This is a rephrasing of [3].

1.1 Motivation

Given an ∞ -category \mathcal{C} , we would like to create an ∞ -category whose objects are spans in \mathcal{C} . That is, we would like to create a category whose objects are the objects of \mathcal{C} , whose morphisms are spans in \mathcal{C} , and whose higher simplices parametrize compositions of spans.

Our first job is to formulate this in rigorous, combinatorial language.

Definition 1. Define a functor $T: \mathbb{A} \to \mathbb{A}$ sending

$$[n] \mapsto [n] \oplus [n]^{\operatorname{op}} = \{0, \dots, n, \bar{n}, \dots, \bar{0}\}.$$

We can pull any simplicial set $K \colon \Delta^{op} \to \mathbf{Set}$ back by T, giving a simplicial set T^*K with n-simplices

$$(T^*K)_n = K([n] \oplus [n]^{\operatorname{op}}).$$

Example 2. With $K = \Delta^1$, we have

$$(T^*\Delta^1)_0 = \{\phi \colon \{0,\bar{0}\} \mapsto \{0,1\} \mid \phi \text{ weakly monotone}\} = \{00,01,11\}$$

and

$$(T^*\Delta^1)_1 = \{0000, 0001, 0011, 0111, 1111\}.$$

The map d_0 acts by pulling back by $T\partial_0$, which is given by the diagram

That is, the source of an edge abcd is ad, and the target is bc. We can draw $T^*\Delta^1$ as follows.

$$00 \stackrel{0001}{\longleftarrow} 01 \stackrel{0111}{\longrightarrow} 11$$

Similarly, we can draw $T^*\Delta^2$ as follows.

We would like the span $00 \leftarrow 02 \rightarrow 22$ to correspond to the composition of the spans $00 \leftarrow 01 \rightarrow 11$ and $11 \leftarrow 12 \rightarrow 22$, but it is not immediately clear how to impose this condition in a general way. We turn instead to a different model.

Definition 3. Denote by Σ^n the poset with objects (i, j), with $0 \le i \le j \le n$, with

$$(i,j) \le (i',j') \iff i \le i \text{ and } j' \le j.$$

Since any map of totally ordered sets ϕ : $[m] \rightarrow [n]$ induces a functor

$$\Sigma^m \to \Sigma^n, (i,j) \mapsto (\phi(i), \phi(j)),$$

the categories \mathbb{Z}^n form a simplicial object $\mathbb{Z}^{\bullet} : \mathbb{A} \to \mathbf{Cat}$.

Similarly, let \mathbb{A}^n be the full subcategory of \mathbb{Z}^n on objects of the form

$$(i,j): j-i \le 1.$$

There is an obvious inclusion $i : \mathbb{A}^{\bullet} \hookrightarrow \mathbb{Z}^{\bullet}$.

Example 4. We can draw \mathbb{Z}^2 as follows. The subcategory $\mathbb{A}^2 \hookrightarrow \mathbb{Z}^2$ is in blue.

As simplicial sets, $N(\mathbb{Z}^n) \cong T^*\Delta^n$. The k-simplices of \mathbb{Z}^n are maps $[k] \mapsto \mathbb{Z}^n$, i.e. strings $(i_0, j_0) \leq \cdots \leq (i_k, j_k)$. This is a collection of integers such that

$$0 \le i_k \le \cdots \le i_0 \le j_0 \le \cdots \le j_k \le n$$
.

Providing such a string is equivalent to providing a map $[k]^{op} \oplus [k] \rightarrow [n]$.

Definition 5 (Cartesian). Let \mathcal{C} be an ∞ -category with finite limits. A functor $f: \mathbb{Z}^n \to \mathcal{C}$ is *Cartesian* if it is a right Kan extension of its restriction to \mathbb{A}^n .

For any ∞ -category \mathcal{C} , we might try to procede by defining a simplicial set

$$\operatorname{Hom}^{\operatorname{Cart}}(\mathbb{Z}^{\bullet}, \mathcal{C}) \colon \mathbb{\Delta}^{\operatorname{op}} \to \operatorname{Set},$$

whose n-simplices are Cartesian diagrams $\mathbb{Z}^n \to \mathbb{C}$. However, it is not at all clear how to show that this is an infinity category. It turns out to be profitable to change models; we will be able to show that the functor

$$Fun^{Cart}(\mathbb{Z}^{\bullet},\mathcal{C})^{\simeq}; \qquad \mathbb{A}^{op} \to \mathcal{S}$$

is a complete Segal space.

For any ∞ -category \mathcal{C} , we define a simplicial object

$$\operatorname{Fun}(\mathbb{Z}^{\bullet},\operatorname{Cat}_{\infty})\colon \mathbb{A}^{\operatorname{op}}\to\operatorname{Cat}_{\infty}.\tag{1.1}$$

Applying the relative nerve to Equation 1.1 gives a coCartesian fibration

$$\pi: \overline{SPAN}^+ \to \mathbb{A}^{op}$$
.

The ∞ -category \overline{SPAN}^+ has

- 0-simplices given by functors $\alpha \colon \mathbb{Z}^m \to \mathbb{C}$.
- 1-simplices given by pairs (ϕ, η) , where $\phi: [n] \to [m]$ and η is a 1-simplex

$$\phi^* \alpha \xrightarrow{\eta} \beta$$

in Fun(\mathbb{Z}^n , \mathcal{C}).

• ...

Definition 6. We define $SPAN^+$ to be the full subcategory of \overline{SPAN}^+ on Cartesian functors.

Lemma 7. Let $\alpha \colon \mathbb{Z}^m \to \mathcal{C}$ be a Cartesian functor. Then for any $\phi \colon [n] \to [m]$, the functor $\phi^* \alpha$ given by the composition

$$\mathbb{Z}^n \xrightarrow{\phi} \mathbb{Z}^m \xrightarrow{\alpha} \mathcal{C}$$

is Cartesian.

Corollary 8. The restriction

$$\pi' : SPAN^+ \rightarrow \mathbb{A}^{op}$$

is a coCartesian fibration.

