WHAT IS CLAIMED IS:

1	,7	1.	A device for suturing an end of a first body duct to a hole in the
2	side of a second	l body	duct, said device comprising:
3	·	a struc	ture for holding the end of the first body duct and positioning said
4	end adjacent to	the ho	ole in the side of the second body duct; and
5		a plura	ality of needles arranged on the structure to be advanced along a
6	plurality of path	is whe	erein each path first passes radially into and forwardly out of the end
7			and into the hole of the second body duct and then everts so that the
8	needles will pas	s out	wardly through tissue peripheral to the hole when the end of the first
9	body duct is on	the st	ructure adjacent to the hole in the second body duct.
1	2	2.	A device as in claim 1, wherein the structure comprises a shaft.
1		3.	A device as in claim 2, wherein the shaft has a surface adapted to
2	receive the first	body	duct.
1	. 4	l .	A device as in claim 3, wherein said surface comprises a
2	cylindrical surfa	ice ad	apted to received the first body duct.
1	2 5	j.	A device as in claim 2, wherein the shaft has a tubular surface
2	against which th	ne nee	dles are positioned to guide said needles along a portion of said
3	path.		
1	. 6	5.	A device as in claim 2, wherein the shaft further comprises a
2	plunger for adva	ncing	said needles through the first body duct.
1	7		A device as in claim 6, wherein the plunger includes suture storage
2	for a plurality of	f sutur	es each coupled to one of said plurality of needles.
1	<u>.</u> 8		A device as in claim 6, wherein the plunger comprises a plurality
2	of elongate men	nbers	for advancing said needles through the first body duct.
1	9	!•	A device as in claim 8, wherein the elongate members comprise
2	tubes each conta	iining	a suture coupled to one of said needles.
1	1	0.	A device as in claim 1, wherein the structure comprises a plurality
2	of guide channe	ls whi	ch define said plurality of paths

9

1	11. A device as in claim 10, wherein the guide channels are arranged in		
.2	a radial configuration about a shaft of said structure.		
1	12. A device as in claim 10, wherein the guide channels comprise		
2 ·	guide tubes.		
1	13. A device as in claim 10, wherein the guide channels have a		
2 ·	longitudinal slot along a length of at least of one said guide channels.		
1	14. A device as in claim 10, wherein the guide channels each have a		
2	first portion and a second portion, wherein the first and second portions are separated by		
3	gap which receives the end of the first body duct.		
1	15. A device as in claim 10, wherein at least one of said guide channels		
2	has a substantially curved configuration so that one of said needles passing through said		
3	guide channel will evert to pass outwardly through tissue peripheral to the hole when the		
4	end of the first body duct is on the structure adjacent to the hole in the second body duct.		
1 .	16. A device as in claim 14, wherein the second portion of the guide		
2	channel comprises a guide tube having a J-shaped section for guiding one of said needles		
3	along a portion of said path.		
1	17. A device as in claim 16, wherein the second portion of the guide		
2.	channel tube has a longitudinal slot extending along the length of the guide tube having a		
3	J-shaped section.		
1	18. A device as in claim 14, wherein the first body duct has a lumen, a		
2	body duct wall, and an outer surface, and wherein:		
3	the first portion of the guide channel is adapted to be positioned outside		
4	the first body duct and has a distal opening positioned to open towards an outer surface o		
5	the first body duct when the first body duct is mounted on the structure; and		
6	the second portion of the guide channel is adapted to be positioned in the		
7	lumen of the first body duct when the first body duct is mounted on the structure, said		
8	second portion of the guide channel receiving one of said needles advanced from the first		

portion and passing through the body duct wall.

