Duration: 3hrs

[Max Marks:80]

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five. (3) All questions carry equal marks.
- (4) Assume suitable data, if required and state it clearly. (5) Use of Refrigerant tables, Friction charts, Psychometrics chart, and Steam table
- Attempt any Five of the following Qu.1 [20]

Define: i) Ton of Refrigeration ii) iii) Dry bulb temperature jii) Wet a) bulb temperature iv) Humidity ratio

- What are the properties of refrigerants? Compare primary and secondary b) refrigerant.
- Define the term 'by pass factor' Express it for heating and cooling coil. c)
- State the various applications of HVACR and explain any one application. d) f)
- Explain working of Simple Vapor absorption system
- Define the effective temperature. What are the physiological hazards g) resulting from heat?
- h) State the types of Expansion device and explain working of any one with neat diagram.
- [10] Qu.2 Draw Schematic, P-H and T-s diagram of standard VCRS and discuss a) effect of Suction Pressure and Discharge Pressure on the performance of the VCRS.
 - A simple air refrigeration system is used for an aircraft to take a load of b) 20.TR. The ambient pressure and temperature are 0.9 bar and 22°C resp. The pressure of air is increased to 1 bar due to isentropic ramming action. The air is further compressed in a compressor to 3.5 bar and then cooled in a heat exchanger to 72°C. Finally, air is passed through the cooling turbine and then it is supplied to the cabin at a pressure of 1.03 bar. The air leaves the cabin at a temperature of 25°C. Assuming the isentropic efficiencies of the compressor and turbine are 80% and 75%. Find 1) Power required to take load in the cooling cabin. 2) COP of the system take Cp = 1.005 KJ/kg K and $\gamma=1.4$
- A refrigerator uses R-134a as the working fluid and operates on ideal [10] Qu.3 a) vapor compression refrigeration system. The evaporator and condenser pressure are 0.1 MPa and 0.8 MPa respectively. The mass flow rate of the refrigerant is 0.8 kg/sec. Determine the following:
 - 1) Rate of heat removal from the refrigerant space.
 - Input power to compressor.
 - 3) Heat rejection rate in the condenser.
 - 4) The COP
 - 5) What would be the COP if compared with that of the Carnot refrigerator operating between 30°c and -10°C.

0

	b)	mercury is 0.01	6 kg/kg of dry a ure of water vap nidity mperature alpy	ir. Determine	OBT and 760 mm of	[10]
Qu.4	a) b) c)	state functions of	t each componer various componer	it ents used in Don	g each component. Als nestic refrigerator. e type with its	[06] [08]
Qu.5	If co a)		= 38°C DBT and = 24°C DBT and in room = 46.4 room = 11.6 kV ir 1200 m³/hr. In temperature = plated air from the ecirculated air is e following. of air leaving the dair.	onditioned hall in the second strong the hall	conditioned air after the	
Qu.6 a)	Wr 1) 7 2) I 6) E	ite short note on (Types of Cooling Dairy and food pro Explain working o Discuss the method	any two) towers, perform ocessing plant f commercial ic	ance and selection		[10]
b)	Exp	lain various psych t	nrometric proces	s with the help o	of psychrometric	[10]
