Bangla Word Embedding (Vector Space Model)

R & D Team, Pipilika.

Word Embedding(word2vec) - Overview

- >Word Embedding represents words in a continuous vector space where semantically similar words are mapped to nearby points.
- >Word Embedding depend on the Distributional Hypothesis, which states that words that appear in the same contexts share semantic meaning.
- >Word2vec "vectorizes" words, and by doing so, it makes natural language computer-readable.

Word Embedding(Word2vec)

Word2vec is a particularly computationally-efficient predictive model for learning word embedding's from raw text.

^aWord2vec trains words against other words that neighbor them in the input corpus.

□Word2vec is a two-layer neural net that processes text.

Word2Vec Publication

Distributed Representations of Words and Phrases and their Compositionality (2013)

[Published at arXiv (Cornell University), Submitted on 16 Oct 2013]

Tomas Mikolov (Google Inc.), Ilya Sutskever (Google Inc.), Kai Chen (Google Inc.), Greg Corrado(Google Inc.), Jeffrey Dean(Google Inc.)

Word Embedding(Word2vec)

Word2vec is a particularly computationally-efficient predictive model for learning word embedding's from raw text.

^aWord2vec trains words against other words that neighbor them in the input corpus.

□Word2vec is a two-layer neural net that processes text.

Word2vec - How to compute

•Using context to predict a target word

•Using a word to predict a target context

☐ We used skip-gram method, as its computationally faster and performs well for large dataset.

Word2vec - How to compute

- »All vectors are initialized as random points in space.
- The entries in the vectors are treated as parameters to be learned.
- »Word2vec use stochastic gradient based training method over SGNS (negative sampling) to reduce cost function.
- The negative sampling objective tries to maximize P(D = 1|w, c) for observed (w, c) pairs while maximizing P(D = 0|w, c) for randomly sampled "negative" examples. (w=word, c = context)
- Description of the scattering cost makes observed word-context pairs have similar embeddings, while scattering unobserved pairs.

Word2vec - Uses

- >Word's association with other words (e.g. "man" is to "boy" what "woman" is to "girl")
 >Cluster documents and classify them by topic.

 >Named Entity Recognition (NER)
 >Parts of Speech tagging (POS)

 >Machine translation (MT)
 >Sentiment analysis (SA)
 >Search.
- »Recommendations in such diverse fields as scientific research, legal discovery, e-commerce and customer relationship management.

Word2vec - How to compute

- All vectors are initialized as random points in space.
- The entries in the vectors are treated as parameters to be learned.
- »Word2vec use stochastic gradient based training method over SGNS (negative sampling) to reduce cost function.
- The negative sampling objective tries to maximize P(D = 1|w, c) for observed (w, c) pairs while maximizing P(D = 0|w, c) for randomly sampled "negative" examples. (w=word, c = context)
- Description of the policy of t

Bangla Word Embedding

Bangla Word Embedding

- >Collect online newspaper data and parse articles.
- »Refine text data and remove noise.
- >Token sentences.
- >Train word2vec model with Neural Network.
- Evaluate model.

Bangla Word Embedding - Dataset

Bangla Word Embedding - Process

- Generated Embedding model for every newspaper separately.
- Generated Embedding model using the total content.
- We used vector size 100, window size 5, min occurrence 5 and a two layer Neural Network.
- > Vector size of final model is 663843 (Unique words)
- Embeddings was generated using DeepLearning4J's word2vec implementation (open source java library).

