Приближение табличных функций

Курц В.В.

Санкт-Петербургский Политехнический университет Петра Великого

4 февраля 2022 г.

Содержание

Постановка задачи

Полиномиальная интерполяция

Приближение табличных функций сплайнами

Метод наименьших квадратов

Сглаживающие сплайны

Постановка задачи

$$(x_i,y_i), i=0,\ldots,n$$

 $x^h \coloneqq \{x_i\}_{i=0}^n$ - сетка, $y^h \coloneqq \{y_i\}_{i=0}^n$ - сеточная функция.

- 1. $x_i < x_{i+1}$ упорядоченная сетка
- 2. $x_i = x_0 + ih$ равномерная сетка

Пусть табличная функция задана парой элементов (x^h, y^h) . Требуется построить функцию $\phi(x)$, которая удовлетворяет критерию близости

$$\phi(x) \approx (x^h, y^h) \tag{1}$$

и $\phi(x) \in C^{(k)}\left([a,b]\right)$, где [a,b] - отрезок, содержащий все x_i .

Критерии близости

1. критерий интерполирования:

$$\phi(x_i) = y_i, i = 0, \dots, n. \tag{2}$$

2. критерий сглаживания:

$$\sum_{i=0}^{n} \rho_i (\phi(x_i) - y_i)^2 \to \min, \rho_i > 0.$$
 (3)

Зачем решать задачу интерполяции?

- 1. табличная функция получена в результате эксперимента ⇒ необходимо вычислить значения функции (значения производных функции) в других (промежуточных) точках
- 2. компактное представление данных
- 3. упрощение вычисления "сложных" функций: заменяем более "простой"

Основной подход к решению

Выберем некоторое множество $\{\phi_j(x)\}_{j=0}^m, \phi_j(x) \in C^{(k)}\left([a,b]\right)$ - базисные функции. Построим обобщённый полином

$$\phi(x) = \sum_{j=0}^{m} a_j \phi_j(x), \tag{4}$$

где a_i определяются исходя из критерия близости $\phi(x)$ к (x^h, y^h) .

Функции $\{\phi_j(x)\}_{j=0}^m$ должны быть линейно независимыми (для обеспечения единственности, если решение существует).

Определение

Функции $\{\phi_j(x)\}_{i=0}^m$ называются линейно независимыми, если

$$\phi(x) = 0 \quad \forall x \Leftrightarrow a_j = 0. \tag{5}$$

Множество базисных функций $\{\phi_j(x)\}_{j=0}^m$ должно принадлежать системе Φ , где $\Phi=\{\phi_j(x)\}_{j=0}^\infty$ - пространство полных функций.

Дает надежду (но не обеспечивает!) на то, что процесс приближения будет сходиться.

Определение

Множество $\{\phi_j(x)\}_{j=0}^\infty$ называется полным в X, если $\forall f \in X \, \forall \epsilon > 0 \, \exists m, a_j$

$$\left\| f - \sum_{j=0}^{m} a_j \phi_j(x) \right\|_{X} \le \epsilon. \tag{6}$$

Примеры

1.
$$\phi_j(x) = x^j \Rightarrow \phi(x)$$
 - полином.

Теорема Вейерштрасса

Любую непрерывную функцию можно приблизить полиномом с вещественными коэффициентами.

2.
$$\{\phi_j(x)\}=\{1,\cos(x),\sin(x),\cos(2x),\sin(2x),\ldots\}$$

Содержание

Постановка задачи

Полиномиальная интерполяция

Приближение табличных функций сплайнами

Метод наименьших квадратов

Сглаживающие сплайны

Существование и единственность интерполяционного полинома

Пусть
$$\phi_j(x)=x^j$$
. Тогда $\phi(x)=\sum\limits_{j=0}^m a_jx^j=P_m(x)$.

Задана табличная функция $(x_i, y_i), i = 0, \dots, n$. Потребуем выполнения условий интерполяции $\phi(x_i) = y_i$

$$\begin{cases}
a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_m x_0^m = y_0 \\
\dots = \dots \\
a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_m x_n^m = y_n
\end{cases}$$
(7)

СЛАУ (7) имеет единственное решение, если

- 1. n = m, т.е. степень полинома на единицу меньше, чем количество точек.
- 2. x_i попарно различны.

Упражнение

 x_i попарно различны \Leftrightarrow определитель СЛАУ (7) не равен 0.

Интерполяционный полином в форме Лагранжа

Задана табличная функция $(x_i, y_i), i = 0, ..., n$. Построим итерполяционный полином $P_n(x)$: $P_n(x_i) = y_i$. Будем искать $P_n(x)$ в виде

$$L_n(x) = \sum_{i=0}^n y_i \Phi_i(x), \tag{8}$$

где $\Phi_i(x_i) = \delta_{ii}$.

$$\Phi_i(x)=lpha_i\prod_{\substack{k=0\\k
eq i}}^n(x-x_k)$$
 - i -й базисный полином Лагранжа.

$$\Phi_i(x_i) = 1 = \alpha_i \prod_{\substack{k=0\\k\neq i}}^n (x_i - x_k) \Rightarrow \alpha_i = \ldots \Rightarrow \Phi_i(x) = \prod_{\substack{k=0\\k\neq i}}^n \frac{x - x_k}{x_i - x_k}$$

Интерполяционный полином в форме Лагранжа:

$$L_n(x) = \sum_{i=0}^n y_i \prod_{\substack{k=0\\k \neq i}}^n \frac{x - x_k}{x_i - x_k}.$$
 (9)

Введем понятие корневого полинома $\omega(x)$

$$\omega(x) = \prod_{k=0}^{n} (x - x_k). \tag{10}$$

$$\omega'(x) = \sum_{j=0}^{n} \prod_{\substack{k=0\\k\neq j}}^{n} (x - x_k) \Rightarrow \omega'(x_i) = \prod_{\substack{k=0\\k\neq i}}^{n} (x_i - x_k) \Rightarrow \Phi_i(x) = \frac{\omega(x)}{(x - x_i)\omega'(x_i)}$$

$$L_n(x) = \sum_{i=0}^{n} y_i \frac{\omega(x)}{(x - x_i)\omega'(x_i)}.$$
 (11)

Пример

$$x^h = \{0, 2, 3, 5\}, y^h = \{1, 3, 2, 5\}.$$

$$L_3(x) = 1 \frac{(x-2)(x-3)(x-5)}{(0-2)(0-3)(0-5)} + 3 \frac{(x-0)(x-3)(x-5)}{(2-0)(2-3)(2-5)} + 2 \frac{(x-0)(x-2)(x-5)}{(3-0)(3-2)(3-5)} + 5 \frac{(x-0)(x-2)(x-3)}{(5-0)(5-2)(5-3)}$$

$$L_3(x) = \frac{3}{10}x^3 - \frac{13}{6}x^2 + \frac{62}{15}x + 1$$

Интерполяционный полином Лагранжа для равноотстоящих узлов

Рассмотрим сетку с равноотстоящими узлами: $x_i = x_0 + ih, i = 0, \dots, n$.

$$x = x_0 + th, t \in [0, n].$$

 $x - x_k = h(t - k), x_i - x_k = h(i - k)$

$$L_{n}(x_{0} + th) = \sum_{i=0}^{n} y_{i} \frac{(t-0)(t-1)\dots(t-i+1)(t-i-1)\dots(t-n)}{(i-0)(i-1)\dots1(-1)\dots(i-n)} \frac{t-i}{t-i}$$

$$= \sum_{i=0}^{n} y_{i} \frac{(-1)^{n-i}\omega(t)}{i!(n-i)!(t-i)},$$
(12)

где
$$\omega(t) = \prod_{k=0}^{n} (t-k)$$
.

