Shut 3

1. a) Primal-Duck for unweighted VC: What does it do?

max
$$\underset{e \in E}{\sum} y_e$$

s.t. $\underset{(u,v) \in E}{\sum} y_{(u,v)} \leq 1$, $u \in V$
 $y_e > 0$, $e \in E$

Pick uncovered edge (u,v). $y(u,v) \leftarrow 1$ Constraints corr. to u and v become tight Include u and v in VC

- b) Write comb. alg. corr. to primal-dual. Consider edges one by one. If uncovered, include both endpoints in VC
- C) Approx. Jacter > 2:

2. Greedy for VC - approx. Jacter > 2:

$$|L| = M$$

$$|R| = \sum_{i=1}^{m} \lfloor \frac{m}{i} \rfloor > m \ln(m) - m$$

m groups of vertices in R.

Each vertex in L is connected to at most one vertex in each group in R.

Hence, Greedy may start with the group of size [m], then the group of size [m], then...

Just before the group of size Lm-c] is picked, each group in L has at most m-c uncovered edges.

Herce, it may continue like this, until all votices in R have been picked.

OPT chooses the vertices in L.

$$\frac{\text{Greedy}}{\text{Opt}} = \frac{|R|}{|L|} > \frac{m \ln(m) - m}{m} = \ln(m) - 1$$

$$\in \Theta(\ln n):$$

Ex: m=6

$$\frac{|R|}{|L|} = \frac{6+3+2+|+|+|}{6} = \frac{14}{6} > 2$$

3. Greedy approx. factor > Hn

$$\frac{\text{Greedy}}{\text{OPT}} = \frac{H_n}{1+\epsilon} \rightarrow H_n \text{ for } n \rightarrow \infty$$

Section 1.7: Randomized Rounding

AlgRRI

Solve LP
$$\begin{array}{ccc}
T \leftarrow \emptyset \\
For & j \leftarrow 1 & to m \\
\text{With probability } \times j \\
T \leftarrow Tu + j & 3
\end{array}$$

Expected cost = $Z_{LP}^* \leq OPT$, but the result is most likely <u>not</u> a set cover.

Alg RR2

Solve LP
$$\begin{array}{cccc}
T \leftarrow \emptyset \\
For i \leftarrow 1 & to & 2 \cdot ln(n) \\
For j \leftarrow 1 & to & m \\
With probability & x_j \\
T \leftarrow Turjz
\end{array}$$

Expected cost = 2.ln(n) OPT, and high probability that all elements are carried. (Calculations below)

Alg RR₃

Solve LP

Repeat $T \leftarrow \emptyset$ For $i \leftarrow 1$ to $2 \cdot \ln(n)$ For $j \leftarrow 1$ to mWith probability x_j $T \leftarrow Tufj_j^2$ Until $f \leq j \mid j \in T_j^2$ is a set cover and $w(T) \leq 4 \ln(n) Z_{LP}^*$

Cost ≤ 4.ln(n). OPT Result is a set caver. Expected running time is polynomial. (Calculations below) Alg RR,:

Pr[e; not caved] =
$$\prod_{j:e_i \in S_j} (1-x_j)$$
 $\leq \prod_{j:e_i \in S_j} e^{-x_j}$, since $1-s \leq e^{-s}$,

 $far any S \in \mathbb{R}$
 $= e^{-1}$, by the LP-constraint corresponding to e_i

Alg RR2:

Pr[e_i not caved]
$$\leq (e^{-1})^{2\ln(n)}$$

= $(e^{\ln(n)})^{-2}$
= n^{-2}

Pr [not set cover]
$$\leq n \cdot Pr[e]$$
 not covered]
= $n \cdot n^{-2}$
= n^{-1}

Alg RR₃: $Prob\left[W(I) \leq 4 \cdot \ln(n) \cdot 2_{LP}^{\dagger}\right] \leq \frac{1}{2}$, by Markov's Inequality Since $E[W(I)] \leq 2 \ln(n)$.

Hence,

Prob [not votex cover or too expensive] $\leq \frac{1}{2} + \frac{1}{n}$ Thus, $= \frac{1}{\frac{1}{2} + \frac{1}{n}} \approx 2$

Sometimes randomized algorithms are simpler/ easier to describe/come up with. Sometimes randomized algorithms can be derandomized. More about this in Chapter 5.