IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (currently amended) A method for the manufacture of heat exchangers and apparatuses having brazed parts, comprising the steps of:
 - (a) juxtaposing at least two parts to define one or more joints therebetween;
 - (b) supplying to said one or more joints an iron/chromium brazing filler metal;
 - (c) heating said juxtaposed parts and said brazing filler metal under appropriate conditions in order to melt said brazing filler metal; and
 - (d) cooling said juxtaposed parts and said brazing filler metal to produce a solid brazed joint of a brazed assembly; and
 - (e) conditioning said brazed parts by exposure to an elevated temperature in an oxygen-containing atmosphere for a time sufficient to substantially reduce the amount of nickel leaching into water or other fluids contacting the brazed joint of said brazed assembly.
- 2. (cancelled)
- 3. (currently amended) A method as recited by claim 21, wherein said oxygen-containing atmosphere is air.
- 4. (currently amended) A method as recited by claim 21, wherein said elevated temperature ranges from about 300°C to 600°C.

- 5. (original) A method as recited by claim 4, wherein said elevated temperature ranges from about 350°C to 500°C.
- 6. (original) A method as recited by claim 21, wherein said time ranges from about 8 to 24 hours.
- (original) A method as recited by claim 1, wherein said iron/chromium brazing filler metal consists essentially of a composition having the formula Fe_aCr_bCo_cNi_dMo_eW_fB_gSi_h wherein the subscripts "a", "b", "c", "d", "e", "f", "g", and "h" are in atom percent and wherein, "b" ranges from about 5 to 20, "c" ranges from 0 to about 30, "d" ranges from 0 to about 20, "e" ranges from 0 to about 5, "f" ranges from 0 to about 5, "g" ranges from about 8 to 15, "h" ranges from about 8 to 15, and the sum "a"+"b"+"c"+"d"+"e"+"f"+"g"+"h"=100, the balance being incidental impurities present in an amount up to about 1 percent by weight of the total composition.
- 8. (currently amended) A process method for joining two or more metal parts to form a brazed joint in a brazed assembly, comprising the steps of:
 - (a) juxtaposing said parts to define one or more joints therebetween;
 - (b) supplying to the one or more joints an iron/chromium brazing filler metal;
 - (c) heating said juxtaposed parts and said brazing filler metal to melt said brazing filler metal; and
 - (d) cooling said juxtaposed parts and said melted brazing filler metal to produce a brazed joint having brazed parts; and

(e) conditioning the brazed parts by exposing said brazed joint to an elevated temperature, in an oxygen-containing atmosphere, for a sufficient time to substantially reduce the amount of nickel leaching into water or other fluids contacting the brazed joint in said brazed assembly.

9. (cancelled)

- 10. (currently amended) A method as recited by claim 98, wherein the oxygen-containing atmosphere is air.
- 11. (currently amended) A method as recited by claim 98, wherein said elevated temperature ranges from about 300°C to 600°C.
- 12. (original) A method as recited by claim 11, wherein said elevated temperature ranges from about 350°C to 500°C.
- 13. (currently amended) A method as recited by claim 98, wherein said time ranges from about 8 to 24 hours.
- 14. (original) A method as recited by claim 8, wherein said iron/chromium brazing filler metal consists essentially of a composition having the formula $Fe_aCr_bCo_cNi_dMo_eW_fB_gSi_h \text{ wherein the subscripts "a", "b", "c", "d", "e", "f", "g", and "h" are in atom percent and wherein, "b" ranges from about 5 to 20, "c"$

ranges from 0 to about 30, "d" ranges from 0 to about 20, "e" ranges from 0 to about 5, "f" ranges from 0 to about 5, "g" ranges from about 8 to 15, "h" ranges from about 8 to 15, and the sum "a"+"b"+"c"+"d"+"e"+"f"+"g"+"h"=100, the balance being incidental impurities present in an amount up to about 1 percent by weight of the total composition.

15. (cancelled)

(currently amended) A heat exchanger, comprising at least one joint brazed with 16. as recited by claim 15, wherein saidan iron/chromium brazing filler metal composition having the formula consistings essentially of Fe_aCr_bCo_cNi_dMo_eW_fB_gSi_h wherein the subscripts "a", "b", "c", "d", "e", "f", "g", and "h" are in atom percent and wherein, "b" ranges from about 5 to 20, "c" ranges from 0 to about 30, "d" ranges from 0 to about 20, "e" ranges from 0 to about 5, "f" ranges from 0 to about 5, "g ranges from about 8 to 15, "h" ranges from about 8 to 15, and the sum "a"+"b"+"c"+"d"+"e"+"f"+"g"+"h"=100, the balance being incidental impurities present in an amount up to about 1 percent by weight of the total composition.

- 17. (<u>currently amended</u>) A heat exchanger comprising at least two parts forming one of a plurality of brazed joints in a brazed assembly, said heat exchanger being produced by a process comprising the steps of:
 - (a) juxtaposing said at least two parts to define one or more joints therebetween;
 - (b) supplying to said one or more joints an iron/chromium brazing filler metal;
 - (c) heating said juxtaposed parts and said brazing filler metal to melt the brazing filler metal; and
 - (d) cooling said juxtaposed parts and said melted brazing filler metal to produce a brazed joint having brazed parts; and
 - (e) conditioning the brazed parts by exposing said brazed joint to an elevated temperature, in an oxygen-containing atmosphere, for a sufficient time to substantially reduce the amount of nickel leaching into water or other fluids contacting the brazed joints of the brazed assembly.
- 18. (cancelled)
- 19. A heat exchanger as recited by claim 17, wherein said iron/chromium brazing filler metal consists essentially of a composition having the formula $Fe_aCr_bCo_cNi_dMo_eW_fB_gSi_h \text{ wherein the subscripts "a", "b", "c", "d", "e", "f", "g",}$

and "h" are in atom percent and wherein, "b" ranges from about 5 to 20, "c" ranges from 0 to about 30, "d" ranges from 0 to about 20, "e" ranges from 0 to about 5, "f" ranges from 0 to about 5, "g ranges from about 8 to 15, "h" ranges from about 8 to 15, and the sum "a"+"b"+"c"+"d"+"e"+"f"+"g"+"h"=100, the balance being incidental impurities present in an amount up to about 1 percent by weight of the total composition.

20-22. (cancelled)

- 23. (new) A method for the manufacture of heat exchangers and apparatuses having brazed parts, comprising the steps of:
 - (a) juxtaposing at least two parts to define one or more joints therebetween;
 - (b) supplying to said one or more joints an iron/chromium brazing filler metal consisting essentially of a composition having the formula Fe_aCr_bCo_cNi_dMo_eW_fB_gSi_h wherein the subscripts "a", "b", "c", "d", "e", "f", "g", and "h" are in atom percent and wherein, "b" ranges from about 5 to 10, "c" ranges from 0 to about 10, "d" ranges from 0 to about 10, "e" ranges from 0 to about 3, "f" ranges from 0 to about 3, "g" ranges from about 8 to 15, "h" ranges from about 8 to 15, the sum "g"+"h" ranges from about 18 to 25, and the sum "a"+"b"+"c"+"d"+"e"+"f"+"g"+"h"=100, the balance being incidental impurities present in an amount up to about 1 percent by weight of the total composition;
 - (c) heating said juxtaposed parts and said brazing filler metal under appropriate conditions in order to melt said brazing filler metal; and

- (d) cooling said juxtaposed parts and said brazing filler metal to produce a solid brazed joint of a brazed assembly.
- 24. (new) A method as recited by claim 23, wherein said brazing filler metal is in the form of a homogeneous, ductile ribbon.
- 25. (new) A method as recited by claim 23, further comprising the step of:
 - (e) conditioning said brazed parts by exposure to an elevated temperature in an oxygen-containing atmosphere for a time sufficient to substantially reduce the amount of nickel leaching into water or other fluids contacting the brazed joint of said brazed assembly.

IN THE SPECIFICATION

Please amend the specification by adding the following paragraph at the beginning of the application:

RELATED U.S. APPLICATION DATA

This application is a divisional of U.S. Patent Application Ser. No. 10/171,132, filed June 13, 2002, now U.S. Patent No. 6,656,292.