[4]

		. ,	
Q.5	i.	Write pumping lemma for context free language.	4
	ii.	Write answer of following-	6
		(a) Condition for PDA to be deterministic	
		(b) Condition for PDA accept string by final state	
		(c) Condition for PDA accept string by empty stack	
OR	iii.	Consider Push down automata-	6
		$P(\{q0,q1\},\{a,b,c\},\{a,b,Z\},\delta,q0,Z,\emptyset)$	
		$\delta(q0, a, Z) = (q0, aZ)$	
		$\delta(q0, b, Z) = (q0, bZ)$	
		$\delta(q0, a, a) = (q0, aa)$	
		$\delta(q0, a, b) = (q0, ab)$	
		$\delta(q0, b, b) = (q0, bb)$	
		$\delta(q0, b, a) = (q0, ba)$	
		$\delta(q0, c, a) = (q1, a)$	
		$\delta(q0, c, b) = (q1, b)$	
		$\delta(q1, a, a) = (q1, \varepsilon)$	
		$\delta(q1, b, b) = (q1, \varepsilon)$	
		$\delta(q1, \varepsilon, Z) = (q1, \varepsilon)$	
		Use instantaneous descriptions to determine acceptability of string	
		ω = abcba. [Write comments String is accepted or rejected. If	
		accepted then accepted by empty stack or accepted by final state]	
Q.6		Attempt any two:	
	i.	What is Turing machine. Describe its construction and write formal	5
		definition.	
	ii.	Explain recursively enumerable language and recursive language.	5
	iii.	Write short notes on universal Turing machine.	5
		-	

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering / Science End Sem Examination May-2024

CS3CO38 / BC3CO64 Theory of Computation

Programme: B.Tech. / B.Sc. Branch/Specialisation: CSE All/ Computer Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

1 Q.1 i. If L={ab,aa} then its Kleen's closure L*will contain-(a) abaa (b) aaab (c) aaaa (d) All of these Regular expression R = 0*1* represent regular language-1 (a) $L = \{0^n 1^n \mid n \ge 0 \}$ (b) L= $\{0^n 1^m \mid n, m \ge 0 \}$ (c) $l = \{0^n 1^m \mid n, m \ge 1 \}$ (d) L= $\{01\}^n \mid n \ge 0\}$ Pick false statement – 1 (where Q: Set of states, Σ : Set of input alphabet) (a) Transition function of non-deterministic finite state automata maps Q X Σ into 2^Q (b) Finite state automata recognises regular language. (c) Non-deterministic finite state automata is more powerful than deterministic automata (d) Transition function of deterministic finite state automata maps $Q X \Sigma$ into QWhich one of the following is transition function of NDFA 1 (a) $\delta(q_0, a) = q_1$ (b) $\delta(q_0, a) = q_1 \text{ and } \delta(q_0, b) = q_1$ (c) $\delta(q_0, a) = q_1 \text{ and } \delta(q_0, a) = q_2$ (d) $\delta(q_0, a) = q_1 \text{ and } \delta(q_0, b) = q_2$ As per Chomsky hierarchy the type-2 is-1 (a) Regular grammar (b) Context free grammar (c) Context sensitive grammar (d) Unrestricted grammar

P.T.O.

- vi. Which one of the following is unit production? (where A,B,C are non-terminals, 1 is terminal symbol)
 - (a) A -> 1 (b) A -> ϵ (c) A -> BC (d) A -> B
- vii. Which of the following describe deterministic PDA?
 - (a) $\delta(q_0, a, X) = \{(q_0, aX)\}\$ $\delta(q_0, \epsilon, X) = \{(q_0, X)\}\$
 - (b) $\delta(q_0, a, X) = \{(q_0, aX), (q_0, \epsilon)\}$
 - (c) $\delta(q_0, a, X) = \{(q_0, aX)\}\$ $\delta(q_0, a, Y) = \{(q_0, aY)\}\$
 - (d) None of these
- viii. A pushdown automaton has

(b) A tape, a controller and a stack

- (a) Only stack
- (d) A tape and a stack
- ix. Pick the correct statement-

(c) A tape, a controller

1

- (a) Turing machine has infinite length tape
 - (b) Linear bounded automata recognise context sensitive language
 - (c) Turing machine may enter into infinite loop
 - (d) All of these
- x. Consider transition function of Turing machine, $\delta(q,0) = (p, X, L)$ 1 X and L are respectively-
 - (a) Input symbol and direction of head
 - (b) Input Symbol and tape symbol
 - (c) Tape symbol and input symbol
 - (d) Tape symbol and direction of head
- Q.2 i. What is Kleene's closure.

