Niezawodność i Diagnostyka Układów Cyfrowych			
Sprawozdanie z projektu			
Temat projektu	Transmisja ARQ w sieci Ethernet		
Prowadzący	Dr inż. Dariusz Caban		
Termin zajęć	TN, Wtorek, 11:15-13:00		
Autorzy	Jonasz Lazar Michał Kaźmierczak Kacper Malinow		Kacper Malinowski
Nr indeksów	263898	263924	263961
Kod grupy	K03-35i		
Budynek i sala	C-3, s. 019A		

1 Wstęp

1.1 Cel projektu

Celem naszego projektu było zaimplementowanie transmisji z automatyczną retransmisją danych (ARQ) w sieci Ethernet, oraz przeprowadzenie analizy jej skuteczności w zależności od kilku kluczowych czynników. Badania obejmowały ocenę wpływu następujących zmiennych:

- współczynnik szumów,
- długość wiadomości,
- ilość urządzeń.

Badania te miały pomóc ustalić jak zmiany w powyższych zmiennych wpływają na zwiększenie liczby błędów i ilość koniecznych retransmisji.

1.2 Transmisja ARQ

Transmisja ARQ (Automatic Repeat Request) jest techniką używaną w komunikacji sieciowej, która umożliwia automatyczną retransmisję danych w przypadku błędów transmisji. W przypadku wystąpienia błędu, odbiorca zgłasza nadawcy potrzebę ponownego przesłania danych, co pozwala na finalne odebranie prawidłowych informacji. ARQ gwarantuje niezawodność transmisji poprzez cykliczne żądanie powtórzenia, aż dane zostaną poprawnie odebrane. Dzięki temu mechanizmowi można osiągnąć wyższą jakość transmisji w obecności zakłóceń, szumów lub innych błędów, co jest szczególnie istotne w przypadku zastosowań sieciowych, gdzie niezawodność przesyłu danych jest kluczowa.

1.3 Ethernet

Ethernet jest powszechnie stosowanym standardem komunikacji w lokalnych sieciach komputerowych. Jest to technologia, która umożliwia transmisję danych pomiędzy urządzeniami w sieci, takimi jak komputery, drukarki czy routery. W ramach standardu Ethernet dane są przesyłane w postaci pakietów, które są adresowane i wysyłane do odpowiednich urządzeń. Prędkość transmisji może się różnić w zależności od implementacji i wersji standardu.

2 Symulacja

2.1 Opis modelu

Komputer nadawca tworzy pakiet do wysłania losowo generując wiadomość o zadanej długości i tworząc pakiet składający się z adresu MAC komputera odbiorcy, typu zdarzenia (MESSA-GE, ACK, NACK) i wiadomości. Następnie pakiet trafia na linię transmisyjną, gdzie zgodnie z ustalonym prawdopodobieństwem może nałożyć na pakiet zakłócenia – zamienić bit 0 na 1, lub odwrotnie 1 na 0. To prawdopodobieństwo nazywane jest współczynnikiem szumu i wyrażane jest w wartościach procentowych [%]. Do retransmisji dochodzi, kiedy po nałożeniu zakłóceń nie zgadza się suma kontrolna typu CRC32.

2.1.1 Nadawca/odbiorca

Nadawcą oraz odbiorcą w naszym modelu jest komputer PC.

Pola PC:

- linia transmisyjna
- adres MAC
- ostatni wysłany pakiet

Metody PC:

- utworzenie pakietu
- wysłanie pakietu
- ullet odebranie pakietu

2.1.2 Linia transmisyjna

Pola linii transmisyjnej:

- współczynnik szumów
- komputery PC
- czas do zwolnienia linii

Metody linii transmisyjnej:

- wysłanie pakietu
- generowanie szumu

2.1.3 Zdarzenie (event)

Pola zdarzenia:

- czas dodania
- nadawca
- odbiorca
- wiadomość
- czas trwania
- typ (wiadomość, ACK, NACK)

2.2 Przyjęte miary

2.2.1 NACK

2.2.2 TIME

3 Wyniki pomiarów

3.1 Współczynnik szumów

ERROR_C	ACK	NACK	TIME [ms]
0.0%	4.539	2.937	0.0342806
0.5%	4.349	7.443	0.0795813
1.0%	4.165	27.294	0.2863107
1.5%	4.091	79.544	0.8349093
2.0%	4.008	218.167	2.2899746
2.5%	4.007	586.464	6.1545383
3.0%	4.031	1808.076	18.9802743

