2/2

2/2

2/2

2/2

0/2

2/2

Berger Théo Note: 18/20 (score total : 18/20)

+107/1/13+

QCM THLR 2	
Nom et prénom, lisibles :	Identifiant (de haut en bas):
Benger	
1000	
	•
.2 Pour toute expression rationnelle e , on a $e + \equiv \phi + e \equiv e$.	•
🗌 faux 🕵 vrai	
_	$\Box L(e) \supseteq L(f) \qquad \Box L(e) = L(f)$
Pour toute expression rationnelle e , on a $\emptyset e \equiv \emptyset \equiv \emptyset$.	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq$
	Σ^* , on a $L_1^* = L_2^* \implies L_1 = L_2$.
💹 vrai 🗌 faux	🗆 vrai 🔉 faux
4 Pour toutes expressions rationnelles e, f , on a	_
$f)^*e \equiv e(ef)^*.$	Q.9 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :
□ vrai 🙇 faux	
vrai faux 1.5 Il est possible de tester si une expression raonnelle engendre un langage vide.	☐ '-+-1+-+-2' ☐ 'DEADBEEF' (20+3)*3' ☐ '0+1+2+3+4+5+7+8+9'
.5 Il est possible de tester si une expression ra-	

Fin de l'épreuve.

 \square AL = AM

☐ Aucune de ces réponses n'est correcte.

 $L(e) = L(f) \qquad \qquad \Box \quad L(e) \subseteq L(f)$ $\Box \quad L(e) \not\subseteq L(f) \qquad \qquad \Box \quad L(e) \supseteq L(f)$

2/2