

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-336281

(43) Date of publication of application: 05.12.2000

(51)Int.Cl.

C08L101/16 B32B 7/02 C08J 5/10 C09D201/00

(21)Application number: 11-264592

(71)Applicant:

UBE NITTO KASEI CO LTD

WATABE TOSHIYA
HASHIMOTO KAZUHITO
FUJISHIMA AKIRA

(22)Date of filing:

17.09.1999

(72)Inventor:

TAKAMI KAZUYUKI

NAKAYAMA NORIHIRO SUZUKI TARO

TANAKA NAOKI
TACHIBANA EISUKE
ADACHI TATSUHIKO
WATABE TOSHIYA
HASHIMOTO KAZUHITO
FUJISHIMA AKIRA

(30)Priority

Priority number: 10301048

Priority date : 22.10.1998

Priority country: JP

11079446 24.03

24.03.1999

(54) ORGANIC/INORGANIC COMPOSITE GRADIENT MATERIAL, AND ITS PREPARATION AND USE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an organic/inorganic composite gradient material whose composition continuously varies in the thickness direction and which is useful in various applications as a new functional material.

SOLUTION: An organic/inorganic composite gradient material comprises a composite in which an organic polymer compound and a metallic compound have been chemically bonded and has a structure in which the content of the metallic compound continuously varies in the direction from the depth of the material to its surface. A method of preparing the organic/inorganic composite gradient material comprises forming a coated film composed of a specific organic/inorganic composite film—forming coating solution on an organic substrate and drying the resulting film with heating. A film—forming coating material is composed of the organic/inorganic composite gradient material. An article is coated with the film—forming coating material.

LEGAL STATUS

[Date of request for examination]

06.02.2006

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

THIS PAGE LEFT BLANK

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2000-336281 (P2000-336281A)

(43)公開日 平成12年12月5日(2000.12.5)

(51) Int.Cl. ⁷	設別記号	FI	テーマコード(参考)
C 0 8 L 101/16		C 0 8 L 101/00	4 F 0 7 2
B 3 2 B 7/02		B 3 2 B 7/02	4F100
C 0 8 J 5/10	CFJ	C 0 8 J 5/10	CFJ 4J002
C 0 9 D 201/00		C 0 9 D 201/00	4J038

審査請求 未請求 請求項の数37 OL (全 27 頁)

(21)出願番号	特願平11-264592	(71)出願人	000120010
(22)出顧日	平成11年9月17日(1999.9.17)	(71) 出願人	宇部日東化成株式会社 東京都中央区東日本橋1丁目1番7号 598053307
(31)優先権主張番号	特願平10-301048		渡部 俊也
(32)優先日	平成10年10月22日(1998.10.22)		神奈川県藤沢市鵠沼海岸6-15-7
(33)優先権主張国	日本(JP)	(71) 出願人	592116165
(31)優先権主張番号	特願平11-79446		橋本 和仁
(32)優先日	平成11年3月24日(1999.3.24)		神奈川県横浜市栄区飯島町2073番地の2
(33)優先権主張国	日本(JP)		ニューシティ本郷台D棟213号
		(74)代理人	100080850
			弁理士 中村 静男
	,		

最終頁に続く

(54) 【発明の名称】 有機-無機複合傾斜材料、その製造方法及びその用途

(57)【要約】

【課題】 新規な機能性材料として種々の用途に有用な、厚さ方向に組成が連続的に変化する有機一無機複合傾斜材料、その製造方法および用途を提供する。

【解決手段】 有機高分子化合物と金属系化合物が化学結合した複合体を含有し、該金属系化合物の含有率が、材料表面から深さ方向に連続的に変化する成分傾斜構造を有する有機一無機複合傾斜材料、有機基板上に、特定の有機一無機複合膜形成用塗布液からなる塗膜を形成し、加熱乾燥して上記有機一無機複合傾斜材料を製造する方法、該有機一無機複合傾斜材料からなる被膜形成用コーティング剤および該コーティング剤が塗布された物品である。

【特許請求の範囲】

【請求項1】 有機高分子化合物と金属系化合物との化 学結合物を含有する有機一無機複合材料であって、材料 中の金属系化合物の含有率が、材料の表面から深さ方向 に連続的に変化する成分傾斜構造を有することを特徴と する有機一無機複合傾斜材料。

I

【請求項2】 有機一無機複合材料が、有機高分子化合物と金属系化合物との化学結合物からなるものである請求項1に記載の有機一無機複合傾斜材料。

【請求項3】 金属系化合物が金属酸化物系化合物であ 10 る請求項1または2に記載の有機-無機複合傾斜材料。

【請求項4】 金属系化合物が、金属酸化物系化合物を介して有機高分子化合物に化学結合してなる金属窒化物系化合物である請求項1または2に記載の有機一無機複合傾斜材料。

【請求項5】 厚みが5 μ m以下である請求項1~4のいずれか1項に記載の有機-無機複合傾斜材料。

【請求項6】 有機高分子化合物と金属系化合物との化学結合物が、分子中に加水分解により金属酸化物と結合しうる金属含有基を有する有機高分子化合物と、加水分 20 解により金属酸化物を形成しうる金属化合物との混合物を加水分解処理してなるものである請求項3または5に記載の有機一無機複合傾斜材料。

【請求項7】 有機高分子化合物と金属系化合物との化学結合物が、分子中に加水分解により金属窒化物重合体と結合しうる金属含有基を有する有機高分子化合物と、金属窒化物重合体との混合物を加水分解処理してなる請求項4または5に記載の有機一無機複合傾斜材料。

【請求項8】 分子中に加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基を有する有 30 機高分子化合物が、上記金属含有基を有する単量体と金属を含まない単量体とを共重合又は縮重合させて得られたものである請求項6または7に記載の有機一無機複合傾斜材料。

【請求項9】 分子中に加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基を有する有機高分子化合物が、エチレン性不飽和基を有する単量体と、エチレン性不飽和基および上記金属含有基を含む単量体との共重合体である請求項8に記載の有機一無機複合傾斜材料。

【請求項10】 加水分解により金属酸化物を形成しうる金属化合物が金属アルコキシドである請求項6に記載の有機一無機複合傾斜材料。

【請求項11】 有機基材上に形成された膜状物からなり、かつ実質上、該膜状物の有機基材に当接している面が有機高分子系化合物成分であって、もう一方の開放系面が金属系化合物成分である請求項1~10のいずれか1項に記載の有機一無機複合傾斜材料。

【請求項12】 (A)分子中に加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基を

有する有機高分子化合物と(B)(イ)加水分解により 金属酸化物を形成しうる金属化合物、または(ロ)金属 窒化物重合体との混合物を加水分解処理せずにまたは加 水分解処理して塗布液を調製したのち、有機材からなる 基板上に上記塗布液からなる塗膜を形成し、次いで加熱 乾燥処理することを特徴とする請求項1~4のいずれか 1項に記載の有機一無機複合傾斜材料の製造方法。

【請求項13】 乾燥塗膜の厚みが5 μ m以下である請求項12に記載の方法。

【請求項14】 (A) 成分の分子中に加水分解により 金属酸化物または金属窒化物重合体と結合しうる金属含 有基を有する有機高分子化合物が、上記金属含有基を有 する単量体と金属を含まない単量体とを共重合又は縮重 合させて得られたものである請求項12または13に記 載の方法。

【請求項15】 (A) 成分の分子中に加水分解により 金属酸化物または金属窒化物重合体と結合しうる金属含 有基を有する有機高分子化合物が、エチレン性不飽和基 を有する単量体と、エチレン性不飽和基および上記金属 含有基を含む単量体との共重合体である請求項12~14のいずれか1項に記載の方法。

【請求項16】 (B) (イ) 成分の加水分解により金属酸化物を形成しうる金属化合物が、金属のアルコキシドである請求項12~15のいずれか1項に記載の方法。

【請求項17】 請求項1ないし11のいずれか1項に 記載の有機一無機複合傾斜材料からなる被膜を基材上に 形成させることを特徴とするコーティング剤。

【請求項18】 (A)分子中に加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基を有する有機高分子化合物と(B)(イ)加水分解により金属酸化物を形成しうる金属化合物、または(ロ)金属窒化物重合体との混合物を加水分解処理せずにまたは加水分解処理して得られた塗布液からなる請求項17に記載のコーティング剤。

【請求項19】 有機基材に対する塗膜形成用として用いられる請求項17または18に記載のコーティング 剤。

【請求項20】 有機材料と無機または金属材料との接 40 着剤として用いられる請求項17または18に記載のコ ーティング剤。

【請求項21】 有機基材と、少なくとも無機系または 金属系材料を含むコート層との間に介在させる中間膜形 成用として用いられる請求項17または18に記載のコ ーティング剤。

【請求項22】 少なくとも無機系または金属系材料を含むコート層が光触媒活性材料層である請求項21に記載のコーティング剤。

【請求項23】 少なくとも無機系または金属系材料を うむコート層が無機系または金属系導電性材料層である

請求項21に記載のコーティング剤。

少なくとも無機系または金属系材料を 【請求項24】 含むコート層が無機系または金属系材料を含むハードコ ート層である請求項21に記載のコーティング剤。

【請求項25】 少なくとも無機系または金属系材料を 含むコート層が無機系または金属系光記録材料層または 無機系または金属系誘電体層である請求項21に記載の コーティング剤。

【請求項26】 表面に有機系塗膜を有する金属系基材 と光触媒活性材料層との間に介在させる中間膜形成用と して用いられる請求項17または18に記載のコーティ ング剤。

【請求項27】 光触媒活性材料層が二酸化チタンコー ティング膜である請求項22または26に記載のコーテ ィング剤。

請求項1ないし11のいずれか1項に 【請求項28】 記載の有機一無機複合傾斜材料を用いたことを特徴とす る基材。

【請求項29】 有機基材である請求項28に記載の基 材。

【請求項30】 有機基材が、有機ー無機複合傾斜材料 を中間膜として介在させ、かつ少なくとも無機系または 金属系材料を含むコート層を有するものである請求項2 9に記載の基材。

有機ー無機複合傾斜材料を中間膜とし 【請求項31】 て介在させ、かつ光触媒活性材料層を有する、表面に有 機系塗膜が設けられる金属系基材である請求項28に記 載の基材。

請求項1ないし11のいずれか1項に 【請求項32】 とを特徴とする有機ー無機接着材料。

【請求項33】 請求項1ないし11のいずれか1項に 記載の有機-無機複合傾斜材料を中間膜として介在さ せ、かつ少なくとも無機系または金属系材料を含むコー ト層を有することを特徴とする物品。

【請求項34】 少なくとも無機系または金属系材料を 含むコート層が光触媒活性材料層である請求項33に記 載の物品。

【請求項35】 少なくとも無機系または金属系材料を 含むコート層が無機系または金属系導電性材料層である 請求項33に記載の物品。

【請求項36】 少なくとも無機系または金属系材料を 含むコート層が無機系または金属系材料を含むハードコ ート層である請求項33に記載の物品。

【請求項37】 少なくとも無機系または金属系材料を 含むコート層が無機系または金属系光記録材料層または 無機系または金属系誘電体層である請求項33に記載の 物品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規な有機ー無機 複合傾斜材料、その製造方法および該傾斜材料の用途に 関する。さらに詳しくは、本発明は、有機高分子化合物 と金属系化合物との化学結合物を含有する有機ー無機複 合材料であって、該金属系化合物の含有率が材料の厚み 方向に連続的に変化する成分傾斜構造を有し、機能性材 料として各種用途に有用な有機-無機複合傾斜材料、こ のものを効率よく製造する方法並びに該傾斜材料からな る被膜形成用コーティング剤、例えば塗膜、有機材料と 無機または金属材料との接着剤および有機基材と無機系 または金属系材料層との間に介在させる中間膜用などと して用いられるコーティング剤および該傾斜材料を使用 した基材や物品に関するものである。

[0002]

【従来の技術】近年、有機高分子材料の性能、機能に関 する要求の多様化に伴い、単一の高分子化合物では満足 させることが困難となり、高分子化合物に異なる性質を もつ異種材料を加え、複合化することが行われている。 例えば、強化材を有機高分子材料中に分散させることに よる物性改質が広く行われており、具体的には、炭素繊 維、ガラス繊維、金属繊維、セラミックス繊維、アラミ ド繊維などの有機や無機の繊維状物質、あるいは炭酸カ ルシウム、シリカ、アルミナなどの粉末状の無機フィラ ーなどを添加し、均質に分散させることが行われてい る。また、異種の高分子化合物を混合し、場合により相 溶化剤を介して相溶化させ、ポリマーアロイ化すること により、新しい機能を発現させる研究も盛んに行われて いる。

【0003】一方、最近、材料の組成を少しずつ変化さ 記載の有機-無機複合傾斜材料を接着剤として用いたこ 30 せ、表と裏で性質が全く異なる複合材料である傾斜機能 材料が注目され、例えばセラミックスの耐熱性と金属の 強度を併せもつ金属ーセラミックス複合傾斜機能材料が 超音速航空機の機体材料などとして開発されている。