Word embedding – Vector representation

	(A	В		D	E	F	G	H	
1	বাংলাদেশ	-0.16718901693821	-0.09102926403284	-0.12730498611927	-0.02194245532155	0.05350062996149	-0.01436382997781	0.02234567515552	0.1292
2	পাকিস্তান	-0.20723532140255	-0.08841084688902	0.18656422197819	-0.18142694234848	0.06802216172218	0.13033746182919	0.07781963050365	0.376
3	<u>মিশর</u>	-0.31807425618172	-0.12006614357233	0.28769889473915	-0.08457553386688	0.13072943687439	0.06472390890121	0.0026792450808	0.2506
4	ইরান	-0.43939995765686	0.01462487131357	0.1962416768074	-0.43408462405205	-0.07133436948061	-0.00428507849574	0.26301109790802	0.5023
5	(काविग्रा	-0.57938611507416	-0.06007361039519	0.52740460634232	-0.33263999223709	-0.13248470425606	-0.23363867402077	-0.15764203667641	0.1734
6	सम्रातसाव	-0.43624034523964	-0.19680264592171	0.21771216392517	-0.04171254485846	-0.19558487832546	0.24745757877827	0.08599312603474	0.252
7	জাপান	-0.39558002352715	0.09078895300627	0.46958211064339	-0.37745329737663	0.02669138647616	0.03063093498349	-0.14331077039242	0.3206
8	<u>থাইল্যান্ড</u>	-0.34443330764771	0.05176247656345	0.43268403410912	-0.14067161083221	-0.03268185630441	0.29491430521011	-0.29707890748978	0.3540
9	ইসরাইল	-0.17233058810234	-0.01651784218848	-0.16924016177654	-0.18557615578175	0.21092869341373	0.12529009580612	0.13947339355946	0.2877
10	रे ताक	-0.48690098524094	-0.20332460105419	-0.19206416606903	-0.02144716493785	0.10904793441296	-0.21962501108646	-0.10619910806417	0.5855
11	নিউজিল্যান্ড	-0.06102240458131	0.06853982061148	0.15932157635689	-0.04575664177537	-0.03793335705996	0.29598221182823	-0.19242784380913	-0.061
12	३ ल्मातनिया	-0.31400868296623	0.11380773037672	0.41961246728897	-0.21591967344284	-0.08580309152603	0.19561447203159	-0.35123246908188	0.40
13	রাশিয়া	-0.45693406462669	-0.09756524860859	0.31280371546745	-0.36282262206078	0.03022473305464	-0.08823770284653	-0.02285296656191	0.337
14	লিবিয়া	-0.42462944984436	-0.05070608854294	0.10658892989159	-0.0794914662838	0.33558136224747	0.10654870420694	-0.02037557587028	0.2350
15	ही त	-0.4129473567009	0.11144567281008	0.61908882856369	-0.43721601366997	-0.08448822796345	0.06432566791773	-0.01245723944157	0.2834
16	ইতালি	-0.42281046509743	0.14029702544212	0.45064601302147	-0.12771977484226	0.02821393869817	0.31287708878517	-0.30366680026054	-0.0499
17	সিবিয়া	-0.39372026920319	-0.15172958374023	-0.12121618539095	-0.1079603806138	0.2341693341732	-0.00250801560469	-0.15534925460815	0.4665
18	ব্রজিল	-0.30040404200554	0.05525312945247	0.49539574980736	-0.31755834817886	0.15427866578102	0.28959447145462	-0.06533645838499	-0.229
19	যুক্তরাষ্ট্র	-0.31792876124382	0.13526827096939	-0.00207041203976	-0.27665224671364	0.17204630374908	-0.10487426817417	0.02547206543386	0.3560
20	ই য়েমেন	-0.37089881300926	-0.04095613956451	-0.05357467755675	-0.05328887701035	0.37252974510193	-0.07460470497608	-0.06825338304043	0.4544
21	ভারত	-0.23987272381783	0.14163638651371	0.38418877124786	-0.28046616911888	-0.05377046391368	0.29014539718628	0.03209922835231	0.0892
22	<u>কানাডা</u>	-0.25135296583176	0.04957243427634	0.32297870516777	-0.11959902197123	-0.1293673068285	0.10440833866596	-0.15219485759735	0.340
23	মালশ্বীপ	-0.3828429877758	0.05694228038192	0.35444116592407	-0.28833237290382	-0.14252161979675	0.31738117337227	-0.18349845707417	0.333
24	সুদান	-0.44545117020607	-0.13893267512321	0.38265904784203	-0.41180950403214	0.09957659244537	0.04040228202939	-0.39141854643822	0.3710
25	দুবাই	-0.32459843158722	0.24842327833176	0.04155398532748	0.22403621673584	0.25711467862129	0.09938125312328	-0.05234004184604	0.2320
26	অস্ট্রেলিয়া	-0.1674974411726	0.11006399989128	0.15530133247375	-0.00055173860164	0.09254312515259	0.35979917645454	-0.24269258975983	0.018
27	আফগানিস্তান	-0.384222894907	-0.0810324177146	0.34550213813782	-0.20403315126896	-0.10889113694429	0.26217243075371	-0.11593237519264	0.170
28	মালয়েশিয়া	-0.29786735773087	0.11403957009315	0.0968434587121	-0.05628159269691	0.06971801817417	0.24476736783981	-0.06973052024841	0.236
29	নেপাল	-0.27975672483444	0.22000668942928	0.50397503376007	-0.49701851606369	-0.20439429581165	0.27873587608337	-0.16341404616833	0.3562
suali	zerData.csv							Sum = 0	

