Permutationsgruppen WS 20/21

Prof. Pöschel

3. Dezember 2020

In halts verzeichnis

0	Einführung	1
1	Permutationen und Permutationsgruppen	3
2	Gruppenwirkungen und Darstellungen (Satz von CAYLEY)	10
3	Erzeugendensysteme und SIMS-Ketten	13
4	Automorphismen, invariante Relationen und die Sätze von Krasner	19
Anhang		2 6
Index		26

Preface

The plan is to go rather fast through the first chapter of this book(to get fast to K-Theory), take some notes, write down ideas, examples and remarks, rewrite proofs, so that i can understand them in my way. Also add sometimes reminders to concepts/definitions, so that i have a good overview about vector bundles and of course K-Theory. I will also use notation from courses i took in the past. But I will put remarks for the reader. Hope you will find these notes helpful in any way.

ScyllaHide, 3. Dezember 2020

0. Einführung

mathematische Strukturen:

Definition 0.1

Gruppe $< G, \cdot, ^{-1}, e >$

- \bullet G Gruppe
- e neutrales Element zu x
- x^{-1} inverses Element zu x
- $x \cdot y$ (meist xy) "Produkt", binäre Operation

Axiome:

$$\forall x \in G \colon ex = xe = x$$
$$\forall x \in G \colon xx^{-1} = x^{-1}x = e$$
$$\forall x, y, z \in G \colon x(yz) = (xy)z$$

■ Beispiel 0.2

1. Symmetriegruppen (geom.): isometrische Abbildung der Ebene

Drehungen: 0°, 120°, 240°

Spiegelung: s_0, s_1, s_2

Also 6 Symmetrieoperationen (\cong volle symmetrische Gruppe S_3)

2. Automorphismen (algebraisch bzw. kombinatorisch): Dreieck als Graph betrachten Automorphismen (bijektive Abbdildung, die Kanten in Kanten überführen). Also Aut(Dreieck) $\cong S_3$

0. Einführung

- Spiegelungen an horizontalen Achse
- Es gibt zahlreiche Automorphismen (Fixpunkte: 0,1,2,3,4) viele Vertauschungen

$$|S_2 \times S_2 \times S_3| = 24$$

 Γ, Γ' sind "im Prinzip" das gleiche. \exists Isomorphismus $f : \Gamma \to \Gamma'$. Das führt auf ein Isomorphieproblem: Wann sind zwei Strukturen isomorph?

▶ Bemerkung 0.3

Isomorphieproblem zurückführbar auf Bestimmung von Automorphismen:

als Automrophismus von
$$\Gamma \cup \Gamma' \begin{cases} f &: \Gamma \to \Gamma' \\ f &: \Gamma' \to \Gamma \end{cases}$$

Spezialität der Symmetrien bzw. Automorphismen: haben innere Struktur sind bijektive Abbildungen (=: Permutationen) \Rightarrow Permutationsgruppen.

■ Beispiel 0.4

zum Isomorphieproblem

chemische Isomere: Wieviel verschiedene Alkohole (Propanole, d.h. Bindungsgruppen O-H) mit Strukturformel C₃H₇OH gibt es?

Antwort: Γ siehe oben. und Γ'' , wobei Γ 's Siedepunkt = 97,1°C und Γ'' = 82.4°C.

▶ Bemerkung 0.5

gleiche Summenformel:

Im Allgemeinen Lösung: Anzahl lässt sich als die Anzahl der sogenannten "Bahnen" (eng. Orbit) einer Permutationsgruppe beschrieben. (bestimmbar mit Lemma von CAUCHY-FROBENIUS-Burnside). ⇒ Abzählbartheoreme (POLYA).

■ Beispiel 0.6

anderes Beispiel für Polyasche Abzählbartheorie:

Wieviele wesentlich verschiedene Ketten mit 3 Sorten von Perlen gibt es? (n_i Perlen der Sorte i = 1, 2, 3)

- Permutationsgruppen sind spezielle Gruppen und trotzdem "mehr" als Gruppen
- Automorphismengruppen besonders wichtige (von algebraische Struktur)

Gruppentheoretisch ist aus den Permutationsgruppen entstanden (Galoisgruppe = Permutationsgruppe

■ Beispiel 0.7

für Permuationen

• S_n volle symmetrische aller Permutation auf n-elementiger Menge

• lin. Abbildung eines Vektorraumes

$$x \mapsto Ax + b$$

wobei A invertierbare Matrix ist

Vorlesungsinahlt

- Permutations- und Gruppenwirkung
- Konstruktionen mt Permutationsgruppen
- Polyasche Abzählungstheoreme
- Automorphismengruppen von Relationen

1. Permutationen und Permutationsgruppen

Permutationen können unterschiedlich definiert und dargestellt werden:

1. als Lineare Anordnung von Elementen einer Menge, z.B. $M = \{a, b, c\}$

$$\pi_1$$
: abc π_2 : acb π_3 : bac π_4 : bca π_5 : cab π_6 : cba

2. als bijektive Abbildung (in 2-Zeilen-Darstellung)

$$\pi_1 = \begin{pmatrix} a & b & c \\ a & b & c \end{pmatrix}, \ \pi_2 = \begin{pmatrix} a & b & c \\ a & c & b \end{pmatrix}, \dots, \pi_6 = \dots$$

allgemein

$$\pi = \begin{pmatrix} a_1 & \dots & a_n \\ \vdots & & \vdots \\ a_{1i} & \dots & a_{1n} \end{pmatrix}$$

bezeichnen. Also Abbildung $\pi\colon M\to M$ mit $a_k\mapsto a_{i_k}$, wobei $M=\{a_1,\ldots,a_n\}$ Reihenfolge der Spalten spielt keine Rolle.

