

Laboratório 1 Assembly MIPS

Prof. Gustavo Girão

Plano de aula

 Nessa aula de laboratório, você será introduzido ao ambiente de programação MARS no qual você desenvolverá programas em linguagem assembly MIPS.

 Para fazer o download do MARS, acessar: http://courses.missouristate.edu/KenVollmar/MARS/

CONHECENDO O SIMULADOR

- Faça o download do arquivo lab1.asm no SIGAA
- Abra o simulador MARS e o arquivo lab1.asm
 (File...Open)
- Você poderá visualizar e editar o programa em assembly na aba Edit
- Você poderá visualizar a simulação do programa, acompanhando o comportamento das memórias, do banco de registradores e a sequência de execução, na aba **Execute**
- Para iniciar a simulação, clique no botão

- Com o programa aberto, responda as seguintes questões:
- Qual o endereço de memória da primeira instrução?
- 2. Qual o endereço de memória da segunda e da terceira instruções?
- 3. Por que o endereço de cada instrução tem um diferença de 4 unidades entre 1 e o outro?

- 4. Qual o valor armazenado no registrador PC?
- 5. O que representa esse valor?
- 6. Existe algum outro registrador com valores? Quais?

 Para simular o programa, você irá utilizar o painel de simulação

- O botão serve para simular a execução do seu programa inteiro. O simulador só irá parar ao finalizar a execução
- O botão serve para simular a execução passo a passo. Assim, você poderá acompanhar a execução.

- Inicie a simulação em apenas UMA etapa, utilizando o botão
- Responda as seguintes quesões:
- 7. O que aconteceu com o registrador PC?
- 8. Algum outro registrador mudou de valor? Qual? Qual o valor?

- Simule mais uma etapa e responda:
- 9. Qual o novo valor do PC?
- 10. Algum outro registrador mudou de valor? Qual? Qual o valor?

• Simule uma terceira etapa e responda:

11. O que esse programa faz?

12. O que acontece se você tentar mais uma etapa?

CONHECENDO A MEMÓRIA DE DADOS

Memória de dados

- Abra o programa lab2.asm
- 🚿 , observe a memória "Assemble" o programa de dados e responda as questões.
- Dica: para ajudar a entender a memória de dados, é possível mudar a exibição dos valores entre hexadecimal, decimal ou ASCII, no menu abaixo da memória.

Memória de dados

- 13. Cada célula de memória contém quantos bytes?
- 14. Qual o tamanho em byte dos valores das declarações:
- a. .byte 4,3,2,1
- b. .half 8,7,6,5
- c. .word 1,2,3,4
- d. .asciiz "EFG"

Memória de dados

No menu **Execute**, procure o painel Labels e responda:

- 15. Quais os labels que aparecem no painel?
- 16. O que significam esses labels?
- 17. Além do label, o painel mostra uma segunda coluna. O que tem nessa coluna?

Bibliografia

• PATTERSON, D. A. & HENNESSY, J. L.

Organização e Projeto de Computadores – A Interface Hardware/Software. 3º ed. Campus, CAPÍTULO 2

MIPS Assembly Language

http://www.inf.unikonstanz.de/dbis/teaching/ws0304/computingsystems/download/rs-05.pdf

Introdução Curta ao MIPS http://www.di.ubi.pt/~desousa/2011-2012/LFC/mips.pdf