March 27th
Today damped & forced Oscillations Object on a spring & resistance or damping is not zero
Object on a spring & resistance or damping is not zero
(Fnet)x=(Fsp)x+Dx
$D_x = damping or resistance force = -R(x-xe) - bvx$
b=damping constant
(Fret) $k = m a_x = -k(x-xe) - b \sqrt{k}$ Let $x = 0 \Rightarrow m \frac{dx}{dt^2} + b \frac{dx}{dt} + kx = 0$
Let 1/2 =0 => max + bax + kx=0
of the off
$\frac{dx}{dt} + \frac{dx}{dt} + \frac{R}{M}x = 0$
at in at m
General solution to the above equation is $x(t) = [Ae^{-tt/2m}]\cos(\omega t + \beta_0)$
·
$\omega = \sqrt{\omega_0^2 - \frac{k^2}{m}} \qquad \omega = \sqrt{\frac{k}{m}}$
41) ,
-X-51-1
\
$T = tau'' = time constant = \frac{m}{b}$

•
-t
A damped oscillator, T, when does it half its energy?
E=+[A(+)]2, A(+)=Ae-bt/2m=Ae-t/2t
E=====================================
E=== =================================
e-1/2===
$-t/\tau = \ln(\frac{1}{2})$
t=-ln(支) て
≈0.69°C

