Generalized Linear Models for Spatial Data (GLMSD)

Kally Chung (chung.kally@gmail.com)

Prof. Paulo Justiniano Ribeiro Jr (paulojus@ufpr.br)

Prof. Wagner Bonat (wbonat@ufpr.br)

February 13th, 2020

UFPR - PPGMNE/LEG VIII WPSM

Table of contents

- 1. Introduction
- 2. General Model
- 3. Generalized Linear Models for Spatial Data
- 4. Data Analysis
- 5. Discussion

Introduction

Introduction

- Gaussian spatial data: continuous and symmetrically distributed.
 - · Kriging,
 - · Maximum likelihood estimation.
- Non-Gaussian spatial data: bynary data, count data, continuous with long tail, continuos and asymmetric, among others.
 - Spatial Generalized Linear Model (SGLM) Gotway & Stroup, 1997
 [4],
 - Generalized Linear Mixed Model (GLMM) Bonat & RibeiroJr, 2015 [1],
 - Gaussian Copula Regression Model (GCRM) Masarotto & Varin, 2017 [7].

General Model

General Model

· Model based on moments:

$$E[\mathbb{Y}] = \mu = g^{-1}(\mathbb{X}\beta),$$

$$Var[\mathbb{Y}] = C = V^{1/2}\Omega V^{1/2}.$$

- g(.) is the link function,
- μ is the mean vector,
- $V_{N\times N}$ is the variance matrix,
- $\Omega_{N\times N}$ is the covariance matrix.

Generalized Linear Models for Spatial Data

GLMSD

• Construction of $C = V^{1/2}\Omega V^{1/2}$:

$$V(p) = \operatorname{diag}(v(p)) = \operatorname{diag}(\mu^p),$$

$$\Omega(\tau) = \Omega(\tau_0, \tau_1, \tau_2) = \tau_0 R(\tau_1) + \tau_2 I.$$

- $v(p) = \mu^p$ is the variance function described by Tweedie family, (Jørgensen, 1987 [6]),
- $\tau = (\tau_0, \tau_1, \tau_2)$ is the sill $\tau_0 \ge 0$, range $\tau_1 \ge 0$ and nugget $\tau_2 \ge 0$ (Diggle & Ribeiro Jr (2007) [2]),
- $R(d_{ij}, \tau_1)$ is the matrix defined by spatial correlation function ρ .
 - Exponential or Matérn $\kappa =$ 0.5:

$$\rho(d_{ij}, \tau_1) = \exp\left(-\frac{d_{ij}}{\tau_1}\right).$$

• For more spatial correlation functions, check Diggle & Ribeiro Jr (2007) [2].

4

Estimação (Holst & Jørgensen, 2015 [5])

- Let $\theta = (\beta, \lambda) = (\beta, p, \tau_0, \tau_1, \tau_2)$ be the parameters vector.
- · Problem: solve

$$\varphi = (\varphi_{\beta}, \varphi_{\lambda}) = \begin{cases} \varphi_{\beta} = D^{T}C(\mathbb{Y} - \mu) = 0 \\ \varphi_{\lambda_{i}} = tr(W_{\lambda_{i}}(rr^{T} - C)) = 0 \end{cases}, \lambda_{i} = p, \tau_{0}, \tau_{1}, \tau_{2}$$

- · $D = \nabla_{\beta} \mu$,
- $W_{\lambda_i} = C^{-1} \frac{\partial C}{\partial \lambda_i} C^{-1}$,
- residue $r = \mathbb{Y} \mu$.

Algoritmo Chaser(Holst & Jørgensen, 2010 [5])

· Iterative method based on Fisher Scoring

$$\begin{split} \beta^{(i+1)} &= \beta^{(i)} - S_{\beta}^{-1}(\beta^{(i)}, \lambda^{(i)}) \, \varphi_{\beta}(\beta^{(i)}, \lambda^{(i)}) \\ \lambda^{(i+1)} &= \lambda^{(i)} - S_{\lambda}^{-1}(\beta^{(i+1)}, \lambda^{(i)}) \, \varphi_{\lambda}(\beta^{(i+1)}, \lambda^{(i)}) \end{split}$$

$$S_{\beta} = -D^{\mathsf{T}}C^{-1}D,$$

$$S_{\lambda_{i,j}} = -tr\left(C^{-1}\frac{\partial C}{\partial \lambda_{i}}C^{-1}\frac{\partial C}{\partial \lambda_{i}}\right), \text{ with } \lambda_{i} = p, \tau_{0}, \tau_{1}, \tau_{2}.$$

Bias Correction (Holst & Jørgensen, 2015 [5])