If we want to plot this data, we need to apply dimension reduction first.

Clustering Using Word embedding

Word embedding – Plotting Vectors

Words in two dimensions

After reducing dimension size to 2 from 100 using **t-sne** algorithm

Word embedding - Clustering countries

Clusters of Countries, K-means (k = 8)

Interesting: Countries with common affairs tend to stay in same cluster.

Cosine Similarity between words

Cosine Similarity

Formal Definition:

Given two vectors of attributes, A and B, the cosine similarity, $cos(\theta)$, is represented using a dot product and magnitude as

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}}, \text{ where } A_i \text{ and } B_i \text{ are components of vector } A \text{ and } B \text{ respectively.}$$

<u>Step 1</u>: Take a subset of words from embedding model S.

Step 2: Take a word A.

<u>Step 3</u>: Calculate cosine similarity of each word in set S with word A.

<u>Step 4</u>: Sort the values of S according to score,

top elements are most similar to A.

Cosine similarity (Interesting properties of word embedding)

Cosine similarity with : ক্রিকেট

Evaluate model....

Key : অক্টেলিয়া Value : 0.5617975939137577
Key : বাংলাদেশ Value : 0.5268797025180607
Key : পাকিস্তান Value : 0.5240391096461832
Key : নিউ জিলাক্ত Value : 0.5104464398962308
Key : ভারত Value : 0.4144979334258458
Key : আফগানিস্তান Value : 0.3907449416320413
Key : নেপাল Value : 0.36563892005758974
Key : মালমীপ Value : 0.3437510476660226
Key : দ্বাই Value : 0.3274754150834066

Cosine similarity with: ফুটবল

Evaluate model....

Key : রাজিল Value : 0.633693081809804
Key : আর্জেনিনা Value : 0.6093936839750905
Key : শেশ Value : 0.4847695743336563
Key : বাংলাদেশ Value : 0.45668275563918387
Key : মালমীপ Value : 0.4033611638115368
Key : অস্ট্রেলিয়া Value : 0.3832936374508601
Key : ইতালি Value : 0.38001120918090664
Key : জার্মানি Value : 0.35425404121405796
Key : নেপাল Value : 0.34635534431189735
Key : কাতার Value : 0.33167605245192733

Word embedding - Clustering sub-districts

Clusters of sub-districts, K-means (k = 15)

Interesting: Sub-districts of a particular district tend to stay in same cluster.

