import pandas as pd

df = pd.read_csv('/content/employee_data.csv')
print("Original Dataset:")
print(df)

∑ ₹	Original		:			
	Emplo	yee_ID	Age	Salary	<pre>Job_Satisfaction</pre>	Work_Hours_Per_Week
	0	1001	50.0	108953.0	9.0	36
	1	1002	36.0	82995.0	8.0	59
	2	1003	29.0	70757.0	2.0	30
	3	1004	42.0	39692.0	1.0	30
	4	1005	40.0	75758.0	7.0	54
	5	1006	44.0	102409.0	7.0	56
	6	1007 32		NaN	NaN	59
	7	1008	32.0	95697.0	5.0	54
	8	1009	45.0	67065.0	3.0	49
	9	1010	57.0	NaN	8.0	42
	10	1011	45.0	41534.0	6.0	38
	11	1012	NaN	70397.0	NaN	32
	12	1013	43.0	31016.0	NaN	36
	13	1014	23.0	119789.0	1.0	35
	14	1015	45.0	85591.0	3.0	37
	15	1016	51.0	119812.0	5.0	56
	16	1017	59.0	53247.0	3.0	38
	17	1018	23.0	54300.0	1.0	59
	18	1019	42.0	104065.0	5.0	34
	19	1020	54.0	112798.0	10.0	30
	20	1021	33.0	39268.0	7.0	48
	21	1022	43.0	116807.0	7.0	39
	22	1023	46.0	42185.0	NaN	41
	23	1024	48.0	93704.0	9.0	53
	24	1025	49.0	NaN	10.0	44
	25	1026	37.0	69099.0	NaN	56
26 27	26	1027	36.0	NaN	3.0	51
	27	1028	24.0	68044.0	7.0	53
	28	1029	58.0	81214.0	1.0	38
29 30 31	29	1030	28.0	91228.0	4.0	49
	30	1031	NaN	78984.0	4.0	46
	31	1032	30.0	70774.0	NaN	59
	32	1033	39.0	32568.0	7.0	46
	33	1034	25.0	92592.0	7.0	55
	34	1035	NaN	97563.0	NaN	49
	35	1036	35.0	32695.0	4.0	41
	36	1037	30.0	78190.0	7.0	59
	37	1038	47.0	35258.0	NaN	36
	38	1039	23.0	NaN	3.0	31
	39	1040	NaN	69504.0	6.0	32
	40	1041	49.0	63159.0	2.0	46
	41	1042	28.0	43986.0	10.0	34
	42	1043	29.0	91858.0	9.0	46
	43	1044	56.0	42666.0	5.0	53
	44	1045	35.0	68660.0	6.0	46
	45	1046	38.0	33561.0	4.0	56
	46	1047	57.0	56854.0	NaN	46
	47	1048	25.0	94505.0	NaN	31
	48	1049	23.0	82251.0	7.0	31
	49	1050	NaN	52662.0	9.0	57

df.isna()

