# MODELING DYNAMIC MAGNETICALLY INSULATED TRANSMISSION LINE FLOW IN A TRANSMISSION LINE CODE\*

# J.W. Schumer<sup>§</sup>, P.F. Ottinger, D.D. Hinshelwood, and R.J. Allen

Pulsed Power Physics Branch, Plasma Physics Division, Naval Research Laboratory Washington, DC 20375 USA

#### Abstract

A new fluid model including electron pressure is described for the electron flow layer in a magnetically insulated transmission line. Non-zero values of the electric field at the cathode are allowed so that the model can treat both emission and re-trapping of flow electrons. The model recovers previous results when the electric field at the cathode is taken to zero. The resulting generalized MITL flow equations are discussed and initial solutions are presented.

### I. INTRODUCTION

Many modern pulsed power generators use magnetically insulated transmission lines (MITL) to couple power between the driver and the load [1]. In an MITL the electric field stress on the cathode exceeds the vacuum explosive-emission threshold and electron emission occurs. For sufficiently high current, emitted electrons are magnetically insulated from crossing the anode-cathode gap and flow axially downstream in the direction of power flow. The return current from the total anode current I is divided between current I flowing in the cathode and current I<sub>s</sub> flowing in the vacuum electron layer, i.e.,  $I_f = I_a - I_c$ . As a result of the electron flow in vacuum between the electrodes, the impedance of the MITL is altered and, thus, the power flow coupling between the machine and the load changes. The effective impedance is best described by the flow impedance Z<sub>1</sub> [2,3]. In a dynamic system where the voltage and currents are changing in time, Z, also varies [4].

The objective of the work is to efficiently and accurately simulate power flow in systems with a MITL using a simple TLC rather than a more computer intensive particle-in-cell code. A generalized model for flow impedance is developed for incorporation into a transmission line code (TLC), such as Bertha [5]. The model describes both self-limited flow as the pulse initially propagates down the MITL toward the load, as well as, the subsequent electron power flow along the MITL after the pulse encounters the load. Additionally, for low impedance loads (i.e., with impedance less than the self-limited impedance of the MITL), the flow is



Figure 1. Schematic of MITL flow in planar geometry.

modified by the wave reflection off the load and the percentage of the return current in vacuum electron flow decreases. This phenomena is known as *electron retrapping* [6] and must be included in a complete description of MITL flow.

The approach is to develop a new fluid model for the electron layer which includes electron pressure. This modification extends MITL flow theory, allowing solutions with non-zero electric field at the cathode (i.e.,  $E_a \neq 0$ ) so that electron emission and re-trapping can be treated. A well-defined flow impedance is also derived. In addition, the pressure term is chosen appropriately to recover previous  $E_1 = 0$  solutions so that the results of the new rescaled MITL theory [3] can be applied. This newly extended MITL flow model may then be combined with time-dependent field equations [4] to build a dynamic model for MITL flow in a TLC. However, to complete the TLC model, a robust numerical technique must be constructed for solving these new MITL flow equations and techniques must be developed to treat special situations such as impedance transitions, adders, nonemitting regions (knobs), and load coupling,.

### II. GENERALIZED MITL FLOW MODEL

In Fig. 1, negative-polarity MITL flow is illustrated where  $r_a$  and  $r_c$  would represent the anode and cathode radii in cylindrical geometry. For simplicity, the model is developed in planar geometry, considering a transmission line element of length  $\ell$ , width w, and anode-cathode gap d. The three basic equations for the fluid model are the radial momentum transport equation, Poisson's equation, and Ampere's law, which are given by

-

<sup>\*</sup> Work supported by the US Department of Energy through Sandia National Laboratories

