

PDE-constrained optimization problems in the field of shallow geothermal energy

Smajil Halilović¹, Thomas Hamacher¹

¹Chair of Renewable and Sustainable Energy Systems, Technical University of Munich, Germany

EUCCO 2023, Heidelberg

Shallow geothermal energy (SGE) systems

Groundwater heat pumps (GWHPs)

Ground source heat pumps (GSHPs) with v. BHEs

Different designs of vertical BHEs [2]

Optimization of SGE systems

Maximizing the efficiency of SGE systems while meeting regulatory and technical conditions

GWHP optimization [3]
Optimal well placement for

multiple GWHPs

Adjoint approach FEM (Firedrake)

GSHP optimization [4]
Optimal control of individual
BHE loads

Collaborators:

- Fabian Böttcher, Stefan C. Kramer, Prof. Matthew D. Piggott, Kai Zosseder, Prof.
 Thomas Hamacher
- Bodo Lipp, Prof. Michael Ulbrich

[3] Halilovic, S., Böttcher, F., Kramer, S. C., Piggott, M. D., Zosseder, K., & Hamacher, T. (2022). *Well layout optimization for groundwater heat pump systems using the adjoint approach*. Energy Conversion and Management, 268, 116033. https://doi.org/10.1016/j.enconman.2022.116033

GWHP optimization – Forward model

2D vertically averaged steady state groundwater flow and heat transport in aquifer

Flow PDEs:

$$(BS_0 + \varepsilon_e)\frac{\partial h}{\partial t} + \nabla \cdot (B\mathbf{q}) = \overline{Q}$$

$$\mathbf{q} = -\mathbf{K} \cdot \nabla h$$

$$B = h - f^{\mathrm{B}}$$

$$\overline{Q} = \sum_{i=1}^{N} q_i(t)\delta(\mathbf{x} - \mathbf{x}_i^{\text{inj}}) - q_i(t)\delta(\mathbf{x} - \mathbf{x}_i^{\text{ext}})$$

Heat transport PDE:

$$BC_{\rm m} \frac{\partial T}{\partial t} + BC_{\rm w} \mathbf{q} \cdot \nabla T - \nabla \cdot (B\mathbf{\Lambda} \cdot \nabla T) = \overline{P}_{\rm t}$$

$$\overline{P}_{t} = \sum_{i=1}^{N} q_{i}(t) C_{w} [T(\mathbf{x}_{i}^{inj}, t) - T] \delta(\mathbf{x} - \mathbf{x}_{i}^{inj})$$

Steady state PDE system:

$$\nabla \cdot (B\mathbf{q})$$

$$\mathbf{q} = -\mathbf{K} \cdot \nabla h$$

$$BC_{\mathbf{w}}\mathbf{q}\cdot\nabla T - \nabla\cdot(B\mathbf{\Lambda}\cdot\nabla T) = \overline{P}_{\mathbf{t}}$$

Tensor of hydrodynamic thermal dispersion:

$$\mathbf{\Lambda} = \mathbf{\Lambda}_0 + \mathbf{\Lambda}_0^s + \rho c \mathbf{D}_{\text{mech}}$$

$$\Lambda_0 = \varepsilon s \Lambda \mathbf{I}$$

$$\mathbf{\Lambda}_0^s = (1 - \varepsilon) \Lambda^s \mathbf{I}$$

$$\mathbf{D}_{\text{mech}} = \beta_T \|\mathbf{q}\|\mathbf{I} + (\beta_L - \beta_T) \frac{\mathbf{q} \otimes \mathbf{q}}{\|\mathbf{q}\|}$$

Smooth approximation of Dirac functions

Dirac delta functions problematic for gradient based optimization

- → Replace them with smooth 'bump' functions
 - Using exponential terms

$$\delta(\mathbf{x} - \mathbf{x}_i) = \delta(x - x_i)\delta(y - y_i)$$

$$\delta(\mathbf{x} - \mathbf{x}_i) \to e^{-\frac{(x - x_i)^2 + (y - y_i)^2}{r^2}} = \psi(x, y, x_i, y_i)$$

