SOFC Model

Grymes

March 2024

0.1 Mathematical Formulation

Sets		
K	Technology cost segments	
$\mathcal J$	Power producing technologies	
\mathcal{M}	Months of year	
\mathcal{T}	Time steps	
\mathcal{L}	Locations to construct microgrid	
Subsets and	indexed Sets	
$\mathcal{J}^{\mathrm{S}}\subseteq\mathcal{J}$	Solid oxide fuel cell technologies	
$\mathcal{J}^{\mathrm{CHP}} \subseteq \mathcal{J}$	Combined heat and power technologies	
$\mathcal{J}^{\mathrm{R}}\subseteq\overline{\mathcal{J}}$	Renewable technologies	
$\mathcal{J}^{\mathrm{B}} \subseteq \mathcal{J}$	Heat-only producing technologies	
$\mathcal{J}^{\mathrm{E}} \subseteq \mathcal{J}$	Electrical producing technologies	
$\mathcal{T}^{\mathrm{fa}}$	Time steps needed for feasibility analysis	
$\mathcal{T}_m\subseteq\mathcal{T}$	Time steps in month m	
$\mathcal{T}^{\mathrm{g}} \subseteq \mathcal{T}$	Time steps when the utility is available	
Time and de	mand parameters	
Δ	Demand time steps	[hours]
$d_{lt}^{ m h}$	Heating load in time step t for the cam-	[kW]
• •	pus/building at location l	
$d_{lt}^{ m p}$	Electric load in time step t	[kW]
Cost and emission parameters		
κ_j	Annualized variable capital cost of technol-	[\$/unit]
J	ogy j	., ,
$\kappa^{ m a}_{jk}$	Annualized fixed installation cost of tech-	[\$]
jκ	nology j in size segment k	
$\kappa^{ m b}$	Annualized variable capital cost of electric	[\$/kWh]
	battery	[-/,
	· · · · · · · · · · · ·	

κ^{w}	Annualized variable capital cost of water	$[\$/\mathrm{gal}]$
$c_j^{ m om}$	storage Operation and maintenance cost of technol-	[\$/kWh]
$c_t^{ m p}$	$\begin{array}{c} \text{ogy } j \\ \text{Utility energy cost (including emissions} \end{array}$	[\$/kWh]
$egin{array}{c} c_t^{ m s} \ c_t^{ m g} \end{array}$	penalty) in time step t Utility energy purchase price in time step t	[\$/kWh]
c_t^s	Utility gas cost (including emissions penalty) in time step t	[\$/kWh]

Power generation and storage parameters

Power genera	ation and storage parameters	
$\overline{b_{jk}}$	Maximum power rating of technology j in	[kW]
	cost segment k	
$\overline{\eta}_j^{\mathrm{e}}$	Maximum electricity efficiency for technol-	[fraction]
v	ogy j	
$\underline{\eta}_{j}^{\mathrm{e}}$	Minimum electricity efficiency for technol-	[fraction]
	ogy j	
$\overline{\eta}^{\mathrm{b}}$	Maximum electricity efficiency for technol-	[fraction]
	ogy electrical storage	
$egin{aligned} \hat{k}_j \ f_j^{ m b} \ f_j^{ m m} \ f_{jt}^{ m P} \end{aligned}$	Power rating of technology j	[kW/unit]
$f_i^{ m b}$	y-intercept for fuel of technology j	[unitless]
f_i^{m}	Fuel burn slope of technology j	[unitless]
$f_{it}^{ m p}$	Production factor of technology j in time	[fraction]
J .	step t	
μ_j	Maximum turn-down of technology j	[fraction]
ψ_j	Amount of fuel needed to start up technol-	[kWh/unit]
	ogy j	
\underline{s}	Minimum capacity of electrical storage sys-	[fraction]
	tem	
\overline{s}	Maximum capacity of electrical storage sys-	[fraction]
	tem	
σ_{j}	Start-up time for each technology j to reach	[hours]
	maximum turn-down (μ_j)	

