

ÜBUNGEN

zur Veranstaltung ${\it Quanten computing}$ im Studiengang Angewandte Informatik

No. 3 Martin Rehberg

Übungsaufgaben Lineare Algebra - Zur Erinnerung

In den Grundvorlesungen haben Sie die Definition einer Gruppe kennengelernt: Sei G eine nichtleere Menge mit einer inneren Verknüpfung \circ , d.h. für $a,b\in G$ gelte $a\circ b\in G$. Es heißt (G,\circ) eine Gruppe, wenn gilt:

- 1. Assoziativgesetz: Für alle $a, b, c \in G$ gilt $(a \circ b) \circ c = a \circ (b \circ c)$.
- 2. Existenz eines neutralen Elements: Es existiert ein $e \in G$ mit $e \circ a = a = a \circ e$ für alle $a \in G$.
- 3. Jedes Element ist invertierbar: Zu jedem $a \in G$ existiert ein $a' \in G$ mit $a \circ a' = e = a' \circ a$.

Aufgabe 1: Zeigen Sie, dass die Menge der unitären (2×2) -Matrizen bzgl. der Multiplikation von Matrizen eine Gruppe bildet.

Hinweis: Alternativ zur Definition einer Gruppe können Sie auch das Untergruppenkriterium verwenden: U ist genau dann Untergruppe einer Gruppe G, wenn für alle $a, b \in U$ schon $a \circ b \in U$ und $a^{-1} \in U$ gilt.

Übungsaufgaben Quantencomputing

Aufgabe 1: Implementieren Sie das Verfahren zum Problem von Deutsch aus der Vorlesung für den Fall das f die Identität ist.

Aufgabe 2: Bestimmen Sie das Tensorprodukt $A \otimes B$ und $B \otimes A$ der Matrizen

$$A = \begin{pmatrix} 6 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}.$$

Aufgabe 3: Beschreiben Sie in jedem der drei Fälle die Wirkung des Schaltkreises auf das Register $R = |q_1q_0\rangle$ mit $|q_1\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$ und $|q_0\rangle = \beta_0|0\rangle + \beta_1|1\rangle$:

