EXAME NACIONAL DO ENSINO SECUNDÁRIO - MATEMÁTICA A

PROVA MODELO N.º 6

12.° ANO DE ESCOLARIDADE

Site: http://recursos-para-matematica.webnode.pt/

Facebook: https://www.facebook.com/recursos.para.matematica

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Considere todos os núme	ros pares de cinco algar	ismos. Alguns desses número	s satisfazem as seguintes condições:
• têm exactamente dois	zeros, dispostos consec	utivamente;	~ e)
■ não têm mais algarism	os repetidos.		X
Quantos números existem n	estas condições?		9
A 952	B 1176	C 1377	D 1701
	e que $P(X > 155) = 7$		metros, dos rapazes da escola» ter ola vão participar no "Parlamento do
•		$\acute{ ext{e}}$ a probabilidade, arredondad re a e $2a-155$ centímetros?	la às milésimas, de exactamente doi
A 0,004	B 0,025	C 0,275	D 0,318
3. Sejam $a, b \in c$ as medida	s dos comprimentos dos	s lados de um triângulo rectânç	gulo, com $a < b < c$.
Sabendo que $\log_4(c-a)$ -	$+\log_4(c+a)=3$, qual	é o valor de <i>b</i> ?	
A 4			
	B 6	C 8	D 12

B $-\frac{3}{2}$

Qual é o valor de $\lim_{x\to 0^+} \left(3g\left(\frac{1}{x}\right) - x\left(g\left(\frac{1}{x}\right)\right)^2\right)$?

 $\frac{3}{2}$

D 3

5. Seja h a função de domínio \mathbb{R} definida por $h(x) = \cos(ax) - 1 + (a+b)\sin(ax)$, com $a \in \mathbb{R} \setminus \{0\}$ e $b \in \mathbb{R}$.

Sabe-se que
$$\lim_{x\to 0} \frac{h(x)}{x} = 2a$$

Quais podem ser os valores de a e de b?

A
$$a = 0$$
 e $b = 2$

B
$$a = 1 e b = 3$$

C
$$a = 3 e b = 1$$

$$a = 2 e b = 0$$

6. Na figura está representada, no plano complexo, a recta r, mediatriz do segmento de recta [AB]. Os pontos A e B são as imagens geométricas de duas raízes quartas, consecutivas, de um número complexo z.

Qual das seguintes condições pode definir a recta r?

A
$$|z-1-3i| = |z+6-2i|$$

B
$$|z+3-i| = |z-1+3i|$$

$$|z-2-6i| = |z+2+6i|$$

$$|z-1-3i| = |z+3-i|$$

7. Considere, num referencial o.n. Oxyz, a recta r definida pela condição $\frac{x-2}{a^2} = -\frac{z}{4}$ \land y=2 e o plano α definido por ax = -2z, com $a \in \mathbb{R} \setminus \{0\}$.

A recta r é perpendicular ao plano α .

Qual é o valor de a?

8. Seja (u_n) uma progressão aritmética tal que $u_4 = 15$ e $u_{10} = 33$.

Qual é o valor de
$$\lim \left(\frac{u_n}{3n-6}\right)^{2n}$$
 ?

$$\mathbf{A} \quad e^{-\mathbf{i}}$$

$$\mathbf{B} = e^{2}$$

$$\mathbf{C} \quad e^6$$

GRUPO II – ITENS DE RESPOSTA ABERTA

1. Em
$$\mathbb C$$
 , conjunto do números complexos, considere $w=\frac{1-2 \operatorname{sen}^2\left(\frac{\pi}{9}\right)+i \operatorname{sen}\left(\frac{7\pi}{9}\right)}{\sqrt{6}+\sqrt{2}i}$.

Sem recorrer à calculadora, determine o conjunto solução da condição $z^2=w\overline{z}$ \wedge $z\neq 0$. Apresente as soluções na forma trigonométrica.

2. A distribuição de probabilidades de uma variável aleatória X é dada pela tabela:

X_i	1	2	3
$P(X=x_i)$	P(A)	P(A)	P(B A)

Sabendo que A e B dois acontecimentos contidos num espaço de resultados S, associado a uma experiência aleatória tal que $P(A \cap B) = 0.08$ e P(A) > 0.1.

