Вопросы к экзамену и задачи для самостоятельного решения по физике (разделы механика и молекулярная физика)

В файле представлены вопросы к экзамену, номера задач и рекомендации по оформлению их решения.

Краткие теоретические сведения физики представлены в литературе:

- 1. Трофимова Т.И. Курс физики: учеб. пособие для инженер.-техн. специальностей вузов/ 21-е изд., стер. M.: ACADEMIA, 2015. 558 с.
- 2. Огурцов А.Н. Физика для студентов. Ч1 Механика. Ч2 Молекулярная физика и термодинамика. 2016. (интернет ресурс)

Вопросы необходимо изучить и законспектировать.

Вопросы к экзамену

Физика: Механика. Молекулярно-кинетическая теория и термодинамика

- 1. Механика, её структура. Основная задача механики. Механическое движение. Материальная точка. Система отсчета. Система координат. Траектория, длина пути, вектор перемещения.
- 2. Вектор-скорость. Вектор-ускорения. Полное, тангенциальное, нормальное ускорение. Виды движения.
- 3. Кинематика вращательного движения. Угловые перемещение, скорость, ускорение. Равномерное и вращательное движение. Период. Частота.
- 4. Первый закон Ньютона. Масса. Сила. Второй закон Ньютона, импульс, закон сохранения импульса. Третий закон Ньютона
- 5. Закон всемирного тяготения. Сила реакции опоры. Силы трения. Сила тяжести и вес. Невесомость.
- 6. Механические системы. Центр масс. Закон движения центра масс.
- 7. Энергия, работа, мощность. Кинетическая и потенциальная энергии. Закон сохранения механической энергии.
- 8. Механика твердого тела. Момент инерции. Кинетическая энергия вращения. Момент силы. Уравнение динамики вращательного движения твердого тела. Момент импульса и закон его сохранения
- 9. Механика движения жидкости. Давление жидкости и газа. Уравнение неразрывности. Уравнение неразрывности. Уравнение Бернулли.
- 10. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей. Методы определения вязкости (метод Стокса, метод Пуазейля).
- 11. Преобразования Галилея. Постулаты специальной (частной) теории относительности. Преобразования Лоренца. Основной закон релятивистской динамики материальной точки. Энергия в релятивистской механике
- 12. Молекулярная физика. Статистический и термодинамический методы. Опытные законы идеального газа
- 13. Термодинамическая система. Температура, шкалы температуры. Идеальный газ. Газовые законы (закон Бойля-Мариотта, Авогадро, Дальтона, Гей-Люссака, Шарля)
- 14. Основное уравнение состояние идеального газа (уравнение Клапейрона-Менделеева). Основное уравнение теории МКТ

- 15. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения. Барометрическая формула. Распределение Больцмана
- 16. Число степеней свободы молекулы. Закон Больцмана о равномерном распределения энергии по степеням свободы молекул
- 17. Первое начало термодинамики. Работа газа при изменении его объема. Внутренняя энергия термодинамической системы. Применение первого начала термодинамики к изопроцессам.
- 18. Теплоемкость, удельная теплоемкость, молярная теплоемкость при постоянном объеме и давлении. Уравнение Майера. Коэффициент Пуассона.
- 19. Изопроцессы (изохорный, изобарный, изотермический, адиабатный). Раюота газа в изопроцессах. Политропный процесс
- 20. Энтропия, изменение энтропии. Статистическое толкование энтропии и связь с термодинамической вероятностью.
- 21. Второе начало термодинамики. Третье начало термодинамики.
- 22. Тепловые двигатели и холодильные машины. Теорема Карно. Цикл Карно и его КПД для идеального газа.
- 23. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реального газа. Внутренняя энергия реального газа.
- 24. Свойства жидкостей. Поверхностное натяжение. Смачивание. Капиллярные явления
- 25. Изменение агрегатного состояния. Фазовые переходы 1 и 2 рода. Испарение, сублимация, плавление и кристаллизация. Диаграмма состояния. Тройная точка

Методика решения задач и задания контрольной работы приведены в литературе:

1. Прошкин, С. С. Механика, термодинамика и молекулярная физика. Сборник задач: учебное пособие для среднего профессионального образования / С. С. Прошкин, В. А. Самолетов, Н. В. Нименский. — 2-е изд., испр. и доп. — Москва: Издательство Юрайт, 2022. — 467 с. — (Профессиональное образование). — ISBN 978-5-534-04774-5. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/492830 (дата обращения: 21.09.2023)

Учебник представлен в ЭБС Юрайт. Доступ к учебнику осуществляется через личный кабинет студента.

Задания выполняются по вариантам. Варианты распределяем по списку. Выполненная работа (условия и решения задач) оформляется в ручную на листах формата A4. Титульные листы оформляются в соответствии с образцом (см. ниже).

Перед решением каждой задачи надо полностью записать ее условие. Решение задач следует излагать подробно, объясняя и мотивируя все действия по ходу решения и делая необходимые рисунки.

Работы оформленные не в соответствии с предъявленными требованиями приниматься не будут!

После получения прорецензированной работы с замечаниями, студент должен учесть сделанные рецензентом замечания. Работа по замечаниям выполняется после замечаний рецензента.

