信息论基础

李 莹 liying2009@ecust.edu.cn

第六章:有噪信道编码

- 一、信道编码的相关概念
- 二、有噪信道编码定理
- 三、纠错编码

第六章: 有噪信道编码

信道编码的相关概念

1. 信道编码概述

- 信道编码的目标:提高通信的可靠性。
- 信道编码,就是按照一定的规则给信源编码后的码符号序列增加一些冗余信息,使其变成具有一定数学规律的码符号序列。
- **信道译码**,就是按与信道编码器相同的数学规律去 掉接收到的码符号序列中的冗余符号。
- 通常来说,增加的冗余符号越多,检错和纠错能力就越强。但是,增加的冗余符号越多,传输效率就越低。

第六章: 有噪信道编码

信道编码的相关概念

2. 译码规则对错误概率的影响

例1:二进制对称信道

$$\mathbf{P} = \begin{bmatrix} \overline{p} & p \\ p & \overline{p} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$$

$$\begin{split} \mathbf{P}_{XY} = \begin{bmatrix} \overline{\omega p} & \omega p \\ \overline{\omega p} & \overline{\omega p} \end{bmatrix} & P_E = P(Y=0)P(X=1 \mid Y=0) + P(Y=1)P(X=0 \mid Y=1) \\ & = \left(\overline{\omega p} + \overline{\omega p} \right) \cdot \frac{\overline{\omega p}}{\overline{\omega p} + \overline{\omega p}} + \left(\omega p + \overline{\omega p} \right) \cdot \frac{\omega p}{\omega p + \overline{\omega p}} \\ & = p \end{split}$$

$$\begin{cases} P(Y=0) = \omega \overline{p} + \overline{\omega} p \\ P(Y=1) = \omega p + \overline{\omega} p \end{cases} \begin{cases} P(X=1 \mid Y=0) = \frac{P(X=1, Y=0)}{P(Y=0)} = \frac{\overline{\omega} p}{\omega \overline{p} + \overline{\omega} p} \\ P(X=0 \mid Y=1) = \frac{\omega p}{\omega p} \end{cases}$$

第六章: 有噪信道编码

信道编码的相关概念

$$\mathbf{P} = \begin{bmatrix} \overline{p} & p \\ p & \overline{p} \end{bmatrix} = \begin{bmatrix} 0.1 & 0.9 \\ 0.9 & 0.1 \end{bmatrix}$$

译码规则1:

信道译码器收到符号"0"——>译为"0" 信道译码器收到符号"1"——>译为"1"

正确译码概率0.1, 错误译码概率 $P_E = 0.9$

第六章: 有噪信道编码 信道编码 信道编码的相关概念 译码规则2: 信道译码器收到符号"0"——>译为"1" 信道译码器收到符号"1"——>译为"0" $P_E = P(Y=0)P(X=0 \mid Y=0) + P(Y=1)P(X=1 \mid Y=1)$ $= (\omega \overline{p} + \overline{\omega} \overline{p}) \cdot \frac{\overline{\omega} \overline{p}}{\overline{\omega} \overline{p} + \overline{\omega} \overline{p}} + (\omega \overline{p} + \overline{\omega} \overline{p}) \cdot \frac{\overline{\omega} \overline{p}}{\overline{\omega} \overline{p} + \overline{\omega} \overline{p}}$ $= \overline{p}$ 正确译码概率0.9,错误译码概率 $P_E = 0.1$

信道编码的相关概念

第六章: 有噪信道编码

信道编码的相关概念

4. 错误译码概率

● 设译码规则为 $F(y_j) = x_i$ 当输入符号是 x_i 时, 译码正确 当输入符号为除 x_i 以 Y_i 外的(r-1)种符号时,

正确译码的概率:

$$p \lceil F(y_j) \mid y_j \rceil = p(x_i \mid y_j)$$

错误译码的概率:

$$p(e | y_j) = 1 - p(x_i | y_j) = 1 - p[F(y_j) | y_j]$$

第六章: 有噪信道编码

信道编码的相关概念

● 平均错误译码概率:

$$P_{E} = \sum_{j=1}^{s} p(y_{j}) p(e \mid y_{j}) = \sum_{j=1}^{s} p(y_{j}) \{1 - p[F(y_{j}) \mid y_{j}]\}$$

