"Лабораторная работа № 2.2.3 "Определение теплопроводности газов при атмосферном давлении"

Петров Артём Антонович, группа 721

25 марта 2018 г.

Цель работы: определение коэффициента теплопроводности воздуха (или CO_2) при атмосферном давлении и разных температурах.

Оборудование: прибор для определения теплопроводности; форвакуумный насос; газгольдер с углекислым газом; манометр; магазин сопротивлений; вольтметр; эталонное сопротивление в 10 Ом; источник питания.

Теория

Из теории известно уравнение для зависимости полного потока тепла Q=qs от нити расположенной по центру соосного с ней цилиндра к стенкам этого цилиндра:

$$Q = \chi \frac{2\pi L(T_1 - T_2)}{\ln \frac{r_2}{r_1}} \tag{1}$$

где r_1 - радиус нити, r_2 - радиус внешнего цилиндра, L - высота цилиндра, T_1 и T_2 температуры нити и цилиндра (она же температура термостата) соответственно, χ - коэффициент теплопроводности.

Из него можно получить:

$$\chi = \frac{Q}{T_1 - T_2} \frac{1}{2\pi L} ln \frac{r_2}{r_1} \tag{2}$$

Основная проблема заключается в том, что не все величины, входящие в правую часть этого выражения можно непосредственно измерить использую привычные способы измерения. Для решения этой проблемы проведём сделаем небольшие преобразования:

$$Q = \frac{\chi(T_1 - T_2)2\pi L}{\ln \frac{r_2}{r_1}} \tag{3}$$

В нашем эксперименте T_2 поддерживается постоянной во время измерений. Значит,

$$\frac{dQ}{dT_1} = \frac{\chi 2\pi L}{\ln \frac{r_2}{r_1}} \tag{4}$$

$$\chi = \frac{dQ}{dT_1} \frac{1}{2\pi L} ln \frac{r_2}{r_1} \tag{5}$$

Также известно, что $R = R_0(1 + \alpha T_1)$.

$$\chi = \frac{dQ}{dR} \frac{dR}{dT} \frac{1}{2\pi L} ln \frac{r_2}{r_1} \tag{6}$$

Этой формулой и будем пользоваться в нашей задаче.

Также можно исследовать, как зависит χ от T. Из теории известно, что $\chi = AT^{\beta}$. D нашей работе мы найдём коэффициент β .

Установка и метод измерения χ :

Рис. 1: Схема установки для измерения теплопроводности газа.

Схема установки приведена на рисунке 1.

Значения r_1 , r_2 и L являются параметрами установки и легко измеряемы.

 T_2 определяется температурой воды в термостате. T_1 определяется по сопротивлению проволоки.

Количество теплоты протекающей через газ посредством теплопроводности равно количеству теплоты, выделяющемуся в нити, если допустить, что теплота, уносящаяся за счет излучения и потери через торцы цилиндра малы. Тогда можно принять Q=UI. U измеряется напрямую, а ток можно найти измеряя напряжение на последовательно подключенном эталонном резисторе: $I=U_{\mathfrak{d}}/R_{\mathfrak{d}}$.

Получить зависимость R(T) напрямую (измеряя R при разных T_1) с приемлемой точностью не представляется возможным так как при больших токах проволока нагревается, а при малых слишком велики термоэлектрические эффекты. Поэтому мы будем снимать зависимость $U(U_9)$ и по ней строить зависимости мощности выделяющейся в нити UU_9/R_9 от её сопротивления $R=R_9U/U_9$ и с помощью экстраполяции находить сопротивление при нулевой протекающей мощности (а значит при температуре проволоки равной температуре термостата T_2). Также по этой зависимости можно найти коэффициент $\frac{dQ}{dR}$ для данной T_2 .

Подставив полученные значения в 6 найдём χ .

Ход работы:

- 1) Снимем зависимость $U(U_2)$ при комнатной температуре. При этом важно давать системе достаточно времени для установления теплового равновесия. Для проверки этого условия после последовательного повышения $U_{\mathfrak{p}}$ снимем несколько точек на понижении и проверим, совпадают ли они. Также важно не допустить протекания чрезмерных токов через проволоку при измерениях, так как это может привести к её повреждению. (В нашем опыте это примерно 50-150 мА для никеля и 10-80 мА для вольфрама)
 - 2) Повторим пункт 1 для разных значений температур.
- 3) Проведём анализ по описанной выше схеме. Также можно сравнить полученное значение α с табличным для проверки качества измерений.
 - 4) Найдём значение χ при разных температурах. Оценим его погрешность.

Записи из журнала:

В работе использовались следующие приборы:

- 1) Вольтметр цифровой. Погрешность 0.00001% как цена деления.
- 2) Термометр встроенный в термостат. Погрешность $0, 1 \deg C$ как цена деления.
- 3) Эталонное сопротивление. Погрешность 0,05 Ом как половина последней значащей цифры.

Результаты полученных зависимостей $U(U_2)$ при разных T представлены в таблице 2. Там же видны результаты обработки полученных данных.

