15-213 "The course that gives CMU its Zip!"

Floating Point Sept 5, 2002

Topics

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

Floating Point Puzzles

- **■** For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

-3- 15-213, F'02

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \cdot 2^k$

Frac. Binary Number Examples

Value Representation

5-3/4 101.11₂
2-7/8 10.111₂
63/64 0.111111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 just below 1.0
 - \bullet 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... \rightarrow 1.0
 - •Use notation 1.0 − ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form $x/2^k$
- Other numbers have repeating bit representations

Value	Representation			
1/3	0.01010101[01]2			
1/5	$0.001100110011[0011]{2}$			
1/10	0.0001100110011[0011]2			

Floating Point Representation

Numerical Form

- \blacksquare -1^s M 2^E
 - Sign bit s determines whether number is negative or positive
 - Significand *M* normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes *E*
- frac field encodes M

-7- 15-213, F'02

Floating Point Precisions

Encoding

s exp frac

- MSB is sign bit
- exp field encodes *E*
- frac field encodes M

Sizes

- Single precision: 8 exp bits, 23 frac bits
 - •32 bits total
- Double precision: 11 exp bits, 52 frac bits
 - 64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - » 1 bit wasted

-8- 15-213, F'02

"Normalized" Numeric Values

Condition

■ $\exp \neq 000...0$ and $\exp \neq 111...1$

Exponent coded as biased value

```
E = Exp - Bias
```

- Exp: unsigned value denoted by exp
- Bias : Bias value
 - » Single precision: 127 (*Exp*: 1...254, *E*: -126...127)
 - » Double precision: 1023 (*Exp*: 1...2046, *E*: -1022...1023)
 - » in general: $Bias = 2^{e-1} 1$, where e is number of exponent bits

Significand coded with implied leading 1

```
M = 1.xxx...x_2
```

- xxx...x: bits of frac
- Minimum when 000...0 (M = 1.0)
- Maximum when 111...1 (*M* = 2.0 ϵ)
- Get extra leading bit for "free"

Normalized Encoding Example

Value

```
Float F = 15213.0;

\blacksquare 15213<sub>10</sub> = 11101101101101<sub>2</sub> = 1.1101101101101<sub>2</sub> X 2<sup>13</sup>
```

Significand

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Floating Point Representation (Class 02):

140: 100 0110 0

Denormalized Values

Condition

= exp = 000...0

Value

- Exponent value E = -Bias + 1
- Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

- \blacksquare exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
- $= \exp = 000...0, \operatorname{frac} \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - "Gradual underflow"

Special Values

Condition

 $= \exp = 111...1$

Cases

- \blacksquare exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- $= \exp = 111...1, \operatorname{frac} \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), ∞ ∞

Summary of Floating Point Real Number Encodings

- 13 - 15-213, F'02

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same General Form as IEEE Format

- normalized, denormalized
- **■** representation of 0, NaN, infinity

7	6 3	3 2			
S	exp	frac			

- 14 - 15-213, F'02

Values Related to the Exponent

Exp	exp	E	2 ^E	
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	- 5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)

- 15 - 15-213, F'02

Dynamic Range

	S	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers	•••				
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 ← largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512
	0	0001	001	-6	9/8*1/64 = 9/512
	•••				
	0	0110	110	-1	14/8*1/2 = 14/16
Mannadinad	0	0110	111	-1	$15/8*1/2 = 15/16 \leftarrow \text{closest to 1 below}$
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	$9/8*1 = 9/8 \leftarrow \text{closest to 1 above}$
	0	0111	010	0	10/8*1 = 10/8
	•••				
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240
	0	1111	000	n/a	inf

15-213, F'02

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Notice how the distribution gets denser toward zero.

- 17 - 15-213, F'02

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

- 18 - 15-213, F'02

Interesting Numbers

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm. ■ Single ≈ 1.4 X 10 ⁻⁴ ■ Double ≈ 4.9 X 10 ⁻⁴		0001	2 - {23,52} X 2 - {126,1022}
 Largest Denormalized Single ≈ 1.18 X 10 Double ≈ 2.2 X 10 	-38	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized Just larger than lar			1.0 X 2 ⁻ {126,1022}
One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 X 10³⁸ Double ≈ 1.8 X 10³ 	}	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

Special Properties of Encoding

FP Zero Same as Integer Zero

■ All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

- 20 - 15-213, F'02

Floating Point Operations

Conceptual View

- **■** First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
■ Zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
■ Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- **■** E.g., round to nearest hundredth

```
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)
```

- 22 - 15-213, F'02

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.002	(1/2—up)	3
2 5/8	10.101002	10.10,	(1/2—down)	2 1/2

- 23 - 15-213, F'02

FP Multiplication

Operands

 $(-1)^{s1} M1 2^{E1}$ * $(-1)^{s2} M2 2^{E2}$

Exact Result

 $(-1)^s M 2^E$

■ **Sign** s: s1^s2

■ Significand M: M1 * M2

■ Exponent *E*: *E*1 + *E*2

Fixing

■ If $M \ge 2$, shift M right, increment E

■ If *E* out of range, overflow

■ Round *M* to fit frac precision

Implementation

■ Biggest chore is multiplying significands

FP Addition

Operands

 $(-1)^{s1} M1 2^{E1}$ $(-1)^{s2} M2 2^{E2}$

■ **Assume** *E1* > *E2*

Exact Result

 $(-1)^s M 2^E$

- Sign s, significand M:
 - Result of signed align & add
- Exponent *E*: *E*1

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round *M* to fit frac precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?
YES

But may generate infinity or NaN

■ Commutative? YES

Associative?

Overflow and inexactness of rounding

■ 0 is additive identity? YES

■ Every element has additive inverse ALMOST

Except for infinities & NaNs

Monotonicity

■ $a \ge b \Rightarrow a+c \ge b+c$?

Except for infinities & NaNs

Math. Properties of FP Mult

Compare to Commutative Ring

- Closed under multiplication?
 YES
 - But may generate infinity or NaN
- Multiplication Commutative? YES
- Multiplication is Associative?
 NO
 - Possibility of overflow, inexactness of rounding
- 1 is multiplicative identity? YES
- Multiplication distributes over addition? NO
 - Possibility of overflow, inexactness of rounding

Monotonicity

 $\blacksquare a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?

ALMOST

Except for infinities & NaNs

Floating Point in C

C Guarantees Two Levels

float single precision

double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - » Generally saturates to TMin or TMax
- int to double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int to float
 - Will round according to rounding mode

Answers to Floating Point Puzzles

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NAN

```
x == (int)(float) x
x == (int)(double) x
f == (float)(double) f
d == (float) d
f == -(-f);
2/3 == 2/3.0
d < 0.0 ⇒ ((d*2) < 0.0)</li>
d > f ⇒ -f > -d
d * d >= 0.0
```

```
No: 24 bit significand
Yes: 53 bit significand
Yes: increases precision
No: loses precision
Yes: Just change sign bit
No: 2/3 == 0
Yes!
Yes!
Yes!
```

No: Not associative

• (d+f)-d == f

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million

Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software

- 30 - 15-213, F'02

Summary

IEEE Floating Point Has Clear Mathematical Properties

- Represents numbers of form $M \times 2^E$
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

- 31 - 15-213, F'02