Теория игр ПМ-1701

Преподаватель:

Чернов Виктор Петрович viktor_chernov@mail.ru

Санкт-Петербург 2020 г., 6 семестр

Список литературы

[1] Теория игр

Содержание

1	10.02.2020			
	1.1	Введение	2	
	1.2	Матричные игры	4	

$1 \quad 10.02.2020$

1.1 Введение

Предметом теории игр является моделированием конфликтных ситуаций. Зачинателем "Теории игр" является Джон фон Нейман, а последователем является Джон Нэш. Зададимся вопросом, а как описать конфликт с помощью математических формул.

Опр: Стороны в "конфликте" называются игроками.

Опр: *Множеество игроков* обозначается как I и каждый игрок принадлежит этому множеству:

$$i \in I$$
 (1)

Опр: *Стратегия* в такой игре - правило(отображение), которое преписывает игроку для каждой ситуации в игре ход в это ситуации.

Опр: S_i -*Множеество стратегий*, для каждого игрока i своя стратегия:

$$\{S_i\}_{i\in I} \tag{2}$$

Опр: Ситуация - результат выбора игроками своих стратегий.

Опр: Размер выигрыша определяется *платежной функцией* - функция, оценивающая ту или иную ситуацию для отдельного игрока. Данная функция отображает ситуацию в число:

$$i: \{H_i\}_{i \in I} \tag{3}$$

$$H_i(s_1, s_2, ..., s_n) \in \mathbb{R} \tag{4}$$

т.е каждый игрок оценивает ситуацию вещественным числом.

Опр: Множество игроков, множество стратегий и множество платежных функций называется uspou:

$$< i \in I, \{S_i\}_{i \in I}, \{H_i\}_{i \in I} >$$
 (5)

Пример: на столе лежит 100 камешков, играют два человека. Ход состоит в том, что каждый игрок забирает из кучки от 1 до 5 камешкев по своему усмотрению. Тот, кто взял последним, выиграл. Существуют ли выигрышные стратегии для игроков?

Решение:

Первый ход: берем 4 камня, а после дополняем количество камешкев до 6. Первый выигрывает. ■

Для каждой из игр строится *дерево игры*, состоящее из стратегий, где каждая *ветвь* - отдельная игра, а *узлы* данного вида - ситуации.

На основе дерева игры попытаемся создать матрицу данной игры размером $m \times n$ Количество строк в данной матрице - количество стратегий первого игрока, количество столбцов - количество стратегий второго игрока.

Первый игрок выбирает какую-то строку этой матрицы, второй - какой-то столбец, другими словами первый игрок выбирает какую-то стратегию, а на пересечении столбцов и строк находится размер выигрыша первого игрока (при нулевом балансе у проигравшего получается —1, а у выигрывшего 1).

Пусть H_1 - матрица выигрыша первого игрока, H_2 - матрица выигрыша второго игрока и сумма элементов на одинаковых позициях в этих таблицах равна нулю.

Опр: Если сумма платежных функций (матриц функций) равна нулю, то такая игра называется игрой с *нулевой суммой*.

$$\sum_{i \in I} H_i(s_1, s_2, ..., s_n) = 0 \tag{6}$$

Опр: Если сумма равна какой-то константе, то такая игра называется игрой с *постоянной суммой*.

$$\sum_{i \in I} H_i(s_1, s_2, ..., s_n) = Const$$
 (7)

Опр: антагонистическая игра - игра двух игроков с нулевой суммой. В такой игре если выигрывает один, то обязательно проигрывает другой.

Так как сумма матриц равна нулю, то:

$$H_1 = -H_2 \tag{8}$$

следовательно, нам не нужно две матрицы и будем проводить рассуждение на основе матрицы выигрышей первого игрока.

1.2 Матричные игры

Рассмотрим матрицу $A_{m\times n}$ с элементами, являющимися вещественными числам, для антагонистической игры, в которую играют два игрока. Первый игрок выбирает номер строки, а второй игрок выбирает номер столбца.

То, что находится на пересечении (a_{ij}) - размер выигрыша (проигрыша) игрока первого игрока, $(-a_{ij})$ - проигрыша (выигрыша) второго игрока.

Будем выписывать минимальные элементы по строке:

$$\min_{j} = \{a_{1,j_1}, ..., a_{m,j_m}\}\tag{9}$$

Опр: Среди данных минимумов выберем тах среди та. Данная величина называется *максимином*:

$$\max_{i} (\min_{j} a_{ij}) = a_{i_0, j_0} \tag{10}$$

То есть в самой худшей ситуации, если он выберет эту строку, то это будет минимальным его выигрышем.

