Quantum Mechanics 2022

SC1.203

Quiz-III

11/11/2022 || Time 60 Mins

1) Suppose a delta-function bump appears in the centre of an infinite square well:

$$V(x) = \begin{cases} \alpha(x - a/2) & \text{if } 0 \le x \le a \\ \infty & \text{otherwise} \end{cases}$$

where α is a constant. Find the first-order corrections to the allowed energies and explain why the energies are not perturbed for even n.

- 2) Three particles are in three distinct one-particle states $\psi_a(x)$, $\psi_b(x)$, and $\psi_c(x)$. Consider various possibilities and list the different three-particle states can you construct.
- 3) Place a hydrogen nucleus (proton) at the origin, calculate $\langle x \rangle$, $\langle x^2 \rangle$ in terms of the Bohr radius for the electron. What is the most probable value of r? Assume the electron to be in the ground state.
- 4) Find the spectrum and the eigenfunctions of the operator $\hat{Q} = i \frac{d}{d\phi}$ where ϕ is the usual polar coordinate. Is it hermitian?
- 5) Consider a three-dimensional harmonic oscillator $V(\mathbf{r}) = \frac{1}{2}m\omega^2r^2$. What is the energy of the n^{th} state? What is the degeneracy of E_n ?