一、氢能概述

1. 氢能特点

○ **优点**: 零碳排放 (产物为水)、质量能量密度最高 (141.8 MJ/kg)、来源广泛 (水、生物质等)。

○ 缺点: 体积能量密度低、储运困难、成本高。

○ 定位: 氢是"能源载体", 类似电能, 需通过其他能源制取。

2. 氢能产业链

○ 上游: 制氢 (电解水、天然气重整、生物质制氢等) 。

• 中游:储运 (高压气态、液态、固态储氢)、加氢站。

○ 下游: 应用 (燃料电池汽车、分布式发电、工业脱碳等)。

二、氢能发展背景与挑战

1. 能源转型需求

○ 全球趋势:油气时代→低碳时代 (第三次能源转型)。

○ 中国能源困局: 煤炭占比高 (2020年56.8%) ,清洁能源占比需提升。

。碳中和目标:中国承诺2060年碳中和,氢能是重要路径。

2. 国际氢能战略

中国:《氢能产业发展中长期规划(2021-2035年)》,2030年碳达峰。

○ 日本: 聚焦车用/家用燃料电池 (如丰田Mirai) 。

· **欧盟**: 重点发展储氢和交通应用。

○ 美国: 氢燃料电池技术领先, 2050年净零排放。

三、制氢技术对比

		效率 碳排放 (kg CO ₂ /kg			
制氢方法	原料	(%) H ₂)	H ₂)	优缺点	
电解水 (绿氢)	水+可再生能	水+可再生能 70-80 0	0	清洁但成本高, 依赖廉价	
也所不 (冰空)	源	70 00	o .	电力。	
天然气重整 (灰	天然气	65-75	10-12	成熟但高碳排放。	
氢)	人然了	05-75	10-12	/以 <u>然们</u> 上向1次行形以。	
煤气化 (灰氢)	煤炭	50-60	20-25	成本低但污染严重。	
生物质制氢	生物质	50-60	2-4	可持续但技术不成熟。	
热化学循环制氢	水+核能/太	40-50	0	高效但高温条件苛刻。	
	阳能	40-50	0	高XX担局温余件可划。	

四、储氢技术对比

储氢方式	技术特点	质量储氢 密度	体积储氢密 度	应用场景
高压气态 储氢	70MPa碳纤维瓶(IV型)	5.7 wt%	40 g/L	车载储氢(如 Mirai)。
液态储氢	-253℃低温液化	100%	70.8 kg/m³	航天、大规模运 输。
固态储氢	金属氢化物(如MgH ₂)、配位氢化物 (如NaAlH ₄)	7-18 wt%	50-150 kg/m³	便携设备、固定储能。
有机液体 诸氢	环己烷、氨 (NH₃) 等	5-7 wt%	50-60 kg/m³	长距离运输。

五、氢能应用

1. 交通领域

• 燃料电池汽车: 丰田Mirai (续航500km, 5分钟加氢)。

○ 商用车: 氢燃料电池公交、物流车 (中国目标2025年5万辆)。

2. 分布式能源

。 家庭用燃料电池: 日本ENE-FARM (总能效97%, 热电联供)。

○ 储能调峰: 风电/光伏制氢, 解决可再生能源波动问题。

3. 工业脱碳

∘ 炼钢: 氢替代焦炭还原铁矿石 (瑞典HYBRIT项目)。

· **化工**:绿氢替代灰氢生产氨、甲醇等。

六、中国氢能现状与目标

1. 现状

○ 全球最大制氢国 (3300万吨/年) , 但以灰氢为主 (煤制氢占比62%) 。

○ 加氢站: 2022年250座, 2025年目标1000座。

2. 中长期规划

。 2025年: 可再生能源制氢量10-20万吨/年, CO₂减排100-200万吨。

○ 2035年: 形成氢能产业体系, 绿氢占比显著提升。

第二章 电解水制氢

一、基本原理与电解定律

1. 电解水原理 (P2)

