Rank-65851 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(8)$ is 1243948109

General information

Number of lines	3
Number of points	73
Number of singular points	1
Number of Eckardt points	0
Number of double points	3
Number of single points	21
Number of points off lines	49
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{3}
Type of lines on points	$2^3, 1^{21}, 0^{49}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & \gamma^4 & \gamma^6 \\ 0 & 1 & \gamma^2 & \gamma^3 \end{bmatrix}_{4059} = \begin{bmatrix} 1 & 0 & 7 & 6 \\ 0 & 1 & 4 & 5 \end{bmatrix}_{4059} = \mathbf{Pl}(6, 2, 3, 4, 6, 1)_{4036}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & \gamma & \gamma^5 \\ 0 & 1 & \gamma^4 & \gamma^6 \end{bmatrix}_{1953} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 7 & 6 \end{bmatrix}_{1953} = \mathbf{Pl}(3, 4, 5, 7, 3, 1)_{2619}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & \gamma^2 & \gamma^3 \\ 0 & 1 & \gamma & \gamma^5 \end{bmatrix}_{3238} = \begin{bmatrix} 1 & 0 & 4 & 5 \\ 0 & 1 & 2 & 3 \end{bmatrix}_{3238} = \mathbf{Pl}(5, 7, 6, 2, 5, 1)_{3692}$$

Rank of lines: (4059, 1953, 3238)

Rank of points on Klein quadric: (4036, 2619, 3692)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_{564} = (3, 5, 7, 1) = \ell_0 \cap \ell_1$$

$$P_{359} = (6, 3, 4, 1) = \ell_0 \cap \ell_2$$

 $P_{254} = (5, 6, 2, 1) = \ell_1 \cap \ell_2$

Single Points

The surface has 21 single points: The single points on the surface are:

$0: P_{30} = (3, 2, 1, 0)$ lies on line ℓ_0
1: $P_{48} = (5, 4, 1, 0)$ lies on line ℓ_1
2: $P_{73} = (6,7,1,0)$ lies on line ℓ_2
$3: P_{100} = (2,3,0,1)$ lies on line ℓ_1
$4: P_{118} = (4, 5, 0, 1)$ lies on line ℓ_2
$5: P_{129} = (7, 6, 0, 1)$ lies on line ℓ_0
6: $P_{155} = (2, 2, 1, 1)$ lies on line ℓ_2
7: $P_{173} = (4, 4, 1, 1)$ lies on line ℓ_0
8: $P_{200} = (7,7,1,1)$ lies on line ℓ_1
9: $P_{218} = (1, 2, 2, 1)$ lies on line ℓ_0
10: $P_{267} = (2,0,3,1)$ lies on line ℓ_0

11: $P_{276} = (3, 1, 3, 1)$ lies on line ℓ_2 12: $P_{281} = (0, 2, 3, 1)$ lies on line ℓ_1 13: $P_{362} = (1, 4, 4, 1)$ lies on line ℓ_1 14: $P_{397} = (4, 0, 5, 1)$ lies on line ℓ_1 15: $P_{406} = (5, 1, 5, 1)$ lies on line ℓ_0 16: $P_{425} = (0, 4, 5, 1)$ lies on line ℓ_2 17: $P_{464} = (7, 0, 6, 1)$ lies on line ℓ_2 18: $P_{471} = (6, 1, 6, 1)$ lies on line ℓ_1 19: $P_{513} = (0, 7, 6, 1)$ lies on line ℓ_0 20: $P_{578} = (1, 7, 7, 1)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 49 points not on any line: The points on the surface but not on lines are:

$$\begin{array}{lll} 0: \, P_0 = (1,0,0,0) & 5: \, P_{46} = (3,4,1,0) \\ 1: \, P_1 = (0,1,0,0) & 6: \, P_{72} = (5,7,1,0) \\ 2: \, P_2 = (0,0,1,0) & 7: \, P_{83} = (1,1,0,1) \\ 3: \, P_{20} = (1,1,1,0) & 8: \, P_{95} = (5,2,0,1) \\ 4: \, P_{33} = (6,2,1,0) & 9: \, P_{112} = (6,4,0,1) \end{array}$$

10: $P_{133} = (3,7,0,1)$ $30: P_{356} = (3, 3, 4, 1)$ 11: $P_{139} = (1, 0, 1, 1)$ $31: P_{377} = (0,6,4,1)$ 12: $P_{146} = (0, 1, 1, 1)$ $32: P_{378} = (1, 6, 4, 1)$ 13: $P_{160} = (7, 2, 1, 1)$ $33: P_{408} = (7, 1, 5, 1)$ $14: P_{171} = (2, 4, 1, 1)$ $34: P_{428} = (3,4,5,1)$ 15: $P_{197} = (4, 7, 1, 1)$ $35: P_{440} = (7,5,5,1)$ 16: $P_{206} = (5, 0, 2, 1)$ $36: P_{444} = (3,6,5,1)$ 17: $P_{241} = (0, 5, 2, 1)$ $37: P_{445} = (4, 6, 5, 1)$ 18: $P_{242} = (1, 5, 2, 1)$ $38: P_{467} = (2, 1, 6, 1)$ $39: P_{486} = (5, 3, 6, 1)$ 19: $P_{255} = (6, 6, 2, 1)$ $20: P_{259} = (2,7,2,1)$ $40: P_{488} = (7, 3, 6, 1)$ $21: P_{263} = (6,7,2,1)$ $41: P_{507} = (2, 6, 6, 1)$ $22: P_{277} = (4, 1, 3, 1)$ $42: P_{518} = (5,7,6,1)$ $23: P_{287} = (6, 2, 3, 1)$ 43: $P_{524} = (3,0,7,1)$ $24: P_{293} = (4,3,3,1)$ $44: P_{545} = (0, 3, 7, 1)$ $25: P_{307} = (2, 5, 3, 1)$ $45: P_{546} = (1, 3, 7, 1)$ $26: P_{311} = (6,5,3,1)$ $46: P_{558} = (5, 4, 7, 1)$ $27: P_{335} = (6,0,4,1)$ $47: P_{560} = (7, 4, 7, 1)$ $28: P_{348} = (3, 2, 4, 1)$ 48: $P_{566} = (5, 5, 7, 1)$ 29: $P_{349} = (4, 2, 4, 1)$

