

250 mA Low Quiescent Current LDO Regulator

Product introduction

MCP1702T-xxxxE series is a positive voltage regulator circuit with low voltage difference, high precision output voltage and ultralow power consumption current developed by practical CMOS technology. Due to the built-in low on state resistance transistor, so the output voltage difference is low, and it has high input voltage bearing capacity. The maximum working voltage can reach 14V, which is suitable for the application circuit requiring high voltage withstand.

Product features

- High accuracy of output voltage: accuracy ± 2%
- Ultra low power consumption current: typical value 3ua
- Low output voltage temperature drift: 50 ppm / °C
- High input withstand voltage: increase to 14V and keep output voltage stable

Product use

- Regulated power supply using battery powered equipment
- Stabilized power supply for toys
- Stabilized power supply for portable medical instruments
- Stabilized power supply of communication equipment
- Regulated power supply for mobile phone

■ Package form and pin function definition

Model selection

Name	Maximum input voltage (V)	Output voltage (V)	Tolerance	Packaging
	14	1.8	± 2%	
	14	2.5	± 2%	
	14	2.7	± 2%	SOT23-3
MCP1702T-xxxxE	14	3.0	± 2%	SOT89-3
	14	3.3	± 2%	
	14	3.6	± 2%	
	14	5.0	± 2%	

250 mA Low Quiescent Current LDO Regulator

Project	Symbol	Parameter	Limit value	Company
Voltage	VIN	Maximum input voltage	16	V
Power waste	PD	power waste	400	mW
	Tw	working temperature	-25 - 70	°C
Temperature	Tc	Storage temperature	-40 - 85	°C
	Th	welding temperature	260	°C,10s

electrical properties

♦ 1.8V (T_{OPT=}25°C)

Symbol	Parameter	Test conditions	Minimumvalue	Typical value	Maximum	Company
V _{out}	output voltage	V _№ =2.8V, I _{оит} =40mA	1.764	1.8	1.836	V
l _{оит}	Output current	V _{IN} =2.8V, V _{out} ≥1.62V		250		mA
$ riangle V_{out}$	Load regulation	V _№ =2.8V, 1mA≤I _{оит} ≤60mA	_	45	90	mV
V _{DIF}	Drop voltage	Ι _{ουτ} =40mA	_	170	_	mV
I _{ss}	Quiescent current	Vin = 2.8V, no load	_	2	3	μA
$\Delta V_{\text{out}}/(\Delta V_{\text{in}}^*V_{\text{out}})$	Line Regulation	2.8V≤V _™ ≤14V, I _{оот} =40mA	_	0.2	0.3	%/V
V _{IN}	input voltage	_	_	_	14	V
ΔV _{ουτ} /ΔΤα	temperature coefficient	V _N =2.8V, I _{ουτ} =40mA, 0℃≤Ta≤85℃	_	<u>+</u> 0.7	_	mV/℃

♦ 2.5V (T_{OPT=}25°C)

250 mA Low Quiescent Current LDO Regulator

Symbol	Parameter	Test conditions	Minimumvalue	Typical value	Maximum	Company
V _{out}	output voltage	V _N =3.5V, I _{ουτ} =40mA	2.45	2.5	2.55	V
I _{out}	Output current	V _{IN} =3.5V, V _{OUT} ≥2.25V		250		mA
$\triangle V_{out}$	Load regulation	V _N =3.5V,		45	90	mV
V _{DIF}	Drop voltage	I _{ουτ} =40mA	_	110	_	mV
I _{ss}	Quiescent current	Vin = 3.5V, no load	_	2	3	μA
$\Delta V_{out}/(\Delta V_{in}^*V_{out})$	Line Regulation	3.5V≤V _№ ≤14V, I _{оυт} =40mA			0.3	% / V
V _{IN}	input voltage	_	_	_	14	V
ΔV _{ουτ} /ΔΤα	temperature coefficient	V _™ =3.5V, I _{олт} =40mA, 0°C≤Ta≤85°C	_	<u>+</u> 0.7	_	mV/℃

♦ 2.7V (T_{OPT=}25°C)

Z./ V (1	_{OPT=} 25°C)		-			
Symbol	Parameter	Test conditions	Minimumvalue	Typical value	Maximum	Compan
V_{out}	output voltage	V _№ =3.7V, I _{оυт} =40mA	2.646	2.7	2.754	V
I _{out}	Output current	V _{IN} =3.7V, V _{out} ≥2.43V		250		mA
$ riangle V_out$	Load regulation	V _N =3.7V, 1mA≤I _{о∪т} ≤60mA	_	45	90	mV
V _{DIF}	Drop voltage	I _{out} =40mA	_	100	_	mV
I _{ss}	Quiescent current	Vin = 3.7V, no load	_	2	3	μA
$\Delta V_{\text{out}}/(\Delta V_{\text{IN}}{}^*V_{\text{out}})$	Line Regulation	3.7V≤V _N ≤14V, I _{our} =40mA	_	0.2	0.3	%/V
V _{IN}	input voltage	_	_	_	14	V
ΔV _{ουτ} /ΔΤα	temperature coefficient	V _m =3.7V, I _{out} =40mA, 0°C≤Ta≤85°C	_	<u>+</u> 0.7	-	mV/℃

♦ 3.0V (T_{OPT=}25℃)