Proof. We need to show that we can have a sufficient supply of π' -coCartesian morphisms. A morphism f in $\overline{\text{SPAN}}^+$ is π -coCartesian if and only if every horn Λ^n_i with $\Delta^{\{0,1\}}=f$ has a filler. Because $\overline{\text{SPAN}}^+\hookrightarrow \overline{\text{SPAN}}^+$ is a full subcategory inclusion, any

Definition 9 (category of spans). Let \mathcal{C} be an ∞ -category with finite limits. We define a category

by

1.2 Monoidal structures

1.2.1 1-categories of spans

Let \mathcal{C}^{\otimes} be a symmetric monoidal infinity category, which we model by a commutative monoid in Cat_{∞} , i.e. a functor

$$\mathcal{C}^{\otimes} : N(\mathfrak{F}in_*) \to \mathbf{Cat}_{\infty}$$

such that

$$\mathbb{C}_{\langle n \rangle}^{\otimes} \xrightarrow{\prod_{i} \rho_{i}} (\mathbb{C}_{\langle 1 \rangle}^{\otimes})^{n}$$

is an equivalence for all n. Further suppose that

- 1. Each ∞ -category $\mathcal{C}^{\otimes}_{\langle n \rangle}$ admits finite limits; and
- 2. For each morphism $\rho \colon \langle m \rangle \to \langle n \rangle$ in \mathcal{F} in**, the functor $\rho_* \colon \mathcal{C}_{\langle m \rangle}^{\otimes} \to \mathcal{C}_{\langle n \rangle}^{\otimes}$ preserves finite limits.

Definition 10. We will call such a symmetric monoidal ∞-category *pullback-compatible*.

Note 11. By presenting a symmetric monoidal ∞ -category as a Cartesian fibration admitting relative finite limits, these conditions are satisfied automatically by [4, Prop. 4.3.1.10]. For example, for any ∞ -category \mathcal{C} with finite limits, the construction \mathcal{C}_{\times} in [2] yields such a Cartesian fibration.

Definition 12. Define a functor $F \colon \mathbb{A}^{op} \times \mathcal{F}in_* \to \mathbf{Kan}$ (where we are viewing $\mathbb{A}^{op} \times \mathcal{F}in_*$ as a discrete simplicially enriched category) by

$$F([m], \langle n \rangle) = \operatorname{Span}(\mathcal{C}_{\langle n \rangle}^{\otimes})_m = \operatorname{Fun}^{\operatorname{Cart}}(\mathbb{Z}^m, \mathcal{C}_{\langle n \rangle}^{\otimes})^{\simeq}.$$

Taking the homotopy coherent nerve gives a functor $N(\mathbb{A}^{op} \times \mathcal{F}in_*) \to \mathcal{S}$. This is the adjunct to a functor

$$G \colon N(\mathfrak{F}in_*) \to \operatorname{Fun}(N(\mathbb{A}^{\operatorname{op}}), \mathbb{S}); \qquad \langle n \rangle \mapsto \operatorname{Span}(\mathcal{C}_{\langle n \rangle}^{\otimes}).$$

One might worry that this construction is not well-defined. At the moment, it's seeming like one is smarter than the author.

Lemma 13. The functor *F* is well-defined.

Proof. The functor F is well-defined in the first slot by [3, Prop. 5.9], and well-defined in the second because if $f: \mathbb{Z}^n \to \mathcal{C}^{\otimes}_{\langle m \rangle}$ is Cartesian then so is $\rho_* \circ f$. To see this, we need to show that

$$(\rho_* \circ f)(i,j) \simeq \lim \left[\mathbb{A}^m_{/(i,j)} \to \mathbb{A}^m \xrightarrow{f} \mathbb{C}^\otimes_{\langle m \rangle} \xrightarrow{\rho_*} \mathbb{C}^\otimes_{\langle n \rangle} \right].$$

But ρ_* preserves limits, so this is equivalently

$$\lim \left[\mathbb{A}^m_{/(i,j)} \to \mathbb{A}^m \xrightarrow{f} \mathbb{C}^\otimes_{\langle m \rangle} \right] \xrightarrow{\rho_*} \mathbb{C}^\otimes_{\langle n \rangle}$$

which is the same as $(\rho_* \circ f)(i, j)$ because f is Cartesian.

Proposition 14. The functor G takes its values in CSS, the ∞ -category of complete Segal spaces.

Note 15. I'm not sure what the best way of writing this next proposition is. It sort of feels like I'm missing the point here.

Proposition 16. The functor G is a commutative monoid in complete Segal spaces, i.e. for each $n \ge 0$, the maps ρ_i give an equivalence

$$G(\langle n \rangle) \simeq G(\langle 1 \rangle)^n$$
.

Proof. Limits in functor categories are computed pointwise. Therefore, it suffices to check this claim for fixed [m]. We have equivalences

$$G(\langle n \rangle)_{m} \simeq \operatorname{Fun}^{\operatorname{Cart}}(\mathbb{Z}^{m}, \mathcal{C}_{\langle n \rangle}^{\otimes})^{\simeq}$$

$$\simeq \operatorname{Fun}^{\operatorname{Cart}}(\mathbb{Z}^{m}, (\mathcal{C}_{\langle 1 \rangle}^{\otimes})^{n})^{\simeq}$$

$$\simeq \left(\operatorname{Fun}^{\operatorname{Cart}}(\mathbb{Z}^{m}, \mathcal{C}_{\langle 1 \rangle}^{\otimes})^{n}\right)^{\simeq}$$

$$\simeq \left(\operatorname{Fun}^{\operatorname{Cart}}(\mathbb{Z}^{m}, \mathcal{C}_{\langle 1 \rangle}^{\otimes})^{\simeq}\right)^{n}$$

$$\simeq G(\langle 1 \rangle)_{m}^{n}$$

The second equivalence holds because \mathbb{C}^{\otimes} is a monoid, the third holds because the hom functor commutes with limits, and the fourth holds because $(-)^{\approx}$ is a right adjoint and hence preserves limits.

I suspect that it will be more useful to cast everything in fibration-y language than commutative monoid in CSS language. However, we stop at this point to remark that our construction almost reproduces Toby's construction.

Using the equivalence $CSS \to Cat_{\infty}$ coming from forgetting higher simplices, we get a functor

$$\mathfrak{F}\mathrm{in}_* \to \mathrm{CSS} \to \mathrm{Cat}_\infty; \qquad \langle n \rangle \mapsto \mathrm{Hom}^{\mathrm{Cart}}(\mathbb{\Sigma}^\bullet, C^\otimes_{\langle n \rangle}),$$

where $\mathrm{Hom}^{\mathrm{Cart}}$ denotes the set of Cartesian functors. Using the relative nerve we can unstraighten this to a Cartesian fibration

$$\chi \to \mathfrak{F}in_*^{op}$$
.

