```
<110> Conaris Research Institute GmbH
<120> Diagnostic Use of Polymorphisms in the Gene Coding for
      the TNF Receptor II and Method for Detecting
      Non-Responders to Anti-TNF-Therapy
<130> K51347/8
<140>
<141>
<160> 54
<170> PatentIn Ver. 2:1
<210> 1
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Forward Primer
<400> 1
cttccacgag gtgacatctc c
                                                                    21
<210> 2
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Reverse Primer
<400> 2
gccctaatac agggccagc
                                                                   19
<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Description of Artificial Sequence: Forward Primer

<400> 3	
ggacagattg cagctggaat g	21
<210> 4	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 4	
tagagccaga ccacctgggt	20
•	
<210> 5	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
2000	
<220>	•
<223> Description of Artificial Sequence: Forward Primer	
<400> 5	
agcctggaca acatggcga	19
ageotgyaea acatggega	19
<210> 6	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 6	
ccctcgactg aaagcgaaag	20
<210> 7	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

(3)

<400> 7	
gaggcgtgtc caaggcc	17
<210> 8	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Reverse Primer</pre>	
1223 Debetiperon of Architectal Bequence. Neverbe Filmer	
<400> 8	
	4.7
gcgcggagtc accacct	17
•	
<210> 9	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	
<400> 9	
atcacccatg gcagaaccc	19
<210> 10	
<211> 14	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 10	
tgccctcacc cggc	14
-	_ 1
<210> 11	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

/400> II	
gactetggee ttgttteete a	21
<210> 12	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Reverse</pre>	Primer
<400> 12	
gggaagttgg aggcaggg	18
<210> 13	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Forward</pre>	Primer
	I I IIICI
<400> 13	
tgaccgtttg cgccctc	17
.010. 11	
<210> 14 <211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse	Primer
<400> 14	
gtccccaagg acctgagcc	19
<210> 15	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Description of Artificial Sequence: Forward	Primer

(400) 13	
agacagaget cettggge	18
<210> 16	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><220></pre> <pre><223> Description of Artificial Sequence: Reverse Primer</pre>	
1220 bescription of Artificial Sequence: Reverse Primer	
<400> 16	
gcagacagaa ggagtgaatg a	21
•	
<210> 17	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	
<400> 17	
tcctggcttg ctggctg	17
	<i></i> ,
<210> 18 <211> 17	
<211> 17 <212> DNA	
<213> Artificial Sequence	
ara, incrinorar poducine	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 18	
gagggcagtg gagacac	17
	1 /
<210> 19	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
4	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

(:3.7 (:3.7)

<400> 19	
gctgactgct ctcccct	17
<210> 20	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
various recriticatal beduence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 20	
tgggaagaag caggtgtg	18
·	
<210> 21	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	
•	
<400> 21	
gaatctgcat cttgggcagg	20
	20
<210> 22	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
1519\ VICTITOTAL Bedgewoe	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 22	
gaggctgcgg ctgtgga	17
(210) 22	
<210> 23	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

(J:

<400> 23	
cggtgtgggc tgtgtcgta	19
<210> 24	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
- -	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
•	
<400> 24	
cctacagggc tgccacctc	19
-	
<210> 25	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: FAM Probe	
· · · · · · · · · · · · · · · · · · ·	
<400> 25	
acagatccag acaggttcag ttatgtgtct gagaagtt	38
<210> 26	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: TET Probe	
<400> 26	
acagatccag acagtttcag ttatgtgtct gagaagtt	38
<210> 27	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

<400> 27	
gacaggttat ctccactctg caaa	24
<210> 28	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 28	
caattcagaa tgcttagctt tttagc	26
·	
<210> 29	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	•
<223> Description of Artificial Sequence: FAM Probe	
<400> 29	
tgctgctgcc gctggtgaga cc	22
<210> 30	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: TET Probe	
<400> 30	
aactgctgct gccactggtg agacc	25
and the second group of the second se	2.3
<210> 31	
<210> 31 <211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

<400> 31	
cttgggacgt cctggacaga c	21
<210> 32	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 32	
aaggtgcctc gcccacc	17
-	
<210> 33	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Description of Artificial Sequence: FAM Probe	
<400> 33	
tgcagcaaat gctcgccggg t	21
<210> 34	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: TET Probe	
<400> 34	
tgcagcaagt gctcgccggg	20
<210> 35	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

		<400> 35	
		cagagaatac tatgaccaga cagctca	27
		<210> 36	
		<211> 16	
		<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Description of Artificial Sequence: Reverse Primer	
		<400> 36	
		gagtgccccc gtggct	16
			10
12		<210> 37	
6.0	-	<211> 26	
	4	<212> DNA	
		<213> Artificial Sequence	
	14	<220>	
		<223> Description of Artificial Sequence: FAM Probe	
	Ū!	<400> 37	
	1233	aatgcaagca tggatgcagt ctgcac	26
	4.3		20
	i.a.		
