

10/581969

JAP20 Rec'd PCT/PTO 07 JUN 2006

1

SEQUENCE LISTING

<110> • National Institute of advanced Industrial Science and Technology
• Japan Biological Informatics Consortium

<120>

A novel interaction between proteins and method for Disused Muscle Atrophy using the interaction between proteins

<130> P178

<160> 5

<210> 1

<211> 213

<212> PRT

<213> Homo sapiens

<220>

<223> ZNF216 (Zub 1)

<400> 1

Met	Ala	Gln	Glu	Thr	Asn	Gln	Thr	Pro	Gly	Pro	Met	Leu	Cys	Ser
1		5				10					15			
Thr	Gly	Cys	Gly	Phe	Tyr	Gly	Asn	Pro	Arg	Thr	Asn	Gly	Met	Cys
				20				25				30		
Ser	Val	Cys	Tyr	Lys	Glu	His	Leu	Gln	Arg	Gln	Gln	Asn	Ser	Gly
				35				40			45			
Arg	Met	Ser	Pro	Met	Gly	Thr	Ala	Ser	Gly	Ser	Asn	Ser	Pro	Thr
				50				55			60			
Ser	Asp	Ser	Ala	Ser	Val	Gln	Arg	Ala	Asp	Thr	Ser	Leu	Asn	Asn
				65				70			75			
Cys	Glu	Gly	Ala	Ala	Gly	Ser	Thr	Ser	Glu	Lys	Ser	Arg	Asn	Val
				80				85			90			
Pro	Val	Ala	Ala	Leu	Pro	Val	Thr	Gln	Gln	Met	Thr	Glu	Met	Ser
				95				100			105			
Ile	Ser	Arg	Glu	Asp	Lys	Ile	Thr	Thr	Pro	Lys	Thr	Glu	Val	Ser
				110				115			120			
Glu	Pro	Val	Val	Thr	Gln	Pro	Ser	Pro	Ser	Val	Ser	Gln	Pro	Ser
				125				130			135			
Thr	Ser	Gln	Ser	Glu	Glu	Lys	Ala	Pro	Glu	Leu	Pro	Lys	Pro	Lys
				140				145			150			
Lys	Asn	Arg	Cys	Phe	Met	Cys	Arg	Lys	Lys	Val	Gly	Leu	Thr	Gly
				155				160			165			
Phe	Asp	Cys	Arg	Cys	Gly	Asn	Leu	Phe	Cys	Gly	Leu	His	Arg	Tyr
				170				175			180			
Ser	Asp	Lys	His	Asn	Cys	Pro	Tyr	Asp	Tyr	Lys	Ala	Glu	Ala	Ala
				185				190			195			
Ala	Lys	Ile	Arg	Lys	Glu	Asn	Pro	Val	Val	Val	Ala	Glu	Lys	Ile
				200				205			210			
Gln	Arg	Ile												
		213												

<210> 2

<211> 208

<212> PRT

<213> Homo sapiens

<220>

<223> AWP1 (Zub 2)