1	19. A device as in claim 18, wherein the second portion of the guide
2	channel has a J-shaped configuration.
1	20. A device as in claim 18, wherein the second portion of the guide
2	channel includes a longitudinal slot extending the length of the second portion.
1	21. A device as in claim 18, wherein the needles are of sufficient
2	length to extend from the first portion of the guide channel, through the second portion,
3	and through the tissue layer of the second body duct.
1	22. A device as in claim 1, wherein said needles comprise a shape-
2	memory alloy.
1	23. A device as in claim 1, wherein said needles comprise a
2	superelastic material.
1	24. A device as in claim 1, wherein:
2	said needles each have an arcuate profile when unconstrained;
3	said structure comprises a tubular constraint having a lumen surface,
4	wherein the needles are movable between a first position within the tubular constraint
5	where said needles have a substantially straight configuration and a second position
6	within the constraint wherein said needles extend beyond the tubular constraint and
7	assume said arcuate profile.
1	25. A device as in 24, wherein said tubular constraint comprises an
2	inner tube coaxially mounted with an outer tube, said needles mounted on the distal end
3 ·	of the inner tube wherein said inner tube is movable between a first and second position
4	with the outer tube.
1	26. A device as in claim 1, wherein the structure comprises:
2	an outer tube having a passage; and
3	an inner tube slidably mounted in the passage of the outer tube and having
4	the needles fixedly secured to a distal end thereof, said needles adapted to penetrate one
5	end of the first body duct when the body duct is mounted within said inner tube.
1	27. A device as in claim 26, wherein:
2	said needles each have an arcuate profile when unconstrained;

3	said inner tube is movable between a first position within the outer tube				
4	where said needles have a substantially straight configuration and a second position				
5	within the outer tube wherein said needles extend beyond the outer tube and assume said				
6	arcuate profile.				
1	28. A device as in claim 26, wherein the inner tube has an opening in				
2	wall of the inner tube spaced apart from a distal end of the inner tube, said opening				
3	allowing for the insertion of the first body duct into a lumen of the inner tube.				
1	29. A device as in claim 26, wherein the inner tube is coupled to a				
2	plunger which reciprocates said inner tube between a forwardly advanced position and a				
3	retracted position.				
1	30. A device as in claim 26, wherein the outer tube and inner tube are				
2	in coaxial alignment and have a slideable relationship relative to each other.				
1	31. A device as in claim 26, wherein each of said needles has a suture				
2	attached to the distal end of said needles.				
l	32. A device as in claim 26, wherein the needles have arcuate shape				
2	memory so that they evert as they are advanced forward.				
1	33. A device as in claim 32, wherein the needles have a sharpened tip				
2	pointing proximally when the needles are in a substantially curved configuration.				
l	34. A device as in claim 32, wherein said needles comprise a shape				
2	memory material.				
l	35. A device as in claim 26, wherein the needles in said second				
2	position has a length sufficient to extend from the inner tube through a wall of the secon				
3	body duct such that a sharpened tip of the needle penetrates completely through said wal				
l	36. A device as in claim 26, wherein the needles have a releasable				
2	connection with said inner tube.				
l	37. A device as in claim 1, further comprising means for guiding said				
2	needles through the first and second body ducts.				

1

1	38. A device as in claim 37, wherein the means for guiding the needles
2	comprises a plurality of guide channels.
1	39. A device as in claim 37, wherein the means for guiding the needles
2	comprises a plurality of needles having an arcuate profile when unconstrained and
3	mounted within a tubular constraint, said needles movable between a first position where
4	the tubular constraint forces the needles to a substantially straight configuration and a
5	second position wherein the needle assumes a configuration exhibiting said arcuate
6	profile.
1	40. A method for suturing an end of a first body duct to a hole in the
2 .	side of a second body duct, said method comprising:
3	positioning the end of the first body duct adjacent to the hole in the second
4	body duct;
5	advancing a plurality of needles carrying a plurality of sutures along a
6	plurality of paths, wherein each path first passes radially into and forwardly out of the end
7	of the first body duct and into the hole of the second body duct and then everts so that the
8	needles will pass outwardly through tissue peripheral to the hole when the end of the first
9	body duct is on the structure adjacent to the hole in the second body duct; and
0	securing a portion of at least one of said sutures outside of the first body
1	duct to a portion of the suture outside of the peripheral tissue surrounding the hole in the
2 .	second body duct.
1	41. A method as in claim 40, wherein said positioning step includes
2	mounting said first body duct against a shaft structure containing said plurality of needles.
1	42. A method as in claim 40, wherein advancing the needles comprises
2	passing the needles through guide channel which define the paths.
1	43. A method as in claim 42, wherein the guide channels each have a
2	first portion and a second portion, where the first and second portions are separated by a
2	

