As derived earlier, the optimal Discriminator is given by:

$$D(x) = \frac{P_{data}(x)}{P_{data}(x) + P_{g}(x)}$$

Given the optimal discriminator, the Generator will try to minimize the loss function $V(D_q^*,G)$.

So, once the Discriminator has become good at classifying real and fake images, we would want our Generator to be able to fool this Discriminator (mathematically).

$$G^* = \operatorname{argmin} V(D_G^*, G)$$

Using the loss function again:

$$G^* = \underset{G}{\operatorname{argmin}} \left\{ \int_{-\infty}^{+\infty} p(x) \cdot \log(D(x)) dx + \int_{-\infty}^{+\infty} p(x) \cdot \log(1 - D(x)) dx \right\}$$

$$G^* = \operatorname{argmin} \left\{ \int_{-\infty}^{+\infty} P_{data}(x) \log \left[\frac{P_{data}(x)}{P_{data}(x) + P_g(x)} \right] + p_g(x) \log \left[1 - \frac{P_{data}(x)}{P_{data}(x) + P_g(x)} \right] dx \right\}$$

$$G^* = \underset{G_1}{\operatorname{argmin}} \left\{ \int_{-\infty}^{+\infty} P_{data}(x) \log \left[\frac{P_{data}(x)}{P_{data}(x) + P_g(x)} \right] + p_g(x) \log \left[\frac{P_g(x)}{P_{data}(x) + P_g(x)} \right] dx \right\}$$

Add and subtract (log 2) $p_{data}(x)$ and (log 2) $p_g(x)$ from the the integral.

$$G_{t}^{*} = \underset{G_{t}}{\operatorname{argmin}} \begin{cases} \int_{-\infty}^{+\infty} P_{data}(x) \left[log(2) - log(2) \right] + P_{data}(x) log \left[\frac{P_{data}(x)}{P_{data}(x) + P_{g}(x)} \right] \\ + P_{g}(x) \left[log(2) - log(2) \right] + P_{g}(x) log \left[\frac{P_{g}(x)}{P_{data}(x) + P_{g}(x)} \right] dx \end{cases}$$

$$G_{i}^{+} = \underset{G_{i}}{\operatorname{argmin}} \left[\int_{-\infty}^{+\infty} -\log(x) \left[2_{\operatorname{acta}}(x) + P_{g}(x) \right] + P_{\operatorname{acta}}(x) \left(\log(x) + \log \left[\frac{P_{\operatorname{acta}}(x)}{P_{\operatorname{acta}}(x)} + P_{g}(x) \right] \right) \right]$$

$$+ p_{g}(x) \left(\underset{-\infty}{\operatorname{log}}(x) + \log \left[\frac{P_{g}(x)}{P_{\operatorname{acta}}(x)} + P_{g}(x) \right] \right) dx$$

$$+ \int_{-\infty}^{+\infty} -\log(x) \left[P_{\operatorname{acta}}(x) + P_{g}(x) \right] dx$$

$$+ \int_{-\infty}^{+\infty} P_{\operatorname{acta}}(x) \left(\underset{-\infty}{\operatorname{log}}(x) + \log \left[\frac{P_{\operatorname{acta}}(x)}{P_{\operatorname{acta}}(x)} + P_{g}(x) \right] \right) dx$$

$$+ \int_{-\infty}^{+\infty} P_{g}(x) \left(\underset{-\infty}{\operatorname{log}}(x) + \log \left[\frac{P_{g}(x)}{P_{\operatorname{acta}}(x)} + P_{g}(x) \right] \right) dx$$

$$+ \int_{-\infty}^{+\infty} P_{g}(x) \left(\underset{-\infty}{\operatorname{log}}(x) + \underset$$

GAN Page 2

$$f = \underset{G}{\operatorname{argmin}} \left\{ -2 \log(2) + \underset{Z}{\operatorname{KL}} \left[\underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} \right] \right\}$$

$$f = \underset{G}{\operatorname{argmin}} \left\{ -2 \log(2) + \underset{X}{\operatorname{KL}} \left[\underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} \right] \right\}$$

$$f = \underset{G}{\operatorname{argmin}} \left\{ -2 \log(4) + \underset{Z}{\operatorname{DSD}} \left(\underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} \right) \right\}$$

$$f = \underset{G}{\operatorname{argmin}} \left\{ -\log(4) + \underset{Z}{\operatorname{DSD}} \left(\underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} \right) \right\}$$

$$f = \underset{Z}{\operatorname{argmin}} \left\{ -\log(4) + \underset{Z}{\operatorname{DSD}} \left(\underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} \right) \right\}$$

$$f = \underset{Z}{\operatorname{argmin}} \left\{ -\log(4) + \underset{Z}{\operatorname{DSD}} \left(\underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} \right) \right\}$$

$$f = \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} \left\{ -\log(4) + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{DSD}} \left(\underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} \right) \right\}$$

$$f = \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} \left\{ -\log(4) + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{DSD}} \left(\underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} \right) \right\}$$

$$f = \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} \left\{ -\log(4) + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{P}_{\operatorname{ato}}(X)} \right) \right\}$$

$$f = \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} \left\{ -\log(4) + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} + \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} \right\}$$

$$f = \underset{Z_{\operatorname{ato}}(X)}{\operatorname{Argmin}} + \underset{Z_{\operatorname{ato}}(X)}$$

This gives us:

$$P_{data}(x) = P_g(x)$$

At the optimum, $p_{data}(x) = p_g(x)$, this causes:

$$G^* = -log(4)$$

$$D^* = 1$$

$$D^* = 1$$