

Escuela Rafael Díaz Serdán

Ciencias y Tecnología: Química

JC Melchor Pinto

Última revisión del documento: 7 de mayo de 2023

Cantidad de sustancia

3° de Secundaria Unidad 3 2022-2023

Nombre del alumno: Fecha:

Aprendizajes: _ _ _ _ _

- Argumenta acerca de posibles cambios químicos en un sistema con base en evidencias experimentales.
- Explica, predice y representa cambios químicos con base en la separación y unión de átomos o iones, y se recombinan para formar nuevas sustancias.

				F	² un	tua	cióı	n:			
Pregunta	1	2	3	4	5	6	7	8	9	10	Total
Puntos	10	10	10	10	10	10	10	10	10	10	100
Obtenidos											

Ejemplo 1

La masa molar del estroncio (Sr) es 87.62 g/mol. Calcula el número de átomos en una muestra de 67.5 mg de Sr.

Escribe tu respuesta en notación científica usando tres cifras significativas.

Solución:

Podemos usar la masa molar de la sustancia para convertir gramos a moles de sustancia. Después, podemos usar el número de Avogadro, 6.023×10^{23} , para convertir moles a partículas representativas (como átomos, moléculas o unidades de fórmula). Primero, usemos la masa molar del Sr para convertir gramos de Sr a moles de Sr:

$$67.2 \text{ mg} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol}}{87.62 \text{ g Sr}} = 7.70 \times 10^{-4} \text{ mol}$$

Después, usemos el número de Avogadro para convertir moles de Sr a átomos de Sr:

$$7.7\times10^{-4}~\mathrm{mol}\times\frac{6.023\times10^{23}~\mathrm{\acute{a}tomos}}{1~\mathrm{mol}}=4.64\times10^{20}~\mathrm{\acute{a}tomos}$$

Por lo tanto, una muestra de 67.2 mg de Sr contiene 4.64×10^{20} átomos de Sr.

Ejercicio 1	10 puntos
La masa molar del silicio (Si) es $28,09$ g/mol. Calcula el número de átomos en una muestra d \mathbf{Si} .	le 92.8 mg de
Escribe tu respuesta en notación científica usando tres cifras significativas.	
Ejercicio 2	10 puntos
Ejercicio 2 La masa molar del Galio (Ga) es 69.72 g/mol. Calcula el número de átomos en una muestr	10 ρuntos a de 27.2 mg
La masa molar del Galio (Ga) es 69,72 g/mol. Calcula el número de átomos en una muestr de Ga.	
La masa molar del Galio (Ga) es 69,72 g/mol. Calcula el número de átomos en una muestr	
La masa molar del Galio (Ga) es 69,72 g/mol. Calcula el número de átomos en una muestr de Ga.	
La masa molar del Galio (Ga) es 69,72 g/mol. Calcula el número de átomos en una muestr de Ga.	
La masa molar del Galio (Ga) es 69,72 g/mol. Calcula el número de átomos en una muestr de Ga.	
La masa molar del Galio (Ga) es 69,72 g/mol. Calcula el número de átomos en una muestr de Ga.	
La masa molar del Galio (Ga) es 69,72 g/mol. Calcula el número de átomos en una muestr de Ga.	
La masa molar del Galio (Ga) es 69,72 g/mol. Calcula el número de átomos en una muestr de Ga.	
La masa molar del Galio (Ga) es 69,72 g/mol. Calcula el número de átomos en una muestr de Ga.	

Ejercicio 3	10 puntos
La masa molar de la plata (Ag) es $107,87$ g/mol. Calcula la masa en gramos de una muestra de pue contiene 1.97×10^{22} átomos. Escribe tu respuesta usando tres cifras significativas.	olata (Ag)
Ejercicio 4	10 puntos
La masa molar del bismuto (Bi) es 208,98 g/mol. Calcula la masa en gramos de una muestra de (Bi) que contiene 7.35×10^{23} átomos. Escribe tu respuesta usando sólo números enteros.	e bismuto

La masa molar del azufre (S) es 32,06 g/mol. Calcula la masa en gramos de una muestra de azufre (S) que contiene 2.01×10^{24} átomos.

Escribe tu respuesta usando tres cifras significativas.

