Package 'MethodDev'

July 24, 2019

Type Package

Title Dosen't have a title
Version 0.1.3
Author Bin Zhuo
Maintainer Bin Zhuo bzhuo@amgen.com>
Description This package is developed to maintain commonly used functions that I write for the work at simulation team in Design and Innovation team within Amgen.
License What license is it under?
Encoding UTF-8
RdMacros Rdpack
Imports Rdpack, dplyr, foreach, gsDesign, baseUtility
LazyData true
RoxygenNote 6.1.1
Suggests testthat, knitr, rmarkdown VignetteBuilder knitr
R topics documented:
bvn_prob 2 calc_p1_or 3 compute_lambda 3 cong_dat_gen 4 cong_final_analysis 4 cong_simu_trial 5 gen_ospfs 6 ia_pval 7 pos_two_grid 8 pos_two_grid_search 9 prior_ab 10

2 bvn_prob

rand_arm .		 	•					•	•		•						
rand_timein		 															
snapshot_by_	event	 															
survival_test		 															
tail_prob		 															
test_bm_neg		 															

Index 15

bvn_prob

upper tail probability of a standard binormal distribution

Description

calculate the bivariate normal probabilities for a given h,k and rho

Usage

```
bvn_prob(h, k, rho)
```

Arguments

h	the cutoff value for x; will integrate from 'h' to 'Inf'
k	the cutoff value for y; will integrate from 'k' to 'Inf'
rho	the correlation of the bivariate normal distribution.

Details

This function calculates the following quantity,

$$L(h, k, \rho) = \frac{1}{\sqrt{1 - \rho^2}} \int_h^{\infty} \int_k^{\infty} e^{-\frac{x^2 - 2\rho xy + y^2}{2(1 - \rho^2)}} dx dy$$

using formula Eq.(3) in the reference.

Value

a p value

References

Genz A (2004). "Numerical computation of rectangular bivariate and trivariate normal and t probabilities." *Statistics and Computing*, **14**(3), 251–260.

https://link.springer.com/content/pdf/10.1023/B:STCO.0000035304.20635.31.pdf

calc_p1_or

calc_p1_or

odds ratio and probabilities

Description

odds ratio and probabilities

Usage

```
calc_p1_or(p0, p1 = NULL, or = NULL)
```

Arguments

```
p0, p1 probability in the control/treatment arm
or odds ratio which is expressed as odds_treatment/odds_control
```

Details

this two functions calculates odds ratio based on two probabilities, or probability of treatment given odds ratio and probability in the control arm

Value

probability in the treatment arm, or odds ratio

Examples

```
p0 <- 0.59; p1 <- 0.812; or <- 3; calc_p1_or(p0 = p0, or = or); calc_p1_or(p0 = p0, p1 = p1)
```

compute_lambda

Calculate λ 's based on the formula

Description

Calculate λ 's based on the formula

Usage

```
compute_lambda(os, osp, pfs)
```

Arguments

OS	median os
osp	median OS after progression

pfs median PFS

Value

a vector of lambda's and the theoretical correlation between OS and PFS

4 cong_final_analysis

cong	dat	gen

Simulate data for all comers/enrichment population

Description

Simulate data for all comers/enrichment population

Usage

```
cong_dat_gen(nsbj, alloc = c(1, 1), b_size = 2, rate,
 enrichment = FALSE, marker_prob = c(0.7, 0.3),
 marker_name = c("DLL3+", "DLL3-"), par_ctrl_pos, par_ctrl_neg,
 par_trt_pos, par_trt_neg, ...)
```

Arguments

nsbj	number of subjects to be simulated
alloc	allocation vector, length corresponds to number of arms; as to be integer; enter 1 if single arm
b_size	block size, has to be multiple of sum(alloc), enter 1 if single arm
rate	enrollment rate per unit time
enrichment	Is this data generated for enrichment population?
marker_prob	vector of prevalence probability of different category, if doesn't add up to 1, will automatically standardize and generates warning. For enrichment population, just set marker_prob = 1
marker_name	vector of names of different subgroup
par_trt_pos,	<pre>par_trt_neg, par_ctrl_pos, par_ctrl_neg parameter specification for treatment/control and biomarker positive/negative population. For enrichment data generation, par_trt_neg and par_ctrl_neg are set to be NULL</pre>
•••	other parameters from function enrl_dat_gen

Value

a tibble of simulated survival data

```
cong_final_analysis
                       final analysis for Cong's method
```

Description

final analysis for Cong's method

Usage

```
cong_final_analysis(snapshot, marker_positive = "DLL3+",
 alpha1 = 0.0125, alpha2 = 0.0125)
```

cong_simu_trial 5

Arguments

snapshot the data snapshot
marker_positive

the label for biomarker positive population

alpha1 significance level for testing all-comers population

alpha2 significance level for testing biomarker positive population

Value

a tibble summarizing the analysis results

cong_simu_trial

Trial process simulation

Description

This function simulates survival data, performs enrichment analysis, based on which results, it enrolls biomarker positive population when enrichment is needed, or continues as the original trial when enrichment is not needed, and lastly, performs final analysis. Note that the final analysis is done on two analysis sets: all-comers and biomarker positive population; a win on either population will result in a positive outcome.