2

5

1

1

1

- ii. Describe Moore machine. Draw transition diagram of it in support of a example.
- iii. A transition diagram of FSA is given as below-

Answer followings-

- (a) Write tuples of given FSA
- (b) Find acceptability of string ω = aabb
- (c) Find acceptability of string ω = aaabb

- OR iv. What are closure properties of regular language. Explain any five.
- Q.3 i. Why a FSA is said to be non-deterministic? Support your answer by drawing a transition diagram.
 - ii. Consider FSA M= ($\{q1,q2, q3, q4,q5\},\{0,1\}, \delta, q1,\{q3,q5\}$) where δ **6** are given by transition table as given below-

δ	0	1
→ q ₁	q_2	q ₃
q_2	q_3	q_5
$q_2 * q_3$	q_4	q_3
q_4	q_3	q_5
q ₄ *q ₅	q_2	q_5

Construct minimum state automata equivalent to given FSA. Draw transition diagram of minimized automata.

OR iii. Consider non-deterministic FSA, $M = (\{q0,q1,q2\},\{0,1\}, \delta, q0,\{q2\})$

Construct deterministic FSA equivalent to given non-deterministic FSA. Draw transition diagram.

- Q.4 i. Explain with example Chomsky normal form and Graibach normal 4 form.
 - ii. (a) What is simplified grammar? Explain.

6

5

(b) Remove null production from CFG whose productions are given below. Also write all production after removing null production.

 $S \rightarrow ABaC$

 $A \rightarrow BC$

B->b | ε

 $C \rightarrow D \mid \epsilon$

D > d

OR iii. Use CYK algorithm to determine whether the string ω = aabbb is in 6 language generated by the grammar.

 $S \rightarrow AB$

A-> BB|a

B-> ABlb

[4]

Scheme of Marking Theory of Computation-CS3CO38(T)-BC3CO64

Q.1	i)	If L={ab,aa} then its kleen's closure L*will contain d. All of the above	1
	ii)	Regular expression $R = 0*1*$ represent regular language	1
		(b) L= $\{0_n 1_m n, m \ge 0 \}$	
	iii)	Pick false statement	1
		(Where Q : Set of states, Σ : Set of input alphabet)	
		c. Non-deterministic finite state automata is more powerful than	
		Deterministic automata.	
	iv)	Which one of the following is transition function of NDFA	1
	11)	c. $\delta(q_0, a) = q_1$ and $\delta(q_0, a) = q_2$	
	v)	As per Chomsky hierarchy the type-2 is	1
	V)	b. Context Free Grammar	J
	vi)	Which one of the following is unit production	1
	. = /	(Where A,B,C are non-terminals, 1 is terminal symbol)	
		d. A -> B	
	vii)	Which of the following describe deterministic PDA	1
	VII)	c. $\delta(q_0, a, X) = \{(q_0, aX)\}$	
		$\delta(q_0, a, Y) = \{(q_0, aY)\}\$	
	viii)		1
	V111 <i>)</i>	A pushdown automaton has b. A tape, A controller and a Stack	J
	ix)	Pick the correct statement	1
)	d. All of the above.	
	x)	Consider transition function of Turing machine	1
	Λ)	$\delta(q,0) = (p, X, L)$,
		X and L are respectively	
		d. Tape symbol and direction of head	
Q.2	i.	Write formal definition of Finite state Automata.	2
		Tuples 1-Mark	
		Description of tuple 1-Mark	
	ii.	Describe Moore machine. Also draw transition diagram of it in	3
		support of example.	
		Describe Moore machine. 2-Marks	
		Example 1-Mark	
	iii.	A transition diagram of FSA is given as below	5

Answer followings

(I) Write tuples of given FSA.