● 平均正确译码概率:

$$\overline{P}_E = \sum_{i=1}^s p(y_i) p[F(y_i) | y_j]$$

第六章: 有噪信道编码

信道编码的相关概念

5. 两种重要的译码规则

为提高规则通信的可靠性,所采用的译码应当使平均错误译码概率最小。----最大后验概率译码规则

最常用的译码规则,包括:

- ▶ 最大后验概率译码规则
- ▶ 极大似然译码规则

第六章: 有噪信道编码

信道编码的相关概念

(1) 最大后验概率译码规则

已知:
$$P_E = \sum_{j=1}^{s} p(y_j) \{1 - p[F(y_j) | y_j]\}$$

 $p(y_j) \ge 0$

- ∴ 当求和项中的每一项都达到最小值时, P_E 就最小。
 - $\Rightarrow 1-p[F(y_j)|y_j]$ 要最小。
 - $\implies p[F(y_i)|y_i]$ 要最大。

第六章: 有噪信道编码

信道编码的相关概念

定义6.2 $令 F(y_i) = x^*, x^* \in X$, 而 x^* 应满足条件

$$p(x^* | y_i) \ge p(x_i | y_i)$$
 $i = 1, 2, ..., r$

称满足上述条件的译码函数对应的译码规则为**最大后验** 概率译码规则。

$$P_E \rightarrow P_{E \min}$$

第六章: 有噪信道编码

信道编码的相关概念

$$\mathbf{Q} = \begin{bmatrix} y_1 & y_2 & y_s \\ x_1 & p(x_1 \mid y_1) & p(x_1 \mid y_2) & \cdots & p(x_1 \mid y_s) \\ p(x_2 \mid y_1) & p(x_2 \mid y_2) & \cdots & p(x_2 \mid y_s) \\ \vdots & \vdots & \ddots & \vdots \\ x_r & p(x_r \mid y_1) & p(x_r \mid y_2) & \cdots & p(x_r \mid y_s) \end{bmatrix}$$

$$P_{E \min} = \sum_{j=1}^{s} p(y_j) [1 - p(x^* | y_j)] = \sum_{j=1}^{s} p(y_j) \sum_{i \neq s} p(x_i | y_j)$$

信道编码的相关概念

$$\mathbf{P}_{XY} = \begin{bmatrix} y_1 & y_2 & y_s \\ x_1 \\ x_2 \\ \vdots \\ x_r \end{bmatrix} \begin{bmatrix} p(x_1y_1) & p(x_1y_2) & \cdots & p(x_1y_s) \\ p(x_2y_4) & p(x_2y_2) & \cdots & p(x_2y_s) \\ \vdots & & \ddots & \vdots \\ p(x_ry_1) & p(x_ry_2) & \cdots & p(x_ry_s) \end{bmatrix}$$

$$\begin{split} P_{E \min} &= \sum_{j=1}^{s} p(y_{j})[1 - p(x^{*} \mid y_{j})] = \sum_{j=1}^{s} p(y_{j}) \sum_{i \neq *} p(x_{i} \mid y_{j}) \\ &= \sum_{j=1}^{s} \sum_{i \neq *} p(x_{i} y_{j}) \end{split}$$

第六章: 有噪信道编码

信道编码的相关概念

问题:

最大后验概率 $p(x_i \mid y_j)$ 通常是未知的,使用不方 便。我们能否推导出更便于使用的译码规则?

第六章: 有噪信道编码

信道编码的相关概念

(2) 极大似然译码规则

第六章: 有噪信道编码

信道编码的相关概念

● 关于极大似然译码准则:

1)当输入符号等概分布时,采用极大似然译码准则等价于最 大后验概率准则。

2)当输入符号不等概分布或先验概率未知时,采用极大似然 译码准则不一定使 P_E 最小。

第六章: 有噪信道编码 信道编码的相关概念

第六章: 有噪信道编码

信道编码的相关概念

: 设信道矩阵为 $\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.3 & 0.3 & 0.4 \\ 0.2 & 0.3 & 0.5 \end{bmatrix}$, 且输入符号等概 分布,即 $p(x_1) = p(x_2) = p(x_3) = \frac{1}{3}$,求译码规则和平均 错误译码概率。

