

JP2000069784

Publication Title:

BRUSHLESS MOTOR

Abstract:

Abstract of JP2000069784

PROBLEM TO BE SOLVED: To obtain a low-noise brushless motor wherein rotational speed can be swiftly changed by optimally controlling the timing of changing armature coil current with a DC motor designed as brushless structure.

SOLUTION: Armature coils 4a-4f are placed on a stator 3, and a rotor 1 provided with a main magnet 2 is placed outside the stator. A sensor magnet 5 is installed on a shaft 6 which rotates integrally with the rotor 1, and Hall IC's 1-3 for detecting the direction of magnetic fields by the sensor magnet 5 are placed on the stator 3. An angle-of-lead controlling means 12a receives a sensor signal, calculates the rotational speed of the motor and the amount of its change from the frequency of detection of variation in magnetic field direction, sets an amount of angle of lead in correspondence to the rotational speed, and corrects the amount of angle of lead using a correction value according to the amount of the change in rotational speed. Angle-of-lead control is exercised according to the corrected amount of angle of lead by means of a timing controlling means 12b, and timing of changing the current of MOSFETs' Q1-Q6 is controlled through a motor drive circuit 13.

Data supplied from the esp@cenet database - Worldwide

Courtesy of <http://v3.espacenet.com>

(51) Int.Cl.⁷

H 0 2 P 6/10

識別記号

F I

H 0 2 P 6/02

マークド(参考)

3 7 1 G 5 H 5 6 0

審査請求 未請求 請求項の数5 OL (全10頁)

(21)出願番号 特願平10-240624

(22)出願日 平成10年8月26日(1998.8.26)

(71)出願人 000004765

カルソニック株式会社

東京都中野区南台5丁目24番15号

(72)発明者 須永 英樹

東京都中野区南台5丁目24番15号 カルソニック株式会社内

(72)発明者 新木 太

東京都中野区南台5丁目24番15号 カルソニック株式会社内

(74)代理人 100083806

弁理士 三好 秀和 (外8名)

(54)【発明の名称】 ブラシレスモータ

(57)【要約】

【課題】 DCモータをブラシレス構造とし、電機子コイル電流の切り替えタイミングを最適制御して回転速度を速やかに変更可能で低騒音なブラシレスモータを提供する。

【解決手段】 ステータ3には、電機子コイル4a～4fが配置され、その外側にはメインマグネット2を備えたロータ1が配置され、センサマグネット5は、ロータ1と一緒に回転するシャフト6に取り付けられ、このセンサマグネット5による磁界の方向を検出するホールIC1～3が、ステータ3に配置されている。進角制御手段12aは、センサ信号を受けて、磁界方向変化検出の周期からモータの回転速度およびその変化量を算出し、回転速度に対応して進角量を設定すると共に、回転速度の変化量に応じた補正值にて進角量を補正し、タイミング制御手段12bにて、補正された進角量に応じた進角制御を行い、モータ駆動回路13を介してMOSFET(Q1～Q6)の電流切り替えタイミングを制御する。

【特許請求の範囲】

【請求項1】 モータの内周側に電機子を配置したアウタロータ形のブラシレスDCモータにおいて、ステータ(3)に配置された電機子コイル(4)を流れる電流を切り替えるスイッチング素子(Q1～Q6)と、

ロータ(1)に取り付けられた界磁用永久磁石(2)に対し一定の遅れ角にてロータ(1)と一体に取り付けられ、ロータ(1)の回転位置を示すセンサマグネット(5)と、

前記ステータ(3)に取り付けられ、前記センサマグネット(5)による磁界の方向を検出する磁気センサ(IC1～IC3)と、

この磁気センサ(IC1～IC3)からの磁界方向変化検出を受けて、ロータ(1)の回転速度およびその変化量を算出し、この回転速度に対応して、前記センサマグネット(5)の界磁用永久磁石(2)に対する遅れ角を進める進角制御のための進角量を設定すると共に、前記回転速度の変化量に応じた補正值にてその進角量を補正する進角制御手段(12a)と、

前記磁気センサ(IC1～IC3)からの磁界方向変化検出を受けて、前記補正された進角量に応じた進角制御を行い、スイッチング素子(Q1～Q6)の電流切り替えタイミングを制御するタイミング制御手段(12b)とを具備することを特徴とするブラシレスモータ。