1-Mark

(II) Find acceptability of string ω = aabb

2-Marks

(III) Find acceptability of string ω = aaabb

2-Marks

OR iv. What are closure properties of Regular Language. Explain any 5 five.

For each correct statement 1-Mark

Q.3 i. Why a FSA is said to be Non-Deterministic? Support your answer 4 by drawing a transition diagram.

Explanation or definition of NDFA 2-Marks Example Transition diagram showing Non-Determinism 2-Marks

ii. Consider FSA M=($\{q1,q2,q3,q4,q5\},\{0,1\},\delta,q1,\{q3,q5\}$) where **6** δ are given by transition table as given below

δ	0	1
$\rightarrow q_1$	q_2	q_3
q_2	q_3	q_5
$*q_3$	q_4	q_3
q_4	q_3	q_5
$*q_5$	q_2	q_5

Construct minimum state automata equivalent to given FSA. Also draw transition diagram of minimized automata.

Construction and procedure

4-Marks

Transition diagram of Minimized automata 2-Marks

OR iii. Consider Non-Deterministic FSA $M{=}(\{q0,q1,q2\},\{0,1\},\,\delta,\,q0,\{q2\}$

6

P.T.O.

Construct Deterministic FSA equivalent to given Non-Deterministic FSA. Also draw transition diagram.

Construction and procedure 4-Marks Transition diagram of equivalent DFA 2-Marks

Explain with example Chomsky Normal form and Graibach 4 Q.4 i. Normal Form.

> Chomsky Normal Form 2 Marks Graibach Normal Form 2 Marks

(a) What is simplified grammar? Explain.

6 (b) Remove null production from CFG whose productions are given below. Also write all production after removing null

production. S -> ABaC

 $A \rightarrow BC$

B->b | ε

 $C \rightarrow D \mid \epsilon$

D > d

Definition of Simplified Grammar 2-Marks Removing Procedure 3-Marks Productions after removing null production 1-Mark

OR iii. Use CYK algorithm to determine whether the string $\omega = aabbb$ is **6** in language generated by the grammar

 $S \rightarrow AB$

A-> BBla

B-> ABlb

Procedure 4-Marks

Statement whether the string generated by grammar or not 2-Mark

Write pumping Lemma for Context Free Language. 4-Marks Q.5 i.

Write answer of following (a) Condition for PDA to be Deterministic 2-Marks (b) Condition for PDA accept string by final state. 2-Marks (c) Condition for PDA accept string by empty stack. 2-Marks iii. Consider Push down automata OR

> $P(\{q0,q1\},\{a,b,c\},\{a,b,Z\},\delta,q0,Z,\emptyset)$ $\delta(q0, a, Z) = (q0, aZ)$ $\delta(q0, b, Z) = (q0, bZ)$ $\delta(q0, a, a) = (q0, aa)$ $\delta(q0, a, b) = (q0, ab)$

 $\delta(q0, b, b) = (q0, bb)$

 $\delta(q0, b, a) = (q0, ba)$

 $\delta(q0, c, a) = (q1, a)$

 $\delta(q0, c, b) = (q1, b)$

 $\delta(q1, a, a) = (q1, \epsilon)$

 $\delta(q1, b, b) = (q1, \epsilon)$

 $\delta(q1, \epsilon, Z) = (q1, \epsilon)$

Use instantaneous descriptions to determine acceptability of string ω = abcba. [Write comments String is accepted or rejected. If accepted then accepted by empty stack or accepted by final state] Computation for determining acceptability 4-Marks

Comments on acceptability 2-Marks

Q.6 Attempt any two:

> What is Turing Machine. Describe its construction and write 5 formal definition.

Describing construction 3-Marks 2-Marks Formal Definition

Explain Recursively Enumerable language and recursive 5 language.

2.5 Marks for each

Write short notes on universal Turing Machine. 5-Marks

P.T.O.

5

6

[2]