Question Bank 2012

I. C. Engine

01.01	Thermal efficiency of I.C. Engine isthan E.C. Engine (greater, less)					
01.02	Weight to power ratio is less in	(E.C. Engine, I.C. Engine)				
01.03	I.C. Engine isacting.	(Single, Double)				
01.04	4-stroke Diesel engine is an	(I.C. Engine, E.C. Engine)				
01.05	I.C. Engine was made in the yearA.D.	(1860, 1876, 1892)				
01.06	Dr. Rudolf Diesel made the first Diesel engine in the year	AD. (1860, 1876, 1872)				
Object	tive:					
02.01	Petrol engine is an example ofengine (Spark i	gnition, compression ignition)				
02.02	2 Deutz engine Model BF12L 513C fitted on Plasser BCM is Cooled. (Air Water)					
02.03	Cummins Engines fitted on Track Machines arecooled. (Air, Water)					
02.04	KTA 1150-L engine is acylinder engine. (6, 12)					
02.05	Kirloskar HA-694 engine fitted on PQRS is a Cylinder engine. (6, 12)					
02.06	Deutz Engine Model BF 12L 513C is a Cy	linder engine. (6, 12)				
02.07	Stroke Length of Deutz engine Model BF 12L 513C is	Cm. (12, 5, 51, 13)				
02.08	Total displacement volume in Cummins Engine Model NTA-855L is					
	(855mm ³ ,	855cm ³ , 855inch ³ , 855ft ³ .)				
02.09	In Cummins engine Model KTA 1150-L, the term used for	application code is				
		(K, T, A, L)				

Question	Answer	Question	Answer
01.01	Greater	02.01	Spark ignition
01.02	I. C. Engine	02.02	Air
01.03	Single	02.03	Water
01.04	I.C. Engine	02.04	6
01.05	1860	02.05	6
01.06	1872	02.06	12
		02.07	13
		02.08	855cm ³
		02.09	'L'

Objective: 03.01 Oil sump is made of(Cast Iron, Aluminium, Forged steel, Copper)
03.02 In 4-stroke engines minimumCompression rings are used. (0, 1, 2, 3)
03.03 In 4-stroke engines minimumoil control rings are used. (0, 1, 2, 3)
03.04 Piston and connecting rods are connected by (Circlip, Rings, Gudgeon pin, bush)
Objective:
04.01 Piston pin and crankpin of crankshafts are joined by(Gudgeon pin, Connecting Rod, piston, Rings)
04.02 Small end of connecting rod connects with (Piston, Gudgeon pin, Crank pin Camshaft)
04.03 Center to centre distance between the crankpin and main journal is
04.04 No. of teeth on camshaft gear isthat of the nos. of teeth on crankshaft gear. (Half, Same, twice, thrice)
04.05 Speed of camshaft isto that of crank shaft. (Half, Same, twice, thrice)
04.06 In Cummins enginecams are on camshaft for each cylinder (1, 2, 3, 0)
Objective:
05.01 Normally inlet valves are made of(Nickel chromium alloy steel, Silicon Chromium alloy steel.)
05.02 Normally exhaust valves are made of(Nickel Chromium alloy steel, Silicon Chromium alloy, Steel)
05.03 Normally valve face angle is
05.05 05.06
05.07
05.08 05.09
$05.10 \ (0^0, 15^0, 45^0, 90^0)$

05.11 Push rod is fitted in between.....and....(Cam, Tappet, Adjusting screw, Valve)

06.01 Ratio of No. of teeth on crankshaft gear to the P.T. pump gear is (1:1, 1:2, 1:½,½,:1)

Question	Answer	Question	Answer
03.01	Aluminium	05.01	Nickel chromium alloy steel
03.02	2	05.02	Silicon chromium
03.03	1	05.03	45 ⁰
03.04	Gudgeon pin	05.04	Tappet
04.01	Connecting Rod	05.01	1:1
04.02	Gudgeon pin		
04.03	Half		
04.04	Twice		
04.05	Half		
04.06	3		

Objective:

07.01	The upper most extreme point beyond which piston cannot go in upward direction is called(TDC, BDC, Clearance, Stroke)
07.02	07.02 The bottom most extreme point beyond which piston cannot go in downward direction is called(TDC, BDC, Clearance, Stroke)
07.03	The complete movement of piston from TDC to BDC or vice versa is called
07.04	The volume of cylinder above TDC is called
07.05	The volume of cylinder between TDC and BDC is called(Clearance volume, Swept Volume, Stroke, Bore)
07.06	Diameter of engine cylinder is known as(Bore, Clearance

Objective:

volume, Swept volume, Stroke Length.

08.01 Inlet valve opens on.......Stroke (Suction, Compression, Power, Exhaust)

Objective:

- 09.01 4-stroke Petrol engine works on.....cycle (Otto, Diesel, Carnot, Dual)
- 09.02 Piston moves from BDC to TDC in.....stroke (Suction, Compression, Power)
- 09.03 In 4-stroke petrol engines at the end of compression stroke pressure rises upto....bar (28, 8-13, 200-300, 14-20)
- 09.04 Spark is given by the spark plug at the end ofStroke (Suction, Compression, Power, exhaust).

- 10.01 Spark plug is an essential component of engine (Petrol, Diesel)
- 10.02 Injector plug is an essential component of engine (Petrol, Diesel)

Question	Answer	Question	Answer	Question	Answer
07.01	TDC	08.01	Suction	09.01	Otto
07.02	BDC	08.02	Suction	09.02	Suction
07.03	Stroke	08.03	28	09.03	8-13
07.04	Clearance Value	08.04	550°C	09.04	Compression
07.05	Swept Value	08.05	440^{0} C	09.05	Petrol Tank
07.06	Bore	08.06	Compression	09.06	1
		08.07	2	10.01	Petrol
		08.08	1	10.02	Diesel
				10.03	Petrol

Objective:						
11.01 Specific gravity of high speed diesel is in the range of to						
(0.82 - 0.92, 1.80 - 3.00, 4.5 - 5.00, 1.24 - 1.26)						
11.02 Minimum cetane No. of H.S.D. is						
11.03 As on impuritysulphur is available in high speed diesel (1%, 0.5%, 2%, 3%)						
11.04 Incomplete combustion results in production of						
11.05parts of corbon mono-oxide in 10,000 parts of air is dangerous to breathe (1, 5, 15, 2)						
11.06 The time elapsed between the start of fuel injection and first appearance of flame is called						
(Ignition delay, Uncontrolled combustion, Before burning, After Burning)						
11.07 Rapid and uncontrolled combustion starts at the end of						
(Ignition delay, Controlled combustion, After burning, Combustion)						
11.08 Maximum pressure in the combustion chamber is reached in the stage of						
delay, Rapid & uncontrolled combustion, Controlled combustion, After burning)						
11.09 Maximum temperature in the combustion chamber is reached in the stage of						
Delay, Rapid & uncontrolled combustion. Controlled combustion, After burning)						
Objective:						
Objective.						
12.01 In suction strokevalve is open (Inlet, Exhaust, Injector, None)						
· ·						
12.01 In suction stroke						
12.01 In suction stroke						
12.01 In suction stroke						
12.01 In suction stroke						
12.01 In suction stroke						
12.01 In suction stroke						
12.01 In suction stroke						
12.01 In suction stroke						
12.01 In suction stroke						
12.01 In suction stroke						
12.01 In suction stroke						

Question	Answer	Question	Answer
11.01	0.82-0.92	12.01	Inlet
11.02	45	12.02	Suction
11.03	1%	12.03	Compression
11.04	Co	12.04	5^{0} - 10^{0}
11.05	15	12.05	$35^{0}-50^{0}$
11.06	Ignition Delay	12.06	Before
11.07	Ignition Delay	12.07	Polytropic
11.08	Ignition Delay	12.08	Petrol mixture
11.09	Controlled Combustion	12.09	

13.01 In actual working cycle suction takes place atatmospheric pressure
(Less than, Equal to, More than, None)
13.02 In actual working cycle inlet valve gets closed in stroke
(Suction, Compression, Power, Exhaust)

 $(14^0 - 18^0, 35^0 - 50^0, 5^0 - 10^0)$ 13.04 In actual working cycle exhaust valve opens.....before TDC in power stroke. $(14^{0}-18^{0}, 35^{0}-50^{0}, 5^{0}-10^{0})$ 13.05 In actual working cycle exhaust valve gets closed...........after TDC in suction stoke $(14^{0}-18^{0}, 35^{0}-50^{0}, 5^{0}-10^{0})$ **Objective:** 14.01 In cummins engines cylinders are counted from....side. (Vibration damper, Flywheel) 14.02 Viewing from flywheel side, diesel engines rotate...... (Clockwise, Anticlockwise) 14.03 In Deutz Engine Model BF 12L 513C cylinders are counted from.....side. (Vibration damper, Flywheel). 14.04 A Bank and B-bank are designated in.....engine (MWM, Cummins, Deutz, Kirloskar) 14.05 In MWM (Greaves) engine inlet valve opens.....TDC (1⁰ after, 10⁰ after, 1⁰ after, 1⁰ before) 14.06 In MWM (Greaves) engine fuel injection starts......TDC. (10° after, 10° after, 1° after, 1° before) 14.07 Valve overlap in MWM (Greaves) Engine is...... $(1^0, 2^0, 10^0, 35^0)$ **Objective:** 15.02 In a 4 cylinder engine 1 No. cylinder is at the end of power stroke, 3 No. cylinder will be at the end of......(Suction, Compression, Power, Exhaust) 15.03 In a 4 cylinder engine 3 No. cylinder is in mid-suction stroke, 2 No. cylinder will be in the midStroke. (Suction, Compression, Power, Exhaust) 15.04 Power flow gap in 6 cylinder engine is..... $(120^{\circ}, 180^{\circ}, 90^{\circ}, 360^{\circ})$ 15.05 In Power stroke over cap in a 6 cylinder engine is........... $(60^{\circ}, 120^{\circ}, 180^{\circ}, 90^{\circ})$ 15.06 In a 6 cylinder engine 1 No. cylinder is at 1200 power stroke, 5 Nos. cylinder will be atcompression stroke. $(60^{\circ}, 120^{\circ}, 180^{\circ}, 90^{\circ})$ **Objective:** 16.01 Sufficient quantity of fresh air at NTP for complete combustion of 1 liter HSD is............ (12500 ltr. To 14500, 1250 to 1450 ltr., 200 ltr to 300 ltr.) 16.02 On Cummins engine.....type air cleaner is used (Oil bath, Dry paper, both) 16.03 On Kirloskar HA 694 engine..... type air cleaner is used (Oil bath, Dry paper type, Both)

13.03 In actual working cycle injection of fuel starts.....before TDC in power stroke.

Question	Answer	Question	Answer	Question	Answer
13.01	Less than	14.03	Flywheel	15.01	180 ⁰ before
13.02	Comparison	14.04	MWM	15.02	Compression
13.03	14^{0} - 18^{0}	14.06	Inlet	15.03	Power
13.04	$35^{0}-50^{0}$	14.07	Suction	15.04	120^{0}
13.05	5^{0} - 10^{0}	14.05	1 ⁰ after	15.05	600^{0}
14.01	Vibration Damper	14.06	1 ⁰ before	15.04	180^{0}
14.02	Anticlockwise	14.07	2^0		