信道编码的相关概念

 $P_{E \min} = \frac{1}{r} \sum_{i=1}^{s} \sum_{j=1}^{s} p(y_j \mid x_i)$

因为输入符号为等概分布, 所以由最大似然译码 规则可得

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.3 & 0.3 & 0.4 \\ 0.2 & 0.3 & 0.5 \end{bmatrix} \qquad \begin{array}{c} F(y_1) = x_1 \\ F(y_2) = x_2 \\ F(y_3) = x_3 \end{array} \right) \ \, \stackrel{\text{3}}{\cancel{\longrightarrow}} \ \, \stackrel$$

$$P_E = \frac{1}{3}[(0.3 + 0.2) + (0.3 + 0.3) + (0.2 + 0.4)] = 0.57$$

第六章:有噪信道编码

信道编码的相关概念

 $[0.5 \ 0.3 \ 0.2]$ 例 6.3 假设输入等概, 求以下两种 $P = \begin{vmatrix} 0.2 & 0.3 & 0.5 \end{vmatrix}$ 译码规则的平均错误译码概率。 0.3 0.3 0.4

$$\mathbf{P} = egin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad egin{bmatrix} F(y_1) = x_1 \\ F(y_2) = x_2 \\ F(y_3) = x_3 \\ \end{pmatrix}$$
 译码规则

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{array}{c} F(y_1) = x_1 \\ F(y_2) = x_3 \\ F(y_3) = x_2 \end{array} \right\} \quad \mathbf{B}$$

第六章: 有噪信道编码

信道编码的相关概念

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$P_E = \frac{1}{3}[(0.2 + 0.3) + (0.3 + 0.3) + (0.2 + 0.5)] = 0.6$$

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$P_E = \frac{1}{3}[(0.2 + 0.3) + (0.3 + 0.3) + (0.2 + 0.4)] = 0.567$$

信道编码的相关概念

$$P_{E} = \sum_{j=1}^{s} \sum_{i \neq *} p(x_{i} y_{j}) = \sum_{j=1}^{s} \sum_{i \neq *} p(x_{i}) p(y_{j} \mid x_{i})$$

如果
$$p(x_1) = p(x_2) = \frac{1}{4}, p(x_3) = \frac{1}{2}$$

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$P_{E} = \frac{1}{4}(0.3 + 0.2) + \frac{1}{4}(0.2 + 0.5) + \frac{1}{2}(0.3 + 0.3) = 0.6$$

$$P = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$P_{E} = \frac{1}{4}(0.3 + 0.2) + \frac{1}{4}(0.2 + 0.3) + \frac{1}{2}(0.3 + 0.4) = 0.6$$

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.2 & 0.3 & 0.4 \end{bmatrix}$$

$$P_E = \frac{1}{4}(0.3 + 0.2) + \frac{1}{4}(0.2 + 0.3)$$

$$+\frac{1}{2}(0.3+0.4)=0.6$$

第六章: 有噪信道编码

信道编码的相关概念

如果
$$p(x_1) = p(x_2) = \frac{1}{4}, p(x_3) = \frac{1}{2}$$

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \mathbf{P}_{XY} = \begin{bmatrix} 0.125 & 0.075 & 0.05 \\ 0.05 & 0.075 & 0.125 \\ 0.15 & 0.15 & 0.2 \end{bmatrix}$$

$$P_E = \sum_{j=1}^s \sum_{i \neq *} p(x_i y_j)$$

$$= (0.125 + 0.05) + (0.075 + 0.075) + (0.05 + 0.125)$$
$$= 0.5$$

6. Fano不等式

信道编码的相关概念

第六章: 有噪信道编码

● 定理6.1

平均错误概率与信道疑义度H(X|Y)满足不等式:

$$H(X \mid Y) \le H(P_E) + P_E \log(r - 1)$$

信道编码的相关概念

7. 简单重复编码

$$\begin{array}{ccc}
0 & 1 \\
P = 0 & p \\
1 & p & p
\end{array}$$

$$\begin{array}{ccc}
F(0) = 0 \\
F(1) = 1
\end{array}$$

$$P_E = \frac{1}{r} \sum_{Y} \sum_{X = x^*} p(y_j \mid x_i) = \frac{1}{2} (p + p) = 10^{-2}$$

