Sławomir Kulesza

Technika cyfrowa

Podstawowe układy sekwencyjne

Wykład dla studentów III roku Informatyki

Układy sekwencyjne – wprowadzenie

Układ sekwencyjny zawiera:

Elementy pamięciowe: Inputs zatrzaski lub przerzutniki

Logikę kombinacyjną:

 Działanie opisywane wielowyjściową funkcją przełączającą

 Inputs to sygnały docierające z zewnątrz.

 Outputs to sygnały wysyłane na zewnątrz.

 Inne sygnały, <u>State</u> lub <u>Present State</u>, to sygnały wysyłane przez element pamięciowy.

 Pozostałe sygnały, <u>Next State</u> to sygnały pobudzenia elementu pamięciowego.

Układy sekwencyjne – wprowadzenie

- Logika kombinacyjna:
 - Funkcja następnego stanu
 Next State = f(Inputs, State)
 - Funkcja wyjścia (Mealy)
 Outputs = g(Inputs, State)
 - Funkcja wyjścia (Moore)
 Outputs = h(State)
- Funkcja wyjścia zależy od opisu układu i znacząco wpływa na jego projekt.

Typy układów sekwencyjnych

Istotny jest moment, gdy:

- Elementy pamięciowe reagują na stan swojego wejścia
- Elementy pamięciowe zmieniają swój stan

Układy synchroniczne

- Zachowanie określone zmianami sygnału w ściśle określonych, dyskretnych chwilach czasu
- Elementy pamięciowe obserwują swoje wejście, lecz mogą zmienić swój stan tylko pod wpływem sygnału synchronizującego (<u>impulsy zegarowe</u>)

Układy asynchroniczne

- Zachowanie określone zmianami stanów wejściowych w dowolnych chwilach czasu oraz kolejnością zmian tychże sygnałów
- Jeśli sygnał zegarowy traktować jak kolejne wejście, wszystkie układy są asynchroniczne

Asynchroniczny przerzutnik SR (NAND)

"Sprzężenie skrośne" dwie bramki NAND tworzą zatrzask SR:

S = 0, R = 0 jest zabronionym stanem wejść

Ti	me	R	S	Q	Q	Uwagi
		1	1	?	?	
		1	0	1	0	"ustawienie" Q = 1
		1	1	1	0	Q "pamięta" 1
		0	1	0	1	"kasowanie" Q = 0
em		_1	1	0	_1	Q "pamięta" 0
,	,	0	0	1	1	Stan niedozwolony
		1	1	?	?	Niestabilność!

Asynchroniczny przerzutnik RS (NOR)

Dwie sprzęgnięte bramki NOR tworzą zatrzask SR:

Time	R	S	Q	$\overline{\mathbf{Q}}$	Uwagi
	0	0	?	?	
	0	1	1	0	"Ustawienie" Q = 1
	0	0	1	0	Q "pamięta" 1
	1	0	0	1	"Skasowanie" Q = 0
	0	0	0	1	Q "pamięta" 0
	1	1	0	0	Stan zabroniony
•	0	0	?	?	Niestabilność!

Synchroniczny przerzutnik SR (zatrzask)

 Dodanie dwóch bramek NAND do podstawowego zatrzasku SR
 daje wyzwalany zatrzask SR:

 Układ jest synchroniczny – zmiany na wyjściu zachodzą tylko przy C = 1.

Synchroniczny przerzutnik SR

Tablica synchronicznego zatrzasku SR:

- Tablica opisuje zachowanie układu po impulsie zegarowym [w chwili (t+1)] bazując na:
 - bieżących wejściach S, R
 - bieżącym stanie układu Q(t).

Q(t)	S	R	Q(t+1)	Uwagi
0	0	0	0	Bez zmian
0	0	1	0	Kasuj Q
0	1	0	1	Ustaw Q
0	1	1	???	Niedozwolony
1	0	0	1	Bez zmian
1	0	1	0	Kasuj Q
1	1	0	1	Ustaw Q
1	1	1	???	Niedozwolony

Zatrzask D

- Dodanie inwertera do zatrzasku SR daje zatrzask D:
- Brak stanów zabronionych

Q	D	Q(t+1)	Uwagi
0	0	0	Bez zmian
0	1	1	Ustaw Q
1	0	0	Kasuj Q
1	1	1	Bez zmian

Problem niestabilności zatrzasków

- W układach sekwencyjnych mogą istnieć ścieżki danych poprzez bloki kombinacyjne:
 - Pomiędzy różnymi elementami pamięci
 - Z wyjścia danego elementu pamięci z powrotem do jego wejścia
- W najprostszym przypadku pętla sprzężenia zwrotnego może być zwykłym połączeniem elektrycznym.
- W bramkowanym zatrzasku D, wyjście Q zmienia się w takt zmian D zawsze, gdy wejście zegarowe ma stan 1.

