

National Technical Systems Test Report for Electromagnetic Interference (EMI) Testing of the Poll Place Scanner (DS300)

Prepared For

Pro V&V, Inc. | 6705 Odyssey Drive, Suite C | Huntsville, AL 35806

Performed By

National Technical Systems | 1736 Vista View Drive | Longmont, CO 80504-5242 | 303-776-7249 | www.nts.com

aren Norton Eugene Devito
Preparer EMI Project Engineer

Revision History

Rev.		Description							
0	Initial Release		05/17/2022						
1	Test data correct	ed with testing performed in April 2022.	05/17/2022						
2	Table 3.0-1:	Added S/Ns DS3021420007, DS3021420011, and DS3021420008.	05/19/2022						
	Table 5.0-1:	Corrected S/Ns for Sections 5.1, 5.5, 5.6, and 5.7.							
	Section 5.1.2:	Corrected test results to indicate that the test item met the specified requirements.							
	Section 5.1.3:	Corrected S/N.							
	Section 5.2.3:	Corrected S/N.							
	Section 5.5.3:	Corrected S/N.							
	Section 5.6.3:	Corrected S/N.							
	Section 5.7.3:	Corrected S/Ns.							
	Section 6.0 remo	oved.							

Table of Contents

Introd	luction		
Refer	ences		
Produ	ct Select	ion and Description	
3.1		ty Classification	
		equirements	
4.1		quipment	
4.2		rement Uncertainties	
		ons and Results	
1 est 1 5.1		ostatic Discharge	
J.1	5.1.1	Test Procedure	
	5.1.2	Test Result	
	5.1.3	Test Datasheet	
	5.1.4	Test Photographs	
	5.1.6	Test Equipment List	
5.2		ed RF Immunity	
	5.2.1	Test Procedure	
	5.2.2	Test Result	
	5.2.3	Test Datasheets	
	5.2.4	Test Photographs	
	5.2.5	Test Equipment List	
5.3	Electri	cal Fast Transient / Burst	
	5.3.1	Test Procedure	
	5.3.2	Test Result	
	5.3.3	Test Datasheets	
	5.3.4	Test Photographs	
	5.3.5	Test Equipment List	
5.4	_	Immunity	
	5.4.1	Test Procedure	
	5.4.2	Test Result	
	5.4.3	Test Datasheets	
	5.4.4 5.4.5	Test Photographs	
5.5		Test Equipment List cted RF Immunity	
5.5	5.5.1	Test Procedure	
	5.4.2	Test Result	
	5.5.3	Test Datasheets	
	5.5.4	Test Photographs	
	5.5.5	Test Equipment List	
5.6		Frequency H-Field Immunity	
	5.6.1	Test Procedure	
	5.6.2	Test Result	
	5.6.3	Test Datasheets	
	5.6.4	Test Photographs	
	5.6.5	Test Equipment List	
5.7	_	e Dips and Interruptions	
	5.7.1	Test Procedure	
	5.7.2	Test Result	
	5.7.3	Test Datasheets	
	5.7.4	Test Photographs	
	5.7.5	Test Equipment List	

List of Tables

able 3.0-1: Product Identification - Equipment Under Test (EUT)	5
able 4.2-1: Measurement Uncertainties	5
able 5.0-1: Summary of Test Information & Results	<i>6</i>
able 5.1-1: Electrostatic Discharge Test Equipment List	
able 5.2-1: Radiated RF Immunity Test Equipment List	
able 5.3-1: Electrical Fast Transient / Burst Test Equipment List	17
able 5.4-1: Surge Immunity Test Equipment List	
able 5.5-1: Conducted RF Immunity Test Equipment List	25
able 5.6-1: Power Frequency H-Field Immunity Test Equipment List	
able 5.7-1: Voltage Dips and Interruptions Test Equipment List	

1.0 Introduction

This document presents the test procedures used and the results obtained during the performance of an Electromagnetic Interference (EMI) test program. The test program was conducted to assess the ability of the specified Equipment Under Test (EUT) to successfully satisfy the requirements listed in Section 2.0.

