Cl2613: Algoritmos y Estructuras III

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Enero-Marzo 2015

Componentes fuertemente conectadas

Dado un digrafo G = (V, E)

Una componente fuertemente conectada de G es un subconjunto de vértices $C\subseteq V$ tal que:

- para todo par de vértices u,v en C, se cumple que existe un camino $u \leadsto v$ en G y existe un camino $v \leadsto u$ en G
- -C es maximal

© 2014 Blai Bonet

Componentes fuertemente conectadas

© 2014 Blai Bonet Cl2613

Componentes fuertemente conectadas: Ejemplo

© 2014 Blai Bonet

CI2613

CI2613

Componentes fuertemente conectadas: Propiedades

Lema

Sea G=(V,E) un digrafo y C,C' dos componentes fuertemente conectadas de G. Sean $u,v\in C$ y $u',v'\in C'$ vértices de G (no necesariamente distintos). Si existen caminos $u\leadsto u'$ y $v'\leadsto v$, C=C'

Prueba: Sea $w' \in C'$. Entonces, existen caminos $u' \leadsto w'$ y $w' \leadsto v'$

Concatenando caminos obtenemos:

$$u \leadsto u' \leadsto w'$$
 $w' \leadsto v' \leadsto v \leadsto u$

Por la maximalidad de C, entonces $w' \in C$

Como w' es arbitrario en C', entonces $C' \subseteq C$

Similarmente, $C \subseteq C'$ y C = C'

© 2014 Blai Bonet

Sea G=(V,E) un digrafo, y sean C y C' dos componentes fuertemente conectadas de G. Entonces, C=C' ó $C\cap C'=\emptyset$

Componentes fuertemente conectadas: Propiedades

Prueba: Sean C y C^\prime dos componentes fuertemente conectadas de G

Basta mostrar que si existe un vértice común a C y C', entonces C=C'

Sea $w \in C \cap C'$, y sea $u \in C$ y $u' \in C'$

Por def. existe $u \leadsto w$ (camino de C a C') y $u' \leadsto w$ (camino de C' a C)

Por el Lema, C = C'

© 2014 Blai Bonet

 \Box

CI2613

Corolario

© 2014 Blai Bonet CI2613

Componentes fuertemente conectadas: Propiedades

Sea G = (V, E) un digrafo

Por el Corolario, V se particiona en $\{C_1, C_2, \dots, C_k\}$ donde cada C_i es una componente fuertemente conectada de G; i.e.

- $-V = C_1 \cup C_2 \cup \cdots \cup C_k$
- $C_i \cap C_j = \emptyset$ para todo $1 \leq i < j \leq k$
- C_i es una componente de G para todo $1 \le i \le k$

Definimos el **grafo de componentes** $G^{scc} = (V^{scc}, E^{scc})$:

- $V^{scc} = \{\bar{v}_1, \bar{v}_2, \dots, \bar{v}_k\}$ donde \bar{v}_i representa la componente C_i
- $-\ E^{scc} = \{(\bar{v}_i, \bar{v}_j) : i \neq j \text{ y existen } u \in C_i \text{ y } v \in C_j \text{ con } (u, v) \in E\}$

Grafo de componentes: Ejemplo

© 2014 Blai Bonet Cl2613

CI2613

Grafo de componentes: Propiedades

Lema

Sea G=(V,E) un digrafo. El grafo de componentes $G^{scc}=(V^{scc},E^{scc})$ es un grafo dirigido acíclico (DAG)

Prueba: Suponga que existe un ciclo $\bar{v}_i \sim \bar{v}_j \sim \bar{v}_i$ en G^{scc} $(i \neq j)$

Por definición, existen vértices $u,v\in C_i$ y $u',v'\in C_j$ tal que G contiene los caminos $u\leadsto u'$ y $v'\leadsto v$

Por el Lema, $C_i = C_j$ y $\bar{v}_i = \bar{v}_j$ (contradicción)

© 2014 Blai Bonet

CI2613

CI2613

Grafo transpuesto: Ejemplo

Grafo transpuesto G^{\top}

Dado un digrafo G = (V, E)

