UNCLASSIFIED

AD NUMBER ADB069484 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Critical Technology; Test and Evaluation; FEB 1982. Other requests shall be referred to Air Force Aero Propulsion Laboratory [AFWAL/POTX], Wright-Patterson AFB, OH 45433. **AUTHORITY** 27 Jun 1990, ST-A per WRDC-IST notice

AFWAL-TR-82-2017

ADB069484

TRANSONIC FAN/COMPRESSOR ROTOR DESIGN STUDY

Volume I

D.E. Parker and M.R. Simonson General Electric Company Aircraft Engine Business Group Advanced Technology Programs Dept. Cincinnati, Ohio 45215

February 1982

Final Report for Period September 1980 - February 1982

SUBJECT TO EXPORT CONTROL LAWS

This document contains information for manufacturing or using munitions of war. Export of the information contained herein, or release to foreign nationals within the United States, without first obtaining an export license, is a violation of the International Traffic-in-Arms Regulations. Such violation is subject to a penalty of up to 2 years imprisonment and a fine of \$100,000 under 22 USC 2778.

include this notice with any reproduced portion of this document

Distribution limited to U.S. Government agencies only: Test and Evaluation, February 1982. Other requests for this document must be referred to Air Force Aero Propulsion Laboratory (AFWAL/POTX), Wright-Patterson AFB, OH 45433

Aero Propulsion Laboratory Air Force Wright Aeronautical Laboratories Air Force System Command Wright-Patterson Air Force Base, Ohio 45433

FILE COP"

82 11 30 0 ...

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in conjunction with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other persons or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

ARTHUR J. WENNERSTROM

Chief, Compressor Research Group

WALKER H. MITCHELL

Chief, Technology Branch

FOR THE COMMANDER

H. IVAN BUSH

Director, Turbine Engine Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/POTX, WPAFB OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-82-2017 AD-804	9 4842
4. TITLE (and Subtitle)	5. TYPE OF REPORT 2 PERIOD COVERED
Transonic Fan/Compressor Rotor Design Study	Final Technical Report
Volume I	September 1980 - July 1982
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	R82AEB328, Volume I
D.E. Parker	
M.R. Simonson	F33615-80-C-2059
n.k. bimonson	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
General Electric Company	Project 2307
Aircraft Engine Business Group Cincinnati, Ohio 45215	Task S1
	Work Unit 38
11. CONTROLLING OFFICE NAME AND ADDRESS Aero Propulsion Laboratory (AFWAL/POT)	12. REPORT DATE
Air Force Wright Aeronautical Laboratories	13. NUMBER OF PAGES
Air Force System Command	53
Air Force Wright Aeronautical Laboratories Air Force System Command Wright-Patterson Air Force Base, Ohio 45433 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
Distribution limited to U.S. Government agencies Construction 1932 Other requests for this docume Force Aero Propulsion Laboratory (AFWAL/POTX), OH 45433. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in	ent must be referred to Air Wright-Patterson AFB,
18 SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	7)
Fan Aircraft Engines Compressor Blade Thickness	
Compressor Blade Thickness Rotor Camber Distribution	
Arodesign Throat Margin	
Aerodynamics	
20 ABSTRACY (Continue on reverse side if necessary and identify by block number) then the coredination design
Volumes I through VI of this report descr of a series of five transonic rotors all parametr design documented in Technical Report AFAPL-TR-79 designs deviate from the base line, in so far as	ically related to a baseline -2078. Each of the five

one parameter only. The parametric variations are specified at the rotor tip. The original hub characteristics were preserved to the maximum extent practi-

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

cal. The varied parameter was adjusted along the span.

Unclassified

ECUIPITY CLASSIFICATION OF THIS PAGE(When Data Entered)
The report contains six volumes. Volume I contains primarily introduc-
tion and summary information plus details of a data match analysis of the
base design. Volumes II through VI each contain design details for one of
the series of five rotors.
•
•
•
•

VOLUME I

BASELINE DESIGN

Foreword

This Final Technical Report was prepared by the Advanced Technology Programs Department, Aircraft Engine Business Group, General Electric Company, Evendale, Ohio for the United States Air Force Systems Command, Air Force Wright Aeronautical Laboratories Wright-Patterson Air Force Base, Ohio under Contract F33615-80-C-2059. The work was performed over a period of one year starting in September 1980. Effren Strain (Captain USAF) was the Air Force Project Engineer for this program.

This report describes the results of an effort to aerodynamically define five rotor designs, all parametrically related to a base line design which could be evaluated by future testing in order to define the sensitivity of transonic blade rows to several design variables.

For the General Electric Company Mr. D.E. Parker was the Technical Program Manager for this program. Mr. M.R. Simonson was the principal investigator. Mr. A.J. Bilhardt was the overall Program Manager.

VOLUME I

TABLE OF CONTENTS

		PAGE
		1
SECTION		5
ı.	INTRODUCTION	3
	DESIGN APPROACH AND CRITERIA	7
II.		•
III.	COMPUTATIONAL PROCEDURES	9
177.	DATA MATCH OF BASELINE ROTOR	25
IV.	DAIR TELLO	
٧.	DETAIL RESULTS OF DATA MATCH	53
٧.		
VI.	REFERENCES	

PRECEDING PAGE BLANK-NOT FILMED

VOLUME I LIST OF ILLUSTRATIONS

FIGURE	1	PAGE
1.	Compressor Flow Path with Blade Edge Stations	10
2.	Compressor Flow Path with Calculation Stations	11
3.	Data Match Total Pressures at Rotor and at Stage Exit Compared with Measured Data	12
4.	Data Match Total Temperatures at Stage Exit Compared with Measured Data	13
5.	Multiplier on Flow Area Used to Account for Assumed Boundary Layer Displacement Thickness	14
6.	Data Match Rotor Static Pressure Distribution	15
7.	Data Match Rotor Interstage Work Distribution	17
8.	Data Match Rotor Intrablade Departure Angle Distribution	18
9.	Data Match Rotor Total Pressure Loss Coefficient Versus Fractional Immersion	19
10.	Data Match Stator Total Pressure Loss Coefficient Versus Fractional Immersion	19
11.	Data Match Rotor Efficiency Versus Fractional Immersion	20
12.	Data Match Stage Efficiency Versus Fractional Immersion	20
13.	Data Match Rotor Throat Margin Versus Fractional Immersion	21
14.	Data Match Rotor D Factor Versus Fractional Immersion	21
15.	Data Match Rotor Incidence Angle Versus Fractional Immersion	23
16.	Data Match Rotor Deviation Angle Versus Fractional Immersion	23
17.	Data Match Rotor Deviation Angle Minus Reference Deviation Angle	24
18.	Data Match Stator Incidence Angle Versus Fractional Immersion	24

LIST OF SYMBOLS AND ABBREVIATIONS

1. Used in Circumferential Average Flow Output Tables

STA	calculation station number	
WTF	total airflow	
PSIC	stream function (0 = tip (OD), $l = hub$ (ID))	
Z	axial location	inches
R	radius	inches
PHI	streamline slope	degrees
CURV	streamline curvature — = neg., — pos.	1/inches
VM	meridional velocity	ft/sec
CU	absolute tangential velocity	ft/sec
ALPHAM	absolute flow angle on stream surface	degrees
MM	meridional Mach number	
SL	calculation streamline number	
BLDBLK	flow blockage factor (free area - b	olocked area/free area
PS	static pressure	psia
PT	total pressure	psia
TT	total temperature	degrees
BETAM	relative flow angle on stream surface	degrees
UREL	relative velocity	ft/sec
MREL	relative Mach number	
VABS	absolute velocity	ft/sec
MABS	absolute Mach number	
GAMMA	specific heat ratio	
PT-RAT	total pressure/inlet total pressure	
TT-RAT	total temperature/inlet total temperature	
RCU	radius x tangential velocity	in-ft/sec
CZ	axial velocity	ft/sec
PCT IMM	percent annulus immersion from tip (OD)	
RAD	average of leading and trailing edge streamline radii	inches
ACC PT		
RATIO ACC TT	cumulative total pressure ratio	
RATIO	comulative total temperature ratio	

LIST OF SYMBOLS AND ABBREVIATIONS

1. Used in Circumferential Average Flow Output Tables (Cont'd)

AD.	adiabatic efficiency	
POLY	polytropic efficiency	
Axial VEL R	axial velocity ratio across blade row	
2. <u>Used in</u>	Stream Surface Blade Coordinate Tables	
PT	point number	
PCT X	fraction of meridional distance from leading edge	
X	meridional coordinate on meanline	inches
Y	tangential coordinate on meanline	inches
B*M	meanline angle on stream surface	degrees
T(M)	thickness of blade perpendicular to meanline	inches
XS	meridional coordinate on suction surface	inches
YS	tangential coordinate on suction surface	inches
XP	meridional coordinate on pressure surface	inches
YP	tangential coordinate on pressure surface	inches

local thickness/chord ratio

T/C

3. Used in	Plane Section Coordinate Tables	
2	axial coordinate of stacking axis	inches
R	radius of coordinate system origin	inches
MU	tilt angle in axial direction	degrees
ETA	tilt angle in tangential direction	degrees
RHO	section height	inches
PT	point number ·	
ALPHA	axial coordinate	inches
ZETA*	meanline angle from axial	degrees
UPSILON	coordinate perpendicular to ALPHA and radius	inches
PCT AL	fraction of axial distance from leading edge	

SECTION I INTRODUCTION

Exploratory development programs funded by the Department of Defense. and similar programs supported by NASA, have traditionally attempted to advance the component state of the art by increasing component overall performance goals, each time relative to a previous program or a known level of achievement. Although major progress has been achieved in this manner, it is also apparent that in certain detailed areas of design, the same assumptions are made time after time for no better reason than past experience has proven them "safe"; i.e., they have a high probability of providing a satisfactory, if not optimum, design. At present, there exists no good basis from which to depart from many of these assumptions, because neither IR&D programs nor Government-funded programs, as presently structured, have provided a data matrix that is sufficiently systematic to allow one to assess the sensitivity of component behavior to variations in these favorite assumptions. Although analysis in the subsonic area has proven able to distinguish these sensitivities, this is not yet true in the transonic area and is not likely to be for several years to come. To achieve further performance improvements in transonic compressor stages, it would be desirable to conduct a comprehensive experimental program aimed at exploring the sensitivity of compressor performance to variations in several common design parameters.

One parameter, sometimes defined more on the basis of historical reasons than on a knowledge of its aerodynamic effect, is the chordwise location of maximum blade thickness. Research by NACA in the 1950's generally indicated that as relative inlet Mach number rose, it was desirable to move the location of maximum thickness aft on an airfoil. This may remain true. However, the early work was done with airfoils having significant positive camber. Today, many airfoils at rotor tips have little overall relative turning, sometimes negative turning, and frequently have camber lines of S-shape: negative camber followed by some positive camber. In some instances with S-shaped camber lines, a shift in maximum airfoil thickness forward of the more customary location would reduce the peak curvature of the airfoil, assuming all other design criteria were held constant. There are other incentives to move thickness forward related to meeting bird-strike structural criteria. Rather than penalizing aerodynamic performance, it might even be improved in some instances.

Another design variable commonly considered in transonic and supersonic blade rows is the throat margin, and the interrelation between the airfoil mean line shape and the cascade throat area. While there is some variation in the way throat margin is defined, it is common practice to specify some minimum acceptable throat margin over that "theoretically" required accounting for leading edge shock loss, stream tube contraction, etc.

Increasing the average suction surface angle in the supersonic region ahead of the leading edge passage shock reduces the average Mach number just ahead of the shock and presumably reduces the shock loss. However, this results in a reduced cascade throat area. If the throat is too small, the cascade will not pass the design flow and may not achieve the attached shock pattern which is desired for minimum loss.

Also, if the blade suction surface angle is made steep ahead of the cascade mouth, or covered portion, it may be necessary to have a rapid change in blade mean line angle at the cascade mouth to prevent the throat from becoming too small within the covered channel. A rapid change of the suction surface angle increases the surface Mach number ahead of the shock and tends to worsen the shock-boundary layer interaction. This consideration may influence the optimum throat margin for best efficiency.

If the throat area is sufficient to pass the design flow, then (for transonic cascades) the maximum flow is limited by the average suction surface angle in the flow induction region ahead of the first captured Mach wave. The average suction surface angle in this region cannot be increased and still pass the desired flow so that any increase in surface angle must take place aft of this region.

Another parameter which can influence the performance of transonic cascades is the "effective camber" of the blade. The term "effective camber" is loosely used to indicate the circulation capacity of the cascade, since the normal camber definition is not sufficient for cascades with nonstandard mean lines which may depart significantly from a circle arc.

The best efficiency at the design speed for transonic rotors normally occurs near the "knee" of the pressure ratio - flow characteristic where the flow begins to decrease. For the baseline rotor the peak efficiency at design speed was about 2 points higher than that at the test data point selected as the base for the designs carried out under this contract. This peak efficiency occurred at a pressure ratio about 8 percent higher than the selected data point. The baseline point was selected for this work because it provides reasonable stall margin. If it is thought of as an "operating line" point, then there is reason to think that an improvement in efficiency might be achieved at this "operating line" point by adjusting the effective camber so that the "knee" of the characteristic more nearly coincides with the operating line point. The reduced effective camber does not necessarily reduce the stall line, however, it may have an adverse effect on the efficiency at reduced RPM operation. However, currently there is inadequate definitive data to allow an assessment of the trade.

The objective of the work presented in this report was to perform the aero-dynamic design of a series of five transonic compressor rotors, all parametrically related to a base line design documented in Reference 1. This base line design was a high-through-flow, high-aerodynamic-loading, low hub tip ratio compressor first stage and was the result of a redesign effort by the Air Force Aero Propulsion Laboratory to improve the aeromechanical performance of a similar earlier design. Each of the five designs deviate from the baseline, in so far as practical, by a variation of one parameter only. The parameter variations are specified at the rotor tip. The original hub characteristics were preserved to the maximum extent practical. The varied parameter was adjusted proportionately along the span.