16.04 On Deutz engine model BF 12L 513C..... type of air cleaner is used (Oil bath, Dry paper, Both)

16.05 On MWM TBD 232/234 engine..... type of air cleaner is used (Oil bath, Dry paper, Both)

- 18.01 Supercharging is process of supplying air inside the engine cylinder at...... than atmospheric pressure (Less, More)
- 18.02 Turbocharger is a supercharging device which runs by (Exhaust gases, Engine Gear-trains)
- 18.03 Supercharger is a super charging device which runs by(Exhaust gases, Engine Gear-trains) 18.04 Turbocharger runs at rpm (1000, 10000, 125000, None)
- 18.05 Turbocharged engine should be run at idle for.....minutes before stopping (1, 2, 3-5, 0)
- 18.06 After cooler is a device used to cool (Air, Oil, Fuel, Water)
- 18.07 After cooler is fitted...... Turbocharger (before, After)

Objective:

19.01 Silencer is ansystem component ((Air supply, Fuel supply Lubricatii	ig, Cooling)
--	-------------------------------------	--------------

19.02 Turbocharger is fittedafter cooler. (Before, After)

19.03 Air cleaner is fitted......Turbocharger (Before, After)

19.04 Impeller of Turbocharger is at.....side (Fresh air, exhaust)

19.05 Turbo wheel of Turbocharger is at.....side (Fresh air, Exhaust)

19.06 Oil coming out from Turbocharger goes to......(Sump, Oil gallery, Oil cooler, filter)

Question	Answer	Question	Answer	Question	Answer
18.01	More	18.05	3-5	19.02	Before
18.02	Exhaust gases	18.06	Air	19.03	Before
18.03	Engine Gear-trains	18.07	After	19.04	Fresh air
18.04	125000	19.01	Cooling	19.05	Exhaust
				19.06	Sump

- 20.01 Liquid fuel is injected with compressed air in(Air injection system, Solid injection system)
- 20.02 Only liquid fuel is injected and and there is no need of compressed air in (Air injection system, Solid injection system)
- 20.03 Mico-Bosch fuel supply system is a...... (Air injection system, Solid injection system)
- 20.04 Cummins P.T. fuel supply system is a(Air injection system, Solid injection system)
- 20.05 In Mico-Bosch fuel supply system, fuel first passes through.....(Cloth filter, paper filter)
- 20.06 In Mico-Bosch fuel supply system, fuel is drain from the diesel tank by(Fuel Feed pump, Fuel injection pump)
- 20.07 In Mico-Bosch fuel supply system, Bleeding sources are provided on.....(Feed pump, Injector, Filter body)
- 20.08 Fuel injection pressure is......(28bar, 180bar, 1 bar)
- 20.09 In Mico-Bosch fuel supply system leakage line starts from.....(Feed pump, Fuel injection pump, pump, Injector)
- 20.10 In Mico-Bosch fuel supply system relief valve and return line is provided on.....(Feed pump, Fuel injection pump, Injector)
- 20.11 Bleeding Screw is provided to remove......(Air lock, Lube Oil, Water)
- 20.12 Hand priming pump is used in(Mco-bosch fuel supply system Cummins PT Fuel Supply System)

Question	Answer	Question	Answer	Question	Answer
20.01	Air injector	20.06	Fuel Feed Pump	20.11	Air Lock
20.02	Injection System	20.07	Filter Body	20.12	Mico-Bosch fuel
					supply system
20.03	Solid Injection System	20.08	189 Bar	20.13	Start Up.
20.04	Injection System	20.09	Injector		
20.05	Cloth Filter	20.10	Fuel Injector		
			Pump		

21.01 Fuel feed pump is a	.(Plunger Pu	np, Rotary Pump.
---------------------------	--------------	------------------

- 21.02 Fuel feed pump is a drive by (Eccentric, Com).
- 21.03 Primary filter is made of.....(Cloth, Paper)
- 21.04 Secondary filter is made of.....(Cloth, Paper)
- 21.05 Pre filter is made of(Cloth, Paper, Bronze, Mesh)
- 21.06 Fuel injection pump is a.....(Plunger Pump, Rotary pump)
- 21.07 6 Cylinder FIP consists of.........Nos. of plunger pumps (3, 6, 12)
- 21.08 Plunger pump in FIP is driven by.....(Cam, Eccentric)
- 21.09 Metering of fuel is done in.....(FIP, Feed pump, Injector)
- 20.10 Injection timing is maintained by......(Camshaft, Delivery valve, Injector, Feed pump)
- 21.11 In Mico-Bosch Fuel supply system Injector function is to...... (Pressurize fuel, Atomize & Vaporize)
- 20.12 Injection pressure is set in.....(Injector, Feed pump, FIP)

Question	Answer	Question	Answer	Question	Answer
21.01	Plunger pump	21.06	Plunger	21.11	Vaporize
21.02	Eccentric	21.07	3, 6, 12	21.12	Injector
21.03	Cloth	21.08	Cam		
21.04	Paper	21.09	FIP		
21.05	Bronj	21.10	Camshaft		

- 22.01 The abbreviation P.T. Stands for.....(Pound-Time, Pressure-Time)
- 22.02 Ratio of P.T. pump speed to the crank shaft speed is $(1, 2, \frac{1}{2})$.
- 22.03 P.T. pumps is a(Plunger pump, Gear pump)
- 22.04 In Cummins PT fuel supply system diesel from the tank is drawn by.....(Feed pump, PT pump)
- 22.05 Common rail pressure is 200-300.....(Bar, PSI, N/m²)
- 22.06 The P.T. pump has.....delivery (Single, Multi)
- 22.07 In Cummins P.T. fuel supply system injector plunger is actuated by......(Fuel pressure, Cammechanism
- 22.08 In Cummins P.T. fuel supply system injection pressure builds in.....(P.T. pump, Injector)
- 22.09 In Cummins P.T. fuel supply system, injector return is.....(80%, 10%, 20%)
- 22.10 In Cummins P.T. fuel supply system, Bleeding screw is fitted on.....(filters, P.T. pump, Shut down valve)
- 22.11 In Cummins engine, fuel filter is of.....(Paper, Cloth, Felt)
- 22.12 In Cummins P.T. fuel supply system water separator is fitted......fuel filter (before, after)
- 22.13 In Cummins P.T. fuel supply system N.R.V. us fitted just after....(water separator, Fuel filter, Shutdown valve)

22.14 In PTG fuel pump 'G' stands for	(Gear control, Governor control)
22.15 Filter screen (Mesh filter) is provided in	(P.T. pump, Injector)
22.16 In Cummins P.T. fuel supply metering is done in	(P.T. pump, Injector, Governor)
22.17 Cummins engines with drilled fuel passages will use .	injector (Flanged, Cylindrical)
22.18 Cummins engines equipped with fuel manifold will us	se injector (Flanged, Cylindrical)

Question	Answer	Question	Answer	Question	Answer
22.01	Pressure Time	22.07	Cam-mechanism	22.13	Shutdown Valve
22.02	1	22.08	Injector	22.14	Governor Control
22.03	Gear Pump	22.09	80%	22.15	P.T. pump
22.04	P.T. pump	22.10	Shutdown Valve	22.16	Injector
22.05	PSI	22.11	Paper	22.17	Cylindrical
22.06	Single	22.12	Before	22.18	Flanged

23.01 Fuel feed pump is on component offuel supply system (Mico-Bosch, Cummins PT)				
23.02 Hand primary pump is a componentof fuel	supply system (Mico-Bosch, Cummins, PT)			
23.03 N.R.V. is normally provided in	fuel supply system (Mico-Bosch, Cummins)			
23.04 Pulsation damper is provided in	(PTpump, Fuel injection pump)			
23.05 Plunger pump is provided in	(PT Pump, FIP)			
23.06 Gear pump is provided in	(PT pump, FIP)			
23.07 Delivery valve is provided in	(PT pump, FIP)			
23.08 Screen Mesh filter is provided in	(PT pump, FIP)			
23.09 Metering Orifice is provided in	(Cummins injector, Mico-bosch injector)			

Question	Answer	Question	Answer	Question	Answer
23.01	Mico-Bosch	23.04	P.T. pump	23.07	FIP
23.02	Mico-Bosch	23.05	FIP	23.08	P.T. pump
23.03	Cummins	23.06	P.T. pump	23.09	Cummins injector

- 24.01 Most diesel fuel have cetane No. (40 to 50, 200 to 300, 80-100)
- 24.02 Cetane No. of x-methyl Naphthalene is assigned(40, 50, 0, 100)
- 24.03 Normal Heptane is assigne octane No. (0, 100, 40, 50)

Question	Answer	Question	Answer	Question	Answer
24.01	40 to 50				
24.02	0				
24.03	0				

25.01 Sludge is mixture of lubricating substance and (Fuel, Water, Air)

25.02 Diesel Tank level should be kept......fitted (Half, Full)

25.03 In Diesel engines air lock means for stopping ofsupply. (Fuel, Air, Oil, Water)

Question	Answer
25.01	Water
25.02	Full
25.03	Fuel

Objective:

26.01 When a film of lubricating oil is imposed between the two surfaces, the friction produced is called......(Solid friction, fluid friction, boundary friction)

26.02 The lube oil with......viscosity variation is preferred (Minimum, Maximum)

26.03 The flash point of lube oil should be sufficiently.....(High, Low)

26.04 The pour point of lube oil should be.....than the lowest temperature encountered in the engine (Less, More)

26.05 Corrosion mean destruction of a solid body by. Action (Chemical, Mechanical, pneumatic)

Question	Answer
26.01	fluid friction
26.02	Minimum
26.03	High
26.04	Less
26.05	Chemical

Objective:

27.01 A dispersant/detergent is added to the lube oil to. The particles clotting (Prevent, promote)

27.02 Viscosity test of winter grade oil is done at(0°F, -18°F, 210°F, 99°F)

27.03 Viscosity test of summer grade oil is done at(0°F, -18°F, 210°F, 99°F)

27.04 SAE CF4 `15W-40 oil is meant for use upto......(-10^{0} C, 0^{0} C -15^{0} C, 40^{0} C)

27.05 Lube oil from turbocharger goes to(Oil gallery, Sump, oil Cooler)

27.06 Lube oil from super bypass filter goes to(Oil gallery, Sump, oil Cooler)

27.07 Oil from full flow filter goes to(Pressure regulator, Oil Cooler, Oil Pump)

27.08 Oil to main bearings comes from.....(Main Oil Gallery, Connecting rod)

27.09 Piston cooling pump draws oil from (Sump, Full flow filter, Oil Pump, Super by pass filter)

Question	Answer	Question	Answer
27.01	Prevent	27.06	Sump
27.02	0^{0} F	27.07	oil Cooler
27.03	210^{0} F	27.8	Main Oil Gallery
27.04		27.09	Sump
27.05	Sump		

- 28.01 Lubrication system adapted in 2-stroke petrol engine is...... (Petroil system, Splash system, Pressure System)
- 28.02 A scoop is made in the lowest part of the connecting rod system of lubrication..... (Petrol system, Splash system, Pressure System)
- 28.03 Dry system is used in engines of(Road Vehicles, Aeroplan, Marine)
- 28.04 Lube oil pump is used in.....system of lubrication (Petroil, splash, pressure, Dry sump)
- 28.05 Lube oil pump draws oil through the....(Strainer, Full flow filter, Main oil gallery)

Question	Answer	Question	Answer
28.01	Petroil system	28.04	Pressure
28.02	Splash	28.05	Strainer
28.03	Aeroplan		