Cosine similarity (Interesting properties of word embedding)

Cosine similarity with : নদীভাঙ্গন

```
Evaluate model....
Key : দাকোপ Value : 0.39064434742405624
Key : বটিয়াঘাটা Value : 0.29894619870792094
Key : পৰা Value : 0.29177025716654986
Key : পাইকগাছা Value : 0.2755731530286415
Key : ইজলা Value : 0.2749990326881168
Key : কয়রা Value : 0.27239717815550196
Key : মেহেন্গিঞ্জ Value : 0.25395455488479146
Key : রূপসা Value : 0.2401587911563668
Key : মোহনপুর Value : 0.22757039071720775
Key : দুর্গাপুর Value : 0.2152805287096016
Key : তেরখাদা Value : 0.20587700957417002
```

Cosine similarity with : পাহাড

```
Evaluate model....
Key : মীরসরাই Value : 0.30866101595422923
Key : বরিশাল Value : 0.2728667077852712
Key : সম্মিপ Value : 0.26424708830508653
Key : বাঁশখালী Value : 0.26055147721416305
Key : বাঁশখালী Value : 0.23900550530774903
Key : মীনঙ্গল Value : 0.21492140426461911
Key : মৌলভীবাজার Value : 0.21410315255602866
Key : ফটিকছড়ি Value : 0.2078834251612143
Key : রংগুর Value : 0.20657785888528893
Key : দূর্গাপুর Value : 0.19864944328813688
Key : হাঁহাজারী Value : 0.1873563941889697
```

Cosine similarity with: তালদস্য

Evaluate model....
Key : কয়রা Value : 0.4936013798875468
Key : বাঁশখালী Value : 0.3412083553976618
Key : বাট্যাঘাটা Value : 0.334270252129585
Key : দাকোপ Value : 0.3201735724951728
Key : দিঘলিয়া Value : 0.3059122398056046
Key : ইজলা Value : 0.3039111180110179
Key : বানারীপাড়া Value : 0.2811509870189008
Key : বায়ালখালী Value : 0.275510298608981
Key : দুর্গপুর Value : 0.27498874877778584
Key : সম্বীপ Value : 0.27442809656952255

Cosine similarity with : লিচু

Evaluate model

Key : তারাগন্ধ Value : 0.3014801815908929

Key : তানোর Value : 0.27907731603281377

Key : বাঘ Value : 0.2734841352403562

Key : কয়রা Value : 0.27103931309493495

Key : কয়রা Value : 0.26977404116862647

Key : চারঘাট Value : 0.2677979117333807

Key : দূর্গাপুর Value : 0.2671759726679152

Key : মোহনপুর Value : 0.2512024550384454

Key : বাগমারা Value : 0.2462445387421504

Key : কমলগন্ধ Value : 0.24567828393648136

Key : নাৰ্বাইল Value : 0.2439511284098868

Key : শীরগাছা Value : 0.23192931

Word embedding - Clustering districts

Clusters of districts, K-means (k = 12)

Interesting: Dhaka and Ctg. are unlike any other districts.

Cosine similarity (Interesting properties of word embedding)

Cosine similarity with : পাহাড

Evaluate model Key : কাজাবাজার Value : 0.4449255742413359 Key : বাস্বরান Value : 0.4429482980128475 Key : রাজামাটি Value : 0.40699306047155615 Key : সিলেট Value : 0.3100437348011553 Key : চট্টগ্রাম Value : 0.2994967527715209 Key : ভোলা Value : 0.2900306209714053 Key : বাগেরহাট Value : 0.2829298796509688 Key : বাগেরহাট Value : 0.2728666837909501 Key : বরগুনা Value : 0.24984657055059442 Key : খাগড়াছড়ি Value : 0.2174096364727775 Key : মৌলভীবাজার Value : 0.21410315255602866

Cosine similarity with : বজ্ৰপাত

```
Evaluate model . . . .

Key : ভোলা Value : 0.32507102977459473

Key : গাইবাজা Value : 0.2679259035979477

Key : রংপুর Value : 0.2367676696951415

Key : বীলকামারী Value : 0.23285205347487015

Key : বরিশাল Value : 0.22922580262238154

Key : জামালপুর Value : 0.2024179013419719

Key : বরগুনা Value : 0.19675328105983164

Key : বাগেরহাট Value : 0.19480615693329473

Key : মাদারীপুর Value : 0.1946054441060797

Key : সিরাজগঙ্গ Value : 0.1936761365171123

Key : সুনামগঞ্জ Value : 0.18867785954872923
```

Thank You!