

Programa de asignatura

Cálculo II

Carrera	Ingeniería Civil en Metalurgia										
Código de Asignatura	CB21115										
Nivel/ Semestre	201/1										
Créditos SCT - Chile	Docencia 3 directa		Trabajo Autónomo	no 2		Total		5			
Ejes de Formación	General	X	Espe	cialidad	Prá		a	0	ptativa	Electivo	
Descripción breve de la asignatura									le as i y os e y ga		
Pre-requisitos / Aprendizajes Previos	Cálculo I	, Alg	ebra I								

Aporte al perfil de egreso

Competencias genéricas

Aprende y se actualiza permanentemente en forma autónoma. (Competencia Nº5 Genérica, Sello Modelo Educativo UDA)

Se Compromete con la Calidad (Competencia N°1 Genérica, Sello Modelo Educativo UDA)

Competencias específicas

- Desarrolla y Aplica el conocimiento de las Ciencias Básicas y Ciencias de la Ingeniería a través del pensamiento lógico deductivo en el ámbito de la Ingeniería.
- Analiza y soluciona problemas de Ingeniería con enfoque sistémico y con disposición a la Innovación.

Competencias que desarrolla la asignatura

- Calcula integrales, usando métodos de integración para la determinación de áreas, longitudes y volúmenes.
- Aplica y expresa correctamente el lenguaje de la matemática en la formulación y resolución de problemas en los contextos originales.
- Extrae información cualitativa de datos cuantitativos a través de la modelación matemática vinculada a situaciones reales.
- Disposición para enfrentarse a nuevos problemas en distintas áreas.

Unidades de aprendizaje	Resultados de aprendizaje			
Unidad 1: La integral de Riemann	Explica el concepto y cálculo de integrale			
Concepto de la Integral de Riemann y propiedades elementales.	 usando las propiedades de integración. Interpreta geométricamente la integral 			
1.2. Integral de una función contínua.	definida.			
1.3. Teorema del valor medio en forma integral.	 Analiza y grafica funciones exponenciales, logarítmicas e hiperbólicas. 			
 Aplicaciones del Teorema fundamental del cálculo al cálculo de integrales. 				
1.5. Área de regiones del plano.				
1.6. Propiedades elementales de las funciones				

logaritmo natural y exponencial. 1.7. Límites de referencia de la función exponencial y logaritmo con base cualquiera. 1.8. Funciones hiperbólicas y sus inversas 1.9. Integración usando sustituciones hiperbólicas.	
 Unidad 2: Aplicaciones geométricas de la integral y aplicaciones a la física 2.1. Coordenadas polares. 2.2. Gráfico de curvas en coordenadas polares, intersecciones y simetrías. 2.3. Áreas de superficies planas. 2.4. Volúmenes de revolución: Método del disco y de la corteza. 2.5. Áreas de superficie de revolución. 2.6. Trabajo realizado por una fuerza. 2.7. Centro de gravedad contínuo. 2.8. Momento de inercia. 	 Grafica curvas en coordenadas polares. Describe regiones en el plano. Calcula mediante integrales: áreas, volúmenes y longitudes de arco. Traduce un enunciado físico. Identifica geométricamente el lenguaje del Cálculo diferencial e integral.
 Unidad 3: Series e integrales impropias: 3.1. Integrales de primera, segunda y tercera especie. Convergencia de integrales: Comparación y Criterio del límite n 3.2. Valor principal de Cauchy. 3.3. Integral impropia mixta. Función gamma y 	 Calcula integrales impropias. Aplica los test estándar para determinar convergencia de series. Representa funciones en series de potencias.

- 1		-	4 -
- 1	n	P	ra
- 1	v	v	ua.

- Series numéricas. Concepto de convergencia y divergencia.
- Series positivas: Criterios de comparación y de la integral, criterio del límite n y del cociente.
- 3.6. Convergencia condicional y absoluta.
- 3.7. Series Alternante. Criterio de Leibnitz.
- 3.8. Series de potencia. Funciones definidas por series de potencias, intervalos de convergencia, criterio de Abel.
- 3.9. Algebra de series de potencias.
- 3.10. Series de funciones. Criterio de Weirstrass y convergencia uniforme.
- 3.11. Derivación e integración de series de potencias.
- 3.12. Teorema de Taylor. Series de Taylor y de Mac Laurin.

Unidad 4: Curvas en el plano y el espacio. Diferenciación de funciones de varias variables.

- Ecuaciones paramétricas de una curva. 4.1.
- 4.2. Límite y continuidad.
- Derivación de curvas paramétricas: Interpretación Física.
- 4.4. Curvas regulares.
- 4.5. Parametrización por longitud de arco.
- 4.6. Definiciones, ejemplos y teoremas

- Determina los vectores velocidad y aceleración de una curva definida paramétricamente en problemas aplicados.
- Calcula la longitud de un camino.
- Parametriza una curva por longitud de arco.
- Calcula límites y derivadas parciales de funciones de varias variables.
- Interpreta en forma geométrica las derivadas parciales y derivada direccional.

UNIVERSIDAD DE ATACAMA VICERRECTORÍA ACADÉMICA FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA EN METALURGIA

elementales de límites y de continuidad de funciones en varias variables.

- 4.7. Derivación parcial. Definiciones y propiedades básicas.
- 4.8. Interpretación gráfica.
- El gradiente y su relación de ortogonalidad con las curvas de nivel.
- 4.10. Diferenciación y derivada direccional.
- 4.11. Regla de la cadena.
- 4.12. Teorema de la función Inversa e implicíta:
- 4.13. Derivación implícita, jacobianos.

Derivadas de orden superior y valores extremos.

- Calcula derivadas parciales de funciones implícitas.
- Determina valores extremos en funciones de varias variables.
- Aplica las propiedades del gradiente, cálculo de planos tangente y normal a superficies.

Estrategias de enseñanza y aprendizaje

Se utilizarán estrategias metodológicas de enseñanza-aprendizaje que fortalezcan el logro de los aprendizajes, para ello se considera lo siguiente:

- Clases teóricas-prácticas interactivas para explicar los fundamentos de la asignatura, para lo cual se utilizará la resolución de problemas contextualizados para la ingeniería.
- Estrategia de Ejercitación a través de Laboratorios, utilizando software, por ejemplo MATLAB.
- Desarrollo de Guías, complementada con la entrega de material para reforzamientos por medio de ayudantías.

Procedimientos de evaluación de aprendizajes

El proceso de evaluación de la asignatura, considerará diferentes instancias.

- Pruebas escritas formativas y sumativas de resolución de problemas teórico-práctico.
- Evaluación de talleres, con énfasis en el trabajo práctico de problemas en contextos originales

UNIVERSIDAD DE ATACAMA VICERRECTORÍA ACADÉMICA FACULTAD DE INGENIERIA

DEPARTAMENTO DE INGENIERIA EN METALURGIA

Recursos de aprendizaje

Bibliográficos

Bibliografía básica

- El Cálculo, Louis Leithold. Oxford University Press-Harla México, S.A, séptima edición. 1.
- 2. Cálculo I, Larson-Hostetler-Edwards. Mc Graw Hill. Vol. 1

Bibliografía complementaria

- 1. Apuntes elaborados por el profesor de la asignatura
- Cálculo en una variable, George Thomas Jr. Editorial Pearson, ISBN 970-26-0643-8 2.

Informáticos

Plataforma MOODLE.

Página Web, profesor asignatura.