北京师范大学 2024-2025 学年第二学期高等代数 II 期中考试题 (A 卷)

课程名称:	高等代数 II		任课老师姓名:			
卷面总分:	<u>100</u> 分	考试时长:_	分钟	考试类别: _	闭卷	
院 (系):		专业:		_ 年 级:		
姓 名:		学 号:		_		

一. (20 分) 设 V 是数域 F 上 n 维向量空间, n 为偶数. 对于 V 的一组基 $\alpha_1, \dots, \alpha_n \in V$, 有 $\sigma \in \mathcal{L}(V)$ 满足

$$\sigma(x_1\alpha_1+x_2\alpha_2+\cdots+x_n\alpha_n)=x_n\alpha_1+x_1\alpha_2+\cdots+x_{n-1}\alpha_n.$$

- (1) 求出 σ 在基 $\alpha_1, \dots, \alpha_n$ 下的矩阵和 σ 的特征多项式;
- (2) 当 $F = \mathbb{R}$ 时, 求出 σ 的全部特征值和特征子空间;
- (3) 当 $F = \mathbb{C}$ 时, 判断 σ 能否对角化, 并说明理由.
- 二. (20 分) 设向量空间 $V = M_{m \times n}(F)$, 对于 $A \in M_m(F)$, $B \in M_n(F)$ 定义 V 上的变换 $\sigma: X \mapsto AXB, \forall X \in V$.
 - (1) 证明 σ 是线性变换;
 - (2) 若 A, B 均相似于对角阵, 判断 σ 能否对角化? 并证明你的结论
- 三. (20 分) 设 V 是数域 F 上 n 维向量空间, $f(\lambda)$ 是 $\sigma \in \mathcal{L}(V)$ 的一个零化多项式. 对 于 $g(\lambda) \in F[\lambda]$, 若有 $(f(\lambda), g(\lambda)) = 1$, 证明 $g(\sigma)$ 是可逆线性变换; 并对 $f(\lambda) = \lambda^2 + 1$ 和 $g(\lambda) = \lambda + 1$, 求出 $g(\sigma)^{-1}$.
- 四. (20 分) 设 V 是数域 $F \perp n$ 维向量空间, 对于 $\alpha, \beta \in V$ 和 $\sigma \in \mathcal{L}(V)$, 分别用 $d_{\alpha}(\lambda)$ 和 $d_{\beta}(\lambda)$ 表示 σ 关于 α, β 的极小多项式. 用 W_{α}, W_{β} 分别表示 V 中包含 α, β 的最小 σ 不变子 空间 (即 σ 循环子空间), 若 $(d_{\alpha}(\lambda), d_{\beta}(\lambda)) = 1$, 证明: $V = W_{\alpha} + W_{\beta}$ 的充要条件是

$$deg(d_{\alpha}(\lambda)) + deg(d_{\beta}(\lambda)) = n.$$

- 五. (20 分) 用 M 表示 $M_n(\mathbb{C})$ 中特征多项式为 $\prod_{i=1}^s (\lambda \lambda_i)^{n_i}$, $n_i \geq 6$, 和极小多项式为 $\prod_{i=1}^s (\lambda \lambda_i)^{n_i-3}$ 的集合.
 - (1) 证明矩阵相似是 M 中的一个等价关系;
 - (2) 求出 M 中相似等价类的个数, 并说明理由.