The Suitable for MIC PRINSSION. Not for a ORNL/TM-11300

Political delesses Attenditions

The Suitable for MIC PRINSSION AD

ORNL/TM-11300

OAK RIDGE

STABILITY OF VOLATILE ORGANICS IN **ENVIRONMENTAL WATER SAMPLES:** STORAGE AND PRESERVATION

Final Report

August 1989

M. P. Maskarinec C. K. Bayne L. H. Johnson S. K. Holladay R. A. Jenkins

Supported by

U.S. Army Toxic and Hazardous Materials Agency DOE IAG No. 1769-1743-A1

U.S. Environmental Protection Agency and U.S. Air Force DOE IAG No. 1824-1744-A1

and

U.S. Navy DOE IAG No. 1743-1743-A1

> Approved for public release; distribution unlimited

20030310 022

OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

The findings in this report are not to be construed as an official Department of the Army position unless otherwise so designated by other authorized documents.

NATIONAL LABORATORY

MARTIN MARIETTA

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

NTIS price codes—Printed Copy: A07 Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

SECURITY CLASSIFICATION OF THIS PAGE						
REPORT	DOCUMENTATIO	N PAGE			Form Approved OMB No. 0704-018	88
1a. REPORT SECURITY CLASSIFICATION Unclassified		16. RESTRICTIVE	MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY		3 . DISTRIBUTION	/AVAILABILITY	OF REPOR	Т	
2b. DECLASSIFICATION / DOWNGRADING SCHE	DULE	Approved f	or public release	ase;		
4. PERFORMING ORGANIZATION REPORT NUM	MBER(S)	5. MONITORING		REPORT N	UMBER(\$)	
ORNL/TM-11300						
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M		ANIZATIO	V	
Oak Ridge National Laboratory		USATHAM				
6c. ADDRESS (City, State, and ZIP Code) P. O. Box 2008		7b. ADDRESS (Cit	ty, State, and Zi 4460; Beale R			
Oak Ridge, TN 37831-6120			Proving Groun		1010-5401	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	TINSTRUMENT	IDENTIFICA	TION NUMBER	
USATHAMA						
8c. ADDRESS (City, State, and ZIP Code) Building E-4460; Beale Road		10. SOURCE OF F	PROJECT	ERS. TASK	WORK UNIT	T
Aberdeen Proving Ground, MD 21010-	5401	ELEMENT NO.	NO.	NO.	ACCESSION	NO.
11. TITLE (Include Security Classification) Stability of Volatile Organics in Enviro	nmental Water Sample	s: Storage and P	reservation			
12. PERSONAL AUTHOR(S) M. P. Maskarinec, C. K. Bayne, L. H. J	Johnson, S. K. Holladay	, and R. A. Jenk	ins			
13a. TYPE OF REPORT 13b. TIME FINAL FROM_	COVERED 4/86 TO 7/89	14. DATE OF REPO August 8, 1		h, Day)	5. PAGE COUNT 140	
16. SUPPLEMENTARY NOTATION						
17. COSATI CODES	18. SUBJECT TERMS					
FIELD GROUP SUB-GROUP		ganic compounds cal holding time,		es, preser	vation, storage,	
19. ABSTRACT (Continue on reverse if necessary	ary and identify by block i	number)				
The purpose of this work was to estable stability of common volatile organic contains a surface water. Two concentration less conditions, room temperature and under 365 days.	mpounds was determine evels were studied: no	ed in three types minally 50 μ g/L	of waters, dis and 500 μg/I	tilled wat L. Sampl	er, a groundwater, a les were stored at	and two
The data from this study indicates th Exceptions to this statement include corprone to biological degradation, particustorage condition dependent. Within the prior to analysis for volatile organic corproblem up to 365 days.	mpounds prone to dehydarly the volatile aromathe limits of this study, ompounds is about ten	drohalogenation (tics. The stability the minimum hol days, although f	(e.g. 1,1,2,2-tet or of the compo ding time for for most of th	rachloroe ounds was an environe ae compo	ethane) and compou s matrix dependent a conmental water sam	ands and aple
20. DISTRIBUTION / AVAILABILITY OF ABSTRAG			fied			,
22a. NAME OF RESPONSIBLE INDIVIDUAL Mary Ann Ryan		22b. TELEPHONE (301) 676	(Include Area Co 5–7569	ode) 22c. (OFFICE SY MBO L CETHA-TE-A	
DD Form 1473, JUN 86	Previous editions are			Y CLASSIFI	CATION OF THIS PAGE	E

UNCLASSIFIED

19. Abstract (Cont'd)

Because of the fact that the degradation observed in this study could apparently be controlled by preservation with acid, a second study was conducted comparing three acids for preservation of the samples. The same three water matrices were studied. Samples were preserved with hydrochloric acid (HCl), sodium bisulfate, and ascorbic acid. For the most part, all three acids effectively reduced the degradation and preserved the samples.

Several approaches were taken to estimate the maximum holding time (MHT) for each analyte because a standard definition for MHT has not been adopted by the Environmental Protection Agency (EPA). Each of the approaches resulted in different estimates of the MHT due to the application of different statistical procedures for the three definitions. Therefore, decisions concerning stability depend on the objective of the individual evaluating the environmental data.

STABILITY OF VOLATILE ORGANICS IN ENVIRONMENTAL WATER SAMPLES: STORAGE AND PRESERVATION

Final Report

August 1989

M. P. Maskarinec C. K. Bayne L. H. Johnson S. K. Holladay R. A. Jenkins

Supported by

U.S. Army Toxic and Hazardous Materials Agency DOE IAG No. 1769-1743-A1

U.S. Environmental Protection Agency and U.S. Air Force DOE IAG No. 1824-1744-A1

and

U.S. Navy DOE IAG No. 1743-1743-A1

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
Operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
Under Contract No. DE-AC05-84OR21400

EXECUTIVE SUMMARY

This report focuses on data generated for the purpose of establishing the stability of volatile organic compounds in environmental water samples. The study was carried out over a one year time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; 2) to make an attempt to develop storage and preservation techniques which would maximize the allowable holding times, in order to facilitate laboratory analytical efficiency; 3) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times; and 4) to develop techniques for the production of stable, long-term reference materials for quality assurance purposes.

The experimental design consisted of three water samples: distilled-in-glass water, a groundwater, and a surface water. The analytes consisted of most of the commonly encountered volatile organic compounds. All analyses were carried out using methods similar to those in the USEPA Contract Laboratory Program. GC/MS was used for all determinations. All determinations were carried out in quadruplicate along with a storage blank. Two concentration levels were studied: nominally 50 μ g/L and 500 μ g/L. Samples were stored at two conditions, room temperature and under refrigeration (4°C). Samples were analyzed at intervals of 0, 3, 7, 14, 28, 56, 112, and 365 days. The MHT's were estimated by two statistical definitions.

A method for the preparation of large volumes of fortified water samples was developed which consisted of filling a Tedlar gas sampling bag with the sample, addition of the analytes in methanolic solution, and dispensing of aliquots into 40 mL VOA vials without introduction of headspace and with minimal mixing. This method is shown to produce individual aliquots with precision better than 5%, well within accepted bounds for the analytical method. This method is shown to have applicability in the preparation of performance evaluation samples for interlaboratory comparisons and method validation studies.

The data from this study indicates that most volatile organic compounds are stable in water for longer than 365 days. Exceptions to this statement include compounds prone to dehydrohalogenation (e.g., 1,1,2,2-tetrachloroethane) and compounds prone to biological degradation, particularly the volatile aromatics. The stability of the compounds was matrix dependent and storage condition dependent. The matrix dependency was primarily related to the preserved biological activity of the matrix. The samples showed greater stability at refrigerated temperature than at room temperature. Within the limits of this study, the minimum holding time for an environmental water sample prior to analysis for volatile organic compounds is about ten days, although for most of the compounds stability is not a problem up to 365 days.

Because of the fact that the degradation observed in this study could apparently be controlled by preservation with acid, a second study was conducted comparing three acids

for preservation of the samples. The same three water matrices were studied. Samples were preserved with hydrochloric acid (HCl), sodium bisulfate, and ascorbic acid. For the most part, all three acids effectively reduced the degradation and preserved the samples. However, based on this work, sodium bisulfate is recommended for the preservation of volatile organic compounds in environmental water samples for the following reasons: 1) this acid is readily available, inexpensive, and free from interferences; 2) it is non-corrosive and can be added to sampling vials prior their to transport to the field; 3) the pK is 1.91, ensuring that the pH of the sample will be reduced to just slightly less than 2 regardless of the amount added; 4) sodium bisulfate is readily soluble in the aqueous matrix; and 5) the additional ionic strength resulting from the addition of sodium bisulfate can actually improve the reliability of the analytical method by increasing purge efficiency. While both the HCl and ascorbic acid affected preservation of the samples, neither combines all of these advantages.

Several approaches were taken to estimate the maximum holding time (MHT) for each analyte because a standard definition for MHT has not been adopted by the Environmental Protection Agency (EPA). First, the windows specified in the analytical method for acceptable matrix spike recovery were used as a means of identifying the period of time during which a sample could be stored without producing data which would be outside of "control" limits. Second, a procedure recommended by the American Society for Testing and Materials (ASTM) was modified and applied to the data base. Third, a procedure developed by Environmental Science and Engineering (ESE) for the analysis of a similar data base was applied. Each of these approaches resulted in different estimates of the MHT due to the application of different statistical procedures for the three definitions. Therefore, decisions concerning stability depend on the objective of the individual evaluating the environmental data.

This report is intended to summarize the findings of the study in such a way as to allow individual decisions to be made regarding the quality of environmental data. The use of the data base may well be different for analyses conducted under RCRA, for example, than for those conducted under NPDES permit requirements. For this reason, the summary statistics for each replicate analysis is presented in the appendices of this report.

TABLE OF CONTENTS

	Page
EXECUTIVE SUM	MARY 1
LIST OF TABLES	5
LIST OF FIGURE	S
INTRODUCTION	
EXPERIMENTAL	
RESULTS AND D	ISCUSSIONS 14
CONCLUSIONS .	
REFERENCES	
APPENDIX A:	Data for Individual Volatile Organic Compounds (High Concentration Level)
APPENDIX B:	Data for Individual Volatile Organic Compounds (Low Concentration Level)
APPENDIX C:	Data for Individual Organic Compounds (Hydrochloric Acid Preservation)
APPENDIX D:	Data for Individual Volatile Organic Compounds (Sodium Bisulfate Preservation)
APPENDIX E:	Data for Individual Volatile Organic Compounds (Ascorbic Acid Preservation)
APPENDIX F:	Estimation of Maximum Pre-analytical Holding Times Using a Cubic Spline Fit
DISTRIBUTION	IST 122

LIST OF TABLES

<u>Table</u>	Page	<u>e</u>
1.	Repeatability of VOA Spiking Into Individual VOA Vials	5
2.	Stability of Aqueous Volatiles in Tedlar Bags at 4°C	5
3.	Volatile Organic Compounds in Water Samples	6
4.	Means of Mean Low and High Concentration Levels of Target Compounds in Three Water Samples	7
5.	Range of Contract Required Surrogate Spike Recovery Limits (Reference No. 3)	9
6.	Range of Matrix Spike Recovery Limits (Reference No. 3)	9
7.	Estimated MHT Days for High-Level Concentrations	1
8.	Estimated MHT Days for Low-Level Concentrations 3	4
A.1	Summary Statistics for High Level Concentrations (µg/L) for Methylene Chloride	2
A.2	Summary Statistics for High Level Concentrations (μg/L) for 1.1-Dichloroethylene	4
A.3	Summary Statistics for High Level Concentrations (µg/L) for 1,1-Dichloroethane	6
A.4	Summary Statistics for High Level Concentrations (µg/L) for Chloroform	8
A.5	Summary Statistics for High Level Concentrations (µg/L) for <u>Carbon Tetrachloride</u>	0
A.6	Summary Statistics for High Level Concentrations (µg/L) for 1,2-Dichloroprane	52
A.7	Summary Statistics for High Level Concentrations (µg/L) for <u>Trichloroethylene</u>	54
A.8	Summary Statistics for High Level Concentrations (µg/L) for Benzene	56

LIST OF TABLES - (cont'd)

Table	<u>e</u>	Page
A.9	Summary Statistics for High Level Concentrations (µg/L) for 1,1,2-Trichloroethane	. 58
A.10	Summary Statistics for High Level Concentrations (µg/L) for Bromoform	60
A .11	Summary Statistics for High Level Concentrations (µg/L) for 1,1,2,2-Tetrachloroethane	. 62
A.12	Summary Statistics for High Level Concentrations (µg/L) for Tetrachloroethylene	64
A.13	Summary Statistics for High Level Concentrations (µg/L) for Toluene	. 66
A.14	Summary Statistics for High Level Concentrations (µg/L) for Chlorobenzene	68
A.15	Summary Statistics for High Level Concentrations (µg/L) for <u>Ethylbenzene</u>	70
A.16	Summary Statistics for High Level Concentrations (µg/L) for Styrene	72
A.17	Summary Statistics for High Level Concentrations (µg/L) for o-Xylene	74
B.1	Summary Statistics for Low Level Concentrations (µg/L) for Methylene Chloride	76
B.2	Summary Statistics for Low Level Concentrations (µg/L) for 1,1-Dichloroethylene	78
B.3	Summary Statistics for Low Level Concentrations (µg/L) for 1,1-Dichloroethane	80
B.4	Summary Statistics for Low Level Concentrations (µg/L) for Chloroform	82
B.5	Summary Statistics for Low Level Concentrations (µg/L) for Carbon Tetrachloride	84

LIST OF TABLES - (cont'd)

<u>Table</u>	<u>Pag</u>	<u>e</u>
B.6	Summary Statistics for Low Level Concentrations (µg/L) for 1,2-Dichloropropane	6
B.7	Summary Statistics for Low Level Concentrations (μg/L) for Trichloroethylene	8
B.8	Summary Statistics for Low Level Concentrations (µg/L) for Benzene	0
B.9	Summary Statistics for Low Level Concentrations (µg/L) for 1,1,2-trichloroethane	2
B.10	Summary Statistics for Low Level Concentrations (µg/L) for Bromoform	4
B.11	Summary Statistics for Low Level Concentrations (µg/L) for 1,1,2,2-Tetrachloroethane	6
B.12	Summary Statistics for Low Level Concentrations (µg/L) for Tetrachloroethylene	8
B.13	Summary Statistics for Low Level Concentrations (μg/L) for Toluene	0
B.14	Summary Statistics for Low Level Concentrations (µg/L) for Chlorobenzene	2
B.15	Summary Statistics for Low Level Concentrations (μg/L) for <u>Ethylbenzene</u>	4
B.16	Summary Statistics for Low Level Concentrations (μ g/L) for Styrene 10	6
B.17	Summary Statistics for Low Level Concentrations (μ g/L) for o-Xylene 10	8
C.1	Hydrochloric Acid Preservation of Aqueous Volatiles: Water 1: Distilled Water	4
C.2	Hydrochloric Acid Preservation of Aqueous Volatiles: Water 2: Ground Water	5

LIST OF TABLES - (cont'd)

Table		Page
C.3	Hydrochloric Acid Preservation of Aqueous Volatiles: Water 3: Surface Water	116
D.1	Summary of Bisulfate Preservation of Aqueous Volatiles: Water 1: Distilled Water	118
D.2	Summary of Bisulfate Preservation of Aqueous Volatiles: Water 2: Surface Water	119
D.3	Summary of Bisulfate Preservation of Aqueous Volatiles: Water 3: Ground Water	120
E.1	Summary of Ascorbic Acid Preservation of Aqueous Volatiles: Water 1: Distilled Water	122
E.2	Summary of Ascorbic Acid Preservation of Aqueous Volatiles: Water 2: Surface Water	123
E.3	Summary of Ascorbic Acid Preservation of Aqueous Volatiles: Water 3: Ground Water	124
F.1	Models and Their Derivatives Used to Approximate Special Cases of VOC's in Water	126
F.2	Cubic Spline Estimates of MHT Days for Special Cases of Volatile Organic Compounds in Water	132

LIST OF FIGURES

Figure	<u>Page</u>
1.	Dehydrohalogenation Reactions
2.	Stability of Chlorinated Hydrocarbons
3.	Stability of Aromatic Compounds
4.	Stability of Matrix Spike Compounds in Ground Water
5.	Bisulfate Preservation of Aromatics
6.	Bisulfate Preservation of Ketones
7.	Ketones in Ground Water
8.	ASTM Method for Estimating Maximum Holding Time
9.	ESE Method for Estimating Maximum Holding Time
A. 1	Stability of Methylene Chloride in Environmental Water Samples 43
A.2	Stability of 1,1-Dichloroethylene in Environmental Water Samples 45
A.3	Stability of 1,1-Dichloroethane in Environmental Water Samples 47
A.4	Stability of Chloroform in Environmental Water Samples 49
A.5	Stability of Carbon Tetrachloride in Environmental Water Samples 51
A.6	Stability of 1,2-Dichloropropane in Environmental Water Samples 53
A.7	Stability of Trichloroethylene in Environmental Water Samples
A.8	Stability of Benzene in Environmental Water Samples 57
A. 9	Stability of 1,1,2-Trichloroethane in Environmental Water Samples 59
A.10	Stability of Bromoform in Environmental Water Samples
A.11	Stability of 1,1,2,2-Tetrachloroethane in Environmental Water Samples 63
A.12	Stability of Tetrachloroethylene in Environmental Water Samples 65
A.13	Stability of Toluene in Environmental Water Samples 67
A.14	Stability of Chlorobenzene in Environmental Water Samples 69
A.15	Stability of Ethylbenzene in Environmental Water Samples
A.16	Stability of Styrene in Environmental Water Samples
A.17	Stability of o-Xylene in Environmental Water Samples

LIST OF FIGURES - (cont'd)

<u>Figur</u>	<u>Page</u>
B .1	Stability of Methylene Chloride in Environmental Water Samples
B.2	1,1-Dichloroethylene in Environmental Water Samples
B.3	Stability of 1,1-Dichloroethane in Environmental Water Samples 81
B.4	Stability of Chloroform in Environmental Water Samples
B.5	Stability of Carbon Tetrachloride in Environmental Water Samples 85
B.6	Stability of 1,2-Dichloropropane in Environmental Water Samples 87
B.7	Stability of Trichloroethylene in Environmental Water Samples 89
B.8	Stability of Benzene in Environmental Water Samples
B.9	Stability of 1,1,2-Trichloroethane in Environmental Water Samples 93
B.10	Stability of Bromoform in Environmental Water Samples
B.11	Stability of 1,1,2,2-Tetrachloroethane in Environmental Water Samples 97
B.12	Stability of Tetrachloroethylene in Environmental Water Samples 99
B.13	Stability of Toluene in Environmental Water Samples
B.14	Stability of Chlorobenzene in Environmental Water Samples 103
	Stability of Ethylbenzene in Environmental Water Samples 105
B.16	Stability of Styrene in Environmental Water Samples
B.17	Stability of o-Xylene in Environmental Water Samples
F.1	Low Concentrations of Ethyl Benzene in Ground Water at 4°C 127
F.2	Cubic Spline Fitted to Low-Level Concentrations of Ethylbenzene
	Ground Water Stored at 4°C
F.3	ASTM MHT and ESE MHT Estimates from a Cubic Spline Fit 131

INTRODUCTION

During the past two decades, there has been a dramatic expansion of environmental legislation, including the Comprehensive Environmental Response, Compensation, and Liability Act; the Resource Conservation and Recovery Act; the Toxic Substances Control Act; the Clean Water Act; the Safe Drinking Water Act; the Marine Act; and, most recently, the Superfund Amendment and Reauthorization Act. One result of these regulatory measures has been a tremendous increase in the number of samples collected and distributed for analysis. One estimate is that federal, state, and local governments combined with private industry accounted for 500,000-700,000 samples in 1986. Furthermore, this number is growing at a rate of 25-40% per year (1). Obviously, this has put tremendous strain on the capacity of analytical laboratories. In many cases, samples are collected at a particular site, shipped to a central distribution point, and assigned to individual laboratories on the basis of capacity. All of this is done with relatively little knowledge of the stability of the samples, and maximum pre-analytical holding times have been established based on the best available information, much of which has been pieced together in a somewhat arbitrary fashion.

