Probeklausur 09.03.2012

Ferienkurs Experimentalphysik 3

Probeklausur

Qi Li, Bernhard Loitsch, Hannes Schmeiduch

 $Freitag,\, 09.03.2012$

1 Gravitationsrotverschiebung

- a) Wie groß ist die relative Frequenzverschiebung $\frac{\Delta \nu}{\nu}$ eines Photons, dass sich im Gravitationsfeld der Erde um die Strecke s=50m senkrecht zur Erdoberfläche nach oben bewegt?
- b) Ist die Verschiebung beobachtbar für:
 - 1. für Photonen aus einem atomaren Übergang des Natriums ($\lambda = 589, 6nm, \tau = 16, 4ns$)
 - 2. für $\gamma\text{-Quanten}$ von einem Kernübergang von Z
n $(E_{\gamma}=93,32keV,$ $\tau=14,6\mu s)$
- Hinweis: Es gilt die Unschärferelation $\Delta E \cdot \tau = h$. Die Verschiebung ist beobachtbar falls $\frac{\Delta E}{E} \leq \frac{\Delta \nu}{\nu}$

2 Radius-Brennweiten-Beziehung

Eine Glaskörper hat eine konvex gewölbte Oberfläche mit Radius R.

Skizzieren sie den Verlauf eines Strahls der erst im Abstand h
 parallel zur optischen Achse verläuft, die Grenzfläche im Winkel
 α trifft, im Winkel β wieder verlässt und die optische Achse am Brennpunkt (innerhalb des Glaskörpers) im Winkel γ kreuzt. Benutzen sie das Snelliussche Gesetz:

$$n_1 sin\alpha = n_2 sin\beta$$

sowie den Strahlensatz und die Kleinwinkelnäherung um einen Ausdruck für die Brennweite in Abhängigkeit des Radiuses und den Brechungsindices zu finden.

Probeklausur 09.03.2012

3 Dicke Linse

Eine dicke Linse besteht aus einen Material mit einem Brechungsindex n=1,5. Sie sei 2mm dick, und habe auf der Vorder- bzw. Rückseite die Brennweite 20mm und -30mm. Berechnen sie die Brennweite der gesamten Linse. Ist die Brennweite gleich, egal warum wierum man sie dreht?

4 Reflektierende Oberflächen

Betrachten sie eine Plexiglasplatte mit Brechungsinde
x $n_{Plexiglas}=1,49$ unter senkrechten Lichteinfall. Im folgenden soll
 Licht der Wellenlänge $\lambda=528nm$ verwendet werden.

- a) Nun wird eine dünne Öl-Schicht mit Brechungsindex $n_l = 1,29$ aufgetragen. Wie dick muss die Schicht sein, dass nahezu die gesamte Intensität durch den Ölfilm transmittiert wird?
- b) Trägt man auf die Platte nun abwechselnd dünne Schichten von zwei verschiedenen Polymeren mit Brechungsindizes n_1 und n_2 auf. Wie muss man die Dicken den beiden Schichten wählen, dass man maximale Reflexion bekommt?

5 Beugungsgitter

Auf ein Beugungsgitter mit 1000 Spalten pro mm fällt ein paralleles Lichtbündel mit $\lambda=480nm$ unter dem Einfallswinkel $\alpha=30^\circ$ gegen die Gitternormale.

- \bullet a) Unter welchem Winkel β erscheint die erste Beugungsordnung? Gibt es eine zweite Ordnung?
- Was ist der Winkelunterschied $\Delta \beta$ für zwei Wellenlänge $\lambda_1 = 480nm$ und $\lambda_2 = 481nm$?

6 Schwarzer Körper

Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer Wellenlänge von $\lambda=465nm$

- \bullet a) Betrachten Sie die Sonne näherungsweise als schwarzen Strahler und bestimmen Sie die Oberflächentemperatur T_S der Sonne.
- b) Die vom Merkur ausgesandte Schwarzkörperstrahlung entspricht einer Temperatur von $_{TM}=442.5K$. Bestimmen Sie den Abstand r des Merkurs von der Sonne unter der Annahme thermischen Gleichgewichts und eines kreisförmigen Orbits. Der Radius der Sonne beträgt $R_S=6.96\cdot 10^5 km$, der des Merkurs ist $R_S=2439,7$. (Nehmen Sie an, dass die Oberfläche des Merkurs nicht reflektierend ist!)