【請求項2】 前記進角制御手段(12a)が、前記ロータ(1)の回転速度が減少する時には前記設定された進角量を減少させる補正值にて補正し、増加する時には前記設定された進角量を増加させる補正值にて補正することを特徴とする請求項1に記載のブラシレスモータ。

【請求項3】 前記進角制御手段(12a)が、前記ロータ(1)の回転速度の変化量に応じて前記進角量の補正值を滑らかに変化させることを特徴とする請求項1または請求項2に記載のブラシレスモータ。

【請求項4】 前記センサマグネット(5)は、N極とS極とが複数対、ロータ(1)の回転中心に対し均等角度に配置されていることを特徴とする請求項1ないし請求項3に記載のブラシレスモータ。

【請求項5】 前記磁気センサ(IC1～IC3)が、前記ステータ(3)周囲に均等角度にて複数個配置されていることを特徴とする請求項1ないし請求項4に記載のブラシレスモータ。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、車両用の送風機ファンの駆動などに好適なアウタロータ形のブラシレスDCモータにおいて、電機子コイルを流れる電流の切り替えタイミングを最適化したブラシレスモータに関する。

【0002】

【従来の技術】 従来、自動車などの車両に搭載されるモ

ータ、例えば空調装置に用いられる送風機ファンの回転駆動用モータには、電機子コイルに流れる電流の方向を整流子とブラシを用いて切り替えるDCモータが用いられてきた。

【0003】 この従来の車両搭載のDCモータでは、電源に車両のバッテリーを用い、定電圧電源で駆動する。このためブラシを用いたDCモータの回転制御では、電源電圧を分圧抵抗によって分圧して用いる。例えばバッテリー電圧が12Vで、DCモータを3Vで駆動する場合、残りの9Vは分圧抵抗に印加され、熱となって消費される。このため、分圧抵抗で消費される電力が無駄になってエネルギー効率が良くない。さらにブラシによるしゅう動音が騒音発生の原因となっていた。

【0004】

【発明が解決しようとする課題】 しかしながら、DCモータをブラシレス構造とし、電源電圧のデューティを可変(パルス幅制御)して回転制御した場合、ロータ磁極の検出位置から電機子コイルを流れる電流を切り替えるタイミングによって、トルクの発生効率が変化する。またその切替タイミングによって、モータとその収納ケースとの共鳴によるうなり音の大きさも変化する。

【0005】 上記トルクの発生効率が最大となる切替タイミングと、うなり音が最小となる切替タイミングとは異なり、効率を優先すればうなり音が大きくなり、うなり音を小さくすれば、効率が低下する。

【0006】 また、モータの增速時はより多くの回転トルクを必要とするが、減速時には、相対的に回転トルクを必要としない。

【0007】 そこで本発明は、送風機ファンなどに用いられるDCモータをブラシレス構造とし、電機子コイル電流の切り替えタイミングを最適制御して回転速度を速やかに変更可能かつ低騒音なブラシレスモータを提供することを目的とする。

【0008】

【課題を解決するための手段】 上述の課題を解決するため、本発明のブラシレスモータは、モータの内周側に電機子を配置したアウタロータ形のブラシレスDCモータにおいて、ステータ(3)に配置された電機子コイル(4)を流れる電流を切り替えるスイッチング素子(Q1～Q6)と、ロータ(1)に取り付けられた界磁用永久磁石(2)に対し一定の遅れ角にてロータ(1)と一体に取り付けられ、ロータ(1)の回転位置を示すセンサマグネット(5)と、前記ステータ(3)に取り付けられ、前記センサマグネット(5)による磁界の方向を検出する磁気センサ(IC1～IC3)と、この磁気センサ(IC1～IC3)からの磁界方向変化検出を受けて、ロータ(1)の回転速度およびその変化量を算出し、この回転速度に対応して、前記センサマグネット(5)の界磁用永久磁石(2)に対する遅れ角を進める進角制御のための進角量を設定すると共に、前記回転速

