Conceitos Básicos

Estatística

É a ciência que oferece uma coleção de métodos para produzir e obter dados, organizá-los, resumi-los, analisá-los, interpretá-los e deles extrair conhecimento.

Estatística

Métodos estatísticos são essenciais no estudo de situações em que as variáveis de interesse estão sujeitas a flutuações aleatórias.

Este é o caso de estudos na área da saúde.

- Por exemplo, pressão arterial
- varia não só entre indivíduos, como também no mesmo indivíduo.

Bioestatística

Convencionou-se chamar de **Bioestatística** o conjunto de métodos estatísticos usados para o planejamento e análise de dados de estudos de **ciências médicas**, **biológicas** ou, de forma mais geral, da **área de saúde**.

Áreas da Estatística

População e Amostra

População e Amostra

Variável

Característica de interesse a ser analisada.

Variável

Desfechos de saúde

- Morte: Um desfecho ruim, se for antes do tempo
- Doença: Um conjunto de sintomas, sinais físicos e anormalidades laboratoriais
- Desconforto: Sintomas como dor, náusea, dispneia, prurido e zumbido
- Deficiência funcional: Limitação na capacidade de funcional desempenhar as atividades normais em casa, o trabalho ou no lazer
- Descontentamento: Reação emocional à doença e ao seu cuidado, como tristeza e raiva

Estimativa e Parâmetro

Parâmetros são informações extraídas da população

Estimativa e Parâmetro

Estimativas são informações extraídas da amostra

Margem de erro

É a diferença máxima provável entre o valor da estimativa e o verdadeiro valor do parâmetro populacional

Margem de erro

É a diferença máxima provavel entre o valor da estimativa e o verdadeiro valor do parâmetro populacional

$$e = z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

Viés ou Vício

Tecnicamente, é definido como a diferença entre a estimativa e o verdadeiro valor do parâmetro.

Na prática, é considerado como um **erro sistemático**, que ocorre no momento da coleta das informações sobre as variáveis de interesse.

Viés ou Vício

Viés de seleção

Um estudo sobre tabagismo e demência encontrou um potencial viés de seleção em idosos.

O viés de seleção devido à censura pela morte foi uma das explicações para a menor taxa relativa de demência em fumantes com idade mais avançada.

Viés de aferição

Hipertensão do jaleco branco

Aumento na pressão sistólica, quando a pressão é aferida manualmente por um médico ou por enfermeiro sem vínculo prévio com o paciente.

Viés de confusão

Variáveis confundidoras

A relação entre ingestão de antioxidantes e risco de doenças cardiovasculares é potencialmente confundida pelas características do paciente e por comportamentos relacionados tanto ao uso de antioxidantes quanto ao desenvolvimento de doenças cardiovasculares.

Viés de confusão

Variáveis confundidoras

A relação entre ingestão de antioxidantes e risco de doenças cardiovasculares é potencialmente confundida pelas características do paciente e por comportamentos relacionados tanto ao uso de antioxidantes quanto ao desenvolvimento de doenças cardiovasculares

Acaso

As observações sobre as doenças são normalmente feitas em uma amostra de pacientes, uma vez que não é possível estudar todos os pacientes que apresentam a doença em questão.

Acaso

Variação aleatória

As observações sobre as doenças são normalmente feitas em uma amostra de pacientes, uma vez que não é possível estudar todos os pacientes que apresentam a doença em questão.

Viés e Acaso Pressão arterial Medida da pressão arterial verdadeira (cânula Número de observações (aparelho de pressão) intra-arterial) Acaso Viés

Amostragem

Trata-se do precedimento para a coleta da amostra.

Por que amostrar?

- **Economia:** Em geral é mais econômico levantar apenas uma parte da população
- Censo x PNAD

Amostragem

- ► **Tempo:** Maior rapidez; por vezes, nem há tempo suficiente para observar toda a população
- A três dias das eleições, não haveria tempo para sondar toda a população
- Confiabilidade: Avaliando número menor de elementos, é possível dar mais atenção e cuidado a cada elemento observado.

Amostragem

- **Detalhamento:** É possível aprofundar a análise, por exemplo, avaliando mais variáveis.
- Análises destrutivas: Neste caso, não faz sentido avaliar toda a população!
- Por exemplo, em um lote de cobaias, algumas são sacrificadas para estudos histológicos.

Representatividade

Qualidade das amostras de terem ou reproduzirem, sem tendenciosidade, as propriedades da população Deseja-se sempre amostras representativas!

Unidade Amostral

Elemento, **definido pela pesquisa**, ao qual corresponde cada observação

Pode ser um indivíduo ou um conjunto de indivíduos

Sorteio

Procedimento que confere a **todos os elementos** de um conjunto a **mesma probabilidade** de serem tomados

Amostragem aleatória

Quando algum **mecanismo de sorteio** é utilizado para compor a amostra

Mecanismos físicos

Números Aleatórios

Números aleatórios entre 0,000 e 0,999 SHIFT Ran#=

Números Aleatórios

Procedimentos do sorteio

Sorteio de n elementos de um total de N

- ▶ **Método 1**: utilizando n números aleatórios
 - 1. Enumere os elementos da população de 1 a N
 - 2. Gere um número aleatório entre 0,000 e 0,999
 - 3. O elemento sorteado é aquele identificado pelo número:

$$0,5+rac{N}{0.999} imes$$
 no aleatório gerado

4. Repita o processo n vezes

Sorteio de n elementos de um total de N

Exemplo: Em uma turma de Estatística, há N=41 alunos matriculados. Podemos numerá-los conforme a ordem alfabética.