Normalize the values with the volume:

$$V = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi(x, y, x_i, y_i) dx dy = r^2 \pi$$

r: Radius of wells

Functional of interest and constraints

Controls:

$$\mathbf{m} = [x_1^{\text{ext}}, \dots, x_N^{\text{ext}}, y_1^{\text{ext}}, \dots, y_N^{\text{ext}}, x_1^{\text{inj}}, \dots, x_N^{\text{inj}}, y_1^{\text{inj}}, \dots, y_N^{\text{inj}}]^T$$

Functional of interest:

$$J_0(\mathbf{u}, \mathbf{m}) = \sum_{i=1}^N T(\mathbf{x}_i^{\text{ext}}) = \sum_{i=1}^N \int_{\Omega} T(\mathbf{x}) \cdot \delta(\mathbf{x} - \mathbf{x}_i^{\text{ext}}) \, \mathrm{d}\Omega$$

Constraints:

$$\mathbf{x}_i^{\text{ext}}, \mathbf{x}_i^{\text{inj}} \in D_i, \quad \forall i \in \{1, \dots, N\}$$
 Am $\leq \mathbf{b}$

$$d(\mathbf{x}_i^{\text{ext}}, \mathbf{x}_i^{\text{inj}})^2 = (x_i^{\text{ext}} - x_i^{\text{inj}})^2 + (y_i^{\text{ext}} - y_i^{\text{inj}})^2 \ge d_{\min}^2,$$

$$\mathbf{x}_i^{\text{ext}}, \mathbf{x}_i^{\text{inj}} \notin R_i^j, \quad \forall i \in \{1, \dots, N\}, \, \forall j \in \{1, \dots, r_i\}$$

Restricted area for GWHP wells

Feasible area for GWHP wells

[3]

Soft constraints – penalty approach

Penalty function:

$$P_R = \alpha \cdot \sum_{i=1}^{N} \left(p(\mathbf{x}_i^{\text{ext}}) + p(\mathbf{x}_i^{\text{inj}}) \right)$$

$$p(\mathbf{x}_i) = \int_{\Omega} G(\mathbf{x}) \cdot \delta(\mathbf{x} - \mathbf{x}_i) \, \mathrm{d}\Omega$$

Penalty field:

$$G(\mathbf{x}) = \begin{cases} 0 \\ 1 + \cos\left[\frac{d(\mathbf{x}, \mathbf{x}_{i,j}^p)}{r_{i,j}^p} \cdot \frac{\pi}{2}\right] \end{cases}$$

$$G(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \notin R_i^j, \\ \forall i \in \{1, \dots, N\}, \ \forall j \in \{1, \dots, r_i\} \\ 1 + \cos\left[\frac{d(\mathbf{x}, \mathbf{x}_{i,j}^p)}{r_{i,j}^p} \cdot \frac{\pi}{2}\right] & \text{if } \mathbf{x} \in R_i^j, \end{cases}$$

Problem formulation and initialization

Reduced-space problem:

$$\min_{\boldsymbol{m}} - \hat{J}_0(\boldsymbol{m}) + P_R(\boldsymbol{m}),$$

subject to $g_1(\mathbf{m}) \leq 0$,

$$g_2(m) \le 0$$
,

Multi-start initialization strategy [3]

GWHP optimization – Case study

GWHP optimization – Results

Well positions during optimization [3]

Initial and final GW temperature fields and well layouts [3]

GWHP optimization – Results 2

Initial and final GW temperature fields and well layouts [3]

Optimal well layouts – Scenario 1 & 2 [3]

GSHP optimization – Forward model

2D vertically averaged transient heat transport in porous media

Scenario 1 without groundwater flow

$$C^{s} \frac{\partial T}{\partial t} - \nabla \cdot (\mathbf{\Lambda} \nabla T) = 0 \qquad I \times \Omega$$
$$\mathbf{n} \cdot (\mathbf{\Lambda} \nabla T) = -\mathbf{q}_{i} \quad I \times \Gamma_{i}$$
$$\mathbf{n} \cdot (\mathbf{\Lambda} \nabla T) = 0 \qquad I \times \Gamma_{0}$$
$$T(0) = T_{0} \quad \{0\} \times \Omega$$