Коэффициенты при y_i не зависят от y(x) и не зависят от $h \Rightarrow$ могут быть вычислены заранее.

Погрешности интерполяционной формулы Лагранжа

- 1. Ошибка метода: интерполяционный многочлен $L_n(x)$ совпадает с y(x) в узлах x_i , но в остальных точках нет.
- 2. Неустранимая погрешность: значения y_i могут оказаться приближенными.
- 3. Погрешность округления.

Упражнение

Для какой функции y(x) ошибка метода будет равна 0?

Неустойчивость интерполяционного полинома. Пример

$$y(x) = \sin(2\pi x), x \in [-1, 1]$$

Равномерная сетка, 22 узла $|y(x_i) - \widetilde{y}(x_i)| \le 10^{-4}$

Оценка погрешности интерполяционного полинома в форме Лагранжа

Предположим, что $y(x) \in C^{(n+1)}([a,b])$ и $x^h \subset [a,b]$. $R_n(x) = y(x) - P_n(x)$ - ошибка интерполяции.

Рассмотрим вспомогательную функцию

$$\psi(x) = y(x) - L_n(x) - k\omega(x), \tag{13}$$

где k - некоторая константа.

$$\psi(x_i)=0, i=0,\ldots,n.$$

Подберем k так, чтобы $\psi(x)=0, x$ - точка, для которой производится оценка

$$k = \frac{y(x) - L_n(x)}{\omega(x)}. (14)$$

 $\psi(x) \in C^{(n+1)}([a,b])$ и имеет n+2 различных корня. $\Rightarrow \psi'(x)$ имеет n+1 корень $\Rightarrow \ldots \Rightarrow \psi^{(n+1)}(x)$ имеет 1 корень, $x=\eta, \eta \in [a,b]$.

$$\psi^{(n+1)}(\eta) = y^{(n+1)}(\eta) - 0 - k(n+1)! = 0 \Rightarrow$$

$$k = \frac{y^{(n+1)}(\eta)}{(n+1)!}. (15)$$

Ошибка интерполяции:

$$y(x) - L_n(x) = \frac{y^{(n+1)}(\eta)}{(n+1)!} \omega(x), \forall x \in [a, b].$$
 (16)

Полагая $M_{n+1} = \sup_{x \in [a,b]} |y^{(n+1)}(x)|$

$$|y(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega(x)|, \forall x \in [a, b].$$
 (17)

Пример

С какой точностью можно вычислить $\ln(100.5)$ по формуле Лагранжа, если известны значения $\ln(100)$, $\ln(101)$, $\ln(102)$ и $\ln(103)$.

$$n = 3, a = 100, b = 103.$$

 $y(x) = \ln(x), y^{(4)}(x) = -\frac{6}{x^4}, M_4 = \frac{6}{100^4}.$

$$|\ln(100.5) - L_3(100.5)| \le \frac{6}{100^4 \cdot 4!} 0.5 \cdot 0.5 \cdot 1.5 \cdot 2.5 \approx 2.3 \cdot 10^{-9}.$$

Недостаток полиномиальной интерполяции на равномерной сетке

Функция Рунге

$$f(x) = \frac{1}{1+x^2}, x \in [-5, 5]$$
(18)

С увеличением n отклонение между $L_n(x)$ и f(x) растет.

Выбор узлов интерполирования. Чебышевская сетка

Ошибка интерполяции (16) зависит от $f^{(n+1)}(\eta)$ и от $\omega(x)$

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega(x)| \tag{19}$$

Как выбрать узлы x_i , чтобы ошибка интерполяции была наименьшей?

 $\max_{x \in [a,b]} |\omega(x)|
ightarrow \min \Rightarrow$ узлы - корни полинома Чебышева

$$x_i = \cos\left(\frac{\pi(2i+1)}{2n}\right), i = 0, \dots, n-1$$
 (20)

$$[-1,1] \to [a,b]: x_i \to \frac{b-a}{2}x_i + \frac{a+b}{2}$$

Равномерная и Чебышевская сетка

Конечные разности

Пусть $x^h = \{x_i\}_{i=0}^n$ - упорядоченная сетка и $x_i = x_0 + ih$.

Тогда конечная разность 1-го порядка в узле $x_k, k = 0, \dots, n-1$

$$\Delta y_k = y_{k+1} - y_k,\tag{21}$$

а конечная разность *m*-го порядка

$$\Delta^{m} y_{k} = \Delta^{m-1} y_{k+1} - \Delta^{m-1} y_{k}, \tag{22}$$

Пример

$$\Delta^2 y_0 = \Delta^1 y_1 - \Delta^1 y_0 = (y_2 - y_1) - (y_1 - y_0) = y_2 - 2y_1 + y_0.$$

$$\Delta^3 y_0 = \dots$$

Разделённые разности

$$x^h = \{x_i\}_{i=0}^n, y^h = \{y_i\}_{i=0}^n.$$

Разделённая разность 1-го порядка, вычисленная по двум узлам x_{k_1}, x_{k_2}

$$[y_{k_1}, y_{k_2}] = \frac{y_{k_2} - y_{k_1}}{x_{k_2} - x_{k_1}},\tag{23}$$

а разделённая разность \emph{m} -го порядка, вычисленная по узлам x_{k_0}, \ldots, x_{k_m}

$$[y_{k_0},\ldots,y_{k_m}] = \frac{[y_{k_1},\ldots,y_{k_m}] - [y_{k_0},\ldots,y_{k_{m-1}}]}{x_{k_m}-x_{k_0}}.$$
 (24)

Разделенная разность *n*-го порядка равна

$$[y_{k_0}, \dots, y_{k_n}] = \sum_{j=0}^n \frac{y_{k_j}}{\prod\limits_{\substack{i=0\\i\neq j}}^n (x_{k_j} - x_{k_i})}.$$
 (25)

Доказательство (по ММИ)

База индукции:
$$[y_{k_0},y_{k_1}]=rac{y_{k_1}-y_{k_0}}{x_{k_1}-x_{k_0}}=rac{y_{k_0}}{x_{k_0}-x_{k_1}}+rac{y_{k_1}}{x_{k_1}-x_{k_0}}.$$

Индукционный переход. Пусть (25) верно для n=m-1. Покажем, что (25) верно для n=m.

$$[y_{k_0},\ldots,y_{k_m}] = \frac{[y_{k_1},\ldots,y_{k_m}] - [y_{k_0},\ldots,y_{k_{m-1}}]}{x_{k_m}-x_{k_0}} = \frac{1}{x_{k_m}-x_{k_0}} \left(\sum_{\substack{j=1 \ j=1 \ i\neq j}}^m \frac{y_{k_j}}{\prod\limits_{\substack{i=1 \ i\neq j}}^m (x_{k_j}-x_{k_i})} - \sum_{\substack{j=0 \ i\neq j}}^{m-1} \frac{y_{k_j}}{\prod\limits_{\substack{i=0 \ i\neq j}}^m (x_{k_j}-x_{k_i})} \right).$$

