

A) $\cos(\cos(x))$

B) $-\operatorname{sen}(x)\cos(\cos(x))$

Acesso de Maiores de 23 anos

Prova escrita de Matemática

28 de Junho de 2012

Duração da prova: 150 minutos. Tolerância: 30 minutos.

Primeira Parte

quatro alternativas, da à alternativa que selecc	s quais só uma está con cionar para responder a	rreta. Escreva na folha a cada questão. Se apr	Para cada uma delas são inde resposta a letra correspondesentar mais do que uma resor ilegível. Não apresente ca	ondente esposta,
1. No lançamento d	e dois dados qual é a	probabilidade da soma	dos pontos ser 10?	
A) $\frac{1}{18}$	B) $\frac{1}{36}$	C) $\frac{1}{12}$	D) $\frac{10}{36}$	
	de resultados associado tos $(A \subset \Omega \in B \subset \Omega)$.		experiência aleatória. Sejam	$A \in B$
- $A \in B$ são a - $P(\overline{A}) = 0.2$ - $P(B) = 0.1$	contecimentos indeper	ndentes		
Qual o valor de l	$P(A \cup B)$?			
A) 0.82	B) 0.9	C) 0.3	D) 0.28	
-	=	los de forma que não l iferentes podemos defi	naja, entre os dez pontos, t nir com estes pontos?	rês que
A) 720	B) 30	C) 27	D) 120	
4. Considere a funç- é igual a	ão real, de variável rea	al, definida por $\varphi(x) =$	$\operatorname{sen}(\cos(x))$. A expressão d	le $\varphi'(x)$

C) $(\cos(x))^2$

D) $-\operatorname{sen}(x)(\cos(x))^2$

5. A figura

representa parte do gráfico de uma função f, real de variável real. f' e f'' são, respetivamente, a primeira e a segunda derivada de f. Qual das seguintes afirmações pode ser verdadeira?

A)
$$f''(a) \times f''(b) > 0$$

C)
$$f''(a) \times f''(b) < 0$$

B)
$$f'(a) \times f'(c) < 0$$

D)
$$f''(b) \times f'(c) < 0$$

6. Considere as sucessões de números reais definidas por

$$u_n = \left(1 - \frac{1}{n}\right)^n, \qquad v_n = \frac{3n^2 + \frac{1}{n}}{2n^2 + 3n + 1}$$

Qual dos seguintes números é igual a $\lim(u_n \times v_n)$?

A)
$$\frac{3}{2}$$

B)
$$\frac{3}{2e}$$

$$D) \frac{3\epsilon}{2}$$

7. Na figura estão representadas, no plano complexo, as imagens geométricas de cinco números complexos: $w, z_1, z_2, z_3 \in z_4$.

Qual o número complexo que pode ser igual a $w \times i$?

A)
$$z_1$$

B)
$$z_2$$

C)
$$z_3$$

D)
$$z_4$$

8. Se $z_1=1-i$ e $z_2=2$ cis $\left(\frac{\pi}{4}\right)$, então $\overline{z}_1\times z_2$ é igual a:

A)
$$\sqrt{2}$$

B)
$$2 \operatorname{cis} \left(\frac{3\pi}{4}\right)$$
 C) $2\sqrt{2}i$

C)
$$2\sqrt{2}i$$

D)
$$2 \operatorname{cis}\left(\frac{3\pi}{2}\right)$$

Segunda Parte

Nas questões desta segunda parte, apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias.

