What do Researchers Need when Implementing Novel Interaction Techniques?

Thibault Raffaillac École Centrale de Lyon Stéphane Huot Inria Lille – Nord Europe

Introduction

Motivation

Frustration of colleagues when programming novel interaction techniques for research

Introduction

Problem

They may use:

- an interaction framework (Qt, HTML/JS, Swing)
- a research toolkit (D3, Amulet)

Frameworks are popular but:

- input data is hard to obtain
- insufficient granularity of reuse
- unchangeable behaviors
- lagging support for new devices

Consequences:

- limited adoption of innovative interactions (trackpad, gestures, eye tracking)
- recurrent publications of tricks to circumvent limitations (Prefab, Scotty)
- active research on toolkits/architectures as alternatives to frameworks

Introduction

Plan & Research questions

- Interviews & Survey What do researchers do when prototyping new interaction techniques?
- Design recommendations
 How can we design or adapt existing frameworks and toolkits to support them?

What do researchers do when prototyping new interaction techniques?

Methods & Analyses

9 interviews Local researchers Semi-structured Problems with past projects

32 survey participants CHI community 2/3 advanced or experts Rating predefined items

3 tables, 48 themes:

- problems
- utilities
- strategies

3 rankings:

- criteria of choice (RI)
- severity of problems (R2)
- frequency of strategies (R3)

Results

Observation I

Researchers prioritize well established interaction frameworks over research toolkits

Observation I

Researchers prioritize well established interaction frameworks over research toolkits

Observation 2

The choice of a library is mostly based on its ease of use, and is directly controlled by its authors

Observation 2

The choice of a library is mostly based on its ease of use, and is directly controlled by its authors

Observation 3

Unpredictability is the most critical problem experienced by researchers with interaction libraries

Interviews & Survey Observation 4

Strategies for gathering and processing interaction data are among the most frequent for our participants

Interviews & Survey Observation 5

Researchers will often implement new features from scratch rather than patch existing applications or widgets

Takeaways

Obs. I → influence frameworks

Obs. 2 → document & test

Obs. 3 → integrate research practices into APIs

Obs. 4 → facilitate access to data

Obs. 5 → promote composition

How can we design or adapt existing frameworks and toolkits to support researchers?

Related work

Rationales from toolkits:

- rarely discussed in papers
- highly contextual
- lack of justifications on positive impacts

Rationales from frameworks:

- highly abstract
- no general consensus
- lack of tradeoffs acknowledgement

Programming requirements studies:

- good to understand the complexity of frameworks
- need more traction to generate more in-depth descriptions

Influencing frameworks

How can we have a good impact on frameworks/toolkits?

- code artefact (plugin, toolkit)
- usage study
- tech talk (e.g. Qt World Summit, Android Dev Summit)
- join/create a working group
- design principles

Duplicate, Accumulate, Defer (DAD)

Design recommendations Duplicate

Allow the duplication of singular elements to foster opportunities for extensions

Method: for each element/property/argument

- 1) Is it expected to be unique?
- 2) Could it make sense to allow many?

Probability Distribution Sliders (Greis et al.)

ExposeHK (Malacria et al.)

Proximity Toolkit (Marquardt et al.)

Duplicate

Do not implement these examples → finer reuse/composition

Hard support \rightarrow toolkits (e.g. multiple mice \rightarrow libpointing)

Probability Distribution Sliders (Greis et al.)

ExposeHK (Malacria et al.)

Proximity Toolkit (Marquardt et al.)

Accumulate

Accumulate rather than replace to keep a history of changes

Method: for each property/argument

- 1) Is this data replaced by another?
- 2) Could it make sense to keep both at any time?

Accumulate

Accumulation over time/space

Polymorphism

Phosphor (Baudisch et al.)

Defer

Defer the execution of predefined behaviors to enable their monitoring and replacement

Method: for each function/method

- 1) Can this action be intercepted? (i.e. canceled, altered or repeated)
- 2) If not, could it be useful at run-time or compile-time?

Scotty (Eagan et al.)

JellyLens (Pindat et al.)

Defer

Split commands into (i) placing an order and (ii) executing it

More scalable indirection mechanisms:

- open intermediate structures (e.g. DOM, framebuffer)
- software buses

Scotty (Eagan et al.)

Conclusion and future work

Contributions:

- key observations about researchers when programming novel interaction techniques
- design principles to better support them in frameworks & toolkits

Future work:

- promoting these principles
- classifying programming practices vs types of interaction techniques
- · evaluating how much the principles are applied already

Thank you for your attention

Interviews

Interviews & Survey Survey

32 participants (+4 pilot)
2/3 code < 40% of their time
2/3 advanced or expert

- What are the most important criteria for choosing interaction libraries? (RI)
- What are the most limiting implementation problems for researchers? (R2)
- Which strategies are most used to circumvent and overcome these problems? (R3)

Limits & Scope

Interviews with local team of researchers → risk of missing some problems/strategies

Being familiar with the interviewees \rightarrow risk of overestimating the severity of problems

Lack of baseline survey with non-researchers → lack of emphasis on the uniqueness of research needs

Scope: understand why researchers are unsatisfied & suggest directions of improvement

Rationales from toolkits

Evaluation Strategies for HCI Toolkit Research (Ledo et al.)

Example in D3 (Bostock et al., 2011):

- when a scene is generated from data, specify explicit transformations rather than letting the scene be generated implicitly
- the update of a property depending on another is immediate rather than deferred to facilitate live inspection and debugging
- intermediate representations rely on existing native formats to leverage existing user knowledge and helper tools

Extracting recommendations for other frameworks/toolkits:

- rarely discussed in papers
- highly contextual
- lack of justification on their positive impact for users

Rationales from frameworks

Example from Qt (Knoll, 2017):

- APIs that lead to readable and maintainable code
- easy to learn and use but hard to misuse
- performant
- flexible
- keeping it simple
- API stability
- world class tools

Extracting recommendations for other frameworks/toolkits:

- highly abstract
- no general consensus
- lack of tradeoffs acknowledgement

Studies on researchers' needs

Example in Usability requirements for interaction-oriented development tools (Letondal, 2010):

- minimising information complexity
- minimising access complexity
- minimising unpredictability
- graphics
- runtime adaptation
- interaction modalities
- distribution
- supporting code production
- matching code and execution
- managing the life cycle
- managing reuse and knowledge capitalization
- managing collective development

Extracting recommendations for other frameworks/toolkits:

- good for understanding complexity of frameworks and comparing them
- need more traction to generate more in-depth descriptions