

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.04** Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ

по лабораторной работе № 05

Название: Исследование мультиплексоров

Дисциплина: Архитектура ЭВМ

Студент	ИУ7И-46Б		Нгуен Ф. С.
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Працодоротаці			Попов А. Ю.
Преподаватель			Hollob A. 10.
		(Подпись, дата)	(И.О. Фамилия)

Цель работы: изучение принципов построения, практического применения и экспериментального исследования мультиплексоров

№ набора	X ₄	X ₃	\mathbf{X}_2	\mathbf{X}_1	f	Примечание
0	0	0	0	0	1	$D_0 = 1$
1	0	0	0	1	1	
2	0	0	1	0	0	$\underline{\mathbf{D}_1 = 0}$
3	0	0	1	1	0	
4	0	1	0	0	0	$\mathbf{D}_2 = \mathbf{X}_1$
5	0	1	0	1	1	
6	0	1	1	0	1	$\mathbf{D}_3 = \mathbf{!X}_1$
7	0	1	1	1	0	
8	1	0	0	0	0	$\mathbf{D}_4=0$
9	1	0	0	1	0	
10	1	0	1	0	1	$\mathbf{D}_5 = \mathbf{!X}_1$
11	1	0	1	1	0	
12	1	1	0	0	1	$\mathbf{D}_6 = 1$
13	1	1	0	1	1	
14	1	1	1	0	1	$D_7 = 1$
15	1	1	1	1	1	

1. Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8 – 1 цифровых сигналов:

Вывод: мультиплексор может использоваться в качестве анализатора логической функции.

2. Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8 – 1 аналоговых сигналов

<u>Вывод</u>: Когда входное напряжение больше половины напряжения, поданного на вход EN (2.5 Вольта) мы получаем значение «истина» на выходе мультиплексора

3. Исследование ИС ADG408 или ADG508 (рис.6) как коммутатора MUX 8 – 1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных

4. Наращивание мультиплексора

<u>Вывод</u>: Значения на наращенном мультиплексоре совпадают с исходными, следовательно, схема была составлена правильно.

<u>Контрольные вопросы:</u>

1. Что такое мультиплексор?

Это функциональный узел, имеющий п адресных входов и N=2ⁿ информационных входов. Он выполняет коммутацию на выход того информационного сигнала, адрес которого установлен на адресных входах. Также мультиплексор переключает сигнал с одной из N входных линий на один выход.

2. Какую логическую функцию выполняет мультиплексор?

У =EN * j=0 2^n −1 Dj * mj (A(n −1) , A(n −2) ,... , Ai , ... , A0) Где Аj – адресные входы и сигналы, i= 0, 1,..., n − 1; Dj – информационные входы и сигналы, j=0, 1,..., 2^n −1 ; mj – конституента единицы, номер которой равен числу, образованному двоичным кодом сигналов на адресных входах; EN – вход и сигнал разрешения (стробирования).

3. Каково назначение и использование входа разрешения?

 Вход EN используется для разрешения работы мультиплексора, стробирования и наращивания числа информационных входов.

4. Какие функции может выполнять мультиплексор?

➤ Мультиплексоры применяются при построении коммутаторовселекторов, постоянных запоминающих устройств ёмкостью в один бит, комбинационных схем, реализующих функции алгебры логики, преобразователей кодов и других узлов.

5. Какие способы наращивания мультиплексоров?

Существует наращивание по пирамидальной схеме соединения мультиплексоров меньшей размерности, а также метод путем выбора мультиплексора группы информационных входов по адресу мультиплексора с помощью дешифратора адреса мультиплексора группы, а затем выбором информационного сигнала мультиплексором группы по адресу информационного сигнала в группе.

6. Поясните методику синтеза формирователя ФАЛ на Мультиплексоре?

▶ Реализация ФАЛ п переменных на мультиплексоре с п адресными входами: на адресные входы подаются переменные, на информационные входы — значения ФАЛ на соответствующих наборах переменных. На выходе будет располагаться значения Φ AЛ в соответствии с наборами переменных. В этом случае мультиплексор будет являться ПЗУ. Для реализации Φ AЛ n + 1 переменными на адресные входы мультиплексора подаются n переменных, на информационных входы n+1-ая переменная (или ее инверсия), константы 0 или 1 (в соответствии со значениями Φ AЛ).

7. Почему возникают ложные сигналы на выходе мультиплексора? Как их устранить?

➤ Такие сигналы возникают из-за гонок выходных сигналов. Чтобы их исключить, мы используем вход EN в качестве стробирующего. Для выделения полезного сигнала на вход EN подается сигнал в интервале времени, свободном от действия ложных сигналов.