

Most Important PYQs Questions				N	Method of Differentiation JEE Main Crash Course						
1.	If $y^2 + \log_e \left(\cos^2 x\right) = y, \;\; x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ then :										
	(1) y''(0) = 0		y'(0) + y"(0) =1								
	(3) $ y"(0) = 2$ mathongo /// mathongo ///										
2.	If $y=y(x)$ is an implicit function of x such that $\log_e(x+y)=4xy$, then										
3.	Let f be a differentiable function such that $f(1)=2$ and $f'(x)=f(x)$ for all			n $h'(1)$ is	equal to :						
	(1) $4e^2$ mathongo // mathongo // mathongo		$\frac{1}{2e}$ math		// mathongo						
	(3) 4e	()	$2e^2$								
4.	If $e^y + xy = e$, the ordered pair $\left(\frac{dy}{dx}, \frac{d^2y}{dx^2}\right)$ at $x = 0$ is equal to		mathongo ///. math								
	$(1) \left(-\frac{1}{e}, -\frac{1}{e^2}\right)$		$\left(-rac{1}{e},rac{1}{e^2} ight)$								
	(3) $\left(\frac{1}{e}, -\frac{1}{e^2}\right)$ mathongo /// mathongo /// mathongo	(4)	$\left(\frac{1}{e}, \frac{1}{e^2}\right)$								
5.	Let $x(t)=2\sqrt{2}\cos t\sqrt{\sin 2t}$ and $y(t)=2\sqrt{2}\sin t\sqrt{\sin 2t}, t\in \left(0,\frac{\pi}{2}\right)$. Then										
	` '	_	2								
	$(1)^{3\frac{12\sqrt{2}}{3}}$ go /// mathongo /// mathongo /// mathongo		•								
	(3) $\frac{1}{3}$		$\frac{-2}{3}$								
6.	If $x=2\sin\theta-\sin2\theta$ and $y=2\cos\theta-\cos2\theta$, $\theta\in[0,2\pi]$, then $\frac{d^2y}{dx^2}$ at $\theta=0$	$=\pi$ is	mathongo /// math								
	(1) $\frac{3}{4}$	(2)									
4/.	$(3) \stackrel{\circ}{=} $	(4)	$-\frac{3}{4}$ mathongo ///. math								
7.	If $x \log_e(\log_e x) - x^2 + y^2 = 4(y > 0)$, then $\frac{dy}{dx}$ at $x = e$ is equal to:		(5)								
	(1) $\frac{(1+2e)}{2\sqrt{4+e^2}}$		$\frac{(2e-1)}{2\sqrt{4+e^2}}$								
	(3) $\frac{(1+2e)}{\sqrt{4+e^2}}$ o /// mathongo /// mathongo ///	(4)	$\sqrt{4+e^2}$ ngo /// math								
8.	If $2x^y + 3y^x = 20$, then $\frac{dy}{dx}$ at $(2,2)$ is equal to:		(3+log 16)								
	$(1)_{a+\log_e 8}$ mathongo mathongo mathongo mathongo		$-\left(\frac{3+\log_{\mathrm{e}}16}{4+\log_{\mathrm{e}}8}\right)$								
	(3) $-\left(\frac{3+\log_{\mathrm{e}}8}{2+\log_{\mathrm{e}}4}\right)$	(4)	$-\left(rac{3+\log_{\mathrm{e}}4}{2+\log_{\mathrm{e}}8} ight)$								
9.	The value of $\log_e 2 \frac{\mathrm{d}}{\mathrm{d}x} (\log_{\cos x} \csc x)$ at $x = \frac{\pi}{4}$ is		mathongo ///. math								
	$(1) -2\sqrt{2}$										
10	(3) -4	(4)									
10.	Let $y = f(x) = \sin^3\left(\frac{\pi}{3}\left(\cos\left(\frac{\pi}{3\sqrt{2}}\left(-4x^3 + 5x^2 + 1\right)^{\frac{3}{2}}\right)\right)\right)$. Then, at $x = \int_0^{\pi} dx dx dx$										
