Soient f et g les fonctions définies sur l'ensemble $\mathbb R$ des nombres réels par :

$$f(x) = xe^{1-x}$$
 et $g(x) = x^2e^{1-x}$.

Les courbes représentatives des fonctions f et g dans un repère orthogonal $(0, \vec{i}, \vec{j})$ sont respectivement notées \mathscr{C} et \mathscr{C}' . leur tracé est donné en annexe page 2.

1. Étude des fonctions f et g

- **a.** Déterminer les limites des fonctions f et g en $-\infty$.
- **b.** Justifier le fait que fonctions f et g ont pour limite 0 en $+\infty$.
- **c.** Étudier le sens de variations de chacune des fonctions f et g et dresser leurs tableaux de variations respectifs.

2. Calcul d'intégrales

Pour tout entier naturel n, on définit l'intégrale I_n par :

$$I_0 = \int_0^1 e^{1-x} dx$$
 et, si $n \ge 1$, $I_n = \int_0^1 x^n e^{1-x} dx$.

- **a.** Calculer la valeur exacte de I_0 .
- **b.** À l'aide d'une intégration par parties, démontrer que pour tout entier naturel n:

$$I_{n+1} = -1 + (n+1)I_n$$
.

c. En déduire la valeur exacte de I_1 , puis celle de I_2 .

3. Calcul d'une aire plane

- **a.** Étudier la position relative des courbes \mathscr{C} et \mathscr{C}' .
- **b.** On désigne par \mathscr{A} l'aire, exprimée en unité d'aire, de la partie du plan comprise d'une part entre les courbes \mathscr{C} et \mathscr{C}' , d'autre part entre les droites d'équations respectives x=0 et x=1.

En exprimant A comme différence de deux aires que l'on précisera, démontrer l'égalité :

$$\mathcal{A} = 3 - e$$
.

4. Étude de l'égalité de deux aires

Soit *a* un réel strictement supérieur à 1.

On désigne par S(a) l'aire, exprimée en unité d'aire, de la partie du plan comprise d'une part entre les courbes \mathscr{C} et \mathscr{C}' , d'autre part entre les droites d'équations respectives x=1 et x=a.

On admet que S(a) s'exprime par :

$$S(a) = 3 - e^{1-a} (a^2 + a + 1).$$

L'objectif de cette question est de prouver qu'il existe une et une seule valeur de a pour laquelle les aires $\mathscr A$ et S(a) sont égales.

a. Démontrer que l'équation $S(a) = \mathcal{A}$ est équivalente à l'équation :

$$e^a = a^2 + a + 1$$

b. Dans cette question, toute trace d'argumentation, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Conclure, quant à l'existence et l'unicité du réel a, solution du problème posé.

Annexe

(Courbes de l'exercice)