Heat generation and storage parameters

 0		
α	Ambient heat loss for water	[fraction]
ϵ	Arbitrary temperature for which there is no	$[^{\circ}C]$
	thermal loss	
$\eta_j^{ m h}$	Thermal efficiency for technology j	[fraction]
$\overset{\circ}{\gamma_j}$	Exhaust gas output for technology j	[kg/kWh]
h^{e}	Specific heat of exhaust	$[kWh/(kg ^{\circ}C)]$
h^{w}	Specific heat of water	[kWh/(gal °C)]
$\overline{ u}$	Maximum water storage capacity	[gal]
$\underline{\nu}$	Minimum water storage capacity	[gal]

$\hat{ au}_j$	Average exhaust temp from hot-thermal-producing technology j	$[^{\circ}C]$
$\check{\tau}$	Average return water temperature to water storage tank	$[^{\circ}C]$
$\overline{ au}$	Maximum allowed temperature of water in	$[^{\circ}C]$
$\underline{\tau}$	the system Minimum allowed temperature of water in the system	[°C]
Continuous v	ariables	
X_l^{w}	Volume of water storage tank at location l	[gal]
$X_l^{ m ba}$	Amount of electrical storage procured at location l	[kWh]
\hat{X}^{u}_t	Power purchased from the utility in time step t	[kW]
$\check{X}^{\mathrm{u}}_{t}$	Power sold to the utility in time step t	[kW]
$egin{array}{c} \check{X}^{\mathrm{u}}_t \ ar{X}^{\mathrm{u}}_m \end{array}$	Peak power purchased from the utility in month m	[kW]
$X_{jlt}^{ m p}$	Power produced by each technology j at location l in time step t	[kW]
$\check{X}^{\mathrm{b}}_{lt}$	Power into electrical storage system at location l in time step t	[kW]
$\hat{X}^{ ext{b}}_{lt}$	Power out of electrical storage system at location l in time step t	[kW]
$X_{lt}^{ m bsc}$	State of charge of electrical storage system at location l in time step t	[kWh]
$X_{jlt}^{ m ef}$	Electric efficiency of each technology j at location l in time step t	[fraction]
$X_{jlt}^{ m f}$	Fuel consumed by technology j at location l in time step t	[kW]
$\check{X}^{\rm fl}_{jlt}$	Flow rate of fluid into thermal storage from technology j at location l in time step t	[kg/hour]
$\hat{X}^{ ext{fl}}_{lt}$	Flow rate of water out of thermal storage at location l in time step t	[gal/hour]
$X^{ m t}_{lt}$	Temperature of water in storage at location l in time step t	$[^{\circ}C]$
.		
Integer varial		Г •, 1
$Y_{jl}^{ m a}$	Number of each technology j procured and emplaced at location l	[units]
$Y_{jlt}^{ m op}$	Number of each technology j at location l operating in time step t	[units]
$Y_{jlt}^{ m to}$	Increased number of each technology j operating at location l from $t-1$ to t	[units]

Binary variables

$Z_{jk}^{ m ak}$	1 if generating technology j in segment k is	[binary]
	procured, 0 otherwise	
$Z_l^{ m w}$	1 if additional water storage capacity is pro-	[binary]
	cured at location l , 0 otherwise	
$\check{Z}^{\rm t}_{lt}$	1 if water storage tank is above $(\check{\tau} + \epsilon)$ at	[binary]
	location l in time step t , 0 otherwise	
$\hat{Z}^{ ext{t}}_{lt}$	1 if water storage tank is above $(\hat{\tau}_{\text{boiler}})$ at	[binary]
	location l in time step t , 0 otherwise	•