Definition 1.1

Eine Permutation auf Menge M ist bejektiv Abbildung $f: M \to M$

$$S_m := S(M) :=$$
 Menge aller Permutationen auf M

Bezeichnung: für Bild f(a) eines Elementes $a \in M$ a^f also ist

$$f = \begin{pmatrix} a_1 & \dots & a_n \\ a_1^f & \dots & a_n^f \end{pmatrix}$$

Satz 1.2

Für |M| = n gibt n! viele Permutationen auf M.

$$|S_M| = n!$$

proof. Selbststudium!

Definition 1.3

Der Graph einer Permutation

- $f: M \to M$
- $f = \{(a,b) \in M^2 \mid a^f = b\}$ Graph von f, Paare (a,b) als gerichtete Kanten von a nach b zeichnen.
- Graph f' (genauer: (M, f')) hat Knotenpunktmenge M und Knotenmenge f'

■ Beispiel 1.4

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 5 & 7 & 12 & 2 & 9 & 4 & 11 & 8 & 1 & 6 & 12 & 10 \end{pmatrix}$$

Fakt Vorraussetzung M endlich: Graph f einer Permutation f ist ein Kreis (Zyklus) oder die Vereinigung von paarweisen disjunkten Kreisen (Zyklen) (folgt aus Bijektivität) (Gilt nicht für unendliche Mengen $f: \mathbb{Z} \to \mathbb{Z}$ mit $x \mapsto x+1$)

Ab jetzt M endlich.

Definition 1.5

Die Zyklendarstellung einer Permutation f (entspricht "lineares Aufschreiben von f.")

■ Beispiel 1.6

f wie oben

$$(1, 3, 7, 4, 13, 10)(2, 5)(6, 9, 8, 11)(12)$$

Falls M fest, Zyklen der Menge 1 weglassen, das nennt man die <u>verkürtzte Zyklendarstellung</u>. <u>zyklische Permutation</u> := Permutation mit genau einem Zyklus in der verkürtzten Zyklendarstellung. Die identische Permutation $x \mapsto x$, Zyklendarstellung (1).

Beachte: (abc), (bca), (cab) bezeichnen die selbe Permutation. (nur Reihenfolge, nicht Anfangselement wichtig)

Definition 1.7

Die $\underline{\text{Multipllikation}}$ (Produkt) von Permutationen ist die Hintereinanderausführung von Abbildungen.

$$M \stackrel{f}{-\!\!\!-\!\!\!-\!\!\!-} M \stackrel{g}{-\!\!\!\!-\!\!\!\!-} M$$

$$a \stackrel{f}{\longmapsto} a^f \stackrel{g}{\longmapsto} a^{fg}$$

Produkt fg (oder f;g oder $f \cdot g$, oder auch $g \circ g$) wird definiert durch

$$a^{fg} := (a^f)^g$$

ist wieder Permutation.

■ Beispiel 1.8

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

- Zykeldarstellung: $(12)(3) \cdot (13)(2) = (123)$
- verkürtzt: $(12) \cdot (13) = (123)$

Fakt: verkürtzte Zyklendarstellung k Zyklen

$$f = (-c_1 - c_1 - c_2 - c_2 - c_3 - c_3$$

g also Permutation zyklisch. Also haben wir

$$f = g_1 \cdot g_2 \cdot \dots \cdot g_k$$

(Komposition)

Satz 1.9

Die Permutationen aus S_M bilden mit der Multiplikation eine Gruppe. die volle symmetrische Gruppe vom Grad |M|. (Einselement (1) = identische Abbildung, inverse Abbildung f^{-1} Zeilen in 2-Zeilendarstellung vertauschen. $(ab \dots xy)^{-1} = (yx \dots ba)$.

proof. SeSt.

▶ Bemerkung 1.10

Alle gruppentheoretische Begriffe sind auch für Permutationsgruppen definiert:Ordnung ord $(f) = \min\{m \mid f^m = e\}$, Untergruppen, Normalteiler, konjugierte Elemente, usw.

Definition 1.11

Eine Permutationsgruppe G von Grad n ist eine Untergruppe der vollen symmetrischen Gruppe S_M vom Grad n.

Bezeichnung: (G, M) oder auch falls G Untergruppe ist, $G \leq S_M$. Wobei meist

$$M = \{0, 1, \dots, n-1\} =: n \Rightarrow S_n$$

$$M = \{1, 2, \dots, n\} =: \underline{n} \Rightarrow S_n$$

▶ Bemerkung 1.12

Weitere Schreibweisen für $U, V \subseteq S_M$, dabei

$$UV = \{uv \mid u \in U, v \in V\}$$

$$a \in M, B \subseteq M, g \in S_M$$

$$a^u = \{a^u \mid u \in U\}$$

$$B^g = \{b^g \mid b \in B\}$$

$$B^u = \{b^u \mid b \in B, u \in U\}$$

Satz 1.13 (Gruppenkriterium)

Sei M endlich. Dann ist $U \subseteq S_M$ Gruppe genau dann, wenn $U \cdot U \subseteq U$.

proof. SeSt.

