

Teorema de compacitate

Teorema 2.56 (Teorema de compacitate)

O mulțime de enunțuri Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

unul din rezultatele centrale ale logicii de ordinul întâi

4

Teorema de compacitate - aplicații

Fie $\mathcal L$ un limbaj de ordinul întâi.

Propoziția 2.57

Clasa \mathcal{L} -structurilor finite nu este axiomatizabilă, adică nu există o mulțime de enunțuri Γ astfel încât

(*) pentru orice \mathcal{L} -structură \mathcal{A} , $\mathcal{A} \models \Gamma \iff \mathcal{A}$ este finită. **Dem.:** Presupunem prin reducere la absurd că există $\Gamma \subseteq Sen_{\mathcal{L}}$ a.î. (*) are loc. Fie

$$\Delta := \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie \mathcal{A} o \mathcal{L} -structură finită a.î. $|\mathcal{A}| \geq \max\{n_1, \ldots, n_k\}$. Atunci $\mathcal{A} \models \exists^{\geq n_i}$ pentru orice $i = 1, \ldots, k$ și $\mathcal{A} \models \Gamma$ deoarece \mathcal{A} este finită.

Teorema de compacitate - aplicații

Prin urmare, $A \models \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$, de unde rezultă că $A \models \Delta_0$. Așadar, Δ_0 este satisfiabilă.

Aplicând Teorema de compacitate, rezultă că

$$\Delta = \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

are un model \mathcal{B} .

Deoarece $\mathcal{B} \models \Gamma$, \mathcal{B} este finită.

Deoarece $\mathcal{B} \models \{\exists \geq n \mid n \geq 1\}$, rezultă că \mathcal{B} este infinită.

Am obținut o contradicție.

Corolar 2.58

Clasa mulțimilor nevide finite nu este axiomatizabilă în $\mathcal{L}_{=}$.

Teorema de compacitate - aplicații

Propoziția 2.59

Clasa L-structurilor infinite este axiomatizabilă, dar nu este finit axiomatizabilă.

Dem.: Notăm cu \mathcal{K}_{Inf} clasa \mathcal{L} -structurilor infinite. Conform Propoziției 2.55, pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \in \mathcal{K}_{Inf} \iff A \text{ este infinită} \iff \mathcal{A} \models \{\exists^{\geq n} \mid n \geq 1\}.$$

Prin urmare,

$$\mathcal{K}_{Inf} = Mod(\{\exists^{\geq n} \mid n \geq 1\})$$

deci e axiomatizabilă.

Teorema de compacitate - aplicații

Presupunem că \mathcal{K}_{Inf} este finit axiomatizabilă, deci există

$$\Gamma := \{\varphi_1, \dots, \varphi_n\} \subseteq Sen_{\mathcal{L}} \text{ a.i. } \mathcal{K}_{Inf} = Mod(\Gamma).$$

Fie $\varphi := \varphi_1 \wedge \ldots \wedge \varphi_n$. Atunci $\mathcal{K}_{Inf} = Mod(\varphi)$. Rezultă că pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A}$$
 este finită $\iff \mathcal{A} \notin \mathcal{K}_{Inf} \iff \mathcal{A} \not\vDash \varphi \iff \mathcal{A} \vDash \neg \varphi$.

Așadar, clasa \mathcal{L} -structurilor finite este axiomatizabilă, ceea ce contrazice Propoziția 2.57.

Corolar 2.60

Clasa mulțimilor infinite nu este finit axiomatizabilă în $\mathcal{L}_{=}$.

Teorema de compacitate - aplicații

Propoziția 2.61

Fie Γ o mulțime de enunțuri ale lui $\mathcal L$ cu proprietatea

(*) pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$. Atunci Γ are un model infinit.

Dem.: Fie

$$\Delta := \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie $m:=\max\{n_1,\ldots,n_k\}$. Conform (*), Γ are un model finit $\mathcal A$ a.î. $|\mathcal A|\geq m$. Atunci $\mathcal A\vDash\exists^{\geq n_i}$ pentru orice $i=1,\ldots,k$, deci $\mathcal A\vDash\Delta_0$.

Aplicând Teorema de compacitate, rezultă că Δ are un model \mathcal{B} . Prin urmare, \mathcal{B} este un model infinit al lui Γ .

