

An Introduction to Cyber Security – CS 573

Instructor: Dr. Edward G. Amoroso

eamoroso@tag-cyber.com

Neek1

Required Week Seven Readings

1. "THE POSSIBILITY OF SECURE NON-SECRET DIGITAL ENCRYPTION by J. H. Ellis, January 1970 https://cryptocellar.org/cesg/possnse.pdf

2. Finish Reading "From CIA to APT: An Introduction" to Cyber Security, E. Amoroso & M. Amoroso

Twitter: @hashtag_cyber

LinkedIn: Edward Amoroso

Week 7: Public Key Cryptography

What Properties of Conventional Cryptography Must Be Maintained?

Conventional Cryptography

KDC

Α

В

Conventional Cryptography

Conventional Cryptography

Alice creates message m . . .

Conventional Cryptography

Alice creates message m, encrypts using shared key k, and sends result to B

Conventional Cryptography

Does not have K

Conventional Cryptography

Bob receives encrypted message, and decrypts using shared key k, and obtains message m

Conventional Cryptography

Conventional Cryptography

Does this approach scale? NO

What are the Basic Properties of Public Key Cryptography?

Public Key Cryptography Basics

Two Communicants: A and B

- 1. A generates pair of keys PA and SA
- 2. B generates pair of keys PB and SB

Public Key Cryptography Basics

Two Communicants: A and B

- 1. A generates pair of keys PA and SA
- 2. B generates pair of keys PB and SB
- 3. Properties:

$$\{ \{ m \}_{PA} \}_{SA} = m$$

 $\{ \{ m \}_{SA} \}_{PA} = m$
 $\{ \{ m \}_{PA} \}_{X} = m \implies (X = SA)$
 $\{ \{ m \}_{SA} \}_{X} = m \implies (X = PA)$

Concept proposed by Whit Diffie and Marty Hellman, Stanford and Ralph Merkle, UC Berkeley – circa 1976

Public Key Cryptography Basics

Two Communicants: A and B

- 1. A generates pair of keys PA and SA
- 2. B generates pair of keys PB and SB
- 3. Properties:

$$\{ \{ m \}_{PA} \}_{SA} = m$$

 $\{ \{ m \}_{SA} \}_{PA} = m$
 $\{ \{ m \}_{PA} \}_{X} = m \implies (X = SA)$
 $\{ \{ m \}_{SA} \}_{X} = m \implies (X = PA)$

Concept proposed by Whit Diffie and Marty Hellman, Stanford and Ralph Merkle, UC Berkeley – circa 1976

Requirements:

- (i) Keep SA, SB secret to A, B
- (ii) Make PA, PB public to all
- (iii) No KDC required to generate keys

"Address Scaling Issue"

Understanding Public Key Technology

Understanding Public Key Technology

No Key Distribution Center (KDC) Required

"Assume A is a client"

"Assume B is a server"

User A Locally
Generates Key Pair:

User B Locally Generates Key Pair:

PA: Public Key of A SA: Secret Key of A

PB: Public Key of B SB: Secret Key of B week¹

Understanding Public Key Technology

No Key Distribution Center (KDC) Required

"Assume A is a client"

"Assume B is a server"

User A Locally
Generates Key Pair:

PA: Public Key of A

SA: Secret Key of A

Common Key Generation Algorithm Required (e.g., RSA)

Public Key
Infrastructure (PKI)

User B Locally
Generates Key Pair:

PB: Public Key of B

SB: Secret Key of B

Meek1

Sending a Secret Message

Alice creates message m . . .

E

Sending a Secret Message

E

Sending a Secret Message

Meek 7

Sending a Secret Message

Sending a Secret Message

Bob receives the encrypted message, decrypts using Bob's secret key SB, and obtains message m

E

Sending a Secret Message

E

Sending a Signed Message

 $\left[\mathsf{E}\right]$

Sending a Signed Message

E

week¹

Sending a Signed Message

Meek7

Sending a Signed Message

Sending a Signed Message

Bob receives the encrypted message, decrypts using Alice's public key PA, and obtains message m

E

Sending a Signed Message

E

Secure Message Exchange

Alice creates a message m, encrypts it with a public key algorithm using her secret key SA . . .

E

Secure Message Exchange

Alice creates a message m, encrypts it with a public key algorithm using her secret key SA, encrypts it again using a public key algorithm with Bob's public key PB, and sends the result to Bob

E

Secure Message Exchange

Secure Message Exchange

Secure Message Exchange

Bob receives the encrypted message, decrypts using Bob's secret key SA, then decrypts using Alice's public key PA, and obtains message m

Secure Message Exchange

Secure Message Exchange

Secure Message Exchange

Is this approach efficient (cryptographically)? NO

Secure Key Exchange

Alice generates a key k for some bulk encryption algorithm (like 3-DES) and provides this key to B using secure key exchange

- Scalable
- Secret
- Authenticated

Secure Key Exchange

Does this approach scale? YES

Is this approach efficient (cryptographically)? YES