Examenul de bacalaureat național 2020 Proba E. c)

Matematică M mate-info

Test 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați partea întreagă a numărului real $x = (\sqrt{2} 1)^2$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x$. Determinați abscisele punctelor de intersecție a graficului funcției f cu dreapta de ecuație y = 2x 3.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $4^{x-2} = \left(\frac{1}{4}\right)^{7-2x}$.
- **5p 4.** Determinați numărul submulțimilor cu trei elemente ale mulțimii $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,3), B(2,5). Determinați coordonatele punctului C pentru care $\overrightarrow{AC} = 2\overrightarrow{AB}$.
- **5p** | **6.** Calculați perimetrul triunghiului ABC, știind că AB = 2, AC = 3 și $m(\angle BAC) = 60^{\circ}$.

SUBIECTUL al II-lea (30 de puncte

1. Se consideră matricele $O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $A(a) = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & a \\ 1 & -a & 0 \end{pmatrix}$ și $(A(a))^t = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -a \\ 3 & a & 0 \end{pmatrix}$, unde a

este număr real.

- **5p** a) Arătați că $\det(A(2)) = 1$.
- **5p b**) Demonstrați că, pentru orice număr rațional q, matricea A(q) este inversabilă.
- **5p** c) Se consideră matricea $B(a) = A(a) (A(a))^t$. Determinați numerele raționale p pentru care $B(p)B(p)B(p) + 5B(p) = O_3$.
 - **2.** Pe mulțimea G = (0,1) se definește legea de compoziție asociativă $x * y = \frac{xy}{2xy x y + 1}$.
- **5p** a) Arătați că $\frac{1}{3} * \frac{1}{3} = \frac{1}{5}$.
- **5p b)** Verificați dacă $e = \frac{1}{2}$ este elementul neutru al legii de compoziție "*".
- **5p** c) Știind că (G,*) este grup, demonstrați că funcția $f:G\to M$, $f(x)=\frac{1}{x}-1$ este un izomorfism de la grupul (G,*) la grupul (M,\cdot) , unde $M=(0,+\infty)$ și "·" reprezintă operația de înmulțire a numerelor reale.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=x\ln x$.
- **5p** a) Arătați că $f'(x) = 1 + \ln x, x \in (0, +\infty)$.
- **5p b**) Determinați $m \in (0, +\infty)$ pentru care tangenta la graficul funcției f în punctul M(m, f(m)) este paralelă cu dreapta de ecuație y = 2x.
- **5p** c) Demonstrați că $x \ln x + \frac{1}{e} \ge 0$, pentru orice $x \in (0, +\infty)$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$.
- **5p a**) Arătați că $\int_{0}^{\frac{\pi}{2}} \sin x f(x) dx = \frac{1}{2}.$
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{1}{x} \int_{0}^{x} f(t) dt$.
- **5p** c) Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int\limits_0^{\frac{\pi}{2}} \left(f\left(x\right)\right)^n dx$. Demonstrați că șirul $\left(I_n\right)_{n\geq 1}$ este convergent.