Usage

Arguments

n_allcomer number of subjects for all comers

n_enrichment increased sample size for enrichment group

alloc allocation vector, length corresponds to number of arms; as to be integer; enter

1 if single arm

b_size block size, has to be multiple of sum(alloc), enter 1 if single arm

rate enrollment rate per unit time

marker_positive, marker_negative

a string specifying which marker is negative/positive

marker_prob vector of prevalence probability of different category, if doesn't add up to 1, will

automatically standardize and generates warning

gen_ospfs

sbj number of subjects for analysis of enrichment decision n_event the desired number of events for final analysis. Note that this parameter is used to decide time cutoff for final analysis; therefore n_event should be only counted among all-comer populations to proect the integraty of the trial. cutoff the cutoff value to determine if enrichment is needed or not alpha1, alpha2 significance level for testing all-comers or biomarker positive population, respectively par_trt_pos, par_trt_neg, par_ctrl_pos, par_ctrl_neg parameter specification for treatment/control and biomarker positive/negative population marker_name vector of names of different subgroup

gen_ospfs

ia_time_fu

generate correlated endpoints of PFS and OS

the follow-up time for decision of enrichment analysis

Description

generate correlated endpoints of PFS and OS

Usage

Arguments

nsbj number of subjects to be simulated

mos median overall survival time

mosp median overall survival since progression. If mosp = NA, then OS and PFS will

be generated using Theorem 1. If a numerical value is assigned to mosp, then

OS and PFS will be generated using Theorem 2.

mpfs median PFS

Details

This function generates correlated PFS and OS based on a paper published in 2009. Specifically, Let $X_1 \sim \exp(\lambda_1), X_2 \sim \exp(\lambda_2), X_3 \sim \exp(\lambda_3)$, where X_i has pdf $f_X(x_i) = \lambda_i \exp(-\lambda_i x_i)$.

• Theorem 1. If $PFS = \min(X_1, X_2)$, $OS = X_2$ then

$$Corr(PFS, OS) = \frac{\lambda_2}{\lambda_1 + \lambda_2}$$

• Theorem 2. If we define $PFS = \min(X_1, X_2)$, OS = PFS if $PFS = X_2$ and $OS = X_1 + X_3$ otherwise, then

$$Corr(PFS, OS) = \frac{\lambda_3}{\sqrt{\lambda_1^2 + 2\lambda_1\lambda_2 + \lambda_3^2}}$$

ia_pval 7

Value

a tibble with correlated PFS and OS

References

Fleischer F, Gaschler-Markefski B, Bluhmki E (2009). "A statistical model for the dependence between progression-free survival and overall survival." *Statistics in Medicine*, **28**(21), 2669–2686.

Examples

```
mos <- 6.7; mosp <- 5.4; mpfs <- 1.93
y1 <- gen_ospfs(nsbj = 1e5, mos = mos, mosp = mosp, mpfs = mpfs)
cor(y1)
y2 <- gen_ospfs(nsbj = 1e5, mos, mosp = NA, mpfs)
all.equal(cor(y2)[1,2],mpfs/mos, tolerance = 1e-3)</pre>
```

ia_pval

Decide interim analysis cutoff value for group sequential design

Description

Decide interim analysis cutoff value for group sequential design

Usage

```
ia_pval(info_fraction, alpha = 0.025, beta = 0.1, ...)
```

Arguments

```
info_fraction the information fraction for each look, default set to be 1, meaning no interim analysis. Can take vector

alpha the desired type 1 error

beta the type 2 error, equal to 1 - power

... other parameters inherited from [gsDesign]gsDesign
```

Value

a tibble containing number of looks and efficacy/futility p values

Examples

```
ia_pval(alpha = 0.025, beta = 0.1, info_fraction = c(0.5, 0.7))
```

