Pattern Recognition

Lecture 14. Linear Discriminant Functions: Gradient Descent and Perceptron Convergence

Dr. Shanshan ZHAO

shanshan.zhao@xjtlu.edu.cn

School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University

Academic Year 2021-2022

Table of Contents

1 Recap

2 Minimizing the Perception Criterion Function

3 week3 day4 exercise solution

Notations

 $\blacksquare w$: a scalar

w: a vector

c: denotes the class

Recap

■ Linear Discriminant function: $g(x) = w^T x + w_0$

- lacktriangle need to estimate parameters w and w_0 from data
- Augment samples x get equivalent homogeneous problem in terms of samples y:

$$g(x) = \begin{bmatrix} w_0 & \mathbf{w}^T \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \mathbf{a}^T \mathbf{y} = g(\mathbf{y})$$
 (1)

Normalize by replacing all samples from class c_2 by their negative: $y_i \Rightarrow -y_i \quad \forall y_i \in c_2$

LDF: Problem "Normalization"

Before Normalization

Seek a hyperplane that separates patterns from different categories

After Normalization

Seek a hyperplane that puts normalized patterns on the same side(should be positive)

LDF: Solution Region

■ Find weight vector a, for all samples $y_1, ..., y_n$ (n is the number of samples):

$$a^T y_i = \sum_{j=0}^d a_j y_{ij} > 0$$
 (d is the dimension of vector y)

■ In general, there are many such solutions a

Gradient Descent Procedures

Gradient Descent

For minimizing any function J(x) set k = 1 and $x^{(1)}$ to some initial guess for the weight vector

$$\begin{array}{l} \text{ while } \eta^{(k)} |\nabla J(x^{(k)})| > \epsilon \text{ do} \\ | \text{ choose learning rate } \eta^{(k)} \\ | x^{(k+1)} = x^{(k)} - \eta^{(k)} \nabla J(x^{(k)}) \\ | k = k+1 \\ \text{end} \end{array}$$

LDF: Criterion Function

■ Find weight vector \mathbf{a} , for all samples $y_1, ..., y_n$

$$a^{T}y_{i} = \sum_{j=0}^{d} a_{j}y_{ij} > 0$$
 (2)

- Need criterion function J(a) which is minimized when a is a solution vector
- Let Y_M be the set of samples misclassified by a

$$Y_M(a) = \{\text{sample } y_i \quad s.t. \quad a^T y < 0\}$$
 (3)

■ First natural choice: number of misclassified samples

$$J(a) = |Y_M(a)| \tag{4}$$

$$\uparrow J(a)$$

Figure: This is piecewise constant, gradient descent is useless

LDF: Perceptron Criterion Function

■ Better choice: *Perception* criterion function

$$J_p(a) = \sum_{y \in Y_M} (-a^T y)$$

- If **y** is misclassified, $a^T y \leq 0$, so that $J_p(a) \geq 0$
- $J_p(a)$ is ||a|| times the sum of distances of misclassified samples to decision boundary (figure a).
- $J_p(a)$ is piecewise linear and thus suitable for gradient descent (figure b).

LDF: Perceptron Batch Rule

Perception criterion function

$$J_p(a) = \sum_{y \in Y_M} (-a^T y)$$

- Gradient of $J_p(a)$ is $\nabla J_p(a) = \sum_{y \in Y_M} (-y)$
 - \blacksquare Y_M are samples misclassified by $a^{(k)}$
 - It is not possible to solve $\nabla J_p(a) = 0$ analytically because of Y_M
- Update rule for gradient descent : $x^{(k+1)} = x^k \eta^{(k)} \nabla J(x)$
- Thus gradient decent batch update rule for $J_p(a)$ is

$$a^{(k+1)} = a^{(k)} + \eta^{(k)} \sum_{y \in Y_M} y \tag{5}$$

It is called batch rule here because it is based on all misclassified samples

LDF: Perceptron Single Sample Rule

■ In comparison, gradient decent single sample rule for $J_p(a)$ is :

$$a^{(k+1)} = a^{(k)} + \eta^{(k)} y_M \tag{6}$$

- note that y_M is one sample misclassified by $a^{(k)}$
- must have a consistent way of visiting samples
- Geometric Interpretation
 - \blacksquare y_M misclassified by $a^{(k)}$

$$(a^{(k)})^T y_M \leq 0$$

- y_M is on the wrong side of decision hyperplane
- adding ηy_M to a moves new decision hyperplane in the right direction with respect to y_M