> 【0004】このような傾斜機能材料は、無機傾斜材 料、有機傾斜材料および有機一無機複合傾斜材料に分類 され、そして、複数の材料、例えば複数の異種の無機材 料同士、複数の異種の有機材料同士、あるいは1種以上 の有機材料と1種以上の無機材料を混合し、場所によっ て異なる分布密度、配向などを制御することで、複数の 成分材料の物性を発現させうることから、例えば宇宙・ 航空分野、自動車分野、エレクトロニクス分野、医療分 野、エネルギー分野、さらには放射線や電磁波のシール ド分野などにおける利用が期待される。

【0005】ところで二酸化チタンなどの半導体を光電 極とすることにより、水が水素と酸素とに光分解され る、いわゆる本多-藤嶋効果[「工業化学雑誌」第72 巻、第108~113ページ(1969年)]が見出さ れて以来、光触媒の開発や実用化研究が盛んに行われる ようになってきた。この光触媒は、例えば、二酸化チタ 50 ンなどの半導体粒子を、そのバンドギャップ以上のエネ

ルギーの光で励起すると、伝導帯に電子が生じ、かつ価電子帯に正孔が生じ、このエネルギーに富んで電子-正孔対を利用するものである。

【0006】このような光触媒を応用して、例えば脱臭、防汚、抗菌、殺菌、さらには廃水中や廃ガス中の環境汚染上の問題となっている各種物質の分解・除去などが検討されている。光触媒としては、これまで種々の半導体的特性を有する化合物、例えば二酸化チタン、酸化鉄、酸化タングステン、酸化亜鉛などの金属酸化物、硫化カドミウムや硫化亜鉛などの金属硫化物などが知られているが、これらの中で、二酸化チタン、特にアナターゼ型二酸化チタンは実用的な光触媒として有用である。この二酸化チタンは、太陽光などの日常光に含まれる紫外線領域の特定波長の光を吸収することによって優れた光触媒活性を示し、この光触媒作用に由来する強力な酸化作用によって防汚、防臭、抗菌、空気浄化、水浄化、超親水性などの機能を発揮する。

【0007】二酸化チタンなどの光触媒がもつこのよう な光触媒機能を効果的に発揮させ、それを工業的に利用 する研究が現在盛んに行われている。例えば、光触媒を 材料の表面に被覆したり、材料表面の塗膜中に混入させ ておけば、光を照射するだけで材料表面に有機物を分解 する作用をもたせることが可能であり、汚れにくいガラ スやタイル、便器などで実用化され始めている。また、 この光触媒を利用した種々の機能性製品の開発研究が積 極的に行われている。例えば(1)大気汚染の元凶となる 窒素酸化物を太陽の光エネルギーで分解する建材、(2) 透明な光触媒でガラス表面を被覆してなる、付着した汚 れを自然分解するとともに、抗菌効果を有するガラス、 (3)光触媒の超親水性や防汚性能を利用してフィルム表 30 面に光触媒層を設けてなる、ガラス窓などの表側表面に 貼付するウインドフィルム、(4)シリカゲル粒子に二酸 化チタン微粉末を被覆してなる排水処理用剤などの実用 化が検討されている。

【0008】ところが、光触媒機能をもつ二酸化チタン等の光触媒は、プラスチックなどの有機基板には簡単に担持されず、何らかのバインダーを必要とすることが多い。また該光触媒を有機基板上に直接コーティングしたり、該基材中に混入させると、光触媒作用により有機基板が短時間で劣化するのを免れないと言う問題が生じる。

【0009】このような問題を解決するために、例えば有機基板上に有機系接着剤等を介して二酸化チタン等の光触媒のコーティング膜を設けることも試みられているが、この場合経時的にバインダーと光触媒体との接着性が低下したり、白濁化・干渉色の発生等の好ましくない事態を招来する。また、例えば有機基板上に無機系接着剤等を介して二酸化チタン等の光触媒のコーティング膜を設けることも試みられているが、この場合では、基板との接着性が十分ではなかったり、次第に接着層自体に

クラックなどが発生し、結果として経時的なバインダーと基体との接着性の低下、白濁化・干渉色の発生等の好ましくない事態を招来する。また、二酸化チタン等の光触媒をシリカで被覆したマイクロカプセルが開発され、このマイクロカプセルを有機基体中に混入して、消臭・抗菌機能を付与することが試みられている。このようなマイクロカプセルは、光触媒が表面に露出し難いため、有機基板の劣化が抑制されるとともに、カプセルには微小な孔が多数存在しており、分子の小さな有機物は入り込むことが出来るので、触媒機能は効果的に発揮される。しかしながら、このような構造のマイクロカプセルは、その光触媒活性を高活性にすることも難しく、また光触媒のもう一つの特徴である親水化現象を十分に応用することは困難である。またその製造方法に煩雑な操作を必要とし、製造コストが高くつくのを免れないという

【0010】他方、プラスチック基材上に、前記光触媒 活性材料以外の様々な無機系または金属系材料、例えば 導電性材料、ハードコート剤、光記録材料、磁性粉、赤 外線吸収材料などからなる層を設け、機能性材料を作製 することが広く行われている。プラスチック基材上に、 このような無機系または金属系材料層を設ける場合、一 般に基材との密着性が不十分であるために、例えばプラ スチック基材上に無機系プライマー層を設け、その上に 無機系または金属系材料層を形成させる方法が、よく用 いられる。しかしながら、この方法においては、無機系 プライマー層と無機系または金属系材料層との密着性は 良好であるものの、プラスチック基材と無機系プライマ 一層との密着性は必ずしも十分ではなく、耐熱密着性に 劣ったり、あるいは経時により密着性が低下したりする などの問題があった。したがって、プラスチック基材上 に無機系または金属系材料層を密着性よく形成させる技 術の開発が望まれていた。

[0011]

欠点を有している。

【発明が解決しようとする課題】本発明は、このような事情のもとで、新規な機能性材料として種々の用途、例えば塗膜や、有機材料と無機または金属材料との接着剤、有機基材と光触媒塗膜との間に設けられ、有機基材の劣化を防止する中間膜や、有機基材と無機系または金属系材料層との密着性を向上させる中間膜などの用途に有用な、厚さ方向に組成が連続的に変化する有機一無機複合傾斜材料、このものを効率よく製造する方法およびその用途を提供することを目的とするものである。

[0012]

【課題を解決するための手段】本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、分子中に加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基を有する有機高分子化合物と加水分解により金属酸化物を形成しうる金属化合物、または金属窒化物重合体との混合物を加水分解処理せずにまたは加水

分解処理して得られた塗布液を有機基板上に塗布し、加 熱乾燥処理することにより形成される有機高分子化合物 と金属系化合物との化学結合物を含有する有機一無機複 合材料が、材料中の金属系化合物の含有率が材料の表面 から深さ方向に連続的に変化する成分傾斜構造を有する 新規な有機一無機複合傾斜材料であり、前記用途に有用 であることを見出し、この知見に基づいて本発明を完成 するに至った。

【0013】すなわち、本発明は、(1)有機高分子化 合物と金属系化合物との化学結合物を含有する有機一無 機複合材料であって、材料中の金属系化合物の含有率 が、材料の表面から深さ方向に連続的に変化する成分傾 斜構造を有することを特徴とする有機―無機複合傾斜材 料、(2)上記有機-無機複合傾斜材料からなる被膜を 基材上に形成させることを特徴とするコーティング剤、 好ましくは有機基材に対する塗膜形成用、有機材料と無 機または金属材料との接着剤用および有機基材と少なく とも無機系または金属系材料を含むコート層との間に介 在させる中間膜形成用として用いられるコーティング 剤、(3)上記有機一無機複合傾斜材料を用いたことを 特徴とする基材、(4)上記有機-無機複合傾斜材料を 接着剤として用いたことを特徴とする有機-無機接着材 料、および(5)上記有機一無機複合傾斜材料を中間膜 として介在させ、かつ少なくとも無機系または金属系材 料を含むコート層を有することを特徴とする物品、を提 供するものである。

【0014】また、前記有機一無機複合傾斜材料は、本発明に従えば、(A)分子中に加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基を有する有機高分子化合物と(B)(イ)加水分解により金 30属酸化物を形成しうる金属化合物、または(ロ)金属窒化物重合体との混合物を加水分解処理せずにまたは加水分解処理して塗布液を調製したのち、有機材からなる基板上に上記塗布液からなる塗膜を形成し、次いで加熱乾燥処理することにより製造することができる。

[0015]

【発明の実施の形態】本発明の有機一無機複合傾斜材料は、有機高分子化合物と金属系化合物とが化学結合してなる複合体を含有する有機一無機複合材料、好ましくは該複合体からなる有機一無機複合材料であって、材料中 40の金属系化合物の含有率が、材料表面から深さ方向に連続的に変化する成分傾斜構造を有するものである。

【0016】このような成分傾斜構造の確認は、例え 水分解 ば、有機材からなる基板上に設けた有機一無機複合傾斜 しうる お料の塗膜表面に、スパッタリングを施して膜を削って ことかいき、経時的に膜表面の炭素原子と金属原子の含有率 (イ)を、X線光電子分光法などにより測定することによっ 物(以て、行うことができる。具体的に例を挙げて説明する る。)と、図1は、後述の実施例1において、ポリメチルメタ 水分解 クリレート基板上に設けられた厚さ 0.6 μ m の有機 - 50 する。

無機複合材料(金属原子として、ケイ素原子を含む)からなる塗膜における、スパッタリング時間と炭素原子及びケイ素原子の含有率との関係を示すグラフであって、この図から分かるように、スパッタリングを施す前の塗膜表面は、ほぼ100%近くケイ素原子で占められているが、スパッタリングにより膜が削られていくに伴い、膜表面のケイ素原子の含有率が減少するとともに、炭素原子の含有率が増加し、スパッタリング時間が約30分間を過ぎた時点から、膜表面はほぼ炭素原子のみとなる。

【0017】すなわち、この傾斜材料においては、材料中の金属酸化物系化合物の含有率が、表面から基板方向に逐次減少していることが示されている。

【0018】本発明の有機一無機複合傾斜材料は、有機 高分子化合物に金属系化合物が化学結合した複合体を含 有することを特徴としており、このような化学結合によ る複合体は、後で説明する本発明の方法によって容易に 形成させることができる。

【0019】本発明の傾斜材料における金属系化合物の種類については特に制限はなく、金属酸化物系化合物、または金属酸化物系化合物を介して有機高分子化合物に化学結合してなる金属窒化物系化合物などを挙げることができるが、ゾルーゲル法により形成されうるものが好ましく、このような金属系化合物としては、例えばケイ素、チタン、ジルコニウム及びアルミニウムの中から選ばれる金属の酸化物系化合物を好ましく挙げることができる。これらの金属系化合物は1種の金属を含むものであってもよいし、2種以上の金属を含むものであってもよい。

【0020】また本発明の傾斜材料における上記金属系化合物の含有量としては特に制限はないが、金属酸化物換算で、通常5~98重量%、好ましくは20~98重量%、特に好ましくは50~90重量%の範囲である。有機高分子化合物の重合度や分子量としては、製膜化しうるものであればよく特に制限されず、高分子化合物の種類や所望の塗膜物性などに応じて適宜選定すればよい。さらに、本発明の傾斜材料は、その厚みが5μm以下、特に0.01~1.0μmの範囲のものが、傾斜性及び塗膜性能などの点から好適である。

10 【0021】このような有機一無機複合傾斜材料は、以下に示す本発明の方法により効率よく製造することができる。本発明の方法においては、まず(A)分子中に加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基(以下、加水分解性金属含有基と称すことがある。)を有する有機高分子化合物と(B)

(イ)加水分解により金属酸化物を形成しうる金属化合物(以下、加水分解性金属化合物と称すことがある。)、または(ロ)金属窒化物重合体との混合物を加水分解処理せずにまたは加水分解処理して塗布液を調製

-5-

【0022】上記(A)成分である有機高分子化合物中の加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基及び(B)(イ)成分である加水分解により金属酸化物を形成しうる金属化合物、または(ロ)成分の金属窒化物重合体における金属としては、例えばケイ素、チタン、ジルコニウム及びアルミニウムの中から選ばれる少なくとも1種を好ましく挙げることができる。

【0023】上記(A)成分である分子中に加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基を有する有機高分子化合物は、例えば該金属含有基を有する単量体と金属を含まない単量体とを共重合又は縮重合させることにより、得ることができる。

【0024】ここで加水分解により金属酸化物または金属窒化物重合体と結合しうる金属含有基としては、例えば一般式(I)

$$-M^{1}R^{1}_{n-1}$$
 ... (I)

