NBA teams revenue analysis

2023-03-02

Purpose: To investigate the factors that will affect NBA teams revenue using regression analysis.

Factors: team wins, revenue, market size, number of championships

data\$market_size <- as.numeric(data\$market_size)</pre> data\$num_champ <- as.numeric(data\$num_champ)</pre>

```
links: 1. NBA official 2. Forbes
```

```
#import library and create dataset
library(tidyr)
library(jtools)
data <- read.delim("/Users/chingshawn/Desktop/NBA.txt", header=FALSE)</pre>
names(data) <- c("team", "revenue", "wins", "salary_expenses", "market_size", "num_champ")</pre>
```

```
# make sure all the values are numeric
data$revenue <- as.numeric(data$revenue)</pre>
data$wins <- as.numeric(data$wins)</pre>
data$salary_expenses <- as.numeric(data$salary_expenses)</pre>
```

remove NA data and show the table data <- na.omit(data)</pre>

dat	a	(, , , , , , , , , , , , , , , , , , ,					
##		team	revenue	wins	salary_expenses	market_size	num_champ
##	1	Atlanta Hawks	282	43	10.0		1
##	2	Boston Celtics	361	51	12.6	14.75	17
##	3	Brooklyn Nets	405	44	11.0	11.61	0
##	4	Charlotte Hornets	269	43	7.5	3.19	0
##	5	Chicago Bulls	352	46	9.7	14.37	6
##	6	Cleveland Cavaliers	325	44	8.6	6.52	1
##	7	Dallas Mavericks	364	52	11.4	12.73	1
##	8	Denver Nuggets	273	48	10.7	3.90	0
##	9	Detroit Pistons	278	23	7.0	4.73	3
##	10	Golden State Warriors	765	53	13.6	30.24	7
##	11	Houston Rockets	350	20	3.8	11.05	2
##	12	Indiana Pacers	264	25	7.6	2.96	0
##	13	Los Angeles Clippers	362	42	12.8	13.18	0
##	14	Los Angeles Lakers	465	33	12.0	28.72	17
##	15	Memphis Grizzlies	272	56	8.3	3.57	0
##	16	Miami Heat	326	53	9.9	10.20	3
##	17	Milwaukee Bucks	352	51	12.8	6.80	2
##	18	Minnesota Timberwolves	271	46	9.5	3.51	0
##	19	New Orleans Pelicans	268	36	9.8	2.59	0
##	20	New York Knicks	452	37	10.5	28.21	2
##	21	Oklahoma City Thunder	274	24	6.5	4.08	1
##	22	Orlando Magic	272	22	6.6	4.02	0
##	23	Philadelphia 76ers	345	51	10.0	10.29	3
##	24	Phoenix Suns	302	64	11.7	7.11	0
##	25	Portland Trail Blazers	291	27	10.0	5.09	1
##	26	Sacramento Kings	279	30	8.8	5.35	1
##	27	San Antonio Spurs	306	34	4.9	5.27	5
##	28	Toronto Raptors	299	48	9.6	7.22	1
##	29	Utah Jazz	308	49	6.6	4.96	0

#Regression Analysis: Want to show affect of each factor on revenue

Washington Wizards 291 35

30

```
#Regression line (wins on Revenue)
reg_wins <- lm(revenue~wins, data=data)</pre>
plot(data$wins, data$revenue, xlab = "wins", ylab = "Revenue in millions of dollars")
abline(lm(revenue~wins, data=data),col="red")
```

6.44


```
#Regression line (salary expenses on revenue)
reg_salary <- lm(revenue~salary_expenses, data=data)</pre>
plot(data$salary_expenses, data$revenue, xlab = "salary expense in millions of dollars", ylab = "Revenue in milli
ons of dollars")
abline(lm(revenue~salary_expenses, data=data),col="red")
```


reg_market <- lm(revenue~market_size, data=data)</pre> plot(data\$market_size, data\$revenue,xlab="Market size in millions of dollars", ylab="Revenue in millions of dolla abline(lm(revenue~market_size, data=data),col="red")

reg_pop <- lm(revenue~num_champ, data=data)</pre> plot(data\$num_champ, data\$revenue, xlab = "number of championships", ylab = "Revenue in millions of dollars") abline(lm(revenue~num_champ, data=data),col="red")

from

method

MODEL INFO: ## Observations: 30 ## Dependent Variable: revenue

```
## Type: OLS linear regression
## MODEL FIT:
## F(4,25) = 23.20, p = 0.00
## R^2 = 0.79
## Adj. R^2 = 0.75
## Standard errors: OLS
## -----
                        Est. S.E. t val. p
## -----
## (Intercept) 192.67 39.29 4.90 0.00
## wins 0.76 0.99 0.76 0.45
## market_size 11.90 1.66 7.17 0.00
## salary_expenses 0.83 5.55 0.15 0.88
## num_champ -2.95 2.62 -1.13 0.27
## -----
library(gtsummary)
tbl_regression(reg_all)
## Registered S3 methods overwritten by 'broom':
```

##	tidy.glht tidy.summary.glht				
		Characteristic	Beta	95% CI ¹	p-value
		wins	0.76	-1.3, 2.8	0.5
		market_size	12	8.5, 15	<0.001

salary_expenses 0.83 -11, 12 0.9 num_champ -3.0 -8.4, 2.5 0.3 CI = Confidence Interval ## ## Attaching package: 'huxtable'
CI = Confidence Interval library(huxtable) ##
library(huxtable) ##
##

as_flextable export_summs(reg_wins, reg_salary, reg_market, reg_pop, scale = FALSE)

	Model 1	Model 2	Model 3	Model 4
(Intercept)	253.41 ***	138.47 *	230.90 ***	308.80 ***
	(65.72)	(64.51)	(13.88)	(18.67)
wins	1.97			
	(1.54)			
salary_expenses		20.75 **		
		(6.64)		
market_size			11.17 ***	

30

0.77

10.12 *

(3.77)

30

0.20

(1.17)num_champ

30

0.05

Ν

R2

fans to watch the game and the team will also sell more merch products.

*** p < 0.001; ** p < 0.01; * p < 0.05. After computing the regression model, we can see salary expenses and market size are strongly correlated to revenue, while the number of champions and wins have a positive correlation but are not as remarkably effective as salary expenses and market size. Market sales have a beta value of 11.9 which means as market size increase by 11.9 million, revenue will tend to increase by one million. Salary expenses are also statistically effective on revenue, when Salary expenses increase, revenue will also increase. Because teams with high salary expenses will have more talented players in the teams, which will attract more

30

0.26