Uniform Laws of Large Numbers

Jiuzhou Miao

March 19, 2025

Proof of Theorem 4. Denote $\check{f}(x) = f(x) - \mathbb{E}\{f(X)\}\$ and

$$G(\boldsymbol{x}) = G(x_1, \dots, x_n) = \sup_{\check{f} \in \check{\mathcal{F}}} \left| n^{-1} \sum_{i=1}^n \check{f}(x_i) \right|.$$

Concentration around mean: Let $\mathbf{y} = (y_1, \dots, y_n)^\mathsf{T}$ and $\mathbf{x}^{\sim k} = (x_1^{\sim k}, \dots, x_n^{\sim k})^\mathsf{T}$ with $x_i^{\sim k} = x_i$ for $i \neq k$ and $x_k^{\sim k} = y_k$ for $1 \leq i, k \leq n$. Note that

$$\left| n^{-1} \sum_{i=1}^{n} \check{f}(x_{i}) \right| - G(\boldsymbol{x}^{\sim k}) = \left| n^{-1} \sum_{i=1}^{n} \check{f}(x_{i}) \right| - \sup_{\check{f} \in \check{\mathcal{F}}} \left| n^{-1} \sum_{i=1}^{n} \check{f}(x_{i}^{\sim k}) \right| \\
\leq \left| n^{-1} \sum_{i=1}^{n} \check{f}(x_{i}) \right| - \left| n^{-1} \sum_{i=1}^{n} \check{f}(x_{i}^{\sim k}) \right| \\
\leq \left| n^{-1} \sum_{i=1}^{n} \left\{ \check{f}(x_{i}) - \check{f}(x_{i}^{\sim k}) \right\} \right| \\
= n^{-1} \left| f(x_{k}) - f(y_{k}) \right| \\
\leq 2bn^{-1}$$

by taking supremum over $f \in \mathcal{F}$ one has that $G(\boldsymbol{x}) \leq G(\boldsymbol{x}^{\sim k}) + 2bn^{-1}$. Since the same argument may be applied with the roles of x and y reversed, one can conclude that $|G(\boldsymbol{x}) - G(\boldsymbol{x}^{\sim k})| \leq 2bn^{-1}$, which means that the function $G(\cdot)$ satisfies the bounded difference property with parameters $(2bn^{-1}, \ldots, 2bn^{-1})$ for each k. By using bounded differences inequality, one has that for any t > 0,

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \le \mathbb{E}(\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}) + t$$

with \mathbb{P} -probability at least $1 - e^{-\frac{nt^2}{2b^2}}$.

Upper bound on mean: Let $\mathbf{Y} = (Y_1, \dots, Y_n)^\mathsf{T}$ be a copy of $\mathbf{X} = (X_1, \dots, X_n)^\mathsf{T}$. Then

one has that

$$\mathbb{E}(\|\mathbb{P}_{n} - \mathbb{P}\|_{\mathcal{F}}) = \mathbb{E}_{\mathbf{X}} \left[\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} f(X_{i}) - n^{-1} \sum_{i=1}^{n} \mathbb{E}_{Y_{i}} \left\{ f(Y_{i}) \right\} \right| \right]$$

$$= \mathbb{E}_{\mathbf{X}} \left[\sup_{f \in \mathcal{F}} \left| \mathbb{E}_{\mathbf{Y}} \left[n^{-1} \sum_{i=1}^{n} \left\{ f(X_{i}) - f(Y_{i}) \right\} \right] \right| \right]$$

$$\leq \mathbb{E}_{\mathbf{X}, \mathbf{Y}} \left[\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \left\{ f(X_{i}) - f(Y_{i}) \right\} \right| \right]$$

$$= \mathbb{E}_{\mathbf{X}, \mathbf{Y}, \varepsilon} \left[\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \varepsilon_{i} \left\{ f(X_{i}) - f(Y_{i}) \right\} \right| \right]$$

$$\leq 2\mathbb{E}_{\mathbf{X}, \varepsilon} \left\{ \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \varepsilon_{i} f(X_{i}) \right| \right\} = 2\mathcal{R}_{n}(\mathcal{F}).$$

Then the argument can be obtained by using

$$\left\{ \|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \le \mathbb{E}\left(\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}\right) + t \right\} \subseteq \left\{ \|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \le 2\mathcal{R}_n(\mathcal{F}) + t \right\}.$$