(式中、R¹は加水分解性基または非加水分解性基であるが、その中の少なくとも1つは加水分解により、

(B) 成分と化学結合しうる加水分解性基であることが必要であり、また、R¹が複数の場合には、各R¹はたがいに同一であってもよいし、異なっていてもよく、M¹はケイ素、チタン、ジルコニウム、アルミニウムなどの金属原子、nは金属原子M¹の価数である。)で表される基を挙げることができる。

【0025】上記一般式(I)において、R¹のうちの加水分解により(B)成分と化学結合しうる加水分解性基としては、例えばアルコキシル基、イソシアネート基、塩素原子などのハロゲン原子、オキシハロゲン基、アセチルアセトネート基などが挙げられ、一方、(B)成分と化学結合しない非加水分解性基としては、例えば低級アルキル基などが好ましく挙げられる。

【0026】上記一般式(I)で表される金属含有基としては、例えば、トリメトキシシリル基、トリエトキシシリル基、トリーnープロポキシシリル基、トリイソプロポキシシリル基、トリーnーブトキシシリル基、トリイソブトキシシリル基、トリーsecーブトキシシリル基、トリーtertーブトキシシリル基、トリクロロシリル*

$$R^3$$
 CH₂=C-X

(式中、R³は水素原子またはメチル基、Xは一価の有機基である。)で表されるエチレン性不飽和基を有する単量体、特に好ましくは一般式(III-a)

(式中、R⁴はアルキル基、シクロアルキル基、アリー

*基、ジメチルメトキシシリル基、メチルジメトキシシリ ル基、ジメチルクロロシリル基、メチルジクロロシリル 基、トリイソシアナトシリル基、メチルジイソシアナト シリル基など、トリメトキシチタニウム基、トリエトキ シチタニウム基、トリーnープロポキシチタニウム基、 トリイソプロポキシチタニウム基、トリーnーブトキシ チタニウム基、トリイソブトキシチタニウム基、トリー secーブトキシチタニウム基、トリーtertーブトキシチ タニウム基、トリクロロチタニウム基、さらには、トリ メトキシジルコニウム基、トリエトキシジルコニウム 基、トリーnープロポキシジルコニウム基、トリイソプ ロポキシジルコニウム基、トリーnーブトキシジルコニ ウム基、トリイソブトキシジルコニウム基、トリーsec ーブトキシジルコニウム基、トリーtertーブトキシジル コニウム基、トリクロロジルコニウム基、またさらに は、ジメトキシアルミニウム基、ジエトキシアルミニウ ム基、ジーnープロポキシアルミニウム基、ジイソプロ ポキシアルミニウム基、ジーnーブトキシアルミニウム 基、ジイソブトキシアルミニウム基、ジーsecーブトキ シアルミニウム基、ジーtertーブトキシアルミニウム 基、トリクロロアルミニウム基などが挙げられる。

10

【0027】上記共重合の例としては、エチレン性不飽和基および前記一般式(I)で表される金属含有基を有する単量体と、エチレン性不飽和基を有し、かつ金属を含まない単量体とをラジカル共重合させることにより、所望の高分子化合物が得られる。具体的には、一般式(II)

【化1】

$$R^2$$

CH₂=C-COO-A-M¹-R¹_{n-1} ...(II)

(式中、R²は水素原子またはメチル基、Aはアルキレン基、好ましくは炭素数 1~4のアルキレン基、R¹、M¹およびnは前記と同じである。)で表される金属含有基を含むアルキル基をエステル成分とする(メタ)アクリル酸エステル 1種以上と、一般式(III) 【化2】

...(III)

ル基またはアラルキル基であり、R³は前記と同じである。)で表される(メタ)アクリル酸エステル1種以上とをラジカル共重合させる方法を挙げることができる。【0028】一方、縮重合の例としては、上記エチレン性不飽和基の代わりに、縮合により高分子量化可能な基、例えば縮合によりアミド結合、エステル結合あるいはウレタン結合などを生成する2つ以上の官能基と前記50 一般式(I)で表される金属含有基とを有する単量体

II

と、縮合により高分子量化可能な基、例えば縮合により アミド結合、エステル結合あるいはウレタン結合などを 生成する2つ以上の官能基を有し、かつ金属含有基を含 まない単量体とを縮重合させる方法などにより、所望の 高分子化合物が得られる。

【0029】具体的には、いずれか一方の成分が前記一 般式(1)で表される金属含有基を有するアミン成分と 酸成分とを縮重合させ、ポリアミドを形成させる方法、 あるいはいずれか一方の成分が前記一般式(I)で表さ れる金属含有基を有するアルコール成分と酸成分とを縮 10 重合させ、ポリエステルを形成させる方法などが挙げら れる。

【OO3O】上記(B)(イ)成分である加水分解によ り金属酸化物を形成しうる金属化合物(加水分解性金属 化合物)としては、例えば一般式(IV)

 $M^2 R^5 m$ ··· (IV)

(式中、R5は加水分解性基または非加水分解性基であ るが、少なくとも2つは加水分解性基であり、かつ少な くとも1つは、加水分解により(A)成分と化学結合し うる加水分解性基であって、複数のR5はたがいに同一 であってもよいし、異なっていてもよく、M²はケイ 素、チタン、ジルコニウム、アルミニウムなどの金属原 子、mは金属原子M²の価数である。)で表される金属 化合物を挙げることができる。

【0031】上記一般式(IV)におけるR5のうちの加 水分解性基としては、例えばアルコキシル基、イソシア ネート基、塩素原子などのハロゲン原子、オキシハロゲ ン基、アセチルアセトネート基などが挙げられ、一方非 加水分解性基としては、例えば低級アルキル基、アリー 水分解性金属化合物としては、上記一般式(IV)で表さ れる金属化合物から誘導されるオリゴマーや、一般式 (IV) で表される金属化合物を複数種混合したものも用 いることができる。

【0032】上記一般式(IV)で表される金属化合物の 例としては、テトラメトキシシラン、テトラエトキシシ ラン、テトラーnープロポキシシラン、テトライソプロ ポキシシラン、テトラーnーブトキシシラン、テトライ ソブトキシシラン、テトラーsecーブトキシシラン、テ トラーtertープトキシシランなど、並びにこれらに対応 40 するテトラアルコキシチタンおよびテトラアルコキシジ ルコニウム、さらにはトリメトキシアルミニウム、トリ エトキシアルミニウム、トリーnープロポキシアルミニ ウム、トリイソプロポキシアルミニウム、トリーnーブ トキシアルミニウム、トリイソプトキシアルミニウム、 トリーsecーブトキシアルミニウム、トリーtertーブト キシアルミニウムなどの金属アルコキシド、あるいは金 属アルコキシドオリゴマー、例えば市販品のアルコキシ シランオリゴマーである「メチルシリケート51」、 「エチルシリケート40」 (いずれもコルコート社製商 50 品名)など、さらにはテトライソシアナトシラン、メチ ルトリイソシアナトシラン、テトラクロロシラン、メチ ルトリクロロシランなどが挙げられるが、この(B)

12

(イ) 成分としては、金属のアルコキシドが好適であ る。これらは単独で用いてもよいし、2種以上を組み合 わせて用いてもよい。

【0033】一方(B)(ロ)成分である金属窒化物重 合体としては、例えば一般式(V)

【化4】

$$\begin{array}{c|c}
 & R^6 \\
 & Si-NR^8 \\
 & R^7
\end{array}
\dots(V)$$

(式中、 R^6 、 R^7 および R^8 は、それぞれ独立に水素原 子、アルキル基、アルケニル基、アリール基、アラルキ ル基、若しくはこれらの基以外のフルオロアルキル基な どの炭素原子がケイ素原子に直結する基、アルキルシリ ル基、アルキルアミノ基またはアルコキシル基である 20 が、その少なくとも1つは水素原子である。)で表され る構造単位を含む数平均分子量100~5000のポ リシラザンなどを好ましく挙げることができる。

【0034】本発明の方法においては、(B)(イ)成 分として金属アルコキシドを用いる場合にはアルコー ル、ケトン、エーテルなどの適当な極性溶剤中におい て、前記(A)成分の高分子化合物および(B)(イ) 成分の金属アルコキシドの混合物を、塩酸、硫酸、硝酸 などの酸、あるいは固体酸としてのカチオン交換樹脂を 用い、通常0~60℃、好ましくは20~40℃の温度 ル基、アルケニル基などが好ましく挙げられる。この加 30 にて加水分解処理し、固体酸を用いた場合には、それを 除去したのち、さらに、所望により溶剤を留去または添 加し、塗布するのに適した粘度に調節して塗布液を調製 する。温度が低すぎる場合は加水分解が進まず、高すぎ る場合は逆に加水分解が進みすぎ、その結果得られる傾 斜塗膜の傾斜性が低下するおそれがある。なお、(B) (イ)成分の金属アルコキシドを含む極性溶剤溶液を予 め調製し、これに酸を加えて加水分解反応を進めてお き、このものと(A)成分を混合し、さらに加水分解処 理してもよい。

> 【0035】また、(B)(イ)成分として、イソシア ネート系金属化合物やハロゲン系金属化合物を用いる場 合、あるいは(B)(ロ)成分を用いる場合には、通常 成膜前には加水分解処理は行わず、成膜時またはそれ以 降において、空気中の水分により加水分解させる方法が 用いられる。

【0036】無機成分は、その種類によっては塗布液調 製後も、加水分解、重縮合が徐々に進行して塗布条件が 変動する場合があるので、塗布液に不溶の固体の脱水 剤、例えば無水硫酸マジネシウムなどを添加することに より、ポットライフの低下を防止することができる。こ

の場合、塗布液は、該脱水剤を除去してから、塗布に用 いる。

【0037】次に、このようにして得られた塗布液を用 い、有機材からなる基板上に、乾燥塗膜の厚さ、通常5 μm以下、特に中間膜用途として、好ましくは 0.01 $\sim 1.0 \mu m$ 、より好ましくは0.02 $\sim 0.7 \mu m$ の 範囲になるように、ディップコート法、スピンコート 法、スプレーコート法、バーコート法、ナイフコート 法、ロールコート法、ブレードコート法、ダイコート 法、グラビアコート法などの公知の手段により塗膜を形 成し、公知の乾燥処理、例えば40~150℃程度の温 度で加熱乾燥処理することにより、本発明の有機一無機 複合傾斜材料が得られる。

【0038】本発明においては、(A)成分と(B) (イ) 成分のうちの金属アルコキシドとの混合物の加水 分解処理により、(A)成分の高分子化合物中の加水分 解性金属含有基が加水分解するとともに、(B) (イ) 成分の金属アルコキシドも加水分解して一部重合する。 次に、この塗布液を有機材からなる基板(有機基材と称 することがある。)に塗布することにより、(A)成分 *20* の高分子化合物中のフレキシブルな高分子鎖の部分が基 板に吸着されるとともに、側鎖の金属含有基の加水分解 部分は基板から離れたところに位置する。この塗膜を加 熱乾燥処理することにより、上記側鎖の金属含有基の加 水分解がさらに進行するとともに、(B)(イ)成分の 金属アルコキシドの加水分解、重合もさらに進行し、そ してこの際、上記側鎖の加水分解により生成した反応性 基、例えばシラノール基と(B)(イ)成分の加水分 解、重合物とが縮合(化学結合)することにより、高分 子化合物と金属酸化物系化合物とが化学結合した複合体 30 系樹脂などからなる基板を挙げることができる。 が形成する。

【0039】また、(A)成分と(B)(イ)成分のう ちのイソシアネート系やハロゲン系金属化合物または (B) (ロ) 成分との混合物からなる塗布液を有機材か らなる基板に塗布することにより、(A)成分の高分子 化合物中のフレキシブルな高分子鎖の部分が基板に吸着 されるとともに、側鎖の加水分解性金属含有基は基板か ら離れたところに位置する。この塗膜は成膜時または加 熱乾燥処理時に空気中の水分により、上記側鎖の加水分 解性金属含有基の加水分解が進行するとともに、上記側 40 鎖の加水分解により生成した反応性基、例えばシラノー ル基と(B)(イ)成分のイソシアネート系やハロゲン 系金属化合物の加水分解物または(B)(ロ)成分の金 属窒化物重合体とが化学結合した複合体が形成する。し たがって、本発明の複合傾斜材料は、特開平8-283 425号公報に記載されている傾斜複合体とは根本的に 異なるものである。

【0040】このようにして有機基材上に形成された本 発明の複合傾斜材料においては、材料中の金属系化合物 の含有率は、表面ではほぼ100%であるが、基板方向 50

に逐次減少していき、基板近くでは、ほぼ0%になる。 すなわち、本発明の複合傾斜材料は、一般に、有機基材 上に形成された膜状物からなり、かつ実質上、該膜状物 の有機基材に当接している面が有機高分子系化合物成分 であって、もう一方の開放系面が金属系化合物である。 【0041】本発明においては、前記機構により複合傾 斜材料が形成されることから、塗膜の形成後、有機材か らなる基板に高分子鎖の部分が吸着されるのに必要な時 間、一般的には少なくとも液体状態を数秒間程度保持す ることが肝要である。使用する有機成分の可溶性溶媒と 無機成分の可溶性溶媒は、通常は異なる溶媒が用いら れ、それらが混和性を有する必要がある。また、塗工機 あるいはスプレー法等での塗布において、厚み斑がなく かつ良好な傾斜構造を得るためには、無機成分同士が縮 合する前に高分子化合物の吸着が起こるようにするため にも、上記無機成分可溶性溶媒の蒸発点を有機成分可溶 性溶媒の蒸発点以上に高くするのが好ましい。なお、有 機成分と無機成分の両者を溶解できるものであれば、単 独溶媒でも使用可能である。