2.0 References

The following references listed below form a part of this document to the extent specified herein.

- Test Specifications: EAC 2005 VVSG
- IEC/EN 61000-4-2
- IEC/EN 61000-4-3
- IEC/EN 61000-4-4
- IEC/EN 61000-4-5
- IEC/EN 61000-4-6
- IEC/EN 61000-4-8
- IEC/EN 61000-4-11
- Pro V&V, Inc. Purchase Order(s) 2022-008, dated 03/15/2022
- National Technical Systems (NTS) Quote(s) OP0594543, dated 09/07/2021
- ISO/IEC 17025:2017(E) General Requirements for the Competence of Testing and Calibration Laboratories, dated 11/1/2017

3.0 Product Selection and Description

Pro V&V, Inc. selected and provided the test sample(s) to be used as the Equipment Under Test. Details below:

Table 3.0-1: Product Identification - Equipment Under Test (EUT)

Item	Qty.	Name/Description	Model Number	Serial Number
1	4	4 Poll Place Scanner	DS300	DS3021420004, DS3021420007,
1	4	Fon Flace Scaliner	D3300	DS3021420011, DS3021420008

3.1 Security Classification

Non-classified

4.0 General Test Requirements

4.1 Test Equipment

The instrumentation used in the performance of these tests is periodically calibrated and standardized within manufacturer's rated accuracies and are traceable to the National Institute of Standards and Technology. The calibration procedures and practices are in accordance with ANSI/NCSL Z540-1 and ISO 17025:2017. Certification of calibration is on file subject to inspection by authorized personnel.

4.2 Measurement Uncertainties

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of CISPR and therefore no adjustment of the data for measurement uncertainty is required.

Table 4.2-1: Measurement Uncertainties

Measurement Type	Measurement Unit	Frequency Range
Radiated Immunity	V/m	80-2,700 MHz
ESD	kV	N/A
EET	Voltage	N/A
EFT	Timing	N/A
Surge	Voltage	N/A
RF Common Mode (CDN Method)	Vrms	N/A
RF Common Mode (BCI Method)	Vrms	N/A

5.0 Test Descriptions and Results

Table 5.0-1: Summary of Test Information & Results

Section	Test	Specification	Test Facility	Test Date	Model #	Serial #	Test Result
5.1	Electrostatic Discharge - Retest	IEC/EN 61000-4-2	Longmont	04/01/2022	DS300	DS3021420007	Complies
5.2	Radiated RF Immunity	IEC/EN 61000-4-3	Longmont	04/03/2022	DS300	DS3021420004	Complies
5.3	Electrical Fast Transient / Burst	IEC/EN 61000-4-4	Longmont	04/03/2022	DS300	DS3021420004	Complies
5.4	Surge Immunity	IEC/EN 61000-4-5	Longmont	04/02/2022	DS300	DS3021420004	Complies
5.5	Conducted RF Immunity	IEC/EN 61000-4-6	Longmont	04/02/2022	DS300	DS3021420008	Complies
5.6	Power Frequency H-Field Immunity	IEC/EN 61000-4-8	Longmont	04/02/2022	DS300	DS3021420008	Complies
						DS3021420007	
5.7	Voltage Dips and Interruptions	IEC/EN 61000-4-11	Longmont	04/02/2022	DS300	DS3021420011	Complies
						DS3021420004	_

5.1 Electrostatic Discharge

5.1.1 Test Procedure

IEC/EN 61000-4-2

5.1.2 Test Result

The DS300 was subjected to the Electrostatic Discharge Test per IEC/EN 61000-4-2. The test item met the specification requirements for Electrostatic Discharge.