Objective function

$$(\mathcal{P}') \quad \text{minimize} \qquad \underbrace{\sum_{j \in \mathcal{J}, k \in \mathcal{K}} \kappa_{jk}^{\mathrm{a}} Z_{jk}^{\mathrm{ak}} + \sum_{l \in \mathcal{L}} \left\{ \kappa^{b} X_{l}^{\mathrm{ba}} + \sum_{j \in \mathcal{J}} \kappa_{j} Y_{jl}^{\mathrm{a}} + \kappa^{\mathrm{w}} (X_{l}^{\mathrm{w}} - \underline{\nu}) \right\}}_{\text{Capital Costs}} \\ + \Delta \sum_{j \in \mathcal{J}^{\mathrm{E}}, t \in \mathcal{T}} c_{j}^{\mathrm{om}} X_{jlt}^{\mathrm{p}} + \sum_{j \in \mathcal{J}^{\mathrm{S}}, t \in \mathcal{T}} c_{t}^{\mathrm{g}} (\psi_{j} Y_{jlt}^{\mathrm{to}} + \Delta X_{jlt}^{\mathrm{f}}) \\ - \Delta \sum_{j \in \mathcal{J}^{\mathrm{B}}, t \in \mathcal{T}} (\eta_{j}^{\mathrm{h}} c_{j}^{\mathrm{om}} + c_{t}^{\mathrm{g}}) X_{jlt}^{\mathrm{f}} \right\} \\ - \Delta \sum_{j \in \mathcal{J}^{\mathrm{B}}, t \in \mathcal{T}} c_{t}^{\mathrm{p}} \hat{X}_{t}^{\mathrm{u}} + \sum_{m \in \mathcal{M}} c_{m}^{\mathrm{d}} \bar{X}_{m}^{\mathrm{u}} - \Delta \sum_{t \in \mathcal{T}} c_{t}^{\mathrm{s}} \check{X}_{t}^{\mathrm{u}} \\ - \Delta \sum_{t \in \mathcal{T}} c_{t}^{\mathrm{p}} \hat{X}_{t}^{\mathrm{u}} + \sum_{m \in \mathcal{M}} c_{m}^{\mathrm{d}} \bar{X}_{m}^{\mathrm{u}} - \Delta \sum_{t \in \mathcal{T}} c_{t}^{\mathrm{s}} \check{X}_{t}^{\mathrm{u}}$$

$$(1)$$
Grid Purchase

Load balancing

$$\sum_{l \in \mathcal{L}} \left((\bar{\eta}^{\mathbf{b}} \hat{X}_{lt}^{\mathbf{b}} - \check{X}_{lt}^{\mathbf{b}}) + \sum_{j \in \mathcal{J}^{\mathbf{E}}} X_{jlt}^{\mathbf{p}} \right) + (\hat{X}_{t}^{\mathbf{u}} - \check{X}_{t}^{\mathbf{u}}) = \sum_{l \in \mathcal{L}} d_{lt}^{\mathbf{p}} \quad \forall t \in \mathcal{T}^{\mathbf{g}}$$
 (2a)

$$(\bar{\eta}^{\mathrm{b}}\hat{X}_{lt}^{\mathrm{b}} - \check{X}_{lt}^{\mathrm{b}}) + \sum_{j \in \mathcal{J}^{\mathrm{E}}} X_{jlt}^{\mathrm{p}} = d_{lt}^{\mathrm{p}} \quad \forall l \in \mathcal{L}, t \in \mathcal{T} \setminus \mathcal{T}^{\mathrm{g}}$$
(2b)

$$h^{\mathbf{w}}(\hat{\tau}_{j} - \check{\tau})\hat{X}_{lt}^{\mathbf{fl}} \left[\left(1 - \left[1 - \frac{\hat{\tau}_{j} - \underline{\tau}}{X_{lt}^{\mathbf{t}} - \underline{\tau}} \right] \hat{Z}_{lt}^{\mathbf{t}} \right)^{-1} \right] = d_{lt}^{\mathbf{h}} \quad \forall j \in \mathcal{J}^{\mathbf{B}}, l \in \mathcal{L}, t \in \mathcal{T} \quad (2c)$$

Utility operations

$$\bar{X}_m^{\mathrm{u}} \ge \hat{X}_t^{\mathrm{u}} \quad \forall m \in \mathcal{M}, t \in \mathcal{T}_m$$
 (3a)

$$\sum_{t \in \mathcal{T}_m} \check{X}_t^{\mathbf{u}} \le \sum_{t \in \mathcal{T}_m} \hat{X}_t^{\mathbf{u}} \quad \forall m \in \mathcal{M}$$
 (3b)

