

DATA SCIENCE PROJECT

Building a Movie/Show Recommendation System for Hutu TV

Student: Phan Thuy Anh

Class: Business Analytics 62

introduction

objective

Create a recommendation system tailored to the specific content offerings of Hutu TV.

dataset overview

The dataset is available in Kaggle (2022): Hulu TV Shows and Movies.

look through the dataset...

data dictionary

attributes	descrition
id	Unique identifier for each movie/show
title	The title of the movie or show.
type	Whether the entry is a movie or a show.
description	A brief summary or synopsis of the movie or show's plot or content.
release_year	The year the movie or show was released.
age_certification	The age group for which the content is deemed appropriate.
runtime	The duration of the movie or show in minutes.
genres	The categories or genres that the movie or show belongs to.
production_countries	The countries where the movie or show was produced.
seasons	The number of seasons available.
imdb_id	The unique identifier for the movie or show on IMDb.
imdb_score	The rating score given to the movie or show on IMDb.
imdb_votes	The number of votes/ratings received on IMDb.
tmdb_popularity	A popularity score for the movie or show on TMDb.
tmdb_score	The rating score given to the movie or show on TMDb.

look through the dataset...

shape

```
#Explore data df.shape
```

```
(2398, 15)
```

information

#Explore data df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2398 entries, 0 to 2397
Data columns (total 15 columns):
                          Non-Null Count Dtype
    Column
    id
                          2398 non-null object
                                        object
    title
                          2398 non-null
                          2398 non-null
                                         object
    type
    description
                          2385 non-null object
    release_year
                                         int64
                          2398 non-null
    age_certification
                                         object
                          1713 non-null
    runtime
                                        int64
                          2398 non-null
                                         object
    genres
                          2398 non-null
    production_countries 2398 non-null
                                         object
    seasons
                          1330 non-null
                                         float64
10 imdb id
                                         object
                          2263 non-null
 11 imdb_score
                          2232 non-null
                                         float64
 12 imdb_votes
                          2231 non-null
                                        float64
 13 tmdb_popularity
                          2348 non-null
                                         float64
 14 tmdb_score
                          2238 non-null
                                         float64
dtypes: float64(5), int64(2), object(8)
memory usage: 281.1+ KB
```

DATA PREPROCESSING

import libraries

#Import necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import mean_squared_error from sklearn.preprocessing import LabelEncoder from sklearn.metrics.pairwise import linear_kernel import tensorflow as tf from tensorflow.keras.models import Model from keras.models import Sequential from tensorflow.keras.layers import Input, Embedding, Flatten, Dense, Concatenate

load data

```
#Load data
df = pd.read_csv("hulutv.csv")
```

clean data

handling missing values

```
def missing_values_table(df):
    mis_val = df.isnull().sum()
    mis_val_percent = 100*df.isnull().sum() / len(df)
    mis_val_table = pd.concat([mis_val,
mis_val_percent], axis=1)
    mis_val_table_ren_columns =
mis_val_table.rename(columns = {0:'Missing Values',
1:'% of Total Values'})
    return mis_val_table_ren_columns.round(1)
missing_values_table(df)
```

	Missing Values	% of Total Values
id	0	0.0
title	0	0.0
type	0	0.0
description	13	0.5
release_year	0	0.0
age_certification	685	28.6
runtime	0	0.0
genres	0	0.0
production_countries	0	0.0
seasons	1068	44.5
imdb_id	135	5.6
imdb_score	166	6.9
imdb_votes	167	7.0
tmdb_popularity	50	2.1
tmdb_score	160	6.7

clean data

handling missing values

drop null values in attributes that have small proportions

```
#Drop the null values
null = ['description','imdb_score', 'imdb_score', 'imdb_votes', 'tmdb_popularity', 'tmdb_score']
df.dropna(subset=null, inplace=True)
```

'season': replace the null values with value "O"

```
#Deal with "season"

df['seasons'].fillna(0, inplace=True)
```

note: only type "movie" has null value in 'season'

'age certification': drop out

```
#Deal with "age certification"
df.drop(['age_certification'], axis=1,inplace=True)
```

handling missing values

check missing value again

```
#Check missing value again df.isnull().sum()
```

```
id
title
type
description
release_year
                         0
runtime
                         0
genres
                         0
production_countries
seasons
                         0
imdb_id
imdb_score
imdb_votes
tmdb_popularity
tmdb_score
dtype: int64
```

clean data

handling duplicates

check duplicates

```
#Check duplicates df.duplicated().sum()
```

0

clean data

encoding

encoding the categorical data

```
#Encoding the neccessary categorical variables
encoder = LabelEncoder()
df["title_encoded"] = encoder.fit_transform(df["title"])
df["type_encoded"] = encoder.fit_transform(df["type"])
```

EXPLORATORY DATA ANALYSIS

distribution of attributes