Problem niestabilności zatrzasków

- Rozważmy układ jak na rys. Niech początkowo Y = 0.
- Gdy C = 1, stan Y oscyluje! Częstotliwość oscylacji zależy od opóźnienia pętli sprzężenia zwrotnego.
- Jest to działanie wysoce niepożądane. <u>Pożądane</u> zachowanie: Y zmienia się 1 raz na 1 takt zegara

Problem niestabilności zatrzasków

- Rozwiązaniem problemu niestabilności zatrzasków jest przerwanie ścieżki sprzężenia zwrotnego wewnątrz elementu pamięciowego.
- Najczęściej stosowane rozwiązania:
 - Przerzutnik typu Master-Slave
 - Przerzutnik wyzwalany zboczem

Synchroniczny przerzutnik SR Master-Slave

- Dwa zatrzaski SR połączone szeregowo z odwróconym wyzwalaniem
- Stan wejściowy przenosi się przez pierwszy zatrzask, gdy C = 1
- Wyjście układu zmienia stan, gdy C = 0
- Przerwa w ścieżce sygnału wynika z odmiennego wyzwalania obu części (C = 1 and C = 0).
- Zmiana stanu pierwszego zatrzasku nie pociąga automatycznie za sobą zmiany stanu drugiego – wpisywanie i przepisywanie informacji odbywa się w różnych fazach taktowania.

Problem przerzutników Master-Slave

- Zmiana wyjścia przerzutnika jest opóźniona o czas trwania impulsu, co spowalnia działanie układu.
- S i/lub R mogą się jednocześnie zmieniać przy C = 1:
 - Niech: Q = 0, R = 0, $S = 0 \rightarrow 1 \rightarrow 0$:
 - Zatrzask M zmienia się na 1
 - Stan 1 jest przenoszony do zatrzasku S
 - Niech: Q = 0, $R = 0 \rightarrow 1 \rightarrow 0$, $S = 0 \rightarrow 1 \rightarrow 0$:
 - Zatrzask M ustawia się, a potem zeruje,
 - Do zatrzasku S przenoszony jest stan 0
 - Takie zachowanie to 1s catching

Rozwiązanie – wyzwalanie zboczem

- Używaj wyzwalania zboczem zamiast układów Master-Slave (edge-triggering)
- Przerzutnik wyzwalany zboczem ignoruje ustalone poziomy impulsu i reaguje tylko przy zmianach sygnału zegarowego.
- Przerzutnik D Master-Slave jest przerzutnikiem wyzwalanym zboczem.

Przerzutnik D wyzwalany zboczem opadającym

- Przerzutnik D wyzwalany zboczem jest taki sam jak przerzutnik D Master-Slave
- Można go utworzyć przez:
 - Zastąpienie pierwszego taktowanego zatrzasku SR taktowanym zatrzaskiem D lub
 - Dodanie wejścia D i inwertera do zatrzasku SR Master-Slave
- Zmiana wyjścia przerzutnika D związana jest z opadającym zboczem impulsu zegarowego
- Jest to tzw. <u>przerzutnik wyzwalany zboczem opadającym</u>

Przerzutnik D wyzwalany zboczem narastającym

- Powstaje przez dodanie dodatkowego inwertera do wejścia zegarowego
- Jest to standardowy przerzutnik w większości układów sekwencyjnych

Scalony przerzutnik D – 7474

NL17SZ74

Single D Flip Flop

The NL17SZ74 is a high performance, full function Edge triggered D Flip Flop, with all the features of a standard logic device such as the 74LCX74.

- Extremely High Speed: tpD 2.6 ns (typical) at V_{CC} = 5 V
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 5 V Tolerant Inputs Interface Capability with 5 V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current (10 μA) Substantially Reduces System Power Requirements
- · Replacement for NC7SZ74
- Tiny Ultra Small Package Only 2.1 X 3.0 mm
- High ESD Ratings: 2000 V Human Body Model
 200 V Machine Model
- Chip Complexity: FET = 64

TRUTH TABLE

	puts	Out	Inputs				
Operating Mode	Ø	ø	D	CP	CLR	PR	
Asynchronous Set Asynchronous Clear Undetermined	コエエ	エーエ	X X X	X X X	Η ⊔ ⊔	⊔ II ⊔	
	۱.	Η.	h	↑	Н	Н	

