Relatório Trabalho 2 - Programação Paralela

Pedro Amaral Chapelin Pedro Willian Aguiar

Introdução

Para esse trabalho, foi pedido para que implementássemos o algoritmo dos **K vizinhos mais próximos**. Esse problema da programação consiste no seguinte: São duas matrizes de entrada, que representam pontos e suas coordenadas. Cada linha representa um ponto, e cada coluna os valores de suas dimensões (x, y, z...), sendo a matriz **Q** de tamanho $\mathbf{nq} \times \mathbf{d}$ (nq = número de pontos em q, d = quantidade de dimensões dos pontos) e a matriz **P** de tamanho $\mathbf{np} \times \mathbf{d}$ (np = número de pontos em p) as matrizes de entrada, vale ressaltar que só as dimensões de cada matriz foram passadas como entradas, o conteúdo de cada uma é preenchido aleatóriamente. Além das dimensões de cada, o programa também recebe o número **k** como argumento, indicando quantos vizinhos mais próximos serão calculados para cada ponto.

A ideia principal dos k vizinhos mais próximos funciona da seguinte maneira: O programa deve devolver uma matriz **R** de tamanho **nq** x **k** que contenha as distâncias e os índices dos **k** pontos de **P** que são mais próximos de cada ponto em **Q**. Agora explicado como funciona o algoritmo, partimos para a implementação do mesmo. Basicamente, para cada ponto de **Q** foi necessário varrer todos os pontos de **P**, e para ir armazenando as menores distâncias calculadas utilizamos a estrutura **Heap** cedida pelo professor. Ao final de cada varredura por todos os pontos de **P** e com a Heap pronta, tudo que tínhamos que fazer era copiar o conteúdo dela para linha da matriz **R**.

Feita a implementação, agora o desafio era paralelizar esse processo todo usando a biblioteca *mpi.h*, para isso, toda a execução era baseada em nodos e processos que realizariam o trabalho dividido. Primeiramente, antes de entrar na função principal, definimos que o preenchimento das matrizes com números aleatórios seria realizado apenas no nodo 0, juntamente com a medição do tempo, utilizando a biblioteca do professor *chrono.h*. Logo após isso, realizamos a chamada da função principal:

// Execução principal do programa

Passamos todos os dados das matrizes juntamente com os dados necessários para paralelizar com o MPI. **nq** / **nproc** significa o que cada nodo pegará da matriz **Q** para calcular, assim realizando uma divisão do processo todo pegando o número total de pontos em q (**nq**) pelo número total de processos passados na compilação (**nproc**). O MPI é responsável por dividir e matriz **Q** entre os nodos(fução MPI_Scatter), enviar a matriz **P** completa para todos (função MPI_Broadcast), e no fim da função, juntar todos os resultados calculados paralelamente (MPI Gather).

Depois de alcançado o passo do paralelismo, agora é hora de testar e anotar a diferença observada nos testes. Para testarmos, foi disponibilizado para nós um cluster de computadores, todos com as mesmas características a seguir de processamento:

Experiência	Achar	K men	ores c	om MPI				
	INFOS	obtidas d	lo <u>prog</u> r	ama Iscpu s	obre o ha	rdware <u>rod</u> a	ado no cl	uster
Processador:	Intel(R)	Xeon(R)	CPU	E5462				
CPU MHz	2792,84				 			
	_							
L1d cache	256 KiB				1			
L1i cache	256 KiB				1			
L2 cache	24 MiB				1			

Para todas as execuções, os parâmetros internos do programa foram os mesmos: knn-mpi 128(nq) 400000(np) 300(d) 1024(k)

Entretanto, foram realizadas 3 experiências diferentes com parâmetros do MPI e do Cluster:

1- Rodar o programa para APENAS 1 processo MPI e medir o tempo da computação de knn

sbatch –exclusive -N 1 knn-mpi-slurm.sh mpirun -np 1 knn-mpi 128(**nq**) 400000(**np**) 300(**d**) 1024(**k**)

