Incorporating Brand into E-commerce RS with GNN

Gao Zhen

2021/10/25

Outline

- Introduction
- Background
 - GNN Framework
 - GCN/GraphSAGE/GAT
 - NGCF
- Related Work
 - PUP
 - HiGNN
 - HAN
- Future Work

GNN in E-commerce RS

Social Recommendation

 User interactions are affected by both their own preferences and the social factor.

Sequential Recommendation

• Given a user's historical sequence, RS aims to predict the next item.

Session-based Recommendation

• Given a anonymous short session, RS aims to predict the next item.

Bundle Recommendation

Multi-behavior Recommendation

Evaluation Measures in RS

- Rating and Usage Prediction Accuracy
 - Precision Recall F1
 - Hit Rate
 - Mean Absolute Error(MAE) \ Root Mean Squared Error(RMSE)
- Ranking
 - Normalized Discounted Cumulative Gain (NDCG)
 - Receiver Operating Characteristic(ROC) \ Area under curve(AUC)
 - Mean Reciprocal Rank(MRR)
- Online
 - Click Through Rate(CTR)

GNN Framework

Message computation

$$\mathbf{m}_{u}^{(l)} = \mathsf{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right)$$

• Message aggregation $\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)$

Nonlinearity activation

Graph Convolutional Networks(GCN)

Message

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$
Aggregation

Message:

- Each Neighbor: $\mathbf{m}_u^{(l)} = \frac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$
- Normalized by node degree

Aggregation:

• Sum messages from neighbors, then apply activation

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$$

GCN

$$ullet f(H^{(l)},A)=\sigma\left(AH^{(l)}W^{(l)}
ight)$$

- Limitations:
 - No self-loops
 - Not normalized
- Solutions:
 - $\hat{A} = A + I$
 - Use a symmetric normalization

$$f(H^{(l)},A) = \sigma \left(\hat{D}^{-rac{1}{2}} \hat{A} \hat{D}^{-rac{1}{2}} H^{(l)} W^{(l)}
ight)$$

Graph Sampling and aggregation(GraphSAGE)

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}\left(\mathbf{h}_{v}^{(l-1)}, \text{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)\right)\right)$$

- Message is computed within the AGG(·)
 - AGG(·): Mean/Pool/LSTM
- Two-stage aggregation
 - Stage 1: Aggregate from node neighbors

$$\mathbf{h}_{N(v)}^{(l)} \leftarrow \mathrm{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)$$

Stage 2: Further aggregate over the node itself

$$\mathbf{h}_{v}^{(l)} \leftarrow \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)})\right)$$

GraphSAGE VS GCN

- GCN is transductive and can only generate embeddings for a single fixed graph, does not efficiently generalize to unseen nodes
- GraphSAGE is an inductive framework that leverages node attribute information to efficiently generate representations on previously unseen data.
- GraphSAGE uses multiple aggregators rather than the simple convolution in GCN

Graph Attention Networks(GAT)

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights

• In GCN/GraphSAGE • $\alpha_{vu} = \frac{1}{|N(v)|}$

•
$$\alpha_{vu} = \frac{1}{|N(v)|}$$

- Attention mechanism a have trainable parameters
- Attention coefficients $e_{vu} = a(\mathbf{W}^{(l)}\mathbf{h}_{u}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{v}^{(l-1)})$

• Attention weight
$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

[5] Graph Attention Networks. ICLR 2018

GAT

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_i]\right)\right)}$$

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

[5] Graph Attention Networks. ICLR 2018

Neural graph collaborative filtering(NGCF)

- Existing CF methods don't model high-order connectivity explicitly
 - Embedding function only considers descriptive features (e.g., ID, attributes)
 - User-item interactions are not considered
- CF modeling with high-order connectivity via GNN
 - Embedding Propagation, inspired by GNNs

NGCF

- First-order Propagation
 - Message Construction: generate message from one neighbor

message passed from i to u

$$\frac{\mathbf{m}_{u \leftarrow i}}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \Big(\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2 (\mathbf{e}_i \odot \mathbf{e}_u) \Big)$$

discount factor

- message dependent on the affinity, distinct from GCN, GraphSage, etc.
- Pass more information to similar nodes
- Message Aggregation:

$$\mathbf{e}_u^{(1)} = \text{LeakyReLU}\Big(\mathbf{m}_{u \leftarrow u} + \sum_{i \in \mathcal{N}_u} \mathbf{m}_{u \leftarrow i}\Big)$$
 self-connections all neighbors of u