14

【0042】有機材からなる基板としては特に制限はな く、例えばポリメチルメタクリレートなどのアクリル樹 脂、ポリスチレンやABS樹脂などのスチレン系樹脂、 ポリエチレンやポリプロピレンなどのオレフィン系樹 脂、ポリエチレンテレフタレートやポリエチレンナフタ レートなどのポリエステル系樹脂、6ーナイロンや6. 6ーナイロンなどのポリアミド系樹脂、ポリ塩化ビニル 系樹脂、ポリカーボネート系樹脂、ポリフェニレンサル ファイド系樹脂、ポリフェニレンエーテル系樹脂、ポリ イミド系樹脂、セルロースアセテートなどのセルロース

【0043】これらの基板は、本発明の傾斜材料との密 着性をさらに向上させるために、所望により、酸化法や 凹凸化法などにより表面処理を施すことができる。上記 酸化法としては、例えばコロナ放電処理、クロム酸処理 (湿式)、火炎処理、熱風処理、オゾン・紫外線照射処 理などが挙げられ、また、凹凸化法としては、例えばサ ンドブラスト法、溶剤処理法などが挙げられる。これら の表面処理法は基板の種類に応じて適宜選ばれる。

【0044】なお、本発明における有機材からなる基板 は、有機系材料以外の材料、例えば金属系材料、ガラス やセラミックス系材料、その他各種無機系または金属系 材料からなる基材の表面に、有機系塗膜を有するものも 包含する。

【0045】このようにして得られた本発明の有機一無 機複合傾斜材料は、前記したような優れた傾斜性を有す るとともに、(1)基板と無機膜の熱収縮あるいは物理的 伸縮に対する応力を緩和する性質、(2)屈折率が連続的 に変化する、(3)無機成分や有機成分の混合比によっ て、任意かつ簡便にその傾斜性を制御しうる、(4)無機 成分の形態による成膜時の表面構造の制御が可能である

などの性質を有することから、新しい機能性材料とし て、種々の用途に有用である。

【0046】本発明はまた、該有機一無機複合傾斜材料 からなる被膜を基材上に形成させるコーティング剤をも 提供するものである。このコーティング剤としては、前 記の(A)分子中に加水分解により金属酸化物または金 属窒化物重合体と結合しうる金属含有基を有する有機高 分子化合物と(B)(イ)加水分解により金属酸化物を 形成しうる金属化合物、または(ロ)金属窒化物重合体 との混合物を加水分解処理せずにまたは加水分解処理し て得られた塗布液からなるものを好ましく挙げることが できる。

【0047】このコーティング膜は下記の用途に用いる ことができる。まず、塗膜としての用途に用いられる。 該有機-無機複合傾斜材料は、有機基材に対する接着性 に優れており、かつ塗膜表面は金属酸化物または金属窒 化物の性質を有することから、例えば各種プラスチック フィルム上に該材料からなるコート層を設けることによ り、耐擦傷性や耐熱性などに優れると共に、密着性の良 好なハードコートフィルムを得ることができる。

【0048】次に、接着剤としての用途に用いられる。 本発明の傾斜材料は、前記したように有機基材との密着 性に優れるとともに、表面は金属系化合物であるので、 無機または金属材料との密着性に優れている。したがっ て、有機材料と無機または金属材料との接着剤として好 適である。

【0049】さらに、有機基材と、少なくとも無機系ま たは金属系材料を含むコート層との間に介在させる中間 膜としての用途に用いられる。有機基材上に無機系また 機基材と該コート層との密着性が不十分であって、耐久 性に劣り、経時により剥離したり、あるいは熱や湿気な どにより剥離しやすくなるという問題が生じる。

【0050】本発明の傾斜材料を中間膜として、上記有 機基材と無機系または金属系材料を含むコート層との間 に介在させることにより、該中間膜は前記したように傾 斜性を有することから、有機基材との密着性に優れると 共に、その上に設けられる無機系または金属系材料を含 むコート層との密着性にも優れ、その結果、有機基材上 に無機系または金属系材料を含むコート層を極めて密着 性よく、形成させることができる。本発明においては、 該中間膜の厚さは、通常 5 μ m以下、好ましくは 0.0 $1 \sim 1$. $0 \mu m$ 、より好ましくは0. $0 2 \sim 0$. $7 \mu m$ の範囲である。

【0051】前記無機系または金属系材料を含むコート 層としては特に制限はなく、様々なコート層を形成する ことができるが、例えば(1)光触媒活性材料層、

(2)無機系または金属系導電性材料層、(3)無機系 または金属系材料を含むハードコート層、(4)無機系 または金属系光記録材料層または無機系または金属系誘 50 電体層などを好ましく挙げることができる。

【0052】次に、各無機系または金属系材料を含むコ ート層について説明する。

16

(1) 光触媒活性材料層:有機基材表面に、二酸化チタ ンなどの光触媒活性材料のコート層を設けた場合、その 光触媒作用により、有機基材が短時間で劣化するという 問題が生じる。したがって、光触媒作用により、劣化し にくい無機バインダーを介して有機基材上に二酸化チタ ンなどの光触媒活性材料のコート層を設けることが試み られている。しかしながら、無機バインダーは、有機基 材との接着力が不十分であり、耐久性に劣るという問題 がある。

【0053】本発明の傾斜材料を中間膜として、有機基 材と光触媒活性材料のコート層との間に介在させた場 合、有機基材との密着性に優れ、しかも表面はほぼ金属 系化合物であるため、光触媒活性材料のコート層との密 着性が良い上、中間膜が光触媒作用により劣化しにく く、有機基材を十分に保護することができる。

【0054】また、表面に有機系塗膜を有する金属系基 20 材と光触媒活性材料層との間に、本発明の傾斜材料を中 間膜として介在させることができる。この中間膜は、上 記有機基材の場合と同様に、有機系塗膜との密着性に優 れ、しかも光触媒活性材料のコート層との密着性が良い 上、光触媒作用により劣化しにくく、有機系塗膜を十分 に保護することができる。このような用途としては、特 に表面に有機系塗膜を有する自動車用鋼板上に光触媒活 性材料層を設ける場合に有用である。

【0055】表面に有機系塗膜を有する金属系基材とし ては、例えば冷延鋼板、亜鉛めっき鋼板、アルミニウム は金属系材料を含むコート層を形成する場合、一般に有 30 /亜鉛合金めっき鋼板、ステンレス鋼板、アルミニウム 板、アルミニウム合金板などの金属系基材に有機系塗膜 を形成したものを挙げることができる。本発明の傾斜材 料を、このような中間膜として用いる場合、その上に設 けられる光触媒活性材料のコート層が光触媒能の高い二 酸化チタンである場合に、特に有効である。

> 【0056】(2)無機系または金属系導電性材料層: 表面に導電性材料層を有する有機基材、特にプラスチッ クフィルムは、エレクトロルミネッセンス素子(EL素 子)、液晶表示素子(LCD素子)、太陽電池などに用 いられ、さらに電磁波遮蔽フィルムや帯電防止性フィル ムなどとして用いられている。このような用途に用いら れる導電性材料としては、例えば酸化インジウム、酸化 錫、酸化亜鉛、酸化カドミウム、ITO(インジウムチ ンオキシド)などの金属酸化物や、金、白金、銀、ニッ ケル、アルミニウム、銅のような金属などの無機系また は金属系導電性材料が用いられる。そして、これらの無 機系または金属系導電性材料は、通常真空蒸着法、スパ ッタリング法、イオンプレーティング法などの公知の手 段により、プラスチックフィルムなどの有機基材上に、

厚さ50~2000オングストローム程度の薄膜として

形成される。

【0057】このようにして形成された無機系または金属系導電性材料層は、有機基材との密着性が不十分であるので、本発明の傾斜材料を中間膜として、有機基材と該無機系または金属系導電性材料層との間に介在させることにより、有機基材と無機系または金属系導電性材料層との密着性を向上させることができる。また、透明導電性フィルムが要求される場合においても、本発明の傾斜材料からなる中間膜を介在させることにより、透明性が損なわれることはほとんどない。

【0058】(3)無機系または金属系材料を含むハードコート層:表面硬度が良好で、優れた耐擦傷性や耐摩耗性を有するハードコートフィルムは、例えば、車両、建物などの窓ガラスや窓用プラスチックボードなどの表面貼付用として、あるいはCRTディスプレイやフラットパネルディスプレイなどの保護用などとして広く用いられている。

【0059】一方、プラスチックレンズは、ガラスレンズに比べて、軽量でかつ安全性、加工性、ファッション性などに優れていることから、近年急速に普及してきている。しかしながら、このプラスチックレンズは、ガラスレンズに比べて傷が付きやすいという欠点を有しており、したがって、その表面をハードコート層で被覆することが行われている。

【0060】このようなハードコートフィルムやプラスチックレンズに設けられるハードコート層の材料としては、例えばアルキルトリヒドロキシシランおよびその部分縮合物とコロイダルシリカとシリコン変性アクリル樹脂とからなる混合物、オルガノトリアルコキシシラン加水分解縮合物とコロイダルシリカとの混合物、ジルコニウム、アルミニウムおよびチタニウムの中から選ばれる金属とキレート化合物とシリコン変性アクリル樹脂とからなる混合物などの無機系または金属系材料を含むハードコート剤が多用されている。

【0061】プラスチックフィルムやプラスチックレンズなどの有機基材上にハードコート層を形成するには、前記の無機系または金属系材料を含むハードコート剤を、公知の方法、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法、スプレーコート法などを用いて、乾燥膜厚が1~30μm程度になるように有機基材上に塗布し、乾燥処理する方法が、通常用いられる。

【0062】このようにして形成された無機系または金属系材料を含むハードコート層は、有機基材との密着性が不十分であるので、本発明の傾斜材料を中間膜として、有機基材と該ハードコート層との間に介在させることにより、有機基材と無機系または金属系材料を含むハードコート層との密着性を向上させることができる。またプラスチックレンズにおいて、本発明の傾斜材料から

なる中間膜を介在させても、該プラスチックレンズの透明性の低下や干渉縞の発生などをもたらすことはほとんどない。

18

【0063】(4)無機系または金属系光記録材料層または無機系または金属系誘電体層:近年、書き換え可能、高密度、大容量の記憶容量、記録再生ヘッドと非接触等という特徴を有する光記録媒体として、半導体レーザー光等の熱エネルギーを用いて磁性膜の磁化反転を利用して情報を記録し磁気光学効果を利用して読み出す光磁気ディスクや結晶から、アモルファスへの相変化を利用した相変化ディスクが開発され、実用化に至っている。

【0064】このような光記録媒体は、一般に、透光性 樹脂基板(有機基材)、例えばポリカーボネートやポリ メチルメタクリレートなどの基板上に光記録材料層、誘 電体層、金属反射層、有機保護層などが順次積層された 構造を有しており、また、基板と光記録材料層との間 に、誘電体下地層を設ける場合もある。

【0065】基板上に設けられる光記録材料層には、例えばTb-Fe、Tb-Fe-Co、Dy-Fe-Co、Tb-Dy-Fe-Coなどの無機系の光磁気型記録材料、あるいはTeOx、Te-Ge、Sn-Te-Ge、Bi-Te-Ge、Sb-Te-Ge、Pb-Sn-Te、Tl-In-Seなどの無機系の相変化型記録材料が用いられる。また、所望により、基板と光記録材料層との間に設けられる誘電体下地層には、例えばSiN、SiO、SiOz、TazOsなどの無機系材料が用いられる。前記無機系の光記録材料層や誘電体下地層は、通常真空蒸着法、スパッタリング法、イオンプレーティング法などの公知の手段によって形成される。

【0066】このようにして形成された無機系または金属系光記録材料層または無機系誘電体下地層は、透光性樹脂基板との密着性が不十分であるので、本発明の傾斜材料を中間膜として、透光性樹脂基板と該光記録材料層または該誘電体下地層との間に介在させることにより、基板と光記録材料層または誘電体下地層との密着性を向上させることができる。

【0067】その他無機系または金属系材料を含むコート層としては、酸化チタン、酸化亜鉛、酸化インジウム、酸化錫、硫化亜鉛、アンチモンドープ酸化錫(ATO)、錫ドープ酸化インジウム(ITO)などの無機系赤外線吸収剤層、メタル蒸着された磁性層などが挙げられる。

