1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ПОЛЯ (ВЕКТОРНОГО АНАЛИЗА)

1.1. Скалярное поле

ОПРЕДЕЛЕНИЕ. Если с каждой точкой P(x,y,z) некоторой пространственной области G связана скалярная величина, то говорят, что **в области** G задано скалярное поле: u = f(x,y,z), где f(x,y,z) – скалярная функция, называемая функцией поля.

Примеры скалярных полей: поле температур, давления, плотности, концентраций, электрического потенциала. Рассмотрим подробнее последний пример.

Пусть речь идет о точечном заряде q. Потенциал электростатического поля заряда q, помещенного в начало координат, задается в каждой точке пространства M(x,y,z) с радиус-вектором $\vec{r}(x,y,z)$, за исключением начала координат, функцией поля вида:

$$u = \frac{q}{r} = \frac{q}{|\vec{r}|} = \frac{q}{\sqrt{x^2 + y^2 + z^2}}.$$

Заметим, что если $|\vec{r}| = \text{const}$, $x^2 + y^2 + z^2 = const$ — уравнение сферы. Следовательно, в точках, принадлежащих сфере, потенциал электростатического поля сохраняет свое значение, или u = const.

Ограничимся рассмотрением так называемых стационарных полей, т. е. полей, не зависящих от времени.

1.2. Поверхности и линии уровня

В дальнейшем, если не оговорено особо, предполагаем функцию u = f(x, y, z) однозначной и непрерывно-дифференцируемой.

Рассмотрим точки области, в которой функция u = f(x, y, z) принимает постоянные значения: f(x, y, z) = c (c = const). Это уравнение можно рассматривать как уравнение некоторой поверхности в пространстве.

ОПРЕДЕЛЕНИЕ. Геометрические места точек P(x, y, z), где скалярное поле принимает одно и то же значение f(x, y, z) = c, называются **поверхностями уровня** или эквипотенциальными поверхностями.

В ранее рассмотренном примере поля точечного заряда поверхности уровня – концентрические сферы различного радиуса.

В силу однозначности функции u = f(x, y, z) поверхности уровня, соответствующие различным значениям c, не пересекаются между собой.

Скалярное поле называется **плоским**, если при подходящем выборе системы координат функция поля зависит только от двух переменных. Множество точек плоскости P(x,y), для которых f(x,y) = c, называется **линией уровня** плоского скалярного поля.

1.3. Производная по направлению

Пусть в пространственной области G задано скалярное поле: u=u(x,y,z)=u(P). Рассмотрим точку $P_1(x,y,z)$ и исходящий из нее вектор $\vec{l}=\left\{l_x;l_y;l_z\right\}$. Найдем, как изменяется поле в направлении вектора \vec{l} . Сместимся из точки $P_1(x,y,z)$ в направлении вектора \vec{l} в точку $P_2(x+\Delta x,y+\Delta y,z+\Delta z)$. Обозначим через $\Delta \rho$ длину вектора $\overrightarrow{P_1P_2}$: $\Delta \rho = \left|\overrightarrow{P_1P_2}\right|$, тогда $\Delta \rho = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$. При этом функция поля получит приращение

$$\Delta u = u(P_2) - u(P_1) = u(x + \Delta x, y + \Delta y, z + \Delta z) - u(x, y, z) =$$

$$= du + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y + \varepsilon_3 \Delta z = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \frac{\partial u}{\partial z} \Delta z + \theta(\Delta \rho),$$

где $\theta(\Delta\rho)$ — бесконечно малая более высокого порядка по $\Delta\rho$, $\epsilon_1,\epsilon_2,\epsilon_3\to 0$ при $\Delta x, \Delta y, \ \Delta z\to 0$, а величина $\frac{\Delta u}{\Delta\rho}=V_{cp}$ — средняя скорость изменения скалярной функции u(P) в направлении вектора \vec{l} .

