Joshua Mitchell CS 7312 Assignment 3

1. The following database has 5 transactions. Let min sup = 60 percent (3/5) and min conf = 80 (4/5) percent.

$$\begin{bmatrix} \{m, o, n, k, e, y\} \\ \{d, o, n, k, e, y\} \\ \{m, a, k, e\} \\ \{m, u, c, k, y\} \\ \{c, o, k, i, e\} \end{bmatrix}$$

- (40 points). Run the Apriori algorithm and list Ci (candidate itemset) and Li (frequent itemset) for each iteration i. For Ci, please show the result after applying self-joining and pruning.
- List all the strong association rules in the format of {item 1, item 2} ⇒ {item 3}.

$$C_1 \Rightarrow L_1 \Rightarrow C_2 \Rightarrow L_2 \Rightarrow C_3 \Rightarrow L_3$$
:

set	sup				set	sup									
\mathbf{m}	3			-		1	-				set	eun			
О	3				mo	1						sup	_		
n	2	set	sup		mk	3		set	sup		mko	1			
k	5	m	3	_	me	2		mk	3	_	mke	2			
e	4	0	3		my	2		ok	3		mky	2		set	sup
	3	\Rightarrow ,	5	\Rightarrow	ok	3	\Rightarrow		3	\Rightarrow	oke	3	\Rightarrow	oke	3
у	ე 1	K			oe	3		oe lee			oky	2		oke	3
d	1	е	4		oy	2		ke	4		oey	2			
a	1	У	3		ke	4		ky	3		key	2			
u	1				ky	3					kmo	1			
$^{\mathrm{c}}$	2					$\frac{3}{2}$					KIIIO	1			
i	1				ey	<u> </u>									

Strong association rules:

 $\begin{array}{l} o \implies k,\; e:\; 60\%\; \sup,\; 100\%\; conf \\ o,\; e \implies k:\; 60\%\; \sup,\; 100\%\; conf \\ o,\; k \implies e:\; 60\%\; \sup,\; 100\%\; conf \end{array}$

- 2. For a given dataset with min $\sup = 8$ (absolute support), the closed patterns are $\{a,b,c,d\}$ with support of 9, $\{a,b,c\}$ with support of 11, and $\{a,b,d\}$ with support of 13.
 - (10 points). List all the max-patterns.
 - (30 points). List all the frequent patterns together with their absolute support values.

Pattern	Max?	Frequent?	Absolute Support Value
abcd	Yes	Yes	9
abc	No	Yes	11
abd	No	Yes	13
bcd	No	Yes	9
acd	No	Yes	9
ab	No	Yes	13
ac	No	Yes	11
ad	No	Yes	13
bc	No	Yes	11
bd	No	Yes	13
cd	No	Yes	9