Module 2 – Electricity Spot Markets (e.g. day-ahead)

2.2 Market clearing as an optimization problem

Introducing notations first

Inputs:

- ullet All offers in the market are formulated in terms of a *quantity P* and a *price* λ
- On the *supply* side (N_G supply offers):
 - set of offers: $\mathcal{L}_G = \{G_j, j = 1, \dots, N_G\}$
 - maximum quantity for offer G_j : P_j^G
 - price for offer G_j : λ_j^G
- On the *demand* side (N_D demand offers):
 - set of offers: $\mathcal{L}_D = \{D_i, i = 1, \dots, N_D\}$
 - maximum quantity for offer D_i : P_i^D
 - price for offer D_i : λ_i^D

Decision variables:

- Generation schedule: $\mathbf{y}^G = \begin{bmatrix} y_j^G, \dots, y_{N_G}^G \end{bmatrix}^\top$, $0 \leq y_j^G \leq P_j^G$
- Consumption schedule: $\mathbf{y}^D = \left[y_1^D, \dots, y_{N_D}^D\right]^{\top}$, $0 \leq y_i^D \leq P_i^D$

Our example auction setup

DTU

Supply: (for a total of 1435 MWh)

Company	Supply/Demand	id	P_j^G (MWh)	$\lambda_j^G \ (\in /MWh)$
$RT^{\mathbb{R}}$	Supply	G_1	120	0
WeTrustInWind	Supply	G_2	50	0
BlueHydro	Supply	G_3	200	15
$RT^{\mathbb{R}}$	Supply	G_4	400	30
KøbenhavnCHP	Supply	G_5	60	32.5
KøbenhavnCHP	Supply	G_6	50	34
KøbenhavnCHP	Supply	G_7	60	36
DirtyPower	Supply	G_8	100	37.5
DirtyPower	Supply	G_9	70	39
DirtyPower	Supply	G_{10}	50	40
$RT^{\mathbb{R}}$	Supply	G_{11}	70	60
$\mathrm{RT}^{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	Supply	G_{12}	45	70
SafePeak	Supply	G_{13}	50	100
SafePeak	Supply	G_{14}	60	150
SafePeak	Supply	G_{15}	50	200

Our example auction setup

Demand: (for a total of 1065 MWh)

Company	Supply/Demand	id	P_i^D (MWh)	λ_i^D (\in /MWh)
CleanRetail	Demand	D_1	250	200
El4You	Demand	D_2	300	110
EVcharge	Demand	D_3	120	100
QualiWatt	Demand	D_4	80	90
IntelliWatt	Demand	D_5	40	85
El4You	Demand	D_6	70	75
CleanRetail	Demand	D_7	60	65
IntelliWatt	Demand	D_8	45	40
QualiWatt	Demand	D_9	30	38
IntelliWatt	Demand	D_{10}	35	31
CleanRetail	Demand	D_{11}	25	24
El4You	Demand	D_{12}	10	16

That is a lot of offers to match... Could an optimization problem readily give us the solution?

Centralized social welfare optimization

DTU

(1c)

(1d)

• The social welfare maximization problem can be written as

$$\max_{\mathbf{y}^{G}, \mathbf{y}^{D}} \sum_{i=1}^{N_{D}} \lambda_{i}^{D} y_{i}^{D} - \sum_{j=1}^{N_{G}} \lambda_{j}^{G} y_{j}^{G}$$
(1a)

subject to
$$\sum_{j=1}^{N_G} y_j^G - \sum_{i=1}^{N_D} y_i^D = 0$$
 (1b)

$$0 \le y_i^D \le P_i^D, i = 1, ..., N_D$$

 $0 \le y_i^G \le P_i^G, j = 1, ..., N_G$

• And equivalently as a *minimization problem* by minimizing the opposite objective function, i.e.

$$\min_{\mathbf{y}^G,\mathbf{y}^D} \quad \sum_{i=1}^{N_G} \lambda_j^G y_j^G - \sum_{i=1}^{N_D} \lambda_i^D y_i^D$$

$$\begin{array}{ccc}
j & j=1 & i=1 \\
\text{subject to} & (1b)-(1d) & (2a)
\end{array}$$

(2b) 5/15

(2a)

It is a simple linear program!

