EX.1.1.7, Langou

Let $(f : \mathbb{R} \to \mathbb{R})$ be continuous. Let a and b, and **tol**. Let k be the smallest number of iterations of the Bisection Method that guarantees a forward error bound on the approximate solution within **tol**. Let **numevals** be the smallest number of iterations of the Bisection Method that guarantees a forward error bound on the approximate solution within **tol**.

- a. Derive a formula that relates a, b, k and tol.
- b. Solve for k as a function of a, b, and tol.
- c. Derive a formula that relates k and numevals.

Let a, b, and **tol** as given below. How many function evaluations of the Bisection Method are required to guarantee a forward error bound on the approximate solution within **tol**? Answer with an integer.

- d. a = -11, b = 28, tol $= 10^{-9}$
- e. $a = 0.5, b = 0.7, \text{ tol } = 10^{-14}$

Copyright (c) 2021, Julien Langou. All rights reserved, please visit https://creativecommons.org/licenses/by/4.0/.

EX.1.1.7, Langou, solution, Langou

- See for a short Colab Noteboook answering (d) and (e)
 https://colab.research.google.com/drive/1NdHyu9rQKNS44TM-G5gNn2SWsH84CP90
- See for a longer Colab Noteboook explaining more https://colab.research.google.com/drive/1gtEuT7_kJUzySUxTbv2dAsyo_VRIqFuN

(a) Derive a formula that relates a, b, k and tol.

At each step k, we have an approximate solution c_k . At each step k, we define the forward error, $true_err(k)$, as

$$true_err(k) = |c_k - x_{\star}|.$$

The goal is to find k that guarantees

$$true_err(k) \leq tol.$$

We note that, since x_{\star} is what we are looking for, it seems reasonnable to assume that we cannot compute $\mathsf{true_err}(k)$.

We will use a bound on the forward error, $err_bound(k)$, that (1) we can compute and that (2) is such

$$true_err(k) \le err_bound(k)$$
.

We also would like $err_bound(k)$ to be "tight" so to be somewhat representative of what $true_err(k)$ does. Then we will find k such

$$err_bound(k) \leq tol.$$

We understand that this k will guarantee that

$$true_err(k) \le tol.$$

For k = 0, a bound on the forward error is $\frac{b-a}{2}$. This is because (1) we know that a solution x_{\star} is in between (a, b), and (2) we take our approximate solution to be $c_0 = \frac{b-a}{2}$, so that

$$|c_0 - x_\star| \le \frac{b - a}{2}.$$

Setting

$$\mathtt{err_bound}(0) = \frac{b-a}{2}.$$

This guarantees that

$$\mathsf{true_err}(0) = |c_0 - x_{\star}| \leq \mathsf{err_bound}(0).$$

So that $err_bound(0)$ is an error bound on $true_err(0)$.

Then, at each step of the Bisection Method, the bound on the error is divided by 2, so that for example for k = 1, the bound on the error is $\frac{b-a}{4}$, for k = 2, the bound on the error is $\frac{b-a}{8}$, etc. The general formula is

$$err_bound(k) = (b - a) \cdot 2^{-(k+1)}$$
.

So we want k, the smallest integer such that

$$(b-a)\cdot 2^{-(k+1)} \le \mathsf{tol}.$$

(b) Solve for k as a function of a, b, and tol.

We start with

$$(b-a)\cdot 2^{-(k+1)} \le \mathsf{tol}.$$

We rearrange as

$$\frac{b-a}{\mathsf{tol}} \le 2^{k+1}.$$

We apply \log_2

$$\log_2(b-a) - \log_2(\mathsf{tol}) \le k+1.$$

So we get that k is the smallest integer such that

$$\log_2(b-a) - \log_2(\mathsf{tol}) - 1 \le k.$$

Another way to write this is

$$k = \lceil \log_2(b - a) - \log_2(\mathsf{tol}) - 1 \rceil.$$

(c) Derive a formula that relates k and numevals(k).

Before starting any iteration (k = 0), we need function evaluation for f(a) and f(b). So, for k = 0, numevals(0) is 2. Then, at each iteration, we perform one function evaluation. So, for k = 1, numevals(1) is 3. And so on. So that

numevals
$$(k) = k + 2$$
.

(d)
$$a = -11$$
, $b = 28$, tol $= 10^{-10}$

```
from math import log2
from math import ceil
```

```
a = -11
b = 28
tol = 1e-9
k = ceil( log2( b - a ) - log2(tol) - 1 )
numevals = k + 2
print( numevals )
```

37

```
(e) a = 0.5, b = 0.7, tol = 10^{-14}
```

```
a = 0.5
b = 0.7
tol = 1e-14
k = ceil( log2( b - a ) - log2(tol) - 1 )
numevals = k + 2
print( numevals )
print( numevals )
```

46