Matlab notendaviðmót

Aðgerðir:

- 1. Hanna útlit á skjámynd
- 2. Setja inn skýringartexta, aðgerðir og viðföng
- 3. Hanna og skrifa úrvinnsluforrit

>>guide

Til að búa til hnappa, gröf og innlestrarreiti eru hlutir dregnir yfir á gluggann.

Proberty Inspector:

Tag

Notað til að gefa einingum eiginleika þannig að hægt sé að auðkenna þá.

Callback

Gefa hnöppum skipanir.

String

Setja inn eða breyta texta.

Hér er mynd af notendaviðmóti þar sem hægt er að mæla, ná í gamlar mælingar og vista mælingu.

Callback hnappar: Kallað á skránna sveif.m

[Mæling] Callback: svmae [FFT greining] Callback: svfft [Innlestur] Callback: svinn [Vista] Callback: svvis Innlestrarhnappar:

Notum Tag til að finna þá.

Proberity fyrir innlestarreiti:

Söfnunartíðni : Tag: 'Softidni' Fjöldi mæligilda: Tag: 'Fjolmael' Vista sem: Tag: 'Utskra'

Víxlhnappar:

Hanning >

Kveikt á Hanning með eftirfarandi skipun við Hanning víxlhnappinn

Callback: svhan

svhan.m

```
function svhan
radiohan = findobj('String','Hanning');
radiofla = findobj('String','Flat Top');
set(radiohan,'Value',1);
set(radiofla,'Value',0);
```

Flat Top>

Kveikt á Flat Top þá verður við Flat Top víxlhnappinn Callback: svfla

svfla.m

```
function svflat
radiohan = findobj('String','Hanning');
radiofla = findobj('String','Flat Top');
set(radiohan,'Value',0);
set(radiofla,'Value',1);
```

Alignment Tool:

Notað til að stilla gluggann af.

Menu Editor:

Vinna með gardínuvalmyndir.

Innlestrarforrit svinn.m

```
function svinn
% Lesa mælingu úr skrá sem hefur veirð vistuð
       [lename,pathname] = uigetfile('*.mat','Select file name') ;
       logname = [pathname lename] ;
       eval(['load ' logname]);
       N = size(xAcc, 1);
        Soft = findobj(gcbf, 'Tag', 'Softidni');
        set(Soft, 'String', num2str(fs));
        Fjol = findobj(gcbf, 'Tag', 'Fjolmael');
        set(Fjol, 'String', num2str(N)) ;
    % Búa til tímaás
       dt = 1/fs;
        tN = (N-1)/fs ;
        t = 0:dt:tN;
    % Vista mælingu (í glugganum)
        xyd = [t' xAcc];
        set(gcbf,'UserData',xyd);
    % Teikna mælingu
        figure(1)
        plot(t, xAcc);
        title('Mæling');
        xlabel('Timi [sek]');
        ylabel('Hröðun [m/sek2]');
```

Mælingaforrit svmae.m

```
function symae
% Sækja söfnunartíðni og fjöldi mæligilda fyrir mæling
       Soft = findobj(gcbf, 'Tag', 'Softidni') ;
       fs = str2num(get(Soft, 'String'));
        Fjol = findobj(gcbf, 'Tag', 'Fjolmael');
       N = str2num(get(Fjol, 'String')) ;
    % Mæla
       xAcc = ADread(4,fs,N);
    % Búa til tímaás
       dt = 1/fs;
        tN = (N-1)/fs ;
        t = 0:dt:tN;
    % Vista tímaás og mælingu í glugga
       xyd = [t' xAcc];
       set(gcbf, 'UserData', xyd) ;
    % Teikna mælingu
       figure(1)
       plot(t,xAcc);
       title('Mæling');
       xlabel('Timi [sek]');
       ylabel('Hröðun [m/sek2]');
```

Úrvinnsluforrit svfft.m

```
function svfft
  % Sækja söfnunartíðni og fjöldi mæligilda fyrir mæling
        Soft = findobj(gcbf, 'Tag', 'Softidni');
        fs = str2num(get(Soft, 'String')) ;
        Fjol = findobj(gcbf, 'Tag', 'Fjolmael');
        N = str2num(get(Fjol, 'String'))
    % Sækja mælingu
        xyd=get(gcbf, 'UserData');
        xAcc = xyd(:, 2:end);
    % Búa til tíðniás
        n = N/2;
        w = fs*(0:n-1)./(2*(n-1));
        wt = 2*pi*(1:N)'/(N+1);
    % Lesa og skilgreina gluggun
        radiohan = findobj(gcbf, 'String', 'Hanning');
        radiofla = findobj(gcbf, 'String', 'Flat Top');
        valhan = get(radiohan, 'Value');
        valfla = get(radiofla, 'Value');
        if (valhan ==1)
            % Hanning gluggi
            win = 1 - \cos(wt);
            bandv=1.5;
        elseif (valfla == 1)
            % Flat top gluggi
            win = 1-1.93*\cos(wt)+1.29*\cos(2*wt)-...
                  0.388*\cos(3*wt)+0.0322*\cos(4*wt);
            bandv=3.77;
        end
        % Reikna Fouriervörpun og aflróf fyrir einn mælinema
        figure (2)
        g psd = fft(win.*xAcc(1:N,2));
        Amp =sqrt(4*((abs(g psd)/N).^2));
        hold on
        plot(w(2:n), Amp(2:n), 'r')
        g psd = fft(win.*xAcc(1:N,3));
        Amp =sqrt( 4*((abs(g_psd)/N).^2));
        plot(w(2:n), Amp(2:n), 'g')
        g psd = fft(win.*xAcc(1:N,4));
        Amp =sqrt( 4*((abs(g psd)/N).^2));
        plot(w(2:n), Amp(2:n), 'b')
        title('FFT - greining');
        xlabel('Tíðni [Hz]');
        ylabel('Hröðun [m/sek2]');
        hold off
```

Vistunarforrit svvis.m

```
function svvis
% Sækja upplýsingar til að vista
    Utskr = findobj(gcbf,'Tag','Utskra');
    fname = get(Utskr,'String');

Soft = findobj(gcbf,'Tag','Softidni');
    fs = str2num(get(Soft,'String'));

Fjol = findobj(gcbf,'Tag','Fjolmael');
    N = str2num(get(Fjol,'String'));

% Sækja mælingu
    xyd=get(gcbf,'UserData');
    xAcc = xyd(:,2:end);

eval(['save ' fname ' xAcc fs N ']);
```