• One recognize a so-called **Linear Program** (**LP**, here in a compact form):

$$\begin{array}{ll} \underset{\textbf{y}}{\text{min}} \quad \textbf{c}^{\top}\textbf{y} & (3a) \\ \\ \text{subject to} \quad \textbf{A}\textbf{y} \leq \textbf{b} & (3b) \\ & \textbf{A}_{eq}\textbf{y} = \textbf{b}_{eq} & (3c) \\ & \textbf{y} \geq 0 & (3d) \end{array}$$

- LP problems can be readily solved in
 - Matlab, for instance with the function linprog,
 - R, with the library/function lp_solve,
 - and also obviously with GAMS, Gurobi, etc.
- However, for e.g. R and Matlab, you need to know how to build relevant vectors and matrices
- And, the solution will only give you the energy schedules in terms of supply and demand

Vector and matrices in the objective function

 \bullet The vector \mathbf{y} of optimization variables \mathbf{c} of weights in the objective function are constructed as

$$\mathbf{y} = \begin{bmatrix} y_1^G \\ y_2^G \\ \vdots \\ y_{N_G}^G \\ y_1^D \\ y_2^D \\ \vdots \\ y_{N_D}^D \end{bmatrix}, \ \mathbf{y} \in \mathbb{R}^{(N_G + N_D)} \qquad \mathbf{c} = \begin{bmatrix} \lambda_1^G \\ \lambda_2^G \\ \vdots \\ \lambda_{N_G}^G \\ -\lambda_1^D \\ -\lambda_2^D \\ \vdots \\ -\lambda_{N_D}^D \end{bmatrix}, \ \mathbf{c} \in \mathbb{R}^{(N_G + N_D)}$$

Vector and matrices defining constraints

• For the equality constraint (balance of generation and consumption):

$$\mathbf{A}_{eq} = [1 \dots 1 \ -1 \dots -1], \ \mathbf{A}_{eq} \in \mathbb{R}^{(N_G + N_D)}, \qquad \mathbf{b}_{eq} = 0$$

• For the inequality constraint (i.e., generation and consumption levels within limits):

with
$$\mathbf{A} \in \mathbb{R}^{(N_G+N_D)\times(N_G+N_D)}$$
 and $\mathbf{b} \in \mathbb{R}^{(N_G+N_D)}$

Do not forget the non-negativity constraints for the elements of y...

Getting the complete market-clearing

- By complete market-clearing is meant obtaining
 - \bullet the schedule for all supply and demand offers, as well as
 - **the price** at which the market is cleared, i.e., the so-called *market-clearing* or *system* price (in, e.g., Nord Pool)

Getting the complete market-clearing

- By complete market-clearing is meant obtaining
 - the schedule for all supply and demand offers, as well as
 - **the price** at which the market is cleared, i.e., the so-called *market-clearing* or *system* price (in, e.g., Nord Pool)
- The system price is obtained through the *dual of the LP* previously defined, i.e.,

$$\label{eq:local_problem} \begin{aligned} \max_{\pmb{\lambda},\pmb{\nu}} & -\mathbf{b}^{\top}\pmb{\nu} \\ \text{subject to} & \mathbf{A}_{\text{eq}}^{\top}\pmb{\lambda} - \mathbf{A}^{\top}\pmb{\nu} \leq \mathbf{c} \\ & \pmb{\nu} \geq 0 \end{aligned}$$

- This is also an LP: it can be solved with Matlab, R, GAMS, etc.
- ullet λ and u are sets of Lagrange multipliers associated to all **equality** and **inequality** constraints:

$$\lambda = \lambda^{S}
\nu = [\nu_1^G \dots \nu_{N_G}^G \quad \nu_1^D \dots \nu_{N_D}^D]^{\top}$$

[Note: basics of optimization for application in electricity markets are given in: JM Morales, A Conejo, H Madsen, P Pinson, M Zugno (2014). *Integration Renewables in Electricity Markets: Operational Problems*. Springer (link)]

More specifically for the market-clearing problem

• Only one **equality** constraint, i.e.,

$$\sum_{i} y_i^D - \sum_{j} y_j^G = 0$$

for which the associated Lagrange multiplier $\lambda^{\rm S}$ represents the system price.

More specifically for the market-clearing problem

Only one equality constraint, i.e.,

$$\sum_{i} y_i^D - \sum_{j} y_j^G = 0$$

for which the associated Lagrange multiplier λ^{S} represents the system price.

• And $N_D + N_G$ inequality constraints:

$$0 \le y_i^D \le P_i^D, \ i = 1, \dots, N_D, \qquad 0 \le y_j^G \le P_j^G, \ j = 1, \dots, N_G$$

for which the associated Lagrange multipliers ν_i^D and ν_j^G represents the unitary benefits for the various demand and supply offers if the market is cleared at λ^S .

More specifically for the market-clearing problem

Only one equality constraint, i.e.,

$$\sum_{i} y_{i}^{D} - \sum_{j} y_{j}^{G} = 0$$

for which the associated Lagrange multiplier λ^{S} represents the system price.

• And $N_D + N_G$ inequality constraints:

$$0 \le y_i^D \le P_i^D$$
, $i = 1, ..., N_D$, $0 \le y_i^G \le P_i^G$, $j = 1, ..., N_G$

for which the associated Lagrange multipliers ν_i^D and ν_j^G represents the unitary benefits for the various demand and supply offers if the market is cleared at λ^S .