_	⊧mр⊥оуе	e_тл	age	Satary	JOD_SATISTACTION	work_Hours_Per_week
	0	False	False	False	False	False
	1 1	False	False	False	False	False
	2 i	False	False	False	False	False
	3 1	False	False	False	False	False
	4	False	False	False	False	False
	5 I	False	False	False	False	False
	6 1	False	False	True	True	False
	7	False	False	False	False	False
	8 1	False	False	False	False	False
	9 1	False	False	True	False	False
	10 i	False	False	False	False	False
	11	False	True	False	True	False
	12 i	False	False	False	True	False
	13 I	False	False	False	False	False
	14 i	False	False	False	False	False
	15 i	False	False	False	False	False
	16 i	False	False	False	False	False
	17 i	False	False	False	False	False
	18 i	False	False	False	False	False
	19 i	False	False	False	False	False
	20	False	False	False	False	False
	21	False	False	False	False	False
	22	False	False	False	True	False
	23	False	False	False	False	False
	24	False	False	True	False	False
	25 i	False	False	False	True	False
	26 i	False	False	True	False	False
	27	False	False	False	False	False
	28 i	False	False	False	False	False
	29 i	False	False	False	False	False
	30 i	False	True	False	False	False
	31 i	False	False	False	True	False
	32 i	False	False	False	False	False
	33 I	False	False	False	False	False
	34 i	False	True	False	True	False
	35 i	False	False	False	False	False
	36 I	False	False	False	False	False
	37 i	False	False	False	True	False
	38 i	False	False	True	False	False
	39 i	False	True	False	False	False
	40 i	False	False	False	False	False
	41	False	False	False	False	False
	42 i	False	False	False	False	False
	43 i	False	False	False	False	False
	44 i	False	False	False	False	False
	45 i	False	False	False	False	False
	46	False	False	False	True	False
	47 i	False	False	False	True	False
	48 i	False	False	False	False	False

```
49
                False True
                             False
                                                 False
                                                                      False
df.isnull().sum()
<del>_</del>→
          Employee_ID
              Age
                             5
             Salary
         Job_Satisfaction
      Work_Hours_Per_Week
df['Salary'].mean()
→ 72349.2
df['Job_Satisfaction'].mean()
→ 5.55
df['Work_Hours_Per_Week'].mean()
<del>→</del> 44.72
df['Work_Hours_Per_Week'].mode()
₹
        Work_Hours_Per_Week
      0
df['Work_Hours_Per_Week'].median()
→ 46.0
df['Salary'].fillna(df['Salary'].mean(), inplace=True)
🚌 <ipython-input-11-8332c1905e34>:1: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained as:
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col]
       df['Salary'].fillna(df['Salary'].mean(), inplace=True)
df['Salary'] = df['Salary'].fillna(df['Salary'].mean())
df['Job_Satisfaction'] = df['Job_Satisfaction'].fillna(df['Job_Satisfaction'].mean())
df['Work_Hours_Per_Week'] = df['Work_Hours_Per_Week'].fillna(df['Work_Hours_Per_Week'].mean())
df
```