Definimos el **grafo transpuesto** $G^{\top} = (V, E^{\top})$ donde:

$$- E^{\top} = \{(u, v) : (v, u) \in E\}$$

El grafo transpuesto G^\top no es otra cosa que "invertir" todas las "flechas" en G

© 2014 Blai Bonet

CI2613

CI2613

Grafo transpuesto G^{\top}

Lema (Ejercicio)

Las componentes fuertemente conectadas de G y G^\top son las mismas. Además, $(G^\top)^{scc}=(G^{scc})^\top$

© 2014 Blai Bonet

Cálculo de las componentes

Para cálcular las componentes fuertemente conectadas de un digrafo G = (V, E), utilizaremos el algoritmo DFS y el grafo transpuesto G^{\top} :

```
void componentes-fuertemente-conectadas(G):
2
       Correr DFS(G) para computar los tiempos de finalización f[u]
3
           para cada vértice u
5
       Calcular el grafo transpuesto G' de G
6
       Correr DFS(G') pero en el lazo del programa principal, ordenar
           los vértices por valor f[u] de forma decreciente
9
10
       Los vértices en cada árbol del bosque DFS resultante (de la
11
12
           segunda llamada) es una componente fuertemente conectada
```

Análisis de tiempo: $\Theta(V+E)$ ¿Qué pasó con el tiempo para ordenar?

© 2014 Blai Bonet

CI2613

Cálculo del grafo de componentes: Ejemplo

b, e, a, c, d, g, h, f

Cálculo del grafo de componentes: Ejemplo

© 2014 Blai Bonet Cl2613

Cálculo del grafo de componentes: Ejemplo

CI2613

© 2014 Blai Bonet

© 2014 Blai Bonet CI2613

Cálculo del grafo de componentes: Ejemplo

© 2014 Blai Bonet CI2613

Cálculo del grafo de componentes: Correctitud

Dos ejecuciones de DFS: la primera sobre G y la segunda sobre G^{\top}

Denotamos los tiempos de finalización y descubrimiento para cada corrida por f_i y d_i para i=1,2

Para un conjunto de vértices $C \subseteq V$, definimos:

$$-f(C) = \max_{u \in C} f_1[u]$$
 (mayor tiempo de finalización en C)

$$-d(C) = \min_{u \in C} d_1[u]$$
 (menor tiempo de descubrimiento en C)

Cálculo del grafo de componentes: Ejemplo

© 2014 Blai Bonet CI2613

Cálculo del grafo de componentes: Correctitud

Lema

Sean C y C' dos componentes distintas de G=(V,E). Si existe una arista $(u,v)\in E$ para $u\in C$ y $v\in C'$, entonces f(C)>f(C')

Prueba: Consideramos dos casos: un vértice de C se descubre antes que cualquier vértice de C', o vice versa:

1 d(C) < d(C'): Sea x el primer vértice descubierto en C

A tiempo $d_1[x]$ todos los vértices en C y C' son blancos, y por lo tanto existen **caminos blancos** desde x a todo vértice $u \in C \cup C'$

Por el Teorema de Caminos Blancos, todos los vértices en C y C' terminan como descendientes de x en el bosque del primer DFS

Por el Corolario al Teorema de Paréntesis, $f_1[x] > f_1[u]$ para todo $u \in C \cup C'$; i.e. $f_1[x] = f(C) > f(C')$

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

Cálculo del grafo de componentes: Correctitud

Lema

Sean C y C' dos componentes distintas de G=(V,E). Si existe una arista $(u,v)\in E$ para $u\in C$ y $v\in C'$, entonces f(C)>f(C')

Prueba: Consideramos dos casos: un vértice de C se descubre antes que cualquier vértice de C^\prime , o vice versa:

2 d(C) > d(C'): Sea y el primer vértice descubierto en C'

A tiempo $d_1[y]$ todos los vértices en C' son blancos y todos terminan como descendientes de y en el bosque del primer DFS, y $f_1[y] = f(C')$

Como $C \neq C'$, G^{scc} es un DAG, y existe la arista (u,v) que conecta C con C', no puede haber un camino $C' \leadsto C$