Допустим второй игрок выбирает первый столбец, тогда худшим вариантом для него будет максимум по строкам в каждом столбце:

$$\max_{i} = \{a_{i_1,1}, ..., a_{i_n,n}\} \tag{11}$$

Опр: Среди данных минимумов выберем min среди max (лучшее среди худшего). Данная величина называется *минимаксом*:

$$\min_{j}(\max_{i} a_{ij}) = a_{i_1,j_1} \tag{12}$$

Получили гарантированный проигрыш второго игрока. Предположим, что эти элементы совпали, тогда такой элемент называется седловой точкой.

Опр: Седловой точкой называется точка(элемент матрицы), которая является минимальным в своей строке и максимальной в своем столбце.

Опр: Устойчивая ситуация - ситуация, из которой невыгодно выходить любому игроку. Признак решения конфликта - наличие свойства устойчивости.

Такое решение называется решением по Нэшу.

Теорема 1: (неравенство максимина и минимакса)

Дана матрица $A_{m \times n}$ и a_{ij} - элементы матрицы.

Рассмотрим максимин и минимакс: a_{pq} и a_{rs} , такие, что:

$$a_{pq} = \max_{i} \left(\min_{j} \ a_{ij} \right) \tag{13}$$

$$a_{rs} = \min_{j} \left(\max_{i} a_{ij} \right) \tag{14}$$

Тогда

$$a_{pq} \le a_{rs} \tag{15}$$

Доказательство:

Рассмотрим матрицу и рассмотренные в ней элементы a_{pq} и a_{rs} .

$$\begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & a_{pq} & \cdot & a_{ps} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & a_{rs} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

Пусть рассматривается a_{ps} - элемент матрицы $A_{m \times n}$. $a_{ps} \le a_{rs}$, так как a_{rs} - максимум в столбце.

С другой стороны a_{pq} - минимум в строке, следовательно $a_{pq} \leq a_{ps}$. Тогда из двух неравенств получаем: $a_{pq} \leq a_{ps} \leq a_{rs}$.

Рассмотрим теперь теорему и необходимом и достаточном условии седловой точке в матрице.

Теорема 2: (необходимое и достаточное условие седловой точки)

Чтобы задача имела седловую точку необходимо и достаточно, чтобы

$$a_{pq} = a_{rs} \tag{16}$$

Доказательство:

1. \exists седловая чтока $\Rightarrow a_{pq} = a_{rs}$. Пусть a_{kl} - седловая точка.

$$\begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & a_{pq} & \cdot & \cdot & \cdot \\ \cdot & \cdot & a_{kl} & a_{ks} & \cdot \\ \cdot & \cdot & \cdot & a_{rs} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

Если бы мы писали строку максимумов, то в ней бы были точки $a_{kl},...,a_{rs}$, но в этой строке a_{rs} является минимумом, следовательно:

$$a_{kl} \geq a_{rs}$$

Если бы мы писали столбец минимумов, то в ней бы были точки $a_{pq}, ..., a_{kl}$, но в этом столбце a_{pq} является максимумом, следовательно:

$$a_{pq} \geq a_{kl}$$

Из двух неравенств получаем следующие соотношения:

$$a_{pq} \ge a_{kl} \ge a_{rs}$$

$$a_{pq} \ge a_{rs}$$

Но по формуле (15):

$$a_{pq} \leq a_{rs}$$

Следовательно:

$$a_{pq} = a_{rs}$$

Необходимость доказана

2. $a_{pq} = a_{rs} \Rightarrow$ Нужно доказать, что \exists - седловая точка

Для доказательства обратного случая нужно построить каким-то образом седловую точку. Выберем точку a_{ps} , как показано ниже, и докажем, что данная точка является седловой.

$$\begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & a_{pq} & \cdot & a_{ps} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & a_{rs} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

$$a_{pq} \le a_{ps} \le a_{rs}$$

Можно записать как равенство, так как по условию достаточности:

$$a_{pq} = a_{ps} = a_{rs}$$

Этот элемент равен минимальному в строке и максимальному в столбце - определение минимакса и максимина \Rightarrow седловая точка.

Теорема 3: (множество седловых точек)

Пусть a_{kl} и a_{uv} - седловые точки, тогда a_{kv} и a_{ul} - тоже седловые точки.

Доказательство:

$$\begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & a_{kl} & \cdot & a_{kv} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & a_{ul} & \cdot & a_{uv} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

$$a_{kl} \ge a_{ul} \ge a_{uv} \ge a_{kv} \ge a_{kl}$$

Так как концы равны, то можно заменить равенствами.

$$a_{kl} = a_{ul} = a_{uv} = a_{kv} = a_{kl}$$

Следовательно, a_{ul} и a_{kv} - максимальный в своем столбце и минимальный в своем столбце \Rightarrow седловые точки.

Замечание: все седловые точки равны друг другу.

Замечание: если элемент матрицы равен седловой точке, то он не обязательно является седловой точкой.

Рассмотрим пример:

$$\begin{pmatrix} 1_s & 1_s \\ 0 & 1 \end{pmatrix}$$

В данном примере в первой строке являются седловыми точками, но единица во второй строке не седловая точка, хоть и равна ей.