Thomas "Buckets" Practice Final

- 1. Prove whether each set is a subspace of M_{22} .
 - (a) \mathbb{D} , the set of all diagonal 2×2 matrices.
 - (b) $SL_2(\mathbb{R}) = \{ A \in \mathbb{M}_{22} : \det A = 1 \}$
 - $(c) \ \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$
- 2. Expand the set $\{1+x^2\}$ to an orthogonal basis for \mathbb{P}_2 . Show that it is in fact a basis, and that it is orthogonal.
- 3. Given a linear transformation $T: \mathbb{M}_{22} \to \mathbb{P}_3$, where $\ker T = \{\vec{0}\}$, solve the following. Justify your answers
 - (a) Is T an isomorphism? Prove your answer.
 - (b) Explicitly write a linear transformation T satisfying the above, and give its matrix $M_{DB}(T)$, using the bases:

$$B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \quad D = \{1, x, x^2, x^3\}.$$

(c) Is your matrix invertible?