- Quasi-score function $\varphi_{\lambda_i} = tr(W_{\lambda_i}(rr^T C))$ is biased for unknown regression parameter β .
- · The bias correction term is given by,

$$b_{\lambda_i} = -\operatorname{tr}(J_{\beta}^{\lambda_i}J_{\beta}^{-1}) = -\operatorname{tr}\left(J_{\beta}^{\lambda_i}\frac{\partial J_{\beta}}{\partial \lambda_i}\right) = -\operatorname{tr}(D^{\mathsf{T}}W_{\lambda_i}DS_{\beta}^{-\mathsf{T}})$$

where

$$J_{\beta}^{-1} = S_{\beta}^{-1} V_{\beta} S_{\beta}^{-T},$$

$$V_{\beta} = Var[\varphi_{\beta}] = D^{\mathsf{T}} C^{-1} D.$$

• Correction bias in φ_{λ} , we have

$$\check{\varphi}_{\lambda_i}(\beta, \lambda) = \varphi(\beta, \lambda) + b_{\lambda_i}(\beta, \lambda)
= tr(W_{\lambda_i}(rr^T - C)) - tr(D^T W_{\lambda_i} DS_{\beta}^{-T}).$$

Reparametrization

· Note that

$$\Omega = \tau_0 \left(\rho(\tau_1) + \frac{\tau_2}{\tau_0} I \right) = \tau_0 (\rho(\tau_1) + \tau_2^* I) = \tau_0 \Delta,$$

where

$$\Delta = \begin{bmatrix} 1 + \tau_2^* & \rho(d_{12}, \tau_1) & \cdots & \rho(d_{1N}, \tau_1) \\ \rho(d_{21}, \tau_1) & 1 + \tau_2^* & \cdots & \rho(d_{2N}, \tau_1) \\ \vdots & \vdots & \ddots & \vdots \\ \rho(d_{N1}, \tau_1) & \rho(d_{N2}, \tau_1) & \cdots & 1 + \tau_2^* \end{bmatrix},$$

· then the reparametrization is given by

$$\gamma = (\gamma_0, \gamma_1, \gamma_2) = \left(\ln \tau_0, \ln \tau_1, \ln \tau_2^*\right) = \left(\ln \tau_0, \ln \tau_1, \ln \frac{\tau_2}{\tau_0}\right)$$

8

Initial Parameters

- For the initial β , we use the usual generalized linear model (*GLM*).
- For p, consider p = 0 for the continuous data, or p = 1 for the count data.
- Let γ_2 be 20% of the dispersion observed in *GLM*, empirically.
- We determine $\varphi_{\lambda}(\beta, \gamma_1)$ and estimate the initial parameter γ_1^{Inic} such that $\varphi_{\lambda}(\beta, \gamma_1^{\text{Inic}}) = 0$.
- Considering γ_1^{lnic} , $\hat{\gamma_0}$ is defined by

$$\hat{\gamma_0} = \begin{cases} \ln\left(\frac{r^T \Delta^{-1} r}{N}\right), & \text{without bias correction} \\ \ln\left(\frac{r^T \Delta^{-1} r}{N - n_\beta}\right), & \text{otherwise} \end{cases}$$

9

Standard Error in the Estimation

- Let $\hat{\theta} = (\hat{\beta}, \hat{\lambda})$ be the estimate of θ .
- · The asymptotic distribution of $\hat{ heta}$ is given by

$$\hat{\theta} \sim N(\theta, J_{\theta}^{-1}).$$

$$\begin{split} & \cdot \ J_{\theta}^{-1} = S_{\theta}^{-1} V_{\theta} S_{\theta}^{-T}, \\ & \cdot \ S_{\theta} = \begin{bmatrix} S_{\beta} & S_{\beta,\lambda} \\ S_{\lambda,\beta} & S_{\lambda} \end{bmatrix} = \begin{bmatrix} E[\nabla_{\beta} \varphi_{\beta}(\beta,\lambda)] & E[\nabla_{\lambda} \varphi_{\beta}(\beta,\lambda)] \\ E[\nabla_{\beta} \varphi_{\lambda}(\beta,\lambda)] & E[\nabla_{\lambda} \varphi_{\lambda}(\beta,\lambda)] \end{bmatrix}, \\ & \cdot \ V_{\theta} = \begin{bmatrix} V_{\beta} & V_{\beta,\lambda} \\ V_{\lambda,\beta} & V_{\lambda} \end{bmatrix} = \begin{bmatrix} V_{\beta} & V_{\lambda,\beta}^{T} \\ V_{\lambda,\beta} & V_{\lambda} \end{bmatrix}. \end{split}$$

• Standard error SD_{θ} given by

$$SD_{\theta} = \sqrt{\operatorname{diag}(J_{\theta}^{-1})}.$$

Prediction (Gotway & Stroup [4])