Ejemplo 2

Un suplemento de calcio de 1.60 g contiene 37.8 % Ca por masa. El calcio está presente en el suplemento en forma de $CaCO_3(s)$ (masa molar 100.09 g/mol). ¿Cuántos gramos de $CaCO_3(s)$ hay en el suplemento de calcio? Escribe tu respuesta usando tres cifras significativas.

Solución:

El porcentaje de masa de un elemento en una mezcla puede decirnos cuántos gramos hay y por ende cuántos moles hay del elemento en la mezcla. Sí el elemento es parte de un compuesto, también podemos determinar cuántos gramos y moles del compuesto hay en la mezcla. Primero, utilicemos el porcentaje de masa de Ca en el suplemento:

$$1.60g \text{ suplemento} \times \frac{37.8 \% \text{ Ca}}{100} = 0.605g \text{ Ca}$$

Posteriormente, usando la masa calculada y la masa molar del Ca podemos calcular cuántos moles de Ca hay y, entonces, cuántos moles de CaCO₃(s) hay en el suplemento:

$$0.605g~Ca \times \frac{1mol~Ca}{40.1g~Ca} \times \frac{1mol~CaCO_3(s)}{1mol~Ca} = 0.0151mol~CaCO_3(s)$$

Por último, usaremos la masa molar del CaCO₃ para convertir moles de CaCO₃ a gramos de CaCO₃:

$$0.0151 mol \; CaCO_{3}(s) \times \frac{100.09 g \; CaCO_{3}(s)}{1 mol \; CaCO_{3}(s)} = 1.51 g \; CaCO_{3}(s)$$

El suplemento de calcio contiene 1.51 g de CaCO₃(s).

	Ejercicio 6	0 puntos
	Un suplemento de hierro de 1.05 g contiene 11.8 % Fe por masa. El hierro está presente en el suplemento de C ₄ H ₂ FeO ₄ (s) (masa molar 169.9 g/mol). ¿Cuántos gramos de C ₄ H ₂ FeO ₄ (s) hay en el suplemento hierro? Escribe tu respuesta usando tres cifras significativas.	en forma nento de
_	Ejercicio 7	0 puntos
	Ejercicio 7 Un suplemento de magnesio de 1.02 g contiene 25.0 % Mg por masa. El magnesio está presente en el su en forma de MgO(s) (masa molar 40.3 g/mol). ¿Cuántos gramos de MgO(s) hay en el suplem magnesio? Escribe tu respuesta usando tres cifras significativas.	uplemento
	Un suplemento de magnesio de 1.02 g contiene 25.0 % Mg por masa. El magnesio está presente en el su en forma de MgO(s) (masa molar 40.3 g/mol). ¿Cuántos gramos de MgO(s) hay en el suplem	uplemento
	Un suplemento de magnesio de 1.02 g contiene 25.0 % Mg por masa. El magnesio está presente en el su en forma de MgO(s) (masa molar 40.3 g/mol). ¿Cuántos gramos de MgO(s) hay en el suplem	uplemento
	Un suplemento de magnesio de 1.02 g contiene 25.0 % Mg por masa. El magnesio está presente en el su en forma de MgO(s) (masa molar 40.3 g/mol). ¿Cuántos gramos de MgO(s) hay en el suplem	uplemento
	Un suplemento de magnesio de 1.02 g contiene 25.0 % Mg por masa. El magnesio está presente en el su en forma de MgO(s) (masa molar 40.3 g/mol). ¿Cuántos gramos de MgO(s) hay en el suplem	uplemento
	Un suplemento de magnesio de 1.02 g contiene 25.0 % Mg por masa. El magnesio está presente en el su en forma de MgO(s) (masa molar 40.3 g/mol). ¿Cuántos gramos de MgO(s) hay en el suplem	uplemento

Ejemplo 3

Usando la información de la tabla 1, Calcula el número de moles en una muestra de 2.03 kg de ácido cítrico $(C_6H_8O_7)$.

Escribe tu respuesta usando tres cifras significativas.

Tabla 1: Masa molar de algunos elementos.