<400> 2

Met Ala Gln Glu Thr Asn His Ser Gln Val Pro Met Leu Cys Ser		
1	5	10
Thr Gly Cys Gly Phe Tyr Gly Asn Pro Arg Thr Asn Gly Met Cys		
20	25	30
Ser Val Cys Tyr Lys Glu His Leu Gln Arg Gln Asn Ser Ser Asn		
35	40	45
Gly Arg Ile Ser Pro Pro Ala Thr Ser Val Ser Ser Leu Ser Glu		
50	55	60
Ser Leu Pro Val Gln Cys Thr Asp Gly Ser Val Pro Glu Ala Gln		
65	70	75
Ser Ala Leu Asp Ser Thr Ser Ser Met Gln Pro Ser Pro Val		
80	85	90
Ser Asn Gln Ser Leu Leu Ser Glu Ser Val Ala Ser Ser Gln Leu		
95	100	105
Asp Ser Thr Ser Val Asp Lys Ala Val Pro Glu Thr Glu Asp Val		
110	115	120
Gln Ala Ser Val Ser Asp Thr Ala Gln Gln Pro Ser Glu Glu Gln		
125	130	135
Ser Lys Ser Leu Glu Lys Pro Lys Gln Lys Lys Asn Arg Cys Phe		
140	145	150
Met Cys Arg Lys Lys Val Gly Leu Thr Gly Phe Glu Cys Arg Cys		
155	160	165
Gly Asn Val Tyr Cys Gly Val His Arg Tyr Ser Asp Val His Asn		
170	175	180
Cys Ser Tyr Asn Tyr Lys Ala Asp Ala Ala Glu Lys Ile Arg Lys		
185	190	195
Glu Asn Pro Val Val Val Gly Glu Lys Ile Gln Lys Ile		
200	205	208

<210> 3

<211> 642

<212> DNA

<213> Homo sapiens

<220>

<223> ZNF216

<400> 3

atggctcagg agactaacca gacccgggg cccatgtgt gtgcacagg	50
atggcttt tatggaaatc ctaggacaaa tggaatgtgt tcagtttgc	100
acaaagaaca tcttcagagg cagaaaaata gtggcagaat gagccaaatg	150
ggcacagcta gtggttccaa cagtccattc tcagattctg catctgtaca	200
gagagcagac actagcttaa acaactgtga aggtgctgct ggcagcacat	250
ctggaaaatc aagaaatgtg cctgtggctg ccttgctgt aactcagcaa	300
atgacagaaa tgacatttc aagagaggac aaaataacta ccccgaaaac	350

agagggtgtca gagccagttg tcactcagcc cagtcacatca gtttctcagc 400
 ccagtacttc tcagagtcaa gaaaaagctc ctgaattgcc caaaccaaag 450
 aaaaacagat gtttcatgtg cagaaagaaa gttggctta cagggtttga 500
 ctgccatgtt ggaaattttgt tttgtggact tcaccgttac tctgacaagc 550
 acaactgtcc gtatgattac aaaggcagaag ctgcagcaaa aatcagaaaa 600
 gagaatccag ttgttgccc tgaaaaaatt cagagaatat aa 642

<210> 4

<211> 627

<212> DNA

<213> Homo sapiens

<220>

<223> AWP1

<400> 4

atggctcaag aaactaatca cagccaagtg cctatgcttt gttccactgg 50
 ctgtggattt tatggaaacc ctcgtacaaa tggcatgtgt tcagtatgct 100
 ataaagaaca tcttcaaaga cagaataatgt gtaatggtag aataaggccca 150
 cctgcaacctt ctgtcagtag tctgtctgaa tcttaccag ttcataatgcac 200
 agatggcagt gtgccagaag cccagtcaac attagactct acatcttcat 250
 ctatgcagcc cagccctgtt tcaaataatgtt cacttttatac agaatctgtt 300
 gcatcttctc aattggacac tacatctgtg gacaaaggcag tacctgaaac 350
 agaagatgtg cagggttcag tatcagacac agcacacgcag ccatctgtt 400
 agccaaagcaa gtcttctgaa aaaccgaaac aaaaaaaaaaaa tgcgttttc 450
 atgtcagga agaaaatggg acttactggg tttgaatgcc ggtgtggaaa 500
 tttttactgt ggttacacc gttactcaga tgtacacaat tgcttacat 550
 attacaaagc cgatgtgtt gaaaaatca gaaaagaaaa tccagtagttt 600
 gttggtaaa agatccaaa gatttga 627

<210> 5

<211> 70

<212> RNA

<213> Homo sapiens

<220>

<223> siRNA of AWP1

<400> 5

ggatccccatg gcatgtgttc agtatgttca agagacatac tgaacacatg 50
 ccattttttt ggaagtgcac 70