Présentation du projet de fin d'études

Conception logicielle pour un robot de surveillance autonome sur une base mobile holonome

Sommaire

Cadre du stage

Conception

Architecture logicielle

Localisation

Navigation

Avenir du projet

Bilan

Elsys Design (1/3)

- Elsys Design est une société d'ingénierie appartenant au groupe Advans
- 700 ingénieurs dans 11 implantations
- Spécialisée dans la conception des systèmes embarqués
- Impliquée dans divers domaines comme l'aérospatiale,
 l'automobile, la défense, l'énergie, le ferroviaire, l'loT

Contexte (2/3)

Début du projet en 2019:

Base roulante à roues holonomes

Suite en 2020, puis 2021:

- Équipe de 3 stagiaires
- Robot de surveillance basé sur ROS
- Projet réussi mais ne correspond finalement pas aux ambitions de l'entreprise

Stage 2022:

- Robot de surveillance autonome
- Contrainte de non-utilisation de ROS

Base roulante

Organisation (3/3)

3 Stagiaires spécialisés

Un ingénieur hardware

Une ingénieure FPGA

Un ingénieur logiciel

Outils de gestion de projet

GanttProject

diagrams.net

Git et Github

Technologies utilisées (1/5)

- Se déplacer
- Se situer dans un espace donné
- Naviguer en autonomie
- Détection d'alertes
- Traiter l'infraction
- Éviter les obstacles
- Autonome en énergie

Technologies utilisées (2/5)

- Se déplacer
- Se situer dans un espace donné
- Naviguer en autonomie
- Détection d'alertes
- Traiter l'infraction
- Éviter les obstacles
- Autonome en énergie

→ Base roulante

→ Odométrie, IMU, RFID

→ Dijkstra, RFID

→ Balise, détecteur de mouvement

→ GSM

→ Ultrasons

→ Station de charge, alerte batterie

Répartition des tâches (3/5)

Tâches de la partie logique

ELSYS DESIGN

Répartition des tâches (4/5)

Tâches de la partie logicielle

Cible (5/5)

Zybo Z7, Zynq 7020

- Processeur dual core ARM Cortex-A9
- FPGA Artix-7

PYNQ: Linux embarqué

- Environnement proche du projet intégration en 5^{ème} année SIEC
- Accès à la partie logique simplifiée
- Pensé pour la programmation en python sur des cartes de développement

Carte de développement Zybo-Z7

Architecture logicielle

Point de départ (1/3)

Conception de l'architecture logicielle

Contrôle du robot (2/3)

L'outil manuel debug (3/3)

Deuxième version du logiciel

Localisation

Principe (1/2)

1) Principe

Simulations (2/2)

Logiciel (1/3)

Logiciel après le développement de la localisation et de la navigation

Fonctionnalités intégrées (2/3)

- Réagir à une infraction
- Réagir à un signal de ronde
- Rotation du robot sur lui-même tant que l'orientation calculée est incorrecte
- Avancement jusqu'à une alerte RFID
- Retour à sa base une fois arrivé sur les lieux de l'infraction
- Réorientation vers une nouvelle infraction si la précédente est traitée
- Prioriser l'infraction par rapport à la ronde

Logiciel (3/3)

Logiciel après l'intégration

Suite du projet

Perspectives d'amélioration du robot

- Évitement d'obstacles
- Traitement d'infractions
- Reprise sur erreur
- Naviguer en autonomie

Le projet

- Fin du projet cette année
- Lancement d'un nouveau projet l'année suivante.

Bilan du stage

Bilan du stage

Bilan du stage

Travaux effectués

- Cycle en V: spécification, conception, développement, intégration, tests
- Linux embarqué
- Filtre de Kalman
- Développement logiciel

Environnement

- Linux
- Python
- Spyder, Visual Studio Code
- Git, Github

<u>Responsabilités</u>

- Gestion de budget
- Gestion de planning
- Organisation du projet
- Responsabilité des réunions

Merci de votre écoute

Avez-vous des questions?

ELSYS

Sources

- Freepik. tire icons. <https://www.flaticon.com/free-icons/tire> Flaticon.
- Freepik. rfid icons. < < https://www.flaticon.com/free-icons/rfid > Flaticon.
- Freepik. Location icons. < https://www.flaticon.com/free-icons/location Flaticon
- Bharat Icons. Path icons. < https://www.flaticon.com/free-icons/path> Flaticon
- Freepik. Software development icons. < https://www.flaticon.com/free-icons/software-development Flaticon
- Kiranshastry. List icons. < < https://www.flaticon.com/free-icons/list > Flaticon
- Freepik. Context icons < < https://www.flaticon.com/free-icons/context > Flaticon
- Talha Dogar. Possibility icons < < https://www.flaticon.com/free-icons/possibility > Flaticon
- Freepik. Concept icons https://www.flaticon.com/free-icons/concept Flaticon