Recap

$$\operatorname{\mathsf{div}}(v)_i = rac{1}{A_i} \sum_{I \in \mathcal{E}(i)} v_{n_I} (N_I \cdot n_{i,I}) I$$

Recap

$$\operatorname{div}(v)_i = \frac{1}{A_i} \sum_{l \in \mathcal{E}(i)} v_{n_l} l$$
 for downward cells $\operatorname{div}(v)_i = -\frac{1}{A_i} \sum_{l \in \mathcal{E}(i)} v_{n_l} l$ for upward cells

```
auto ff = [](const double _in1, const double _in2, const
   double _res) -> double
   { return _in1 * _in2 + _res; };
eval(out_cells()) =
   eval(on_edges(ff, 0.0, in_edges(), edge_length())) /
        eval(cell_area());
```

From

$$\operatorname{div}(v)_i = \frac{1}{A_i} \sum_{I \in \mathcal{E}(i)} v_{n_I} I$$

to

$$\operatorname{\mathsf{div}}(v)_i = rac{1}{A_i} \sum_{I \in \mathcal{E}(i)} v_{n_I} (N_I \cdot n_{i,I}) I = \sum_{I \in \mathcal{E}(i)} w_{i,I} v_{n_I}$$

- One multiplication less. (Not necessarily faster)
- More general. (Definitely needed)

More operators

$$\operatorname{div}(v)_i = \frac{1}{A_i} \sum_{I \in \mathcal{E}(i)} v_{n_I} (N_I \cdot n_{i,I}) I = \sum_{I \in \mathcal{E}(i)} w_{i,I} v_{n_I}$$

edge-to-cell averaging:

$$\bar{\varrho}_i = \sum_{I \in \mathcal{E}(i)} \frac{A_{i,I}}{A_i} \varrho_I = \sum_{I \in \mathcal{E}(i)} w_{i,I} v_{n_I}$$

cell-to-edge averaging:

$$\check{\varrho}_{I} = \sum_{j=1,2} \frac{A_{i(I,j)}}{A_{I}} \varrho_{i(I,j)} = \sum_{j=1,2} w_{i(I,j)} \varrho_{i(I,j)}$$

Used in discretizing the pressure gradient force:

$$\overline{\overline{\psi}}_{I} = \frac{A_{i(I,2),I}}{A_{I}} \psi_{i(I,1)} + \frac{A_{i(I,1),I}}{A_{I}} \psi_{i(I,2)} = \sum_{i=1,2} w_{i(I,i)} \psi_{i(I,i)}$$

Fields on multiple locations

```
\{i,c,j,k\}
{i,c,j,k,extra_dimension} (new!)
How to access:
edges_of_cells_storage_type weights;
weights(i, c, j, k, 2);
In a functor:
typedef in_accessor<1, icosahedral_topology_t::cells,</pre>
    extent<1>, 5 > weights;
using edge_of_cells_dim = dimension < 5 >;
edge_of_cells_dim::Index edge;
eval(weights(edge+2));
```

Other than multiple-location weights

What else do we need?

$$\operatorname{div}(v)_i = \sum_{I \in \mathcal{E}(i)} w_{i,I} v_{n_I}$$

on_edges() are currently not dealing with multiple-location fields. We need to fold manually. But when we use eval(weights(edge+0)) to get $w_{i,0}$, how do we get v_{n_0} ?

- ightarrow expose topology to user
- \rightarrow fix neighbors order

Expose topology to user

```
/*
* this stencil is primarily on cells
 */
typedef in_accessor < 0, icosahedral_topology_t::edges,
   extent<1> > in_edges;
auto neighbors_offsets = connectivity < cells , edges
   >::offsets(eval.position()[1]);
// get the first edge on cell
eval(in_edges(neighbor_offsets[0]));
// iterate over all edges of cell
for (auto neighbor_offset : neighbors_offsets)
  eval(in_edges(neighbor_offset));
```

Fix neighbors order

```
Neighbor edges of a cell must follow the same
   convention than neighbor cells of a cell.
I.e. the following
       / 0 \
imposes
     \/___\/
       \ 0 /
```

Now eval(weights(edge+0)) and eval(in_edges(neighbor_offsets[0])) point to the same direction.

Combining everything, now a div

```
template < typename Evaluation >
GT_FUNCTION static void Do(Evaluation const &eval,
   x_{interval}
    typedef typename icgrid::get_grid_topology < Evaluation
        >::type grid_topology_t;
    // for multiple-location fields
    using edge_of_cells_dim = dimension < 5 >;
    edge_of_cells_dim::Index edge;
    // for exposed topology
    auto neighbors_offsets = connectivity < cells , edges >::
        offsets(eval.position()[1]);
    eval(out_cells()) = 0.;
    ushort t e=0:
    for (auto neighbor_offset : neighbors_offsets) {
        eval(out_cells()) += eval(in_edges(neighbor_offset))
             * eval(weights(edge+e));
        e++;
```

We will discuss how to make this look better later.

grad

$$\operatorname{grad}_n(\varrho)_I = \frac{\varrho_{i(I,2)} - \varrho_{i(I,1)}}{\hat{I}}$$

