☐ xnanko00 / Digital-electronics-1

README.md

1. Cvičenie

Preparation tasks

Figure or table with connection of push buttons on Nexys A7 board

Button	Connection
BTNL	P17
BTNR	M17
BTNU	M18
BTND	P18
BTNC	N17

Table with calculated values

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1A80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"F_4240"	b"1111_0100_0010_0100_0000"
220 ms	25 000 000	x"17D_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2FA_F080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5F5_E100"	b"0101_1111_0101_1110_0001_0000_0000"

2. Cvičenie

Bidirectional counter

VHDL architecture (cnt_up_down)

```
begin
   p_cnt_up_down : process(clk)
   begin
       if rising_edge(clk) then
           if (reset = '1') then
                                          -- Synchronous reset
              s_cnt_local <= (others => '0'); -- Clear all bits
           -- TEST COUNTER DIRECTION HERE
           if (cnt_up_i = '1') then
              s_cnt_local <= s_cnt_local + 1;</pre>
           else
              s_cnt_local <= s_cnt_local - 1;</pre>
              end if;
           end if;
       end if;
   end process p_cnt_up_down;
   -- Output must be retyped from "unsigned" to "std_logic_vector"
   cnt_o <= std_logic_vector(s_cnt_local);</pre>
end architecture behavioral;
```

VHDL reset and stimulus process (tb_cnt_up_down)

```
______
-- Reset generation process
_____
p_reset_gen : process
begin
  s_reset <= '0';
  wait for 12 ns;
  -- Reset activated
  s_reset <= '1';</pre>
  wait for 73 ns;
  s_reset <= '0';
  wait;
end process p_reset_gen;
______
-- Data generation process
______
p_stimulus : process
  report "Stimulus process started" severity note;
  -- Enable counting
  s_en <= '1';
  -- Change counter direction
  s_cnt_up <= '1';
  wait for 380 ns;
  s_cnt_up <= '0';
  wait for 220 ns;
  -- Disable counting
        <= '0';
  s_en
```

```
report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
end architecture testbench;
```

Screenshot with waveforms

3. Cvičenie

Top level

VHDL architecture (top.vhd)

```
entity top is
port(
       CLK100MHZ
                   : in std_logic; -- Main clock
                                              -- Synchronous reset
       BTNC : in std_logic;
            : in std_logic_VECTOR(0 downto 0); -- Enable input
: out std_logic_VECTOR(3 downto 0); -- Direction of the counter
             : out std_logic;
             : out std_logic;
       CC
             : out std_logic;
             : out std_logic;
       CE
             : out std_logic;
       CF
             : out std_logic;
       CG
             : out std_logic;
              : out std_logic_VECTOR(8-1 downto 0)
       ΑN
   );
end top;
-- Architecture body for top level
______
architecture Behavioral of top is
   -- Internal clock enable
   signal s_en : std_logic;
   -- Internal counter
   signal s_cnt : std_logic_vector(4 - 1 downto 0);
begin
    -- Instance (copy) of clock_enable entity
   clk_en0 : entity work.clock_enable
       generic map(
           --- WRITE YOUR CODE HERE
           g_MAX => 100000000
       )
       port map(
           --- WRITE YOUR CODE HERE
           clk => CLK100MHZ,
           reset => BTNC,
           ce_o
                  => s_en
       );
```

```
_____
    -- Instance (copy) of cnt_up_down entity
   bin_cnt0 : entity work.cnt_up_down
       generic map(
           --- WRITE YOUR CODE HERE
           g_CNT_WIDTH => 4
       )
           --- WRITE YOUR CODE HERE
           clk => CLK100MHZ,
           reset => BTNC,
en_i => s_en,
           cnt_up_i \Rightarrow SW(0),
                     => s_cnt
           cnt_o
       );
    -- Display input value on LEDs
   LED(3 downto 0) <= s_cnt;</pre>
    -- Instance (copy) of hex_7seg entity
   hex2seg : entity work.hex_7seg
       port map(
           hex_i
                  => s_cnt,
           seg_o(6) \Rightarrow CA,
           seg_o(5) \Rightarrow CB
           seg_o(4) \Rightarrow CC
           seg_o(3) \Rightarrow CD,
           seg_o(2) \Rightarrow CE,
           seg_o(1) => CF,
           seg_o(0) \Rightarrow CG
       );
    -- Connect one common anode to 3.3V
   AN <= b"1111_1110";
end architecture Behavioral;
```

Image of the top layer including both counters, ie a 4-bit bidirectional counter from Part 4 and a 16-bit counter with a 10 ms time base