1.
$$j = 0$$
: $-\frac{1}{x_{k_m} - x_{k_0}} \prod_{\substack{i=0 \ i \neq j}}^{y_{k_0}} (x_{k_j} - x_{k_i})$

2.
$$j = m$$
:
$$\frac{1}{x_{k_m} - x_{k_0}} \frac{y_{k_m}}{\prod\limits_{\substack{i=0 \ i \neq j}}^{m-1} (x_{k_j} - x_{k_i})}$$

3.
$$j \neq 0, j \neq m$$
: $\frac{1}{x_{k_m} - x_{k_0}} \left(\frac{y_{k_j}}{\prod\limits_{\substack{i=1 \ i \neq j}}^m (x_{k_j} - x_{k_i})} - \frac{y_{k_j}}{\prod\limits_{\substack{i=0 \ i \neq j}}^m (x_{k_j} - x_{k_i})} \right) = \frac{y_{k_j}}{x_{k_m} - x_{k_0}} \left(\frac{(x_{k_j} - x_{k_0}) - (x_{k_j} - x_{k_m})}{\prod\limits_{\substack{i=0 \ i \neq j}}^m (x_{k_j} - x_{k_i})} \right)$

Следствие

Разделенная разность - симметричная функция своих аргументов.

Связь между конечными разностями и разделенными разностями

Пусть x^h - упорядоченная сетка и $x_i = x_0 + ih$. Тогда

$$[y_0,\ldots,y_m] = \frac{\Delta^m y_0}{m! \, h^m}.\tag{26}$$

Доказательство (по ММИ)

База индукции: $[y_0, y_1] = \frac{y_1 - y_0}{x_1 - x_0} = \frac{\Delta y_1}{1!h^1}$.

Индукционный переход. Пусть (26) верно для n=m-1. Покажем, что (26) верно для n=m.

$$[y_0, \dots, y_m] = \frac{[y_1, \dots, y_m] - [y_0, \dots, y_{m-1}]}{x_m - x_0} = \frac{\frac{\Delta^{m-1}y_1}{(m-1)!h^{m-1}} - \frac{\Delta^{m-1}y_0}{(m-1)!h^{m-1}}}{\underbrace{x_m - x_0}}.$$
 (27)

Интерполяционный полином в форме Ньютона

Нужно увеличить степень интерполяционного полинома на единицу \Rightarrow при использовании формулы Лагранжа все слагаемые в (12) нужно вычислить заново \odot .

$$x_0 \Rightarrow L_0(x) = y_0$$

 $x_0, x_1 \Rightarrow L_1(x)$
 $x_0, \dots, x_n \Rightarrow L_n(x)$
 $L_n = L_0 + (L_1 - L_0) + \dots + (L_n - L_{n-1}) = Q_0 + Q_1 + \dots + Q_n$
 $Q_k(x) = L_k(x) - L_{k-1}(x)$
 $Q_k(x_i) = 0, i = 0, \dots, k-1 \Rightarrow Q_k(x) = \gamma_k \prod_{i=0}^{k-1} (x - x_i)$

$$Q_{k}(x_{k}) = \gamma_{k} \prod_{i=0}^{k-1} (x_{k} - x_{i}) = L_{k}(x_{k}) - L_{k-1}(x_{k})$$

$$\gamma_{k} = \frac{1}{\prod\limits_{i=0}^{k-1} (x_{k} - x_{i})} \left(y_{k} - \sum_{j=0}^{k-1} y_{j} \prod_{\substack{i=0 \ i \neq j}}^{k-1} \frac{x_{k} - x_{i}}{x_{j} - x_{i}} \right) = \frac{y_{k}}{\prod\limits_{i=0}^{k-1} (x_{k} - x_{i})} - \sum_{j=0}^{k-1} y_{j} \frac{1}{\prod\limits_{i=0}^{k-1} (x_{k} - x_{i})} \prod_{\substack{i=0 \ i \neq j}}^{k-1} (x_{j} - x_{i}) = \frac{y_{k}}{\prod\limits_{i=0}^{k-1} (x_{k} - x_{i})} + \sum_{j=0}^{k-1} \frac{y_{j}}{\prod\limits_{\substack{i=0 \ i \neq j}}^{k} (x_{j} - x_{i})} = [y_{0}, \dots, y_{k}].$$

Интерполяционный полином в форме Ньютона (для неравных промежутков)

$$L_n(x) = P_n(x) = y_0 + [y_0, y_1](x - x_0) + [y_0, y_1, y_2](x - x_0)(x - x_1) + \dots + [y_0, \dots, y_n] \prod_{i=0}^{n-1} (x - x_i).$$
(28)

- На одной и той же сетке рассматривается множество функций ⇒ полином Лагранжа.
- ightharpoonup Задача рассматривается для одной и той же функции на разных сетках \Rightarrow полином Ньютона.

Нужно увеличить степень интерполяционного полинома на единицу \Rightarrow при использовании формулы Ньютона (28) достаточно добавить к $P_n(x)$ лишь одно слагаемое

$$P_{n+1}(x) = P_n(x) + [y_0, \dots, y_n, y_{n+1}] \prod_{i=0}^{n} (x - x_i).$$
 (29)

 С точки зрения вычислительной устойчивости полином Лагранжа предпочтительней.

Остаточный член формулы Ньютона

Пусть $\{x_i\}_{i=0}^n$ - узлы интерполяции, $x \neq x_i$ - точка, в которой производится оценка. Добавим x к узлам интерполяции.

$$P_{n+1}(x) = y.$$

$$P_{n+1}(x) = P_n(x) + [y_0, \dots, y_n, y] \prod_{i=0}^{n} (x - x_i)$$

$$R_n(x) = y - P_n(x) = [y_0, \dots, y_n, y]\omega(x).$$
 (30)

Интерполяционная формула Ньютона для равных промежутков

Пусть x^h - упорядоченная равномерная сетка. $x_i=x_0+ih, i=0,\ldots,n, h>0$. $x=x_0+th, t\in [0,n]$. $x-x_i=h(t-i)$ $P_n(x)=P_n(x_0+th)=y_0+\frac{\Delta y_0}{11h}h(t-0)+\frac{\Delta^2 y_0}{21k^2}h(t-0)h(t-1)+\ldots$

Интерполяционная формула Ньютона для интерполирования вперед

$$P_n(x_0 + th) = y_0 + \frac{\Delta y_0}{1!}t + \frac{\Delta^2 y_0}{2!}t(t-1) + \ldots + \frac{\Delta^n y_0}{n!}t(t-1)\ldots(t-n+1).$$
 (31)

Интерполяционная формула Ньютона для интерполирования назад

$$P_n(x_n+qh) = y_n + \frac{\Delta y_{n-1}}{1!}q + \frac{\Delta^2 y_{n-2}}{2!}q(q+1) + \ldots + \frac{\Delta^n y_0}{n!}q(q+1)\ldots(q+n-1), (32)$$

где $q = (x-x_n)/h$.

Полином Лагранжа для функции $f(x) = \sin(4\pi x)$ на интервале [0,1] с 4 равноотстоящими узлами.

Интерполяция с кратными узлами. Полином Эрмита

 $x_i \in x^h$ - кратный узел порядка p для сеточной функции y_h , если в этом узле заданы $(y_i, y_i', \dots, y_i^{(p-1)})$.