 \rightarrow fix neighbour order

A grad

$$\operatorname{grad}_n(\varrho)_I = \frac{\varrho_{i(I,2)} - \varrho_{i(I,1)}}{\hat{I}}$$

```
typedef in_accessor < 0, icosahedral_topology_t::cells, extent
    <1> > in cells:
typedef in_accessor <1, icosahedral_topology_t::edges, extent
    <1> > dual_edge_length;
typedef inout_accessor < 2, icosahedral_topology_t::edges>
    out_edges;
template < typename Evaluation >
GT_FUNCTION static void Do(Evaluation const &eval,
    x interval) {
    auto neighbors_offsets =
      connectivity < edges , cells > :: offsets (eval.position()
          [1]):
    eval(out_edges()) =
      ( eval(in_cells(neighbors_offsets[0])) -
        eval(in_cells(neighbors_offsets[1]))
      ) / eval(dual_edge_length());
}
```

Neighbors order

Cell neighbours of an edge, in the order $0 \to 1$ follow the direction of the N_I .

Neighbors order

Vertex neighbors of an edge, in the order $0 \to 1$ defines a vector N_l which is perpendicular to N_t .

Useful for

$$\operatorname{grad}_{ au}(\varrho)_I = rac{arrho_{arkappa(I,2)} - arrho_{arkappa(I,1)}}{I}$$

We also set rules for neighbors of vertexes. Helpful for a curl.

Evaluation

$$\operatorname{\mathsf{div}}(v)_i = \frac{1}{A_i} \sum_{I \in \mathcal{E}(i)} v_{n_I} (N_I \cdot n_{i,I}) I$$

- weights: $\operatorname{div}(v)_i = \sum_{l \in \mathcal{E}(i)} w_{i,l} v_{n_l}$
- flow convention: $\operatorname{div}(v)_i = \frac{1}{A_i} \sum_{I \in \mathcal{E}(i)} v_{n_I} I$
- over edges:

$$\operatorname{div}(v)_{\varkappa(I,j)} \leftarrow \operatorname{div}(v)_{\varkappa(I,j)} \pm v_{n_I} I \quad j = 1, 2 \tag{1}$$

$$\operatorname{div}(v)_{\varkappa(l,j)} \leftarrow \operatorname{div}(v)_{\varkappa(l,j)} / A_{\varkappa(l,j)} \quad j = 1, 2$$
 (2)

Approach	Primal location	Operation on primal location
weights flow convention over edges	Cells Cells Edges	6 read, 1 write, 3 mult, 3 plus 7 read, 1 write, 4 mult, 3 plus 4 read, 2 write, 1 mult, 2 plus + 4 read, 2 write, 2 mult

$$n_{cell}$$
: $n_{edge} = 2:3$

Evaluation

	CPU (10 times)			GPU (100 times)		
Approach	R02B05	R02B06	R02B07	R02B05	R02B06	R02B07
weights flow convention over edges	0.06777 0.08640 0.1010	0.3174 0.4236 0.4821	1.247 1.631 1.907	0.03529 0.02927 0.05403	0.07045 0.06547 0.1015	0.2834 0.3110 0.3934

Table: performance numbers on kesch, one patch of the global grid, klevel=50

Syntactic sugar

```
// on_edges
auto ff = [](const double _in1, const double _in2, const
   double _res) -> double { return _in1 * _in2 + _res; };
eval(out_cells()) = eval(on_edges(ff, 0.0, in_edges(),
    edge length())):
// but with five dimension fields
using edge_of_cells_dim = dimension < 5 >;
edge_of_cells_dim::Index edge;
auto neighbors_offsets = connectivity < cells , edges >::
    offsets(eval.position()[1]);
eval(out cells()) = 0.:
ushort_t e=0;
for (auto neighbor_offset : neighbors_offsets) {
    eval(out_cells()) += eval(in_edges(neighbor_offset)) *
        eval(weights(edge+e));
   e++:
// extend on_edges
using edge_of_cells_dim = dimension < 5 >;
auto ff = ...;
eval(out_cells()) = eval(on_edges(ff, 0.0, in_edges(),
   weights(edge_of_cells_dim)));
```

Syntactic sugar

```
// grad
auto neighbors_offsets =
   connectivity<edges, cells>::offsets(eval.position()[1]);

eval(out_edges()) =
   ( eval(in_cells(neighbors_offsets[0])) -
        eval(in_cells(neighbors_offsets[1]))
   ) / eval(dual_edge_length());

// proposal
eval(out_edges()) = eval(on_cells(reduction_functor, 0.0,
        in_cells(), {1, -1})) / eval(dual_edge_length());
```

Syntactic sugar

But topology exposure is still necessary:

$$\operatorname{div}(v)_{\varkappa(I,j)} \pm = v_{n_I}I \quad j = 1, 2$$

```
double t{eval(in_edges()) * eval(edge_length())};
eval(out_cells(neighbors_offsets[0])) -= t;
eval(out_cells(neighbors_offsets[1])) += t;
```

Next

- Roofline model
- Mass flux divergence:

$$\operatorname{div}(v\Delta p)_{i,k} = \frac{1}{A_i} \sum_{I \in \mathcal{E}(i)} v_{n_I,k} \Delta \breve{p}_{I,k} (N_I \cdot n_{i,I}) I$$

- fuse of operators: cell-to-edge averaging and div
- k level: $\Delta p_k = \frac{1}{2}(p_{k-1/2} + p_{k+1/2})$