In order to provide consistent results from analytical laboratories nationwide, the United States Environmental Protection Agency (USEPA) has issued various analytical methods in the Federal Register to standardize analyses. Among the quality assurance needs in these methods is the requirement for reference samples to enable interlaboratory comparisons to be made. This work focuses on the development of a data base which allows documentation of the stability of volatile organics in water, for purposes of increasing the pre-analytical holding times and therefore reducing the cost associated with the analysis. Such a database can only be generated if methods are available for the preparation of multiple sample aliquots. Thus, a major aspect of this effort has been the development of methodology capable of producing performance evaluation materials for volatile organics in water and soil which are truly blind, allowing a more relevant assessment of the precision and accuracy of the analytical methods.

The generation of a data base establishing preanalytical holding times presents formidable experimental difficulties, including the need for a large number of identical sample aliquots, the need for a variety of sample matrices, and the desire for a large number of potential analytes to be present. The high vapor pressure of these analytes requires that precautions be taken to minimize losses during sample aliquot preparation. In addition, since most environmental samples contain only a few of the potential analytes, a laboratory method for the preparation of samples containing all target compounds must be developed. Two criteria must be met by such samples: They should be "real", i.e., they should closely simulate the composition of actual samples; they should also be of defined stability. Fortunately, an analytical method gas chromatography/mass spectrometry (GC/MS), exists which is capable of determining all volatile analytes in a single run. However, there are analytical problems related to the long-term drift of the instrument, the stability of standard compounds, and the use of a method which was originally designed for screening purposes, not for highly accurate quantitative determinations. In

this work, these limitations have been largely overcome, and the data base reported here can be used to make an accurate assessment of the stability of volatile organic compounds in environmental water samples.

The initial results of the study indicated that most analytes were stable for a significant period of time. However, it was clear that preservation techniques could be developed which would eliminate most of the degradation which was encountered. Therefore, a follow on study was conducted on the merits of preservation. The results of that study are also reported here.

EXPERIMENTAL

The sample storage vials used were 40 mL borosilicate glass vials with teflon faced silicone septa and screw caps with holes purchased from Shamrock Glass Company (catalog number 6-06K). These vials were received fully assembled and pre-cleaned according to EPA 40 CFR 136 and EPA 40 CFR 141 regulations. Three water sample matrices were used for this study: reagent grade water (water 1), a ground water (water 2), and a surface water (water 3). Reagent grade water was obtained from Burdick and Jackson Laboratory. The ground water was drawn from Well #1 at the Oak Ridge National Laboratory (ORNL) Aquatic Ecology Facility (well depth: 205 feet; static water level below ground level: 30 feet). Surface water was taken from the headwaters of White The methanol used was distilled-in-glass grade obtained from Burdick and Jackson Laboratory. All target compounds used were obtained either from the United States Environmental Protection Agency (USEPA) Quality Assurance Materials Bank (Research Triangle Park, NC) (2) or were of equivalent purity and obtained commercially. The following analytes were included in the study: methylene chloride; 1,1-dichloroethene; 1,1-dichloroethane; chloroform; carbon tetrachloride; 1,2-dichloropropane; trichloroethene; benzene; 1,1,2-trichloroethane; bromoform; 1,1,2,2-tetrachloroethane; tetrachloroethene; toluene; chlorobenzene; ethylbenzene; styrene; and o-xylene.

One-liter Tedlar air sampling bags with dual stainless steel fittings (hose/valve fitting and replaceable septum, catalog number 231-01) were obtained from SKC, Inc. The desired water was dispensed into a 1-liter Tedlar gas sampling bag. The water was allowed to degas for three days, and the gas was removed from the bag. Target compounds were received from the aforementioned sources as methanolic solutions of 1800 to 2300 μ g volatiles/mL methanol. Appropriate volumes of each stock volatile organic solution were introduced through the septum port using gas tight syringes. The contents of the Tedlar bag were mixed thoroughly by hand agitation for three minutes after which the bags were allowed to sit for thirty minutes. After mixing, the sample was aliquotted into the 40 ml vials by gravity flow. Teflon tubing ($\frac{1}{4}$ " x 6") was used to allow the vial to be filled from the bottom up, preventing mixing of the water with air. Each bottle was completely filled with sample so that no headspace would remain after the bottle is sealed. Each bottle is sealed immediately with a Teflon faced septum and screw cap with hole, and stored at the appropriate temperature (4°C and 25°C). Blank samples were aliquotted prior to

addition of the stock volatile organic solutions. Blanks and samples were stored together in order to assess the possibility of cross contamination.

All volatile organic analyses were performed by gas chromatography with mass spectrometric detection (GC/MS) according to standard EPA Contract Laboratory Program (CLP) methods (3), except for the use of daily external standards (instead of internal standards) to calculate results. Data were used without recovery or blank correction, as is customary with this method. Samples of higher concentration were analyzed by addition of a 2 mL aliquot to the instrument rather than the customary 5 mL. This was done in order to maintain instrument response within the linear range of the instrument.

Samples preserved with hydrochloric acid were prepared by titrating each water matrix with 1N HCl until pH=2 before dispensing the waters into Tedlar bags. Samples preserved with sodium bisulfate or ascorbic acid were prepared by adding 0.25 g or 0.50 g respectively of the dry acid to each 40 mL vial prior to the addition of the spiked water sample. Measurements indicated the pH of samples preserved with sodium bisulfate (p K_a = 1.92) was 1.92 \pm 0.04; the pH of samples preserved with ascorbic acid (p K_a = 4.1) was 2.98 \pm 0.16.

The experimental factors for holding time study of volatile samples are:

	<u>FACTORS</u>	<u>LEVELS</u>
1. Aque	eous Solutions	Distilled Water, Ground Water, Surface Water
2. Cont	amination Level	Low Level (~50 μ g/L), High Level (~500 μ g/L)
3. Stora	age Temperature	None at day 0, 4°C, Room Temperature
4. Stora	age Time (Days)	0, 3, 4, 7, 14, 28, 56, 112, 365

The experimental design was a complete factorial design. For each combination of factor levels, 17 VOC were analyzed on four replicate samples. The total number of samples planned was 360 samples and the number of chemical analyses was 6,120 (i.e., 17 X 360 = 6,120).

Athough 6,120 chemical analyses were performed, about 5% of the high-level chemical analyses and about 11% of the low-level chemical analyses were delted as outliers from the data base. Potential outliers were first identified by comparing the change in the standard deviations among the days for each storage condition. Additional potential outliers were also identified by their large studentized residuals (e.g., > 2.5) for the zero-order and first-order regressions of concentrations vs storage times. An identified outlier value was rejected by examining the corresponding GC/MS data that indicated: (1) the

analysis resulted in an unusually low or high concentration, or (2) the analysis corresponded to an incorredt analysis of a reference standard, or (3) the analysis had been compromised by procedure problems.

RESULTS AND DISCUSSION

This study was designed to take into account as many variables as possible within the limitations of budget and sample capacity. Two concentration levels were used: $50 \mu g/L$ and $500 \mu g/L$. Higher levels were not considered since it was expected that stability would improve with increasing concentration. Three matrices were chosen in order to assess the effect of varying water quality parameters on stability. The storage conditions were chosen based on the possibility that samples might not be continuously chilled during collection and storage. Time intervals were chosen on the basis of a logarithmic increase, but were also designed to bracket the existing holding time of 10 days (3).

Of primary importance to the conduct of this study was the ability to generate large numbers of identical aliquots of the sample. It was expected that mixing and aliquotting of the samples would take appreciable time and could create a bias in the concentration of the first aliquots versus the final aliquots. Therefore two possible methods were tested. In the first method, the water samples were added to the vials and the stock solutions added to each vial. In this case, variability in the concentrations found in each vial was 10-20%. In the second method, the stock solutions were added to a Tedlar gas sampling bag, mixed in the bag with no headspace, and added to the vials (4,5). This procedure produced concentration variability of less than 5%, and was therefore selected as the method of choice. Subsequent studies showed that the concentration of the compounds in the bag did not change over a 24-hour period.

The use of the Tedlar gas sampling bags provided several advantages. First, large volumes of sample could be prepared using minimal amounts of methanol. Second, vial to vial variability - considerable with individual spikes (Table 1) - was reduced. Third, the sample could be successfully stored in the bag (Table 2). Fourth, the accuracy of the concentration of the analytes in the sample was improved due to the larger volume of spiking solution relative to the very small volume needed to spike an individual vial. Finally, the bag allowed the filling of the individual sample vials with no introduction of headspace and minimal mixing of the aliquots with air during filling of the vials. Data from the analysis for seventeen volatile organic analytes added to three water samples on day zero of the sample preparation study is given in Table 3. With a few exceptions, the standard deviations from four replicates for each data point are approximately 10% or less of the mean value. Since it is useful to look at each individual water sample at a given concentration level to check the average of the data for all of the compounds, Table 3 also gives the average of the values for all compounds in this preliminary study for each water sample and concentration level. The target concentrations were 50 μ g/L for the low concentration level and 500 µg/L for the high concentration level. Table 4 presents mean values derived by averaging the mean day zero results from all three water samples for a

TABLE 1

REPEATABILITY OF VOA SPIKING INTO INDIVIDUAL VOA VIALS

(ug volatiles/L water)

COMPOUND	REP 1	REP 2	REP 3	MEAN	% Std Dev
Carbon Tetrachlroide	30	21	21	24.0	22
Chlorobenzene	29	20	19	22.7	24
1,1-Dichloroethane	30	20	20	23.3	25
1,1,2-Trichloroethane	35	25	23	27.7	23
Chloroform	27	18	19	21.3	23
1,1-Dichloroethene	33	22	22	25.7	25
1,2-Dichloropropane	34	24	24	27.3	21
Methylene Chloride	33	20	19	24.0	32
Chlorodibromomethan	e 27	18	17	20.7	27
Trichloroethene	17	12	12	13.7	21

TABLE 2 STABILITY OF AQUEOUS VOLATILES IN TEDLAR BAGS AT 4°C MEAN CONCENTRATION LEVELS

COMPOUND	DA	Y 0	DA	Y 3
	Mean (ug/L)	% Std Dev	Mean (ug/L)	% Std Dev
Carbon Tetrachloride	33.8	1.3	33.8	1.7
Chlorobenzene	32.5	1.0	33.3	1.0
1,1-Dichloroethane	34.3	1.5	30.0	1.7
1,1,2-Trichloroethane	45.8	1.5	52.0	5.0
Chloroform	52.3	1.5	84.0	2.6
1,1-Dichloroethene	29.8	2.2	26.3	2.0
1,2-Dichloropropane	41.5	2.1	45.8	1.7
Methylene Chloride	45.5	1.3	57.0	1.4
Chlorodibromomethane	42.3	1.5	47.8	2.2
Trichloroethene	22.3	1.3	28.0	0.0

TABLE 3

VOLATILE ORGANIC COMPOUNDS IN WATER SAMPLES CONCENTRATIONS AS DETERMINED ON DAY ZERO

	Low	r r evel	Water 1 High level	evel	Water 2 Low level	er 2 level	High level	er 2 evel	Low	er 3 level	Wate High le	er s
Compound	ught (n=4) Mean SD	SD	ugu (n= Mean	SD SD	ugu (n= Mean	SD SD	(n= Mean	SD	ugL (n=4) Mean SD	SD SD	ught (n=4) Mean SD	SD SD
Methylene chloride	53.1	3.5	464.1	31.3	66.4	1.5	396.1	111.3	6.69	3.7	544.0	38.8
1.1-Dichloroethene	57.6	3.2	472.9	17.5	61.3	1.7	383.4	121.1	53.2	4.6	408.9	61.3
1,1-Dichloroethane	63.9	2.7	514.7	18.1	66.2	1.6	388.6	111.3	64.7	3.4	593.8	59.5
Chloroform	59.6	1.8	488.8	25.0	61.0	1.4	385.5	114.3	69.5	4.1	570.3	46.7
Carbon tetrachloride	50.7	3.8	445.9	27.2	56.2	1.0	551.1	39.4	46.8	5.6	681.8	62.4
1,2-Dichloropropane	49.7	3.0	421.0	13.2	34.4	0.3	589.7	64.5	55.1	2.3	553.7	79.2
Trichloroethene	56.7	3.9	287.0	1.4	107.9	5.9	570.3	63.2	0.09	3.6	505.7	61.0
Benzene	49.6	2.7	400.2	11.1	54.6	0.2	569.7	50.2	55.5	2.3	479.7	34.7
1,1,2-Trichloroethane	47.3	1.7	440.5	17.8	55.4	1.0	584.4	74.9	59.4	2.1	649.5	150.1
Bromoform	33.9	3.5	619.3	47.2	49.6	0.1	583.3	77.9	54.8	2.2	766.1	178.2
1,1,2,2-Tetrachloroethane	41.8	1.3	531.3	49.1	48.5	0.9	544.0	36.5	54.2	5.5	797.3	127.1
Tetrachloroethene	49.8	3.1	369.7	19.1	52.6	1.7	530.6	40.5	57.0	4.3	398.1	47.4
Toluene	49.7	3.1	383.0	19.4	54.1	8.0	550.0	34.4	54.3	3.3	462.3	35.0
Chlorobenzene	51.6	5.6	381.7	21.7	55.4	1:1	547.4	36.5	55.9	3.6	476.9	33.9
Ethylbenzene	48.6	1.5	378.0	23.8	51.2	1:1	532.2	43.7	52.1	4.1	416.8	42.2
Styrene	52.5	2.4	394.1	24.4	63.3	1.8	535.2	41.2	57.7	3.5	486.1	28.7
O-Xylene	53.7	2.7	397.5	23.4	53.0	0.0	531.4	36.0	58.3	3.9	473.6	34.2
Mean (all compounds)	51.2		434.7		58.3		516.1		57.6		545.0	
Standard deviation	9.9		74.5		14.4		73.1		5.8		115.7	
(all compounds)												
% Standard deviation (all compounds)	12.8		17.1		24.8		14.2		10.0		21.2	

TABLE 4

MEANS OF MEAN LOW AND HIGH CONCENTRATION LEVELS OF TARGET COMPOUNDS IN THREE WATER SAMPLES LOW AND HIGH SPIKE LEVELS

	Low level ug/L (n=3)			High level ug/L (n=3)		
	Mean	`SD´	% SD	Mean	SD	% SD
Methylene chloride	63.1	7.2	11.5	468.1	60.5	12.9
1,1-Dichloroethene	57.4	3.3	5.8	421.7	37.7	8.9
1,1-Dichloroethane	64.9	0.9	1.4	499.0	84.5	16.9
Chloroform	63.4	4.4	6.9	481.5	75.6	15.7
Carbon tetrachloride	51.2	3.8	7.5	559.6	96.5	17.2
1,2-Dichloropropane	46.4	8.8	18.9	521.5	72.6	13.9
Trichloroethene	74.9	23.4	31.3	454.3	121.2	26.7
Benzene	53.2	2.6	4.9	483.2	69.2	14.3
1,1,2-Trichloroethane	54.0	5.0	9.3	558.1	87.3	15.6
Bromoform	46.1	8.9	19.3	656.2	79.1	12.0
1,1,2,2-Tetrachloroethane	48.1	5.1	10.5	624.2	122.5	19.6
Tetrachloroethene	53.1	3.0	5.6	432.8	70.1	16.2
Toluene	52.7	2.1	4.0	465.1	68.2	14.7
Chlorobenzene	54.3	1.9	3.5	468.7	67.9	14.5
Ethylbenzene	50.6	1.5	2.9	442.3	65.5	14.8
Styrene	57.8	4.4	7.7	471.8	58.5	12.4
O-Xylene	55.0	2.4	4.3	467.5	54.8	11.7

particular compound with a given target concentration. Tables 5 and 6 reference the EPA-CLP contract-required recovery limits for VOA surrogate and matrix spike compounds. These limits are a measure of expected reproducibility in the quantitative determination of volatile organics by GC/MS. The degree of reproducibility obtained with the methods of sample preparation and analysis presented in this paper is obviously high, relative to current standards.

The database generated by the sample stability study is formidable in size. Tables A.1 - B.17 and Figures A.1 - B.17 contain the summary data for all replicate anlayses and are included as part of the appendix. Significant trends in the data are displayed as figures

and included in the body of this report. With the exception 1.1.2.2of tetrachloroethane, all of the compounds included in this study were stable distilled water for in 24 days when samples were stored under refrigerated conditions. This was surprising in view of the limited holding times allowed for this type of sample. At room temperature, tetrachloroethane disappeared very quickly with a concomitant rise in the concentration of trichloroethylene (Figure 1). This reaction also

Figure 1. Dehydrohalogenation reactions in distilled water.

occurred at 4°C, although at a much slower rate. Likewise, a decrease in levels of trichloroethane was accompanied by increased concentrations of dichloroethylene in those samples stored at room temperature. These phenomena are most likely due to dehydrohalogenation reactions. Importantly, there seems to be no difference in the stability of the compounds based on volatility, which suggests that the current containers and storage conditions are quite adequate for the elimination of losses due to volatilization. The dependency of the holding times on analyte concentrations was complex. For example, for surface waters, the high concentration samples tended to have longer maximum holding times (MHT's) than the low concentration samples. For distilled water, the situation was reversed. For groundwater, there was no clear trend.

TABLE 5

RANGE OF CONTRACT REQUIRED SURROGATE SPIKE RECOVERY LIMITS (Reference No. 3)

FRACTION	SURROGATE COMPOUND	% RECOVERY				
		WATER	LOW/MEDIUM SOIL			
VOA	Toluene-d8	88-110	81-117			
VOA	4-Bromofluorobenzene	86-115	74-121			
VOA	1,2-Dichloroethane	76-114	70-121			

TABLE 6

RANGE OF MATRIX SPIKE RECOVERY LIMITS (Reference No. 3)

FRACTION MATRIX SPIKE COMPOUND		% RECOVERY			
		WATER	LOW/MEDIUM SOIL		
VOA	1,1-Dichloroethene	61-145	59-172		
VOA	Trichloroethene	71-120	62-137		
VOA	Chlorobenzene	75-130	60-133		
VOA	Toluene	76-125	59-139		
VOA	Benzene	76-127	66-142		

the case of the groundwater and surface water samples, both of which contained native chloride, dehydrohalogenation was noted under refrigerated conditions (Figure However, degradation of the aromatic volatiles was apparent by 28 days (Figure 3). It is not clear whether this is the result of chemical or microbial action, although both may play a part. The phenomenon was most pronounced with styrene and ethylbenzene, which are the most reactive of the aromatics. Since all samples were stored in the dark, it is unlikely that photodegradation occurred. The data also indicate gradual decreases the measured concentrations of carbon tetrachloride in surface water samples. Day-to-day variations in these data are well within the range GC/MS method variability, demonstrated in Figure 4. The data for four EPA-CLP matrix spike compounds in ground water are shown relative

Figure 2. Stability of Chlorinated Hydrocarbons. Surface water stored at 4°C.

Figure 3. Stability of Aromatic Compounds. Surface water stored at 4°C.

to their contract-required recovery limits, and none fall outside the mandated range.

