#3:
$$G = GL_2(\mathbf{F})$$
. $\chi = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

GCG by conj. Stab
$$g(x) = \{g \in G: gx = xg\}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$a = 2b$$
 $c = 2d$
 $b = c = 0$. a, d free.

$$| S_0 | S_0 | S_0 | = | \{ \{ \{ \} \} \} | = | \{ \{ \} \} \} | = | \{ \{ \} \} | = | \{ \} \} | = | \{ \} | = |$$

$$|0|$$
 bit $|\infty| = \frac{|G|}{|Stab_{G}(x)|}$

In this context,
$$Stab_G(x) = Z_G(x)$$
.

#7 G: abelian group
$$> H = \{g \in G : 2g = 0\}$$

$$\sum_{g \in G} g = \sum_{h \in H} h = \chi$$

$$\sum_{g \text{ s.t. } 2g=0} 1 + \sum_{g \text{ s.t. } g \neq -g} (g + (-j)) = \sum_{k \in H} k + 0.$$

Part 2
$$\times = 0$$
 unless $H = \{0, \times\}$.
 $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$

Last year's MT1: $G \ge H$, (G:H) = n, and H contains no nontrivial subgroups which are normal in G.

(T.S.) G is iso. to a subgroup of S_n .

GC G/H by left multiplication,
and these actions are all permetations.

So
$$G \longrightarrow S_n$$
.

Ker $(f) = \{e\}$

NOW We prove that f is injective

Suppose $g \in \text{Ker}(f)$. then $gg_jH = g_jH \quad \forall j = 1,...,n$.

So $g \in H$. so $\text{Ker}(f) \subseteq H$, but $\text{Ker}(f) \supseteq G_j$.

So $\text{Ker}(f) = \{e\}$.

$$\ker(f) \subseteq \bigcap_{j=1}^{n} J_{j} + J_{j}^{-1}$$

Things to Remember:

$$(2) \quad \varphi : G \xrightarrow{g_0 \text{ how.}} G_2 \qquad \begin{cases} \text{ Ker}(\Psi) \triangle G_1 \\ \text{ Ker}(\Psi) = \{\ell\} \iff \Psi \text{ is } 1-1 \\ G_1/\text{ Ker}(\Psi) \cong \text{ Im}(\Psi) \neq G_2 \end{cases}$$

3 GCX.
$$|X| = \sum_{\text{Orbits}} |O|$$
 in fact, those summers are equal.
$$= \frac{|G|}{|\text{Stab}_{G}(x_{0})|}$$

of orbits =
$$\frac{1}{|G|} \sum_{g \in G} |x^g|$$
 = Burnside's Lemma

$$|G| = p^r$$
, $G \stackrel{\text{finte set}}{\times} |X| = |X^G| \pmod{p}$.

$$\bigcirc S_{y|_{P}(G)} \neq \emptyset$$

(3)
$$\# Syl_p(G) = | (mod p), and divides |G|$$

for (4.2):
We proved if
$$|G| = n = p^r m$$
, $r > 1$, $(m, p) = 1$,
 $H \neq G$, $P \neq G$, $|H| = p^k \leq p^r$, $P \in Syl_p(G)$
Then $\exists g \in G$ s.t. $H \subseteq g P_g^{-1}$

$$\mathbb{Z}(G) \times \mathbb{N}$$
. $\mathbb{Z}_{2} \times \mathbb{D}_{2\cdot 3} = \mathbb{G}$.

$$\int_{6} \overline{Z}(G) = \overline{Z}_{2} \times \{e\}, \quad \text{and} \quad N = \overline{D}_{2\cdot 3} \quad \text{works}.$$