Матрично-векторное дифференцирование. Линейный поиск

Семинар

Оптимизация для всех! ЦУ

₩ C Ø

Напоминание с лекции

Вспоминаем теорию. Дифференциал

• Дифференциал $df(x)[\cdot]:U\to V$ в точке $x\in U$ для $f(\cdot):U\to V$:

$$f(x+h) - f(x) = \underbrace{df(x)[h]}_{\text{дифференциал}} + \overline{o}(||h||)$$

$U \to V$	\mathbb{R}	\mathbb{R}^n	$\mathbb{R}^{n imes m}$
\mathbb{R}	f'(x)dx	$\nabla f(x)dx$	$\nabla f(x)dx$
\mathbb{R}^n	$ \nabla f(x)^T dx tr(\nabla f(X)^T dX) $	J(x)dx	_
$\mathbb{R}^{n imes m}$	$tr(\nabla f(X)^T dX)$	_	_

Вспоминаем теорию. Дифференциал

• Дифференциал $df(x)[\cdot]:U\to V$ в точке $x\in U$ для $f(\cdot):U\to V$:

$$f(x+h)-f(x)=\underbrace{df(x)[h]}_{\text{дифференциал}}+\overline{o}(||h||)$$

• Каноническая форма дифференциала:

U o V	\mathbb{R}	\mathbb{R}^n	$\mathbb{R}^{n imes m}$
\mathbb{R}	f'(x)dx	$\nabla f(x)dx$	$\nabla f(x)dx$
\mathbb{R}^n		J(x)dx	_
$\mathbb{R}^{n imes m}$	$tr(\nabla f(X)^T dX)$		-

Вспоминаем теорию. Правила дифференцирования

• Полезные правила дифференцирования и стандартные производные:

Правила дифференцирования	Производные стандартных функций	
dA = 0	$d(\langle A, X \rangle) = \langle A, dX \rangle$	
$d(\alpha X) = \alpha(dX)$	$d(\langle Ax, x \rangle) = \langle (A + A^T)x, dx \rangle$	
d(AXB) = A(dX)B	$d(Det(X)) = Det(X)\langle X^{-T}, dX \rangle$	
d(X+Y) = dX + dY	$d(X^{-1}) = -X^{-1}(dX)X^{-1}$	
$d(X^T) = (dX)^T$		
d(XY) = (dX)Y + X(dY)		
$d(\langle X, Y \rangle) = \langle dX, Y \rangle + \langle X, dY \rangle$		
$d\left(\frac{X}{\phi}\right) = \frac{\phi dX - (d\phi)X}{\phi^2}$		

Вспоминаем теорию. Дифференциал и градиент / гессиан

Градиент можно найти по следующей формуле:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Вспоминаем теорию. Дифференциал и градиент / гессиан

Градиент можно найти по следующей формуле:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Тогда, если у нас есть дифференциал в форме выше и мы хотим вычислить вторую производную матричной/векторной функции, мы рассматриваем "старый" dx как константу dx_1 , затем вычисляем $d(df) = d^2 f(x)$

Вспоминаем теорию. Дифференциал и градиент / гессиан

Градиент можно найти по следующей формуле:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Тогда, если у нас есть дифференциал в форме выше и мы хотим вычислить вторую производную матричной/векторной функции, мы рассматриваем "старый" dx как константу dx_1 , затем вычисляем $d(df) = d^2 f(x)$

$$d^2f(x) = \langle \nabla^2 f(x) dx_1, dx \rangle = \langle H_f(x) dx_1, dx \rangle$$

• Методы локализации решения:

- Методы локализации решения:
 - Метод дихотомии

- Методы локализации решения:
 - Метод дихотомии
 - Метод золотого сечения

- Методы локализации решения:
 - Метод дихотомии
 - Метод золотого сечения
- Неточный линейный поиск:

- Методы локализации решения:
 - Метод дихотомии
 - Метод золотого сечения
- Неточный линейный поиск:
 - Условие достаточного убывания

- Методы локализации решения:
 - Метод дихотомии
 - Метод золотого сечения
- Неточный линейный поиск:
 - Условие достаточного убывания
 - Условия Гольдштейна

- Методы локализации решения:
 - Метод дихотомии
 - Метод золотого сечения
- Неточный линейный поиск:
 - Условие достаточного убывания
 - Условия Гольдштейна
 - Условие ограничения на кривизну

♥ ი భ

- Методы локализации решения:
 - Метод дихотомии
 - Метод золотого сечения
- Неточный линейный поиск:
 - Условие достаточного убывания
 - Условия Гольдштейна
 - Условие ограничения на кривизну
 - Идея заключается в использовании бэктрекинга для нахождения шага, удовлетворяющего условию Армихо.