Line Intersection Graph

 $\begin{array}{c|c}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{564}	P_{359}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{564}	P_{254}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{359}	P_{254}

The surface has 73 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$12: P_{100} = (2, 3, 0, 1)$	$24: P_{200} = (7,7,1,1)$
$1: P_1 = (0, 1, 0, 0)$	$13: P_{112} = (6, 4, 0, 1)$	$25: P_{206} = (5, 0, 2, 1)$
$2: P_2 = (0, 0, 1, 0)$	$14: P_{118} = (4, 5, 0, 1)$	$26: P_{218} = (1, 2, 2, 1)$
$3: P_{20} = (1, 1, 1, 0)$	15: $P_{129} = (7, 6, 0, 1)$	$27: P_{241} = (0, 5, 2, 1)$
$4: P_{30} = (3, 2, 1, 0)$	$16: P_{133} = (3,7,0,1)$	$28: P_{242} = (1, 5, 2, 1)$
$5: P_{33} = (6, 2, 1, 0)$	17: $P_{139} = (1, 0, 1, 1)$	$29: P_{254} = (5, 6, 2, 1)$
$6: P_{46} = (3, 4, 1, 0)$	18: $P_{146} = (0, 1, 1, 1)$	$30: P_{255} = (6, 6, 2, 1)$
$7: P_{48} = (5, 4, 1, 0)$	$19: P_{155} = (2, 2, 1, 1)$	$31: P_{259} = (2,7,2,1)$
$8: P_{72} = (5, 7, 1, 0)$	$20: P_{160} = (7, 2, 1, 1)$	$32: P_{263} = (6,7,2,1)$
$9: P_{73} = (6,7,1,0)$	$21: P_{171} = (2,4,1,1)$	$33: P_{267} = (2,0,3,1)$
$10: P_{83} = (1, 1, 0, 1)$	$22: P_{173} = (4, 4, 1, 1)$	$34: P_{276} = (3, 1, 3, 1)$
$11: P_{95} = (5, 2, 0, 1)$	$23: P_{197} = (4,7,1,1)$	$35: P_{277} = (4, 1, 3, 1)$

$36: P_{281} = (0, 2, 3, 1)$	$49: P_{397} = (4, 0, 5, 1)$	$62: P_{507} = (2, 6, 6, 1)$
$37: P_{287} = (6, 2, 3, 1)$	$50: P_{406} = (5, 1, 5, 1)$	$63: P_{513} = (0,7,6,1)$
$38: P_{293} = (4,3,3,1)$	$51: P_{408} = (7, 1, 5, 1)$	$64: P_{518} = (5, 7, 6, 1)$
$39: P_{307} = (2, 5, 3, 1)$	$52: P_{425} = (0, 4, 5, 1)$	$65: P_{524} = (3, 0, 7, 1)$
$40: P_{311} = (6,5,3,1)$	$53: P_{428} = (3, 4, 5, 1)$	$66: P_{545} = (0, 3, 7, 1)$
$41: P_{335} = (6,0,4,1)$	$54: P_{440} = (7, 5, 5, 1)$	$67: P_{546} = (1, 3, 7, 1)$
$42: P_{348} = (3, 2, 4, 1)$	$55: P_{444} = (3, 6, 5, 1)$	$68: P_{558} = (5, 4, 7, 1)$
$43: P_{349} = (4, 2, 4, 1)$	$56: P_{445} = (4, 6, 5, 1)$	$69: P_{560} = (7, 4, 7, 1)$
$44: P_{356} = (3, 3, 4, 1)$	$57: P_{464} = (7,0,6,1)$	$70: P_{564} = (3, 5, 7, 1)$
$45: P_{359} = (6, 3, 4, 1)$	$58: P_{467} = (2, 1, 6, 1)$	71: $P_{566} = (5, 5, 7, 1)$
$46: P_{362} = (1, 4, 4, 1)$	$59: P_{471} = (6, 1, 6, 1)$	$72: P_{578} = (1, 7, 7, 1)$
$47: P_{377} = (0, 6, 4, 1)$	$60: P_{486} = (5, 3, 6, 1)$	
$48: P_{378} = (1, 6, 4, 1)$	$61: P_{488} = (7, 3, 6, 1)$	