- 29.01 Oil pump used almost universally in engines(Gear pump, Plunger pump, Rotor pump, Vane pump)
- 29.02 A.....valve is provided in many oil pumps (Relief, Unloader, D.C.)
- 29.04 Super bypass filter is used on.....engines (MWM, Cummins, Kirloskar, SUN)
- 29.05 In oil cooler.... is cooled (Oil, Air, Water, Fuel)
- 29.06 The lube oil level should be between...and... mark of Dipstick (T&B, H&L, U&L, H&B)
- 29.07 For checking lube oil......is used (Dipstick, Glass Gauge, Meter)
- 29.08 Oil pressure gauge fitted on driving panel will be mostly of.....type (electrical, Mechanical)
- 29.09 Oil pressure gauge fitted on driving panel will be mostly of.....type (Electrical, Mech.)
- 29.10 The oil pressure indicating LED glows......when oil pressure becomes down (, OFF)
- 29.11 Oil pressure indicating LED gives indication of....lube oil pressure (Increased, Decreased)
- 29.12 Minimum oil pressure rating at idle speed is.....bar (1.0, 1.5, 2.5, 3.5)
- 29.13 Minimum oil pressure rating at rated speed is.....bar (1.9, 1.5, 2.5, 3.5)

Question Ans	swer Question	Answer	Question	Answer
--------------	---------------	--------	----------	--------

29.01	Gear pump	29.06	H&L	29.11	Decreased
29.02	Relief	29.07	Dipstick	29.12	1.5
29.03	Inlet	29.08	Electrical	29.13	2.5
29.04	Cummins	29.09	Mechanical		
29.05	Oil	29.10	ON		

- 30.01 The escaping of burnt gases from combustion chamber to the crank case chamber is called.....(Blow bye, Blow down, leakage, Seepage)
- 30.02 Breather is component ofsystem (Air supply, Fuel Supply, Lubricating, Cooling)
- 30.03 Weak relief valve will result in.....lube oil pressure (Low, High)

Question	Answer	Question	Answer
30.01		30.04	
30.02		30.05	
30.03		30.06	

Objective:

- 31.01 Location of strainer is inside......(Sump, Cylinder Block, Timing Cover, Head)
- 31.02 Location of lube oil pump on KTA-1150-L engine is (In sump, on cylinder block, on Crank case, on Head)
- 31.03 Location of relief valve on KTA-1150-L engine is (in sump, on cylinder block in......(oil pump in main oil gallery)
- 31.04 Super bypass filter isthen inline lube oil filters (finer, loarser)
- 31.05 Lube oil pump is......driven (Belt, Gear)
- 31.06 During starting of Cummins engine by pass switch is pressed to bypass......(Bypass filter lube oil safety, Circuit, Shutdown valve, Turbocharger)

Question	Answer	Question	Answer
31.01	Sump	31.04	finer
31.02	on Crank	31.05	Belt
	case		
31.03	oil pump	31.06	Lube oil safety

- 32.01 Temperature of burning air fuel mixture is of the order of..(25°C, 250°C, 2500°C, 1500°C)
- 32.03 Cooling system should become functional when engine(Worms up, Code down, is started, runs at rated rpm)
- 32.04 Engine warms up faster in......system (Air cooling, Water Cooling)
- 32.05 Air cooled engines are.....than water cooled engines (Lighters, Heavier)
- 32.06 Air cooling is.....efficient than water cooling (Less, More)
- 32.07 Total length of finned cylinder barrel is.....times the cylinder bore (1 to 1.5, 0.5 to 1.5, 1.5 to 2.0)

Question	Answer	Question	Answer
32.01	$2500^{0} \mathrm{C}$	32.04	Lighters
32.02	$200^{0}\text{C}-250^{0}\text{C}$	32.05	Less
32.03	Worms up	32.06	1 to1.5

- 33.01 The normal operating water temperature of the engine should be...(71°C-88°C, 74°C-82°C)
- 33.02 The most suitable operating water temperature of engine is assumed......(71°C-88°C, 74°C-85°C, 82°C)
- 33.03 Radiator upper tank is connected to the water of the engine (outlet, Inlet)
- 33.04 Radiator lower tank is connected to the water of the engine (outlet, Inlet)
- 33.05 Thermostat valve starts opening at(71°C, 74°C, 85°C 88°C)
- 33.06 Thermostat valve opens completed at(71°C, 74°C, 85°C 88°C)
- 33.07 When Thermostat, valve opens completely water flows through the...(Radiator, Water Pump)
- 33.08 When Thermostat, valve closed completely water flows through the...(Radiator, Water Pump)
- 33.09 Radiator fan.....air (Draws, Throws)
- 33.10 Relief valve and vaccum valve is provided in radiator capacity in.....system(Closed, Open)
- 33.11 Relief valve is set to open at a pressure of.....kg/cm²(0.55 to 1.10, 28kg/cm², 6.5-7.0kg/cm²)
- 33.12 A 1.10kg/cm² valve would provide a boiling point of(100^{0} C, 125^{0} C, 85^{0} C, 75^{0} C)
- 33.13 Coolant additive concentrate is used in engines (Cummins, MWM)
- 33.14 Nalcool 2000 is used in.....engines (Cummins, MWM)
- 33.15 The ratio of CAC: Water is......(1:15. 1:30, 1:20)
- 33.16 The ratio of Nalcool 2000: Water is......(1:15. 1:30, 1:20)
- 33.17 Maxthesm additive is used inengines (Cummins, MWM)
- 33.18 The ratio of Maxtherm additive: Water is....... (1:15. 1:30, 1:20)
- 33.19 In hot and shut down engine water should be...... (Fitted, not fitted)
- 33.20 In hot running engine water........fitted slowly (May be, should not be)

Question	Answer	Question	Answer	Question	Answer
33.01	$71^{0}\text{C}-88^{0}\text{C}$	33.08	Water Pump	33.15	1:15
33.02	82°C	33.09	Draws	33.16	1:30
33.03	outlet	33.10	Closed	33.17	MWM
33.04	Inlet	33.11	0.55 to 1.10	33.18	1:20
33.05	74 ⁰ C	33.12	125°C	33.19	not fitted
33.06	85 ⁰ C	33.13	Cummins	33.20	May be
33.07	Radiator	33.14	MWM		

- 33.01 Internal leak of water may produce......vapour in exhaust gases (White, black, brown, Colourless)
- 34.02 Defective cylinder head gasket results in.....leakage (Internal, External)
- 34.03 Recommended pH value of coolant on Cummins engine is............(7, less than 7, 8.5 to 10.5, 8.0 to 10.0)
- 34.04 Recommended pH value of coolant on MWM engine is......(7, less than 7, 8.5 to 10.5, 8.0 to 10.0)
- 34.05 Overcooling.....volumetric efficiency (Increases, decreases)
- 34.06 Over cooling......Thermal efficiency (Increases, Decreases)

Question Answer	Question	Answer
------------------------	----------	--------

34.01	White,	34.04	8.0 to 10.0
34.02	Internal	34.05	Increases
34.03	8.5 to 10.5	33.06	Decreases

35.01 Blower is used incooling system (Air, Water)
35.02 Fins are used incooling system (Air, Water)
35.03 Radiator fan is used incooling system (Air, Water)
35.04 In India, Thermostat valve is used inCooling system (Air, Water).
35.05 Deutz BF 12L 513C is equipped withcooling system (Air, Water)
35.06 MWM (Greaves) TBD 232 viz engine is equipped withcooling system (Air, Water)
35.07 Cummins KTA-1150-L engine is equipped withcooling system (Air, Water)
35.08Kirloskar HA 694 is equipped withcooling system (Air, Water)
35.09 SUN 6105I engine is equipped withcooling system (Air, Water)
35.10 Air charge cooler on Duetz BF 12L 513C iscooled (Air, Water)
35.11 Inter cooler on MWM TBD 232 V12 Engine iscooled (Air, Water)
35.12 After cooler on Cummins engines iscoold (Air, Water)

Question	Answer	Question	Answer	Question	Answer
35.01	Air	35.05	Air	35.09	Air
35.02	Air	35.06	Water	35.10	Air
35.03	Water	35.07	Water	35.11	Water
35.04	Water	35.08	Air	35.12	Water

35.0 36.0 36.0 36.0 36.0	Engine oil is checked in
	7 V-belt condition is checked inschedule (Daily, 50hrs, 100hrs, 200hrs)
	8 Brake shoes condition is checked inschedule (Daily, 50hrs, 100hrs, 200hrs)
36.0	9 Electrolyte level and specific gravity of batteries is checked inschedule. (Daily, 50hrs, 100hrs, 200hrs)
36.1	O Outer air filters is cleaned inschedule. (Daily, 50hrs, 100hrs, 200hrs)
36.1	High water temperature safely device is checked inschedule. (Daily, 50hrs, 100hrs, 200hrs)
36.1	2 Low lube oil pressure safely deice is checked inschedule. (Daily, 50hrs, 100hrs, 200hrs)
36.1	Mounting Bolt of engine is examined inschedule. (Daily, 50hrs, 100hrs, 200hrs)
	4 In KTA-1150-L engine, oil is replaced athrs (100, 200, 250, 1000)
	5 In KTA-1150-L engine, lube oil filter is replaced athrs (100, 200, 250, 1000)
	6 In KTA-1150-L engine fuel filter is replaced athrs (100, 200, 250, 1000)
	7 In KTA-1150-L engine oil by pass filter is replaced athrs (100, 200, 250, 1000)
	8 Crank case Breather is cleaned inschedule (100, 200, 250, 1000)
	9 Outer and Inner engine air cleaner element is replaced athrs (200, 250, 500, 1000)
	O Self Starter is overhauled in schedule (III, IV, V, VI)
20.2	(11,17,7,71)

- 36.21 Alternator is overhauled in schedule...... (III, IV, V, VI)
- 36.22 Injector is overhauled in schedule (III, IV, V, VI)
- 36.23 Fuel pump is overhauled in schedule...... (III, IV, V, VI)
- 36.24 Fuel pump is overhauled in schedule...... (III, IV, V, VI)
- 36.25 Rocker cover Gasket is replaced in schedule....... (III, IV, V, VI)
- 36.26 Diesel Tank is cleaned in schedule...... (III, IV, V, VI)
- 36.28 Water Separator and Air Oiler is overhauled in schedule...... (III, IV, V, VI)
- 36.29 Air unloaded is overhauled in schedule...... (III, IV, V, VI)
- 36.31 Engine mounting pad is replaced in schedule.....(III, IV, V, VII).
- 36.32 Dynamic Balance of vibration Damper is checked is schedule.....(III, IV, V, VII).
- 36.33 RPM of engine radiator from should not be less than.....(900, 1600, 2100, 2300).
- 36.34 In checking Tension of V. belt, deflection at Centre should not be more than......mm. (10mm, 15mm, 25.4mm 20mm).

