

PDV 13 2019/2020

Závěr a shrnutí

Michal Jakob

michal.jakob@fel.cvut.cz

Centrum umělé inteligence, katedra počítačů, FEL ČVUT

Hlavní výzvy DS

Asynchronicita

Selhání

Selhání

Jak procesy, tak komunikační kanály mohou v DS selhat.

Selhání procesu

- havárie (crash/fail-stop): proces přestane vykonávat algoritmus (a reagovat na zprávy)
- libovolné (byzantské) selhání:
 proces může pracovat dále (a
 reagovat na zprávy), ale vykonává
 chybný algoritmus (z důvodu
 softwarový chyby nebo úmyslu)

Selhání kanálu

- ztráta zprávy (message drop): zpráva není doručena cílovému procesu (např. kvůli přetížení sítě nebo přetečení zásobníku v OS u přijímacího procesu)
- rozdělení (partitioning): procesy jsou rozdělené do disjunktních množin (oddílů - partitions) tak, že v rámci oddílu je komunikace možná, ale mezi oddíly nikoliv

V případě synchronních DS definujeme ještě **selhání časování**, pokud doba odezvy procesu nebo přenosu zprávy po síti vybočila z dohodnutého **časového rozmezí**.

Synchronní vs. Asynchronní

Asynchronní systém

- Žádné časové limity na relativní rychlost vykonávání procesů.
- Žádné časové limity na trvání přenosu zpráv.
- Žádné časové limity na časový drift lokálních hodin

X

Synchronní systém

- Synchronní výpočty: známe horní limit na relativní rychlost vykonávání procesů.
- Synchronní komunikace: známé horní limit na dobu přenosu zpráv.
- Synchronní hodiny: procesy mají lokální hodiny a je znám horní limit na rychlosti driftu lokálních hodin vzhledem k globálním hodinám.

Dále: Částečně synchronní systém

Korektnost v DS

Živost (Liveness)

Garance, že v DS *časem* dojde k něčemu **dobrému** (bude dosažen žádoucí stav).

(živost prakticky souvisí s dostupností systému)

Bezpečnost (Safety)

Garance, že v DS *nikdy* nedojde k něčemu **špatnému** (nebude dosažen nežádoucí stav).

FLP teorém

FLP teorém

V asynchronním distribuovaném systému **nelze dosáhnout současně bezpečnosti a živosti** distribuovaného výpočtu, pokud v něm může docházet k selháním (byť i jediného procesu).

Řešitelnost problémů

V praxi vždy vyžadujeme bezpečnost a díky částečné synchronicitě ve velkém množství běhů distribuovaných algoritmů dosáhneme výsledků v konečném čase (tzv. konečná živost – eventual liveness).

 existují i pravděpodobnostní algoritmy mající konečnou středního hodnotu běhu

Problémy

Problém (algoritmy)	Model (zjednodušeně)	Garance
Detekce selhání (centrální, kruhový, all-to-all, SWIM)	asynchronost + selhání	živost
Kauzalita a čas (fyzikální, Lamportovy, vektorové hodiny)	asynchronost	bezpečnost + živost
Globální snapshot (Chandy- Lamport)	asynchronost	bezpečnost + živost
Vyloučení procesů (kruhový, Ricart-Agrawala)	asynchronost	bezpečnost + živost
Volba lídra (Raft, kruhový, Bully)	asynchronost + selhání	bezpečnost
Konsensus (Raft)	asynchronost + selhání	bezpečnost

Materiály

Úvod a modely	[Steen] 1.1,1.3; [Coulouris] 2.4.1, 2.4.2	
Detekce selhání	[SWIM]	
Kauzalita a čas	[Steen] 6.1-6.2; [Coulouris] 14.1-14.4	
Globální snapshot	[Coulouris] 14.5	
Vyloučení procesů	[Steen] 6.3; [Coulouris] 15.2	
Volba lídra	[Steen] 6.4; [Coulouris] 15.3	
Konsensus	[Steen] 8.2; [Coulouris] 15.5 [Raft]	

[Steen] Van Steen, M. And Tanenbaum, A.S., 2017. *Distributed systems:* principles and paradigms (3.01 Edition).[link]

[Colouris] Coulouris, G.F., Dollimore, J. and Kindberg, T., 2005. *Distributed* systems: concepts and design.

[SWIM] Das, A., Gupta, I. and Motivala, A., 2002. Swim: Scalable weakly-consistent infection-style process group membership protocol. In Dependable Systems and Networks, 2002. [link]

[Raft] Ongaro, D. and Ousterhout, J.K., 2014, June. In search of an understandable consensus algorithm. In *USENIX Annual Technical Conference*. [link]

Ukončení předmětu

Teoretická zkouška (max 40 bodů) – přihlašování přes KOS:

■ Temíny TBD, ale měly by být (z velké části) v červnu.

Programovací zkouška (max 20 bodů) – přihlašování skrze formulář:

Termíny TBC, aktuálně navrženy pátky dopoledne, začíná se 29.5.

Další termín bude v září (programovací i teoretická).

Zápočet, programovací a teoretická zkouška jsou **nezávislé**, lze udělat v libovolném pořadí.