```
# Distribution of attributes
features = ['release_year','runtime', 'imdb_score','imdb_votes', 'tmdb_popularity','tmdb_score']
for feat in features:
    plt.figure()
    sns.distplot(df[feat], kde = False)
```


correlation between numeric attributes

Correlation between numeric attributes plt.figure(figsize = (12, 6)) sns.heatmap(df[features].corr(), annot = True, cmap = 'rocket_r')

There are no variables that have extremely strong correlation. The highest is belong to positive relationship of tmdb_score and imdb_score (0.63).

top 10 movies/shows have highest IMDB score

8 -IMDb Score 2 -Movie Titles

maximum popularity by release year

BUILDING RECOMMENDATION SYSTEM FOR HULU

about recommendation system...

type

Content-Based

Focus on attributes of items (songs) and recommends based on similarity

Collaborative Filtering

Focus on wisdom of the crowd, recommends based on other users

content-based recommendation system

cosine similarity

$$sim(A,B) = rac{A \cdot B}{\|A\| imes \|B\|} = rac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

How cosine similarity works:

Consider: vector: A and B

Ai and Bi: representing features in each movie or show.

How the cosine similarity means: A higher cosine similarity value indicates a greater resemblance, which translates to a higher position on the recommendation list.

building content-based recommendation system

Term Frequency-Inverse Document Frequency (TF-IDF): count occurrences of words in 'description' and weighing the importance of words to calculate a score.

```
#TF - IDF
#Remove all english stop words such as 'the', 'a'
tfidf = TfidfVectorizer(stop_words='english')

#Fit and transform the data
tfidf_matrix = tfidf.fit_transform(df['description'])
tfidf_matrix.shape
```

(2106, 14045)

building content-based recommendation system

calculating the cosine similarity between all pairs of items

cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)

a mapping between titles and dataset indices

indices = pd.Series(df.index, index=df['title']).drop_duplicates()

building content-based recommendation system

function: use cosine similarities matrix to streamline the recommendation

```
def get_recommendations(title, cosine_sim=cosine_sim):
   idx = indices[title]
   sim_scores = list(enumerate(cosine_sim[idx]))
   sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
   sim_scores = sim_scores[1:11]
   movie_indices = [i[0] for i in sim_scores]
   similarity_scores = [i[1] for i in sim_scores]
   results = pd.DataFrame({'title': df['title'].iloc[movie_indices], 'cosine_similarity':
similarity_scores})
   return results
```

testing content-based recommendation system

#Test content-based recommendation system get_recommendations('Battleground')

cosine_similarity	title	
0.107581	The Wonder Years	2172
0.100477	kid 90	2299
0.097814	My Wife and Kids	456
0.092072	Pickle & Peanut	1166
0.082975	The Killer Speaks	859
0.075277	Rent-A-Pal	1711
0.074442	mixed-ish	1931
0.074233	Bless This Mess	1741
0.070904	OK K.O.! Let's Be Heroes	1437
0.070690	Fresh Off the Boat	1025

The cosine similarity scores are small (often below 0,1) => Not a effective recommendation approach

collaborative filtering recommendation system

SVD: user-item matrix

user

item

diagonal matrix

How SVD works:

Reduction of dimensionality allows the system to focus on the most significant characteristics while discarding less relevant ones.

How SVD be applied: SVD-based recommendation system provides personalized suggestions by utilizing latent features from user-item interactions.

building collaborative filtering recommendation system

create user-item matrix

```
num_users = 1
num_items = len(df)
user_item_matrix = np.zeros((num_users, num_items))

#Assume all items have the same ratings for this user
ratings = np.ones(num_items)

user_item_matrix[0, :] = ratings
```

building collaborative filtering recommendation system

compute similarities between items using embedding and post-trainning

```
#Define the SVD model
embedding_dim = 10
SVDmodel = tf.keras.Sequential([
 tf.keras.layers.Embedding(num_items, embedding_dim, input_length=num_items),
 tf.keras.layers.Reshape((embedding_dim, num_items)),
 tf.keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=1))
#Compile the model
SVDmodel.compile(optimizer='adam', loss='mse')
#Train the model
SVDmodel.fit(user_item_matrix, user_item_matrix, epochs=10)
#Use the learned embeddings to make recommendations
user_embedding = SVDmodel.layers[0].get_weights()[0][0]
similarities = np.dot(model.layers[0].get_weights()[0], user_embedding)
#Combine recommendations with their similarity scores
recommendations = [(df['title'].iloc[i], similarities[i]) for i in range(num_items)]
```

testing collaborative filtering recommendation system

#Sort recommendations by similarity score recommendations.sort(key=lambda x: x[1], reverse=True)

#Create a DataFrame to store the results SVD_recommendations = pd.DataFrame({'title': [rec[0] for rec in recommendations], 'similarities': [rec[1] for rec in recommendations]})

#Return the result SVD_recommendations

The similarity scores are also small. This could be due to insufficient data for accurate recommendations.

evaluate the SVD recommendation system model

```
#Calculate evaluation metric
actual_ratings = df['imdb_score'].values
SVDpredicted_ratings = np.array([rec[1] for rec in recommendations])
rmse_svd = np.sqrt(mean_squared_error(actual_ratings, SVDpredicted_ratings))
print(f'Root Mean Squared Error (RMSE) of SVD model: {rmse_svd}')
```

Root Mean Squared Error (RMSE) of SVD model: 6.805309918935054

THANK YOU FOR LISTENING

Reference: Victor Soeiro (2022). Hulu TV Shows and Movies. Kaggle. https://www.kaggle.com/datasets/victorsoeiro/hulu-tv-shows-and-movies