Cross-Coupling Reactions of Organoboranes:

An Easy Way for Carbon-Carbon Bonding

Akira Suzuki

Conjugated Alkadienes

M: transition metal catalyst

Syntheses of (E)- and (Z)-1-Alkenylboranes

RC
$$\equiv$$
CH + HBY₂ \longrightarrow $\stackrel{R}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ BY₂ trans > 99 % Y₂ = (Siamyl)₂,

RC
$$\equiv$$
CX $\xrightarrow{HBY_2}$ \xrightarrow{R} \xrightarrow{K} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{R} \xrightarrow{R} $\xrightarrow{BY_2}$ \xrightarrow{R} \xrightarrow{H} \xrightarrow{R} \xrightarrow{H} \xrightarrow{R} \xrightarrow{R} \xrightarrow{H} \xrightarrow{H} \xrightarrow{R} \xrightarrow{R}

X = I or Br Y = Siamyl, Cyclohexyl

Common Catalytic Cycle Involving Sequential Oxidative Addition (a), Transmetalation (b), and Reductive Elimination (c)

$$Bu \nearrow_{BX_2} + Br \nearrow_{Ph} \longrightarrow Bu \nearrow_{Ph}$$

1 ^{a)}	Catalyst ^{b)} (mol %)	Base (equiv / 2)	Solvent	React. time (h)	Yield (%) of 3
1b	PdL ₄ (3)	None	THF	6	0
1b	PdL ₄ (3)	None	Benzene	6	0
1a	PdL ₄ (3)	2M NaOEt (2)-EtOH	THF	2	73
1b	PdL ₄ (3)	2M NaOEt (2)-EtOH	THF	4	78
1b	PdL ₄ (1)	2M NaOEt (2)-EtOH	Benzene	2	86

a) 1a,
$$X_2 = (Sia)_2$$
 1b, $X_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ b) L = PPh₃

1-Alkenylborane	1-Alkenyl Bromide	Product	Yield (%) [Purity (%)]
Bu	Br Ph	Bu	86 [98]
Bu _B< a)	Br Ph	Bu	<u>49</u> [99]
Bu B< a)	Br Ph	BuPh	<u>42</u> [89]
Bu	Br Hex	Bu	88 [99]
Bu B< a)	BrHex	BuHex	<u>49</u> [98]
Ph	Br Ph	Ph Ph	89 [98]

Reaction conditions: 1-3 mol % of Pd(PPh $_3$) $_4$ / NaOEt / Benzene / Reflux 2h a) Disiamyl b) 1,3,2-Benzodioxaboryl

BY ₂	RX	Product	Yield (%)	Purity (%)
B(Sia) ₂ B(OPr ⁱ) ₂	Br Hex	BuHex	49 87	>98 >99
B(Sia) ₂			58	>94
$B(\bigcirc)_2$	PhI	Bu Ph	49	>83
B(OPr ⁱ) ₂			98	>97
B(Sia) ₂		Bu /	54	>92
B(OPr ⁱ) ₂	· >=/		87	>99

"Palytoxin" C₁₂₉H₂₂₃N₃O₅₄ (MW. 2678.6)

Synthesis: Kishi et al., *J. Am. Chem. Soc*, 1989, 111, 7525, 7530

Reaction Mechanism:

Reaction of B-Alkylboranes

$$R-B$$
 + R^4X \longrightarrow $R-R^4$

R: Alkyl

Alkyl-Vinyl Coupling:

Total Synthesis of Polycyclic Ether Natural Product

M. Sasaki, *Bull. Chem. Soc. Jpn.* 2007, *80*, 856

$$R^{1}O \xrightarrow{Q-BBN} R^{1}O \xrightarrow{Q-B$$

Polycyclic Ether Marine Natural Products:

Aromatic-Aromatic Cross-Coupling Reactions

$$-B(OH)_2 + Br - Z$$

Suzuki Coupling:

Valsartan (Novartis): Antihypertensive

- 3.5 million users in Japan
- 22 million users in the whole world

Angiotensin II Receptor Antagonist (Losartan)

Merck , J. Org. Chem. 59, 6391 (1994)

Losartan (Antihypertensive)

Suzuki coupling is a shortcut to biaryls (BASF's Boscalid Process)

Boscalid; Agrochemicals (BASF, Germany)

Boscalid

Liquid crystal:

Chisso (Japan)

$$C_5H_{11}$$
 \longrightarrow $B(OH)_2 + I$ F

$$C_5H_{11}$$
 F

Merck (Germany)

$$R - C$$
 F
 F
 F
 OCF_3

EL Polymer materials

Advantages of the Cross-Coupling Reaction between Organoboron Compounds and Organic Electrophiles:

- 1. Ready availability of reagents: hydroboration and transmetalation
- 2. Mild reaction conditions: base problem
- 3. Water stability
- 4. Easy use of the reaction both in aqueous and heterogeneous conditions
- 5. Toleration of a broad range of functional groups
- 6. High regio- and stereoselectivity of the reaction
- 7. Insignificant effect of the steric hindrance
- 8. Use of a small amount of catalysts
- 9. Application in one-pot synthesis
- 10. Nontoxic reaction
- 11. Easy separation of inorganic boron compounds