■ Beispiel 1.14

Symmetrieabbildung des Rechtecks in der Ebene können durch Permutation der Eckpunkte beschrieben werden. Also

Identitätsabbildung:	(1) =: e
Drehung 180°:	$(13)(24) =: g_1$
Spiegelung an I:	$(14)(23) =: g_2$
Spiegelung an II:	$(12)(34) =: g_3$

Damit ist $G = \{e, g_1, g_2, g_3\}$ Permutationsgruppe und $G \cong$ Symmetriegruppe des Rechtecks in der Ebene.

das ist die Kleinsche Vierergruppe, die isomorph zu $\mathbb{Z}_2\times\mathbb{Z}_2$ ist.

Definition 1.15

Sei (G, M) Permutationsgruppe, $a \in M$, dann definiere

1. Den <u>Stabilisator</u> von a

$$G_a := \{ g \in G \mid a^g = a \}$$

Allgemeiner haben wir

$$G_{a_1,a_2,\dots,a_m}:=\bigcap_{i=1}^m G_{a_i}.$$

2. Die Bahn (1-Bahn, Orbit)

$$a^G := \{ a^g \mid g \in G \}.$$

Also ist der 1-Orb(G, M) := Menge aller 1-Bahnen (Andere Bezeichnung: G||M).

- 3. $B\subseteq M$ invariante Menge (bezüglich $G):\Leftrightarrow B^G\subseteq B$
- 4. G transitiv $\Leftrightarrow \exists a \in M : a^G = M$

▶ Bemerkung

Äquivalent dazu sind:

$$\forall a \in M \colon a^G = M$$
$$|1 - \operatorname{Orb}(G, M)| = 1$$

Lemma 1.16

Sei $G \leq S_M, a \in M$. Es gilt:

- (a) G_a ist Untergruppe von G.
- (b) $G_{a^g} = g^{-1}(G_a)g \ (g \in G)$
- (c) Durch $a \sim b \Leftrightarrow a^G = b^G$ ist eine Äquivalenz relation gegeben und es gilt:

$$1 - \operatorname{Orb}(G, M) = M/\sim$$

Die menge aller 1-Bahnen bildet eine Zerlegung von M (zwei Bahnen sind gleich oder disjunkt).

Beachte:

$$b \in a^G \Leftrightarrow a \in b^G$$
 Sest!

(d) Jede invariante Menge $B \subseteqq M$ ist Vereinigung von 1-Bahnen

$$B=B^G=\bigcup_{b\in B}b^G$$

proof. Lemma 1.16 (a) - Lemma 1.16 (c) SeSt, Lemma 1.16 (d) klar nach Definition!

▶ Bemerkung 1.17

Repräsentatensystem einer Zerlegung $1 - \operatorname{Orb}(G, M)$ heisst Transversale.

Wiederholung Algebra

Satz 1.18 (Satz von Lagrange)

Die Ordnung |U| jeder Untergruppe einer endlichen Gruppe G ist Teiler der Gruppenordnung. Es gilt

$$|G| = [G \colon U] \cdot |U|$$

(wobei $[\cdot : \cdot]$ der Index ist).

proof. Index [G:U] = |G/U| = Anzahl k der (rechts-)Nebenklassen Ug in der Nebenklassenzerlegung.

$$G = Ug_1 \cup Ug_2 \cup \dots Ug_k$$

Dabei ist die Nebenklasse durch $Ug := \{u \cdot g \mid u \in U\}$ und $G/U := \{Ug \mid g \in G\}$ und wegen |U| = |Ug| folgt satz 1.18.

1. Permutationen und Permutationsgruppen

Lemma 1.19

Sei $a \in M, G \leq S_M$.

$$\begin{cases} a^G & \to G/G_a \\ a^g & \mapsto G_a g \end{cases}$$

ist eine bijektive Abbildung zwischen Elementen der von a erzeugten Bahn un den Nebenklassen nach dem Stabilisator G_a gegeben. Insbesondere gilt:

$$|a^G| = [G \colon G_a] = |G/G_a|$$

proof.

$$a^{g} = a^{g'} \stackrel{\rightleftharpoons}{\Rightarrow} a = a^{g'g^{-1}} \stackrel{\rightleftharpoons}{\Rightarrow} g'g^{-1} \in G_{a}$$
$$\stackrel{\rightleftharpoons}{\Rightarrow} g' \in G_{a}g \stackrel{\rightleftharpoons}{\Rightarrow} G_{a}g' = G_{a}g$$

(letzte ⇒ benutzt Nebenklassen gleich oder disjunkt)

- \Rightarrow zeigt, dass $a^g \mapsto G_a g$ wohldefiniert ist
- \Leftarrow zeigt, dass $a^g \mapsto G_a g$ injektiv ist.
- \bullet Surjektivität ist klar, da g beliebig gewählt werden kann.

Nun formulieren wie eine Folgerung, die satz 1.18 und Lemma 1.19.

Corollary 1.20 (Permutationsgruppentheoretische Umformulierung des satz 1.18) Für $a \in M$, $G \leq S_M$ gilt:

$$|G| = |G_a| \cdot |a^G|$$

proof.

$$|G| \stackrel{satz}{=} \stackrel{1.18}{=} [G:U] \cdot |U| = [G:G_a] \cdot [G_a]$$
$$= |G/G_a| \cdot |G_a| \stackrel{Lemma}{=} \stackrel{1.19}{=} |a^G| \cdot |G_a|$$

■ Beispiel 1.21

Sei $G := S_{\underline{4}}, 1^G = \{1, 2, 3, 4\}$ und $M = \underline{4} = \{1, 2, 3, 4\},$ dann

$$|G_1| \stackrel{Folgerung}{=} {}^{1.20} |G|/|1^G| = 4!/4 = 3! = 6$$

"Raten" der Permutationen aus G_1 führt zu

$$G_1 = \{(1), (23), (24), (34), (234), (243)\}$$

(mehr als 6 gibt es nicht!)

