$S = \iiint \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \frac{1}{2} \alpha_{2} \partial_{\beta}h^{\chi}_{\chi} \partial^{\beta}h^{\alpha}_{\alpha} + \alpha_{1} \left(\partial_{\alpha}h^{\alpha\beta} \partial_{\chi}h_{\beta}^{\chi} - \partial^{\beta}h^{\alpha}_{\alpha} \partial_{\chi}h_{\beta}^{\chi} - \frac{1}{2} \partial_{\chi}h_{\alpha\beta} \partial^{\chi}h^{\alpha\beta}\right)\right) [t, \chi, y, z] dz dy dx dt$

PSALTer results panel

Saturated propagator

Spin-parity form	Covariant form	Multiplicities
$1 \cdot \mathcal{T}^{\perp}^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected g	otal expected gauge generators:	

Massive spectrum

(No particles)

?	?	
Massless particle	Massless particle	
Pole residue: $\left \frac{p^2}{-\alpha_1 + \alpha_2} \right > 0$	Pole residue: $\left -\frac{p^2}{\alpha_1} \right > 0$	

Unitarity conditions

 $\alpha_{\cdot} < 0 \&\& \alpha_{\cdot} > \alpha_{\cdot}$