The k-simplices of this are pairs of an n-simplex in $N(\mathfrak{Fin}^{op}_*)$ and an n-simplex F in $\operatorname{Span}(\mathcal{C}^{\otimes}_{\langle n_1 \rangle})$

$$\left(\langle n_0 \rangle \stackrel{\phi_1}{\leftarrow} \langle n_1 \rangle \stackrel{\phi_2}{\leftarrow} \cdots \stackrel{\phi_k}{\leftarrow} \langle n_k \rangle, \quad F \colon \mathbb{Z}^n \to \mathcal{C}^{\otimes}_{\langle n_0 \rangle}\right),$$

where F is a Cartesian functor of the form

and α_i , β_i , etc. are in $\mathbb{C}^{\otimes}_{\langle n_i \rangle}$. This is tantalizingly close to Toby's construction, the difference being that in my construction the tensor products are taken before we take spans.

1.2.2 Higher categories of spans

Let $\mathcal{C}^{\otimes} \colon \mathcal{F}in_* \to Cat_{\infty}$ be a pullback-compatible symmetric monoidal ∞ -category. We can again define a functor

$$(\mathbb{A}^{\mathrm{op}})^k \times \mathrm{Fin}_* \to \mathcal{S}; \qquad ([m_1], \dots, [m_k], \langle n \rangle) \mapsto \mathrm{Fun}^{\mathrm{Cart}}(\mathbb{Z}^{m_1, \dots, m_k}, \mathcal{C}_{\langle n \rangle}^{\otimes})$$

This is well-defined in the first slot by the reasoning in [3, Cor. 5.12], and in the second by exactly the same reasoning as above.

1.3 Push/pull and the Grothendieck construction

Let X be a space. The category of presheaves over X is the ∞ -category $\operatorname{Fun}(X^{\operatorname{op}}, \mathbb{S})$. However, by the Grothendieck construction, the ∞ -category of functors $X^{\operatorname{op}} \to \mathbb{S}$ is equivalent to the ∞ -category of spaces over X. We therefore make the following definition.

Definition 17 (category of presheaves). Let X be a space. The *category of presheaves* on X is the category $\mathcal{P}(X)$, given by the pullback

$$\begin{array}{ccc}
\mathcal{P}(X) & \longrightarrow & \mathbf{Fun}(\Delta^{1}, \mathbb{S}) \\
\downarrow & & \downarrow^{\mathrm{ev}_{1}} \\
\Delta^{0} & \xrightarrow{X} & \mathbb{S}
\end{array}$$

Note: fix ops.

Fix once and for all $f: \Delta^1 \to S$ be a map of spaces $f: X \to Y$. This gives us a functor

of ∞-categories

$$f^* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$$

between categories of presheaves via pullback. We can view this as a map $(\Delta^1)^{op} \to \mathbf{Cat}_{\infty}$. The Grothendieck construction again tells us that this can be thought of as a Cartesian fibration $p \colon \mathcal{M} \to \Delta^1$.

Definition 18. Define a morphism of simplicial sets $p: \mathcal{M} \to \Delta^1$ by the following pullback.

$$\mathcal{M} \longrightarrow \mathbf{Fun}(\Delta^{1}, \mathbb{S})
\downarrow p \qquad \qquad \downarrow \text{ev}_{1}
\Delta^{1} \longrightarrow \mathbb{S}$$

Proposition 19. We have:

- 1. The map p is a Cartesian fibration, and the p-Cartesian morphisms in $\mathbb M$ are pullback squares in $\mathbb S$.
- 2. The map p is a coCartesian fibration, and the p-coCartesian morphisms in $\mathbb M$ are squares

$$\begin{array}{ccc}
K & \xrightarrow{b} & S \\
\downarrow & & \downarrow & , \\
A & \xrightarrow{a} & A'
\end{array}$$

in S, where $a = id_X$, f, or id_Y , and b is an equivalence.

Proof. This is wrong!!!!

8

1. This follows from [4, Lem. 6.1.1.1], which shows that

$$\operatorname{Fun}(\Delta^1, \mathbb{S}) \to \mathbb{S}$$

is a Cartesian fibration whose Cartesian morphisms are pullback squares

$$\begin{array}{ccc} X' & \xrightarrow{f'} & Y' \\ \downarrow & & \downarrow g \\ X & \xrightarrow{f} & Y \end{array}$$

in S. Here, we expand [4, Lem. 6.1.1.1], because the proof is fucky.

Denote $\operatorname{Fun}(\Delta^1, \mathbb{S}) = \mathcal{O}_{\mathbb{S}}$. We will call an injective map $[k] \to \mathcal{P}$, for \mathcal{P} a poset, a *string of length k* in \mathcal{P} .

For every simplicial set K, let K^+ be the full simplicial subset of $(K \star \{x\} \star \{y\}) \times \Delta^1$ spanned by all of the vertices except (x, 0). Two examples, which we will use later on, $(\Delta^n)^+$ and $(\partial \Delta^n)^+$, are as follows.

• The k-simplices of $(\Delta^n)^+$ are in bijective correspondence with those maps of posets

$$[k] \rightarrow ([n] \oplus \{x\} \oplus \{y\}) \times [1]$$

which never hit (x, 0). The nondegenerate k-simplices, as usual, correspond to the *injective* maps of posets which never hit (x, 0), i.e. strings of length k not containing (x, 0).

• For $n \ge 1$, the nondegenerate k-simplices of $(\partial \Delta^n)^+$ are in bijective correspondence with strings

$$[k] \rightarrow ([n] \oplus \{x\} \oplus \{y\}) \times [1]$$

which never hit (x, 0), and contain neither

$$(0,0) \rightarrow (1,0) \rightarrow \cdots \rightarrow (n,0)$$
 nor $(0,1) \rightarrow \cdots \rightarrow (n,1)$ (1.2)

as contiguous substrings.

For
$$n = 0$$
, $(\partial \Delta^n)^+ \cong \emptyset^+ \cong \Lambda_2^2$.

Note that $(\partial \Delta^n)_k \cong (\Delta^n)_k$ for k < n, because no string of length less than n contain either of the strings in Equation 1.2 as substrings.

