

Model Development Phase Template

Date	21 July 2024
Team ID	739717
Project Title	Unlocking Silent Signals :Decoding Body Language with Mediapipe
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

Paste the screenshot of the model traning code

Model Validation and Evaluation Report (5 marks):

Model	Summary	Training and Validation Performance Metrics
-------	---------	--

Model 1	Gradient Boosting Classifier model typically include accuracy, precision, recall, F1 score to evaluate its predictive performance and generalization capability.	from sklearn.ensemble import GradientBoostingClassifier atrain gbc = GradientBoostingClassifier(learning_rate=0.02,
Model 2	AdaBoost classifier model commonly include accuracy, precision, recall, F1 score which help assess the model's prediction accuracy and generalizability	from sklearm.ensemble import AdaBoostClassifier #train ada = AdaBoostClassifier() ada.fit(X_train,y_train) #spredict #y_predicted_ab = ada.predict(X_test) #print("Training Accuracy:", ada.score(X_train, y_train)) #print("Training Accuracy:", ada.score(X_test, y_test)) #cr = classification_report(y_test, y_predicted_ab) #print((r) #false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test,y_predicted_ab) #roc_auc = auc(false_positive_rate, true_positive_rate) #print("roc_auc",roc_auc) #print("roc_auc",roc_auc) #print("Roc_curves = ",roc_auc) #print("Roc_curves = ",roc_auc) #print("Roc_curves = ",roc_auc) #precision, recall, thresholds = precision_recall_curve(y_test, y_predicted_ab) #precision_Recall_abs = auc(recall_n, precision) #print("Precision-Recall Curves = ",Precision_Recall_abs) ##precision_Recall_abs = auc(recall_n, precision) ##print("Precision-Recall Curves = ",Precision_Recall_abs) ##precision_Recall_abs = auc(recall_n, precision_Recall_abs) ##precision_Recall_abs = auc(recall_n, precision_abs_abs_abs_abs_abs_abs_abs_abs_abs_abs

