Distilling Llama 2

Vom Lehrer zum Schüler

Zielsetzung

Data Preprocessing

Finetuning Llama 2

Finetuning Llama 2

Finetuning Llama 2

Distilling Llama 2

Distilling Llama 2

Ergebnisse Finetuning

Total Similarity Wins (Base): **66**Total Similarity Wins (Fine-tuned): **34**

Backup Folien:

LoRA

Weight update in regular finetuning

Weight update in LoRA

LoRA

LoRA

QLoRA: Double Quantization

Double Quantization We introduce *Double Quantization* (DQ), the process of quantizing the quantization constants for additional memory savings. While a small blocksize is required for precise 4-bit quantization [13], it also has a considerable memory overhead. For example, using 32-bit constants and a blocksize of 64 for \mathbf{W} , quantization constants add 32/64 = 0.5 bits per parameter on average. Double Quantization helps reduce the memory footprint of quantization constants.

QLoRA: Paged Optimizers

Ergebnisse Destillation