RECEIVED CENTRAL FAX CENTER

JUL-0 3 2006

AMENDMENTS TO THE CLAIMS

ı	1.	(Curre	ently amended) An acoustic logging apparatus comprising:
2		(a)	a bottomhole assembly (BHA) conveyed on a drilling tubular in a
3			borehole within an earth formation, said BHA comprising a source array
1			for emitting which emits a preselected acoustic signals signal in the
5			borehole axis direction into the earth formation; and
5		(b)	at least one receiver on the BHA for receiving which receives a second
7			acoustic signal produced by an interaction reflection of said preselected
8			acoustic signals with in said formation.
9			
l	2.	(origin	nal) The apparatus of claim 1 wherein said at least one source comprises at
2		least c	one of i) an axially distributed array of axially directed sources, ii) an
3		azimu	thally distributed array of axially directed sources, iii) an axially distributed
ţ		array	of azimuthally directed sources, and iv) an azimuthally distributed array of
5		azimu	thally directed sources.
5			
i	3.	(curre	ntly amended) The apparatus of claim 2 further comprising activating said
2		where	in the source array is activated according to at least one of: i) pre-selected
3		seque	ntial time delays, ii) pre-selected energy levels and iii) coded activation
\$		seque	nees.
5			
l	4.	(curre	ntly amended) The apparatus of claim 1 further comprising at least one
2		where	in the source array for emitting emits said preselected acoustic signals
3		signal	which is differing in at least one of i) a spectrum and ii) a wave mode from
ı		acoust	tic energy of a rotating drillstring.

5

- 5. (currently amended) The apparatus of claim 1 further comprising said at least one wherein the source array that emits at least one of: i) a monopole acoustic signal,
- ii) a dipole acoustic signal, and iii) a quadrupole acoustic signal.

4

1 6. (original) The apparatus of claim 1 wherein said at least one receiver is located a
2 distance at least two wavelengths from an element of said source array.

3

7. (currently amended) The apparatus of claim 6 wherein said at least one receiver comprises a plurality of receivers for receiving said second signal and further comprise at least one of: i) a pressure sensor, and ii) a motion sensor.

4

8. (currently amended) The apparatus of claim 7 wherein said plurality of receivers
for receiving said second signal include a hydrophone, an accelerometer and a
geophone.

4

1

2

3

9. (currently amended) The apparatus of claim 7 wherein said plurality of receivers for receiving said second signal include at least one of i) an accelerometer and ii) a geophone, said receivers adjustably located to contact the earth formation.

4

1 10. canceled (original) The apparatus of claim 1 wherein said at least one receiver receives said second signal that has traversed part of said earth formation.

3

1 11. (Currently amended) A method of obtaining information about a parameter of interest of an earth formation, the method comprising:

10/641,356

P. 05

12

3

5

3

(a) 3 using a drillbit on a bottom hole assembly (BHA) conveyed on a drilling 4 tubular for drilling a borehole in said earth formation;

Fax:7132668510

- (b) suspending drilling operations and using said drilling tubular to move said 5 drillbit away from a bottom of the borehole; 6
- 7 (c) generating an acoustic signal in the borehole axis direction into said earth formation using an axially directed acoustic source array on the BHA; and 8
- 9 (d) determining said parameter of interest from a received signal resulting 10 from an interaction a reflection of the generated acoustic signal with the 11 earth formation.

1 12. (original) The method of claim 11 wherein generating said acoustic signal further comprises sequentially activating elements of said acoustic source array. 2

(original) The method of claim 11 wherein generating said acoustic signal further 13. 1 2 comprises activating elements of said acoustic source array in the borehole axial direction according to at least one of: i) pre-selected sequential time delays, ii) 3 pre-selected energy levels and iii) coded activation sequences.

14. (original) The method of claim 11 wherein said received signal has traversed part I 2 of said earth formation that is adjacent to said borehole.

15. 1 (original) The method of claim 11 wherein determining a parameter of interest further comprises defining a reflector imaging direction that is at least one of: i) 2 3 parallel to the axis of the borehole, ii) oblique to the axis of the borehole, and iii) 4 perpendicular to the axis of the borehole.

10/641,356

P.06

~		
3		
•		

16. Ī (original) The method of claim 11 wherein said generated acoustic signal is 2 differing in at least one of: i) a spectrum of acoustic energy of a rotating drillstring, and ii) a wave mode from acoustic energy of a rotating drillstring. 3

17. (original) The method of claim 11 wherein said generated acoustic signal is at 1 least one of: i) a monopole acoustic signal, ii) a dipole acoustic signal, and iii) a 2 quadrupole acoustic signal. 3

4

7

10

18. (Currently amended) A system for determining a property of an earth formation 1 using an acoustic logging tool on a bottomhole assembly (BHA) in a borehole in 2 said earth formation, the system comprising: 3

(a) 4 5 6

at least one source array in said acoustic logging tool for generating which generates a preselected acoustic signals signal along a in the borehole axis direction into said formation, said preselected acoustic signal differing in spectrum and/or wave mode from acoustic energy of a rotating drillstring;

8 9 **(b)**

a plurality of receivers on said logging tool for receiving which receive signals indicative of said parameter of interest at a plurality of depths of the BHA; and

11

- acquiring signals at a plurality of depths of said BHA; and 12 (c)
- a processor which processes processing said acquired signals to obtain the (d) 13 parameter of interest. 14

15 1

(original) The system of claim 18 wherein said signals are acquired when the 19. 10/641,356

2		BHA is not in contact with the bottom of the borehole.
3		
ι	20.	(original) The system of claim 18 wherein said at least one source array comprises
2		at least one of i) an axially distributed array of axially directed sources, ii) an
3		azimuthally distributed array of axially directed sources, iii) an axially distributed
4		array of azimuthally directed sources, and iv) an azimuthally distributed array of
5		azimuthally directed sources.
6		
1	21.	(currently amended) The system of claim 20 further comprising sequentially
2		firing said the at least one source array is activated sequentially in the borehole
3		axial-direction according to at least one of: i) pre-selected sequential time delays,
4		ii) pre-selected energy levels and iii) coded activation sequences.
5		
1	22.	(currently amended) The system of claim 18 wherein the processor processes
2		processing said acquired signals by further comprises defining an imaging ahead
3		of the drillbit along the axis of the borehole.
4		
1	23.	(currently amended) The system of claim 18 wherein the processor processes

3 4

2

1 24. (currently amended) The system of claim 18 wherein the processor processes
2 processing said acquired signals by further comprises defining time shifts
3 according to a pre-selected imaging direction.

from at least one of i) a pressure sensor, and ii) a motion sensor.

4

10/641,356

processing said acquired signals by further comprises combining receiver signals

P.08

i	25.	(currently amended) The system of claim 18 wherein the processor processes
2		processing said acquired signals by further comprises compressing and
3		transmitting said signals to the surface in substantially real time.
4		
1	26.	(currently amended) The system of claim 18 wherein the processor processes
2		processing said acquired signals by further comprises performing full waveform
3		processing in the BHA.
4		·
1	27.	(previously presented) The system of claim 26 wherein information from said full
2		waveform processing in the BHA is used for downhole control of a geosteering
3		system.
4		
1	28.	(original) The system of claim 18 wherein said plurality of receivers for receiving
2		said signals indicative of a parameter of interest include at least one of i) an
3		accelerometer and ii) a geophone, said receivers adjustably located to contact the
4		earth formation.

5 6