

Python for Data Analysis
Introduction to Modeling in Python
(Week 10)

Atefeh Khazaei

atefeh.khazaei@port.ac.uk

What we will learn this week?

- ☐ Supervised vs. Unsupervised Learning
- ☐ Classification vs. Regression
- ☐ Introduction to Modelling and Evaluation

CRISP-DM Introduction to Modeling **Business** Data Understanding **Understanding** We are here. **Data Preparation Deployment** Modeling **Data Evaluation** UNIVERSITY OF PORTSMOUTH Python for Data Analysis - Atefeh Khazaei

Supervised vs. Unsupervised Learning

Classification vs. Regression

 A marketing manager would like to know whether a given costumer will buy a product or not

• A marketing manager would like to predict how much a given costumer will spend during a sale

Our Plan

Today and Next Week:
☐ An introduction to Supervised Learning (Linear Regression Alg.) and Evaluation
Next Teaching Block:
Supervised Modeling Algorithms in Python
□ KNN
Decision Tree
☐ Random Forest
☐ Linear Regression
☐ Clustering in Python
■ Model Evaluation in Python

Introduction to Linear Regression

- ☐ In statistics, linear regression is a linear approach for modeling the relationship between a scalar response and one or more explanatory variables.
- ☐ The model is a formula like this:

$$\square$$
 $Z = w_0 + w_1 X_1 + w_2 X_2 + \dots + w_n X_n$

- \square In other words, the goal is finding the best values for Ws.
- ☐ Xs are explanatory variables (features / attributes)

Introduction to Evaluation

☐ The Goal: Assess how well our model works.

Introduction to Evaluation (Cont.)

Introduction to Evaluation (Cont.) Accuracy

Predictive Accuracy =
$$\frac{\text{Correct Predictions}}{\text{Number of Test Instances}} = \frac{3}{4} = 0.75$$

Introduction to Evaluation (Cont.) Mean Absolute Error (MAE)

$$MAE = \frac{\sum | Predicted - Actual |}{Number of Test Instances} = \frac{2000 + 3000 + 2000 + 5000}{4} = 3000$$

A Simple Modeling Example

■ Week10_A Simple Model.ipynb

References & More Resources

- References:
 - McKinney, Wes. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython.
 O'Reilly Media, Inc., 2012.

O'REILLY*

Wes McKinney

- More Resources:
 - Machine Learning with Python: Foundations:

https://www.linkedin.com/learning/machine-learning-with-python-foundations

■ Python Data Analysis on Linkedin Learning:

https://www.linkedin.com/learning/python-data-analysis-2

- ☐ To use Linkedin Learning, you can log in with your university account:
 - https://myport.port.ac.uk/study-skills/linkedin-learning

Practical Session

- □ Please download Week10_A-Simple-Model.ipynb file, and run it to learn new points.
- ☐ Please read the practical sheet (Week10_Practicals.pdf) and do the exercise.

