DHANAMANJURI UNIVERSITY

Examination - 2024 (June)

Four-Year Course BA/B.Sc. 4th Semester

Name of Programme : B.A/B.Sc. Mathematics

Paper Type : Core-XII(Theory)

Paper Code : CMA-212

Paper Title : Numerical Analysis

Full Marks : 40 Pass Marks : 16

Duration : 2 Hours

The figures in the margin indicate full marks for the questions Answer the following questions:

1. Choose and rewrite the correct answer for each of the following questions: $1\times 3=3$

- a) The value of $\frac{\Delta x^{(n)}}{\Delta x}$ is
 - i) $n!h^n$
 - ii) nx^{n-1}
 - iii) nhx^{n-1}
 - iv) $n!x^{n-1}$
- b) Simpson's one-third rule can be represented by equation of a
 - i) Circle
 - ii) Straight line
 - iii) Parabola
 - iv) Hyperbola

- c) The rate of convergence of $\lim_{n\to\infty} \frac{n+3}{n+7} = 1$ is

 - i) $O\left(\frac{1}{n}\right)$ ii) $O\left(\frac{1}{n^2}\right)$ iii) $O\left(\frac{1}{2^n}\right)$ iv) $O\left(\frac{1}{2n}\right)$

2. Write very short answer on any two from the following questions:

 $1 \times 2 = 2$

- a) Show that $(\Delta \nabla) \cong \Delta \nabla$.
- b) Evaluate $\Delta^2(3e^x)$.
- c) Define Numerical Integration.
- d) State Runge-Kutta method of 2nd order.
- e) Give the iteration scheme of Regula-falsi method.
- f) Define Algorithm.

3. Write short answer on any three from the following questions:

 $3 \times 3 = 9$

- a) Find $\Delta \left[\frac{2^x}{(x+1)} \right]$, h=1.
- b) Estimate the missing term in the following table:

X	0	1	2	3	4
f(x)	1	3	9	?	81

- c) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ using Simpson's $\frac{3}{8}$ rule.
- d) Determine the order of convergence and the asymptotic error constant of the sequence generated by the recursive scheme: $x_{n+1} = \frac{x_n - 1 + x_n}{2}$

2

e) Write the algorithm of fixed point iteration method.

4. Write short answer on any two from the following questions:

 $4 \times 2 = 8$

- a) Express $y = 2x^3 3x^2 + 3x 10$ in a factorial notation and hence show that $\Delta^3 y = 12$.
- b) Using Euler's method find an approximate value of y corresponding to x = 1, given that $\frac{dy}{dx} = \frac{y x}{y + x}$ and y = 1 when x = 0.
- c) Apply Runge-Kutta fourth order method to find an approximate value of y when x = 0.2 given that $\frac{dy}{dx} = x + y$ and y = 1 when x = 0.
- d) Write the algorithm of Newton-Raphson method.
- e) Solve the following system of equations by using Gauss Elimination method:

$$x-y+2z = 3$$
$$3x+2y+3z = 5$$
$$3x-4y-5z = -13$$

5. Answer any one from the following questions:

 $6 \times 1 = 6$

- a) Derive Newton-Gregory interpolation formula for equal intervals.
- b) Given the values:

Х	5	6	9	11
f(x)	12	13	14	16

Evaluate f(10) using Lagrange's interpolation formula.

c) Obtain the piecewise linear interpolating polynomial for the function f(x) defined by the following data:

Hence interpolate at 0.5, 1.5, 2.5.

6. Answer any one from the following questions:

 $6 \times 1 = 6$

a) Find the first, second derivative of the function tabluated below at the point x = 1.5

X	1.5	2.0	2.5	3.0	3.5	4.0
f(x)	3.375	7.00	13.625	24.00	38.875	59.00

- b) Solve the different equation $\frac{dy}{dx} = -xy^2$, y = 2at x = 0 by modified Euler's method and obtain y at x = 0.2 in two steps of 0.1 each.
- c) Derive General Quadrature formula for equal intervals and hence deduce the Trapezoidal rule from it.

7. Answer any one from the following questions:

 $6 \times 1 = 6$

- a) Write the method for finding the solutions of the system of equations by using Gauss-Jordan method.
- b) Solve the following system of equations by using LU decomposition method

$$x + 5y + z = 14$$

$$2x + y + 3z = 13$$

$$3x + y + 4z = 17$$

c) Find the root of the equation $x^4 - x - 10 = 0$ by using secant method.