【0068】本発明は、さらに、上記有機一無機複合傾斜材料を用いてなる基材、該複合傾斜材料を接着剤として用いてなる有機一無機接着材料および該複合傾斜材料を中間膜として介在させ、かつ少なくとも無機系または金属系材料を含むコート層を有する物品をも提供する。

【0069】前記基材の具体例としては、本発明の有機 50 一無機複合傾斜材料を中間膜として介在させ、かつ少な くとも無機系または金属系材料を含むコート層を有する 有機基材、あるいは、本発明の有機一無機複合傾斜材料 を中間膜として介在させ、かつ光触媒活性材料層を有す る、表面に有機系塗膜が設けられた金属系基材などを好 ましく挙げることができる。

【0070】また、物品の具体例としては、少なくとも無機系または金属系材料を含むコート層が、(1)光触媒活性材料層、(2)無機系または金属系導電性材料層、(3)無機系または金属系材料を含むハードコート層、および(4)無機系または金属系光記録材料層または無機系または金属系誘電体層であるものなどを好ましく挙げることができる。

【0071】本発明の有機一無機複合傾斜材料の用途としては、上述の用途以外に、例えば(1)強誘電体薄膜(チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウム等)の中間膜

(2)金属蒸着薄膜からなるUVカットフィルムの中間膜、(3)金属蒸着薄膜からなる熱線遮蔽フィルムの中間膜、(4)シリカーチタニア積層膜からなる低反射・無反射コーティング膜の中間膜、(5)シリカーチタニア積層膜からなるヘッドアップディスプレイコンバイナーフィルムの中間膜、(6)ゾルーゲル法により無機酸化物に機能性分子をドーピングさせた薄膜用の中間膜(シリカ等の無機成分中に、蛍光色素、レーザー用色素、フォトクロミック材料、エレクトロクロミック材料、非線形工学材料を分散させた薄膜)、(7)塗布用無機系抗菌材用のアンダーコート、(8)無機成分がシリカからなる傾斜膜表面のOH基を利用してカップリング反応により、酵素、抗体、蛋白質等の分子を化学結合させる固定化用膜としての利用、

【0072】(9)傾斜膜表面のシリカの〇H基を利用 して、シラン系カップリング剤やチタネート系カップリ ング剤、アルミネート系カップリング剤、ジルコネート 系カップリング剤等の反応サイトとしての利用、(1 0)傾斜膜表面のシリカのOH基を利用して、重合可能 な官能基を結合させ、グラフト反応場としての利用、 (11) プラスチックの耐蝕コーティング (チタニア、 アルミナ、ジルコニア及びチタニアーシリカ、アルミナ ーシリカ、ジルコニアーシリカ等の複合酸化物)、(1) 2) プラスチックの耐熱コーティング、(13) プラス 40 チック表面のブリードアウト防止コーティング(プラス チック中の添加剤の表面へのブリードアウトを遮断)、 (14)プラスチック表面の酸化防止膜、(15)透明 樹脂をコア層としたクラッド層を傾斜膜で形成した光フ ァイバー、(16)同上で透明樹脂を太径のロッドとし たロッドレンズ、などを挙げることができる。

[0073]

【実施例】次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。

【0074】 実施例1

(1) 有機一無機複合膜の形成

メタクリル酸メチル [和光純薬工業(株)製] 11.8 gおよび3ーメタクリロキシプロピルトリメトキシシラン [信越化学工業(株)製] 0.5 gを混合し、よく撹拌したのち、これに、2,2′ーアゾビスイソブチロニトリル [和光純薬工業(株)製] 0.2 gを添加し、撹拌しながら70℃で2.5時間反応させた。反応終了後、室温まで冷却したのち、アセトン246ミリリットル中に重合物を溶解させ、さらにエタノール123ミリリットルを加え、(A)成分の有機高分子化合物の溶液(以下、高分子溶液と称す。)を調製した。

20

【0075】一方、テトラエトキシシラン [和光純薬工業(株)製] 61.5ミリリットル中に、塩酸0.05g/ミリリットル濃度の塩酸・イソプロパノール溶液30.8ミリリットルを撹拌しながら滴下し、室温で5時間撹拌を続けた。この無機成分溶液を、上記で得た高分子溶液中に静かに滴下し、室温で4時間撹拌したのち、アセトン515ミリリットルで希釈し、よく撹拌後、さらにエタノール738ミリリットルで希釈して塗布液を調製した。この塗布液をスピンコート法(1500 r p m、10秒間)にて、ポリメチルメタクリレート基板上に塗布し、70℃で12時間加熱乾燥処理することにより、厚さ0.6 μ mの有機一無機複合膜を形成させた。【0076】(2)評価

(イ)傾斜性

上記(1)で得た有機一無機複合膜に、XPS装置「PHI-5600」 [アルバック・ファイ(株)]製]を用い、アルゴン・スパッタリング(4kV)を5分間隔で30 施して膜を削り、膜表面の炭素原子とケイ素原子の含有率を、X線光電子分光法により測定し、傾斜性を調べた。図1に、スパッタリング時間(膜の深さと関係する)と炭素原子およびケイ素原子の含有率との関係をグラフで示す。この図から、優れた傾斜性を有することが分かる。

•

【0077】(ロ) 二酸化チタン中間膜用途の耐久性上記(1)で得られた有機一無機複合膜を中間膜とし、この上に「STS-01」 [石原産業(株)製]を蒸留水で3倍に希釈した光触媒コート剤を、スピンコート法(1500rpm、10秒間)により塗布し、70℃で12時間乾燥固着させることにより、厚さ0.4μmの二酸化チタンコート膜を形成した。これを密閉シリカガラス容器内に入れ、温度60℃、相対湿度50%に調整したのち、ブラックライトを用いて光照射(光量2.0mW/cm²)し、紫外線照射に伴う可視光(400~800nm)での透過率の経時変化を測定した。図12に、可視光領域での該膜の透過率スペクトルの経時変化を示す。

【0078】また、紫外線照射時間に対する波長500 50 nmでの透過率の経時変化から、その透過率の減少速度 を数値化し、これを耐久性評価の指数とした。図13に、紫外線照射日数と波長500nmでの透過率の減少量との関係をグラフで示す。図12及び図13から、優れた耐久性を有することが分かる。

【0079】〈促進曝露試験〉さらに、この膜をサンシャインウェザーメータ(機内温度60℃、スプレーサイクル120分中18分)を用いて促進曝露試験を行い、光触媒による劣化の度合いを光線透過率の変化及び外観の変化により調べた。図14にサンシャインウェザーメーターの曝露時間に対する可視光線透過率の変化を示す。500nmの光線透過率は、試験前の90%に対し、20日間経過後は87%とほぼ維持しており、また外観上の変化もなく、良好な耐候性を示した。

【0080】実施例2

実施例1において、ポリメチルメタクリレート基板の代わりにポリスチレン基板を用いた以外は、実施例1と同様にして、有機一無機複合膜を形成させた。この膜について、実施例1と同様にして傾斜性を評価した。図2に、スパッタリング時間と炭素原子およびケイ素原子の含有率との関係をグラフで示す。この図から、優れた傾 20 斜性を有することが分かる。

【0081】実施例3

実施例1において、ポリメチルメタクリレート基板の代わりにポリエチレンテレフタレートフィルムを用いた以外は、実施例1と同様にして有機一無機複合膜を形成させた。この膜について実施例1と同様にして、傾斜性を評価した。図3に、スパッタリング時間と炭素原子およびケイ素原子の含有率との関係をグラフで示す。この図から、優れた傾斜性を有することが分かる。

【0082】実施例4

実施例1において、ポリメチルメタクリレート基板の代わりにポリプロピレンフィルムを用いた以外は、実施例1と同様にして有機一無機複合膜を形成させた。この膜について実施例1と同様にして、傾斜性を評価した。図4に、スパッタリング時間と炭素原子およびケイ素原子の含有率との関係をグラフで示す。この図から、優れた傾斜性を有することが分かる。

【0083】実施例5

実施例1において、塗布液をエタノール/アセトン混合溶剤(容量比1/1)で5倍に希釈して用い、かつスピ 40 ンコート法の代わりにディップコート法(引上げ速度 0.5 c m/分)を採用した以外は、実施例1と同様にして有機一無機複合膜を形成させた。この膜について実施例1と同様にして、傾斜性を評価した。図5に、スパッタリング時間と炭素原子およびケイ素原子の含有率との関係をグラフで示す。この図から、優れた傾斜性を有することが分かる。

【0084】実施例6

実施例1において、テトラエトキシシラン61.5ミリ せ、フィルム全体を濡らし終わってから5秒後、回転カリットルの代わりに、テトライソプロポキシチタン [和 50 ップを1500rpm、10秒間にて回転させ、塗布液

光純薬工業(株)製]84.0ミリリットルを用いた以外は、実施例1と同様にして有機一無機複合膜を形成させた。この膜について実施例1と同様にして、傾斜性を評価した。図6に、スパッタリング時間と炭素原子およびチタン原子の含有率との関係をグラフで示す。この図から、優れた傾斜性を有することが分かる。

22

【0085】実施例7

実施例1において、ポリメチルメタクリレート基板の代わりにポリカーボネート基板(三菱エンジニアリングプラスチック(株)製ユーピロン、厚み400μm)を用いた以外は、実施例1と同様にして有機一無機傾斜複合膜を形成させた。この膜について、実施例1と同様にして傾斜性を評価した。図15に、スパッタリング時間と炭素原子およびケイ素原子の含有率との関係をグラフで示す。この図から、優れた傾斜性を有することが分かる。

【0086】実施例8

(1) 有機ー無機複合膜の形成

[(A)成分の調製] 100ミリリットルのガラス製容器にメタクリル酸メチル [和光純薬工業(株)製(以後M20 MAと略記することがある)] 10.92g及び3-メタクリロキシプロピルトリメトキシシラン [信越化学工業(株)製(以後MPTMSと略記することがある)] 2.71gを入れて混合し、よく撹拌したのち、これに、2,2′ーアゾビスイソブチロニトリル [和光純薬工業(株)製] 0.2gを添加し、蓋をして密閉した。この容器をウォーターバス中に置き、マグネチックスターラーで撹拌しながら、70℃で2.5時間ラジカル重合反応を行った。反応終了後、重合物を室温まで冷却したのち、アセトン100ミリリットル中に重合物1.0g を溶解させ、(A)成分の有機高分子化合物の溶液(以下、高分子溶液と称す)を調製した。

【0087】 [(B) 成分の調製] 一方、テトラエトキシシラン [和光純薬工業(株)製試薬特級(以後TEOSと略記することがある)] 12gをエタノール10ミリリットル中に溶解した溶液に、濃塩酸3.1gとエタノール5ミリリットルからなる溶液を撹拌しながら徐々に滴下した。この混合溶液を室温で5時間撹拌し、(B)成分の無機成分溶液とした。

【0088】 [傾斜膜塗布液の調製] 高分子溶液10ミリリットルをアセトン40ミリリットルで希釈し、よく撹拌後、エタノール40ミリリットルを添加し、さらに無機成分溶液10ミリリットルを加え、撹拌して傾斜膜塗布液を調製した。

【0089】 [傾斜膜のスピンコート] スピンコーターの回転カップ上に、12cm角のポリエチレンテレフタレート (PET) フィルム [東レ(株)製ルミラーT-60、フィルム厚み 188μ m] を固定し、フィルムの表面を濡らすように上記傾斜膜塗布液をフィルム上に載せ、フィルム全体を濡らし終わってから 5 秒後、回転カップを 1500 r n m 10 秒間にて回転させ、途布液

をスピンコートした。塗布されたフィルムをオーブン中70℃で12時間加熱乾燥処理することにより、厚さ 0.2μ mの有機一無機複合膜をPETフィルム上に形成させた。

【0090】(2)アンモニア処理

上記フィルムを 0.05 Nのアンモニア水に 5 分間浸漬したのち、オーブン中 70℃で 12 時間加熱乾燥した。 【 0091】(3)評価

[光触媒酸化チタンコート剤の塗布]この有機一無機複合膜上に酸化チタン光触媒コート剤(日本曹達(株)製ビストレータNDC-200C)をイソプロパノールで10倍に希釈した液を、スピンコート法(1500 r pm、20秒間)にて塗布し、オーブン中80℃で12時間乾燥及び熱処理を行うことにより、厚さ0.15 μ mの酸化チタンコート膜を形成した。

【0092】 [促進曝露試験] 上記光触媒酸化チタンがコーティングされたフィルムについて、サンシャインウェザーメーター (機内温度60℃、スプレーサイクル120分中18分)を用いて促進曝露試験を行い、光触媒による劣化の度合いを光線透過率の変化及び外観の変化により調べた。図16にサンシャインウェザーメーターの曝露時間に対する可視光線透過率の変化を示す。500mmの光線透過率は、試験前の81%に対し、20日間経過後は79%とほぼ維持しており、また外観上の変化もなく、良好な耐候性を示した。

