

CS32G020 应用笔记 REV 0.8

芯海科技(深圳)股份有限公司

地 址:深圳市南山区蛇口南海大道1079号花园城数码大厦A座9楼

电 话: +(86 755)86169257 传 真: +(86 755)86169057

网 站: www.chipsea.com 邮 编: 518067

微信号: 芯海科技

版本历史

历史版本	修改内容	版本日期		
Rev 0.1	文件起草	2018.7.01		
Rev 0.2	Rev 0.2 1. 增加 PD HardReset 说明			
	2. 增加定时器分频说明			
	3. PB2、PB3 输出说明			
Rev 0.3	1. 增加配置代码选项的语句要放在 main()函数的外面,不能	2018.08.20		
	放在函数内部			
	2. 增加 VDD 外接电容说明			
	3. 增加 LDO 外界电容说明			
Rev 0.4	1. 增加 LDROM FLASH 读取例子	2018.08.21		
	2. 增加定时器分频使用例子			
	3. 修改 LDO_CAP 电容说明			
Rev 0.5	1. 增加 QC 下拉电阻使用说明	2018.08.24		
Rev 0.6	1. 增加用 VDD 作为 ADC 参考电压使用说明	2018.10.25		
Rev 0.7	1. 增加用 VDD 作为 ADC 参考电压时对 VDD 的要求	2019.08.28		
	2. 增加 VDD 电容值要求			
	3. 增加 CC 引脚作为 PD 通信脚外围 ESD 问题			
	4. 增加 CS32G02X 死电池功能说明			
	5. 增加华为协议和三星协议对芯片 VDD 要求			
	6. 增加 CS32G02X 高压口使用注意事项			
	7. 增加 CS32G02X 标准方案源代码编译问题解决方法			
	8. 增加 CS32G02X 芯片仿真工具推荐			
Rev 0.8	1. 增加 keil 添加校验码步骤说明	2019.10.08		

2. 增加烧录步骤说明

目 录

版	本人	万史		2
目	茅	₹		4
1			·应用	
	1.1		窗口开门狗应用问题	
		1.1.1	「「「「「」」」	6
	1.2		PD 时钟配置问题	
	1.3		LDROM 中进行 FLASH 读取问题	
	1.4		使用芯海 BOOTLOADER 注意问题	7
	1.5		CC 口问题	8
	1	.5.1	CC 做 AD 口检测问题	8
	1	1.5.2	2 CC 口输出高电平问题	8
	1	1.5.3	3 CC 口作为 PD 通信引脚	8
	1.6		PB2、PB3 做 AD 检测问题	
	1.7		PD 接收 HARD RESET 复位问题	8
	1.8		定时器分频值进行配置问题	8
	1.9		PB2、PB3 口输出问题	8
	1.1	0	程序配置代码选项问题	8
	1.1	1	QC 下拉电阻使用问题	9
	1.1	2	VDD作为 ADC 参考电压使用问题	9
	1.1	3	使用外部参考电压作为 ADC 参考电压问题	9
	1.1	4	芯片 LDO_CAP 引脚外接电容问题	9
1	1.1:	5	VDD 外接电容问题	10
	1.1	6	CS32G02X 死电池功能说明	10
	1 1	7	华为协议和三星协议芯片 VDD 供由要求	10

聚点滴之芯・成浩瀚之海

	1.18	CS32G020 芯片高压口注意事项		
	1.19	CS3	32G020 标准方案源代码问题	11
2	工具	Į		13
	2.1		L	
	2.1.		编译时少头文件解决	
	2.1.	2	Jlink 版本差异,导致芯片检测不到	13
	2.1.	3	CS32G02X 芯片仿真工具推荐	13
	2.1.	4	CS32G02X 芯片校验码生成工具添加到 keil	14
	2.2	CS3	32G020 芯片烧录步骤	15
	2.3	CS3	32G020 芯片通过 C 口在线升级步骤	23

1 芯片应用

1.1 窗口开门狗应用问题

1.1.1 喂狗操作

喂狗前需判断 WWDT 当前计数器值是否在 0 到 WINCMP 之间。

当计数器的值在 0 到 WINCMP 之间时软件才可以写 WWDTRLD 来重载 WWDT 计数器的值。否则软件写 WWDTRLD 将导致 WWDT 会引起芯片复位。

```
Eg:
```

1.2 PD 时钟配置问题

在进行 PD 时钟配置更改时,需要等待至少 200us 的时间,否则会引起 PD 工作异常。

Eg:

```
//PD clock
PD_ClkDivConfig (PDx,74);
delay_us(200);
PD_ClkDivConfig (PDx,82);
```

1.3 LDROM 中进行 FLASH 读取问题

```
在 LDROM 中读取第一页 FLASH 数据时,建议使用函数:
void FMC_ReadWords (uint32_t adr, uint16_t sz, uint32_t *buf, ISPCLKType ispclk)
(该函数详细说明见库函数说明文档)
```

Eg:

6/23 CS-QR-YF-054A0

......

