<u>EE53053 – Signals, Systems and Signal Processing</u> <u>Assignment 2 (30% of the overall course grade)</u> Release: 07/11/2022. Due: 11/11/2022 before 2359 hours

- This assignment is worth 30% of your overall course grade.
- Use the MS WORD equivalent of justified text format, single-line spacing, 12 pt Calibri font and 2 cm margin all over.
- Solutions must not exceed 15 A4 sides excluding the Appendix.
- Submit typed answers. Handwritten / scanned solutions will not be graded.
- For full credit, show all the intermediate steps and relevant work. Only reporting the answers will result in an automatic penalty of 80% of the overall grade.
- Include the full, well-commented code for each of the three problems in the Appendix under headings: Code for Problem 1, Code for Problem 2 and Code for Problem 3. Do not embed pieces of code in the main document.
- Generate all figures using code (no hand-drawn plots). Use appropriate legends and labels for each figure. Size figures consistently.
- A single PDF file must be uploaded on MyAberdeen via the relevant link. The file should be named FirstNameInitialLastName_sub2.pdf. Thus, John Doe's submission will be JDoe_sub2.pdf.

Problem 1: Consider the circuit given in Figure Q1 with zero initial conditions.

Figure Q1

- i. Derive the parametric transfer-function of this circuit that relates input $v_{in}(t)$ and current flowing through the resistance R.
- ii. If the circuit parameters are as follows:
 - $R = 80 \Omega$
 - $C = 280 \times 10^{-5} F$
 - $L_1 = 0.01 H$
 - $L_2 = 0.02 H$

Determine the poles and zeros of the system and state if the system if stable and minimum phase. Plot the pole-zero plot of the system → Figure 1. ii.

- iii. If $v_{in}(t)$ is a unit step, use the Final Value theorem to determine the steady-state current $i_R(t)$, flowing through the resistor R. Plot the current flowing through the resistor for time [0,5] s to confirm \rightarrow Figure 1. iii.
- iv. It is claimed that if $v_{in}(t) = \sin(60\pi t)$, the resulting current flowing through the resistor will be $i_R(t) = 0.5107 \sin(60\pi t + 1.7836)$. Confirm if this is true and explain why / why not, using any analysis you think appropriate and relevant time- and frequency-domain plots \rightarrow Figures 1. iv. a and 1. iv. b.

[10 marks each = 40 marks total]

Problem 2: A continuous-time system has the following transfer-function:

$$H(s) = \frac{\gamma}{s^2 + \alpha s + \beta}$$

where γ , α and β are system parameters.

- i. Derive the difference equation that captures the dynamics of this system when sampled at T seconds.
- ii. Derive the parametric transfer function of the difference equation you obtained in Problem 2. i. and compute the equivalent numeric transfer functions if the system parameters are: $\gamma = 100$, $\alpha = 0.2$ and $\beta = 100$; for:

a.
$$T = 0.01 \text{ s} \rightarrow H_1$$

b.
$$T = 0.001 \text{ s} \rightarrow H_2$$

c.
$$T = 0.0001 \text{ s} \rightarrow H_3$$

- iii. Superimpose the Magnitude Response plots for H(s), H_1 , H_2 and H_3 on the same plot between [0.1 Hz, 100 kHz] with a resolution of 0.1 Hz and comment on the similarities, differences, and any other aspects giving clear reasons for each \rightarrow Figure 2. iii.
- iv. Derive the impulse response expression for H_3 and compute the values explicitly for $n = [1001, \ 10001, \ 50001, \ 100001, \ 600001]$. Show how well these values match with the impulse response of H(s) by plotting both the impulse responses \rightarrow Figure 2. iv.

[10 marks each = 40 marks total]

Problem 3: Write a well-commented code and generate:

- i. A discrete-time version of the continuous-time signal $x(t) = 2\sin(20\pi t) + 1.5\sin(2000\pi t) 3\cos(5000\pi t)$ sampled at 20 kHz, for a duration of 1 second.
- ii. Design of a system transfer function H(s), that reduces the power of the highest frequency component in the signal x(t), by exactly 50%. Explain your design with relevant reasoning.
- iii. A Bode plot of the designed system transfer function for up to two decades beyond the highest frequency component in x(t), with dB, Hz, and degree units for relevant quantities / axes \rightarrow Figure 3. iii.
- iv. Time and Frequency-domain plots of the signal/s to demonstrate that your system performs as expected → Figure 3. iv. a, and 3. iv. b.

[5 marks each = 20 marks total]

Good Luck!
======================================