Thursday, October 7, 2021

1:25 PM

Yes, it can be solved with real arithmetic operations, where we must break each complex number into a set of two variables that sum to the complex number. As x is also a complex number, it can be represented as $x = (x_r + x_c i)$. Thus, if we write out the product of some complex number represented as (a+bi) and x, where a and b are real numbers, we see:

$$(a+bi)(x_r + x_ci)$$

 $ax_r + ax_ci + bx_ri + bx_ci^2$
 $ax_r + ax_ci + bx_ri - bx_c$
 $ax_r - bx_c + ax_ci + bx_ri$
 $(ax_r - bx_c) + (ax_c + bx_r)i$

For two complex numbers to be equal, the real and imaginary parts must be equal. So if we introduce a complex number c in (a+bi)x = c, or $(a+bi)x = c_r + c_ci$, that means that:

$$ax_r - bx_c = c_r$$

 $ax_c + bx_r = c_c$

We can represent this through matrices, with:

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} \chi_r \\ \chi_c \end{bmatrix} \begin{bmatrix} c_r \\ c_c \end{bmatrix}$$

And thus, given complex number C, we can solve for x_r and x_c as we would with any regular system of equations. For any variable like x, we can similarly decompose it into its real and complex components, solving for the variables. For instance:

As we can observe, for every variable n, we require an $A^{2n \times 2n}$ to calculate all the real and complex components of each variable. Using GEPP, we can substitute 2n into the formula to get the cost of solving:

Original:
$$\frac{2}{3} \cap^3 \text{ flaps } + \frac{1}{2} \cap^2 \text{ comparisons}$$

Complex:
$$\frac{2}{3}(2n)^3 + \frac{1}{2}(2n)^2 = \frac{16}{3}n^3$$
 flops and $2n^2$ companisons