Equazioni irrazionali - Schema riassuntivo

Data l'equazione $\sqrt[n]{f(x)} = g(x)$

Se n è dispari si eleva

$$f(x) = [g(x)]^n$$

Se **n pari** occorre mettere alcune condizioni:

la condizione di esistenza del radicale (**CE**) $f(x) \ge 0$ la condizione di concordanza di segno (**CCS**) $g(x) \ge 0$

quindi elevare $f(x) = [g(x)]^n$

Nota: le soluzioni del sistema ${CE \atop CCS}$ normalmente sono chiamate condizioni di accettabilità (**CA**)

Se non si è in grado di risolvere qualche condizione assicurarsi che la presunta soluzione sia accettabile **sostituendola** all'equazione iniziale.

Ecco alcuni casi con indice pari:

$$\sqrt{f(x)} = g(x)$$

CASO 1
$$\begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \\ f(x) = [g(x)]^2 \end{cases}$$

$$\sqrt{f(x)} = \sqrt{g(x)}$$

CASO 2
$$\begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \\ f(x) = g(x) \end{cases}$$

CASO 3
$$\sqrt{f(x)} + \sqrt{g(x)} = h(x)$$

$$\begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \end{cases}$$

$$h(x) \ge 0$$

$$[\sqrt{f(x)} + \sqrt{g(x)}]^2 = [h(x)]^2$$

CASO 4
$$\sqrt{f(x)} + \sqrt{g(x)} = \sqrt{h(x)}$$

$$\begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \end{cases}$$
$$h(x) \ge 0$$
$$\left[\sqrt{f(x)} + \sqrt{g(x)} \right]^2 = h(x)$$

CASO 5 $\sqrt{f(x)} + h(x) = \sqrt{g(x)}$ dividere in due casi

se
$$h(x) \ge 0$$

$$\begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \end{cases}$$

$$h(x) \ge 0$$

$$[\sqrt{f(x)} + h(x)]^2 = g(x)$$

se
$$h(x) < 0$$

$$\begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \end{cases}$$

$$h(x) < 0$$

$$f(x) = [h(x) + \sqrt{g(x)}]^2$$