。 反应式: $H_2O \xrightarrow{\text{电解}} H_2(阴极) + \frac{1}{2}O_2(阳极)$

○ 特点: 能耗高 (4.5~5.5 kWh/m³) , 纯度>99.95%, 效率75~85%。

2. 法拉第电解定律 (P3-7)

 \circ 第一定律: 析出物质量与电量成正比 M=kIt。

○ 第二定律: 相同电量下, 析出物质量与其当量重量成正比。

 \circ 数学表达: $n=rac{Q}{zF}$ (F=96485 C/mol) 。

○ **应用**: 计算理论产量 (例: 铜电解, P10) 。

3. 电流效率 (P9)

。 公式:
$$\eta = \left(rac{m_{\overline{\Sigma}\overline{K}}}{m_{\overline{B}\overline{K}}}
ight) imes 100\%$$
。

二、电解电压与能耗

1. 理论电解电压 (P12)

。 基于吉布斯自由能: $E=\frac{\Delta G}{nF}=1.23\,\mathrm{V}$ (标准条件) 。

○ 理论电耗: 2.95 kWh/m³。

2. 实际电解电压 (P13)

 \circ 公式: $U = U_0 + IR + \Phi_H + \Phi_O$ (U实际=1.65~2.2 V) 。

○ 实际电耗: 4.5~5.5 kWh/m³。

3. 极化现象 (P14-15)

○ 浓差极化 (浓度差异) 与活化极化 (能量不足) 。

 \circ 氢超电位公式(P15): $arepsilon_H=arepsilon_H^{ heta}+rac{RT}{F}\lnrac{lpha_H^+}{\sqrt{P_{H_2}}}$ 。

三、电解槽类型与关键技术

1. 碱性电解槽 (ALK) (P22-30)

• 结构: 电解液 (20~30% KOH) 、石棉隔膜、镍基电极。

。 反应式:

■ 阴极: $2\mathrm{H}_2\mathrm{O} + 2e^- \rightarrow \mathrm{H}_2 + 2\mathrm{OH}^-$

■ 阳极: $2OH^- \rightarrow \frac{1}{2}O_2 + H_2O + 2e^-$

○ 优缺点 (P90) : 技术成熟、成本低, 但电流密度低、碱液易流失。

2. **PEM电解槽** (P51-76)

。 核心组件: 质子交换膜 (Nafion) 、铂/铱催化剂、钛扩散层。

○ 反应式:

■ 阳极: $\mathrm{H_2O} o \frac{1}{2}\mathrm{O_2} + 2\mathrm{H^+} + 2e^-$

■ 阴极: $2\text{H}^+ + 2e^- \rightarrow \text{H}_2$

○ 优缺点 (P54,90): 效率高 (85%)、响应快,但成本高 (贵金属)、酸性腐蚀。

3. AEM电解槽 (P77-82)

○ 特点: 阴离子交换膜 (OH-传导) 、非贵金属催化剂 (Ni/Fe合金) 。

○ 反应式:

■ 阴极: $4 {\rm H}_2 {\rm O} + 4 e^- \rightarrow 2 {\rm H}_2 + 4 {\rm OH}^-$

■ 阳极: $4\text{OH}^- \to \text{O}_2 + 2\text{H}_2\text{O} + 4e^-$

· 优势: 成本低、弱碱性环境, 但膜材料仍在研发。

4. 高温固体氧化物电解槽 (SOEC) (P83-89)

。 原理: 高温 (700~900℃) 下电解水蒸气, 氧离子传导。

○ 反应式:

■ 阴极: $2H_2O + 4e^- \rightarrow 2H_2 + 2O^{2-}$

■ 阳极: $2O^{2-} \rightarrow O_2 + 4e^-$

○ 优势: 效率 > 85%、可逆运行(与SOFC结合), 但寿命短(<1万小时)。

四、关键参数与优化措施

1. 电解液要求 (P35-37, 46-49)

。 碱性电解液: KOH纯度 > 95%, Cl⁻ < 800 mg/L。

○ 杂质影响: Cl⁻腐蚀阳极, Fe³5堵塞隔膜。

2. 电极材料 (P36-37)

