

SENSOR SERIAL NUMBER: 0415 CALIBRATION DATE: 06-May-21

Glider APL CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g = -1.03922432e+001CPcor = -9.5700e-008 (nominal) 1.16589892e+000 CTcor = 3.2500e-006 (nominal)-2.46311927e-003

2.65202529e-004

BATH TEMP	BATH SAL	BATH COND	INSTRUMENT	INSTRUMENT	RESIDUAL
(° C)	(PSU)	(S/m)	OUTPUT (kHz)	COND (S/m)	(S/m)
22.0000	0.0000	0.0000	2.99197	0.0000	0.00000
1.0000	34.5939	2.95876	5.86926	2.95876	-0.00000
4.5000	34.5750	3.26419	6.08896	3.26419	0.00000
15.0000	34.5348	4.24072	6.74283	4.24072	0.00001
18.5000	34.5263	4.58403	6.95787	4.58404	0.00001
24.0000	34.5169	5.13899	7.29180	5.13898	-0.00001
29.0000	34.5111	5.65793	7.59047	5.65791	-0.00002
32.5000	34.5081	6.02829	7.79647	6.02831	0.00001

f = Instrument Output (kHz)

 $t = temperature (°C); p = pressure (decibars); <math>\delta = CTcor; \epsilon = CPcor;$

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

