Tutoriumsblatt 6 Rechnerarchitektur im SoSe 2020

Zu den Modulen I, J

Tutorium:

Die Aufgaben werden in Tutorien-Videos vorgestellt, die am 28. Mai 2020 (17 Uhr) veröffentlicht werden.

Aufgabe T18: Darstellung ganzer Zahlen

(- Pkt.)

- a. Geben Sie die folgenden Dezimalzahlen als Dualzahlen in ihrer 1er-Komplement-, 2er-Komplement- und in Sign/Magnitude-Darstellung an (jeweils 10 Bit). Bei der Sign/Magnitude-Darstellung wird das hochwertigste Bit als Vorzeichen interpretiert: $(b_9...b_1b_0)_2 = (-1)^{b_9} * \sum_{i=0}^8 b_i 2^i$
 - (i) $(123)_{10}$
 - (ii) $(-123)_{10}$
- b. Wandeln Sie folgende Dualzahlen in ihre Dezimaldarstellung um. Interpretieren Sie die Dualzahlen jeweils als in 1er- und 2er-Komplement-Darstellung sowie in Sign/Magnitude-Darstellung gegeben.

(9)

- (i) (11111101011)₂
- (ii) (0001011010)₂

Beispiel mit 8 Bits:

Das höchstwertigste Bit zeigt das Vorzeichen an. Die restlichen Bits (im Beispiel 7 Bits) werden für die Darstellung der Zahl verwendet. Nachteil: Es gibt 2 Darstellungen für die Null (+0 und -0)

1er-langument

Same as above

2er - Konglemul

Zweierkomplement Operation:

Bitweise invertieren und +1 rechnen der positiven Darstellung der Zahl.

$$K_2(50) = 00110010$$

 $K_2(-50) = 11001101 + 1 = 11001110$

	make sive its Vozeiller	only makes a dlf / if VZ=1
Darstellung	(123) ₁₀	$(-123)_{10}$
Sign/Magnitude	(0001111011) ₂	(1001111011) ₂
Einerkomplement	$(0001111011)_2$	$(1110000100)_2$
Zweiterkomplement	(0001111011) ₂	(1110000101) ₂

Rest: 1 Rest: 1 Rest: 0 Rest: 1 Rest: 1 Rest: 1
Rest: 1 Rest: 1

(6)				
	Darstellung	$(1111101011)_2$	$(0001011010)_2$	
	Sign/Magnitude	$(-491)_{10}$	(90) ₁₀	
	Einerkomplement	$(-20)_{10}$	(90) ₁₀	
	Zweiterkomplement	$(-21)_{10}$	(90) ₁₀	

- c. Geben Sie jeweils in 1er- und 2er-Komplement-Darstellung und in Sign/Magnitude-Darstellung bei Verwendung von 10 Bits an:
 - (i) die größte darstellbare positive Zahl,
 - (ii) die kleinste darstellbare positive Zahl,
 - (iii) die größte darstellbare negative Zahl (d.h. die negative Zahl, die den geringsten Abstand zur Null hat),
 - (iv) die kleinste darstellbare negative Zahl (d.h. die negative Zahl, die den größten Abstand zur Null hat),
 - (v) die Zahl Null.
- d. Gibt es einen Unterschied zwischen "2er-Komplement" und "2er-Komplement-Darstellung"? Wenn ja, welchen?

Darstellung	Sign/Magnitude	Einerkomplement	Zweierkomplement	Dezimal
größte, pos.	0111111111	0111111111	0111111111	511
kleinste, pos.	000000001	000000001	000000001	1
größte, neg.	100000001	1111111110	111111111	-1
kleinste, neg.	1111111111	1000000000	1000000000	-511/-512
Null	0000000000 = 1000000000	0000000000 = 1111111111	000000000 (eindeutig)	0

Ja, es existiert ein signifikanter Unterschied

- **2er-Komplement** bezeichnet Rechenoperation auf einem Bitmuster (nämlich: Bits invertieren und 1 addieren)
- **2er-Komplement-Darstellung** ist eine Art der Zahlendarstellung, in der bei der Darstellung negativer Zahlen das 2er-Komplement zum Einsatz kommt
- Leider wird oftmals "2er-Komplement" gesagt, wenn eigentlich "2er-Komplement-Darstellung" gemeint ist

Aufgabe T19: Addition von Dualzahlen

(- Pkt.)

