

Parasite infection mediates intergenerational DNA methylation in the three-spined stickleback (Gasterosteus aculeatus)

¹Queen Mary University of London, UK; ² National and Kapodistrian University of Athens, Greece; ³ University College Cork, Ireland; ⁴ Marine Institute, Newport, Ireland; ⁵ Smithsonian Tropical Research Institute, Panama; ⁶ Leibniz Centre for Tropical Marine Research, Germany

- 1. Paternal infection by the nematode $Camallanus\ lacustris$ is associated with increased selection in offspring but also increased tolerance upon infection 1
- 2. Genome-wide DNA methylation patterns differ between infected and control fish, demonstrating the link between infection and DNA methylation²

Can parental DNA methylation induced by the infection be transmitted to the next generation, and is it an underlying mechanism of the observed phenotypic differences?

Material & methods

- Methylome sequencing: **Reduced Representation Bisulfite Sequencing** single-end reads of 100bp long, Illumina HiSeq 2500. Alignment on a European gynogen genome³ and methylation call with BSBolt. Downstream analyses with Methylkit
- Positional methylation:
- -Is the methylation pattern affected by paternal/offspring treatment?
- Differential methylation:
- -Which are the specific differences between paternal/offspring treatment groups?
- -Can we correlation theses positions with the phenotype?
- Link methylation and phenotype:
- -PCA of methylation values at sites which are differentially methylated in at least 4 out of 8 brother pairs
- -Extract first and second axes
- -Linear model of Body condition index explained by: PCA1 * PCA2 * Number of worms * Paternal treatment

1. DNA methylation profiles cluster by genetic background

3. Specific methylated sites linked with paternal infection are associated with genes related to immunity and transcription

¹Kaufmann, J., Lenz, T. L., Milinski, M., & Eizaguirre, C. (2014). Experimental parasite infection reveals costs and benefits of paternal effects. Ecology Letters; ²Sagonas, K., Meyer, B. S., Kaufmann, J., Lenz, T. L., Häsler, R., & Eizaguirre, C. (2020). Experimental parasite infection causes genome-wide changes in DNA methylation. Molecular Biology and Evolution; ³Thornburn et al., in prep.

2. Methylation is more affected by the paternal infection than by the offspring infection itself

4. Body condition correlates with methylation at certain positions, in different directions depending on the paternal treatment

This project is funded by the Marie Skłodowska-Curie Actions number 101026703
"EPI-TRADEOFF"