 $FMC_ReadWords((FlashDev.CurHalfPageAddress.Word\&0xFFFFFF00), Flash_PageSize/4, (void *)\&TxPDBuffer[4], ISP_8M)$

读取第一页之后的 FLASH 数据可以使用 FMC_ReadWords 函数,也可以使用指针的方式: Eg:

uint32_t FlashBuffer;

FlashBuffer = (volatile uint32_t *)(0x00010000);

1.4 使用芯海 BootLoader 注意问题

CS32G020 出厂时 LDROM 已经带有芯海 BootLoader 程序,如果客户要用芯海 BootLoader 功能,需要注意以下问题:

- 代码选项中 ISP 和 IAP 功能需要开启
- 代码选项中需配置为由 LDROM 启动

1.5 CC 口问题

1.5.1 CC 做 AD 口检测问题

CC 口做 AD 口检测时模拟输入最大信号量为: VDD-1.2V

1.5.2 CC 口输出高电平问题

CC 口作为普通 IO 口输出高电平为: VDD-1.2V

1.5.3 CC 口作为 PD 通信引脚

CS32G02X 系列芯片 CC 引脚与 TYPEC 口连接时,需要外部对地连接静电 TVS 管,并且需要并联一个 330pf 电容。

1.6 PB2、PB3 做 AD 检测问题

PB2、PB3 做 AD 口检测时模拟输入最大信号量为: VDD-1.2V

1.7 PD 接收 Hard reset 复位问题

PD 模块接收到 Hard reset 复位时,需要将 BIST 模式退出中断标志位清零。

1.8 定时器分频值进行配置问题

对定时器分频值进行配置时,两次配置时间间隔要大于4个定时器时钟。

Eg:

TIM_SetClockDivision(TIM0, TMx_CR_TxRate_CLK_div1); delay_us(100);

TIM_SetClockDivision(TIM0, TMx_CR_TxRate_CLK_div2);

1.9 PB2、PB3 口输出问题

PB2、PB3 口只能做开漏输出,并且输出值是取反的。

Eg:

GPIO_WriteBit(GPIOB, GPIO_PinSource3, Bit_SET); //PB3 输出低电平 GPIO_WriteBit(GPIOB, GPIO_PinSource3, Bit_RESET); //PB3 输出高电平

1.10 程序配置代码选项问题

在 keil 中,配置代码选项的语句要放在 main()函数的外面,不能放在函数内部,否则配置代码选项不起作用。

Eg:

```
const unsigned int CONFIG1 __at(0x00300004) = 0x0040ffbf; const unsigned int CONFIG2 __at(0x00300008) = 0x1fffe000; const unsigned int CONFIG3 __at(0x0030000c) = 0x0000ffff; int main(void)  \{ \qquad \dots \}
```

1.11 OC 下拉电阻使用问题

使用 QC 下拉电阻进行 QC 协议识别时,应当关闭 GPIO 的下拉电阻,否则两个下拉电阻同时存在会影响 QC 识别。

1.12 VDD 作为 ADC 参考电压使用问题

如果把芯片 VDD 作为 ADC 参考电压,VDD 电源是有要求的,理论上如果是 100KHz 速率 (10uS),那么电源的干扰频率不能超过 100KHz,否则转换的数据数字滤波和软件滤波都无法滤除直接影响 ADC 的测量精度。具体电源超出转换速率/2(100KHz/2)的干扰电压纹波至少要小于 VDD/2^13(12 比特分辨率+1)。如果是 5V 电源超过 50KHz 的电源干扰要小于 0.6mV,干扰频率低于 50KHzd 的通过数字或软件滤波处理。

例如:

如果是 50Hz 工频干扰,通过软件滤波;如果是 1MHz 的干扰,干扰信号必须小于 VDD/2^13. 电源频率的干扰信号的频率可以通过频谱分析得出。

1.13 使用外部参考电压作为 ADC 参考电压问题

应用 SAR_ADC_VREF 引脚时需要并联一个 1uF 电容到地。如需要使用外部电压作为 ADC 的参考电压,把相应的电压信号输入到 CS32G020 的 SAR_ADC_VREF 引脚。

1.14 芯片 LDO CAP 引脚外接电容问题

芯片 LDO_CAP 上必须接 4.7uF 电容, 否则芯片会工作不正常。

1.15 VDD 外接电容问题

芯片 VDD 上接的电容必须大于 LDO_CAP 引脚的电容,否则芯片会工作不正常。建议接 VDD 接 10uF 电容,如果我们的芯片是用外部的电源芯片(有可能是板级的 LDO),它本身已经要求在板级加了一个有较大电容(10uF),则无需再加。

1.16 CS32G02X 死电池功能说明

死电池功能是指:系统电池没电情况下,CC口默认下拉 5.1K 电阻 CS32G02X 系列芯片 QFN32 封装的才有死电池功能,并且死电池起效条件为 VDD 电压低于 1V。如下表:

