Chapter 10 extra problems

P 10.3-9 For the circuit shown in Figure P 10.3-9, find (a) the impedances \mathbb{Z}_1 and \mathbb{Z}_2 in polar form, (b) the total combined impedance in polar form, and (c) the steady-state current i(t).

Answer:

- (a) $\mathbf{Z}_1 = 5 \angle 53.1^\circ; \mathbf{Z}_2 = 8\sqrt{2} \angle -45^\circ$
- (b) $\mathbf{Z}_1 + \mathbf{Z}_2 = 11.7 \angle -20^{\circ}$
- (c) $i(t) = (8.55) \cos (1250t + 20^\circ) \text{ A}$

Figure P 10.3-9

Solution:

(a)
$$\underline{\mathbf{Z}_1 = 3 + j4 = 5 \angle 53.1^{\circ} \Omega}$$
 and $\underline{\mathbf{Z}_2 = 8 - j8 = 8\sqrt{2} \angle -45^{\circ} \Omega}$

(b) Total impedance =
$$\mathbf{Z}_1 + \mathbf{Z}_2 = 3 + j4 + 8 - j8 = 11 - j4 = \underline{11.7} \angle -20.0^{\circ} \Omega$$

(c)
$$\mathbf{I} = \frac{100 \angle 0^{\circ}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}} = \frac{100}{11.7} \angle -20^{\circ} = \frac{100}{11.7} \angle 20.0^{\circ} \implies \underline{i(t) = 8.55 \text{ cos } (1250t + 20.0^{\circ}) \text{ A}}$$

P 10.3-10 The circuit shown in Figure P 10.3-10 is at steady state. The voltages $v_s(t)$ and $v_2(t)$ are given by

$$v_s(t) = 7.68 \cos(2t + 47^\circ) \text{ V}$$

and

$$v_2(t) = 1.59 \cos(2t + 125^\circ) \text{ V}$$

Find the steady-state voltage $v_1(t)$.

Answer: $v_1(t) = 7.51 \cos(2t + 35^\circ) \text{ V}$

Figure P 10.3-10

Solution:

$$\mathbf{V}_{1}(\omega) = \mathbf{V}_{s}(\omega) - \mathbf{V}_{2}(\omega) = 7.68 \angle 47^{\circ} - 1.59 \angle 125^{\circ}$$

$$= (5.23 + j5.62) - (-0.91 + 1.30)$$

$$= (5.23 + 0.91) + j(5.62 - 1.30)$$

$$= 6.14 + j4.32$$

$$= 7.51 \angle 35^{\circ}$$

$$v_{1}(t) = 7.51 \cos(2t + 35^{\circ}) \text{ V}$$

P 10.3-11 The circuit shown in Figure P 10.3-11 is at steady state. The currents $i_1(t)$ and $i_2(t)$ are given by

$$i_1(t) = 744 \cos(2t - 118^\circ) \text{ mA}$$

and

$$i_2(t) = 540.5 \cos(2t + 100^\circ) \text{ mA}$$

Find the steady-state current i(t).

Answer: $i(t) = 460 \cos (2t + 196^{\circ}) \text{ mA}$

Figure P 10.3-11

Solution:

$$\begin{split} \mathbf{I} &= \mathbf{I}_1 + \mathbf{I}_2 = 0.744 \angle -118^\circ + 0.5405 \angle 100 = \left(-0.349 - j \, 0.657 \right) + \left(-0.094 + j \, 0.532 \right) \\ &= \left(-0.349 - 0.094 \right) + j \left(-0.657 + 0.532 \right) \\ &= -0.443 - j \, 0.125 \\ &= 0.460 \angle 196^\circ \end{split}$$

$$i(t) = 460 \cos(2t + 196^\circ)$$
 mA

P 10.3-12 Determine i(t) of the *RLC* circuit shown in Figure P 10.3-12 when

$$v_{\rm s} = 2 \cos (4t + 30^{\circ}) \text{ V}.$$

Answer: $i(t) = 0.185 \cos (4t - 26.3^{\circ}) \text{ A}$

Solution:

P10.4-3 Represent the circuit shown in Figure P10.4-3 in the frequency domain using impedances and phasors.

Figure P10.4-3

Solution:

P10.4-7 The input to the circuit shown in Figure P10.4-7 is the current

$$i(t) = 82\cos(10000t) \mu A$$

Determine the voltage, v(t), across the 50 k Ω resistor.