• The dual of the market clearing LP is also an LP which writes

$$\begin{aligned} \max_{\lambda^{S}, \{\nu_{i}^{D}\}, \{\nu_{j}^{G}\}} &\quad -\sum_{j} \nu_{j}^{G} P_{j}^{G} - \sum_{i} \nu_{i}^{D} P_{i}^{D} \\ \text{subject to} &\quad \lambda^{S} - \nu_{j}^{G} \leq \lambda_{j}^{G}, \ j = 1, \dots, N_{G} \\ &\quad -\lambda^{S} - \nu_{i}^{D} \leq -\lambda_{i}^{D}, \ i = 1, \dots, N_{D} \\ &\quad \nu_{j}^{G} \geq 0, \ j = 1, \dots, N_{G}, \quad \nu_{i}^{D} \geq 0, \ i = 1, \dots, N_{D} \end{aligned}$$

[To retrieve the dual LP, follow: Lahaie S (2008). How to take the dual of a Linear Program. (link)]

Let's also write it as a compact linear program!

 As for the primal LP allowing to obtain the dispatch for market participants on both supply and demand side, we write here the dual LP in a compact form:

$$egin{array}{ll} \max & & \mathbf{\tilde{c}}^{ op} \mathbf{\tilde{y}} \\ & \text{subject to} & & \mathbf{\tilde{A}}\mathbf{\tilde{y}} \leq \mathbf{\tilde{b}} \\ & & & \mathbf{\tilde{y}} \geq 0 \end{array}$$

- The next 2 slides describe how to build the assemble the relevant vectors and matrices in the above LP...
- Then, it can be solved with Matlab, R, GAMS, etc.
- And, the solution will give you the equilibrium price, as well as the unit benefits for each and every market participant

[NB: Most optimization functions and tools readily give you the solution of dual problems when solving the primal ones! E.g., see documentation of linprog in Matlab]

Vector and matrices in the objective function

 \bullet The vector \mathbf{y} of optimization variables \mathbf{c} of weights in the objective function are constructed as

$$\tilde{\mathbf{y}} = \begin{bmatrix} \nu_1^G \\ \nu_2^G \\ \vdots \\ \nu_{N_G}^G \\ \vdots \\ \nu_{N_G}^D \\ \nu_2^D \\ \vdots \\ \nu_{N_D}^D \\ \lambda_S \end{bmatrix}, \ \tilde{\mathbf{y}} \in \mathbb{R}^{(N_G + N_D + 1)} \qquad \qquad \tilde{\mathbf{c}} = \begin{bmatrix} -P_1^G \\ -P_2^G \\ \vdots \\ -P_{N_G}^G \\ -P_1^D \\ -P_2^D \\ \vdots \\ -P_{N_D}^D \\ 0 \end{bmatrix}, \ \tilde{\mathbf{c}} \in \mathbb{R}^{(N_G + N_D + 1)}$$

Vector and matrices defining constraints

- No equality constraint!
- For the inequality constraint:

$$\tilde{\mathbf{A}} = \begin{bmatrix} -1 & & & & & 1 \\ & \ddots & & & & 0 & \vdots \\ & & -1 & & & -1 \\ & & & -1 & & & -1 \\ & & & & \ddots & & \vdots \\ & & & & -1 & -1 \end{bmatrix}, \qquad \tilde{\mathbf{b}} = \begin{bmatrix} \lambda_1^G \\ \lambda_2^G \\ \vdots \\ \lambda_{N_G}^G \\ \vdots \\ \lambda_{N_G}^D \\ -\lambda_1^D \\ -\lambda_2^D \\ \vdots \\ -\lambda_{N_D}^D \end{bmatrix},$$

with $\tilde{\mathbf{A}} \in \mathbb{R}^{(N_G+N_D) \times (N_G+N_D)}$ and $\tilde{\mathbf{b}} \in \mathbb{R}^{(N_G+N_D)}$

Application to our simple auction example

• Solving the **primal LP** for obtaining the supply and demand schedules yields:

Supply id.	Schedule (MWh)	Demand id.	Schedule (MWh)
G_1	120	D_1	250
G_2	50	D_2	300
G_3	200	D_3	120
G_4	400	D_4	80
G_5	60	D_5	40
G_6	50	D_6	70
G ₇	60	D_7	60
G ₈	55	D ₈	45
G ₉ -G ₁₅	0	D ₉	30
		D ₁₀ -D ₁₂	0

for a total amount of energy scheduled of 995 MWh

• Solving the **dual LP** gives a system price of $37.5 \in /MWh$ which corresponds to the price offer of G_8

Use the self-assessment quizz to check your understanding!

