Bridge DSS

Jeremy Barisch-Rooney

November 1, 2019

Research Question

What are the costs and benefits of installing a decision support system (DSS) based on real-time sensor data, for the purpose of bridge maintenance, on a no-prestress no-postension concrete slab bridge?

- ► To answer this need to:
 - show benefits of having sensor data
 - base benfits on simulated data
 - show what installation & maintenance costs are

How to acquire data and assess the potential for installing. . .

Existing SHM

- ▶ State of the art do not determine extent of damage
- Only whether damage present or not, "global monitoring"
- ▶ All one needs to know to then take further action
 - on-site examination

Existing SHM

- ► FHA mandates evaluation of bridges every 2 years (2003)
- Visual inspection and tap tests -> safety rating
- Bridges, many. Staff, not so many.
- Safety rating supplemented by FEA (based on best guess)
- More replacements for functionally obsolete than structurally unsound

Existing SHM: global monitoring

- Based on finding a shift in mode shapes or frequencies
 - including first and second derivatives of mode shape
- Compromised by external factors
- Deterioration of RE-steel little effect on natural frequency
- Methods to find damage location and extent
 - typically work better when:
 - limited to assumed forms of damage
 - damage is severe

ML for SHM

- garbage-in, garbage-out
- data acquisition of utmost importance
- model validation required
- anbormality detection needs to account for external factors!

Figure 16. Long-term monitored deflection data of one year (averaged every two hours).

Types of Bridges: Hungary

Table. 3.2 Classification of primary road bridges based on structural type, relative number and value.

Structural type	Number (%)	Value (%)
Reinforced concrete	83.1	44.4
Precast multi-girder	49.9	32.6
Monolithic slab	24.1	5.5
Monolithic frame	7.6	0.8
Prestressed box girder	0.7	4.2
One or two-box girder	0.7	1.3
Steel	1.0	12.4
Riveted steel truss	0.4	4.7
Welded girder	0.4	3.5
Welded box with orthotropic deck	0.2	4.2
Composite	1.3	5.7
Composite girder	1.0	1.7
Composite box girder	0.3	4.0
Concrete or stone arch - tubosiders	9.0	1.2
Tubosider	5	0.9
Concrete, RC pipe	3	0.2
Stone or masonry arch	1	0.1
Special bridges (e.g. Duna bridges)	2.3	33.9

Bridge Model

```
data Bridge = Bridge {
 length :: Float,
 width :: Float,
 piers :: [Pier],
 deck_sections :: [Section],
 lanes :: [Lane],
 dimensions :: Dimension
data Dimension = D2 | D3
data Section = Section2D | Section3D
data Pier = Pier2D | Pier3D
```

-- Bridge constructor ensures that dimension must match.

```
data Pier3D = Pier3D {
             :: Float,
 x
 7.
             :: Float,
 length :: Float,
 height :: Float,
 widthTop :: Float,
 widthBottom :: Float,
  sections :: [Section]
 baseMesh :: (Int, Int, Int, Int)
 fixXTrans :: Bool,
 fixYTrans ...
```

Pier: side view

Pier: top view

Pier: front view


```
data Section = Section {
    density :: Float, -- density in kg/m
    thickness :: Float, -- thickness in m
    youngs :: Float, -- Young's modulus in MPa
    poissons :: Float, -- Poisson's ratio
    start_x_frac :: Float, -- start position in x direction
    start_z_frac :: Float -- start position in z direction
}
```

Bridge Model: thickness

Bridge Model: thickness

Bridge Model: thickness

Bridge Model: lanes & vehicles

FEM Generation: why not just Diana?