<sup>&</sup>lt;sup>ξ</sup> email: schumer@nrl.navy.mil

| Report Documentation Page                                              |                                                                                                                 |                                                                                                                                                               |                                                                  | Form Approved<br>OMB No. 0704-0188                 |                                                                  |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|--|
| maintaining the data needed, and of including suggestions for reducing | ompleting and reviewing the collect<br>this burden, to Washington Headqu<br>uld be aware that notwithstanding a | o average 1 hour per response, inclu<br>tion of information. Send comments<br>tarters Services, Directorate for Infon<br>ny other provision of law, no person | regarding this burden estimate<br>rmation Operations and Reports | or any other aspect of the s, 1215 Jefferson Davis | nis collection of information,<br>Highway, Suite 1204, Arlington |  |
|                                                                        |                                                                                                                 | 2. REPORT TYPE <b>N/A</b>                                                                                                                                     |                                                                  | 3. DATES COVERED -                                 |                                                                  |  |
| 4. TITLE AND SUBTITLE                                                  |                                                                                                                 |                                                                                                                                                               |                                                                  | 5a. CONTRACT NUMBER                                |                                                                  |  |
|                                                                        | ated Transmission                                                                                               | Line Flow In A                                                                                                                                                | 5b. GRANT NUMBER                                                 |                                                    |                                                                  |  |
| Transmission Line                                                      | 5c. PROGRAM ELEMENT NUMBER                                                                                      |                                                                                                                                                               |                                                                  |                                                    |                                                                  |  |
| 6. AUTHOR(S)                                                           |                                                                                                                 |                                                                                                                                                               |                                                                  | 5d. PROJECT NUMBER                                 |                                                                  |  |
|                                                                        |                                                                                                                 |                                                                                                                                                               |                                                                  | 5e. TASK NUMBER                                    |                                                                  |  |
|                                                                        |                                                                                                                 |                                                                                                                                                               |                                                                  | 5f. WORK UNIT NUMBER                               |                                                                  |  |
| 7. PERFORMING ORGANI Pulsed Power Phys Laboratory Washi                | aval Research                                                                                                   | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER                                                                                                                   |                                                                  |                                                    |                                                                  |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)                |                                                                                                                 |                                                                                                                                                               |                                                                  | 10. SPONSOR/MONITOR'S ACRONYM(S)                   |                                                                  |  |
|                                                                        | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)                                                                       |                                                                                                                                                               |                                                                  |                                                    |                                                                  |  |
| 12. DISTRIBUTION/AVAIL Approved for publ                               | LABILITY STATEMENT ic release, distribut                                                                        | ion unlimited                                                                                                                                                 |                                                                  |                                                    |                                                                  |  |
| Abstracts of the 20                                                    | 71. 2013 IEEE Puls<br>13 IEEE Internatio                                                                        | ed Power Conference<br>nal Conference on F<br>sco, CA on 16-21 Ju                                                                                             | Plasma Science. Il                                               | EEE Internat                                       | tional Pulsed Power                                              |  |
| insulated transmis<br>model can treat bo<br>the electric field at      | sion line. Non-zero v<br>th emission and re-                                                                    | oressure is described<br>values of the electric<br>trapping of flow electric<br>to zero. The result<br>tented.                                                | field at the catho<br>etrons. The mode                           | ode are allow<br>I recovers pro                    | ed so that the evious results when                               |  |
| 15. SUBJECT TERMS                                                      |                                                                                                                 |                                                                                                                                                               |                                                                  |                                                    |                                                                  |  |
| 16. SECURITY CLASSIFIC                                                 | ATION OF:                                                                                                       |                                                                                                                                                               | 17. LIMITATION OF ABSTRACT SAR                                   | 18. NUMBER                                         | 19a. NAME OF<br>RESPONSIBLE PERSON                               |  |
| a. REPORT<br><b>unclassified</b>                                       | ь. abstract<br><b>unclassified</b>                                                                              | c. THIS PAGE <b>unclassified</b>                                                                                                                              |                                                                  | OF PAGES 5                                         |                                                                  |  |

$$\frac{\partial T}{\partial x} = \rho(E - v_z B), \qquad (1)$$

$$\frac{\partial E}{\partial x} = \frac{\rho}{\epsilon_0}, \qquad (2)$$

$$\frac{\partial \mathbf{B}}{\partial \mathbf{x}} = \mu_0 \rho \mathbf{v}_z. \tag{3}$$

Here, T is the xx component of the electron pressure tensor,  $\rho$  is the electron charge density,  $v_z$  is the axial electron fluid velocity, E and B are the electric and magnetic fields, and  $\varepsilon_0$  and  $\mu_0$  are the permittivity and permeability of free space, respectively. As expressed in Eqs. (1) – (3),  $\rho$ ,  $v_{x}$ , T, and B are all positive-definite quantities, while E is positive at the anode but can be positive or negative at the cathode. Note that, because the time derivatives have been assumed negligible, this is a quasi-equilibrium model. The subscripts c, s, and a will denote quantities evaluated on the cathode at x = 0, electron layer edge at  $x = d_s$ , and anode at  $x = d_s$ respectively. The vacuum impedance of the line is given by  $Z_{_0}=c\mu_{_0}d/w$  where  $c=1/(\epsilon_{_0}\mu_{_0})^{_{1/2}}$  is the speed of light. Also, anode and cathode fields are given by  $E_{_{a,c}}=Z_{_0}cQ_{_{a,c}}/d$ and  $B_{ac} = Z_0 I_{ac}/cd$ , where  $Q_{ac}$  and  $I_{ac}$  are the charge per unit length and current (on the anode and cathode), respectively.