Iteration führt zu

$$|G_{1,2}| = |G_1| : |2^{G_1}| = 6 : 3 = 2$$

$$G_{1,2} = \{(1), (34)\}$$

$$|G_{1,2,3}| = |G_{1,2}| : |3^{G_{1,2}}| = 2 : 2 = 1$$

$$G_{1,2,3} = \{(1)\}$$

Definition 1.22

Zwei Permutationsgruppen (bzw. Wirkungen, siehe 2.2) (G, M) und (H, N) heißen <u>ähnlich</u>, wenn eine bijektive Abbildung

$$f: M \to N$$

und ein Gruppenisomorphismus

$$\varphi\colon G\to H$$

existieren, so dass gilt:

$$\forall a \in M, \forall g \in G \quad f(a^g) = f(a)^{\varphi(g)}$$

d.h. das Diagramm

$$\begin{array}{ccc} M & \stackrel{f}{\longrightarrow} & N \\ \downarrow^g & & \downarrow^{\varphi(g)} \\ M & \stackrel{f}{\longrightarrow} & N \end{array}$$

ist kommutativ.

▶ Bemerkung

Durch f und G ist φ und H vollständig festgelegt (folgt aus Diagramm)

$$y \in N \quad y^{\varphi(g)} = g^{f^{-1}gf}$$

$$H = \{\varphi(g) \mid g \in G\} = \left\{f^{-1}gf \mid g \in G\right\}$$

Beachte: Ähnlichkeit impliziert Isomorphie, Äquivalenz gilt im Allgemeinen nicht!

■ Beispiel 1.23

- 1. S_M ähnlich zu $S_N \Rightarrow |M| = |N|$
- 2. $(G, M) = (\{e, (12)\}, \{(1, 2)\})$ ähnlich zu $(\{e, (\alpha, \beta)\}, \{\alpha, \beta\}) = (H, N)$ aber nicht ähnlich zu $(\{e, (1, 2)\}, \{1, 2, 3, 4\}) = (G', M')$, obwohl $G \cong G'$ (als Gruppen).

Definition 1.24

Ähnlichkeit und Konjugiertheit von Permutationen

1. zwei Permutationen $g_1, g_2 \in S_M$ heißen <u>ähnlich</u>, wenn in ihren Zyklendarstellungen gleich viele Zyklen, gleicher Länge vorkommen, z.B.

$$g_1 = (1)(2)(345)(67)(89)$$

 $g_2 = (3)(7)(149)(28)(56)$
 $(\cdot)(\cdot)(\cdot\cdot)(\cdot\cdot)(\cdot\cdot)$

2. Sei $G \leq S_M$, $g_2 \in S_M$ heißt konjugiert zu $g_1 \in G$, wenn ein $f \in G \neq S_M$ existiert, so dass $g_2 = f^{-1}g_1f$.

Sprechweise: g_1 und g_2 sind konjugiert.

Lemma 1.25

- 1. Konjugiertheit und Ähnlichkeit sind Äquivalenzrelation (in S_n).
- 2. Aus der Zyklendarstellung

$$g = (a_1, a_2, \dots)(b_1, b_2, \dots)(\dots)\dots$$

erhält man die Zyklendarstellung von $f^{-1}gf$ (für $f\in S_{\underline{n}}$), wenn f auf jedes Element im Zyklus angewendet wird

$$f^{-1}gf = (a_1^f, a_2^f, \dots)(b_1^f, b_2^f, \dots)(\dots)\dots$$

- 3. g_1 und g_2 konjugiert $\Rightarrow g_1, g_2$ ähnlich (\Leftarrow im Allgemeinen nicht!), aber, wenn $g_1 \lor g_2$ konjugiert in $S_n \Leftrightarrow g_1, g_2$ ähnlich
- 4. $g_1, g_2 \in S_{\underline{n}}$ ähnlich \Leftrightarrow die erzeugte zyklische Untergruppe $(\langle g_1 \rangle, M)$ und $(\langle g_2 \rangle, M)$ sind ähnlich im Sinne von der Definition der Untergruppe (Definition 1.22).

2. Gruppenwirkungen und Darstellungen (Satz von Cayley)

Definition 2.1 (Permutationsdarstellung)

(i) Ein Homomorphismus

$$\psi \colon G \to S_M$$

einer (abstrakten) Gruppe G in eine symmetrische Gruppe S_M heisst Permutationsdarstellung von G. (vom Grad |M|)

(ii) ψ true, falls ψ injektiv.

▶ Bemerkung

 ψ ist treu \Leftrightarrow ker $\psi = \{g \mid \psi(g) = e\} = \{e\}$, mithilfe des Homomorphiesatz folgt $G \cong \mathfrak{Im}\psi(G) = \psi[G] \leq S_M$. (G ist "praktisch" Permutationsgruppe.)