	3 1	<210> 38	
	in the second	<211> 26	
	il a mile	<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Description of Artificial Sequence: TET Probe	
		<400> 38	
		aatgcaagca gggatgcagt ctgcac	26
			20
		<210> 39	
		<211> 20	
		<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Description of Artificial Sequence: Forward Primer	
		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	

<pre><400> 39 gctgtaacgt ggtggccatc</pre>	20
<210> 40	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 40	
ctgggttctg gagtt	1.5
etgggttetg gagtt	15
<210> 41	
<211> 26	1 2
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: FAM Probe	
<400> 41	
agaggcagcg agttgtggaa agcctc	26
agaggeageg ageogegaa ageoee	20
<210> 42	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><220> <223> Description of Artificial Sequence: TET Probe</pre>	
12237 Description of Artificial Sequence: 121 Prope	
<400> 42	
aggcagcggg ttgtggaaag cct	23
hada. 42	
<210> 43	
<211> 25 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

<400> 43	
accactagga ctctgaggct ctttc	25
<210> 44	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
1210× International bedaence	
<220>	
<pre><223> Description of Artificial Sequence: Reverse Primer</pre>	
1223 Description of Artificial Sequence: Reverse Frimer	
<400> 44	
ccagccagcc ttccgag	17
·	
<210> 45	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: FAM Probe	
<400> 45	
cctctgctgc catggcgtgt cc	22
<210> 46	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: TET Probe#</pre>	
Dodolipolon of Intelliolar Dodachoe. In Tiobe	
<400> 46	
cctctgctgc catggtgtgt cct	23
	رے
<210> 47	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220\	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

<400> 47

ctgcaggcca agagcagag

	<210> 48 <211> 21 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Reverse Primer	
	<400> 48	
	ggttttctgg aagccagagc t	21
	<210> 49	
200	<211> 3683	
n N	<212> DNA	
April New York	<213> Homo sapiens	
ita dina	<220>	
Bress	<221> CDS	
Mark.	<222> (90)(1475)	
Hard I	<220>	
e dipere	<221> mat_peptide	
	<222> (156)	
Mary Mary	<400> 49	
	gcgagcgcag cggagcctgg agagaaggcg ctgggctgcg agggcgcgag ggcgcgaggg	60
	cagggggcaa ceggaeeeeg eeegeaeee atg geg eee gte gee gte tgg gee	113
	Met Ala Pro Val Ala Val Trp Ala	
	-20 -15	
	gcg ctg gcc gtc gga ctg gag ctc tgg gct gcg gcg cac gcc ttg ccc	161
	Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro	
	-10 -5 -1 1	
	gcc cag gtg gca ttt aca ccc tac gcc ccg gag ccc ggg agc aca tgc	209
	Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys	
	5 10 15	
	cgg ctc aga gaa tac tat gac cag aca gct cag atg tgc tgc agc aaa	257
	Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys	
	20 25 30	

tgc	tcg	ccg	dac	caa	. cat	gca	aaa	gtc	ttc	: tgt	acc	aag	acc	tcg	gac	305
Cys 35		Pro	Gly	Gln	His	Ala	Lys	Val	Phe	Cys 45		Lys	Thr	Ser	Asp 50	
3.00	a+a	tat	a a c	+ 00	+ ~ +	~~~	~~ ~	200	202	+		~~~				250
					Cys					Tyr					aac Asn	353
															cag Gln	401