$$\frac{\Delta u}{\Delta \rho} = \frac{\partial u}{\partial x} \frac{\Delta x}{\Delta \rho} + \frac{\partial u}{\partial y} \frac{\Delta y}{\Delta \rho} + \frac{\partial u}{\partial z} \frac{\Delta z}{\Delta \rho} + \varepsilon_1 \frac{\Delta x}{\Delta \rho} + \varepsilon_2 \frac{\Delta y}{\Delta \rho} + \varepsilon_3 \frac{\Delta z}{\Delta \rho}.$$

Перейдем к пределу при $\Delta \rho \to 0$, что соответствует стремлению $P_2 \to P_1$:

$$\lim_{\Delta \ell \to 0} \frac{\Delta u}{\Delta \rho} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma,$$

где $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — направляющие косинусы вектора $\overrightarrow{P_1P_2}$. Поскольку $\overrightarrow{P_1P_2} \| \overrightarrow{l}$, то их направляющие косинусы равны. Поскольку $\overrightarrow{l} = l_x \overrightarrow{i} + l_y \overrightarrow{j} + l_z \overrightarrow{k}$, то $\cos \alpha = \frac{l_x}{|\overrightarrow{I}|}$, $\cos \beta = \frac{l_y}{|\overrightarrow{I}|}$, $\cos \gamma = \frac{l_z}{|\overrightarrow{I}|}$.

ОПРЕДЕЛЕНИЕ. Производной функции u в точке P(x,y,z) (обозначение $\frac{\partial u}{\partial l}$) по направлению вектора \vec{l} называется предел $\lim_{\Delta l \to 0} \frac{\Delta u}{\Delta l}$ (если он существует), равный $\frac{\partial u}{\partial l} = \lim_{\Delta l \to 0} \frac{\Delta u}{\Delta l} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma$.

Производная по направлению \vec{l} , $\frac{\partial u}{\partial l}$, определяет скорость изменения скалярного поля в направлении вектора \vec{l} , в частности, если $\frac{\partial u}{\partial l} > 0$, поле возрастает, если $\frac{\partial u}{\partial l} < 0$, поле убывает.

ПРИМЕР. Найдите производную $\frac{\partial u}{\partial l}$ в точке P (1,1,1) в направлении вектора $\vec{\ell} = \vec{i} + \vec{j} + \vec{k}$, если $u = x^2 + y^2 + z^2$.

Решение:

$$u'_{x|_{P}} = 2x|_{P} = 2$$
, $u'_{y|_{P}} = 2y|_{P} = 2$, $u'_{z|_{P}} = 2z|_{P} = 2$; $|\vec{\ell}| = \sqrt{3}$,
 $\cos \alpha = \frac{1}{\sqrt{3}}$; $\cos \beta = \frac{1}{\sqrt{3}}$; $\cos \gamma \frac{1}{\sqrt{3}}$;

 $\frac{\partial u}{\partial \ell} = 2\frac{1}{\sqrt{3}} + 2\frac{1}{\sqrt{3}} + 2\frac{1}{\sqrt{3}} = \frac{6}{\sqrt{3}} > 0$, следовательно, скалярное поле возрастает.

1.4. Градиент скалярного поля

Пусть задано скалярное поле u(x, y, z).

ОПРЕДЕЛЕНИЕ. Градиентом скалярного поля u в точке P(x,y,z) называется вектор, обозначаемый символом $\operatorname{grad} u$ и определяемый равенством

$$grad u = \frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k} .$$

Введем символический вектор "набла", или оператор Гамильтона

$$\vec{\nabla} = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} = \left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial y} \right).$$

Этот символ $\overrightarrow{\nabla}$ используется для записи операций векторного анализа в сокращенной и удобной для расчётов форме. Выражение вида $\overrightarrow{\nabla}u(x,y,z)$ понимается как результат действия оператора на соответствующую функцию.

Тогда

$$\vec{\nabla}u(x,y,z) = (\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}) \cdot u(x,y,z) = \frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k} = u'_x\vec{i} + u'_y\vec{j} + u'_z\vec{k},$$

$$grad u = \vec{\nabla}u.$$

Более детально использование вектора-оператора "набла" для записи и выполнения различных дифференциальных операций будет обсуждаться ниже.

