This report may contain confidential information

Thermal Hazard Assessment Memo

TestMol

Molecule Properties

SMILES: O = N + c1cc(N = N/c2cnn[nH]2)ccc1C1CCCC1

Formula: 13C, 14H, 6N, 2O

mp: 111.0 to 113.0 °C

Results

High Energy Groups: (3) ['N1C=CN=N1 |c:1,3|', 'CN=NC', 'C[N+](=O)[O-]']

Explosive Groups: (3) ['CN = NC', 'N1C = CN = N1 |c:1,3|', 'C[N+] (= O)[O-]']

Rule of Six = 5 Oxygen Balance =

-173.24787369671137

 $Q_{DSC} = 570.0 \text{ J g}^{-1}$ $T_{onset} = 172.0$ $T_{init} = 222.0$

Impact Sensitivity = Explosive Propagation = T_{D24} =

<5 g	5 to 100 g	100 to 500 g	>500 g
Medium Hazard	Medium Hazard	High Hazard	High Hazard

Interpretation

These results have been calculated using X^1 and they show Y^2 .

My Matplotlib File