Define a simplicial set C by setting

Fun(K, C) =
$$\{m : K^+ \to C \mid m|_{\{\{x\} \star \{y\}\} \times \{1\}} = f, \ m|_{\{y\} \times \Delta^1} = g\}.$$

The square of inclusions

$$(\Delta^{n} \star \{y\}) \times \{1\} \hookrightarrow (\Delta^{n} \star \{y\}) \times \Delta^{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\Delta^{n} \star \{x\} \star \{y\}) \times \{1\} \hookrightarrow (\Delta^{n})^{+}$$

gives a commuting square

$$\begin{array}{c}
\mathbb{C} \longrightarrow (\mathbb{O}_{\mathbb{S}})_{/g} \\
\downarrow \qquad \qquad \downarrow \\
\mathbb{S}_{/f} \longrightarrow \mathbb{S}_{/Y}
\end{array}$$

This in turn gives us a map

$$q: \mathcal{C} \to (\mathcal{O}_{\mathcal{S}})_{/g} \times_{\mathcal{S}_{/Y}} \mathcal{S}_{/f}.$$

We claim that q is a trivial fibration. To check this, we show that for any $n \ge 0$

we can always find a lift ℓ as below.

$$\begin{array}{ccc}
\partial \Delta^n & \xrightarrow{a} & \mathcal{C} \\
\downarrow & & \downarrow q \\
\Delta^n & \xrightarrow{b} & (\mathcal{O}_{\$})_{/g} \times_{\$_{/Y}} \$_{/f}
\end{array}$$

The case n=0 is somewhat special since $\partial \Delta^n = \emptyset$, but as none of the simplices of $(\Delta^0)^+$ have dimension greater than three one can find a solution simply by drawing pictures. From now on, we fix $n \ge 1$.

We can read the solid diagram as equivalently specifying a map

$$\tilde{a}: (\partial \Delta^n)^+ \to S$$

and a map

$$\tilde{b} \colon (\Delta^n \star \{x\} \star \{y\}) \times \{1\} \coprod_{(\Delta^n \star \{y\}) \times \{1\}} (\Delta^n \star \{y\}) \times \Delta^1 \equiv K_n \to \mathcal{S}$$

which are compatible on their overlap

$$(\partial \Delta^n)^+ \cap K_n \subset (\Delta^n)^+.$$

and which map $(\{x\} \star \{y\}) \times \{1\}$ to f and $\{y\} \times \Delta^1$ to g.

We would like to produce from this data a filler

$$\tilde{\ell} : (\Delta^n)^+ \to \mathcal{S}.$$

Let us first see which nondegenerate simplices we are missing.

- The simplicial set $(\Delta^n)^+$ does not contain any nondegenerate simplices of dimension n+4 or higher.
- There are two nondegenerate (n+3)-simplices in $(\Delta^n)^+$ missing from $(\partial \Delta^n)^+$:

$$\sigma = (0,0)$$

$$\downarrow$$

$$(0,1) \to (1,1) \to \cdots \to (n,1) \to (x,1) \to (y,1)$$

and

$$\tau = (0,0) \to (1,0) \to \cdots \to (n,0)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad (n,1) \to (x,1) \to (y,1)$$

One finds that σ is contained in K_n , but τ is not.

• Apart from the faces of σ and τ , there is only one nondegenerate (n + 2)simplex in $(\Delta^n)^+$ not contained in $(\partial \Delta^n)^+$:

$$\chi = (0,0) \to (1,0) \to \cdots \to (n,0) \qquad (y,0)$$

$$\downarrow \qquad \qquad (y,1)$$

However, χ is contained in K_n .

• There are no nondegenerate simplices of $(\Delta^n)^+$ of dimension n+1 or lower missing from both $(\partial \Delta^n)^+$ and K_n .

Therefore, the only data we have to fill in is the simplex $\tau \to S$.

- The faces $d_0\tau$, $d_1\tau$, ..., $d_n\tau$ are all contained in $(\partial \Delta^n)^+$.
- The face $d_{n+1}\tau$ is missing from both $(\partial \Delta^n)^+$ and K_n .
- The face $d_{n+2}\tau$ is contained in K_n .
- The face $d_{n+3}\tau$ is contained in K_n .

Thus, in order to find our lift ℓ we need only fill $\Lambda_{n+1}^{n+3} \hookrightarrow \Delta^{n+3}$, which we can do because S is an ∞ -category.

2. This follows from the dual to [4, Cor. 2.4.7.12] with $f = id_8$.

1.3.1 Barwick is Kafka for simplicial sets

Lemma 20. Let \mathcal{C} be an ∞ -category, and consider a solid diagram

such that $\Delta^{\{1,2\}} \hookrightarrow \Delta^2$ is mapped to an equivalence. Then for any $n \geq 0$, we can find a dashed lift.

Proof. Induction. Call the images of the vertices of $\Delta^2 x$, y, and z.

For n = 0, we need to fill the following diagram.

PLACEHOLDER

First, fill $0 \to x \to y$. This is $\Lambda_2^2 \hookrightarrow \Delta^2$ with $\Delta^{\{1,2\}}$ an equivalence. Then fill $0 \to x \to 0$

$$y \to z$$
, which is $\Lambda_2^3 \hookrightarrow \Delta^3$.

TBC

Lemma 21. Let $\mathcal C$ be an infinity category, and let σ be the below square in $\mathcal C$ with f an equivalence.

$$\begin{array}{ccc}
x & \xrightarrow{f'} & y \\
\downarrow & & \downarrow \\
y' & \xrightarrow{f} & z
\end{array}$$

Then σ is a pullback square if and only if f' is an equivalence.

Proof. First, suppose that f' is an equivalence. We need to show that $\mathcal{C}_{/\sigma} \hookrightarrow \mathcal{C}_{\sigma|\lambda_2^2}$ is a trivial fibration.

Denote by *K* the simplicial subset of $\Delta^1 \times \Delta^1$ given by the nerve of the poset

$$0 \longrightarrow 1$$

$$\downarrow 1$$

$$1' \longrightarrow 2$$

We first show that

$$\mathcal{C}_{/\sigma|K} \to \mathcal{C}_{/\sigma|\Lambda_2^2}$$

is a trivial fibration. It is sufficient to be able to solve lifting problems

 ∂

First, suppose that σ is pullback. Consider the following Λ_2^2 horn associated to σ .

$$\begin{array}{c}
y' \\
\downarrow g \\
x \longrightarrow x'
\end{array}$$

Let f^{-1} be any homotopy inverse to f, and pick a composite $f^{-1} \circ g$. By our previous work, the square

$$\begin{array}{ccc}
 & y & \xrightarrow{\mathrm{id}} & y \\
\tau & & \downarrow g & \downarrow g \\
 & x' & \xrightarrow{f} & x
\end{array}$$

is a pullback square in C. Any other pullback square

$$y \times_{x} x' \xrightarrow{f'} y$$

$$\downarrow \qquad \qquad \downarrow$$

$$x' \longrightarrow x$$

factors through τ via an equivalence q, giving us in particular a 2-simplex

But by 2/3, this means that f' is an equivalence.

Lemma 22. Denote $\operatorname{Fun}(\Delta^1, \mathbb{S})$ by $\mathbb{O}_{\mathbb{S}}$. The bicartesian fibration $p = \operatorname{ev}_1 \colon \mathbb{O}_{\mathbb{S}} \to \mathbb{S}$ satisfies the following conditions, which are conditions 12.2.1 and 12.2.2 of Barwick, with all morphisms ingressive and egressive.

