$$(:S'\longrightarrow S'$$

Knot Symmetrius

Pretzel-knots

K(0,0,0) is not a knot.

if pigir are odd tren

it's a knot.

(depends only on parity of Pigir).

Thuy (trotler 1960]:

If pigir reodd & distinct & >1, then

K(pigir) is non-invertible.

 $\Pi_{K} = \Pi_{I}(S_{3} \setminus K)$

Crossing #	% non-invertible
3-7	0 %
8	5 %
٩	4 %.
lo	20 %
	34 %
12	52 %
13	62%
14	81%
15	89%
16	94%.

$$K \sim K^{-1}$$

invertible
$$K \approx K^{-1}$$

 $(K) = (K^{-1}) \leftarrow a \text{ in bient is object of almos.}$

Fix an orientation reversing homeomorphism

Reflection in this

mirror of K:

$$i \quad S' \longrightarrow S^3$$
, $\overline{i} = \mathcal{H} \cdot i$.

Def K is amphibitual if $K \approx \overline{K}$ ((K) = [R]).

If K # K trun K is chiral.

Crossing #	% Knots that are amphichical	
3	0 %	
4	100 %.	
5	o %.	
(,	67%	
7	0 %	
8	24 %	
q	o %	
رن	7.9%	
l(0 %	
اح	2.7%.	
13	o %	
14	0.58 %	
15	0.000 395% ()15	iproof il

$$\frac{\mathbb{Z}/2 \times \mathbb{Z}/2}{2} \text{ acts on } \left\{ \begin{bmatrix} \mathbb{K} \end{bmatrix} \right\}$$

$$\text{gen:} \qquad i \qquad m$$

$$\text{i} \qquad \uparrow \qquad \uparrow \qquad \text{i} \left[\mathbb{K} \right] = \left[\mathbb{K} \right]$$

$$\text{inversion mirror} \qquad m \left[\mathbb{K} \right] = \left[\mathbb{K} \right]$$

$$\times$$
 Negative (-) Amphichiral \cdot Stab([K]) = $< m \cdot i >$

$$N_{0N-iN} \text{ ortible} \qquad (K \approx \overline{K}^{-1} \neq \overline{K} \approx K^{-1})$$
eg: 8_{17}

$$\text{Positive (t) Amphichial: Stab(CKJ)} = \langle m \rangle$$
Non-invertible ($k \approx \overline{k} \neq K^{-1} \approx \overline{k}^{-1}$)

eg: some 12t crossing knot: 12a427

$$\chi$$
 Chiral, invertible: Stab (CKI) = < i>
$$(K \approx K^{-1} \neq \overline{K} \approx \overline{K}^{-1})$$
eg: 3₁

Exercise: Show 63 is fully amphichiral

19: 535 gives diff nation of chirality?
orient. reversey homeomorphisms.

Theorem [Fischer 1960]

Suppose $f: S^3 \to S^3$ is an arientation-procuring (PL) nonconverpoism. Then f is (PL) isotopic to id_{S^3} .

That is, $\exists F: S^3 \times I \longrightarrow S^3$, $F_t = homeon$, $F_0 = f$, $F_1 = i J_{e^3}$.

The let $f: \mathbb{B}^n \to \mathbb{B}^n$ homeom s.t. $f \mid \partial \mathbb{B}_n = identity$.

Then f is isotopic to $id_{\mathbb{B}^n}$.

of alexander trick:

$$F_t: \mathbb{B}^n \longrightarrow \mathbb{B}^n$$

$$F_{t}(x) = \begin{cases} t f(\frac{1}{t}x) & \text{if } x \in \mathbb{Z}B^{n} \\ x & \text{otherwise} \end{cases}$$

then the Knots K. and K. ore equivalent

if and only if and only if there is an

orientation-preserving $f(S^3 \longrightarrow S^3)$ s.t. $f(K_0) = K_1$,

preserving Knot orientation.