- Suponha que desejamos sortear n = 3 alunos.
- Suponha ainda que os números aleatórios tenham sido

0,567

0,024

0,788

Sorteio de n elementos de um total de N

Os alunos sorteados serão...

$$0,5+\frac{41}{0,999}\times 0,567=23,77\approx 24 \to \text{aluno }24$$

$$0,5+\frac{41}{0,999}\times 0,024=1,48\approx 1 \to \text{aluno }1$$

$$0,5+\frac{41}{0,999}\times 0,788=32,84\approx 33 \to \text{aluno }33$$

Prática

- Dos 12 alunos matriculados na disciplina EST104 neste semestre, queremos sortear 4 para comporem uma amostra
- Para isso, usaremos o método 1 gerando números aleatórios via calculadora!

- Método 2: utilizando N números aleatórios
- Gera-se um número aleatório para cada um dos N elementos da população
- Ordena-se os elementos da população conforme os números aleatórios (a consequência disso é "embaralhar" os elementos da população)
- 3. Toma-se os n primeiros elementos neste novo conjunto. Estes são os elementos sorteados.

Exemplo: Suponha que disponhamos de 12 voluntários para um ensaio clínico em que queremos comparar um novo medicamento com um placebo.

Temos que sortear 6 pessoas que receberão o medicamento (Grupo 1), e 6 pessoas que receberão o placebo (Grupo 2).

- Procedimento
 - 1. Identifique os voluntários de 1 a 12
 - 2. Gere um número aleatório para cada um
 - 3. Ordene-os conforme os números aleatórios
 - 4. Os 6 primeiros estarão no Grupo 1, e os outros 6 no Grupo 2

Table 1

Voluntário	Número Aleatório
Indivíduo 1	0,964
Indivíduo 2	0,017
Indivíduo 3	0,043
Indivíduo 4	0,199
Indivíduo 5	0,900
Indivíduo 6	0,786
Indivíduo 7	0,177
Indivíduo 8	0,181
Indivíduo 9	0,309
Indivíduo 10	0,003
Indivíduo 11	0,247
Indivíduo 12	0,665

Table 2

Grupo	Número Aleatório	Voluntário
1	0,003	Indivíduo 10
1	0,017	Indivíduo 2
1	0,043	Indivíduo 3
1	0,177	Indivíduo 7
1	0,181	Indivíduo 8
1	0,199	Indivíduo 4
2	0,247	Indivíduo 11
2	0,309	Indivíduo 9
2	0,665	Indivíduo 12
2	0,786	Indivíduo 6
2	0,900	Indivíduo 5
2	0,964	Indivíduo 1

Prática

- ▶ Dos 12 alunos matriculados na disciplina EST104 neste semestre, queremos formar dois grupos
- Para isso, usaremos o método 2 gerando números aleatórios via calculadora!

Quando o sorteio não é possível ou viável

- Inacessibilidade: Nem sempre todos os elementos da população estão disponíveis
- Ex.: Estudo de casos de doença (apenas) dentre os pacientes atendidos em um centro

- **Operacionalidade:** Nem sempre é viável identificar ou numerar todos os elementos, mesmo estando acessíveis.
- Ex.: Amostra de folhas de uma árvore para uma análise de composição química
- Populações contínuas: Se a população é formada de material contínuo (como líquido ou gás), não é possível enumerar os elementos da população
- Ex.: amostras de água em pontos do rio para avaliar poluentes

Populações infinitas

Se a amostra é não aleatória, deve-se ao menos tentar garantir sua representatividade

- ➤ Coleta a esmo: Apesar da subjetividade possível, consiste em tentar evitar tendenciosidade, coletando "ao acaso"
- entrevistar pessoas na rua, sem preferência
- coletar folhas em diferentes alturas e profundidades da copa

Quando parte da população é inacessível, buscar investigar se o segmento amostrado a representa, ou se devemos restringir as conclusões

Muitas vezes, a amostra a esmo, para fins de análise, é considerada aleatória.

Mas atenção sobre a representatividade!

Aplicações potenciais

Aplicações

- Levantamentos epidemiológicos
- prevalência de doenças
- identificação de grupos mais susceptíveis
- Avaliação de fatores de risco de doenças
- Comparação de tratamentos para doenças
- tratamento medicamentoso vs cirúrgico
- diferentes associações de medicamentos

Aplicações

- Comparação de medicamentos: bioequivalência
- Avaliação de eficácia de vacinas
- Estratégias de diagnóstico e de tratamentos para estabelecer conduta clínica
- Avaliação de serviços de ambulatórios e hospitais

Exemplos de estudos

Impacto de celular na saúde

Neste estudo, os autores revisaram dados de 63 estudos conduzidos entre 1994 e 2022. A revisão analisou cânceres cerebrais em adultos e crianças, assim como cânceres nas glândulas salivares e leucemia, e os riscos relacionados ao uso de telefones móveis, estações de base e transmissão, assim como exposição ocupacional e indicou que não houve alta dos casos.

Consumo de carne vermelha e câncer

Parra-Soto et al. (2022) investigaram diferentes tipos de dieta (onívora, apenas com carne branca, pescetariana e vegetariana/vegana) e sua associação com o desenvolvimento de câncer colorretal. Esses estudos indicam que limitar o consumo de carne é uma medida importante para a redução do risco de câncer colorretal.

Medicamentos para disfunção erétil e perda de audição

Os autores descrevem o caso de um paciente que desenvolveu perda auditiva neurossensorial súbita unilateral possivelmente relacionada ao uso de vardenafil para disfunção erétil. Este caso fornece mais evidências de que o consumo de inibidores da PDE-5 deve ser considerado como uma possível causa em pacientes que apresentam perda auditiva neurossensorial súbita.