Due to the nature of the changes which occurred in the course of this study, it became apparent that addition of hydrochloric acid to the samples, reducing the pH below 2, might inhibit both dehydrohalogenation and degradation of the aromatics. Therefore, a

second set of experiments was performed, using the same three water samples stored under refrigerated conditions and analyzed at intervals of 0, 14, 28, and 56 days. Tables C.1 - C.3 contain the data generated by these experiments and in included appendix to this report. deterioration noted in any of compounds except styrene; moreover, the stability of greatly styrene was improved, with almost 80% remaining after 56 days. This study indicates that the maximum holding

Figure 4. Stability of Matrix Spike Compounds in Ground Water.

time of volatile organic compounds in water can be increased to at least 56 days if samples are preserved with hydrochloric acid. The significance of this increase to the environmental analytical laboratory cannot be over emphasized.

Preservation of water samples with HCl has its drawbacks. It is difficult to ensure that the pH of the sample is reduced to 2 without first measuring sample pH. It is also inconvenient to add a corrosive liquid during field sampling. Finally, HCl does have appreciable volatility, and can be introduced into the instrumentation during purging. The possible detrimental effect on the analytical equipment cannot be tolerated. Therefore, there has been a general reluctance to require the use of HCl as a preservative for volatile organic compounds in water.

Because of these problems, and also because the database generated here indicated that pH reduction is the primary factor involved in preservation, an attempt was made to identify other acids which might have the preservative effect of HCl without the attendant drawbacks. Two candidates were identified: sodium bisulfate and ascorbic acid. Both are non-corrosive (in the dry form), readily available, inexpensive, and non-volatile. A study was carried out using these acids as preservatives, storing the samples at 4°C; the data generated was compared to that obtained without preservation and with HCl preservation (Appendix: Tables D.1 - E.3). Figure 5 shows the data for bisulfate preservation of ethylbenzene and styrene, two of the least stable aromatics. It is readily apparent that sodium bisulfate is as effective a preservative as HCl. Figure 6 illustrates the data obtained for five EPA target ketones. These compounds were not included in the original 365 day study because of difficulty in obtaining standard compounds. Gradual reductions in the levels of carbon disulfide were evident during the 112-day study; the other four

ketones remained at or near their original concentrations. Figure 7 depicts the ground water data for ketones in line graph format. **Bolded** lines again indicate EPA-CLP matrix spike recovery limits. One would expect greater variability from the more soluble ketones than from the more purgeable matrix spike compounds. However, virtually all the ketone data fall within matrix spike recovery limits.

Figure 5. Bisulfate Preservation of Aromatics. Surface Water Stored at 4°C.

Ascorbic acid was equally

effective in preserving most volatiles studied. However, it was not possible to acidify the samples to ph=2 with this acid, and solubility problems were encountered before reaching pH=3. Additionally, the quantitation of bromoform proved difficult in the presence of

ascorbic acid, with high standard deviations between replicate samples.

Throughout this study, data obtained for gases bromomethane and chloromethane were highly inconsistent due instability of the standard compounds used GC/MS quantitation. of Aging analytical standards is a problem that must be addressed before consistent data can be generated for these gases. Data on these compounds were deemed less useful and are not included in this report.

Figure 7. Ketones in Ground Water, Bisulfate Preservation.

Bisulfate Preservation of Ketones

Initial Concentration: 250 ug/L Storage at 4 C.

Distilled Water

Ground Water

Surface Water

Figure 6

<u>DETERMINATION OF MAXIMUM PRE-ANALYTICAL HOLDING TIMES</u> <u>BY STATISTICAL METHODS</u>

The purpose of the work described herein was to determine the maximum length of time which a sample can be held without processing prior to analysis for a specific contaminant. One obvious criterion for "how long is too long" is the point in time where the concentration of the target constituent begins to fall outside the range of acceptability limits for the recovery of a matrix spike. However, the EPA CLP matrix spike recovery limit range can be so large that unacceptably large changes in target analyte concentration can occur without exceeding the range limits. Therefore, another approach was developed which established more stringent criteria for the concept of a pre-analytical holding time. These criteria were defined in terms of the point at which the measured sample concentration falls outside of the confidence interval boundaries of a mathematical approximation of the change in sample concentration with time. The two primary MHT definitions examined were those of the American Society for Testing and Materials and Environmental Science and Engineering, Inc. (ESE), the latter developed in cooperation with EPA's Environmental Monitoring and Support Laboratory.

Approximating Models

Maximum holding time (MHT) was defined as the maximum period of time during which a properly collected and stored sample can be stored before some degradation of the analyte occurs in the sample matrix. Calculating the MHT depends on the approximating model used to predict the expected concentration for any time during the experimental period (i.e., 365 days). Two approximating models were considered. One was based on zero-order kinetics and the other on first-order kinetics. The zero-order approximating model represents a constant change in the expected concentration with time. The first-order approximating model represents the change in the expected concentration with time which depends upon the concentration level. These two approximating models are expressed mathematically as:

Zero-Order Approximating Model:

 $dE(C)/dD = \beta,$

or

$$E(C) = + \beta D,$$

where

dE(C)/dD = the change in the expected concentration ($\mu g/L$) with respect to time (D, days),

E(C) = the expected concentration on a specified day,

= the intercept or concentration on day = 0,

 β = the slope or change in the expected concentration per day.

First-Order Approximating Model:

$$dE(C)/dD = \beta C$$

or

$$E(C) = \exp(\beta D),$$

or

$$ln[E(C)] = ln() + \beta D,$$

where

In = the natural logarithm (i.e., base e),

 β = the slope is now the change in the logarithm of the expected concentration per day.

The two unknown parameters and β are estimated from the holding time data using the method of least squares [8]. The method of least squares estimates the unknown parameters by minimizing the sum of squared differences between the observed concentrations and the predicted concentrations. The calculations to estimate the unknown parameters were made using the SAS [9] computer programming system. The estimated approximating models are:

Estimated Approximating Models:

$$\hat{C} = C_0 + bD$$
 (zero-order),

$$\hat{C} = C_0 \exp(bD)$$
 (first-order),

where

 $\hat{\mathbf{c}}$ = the estimated expected concentration,

 C_0 = the estimated concentration on day 0,

b = the estimated slope for either the expected concentration or the logarithm of the expected concentration.

The approximating model which had the smallest value for the sum of squares of the residuals (i.e., observed - predicted):

$$\Sigma(C - \hat{C})^2$$

was chosen to represent the behavior of the expected concentrations.

MHT Definition

The ASTM and the ESE definitions were used to calculate the MHT after choosing the approximating model for the expected concentrations. The ASTM definition [10] is described in volume 11.02 of the 1986 Annual Book of ASTM Standards. For the purposes of this study, the ASTM definition was applied as follows:

ASTM

- 1. Fit the appropriate approximating model to the holding time data by the method of least squares.
- 2. Estimated the intercept, C₀, and its standard deviation, S₀.
- 3. Calculate the upper and lower 99% confidence interval on the intercept (i.e. $C_0 \pm t(df,0.005)S_0$, where t(df,0.005) is the 99.5 percentile point of the t-distribution with df = degrees of freedom and S_0 is the standard deviation of the intercept).
- 4. The MHT is the time at which the approximating model is equal to the value of the lower confidence limit on the intercept if the estimated slope is negative. For positive estimated slopes, the MHT is the time at which the approximating model is equal to the value of the upper confidence limit on the intercept. MHT can be calculated by:

 $MHT = t(df, 0.005)S_0/|b|,$

where

|b| = absolute value of the slope.

5. Estimated MHT values greater than the time of the experimental study are set equal to MHT = 365.

This working definition differs slightly from the exact ASTM definition because this holding time study did not employ the same experimental design as recommended by ASTM. The differences between the two definitions are that confidence intervals on the intercepts are used rather than the confidence intervals on the mean of ten replicate concentrations measured on day 0 (it would not have been possible to make ten replicate analyses within one day by GC/MS). Also, the intercept and slope of the approximating models were estimated by the method of least squares rather than the "best graphical fit" of the average concentration for each day. Figure 8 is illustrates the ASTM method for estimating the MHT for methylene chloride preserved with sodium bisulfate in surface water.

Methylene Chloride in Surface Water NaHSO4 Preservation

Figure 8. ASTM method for estimating maximum holding time.

A second definition for MHT was used in holding time studies on inorganic analytes conducted by Environmental Science and Engineering, Inc. (ESE) in cooperation with EPA's Environmental Monitoring and Support Laboratory [11]. The ESE definition is based on intersecting a 10% change in the intercept with a one-sided 90% confidence interval on the predicted concentration. Figure 9 is portrays the ESE method for estimating maximum holding times for the same case examined in Figure 8. For this holding time study, the ESE definition of MHT was applied as follows:

ESE

1. Fit the appropriate approximating model to the holding time data by the method of least squares.

2. Test that the slope is significantly different than zero with a two-sided t-test at 10% significance level (e.g., $|b| \ge t(df,0.05)S_1$, where t(df,0.05) is the 95 percentile point of the t-distribution with df = degrees of freedom and

Methylene Chloride in Surface Water NaHSO4 Preservation

Figure 9. ESE method for estimating maximum holding time.

 S_1 is the standard deviation of the slope). If the slope is not significantly different than zero then MHT = 365.

- 3. Construct a \pm 10% interval about the intercept [e.g., (0.9C0, 1.1C0)]. Test that the 10% change is outside the 90% confidence interval on C_0 with a two-sided t-test at the 10% significance level [e.g., $0.1C_0 \ge t(df,0.05)S_0$ for zero-order, and $-\ln(.9) \ge t(df,0.05)S_0$ or $\ln(1.1) \ge t(df,0.05)S_0$ for first-order where t(df,0.05) is the 95 percentile point of the t-distribution with df = degrees of freedom and S_0 is the standard deviation of the intercept].
- 4. If a 10% change is not outside the 90% confidence interval, calculate the concentration change (i.e., $C_0 \pm KC_0$) that does occur outside the limits:

 $K = t(df_0.05)S_0/C_0$ for zero-order,

 $K = 1 - \exp[-t(df, 0.05)S_0]$ for b < 0 and first-order, and

 $K = \exp[t(df,0.05)S_0] - 1$ for b > 0 and first-order.

If K > 0.15, the two approximating models are usually not appropriate for estimating the expected concentrations. The MHT can't be estimated with these models and other approximating models must be investigated. However, large variability in the data may also cause K > 0.15.

5. Calculate the critical time (C_T) when the predicted concentration line intersects the significant concentration change $(0.10 \le K \le 0.15)$ by:

 $C_T = KC_0/|b|$ for zero-order,

 $C_T = \ln(1 - K)/b$ for b < 0 and first-order, and

 $C_T = \ln(1 + K)/b$ for b > 0 and first-order.

6. The MHT is defined as the one-sided lower 90% confidence interval on CT and can be calculated by:

$$MHT = C_T - t(df,0.10)[Var(C_T)]^{\frac{1}{2}},$$

where,

t(df,0.10) = the 90 percentile point of the t-distribution, and

 $Var(C_T)$ = the variance of C_T approximated by:

$$Var(C_T) = C_T^2 [Var(C_0)/C_0^2 + Var(b)/b^2 - 2Cov(C_0,b)/bC_0].$$

with Var, and Cov indicating estimated variance and covariance, respectively.

The one-sided lower 90% confidence interval on C_T is equivalent to the day the one-sided lower(upper) 90% confidence interval on the predicted concentration has the value $C_0 \pm KC_0$. For this equivalent definition, the MHT is the smallest solution to a quadratic equation:

$$A(MHT)^2 + B(MHT) + C = 0$$
, so

$$MHT = -(B/2A) - [B^2 - 4AC]^{1/2}/2A$$

The coefficients for the two approximating models are:

zero-order:
$$A = b^2 - t^2(df,0.10) Var(b),$$

$$B = -2[|b|KC_0 + t^2(df,0.10)Cov(C_0,b)], \text{ and }$$

$$C = (KC_0)^2 - t^2(df,0.10) Var(C_0).$$
 first-order:
$$A = b^2 - t^2(df,0.10) Var(b),$$

$$B = -2[bG + t^2(df,0.10)Cov(C_0,b)], \text{ and }$$

$$C = G^2 - t^2(df,0.10) Var(C_0).$$
 Where,
$$G = \ln(1 + bK/|b|).$$

7. Estimated MHT values greater than the time of the experimental study are set equal to MHT = 365.

The MHT values using the ASTM definition and the ESE definition are given in Table 7 for high-level VOC and in Table 8 for low-level VOC. In addition, the estimated values of C₀ and the slope are given for the zero-order and first-order approximating models which were used to calculate the MHT values. The two models are identified by expressing the slope for the zero-order model as a number with four decimal places (e.g., 0.1649) and by expressing the slope for the first-order model as a number in exponential notation (e.g., -8.256E-04). The different values of MHT for the ASTM and ESE definitions depend on the variability of the data. This variability ultimately affects the width of the 99% confidence interval of the ASTM definition, but does not affect the 10% intercept change of the ESE definition. Therefore, when variability is high, the confidence interval will be broader than the 10% change. When variability is low, the confidence interval will be narrower than the 10% change.

Comparing the MHT values for samples preserved with the two acids, the results show that neither of the two acids is uniformly better for all analytes. For example using both definitions of MHT, the ascorbic acid MHT values are always higher for methylene chloride while the sodium bisulfate MHT values are always higher for trichloroethene, benzene, 1,1,2-trichloroethane, 4-methyl-2-pentanone, 2-hexanone, 1,1,2,2, tetrachloroethane, tetrachloroethene, toluene, chlorobenzene, ethylbenzene and styrene. For other analytes, the stability of the analyte appears to depend on the type of water matrix. In general, the MHT values for sodium bisulfate preservation are higher than the MHT values for ascorbic acid preservation. For a particular analyte and water sample, the MHT values for ascorbic acid preservation may be higher.

Table 7. Estimated MHT days for high-level concentrations. First-order approximating models have slope values expressed in exponential notation.

Volatile Organic Compound	Water	Storage Temp.	C0	b	ASTM MHT	ESE MHT
Methylene Chloride	Distilled	4 C	441	0.1649	147	187
Methylene Chloride	Distilled	Room	447	-0.3122	86	108
Methylene Chloride	Ground	4 C	466	-0.2076	210	131
Methylene Chloride	Ground	Room	441	-0.2378	219	97
Methylene Chloride	Surface	4 C	489	-0.1126	203	273
Methylene Chloride	Surface	Room	491	-0.3494	118	91
1,1-Dichloroethylene	Distilled	4 C	415	0.2086	148	133
1,1-Dichloroethylene	Distilled	Room	474	-0.8453	61	30
1,1-Dichloroethylene	Ground	4 C	487	-8.256E-04	103	86
1,1-Dichloroethylene	Ground	Room	440	-1.660E-03	71	33
1,1-Dichloroethylene	Surface	4 C	459	-0.0808	365	365
1,1-Dichloroethylene	Surface	Room	440	-0.8991	49	28
1,1-Dichloroethane	Distilled	4 C	497	0.1760	183	184
1,1-Dichloroethane	Distilled	Room	470	0.0360	365	365
1,1-Dichloroethane	Ground	4 C	553	-0.2092	183	170
1,1-Dichloroethane	Ground	Room	517	-0.2002	220	154
1,1-Dichloroethane	Surface	4 C	536	0.0136	365	365
1,1-Dichloroethane	Surface	Room	518	-0.1214	365	365
Chloroform	Distilled	4 C	434	0.1716	131	183
Chloroform	Distilled	Room	411	-0.1861	142	153
Chloroform	Ground	4 C	501	-3.776E-04	169	186
Chloroform	Ground	Room	467	-0.1559	225	180
Chloroform	Surface	4 C	504	0.0149	365	365
Chloroform	Surface	Room	479	-0.0181	365	365
Carbon Tetrachloride	Distilled	4 C	436	-0.0061	365	365
Carbon Tetrachloride	Distilled	Room	378	-8.084E-04	122	82
Carbon Tetrachloride	Ground	4 C	478	-0.2325	274	365
Carbon Tetrachloride	Ground	Room	424	-0.2737	244	365
Carbon Tetrachloride	Surface	4 C	486	-0.2383	181	125
Carbon Tetrachloride	Surface	Room	469	-6.229E-03	43	7
1,2-Dichloropropane	Distilled	4 C	400	0.2999	102	92
1,2-Dichloropropane	Distilled	Room	368	0.2561	130	91
1,2-Dichloropropane	Ground	4 C	459	-0.0567	365	365
1,2-Dichloropropane	Ground	Room	427	-0.0155	365	365
1,2-Dichloropropane	Surface	4 C	441	0.2200	131	140
1,2-Dichloropropane	Surface	Room	429	0.0986	365	365

Table 7. (continued)

	<u> </u>					
Volatile Organic		Storage		_	ASTM	ESE
Compound	Water	Temp.	C0	Ъ	MHT	MHT
m . 11		4 -				
Trichloroethylene	Distilled	4 C	506	0.6191	124	28
Trichloroethylene	Distilled	Room	491	-1.1449	51	21
Trichloroethylene	Ground	4 C	462	-0.1720	202	166
Trichloroethylene	Ground	Room	478	-0.4930	98	57
Trichloroethylene	Surface	4 C	437	-0.0100	365	365
Trichloroethylene	Surface	Room	464	-0.5704	114	33
Benzene	Distilled	4 C	376	0.1762	140	148
Benzene	Distilled	Room	344	-0.1922	151	115
Benzene	Ground	4 C	429	-4.880E-04	145	148
Benzene	Ground	Room	397	-0.2335	172	100
Benzene	Surface	4 C	411	0.1387	217	180
Benzene	Surface	Room	394	-0.1725	282	365
1,1,2-Trichloroethane	Distilled	4 C	424	0.1609	183	171
1,1,2-Trichloroethane	Distilled	Room	(a)	(a)	(a)	(a)
1,1,2-Trichloroethane	Ground	4 C	491	-0.0415	365	365
1,1,2-Trichloroethane	Ground	Room	467	-7.264E-04	84	110
1,1,2-Trichloroethane	Surface	4 C	491	0.1488	231	365
1,1,2-Trichloroethane	Surface	Room	485	0.0210	365	365
Bromoform	Distilled	4 C	551	0.1797	212	190
Bromoform	Distilled	Room	506	-1.091E-03	88	61
Bromoform	Ground	4 C	599	-0.0408	365	365
Bromoform	Ground	Room	553	0.0131	365	365
Bromoform	Surface	4 C	601	0.1665	238	365
Bromoform	Surface	Room	583	-0.4622	143	68
DIOMOIOLIN	Bullace	ROOM	303	-0.4022	143	00
1,1,2,2-Tetrachloroethane	Distilled	4 C	(a)	(a)	(a)	(a)
1,1,2,2-Tetrachloroethane	Distilled	Room	(a)	(a)	(a)	(a)
1,1,2,2-Tetrachloroethane	Ground	4 C	608	-0.1716	265	365
1,1,2,2-Tetrachloroethane	Ground	Room	520	-1.677E-02	7	3
1,1,2,2-Tetrachloroethane	Surface	4 C	583	0.1507	330	365
1,1,2,2-Tetrachloroethane	Surface	Room	477	-6.042E-03	36	5
Tetrachloroethylene	Distilled	4 C	300	-7.402E-04	126	92
Tetrachloroethylene	Distilled	Room	265	-9.186E-03	22	3
	PISCITTER					
-	Ground	4 C	7XX	- XUN-IIX	/×	5 X
Tetrachloroethylene	Ground Ground	4 C	288	-1.180E-03	78 40	58 11
-	Ground Ground Surface	4 C Room 4 C	288 230 330	-1.180E-03 -3.659E-03 -8.329E-04	40 86	58 11 92

Table 7. (continued)

Volatile Organic		Storage		•	ASTM	ESE	
Compound	Water	Temp.	CO	Ъ	MHT	MHT	
Toluene	Distilled	4 C	339	0.0960	288	365	
Toluene	Distilled	Room	298	-0.4202	72	41	
Toluene	Ground	4 C	394	-0.1646	188	152	
Toluene	Ground	Room	322	-8,803E-04	145	62	
Toluene	Surface	4 C	373	-9.096E-04	75	86	
Toluene	Surface	Room	352	-0.3857	120	41	
Chlorobenzene	Distilled	4 C	329	0.0926	307	365	
Chlorobenzene	Distilled	Room	291	-2.624E-03	46	20	
Chlorobenzene	Ground	4 C	392	-0.0770	365	365	
Chlorobenzene	Ground	Room	333	-9.409E-04	125	62	
Chlorobenzene	Surface	4 C	376	0.0261	365	365	
Chlorobenzene	Surface	Room	344	-0.3615	134	39	
Ethylbenzene	Distilled	4 C	311	0.0103	365	365	
Ethylbenzene	Distilled	Room	261	-2.483E-03	52	19	
Ethylbenzene	Ground	4 C	363	-0.1646	179	140	
Ethylbenzene	Ground	Room	298	-2.500E-03	65	13	
Ethylbenzene	Surface	4 C	(a)	(a)	(a)	(a)	
Ethylbenzene	Surface	Room	279	-0.3627	117	27	
Styrene	Distilled	4 C	326	0.0414	365	365	
Styrene	Distilled	Room	280	-2.799E-03	48	16	
Styrene	Ground	4 C	378	-0.0996	365	365	
Styrene	Ground	Room	310	-2.571E-03	77	12	
Styrene	Surface	4 C	342	-1.146E-03	82	59	
Styrene	Surface	Room	314	-0.8746	54	11	
o-Xylene	Distilled	4 C	334	0.0043	365	365	
o-Xylene	Distilled	Room	277	-1.212E-03	102	45	
o-Xylene	Ground	4 C	384	-0.0778	365	365	
o-Xylene	Ground	Room	320	-2.083E-03	70	20	
o-Xylene	Surface	4 C	361	0.0377	365	365	
o-Xylene	Surface	Room	324	-0.1654	272	365	

⁽a) Both the zero-order and first-order approximating models gave inappropriate results.