Простейший случай - полином Эрмита, у которого все узлы кратности 2

$$\begin{cases}
P_m(x_i) = y_i \\
P'_m(x_i) = y'_i, i = 0, \dots, n
\end{cases}$$
(33)

Можно построить полином степени m = 2n + 1. Будем искать в виде

$$H_{2n+1}(x) = \sum_{j=0}^{n} (y_j \phi_j(x) + y_j' \psi_j(x)), \tag{34}$$

где $\phi_i(x)$ и $\psi_i(x)$ - полиномы степени не выше 2n+1.

Условия на $\phi_i(x)$ и $\psi_i(x)$

$$\begin{cases} \phi_j(x_i) = \delta_{ij} \\ \phi'_j(x_i) = 0, \forall i \end{cases} \quad \mathbf{H} \quad \begin{cases} \psi_j(x_i) = 0, \forall i \\ \psi'_j(x_i) = \delta_{ij} \end{cases}$$
 (35)

Каждый полином имеет n корней кратности 2 и один корень кратности 1.

$$\psi_{j}(x) = \gamma_{j}(x - x_{j}) \prod_{\substack{i=0 \ i \neq j}}^{n} (x - x_{i})^{2}$$

$$\psi'_{j}(x) = \gamma_{j} \prod_{\substack{i=0 \ i \neq j}}^{n} (x - x_{i})^{2} + \gamma_{j}(x - x_{j}) \left(\prod_{\substack{i=0 \ i \neq j}}^{n} (x - x_{i})^{2} \right)'_{x}$$

$$\psi'_{j}(x_{j}) = \gamma_{j} \prod_{\substack{i=0 \ i \neq j}}^{n} (x_{j} - x_{i})^{2} = 1 \Rightarrow \gamma_{j} = \frac{1}{\prod_{\substack{i=0 \ i \neq j}}^{n} (x_{j} - x_{i})^{2}} \Rightarrow \psi_{j}(x) = (x - x_{j}) \prod_{\substack{i=0 \ i \neq j}}^{n} \left(\frac{x - x_{i}}{x_{j} - x_{i}} \right)^{2}$$

$$\phi_j(x) = (\alpha_j x + \beta_j) \prod_{\substack{i=0\\i\neq j}}^n \left(\frac{x - x_i}{x_j - x_i}\right)^2$$

$$\phi_j(x_j) = 1 \Rightarrow \alpha_j x_j + \beta_j = 1$$

$$\phi'_j(x) = \alpha_j \prod_{j=1}^{n} + (\alpha_j x + \beta_j)(\prod)'_x \phi'_j(x_j) = \alpha_j + (\prod)'_{x=x_j} = 0 \Rightarrow \alpha_j = -(\prod)'_{x=x_j}$$

$$\left(\prod_{\substack{i=0\\i\neq j}}^{n} \left(\frac{x-x_i}{x_j-x_i}\right)^2\right)_x' = \left(\frac{2(x-x_0)}{(x_j-x_0)^2} \prod_{\substack{i=0\\i\neq j\\i\neq 0}}^{n} \left(\frac{x-x_i}{x_j-x_i}\right)^2 + \ldots + \frac{2(x-x_k)}{(x_j-x_k)^2} \prod_{\substack{i=0\\i\neq j\\i\neq k}}^{n} \left(\frac{x-x_i}{x_j-x_i}\right)^2 + \ldots\right)$$

$$\alpha_j = -(\prod)'_{x=x_j} = -\sum_{\substack{k=0\\k=j}}^{n} \frac{2}{x_j - x_k}$$

$$\beta_j = 1 - \alpha_j x_j \Rightarrow \alpha_j x + \beta_j = \alpha_j x + (1 - \alpha_j x_j) = 1 + \alpha_j (x - x_j)$$

$$\phi_j(x) = \left(1 - 2(x - x_j) \sum_{\substack{k=0 \ k \neq j}}^{n} \frac{1}{x_j - x_k}\right) \prod_{\substack{i=0 \ i \neq j}}^{n} \left(\frac{x - x_i}{x_j - x_i}\right)^2$$

Покажем единственность.

От противного. Пусть существуют $H_{2n+1}^{(1)}(x)$ и $H_{2n+1}^{(2)}(x)$.

 $Q_{2n+1}(x) = H_{2n+1}^{(1)}(x) - H_{2n+1}^{(2)}(x)$ имеет n+1 корень кратности 2 (в силу условий интерполяции).

Но $Q_{2n+1}(x)$ - полином степени не выше $2n+1 \Rightarrow Q_{2n+1}(x) \equiv 0$.

Теорема

Если $f(x) \in C^{(2n+2)}([a,b]),$ то справедлива формула для остаточного члена полинома Эрмита

$$R_{2n+2}(x) = \frac{f^{(2n+2)}(\eta)}{(2n+2)!} \omega^2(x), \tag{36}$$

где $\eta \in [a,b], \omega(x)$ - корневой полином.

Замечания

- 1. Техника построения интерполяционного полинома с узлами разной кратности аналогична, но необходимо учесть кратность узлов.
- 2. Если сетка имеет N узлов с учётом их кратности, то можно построить интерполяционный полином степени N-1 и

$$R_{N-1}(x) = \frac{f^{(N)}(\eta)}{N!} \Omega(x), \tag{37}$$

где $\Omega(x)$ - корневой полином с учётом кратности узлов.

Пример

Лагранжева и Эрмитова интерполяция для функции $f(x) = \sin(4\pi x)$ на интервале [0,1] с 4 равноотстоящими узлами.

О сходимости интерполяционного процесса

Всегда ли можно добиться повышения точности интерполяции путем увеличения числа узлов?

$$\begin{pmatrix} x_0^{(0)} & & & & \\ x_0^{(1)} & x_1^{(1)} & & & \\ x_0^{(2)} & x_1^{(2)} & x_2^{(2)} & & \\ & \ddots & \ddots & \ddots & \\ x_0^{(n)} & x_1^{(n)} & \dots & x_n^{(n)} \\ & \ddots & \ddots & \dots & \dots \end{pmatrix}, x_i^{(k)} \in [a, b].$$

Метод интерполяции сходится, если

$$\max_{[a,b]} |f(x) - P_n(x)| \xrightarrow[n \to \infty]{} 0.$$
(38)

О сходимости интерполяционного процесса

Существует ли единая для всех непрерывных на [a,b] функций стратегия выбора узлов, гарантирующая сходимость?

Теорема Фабера

$$\forall X \,\exists f \in C([a,b]) \colon \max_{[a,b]} |f(x) - P_n(x)| \xrightarrow[n \to \infty]{} \infty.$$

Теорема

Пусть X - матрица с чебышевскими узлами. Тогда $\forall f \in C^{(1)}([a,b])$ $\max_{[a,b]} |f(x)-P_n(x)| \xrightarrow[n\to\infty]{} 0.$

Содержание

Постановка задачи

Полиномиальная интерполяция

Приближение табличных функций сплайнами

Метод наименьших квадратов

Сглаживающие сплайны

Interpolation

Objective

Given n + 1 pairs (x_i, y_i) , derive a simple function $\phi(x)$, that passes through all the points

$$\phi(x_i) = y_i, i = 0, \dots, n. \tag{39}$$

- $\phi(x)$ is an algebraic polynomial \Rightarrow *polynomial interpolation*
- $\phi(x)$ is only locally a polynomial \Rightarrow spline interpolation

Spline

Definition

Let x_0, \ldots, x_n be n+1 distinct nodes of [a, b], with $a = x_0 < x_1 < \ldots < x_n = b$. The function $S_k^{\nu}(x)$ on the interval [a, b] is a *spline* of degree k relative to the nodes x_i if

$$S_k^{\nu}|_{[x_i,x_{i+1}]} \in \mathbb{P}_k, i = 0, 1, \dots, n-1$$
(40)

$$S_k^{\nu} \in C^{k-\nu}([a,b]).$$
 (41)

 x_1, \ldots, x_{n-1} are *internal* nodes, ν is a defect of spline.