- Let $\mathbb{Y} = (Y_1(s_1), Y_2(s_2), \dots, Y_N(s_N))^T$ be the response variable of the observations at the locations s_1, s_2, \dots, s_N .
- We want to predict the values for $\mathbb{Y}_l = (Y(l_1), Y(l_2), \dots, Y(l_{n_u}))^T$ of n_u locations l_1, l_2, \dots, l_{n_u} not observed.
- · For prediction, we use the krige estimator given by

$$\hat{\mathbb{Y}}_l = \hat{\mu}(l) + C_{l,s}C_s^{-1}(\mathbb{Y} - \hat{\mu}(s))$$

$$\cdot \ \textit{Var} \begin{bmatrix} \mathbb{Y} \\ \mathbb{Y}_l \end{bmatrix} = \begin{bmatrix} \textit{C}_{s} & \textit{C}_{s,l} \\ \textit{C}_{l,s} & \textit{C}_l \end{bmatrix} = \begin{bmatrix} \textit{C}_{s} & \textit{C}_{l,s}^\mathsf{T} \\ \textit{C}_{l,s} & \textit{C}_l \end{bmatrix},$$

• $\hat{\mu}(s)$ and $\hat{\mu}(l)$ are the values predicted by the parameters β from regression.

Data Analysis

Dataset - Rongelap ([3])

 Cesium residual contamination measurements of nuclear tests at Rongelap Atoll on the Ralik Islands, part of the Marshall Islands, in Micronesia.

Figure 1: Mapping of the 157 locations of cesium residual measurements along the Atoll. Note that there are 4 regions in the island with a large amount of measurements.

Comparing GLM and GLMSD

- · Dataset: Rongelap.
- Estimated parameters: $\theta = (\beta, \lambda) = (\beta_0, \tau_0)$ while the other dispersion parameters $p = 1, \tau_1 = 1, \tau_2 = 0$ is fixed.
- The power parameter p = 1 of the Tweedie family indicates the variance of the Poisson distribution.
- For $\tau_2 = 0$, we have the correlation matrix $\rho = I$, indicating that the data is independent.

Table 1: Estimates and standard errors of the parameters β_0 and τ_0 from *GLM* and *GLMSD* at the first two rows and the quasi-score values in the last two rows. The standard error of τ_0 is not informed from the summary of function glm of R.

	G	LM	GLMSD	GLMSD with corr.			
	Estim.	Std.Error	Estim.	Std.Error			
β_0	2.0140	0.0283	2.0140	0.0283			
$ au_0$	378.815	NA	378.8142	47.4193			
φ_{β}			-2.884 <i>e</i> - 0)9			
φ_{λ}			9.516e — 13	3			

Reparametrization

- · Dataset: Rongelap.
- We estimate the following parameters:

$$\theta = (\beta, \lambda) = (\beta, p, \tau_0, \tau_1, \tau_2).$$

Table 2: Estimates and standard errors of the parameters obtained from *GLMSD*, both with and without bias correction.

	GLMSD without corr.		GLMSD	GLMSD with corr.		
	Estim.	Std.Error	Estim.	Std.Error		
β_0	1.9770	0.0670	1.9757	0.0770		
р	1.7321	0.3613	1.7472	0.3324		
$ au_0$	0.3720	1.0271	0.3627	0.9269		
$ au_1$	312.6222	234.5627	408.5757	306.2242		
$ au_2$	0.7766	2.2867	0.7020	1.9089		
$ au_1$ inicial	56.5830		59.7487			

Figure 2: Function used to determine an initial τ_1 for the Rongelap dataset, without bias correction. We reinforce that the function is similar for *GLMSD* with bias correction.

Figure 3: Quasi-score values along the iterations of the Chaser algorithm for *GLMSD* without bias correction. Notice that φ_β is stable along the iterations, while φ_λ increases, then decreases, and then stabilizies. This behaviour occurs for *GLMSD* with correction as well.

Figure 4: Rongelap Atoll map ilustrated by means of the predicted values, obtained from the estimation without bias correction. The predicted map with bias correction is similar to the one presented.

Dataset - CEC ([8])

 The Cátion exchange capacity (CEC) indicator is important because it measures the quality of soil and helps in the decision of which products to use in the soil before planting.

Figure 5: Map of the 212 locations at which *CEC* is measured. The circle radius reflect the indicator value.

Comparação da Verossimilhança com GLMSD

- · Dataset: CEC.
- We have the parameters $\theta = (\beta, \lambda) = (\beta_0, \tau_0, \tau_1)$ with the other dispersion parameters $p = 0, \tau_2 = 0$ kept fixed.
- With p = 0, we use the Gaussian distribution variance, according to the Tweedie family.