Question	Answer	Question	Answer	Question	Answer
35.01	Daily	35.13	100	35.24	V
35.02	Daily	35.14	250	35.25	V
35.03	Daily	35.15	250	35.26	V
35.04	Daily	35.16	250	35.27	(1000, 3000 & 5000)
35.05	After	35.17	250	35.28	VI
35.06	Before	35.18	200	35.29	VI
35.07	50hrs	35.19	500	35.30	(1000, 3000 & 5000)
35.08	50hrs	35.20	V	35.31	VII
35.09	50hrs	35.21	V	35.32	VII
35.10	50hrs	35.22	V	35.33	1600
35.11	100hrs	35.23	V	35.34	15mm
35.12	100hrs				

- 37.01 Contamination indicator (pilot lamp) for dry type air cleaner is checked inschedule. (Daily,50hrs, 100hrs, 200hrs)
- 37.02 Outer air cleaner element of Deutz Engine is cleaned with......pressure of dry air. (1.5bar, 2.5 bar, 3.5bar, 6.5bar)
- 37.03 Oil in the wet type air cleaner is changed inSchedule (Daily, 50hrs, 100hrs, 200hrs).
- 37.04 Battery plug connection are cleared and petroleum jelly is applied in...... (Daily, 50hrs, 100hrs, 200hrs).
- 37.05 Minimum Specific gravity should be......(1.180, 1.110, 1.240, 1.260)
- 37.06 Fuel pre-filler (Wire mesh) is cleaned at.....engine hrs schedule at (50, 100, 200, 1000)
- 37.07 In Deutz BF 12L 513C engine, twin stage fuel filter element is changed in...... Engine hrs. Schedule (50, 100, 200, 1000)
- 37.08 In Deutz BF 12L 513C, Engine, oil is changed at enginehrs. (100, 200, 250, 300)
- 37.09 Clutch Drive shaft bearings are greased in engine hrs.schedule. (50, 100, 200, 1000)
- 37.10 Clutch fluid level in container is checked in engine hrs.schedule. (50, 100, 200, 1000)
- 37.11 Cooling coil is decarbonizes in schedule (IV, V, VI, VII)
- 37.12 High pressure fuel pipes clamps are checked in schedule...... (IV, V, VI, VII)
- 37.14 In Deutz BF 12L 513C engine temperature indicator is tested in schedule (IV, V, VI, VII)
- 37.15 In Deutz BF 12L 513C engine fuel injection pump and injectors are caliberated in schedule. (IV, V, VI, VII)

Question	Answer	Question	Answer	Question	Answer
37.01	Daily	37.07	100	37.12	V
37.02	1.5bar	37.08	200	37.13	V
37.03	50hrs	37.09	200	37.14	V
37.04	50hrs	37.10	200	37.15	VI
37.05	1.240	37.11	V	37.16	VII
37.06	100				

- 38.01 Write Recommended coolant water temperature for MWM engine.....(75°C to 85°C, 71°C to 88°C None
- 38.02 Maximum coolant temperature of MWM engine is(71°C, 85°C, 88°C, 95°C)
- 38.03 Safety circuit of MWM engine.....if water temperature rises above 95°C (gives buzzer sound, shuts down the engine)
- 38.04 As per RDSO Maintenance schedule lube oil of MWM is to be changed at(100hrs, 125hrs, 200hrs, 250hrs)
- 38.05 As per RDSO maintenance schedule fuel filters of MWM engine are to be changed at......hrs. (100, 125, 200, 250)
- 38.06 As per RDSO maintenance schedule centrifuge of MWM engine is to be cleared at......hrs. (100, 125, 200, 250)
- 38.08 As per RDSO maintenance schedule breather of MWM engine is to be cleaned at......hrs. (100, 125, 200, 250)
- 38.09 As per RDSO maintenance schedule compressor breather of MWM engine is to be cleaned at......hrs. (100, 125, 200, 250)
- 38.10 As per RDSO maintenance schedule filter of MWM engine is cleaned at......hrs. (100, 125, 200, 250)

Question	Answer	Question	Answer
38.01	75^{0} C to 85^{0} C	38.06	125
38.02	95 ⁰ C	38.07	0.2
38.03	shuts down	38.08	200
	the engine		
38.04	125hrs	38.09	200
38.05	125	38.10	200

- 39.01 Priming of engine is done to maintainfilm on bearing (Coolant, Lube oil, Fuel, Grease).
- 39.02 Uniform metered fuel and......are requirements of fuel regulation (Fine spray, Scattered Spray, Thick droplets)
- 39.03 Over speeding causes piston to strike and break.....(Rings, Injectors, Valves, Cylinder Head)
- 39.04 During Normal operations, over speeding of engine is protected by (FIP, Injector, Governor, Accelerator)

39.05 For controlling corrosion in MWM engine......is added. To water in ratio 1:30 (CAC, Nalcool 2000, Nalprep)

Question	Answer	Question	Answer
39.01	Lube oil	39.04	Governor
39.02	Fine spray	39.05	Nalcool 2000
39.03	Valves		

Objective:

- 40.01most ring is assembled first (Bottom, Top)
- 40.02 Piston rings are inserted through piston.....side (Skirt Top)
- 40.03 The end gap of piston ring is approximatelyper inch of piston diameter (0.001", 0.01", 0.1", 0)
- 40.04 The gap for all the piston rings......fall in one line. (Should, Shouldn't)
- 40.05 While fitting the piston rings apply sufficient quantity ofoil (Lube, Hydraulic, Gear, Mustard)
- 40.06 Piston rings should fit.....in the grooves (Tight, free)
- 40.07 For easy sliding of piston with rings into liner....is used (Ring expender, ring compressor
- 40.08 For easy sliding of piston with rings into liner....is used (Ring expander, ring compressor
- 40.09 To ensure piston facing in right direction, notch or other markings must face to theof the engine (Front, Scare)
- 40.10 In two stroke cylinders, ring gap......face the port otherwise they may break (Shouldn't)

Question	Answer	Question	Answer	Question	Answer
40.01	Bottom	40.05	Lube	40.09	Front
40.02	Top	40.06	Free	40.10	Should,
40.03	0.001"	40.07	Ring expender		
40.04	Shouldn't	40.08	Ring compressor		

- 41.01 In cummins engines, valve clearance is gap between rocker arm and......(Valve stem, Cross head, Push rod).
- 41.02 In MWM/Kirloskar/Deutz Engines valve clearance is gap between rocker arm and....(Valve stem, Cross head, Push Rod).
- 41.03 Valve clearance is got max^m when piston is at TDC inStroke, (Suction, Compression, Power, Exhaust)
- 41.04 At TDC ofstrokes, both the rocker arms will be loose. (Suction, Compression, Power, Exhaust)
- 41.05 At TDC ofstrokes, both the rocker arms will be loose. (Suction, Compression, Power, Exhaust)
- 41.06 To bring the piston at TDC of Compression stroke from TDC of exhaust stroke.....revolution of flywheel is made (1/2, One, Two)
- 41.07 From delivery pipe of FIP, fuel starts coming, when corresponding piston is at TDC ofstroke (Suction, Comparison, Power, Exhaust)
- 41.08 Cummins injector is actuated at the end of...... (Suction, stroke, Compression, Power, Exhaust.)

- 41.11 A 6 cylinder engine needs to be rotated byto get next cylinder for valve adjustment according to firing order (90°, 120°, 180°, 360°)
- 41.13 Inlet valve clearance of Cummins engines are.....(0.2mm, 0.3mm, 0.014", 0.027")
- 41.14 Exhaust valve clearance of Cummins engines are..... (0.2mm, 0.3mm, 0.014", 0.027")

41.16	Exhaust valve clearance on MWM engine is(0.2mm, 0.3mm, 0.014", 0.027")
41.17	Inlet valve clearance on BCM Deutz engine is (0.2mm, 0.3mm, 0.014", 0.027")
41.18	Exhaust valve clearance on BCM Deutz engine is(0.2mm, 0.3mm, 0.015", 0.27")
41.19	Inlet valve clearance on PQRS HA 694 engine is (0.2mm, 0.3mm, 0.015", 0.027")
41.20	Exhaust valve clearance on PQRS HA 694 engine is(0.2mm, 0.3mm, 0.15", 0.027")
41.21	Rocker lever of exhaust valve aligns withmanifold (Exhaust, Inlet)
41.22	Rocker lever of inlet valve aligns withmanifold (Exhaust, Inlet)

Question	Answer	Question	Answer	Question	Answer
41.01	Cross head	41.09	Direction	41.17	0.2mm
41.02	Valve stem	41.10	720^{0}	41.18	0.3mm
			n		
41.03	Compression	41.11	120^{0}	41.19	0.015"
41.04	Compression	41.12	60^{0}	41.20	0.15"
41.05	Exhaust	41.13	0.014"	41.21	Exhaust
41.06	One,	41.14	0.027"	41.22	Inlet
41.07	Comparison	41.15	0.2mm		
41.08	Comparison	41.16	0.2mm		

- 42.01 'INJ' mark on flywheel......the TDC mark on flywheel. (Leads, Lags)
- 42.02 In injection lining adjustment 1 no. plunger pump is matched with......cylinder piston (1 No., 2 No., 3 No., 5 No.)
- 42.03 'Spill cut off' is used in.....adjustment (Injection lining, valve clearance)
- 42.04 Idle adjustment stop screw is provided on..... (Feed pump, Injector, FIP, Filter)
- 42.05 For injection timing adjustment.... No cylinder is brought at TDC of compression stroke. (1, 2, 3, 5)
- 42.06 FIP coupling is tightened with engine coupling when one no. plunger.....lifting (Starts, Ends, is at mid of)
- 42.07 During fine adjustment of injection timing control rack is kept inPosition (Zero, Full, Mid)
- 42.08 If injection pressure is less then adjusting screw of injector is(Tightened, Loosened)
- 42.09 If injection pressure is more then adjusting screw of injector is(Tightened, Loosened)
- 42.10 In leak off test of injector a pressure of.....bar is built-up (180bar, 150bar, 28bar, 1 bar)
- 42.11 In leak off test pressure is maintained for (1, 5, 10, Nothing Specific)
- 42.12 In spray test spray should be.....(Fully atomized, Splitted drops, Current of fuel)

Question	Answer	Question	Answer	Question	Answer
42.01	Leads	42.05	1	42.09	Loosened
42.02	1 No.,	42.06	Starts	42.10	150bar
42.03	Injection lining	42.07	Full	42.11	10
42.04	FIP	42.08	Tightened	42.12	Fully atomized

43.01	'In alignment check o	f crankshaft run	out on intermedi	iate journals should not be more
	than	(0.001", 0.027",	0.002", 0.014")	

- 43.02 In roughness check of crank shaft.....piece is rubbed on surface (Copper, Aluminiumb, bronze, White metal)
- 43.03colour indicates overheating (Red, Brown, Bluish)
- 43.04 Readings on intermediate journals increase/decrease gradually indicates......(Bow, Twist, Unbalanced)

- 43.05 If a pair of crankpins on TDC falls to BDC after pushing it indicates static...... (Balance, Unbalance)
- 43.06 If journal and pins are tapered or out of round more than.....they should be reground (0.001", 0.003", 0.014", 0.002")

Question	Answer	Question	Answer
43.01	0.014"	43.04	Bow
43.02	Copper	43.05	Unbalanced
43.03	Bluish	43.06	0.003"

44.01 Shutdown mechanism provided on engine stop......

(a) Air supply (b) Fuel supply

(c) Coolent flow

(d) Exhuast flow

44.02 Governor provided on engine regulates......

(a) Air supply

(b) Fuel supply

(c) Coolent flow

(d) Exhuast flow

44.03 Craking speed for self starting the engine is......

(a) 50-100rpm

(b) 100-150rpm

(c) 150-200rpm

(d) 1000rpm

44.04 Thermostat checking temperature is.....

(a) 714^{0} C

(b) 74° C

(c) 85° C

(d) 88^{0} C

44.05 Poor compression is got remedied by.....

(a) Top overhaul (b) Air Filter cleaning (c) Valve setting (d) Compressor overhauling

Question	Answer	Question	Answer
44.01	b	44.04	С
44.02	b	44.05	a
44.03	С		

Objective:

45.01 Fuel pre-fitted in Deutz BF 12L 513C engine is fitted....Fuel feed Pump (After, Before)

45.02 Fins of cylinders are cleaned during monthly schedule by.....

(a) Air Jet

(b) Water Jet

(c) Detergent

(d) Chemical

Question	Answer	Question	Answer
45.01	Before	45.02	b

Objective:

