*set seed;

*set π =Pr $\{i^{th}, j^{th} \text{ element is missing}\} \in [0, 1]$

*set N; *N = 10;

*set p; *p = 3;

*set q; *q = 2;

*fix x; * $X = I_2 \otimes \mathbf{1}_{N/2}$

*fix B- a $(p \times q)$ matrix of slopes and intercepts; *may need either full row or column rank;

$$\boldsymbol{B} = \begin{bmatrix} 1 & 5 & 8 \\ 2 & 9 & 2 \end{bmatrix}$$

*fix Sigma (pxp), full rank, positive definite of rank p;

$$\Sigma = \begin{bmatrix} 1 & 0.3 & 0.3 \\ 0.3 & 1 & 0.3 \\ 0.3 & 0.3 & 1 \end{bmatrix}$$

*generate Z; * $\boldsymbol{Z} \sim N_{N,p}(\boldsymbol{0},\boldsymbol{I}_p,\boldsymbol{I}_N)$

*Choleskey decompose Sigma so that

$$\Sigma = UU'$$

*define

$$L = U'$$

*generate E;

$$E = LZ$$

*check

$$\operatorname{cov}\{\left[\operatorname{row}_i(\boldsymbol{E})\right]'\} = \boldsymbol{\Sigma}$$

*form

$$Y = XB + E$$
:

*eventually this will be the Bahjat Qaqish missingness process;

*right now, use a uniform random number generator to generate an $(N \times p)$ matrix M which has a 1 in it if that number is supposed to be missing, and a 0 otherwise.

*sort M and hence Y by deletion classes. * no point in this now, since random deletion, but if we end up with non-random deletion, it will be nice to sort Y and X

*you need to delete the rows where everything is missing.

*follow the directions in the paper to reduce Y--> Yif--Ykt-->star thing, X is going to Xif --> Xkt --> X star thing.

^{*}now make things missing;

^{*} Go through cascade to delete things

*Estimate Beta and Sigma