Qual é o valor de $P(A|(\overline{A} \cup \overline{B}))$? Apresente o resultado na forma de fracção irredutível.

3. Uma empresa tem 120 funcionários.

Sabe-se que:

- um terço dos funcionários são licenciados;
- 20% dos funcionários não licenciados são do sexo masculino.

Escolhem-se simultaneamente e ao acaso seis funcionários para desempenhares tarefa diferenciadas num evento organizado pela empresa.

Considere os acontecimentos:

- A: «pelo menos cinco dos funcionários escolhidos são do sexo feminino»
- B: «os seis funcionários escolhidos não são licenciados»

Uma expressão que permite determinar o valor de P(A|B) é $\frac{\left(16 \times {}^{64}C_5 + {}^{64}C_6\right) \times 6!}{{}^{80}A_6}$. Elabore uma composição na qual explique a expressão apresentada.

A sua composição deve incluir:

- uma interpretação do significado de P(A|B) no contexto da situação descrita;
- uma referência à regra de Laplace;
- uma explicação do número de casos possíveis;
- uma explicação do número de casos favoráveis.
- **4.** Um filme estreou numas das salas do cinema CINEMAX. A percentagem de espectadores que frequentaram o CINEMAX e que foram ver o filme, *t* dias após a estreia do mesmo, é dada por:

$$M(t) = (4t^2 + 48t + 144)e^{-0.2t - 1.2}, t \in [0, 20]$$

Admita que M(0) é a percentagem de espectadores que frequentaram o CINEMAX e que foram ver o filme no dia da estreia, 4 de Junho de 2015, M(1) é a percentagem espectadores que frequentaram o CINEMAX e que foram ver o filme no dia 5 de Junho de 2015 e assim sucessivamente.

Recorrendo a métodos exclusivamente analíticos, resolva os dois itens seguintes.

- **4.1.** Em que dia a percentagem de espectadores que frequentaram o CINEMAX e que foram ver o filme é máxima. Indique o valor dessa percentagem arredondado às décimas.
- **4.2.** Num outro cinema, o CINEPLUS, o mesmo filme estreou no mesmo dia numa das suas salas. No entanto percentagem de espectadores que frequentaram o CINEPLUS e que foram ver o filme, *t* dias após a estreia do mesmo, é dada por:

$$P(t) = 5(t+6)^2 e^{-0.347t-0.68814}, t \in [0,20]$$

Da mesma forma, admita que P(0) é a percentagem de espectadores que frequentaram o CINEPLUS e que foram ver o filme no dia da estreia, 4 de Junho de 2015, P(1) é a percentagem de espectadores que frequentaram o CINEPLUS e que foram ver o filme no dia 5 de Junho de 2015 e assim sucessivamente.

Durante quantos dias a percentagem de espectadores que frequentaram o CINEMAX e que foram ver o filme não foi inferior à percentagem de espectadores que frequentaram o CINEPLUS e que foram ver o filme?

Apresente os resultados finais arredondados às unidades e caso proceda a arredondamentos intermédios, utilize, no mínimo, cinco casas decimais.

Sugestão: decomponha o polinómio $4t^2 + 48t + 144$.

5. Considere a função g, de domínio \mathbb{R}^+ definida por:

$$g(x) = \begin{cases} \frac{\ln(6x) - \ln 4}{e^{3x-1} - e} & \text{se } 0 < x < \frac{2}{3} \\ \frac{\ln(x^3) - 1}{x^2} & \text{se } x \ge \frac{2}{3} \end{cases}$$

Resolva os dois primeiros itens recorrendo exclusivamente a processos analíticos.

