Dabrowsk,

Azions

1) Dimension, for now

- continuing...

Finiteness & abs. continuity

- feco(n, c) induces foon L2(E),

 Il fills Il fills silfill & Eo(n, c) III = E(n)

 Is Banach & -alg & f = f

 -but ||ftfills ||fills => Ct-alg

 -gNT: n ~ E(n) , t- isom , x -> \(\chi \) \(\chi \) = a(x)

 so \(\chi (n) \chi \) \(\chi (n) \) \(\chi (n) \) \(\chi \) \(\chi (n) \) \(\chi \) \(
- -GN, Ti's any C*-aly is (sub)aly in IB(JE) for some JE.
 - -on $B(H)_{sa}$ \exists (and only then) a cont. func. calc on E(3(T)) for $T:T \in B(H)$ s.L. $\forall F \in E(3(T))$ $\exists F(T) \in B(H)$, 3(F(T)) = F(3(T)), et c.
- -building A= "& (n)" => E(n)

 Is not very successful, need to consider

 all norms ||f||p'=||Df||, D diff op on M
- i.e. if for smooth

Axion & Finiteness & A.C. prop

-which leads us to ...

< 24,4>H= f (24,4) 101-4

-last analytic axiom.

Regularity (Smoothness)

operator	order	Sprine.
,	1	matrix
101	1	scalas
[[D]sa]saet	0	scular 2611
[IDIs[Dsa]]	0	matrix 3
1 31 3		

=> iterating [IDI,..., [IDI, 6]] E(B(JC) +KZI Ktimes aor[Dou]

where Dom Sk:= {BEB(Je) | Sk(B) &B(Je)}

and 8(B):=[101,B].

Ret - equivalently?

[Ret to | | eitld | se-itld | should be Co VBEAU[D,+] (+)

Auon: (A, FE, D) is segular iff (x)

-exercise: why [D,[D,a]] & B(7C)

Ruk possible to see A is largest subalg

of cont. funcs. s.t. (+)

can be char. as Frechet alg. complete.

in Ilallk:= ||Skall, ||allk:= ||Sk([D,a])|| † Kell

-last one ...

Reality

-a S.T. is also called (unbdd) KR-cycle; in our case we have A, D, J, & (n=even) on H=L2(Z) st. Adj implements involution T on A

- If A N.C. aly, JaJ' = at since * 15 antinvolution

-60+ JAJ'CA'(CB(JE))

permits to define *-rep of A°P

which commutes w rep of A

>> *-rep of A & A°P on J+,

**TABAOP (a&6°) Y:= a Jb* J~1 Y

(Ty(a), we hon't write it)

-equivalently, \mathcal{H} becomes an A-bimod by $a \neq b := \mathcal{H}_{A \otimes f} (a \otimes b^{\circ}) \neq$ -moreover, by AAJ we get an invol. on $A \otimes A^{\circ}$ by $a \otimes b \circ f \mapsto b^{+} \otimes a^{\circ}$ -the signs $e, e', e'' \equiv n = d_{i-}(A, \mathcal{H}_{S}D) \mod 8$