Homework 1

Theorem 9 Let (f_n) be a sequence of continuous functions on [a;b] that uniformly converges to f on [a;b]. Then f is continuous on [a;b].

Proof. Let $\varepsilon > 0$ and consider $\varepsilon/3$. We know (f_n) uniformly converges to f so there exists N such that for all n > N and for all $x, y \in [a; b]$ we have $|f(x) - f_n(x)| < \varepsilon/3$ and $|f(y) - f_n(y)| < \varepsilon/3$. Also f_n is continuous for all n so for all n > N and for all $x \in [a; b]$ there exists $\delta_n > 0$ such that for all $y \in [a; b]$ with $|x - y| < \delta_n$ we have $|f_n(x) - f_n(y)| < \varepsilon/3$. Consider δ_{N+1} . Then for all $x \in [a; b]$ there exists $\delta_{N+1} > 0$, which may depend on x, such that for all $y \in [a; b]$ with $|x - y| < \delta_{N+1}$ we have $|f_{N+1}(x) + f_{N+1}(y)| < \varepsilon/3$. By the triangle inequality we have $|f(x) - f_{N+1}(y)| \le |f_{N+1}(x) - f_{N+1}(y)| + |f(x) - f_{N+1}(x)| < 2\varepsilon/3$ and then $|f(x) - f(y)| < |f(x) - f_{N+1}(y)| + |f(y) - f_{N+1}(y)| < \varepsilon$. Thus for all $x \in [a; b]$ there exists some $\delta > 0$ such that for all $y \in [a; b]$ with $|x - y| < \delta$ we have $|f(x) - f(y)| < \varepsilon$. Therefore f is continuous on [a; b]. \square

Theorem 3 (Division Remainder) Let $a, b \in \mathbb{R}[x]$ be polynomials with $b \neq 0$. Then there exists unique $q, r \in \mathbb{R}[x]$ such that

$$a = bq + r$$

and

 $\deg r < \deg b$.

Proof. To show existence consider the set $S=\{a-bc\mid c\in\mathbb{R}[x]\}$. Suppose that for all $r\in S$, $\deg(r)\geq \deg(b)$. Choose $p\in S$ such that $\deg(p)$ is the minimum degree of all elements of S using the Well Ordering Principle. Note that p=a-bc for some $c\in\mathbb{R}[x]$. Now let q=p-bd for some $d\in\mathbb{R}[x]$. Then q=a-bc-bd=a-b(c+d) and so $q\in S$. Thus $\deg(q)\geq \deg(p)$. But then if $p(x)=\sum_{i=0}^n a_i x^i$ and $b(x)=\sum_{i=0}^m b_i x^i$ then consider $d=a_n/b_m x^{(n-m)}$. Then $\deg(bd)=n$ and so $\deg(q)<\deg(p)$ since q=p-bd. This is a contradiction and so there exists $r\in S$ such that $\deg(r)<\deg(b)$. For uniqueness suppose that there exists q,q',r,r' with $q\neq q'$ and $r\neq r'$ such that a=bq+r, a=bq'+r', $\deg(r)< b$ and $\deg(r')< b$. Then bq+r=bq'+r' and b(q-q')=r'-r. Note that since $q\neq q'$ and $r\neq r'$, $\deg(q-q')\geq 0$ and $\deg(r-r')\geq 0$. But then using Theorem 2 we have $\deg(r-r')< b$ and $\deg(b(q-q'))=\deg(b)+\deg(q-q')\geq \deg(b)$. This is a contradiction and so q=q' and r=r' which means q and r are unique.