A broader objective of this work is to define a matrix of aerodynamic designs for future testing that will help define the sensitivity of transonic blade rows to variation of several important design variables about which there is little available data.

The work was conducted in five phases; each consisting of the aerodynamic design of one of the five rotors. For Phase I and Phase II the location of the airfoil maximum thickness was changed from 70% of meanline length in the baseline design to 40% and 55% respectively.

The Phase III rotor was designed to have a steeper average suction surface angle in the supersonic region to reduce the Mach number ahead of the leading edge shock. This results in a smaller cascade throat area than the baseline rotor.

The Phase IV rotor was also designed to have a steeper average suction surface angle ahead of the shock but differed from the Phase III blade in that it had somewhat less external compression and somewhat more internal contraction. This reduces the rapid mean line (and suction surface) curvatures in the region of the cascade mouth. The cascade throat areas of the Phase III and Phase IV blades were essentially the same.

The Phase V blade was designed to have a somehwat smaller effective trailing edge camber than the base line rotor.

The Phase III, IV, and V all used the same airfoil thickness distribution as the base line rotor.

SECTION II DESIGN APPROACH AND CRITERIA

It was the intent of this program to vary only one parameter at a time in the design of the new rotors, keeping other design variables as close as practical to the baseline rotor. In order to expeditiously accomplish this effort it was deemed highly desirable to reproduce the actual test results of the baseline rotor on the General Electric computer.

The test data point selected as the baseline point was the most unthrottled point available at the design speed. The measured stage pressure ratio of this point was 1.92, which is essentially the same as the design, while the measured corrected airflow of 61.36 lbm/sec was about 2 percent lower than the original design. This lower than design flow makes it possible to consider designs for Phase III and IV rotors which have smaller throat areas. The measured airflow represents a specific flow of 43.13 lbm/sec/ft². The measured stage efficiency was 85.4%.

The measured airflow, discharge pressures and temperatures as well as flow path and blading geometry were used in the General Electric Circumferential Average Flow Determination computer program (CAFD). Calculation stations were included within the rotor at every 10 percent of the rotor axial projection. The assumed chordwise work distribution was adjusted at each streamline until a reasonable match was obtained of the measured static pressure over the rotor tip, and the calqulated throat margins, the internal blade meanline departure (deviation) angle, and the difference between the "free flow" streamline and the blade suction surface angle in the flow induction region were all reasonable when compared with past experience. This synthesis of the baseline rotor operation is referred to as the "data match" case and served as a basis to perturbate the baseline configuration to the other aerodynamic designs carried out under this contract. The data match calculations are described in greater detail in Section IV.

Since the rotor internal blade blockage of the five designs differed from the baseline rotor, the chordwise distribution of work input was adjusted for each case to make the calculated streamline static pressure distribution similar to that calculated for the baseline case. Also, the blade meanline departure angles were adjusted so that the flow induction capacity of the blade, and the throat areas were the same as the baseline rotor (except for the Phase III and IV blades where the throat areas were intentionally changed).

The rotor leading and trailing edges were kept at the same axial projection as the baseline rotor. Since the blade stagger angle in the outer portion changed some for the 5 different rotors, the blade chords differed some from the reference blade.

The radial distribution of maximum thickness was kept the same as the baseline. Since the chords for the different designs were not identical to the baseline, there were some variations in the thickness/chord ratio.

The baseline design used a chordwise thickness distribution described in Reference 2. The thickness distribution as a function of distance along the meanline is described by two cubic equations. The first equation describes the thickness from the leading edge to the maximum thickness point, while the second defines the thickness between the point of maximum thickness and the trailing edge. The magnitude and chordwise location of the airfoil maximum thickness (as well as the leading and trailing edge thickness) are specified by the designer. The slope and curvatures are continuous at the maximum thickness location where the two equations meet. The same procedure was used for the rotors designed under this contract.

A modified version of Carter's Rule was used to calculate a reference deviation angle for the baseline rotor. This procedure converts the vector diagrams (from the data match calculations) to an equivalent two-dimensional set of vectors which would produce the same circulation as the actual blade taking into account the change in streamline radius and meridional velocity. The difference between the deviation angle implied by the data match calculations and the reference deviation angle was maintained in the design of the five rotors.

SECTION III

COMPUTATIONAL PROCEDURES

The General Electric Circumferential Average Flow Determination (CAFD) computer program was used both for the data match calculation and for the design of the rotors. This computer program is similar (but differing in detail) to that used in the design of the baseline rotor and as described in Reference 3. In both cases the "full" radial equilibrium version of the momentum equation is satisfied at each computational station, with the streamline slope and curvature being obtained by a curve fit of the calculated streamline locations. Blade circumferential blockage and blade force terms are included, determined from the stacked blade geometry and the specified chordwise work distribution, for calculation stations within a blade row. A fast convergence technique is incorporated which results in a converged solution in a relative few number of iterations.

The Streamsurface Blade Sections Program (SBS) uses CAFD intra blade station output plus a distribution of blade departure (deviation) angles and thickness between the leading and trailing edge along each streamline. Passage area distributions, throat area and choke margin are calculated for each streamsurface section.

A "free-flow" streamline is also calculated. This streamline represents the path an air particle would follow in the absence of any blade force or blade annulus blockage. An approximate suction surface Mach number is calculated for the front portion of the blade (if the flow is supersonic) by applying a Prandtl-Meyer expansion from the free-flow streamline to the blade suction surface. The average angle difference between the blade suction surface and the free flow stream-line between the leading edge and the first "captured wave" is also calculated. This is used as a guide in selecting the incidence angle and meanline shape in the flow induction region of transonic airfoils.

The blade sections generated by the SBS program are then stacked and new values of blade lean angles and annulus blockage are calculated for input to the CAFD program for the next iteration.

THE PROPERTY OF THE PROPERTY O

Two streamline sections for the base configuration and each new rotor were analyzed using the Method of Characteristics (MOC) computer program. This was

done to assure that the computed unique incidence angle was consistent with the design flow. These calculations were carried out for streamlines 10% and 40% flow from the tip.

SECTION IV

DATA MATCH OF BASELINE ROTOR

A "data match" analysis was made of a selected test data point of the baseline rotor as previously discussed in Section II. Test data for this point was received from AFAPL in reference 4 and included measured total temperature and total pressure profiles at rotor exit and stator discharge. It also includes measured casing static pressures over the rotor tip.

The flowpath geometry for the data match was extracted from reference 1 and is reproduced in Figure 1. The rotor blade geometry was basically obtained from plane section manufacturing coordinates supplied by AFWAL. These coordinates were first interpolated to stream surface coordinates and then adjusted for blade deformation due to centrifugal force and pressure loading. This adjustment for deformation was calculated by means of a finite element program used in the mechanical design and analysis of blades and vanes.

It was found that the interpolation from plane to stream surface sections introduced some irregularities near the hub. Because of this the hub section was derived directly from reference 1 and the adjacent stream surface section was somewhat smoothed to obtain a good blend.

In a "data match" analysis the CAFD circumferential average program is run with measured test data as input with, the objective of obtaining best estimates of the many aerodynamic parameters which are not measured directly. For this work, calculations were made for 13 streamlines. Calculation stations within the annulus are shown in Figure 2. Station designations were kept similar to the base line design except that additional internal rotor stations have fractional station numbers. Figures 3 and 4 show the total pressure and temperature distributions which were used at the rotor exit and stage exit stations. Also shown are the test data extracted from reference 4. As can be seen some smoothing and extrapolation of the data was required. Casing static pressures over the rotor tip cannot be input directly into the program, so matching these values is done iteratively by adjusting the chordwise distribution of rotor work input. The assumed boundary layer allowance is shown on Figure 5. The same boundary layer allowance was specified at each streamline at a given calculation station. Figure 6 shows both the measured and "data"

Figure 1. Compressor Flowpath With Blade Edge Stations

Figure 2. Compressor Flowpath With Calculation Stations

Figure 3. Data Match Total Pressures at Rotor Exit and at Stage Exit Compared with Measured Data

Figure 4. Data Match Total Temperatures at Stage Exit Compared With Measured Data

Multiplier On Flow Area Used To Account For Assumed Boundary Layer Displacement Thicknesses Figure 5.

Figure 6. Data Match Rotor Static Pressure Distribution

match" casing static pressures. As can be seen, a perfect match could not be achieved. In particular, three measured casing stations appear to be lower than the corresponding data match values. No explanation for this has been determined.

The overall radial distribution of rotor work input was defined by the radial distribution of the total temperature at the rotor trailing edge station. Radial distribution of the rotor work input at the internal blade stations however is not so defined. At the internal rotor blade stations, the radial distribution of work input was iteratively adjusted so as to result in reasonable departure angle distributions along the blade span. Departure angle is here defined as the difference between the blade meanline angle and the air angle on a stream surface. The assumed streamline work input (as a fraction of the total streamline work) is plotted versus percent axial projection in Figure 7. The tip streamline is the one on the left. Each subsequent streamline is indexed to the right by the value of its stream function (fraction of the total flow from the tip). The dashed lines are lines of constant fraction of axial projection. A plot of departure angle on each data match streamline is shown in Figure 8.

The input stage work distribution and total pressure distributions at the rotor exit and stage exit imply blade row pressure loss coefficients. These pressure loss coefficients are shown in Figures 9 and 10 for the rotor and stator respectively. Rotor and overall stage efficiency distributions are also implied by the input work and total pressure distributions. These adiabatic efficiencies for the rotor and overall stage are shown in Figures 11 and 12 respectively.

After a satisfactory data match was obtained with the CAFD program, the SBS program was run to calculate various aerodynamic parameters including the several passage area ratios on each stream surface. Also a method of characteristics program called "MOC" was run on SBS streamlines 2 and 5 to serve as a later basis for assuring that the rotors to be designed under this contract would achieve the same flow as the base line rotor.

Figure 13 shows the rotor throat margin versus immersion. As here defined, the throat margin for a streamsurface blade section is the percent

Igure 7. Fata Match Rotor Intrablade Work Distribution

Data Match Rotor Intrablade Departure Angle Distribution Figure 8.

Figure 9. Data Match Rotor Total Pressure Loss Coefficient Versus Fractional Immersion

Figure 10. Data Match Stator Total Pressure Loss Coefficient Versus Fractional Immersion

Figure 11. Data Match Rotor Efficiency Versus Fractional Immersion

Figure 12. Data Match Stage Efficiency Versus Fractional Immersion

Figure 13. Data Match Rotor Throat Margin Versus Fractional Immersion

Figure 14. Data Match Rotor D Factor Versus Fractional Immersion

excess throat area over and above the minimum theoretical area required to pass the streamtube flow at a throat Mach number of 1.0 and assuming a total pressure loss equivalent to one normal shock at the upstream Mach number. In a rotor, the effect of radius change (between the leading edge and throat) on the relative total enthalpy and pressure is included. Throat margin distributions for Phase I, II, and V rotors were kept nearly identical to the data match case. For Phase III and IV rotors, it was intentionally different.

Figure 14 shows the rotor Lieblein Diffusion Faction (D factor) versus immersion.

Figures 15 and 16 show the data match rotor incidence and deviation angles respectively. Here the incidence and deviation angles are defined as seen in a streamsurface section. The irregularity in the incidence angle shown in Figure 15 near the hub may be the result of interpolating from the plane section coordinates of the baseline rotor.

A modified version of Carter's Rule was used to calculate a reference deviation angle for the baseline rotor. This procedure converts the vector diagrams (from the data match calculations) to an equivalent two-dimensional set of vectors which would produce the same circulation as the actual blade taking into account the change in streamline radius and meriodional velocity. The difference between the deviation angle implied by the data match calculations and the reference deviation angle is shown in Figure 17. This "delta deviation angle" was used as a guide in setting deviation angles for the other five rotor designs.

Figure 18 shows the stator incidence angle implied by the data match calculations and the baseline stator geometry. Since the other five rotor designs will be tested with this same stator, it is important that their design stator incidence angles do not depart too greatly from the data match case.

The detail results of the data match analysis are given in Section V.

Figure 15. Data Match Rotor Incidence Angle Versus Fractional Immersion

Figure 16. Data Match Rotor Deviation Angle Versus Fractional Immersion

Figure 17. Data Match Rotor Deviation Angle Minus Reference Deviation Angle

Figure 18. Data Match Stator Incidence Angle Versus Fractional Immersion

SECTION V DETAIL RESULTS OF DATA MATCH

The following tatulation presents the detail results of the data match circumferential average flow computation. Each page of the tabulation gives results for one calculation station. Figure 2 shows the calculation station locations within the flowpath. At each calculation station various aerodynamic parameters are given on each of thirteen calculation streamlines. Also given are several mass averaged station flow properties.

