Abgabe: 15.10.2021 Codierungstheorie

Übungsblatt 1

Aufgabe 1. Berechnen Sie die Fouriertransformierte $\widehat{x}(\omega)$ des Signals $x : \mathbb{R} \longrightarrow \mathbb{R}$, gegeben durch

$$x(t) = \begin{cases} 2+t & \text{für } -2 \le t < -1 \\ -t & \text{für } -1 \le t < 0 \\ t & \text{für } 0 \le t < 1 \\ 2-t & \text{für } 1 \le t < 2 \\ 0 & \text{sonst} \end{cases}$$

also des Signals

Aufgabe 2. Wir betrachten folgende Modulation $x : \mathbb{R} \longrightarrow \mathbb{R}$ der Schwingung mit Kreisfrequenz ω_0 durch eine Rechtecksfunktion auf [-T, T] für ein T > 0, gegeben durch

$$x(t) = \begin{cases} 2 \cdot \cos(\omega_0 \cdot t) + \frac{1}{2} \cdot \sin(\omega_0 \cdot t) & \text{für } t \in [-T, T] \\ 0 & \text{sonst} \end{cases}$$

Berechnen Sie die Fouriertransformierte $\widehat{x}(\omega)$ von f(t).

Hinweis: Zerlegen Sie x in ein gerades und ein ungerades Signal.

Aufgabe 3. Berechnen Sie die Fourier-Reihe der 2π -periodischen Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ die auf dem Intervall $[-\pi, \pi]$ gegeben ist durch

$$f(t) = \pi^2 - t^2$$

also der 2π -periodischen Funktion

Aufgabe 4. Berechnen Sie die Fourier-Reihe der Funktion $f : \mathbb{R} \longrightarrow \mathbb{R}$ der Periode 4, die auf dem Intervall [0, 4] gegeben ist durch

$$f(t) = \begin{cases} t & \text{für } 0 \le t \le 1\\ 1 & \text{für } 1 < t \le 3\\ 4 - t & \text{für } 3 < t \le 4 \end{cases}$$

also der Funktion der Periode 4, die gegeben ist durch

