PROTEINASE AC-	0.0166	1.5895
	TIVATED RECEPTORS PARS		
4	REACTOME G BETA GAMMA SIGNALLING THROUGH CDC42	0.0197	1.5515
5	REACTOME G PROTEIN ACTIVATION	0.0197	1.5349
6	REACTOME PROSTACYCLIN SIGNALLING THROUGH PROSTACY-	0.0197	1.5334
	CLIN RECEPTOR		
7	REACTOME CA2 PATHWAY	0.0152	1.5332
8	REACTOME PRESYNAPTIC FUNCTION OF KAINATE RECEPTORS	0.0197	1.5142
9	REACTOME PROTEIN UBIQUITINATION	0.0191	1.4741
10	REACTOME GABA RECEPTOR ACTIVATION	0.0197	1.4606

Table 60: Top 10 up-regulated pathways for cluster 12

3.6 Cluster 13

	pathway	padj	NES
1	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0042	1.6696
	RRNA EXPRESSION		
2	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0034	1.6272
3	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0060	1.5462
4	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0051	1.5298
5	REACTOME INTERACTION BETWEEN L1 AND ANKYRINS	0.0051	1.5144
6	REACTOME SIGNALING BY NTRK3 TRKC	0.0075	1.5009
7	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0053	1.4840
8	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0043	1.4785
9	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0055	1.4467
_10	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0069	1.4063

Table 61: Top 10 up-regulated pathways for cluster 13

3.7 Cluster 14

	pathway	padj	NES
1	REACTOME ABERRANT REGULATION OF MITOTIC G1 S TRANSI-	0.0021	2.0133
	TION IN CANCER DUE TO RB1 DEFECTS		
2	REACTOME CTLA4 INHIBITORY SIGNALING	0.0021	1.9958
3	REACTOME EPHA MEDIATED GROWTH CONE COLLAPSE	0.0021	1.8312
4	REACTOME ECM PROTEOGLYCANS	0.0021	1.6973
5	REACTOME APOPTOSIS	0.0021	1.4012
6	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0001	1.3878
	RHOBTB3		
7	REACTOME RHO GTPASE CYCLE	0.0003	1.3816
8	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0021	1.2203
9	REACTOME MEMBRANE TRAFFICKING	0.0021	1.2163
10	REACTOME CELL CYCLE	0.0021	1.1944

Table 62: Top 10 up-regulated pathways for cluster 14

3.8 Cluster 15

NES 1.7440
1 7440
1.1110
1.7018
1.6272
1.6188
1.6075
1.5710
1.5593
1.5579
1.5535
1.5179

Table 63: Top 10 up-regulated pathways for cluster 15

3.9 Cluster 16

	pathway	padj	NES
1	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0017	1.7510
2	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0012	1.6410
3	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0050	1.6382
	RRNA EXPRESSION		
4	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0056	1.5804
5	REACTOME ACTIVATION OF RAC1	0.0070	1.5606
6	REACTOME DEFECTS OF CONTACT ACTIVATION SYSTEM CAS AND	0.0065	1.5441
	KALLIKREIN KININ SYSTEM KKS		
7	REACTOME NUCLEOTIDE SALVAGE	0.0065	1.5197
8	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0065	1.4944
9	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0070	1.4715
10	REACTOME NETRIN 1 SIGNALING	0.0065	1.4354

Table 64: Top 10 up-regulated pathways for cluster 16

3.10 Cluster 17

	pathway	padj	NES
1	REACTOME ABORTIVE ELONGATION OF HIV 1 TRANSCRIPT IN THE	0.0254	1.6010
	ABSENCE OF TAT		
2	REACTOME CASPASE ACTIVATION VIA EXTRINSIC APOPTOTIC	0.0254	1.5182
	SIGNALLING PATHWAY		
3	REACTOME BASIGIN INTERACTIONS	0.0254	1.4889
4	REACTOME B WICH COMPLEX POSITIVELY REGULATES RRNA EX-	0.0254	1.4414
	PRESSION		
5	REACTOME BASE EXCISION REPAIR	0.0254	1.4301
6	REACTOME CHOLESTEROL BIOSYNTHESIS	0.0254	1.4174
7	REACTOME CYCLIN A B1 B2 ASSOCIATED EVENTS DURING G2 M	0.0254	1.4031
	TRANSITION		
8	REACTOME CONSTITUTIVE SIGNALING BY ABERRANT PI3K IN	0.0254	1.3634
	CANCER		
9	REACTOME CLASS I MHC MEDIATED ANTIGEN PROCESSING PRE-	0.0254	1.3000
	SENTATION		
10	REACTOME ANTIGEN PROCESSING UBIQUITINATION PROTEA-	0.0254	1.2755
	SOME DEGRADATION		

Table 65: Top 10 up-regulated pathways for cluster 17

3.11 Cluster 18

	pathway	padj	NES
1	REACTOME CTLA4 INHIBITORY SIGNALING	0.0127	1.7256
2	REACTOME TRANSCRIPTIONAL REGULATION BY RUNX1	0.0043	1.6641
3	REACTOME DDX58 IFIH1 MEDIATED INDUCTION OF INTERFERON	0.0127	1.6278
	ALPHA BETA		
4	REACTOME CHROMOSOME MAINTENANCE	0.0127	1.6178
5	REACTOME CARGO RECOGNITION FOR CLATHRIN MEDIATED EN-	0.0127	1.5234
	DOCYTOSIS		
6	REACTOME CYTOPROTECTION BY HMOX1	0.0127	1.4104
7	REACTOME CLATHRIN MEDIATED ENDOCYTOSIS	0.0127	1.3496
8	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0043	1.3221
9	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0127	1.2120
10	REACTOME CELL CYCLE	0.0127	1.1090

Table 66: Top 10 up-regulated pathways for cluster 18

3.12 Cluster 19

	pathway	padj	NES
1	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0038	1.6617
2	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0045	1.6378
3	REACTOME INTERACTION BETWEEN L1 AND ANKYRINS	0.0046	1.6245
4	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0034	1.6225
5	REACTOME CARNITINE METABOLISM	0.0069	1.6209
6	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0032	1.6086
7	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0033	1.6023
8	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0056	1.4972
9	REACTOME FCGR ACTIVATION	0.0070	1.4675
10	REACTOME SIGNALING BY INSULIN RECEPTOR	0.0068	1.4380

Table 67: Top 10 up-regulated pathways for cluster 19

3.13 Cluster 2

	pathway	padj	NES
1	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0011	1.8467
	RRNA EXPRESSION		
2	REACTOME PLATELET AGGREGATION PLUG FORMATION	0.0050	1.5533
3	REACTOME ACTIVATED NTRK2 SIGNALS THROUGH FRS2 AND FRS3	0.0072	1.5474
4	REACTOME SIGNALING BY NTRK2 TRKB	0.0055	1.5408
5	REACTOME AMINE LIGAND BINDING RECEPTORS	0.0053	1.5363
6	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0042	1.5143
7	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0058	1.5112
8	REACTOME AUTOPHAGY	0.0040	1.4072
9	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0058	1.4069
10	REACTOME ARACHIDONIC ACID METABOLISM	0.0079	1.3859

