Grundlagen der Betriebssysteme

Tim Luchterhand, Paul Nykiel April 21, 2018

1.1 Aufgabe 1

(a)

$$89/2 = 44 \text{ Rest } 1$$

 $44/2 = 22 \text{ Rest } 0$
 $22/2 = 11 \text{ Rest } 0$
 $11/2 = 5 \text{ Rest } 1$
 $5/2 = 2 \text{ Rest } 1$
 $2/2 = 1 \text{ Rest } 0$
 $1/2 = 0 \text{ Rest } 1$
 $\Rightarrow 89_{10} = 1011001_2$

(b) Zuerst Umrechnung ins Dezimalsystem um Division zu erleichtern:

$$32_7 = 3 * 7^1 + 2 * 7^0 = 23_{10}$$

 $23/5 = 4 \text{ Rest } 3$
 $4/5 = 0 \text{ Rest } 4$
 $\Rightarrow 32_7 = 43_5$

(c)
$$4360_{10} = 4096_{10} + 256_{10} + 8_{10} = 2^{12} + 2^8 + 2^3 = 1000100001000_2$$

(d)

$$\begin{array}{rll} & & & 1414215376_8 & & = \\ 001\ 100\ 001\ 100\ 010\ 001\ 101\ 011\ 111\ 110_2 & = \\ & & 1100\ 0011\ 0001\ 0001\ 1010\ 1111\ 1110_2 & = \\ & & C\ 3\ 1\ 1\ A\ F\ E \end{array}$$

1.2 Aufgabe 2

(a) $CAFFEE_{16} = 14\ 12\ 17\ 17\ 16\ 16_8 = 141217171616_8$

(b)
$$3072 = 2048 + 1024 = 2^{11} + 2^{10} = 110000000000_2$$

(c) $1724656_8 = 001\ 111\ 010\ 100\ 110\ 101\ 110_2 = 01111\ 01010\ 01101\ 01110_2 = F\ A\ D\ E_{32}$

(d)
$$1316_2 = 1024 + 256 + 32 + 4 = 2^{10} + 2^8 + 2^5 + 2^2 = 10100100100_2$$

1.3 Aufgabe 3

(a)

(b)

$$\begin{array}{r}
 101101_2 \\
 + 1011111_2 \\
 \hline
 11111111 \\
 \hline
 = 10001100_2
 \end{array}$$

(c)

(d)

$$\begin{array}{r}
 101011_2 \\
 + 110111_2 \\
 \hline
 1111111 \\
 \hline
 = 1100010_2
 \end{array}$$

1.4 Aufgabe 4

(a)

$$\begin{array}{rcl}
2018_{10} & = & 00000111 \ 11100010_2 \\
-2018_{10} & = & 11111000 \ 00011101_2 + 1 \\
& = & 11111000 \ 00011110_2
\end{array}$$

(b)

$$\begin{array}{rcl} 27346_{10} & = & 01101010 \ 11010011_2 \\ -27346_{10} & = & 10010101 \ 00101100_2 + 1 \\ & = & 1001010100101101_2 \end{array}$$

1.5 Aufgabe 5

(a)

$$\begin{array}{r}
10110_2 \cdot 111_2 \\
\hline
10110_2 \\
+ 10110_2 \\
+ 10110_2 \\
\hline
10011010_2
\end{array}$$

(b)

$10010010_2 \cdot 1001001_2$

 $\begin{array}{r}
10010010_{2} \\
+ 0_{2} \\
+ 0_{2} \\
+ 10010010_{2} \\
+ 0_{2} \\
+ 0_{2} \\
+ 10010010_{2}
\end{array}$

(c)

$100111110_2 \cdot 10101_2$

 10011110_2

 $+ 0_2$

 $+ 10011110_2$

 $+ 0_2$

 $+ 10011110_2$

 110011110110_2