EE669: VLSI Technology

Apurba Laha
Department of Electrical Engineering
IIT Bombay 400076

Email: <u>laha@ee.iitb.ac.in</u>, Tel: **022 25769408**

Office hour: Friday 10:00 – 11.00 AM, EE Annex, Room: 104

Thermal oxidation in practice

- 1. Clean the wafers (RCA clean, very important)
- 2. Put wafers in the boat
- 3. Load the wafers in the furnace
- 4. Ramp up the furnace to process temperature in N₂ (prevents oxidation from occurring)
- 5. Stabilize
- 6. Process (wet or dry oxidation)
- 7. Anneal in N2. Again, nitrogen stops oxidation process.
- 8. Ramp down

Electrical thickness measurement: C-V of MOSFET

Small AC voltage is applied on top of the DC voltage for capacitance measurement.

Substrate is N-type. Electron is majority carrier, hole is minority carrier.

- Accumulation: positive gate voltage attracts electrons to the interface.
- Depletion: negative gate bias pushes electrons away from interface. No charge at interface. Two capacitance in series.
- c. Inversion: further increase (negative) gate voltage causes holes to appear at the interface.

Effect of frequency for AC capacitance measurement

New Materials in Advanced CMOS

Hunt for new oxide to replace SiO₂ that served as gate dielectric over 3 decades

CMOS scaling

Moore's Law:

- x2 more devices/wafer every 2 years
- Feature size decreases by x2 every 6 years
- ➤ ITRS roadmap shows the expected reduction in device dimensions or 'node'

Limits to Scaling

- Lithography
- Materials
 - High dielectric constant (K) gate oxide
 - Metal gates
 - High mobility channel Strained Si, Ge
 - Dopant activation
 - Low K inter-metal dielectrics (SiOC_x)
 - Electromigration use of Cu
 - Silicon-on insulator
- Power dissipation
- Novel device structures

Gate Oxide Thickness

- SiO₂ gate oxide is only 1.2 nm thick very 'Nano'
- only 5 atomic layers thick

High-k, Quantum Mechanical Tunneling and Gate Leakage

"High-k" stands for high dielectric constant, a measure of how much charge a material can hold

Air is the reference point for this constant and has a "k" of 1.0.

Silicon dioxide (the "old-fashioned" gate material) has a "k" of 3.9.

"High-k" materials, such as Hafnium dioxide (HfO_2), zirconium dioxide (ZrO_2) and titanium dioxide (TiO_2) have "k" values higher than 3.9

Why High K oxides?

- SiO₂ layers <1.6 nm have high leakage current due to direct tunnelling.
 Not insulating
- Maintain C/area for S-D current
- Replace SiO₂ with thicker layer of new oxide with higher K
- Equivalent oxide thickness 'EOT'

Choice of High K Oxide

5 conditions -

- High enough dielectric constant K
- Stable no reaction with Si
 - Oxides with high heat of formation
 - Preferred HfO₂, Zr, Y, La, Al
- Stable up to 1050°C
 - · Low diffusion,
 - Amorphous HfSiO_x:N
- Band Offsets
 - Wide band gap
- Good interface
 - Few defects

Band Offsets are a key criterion

- Band offsets should be > 1 V
- Measured by photoemission; Calculated with Charge Neutrality Levels
- J Robertson, J Vac Sci Technol B 18 1785 (2000)

New Oxides are deposited: e.g. Atomic Layer Deposition

- Cyclic process of controlled by surface-saturation
- But sub-monolayer despite name
- Important industrial sector of designing precursor chemicals (Epichem..)

ALD gives highly conformal films

- Surface saturation
 - Excellent step coverage
- No pin-holes no electrical breakdown
- Nucleates only on oxide coated Si

P McIntyre, Stanford

Scaling!!!! Moore's Law

Expected to be running into severe road block (When??)

$$t_{eq} = \left(\frac{\mathcal{E}_{rSiO_2}}{\mathcal{E}_{rlow-K}}\right) t_{low-K} + \left(\frac{\mathcal{E}_{rSiO_2}}{\mathcal{E}_{rhigh-K}}\right) t_{high-K}$$
Limit ultimate scaling

"Moore's law, the dogmatized observation that device size was shrinking exponentially with time, will soon prove not to be a law after all, but just a rule, temporarily relevance to some industries." Horst. L Stormer, Nobel Laureate in Physics 1998

Hunting begins!!!

Crystalline Oxides on Silicon: The First Five Monolayers

https://link.aps.org/pdf/10.1103/PhysRevLett.81.3014

by RA McKee - 1998 - Cited by 1054 - Related articles

Oct 5, 1998 - In what follows, we will describe the **first five monolayers** of a structure transition from **silicon** to an ionic **oxide**. ... Capacitance/voltage for a SrTiO3 Si capacitor. The SrTiO3 is 150 Å thick, and with p-type **silicon** the capacitance of the **oxide** is obtained with **silicon** in accumulation at negative voltages.

Intel made a significant breakthrough in the 45nm process by using a "high-k" (Hi-k) material called hafnium to replace the transistor's silicon dioxide gate dielectric

TREND	EXAMPLE
Integration Level	Components/chip, Moore's Law
Cost	Cost per function
Speed	Microprocessor throughput
Power	Laptop or cell phone battery life
Compactness	Small and light-weight products
Functionality	Nonvolatile memory, imager

ALAN INCH

