Make Passwords

Ideally a password would be a string of 10 (or more) randomly chosen decimal digits. But this tends to be hard to remember or type.

You are being asked to convert strings of decimal digits into a more typeable and perhaps more memorable form using a 1-1 encoding. In this encoding, groups of more than 3 digits are encoded as 3-letter word randomly chosen from a dictionary.

Some examples are:	161954595198532	is encoded as	88bem06fis
	174570539285673	is encoded as	5bid012loq
	417744241130258	is encoded as	dav034zeq9
	566373677809620	is encoded as	sah9qub784
	270281313141987	is encoded as	4dud456niz

The encoding algorithm uses a dictionary of all words of the form:

```
< consonant > < vowel > < consonant >
```

sorted in lexical order, with y treated as a consonant. Dictionary word 0 is "bab" and word 21*5*21-1=2204 is "zuz".

Then the encoding algorithm with input number N is as follows:

1. Divide N by 6 and use the remainder to select the encoding format thus:

```
selects
           "WWWDWWWDDD"
                                            "DWWWDDDWWW"
0
                                3
                                    selects
1
   selects
                                4
                                    selects
           "WWWDDWWWDD"
                                            "DDWWWDDWWW"
2
   selects
                                5
                                    selects
           "WWWDDDWWWD"
                                            "DDDWWWDWWW"
```

2. Process the format left to right. If the next character is \mathbb{D} , divide N by 10 and output the remainder. If the next character is \mathbb{W} , divide N by 21*5*21=2205, use the remainder to look up a word in the dictionary, output the word, and skip to after the 3 \mathbb{W} 's in the format.

For example, 0+6*(0+2205*(1+10*(2204+2205*(2+10*(3+10*4)))))=126315290430 is encoded as bab1zuz234. Note you must use 'long' integers for C, C++, and JAVA, and that numbers input are treated module $6*(21*5*21)^2*10^4=291721500000$.

Input

One more lines each containing a non-negative integer with at most 12 digits. Input ends with an end of line.

Output

For each input line, output one line containing the encoded input integer.

Sample Input	Sample Output	
00-000-makepass.sin:	00-000-makepass.sout:	
0	bab0bab000	
6	bac0bab000	
13230	bab1bab000	
132300	bab0bac000	
291721500	bab0bab100	
2917215000	bab0bab010	
29172150000	bab0bab001	
00-001-makepass.sin:	00-001-makepass.sout:	
0	bab0bab000	
1	bab00bab00	
2	bab000bab0	
3	0bab000bab	
4	00bab00bab	
5	000bab0bab	
00-002-makepass.sin:	00-002-makepass.sout:	
126315290430	bab1zuz234	
854595198532	88pat25yiq	
870539285673	5yuz930zok	
144241130258	vac975yuf4	
273677809620	lod3fan839	
281313141987	4qo1723zeh	

Author: Robert L. Walton < walton@acm.org>

Date: Thu Oct 8 06:35:04 EDT 2020

The authors have placed this problem in the public domain; they make no warranty and accept no liability for this problem.