5.1.3 Test Datasheet

Electrostatic Discharge per IEC / EN 61000-4-2

Manufacturer:	Pro V&V			Project Number:	PR145960
Customer Representative:	Michael Walker		_	Test Area:	GP #1
Model:	DS300			S/N:	DS3021420007
Standard Referenced:	EAC 2005 VVSG	Ì		Date:	April 1, 2022
Temperature:	18°C	Humidity:	45%	Pressure:	838 mb
Input Voltage:	120Vac/60Hz				
Configuration of Unit:	Processing Ballot	s (Configuratio	on #3)		
Test Engineer:	T. Wittig/W. Koe	nig			

PR145960-4-2.doc FR0100

1101.0000 1 2100	•							110100			
Test Location	Voltage Level (kV)	Pola	arity -	Number Pulse of Pulses Per Secon		Comments	Criteria Met	Pass / Fail			
Indirect Discharge Points											
VCP	8	X	X	15/20	1	Front Side	A	Pass			
VCP	8	X	X	15/20	1	Left Side	A	Pass			
VCP	8	X	x	15/20	1	Right Side	A	Pass			
VCP	8	X	x	15/20	1	Back Side	A	Pass			
НСР	2, 4	X	X	10	1	Edge of HCP at Front of UUT	NA	NA			
				Contact	Discharge I	Points - RED Arrows.					
Figure 1	2, 4	X	X			No contact discharge points found					
				Air Di	scharge Poi	nts - BLUE Arrows.					
Figure 1	2, 4, 8, 15	X	x	10	1	Discharges found at Display	A	Pass			

5.1.4 Test Photographs

Electrostatic Discharge Test Setup

Figure 1. Electrostatic Discharge Test Points

5.1.6 Test Equipment List

Table 5.1-1: Electrostatic Discharge Test Equipment List

ID Number	Manufacturer	Model #	Serial # Description		Cal Date	Cal Due
1040	Fluke	83-3	69811230	Multimeter/Frequency Meter (WC059669)	09/23/2021	09/23/2022
WC080746	ONYX16	HAEF-ONYX16	188607	Gun (ESD Simulator)	01/03/2022	01/03/2023
1964	EXTECH	Datalogger 42270	1026959	Temperature and Humidity Meter	01/19/2022	01/19/2023

5.2 Radiated RF Immunity

5.2.1 Test Procedure

IEC/EN 61000-4-3

5.2.2 Test Result

The DS300 was subjected to the Radiated RF Immunity Test per IEC/EN 61000-4-3. No anomalies were noted as a result of the testing.

5.2.3 Test Datasheets

Radiated RF Immunity per IEC / EN 61000-4-3

Manufacturer:	Pro V&V			Project Number:	PR145960
Customer Representative:	Michael Walker			Test Area:	GP0
Model:	DS300			S/N:	DS3021420004
Standard Referenced:	EAC 2005 VVSG			Date:	April 3, 2022
Temperature:	20.6°C	Humidity:	18%	Pressure:	837 mb
Input Voltage:	120Vac/60Hz				
Configuration of Unit:	Processing ballots	Config#3	_		
Test Engineer:	Casey Lockhart	•			

PR145960-4-3.doc FR0100

110110700 1.											
Frequency	_	1	dulation	1 _	Step Size	Field	Polarity	Dwell	Comments	Criteria Met	Pass / Fail
(MHz)	Type	%	Freq	Form	(%)	(V/m)	(V or H)	(sec)		Witet	1 411
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Front	A	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		A	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Right	A	Pass
P80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		A	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Back	A	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		A	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Left	A	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		A	Pass