Figure P10.4-7

Solution: Represent the circuit in the frequency domain using phasors and impedances:

Using KCL

$$82 \times 10^{-6} \angle 0^{\circ} = 0 + \mathbf{I}_{1}$$

$$(20 \times 10^{3}) \mathbf{I}_{1} + (-j 20 \times 10^{3}) \mathbf{I}_{1} + \mathbf{V} = 0$$
$$\mathbf{V} = -(20 \times 10^{3} - j 20 \times 10^{3}) (82 \times 10^{-6}) = 2.3193 \angle 135^{\circ} \text{ V}$$

In the time domain

$$v(t) = 2.3193\cos(10000t + 135^{\circ}) \text{ V}$$

P10.7-3 Determine the Thevenin equivalent of this circuit

Solution:

First, determine \mathbf{V}_{oc} :

The mesh equations are

$$600\mathbf{I}_{1} - j300(\mathbf{I}_{1} - \mathbf{I}_{2}) = 9 \quad \Rightarrow \quad (600 - j300)\mathbf{I}_{1} + j300\mathbf{I}_{2} = 9 \angle 0^{\circ}$$
$$-2\mathbf{V} + 300\mathbf{I}_{2} - j300(\mathbf{I}_{1} - \mathbf{I}_{2}) = 0 \quad \text{and} \quad \mathbf{V} = j300(\mathbf{I}_{1} - \mathbf{I}_{2}) \quad \Rightarrow \quad j3\mathbf{I}_{1} + (1 - j3)\mathbf{I}_{2} = 0$$

Using Cramer's rule:

$$I_2 = 0.0124 \angle -16^{\circ} A$$

Then

$$\mathbf{V}_{00} = 300 \, \mathbf{I}_{2} = 3.71 \angle -16^{\circ} \, \mathrm{V}$$

Next, determine \mathbf{I}_{sc} :

$$-2\mathbf{V} - \mathbf{V} = 0 \implies \mathbf{V} = 0 \implies \mathbf{I}_{sc} = \frac{9 \angle 0^{\circ}}{600} = 0.015 \angle 0^{\circ} \text{ A}$$

The Thevenin impedance is

$$\mathbf{Z}_{\mathrm{T}} = \frac{\mathbf{V}_{\mathrm{oc}}}{\mathbf{I}_{\mathrm{sc}}} = \frac{3.545 \angle -16^{\circ}}{0.015 \angle 0^{\circ}} = 247 \angle -16^{\circ} \ \Omega$$

The Thevenin equivalent is

P10.7-5 Determine the frequency at which Y is a pure conductance

Solution:

$$\mathbf{Y} = G + \mathbf{Y}_{\mathrm{L}} + \mathbf{Y}_{\mathrm{C}}$$

P10.8-9 Determine the current i(t) for this circuit when $v_1(t)$ =10cos(10t) V

Solution:

Use superposition. First, find the response to the voltage source acting alone:

$$\mathbf{Z}_{\text{eq}} = \frac{-j10.10}{10-j10} = 5(1-j)\ \Omega$$

Replacing the parallel elements by the equivalent impedance. The write a mesh equation:

$$-10+5 \,\mathbf{I}_{1}+j15 \,\mathbf{I}_{1}+5(1-j) \,\mathbf{I}_{1}=0 \quad \Rightarrow \quad \mathbf{I}_{1} = \frac{10}{10+j10} = 0.707 \angle -45^{\circ} \,\mathrm{A}$$

Therefore:

$$i_1(t) = 0.707\cos(10t - 45^\circ) \text{ A}$$

Next, find the response to the dc current source acting alone:

Current division:
$$I_2 = -\frac{10}{15} \times 3 = -2 \text{ A}$$

Using superposition:

$$i(t) = 0.707\cos(10t - 45^{\circ}) - 2$$
 A

P10.10-1 The input to the circuit shown in Figure P10.10-1 is the voltage

$$v_{s}(t) = 2.4\cos(500t) \text{ V}.$$

Determine the output voltage $v_o(t)$.

Answer: $v_o(t) = 6.788 \cos(500 t + 135^\circ) \text{ V}$

Figure P10.10-1

Solution:

Represent the circuit in the frequency domain as

Recognizing this circuit as an inverting amplifier, we can write

$$\mathbf{V}_{o} = \left(-\frac{20 ||-j 20}{5}\right) (2.4 \angle 0) = \left((1 \angle 180^{\circ}) \frac{14.14 \angle -45^{\circ}}{5}\right) (2.4 \angle 0) = 6.788 \angle 135^{\circ} \text{ V}$$

In the time domain

$$v_{o}(t) = 6.788\cos(500t + 135^{\circ}) \text{ V}$$

(Checked using LNAPAC 3/15/12)

P10.10-2 The input of the circuit shown in Figure P10.10-2 is the voltage

$$v_s(t) = 1.2\cos(400t + 20^\circ) \text{ V}.$$

Determine the output voltage $v_o(t)$.

Figure P10.10-2

Solution:

Represent the circuit in the frequency domain as

Recognizing this circuit as a noninverting amplifier, we can write

$$\mathbf{V}_0 = \left(1 + \frac{48}{-j10}\right) (1.2 \angle 20^\circ) = (1 + j4.8) (1.2 \angle 20^\circ) = 5.88 \angle 98^\circ \text{ V}$$

In the time domain

$$v_{o}(t) = 5.88\cos(400t + 98^{\circ}) \text{ V}$$