Remark

Discontinuity in the $k - \nu + 1, \dots, k$ -th derivative is possible at the internal nodes. These nodes are called *active* nodes.

Interpolatory and Smoothing Splines

1. Interpolatory spline (csape in MATLAB):

$$S_k^{\nu}(x_i) = f(x_i), i = 0, \ldots, n$$

2. Smoothing spline (csaps in MATLAB).

Example

 $S_1^1(x)$ is a piecewise linear interpolant

$$S_1^1(x)|_{[x_i,x_{i+1}]} = P_1(x) = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i}(x - x_i), i = 0, \dots, n - 1$$
(42)

Piecewise Cubic Hermite Interpolating Polynomial

If function values $\{y_i\}$ and first derivative values $\{y_i'\}$ at a set of data points $\{x_i\}$ are known, then

$$\begin{cases}
H_3(x_i) = y_i, H_3(x_{i+1}) = y_{i+1} \\
H'_3(x_i) = y'_i, H'_3(x_{i+1}) = y'_{i+1}
\end{cases}$$

Use (34) to define $H_3(x)$.

$$S_3^2(x)$$
 is a piecewise cubic interpolant. $S_3^2(x)|_{[x_i,x_{i+1}]} = H_3(x)$

If derivative values are not given, we need to define slopes d_i somehow!

Shape-preserving piecewise cubic Hermite interpolation

Let δ_i denote the first divided difference $[y_i, y_{i+1}]$

- ▶ if δ_{i-1} and δ_i have opposite signs or if either of them is zero, then $d_i = 0$
- \blacktriangleright if δ_{i-1} and δ_i have the same sign and two intervals have the same length

$$\frac{1}{d_i} = \frac{1}{2} \left(\frac{1}{\delta_{i-1}} + \frac{1}{\delta_i} \right) \tag{43}$$

Interpolatory Quadratic Spline

 $S_2^1(x)$ is a piecewise quadratic interpolant and $S_2^1|_{[x_{i-1},x_i]}=g_i(x)=a_ix^2+b_ix+c_i$.

$$\begin{cases} g_i(x_{i-1}) = y_{i-1} \\ g_i(x_i) = y_i \end{cases} i = 1, \dots, n \text{ and } g'_i(x_i) = g'_{i+1}(x_i), i = 1, \dots, n-1$$

$$\begin{cases}
g_1(x_0) = y_0 \\
g_1(x_1) = y_1 \Rightarrow a_1, b_1, c_1 \Rightarrow g_1'(x_1) \Rightarrow \begin{cases}
g_2(x_1) = y_1 \\
g_2(x_2) = y_2 \\
g_2'(x_1) = g_1'(x_1)
\end{cases} \Rightarrow a_2, b_2, c_2 \Rightarrow \dots \tag{44}$$

Not-a-knot spline

$$\begin{cases} g_1(x_0) = y_0 \\ g_1(x_1) = y_1 \Rightarrow a_1, b_1, c_1 \Rightarrow g'_1(x_2) \Rightarrow \begin{cases} g_3(x_2) = y_2 \\ g_3(x_3) = y_3 \Rightarrow a_3, b_3, c_3 \Rightarrow \dots \end{cases}$$

$$\begin{cases} g_1(x_0) = y_0 \\ g_1(x_2) = y_2 \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

$$\begin{cases} g_3(x_2) = y_2 \\ g_3(x_2) = g'_1(x_2) \end{cases}$$

Let
$$S_k^{\nu}$$
 be an interpolatory spline. $k=3, \nu=1 \Rightarrow S_3^{l}|_{[x_{i-1},x_i]} \in \mathbb{P}_3$ and $S_3^{l} \in C^2([a,b])$.

Input: nodes $\{x_i\}_{i=0}^n$ and corresponding function values $\{y_i\}_{i=0}^n$.

$$S_3^{1}(x) = \begin{cases} a_1 x^3 + b_1 x^2 + c_1 x + d_1, & x \in [x_0, x_1] \\ a_2 x^3 + b_2 x^2 + c_2 x + d_2, & x \in [x_1, x_2] \\ \dots \\ a_n x^3 + b_n x^2 + c_n x + d_n, & x \in [x_{n-1}, x_n] \end{cases}$$
efficients a_i, b_i, c_i and $d_i, i = 1, \dots, n$. (46)

Goal: find 4n coefficients a_i, b_i, c_i and $d_i, i = 1, \dots, n$.

$$g(x) := S_3^1(x), g_i(x) := S_3^1(x)|_{[x_{i-1},x_i]}$$

 $g(x) \in C^2([a,b]) \Rightarrow$ for all internal nodes $x_i, i = 1, ..., n-1$:

$$\begin{cases} g_i(x_i) = g_{i+1}(x_i) & (47a) \\ g'_i(x_i) = g'_{i+1}(x_i) & (47b) \\ g''_i(x_i) = g''_{i+1}(x_i) & (47c) \end{cases}$$

g(x) is an interpolatory spline \Rightarrow

$$g_1(x_0) = y_0 \text{ and } g_i(x_i) = y_i, i = 1, \dots, n$$
 (48)

(47) and (48): 3(n-1) + n + 1 = 4n - 2 conditions \Rightarrow 2 conditions are lacking.

$$M_i := g''(x_i), i = 0, \ldots, n$$

 $g_i(x) \in \mathbb{P}_3 \Rightarrow g_i''(x) \in \mathbb{P}_1$ is a linear function.

$$g_i''(x_{i-1}) = M_{i-1}$$
 and $g_i''(x_i) = M_i \Rightarrow$

$$g_i''(x) = M_{i-1} \frac{x_i - x}{h_i} + M_i \frac{x - x_{i-1}}{h_i}, x \in [x_{i-1}, x_i],$$
(49)

where $h_i = x_i - x_{i-1}$.

Integrate (49) twice:

$$g_i(x) = M_{i-1} \frac{(x_i - x)^3}{6h_i} + M_i \frac{(x - x_{i-1})^3}{6h_i} + C_i(x - x_{i-1}) + \widetilde{C}_i$$
 (50)

Conditions (47a) and (48) \Rightarrow

1.
$$g_i(x_{i-1}) = y_{i-1} = M_{i-1} \frac{h_i^2}{6} + \widetilde{C}_i \Rightarrow$$

$$\widetilde{C}_i = y_{i-1} - M_{i-1} \frac{h_i^2}{6} \tag{51}$$

2.
$$g_i(x_i) = y_i = M_i \frac{h_i^2}{6} + C_i h_i + \widetilde{C}_i \Rightarrow$$

$$C_i = \frac{y_i - y_{i-1}}{h_i} - \frac{h_i}{6} (M_i - M_{i-1})$$
 (52)