In dieser Aufgabe sollen die Grundlagen der Addition in Einer- bzw. Zweierkomplement-Darstellung vertieft werden. Verwenden Sie zur binären Darstellung sämtlicher vorkommenden Zahlen jeweils 8 Bits.

- a. Gegeben seien die Zahlen $(-17)_{10}$ sowie $(7)_{10}$.
 - (i) Geben Sie die Einerkomplement-Darstellung der beiden Zahlen an.
 - (ii) Geben Sie die Zweierkomplement-Darstellung der beiden Zahlen an.
- b. Addieren Sie die Zahlen $(-17)_{10}$ und $(7)_{10}$ binär. Verwenden Sie dazu
 - (i) die Einerkomplement-Darstellung.
 - (ii) die Zweierkomplement-Darstellung.
- c. Addieren Sie nun die Zahlen $(-56)_{10}$ und $(-72)_{10}$ binär. Verwenden Sie dazu
 - (i) die Einerkomplement-Darstellung.
 - (ii) die Zweierkomplement-Darstellung.

Beantworten Sie zusätzlich jeweils die Frage, ob ein Überlauf stattgefunden hat. Begründen Sie ihre Antwort kurz.

(b)
$$(56)_{10} = (00111000)_2 \\ \rightarrow (-56)_{10} = (11000111)_2 + 1 \\ = (11001000)_2$$

$$(72)_{10} = (01001000)_2 \\ \rightarrow (-72)_{10} = (10110111)_2 + 1 \\ = (10111000)_2$$
 Es hat kein Überlauf stattgefunden, da das Ergebnis der Addition mit den zur Verfügung stehenden Bits dargestellt werden kann.

Aufgabe T20: Gleitkommazahlen

(- Pkt.)

Nach dem IEEE 754 Standard gilt:

$$(-1)^{S} \cdot (1 + Signifikant) \cdot 2^{(Exponent-Bias)}$$

wobei der Standard

- für das Vorzeichen S ein Bit,
- für den Signifikanten (Mantisse) 23 Bit bei einfacher und 52 Bit bei doppelter Genauigkeit,
- für den Exponenten 8 Bit bei einfacher und 11 Bit bei doppelter Genauigkeit

reserviert und den Bias auf $127 = 2^{8-1} - 1$ bei einfacher bzw. auf $1023 = 2^{11-1} - 1$ bei doppelter Genauigkeit setzt.

- Geben Sie die Darstellung folgender Zahlen als Gleitkommazahl nach IEEE 754 in einfacher a. (32-Bit) Genauigkeit an:
 - (i) $(11, 25)_{10}$
 - (ii) $(0,2)_{10}$
- Wandeln Sie folgende Zahl, die in Gleitkommadarstellung (IEEE 754) gegeben ist, in ihre b. Dezimaldarstellung um.

Das Komma steht an beliebiger, aber fester Stelle

$$111,011 = -(1*2^1 + 1*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3})$$

Probleme

- Man kann mit einer bestimmten Anzahl von Bits nur einen beschränkten Wertebereich abdecken.
- Es muss separat gekennzeichnet oder allgemeingültig für alle Darstellungen vereinbart werden, an welcher Stelle sich das Komma
- Wenn man sehr große und sehr kleine Zahlen Darstellen möchte braucht man sehr viele Bits

Schritt 1: Normalisieren $(11,25)_{10} = (1011,01)_2 = (1,01101)_2 * 2^3$

Schritt 2: IEEE 754

$$(1,01101)_2 * 2^{3+127}$$

Sign	Exponent	Signifikant
0	10000010	011010000000000000000000000000000000000

(i) Schritt 1: Normalisiere $(0,2)_{10} = (0,\overline{0011})_2 =$	$(1,\overline{1001})_2 * 2^{-3}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	> Ziffer: > Ziffer: > Ziffer: > Ziffer: > Ziffer:	0 1 1
Schritt 2: IEEE 754	$(1.\overline{1001})_2 *$	2^{-3+127}	D 0	

 $(1,\overline{1001})_2 * 2^{-3+127}$

Sign	Exponent	Signifikant
0	01111100	10011001100110011001100

(keep shifting bits forward)

31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign = $1 \rightarrow Zahl$ ist negativ Exponent = Biased Exponent - Bias = 134 - 127 = 7