	0*H=0.	ABH=O.				0. 176	0. 196	0.213	0.227	0.239	0.248	0.257	0.264	0.270	•	0.274	MABS	0.135	0.163	0.176	0.196	0.213	0.227	0.239	0.248	0.257		٠	0 272	0.274	
FREE	Ď;	_	¥ ¥			ö			Ö								VABS	150.4	181.0	195.9			252.4	265.1	275 9			298.9	301.6	303.9	
	0.0=0.	ABC=0.				ö		ö	·	· o	· o	o.	o O	o.	°.	· o	MREL	2.095	1.997	1.913	1.760				1 190	1 031	0.850	0.629	0.484	0.274	,
	478.13	INBR=0	X	150.4	181.0	195.9	8.6	7.1	252.4	265.1	275.9	6.9	292.5	298.9	301.6	303.9	VREL	4	_	2130.2	1958.1	1797.9	1641.9	1484.6	1320.6	1143.7			5368	303.9	
	AFLOW= 4	IIYPE=0	_	0831 15	\$	+	218	23	25	56	27	284	29	29	36	ဗ	RETAM		_	72	59	.42	. 16		. 94	75.58	71.94	64.61	55.81	8.0	4
5.000	•		CURV	0			_	_	0							0	-	518.7		7			.7	7	7	٠.				7.	
STAF	H	OPTY=FREE	PHI	-50.10	-43.54	-40.31	-34.70	-29.90	-25.65	-21.78	- 13.16	- 14.68	-11.18	-7.34	6.4-		10	90	_	900	969		969	969	969						
	-	OPTX*DPP	α	13,207	12.564	12.020	11.027	10.099	9.193	8.277	7.319	6.277	•	3.569		0.00		•		7	7	7	7	4	4		_	•	•	-	
	*		7	800								800	808.		•	3.800	2	:			4 4	4	4		4	4			ç		
		61.365		- 18	1 48	- 18	- 18	- 18	- 18	- 18	- 18	18	- 18	- 18	4	- 18		מרטטרא	700.0	700	•	•	997	•	799 0	0.997	7.66.0	766.0	799.0	.997	
TA IN		MTF= 6	S		0.050	100	200			, ,	0.600	0.700	0.800	006	950	88.		ָ קרי	- () C) C) C		σ				13.0	
2	•	3		_																					2	6					

STA 5.000 MASS AVERAGED PROPERTIES

PT= 14.696 TT= 518.69 GAMMA=1.4015 PT-RAT= 1.000 TT-RAT= 1.000

RCU= 0. VM= 255.3 CZ= 233.4 MM=0.230 MABS=0.230 MREL=1.300

	D+H=0.	ABH=0	ž	0.471	4	0.458	0.447	0.436	0 426	0.416	0.406	•	0.383	0.369	0.361	0.351	MABS	0.471	0.464	0.458	0.447	0.436	0.426	0.416	0.406	0.395	0.383	0 369	0.361	0.351	
FREE			ALPHAM	o.	Ö	Ö	o.	0	Ö	o.	0	ö		o O	o.	o O	VABS	514.6	507.6	501.1	489.4	478.4		457.2		434 9	422.1		398.2	387.2	
			2	o O	0	ö	o O	ö	0	ö	o O	Ö	0	ö	Ö	o O	MREL	1.601	1.564	1 525	1.445	1.351	1.271	1.174	1.066	0.945	0.803	0.624	0.508	0.351	
	277.56	O INBR=0	¥	514 6	507.6	501.1	489.4		467.8	457.2	446.4	434.9	422.1	407.0	398.2	387.2	VREL	1750.4	1710.1	1568.8	1583.2	1492 2	1394.8	1288.9	1172 0	1039.7	884.2	687.8		387.2	
	AFLOW=	ITYPE=0	CURV	-0.0952	. 1028	-0.0955	.0825	-0.0712	-0.0614	.0529	.0455			.0257	.0189		BETAM	72.90	72 73	•	71.99		70.41	69.22	67.61	65.27	61.48	53.72		-0.00	
	14	TY-FREE		96	9	95	55		13	.87 -0.			.73 -0	03 -0	.57 -0	•	Ħ		518 7	518.7	518.7	518 7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	
STA	MTIP		PHI	١	٠	0 -22.	'	0 -18.	6 -16.	9 - 13	- 11	1	•	•	5 -2.		ΡŢ	4.696	14.696	•	4.696	4.696	4.696	4.696	4.696	4.696	•	4.696	4.696	4.696	
	I= 2	0PTX=0PP	~	6	0 9.254	•	3 8.532	8 8.010	6 7.446	0 6.829	9 6.141	'n.	9 6.403	8 3.142	7 2.235	ĭ	PS		.677	. 726	.812		. 968	.042	. 116 1	. 193	. 277	.374	.428 1	. 495	
		365	2	-14.43	-14.450	-14.47	-14.513	- 14.558	-14.606	-14.660	-14.719	-14.787	-14.869	-14.978	-15.057	- 15.250	BLDBLK	7	997 12	997 12			997 12			-	_	•	997 13	_	
INLET		WTF= 61	PSIC	0	0.050	0.100	0 200	0.300	•	0 500		•	0 800	0.900	0 950	1.000	St BL	· •	Ö		Ö	o.	Ö	၁	Ö	ö	Ö	Ö	•	o.	
,		3																													

STA 6.000 MASS AVERAGED PROPERTIES
PT= 14.696 TT= 518.69 GAMMA=1.4016 PT-RAT= 1.000 TT-RAT= 1.000
RCU= 0. VM= 455.5 CZ= 438.5 MM=0.415 MABS=0.415 MREL=1.120

ш	0+H=0.	ABH≂O.	ĭ		0 571	0.564	0.549	0.533	0.518	0.502	0.486	0.468	0.446			0.347	MABS	0.578	0.571		Ö	ö	o		-		0.446	0.415	0.390	0.347
FREE			ALPHAM	ó	ó	o o				ö	ó	ö	ó	ó	ó	Ö	VABS	625.2	617.8	610.4	595.1	579.6	563.9	547.6	530.4	511.3	488.4	455.9	428.6	383.5
	D.C=0.	ABC=0	٦	o	o.	Ö	o O	o.	o O	ö	o O	o.	o.	0	o O	o.	MREL	1.560	1.525	1.490	1.415	1.337	1.253	1.162	1.061	0.948	0.815	0.644	. 52	0.347
	244.35	O INBR=O	¥>	625.2	617.8	610.4	595.1	579.6	563.9	547.6	530.4	511.3	488 4	455.9	428.6	383.5	VREL	1687.2	1650.8	1613.5	1535.5	1452.4	1363.1	1266.0	1158.6	1036.9	893.1	707.2	579.1	383.5
_	AFLOW=	E ITYPE=0	CURV	-0.0952	-0.0872	-0.0849					-0.0587	-0.0560	0.0558	-0 0634	-0.0760	ċ	BETAM	68.25	68.02	67.77	67.20	66.48	65.56	64.37	62.76	60.46	56.85	49.87	42.25	0.0
7,000		_	=	-15.47 -(- 13.90 -(-12.40 -(_		. 79	.46	52 -(1.54 -(•	11	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7
STA	MTIP=		PHI	880 - 15								12 -3	_	64	90	000	٩	14.696	14.696	14.696	14.696	14.696	14.596	14.696	14.696	14.696	14.696	14.696	14.696	14.696
	E = 1		œ	∞	80	æ							-			Ö	8	7.15	779	843	974	. 105	. 235	2.366	. 502	.649	.819	3.051	1.234	•
		61.365	2	-12.800	-12.800	-12.800	- 12.800	-12,800	-12.800	-12.800	-12.800	-12.800	-12.800	-12,800	-12.800	-12.800	A ISC	0.998	0.998	998 11	=	7	0.998 12	•	_	•		-	-	•
F 12		WTF= 61	PSIC	· .	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	006.0	0.950	1.000	18		0	0	4	2	6.0		8	o	0	Ó	Ö	
2	•	3																							2	Q				

Application of the second seco

STA 7.000 MASS AVERAGED PROPERTIES
PT= 14.696 TT= 518.69 GAMMA=1.4017 PT-RAT= 1.000 TT-RAT= 1.000
RCU= 0. VM= 539.1 CZ= 532.1 MM=0 495 MABS=0.495 MREL=1.109

E D+H=C.	ABH=O.	ĭ	0.665	0.656	0.647	0.628	0.611	0.595	0.578	0.559	0.538	605.0	0.467	0 427	0.394	MABS	0		0.647	0.628	0.611	0 595	0.578	0.559	0.538	0.509	0.467	0.427	0.394
FRE.		ALPHAM	0	ö	ó	ö	ö	o.	o O	o.	o O	0	0	o.	Ö	VABS	712.0	703.2	693.7.	675.7	658.7	642.1	625.0	606.2	583.8	554.5	510.5	468.1	433.9
0+0+0		25	o O	ö	o O	o O	0	o O	ö	o O	o O	o.	o O	o O	ö	MREL	1.567	1.533	1.497	1.424	1.349	1.269	1.184	1.091	0.987	0.866	0.710		0.456
224.07	O INBR=0	¥>	712.0	7,3.2	693.7	675.7	658.7	642.1	625.0	606.2	583.8	554.5	510.5	468.1	433.9	VREL	1677.6	1642.6	1606.4	1531.8	1453.3	1370.1	1280.6	1182.5	1072.2	942.6	776.8	659.0	501.2
AFLOW=	ITYPE=0	CURV	0.0953	-0.0964	-0.0509	-0.0815	-0.0744	.0695	-0.0668	-0.0667	9690	.0768	-0.0934	. 1212	. 1910	BETAM	64.89	64.65	64.42	63.82	63.05	62.05	60.78	53.16	57.01	53.97	48.91	44.75	30.02
= 8.000 >= 40		PHI	. 12.	49	. 86	. 59		77	-1.10 -0	0.90	3.37 -0	6.69 -0	2.10 -0	7.75 -0	0 66.7	11	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7
STA= MTIP=		ā	eo8 - 8	112 -7	211 -6	790 -5	.341 -4.	853 -2	333 -	753 (960	-	318 12	629 17	421 47	p	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696
]. -	OPTX=DPP		499 8.6	461 8.4	421 8.2	339 7.7	250 7.3	ø.	9	ů.	Ŗ,	4	ю	7	.086 1.4	PS	10.920	1.003	1.092	1.260	1.415	1.565	1.716	1.879	2.069	2.311	2.654	2.966	3, 199
	61.365	2	-1	-	-11.	-11.	-11.	-11,155	-11,052		- 10.809	-10.656	-10.459	- 10, 323	- 10	LOBLK	0.997		0.997	•	. 997	0.997	. 997	. 997	.997	. 997	1 66.	. 997	. 997
INLET	VTF= 6	PSIC	o.	0.050	•	0.200	0.300	0.400	0.500	0.600	0.700	0.800	006.0	0.950	- .80	St. B	-	7	9	4	2	0 9	7	8	0	10	0	42°	13 0

INLET

Mandaghaber of a se

STA 8.000 MASS AVERAGED PROPERTIES

PT= 14.696 TT* 518.69 GAMMA=1.4017 PT-RAT* 1.000 TT-RAT* 1.000

RCU* 0. VM* 612.1 C2* 604.7 MM=0.566 MABS=0.566 MREL=1.140

ш	0=H+0	ABH=0.	¥	0 713	0.706	0.697	0.683	0.669	0.653	0.635	0.614	0.586	0.550	0.501	0.472	0.468	MABS	0.713	-	0.697	0.683	0.669	0.653	0.635	0.614	0.586	0.550		0.472	0.468	
FREE			ALPHAM	ó	ó	o.	o.	ö	Ö	ó	Ö	ó	ó	ó	ö	o O	VABS	758.6	751.6	743.7	729.9	715.8	700.5	682.8	661.0	633.1	596.3	546.2	515.5	511.6	
	0-0-0		۔ ح	o O	o.	ö	o O	o.	o.	o O	o O	o o	o O	ö	Ö	٥.	MREL	1.580	1.548	1.515	1.448	1.378	1.303	1.223	1, 133	1.032	0.912	0. 62	0.667	0.569	
	211.87	O INBR=O	Ξ		751.6	743.7	729 9	715.8	700.5	682.8	661.0	633.1	596.3	546.2	515.5	511.6	VREL	1680.9	1648.6	1615.2	1546.7	1474.5	1397.3	1313.6	1220 8	1115.0	9.686	830.0	728.8	622.6	;
	AFLOW=	ITYPE=0	CURV		-0.0542	-0.0525	-0.0507	-0.0510	.0530	.0573	-0.0634	-0.0714	-0.0793	-0.0807	-0.0405	. 1881	BETAM	63.17	62.88	62.29	61.84	60.96	59.91	58.68		55.40	52.94	48.85	44.98	34.75	
6	ŧ	OPTY-FREE		•		_	-0.27 -0		.76 -0		. 23		. 17 -0	. 58		.65 0	11	518.7	518.7	518.7	518.7	518.7		518.7	518.7	518.7	518.7	518.7	518.7	518.7	
STA			PHI	500 0.					51		16 5	201 7	475 11	42 16	919 21	11 38	PT	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	
	I = 5	OPTX=DPP	α	999 8.5			٦		9		76 5.816		ς.	ю	4	•	PS	0.469	10.537	0.615	7.748	3.883	1.028	1.194	1.394	1.645	1.964	2.377	•	2.647	
		61.365	2	-9.99	-9.984	-9.968	-9.935	-9.9(-9.86	-9.8	-9.776	-9.7	-9.6	-9.587	-9.536	-9.4	BLDBLK	996 10			996 10	996 10	.1 966	996	.1 966	996	_	Ψ.	-	~	
INLET	!	WTF= 61	PSIC	o.	0.050	00,100	0.200	0.300	0.400		0.600	0.700	0.800	0.900	0.950	1.000	St BL	<u>•</u>	2 0.	9 0	4	5	6 0.	7 0.	8	9	10	1100	12 0.	13 0.	
	•	*																						•	เก						

