DEVELOPING A FLIGHT DELAY PREDICTION MODEL USING MACHINE LEARNING

Submitted By

SARANYA - 963219104031

RAJA RATHNA - 963219104026

RAMYA - 963219104027

UMA - 963219104036

Problem Statement:

A problem statement is important to a process improvement project because it helps clearly identify the goals of the project and outline the scope of a project. It also helps guide the activities and decisions of the people who are working on the project. The problem statement can help a business or organization gain support and buy-in for a process improvement project. Flight delays are gradually increasing and bring more financial difficulties and customer dissatisfaction to airline companies. To resolve this situation, supervised machine learning models were implemented to predict flight delays. As explained, the goal of this project is to estimate the probability of any flight to be more than x minutes late, for any x being the difference between the total connection time and the time to go to the departure gate.

Moreover, as we would like to give this information to the customer during the search and reservation process, the model will have to give long-term predictions, up to several months forward, and will not take into account short-term effects, like current weather or traffic situation. This model will be based on the one-year dataset of flight delays.

LITERATURE SURVEY

TITLE	AUTHOR	ALGORITHM	ADVANTAGES	DISADVANTAGE
Flight Departure Time Prediction Based on Deep Learning	Hang Zhou, Weicong Li, Ziqi Jiang, Fanger Cai and Yuting Xue	DEEP LEARNING	1. The deep learning architecture is flexible to be adapted to new problems in the future.	1. It requires very large amount of data in order to perform better than other techniques.
			2. The same neural network based approach can be applied to many different applications and data types.	2. It is extremely expensive to train due to complex data models. Moreover deep learning requires expensive GPUs and hundreds of
			3. Massive parallel computations can be performed using GPUs and are scalable for large volumes	machines. This increases cost to the users. It is not easy to comprehend output based on mere

			of data. Moreover it delivers better performance results when amount of data are huge.	learning and requires classifiers to do so. Convolutional neural network based algorithms perform such tasks.
--	--	--	--	---

Airline Flight Delay Prediction Using Machine Learning Models	H.Khasar A.sheikholesa lime	MACHINE LEARNING	 1.No human intervention needed (automation) 2.Easily identifies trends and patterns 3. Continuous Improvement 4. Handling multidimensional and multivariety data 	 Data Acquisition Time and Resources Interpretation of Results High error- susceptibility
---	-----------------------------------	---------------------	---	---

FLIGHT DELAY PREDICTION USING THE DATA MINING	Adrian, A. A. Simmons	DATA MINING	reliable information 2. Helps businesses make operational adjustment 3. Helps to make informed decision	1 . Data Mining tools are complex and require training to us 2. Data mining techniques are not infallible 3. Rising privacy concern 4. Data mining requires large database
FLIGHT DELAY PREDICTION USING THE AVIATION	RAHUL GARG,SOH AM GOSAVI,	BIG DATA	data analytics has helped businesses to reduce their	The lack of big data experts and data scientists has been the

OF BIG	TEJAS	of survey	biggest
DATA	CHOULWA	respondents from	challenge in this
	R	New Vantage	field for the past
		claimed that they	three years.
		have started using	Currently, many
		big data to reduce	IT professionals
		expenses. Furthermore, 59.4%	don't know how
		of survey	to carry out big
		respondents from	data analytics
		Syncsort claimed	as it requires a
		that big data tools	different skill set.
		helped them	Thus, finding
		reduce costs and	data scientists
		increase	who are also
		operational	experts in big
		efficiency.	data can be
			challenging.