Definition 2.2

Sei $G = \langle G, \cdot, ^{-1}, e \rangle$ Gruppe, M Menge. Eine Abbildung

$$\varphi \colon \begin{cases} M \times G & \to M \\ (x,g) & \mapsto xg = \varphi(x,g) \end{cases}$$

heisst $\underline{\text{Gruppenwirkung}}(\text{alt: Gruppenoperation, eng. group action})$ von G auf Menge M, falls folgendes gilt:

1.
$$\varphi(x,e) = xe_G = x \quad \forall x \in M$$

9

$$(xg)g' = x(g \cdot_G g')$$
$$\varphi(\varphi(x, g), g') = \varphi(x, g \cdot_G g')$$

Sprechweise: G wirkt (operiert, eng. acts) auf M

Schreibweise: (G, M)

▶ Bemerkung

Jede Permutationsgruppe $G \leq S_M$ operiert auf natürliche Weise auf M

$$xg = \varphi(x, g) = x^g$$

(oft Schreibweise x^g statt $\varphi(x,g) \wedge xg$)

Satz 2.3

Jeder Gruppenwirkung

$$\varphi \colon M \times G \to M$$

entspricht in ein-eindeutiger Weise einer Permutationsdarstellung. $\psi\colon G\to S_M$ und umgekehrt, und zwar gemäß

$$x^{\psi(g)} = xg \qquad \qquad (= \varphi(x,g)$$

$$(x \in M, g \in G) := \qquad \qquad \text{falls } \varphi \text{ gegeben}$$

$$:= \qquad \qquad \text{falls } \psi \text{ gegeben}$$

proof. SeSt.. (Hinweis: Es muss gezeigt werden, dass ψ ein Gruppenhomomorphismus ist.)

Lemma 2.4

(a) Ist G (abstrakte) Gruppe, so ist durch

$$h \in G$$
 h^{g^*}

(rechts-multiplikation mit g) für jedes $g \in G$ eine Permutation: $g^* \in S_G$ gegeben.

- (b) $\psi \colon G \to S_G$ mit $g \mapsto g^*$ ist Permutationsdarstellung
- (c) $\varphi \colon (G \times G) \to G$ mit $(h,g) \mapsto hg$ (Produkt in Gruppe G) zugehörige Gruppenwirkung
- (d) φ ist treu (und heißt rechtsreguläre Darstellung von G)

Folgerung aus Lemma 2.4 (d) (vergleiche Bemerkung zu Definition 2.1) ist

Corollary 2.5 (Satz von Cayley)

Für eine beliebige Gruppe G ist

$$G^* = \{g^* \mid g \in G\} \subset S_G$$

eine zu G isomorphe (da treu) Permutationsgruppe (G^*, G) heißt <u>rechtsreguläre Darstellung</u> von G.

proof (??). • Lemma 2.4 (a) und Lemma 2.4 (b) folgen wegen satz 2.3 aus 3)

- zu zeigen satz 2.3 für φ
 - 1. $\varphi(h,g) = he = h$
 - 2. $(hg)g^{-1} = h(gg^{-1})$ (assoziativ Gruppen der Gruppenmultiplikation)
- noch zu zeigen Lemma 2.4 (c): Sei $g_1^* = g_2^*$ (gilt unter ψ). Dann $h^{g_1^*} = h^{g_2^*}$ impliziert $\xrightarrow{h^{-1}} g_1 = g_2$. (Da $h^{-1} \cdot h = e$ gilt.)

■ Beispiel 2.6

Sei
$$G = S_3 = \{g_1, g_2, g_3, g_4, g_5, g_6\}$$
 mit $M = \{1, 2, 3\}$

$$g_1 = e = (1)$$
 $g_2 = (12)$ $g_3 = (13)$

$$g_4 = (23)$$
 $g_5 = (123)$ $g_6 = (132)$

Multiplikationstafel (Cayley table) then we have: $g_i^*g \to gg_i$ wird durch die 3. Spalte des Cayleytafel beschrieben, d.h.

$$g_3^* = \begin{pmatrix} g_1 & g_2 & g_3 & g_4 & g_5 & g_6 \\ g_3 & g_5 & g_1 & g_6 & g_2 & g_4 \end{pmatrix} = (g_1g_3)(g_2g_5)(g_3g_1)$$

Zyklenschreibweise.

▶ Bemerkung

- 1. G wirkt S_3 auf $M = \{1, 2, 3\}$
- 2. $G^*=S_{\underline{3}}^*$ wirkt auf der Menge $S_{\underline{3}}=\{g_1,\ldots,g_6\}$ d.h. ist Untergruppe der S_G , SeSt kein $g^*\neq e$ hat eine Fixpunkt
- 3. Jedes g^* zerfällt in ein Produkt von Zyklen gleicher Menge $\operatorname{ord}(g)$, vgl. vorheriges Beispiel: $\operatorname{ord}(g_2)=2$
- 4. G^* hat Grad |G|.
- 5. G^* ist transitiv (d.h. gibt nur eine Bahn $e^{G^*} = G$)
- 6. Die EGS 2. und 5. charakterisieren die Regularität von G^* (vgl 5.4)

\blacksquare Beispiel 2.7 (Weitere Beispiele von Gruppenwirkungen einer (abstrakten) Gruppe G)

1. Wirkung durch Konjugation (siehe Geometrie Kurs)

$$\varphi \colon \begin{cases} G \times G & \to G \\ (h,g) & \mapsto g^{-1}hg \end{cases}$$

zugehörige Permutationsdarstellung:

$$\psi : \begin{cases} G & \to S_G \\ g & \to \psi(g) \end{cases}$$
$$h^g = h^{\psi(g)} = g^{-1}hg$$