- **5.1.** Estude a função g quanto à existência de assimptotas do seu gráfico, paralelas aos eixos coordenados. Caso existam, indique as suas equações.
- **5.2.** Seja f a função de domínio $\left[\frac{2}{3}, +\infty\right[$ tal que $f'(x) = g(x), \ \forall x \in \left[\frac{2}{3}, +\infty\right[$

Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

- **5.3.** Considere, num referencial xOy, o triângulo [OPQ] tais que:
 - o ponto P pertence ao gráfico de g;
 - o ponto Q pertence ao eixo Ox e tem a mesma abcissa que o ponto P;
 - a área do triângulo [OPQ] é $\frac{1}{4}$

Seja x a abcissa do ponto P, com $x \in \left[\frac{2}{3}, 5\right]$

Recorrendo à calculadora gráfica, determine a(s) abcissa(s) do ponto *P* e a(s) respectiva(s) ordenada(s).

Na sua resposta deve:

- escrever a condição que permite resolver o problema.
- reproduzir o(s) gráfico(s) (devidamente identificado(s)) que achar necessário(s) para a resolução do problema.
- indicar a(s) abcissa(s) do ponto P e a(s) respectiva(s) ordenada(s), arredondadas às milésimas.

6. Na figura está representada, num referencial o.n. Oxyz, a pirâmide [AOBC].

Sabe-se que:

- o ponto A pertence ao semi-eixo positivo Ox;
- o ponto *B* pertence ao semi-eixo negativo *Oy*;
- o ponto *C* pertence ao semi-eixo positivo *Oz*;
- $\overline{OB} = 2\overline{OA}$ e $\overline{OC} = 3\overline{OA}$.

Resolva os dois itens seguintes recorrendo exclusivamente a processos analíticos.

6.1. Escreva uma equação do plano paralelo ao plano ABC que contém o ponto D de coordenadas (0,1,-2).

Sugestão: designe por k a abcissa do ponto A.

6.2. Seja α a amplitude do ângulo BAC.

Qual é o valor de $tg^2(\pi - \alpha) + 10sen(-2\alpha)$?

7. Considere a função h, de domínio $\left[\frac{\pi}{2}, \frac{3\pi}{2} \right]$, definida por $h(x) = \frac{\sin(3x)}{2\cos^2 x}$.

Resolva os dois itens seguintes recorrendo exclusivamente a processos analíticos.

7.1. Seja
$$a \in \left[0, \frac{\pi}{2}\right]$$
.

Sem determinar os zeros da função h, mostre que h tem pelo menos um zero em $\left[\pi-a,\pi+a\right]$.

Determinando os zeros de h, indique o valor máximo de a de modo que h tenha um único zero em $\left]\pi - a, \pi + a\right[$.

7.2. Mostre, por definição, que $h'(\pi) = -\frac{3}{2}$ e escreva a equação reduzida da recta tangente ao gráfico de h no ponto de abcissa π .

FIM

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

7. A

GRUPO II - ITENS DE RESPOSTA ABERTA

1.
$$\left\{ \frac{\sqrt{2}}{4} \operatorname{cis} \frac{\pi}{54}, \frac{\sqrt{2}}{4} \operatorname{cis} \frac{37\pi}{54}, \frac{\sqrt{2}}{4} \operatorname{cis} \frac{73\pi}{54} \right\}$$

- 2.
- A percentagem de espectadores que frequentaram o cinema e que foram ver o filme foi máxima no dia 8 de Junho de 2015. O valor dessa percentagem foi, aproximadamente, 54,1%.
- 4.2. Durante dezasseis dias.
- A.V.: x = 0; A.H.: y = 05.1.
- o gráfico de f tem a concavidade voltada para baixo em $\left[\sqrt[6]{e^5}, +\infty\right[$ e tem a concavidade voltada para cima em $\left[\frac{2}{3}, \sqrt[6]{e^5}\right]$ e tem ponto 5.2. de inflexão em $x = \sqrt[6]{e^5}$.
- P(a,g(a)), com $a \approx 1,152$ e $g(a) = \frac{\ln(a^3) 1}{a^2} \approx -0,434$ ou P(b,g(b)), com $b \approx 1,923$ e $g(b) = \frac{\ln(b^3) 1}{b^2} \approx 0,26$.
- **6.1.** 6x 3y + 2z = -7
- 7.1. $\left\{\frac{2\pi}{3}, \pi, \frac{4\pi}{3}\right\}$; $a = \frac{\pi}{3}$ 7.2. $y = -\frac{3x}{2} + \frac{3\pi}{2}$