Elemento	$\begin{array}{cc} {\rm Masa \ \ molar} \\ {\rm (g/mol)} \end{array}$
Н	1.008
С	12.01
O	16.00

Solución:

Podemos usar la masa molar de una sustancia para convertir gramos a moles de sustancia. Con esto en mente, primero calculemos la masa molar de $C_6H_8O_7$, usando la tabla 1:

6 mol de C =
$$6 \times 12.01 = 72.06g$$

8 mol de H = $8 \times 1.008 = 8.064g$
7 mol de O = $7 \times 16.00 = 112.0g$
Masa molar = $72.06 + 8.064 + 112.0 = 192.1g/mol$

Por lo tanto, 1 mol de $C_6H_8O_7$ tiene una masa molar de 192.1~g/mol. Después, usemos la masa molar de $C_6H_8O_7$ para convertir gramos a moles de $C_6H_8O_7$. Ya que nos estan dando la masa de $C_6H_8O_7$ en kilogramos, también necesitaremos incluir el factor de conversión de kilogramos a gramos:

$$2.03 \rm{kg} \times \frac{1000 \rm{g}}{1 \rm{kg}} \times \frac{1 \rm{mol}}{192.1 \rm{g}} = 10.6 \rm{mol}$$

Por lo tanto, hay 10.6 moles de $C_6H_8O_7$ en 2.03 kg de $C_6H_8O_7$.

Ejercicio 8 10 puntos

Usando la información de la tabla 2, Calcula el número de moles en una muestra de 7.89 kg de aspirina (ácido acetilsalicílico) ($C_9H_8O_4$).

Escribe tu respuesta usando tres cifras significativas.

Tabla 2: Masa molar de algunos elementos.

Elemento	$\begin{array}{cc} {\rm Masa \ \ molar} \\ {\rm (g/mol)} \end{array}$
Н	1.008
C	12.01
О	16.00

Ejercicio 9 10 puntos

Usando la información de la tabla 3, Calcula el número de moles en una muestra de 5.73 kg de ácido láctico $(C_3H_6O_3)$.

Escribe tu respuesta usando tres cifras significativas.

Tabla 3: Masa molar de algunos elementos.

Elemento	$\begin{array}{cc} {\rm Masa \ \ molar} \\ {\rm (g/mol)} \end{array}$
Н	1.008
C	12.01
О	16.00

Ejemplo 4

Usando la información de la tabla 4, Calcula el número de unidades fórmula en una muestra de 62.2 g de sulfuro de aluminio (Al₂S₃).

Escribe tu respuesta usando tres cifras significativas.

Tabla 4: Masa molar de algunos elementos.

Elemento	$\begin{array}{cc} {\rm Masa \ \ molar} \\ {\rm (g/mol)} \end{array}$
Al	26.98
S	32.06

Solución:

Podemos usar la masa molar de la sustancia para convertir gramos a moles de sustancia. Después, podemos usar el número de Avogadro, 6.023×10^{23} , para convertir moles a partículas representativas (como átomos, moléculas o unidades de fórmula). Con esto en mente, calculemos primero la masa molar de Al_2S_3 , usando la tabla 4:

2 mol de Al
$$\times$$
 26.98 g/mol = 53.96 g

$$3 \text{ mol de S} \times 32.06 \text{ g/mol} = 96.18 \text{ g}$$

Masa molar =
$$53.96 + 96.18 = 150.1 \text{ g/mol}$$

Por lo tanto, 1 mol de Al_2S_3 tiene una masa molar de 150.1 g/mol. Después, usemos la masa molar de Al_2S_3 para convertir gramos a moles de Al_2S_3 .

$$62.2 \text{ g} \times \frac{1 \text{ mol}}{150.1 \text{ g}} = 0.414 \text{ mol}$$

Por lo tanto, hay 0.414 moles de Al_2S_3 en 62.2 g de Al_2S_3 . Finalmente, usemos el número de Avogadro para convertir moles a unidades de fórmula:

$$0.414~\mathrm{mol} \times \frac{6.023 \times 10^{23}~\mathrm{unidades~de~f\acute{o}rmula}}{1~\mathrm{mol}} = 2.49 \times 10^{23}~\mathrm{unidades~de~f\acute{o}rmula}$$

Por lo tanto, hay 2.49×10^{23} unidades de fórmula en 62.2 g de Al_2S_3 .

Ejercicio 10 10 puntos

Usando la información de la tabla 5, Calcula el número de unidades fórmula en una muestra de 27.4 g de cloruro de calcio (CaCl₂).

Escribe tu respuesta usando tres cifras significativas.

Tabla 5: Masa molar de algunos elementos.

Elemento	$\begin{array}{cc} {\rm Masa \ \ molar} \\ {\rm (g/mol)} \end{array}$
Cl	35.45
Ca	40.08