5.2.4 Test Photographs

Radiated RF Immunity Test Setup – Right Side

Radiated RF Immunity Test Setup – Back Side

Radiated RF Immunity Test Setup – Left Side

5.2.5 Test Equipment List

Table 5.2-1: Radiated RF Immunity Test Equipment List

	Tuble 3.2 1. Radiated Rt Immunity Test Equipment List											
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due						
1139	Wiltron	68369B	675016	Synthesized Signal Generator, 10 MHz - 40 GHz	05/17/2021	05/17/2022						
1181	EMCI	RFS	V2.5.8	Initial Release 02 July 2004	NA	NA						
1453	Giga-tronics	GT-8888A	8888A0336	10 MHz to 8 GHz, +20 dBm, 25 Vdc Power Meter (WC07	07/27/2021	07/27/2022						
1456	Werlatone	C3908-10	98095	1500 Watts, 50 dB Dual Directional Coupler (WC0597	06/14/2021	06/14/2022						
1478	Ophir	5127F	1100	RF Amplifier, 200 Watt, 20 - 1000 MHz	NA	NA						
1722	ETS -Lindgren	3142B	1624	Antenna	NA	NA						
1761	Braden Shielding Systems	RF Shield Room	N/A	GP0	06/14/2021	06/14/2022						
1954	Amplifier Research	FP5000	20644	Isotropic Field Probe 10kHz to 1 GHz	06/08/2021	06/08/2022						
1962	EXTECH Instruments	Datalogger 42270	1026960	Temperature and Humidity Meter	06/14/2021	06/14/2022						

5.3 Electrical Fast Transient / Burst

5.3.1 Test Procedure

IEC/EN 61000-4-4

5.3.2 Test Result

The DS300 was subjected to the Electrical Fast Transient/Burst Test per IEC/EN 61000-4-4. No anomalies were noted as a result of the testing.

5.3.3 Test Datasheets

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Pro V&V Manufacturer: Project Number: PR145960 GP #2 Customer Representative: Michael Walker Test Area: Model: DS300 S/N: DS3021420004 EAC 2005 VVSG Standard Referenced: Date: April 3, 2022 Pressure: 837 mb Temperature: 18.2°C Humidity: 21% Input Voltage: 120Vac/60Hz Configuration of Unit: Processing Ballots (Configuration #3) Test Engineer: Casey Lockhart

PR145960-4-4.doc FR0100

111 15/00 4 4 4.000															
Voltage (kV)	Polarity + -				Time (sec)	Injection Type	L 1	L 2	L 3	N	P E	Rep Freq.	Comments	Criteria Met	Pass / Fail
2.0	Х		60	CDN	х					100k Hz	AC	A	Pass		
2.0		Х	60	CDN	х					100k Hz		A	Pass		
2.0	X		60	CDN		Х				100k Hz		A	Pass		
2.0		X	60	CDN		х				100k Hz		A	Pass		
2.0	X		60	CDN					X	100k Hz		A	Pass		
2.0		Х	60	CDN					X	100k Hz		A	Pass		
2.0	Х		60	CDN	х	Х			X	100k Hz		A	Pass		
2.0		Х	60	CDN	х	х			X	100k Hz		A	Pass		

5.3.4 Test Photographs

Electrical Fast Transient Test Setup

Electrical Fast Transient Test Setup – AC Mains

5.3.5 Test Equipment List

Table 5.3-1: Electrical Fast Transient / Burst Test Equipment List

				1 1		
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1040	Fluke	83-3	69811230	Multimeter/Frequency Meter (WC059669)	09/23/2021	09/23/2022
1184	KeyTek	CE Ware	4.0	KeyTek EMC Pro Control Software for EFT, Surge, H-F	NA	NA
1372	Tektronix	TDS2002B	C103489	Oscilloscope, 60 MHz, 2-channel (WC059683)	07/02/2021	07/02/2022
1566	Thermo Fisher Scientific	EMC Pro Plus	1502199	Advanced EMC Immunity Tester	11/11/2021	11/11/2022
1962	EXTECH Instruments	Datalogger 42270	1026960	Temperature and Humidity Meter	06/14/2021	06/14/2022

5.4 Surge Immunity

5.4.1 Test Procedure

IEC/EN 61000-4-5

5.4.2 Test Result

The DS300 was subjected to the Surge Immunity Test per IEC/EN 61000-4-5. No anomalies were noted as a result of the testing.

