POSTERSESSION 1 Foyer G

The structure of impurity hydrogen and Ti³⁺ ions in rutile TiO₂ P.471

ARIST, BTAIYO YUDEN CO., LTD., CDept. Mater. Sci. Eng., Tokyo Tech, Dept. of Phys., Univ. of Tokyo Kanako Yoshizawa^A, Yoshiki Iwazaki^B, Yoshihiro Gohda^C, Shinji Tsuneyuki^D

Introduction

- TiO₂: photocatalysis, photosensitized solar cells, memristors, and so on → notable material
- Excess electrons in rutile TiO₂ → small polarons cause) reduction, oxygen vacancy (V_{O}) , impurity hydrogen (H), and so on The electrons can localize at Ti 3d orbitals, forming Ti³⁺ ions electron localization → local lattice distortions → small polarons
 - The optical absorption doped with Nb and other impurities V. N. Bogomolov and D. N. Mirlin, Phys. Status Solidi 27, 443 (1968).
 - Electron Paramagnetic Resonance (EPR)
 - S. Yang, L. E. Halliburton, A. Manivannan, P. H. Bunton, D. B. Baker, M. Klemm, S. Horn, and A. Fujishima, Appl. Phys. Lett. **94**, 162114 (2009).
 - DFT calculations
 - A. Janotti, C. Franchini, J. B. Varley, G. Kresse, and C. G. Van de Walle, Phys. Status Solidi RRL 7, 199 (2013).
- How can small polarons be described by DFT calculations in rutile TiO₂ with H? Where is the spin density located?
- Muon spin rotation (µSR) K. Shimomura, R. Kadono, A. Koda, K. Nishiyama, and M. Mihara, Phys. Rev. B 92, 075203 (2015).
 - → hyperfine parameters

We also calculate the parameters and evaluate the excess electron states by the comparison with µSR.

RIST

DFT calculations

TiO₂ (perfect crystal) + H

 TiO_2 : 216 atoms (3x3x4 supercell) H: 1 atom k-points: gamma only exchange-correlation (xc) functional: HSE

The spin density for a localized electron in Ti site exists and it is verified that the excess electrons are described as localized small polarons by DFT calculation.

hyperfine parameters

gyromagnetic ratio $\gamma = 135.53 \text{ MHz T}^{-1} \text{ (muon)}$

[MHz]	Axx	Ayy	Azz	hyperfine parameters has non-zero
Н	-12.349	-9.136	22.243	(anisotropy)

Optimization for different initial structures

The position of the spin density depends on the initial structure.

(c)

(a)∼ (c) have almost the same energy.

hyperfine parameters

gyromagnetic ratio $\gamma = 135.53 \text{ MHz T}^{-1} \text{ (muon)}$

[MHz]	Axx	Ayy	Azz
Н	-15.231	-13.761	26.074

[MHz]	Axx	Ayy	Azz
Н	-0.201	-0.121	0.386
(c)			

		/ \//	, vy y	/ \
	Н	-3.921	-1.810	6.612
·				
,	/ / /	4.1	166 4	

(a) \sim (c) have the different parameters → different Ti³⁺ site

O Position of the spin density

previous study TiO₂ (perfect crystal) + an electron energy barrier Ti3+1 (meV) 20 energy barrier of 0.03 eV 0.25 0.75 0.5 Coordinate along (001) in units of *c* A. Janotti, C. Franchini, J. B. Varley, G.

Kresse, and C. G. Van de Walle, Phys. Status Solidi RRL 7, 199 (2013). The position of the spin density

depends on the initial structure.

TiO₂ (perfect crystal) + H Electrostatic potential O-H bonding

easy to make O-H (H⁺)

H⁺ does not like the neighborhood of Ti³⁺ site with shallow potential.

Muon spin rotation (µSR)

hyperfine parameters

K. Shimomura, R. Kadono, A. Koda, K. Nishiyama, and M. Mihara, Phys. Rev. B **92**, 075203 (2015).

Mu	A ₁ (MHz)	A_2 (MHz)	A ₃ (MHz)	ϕ_0 (deg)
$\overline{A_{\perp}(\phi)}$	-1.29(6)	+1.29(6)	_	25.5(1.4)
$A_{\parallel}(heta)$	_	_	-0.17(2)	_
Н	$-1.276(3)^*$	$+1.961(3)^*$	$-1.076(3)^*$	22.1

Interstitial Mu forms a hydroxyl base (OH⁻) with an unpaired electron loosely bound to the nearby Ti ion, comprising a Ti-O-Mu complex state in rutile TiO₂.

A comparison between DFT calculation and µSR

- The two are qualitatively the same. (The hyperfine parameters has anisotropy.)
- The Ti³⁺ site may be different
- DFT calculation suggest that the Ti³⁺ site differ depending on the measured TiO₂ crystal (material).

Summary

DFT calculations for excess electrons in rutile TiO₂

- H is hard to be located in the neighborhood of Ti³⁺ site.
- If it's possible to get over the energy barrier, it follows the same structure as μSR.
- DFT calculation suggest that the Ti³⁺ site depends on the TiO₂ crystal.