Norwegian University of Science and Technology

TTK4135 – Lecture 5 Solving LPs – the Simplex method

Lecturer: Lars Imsland

Purpose of lecture

- Brief recap previous lecture
- The geometry of the feasible set
- Basic feasible points, "The fundamental theorem of linear programming"
- The simplex method
- Example 13.1
- Some implementation issues

Reference: N&W Ch.13.2-13.3, also 13.4-13.5

Linear programming, standard form and KKT: recap

LP:

$$\min_{c \in \mathbb{R}^n} c^T x$$
 subject to

 $\min_{x \in \mathbb{R}^n} c^T x \quad \text{subject to} \quad \begin{cases} a_i x = b_i, & i \in \mathcal{E} \\ a_i x \geq b_i, & i \in \mathcal{I} \end{cases}$ $\min_{x \in \mathbb{R}^n} c^T x \quad \text{subject to} \quad \begin{cases} Ax = b \\ x \geq 0 \end{cases}$

LP, standard form:

Lagrangian:

$$\min_{x \in \mathbb{R}^n} c^T x \quad \text{su}$$

$$\underbrace{\mathcal{L}(x,\lambda,s)}_{\xi} = c^T x - \underbrace{\lambda^T (Ax - b)}_{\xi} - \underbrace{s^T x}_{\xi}$$

KKT-conditions (LPs: necessary and sufficient for optimality):

$$A^{T}\lambda^{*} + s^{*} = c,$$

$$Ax^{*} = b,$$

$$x^{*} \ge 0,$$

$$s^{*} \ge 0,$$

$$x_{i}^{*} s_{i}^{*} = 0, \quad i = 1, 2, ..., n$$

Duality

Primal problem

$$\min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \ge 0$$

Dual problem

$$\max_{\lambda,s} \quad b^{\top} \lambda$$

s.t.
$$A^{\top} \lambda + s = c$$

$$s \ge 0$$

- Primal and dual have same KKT conditions!
- Equal optimal value: $c^{\top}x^* = b^{\top}\lambda^*$
- Weak duality: $c^{\top} \bar{x} \geq b^{\top} \bar{\lambda}$ $(\bar{x}, \bar{\lambda} \text{ feasible})$
- Duality gap: $c^{\top} \bar{x} b^{\top} \bar{\lambda}$
- Strong duality (Thm 13.1):
 - i) If primal or dual has finite solution, both are equal
 - ii) If primal or dual is unbounded, the other is infeasible

LP: Geometry of the feasible set

- Basic optimal point (BOP)
 Basic feasible point (BFP)
 (if they exist)
- In general, the BFP has at most *m* non-zero components

Basic feasible point (BFP)

A point x is a basic feasible point if

- x is feasible
- There is an index set $\mathcal{B}(x) \subset \{1, \dots, n\}$ such that
 - $\mathcal{B}(x)$ contains m indices
 - $-i \notin \mathcal{B}(x) \Rightarrow x_i = 0$
 - $B = [A_i]_{i \in \mathcal{B}(x)}$ is non-singular, $B \in \mathbb{R}^{m \times m}$

Always holds if A is full row rank

- $\mathcal{B}(x)$ is called a basis for the LP
- The indices not in $\mathcal{B}(x)$ are called $\mathcal{N}(x)$

$$Ex. h = 5, m = 2, B(x) = [2,3]$$

$$\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix} \times * \begin{bmatrix} 0 \\ * \end{bmatrix} = \begin{bmatrix} * \\ * \end{bmatrix}$$

$$N(x) = \{1,2,...,n\} \setminus \beta^{(n)}$$

Facts about Simplex method

 $\min_{x} \quad c^{\top} x$
s.t. Ax = b

s.t. Ax = 0 $x \ge 0$

The Simplex method generates iterates that are BFP, and converge to a solution if

- 1) there are BFPs, and
- 2) one of them is a solution (Basic Optimal Point, BOP)

Theorem 13.2 (Fundamental theorem of Linear Programming): For standard form LP

- 1) If there is a feasible point, there is a BFP
- 2) If the LP has a solution, one solution is a BOP
- 3) If LP is feasible and bounded, there is a solution

Theorem 13.3: All vertices of the feasible polytope

$$\{x \mid Ax = b, \ x \ge 0\}$$

are BFPs (and all BFPs are vertices)

Facts about Simplex method, cont'd

Degeneracy: A LP is *degenerate* if there is a BFP x with $x_i = 0$ for some $i \in \mathcal{B}(x)$

Theorem 13.4: If an LP is bounded and non-degenerate, the Simplex method terminates at a BOP

LP KKT conditions (necessary&sufficient)

 $x \ge 0$

Simplex method iterates BFPs until one that fulfills KKT is found.

$$A^{T}\lambda + s = c,$$
 (KKT-1)
 $Ax = b,$ (KKT-2)
 $x \ge 0,$ (KKT-3)
 $s \ge 0,$ (KKT-4)
 $x_{i}s_{i} = 0, \quad i = 1, 2, ..., n$ (KKT-5)