Table 68: Top 10 up-regulated pathways for cluster 2

3.14 Cluster 20

	pathway	padj	NES
1	REACTOME ABERRANT REGULATION OF MITOTIC G1 S TRANSI-	0.0012	2.0793
	TION IN CANCER DUE TO RB1 DEFECTS		
2	REACTOME FORMATION OF SENESCENCE ASSOCIATED HETE-	0.0006	2.0603
	ROCHROMATIN FOCI SAHF		
3	REACTOME ESTROGEN DEPENDENT NUCLEAR EVENTS DOWN-	0.0016	1.9204
	STREAM OF ESR MEMBRANE SIGNALING		
4	REACTOME ECM PROTEOGLYCANS	0.0012	1.8194
5	REACTOME SIGNALING BY WNT	0.0012	1.4817
6	REACTOME SIGNALING BY INTERLEUKINS	0.0012	1.3437
7	REACTOME RHO GTPASE CYCLE	0.0012	1.3367
8	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0006	1.3004
	RHOBTB3		
9	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0014	1.2446
10	REACTOME METABOLISM OF RNA	0.0012	1.2423

Table 69: Top 10 up-regulated pathways for cluster $20\,$

3.15 Cluster 21

	pathway	padj	NES
1	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0024	1.7275
	RRNA EXPRESSION		
2	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0025	1.6662
3	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0040	1.5617
4	REACTOME ACTIVATION OF RAC1	0.0068	1.5558
5	REACTOME ETHANOL OXIDATION	0.0073	1.5066
6	REACTOME NUCLEOTIDE SALVAGE	0.0068	1.5009
7	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0070	1.4759
8	REACTOME AUTOPHAGY	0.0021	1.4471
9	REACTOME ANTIMICROBIAL PEPTIDES	0.0074	1.4188
10	REACTOME SELENOAMINO ACID METABOLISM	0.0064	1.3840

Table 70: Top 10 up-regulated pathways for cluster $21\,$

3.16 Cluster 22

	pathway	padj	NES
1	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0015	1.6832
2	REACTOME STING MEDIATED INDUCTION OF HOST IMMUNE RE-	0.0037	1.6185
	SPONSES		
3	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0030	1.6030
4	REACTOME TRAFFICKING OF GLUR2 CONTAINING AMPA RECEP-	0.0032	1.5959
	TORS		
5	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0023	1.5711
6	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0026	1.5543
7	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0043	1.5531
8	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0047	1.5352
	RRNA EXPRESSION		
9	REACTOME FCGR ACTIVATION	0.0036	1.5198
10	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0039	1.4956

Table 71: Top 10 up-regulated pathways for cluster 22

3.17 Cluster 23

	pathway	padj	NES
1	REACTOME FORMATION OF SENESCENCE ASSOCIATED HETE-	0.0006	1.9712
	ROCHROMATIN FOCI SAHF		
2	REACTOME ECM PROTEOGLYCANS	0.0005	1.8322
3	REACTOME RHO GTPASE CYCLE	0.0003	1.4029
4	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0001	1.3976
	RHOBTB3		
5	REACTOME DISEASES OF SIGNAL TRANSDUCTION BY GROWTH	0.0005	1.3701
	FACTOR RECEPTORS AND SECOND MESSENGERS		
6	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0006	1.3460
7	REACTOME METABOLISM OF RNA	0.0003	1.3312
8	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0007	1.2941
9	REACTOME TRANSPORT OF SMALL MOLECULES	0.0006	1.2722
10	REACTOME INNATE IMMUNE SYSTEM	0.0006	1.2230

Table 72: Top 10 up-regulated pathways for cluster $23\,$

3.18 Cluster 24

	pathway	padj	NES
1	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0033	1.6462
	RRNA EXPRESSION		
2	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0026	1.6370
3	REACTOME NUCLEOTIDE LIKE PURINERGIC RECEPTORS	0.0036	1.6230
4	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0048	1.5651
5	REACTOME P2Y RECEPTORS	0.0044	1.5589
6	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0034	1.5341
7	REACTOME ACTIVATION OF RAC1	0.0060	1.5010
8	REACTOME ENDOSOMAL VACUOLAR PATHWAY	0.0048	1.4959
9	REACTOME SIGNALING BY NTRK2 TRKB	0.0072	1.4718
10	REACTOME AMINE LIGAND BINDING RECEPTORS	0.0083	1.4587

Table 73: Top 10 up-regulated pathways for cluster 24

3.19 Cluster 25

	pathway	padj	NES
1	REACTOME FORMATION OF SENESCENCE ASSOCIATED HETE-	0.0003	2.0347
	ROCHROMATIN FOCI SAHF		
2	REACTOME HIV LIFE CYCLE	0.0004	1.6196
3	REACTOME DISEASES OF SIGNAL TRANSDUCTION BY GROWTH	0.0001	1.4560
	FACTOR RECEPTORS AND SECOND MESSENGERS		
4	REACTOME RHO GTPASE CYCLE	0.0001	1.4367
5	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0000	1.4352
	RHOBTB3		
6	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0004	1.3587
7	REACTOME METABOLISM OF RNA	0.0001	1.3572
8	REACTOME CELL CYCLE	0.0001	1.3368
9	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0003	1.3185
10	REACTOME INFECTIOUS DISEASE	0.0004	1.2394

Table 74: Top 10 up-regulated pathways for cluster 25

3.20 Cluster 26

	pathway	padj	NES
1	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0022	1.6643
2	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0024	1.6236
3	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0032	1.6087
	RRNA EXPRESSION		
4	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0024	1.5791
5	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0022	1.5567
6	REACTOME ACTIVATED NTRK2 SIGNALS THROUGH FRS2 AND FRS3	0.0045	1.5338
7	REACTOME BLOOD GROUP SYSTEMS BIOSYNTHESIS	0.0067	1.5097
8	REACTOME ACTIVATION OF RAC1	0.0043	1.5082
9	REACTOME CHONDROITIN SULFATE BIOSYNTHESIS	0.0046	1.4935
10	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0053	1.4543

Table 75: Top 10 up-regulated pathways for cluster 26

3.21 Cluster 27

	pathway	padj	NES
1	REACTOME RHOG GTPASE CYCLE	0.0023	1.7602
2	REACTOME INTERLEUKIN 4 AND INTERLEUKIN 13 SIGNALING	0.0023	1.6243
3	REACTOME RAC1 GTPASE CYCLE	0.0012	1.4778
4	REACTOME RHO GTPASE CYCLE	0.0002	1.4683
5	REACTOME INTRACELLULAR SIGNALING BY SECOND MESSEN-	0.0012	1.4458
	GERS		
6	REACTOME MAPK FAMILY SIGNALING CASCADES	0.0012	1.4323
7	REACTOME SIGNALING BY WNT	0.0023	1.4249
8	REACTOME SIGNALING BY INTERLEUKINS	0.0012	1.3627
9	REACTOME DISEASES OF SIGNAL TRANSDUCTION BY GROWTH	0.0019	1.3406
	FACTOR RECEPTORS AND SECOND MESSENGERS		
10	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0012	1.3321

Table 76: Top 10 up-regulated pathways for cluster $27\,$

3.22 Cluster 28

	pathway	padj	NES
1	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0012	1.7632
2	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0024	1.7205
	RRNA EXPRESSION		
3	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0046	1.5977
4	REACTOME NUCLEOTIDE LIKE PURINERGIC RECEPTORS	0.0052	1.5898
5	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0050	1.5700
6	REACTOME STING MEDIATED INDUCTION OF HOST IMMUNE RE-	0.0072	1.5350
	SPONSES		
7	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0043	1.5178
8	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0085	1.4063
9	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0075	1.4057
10	REACTOME O GLYCOSYLATION OF TSR DOMAIN CONTAINING	0.0084	1.4043
	PROTEINS		