Table 8. Estimated MHT days for low-level concentrations. First-order approximating models have slope values expressed in exponential notation.

Volatile Organic Compound	Water	Storage Temp.	C0	b	ASTM MHT	ESE MHT	
,		***************************************					
Methylene Chloride	Distilled	4 C	56	-0.0109	365	365	
Methylene Chloride	Distilled	Room	57	-0.0183	199	197	
Methylene Chloride	Ground	4 C	60	0.0160	189	252	
Methylene Chloride	Ground	Room	58	-0.0018	365	365	
Methylene Chloride	Surface	4 C	61	-6.848E-04	63	126	
Methylene Chloride	Surface	Room	59	-6.491E-04	84	125	
1,1-Dichloroethylene	Distilled	4 C	56	0.0062	365	365	
1,1-Dichloroethylene	Distilled	Room	60	0.0617	93	58	
1,1-Dichloroethylene	Ground	4 C	61	0.0098	225	365	
1,1-Dichloroethylene	Ground	Room	60	-0.0385	151	99	
1,1-Dichloroethylene	Surface	4 C	54	-9.650E-04	70	81	
1,1-Dichloroethylene	Surface	Room	50	-1.149E-03	61	67	
1,1-Dichloroethane	Distilled	4 C	63	-0.0219	252	365	
1,1-Dichloroethane	Distilled	Room	62	-0.0237	237	365	
1,1-Dichloroethane	Ground	4 C	67	0.0054	365	365	
1,1-Dichloroethane	Ground	Room	64	-0.0049	365	365	
1,1-Dichloroethane	Surface	4 C	58	-8.342E-04	48	106	
1,1-Dichloroethane	Surface	Room	55	-5.607E-04	74	152	
Chloroform	Distilled	4 C	61	-0.0265	202	145	
Chloroform	Distilled	Room	59	-0.0376	134	101	
Chloroform	Ground	4 C	62	0.0100	365	365	
Chloroform	Ground	Room	57	0.0216	155	186	
Chloroform	Surface	4 C	61	-8.052E-04	51	110	
Chloroform	Surface	Room	59	-0.0135	160	303	
Carbon Tetrachloride	Distilled	4 C	51	-0.0069	365	365	
Carbon Tetrachloride	Distilled	Room	50	-0.0163	356	365	
Carbon Tetrachloride	Ground	4 C	59	-0.0039	365	365	
Carbon Tetrachloride	Ground	Room	55	-0.0426	138	76	
Carbon Tetrachloride	Surface	4 C	47	-0.0312	84	115	
Carbon Tetrachloride	Surface	Room	(a)	(a)	(a)	(a)	
1,2-Dichloropropane	Distilled	4 C	52	-0.0066	365	365	
1,2-Dichloropropane	Distilled	Room	51	-0.0085	365	365	
1,2-Dichloropropane	Ground	4 C	47	0.0470	86	66	
1,2-Dichloropropane	Ground	Room	44	0.0344	130	78	
1,2-Dichloropropane	Surface	4 C	47	-3.561E-04	75	243	
1,2-Dichloropropane	Surface	. •	. ,	J.JULL OT	, ,		

Table 8. (continued)

Volatile Organic		Storage			ASTM	ESE	
Compound	Water	Temp.	CO	Ъ	MHT	MHT	
Trichloroothylono	Distilled	4 C	65	0.0926	133	24	
Trichloroethylene	Distilled	Room	82	-0.0327	180	162	
Trichloroethylene		4 C	100	0.0199	301	365	
Trichloroethylene	Ground		104	0.0133	365	365	
Trichloroethylene	Ground	Room 4 C	51	-6.898E-04		132	
Trichloroethylene	Surface					138	
Trichloroethylene	Surface	Room	53	0.0250	161	130	
Benzene	Distilled	4 C	51	-0.0123	365	365	
Benzene	Distilled	Room	50	-0.0161	324	365	
Benzene	Ground	4 C	47	-1.431E-03	97	32	
Benzene	Ground	Room	48	-0.0286	169	101	
Benzene	Surface	4 C	48	-8.388E-04	55	103	
Benzene	Surface	Room	43	-7.829E-04	76	100	
1,1,2-Trichloroethane	Distilled	4 C	51	-0.0169	278	365	
1,1,2-Trichloroethane	Distilled		51	-1.348E-02		4	
1,1,2-Trichloroethane	Ground	4 C	51	0.0419	42	105	
1,1,2-Trichloroethane	Ground	Room	50	0.0268	104	144	
1,1,2-Trichloroethane	Surface	4 C	49	-4.027E-04		214	
1,1,2-Trichloroethane	Surface	Room	48	-2.813E-04		259	
Bromoform	Distilled	4 C	40	0.0159	288	365	
Bromoform	Distilled		40	-0.0388	132	49	
Bromoform	Ground	4 C	49	0.0375	81	99	
Bromoform	Ground	Room	49	-0.0577	86	51	
Bromoform	Surface	4 C	47	-7.094E-04		129	
Bromoform	Surface	Room	44	-2.255E-03		37	
1,1,2,2-Tetrachloroethane	Distilled	4 C	(a)	(a)	(a)	(a)	
1,1,2,2-Tetrachloroethane	Distilled		(a)	(a)	(a)	(a)	
•		4 C	49	0.0396	83	91	
1,1,2,2-Tetrachloroethane	Ground		49	-1.131E-02		3	
1,1,2,2-Tetrachloroethane	Ground	Room	46		165	184	
1,1,2,2-Tetrachloroethane	Surface	4 C	38	-0.0168		164	
1,1,2,2-Tetrachloroethane	Surface	Room	38	-1.032E-02	10	0	
Tetrachloroethylene	Distilled		48	-0.0181	365	365	
Tetrachloroethylene	Distilled		45	-0.0535	119	34	
Tetrachloroethylene	Ground	4 C	46	0.0042	365	365	
Tetrachloroethylene	Ground	Room	42	-0.0253	203	87	
Tetrachloroethylene	Surface	4 C	46	-1.012E-03	49	84	
Tetrachloroethylene	Surface	Room	39	-1.098E-03	74	66	

Table 8. (continued)

Volatile Organic Compound	Water	Storage Temp.	CO	b	ASTM MHT	ESE MHT
Foluene	Distilled	4 C	49	-0.0109	365	365
Toluene	Distilled	Room	48	-0.0235	218	112
Toluene	Ground	4 C	42	-3.119E-03	62	10
Toluene	Ground	Room	42	-0.1026	49	20
Toluene	Surface	4 C	45	-8.448E-04	50	104
Toluene	Surface	Room	41	-0.0955	26	32
Chlorobenzene	Distilled	4 C	51	-0.0159	358	365
Chlorobenzene	Distilled	Room	49	-0.0291	197	90
Chlorobenzene	Ground	4 C	49	-0.0038	365	365
Chlorobenzene	Ground	Room	44	-0.0373	134	65
Chlorobenzene	Surface	4 C	45	-6.696E-04	57	132
Chlorobenzene	Surface	Room	40	-0.0218	104	129
Ethylbenzene	Distilled	4 C	47	-0.0142	365	365
Ethylbenzene	Distilled	Room	46	-0.0272	218	80
Ethylbenzene	Ground	4 C	(a)	(a)	(a)	(a)
Ethylbenzene	Ground	Room	32	-8.588E-03	32	5
Ethylbenzene	Surface	4 C	(a)	(a)	(a)	(a)
Ethylbenzene	Surface	Room	30	-0.0816	46	16
Styrene	Distilled	4 C	49	-0.0267	248	365
Styrene	Distilled	Room	48	-0.0415	155	52
Styrene	Ground	4 C	(a)	(a)	(a)	(a)
Styrene	Ground	Room	56	-7.898E-02	3	0
Styrene	Surface	4 C	(a)	(a)	(a)	(a)
Styrene	Surface	Room	(a)	(a)	(a)	(a)
o-Xylene	Distilled	4 C	51		310	365
o-Xylene	Distilled	Room	50	-0.0278	217	91
o-Xylene	Ground	4 C	40	-0.1255	74	12
o-Xylene	Ground	Room	40	-9.689E-03	19	3
o-Xylene	Surface	4 C	45	-6.689E-04	118	108
o-Xylene	Surface	Room	43	-0.1145	29	25

⁽a) Both the zero-order and first-order approximating models gave inappropriate results.

The addition of ascorbic acid or sodium bisulfate did not necessarily reduce the variability of the concentration measurements. Comparison of the standard deviations of analyses of samples with and without acid preservation, (estimated as the square root of the mean square error for either the zero-order or first-order model) indicated that the variability for the unpreserved samples are usually less than that for the preserved samples for ground and surface water but not for distilled water. The variability for preserved samples usually occurred in ground water samples, while the largest variability for unpreserved samples usually occurred in distilled water.

The MHT values identified by (a) in Tables 7 and 8 indicate that neither the zero-order or first-order approximating models gave appropriate results. These represent 12 of the 204 unpreserved cases and 2 of the 150 preserved cases. The difficulty with fitting the 12 unpreserved cases is that the concentrations decreased rapidly with time to a non-zero level after an initial period of apparent stability. A number of models were investigated in an attempt to fit the data. These are discussed more completely in Appendix F. The best approximation was obtained with a cubic spline equation between the initial and final concentrations. A cubic spline is a cubic polynomial with a sigmoidal shaped curve. Cubic splines were also used to fit the two acid preserved cases. Such an approach proved successful for all cases except for carbon tetrachloride in distilled water preserved with ascorbic acid. In that case, obvious boundaries for the MHT could be estimated graphically. A more detailed discussion of the use of the cubic spline is provided in Appendix F, along with the MHT's calculated using that approach.

From the results of these statistical analyses, it can be shown that each analyte has a MHT which can be established. Obviously, these are not related to the administrative/political aspects of the environmental analysis. Therefore, it is necessary to consider the end use of the data when determining the maximum holding time.

CONCLUSIONS

From a regulatory point of view, extension of sample holding times without compromising data quality would reduce the cost associated with waste site characterization and remedial action by reducing the possibility that additional sampling will be required due to the failure to meet the holding times. This has an important economic effect on investigations carried out under SARA. From the point of view of RCRA, where quarterly groundwater monitoring is carried out, preservation of the samples would allow direct comparison with the samples collected during the subsequent quarter. Since regulatory decisions are made based on changes in the groundwater concentrations of contaminants, this would be important in reducing analytical variability. From the standpoint of the regulated community, the ability to preserve and archive important samples for later verification would greatly reduce the possibility of error in regulatory decision-making, and would certainly eliminate the need for resampling.

From the analytical standpoint, improvements in the quality assurance process are expected. This study has shown that most of the volatile organics of interest are stable in water at refrigerator temperature for a time sufficient to allow distribution and analysis. Thus for the first time, stable, long-term performance evaluation materials can be prepared and submitted in a truly blind fashion to participating analytical laboratories. Studies of interlaboratory performance of this method can now be performed. Controls can also be prepared for use in field sampling. Finally, an estimate of the intralaboratory variability in the analytical method over long periods of time is now possible.

REFERENCES

- 1. Worthy, W. Chem. Eng. News, 1987, September 7, 33-40.
- 2. U.S. Environmental Protection Agency. Quality Assurance Newsletter, 1984, 6(3).
- 3. U.S. Environmental Protection Agency. Statement of Work for Organic Analysis. 1986.
- 4. D. Schuetzle, T. J. Prater, and S. R. Roddell, <u>J. Air Pollut. Control. Fed. 24</u>, pp 925-932, 1975.
- C. W. Francis, M.P. Maskarinec, and J. C. Goyert, "Mobility of Toxic Compounds from Hazardous Wastes," Oak Ridge National Laboratory, Oak Ridge, Tennessee, pp. 3-9, 1984.
- 6. D. A. Becker, "Trace Substances in Environmental Health," <u>Proc., University of Missouri's Tenth Annual Conference on Trace Substances in Environmental Health, Environmental Trace Substances Research Center, University of Missouri, Columbia, Missouri, 1976, pp. 353-359.</u>
- 7. V. Barnett and T. Lewis, Outliers in Statistical Data, Wiley, New York, 1984.
- 8. N. R. Draper and H. Smith, Applied Regression Analysis, Wiley, New York, 1981.
- 9. SAS Institute Inc., <u>SAS User's Guide: Statistics</u>, Version 5 Ed., SAS Institute Inc., Cary, N.C., 1985.
- ASTM, <u>1986 Annual Book of ASTM Standards</u>, Vol. 11.02 Water (II), pp 21-27, ASTM, Philadelphia, Pa., 1986.
- 11. H. S. Prentice and D. F. Bender, <u>Project Summary: Development of Preservation Techniques and Establishment of Maximum Holding Times: Inorganic Constituents of the National Pollutant Discharge Elimination System and Safe Drinking Water Act, Research and Development, EPA/600/S4-86/043, March 1987.</u>
- 12. SAS Institute, Inc. <u>SAS/STAT™ User's Guide, Release 6.03 Edition</u>. Cary, NC: SAS Institute inc., 1988. 1028 pp.
- 13. C. K. Bayne and I. B. Rubin <u>Practical Experimental Designs and Optimization Methods for Chemists</u>, VCH Publishers, Inc., Deerfield Beach, Florida, 1986, p. 54.

Appendix A Data for Individual Volatile Organic Compounds (High Concentration Level)

Table A.1 Summary Statistics for high level concentrations ($\mu g/L$) for Methylene Chloride.

							Day	/s					
			0	3	4	7	14	28	56	112	113	365	A11
	Storage Condit				 								
Distilled	None	Num Mean St Dev	•	i . i									3 454 3 3
	4 C	Num Mean St Dev	,	409		432	4 489 10	440	399	511		492	27 454 46
	Room	Num Mean St Dev	•	400		441	4 473 41	437	403	473		319	28 421 60
Ground	None	Num Mean St Dev	4 488 33	i i			:						4 488 33
	4 C	Num Mean St Dev			517	332	4 545 16	522	437		373		•
	Room	Num Mean St Dev			452	317	4 552 8	485	414	j .	312 48	382	•
Surface	None	Num Mean St Dev	•				:					. .	4 496 11
	4 C	Num Mean St Dev		4 449 29			4 495 48	481	531	496		4 436 44	478
	Room	Num Mean		4 4 414		424	604	447	•	458	i . i	3 351 16	464

in Environmental Water Samples Stability of Methylene Chloride

Initial Spike: 500 ug/L

Figure A.1

Table A.2 Summary Statistics for high level concentrations ($\mu g/L$) for $\frac{1.1\text{-Dichloroethylene}}{2}$

										·			
			 			. <i></i>	Day	ys 					
			0	3	4	7	14	28	56	112	113	365	A11
	Storag Condit												
Distilled	None	Num Mean St Dev	•		,		:	3 453 23
	4 C	Num Mean St Dev	•	384 6		428	451	386		500		484	27
	Room	Num Mean St Dev	•	4 364 29		416	4 481 45	496	457	544		120	27 406 140
Ground	None	Num Mean St Dev	•				:	: :				'	4 475 54
	4 C	Num Mean St Dev	. .		614	448	4 465 20	548	449		4 374 75	380	
	Room	Num Mean St Dev	•		561	411	4 460 5	475			4 263 42		•
Surface	None	Num Mean St Dev	•	.			. .					•	4 395 10
	4 C	Num Mean St Dev		511 38			4 474 48	433	528	423		4 427 78	,
	Room	Num Mean St Dev	.	4 443 51		380	551 27	378	439	282		3 124 31	380

in Environmental Water Samples Stability of 1,1-Dichloroethylene

Initial Spike: 500 ug/L

Figure A

Table A.3 Summary Statistics for high level concentrations ($\mu g/L$) for 1.1-Dichloroethane.

							Day	ys					
			0	3	4	7	114	28	56	1112	1113	365	A11
Water	Storag		 			 	 	 		 			
Distilled	None	Num Mean St Dev	•	i .		!	:	 . .	•	 		3 495 18
	4 C	Num Mean St Dev	•	4 471 3	j .	548	534	457	•	589		553	27 513 59
	Room	Num Mean St Dev	•	444		508	4 494 56	443	383	549		475	28 471 62
Ground		Num Mean St Dev		i . i				: :			:		4 477 37
!	4 C	Num Mean St Dev			601	502	4 617 14	630	524		471	488	27 546 68
	Room	Num Mean St Dev	•			475	621 621 13	576	463		415	468	26 506 80
Surface	None	Num Mean St Dev		i ₊i			: :						4 557 16
. 		Num Mean St Dev	.		•	491 33	562	519 19	600 21	529 5	۱ ، ا	534 77	27 533 51
 	Room	Num Mean St Dev	 • •	4 4 430		4 439	4 638	3 481	4 563	4 485	. .	3 470	26 503 83

in Environmental Water Samples Stability of 1,1-Dichloroethane

Initial Spike: 500 ug/L

Figure A.3

Table A.4 Summary Statistics for high level concentrations ($\mu g/L$) for Chloroform.

			!				Day	ys					
			0	3	4	7	14	28	56	112	113	365	 A11
Water Distilled	Storag Condit None		 3										3 465
		St Dev	•										24
	4 C	Num Mean St Dev	•	4 416 7		458	450	409		496		4 493 18	27
:	Room	Num Mean St Dev	•	385		422	4 421 45	391	339	428		341	28 390 46
Ground	None	Num Mean St Dev	•				:		٠	. .			477
	4 C	Num Mean St Dev			567	452	4 520 21	561	481		430	,	492
	Room	Num Mean St Dev	. . .	i . i	512	419	4 523 10	504	428	j .	368		452
Surface	None	Num Mean St Dev					:						4 530 14
	4 C	Num Mean St Dev		461		423	4 521 27	486	580	528		4 494 52	502
	Room	Num Mean St Dev		4 410 46		385	4 563 8	444	532			3 460 21	469

in Environmental Water Samples Stability of Chloroform

Initial Spike: 500 ug/L

Figure A.4

Table A.5 Summary Statistics for high level concentrations ($\mu g/L$) for Carbon Tetrachloride.