NGCF

• High-order Propagation: stack more embedding propagation layers $\mathbf{e}_{u}^{(l)} = \text{LeakyReLU} \Big(\mathbf{m}_{u \leftarrow u}^{(l)} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}^{(l)} \Big),$

representation of u at the l-th layer

 The collaborative signal like u1 ← i2 ← u2 ← i4 can be captured in the embedding propagation process.

NGCF

 Collaborative signal can be injected into the representation learning process.

$$\mathbf{e}_{u}^{*} = \mathbf{e}_{u}^{(0)} \| \cdots \| \mathbf{e}_{u}^{(L)}, \quad \mathbf{e}_{i}^{*} = \mathbf{e}_{i}^{(0)} \| \cdots \| \mathbf{e}_{i}^{(L)},$$

$$\hat{y}_{\text{NGCF}}(u,i) = \mathbf{e}_u^* \,^{\top} \mathbf{e}_i^*.$$

Price-aware User Preference modeling(PUP)

Motivation

 Price is a significant factor in affecting user behaviors and product sales in marketing research. Nevertheless, and surprisingly, it has received relatively little scrutiny in recommendation.

Difficulties and Solutions

- Unstated price awareness
 - Infer a user's personalized awareness on item price from her purchase history via GCN
- Category-dependent
 - Squeeze out the two important attributes (price and category) as entity nodes to capture the category-dependent price awareness

Category-dependent Price Awareness

- category willing to pay (CWTP)
 - the highest price a given user is willing to pay for items of a given category
 - One CWTP per category
 - Compute the entropy of CWTPs for each user

Fig. 1: Histogram of users' CWTP entropy value. High entropy value means users consider price differently in distinct categories.

Fig. 2: Price-category purchase heatmap of three randomly selected users

PUP Model

- Four types of nodes in unified heterogeneous graph
 - User/Item/Price(level)/Category
- Graph Convolutional Encoder
- Pairwise-interaction Based Decoder

$$s = s_{\text{global}} + \alpha s_{\text{category}}$$

$$s_{\text{global}} = e_u^T e_i + e_u^T e_p + e_i^T e_p$$

$$s_{\text{category}} = e_u^T e_c + e_u^T e_p + e_c^T e_p,$$

Experiments

	Yelp dataset				Beibei dataset					
method	Recall@50	NDCG@50	Recall@100	NDCG@100	Recall@50	NDCG@50	Recall@100	NDCG@100		
ItemPop	0.0401	0.0182	0.0660	0.0247	0.0087	0.0027	0.0175	0.0046		
BPR-MF	0.1621	0.0767	0.2538	0.1000	0.0256	0.0103	0.0379	0.0129		
PaDQ	0.1241	0.0572	0.2000	0.0767	0.0131	0.0056	0.0186	0.0068		
FM	0.1635	0.0771	0.2538	0.1001	0.0259	0.0104	0.0384	0.0130		
DeepFM	0.1644	0.0769	0.2545	0.0998	0.0255	0.0090	0.0400	0.0122		
GC-MC	0.1670	0.0770	0.2621	0.1011	0.0231	0.0100	0.0343	0.0124		
NGCF	0.1679	0.0769	0.2619	0.1008	0.0256	0.0107	0.0383	0.0134		
PUP	0.1765	0.0816	0.2715	0.1058	0.0266	0.0113	0.0403	0.0142		
impr.%	5.12%	5.84%	3.59%	4.65%	2.70%	5.61%	0.75%	5.97%		

method	Recall@50	NDCG@50	Recall@100	NDCG@100
PUP w/o c,p	0.0726	0.0211	0.1155	0.0285
PUP w/ c	0.0633	0.0222	0.0944	0.0276
PUP w/p	0.0854	0.0277	0.1275	0.0350
PUP	0.0890	0.0293	0.1336	0.0370

Inspired by PUP

 Brand also plays a critical role in determining whether the user will make the final purchase decision.