Table 77: Top 10 up-regulated pathways for cluster 28

3.23 Cluster 29

	pathway	padj	NES
1	REACTOME REGULATION OF GENE EXPRESSION IN LATE STAGE	0.0033	1.6437
	BRANCHING MORPHOGENESIS PANCREATIC BUD PRECURSOR		
	CELLS		
2	REACTOME RUNX3 REGULATES NOTCH SIGNALING	0.0048	1.5981
3	REACTOME PURINE SALVAGE	0.0044	1.5936
4	REACTOME NUCLEOTIDE SALVAGE	0.0055	1.5717
5	REACTOME CLASS C 3 METABOTROPIC GLUTAMATE PHEROMONE	0.0073	1.5289
	RECEPTORS		
6	REACTOME ZBP1 DAI MEDIATED INDUCTION OF TYPE I IFNS	0.0080	1.5110
7	REACTOME TAK1 ACTIVATES NFKB BY PHOSPHORYLATION AND	0.0063	1.4865
	ACTIVATION OF IKKS COMPLEX		
8	REACTOME ETHANOL OXIDATION	0.0080	1.4822
9	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0073	1.4419
10	REACTOME SIGNALING BY NOTCH3	0.0073	1.4345

Table 78: Top 10 up-regulated pathways for cluster $29\,$

3.24 Cluster 3

	pathway	padj	NES
1	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0009	1.8081
2	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0010	1.6894
3	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0020	1.6887
4	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0016	1.6031
5	REACTOME ENDOSOMAL VACUOLAR PATHWAY	0.0035	1.5908
6	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0018	1.5747
7	REACTOME NUCLEOTIDE SALVAGE	0.0032	1.5734
8	REACTOME AMINE LIGAND BINDING RECEPTORS	0.0032	1.5712
9	REACTOME TRAFFICKING OF GLUR2 CONTAINING AMPA RECEP-	0.0032	1.5699
	TORS		
10	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0030	1.5054

Table 79: Top 10 up-regulated pathways for cluster 3

3.25 Cluster 30

	pathway	padj	NES
1	REACTOME PURINE SALVAGE	0.0072	1.4717
2	REACTOME RESPONSE TO METAL IONS	0.0087	1.4256
3	REACTOME ERYTHROPOIETIN ACTIVATES RAS	0.0088	1.4083
4	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0089	1.3923
	RRNA EXPRESSION		
5	REACTOME NUCLEOTIDE SALVAGE	0.0088	1.3793
6	REACTOME SUMOYLATION OF TRANSCRIPTION FACTORS	0.0088	1.3762
7	REACTOME P2Y RECEPTORS	0.0107	1.3340
8	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0112	1.2782
9	REACTOME POSITIVE EPIGENETIC REGULATION OF RRNA EX-	0.0108	1.2545
	PRESSION		
10	REACTOME SELENOAMINO ACID METABOLISM	0.0096	1.2033

Table 80: Top 10 up-regulated pathways for cluster 30

3.26 Cluster 31

	pathway	padj	NES
1	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0000	1.4988
	RHOBTB3		
2	REACTOME RHO GTPASE CYCLE	0.0001	1.4969
3	REACTOME METABOLISM OF AMINO ACIDS AND DERIVATIVES	0.0002	1.4960
4	REACTOME SIGNALING BY INTERLEUKINS	0.0002	1.4615
5	REACTOME DISEASES OF SIGNAL TRANSDUCTION BY GROWTH	0.0002	1.4296
	FACTOR RECEPTORS AND SECOND MESSENGERS		
6	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0002	1.4261
7	REACTOME METABOLISM OF RNA	0.0001	1.4229
8	REACTOME CELLULAR RESPONSES TO STIMULI	0.0001	1.3996
9	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0002	1.3986
10	REACTOME INNATE IMMUNE SYSTEM	0.0000	1.3767

Table 81: Top 10 up-regulated pathways for cluster 31

3.27 Cluster 4

	pathway	padj	NES
1	REACTOME NUCLEOTIDE SALVAGE	0.0014	1.7325
2	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0006	1.7152
3	REACTOME PURINE SALVAGE	0.0030	1.6378
4	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0030	1.6186
5	REACTOME ACTIVATION OF RAC1	0.0045	1.5900
6	REACTOME TRAF6 MEDIATED IRF7 ACTIVATION IN TLR7 8 OR 9	0.0039	1.5678
	SIGNALING		
7	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0040	1.5433
8	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0033	1.4987
9	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0036	1.4816
10	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0051	1.3980

Table 82: Top 10 up-regulated pathways for cluster 4

3.28 Cluster 5

	pathway	padj	NES
1	REACTOME CHONDROITIN SULFATE BIOSYNTHESIS	0.0046	1.6412
2	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0047	1.6357
3	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0027	1.6337
4	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0051	1.6079
5	REACTOME NUCLEOTIDE LIKE PURINERGIC RECEPTORS	0.0052	1.5949
6	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0030	1.5936
7	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0061	1.5564
	RRNA EXPRESSION		
8	REACTOME P2Y RECEPTORS	0.0063	1.5502
9	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0048	1.5364
10	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0055	1.4801

Table 83: Top 10 up-regulated pathways for cluster 5

3.29 Cluster 6

	pathway	padj	NES
1	REACTOME FORMATION OF SENESCENCE ASSOCIATED HETE-	0.0001	2.0602
	ROCHROMATIN FOCI SAHF		
2	REACTOME DISEASES OF SIGNAL TRANSDUCTION BY GROWTH	0.0002	1.4485
	FACTOR RECEPTORS AND SECOND MESSENGERS		
3	REACTOME RHO GTPASE CYCLE	0.0002	1.4264
4	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0001	1.4182
	RHOBTB3		
5	REACTOME SIGNALING BY INTERLEUKINS	0.0003	1.4094
6	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0002	1.4088
7	REACTOME METABOLISM OF RNA	0.0001	1.4058
8	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0002	1.3673
9	REACTOME TRANSPORT OF SMALL MOLECULES	0.0002	1.3494
10	REACTOME CELLULAR RESPONSES TO STIMULI	0.0003	1.3099

Table 84: Top 10 up-regulated pathways for cluster 6

3.30 Cluster 7

	pathway	padj	NES
1	REACTOME CA2 PATHWAY	0.0165	1.6989
2	REACTOME G PROTEIN BETA GAMMA SIGNALLING	0.0165	1.6980
3	REACTOME GLUCAGON TYPE LIGAND RECEPTORS	0.0165	1.6925
4	REACTOME ACTIVATION OF KAINATE RECEPTORS UPON GLUTA-	0.0165	1.6829
	MATE BINDING		
5	REACTOME G PROTEIN ACTIVATION	0.0165	1.6700
6	REACTOME GRB2 EVENTS IN ERBB2 SIGNALING	0.0165	1.6402
7	REACTOME G2 M DNA DAMAGE CHECKPOINT	0.0165	1.6338
8	REACTOME EXTRA NUCLEAR ESTROGEN SIGNALING	0.0165	1.6292
9	REACTOME G ALPHA Q SIGNALLING EVENTS	0.0165	1.5390
10	REACTOME GPCR LIGAND BINDING	0.0165	1.3763