The voltage in the gap is given by

$$V(x) = \int_0^x E(x') dx' \quad , \tag{4}$$

where  $V_c = V(0) = 0$  and the full voltage across the gap is V = V(d) (with the subscript *a* suppressed for simplicity). Similarly, the magnetic vector potential in the gap is given by

$$A(x) = \int_0^X B(x') dx' , \qquad (5)$$

where  $A_c = A(0) = 0$  and the vector potential at the anode is A = A(d) (again with the subscript *a* suppressed). Both V and A will be needed for a complete description of the problem.

Because electron space-charge and current are distributed in the line, there is not, in general, a welldefined impedance. The electric flow impedance Z<sub>f</sub> and the magnetic flow impedance Z<sub>m</sub> are defined by the centroid of the space-charge and current, respectively [2]. By assuming here that both the charge density and axial fluid velocity are uniform in the flow layer, a well-defined flow impedance is derived with  $Z_f = Z_m$ . This assumption also makes integration of the above equations straightforward. However, without the  $\partial T/\partial x$  pressure term, Eq. (1) cannot be satisfied under this assumption. Unlike the parapotential flow model [7] in which all electrons move axially in straight-line orbits, this model permits various orbit types [8]. The electron pressure is a consequence of the motion perpendicular to the axial flow which results from the distribution of electrons with these various orbits.

The MITL equations derived from this model are

$$I_a^2 - I_c^2 = c^2 Q_a^2 - c^2 Q_c^2, (6)$$

$$V = Z_f cQ_a + (Z_0 - Z_f)cQ_c, \qquad (7)$$

$$cA = Z_f I_a + (Z_0 - Z_f) I_c,$$
 (8)

$$V = Z_0 cQ_a - \left(\frac{gmc^2}{2e}\right) \frac{(cQ_a - cQ_c)^2}{I_c^2},$$
 (9)

where m and e are the electron charge and mass, and g is a scaling parameter defined in [3]. In deriving these equations, the pressure at the cathode was chosen so that the previous MITL equations with  $Q_c = 0$  are recovered [2-4].

Typically, Eq. (6) is referred to as the *pressure* balance equation and Eq. (9) is referred to as the *voltage* equation. When  $Q_c = 0$  (i.e.,  $E_c = 0$ ), Eqs. (6) and (9) can be combined to yield the traditional *voltage* equation

$$V = Z_0 \left(I_a^2 - I_c^2\right)^{1/2} - \left(\frac{gmc^2}{2e}\right) \frac{\left(I_a^2 - I_c^2\right)}{I_c^2}, \quad (10)$$

which is used to calculate the voltage from measuring  $I_a$  and  $I_c$ . Previously, Eq. (10) was derived by postulating an expression for the charge density in the flow layer. Here, it is derived directly from the fluid model.

The model also yields

$$Z_{f} = Z_{0} \left( 1 - \frac{d}{2d} \right), \tag{11}$$

so that  $Z_0 \ge Z_{\rm f} \ge Z_0/2$  for an electron layer thickness  $d_{\rm s}$  ranging from 0 to d. Additionally, the charge density in the electron layer  $\rho$ , the axial fluid velocity in the electron layer  $v_{\rm s}$ , the voltage at the edge of the electron layer  $V_{\rm s}$ , and the magnetic vector potential at the edge of the electron layer  $A_{\rm s}$  are given by

$$\rho = \frac{e\varepsilon_0 Z_0^2 I_0^2}{gmc^2 d^2},$$
(12)

$$\frac{v_{z}}{c} = \frac{(I_{a} - I_{c})}{(cQ_{a} - cQ_{c})},$$
(13)

$$\frac{d_s}{d} = \left(\frac{gmc^2}{eZ_0}\right) \frac{(cQ_a - cQ_c)}{I_c^2} , \qquad (14)$$

$$\frac{\text{eV}_{\text{s}}}{\text{gmc}^2} = \frac{(\text{c}^2 \text{Q}_{\text{a}}^2 - \text{c}^2 \text{Q}_{\text{c}}^2)}{2\text{I}_{\text{c}}^2} , \qquad (15)$$

and

$$cA_s = (Z_0 - Z_f)(I_a + I_c)$$
 (16)

Finally, Eqs. (7) and (9) can be combined to provide

$$Z_{f} = Z_{0} - \left(\frac{gmc^{2}}{2e}\right) \frac{(cQ_{a} - cQ_{c})}{I_{c}^{2}},$$
 (17)

which for  $cQ_c = 0$  again yields the traditional result [3]

$$Z_{f} = Z_{0} - \left(\frac{gmc^{2}}{2e}\right) \frac{(I_{a}^{2} - I_{c}^{2})^{1/2}}{I_{c}^{2}}.$$
 (18)