【0093】また上記(1)でコーティングしたフィルムをオートクレーブ中にて、130 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ の条件で3時間加熱処理したものについて、上記と同様にして光触媒酸化チタンコート剤を塗布し、サンシャインウェザーメーターによる曝露試験を行ったところ、アンモニア処理フィルムと同様に良好な結果が得られた。

【0094】実施例9

[傾斜中間膜のコロナ放電処理] 実施例8において、PETフィルム [東レ(株)製ルミラーTー60、フィルム厚み188μm] 上に傾斜膜塗布液をコーティングした後、コロナ放電処理装置(春日電機(株)製、印加電圧150V、電流15A)で3秒間処理した以外は、実施例8と同様にして光触媒酸化チタンがコートされたフィルムを得た。このフィルムをサンシャインウェザーメーターによる促進曝露試験を行った。図17にサンシャインウェザーメーターの曝露時間に対する可視光線透過率の変化を示す。500nmの光線透過率は、試験前の81%に対して、20日間経過後は79%とほぼ維持しており、また外観上の変化もなく、良好な耐候性を示した。【0095】実施例10

実施例8において、MMA/MPTMSのモル比を10 /1として、(A)成分の10g/リットルのアセトン 溶液を調製した。一方、TEOS12gおよび濃塩酸 2.5g、エタノール5gの混合溶液を滴下し、10時 50 間撹拌して無機成分液とした。(A)成分液の3ミリリットルとアセトン22ミリリットル及び無機成分液4ミリリットルを混合し、さらにnーへキサノール21ミリリットルを加えよく撹拌した。この液にPETフィルムを浸漬し、15cm/分の速度で引き上げてコーティングした。このコーティングフィルムの傾斜性を実施例1と同様に測定した。図18に、スパッタリング時間とケイ素原子の含有率との関係を示す。この図から優れた傾斜性を有することが分かる。

24

0 【0096】実施例11

実施例8において、MMA/MPTMSのモル比を1/ 1、20/1、100/1として、(A)成分が10g /リットルのアセトン溶液を調製した。一方、TEOS 12gおよび濃塩酸2.5g、エタノール5gの混合溶 液を滴下し、10時間撹拌して無機成分液とした。

(A) 成分液の3ミリリットルとアセトン22ミリリットル及び無機成分液4ミリリットルを混合し、さらに nーへキサノール21ミリリットルを加えよく撹拌した。この液にPETフィルムを浸漬し、5.0cm/分の速度で引き上げてコーティングした。このコーティングフィルムの傾斜性を実施例1と同様に測定した。図19に、上記3種類のMMA/MPTMS(モル比)ついて、スパッタリング時間とケイ素原子の含有率との関係を示す。この図からMMA/MPTMSのモル比の変化により、傾斜の傾きを制御できることが分かる。

【0097】実施例12

実施例8において、MMA/MPTMSのモル比を10/1として、(A)成分が10g/リットルのアセトン溶液を調製した。一方、TEOS12gおよび濃塩酸2.5g、エタノール5gの混合溶液を滴下し、10時間撹拌して無機成分液とした。(A)成分液の1ミリリットルとアセトン4ミリリットルに無機成分液を任意量加え、無機成分濃度が1、2、4、6重量%の塗布液を調製した。この液を実施例8と同様の方法でPETフィルム上のスピンコートし、有機一無機複合傾斜膜を得た。この傾斜膜の傾斜性を実施例1と同様に測定した。図20に、上記4種類の無機成分濃度の傾斜膜における、スパッタリング時間とケイ素原子の含有率との関係を示す。この図から無機成分濃度の変化により、傾斜の傾きを制御できることが分かる。

【0098】実施例13

実施例4と同様の方法で3cm角の黒色塗料が塗られた自動車鋼板(アクリル/メラニン樹脂コート)上に傾斜膜塗布液をコーティングし、オープン中70℃、12時間乾燥した。得られた膜付自動車鋼板をプラズマジェット(春日電機(株)製PJ-1)で3秒間処理したのち、酸化チタン光触媒コート剤(日本曹達(株)製NDC-200C)1gを濃塩酸0.08gと2-プロパノール9gにより希釈したものをスピンコート法(1500rpm、20秒間)にて塗布し、80℃のオーブン中1時間

乾燥および熱処理を行うことにより厚さ $0.2\mu m$ の酸化チタンコート膜を形成した。上記光触媒がコーティングされた自動車鋼板を、サンシャインウェザーメーター(試験機内温度 60%、スプレーサイクル 120分中 18分)により促進曝露試験を行い、水の接触角及び外観の変化を調べた。 20 日間経過後に水接触角の測定を行*

*ったところ、接触角3°未満であり、試験前と比べて表面の超親水性に変化はなかった。また干渉縞や白化も見られず良好な耐久性を示した。表1に、曝露時間と傾斜膜の接触角および外観との関係を示す。

26

[0099]

【表1】

表 1

			4X 1				
			E	暴露『	寺間	(hr)	
		0	60	120	180	240	420
傾斜膜	接触角(度)	< 3	< 3	< 3	< 3	< 3	< 3
	外観	良好	良好	良好	良好	良好	良好

【0100】比較例1

実施例1における高分子溶液の調製において、3ーメタクリロキシプロピルトリメトキシシランを用いずに、メタクリル酸メチルの量を12gに変更した以外は、実施例1と同様にして塗膜を形成させた。この膜について実施例1と同様にして傾斜性を評価した。図7に、スパッタリング時間と炭素原子およびケイ素原子の含有率との関係をグラフで示す。この図から分かるように、傾斜性 20 を有する膜が得られなかった。

【0101】比較例2

実施例1において、ポリメチルメタクリレート基板の代わりにガラス基板を用いた以外は、実施例1と同様にして塗膜を形成させた。この膜について実施例1と同様にして傾斜性を評価した。図8に、スパッタリング時間と炭素原子およびケイ素原子の含有率との関係をグラフで示す。この図から分かるように、傾斜性を有する膜が得られなかった。

【0102】比較例3

市販のアクリルシリコーン樹脂溶液「GS-1020」 [東亜合成(株)製]6.5gをトルエン/イソプロパ ノール混合溶剤(容量比1/1)20gに加え、撹拌混 合したものを、ポリメチルメタクリレート基板上にスピ ンコート法(1500rpm、10秒間)で塗布し、7 0℃で12時間乾燥させて、中間膜としての塗膜を形成 させた。この膜の二酸化チタン中間膜用途の耐久性につ いて、実施例1と同様にして評価した。

【0103】図9に、可視光領域での該膜の透過率スペクトルの経時変化を示し、図13に、紫外線照射日数と 40 波長500nmでの透過率の減少量との関係をグラフで示す。図9および図13から分かるように、この膜は良好な耐久性を示さなかった。

【0104】比較例4

市販の無機接着剤「エチルシリケート 40」 [コルコート (株) 製] 8.1gを、トルエン/イソプロパノール混合溶剤(容量比 1/1) 20gに加え、撹拌混合したものを、ポリメチルメタクリレート基板上にスピンコート法(1500rpm、10秒間)で塗布し、70℃で12時間乾燥させて、中間膜としての塗膜を形成させ

た。この膜の二酸化チタン中間膜用途の耐久性について、実施例1と同様にして評価した。

【0105】図10に、可視光領域での該膜の透過率スペクトルの経時変化を示し、図13に、紫外線照射日数と波長500nmでの透過率の減少量との関係をグラフで示す。図10および図13から分かるように、この膜は良好な耐久性を示さなかった。

20 【0106】比較例5

市販のアクリルシリコーン樹脂溶液「GS-1020」 [東亜合成(株)製] 5.0gをトルエン/イソプロパ ノール混合溶剤(容量比1/1)10gに加え、撹拌混 合したものに、市販の無機接着剤「エチルシリケート4 0」[コルコート(株)製]1.9gをゆっくり滴下 し、撹拌混合した。さらに、トルエン/イソプロパノー ル混合溶剤(容量比1/1)10gを添加し、撹拌混合 して塗布液を調製した。この塗布液を、ポリメチルメタ クリレート基板上にスピンコート法(1500rpm、 10秒間)で塗布し、70℃で12時間乾燥させて、中 間膜としての塗膜を形成させた。この膜の二酸化チタン 中間膜用途の耐久性について、実施例1と同様にして評 価した。

【0107】図11に、可視光領域での該膜の透過率スペクトルの経時変化を示し、図13に、紫外線照射日数と波長500nmでの透過率の減少量との関係をグラフで示す。図11および図13から分かるように、この膜は多少良好な耐久性を示すが、やはり透過率の減少が確認された。

10 【0108】比較例6

実施例8において、MPTMSを使用せず、(A)成分と(B)成分が化学結合していない有機ー無機複合膜用塗布液を合成した。すなわち、50ミリリットルのガラス製容器にメタクリル酸メチル [和光純薬工業(株)製] 12gおよび2,2′ーアゾビスイソブチロニトリル [和光純薬工業(株)製] 0.2gを添加し、蓋をして密閉した。この容器をウォーターバス中に置き、マグネチックスターラーで撹拌しながら、75℃で2.5時間ラジカル重合反応を行った。反応終了後、重合物を室温ま50で冷却したのち、アセトン20ミリリットル中に上記重

18

· marie

27

合物 O. 2gを溶解させ、MPTMSを含まない高分子 溶液を調製した。

【0109】一方、実施例8と同様にテトラエトキシシ ランを使用して(B)成分の無機成分溶液を得た。以 後、実施例8と同様に塗布液を調製して、PETフィル ムにコーティングし、さらに光触媒酸化チタンコート剤 を塗布して得られたフィルムのサンシャインウェザーメ ーターによる促進曝露試験の結果を図21に示す。50 0 n mにおける光線透過率は、試験前の83%から5日 間経過後ですでに光線透過率が45%まで低下し、外観 上においても白化が生じて膜が劣化していることが分か った。

【0110】比較例7

実施例1において、有機一無機複合膜塗布液の代わり に、市販の光触媒酸化チタンコート剤用アンダーコート 剤(日本曹達(株)製ビストレータNDC-100A)を アクリル基板に塗布した以外は、実施例1と同じ方法で 光触媒酸化チタンがコートされたフィルムを得た。この フィルムをサンシャインウェザーメーターによる促進曝 露試験を行った。図22にサンシャインウェザーメータ ーの曝露時間に対する可視光線透過率の変化を示す。5 00 n mにおける光線透過率は、試験前の76%から5 日間経過後ですでに光線透過率が57%まで低下し、外 観上においても白化が生じて膜が劣化していることが分 かった。

【0111].比較例8

実施例8において、有機一無機複合膜塗布液の代わりに 市販の光触媒酸化チタンコート剤用アンダーコート剤を 用いた以外は、実施例8と同じ方法で光触媒酸化チタン ャインウェザーメーターによる促進曝露試験を行った。 図23にサンシャインウェザーメーターの曝露時間に対 する可視光線透過率の変化を示す。500nmにおける 光線透過率は、試験前の74%から20日間経過後で光 線透過率が66%まで低下し、外観上においても白化が 生じて膜が劣化していることが分かった。

【0112】 実施例14

[(A)成分の調製]メチルメタクリレート21.8g および3-メタクリロキシプロピルトリメトキシシラン 5. 41gを混合し、よく撹拌したのち、これに2, 2′ーアゾビスイソブチロニトリル 0.4 g を添加し、 撹拌しながら70℃で2.5時間反応させた。放冷後、 得られた重合物の内、4gを2リットルのメチルエチル ケトンに溶解し、(A)成分の髙分子溶液を調製した。 【0113】 [(B) 成分の調製] 一方、テトラエトキ シシラン480gとエタノール400gの混合溶液中 に、 濃硝酸 4 0 g とエタノール 2 0 0 g と水 4 6 0 g の 混合液を撹拌しながらゆっくり滴下し、室温で5時間撹 拌を継続し、(B)成分の無機成分溶液とした。

【0114】 [傾斜膜塗布液の調製]

(A) 成分の高分子溶液にエチルセロソルブ 1. 5リッ トルを添加し、撹拌混合したのち、これに(B)成分の 無機成分溶液500gを添加し、よく撹拌して傾斜膜塗

28

【0115】 [傾斜膜のバーコート] ヒラノテクシード (株) 社製の「マルチコーターM200」にてキスマイ ヤーバー法(線径0.1mm、ライン速度10m/mi n、乾燥温度120℃)にて、東レ(株)社製PETフ ィルム「ルミラーTー60」(厚み50μm、幅330 mm) に塗工し、厚み 0. 1 µ mの有機 - 無機複合膜を 形成させた。この膜について実施例1と同様にして傾斜 性を評価した。図24にスパッタリング時間と炭素原子 およびケイ素原子の含有率との関係をグラフに示す。こ の図から優れた傾斜性を有することが分かる。

