

Model fitting for CO₂ measurements

Mini Project Public Defense

Joël Mateus Fonseca, Francis Damachi May 21, 2019

COM-503 Performance Evaluation

Table of contents

- 1. Mini project description
- 2. Goal and issues
- 3. Preprocessing
- 4. Proposed solution method
- 5. Results
- 6. Conclusion
- 7. Further Work

Mini project description

About the dataset 1

- sensor network composed of 46 sites from the city of Zurich
- sensor measurements:
 - · CO₂, temperature and humidity
 - · every 30 min
 - entire month of October 2017
- · sensor metadata: altitude and zone
- · additional information: average daily wind pattern

¹Taken from the EE-490 Lab in data science course.

Goal and issues

Prior Knowledge

The exact measurement in each site depends on parameters such as the temperature, the humidity, the wind, the altitude and the traffic around the site.

Curate the CO₂ measurements

The goal is to fit a robust regression model to the CO_2 measurements as the pool of sensors are cheap but inaccurate and can therefore be subject to drifts.

Anomaly

A domain expert indicates that there is a problem with a particular sensor at a given time t_d . The fitted model will allow to retrieve the lost measurements and acknowledge the drift.

Faulty Sensor Modeling

No mathematical modeling available

The teaching staff was mainly guided by the domain experts.

Single example at our disposal

Figure 1: ZSBN (faulty sensor) measurements with failure set to the 24th of October.

Faulty Sensor Modeling

Proposed definition

A faulty sensor undergoes two random transformations:

- · drift: up or down, range=[30, 60],
- rescale (shrink) in amplitude: based on the std, range=[0.2, 0.3].

Low influence setting

Modified measurement will not be directly used.

Date of failure unchanged

Set to the 24th of October. Main reasons:

- train/test split: 75/25 % ideal,
- · can be **fatal**: avoid poor training sample.

Proposed solution method

Try different Approaches

- Naive
- · Zone & Altitude (ZA)
- Wind & Time (WT)
- Brute Force (BF)

Try different Linear Regressions

- Linear Regression (standard)
- Lasso
- Ridge
- ElasticNet

Naive

Rely solely on the faulty sensor. Train on healthy measurements. Only features are **temperature** and **humidity**.

Figure 2: AJGR sensor measurements.

Zone & Altitude (ZA)

[includes Naive]. Aggregate sensors with same zone and altitude cluster. Clustering (K=10) performed on altitude and median CO2 measurement.

Figure 3: Clustering features visualisation.

Wind & Time (WT)

[includes Naive and ZA]. Train a linear regression based on wind conditions and time feature [0-47]. Clustering (K=8) performed on 2 PCA components.

Figure 4: Clustering features visualisation .

Brute Force (BF)

Only using raw measurements. The features are **temperature**, **humidity**, **altitude** and **wind speed**. Use data of all sensors.

Proposed Linear Regressions

Linear Regression (standard)

$$f(X, y|w) = \frac{1}{2N} ||y - Xw||_2^2 \tag{1}$$

Lasso

$$f(X, y|w, \alpha) = \frac{1}{2N} ||y - Xw||_2^2 + \alpha ||w||_1$$
 (2)

Ridge

$$f(X, y|w, \alpha) = \frac{1}{2N} ||y - Xw||_2^2 + \alpha ||w||_2^2$$
 (3)

ElasticNet

$$f(X, y|w, \alpha, r) = \frac{1}{2N}||y - Xw||_2^2 + \alpha r||w||_1 + \alpha(1 - r)||w||_2^2$$
 (4)

Disclaimer A

Following the homework's instructions one would believe that the WT approach is the most appropriate and robust. But, the whole process suffers some drawbacks:

- · focus on a unique sensor only,
- no convincing technique to compare predictions.

Experiments

Select interesting sensors

Select sensors that are different in nature to test robustness of the regression models: AJGR, BSCR, ZSTA, ZUE, ZLMT.

Select appropriate metric

Apply the MSE on the testing set (measurements after the 24th of October).

Table 1: MSE for Linear Regression model.

Sensor	Naive	ZA	WT	BF
AJGR ₁	44.44	44.44	21782.03	31638.90
BSCR ₆	4995.48	4677.71	4511.09	4529.10
ZSTA ₉	1501.71	1216.74	948.19	1031.60
ZUE_3	1109.11	959.13	620.86	777.01
$ZLMT_1$	1065.23	1065.23	82766.18	708.39

Sensor	Naive	ZA	WT	BF
AJGR ₁	44.44	44.44	21782.03	31638.90

Comments

- Temperature and humidity explain very well the CO2 concentration.
- · No need to consider external factors.
- · One WT reg trained on faulty day.
- · AJGR sensor doesn't match centroid sensor.

Figure 5: Visualisation of sensors based on altitude and median CO2 measurements.

Sensor	Naive	ZA	WT	BF
BSCR ₆	4995.48	4677.71	4511.09	4529.10
ZSTA ₉	1501.71	1216.74	948.19	1031.60
ZUE_3	1109.11	959.13	620.86	777.01

Comments

- Be able to rely on similar sensors helps.
- $\boldsymbol{\cdot}$ Adding wind feature reduces even more the error.
- · Being close to the centroid helps.

Table 2: MSE for Linear Regression model.

Sensor	Naive	ZA	WT	BF
ZLMT ₁	1065.23	1065.23	82766.18	708.39

Comments

 $\boldsymbol{\cdot}$ Verifies our hypothesis (being close to centroid helps).

Table 3: MSE for Linear Regression model.

Sensor	Naive	ZA	WT	BF
AJGR ₁	44.44	44.44	21782.03	31638.90
BSCR ₆	4995.48	4677.71	4511.09	4529.10
ZSTA ₉	1501.71	1216.74	948.19	1031.60
ZUE_3	1109.11	959.13	620.86	777.01
ZLMT ₁	1065.23	1065.23	82766.18	708.39

Deployment solution example (current stage)

Mix Naive and WT based on the support size of the sensor clustering.

Table 4: MSE for WT approach.

Sensor	Linear Regression	Lasso(1)	Ridge(1)	ElasticNet(1, 0.5)
ZSTA ₉	948.19	947.33	948.20	945.02
ZUE ₃	620.86	628.25	620.85	628.05

About regularization

Models not enough complex to benefit from regularization.

Figure 6: Prediction measurements with 95% confidence interval using residual bootstrap.

About AIC/BIC criterions

Not enough comparable models to use benefits of criterions.

Conclusion

"Take home message"

- · Always check used scientific method.
- · To test robustness, variability of input should be significant.
- · Indications of domain expert about result range is crucial.
- "Everything must be made as simple as possible. But not simpler."

Further Work

- Ask domain expert about additional external factors not considered and the range of results expected.
- · Test robustness with all sensors.

References

- COM-503 Performance Evaluation, J.-Y. Le Boudec, EPFL, 2019.
- **EE-490(h)** Lab in Data Science, O. Verscheure, EPFL, 2018.