- T ground temperature
- q_i load at BHE i
- C volumetric heat capacity

Scenario 2

with groundwater flow (confined aquifer):

$$C^{g} \frac{\partial T}{\partial t} + C^{f} \mathbf{u} \cdot \nabla T - \nabla \cdot (\mathbf{\Lambda} \nabla T) = 0 \qquad I \times \Omega$$

$$\mathbf{n} \cdot (\mathbf{\Lambda} \nabla T) = -\mathbf{q}_{i} \quad I \times \Gamma_{i}$$

$$\mathbf{n} \cdot (\mathbf{\Lambda} \nabla T) = 0 \qquad I \times \Gamma_{0}$$

$$T(0) = T_{0} \quad \{0\} \times \Omega$$

- **u** velocity of groundwater
- \bullet Λ tensor of hydrodynamic thermodispersion

Functional of interest

Controls:

$$\mathbf{q} = (q_1, ..., q_{n_b})^T \in Q = L^2(I; \mathbb{R}^{n_b})$$

• Borehole wall temperature as the mean over the respective boundary:

$$T_{b_i} = \frac{\int_{\Gamma_i} T \, ds}{\int_{\Gamma_i} ds} = \frac{1}{2\pi r_b} \int_{\Gamma_i} T \, ds$$

$$\frac{\sum_{i=1}^{n_b} T_{b_i}}{n_b} = \frac{1}{2\pi r_b n_b} \sum_{i=1}^{n_b} \int_{\Gamma_i} T \, ds \qquad \text{Average temperature on all boreholes}$$

Functional of interest:

$$\frac{1}{t_{end}} \int_{I} \frac{\sum_{i=1}^{n_b} T_{b_i}}{n_b} dt = \frac{1}{2\pi r_b n_b t_{end}} \int_{I} \sum_{i=1}^{n_b} \int_{\Gamma_i} T ds \, dt \quad \longrightarrow \quad \text{Problematic}$$

Functional of interest and constraints

Functional of interest:

$$J_1(T, \mathbf{q}) := \frac{1}{t_{end}} \int_I \sum_{i=1}^{n_b} T_{b_i} q_i dt = \frac{1}{2\pi r_b n_b t_{end}} \int_I \sum_{i=1}^{n_b} \int_{\Gamma_i} T ds \, q_i \, dt$$

Constraints:

The energy demand must be satisfied at each time step:

$$\int_{t_k}^{t_{k+1}} \sum_{i=1}^{n_b} 2\pi r_b l_b q_i(t) \, dt = Q_k$$

Only heating is considered:

$$0 \le q_i \le q_{up}$$

Monthly energy demand [4]

GSHP optimization results (Scenario 1)

(a) Unopt. temperature after 10a

(b) Opt. temperature after 10a

(c) Equal loads in January

(d) Optimized loads in January

[4]

GSHP optimization results (Scenario 2)

groundwater velocities [4]

Temperature fields

for different

GSHP optimization results (Scenario 2)

Optimized loads for $|u| = 10^{-7}$ m/s in January [4]

Conclusion and outlook

	Optimization application	
	GWHP	GSHP
Forward model	2D	2D
Time dependency	no	yes
Convexity	no	yes
Type of problem	Design / Distributed control	Boundary control

Comparison of the application examples

Outlook

- 3D models, design + control
- Rigorous mathematical proofs
- Other SGE applications: ATES, BTES

Contact:

smajil.halilovic@tum.de

https://www.epe.ed.tum.de/en/ens

Literature

- [1] © GRETA INTERREG ALPINE SPACE FEDER

 https://rapport-activite.brgm.fr/en/complementing-energy-mix-with-properties-resources-subsurface
- [2] A. García Gil, E. A. Garrido Schneider, M. Mejías Moreno, and J. C. Santamarta Cerezal. Shallow Geothermal Energy. Springer, 2022.
- [3] Halilovic, S., Böttcher, F., Kramer, S. C., Piggott, M. D., Zosseder, K., & Hamacher, T. (2022). Well layout optimization for groundwater heat pump systems using the adjoint approach. Energy Conversion and Management, 268, 116033. https://doi.org/10.1016/j.enconman.2022.116033
- [4] B. Lipp. Optimization of closed-loop shallow geothermal systems using the adjoint approach. Master's Thesis, 2023.