Power capacity

$$\sum_{l \in \mathcal{L}} X_{jlt}^{p} \le f_{jt}^{p} \hat{k}_{j} \sum_{l \in \mathcal{L}} Y_{jl}^{a} \quad \forall j \in \mathcal{J}^{R}, t \in \mathcal{T}$$
(4a)

$$\mu_j \hat{k}_j Y_{ilt}^{\text{op}} \le X_{ilt}^{\text{p}} \le \hat{k}_j Y_{il}^{\text{op}} \quad \forall j \in \mathcal{J}^{\text{E}} \setminus \mathcal{J}^{\text{R}}, l \in \mathcal{L}, t \in \mathcal{T}$$
 (4b)

$$Y_{ilt}^{\text{op}} \le Y_{il}^{\text{a}} \quad \forall j \in \mathcal{J}^{\text{S}}, l \in \mathcal{L}, t \in \mathcal{T}$$
 (4c)

$$\hat{k}_j \sum_{l \in \mathcal{L}} Y_{jl}^{\text{a}} \le \bar{b}_{jk} Z_{jk}^{\text{ak}} \quad \forall j \in \mathcal{J}, k \in \mathcal{K}$$
(4d)

$$\sum_{k \in \mathcal{K}} Z_{jk}^{\text{ak}} \le 1 \quad \forall j \in \mathcal{J}$$
 (4e)

Electricity efficiency

$$X_{jlt}^{\text{ef}} = \left(\frac{\bar{\eta}_{j}^{\text{e}} - \mu_{j} \underline{\eta}_{j}^{\text{e}}}{1 - \mu_{j}}\right) - \left(\frac{\bar{\eta}_{j}^{\text{e}} - \underline{\eta}_{j}^{\text{e}}}{\hat{k}_{i} (1 - \mu_{j})}\right) \left(\frac{X_{jlt}^{\text{p}}}{Y_{ilt}^{\text{op}}}\right) \quad \forall j \in \mathcal{J}^{\text{S}}, l \in \mathcal{L}, t \in \mathcal{T}$$
 (5)

Fuel consumption

$$X_{jlt}^{f} = \frac{X_{jlt}^{p}}{X_{jlt}^{ef}} \quad \forall j \in \mathcal{J}^{S}, l \in \mathcal{L}, t \in \mathcal{T}$$
(6a)

$$\sum_{l \in \mathcal{L}} X_{jlt}^{\mathrm{f}} = \sum_{l \in \mathcal{L}} \left(f_j^{\mathrm{b}} \hat{k}_j Y_{jl}^{\mathrm{op}} + f_j^{\mathrm{m}} X_{jlt}^{\mathrm{p}} \right) \quad \forall j = \mathcal{J}^{\mathrm{E}} \setminus (\mathcal{J}^{\mathrm{S}} \cup \mathcal{J}^{\mathrm{R}}), t \in \mathcal{T}$$
 (6b)

$$X_{jlt}^{f} = \frac{h^{w} \hat{X}_{lt}^{fl} (\hat{\tau}_{j} - X_{lt}^{t}) (1 - \hat{Z}_{lt}^{t})}{\eta_{j}^{h}} \quad \forall j \in \mathcal{J}^{B}, l \in \mathcal{L}, t \in \mathcal{T}$$

$$(6c)$$

Start-up

$$Y_{i,l,t+\sigma_i}^{\text{op}} - Y_{ilt}^{\text{op}} \le Y_{i,l,t+\sigma_i}^{\text{to}} \quad \forall j \in \mathcal{J}^{S}, l \in \mathcal{L}, t \in \mathcal{T} : t < |\mathcal{T}| - \sigma_j$$
 (7)

Power storage

$$X_{l,t+1}^{\text{bsc}} - X_{lt}^{\text{bsc}} = \Delta(\bar{\eta}^{\text{b}} \check{X}_{lt}^{\text{b}} - \hat{X}_{lt}^{\text{b}}) \quad \forall l \in \mathcal{L}, t \in \mathcal{T} : t < |\mathcal{T}|$$
 (8a)

$$\underline{s}X_l^{\text{ba}} \le X_{lt}^{\text{bsc}} \le \bar{s}X_l^{\text{ba}} \quad \forall l \in \mathcal{L}, t \in \mathcal{T}$$
 (8b)

$$X_{l,1}^{\text{bsc}} = X_{l,|\mathcal{T}|}^{\text{bsc}} \forall l \in \mathcal{L}$$
 (8c)

Heat capacity

$$\check{X}_{jlt}^{\text{fl}} \le \gamma_j X_{jlt}^{\text{f}} \quad j \in \mathcal{J}^{\text{CHP}}, l \in \mathcal{L}, t \in \mathcal{T}$$
(9)

