Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной инженерии и компьютерной техники

Отчёт по лабораторной работе N = 3

Методы оптимизации

Вариант № 9

Выполнил: студент группы Р3214

Силинцев В.В.

Преподаватель: Селина Е.Г.

Содержание

Цель работы	3
Задание	
Ручные расчеты	
Код программы	
Результат работы программы	
Заключение	10

Цель работы

Изучить метод квадратичной аппроксимации и реализовать его программно.

Задание

Решить задачу методом квадратичной аппроксимации. Выполнить вручную 3-5 шагов. Написать программу по методу на одном из языков программирования.

- Функция для нахождения экстремума: $f(x) = \frac{1}{3}x^3 5x + x \ln x$.
- Интервал для поиска: [a,b]=[1.5,2].
- Необходимая точность вычислений: ε =0.02 для ручных расчетов и ε =0.0001 для программных расчетов.

Ручные расчеты

Алгоритм поиска экстремума:

- Шаг 1. Задать начальную (первую) точку x_1 , величину шага по оси x $\Delta x > 0$, ε_1 и ε_2 малые положительные значения, характеризующие точность.
- Шаг 2. Вычислить вторую точку: $x_2 = x_1 + \Delta x$.
- Шаг 3. Вычислить значения функции в точках $f(x_1)$ и $f(x_2)$.
- Шаг 4. Сравнить точки $f(x_1)$ и $f(x_2)$:
 - \circ если $f(x_1) > f(x_2)$, положить $x_3 = x_1 + 2\Delta x$.
 - \circ если $f(x_1) \le f(x_2)$, положить $x_3 = x_1 \Delta x$.
- Шаг 5. Вычислить $f(x_3)=f_3$.
- Шаг 6. Найти $F_{min} = min[f_1, f_2, f_3], x_{min} = x_i$.
- Шаг 7. По точкам x_1, x_2, x_3 вычислить точку минимума \bar{x} квадратичного интерполяционного полинома: $\bar{x} = \frac{1}{2} \frac{\left(x_2^2 x_3^2\right) f_1 + \left(x_3^2 x_1^2\right) f_2 + \left(x_1^2 x_2^2\right) f_3}{\left(x_2 x_3\right) f_1 + \left(x_3 x_1\right) f_2 + \left(x_1 x_2\right) f_3}$ и величину функции $f(\bar{x})$. Если знаменатель в формуле для \bar{x} на некоторой итерации обращается в ноль, то результатом итерации является прямая. В этом случае рекомендуется обозначить $x_1 = x_{min}$ и перейти к шагу 2.
- Шаг 8. Проверить выполнение условий окончания расчета:

$$\left| \frac{F_{\min} - f(\bar{x})}{f(\bar{x})} \right| < \varepsilon_1, \ \left| \frac{x_{\min} - \bar{x}}{\bar{x}} \right| < \varepsilon_2.$$

 \circ если оба условия выполняются, закончить поиск $x^* = \bar{x}$.

- если хотя бы одно из условий не выполняется и $\bar{x} \in [x_1; x_3]$, выбрать наименьшую точку $(x_{min}$ или $\bar{x})$ и две точки по обе стороны от нее. Обозначить эти точки в обычном порядке и перейти к шагу 6.
- \circ если хотя бы одно из условий не выполняется и $\bar{x} \notin [x_1; x_3]$, то положить точку $x_1 = \bar{x}$ и перейти к шагу 2.

Поиск методом квадратичной аппроксимации (3 итерации):

Первая итерация:

- 1. $\prod_{YCTb} x_1 = a = 1.5$, $\Delta x = 1$, $\varepsilon_1 = \varepsilon_2 = \varepsilon = 0.02$.
- 2. Значение второй точки $x_2 = 1.5 + 1 = 2.5$.
- 3. Значения функции в точках x_1 и x_2 : $f(x_1) = -5.766802$, $f(x_2) = -5.000940$.
- 4. $f(x_1) \le f(x_2)$, тогда $x_3 = 1.5 1$.
- 5. Вычислим $f(x_3) = -2.804907$.
- 6. Найдем $F_{min} = f_1 = -5.766802$, $x_{min} = x_1$.
- 7. Вычислим $\bar{x} = \frac{1}{2} \frac{(2.5^2 0.5^2) f_1 + (0.5^2 1.5^2) f_2 + (1.5^2 2.5^2) f_3}{(2.5 0.5) f_1 + (0.5 1.5) f_2 + (1.5 2.5) f_3} = 1.794551$, тогда $f(\bar{x}) = -5.996984$.
- 8. Проверим выполнение условий окончания расчета: $\left|\frac{F_{\min} f(\bar{x})}{f(\bar{x})}\right| = 0.038383,$ $\left|\frac{x_{\min} \bar{x}}{\bar{x}}\right| = 0.164137. \ \bar{x} \not\in [x_1; x_3], \ \text{тогда} \ x_1 = \bar{x} \ \text{и переходим к шагу 2}.$

Вторая итерация:

- 1. $x_2 = 1.794551 + 1 = 2.794551$.
- 2. Значения функции в точках x_1 и x_2 : $f(x_1) = -5.996984$, $f(x_2) = -3.826176$.
- 3. $f(x_1) \le f(x_2)$, тогда $x_3 = 1.794551 1 = 0.794551$.
- 4. Вычислим $f(x_3) = -3.988283$.
- 5. Найдем $F_{min} = f_1 = -5.996984$, $x_{min} = x_1$.
- 6. Вычислим \bar{x} =1.775158, тогда $f(\bar{x})$ =-5.992428.
- 7. Проверим выполнение условий окончания расчета: $\left|\frac{F_{\min} f(\bar{x})}{f(\bar{x})}\right| = 0.00076,$ $\left|\frac{x_{\min} \bar{x}}{\bar{x}}\right| = 0.010925. \ \bar{x} \not\in [x_1; x_3], \ \text{тогда} \ x_1 = \bar{x} \ \text{и переходим к шагу } 2.$

Третья итерация:

- 1. $x_2 = 1.775158 + 1 = 2.775158$.
- 2. Значения функции в точках x_1 и x_2 : $f(x_1) = -5.992428$, $f(x_2) = -3.918868$.
- 3. $f(x_1) \le f(x_2)$, тогда $x_3 = 1.775158 1 = 0.775158$.
- 4. Вычислим $f(x_3) = -3.917959$.
- 5. Найдем $F_{min} = f_1 = -5,992428, x_{min} = x_1.$
- 6. Вычислим \bar{x} = 1.775268, тогда $f(\bar{x})$ = -5.992458.
- 7. Проверим выполнение условий окончания расчета: $\left| \frac{F_{min} f(\bar{x})}{f(\bar{x})} \right| = 0.000005,$ $\left| \frac{x_{min} \bar{x}}{\bar{x}} \right| = 0.000062.$ Завершаем поиск.

Код программы

Полный исходный код приложения:

 $\underline{https://github.com/vvlaads/vvlaads/tree/master/Optimization\%20methods/}$

<u>Lab3</u>

Результат работы программы

Метод квадратичной аппроксимации

Значение х: 1.7752680050650933

Значение функции в точке: -5.992458165289007

Количество итераций: 3

Рисунок 1: Результат работы программы

Заключение

В ходе этой работы я познакомился с методом квадратичной аппроксимации, научился применять его на практике, а также реализовал программно.