

Math behind Machine Learning 1

variable, function, first order functions, gradient, intercept

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valued output

Training set of housing prices (Portland, OR)

Size in feet ² (x)	Price (\$) in 1000	's (y)
-> 2104	460	
1416	232	m=47
	315	
852	178	1
		J

Notation:

- > m = Number of training examples
- x's = "input" variable / features
- y's = "output" variable / "target" variable


```
i:

m:

x^{(i)}:

x^{(1)} =

x^{(2)} =

y^{(1)} =

(x^{(i)}, y^{(i)}):
```


Functie

How do we represent h?

$$h_{\mathbf{g}}(x) = \Theta_0 + \Theta_1 \times Shorthard: h(x)$$

Linear regression with one variable. Univariate linear regression.

 θ : h(x): $h_{\theta}(x)$:

Parameters

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460 7	
1416	232 m= 47	
1534	315	
852	178	
	<i>)</i>	

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$
$$\theta_i$$
:

Eerstegraads functies

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\rightarrow \theta_1 = 0$$

$$\theta_1 = 0.5$$

First order function

