

Modeling the genotype ~ environment relationship in a climate change context using redundancy analysis (RDA)

Thibaut Capblanca

Genotype-environment association (GEA): the basics

Рор	SNP1	SNP2	SNP3	
1	0.78	1	0.20	
2	0.75	1	0.22	
3	0.80	0.95	0.64	
4	0.60	0.94	0.65	
5 0.50		0.70	0.70	

Ind	T°C	Prec	
1	12	240	
2	11	210	
3	12.5	180	
4	8	150	
5	9.5	260	
•••			

Genetic

~

Environment

Redundancy analysis (RDA)

Simple redundancy analysis (RDA)

Genotype-environment association (GEA): confounding factors

Pop	SNP1	SNP2	SNP3	
1	0.78	1	0.20	
2	0.75	1	0.22	
3	0.80	0.95	0.64	
4	4 0.60	0.94	0.65	
5	5 0.50		0.70	

	Ind	T°C	Prec	
_	1	12	240	
	2	11	210	•••
	3	12.5	180	
_	4	8	150	
	5	9.5	260	

Ind	Х	Y	
1	6.3	45.12	•••
2	6.4	46.3	•••
3	5.8	45.2	
4	6	47.8	•••
5	5.7	44.6	•••

Genetic

~

Environment

- Confounding factors

(e.g., Geography, demography...)

Partial redundancy analysis (pRDA)

Partial redundancy analysis (pRDA)

Two ways of conducting redundancy analysis (RDA)

The outputs of redundancy analysis (RDA): a new space

The outputs of redundancy analysis (RDA): a new space

The outputs of redundancy analysis (RDA): predictors

The outputs of redundancy analysis (RDA): predictors

The outputs of redundancy analysis (RDA): sites/populations

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Estimating population (mal)adaptation to future climates

Mahony *et al.* **(2020).** Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study. *Evolutionary Applications*

Brenna Forester - US fish and wildlife service

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Estimating population (mal)adaptation to future climates

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Projection of the environmental variables in the RDA space

Lodgepole pine (Pinus contorta)

 a_i : score of climatic variable i along the RDA axis

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Adaptively enriched RDA space

Main adaptive gradient linked to temperature factors

Secondary adaptive gradient linked to precipitation regimes

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Necessary change in genetic composition to remain optimally adapted to new climates

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Lower offset on the coast

Lodgepole pine (Pinus contorta)

Higher offset in the Sierras

Lodgepole pine (Pinus contorta)

Lodgepole pine (Pinus contorta)

Genomic offset better explains
a decrease in fitness-related
traits than climate transfer
distance alone

Identifying modules of covarying adaptive loci

Red spruce (Picea rubens)

Adaptive loci projected in the RDA space

Red spruce (Picea rubens)

Red spruce (Picea rubens)

Stephen Keller - University of Vermont

Matt Fitzpatrick - University of Maryland

Red spruce (Picea rubens)

Red spruce (Picea rubens)

Important **climate thresholds**

Useful links

https://landscape-genomics.github.io/rdadapt/

https://github.com/Capblancq/RDA-genome-scan

https://github.com/Capblancq/RDA-landscape-genomics

https://popgen.nescent.org/2018-03-27 RDA GEA.html