 !							Day	ys					·
 			 0	3	4	7	14	28	56	1112	113	365	 All
Water 	Storag Condit					 		 	 				
Distilled 	None	Num Mean St Dev	•			•	:	 . .					3 469 29
 	4 C	Num Mean St Dev	•	4 432 6		477	468	362	•	482			27 432 53
 	Room	Num Mean St Dev	•	382		406	387 55	335	284	367		291	28 350 60
Ground	None	Num Mean St Dev	•			:	:						303
	4 C	Num Mean St Dev	. .		612	442	550 20	608	405		398	405	27 484 96
	Room	Num Mean St Dev			589	391	546 546	490	316		305	356	26 419 113
Surface	None	Num Mean St Dev			•	: :							615 19
	4 C	Num Mean St Dev		4 459 50			4 513 22	402	492	452	.	405 52	27 447 56
	Room	Num Mean St Dev		379 70		345	4 498 4	313	362	298	·	3 73	26 334 125

Stability of Carbon Tetrachloride in Environmental Water Samples

Initial Spike: 500 ug/L

Figure

Table A.6 Summary Statistics for high level concentrations ($\mu g/L$) for $\frac{1.2\text{-Dichloropropane}}{2}.$

		•	ļ				Day	ys.					ļ
			0	3	4	7	14	28	56	1112	1113	365	 A11
Water	Storag							 	 				
Distilled	None	Num Mean St Dev	•	j .		•	:		:			•	3 421 20
	4 C	Num Mean St Dev	•	4 375 7		417	429	380	•	519	j .	496	27 423 65
	Room	Num Mean St Dev	•	345 35		377	4 385 47	355	300	475	j .	451	28 384 65
Ground	None	Num Mean St Dev	•			:	:	: :		•			433
	4 C	Num Mean St Dev			540	422	4 447 18	490	443		4 439 47	442	
	Room	Num Mean St Dev			498	•	456		386	j .	4 398 53		
Surface	None	Num Mean St Dev	4 450 13				:					•	450
	4 C	Num Mean St Dev						423	513	504		503 61	59
 	Room	Num Mean St Dev		4 353 40		338	566 24	387	466	470	. .	3 446 15	26 433

in Environmental Water Samples Stability of 1,2-Dichloropropane

Initial Spike: 500 ug/L

Figure

Table A.7 Summary Statistics for high level concentrations ($\mu g/L$) for $\frac{Trichloroethylene}{L}.$

							Dag	ys					!
			0	3	4	7	14	28	56	112	113	365	All
Water	Storag Condit					 							
Distilled	None	Num Mean St Dev	3 291 24	j .		•		 . .	:	 . .	 		3 291 24
	4 C	Num Mean St Dev	•	4 474 66		•	650	3 539 32	494	766		675 83	•
	Room	Num Mean St Dev	•	4 528 54		4 511 43	560	4 493 45	353	408		64	28 417 171
Ground	None	Num Mean St Dev				· ·			į .	:			4 414 29
	4 C	Num Mean St Dev		i .i	563	404	485	4 497 47	438		408	408	27
 	Room	Num Mean St Dev	• •		523	358	578	493 40	454		444	, ,	26 444
Surface	None	Num Mean St Dev		i .i				.					415
 	4 C	Num Mean St Dev		4 411 28			474	4 420 24	509	431		424 424 45	439 47
 		Num Mean St Dev	·	4 378 61		382	656	3 405 48	484	399	.	3 241 34	26 428

in Environmental Water Samples Stability of Trichloroethylene

Initial Spike: 500 ug/L

Figure A.7

Table A.8 Summary Statistics for high level concentrations ($\mu g/L$) for Benzene.

							Day	ys					!
	·		0	3	4	7	14	28	56	112	113	365	 A11
	Storag Condit				 					 			
Distilled 	None	Num Mean St Dev	•		· ·			:	.	· · ·	. . .		3 408 27
	4 C	Num Mean St Dev	•	363	į.	401	4 399 15	345	317	440		4 439 11	388
·	Room	Num Mean St Dev	•	326		352	4 341 46	322	269	366		272 47	•
Ground	None	Num Mean St Dev	4 416 50								. .		4 416 50
	4 C	Num Mean St Dev			497	374	4 489 23	450	386	j .	373	370	27 417 57
	Room	Num Mean St Dev	. .		451	334	4 492 5	386	319	j . j	316	,	•
Surface	None	Num Mean St Dev	4 407 12	i .i			:				• •		407
	4 C	Num Mean St Dev		361 43			4 445 42	412	491	445		4 445 57	•
	Room	Num Mean St Dev	i .i	4 305 42		310	4 532 24	364	422	388		317	

in Environmental Water Samples Stability of Benzene

Initial Spike: 500 ug/L

Figure A.8

Table A.9 Summary Statistics for high level concentrations ($\mu g/L$) for $\frac{1.1.2\text{-Trichloroethane}}{2}$.

· · · · · · · · · · ·			!				Da	ys					 !
			0	1 3	4	1 7	14	28	56	1112	1113	365	 All
Water	Storag Condit		 	 	 		 	 	 	 	 	 	
Distilled	None	Num Mean St Dev	3 442 17	j .		:	:	:	 	:	3 442 17
	4 C	Num Mean St Dev	•	4 399 12		416	453	415	•	532	j .	4 466 7	436
	Room	Num Mean St Dev	•	364		342		208	76	28	j .	3	28 190 146
Ground	None	Num Mean St Dev	4 456 22	j					4 456 22
	4 C	Num Mean St Dev	· ·		561	451	504	522	497		447	484	27 493 42
	Room	Num Mean St Dev	•		514	427	509	3 469 40	453		388		
Surface	None	Num Mean St Dev	,	i i	-			. .					500
	4 C	Num Mean St Dev		4 443 35		405	550	4 462 16	565	539	•	527 52	502 64
 		Num Mean St Dev	i .i	4 396 29		370	648	3 435 50	539	513		3 470 14	26 484

Stability of 1,1,2-Trichloroethane in Environmental Water Samples

Initial Spike: 500 ug/L

Figure A.9

Table A.10 Summary Statistics for high level concentrations ($\mu g/L$) for $$\underline{Bromoform}$$.

!			 !	30 									
 			0	3	4	7	14	28	56	112	113	365	All
	Storag Condit												
Distilled 	None	Num Mean St Dev	649			:	:	 . .					3 649 30
 	4 C	Num Mean St Dev	i .	535		577	571	512	448	610	j .	623	27 555 62
 	Room	Num Mean St Dev		511		521	508	467	366	474	i .	350	•
Ground	None	Num Mean St Dev	390							:	:		390 20
 	4 C	Num Mean St Dev			721	552	742	661	597		546	588	
	Room	Num Mean St Dev	i .i		640	511	778	568	533		450	583	
Surface 	None	Num Mean St Dev	589	·									589 12
	4 C	Num Mean St Dev		568		523	662	549	709	641		643	617
 	Room	Num Mean St Dev		4 511 53		456	738	3 495 71	641	546	·	392	26 547 129

in Environmental Water Samples Stability of Bromoform

Initial Spike: 500 ug/L

Figure A.10

Table A.11 Summary Statistics for high level concentrations ($\mu g/L$) for $\frac{1.1.2.2\text{-}Tetrachloroethane}{2}.$

 I			 I	6 								 I	
<u> </u>			0	3	4				56	1112	113	365	A11
Water 	Storag Condit		 		 	 	 	 		 		 	
Distilled	None	Num Mean St Dev	403	i .i		:		:	 			3 403 26
 	4 C	Num Mean St Dev		336		299	115	61	j 8	j 6	į .į	3	27 120 137
 	Room	Num Mean St Dev	•	3		3	3	j 2	j 0	0	i . i	1	2
Ground 	None	Num Mean St Dev	524	i i									3 524 7
 	4 C	Num Mean St Dev		i .i	713	544	685	631	597		507	565	602
 	Room	Num Mean St Dev	j . j		577	462	510	321	184		56	1	26 290 216
Surface	None	Num Mean St Dev					: :						600
 	4 C	Num Mean St Dev				444	•	556	652	631			91
	Room	Num Mean St Dev		4 400 65		319	4 546 16	350		294	i	3 62	26

Stability of 1,1,2,2-Tetrachloroethane in Environmental Water Samples

Initial Spike: 500 ug/L

igure A.11

Table A.12 Summary Statistics for high level concentrations ($\mu g/L$) for $\underline{\text{Tetrachloroethylene}}.$

!							Day	7S					
			0	3	4	7	14	28	56	112	113	365	A11
•	Storage Condit												
Distilled	None	Num Mean St Dev			 • •	•		•		. .			3 377 33
	4 C	Num Mean St Dev		293		297	4 328 23	255	238	290		236	27 277 41
	Room	Num Mean St Dev	, ,	238		218	222 29	199	141	123	i .i	12	28 165 79
Ground 	None	Num Mean St Dev					:						3 275 17
	4 C	Num Mean St Dev	•	: ;	357	242	312 312	309	253		223	195	27 267 57
 	Room	Num Mean St Dev	•		286	•	289	213	•		126	67	26 182 81
Surface	None	Num Mean St Dev	•				:		:	:			4 340 10
		Num Mean St Dev		317		293	381	312 10	325	291	. .	248 41	27 310 49
	ł	Num Mean St Dev		4 243		4 255	4 385 18	3 215	, 4 216	170		3 54	26 226 100

in Environmental Water Samples Stability of Tetrachloroethylene

Initial Spike: 500 ug/L

Figure A.12

Table A.13 Summary Statistics for high level concentrations ($\mu g/L$) for Toluene.

!			!				Da	ys					
			0	3	4	7	14	28	56	1112	113	365	 A11
Water	Storag Condit												
Distilled	None	Num Mean St Dev	•	į .		:	:	:					3 391 34
 	4 C	Num Mean St Dev	•	322	į.	338	4 364 18	304	283	405		369	27 342 46
	Room	Num Mean St Dev	•	278		280	4 288 42	276	221	285		144	28 253 60
Ground	None	Num Mean St Dev	•										3 393 -23
 	4 C	Num Mean St Dev	. .		460	331	4 445 16	415	353		327	351	27 380 56
 	Room	Num Mean St Dev	• •				370	322				253	26 298 70
Surface	1,0110	Num Mean St Dev	4 380 11				:		• •	·			380
. 	4 C	Num Mean St Dev		4 378 57			4 423 43	347	363	329	•	270	27 348 56
 	Room	Num Mean St Dev		4 302 53	.	279	4 488 15	289	312	316	.	3 211	26 319 92

in Environmental Water Samples Stability of Toluene

Initial Spike: 500 ug/L

Figure A.13

Table A.14 Summary Statistics for high level concentrations ($\mu g/L$) for <u>Chlorobenzene</u>.

							Dag	ys					
			0	3	4	7	14	28	56	1112	113	365	All
Water	Storag Condit 		 	 	 								
Distilled	None	Num Mean St Dev	•	j .	! `		•	:	:	 . .	3 391 391
	4 C	Num Mean St Dev	•	319 15	j .	312	4 354 25	288	279	388	j .	358	27 330 45
	Room	Num Mean St Dev	•	276	į .	259	4 279 40	264	211	261		114	28 238 64
Ground	None	Num Mean St Dev					. .						3 357 24
: 	4 C	Num Mean St Dev	•		463	336	4 427 15	427	378		337	376	27 389 52
 	Room	Num Mean St Dev		•			428	333			247		312
Surface	None	Num Mean St Dev	4 385 11	·i	.		·			 !	4 385 11
		Num Mean St Dev		4 349 56			4 437 32	344	400	396		4 378 39	377
. 	Room	Num Mean St Dev	. 1	4 284 43	٠į	278	3 495 22	280	319 j	315	·i	208 j	25 309 91

in Environmental Water Samples Stability of Chlorobenzene

Initial Spike: 500 ug/L

Figure A.14

Table A.15 Summary Statistics for high level concentrations ($\mu g/L$) for <u>Ethylbenzene</u>.

			!				Day	ys					
			0	3	4	7	14	28	56	1112	113	365	A11
Water	Storag Condit] 	
Distilled	None	Num Mean St Dev	•	į .i	•	!				. .			3 387 41
	4 C	Num Mean St Dev	•	4 294 15		302	334 25	262		350		314	27 303 41
	Room	Num Mean St Dev		247			250 37	233	185	223		110	28 212 56
Ground	None	Num Mean St Dev					: :				:		3 351 25
:	4 C	Num Mean St Dev	. . .		429	304	4 409 15	382	326		301	317	27 350 54
	Room	Num Mean St Dev			352	•	397		200		193	136	26 252 94
Surface	None	Num Mean St Dev	•		•								351 10
	4 C	Num Mean St Dev		4 337 64			362 35	185	76	18	 •	2	177 147
	Room	Num Mean St Dev		4 238 49			381		211	227	. .	162	26 241 76

in Environmental Water Samples Stability of Ethylbenzene

Initial Spike: 500 ug/L

Figu

Table A.16 Summary Statistics for high level concentrations ($\mu g/L$) for Styrene.

							Day	ys					
 			0	3	4	7	14	28	56	112	113	365	A11
Water	Storag												
 Distilled 	None	Num Mean St Dev	3 406 44			!			•	. .	• •		3 406 44
	4 C	Num Mean St Dev	•	312 17		337	363	3 250 22	283	330	i .i	4 351 23	,
	Room	Num Mean St Dev	•	4 266 28			,	232		189	i i	111	28
Ground	None	Num Mean St Dev		j . j				3 415 32
	4 C	Num Mean St Dev				267	425	4 420 41	351	j .		357	366
	Room	Num Mean St Dev			353	215	417	301		j .	3 165 48		265
Surface	None	Num Mean St Dev				 • •		389
	4 C	Num Mean St Dev		4 347 60			414	297 26	282	288		4 235 39	310 64
	Room	Num Mean St Dev		4 264 47		246	418	3 244 30	220	199		3 10 17	26 237

in Environmental Water Samples Stability of Styrene

Initial Spike: 500 ug/L

Figure A.16

Table A.17 Summary Statistics for high level concentrations ($\mu g/L$) for $\underline{0\text{-}Xylene}$.

1			 				Day	ys 					
			0	3	4	7 	14	28	56	1112	113	365	A11
Water	Storag	*	 	 		 	 	 	 	 			
Distille	d None	Num Mean St Dev	•			 . .	:	 . .	:				3 408 43
 	4 C	Num Mean St Dev	•	322 16		335	4 382 27	283	291	308		352	27 326 42
	Room	Num Mean St Dev	•	274		271	4 298 45	258	224	193		198	28 245 48
Ground	None	Num Mean St Dev	•			:							3 360 24
	4 C	Num Mean St Dev	.		436	312	4 432 15	434	361		335	366	27 380 55
	Room	Num Mean St Dev			364	•	425		238		215	168	25 283 92
Surface	None	Num Mean St Dev		i .i			:					٠	390
	4 C	Num Mean St Dev			•	307	4 420 27	339	327 15	390	.	373 33	27 360 48
	Room	Num Mean St Dev	 • •	4 283	 •	259	4 438	3 271	4 244	4 327	· •	3 268	26 301 76

in Environmental Water Samples Stability of o-Xylene

Initial Spike: 500 ug/L

Figure A.17

Appendix B

Data for Individual Volatile Organic Compounds

(Low Concentration Level)

Table B.1 Summary Statistics for low level concentrations ($\mu g/L$) for Methylene Chloride.

			ļ				Days					
! !			0	3	4	7	14	28	56	112	365	A11
Water	Storage											
 Distilled 		Num Mean St Dev		j . j	•						į .	4.0 69.6 0.9
 	4 C	Num Mean St Dev		4.0 55.5 0.4		56.6	48.5	2.0 52.6 2.2	51.4	j .	4.0 53.5 0.8	53.1 3.2
	Room	Num Mean St Dev		4.0 53.9 0.7		55.8	51.8	3.0 56.9 0.5	51.8		4.0 51.3 2.9	53.4
Ground 	None	Num Mean St Dev	•	į į		. . .				!	•	4.0 66.6 0.9
 	4 C	Num Mean St Dev		j . j	60.9	3.0 54.6 2.1	58.6		55.8	63.4	4.0 65.8 1.8	60.1
	Room	Num Mean St Dev		, ,	57.2	2.0 50.3 1.3	57.6	i . i	52.7	60.2	4.0 57.9 1.9	56.4
Surface 	None	Num Mean St Dev		i .i			.			· ·		4.0 59.8 1.9
	4 C	Num Mean St Dev		4.0 56.0 2.2		63.4	63.8	4.0 62.9 2.9	61.1	49.9	48.5	57.8 6.5
 	Room	Num Mean St Dev		4.0 55.0 1.9		59.6	58.6	4.0 64.5 3.5	62.5	4.0 46.4	4.0 48.3	29.0 56.7

in Environmental Water Samples Stability of Methylene Chloride

Initial Spike: 50 ug/L

Table B.2 Summary Statistics for low level concentrations ($\mu g/L$) for $\frac{1.1\text{-Dichloroethylene}}{2}.$

			!				Days					!
	· 		0	3	4	7	14	28	56	1112	365	 All
Water	Storage											
Distilled	None 	Num Mean St Dev	•	į . į	•				•	:	j .	 4.0 74.7 3.2
	4 C 	Num Mean St Dev	į .	4.0 54.0 1.0		58.0	40.1	2.0 51.1 0.7	53.4	į .	4.0 59.1 0.8	22.0 52.8
	Room	Num Mean St Dev		4.0 51.1 1.5		57.4	53.5	3.0 59.2 0.4	68.4	j .	4.0 81.9 10.4	62.0
Ground	None 	Num Mean St Dev	•	į , į	•		•	.				4.0 61.9 2.3
	4 C	Num Mean St Dev		.	57.1	3.0 58.6 3.6	61.5		63.7	62.7	4.0 63.5 2.1	61.3
	Room	Num Mean St Dev			43.0	2.0 76.7 4.0	59.2	i . j	55.3	58.2	4.0 45.9 5.2	20.0 55.7
Surface	None	Num Mean St Dev		· i			4.0 45.5 3.7
	4 C	Num Mean St Dev	i . i	4.0 60.1 4.7		54.7	59.6	4.0 54.2 1.7	53.7	41.7	39.4	51.8
	Room	Num Mean St Dev		4.0 4.0 54.9 6.6	·i	46.6	48.6	4.0 51.6 4.7	50.9	37.4	33.4	46.4

in Environmental Water Samples 1,1-Dichloroethylene

Initial Spike: 50 ug/L

Table B.3 Summary Statistics for low level concentrations ($\mu g/L$) for $\frac{1.1\text{-Dichloroethane}}{2}.$

!			 				Days					
 	:		0	3	4	7	14	28	56	112	365	All
Water	Storage											
Distilled		Num Mean St Dev	,	į .i			•	:				4.0 81.0 2.3
 	4 C 	Num Mean St Dev	į .	4.0 58.7 0.8		59.9	53.1	2.0 60.2 2.6	62.6		55.8 0.2	22.0 58.2 3.6
 	Room	Num Mean St Dev	į .	4.0 55.1 1.5		58.4	56.1	3.0 53.5 0.6	63.2	j .	4.0 53.8	23.0 56.8 3.9
Ground		Num Mean St Dev			•	• •						4.0 66.7 1.9
 	4 C	Num Mean St Dev	• •		70.6	3.0 63.0 8.0	70.8		67.5	64.0	70.4	23.0 67.9 4.9
 	Room	Num Mean St Dev	•		53.4	2.0 67.8 4.8	69.6		62.1	59.3	63.7	20.0 63.1 5.7
Surface		Num Mean St Dev		i .i	. . .		• • •	.				4.0 55.5 2.5
	4 C	Num Mean St Dev		4.0 56.4 2.8		59.8	62.8	4.0 57.4 1.8	56.0	47.2	44.0	54.8
 	Room	Num Mean St Dev		4.0 54.1 3.2		54.1	55.9	4.0 55.8 3.5	56.7	45.5	46.0	52.7

in Environmental Water Samples Stability of 1,1-Dichloroethane

Initial Spike: 50 ug/L

Figure B.3

Table B.4 Summary Statistics for low level concentrations ($\mu g/L$) for Chloroform.