5.4.3 Test Datasheets

Surge Immunity per IEC / EN 61000-4-5

Manufacturer:	Pro V&V			Project Number:	PR145960
Customer Representative:	Michael Walker			Test Area:	GP #2
Model:	DS300			S/N:	DS3021420004
Standard Referenced:	EAC 2005 VVSG			Date:	April 2, 2022
Temperature:	17.9°C	Humidity:	20%	Pressure:	837 mb
Input Voltage:	120Vac/60Hz				
Configuration of Unit:	Processing Ballots	(Configurati	on #3)	-	
Test Engineer:	Casey Lockhart				

PR145960-4-5.doc FR0100

PR145960-4	45960-4-5.doc										FR010				
Voltage (kV)	Pola	arity -	L 1	L 2	L 3	N	P E	Phase (deg)	Number of Pulses	Delay (sec)	Comments	Criteria Met	Pass / Fail		
0.5	x		X			X		0	5	45	Differential Mode	A	Pass		
0.5		X	X			X		0	5	45		A	Pass		
0.5	x		X			X		90	5	45		A	Pass		
0.5		x	X			X		90	5	45		A	Pass		
0.5	х		X			X		180	5	45		A	Pass		
0.5		х	X			X		180	5	45		A	Pass		
0.5	х		X			X		270	5	45		A	Pass		
0.5		х	X			X		270	5	45		A	Pass		
0.5	x		X				х	0	5	45	Common Mode Line	A	Pass		
0.5		х	X				Х	0	5	45		A	Pass		
0.5	х		X				X	90	5	45		A	Pass		
0.5		X	X				X	90	5	45		A	Pass		
0.5	x		X				X	180	5	45		A	Pass		
0.5		X	X				X	180	5	45		A	Pass		
0.5	х		X				х	270	5	45		A	Pass		
0.5		х	X				х	270	5	45		A	Pass		
0.5	x					х	Х	0	5	45	Common Mode Neutral	A	Pass		
0.5		Х				X	х	0	5	45		A	Pass		
0.5	х					X	х	90	5	45		A	Pass		
0.5		Х				X	х	90	5	45		A	Pass		
0.5	х					X	х	180	5	45		A	Pass		
0.5		Х				X	Х	180	5	45		A	Pass		
0.5	Х	_				X	X	270	5	45		A	Pass		

Surge Immunity per IEC / EN 61000-4-5

Manufacturer:	Pro V&V			Project Number:	PR145960
Customer Representative:	Michael Walker			Test Area:	GP #2
Model:	DS300			S/N:	DS3021420004
Standard Referenced:	EAC 2005 VVSG			Date:	April 2, 2022
Temperature:	17.9°C	Humidity:	20%	Pressure:	837 mb
Input Voltage:	120Vac/60Hz				
Configuration of Unit	Processing Rallots	(Configuration	on #3)		

Test Engineer: Casey Lockhart

PR145960-4-5.doc FR0100

Voltage (kV)	Pola	rity 	L 1	L 2	L 3	N	P E	Phase (deg)	Number of Pulses	Delay (sec)	Comments	Criteria Met	Pass / Fail
0.5	'	X				X	x	270	5	45		A	Pass
0.5		Λ				Λ	Λ	270		73		11	1 433
1.0	Х		х			х		0	5	60	Differential Mode	A	Pass
1.0		X	X			X		0	5	60		A	Pass
1.0	х		X			X		90	5	60		A	Pass
1.0		х	х			X		90	5	60		A	Pass
1.0	Х		X			X		180	5	60		A	Pass
1.0		Х	х			Х		180	5	60		A	Pass
1.0	х		X			X		270	5	60		A	Pass
1.0		х	Х			Х		270	5	60		A	Pass
1.0	х		Х				X	0	5	60	Common Mode Line	A	Pass
1.0		х	Х				Х	0	5	60		A	Pass
1.0	х		Х				X	90	5	60		A	Pass
1.0		х	Х				Х	90	5	60		A	Pass
1.0	х		Х				х	180	5	60		A	Pass
1.0		Х	Х				Х	180	5	60		A	Pass
1.0	х		Х				X	270	5	60		A	Pass
1.0		Х	х				х	270	5	60		A	Pass
1.0	х					Х	х	0	5	60	Common Mode Neutral	A	Pass
1.0		х				X	х	0	5	60		A	Pass
1.0	х					X	х	90	5	60		A	Pass
1.0		Х				X	Х	90	5	60		A	Pass
1.0	х					X	х	180	5	60		A	Pass
1.0		х				X	Х	180	5	60		A	Pass
1.0	х					х	x	270	5	60		A	Pass
1.0		х				X	Х	270	5	60		A	Pass
2.0	х		х			Х		0	5	60	Differential Mode	A	Pass
2.0		Х	х			х		0	5	60		A	Pass
2.0	х		Х			х		90	5	60		A	Pass