Задание контрольной работы

Вариант	Номера задачи									
1.	1.1.17	1.3.1	1.4.30	1.7.1			2.21.20	4.2.20	5.4.1	5.3.30
2.	1.1.18	1.3.2	1.4.29	1.7.2	2.4.24	2.14.2	2.21.19	4.2.21	5.4.2	5.3.29
3.	1.1.19	1.3.3	1.4.28	1.7.3	2.4.23	2.14.3	2.21.18	4.2.22	5.4.3	5.3.28
4.	1.1.20	1.3.4	1.4.27	1.7.4	2.4.22	2.14.4	2.21.17	4.2.23	5.4.4	5.3.27
5.	1.2.1	1.3.5	1.4.26	1.7.5	2.4.21	2.14.5	2.21.16	4.2.24	5.4.5	5.3.26
6.	1.2.2	1.3.6	1.4.25	1.7.6	2.4.20	2.14.6	2.21.15	4.2.25	5.4.6	5.3.25
7.	1.2.3	1.3.7	1.4.24	1.7.7	2.4.19	2.14.7	2.21.14	4.2.26	5.4.7	5.3.24
8.	1.2.4	1.3.8	1.4.23	1.7.8	2.4.18	2.14.8	2.21.13	4.2.27	5.4.8	5.3.23
9.	1.2.5	1.3.9	1.4.22	1.7.9	2.4.17	2.14.9	2.21.12	4.2.28	5.4.9	5.3.22
10.	1.2.6	1.3.10	1.4.21	1.7.10	2.4.16	2.14.0	2.21.11	4.2.29	5.4.10	5.3.21
11.	1.2.7	1.3.11	1.4.20	1.7.11	2.4.15	2.14.11	2.21.10	4.2.30	5.4.11	5.3.20
12.	1.2.8	1.3.12	1.4.19	1.7.12	2.4.14	2.14.12	2.21.9	4.2.31	5.4.12	5.3.19
13.	1.2.9	1.3.13	1.4.18	1.7.13	2.4.13	2.14.13	2.21.8	4.2.32	5.4.13	5.3.18
14.	1.2.10	1.3.14	1.4.17	1.7.14	2.4.12	2.14.14	2.21.7	4.2.33	5.4.14	5.3.17
15.	1.2.11	1.3.15	1.4.16	1.7.15	2.4.11	2.14.15	2.21.6	4.2.34	5.4.15	5.3.16
16.	1.2.12	1.3.16	1.4.15	1.7.16	2.4.10	2.14.16	2.21.5	4.2.35	5.4.16	5.3.15
17.	1.2.13	1.3.17	1.4.14	1.7.17	2.4.9	2.14.17	2.21.4	4.2.36	5.4.17	5.3.14
18.	1.2.14	1.3.18	1.4.13	1.7.18	2.4.8	2.14.18	2.21.3	4.2.37	5.4.18	5.3.13
19.	1.2.15	1.3.19	1.4.12	1.7.19	2.4.7	2.14.19	2.21.2	4.2.38	5.4.19	5.3.12
20.	1.2.16	1.3.20	1.4.11	1.7.20	2.4.6	2.14.20	2.21.1	4.2.39	5.4.20	5.3.11
21.	1.2.17	1.3.10	1.4.10	1.7.21	2.4.5	2.14.21	2.6.9	4.2.40	5.4.21	5.3.10
22.	1.2.18	1.3.11	1.4.9	1.7.22	2.4.4	2.14.22	2.6.10	4.2.41	5.4.22	5.3.9
23.	1.2.19	1.3.12	1.4.8	1.7.23	2.4.3	2.14.23	2.6.11	4.2.42	5.4.23	5.3.8
24.	1.2.20	1.3.13	1.4.7	1.7.24	2.4.2	2.14.24	2.6.12	4.2.43	5.4.24	5.3.7
25.	1.2.21	1.3.14	1.4.6	1.7.25	2.4.1	2.14.25	2.6.13	4.2.44	5.4.25	5.3.6
26.	1.2.22	1.3.15	1.4.5	1.7.26	2.3.1	2.14.26	2.6.14	4.2.45	5.4.26	5.3.5
27.	1.2.23	1.3.16	1.4.4	1.7.27	2.3.2	2.14.27	2.6.15	4.2.46		5.3.4
28.	1.2.24	1.3.17	1.4.3	1.7.28	2.3.3	2.14.28	2.6.16	4.2.47	5.4.28	5.3.3
29.	1.2.25	1.3.18	1.4.2	1.7.29	2.3.4	2.14.29	2.6.17	4.2.48	5.4.29	5.3.2
30.	1.2.26	1.3.19	1.4.1	1.7.30	2.3.5	2.14.30	2.6.18	4.2.49	5.4.30	5.3.1

Задача №12.3

Два тела массами 50 г и 100 г связаны нитью и лежат на гладкой горизонтальной поверхности. С какой силой можно тянуть первое тело, чтобы нить, выдерживающая максимальную силу натяжения 5 Н, не оборвалась?

Задача № 11.3

Какая горизонтальная сила потребуется, чтобы тело массой 2 кг, лежащее на горизонтальной поверхности, начало скользить по ней с ускорением 0.2 м/c^2 ? Коэффициент трения принять равным 0.02.

Министерство науки и высшего образования РФ
ФГБОУ ВО «Нижневартовский государственный университет»
Факультет информационные технологий и математики

Контрольная работа по физике Механика. МКТ и термодинамика

Вариант 1

Выполнил: студент 1 курса 3301 группы Фамилия И.О.

Проверил: к.т.н., доцент Юмагулов Н.И.

Нижневартовск 2024