Table 3: Estimates and standard errors of the parameters found by *GLMSD* without bias correction and the inference by means of a maximum likelihood estimation in the three first rows, in addition to the initial value of τ_1 found by the Chaser algorithm in the last row.

	MLE		GLMSD without corr.		
	Estim.	Std.Error	Estim.	Std.Error	
β_0	2.9349	NA	2.9349	0.1173	
$ au_0$	1.9201	NA	1.9201	0.1972	
$ au_1$	0.4343	NA	0.4343	0.0939	
Initial $ au_1$			0.4323		

Table 4: Estimates and standard errors of the parameters found by *GLMSD* and the inference by means of a restricted likelihood method in the first three rows, and the initial value of τ_1 found by the Chaser algorithm in the last row.

	Restricted Likelihood		GLMSD	GLMSD with corr.		
	Estim.	Std.Error	Estim.	Std.Error		
β_0	2.9355	NA	2.9355	0.1189		
$ au_0$	1.9380	NA	1.9380	0.1997		
$ au_1$	0.4469	NA	0.4469	0.0951		
Initial $ au_1$			0.4464			

Figure 6: Function used to obtain the initial τ_1 inside the *GLMSD* with bias correction. This function doesn't vary much when there is no bias correction.

Figure 7: Map of the predicted *CEC* made with the estimates from Table 4, i.e., with bias correction. The predicted map without bias correction is very similar.

Reparametrization

- · Dataset: CCE.
- We have the parameters $\theta = (\beta, \lambda) = (\beta_0, \tau_0, \tau_1, \tau_2)$ with the dispersion parameters p = 0 kept fixed.

Table 5: Estimates and standard errors of the parameters obtained from *GLMSD*, both with and without bias correction.

	GLMSD without corr.			GLMSD with corr.		
	Estim.	Std.Error	_	Estim.	Std.Error	
β_0	2.9517	0.1488		2.9540	0.1542	
$ au_0$	1.0750	0.4661		1.0885	0.4452	
$\overline{ au_1}$	1.0385	0.5135		1.1006	0.5266	
$ au_2$	0.8194	0.5000		0.8304	0.4749	
Initial $ au_1$	0.7364			0.7646		
-						

Figure 8: Quasi-score values along the Chaser algorithm iteration in the case of *GLMSD* with bias correction. Notice that φ_{β} is stable along the iteration, while φ_{λ} increases, then decreases, and then stabilizies. This behaviour occurs for *GLMSD* without correction as well.

Figure 9: *CEC* map predicted by the estimates of Tab. 5 with bias correction. The map predicted with estimates without bias correction in very similar to this presented map.

Figure 10: The *CEC* left map was predicted considering 3 dispersion parameters (τ_0, τ_1, τ_2) while right map is predicted by 2 dispersion parameters (τ_0, τ_1) .

Discussion

Discussion

- We provide a method that handles wild variety of types response, independent, Gaussian and also non-Gaussian.
- Furthermore, GLMSD is stable, precise and efficient.

Future Work

- · Data analyses with binary data,
- · Consider another methods for the estimation,
- · Working on multivariate GLMSD.

References i

References

- [1] Wagner Hugo Bonat and Paulo Justiniano Ribeiro Jr. Practical likelihood analysis for spatial generalized linear mixed models. *Environmetrics*, 27(2):83–89, 2016.
- [2] Peter J Diggle and Paulo Justiniano Ribeiro Jr. *Model-based Geostatistics*. Springer, New York, NY, 2007.
- [3] Peter J Diggle, Rana Moyeed, and Jonathan A. Tawn. Model-based geostatistics (with discussion). *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 47:299–350, 1998.
- [4] C A Gotway and W W Stroup. A generalized linear model approach to spatial data analysis and prediction. *Journal of Agricultural, Biological, and Environmental Statistics*, 2(2):157–178, 1997.

References ii

- [5] René Holst and Bent Jørgensen. Generalized linear longitudinal mixed models with linear covariance structure and multiplicative random effects. *Chilean Journal of Statistics*, 6(1):15–36, 2015.
- [6] Bent Jørgensen. Exponential dispersion models. *Journal of the Royal Statistical Society. Series B (Methodological)*, 49(2):127–162, 1987.
- [7] Guido Masarotto and Cristiano Varin. Gaussian copula regression using r. *Journal of Statistical Software*, 77(8):1–26, 2017.
- [8] Paulo Justiniano Ribeiro JR. Ctc dataset: http://www.leg.ufpr.br/geor/tutorials/da-tasets/ctc.dat, 2004. Accessed on 2019-11-28.

Thank you!