1.4.1. Связь производной по направлению с градиентом

Ранее было получено выражение для производной по направлению:

$$\frac{\partial u}{\partial \ell} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma.$$

Введем $\vec{l}_0 = (\cos\alpha, \cos\beta, \cos\gamma)$ — единичный вектор (орт) в направлении \vec{l} . Выражение для производной по направлению может быть записано в виде

вектор (орт) в направлении
$$t$$
 . Выражение для зводной по направлению может быть записавиде
$$\frac{\partial u}{\partial t} = (\vec{\nabla} u \cdot \vec{l_0}) = |\vec{\nabla} u| \cdot |\vec{l_0}| \cdot \cos \phi = |grad u| \cdot \cos \phi,$$

где ϕ — угол между единичным вектором \vec{l}_0 данного направления \vec{l} и вектором градиента $\operatorname{grad} u$, т. е. производная по направлению вектора \vec{l} в точке P(x,y,z) равна проекции градиента на данное направление.

Если $grad\ u=0$, то $\frac{\partial u}{\partial l}=0$. Если $grad\ u\neq 0$, то $\frac{\partial u}{\partial l}<|grad\ u|$ для всех векторов \vec{l} , за исключением вектора \vec{l} , направленного в сторону $grad\ u$.

1.4.2. Свойства градиента

Пусть заданы производная поля по направлению и градиент поля:

$$\frac{\partial u}{\partial \ell} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma;$$

$$\vec{\nabla} u = \left\{ \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z} \right\}, \qquad \left| \vec{\nabla} u \right| = \sqrt{\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2}.$$

- 1. Максимальное значение производной по направлению равно модулю градиента: $\frac{\partial u}{\partial l} = \left| gradu \right| \cdot \cos \varphi \; ; \; \phi \to 0 ; \cos \phi \to 1 \Rightarrow \; \max \frac{\partial u}{\partial l} = \left| gradu \right| .$
- 2. Вектор ∇u направлен в сторону возрастания поля.
- 3. Вектор ∇u всегда нормален к поверхности (линии) уровня поля (эквипотенциальной поверхности).

Доказательство:

Пусть u=u(x,y,z) скалярное поле и u(x,y,z)=c – уравнение поверхности уровня. Выберем произвольную точку поверхности $P\in\{u(x,y,z)=c\}$, которую обозначим P(x,y,z), и проведём касательную плоскость в точке P к поверхности, описываемой уравнением

$$F(x,y,z)=u(x,y,z)-c=0\;;$$

$$\frac{\partial F}{\partial x}(x-x)+\frac{\partial F}{\partial y}(y-y)+\frac{\partial F}{\partial z}(z-z)=0\;-$$
 уравнение касательной плоскости;
$$\frac{\partial u}{\partial x}(x-x)+\frac{\partial u}{\partial y}(y-y)+\frac{\partial u}{\partial z}(z-z)=0\;.$$

Тогда вектор нормали касательной плоскости имеет вид:

$$\vec{n} = \left\{ \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z} \right\}, \qquad \vec{n} = \frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k} = \vec{\nabla}u.$$

Свойства 1–3 дают **инвариантное** (не зависящее от системы координат) определение градиента, т. е. утверждают, что независимо от системы координат ∇u указывает величину и направление наибольшего возрастания скалярного поля в точке: $|grad u| = max \left(\frac{\partial u}{\partial l} \right)$.

Дифференциальные свойства градиента:

- Если скалярное поле есть сумма двух полей, $f=(x,y,z)=u(x,y,z)+v(x,y,z)\,,\, \text{то}\ \overrightarrow{\nabla} f=\overrightarrow{\nabla} (u+v)=\overrightarrow{\nabla} u+\overrightarrow{\nabla} v\,.$
- $\overrightarrow{\nabla}(u \cdot v) = (\overrightarrow{\nabla}u)v + u(\overrightarrow{\nabla}v)$.
- $\bullet \qquad \overrightarrow{\nabla} c \cdot u = c \overrightarrow{\nabla} u \ .$
- $\overrightarrow{\nabla} f(u) = f'_u \cdot \overrightarrow{\nabla} u$ градиент сложной функции.
- $\overrightarrow{\nabla} f(u,v) = f'_u \cdot \overrightarrow{\nabla} u + f'_v \cdot \overrightarrow{\nabla} v$.