- 9. Considere os números complexos $z_1 = 1 + i$ e $z_2 = \frac{-4 + 8i}{1 + i}$.
 - a) Resolva a equação $z^3=z_1^3+z_2$, sem recorrer à calculadora. Apresente os resultados na forma trigonométrica.
 - b) Calcule $|z_1 + z_2|$.
- 10. Uma aposta simples do concurso Euromilhões consiste em inscrever cinco números do conjunto $N = \{1, 2, ..., 50\}$ e duas estrelas do conjunto $E = \{1, 2, ..., 11\}$ num boletim de apostas. Em cada concurso são sorteados cinco números do conjunto N e duas estrelas do conjunto E, ganhando o 1º Prémio qualquer aposta que contenha estes números e estas estrelas. Qual a probabilidade de um apostador ganhar um 1º Prémio com uma aposta simples?
- 11. Consideremos o conjunto $\mathcal{P} = \{A, B, C, D, E, F\}$. Formamos sequências com todas as letras do conjunto \mathcal{P} , sem repetições. Quantas destas sequências diferentes podemos formar que têm:
 - a) a letra A em primeiro lugar?
 - b) a letra A em primeiro lugar ou a letra F em último?
 - c) as letras A, B juntas em qualquer ordem?
 - d) a letra E em qualquer lugar exceto no último?
- 12. Seja $a \in \mathbb{R}$. Considere a função real de variável real definida por

$$f(x) = \begin{cases} \cos(x+a), & \text{se } x < 0\\ x + \ln(x+1), & \text{se } x \ge 0. \end{cases}$$

- a) Determine a de modo que f seja contínua em x = 0.
- b) Determine a equação reduzida da reta tangente ao gráfico da função f no ponto de abcissa x=1.
- 13. Considere a função real de variável real definida por

$$g(x) = 3x - e^{-x} - 2.$$

- a) Recorrendo a métodos exclusivamente analíticos, mostre que g tem pelo menos um zero pertencente ao intervalo]0,1[.
- b) Mostre que que g tem um único zero em \mathbb{R} .
- c) Determine as assíntotas de g.

- 14. O quadrilátero [ABCD]da figura é um trapézio isósceles, sendo $\overline{AB}=\overline{AD}=\overline{CD}=1$ e $\alpha\in\left]0,\frac{\pi}{2}\right]$
 - a) Mostre que $\overline{BC} = 1 + 2 \cos(\alpha)$.
 - b) Nas condições da figura, entre que valores poderá variar \overline{BC} ?
 - c) Mostre que para cada $\alpha \in \left]0, \frac{\pi}{2}\right]$, a área do trapézio é igual a $\operatorname{sen}(\alpha) + \frac{1}{2}\operatorname{sen}(2\,\alpha)$.

15. Um objeto é lançado ao ar, a partir do solo. A função

$$h(t) = 4t - t^2$$

representa a altura (medida em metros) a que o objeto se encontra no instante t (medido em segundos). Recorrendo a métodos exclusivamente analíticos, calcule

- a) a altura máxima que o objeto atinge;
- b) o instante t > 0 em que o objeto atinge novamente o solo.

Cotações

Primeira parte	. 40
Cada resposta certa	,
Cada resposta errada0	1
Cada questão não respondida ou anulada0	1
Segunda parte	160
9	ı
9. a)	
9. b)5	
10	
11	ı
11. a)5	
11. b)10	
11. c)10	
11. d)5	
12	ı
12. a)	
12. b)10	
1330	ı
13. a)	
13. b)10	
13. c)10	
14	1
14. a)	
14. b)5	
14. c)10	
15	١
15. a)	
15. b)10	
Total	200

Formulário

Comprimento de um arco de circunferência

 α r (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

Losango:
$$\frac{Diagonal\ maior \times Diagonal\ menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Polígono regular: Semiperímetro × Apótema

Sector circular:
$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – r aio)

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

(r - r - r da base; g - r - r - r g

Área de uma superfície esférica: 4
$$\pi$$
 r^2 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Cone:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r-raio)$

Trigonometria

$$sen(a+b) = sen a \cdot cos b + sen b \cdot cos a$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$tg (a + b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n\theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2k\pi}{n}, k \in \{0, ..., n-1\}$$

Probabilidades

$$\mu = \mathbf{x}_1 \mathbf{p}_1 + \dots + \mathbf{x}_n \mathbf{p}_n$$

$$\sigma = \sqrt{(x_1 - \mu)^2 p_1 + \dots + (x_n - \mu)^2 p_n}$$

Se X é N
$$(\mu, \sigma)$$
, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0,6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0,9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0,9973$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{r} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{r} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x\to +\infty}\,\frac{e^x}{x^p} = +\infty \quad \left(p\in\mathbb{R}\right)$$