Subproblems

Define F(v,i) for $v \in T$ and $i \in [0,k]$ such that F(v,i) is the maximum number of leaves that can be chosen from the subtree T_v , given the constraint specified in the problem that every leaves are at least k distance apart and the additional constraint that every leaves are at least i from the v. The final answer is F(r,0) where r is the root.

Recursive Formula

For base case, if $v \in T$ is a leaf, then F(v,0) = 1 (choosing itself) and F(v,i) = 0 for i > 0 (only possible choice is itself, yet the distance to itself is 0 so no possible leaves).

For recurrence, if $v \in T$ is a internal node, then we have its left child v_L and right child v_R . F(v,i) is the sum of $F(v_L,j)$ and $F(v_R,\ell)$, for some j and l. We need to make sure that the constraint for T(v,i) is still satisfied, therefore $j+\ell \geq k-2$ so that two leaves in T_{v_L} and T_{v_R} still are at least k apart, and that $\min(j,\ell) \geq i-1$ so that every leave is still i apart from v. Therefore (the naive version)

$$F(v,i) = \max_{\substack{j,\ell \in [0,k] \ j+\ell \geq k-2 \ \min(j,\ell) \geq i-1}} F(v_L,j) + F(v_R,\ell)$$

But notice that we should notice that F(v,i) is monotonically non-increasing with i. (Intuitively, the cases when given constraint that at least i' away from root always include the cases when given constraint that at least away i from root given that i' < i) Therefore, we want to make $j + \ell = k - 2$ so that the sub cases could have as small j and k possible therefore bigger $F(v_L, j)$ and $F(v_R, \ell)$. So, a **better** recurrence formula is:

$$F(v,i) = \max_{egin{array}{c} j,\ell \in [0,k] \ j+\ell = k-2 \ \min(j,\ell) \geq i-1 \end{array}} F(v_L,j) + F(v_R,\ell)$$

Evaluation Order

Since each F(v, i) only depends on its children, we could traverse tree in **post-order** (bottom-up), in each node, we need to evaluate for all $i \in [0, k]$. (Order doesn't matter for i, but let's do it in increasing order).

Complexity

Since we need to traverse every node, so there are O(n) node. In each node we need to consider j, ℓ for O(k) cases (as their sum goes to k-2). In each case, the summation only takes O(1) time. In total, it takes O(nk). (If it's the naive approach, it will take $O(nk^2)$ instead). Since we save F(v,i) for all node $v \in T$ and $i \in [0,k]$, it will take O(nk). (Technically, we only need to save the root-to-leaf path which only

have O(h) node so the space complexity is O(hk) but in worst case O(h) = O(n), so it doesn't have effect on final space complexity)