8 pos_two_grid

nos	two	grid

Posterior probabilities for given sample size of n0 and n1

Description

for a given pair of n0 and n1, search all the possible sample space, calculates posterior probability, the probabilities under the null and the alternative. This function is used to evaluate the power and type 1 error for a given pair of n0 and n1

Usage

```
pos_two_grid(n0, n1, p0 = 0.25, p1 = 0.538, delta = (p1 - p0)/2, ab0 = NULL, ab1 = NULL)
```

Arguments

n0, n1	the sample size for control/treatment group
p0	the underlying probability of response rate for the control arm
p1	the hypothesized ORR for treatment
delta	the difference of the two proportions to be detected

Details

For a given pair of n0 and n1, after specifying appropriate prior parameters, it calculates the posterior probability $P(p_1-p_0>\delta)$, the probability $P(X_0=x_0|n_0,p_0)\cdot P(X_1=x_1|n_1,p_0)$ under the null, and $P(x=x_0|n_0,p_0)\cdot P(X=x_1|n_1,p_1)$ under the alternative for each pair of of observed x_0 and x_1 . Note that X_0,X_1 are assumed to be independent and follow binomial distribution.

The prior for control group, i.e. $p_0 \sim Beta(a_0,b_0)$, are derived based on $a/(a+b)=p_0$ and $a+b=n_0/2$ where n_0 is the sample size for control arm. The prior for treatment group is obtained such that $a_1+b_1=2$ and $a_1=2p_0$.

Value

a tibble which contains the calculated probabilities

See Also

```
pos_two
```

Examples

```
library(dplyr)
r1 <- pos_two_grid(n0 = 75, n1 = 75, p0 = 0.59, p1= 0.812)
# power
r1 %>% filter(prob_post > 0.68) %>% select(prob_alt) %>% sum
# type 1 error
r1 %>% filter(prob_post > 0.68) %>% select(prob_null) %>% sum
```

pos_two_grid_search 9

Description

for a given pair of n0 and n1, search all the possible sample space, calculates posterior probability, the probabilities under the null and the alternative. This function is used to evaluate the power and type 1 error for a given pair of n0 and n1

Usage

```
pos_two_grid_search(p0, p1, ..., n0 = seq(50, 70, by = 5), n1 = n0, cutoff = seq(0.05, 0.2, by = 0.05), eval_success = TRUE, ncores = NA, ab0 = NULL)
```

Arguments

p0	response rate in the control arm
p1	the hypothesized ORR for treatment
	other parameters inherited from pos_two_grid
n0	sample size for control, can be a vector
n1	sample size for treatment, must be of the same length as n0
cutoff	the cutoff value (can be a vector) to claim a decision (either success or failure)
eval_success	Is this for evaluating probability of success? If TRUE, then it evaluates
	$P(p_1 - p_0 > \delta) > U;$
	otherwise it evaluates
	$P(p_1 - p_0 > \delta) < L,$
	where L or U correspond to cutoff.
ncores	number of cores to be used for fast parallel computing. If not specified, it will use number of cores available - 1
ab0	a data frame or NULL. If a data frame, it should contain, in each row, the prior for corresponding sample size $n0$. If NULL, then prior_ab will be called internally to calculate the prior.

Details

For a given pair of n0 and n1, after specifying appropriate prior parameters, it calculates the posterior probability $P(p_1-p_0>\delta)$, the probability $P(X_0=x_0|n_0,p_0)\cdot P(X_1=x_1|n_1,p_0)$ under the null, and $P(x=x_0|n_0,p_0)\cdot P(X=x_1|n_1,p_1)$ under the alternative for each pair of of observed x_0 and x_1 . Note that X_0,X_1 are assumed to be independent and follow binomial distribution.

The prior for control group, i.e. $p_0 \sim Beta(a_0,b_0)$, are derived based on $a/(a+b) = p_0$ and $a+b=n_0/2$ where n_0 is the sample size for control arm. The prior for treatment group is obtained such that $a_1+b_1=2$ and $a_1=2p_0$.

Value

a tibble containing each scenario associated with its power and type 1 error

10 rand_arm

See Also

```
pos_two_grid
```

Examples

prior_ab

calculate prior parameters for a given beta distribution

Description

calculate prior parameters for a given beta distribution

Usage

```
prior_ab(n, p)
```

Arguments

```
n the size of the prior beta distribution a+b=n/2 p the prior mean \frac{a}{a+b}=p
```

Value

the parameters a and b for Beta(a, b)

rand_arm

generate block randomized arms

Description

generate block randomized arms

Usage

```
rand_arm(nsbj, ratio, arm_name = paste("arm", 1:length(ratio), sep =
   "_"))
```