- Filter priority in JD and Taobao:
 - Service/Discount > Price > Brand > Category

Hierarchical Bipartite Graph Neural Networks(HiGNN)

- Introduce bipartite GraphSAGE on a user-item graph
- Quadruple G = (U, I, E, S)
 - Users $U = \{u_1, u_2, \dots, u_M\}$
 - items $I = \{i_1, i_2, \dots, i_N\}$
 - each edge $\{e = (u_m, i_n) | u_m \in U, i_n \in I\}$ is associated with a weight S(e)
- User embedding
 - $\boldsymbol{h}_{N(u)}^{p} \leftarrow \boldsymbol{M}_{i}^{u} \cdot \text{AGGREGATE}_{u}^{p}(\{\boldsymbol{h}_{i}^{p-1}, \forall i \in N(u)\})$
 - $\boldsymbol{h}_{u}^{p} \leftarrow \sigma(\boldsymbol{W}_{u}^{p} \cdot \text{CONCAT}(\boldsymbol{h}_{u}^{p-1}, \boldsymbol{h}_{N(u)}^{p}))$
- Item embedding
 - $\boldsymbol{h}_{N(i)}^p \leftarrow \boldsymbol{M}_u^i \cdot \text{AGGREGATE}_i^p(\{\boldsymbol{h}_u^{p-1}, \forall u \in N(i)\})$
 - $\boldsymbol{h}_{i}^{p} \leftarrow \sigma(\boldsymbol{W}_{i}^{p} \cdot \text{CONCAT}(\boldsymbol{h}_{i}^{p-1}, \boldsymbol{h}_{N(i)}^{p}))$

Stack Multiple GNN Modules

- Set of user embeddings $\mathbf{Z}_u = \{\mathbf{z}_u, \forall u \in U\}$
- Set of item embeddings $\mathbf{Z}_i = \{\mathbf{z}_i, \forall i \in I\}$
- Consider user clusters Cu and item clusters Ci clustered by K-means as new users and items in a new coarsened user-item graph.
- edge weight of (Cu, Ci)

$$S(C_u, C_i) = \sum_{e} S(e), \forall e = (u, i) \in G, u \in C_u, i \in C_i$$

HiGNN Framework

Topic-driven taxonomy

(a) The sub-topics under the topics 'Healthy Home', 'Beauty Products', and 'Cosmetics'.

Inspired by HiGNN

- Hierarchical taxonomy by stacking multiple GNN modules
- Assign price level for each layer of clusters
- Aggregate all price level as item's price level

Heterogeneous Graph Attention Network(HAN)

- Heterogeneous Graph
 - Multiple types of nodes or links
 - Rich semantic information
 - Meta-path: a relation sequence connecting two objects (e.g., Movie-Actor-Movie).

HAN's Goal

- Node-level Attention
 - Discover the differences of meta-path based neighbors
- Semantic-level Attention
 - Find some meaningful meta-paths

Overall Framework

Node-Level Attention and Aggregating

• Type-Specific Transformation

$$\mathbf{h}_i' = \mathbf{M}_{\phi_i} \cdot \mathbf{h}_i,$$

Type-specific transformation matrix

Importance of Neighbors

$$e_{ij}^{\Phi} = att_{node} \left(\mathbf{h}'_i, \mathbf{h}'_j; \Phi \right)$$

$$e_{ij}^{\Phi} = \sigma \left(\mathbf{a}_{\Phi}^{\mathrm{T}} \cdot \left[\mathbf{h}'_i || \mathbf{h}'_j \right] \right)$$

$$\alpha_{ij}^{\Phi} = softmax_j \left(e_{ij}^{\Phi} \right)$$

Node-level attention vector

Node-Level Aggregating

$$\mathbf{z}_{i}^{\Phi} = \sigma \left(\sum_{j \in \mathcal{N}_{i}^{\Phi}} \alpha_{ij}^{\Phi} \cdot \mathbf{h}_{j}' \right).$$