1. For any morphism $g: X \to Y$ in $\mathbb S$ and any object $K \to X$ in $\mathbb O_{\mathbb S}$, there exists a morphism

$$\begin{array}{ccc}
K & \longrightarrow S \\
\downarrow & & \downarrow \\
X & \longrightarrow Y
\end{array}$$

in O_S covering f which is p-coCartesian.

2. Suppose σ is a commutative square in $\mathcal{O}_{\mathcal{S}}$, corresponding to a commutative cube Σ in \mathcal{S}

such that the bottom face of Σ is a pullback and F is an equivalence. Then the back face of Σ is p-coCartesian if and only if σ is a pullback in $\mathcal{O}_{\mathbb{S}}$.

Proof. 1. The map p is a bicartesian fibration.

2. The square σ is a pullback square in O_{δ} if and only if both the top and bottom

faces of Σ are pullbacks. The bottom face of Σ is pullback by assumption, and by Lemma 21 the top face of Σ is a pullback if and only if F' is an equivalence. But F' is an equivalence if and only if the back face of Σ is p-coCartesian.

1.3.2 Lifting things we need to lift

Everything in this section is in [1].

Notation 23. We will distinguish integers expressed in binary notation with a subscript '2'. For example, $5 = 101_2$. We will often refer to the *i*th digit of a number N expressed in binary as d_i ; in this notation,

$$N=(d_1\ldots d_n)_2.$$

We are trying to find lifts of the following form. The maps f, g, and ℓ should be Segal.

$$\begin{array}{ccc}
\operatorname{asd}(\Lambda_k^n) & \xrightarrow{f} & \mathcal{O}_{\mathbb{S}} \\
\downarrow & & \downarrow \\
\operatorname{asd}(\Delta^n) & \xrightarrow{g} & \mathbb{S}
\end{array}$$

For the entirety of this section, fix $n \ge 2$.

As we have seen in Definition 3, we can think of $asd(\Delta^n)$ as the nerve of the opposite of the poset of subintervals of [n], which we have denoted $(I_n)^{op}$. The poset $(I_n)^{op}$ has objects ab, with $0 \le a \le b \le n$, and $ab \le a'b'$ if $a \le a' \le b' \le b$.

Example 24. The subdivision of the 5-simplex, $asd(\Delta^5)$, is the nerve of the poset $(I_5)^{op}$, which can be drawn as follows.

The nondegenerate *n*-simplices in $asd(\Delta^n)$ are injective maps $[n] \to (I_n)^{op}$, which we can think of as walks of length *n* starting at 0n and ending at ll for some $0 \le l \le n$.

14

These are in one-to-one correspondence with binary strings of length n, where the 0 or 1 in position i (read from left to right) corresponds to whether one goes left or right at the ith row.

Example 25. The nondegenerate 5-simplices of $asd(\Delta^5)$ corresponding to $N = 00001_2$ and $N = 10110_2$ are below, in red and blue respectively.

Binary strings of length n in turn correspond to numbers N with $0 \le N < 2^n$. We will make frequent use of the bijection between numbers $0 \le N < 2^n$ and nondegenerate simplices of $asd(\Delta^n)$. It will be helpful to have a notation for this bijection.

Notation 26. For any $0 \le N < 2^n$, denote by $\sigma(N)$ the nodegenerate n-simplex of $asd(\Delta^n)$ corresponding to N. We will denote the ith binary digit of N, read left-to-right, by d_i ; that is, $N = (d_1 d_2 \dots d_n)_2$.

Example 27. The red and blue simplices in Diagram 1.3 are $\sigma(00001_2)$ and $\sigma(10110_2)$ respectively.

To sum up, we may specify a nondegenerate n-simplex in $asd(\Delta^n)$ by providing any one of the following equivalent data.

• A walk of length n on the poset $(I_n)^{op}$ of the form

$$0n \to \cdots \to a_i b_i \to \cdots \to ll, \qquad 0 \le l \le n.$$

- A binary string $(d_1 \dots d_n)_2$ of length n.
- An integer N with $0 \le N < 2^n$.

Armed with this information, our plan of attack is as follows: starting with $asd(\Lambda_k^n)$, we will construct a filtration

$$\operatorname{asd}(\Lambda_k^n) \subset \operatorname{asd}(\Lambda_k^n) \cup \sigma(0) \subset \cdots \subset \operatorname{asd}(\Lambda_k^n) \cup \bigcup_{0 \leq N < 2^n} \sigma(N) = \operatorname{asd}(\Delta^n). \tag{1.4}$$

It will be helpful to have a name for the *N*th step of this filtration.

Definition 28. Let $n \ge 1$, and $0 \le k < n$. Define

$$P_0(k) = \text{asd}(\Lambda_k^n), \qquad P_N(k) = \sigma(N) \cup P_{N-1}(k), \quad 0 \le N < 2^n.$$

That is,

$$P_N(k) = \operatorname{asd}(\Lambda_k^n) \cup \bigcup_{0 \le N' < N} \sigma(N').$$
 (1.5)

We first need to figure out what each of these inclusions in Equation 1.4 looks like. More precisely, we must compute the intersections $\sigma(N) \cap P_N(k)$, $0 \le N \le 2^k - 1$.

From Equation 1.5 and the fact that $\Lambda_k^n = \bigcup_{j \neq k} d_j \Delta^n$, we have

$$\sigma(N) \cap P_N(k) = \overbrace{\left(\bigcup_{0 \le K < N} \sigma(N) \cap \sigma(K)\right)}^{(a)} \cup \left(\bigcup_{j \ne k} \sigma(N) \cap \operatorname{asd}(d_j \Delta^n)\right). \tag{1.6}$$

We can understand (a) and (b) individually. First, let's tackle (a). We need some terminology.

Definition 29. Fix an integer N with $0 \le N < 2^n$, with N expressed in binary notation as $N = (d_1 \dots d_n)_2$. A *jut* of $\sigma(N)$ is an integer $1 \le j \le n$ such that one of the following conditions is satisfied:

- For $1 \le j < n$, j is a jut of $\sigma(N)$ if $d_i = 1$ and $d_{i+1} = 0$.
- For j = n, n is a jut of $\sigma(N)$ if $d_n = 1$.

The set of all juts of $\sigma(N)$ is denoted Z(N). By definition, $Z(N) \subset \{1, \ldots, n\}$.