度の変化量に応じた補正值にてその進角量を補正する進角制御手段(12a)と、前記磁気センサ(1C1～1C3)からの磁界方向変化検出を受けて、前記補正された進角量に応じた進角制御を行い、スイッチング素子

(Q1～Q6)の電流切り替えタイミングを制御するタイミング制御手段(12b)とを具備することを特徴とする。

【0009】以上の構成によって、モータの回転速度およびその変化量に応じて、界磁用永久磁石の回転位置に対し、スイッチング素子の電流切り替えタイミングを制御する。

【0010】さらに、前記進角制御手段(12a)が、前記ロータ(1)の回転速度が減少する時には前記設定された進角量を減少させる補正值にて補正し、増加する時には前記設定された進角量を増加させる補正值にて補正することによって、モータが減速するとき、低騒音となることを優先し、モータが增速するとき、高効率であることを優先する制御を行う。

【0011】また、前記進角制御手段(12a)が、前記ロータ(1)の回転速度の変化量に応じて前記進角量の補正值を滑らかに変化させることによって、モータの回転速度の変化量に応じて、スイッチング素子の電流切り替えタイミングを滑らかに変化させる。

【0012】

【発明の効果】本発明の請求項1に記載のブラシレスモータは、モータの回転速度およびその変化量に応じて、界磁用永久磁石の回転位置に対し、スイッチング素子の電流切り替えタイミングを制御するので、モータの增速時と減速時とで、モータ効率や騒音を考慮して、電機子コイルを流れる電流の切り替えタイミングを最適制御できる。

【0013】本発明の請求項2に記載のブラシレスモータは、相対的に回転トルクが問題となるモータの增速時には、低騒音であることよりも高効率であることを優先し、相対的に騒音発生が問題となるモータの減速時には、高効率であることよりも低騒音となることを優先する制御を行うので、回転速度を速やかに変更可能かつ低騒音なブラシレスモータを提供できる。

【0014】本発明の請求項3に記載のブラシレスモータは、モータの回転速度の変化量に応じて、界磁用永久磁石の回転位置に対し、スイッチング素子の電流切り替えタイミングを滑らかに変化させるので、回転トルクの変化が穏やかで、滑らかな回転を得られる。

【0015】本発明の請求項4または請求項5に記載のブラシレスモータは、センサマグネットがN極とS極とを複数対有するか、または磁気センサが複数個配置されているので、ロータが1回転する間に複数回磁界方向の変化を検出でき、ロータの回転速度が変化しても、その変化に追随して高速応答で、きめ細かくタイミング制御できる。

【0016】

【発明の実施の形態】以下、図面を参照して本発明の実施の形態を詳細に説明する。

【0017】図1は、本発明のブラシレスモータを下側から見た下面図であり、(a)はトルク発生効率が良くなる構成例、(b)は低騒音となる構成例を示す。本実施の形態のブラシレスモータは、車両用空調装置の送風機ファンの駆動に用いられ、三相2極巻線のアウタロータ形のブラシレスDCモータであり、内周側のステータに電機子コイル、外側のロータに界磁用永久磁石を備えたものである。

【0018】ステータ3には、各突出部3a～3fをコアとして電機子コイル4a～4fが三相に配置され、その外側には、90度間隔でメインマグネット(界磁用永久磁石)2を備えたロータ1が配置されている。このロータ1の回転位置を示すセンサマグネット5は、N極とS極とが2対、ロータ1の回転中心に対し均等角度に配置され、ロータ1と一緒に回転するシャフト6に取り付けられている。このセンサマグネット5による磁界の方向を検出するホールIC1～3(磁気センサ)が、ステータ3の内周に120度間隔で均等配置されている。

【0019】ブラシレスDCモータでは、メインマグネット2の検出位置から電機子コイル4a～4fを流れる電流を切り替えるタイミングによって、発生するトルクが変化する。ロータ1の回転位置を示すセンサマグネット5を、図1(a)に示すようにメインマグネット2に対し遅れ角30度でシャフト6に取り付けた場合、最も発生トルクが大きくなり、効率が良くなる。図1(b)に示すように遅れ角42度のときは、モータの振動周波数とモータ収納ケースの固有振動周波数との共鳴によるうなり音が最も小さくなる。本実施の形態では、センサマグネット2を、一例として遅れ角44度でシャフト6に取り付けている。これは、機構的な誤差などによって、うなり音が最も小さくなる遅れ角には幅があり、通常最もうなり音の小さくなる遅れ角42度に対し、余裕をみて、遅れ角44度で取り付けて、その誤差を電気的な進角制御で補うためである。なお、①は電流経路が短く、他の電機子コイルに比べ2倍の電流が流れているコイルを示す。②は電機子コイル3c(3f)とメインマグネット2との反発力による正回転トルク発生位置、③は電機子コイル3a(3d)とメインマグネット2との反発力による逆トルク発生位置を示す。