25, 2:38 PM Assignmen					
_	Employee_ID	Age	Salary	Job_Satisfaction	Work_Hours_Per_Week
0	1001	50.0	108953.0	9.00	36
1	1002	36.0	82995.0	8.00	59
2	1003	29.0	70757.0	2.00	30
3	1004	42.0	39692.0	1.00	30
4	1005	40.0	75758.0	7.00	54
5	1006	44.0	102409.0	7.00	56
6	1007	32.0	72349.2	5.55	59
7	1008	32.0	95697.0	5.00	54
8	1009	45.0	67065.0	3.00	49
9	1010	57.0	72349.2	8.00	42
10	1011	45.0	41534.0	6.00	38
11	1012	NaN	70397.0	5.55	32
12	1013	43.0	31016.0	5.55	36
13	1014	23.0	119789.0	1.00	35
14	1015	45.0	85591.0	3.00	37
15	1016	51.0	119812.0	5.00	56
16	1017	59.0	53247.0	3.00	38
17	1018	23.0	54300.0	1.00	59
18	1019	42.0	104065.0	5.00	34
19	1020	54.0	112798.0	10.00	30
20	1021	33.0	39268.0	7.00	48
21	1022	43.0	116807.0	7.00	39
22	1023	46.0	42185.0	5.55	41
23	1024	48.0	93704.0	9.00	53
24	1025	49.0	72349.2	10.00	44
25		37.0	69099.0	5.55	56
26	1027	36.0	72349.2	3.00	51
27			68044.0	7.00	53
28		58.0		1.00	38
29		28.0		4.00	49
30		NaN		4.00	46
31		30.0		5.55	59
32		39.0		7.00	46
33		25.0		7.00	55
34		NaN		5.55	49
35		35.0		4.00	41
36		30.0		7.00	59
37 38		47.0		5.55	36 31
39		23.0 NaN	72349.2 69504.0	3.00 6.00	32
40		49.0		2.00	46
41		28.0		10.00	34
41		29.0		9.00	46
42		56.0		5.00	53
43		35.0		6.00	46
44		38.0		4.00	56
45		57.0		5.55	46
46			94505.0	5.55	31
48		23.0		7.00	31
48	1049	∠3.0	02201.0	/.UU	. OLEDM 140:00 11

```
49
                                  1050 NaN 52662.0
                                                                                                     9.00
   Next steps: ( Generate code with df )
                                                                     ( View recommended plots )
                                                                                                                                  New interactive sheet
print("Dataset after handling missing values:")
print(df)
 \Longrightarrow Dataset after handling missing values:
                  {\tt Employee\_ID}
                                              Age
                                                             Salary
                                                                             Job_Satisfaction Work_Hours_Per_Week
                                1001
                                             50.0
                                                         108953.0
                                                                                                     9.00
                                1002
                                            36.0
                                                           82995.0
                                                                                                     8.00
          2
                                1003
                                            29.0
                                                           70757.0
                                                                                                     2.00
                                                                                                                                                     30
          3
                                1004
                                            42.0
                                                           39692.0
                                                                                                                                                     30
                                                                                                      1.00
          4
                                1005
                                             40.0
                                                           75758.0
                                                                                                      7.00
          5
                                1006
                                            44.0
                                                         102409.0
                                                                                                      7.00
                                                                                                                                                     56
          6
                                1007
                                             32.0
                                                           72349.2
                                                                                                      5.55
                                                                                                                                                     59
                                1008
                                                           95697.0
                                                                                                      5.00
                                                                                                                                                     54
                                            32.0
          8
                                1009
                                                                                                      3.00
                                                                                                                                                     49
                                            45.0
                                                           67065.0
                                                                                                                                                     42
          9
                                1010
                                            57.0
                                                           72349.2
                                                                                                      8.00
          10
                                1011
                                            45.0
                                                           41534.0
                                                                                                      6.00
                                                                                                                                                     38
          11
                                1012
                                              NaN
                                                           70397.0
                                                                                                      5.55
                                                                                                                                                     32
          12
                                1013
                                            43.0
                                                           31016.0
                                                                                                      5.55
                                                                                                                                                     36
          13
                                1014
                                            23.0
                                                         119789.0
                                                                                                      1.00
                                                                                                                                                     35
          14
                                1015
                                            45.0
                                                          85591.0
                                                                                                      3.00
                                                                                                                                                     37
          15
                                1016
                                             51.0
                                                         119812.0
                                                                                                      5.00
          16
                                1017
                                             59.0
                                                           53247.0
                                                                                                      3.00
                                                                                                                                                     38
          17
                                1018
                                            23.0
                                                           54300.0
                                                                                                      1.00
                                                                                                                                                     59
          18
                                1019
                                            42.0
                                                        104065.0
                                                                                                     5.00
                                                                                                                                                     34
          19
                                1020
                                            54.0
                                                         112798.0
                                                                                                    10.00
                                                                                                                                                     30
          20
                                1021
                                            33.0
                                                           39268.0
                                                                                                     7.00
                                                                                                                                                     48
          21
                                1022
                                            43.0
                                                        116807.0
                                                                                                      7.00
                                                                                                                                                     39
          22
                                1023
                                            46.0
                                                           42185.0
                                                                                                      5.55
                                                                                                                                                     41
          23
                                1024
                                             48.0
                                                           93704.0
                                                                                                     9.00
                                                                                                                                                     53