Arguments

nsbj an integer for total number of subjects to be randominzed

ratio the allocation ratio

arm_name a vector of characters for arms

rand_timein 11

Value

a vector of length 'nsbj' with randomized treatment arms

Examples

```
rand_arm(nsbj = 1, ratio = c(1, 1))
rand_arm(nsbj = 12, ratio = c(2, 2, 1))
rand_arm(nsbj = 4, ratio = c(1, 2, 0, 1))
```

rand_timein

Generate enrollment time by piecewise enrollment rate

Description

Generate enrollment time by piecewise enrollment rate

Usage

```
rand_timein(nsbj, rate, starttime)
```

Arguments

nsbj number of subject enrolled

rate a vector (or a single value) specifying the enrollment rate at each piece

starttime a vector (or a single value) specifying starting time for corresponding enrollment

rate. starttime always starts with 0, whether it's a vector or a single value.

Value

a tibble where the first column is enrollment time, and the second column indicates the piece sequence

Examples

```
rate <- c(7, 14, 30)

starttime <- c(0, 1, 3)

timein1 <- rand_timein(nsbj = 300, rate = rate, starttime = starttime)
```

12 survival_test

snapshot_by_event

data snapshot by desired event size

Description

this function calculates the time cut for desired event size and then the censor indicator. It has been verified against EAST software.

Usage

```
snapshot_by_event(dat, n_event)
```

Arguments

dat

the data frame containing, at least, the following variables

• timein patient arrival time

• pfs progression or surivival time

• 1fu lost to follow up time or dropout time

n_event

desired number of events for analysis

Value

the same data with extra columns timecut (the calander time cut), pfs_censor (the censoring indicator, with 1 = event and 0 = censor), ongoing (whether the status is still ongoing by timecut).

survival_test

Run survival analysis

Description

Run survival analysis

Usage

```
survival_test(snapshot, pval_eff = 0.025, pval_fu = NA, is_trt = NA)
```

Arguments

snapshot

the data set obtained from take_snapshot

pval_eff, pval_fu

the significance level to claim a success/futility for interim analysis or success/failure for final: set pval_eff = NA and assign pval_fu a positive value between 0 and 1 if it's just for interim futility; set pval_fu = NA and assign pval_eff a positive value between 0 and 1 if it's just for interim efficacy; if it's interim analysis for both efficacy and futility, then must have pval_eff < pval_fu; if it's for final analysis, then pval_eff and pval_fu must both be specified and set to be equal;

is_trt

user-defined treatment group. If is_trt = NA then the second arm number shown in data will be the treatment arm.

tail_prob

Details

this function takes the snapshot and runs survival analysis to get the log rank test p-value, the 95 survival time.

Value

a data frame containing the results of the test

tail_prob

Calculate probability of success or failure

Description

Calculate probability of success or failure

Usage

```
tail_prob(dat, cutoff, prob1, prob2, eval_success = TRUE)
```

Arguments

dat the object returned by pos_two_grid

cutoff the cutoff value to claim a success/failure

prob1 the posterior probability

prob2 the probability under the null or the alternative eval_success Is this for evaluating probability of success?

Value

a p value

test_bm_neg

Enrichment decision making

Description

Enrichment decision making

Usage

```
test_bm_neg(cong_dat, marker_negative = "DLL3-", endpoint = "resp",
   sbj = 100, fu_time_ia = 2, cutoff = 0)
```

14 test_bm_neg

Arguments

cong_dat a data set generated by cong_dat_gen

marker_negative

a string specifying which marker is negative

endpoint the endpoint used to calculate the decision rule

sbj number of subjects to be included in analysis of biomarker negative

fu_time_ia minimum follow-up time for eligible evaluation

cutoff the cutoff chosen to make the decision

Details

This function performs analysis for the biomarker negative population, then decides if enrichment is needed

Value

a tibble with decision included (see column need_enrichment)

Index

```
[gsDesign]gsDesign, 7
bvn_prob, 2
calc_p1_or, 3
compute_lambda, 3
cong_dat_gen, 4, 14
cong\_final\_analysis, 4
cong_simu_trial, 5
{\tt cong\_simu\_trial\_parallel}
         (cong_simu_trial), 5
enrl_dat_gen, 4
gen_ospfs, 6
ia_pval, 7
pos_two, 8
pos_two_grid, 8, 9, 10, 13
pos_two_grid_search, 9
prior_ab, 9, 10
rand_arm, 10
\verb"rand_timein", \\ 11
snapshot_by_event, 12
survival_test, 12
tail_prob, 13
take_snapshot, 12
test_bm_neg, 13
```