Pressure: 837 mb

Surge Immunity per IEC / EN 61000-4-5

Temperature:

Manufacturer:	Pro V&V	Project Number:	PR145960
Customer Representative:	Michael Walker	Test Area:	GP #2
Model:	DS300	S/N:	DS3021420004

Standard Referenced: EAC 2005 VVSG Date: April 2, 2022

Humidity: 20%

Input Voltage: 120Vac/60Hz

Configuration of Unit: Processing Ballots (Configuration #3)

17.9°C

Test Engineer: Casey Lockhart

PR145960-4-5.doc FR0100

Voltage	Pola	arity	L	L	L	N	P	Phase	Number	Delay	Comments	Criteria	Pass /
(kV)	+	-	1	2	3		E	(deg)	of Pulses	(sec)		Met	Fail
2.0		х	X			х		90	5	60		A	Pass
2.0	х		X			X		180	5	60		A	Pass
2.0		X	X			х		180	5	60		A	Pass
2.0	X		X			X		270	5	60		A	Pass
2.0		X	X			X		270	5	60		A	Pass
2.0	X		X				x	0	5	60	Common Mode Line	A	Pass
2.0		X	X				X	0	5	60		A	Pass
2.0	X		X				x	90	5	60		A	Pass
2.0		X	X				x	90	5	60		A	Pass
2.0	X		X				X	180	5	60		A	Pass
2.0		X	X				X	180	5	60		A	Pass
2.0	X		X				X	270	5	60		A	Pass
2.0		X	X				X	270	5	60		A	Pass
2.0	X					X	X	0	5	60	Common Mode Neutral	A	Pass
2.0		X				X	x	0	5	60		A	Pass
2.0	X					X	X	90	5	60		A	Pass
2.0		X				X	X	90	5	60		A	Pass
2.0	X					X	X	180	5	60		A	Pass
2.0		X				X	X	180	5	60		A	Pass
2.0	X					X	X	270	5	60		A	Pass
2.0		X				x	X	270	5	60		A	Pass

5.4.4 Test Photographs

Surge Immunity Test Setup

Surge Immunity Test Setup – AC Mains

5.4.5 Test Equipment List

Table 5.4-1: Surge Immunity Test Equipment List

				mey rest Equipment Elst		
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1040	Fluke	83-3	69811230	Multimeter/Frequency Meter (WC059669)	09/23/2021	09/23/2022
1184	KeyTek	CE Ware	4.0	KeyTek EMC Pro Control Software for EFT, Surge, H-F	NA	NA
1372	Tektronix	TDS2002B	C103489	Oscilloscope, 60 MHz, 2-channel (WC059683)	07/02/2021	07/02/2022
1566	Thermo Fisher Scientific	EMC Pro Plus	1502199	Advanced EMC Immunity Tester	11/11/2021	11/11/2022
1962	EXTECH Instruments	Datalogger 42270	1026960	Temperature and Humidity Meter	06/14/2021	06/14/2022

5.5 Conducted RF Immunity

5.5.1 Test Procedure

IEC/EN 61000-4-6

5.4.2 Test Result

The DS300 was subjected to the Conducted RF Immunity Test per IEC/EN 61000-4-6. No anomalies were noted as a result of the testing.