Note 30. The juts of $\sigma(N)$ are the places where the walk corresponding to N is going right, and then either heads left or ends. In terms of the binary representation $N=(d_1\ldots d_n)_2$, an integer j< n is a jut of $\sigma(N)$ every time the string '10' appears at the jth position, i.e. if $d_jd_{j+1}=10$. There is a jut at n every time the last digit of N is a 1.

Example 31. The juts of the simplex $\sigma(01011_2) \subset \operatorname{asd}(\Delta^5)$ are 2 and 5, marked in red below.

Thus, $Z(01011_2) = \{2, 5\}.$

Knowledge of the juts of $\sigma(N)$ allows us to calculate (*a*).

Lemma 32. The expression (*a*) in Equation 1.6 can be written

$$\bigcup_{0 \le N' < N} \sigma(N) \cap \sigma(N') = \bigcup_{j \in Z(N)} d_j \sigma(N),$$

where $Z(N) \subset \{1, ..., n\}$ is the set of juts of $\sigma(N)$.

Proof. For any jut $j \in Z(N)$, define a number $N^j = (d'_1 \dots d'_n)_2$ as follows.

• If j < n, define d'_i to be

$$d'_{i} = \begin{cases} d_{i}, & i \neq j, j+1 \\ 0, & i = j \\ 1, & i = j+1 \end{cases}.$$

• If j = n, define d'_i to be

$$d_i' = \begin{cases} d_i, & i \neq n \\ 0, & i = n \end{cases}.$$

The walk corresponding to $\sigma(N^j)$ agrees with the walk corresponding to $\sigma(N)$, except at the *j*th position, where it goes left instead of right.

For $N=01011_2$, $\sigma(N)$ is the solid walk below, $\sigma(N^2)$ is the dashed walk, and $\sigma(N^5)$ is the dotted walk.

$$05$$

$$04$$

$$03$$

$$14$$

$$13$$

$$12$$

$$11$$

$$22$$

$$22$$

$$22$$

$$23$$

Consider the poset of simplicial subsets of $\sigma(N)$ of the form

$$\sigma(N) \cap \sigma(K), \qquad 0 \le K < N.$$

The maximal elements of this poset are intersections $\sigma(N) \cap \sigma(N^j)$, where $j \in Z(N)$. Because $\sigma(N)$ and $\sigma(N^j)$ agree except at the jth vertex, the intersection $\sigma(N) \cap \sigma(N^j)$ is given by $d_j\sigma(N)$.

Thus, we find that

$$\bigcup_{0 \le N' < N} \sigma(N) \cap \sigma(N') = \bigcup_{j \in Z(N)} d_j \sigma(N).$$

Now we turn our attention to (b). First, we should understand $\operatorname{asd}(\Lambda_k^n) = \bigcup_{j \neq k} \operatorname{asd}(d_j \Delta^n)$. To do this we must understand $\operatorname{asd}(d_j \Delta^n)$. This is the nerve of the full subcategory of $(I_n)^{\operatorname{op}}$ on objects ab where $a \neq j$ and $b \neq j$.

We will also pay attention to the full subcategory of $(I_n)^{\text{op}}$ on objects containing js.

Definition 33. Denote the full subcategory of $(I_n)^{op}$ on objects ab, where either a = j or b = j, by V_j^n .

Example 34. The subdivision $asd(d_2\Delta^5)$ is the nerve of the black diagram below. The category V_2^5 is pictured gray.

The *i*th face of any simplex $\sigma(N)$ corresponds to the walk on $(I_n)^{\text{op}}$ which skips the *i*th position of the walk corresponding to $\sigma(N)$. That is, if $\sigma(N)$ corresponds to the walk

$$a_0b_0 \to \cdots \to a_nb_n$$

then $d_i\sigma(N)$ corresponds to the walk

$$a_0b_0 \to \cdots \to a_{i-1}b_{i-1} \to a_{i+1}b_{i+1} \to \cdots \to a_nb_n$$
.

Thus, the *i*th face of $\sigma(N)$ is contained in $asd(d_i\Delta^n)$ if and only if

- $a_i = j$ or $b_i = j$ (or both); and
- $a_{i'} \neq j$ and $b_{i'} \neq j$ for $i' \neq i$.

Example 35. The simplex $d_3\sigma(10110_2)$ is contained in $asd(d_2\Delta^n)$.

The faces of $\sigma(N)$ contained in $asd(d_j\Delta^n)$ correspond to *crossings of* $\sigma(N)$ *at* j: places at which $\sigma(N)$ intersects V_i^n exactly once.

Example 36. The simplex $\sigma(10110_2)$, in red, has a crossing at 2. The simplex $\sigma(00010_2)$, in blue, does not. The subcategory $V_2^5 \subset (I_5)^{\text{op}}$ is in bold.

Definition 37. Let $0 \le j < n$, and fix some $0 \le N < 2^n$. Let the binary representation of N be $(d_1 \dots d_n)_2$, and the walk corresponding to $\sigma(N)$ be

$$a_0b_0 \rightarrow a_1b_1 \rightarrow \cdots \rightarrow a_nb_n$$
.

An integer $0 \le i \le n-1$ is said to be a *crossing of* $\sigma(N)$ *at* j if one of the following holds:

- For j = 0, i is a crossing at j if $d_1 = 1$.
- For 0 < j < n, i is a crossing at j if $d_i = d_{i+1} = 0$ and $b_i = j$, or if $d_i = d_{i+1} = 1$ and $a_i = j$.

We have already essentially shown the following.

Lemma 38. Let $0 \le j < n$, and let $0 \le N < 2^n$. The simplex $\sigma(N)$ has a face in common with $\operatorname{asd}(d_j\Delta^n)$ if and only if $\sigma(N)$ has a crossing at j.

We can now understand the faces of $\sigma(N)$ contained in $\bigcup_{j\neq k} \sigma(N) \cap \operatorname{asd}(d_j\Delta^n)$ as corresponding to *crossings of* $\sigma(N)$ *away from* k; that is, crossings at some $j \neq k$. This amounts to the following.

Definition 39. Let $0 \le k \le n$, and let $0 \le N < 2^n$, with binary representation $(d_1 \dots d_n)_2$ and walk

$$a_0b_0 \to \cdots \to a_nb_n$$
.

An integer 0 < i < n is said to be a *crossing of* $\sigma(N)$ *away from* k if any of the following conditions are satisfied.

- Either $d_i = d_{i+1} = 1$ and $a_i \neq k$; or
- $d_i = d_{i+1} = 0$ and $b_i \neq k$.

The integer i = 0 is said to be a *crossing of* $\sigma(N)$ *away from* k if either of the following conditions are satisfied.

