Real-time flash flood monitoring and forecast using fixed/mobile sensor networks

Christian Claudel

Assistant Professor, Electrical Engineering

King Abdullah University of Science and Technology ICT4DM- Mauritius – September 2013

www.kaust.edu.sa

Motivation (floods)

- Floods are one of the most common natural disasters in the world, accounting for more than 50% of all disasters.
- 4000 casualties worldwide, most due to flash floods.
- People not aware of the danger of floods.
- No real-time monitoring to date.
- Generic warnings ("risk of flood") too vague, not followed by everybody.

Motivation (floods)

- To date, only limited experiments aimed at sensing floods have been carried out. Defense largely relies on (inaccurate) flood simulations.
- Most notable experiment: Rus et al. (2008, MIT) with fixed water level sensors, in central America.
- This approach can only be used in areas where a river is initially present, excluding all desert areas.

Generic flood sensing system architecture

AlertsRiver state

Communication

- Sensors: fixed (Eulerian) or mobile (Lagrangian).
- Sensing principle: ultrasound/PIR (city), ultrasound/pressure (river, flood channel), UAV-Lagrangian (desert, large area).

Government and NGO alertsDisplay of system status

Global computations

Automated

Flood estimation/inverse modeling

- Standard algorithms can be used to solve the flood estimation problem, such as Ensemble Kalman Filtering (EnKF), Particle Filtering, variational data assimilation, etc.
- Flood inverse modeling is more complex to perform, though it does not absolutely have to be solved in real time: solving in real time the flood inverse modeling problem can improve accuracy, but is not required.

Flood estimation/inverse modeling

- The flood estimation server and the inverse modeling server require a dynamical model of the flood propagation.
- Models are usually in the form of St Venant equations/ shallow water equations, or can be other hydrological models.
- The models require the definition of the landscape (terrain type, altitude isolines).
- Simulations can be run based on previous flooding events to better calibrate the model parameters (and thus increase the accuracy of the real-time forecast).

Visualisation/dissemination

- Output DB and visualization server are straightforward (with new tools such as CartoDB).
- Dissemination to users: network needs to be resilient to outages.
 For smaller set of users (police/government agencies/emergency services dedicated networks can be used if available).

Auxiliary data feeds

- Any type of weather information is useful: satellite weather nowcast, real-time rain gauge measurements, weather forecasts, weather precipitation data).
- Higher resolution of these feeds will improve the accuracy of flood maps, to a certain extent.

Main data feeds

- No satellite-based data can be used for flood detection for two reasons:
 - Synthetic aperture radars are too inaccurate (1m vertical resolution), and sensitive to rain
 - Geostationary satellites do not have this capability

Main data feeds

Fixed sensors (Eulerian)

<u>Pros:</u> cheap (for small areas), straightforward to implement (WSN-based)

<u>Cons:</u> can only instrument a limited area, sensing capability is lost if the flood occurs in a geographical area area that is not instrumented

Mobile sensors (Lagrangian)

Pros: cheap (for larger areas), capable to sense any area on demand

Cons: slightly more expensive for small areas, higher level technology

Fixed sensors: rivers, flood channels

 Radio range: few hundred meters, multi-hop.

 Attached sensor: ultrasonic (bridges), pressure (absolute).

- Pressure sensors are slightly less accurate as they measure a mix of static and dynamic pressure.
- Can be augmented with Lagrangian microsensors (disposable, used only when a flood occurs).
- Solar or grid powered (with battery backup).

Fixed sensors: smart cities

 Radio range: few hundred meters, multihop.

- Attached sensors: dual ultrasonic + PIR.
- Double as <u>real-time traffic flow sensors</u> (for day-to-day use).
- Can be similarly augmented with Lagrangian sensors (disposable, used only when a flood occurs).
- Solar or grid powered (with battery backup).

Mobile sensors: UAV-based sensing

Microsensor design (IMPACT group, Prof. Atif Shamim, KAUST)

- Chosen technology: printed circuits on paper (PCPs)
 - Cheap, can be printed relatively inexpensively (<1 USD/unit)
 - Antenna is printed on the package (reduces costs, makes emission more isotropic)
 - Absorbs impact more easily
 - Easy to waterproof

 Can also be used as <u>a disposable contaminant tracking</u> device for monitoring oilspills/contaminant spills in seawater or freshwater (sharing a single system for two

roles)

Current UAV system

[AbdelKader, Shagura, Claudel, Gueaieb, Jiang, Claudel, International Conference on Unmanned Aircraft Systems (ICUAS), 2013]

Field testing

- Numerous flight tests since June 2012
- First live sensor drops expected in December 2013

Media

Recently featured in `New Scientist', 'Wired'

Team

- Atif Shamim (Assistant Professor, EE, KAUST)
- Victor Calo (Associate Professor, Geophysics, KAUST)
- Wail Gueaieb (Associate Professor, ME, U. Waterloo)
- Jiming Jiang (Postdoc, electronics, KAUST)
- Mohammad Shaqura (PhD student, ME, KAUST)
- Mohamed Abdelkader (PhD student, ME, KAUST)
- Ahmad Dehwah (PhD student, EE, KAUST)
- Mustafa Mousa (PhD student, EE, KAUST)
- Edward Canepa (PhD student, EE, KAUST)
- Enas Odat (PhD student, EE, KAUST)
- 4 MS students

http://dss.kaust.edu.sa

<u>https://innovation.kaust.edu.sa/industry/browse-technology/smart-cities/</u>

Questions?