#### **CS 775: Advanced Computer Graphics**

Lecture 17 : Motion Capture

- Motion Capture
  - History
    - Study of human motion



Leonardo da Vinci (1452-1519)

- Motion Capture
  - History
    - Study of human motion



Edward J. Muybridge, 1830-1904



- Motion Capture
  - Capturing motion of a performer in 3D
  - The idea for using Mocap in animation comes from rotoscoping





http://www.youtube.com/watch?v=M3cFRVqP07E



CS775: Lecture 17

- Motion Capture
  - Capturing motion of a performer in 3D
  - Has many uses:
    - Animation
    - Sports
    - > Ergonomics
    - Medicine
    - Robotics



http://en.wikipedia.org/wiki/Motion\_capture

- Motion Capture
  - Types of Motion capture
    - Mechanical

Potentiometers at joints change voltage according to angular rotation of the rods.

Gyro at the hips



Magnetic sensors and transmitters.



http://www.metamotion.com/gypsy/gypsy-motion-capture-system-mocap.htm

- Motion Capture
  - Types of Motion capture
    - Inertial
      - Single Accelerometers
      - MEMS Gyroscopes
      - Other sensors



Parag Chaudhuri CS775: Lecture 17

- Motion Capture
  - Types of Motion capture
    - Optical

From Computer Desktop Encyclopedia Reproduced with permission. © 1997 Polhemus, Inc.



CS775: Lecture 17

- Motion Capture
  - Types of Motion capture
    - Optical

With Markers
Active



Phasespace

- Motion Capture
  - Types of Motion capture
    - Optical

With Markers

Active

**Passive** 



Phasespace







Parag Chaudhuri

- Motion Capture
  - Optical Motion capture Cameras



Vicon MX: Cameras with (near) infrared LED's: 4M pixels, 10-bit grayscale, 166 fps



Phasespace: Linear detectors, 12.4M pixels, 480fps

- Motion Capture
  - Types of Motion capture
    - Optical

With Markers

Active

**Passive** 

**Markerless** 

Monocular

Kinect v1, v2



Monocular Human Motion Capture with a Mixture of Regressors, A Agarwal and B. Triggs, CVPR 2005



Real-Time Human Pose Recognition in Parts from Single Depth Images, Shotton et al., CVPR 2011



- Motion Capture
  - Types of Motion capture
    - Optical

With Markers

Active

Passive

Markerless

Monocular

Multi-camera





3D Human Kinematic Modeling and Markerless Motion Capture, G. Cheung, S. Baker, T. Kanade, CVPR2003



- Motion Capture
  - Facial Motion capture
    - Scale of movement is different from full body capture
    - Skin is not rigid
  - Performance Capture
    - Full body and face





http://www.mova.com



- Motion Capture
  - Processing Pipeline

Calibrate, reconstruct markers and label



Markers reconstructed in 3D



Labelling in a T-frame



Full Labelling

- Motion Capture
  - Processing Pipeline

> Complete motion trainctories



Processing marker
CS775: Lectu**t #ajectories** 

- Motion Capture
  - Processing Pipeline
    - Export the animation

**BVH** 

ASF/AMC

C<sub>3</sub>D

BVH – BioVision Hierarchy Format

```
HIERARCHY
ROOT Hips
                        0.00
       OFFSET 0.00
                                0.00
       CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
       JOINT Chest
                                 5.21
                0FFSFT
                         0.00
                                         0.00
                CHANNELS 3 Zrotation Xrotation Yrotation
                JOINT Neck
                        0FFSFT
                                 0.00
                                         18.65
                                                 0.00
                        CHANNELS 3 Zrotation Xrotation Yrotation
                        JOINT Head
                                                 5.45
                                         0.00
                                                         0.00
                                CHANNELS 3 Zrotation Xrotation Yrotation
                                End Site
                                        0FFSFT
                                                 0.00 3.87
                                                                 0.00
```

BVH – BioVision Hierarchy Format

| MOTION               |        |        |         |        |         |       |        |        |
|----------------------|--------|--------|---------|--------|---------|-------|--------|--------|
| Frames: 2            |        |        |         |        |         |       |        |        |
| Frame Time: 0.033333 |        |        |         |        |         |       |        |        |
| 8.03                 | 35.01  | 88.36  | -3.41   | 14.78  | -164.35 | 13.09 | 40.30  | -24.60 |
| 7.88                 | 43.80  | 0.00   | -3.61   | -41.45 | 5.82    | 10.08 | 0.00   | 10.21  |
| 97.95                | -23.53 | -2.14  | -101.86 | -80.77 | -98.91  | 0.69  | 0.03   | 0.00   |
| -14.04               | 0.00   | -10.50 | -85.52  | -13.72 | -102.93 | 61.91 | -61.18 | 65.18  |
| -1.57                | 0.69   | 0.02   | 15.00   | 22.78  | -5.92   | 14.93 | 49.99  | 6.60   |
| 0.00                 | -1.14  | 0.00   | -16.58  | -10.51 | -3.11   | 15.38 | 52.66  | -21.80 |
| 0.00                 | -23.95 | 0.00   |         |        |         |       |        |        |
| 7.81                 | 35.10  | 86.47  | -3.78   | 12.94  | -166.97 | 12.64 | 42.57  | -22.34 |
| 7.67                 | 43.61  | 0.00   | -4.23   | -41.41 | 4.89    | 19.10 | 0.00   | 4.16   |
| 93.12                | -9.69  | -9.43  | 132.67  | -81.86 | 136.80  | 0.70  | 0.37   | 0.00   |
| -8.62                | 0.00   | -21.82 | -87.31  | -27.57 | -100.09 | 56.17 | -61.56 | 58.72  |
| -1.63                | 0.95   | 0.03   | 13.16   | 15.44  | -3.56   | 7.97  | 59.29  | 4.97   |
| 0.00                 | 1.64   | 0.00   | -17.18  | -10.02 | -3.08   | 13.56 | 53.38  | -18.07 |
| 0.00                 | -25.93 | 0.00   |         |        |         |       |        |        |