- $d_1 = 0$; or
- $d_1 = 1$ and $k \neq 0$.

We will denote the set of crossings of $\sigma(N)$ away from k by X(N,k). By definition, $X(N,k) \subset \{0,\ldots,n-1\}$.

Example 40. Let $N = 10110_2$, and consider the simplex $\sigma(N)$.

The 0th vertex of the simplex $\sigma(N)$ is a crossing at 0, and the 3rd vertex is a crossing at 2. None of the other vertices are crossings. Therefore:

- $X(10110_2, 0) = \{3\},$
- $X(10110_2, 1) = \{0, 3\},$
- $X(10110_2, 2) = \{0\},\$
- $X(10110_2, 3) = \{0, 3\}$, and
- $X(10110_2, 4) = \{0, 3\}.$

We are now ready to understand the intersection $\sigma(N) \cap P_N(k)$.

Proposition 41. Let $0 \le k < N$, and let $0 \le N < 2^n$. The intersection $\sigma(N) \cap P_N(k)$ is given by the union of faces

$$\bigcup_{i\in Z(N)\cup X(N,k)}d_i\sigma(N).$$

Proof. Denote the walk corresponding to *N* by

$$a_0b_0 \to \cdots \to a_nb_n$$
.

Recall from Equation 1.6 the decomposition $\sigma(N) \cap P_N(k) = (a) \cup (b)$. We have seen in Lemma 32 that (a) is given by $\bigcup_{i \in Z(n)} d_i \sigma(N)$, and in Lemma 38 that the faces of $\sigma(N)$ contained in (b) are of the form $d_i \sigma(N)$, where $i \in X(N,k)$. Therefore, we will be done if we can show that (b) contains only faces, apart from lower-dimensional simplices which are also contained in (a). More explicitly, we need to show that any subsimplex of $\sigma(N)$ of codimension 2 or greater which

- is contained in (*b*), and
- is not contained in a higher-dimesional subsimplex of $\sigma(N)$ which is contained in (b),

must be contained in (a).

For any subsimplex τ of $\sigma(N)$ meeting the conditions above, there must exist a $j \neq k$ such that $\sigma(N)$ intersects V_j^n more than once; the subsimplex τ then has as its vertices the vertices s of $\sigma(N)$ such that $a_s \neq j$ and $b_s \neq j$. If τ has dimension m, then $\sigma(N)$ and V_j^n must intersect exactly m times. If a walk on $(I_n)^{\mathrm{op}}$ leaves V_j^n it cannot come back, so for any simplex which intersects V_j^n in m < 1 places, the intersections are contiguous; that is, there exists some i such that for each i' with $i \leq i' < i + m$, either $a_{i'} = j$ or $b_{i'} = j$. It is easy to convince oneself that in this situation either i or i + m must be a jut of $\sigma(N)$. Without loss of generality, suppose i is a jut of $\sigma(N)$. Then $\tau \subset \sigma(N^i) \cap \sigma(N)$, which is contained in (a).

Notation 42. Let T be a finite totally ordered set, and let $S \subset T$ be a proper subset. Define

$$\Lambda_S^T = \bigcup_{i \notin S} d_i \Delta^n.$$

Take T = [n]. We will write Λ_S^n instead of $\Lambda_S^{[n]}$. Interpreting $S \subset T$ as a set of vertices of Δ^n , Λ_S^n is the union of all faces of Δ^n which contain every vertex in S. This is because $d_i\Delta^n$ contains S if and only if $S \subseteq [n] \setminus \{i\}$, which in turn is true if and only if $i \notin S$.

Example 43. For T = [m] and $S = \{i\}$ a singleton, $\Lambda_S^T = \Lambda_i^m$, the *i*th horn of Δ^n .

¹Apart from the trivial case of $\sigma(0)$'s intersection with V_0^n .

Definition 44. Fix some $0 \le k < n$, and let $0 \le N < 2^n$. The *exceptional vertices* of $\sigma(N)$ are the subset

$$E(N,k) = [m] \setminus (Z(N) \cup X(N,k)).$$

To put it another way, a vertex of $\sigma(N)$ is exceptional if it is neither a jut nor a crossing away from k. In our new notation, Proposition 41 tells us that $\sigma(N) \cap P_N(k) = \Lambda_{E(N,k)}^n$.

We are computing the intersections $\sigma(N) \cap P_N(k)$ in the hope that we can show that $P_N(k) \hookrightarrow P_{N+1}(k)$ is inner anodyne. We now have some idea when this might be so. We have a pushout square

$$\Lambda_{E(N,k)}^n & \longrightarrow \Delta^n \\
\downarrow & & \downarrow \\
P_N(k) & \longrightarrow P_{N+1}(k)$$

If $\Lambda^n_{E(N,k)} \hookrightarrow \Delta^n$ is inner anodyne, then $P_N(k) \hookrightarrow P_{N+1}(k)$ will be as well. Our next goal will be to establish a sufficient condition for $\Lambda^n_{E(N,k)} \hookrightarrow \Delta^n$ to be inner anodyne.

Lemma 45. Let T be a finite, totally ordered set, and $S \subset T$ a nonempty proper subset. A sufficient condition for $\Lambda_S^T \hookrightarrow \Delta^T$ to be inner anodyne as follows:

(*) There exist elements a < s < b in T with $s \in S$ and $a, b \notin S$.

It will be useful to denote the elements of S by \star , and the elements of $T \setminus S$ by \circ . We can then draw the inclusion $S \subset T$ as a word on the letters \star and \circ . Then Lemma 45 tells us that $\Lambda_S^T \hookrightarrow \Delta^T$ is inner anodyne if our drawing of $S \subset T$ is of the form

Example 46. With T = [4] and $S = \{0, 2\}$, we can draw $S \subset T$ as

Lemma 45 guarantees us that the inclusion $\Lambda^4_{\{0,2\}} \hookrightarrow \Delta^4$ is inner anodyne.

Definition 47. We will call a simplex $\sigma(N)$ *exceptional* if $E(N, k) \subset [n]$ does not satisfy Condition (*).

In Barwick's words, exceptional simplices are indeed exceptional. Any exceptional simplex cannot have more than one jut, since between any two juts there is a vertex which

is neither a jut nor a crossing away from k.

As follows easily from Note 30, the only N such that $\sigma(N)$ contains at most one jut are of the form

•
$$N_r = \overbrace{1 \cdots 1}^{r} \overbrace{0 \cdots 0}^{n-r}$$
, for $0 \le r \le n$; or • $N_r' = \overbrace{0 \cdots 0}^{r} \overbrace{1 \cdots 1}^{n-r}$, for $0 < r < n$.

