Spectral Graph Convolutions for Population-based Disease Prediction

Published in 2017 at MICCAI:

International Conference on Medical Image Computing and Computer-Assisted Interventions

Sarah Parisot, Sofia Ira Ktena, Enzo Ferrante, Matthew Lee, Ricardo Guerrerro Moreno, Ben Glocker, Daniel Rueckert

Manal Akhannouss, Balthazar Neveu, Inès Vati

Paper overview

Disease prediction

Contribution: Graph Convolution Networks [*]

Datasets: ABIDE → Autism | ADNI → Alzheimer

Population graph

- O Nodes = Patients
- Edges = Similarity between patients
 - Feature vector

[*] Semi-Supervised Classification with Graph Convolutional Networks - Thomas N. Kipf, Max Welling ICLR 2017

Defining graph nodes

1 patient \leftrightarrow 1 node

[*] 111: Harvard-Oxford cortical and subcortical structural atlases

$$\underbrace{Y}_{h,N} = \underbrace{\Theta}_{h,d} \underbrace{X}_{N,d}^T$$

Fully connected [h,d]

Input features [N, d]

$$\underbrace{Y}_{h,N} = \underbrace{\Theta}_{h,d} \underbrace{X}_{N,d}^T \underbrace{A}_{N,N}$$

Fully connected [h,d]

Input features [N, d]

Basic message passing

Adjacency matrix [N, N]

Analogy: Non Local means - denoise similar colors on images

$$\underbrace{Y}_{h,N} = \underbrace{\Theta}_{h,d} \underbrace{X}_{N,d}^T \underbrace{A}_{N,N}$$

Fully connected [h,d]

Input features [N, d]

Basic message passing

Power of Laplacian matrix [N, N]

Variant in the paper : ChebConv - polynomial of the Laplacian L=I-A ⇒ gives access to a larger neighborhood

Experimental setup

Accuracy 68.9% +/- 4% on ABIDE (Autism Disorder Spectrum) Ability to reproduce results (~69.5%)

 \rightarrow Compare various models

Cross validation over 10 runs

80% train, 10% validation, 10% test

Frozen hyperparameters

Adam, LR 1E-4, Weight decay 0.1, no LR scheduler, 1000 epochs

Reproducible results

Code from scratch with documentation.

Results

- Is the use of graphs truly relevant? Compare
 - Dense Neural Networks
 - Graph Convolutional Networks +5%

- Is input dimension reduction relevant?
 - No significant differences between
 - Raw input features
 - Recursive Feature Elimination •0%
 - Auto Encoders' Latent vector -3%

Conclusion

- A good introduction to the difficult domain of medical data analysis
- Curse of dimensionality
- Personal insights
 - Data type : time series , not 4D f-MRI volumes
 - Memory requirements: laptop GPU Nvidia T500 4Gb
 - « Spectral graph convolutions »

Thank you

Training curves

Dense Neural Network VS Graph Convolution

Analogy: Graph convolutions and Image denoising

Feature smoothing using the normalized adjacency matrix
- Regular grid

Analogy: Graph convolutions and Image denoising

CONSTANT WEIGHTS ON EDGES

BOX FILTER

$$1/9 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

1/13
$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Analogy: Graph convolutions and Image denoising

SIMILARITY WEIGHTS ON EDGES

→ BILATERAL FILTER / NON LOCAL MEANS *

[*] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel, Non-Local Means Denoising, Image Processing On Line, 1 (2011), pp. 208-212.

Results

Relevance of reduce feature dimension?

- NOT REALLY

Results

- Relevance of using graph?
 - YES ~ +5% accuracy

Extra questions

A the beginning of the project, we asked ourselves a few questions on the paper:

- Does the graph structure bring anything?
 -> yes
- What does feature reduction do?
 -> nothing significant
- Would adding metadata to the input feature help a dense NN do better?
- How does the research world process MRI?
- Can we think of a toy example?
 - -> not trivial, focus on ABIDE dataset

Medical domain Expectations V.S. Reality

Expectation	Reality
f-MRI 4D volumes	Time series
Graph, big memory requirement	GPU laptop Nvidia T500 4Gb
« Spectral graph convolutions »	Message passing

Investigation

- Is the use of graphs truly relevant?

- Is input dimension reduction relevant?

Investigation

- Is the use of graphs truly relevant?
 - Dense Neural Networks
 - Graph Convolutional Networks +5%

- Is input dimension reduction relevant? No significant differences between
 - Raw input features
 - Recursive Feature Elimination
 - Auto Encoder's Latent vector

Overview

- Paper summary Overview
 - Node
 - Edges
 - GCN
- Our contributions
 - Graph relevance
 - Feature dimension reduction
- Discussion

Medical domain Expectations V.S. Reality

Expectation	Reality
MRI 3D volumes ?	Time series
Huge medical dataset	861 patients – curse of dimensionality
Graph, big memory requirement	Nvidia T500 4Gb ~ enough
« Spectral graph convolutions »	Message passing, analogy NL-means