Баланс финансов страховой компании при некоторых видах личного страхования

Золкин Никита Алексеевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Товстик Т.М Рецензент: к.ф.-м.н., доц. Сизова А.Ф.

Санкт-Петербург 2012г.

Постановка задачи

- Моделирование процесса изменения капитала на основании исходных данных, предоставленных страховой компанией.
- Анализ изменения капитала.
- Оценка вероятности разорения компании при различных стартовых капиталах с помощью метода Монте-Карло.

Выплаты (страховые возмещения)
 Данные по выплатам представляются в следующем виде:

$$\mathcal{D}_{\mathcal{P}} = \{(x_i, \tau_i) \mid x_i, \tau_i \in \mathbb{R}, \}_{i=1}^N.$$

 x_{i^-} размер выплаты с плотностью

$$f_{x_i}(x) = \frac{1}{\mu} e^{-\frac{1}{\mu}x},$$

где $x \geq 0$.

 au_{i^-} промежутки между выплатами

$$f_{\tau_i}(t) = \Theta e^{-t\Theta}$$
.

где $t \geq 0$

Утверждение (Гнеденко Б.В.)

Если промежутки между страховыми выплатами независимы и распределены по показательному закону с параметром Θ

$$\tau_i: f_{\tau_i}(t) = \Theta exp(-\Theta t),$$

то число страховых случаев за (0,t) подчиняется Пуассоновскому закону с параметром Θt :

$$P(N(t) = k) = \frac{(\Theta t)^k}{k!} e^{-\Theta t}.$$

Премии страховой компании
 Данные по премиям представляются в следующем виде:

$$\mathcal{D}_{\mathcal{PR}} = \{ (y_j, T_j) \mid y_j, T_j \in \mathbb{R}, \}_{j=1}^M.$$

 y_j —размер премии

$$f_{y_j}(y) = \frac{1}{\beta} e^{-\frac{1}{\beta}y},$$

где $y \ge 0$

 $T_{i^{-}}$ промежутки между поступлениями премий

$$f_{T_j}(t) = \frac{1}{\eta} e^{-\frac{1}{\eta}t}.$$

Число выплат
 За год:

$$P(N=k) = \frac{\Theta^k}{k!} e^{-\Theta}.$$

 $\mathsf{3}\mathsf{a}$ период времени (0,t) :

$$P(N(t) = n) = \frac{(\Theta t)^n}{n!} e^{-\Theta t},$$

где 0<t<365.

 Число премий За год:

$$P(M=k) = \frac{\eta^k}{k!} e^{-\eta}.$$

За период времени (0,t) :

$$P(M(t) = m) = \frac{(\eta t)^m}{m!} e^{-\eta t},$$

где 0<t<365.

• Процесс изменения денежного капитала компании

$$C(t) = C_0 + P(t) - Z(t),$$

где P(t) — сумма премий, полученных к моменту времени t, Z(t) — сумма выплат, произведенных к моменту времени t, C_0 — стартовый капитал.

Модель Эрланга

Модель со случайными поступлениями в случайные моменты времени, и промежутками между поступлениями, распределенными по показательному закону, при этом страховые выплаты и промежутки между ними независимы и распределены по показательным законам.

Замечание

Обычно рассматривается случай, когда $P(t) = \rho t, \; \rho$ -фиксированная ставка премии. В данной работе:

$$P(t) = \sum_{j=1}^{M(t)} y_j, \quad Z(t) = \sum_{i=1}^{N(t)} x_i,$$

где M(t) и N(t) —случайные величины.

Характеристики капитала (Штрауб)

$$E(C(t)) = E(P(t)) - E(Z(t))$$

$$P(t) = \sum_{i=1}^m P_i(t), \quad P_i(t) = \sum_{k=1}^{M_i(t)} y_k$$

$$Z(t) = \sum_{i=1}^{m} Z_i(t), \quad Z_i(t) = \sum_{k=1}^{N_i(t)} x_k,$$

где $i = \overline{1, m}$ — тип страхования,

 $M_i(t)$, $N_i(t)$ — случайное количество премий и выплат

$$DP(t) = \sum_{i=1}^{m} D(P_i(t)), \quad DZ(t) = \sum_{i=1}^{m} D(Z_i(t))$$

$$D(P_i(t)) = E(M_i(t))E(y_i)^2, \quad D(Z_i(t)) = E(N_i(t))E(x_i)^2$$

$$E(P_i(t)) = E(M_i(t))E(y_i), \quad E(Z_i(t)) = E(N_i(t))E(x_i)$$

Исходные данные

Рассматриваемый портфель страховой компании состоит из следующих типов страхования:

- КАСКО физические лица
- КАСКО юридические лица
- Личное страхование

Примеры гистограммы исходных данных размеров выплат (премий) и промежутков между ними

КАСКО физ.лица. Промежутки между премиями

КАСКО юр.лица. Промежутки между выплатами

Личное страхование. Размер выплат

Параметры распределений для промежутков между премиями (выплатами)

Функция правдоподобия для оценки параметров временных промежутков между поступлениями премий (совершением выплат):

$$\widehat{\alpha} = \frac{\sum_{k=1}^{K} k m_k}{\sum_{k=1}^{K} m_k},$$

где k-длина промежутка, а m_{k^-} количество промежутков длины k.

Таблица: Параметры распределений для промежутков между премиями и выплатами

	КАСКО физ. лица	КАСКО юр. лица	Личное страхование
Bыплаты (au)	$\tau(1) = 3.79$	$\tau(2) = 8.95$	$\tau(3) = 5.9$
Премии(T)	T(1) = 4.44	T(2) = 8.37	T(3) = 6.45

Параметры распределений для размеров премий (выплат)

Функция правдоподобия для оценки параметров размера премий(выплат):

$$\widehat{\omega} = \frac{\sum_{i=1}^{I} \overline{z_i} m_i}{\sum_{i=1}^{I} m_i},$$

где $\overline{z_i}$ — среднее значение для і-го промежутка, m_i — количество данных попавших в і-й промежуток.

Таблица: Параметры распределений для размеров премий (выплат)

	КАСКО физ. лица	КАСКО юр. лица	Личное страхование
Выплаты	$\mu(1) = 1.83$	$\mu(2) = 1.66$	$\mu(3) = 8.69$
Премии	$\beta(1) = 1.99$	$\beta(2) = 2.27$	$\beta(3) = 7.87$

Алгоритм моделирования

• Моделирование процесса поступления премий $\mathsf{D}_{Pr}^{M} = \{ (y_i^M, T_i^M) \mid y_i^M, T_i^M \in \mathbb{R}, \sum_i T_i^M \leq 365 \}$

Процесс поступления премий по личному страхованию

• Моделирование процесса выплат

$$\mathsf{D}_P^M = \{(x_i^M, \tau_i^M) \mid x_i^M, \tau_i \in \mathbb{R}, \sum_i \tau_i^M \le 365\}$$

Капитал после выплат КАСКО физ.лица

ullet Моделирование общего процесса $\mathcal{D} = \mathcal{D}_{\mathcal{PR}}^{\mathcal{M}} \cup \mathcal{D}_{\mathcal{P}}^{\mathcal{M}}$

$$\mathsf{D}^M = \{(t, type_t, h_t, C(t))\}\$$

- $t \in (0, 365)$
- type ∈ {p,pr,p.k.f,pr.k.f,p.k.j,pr.k.j}
 p— выплата по личному страхованию рг —премия по личному страхованию р. k.f—выплата по КАСКО физ.лиц рг.k.f—премия по КАСКО физ.лиц р. k.j—выплата по КАСКО юр.лиц рг.k.j—премия по КАСКО юр.лиц
- $h_t \in \mathbb{R}$
- $C(t) = \sum_{\tau_i \le t, T_j \le t} (y_j x_i)$

Разорение компании наступает, если $\min_t C(t) < 0$

Таблица: Результаты моделирования.