○ 要求: 高比表面积、高催化活性、耐腐蚀 (如Raney Ni、IrO₂) 。

3. 降低电压措施 (P18-19)

○ 提高温度 (降低电阻) 、加压 (减少气泡) 、优化流道设计 (蛇形流道) 。

4. 系统组件 (P39-45)

○ 气液分离器(冷却、分离电解液)、压力调节器(平衡氢氧压力)。

五、对比表格 (P90)

碱性电解槽 (ALK)	PEM电解槽	SOEC电解槽
60~82%	74~87%	75~100%
0.2~0.4 A/cm ²	0.6~2.0 A/cm ²	0.3~2.0 A/cm ²
6~9万小时	2~6万小时	<1万小时
成本低、稳定	响应快、效率高	效率最高、可逆
碱液易流失	贵金属成本高	技术不成熟
	60~82% 0.2~0.4 A/cm² 6~9万小时 成本低、稳定	60~82%74~87%0.2~0.4 A/cm²0.6~2.0 A/cm²6~9万小时2~6万小时成本低、稳定响应快、效率高

第三章化石燃料制氢

一、全球制氢现状

1. 产量与来源

- 全球年产量:约5千万吨,年增长率6%~7%。
- 。96%的商用氢来自化石燃料 (煤、石油、天然气)。
- 中国80%的氢用于合成氨 (煤为主, 占62%~65%) 。

2. 制氢方法占比 (2011年数据)

- SMR (蒸汽甲烷重整): 49%
- 煤制氢: 29%
- 石油重整: 17%
- 。 电解水: 3.9%

二、主要制氢技术

1. 甲烷重整制氢

(1) 水蒸气重整 (SMR)

• 反应式:

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2 \quad (\Delta H = +206 \, kJ/mol)$$

$$CO + H_2O \rightleftharpoons CO_2 + H_2 \quad (\Delta H = -41 \text{ kJ/mol})$$

• 条件:

- 。温度: 700~1100°C, 压力: 20~30 bar
- 催化剂: 镍基
- 。 水碳比 (S/C) : 2.5:1~3:1
- 效率: 65%~75%
- 缺点: 高碳排放 (每产1吨H2排放6吨CO2) 。

(2) 自热重整 (ATR)

- 特点: 结合SMR (吸热) 与POX (放热) , 热量自平衡。
- 反应式:

$$ext{CH}_4 + 0.5 ext{O}_2
ightarrow ext{CO} + 2 ext{H}_2 \quad (\Delta H = -24.5\, ext{kJ/mol})$$

- 产物比例:
 - 使用CO2时, H2:CO = 1:1
 - 。 使用水蒸气时, H₂:CO = 2.5:1
- 适用场景: 大规模制氢, 需氧气供应。

(3) 部分氧化 (POX)

• 反应式:

$$CH_4 + 0.5O_2 \rightarrow CO + 2H_2$$
 (放热)

• 优点: 反应快、设备小; 缺点: H2产率低于SMR。

2. 煤气化制氢

(1) 气化炉类型对比

气化炉	特点	适用煤种	效率	优缺点
Texaco (水煤 浆)	湿法进料,耐火砖衬里	烟煤、石油焦	70%~7 6%	设备简单但氧耗高、需低灰煤
Shell (干燥 粉)	水冷壁结构,干法进料	褐煤、烟煤	80%~8 3%	高效但投资高、结构 复杂
GSP (干燥 粉)	激冷流程,适合合成氨	无烟煤、石 油焦	80%~8 3%	水冷壁寿命长,设备 成本低
鲁奇固定床	高压固态排渣,含CH4高 (10%~12%)	块煤	70%~7 5%	煤气净化复杂,污水 处理难

(2) 煤气化反应式

$$\mathrm{C} + \mathrm{H}_2\mathrm{O} \to \mathrm{CO} + \mathrm{H}_2$$
 (主反应)
$$\mathrm{C} + \mathrm{O}_2 \to \mathrm{CO}_2 \quad (燃烧反应)$$