In fact, we can easily see that all of the simplices $\sigma(N'_r)$ are not exceptional, since for any k and r, 0 is a crossing away from k of $\sigma(N'_r)$, n is a jut, and r is an exceptional vertex. This situation is pictured in Example 48.

Example 48. For n = 5, $\sigma(N_3')$ is pictured below. Exceptional vertices are marked with a ' \star ' and juts and crossings away from k are marked with a ' \circ '. The vertices marked '?' could be either exceptional or crossings away from k depending on k. However, the information we have is already enough to tell us that $\sigma(N_3')$ is not exceptional.

Lemma 49. For k = 0, each simplex $\sigma(N_r)$ is exceptional, and we have

- $E(0, N_0) = \{n\};$
- $E(0, N_r) = \{0, n\}$, for $0 \le r \le n$; and
- $E(0, N_n) = \{0\}.$

For 0 < k < n, the simplices N_{k-1} and N_k are exceptional, and we have

- $E(k, N_{k-1}) = \{n-1, n\}$; and
- $E(k, N_k) = \{n\}.$

We do not prove this statement explicitly, but the example below should make clear why it is true.

Example 50. Let n = 5 and k = 0. The simplices $\sigma(N_0)$, $\sigma(N_2)$, and $\sigma(N_5)$ are pictured below.

For k = 3, $\sigma(N_1)$, $\sigma(N_2)$, $\sigma(N_3)$, and $\sigma(N_4)$ are pictured below.

Recall our goal: we are trying to find Segal lifts ℓ as below, where f and g are Segal.

$$\begin{array}{ccc}
\operatorname{asd}(\Lambda_{k}^{n}) & \xrightarrow{f} & \mathcal{O}_{8} \\
\downarrow & & \downarrow \\
\operatorname{asd}(\Delta^{n}) & \xrightarrow{g} & \mathcal{S}
\end{array} \tag{1.7}$$

It turns out that we needn't worry ourselves that a lift might not be Segal; in most situations, any lift we can construct will be Segal automatically. Morally, this is because we are taking a limit over a very simple category, and demanding that $\operatorname{asd}(\Delta^n) \to \mathcal{C}$ be Segal is equivalent to demanding that each square

Lemma 51. Let $n \ge 3$, $k \ne 0$, and let ℓ be any lift as in Diagram 1.7. Then ℓ is automatically Segal.

Proof. A lift ℓ : asd(Δ^n) $\to \mathcal{O}_{\mathcal{S}}$ is Segal if and only if the image of each of the squares

is pullback, for $0 \le i < n$, $0 < j \le n$.

The image of each square of the above form except the top square (i = 0, j = n) is contained in at least one of $asd(d_0\Delta^n)$ and $asd(d_n\Delta^n)$, and is hence pullback by assumption. Thus, we need only verify that either the top square is already in some $asd(d_j\Delta^n)$, and hence is pullback by assumption, or that any way of filling the top square is guaranteed to be pullback. We have fixed some k, so either $k \neq 1$ or $k \neq n-1$. If $k \neq n-1$, then the outer square of

is contained in $\operatorname{asd}(d_{n-1}\Delta^n) \subset \operatorname{asd}(\Lambda^n_k)$, and is hence pullback, and the lower-left square is contained in $\operatorname{asd}(d_n(\Delta^n)) \subset \operatorname{asd}(\Lambda^n_k)$, and hence is also pullback. Thus, the pasting lemma implies that any way of filling in the top square will be pullback. Similar reasoning works in the case $k \neq 1$.

1.3.3 Lifting things we need to lift the right way

Warm up:

Some classical knowledge: There is a Quillen equivalence

$$p_1^* : \mathbf{Set}^{\mathsf{Joyal}}_{\Lambda} \longleftrightarrow \mathbf{Set}^{\mathsf{CSS}}_{\Lambda^2} : i_1^*.$$

This means that the counit

$$p_1^*i_1^*\mathcal{C} \to \mathcal{C}$$

is a weak equivalence when evaluated on a fibrant object.

Definition 52. We say that a map $\mathcal{C} \to \mathcal{D}$ of complete Segal spaces is a *inner fibration* if the following square is homotopy pullback in the Kan model structure.

$$\begin{array}{ccc} \mathbb{C}_2 & \longrightarrow & \mathbb{C}_1 \times_{\mathbb{C}_0} \mathbb{C}_1 \\ \downarrow & & \downarrow \\ \mathbb{D}_2 & \longrightarrow & \mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \end{array}$$

Proposition 53. Let \mathcal{C} and \mathcal{D} be quasicategories with pullbacks, and let $\pi \colon \mathcal{C} \to \mathcal{D}$ be an inner fibration admitting relative pullbacks. Then $\operatorname{Span}(\mathcal{C}) \to \operatorname{Span}(\mathcal{D})$ is an inner fibration of complete Segal spaces.

Proof. The square

Definition 54. Let $\pi \colon \mathcal{C} \to \mathcal{D}$ be a map of complete Segal spaces. We say that a morphism $f \colon x \to y$ in \mathcal{C} is *p-coCartesian* if the following square is homotopy pullback.

$$\begin{array}{ccc} \mathbb{C}_{2} \times_{\mathbb{C}_{\{0,1\}}} \{f\} & \longrightarrow & \mathbb{C}_{1} \times_{\mathbb{C}_{\{0\}}} \{x\} \\ \downarrow & & \downarrow \\ \mathbb{D}_{2} \times_{\mathbb{D}_{\{0,1\}}} \{\pi f\} & \longrightarrow & \mathbb{D}_{1} \times_{\mathbb{D}_{\{0\}}} \{\pi x\} \end{array}$$

Proposition 55. Let $\pi \colon \mathcal{C} \to \mathcal{D}$ be a bicartesian fibration admitting relative pullbacks with the following property:

For any square

$$\sigma = \bigvee_{x'} \xrightarrow{f'} y$$

$$x' \xrightarrow{f'} y'$$

in \mathbb{C} , such that f' is p-Cartesian and $\pi(\sigma)$ is pullback in \mathbb{D} , the following are equivalent.

- The morphism f is π -Cartesian.
- The square σ is pullback.

Definition 56. Let $\pi \colon \mathcal{C} \to \mathcal{D}$ be a Reedy fibration of complete segal spaces.

Proposition 57. Let $\mathcal{C} \to \mathcal{D}$ be an inner fibration admitting relative pullbacks. Then $\operatorname{Span}(\mathcal{C}) \to \operatorname{Span}(\mathcal{D})$ is an inner fibration.