Enunciados dos Trabalhos de Arquitetura de Computadores III

Datas das atividades, apresentações e entregas dos trabalhos constam do lançamento de avaliações no SGA.

Tamanho dos grupos será discutido em sala de aula.

1) Primeiro Trabalho

Atividade de avaliação de artigo realizada em sala de aula.

2) Segundo Trabalho

É possível escolher entre 3 opções, conforme a seguir:

Opção A)

Os grupos devem propor uma arquitetura de processador multi-core: projeto, simulação e avaliação. Limitações dos simuladores para projeto multi-core devem ser avaliadas antes de sua escolha.

Simuladores sugeridos:

- SESC (http://sesc.sourceforge.net/)
- GEM5 (http://www.m5sim.org/Main_Page)

Simuladores complementares:

- CACTI (http://quid.hpl.hp.com:9081/cacti/)
- Wattch (http://www.eecs.harvard.edu/~dbrooks/wattch-form.html)

Passos:

- 1. Projetar uma arquitetura de processador multi-core. Exemplo: Quantos núcleos? Quais são os núcleos (AMD, Intel....)? Qual a organização de memória? Há compartilhamento? Em quais níveis há compartilhamento? Qual a abordagem de interconexão (e.g. barramento, rede-em-chip)?
- 2. Utilizar o simulador para configurar o projeto de arquitetura do processador multi-core.
- 3. Escolher carga de trabalho (benchmark) para execução na arquitetura simulada (simuladores disponibilizam algumas opções).
- 4. Lembrar que todo aumento de tamanho de memória implica em aumento da latência de acesso aos dados. Por isso, o simulador CACTI é importante.
- 5. Simular e avaliar variações de parâmetros/configurações ou projeto da arquitetura para identificar melhor solução de processador multi-core.
- 6. Escrever artigo do trabalho (4 páginas) no formato disponível no seguinte link: http://www.ieee.org/conferences_events/conferences/publishing/templates.html
 - a. (formatos disponíveis: Latex e Word).
- 7. Preparar slides de apresentação.
- 8. Disponibilizar no SGA (verificar data no SGA) o pdf do artigo, arquivos de configuração, e os slides da apresentação.

Opção B)

O trabalho é praticamente o mesmo. No entanto, a **Opção B** abre a possibilidade do projeto ser em VHDL ou Verilog. Neste caso, projetar um processador multi-core, arquitetura e hardware, usando uma linguagem de descrição de hardware para simulação e prototipação.

Ambientes de desenvolvimento, simulação e testes: Altera ou Xilinx. Prototipação (opcional): kits de desenvolvimento em FPGA.

Passos:

- 1. Projetar uma arquitetura de processador multi-core. Exemplo: Quantos núcleos? Quais são os núcleos (MIPS, Sparc....)? Qual a organização de memória? Há compartilhamento? Em quais níveis há compartilhamento? Qual a abordagem de interconexão (e.g. barramento, chave crossbar, rede-em-chip)?
- 2. Utilizar o ambiente de desenvolvimento para descrição de hardware do projeto de arquitetura do processador multi-core.
- 3. Escolher carga de trabalho (benchmark) para execução na arquitetura descrita.
- 4. Simular/testar e avaliar variações de parâmetros/configurações ou projeto da arquitetura para identificar melhor solução de processador multi-core.
- 5. Escrever artigo do trabalho (4 páginas) no formato disponível no seguinte link: http://www.ieee.org/conferences_events/conferences/publishing/templates.html
 - a. (formatos disponíveis: Latex e Word).
- 6. Preparar slides de apresentação.
- 7. Disponibilizar no SGA (verificar data no SGA) o pdf do artigo, arquivos de descrição, e os slides da apresentação.
- 8. Uma possível opção de código VHDL de processador: http://opencores.org/project,plasma fpu
 - a. Há outras opções em http://opencores.org/project

Opção C)

A **Opção C** está relacionada com a implementação de um cluster de placas single-board, tal como o Raspberry Pi, Arduino, etc. Lembrando que o Raspberry Pi é um computador e possui mais recursos que facilitam a implementação do cluster. No caso do Arduino, é necessário ajustes que possibilitam apenas um projeto conceito para experimentar a ideia central de um cluster.

Passos:

- 1. Projetar uma arquitetura de cluster multi-core. Exemplo: Quantos núcleos? Quais são os núcleos? Qual a organização de memória? Há compartilhamento? Em quais níveis há compartilhamento? Qual a abordagem de interconexão (e.g. barramento, switch, etc)?
- 2. Escolher carga de trabalho (benchmark) para execução na arquitetura descrita.
- 3. Testar e avaliar variações de parâmetros/configurações ou projeto da arquitetura para identificar melhor solução do cluster multi-core.
- 4. Escrever artigo do trabalho (4 páginas) no formato disponível no seguinte link: http://www.ieee.org/conferences_events/conferences/publishing/templates.html
 - a. (formatos disponíveis: Latex e Word).
- 5. Preparar slides de apresentação.
- 6. Disponibilizar no SGA (verificar data no SGA) o pdf do artigo e os slides da apresentação.