National University of Singapore School of Computing CS3244: Machine Learning Solution to Tutorial 10

Unsupervised Learning

1. K-means convergence: We have learned the iterative algorithm for K-means. Let's look into the algorithm again.

Algorithm 1 K-means Clustering	
1: $\mathbf{for}\ c = 1\ \mathbf{to}\ k\ \mathbf{do}$	
2: $\mu_c \leftarrow \text{some random location}$	
3: while Not Converged do	
4: for $j = 1$ to m do	
5: $y^{(j)} \leftarrow c = \arg\min_{c} x^{(j)} - \mu_c ^2$	\triangleright A. assign example
6: $x^{(j)} \leftarrow S_c$	
7: for $c = 1$ to k do	
8: $\mu_c \leftarrow \frac{1}{ S_c } \sum_{x \in S_c} x$	\triangleright B. re-estimate center
9: return y	

The algorithm leads to convergence when the clustering quality L_{clust} is minimized (i.e., when cluster centers or assignments stop changing).

$$L_{clust} = \sum_{c=1}^{k} \sum_{x \in S_c} ||x - \mu_c||^2$$
 (1)

- (a) Show that each data assignment step (Line 5 in Algorithm 1) minimizes L_{clust} , given fixed cluster centers.
- (b) Show that each cluster center update step (Line 8 in Algorithm 1) minimizes L_{clust} , given fixed data assignments.
- (c) Despite the guarantee of convergence, the clustering result varies depending on initialization of the centroids. Sub-optimal clustering may also occur when the clusters are of different sizes and densities. Suggest two solutions to overcome this issue.
- 2. **Auto-Encoder**: An auto-encoder is a neural network that is trained to attempt to reconstruct the input to the output. Autoencoder has an encoder E and a decoder D. The encoder $\mathbf{z} = E(\mathbf{x})$ consumes the input \mathbf{x} and produce an intermediate representation \mathbf{z} which is fed into the decoder $\hat{\mathbf{x}} = D(\mathbf{z})$ to reconstruct the input. Figure 1 shows this.

Figure 1: Autoencoder

- (a) Given a large image dataset without label(dataset P) and a small image dataset(dataset Q) with label, both datasets come from the same domain. Propose a way to improve classifier's performance on the small dataset.
- (b) Autoencoder can compress the original input into a lower dimensional encoding. However, it is hardly used in practice for image compression. List the disadvantages of autoencoder when used for compression.