	(1) $2y' + \sqrt{3}\pi^2 y = 0$	(2)	$2y' + 3\pi^2 y = 0$								
///.	(3) $\sqrt{2y'} - 3\pi^2 y = 0$	(4)	$y' + 3\pi^2 y = 0$								
11.	(1) $2y' + \sqrt{3}\pi^2 y = 0$ (3) $\sqrt{2}y' - 3\pi^2 y = 0$ The derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ at x	$=\frac{1}{2}$	is:								
	(1) $\frac{2\sqrt{3}}{5}$ ngo /// mathongo /// mathongo /// mathongo	(2)	$n\frac{\sqrt{3}}{12}$ thongo ///. math								
	3		10								
12.	Let $y=y(x)$ be a function of x satisfying $y\sqrt{1-x^2}=k-x\sqrt{1-y^2}$ when $(1) = \frac{\sqrt{5}}{4}$	ere k	is a constant and $y\left(\frac{1}{2}\right) = -$	$-\frac{1}{4}$. Then $\frac{6}{6}$	$\frac{dy}{dx}$ at $x=rac{1}{2}$, is e	qual to					
	(3) $\frac{2}{\sqrt{5}}$		$\frac{\sqrt{5}}{2}$								
13.	If $y(x) = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right)$, $x \in \left(\frac{\pi}{2}, \pi\right)$, then $\frac{dy}{dx}$ at $x = \frac{5\pi}{6}$ is:										
	(1) 0		-1								
	(3) $\frac{-1}{2}$ ongo /// mathongo /// mathongo /// mathongo	(4)	$n^{\frac{1}{2}}$ athongo ///. math								
14.	(3) $\frac{-1}{2}$ mathons mathons (2) mathons (3) $\frac{-1}{2}$ mathons (4) mathons (4) $\frac{-1}{2}$ Let $f\left(x\right) = \cos\left(2\tan^{-1}\sin\left(\cot^{-1}\sqrt{\frac{1-x}{x}}\right)\right), 0 < x < 1$. Then:										
	(1) $(1-x)^2 f'(x) + 2(f(x))^2 = 0$ (3) $(1-x)^2 f'(x) - 2(f(x))^2 = 0$	(2)	$\big(1+x\big)^2f'\big(x\big)+2\big(f(x)$	$)^2 = 0$							
	(3) $(1-x)^2 f'(x) - 2(f(x))^2 = 0$	(4)	$\big(1+x\big)^2f'(x)-2\big(f(x)$	$()^2 = 0$							

	(1) $\frac{1}{5}$ (3) 5		mathonae	111	mathonac			(4) $\frac{2}{5}$ mathongo						
7.	If $y = an^{-1}$ (so (1) xy " $+ 2y'$	$\sec x^3$ $= 0$	$(3-\tan x^3), \frac{\pi}{2}$	$< x^3$	$<\frac{3\pi}{2}$, then			(2	$) \;\; x^2y" - 6y +$	$\frac{3\pi}{2}$ =	= 0				
	(3) $x^2y'' - 6y$	+ 3			mathongo			(4	$) \hspace{0.1cm} xy" - 4y' =$	0///					
			$(x^2 + y^2 - 3) + (y^2 - 3) $	$(x^2 -$	$(y^2-1)^3=0,$	the v	value of $3y' - y$	y^3y ",	at the point $(\alpha,$	$(\alpha), \alpha$	$\alpha > 0$, on C , is	equal	l to		
	Let $f(x) = \left(\sin \frac{2\pi}{3}\right)$ (3) $\frac{5\pi}{6}$	ı (taı	$\sin^{-1}x$ + $\sin(\cos x)$	ot ⁻¹ x	$(x)^2-1, x >0$	1. If - /4.	$\frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} \left(\sin^2 \theta \right)$	(2	$(x))$ and $y\Big(\sqrt{3}\Big)$ $-rac{\pi}{6}$ $rac{\pi}{3}$	3)= - ///.	$\frac{\pi}{6}$, then $y(-\sqrt{3})$	3) is	equal to: mathongo		
		sati	sfy $f(x+y)=$	$2^x f($	$(y)+4^y(f(x), orall x)$	$x,y\in$	\mathbb{R} . If $f(2)=3$		•	qual	to <u>natho</u> ngo				