FORMULAE LIST

Std. XI FORMULAE

TRIGONOMETRY

1.
$$\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$$
; $\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$

$$\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}}$$
; $\cot \theta = \frac{\text{Adjacent}}{\text{Opposite}}$

$$\sec \theta = \frac{\text{Hypotenuse}}{\text{Adjacent}}$$
; $\csc \theta = \frac{\text{Hypotenuse}}{\text{Opposite}}$

2.
$$\sin\theta = \frac{1}{\cos \sec \theta}$$
 ; $\csc\theta = \frac{1}{\sin \theta}$

$$\cos\theta = \frac{1}{\sec\theta}$$
 ; $\sec\theta = \frac{1}{\cos\theta}$

$$\tan\theta = \frac{1}{\cot\theta}$$
 ; $\cot\theta = \frac{1}{\tan\theta}$

3.
$$\sin(90^{\circ} - \theta) = \cos \theta$$
 ; $\cos(90^{\circ} - \theta) = \sin \theta$
 $\tan(90^{\circ} - \theta) = \cot \theta$; $\cot(90^{\circ} - \theta) = \tan \theta$
 $\sec(90^{\circ} - \theta) = \csc \theta$; $\csc(90^{\circ} - \theta) = \sec \theta$

4.

	0°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8

2 98208 56065/ 98202 93318

5. Fundamental Identities:

(a)
$$\sin^2 \theta + \cos^2 \theta = 1$$

(b)
$$\sec^2 \theta - \tan^2 \theta = 1$$

(c)
$$\sec \theta + \tan \theta = \frac{1}{\sec \theta - \tan \theta}$$

(d)
$$\csc^2 \theta - \cot^2 \theta = 1$$

(e)
$$\csc \theta + \cot \theta = \frac{1}{\csc \theta - \cot \theta}$$

Note: $\sin^2\theta = (\sin\theta)^2 \neq \sin(\theta^2)$

6. (a)
$$1^{\circ} = 60'$$
 (minutes)

(b)
$$1' = 60''$$
 (seconds)

7. (a)
$$1^{\circ} = \left(\frac{\pi}{180}\right)^{c}$$

(b)
$$1^{c} = \left(\frac{180}{\pi}\right)^{o}$$

Note:

8. (a) length of arc =
$$s = r\theta$$

(b) area of sector
$$= A = \frac{1}{2}r^2\theta$$

where θ is in radians

(c) Perimeter of sector =
$$2r + r\theta = r(2 + \theta)$$

(b)
$$\cos(n\pi) = (-1)^n$$

(c)
$$\sin \left[(2n+1)\frac{\pi}{2} \right] = (-1)^n$$

(d)
$$\cos \left[(2n+1)\frac{\pi}{2} \right] = 0$$

10. SIGNS OF TRIGO RATIOS IN DIFFERENT QUADRANTS: (V IMP)

NOTE: Remember it as ALL SILVER TEA CUPS or ADD SUGAR TO COFFEE

11. (a)
$$\sin(-\theta) = -\sin\theta$$

(b)
$$\cos(-\theta) = \cos \theta$$

(c)
$$\tan(-\theta) = -\tan\theta$$

12. For all real
$$\theta$$
, $-1 \le \sin \theta \le 1$

For all real θ , $-1 \le \cos \theta \le 1$

For $\cos \theta \neq 0$, $-\infty < \tan \theta < \infty$

For $\sin \theta \neq 0$, $-\infty < \cot \theta < \infty$

For
$$\cos \theta \neq 0$$
, $-\infty < \sec \theta \leq -1$

Or
$$1 \le \sec \theta < \infty$$

For
$$\sin \theta \neq 0$$
, $-\infty < \csc \theta \leq -1$

Or
$$1 \le \csc \theta < \infty$$

13. Expansion Formulae:

(a)
$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

(b)
$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$

(c)
$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

(d)
$$\cos(A-B) = \cos A \cos B + \sin A \sin B$$

(e)
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

(f)
$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

(g)
$$\tan(\frac{\pi}{4} + x) = \frac{1 + \tan x}{1 - \tan x} = \frac{\cos x + \sin x}{\cos x - \sin x}$$

(h)
$$\tan(\frac{\pi}{4} - x) = \frac{1 - \tan x}{1 + \tan x} = \frac{\cos x - \sin x}{\cos x + \sin x}$$