Proof of Proposition 5. By Jensen's inequality, one has that

$$\mathbb{E}_{\mathbf{X},\boldsymbol{\varepsilon}} \Big\{ \phi \big(\|S_n\|_{\check{\mathcal{F}}}/2 \big) \Big\} = \mathbb{E}_{\mathbf{X},\boldsymbol{\varepsilon}} \Big\{ \phi \Big(2^{-1} \sup_{\check{f} \in \check{\mathcal{F}}} \Big| n^{-1} \sum_{i=1}^n \varepsilon_i \check{f}(X_i) \Big| \Big) \Big\}$$

$$= \mathbb{E}_{\mathbf{X},\boldsymbol{\varepsilon}} \Big\{ \phi \Big(2^{-1} \sup_{f \in \mathcal{F}} \Big| \mathbb{E}_{\mathbf{Y}} \Big[n^{-1} \sum_{i=1}^n \varepsilon_i \Big\{ f(X_i) - f(Y_i) \Big\} \Big] \Big| \Big) \Big\}$$

$$\leq \mathbb{E}_{\mathbf{X},\mathbf{Y},\boldsymbol{\varepsilon}} \Big\{ \phi \Big(2^{-1} \sup_{f \in \mathcal{F}} \Big| n^{-1} \sum_{i=1}^n \varepsilon_i \Big\{ f(X_i) - f(Y_i) \Big\} \Big| \Big) \Big\}$$

$$= \mathbb{E}_{\mathbf{X},\mathbf{Y}} \Big\{ \phi \Big(2^{-1} \sup_{f \in \mathcal{F}} \Big| n^{-1} \sum_{i=1}^n \Big\{ f(X_i) - f(Y_i) \Big\} \Big| \Big) \Big\}.$$

Note that

$$T_1 \le 2^{-1} \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n f(X_i) - \mathbb{E} \left\{ f(X) \right\} \right| + 2^{-1} \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n f(Y_i) - \mathbb{E} \left\{ f(Y) \right\} \right|,$$

by the convexity of ϕ one has that

$$\begin{split} \phi(T_1) &\leq \phi \bigg(2^{-1} \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n f(X_i) - \mathbb{E} \big\{ f(X) \big\} \right| + 2^{-1} \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n f(Y_i) - \mathbb{E} \big\{ f(Y) \big\} \right| \bigg) \\ &\leq 2^{-1} \phi \bigg(\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n f(X_i) - \mathbb{E} \big\{ f(X) \big\} \right| \bigg) + 2^{-1} \phi \bigg(\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n f(Y_i) - \mathbb{E} \big\{ f(Y) \big\} \right| \bigg). \end{split}$$

Then by taking expectations, one has that

$$\mathbb{E}_{\mathbf{X},\varepsilon} \left\{ \phi \left(\|S_n\|_{\check{\mathcal{F}}}/2 \right) \right\} \leq 2^{-1} \mathbb{E}_{\mathbf{X}} \left\{ \phi \left(\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n f(X_i) - \mathbb{E} \left\{ f(X) \right\} \right| \right) \right\}$$

$$+ 2^{-1} \mathbb{E}_{\mathbf{Y}} \left\{ \phi \left(\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n f(Y_i) - \mathbb{E} \left\{ f(Y) \right\} \right| \right) \right\}$$

$$= \mathbb{E}_{\mathbf{X}} \left\{ \phi \left(\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \right) \right\}.$$

The first inequality holds.

Note that

$$\mathbb{E}_{\mathbf{X}} \Big\{ \phi \Big(\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}} \Big) \Big\} = \mathbb{E}_{\mathbf{X}} \Big\{ \phi \left(\sup_{f \in \mathcal{F}} \left| \mathbb{E}_{\mathbf{Y}} \left[n^{-1} \sum_{i=1}^{n} \left\{ f(X_i) - f(Y_i) \right\} \right] \right| \right) \Big\}$$

$$\leq \mathbb{E}_{\mathbf{X},\mathbf{Y}} \Big\{ \phi \left(\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \left\{ f(X_i) - f(Y_i) \right\} \right| \right) \Big\}$$

$$= \mathbb{E}_{\mathbf{X},\mathbf{Y},\varepsilon} \Big\{ \phi \left(\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \varepsilon_i \left\{ f(X_i) - f(Y_i) \right\} \right| \right) \Big\},$$

by the convexity of ϕ one has that

$$\phi(T_2) = \phi(2T_2/2) \le 2^{-1}\phi\left(2\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n \varepsilon_i f(X_i) \right| \right) + 2^{-1}\phi\left(2\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n \varepsilon_i f(Y_i) \right| \right).$$

Then by taking expectations, one has that

$$\mathbb{E}_{\mathbf{X}} \Big\{ \phi \big(\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}} \big) \Big\} \leq 2^{-1} \mathbb{E}_{\mathbf{X}, \varepsilon} \Big\{ \phi \Big(2 \sup_{f \in \mathcal{F}} \Big| n^{-1} \sum_{i=1}^n \varepsilon_i f(X_i) \Big| \Big) \Big\}$$
$$+ 2^{-1} \mathbb{E}_{\mathbf{Y}, \varepsilon} \Big\{ \phi \Big(2 \sup_{f \in \mathcal{F}} \Big| n^{-1} \sum_{i=1}^n \varepsilon_i f(Y_i) \Big| \Big) \Big\}$$
$$= \mathbb{E}_{\mathbf{X}, \varepsilon} \Big\{ \phi \Big(2 \| S_n \|_{\mathcal{F}} \Big) \Big\}.$$

The second inequality holds.