第六章: 有噪信道编码

信道编码的相关概念

由最大似然译码规则, 可得

$$\mathbf{P} = \begin{bmatrix} y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 \\ x_1 & \overline{p}^3 & \overline{p}^2 p & \overline{p}^2 p & \overline{p}p^2 & \overline{p}^2 p & \overline{p}p^2 & \overline{p}p^2 & \overline{p}^3 \\ x_2 & p^3 & \overline{p}p^2 & \overline{p}p^2 & \overline{p}^2 p & \overline{p}p^2 & \overline{p}^2 p & \overline{p}^2 p & \overline{p}^3 \end{bmatrix}$$

 $F(000) = F(001) = F(010) = F(100) = \mathbf{x}_1 = 000$ $F(011) = F(101) = F(110) = F(111) = \mathbf{x}_2 = 111$

$$P_{E \min} = \frac{1}{M} \sum_{j=1 \neq *}^{s} \sum_{j=\ell \neq *} p(\mathbf{y}_{j} \mid \mathbf{x}_{\ell})$$

$$= p^{3} + 3\overline{p}p^{2}$$

$$\approx 3 \times 10^{-4}$$

第六章: 有噪信道编码

信道编码的相关概念

- 在输入符号集 (M个符号) 等概的条件下, 每个符 号平均携带的最大信息量是 $\log M$ 。
- 当用n个码元符号来传输M个信源符号时,每个码符 号携带的平均信息量,即信道信息传输率为:

$$R = \frac{\log M}{n}$$
 比特/码元符号

- **不重复编码时(***n***=1)**, *R*=1(比特/码元符号)
- 重复编码时(n=3), $R = \frac{1}{2}$ (比特/码元符号)

第六章: 有噪信道编码

信道编码的相关概念

$$n=1, R=1, R=10^{-2}$$

 $n=3, R=1/3, P_E=3\times10^{-4}$
 $n=5, R=1/5, P_E=1\times10^{-5}$
 $n=7, R=1/7, P_E=4\times10^{-7}$
 $n=9, R=1/9, P_E=1\times10^{-8}$
 $n=11, R=1/11, P_E=5\times10^{-10}$

增加重复次数n,可使 P_{ε} 减小很多,但信息传输率 R也减少很多。

第六章: 有噪信道编码

信道编码的相关概念

● 如果在扩展信源的r²个码符号序列中任意选择M个序 列作为信道的输入,以代表M个信源消息。

$$\mathbf{P} = \begin{matrix} 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\ \hline 000 \begin{bmatrix} \widehat{p^3} & \overline{p^2}p & \widehat{p^2}p & \overline{p}p^2 & \widehat{p^2}p & \overline{p}p^2 & \widehat{p}p^2 & \widehat{p}p^2 \\ \hline p^2p & \widehat{p^3} & \overline{p}p^2 & \widehat{p^2}p & \overline{p}p^2 & \widehat{p^2}p & p^3 & \overline{p}p^2 \end{matrix} \right]$$

$$\begin{cases} F(000) = F(010) = F(100) = F(110) = 000 = x_1 \\ F(001) = F(011) = F(101) = F(111) = 001 = x_2 \end{cases}$$

$$P_E = \frac{1}{M} \sum_{y} \sum_{X \neq y^*} p(y_j \mid x_i) \approx 1.01 \times 10^{-2}$$

信道编码的相关概念

- 因此若选择"000"和"001"代表消息"0"和"1",则 $P_E(000,001) \gg P_E(000,111)$
- 有没有一种很简便的方法,帮我们选择平均错误概 率最小的M个序列?