(i)
$$\cot(A+B) = \frac{\cot A \cot B - 1}{\cot A + \cot B}$$

(j)
$$\cot(A-B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}$$

(k)
$$\sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A$$

(l)
$$\cos(A+B)\cos(A-B) = \cos^2 A - \sin^2 B = \cos^2 B - \sin^2 A$$

Mindsetters Maths Private Tuitions

2 98208 56065/ 98202 93318

14. Factorisation formulae:

(a)
$$\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

(b)
$$\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$

(c)
$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

(d)
$$\cos C - \cos D = -2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$
 ... (C > D)
= $2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{D-C}{2}\right)$... (C < D)

15. **Defactorisation formulae:**

(a)
$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$
 (b) $2\cos A\sin B = \sin(A+B) - \sin(A-B)$

(c)
$$2\cos A\cos B = \cos(A-B) + \cos(A+B)$$
 (d) $2\sin A\sin B = \cos(A-B) - \cos(A+B)$

16. Multiple & Sub-multiple Angle Formulae:

i. (a)
$$\sin 2\theta = 2 \sin \theta \cos \theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$$

(b)
$$\sin \theta = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) = \frac{2\tan\left(\frac{\theta}{2}\right)}{1+\tan^2\left(\frac{\theta}{2}\right)}$$

ii. (a)
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= 2\cos^2 \theta - 1$$

$$= 1 - 2\sin^2 \theta$$

$$= \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

(b)
$$\cos \theta = \cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)$$

$$= 2\cos^2 \left(\frac{\theta}{2}\right) - 1$$

$$= 1 - 2\sin^2 \left(\frac{\theta}{2}\right)$$

$$= \frac{1 - \tan^2 \left(\frac{\theta}{2}\right)}{1 + \tan^2 \left(\frac{\theta}{2}\right)}$$

iii. (a)
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$
 (b) $\tan \theta = \frac{2 \tan \left(\frac{\theta}{2}\right)}{1 - \tan^2 \left(\frac{\theta}{2}\right)}$

iv.
$$1 + \cos 2\theta = 2\cos^2\theta$$
, $1 + \cos^2\theta$

$$1 + \cos \theta = 2\cos^2 \frac{\theta}{2}$$

$$v. \quad 1 - \cos 2\theta \qquad = \quad 2\sin^2\!\theta$$

$$, 1 - \cos \theta = 2\sin^2 \frac{\theta}{2}$$

vi.
$$1 + \sin 2\theta$$
 = $(\cos \theta + \sin \theta)^2$, $1 + \sin \theta$ = $\left(\cos \frac{\theta}{2} + \sin \frac{\theta}{2}\right)^2$

vii.
$$1 - \sin 2\theta$$
 = $(\cos \theta - \sin \theta)^2$, $1 - \sin \theta$ = $\left(\cos \frac{\theta}{2} - \sin \frac{\theta}{2}\right)^2$

viii.
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

ix.
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

$$x. \quad \tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$$

xi. Trigo Ratios of some special angles:

Angle	sin	Cos	tan
9°	$\frac{\sqrt{3+\sqrt{5}}-\sqrt{5-\sqrt{5}}}{4}$	$\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$	$\frac{\sqrt{3+\sqrt{5}} - \sqrt{5-\sqrt{5}}}{\sqrt{3+\sqrt{5}} + \sqrt{5-\sqrt{5}}}$
15°	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$\frac{\sqrt{3}+1}{2\sqrt{2}}$	$2-\sqrt{3}$
18°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{25-10\sqrt{5}}}{5}$
$22\frac{1}{2}^{\circ}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\sqrt{2}-1$
36°	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\sqrt{5-2\sqrt{5}}$
54°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{1}{\sqrt{5-2\sqrt{5}}}$
72°	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\frac{5}{\sqrt{25-10\sqrt{5}}}$
75°	$\frac{\sqrt{3}+1}{2\sqrt{2}}$	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$2+\sqrt{3}$

17. **Allied Angle Formulae:**

Any angle which is of the form $\left(n\frac{\pi}{2}\pm\theta\right)$ where $n \in \mathbb{N}$, $n = \text{odd } \Omega$ $(n\pi \pm \theta)$ where $n \in \mathbb{N}$

is called an allied angle.

Note: θ is a very small acute angle

Method to find trigonometric ratios of allied angles

STEP 1: Give the answer a positive or negative sign depending on how the ratio behaves in that quadrant

STEP 2:

For Example

(a)
$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$$

the co-ratio

(b)
$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

(c)
$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$$

(d)
$$\sec\left(\frac{3\pi}{2} - \theta\right) = -\csc\theta$$

(e)
$$\sin(\pi + \theta) = -\sin\theta$$

(f)
$$\sin(\pi - \theta) = \sin\theta$$

(g)
$$\tan (\pi + \theta) = \tan \theta$$

(h)
$$\sec (2\pi - \theta) = \sec \theta$$

SEOUENCES AND SERIES

1. For an **Arithmetic Progression** (**A.P.**) with the first term 'a', common difference 'd' and last term '\ell' '

(i)
$$n^{th} \text{ term} = t_n = a + (n-1)d \ (n \in N)$$

(ii) Sum of first 'n' terms =
$$S_n = \frac{n}{2} \left[2a + (n-1)d \right] = \frac{n}{2} \left[a + l \right]$$

- (iii) For any sequence $t_n = S_n S_{n-1}$
- (iv) It is convenient to consider
 - Three consecutive terms of an A.P. are a d, a, a + d
 - Four consecutive terms of an A.P. are a 3d, a d, a + d, a + 3d (here note that the (b) common difference is 2d)
 - Five consecutive terms as a 2d, a d, a, a + d, a + 2d. (c)

(i)
$$n^{th}$$
 term = $t_n = ar^{n-1}$ $(n \in N)$

(iii) If 'a' and 'r' be the 1st term and common ratio of a G.P., respectively, such that
$$|r| < 1$$
, then sum to infinity, S, is given by $S_{\infty} = \frac{a}{1-r}$

(a) Three consecutive terms as
$$\frac{a}{r}$$
, a, ar.

(b) Four consecutive terms as
$$\frac{a}{r^3}$$
, $\frac{a}{r}$, ar, ar³. (Note that here the common ratio is r^2)

(c) Five consecutive terms as
$$\frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2$$
.

3. If
$$a,b,c$$
 are in **arithmetic progression**, then 'b' is called as the arithmetic mean of 'a' and 'c'; and is related as $b = \frac{a+c}{2}$

4. If
$$a,b,c$$
 are in **geometric progression**, then 'b' is called as the geometric mean of 'a' and 'c'; and is related as $b^2 = ac$

5. If
$$\frac{1}{a}$$
, $\frac{1}{b}$, $\frac{1}{c}$ are in arithmetic progression, then a, b, c are in **harmonic progression**. 'b' is called as the harmonic mean of 'a' and 'c'; and is related as $\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$

6.
$$\sum_{r=1}^{n} r = 1 + 2 + 3 + 4 + 5 + \dots + n = \frac{n(n+1)}{2}$$

7.
$$\sum_{r=1}^{n} r^2 = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

8.
$$\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \frac{n^2 (n+1)^2}{4}$$

LOGARITHMS

If $a^x = y$ (Exponential form), then $x = log_a y$ (logarithmic form) and vice-versa

Note: In Std. XI, XII Maths, natural base of log is "e" where e = 2.7128 is a fixed constant

1.
$$\log a + \log b = \log ab$$

$$2. \qquad \log a - \log b = \log \left(\frac{a}{b}\right)$$

3.
$$\log (a^b) = b \log a$$
 **Note**: $(\log a)^b \neq b \log a$

4.
$$\frac{\log b}{\log a} = \log_a b$$
 (Change of base formula)

5. (i)
$$\log 1 = 0$$

(ii)
$$\log e = 1$$

(iii)
$$\log 0 = \text{Not Defined}$$

(iv)
$$a^{\log_a N} = N$$

(v) (a)
$$\log_b a = \frac{1}{\log_a b}$$

(b)
$$(\log_b a) (\log_a b) = 1$$

QUICK RECAP

ALGEBRAIC IDENTITIES

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2 = (a+b)^2 - 4ab$$

3.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3 + 3ab(a+b)$$

4.
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 = a^3 - b^3 - 3ab(a-b)$$

