

Prueba Bimestral ii Matemáticas 11°

Germán Avendaño Ramírez Lic. Matemáticas U.D., M.Sc. U.N.

Responda las preguntas en el cuadro de respuestas rellenando el óvalo completamente.

Debe hacer sus procedimientos en una hoja aparte.

Nombres:	, curso:_	, fecha:_	
Responda las preguntas 1 a 3 de acuerdo con la siguiente información			

1. El siguiente gráfico representa la posición respecto al tiempo de un cuerpo durante 12 segundos. El movimiento en tres intervalos de 4 segundos cada uno.

Respecto al movimiento realizado por el cuerpo en el intervalo de 4 a 8 segundos, podemos afirmar que

- A. el cuerpo parte de la posición 4 y recorre con velocidad constante 8 metros.
- B. el cuerpo permanece en reposo, ya que mantiene la misma posición, mientras transcurren los 4 segundos.
- C. el cuerpo cambia la dirección del movimiento y recorre 4 metros más en una superficie plana.
- D. el cuerpo recorre 4 metros con velocidad constante en 8 segundos.
- 2. Según la gráfica, se puede inferir que la velocidad del cuerpo en el transcurso de 8 a 12 segundos fue negativa, lo cual indica que
 - A. el cuerpo disminuyó la velocidad que venía manteniendo en el intervalo de 4 a 8 segundos.
 - B. el cuerpo se devolvió seis metros más, desde el punto de partida.
 - C. el cuerpo redujo el espacio recorrido durante los cuatro segundos respecto a los intervalos anteriores.
 - D. el cuerpo recorrió la misma distancia, pero empleó más tiempo que en los intervalos anteriores.
- 3. En el intervalo de 12 a 16 segundos se produjo un movimiento representado por la función: $f(t) = \frac{3}{4}t 15$. La interpretación de este movimiento realizado por el cuerpo es
 - A. el cuerpo recorrió tres metros durante los cuatro segundos
 - B. el cuerpo incrementó su velocidad en 5 metros por cada segundo
 - C. el cuerpo retrocedió 15 metros durante el intervalo de tiempo.
 - D. el cuerpo disminuyó su velocidad en dos metros durante los cuatro segundos.
- 4. Sean
 - **P** la gráfica de la función $y = x^2 2x + 3$
 - **Q** la gráfica de la función $y = x^2 + 2x + 1$

Considere las siguientes afirmaciones suponiendo que P y Q están trazadas en el mismo sistema de coordenadas

I \mathbf{P} y \mathbf{Q} coinciden

IV ${f P}$ está más arriba que ${f Q}$

II ${f P}$ está a la izquierda de ${f Q}$

V **P** está más abajo que **Q**

III ${\bf P}$ está a la derecha de ${\bf Q}$

De las anteriores afirmaciones es o son verdaderas

A. sólo I $\,$ B. II y V $\,$ C. II y IV $\,$ D. III y IV

5. Una compañía de taxis cobra una tarifa de \$3.000 por el primer kilómetro o fracción de kilómetro recorrida y \$1.000 por cada kilómetro o fracción adicional. ¿Cuál de las siguientes gráficas representa la relación entre el costo de un viaje y y el número de kilómetros recorridos x?

6. Una recta que **no** intercepta al eje \mathbf{x} en el punto x=2 tiene por ecuación (recuerde que sobre el eje x, y vale 0)

A.
$$x - 2y = 4$$

B.
$$3x + y - 6 = 0$$

C.
$$x - 3y = 2$$

D.
$$5x - 4y = 10$$

7. Una raíz real de una función f es un número real r que satisface f(r) = 0. Observando las siguientes gráficas, de las raíces de las funciones f, g y h se puede afirmar que

- A. f y h tienen una raíz real en común
- B. g tiene cuatros raíces reales

- C. f y g tienen una raíz real en común
- D. h tiene una raíz real
- 8. Se dice que una función f es creciente si $f(x_1) < f(x_2)$ siempre que $x_1 < x_2$ para números reales cualesquiera x_1 y x_2 . Entre las siguientes gráficas, la que representa una función creciente es

9. Observe las gráficas de las funciones f y g que se presentan a continuación.

De las siguientes afirmaciones

IV f y g interceptan el eje x en un único punto

I f(4) = g(4) = 0II $f \neq g$ tienen el mismo dominio III f(t) > g(t)

V g(x) > f(x) para todo x en el intervalo [-4, 4]

Es o son verdaderas

A. I y II B. II y IV C. solamente II D. solamente IV

10. Sea $f(x) = \frac{x+2}{2x}$. Considere las siguientes afirmaciones:

$$I f(x) = 0 \text{ sólo si } x = -2$$

III
$$f(3x) = 3f(x)$$

II
$$f(x+1) = f(x) + \frac{1}{2}$$

IV Si
$$f(x) = 1$$
, entonces $x = 2$

De las anteriores afirmaciones son verdaderas

La probabilidad de un evento, se calcula así:

$$P(A) = \frac{\text{número de veces que ocurre A}}{\text{número de elementos del espacio muestral}}$$

11. Al lanzar una vez un par de dados, la probabilidad de que salgan dos números consecutivos es:

A.
$$\frac{10}{21}$$
 B. $\frac{5}{21}$ C. $\frac{10}{36}$ D. $\frac{5}{36}$

12. En una bolsa se tienen 3 bolas rojas, 4 bolas blancas y 4 bolas azules. Se saca una bola al azar y ésta es de color azul. Si esta bola no se devuelve a la urna, ahora es más probable sacar al azar una bola _____ que una bola

13. Un grupo de estudiantes construyó una ruleta. Después de jugar todo el día con ella y registrar los resultados, concluyó que la mayoría de las veces se detuvo en un número par y en pocas ocasiones en una región sombreada.

¿Cuál fue la ruleta construída por los estudiantes?

- 14. En el noticiero de la noche anterior se anunció que había un $20\,\%$ de probabilidades de que lloviera y en realidad no llovió. Con relación a la afirmación del noticiero, usted diría no llovió porque:
 - A. era uno de los sucesos posibles y era el que tenía mayor probabilidad. Habría error si se dijera que la probabilidad era del 100% y no sucediera lo que se predecía.
 - B. es un error cuantificar la ocurrencia de un fenómeno del cual no se conocen todas las variables que lo determinan.
 - C. la probabilidad sólo mide la posibilidad de ocurrencia de un suceso, más no la certeza de su ocurrencia.
 - D. tal vez los que calcularon el dato se equivocaron o el periodista se equivocó y leyó un $20\,\%$ de probabilidades de que lloviera cuando era un $20\,\%$ de probabilidades de que no lloviera.

La siguiente gráfica muestra la relación entre la velocidad de un molino y el tiempo de fun-cionamiento en un día.

- 15. El molino aumentó más rápidamente su velocidad entre
 - A. la hora 2 y la hora 3
 - B. 3 y la hora 3,5
 - C. 3,5 y la hora 4,5
 - D. 4,5 y la hora 6