େ ଚ 🕈

Задачи на матрично-векторное дифференцирование

Матрично-векторное дифференцирование. Задача 1

Найдите $\nabla f(x)$, если $f(x) = \frac{1}{2} x^T A x + b^T x + c.$

Матрично-векторное дифференцирование. Задача 2

i Example

Найдите $\nabla f(X)$, если $f(X) = tr(AX^{-1}B)$

Матрично-векторное дифференцирование. Задача 3

i Example

Найдите градиент $\nabla f(x)$ и гессиан $\nabla^2 f(x)$, если $f(x) = \frac{1}{3} \|x\|_2^3$

Примеры линейного поиска

Линейный поиск. Пример 1: Сравнение методов (Colab 4)

$$f_1(x) = x(x-2)(x+2)^2 + 10$$

$$[a,b] = [-3,2]$$

Случайный поиск: 72 вызова функции. 36 итераций. $f_1^*=0.09$ Метод дихотомии: 23 вызова функции. 13 итераций. $f_1^*=10.00$ Золотое сечение: 19 вызова функции. 18 итераций. $f_1^*=10.00$ Параболический поиск: 20 вызова функции. 17 итераций.

Рис. 1: Сравнение различных методов линейного поиска с f_1

⇔ରଡ

Линейный поиск. Пример 2: Сравнение методов (Colab 4)

$$f_2(x) = -\sqrt{\frac{2}{\pi}} \frac{x^2 e^{-\frac{x^2}{8}}}{8}$$
$$[a, b] = [0, 6]$$

Случайный поиск: 68 вызова функции. 34 итераций. $f_2^*=0.71$ Метод дихотомии: 23 вызова функции. 13 итераций. $f_2^*=0.71$ Золотое сечение: 20 вызова функции. 19 итераций. $f_2^*=0.71$ Параболический поиск: 17 вызова функции. 14 итераций. $f_2^*=0.71$

Рис. 2: Сравнение различных методов линейного поиска с f_2

⊕ ი ⊘

Линейный поиск. Пример 3: Сравнение методов (Colab 4)

$$f_3(x) = \sin\left(\sin\left(\sin\left(\sqrt{\frac{x}{2}}\right)\right)\right)$$

$$[a,b] = [5,70]$$

Random search: 66 function calls. 33 iterations. $f_3^*=0.25$ Метод дихотомии: 32 вызова функции. 17 итераций. $f_3^*=0.25$ Золотое сечение: 25 вызова функции. 24 итераций. $f_3^*=0.25$ Параболический поиск: 103 вызова функции. 100 итераций. $f_2^*=0.25$

Рис. 3: Сравнение различных методов линейного поиска с f_3

⊕ ი ⊘

Параболическая интерполяция + Золотое сечение
 Метод Брента

Рис. 4: Идея метода Брента

- Параболическая интерполяция + Золотое сечение = Метод Брента
- Основная идея метода заключается в отслеживании значения оптимизируемой скалярной функции в шести точках $a,\ b,\ x,\ w,\ v,\ u$

Рис. 4: Идея метода Брента

େ ଚ

- Параболическая интерполяция + Золотое сечение = Метод Брента
- Основная идея метода заключается в отслеживании значения оптимизируемой скалярной функции в шести точках $a,\ b,\ x,\ w,\ v,\ u$
- ullet [a,b] интервал локализации в текущей итерации

Рис. 4: Идея метода Брента

- Параболическая интерполяция + Золотое сечение
 Метод Брента
- Основная идея метода заключается в отслеживании значения оптимизируемой скалярной функции в шести точках $a,\ b,\ x,\ w,\ v,\ u$
- ullet [a,b] интервал локализации в текущей итерации
- Точки x, w и v такие, что выполняется неравенство $f(x) \leqslant f(w) \leqslant f(v)$

Рис. 4: Идея метода Брента

- Параболическая интерполяция + Золотое сечение
 Метод Брента
- Основная идея метода заключается в отслеживании значения оптимизируемой скалярной функции в шести точках $a,\ b,\ x,\ w,\ v,\ u$
- ullet [a,b] интервал локализации в текущей итерации
- Точки x, w и v такие, что выполняется неравенство $f(x) \leqslant f(w) \leqslant f(v)$
- u минимум параболы, построенной на точках x, w и v, или точка золотого сечения наибольшего из отрезков[a,x] и [x,b].

Рис. 4: Идея метода Брента

Парабола строится только если точки $x,\ w$ и v различны, и ее вершина u^* берется как точка u только если

 $\bullet \ u^* \in [a,b]$

Рис. 5: Пример работы метода Брента

Парабола строится только если точки $x,\ w$ и v различны, и ее вершина u^* берется как точка u только если

- $u^* \in [a,b]$
- u^* не более половины длины шага, предшествующего предыдущему, от точки x

Рис. 5: Пример работы метода Брента

Парабола строится только если точки $x,\ w$ и v различны, и ее вершина u^* берется как точка u только если

- $u^* \in [a, b]$
- u^* не более половины длины шага, предшествующего предыдущему, от точки x
- Если условия выше не выполняются, то точка u находится из золотого сечения

Рис. 5: Пример работы метода Брента

Парабола строится только если точки $x,\ w$ и v различны, и ее вершина u^* берется как точка u только если

- $u^* \in [a, b]$
- u^* не более половины длины шага, предшествующего предыдущему, от точки x
- Если условия выше не выполняются, то точка u находится из золотого сечения
- Пример в Colab 弗

Рис. 5: Пример работы метода Брента

