

Detekce anomálií

František Kynych 14. 11. 2024 | MVD

Část I.: Úvod do problematiky

Detekce anomálií

Definice

- Proces identifikace datových bodů (položek, událostí, ...), které se výrazně odchylují od většiny dat
 - Předpokladem je dostatečná vzdálenost nebo odlišnost od normy
- Anomálie se také označuje např. jako outlier nebo novelty

Druhy anomálií

Druhy anomálií

- Bodové anomálie (global outlier)
- Kontextuální anomálie (local outlier)
 - V rámci daného kontextu se jedná o anomálii
 - Např.: Naměřena vysoká teplota v prosinci
- Kolektivní anomálie
 - Anomálií je skupina datových instancí
 - Např.: Jednotlivé body nevypadají jako anomálie, ale jejich společný výskyt ano

ttps://medium.com/@jelkhoury880/introduction-to-anomaly-detection-methods-part-i-b1a2f389ffck

Základní přístupy

Statistické profilování

- Detekce dat odchylujících se od statistických vlastností distribuce
- Histogram, Gaussovo rozdělení, Z-skóre, Boxplot

Metody založené na strojovém učení

- Supervised
 - Učení s popisky (labely) dat, kde model je trénován na rozpoznávání anomálií na základě označených příkladů
 - Logistická regrese, rozhodovací stromy, neuronové sítě

Základní přístupy

Metody založené na strojovém učení

- Semi-supervised
 - Popisky dat jsou dostupné pouze pro normální data, která model používá k učení reprezentace normálního chování
 - One-class SVM, autoenkodéry

Unsupervised

- Nepotřebujeme popisky dat, anomálie jsou identifikovány na základě inherentních struktur v datech
- Např. metody založené na hustotě dat
 - Využití shlukovacích algoritmů pro nalezení anomálií
 - DBSCAN, Local Outlier Factor
- K-means, Hierarchické shlukování

Praktické aplikace

- Odhalování podvodných transakcí a pojistných událostí
- Detekce kybernetických útoků
- Zjišťování neobvyklého chování zařízení
- Detekce anomálií v procesu výroby
- Hledání anomálií ve spotřebě energií
- Detekce havárie vody
- ..

Proč je detekce anomálií složitá?

- Neznámé chování anomálií neznámé druhy a rozložení. Často je poznáme až v okamžik, kdy nastanou.
- 2. Heterogenní třídy nepravidelné a většinou naprosto odlišné charakteristiky od jiné třídy.
- 3. Vzácnost a nevyváženost tříd oproti normálním datům jsou vzácné a je složité (může být nemožné) vytvořit dataset s popisky anomálií. Chybný popisek u anomálie může mít velmi špatný vliv na algoritmus.
- 4. Různé druhy anomálií bodové, kontextuální a kolektivní.

Část II.: Přístupy k detekci anomálií

Histogram

- Neparametrická statistická technika
 - Nepředpokládá se žádné specifické rozdělení dat

Přístup rozdělen do dvou kroků:

- 1. Konstrukce histogramu
 - Určení šířky a počtu intervalů
- 2. Zkoumání, do jakého intervalu bod padne
 - Pokud bod nepadá do žádného intervalu, je pravděpodobně anomálií
 - Intervaly s nízkou četností mohou také indikovat anomálie

Nalezení šířky a počtu intervalů:

n ... počet dat, r ... rozsah dat (max – min), p ... počet intervalů

- a) p = pevná hodnota
- b) $p = \lfloor \sqrt{n} \rfloor$, nebo $p = \lceil \sqrt{n} \rceil$
- c) $p = 1 + \log_2(n)$

Šířka intervalu
$$s = \frac{r}{p}$$

Gaussovo (normální) rozdělení

• Data X mají normální rozdělení pravděpodobnosti se střední hodnotou μ a rozptylem σ^2

$$X \approx N(\mu, \sigma^2)$$

- Data leží v rozsahu $\mu \pm 3\sigma$ s pravděpodobností 99,73 %
 - Anomálie leží mimo námi stanovený interval arepsilon