STA 9.000 MASS AVERAGED PROPERTIES

PT= 14.696 TT= 518.69 GAMMA=1.4018 PT-RAT= 1.000 TT-RAT= 1.000

RCU= 0. VM= 663.8 CZ= 655.3 MM=0.617 MABS=0.617 MREL=1.178

FREE D•H=O	AB	_	0.728		0.729				0.693	0.669	•	•	0 529	0.491	0.499	v	A 7.28		œ	0	.a 0	.2	o 0.	4.	6.	.5	۔ ص	.8 0.529	.9 0.49	.2 0.499		000.	MREL=1.217
	ó	ALPHAM	0	o O	o.	o O	ö	o.	o	0	ö	o.	0	0	ö	2	773 6	. (773	773	771	765	755	139	715	681	634	574	532	544		IT-RAT=	
0=0*0	O ABC=O	D D	o O	o O	o O	o O	o.	0	Ö	ડં	0	o O	Ö	ö	o O	TO LE	300	000	1.562	1.535	1.477	1.414	1.345	1.269	1.182	1.080	0.957	0.804	0.707	0.627	ES	0	MABS=0.660
204.14	O INBR=0	¥>	773 6	773.8	773.8	771.3	765.2	755 0		715.9	681.5	634.3	574.8	535.9	544.2	705	+607		1659.2	1630.1	1568.9	1503.3	1432.1	1353.6	1264.5	1160.1	1033.7	874.3	771.0	683.1	PROPERTIES	PT-RAT= 1.	. 660
AFLOW*		CURV		0029	-0.0022	-0.0120	-0.0206	-0.0302	-0.0406	-0.0566	-0.0740	-0.0876	-0.0856	0817	•	7777	000	7 . 70	62.20	61.66	60.55	59.40	58.18	56.89	55.51	54.02	52, 15	48.89	45.97	37.19	MASS AVERAGED	.4018 PT	5 MM=0
STA= 10.000 MTIP= 66	OPTY=FREE	PHI		0.34 0	0.63 -0	1,41 -0		3.82 -0			10.82 -0	14.43 -0	19.52 -0	0- 99 8		÷		0 0	518	518.	518.7			518.7		518.7			518.		MASS A	GAMMA=1.	69
		مَ م	800	.317	. 130	.742		968		906		•	. 733	.141 23		ć	- 1	14.030	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14,696	10.000	518.69	705.8
	OPTX*DPP	7	000	8.000	80	7	-	ဖ	9	ស	ß	4	က	m	. 4	ć	2 0	10.32	10.318	10.318	10.343	10.403	10.504	10.656	10.882	11,206	11.634	12.145	•	12.393	STA	112	>
	31.365	PSIC	-9.	6.	-6	-6	6	-9	6.	6-	6	6-	-9	6-	6-	2	100ch	٠	•	0.994	.994		•	•		984	•	994	994	994		14.696	
INLET	Wir 6	PSIC	Ö	0.050	0 100		0.300	0.400	0.500	0.600		0.800	0.900	036 0	•		ים	د	0				-			σ	10	110	12 0	13 0		PT=	RCU=

	-		MIIPE	79	AFLOW*	197.41		o.	D+H=0.
.365		*DPP	OPTY:	OPTY=FREE	ITYPE=4	4 INBR=3	3 ABC=0		ABH=0.
7		œ	Hd	J	CORV		3	ALTHAM	E (
8.	166 8	38	o.	ö			0	ن ن	0.731
-8.2	204 8	. 322	0.36	ဝ မ	0040	834.5	ö	o.	0.793
	242 8		0.74		-0.0026	835.6	Ö	o O	0.794
-8.3	322 7	.762	1.72		-0.0036	835.7	ö	ó	0.794
-8.3	.397 7	•	3.8		0113	830.5	o o	o O	0.788
-8.4	.466 6	936	4 67		-0.0206	818.7	o.	o O	0.176
-8.5	531 6	•	6.64		-0.0372	798.1	ö	Ö	0.754
	592 5	•	9.21		-0.0526	765.5	o o	Ö	0.720
-8.6		•		·	-0.0666	721.0	ö	ó	0.674
-8.6	.604 4	.735	16.27		-0.0684	668.5	Ö	o O	0.621
-8.5	548 3	. 903	21.64		-0.0674	602.3	ö	ö	0.5%
	526 3	.360	25.82	-	-0.0627	558.9	o O	ö	0.513
-8.5	507 2	.653	31.20	0	1471	554.4	Ö	o.	0.509
B! DB! K	PS	PT	 -	11	BETAM	VREL	MREL	VABS	MABS
	9.723	4	96	518.7	60.96	1715.7	1.629	832.8	
	9.706	7	.969	518.7	60 33	1689.1	1,605	834.5	_
0	9.694	44.	.5 969	518.7	59.81	1661.8	1,579	835.6	
0	9.693	<u>*</u>	ß	18.7	58.61	1604.5	1.524	835.7	
066	9.747	4		518.7	57.41	1541.9	1.464	830.5	
	9.867	~		518.7	56.22	1472.5	1.396	818.7	0.776
	10.075	14		18.7	55.07	1393.8	1.317	798.1	
-	10.401	7	ស	18	53.99	1301.9	1,225	765.5	
	10.834	14		518.7	52.87	1194.6	1.117	721.0	0.674
	1.326	14		518.7	51.34	1070.1	0.994	668.5	
990	1.913	14.		518.7	48.84	915.0	0.844	602.3	ö
990	2.275	14	969	18.7	46.69	814.9	0.749	558.9	o.
90	•	4	.5 969	18.7	40.18	725.6	0.666	554.4	0.509

STA 11.000 MASS AVERAGED PROPERTIES

PT= 14.696 TT= 518.69 GAMMA=1.4018 PT-RAT= 1.000 TT-RAT= 1.000

RCU= 0. VM= 756 0 CZ= 741.7 MM=0.712 MABS=0.712 MREL=1.260

							_					_					S	6	<u>ب</u>	2	Ξ.	2	2	ñ	8	2	6	Ö	89	ď	
æ	D+H=0.	ABH=0.	ĭ		•	•	0.830	0.841	0.841	•	•	0.770	0.721		0.625		MAB	0.79	0.80	0.812	0.83	0.84	0.84	0.83		0.772				0.60	
IN ROTOR			ALPHAM	3.03		•				3 12		3.74	3.91		5.26		VABS	849.0	852.3	860.3	876.9	887.1	887.3	879.3	856.4	821.5	773 8	712.0	6	656.1	
	0=0+0	ဗ	5			38.3		•				53.6	52.8		62.3	•	MREL	1.584	1.567	1.550	1.513	1.466	1.407	1.334	1.249	1,151	1.038	0.895	•	0.720	
	181, 11	Į,		847.8	- 1	859 4					854.8	-	772 0		676.5	652.5	VREL	1684.2	1552.8	1641.5		1544.2	1481.9	1408.4	1323.2	1225.4	1111.0	4	875.8	ö	
•	AFLOWE	ITYPE	CURV	0		0.0298			0135			0.0027	0.0046	0.0115		0.020.0	BETAM	59.77	2	58.43	56.71	54.97	53.26	51.40	49.76	48.01	45.98	42.64	39.43	33.27	
11 500	as		PH1		. 22	0 56 (.51		. 86.	. 70.	. 72 -	.93	. 85	. 16	5.84	9.07	Ħ		528	1 527.9	527	526.	527.	527.	527.	527.	526.	525	525	524	
STA	MIIP			.500	.323	. 142	. 769	376	.958	. 509	.017	.466			505		ΡŢ	15.467	•		•	•	15.451	•	•	•	•	15.36		ď	
	E	.00	Ν		991	050			198 6		301	324	299	247		324	PS	0	5	0	6	6	σ.	6	₽	ó	ç	-	-	Ξ.	
		1.365	•													8	LDBLK	. 955	955	955	.952	.948	.943	.935	.925	913	.897	878	853	.816	
ROTOR		WIF= 6	PSIC		0.050	0 100	0.200	0 300	0.400	0 500	009	002	0.800	0.6.0	076	1.000	SI		2	0						6					

STA 11.500 MASS AVERAGED PROPERTIES

PT= 15.448 TT= 527.04 GAMMA=1.4018 PT-RAT= 1.051 TT-RAT= 1.016

RCUr 283.5 VM= 829.0 CZ= 811.8 MM=0.781 MABS=0.782 MREL=1.276

0R D•H=0	ABH=0.	X	0.754	0.762	0.773	0.798	0.815	0.827	0.832	0.824	0.802	0 769	0.714	0.678	0.635	MABS	0.759	0.767	0.778	0 802	0.819	0.833	0.839	0.832	0.812	0.778	0.726	0.691	0.650	1.039
N ROT		ALPHAM	6.64	6.47	6.29	6.14	6 12	6.57	7.32	8.05	8.65	9.13	10.06	10 93		VABS	821.0	828.1	837.6	860.4	875.9	888	895.8	889.4	869.4	836.1	783.1	748.1	705.7	SAT=
I	e	ე ე	94.9	93.4	91.7	92.0	93.4	101.8	114 1	124.6	130.7	132.6	136.8	141 9	149 3	MREL	1.502	1.485	1 469	1.436	1.395	1.343	1.282	1.209	1, 126	1.029	0.902	0.821	0.723	6 1
170.55	ß	¥>		822.9		855.5	870.9	883.0	888.5	880.6	859.5		771.1		8.689	VREL	1624.6	1602.8	1582.2	1539.6	•		1368.4	1292.5	1206.0	1105.6	974.1	889.3	785.1	PROPER-RAT=
AFI OW:	1TYPE=	CURV		0.0356		.0261	.0030	.0115	.0130	.0042	.0138	.0146	.0165	0071	.0136	BETAM	59.87	59.11	58.25		54.27		49.51	47.05	44.54	41.69	37.66	34.32	28.53	VERAGED
STA= 12.000 MTIP=105	OPTY=PT	1		. 16	=	30	.03	5.05 -0	.31 -0	.83 -0			0 06.	.22 0	.21	1.1	542.4	•	540.7	539.8	539.0	539.6	540.7	540.9	540.0	537.9	535.4	533.9	531.8	MASS AVERAGAMMA*1.4018
STA=		IHd	500	323 -0		775 1.	389 3	981 5	544 7	.067	534 12.	919 16	148 21			10.	16.356	16.382	16.392	16.459	•		16.837	•	16.854	16.654	16.388	15.222	15.981	12.000 539.12 G
6	-	œ	759 8.5	89	798 8.1	•	889 7.3	9	9	φ	024 5.5	995 4.9	946 4.1	936 3.6	7	PS	1.161	1.393	10.987	10.767	10.616		10.612	10.740	10.924	1, 155	1.540	1.785	2.029	STA TT= 53
	1.365		-7.7	-7.778	-7.7	-7.	-7.8	-7.9		-8.010		-7.9	-7.9	-7.9	-7.9	BLOBLK	933 11	932	931		921	912	868			840 1	0.813 1	781	735 13	16.585
ROTOR 1	WTF= 6	PSIC	Ö	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	1.000	St. Bl	-	0	о е	4		٠	0	о́ 8		0	_	12 0	13	# T d
•	-																							34	4					

200	D.H.O.	ABH=O.	X	0.701	0.714	0.724	0.745	0.763	0.781	0.798	0.806	0 798	0.779	0.740	0.705	0.650	2			. 0.739							0.806	0 773	0.740	0.685	
2		0	ALPHAM	11 02	11.37	11.54	11.64	11.58	11.84	12.39	13.00	13 81	14.99	•	17.57	18.45	VABS	787.3	801.9	812.5	834 0	850.0	868.4	886.9		٠,		839.7	804.5	746.7	
		-3 ABC+0	CO	150 5	158 1		168.2			190.3	201 6	212.4	226.0	241 6	242.9	236.3	MREL	1.411	1.388	1.367	1.328	1,290	1.247	1, 198	1.143	1.072	0.988	0.878	0.806	0.711	
0	162.22	5 INBR:	¥.	7.2.8	786.2	796.0	816.8	832.7	849.9	866.3	873.0	864.3	844.4	804.2	767.0	708.3	VREL	1555.1	1528.2	1502.7	1455.5	1408.2	1357.1	1301.2	1238.2	1161.6	1070.4	953.1	876.8	775.1	
	AFLOW=	ITYPE=5	CURV		-0.0071	0.0072	.0255	0279			.0284			0155		.0461	BETAM	60.20	59.04	58.01			51.22	48.26	45.16	41.92	37.92	32.46	õ	23.96	
SIA= 12 500	= 118	TY=PT	=			-0.20	0	0	63	8	.63	52	31	99.		.51	11	556.4	557 4	557.7	557.2	555 9	555.4	555.6	555.0	553.7	552.0	549.0	545.7	540.4	
										0		-				6	PT	17.377	7.616	7.780	8.020	•			•	8.357	•	•	7.482	6.876	
	I*10	TX=XI	α	8.500	•		7,780	7.402	7.005	6.580						3.12		5		367	274 1	135 1	-	-	•	1778 1	862 1	-	150 1	325 1	
	÷		2		565		•	•		692	719	724				.65	9	12	2	12				11.8	11.	11.7	11.8	12	12		
		61.365		- 7						-	-7	,			-7	-7	BLDBLK	911	911	606.0	3.905	868 0		698 0		3.828				0.683	
ROTOR 1		WTF= 6	150	i	0 050	001	0.200	0.300	0.400	0.500	0 60	2007	0 0	0.900	0.950	1.000	v			, C				^		σ.				13	