【0116】実施例15

布液を調製した。

実施例14と同様にして得られた重合物の内、2gを1 リットルのメチルイソブチルケトンに溶解して(A)成 分の高分子溶液とした。この高分子溶液に、1-ブタノ ール0.8リットルを添加し、撹拌混合したのち、実施 例14における(B)成分の無機成分溶液200gを添 加し、よく撹拌して傾斜膜塗布液を調製した。

【0117】これを、アネスト岩田(株)社製スプレー ガン「W-88シリーズ」により、エア一圧0.2MP a、スプレー距離15cm、スプレー運行速度15m/ minにて、三菱レーヨン(株)社製アクリル板「アク リライト」 (厚み2mm, 300mm×300mm) に 塗工し、80℃で乾燥処理して、厚み0.15μmの有 機一無機複合膜をを形成させた。この膜について実施例 1と同様にして傾斜性を評価した。図25にスパッタリ がコートされたフィルムを得た。このフィルムをサンシ 30 ング時間と炭素原子およびケイ素原子の含有率との関係 をグラフに示す。この図から優れた傾斜性を有すること が分かる。

【0118】実施例16

実施例14と同様にして得られた重合物の内、1gを松 本製薬工業(株)製テトライソシアナトシラン「オルガ チックスーSi400」56gを1リットルのトルエン に溶解して傾斜膜塗布液を調製した。

【0119】これを、アネスト岩田(株)社製スプレー ガン「W-88シリーズ」により、エアー圧0.2MP a、スプレー距離 1 5 c m、スプレー運行速度 1 5 m/ minにて、三菱レーヨン(株)社製アクリル板「アク リライト」(厚み2mm, 300mm×300mm) に 塗工し、25℃で乾燥処理して、厚み0.12μmの有 機一無機複合膜をを形成させた。この膜について実施例 1と同様にして傾斜性を評価した。図26にスパッタリ ング時間と炭素原子およびケイ素原子の含有率との関係 をグラフに示す。この図から優れた傾斜性を有すること が分かる。

【0120】実施例17

50 実施例14と同様にして得られた重合物の内、1gを東

燃(株)製ポリシラザン「LIIO(20重量%キシレ ン溶液)」0.29リットルを0.71リットルのキシ レンに溶解して傾斜膜塗布液を調製した。

【0121】これを、スピンコーター(1500rp m、15秒)にてPETフィルム「東レルミラーT-6 0」に塗工し、80℃で1時間、95℃、80%RHで 3時間乾燥処理して、厚み 0. 12 μ m の有機 - 無機複 合膜をを形成させた。この膜について実施例1と同様に して傾斜性を評価した。図27にスパッタリング時間と 炭素原子およびケイ素原子の含有率との関係をグラフに 10 示す。この図から優れた傾斜性を有することが分かる。

【0122】実施例18

[(A)成分の調製]スチレン(和光純薬工業)11. 86gと3-メタクリロキシプロピルトリメトキシシラ ン1. 42gを容量50ミリリットルのガラス容器に入 れ、2,2'ーアゾビスイソブチロニトリル0.2gを 加えて、撹拌して完全に溶解させた。次に70℃に調整 した湯浴にて、この容器を5時間加熱し、スチレンを重 合させた。得られたポリスチレン共重合体 0.2 mg を、別のガラス容器に移し、テトラヒドロフラン溶媒2 20 00ミリリットルに溶解させ、(A)成分の高分子溶液 を調製した。

【0123】 [傾斜膜の調製] 容量100ミリリットル のガラス容器にテトラヒドロフラン40ミリリットル、 エタノール40ミリリットルを入れ、これに上記高分子 溶液と実施例1で得られた無機成分溶液10ミリリット ルずつ加え、傾斜膜塗布液を調製した。

【0124】 [傾斜膜のスピンコート] 上記塗布液を用 いて、実施例1に準ずる方法で、スピンコート法により PET基板上に塗布し、乾燥させて有機一無機複合膜を 30 (ハ) 碁盤目剥離試験 形成させた。この膜について実施例1と同様にして傾斜 性を評価した。図28にスパッタリング時間と炭素原子 およびケイ素原子の含有率との関係をグラフに示す。こ の図から優れた傾斜性を有することが分かる。

【0125】実施例19 導電性フィルム

(1) 有機ー無機複合膜の形成

メチルメタクリレート10.92gおよび3ーメタクリ ロキシプロピルトリメトキシシラン2. 71gを混合し 良く撹拌した後、これに、2,2'ーアゾビスイソブチ ロニトリル 0.2 g を添加し、撹拌しながら 7 5 ℃で 3 40 時間反応させた。得られた重合物の内1.0gをアセト ン100ミリリットルに溶解させ、(A)成分の有機高 分子化合物の溶液(以下、高分子溶液と称す。)を調製 した。

【0126】一方、テトラエトキシシラン12gをエタ ノール10ミリリットルに溶解した溶液に、濃塩酸3. 1gとエタノール5ミリリットルからなる溶液を撹拌し ながら徐々に滴下した。この混合溶液を室温で5時間撹 拌し、(B)成分の無機成分溶液を得た。アセトン40 ミリリットルに高分子溶液10ミリリットルを混合し均 50 一に撹拌した後、エタノール40ミリリットルを添加 し、更に、無機成分10ミリリットルを加え、均一にな るまで撹拌した。

30

【0127】この塗布液をスピンコート法(1500r pm、10秒) にて厚みが0.188mmのポリエチレ ンテレフタレートフィルム上に塗布し、40℃で12時 間加熱乾燥することにより、基板上に有機ー無機複合膜 を形成させた。この膜のXPS(アルバック・ファイ社 製、PHI-5600)のデプスプロファイル測定によ り、炭素とケイ素の含有比率を測定し、傾斜性を調べ た。図29に、スパッタリング時間と炭素原子およびケ イ素原子の含有率との関係をグラフで示す。この図から 優れた傾斜性を有することが判る。

【0128】(2) 導電性フィルムの作製

(1)で得られた膜上に、酸化インジウム90重量%及 び酸化第二スズ10重量%からなる酸化物ターゲットを 用い、アルゴンと酸素の混合ガス(容積比で99:1) 雰囲気下で、DCマグネトロンスパッタ装置(島津製作 所、HS-720)にて厚さ40nmの透明導電膜を形 成させ、導電性フィルムを作製した。得られた導電性フ ィルムを用い、その特性としてシート抵抗値、光線透過 率、碁盤目剥離試験、耐熱試験を以下の方法に従って調 べた。その結果を表2にまとめた。

【0129】(イ)シート抵抗値

片面に形成された透明導電膜シート抵抗値(Ω/□)を 抵抗率計を用いて測定した。

(口)光線透過率

分光光度計(島津製作所、UV-2100)をい、55 0 n mの光線透過率(%)を測定した。

JIS K5400に準じ、碁盤目テープ法を実施し た。各試験片の塗膜面にロータリーカッターにて1mm 角の碁盤目を100マス付け、ニチバン製セロテープ (登録商標)を圧着させた後、800mm/minの速 度で180度の剥離試験を実施した。100マスのうち 剥離の有無を数えることにより密着性の評価を行った。

【0130】(二)耐熱性

試験片をオーブン中で、70℃で2時間保持後、-30 ℃に2時間かけて降温し、その後-30℃で2時間保持 し、再び70℃まで2時間かけて昇温する過程を5サイ クル行う、ヒートサイクル試験を実施した。評価は、シ ート抵抗値の測定ならびに碁盤目剥離試験により、塗膜 の密着性(100マス中の剥離の有無)を確認すること により行った。

【0131】実施例20

実施例7で得られた有機-無機複合傾斜膜つきポリカー ボネートフィルムに対して、実施例19と同様の方法で 導電性フィルムを作製した。表2にこの導電性フィルム の特性を示す。

【0132】実施例21

テトラエトキシシラン8.33gとメチルトリメトキシシラン1.36gをエタノール10ミリリットルに溶解した溶液に、濃塩酸3.1gとエタノール5ミリリットルからなる溶液を撹拌しながら徐々に滴下した。この混合溶液を室温で5時間撹拌し、無機成分溶液を得た。

【0133】アセトン40ミリリットルに実施例19の(A)高分子溶液10ミリリットルを混合し均一に撹拌した後、エタノール40ミリリットルを添加し、更に、無機成分溶液10ミリリットルを加え、均一になるまで撹拌した以外は、実施例19と全く同操作にて導電性フィルムを作製した。

【0134】図30に、ITO膜をコーティングする前の有機一無機複合膜のXPS(アルバック・ファイ社製、PHI-5600)のデプスプロファイル測定により、炭素とケイ素の含有比率を測定し、傾斜性を調べた結果を記載した。表2にこの導電性フィルムの特性を示す。

【0135】比較例9

実施例 19において、メチルメタクリレート 12 g に、 2' -アゾビスイソブチロニトリル 0. 2 g を添加 * 20

*し、撹拌しながら75℃で3時間反応させて、得られた 重合物の内1.0gをアセトン100ミリリットルに溶 解させ、ポリメチルメタクリレート化合物の溶液を調製 した以外は、実施例19と全く同操作を行い導電性フィ ルムを作製した。

32

【0136】図31に、ITO膜をコーティングする前の有機一無機複合膜のXPS(アルバック・ファイ社製、PHI-5600)のデプスプロファイル測定により、炭素とケイ素の含有比率を測定し、傾斜性を調べた結果を記載した。表2にこの導電性フィルムの特性を示す。

【0137】比較例10

比較例9にて調製したポリメチルメタクリレート化合物 の溶液10ミリリットルをアセトン20ミリリットルと エタノール20ミリリットルにて希釈し塗布液とした以外は実施例19と全く同操作にて導電性フィルムを作製した。表2にこの導電性フィルムの特性を示す。

[0138]

【表2】

表2

	導電性フィルムの特性					
	シート抵抗	光線	碁盤目	耐熱性		
		透過率	剥離試験	シート抵抗	基盤目	
	(᠒ ∕ □)	(%)		(Ω / □)	剥離試験	
実施例 19	300	8 5	94/100	320	92/100	
実施例20	280	83	100/100	280	100/100	
実施例 2 1	280	8 5	95/100	280	93/100	
比較例 9	3 1 0	8 4	50/100	1300	40/100	
比較例10	300	8 5	100/100	1850	35/100	

【0139】表2から分かるように、本発明の複合傾斜膜を中間膜として用いた実施例の導電性フィルムは、耐熱試験後においても、導電性および密着性はほとんど変わらないが、比較例のものは、耐熱試験後に、導電性および密着性共に大きく低下している。

【0140】実施例22 ハードコートフィルム 実施例8において、基材フィルムをポリカーボネートフィルムに代えた以外は、実施例8と同様の方法で、有機一無機複合傾斜膜つきフィルムを得た。これに、(株)日本ダクロシャムロック製シリコンハードコート剤 [ゾルガードNP730]を、乾燥後の膜厚が4μmとなるようにバーコーターを用いて成膜し、その後80℃で2時間の硬化処理を行い、所望のハードコート膜付き基材を得た。なお、ハードコート前のフィルムについて、鉛筆硬度を測定したところ、ポリカーボネートフィルムのみはF、複合傾斜膜を設けたフィルムでは日であった。このハードコート膜付き基材について以下の試験を実施した。結果を表3にまとめた。

【0141】(1) 密着性

JIS K5400に準じ、碁盤目テープ法を実施した。各試験片の塗膜面にロータリーカッターにて1mm 角の碁盤目を100マス付け、ニチバン製セロテープを圧着させた後、300mm/minの速度で180度の剥離試験を実施した。100マスのうち剥離の有無を数えることにより密着性の評価を行った。

【0142】(2) 膜硬度

JIS K5400に準じ、ヨシミツ精機(株)製、鉛筆 ひっかき試験機により鉛筆硬度試験を実施し、塗膜の傷 の有無により膜硬度を評価した。

【0143】(3) 耐摩耗性

ヨシミツ精機(株)製、テーパー式摩耗試験機により、塗膜の耐摩耗試験を実施した(試験条件:摩耗回数200回、荷重500g、摩耗輪CS-10F)。試験後の型り度(ヘイズ値:ΔH%)により耐摩耗性を評価した。

【0144】(4) 耐熱性

試験片をオーブン中で、70℃で2時間保持後、-30 ℃に2時間かけて降温し、その後-30℃で2時間保持 50 し、再び70℃まで2時間かけて昇温する過程を5サイ

クル行う、ヒートサイクル試験を実施した。評価は、碁盤目テープ法により、塗膜の密着性(100マス中の剥離の有無)を確認することにより行った。

33

【0145】実施例23、24

基板を、厚み 0.4 mmのポリカーボネートフィルムから実施例 19で作製した厚み 0.188 mmのポリエチレンテレフタレートフィルムに傾斜膜をコートしたフィルム(実施例 23)ならびに、厚み 0.2 mmのアクリルフィルム(実施例 24)に変更した以外は実施例 22と全く同様の操作にて、ハードコート膜付き基材を得た。この膜付き基材の評価結果を表 3にまとめた。図32に、実施例 24のフィルムについて、ハードコーティング前の膜の XPS(アルバック・ファイ社製、PHIー5600)のデプスプロファイル測定により、炭素とケイ素の含有比率を測定し、傾斜性を調べて結果を記載した。