Teorema de compacitate - aplicații

Propoziția 2.62

Dacă un enunț φ este adevărat în orice \mathcal{L} -structură infinită, atunci există $m \in \mathbb{N}$ cu proprietatea că φ este adevărat în orice \mathcal{L} -structură finită de cardinal > m.

Dem.: Presupunem că nu e adevărat. Fie $\Gamma := \{ \neg \varphi \}$. Atunci pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$. Aplicând Propoziția 2.61, rezultă că Γ are un model infinit \mathcal{A} . Prin urmare, $\mathcal{A} \not\vDash \varphi$, ceea ce contrazice ipoteza.

Teorema de compacitate - aplicații

Propoziția 2.63

Fie Γ o mulțime de enunțuri cu proprietatea că

(*) pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$.

Atunci

- (i) Γ are un model infinit.
- (ii) Clasa modelelor finite ale lui Γ nu este axiomatizabilă.
- (iii) Clasa modelelor infinite ale lui Γ este axiomatizabilă, dar nu este finit axiomatizabilă.

Dem.: Exercițiu.

70

9

Modele non-standard ale aritmeticii

Considerăm limbajul $\mathcal{L}=(\dot{+},\dot{\times},\dot{S},\dot{0})$, unde $\dot{+},\dot{\times}$ sunt simboluri de operații binare, \dot{S} este simbol de operație unară și $\dot{0}$ este simbol de constantă.

Pentru orice $n \in \mathbb{N}$, definim prin inducție \mathcal{L} -termenul $\Delta(n)$ astfel:

$$\Delta(0) = \dot{0}, \quad \Delta(n+1) = \dot{S}\Delta(n).$$

Fie \mathcal{L} -structura $\mathcal{N}=(\mathbb{N},+,\cdot,S,0)$. Atunci $\Delta(n)^{\mathcal{N}}=n$ pentru orice $n\in\mathbb{N}$. Prin urmare, $\mathbb{N}=\{\Delta(n)^{\mathcal{N}}\mid n\in\mathbb{N}\}$.

Definiția 2.64

O \mathcal{L} -structură \mathcal{A} se numește non-standard dacă există $a \in \mathcal{A}$ a.î. $a \neq \Delta(n)^{\mathcal{A}}$ pentru orice $n \in \mathbb{N}$. Un astfel de element a se numește element non-standard.

Modele nonstandard ale aritmeticii

Fie $n_0 > \max\{n_1, \dots, n_k\}$. Considerăm extensia \mathcal{N}^+ a lui \mathcal{N} la \mathcal{L}^+ definită astfel: $c^{\mathcal{N}^+} := n_0$. Atunci $\mathcal{N}^+ \models \Gamma_0$.

Aplicând Teorema de compacitate, rezultă că Γ are un model

$$\mathcal{A} = (A, +^{\mathcal{A}}, \cdot^{\mathcal{A}}, S^{\mathcal{A}}, 0^{\mathcal{A}}, c^{\mathcal{A}}).$$

Rezultă că $a := c^{\mathcal{A}}$ este element non-standard al lui \mathcal{A} .

Modele nonstandard ale aritmeticii

Teoria lui \mathcal{N} se definește astfel:

$$Th(\mathcal{N}) := \{ \varphi \in Sen_{\mathcal{C}} \mid \mathcal{N} \vDash \varphi \}.$$

Se poate demonstra ușor că $Th(\mathcal{N})$ este o teorie.

Teorema 2.65

Există un model non-standard al teoriei $Th(\mathcal{N})$.

Dem.: Fie c un simbol de constantă nou, $\mathcal{L}^+ = \mathcal{L} \cup \{c\}$ și

$$\Gamma = Th(\mathcal{N}) \cup \{\neg(\Delta(n) = c) \mid n \in \mathbb{N}\}.$$

Demonstrăm că Γ este satisfiabilă folosind Teorema de compacitate. Fie Γ_0 o submulțime finită a lui Γ ,

$$\Gamma_0 \subseteq Th(\mathcal{N}) \cup \{\neg(\Delta(n_1) = c), \ldots, \neg(\Delta(n_k) = c)\}.$$

02