- OpenSees format easier to modify than Diana
- Need to modify to:
 - impose damage scenarios
 - add load
- ▶ Allows targeting of many bridges, not just 705
- ► Open source -> reproducible research

Extensible research

- Download & run (reproducible research)
- Extensible if easy to extend, must be:
 - Well documented
 - Uses parameters, not hardcoded values
 - Composable functions, not scripts

Data Collection

- a FEM is built according to a Bridge and BridgeScenario
- influence lines are built:
 - concentrated loads placed along wheel tracks
- traffic is generated according to:
 - TrafficScenario normal/heavy
 - vehicle distribution e.g. by length
 - vehicle descriptions (length, #axles, weight)
- vehicles "drive" along the bridge
- responses summed for each wheel from influence line

Data Collection: influence lines

- ► Influence lines for one wheel track
 - loading position on the left
 - sensor position along the bottom

Model Assumptions: Vehicles

- Vehicles drive at the same speed
- Vehicles drive along the center of a lane
- Vehicles have the same axle-width
- Vehicles arrive according to truncated poisson process
 - truncated below 2 meters
 - mean at 7 meters

Model Assumptions: FEM

- Subset of bridge positions sufficient for FEM verification
 - Measurements from experimental campaign only for some positions
 - Assumption that bridge 705 was in a healthy state in campaign
- ► Linear elastic FEM captures the bridge behaviour
- ► [How damage scenarios are modeled]
- Responses generated are sufficiently close to real bridge behaviour that analysis techniques explored on simulated data can also work on real data
 (TODO) Limited verification by:

(TODO) Limited verification by:

- abnormality dection on real data in addition to simulated data
- increase noise level to see how robust
- comparison of real data to simulated data
- Note: accuracy of simulated responses depends on discretization density
- a trade-off of time versus accuracy which can be chosen by the user
- accuracy shown to converge for bridge 705 in (TODO) convergence plot

Verifying Generated FEM

- OpenSees model in table is the low-accuracy FEM
 - ▶ base mesh of deck 50 * 20
 - ▶ base mesh of each pier wall: 5 * 5
- ► Units are mm

Diana	OpenSees	Point
0.49	0.465	Α
0.14	0.130	В
0.162	0.180	C
0.13	0.128	D

Verifying Generated FEM: Point A, Diana

Verifying Generated FEM: Point A, OpenSees

Verifying Generated FEM: Point B, Diana

Verifying Generated FEM: Point B, OpenSees

Verifying Generated FEM: Point C, Diana

Verifying Generated FEM: Point C, OpenSees

Verifying Generated FEM: Point D, Diana

Verifying Generated FEM: Point D, OpenSees

Responses

Code: Distribution of responses

Events

Animation

./normal-lam-5.mp4

Costs

Research

Future collaboration

Future collaboration

- Don't start thesis until long-term housing is found
- ► TNO could ask about reserving a student room
 - Perhaps for semester start
 - ► Low effort, high potential

Overview

2D Model	Model Generation	+
2D Model	X, Y, Z -translation	&
2D Model	Stress & Strain	+
2D Model	Pier Displacement	+
3D Model	Model Generation	+
3D Model	X, Y, Z -translation	+
3D Model	Stress & Strain	-
3D Model	Pier Displacement	&
3D Model	Verification	&
Data Collection	Influence Lines	+
Data Collection	Event Generation	+
Model Input	Noise	&
Model Input	Traffic	&
Model Input	Low frequency Events	-
Anomaly Detection		-
Bridge Types & Costs		-

Key goals

- Verified extensible FEM
- ▶ dataCollection : Bridge -> Scenarios -> [Event]
- Anomaly detection
- Avoid detecting low frequency events
- Detect anomaly on real data

Plan

November week 1	writing	sensor cost emails/research
November week 2	writing	try standard classifiers
November week 3	verification plot 1	collect strain
November week 4	verification plot 2	classifiers
December week 1	writing	add temperature to model
December week 2	writing	add soil creep to model
December week 4	writing	

New Year

- Determine accurate noise-at-rest
 - ▶ Plot real time series vs simulated
- See how detection worsens with noise
- Reduce area between traffic lanes
 - See how background noise increases
 - See how detection worsens with noise
- Anomaly detection on viaduct data

My Goals

- ► Create something TNO value
- Create something used
 - ► Usable -> Useful -> Used

Reproducible

- ▶ I should be maintainer after the thesis
 - Maintainer not exact same as developer
 - I care about open source
 - I care about maintainability & usability
 - ► I know the code best
 - Clean-up work to be done after thesis
- Licence
 - GPL (sharing improvements)

Muchas Gracias