LDF: Perceptron Single Sample Rule

$$a^{(k+1)} = a^{(k)} + \eta^{(k)} y_M$$

Figure: η is too large, previously correctly classified sample γ_k is now misclassified

Figure: η is too small, y_M is still misclassified

		features			
name	good atten- dance?	tall?	sleeps in class?	chews gum?	
Jane	yes(1)	yes(1)	no(-1)	no(-1)	Α
Steve	yes(1)	yes(1)	yes(1)	yes(1)	F
Mary	no(-1)	no(-1)	no(-1)	yes(1)	F
Peter	yes(1)	no(-1)	no(-1)	yes(1)	Α

- class 1: students who get grade A
- class 2: students who get grade F

	features				grade	
name	extra	good atten- dance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes(1)	yes(1)	no(-1)	no(-1)	Α
Steve	1	yes(1)	yes(1)	yes(1)	yes(1)	F
Mary	1	no(-1)	no(-1)	no(-1)	yes(1)	F
Peter	1	yes(1)	no(-1)	no(-1)	yes(1)	Α

■ Convert samples $x_1, ..., x_n$ to augmented samples $y_1, ..., y_n$ by adding a new dimension of value 1.

	features				grade	
name	extra	good atten- dance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes(1)	yes(1)	no(-1)	no(-1)	Α
Steve	-1	yes(-1)	yes(-1)	yes(-1)	yes(-1)	F
Mary	-1	no(1)	no(1)	no(1)	yes(-1)	F
Peter	1	yes(1)	no(-1)	no(-1)	yes(1)	Α

- Replace all samples from class c_2 by their negative $y_i \Rightarrow -y_i$ $y_i \in c_2$
- Seek weight vector \boldsymbol{a} s.t. $\boldsymbol{a}^T y_i > 0 \quad \forall y_i$

	features				grade	
name	extra	good atten- dance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes(1)	yes(1)	no(-1)	no(-1)	Α
Steve	-1	yes(-1)	yes(-1)	yes(-1)	yes(-1)	F
Mary	-1	no(1)	no(1)	no(1)	yes(-1)	F
Peter	1	yes(1)	no(-1)	no(-1)	yes(1)	Α

■ Sample is misclassified if $a^T y_i = \sum_{j=0}^4 a_j y_{ij} < 0$

(i is the numbering of the sample, j is the numbering of the dimension)

- Gradient descent single sample rule : $a^{(k+1)} = a^{(k)} + \eta^{(k)} \sum_{y \in Y_M} y$
- Here we set a fixed learning rate to $\eta^{(k)} = 1$

$$a^{(k+1)} = a^{(k)} + y_M$$

- set initial weights $a^{(1)} = [0.25, 0.25, 0.25, 0.25, 0.25]$
- visit all samples sequentially, modifying the weights for after finding a misclassified example

name	$a^{T}y$	misclassified?
Jane	0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0	no
Steve	0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0	yes

new weights

$$a^{(2)} = a^{(1)} + y_M = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} +$$

$$+ \begin{bmatrix} -1 & -1 & -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -0.75 & -0.75 & -0.75 & -0.75 \end{bmatrix} - 0.75$$

$$a^{(2)} = \begin{bmatrix} -0.75 & -0.75 & -0.75 & -0.75 \end{bmatrix}$$

name	$a^{T}y$	misclassified?
Mary	-0.75*(-1)-0.75*1-0.75*1-0.75*(-1) <0	yes

new weights

$$a^{(3)} = a^{(2)} + y_M = \begin{bmatrix} -0.75 & -0.75 & -0.75 & -0.75 \end{bmatrix} + \begin{bmatrix} -1 & 1 & 1 & 1 & -1 \end{bmatrix}$$

