Задача 11-5

Хорошо известная реакция

Более 100 лет назад был предложен механизм реакции синтеза хлороводорода из простых веществ — первой достоверно подтвержденной цепной реакции. Несмотря на простое суммарное уравнение, механизм реакции очень сложен, включает большое число стадий и зависит от условий проведения. Реакция может происходить при нагревании в темноте, при освещении без нагревания или в присутствии паров натрия в темноте.

- 1. Стеклянный сосуд объёмом 50 см³ поместили в термостат при 273 К. В сосуд ввели водород и хлор, их давления составили 2200 Па и 2800 Па, соответственно. Смесь облучили синим светом, в результате выделилось 8.9 Дж теплоты. Составьте термохимическое уравнение реакции. Приведите расчёт.
- **2.** Объясните, почему реакция идет в темноте при добавлении паров натрия. Подтвердите уравнением. Предположите, будет ли она идти в темноте и без нагревания, но при добавлении паров ртути вместо натрия? Аргументируйте.
- **3.** В фотохимической реакции водорода с хлором на короткое время увеличивается давление. Предложите объяснение этому экспериментальному факту.
- **4.** Скорость фотохимической реакции $H_2 + Cl_2 = 2HCl$ очень чувствительна к наличию примесей, например кислорода. Для установления механизма и определения порядка реакции был проведен ряд экспериментов, результаты которых приведены в таблице.

№	Интенсивность		[Cl ₂],	$[O_2],$	Скорость реакции r ,
	света I , отн. ед.	ммоль/л	ммоль/л	мкмоль/л	отн.ед.
1	0.33	1.2	1.8	30	3.42
2	1.0	1.8	1.8	30	15.4
3	1.0	2.7	1.8	45	15.4
4	1.5	1.8	2.7	60	11.6

Определите кинетические порядки реакции по веществам и по интенсивности света — значения x, y, z и a в выражении

$$r = k_{\text{on}} I^{a} [H_{2}]^{x} [Cl_{2}]^{y} [O_{2}]^{z}$$
.

Примите, что все порядки – целые. Ответы обязательно подтвердите расчетом.

- **5.** а) Предложите механизм цепной фотохимической реакции синтеза хлороводорода в присутствии кислорода, включающий **ровно** 4 стадии и полностью объясняющий найденное кинетическое уравнение.
- б) Выведите из этого механизма выражение для скорости образования хлороводорода. При выводе учтите, что:
 - скорость фотохимической стадии зарождения цепи равна интенсивности поглощенного света, r = I;
 - для каждого активного интермедиата суммарная скорость его образования равна суммарной скорости расходования.
- в) Выразите опытную константу скорости через константы скорости отдельных стадий.
- **6.** Для фотохимической реакции в диапазоне от 20°C до 100 °C средний температурный коэффициент скорости Вант-Гоффа равен 1.12. Рассчитайте опытную энергию активации $E_{\rm on}$. Выведите выражение, связывающее $E_{\rm on}$ с энергиями активации отдельных стадий.

Решение задачи 11-5 (автор: Ерёмин В. В.)

1. $H_2 + Cl_2 \rightarrow 2HCl$

 H_2 – в недостатке.

$$n(H_2) = 50 \cdot 10^{-6} \cdot 2200 / (8.314 \cdot 273) = 4.85 \cdot 10^{-5}$$
 моль

$$Q = 8.9 \cdot 10^{-3} / 4.85 \cdot 10^{-5} = 184 \text{ кДж/моль}$$

$$H_2 + Cl_2 \rightarrow 2HCl + 184 кДж/моль$$

или
$$1/2H_2 + 1/2Cl_2 \rightarrow HCl + 92 кДж/моль$$

- **2.** Натрий инициирует зарождение цепи: Na + $Cl_2 \rightarrow NaCl + Cl$. Ртуть с хлором вступает в реакцию соединения, а не замещения, поэтому инициировать реакцию в темноте не будет. Более того, реакция ртути с хлором в газовой фазе при обычных условиях медленная.
- Реакция идет очень быстро, с локальным разогревом. За счет роста температуры и повышается давление. Затем давление приходит в норму в условиях термостатирования.

4.
$$\frac{r_2}{r_1} = 3^a \cdot 1.5^x = \frac{15.4}{3.42} = 4.5 \qquad a = x = 1$$

$$\frac{r_3}{r_2} = 1.5^x \cdot 1.5^z = 1 \qquad z = -x = -1$$

$$\frac{r_4}{r_5} = 1.5^a \cdot \left(\frac{1}{1.5}\right)^x \cdot 1.5^y \cdot \left(\frac{60}{45}\right)^z = \frac{11.6}{15.4} = 0.75$$
 $y = 0$

Итоговое кинетическое уравнение: $r = k_{on} \frac{I[\mathrm{H_2}]}{[\mathrm{O_2}]}$. Порядок по хлору нулевой, потому что хлор принимает участие в фотохимической стадии, скорость которой от концентрации не зависит.

