

Double DES

Baskoro Adi Pratomo, Lab

Decryption

(a) Double encryption

Triple DES

One Time Pad

 Penggunaan kunci dengan isi yang acak dan sepanjang pesan, serta digunakan untuk sekali enkripsi

Generate Random Number

- True Random Number Generator (TRNG)
- Pseudorandom Number Generator (PRNG)

PRNG Requirements

- Randomness
 - Uniformity
 - Scalability
 - Consistency
- Bashpredictability Pratomo, Lab
 - Forward unpredictability
 - Backward unpredictability
 - Seed Requirement

PRNG Algorithm

- Purpose Built Algorithm
 - Linear Congruential Generator
 - Blum Blum Shub Generator
- Balgorithm based on existing cryptographic lalgorithm ACI Fatomo, Lab
 - Symmetric Cipher
 - Asymmetric Cipher
 - Hash Function & MAC

Linear Congruential Generators

- $X_{n+1} = (aX_n + c) \mod m$
- Dimana :
 - m : modulus : m > 0

Baskor multiplier: 0 < a < m > c : increment : 0 <= c < m

- X₀: Seed / nilai awal : 0 <= X₀ < m</p>

Linear Congruential Generators (2)

- Jika:
 - A = C = 1
 - A = 7, C = 0, M = 32, $X_0 = 1$
- Baskoro, Adi Pratomo, Lab A = 7⁵, C = 0, M = 2³¹, X₀ = 1
 - Bagaimana random number yang dihasilkan?

Blum Blum Shub

- Cari dua bilangan p dan q, dimana :
 - p mod 4 = q mod 4 = 3
- \bullet n = p x q
- Ballih random number s, dimana :
 n dan s adalah relatively prime
 - - GCD (n, s) = 1
 - Generator:

$$X_0 = s^2 \mod n$$

 $\mathbf{for} i = 1 \mathbf{to} \infty$
 $X_i = (X_{i-1})^2 \mod n$
 $B_i = X_i \mod 2$

Blum Blum Shub (2)

- Contoh:
 - Jika p = 383, q = 503, s = 101355, hitung

Table 7.1 Example Operation of BBS Generator

| X | B_i | i

1		1 4i	D_i
	0	20749	
	1	143135	1
	2	177671	1
	3	97048	0
	4	89992	0
	5	174051	1
	6	80649	1
	7	45663	1
	8	69442	0
	9	186894	0
	10	177046	0
- 1			

V	X_i	B_i
11	137922	0
12	123175	1
13	8630	0
14	114386	0
15	14863	1
16	133015	1
17	106065	1
18	45870	0
19	137171	1
20	48060	0

PRNG Using Block Cipher

ANSI X9.17 PRNG

Figure 7.4 ANSI X9.17 Pseudorandom Number Generator

Stream Cipher

Stream Cipher Diagram Figure 7.5

Perbandingan Kecepatan

Table 7.4 Speed Comparisons of Symmetric Ciphers on a Pentium II

	Cipher	Key Length	Speed (Mbps)	
Da	DES		9	
Ba	SK 3des /	168	mo, Lap	
	RC2	Variable	0.9	
	RC4	Variable	45	

RC4

- Dibuat pada 1987
- Key size: 1-256 bytes
- Operasi : per-byte

BaBigunakan di di Pratomo, Lab • Secure Socket Layer

- WEP
- WPA

RC4 Algorithm

- Siapkan 256 byte state vector S
 - S[0]=0,S[1]=1,S[2]=2,...,S[255]=255
- Inisialisasi :

For i = 0 to 255 do Baskoro s[i](= i; ratomo, Lao T[i] = K[i mod keylen];

Permutasi Awal untuk S:

```
• j = 0;
for i = 0 to 255 do

    j = (j + S[i] + T[i]) mod 256;
Swap (S[i], S[j]);
```

RC4 Algorithm (2)

Keystream Generation

```
• i, j = 0;
 while (true)
        i = (i + 1) \mod 256;
```

```
Baskoro j/= (j:+ s[i]) mod 256;

Baskoro swap (s[i], s[j]), Dmo, Lab
```

```
t = (S[i] + S[j]) \mod 256;
k = S[t];
```

- Enkripsi:
 - k XOR data

