Work Sheet 6

Wendy Nalaza

2022-11-25

Use the dataset mpg

```
library(ggplot2)
data(mpg)
as.data.frame(data(mpg))
##
                 data(mpg)
## 1
                                        mpg
data(mpg)
data("mpg")
str("mpg")
              chr "mpg"
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
                         filter, lag
## The following objects are masked from 'package:base':
##
                         intersect, setdiff, setequal, union
##
glimpse(mpg)
## Rows: 234
## Columns: 11
## $ manufacturer <chr> "audi", "audi"
                                                                <chr> "a4", "a4", "a4", "a4", "a4", "a4", "a4", "a4 quattro", "~
## $ model
                                                              <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8, 1.8, 2.0, 2.0, 2.~
## $ displ
## $ year
                                                             <int> 1999, 1999, 2008, 2008, 1999, 1999, 2008, 1999, 1999, 200~
                                                                <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, ~
## $ cyl
```

Example. graph using ggplot()

```
ggplot(mpg, aes(cty, hwy)) + geom_point()
```

1. How many columns are in mpg dataset? How about the number of rows? Show the codes and its result. ANSWER: The total of columns are 11 columns and 234 rows

```
ROW <- nrow(mpg)
COLUMN <-ncol(mpg)
ROW
```

[1] 234

```
COLUMN
```

[1] 11

2. Which manufacturer has the most models in this data set? Which model has the most variations?

```
## # A tibble: 15 x 2
##
     manufacturer
##
      <chr>
                   <int>
## 1 dodge
                      37
## 2 toyota
                      34
## 3 volkswagen
                      27
## 4 ford
                      25
## 5 chevrolet
                      19
## 6 audi
                      18
## 7 hyundai
                      14
## 8 subaru
                      14
## 9 nissan
                      13
## 10 honda
## 11 jeep
                       8
## 12 pontiac
                       5
## 13 land rover
                       4
## 14 mercury
                       4
## 15 lincoln
                       3
```

ANSWER: Dodge and has 37 models

a. Group the manufacturers and find the unique models. Copy the codes and result.

```
DATAmpg <- mpg
Manufacturer2 <- DATAmpg %>% group_by(manufacturer, model) %>%
    distinct() %>% count()
Manufacturer2
```

```
## # A tibble: 38 x 3
## # Groups: manufacturer, model [38]
     manufacturer model
##
##
     <chr>
                <chr>
                                   <int>
               a4
## 1 audi
                                      7
## 2 audi
               a4 quattro
                                      8
## 3 audi a6 quattro
## 4 chevrolet c1500 suburban 2wd
## 5 chevrolet corvette
                                      5
## 6 chevrolet k1500 tahoe 4wd
                                      4
## 7 chevrolet malibu
## 8 dodge
                caravan 2wd
                                      9
## 9 dodge
                                      8
                 dakota pickup 4wd
## 10 dodge
                 durango 4wd
                                      6
## # ... with 28 more rows
```

```
colnames(Manufacturer2) <- c("Manufacturer", "Model", "Counts")
Manufacturer2</pre>
```

```
## # A tibble: 38 x 3
## # Groups: Manufacturer, Model [38]
##
     Manufacturer Model
                                  Counts
##
     <chr> <chr>
                                   <int>
## 1 audi
               a4
                                       7
## 2 audi a4 quattro
## 3 audi a6 quattro
                                       8
                                       3
## 4 chevrolet c1500 suburban 2wd
## 5 chevrolet corvette
                                       5
## 6 chevrolet k1500 tahoe 4wd
                                       4
                                       5
## 7 chevrolet malibu
## 8 dodge caravan 2wd
                                       9
## 9 dodge
                 dakota pickup 4wd
                                       8
## 10 dodge
                 durango 4wd
                                       6
## # ... with 28 more rows
```

- b. Graph the result by using plot() and ggplot(). Write the codes and its result.
 - plot

```
qplot(model, data = mpg,geom = "bar", fill=manufacturer)
```


• ggplot

ggplot(mpg, aes(model, manufacturer)) + geom_point()

3. Same dataset will be used. You are going to show the relationship of the model and the manufacturer.

```
DATAmpg <- mpg
Manufacturer3 <- DATAmpg %>% group_by(manufacturer, model) %>%
    distinct() %>% count()
Manufacturer3
```

```
## # A tibble: 38 x 3
              manufacturer, model [38]
  # Groups:
      manufacturer model
##
                                           n
##
      <chr>
                   <chr>>
                                       <int>
   1 audi
##
                   a4
                                           7
    2 audi
##
                   a4 quattro
                                           8
    3 audi
                   a6 quattro
                                           3
##
   4 chevrolet
##
                   c1500 suburban 2wd
                                           4
##
  5 chevrolet
                   corvette
  6 chevrolet
                   k1500 tahoe 4wd
                                           4
##
    7 chevrolet
                                           5
##
                   malibu
##
   8 dodge
                   caravan 2wd
                                           9
   9 dodge
                                           8
                   dakota pickup 4wd
## 10 dodge
                   durango 4wd
                                           6
## # ... with 28 more rows
```

colnames(Manufacturer3) <- c("Manufacturer", "Model") Manufacturer3</pre>

```
## # A tibble: 38 x 3
               Manufacturer, Model [38]
##
   # Groups:
##
      Manufacturer Model
                    <chr>
##
      <chr>
                                        <int>
##
    1 audi
                    a4
    2 audi
##
                    a4 quattro
                                            8
                                            3
##
    3 audi
                    a6 quattro
                    c1500 suburban 2wd
##
    4 chevrolet
                                            4
                                            5
##
    5 chevrolet
                    corvette
##
    6 chevrolet
                    k1500 tahoe 4wd
                                            4
                                            5
##
    7 chevrolet
                    malibu
##
    8 dodge
                    caravan 2wd
                                            9
##
    9 dodge
                    dakota pickup 4wd
                                            8
## 10 dodge
                    durango 4wd
                                            6
## # ... with 28 more rows
```

a. What does ggplot(mpg, aes(model, manufacturer)) + geom_point() show?