gtg	gaa	act	caa	gcc	tgc	act	cgg	gaa	cag	aac	cgc	atc	tgc	acc	tac	449
					Cys -								_		_	
					tgc Cys											497
					aag Lys											545
115					120					125					130	
					gac Asp											593
					tca Ser								His			641
													160			
					atc Ile											689
acq	tcc	acq	tcc	ccc	acc	caa	agt	atq	acc	сса	aaa	gca	αta	cac	tta	737
					Thr											737
ccc	cag	cca	gtg	tcc	aca	cga	tcc	caa	cac	acg	cag	cca	act	cca	gaa	785
Pro 195	Gln	Pro	Val	Ser	Thr 200	Arg	Ser	Gln	His	Thr 205	Gln	Pro	Thr	Pro	Glu 210	
ccc	agc	act	gct	cca	agc	acc	tcc	ttc	ctg	ctc	cca	atg	ggc	ccc	agc	833
Pro	Ser	Thr	Ala	Pro 215	Ser	Thr	Ser	Phe	Leu 220	Leu	Pro	Met	Gly	Pro 225	Ser	

			ı Gly			Phe			Gly	ctg Leu	881
		v Val			Leu			Val		aac Asn	929
	. Ile								-	aga Arg	977
Ala									aca Thr		1025
									agc Ser 305		1073
									ccc Pro		1121
									ggg Gly		1169
									cat His		1217
									tct Ser		1265
									gac Asp 385		1313
									ttc Phe		1361
				Arg					acc Thr		1409

ctg	ggg	agc	acc	gaa	gag	aag	ccc	ctg	CCC	ctt	gga	gtg	cct	gat	gct	1457
Leu	Gly	Ser	Thr	Glu	Glu	Lys	Pro	Leu	Pro	Leu	Gly	Val	Pro	Asp	Ala	
	420					425					430					

ggg atg aag ccc agt taa ccaggccggt gtgggctgtg tcgtagccaa 1505 Gly Met Lys Pro Ser 435 440

ggtgggctga gccctggcag gatgaccctg cgaaggggcc ctggtccttc caggccccca 1565 ccactaggac tetgaggete tttetgggee aagtteetet agtgeeetee acageegeag 1625 cetecetety acetycagge caagagcaga ggcagegagt tggggaaage etetgetgee 1685 atggtgtgtc cctctcggaa ggctggctgg gcatggacgt tcggggcatg ctggggcaag 1745 tecetgaete tetgtgaeet geecegeeca getgeaeetg ceageetgge ttetggagee 1805 cttgggtttt ttgtttgttt gtttgtttgt ttgtttgttt ctcccctgg gctctgccca 1865 getetggett ccagaaaace ccagcateet tttetgeaga ggggetttet ggagaggagg 1925 gatgctgcct gagtcaccca tgaagacagg acagtgcttc agcctgaggc tgagactgcg 1985 ggatggteet ggggetetgt gtagggagga ggtggeagee etgtagggaa eggggteett 2045 caagttagct caggaggctt ggaaagcatc acctcaggcc aggtgcagtg gctcacgcct 2105 atgateceag eactttggga ggetgaggeg ggtggateae etgaggttag gagttegaga 2165 ccagcctggc caacatggta aaaccccatc tctactaaaa atacagaaat tagccgggcg 2225 tggtggcggg cacctatagt cccagctact cagaagcctg aggctgggaa atcgtttgaa 2285 cccgggaagc ggaggttgca gggagccgag atcacgccac tgcactccag cctgggcgac 2345 agagcgagag tctgtctcaa aagaaaaaaa aaaaagcacc gcctccaaat gctaacttgt 2405 ccttttgtac catggtgtga aagtcagatg cccagagggc ccaggcaggc caccatattc 2465 agtgctgtgg cctgggcaag ataacgcact tctaactaga aatctgccaa ttttttaaaa 2525 aagtaagtac cactcaggcc aacaagccaa cgacaaagcc aaactctgcc agccacatcc 2585 aacccccac ctgccatttg caccctccgc cttcactccg gtgtgcctgc agccccgcgc 2645 ctccttcctt gctgtcctag gccacaccat ctcctttcag ggaatttcag gaactagaga 2705

