Spin-orbit interaction in the valence band

- Valence band and spin-orbit interaction
- Total angular momentum of valence band states
- Heavy-hole, light-hole and split-off states

Spin orbit interaction

Starting from the three p_x , p_y and p_z orbitals three bands are formed

Since p states have an orbital angular momentum $\mathbf{L} \neq 0$. Spin-orbit interaction needs to be considered

$$H_{so} = \lambda \mathbf{L} \cdot \mathbf{S}$$

$$< \mathbf{L} \cdot \mathbf{S} > = \frac{1}{2} < \mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2 >$$

$$= \frac{\hbar^2}{2} \left(j \left(j + 1 \right) - l \left(l + 1 \right) - s \left(s + 1 \right) \right)$$

Spin-orbit removes the degeneracy of the two upper bands. The different bands can be labelled according to the two quantum numbers: J (total angular momentum) and J_z (projection of the total angular momentum). Considering that for p states l=1 and s=1/2, the VB states will have J=3/2 or J=1/2. J=3/2 states lay higher in energy and will be separated by a spin-orbit energy Δ from the 'split-off' (SO) states with J=1/2. The J=3/2 states can be further divided according to the quantum number J_z . We will therefore have $J_z=\pm 3/2$ or $J_z=\pm 1/2$.

Effective mass	J	Jz
НН	3/2	±3/2
LH	3/2	±1/2
SO	1/2	±1/2

The eigenvector are obtained from the Clebsch-Gordan coefficients. They feature well defined values of: j, j_z I and s (not m and s_z)

Heavy holes

$$\Phi_{3/2,3/2} = \phi_{1,1} \uparrow
= \frac{-1}{\sqrt{2}} (p_x + ip_y) \uparrow$$

$$\Phi_{3/2,-3/2} = \phi_{1,-1} \downarrow
= \frac{1}{\sqrt{2}} (p_x - ip_y) \downarrow$$

Light holes

$$\Phi_{3/2,1/2} = \frac{1}{\sqrt{3}}\phi_{1,1} \downarrow + \frac{\sqrt{2}}{\sqrt{3}}\phi_{1,0} \uparrow
= \frac{-1}{\sqrt{6}} \left[(p_x + ip_y) \downarrow -2p_z \uparrow \right]$$

$$\Phi_{3/2,-1/2} = \frac{\sqrt{2}}{\sqrt{3}}\phi_{1,0} \downarrow + \frac{1}{\sqrt{3}}\phi_{1,-1} \uparrow$$

$$= \frac{1}{\sqrt{6}} \left[(p_x - ip_y) \uparrow + 2p_z \downarrow \right]$$

Split-off

$$\Phi_{1/2,1/2} = \frac{-1}{\sqrt{3}}\phi_{1,0}\uparrow + \frac{\sqrt{2}}{\sqrt{3}}\phi_{1,1}\downarrow$$
$$= \frac{-1}{\sqrt{3}}\left[(p_x + ip_y)\downarrow + p_z\uparrow\right]$$

$$\Phi_{1/2,-1/2} = \frac{-\sqrt{2}}{\sqrt{3}}\phi_{1,-1}\uparrow + \frac{1}{\sqrt{3}}\phi_{1,0}\downarrow$$

$$= \frac{-1}{\sqrt{3}}\left[(p_x - ip_y)\uparrow - p_z\downarrow\right]$$

Isoenergy surfaces

Figure 2 : Isoenergy surfaces for upper valence band in silicon, GaAs and InSb at 2meV / 25 meV / 50 meV.

Figure 5. 3D equienergy surfaces of heavy hole, light hole and split off band in Si for $k_z = 0$.

HH
$$\Phi_{3/2,3/2} = \phi_{1,1} \uparrow$$

 $= \frac{-1}{\sqrt{2}} (p_x + ip_y) \uparrow$
LH $\Phi_{3/2,1/2} = \frac{1}{\sqrt{3}} \phi_{1,1} \downarrow + \frac{\sqrt{2}}{\sqrt{3}} \phi_{1,0} \uparrow$
 $= \frac{-1}{\sqrt{6}} [(p_x + ip_y) \downarrow -2p_z \uparrow]$
LH $\Phi_{3/2,-1/2} = \frac{\sqrt{2}}{\sqrt{3}} \phi_{1,0} \downarrow + \frac{1}{\sqrt{3}} \phi_{1,-1} \uparrow$
 $= \frac{1}{\sqrt{6}} [(p_x - ip_y) \uparrow +2p_z \downarrow]$
HH $\Phi_{3/2,-3/2} = \phi_{1,-1} \downarrow$
 $= \frac{1}{\sqrt{2}} (p_x - ip_y) \downarrow$
SO $\Phi_{1/2,1/2} = \frac{-1}{\sqrt{3}} \phi_{1,0} \uparrow + \frac{\sqrt{2}}{\sqrt{3}} \phi_{1,1} \downarrow$
 $= \frac{-1}{\sqrt{3}} [(p_x + ip_y) \downarrow + p_z \uparrow]$
SO $\Phi_{1/2,-1/2} = \frac{-\sqrt{2}}{\sqrt{3}} \phi_{1,-1} \uparrow + \frac{1}{\sqrt{3}} \phi_{1,0} \downarrow$
 $= \frac{-1}{\sqrt{3}} [(p_x - ip_y) \uparrow -p_z \downarrow]$

High symmetry points in semiconductors

The Brillouin zone (BZ) of an FCC lattice

 Γ is the center of the BZ (k=0)

- Δ (delta) is the <100> directions (e.g. $k_x\!\!\ne\!\!0,\,k_y\!\!=\!\!k_z\!\!=\!\!0)$ connecting Γ to X
- Λ (lambda) is the <111> directions (k_x=k_y=k_z\neq0) connecting Γ to L
- Σ (sigma) is the <110> directions connecting Γ to K

Silicon

Silicon is an indirect semiconductor. The CB minima is at 85% of the 1st BZ along Δ . In Si there are 6 ' Δ minima' or ' Δ valleys'.

Position of the CB minima in reciprocal space

Germanium

Germanium is an indirect semiconductor.
The CB minima is at L In Ge there are 4 'L minima' or 'L valleys'.

Position of the CB minima in reciprocal space

GaAs

Gallium arsenide is a direct semiconductor. The CB minima is at Γ In GaAs there is one ' Γ minimum'.

Position of the CB minima in reciprocal space

AlAs

Aluminum arsenide is an indirect gap semiconductor The CB minima is at X In AlAs there are 3 X minima

CdTe

Cadmium telluride is a direct gap semiconductor

Eg=1.5 eV

Used for solar cells, and IR windows

GaN

Gallium nitride is a direct semiconductor. The CB minima is at Γ