In practice, the dynamic MITL model will receive advanced values of V,  $I_a$ , and A along the line for each time step from the TLC, where A is advanced using Eq. (11a) from [4]. Then, Eqs. (6) - (9) are used to solve for  $cQ_a$ ,  $cQ_c$ ,  $I_c$ , and  $Z_f$  to determine the flow along the line for the subsequent time step. The continuity equation

$$J_{a} = -\frac{\partial Q_{a}}{\partial t} - \frac{\partial I_{a}}{\partial z}$$
 (19)

is used to calculate current lost to the anode, where  $J_{_a}$  is the linear current density and  $I_{_{loss}}$  =  $c\tau J_{_a}$  is the loss current for a TLC element of length  $\tau$  (in seconds).

### III. SOLUTIONS

The TLC model for MITL flow depends on a robust numerical technique for solving Eqs. (6) – (9). The equations can be normalized to the local vacuum impedance  $Z_0$  of the particular TLC element under consideration. Thus,  $Z_0cQ_a$ ,  $Z_0cQ_c$ ,  $Z_0I_c$ , and  $Z_t/Z_0$  are the unknowns and V,  $Z_0I_a$ , and cA are the known parameters. Equations (6) – (9) can be combined to give a quintic equation in  $Z_0cQ_a$ , which may have 1, 3 or 5 real roots. Valid roots are restricted to physically-meaningful regions of parameter space.

To map out this parameter space, one may focus on solutions in which  $Z_0cQ_c = 0$  (from traditional equilibrium



**Figure 2.** Plots of  $Z_0I_c$  and cA as functions of  $Z_0I_a$  for V = 6 MV with  $Z_0cQ_c = 0$ .



**Figure 3.** Plot of  $Z_0I_c$  solutions as a function of  $Z_0I_a$  for the case with V = 6 MV and cA = 7.5 MV.

MITL theory). First, the traditional  $Z_0I_0$  versus  $Z_0I_0$ solutions for the  $Z_0 cQ_c = 0$  is displayed in Fig. 2 for V = 6MV. Also shown is cA versus  $Z_0I_a$ , which is derived from Eq. (8) with  $Z_0 cQ_0 = 0$ . Although both  $Z_0 I_0$  and cA are really functions of Z<sub>0</sub>I<sub>2</sub>, the axes have been oriented with the independent variable on the vertical axis in order to display the results in the traditional manner. There is a one to one correspondence between these two solutions with the example indicated by the arrow in Fig. 2 corresponding to the solution in Fig. 3 for cA = 7.5 MV. Over most of the range of cA, only one  $Z_0cQ_c = 0$  solution exists. However, over a narrow range of cA, there is a region where two solutions with different Z<sub>0</sub>I<sub>2</sub> values exists, corresponding to the region left of the minimum on the  $Z_0I_a$  versus  $Z_0I_c$  curve. This is traditionally referred to as the saturated-flow region.

As an example of general solutions (i.e., with  $Z_{0}cQ_{c}$  not necessarily equal to zero), consider solutions for V=6



**Figure 4.** Plot of  $Z_0cQ_c$  solutions as a function of  $Z_0I_a$  for the case with V=6 MV and cA=7.5 MV.



**Figure 5.** Plot of  $Z_0 c Q_a$  solutions as a function of  $Z_0 I_a$  for the case with V = 6 MV and cA = 7.5 MV.

MV and cA = 7.5 MV as a function of  $Z_0I_a$ . This value of cA occurs in Fig. 2 in a region where there is only one  $Z_0I_a$  solution with  $Z_0cQ_c=0$ . Solutions for  $Z_0I_c$  are shown in Fig. 3. Again, the axes are oriented to show the familiar  $Z_0I_a$  versus  $Z_0I_c$  curve. The straight dashed lines indicate bounding constraints on the solutions; thus, only solutions with values that fall within the triangular region are meaningful. These bounds are determined by  $Z_0 \geq Z_f \geq Z_0/2$ ,  $I_a \geq I_c$ , and the constraints derived from these conditions.

Also note the traditional  $Z_0cQ_c = 0$  solutions, indicated by the dotted curve in Fig. 3. Imagining that there is a  $Z_0cQ_c$  axis projecting in and out of the paper and that solutions with different values of  $Z_0cQ_c$  are projected onto the plane of the paper, the only solution with  $Z_0cQ_c = 0$  occurs at the location indicated by the "x". Note that this solution falls on the dotted  $Z_0cQ_c = 0$  curve and corresponds to the solution indicated by the arrow in Fig. 2 for cA = 7.5 MV. Other points that seem to cross the  $Z_0cQ_c = 0$  curve actually lie off the plane of the paper with  $Z_0cQ_c \neq 0$ .



**Figure 6.** Plot of  $Z_t/Z_0$  solutions as a function of  $Z_0I_a$  for the case with V = 6 MV and cA = 7.5 MV.

Solutions for  $Z_0cQ_c$ ,  $Z_0cQ_a$ , and  $Z_t/Z_0$  as functions of  $Z_0I_a$  are shown in Figs. 4, 5, and 6, respectively. For ease of comparison, the axes are also oriented in the same fashion as Fig. 2. In Fig. 4 the only  $Z_0cQ_c = 0$  solution for these values of V and cA occurs on the lower branch. Note that when  $Z_0cQ_c > 0$  (i.e.,  $E_c > 0$ ), electron emission occurs at the cathode, and when  $Z_0cQ_c < 0$  (i.e.,  $E_c < 0$ ), electron re-trapping occurs. Also note that  $Z_0I_c$  and  $Z_0cQ_c$  change rapidly near the  $Z_0cQ_c = 0$  solution for small changes in  $Z_0I_a$ , while  $Z_0cQ_a$  and  $Z_0cQ_c = 0$  solutions at least when the flow is on this lower branch.

#### IV.SUMMARY

A fluid model has been developed to model generalized MITL flow. By explicitly including pressure in the model, the voltage equation can be derived directly rather than resulting from postulating an expression for the density in the flow layer as was previously done. By allowing solutions with  $E_c \neq 0$ , emission and re-trapping can be treated. By assuming that both the charge density and axial fluid velocity are uniform in the flow layer, a well-defined flow impedance is derived with  $Z_f = Z_m$ . This assumption is allowable due to the inclusion of a pressure term in the fluid model. And, finally, by choosing the form of the pressure term appropriately, the model reproduces the new rescaled MITL flow model when E<sub>a</sub> (or equivalently O<sub>a</sub>) is taken to zero. This newly extended MITL flow model may be combined with timedependent field equations to build a dynamic model for MITL flow in a TLC. A robust numerical technique is being constructed to solve these new generalized MITL flow equations, however, techniques to treat impedance transitions, adders, non-emitting regions, load coupling, etc. are also needed to complete the TLC model.

### V. REFERENCES

[1] J.P. VanDevender, J.T. Crow, B.G. Epstein, D.H. McDaniel, C.W. Mendel, E.L. Neau, J.W. Poukey, J.P. Quintenz, D.B. Seidel, and R.W. Stinnett, "Self-magnetically insulated electron flow in vacuum transmission lines," Physica, vol. 104C, pp. 167-182, 1981.
[2] C.W. Mendel and S.E. Rosenthal, "Modeling magnetically insulated devices using flow impedance," Phys. Plasmas, vol. 2, pp. 1332-1342, Apr. 1995.
[3] P.F. Ottinger and J.W. Schumer, "Rescaling of equilibrium magnetically insulated flow theory based on particle-in-cell simulations," Phys. Plasmas, vol. 13, p. 063109-1 – 063109-17, Jun. 2006.

[4] C.W. Mendel and S.E. Rosenthal, "Dynamic modeling of magnetically insulated transmission line systems," Phys. Plasmas, vol. 3, pp. 4207-4219, Nov. 1996. [5] D.D. Hinshelwood, "Bertha – a versatile transmission

line and circuit code," NRL Memorandum Report 5185, Nov. 21, 1983.

[6] V.L. Bailey, P.A. Corcoran, D.L. Johnson, I.D. Smith, J.E. Maenchen, K.D. Hahn, I. Molina, D.C. Rovang, S. Portillo, E.A. Puetz, B.V. Oliver, D.V. Rose, D.R. Welch, D.W. Droemer, and T.L. Guy, "Re-trapping of vacuum electron current in magnetically insulated transmission lines," in Proc. of 15<sup>th</sup> Inter. Conf. on High-Power Particle Beams, St. Petersburg, Russia, Jul. 2004, pp. 247-250. [7] J.M. Creedon, "Relativistic Brillouin flow in the high v/v diode," Appl. Phys., vol. 46, pp. 2946-2955, Jul. 1975. [8] C.W. Mendel, D.B. Seidel, and S.A. Slutz, "A general theory of magnetically insulated electron flow," Phys. Fluids, vol. 26, pp. 3628-3535, Dec. 1983.