2. Wirkung auf Untergruppen $U\subseteq G$ (Sub(G) Menge der Untergruppen von G)

$$\psi \colon \begin{cases} \operatorname{Sub}(G) \times G & \to \operatorname{Sub}(G) \\ (U, g) & \to g^{-1}Ug \end{cases}$$

zugehörige Permutationsdarstellung

$$\varphi \colon G \to S_{\operatorname{Sub}(G)}$$

3. Wirkung auf rechte-Cosets G/U

$$U \subseteq G, G/U = \{Uh \mid h \in G\}$$

$$\varphi \colon \begin{cases} G/U \times G & \to G/U \\ (Uh, g) & \mapsto Uhg \end{cases}$$

$$\varphi \colon G \to S_{G/U}$$

■ Beispiel 2.8 (Wirkungen von Permutationsgruppen (G, M) auf andere Mengen)

(a) induzierte Wirkung $(G, \mathcal{P}(M))$ auf Potenzmenge $\mathcal{P}(M)$

$$\mathcal{P}(M) \times G \to \mathcal{P}(M)$$
$$(B,g) \mapsto B^g = \{h^g \mid h \in B\}$$

(b) Einschränkung: induzierte Wirkung $(G, \mathcal{P}_m(M))$ auf m-elementige Teilmenge

$$\varphi \colon \begin{cases} \mathcal{P}_m(M) \times G & \to \mathcal{P}_m(M) \\ (B,g) & \mapsto B^g \quad |B| = m \end{cases}$$

Bezeichnung dieser Wirkung auch $(G^m, \mathcal{P}_m(M))$

(c) induzierte Wirkung von (G, M^m) auf m-Tupel d.h. auf M^m

$$\varphi \colon \begin{cases} M^m \times G & \to M^m \\ (a_1, \dots, a_m)^g & \mapsto (a_1^g, \dots, a_m^g) \end{cases}$$

Bezeichnung: $(G^{[m]}, M^m)$.

3. Erzeugendensysteme und Sims-Ketten

Problem: Beschreibung von Permutationsgruppen, Aufzählung aller Elemente ist nur selben möglich $(S_{100}=100\Rightarrow 10^{100}\dots 10^{200})$

Aufzählung: Beschreibung als Automorphismusgruppen (siehe Kapitel 4 und 5) oder durch EZS. Wiederholung:

Definition 3.1

 $U \subseteq G$ heißt <u>Erzeugendensystem</u> einer Gruppe $G : \Leftrightarrow$ jedes $g \in G$ ist als endliches Produkt u_1, \ldots, u_m mit $u_i \in U$ oder $u_i^{-1} \in U$ darstellbar. Bezeichunung: $G = \langle u_i \rangle_G$.

Probleme:

- (P1) Entscheide $g \in \langle U \rangle$ für $g \in S_n, U \subseteq S_n$?
- (P2) Bestimme Bahnen von $\langle U \rangle$, spezielle Bahnen $a^{\langle U \rangle}$ für spezielle $a \in G$.
- (P3) Beschreibung der Untergruppen von $\langle U \rangle$, benutze Methode von SIMS für große G. Man benutzt Menge T_i für $i = \{1, \dots, r\}$, sodass

$$G = T_r \cdot T_{r-1} \cdots T_1$$

und Darstellung

$$g = t_r \cdot t_{r-1} \cdot t_{r-2} \cdots t_1$$

ist Eindeuting.

Damit wäre die Speicherformel: $\sum_{i=1}^{r} |T_i|$

■ Beispiel

 $G = S_n$ impliziert |G| = n! oder $\sum |T_i| \le \frac{n(n+1)}{2}$ möglich, also ist der Speicherbedarf $\sim n^2$.

Definition 3.2 (Sims-Kette, Sims-Basis, Transversale)

Die Sims-Kette einer Permutationsgruppe $G \subseteq S_M$, $M = \{a_1, \ldots, a_n\}$ speziell $M = \underline{n} = \{1, \ldots, n\}$ für punktweise Stabilisatoren:

$$U_1 = G_{n_1}$$
 $U_2 = G_{n_1,n_2}$... $U_i = G_{n_1,\dots,n_i}$ $U_n = G_{n_1,\dots,n_n} = \{e\}$

Also haben wir

$$\{e\} = U_1 \subseteq U_2 \subseteq \cdots \subseteq U_i \subseteq \cdots \subseteq U = G$$

Sei $r := \min\{i \mid U_i = \{e\}\}$ (hängt von der Reihenfolge der Elemente n_i ab). Die Menge der $\{a_1, \ldots, a_r\}$ genauer (a_1, \ldots, a_r) heißt SIMS-Basis von G und

$$\{e\} = U_r \nleq U_{r-1} \leqq \cdots \leqq U_1 \leqq U_0 = 0$$

ist die SIMS-Kette von G der Länge r (zur Basis (a_1, \ldots, a_r)). Für

$$U_{i-1}/U_i = U_i g_{i_1} \dot{\cup} U_i g_{i_2} \dot{\cup} U_i g \dot{\cup} \dots \dot{\cup} U_i g_{i_{n_i}}$$
 meist $g_{i_1} = e$

wird Repräsentatensystem (<u>Transversale</u>) $T_i := \{g_{i_1}, \dots, g_{i_{n_i}}\}$ gewählt $(i = 1, \dots, r)$. Beachte:

$$U_{r-1}/U_r \cong U_{r-1}$$
, also $T_r = U_{r-1}$

Bei Umnummerierung der Elemente entstehen möglicherweise kürzere Base. (Fixpunkte in Basis weggelassen)

Satz 3.3

Seien G, T_i wie in Definition 3.2. Dann gilt

(i) Jede Permutation $g \in G$ lässt sich eindeutig in der Form

$$g = h_r h_{r-1} \cdots h_1 \text{ mit } h_i \in T_i \ (i \in \{1, \dots, r\})$$

darstellen. Insbesondere gilt dann

$$G = T_r T_{r-1} \cdot \dots \cdot T_1 \text{ and } |G| = \prod_{i=1}^r n_i.$$

(ii) Jede Permutation $g \in G$ ist eindeutig durch die Bilder der Basis festgelegt, d.h. durch (a_1^g, \dots, a_r^g) .