3. 其他制氢技术

(1) 甲醇裂解制氢

• 反应式:

$$CH_3OH \rightarrow CO + 2H_2$$
 (后续水煤气变换)

• 应用: 小型分布式制氢, 燃料电池。

(2) 地下煤气化 (UCG)

• 原理: 直接在地下煤层中注入气化剂 (O₂/H₂O), 生成合成气。

• 优势:避免采矿,减少污染;挑战:地质条件限制。

(3) 基于CaO的化学链制氢

• 反应式:

 $CaO + CO_2 \rightarrow CaCO_3$ (吸收 CO_2)

• **优点**: 碳捕集集成,减少排放; 效率: 59.3% (系统净发电效率)。

三、关键对比与总结

1. 碳排放与碳捕集

SMR无碳捕集: 6吨CO₂/吨H₂;结合CCS后: 1.5吨CO₂/吨H₂。

2. 效率与成本

。 SMR: 成熟但高碳排放;

· 煤气化: 适用煤种广, 但设备复杂;

o ATR/POX:适合大规模,需氧气供应。

3. 工业应用

○ **中国**: Shell气化技术 (18个许可, 11个运行);

○ 合成氨: 主要依赖煤制氢 (鲁奇气化炉)。

水分解制氢

一、水电解制氢

1. 基本原理

○ 反应式:

 $2H_2O \rightarrow 2H_2 + O_2$ (需外加直流电)

○ **电解液**: 碱性溶液 (如NaOH、KOH) 。

○ 理论分解电压: 1.23 V (吉布斯自由能计算) 。

2. 关键设备与参数

○ 设备: 电解槽、气液分离器、气体洗涤器、电解液循环泵。

○ 操作条件: 温度70~80°C (常规) , 120~150°C (改进型) 。

○ 效率: 电能利用率约65%~80%。

3. 优缺点

优点: 技术成熟、氢气纯度高 (>99.9%)。

· 缺点:

■ 成本高 (电费占82%);

■ 依赖廉价可再生能源 (水电、风电、太阳能)。

4. 适用场景

。 可再生能源丰富地区, 结合电网峰谷电价优化成本。

二、高温热解水制氢

1. 原理

。 高温 (>3000°C) 直接分解水:

$$m H_2O
ightarrow H_2 + 0.5O_2 \quad (\Delta H = +237\,
m kJ/mol)$$

○ 产物分离: 需分离H₂、O₂、H、O、OH等组分。

2. 技术难点

· 热源: 需极高温度, 能源消耗大;

• 材料: 高温下反应器材料易损坏;

· 分离: 高温气体分离技术复杂。

3. 现状

。 尚未工业化, 仅实验室研究。

三、光催化分解水制氢

1. 基本原理

○ 光电效应: 半导体吸收光能,产生电子-空穴对,驱动水分解。

○ 反应式:

$$2H_2O \xrightarrow{$$
 先催化剂 $} 2H_2 + O_2$

2. 光催化剂要求

○ 能带: 禁带宽度≥1.23 eV (吸收可见光至紫外光);

○ 电荷分离: 高结晶度、低缺陷;

○ 表面活性: 负载助催化剂 (如Pt、NiO) 。

3. 研究进展

o 东京大学 (2020): SrTiO₃:Al催化剂, 量子效率96%;

○ **密歇根大学** (2023) : InGaN/GaN系统,太阳能转化效率 (STH) 9.2%。

4. 挑战

。 可见光利用率低 (仅43%太阳光谱);

。 催化剂寿命与成本问题。

四、热化学循环制氢

1. 原理

○ 多步化学反应利用热能分解水,避免高温直接分解。

○ 通用反应式:

H₂O + 循环试剂 → H₂ + 中间产物 (多步循环)

2. 主要体系

循环体系	步骤	效率	特点
硫碘循环 (SI)	3步	40%~50%	无毒性, 需高温硫酸分解
UT-3循环	4步	35%~40%	日本主导,反应温和
Zn/ZnO循环	2步	<1%	需2000°C高温,物料易挥发