Table 85: Top 10 up-regulated pathways for cluster 7 $\,$

3.31 Cluster 8

	pathway	padj	NES
1	REACTOME FORMATION OF SENESCENCE ASSOCIATED HETE-	0.0111	2.1276
	ROCHROMATIN FOCI SAHF		
2	REACTOME BUTYROPHILIN BTN FAMILY INTERACTIONS	0.0224	1.9228
3	REACTOME INTERLEUKIN 2 SIGNALING	0.0224	1.8989
4	REACTOME CTLA4 INHIBITORY SIGNALING	0.0224	1.8529
5	REACTOME ABERRANT REGULATION OF MITOTIC G1 S TRANSI-	0.0224	1.7735
	TION IN CANCER DUE TO RB1 DEFECTS		
6	REACTOME CD209 DC SIGN SIGNALING	0.0224	1.6381
7	REACTOME EPHA MEDIATED GROWTH CONE COLLAPSE	0.0224	1.5482
8	REACTOME ECM PROTEOGLYCANS	0.0224	1.3735
9	REACTOME DDX58 IFIH1 MEDIATED INDUCTION OF INTERFERON	0.0224	1.3536
	ALPHA BETA		
10	REACTOME GENE SILENCING BY RNA	0.0224	1.3474

Table 86: Top 10 up-regulated pathways for cluster 8

3.32 Cluster 9

	pathway	padj	NES
1	REACTOME ENDOSOMAL VACUOLAR PATHWAY	0.0017	1.7368
2	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0028	1.6908
3	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0008	1.6890
4	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0017	1.6064
5	REACTOME ACTIVATED NTRK2 SIGNALS THROUGH FRS2 AND FRS3	0.0050	1.6000
6	REACTOME CHONDROITIN SULFATE BIOSYNTHESIS	0.0056	1.5535
7	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0031	1.5161
8	REACTOME FCGR ACTIVATION	0.0042	1.4837
9	REACTOME CD22 MEDIATED BCR REGULATION	0.0064	1.4756
10	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0042	1.4618

Table 87: Top 10 up-regulated pathways for cluster 9 $\,$

4 Q3.2 Top 10 up-regulated pathways with adjustement for confondant effect

4.1 Cluster 0

	pathway	padj	NES
1	REACTOME NUCLEOTIDE SALVAGE	0.0014	1.8397
2	REACTOME ACTIVATION OF RAC1	0.0058	1.7446
3	REACTOME CYTOSOLIC SULFONATION OF SMALL MOLECULES	0.0062	1.6324
4	REACTOME PURINE SALVAGE	0.0067	1.6313
5	REACTOME PYRIMIDINE SALVAGE	0.0077	1.5936
6	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0081	1.5600
	RRNA EXPRESSION		
7	REACTOME AMINE LIGAND BINDING RECEPTORS	0.0090	1.5038
8	REACTOME HYALURONAN METABOLISM	0.0086	1.5005
9	REACTOME O GLYCOSYLATION OF TSR DOMAIN CONTAINING	0.0098	1.4624
	PROTEINS		
10	REACTOME METABOLISM OF NUCLEOTIDES	0.0101	1.3500

Table 88: Top 10 up-regulated pathways for cluster 0 with adjustement for confondant effect

4.2 Cluster 1

	pathway	padj	NES
1	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0191	1.7800
2	REACTOME INFLAMMASOMES	0.0191	1.6472
3	REACTOME ADHERENS JUNCTIONS INTERACTIONS	0.0191	1.6328
4	REACTOME ACTIVATION OF THE PRE REPLICATIVE COMPLEX	0.0191	1.5673
5	REACTOME TP53 REGULATES TRANSCRIPTION OF SEVERAL AD-	0.0191	1.5603
	DITIONAL CELL DEATH GENES WHOSE SPECIFIC ROLES IN P53 DE-		
	PENDENT APOPTOSIS REMAIN UNCERTAIN		
6	REACTOME RECYCLING OF BILE ACIDS AND SALTS	0.0191	1.5589
7	REACTOME BBSOME MEDIATED CARGO TARGETING TO CILIUM	0.0194	1.5548
8	REACTOME PROLONGED ERK ACTIVATION EVENTS	0.0194	1.5480
9	REACTOME PURINERGIC SIGNALING IN LEISHMANIASIS INFEC-	0.0191	1.5433
	TION		
10	REACTOME SWITCHING OF ORIGINS TO A POST REPLICATIVE	0.0191	1.5049
	STATE		

Table 89: Top 10 up-regulated pathways for cluster 1 with adjustement for confondant effect

4.3 Cluster 2

	pathway	padj	NES
1	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0080	1.7707
	RRNA EXPRESSION		
2	REACTOME ACTIVATED NTRK2 SIGNALS THROUGH FRS2 AND FRS3	0.0109	1.6270
3	REACTOME REGULATION OF TP53 ACTIVITY THROUGH ACETYLA-	0.0110	1.5969
	TION		
4	REACTOME ACTIVATION OF RAC1	0.0127	1.5906
5	REACTOME NUCLEOTIDE SALVAGE	0.0127	1.5471
6	REACTOME CYTOSOLIC SULFONATION OF SMALL MOLECULES	0.0112	1.5414
7	REACTOME FOXO MEDIATED TRANSCRIPTION OF CELL CYCLE	0.0146	1.5037
	GENES		
8	REACTOME SEALING OF THE NUCLEAR ENVELOPE NE BY ESCRT	0.0140	1.4774
	III		
9	REACTOME ARACHIDONIC ACID METABOLISM	0.0140	1.3798
10	REACTOME AUTOPHAGY	0.0112	1.3412

Table 90: Top 10 up-regulated pathways for cluster 2 with adjustement for confondant effect

4.4 Cluster 3

	pathway	padj	NES
1	REACTOME STING MEDIATED INDUCTION OF HOST IMMUNE RE-	0.0013	1.8318
	SPONSES		
2	REACTOME IRF3 MEDIATED INDUCTION OF TYPE I IFN	0.0014	1.7682
3	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0074	1.5476
4	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0040	1.5420
5	REACTOME ENDOSOMAL VACUOLAR PATHWAY	0.0085	1.5411
6	REACTOME RESPONSE TO METAL IONS	0.0094	1.5201
7	REACTOME ZINC TRANSPORTERS	0.0075	1.5138
8	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0069	1.5051
9	REACTOME NUCLEOTIDE SALVAGE	0.0094	1.4967
10	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0080	1.4778

Table 91: Top 10 up-regulated pathways for cluster 3 with adjustement for confondant effect

4.5 Cluster 4

	pathway	padj	NES
1	REACTOME PURINE SALVAGE	0.0007	1.8566
2	REACTOME NUCLEOTIDE SALVAGE	0.0023	1.7881
3	REACTOME TRANSPORT OF CONNEXONS TO THE PLASMA MEM-	0.0062	1.6337
	BRANE		
4	REACTOME SYNTHESIS OF PIPS AT THE EARLY ENDOSOME MEM-	0.0072	1.5874
	BRANE		
5	REACTOME PHYSIOLOGICAL FACTORS	0.0103	1.5247
6	REACTOME POST CHAPERONIN TUBULIN FOLDING PATHWAY	0.0122	1.4944
7	REACTOME GAP JUNCTION ASSEMBLY	0.0110	1.4900
8	REACTOME ACTIVATION OF AMPK DOWNSTREAM OF NMDARS	0.0117	1.4782
9	REACTOME SEALING OF THE NUCLEAR ENVELOPE NE BY ESCRT	0.0120	1.4659
	III		
10	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0117	1.4539

