ELEC 531 HW3-A: Quadratic Minimization

Ender Erkaya

November 7, 2021

Contents

Quadratic Minimization
a) Gradient of the Function
b) Condition Parameters
c) Step Size Selection
d) Gradient Descent with Constant Step Size
e) Armijo's Rule Line Search Gradient Descent
f) Nesterov's Accelerated Gradient Descent
g) Visualization of Convergence
h) Convergence of Objective Functions Plots

Listings

Quadratic Minimization

clearvars

a) Gradient of the Function

$$\nabla f = -A^T(b - Ax) - A^T(b - Ax) = -2A^T(b - Ax)$$

$$\nabla^2 f = 2A^T A$$

```
load("Question1Data.mat")
x_solution = (A'*A)\(A'*b);
obj_value = norm(b-A*x_solution)^2;
```

b) Condition Parameters

```
n = size(A,2);
eigenvalues_A = eig(2*A'*A);
L = max(eigenvalues_A); % Lipschitz constant
m = min(eigenvalues_A); % strong convexity
```

A'A operates onto R^2 . It has 2 eigenvalues: $\{688,5700\}$

The function is strongly convex since with strong convexity parameter

$$m = \lambda_{min}(\nabla^2 f) = 688 > 0$$

The function is smooth(bounded curvature), ie L-Lipschitz continuous gradient with Lipschitz constant

$$L = \lambda_{max}(\nabla^2 f) = 5700$$

c) Step Size Selection

```
mu = 2/(L+m);
```

Reference: Theorem 3.12 p 279, Convex Optimization: Algorithms and Complexity, Bubeck Step size is chosen as $\mu=2/(L+m)=3.13e-4$. The bound $1/L \le \mu \le min\{2/L,1/m\}$ ensures linear convergence, utilizes quadratic upper bounds stated in the lectures, ie:

$$f(x^{(i)}) - f^* \le c^k \frac{L}{2} ||(x^1 - x^*)||^2_2$$

Using chosen μ , the update rule is given as.

$$x^{(i+1)} = x - \mu \nabla (f(x^{(i)}))$$

d) Gradient Descent with Constant Step Size

```
num_of_iter
                   = 100:
                   = zeros(n,num_of_iter+1);
x_constant
objective_constant = zeros(num_of_iter+1,1);
x initial
                   = randn(n,1);
% Initializations
x_{constant}(:,1)
                       = x_initial;
objective_constant(1,1) = norm(b-A*x_constant(:,1))^2;
                        = mu;
mu_constant
% Gradient Descent with Constant Step Size
for it = 1:num_of_iter
    x_constant(:,it+1)
                               = x_constant(:,it) - mu_constant * (2*A
       '*(A*x_constant(:,it)-b));
    objective_constant(it+1,1) = norm(b - A * x_constant(:,it+1))^2;
end
```

e) Armijo's Rule Line Search Gradient Descent

Initializations

```
x_backtracking
                          = zeros(n,num_of_iter+1);
objective_backtracking
                          = zeros(num_of_iter+1,1);
                       = x_initial;
x_backtracking(:,1)
objective_backtracking(1,1)= norm(b-A*x_backtracking(:,1))^2;
beta
                          = 1/2;
                           = 1e-3;
gamma
iteration
                          = zeros(num_of_iter,1);
% Gradient Descent with Backtracking Line Search aka Armijo's Rule
% Gradient Descent with Constant Step Size
for it = 1:num_of_iter
   % Line Search
```

f) Nesterov's Accelerated Gradient Descent

Initializations

```
x_nesterov
                      = zeros(n,num_of_iter+1);
y_nesterov
                      = zeros(n,num_of_iter+1);
objective nesterov
                     = zeros(num_of_iter+1,1);
x_nesterov(:,1)
                     = x_initial;
objective_nesterov(1,1) = norm(b-A*x_nesterov(:,1))^2;
                       = L/m ; % condition number
gamma
                       = (1-sqrt(K))/(sqrt(K)+1);
% reference:
% https://blogs.princeton.edu/imabandit/2014/03/06/nesterovs-
   accelerated-gradient-descent-for-smooth-and-strongly-convex-
   optimization/
% Gradient Descent Updates via Nesterov's Accelerated Approach
for it = 1:num_of_iter
    temp_gradient = (2 * A' * (A*x_nesterov(:,it) - b));
    y_nesterov(:,it+1) = x_nesterov(:,it) - (1/L) * temp_gradient;
    x_nesterov(:,it+1) = (1 - gamma) * y_nesterov(:,it+1) + gamma *
       y_nesterov(:,it);
    objective_nesterov(it+1,1) = norm(b-A*x_nesterov(:,it+1))^2;
end
```

g) Visualization of Convergence

h) Convergence of Objective Functions Plots

```
figure
semilogy(0:num_of_iter,objective_constant-obj_value);
hold on
semilogy(0:num_of_iter,objective_backtracking-obj_value,'r');
hold on
semilogy(0:num_of_iter,objective_nesterov-obj_value,'m');
grid on
xlabel('number of iterations','Interpreter','latex');
ylabel('$f(x^{{(k)}})-f^**','Interpreter','latex');
legend('Constant Step Size','Backtracking','Nesterov','Interpreter','
    latex');
title('Objective Value Convergence')
```


Figure 2: