第十八章 环与域

18.1

证明: $\forall a_1, a_2, b_1, b_2 \in A$,

$$(a_1*b_1)\circ(a_1*b_2)\circ(a_2*b_1)\circ(a_2*b_2)$$

$$=((a_1*b_1)\circ(a_1*b_2))\circ((a_2*b_1)\circ(a_2*b_2))$$

$$=(a_1*(b_1\circ b_2))\circ(a_2*(b_1\circ b_2))$$

$$=(a_1\circ a_2)*(b_1\circ b_2)$$

$$=((a_1\circ a_2)*b_1)\circ((a_1\circ a_2)*b_2)$$

$$=((a_1*b_1)\circ(a_2*b_1))\circ((a_1*b_2)\circ(a_2*b_2))$$

$$=(a_1*b_1)\circ(a_2*b_1)\circ(a_1*b_2)\circ(a_2*b_2)$$

$$=(a_1*b_1)\circ(a_2*b_1)\circ(a_1*b_2)\circ(a_2*b_2)$$

$$=(a_1*b_1)\circ(a_2*b_1)\circ(a_1*b_2)\circ(a_2*b_2)$$

18.2

证明: $\langle \mathbb{Z}[i], + \rangle$ 显然构成一个 Abel 群,其中 0 = 0 + 0i 是加法单位元,对任意 $a + bi \in \mathbb{Z}[i]$, $(-a) + (-b)i \in \mathbb{Z}[i]$ 是加法逆元。

对任意 $a+bi, c+di \in \mathbb{Z}[i]$, $(a+bi)(c+di)=(ac-bd)+(ad+bc)i \in \mathbb{Z}[i]$,从而 $\langle \mathbb{Z}[i], \cdot \rangle$ 构成代数系统。由复数乘法的结合律知, $\langle \mathbb{Z}[i], \cdot \rangle$ 是半群。

最后,由复数运算规律知,复数乘法对复数加法满足分配律。

从而
$$\langle \mathbb{Z}[i], +, \cdot \rangle$$
是环。

18.3

证明: \oplus 和 \cap 显然都是 $\mathcal{P}(B)$ 上的二元运算。

由教材例 1.7 知, \oplus 满足结合律、交换律,对 \cap 可分配, \varnothing 为加法单位元,所有元素都是自身的负元。

由教材中给出的"集合恒等式"知, ∩满足结合律和交换律。

从而
$$\langle \mathcal{P}(B), \oplus, \cap \rangle$$
 是一个可交换环。

18.4

证明: *和○显然都是 Z上的二元运算。

对任意 $a, b, c \in \mathbb{Z}$,

$$(a*b)*c = (a+b-1)+c-1$$
 (* 运算定义)
 $= a+(b+c-1)-1$ (加法交换律、结合律)
 $= a*(b*c)$ (* 运算定义)
 $(a\circ b)\circ c = (a+b-ab)+c-(a+b-ab)c$ (© 运算定义)