Codes cycliques.

Exercice 1. Montrer que le polynôme $X^5 + X^4 + X + 1$ engendre un code cyclique binaire de longueur n = 8.

Exercice 2. Combien existe-t-il de codes cycliques binaires de longueur 4? Donner pour chacun une matrice génératrice et une matrice de contrôle.

Exercice 3. 1. Lesquels de ces polynômes engendrent-ils un code cyclique ternaire de longueur 9?

$$\begin{array}{lll} a) \ X-1 & & b) \ X^2-1 \\ c) \ X^3-1 & & d) \ X^2+X+1 \\ e) \ X^5-2X^4+X^3-X^2+2X-1 & f) \ X^6+1 \end{array}$$

2. Soit C le code cyclique binaire de longueur 6 engendré par $g=1+X+X^2$. On note G la matrice génératrice de C associée de façon naturelle à g. Quel est le message qui, encodé par G, donne le mot (100011)?

a) (1000)	b) (1100)
c) (0111)	d) (0101)
e) (1101)	f) (1011)

Exercice 4. Autre approche du code de Hamming binaire de longueur 7.

Soit $P = X^3 + X + 1 \in \mathbf{F}_2[X]$, et soit $\mathbf{K} = \mathbf{F}_2[X]/(P)$. On pose $\alpha = \mathrm{cl}(X) \in \mathbf{K}$.

- 1. a) Montrer que K est un corps; calculer sa caractéristique et son cardinal.
 - b) Donner une base du \mathbf{F}_2 -espace vectoriel \mathbf{K} . Lister toutes les racines primitives de l'unité de \mathbf{K} .
- **2.** On considère le code binaire C de longueur 7 dont les mots $(c_0, c_1, \ldots, c_6) \in (\mathbf{F}_2)^7$ vérifient

$$\sum_{k=0}^{6} c_k \alpha^k = 0.$$

- a) Montrer que C est un code cyclique.
- **b)** Calculer la dimension de C.
- c) Montrer qu'il n'existe pas de mots du code de poids 2.
- d) Calculer la distance d(C) de C. Donner un mot de poids d(C).
- **3. a)** Donner une matrice génératrice de C.
 - **b)** Déduire de la question précédente une matrice de contrôle de C. Retrouver d(C) à partir de cette matrice de contrôle.
 - c) Montrer que le polynôme P engendre C.

Exercice 5. Généralisation : code de Hamming binaire de longueur $2^r - 1$.

Soit $\alpha \in \mathbf{F}_{2^r}^*$, on pose $n = 2^r - 1$. On considère l'application linéaire u de $(\mathbf{F}_2)^n$ dans \mathbf{F}_{2^r} définie par

$$\forall (c_0, c_1, \dots, c_{n-1}) \in (\mathbf{F}_2)^n, \ u(c_0, c_1, \dots, c_{n-1}) = \sum_{k=0}^{n-1} c_k \alpha^k.$$

On note C le code binaire de longueur n défini par C = ker(u).

- 1. Soit d la distance minimale de C. Montrer que $d \geq 3$ si et seulement si α est une racine primitive de l'unité de \mathbf{F}_{2^r} . On suppose dans la suite que $d \geq 3$.
- 2. Déterminer la dimension de C, montrer que C est un code parfait de distance 3.
- 3. En déduire que les colonnes d'une matrice de contrôle de C constituent tous les vecteurs non nuls de \mathbf{F}_2^r .
- **4.** Soit P le polynôme défini par $P = \prod_{k=0}^{r-1} (X \alpha^{2^k})$. Montrer que $P \in \mathbf{F}_2[X]$, et que P divise $X^n 1$ dans $\mathbf{F}_2[X]$.
- **5.** Montrer que le code C est cylique engendré par P.

Exercice 6. 1. Montrer que le polynôme $g = (X - 1)^5$ divise le polynôme $X^9 - 1$ dans $\mathbf{F}_3[X]$.

- **2.** Soit C le code cyclique de longueur 9 sur \mathbf{F}_3 , engendré par le polynôme g. Quelle est la dimension de C? Quel est le nombre de mots de C?
- 3. Développer le polynôme g dans $\mathbf{F}_3[X]$, en détaillant et justifiant les calculs.
- 4. Pourquoi la matrice

est-elle une matrice génératrice du code C?

- 5. Montrer que C contient un mot de poids 3.
- **6.** Montrer que le polynôme de contrôle de C est le polynôme $h = X^4 + 2X^3 + 2X + 1$.
- 7. Déterminer une matrice de contrôle de C.
- 8. Déterminer la distance minimum du code C et le nombre d'erreurs que C peut corriger.
- **9.** Le mot m = 121102210 est reçu. Sous l'hypothèse d'au plus une erreur, quel est le mot de code émis? Quel est le message envoyé, sachant qu'il est encodé par la matrice G?