SI3 2008–2009

Examen Langages Formels at Automates du 16 Mars 2009

Dur	ée:	50	minutes
1		3	
2		2	_
3		5	_
4		5	_
5		5	_

Aucun document n'est autorisé.

Si vous pensez que le texte d'une question est ambigu (voire erroné) faites une hypothèse raisonnable et écrivez la sur votre copie.

1 Bien inspiré?

Sur l'alphabet $\{a,b,c\}$, construire (sans justification écrite sur la copie) l'automate déterministe **minimal** qui reconnait l'ensemble des mots w tels que les 2 dernières lettres de w sont les mêmes (donc w est de longueur au moins 2).

cf. exercice 4 feuille 1

2 Étais-je en cours?

Justifier que l'intersection de deux langages rationnels est un langage rationnel.

cf. cours 5

3 Facteur

– Sur l'alphabet $\{a,b\}$, construire (sans justification écrite sur la copie) l'automate minimal qui reconnait l'ensemble des mots w qui admettent bb pour facteur.

cf. feuille 1 exercice 2

 A partir de l'automate précédent, écrire un système d'équations et le résoudre pour obtenir une expression rationnelle qui décrit ce langage.

cf feuille 3 exercice 1 et 2

4 Suffixe

– Sur l'alphabet $\{a,b\}$, donner une expression rationnelle décrivant l'ensemble L des mots ayant bab pour suffixes.

cf. feuille 1, exercice 4

- Calculer les quotients gauches de L et en déduire l'automate minimal qui reconnait L.

cf. feuille 3, exercice 3

5 Déterminisation

Déterminiser l'automate suivant :

δ	ϵ	a	b
$\rightarrow 1$	2,7		
2	3,4		
3		5	
4			6
5	2,7		
← 6	2,7		
7		8	
8	9		
9			10
← 10			

cf. feuille 2 exercice 1