ON Semiconductor®

http://onsemi.com

Figure 1. Logic Diagram

US8 CASE 493 US SUFFIX

MARKING DIAGRAM

Scalony przerzutnik D – 7474

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

					T _A = 25°C			T _A = -40 to 85°C	
Symbol	Parameter	V _{CC} (V)	Test Conditions	Min	Тур	Max	Min	Max	Unit
f _{MAX}	Maximum Clock	1.8 ± 0.15	C _L = 15 pF	75			75		MHz
Frequency (50% Duty Cycle) (Waveform 1)	2.5 ± 0.2	$R_D = 1 M\Omega$	150			150		1	
	3.3 ± 0.3	S ₁ = Open	200			200		1	
	5.0 ± 0.5		250			250		1	
		3.3 ± 0.3	$C_L = 50 \text{ pF},$	175			175		1
		5.0 ± 0.5	$R_D = 500 \Omega$, $S_1 = Open$	200			200		1
t _{PLH} ,	Propagation Delay,	1.8 ± 0.15	C _L = 15 pF	2.5	6.5	12.5	2.5	13	ns
t _{PHL}	CP to Q or Q	2.5 ± 0.2	$R_D = 1 M\Omega$	1.5	3.8	7.5	1.5	8.0	1
	(Waveform 1)	3.3 ± 0.3	S ₁ = Open	1.0	2.8	6.5	1.0	7.0	1
		5.0 ± 0.5		8.0	2.2	4.5	8.0	5.0	i
l L	3.3 ± 0.3	C _L = 50 pF,	1.0	3.4	7.0	1.0	7.5	i	
	5.0 ± 0.5	$R_D = 500 \Omega$, $S_1 = Open$	1.0	2.6	5.0	1.0	5.5		
t _{PLH} ,	Propagation Delay,	1.8 ± 0.15	C _L = 15 pF	2.5	6.5	14	2.5	14.5	ns
t _{PHL}	PR or CLR to Q 2.5 ± 0.3	2.5 ± 0.2	$R_D = 1 M\Omega$	1.5	3.8	9.0	1.5	9.5	i
or Q (Waveform 2)	3.3 ± 0.3	S ₁ = Open	1.0	2.8	6.5	1.0	7.0		
	5.0 ± 0.5		8.0	2.2	5.0	0.8	5.5		
		3.3 ± 0.3	$C_L = 50 \text{ pF},$	1.0	3.4	7.0	1.0	7.5	1
		5.0 ± 0.5	$R_D = 500 \Omega$, $S_1 = Open$	1.0	2.6	5.0	1.0	5.5	i
ts	Setup Time,	1.8 ± 0.15	C _L = 15 pF	6.5			6.5		ns
-	D to CP	2.5 ± 0.2	$R_D = 1 M\Omega$	3.5			3.5		ł
	(Waveform 1)	3.3 ± 0.3	S ₁ = Open	2.0			2.0		i
		5.0 ± 0.5	1	1.5			1.5		i
		3.3 ± 0.3	$C_L = 50 \text{ pF},$	2.0			2.0		i
		5.0 ± 0.5	$R_D = 500 \Omega$, $S_1 = Open$	1.5			1.5		i
t _H	Hold Time,	1.8 ± 0.15	C _L = 15 pF	0.5			0.5		ns
	D to CP	2.5 ± 0.2	$R_D = 1 M\Omega$	0.5			0.5		i
(Waveform 1)	3.3 ± 0.3	S ₁ = Open	0.5			0.5			
		5.0 ± 0.5	1	0.5			0.5		1
		3.3 ± 0.3	C _L = 50 pF,	0.5			0.5		
		5.0 ± 0.5	$R_D = 500 \Omega$, $S_1 = Open$	0.5			0.5		1
tw	Pulse Width,	1.8 ± 0.15	C _L = 15 pF	6.0			6.0		ns
	CP, CLR, PR	2.5 ± 0.2	$R_D = 1 M\Omega$	4.0			4.0		1
	(Waveform 3)	3.3 ± 0.3	S ₁ = Open	3.0	\vdash		3.0		ł

Inne typy przerzutników Przerzutnik JK

- Odpowiednik przerzutnika SR, gdzie J odpowiada S, a K odpowiada R, przy czym stan J = K = 1 jest dozwolony, a co więcej wyjście przerzutnika zmienia wówczas swój stan na przeciwny.
 - Przerzutnik JK Master-Slave wykazuje przechwytywanie 1 tak jak przerzutnik SR

Przerzutnik JK

- Odpowiednik przerzutnika SR, gdzie J odpowiada S, a K odpowiada R, przy czym stan J = K = 1 jest dozwolony, a co więcej wyjście przerzutnika zmienia wówczas swój stan na przeciwny.
- Przerzutnik JK Master-Slave wykazuje przechwytywanie 1 tak jak przerzutnik SR
- Aby uniknąć wyłapywania 1, wewnątrz przerzutnika stosuje się wyzwalany zboczem przerzutnik D