tgactgagtc ctcgtagcca tctctctact cctacctcag cctagaccct cctcctccc 2765 cagaggggtg ggttcctctt ccccactccc caccttcaat tcctgggccc caaacgggct 2825 gccctgccac tttggtacat ggccagtgtg atcccaagtg ccagtcttgt gtctgcgtct 2885 qtqttqcqtq tcqtqqqtqt qtqtaqccaa qqtcqqtaaq ttqaatqqcc tqccttqaaq 2945 ccactgaage tgggatteet ecceattaga gteageette ecceteeeag ggeeagggee 3005 ctgcagaggg gaaaccagtg tagccttgcc cggattctgg gaggaagcag gttgaggggc 3065 tectggaaag geteagtete aggageatgg ggataaagga gaaggeatga aattgtetag 3125 cagagcaggg gcagggtgat aaattgttga taaattccac tggacttgag cttggcagct 3185 gaactattgg agggtgggag agcccagcca ttaccatgga gacaagaagg gttttccacc 3245 ctggaatcaa gatgtcagac tggctggctg cagtgacgtg cacctgtact caggaggctg 3305 aggggaggat cactggagcc caggagtttg aggctgcagc gagctatgat cgcgccacta 3365 cactccagcc tgagcaacag agtgagaccc tgtctcttaa agaaaaaaaa agtcagactg 3425 etgggaetgg ceaggtttet geceacattg gaeceacatg aggaeatgat ggagegeace 3485 tgccccctgg tggacagtcc tgggagaacc tcaggcttcc ttggcatcac agggcagagc 3545 cgggaagcga tgaatttgga gactctgtgg ggccttggtt cccttgtgtg tgtgtgttga 3605 teccaagaca atgaaagttt geactgtatg etggaeggea tteetgetta teaataaace 3665 3683 tgtttgtttt aaaaaaaa

<210> 50

<211> 461

<212> PRT

<213> Homo sapiens

<400> 50

 Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu

 1
 5
 10
 15

 Trp Ala Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr
 20
 25
 30

 Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln
 35
 40

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser

'Gln' Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro 435

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 450

455

460

<210> 51
<211> 3683
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (90)..(1475)

<220>
<221> mat_peptide
<222> (156)

<400> 51
gcgagcgcag cggagcctg

gcgagcgcag cggagcctgg agagaaggcg ctgggctgcg agggcgcgag ggcgcgaggg 60

cagggggcaa ccggacccc ccgcaccc atg gcg ccc gtc gcc gtc tgg gcc 113

Met Ala Pro Val Ala Val Trp Ala

-20 -15

gcg ctg gcc gtc gga ctg gag ctc tgg gct gcg gcg cac gcc ttg ccc 161
Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro
-10 -5 -1 1

gcc cag gtg gca ttt aca ccc tac gcc ccg gag ccc ggg agc aca tgc 209
Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys
5 10 15

cgg ctc aga gaa tac tat gac cag aca gct cag atg tgc tgc agc aag 257
Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys
20 25 30

tgc tcg ccg ggc caa cat gca aaa gtc ttc tgt acc aag acc tcg gac

Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp

35 40 45 50

acc gtg tgt gac tcc tgt gag gac agc aca tac acc cag ctc tgg aac 353
Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn
55 60 65

tgg gtt ccc gag tgc ttg agc tgt ggc tcc cgc tgt agc tct gac cag 401

Trp	Val	Pro	Glu 70	Cys	Leu	Ser	Cys	Gly 75	Ser	Arg	Cys	Ser	Ser 80	Asp	Gln	
gtg Val	gaa Glu	act Thr 85	caa Gln	gcc Ala	tgc Cys	act Thr	cgg Arg 90	gaa Glu	cag Gln	aac Asn	cgc Arg	atc Ile 95	tgc Cys	acc Thr	tgc Cys	449
agg Arg	ccc Pro 100	ggc Gly	tgg Trp	tac Tyr	tgc Cys	gcg Ala 105	ctg Leu	agc Ser	aag Lys	cag Gln	gag Glu 110	gly	tgc Cys	cgg Arg	ctg Leu	497
tgc Cys 115	gcg Ala	ccg Pro	ctg Leu	cgc Arg	aag Lys 120	tgc Cys	cgc Arg	ccg Pro	ggc Gly	ttc Phe 125	ggc Gly	gtg Val	gcc Ala	aga Arg	cca Pro 130	545
gga Gly	act Thr	gaa Glu	aca Thr	tca Ser 135	gac Asp	gtg Val	gtg Val	tgc Cys	aag Lys 140	ccc Pro	tgt Cys	gcc Ala	ccg Pro	ggg Gly 145	acg Thr	593