= $\begin{bmatrix} -1.75 & 0.25 & 0.25 & 0.25 & -1.75 \end{bmatrix}$

$$a^{(3)} = \begin{bmatrix} -1.75 & 0.25 & 0.25 & 0.25 & -1.75 \end{bmatrix}$$

name	a' y	misclassified?
Peter	-1.75*1+0.25*1+0.25*(-1)+0.25*(-1)-0.75*1 <0	yes

new weights

$$a^{(4)} = a^{(3)} + y_M = \begin{bmatrix} -1.75 & 0.25 & 0.25 & 0.25 & -1.75 \end{bmatrix} +$$

$$+ \begin{bmatrix} 1 & 1 & -1 & -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -0.75 & 1.25 & -0.75 & -0.75 \end{bmatrix} - 0.75$$

$$a^{(4)} = \begin{bmatrix} -0.75 & 1.25 & -0.75 & -0.75 & -0.75 \end{bmatrix}$$

name	a' y	wrong?
Jane	-0.75*1+1.25*1-0.75*1-0.75*(-1)-0.75*(-1) >0	no
Steve	-0.75*(-1)+1.25*(-1)-0.75*(-1)-0.75*(-1)-0.75*(-1) >0	no
Mary	-0.75*(-1)+1.25*1-0.75*1-0.75*1-0.75*(-1) >0	no
Peter	-0.75*1+1.25*1-0.75*(-1)-0.75*(-1)-0.75*1 >0	no

The discriminant function is

$$g(y) = -0.75 * y^{(0)} + 1.25 * y^{(1)} - 0.75 * y^{(2)} - 0.75 * y^{(3)} - 0.75 * y^{(4)}$$

Converting back to the original features x:

$$g(x) = -0.75 + 1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)}$$

Converting back to the original features x:

$$1.25*x^{(1)} - 0.75*x^{(2)} - 0.75*x^{(3)} - 0.75*x^{(4)} > 0.75 \Rightarrow \textit{gradeA}$$

$$1.25*x^{(1)} - 0.75*x^{(2)} - 0.75*x^{(3)} - 0.75*x^{(4)} < 0.75 \Rightarrow \textit{gradeF}$$

- This is just one possible solution vector
- If we started with weight $a^{(1)} = [0, 0.5, 0.5, 0, 0]$, the solution would be different: [-1, 1.5, -0.5, -1, -1]

3.3 Print the shape of the dataset

```
[12]: # 7000

[13]: print(hsi_image.shape)
(145, 145, 200)
```

3.4 Plot the feature of one pixel

Is there any difference between pixels that belong to different class

```
[14]: # get any position
feature = hsi_image[0,0,:]
plt.plot(feature)
```

[14]: [<matplotlib.lines.Line2D at 0x7f72314f6910>]

3.6 Display the groundtruth

- [18]: # print how many distinctive values in groundtruth
 print(np.unique(y))
 - [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
- [19]: y.shape
- [19]: (145, 145)
- •[20]: plt.imshow(y, cmap='Set3') # you can change colormap : cmap
- [20]: <matplotlib.image.AxesImage at 0x7f72303ba3d0>

Task 4: Apply KDE codes to this dataset

```
[21]: sns.set style('darkgrid')
[104]: # since the label could be 0 1
                                                             9 10 11 12 13 14 15 16
       # you can choose any from them
       class index = 6
[105]: # you can choose two features/channels/bands
       c1 feature1 = hsi image[:,:,31][np.where(v==class index)]
       c1 feature2 = hsi image[:,:,170][np.where(y==class index)]
[106]: sns.kdeplot(c1 feature1, c1 feature2)
       sns.scatterplot(c1 feature1, c1 feature2, color='black', alpha=0.7, s=20)
       plt.tight lavout():
       /home/shanshan/anaconda3/envs/DTS201TC/lib/python3.9/site-packages/seaborn/
       he only valid positional argument will be 'data', and passing other argument
         warnings.warn(
       /home/shanshan/anaconda3/envs/DTS201TC/lib/python3.9/site-packages/seaborn/
       2, the only valid positional argument will be 'data', and passing other argument
         warnings.warn(
        1250
        1200
        1150
```

1100

Reference I

Lecture contents of week4 day1 and day2 borrow heavily from Prof. Olga Veksler's slide

https://www.csd.uwo.ca/~oveksler/Courses/CS434a_541a/Lecture9.pdf

Thank You!

Q&A