Continuity of the first derivatives at the internal nodes (condition (47b)) \Rightarrow

$$\underbrace{M_{i}\frac{h_{i}}{2} + \frac{y_{i} - y_{i-1}}{h_{i}} - \frac{h_{i}}{6}(M_{i} - M_{i-1})}_{g'_{i}(x_{i})} = \underbrace{-M_{i}\frac{h_{i+1}}{2} + \frac{y_{i+1} - y_{i}}{h_{i+1}} - \frac{h_{i+1}}{6}(M_{i+1} - M_{i})}_{g'_{i+1}(x_{i})}$$
(53)

$$\frac{h_i}{h_i + h_{i+1}} M_{i-1} + 2M_i + \frac{h_{i+1}}{h_i + h_{i+1}} M_{i+1} = \frac{6}{h_i + h_{i+1}} \left(\frac{y_{i+1} - y_i}{h_{i+1}} - \frac{y_i - y_{i-1}}{h_i} \right), i = 1, \dots, n-1$$
(54)

n+1 unknowns: M_0, M_1, \ldots, M_n

n-1 equations

 \Rightarrow 2 conditions are lacking

Interpolatory Cubic Spline. Two lacking conditions

natural spline

$$g''(a) = g''(b) = 0 \Leftrightarrow M_0 = M_n = 0$$
(55)

clamped spline: specify the slope at the ends of the spline, e.g.

$$\begin{cases} g'(a) = f'(a) \\ g'(b) = f'(b) \end{cases}$$
(56)

▶ *not-a-knot spline*: enforce continuity of g'''(x) at x_1 and x_{n-1}

$$\begin{cases} g_1'''(x_1^-) = g_2'''(x_1^+) \\ g_{n-1}'''(x_{n-1}^-) = g_n'''(x_{n-1}^+) \end{cases}$$
 (57)

$$ightharpoonup g''(a) = M_0 = f''(a), g''(b) = M_n = f''(b)$$

Algorithm

- 1. solve linear system consisting of n-1 equations (54) + 2 conditions ((55) or (56) or (57)) with Thomas algorithm $\rightarrow \{M_i\}_{i=0}^n$.
- 2. find $\{\widetilde{C}_i\}_{i=0}^{n-1}$ and $\{C_i\}_{i=0}^{n-1}$ using (51) and (52) respectively.

Theorem

Let $f \in C^4([a,b])$ and S_3^1 be the cubic spline interpolating f. Then $\forall x \in [a,b]$

$$|f(x) - S_3^1(x)| \le Ch^4,$$
 (58)

where $h = \max_{i} h_{i}$ and $C = \frac{5}{384} \max_{x \in [a,b]} |f^{(4)}(x)|$.

Spline S_3^1 uniformly converges to f as h tends to zero.

Минимизирующие свойства кубического интерполяционного естественного сплайна

$$W_2^2([a,b]) \subset C^{(2)}([a,b]), \forall u \in W_2^2([a,b]) \ \exists \pi(u) = \int_a^b (u''(x))^2 dx < \infty$$

Minimum energy principle

 $\forall u \in W_2^2([a,b]) : u(x_i) = y_i$ естественный кубический интерполяционный сплайн g является единственной функцией, сообщающей минимум функционалу π , т.е.

$$\int_{a}^{b} (g''(x))^{2} dx \le \int_{a}^{b} (u''(x))^{2} dx.$$
 (59)

Минимизирующие свойства кубического интерполяционного естественного сплайна

$$\pi(u-g) = \int_{a}^{b} (u'' - g'')^{2} dx = \int_{a}^{b} (u'')^{2} dx + \int_{a}^{b} (g'')^{2} dx - 2 \int_{a}^{b} u'' g'' dx \pm \int_{a}^{b} (g'')^{2} dx = \pi(u) - \pi(g) + 2 \int_{a}^{b} g'' (g'' - u'') dx$$

$$\int_{a}^{b} g'' (g'' - u'') dx = g'' (g' - u')|_{a}^{b} - \int_{a}^{b} g^{(3)} (g' - u') dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} g_{i}^{(3)} (u' - g_{i}') dx = \sum_{i=1}^{n} 6a_{i}(u - g_{i})|_{x_{i-1}}^{x_{i}} = 0$$

$$\pi(u - g) = \pi(u) - \pi(g) \Rightarrow \pi(g) = \pi(u) - \pi(u - g) \leq \pi(u)$$

Минимизирующие свойства кубического интерполяционного естественного сплайна

Покажем единственность (от противного).

$$\pi(u) = \pi(g) \Rightarrow \pi(u - g) = 0$$

$$\pi(u - g) = \int_{a}^{b} (u'' - g'')^{2} dx \Rightarrow u'' - g'' = 0$$

$$u(x) = g(x) + c_{1}x + c_{2}$$

$$u(x_{i}) = g(x_{i}) = y_{i}, i = 0, \dots, n, n \ge 1 \Rightarrow c_{1} = c_{2} = 0.$$

Piecewise Cubic Hermite Interpolation and Cubic Spline

Exercise

Make a plot of your hand. Start with

```
figure('position', get(0, 'screensize'))
axes('position',[0 0 1 1])
[x,y] = ginput;
```

Place your hand on the computer screen. Use the mouse to select a few dozen points outlining your hand. Terminate the ginput with a carriage return. Now think of x and y as two functions of an independent variable s that goes from one to the number of points you collected. You can interpolate both functions on a finer grid t

```
n = length(x);
s = (1:n)';
t = (1:.05:n)';
```

Use spline and pchip functions. Plot the results. Which do you prefer?

Содержание

Постановка задачи

Полиномиальная интерполяция

Приближение табличных функций сплайнами

Метод наименьших квадратов

Сглаживающие сплайны

Polynomial Interpolation and Spline Interpolation

Errors in data \Rightarrow interpolation is a bad choice.

Least squares Method. Problem Statement

Let n+1 data points $(x_i, y_i), i=0,\ldots,n$ are given. Find a function $\phi(x)$

$$\phi(x) = \sum_{j=0}^{m} a_j \phi_j(x), \tag{60}$$

which minimizes the weighted sum of squared residuals

$$S(\phi) = \sum_{i=0}^{n} \rho_i (\phi(x_i) - y_i)^2 \xrightarrow{\{a_j\}} \min.$$
 (61)

 $S(\phi) = S(a_0, \dots, a_m)$ is the objective function, or the error functional. $\{\rho_i\}$ are weights, $\rho_i > 0, \forall i = 0, \dots, n$.

Interpolation versus Least Squares

$$S(a_0,...,a_m) = \sum_{i=0}^{n} \rho_i (\phi(x_i) - y_i)^2$$

$$\begin{cases}
\frac{\partial S}{\partial a_k} = 0, k = 0, \dots, m \\
\left\{\frac{\partial^2 S}{\partial a_k \partial a_l}\right\}_{k,l} > 0, k, l = 0, \dots, m
\end{cases}$$
(62)

$$\frac{\partial S}{\partial a_k} = 2 \sum_{i=0}^n \rho_i (\phi(x_i) - y_i) \frac{\partial \phi(x_i)}{\partial a_k} = 2 \sum_{i=0}^n \rho_i \phi(x_i) \phi_k(x_i) - 2 \sum_{i=0}^n \rho_i y_i \phi_k(x_i)$$

$$\phi(x_i) = \sum_{j=0}^m a_j \phi_j(x_i)$$

$$\frac{\partial S}{\partial a_k} = 2 \sum_{i=0}^m a_j \sum_{i=0}^n \rho_i \phi_j(x_i) \phi_k(x_i) - 2 \sum_{i=0}^n \rho_i y_i \phi_k(x_i)$$

$$\{\phi_j(x_i)\}_{i=0}^n = \phi_j^h \in \mathbb{R}^{n+1}$$

Dot product with positive weights

$$(y^h, z^h) = \sum_{i=0}^n \rho_i y_i z_i.$$
 (64)

$$\frac{\partial S}{\partial a_k} = 2 \sum_{i=0}^m a_i(\phi_j^h, \phi_k^h) - 2(y^h, \phi_k^h)$$

