Entropy Regularized Optimal Transport Independence Criterion

Lang Liu¹, Soumik Pal², Zaid Harchaoui¹

Department of Statistics, University of Washington
Department of Mathematics, University of Washington

Overview

- Propose a new entropy regularized optimal transport independence criterion (ETIC) and associated independence test.
- Develop an efficient algorithm to compute the test statistic which scales quadratically in both time and space.
- The ETIC can fit into a differentiable programming framework and is amenable to reverse mode automatic differentiation.
- We establish non-asymptotic bounds for the test statistic, characterizing the type I error and power of ETIC.

Statistical Test of Independence

Problem. Let $(X,Y) \sim P_{XY}$ on $\mathcal{X} \times \mathcal{Y}$ with marginals P_X and P_Y . Given an i.i.d. sample $\{(X_i,Y_i)\}_{i=1}^n$, the goal is to test for

 $\mathbf{H}_0: X$ and Y are independent $\leftrightarrow \mathbf{H}_1: X$ and Y are dependent.

Steps to design an independence test.

- 1. Define a valid independence criterion T(X,Y) such that $T(X,Y) \geq 0$ and T(X,Y) = 0 iff $X \perp\!\!\!\perp Y$.
- 2. Estimate the criterion from data $T_n(X,Y)$ (test statistic).
- 3. Choose a critical value $t_n(\alpha)$ and reject \mathbf{H}_0 if $T_n(X,Y) > t_n(\alpha)$.

ETIC

ETIC. Define $T(X,Y) := \bar{S}_{\lambda}(P_{XY}, P_X \otimes P_Y)$ as

$$S_{\lambda}(P_{XY}, P_X \otimes P_Y) - \frac{1}{2}S_{\lambda}(P_{XY}, P_{XY}) - \frac{1}{2}S_{\lambda}(P_X \otimes P_Y, P_X \otimes P_Y).$$

• Sinkhorn distance (Cuturi '13, Ferradans et al. '14)

$$S_{\lambda}(\varphi, \psi) := \min_{\gamma \in \mathsf{CP}(\varphi, \psi)} \left[\int c \, d\gamma + \lambda \mathsf{KL}(\gamma \| \varphi \otimes \psi) \right].$$

• Sinkhorn divergence (Ramdas et al. '17, Genevay et al. '18, Feydy et al. '19) $\bar{S}_{\lambda}(\varphi,\psi)$.

Additive cost. Consider

$$c((x, y), (x', y')) := c_1(x, x') + c_2(y, y').$$

- ETIC is a valid independence criterion with proper c_1 and c_2 .
- Assumptions on c_i via kernels $k_i := \exp\{-c_i/\lambda\}$.

ETIC with Weighted Quadratic Cost

Weighted quadratic cost. Consider

$$c((x, y), (x', y')) := w_1 ||x - x'||^2 + w_2 ||y - y'||^2.$$

• The objective in $S_{\lambda}(P_{XY}, P_X \otimes P_Y)$ becomes

$$w_1 \int \|\mathbf{x} - \mathbf{x'}\|^2 d\gamma_1 + w_2 \int \|\mathbf{y} - \mathbf{y'}\|^2 d\gamma_2 + \lambda \mathsf{KL}(\gamma \|P_{XY} \otimes P_X \otimes P_Y).$$

• Induces a valid independence criterion.

Computational Aspects of ETIC

ETIC test statistic. Let $\hat{P}_{XY}, \hat{P}_{X}, \hat{P}_{Y}$ be empirical distributions.

$$T_n(X,Y) := \bar{S}_{\lambda}(\hat{P}_{XY},\hat{P}_X\otimes\hat{P}_Y).$$

Sinkhorn algorithm. $\tilde{O}(n^4)$ time and $O(n^4)$ space.

- ullet $\hat{P}_X \otimes \hat{P}_Y$ is supported on n^2 atoms.
- Gibbs matrix $K = \exp(-C/\lambda) \in \mathbb{R}^{n^2 \times n^2}$.