Semantic-Level Attention and Aggregating

Semantic-Level Attention

$$(\beta_{\Phi_0}, \beta_{\Phi_1}, \dots, \beta_{\Phi_P}) = att_{sem}(\mathbf{Z}_{\Phi_0}, \mathbf{Z}_{\Phi_1}, \dots, \mathbf{Z}_{\Phi_P})$$

Importance of Neighbors

Semantic-level attention vector

$$w_{\Phi_i} = \frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \mathbf{q}^{\mathrm{T}} \cdot \tanh(\mathbf{W} \cdot \mathbf{z}_i^{\Phi} + \mathbf{b})$$
$$\beta_{\Phi_i} = \frac{\exp(w_{\Phi_i})}{\sum_{i=1}^{P} \exp(w_{\Phi_i})}$$

Node-Level Aggregating

$$\mathbf{Z} = \sum_{i=1}^{P} \beta_{\Phi_i} \cdot \mathbf{Z}_{\Phi_i}$$
Semantic weight

Experiments

Datasets	Metrics	Training	DeepWalk	ESim	metapath2vec	HERec	GCN	GAT	HAN_{nd}	HAN _{sem}	HAN
ACM	Macro-F1	20%	77.25	77.32	65.09	66.17	86.81	86.23	88.15	89.04	89.40
		40%	80.47	80.12	69.93	70.89	87.68	87.04	88.41	89.41	89.79
		60%	82.55	82.44	71.47	72.38	88.10	87.56	87.91	90.00	89.51
		80%	84.17	83.00	73.81	73.92	88.29	87.33	88.48	90.17	90.63
	Micro-F1	20%	76.92	76.89	65.00	66.03	86.77	86.01	87.99	88.85	89.22
		40%	79.99	79.70	69.75	70.73	87.64	86.79	88.31	89.27	89.64
		60%	82.11	82.02	71.29	72.24	88.12	87.40	87.68	89.85	89.33
		80%	83.88	82.89	73.69	73.84	88.35	87.11	88.26	89.95	90.54
DBLP	Macro-F1	20%	77.43	91.64	90.16	91.68	90.79	90.97	91.17	92.03	92.24
		40%	81.02	92.04	90.82	92.16	91.48	91.20	91.46	92.08	92.40
		60%	83.67	92.44	91.32	92.80	91.89	90.80	91.78	92.38	92.80
		80%	84.81	92.53	91.89	92.34	92.38	91.73	91.80	92.53	93.08
	Micro-F1	20%	79.37	92.73	91.53	92.69	91.71	91.96	92.05	92.99	93.11
		40%	82.73	93.07	92.03	93.18	92.31	92.16	92.38	93.00	93.30
		60%	85.27	93.39	92.48	93.70	92.62	91.84	92.69	93.31	93.70
		80%	86.26	93.44	92.80	93.27	93.09	92.55	92.69	93.29	93.99
IMDB	Macro-F1	20%	40.72	32.10	41.16	41.65	45.73	49.44	49.78	50.87	50.00
		40%	45.19	31.94	44.22	43.86	48.01	50.64	52.11	50.85	52.71
		60%	48.13	31.68	45.11	46.27	49.15	51.90	51.73	52.09	54.24
		80%	50.35	32.06	45.15	47.64	51.81	52.99	52.66	51.60	54.38
	Micro-F1	20%	46.38	35.28	45.65	45.81	49.78	55.28	54.17	55.01	55.73
		40%	49.99	35.47	48.24	47.59	51.71	55.91	56.39	55.15	57.97
		60%	52.21	35.64	49.09	49.88	52.29	56.44	56.09	56.66	58.32
		80%	54.33	35.59	48.81	50.99	54.61	56.97	56.38	56.49	58.51

Inspired by HAN

• Construct a heterogeneous graph of item attributes

• Item

Brand

• Price(level)

• Each node captures rich semantic information

Future work

- Incorporating Brand into E-commerce RS with GNN
 - Modeling brand factor in heterogeneous graph, and learn the brand awareness of users
 - Hierarchically Cluster items via HiGNN and assign a more reasonable price level to the item
 - Learn item feature and user feature representations in the same feature space, and make RS explainable

商品特征与用户特征表示(TO DO)

匹配得分的可解释性(TO DO)

Thanks