Gaussovo (normální) rozdělení

Algoritmus:

1. Vypočteme $\mu_1, ..., \mu_n$ a $\sigma_1^2, ..., \sigma_n^2$ pro data X o dimenzi n, m = počet dat

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_{i,j}$$

$$\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_{i,j} - \mu_j)^2$$

2. Vypočteme p(x) pro instanci x

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

- 3. Anomálie, pókud $p(x) < \varepsilon$
- Za předpokladu, že jednotlivé příznaky jsou nezávislé

Vícerozměrné normální rozdělení

- Není potřeba počítat jednotlivé pravděpodobnosti $p(x_j; \mu_j, \sigma_j^2)$
- **Vektor** středních hodnot μ a kovarianční matice Σ

$$p(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

 $|\Sigma|$... determinant kovarianční matice

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)(x_i - \mu)^T$$

- Potřeba splnit podmínku m > n
- Postup algoritmu obdobný předchozímu snímku

- Vytvoření stromu pomocí výběru náhodného příznaku dat a náhodného rozdělení na dvě části
 - Data dělíme rekurzivně dál, dokud nemáme pouze izolované instance (nebo duplicitní data) nebo je dosažen limit hloubky stromu
 - Před dělením datasetu použijeme pouze podmnožinu dat při tvorbě každého stromu

• Náhodný proces opakujeme $n \times$ pro vytvoření lesu

(a) Representation of a single tree in a forest.

(b) Representation of a full forest where each radial line corresponds to a tree.

https://ieeexplore.ieee.org/abstract/document/8888179

(a) Anomaly point

(b) Nominal point

https://ieeexplore.ieee.org/abstract/document/8888179

Po vytvoření lesu lze získat skóre pro vybraný datový bod x a datech n

$$s(x,n) = 2^{-\frac{E(h(x))}{c(n)}}$$

E(h(x)) ... průměrná délka cesty (přes všechny stromy) k bodu x c(n) ... průměrná délka cesty ke každému listu

$$c(n) = 2H(n-1) - \frac{2(n-1)}{n}$$

$$H(i) = \ln(i) + 0.5772156649 \dots$$

(Harmonické číslo) (Eulerova konstanta)

- Přístup vhodný pro hledání lokálních (kontextuálních) anomálií
- Založeno na hustotě bodů, odvozeno z DBSCAN algoritmu

Postup:

1. K-vzdálenost bodu $A \rightarrow dist_k(A) = vzdálenost mezi <math>A$ a k-tým nejbližším sousedem

K-vzdálenostní okolí bodu A

$$N_k(A) = \{ p \mid p \in D \setminus \{A\}, dist(A, p) \le dist_k(A) \}$$

• Všechny body p, jejichž vzdálenost od bodu A je menší než $dist_k(A)$ $N_k(A) = \{B, C, D, E, F\}$

3. Dosažitelná vzdálenost (reachability distance)

$$reach_distk(A, p) = \max\{dist_k(p), dist(A, p)\}$$

Vypočítat pro všechny body p v k-okolí bodu A

4. Hustota lokální dosažitelnosti bodu *A* (local reachability density)

$$lrd_{k}(A) = \frac{|N_{k}(A)|}{\sum_{p \in Nk(A)} reach_distk(A, p)}$$

Pokud je bod A v husté oblasti, tak hodnota jmenovatele bude nízká $(=reach_distk(A,p)$ budou malé hodnoty) -> velká hodnota $lrd_k(A)$