5.5.3 Test Datasheets

Conducted RF Immunity per IEC / EN 61000-4-6

Manufacturer:	Pro V&V			Project Number:	PR145960
Customer Representative:	Michael Walker			Test Area:	GP1
Model:	DS300			S/N:	DS3021420008
Standard Referenced:	EAC 2005 VVSG			Date:	April 2, 2022
Temperature:	17.9°C	Humidity:	20%	Pressure:	837 mb
Input Voltage:	120Vac/60Hz				
Configuration of Unit:	Processing Ballots	s (Configuration	on #3)	<u> </u>	
Test Engineer:	Casey Lockhart				

PR145960-4-6.doc FR0100

Frequency	Modulation		Modulation		Modulation L		Dwell	Comments	Criteria	Pass /
(MHz)	Type	%	Freq	(Vrms)	(sec)		Met	Fail		
0.150 - 80.0	AM	80	1 kHz	10	3	AC using M3 CDN	A	Pass		

5.5.4 Test Photographs

Conducted RF Immunity Test Setup

Conducted RF Immunity Test Setup – AC Mains

5.5.5 Test Equipment List

Table 5.5-1: Conducted RF Immunity Test Equipment List

	Table 5.5-1. Conducted RT Immunity Test Equipment List												
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due							
1040	Fluke	83-3	69811230	Multimeter/Frequency Meter (WC059669)	09/23/2021	09/23/2022							
1480	EMCI	EMCI-CDN-M3- 16	EMCI015	M3 CDN, 16A, 250 VAC	02/03/2022	02/03/2023							
1499	Rigol Technologies, Inc.	DSA815	DSA8B1503000 53	9 kHz to 1.5 GHz Spectrum Analyzer (WC059693)	10/04/2021	10/04/2022							
1532	Werlatone	C9475-13	102545	100 Watt Dual Directional Coupler, 10 kHz to 250 M	02/03/2022	02/03/2023							
1541	Amplifier Research	75A250A	0445076	75 Watt Amplifier (10kHz - 250MHz)	NA	NA							
1544	IFR	2023A	202305/809	9 kHz - 1.2 GHz Signal Generator (WC059591)	05/06/2021	05/06/2022							
1959	ETS- LINDGREN	C47213	10176987-1	TILE! Software License Key	NA	NA							
1962	EXTECH Instruments	Datalogger 42270	1026960	Temperature and Humidity Meter	06/14/2021	06/14/2022							

5.6 Power Frequency H-Field Immunity

5.6.1 Test Procedure

IEC/EN 61000-4-8

5.6.2 Test Result

The DS300 was subjected to the Power Frequency H-Field Immunity Test per IEC/EN 61000-4-8. No anomalies were noted as a result of the testing.

5.6.3 Test Datasheets

Power Frequency H-field Immunity per IEC / EN 61000-4-8

Manufacturer:	Pro V&V			Project Number:	PR145960
Customer Representative:	Michael Walker			Test Area:	GP1
Model:	DS300			S/N:	DS3021420008
Standard Referenced:	EAC 2005 VVSG			Date:	April 2, 2022
Temperature:	20.9°C	Humidity:	19%	Pressure:	837 mb
Input Voltage:	120Vac/60Hz				
Configuration of Unit:	Processing Ballots	(Configuration	on #3)		
Test Engineer:	Casey Lockhart				

PR145960-4-8.doc FR0100

Frequer 50	10 (Hz)	Field Strength (A/m)	EUT Axis Location	Dwell Time (sec)	Comments	Criteria Met	Pass / Fail
Х		30	X	60		A	Pass
	X	30	X	60		A	Pass
Х		30	Y	60		A	Pass
	Х	30	Y	60		A	Pass
Х		30	Z	60		A	Pass
	X	30	Z	60		A	Pass

5.6.4 Test Photographs

Power Frequency H-field Immunity Test Setup X axis

Power Frequency H-field Immunity Test Setup Y axis

Power Frequency H-field Immunity Test Setup Z axis

5.6.5 Test Equipment List

Table 5.6-1: Power Frequency H-Field Immunity Test Equipment List

Tuble etc 17 Tower Trequency 11 Trota Immunity Tobs Equipment 2.50									
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due			
1040	Fluke	83-3	69811230	Multimeter/Frequency Meter (WC059669)	09/23/2021	09/23/2022			
1372	Tektronix	TDS2002B	C103489	Oscilloscope, 60 MHz, 2-channel (WC059683)	07/02/2021	07/02/2022			
1484	Pearson Electronics	110A	88593	Current Monitor, 1 Hz to 20 MHz (WC070471)	07/12/2020	07/12/2022			
1505	EMCI	EMCI-4-8-2m- 1.5m	0002	HField Loop, 2m x 1.5m	NA	NA			
1548	California Instruments/Ame tek	1251P	1423A06347	AC Power supply	NA	NA			
1962	EXTECH Instruments	Datalogger 42270	1026960	Temperature and Humidity Meter	06/14/2021	06/14/2022			