System of linear equations with unknowns a_0, \ldots, a_m

$$\sum_{i=0}^{m} (\phi_j^h, \phi_k^h) a_j = (y^h, \phi_k^h), k = 0, \dots, m$$
(65)

$$\frac{\partial^2 S}{\partial a_k \partial a_l} = 2(\phi_l^h, \phi_k^h)$$

$$G = \begin{pmatrix} (\phi_0^h, \phi_0^h) & (\phi_1^h, \phi_0^h) & \dots & (\phi_m^h, \phi_0^h) \\ (\phi_0^h, \phi_1^h) & (\phi_1^h, \phi_1^h) & \dots & (\phi_m^h, \phi_1^h) \\ \dots & \dots & \dots & \dots \\ (\phi_0^h, \phi_m^h) & (\phi_1^h, \phi_m^h) & \dots & (\phi_m^h, \phi_m^h) \end{pmatrix} \text{ is the Gram matrix.}$$

- $ightharpoonup \det(G) \neq 0 \Leftrightarrow \phi_0^h, \phi_1^h, \dots, \phi_m^h$ are linearly independent.
- $G > 0 \Leftrightarrow \phi_0^h, \phi_1^h, \dots, \phi_m^h$ are linearly independent.

$$\phi_0^h, \phi_1^h, \dots, \phi_m^h$$
 are linearly independent $\Leftrightarrow \sum_{j=0}^m c_j \phi_j^h = 0 \Rightarrow c_j = 0$.

$$\sum_{i=0}^{m} c_j \phi_j^h = 0 \Leftrightarrow \sum_{i=0}^{m} c_j \phi_j(x_i) = 0, \forall i = 0, \dots, n \Leftrightarrow Q_m(x_i) = 0, \forall i = 0, \dots, n,$$
 (66)

where
$$Q_m(x) = \sum_{j=0}^m c_j \phi_j(x)$$
.

Множество функций $\phi_j(x)$ будет линейно независимым на сетке x^h , если не существует обобщённого полинома отличного от 0, такого, что все узлы сетки являются его корнями.

$$\phi_j(x) = x^j, j = 0, \dots, m$$
 $Q_m(x_i) = 0, i = 0, \dots, n$ Если $m < n+1$, то сеточные функции всегда линейно независимы.

$$(\phi_{j}^{h}, \phi_{k}^{h}) = \sum_{i=0}^{n} \rho_{i} x_{i}^{j} x_{i}^{k} = \sum_{i=0}^{n} \rho_{i} x_{i}^{j+k}$$
$$(y^{h}, \phi_{k}^{h}) = \sum_{i=0}^{n} \rho_{i} y_{i} x_{i}^{k}$$

Матрица СЛАУ становится плохо обусловленной (приближается к матрице Гильберта) при $n \to \infty$. Можно использовать многочлены Чебышева.

Polynomial Least Squares. Second-order polynomial

Let $\phi(x) = a_0 + a_1 x + a_2 x^2$ is a second-order polynomial and $\rho_i = 1$.

System of linear equations with respect to unknown coefficients a_0, a_1, a_2 :

$$\begin{cases} (n+1)a_0 + \left(\sum_{i=0}^n x_i\right) a_1 + \left(\sum_{i=0}^n x_i^2\right) a_2 = \left(\sum_{i=0}^n y_i\right) \\ \left(\sum_{i=0}^n x_i\right) a_0 + \left(\sum_{i=0}^n x_i^2\right) a_1 + \left(\sum_{i=0}^n x_i^3\right) a_2 = \left(\sum_{i=0}^n x_i y_i\right) \\ \left(\sum_{i=0}^n x_i^2\right) a_0 + \left(\sum_{i=0}^n x_i^3\right) a_1 + \left(\sum_{i=0}^n x_i^4\right) a_2 = \left(\sum_{i=0}^n x_i^2 y_i\right) \end{cases}$$

Выбор весовых коэффициентов

 $ilde{y}_i=y_i+\epsilon_i$ - известно значение с погрешностью. Если известно $ilde{\epsilon}_i$, то $ho_i=rac{1}{\epsilon_i^2+\epsilon},\epsilon>0$

Пример

$$y(x) = \sin(\pi x)$$

 $x^h = \{0, \frac{1}{2}, 1\}, y^h = \{0, 1, 0\}, \rho_0 = \alpha, \rho_1 = \rho_2 = 1$

$$P_1(x) = a_0 + a_1 x = a_0(\alpha) + a_1(\alpha)x = \frac{2}{1+5\alpha} + \frac{2}{1+5\alpha}(\alpha - 1)x$$

- 1. $\alpha = 1$ все точки равноправны
- 2. $\alpha = 0$ не учитывается первая точка
- 3. $\alpha = \infty$ учитывается только первая точка

Содержание

Постановка задачи

Полиномиальная интерполяция

Приближение табличных функций сплайнами

Метод наименьших квадратов

Сглаживающие сплайны

Сглаживающий кубический сплайн (smoothing cubic spline)

Комбинация сплайнов и МНК:

$$J(u) = (1 - p) \underbrace{\int_{a}^{b} (u''(x))^{2} dx}_{\text{сглаживание}} + p \underbrace{\sum_{i=0}^{n} \rho_{i} (u(x_{i}) - y_{i})^{2}}_{\text{приближение к данным}} \to \min,$$
 (67)

где $u \in W_2^2([a,b]), \rho_i \geq 0, p \in [0,1].$

Компромисс между двумя требованиями:

- приближениу к заданным значениям
- получение гладкой функции.

Выбор p - какая из целей наиболее важна.

Утверждение

Пусть $u_{\star}(x)$ сообщает минимум (67). Тогда $u_{\star}(x)$ - естественный кубический сплайн, но не обязательно интерполяционный.

Доказательство

$$J(u) = \pi(u) + S(u)$$

$$u_{\star}^{h} = \mu^{h} = \{\mu_{i}\}_{i=0}^{n}$$

По x^h , μ^h построим интерполяционный естественный сплайн g(x).

$$g(x_i) = \mu_i = u_{\star}(x_i) \Rightarrow$$

$$\pi(g) \le \pi(u_{\star}). \tag{68}$$

$$J(u_\star) \leq J(g)$$
 и $S(u_\star) = S(g) \Rightarrow$

$$\pi(u_{\star}) \le \pi(g). \tag{69}$$

$$(68), (69) \Rightarrow g(x) = u_{\star}(x).$$

(54) ⇔

$$\frac{h_i}{6}M_{i-1} + \frac{h_i + h_{i+1}}{3}M_i + \frac{h_{i+1}}{6}M_{i+1} = \frac{1}{h_i}y_{i-1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}}\right)y_i + \frac{1}{h_{i+1}}y_{i+1}, i = 1, \dots, n-1$$
(70)

Пусть
$$m = [M_1, \dots, M_{n-1}]^{\top}$$
, $\mu^h = [y_0, \dots, y_n]^{\top}$. Тогда (70) $\Leftrightarrow Am = H\mu^h$.