5. Local Outlier Factor

$$LOF_k(A) = \frac{\sum_{p \in Nk(A)} \frac{lrd_k(p)}{lrd_k(A)}}{|N_k(A)|}$$

https://github.com/pilsung-kang/Business-Analytics-IME654-

Část III.: Přístupy využívající hlubokých neuronových sítí

Výzvy detekce anomálií

- 1. Nízký recall je obtížné detekovat větší množství anomálií, aniž bychom nezvýšili chybnou detekci (false positives)
- 2. Detekce anomálií ve vysoce dimenzionálních datech a/nebo v datech se závislostmi
- 3. Efektivní učení normality/abnormality
- 4. Odolnost vůči šumu
- 5. Detekce komplexních anomálií
- 6. Možnost vysvětlení anomálie

Deep Learning for Feature Extraction

 $z = \phi(\chi; \theta)$ $\phi: \chi \mapsto z$ $\chi \in \mathbb{R}^{D}, z \in \mathbb{R}^{K}$ $D \gg K$

Learning Feature Representations of Normality

Reconstruction/Prediction/Anomaly Measure-driven Loss Function

https://arxiv.org/pdf/2007.02500.pdf

End-to-end Anomaly Score Learning

Charakteristiky modelů

Method	Ref.	Sup.	Objective	DA	DP	PT	Archit.	Activation	# layers	Loss	Data
OADA	[65] (4)	Semi	Reconstruction	Yes	No	No	AE	ReLU	3	MSE	Video
Replicator	[57] (5.1.1)	Unsup.	Reconstruction	No	No	No	AE	Tanh	2	MSE	Tabular
RandNet	[29] (5.1.1)	Unsup.	Reconstruction	No	Yes	Yes	AE	ReLU	3	MSE	Tabular
RDA	[175] (5.1.1)	Semi	Reconstruction	No	No	No	AE	Sigmoid	2	MSE	Tabular
UODA	[91] (5.1.1)	Semi	Reconstruction	No	No	Yes	AE & RNN	Sigmoid	4	MSE	Sequence
AnoGAN	[138] (5.1.2)	Semi	Generative	No	No	No	Conv.	ReLU	4	MAE	Image
EBGAN	[170] $(5.1.2)$	Semi	Generative	No	No	No	Conv. & MLP	ReLU/lReLU	3-4	GAN	Image & Tabular
FFP	[86] (5.1.3)	Semi	Predictive	Yes	No	Yes	Conv.	ReLU	10	MAE/MSI	E Video
LSA	[1] (5.1.3)	Semi	Predictive	No	No	No	Conv.	lReLU	4-7	MSE & KI	video
GT	[48] (5.1.4)	Semi	Classification	Yes	Yes	No	Conv.	ReLU	10-16	CE	Image
E ³ Outlier	[157] (5.1.4)	Semi	Classification	Yes	Yes	No	Conv.	ReLU	10	CE	Image
REPEN	[112] $(5.2.1)$	Unsup.	Distance	No	No	No	MLP	ReLU	1	Hinge	Tabular
RDP	[155] (5.2.1)	Unsup.	Distance	No	No	No	MLP	lReLU	1	MSE	Tabular
AE-1SVM	[104] $(5.2.2)$	Unsup.	One-class	No	No	No	AE & Conv.	Sigmoid	2-5	Hinge	Tabular & image
DeepOC	[161](5.2.2)	Semi	One-class	No	No	No	3D Conv.	ReLU	5	Hinge	Video
Deep SVDD	[132] (5.2.2)	Semi	One-class	No	No	Yes	Conv.	lReLU	3-4	Hinge	Image
Deep SAD	[133] (5.2.2)	Semi	One-class	No	No	Yes	Conv. & MLP	lReLU	3-4	Hinge	Image & Tabular
DEC	[162] (5.2.3)	Unsup.	Clustering	No	Yes	Yes	MLP	ReLU	4	KL	Image & Tabular
DAGMM	[179] (5.2.3)	Unsup.	Clustering	No	Yes	No	AE & MLP	Tanh	4-6	Likelihood	
SDOR	[117](6.1)	Unsup.	Anomaly scores	No	No	Yes	ResNet & MLP	ReLU	50 + 2	MAE	Video
PReNet	[114](6.1)	Weak	Anomaly scores	Yes	No	No	MLP	ReLU	2-4	MAE	Tabular
MIL	[145] (6.1)	Weak	Anomaly scores	No	Yes	Yes	3DConv. & MLP	ReLU	18/34 + 3	3 Hinge	Video
PUP	[107] (6.2)	Unsup.	Anomaly scores	No	No	No	MLP	ReLU	3	Likelihood	d Sequence
DevNet	[115] (6.2)	Weak	Anomaly scores	No	No	No	MLP	ReLU	2-4	Deviation	Tabular
APE	[30] (6.3)	Unsup.	Anomaly scores	No	No	No	MLP	Sigmoid	3	Softmax	Tabular
AEHE	[45](6.3)	Unsup.	Anomaly scores	No	No	No	AE & MLP	ReLU	4	Softmax	Graph
ALOCC	[135](6.4)	Semi	Anomaly scores	Yes	No	No	AE & CNN	lReLU	5	GANs	Image
OCAN	[174] (6.4)	Semi	Anomaly scores	No	No	Yes	LSTM-AE & MLI	ReLU	4	GANs	Sequence
Fence GAN	[103] (6.4)	Semi	Anomaly scores	No	Yes	No	Conv. & MLP	lReLU/Sigmoid	4-5	GANs	Image & Tabular
OCGAN	[120] (6.4)	Semi	Anomaly scores	No	No	No	Conv.	ReLU/Tanh	3	GANs	Image

