DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks

Yu Xiang and Dieter Fox

Paul G. Allen School of Computer Science & Engineering University of Washington

☐3D Scene Understanding

- Navigation
- Manipulation

- Geometry
- ✓ Free space
- ✓ Surface
- Semantics
- ✓ Objects

✓ Geometry

✓ Data Association

✓ Affordances

☐Related Work

3D Scene Reconstruction

- Newcombe et al., ISMAR'11
 - Henry et al., IJRR'12, 3DV'13
 - Whelan et al., RSSW'12, RSS'15 😕 Semantics
 - Keller et al., 3DV'13
- Semantic Labeling

KinectFusion

- Long et al., CVPR'12
- Zheng et al., ICCV'15
- Chen et al., ICLR'15
- Badrinarayanan et al., CVPR'15
- Geometry
- Data Association ✓ Semantics

Semantic Mapping

- Salas-Moreno et al., CVPR'13
- McCormac et al., ICRA'17
- ✓ Geometry
- ✓ Data Association
- ✓ Semantics

SemanticFusion

☐Our Contribution

☐Single Frame Labeling with FCN **Feature Extraction** ! Classification Convolution Addition

☐ Video Semantic Labeling with DA-RNN

Data Associated Recurrent Units

Acknowledgments

This work was funded in part by ONR grant N00014-13-1-0720 and by Northrop Grumman. We thank Tanner Schmidt for fruitful discussions and for providing his implementation of KinectFusion.

Experiments

Comparison on Network Architectures

Methods	FCN [1]	Our FCN	Our GRU-RNN	Our DA-RNN	No Data Association
Background	94.3	96.1	96.8	97.6	69.1
Bowl	78.6	87.0	86.4	92.7	3.6
Cap	61.2	79.0	82.0	84.4	9.9
Cereal Box	80.4	87.5	87.5	88.3	14.0
Coffee Mug	62.7	75.7	76.1	86.3	4.5
Coffee Table	93.6	95.2	96.0	97.3	68.0
Office Chair	67.3	71.6	72.7	77.0	13.6
Soda Can	73.5	82.9	81.9	88.7	5.9
Sofa	90.8	92.9	93.5	95.6	35.6
Table	84.2	89.8	90.8	92.8	20.1
MEAN	78.7	85.8	86.4	90.1	24.4

Metric: segmentation intersection over union (IoU)

Analysis on Network Inputs

[1] J. Long, E. Shelhamer and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR'15. [2] K. Lai, L. Bo and D. Fox. Unsupervised feature learning for 3D scene labeling. In ICRA'14.

[3] Chang et al., ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012, 2015.