3. 优缺点

· 优点: 能耗低、避免高温分离;

· 缺点: 步骤复杂、中间产物处理难。

热化学硫碘循环分解水制氢

1. 氢能背景及意义

• 问题: 化石能源使用导致CO₂排放,加剧气候变化。

• 氢能优势: 清洁无碳、高热值、可储存, 是新能源核心方向。

• 制氢技术对比:

制氢方法	优点	缺点
化石燃料重整/气化	技术成熟	排放CO ₂ ,不可再生
电解水	无污染、高纯度氢	能耗高 (效率20-30%)
高温热解水	原理简单	需2500-3000℃高温,不可行
热化学循环水分解	反应温和、热效率高、可规模化	步骤复杂, 需耐腐蚀材料

2. 热化学硫碘循环 (SI循环) 原理

• 三步反应:

1. Bunsen反应:

$$I_2+SO_2+2H_2O
ightarrow H_2SO_4+2HI$$

2. 硫酸分解:

$$H_2SO_4
ightarrow SO_2+H_2O+rac{1}{2}O_2$$

3. 碘化氢分解:

$$2HI
ightarrow I_2 + H_2$$

• 优点:

- 。最高温度仅800-900℃ (低于直接热解水) , 可匹配核能/太阳能热源。
- 热效率高 (闭路循环可达51%, 开路联产系统达66.79%)。

3. 核心反应研究重点

(1) Bunsen反应

• 关键参数: 温度 (353-358K) 、压力 (常压) 、H2O/SO2比例。

• 液相分层特性:

- HI相 (上层, 低密度) 与H2SO4相 (下层, 高密度) 自然分离。
- 超恒沸溶液条件: HI/(HI+H2O) > 0.156, 需精馏浓缩HI。

• 电化学优化:

- 阳极: SO₂氧化生成H₂SO₄; 阴极: I₂还原生成HI。
- ∘ 抑制副反应 (如H2S生成),提高电流密度可加速反应。

(2) 碘化氢 (HI) 分解

• 催化剂:

- 。 **贵金属**: Pt/CeO₂活性最佳 (500°C时转化率22.4%) , 但成本高。
- 廉价材料: 活性炭 (AC) 效果最优 (773K接近平衡分解率),来源广。

• 分解机理:

- 。 低温 (<700°C): HI + HI → H₂ + I₂ (主要路径)。
- 。 高温 (>700°C) : HI + H → H₂ + I (自由基路径) 。

(3) 硫酸分解

• 两步反应:

- 1. $H_2SO_4 \rightarrow SO_3 + H_2O$ (450-550°C)
- 2. SO₃ → SO₂ + ½O₂ (需催化剂, 600-900°C)

• 催化剂:

- 。 CeO2-CuO/SiC复合催化剂显著降低分解温度 (700℃接近平衡转化率)。
- 载体SiC-Al₂O₃抗高温氧化,活性位点多。

4. 硫磺制氢系统设计

- 开路循环: 联产氢气和硫酸, 热效率达66.79%。
- 闭路循环: 纯制氢系统, 热效率达75.17% (计入废热发电)。

关键设备:

- 本生反应器、液液分离装置、精馏塔、膜反应器、多级闪蒸器。
- 挑战: 材料耐腐蚀性、高温反应器设计、副反应控制。

5. 创新成果与未来展望

• 创新点:

- 。 提出Bunsen反应分层机理、电化学优化路径。
- 开发高效催化剂 (Ce基、活性炭) 并验证机理。
- 建成全球最大规模中试系统 (120m³/天) 。

未来方向:

。 规模化放大 (5000L/h工艺包) 、可再生能源耦合、储氢技术集成。

附: 关键公式与数据速查

- Arrhenius方程: $\ln(k) = -rac{E_a}{RT} + \ln(A)$
- 电化学Bunsen平衡电势: $E_0 = -9.195 \times 10^{-5} T \cdot \exp(\frac{81.5}{T})$
- 热效率计算: $\eta = rac{n \cdot \Delta H_{H_2}}{E_{
 m heat} + Q_{
 m elec} W_{
 m elec}'}$