!			 !				Days					! !
			0	3	4	7	14	28	56	112	1365	A11
Water	Storage											
Distilled	None	Num Mean St Dev	4.0 76.6 1.9	i .i	•		•		•			4.0 76.6 1.9
	4 C	Num Mean St Dev		4.0 54.0 1.1	.	4.0 54.1 1.8		56.5	56.9	63.2 1.7	51.0	22.0 55.9 4.2
	Room	Num Mean St Dev		4.0 51.1 1.8			51.6	53.3	57.0	4.0	4.0	27.0 52.8 5.3
Ground	None 	Num Mean St Dev	•	. i		•		j . j	4.0 61.3 1.3
	4 C 	Num Mean St Dev			73.0	3.0 56.8 1.5	58.0	i .i	59.8	64.4	66.0	23.0 63.3 6.1
	Room	Num Mean St Dev			48.8	2.0 50.7 3.3	57.5	i .i	57.4	61.8	63.8	20.0 58.0 5.8
Surface	None 	Num Mean St Dev					. .		•	.	•	4.0 59.7 2.7
	4 C 	Num Mean St Dev		4.0 57.7 4.0		63.8	65.5	63.0	57.9	50.5	46.9	27.0 57.9 7.0
	Room	Num Mean St Dev		4.0 54.8 2.3	.	57.7	59.8	61.4	61.1	53.5	54.4	29.0 57.7 4.2

in Environmental Water Samples Stability of Chloroform

Initial Spike: 50 ug/L

Figure B.4

Table B.5 Summary Statistics for low level concentrations ($\mu g/L$) for Carbon Tetrachloride.

!			!.				Days					
			0] 3	4	7	14	28	56	1112	365	 A11
Water	Storage		† 	 	+ 	+ 	 			+· !	+ !	+
Distilled	None	Num Mean St Dev	•	j .	 . .		 • •	•	•	:		4.0 4.0 70.0 3.5
	4 C	Num Mean St Dev	į .	4.0 46.2 1.3	j .	47.0	36.1	52.4	54.1 0.7	54.5 2.4	48.0 0.4	26.0 48.0 6.3
	Room	Num Mean St Dev		4.0 40.7 3.2		44.0		50.4	4.0 53.9	4.0 43.4	44.9	27.0 45.4
Ground	None	Num Mean St Dev		j . j		. .	.		· ·			4.0 54.9 3.1
	4 C	Num Mean St Dev			61.5	3.0 50.6 2.8	60.9	· i	59.8	62.7	4.0 55.5 1.6	58.8
	Room	Num Mean St Dev		i .i	50.9	2.0 36.8 1.5	60.8	٠i	56.5j	52.9	4.0 38.0 7.0	50.1
Surface	None 	Num Mean St Dev		i .j		4.0 39.3 3.8
 	4 C	Num Mean St Dev	· i	4.0 49.4 5.7	٠į	4.0 50.8 1.5		46.6	45.8	42.8	36.1	45.9
	Room	Num Mean St Dev	.	4.0 43.8 6.7		4.0 34.0 3.7		26.4	15.9	8.1	7.6	23.5

Stability of Carbon Tetrachloride in Environmental Water Samples

Initial Spike: 50 ug/L

Figure B.5

Table B.6 Summary Statistics for low level concentrations ($\mu g/L$) for 1.2-Dichloropropane.

							Days					<u> </u>
			0	3	4	7	14	28	56	1112	365	 All
Water	Storage						 					
Distilled		Num Mean St Dev	4.0 67.3 1.8	j .					•	 . .	•	4.0 67.3 1.8
	4 C	Num Mean St Dev	j .	4.0 48.0 0.8		47.9	44.3	2.0 50.8 1.6	50.8	j .	4.0 49.9 0.8	48.4 2.6
	Room	Num Mean St Dev	į .	4.0 44.8 1.6		46.2	46.6	3.0 44.8 0.9	50.9		4.0 47.9	
Ground	None	Num Mean St Dev	•				. •		. .			4.0 33.7 0.9
	4 C	Num Mean St Dev	•	·	50.7	3.0 48.7 2.0	51.2	· i	51.5	55.8	4.0 62.2 2.7	53.6
	Room	Num Mean St Dev	. . .		43.9	2.0 42.0 3.1	51.2	.	47.3	52.7	4.0 54.4 2.3	49.7
Surface	None	Num Mean St Dev			•		4.0 46.1 2.1
:	4 C	Num Mean St Dev		4.0 44.5 1.8	• [49.4	49.1	4.0 47.5 1.5	47.6	43.9	41.8	46.2
	Room	Num Mean St Dev	i .i	4.0 43.0 1.9	٠ أ	43.3	44.5	4.0 46.2 3.0	50.4	41.8	43.7	44.9

in Environmental Water Samples Stability of 1,2-Dichloropropane

Initial Spike: 50 ug/L

Figure B.6

Table B.7 Summary Statistics for low level concentrations ($\mu g/L$) for $\frac{Trichloroethylene}{L}.$

			!				Days					 ! !
			0	3	4	7	14	28	56	112	365	A11
Water	Storage	1										
Distilled	None	Num Mean St Dev	•	j .					•		•	3.0 3.0 79.7 6.4
	4 C	Num Mean St Dev		4.0 50.7 2.1		52.4	43.6	68.0	82.9	108	87.5	25.0 71.4 23.4
	Room	Num Mean St Dev	j ,	4.0 72.3 5.0		79.2		85.8	89.9	88.3	•	27.0 79.4 10.8
Ground	None	Num Mean St Dev		i .i	•	• •			
	4 C	Num Mean St Dev	• •		89.9		4.0 99.4 2.5			118	4.0 103 3.5	
 	Room	Num Mean St Dev	•	i i	74.4		4.0 107 2.5	. j	114	139	4.0 103 12.3	107
Surface	None	Num Mean St Dev			.	,	4.0 50.0 2.3
	4 C	Num Mean St Dev		4.0 49.3 1.9	٠i	53.7	4.0 51.8 1.1	51.5j	51.6	44.4	40.5	48.9
	Room	Num Mean St Dev	.	4.0 47.5 4.2		50.7	4.0 49.7 5.2	61.1	60.7	60.0	59.8j	55.8

in Environmental Water Samples Stability of Trichloroethylene

Initial Spike: 50 ug/L

Figure B.7

Table B.8 Summary Statistics for low level concentrations ($\mu g/L$) for <u>Benzene</u>.

							Days					!
			0	3	4	7	14	28	56	1112	365	 All
Water	Storage											
Distilled	ĺ	Num Mean St Dev			 		4.0 68.1 1.8
	4 C	Num Mean St Dev	j .	4.0 46.7 1.3	j .	47.5	39.3	2.0 47.7 2.1	48.7	58.8	45.1	47.7
	Room	Num Mean St Dev	j .	4.0 42.1 2.0	j .	45.1	43.7	3.0 42.6 0.8	48.9	55.3	42.7	45.9
Ground	None	Num Mean St Dev							4.0 53.4 2.1
	4 C	Num Mean St Dev		.	49.2	3.0 49.8 2.3	57.1	i i	32.7	28.9	4.0 31.7 3.1	41.2
	Room	Num Mean St Dev	40.5	2.0 38.6 2.8	54.6	i . j	43.5	43.8	2.0 39.2 1.3	44.7
Surface	None	Num Mean St Dev		•		:	.	:		4.0 46.6 2.7
	4 C	Num Mean St Dev		4.0 53.0 3.4		49.6	49.3	4.0 46.8 1.8	45.7	38.1	37.2	45.7
	Room	Num Mean St Dev		4.0 46.5 3.8		40.8	38.2	4.0 42.6 4.3	43.0	34.7	34.3	40.6

in Environmental Water Samples Stability of Benzene

Initial Spike: 50 ug/L

Figure B.8

Table B.9 Summary Statistics for low level concentrations ($\mu g/L$) for $\underline{1.1.2\text{-Trichloroethane}}$.

			 				Days					
	٠.		0] 3	4	 7	14	28	56	112	365	A11
Water	Storage	!	ļ			† 	<u></u>		 	! !	! !	
Distilled	İ	Num Mean St Dev	•	j .	! . .	:		•	•	:		4.0 4.0 65.4 1.1
	4 C	Num Mean St Dev	j .	4.0 46.4 1.0		4.0 45.4 1.3		51.1	49.5	58.2	43.1	47.7
	Room	Num Mean St Dev		4.0 43.9 1.2		4.0 42.4 2.1			23.5	11.2	0.3	28.9
Ground	None	Num Mean St Dev		j . j				4.0 54.1 1.4
	4 C	Num Mean St Dev			49.0	3.0 50.7 1.8	49.0	٠į	54.9	59.2	4.0 65.6 2.0	54.9
] 	Room	Num Mean St Dev		.		2.0 46.0 2.7	48.3	•	51.2	56.9	4.0 58.9 1.5	52.3
Surface 	None	Num Mean St Dev	•	i .i	•	:	4.0 49.6 2.4
	4 C	Num Mean St Dev	•	4.0 46.5 1.4		4.0 52.6 0.5	•	49.2 j	50.3	44.0	43.3	47.9
 	Room	Num Mean St Dev		4.0 45.8 1.7	٠į	48.01	4.0 45.2 1.6	48.2	51.5	41.3	43.7	46.4

Stability of 1,1,2-Trichloroethane in Environmental Water Samples

Initial Spike: 50 ug/L

Table B.10 Summary Statistics for low level concentrations ($\mu g/L$) for Bromoform.

			ļ				Days					
			0	3	4	7	14	28	56	1112	365 	 All
Water	Storage			 								
Distilled	j	Num Mean St Dev	4.0 45.9 3.7	į i	•				•) 	 	4.0 45.9 3.7
	4 C	Num Mean St Dev	j .	4.0 30.7 1.8		34.2	32.6	46.5	48.7	50.4	41.9	26.0 40.3 8.0
	Room 	Num Mean St Dev	•	4.0 27.5 2.1		33.9		41.0	49.4	46.3	21.5	27.0 36.1 9.8
Ground	•	Num Mean St Dev	•	į . į	• • •		. . .		• •			4.0 48.6 1.9
	4 C	Num Mean St Dev		, ,	42.6	3.0 46.2 1.6	51.3	·i	52.6		59.9	23.0 52.5 7.0
	Room	Num Mean St Dev	•	i i	40.8	2.0 37.3 3.3	53.5	·i	44.7	50.6	25.6	20.0 42.7 10.9
Surface	None	Num Mean St Dev	•		• • •			4.0 45.7 1.1
	4 C	Num Mean St Dev	· i	4.0 44.9 1.6	·	50.5	50.2	44.3	45.5	42.5	36.7	27.0 44.9 4.7
(Room	Num Mean St Dev		4.0 43.9 2.3	٠į	43.6	43.6	38.9	40.7	31.5	20.0	29.0 37.6 8.6

in Environmental Water Samples Stability of Bromoform

Initial Spike: 50 ug/L

Figure B.10

Table B.11 Summary Statistics for low level concentrations ($\mu g/L$) for $\frac{1.1.2.2\text{-Tetrachloroethane}}{2.2.2}$

!			!	Days									
 			0	3	4	7	14	28	56	112	365	 All	
Water	Storage												
Distilled	None 	Num Mean St Dev	•	•	•	!!!		 . .	•	 . .		3.0 58.7 2.5	
 	4 C	Num Mean St Dev		4.0 41.6 1.7		3.0 41.5 0.5	37.2		14.0	3.5 1.2	0.6	23.1 17.4	
 	Room 	Num Mean St Dev	j .	4.0 1.1 0.9			0.1	3.0 0.2 0.2	0.3	3.0 0.0	4.0	26.0	
Ground 	None	Num Mean St Dev	•				• •		•			4.0 46.2 8.5	
! 	4 C	Num Mean St Dev			44.4	4.0 49.2 1.7	51.6	i i	55.7	57.9		24.0 53.4 6.5	
 	Room	Num Mean St Dev	. .		41.8	3.0 37.4 1.9	39.2		28.7	18.9	4.0 0.7 0.2		
Surface 	None 	Num Mean St Dev			•		.		•	. .		4.0 44.4 6.0	
 	4 C	Num Mean St Dev		4.0 42.7 6.7		4.0 49.6 6.7	46.1		46.6	41.4	40.1	44.6	
	Room	Num Mean St Dev		4.0 37.4 1.2	· i	36.8	31.3	4.0 24.8 0.9	22.5	12.1	1.0	23.7	

Stability of 1,1,2,2-Tetrachloroethane in Environmental Water Samples

Initial Spike: 50 ug/L

Figure B.11

Table B.12 Summary Statistics for low level concentrations ($\mu g/L$) for Tetrachloroethylene.

!							Days					
			0	3	4	7	14	28	56	112	365	A11 A11
Water	Storage	ļ										
Distilled	d None 	Num Mean St Dev	:		•				•		j . j	4.0 68.5 2.8
	4 C	Num Mean St Dev		4.0 42.8 1.6		40.9	31.0	47.6	48.7	53.3	39.4	26.0 43.1 7.3
	Room	Num Mean St Dev		4.0 36.0 2.7		36.8	38.1	40.3	45.2	38.4	26.1	27.0 37.1 6.8
Ground	None	Num Mean St Dev	•	i i	• •		 • •		4.0 50.2 4.1
 	4 C	Num Mean St Dev	. . .		41.3	4.0 43.5 3.1	45.3	i .i	45.2	50.0	46.1	24.0 45.2 3.8
 	Room	Num Mean St Dev	•		32.4	3.0 29.3 1.2	42.8		40.6	44.6	31.0	21.0 37.6 7.0
Surface	None	Num Mean St Dev	•	į , į	. •			4.0 46.5 4.8
	4 C	Num Mean St Dev		4.0 41.7 4.9		49.1	44.2	46.3	43.4	38.5	31.8	27.0 42.1 5.9
	Room	Num Mean St Dev	•	4.0 35.6 3.5		39.0	34.1	40.4	37.5	32.8	26.6	29.0 35.2 6.1

in Environmental Water Samples Stability of Tetrachloroethylene

Initial Spike: 50 ug/L

Table B.13 Summary Statistics for low level concentrations ($\mu g/L$) for Toluene.

!			 		Days									
			0	3	4	7	14	28	56	112	365	All		
Water	Storage	<u> </u>			r					 				
Distilled	i	Num Mean St Dev				•			•			4.0 66.9 2.1		
	4 C	Num Mean St Dev		4.0 44.9 1.1		44.1	35.9	2.0 48.9 2.0	48.2	53.3	44.1	45.4		
	Room	Num Mean St Dev		4.0 41.1 1.8			42.1	3.0 45.0 1.4	47.8	44.7	39.7	43.0		
Ground	,	Num Mean St Dev		į , į	_		• •	: :	- !		. i	4.0 51.4 3.1		
	4 C	Num Mean St Dev			45.1	4.0 47.4 1.3	52.0	i . į	25.7	17.9	4.0 16.8 3.6	34.1		
 	Room	Num Mean St Dev	. .		34.0	3.0 29.8 2.4	44.3	i . i	37.5		4.0 5.0 2.6			
Surface		Num Mean St Dev	, ,	· i	.	:	. . .	· · ·	• • •		·	4.0 44.2 3.8		
 	4 C	Num Mean St Dev		4.0 47.9 4.3		48.2	44.5	4.0 42.5 2.6	41.7	38.3	34.0	42.5		
 	Room	Num Mean St Dev	·	4.0 41.2 3.6	٠į	37.3 j	34.5	4.0 35.8 4.0	38.9	33.7	4.7	32.5		

in Environmental Water Samples Stability of Toluene

Initial Spike: 50 ug/L

Figure B.13

Table B.14 Summary Statistics for low level concentrations ($\mu g/L$) for Chlorobenzene.

1			 I				Days					
į												
			0 +	3 +	4 +	7 +	14 +	28	56 	112	365 	A11
Water	Storage	1	1	!		İ				į	!	
Distilled	i	Num Mean St Dev	•	j .		 	 . .		•	:		 4.0 69.7 1.8
 	4 C 	Num Mean St Dev	j .	4.0 44.5 1.4		44.6	4.0 38.0 2.9	52.0	51.8	52.7	44.0	46.4
 	Room	Num Mean St Dev	j .,	4.0 39.3 2.1		41.5	4.0 43.4 6.1	49.1	51.4	45.2	39.0	43.9
Ground 	None	Num Mean St Dev				•		4.0 52.7 2.7
	4 C	Num Mean St Dev	•	.	46.3	49.3	4.0 48.6 1.4	· į	45.7	50.4	4.0 47.5 1.8	48.0
	Room	Num Mean St Dev	.		36.2		4.0 45.3 0.8	•	42.1j	41.6	2.0 29.7 4.4	39.2j
Surface	None	Num Mean St Dev	,	•	· ·	. i . i		4.0 45.4 3.8
	4 C	Num Mean St Dev		4.0 42.3 3.4			4.0 44.8 2.5		43.8 j	40.5	35.2	42.4
	Room	Num Mean St Dev		4.0 38.8 2.3		38.5	4.0 37.1 1.6	35.7	41.7	37.4	31.9	37.9

in Environmental Water Samples Stability of Chlorobenzene

Initial Spike: 50 ug/L

Figure B.14

Table B.15 Summary Statistics for low level concentrations ($\mu g/L$) for Ethylbenzene.

							Days					<u>-</u>
			0	3	4	7	14	28	56	112	365	 All
Water	Storage				, 							
Distilled	İ	Num Mean St Dev	4.0 67.3 2.7	j .		!			•	 - •		4.0 67.3 2.7
	4 C	Num Mean St Dev		4.0 42.8 1.9		4.0 41.3 2.5	33.5	48.0	47.7	47.6	41.9	
	Room 	Num Mean St Dev	į .	4.0 36.6 2.4		38.4	40.0	3.0 43.8 1.5	46.7	38.2	37.0	40.0
Ground	None	Num Mean St Dev	•			• •		4.0 48.7 3.6
	4 C	Num Mean St Dev	•		43.0	4.0 45.8 2.2	47.7	i .i	17.2		4.0 7.0 5.0	
	Room	Num Mean St Dev			34.8	3.0 24.0 1.5	29.7	·i	17.1	10.6	4.0 1.6 0.1	18.1
Surface	None	Num Mean St Dev		. i !	·	4.0 42.2 4.4
	4 C	Num Mean St Dev	.	4.0 44.4 4.9		4.0 47.9 3.9	36.8		2.2	1.5	0.0	20.3
	Room	Num Mean St Dev	. i	4.0 26.9 3.3		28.5	22.1	4.0 23.6 2.8	27.9j	27.3	0.1	22.0

in Environmental Water Samples Stability of Ethylbenzene

Initial Spike: 50 ug/L

Figure B.15

Table B.16 Summary Statistics for low level concentrations ($\mu g/L$) for Styrene.