Proof of Proposition 8. Let $\tilde{\mathcal{F}} = \mathcal{F} \cup (-\mathcal{F})$ where $-\mathcal{F} = \{-f : f \in \mathcal{F}\}$, then one has that

$$\sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \varepsilon_{i} f(x_{i}) \right| = \sup_{\tilde{f} \in \tilde{\mathcal{F}}} \left\{ n^{-1} \sum_{i=1}^{n} \varepsilon_{i} \tilde{f}(x_{i}) \right\}$$

and

$$\operatorname{Card}(\tilde{\mathcal{F}}(x_1^n)) \leq \operatorname{Card}(\mathcal{F}(x_1^n)) + \operatorname{Card}(-\mathcal{F}(x_1^n)) \leq 2(n+1)^{\nu}.$$

Let

$$\mathcal{A} = \{(a_1, \dots, a_n)^\mathsf{T} : a_i = n^{-1}\tilde{f}(x_i), \tilde{f} \in \tilde{\mathcal{F}}\},\$$

then one has

$$\sup_{\tilde{f}\in\tilde{\mathcal{F}}} \left\{ n^{-1} \sum_{i=1}^{n} \varepsilon_{i} \tilde{f}(x_{i}) \right\} = \sup_{\boldsymbol{a}\in\mathcal{A}} \sum_{i=1}^{n} a_{i} \varepsilon_{i} = \sup_{\boldsymbol{a}\in\mathcal{A}} \langle \boldsymbol{a}, \boldsymbol{\varepsilon} \rangle.$$

For each $\mathbf{a} \in \mathcal{A}$, $a_i \varepsilon_i$ is a bounded random variable on $[-|a_i|, |a_i|]$ which means that $a_i \varepsilon_i$ is sub-Gaussian with parameter $|a_i|$, one has that for any $\lambda > 0$,

$$\mathbb{E}(e^{\lambda \langle \boldsymbol{a}, \boldsymbol{\varepsilon} \rangle}) = \prod_{i=1}^{n} \mathbb{E}(e^{\lambda a_{i} \varepsilon_{i}}) \leq e^{\lambda^{2} \|\boldsymbol{a}\|_{2}^{2}} \leq e^{\lambda^{2} D^{2}(x_{1}^{n})/n}.$$

Note that $\operatorname{Card}(\mathcal{A}) = \operatorname{Card}(\tilde{\mathcal{F}}(x_1^n)) \leq 2(n+1)^{\nu}$, by using Jensen's inequality, one has that

$$\exp\left\{\lambda \mathbb{E}\left(\sup_{\boldsymbol{a}\in\mathcal{A}}\langle\boldsymbol{a},\boldsymbol{\varepsilon}\rangle\right)\right\} \leq \mathbb{E}\left(e^{\lambda\sup_{\boldsymbol{a}\in\mathcal{A}}\langle\boldsymbol{a},\boldsymbol{\varepsilon}\rangle}\right) \\
= \mathbb{E}\left(\sup_{\boldsymbol{a}\in\mathcal{A}}e^{\lambda\langle\boldsymbol{a},\boldsymbol{\varepsilon}\rangle}\right) \\
\leq \operatorname{Card}(\mathcal{A})e^{\lambda^2D^2(x_1^n)/n} \\
\leq 2(n+1)^{\nu}e^{\lambda^2D^2(x_1^n)/n}$$

By taking logarithm, one has that

$$\mathbb{E}\left(\sup_{\boldsymbol{a}\in\mathcal{A}}\langle\boldsymbol{a},\boldsymbol{\varepsilon}\rangle\right) \leq \left\{\log 2 + \nu \log (n+1)\right\} \lambda^{-1} + \lambda n^{-1} D^2(x_1^n)$$
$$\leq 4\nu \log (n+1)\lambda^{-1} + \lambda n^{-1} D^2(x_1^n).$$

By taking $\lambda = 2\sqrt{n\nu \log (n+1)}/D(x_1^n)$, one has that

$$\mathbb{E}\left(\sup_{\boldsymbol{a}\in\mathcal{A}}\langle\boldsymbol{a},\boldsymbol{\varepsilon}\rangle\right) \leq 4D(x_1^n)\sqrt{\nu\log\left(n+1\right)/n}.$$

Proof of Theorem 9. Denote

$$\mathcal{F} = \{ \mathbb{I}_{(-\infty,x]}(\cdot) : x \in \mathbb{R} \}.$$

We only need to show that $\operatorname{Card}(\mathcal{F}(x_1^n)) \leq n+1$. By ordering all points in x_1^n by $x_{(1)} \leq \cdots \leq x_{(n)}$, then \mathbb{R} is divided by n+1 intervals: $(-\infty, x_{(1)})$, $\{[x_{(i)}, x_{(i+1)})\}_{i=1}^{n-1}$ and $[x_{(n)}, \infty)$. For given $x \in \mathbb{R}$, $\mathbb{I}_{(-\infty, x]}(\cdot)$ takes the value 1 for all $x_{(i)} \leq x$ and the value 0 for all other samples. One has that $\operatorname{Card}(\mathcal{F}(x_1^n)) \leq n+1$.