Lecture 28: Logistic Regression

Chapter 8.4

1/19

Binary Outcome Variables

Instead of numerical outcomes, we have observations Y_i for $i=1,\ldots,n$ where

- $ightharpoonup Y_i = 1$ with probability p_i
- $Y_i = 0$ with probability $1 p_i$

Logistic regression: we are modeling p_i 's with a linear model.

Outcome Variable

Let

$$X_{1,i}, \ldots X_{k,i}$$

be the k predictor variables associated with the ith observation

One's first thought might be to model the p_i 's using linear regression:

$$p_i = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_k x_{k,i}$$

However, you may end up fitting pi's that are either

- ▶ less than 0
- ▶ greater than 1

3/19

Outcome Variable

Rather, what is modeled is the logit transformation or log-odds of p_i

$$\operatorname{logit}(p_i) = \operatorname{log}\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_k x_{k,i}$$

Why this transformation? It maps the [0,1] interval to a $(-\infty,\infty)$ interval.

Outcome Variable

First, convert pi into odds:

"Two to one odds for event X" \equiv "There is a 66% chance of event X occurring."

Then we take the natural log of it. So

• for
$$p_i = 0 \Rightarrow \log\left(\frac{p_i}{1-p_i}\right) = \log\left(\frac{0}{1}\right) = -\infty$$

• for
$$p_i = 0.5 \Rightarrow \log\left(\frac{p_i}{1-p_i}\right) = \log\left(\frac{0.5}{0.5}\right) = 0$$

• for
$$p_1=1\Rightarrow \log\left(rac{p_i}{1-p_i}
ight)=\log\left(rac{1}{0}
ight)=\log(\infty)=\infty$$

- ---

Outcome Variable

Figure 8.14 from page 369

Simple Logistic Regression Example p.370

So say we fit a logistic regression with (n = 3921):

- Y_i is spam: binary variable of whether message was classified as spam (1 if spam)
- x_i is to_multiple: binary variable indicating if more than one recipient listed

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.1161	0.0562	-37.67	0.0000
to_multiple	-1.8092	0.2969	-6.09	0.0000

The regression equation is

$$\log\left(\frac{p_i}{1-p_i}\right) = -2.12 - 1.81 \times \text{to_multiple}$$

_

Inverse Logit Transformation

How do we convert back into pi's?

Say
$$x = \log\left(\frac{p_i}{1 - p_i}\right)$$
 then $p_i = \frac{\exp(x)}{1 + \exp(x)}$

is the inverse logit transformation.

So to convert the regression equation to probabilities, we compute

$$p_i = \frac{\exp(\beta_0 + \beta_1 x_{1,i} + \ldots + \beta_k x_{k,i})}{1 + \exp(\beta_0 + \beta_1 x_{1,i} + \ldots + \beta_k x_{k,i})}$$

8/19

Fitted Probabilities

To compute the fitted probabilities \hat{p}_i :

▶ to_multiple= 0 (only one recipient):

$$\widehat{p}_i = \frac{\exp(-2.12 - 1.81 \times 0)}{1 + \exp(-2.12 - 1.81 \times 0)} = 0.11$$

▶ to_multiple= 1 (many recipients):

$$\widehat{p}_i = \frac{\exp(-2.12 - 1.81 \times 1)}{1 + \exp(-2.12 - 1.81 \times 1)} = 0.02$$

Note: 11% and 2% are not dramatically different. In an ideal world of binary predictors, we'd have fitted probabilities of 100% and 0%.

0/11

Fitted Model Using Backwards Regression

The following model was selected in the text using backwards selection using $\alpha=0.05$.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.8057	0.0880	-9.15	0.0000
to_multiple?	-2.7514	0.3074	-8.95	0.0000
word winner used?	1.7251	0.3245	5.32	0.0000
special formatting?	-1.5857	0.1201	-13.20	0.0000
'RE:' in subject?	-3.0977	0.3651	-8.48	0.0000
attachment?	0.2127	0.0572	3.72	0.0002
word password used?	-0.7478	0.2956	-2.53	0.0114

Fitted Model Using Backwards Regression

The following variables increase the probability that the email is spam, since $b>0\,$

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.8057	0.0880	-9.15	0.0000
word winner used?	1.7251	0.3245	5.32	0.0000
attachment?	0.2127	0.0572	3.72	0.0002

11 / 19

Fitted Model Using Backwards Regression

The following variables decrease the probability that the email is spam, since $b < 0\,$

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.8057	0.0880	-9.15	0.0000
to_multiple?	-2.7514	0.3074	-8.95	0.0000
special formatting? 'RE:' in subject?	-1.5857 -3.0977	0.1201 0.3651	-13.20 -8.48	0.0000 0.0000
word password used?	-0.7478	0.2956	-2.53	0.0114

These are all 3921 fitted probabilities:

13 / 15

Using Cutoffs to Classify Emails as Spam

Say we use a cutoff of 65% to classify an email spam or not:

14/19

Using Cutoffs to Classify Emails as Spam

Using a cutoff of 65%:

		Classification		
		Not Spam	Spam	
Truth	Not Spam	3351	3	
	Spam	357	10	

- ▶ Of the emails classified as spam: $\frac{10}{10+3} = 76\%$ correct
- \blacktriangleright Of the emails classified not as spam: $\frac{3351}{3351+357}=90.3\%$ correct

.

Using Cutoffs to Classify Emails as Spam

Now say we use a cutoff of 30% to classify an email spam or not:

16/19

Using Cutoffs to Classify Emails as Spam

Using a cutoff of 30%:

		Classification		
		Not Spam	Spam	
Truth	Not Spam	3138	416	
	Spam	166	201	

- ▶ Of the emails classified as spam: $\frac{201}{201+416} = 32.6\%$ correct
- ▶ Of the emails classified not as spam: $\frac{3138}{3138+166} = 95.0\%$ correct

17 / 19

Using Cutoffs to Classify Emails as Spam

Moral of the Story: most classifiers are never perfect (like hypothesis tests). There will almost always be a trade-off between:

- ▶ Type I errors: labeling an email spam when it is not
- ▶ Type II errors: failing to label an email as spam when it is

Assumptions for Logistic Regression

- ▶ There is a roughly linear relationship between each of the predictors and $\log\left(\frac{p}{1-p}\right)$.
- ▶ Each outcome Y_i is independent of the other outcomes. This can be verified using the residuals $e_i = Y_i \hat{p}_i$

Please read pages 375 and 376 from the text.