A the second of the second second

STA 12.500 MASS AVERAGED PROPERTIES

PT= 18.062 TT= 554.06 GAMMA=1.4017 PT-RAT= 1.229 TT-RAT= 1.068

RCU= 1201.5 VM= 829.4 CZ= 811.6 MM=0.761 MABS=0.783 MREL=1.158

				_	•	"	_	•	^	^	_	~	•	•	^	^	3S	36	55	23	99	82	800	23	38	14	0	23	37	±	
80	0=H+0	ABH=0	¥	0.66	0.678	0.696	0.728	0.749	0.770	0.790	0.801	0.80	0.793	0.769	0.740	0.670	MABS	0.686	0.705	0.723	0.756	0.778	0	0.823	0.838		-	0	0.797	0.7	T= 1.093
IN ROTOR		·	ALPHAM	15.57	15.82	15.90		15.70	15.81	16.34	17.10	18.03	19.28	20.92	21.76	23.51	VABS	767.7	788.3	807.1	839.8	859.9	880.5	905.8	916.7	922.0	915.6	896.6	867.9	798.8	RA
	D*C=0.	3 ABC=0	23	206.0	214.9	221.2	229.6	232.6	239.8	254.0	269.5	285.4	302.3	320.1	321.7	318.7	MREL	1.331	1.310	1.293	1.261	1.228	1.191	1.148	1.096	1.036	0.963	0.875	0.815	0.711	
	155.41	5 INBR=3	X >	739.5	758.4	776.2	807.8	827.9	847.2	<u>ب</u>	~	7	864.2	837.5	806.1	732.5	VREL	1490.4	1465.0	1442.4	1400.3	1357.4	1310.8	1258.8	1199.0	1131.1	1050.5	952.7	887.1	777.4	ΔY
•	AFLOW=	ITYPE=5	CURV	o.	0.0362	0.0439	0.0379	0.0346	0.0339	0.0266	0.0238	0.0273	0.0172	0.0016	-0.0194	-0.1052	BETAM	60.25	58.82	57.44	54.77	52.42	49.73	46.51	43.05	39.19	34.64	28.46	24.68	19.56	MASS AVERAGED PROPE GAMMA=1.4016 PT-RAT=
13.000	MT IP = 131	OPTY=PT			1.5	52	+	2.34 (4.45 (9.19 (21.44 (25.25 -(. 92	11	570.2	571.3	571.7	571.3	569.4	568.3	568.1	567,6	566.3	564.0	560.0	555.8	549.5	MASS AV
STA=	MTIP		PHI													11 29	F d	18.431	18.742	18.981	19.345	19.489	19.630	19.804	19.873	19.817	809.61	19.126	18.609	17.848	13.000 566.74 G
	1=11	OPTX=TT	~	2 8.500	2 8.321	4 8.142	7	1 7.414	5 7.027	_	3 6.166	1 5.667	5 5.097	1 4.386	3 3.922	3.281	PS	54	.446	3.392		3.059	2.874	2.690 1	541	421	351	. 251	240	504	STA 1 TT= 566
	_		2	-7.352	-7.352	-7.354	-7.366	-7.381	-7 396	•	-7.428	-7.424	-7.386	-7.344	-7.346	-7.375		_	13	_	-	879 13.	-	~	826 12	803 12.	_	740 12.	705 12.	656 12.	
0R1		= 61,365	PSIC		0.050	0.100	0.200	0.300	400	0.500	.600	200	0.800	0.900	0.950	1.000	SL ELDBLK		2 0.893		Ö	5 0.87	ö	Ö	8 0 8	9 0.80	ó	o.	2 0.70	Ö	PT= 19.385
ROTOR 1		WTF=		0	0	0	0	0	0	0	0	0	0	0	0	-	Ś								36		-	-	-	-	

~	D*H≠0.	ABH=O.	MK	0.616	0.638	0.658	0.692	7.714	0.735	757	3.774	7.784	0.781	0.760).743	.697	MABS	0.654	0.680	0.703	0.741	0.763	0.785	0.811	0.831	0.848	0.854	0.845	0.832	0.789	
IN ROTOR			ALPHAW			- 19		89	21	90	21.38	22.34	.86	.97	26.74	27.81	VABS	742.6	771.0	9.967			∞.				939.1			862.7	
	0+C=0.	ABC=	2	250.1	266.2	281.3	298.8	302.4	308.1	321.6	335.3	355.5	379.9	406.0	409.8	402 5	MREL	1.262	1.237	1.214	1.177	1.147	1.114	1.077	1.035	0.984	0.920			0.723	
	151.01	=5 INBR=3	₹>	699.2	723.6	745.3	780.3	801.4	820.9	842.0	856.4	865.1	858.8	833.7	813.3	763.0	VREL	1432.2	-	_	1328.2	1287.4		1197.4			1011.7	920.0		790.5	
0	AFLOW=	ITYPE=5	CURV	o.	0.0152	-0.0099	0.0221	0.0369	0.0332	0 0358	0.0302	0.0175	-0.0043	-0.0167	0.0379	-0.0937	BETAM	60.78	58.95	57.17	54.02	51.50	48.73	45.31	41.62		31.91	25.	20.		
4* 13,500	MT IP= 144	OPTY=PT	PHI	ó	.64		9.	. 83	94	. 23		.74		21.58 -(.86	11	\$ 581.2	583	_				581		578			_		
ST				1.500	. 318	1, 139		.423	.047	5.646	1.212	. 731	183	1.505	062		14	19		•••		2		2	2	7		8		80	
	I=12		N	7.148 8	-7.138 E	-7.132 B	٠.	7.128 7	-7.129 7	. 132	-7.137		٠.	-7.043 4	-7.051	7.092	S b s	7	7	4	7	14,354	7	5	13	13.	13	5	12	12.	
801081	· •	≈ 61.365	SIC					300			8	8	0.800	8	920	. 000.	St. BLOBLK	_	2 0.885	3 0.884	4 0.880	5 0.871	6 0.857	7 0.837	8 0.815	9 0.793	0	Ö	•	_	
201		MTFE		0	0	0	0	0	0	0	o	0	0	0	o	-	ý.)					_		37		Ť	-	~	-	

STA 13.500 MASS AVERAGED PROPERTIES
PT= 20.856 TT= 580.12 GAMMa±1.4015 PT-RAT= 1.419 TT-RAT= 1.118
RCU= 2087.5 VM= 814.3 CZ= 796.2 MM=0.732 MABS=0.791 MREL=1.051

œ	D•H±0.	ABH=0.	ĭ	0.582	0.608	0.630	0.668	0.690	0.710	•	0.745	•	•	•	0.739	0.716	MABS	0.636	0.667	0.694	0.739	0.762	0.783	0.805	0.827	0.847	0.869	0.872	0.863	0.844
IN ROTOR			ALPHAM	23.77	24.23	24.65	25.17	25.18	25.04	25.11	25.59	26.57	28.19	30.19	31.17	31,99	VABS	730.0	764.8	794.3	842.9	866.1	885.4	905.4		943.7	964.5	963.6	950.8	925.0
	0=0*C	3 ABC=0	D D	294.3	313.9	331.3	358.5	368.5	374.8	384.3	399.7	422.2	455.7	484.6	492.1	490.0	MREL	1.201	1,176	1 152	1,113	1.079	1.048	1.015	0.975	0.929	0.877	0.812	0.773	0.729
	4	5 INBR=	Σ>	668.1	697.4	721.9	762.8	783.9	802.2	819.8	834.5	844.0	850.1	832.9	813.6	784.6	VREL	1378.5	1348.1	1319.6	1269.8	1226.0	1184.7	1141.1	1091.9	1035.5	973.4	896.5	851.2	799.0
	Ø	ITYPE=5	CURV		.0172	_					.0218		0017	-0.0293	-0.0396	-0.0749	BETAM	61.01	58.85	56.83	53.08	50.26	47.38	44.07	40.16	35.41	29, 15	21.71	17.11	10.89
14.000	MTIP=157	UPTY=PT	ı	0	44				44 0	0 69			- 78	5		. 48	11	592.3	595.5	598.0	600.8	599.2	596.6	594.2	592.2	590.6	589.3	584.6	579.6	571.1
STA=	MTIP		PHI						3	ະນ	55	11	15				ΡŢ	20, 180	20.801	21,364	22.326	22.736	22.896	22,935	22.911	22,869	22,803	22, 174		20.324
	I=13	DPTX=TT	α	5 8.500	ω.	80	7	7	-	9	ø	ιυ.	u)	4	4	ю	Sd	368	433		. 536	.470	. 266	996	.629	303	.928	499	196	•
		61,365	Z	-6.945		-6.91	-6.889	-6.874	-6.862	-6.853	-6.846	-6.824				-6.809	BI DBLK	878 15	879	•	ti.	0.867 15	_	_	_	0.793 14	_	739 1	711	-
ROTOR 1		WTF= 61	K	O	0 020	001	0.200	300	0.400	005	009	0.700	0.800	006.0	0.950	00.	18		0	0	0	2	9		8	6	_	O	Ö	o
ă		3																							3	8				

STA 14.000 MASS AVERAGED PROPERTIES
PT= 22.329 TT= 592.83 GAMMa=1.4014 PT-RAT= 1.519 TT-RAT= 1.143
RCU= 2520.0 VM=798.2 CZ= 779.7 MM=0.710 MABS=0.794 MREL=0.997

Z,	D+H=0.	ABH=O.	ĭ	0.543	0.570	0.593	0.634	0.659	0.679	0.695	0. /09	0.721	0.734	0.741	0.736	0.724	MABS	0 626	0.657	0.684	0.732	0.759			0.820	0.843	0.872		o.	o.	
IN ROTOR			ALPHAM	29.85	29.91				29.58	29.69	30.23	31.20	32.71	34,39	35, 32	36.46	VABS	729.6	764.7	795.0	846.9	873.0	892.6	910.4		950.3	977.4	0.666	998.7	990.7	
	0=0+0	6	5	363.1	381.3	397.7	424 0		440.6	451.0	467.8	492.3	528.2		577 3	588.7	MREL	1.116	_	1.072		1.009	0.980	0.947	0.908			0.781		0.728	!
	145.49	5 INBR=	X >	632 9	662.8	688.4	733.1	757.6	776.3	790.8	802.8	812.9	822.4	824.4	814.9	8.96.	VREL	1301.2	1272.3	1245.5	1199.7	1160.1	1120.9	1077.4	1028.8	976.2	922.0	868 6	837.1	801.4	
	AFLOW=	ITYPE=5	CURV	,	-0.0072	.0216	.0182	0004	0.0082	.0086	.0040	0032	.0173	.0385	-0.0695	.0668	BETAM	60.90	58.60	56.45	52.34	49.23	46.17	42.78	38.71	33.63	26.89	18.37	13.23	6.17	
14.500	170	OPTY=PT		٥				43 0			8.08		04 -0	54	55	87 -0	11	609.5	611.9	613.8	615.8	613.6	610.4	607.6	605.3	603.4	601.9	597.5	592.7	584.9	
STAF	W1 1P= 170	OPT	PHI		5 -0.29			÷.				_	3 16		27.	34.	ΡΤ	. 609	7.277	.884	9.8	1.420	1.625	1.678	24.652	24.601	1.521	1.897	3.170	2.035	
	7	0P1X=11	œ	8.500		80	7	7	7.079	6.702	6.297	5.853	5.356		4.357	3.824		.593 21	569 22	24	9	899	466 24							016 22	
	Ĥ		7	.741	3.712	.688	-6.650	.620	.595	573	. 555	. 524	.472	. 441	-6.461	.526	PS	9	16.6	16.724	16.7	16.6	16.4		15.	15.	7	4	13.	•	
		61.365		Ÿ	Ÿ	۳											BLDBLK	0.877	0.879	0.879	0.876	0.869	.857	0.840	0.823	0.805	.787	0.756	734		
POTOP		WTF= 6	PSI		0.050	0	0.500	0.300	0.400	0.500		0 700	0.800			1.000	SLB												12 0	_	
ă		3																						3	۱a						

STA 14.500 MASS AVERAGED PROPERTIES
PT= 24.006 TT= 606.74 GAMMA=1.4012 PT-RAT= 1.633 TT-RAT= 1.170
RCU= 2993.7 VM= 772.7 CZ= 753.6 MM=0.680 MABS=0.796 MREL=0.935

OR D+H=O.	ABH=0.	ĭ	0.498	0.526	0.552	0.596	0.626	0.647	0.661	0.672		0.697	0 713	0.724	0.740	MABS	0.632	0.662								o	0.915	0.942	0.981
N ROT		ALPHAM	38.05	37.27	36.59	35.23	34.38	34.04	34.16	34.74	35.73	37.10	38.85	39.74	41.06	VABS	751.0	783.5	810.9	854.8	881.7	902.5	919.0	936.9	958.3	989.4	1026.5	1049.4	1081.4
I 0=0+0		23	462 9	474 5	483.4	493.1	497.9	505 1	516.0	533.9	559.6	596.9	643.9	670.8	710.2	MREL	1.005	0.990	0.977	0.960	0.940	0.914	0.882	0.844	0.804	0.768	0.738	0.733	0.740
144 66	S INBR=3	¥>	591.4	623.6	651.1	698.2	727.7	747.9	760.5	769.9	778.0	789.1	799.4	806.9	815.4	VREL	1193.9	1172.3	1153.5	1124.1	1093.0	1056.8	1014.4	966.7	916.3	869.0	828.3	816.7	815.4
AF! OW=	ITYPE=5	CURV								-0.0184	-0.0252	-0.0297	524	3427	.0570	BETAM	60.31	57.87	55.64	51.60	48 26	44.95	41.44	37.21	31.89	24.76	15.16	8.87	0.01
STA= 15.000 MTIP=183	OPTY=PT			24			47 -0		5.43 -0		73 -0	47 -0	.49 -0.0	.62 -0	12 -0.	Ħ	634.3	634.6	634.3	631.6	627.6	624.0	620.8	618.2	616.0	614.3	611.0	607.8	602.8
	•		0				ع -				4 11.		23	28	6 36.	PT	23.777	24.416	4.943	25.738	26.154	26.407	26.477	26.448	26.390	26.295	25.810	25.244	4.388
5	OPTX-TT	œ	8 500	8.314	8 135	7	_	7.093	9	ý	5 914	5.445	4 876	4.515	4.026	PS	24	_		18.058 2		• •		•	999	980	200		168 2
-		7	-6.538	-6.499	-6.466	-6.411	-6.367	-6.327	-6.293	-6.264	-6.224	-6.168	-6.140	-6.166	-6.243										•	15.		8 +4.	6 13.
<u>۾</u>	61.365	PSIC		0.050		0.200					0.700		_		000		0.883	0.885	0.886	0.883	0.87		0.85	0.84	0.82	_	0.795	0.77	-
ROTOR	WTF	<u>σ</u>	o.	ó	o.	Ö	Ö	Ö	Ö	Ö	Ö	o.	ó	o.	- .	SL	-	8	9	4	ស	9	7	6 0	6	ō	=	12	13