ПРИМЕР. Найдите наибольшую крутизну подъёма поверхности $u = x^y$ в точке P(2,2,4).

Решение:
$$|grad u| = max \left(\frac{\partial u}{\partial l} \right)$$
.
$$\vec{\nabla} u = u'_x \vec{i} + u'_y \vec{j} + u'_z \vec{k} = yx^{y-1} \vec{i} + x^y \ln x \vec{j} + 0 \vec{k} ,$$

$$|\vec{\nabla} u|_P = \sqrt{(yx^{y-1})^2 + (x^y \ln x)^2}|_P = \sqrt{(2 \cdot 2)^2 + (4 \ln 2)^2} = 4\sqrt{1 + \ln^2 2} .$$

ПРИМЕР. Найдите нормаль к поверхности $u=x^2+y^2+z^2$ в точке P(1,1,1). Решение: По свойству 3 $\vec{n} \| \vec{\nabla} u$, $grad \ u = 2x\vec{i} + 2y\vec{j} + 2z\vec{k}$,

$$|\vec{\nabla}u|_{P} = 2x\vec{i} + 2y\vec{j} + 2z\vec{k}|_{P} = 2\vec{i} + 2\vec{j} + 2\vec{k} = \{2, 2, 2\} \implies |\vec{n_{0}}| = \{\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\}.$$

ПРИМЕР. Найдите градиент модуля разности радиус-векторов

$$u(x, y, z) = |\vec{r} - \vec{r}_0| = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}$$

где $\vec{r}=\left\{x,y,z\right\}$ и $\vec{r}_0=\left\{x_0,y_0,z_0\right\}$ — радиус-векторы точек $P\left(x,y,z\right)$ и $P_0\left(x_0,y_0,z_0\right)$ (P_0 рассматривается как фиксированная точка).

Решение:

$$grad u = \frac{\partial u \vec{i}}{\partial x} \vec{i} + \frac{\partial u \vec{j}}{\partial y} \vec{j} + \frac{\partial u}{\partial z} \vec{k} = \frac{\{x - x_0; y - y_0; z - z_0\}}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}} = \frac{\vec{r} - \vec{r_0}}{|\vec{r} - \vec{r_0}|}$$

- единичный вектор направления вектора $P_0 P$.

Используя этот результат, рассмотрим двумерный случай и выведем известное оптическое свойство эллипса: свет от источника, помещенного в один из фокусов эллипса, концентрируется во втором фокусе.

Введем скалярную функцию $u(P) = r_1 + r_2$, где r_1 , r_2 – расстояния от точки плоскости P до фиксированных точек плоскости F_1 , F_2 ; ее линиями уровня являются эллипсы. Из рассмотренного примера

$$grad u = grad(r_1 + r_2) = \overrightarrow{r_1^0} + \overrightarrow{r_2^0},$$

т. е. градиент равен диагонали ромба, построенного на ортах радиус-векторов, проведенных к точке P из фокусов F_1 и F_2 . Так как диагональ ромба является и биссектрисой, то нормаль к эллипсу в какой-либо точке делит пополам угол между ее фокальными радиусами. Используя известный закон оптики: угол падения равен углу отражения, получаем физическую интерпретацию: луч света, вышедший из одного фокуса, попадает в другой фокус.

1.5. Векторное поле

ОПРЕДЕЛЕНИЕ. Если с каждой точкой P(x; y; z) пространственной области G связана векторная функция $\vec{a} = \vec{a}(P) = \vec{a}(x, y, z)$, то говорят, что в области G задано векторное поле.

Векторное поле определяется тремя скалярными характеристиками – координатами вектора \vec{a} , $\vec{a} = \left\{ a_x, a_y, a_z \right\}$, или $\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$,

где $a_x = a_x(x,y,z)$, $a_y = a_y(x,y,z)$, $a_z = a_z(x,y,z)$ – проекции векторного поля на оси координат или компоненты вектор-функции. Будем считать, что они непрерывны и дифференцируемы по всем переменным.