Heat storage

$$X_{l,t+1}^{\mathsf{t}} - (1 - \alpha \check{Z}_{lt}^{\mathsf{t}}) X_{lt}^{\mathsf{t}}$$

$$= \frac{\sum\limits_{j \in \mathcal{J}^{\text{CHP}}} (\Delta \eta_j^{\text{h}} h^{\text{e}} \check{X}_{jlt}^{\text{fl}} (\hat{\tau}_j - X_{lt}^{\text{t}})) - \Delta h^{\text{w}} \hat{X}_{lt}^{\text{fl}} (X_{lt}^{\text{t}} - \check{\tau})}{h^{\text{w}} X_l^{\text{w}}} \quad \forall l \in \mathcal{L}, t \in \mathcal{T} : t < |\mathcal{T}|$$

(10a)

$$X_{lt}^{\mathbf{t}} - \check{\tau} \le (\bar{\tau} - \check{\tau}) Z_l^{\mathbf{w}} \quad \forall l \in \mathcal{L}, t \in \mathcal{T}$$
 (10b)

$$\epsilon \check{Z}_{lt}^{t} \le X_{lt}^{t} - \check{\tau} \le \epsilon + (\bar{\tau} - \check{\tau} - \epsilon) \check{Z}_{lt}^{t} \quad \forall l \in \mathcal{L}, t \in \mathcal{T}$$
 (10c)

$$(\check{\tau} - \hat{\tau}_j)(1 - \hat{Z}_{lt}^{\mathbf{t}}) \le X_{lt}^{\mathbf{t}} - \hat{\tau}_j \le (\bar{\tau} - \hat{\tau}_j)\hat{Z}_{lt}^{\mathbf{t}} \quad \forall j \in \mathcal{J}^{\mathbf{B}}, l \in \mathcal{L}, t \in \mathcal{T}$$

$$(10d)$$

$$\underline{\nu} \le X_l^{\mathbf{w}} \le \bar{\nu} \quad l \in \mathcal{L} \tag{10e}$$

$$Z_l^{\mathbf{w}} \le \sum_{j \in \mathcal{J}^{\text{CHP}}} Y_{jl}^{\mathbf{a}} \le \left[\frac{\max_{t \in \mathcal{T}} \{d_{lt}^{\mathbf{P}}\}}{\min_{j \in \mathcal{J}^{\text{CHP}}} \{\hat{k}_j\}} \right] Z_l^{\mathbf{w}} \quad \forall l \in \mathcal{L}$$

$$(10f)$$

Non-negativity and integrality

$$X_l^{\text{w}}, X_l^{\text{ba}} \ge 0 \quad \forall l \in \mathcal{L}$$
 (11a)

$$X_{jlt}^{\mathrm{f}}, X_{jlt}^{\mathrm{p}}, X_{jt}^{\mathrm{ef}}, \check{X}_{jt}^{\mathrm{fl}} \ge 0 \quad \forall j \in \mathcal{J}, l \in \mathcal{L}, t \in \mathcal{T}$$
 (11b)

$$\bar{X}_m^{\mathrm{u}} \ge 0 \quad \forall m \in \mathcal{M}$$
 (11c)

$$\hat{X}_t^{\mathrm{u}}, \check{X}_t^{\mathrm{u}}, \check{X}_t^{\mathrm{b}}, \hat{X}_t^{\mathrm{b}}, X_t^{\mathrm{bsc}}, \hat{X}_t^{\mathrm{fl}}, X_t^{\mathrm{t}} \ge 0 \quad \forall t \in \mathcal{T}$$

$$(11d)$$

$$Y_{li}^{\mathrm{a}} \ge 0, \text{integer} \quad \forall l \in \mathcal{L}, j \in \mathcal{J}$$
 (11e)

$$Y_{jlt}^{\text{op}}, Y_{jlt}^{\text{to}} \ge 0, \text{integer} \quad \forall j \in \mathcal{J}, l \in \mathcal{L}, t \in \mathcal{T}$$
 (11f)

$$Z_l^{\mathrm{w}} \text{ binary } \forall l \in \mathcal{L}$$
 (11g)

$$\check{Z}_{lt}^{\mathrm{t}}, \hat{Z}_{lt}^{\mathrm{t}} \text{ binary } \forall l \in \mathcal{L}, t \in \mathcal{T}$$
 (11h)

$$Z_{jk}^{\mathrm{ak}}$$
 binary $j \in \mathcal{J}, k \in \mathcal{K}$ (11i)