5.7 Voltage Dips and Interruptions

5.7.1 Test Procedure

IEC/EN 61000-4-11

5.7.2 Test Result

The DS300 was subjected to the Voltage Dips and Interruptions Test per IEC/EN 61000-4-11. No anomalies were noted as a result of the testing.

5.7.3 Test Datasheets

Voltage Dips and Interrupts per IEC / EN 61000-4-11

Manufacturer:	Pro V&V			Project Number:	PR145960
Customer Representative:	Michael Walker			Test Area:	GP #2
Model:	DS300			S/N:	DS3021420007
					DS3021420011
					DS3021420004
Standard Referenced:	EAC 2005 VVSG			Date:	April 2, 2022
Temperature:	19°C	Humidity:	21%	Pressure:	834 mb
Input Voltage:	120Vac/60Hz				
Configuration of Unit:	Tabulating Ballots	(Configuration	on #3)		
Test Engineer:	Casey Lockhart	·		·	

PR145960-4-11.doc FR0100

% No. of		I	Phase Angle (deg)			Time	Number	Comments	Criteria	Pass /
Nominal	Cycles	0	90	180	270	between dropouts (sec)	of tests		Met	Fail
70%	0.6	х				10	3		A	Pass
70%	0.6		х			10	3		A	Pass
70%	0.6			Х		10	3		A	Pass
70%	0.5				X	10	3		A	Pass
40%	6.0	х				10	3		A	Pass
40%	6.0		X			10	3		A	Pass
40%	6.0			X		10	3		A	Pass
40%	6.0				X	10	3		A	Pass
0%	300	Х				10	3		A	Pass
0%	300			X		10	3		A	Pass
					Line	Voltage Varia	ation Tests			
129Vac Line	Voltage Va	riation	s (+7.5%	% of nor	ninal 120	OV) 2hrs. S/N I	DS302142000	07	A	Pass
105Vac Line	Voltage Va	riation	s (-12.5	% of no	minal 12	0V) 2 Hrs. S/N	DS3021420	011	A	Pass
Surges of +1	5% line vari	iations	of nomi	nal volta	age (138)	V) 2 Hrs. S/N I	DS302142000)7	A	Pass
Surges of -15	5% line vari	ations o	of nomi	nal volta	ge (102V	/) 2 Hrs. S/N Г	S302142001	1	A	Pass

5.7.4 Test Photographs

Voltage Dips and Interruptions Test Setup

Voltage Dips and Interruptions Test Setup

5.7.5 Test Equipment List

Table 5.7-1: Voltage Dips and Interruptions Test Equipment List

	Tuble 3.7 11 Voltage Dips and Interruptions Test Equipment List									
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due				
1040	Fluke	83-3	69811230	Multimeter/Frequency Meter (WC059669)	09/23/2021	09/23/2022				
1184	KeyTek	CE Ware	4.0	KeyTek EMC Pro Control Software for EFT, Surge, H-F	NA	NA				
1372	Tektronix	TDS2002B	C103489	Oscilloscope, 60 MHz, 2-channel (WC059683)	07/02/2021	07/02/2022				
1520	California Instruments (AMETEK)	5001IX-CTS	1341A03198	5kVA AC Power Source	NA	NA				
1566	Thermo Fisher Scientific	EMC Pro Plus	1502199	Advanced EMC Immunity Tester	11/11/2021	11/11/2022				
1964	EXTECH	Datalogger 42270	1026959	Temperature and Humidity Meter	01/19/2022	01/19/2023				

End of Test Report