Table 92: Top 10 up-regulated pathways for cluster 4 with adjustement for confondant effect

4.6 Cluster 5

	pathway	padj	NES
1	REACTOME ENDOSOMAL VACUOLAR PATHWAY	0.0029	1.7068
2	REACTOME RAF INDEPENDENT MAPK1 3 ACTIVATION	0.0042	1.7046
3	REACTOME SIGNALING BY NTRK3 TRKC	0.0046	1.6581
4	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0054	1.5881
5	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0069	1.5578
6	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0107	1.5550
7	REACTOME CHONDROITIN SULFATE BIOSYNTHESIS	0.0107	1.5467
8	REACTOME SIGNALING BY INSULIN RECEPTOR	0.0058	1.5450
9	REACTOME GASTRIN CREB SIGNALLING PATHWAY VIA PKC AND	0.0107	1.5148
	MAPK		
10	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0109	1.4599

Table 93: Top 10 up-regulated pathways for cluster 5 with adjustement for confondant effect

4.7 Cluster 6

	pathway	padj	NES
1	REACTOME TRANSCRIPTIONAL REGULATION BY RUNX1	0.0001	1.7394
2	REACTOME SIGNALING BY WNT	0.0001	1.6567
3	REACTOME SIGNALING BY NUCLEAR RECEPTORS	0.0002	1.5887
4	REACTOME METABOLISM OF RNA	0.0000	1.5194
5	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0000	1.5005
	RHOBTB3		
6	REACTOME RHO GTPASE CYCLE	0.0001	1.4847
7	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0001	1.4823
8	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0001	1.4335
9	REACTOME TRANSPORT OF SMALL MOLECULES	0.0001	1.4275
10	REACTOME INNATE IMMUNE SYSTEM	0.0001	1.3371

Table 94: Top 10 up-regulated pathways for cluster 6 with adjustement for confondant effect

4.8 Cluster 7

	pathway	padj	NES
1	REACTOME COOPERATION OF PDCL PHLP1 AND TRIC CCT IN G	0.0175	1.6514
	PROTEIN BETA FOLDING		
2	REACTOME ACTIVATION OF KAINATE RECEPTORS UPON GLUTA-	0.0175	1.6432
	MATE BINDING		
3	REACTOME ADP SIGNALLING THROUGH P2Y PURINOCEPTOR 1	0.0175	1.6265
4	REACTOME ADRENALINE NORADRENALINE INHIBITS INSULIN SE-	0.0175	1.6238
	CRETION		
5	REACTOME ACTIVATION OF ATR IN RESPONSE TO REPLICATION	0.0175	1.6201
	STRESS		
6	REACTOME CA2 PATHWAY	0.0175	1.6194
7	REACTOME EXTRA NUCLEAR ESTROGEN SIGNALING	0.0175	1.5929
8	REACTOME CONSTITUTIVE SIGNALING BY EGFRVIII	0.0175	1.5801
9	REACTOME DEUBIQUITINATION	0.0175	1.4003
10	REACTOME CLASS A 1 RHODOPSIN LIKE RECEPTORS	0.0175	1.3639

Table 95: Top 10 up-regulated pathways for cluster 7 with adjustement for confondant effect

4.9 Cluster 8

	pathway	padj	NES
1	REACTOME NEGATIVE REGULATION OF NMDA RECEPTOR MEDI-	0.0017	2.0733
	ATED NEURONAL TRANSMISSION		
2	REACTOME TP53 REGULATES TRANSCRIPTION OF SEVERAL AD-	0.0027	1.9570
	DITIONAL CELL DEATH GENES WHOSE SPECIFIC ROLES IN P53 DE-		
	PENDENT APOPTOSIS REMAIN UNCERTAIN		
3	REACTOME FORMATION OF SENESCENCE ASSOCIATED HETE-	0.0037	1.9018
	ROCHROMATIN FOCI SAHF		
4	REACTOME INTRACELLULAR SIGNALING BY SECOND MESSEN-	0.0017	1.3656
	GERS		
5	REACTOME RHO GTPASE CYCLE	0.0017	1.3532
6	REACTOME MAPK FAMILY SIGNALING CASCADES	0.0018	1.3526
7	REACTOME SIGNALING BY INTERLEUKINS	0.0017	1.2894
8	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0017	1.2883
9	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0017	1.2836
10	REACTOME TRANSPORT OF SMALL MOLECULES	0.0017	1.2111

Table 96: Top 10 up-regulated pathways for cluster 8 with adjustement for confondant effect

4.10 Cluster 9

	pathway	padj	NES
1	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0037	1.6607
2	REACTOME GABA SYNTHESIS RELEASE REUPTAKE AND DEGRA-	0.0064	1.6339
	DATION		
3	REACTOME O GLYCOSYLATION OF TSR DOMAIN CONTAINING	0.0050	1.6308
	PROTEINS		
4	REACTOME CHONDROITIN SULFATE BIOSYNTHESIS	0.0118	1.5904
5	REACTOME ADHERENS JUNCTIONS INTERACTIONS	0.0087	1.5822
6	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0062	1.5636
7	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0055	1.5632
8	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0064	1.5590
9	REACTOME FCGR ACTIVATION	0.0072	1.5142
10	REACTOME CD22 MEDIATED BCR REGULATION	0.0119	1.4662

Table 97: Top 10 up-regulated pathways for cluster 9 with adjustement for confondant effect

4.11 Cluster 10

	pathway	padj	NES
1	REACTOME ESR MEDIATED SIGNALING	0.0001	1.7877
2	REACTOME SIGNALING BY NUCLEAR RECEPTORS	0.0001	1.6804
3	REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES	0.0001	1.4854
4	REACTOME DISEASES OF SIGNAL TRANSDUCTION BY GROWTH	0.0001	1.4829
	FACTOR RECEPTORS AND SECOND MESSENGERS		
5	REACTOME SIGNALING BY INTERLEUKINS	0.0001	1.4740
6	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0000	1.4695
	RHOBTB3		
7	REACTOME METABOLISM OF RNA	0.0000	1.4688
8	REACTOME MEMBRANE TRAFFICKING	0.0001	1.3905
9	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0001	1.3871
10	REACTOME INNATE IMMUNE SYSTEM	0.0001	1.3392

Table 98: Top 10 up-regulated pathways for cluster 10 with adjustement for confondant effect

4.12 Cluster 11

	pathway	padj	NES
1	REACTOME CYTOSOLIC SULFONATION OF SMALL MOLECULES	0.0088	1.8447
2	REACTOME CHONDROITIN SULFATE BIOSYNTHESIS	0.0138	1.6831
3	REACTOME INSULIN RECEPTOR RECYCLING	0.0131	1.6819
4	REACTOME SIGNALING BY ACTIVIN	0.0147	1.6507
5	REACTOME BASIGIN INTERACTIONS	0.0138	1.5869
6	REACTOME RESOLUTION OF D LOOP STRUCTURES	0.0138	1.5776
7	REACTOME TRANSFERRIN ENDOCYTOSIS AND RECYCLING	0.0147	1.5703
8	REACTOME AMINE LIGAND BINDING RECEPTORS	0.0148	1.5591
9	REACTOME SIGNALING BY INSULIN RECEPTOR	0.0158	1.4907
10	REACTOME POTASSIUM CHANNELS	0.0147	1.4025