【0020】図2は、本実施の形態のブラシレスモータの制御回路部のブロック図である。センサ信号検出回路11は、ホールIC1～3からセンサマグネット5の磁界方向変化検出を受けて、それぞれの反転信号を生成し、非反転信号と合わせて六信号からなるセンサ信号としてマイクロコンピュータ12に入力する。これは、本実施の形態で用いるマイクロコンピュータ12が、入力信号の立ち下がりエッジのみを検出するため、立ち上が

りエッジを立ち下がりエッジに変換して検出するためである。このマイクロコンピュータ12内の処理では、進角制御手段12aにて、センサ信号を受けて、その磁界方向変化検出の周期からモータの回転速度およびその変化量を算出し、この回転速度に対応して、センサマグネット5の界磁用永久磁石2に対する遅れ角を進める進角制御のための進角量を設定すると共に、回転速度の変化量に応じた補正值にてその進角量を補正する。次にタイミング制御手段12bにて、センサ信号、進角量、および空調制御装置(図示せず)からモータを回転指示する回転指示信号(PWM信号)を受けて、補正された進角量に応じた進角制御を行い、モータ駆動回路13を介してMOSFET(スイッチング素子)Q1～Q6の電流切り替えタイミングを制御する。

【0021】図3(a)は、本実施の形態のブラシレスモータの制御回路部の進角制御を行わない場合のタイミングチャートであり、(b)は、このタイミングで制御されるMOSFET(Q1～Q6)の接続関係を示す。センサマグネット5は、N極とS極とが90度ごとに配置されるため、ホールICからの磁界方向変化検出信号は、ロータ1が1回転する間に2周期変化する。これによって、ロータの回転を2倍細かくタイミング制御することができる。また、ホールICを均等間隔で3個配置したことによって、ロータの回転を3倍細かくタイミング制御することができる。この均等間隔で配置されたホールIC1～3からの磁界方向変化検出に基づき、ロータ1が1回転する間にMOSFET(Q1～Q6)のオン/オフを計12回スイッチングし、オンとなるMOSFETの組み合わせによって、電機子コイル4a～4fを流れる電流の方向を切り替える。

【0022】図4は、(a)がロータ回転位置、(b)がそのときの制御に用いるホールIC信号およびMOSFETの導通状態との対応関係を示す。ロータ回転角0度のときはホールIC3からの信号を用い、MOSFET(Q1)、(Q5)が導通状態となる。MOSFET(Q1)が電源側、MOSFET(Q5)が接地側となり、接続点Uと接続点Vとの間に電圧が印加される。

【0023】図5は、ホールIC3切替時の各コイルの通電状態と、メインマグネット2に対するセンサマグネット5の遅れ角による位置を示す図である。MOSFET(Q1)と(Q5)がオンし、U側(Q1)が電源電圧となり、V側(Q5)が接地される。電流経路S1をU側(+)→コイル4f→コイル4c→V側(GND)とし、電流経路S2をU側(+)→コイル4e→コイル4b→コイル4a→コイル4d→V側(GND)とすると、電流経路S1は抵抗値が半分のため、電流値が2倍となる(図1の①)。この電流値が2倍となるコイルとメインマグネット2との間には、他のコイルと比べ特に強い反発力を生じ、逆トルクを打ち消す強い回転トルクを生じる。

【0024】図6は、(a)がロータ回転角30度の場合を示し、(b)がそのときの制御に用いるホールIC信号およびMOSFETの導通状態との対応関係を示す。ロータ回転角30度のときはホールIC1からの信号を用い、MOSFET(Q3)、(Q5)が導通状態となる。MOSFET(Q3)が電源側、MOSFET(Q5)が接地側となり、接続点Wと接続点Vとの間に電圧が印加される。