储氢及氢燃料利用

一、储氢技术

1. 储氢形态与挑战

- **气态储氢**: 需高压容器 (35~70 MPa) , 体积密度低, 安全性要求高 (如钢制/纤维缠绕瓶) 。
- 。 **液态储氢**: -253℃低温液化,体积密度高 (70.8 kg/m³) ,但液化能耗高、蒸发损失大 (航天领域成熟,民用受限)。
- **固态储氢**: 通过金属氢化物吸附,体积密度高(40~50 kg/m³),但重量密度低(需5.5wt%以上),吸放氢需特定温度(如LaNi₅、TiFe合金)。

2. 技术对比与目标

- 高压气态储氢:最成熟(中国重点发展),储氢密度40g/L(700 bar),应用广泛(汽车、加氢站)。
- 。 美国能源部目标: 质量密度5.5wt%, 体积密度40g/L, 工作温度-40~60℃。
- 。 **储氢材料问题**: 金属氢化物质量储氢率不足 (需突破6.5wt%以上) ,需高容量材料 (如MgH $_2$ 、络合氢化物) 。

3. 关键案例

- 。 浙江大学技术: 郑津洋团队研发98MPa全多层高压储氢容器, 国际领先。
- **移动储氢设备**: 长管拖车 (20~30MPa) 、车用70MPa储氢罐 (丰田Mirai) 。

二、氢燃料电池

1. 工作原理

- 。 化学反应: 2H₂ + O₂ → 2H₂O + 电能 + 热能,效率80~90%。
- 核心组件: 质子交换膜 (Nafion膜)、催化层 (Pt/C)、气体扩散层 (碳纸/布)、双极板 (石墨/合金)。

2. 分类与特点

类型	优点	缺点	应用领域
PEMFC	启动快 (分钟) 、功率密度高	依赖贵金属催化剂 (Pt)	汽车、移动电源
SOFC	燃料灵活 (H₂、CO)	启动慢 (≥10h) 、高温 (750°C)	大型发电厂
AFC	效率高 (50~60%)	需纯氧、易被CO₂毒化	航天领域

3. 技术难点

- · 关键材料: 质子膜降解、催化剂成本高、双极板耐腐蚀性。
- 。 系统集成: 热管理、水气循环、快速启动 (如丰田Mirai系统) 。

三、氢能应用

1. 交通领域

- 燃料电池汽车: 补能快 (3~5分钟) , 续航650~800 km (丰田Mirai、现代NEXO) 。
- **中国示范项目**: 北京奥运会 (20辆)、上海世博会 (200辆)、加州示范运行。

2. 工业与电力

- 氢冶金: 替代焦炭,降低碳排放 (富氢高炉、直接还原铁)。
- 绿氢化工: 合成氨、甲醇 (替代灰氢)。
- 。 **零碳燃料**: 氨 (NH₃) 掺烧, 能源转换效率85%, NOx排放可控 (100ppm以下)。

3. 建筑与社区

- 热电联供: 日本家用燃料电池 (数十万套)。
- · 天然气掺氢: 掺3%以下, 无缝切换终端设备。

四、国际发展对比

1. 加氢站建设

· 全球现状: 2023年1362座, 2024年预计1724座。

○ 各国规划:

- 日本: 2030年320座, 补贴1/3成本。
- 欧盟: 德国1000座, 法国600座。
- 中国: 各省规划 (如河北2030年100座, 上海2023年100座) 。

2. 技术差距

。 中国燃料电池汽车: 续驶里程 (400 km vs 国际800 km) 、冷启动温度 (0℃ vs -30℃) 。

五、关键图表速查

1. 储氢技术性能对比

- o 液态H₂: 71g/L (20K); 高压气态: 40g/L (700 bar); 金属氢化物: 100-150g/L。
- 2. 燃料电池参数
 - PEMFC: 功率密度1~2 W/cm², 效率50~60%; SOFC: 效率50~60%, 需高温。