第六章: 有噪信道编码

信道编码的相关概念

- 8. 汉明距离
 - 1) 汉明距离
 - 2) 码的最小距离
 - 3) 汉明距离与极大似然译码准则

第六章: 有噪信道编码

信道编码的相关概念

1) 汉明距离

定义6.4 设 $\mathbf{x}_i = x_{i_1} x_{i_2} \cdots x_{i_n}$ 和 $\mathbf{y}_j = y_{j_1} y_{j_2} \cdots y_{j_n}$ 表示两个长 度为n的码符号序列, 定义

$$D(\mathbf{x}_i, \mathbf{y}_j) = \sum_{k=1}^n x_{i_k} \oplus y_{j_k}$$

称 $D(\mathbf{x}_i, \mathbf{y}_j)$ 为码字 \mathbf{x}_i 和 \mathbf{y}_i 之间的汉明距离。

第六章: 有噪信道编码

信道编码的相关概念

例4: 求下面两个码字之间的汉明距离。

$$\mathbf{x}_i = 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$$
 $\mathbf{y}_i = 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0$

解:
$$D(\mathbf{x}_i, \mathbf{y}_i) = 7$$

第六章: 有噪信道编码

信道编码的相关概念

第六章: 有噪信道编码 信道编码的相关概念

2) 码的最小距离

定义6.5 在二元码C中,任意两个码字之间的汉明距离 的最小值,被称为码C的最小距离:

$$D_{\min} = \min \left[D(w_i, w_i) \right]$$

例5: 设有n=3的两组码, 分别求它们的最小汉明距离。

 $\begin{array}{ccc}
C_1 & C_2 \\
000 & 000
\end{array}$ 011 001 101 010 110 100

码 C_1 的最小汉明距离为 $D_{min}=2$ 码 C_2 的最小汉明距离为 $D_{\min} = 1$

章: 有噪信道编码							
码1	码2	码3	码4	码5	码6		
000	000	000	000	00000	000		
111	001	011	001	01101	001		
		101	100	10111	010		
		110	010	11010	011		
					100		
					101		
					110		
					111		

	码1	码2	码3	码4	码5
码字	000 111	000 011 101 110	000 001 100 010	00000 01101 10111 11010	000 001 010 011 100 101 110 111
消息数 <i>M</i>	2	4	4	4	8
信 息 传 输率R	1/3	2/3	2/3	2/5	1
码 的 最 小 距离	3	2	1	3	1
平 均 错 误 概率 (最大似 然译码)	3×10 ⁻⁴	2×10 ⁻²	2.28×10 ⁻²	7.8×10^{-4}	3×10 ⁻²

信道编码的相关概念

结论:

码的最小距离越大,平均译码错误概率越小。

第六章: 有噪信道编码

信道编码的相关概念

3) 汉明距离与极大似然译码准则

设 $\mathbf{x}_i = x_{i_1}x_{i_2}\cdots x_{i_n}$ 和 $\mathbf{y}_j = y_{j_1}y_{j_2}\cdots y_{j_n}$ 表示两个长度为n的 码符号序列, \mathbf{x}_i 为信道的输入, \mathbf{y}_j 为信道的输出。 \mathbf{x}_i 和 \mathbf{y}_j 的汉明距离为 \mathbf{D} 。

对于离散平稳无记忆二元对称信道,有

$$p(\mathbf{y}_{j} \mid \mathbf{x}_{i}) = p(y_{j_{1}} y_{j_{2}} \dots y_{j_{n}} \mid x_{i_{1}} x_{i_{2}} \dots x_{i_{n}}) = \prod_{i=1}^{n} p(y_{j_{k}} \mid x_{i_{k}}) = p^{D} \overline{p}^{n-D}$$

通常情况下, p < 0.5, p > 0.5, D越小, $p(\mathbf{y}_j | \mathbf{x}_i)$ 就越大。

第六章: 有噪信道编码

信道编码的相关概念

根据极大似然译码准则,

$$p(\mathbf{y}_{i} \mid \mathbf{x}^{*}) \ge p(\mathbf{y}_{i} \mid \mathbf{x}_{i}) \quad \forall i$$

极大似然译码准则就等价于,当接收到一个长为n的码符号序列 y_j 时,在输入码字集中寻找一个 x^* ,使

$$F(\mathbf{y}_j) = \mathbf{x}^*$$
 $D(\mathbf{x}^*, \mathbf{y}_j) \le D(\mathbf{x}_i, \mathbf{y}_j)$

最小距离译码准则