

Voting system

NETWORKS INFO 2040 / CS 2850 / ECON 2040 / SOC 2090

- Reading Chapter 23 / Whiten handont (Convois)
- PS 9 out (due on Thur): answers typed, assign numbers
- Final Exam: Dec 12th afternoon
- Review session (Dec 6th / 8th)

WATCH?

22%

33%

44%

A finite set of alternatives A, B, C, ...

A finite set of alternatives X, Y, Z, ...

Preference: X >_i Y or Y >_i X between any pair of alternatives X and Y

Prefer T: Y>i X

A finite set of alternatives X, Y, Z, ...

Preference: X >_i Y or Y >_i X between any pair of alternatives X and Y

Completeness Either $X >_i Y$ or $Y >_i X$, but not both

Transitivity If $X >_i Y$ and $Y >_i Z$, then $X >_i Z$

Does the following relationship satisfy completeness and transitivity?

FIFA World Cup (round-robin tournament)

4 teams, each scheduled for 3 matches against others

If I: prefer X > Y if X "defeats" Y in their match

Does the following relationship satisfy completeness and transitivity?

Comparing the "heights"

If I: prefer X > i Y if X is higher than Y

Preference: X >_i Y or Y >_i X between any pair of alternatives X and Y

Completeness Either $X >_i Y$ or $Y >_i X$, but not both

Transitivity If $X >_i Y$ and $Y >_i Z$, then $X >_i Z$

A complete and transitive relation arises from some ranked list of the alternatives.

Preference: $X >_i Y$ or $Y >_i X$ between any pair of alternatives $X >_i Y$

Completeness Either $X >_i Y$ or $Y >_i X$, but not both

Transitivity If $X >_i Y$ and $Y >_i Z$, then $X >_i Z$

A complete and transitive relation arises from some ranked list of the alternatives.

Attentions 7/1, 1/2, ..., 7/1

Select X* which "beats" the most number of others

Ne can show X* beats everyone

A: options beaton by X*

The properties of others

(A: options beaton by X*)

The properties of others

The prop

as No-2

How do we aggregate individual preferences?

If there are only 2 alternatives: Majority rule

How do we aggregate individual preferences?

If there are > 2 alternatives: Very hard

How do we aggregate individual preferences?

Person 1:
$$X >_1 Y >_1 Z$$

Person 3:
$$Z >_3 X >_3 Y$$

Compare
$$X$$
 us Y $(X > Y)$
 Y us Z $(Y > Z)$
 X us Z $(Z > X)$

How do we aggregate individual preferences?

Person 1: $X >_1 Y >_1 Z$

Person 2: $Y >_2 Z >_2 X$

Person 3: $Z >_3 X >_3 Y$

Condorcet Paradox:

Nontransitive group preferences arising from transitive individual preferences

How do we aggregate individual preferences?

Group i (40%):
$$X >_i Y >_i Z$$

Group j (30%):
$$Y >_j Z >_j X$$

Group k (30%):
$$Z >_k X >_k Y$$

How do we aggregate individual preferences?

Group i (40%): $X >_i Y >_i Z$

Group j (30%): $Y >_j Z >_j X$

Group k (30%): $Z >_k X >_k Y$

(00 people in total

How do we aggregate individual preferences?

Group j (30%):
$$Y >_j Z >_j X$$

Group k (30%):
$$Z >_k X >_k Y$$

$$X: 40x2 + 30x1 = 110$$
 $Y: 30x2 + 40x1 = 100$
 $Z: 30x2 + 30x1 = 90$