Question 1 x, y, z

Question 2 Une interprétation est un sous ensemble de triplets d'objets; on peut construire 2^3 triplets différents, donc il y a 2^{2^3} interprétations possibles

Question 3 7: 3-5-7 mais aussi 2-4-6-8

Question 4 $\neg Q$ n'est pas valide ssi Q est satisfiable.

Question 5

- 1. \mathcal{H}_1 : $\forall x(H(x) \to P(x))$
- 2. \mathcal{H}_2 : $\forall x(D(x) \to \neg P(x))$
- 3. \mathcal{H}_3 : $\exists x (D(x) \land I(x))$
- 4. C: $\exists x(\neg H(x) \land I(x))$

$$\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3 \models \mathcal{C}$$

Question 6 $\forall x \forall y \exists z (P(x,y) \land (P(y,z) \rightarrow \neg P(z,z)))$ contingent : modèle $I(P) = \emptyset$ et contremodèle $I(P) = \mathcal{D}$

Question 7

- 1. $\forall x \neg P(x) \lor \forall x \neg Q(x) \lor \exists x R(x)$
- 2. $(\exists x P(x) \land \forall x \neg Q(x)) \lor \exists x R(x)$

Question 8

- 1. raisonnement incorrect : contre exemple $\mathcal{D} = \{O\}, \ \ I(P) = \mathcal{D}, \ \ I(R) = \emptyset$ Val(A,I) = faux Val(A',I) = Val(A'',I) = vrai
- 2. raisonnement correct : Soit I un modèle de A' et A'' et σ une assignation de x
 - (a) $\sigma(x) \notin I(P)$ alors $Val(A, I, \sigma) = vrai$
 - (b) $\sigma(x) \in I(R)$ alors $Val(A, I, \sigma) = vrai$
 - (c) $\sigma(x) \in I(P)$ et $\sigma(x) \not\in I(R)$ puisque I est un modèle de A', $\sigma(x) \in I(Q) \cup I(R)$ donc $\sigma(x) \in I(R)$ donv $val(A, I, \sigma)$ =vrai