【0025】図7は、ホールIC1切替時の各コイルの通電状態と、メインマグネット2に対するセンサマグネット5の遅れ角による位置を示す図である。MOSFET(Q3)と(Q5)がオンし、W側(Q3)が電源電圧となり、V側(Q5)が接地される。電流経路S3をU側(+)→コイル4a→コイル4d→V側(GND)とし、電流経路S4をU側(+)→コイル4b→コイル4e→コイル4f→コイル4c→V側(GND)とする。電流経路S3は抵抗値が半分のため、電流値が2倍となる。

【0026】図8は、回転速度の変化量に応じた補正值にて進角量を補正するための制御の流れを示す。まず、回転速度が増加しているか否か判定して(ST1)、増加ならば補正值Xを増加量Aとして(ST2)、補正前の進角量C₁に補正值Xを加えて新たな進角量C₂とする(ST3)。回転速度が増加していないならば、さらに減少しているか否か判定して(ST4)、減少ならば補正值Xを減少量Bとして(ST5)、補正前の進角量C₁に補正值Xを加えて新たな進角量C₂とする(ST3)。回転速度が減少していないならば、補正值Xを0として(ST6)、すなわちC₂=C₁として、補正を行わない。

【0027】図9は、補正值Xの回転速度変化量に対する変化を示す。変化量が増加するときは補正值Xを正の値として増加量の増大に伴いしだいに大きな値とし、変化量が減少するときは補正值Xを負の値として減少量の増大に伴いしだいに小さな値(絶対値の大きな負の値)とする。そして変化量の増減に対する補正值Xの変化を滑らかにすることによって、進角量の変化を滑らかなものとすることができます。その結果、回転トルクの変化が穏やかで、滑らかな回転を得られる。

【0028】図10は、ホールICからの信号に基づき、MOSFETの出力切替制御信号を出力するタイミングチャートであり、(a)はセンサ(ホールIC)からの入力信号、(b)はMOSFETのゲート信号を示す。

【0029】(a)に示すSAH、SALは、それぞれホールIC1からの信号およびその反転信号を示す。同様にSBH、SBLは、それぞれホールIC2からの、SCH、SCLは、それぞれホールIC3からの信号およびその反転信号を示す。以上の6信号によって、ロータの30度回転ごとにきめ細かくタイミングを制御する

ことができる。

【0030】(b)は、進角制御時のMOSFETに出力するゲート信号を示し、AT, BT, CTはハイサイド(電源側)、AB, BB, CBはローサイド(接地側)のMOSFETに対するゲート信号を示す。本実施の形態では、上記センサ入力の6信号の立ち下がりによって、MOSFETのゲート信号をタイミング制御する。この場合、各センサ信号の立ち下がりに対応して、次の立ち下がりに相当するタイミング(ロータ1の30度回転相当)を予測して、MOSFETのゲート信号をオン/オフ制御する。その際、センサ信号の立ち下がりエッジ間の時間からロータの回転速度およびその変化量を算出し、この回転速度に対応して、進角制御のための進角量を設定すると共に、回転速度の変化量に応じた補正值にてその進角量を補正する。そして、MOSFETのゲート信号をオン/オフ制御する際、補正された進角量に応じた進角制御を行い、タイミング制御する。なお、センサ信号の立ち上がりエッジを用いても同様の制御を行うことができる。

【0031】図11は、モータの回転数に対する進角制御量の対応関係を示し、(a)は進角量を角度で表し、(b)は進角量を時間で表す。(a)に示すようにモータの回転数が1800 rpmまでは進角量を0として、機構的に固定された遅れ角D(例えば44度)でMOSFETの出力をオン/オフ制御する。これは、モータの起動時などは、モータの回転速度が安定せず、センサ信号の立ち下がりエッジ間の時間からロータの回転速度を算出し、その回転速度に対応した進角制御を行うと、センサ信号の立ち下がり検出から次の立ち下がりを予測する予測制御が実際の回転数とずれを生じ、進角量が実際の回転数とは合わないものとなるからである。すなわち回転速度が安定しない間に進角制御を行うと、回転トルクに変動を生じ回転むらの原因となるので、一定の回転速度に達するまで、機構的に固定された遅れ角すなわち低騒音となる遅れ角でMOSFETの出力をオン/オフ制御し、進角制御を行わない。