【0146】なお、ポリエチレンテレフタレートフィルムおよびそれに複合傾斜膜を設けたフィルムの鉛筆硬度は、それぞれ3Hおよび4Hであり、アクリルフィルムおよびそれに複合傾斜膜を設けたフィルムの鉛筆硬度は、それぞれ4Hおよび5Hであった。

【0147】実施例25

アセトン40ミリリットルに実施例8の(A)成分の高分子溶液10ミリリットルを混合し均一に撹拌した後、エタノール30ミリリットルを添加し、更に、実施例8の(B)成分の無機成分溶液20ミリリットルを加え、均一になるまで撹拌し、さらにフィルム基材をポリカー*

*ボネートフィルムに代えた以外は、全く実施例8と同様の操作にて、ハードコート膜付き基板を得た。この膜付き基材の評価結果を表3にまとめた。図33に、ハードコート前の膜のXPS(アルバック・ファイ社製、PHI-5600)のデプスプロファイル測定により、炭素とケイ素の含有比率を測定し、傾斜性を調べて結果を記載した。

34

【0148】比較例11

実施例8において、メチルメタクリレート12gに、

10 2, 2′ーアゾビスイソブチロニトリル0.2gを添加し、撹拌しながら75℃で3時間反応させて、得られた重合物の内1.0gをアセトン100ミリリットルに溶解させ、ポリメチルメタクリレート化合物の溶液を調製して高分子溶液とし、フィルム基材をポリカーボネートフィルムとした以外は実施例8と全く同操作を行い、ハードコート膜付き基材を作製した。この膜付き基材の評価結果を表3にもとめた。

【0149】比較例12

厚み 0. 4 mmのポリカーボネートフィルムに、(株)日 20 本ダクロシャムロック製シリコンハードコート剤 [ゾルガードNP730] を、乾燥後の膜厚が 4 μ mとなるようにバーコーターにて成膜し、その後 8 0 ℃で 2 時間の硬化処理を行い、所望のハードコート膜付き基材を得た。この膜付き基材の評価結果を表 3 にまとめた。

[0150]

【表3】

表3

		•		
	密 着 性	膜硬度	耐摩耗性 (ΔH%)	耐熱性
実施例22	100/100	4 H	8	100/100
実施例23	94/100	6 H	8	92/100
実施例24	100/100	6 H	6	100/100
実施例 2 5	100/100	4 H	8	100/100
比較例11	44/100	3 H	2 8	34/100
比較例12	10/100	2 H	5 5	0/100

【0151】表3から分かるように、傾斜膜をハードコート層のプライマーとして用いた場合(実施例22~25)、傾斜膜は構造体中に無機成分及び有機成分を含み、かつ無機成分から有機成分にかけて傾斜構造を有しているため、有機基材とシリコン系ハードコート層の双方との接着性に極めて優れており、ハードコート層の性能を十分に発揮させ得る。

【0152】これに対し、(A) 成分のメチルメタクリレートポリマーと(B) 成分の無機成分との間に化学結合を有しないアクリルシリコーンをハードコート層のプライマー層として用いた場合(比較例11)、無機成分と有機成分とが化学結合していないため、傾斜構造にな

らず無機成分と有機成分との界面の密着性が低く、性能 40 に劣る。また、プライマーが無い場合(比較例12)、 ハードコート剤自身が無機材料のシリコン系であるた め、有機基材との密着性に乏しく、性能に劣る。

【0153】実施例26 光記録媒体

実施例7で得られた傾斜膜つきポリカーボネートフィルムをスパッタ装置にセットし、傾斜膜の上に誘電体下地層(アンダーコート)として厚さ8μmのSiN層を成膜し、アンダーコート形成樹脂基板を得た。アンダーコート形成樹脂基板をスパッタ装置にセットし、アンダーコート上に光磁気記録層として厚さ10μmのTbDy 50 FeCo層を成膜し、さらに誘電体保護層(トップコー

ト)として厚さ8 μ mのSiN層を成膜することにより、所望の光磁気記録媒体を得た。この光磁気記録媒体について以下の試験を実施した。結果を表4にまとめた。

【0154】(1) アンダーコートと基材フィルム間の密 着性

JIS K5400に準じ、碁盤目テープ法を実施した。各試験片の塗膜面にロータリーカッターにて1mm 角の碁盤目を100マス付け、ニチバン製セロテープを 圧着させた後、300mm/minの速度で180度の 剥離試験を実施した。100マスのうち剥離の有無を数 えることにより密着性の評価を行った。また、試験片を オーブン中で、70℃で2時間保持後、-30℃に2時間かけて降温し、その後-30℃で2時間保持し、再び70℃まで2時間かけて昇温する過程を5サイクル行う、ヒートサイクル試験を実施し、同様に密着性を測定した。

【0155】(2) 膜硬度

JIS K5400に準じ、ヨシミツ精機(株)製、鉛筆 ひっかき試験機により鉛筆硬度試験を実施し、塗膜の傷 20 の有無により膜硬度を評価した。 *

*【0156】実施例27

アセトン40ミリリットルに実施例19の(A)成分の高分子溶液10ミリリットルを混合し均一に撹拌した後、エタノール30ミリリットルを添加し、更に、実施例19の(B)成分の無機成分溶液20ミリリットルを加え、均一になるまで撹拌した操作以外は、全く実施例19と同様の操作にて、光磁気記録媒体を得た。この膜付き基材の評価結果を表4にまとめた。

36

【0157】比較例13

メチルメタクリレート12g、アゾビスイソブチロニトリル0.2gを混合、撹拌しながら75℃に保ち、3時間反応させて有機高分子成分を得た以外は、実施例26と同一の操作で光磁気記録媒体を得た。表4にこの光磁気記録媒体の特性を示す。

【0158】比較例14

ポリカーボネート基板に、有機一無機複合膜を形成する ことなく実施例26と同手法にて光磁気記録媒体を作成 した。表4にこの光磁気記録媒体の特性を示す。

[0159]

【表4】

表 4

		*1	
	アンダーコートと	filt the efe	
	ヒートサイクル前	ヒートサイクル後	膜硬度
実施例26	100/1.00	95/100	Н.
実施例27	100/100	94/100	H
比較例13	81/100	65/100	H
比較例14	0/100	0/100	F

【0160】なお、70℃、90%RHの高温高湿下で 30 40時間保持した後の各基板の反りを測定し、データの 書き込みおよび読みとりに支障がないかを調べたとこ ろ、実施例26、27および比較例13、14のいずれ も問題はなかった。

[0161]

【発明の効果】本発明の有機一無機複合傾斜材料は、有機高分子化合物と金属系化合物との化学結合物を含有する有機一無機複合材料であって、該金属系化合物の含有率が材料の厚み方向に連続的に変化する成分傾斜構造を有し、新規な機能性材料として各種用途、特にコーティング剤として、塗膜、有機材料と無機または金属材料との接着剤および有機基材と無機系または金属系材料を含むコート層との間に介在させる中間膜用に好適である。

【図面の簡単な説明】

【図1】実施例1で得られた有機-無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図2】実施例2で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図3】実施例3で得られた有機-無機複合膜における スパッタリング時間と炭素原子およびケイ素原子の含有 率との関係を示すグラフである。

【図4】実施例4で得られた有機一無機複合膜における スパッタリング時間と炭素原子およびケイ素原子の含有 率との関係を示すグラフである。

【図5】実施例5で得られた有機一無機複合膜における スパッタリング時間と炭素原子およびケイ素原子の含有 率との関係を示すグラフである。

【図6】実施例6で得られた有機-無機複合膜における スパッタリング時間と炭素原子およびチタン原子の含有 率との関係を示すグラフである。

【図7】比較例1で得られた塗膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図8】比較例2で得られた塗膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図9】比較例3で得られた塗膜における可視光領域で の透過率スペクトルの経時変化を示すグラフである。

50 【図10】比較例4で得られた塗膜における可視光領域

での透過率スペクトルの経時変化を示すグラフである。 【図11】比較例5で得られた塗膜における可視光領域

【図11】比較例5で得られた塗膜における可視光領域での透過率スペクトルの経時変化を示すグラフである。

【図12】実施例1で得られた有機一無機複合膜における可視光領域での透過率スペクトルの経時変化を示すグラフである。

【図13】実施例1で得られた有機一無機複合膜および 比較例3~5で得られた塗膜における紫外線照射日数と 波長500nmでの透過率の減少量との関係を示すグラ フである。

【図14】実施例1で得られた、有機一無機複合膜を中間膜とし、二酸化チタンコート膜が設けられたフィルムのサンシャインウェザーメーターの曝露試験における可視光線透過率の変化を示すグラフである。

【図15】実施例7で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図16】実施例8で得られた、有機一無機複合膜を中間膜とし、二酸化チタンコート膜が設けられたフィルムのサンシャインウェザーメーターの曝露試験における可視光線透過率の変化を示すグラフである。

【図17】実施例9で得られた、有機一無機複合膜を中間膜とし、二酸化チタンコート膜が設けられたフィルムのサンシャインウェザーメーターの曝露試験における可視光線透過率の変化を示すグラフである。

【図18】実施例10で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図19】実施例11で得られた3種類の有機一無機複合膜におけるスパッタリング時間とケイ素原子の含有率 30 との関係を示すグラフである。

【図20】実施例12で得られた4種類の有機一無機複合膜におけるスパッタリング時間とケイ素原子の含有率との関係を示すグラフである。

【図21】比較例6で得られた、有機一無機複合膜を中間膜とし、二酸化チタンコート膜が設けられたフィルムのサンシャインウェザーメーターの曝露試験における可視光線透過率の変化を示すグラフである。

【図22】比較例7で得られた、アンダーコート剤を中間膜とし、二酸化チタンコート膜が設けられたフィルムのサンシャインウェザーメーターの曝露試験における可視光線透過率の変化を示すグラフである。

38

【図23】比較例8で得られた、アンダーコート剤を中間膜とし、二酸化チタンコート膜が設けられたフィルムのサンシャインウェザーメーターの曝露試験における可視光線透過率の変化を示すグラフである。

【図24】実施例14で得られた有機一無機複合膜にお 10 けるスパッタリング時間と炭素原子およびケイ素原子の 含有率との関係を示すグラフである。

【図25】実施例15で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図26】実施例16で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図27】実施例17で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図28】実施例18で得られた有機-無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図29】実施例19で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図30】実施例21で得られた有機-無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

(図31】比較例9で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図32】実施例24で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

【図33】実施例25で得られた有機一無機複合膜におけるスパッタリング時間と炭素原子およびケイ素原子の含有率との関係を示すグラフである。

[図1]

【図2】

【図3】

【図4】

[図5]

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

[図12]

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

【図25】

【図26】

【図27】

[図28]

[図30]

【図31】

【図32】

【図33】

フロントページの続き

(71)出願人 591115936

藤嶋 昭

神奈川県川崎市中原区中丸子710-5

(72)発明者 高見 和之

岐阜県岐阜市藪田西2丁目1番1号 宇部

日東化成株式会社内

(72)発明者 仲山 典宏

岐阜県岐阜市藪田西2丁目1番1号 宇部

日東化成株式会社内

(72)発明者 鈴木 太郎

岐阜県岐阜市皷田西2丁目1番1号 宇部

日東化成株式会社内

(72)発明者 田中 尚樹

岐阜県岐阜市藪田西2丁目1番1号 宇部

日東化成株式会社内

(72) 発明者 橘 英輔

岐阜県岐阜市藪田西2丁目1番1号 宇部

日東化成株式会社内

(72)発明者 足立 龍彦

東京都中央区東日本橋1丁目1番7号 宇

部日東化成株式会社内

(72)発明者 渡部 俊也

神奈川県藤沢市鵠沼海岸6-15-7

(72)発明者 橋本 和仁

神奈川県横浜市栄区飯島町2073番地2 二

ューシティ本郷台 D棟 213号

(72)発明者 藤嶋 昭

神奈川県川崎市中原区中丸子710-5

Fターム(参考) 4F072 AA05 AA06 AD09 AF21 4F100 AA20A AA20D AA20E AA21A AA21D AA21E AK12B AK12C AK25B AK25C AK52A AK52D AK52E BA02 BA05 BA06 BAO7 BA10A BA10B BA10E BA13 BA44A BA44D BA44E CCOOA CCOOD CCOOE EH462 EH663 EJ422 EJ862 GB90 JG01A JG01D JG01E JL00 JLO8A JLO8D JLO8E JL09 4J002 BC021 BG021 BG061 CF001 CL001 CP212 EC076 EX036 FD206 GH00 GJ01 4J038 AA011 DD001 DG001 DH001 DL031 GA16 HA161 HA311

JA23 NA05 NA11 NA14 NA20

PB11 PC01 PC02 PC03 PC08

