Information Retrieval GAN for RS:

Jun Wang*, Lanton Yu*, Yu Gong**

University College London*, Alibaba Group**

Anup Deshmukh

Sections

- Information Retrieval (IR) models
- Formalizing the minimax game for IR!
 - Difficulties and Solutions
- Exploiting IRGAN's in Recommender systems

1.1

Two schools of thinking in IR modeling

document₁

document₂

document₃

document₄

Generative Retrieval

- Assume there is an underlying stochastic generative process between documents and queries
- Generate/Select relevant documents given a query

- Learns from labeled relevant judgments
- Predict the relevance given a querydocument pair

1.2 Borrowing the idea from GAN's

- Take advantage of both schools of thinking
 - The generative model learns to fit the relevance distribution over documents via the signal from the discriminative model.
 - The **discriminative model** should be able to exploit the unlabeled data selected by the generative model to achieve a better estimation for document ranking.

2.1 IRGAN: formulation

- r: relevance of the document, q: queries, d: corresponding document
- $\mathbf{p}_{\text{true}}(\mathbf{d} | \mathbf{q}, \mathbf{r})$: relevance preferance distribution
- Generative retrieval model $\mathbf{p}_{\theta}(\mathbf{d} | \mathbf{q}, \mathbf{r})$, which tries to generate (or select) relevant documents, from the candidate pool for the given query q.
- Discriminative retrieval model $\mathbf{f}_{\phi}(\mathbf{q}, \mathbf{d})$: goal is to distinguish between relevant documents and non-relevant documents for the query q as accurately as possible.

2.2 IRGAN: overall objective

$$J^{G^*,D^*} = \min_{\theta} \max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n,r)} \left[\log D(d|q_n) \right] + \\ \mathbb{E}_{d \sim p_{\theta}(d|q_n,r)} \left[\log(1 - D(d|q_n)) \right] \right)$$
 where
$$D(d|q) = \sigma(f_{\phi}(d,q)) = \frac{\exp(f_{\phi}(d,q))}{1 + \exp(f_{\phi}(d,q))}$$

2.3 IRGAN: optimizing discriminative retrieval

$$\phi^* = \arg\max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n,r)} \left[\log(\sigma(f_{\phi}(d,q_n))) + \mathbb{E}_{d \sim p_{\theta^*}(d|q_n,r)} \left[\log(1 - \sigma(f_{\phi}(d,q_n))) \right] \right)$$

2.4 IRGAN: optimizing generative retrieval

$$\theta^* = \arg\min_{\theta} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n, r)} \left[\log \sigma(f_{\phi}(d, q_n)) \right] + \mathbb{E}_{d \sim p_{\theta}(d|q_n, r)} \left[\log(1 - \sigma(f_{\phi}(d, q_n))) \right] \right)$$

$$= \arg\max_{\theta} \sum_{n=1}^{N} \underbrace{\mathbb{E}_{d \sim p_{\theta}(d|q_n, r)} \left[\log(1 + \exp(f_{\phi}(d, q_n))) \right]}_{\text{denoted as } J^G(q_n)},$$

2.5 IRGAN: moving away from GAN's

- First, the generative retrieval process is **stochastic sampling over discrete data**, i.e., the candidate documents, which is different from the deterministic generation based on the sampled noise signal in the original GAN.
- As the sampling of d is **discrete**, it cannot be directly optimised by gradient descent as in the original GAN formulation.

2.6 Q-learning in RL

- 1. Initialize Q-values (Q(s,a)) arbitrarily for all state-action pairs.
- 2. For life or until learning is stopped...
- 3. Choose an action (a) in the current world state (s) based on current Q-value estimates $(Q(s,\cdot))$.
- 4. Take the action (a) and observe the the outcome state (s') and reward (r).
- 5. Update $Q(s,a) := Q(s,a) + lpha \left[r + \gamma \max_{a'} Q(s',a') Q(s,a)
 ight]$