$$A = \begin{pmatrix} \frac{h_1 + h_2}{3} & \frac{h_2}{6} \\ \frac{h_2}{6} & \frac{h_2 + h_3}{3} & \frac{h_3}{6} \\ & \cdots & \cdots & \\ & & \frac{h_{n-1}}{6} & \frac{h_{n-1} + h_n}{3} \end{pmatrix}$$

$$H = \begin{pmatrix} \frac{1}{h_1} & -\left(\frac{1}{h_1} + \frac{1}{h_2}\right) & \frac{1}{h_2} \\ & \frac{1}{h_2} & -\left(\frac{1}{h_2} + \frac{1}{h_3}\right) & \frac{1}{h_3} \\ & \cdots & \cdots & \\ & & \frac{h_{n-1}}{6} & -\left(\frac{1}{h_{n-1}} + \frac{1}{h_n}\right) & \frac{1}{h_n} \end{pmatrix}$$

$$\begin{split} & \left[x_{i-1},x_{i}\right]:g''(x)=g''_{i}(x)=M_{i-1}+\frac{M_{i}-M_{i-1}}{h_{i}}(x-x_{i-1})\\ & \int_{a}^{b}(g''(x))^{2}dx=\sum_{i=1}^{n}\int_{x_{i-1}}^{x_{i}}(g''_{i}(x))^{2}dx=\sum_{i=1}^{n}\int_{x_{i-1}}^{x_{i}}\left(M_{i-1}+\frac{M_{i}-M_{i-1}}{h_{i}}(x-x_{i-1})\right)^{2}dx=\\ & \sum_{i=1}^{n}\frac{1}{3}\left(M_{i-1}+\frac{M_{i}-M_{i-1}}{h_{i}}(x-x_{i-1})\right)^{3}\frac{h_{i}}{M_{i}-M_{i-1}}|_{x_{i-1}}^{x_{i}}=\sum_{i=1}^{n}\frac{h_{i}}{3}\frac{1}{M_{i}-M_{i-1}}\left(M_{i}^{3}-M_{i-1}^{3}\right)=\\ & \sum_{i=1}^{n}\frac{h_{i}}{3}\left(M_{i-1}^{2}+M_{i-1}M_{i}+M_{i}^{2}\right)=\sum_{i=1}^{n}\frac{h_{i}}{3}\left(M_{i-1}^{2}+\frac{1}{2}M_{i-1}M_{i}\right)+\sum_{i=1}^{n}\frac{h_{i}}{3}\left(\frac{1}{2}M_{i-1}M_{i}+M_{i}^{2}\right)=\\ & \sum_{i=0}^{n-1}\frac{h_{i+1}}{3}M_{i}\left(M_{i}+\frac{1}{2}M_{i+1}\right)+\sum_{i=1}^{n}\frac{h_{i}}{3}M_{i}\left(\frac{1}{2}M_{i-1}+M_{i}\right)=\\ & 0+\sum_{i=1}^{n-1}\left[\frac{h_{i+1}}{3}M_{i}\left(M_{i}+\frac{1}{2}M_{i+1}\right)+\frac{h_{i}}{3}M_{i}\left(\frac{1}{2}M_{i-1}+M_{i}\right)\right]+0= \end{split}$$

$$\sum_{i=1}^{n-1} M_i \left[\frac{h_i}{6} M_{i-1} + \left(\frac{h_i}{3} + \frac{h_{i+1}}{3} \right) M_i + \frac{h_{i+1}}{6} M_{i+1} \right] = (Am, m)$$

$$J(u) = (Am, m) + \sum_{i=0}^{n} \rho_i (\mu_i - y_i)^2 \to \min$$

$$J(u) = Q(\mu_0, \dots, \mu_n) \to \min$$

$$\begin{cases}
\frac{\partial J(u)}{\partial \mu_k} = 0, k = 0, \dots, n \\
\left\{ \frac{\partial^2 J(u)}{\partial \mu_k \partial \mu_l} \right\}_{k,l} > 0, k, l = 0, \dots, n
\end{cases}$$
(71)

$$\frac{\partial J(u)}{\partial \mu_k} = \frac{\partial}{\partial \mu_k} (Am, m) + 2\rho_k (\mu_k - y_k)$$

$$rac{\partial}{\partial \mu_k}(Am,m) = \left(rac{\partial (Am)}{\partial \mu_k},m
ight) + \left(Am,rac{\partial m}{\partial \mu_k}
ight) = 2\left(rac{\partial (Am)}{\partial \mu_k},m
ight) = 2\left(rac{\partial (H\mu_h)}{\partial \mu_k},m
ight) = 2\left(rac{\partial (H\mu_h)}{\partial \mu_k},m
ight) = 2\left(rac{\partial (H\mu_h)}{\partial \mu_k},H^ op m
ight) = 2(H^ op m)_k$$
 - k -я компонента.

$$(H^{\mathsf{T}}m)_k + \rho_k(\mu_k - y_k) = 0, k = 0, \dots, n$$
 (73)

Пусть $P = diag\{\rho_i\} \Rightarrow \exists P^{-1} = diag\{\rho_i^{-1}\}.$ (73) в матричной форме:

$$H^{\top}m + P\mu^h = Py^h \Leftrightarrow P^{-1}H^{\top}m + \mu^h = y^h \Leftrightarrow HP^{-1}H^{\top}m + \underbrace{H\mu^h}_{4m} = Hy^h \tag{74}$$

$$(HP^{-1}H^{\top} + A)m = Hy^{h} \tag{75}$$

Матрица СЛАУ (75) симметричная и положительно определенная $\Rightarrow \exists !$ решение.

$$\mu^h = y^h - P^{-1}H^\top m.$$

Выполнение условия (72) проверить самотстоятельно!

Замечания

- 1. Матрица СЛАУ (75) пятидиагональная.
- 2. Нет свободы выбора граничных условий.

Smoothing Cubic Spline

p=0: smoothing spline \rightarrow the least-squares straight line fit to the data.

p = 1: natural cubic spline.

MATLAB

- 1. interp1 1-D data interpolation
- 2. pchip piecewise cubic hermite interpolating polynomial
- 3. csape cubic spline interpolation with end conditions
- 4. csapi cubic spline interpolation with not-a-knot end conditions
- 5. spline cubic spline data interpolation
- 6. csaps cubic smoothing spline
- 7. polyfit polynomial curve fitting
- 8. fit curve fitting

Упражнения

- 1. Построить интерполяционный полином Лагранжа. $x^h = \{0, 2, 3, 5\}, y^h = \{1, 3, 2, 5\}.$
- 2. С какой точностью можно вычислить $\sin(\frac{\pi}{12})$ по формуле Лагранжа, если известны значения $\sin(0)$, $\sin(\frac{\pi}{6})$, $\sin(\frac{\pi}{4})$ и $\sin(\frac{\pi}{3})$?
- 3. $x^h = \{1, 1.1, 1.4\}, y^h = \{1.3, 1.0, 0.1\}$. Построить интерполяционный полином Ньютона и вычислить его значение в точке x = 1.3.
- 4. Доказать, что (64) удовлетворяет всем свойствам скалярного произведения, если все $\rho_i > 0$.
- 5. Построить МНК-модель $\phi(x) = a \exp(x) + b \exp(-x)$ для заданной табличной функции

x_i	-1	-0.5	0	0.5	1
y_i	1.194	0.43	0.103	0.322	1.034