【0032】モータの回転数が1800 rpmに達すると進角制御を開始する。まず、回転数に対応して設定される進角量として、2500 rpmまでの間は遅れ角をDからD-8に直線的に滑らかに連続変化させる。遅れ角を急激に変化させると、回転トルクも急激に変化し、回転むらの原因となるので、これを避けるため、遅れ角を滑らかに連続変化させる。モータの回転数が2500 rpm以上では、8度進角制御を行い、遅れ角をD-8(36度)とする。

【0033】さらに、回転速度の変化量に応じた補正值にてその進角量を補正する。すなわち、変化量が増加するときは補正值Xを正の値として増加量の増大に伴いしだいに大きな値で補正し、変化量が減少するときは補正值Xを負の値として減少量の増大に伴いしだいに小さな

値(絶対値の大きな負の値)で補正する。

【0034】マイクロコンピュータのソフトウェア制御にて、上記回転数に応じた制御を行うために、(b)に示すモータ回転数に対応した進角時間制御を行う。まず、モータ回転数が1800 rpmまでは進角制御を行わないで、センサ信号の立ち下がりエッジを検出すると、その検出からすぐにMOSFETの出力をオン/オフ制御する。

【0035】モータ回転数が1800 rpmに達すると進角制御を開始し、図10に示されたようにロータ1の30度回転ごとにセンサ信号を受けて、次の立ち下がりに相当するタイミング(ロータ1の30度回転相当)を予測してMOSFETのゲート信号をオン/オフ制御する。すなわち回転数に対応した進角制御時間として、モータ回転数が1800 rpm(周期: 33.3 msec)のとき、ロータが30度回転に要する時間は2.78 msecであり、2500 rpm(周期: 24 msec)のとき、ロータが30度回転に要する時間は2 msecなので、センサ信号の立ち下がりエッジからこの30度回転に要する時間経過した後、MOSFETのゲート信号をオン/オフ制御する。2500 rpmのとき、8度進角制御を行うためには、ソフトウェアによる進角時間を(2-0.533) msecとする。さらに、回転速度の変化量に応じた補正值にて、8度進角のための進角量0.533 msecを補正する。すなわち、増速時には、進角量を多くするため、0.533 msecより大きな値とし、減速時には、進角量を少なくするため、0.533 msecより小さな値とする。その結果、増速時には、進角時間を(2-0.533) msecより小さい値とし、減速時には、進角時間を(2-0.533) msecより大きい値とする。

【0036】図12は、センサマグネット5のメインマグネット2に対する遅れ角と騒音レベルとの関係を示す。回転数が2400 rpmでは、送風音による影響で遅れ角によるうなり音成分がマスクされてしまい、騒音レベルが一定となる。回転数が900 rpmでは、送風音が小さくなるので、相対的にうなり音成分が大きくなり、遅れ角が大きくなるにつれ騒音が小さくなる。このことから、特に低回転数領域では、遅れ角を大きくすることによる低騒音化の効果が大きい。

【0037】図13は、センサマグネット5のメインマグネット2に対する遅れ角とモータ効率との関係を示す。遅れ角30度程度でモータ効率が最大となり、その結果回転トルクが最大となる。上記の遅れ角と騒音レベルとの関係を考慮すると、高回転数領域では、遅れ角を変えて騒音が変化しないので、モータ効率を優先した遅れ角に設定することによって、高効率なモータを得ることができる。

【0038】以上のことから、ロータの回転速度が低速時には遅れ角の進角量を少なく制御し、高速時には遅れ

角の進角量を多く制御することによって、回転数によって低騒音と高効率とを最適な割合で両立した制御ができる。

【0039】さらに、回転速度の増速時には回転トルクを優先して、進角量を多く制御し、減速時には、回転トルクを必要としないため、低騒音であることを優先して、進角量を少なく制御する。その結果、回転速度を速やかに変更可能かつ低騒音なモータとすることができる。