Vyhodnocení

True Positive, True Negative, False Positive, False Negative

Recall, Precision

F1 skóre

False Positive Rate, False Negative Rate

Dostupné datasety

Domain	Data	Size	Dimension	Anomaly (%)	Type
Intrusion detection	KDD Cup 99 [13]	4,091-567,497	41	0.30%-7.70%	Tabular
Intrusion detection	UNSW-NB15 [100]	257,673	49	≤9.71%	Streaming
Excitement prediction	KDD Cup 14	619,326	10	6.00%	Tabular
Dropout prediction	KDD Cup 15	35,091	27	0.10%- $0.40%$	Sequence
Malicious URLs detection	URL [93]	2.4m	3.2m	33.04%	Streaming
Spam detection	Webspam [160]	350,000	16.6m	39.61%	Tabular/text
Fraud detection	Credit-card-fraud [34]	284,807	30	0.17%	Streaming
Vandal detection	UMDWikipedia [76]	34,210	N/A	50.00%	Sequence
Mutant activity detection	p53 Mutants [13]	16,772	5,408	0.48%	Tabular
Internet ads detection	AD [13]	3,279	1,555	14.00%	Tabular
Disease detection	Thyroid [13]	7,200	21	7.40%	Tabular
Disease detection	Arrhythmia [13]	452	279	14.60%	Tabular
Defect detection	MVTec AD	5,354	N/A	35.26%	Image
Video surveillance	UCSD Ped 1 [81]	14,000 frames	N/A	28.6%	Video
Video surveillance	UCSD Ped 2 [81]	4,560 frames	N/A	35.9%	Video
Video surveillance	UMN [106]	7,739 frames	N/A	15.5%- 18.1%	Video
Video surveillance	Avenue [90]	30,652 frames	N/A	12.46%	Video
Video surveillance	ShanghaiTech Campus	317,398 frames	N/A	5.38%	Video
Video surveillance	UCF-Crime	1,900 videos (13.8m frames) N/A	13 crimes	Video
System log analysis	HDFS Log [164]	11.2m	N/A	2.90%	Sequence
System log analysis	OpenStack log	1.3m	N/A	7.00%	Sequence

Užitečná literatura / odkazy

- Scikit-learn Novelty and Outlier Detection
- Deep Learning for Anomaly Detection: A Review
- Implementation of SOTA Deep Anomaly Detection Methods