1.5.1. Векторные линии

Векторное поле можно изобразить графически, указав положение вектора \vec{a} в некоторых точках.

ОПРЕДЕЛЕНИЕ. Векторной линией поля $\vec{a} = \vec{a}(P)$ в области G называется кривая, в каждой точке которой вектор \vec{a} направлен по касательной к этой кривой.

Найдём уравнения векторных линий.

Предположим, что векторные линии есть прямые, тогда их уравнения:

$$\frac{x-\overline{x}}{a_x} = \frac{y-\overline{y}}{a_y} = \frac{z-\overline{z}}{a_z}, \ \frac{\Delta x}{a_x} = \frac{\Delta y}{a_y} = \frac{\Delta z}{a_z}.$$

Так как любую кривую можно на бесконечно малом участке величины $\overrightarrow{dr} = (dx, dy, dz)$ заменить

отрезком касательной, а направление касательной совпадает с направлением \vec{a} , то уравнения векторной линии имеют вид:

$$\frac{dx}{a_x} = \frac{dy}{a_y} = \frac{dz}{a_z}.$$

На самом деле речь идет о системе дифференциальных уравнений первого порядка.

$$\frac{dy}{dx} = \frac{a_y}{a_x}; \quad \frac{dz}{dx} = \frac{a_z}{a_x}; \quad \frac{dz}{dy} = \frac{a_z}{a_y}.$$

Общее решение этой системы: $\begin{cases} \phi_1(x,y,z) = C_1; \\ \phi_2(x,y,z) = C_2 \end{cases}$ определяет двухпараметри-

ческое семейство линий и дает совокупность всех векторных линий поля.

ПРИМЕР. Поле задано вектором: $\vec{a} = -y\vec{i} + x\vec{j} + b\vec{k}$. Найдите векторную линию поля, проходящую через точку P(1,0,0). Решение:

Уравнение векторных линий $\frac{dx}{-y} = \frac{dy}{x} = \frac{dz}{b}$.

1)
$$\frac{dx}{-y} = \frac{dy}{x}$$
, $xdx = -ydy$, $xdx + ydy = 0$, $x^2 + y^2 = c_1^2$ – уравнение окружности.

Перейдем к параметрическим уравнениям окружности: $\begin{cases} x = c_1 \cos t, \\ y = c_1 \sin t. \end{cases}$

2) $\frac{dy}{x} = \frac{dz}{b}$, bdy = xdz, $bc_1 \cos tdt = c_1 \cos tdz$, dz = bdt. Общее решение системы (семейство векторных линий):

$$\begin{cases} x = c_1 \cos t, \\ y = c_1 \sin t, \\ z = bt + c_2. \end{cases}$$

Найдем уравнение векторной линии, проходящей через точку P(1,0,0):

$$\begin{cases} 1 = c_1 \\ 0 = 0 \\ 0 = 0 + c_2 \end{cases} \Rightarrow \begin{cases} c_1 = 1 \\ c_2 = 0 \end{cases} \Rightarrow \begin{cases} x = \cos t \\ y = \sin t \\ z = bt \end{cases}$$

- уравнение винтовой линии.

ОПРЕДЕЛЕНИЕ. Пусть в векторном поле \vec{a} расположена произвольная площадка Σ , ограниченная замкнутым контуром Γ . Проведём через границу этой площадки векторные линии. Образуемая при этом фигура называется **векторной трубкой** (при этом векторные линии, проходящие через Σ , целиком лежат внутри векторной трубки).

1.5.2. Плоское векторное поле

ОПРЕДЕЛЕНИЕ. Векторное поле называется плоским, если все вектора лежат в параллельных плоскостях. Уравнение векторных линий (для случая, когда векторы поля параллельны координатной плоскости *Oxy*)

$$\frac{dx}{a_x} = \frac{dy}{a_y} = \frac{dz}{0}.$$

В плоском поле векторные линии есть плоские кривые вида $y = \varphi(x)$ или f(x,y) = 0.