Code

```
//RTL Model for Linear Feedback Shift Register
module Ifsr
\#(parameter N = 4) // Number of bits for LFSR
input logic clk, reset, load_seed,
input logic[N-1:0] seed_data,
output logic Ifsr done,
output logic[N-1:0] lfsr_data
);
//student to add implementation for LFSR code
reg [N:1] r_LFSR;// changed N-1 to N because out of range error in N==4 part of code
reg xor data;
always@(posedge clk, negedge reset)begin //at end
if(!reset)begin
r LFSR = 1'b0;
//code
end
else if(load seed)
r_LFSR <= seed_data;
//TA suggestion on how to shift the bits
r_LFSR \le \{r_LFSR[N-1:1], xor_data\};
//code
end
always@(posedge clk, negedge reset)begin
//else begin
if (N==2)begin
xor_data = r_LFSR[2] ^ r_LFSR[1];
end
else if (N==3)begin
xor_data = r_LFSR[3] ^ r_LFSR[2];
end
else if (N==4)begin
xor_data = r_LFSR[4] ^ r_LFSR[3];
end
else if (N==5)begin
xor_data = r_LFSR[5] ^ r_LFSR[3];
end
else if (N==6)begin
xor_data = r_LFSR[6] ^ r_LFSR[5];
end
```

```
else if (N==7)begin
xor_data = r_LFSR[7] ^ r_LFSR[6];
end
else if (N==8)begin
xor_data = r_LFSR[8] ^ r_LFSR[6] ^ r_LFSR[5] ^ r_LFSR[4];
end
end
//load the xor data into LSB
assign lfsr_data = r_LFSR;
//lfsr done
assign lfsr_done = ((reset != 0) && (lfsr_data[N-1:0] != 1'b0) && (lfsr_data[N-1:0] == seed_data))
? 1'b1: 1'b0;
endmodule: Ifsr
       Testbench
`timescale 1ns/1ns
//LFSR Testbench Code
module Ifsr testbench;
parameter N = 4;
logic clock;
logic [N-1:0] Ifsr_data, seed_data;
logic lfsr_done;
logic reset, load_seed;
Ifsr #(.N(N)) design_inst(
.clk(clock),
.reset(reset),
.load_seed(load_seed),
.seed data(seed data),
.lfsr_data(lfsr_data),
.lfsr_done(lfsr_done)
);
initial begin
// Initialize Inputs
reset = 0;
load_seed = 0;
clock = 0;
seed_data = 4'b0000;
// Wait 10 ns for global reset to finish and start counter
#10;
reset = 1;
#10;
load_seed = 1;
seed data = 4'b1111;
#20;
```

```
load_seed = 0;
#200;
// terminate simulation
$finish();
end
// Clock generator logic
always@(clock) begin
#10ns clock <= !clock;
end
// Print input and output signals
initial begin
$monitor(" time=%0t, reset=%b clk=%b load_seed=%b count=%d", $time, reset, clock,
load_seed, Ifsr_data);
end
endmodule
```

• Resource Usage

	Resource	Usage
	Estimated ALUTs Used	6
	Combinational ALUTs	6
S)	Memory ALUTs	0
	LUT_REGs	0
	Dedicated logic registers	4
8		
8	Estimated ALUTs Unavailable	2
	Due to unpartnered combinational logic	2
9	Due to Memory ALUTs	0
Ø.		
5	Total combinational functions	6
	Combinational ALUT usage by number of inputs	
	7 input functions	0
1	6 input functions	2
10	5 input functions	0
	4 input functions	1
7	<= 3 input functions	3
10		
10	Combinational ALUTs by mode	
	normal mode	6
M.	extended LUT mode	0
19	arithmetic mode	0
136	shared arithmetic mode	0
0		
1	Estimated ALUT/register pairs used	8
2		
13	Total registers	4
	Dedicated logic registers	4
2	I/O registers	0
3	LUT_REGs	0
14		
5		
16	I/O pins	12
7		
8	DSP block 18-bit elements	0
9		
20	Maximum fan-out node	reset~input
1	Maximum fan-out	5
22	Total fan-out	54
		1
	Resource	Usage
23	Average fan-out	159

	Resource	Usage
23	Average fan-out	1.59

RTL

Waveform