46.01	What is the S. I. unit	of torque marked on to	orque wrench.	
	(a) N-m	(b) Kg-m	(c) ft-lb	(d) None
46.02	What is M. K. S. unit	of torque marked on to	orque wrench.	
	(a) N-m	(b) Kg-m	(c) ft-lb	(d) None
46.03	What is the F. P. S. u	nit of torque marked or	n torque wrench.	
	(a) N-m	(b) Kg-m	(c) ft-lb	(d) None
46.04	Cylinder Head of KT	A 1150 L Engine is tig	thtened by givig torque	e insteps.
	(a) 2	(b) 3	(c) 3	(d) None
46.05	For KTA 1150 L eng	ine, torque value for cy	linder head capacity lu	ubricated cap. Screw (Black) is-
	(a) 250-260 ft-lbs	(b) 350-370 ft-lbs	(c) 339-353 ft-lbs	(d) 475-502 ft-lbs
46.06	0	ne flywheel mounting t	1	
	(a) 100 ft-lbs	(b) 200 ft-lbs	(c)120 ft-lbs	(d) 200 ft-lbs

46.07 In KTA 1150 L engine flywheel housing mounting torque new max is-

(a) 70 ft-lbs

(b) 80 ft-lbs

(c)140 ft-lbs

(d) 160 ft-lbs

46.08	In KTA 1150 L engine vibration damper alignment mark is permitted upto				
	(a) ± 1 "/16	(b)) ± 1 "/8	(c) ± 1 "/4	(d) ± 1 "/2	
46.09	In Deutz BF 12L 513	C engine, Torque of R	ocker cover is		
	(a) 8.5 N-m	(b)) 21 N-m	(c) 30 N-m	(d) 50 N-m	
46.10	In Deutz BF 12L 513	C engine Rocker arm	setscrew torque is		
	(a) 8.5 N-m	(b)) 21 N-m	(c) 30 N-m	(d) 50 N-m	
46.11	In Deutz BF 12L 513	C engine injector mou	nting torque is		
	(a) 8.5 N-m	(b)) 21 N-m	(c) 30 N-m	(d) 50 N-m	
46.12	In MWM TBD 232 V	12 engine cylinder he	ad bolt torque is		
	(a) 21 N-m	(b)) 26 N-m	(c) 8 N-m	(d) 28 N-m	
46.13	In MWM TBD 232 V	12 engine flywheel bo	olt torque is		
	(a) 21 N-m	(b)) 26 N-m	(c) 8 N-m	(d) 28 N-m	
46.14	In MWM TBD 232 V	12 engine Main bearii	ng bolt torque is		
	` '	(b)) 26 N-m	` '	(d) 28 N-m	
46.15			A 1150 L engine is		
		(b) 0.017	* *	(d) None	
46.16	In MWM TBD 232 V	<u> </u>			
	` /	(b)) 0.05-0.030mm		(d) None	
46.17	In MWM TBD 232 V	C			
	(a) 0.05mm	(b)) 0.30mm	(c) 0.10mm	(d) 0.03mm	

Question	Answer	Question	Answer	Question	Answer
46.01	a	46.07	d	46.13	b
46.02		46.08	a	46.14	d
46.03	С	46.09	a	46.15	С
46.04	c	46.10	b	46.16	a
46.05	b	46.11	С	46.17	a
46.06	d	46.12	a		

Track Machine and Working Principle

27.05 Total Nos. of conveyor belts on FRM-80 is.....

	(c) 6	(b) 4					
27.06	Total Nos. of 1 (a) 14	hydraulic (b) 5		s provided or (c) 18	ı FRM-80 is		
27.07	Total Nos. of (a) 4	Axles in (b) 6		30 is (c) 5			
27.08	How many po (a) 4	wered ax (b) 6		provided on (c) 2	FRM-80. (d) 5		
27.09	Engine provid (a) VTA 1710				(c) BF-12L 5	513C	(d) NTA 855L
27.10	How many pu (a) 4	-	or comb (b) 5	oinations are	provided on FF (c) 1	RM-80 (d) NI	L
27.11	How many cur (a) 43	•	in caps (b) 86	are provided	I in a cutting of (c) 90	chain unit (d) 82	⊱.
27.12	What is the se (a) 80' 50, 32	-			0 starting from (c) 50, 80, 32	-	
27.13	Anti-collision safety device is provided on FRM-80 on. (a) Waste conveyor Unit (b) Main conveyor unit (c) Distributor belt units (d) Excavating conveyor belt units.						

Question	Answer	Question	Answer	Question	Answer
27.01	a	2706	a	27.11	c
27.02	a	27.07	b	27.12	a
27.03b	b	27.08	a	27.13	a
27.04	b	27.09	a		
27.05	a	27.10	b		

28.01	Cutter chain pumps o	f FRM-80 is an	type pump.	
	(a) Axial piston	(b) Gear	(c) Vane	(d) Reciprocating
28.02	Drive Pump on FRM	-80 is a	.type pump.	
	(a) Axial piston	(b) Gear	(c) Vane	(d) Reciprocating
28.03	FRM-80 is provided			
	(a) Hydrostatic	(b) Mechanical	(c) Pneumatic	
20.04	D 1 ED1(00	11		
28.04	Brakes on FRM-80 at	•	-	
	(a) Hydrostatic	(b) Mechanical	(c) Pneumatic	
20.05	D (ED) (00			
28.05	Progress of FRM-80 (a) 550m ³	isper effe	ective Hr.	
	(a) 550m ³	(b) 650m ³	(c) 350m ³	
20.05	0.10 11.1	C EDM 00:		
28.06	Self propelled speed	of FKM-80 is	• • • • • • • • • • • • • • • • • • • •	

(a) 60 kmph	(b) 50 kmph	(c) 40 kmph	(d) 30 kmph

28.07 Wheel diameter of FRM-80 is.....

(a) 900mm

(b) 730mm

(c) 700mm

(d) 30 kmph

Question	Answer	Question	Answer	Question	Answer
28.01	a	28.04	c	28.06	c
28.02	a	28.05	a	28.07	a
28.03	a				

Objective:

29.01	Cutting chain	carries shoulde	er ballast from	chain trough to	the	
	(a) Excavating	g conveyor belt	(b) Sc	reen unit	(c) Main Conveyor	(d) 37.34m
29.02	Excavating of (a) Cutting pla		•	hain (c) Ex	acavating belt	
29.03	Excavated sho (a) Cutting Ch			•	(c) Main conveyor belt.	
29.04	Trolley refuse (a) 2.05m	-		•	ostaway from the central (d) Not required.	tre of track.
29.05	_	ds removal is		in FRM-80 red	operation.	
29.06	In FRM-85 w (a) Front	aste conveyor i	s fitted in (b) Rear	of machine:		
29.07	How many co (a) 4	nveyor belts ar (b) 6	•			
29.08	Length of FRM-85 is					
		(b) 38.64m				

Question	Answer	Question	Answer
29.01	a	29.05	a
29.02	a	29.06	a
29.03	b	29.07	c
29.04	c	29.08	b

Objective:

30.01 KSC-600 is a

(a) SBCM

(b) BCM

(c) BRM

(d) DGS

30.02 KSC 600 consists.....excavating wheels-

(a) One

(b) Two

30.03 KSC 600 is a make machine-

(a) Plasser

(b) Kershaw

(c) BEML.

- (a) 2.05m
- (b) 4.1m
- (c) 3m
- (d) Not required.

Question	Answer	Question	Answer
3001	a		
30.02	b		
30.03	b		

- 31.01 Engine fitted on KSC 600 is
 - (a) KTA 115DL
- (b) VT 28P
- (c) NTA 855L
- 31.02 Length of KSC-600 over buffers is-
 - (a) 39.47m

- (b) 37.34m
- 31.03 Self propelled speed of KSC 500 is-
 - (a) 40Km.

Question	Answer	Question	Answer
31.01	a		
31.02	b		
31.03	a		

- 32.01 In KSC-600 Mud pockets underneath the sleeper ends are broken by-
 - (a) Scarifier
- (b) Excavating wheel.
- 32.02 Shaping of reclaimed ballast is done by-
 - (a) Shoulder regulator
- (b) Broom Assembly
- 32.03 Sweeping of track is done by-
 - (a) Shoulder regulator.
- (b) Broom Assembly

Question	Answer	Question	Answer
31.01	a		
31.02	a		
31.03	a		

Objec	tive:		
35.01	TLE is atom (a) 5 (b) 9	e capacity mach	ine. (c) 12
35.02	HRCS isto (a) 5 (b) 12		achine- (c) 12
35.03	TRM is at (a) 5. (b) 9	1 -	achine (c) 12
35.04	PQRS is as (a) Fully Mechanized		
35.05	PQRS lays(a) Prefabricated pane		vidual Sleepers
35.06	PQRS portals consist (a) One	sside t	
35.07	HRCS is	wheel drive. (b) 4	
35.08	TLE iswhe	eel drive. (b) 4	
35.09	In HRCS Portal, for I		weringchain is used.
35.10	In HRCS Portal, for f (a) Simplex	_	veringchain is used.

Question	Answer	Question	Answer	Question	Answer
35.01	b	35.05	a	35.09	b
35.02	c	35.06	b	35.10	a
35.03	b	35.07	b		
35.04		35.08	a		

Objective:							
36.01	In a 12.6m Se (a) 20	ervice Rail Pannel how (b) 21	many sleepers are asso (c) 22	embled @ 60mm C/C spacing.			
36.02	6.02 For 60m sleeper spacing, length of service rail used is						
36.03	3 PQRS Base Depot should have three sidings of-						
36.04	(a) 250m (b) 350m (c) 500m PQRS sidings have a shunting neck of -						
36.05	,	(b) 350msidings should be pro	(c) 500m ovided with A.T. in a I	PORS Base Depot-			

(a) One (b) Two (c) Three

Question	Answer	Question	Answer
36.01	b	36.05	a
36.02	c		
36.03	b		
36.04			

Objective:

37.01 If Rail Renewal is to be done simultaneously, at should be made with-

(a) New Rails

(b) Existing Track Rails

37.02 Auxiliary Track (A.T.) gauge of PQRS is-

(a) 3050mm

(b) 3400mm

37.03 In A.T. Wooden Blocks size is-

(a) 560 x 250 x 125 Cube mm

(b) 500 x 250 x 125 Cube mm

37.04 Sleeper spacing in A. T. is -

(a) 60 cm

(b) 65 cm

(c) 1.5 to 2.0m

37.05 A.T. level should not be more thanmm higher than the existing track-

(a) 40mm

(b) 150mm

(c) 0mm

37.06 Normal working Mode of PQRS is-

(a) Pulling

(b) Pushing

(c) Porting.

Question	Answer	Question	Answer
37.01	a	37.05	b
37.02	b	37.06	
37.03			
37.04	С		

Objective:

38.01 For ATRT working A.T. is required or not/

(a) Required

(b) Not required.

38.02 For ATRT working panel fabrication is required or not/

(a) Required

(b) Not required.

