7. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 04.12.2022, 24.00 Uhr

Aufgabe 1: (4 Punkte)

Berechnen Sie die 7-adische Entwicklung von $\frac{1}{5}$, das heißt finden Sie eine Folge $(b_n)_{n\in\mathbb{N}}$ mit $n\in\{0,1,\ldots,6\}$ mit

$$\frac{1}{5} = \sum_{n=1}^{\infty} b_n 7^{-n}.$$

Hinweis: Gehen Sie analog zum Beweis von Satz 6.4 vor und achten Sie auf Periodizität.

Aufgabe 2: (2+4=6 Punkte)

a) Untersuchen Sie die folgenden Reihen auf Konvergenz.

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n \cdot \sqrt{n^2 + 1}}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$

b) Die Folge $(a_n)_{n\geq 1}$ sei definiert durch:

$$a_n := \begin{cases} \frac{1}{4k}, & \text{falls } n = 2k - 1 \text{ für ein } k \ge 1\\ \frac{1}{2k}, & \text{falls } n = 2k \text{ für ein } k \ge 1 \end{cases}$$

Zeigen Sie, dass die Reihe $\sum_{n=1}^{\infty} (-1)^n a_n$ divergent ist und begründen Sie warum dies nicht im Widerspruch zum Leibnizkriterium steht.

Aufgabe 3: (2+1+2=5 Punkte)

Bestimmen Sie $z \in \mathbb{C}$ in der Form z = a + ib mit $a, b \in \mathbb{R}$

a)
$$z^2 = i$$
 b) $z = \frac{10+i}{2-3i}$, c) $z = \sum_{k=0}^{\infty} 2^{-k} i^k$.

Aufgabe 4 (2+3=5 Punkte)

a) Sei $(a_n)_n \subset \mathbb{R}$ gegeben. Beweisen Sie

$$\exists \theta \in (0,1) \, \exists n_0 \in \mathbb{N} : \, \forall n \ge n_0 : \, a_n \le \theta \qquad \Leftrightarrow \quad \limsup_{n \to \infty} a_n < 1$$

b) Zeigen Sie, dass die Reihe

$$\sum_{n=0}^{\infty} \frac{1}{(n+2)(n+3)}$$

konvergiert und berechnen Sie den Reihenwert.