Probabilités et indépendance

Rappel. On appelle **probabilité conditionnelle de** *B* **sachant** *A* la probabilité que l'évènement *B* se réalise sachant que l'évènement *A* est réalisé. Elle est notée $P_A(B)$ ou $P(B \mid A)$ et est définie par $P_A(B) = \frac{P(A \cap B)}{P(A)}$

Soit A et B deux événements tels que $P(A) \neq 0$ et $P(B) \neq 0$.

Définition. Indépendance de deux événements.

On dit que A et B sont des événements indépendants si $P(B) = P_A(B)$.

Concrètement, cela veut dire que le fait que A soit réalisé n'a pas d'influence sur la probabilité de réalisation de B. De manière symétrique, on a alors également $P(A) = P_B(A)$

Exemple. On donne la répartition des licenciés dans un club. On tire au sort une personne de ce club pour une tombola et on considère les événements A : « La personne est adulte. » et B : « La personne pratique le basket-ball. ».

	Adulte	Enfant	Total
Handball	73	174	247
Basket-ball	45	135	180
Gymnastique	14	87	101
Total	132	396	528

On constate que $P(A) = \frac{132}{528} = 0.25$ et $P_B(A) = \frac{45}{180} = 0.25$. Ainsi $P(A) = P_B(A)$ donc A et B sont indépendants.

Propriété. Indépendance et intersection

A et B sont indépendants si et seulement si $P(A \cap B) = P(A) \times P(B)$.

Exemple. Dans l'exemple précédent, on appelle G l'événement « La personne pratique la gymnastique ». On a alors $P(A) = \frac{132}{528} = \frac{1}{4}$ et $P(G) = \frac{101}{528}$

Donc $P(A) \times P(G) = \frac{1}{4} \times \frac{101}{528} \approx 0,048$ d'une part. D'autre part, $P(A \cap G) = \frac{14}{528} \approx 0,027$. Ainsi, $P(A \cap G) \neq P(A) \times P(G)$ donc A et G ne sont pas indépendants.

Remarque. Si A et B sont indépendants, alors \overline{A} et B le sont, A et \overline{B} le sont, \overline{A} et \overline{B} le sont.