ttc Phe	tcc Ser	aac Asn	acg Thr 150	act Thr	tca Ser	tcc Ser	acg Thr	gat Asp 155	att Ile	tgc Cys	agg Arg	ccc Pro	cac His 160	cag Gln	atc Ile	641
												gat Asp 175				689
		Thr										gca Ala				737
ccc Pro 195	Gln	cca Pro	gtg Val	tcc Ser	aca Thr 200	cga Arg	tcc Ser	caa Gln	cac	acg Thr 205	Gln	cca Pro	act Thr	cca Pro	gaa Glu 210	785
ccc	: agc Ser	act Thr	gct Ala	cca Pro 215	Ser	acc Thr	tcc Ser	ttc Phe	ctg Leu 220	Leu	cca Pro	atg Met	ggc Gly	ccc Pro 225	agc Ser	833
ccc Pro	cca Pro	gct Ala	gaa Glu 230	ı Gly	agc Ser	act Thr	ggc Gly	gac Asp 235	Phe	gct Ala	ctt Leu	cca Pro	gtt Val 240	. Gly	ctg Leu	881
			/ Val					Leu					Val		g aac L Asn	929
+ ~+	- ata	ato	. ato	r acc	cad	r atc	r aaa	a aac	r aac	1 666	: tto	g tgc	: ct	g caq	g aga	977

'Cys	Val 260	Ile	Met	Thr	Gln	Val 265	Lys	Lys	Lys	Pro	Leu 270	Cys	Leu	Gln	Arg	
											gcc Ala					1025
											ccg Pro					1073
											aga Arg					1121
											agt Ser					1169
											cct Pro 350					1217
											tgt Cys					1265
											aca Thr					1313
											cag Gln					1361
			Cys					Gln					Glu		ctg Leu	1409
		Ser					Pro					Val			gct Ala	1457
	Met						ggcc	ggt	gtgg	gctg	tg t	cgta	gcca	a		1505

ggtgggctga gccctggcag gatgaccctg cgaaggggcc ctggtccttc caggccccca 1565

ccactaggac totgaggoto tttotgggoo aagttootot agtgoootoo acageogoag 1625 cctccctctg acctgcaggc caagagcaga ggcagcgagt tggggaaagc ctctgctgcc 1685 atggtgtgtc cctctcggaa ggctggctgg gcatggacgt tcggggcatg ctggggcaag 1745 tecetgaete tetgtgaeet geecegeeea getgeaeetg eeageetgge ttetggagee 1805 cttgggtttt ttgtttgttt gtttgtttgt ttgtttgttt ctccccctgg gctctgccca 1865 gctctggctt ccagaaaacc ccagcatcct tttctgcaga ggggctttct ggagaggagg 1925 gatgctgcct gagtcaccca tgaagacagg acagtgcttc agcctgaggc tgagactgcg 1985 ggatggtcct ggggctctgt-gtagggagga ggtggcagcc ctgtagggaa cggggtcctt 2045 caagttagct caggaggctt ggaaagcatc acctcaggcc aggtgcagtg gctcacgcct 2105 atgatcccag cactttggga ggctgaggcg ggtggatcac ctgaggttag gagttcgaga 2165 ccagcctggc caacatggta aaaccccatc tctactaaaa atacagaaat tagccgggcg 2225 tggtggcggg cacctatagt cccagctact cagaagcctg aggctgggaa atcgtttgaa 2285 cccgggaagc ggaggttgca gggagccgag atcacgccac tgcactccag cctgggcgac 2345 agagcgagag tctgtctcaa aagaaaaaaa aaaaagcacc gcctccaaat gctaacttgt 2405 ccttttgtac catggtgtga aagtcagatg cccagagggc ccaggcaggc caccatattc 2465 agtgctgtgg cctgggcaag ataacgcact tctaactaga aatctgccaa ttttttaaaa 2525 aagtaagtac cactcaggcc aacaagccaa cgacaaagcc aaactctgcc agccacatcc 2585 aacccccac ctgccatttg caccctccgc cttcactccg gtgtgcctgc agccccgcgc 2645 cteetteett getgteetag gecacaceat eteettteag ggaattteag gaactagaga 2705 tgactgagtc ctcgtagcca tctctctact cctacctcag cctagaccct cctcctcccc 2765 cagaggggtg ggttcctctt ccccactccc caccttcaat tcctgggccc caaacgggct 2825 gecetgecae tttggtacat ggecagtgtg ateceaagtg ceagtettgt gtetgegtet 2885 gtgttgcgtg tcgtgggtgt gtgtagccaa ggtcggtaag ttgaatggcc tgccttgaag 2945 ccactgaagc tgggattcct ccccattaga gtcagccttc cccctcccag ggccagggcc 3005

(25.

