Notação de Operações

Durante a análise de complexidade de um algoritmo buscamos avaliar o seu desempenho de processamento e tempo estimado de execução, no entanto como cada dispositivo, linguagem escolhida, modelo de execução (interpretado, compilador) entre outros fatores pode impactar nessa avaliação, devemos adotar um método que possa descrever o comportamento do algoritmo a medida que quantidade de entradas 'n' se torna maior. Para realizar essa projeção de comportamento, utilizamos das Notações Assintóticas O, Ω e Θ , a seguir definimos o que é uma notação assintótica e cada uma das mencionadas anteriormente.

Uma notação assintótica é uma representação matemática que nos permite entender o padrão de crescimento de uma função, focando no quão rápido ela cresce dado entradas maiores, evidenciando o termo de maior relevância para o seu crescimento, por exemplo, a medida que n se torna maior na função $T(n) = 3n^3 + 10n$, o termo n^3 passa a valer mais que os demais a ponto de torná-los irrelevante para o cálculo. Podemos dizer, portanto, que T(n) possui ordem de crescimento igual a ' n^3 ', ou $O(n^3)$.

A notação Big-O - O(g(n)) - define o limite assintótico superior para uma função, representando o pior caso de desempenho do algoritmo analisado, e pode ser definida como:

Seja as funções $f:N\to N$ e $g:N\to N$, dizemos que $f(n)\in O(g(n))$ se existem duas constantes m e C positivas tais que:

$$f(n) \le c \times g(n) \ \forall n \ge m$$

No gráfico abaixo podemos observar essa propriedade para uma função com ordem $O(n^2)$, onde a partir do valor 20 de entrada 'n', a f(n) sempre se apresentará abaixo de c * g(n).

•

A notação Omega - $\Omega(g(n))$ - define o limite assintótico inferior para uma função, representando o melhor caso de desempenho do algoritmo analisado, e pode ser definida como:

Seja as funções $f:N\to N$ e $g:N\to N$, dizemos que $f(n)\in\Omega(g(n))$ se existem duas constantes m e C positivas tais que:

$$f(n) \ge c \times g(n) \ \forall n > m$$

No gráfico abaixo podemos observar essa propriedade para uma função com ordem $\Omega(n)$, onde a partir do valor 400 de entrada 'n', a f(n) sempre se apresentará acima de g.

Por fim, a notação Theta - $\Theta(g(n))$ - define o limite assintótico firme para uma função, representando o caso médio de desempenho do algoritmo analisado, e pode ser definida como:

Seja as funções
$$f:N\to N$$
 e $g:N\to N$, dizemos que $f(n)\in O(g(n))$ se existem três constantes m , ${\bf C}$ e ${\bf d}$ positivas tais que:

$$c \times g(n) \le f(n) \le d \times g(n) \ \forall \ n \ge m$$

No gráfico abaixo podemos observar essa propriedade para uma função com ordem $\Omega(n)$, onde a partir do valor 400 de entrada 'n', a f(n) se mantém entre as funções c * g(n) e d * g(n).

Qual é a notação O, Ω e Θ para todos os exercícios feitos nesta Unidade 1b?

3)
$$O(1)$$
, $\Omega(1)$, $\Theta(1)$

5)
$$O(n)$$
, $\Omega(n)$, $\Theta(n)$

6)
$$O(1)$$
, $\Omega(1)$, $\Theta(1)$

7)
$$O(1)$$
, $\Omega(1)$, $\Theta(1)$

10)
$$O(1)$$
, $\Omega(1)$, $\Theta(1)$

11)
$$O(1)$$
, $\Omega(1)$, $\Theta(1)$

13)
$$O(n^2)$$
, $\Omega(n^2)$, $\Theta(n^2)$

15)
$$O(n^2)$$
, $\Omega(n^2)$, $\Theta(n^2)$

16)
$$O(n^2)$$
, $\Omega(n^2)$, $\Theta(n^2)$

17)
$$O(\lg(n))$$
, $\Omega(\lg(n))$, $\Theta(\lg(n))$

18)
$$O(\lg(n))$$
, $\Omega(\lg(n))$, $\Theta(\lg(n))$

19)
$$O(n^2)$$
, $\Omega(n^2)$, $\Theta(n^2)$

20)
$$O(\lg(n))$$
, $\Omega(\lg(n))$, $\Theta(\lg(n))$

21)
$$O(\lg(n))$$
, $\Omega(\lg(n))$, $\Theta(\lg(n))$

22)
$$O(\lg(n))$$
, $\Omega(\lg(n))$, $\Theta(\lg(n))$

23)
$$O(\lg(n))$$
, $\Omega(\lg(n))$, $\Theta(\lg(n))$

24.a)
$$O(n^2)$$
, $\Omega(n^2)$, $\Theta(n^2)$

24.b)
$$O(n^3)$$
, $\Omega(n^3)$, $\Theta(n^3)$

24.c)
$$O(\lg(n))$$
, $\Omega(\lg(n))$, $\Theta(\lg(n))$

24.d)
$$O(n^3)$$
, $\Omega(n^3)$, $\Theta(n^3)$

24.e)
$$O(n^4)$$
, $\Omega(n^4)$, $\Theta(n^4)$

24.f)
$$O(\lg(n))$$
, $\Omega(\lg(n))$, $\Theta(\lg(n))$