

CREDIT CARD CARD FRAUDS:

PREDICTING THAT WHETHER A
TRANSACTION IS FRAUD OR NOT

DATA SOURCES

ALL THE DATA HAS BEEN COLLECTED FROM "KAGGLE.COM"

ETL: EXTRACT, TRANSFORM AND LOAD

0

After uploading the dataset in the object storage, I used IBM pandas DataFrame to read the file in ETL format so that it is globally available to in the data storage.

02

This data was having zero missing values. That means I have a not found a single missing value in the dataset

03

I used some basic operations to have some understanding of the data.

	Time	V1	V2	V 3	V4	V 5	V6	V7	V8	V9		V21	V22	V23	ν
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	:	-0.018307	0.277838	-0.110474	0.06692
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775	-0.638672	0.101288	-0.3398
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654		0.247998	0.771679	0.909412	-0.6892
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300	0.005274	-0.190321	-1.1755
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739		-0.009431	0.798278	-0.137458	0.1412

VIEW OF DATASET

Dataset is in VI, V2, etc. format because to protect the users crucial information. Here in the dataset, "Class" column explains about weather a transaction is fraud or not.

EXPLORATORY DATA ANALYSIS

- Here I found that the data is imbalanced. Here is the result for value of fraud transactions and genuine transactions
- This data set is taken to stop the charges to users who don't make any purchase.

0 284315

1 492

Name: Class, dtype: int64

	Time	V1	V2	V3
count	284807.000000	2.848070e+05	2.848070e+05	2.848070e+05
mean	94813.859575	3.919560e-15	5.688174e-16	-8.769071e-15
std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00
min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01
25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01
50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01
75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00
max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00

Class

PLOT TO SHOW THE DATA IMBALANCE

MAXIMUM AMOUNT OF FRAUD AMOUNT

HERE I DON'T UNDERSTAND WHY ARE THEY TREATING AMOUNT ZERO AS A FRAUD TRANSACTION.

LINEAR REGRESSION

 Linear regression was performed to check the relationship between different variables and transaction is fraud or genuine.

FEATURE ENGINEERING

- Here I used fI score to test the performance accuracy
- Logistic Regression to check some to check the relationships between dependant variables and other non dependant variables.
- Recall Score is used to check the true positives and false negatives.

•

- Our FI score and Recall is score is low, so again using them but with some different variables.
- These are the earlier and after random forest

Earlier Score

```
#Predict on test dataset
Lr_pred = Lr.predict(x_t
#check the accuracy
accuracy_score(Lr_pred,y

0.9990051847430451

from sklearn.metrics imp
f1_score(y_test,Lr_pred)

0.6530612244897959

recall_score(y_test,Lr_p

0.5925925925925926
```

After Score

```
random_forest_pred = r
accuracy_score(random_

/opt/conda/envs/Pythor
mators will change frc
    "10 in version 0.20

2]: 0.9994382219725431

3]: f1_score(random_forest

3]: 0.8032786885245902

4]: recall_score(random_fc

4]: 0.8990825688073395
```

APPLYING LAYERS ON SEQUENTIAL MODEL

Layers used by diagram

Layers with the parameters

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 16)	496
dense_1 (Dense)	(None, 24)	408
dropout (Dropout)	(None, 24)	0
dense_2 (Dense)	(None, 20)	500
dense_3 (Dense)	(None, 24)	504
dense_4 (Dense)	(None, 1)	25
Total params: 1,933 Trainable params: 1,933 Non-trainable params: 0		

MODEL TESTING RESULT

CONCLUSION

- Though the data is imbalanced but still it is giving good accuracy.
- Accuracy metric is not best metric to use when evaluating imbalanced class as it can be mislead for the classification.
- Following are some metrics give us the good insights on the imbalanced dataset
- 1. Confusion Metrics: confusion metrics show the clearly classification of the predicted class vs actual class. We can also see how many data point wrongly classified.
- 2. **Precision**: We can get the precision by number of all positive classified value divided by all positive predicted value. It's measure the classifier's exactness. Low precision indicates the high number of false positive.
- 3. **Recall**: Recall is a metric that quantifies the number of correct positive predictions made out of all positive predictions that could have been made. Unlike precision that only comments on the correct positive predictions out of all positive predictions, recall provides an indication of missed positive predictions.
- 4. **FI-score**: The FI-measure, which weights precision and recall equally, is the variant most often used when learning from imbalanced data.
- 5. Classification Report: All above mentioned things are auto-generated in the classification report

CONCLUSION

- Majority of the transactions are genuine according to dataset
- With the use of random forest classifier our results and accuracy for different measures improved
- Now our model is ready to predict that whether any transaction is genuine or fraud.