• Each step is a move from a vertex to a neighboring vertex (one change in the basis), that decreases the objective

Simplex definitions
$$S(x) = \begin{cases} 2 \\ 3 \end{cases}$$

$$X \rightarrow B(x)$$

$$X = \begin{cases} 1 \\ 1 \end{cases} = \begin{cases} A_{11} \\ A_{21} \\ A_{21} \end{cases} = \begin{cases} A_{13} \\ A_{24} \\ A_{25} \end{cases} = \begin{cases} A_{11} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{24} \\ A_{25} \end{cases} = \begin{cases} A_{11} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{24} \\ A_{25} \end{cases} = \begin{cases} A_{11} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{24} \\ A_{25} \end{cases} = \begin{cases} A_{11} \\ A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{24} \\ A_{25} \end{cases} = \begin{cases} A_{11} \\ A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{24} \\ A_{25} \end{cases} = \begin{cases} A_{11} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{24} \\ A_{25} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{23} \\ A_{24} \\ A_{25} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{22} \\ A_{23} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = A_{22} \end{cases} = \begin{cases} A_{21} \\ A_{21} \\ A_{22} \end{cases} = A_{22$$

One step of Simplex-algorithm

$$KKT-2: AK = BX_B + NX_N = b \qquad (ok$$

$$kkT-3: X_B = B-1b \ge 0 / K_N = 0$$
 (ok)

$$\begin{bmatrix} S_{B} \\ S_{N} \end{bmatrix} + \begin{bmatrix} S_{B} \\ S_{N} \end{bmatrix}$$

$$A^T \lambda + s = c, (KKT-1)$$

$$\rightarrow Ax = b,$$
 (KKT-2)

$$x \ge 0,$$
 (KKT-3)

$$x \ge 0,$$
 $s \ge 0,$

$$x_i s_i = 0, \quad i = 1, \dots, n \text{ (KKT-5)}$$

Norwegian University of Science and Technology

One step of Simplex-algorithm

· Increase xq along Ax=b until

a component becomes zero.

To SN \$ 6: (Find news BFP)

Norwegian University of Science and Technology

 $A^T\lambda + s = c$,

(KKT-1)

Ax = b,

(KKT-2)

(KKT-3)

(KKT-4)

 $x \geq 0$,

 $s \geq 0$,

 $x_i s_i = 0, \quad i = 1, \dots, n \text{ (KKT-5)}$

o Choose one index qEN s.t. Sq KO

Norwegian University of Science and Technology

Check KKT-conditions for BFP

• Given BFP x, and corresponding basis $\mathcal{B}(x)$. Define

$$\mathcal{N}(x) = \{1, 2, \dots, n\} \backslash \mathcal{B}(x)$$

• Partition x, s and c:

$$x_B = [x_i]_{i \in \mathcal{B}(x)}$$
 $x_N = [x_i]_{i \in \mathcal{N}(x)}$

KKT conditions

KKT-2:
$$Ax = Bx_B + Nx_N = Bx_B = b$$
 (since x is BFP)
KKT-3: $x_B = B^{-1}b \ge 0$, $x_N = 0$ (since x is BFP)
KKT-5: $x^\top s = x_B^\top s_B + x_N^\top s_N = 0$ if we choose $s_B = 0$
KKT-1: $\begin{bmatrix} B^T \\ N^T \end{bmatrix} \lambda + \begin{bmatrix} s_B \\ s_N \end{bmatrix} = \begin{bmatrix} c_B \\ c_N \end{bmatrix} \Rightarrow \begin{cases} \lambda = B^{-T}c_B \\ s_N = c_N - N^T\lambda \end{cases}$
KKT-4: Is $s_N > 0$?

- If $s_N \ge 0$, then the BFP x fulfills KKT and is a solution
- If not, change basis, and try again
 - E.g. pick smallest element of s_N (index q), increase x_q along Ax=b until x_p becomes zero. Move q from $\mathcal N$ to $\mathcal B$, and p from $\mathcal B$ to $\mathcal N$. This guarantees decrease of objective, and no "cycling" (if non-degenerate).

Ex. 13.1

$$\begin{array}{lll}
\text{Min} & -4 \, k_1 - 2 \, k_2 \\
\text{Kell'} & & \\
\text{S.A.} & & \\
& & \\
2 \, k_1 + k_2 \leq 5 \\
2 \, k_1 + \frac{1}{2} \, k_2 \leq 8
\end{array}$$

$$x_1 \geqslant \delta$$
, $x_2 \geqslant \delta$

Standard form:

min

$$x \in \mathbb{R}^{4}$$

 $s.t.$ $X_{1} + X_{2} + X_{3} = S$
 $2X_{1} + \frac{1}{2}X_{2} + X_{4} = S$
 $X_{1} \ge 0$, $X_{2} \ge 0$, $X_{3} \ge 0$, $X_{4} \ge 0$

$$C = \begin{bmatrix} -47 \\ -28 \\ 8 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 8 \\ 2 & \frac{1}{2} & 6 & 1 \end{bmatrix}, b = \begin{bmatrix} 57 \\ 8 \end{bmatrix}$$

initial
$$X = \begin{pmatrix} 8 \\ 6 \\ 5 \end{pmatrix}$$
 = fecusible $A = \begin{pmatrix} 8 \\ 6 \\ 5 \end{pmatrix}$ $A =$