STA 15.000 MASS AVERAGED PROPERTIES

PT = 25.878 TT = 621.69 GAMMA=1.4010 PT-RAT= 1.761 TT-RAT= 1.199

RCU= 3503.1 VM= 742.6 CZ= 722.7 MM=0.646 MABS=0 801 MREL=0.870

D+H=0.	ABH=O.	X	0.461	0.493		0.565	0.595	0.614	0.625	0.633	0.642	0.657	0.688	0.711	0.759		0.644		0.691	0.731	0.758	0.779		0.812	0.835		_	0.971	1.049	1.222
0.	o.	ALPHAM	44.27	42.60	41.26	39.30	•	37.98		38.82	39.78	40.98	42.16	42 88	43.67	VABS	775.6	802.6	824.8	964.3	890.3	909.4	923.6	939.1	960.7	993.8	1049.3	1087.8	1158.4	TT-RAT=
0+C=0.	3 ABC=0	ວ	541.4	543.3	544.0	547.4		559.6		588.7	614.7	651.7	704.3	740.3	8.664	MREL	0.920	0.915	0.910	0.899	0.880	0.855	0.823	•	0.747	0 716	0.707	0.715	0.761	
145.33		¥ >	555.4	590.8	620.0	668.8	698 3		726.3		738.3	750.3	717.8	797.1	837.9	VREL	1107.8	1096.5	1085.7	1063.4	1033.8	£ 336	957 A	907.3	859.6	817.8	798 3	801.7	839.6	D PROPERTIES
AFLOW=	ITYPE=5	CURV		0.0300	0.0175	-0.0120	-0.0304	-0.0390	-0.0432	-0.0461	-0.0437	-0.0415	-0.0203	-0.0461	J.0158	BETAM	59.91	57.40	55.18	51.03	47.51	44.11	40.56	36.29	30.81	23.44	13.02	6.12	-3.58	GED
MT IP = 196	OPTY=PT	PHI	· •	42		0.38 -0	1.73 -0	. 58	•	74	2.33 -C	=	18	.48	3.53	11	623.9	651.4	648.7	644.0	639.6	635.6	632.0	629.1	626.7	624.8	622.4	620.5	618.3	MASS AVERA
			200	313 -0		788 (756	381 6	-	-	010 24	679 29	35	Гq	25.568	26.071	26.464	27.205	27.694	27.994	28.080	27, 050	27.985	27.876		27.101	26.566	5.500
I = 16	UPTX=TT	<u> </u>	334 8.5	.286 8.3	80	7.	۲.	7	9	973 6.3	925 5.9	ĸ,		4	960 4.2	PS	19.348	19.302	19.224	9.070	18.920	18.743	18.504	18.170	17.709	17.014	15.752	•	13.228	STA 19
	61.365		φ.	9-				9-		S	.5	ķ	ئة	'n	'n.	BLOBLK		905	902	0.900	897	891	0.883 1		0.870	V.864 1	.849	C.833	•	27 493
	ITF= 6	PSIC	Ö	0.050	0.0	0.300	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	1.000	SL	_				2							-	13 0	<u>+</u>

ROTOR 1

A Breeze Savella

28	D+H=0.	ABH=0.	Σ	0.426	0.465	0.492	0.537	0.562	0.578	0.585	0.589	0.596	0.612	0.635	0 667	0.698	MABS	0.642	0.672	0.693									ö	1.046	
TE ROTOR		•	ALPHAM	48.43	46.23	44.75	42.69	41.77			. 53	43.45	44.41	45.84	46.39	48.16	VABS	780.0	811.1	833.1.	870.0	892.6	908.2	919.0	931.9	952.6	986.7	1040.6	1093.7	1168.0	
	D+C=0.	3 ABC=0	5	583.6	585.7	586.5		594.5	601.6	612.2	629.9	655.1	690.5	746.5	791.9	870.1	MREL	0.867	0.865	0.861	0.850	0.830	0.803	0.770	0.731	0.694	0.666	0.651	0.669	0.702	
	148.37	6 INBR=3	∑ >	517.5	561.1	591.7	639.5	665.7	680.4	685.4	686.7	691.6	704.9	725.0	754.4	779.2	VREL	1052.4	1044.4	1034.5	1012.4	981.8	945.2	901.4	852.0	804.8	767.4	742.8	757.1	783.9	D PROPERTIES
	AFLOW=	ITYPE=6	CURV		-0.0452	-0.0653	-0.0864	-0.0914	-0.0832	.0673	-0.0464	-0.0193	0.0282	0.0784	. 1725	0.0883	BETAM	60.55	57.51	55.11	50.82	47.31	43.96	40.50	36.30	30.77	23.28	12.56	4.80	-6.32	8
STA= 16.000	MTIP=209	OPTY=PT		0.	-0.32 -0	-0.07 -0	.05					83	. 24	.63	. 25	. 49	1	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3	MASS A
STA			R PHI	200	311 -0	132 -0	_		7.127 4		. 428 9	_		. 146 23			F	26.560	27.120	27.560	28.390	28.940	29.280	29.380	29.350	29.280	29.160	28.920	28.770	28.650	STA 16.000 MASS AVERA
	I=17	OPIX=II	2	.131 8.5	.073 8.3	.021 8.					φ	9	Ŋ	មា	4	4	S	20, 126	20.046	19.990	19.913	19.848	19.745	19.563	19.266	18.799	18.054	16.873	15.782	14.331	STA
		61.365	. •	9-	9-	9-										-5.677	BLOBLK			0.927		928		0.928		.928	.928	. 930	914		
ROTOR 1	· : :	WTF 6	PSIC	0	0.050	0.100	0.200	0.300	0.400	0.500	009 0		0.800	0.900	0.950	1.000	. S.	_	7	6		O				0	0	110	0	13 0	
α		3																							4	,					

PT= 28.783 TT= 643.26 GAMMA=1.4006 PT-RAT= 1.959 TT-RAT= 1.240 RCU= 4238.7 VM= 672.4 CZ= 653.1 MM=0.575 MABS=0.796 MREL=0.764

AXIAL	VEL R	0.621	0.672	0.708	0.765	0.802	0.831	0.859	0.896	0.957	1.049	1,186	1.321	1.338
IENCY	POLY	0.683	0.719	0.752	0.814	0.864	906.0	0.937	0.957	0.973	0.984	0 983	0.976	0.964
C TT EFFICIENCY	AD.	0.656	0.694	0.729	0.796	0.851	0.897	0.930	0.953	0.971	0.982	0.981	0.974	0.960
ACC TT	RATIO	1.2809	1.2757	1.2701	1.2603	1.2512	1.2429	1.2354	1.2294	1.2244	1.2204	1.2177	1.2175	1.2190
ACC PT	RATIO	1.8073	1.8454	1.8753	1.9318	1.9692	1.9924	1.9992	1.9971	1.9924	1.9842	1 9679	1.9577	1.9495
SPEED	DUT	1500.0	1466.7	1435.1	1374.7	1316.2	1257.8	1197.6	1134.3	1066.8	933.8	908.0	855.2	783.8
BLADE	Z	1500.0	1468.6	1436.4	1369.7	1299.2	1223.9	1142.6	1053.1	952.4	835.6	688.9	593.0	468.2
RAGE	RAD	8.500	8.316	8.136	7.776	7.410	29.7 7.031	6,631	6. 198	5.721	5, 183	4.525	4. 103	3 547
AVE	PCT IMM	Ö	3.7	7.4	14.6	22.0	29.7	37.7	46.5	56.1	67.0	80.3	88.8	100.0

D+H=0.	ABH=0.	ĭ	0.419	0.464	0.495	0.546	0.577	0.597		0.614		•	•	0.655	0.648	2	o.	Ö		Ö	Ö	o.	ö	0.815	o	o.	o.	0.948	0.994	1.240
	ö.	ALPHAM		46.27	44.57	42.16	40.99	40.46	ĸ.	41.12	42.00	۳.	ď	46.32	49.34	VABS	774.7	810.4	835.1	877.0	903.1	921.9	934.8	948.1	966.8	992.2	1035.0	1075.4	1119.8	TT-RATE
0+C=0	=0 ABC=0	2		585.6	586.1	588.7				623 5	646.9	681.1		777.7	849 4	MREL	0 863	0.865	0.863	0.859	0.844	0.824	•	0.761	•	0.688	0.659	0.660	0.649	α
146.27	=O INBR	¥>	509.5	560.1	594.9	650.1	681.6	701.4	710.5			721 5	28.	742.8	729.7	VREL	1048 5	1044.3	1037.5	1022.2	997.8	967.6	929.6	884.9	839.0	٠,	752.2	748.6	731.1	O PROPERTIES
AFLOW=	ITYPE=	CURV		-0.0461	-0.0653	-0.0720	-0.0611	-0.0455	-0.0248	0.0002	.0300	.0643	. 1421	.2095	.2101	BETAM	60.93	51. E.	55.01	50.51	46.91	43.54	40.15	36.18	•	24.35	4	7.14	-3.65	MASS AVERAGED
MT IP=222	OPTY=FREE			.81	. 56	.03	20	.07	- 98	.03	.78 0	٥	22.35 0.	. 15 0	0 06	11	664.4	661.7	658.8	653.7	649.0	644 7	640.8	637 7	635 1	633.0	631.6	631.5	632.3	MASS A
MTIP		PHI	500	313 0	138 1	806 3	486 4	167 6	839 7	494 10	122 12	709 16	225 22			PT	26.533	27.093	27.532	28.390	28.940		29.380	29.350	29.280	29, 160	8		•	17.000
1=18	OPTX*DPP	α	700 8.50	639 8.3		7	429 7.48	7	332 6.8	9	φ.	ď.	•	4	4.5	PS	20.185			794	661	967	.273	.964	.534	.952	979	. 127	. 192	STA
	.365	7	-5.70	-5.6	-5.5	-5.498	-5.4	-5.3	-5.33	-5.3(-5.2	-5.3(BLDBLK	940 20	940 20	940 19	•	•	-	-	-		940 17	_	_	-	777
, , ,	WTF= 61.	PSIC	o o	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	.000	פר פר	-	2	_		5 0.	-			9	_			13 0.	1

FREE

10R	ABH=0.	X	0.456	.491	0.518	0.567	0.599	0.622	.637	0.646	0.656	0.666	0.674	.666	.713	MABS	0.663	0.691	0.712	0.752	0.780	0.803	0.820	0.837	0.859	0.887	0.926	0.946	1.030	•
LE STA		ALPHAM		44.67 0		41.03 0		. 18		48	. 17	29	43.23 0	28	46.17 0	VABS	803.3	832.0	853.5.	893.5	ر	80		6	9.066	1016.8	1054.0	1073.7	1153.6	
0=0+0	•	o O	583.6	6.		586 5	<u>س</u>	594.3	602.5	617.2	639.0	610.9	721.9	٠.	832.3	MREL	0.883	0.883	0.881	0.878	0.867			ó		0.733	0.701	0.675	0.713	
141 60	-	¥>	552.0	591.7	621.7	674.0		729.3		749.4	757.0	764.0	767.9	755.5	798.9	VREL	1069.8	1063.6	1056.6	1043.1	1022 3	996.3	963.2	923.9	883.1	841.2	798.0	765.7	799.0	MASS AVERAGED PROPERTIES
AF! OW=	1TYPE=	CURV		-0.0051			-0.0230	-0.0233	.0212	-0.0175	-0.0118	0.0056	0.0285	0.0260	.3271	BETAM	58.94	56.20	53.96	49.75	46.26	42.95	39.63	35.79	30.99	24.73	15.78	9.36	-0 92	VERAGED
STA= 18.000 WTIP=235	OPTY-FREE	=			2.54 -0		. 53	. 88	.38	. 22	. 60	90	.07	.63	. 23	11	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3	MASS AVERA
	Ē	> PHI	500 0			835		215 6		560 10	198 12		321 21		643 31	ΡŢ	26.533	27.093	27.532	28.390	28.940	29.280	29.380	29.350	29.280	29, 160	28.920	28.770	28.564	18.000
2 ± 1	OPTX*DPP	2	250 8.5	89	•	.063 7.8	•	962 7.	938 6.	933 6.	953 6.	ĸ.	•		375 4.6	PS	19.756	19.698		19.511	19.353	19, 150	18.886	18.539		17.487	16.620	16.160	14.557	STA
	61.365	v		i,	ŝ	ເດ	i,	-4	-4	4	4.	Ġ.	- 5		ů.	BLOBLK	0.940	0.940	0.940	0.940	940	34C	940	940	940	940	0.940	0.940	0.940	1
STATOR	WIFE	PSI	0	0 020	0.18	0 200	0.300	0.400	0 500		0.700	0.800	0.900	0.950	000 +	ร								œ			=	_	-	£