▶ Bemerkung

Definition 3.3 (i) impliziert $T_1 \cup \cdots \cup T_r$ ist ein (spezielles) Erzeugendensystem für G.

proof. • zu Definition 3.3 (i):

$$g \in G \Rightarrow \exists ! h_1 \in T_1 \colon g \in U_1 h_1$$

$$\Rightarrow g h_1^{-1} \in U_1 \Rightarrow \exists ! h_2 \in T_2 \colon g h_1^{-1} \in U_2 h_2$$

$$\Rightarrow g h_1^{-1} h_2^{-1} \in U_2 \Rightarrow \exists ! h_3 \dots$$

$$\Rightarrow g h_1^{-1} h_2^{-1} \dots h_r^{-1} \in U_r = \{e\}$$

$$\Rightarrow g = h_r h_{r-1} \dots h_2 \cdot h_1$$

Eindeutigkeit der Darstellung folgt aus der Eindeutigkeit der Repäsentaten (der Nebenklassen).

• zu Definition 3.3 (ii):

$$(a_1^g, \dots, a_r^g) = (a_1^{g'}, \dots, a_r^{g'}) \Rightarrow a_i^{gg^{-1}} = a_i$$
 Fixpunkte

d.h.

$$gg^{-1} \in G_{a_1 a_2 \dots a_r} = \{e\} \Rightarrow g = g'$$

■ Beispiel 3.4

Sei $G=S_{\underline{4}}, M=\{a_1,a_2,a_3,a_4\}=\{1,2,3,4\},\ G_1\cong S_3,\ G_{1,2}\cong S_2$ und $G_{1,2,3}=\{e\},$ dann muss man etwas rechnen und bekommt

$$T_1 = \left\{ e, g_1, g_1^2, g_1^3 \right\}$$
 für $g_1 = (1234)$
 $T_2 = \left\{ e, g_2, g_2^2 \right\}$ für $g_2 = (234)$
 $T_1 = \left\{ e, g_3 \right\}$ für $g_3 = (34)$

Dann folgt mit Definition 3.3 (i): Jedes $g \in S_{\underline{4}}$ ist eindeutig in der Form

$$g = g_3^{\alpha_3} g_2^{\alpha_2} g_1 \alpha_1$$

wobei $\alpha_3 \in \{0, 1\}, \alpha_2 \in \{0, 1, 2\}, \alpha_1 = \{0, 1, 2, 3\} \text{ und } g_0 = e.$

▶ Bemerkung

Speicheraufwand (in Bit):

$$\begin{aligned} |T_1| &= 4 \Rightarrow 2 \text{ Bit} \\ |T_2| &= 3 \Rightarrow 2 \text{ Bit} \\ |T_3| &= 2 \Rightarrow 1 \text{ Bit} \\ &\Rightarrow 5 \text{ Bit} \end{aligned}$$

ist optimal, da wir $2^4(16) \le 4!(24) \le 2^5(32)$ haben.

Corollary 3.5 (Test $g \in G$, vergleiche Probleme (P1) vom Anfang des Kapitels) Für $G \leq S_M$ seinen eine SIMS-Basis (a_1, \ldots, a_r) and T_1, \ldots, T_r bekannt (vergleiche Definition 3.2), $g \in S_M$ gegeben. Algorithmus zum Testen, ob $g \in G$:

$$\exists h_1 \in T_1 \colon a_1^{gh_1^{-1}} = a_1? \qquad \xrightarrow{\text{nein}} g \notin G$$

$$\downarrow \text{ ja}$$

$$\exists h_2 \in T_2 \colon a_2^{gh_1^{-1}h_2^{-1}} = a_2? \qquad \xrightarrow{\text{nein}} g \notin G$$

$$\downarrow \text{ ja}$$

$$\vdots$$

$$\exists h_r \in T_r \colon a_r^{gh_1^{-1}h_2^{-1}\cdots h_r^{-1}} = a_r? \qquad \xrightarrow{\text{nein}} g \notin G$$

$$\downarrow \text{ ja}$$

$$\exists gh_1^{-1}h_2^{-1}\cdots h_r^{-1} = e? \qquad \xrightarrow{\text{nein}} g \notin G$$

$$\downarrow \text{ ja}$$

$$\exists g \in G$$

proof. 1. Schritt: Wegen $G = \bigcup_{h \in T_1} G_{a_1} h$ folgt

$$g \in G \Leftrightarrow \exists h \in T_1 \colon g \in G_{a_1}h \Leftrightarrow \exists h \in T_1 \colon gh^{-1} \in G_{a_1}$$
$$\Leftrightarrow \exists h \in T_1 \colon a_1^{gh^{-1}} = a_1 \land gh^{-1} \in G \Rightarrow \exists h \in T_1 \colon a_1^{gh^{-1}} = a_1.$$

Also führt der ($\stackrel{\text{nein}}{\longrightarrow}$)-Zweig zu $g \notin G$. (Die weiteren Schritte sind analog.)