3.2 Długość wiadomości

MSG_LEN	ACK	NACK	TIME [ms]
10	4.989	0.529	0.0035458
20	4.983	1.073	0.006083
30	4.975	1.804	0.010134
40	4.968	2.35	0.0150914
50	4.96	3.243	0.0229626
75	4.937	5.612	0.0511174
100	4.916	8.451	0.0960592
150	4.9	17.067	0.274196
200	4.909	31.796	0.6648927
250	4.889	54.046	1.3932507
300	4.894	95.097	2.9181959

3.3 Liczba komputerów

PC_COUNT	ACK	NACK	TIME [ms]
2	3.938	6.585	0.0662942
3	4.19	7.205	0.0754309
4	4.352	7.42	0.0793669
5	4.413	7.336	0.0791198
6	4.532	7.62	0.0833328
7	4.6	8.054	0.088596
8	4.575	8.035	0.0881406
9	4.665	7.852	0.0871406
10	4.687	8.074	0.0897278
15	4.787	8.232	0.0924126
20	4.845	8.438	0.0951793
25	4.865	8.381	0.0947975
30	4.893	8.414	0.0954139
35	4.907	8.542	0.0969187

40	4.915	8.608	0.0976969
45	4.927	8.477	0.0964138

4 Zależności na wykresach

4.1 Współczynnik szumów

4.2 Długość wiadomości

${\bf 4.3}\quad {\bf Liczba~komputer\'ow}$

5 Wnioski

5.1 Szum

Nasze badania wykazały, że zwiększenie współczynnika szumów ma negatywny wpływ na efektywność transmisji ARQ w sieci Ethernet. Zaobserwowaliśmy, że im większe prawdopodobieństwo wystąpienia szumów, tym większa liczba koniecznych retransmisji oraz dłuższy czas potrzebny na przesłanie pakietów.

Można to wytłumaczyć tym, że szumy wprowadzają zakłócenia do sygnału, co powoduje błędy transmisji. W przypadku ARQ, wystąpienie błędu powoduje konieczność ponownego przesłania pakietu, co wiąże się z dodatkowym czasem i zwiększonym obciążeniem sieci. Im większe jest prawdopodobieństwo szumów, tym większa jest szansa na wystąpienie błędów, co prowadzi do opóźnień i wydłużenia czasu transmisji.

Aby zapewnić jak najwyższą efektywność transmisji ARQ w sieci Ethernet, warto skupić się na minimalizacji zakłóceń i szumów – wdrożenie odpowiednich mechanizmów eliminujących lub redukujących szumy może znacznie poprawić niezawodność i wydajność transmisji danych.

5.2 Długość wiadomości

Analogicznie, nasze obserwacje i pomiary wyraźnie wskazują, że długość wysyłanych wiadomości ma istotny wpływ na efektywność transmisji ARQ w sieci Ethernet. Stwierdziliśmy, że im dłuższa jest wiadomość, tym większa liczba koniecznych retransmisji oraz dłuższy czas całego procesu transmisji.

Zaobserwowane zjawisko da się wyjaśnić faktem, że w przypadku długich wiadomości występuje większa szansa na wystąpienie błędów transmisji, co z kolei skutkuje dodatkowymi retransmisjami w celu poprawnego przesłania danych. Każda taka retransmisja wprowadza opóźnienie, co prowadzi do zmniejszenia efektywności transmisji.

5.3 Liczba komputerów

Zauważyliśmy też, że istotnym czynnikiem wpływającym na jakość i efektywność transmisji w sieci Ethernet jest liczbą komputerów. Podobnie jak w poprzednich badanych zmiennych, wraz ze wzrostem liczby urządzeń, rośnie liczba koniecznych retransmisji oraz czas trwania całego procesu przesyłania danych.

W tym przypadku jednak zauważyć można, że różnice są marginalne i wynikają prawdopodobnie ze zwiększonych opóźnień spowodowanych zajętością linii transmisyjnej z uwagi na transmisję między większą ilością urządzeń.

6 Literatura

- [1] https://www.geeksforgeeks.org/what-is-arq-automatic-repeat-request/
- $[2] \ https://en.wikipedia.org/wiki/Automatic_repeat_request$
- [3] https://www.tutorialspoint.com/automatic-repeat-request-arq
- $[4] \ https://4programmers.net/Algorytmy/Obliczanie_sum_kontrolnych_CRC-32$
- [5] https://ucgosu.pl/2017/01/jak-dziala-crc/