Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Представление и обработка информации в интеллектуальных системах» на тему

Найти эйлеров цикл в неориентированном графе.

Выполнил: М. И. Курило

Студент группы 321702

Проверил: Н. В. Малиновская

Содержание

1	Введение	2
2	Список понятий	2
3	Тестовые примеры	5
	3.1 Tect 1	5
	3.2 Tect 2	6
	3.3 Tect 3	7
	3.4 Tect 4	8
4	Пример работы алгоритма в семантической памяти	g
	4.1 Краткое описание:	ç
	4.2 Демонстрация на тесте 5:	
5	Заключение	1.5

1 Введение

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей **Задача:** Найти эйлеров цикл в неориентированного графа.

2 Список понятий

- 1. *Неориентированный граф* (абсолютное понятие)-граф, в котором все ребра являются звеньями, то есть порядок двух концов ребра графа не существенен
 - (а) Вершина (относительное понятие, ролевое отношение);
 - (b) Связка (относительное понятие, ролевое отношение).

Рис. 1: Абсолютное понятие неориентированного графа

2. $\pmb{\Pi ymb}$ в \pmb{epa} фе — последовательность вершин, в которой каждая вершина соединена со следующей ребром.

Рис. 2: Абсолютное понятие диаметра

3. **Эйлеровым циклом** называется замкнутый путь, проходящий через каждое ребро графа ровно по одному разу.

Рис. 3: Абсолютное понятие эксцентриситета

3 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

3.1 Tect 1

Вход: Необходимо найти эйлеровов цикл в графе

Рис. 4: Вход теста 1

Рис. 5: Выход теста 1

3.2 Tect 2

Вход: Необходимо найти эйлеровов цикл в графе.

Рис. 6: Выход теста 2

Рис. 7: Вход теста 2

3.3 Тест 3

Вход: Необходимо найти эйлеровов цикл в графе.

Рис. 8: Вход теста 3

Рис. 9: Вход теста 3

3.4 Tect 4

Вход: Необходимо найти эйлеровов цикл в графе.

Рис. 10: Вход теста 4

Рис. 11: Выход теста 4

4 Пример работы алгоритма в семантической памяти

4.1 Краткое описание:

- 1. Пользователь задает неориентированный граф.
- 2. Пользователь выбирает вершину для начала обхода.
- 3. При помощи DFS и двух списков (visited, eulersGraph) находится эйлеровов цикл, если он существует. Обход начинается с заданной вершины. Направление обхода случайное, после перехода от одной вершины к другой, ребро между ними "стирается а вершина, к которой был выполнен переход, записывается в список visited. Если у вершины нет ребер, то она переносится в список eulersGraph.
- 4. Результат представляет собой список вершин: eulersGraph.

4.2 Демонстрация на тесте 5:

Рис. 12: Вход теста 5

1. Пользователь выбирает вершину для начала обхода (предположим, A);

Рис. 13: Действие 1

2. Начинаем обход с вершины A, заносим ее в список visited.

Рис. 14: Действие 2

3. Идем к следующей вершине: E, убирая ребро AE и записывая E в список visited.

Рис. 15: Действие 3

4. Повторяем действие 3, пока не доходим до вершины, из коротой "выхода"нет: А.

Рис. 16: Действие 4

5. Следуя нашему алгоритму, переносим вершину A в список eulersGraph и возвращаемся к вершине, из которой мы пришли. Продолжаем алгоритм.

Рис. 17: Действие 5

6. Формируем граф, который является ответом, соединяя вершины в том порядке, как они записаны.

Рис. 18: Действие 6

5 Заключение

В заключении у нас получилось формализовать поставленную задачу. Мы нашли нужные нам циклы. Реализовали алгоритм их поиска, который работает на любом неориентированном графе.