Teoría del Tema 1

- 1.1 Definición de grupo. Sea (G,*) grupo con elemento neutro $e \in G$ y sea $a \in G$ tal que a*a=a. Demostrar que entonces: a=e.
- 1.1 Definición de subgrupo. Sean (G,*) grupo y $H \subseteq G$ con $H \neq \emptyset$. Demostrar que (H,*) es subgrupo de (G,*) si y sólo si para todos $a,b \in H$ se verifica que $a*b^{-1} \in H$.
- 1.2 Definición de orden de un elemento. Sea (G,*) grupo, $a \in G$ con |a| = n y $k \in \mathbb{N}$. Demostrar:
 - a) $a^k = e_G \Leftrightarrow n$ divide a k.
 - b) $|a^k| = \frac{n}{\text{mcd}(n,k)}$.
- 1.3 Definición de ciclo. Demostrar que los ciclos disjuntos conmutan y obtener el orden de un producto de dos ciclos disjuntos.
- 1.4 Definición de producto directo interno. Sea (G,*) grupo que es producto directo interno de los subgrupos H y K. Demostrar: $G \approx H \times K$

Teoría del Tema 2

- 2.1 Enunciar y demostrar el Teorema de Lagrange.
- 2.1 Enunciar y demostrar el Teorema de Cauchy.
- $2.2\,$ Demostrar que todo subgrupo de índice 2 es normal.
- 2.2 Demostrar que todo subgrupo único en su orden es normal.
- 2.3 Enunciar y demostrar el primer teorema de isomorfía para grupos.
- 2.4 Enunciar y demostrar la caracterización de p-grupos de Sylow para un grupo abeliano finito.
- 2.4 Demostrar que si (G,*) es grupo, para todo $a \in G$ con |a| = mn tal que mcd(n,m) = 1, existen $b,c \in G$ tales que a = b*c siendo |b| = n y |c| = m.
- 2.4 Demostrar que si (G,*) es grupo abeliano con $|G|=p^tm$, siendo $p\in\mathbb{N}$ primo, $m,t\in\mathbb{N}$ y $\operatorname{mcd}(p,m)=1$ entonces $G\approx S_p\times K$, siendo $S_p=\left\{x\in G:x^{p^t}=e_G\right\}$, $K=\{x\in G:x^m=e_G\}$.

Teoría del Tema 3

- 3.2 Demostrar que todo dominio de integridad finito es cuerpo.
- 3.2 Enunciar y demostrar los posibles valores que puede tener la característica de un dominio de integridad.
- 3.3 Enunciar y demostrar los posibles ideales que tiene un cuerpo.
- 3.3 Enunciar y demostrar el papel que realizan los ideales maximales para la obtención de cuerpos.

Teoría del Tema 4

- 4.1 Enunciar y demostrar el teorema de Kronecker.
- 4.2 Enunciar y demostrar la caracterización de los elementos algebraicos sobre un cuerpo \mathbb{K}
- 4.3 Enunciar y demostrar la estructura del grupo de unidades de un cuerpo finito.