3. 氨燃料特性

○ 液氨体积热值11.48 MJ/L,爆炸极限16~25%,易储运 (常温10 bar液化)。

生物质制氢

一、生物质制氢技术概述

1. **定义**:利用生物质(农业废弃物、林业残余物、城市有机垃圾等)通过热化学或生物法转化为氢气的技术。

2. 核心优势:

o **可再生性**:生物质源自太阳能,可持续利用。

。 碳中性: 生物质生长吸收CO₂, 制氢过程释放的CO₂可被循环吸收。

。 **资源多元化**:减少对电力或化石能源的依赖,适合生物质丰富地区。

二、生物质制氢技术分类

1. 热化学法

方法	过程	特点
热解及催化重 整制氢	分两阶段: 热解 (无氧条件下生成固/液/气产物) → 催化重整 (分离纯氢)	- 高温 (500-750°C) 提升产氢量 - 催化剂 (如Ni基) 提高效率, 但易失活
气化制氢	高温 (700-1200℃) 气化生物质生成合成气 (H ₂ 、CO、CH₄等) → 分离纯氢	- 气化剂 (蒸汽最优) 显著影响 产氢效率 - 流化床气化炉适合工业化应用
超临界水气化制氢	在超临界水(374℃, 22.1MPa)中气化,水既是溶剂又是反应物	- 无需干燥预处理 - 设备要求高,适合处理高含水 量原料 (如废水)

2. 生物法

方法	原理	优缺点	
直接光解法	藻类光合作用分解水→氢化酶催化产氢	- 无污染,但效率低且需光照	
暗发酵	厌氧菌分解有机物产氢 (如葡萄糖→H2+CO2+有机酸)	- 产氢速率快,无需光照 - 副产物(有机酸)需处理	
光发酵	光合细菌利用有机物和光产氢(如乳酸→H₂+CO₂)	- 可处理暗发酵副产物 - 效率低,系统复杂	
光暗耦合发 酵	联合暗发酵 (产有机酸) 和光发酵 (转化有机酸为H ₂)	- 理论产氢量高达12 mol/葡萄糖 - 需优化菌群协同和反应器设计	

三、关键影响因素

1. 热化学法:

○ 温度: 高温促进产氢, 但需平衡能耗 (如气化温度700-1200℃) 。

。 催化剂: Ni基催化剂成本低但易失活; 贵金属 (Pt、Ru) 高效但昂贵。

○ 气化剂:蒸汽制氢效率高,但焦油多;氧气效率高但成本高。

2. 生物法:

○ pH值: 最佳pH 5.2-6.0 (暗发酵)。

。 温度: 35-45℃适合暗发酵, 30-35℃适合光发酵。

。 氢气分压: 需及时排出H2以避免抑制反应。

。 微生物种类: 丁酸梭菌产氢量高 (2.81 mol/葡萄糖)。

四、典型案例

1. 微藻暗-光耦合发酵:

- 理论产氢量从322.3 mL/g提高至1435.2 mL/g。
- 。 通过水热降解藻类释放还原糖,联产氢气和甲烷。

2. 杭州市餐厨垃圾工程:

。 日处理200吨垃圾,产沼气10000 m³/天,联产车用生物天然气。

3. 生物氢烷气 (HCNG):

。 掺氢19%的氢烷气热效率38%,比天然气高3%,污染物排放降低20-50%。

五、未来展望

1. 热化学法: 开发高效低成本催化剂 (如抗积碳Ni基催化剂) , 优化气化剂比例 (S/B、S/C) 。

2. 生物法: 筛选高产菌株, 优化反应器设计 (如内置光源反应器), 提升光能利用率。

3. 系统集成:结合电解水制氢技术,构建多联产系统(如生物质发电+制氢+碳封存)。

六、常见考题思路

1. 简述生物质制氢的特点:

○ 可再生性、碳中性、原料广泛、废弃物资源化、技术互补性。

2. 对比气化制氢与热解重整制氢:

。 气化: 高温 (700-1200℃), 合成气成分复杂, 需分离; 适合大规模应用。

○ 热解: 分阶段 (热解+重整) ,产物可控,催化剂依赖性强。

3. 生物法制氢途径及优缺点:

○ 直接光解 (无污染但效率低) 、暗发酵 (快但副产物多) 、光暗耦合 (高效但复杂) 。

聚光全光谱太阳能有序转化

一、研究背景及科学意义

1. 太阳能利用方式

- 非热效应: 光子激发半导体产生载流子 (电子-空穴对) 直接利用, 如光伏、光催化。
- 热效应: 光子能量通过声子转化为热能 (晶格振动) , 如光热发电。
- 全光谱单一效应转化难点:
 - 非热效应需多级能带匹配, 技术复杂;
 - 热效应高频率光子㶲损大 (高频光子→多个低能声子)。

2. 分光谱能量梯级利用

- 聚光提升载流子质量与数量,增强非热效应;同时提高热效应温度。
- 分光器件分离不同波段:
 - 高频段 (非热效应) → 光伏/光催化;
 - 低频段 (热效应) → 光热转化。

二、聚光全光谱有序转化构想

- 目标:太阳能→化学能(如氢能)和热能的高效协同转化。
- 创新思路:
 - 。 高频段驱动化学反应 (如光催化制氢);
 - 低频段提供高品质热能 (如蒸汽发电)。
- 温度区分应用场景:
 - 。 <300℃: 光热协同制氢耦合界面蒸发;
 - 。 300-500℃: 合成碳氢燃料;
 - >500°C: 高温固体氧化物光电解制氢 (SOEC)。

三、应用场景及关键技术

- 1 场景1: 光热协同制氢耦合界面蒸发
 - 材料: 粉煤灰漂珠 (低密度、亲水性强、低导热系数)。
 - · 结构: 多层设计 (催化层、集热层、导水层)。
 - 性能:
 - 产氢速率: 32.12 L/h·m²;
 - 水蒸发速率: 8 kg/h·m²;
 - 光氢效率≥98%。
 - 优势: 联产绿氢与废水净化/海水淡化。
- 2. 场景2: 槽式聚光光热协同系统
 - 技术路线:
 - 高频段驱动光化学反应(如合成燃料);
 - 低频段集热发电 (槽式光热)。
 - 。 效率提升: 化学能效率10%时, 系统㶲效率提高4.98%。
- 3. 场景3: 高温固体氧化物光电解制氢 (SOEC)
 - 原理: 光+热+电协同,减少电能投入,提升太阳能→化学能效率。
 - 。 实验数据:
 - 光诱导氢产率提高11.7% (800°C);
 - 稳定性优于传统SOEC (50小时无退化)。

四、光热协同催化材料设计

- 1. 材料改性方法
 - 过渡金属掺杂 (Cu/Fe/Ni/Co/Zn):
 - Cu掺杂氧空位形成能力最强,但需负载Ni激活;
 - 双金属掺杂 (如Ni-Cu) 优化能带结构,降低反应能垒。
 - 。 LSPR效应金属负载 (如Pd纳米颗粒):
 - 增强光吸收,减少载流子复合。
- 2. 化学反应路径优化
 - CO₂还原:碱性位点 (MgO) 提高CO₂吸附选择性;贵金属 (Au) LSPR热电子促进还原。
 - H₂O分解: Ga₂O₃掺杂抑制OH基氧化,维持氧空位活性。

五、热效应对反应路径的影响

1. 光吸收与载流子行为

- 热效应使吸收边红移, 提升光吸收;
- 。 减小载流子迁移电阻, 延长寿命。

2. 反应动力学

- 温度升高:
 - 降低水分解能垒 (产率提高1.8倍);
 - 液固界面产率 > 气固界面 (最高达10倍)。

。CO₂还原选择性:

- Ga₂O₃掺杂→CO选择性提高;
- La₂O₃掺杂→CH₄/CH₃OH选择性提高。