ctqcaqaqqq gaaaccaqtq tagccttgcc cggattctgg gaggaagcag gttgaggggc 3065 teetggaaag geteagtete aggageatgg ggataaagga gaaggeatga aattgtetag 3125 cagagcaggg gcagggtgat aaattgttga taaattccac tggacttgag cttggcagct 3185 gaactattgg agggtgggag agcccagcca ttaccatgga gacaagaagg gttttccacc 3245 ctggaatcaa gatgtcagac tggctggctg cagtgacgtg cacctgtact caggaggctg 3305 aqqqqaqqat cactqqaqcc caqqaqtttq aqqctqcagc gagctatgat cgcqccacta 3365 cactccagcc tgagcaacag agtgagaccc tgtctcttaa agaaaaaaa agtcagactg 3425 ctgggactgg ccaggtttct-gcccacattg gacccacatg aggacatgat ggagcgcacc 3485 tgccccctgg tggacagtcc tgggagaacc tcaggcttcc ttggcatcac agggcagagc 3545 cgggaagcga tgaatttgga gactctgtgg ggccttggtt cccttgtgtg tgtgtgttga 3605 toccaagaca atgaaagttt goactgtatg otggacggca ttoctgotta toaataaacc 3665 tgtttgtttt aaaaaaaa 3683

<210> 52

<211> 461

<212> PRT

<213> Homo sapiens

<400> 52

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 1.0 Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 25 Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln 40 Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 70 75 Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 105 Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu

23

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 135 Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 150 155 Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 180 185 Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 200 Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 215 Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 230 235 Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly 245 -250 Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 265 Leu Leu Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 275 280 Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro 295 Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 310 315 Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser 325 330 Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345 Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 360 365 Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 375 380 Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 390 395 Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 405 410 Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 420 425 Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro 440 Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser

<210> 53

<211> 3683

450

<212> DNA

n	'<21	3> H	omo :	sapi	ens												
	_	1> C		.(14	75)												
				eptio	de												
		0> 5: agcg		cgga	geet	gg a	gagaa	aggc	g cto	gggc	tgcg	agge	gege	gag (ggcg	egaggg	60
	cag	gggg	caa (ccgga	accc	cg co	cegea	accc	_		ccc Pro -20	-	_	_		_	113
		_	_	gtc Val		_				_				_			161
				gca Ala													209
				gaa Glu				_									257
	-	_	_	ggc Gly			-		-		_		_		_	-	305
wi _.				gac Asp													353
				gag Glu 70													401
		_		caa Gln	-	_			_	_		_		-		-	449
				tgg Trp													497

tgc Cys 115	-									545
gga Gly										593
ttc Phe			_							641
tgt Cys										689
acg Thr		-								737
ccc Pro 195	_									785
ccc Pro	-		-							833
ccc Pro										881
								gtg Val		929
tgt Cys										977
gaa Glu 275										1025
ggc Gly										1073

										gac				ccc Pro		1121
ser	ser	Leu	310	Ser	Ser	nια	BCI	315	ECG.	110p		9	320			
														ggg		1169
Arg	Asn	G1n 325	Pro	GIn	Aia	Pro	330 GIY	val	GIU	Ата	Ser	335	Ald	Gly	GIU	
_														cat		1217
Ala	Arg 340	Ala	Ser	Tnr	GTĀ	345	ser	Asp	ser	per	350	GTÀ	GIY	His	GIY	
														tct	,	1265
355	Gin	val	Asn	vaı	360	Cys	Tie	Val	ASII	365	Cys	261	261	Ser	370	
	-													gac		1313
H1S	Ser	ser	GIN	375	Ser	ser	GTU	ALd	380	ser	1111	Mec	GTĀ	Asp 385	1111	
_		-												ttc		1361
Asp	Ser	Ser	390	Ser	GIU	ser	Pro	шуs 395	ASP	GIU	GIII	vaı	400	Phe	Ser	
-		-												acc Thr		1409
ьуѕ	GLU	405	cys	Ala	rne	Arg	410	GIII	Leu	Gra	1112	415	Giu	1111	цец	
														gat Asp		1457
Leu	420		THE	GIU	GIU	425	PLO	цец	FIO	Leu	430	var	110	1150	7114	