Inne typy przerzutników Przerzutnik T

- Pojedyncze wejście T
 - T = 0, wyjście bez zmian
 - T = 1, wyjście oscyluje
- Odpowiednik przerzutnika J-K dla J = K = T
- Brak możliwości inicjalizacji za pomocą wejścia T istotny problem ustawiania i kasowania (synchronicznego lub asynchronicznego)

Opis wejść i wyjść przerzutników

Inicjalizacja – wejścia asynchroniczne

- Zanim układ sekwencyjny rozpocznie pracę, powinien zostać zainicjalizowany do ustalonego stanu początkowego.
- Inicjalizacja przebiega zwykle niezależnie od sygnału zegarowego, a więc asynchronicznie.
- Do zainicjalizowania układu wykorzystuje się wejścia SR zatrzasków bezpośrednio kontrolujące pracę przerzutników.

Analiza układów sekwencyjnych

Model układu

 Stan aktualny układu (w chwili t) jest pamiętany przez zespół przerzutników.

- Stan następny (w chwili t+1) jest funkcją logiczną aktualnego stanu układu i sygnałów wejściowych.
- Sygnały wyjściowe w chwili t są funkcją logiczną aktualnego stanu układu i (czasami) aktualnych sygnałów wejściowych.

Deskryptory układów sekwencyjnych Tablica stanów (przejść)

- Tablica stanów tablica podzielona na 4 sekcje zmiennych:
 - Aktualny stan układu wartości zmiennych stanu dla każdego stanu dozwolonego.
 - Input dopuszczalne słowa wejściowe.
 - Stan następny wartość stanu w chwili (t+1) w oparciu o stan aktualny i słowo wejściowe.
 - Output słowo wyjściowe jako funkcja aktualnego stanu układu i (czasami) słowa wejściowego.
- Z punktu widzenia tabeli prawdy:
 - Argumentami funkcji są: Input, Aktualny stan
 - Wartościami funkcji są: Output, Następny stan

Deskryptory układów sekwencyjnych Graf (diagram) stanów

- Diagram stanów graficzne przedstawienie funkcji układu sekwencyjnego zawierające:
 - Kółko z nazwą stanu wpisaną wewnątrz; każde kółko odpowiada jednemu stanowi.
 - Strzałki łączące aktualne stany układu ze stanami przyszłymi dla wszystkich dozwolonych przejść
 - Opis strzałki zawierający słowo wejściowe powodujące daną zmianę stanu układu oraz
 - Opis:
 - W każdym kółku zawierający generowane słowo wyjściowe, lub
 - Nad strzałką zawierający generowane słowo wyjściowe.

Graf stanów (Moore)

Forma opisu:

w kółku: aktualny stan wewnętrzny/aktualne wyjście

nad strzałką: aktualne wejście In₂ In, A/Out,

Graf stanów (Mealy)

Forma opisu:

w kółku: aktualny stan wewnętrzny

nad strzałką: aktualne wejście/aktualne wyjście

Graf stanów przerzutnika SR

10

SR	QQ'	
1 0	0 1	
1 1	0 1	(after S=1, R=0)
0 1	10	
1 1	10	(after S=0, R=1)
0 0	11	

	01/1		

10/0

11/0 A

В

11/1

Graf stanów przerzutnika SR

SR	Q Q'	_
1 0	0 1	
11	0 1	(after S=1, R=0)
0 1	10	
11	10	(after S=0, R=1)
00	1 1	

21001010110101010

01/0

00/0 A

В

00/1

Graf stanów przerzutnika D

Graf stanów przerzutnika T

QT	Q(t+1)
0 0	0
0 1	1
10	1
1 1	0
ı	

Q100101001101010101

1/0

0/0 A

В

0/1

Graf stanów przerzutnika JK

Q100101xA01101

0x/0 A B

J	ĸ	Q(t+1)
0 0 1 1	0 1 0 1	Q(t) (no change) 0 (reset to 0) 1 (set to 1) $\bar{Q}(t)$

x0/1

x1/0

Przykład grafu stanów

Deskryptory układów sekwencyjnych Tablica wzbudzeń

QQ'	D	Т	SR	JK
00	0	0	0 –	0 –
01	1	1	10	1 –
10	0	1	0 1	-1
11	1	0	– 0	– 0

T – trigger

S – set (wejście włączające)

R – reset (wejście wyłączające)

J – wejście włączające

K – wejście wyłączające

Deskryptory układów sekwencyjnych Równanie charakterystyczne

Równanie charakterystyczne: Q' = $f(I_1,I_2,Q)$