          24
                                1025
                                             49.0
                                                           72349.2
                                                                                                    10.00
                                                                                                                                                     44
          25
                                1026
                                            37.0
                                                           69099.0
                                                                                                     5.55
                                                                                                                                                     56
          26
                                1027
                                                           72349.2
                                                                                                      3.00
                                                                                                                                                     51
                                             36.0
          27
                                            24.0
                                                           68044.0
                                                                                                      7.00
                                                                                                                                                     53
                                1028
          28
                                1029
                                            58.0
                                                           81214.0
                                                                                                     1.00
                                                                                                                                                     38
          29
                                1030
                                            28.0
                                                           91228.0
                                                                                                     4.00
                                                                                                                                                     49
          30
                                1031
                                              NaN
                                                           78984.0
                                                                                                     4.00
                                                                                                                                                     46
          31
                                1032
                                             30.0
                                                           70774.0
                                                                                                      5.55
                                                                                                                                                     59
          32
                                1033
                                            39.0
                                                           32568.0
                                                                                                      7.00
                                                                                                                                                     46
          33
                                1034
                                             25.0
                                                           92592.0
                                                                                                      7.00
                                                                                                                                                     55
                                1035
                                                                                                                                                     49
                                              NaN
                                                                                                      5.55
          35
                                1036
                                             35.0
                                                            32695.0
                                                                                                      4.00
                                                                                                                                                     41
          36
                                1037
                                             30.0
                                                           78190.0
                                                                                                      7.00
                                                                                                                                                     59
          37
                                1038
                                             47.0
                                                           35258.0
                                                                                                      5.55
                                                                                                                                                     36
          38
                                1039
                                            23.0
                                                           72349.2
                                                                                                     3.00
                                                                                                                                                     31
          39
                                1040
                                              NaN
                                                           69504.0
                                                                                                      6.00
                                                                                                                                                     32
          40
                                1041
                                            49.0
                                                           63159.0
                                                                                                     2.00
                                                                                                                                                     46
          41
                                1042
                                            28.0
                                                           43986.0
                                                                                                    10.00
                                                                                                                                                     34
          42
                                1043
                                            29.0
                                                           91858.0
                                                                                                     9.00
                                                                                                                                                     46
          43
                                1044
                                            56.0
                                                           42666.0
                                                                                                      5.00
                                                                                                                                                     53
          44
                                1045
                                             35.0
                                                           68660.0
                                                                                                      6.00
                                1046
                                             38.0
                                                           33561.0
          46
                                1047
                                                           56854.0
                                                                                                      5.55
          47
                                                                                                                                                     31
                                1048
                                            25.0
                                                           94505.0
                                                                                                      5.55
          48
                                1049
                                                                                                      7.00
                                            23.0
                                                           82251.0
                                                                                                                                                     31
          49
                                1050
                                              NaN
                                                                                                                                                     57
                                                           52662.0
                                                                                                      9.00
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[['Age', 'Salary']] = scaler.fit_transform(df[['Age', 'Salary']])
 df['] ob\_Satis faction'] = (df['] ob\_Satis faction'] - df['] ob\_Satis faction']. \\ min()) / (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction']. \\ max() - df['] ob\_Satis faction'] + (df['] ob\_Satis faction'] + (df
from \ sklearn.preprocessing \ import \ StandardScaler
s_scaler = StandardScaler()
df[['Work_Hours_Per_Week']] = s_scaler.fit_transform(df[[ 'Work_Hours_Per_Week']])
df['Work_Hours_Per_Week']
```

∓*

:38 PN	VI		
	Work_	Hours	_Per_Week
0			-0.905969
1			1.483629
2			-1.529343
3			-1.529343
4			0.964151
5			1.171942
6			1.483629
7			0.964151
8			0.444673
9			-0.282596
10			-0.698178
11			-1.321551
12			-0.905969
13			-1.009865
14			-0.802074
15			1.171942
16			-0.698178
17			1.483629
18			-1.113760
19			-1.529343
20			0.340777
21			-0.594283
22			-0.386491
23			0.860255
24			-0.074805
25			1.171942
26			0.652464
27			0.860255
28			-0.698178
29			0.444673
30			0.132986
31			1.483629
32			0.132986
33			1.068046
34			0.444673
35			-0.386491
36			1.483629
37			-0.905969
38			-1.425447
39			-1.321551
40			0.132986
41			-1.113760
42			0.132986
43			0.860255
44			0.132986
45			1.171942
46			0.132986
47			-1.425447
48			-1.425447