1		,	 				Days					
 			0	3	4	7	14	28	56	1112	365	 All
Water	Storage	<u> </u>										
Distilled 		Num Mean St Dev	4.0 71.0 1.7	j . i	 		4.0 71.0 1.7
: · ·	4 C	Num Mean St Dev	j .	4.0 45.9 1.4		4.0 44.8 2.6	32.6		47.8	41.0	41.1	42.9
 	Room	Num Mean St Dev		4.0 40.4 2.2		41.6			46.5	32.1		40.9
Ground	None	Num Mean St Dev		i i						. •		4.0 60.1 1.6
	4 C	Num Mean St Dev	• •	.	45.5	4.0 46.4 5.3	46.1	·i	7.4	2.4	4.0 0.0 0.1	24.6
	Room	Num Mean St Dev	,		29.6	3.0 22.9 0.6	27.4		0.8	0.0	4.0 0.0 0.0	12.0
Surface 	į	Num Mean St Dev		. i	 - -	.		4.0 47.0 3.6
	4 C	Num Mean St Dev		4.0 40.3 3.6	. i	52.7	33.9j	4.0 0.4 0.3	0.9	0.2	0.0	19.0
	Room	Num Mean St Dev	٠j	4.0 15.4 5.2		4.0 19.2 9.4	8.4j		11.0j	13.9	0.0	11.2

in Environmental Water Samples Stability of Styrene

Initial Spike: 50 ug/L

Figure B.16

Table B.17 Summary Statistics for low level concentrations ($\mu g/L$) for $\underline{\text{O-Xylene}}$.

-														-
				 				Days					 	
		;		0	3	4	7	14	28	56	112	365	A11	
į	Water	Storage												!
	Distilled		Num Mean St Dev	•	j .				:	• •	 		4.0 71.8 1.8	į
		4 C	Num Mean St Dev		4.0 46.1 1.9		44.3	37.5	2.0 48.7 2.2	51.9	51.8	43.3	46.0	i
		Room	Num Mean St Dev		4.0 40.5 2.5		41.6	46.2	3.0 45.9 2.6	51.1	42.9	40.8	44.1	i
	Ground		Num Mean St Dev		i .i	•		.	 -	.	•		4.0 50.3 3.2	İ
· 		4 C	Num Mean St Dev			43.6	4.0 48.1 1.8	48.2	٠į	12.5	2.2	4.0 3.7 2.4	26.4 21.2	İ
		Room	Num Mean St Dev			29.6	3.0 27.9 2.1	36.5	٠į	26.8	13.3	4.0 1.2 0.1	21.4	i I
	Surface		Num Mean St Dev		· i	• • •	•		4.0 47.1 4.0	İ
		4 C	Num Mean St Dev	i i	4.0 42.2 3.3	· i	57.2	45.2j	4.0 42.4 3.8	37.5	38.9	37.0	43.1	İ
-		Room	Num Mean St Dev	·i	4.0 37.4 4.4		49.4	36.6	4.0 35.0 3.8	36.9j	36.0	0.1	33.2	İ

in Environmental Water Samples Stability of o-Xylene

Initial Spike: 50 ug/L

Figure B.17

Appendix C

Data for Individual Organic Compounds

(Hydrochloric Acid Preservation)

TABLE C.1

HYDROCHLORIC ACID PRESERVATION OF AQUEOUS VOLATILES

WATER 1: DISTILLED WATER

MEAN CONCENTRATIONS, UG/L								
ıy O	Day 14	Day 28	Day 56					
+/-1	47+/-3	49+/-1	37+/-0					
+/-1	59+/-2	63+/-3	48+/-1					
+/-1	58+/-2	58+/-1	51+/-1					
+/-1	64+/-2	63+/-2	55+/-1					
+/-1	57+/-2	60+/-2	50+/-1					
+/-1	63+/-1	59+/-2	47+/-1					
+/-1	59+/-2	53+/-1	51+/-1					
+/-1	53+/-2	50+/-0	45+/-1					
+/-2	53+/-2	53+/-1	49+/-1					
+/-3	60+/-3	59+/-2	49+/-1					
+/-2	56+/-2	59+/-2	44+/-0					
+/-4	61+/-4	59+/-1	51+/-2					
+/-1	49+/-1	46+/-1	40+/-0					
+/-1	50+/-1	49+/-1	46+/-1					
	50+/-1	49+/-1	41+/-1					
-	*	-	41+/-0					
			32+/-1					
			42+/-1					
	MEAN ay 0	ay 0 Day 14 1+/-1 47+/-3 1+/-1 59+/-2 1+/-1 58+/-2 1+/-1 64+/-2 1+/-1 57+/-2 1+/-1 53+/-2 1+/-1 53+/-2 1+/-2 53+/-2 1+/-3 60+/-3 1+/-2 56+/-2 1+/-4 61+/-4 1+/-1 49+/-1 1+/-1 50+/-1 1+/-1 39+/-2	ay 0 Day 14 Day 28 1+/-1 47+/-3 49+/-1 159+/-2 63+/-3 1+/-1 58+/-2 58+/-1 158+/-2 63+/-2 159+/-2 60+/-2 159+/-1 57+/-2 60+/-2 159+/-1 59+/-2 53+/-1 159+/-2 53+/-1 159+/-2 53+/-1 159+/-2 53+/-1 159+/-2 53+/-1 159+/-2 53+/-1 159+/-2 59+/-2 159+/-2 59+/-2 159+/-2 59+/-2 159+/-1 49+/-1 150+/-1 49+/-1					

TABLE C.2

HYDROCHLORIC ACID PRESERVATION OF AQUEOUS VOLATILES

WATER 2: GROUND WATER

COMPOUND	MEA	N CONCE	NTRATIONS	S, UG/L
	Day 0	Day 14	Day 28	Day 56
Bromomethane	66+/-2	47+/-1	48+/-2	35+/-1
Chloroethane	78+/-2	58+/-3	66+/-2	45+/-2
1,1-Dichloroethene	71+/-3	50+/-5	58+/-2	48+/-4
1,1-Dichloroethane	74+/-1	64+/-2	64+/-1	56+/-2
Chloroform	69+/-2	58+/-2	60+/-1	52+/-3
Carbon Tetrachloride	62+/-1	62+/-3	59+/-3	44+/-2
1,2-Dichloropropane	62+/-1	58+/-1	54+/-1	60+/-1
Trichloroethene	62+/-1	54+/-1	53+/-1	43+/-2
Benzene	57+/-1	49+/-2	50+/-1	52+/-3
1,1,2-Trichloroethane	63+/-3	61+/-3	61 + / -0	62+/-3
Bromoform	55+/-2	58+/-2	61+/-2	46+/-8
1,1,2,2-Tetrachloroethane	64+/-2	63+/-1	61+/-2	72+/-9
Tetrachloroethene	57+/-1	49+/-1	45+/-0	37+/-2
Toluene	55+/-1	48+/-1	49+/-1	48+/-2
Chlorobenzene	55+/-1	51+/-1	50+/-1	41+/-7
Ethyl benzene	51+/-1	45+/-1	46+/-0	40+/-2
Styrene	41+/-1	35+/-1	32+/-0	28+/-1
Xylene	51+/-1	46+/-1	45+/-0	41+/-2

TABLE C.3

HYDROCHLORIC ACID PRESERVATION OF AQUEOUS VOLATILES

WATER 3: SURFACE WATER

COMPOUND	MEA	N CONCE	NTRATIONS	S, UG/L
	Day 0	Day 14	Day 28	Day 56
Bromomethane	50+/-1	48+/-2	40+/-1	31+/-1
Chloroethane	63+/-1	61+/-2	52+/-2	40+/-0
1,1-Dichloroethene	60+/-1	54+/-1	50+/-3	45+/-0
1,1-Dichloroethane	65+/-1	59+/-1	57+/-1	51+/-1
Chloroform	60+/-1	53+/-1	53+/-2	51+/-1
Carbon Tetrachloride	58+/-1	52+/-1	54+/-3	47+/-0
1,2-Dichloropropane	58+/-1	53+/-2	64+/-5	49+/-0
Trichloroethene	58+/-1	49+/-2	57+/-3	46+/-1
Benzene	55+/-0	49+/-2	55+/-2	48+/-1
1,1,2-Trichloroethane	59+/-1	52+/-2	65+/-5	52+/-0
Bromoform	59+/-1	46+/-1	56+/-4	47+/-0
1,1,2,2-Tetrachloroethane	57+/-1	52+/-2	60+/-4	52+/-1
Toluene	51+/-1	47+/-1	53+/-1	47+/-1
Chlorobenzene	54+/-1	48+/-0	53+/-4	43+/-1
Ethyl benzene	51+/-0	47+/-1	51+/-1	45+/-0
Styrene	45+/-3	39+/-1	37+/-1	32+/-0
Xylene	54+/-2	48+/-2	51+/-0	44+/-0

(Surface water was not spiked with tetrachloroethene.)

Appendix D

Data for Individual Volatile Organic Compounds

(Sodium Bisulfate Preservation)

TABLE D.1

SUMMARY OF BISULFATE PRESERVATION OF AQUEOUS VOLATILES

WATER 1: DISTILLED WATER

	WAT	ER 1: DIS	TILLED WA	TER					
COMPOUND	MEAN CONCENTRATIONS, UG/L								
	Day 1	Day 7	Day 14	Day 28	Day 56	Day 112			
Chloromethane	192.02	87.85	88.05	90.50	194.37	99.10			
Bromomethane	93.03	80.36	77.05	75.93	101.25	74.02			
Chloroethane	112.56	98.55	84.95	88.10	121.63	103.20			
Methylene Chloride	108.51	103.45	117.20	106.64	98.26	81.14			
Acetone	173.12	178.33	158.60	125.59	179.69	145.18			
Carbon Disulfide	299.67	253.69	217.95	176.67	236.42	144.49			
1,1-Dichloroethene	108.51	107.19	98.92	85.65	110.79	86.47			
1,1-Dichloroethane	117.33	123.87	119.39	95.92	114.36	109.33			
Chloroform	130.72	139.74	133.42	111.87	124.37	126.05			
2-Butanone	238.69	256.57	243.24	217.56	282.23	202.97			
Carbon Tetrachloride	103.00	103.65	104.24	91.65	102.70	92.08			
1,2-Dichloropropane	101.82	108.97	112.14	95.68	105.86	91.49			
Trichloroethene	93.05	93.75	92.73	83.24	90.18	80.79			
1,1,2-Trichloroethane	100.90	107.85	107.81	106.09	106.77	94.24			
Benzene	95.97	97.90	95.54	99.11	106.46	94.34			
Bromoform	104.43	104.88	105.81	108.62	111.43	101.28			
4-Methyl-2-pentanone	274.21	324.95	320.74	328.13	345.88	296.45			
2-Hexanone	313.10	362.46	357.43	265.62	374.15	320.99			
Tetrachloroethene	86.69	89.38	79.40	66.63	74.19	71.88			
1,1,2,2-Tetrachloroethane	101.13	113.04	107.91	116.62	112.34	110.48			
Toluene	88.33	92.41	83.65	93.91	95.78	93.79			
Chlorobenzene	85.82	91.42	83.58	86.71	87.13	86.64			
Ethyl benzene	81.67	86.73	77.95	90.87	90.98	91.75			
Styrene	82.70	85.75	80.94	93.25	96.65	94.06			
Xylene	88.70	92.92	86.69	9 0.69	100.84	100.87			

TABLE D.2

SUMMARY OF BISULFATE PRESERVATION OF AQUEOUS VOLATILES

WATER 2: SURFACE WATER

COMPOUND		MEA	AN CONCE	NTRATIONS	S, UG/L		
	Day 1	Day 7	Day 14	Day 28	Day 56	Day 112	
Chloromethane	186.90	83.78	86.14	90.90	129.01	88.00	
Bromomethane	92.82	78.67	75.48	74.57	70.18	77.65	
Chloroethane	114.76	94.62	84.47	84.96	79.41	108.73	
Methylene Chloride	113.29	102.49	121.46	106.55	97.04	85.29	
Acetone	194.67	168.88	168.05	131.36	176.35	162.99	
Carbon Disulfide	318.35	234.09	212.48	172.52	178.51	150.67	
1,1-Dichloroethene	123.49	106.84	101.77	82.90	53.93	85.84	
1,1-Dichloroethane	124.63	119.37	120.31	94.58	83.53	109.72	
Chloroform	112.18	111.51	110.17	89.26	76.22	107.68	
2-Butanone	283.40	264.01	256.79	221.02	247.60	246.51	
Carbon Tetrachloride	121.06	108.42	111.21	93.75	74.91	107.60	
1,2-Dichloropropane	113.47	111.13	116.67	97.02	79.81	95.51	
Trichloroethene	111.48	104.28	100.72	84.65	69.56	84.64	
1,1,2-Trichloroethane	110.15	110.13	114.31	105.58	88.99	102.90	
Benzene	105.09	98.85	99.80	88.71	66.74	88.61	
Bromoform	118.77	115.50	113.20	106.21	96.10	105.48	7
4-Methyl-2-pentanone	324.94	340.49	335.39	346.68	303.44	325.52	
2-Hexanone	376.12	376.76	375.64	276.12	318.82	352.10	
Tetrachloroethene	93.57	91.13	79.33	67.07	60.05	74.27	
1,1,2,2-Tetrachloroethane	110.88	113.05	109.35	111.95	102.54	110.81	
Toluene	101.02	99.04	88.60	83.38	41.54	83.98	
Chlorobenzene	97.09	100.52	90.09	83.65	65.69	86.90	
Ethyl benzene	94.46	94.27	83.01	7 9.56	42.87	85.08	
Styrene	94.03	94.10	92.06	76.39	22.95	88.05	
Xylene	99.93	101.32	91.79	80.38	29.25	95.45	

TABLE D.3

SUMMARY OF BISULFATE PRESERVATION OF AQUEOUS VOLATILES

WATER 3: GROUND WATER

COMPOUND		ME	AN CONCE	NTRATIONS	S, UG/L		
	Day 1	Day 7	Day 14	Day 28	Day 56	Day 112	
Chloromethane	176.09	79.39	82.00	88.05	145.44	116.54	
Bromomethane	89.11	75.06	71.33	72.82	101.18	90.05	
Chloroethane	110.52	93.53	81.54	81.38	120.32	124.37	
Methylene Chloride	115.93	100.97	120.04	110.65	102.20	98.24	
Acetone	198.33	156.91	160.38	123.40	185.49	168.56	
Carbon Disulfide	305.80	222.83	203.17	170.60	223.58	151.68	
1,1-Dichloroethene	115.60	101.05	96.66	80.79	106.61	94.69	
1,1-Dichloroethane	122.45	113.79	113.85	91.73	115.29	108.50	
Chloroform	110.59	107.37	107.41	87.84	101.48	117.66	
2-Butanone	285.48	242.47	256.87	222.80	290.30	232.81	٠. '
Carbon Tetrachloride	112.91	101.86	108.43	91.54	106.20	111.17	
1,2-Dichloropropane	111.18	108.83	112.79	95.61	107.69	97.75	
Trichloroethene	103.95	97.42	97.87	81.35	92.15	81.51	
1,1,2-Trichloroethane	109.26	106.75	112.32	105.37	106.94	96.96	
Benzene	103.12	98.22	98.24	89.58	96.39	86.32	
Bromoform	115.95	110.56	110.35	104.37	116.49	105.43	
4-Methyl-2-pentanone	327.78	317.61	333.86	330.78	360.92	313.64	
2-Hexanone	372.96	342.19	368.07	262.64	402.57	339.66	
Tetrachloroethene	89.28	86.95	78.26	67.54	74.34	70.88	
1,1,2,2-Tetrachloroethane	111.74	110.41	111.52	112.97	116.31	114.18	
Toluene	97.24	96.02	88.16	82.46	88.11	86.79	
Chlorobenzene	93.90	96.94	88.43	82.27	89.17	85.28	
Ethyl benzene	89.58	89.90	82.14	79.73	84.38	84.65	
Styrene	89.68	88.62	83.77	76.11	87.39	85.59	
Xylene	96.55	97.25	91.00	81.13	92.92	91.66	

Appendix E

Data for Individual Volatile Organic Compounds

(Ascorbic Acid Preservation)

TABLE E.1

SUMMARY OF ASCORBIC ACID PRESERVATION OF AQUEOUS VOLATILES

WATER 1: DISTILLED WATER

COMPOUND		ME	AN CONCE	NTRATIONS	S, UG/L	
	Day 1	Day 7	Day 14	Day 28	Day 56	Day 112
Chloromethane	58.69	148.32	91.57	31.60	126.86	87.37
Bromomethane	223.61	89.95	79.29	97.05	86.43	71.58
Chloroethane	84.47	114.00	99.28	96.29	103.57	91.57
Methylene Chloride	91.08	94.85	108.04	90.04	99.13	103.25
Acetone	121.34	182.10	108.54	114.11	249.63	466.07
Carbon Disulfide	176.51	318.80	261.49	189.49	213.67	144.44
1,1-Dichloroethene	80.14	113.07	108.78	82.06	94.22	78.14
1,1-Dichloroethane	110.93	118.76	124.25	99.04	109.63	109.87
Chloroform	121.95	127.89	139.63	114.17	122.81	125.78
2-Butanone	214.55	284.66	231.03	137.00	246.34	201.30
Carbon Tetrachloride	47.68	66.68	71.56	47.58	35.29	29.87
1,2-Dichloropropane	98.20	110.07	119.33	94.63	103.08	98.77
Trichloroethene	96.67	106.20	106.74	77.54	89.43	76.09
1,1,2-Trichloroethane	99.08	107.44	117.56	97.92	96.16	93.02
Benzene	91.73	98.21	102.66	83.01	86.93	78.59
Bromoform	1.59	25.04	58.80	20.25	9.88	16.12
4-Methyl-2-pentanone	282.86	339.79	336.07	259.40	277.27	249.87
2-Hexanone	287.88	371.81	385.36	230.82	344.67	235.45
Tetrachloroethene	97.82	97.40	101.56	74.09	81.85	75.76
1,1,2,2-Tetrachloroethane	105.28	117.12	119.67	100.35	95.77	95.64
Toluene	92.33	96.86	97.85	79.51	81.80	77.99
Chlorobenzene	90.84	94.04	100.55	79.25	80.02	76.11
Ethyl benzene	87.61	92.84	95.67	75.19	75.27	73.78
Styrene	79.61	76.32	85.73	58.26	51.26	43.92
Xylene	94.06	99.52	102.23	78.92	83.09	86.44

TABLE E.2

SUMMARY OF ASCORBIC ACID PRESERVATION OF AQUEOUS VOLATILES

WATER 2: SURFACE WATER

COMPOUND		MEA	AN CONCE	NTRATIONS	s, UG/L	
	Day 1	Day 7	Day 14	Day 28	Day 56	Day 112
Chloromethane	103.52	122.21	87.81	129.75	123.82	88.98
Bromomethane	72.05	87.29	75.73	95.04	86.73	73.02
Chloroethane	94.59	115.54	95.75	95.52	103.60	83.21
Methylene Chloride	92.93	96.35	109.37	92.16	96.21	108.37
Acetone	143.66	192.52	125.35	112.68	169.40	163.86
Carbon Disulfide	252.11	288.93	235.50	189.46	207.67	148.06
1,1-Dichloroethene	99.14	109.73	110.24	89.64	100.15	85.22
1,1-Dichloroethane	109.82	118.19	125.52	101.97	109.35	112.84
Chloroform	98.22	105.22	114.89	96.00	100.46	103.96
2-Butanone	242.16	289.74	271.07	150.41	246.10	194.54
Carbon Tetrachloride	45.20	83.69	95.05	84.90	81.78	81.04
1,2-Dichloropropane	98.89	114.10	124.33	98.03	104.85	100.78
Trichloroethene	96.53	108.77	109.89	82.92	92.62	77.98
1,1,2-Trichloroethane	99.98	110.67	126.73	105.06	98.92	95.71
Benzene	90.39	101.50	105.43	91.89	92.23	84.23
Bromoform	1.69	11.70	28.47	55.66	10.44	20.26
4-Methyl-2-pentanone	318.10	356.13	385.97	295.58	286.14	252.98
2-Hexanone	322.48	399.19	445.81	266.33	355.91	245.72
Tetrachloroethene	90.75	91.94	94.66	70.94	76.94	70.91
1,1,2,2-Tetrachloroethane	111.84	121.01	131.89	108.50	97.06	95.34
Toluene	92.42	99.06	98.45	85.86	87.64	80.53
Chlorobenzene	91.05	97.87	102.00	86.43	87.93	81.67
Ethyl benzene	89.33	95.33	96.55	82.26	82.43	77.93
Styrene	81.06	94.11	101.54	87.23	78.23	78.69
Xylene	93.35	100.36	103.82	84.36	88.60	88.32