Al finalizar y a tiempo $f_1[y]$, todos los vértices en C siguen blancos. Ellos son descubiertos y finalizados a tiempo mayor a $f_1[y]$; i.e. f(C) > f(C')

© 2014 Blai Bonet Cl2613

Cálculo del grafo de componentes: Correctitud

Teorema

El algoritmo componentes-fuertemente-conectadas calcula la componentes fuertemente conectadas del digrafo G=(V,E) dado como entrada

Prueba: Por inducción en el número de árboles encontrados en el bosque que resulta de ejecutar el segundo DFS sobre G^{\top}

Tesis (al paso k): los conjuntos de vértices de los primeros k árboles encontrados son componentes fuertemente conectadas

• k = 0: trivial va que no hay ningún árbol que considerar!

Cálculo del grafo de componentes: Correctitud

Corolario

Sean C y C' dos componentes distintas de G=(V,E). Si existe un camino $C \leadsto C'$, entonces f(C) > f(C')

Prueba: Considere el camino C_1, C_2, \ldots, C_k en G^{scc} donde $C_1 = C$ y $C_k = C'$:

Por el Lema, $f(C_1) > f(C_2)$

Por el Lema, $f(C_2) > f(C_3)$

:

Por el Lema, $f(C_{k-1}) > f(C_k)$

$$f(C_1) > f(C_2) > f(C_3) > \dots > f(C_{k-1}) > f(C_k)$$

© 2014 Blai Bonet

CI2613

Cálculo del grafo de componentes: Correctitud

Teorema

© 2014 Blai Bonet

El algoritmo componentes-fuertemente-conectadas calcula la componentes fuertemente conectadas del digrafo G=(V,E) dado como entrada

Prueba: Por inducción en el número de árboles encontrados en el bosque que resulta de ejecutar el segundo DFS sobre G^{\top}

Tesis (al paso k): los conjuntos de vértices de los primeros k árboles encontrados son componentes fuertemente conectadas

 \bullet k > 0: considere el k-ésimo árbol. Sea u su raíz y C la componente de u

Tenemos que mostrar dos cosas:

- 1 todos los vértices $v \in C$ son descendientes de u en el bosque DFS
- 2 ningún vértice $v \in C'$, para otra componente C', es descendiente de u en el bosque DFS

© 2014 Blai Bonet

CI2613

Cálculo del grafo de componentes: Correctitud

Teorema

El algoritmo componentes-fuertemente-conectadas calcula la componentes fuertemente conectadas del digrafo G=(V,E) dado como entrada

Prueba: Por inducción en el número de árboles encontrados en el bosque que resulta de ejecutar el segundo DFS sobre G^{\top}

Tesis (al paso k): los conjuntos de vértices de los primeros k árboles encontrados son componentes fuertemente conectadas

- k > 0: considere el k-ésimo árbol. Sea u su raíz y C la componente de u
- 1 Por HI, todos los vértices $v \in C$ son blancos a tiempo $d_2[u]$

Por el Teorema de Caminos Blancos, todos los vértices $v \in C$ terminan como descendientes de u en el bosque del segundo DFS

© 2014 Blai Bonet Cl2613

Cálculo del grafo de componentes: Correctitud

Teorema

El algoritmo componentes-fuertemente-conectadas calcula la componentes fuertemente conectadas del digrafo G=(V,E) dado como entrada

Prueba: Por inducción en el número de árboles encontrados en el bosque que resulta de ejecutar el segundo DFS sobre G^{\top}

Tesis (al paso k): los conjuntos de vértices de los primeros k árboles encontrados son componentes fuertemente conectadas

- k > 0: considere el k-ésimo árbol. Sea u su raíz y C la componente de u
- 2 Sea $C' \neq C$ otra componente y $v \in C'$

Si no existe camino de u a v en G^{\top} , v no termina como descendiente de u Si existe $u \leadsto v$ en G^{\top} . Entonces, $v \leadsto u$ en G y f(C') > f(C) por Lema

Por lo tanto, a tiempo $d_2[u]$, DFS-Visit se ha activado sobre algún $w \in C'$. Por HI, v es negro. Por el T.C.B., v no termina como descendiente de u

© 2014 Blai Bonet CI2613