ANSWER: Geometric point graph of mpg(model and manufacturer)

b. For you, is it useful? If not, how could you modify the data to make it more informative? ANSWER: Yes, it is helpful since you can track down and edit each model's data directly from the manufacturer. + to modify the data:

```
ggplot(mpg, aes(model, manufacturer)) +
  geom_point() +
  geom_jitter()
```


4. Using the pipe (%>%), group the model and get the number of cars per model. Show codes and its result.

```
DATAmpg4 <- Manufacturer2 %>% group_by(Model) %>% count()
DATAmpg4
```

```
## # A tibble: 38 x 2
## # Groups:
                Model [38]
      Model
##
##
      <chr>
                           <int>
##
    1 4runner 4wd
                               1
##
    2 a4
                               1
##
    3 a4 quattro
                               1
    4 a6 quattro
##
                               1
##
    5 altima
                               1
    6 c1500 suburban 2wd
                               1
##
##
    7 camry
                               1
    8 camry solara
                               1
##
    9 caravan 2wd
##
                               1
## 10 civic
## # ... with 28 more rows
```

```
colnames(DATAmpg4) <- c("Model", "Counts")</pre>
```

a. Plot using the $geom_bar() + coord_flip()$ just like what is shown below. Show codes and its result

```
qplot(model,
    data = mpg,main = "Number of Cars per Model",
    xlab = "Model",
    ylab = "Number of Cars",
    geom = "bar", fill = manufacturer
    + coord_flip())
```

Number of Cars per Model

b. Use only the top 20 observations. Show code and results.

```
Top_Data <- DATAmpg4[1:20,]%>%top_n(2)
```

Selecting by Counts

Top_Data

```
## # A tibble: 20 x 2
## # Groups: Model [20]
## Model Counts
## <chr> <int>
```

```
##
    1 4runner 4wd
                               1
##
    2 a4
                               1
##
    3 a4 quattro
   4 a6 quattro
##
                               1
##
    5 altima
    6 c1500 suburban 2wd
##
                               1
    7 camry
##
                               1
    8 camry solara
##
                               1
##
   9 caravan 2wd
                               1
## 10 civic
                               1
## 11 corolla
                               1
## 12 corvette
## 13 dakota pickup 4wd
                               1
## 14 durango 4wd
## 15 expedition 2wd
                               1
## 16 explorer 4wd
## 17 f150 pickup 4wd
                               1
## 18 forester awd
## 19 grand cherokee 4wd
                               1
## 20 grand prix
                               1
```

```
ggplot(Top_Data,aes(x = Model,y =Counts)) + geom_bar(stat = "Identity") + coord_flip()
```


5. Plot the relationship between cyl - number of cylinders and displ - engine displacement using geom_point with aesthetic colour = engine displacement. Title should be "Relationship between No. of Cylinders and Engine Displacement".

a. Show the codes and its result.

b. How would you describe its relationship?

ANSWER: So according to the data, by making cyl into y, the graph is scattered, and the pink color indicates the engine displacement, as you can see from the dots in a straight horizontal position.

6. Get the total number of observations for drv - type of drive train (f = front-wheel drive, r = rear wheel drive and r = rear wheel r = rear whe

a. Show the codes and its result for the narrative in 6.

```
ggplot(data = mpg, mapping = aes(x = drv, y = class)) +
  geom_point(mapping=aes(color=class)) +
  geom_tile()
```


b. Interpret the result:

 $ANSWER: Areas \ covered \ with \ black \ are \ "mapped" \ using \ the \ mapping \ geometric \ point \ graph, \ with \ y \ as \ class \ and \ x \ as \ drv.$

- 7. Discuss the difference between these codes. Its outputs for each are shown below.
 - Code 1

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, colour = "blue"))
```


• + Code 2

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), colour = "blue")
```


8. Try to run the command ?mpg. What is the result of this command?

?mpg

starting httpd help server ... done

The result of the command are the server website and the data of mpg.

a. Which variables from mpg dataset are categorical?

ANSWER: Categorical variables in mpg which include: the manufacturer, model, trans (type of transmission), drv (front-wheel drive, rear-wheel, 4wd), fl (fuel type), and class (type of car).

- **b.** Which are continuous variables? ANSWERS: Continuous varibles in R were also known as doubles or integers.
- c. Plot the relationship between displ (engine displacement) and hwy(highway miles per gallon). Mapped it with a continuous variable you have identified in 5-b.

```
ggplot(mpg, aes(x = cty, y = hwy, colour = displ)) + geom_point()
```


What is its result? Why it produced such output? ANSWER: Data tracks the cty by showing (city miles per gallon) in a color with a blue hue or variation of blue.

9.Plot the relationship between displ (engine displacement) and hwy(highway miles per gallon) using geom_point(). Add a trend line over the existing plot using geom_smooth() with se = FALSE. Default method is "loess".

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
  geom_point(mapping=aes(color=class)) +
  geom_smooth(se = FALSE)
```

'geom_smooth()' using method = 'loess' and formula 'y \sim x'

10. Using the relationship of displ and hwy, add a trend line over existing plot. Set the se = FALSE to remove the confidence interval and method = lm to check for linear modeling

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = class)) +
geom_point() +
geom_smooth(se = FALSE)
```