2.7 Policy gradients over Q-learning

2.8 Policy gradients

$$\pi_{\theta}(a|s) = P[a|s] \qquad J_{avgv}(\theta) = E_{\pi}(V(s)) = \sum_{s} d(s)V(s) \\ where \ d(s) = \frac{N_{\text{umber of occurrences of the state}}}{\sum_{s'} N(s')} \text{Total nb occurrences of all states}$$

$$J_{avR}(\theta) = E_{\pi}(r) = \sum_{s} d(s) \sum_{a} \pi \theta(s,a) \ R_{s}^{a}$$
 Probability that I'm in Probability that I take this action a from that state under this policy

Immediate rewar

Policy: π_{θ} Objective function: $J(\theta)$ Gradient: $\nabla_{\theta}J(\theta)$

 $Update: \theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

2.9 IRGAN: optimizing generative retrieval

$$\theta^* = \arg\min_{\theta} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n, r)} \left[\log \sigma(f_{\phi}(d, q_n)) \right] + \mathbb{E}_{d \sim p_{\theta}(d|q_n, r)} \left[\log(1 - \sigma(f_{\phi}(d, q_n))) \right] \right)$$

$$= \arg\max_{\theta} \sum_{n=1}^{N} \underbrace{\mathbb{E}_{d \sim p_{\theta}(d|q_n, r)} \left[\log(1 + \exp(f_{\phi}(d, q_n))) \right]}_{\text{denoted as } I^G(q_n)},$$

3.1 IRGAN

Algorithm 1 Minimax Game for IR (a.k.a IRGAN)

```
Input: generator p_{\theta}(d|q, r); discriminator f_{\phi}(x_i^q);
         training dataset S = \{x\}
 1: Initialise p_{\theta}(d|q, r), f_{\phi}(q, d) with random weights \theta, \phi.
 2: Pre-train p_{\theta}(d|q,r), f_{\phi}(q,d) using S
 3: repeat
        for g-steps do
           p_{\theta}(d|q, r) generates K documents for each query q
  5:
           Update generator parameters via policy gradient Eq. (5)
        end for
        for d-steps do
           Use current p_{\theta}(d|q, r) to generate negative examples and com-
 9:
           bine with given positive examples {\cal S}
           Train discriminator f_{\phi}(q, d) by Eq. (3)
10:
        end for
11:
12: until IRGAN converges
```

3.1 Recommender Systems

of our recommendations that are relevant
of items we recommended recommender system precision:

of our recommendations that are relevant recommender system recall: # of all the possible relevant items

Table 3: Item recommendation results (Movielens).

	P@3	P@5	P@10	MAP
MLE	0.3369	0.3013	0.2559	0.2005
BPR [35]	0.3289	0.3044	0.2656	0.2009
LambdaFM [45]	0.3845	0.3474	0.2967	0.2222
IRGAN-pointwise	0.4072	0.3750	0.3140	0.2418
Impv-pointwise	5.90%*	7.94%*	5.83%*	8.82%*
	NDCG@3	NDCG@5	NDCG@10	MRR
MLE	0.3461	0.3236	0.3017	0.5264
BPR [35]	0.3410	0.3245	0.3076	0.5290
LambdaFM [45]	0.3986	0.3749	0.3518	0.5797
IRGAN-pointwise	0.4222	0.4009	0.3723	0.6082
Impv-pointwise	5.92%*	6.94%*	5.83%*	4.92%*

Table 4: Item recommendation results (Netflix).

	P@3	P@5	P@10	MAP
MLE	0.2941	0.2945	0.2777	0.0957
BPR [35]	0.3040	0.2933	0.2774	0.0935
LambdaFM [45]	0.3901	0.3790	0.3489	0.1672
IRGAN-pointwise	0.4456	0.4335	0.3923	0.1720
Impv-pointwise	14.23%*	14.38%*	12.44%*	2.87%*
	NDCG@3	NDCG@5	NDCG@10	MRR
MLE	0.3032	0.3011	0.2878	0.5085
BPR [35]	0.3077	0.2993	0.2866	0.5040
LambdaFM [45]	0.3942	0.3854	0.3624	0.5857
IRGAN-pointwise	0.4498	0.4404	0.4097	0.6371
Impv-pointwise	14.10%*	14.27%*	13.05%*	8.78%*

3.1 Recommender Systems

- How?
 - Maybe in next presentation

