Anomaly detection algorithms in Scikit-Learn

Nicolas Goix

Supervision: Alexandre Gramfort

Institut Mines-Télécom, Télécom ParisTech, CNRS-LTCI

OSI day, Oct 2015

1 What is Anomaly Detection?

2 Isolation Forest algorithm

Anomaly Detection (AD)

What is Anomaly Detection?

"Finding patterns in the data that do not conform to expected behavior"

Huge number of applications: Network intrusions, credit card fraud detection, insurance, finance, military surveillance,...

Machine Learning context

Different kind of Anomaly Detection

- Supervised AD
 - Labels available for both normal data and anomalies
 - Similar to rare class mining
- Semi-supervised AD (Novelty Detection)
 - Only normal data available to train
 - The algorithm learns on normal data only
- Unsupervised AD (Outlier Detection)
 - no labels, training set = normal + abnormal data
 - Assumption: anomalies are very rare

Important litterature in Anomaly Detection:

- statistical AD techniques
 fit a statistical model for normal behavior
 ex: EllipticEnvelope
- density-based
 - ex: Local Outlier Factor (LOF) and variantes (COF ODIN LOCI)
- Support estimation OneClassSVM MV-set estimate
- high-dimensional techniques: Spectral Techniques -Random Forest - Isolation Forest

What is Anomaly Detection?

2 Isolation Forest algorithm

Idea:

Liu Tink Zhou icdm2008

(a) Isolating x_i

(b) Isolating x_o

nb. of tree (log scale)

IsolationForest.fit(X)

IsolationForest

Inputs: X, n_estimators, max_samples

Output: Forest with:

- # trees = n_estimators
- sub-sampling size = max_samples
- maximal depth max_depth = int(log₂ max_samples)

Complexity: O(n_estimators max_samples log(max_samples))

default: n_estimators=100, max_samples=256

IsolationForest.predict(X)

Finding the depth in each tree

```
depth(Tree, X):
    # - Finds the depth level of the leaf node
    # for each sample x in X.
# - Add average_path_length(n_samples_in_leaf)
# if x not isolated
```

$$\textit{score}(\textit{x},\textit{n}) = 2^{-\frac{E(\textit{depth}(\textit{x}))}{c(\textit{n})}}$$

Complexity: O(n_samples n_estimators log(max_samples))

What is Anomaly Detection?

2 Isolation Forest algorithm

- code example:
 - >> from sklearn.ensemble import IsolationForest
 - >> IF = IsolationForest()
 - >> IF. fit (X_train) # build the trees
 - >> IF.predict(X_{test}) # find the average depth
- plotting decision function:

n_samples_normal = 150
n_samples_outiers = 50

n_samples_normal = 150
n_samples_outiers = 50

Thanks!