38.03 CTR can be done or not by ATRT/

(a) Yes

(b) No

38.04 Beam car is a component of machine-

(a) ATRT

(b) PQRS

(c) T-28

38.05 In ATRT function of dynamic plough is to-

	(a) Level ballast bed	(b) Thread out rails	(c) Threads in rails
38.06	In ATRT, function of indexir (a) Direct rails	ng wheel is to- (b) Direct Sleepers	(c) Give signal for sleeper spacing
38.07	How many new tie conveyers (a) 3	s are fitted on ATRT- (b) 2	(c) 4
38.08	Handling car is a component (a) ATRT	of - (b) PQRS	(c) T-28
38.09	How many oild Tie conveyor (a) 3	rs are fitted on ATRT- (b) 2	(c) 4
38.10	Magazine rollers are used in (a) Released sleepers	handling of- (b) New sleepers	
38.11	Power car is a	axle vehicle- (b) 2	
38.12	Engine provided on power ca (a) NTA 855	ar of ATRT is- (b) KTA 1150	(c) 6BT5.9
38.13	Engine provided on gantry of (a) NTA855	ATRT is- (b) KTA1150	(c) 6BT 5.9

Question	Answer	Question	Answer	Question	Answer	Question	Answer
38.01	b	38.05	a	38.08	a	38.11	a
38.02	b	38.06	С	38.09	b	38.12	a
38.03	a	38.07	a	38.10	b	38.13	c
38.04	a						

Objec	uve:		
39.01	Normally lead from ATRT B (a) 30-40 Km.	ase depot should be- (b) 5-10 Km	
39.02	A.T. Gauge in base Depot of (a) 1676mm	ATRT should be-/ (b) 3400mm.	(b) 3050mm
39.03	NormallyNos. BFRs (a) 30	s should be modified for (b) 10	r one Set of ATRT
39.04	On One BFR of ATRTS (a) 80	Sleepers are loaded in 4 (b) 160	Tiers (c) 20
39.05	On ATRT BFRsleeper (a) 80	are loaded in a layer of (b) 160	f stack- (c) 20
39.06	On one BFR of ATRT(a) One	stack of sleeper are lo	aded-
39.07	Gantry Track gauge on ATR	Γ is kept-	

	(a) 3400 n	00 mm (b) 1676 mm		(c)	3050 mm				
39.08	8 BFR is equipped withcoupling- (a) Screw (b) CBC								
39.09	BRH is eq (a) Screw	juipped wit	th(b)	coupling)- -				
39.10	In Rake of (a) Engine		e/two empty (b)	BFRs are Loaded B			RT Beam ca	ar	
39.11			thed in ATR ement (b)		eleased sleep	ers-			
39.12	_		inute (b)		r/eff. Minute	e.	(c) 6BT5.9)	
39.13	Considering (a) 1600	ng 80 minu	ites ineffecti (b)	ve time in 160	a 4hrs ATR'	Γ black, ho (c) 33	•	epers may be	e laid-
39.14		drors & rul	ites ineffecti ober pads wi	ll be repair			w many slee 440 & 7220	pers may be	e laid, how
	Question	Answer	Question	Answer	Question	Answer	Question	Answer	
	39.01	a	39.05	b	39.09	b	39.13	a	
	39.02	b	39.06	b	39.10	a	39.14	a	
ŀ	39.03	a	39.07	c	39.11	a	0711		
	39.04	b	39.08	a	39.12	a			
Objec 40.01		are laid at	a distance of	f me	eters from T	rack Centre	; <u>-</u>		
	(a) 1.0 .		(b)	1.5		2.5 m			
40.02	Sled is po (a) Ballast		(b)		of old sleepe	rs (c) Rail S	Seat of new	sleepers	
40.03	Sled is loaded by and fastened wit- (a) Handling car common bogie (b) Handling car front bogie (c) Power car bogie.								
40.04	On One BFR of ATRTSleepers are loaded in 4 Tiers (a) 80 (b) 160 (c) 20								
40.05	With application of DTS with relaxation of speed is possible isdays- (a) 10 (b) 6 (c) 8								
40.06	Fastening (a) Requir		required or (b)	not in AT Not requin					
40.07	Released (a) ATRT	-	cked up by - (b)	Gantry	(c)) UTV			

40.08 Placement of rubber pad in ATRT is done-

(a) Manually

(b) Mechanics

40.9 Rail renewal in ATRT is done-

(a) Manually

(b) Mechanized

40.10 Removal of old rail in ATRT-

(a) Manually

Objective:

(b) Mechanized

Question	Answer	Question	Answer	Question	Answer
40.01	b	40.05	b	40.09	b
40.02	b	40.06	a	40.10	b
40.03	a	40.07	d		
40.04	b	40.08	a		

Question	Answer	Question	Answer	Question	Answer
02.01	c	02.05	a	02.09	d
02.02	b	02.06	a	02.10	a
02.03	b	02.07	a	02.11	a
02.04	a	02.08	a	02.12	В

Workshop Technology

01.01	Forging is a plastic deformation production	cess-
	(a) True .	(b) False
01.02	Low and medium carbon steels are r	eadily forged-/
	(a) True .	(b) False
01.03	High carbon and alloy steels are read	dily forged-
	(a) True .	(b) False
01.04	Stainless steels are forged specially to	for aerospace uses-
	(a) True .	(b) False
01.05	Forge ability decreases with tempera	nture upto a point at which grain growth becomes excessive-
	(a) True .	(b) False

01.06 Which of the following is a good forgeable material-?

(a) Carbon/low alloy steels (b) Martens tic stainless steel (c) Iron base super alloys.

01.07	Economical, easily controlled (a) Gas, oil	l and mostly used furnace is- (b) Electric Resistance	(c) Induction healing
01.08	Temperature to begin forging (a) 1250°C-1300°C		
01.09	Brass nd Bronze alloys are he (a) 600-950 ^o C	eated to aboutfor forging (b) 350^{0} C- 500^{0} C	ng-
01.10	Welding is a typical forging (a) True .	operation- (b) False	

Question	Answer	Question	Answer	Question	Answer
01.01	a	01.05	b	01.08	a
01.02	a	01.06	a	01.09	a
01.03	b	01.07	a	0110	a
01.04	a				

02.01	1 Which of the following is not used in hand forging-					
	(a) Anvil	(b) Tongs	(d) Fee	eler	(c) Presses	
02.02	Large machine part ca (a) True .	nn be forged by (b) False	hand-/			
02.03	Which of the following (a) True .	ng does not requ	aire repeated he (b) False	ating-		
02.04	Anvil block sense as a (a) True .	a rigid support i	n power hamm (b) False	ering-		
02.05	Heavy falling part of l	hammer is calle	ed ram-			
	(a) True .		(b) False			
02.06	In smith forging the w (a) Flat and horizontal	•	-	•	dies are-	
02.07	Capacity of a hammer	is determined	by-			
	(a) Weight	(b) Siz	•	(c) Shape		
02.08	Helve hammers are op	perated by-				

	(a) Eccentric	(b) Rope	(c) Chain	(d) Toggle
02.09	Trip hammers are actuated by (a) Eccentric	(b) Rope	(c) Chain	(d) Toggle
02.10	Lever spring Hammers are by (a) Rocking level	(b) Toggle	(c) Chain	
02.11	Pneumatic hammers has com (a) True.	pressor cylinder and ra (b) False	m cylinders-	
02.12	Steam or air hammers inbuilt (a) True.	compressor- (b) False		

Question	Answer	Question	Answer	Question	Answer
02.01	c	02.05	a	02.09	d
02.02	b	02.06	a	02.10	a
02.03		02.07	a	02.11	b
02.04	a	02.08	a	02.12	b

03.01	1 Application of pressure and filler metal is essential in welding- (a) True . (b) False			
03.02	Plastic welding is also called (a) Pressure .	welding-/ (b) Fusion	(c) Non-pressure	
03.03	Fusion welding is also called (a) Pressure .	welding- (b) Fusion	(c) Non-pressure	
03.04	In cold weldingis appli (a) Heat	ied- (b) Pressure		
03.05	Fusion welding may be- (a) Autogenous	(b) Non-autogenous	(c) Both	
03.06	If welding temperature is cor (a) Plane of weakness			
03.07	Considerable degree of grain (a) Single run	refinement occurs due (b) Multi run	e to normalizing inwelding-	
03.08	Slag and gas inclusions may (a) Single run	be higher in(b) Multi run	welding-	
03.09	Nitrogen appearing as needle (a) Low impact strength	-	•	
03.10	Stresses setup in the weld by	shrinkage may be relie	eved by annealing -	

(a) True. (b) False

Question	Answer	Question	Answer	Question	Answer
03.01	b	03.05	c	03.09	
03.02	a	03.06	b	03.10	a
03.03	c	03.07			
03.04	b	03.08	b		

Objective:

04.01	Oxyacetylene welding is suitable for sheets and plates of thickness 2 to 50mm-
	(a) True . (b) False
04.02	Flux is employed during welding of mild steel-/

	(a) True	•	(b) False					
04.02	TI 4	C	41	C1	: :4-	1444	•	

04.03	The temperat	ure of	oxyacetylene flame	in its nottest region is	about-
	(a) 2500° C		(b) 1539^{0} C	(c) 3200° C	

04.04	Carburizing flame has excess of-					
	(a) Acetylene	(b) Oxygen	(c) Air			

04.05	Carburizing flame is	necessary for	welding of brass-	
	(a) True	(b) False		

04.06	0 1	,	ged to a pressure of
((a) 1Kg/cm^2	(b) 2Kg/cm^2	(b) 154Kg/cm^2

		e charged at a pressure	of about-
	(a) 1Kg/cm^2	(b) 2Kg/cm^2	(b) 154Kg/cm^2
04.08	Air acetylene weldin	g process attains high	er temperature than other gas processes-

	(a) True	(b) False	
04.00	Ovy hydrogen proces	a waa waad ta wald	milting point motals

04.09	Oxy-hydrogen proc	cess was used to weld	milting point metals
	(a) Low	(b) High	

Question	Answer	Question	Answer	Question	Answer
04.01	a	04.05	a	04.09	a
04.02	b	04.06	a		
04.03	С	04.07	a		
04.04	a	04.08	b		

Objective:

05.01	Anode is	pole of dc power supply-	

(a) Positive . (b) Negative

05.02	1 KWH of electricity will create 250 calories-/ (a) True . (b) False							
05.03	Two thirds of heat is generated nearpole- (a) Positive . (b) Negative							
05.04	pole-			ole will bu	ırn 50 perce	nt faster than	that is connect	ed to negative
	(a) True	•	(b) False					
05.05	A.C. weld voltage of	_	rmer step dov	wn the usi	ual supply v	oltage (200-40	00V) to the nor	rmal open circuit
	(a) 50-90V		(b) 150-200	V	(c) 30-50V	I		
05.06	The electric energy consumption per Kg. of deposited metel in A.C. welding is from							
05.07	The motor (a) 0.3 to 0		welding has a (b) 0.3 to 0.	-	actor of-			
05.08	Open circu(a) True	uit (No load	d) voltage is l (b) False	nigher tha	n arc voltag	e-		
05.09	With D.C. (a) 30 to 3		e open circuit (b) 30 to 35	_	nust be atlea	ast-		
05.10	Mean tota	l ampere fo	or a 4mm elec	etrode is a	bout-			
	(a) 70A		(b) 105A		(b) 140A			
05.11	Mean tota (a) 70A	l ampere fo	or a 3.25mm ((b) 105A	electrode	is about- (b) 140A			
	(a) 10A		(b) 103A		(U) 140A			
05.12	Resistance (a) True	e welding u	ses pressure (b) False	to comple	ete the weld-			
	Question	Answer	Question	Answ	er	Question	Answer	
	05.01	a	05.05	a		05.09	a	
	05.02	a	05.06	a		05.10	С	
	05.03	b	05.07	b		05.11	b	
	05.04	a	05.08	a		05.12	a	
Ohioo								

\mathbf{a}			
"	hı	ecti	T70
v	IJΙ	CCU	. V C .