STATOR

NW = 126.04 D*C=0. D* VM = 0.04 D*C=0. AB VM = 0.04 D*C=0. AB VM = 0.044.1 384.8 30.86 0 6 644.1 384.8 30.86 0 6 644.1 384.8 30.86 0 6 644.1 384.8 30.86 0 7 12.4 406.2 29.69 0 5 744.1 417.3 29.29 0 7 757.6 427.8 29.13 0 9 783.0 437.9 29.22 0 9 783.0 437.9 29.22 0 1 812.2 469.8 30.05 0 1 812.2 469.8 30.05 0 1 863.5 540.7 32.05 0 0 888.3 568.3 32.05 0 0 888.3 568.3 32.05 0 1 1281.5 1.049 720.9 3 1 1281.5 1.049 720.9 3 1 1282.7 1.030 773.8 0 0 1113.4 1.012 820.1 0 0 1148.7 0.972 878.8 0 1 1073.9 0.919 914.7 1 1 1073.9 0.94 853.1 1 20 995.8 0.862 971.3 2 20 995.8 0.862 971.3 2 21 995.8 0.862 971.3 2 22 995.8 0.862 971.3 2 23 958.0 0.841 1054.5 2 24 958.0 0.841 1054.5		=٥.	۳٥.	¥	504	530	. 552	594	626	650	299	681	649	722	754	0.780	813	MABS	0.590	.617	0.640	.684	.717	. 744	. 764	. 783	. 807		. 890	.926	. 974
DR STA= 19.000 61.365	TATOR	0=H+0	ABH=0	_	Ö	Ö	O			0					5 0.	_	0		_							۲.	က	۰ 9	8.	.50	0 8.
BELUBLK PS PT = 19.000 BLUBLK PS		<u>ن</u>	٠	ALPHA		30.8	30.3	29.6		29.1					32.0		33.4	VAB	720	750	773	820	853	878	897	914	938	971	1018	1054	1101
DR STA= 19.000 1=20 MTIP=248 AFLOW= 126.04 51C Z PH PH CURV VM S1C -4.770 8.500 O. CO. G15 2 050 -4.616 7.868 3.35 1.11 0.0316 644.1 100 -4.683 8.175 2.03 0.0506 667.5 200 -4.616 7.868 4.97 0.0672 744.1 400 -4.512 6.959 7.99 0.0529 783.0 500 -4.524 6.293 12.21 0.0431 812.2 800 -4.556 5.919 15.21 0.0431 812.2 800 -4.550 6.293 12.21 0.0431 812.2 800 -4.550 6.293 12.21 0.0431 812.2 800 -4.508 6.27 9.88 0.0445 796.1 800 -4.508 6.293 12.24 0.0857 863.5 950 -4.696 5.253 22.40 0.150 888.3 810 0.253 26.23 0.1265 919 4 810 0.875 20.965 26.533 664.4 61.31 1281.8 810 0.875 20.965 26.533 664.4 61.31 1281.8 810 0.878 20.996 27.53 658.8 57.59 1245.4 810 0.878 20.996 27.53 654.4 61.31 1281.8 811 20.274 29.280 644.7 48 07 1148.7 812 0.880 19.582 29.380 640.8 45.26 1112.4 813 12 12 12 12 12 12 12 12 12 12 12 12 12		٥		3	375.8		391.3	406.2	417.3	427.8		450 4		499 3	540 7	568.3	606 2	MREL	1.049	1.039	1.030	1.012	0.994	0.972	0.947	0.919	0.890	0.862	0.842	0.841	0.848
STA= 19.000 1=20 MIPP=248 AFLOW= SIC 2 A PH CURV CURV CON -4.770 8.500 0.00 0.00 0.00 0.00 0.00 0.00 0.00		126.04		¥>	7								7	7	ت	ر	19 4	VREL	1281.5	1262.7	1245.4	1213.4	1181.8	1148.7	1112.4	1073.9	1034.5	995.8	964.2	958.0	958.8
BELUBLK PS 17.52 64.4 0.00 BLUBLK PS 10.52 0.00 BLUBLK PS 10.00 BLUBLK PS 10.52 0.00 BLUBLK PS 10.52 0.00 BLUBLK PS 10.00 BLUBLK PS 10.52 0.00 BLUBLK PS 10.52 0.00 BLUBLK PS 10.00 BLUBLK PS 10.52 0.00 BLUBLK PS 10.52 0.00 BLUBLK PS 10.00 BLUBLK PS 10.52 0.00 BLUBLK PS 10.50 BLUBLK PS 10.50		AFLOW*	ITYPE=2	JRV													1265 9	BETAM	61.31							42.16	•		•	•	16.47
E 1.365	19.000	248	Y=BETM	ō	o	11 0.0							_	21 0.0	44 0.0		23 0.	11	564.4	561.7	558.8	553.7	549.0	544.7	540.8	537.7	535.1		331.6	•	
BLDBLK PS BLDBLK PS BLDBLK PS BLDBLK PS BLDBLK PS CO 881 20.274 CO 882 20.582 CO 883 19.066 CO 875 18.343 CO 875 19.066		u		PHI		-	~	n	4	g	7	9	12.	-	_	22	26.	14	. 533			.390	.940	. 280	.380	.350	. 280	. 160	.920	.770	
81.00 - 4.75 - 4.75 - 4.55 - 4.75 - 4.55 - 4		20	TX*DPP	œ		•	8.175	7.868	7.568	7.267	6.959		•	•		•	4.975		26											.	90 04
08. 0 . 88 . 0 . 0		<u></u>			•		•	•	•		•						•	۵	8	20.9	20.9	20.7	20.5	20.5	19.9	19.5	19.0				Ę.
A 1 0 5 2 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			51.365															31.0BLK	3.875	7.877	3.878	9.819	088.0	3.881	088.0	088.0	3.878	3.875	7.867	•	
	STATOR			PS1(Ö	0.050	Q	0.200				•	•	0.8Q	0.9X	0.950	1.00		-	7	<u>ო</u>				^	80				_	Ī

STA 19.000 MASS AVERAGED PROPERTIES
PT* 28.777 TT* 643.26 GAMMA=1.4005 PT-RAT= 1.958 TT-RAT= 1.240
RCU= 3068.9 VM=774.7 CZ= 757 3 MM=0.660 MABS=0.765 MREL=0.942

ST	STATOR					STA	20.	20.000						IN STATOR	TOR	
			-	*21		MTIP=26	=261		AFLOW=	Ŀ	118.86		0+C=0	Ö	D+H=0.	
WTF		61.365		PTX	OPTX=DPP		OPTY*B	ET#	ITYPE	C=3	INBR-4		ABC=0	Ġ	ABH=0.	
	PSIC	U	2		α	PHI	=	_	CURV		X X	2	•	ALPHAM	ĭ	
	o.	4-	300	60	500		o.	0	o.	ဖ	655.1	262.	6	21.82	0.536	
-	0.05	•	•	80	341	J	0.65	0	.0045	9	85.0	271	80	21.64	0.563	
	0.0	4- 0	.257	_	187	_	. 30	0	.0093	7	707.3	278	4	21.49	0.584	
	0.20	- 0	.225	7	.888	7	.63	0	0.0179	7	48.4	290.	80	21.24	0.623	
	0.300	4- 0	•	7	. 596		1.01	0	.0240	7	775.0	298	0		•	
_	0.40	- 0		2	.303		5.49	Ö	.0291	-	793.5	303	0	20.90	0.669	
-	O. 5Q	•		_	8		. 13	0	.0358	00	04.2	306	r.	20.86	0.682	
,	0.60	4-	. 173	θ	.693		0.0	0	.0450	80	13.4	311.	0		0.692	
_	0.7Q	4-0		9	.365	Ţ	. 21	0	0560	80	825.9	319.	ī٥.	21.15	0.706	
-	0.800	0 -4			6.015	13	•	0		80	844.3	334	-	21.59	0.725	
	0.900	4- 0	٠.		.631	17	.33	0		œ	869.3	354	80	22.20	0.750	
		0 -4	. 261	-	.420	19		0	.0986	œ	886.5	367.	ß.	22.52	0.767	
	1.000	4- 0	.300		188			0	. 1259	Ō	908.2	383.	6	22.91	0.789	
	ō	אומטוא	9	v	_	14	Ξ		RETAN	3	1307	ž	1101	VARS	MARA	
	-	200		ς α τ	36	26 522	664	۲	62 44	: :	4004	•	145	705 7	777	
		0.040	٠		4 6	200						•) u	100		
	N (0.82	,	6	7 6	200	90		9 6	1 0	1381.8	- 1	 	0.757	96.0	
		0.852	7	. 18	7	. 532	500	x 0	28.77		1364.0	_	150	765.1	,	
	4	0.855	•	031	28		653.7	. 7	55.6	2	1331.4	-	109	802.9		
		0.857		932	28		649	0	53.3	37	1298.9	-	.089			
	φ	0.859	50	796	53	. 280	644	7	51.	_	1265.4	_	.067	849.4	0.716	
		0.860		621	29		640	∞.	49.1	<u>ب</u>	1229.1	-	.042	860.5		
	8	0.860	•	380	29	350	637	۲.	•	93	1191.0	_	513	870.8	0.741	
	_	0.858	20.	034	29		635.1	_	44.2	22	1152.4	0	985	885.5		
	0	0.855		515	29	. 160	633	0	40.7	74	1114.4	5. 0	. 957	908.0		
	-	0.847	18	772	28	.920	631	φ		31	1078.8	0	931	938.9	0.810	
	72	0.840		292	28	.770	631	S.	33.5	59	1064.2	0	921	959.7	0.831	
	5	0.828	•	689	28	. 564	632	e.	30.3	33	1052.4	0	914	986.0	0.856	
				;	6	0	;	į		9						

A STATE OF THE PARTY OF THE PAR

STA 20.000 MASS AVERAGED PROPERTIES

PT 28.777 TT 643.26 SAMMA=1.4003 PT-RAT= 1.958 TT-RAT= 1.240

RCU* 2143.5 VM= 756.4 CZ= 782.8 MM=0.674 MABS=0.724 MREL=1.035

STATOR	0+H=0.	ABH=0.	ĭ	0 549	0.577	0.599	0.639	0.665	0.683	0.694	0.703	0.714	0.727	0.744	0.756	0.770	MABS	C	,	· د		0.657	0.683	Ö	0	o	o		٠		3 0.793
IN STA	o.	o	ALPHAM	14 20	14.02	13.86	•	•		13.21	13.16	13.20	13.44	13.79	13.90	13.98	VABS	693		724.8	747.9	790.0	8 16.1		843.5	•			893.0	3.906	921.8
	D+C=0.	4 ABC=0	2	170.1	175.6	179.1	185.7	189.3	191.7	192.7	193 7	196.7	203.4	212.9	217 7	222 6	MRFL	10.4	4 (1.2)1	1.204	1.191	1.174	1,153	1.128	1.101	1.072	1.043	1.014	1.002	0.991
	115,14	2 INBR=4	Æ >	672.1	703.2	726.1	767.8	793.8	811.5	821.1	828.7	838.4	850 9	867.3	879 9	894.5	1307	, 007	001	1475.5	1460.5	1432.6	1402.1	1369.5	1333.7	1296.6	1258.9	1220.0	1181 9	1166.1	1152.0
	AFLOW=	ITYPE=	CURV		0.0029		_		0.0247		.		0715	_	1116	1266	RETAM		6	61 54	60.19	57.59	55.51	53.66	52.00	50 27	48.24	45.78	42.79	41.01	39.06
21.000	=274	OPTY=BETM			54	11 0.	.29 0.							. 97	.63	.63 0.	11		400	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3
STA=			IHd	0		9	7	۳, ۳	4	9	σο	6	12	-	16	6 18	10		20.033	27.093	27.532	28.390	28.940	29.280	29.380	29.350	9.280	9.160		28.770	28.564
	=22	OPTX*DPP	œ	80	α	∞.	7	7	~	7	φ	ی	9	S.	ហ	ů.	U			330 2	305 2			21.069 2				60			••
			7	-3.8(0	-3.800	-3,800	-3.800	-3.800	-3.800	-3.800			-3 800		-3.800				5	0 21.		21.	2		20	2					-
8	5	61.3	PSIC		0.050	5 5	0.200	000			909	200	200	000	950	8			0.849	0.85	0.851	0		0	0	0	o		o	ó	_
STATOR		W F F	۵	c	c	c	Ö	c	o		c	•		•	Ċ		i	3.	-	8	e	4	ທ	·ω	7	4		5	-	12	£.

STA 21.000 MASS AVERAGED PROPERTIES 91= 28.777 TT= 643.26 GAMMA=1.4003 PT-RAT= 1.958 TT-RAT= 1.240 RCU= 1351.1 VM= 809.1 CZ= 798.8 MM=0.683 MABS=0.702 MREL=1.118

	o.		541	. 569	591	631	657	675	686	695	704	715	723	729	37	IABS	.545	574	. 595	635	.661	.680	.691	669	109	720	728	.734	743	240
0-H-0	ABH=0	Σ	0	0.5	•		9.0	•	•	0.0	0.7			0.7	0.7	2	o.	0	Ö	Ö	Ö	Ö	Ö	o.	o	ö	o	Ö	o.	1.240
		ALPHAM	7.19	7.08	6.97	6.79		95.9	•	6.43	6.43	•	6.65	6.72	6.77	VABS	668.7	700.6	723.5	765.6	791.9	809.7	819.1	826.0	834.8	845.0	853.2	859.0	869.0	RATE
0=0+0	4 ABC=O	5							92.5		93.4	95.7	8.86	100 5	102 5	MREL	1.274	1.271	1.265	1.255	1.239	1.220	1.196	1.168	1.140	1.111	1.078	1.062	1.047	ø
114.72		¥	653.5	695.3	718.2	760.3	786.5	804.4	813.9	820.8	829 6		847.5	853.1	862.9	VREL	1564.0	1551 9	1538.3	1513.1	1484.3	1452.9	1417.7	1380.6	1343.3	1304.9	1263.5	1243.4	1225.6	MASS AVERAGED PROPERTIES MMA=1.4002 PT-RAT= 1.95
AFLOW=	# ITYPE=2	CURV	٠.	-0.0032	-0.0017	9900.0	0.0155	0.0243	0.0329	0.0428	0.0546	0.0577	0.0642	0.0824	0.1249	BETAM	64.90	63 38	62.17	59.84	58.00	56.38	54.96	53.52	51.86	49.95	47.88	46.68	45.25	VERAGED 4002 PT
MTIP=287	OPTY-BETM	IHd	٥.	0.55 -(2.01		4.13		7.4	8.33 (-	12.73 (13.99 (. 23	11	φ	661.7	658.8	653.7		644.7		637.7	635.1		631.	631	632.	8
MTIP		α.	200	351	207	927	653	380	102		516	203	870 1	695		F d	26.533	27.093	27.532	28.390	28.940	29.280	29.380	29.350	29.280	29.160	28.920		28.564	22.000
1=23	OPTX=DPP	2	204 8	211 8.	218 8.	7.	7	7.	272 7.	9	301 6.	9	333 5.	ຄ	ທ	Sd	21.688		21.670	21.641		21.487	21.353	21.176	20.941	20.650	20.319	20,111	19.801	STA 2:
	61.365		<u>ن</u>	٠. ن	٠. ن	•	•	•	٠. ن	•	<u>ښ</u>	ė,	٠. ن	ڊ. ن	٠. ن	BLDBLK	0.880			0.882			0.884			0.885	.886	0.887	887	28.777
5		PSIC		0.050	0.100	. 200	300	.408	. 500	.600	200	•	900			St. BL				4				0	0	0	0	0	o	PT= 28
20.4.0	WIFE		0	0	0	0	0	0	0	0	0	0	0	0	-	V.	,					-		4		ř	_	-	_	_