Table 99: Top 10 up-regulated pathways for cluster 11 with adjustement for confondant effect

4.13 Cluster 12

-	pathway	padj	NES
1	REACTOME TRANSCRIPTIONAL REGULATION OF TESTIS DIFFER-	0.0126	1.6713
	ENTIATION		
2	REACTOME HDMS DEMETHYLATE HISTONES	0.0126	1.6630
3	REACTOME INWARDLY RECTIFYING K CHANNELS	0.0126	1.6524
4	REACTOME NEGATIVE REGULATORS OF DDX58 IFIH1 SIGNALING	0.0126	1.6252
5	REACTOME THROMBIN SIGNALLING THROUGH PROTEINASE AC-	0.0132	1.5931
	TIVATED RECEPTORS PARS		
6	REACTOME G BETA GAMMA SIGNALLING THROUGH CDC42	0.0166	1.5856
7	REACTOME BLOOD GROUP SYSTEMS BIOSYNTHESIS	0.0166	1.5781
8	REACTOME PRESYNAPTIC FUNCTION OF KAINATE RECEPTORS	0.0211	1.5491
9	REACTOME KERATAN SULFATE KERATIN METABOLISM	0.0211	1.5059
10	REACTOME CA2 PATHWAY	0.0207	1.4754

Table 100: Top 10 up-regulated pathways for cluster 12 with adjustement for confondant effect

4.14 Cluster 13

	pathway	padj	NES
1	REACTOME BIOTIN TRANSPORT AND METABOLISM	0.0091	1.6129
2	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0124	1.5218
3	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0088	1.5119
4	REACTOME INSULIN RECEPTOR RECYCLING	0.0099	1.4999
5	REACTOME SUMOYLATION OF IMMUNE RESPONSE PROTEINS	0.0138	1.4929
6	REACTOME NCAM1 INTERACTIONS	0.0092	1.4859
7	REACTOME ADHERENS JUNCTIONS INTERACTIONS	0.0144	1.4766
8	REACTOME RHOV GTPASE CYCLE	0.0165	1.4275
9	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0155	1.3808
10	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0135	1.3637

Table 101: Top 10 up-regulated pathways for cluster 13 with adjustement for confondant effect

4.15 Cluster 14

	pathway	padj	NES
1	REACTOME DEADENYLATION OF MRNA	0.0067	1.8682
2	REACTOME NUCLEAR RECEPTOR TRANSCRIPTION PATHWAY	0.0077	1.7228
3	REACTOME RHOC GTPASE CYCLE	0.0083	1.6190
4	REACTOME CILIUM ASSEMBLY	0.0067	1.4961
5	REACTOME SIGNALING BY NUCLEAR RECEPTORS	0.0067	1.4713
6	REACTOME ORGANELLE BIOGENESIS AND MAINTENANCE	0.0077	1.4116
7	REACTOME RHO GTPASE CYCLE	0.0048	1.3712
8	REACTOME METABOLISM OF AMINO ACIDS AND DERIVATIVES	0.0077	1.3671
9	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0048	1.3035
	RHOBTB3		
10	REACTOME DEVELOPMENTAL BIOLOGY	0.0083	1.1967

Table 102: Top 10 up-regulated pathways for cluster 14 with adjustement for confondant effect

4.16 Cluster 15

	pathway	padj	NES
1	REACTOME INTERACTION BETWEEN L1 AND ANKYRINS	0.0055	1.5843
2	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0045	1.5842
3	REACTOME ENDOSOMAL VACUOLAR PATHWAY	0.0056	1.5832
4	REACTOME IRF3 MEDIATED INDUCTION OF TYPE I IFN	0.0064	1.5585
5	REACTOME RAF INDEPENDENT MAPK1 3 ACTIVATION	0.0064	1.5351
6	REACTOME ADHERENS JUNCTIONS INTERACTIONS	0.0069	1.5304
7	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0070	1.4938
8	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0056	1.4902
9	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0072	1.4591
10	REACTOME CD22 MEDIATED BCR REGULATION	0.0074	1.4377

Table 103: Top 10 up-regulated pathways for cluster 15 with adjustement for confondant effect

4.17 Cluster 16

	pathway	padj	NES
1	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0016	1.6775
2	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0048	1.5823
3	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0048	1.5642
4	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0049	1.5624
5	REACTOME NUCLEOTIDE SALVAGE	0.0074	1.5280
6	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0062	1.5196
7	REACTOME ENDOSOMAL VACUOLAR PATHWAY	0.0066	1.5173
8	REACTOME DCC MEDIATED ATTRACTIVE SIGNALING	0.0075	1.5133
9	REACTOME AMINE LIGAND BINDING RECEPTORS	0.0094	1.4672
10	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0052	1.4656

Table 104: Top 10 up-regulated pathways for cluster 16 with adjustement for confondant effect

4.18 Cluster 17

	pathway	padj	NES
1	REACTOME G1 S SPECIFIC TRANSCRIPTION	0.0111	1.8989
2	REACTOME INTERCONVERSION OF NUCLEOTIDE DI AND	0.0111	1.8786
	TRIPHOSPHATES		
3	REACTOME APOPTOTIC CLEAVAGE OF CELL ADHESION PROTEINS	0.0249	1.5718
4	REACTOME BASE EXCISION REPAIR	0.0249	1.5286
5	REACTOME B WICH COMPLEX POSITIVELY REGULATES RRNA EX-	0.0249	1.5117
	PRESSION		
6	REACTOME ACTIVATION OF GENE EXPRESSION BY SREBF SREBP	0.0249	1.4265
7	REACTOME BIOLOGICAL OXIDATIONS	0.0249	1.4180
8	REACTOME ABORTIVE ELONGATION OF HIV 1 TRANSCRIPT IN THE	0.0249	1.4167
	ABSENCE OF TAT		
9	REACTOME BASIGIN INTERACTIONS	0.0249	1.4132
10	REACTOME ANTIGEN PROCESSING UBIQUITINATION PROTEA-	0.0249	1.2880
	SOME DEGRADATION		

Table 105: Top 10 up-regulated pathways for cluster 17 with adjustement for confondant effect

4.19 Cluster 18

	pathway	padj	NES
1	REACTOME MET RECEPTOR RECYCLING	0.0188	2.7131
2	REACTOME LOSS OF FUNCTION OF MECP2 IN RETT SYNDROME	0.0173	2.5978
3	REACTOME CASPASE ACTIVATION VIA DEATH RECEPTORS IN THE	0.0192	2.4909
	PRESENCE OF LIGAND		
4	REACTOME TRAF6 MEDIATED INDUCTION OF TAK1 COMPLEX	0.0192	2.4909
	WITHIN TLR4 COMPLEX		
5	REACTOME MECP2 REGULATES NEURONAL RECEPTORS AND	0.0152	2.4373
	CHANNELS		
6	REACTOME ACTIVATION OF IRF3 IRF7 MEDIATED BY TBK1 IKK	0.0194	2.4362
	EPSILON		
7	REACTOME INNATE IMMUNE SYSTEM	0.0033	1.4240
8	REACTOME NEUTROPHIL DEGRANULATION	0.0152	1.3372
9	REACTOME CYTOPROTECTION BY HMOX1	0.0173	1.2471
10	REACTOME CELLULAR RESPONSE TO CHEMICAL STRESS	0.0173	1.2470