2 - Rodar o programa para 4 processos MPI no mesmo host e medir o tempo da computação de knn

sbatch –exclusive -N 1 knn-mpi-slurm.sh mpirun -np 4 knn-mpi 128(**nq**) 400000(**np**) 300(**d**) 1024(**k**)

3 - Rodar o programa para 4 processos MPI em hosts diferentes e medir o tempo da computação de knn

sbatch –exclusive -N 4 knn-mpi-slurm.sh mpirun -np 4 knn-mpi 128(**nq**) 400000(**np**) 300(**d**) 1024(**k**)

Alunos:						
Pedro Amaral						
Pedro Willian						
Primeiro	Teste		Segundo Teste		Terceiro	Teste
Tempo (Segundos)) Vazão (MB/s)		Tempo (Şegundos)	Vazão (MB/s)	Tempo (Şegundoş)	Vazão (MB/s)
27.611743	556.285060		11.821159	1299.36499	11.923369	1288.226474
27.998788	548.595171		11.86764	1294.2759	11.803004	1301.363596
28.479297	539.339155		11.835271	1297.815608	11.825171	1298.924142
28.277272	543.192426		11.909201	1289.759039	11.868306	1294.203247
27.491169	558.724869		12.156639	1263.507143	11.888636	1291.990147
28.44815	539.929656		11.725739	1309.938758	11.894246	1291.380771
27.64	555.792407		11.88	1293.14952	11.802498	1301.419450
27.977651	549.009628		11.778158	1304.108803	11.771034	1304.898091
28.497226	538.999827		11.87175	1293.827781	11.770748	1304.929821
27.494236	558.662549		11.967188	1283.509577	11.924169	1288.140035
sbatchexclusive mpirun -np 1 knn-m	pi 128 400000 30	00 1024	sbatchexclusive -N 1 knn-mpi-slurm. mpirun -np 4 knn-mpi 128 400000 300 3	1024	sbatchexclusive - mpirun -np 4 knn-mp	pi 128 400000 300 1
	Testes	00 1024 Tempo <u>médio</u> (s)	mpirun -np 4 knn-mpi 128 400000 300 2	1024		
	Testes Primeiro	00 1024 Tempo <u>médio</u> (s) 27,991175	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te:	1024 ste 30		pi 128 400000 300 1
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024		pi 128 400000 300 1
	Testes Primeiro	00 1024 Tempo <u>médio</u> (s) 27,991175	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te:	1024 ste 30		pi 128 400000 300 1
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30		pi 128 400000 300 1
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25		pi 128 400000 300 1
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25		pi 128 400000 300 1 3 2,5
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25		pi 128 400000 300 1 3 2,5
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25		pi 128 400000 300 1 3 2,5
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25		pi 128 400000 300 1
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25 20 20		pi 128 400000 300 1 3 2,5
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25 20 (s) opput 15 00 multiple 10		pi 128 400000 300 1
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25 20 00 00 00 00 00 15 00 00 00 00 00 00 00 00 00 0		pi 128 400000 300 1
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25 20 (9) 99 15 10 10 10 10 10 10 10 10 10 10	mpirun -np 4 knn-mp	pi 128 400000 300 1
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste	mpirun -np 4 knn-mp	1,5 0,5
	Testes Primeiro Segundo	Tempo médio (s) 27,991175 11,8810722	mpirun -np 4 knn-mpi 128 400000 300 : SpeedUp em relação ao primeiro te: 1 2,35594688162908	1024 ste 30 25 20 (9) 90 15 00 10 10 10 10 10 10 10 1	mpirun -np 4 knn-mp oo médio (s) dUp em relação	pi 128 400000 300 1

Conclusão

Como podemos perceber pelos resultados obtidos acima, quando ligamos de fato a paralelização com 4 nodos, o tempo de execução praticamente cai pela metade. Já a vazão quase triplica, o que faz sentido quando pensamos que estamos realizando mais operações, mesmo que de modo paralelo. Já quando dividimos a execução para vários hosts, o resultado permanece o mesmo em relação ao segundo teste, não variando praticamente nada, mas continua melhor que o sequencial também, executado no primeiro teste.