.0R	D+H=0.	ABH =0.	X	0.536	0.560	0.577	0.616	0.642	0 660	0 671			0.707		0.708	969.0	MABS		•				0.660	0.671	0.678	0.687	0.707	0.707	0.708	0.696	
TE STATOR			ALPHAM	ö	o O	ö	o.	ö	o.	o O	o.	o O	ó	ö	o O	ö	VABS	658.2	685.3	702.9.	744.8	770.3	788.1		803.0		•	٠	က	819.5	
		ABC=		ö	ö	ó	Ö	Ö	Ö	ö	o O	ö	o O	ö	ó	o O	MREL	1.333	1,330	1.323	1.314	1.299	1.280	1.256	1.228	1.200	1.179	1.143	1,123	1.094	<i>u</i>
	=======================================	3 INBR=4	×	658.2	685.3	702.9	744.8	770.3	788.1	797.4	-	8116	831.2	831.2	831.2	819.5	VREL	1638.1	1626.3	1611.6	1587.9	1559.2	1528.0	1492.6	1454.8	1417.8	1386.8	1342.8	1319.7	1288.1	pondenti
	AFLOW=	ITYPE=3	CURV		0.0062	0600.0					0.0503			. 1247		1267	BETAM	66.31	65.08	64.14	62.03	60.40	58.95	57.71	56.50	55.08	53.17	51.76	50.96	50.49	MASS AVEDACED BONDEDTIES
23 000	300	OPTY=BETM		0	0.49 0.						5.24 0.				79 0.	.52 0	1	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	•	0.00
STA			PHI												-		PT	26, 109	26.581	26.910		•	•		•	28.750	•	28.250		•	0
	-24	OPTX=DPP	œ	8.500	∞	8.218	۲.	7	7	7		9	Ó	5	ß	'n	50	79			21.460 2									643	
	I		7	-2.567	-2 581	-2.595	-2.622	-2.648	-2.674	-2.700	-2.728		-2.785			-2.850		2									2	2		19	
8	Š	61.365	S	! !	020	8	8	300	8	200	8	200	800	006	950	8	ב אומט			0.940	0.940	Ö	Ó	Ó							
CTATOD	5	WIFF	n	O		C	0	O	Ö				0			-	Ū	, -		4 (Y	7	- L D	·	7	4 C	o a	5	-		13	

STA 23.000 MASS AVERAGED PROPERTIES

PT= 28.163 TT= 643.26 GAMMA=1.4001 PT-RAT= 1.916 TT-RAT= 1.24

RCU= 0. VM= 782.5 CZ= 778.3 MM=0.657 MABS=0.657 MREL=1.244

SPEED

						_,				_	_	_					Ŋ	_	Ñ	2	=	80	.	o	8	<u>ნ</u>	œ	ဖွ	4	-
	D+H=0	ABH=0.	X	0.551	0.575	0.592	0.631	.658	0.678	.690	0.698		.728	0.726	.724	. 711	MABS	0.551	0.575	0.592	0.631	0.658	0.678	0.690	0.693		0.728	0.726	0.724	0.71
FREE	å	AB	_	0	0	0	0	0	0	0	0	0	0	0	0	0			ທ		9	0	٠ «			۲.	_	_	₹.	4
ű.			ALPHAM	o.	ö	ö	o.		Ö	ö	ö	٥.	o.	o.	o.	o.	VABS	675.8	702.	719.	761.	788.	807.	817.	824.	834.	853.	850.6	48	835.
	D+C=0.	ABC=0.	AL																											•
	å	AB	2	ö	ö	٥.	٥.	Ö	٥.	٥.	0	o.	٥.	٥.		ö	MREL	.341	.338	.332	.325	.312	. 295	. 273	. 248	.223	. 204	. 158	. 148	. 119
	_	0=2	U															_	~	_	_	_	_	_	-	_	_	_	_	-
	116.57	INBR=0		∞.	ß.	∞.	9.	0.	~	6	œ,	۲.	σ.	9	٧.	4	VREL	1645.2	1634.2	1620.3	598.3	1571.7	1542.8	1509.9	1474.6	440.7	412.0	368.9	346.0	15.3
	Ξ	ဝူ	>	675.8	702	719	761	788	807	817	824	834	853	850	848	835	>	4	9	16	Ţ	÷	5	į.	4	4	7	Ě	5	13
	AFLOW=	ITYPE=0			6	0	&	၉	7	<u> </u>	ō	က	7	7	_	0	BETAM	65.75	54	.63	54	6.	45	•	•	. 59	•	. 58	œ.	.57
	AFL	-	CURV		0.0039	0.0080	0.0158	0.0233	0.0312	0.0401	0.0509	0.0643	0.0792	0.0997	1151	126	86	65	64	63	61	59	58	57	55	54	52	51	20	50
8		REE	Ĭ	0	0	0	0	0	0	0	0	0	o	o	Ö	Ó		٧.	۲.	∞.	۲.	o.	۲.	80	۲.	- .	0	9		ო.
24.000	=313	OPTY=FREE	_		32	.63	. 18	68	9	.63	12	63	=	53	85	. 28	1	664	661	658	653	649	644	640	637.7	635	633	631	631	632
STA=	MT I P=313	9	Hd	0	0	0	-	-	8	R	က	က	4	4	4	ທ່		60	581	910	731	269	639	780	169	750	851	250	860	59
v		ŏ		500	361	226	33	904	450	2	7	34	<u>ب</u>	7.7	_	2.1	PT	26.109	26.5	•	27.7			•			28.8	•	•	Τ.
	ស	X=D	œ	8.5	8.3	8.23	7.963	7.7	7.45	7.192	6.9	6.654	6.373	6.077	5.921	5.757														e e
	1=2	OPTX=DPP		2	S	Q	S	Q	Š	Q	Š	Š	Š	Š	Š	٠ و	Sd	. 246	. 243	. 235		. 144	.058	.939	. 77	20.563	.275	•	φ.	38
			7	2.000	2.00	2.000	2.000	8.0	2.000	2.88	•	2.000	2.000	2.000	2.00	2.000	J	2	7	2	2	2	2	50	8	20	20	19	5	+
		61.365		``	ņ	;	;	-7	-2	ï	ï	``	1	ï	;	;	BLOBLK	950	950	950	950	950	950	950	950	950	950	950	950	950
		6	PSIC		250	9	8	300	8	200	8 9	8	.800	800	950	8	9	o.	ö	o.	Ö	ó	o.	o.	o.	ö	ö	o.	•	o
EXIT		KTF=	ď	o.	ö	0	ö	0	0	Ö	Ö	0	ö	0	0	-	SL	-	R	ო	4	ល	ဖ	7	80	თ	₽	Ξ	7	13
u		¥																							50					

STA 24.000 MASS AVERAGED PROPERTIES
PT* 28.163 TT* 643.26 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.2[,])
RCU* O. VM* 801.9 CZ* 800.8 MM=0.674 MABS*0.674 MREL*1.261

	ζ.			99	õ	90	4	86	92	96	ŏ	90	8	55	5	9	MABS	566	06	90	44	89	98	96	8	90,	18	.05	695	919	
نبد	0-H+C	ABH=0	X	0.566	0.590	0.606	0 644	0.668	0.686	0.696	0.700	0.706	0.718		0 695	0 67	X		0.590						0.700	0.7				9.0	
FREE		0.	ALPHAM	o ·	o.	0	o o	o O	o O	ö	o O	o o	o O	o O	0	o O	VABS	693.1	718.9	735.5	775.4	799.9	816.7	824.4	827.3	831.7	843.0	828.0	817.6	798.1	
	0-0-0		20	ö	0	o O	ö	ö	o O	0	o o	o O	o O	o O	o O	ö	MREL	1.349	1.347	1.341	1.334	1.320	1.303	1.280	1.253	1.225	1.201	1.157	1.132	1.099	
	116.27		¥>	693.1	718.9	735 5	775.4	9.664	816.7	824.4	827.3	831.7	843 0	828 0	817.6	798.1	VREL	1652 4	1641.8	1628.3	1606.7	1580.0	1550.7	1516.9	1480.1	1443.3	1410.1	1359.7	1331.6	1296 5	
0	AFLOW=	ш	CURV	o.	0.0025	0.0048	0.0092	0.0136	0.0180	0.0228	0.0280	0.0335	0.0398	0.0464	0.0493	0.1263	BETAM	65.20	64.03	63.15		59	58.22	57.08	56.01	54.81	53.29	•	52. 12	52.01	
STA= 25.000		OPTY=FRE	PHI	o.	0.19	0.36	99.0	0.91	1.13	1.32			1.62		1.41	80.0	11	9 664.4	1 661.7	0 658.8	623	9 649.0		640		0 635.1		631.	0 63 5	9 632.	
ST		0P1X * DPP	œ		365	8.232	.974	.722	٠	.216	6.954	684	.406	. 112	. 956	. 790	P.	26.109				28			28.	28.750	28.	28.250	27.860	27.15	
	1=26		2	.270 8	.270 8	.270 8	.270	. 270	. 270		. 270	.270	.270 6	.270 6	.270 5	.270 5		21.013	21.011	21.006	20.985	20.950	20.898	20.827	20.734	20.616	20.466	20.281	20.174	19.990	
		61.365	U	7	70	-	-	7	-		-	0 -1	-	- 0	- 0		BLOBLK	926.0	0.956	926.0	926.0	936.0	936.0	926.0	926.0	926.0	926.0	926.0	926.0	926.0	
EXIT		WTF	PSIC		0.050	0	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	4.000	SL	-		ო					80		9	_	12	-	

STA 25.000 MASS AVERAGED PROPERTIES
PT= 28.163 TT= 643.26 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.240
RCU= 0. VM= 803.2 CZ= 803.0 MM=0.675 MABS=0.675 MREL=1.264

E 0•H=0	ABH=0.	¥	0.581	0.605	0.620	0.656	0.679	0.693	0.699	0.698	0.698	0.702	0.678	0.662	0.631	MABS	0.581	0.605		0.656	0.619	0.693	0.699	0.698	0.698	0.702	0.678	•	0.631	
FRE		LPHAM	o O	o O	o.	ö	o O	o O	ó	o O	o.			ó	Ö	VABS	7.0.9	735.8	751.6	789.2	811.0		827.9	825.4	822.9		799.3	781.7	748.9	
() ± ()		25	ö	o	Ö	ó	o O	o O	ö	ö	o O	ö	o.	ö	o O	MREL	1.358	1.355	1.350	1.342	1.328	1.309	1.284	1.253	1.221	1, 191	1, 139	1.109	1.068	
116 28	O INBR-O	Σ	710.9	735.8	751.6	789.2	811.0	824.4	827.9	825.4	822.9	825.8	799.3	781.7	748.9	VREL	1660.0	1649.7	1636.3	1614.5	1587.2	1556.5	1520.8	1481.0	1440.3	1401.6	1343.6	1310.6	1266.9	
AE! OK	ITYPE	CURV		0000.0	-0.000	0000	0000	8	0000	8	8		0000	-0.000		BETAM	64.64	63.51	62.66	60.73	59.27	58.02	57.02	56.13	55, 15	53.90	53.50	53.38	53.76	
26.000	DPTY=FRFF	1	0	0	21 -0	37 -0.0			61 -0	-	54	33	-	ō		11	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3	
STA=	Ē				Ö	Ö	Ö	Ö	Ö	Ö	Ö	ö		ġ.	o	PT	26.109		910	.731	. 269	.639	. 780	694	.750	.851	. 250	.860	. 159	
7.0	nPTX=DPP	<u>α</u>	8.500	8.367	8.236	7.981	7.731	7.482	7.229	6.968	6.698	6.418	6.120	5.961	5.791				768 26	767 27		768 28		767 28	767 28				765 27	
•		7	-0 350	-0.350	-0.350	-0.350	-0.350	0.350	-0.350	-0.350	-0.350	-0.350	-0.350	-0.350	-0.350	Y. PS	8	20.	20.	20.	20.	50.	50	50.	20.	20.	2¢.	20.	20.	
	61 365	PSIC			0.100		300			- 009		8000				BLDBLK	0.956	0.956	0.956	0.956	0.956	0.956	0.956	0.956	0.956	0.956		•	0.956	
EXIT	3	ă	ö	0.0	0	ö	0	•	0		0	0.0	ö		7.	SL	-	8	ო	4	ស	9	7	80		9	Ξ	12	13	

STA 26.000 MASS AVERAGED PROPERTIES

PT= 28.163 TT= 643.26 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.240

RCU= 0. VM= 801.3 CZ= 801.3 MM=0.673 MABS=0.673 MREL=1.263

SECTION VI

REFERENCES

- 1. A.J. Wennerstrom, and W.A. Buzzell, Redesign of a Rotor for a 1500 ft/sec Transonic, High-Through-Flow, Single-Stage Axial-Flow Compressor with Low Hub/Tip Ratio, Air Force Aero Propulsion Laboratory, Wright-Patterson AFB, Ohio 45433, AFAPL-TR-2078, September 1979.
- 2. George R. Frost, Richard M. Hearsey, Arthur J. Wennerstrom, A Computer Program for the Specification of Axial Compressor Airfoils, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, ARL 72-0171,
- 3. Richard M. Hearsey, A Revised Computer Program for Axial Compressor Design Volume I, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, ARL TF 75-0001, January 1975.
- 4. Arthur J. Wennerstrom, Personal Communication to L.H. Smith of General Electric Company, September 12, 1980.