Synchronous Sequential Logic I

CS207 Lecture 9

James YU

Apr. 15, 2020

- Describes what a given circuit will do under certain operating conditions.
 - Obtaining a table or a diagram for the time sequence of inputs, outputs, and internal states.
 - Or obtain the Boolean expressions that describes the behavior of the circuit.
- A diagram is a clock sequential circuit, if it includes flip-flops and clock inputs.

• The behavior can be described with state equations, or transition equations.

- Two D flip-flops:
 - A(t+1) = A(t)x(t) + B(t)x(t),
 - B(t+1) = A'(t)x(t).
- The output:
 - y(t) = [A(t) + B(t)]x(t)'.
 - Since all signals are labeled by t, we can also write y = (A + B)x'.

• Time-sequence of inputs, outputs, FFs can be enumerated in a *state table*.

Pre	sent	Input	Next		Output
\overline{A}	B	x	A	B	\overline{y}
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

- State table has 2^{m+n} rows for m flip-flops and n inputs, which is very long.
- Or with three sections, with input in the next state and output column.

Present			Ne	ext		Output		
		x = 0		x = 1		x = 0	x = 1	
\overline{A}	B	A	B	\overline{A}	B	y	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

- State diagram:
 - Each state as a circle.
 - Transitions between states are directed lines connecting the circles.

Present			Ne	ext		Output		
		x = 0		x = 1		x = 0	x = 1	
\overline{A}	B	A	B	A	B	y	\overline{y}	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

- $\bullet \ \, \text{Circuit diagram} \rightarrow \text{Equations} \rightarrow \text{State table} \rightarrow \text{State diagram}. \\$
 - State table is easier to derived from circuit diagram and state equations.
 - State diagram gives a pictorial view of state transitions.
- The shown diagram is a 1-detector.

- The logic diagram of a sequential circuit consists of flip-flops and gates.
- The interconnections among the gates form a combinational circuit and may be specified algebraically with Boolean expressions.
- The part of the combinational circuit that generates external outputs is described algebraically by a set of Boolean functions called *output equations*.
- The part of the circuit that generates the inputs to flip-flops is described algebraically by a set of Boolean functions called *flip-flop input equations* (or, sometimes, excitation equations).

- We will adopt the convention of using the flip-flop input symbol to denote the input equation variable and a subscript to designate the name of the flip-flop output.
 - For example, the following input equation specifies an OR gate with inputs x and y connected to the D input of a flip-flop whose output is labeled with the symbol Q:

$$D_Q = x + y$$

- The sequential circuit consists of two D flip-flops A and B, an input x, and an output y.
- The logic diagram of the circuit can be expressed algebraically with two flip-flop input equations and an output equation:

$$D_A = Ax + Bx,$$

$$D_B = A'x,$$

$$y = (A + B)x'.$$

Analysis with JK/T flip-flops

- JK flip-flops and T flip-flops are fifferent from D flip-flops whose state equation is the same as the input equation.
 - Refer to the corresponding characteristic equation.
- Next-state values can be derived by
 - Determining input equations.
 - Listing binary values for each input equation.
 - Using the corresponding flip-flop characteristic table to determine next state values.

• Determine input equations:

$$J_A = B, K_A = Bx',$$

 $J_B = x' K_B = A \oplus x.$

- List binary values for each input equation.
- Use the corresponding flip-flop characteristic table to determine next state values.
 - Q(t+1) = JQ' + K'Q.
- $A(t+1) = J_A A' + K'_A A = A'B + A(Bx')'.$
- $B(t+1) = J_B B' + K'_B B = x'B + B(A \oplus x)'.$

- $A(t+1) = J_A A' + K'_A A = A'B + A(Bx')'.$
- $B(t+1) = J_B B' + K'_B B = x'B + B(A \oplus x)'.$

Present		Input	Next		FF Inputs			
\overline{A}	B	x	A	B	J_A	K_A	J_B	K_B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Present		Input	Next		FF Inputs			
\overline{A}	B	x	A	B	J_A	K_A	J_B	K_B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Another example

Determine input equations:

$$T_A = Bx, T_B = x$$
$$y = AB.$$

- List binary values for each input equation.
- Use the corresponding flip-flop characteristic table to determine next state values.

•
$$Q(t+1) = T \oplus Q = T'Q + TQ'$$
.

- A(t+1) = (Bx)'A + (Bx)A' = AB' + Ax' + A'Bx.
- $B(t+1) = x \oplus B$.

Another example

Present		Input	Next		Output
A	B	x	\overline{A}	B	\overline{y}
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

Finite state machine

- The most general model of a sequential circuit has inputs, outputs, and internal states.
- It is customary to distinguish between two models of sequential circuits:
 - Mealy model.

Moore model.