Время (t)	Тип события (type)	Размер премии/выплаты (h_t)	Текущий капитал
			1.1.1
3.84	p.k.j	0.069	1.05
3.93	p.k.f	0.165	0.888
5.03	р	0.175	0.713
5.19	pr.k.f	0.363	1.07
360.39	p.k.f	0.556	-17.313
360.51	pr	0.145	-17.168
360.66	р	0.031	-17.199
			4.4.4

р— выплата по личному страхованию pr —премия по личному страхованию p.k.f—выплата по КАСКО физ.лиц pr.k.f—премия по КАСКО физ.лиц p.k.j—выплата по КАСКО юр.лиц pr.k.j—премия по КАСКО юр.лиц

• Визуализация

По полученным в ходе моделирования данным «Время» и «Текущий капитал» строится график, показывающий изменение капитала с течением времени.

Промоделированный процесс

Вероятность разорения

Вероятность разорения при стартовом капитале C_0 : $\psi(C_0)$.

Алгоритм оценки вероятности разорения

- ullet Процесс моделируется N=10000 раз.
- ullet $C_i^{min}=\min_t \{C_i(t)\}, i=1,\dots,10000$ где $C_i(t)$ это значение капитала компании в момент времени t, в i-ой реализации, далее рассматриваются только $C_i^{min}<0$
- ullet $C^{min}=min_iC_i^{min}$. Стартовый капитал считаем равным $(-C_i^{min})$
- Промежуток $[0,|C^{min}|]$ разбивается на интервалы I_j (j-номер промежутка), начиная с нуля, с шагом $\delta=\frac{|C^{min}|}{10}$.
- Вычисляется r_j —количество попавших в I_j значений из C_i^{min} , и находится $k_j = \sum_{m=1}^j r_m$. Вероятность разорения при стартовом капитале $U_j = j\delta$

$$P(U_j) = \frac{k_j}{10000}.$$

Результаты моделирования

Таблица: Вероятности разорения

Стартовый капитал	Вероятность разорения
0	0.9964
6.07002	0.9202
12.14004	0.7655
18.21006	0.565
24.28008	0.345
36.42012	0.0702
42.49014	0.0205
48.56016	0.0065
54.63018	0.0016
60.70020	0.00001

Процесс изменения вероятности разорения в зависимости от капитала

График вероятности разорения в зависимости от величины стартового капитал

Компенсация отрицательного баланса капитала

Максимальная вероятность разорения не должна превышать 0.001, т.е. $\psi(C) < 0.001$

КАСКО физ. лица	КАСКО юр.лица	Личное страхование
EX(1) = 1.74	EX(2) = 1.83	EX(3) = 9.45
EY(1) = 1.73	EY(2) = 1.97	EY(3) = 7.72
$E\tau(1) = 4.14$	$E\tau(2) = 9.83$	$E\tau(3) = 7.07$
ET(1) = 3.84	ET(2) = 6.5	ET(3) = 6.8
EN(1) = 88	EN(2) = 37	EN(3) = 52
EM(1) = 95	EM(2) = 56	EM(3) = 54

Для приведенных выше параметров получаем средние значения премий, выплат и баланс компании за год.

$$\begin{array}{l} DP = 95*1.73^2 + 56*1.97^2 + 54*7.72^2 = 3719.970 \\ \sigma(P) = 60.99 \\ DZ = 88*1.74^2 + 37*1.83^2 + 52*9.45^2 = 5034.068 \\ \sigma(Z) = 70.95 \\ EP = 95*1.73 + 56*1.97 + 54*7.72 = 691.55 \\ EZ = 88*1.74 + 37*1.83 + 52*9.45 = 712.23 \\ EC = EP - EZ = 689.3844 - 709.1553 = -20.68 \end{array}$$

Дополнительный источник дохода

Математическое ожидание финансового баланса компании отрицательно:

$$E(P) - E(Z) < 0,$$

следовательно, нужно найти источник дохода W, обладающий следующим свойством:

$$E(W) > E(P) - E(Z),$$

Примеры источников дохода:

- Инвестиции
- Управление премиями
- Управление портфелем

- В работе формализован один из основных процессов страховой компании.
- Проведено моделирование процесса изменения капитала компании на основании имеющихся реальных данных. Моделирование и дальнейший анализ проводились с помощью языка программирования для статистической обработки данных R.
- С помощью метода Монте-Карло оценена вероятность разорения компании в зависимости от размера стартового капитала и вынесены рекомендации по предотвращению банкротства.