Table 106: Top 10 up-regulated pathways for cluster 18 with adjustement for confondant effect

4.20 Cluster 19

	pathway	padj	NES
1	REACTOME INSULIN RECEPTOR RECYCLING	0.0162	1.8236
2	REACTOME GABA SYNTHESIS RELEASE REUPTAKE AND DEGRADATION	0.0162	1.6381
3	REACTOME ENERGY DEPENDENT REGULATION OF MTOR BY LKB1 AMPK	0.0162	1.6317
4	REACTOME ACYL CHAIN REMODELLING OF PI	0.0162	1.6181
5	REACTOME FORMATION OF FIBRIN CLOT CLOTTING CASCADE	0.0162	1.6156
6	REACTOME DEFECTS OF CONTACT ACTIVATION SYSTEM CAS AND KALLIKREIN KININ SYSTEM KKS	0.0162	1.6072
7	REACTOME BLOOD GROUP SYSTEMS BIOSYNTHESIS	0.0162	1.6059
8	REACTOME CREB1 PHOSPHORYLATION THROUGH NMDA RECEPTOR MEDIATED ACTIVATION OF RAS SIGNALING	0.0162	1.6050
9	REACTOME AMINO ACIDS REGULATE MTORC1	0.0162	1.5214
10	REACTOME ACTIVATION OF NMDA RECEPTORS AND POSTSYNAPTIC EVENTS	0.0162	1.5165

Table 107: Top 10 up-regulated pathways for cluster 19 with adjustement for confondant effect

4.21 Cluster 20

	not have	nod:	MEC
	pathway	padj	NES
1	REACTOME ABERRANT REGULATION OF MITOTIC G1 S TRANSI-	0.0029	1.9536
	TION IN CANCER DUE TO RB1 DEFECTS		
2	REACTOME RUNX2 REGULATES BONE DEVELOPMENT	0.0029	1.9502
3	REACTOME RUNX2 REGULATES OSTEOBLAST DIFFERENTIATION	0.0088	1.9044
4	REACTOME FORMATION OF SENESCENCE ASSOCIATED HETE-	0.0106	1.8948
	ROCHROMATIN FOCI SAHF		
5	REACTOME REGULATION OF RUNX1 EXPRESSION AND ACTIVITY	0.0106	1.6825
6	REACTOME DDX58 IFIH1 MEDIATED INDUCTION OF INTERFERON	0.0106	1.5555
	ALPHA BETA		
7	REACTOME SIGNALING BY WNT	0.0029	1.4974
8	REACTOME APOPTOSIS	0.0106	1.4549
9	REACTOME PROGRAMMED CELL DEATH	0.0106	1.3193
10	REACTOME EXTRACELLULAR MATRIX ORGANIZATION	0.0106	1.3028

Table 108: Top 10 up-regulated pathways for cluster 20 with adjustement for confondant effect

4.22 Cluster 21

	pathway	padj	NES
1	REACTOME ACTIVATION OF RAC1	0.0031	1.6999
2	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0048	1.6851
3	RRNA EXPRESSION REACTOME SYNTHESIS SECRETION AND DEACYLATION OF GHRE-LIN	0.0069	1.5864
4	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0039	1.5581
5	REACTOME NUCLEOTIDE SALVAGE	0.0059	1.5486
6	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0051	1.5481
7	REACTOME PURINE SALVAGE	0.0068	1.5461
8	REACTOME ANTIMICROBIAL PEPTIDES	0.0040	1.5102
9	REACTOME TRAF6 MEDIATED IRF7 ACTIVATION IN TLR7 8 OR 9	0.0083	1.4830
	SIGNALING		
10	REACTOME SELENOAMINO ACID METABOLISM	0.0078	1.3581

Table 109: Top 10 up-regulated pathways for cluster 21 with adjustement for confondant effect

4.23 Cluster 22

	pathway	padj	NES
1	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0018	1.6467
2	REACTOME INTERACTION BETWEEN L1 AND ANKYRINS	0.0037	1.5756
3	REACTOME SIGNALING BY NTRK3 TRKC	0.0063	1.5196
4	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0044	1.4994
5	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0049	1.4725
6	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0052	1.4561
7	REACTOME ADHERENS JUNCTIONS INTERACTIONS	0.0083	1.4080
8	REACTOME FCGR ACTIVATION	0.0069	1.3912
9	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0077	1.3813
10	REACTOME CD22 MEDIATED BCR REGULATION	0.0083	1.3598

Table 110: Top 10 up-regulated pathways for cluster 22 with adjustement for confondant effect

4.24 Cluster 23

-	pathway	padj	NES
1	REACTOME BRANCHED CHAIN AMINO ACID CATABOLISM	0.0004	1.9736
2	REACTOME METABOLISM OF AMINO ACIDS AND DERIVATIVES	0.0002	1.5545
3	REACTOME RHO GTPASE CYCLE	0.0002	1.4726
4	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0001	1.4627
	RHOBTB3		
5	REACTOME METABOLISM OF RNA	0.0002	1.4363
6	REACTOME TRANSPORT OF SMALL MOLECULES	0.0004	1.3724
7	REACTOME CELLULAR RESPONSES TO STIMULI	0.0004	1.3603
8	REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM	0.0004	1.3561
9	REACTOME INFECTIOUS DISEASE	0.0004	1.3239
10	REACTOME INNATE IMMUNE SYSTEM	0.0004	1.3083

Table 111: Top 10 up-regulated pathways for cluster 23 with adjustement for confondant effect

4.25 Cluster 24

	pathway	padj	NES
1	REACTOME CHONDROITIN SULFATE BIOSYNTHESIS	0.0070	1.5747
2	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0044	1.5383
3	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0080	1.5133
4	REACTOME O GLYCOSYLATION OF TSR DOMAIN CONTAINING	0.0077	1.5098
	PROTEINS		
5	REACTOME RAF INDEPENDENT MAPK1 3 ACTIVATION	0.0128	1.4582
6	REACTOME FOXO MEDIATED TRANSCRIPTION OF OXIDATIVE	0.0122	1.4388
	STRESS METABOLIC AND NEURONAL GENES		
7	REACTOME INTERACTION BETWEEN L1 AND ANKYRINS	0.0129	1.4240
8	REACTOME SYNTHESIS OF IP3 AND IP4 IN THE CYTOSOL	0.0136	1.4178
9	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0126	1.4097
10	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0120	1.4080

Table 112: Top 10 up-regulated pathways for cluster 24 with adjustement for confondant effect

4.26 Cluster 25

	pathway	padj	NES
1	REACTOME MITOCHONDRIAL TRNA AMINOACYLATION	0.0054	1.9537
2	REACTOME RAC1 GTPASE CYCLE	0.0028	1.5148
3	REACTOME RHO GTPASE CYCLE	0.0002	1.4597
4	REACTOME HIV LIFE CYCLE	0.0054	1.4540
5	REACTOME CDC42 GTPASE CYCLE	0.0054	1.4439
6	REACTOME DNA REPAIR	0.0013	1.4337
7	REACTOME METABOLISM OF AMINO ACIDS AND DERIVATIVES	0.0013	1.3864
8	REACTOME SIGNALING BY INTERLEUKINS	0.0013	1.3729
9	REACTOME INTRACELLULAR SIGNALING BY SECOND MESSEN-	0.0036	1.3490
	GERS		
10	REACTOME DISEASES OF SIGNAL TRANSDUCTION BY GROWTH	0.0030	1.3056
	FACTOR RECEPTORS AND SECOND MESSENGERS		