06.01	For joining parts not subjected to high temperature and excessive loadsused- (a) Soft soldering . (b) Hard soldering
06.02	Solder composed of lead and tin has a melting range of -/ (a) $150-350^{0}$ C . (b) $600-850^{0}$ C
06.03	Flux is used to preventof the surfaces to be soldered- (a) Oxidation . (b) Rusting (c) Carbides

06.04		ve that settle on the me (b) Rusts	etal surfaces during hea (c) Carbides	ting process-
06.05			ercent is used in soft so (c) 50, 50	lder- (d) 58, 42
06.06	-	recent and tinpe (b) 37, 63	ercent is used in medium (c) 58, 42	m solder-
06.07		recent and tinpe (b) 50, 50	ercent is used in Electrical (c) 58, 42	cian solder-
06.08	Open Brazing gives s (a) True	tronger joint than sold (b) False	ering-	
06.09	Spelter is used in- (a) Soldering	(b) Brazing		
06.10	Spelter fusesred (a) Above, below		nelting temperature of	the parts to be joined-
06.11	Silver bare alloys spe (a) 150-350°C.	lter have a melting ran (b) 600-850 ⁰ C	ge of -	
06.12	Resistance welding u (a) True	•	te the weld-	

Question	Answer	Question	Answer	Question	Answer
06.01	a	06.05	a	06.09	a
06.02	a	06.06	a	06.10	a
06.03	a	06.07	С	06.11	
06.04	a	06.08	a		

07.01	Maximum(a) 20 .	percent wear in Cross (b) 30	section area is allowed (c) 50	d on tamping tool-
07.02	Facing Electr (a) Hard	odes are used for weld (b) Soft	ing of tamping tools-/	
07.03	-	ng Tool at topr (b) 5, 20		
07.04	Reconding of tampin (a) Electric Arc.	g tool is done by (b) Gas	welding	
07.05	For recoding of Tam (a) Positive	ping Tools,supp (b) Negative	oly is given to Electrod	le -

07.00	(a) True	(b) False	doing another layer-
07.07		surface causes(b) Under cutting	
07.08	•	re Arc gap causes (b) Under cutting	
07.09	•	on causes (b) Under cutting	(c) Shape Deformation

Question	Answer	Question	Answer	Question	Answer
07.01	a	07.05	a	07.09	С
07.02		07.06	a		
07.03	a	07.07	a		
07.04	a	07.08	b		

- · · · ·			
08.01	For welding of BCM (a) 350BHN	_	lness of the order ofis maintained-
08.02	For welding of turret (a) C-2RL .	_	electrode of Larsen & Tubro is used/
08.03	12 to 14% Mn is avail (a) True .		nks of BCM
08.04	During welding of tur (a) Water	•	ortion is immersed into (c) Acid
08.05	Reconditioning of cut (a) True		by welding-
08.06	Grinding is not requir (a) True	red for recondition (b) False	ion of turret gear-

Question	Answer	Question	Answer	Question	Answer
08.01	a	08.03	a	08.05	a
08.02	b	08.04	a	08.06	b

Objective:

09.01 Vice consists of both jaws movable-

(a) True

.(b) False

09.02 Vice jaws have replaceable jaw plates-/

(a) True

.(b) False

09.03 For common work vice jaw opening is.-

	(a) 80-140mm.	(b) 95-180mm	(c) 400-500mm	
09.04	*	asshape(b) Star		
09.05	While using screw dri (a) Should be	ivers, jobskept (b) Should not be	in hand-	
09.06	For taking out circlip (a) External	C 1	circlip pliers is used-	
09.07	-	ring rail clamp(b) Adjustable	-	(d) C-
09.08	For Allen bolts have (a) Hex head	(b) Hex groove in hea	d (c) Slot inhead	
09.09	Stud extractor is used (a) True	for removing broken b (b) False	oolts/studs-	

Question	Answer	Question	Answer	Question	Answer
901	b	09.04	b	09.07	
09.02	a	09.05		09.08	b
09.03	b	09.06	a	09.09	a

_		<u>.</u>	·	
Objec	tive:			
10.01	Go and no-go gauges		imension-	
	(a) True	.(b) False		
10.02	International standard Krypton-85-/	l meter is equal to 1650	0763.73 vacuum wave	length of orange radiation of
	(a) True	.(b) False		
10.03	Micrometer is a (a) End .		nent-	
10.04	Graduated rule or sca (a) Precision	le is aInstrum (b) Non-Precision	nent-	
10.05	Vernier-calliper is a (a) Precision			
10.06	In external micrometer (a) 50	er, beveled edge of thin (b) 10	mble is divided into c) 100	equal parts-
10.07	The micrometer screw (a) 1mm	w has a pitch of (b) 0.5mm	 (c) 2mm	(d) C-
10.08	Leat count of microm (a) Hex head	eter with 50 division of (b) Hex groove in hea	on thimble and pitch equal (c) Slot inhead	ual to 0-5mm will be-
10.09	Reading of micrometron thimble-	er = Main Scale readin	g + Least count X No.	of divisions passed reference line

	(a) Tru	e	(h)	False
١	(a) IIu		ιυı	T'aisc

10.10 Vernier Calliper has vernier scale whose 50 divisions corresponds to 49mm on main scale. The Least count will be-

(a) 0.01mm

(b) 0.02mm

(c) 2mm

10.11 Reading of Calliper = Main scale reading + Least count x vernier scale reading-

(a) True

(b) False

Question	Answer	Question	Answer	Question	Answer
10.01	b	10.05		10.09	a
10.02	a	10.06	a	10.10	b
10.03	a	10.07	b	10.11	
10.04	b	10.08	a		

Objective:

11.01	Comparators	are used for	or simple	e and a	accurate c	omparison	of parts-

(a) True

.(b) False

11.02 In dial Indicator with 100 divisions, turn of pointer by one division indicates.....travel of plunger-

(a) 1mm

.(b) 0.01mm .

(b) 0.02mm

11.03 Optical comparators suffer less wear during wage than the mechanical tyoe-

(a) True

.(b) False

- 11.04 Protractor is used for.....measurement-
 - (a) Linear
- (b) Angluar
- 11.05 Direct measurement of angle is done by-
 - (a) Bevel protractor (b) Sine Bar
- 11.06 Where precision in measurement of angles is required, is used-
 - (a) Bevel gauge
- (b) Angle gauge
- 11.07 Taper micrometers is ten times faster than older conventional methods-
 - (a) True
- (b) False

Question	Answer	Question	Answer	Question	Answer
11.01	a	11.04	b	11.06	b
11.02	b	11.05	a	11.07	a
11.03	a				

Objective:

12.01 Gripping of ring spanner is better than open end spanner.

(a) True

.(b) False

12.02	In Showing and unser (a) Open end spanner	•	
12.03	Allen Key is used for (a) Hex	head bolts .(b) Round	-
12.04		sides (Faces) (b) 4	
12.05	Wing nuts are used for (a) True	or tightening/loosening (b) False	hacksaw-
12.06	-	threads ground in T (b) 3-5	
12.07		ng is not a component of (b) Depth Gauge	of an external micrometer- (2) Thimble
12.08		ng is not component of (b) Depth Gauge	-

Question	Answer	Question	Answer	Question	Answer
12.01	a	12.04	a	12.07	b
12.02		12.05	a	12.08	С
12.03	b	12.06	С		

WORKSHOP TECHNOLOGY

Objec	uve.	
13.01	•	ares that one component will assemble correctly with any mating component, random is called interchangeable system or a system of limits and fits(b) False
13.02	Selective assembly is (a) True	that in which each part must be selected to fit its mating part. (b) False
13.03	Basic size is the size (a) True	in relation to which higher commits of variation are determined. (b) False
13.04	Nominal size is used (a) True	in the precision measurement of parts(b) False
13.05	Upper deviation is po (a) True	sitive or zero- (b) False
13.06	Lower deviation is po	ositive or zero- (b) False
	\ /	

13.07		is equal talue withou	_	difference	between th	ne upper a	nd lower de	eviations a	nd has ar
13.08	Tolerance (a) True	is the diffe	rence between (b) False	en the max	imum limit o	of size and	minimum li	mit of size-	
13.09	$25 + {0.05 \atop -0.03}$ is a	ın example	of unilatera	l tolerance					
	(a) True		(b) False						
13.10	In an exan	nple 40+0.08	tolerance is	s 0.05mm					
	(a) True		(b) False						
13.11	Envelopin (a) True	g surface is	male part- (b) False						
13.12	Enveloped (a) True	surface is	female part- (b) False						
13.13			n the two passis known as		one is inser	rted into th	e other with	h a certain	degree o
13.14	` '	ft is smaller	` '	the allowan	ce is negativ	e-			
13.15	In a cleara possible he (a) True		ere is a posi (b) False	itive allowa	ance between	n the large	st possible s	shaft and th	e smalles
13.16	possible he			positive all	owance bety	ween the la	argest possib	ole shaft an	d smalles
	(a) True		(b) False						
13.17	Transition (a) True	fit does no	t guarantee ((b) False	either an in	terference or	a clearanc	e-		
Ī	Question	Answer	Question	Answer	Question	Answer	Question	Answer	
	13.01	a	13.06	b	13.10	a	13.14	b	
-	13.02	a	13.07	a	13.11	a	13.15		
-	13.03	b	13.08	a	13.12	a	13.16	a	
-	12.04	0	12.00	h	12 12	0	12 17	0	1

Question	Answer	Question	Answer	Question	Answer	Question	Answer
13.01	a	13.06	b	13.10	a	13.14	b
13.02	a	13.07	a	13.11	a	13.15	
13.03	b	13.08	a	13.12	a	13.16	a
13.04	a	13.09	b	13.13	a	13.17	a
13.05	a						

14.01 The first useful from of lathe was made by H. Moudslay in the year.......
(a) 1700 (b) 1800. (c) 1900 (d) No.

(d) None

14.02 In lathe machine operation the work piece-

	(a) Revolves	.(b) Reciprocates			
14.03	The bed provides inve (a) Carriage	erted guide ways for co .(b) Tool post	ontrolled movement of	·····-	
14.04	The mechanism for de (a) Head Stock	riving and altering spir .(b) Tail stock	ndle speed is housed in (c) Carriage	·····	
14.05		ner end of work piece(b) Tail stock			
14.06	Cross slide is used to (a) Longitudinal	givefeed to the (b) Transverse	e tool-		
14.07	Graduated Circle base (a) Saddle	e is carried by - (b) Cross slide	(c) Compound rest		
14.08	In facing operation to (a) Perpendicular	ol is fed(b) Parallel	to the axis of rotati	on of the job-	
14.09	In straight turning is t (a) Parallel	he lathe operation in w (b) Perpendicular	which tool is fed	to the lathe axis-	
14.10	In thread cutting lon revolution of the work (a) Equal to	k piece.	ould bethe p (c) Greater than	itch of the thread to	be cuter re
14.11	Embossing a diamond (a) Turning	d shaped pattern on the (b) Chamfering	surface of a work piec (c) Knurling	te is the process of (c) Milling	

Question	Answer	Question	Answer	Question	Answer	Question	Answer
14.01	b	14.04	a	14.07	c	14.10	a
14.02	a	14.05	b	14.08	a	14.11	С
14.03	a	14.06	b	14.09	a		

Objec	uvc.			
15.01	Hole is generated in t	the process		
	(a) Reaming	(b) Tapping.	(c) Drilling	(d) None
15.02	In drill machina drivi	na machanisms ara aa	ntained in	
13.02		•		.=
	(a) Head	(b) Table	(c) Column	
15.03	The expression for D	ia of Hole, D in terms	of T (Dia of Tap and d	(depth of Thread is
	(a) T-d	(b) T+2d	(c) T-2d	(d) T/2d
15.04	is a	process used for enlar	rging /furnishing the l	hole previously drilled to give an
	accuracy of dimensio	n-		
	•		(c) Milling	(d) None
	(a) Reaming	(b) Tapping	(C) Willing	(d) None
15.05	TT1 1.0	1 1 1 11 1 1 1 1		
15.05	The materials used to	or making drill-bit is	-	