Tensor Sinkhorn algorithm. $\tilde{O}(n^3)$ time and $O(n^2)$ space.

- A and B random matrices on $\{x_i\}_{i=1}^n \times \{y_i\}_{i=1}^n$.
- $K \to K_1$ and K_2 where $K_i = \exp(-C_i/\lambda) \in \mathbb{R}^{n \times n}$ for $i \in \{1, 2\}$.
- Amenable to gradient backpropagation.

Algorithm 1 Tensor Sinkhorn Algorithm

- 1: Input: $A, B, K_1, \text{ and } K_2$.
- 2: Initialize $U \leftarrow \mathbf{1}_{\mathbf{n} \times \mathbf{n}}$ and $V \leftarrow \mathbf{1}_{\mathbf{n} \times \mathbf{n}}$.
- 3: while not converge do
- 4: $U \leftarrow A \oslash (K_1 V K_2^{\top}) \text{ and } V = B \oslash (K_1^{\top} U K_2).$
- 5: end while
- 6: Output: $\langle \lambda \log U, A \rangle_{\mathbf{F}} + \langle \lambda \log V, B \rangle_{\mathbf{F}}$.

Random feature approximation. $\tilde{O}(pn^2)$ time and $O(n^2)$ space.

- Approximate $K_i \approx \xi_i \xi_i^{\top}$ for $i \in \{1, 2\}$.
- $\xi_i \in \mathbb{R}^{n \times p}$ random feature matrix.

	Gibbs matrix	Computation per iteration
Sinkhorn	$n^2 \times n^2$	$n^2 imes n^2$ and $n^2 imes 1$
Tensor Sinkhorn	Two $n \times n$	$n \times n$ and $n \times n$
Tensor Sinkhorn with RF	Two $n \times p$	$n \times n$ and $n \times p$

Main Results

High probability bound. Let c be the weighted quadratic cost. Assume P_X and P_Y have bounded supports of radius R. With probability at least $1-\delta$,

$$|T_n(X,Y) - T(X,Y)| \le C_d \left(\frac{\lambda}{\lambda} + \frac{R^{5d+16}}{\frac{\lambda^{5d/2+7}}{\lambda}} \sqrt{\log \frac{6}{\delta}} \right) \frac{1}{\sqrt{n}}.$$

- The rate of convergence is $O(n^{-1/2})$.
- The choice of $\lambda = R^2$ gives $C_d \sqrt{\log(6/\delta)} R^2 n^{-1/2}$.
- $T(X,Y) = T_{\lambda}(X,Y) \to 0$ as $\lambda \to \infty$.

Power analysis. The power of ETIC is asymptotically one.

- Under \mathbf{H}_0 , T(X,Y)=0 and thus $t_n(\alpha)=O(n^{-1/2})$.
- Under \mathbf{H}_1 , T(X,Y)>0 and thus $T_n(X,Y)>t_n(\alpha)$ as $n\to\infty$.

Real Data Experiment

Bilingual text. Parallel European Parliament corpus (Koehn '05).

- Random paragraph in each of 64 random documents in English.
- (English paragraph, random paragraph in the same document in French).
- Feature embedding of dimension 768 with LaBSE (Feng et al. '20). **Independence tests.**
- ETIC with weighted quadratic cost inducing Gaussian kernels

$$k_1(x,x') = e^{-\|x-x'\|^2/\sigma_1}$$
 and $k_2(y,y') = e^{-\|y-y'\|/\sigma_2}$.

- Hilbert-Schmidt independence criterion (HSIC) with the same kernels.
- Median heuristic: $\sigma_i = r_i M_i$ with $r_i \in [0.25, 4]$ for $i \in \{1, 2\}$.

Code available at https://github.com/langliu95/etic-experiments. Presented at AISTATS 2022. Copyright 2022 by the authors.