Ex. 13.1, first iteration

$$B = \{3, 4\}, \mathcal{N} = \{1, 2\}$$

$$X_{B} = B^{-1}b = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$

$$\lambda = (3^{7})^{-1}c_{B} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} \end{bmatrix}$$

$$\lambda = (3^7)^{-1} c_B = \begin{bmatrix} 1 & 0 \\ 8 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 8 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = S_N = \begin{pmatrix} N - N^T \end{pmatrix} = \begin{bmatrix} -4 \\ -2 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1 & 0.5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$
 ($\Rightarrow 0$!)

- · pick smallest element of SW: S,=-4 + q=1
- · Let 9=1 enter B (leaving N)
- · Increase X, while Ax=b. Xy becomes Zero Fist.
- · help= Y leave B and enter N.
- Norwegian University of Science and Technology

 $c^{\top} = \begin{pmatrix} -4 & -2 & 0 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & .5 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$

 $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 1 \\ 2 & 0.5 \end{bmatrix}$

Ex. 13.1, second iteration $c^{T} = \begin{pmatrix} -4 & -2 & 0 & 0 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & .5 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$

$$\mathcal{B} = \{1,3\}, \quad \mathcal{N} = \{2,4\}$$

$$\mathcal{B} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \quad \mathcal{N} = \begin{bmatrix} 1 \\ 2 & 1 \end{bmatrix}$$

$$\chi_{N} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \chi_{B} = \begin{bmatrix} \chi_{1} \\ \chi_{3} \end{bmatrix} = \begin{bmatrix} 3^{-1} b = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

$$\chi_{N} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \chi_{B} = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

$$S_2 = -1 \leq \sigma + q = 2$$

Ex. 13.1, third iteration

$$c^{\top} = \begin{pmatrix} -4 & -2 & 0 & 0 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & .5 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$$

Example 13.1 – figure

Linear algebra – LU factorization

- Two linear systems must be solved in each iteration:
 - $B^{\top}\lambda = c_B$
 - $Bd = A_q$ (to find the direction to check when increasing x_q)
 - We also have $Bx_B = b$. Since x_B is not needed in the iterations, we don't need to solve this (apart from in the final iteration)
 - This is the major work per iteration of simplex, efficiency is important!
- B is a general, non-singular matrix
 - Guaranteed a solution to the linear systems
 - LU factorization is the appropriate method to use (same for both systems)
 - Don't use matrix inversion!
- In each step of Simplex method, one column of B is replaced:
 - Can update ("maintain") the LU factorization of B in a smart and efficient fashion
 - No need to do a new LU factorization in each step, save time!

Starting the Simplex method

- We assumed an initial BFP available but finding this is as difficult as solving the LP
- Normally, simplex algorithms have two phases:
 - Phase I: Find BFP
 - Phase II: Solve LP
- Phase I: Design other LP with trivial initial BFP, and whose solution is BFP for original problem

$$\min e^{\top} z$$
 subject to $Ax + Ez = b$, $(x, z) \ge 0$

$$e = (1, 1, \dots, 1)^{\top}, \quad E \text{ diagonal matrix with } \begin{cases} E_{jj} = 1 \text{ if } b_j \ge 0 \\ E_{jj} = -1 \text{ if } b_j < 0 \end{cases}$$

Other practical implementation issues (Ch. 13.5)

- Selection of "entering index" q
 - Dantzig's rule: Select the index of the most negative element in s_N
 - Other rules have proved to be more efficient in practice
- Handling of degenerate bases/degenerate steps (when increasing x_q is not possible)
 - If no degeneracy, each step leads to decrease in objective and convergence in finite number of iterations is guaranteed (Thm 13.4)
 - Degenerate steps lead to no decrease in objective. Not necessarily a problem, but can lead to cycling (we end up in the same basis as before)
 - Practical algorithms use perturbation strategies to avoid this

- Presolving (Ch. 13.7)
 - Reducing the size of the problem before solving, by various tricks to eliminate variables and constraints. Size reduction can be huge. Can also detect infeasibility.

Simplex complexity

- Typically, at most 2m to 3m iterations
- Worst case: All vertices must be visited (exponential complexity in n)
- Compare interior point method: Guaranteed polynomial complexity, but in practice hard to beat simplex on many problems

Simplex – an active set method

- Active set methods (such as simplex method):
 - Are iterative algorithms: Needs a starting point, and iterates several steps before it (hopefully) ends up in a solution: a point that fulfills the KKT conditions
 - Maintains explicitly an estimate of the set of inequality constraints that are active at the solution (the set N for the simplex method)
 - Makes small changes to the set in each iteration (a single index in simplex)
- Next time: Active set method for QP