1	44. A method as in claim 43, wherein advancing said needle comprises	
2	passing said needle through said first portion of the guide channels, through the wall of	
3	said first body duct, and into said second portion of the guide channels.	
1	45. A method as in claim 40, wherein advancing the needles comprises	
2	unconstraining said needles so that the each needles assume an arcuate, everted	
3	configuration as they are passed forwardly.	
1 .	46. A method as in claim 40, wherein advancing the needles comprises	
2	using a plunger having a tubular structure releasably coupled to said needle to push said	
3	needle along said path.	
1	47. A method as in claim 40, wherein securing the sutures comprises	
2 ′	removing said sutures from said guide channels by lifting the sutures out of the channels	
3	through a longitudinal slot running along a length of each of said guide channels.	
1	48. A method as in claim 40, further comprising:	
2	providing a suturing device having an inner tube coaxially mounted within	
3	an outer tube, where at least one of said needles is made of a shape-memory alloy and is	
4	mounted on the inner tube; and	
5	extending said needles beyond the outer tube by relative motion between	
6	the needle and the outer tube, said needle extended to a configuration where a sharpened	
7·	tip of the needle points substantially in a proximal direction.	
1	49. A method as in claim 40, further comprising lifting said shaft	
2	structure in a proximal direction to pull the needles through the peripheral tissue	
3	surrounding the hole in the second body duct.	
1	50. A method as in claim 40, further comprising everting the first body	
2	duct over said needles.	
1	51. A method as in claim 40, further comprising using a breakaway	
2	catheter to facilitate introduction of the shaft structure into the second body duct.	
1	52. A method as in claim 40, wherein securing said sutures comprises:	

collecting sutures carried near a sharpened tip of said needles; and

3	tying off the sutures to connect the body ducts together.
1	53. A method as in claim 40, wherein the second body duct comprise
2	an artery.
1	54. A method as in claim 40, wherein the second body duct comprise
2	the aorta.
1	55. A method as in claim 40, wherein said advancing and securing
2	steps are performed on a beating heart.
1 .	56. A method as in claim 40, wherein said advancing and securing
2	steps are performed on a stopped heart.
1.	57. A method as in claim 40, wherein said positioning, advancing, and
2	securing steps are performed minimally invasively.
1	58. A method as in claim 40, wherein said positioning, advancing, and
2	securing steps are performed in an open surgery environment.
1	59. A method as in claim 40, wherein said positioning, advancing, and
2	securing steps are performed through minimally invasive percutaneous openings in a
3	chest of a patient.
1	60. A method for suturing an end of a first body duct to a hole in the
2	side of a second body duct, said method comprising:
3	using a needle driver to simultaneously pass a plurality of sutures through
4	the end of the first body duct, inwardly through the hole of the second body duct, and
5	outwardly through peripheral tissue surrounding the hole in the second body duct; and
6	securing a portion of the suture outside of the first body duct to a portion
7	of the suture outside of the peripheral tissue surrounding the hole in the second body duc
1	61. A method as in claim 60, wherein a plunger is used to pass a
2	plurality of needles through the end of the first body duct, wherein each of said needles
3	carries one of said sutures.
1 -	62. A kit comprising:
2	a graft suturing device adapted to deliver a plurality of needles;