芯片型号	封装	死电池	死电池起效条件	
CS32G020K8U6	QFN32	是	VDD电压低于1V	
CS32G021K8U6	QFN32	是	VDD电压低于1V	
CS32G020E8U6	QFN24	否	/	

对于锂电产品(如移动电源)建议如下:

- 1.建议选取**保护后完全截止没有虚电漏出来**的锂电保护芯片,否则可能会造成 CS32G020 死电池失效
- 2.如果锂电保护保证不了电池电压漏过来的虚电低于 1V,需要在**锂电保护电路端**增加以下电路:

1.17 华为协议和三星协议芯片 VDD 供电要求

如需用 CS32G02X 芯片支持华为协议和三星协议,芯片 VDD 供电需采用 3.3V 的 LDO,否则协议兼容性会存在问题。

1.18 CS32G020 芯片高压口注意事项

CS32G020 有 6 个高压口, 分别为 PB2、PB3、CC1_A、CC1_B、 CC2_A、CC2_B, 耐压最高 22V。 高压口使用注意事项:

- 高压口做 AD 检测时模拟输入最大信号量为: VDD-1.2V
- 高压口作为普通 IO 口输出高电平为: VDD-1.2V
- 高压口作为普通 IO 口设置为输入上拉时, IO 电平为: VDD-1.2V
- 具有死电池的 CC 口上恒定有一个等效 100K 左右的电阻

所以高压口都不建议做数码管、LED 显示控制, CC 脚不建议做单端模拟信号采集。

1.19 CS32G020 标准方案源代码问题

CS32G020标准方案源代码程序编译后可能会出现以下错误:

```
Program Size: Code=47912 RO-data=560 RW-data=156 ZI-data=2612
FromELF: creating hex file...
After Build - User command #1: java -jar ..\PROJECT\OBJ\JavaChecksum.jar OBJ

*** Error: CreateProcess failed, Command: 'java -jar ..\PROJECT\OBJ\JavaChecksum.jar OBJ'

".\OBJ\CSA36FX30_SDK_V1.axf" - 1 Error(s), 0 Warning(s).

Target not created.
Build Time Elapsed: 00:00:04
```

原因:程序运行时需要安装 JDK,该程序用于 Keil 生成程序校验码,该校验码与烧录器烧录时显示的校验一致

解决方法 1: 禁用 JDK

点击"魔术棒",点击"User",取消"插件",点击"OK"

解决方法 2: 下载 JDK (强烈推荐)

下载链接: https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

2 工具

2.1 Keil

2.1.1 编译时少头文件解决

如果编译发现没有 absacc.h, 请将"缺失头文件"文件夹下的 absacc.h 文件拷到 Misc 下。

2.1.2 **Jlink 版本差异,导**致芯片检测不到

每个程序员使用的 Jlink 版本也许不一样,当一个程序员的程序给另一个程序员用时,Jlink 版本不同,会造成芯片检测不到。只需把 project 下的 jlink 相关文件删除,重新编译,即可检测到芯片。

2.1.3 CS32G02X 芯片仿真工具推荐

CS32G02X 芯片仿真推荐使用 J-Link 工具,版本推荐使用 V9.3 版本。部分 ST-Link 存在不兼容问题。

2.1.4 CS32G02X 芯片校验码生成工具添加到 keil

第一步:将 "CS32G020推广包\keil 校验码工具"复制到项目"..\PROJECT\OBJ\"目录下。

第二步:打开 MDK Option,点击 USER 页,把勾选的 Run #1 修改成

"..\PROJECT\OBJ\CSChecksum.exe"

第三步: 执行全部编译,即可看到 Checksum。

2.2 CS32G020 芯片烧录步骤

注意: 烧录请使用 CSWrite V2.3.2 以上版本

第一步: 选择 CS32G020 芯片型号

第二步:选择需要烧录的HEX文档

第三步:点击"LOAD"后弹出下载配置菜单

勾选下载应用程序、下载 boot 程序、下载代码选项,如需解密,则勾选解密

注意: 勾选解密后, CS32G020 的 Boot 程序会被刷掉, 需要重新下载

第四步:点击"确认"

第五步:点击"保存"注意:不要修改文件名字

18/23 CS-QR-YF-054A

02

第六步:点击"确定"

第七步: 重新选择芯片型号 "CS32G020"

19/23 CS-QR-YF-054A

02

第八步: 选择刚刚保存的"MergedFile.hex"文件

第九步:点击"LOAD"后弹出下载配置菜单

勾选下载应用程序、下载 boot 程序、下载代码选项,如需解密,则勾选解密

20/23 CS-QR-YF-054A

本资料为芯海科技专有财产,非经许可,不得复制、翻印或转变其他形式使用。

02

第十步:点击确认。

第十一步:确认程序校验码及 Boot 检验码后点击"Program",完成烧录。

2.3 CS32G020 芯片通过 C 口在线升级步骤

详细步骤见推广包中的 CS32G020 推广包

 $\label{lem:cs32G02XConfigTool_User's_Guide_V1.1_cn} $$ \CS32G02XConfigTool_User's_Guide_V1.1_cn_{\circ} $$$