На графике 3 представлены полученные зависимости Q(R). Результаты их аппроксимации представлены в таблице 4.

Можно заметить, что зависимость, снятая при комнатной температуре, а соответственно и при выключенном термостате несколько отличается от прочих своим наклоном и нехарактерным поведением вблизи 0 (по Q). Точки, выпадающие из линейной зависимости были исключены для более точного нахождения параметра R_0 - сопротивления при нулевой мощности. Возможно, это объясняется несколько другим характером теплоотвода в данной системе из-за отключённого термостата.

Полученное среднее значение $\frac{dQ}{dR}$ (поле Slope в таблице $\ref{eq:constraint}$) равно $2,78\pm0,09~{\rm Bt/Om}$. По полученным значениям R_0 найдём зависимость R(T) (см. график 5) и по ней найдём $\frac{dR}{dT}$. Получено значение _

что при собственно значении $R_0 \approx 10 \mathrm{Om}$ хорошо сходится с табличным значением для меди или вольфрама.

По полученным данным рассчитаем χ :

Ur	Ustring	Т	Pow er (Q)	d(Q)	Resistance	d(R)
V	V	'	Watt	Watt	Om	Om
V	V		vvall	vvall	OIII	OIII
0,10000	0,09985					
0,20000	0,20061		0,00401	2,0E-05	10,0305	0,050
0,49999	0,50512		0,02526	1,3E-04	10,1026	0,051
0,75005	0,76528		0,0574	2,9E-04	10,20305	0,051
0,99990	1,03410		0,1034	5,2E-04	10,34203	0,052
1,25010	1,31540		0,16444	8,2E-04	10,52236	0,053
1,49990	1,61250		0,24186	0,0012	10,75072	0,054
,	,		,	•	,	•
0,10000	0,09955					
				 5 4 5 0 0		0.054
0,10000	0,10281		0,00103	5,1E-06	10,281	0,051
0,20000	0,20577		0,00412	2,1E-05	10,2885	0,051
0,50001	0,51769		0,02589	1,3E-04	10,35359	0,052
0,75002	0,78379		0,05879	2,9E-04	10,45025	0,052
1,00010	1,05890		0,1059	5,3E-04	10,58794	0,053
1,25010	1,34590		0,16825	8,4E-04	10,76634	0,054
1,50020	1,64900		0,24738	0,0012	10,99187	0,055
0,10000	0,10645		0,00106	5,3E-06	 10,645	0,053
0,20000	0,21305		0,00426	2,1E-05	10,6525	0,053
0,50000	0,53583		0,02679	1,3E-04	10,7166	0,054
0,74997	0,81107		0,06083	3,0E-04	10,8147	0,054
1,00010	1,09530		0,10954	5,5E-04	10,9519	0,055
1,25000	1,39160		0,17395	8,7E-04	11,1328	0,056
1,50000	1,70370		0,25556	0,0013	11,358	0,057
0,10006	0,11017		0,0011	5,5E-06	11,01039	0,055
0,20000	0,22040		0,00441	2,2E-05	11,02	0,055
0,50000	0,55428		0,02771	1,4E-04	11,0856	0,055
0,75005	0,83882		0,06292	3,1E-04	11,18352	0,056
1,00008	1,13232		0,11324	5,7E-04	11,32229	0,057
1,25360	1,44260		0,18084	9,0E-04	11,50766	0,058
1,50030	1,76020		0,26408	0,0013	11,73232	0,059
0,10000	0,11010		0,0011	5,5E-06	11,01	0,055
			0.00444	 7F 00		0.057
0,10000	0,11384		0,00114	5,7E-06	11,384	0,057
0,20000	0,22776		0,00456	2,3E-05	11,388	0,057
0,50000	0,57274		0,02864	1,4E-04	11,4548	0,057
0,75006	0,86660		0,065	3,3E-04	11,55374	0,058
1,00007	1,16955		0,11696	5,8E-04	11,69468	0,058
1,25000	1,48490		0,18561	9,3E-04	11,8792	0,059
1,49990	1,81620		0,27241	0,0014	12,10881	0,061
0,10000	0,11380		0,00114	5,7E-06	11,38	0,057
5,10000	0,11000		0,00114	5,7 ∟-00	11,50	0,007

Рис. 2: Зависимость $U(U_{\mathfrak{d}})$ при разных T_2 (температурах термостата)

Рис. 3: График зависимости выделяемой мощности от сопротивления проволоки при разных температурах термостата (T_2)

T celsium	dΤ	R_0 Om	dR_0	Slope	d(Slope)
30,1	0,1	10,27878	0,0011	2,89207	0,0094
25,5	0,1	10,0255	0,0034	3,01533	0,027
40	0,1	10,64221	1,0E-03	2,81018	0,0082
50	0,1	11,00863	9,2E-04	2,75057	0,0077
60	0,1	11,37836	9,9E-04	2,68907	0,0081

Рис. 4: Параметры зависимостей представленных на графике 3

Рис. 5: График зависимости R(T)