	-				taa	cca	ggcc	ggt	gtgg	gctg	tg t	cgta	gcca	a		1505
435			Pro		440											
ggt	gggc	tga	gccc	tggc	ag g	atga	ccct	g cg	aagg	ggcc	ctg	gtcc	ttc	cagg	ccccca	1565
															ccgcag	
															gctgcc	
															ggcaag	
															ggagcc	
ctt	adat	TTT	$\tau \tau \alpha^{+}$	TTOT	$TT \alpha$	ETTO	I L L E C	L LT	ULLE	コーレに	CLC	-	·uu	4000	uccid	エロロコ

getetggett ccagaaaacc ccagcatect tttetgeaga ggggetttet ggagaggagg 1925 gatgctgcct gagtcaccca tgaagacagg acagtgcttc agcctgaggc tgagactgcg 1985 ggatggteet ggggetetgt gtagggagga ggtggeagee etgtagggaa eggggteett 2045 caagttaget caggaggett ggaaageate aceteaggee aggtgeagtg geteaegeet 2105 atgateceag eactttggga ggetgaggeg ggtggateae etgaggttag gagttegaga 2165 ccagcctggc caacatggta aaaccccatc tctactaaaa atacagaaat tagccgggcg 2225 tggtggcggg cacctatagt cccagctact cagaagcctg aggctgggaa atcgtttgaa 2285 cccgggaagc ggaggttgca gggagccgag atcacgccac tgcactccag cctgggcgac 2345 agagcgagag tetgteteaa aagaaaaaaa aaaaageace geeteeaaat getaaettgt 2405 ccttttgtac catggtgtga aagtcagatg cccagagggc ccaggcaggc caccatattc 2465 agtgctgtgg cctgggcaag ataacgcact tctaactaga aatctgccaa ttttttaaaa 2525 aagtaagtac cactcaggcc aacaagccaa cgacaaagcc aaactctgcc agccacatcc 2585 aaccccccac ctgccatttg caccctccgc cttcactccg gtgtgcctgc agccccgcgc 2645 ctccttcctt gctgtcctag gccacaccat ctcctttcag ggaatttcag gaactagaga 2705 tgactgagtc ctcgtagcca tctctctact cctacctcag cctagaccct cctcctcccc 2765 cagaggggtg ggttcctctt ccccactccc caccttcaat tcctgggccc caaacgggct 2825 geoetgeeac titggtaeat ggeeagtgtg ateceaagtg ceagtettgt gtetgegtet 2885 gtgttgcgtg tcgtgggtgt gtgtagccaa ggtcggtaag ttgaatggcc tgccttgaag 2945 ceactgaage tgggatteet ecceattaga gteageette ecceteecag ggecagggee 3005 ctgcagaggg gaaaccagtg tagccttgcc cggattctgg gaggaagcag gttgaggggc 3065 teetggaaag geteagtete aggageatgg ggataaagga gaaggeatga aattgtetag 3125 cagagcaggg gcagggtgat aaattgttga taaattccac tggacttgag cttggcagct 3185 gaactattgg agggtgggag agcccagcca ttaccatgga gacaagaagg gttttccacc 3245 ctggaatcaa gatgtcagac tggctggctg cagtgacgtg cacctgtact caggaggctg 3305

aggggaggat cactggagcc caggagtttg aggctgcagc gagctatgat cgcgccacta 3365 cactccagcc tgagcaacag agtgagaccc tgtctcttaa agaaaaaaaa agtcagactg 3425 ctgggactgg ccaggtttct gcccacattg gacccacatg aggacatgat ggagcgcacc 3485 tgcccctgg tggacagtcc tgggagaacc tcaggcttcc ttggcatcac agggcagagc 3545 cgggaagcga tgaatttgga gactctgtgg ggccttggtt cccttgtgtg tgtgtgttga 3605 tcccaagaca atgaaagttt gcactgtatg ctggacggca ttcctgctta tcaataaacc 3665 tgtttgttt aaaaaaaaa

<210> 54

<211> 461

<212> PRT

<213> Homo sapiens

<400> 54

10 Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 20 25 Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln 40 Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 55 Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 70 75 Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 120 Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 135 Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 155 150 Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 185 Asn Ala Ser Arq Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 210 215 Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 230 235 Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly 250 245 Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 260 265 Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 280 Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro 295 Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 310 315 Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser 325 -330 Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 345 Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 360 Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 375 Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 390 395 Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 410 405 Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 425 Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro 440 Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 455