	(a) HSS	(b) MS	(c) Cast Iron	
15.06		sed to bore holes in larg (b) Lathe		
15.07	Vertical turret lathe is (a) Lathe	s a type of vertical (b) Drilling		
15.08	_	machine, theper (b) Saddle		ved longitudinally on the bed-
15.09	The diameter of spino (a) Horizontal boring (c) Multiple spindle d			machine
15.10		nachine the tool tips are (b) Dismount tipped		(d) None
15.11	In horizontal boring n (a) Horizontal	nachine the tool revolv (b) Vertical	es in aaxis	
15.12	* *	ter for boring operation (b) Boring bar		

Question	Answer	Question	Answer	Question	Answer	Question	Answer
15.01	c	15.04	a	15.07	c	15.10	c
15.02	a	15.05	a	15.08	b	15.11	a
15.03	c	15.06	С	15.09	a	15.12	b

16.01	Ram is a component (a) Shaper	of (b) Drilling machine	(c) Boring Machine
16.02	In a shaper material c (a) Forward	eutting takes place in (b) Reverse	stroke-
16.03	In a shaper the forwa (a) 3:1	rd to return stroke time (b) 3:2	e ratio is- (c) 2:1
16.04	Shaper tool for hard it (a) of HSS	naterials is(b) Carbide tipped	
16.05	In a shaper(a) Tool	-	
16.06	In a planer tools are h	neld vertically in the to (b) False	ol head mounted on cross-rail-
16.07	In a planer	reciprocates-	

	(a) Tool	(b) Job
16.08	In a shaper feed is given (a) Tool	ven by the lateral movement of the(b) Job
16.09	More than one tool m (a) Shaper	ay be mounted in a (b) Planner
16.10	For generating flap su (a) Shaper	urfaces on heavy partsis most- (b) Planner

Question	Answer	Question	Answer	Question	Answer	Question	Answer
16.01	a	16.04	b	16.07	b	16.10	b
16.02	a	16.05	a	16.08	a		
16.03	b	16.06	a	16.09	b		

Objec	tive:		
17.01	In a slotter the ram ho (a) Horizontal axis		ates in a
17.02	In a vertical shaper th (a) 2 ⁰		not more thanto the vertical- (c) 90^0
17.03	Removal of large amo (a) Puncher slotter	-	ce in
17.04	The stroke length of	ram of a general purpo	se or precision slotter usually ranges from 80 to 900mm
	(a) True	(b) False	
17.05	In a slotter tool, cutting (a) True	ng pressure acts perper (b) False	dicular to the tool length-
17.06	In a slotter tool, no sie		

17.07 Grinding is used to remove comparatively little material 0.25mm to 0.5mm.-

(b) False

17.08 Silicon carbide (SiC) is aAbrasives.-

(a) True

	(a) Natural	(b) Artificial		
17.09	Vitrified bond is denoted (a) True	oted by the letter 'V'- (b) False		
17.10	,	ted by 80 is		
	(a) Coarse	(b) Medium	(b) Fine	(b) Very fine
17.11	Hardness if bond den	noted by letter Q repres	entsgrade-	
	(a) Soft	(b) Medium	(b) Hard	
17.12	Structure denoted by (a) Open	a digit less than equal (b) Dense	to 8 represents	structure
17.13	A grinding wheel is r (a) True	narked as WA 46K 5V (b) False	717. The letter 'A' rep	resents Abrasive type Al ₂ 0 ₃

Question	Answer	Question	Answer	Question	Answer	Question	Answer
17.01	b	17.04	a	17.08	b	17.12	a
17.02	b	17.05	b	17.09	a	17.13	a
17.03	a	17.06	a	17.10	c		
17.04	a	17.07	a	17.11	С		

Objec	tive:		
18.01	Multiple tooth cutter (a) Lathe	is used in- (b) Slotter	(c) Milling Machine
18.02	Knee is a component (a) Lathe		(c) Milling Machine
18.03	Arbor is a component (a) True	t of a column and knee (b) False	type milling machine-
18.04	The most common and (a) Casting	nd accurate method of (b) Stamping	Gear manufacturing is- (c) Machining
18.05	The end mills are use (a) True	d to cut gears of large (b) False	modules from 20mm and larger
18.06	blades	-	the teeth on a gear simultaneously by a ring of formed ess (c) Generating process
18.07		is employed for produ (b) Small	cingspur gear teeth
18.08	Gears cannot be	e produced by generati (b) Cycloidal	ng method-
18.09		nod accuracy is(b) Very fine	-

18.10 Mathematically correct tooth profile of gears produced in.....methods.-

(a) Generating

(b) Template

(b) Formed cutter

Question	Answer	Question	Answer	Question	Answer	Question	Answer
18.01	c	18.04	c	18.07	a	18.10	a
18.02	С	18.05	a	18.08	b		
18.03	a	18.06	a	18.09	a		

Objective:

	(a) True	(b) Faise
19.02	A punch is usually th	nemember of the press tool which is mounted on the lower end of the
	ram-	

19.03 A die has an opening or cavity to receive the punch-

(a) True

(a) Upper

(b) False

(b) Lower

19.04 Punches and dies are generally made of--

(b) High Carbon

19.01 In press, metal is formed to the desired shape without removal of chips-

(c) Steel (HCS)

19.05 In the case of punching, a.....hole is produced.-

(a) Cylindrical

(b) Other than cylindrical

19.06 In.....the metal is stressed in both tension and compression at the two sides of the neutral axis-(b) Bending

(a) Shearing

19.07 In a compound die two or more cutting operation are accomplished at one station of a press in every stroke of the ram...-

(a) True

(b) False

19.08 A fixture is a device which guides the cutting tools-

(b) False

19.09 Jigs are generally heavier than fixtures.

(a) True

(b) False

19.10 The use of jigs and fixtures requires marking outs measuring and other setting methods before machining-

(a) True

(b) False

Question	Answer	Question	Answer	Question	Answer	Question	Answer
19.01	a	19.04	a	19.07	a	19.10	b
19.02	a	19.05	a	19.08	b		
19.03	a	19.06	b	19.09	b		

20.01	Contoured surfaces ca (a) True	annot be produce (b) False	ed by broachin	g-		
20.02	A broach is a multiple (a) True	e edge cutting to (b) False	ols-			
20.03	Broaching is possible (a) True	only on internal (b) False	surfaces-			
20.04	broache (a) Tungsten	s are used extens (b) Carbide	sively in the b	roaching of cast iron-		
20.05	Nearly all horizontal (a) Pull	broaching machi (b) Push	nes are	type-		
20.06	In a broaching maching (a) 1000mm	ne specification (b) 1000x10mn		e length is- (c) 10m		
20.07	In sawing, feed may be (a) Only saw	-		(c) Earthier saw or work		
20.08	Saws are represented (a) Reciprocating		aws-			
20.09	The three tooth sets are					
20.10	The three tooth forms (a) Raker, alternate, w		(b) Standard, s	kip and hook		

Question	Answer	Question	Answer	Question	Answer	Question	Answer
20.01	b	20.04	b	20.07	c	20.10	
20.02	a	20.05	a	20.08			
20.03	b	20.06	a	20.09	a		

Objec	tive:			
21.01	M/s Plasser (India) Proceedings (a) Faridabad	vt. Ltd. Is situated at (b) Gurgaon	(c) Noida	(d) Delhi
21.02	M/s Plasser (India) Pr (a) True	vt. Ltd. is produces onl (b) False	y tamping machines	
21.03	M/s Plasser (India) P	vt. Ltd. has manufactur (b) 3	ring lines (Track)- (c) 5	
21.04	There is no separate r (a) True	machine-shop at M/s Pi (b) False	lasser (India) Pvt.Ltd	

21.05	Radial drill machine i (a) True	s available at M/s Plasser (Inc (b) False	lia) Pvt. Ltd. Machine shop
21.06	Cropping machine is	used to cut	
	(a) Hoses	(b) Metal Sheets	(c) Rubber sheets
21.07	MIG welding uses (a) Consumable	electrodes- (b) Non-consumable	
21.08	Hose fittings are fitted	d onmachine-	
	(a) Cropping	(b) Crimping	(c) Press
21.09	CNC lathe is available (a) True	e at M/s Plasser (India) Pvt. L (b) False	td.

Question	Answer	Question	Answer	Question	Answer
21.01	a	21.04	b	21.07	a
21.02	b	21.05	a	21.08	b
21.03	a	21.06	b	21.09	a

24.01	Thread is nothing but (a) True	a helical grove- (b) False	
24.02	In India(a) Left	hand threads are mostly used- (b) Right	
24.03	Pitch Dia = (Major Dia) (a) Single Depth of Ti	ia) – () hread (b) Double De	epth of Thread
24.04	In case of single start (a) Pitch = lead		(c) Pitch > Lead
24.05	The angle of inclination (a) Angle of Thread	on of thread is called(b) Helix Angle	
24.06	Included angle of BS' (a) Rounded	W Thread is 55 ⁰ and routes and (b) Angular	d crest are (c) Parallel
24.07	British Standard fine (a) Larger	thread haveeffective and co (b) Smaller	ore diameters than the BSW threads-
24.08	American National 7 are	_	e of 600 and crests and routes of this thread
24.09		d Thread (Unified Thread) hav (b) Parallel to axis	e roots

24.10	In the Metric thread designation M10 x 1.5 the term 10 indicates (a) Nominal dia in mm (b) Threads per cm										
24.11	The depth and thickness of the square thread are each equal to half of the pitch (a) True (b) False										
24.12	Acme thread is thicker at the root and less thick at the crest- (a) True (b) False										
24.13	Lead Screw of the lathe are provided withthread- (a) Acme (b) Square (b) V-										
24.14	Coupler of railway carriage and electrical bulbs usethread- (a) V- (b) Knuckle (b) Buttress										
24.15	Buttress thi		ble only wher (b) False	n the force a	acts entirely in	n one directi					
	Question	Answer	Question	Answer	Question	Answer	Questio	Answer			
	24.01	a	24.05	b	24.09	a	n 24.13	a			
F	24.02	b	24.06	a	24.10	a	24.14	b			
-	24.03	a	24.07	a	24.11	a	24.15	a			
	24.04	a	24.08	b	24.12	a					
25.01	Inspection is tool of quality control- (a) True (b) False In charts for X and R, the term X represents-										
23.02	(a) Average		(b) Range		c) Fraction defective						
25.03	Control charts for attributes is called										
25.04	In c chart, there are 200 defects in 25 machines then LCLc (a) 8 (b) 16.5 (c) 0 (d) 200										
25.05	In c chart, there are 200 defects in 25 machines then LCLs =										
25.06	In c chart, there are 200 defects in 25 machines then LCLs =										
25.07	ISO 9002, ISO 9002, ISO 9003 detail the										
25.08	Quality system is the model for quality assurance in final inspection and test- (a) ISO 9001 (b) ISO 9002 (c) ISO 9003										
25.09	ISOis a family of international standards for quality management and assurance- (a) 9000 (b) 9004										

25.10 In its most basic form the ISO 9000 requires that you: Say what you do, Do what you say record what you do-(a) True

(b) False

Question	Answer	Question	Answer	Question	Answer
25.01	a	25.05	b	25.09	a
25.02	a	25.06	c	25.10	a
25.03	a	25.07	a		
25.04	b	25.08	С		