Semi-Supervised Learning with Meta-Gradient

Xin-Yu Zhang¹, Taihong Xiao², Haolin Jia³, Ming-Ming Cheng¹, Ming-Hsuan Yang² ¹Nankai University, ²University of California, Merced, ³Tongji University

arXiv: https://arxiv.org/abs/2007.03966

Github: https://github.com/Sakurao3/SemiMeta

Email: xinyuzhang@mail.nankai.edu.cn

– Motívatíon -

- > Semi-supervised learning (SSL) aims at utilizing unlabeled data together with a small amount of labeled data to improve the generalization ability.
- > Consistency-based SSL methods assume the predictions should be consistent against small perturbations of training data or parameters.
- Existing consistency-based algorithms do not fully exploit the label information when computing the consistency regularization.
- ➤ In this work, we propose a meta-learning algorithm in which the consistency loss is designed specifically for the underlying task.

Challenge -

- The main challenge is that the consistency loss, which is calculated from the unlabeled data, seems to have no relationship with the labeled data.
- ➤ We borrow the idea of meta-learning, and build the relationship by unfolding and differentiating one SGD step, as shown in Fig. 1.

Fig 1. The magic of meta learning.

→ Algorithm — Our formulation is as follows:

$$\min_{\mathcal{Y}} \sum_{k=1}^{N^l} \mathcal{L}(x_k^l, y_k; \theta^*(\mathcal{Y}))$$

s.t.
$$\theta^*(\mathcal{Y}) = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N^u} \mathcal{L}(x_i^u, \, \widehat{y}_i; \, \theta).$$

- > Directly solving the above bi-level optimization problem is computationally prohibitive. We adopt an online approximation approach.
- I. Initialize the pseudo labels of the unlabeled data:

$$\widetilde{y}_i = f(x_i^u; \theta_t);$$

2. Compute the unlabeled data loss:

$$\mathcal{L}(x_i^u, \widetilde{y}_i; \theta_t) = \Phi(f(x_i^u; \theta_t), \ \widetilde{y}_i);$$

Back-propagate the unlabeled loss *w.r.t.* the model parameters:

$$\nabla \theta_t = \frac{1}{B^u} \sum_{i=1}^{B^u} \nabla_{\theta} \mathcal{L}(x_i^u, \widetilde{y}_i; \theta_t);$$

4. Apply one SGD step on the model parameters:

$$\tilde{\theta}_{t+1} = \theta_t - \alpha_t \nabla \theta_t;$$

Evaluate the updated parameters on the labeled data and compute the labeled

$$\mathcal{L}(x_k^l, y_k; \tilde{\theta}_{t+1}) = \Phi(f(x_k^l; \tilde{\theta}_{t+1}), y_k);$$

6. Back-propagate the labeled loss *w.r.t.* the pseudo labels:

$$\nabla \tilde{y}_{i} = \frac{1}{B^{l}} \sum_{k=1}^{B^{l}} \nabla_{\tilde{y}_{i}} \mathcal{L}(x_{k}^{l}, y_{k}; \tilde{\theta}_{t+1});$$

7. Perform one SGD step on the pseudo labels:

$$\widehat{y}_i = \widetilde{y}_i - \beta_t \nabla \widetilde{y}_i;$$

8. Compute the consistency regularization with the updated pseudo labels:

$$\mathcal{L}_{cons} = \frac{1}{B^u} \sum_{i=1}^{B^u} \mathcal{L}(x_i^u, \hat{y}_i; \theta_t)$$

Remarks

- > Since the initial pseudo labels are exactly the prediction of the current model, the unlabeled loss in Step 2 and the gradients in Step 3 are both zero. However, the update in Step 4 is still meaningful since the Jacobian of $\nabla \theta_t$ w.r.t. \tilde{y}_i is nonzero, which lays in the essence of the relationship between consistency loss and labeled data;
- The equation in Step 6 actually involves the second-order derivative. We avoid this by the first-order approximation (see our paper);
- \triangleright In Step 8, \hat{y}_i is "detached" from θ_t , namely, the gradients of \hat{y}_i do not propagate to θ_t when differentiating \mathcal{L}_{cons} .

-Convergence Analysis-

Theorem 1 (Convergence guarantee). Let

$$G(\theta; \mathcal{D}^l) = \frac{1}{N^l} \sum_{k=1}^{N^l} \nabla_{\theta} \mathcal{L}(x_k^l, y_k; \theta)$$

be the loss of the labeled data. Under mild conditions (see our paper), as long as the regular learning rate α_t and meta learning rate β_t are sufficiently small, each SGD step will decrease the validation loss $G(\theta)$, regardless of the selected unlabeled batch, i.e.,

$$G(\theta_{t+1}) \leq G(\theta_t)$$
, for each t.

Theorem 2 (Convergence rate). Under the same condition as above, as long as the learning rates α_t , β_t are moderate (not too small or too large), then the metalearning algorithm achieves $\mathbb{E}[\|\nabla_{\theta}G(\theta_t)\|^2] \leq \varepsilon$ in $O(1/\varepsilon^2)$ steps, i.e.,

$$\min_{1 \le t \le T} \mathbb{E}[\|\nabla_{\theta} G(\theta_t)\|^2] \le \frac{C}{\sqrt{T}},$$

where C is a constant independent of the training process.

– Future Perspectíve

- \triangleright Incorporation with the concurrent self-supervised SSL methods, e.g., FixMatch.
- Extension beyond semi-supervised classification, e.g., weakly-supervised segmentation.
- (May be too aggressive) Generalize the current bi-level optimization towards multi-level optimization.

-Experiments

> Comparison with SOTA methods on SVHN, CIFAR datasets.

Method	SVHN	CIFAR-10	CIFAR-100
Π-Model (Laine and Aila, 2017)	4.82%	12.36%	39.19%
TE (Laine and Aila, 2017)	4.42%	12.16%	38.65%
MA-DNN (Chen et al., 2018)	4.21%	11.91%	34.51%
Co-training (Qiao et al., 2018)	3.29%	8.35%	34.63%
MT+fastSWA (Athiwaratkun et al., 2019)	-	9.05%	33.62%
TNAR-VAE (Yu et al., 2019)	3.74%	8.85%	-
ADA-Net (Wang et al., 2019)	4.62%	10.30%	-
Ours	3.15%	7.78%	30.74%
Fully-Supervised	2.67%	4.88%	22.10%

➤ Performance on ImageNet dataset and the training/testing accuracy curves.

Method	Top-1	Top-5
Labeled-Only	53.65%	31.01%
MT	49.07%	23.59%
Co-training	46.50%	22.73%
ADA-Net	44.91%	21.18%
Ours	44.87%	18.88%
Fully-Supervised	29.15%	10.12%

Feature visualization of the baseline method and ours.