,	,					
Symbol	Parameter	Test conditions	Minimumvalue	Typical value	Maximum	Company
V_{out}	output voltage	V _{IN} =4V, I _{OUT} =40mA	2.94	3	3.06	V
I _{out}	Output current	V _{IN} =4V, V _{OUT} ≥2.7V		250		mA
$ riangle V_out$	Load regulation	V _{IN} =4V,1mA≤I _{OUT} ≤60mA	V _N =4V,1mA≤I _{our} ≤60mA —		90	mV
$V_{ exttt{DIF}}$	Drop voltage	I _{out} =40mA	I _{оит} =40mA —		_	mV
Iss	Quiescent current	No load, VIN = 4V	_	2	3	μA
$\Delta V_{\text{out}}/(\Delta V_{\text{\tiny IN}} {}^*V_{\text{out}})$	Line Regulation	4V≤V _N ≤14V, I _{out} =40mA	_	0.2	0.3	%/V
V _{IN}	input voltage	_	_	_	14	V
ΔV _{ουτ} /ΔΤα	temperature coefficient	V _N =4V, I _{out} =40mA, 0°C≤Ta≤85°C	_	<u>+</u> 0.7	_	mV/℃

250 mA Low Quiescent Current LDO Regulator

♦ 3.3V (T_{OPT=}25℃)

Symbol	Parameter	Test conditions	Minimumvalue	Typical value	Maximum	Company
V _{out}	output voltage	V _N =4.3V, I _{OUT} =40mA	3.234	3.3	3.366	V
I _{оит}	Output current	V _{IN} =4.3V, V _{out} ≥2.97V		250		mA
$ riangle V_out$	Load regulation	V _N =4.3V, 1mA≤I _{0∪T} ≤60mA	_	45	90	mV
V _{DIF}	Drop voltage	I _{out} =40mA	_	90	_	mV
Iss	Quiescent current	Vin = 4.3v, no load	_	2	3	μA
ΔV_{ω} /($\Delta V_{\kappa} * V_{\omega}$)	Line Regulation	4.3V≤V _№ ≤14V, I _{оит} =40mA	_	0.2	0.3	%/V
V _{IN}	input voltage	_	_	_	14	V
ΔV _{ουτ} /ΔΤα	temperature coefficient	V ₌ 4.3V, I_=40mA, 0°C≤Ta≤85°C	_	<u>+</u> 0.7	_	mV/℃

♦ 3.6V (T_{OPT=}25°C)

·	(. 0-1					
Symbol	Parameter	Test conditions	Minimumvalue	Typical value	Maximum	Company
V _{out}	output voltage	V _№ =4.5V, I _{оит} =40mA	3.528	3.6	3.672	V
I _{out}	Output current	V _{IN} =4.5V, V _{out} ≥3.15V		250		mA
$\triangle V_out$	Load regulation	V _N =4.5V, 1mA≤I _{ouτ} ≤60mA	_	45	90	mV
V _{DIF}	Drop voltage	Ι _{ουτ} =40mA	_	80	_	mV
I _{ss}	Quiescent current	Vin = 4.5V, no load	_	2	3	μA
$\Delta V_{\text{out}}/(\Delta V_{\text{\tiny IN}}*V_{\text{out}})$	Line Regulation	4.5V≤V _{IN} ≤14V, I _{OUT} =40mA	_	0.2	0.3	%/V
V _{IN}	input voltage	_	_	_	14	V
ΔV _{ουτ} /ΔΤα	temperature coefficient	V _™ =4.5V, I _{out} =40mA, 0°C≤Ta≤85°C	_	<u>+</u> 0.7	_	mV/℃

♦ 5.0V (T_{OPT=}25°C)

Symbol	Parameter	Test conditions Minimum value		Typical value	Maximum	Company
V _{out}	output voltage	V _{IN} =6V, I _{OUT} =40mA	4.9	5	5.1	V
I _{out}	Output current	V _{IN} =6V, V _{out} ≥4.5V		250		mA
$\triangle V_{out}$	Load regulation	V _{IN} =6V,1mA≤I _{OUT} ≤60mA	V _{IN} =6V,1mA≤I _{ουτ} ≤60mA —		90	mV
V_{DIF}	Drop voltage	I _{оит} =40mA —		60	_	mV
I _{ss}	Quiescent current	Vin = 6V, no load	_	2	3	μА
$\Delta V_{\text{out}}/(\Delta V_{\text{IN}}^{*}V_{\text{out}})$	Line Regulation	6V≤V _™ ≤14V, I _{our} =40mA	_	0.2	0.3	% /V
V _{IN}	input voltage	_	_	_	14	V
ΔV _{ουτ} /ΔΤα	temperature coefficient	V _N =6V, I _{our} =40mA, 0°C≤Ta≤85°C	_	<u>+</u> 0.7	_	mV/℃

MCP1702T-xxxxE 250 mA Low Quiescent Current LDO Regulator

SOT-23

Cymhal	Dimensions	Dimensions In Millimeters		s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950	TYP.	0.037	TYP.
e1	1.800	2.000	0.071	0.079
L	0.550	REF.	0.022	REF.
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

MCP1702T-xxxxE 250 mA Low Quiescent Current LDO Regulator

SOT-89-3

symbol	minimum (mm) value	maiximum (mm) value
Α	1.400	1.600
ь	0.320	0.520
b1	0.360	0.560
С	0.350	0.440
D	4.400	4.600
D1	1.400	1.800
E	2.300	2.600
E1	3.940	4.250
e	1.50	OTYP
e1	2.900	3.100
L	0.900	1.100

MCP1702T-xxxxE 250 mA Low Quiescent Current LDO Regulator

Orderinginformation

Order code	Package	Baseqty	Deliverymode
UMW MCP1702T-xxxxE/CB	SOT-23	3000	Tape and reel
UMW MCP1702T-xxxxF/MB	SOT-89	1000	Tape and reel