5. а) Первые три стадии очевидны – зарождение цепи и развитие цепи:

$$Cl_2 \xrightarrow{hv} 2Cl$$
 $r_1 = I$
 $Cl + H_2 \xrightarrow{k_2} HCl + H$ $r_2 = k_2[Cl][H_2]$
 $H + Cl_2 \xrightarrow{k_3} HCl + Cl$ $r_3 = k_3[H][Cl_2]$

Реакция обрыва должна включать кислород. Реакция $H + O_2 \rightarrow HO_2$ возможна, но не дает правильного кинетического уравнения. Правильный обрыв –

C1 + O₂
$$\xrightarrow{k_4}$$
 ClO₂ $r_4 = k_4$ [C1] [O₂]
6) $r_H = r_2 - r_3 = 0$ $r_2 = r_3$
 $r_{C1} = 2r_1 - r_2 + r_3 - r_4 = 0$ $2r_1 = r_4$ $2I = k_4$ [C1] [O₂]
[C1] = $\frac{2I}{k_4$ [O₂]
 $r_{HC1} = r_2 + r_3 = 2r_2 = 2k_2$ [C1] [H₂] = $\frac{4k_2I[H_2]}{I_1 I_2}$

$$r_{\text{HCl}} = r_2 + r_3 = 2r_2 = 2k_2[\text{Cl}][\text{H}_2] = \frac{4k_2I[\text{H}_2]}{k_4[\text{O}_2]}$$

$$\mathbf{B)} \qquad \mathbf{k}_{\text{on}} = \frac{4k_2}{k_4}$$

$$\frac{k_{373}}{k_{293}} = 1.12^8 = 2.48$$

$$E_{\text{on}} = \frac{8.314 \cdot 293 \cdot 373}{373 - 293} \ln(2.48) = 10300$$
 Дж/моль

$$k_{\text{on}} = \frac{4k_2}{k_4}$$
 $E_{\text{on}} = E_2 - E_4$

Система оценивания

1.	Расчет молей H ₂ – 1 балл		
	Любое правильное термохимическое уравнение – 1 балл		
	Принимаются размерности кДж и кДж/моль.		
	Больше не оценивается ничего.		
	Расчет по хлору – 0 баллов.		
	Ответ без расчета – 0 баллов.		
	Тепловой эффект без размерности – 0 баллов.		
	Если теплота не соответствует уравнению – 0 баллов.		
2.	Пары натрия с уравнением – 1 балл	2 балла	
	(без уравнения, если правильная идея – 0,5 балла)		
	Пары ртути – 1 балл за любое разумное объяснение		
	(ответ без объяснения – 0 баллов)		
3.	1 балл за любое разумное объяснение.	1 балла	
	0 баллов – за глупости или необоснованные фантазии.	1 Ualila	
4.	По 1.5 балла за каждое значение при наличии расчета.	6 баллов	
	Ответ без расчета – 0 баллов.		

5.	а) По 0.5 балла за каждую стадию.	а) 2 балла
	$(0.25 \text{ балла за стадию H + O}_2 \rightarrow \text{HO}_2 \text{ вместо Cl + O}_2 \rightarrow \text{ClO}_2)$	
	реакция $Cl + O_2 \rightarrow ClO + O - 0$ баллов	
	штраф минус 0.5 балла за каждую лишнюю стадию сверх 4-	
	х.	б) 3 балла
	б) Вывод формулы – 3 балла.	
	0.5 балла – уравнение стационарности для [Н]	
	1 балл – уравнение стационарности для [Cl]	
	1 балл – выражение для общее скорости реакции по HCl	
	(r_2+r_3)	
	0.5 балла – финальное выражение	в) 1 балл
	Если потерян коэффициент 2 – минус 0.5 балла.	Всего – 6
	Формула без вывода – 0 баллов.	баллов
	в) 1 балл, если $k_{\text{оп}}$ соответствует выводу в п. б).	
	Если в п. б) дано кинетическое уравнение без вывода, 0	
	баллов.	
6.	Отношение констант скорости при двух температурах – 1	
	балл	
	(расчетная ошибка -0 баллов).	
	Значение $E_{\text{on}}-1$ балл	3 балла
	(любой неверный расчет – 0 баллов)	
	Связь между $E_{\text{оп}}$ и энергиями активации отдельных стадий —	
	1 балл	
	ИТОГО:	20 баллов