【0040】図14は、モータ回転数とその騒音の12次成分との遅れ角による関係の変化を示す。例えば1000 rpmすなわち毎秒16.7回転のとき12次成分は200Hzとなり、モータとその収納ケースとの共鳴により、うなり音が極大となる。さらに回転数が高くなると、うなり音よりも送風音が大きくなりマスクされてしまう。

【0041】図15は、モータ回転数とその騒音の24次成分との遅れ角による関係の変化を示す。例えば500 rpmすなわち毎秒8.3回転のとき24次成分は200Hzとなり、モータとその収納ケースとの共鳴により、うなり音が極大となる。さらに回転数が高くなると、うなり音よりも送風音が大きくなりマスクされてしまう。

【0042】以上述べたように本発明のブラシレスモータを車両用空調装置の送風機ファンの駆動用に用いることによって、減速時すなわち送風量を少なくするときは低騒音で、増速時すなわち送風量を多くするときは高効率すなわち高トルクで運転することによって、回転数の変更指示に対し、必要に応じて高トルクな回転力と低騒音な回転とを両立した制御を行い、これを回転数の変化量によって最適に補正制御して、快適な空調環境を得ることができる。

【0043】なお、本実施の形態では、車両用空調装置の送風機ファンの駆動用ブラシレスモータとして説明したが、例えば、車両用エンジンのラジエータ冷却ファンにも同様に適用でき、さらに室内用空調装置の送風機ファンなどにも用いることができる。

【図面の簡単な説明】

【図1】本発明のブラシレスモータの下面図であり、(a)はトルク発生効率が良くなる構成例、(b)は低騒音となる構成例を示す図である。

【図2】本発明のブラシレスモータの制御回路部のプロ

ック図である。

【図3】(a)は、ブラシレスモータの制御回路部のタイミングチャートであり、(b)は、MOSFETの接続関係を示す図である。

【図4】(a)がロータ回転位置、(b)がホールIC信号およびMOSFETの導通状態との対応関係を示す図である。

【図5】ホールIC3切替時の各コイルの通電状態と、メインマグネットに対するセンサマグネットの遅れ角による位置を示す図である。

【図6】(a)がロータ回転角30度の場合を示し、(b)がホールIC信号およびMOSFETの導通状態との対応関係を示す図である。

【図7】ホールIC1切替時の各コイルの通電状態と、メインマグネットに対するセンサマグネットの遅れ角による位置を示す図である。

【図8】進角量を補正する制御の流れを示すフローチャートである。

【図9】補正值の回転速度変化量に対する変化を示す図である。

【図10】(a)はセンサ(ホールIC)からの入力信号、(b)はMOSFETのゲート信号を示すタイミングチャートである。

【図11】モータの回転数に対する進角制御量を示す図であって、(a)は進角量を角度で表し、(b)は進角量を時間で表す図である。

【図12】センサマグネットのメインマグネットに対する遅れ角と騒音レベルとの関係を示す図である。

【図13】センサマグネットのメインマグネットに対する遅れ角とモータ効率との関係を示す図である。

【図14】モータ回転数とその騒音の12次成分との関係を示す図である。

【図15】モータ回転数とその騒音の24次成分との関係を示す図である。

【符号の説明】

1…ロータ、2…メインマグネット(界磁用永久磁石)、3…ステータ、4a～f…電機子コイル、5…センサマグネット、6…シャフト、11…センサ信号検出回路、12…マイクロコンピュータ、13…モータ駆動回路、IC1～3…ホールIC(磁気センサ)、①…2倍の電流が流れているコイル、②…正回転トルク発生位置、③…逆トルク発生位置。

【図 1】

〔 8〕

【图2】

〔图3〕

(b)

【四】

【图9】

(图 13)

(b)

【 5】

ホールIC3切り替え

【図6】

【図10】

(b)

【図7】

【図11】

【図12】

(b)

【図14】

【図15】

フロントページの続き

(72)発明者 関根 剛
東京都中野区南台5丁目24番15号 カルソ
ニック株式会社内

F ターム(参考) 5H560 AA01 BB04 BB08 BB12 DA03
DA19 DB20 EB01 EC02 EC10
GG04 JJ12 RR04 SS02 TT15
UA05 XA12 XA15