5.
$$a^2-b^2=(a-b)(a+b)$$

6.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

7.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

8.
$$(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ac$$

9.
$$a^2 + b^2 = (a - b)^2 + 2ab$$

10.
$$a^2 + b^2 = (a+b)^2 - 2ab$$

11.
$$1 + a^2 + a^4 = (1 + a + a^2)(1 - a + a^2)$$

12. (a) If
$$a, b \in R$$
 and $a^2 + b^2 = 0$, then $a = 0$ and $b = 0$

(b)
$$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

= $\frac{1}{2} (a + b + c) [(a - b)^2 + (b - c)^2 + (c - a)^2]$

If a + b + c = 0 or a = b = c, then $a^3 + b^3 + c^3 = 3abc$

If
$$a^3 + b^3 + c^3 = 3abc$$
, then $a + b + c = 0$ or $a = b = c$

INDICES

$$1. \qquad a^m a^n = a^{m+n}$$

3.
$$(a^m)^n = (a^n)^m = a^{mn}$$

$$5. \qquad \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$$

$$7. \qquad (\frac{x}{y})^{-n} = (\frac{y}{x})^n$$

2.
$$\frac{a^m}{a^n} = a^{m-n} = \frac{1}{a^{n-m}}$$

4.
$$(ab)^m = a^m \times b^m$$

$$6. \qquad a^{-m} = \frac{1}{a^m}$$

8.
$$a^0 = 1$$

9.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

QUADRATIC EQUATIONS

- 1. The roots of a quadratic equation $ax^2 + bx + c = 0$ $(a \ne 0)$, are given by $\alpha, \beta = \frac{-b \pm \sqrt{\Delta}}{2a}$ where $\Delta = b^2 4ac$ is called discriminant of the quadratic equation.
- 2. Sum of roots (S) = $\alpha + \beta = -\frac{b}{a} = -\frac{\text{coefficient of x}}{\text{coefficient of x}^2}$
- 3. Product of roots $(P) = \alpha \cdot \beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$
- 4. Nature of roots:

For the quadratic equation $ax^2 + bx + c = 0$ ($a, b, c \in R$), we have :

$\Delta = b^2 - 4ac$	Nature of Roots
$\Delta > 0$	Real & unequal
$\Delta = 0$	Real & equal
$\Delta < 0$	Imaginary & conjugate of each other

5. Formation of a Quadratic Equation:

The quadratic equation having roots $\alpha \& \beta$ is $(x-\alpha)(x-\beta) = 0$.

This can also be written as $x^2 - Sx + P = 0$, where $S = \alpha + \beta$ and $P = \alpha \cdot \beta$

- 6. If α and β are roots of a quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$, then the **quadratic expression** is given by : $ax^2 + bx + c = a(x \alpha)(x \beta)$
- 7. Completing the square: Last term = $\frac{\text{(Middle Term)}^2}{4 \times \text{(First Term)}}$

BASIC FUNDAMENTALS OF CO-ORDINATE GEOMETRY

CO-ORDINATES OF A POINT: 1.

- x co-ordinate is called abscissa
- y co-ordinate is called ordinate
- Distance of a point P(x, y) from X-axis = |y|
- Distance of a point P(x, y) from Y-axis = |x|

- Distance of (-3, 2) from X-axis = 2 and from Y-axis = 3
- Distance of (-1, -4) from X-axis = 4 and from Y-axis = 1
- Distance of (0, -5) from X-axis = 5 and from Y-axis = 0 (i.e. the point is on Y-axis)
- Distance of (1, -2) from X-axis = 2 and from Y-axis = 1

2. **Distance Formula:**

Distance between the points $A(x_1, y_1)$ and $B(x_2, y_2)$

Corollary:

If one of the points is the origin,

e.g. Distance of P(3, -4) from origin = $\sqrt{3^2 + 4^2} = 5$

Mindsetters Maths Private Tuitions 98208 56065/98202 93318

(ii) If the two points have same abscissa, then

e.g. If A(2, -5) and B(2, 3) then AB = |3 - (-5)| = 8

(iii) If the two points have same ordinate, then

$$AB = |x_2 - x_1|$$

$$A(x_1, y_1)$$

$$B(x_2, y_1)$$

e.g. If A(3, 4) and B(-1, 4) then AB = |-1 - 3| = 4

3. **Section formula:**

(a) For internal division:

If P divides segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$ internally in the ratio m:n, then

$$\frac{AP}{PB} = \frac{m}{n}$$
and $P = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$

e.g. If P divides AB internally in the ratio 1:3, where A(-1, 4) and B(5, 2) then,

$$P \equiv (\frac{1(5) + 3(-1)}{1+3}, \frac{1(2) + 3(4)}{1+3}) = (\frac{1}{2}, \frac{7}{2})$$

(b) For external division:

If P divides segment joining $A(x_1,\,y_1)$ and $B(x_2,\,y_2)$ externally in the ratio m:n, then

$$\frac{At}{PB} = \frac{m}{n}$$
and
$$P = \left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}\right)$$

e.g. If P divides AB externally in the ratio 2:5, where A(-1,4) and B(5,2) then,

$$P = (\frac{2(5) - 5(-1)}{2 - 5}, \frac{2(2) - 5(4)}{2 - 5}) = (-5, \frac{16}{3})$$

Corollary

(i) Midpoint Formula:

Midpoint is
$$P = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$A(x_1, y_1) \qquad P \qquad B(x_2, y_2)$$

(ii) Centroid Formula:

Centroid is
$$G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