Table 113: Top 10 up-regulated pathways for cluster 25 with adjustement for confondant effect

4.27 Cluster 26

	pathway	padj	NES
1	REACTOME SCAVENGING OF HEME FROM PLASMA	0.0020	1.8609
2	REACTOME SYNTHESIS SECRETION AND DEACYLATION OF GHRE-	0.0048	1.7279
	LIN		
3	REACTOME ROLE OF LAT2 NTAL LAB ON CALCIUM MOBILIZATION	0.0039	1.7272
4	REACTOME CREATION OF C4 AND C2 ACTIVATORS	0.0044	1.6939
5	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0087	1.6214
6	REACTOME GASTRIN CREB SIGNALLING PATHWAY VIA PKC AND	0.0090	1.6184
	MAPK		
7	REACTOME CHONDROITIN SULFATE BIOSYNTHESIS	0.0087	1.5929
8	REACTOME INITIAL TRIGGERING OF COMPLEMENT	0.0075	1.5876
9	REACTOME FCGR ACTIVATION	0.0090	1.5840
10	REACTOME CHONDROITIN SULFATE DERMATAN SULFATE	0.0087	1.5698
	METABOLISM		

Table 114: Top 10 up-regulated pathways for cluster 26 with adjustement for confondant effect

4.28 Cluster 27

	pathway	padj	NES
1	REACTOME RNA POLYMERASE III TRANSCRIPTION TERMINATION	0.0186	1.9536
2	REACTOME NEGATIVE REGULATION OF NMDA RECEPTOR MEDI-	0.0223	1.8000
	ATED NEURONAL TRANSMISSION		
3	REACTOME PKA ACTIVATION IN GLUCAGON SIGNALLING	0.0223	1.7881
4	REACTOME GLUTATHIONE CONJUGATION	0.0223	1.7407
5	REACTOME CELL DEATH SIGNALLING VIA NRAGE NRIF AND NADE	0.0186	1.6526
6	REACTOME INTERLEUKIN 4 AND INTERLEUKIN 13 SIGNALING	0.0186	1.6092
7	REACTOME NRAGE SIGNALS DEATH THROUGH JNK	0.0223	1.5709
8	REACTOME P75 NTR RECEPTOR MEDIATED SIGNALLING	0.0223	1.4434
9	REACTOME RAC1 GTPASE CYCLE	0.0186	1.4304
10	REACTOME DEATH RECEPTOR SIGNALLING	0.0223	1.3495

Table 115: Top 10 up-regulated pathways for cluster 27 with adjustement for confondant effect

4.29 Cluster 28

	pathway	padj	NES
1	REACTOME DETOXIFICATION OF REACTIVE OXYGEN SPECIES	0.0029	1.7468
2	REACTOME INSULIN RECEPTOR RECYCLING	0.0089	1.5257
3	REACTOME ERCC6 CSB AND EHMT2 G9A POSITIVELY REGULATE	0.0145	1.4887
	RRNA EXPRESSION		
4	REACTOME DEFECTS OF CONTACT ACTIVATION SYSTEM CAS AND	0.0145	1.4560
	KALLIKREIN KININ SYSTEM KKS		
5	REACTOME ETHANOL OXIDATION	0.0104	1.4557
6	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0140	1.4518
7	REACTOME SYNAPTIC ADHESION LIKE MOLECULES	0.0149	1.4308
8	REACTOME INTERACTION BETWEEN L1 AND ANKYRINS	0.0149	1.4163
9	REACTOME RHOV GTPASE CYCLE	0.0149	1.3911
10	REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH	0.0139	1.3894

Table 116: Top 10 up-regulated pathways for cluster 28 with adjustement for confondant effect

4.30 Cluster 29

	pathway	padj	NES
1	REACTOME VXPX CARGO TARGETING TO CILIUM	0.0060	1.6725
2	REACTOME PTK6 REGULATES RHO GTPASES RAS GTPASE AND	0.0057	1.6708
	MAP KINASES		
3	REACTOME SYNTHESIS OF LEUKOTRIENES LT AND EOXINS EX	0.0060	1.6677
4	REACTOME PURINE SALVAGE	0.0073	1.6352
5	REACTOME SYNTHESIS OF PE	0.0113	1.5637
6	REACTOME EICOSANOIDS	0.0115	1.5547
7	REACTOME NUCLEOTIDE SALVAGE	0.0117	1.5386
8	REACTOME PHASE 4 RESTING MEMBRANE POTENTIAL	0.0154	1.4891
9	REACTOME EPHB MEDIATED FORWARD SIGNALING	0.0130	1.4562
10	REACTOME ARACHIDONIC ACID METABOLISM	0.0123	1.4323

Table 117: Top 10 up-regulated pathways for cluster 29 with adjustement for confondant effect

4.31 Cluster 30

-	pathway	padj	NES
1	REACTOME SUMOYLATION OF TRANSCRIPTION FACTORS	0.0217	1.6052
2	REACTOME ASSEMBLY OF THE HIV VIRION	0.0217	1.6038
3	REACTOME INFLAMMASOMES	0.0217	1.5898
4	REACTOME SELENOAMINO ACID METABOLISM	0.0194	1.5627
5	REACTOME NOTCH2 INTRACELLULAR DOMAIN REGULATES	0.0217	1.5522
	TRANSCRIPTION		
6	REACTOME THE NLRP3 INFLAMMASOME	0.0223	1.5496
7	REACTOME GENERATION OF SECOND MESSENGER MOLECULES	0.0217	1.5421
8	REACTOME SIGNALING BY NOTCH2	0.0223	1.4670
9	REACTOME EUKARYOTIC TRANSLATION ELONGATION	0.0217	1.4088
10	REACTOME INFLUENZA INFECTION	0.0247	1.2349

Table 118: Top 10 up-regulated pathways for cluster 30 with adjustement for confondant effect

4.32 Cluster 31

	pathway	padj	NES
1	REACTOME BRANCHED CHAIN AMINO ACID CATABOLISM	0.0010	1.9696
2	REACTOME METABOLISM OF AMINO ACIDS AND DERIVATIVES	0.0001	1.5999
3	REACTOME SIGNALING BY INTERLEUKINS	0.0007	1.4249
4	REACTOME MEMBRANE TRAFFICKING	0.0003	1.4035
5	REACTOME RHO GTPASE CYCLE	0.0010	1.3836
6	REACTOME SIGNALING BY RHO GTPASES MIRO GTPASES AND	0.0008	1.3652
	RHOBTB3		
7	REACTOME METABOLISM OF RNA	0.0007	1.3591
8	REACTOME VESICLE MEDIATED TRANSPORT	0.0003	1.3468
9	REACTOME CELLULAR RESPONSES TO STIMULI	0.0008	1.3127
10	REACTOME INNATE IMMUNE SYSTEM	0.0008	1.2648

Table 119: Top 10 up-regulated pathways for cluster 31 with adjustement for confondant effect