TABLE E.3

SUMMARY OF ASCORBIC ACID PRESERVATION OF AQUEOUS VOLATILES

WATER 3: GROUND WATER

	, wa	IER 3: GF	ROUND WA	IEH			
COMPOUND	MEAN CONCEN				S, UG/L		
	Day 1	Day 7	Day 14	Day 28	Day 56	Day 112	
Chloromethane	90.34	118.25	56.31	128.55	124.07	82.48	
Bromomethane	67.89	84.76	73.59	92.99	89.11	71.31	
Chloroethane	83.52	113.45	89.42	93.41	106.41	82.98	
Methylene Chloride	98.70	95.08	110.34	95.70	100.54	111.45	
Acetone	146.81	199.08	117.22	115.07	182.58	171.47	
Carbon Disulfide	245.93	283.34	223.89	190.00	204.03	133.49	
1,1-Dichloroethene	97.82	110.77	106.18	87.56	99.13	78.58	
1,1-Dichloroethane	106.45	115.30	119.92	102.77	110.26	110.20	
Chloroform	96.52	103.86	113.26	95.52	99.58	103.18	
2-Butanone	266.39	302.29	267.93	153.27	253.94	206.71	
Carbon Tetrachloride	45.05	87.14	93.54	84.57	82.73	81.57	
1,2-Dichloropropane	102.35	113.67	123.30	97.10	109.42	100.43	
Trichloroethene	99.77	106.56	107.73	78.21	94.36	76.80	
1,1,2-Trichloroethane	106.50	111.34	123.08	104.03	100.09	97.65	
Benzene	92.89	102.15	103.73	90.01	96.13	85.59	
Bromoform	1.54	21.66	30.32	29.87	7.51	10.77	
4-Methyl-2-pentanone	341.86	366.83	374.74	303.72	285.08	259.33	
2-Hexanone	352.12	411.94	425.42	277.03	354.49	250.01	
Tetrachloroethene	90.43	92.63	91.29	71.06	76.16	69.26	
1,1,2,2-Tetrachloroethane	120.26	124.53	128.16	109.91	99.58	97.81	
Toluene	96.55	99.62	97.71	85.43	88.56	80.73	
Chlorobenzene	91.81	98.48	100.22	86.74	85.21	80.25	
Ethyl benzene	92.65	97.48	95.13	81.71	82.05	77.64	
Styrene	78.99	94.15	99.16	85.28	76.14	77.79	
Xylene	96.99	103.08	102.36	83.36	87.55	87.35	

Appendix F

Estimation of Maximum Pre-analytical Holding Times Using a Cubic Spline Fit

Estimation of Maximum Pre-analytical Holding Times Using a Cubic Spline Fit

The problems encountered with fitting zero-order and first-order models to the preanalytical holding time data are illustrated in Figure F-1 for low-level concentrations of ethylbenzene in ground water stored at 4°C. The concentrations are approximately constant for the first 14 days then rapidly decrease to a plateau of about 10 ug/L. Basically, there are only two concentration levels. Both the zero-order and first-order models try to average these low and high concentrations levels.

To approximate the rapidly decreasing concentrations, additional linear models were examined which had derivatives that also decreased rapidly. The zero-order model, first-order model, and the additional models are given in Table F-1. The log-term model and inverse-term model were able to approximate the rapid concentration decreases for some of the special cases. However, these models couldn't approximate any cases which had an initial constant-concentration plateau. An empirical model was then applied which had an initial constant-concentration for days less than day = D_0 , and a final concentration for days greater than day = D_1 . The concentrations between day = D_0 and day = D_1 were modelled by a cubic spline which is a cubic polynomial with a sigmoidal shape curve. The cubic spline starts at the initial concentration at day = D_0 and ends at the final concentration at day = D_1 . In addition, the cubic spline is required to be continuous at day = D_0 and day = D_1 . In addition, the cubic spline is required to be

Table F-1. Models and their derivatives used to approximate special cases of VOC's in water.

Model	Equation	Derivative		
Zero-Order First-Order	$C = C_0 + B(day)$ $C = C_0 \exp[B(day)]$	$dC/d(day) = B$ $dC/d(day) = BC_0 \exp[B(day)]$		
Log-Term	$C = C_0 \exp[B(day)]$ $C = C_0 + B(day) + Aln(day)$	$dC/d(day) = BC_0exp[B(day)]$ $dC/d(day) = B + A/(day)$		
Inverse-Term	$C = C_0 + B(day) + A/(day)$	dC/d(day) = B - A/(day)2		

Mathematically, the cubic spline approximates the concentrations by a function of time, f(D) with D = day:

$$f(D) = \begin{array}{c} C_0 & \text{ If } D \leq D_0 \\ a + bD + cD^2 + eD^3 & \text{ If } D_0 < D < D_1 \\ C_1 & \text{ If } D \geq D_1. \end{array}$$

The continuity condition and initial and final concentration conditions places two restrictions on f(D):

Figure F-1. Low concentrations of ethylbenzene in groundwater at 4° C. A zero-order model (solid line) and first order model (dashed line) are fitted to the concentration data (stars).

- 1. $f(D_0) = C_0$ and $f(D_1) = C_1$.
- 2. $f'(D_0) = 0$ and $f'(D_1) = 0$, where f' is the derivative with respect to D_0 and D_1 , respectively.

Using these two restrictions for the cubic spline, the coefficients a, b, c, and e can be determined in terms of D_0 and D_1 .

$$a = (C_0H_1 - C_1H_0)/(H_1 - H_0)$$

$$c = -1.5(C_1 - C_0)(D_0 + D_1)/(H_1 - H_0)$$

$$b = 3(C_1 - C_0)D_0D_1/(H_1 - H_0)$$

$$e = (C_1 - C_0)/(H_1 - H_0)$$

where $H_0 = 0.5D_0^2(3D_1 - D_0)$ and $H_0 = 0.5D_1^2(3D_0 - D_1)$.

The estimates of the parameters D_0 and D_1 for the cubic splines are calculated by the method of non-linear least squares. The cubic splines were estimated for the 14 special cases of VOC in water samples using the non-linear procedure PROC NLIN with METHOD=MARQUARDT in the SAS computer programming language [12]. The

results of fitting a cubic spline to low-level concentrations of ethylbenzene in ground water at 4°C are plotted in Figure F-2.

Maximum Holding Time

The ASTM and ESE definitions for MHT are adapted to the cubic spline using the following procedures:

ASTM MHT procedure for the cubic spline:

- 1. Fit the data with a cubic spline using C_0 = the average of concentrations on day = 0 and C_1 = the average of concentrations on day = 365 or one-half the average for concentrations of day = 112 and day = 365.
- 2. Construct a 99% confidence interval about the initial concentration $C_0 \pm t(0.005,df)S_p/n$ where t(0.005,df) is the 99.5 percentile point of the t-distribution with df degrees of freedom for S_p . The pooled standard deviation, S_p , is estimated from all within standard deviations for days $\leq D_0$ and n is the number of observations on day = 0.

Figure F-2. Cubic spline fitted to low-level concentrations of ethylbenzene in ground water stored at 4° C.

- 3. The MHT is found by iteratively calculating the cubic spline for days in the interval (D_0,D_1) until the following conditions are achieved:
 - a) $C_0 t(0.005,df)S_p/n \le f(MHT)$.
 - b) $C_0 t(0.005,df)S_p/n > f(MHT+1)$.

ESE MHT procedure for the cubic spline:

- 1. Fit the data with a cubic spline using C_0 = the average of concentrations on day = 0 and C_1 = the average of concentrations on day = 365, or one-half the averages for concentrations on day = 112 and day = 365.
- 2. Construct a \pm 10% interval on C₀ [e.g., (0.9C₀,1.1C₀)]. Test that the 10% change is outside the 90% confidence interval on C₀ [e.g., 0.1C₀ \geq t(0.05,df)S_n/n where t(0.05,df) is the 95 percentile point of the t-distribution

with df degrees of freedom for S_p . The pooled standard deviation, S_p , is estimated from all within standard deviations for days $\leq D_0$ and n is the number of observations on day = 0.

3. If a 10% change is not outside the 90% confidence interval on C₀, calculate the concentration change (i.e. C₀ - KC₀) that is outside the 90% confidence interval by:

$$K = t(0.05,df)S_{o}/(C_{o} n)$$

If K > 0.15, the cubic spline model does not give an appropriate fit for estimating MHT.

4. The MHT is defined as the one-sided lower 90% confidence interval on the critical time (i.e., the day the cubic spline equals C₀ - KC₀). This MHT definition is equivalent to the day the lower 90% confidence interval on the cubic spline equals C₀ - KC₀. The MHT is found by iteratively calculating the cubic spline for days in the interval (D₀,D₁) until the following conditions are achieved:

a)
$$C_0 - KC_0 \le f(MHT) - t(0.10,df) \{ Var[f(MHT)] \}^{\frac{1}{2}}$$
.

1 1 1

b)
$$C_0 - KC_0 > f(MHT+1) - t(0.10,df) \{ Var(f(MHT+1)] \}^{\frac{N}{2}}$$

The value of t(0.10,df) is the 90 percentile point of the t-distribution with df = N - 2 degrees of freedom for N observations in the data set. The variance of the cubic spline Var[f(D)] is calculated by error propagation formulas [13] using the derivatives with respect to D_0 and D_1 .

$$Var[f(D)] = (df/dD_0)^2 Var(D_0) + (df/dD_1)^2 Var(D_1) + 2(df/dD_0)(df/dD_1)Cov(D_0,D_1).$$

The variance terms $Var(D_0)$, $Var(D_1)$ and covariance term $Cov(D_0,D_1)$ are estimated from the non-linear least squares fit of the cubic spline to the observed data. The derivatives of the cubic spline are:

$$(df/dD_0) = da/dD_0 + (db/dD_0)D + (dc/dD_0)D^2 + (de/dD_0)D^3$$
, and $(df/dD_1) = da/dD_1 + (db/dD_1)D + (dc/dD_1)D^2 + (de/dD_1)D^3$.

Let $K = 1/(D_0 - D_1)^4$, then the derivatives of the coefficients are:

$$\begin{split} da/dD_0 &= \ 6K(C_1 - C_0)D_0D_1^2 \\ db/dD_0 &= \ -6K(C_1 - C_0)D_1(2D_0 + D_1) \\ \\ da/dD_1 &= \ -6K(C_1 - C_0)D_0^2D_1 \\ \\ db/dD_1 &= \ 6K(C_1 - C_0)D_0(D_0 + 2D_1) \\ \\ db/dD_1 &= \ 6K(C_1 - C_0)D_0(D_0 + 2D_1) \\ \\ de/dD_1 &= \ 6K(C_1 - C_0) \\$$

Figure F-3. ASTM MHT and ESE MHT estimates from a cubic spline fit. Low level concentrations of ethylbenzene in ground water stored at 4° C.

Figure F-3 illustrates the ASTM and ESE definitions for low-level concentrations of ethylbenzene in ground water stored at 4°C. The maximum holding times for the special cases of volatile organic compounds are tabulated in Table F-2.

Table F-2. Cubic spline estimates of MHT days for special cases of volatile organic compounds in water.

Volatile Organic Compound	Level	Water	Storage	D_0	D _i	ASTM MHT	ESE MHT
1,1,2-Trichloroethane	High	Distilled	Room	0.00	48.17	14	8
1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	High High	Distilled Distilled	4°C Room	0.00 0.50	19.14 3.00	7	3 1
Ethylbenzene	High	Surface	4°C	11.76	45.73	22	11
Carbon Tetrachloride	Low	Surface	Room	0.00	74.56	30	15
1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	Low Low	Distilled Distilled	4°C Room	0.00	45.78 3.00	15 1	7 0
Ethylbenzene Ethylbenzene	Low Low	Ground Surface	4°C 4°C	14.00 8.68	74.61 32.21	26 14	25 12
Styrene	Low	Ground	4°C	0.00	37.98	6	5
Styrene	Low	Surface	4°C	6.19	30.03	11	9
Styrene	Low	Surface	Room	1.23	3.80	2	1
Acetone Carbon Tetrachloride	Ascorbic Ascorbic	Distilled Distilled	4°C 4°C	28.00 (a)	95.65 (a)	41 <14	30 <7

⁽a) Cubic spline was inappropriate for this data, but bounds on MHT can be estimated.

DISTRIBITION LIST

		No. of Copies
C. K. Bayne		10
Oak Ridge National Laboratory		
Building 4500S		
P.O. Box 2008		
Oak Ridge, TN 37831-6055	•	
Central Research Library		1
Oak Ridge National Laboratory		
Building 4500N		•
P.O. Box 2008		
Oak Ridge, TN 37831-6286	·	
Document Reference Section		1
Oak Ridge National Laboratory		
Building 9711-1		
P.O. Box 2009		
Oak Ridge, TN 37831		
Mr. R. L. Egli, Acting Assistant Manager		1
Energy Research and Development		
U.S. Department of Energy, Oak Ridge Operations		
P. O. Box E		
Oak Ridge, TN 37831-8600		
M. R. Guerin		20
Oak Ridge National Laboratory		
Building 4500S		
P.O. Box 2008		
Oak Ridge, TN 37831-6120		
S. K. Holladay		10
Oak Ridge National Laboratory		
Building 4500S		
P.O. Box 2008		
Oak Ridge, TN 37831-6142		
R. A. Jenkins		20
Oak Ridge National Laboratory		
Building 4500S		
P.O. Box 2008		
Oak Ridge, TN 37831-6120		

	No. of Copies
Laboratory Records Oak Ridge National Laboratory Building 4500N	1
P.O. Box 2008 Oak Ridge, TN 37831-6285	
M. P. Maskarinec Oak Ridge National Laboratory Building 4500S P.O. Box 2008 Oak Ridge, TN 37831-6120	20
ORNL Patent Office Oak Ridge National Laboratory Building 4500N P.O. Box 2008 Oak Ridge, TN 37831-6258	1
Maj. Nils Akerlind HQ AFWSC/RDVC Building 713 Tyndall AFB, FL 32403	1
Cynthia L. Allison HARGIS + ASSOCIATES, INC. 2222 South Dobson Road, Suite 401 Mesa, AR 85202	1
Karen Bankert U.S. Environmental Protection Agency Region IX 215 Fremont Street San Francisco, CA 94105	1
Dave Bottrell USEPA/EMSL-LV P.O. Box 15027 Las Vegas, NV 89114	1

	No. of Copi	e
Judith F. Burris United States Air Force Occupational & Environmental Health Laboratory Brooks AFB, TX 78235		
Clare E. Casselberry BCM Engineers One Plymouth Meeting, PA 19462	1	
Atwood F. Davis BCM Engineers One Plymouth Meeting, PA 19462	1	
Lorraine Davis Analytical Technologies, Inc. 2113 S. 48th Street Suites 107-110 Tempe, AZ 85282	1	
Carla Dempsey USEPA/OSWER WH 548A 401 M Street Washington, DC 20460	1	
Lance M. Eggenberger DataChem 960 W. Levoy Drive Salt Lake City, UT 84123	1	
Mark D. Feitelson Delta Diagnostics, Inc. 46th Tenth Avenue Spotswood, NJ 08884	1	
Joan Fisk USEPA/OSWER WH 548A 401 M Street Washington, DC 20460	1	

	No. of Copies
Floyd Genicola State of New Jersey Department of Environmental Protection CN 027 Trenton, NJ 08625	1
Bruce Gilles State of Oregon Department of Environmental Quality 1712 SW Eleventh Avenue Portland, OR 97201	1
Michael K. Hoffman Food Safety and Inspection Service U.S. Department of Agriculture Washington, DC 20250	1
Michael T. Homsher Lockheed Engineering and Management Services Co., Inc. Quality Assurance Department 1050 E. Flamingo Road Las Vegas, NV 89119	1
Stanley L. Johnson State of Maine Department of Environmental Protection Station #17, State House Augusta, ME 04333	1
Capt. Phil Jung USAF OEHL/TS Brooks AFB, TX 78235	, 1 ,
John A. Keuhn Friend Laboratory, Inc. 446 Broad Street Waverly, NJ 14892-1445	1
Harry J. Klann Environmental Testing and Certification Corp. 284 Raritan Center Parkway Edison, NJ, 08218, 7808	1

	No. of Copi	es
Shri Kulkarni Research Triangle Institute P.O. Box 12194 Research Triangle Park, NC 27709	· 1	
Barry Lesnik U.S. Environmental Protection Agency Office of Solid Waste 401 M Street, SW Washington, DC 20460	1	
Antonio LoSurdo Roy F. Weston, Inc. GSA Raritan Depot Woodbridge Avenue Building 209 Annex Edison, NJ 08837	1	
Linda J. Lynch State of Wisconsin Department of Natural Resources 101 S. Webster Street, GEF II Box 7921 Madison, WI 53707	1	
David B. MacLean Lancaster Laboratories, Inc. 6422 Alloway Court Springfield, VA 22152	1	
Thomas L. McCarley Department of Waste Management Eleventh Floor Monroe Bldg. 101 North 14th Street Richmond, VA 23219	1	
Bob Meierer CompuChem Laboratories 3308 Chapel Hill/Nelson Highway P.O. Box 12652 Research Triangle Park, NC 27709	1	

	No. of Copies
Susanne Ozdemir Environmental Monitoring & Services, Inc. Analytical Chemistry Operations	1
4765 Calle Quetzel Camarillo, CA 93010	
Richard W. Puzniak U.S. Army Hygiene Agency Analytical Quality Assurance Office Aberdeen Proving Ground, MD 21010	1
Lawrence A. Reitsema SPL P.O. Box 20807 Houston, TX 77225	1
Ann Ryan USATHAMA CETHA-TE-A Building E-4460 Aberdeen Proving Ground, MD 21010-5401	1
Mary G. Schultz Environmental Science and Engineering, Inc. Quality Assurance P.O. Box ESE Gainesville, FL 32602-3053	
Robert N. Shoemaker Environmental Consultants, Inc. 391 Newman Avenue Clarksville, IN 47130	1
Scott D. Siders Envirodyne Engineers 168 North Clinton Street Chicago, IL 60606	1
J.H. Myron Stephenson U.S. Environmental Protection Agency Region IV College Station Road	1

	No. of Copies
Commander: NEESA Code 112N ATTN: Bud Sturtzer Port Hueneme, CA 93043	1
Douglas B. Taggart HDR Engineering, Inc. 8404 Indian Hills Drive Omaha, NE 68114-4049	1
David R. Taylor ACUREX Corporation Environmental Systems Division 485 Clyde Avenue P.O. Box 7044 Mountain View, CA 94039	1
Thomas C. Tomayko Antech Ltd. One Triangle Drive Export, PA 15632	1
Jerome Vail ICF Technology Incorporated 160 Spear Street Suite 1380 San Francisco, CA 94105-0110	1
John H. Watts Florida Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400	1
U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831	10