Redes Convolucionales aplicadas a imágenes

Nicolas Peretti Pablo Pastore

Retrieval

Detección

Segmentación

Vehículos autónomos

A herd of elephants walking

across a dry grass field.

Descripción de imágen

Describes without errors Somewhat related to the image Describes with minor errors A person riding a Two dogs play in the grass. A skateboarder does a trick motorcycle on a dirt road. on a ramp. Two hockey players are fighting A group of young people A little girl in a pink hat is over the puck. playing a game of frisbee. blowing bubbles.

A close up of a cat laying

on a couch.

A red motorcycle parked on the

side of the road.

Reconocimiento facial

Clasificación de taxonomía de galaxias

Detección de caminos

Análisis de mamografía

Clasificación de señales de tránsito

Estimación de pose

GANs

Clases fijas {gato, avión, auto,...}

54_	5	8	255	8	0		_
45	0	78	51	. 1	00	74	
85	47	34	185	207		21	36
22	20	148	52	24	1	47	123
52	36	250	74	214	. 2	278	41
	158	0	78	51	2	247	255
		72	74	136	7	251	74

Lo que la computadora ve

Algunos desafíos:

variación de clases

iluminación

deformación

oclusión

```
def predict(image):
    # ????
    return class_label
```

- → Construcción robusta
- → No hay forma obvia
- → Depende del dominio

Usemos machine learning

- → Conseguir imágenes con su clase
- → Usar machine learning para entrenar un clasificador
- → Evaluar el clasificador con imágenes fuera del conjunto de entrenamiento

```
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model

def predict(model, test_images):
    # predict test_labels using the model...
    return test_labels
```


Primer intento: Clasificador lineal

imagen parámof(x, VV)

3 números, indicando el

clase

score de cada

[32, 32, 3] (imagen=32x32 píxeles x 3 canales)

Asumimos 3 clases (eg, gato, perro, auto)

Clasificador lineal

Clasificador lineal

Redes Neuronales

- → Función lineal:
- → Red neuronal de dos capas:
- → Red neuronal de tres capas:
 - f = W" * tanh(W' * max(0, W * x))

Redes Neuronales

Redes Neuronales

Función de costo

→ Supongamos que deseamos entrenar un clasificador de frutas

→ Debemos evaluar la exactitud del modelo: Función de Costo

$$L(x, y; W) = \begin{cases} \frac{-\log(f(x; W))}{-\log(1 - f(x; W))} & y = 1\\ \frac{-\log(1 - f(x; W))}{-\log(1 - f(x; W))} & y = 0 \end{cases}$$

$$W_{t+1} = W_t - \delta \nabla_{W_t} L(W_t)$$

(mini batch) SGD

- → Problemas con el algoritmo previo:
 - Costoso en grandes volúmenes de datos
- → Solución:
 - ◆ 1) Seleccionar un subconjunto de nuestro conjunto de entrenamiento.
 - 2) Computar gradiente para la función de costo en ese conjunto y actualizar pesos.
 - ◆ 3) Volver al paso (1)

Red neuronal como clasificador de dígitos

- → Imagenes de dígitos de 28 x 28 píxeles
- \rightarrow 28 x 28 = 784 píxeles
- → 784 valores de entrada a nuestra red

Red neuronal como clasificador de dígitos

Red neuronal como clasificador de dígitos

Red neuronal en imágenes

- → No tiene en cuenta estructura espacial de la imagen.
- → Deseamos construir redes más profundas
 - Crece la cantidad de parámetros
 - ◆ En la práctica: 3 capas mejor que 2 capas. 4, 5, etc capas no siempre ayudan

Redes convolucionales (CNN)

- → Approach red neuronal: trabajar con toda la imagen a la vez
- → Approach convolucional: inspeccionar la imagen de a pequeñas partes

CNN: Convolución

- → Campo receptivo local (5x5 pixeles)
- → Pesos Compartidos
- → Stride = 1

CNN: Convolución

Resultados con diferentes valores de *stride*:

Stride = 1

Stride = 2

CNN: Convolución

Convolución con tres filtros (o kernels)

CNN: Pooling

CNN: Conv + Pool

CNN: Arquitectura completa

CNN: Visualización

CNN: LeNet (1998)

CNN: ResNet (2015)

- → 152 capas ("ultra-deep")
- → "mantener" el input original
- → 8 GPUs (2->3 semanas)

CNN: ResNet

- → 152 capas ("ultra-deep")
- → "mantener" el input original
- → 8 GPUs (2->3 semanas)

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and large datasets. However, larger networks and larger datasets result in longer training times that impede research and development progress. Distributed synchronous SGD offers a potential solution to this problem by dividing SGD minibatches over a pool of parallel workers. Yet to make this scheme efficient, the per-worker workload must be large, which implies nontrivial growth in the SGD minibatch size. In this paper, we empirically show that on the

CNN: Imagenet

Imagenet: Error rate top 5

CNN: Transfer learning

"You need a lot of a data if you want to train/use CNNs"

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Ajuste de hiperparametros

- → Arquitectura de red neuronal.
- → Learning rate inicial, actualización.
- → Regularización (ej. dropout).
- → Más: https://goo.gl/p5Voeh

Más info:

- → Intro a CNNs:
 - http://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
- → CS231n
 - Course: http://cs231n.stanford.edu/
 - ◆ Videos: https://www.youtube.com/playlist?list=PL16j5WbGpaM0_Tj8CRmurZ8Kk1qEBc7fq
- → Michael Nielsen's Book: http://neuralnetworksanddeeplearning.com/
- → Deep Learning Book: https://www.deeplearningbook.org/
- → Andrej Karpathy's Blog: http://karpathy.github.io/

¿Preguntas?