Problem: Wie findet man das Repräsentatensystem T_1, \ldots, T_r für die Untergruppen U_1, \ldots, U_r , falls Erzeugendensystem U gegeben

$$G = \langle U \rangle$$
 vergleiche (P3) unter Definition 3.1

(beachte, dass $T_1 \dot{\cup} \dots T_r$ ist Erzeugendensystem für $U_{1\dots r}$) Antwort: Resultat von Schreier (Otto Schreier 1901 -1929)

Satz 3.6 (Schreirer-Lemma)

Sei $G=\langle U\rangle$ mit $U=\{g_1,\ldots,g_n\}$ (bzw. für endlich erzeugbare Gruppen G, also $|G|=\infty$ sein.) $V\leq G$ Untergruppe mit

$$G = Vh_1 \cup Vh_2 \cup \cdots \cup Vh_s$$
 s-cosets und oBdA $h_1 = e$

 $T=\{h_1,\ldots,h_s\}$ Repräsentatensystem für G/V. Für $g\in G$ sei $\varphi(g)\in T$ der Repräsentant der Nebenklasse Vg (d.h. $g\in Vg=V_{\varphi(g)}$) Dann ist

$$X := \left\{ h_i g_j^{\mathbf{k}} \varphi(h_i g_j^{\mathbf{k}})^{-1} \mid i \in \{1, \dots, s\}, g \in \{1, \dots, m\} \right\}$$

 $(k \in \{1, -1\})$ bei unendlichen Gruppen) ein Erzeugendensystem für die Untergruppe V.

▶ Bemerkung

$$k = \{1, -1\} \quad ^{-1} \text{ ist Inverse} \tag{1}$$

proof. 1. $X \subseteq V$, dann

$$h_i g_i \in V \varphi(h_i g_i) \Rightarrow h_i g_i \cdot \varphi(h_i g_i)^{-1}$$

2. X ist Erzeugendensystem von V. Sei $g \in V \leq G = \langle U \rangle$. Dann existiert Darstellung $g = g_{i_1} \cdots g_{i_t}$ (bei

unendlichen Gruppen braucht man wieder g^{-1} vergleiche (1))

$$\Rightarrow g = h_1 g_{i_1} \cdots g_{i_t} = \underbrace{h_1 g \varphi(h_1 g_j)^{-1}}_{\ni X} \underbrace{\varphi(h_1 g_1)}_{\exists \varphi(g_1) h_{i_1}} g_{i_1} \dots g_{i_t}$$

$$= \underbrace{\cdots}_{\in X} \underbrace{h_{j_1} g_{i_2} \varphi(h_{j_1} g_{i_2})^{-1}}_{\in X} \underbrace{\varphi(h_{j_1} g_{i_2})}_{\exists j_2 : \varphi(h_{j_2} g_{i_2}) = h_{j_2}} g_{i_3} \cdots g_{i_t}$$

$$\stackrel{\text{usw.}}{=} \underbrace{\cdots}_{\in X} \underbrace{\varphi \dots \varphi^{-1}}_{\in X} g \in V$$

Sest noch einen Schritt

$$\Rightarrow \varphi(hg) \in V$$

konkret folgt also, dass $g \in \langle X \rangle$.

■ Beispiel 3.7

Sei $G:=S_{\underline{n}}, V:=A_{\underline{n}}$ (alternierende Gruppe der geraden Permutationen). Erzeugendensystem $g_1:=(12),g_2:=(12\dots n)$ (vergleiche Bemerkung 3.8 (d)):

$$G = \langle g_1, g_2 \rangle_{S_n}$$

Nebenklassenzerlegung mit Repräsentaten $h_1 := e = (1), h_2 := (12)$:

$$S_n = Vh_1 \dot{\cup} Vh_2 = A_n \dot{\cup} A_n(12)$$

 $\xrightarrow{satz \ 3.6} A_{\underline{n}}$ wird erzeugt von

$$\begin{split} h_1 g_1 \varphi(h_1 g_1)^{-1} &= e \cdot (12) \cdot (12) = e \\ h_1 g_2 \varphi(h_1 g_2)^{-1} &= \begin{cases} e \cdot (12 \dots n) \cdot (12) = (23 \dots n) & \text{falls n gerade} \\ e \cdot (12 \dots n) \cdot e = (213 \dots n) & \text{falls n ungerade} \end{cases} \\ h_2 g_1 \varphi(h_2 g_1)^{-1} &= (12) \cdot (12) \cdot e = e \\ h_2 g_2 \varphi(h_2 g_2)^{-1} &= \begin{cases} (12) \cdot (12 \dots n) \cdot (12) = (213 \dots n) & \text{falls $n-1$ gerade} \\ (12) \cdot (12 \dots n) \cdot e = (134 \dots n) & \text{falls $n-1$ ungerade} \end{cases} \end{split}$$

(wobei $(12) \cdot (12 \dots n) = (134 \dots n)$). Also erhält man folgendes Erzeugendensystem für A_n :

$$A_{\underline{n}} = \begin{cases} \langle (234\dots n), (134\dots n) \rangle_{S_{\underline{n}}} & \quad \text{falls n gerade} \\ \langle (123\dots n), (213\dots n) \rangle_{S_{\underline{n}}} & \quad \text{falls n ungerade} \end{cases}$$

▶ Bemerkung 3.8

Erzeugendensysteme der $S_{\underline{m}} :$ folgende Mengen erzeugen $S_{\underline{m}} :$

- (a) $\{(ij) \mid i, j \in N\}$ alle Transpositionen
- (b) $\{(12), (23), \dots, (n-1, n)\}$ spezielle Transposotionen
- (c) $\{(12), (13), (14), \dots, (1n)\}$ spezielle Transpositionen
- (d) $\{(12), (12 \dots n)\}$

proof (Bemerkung 3.8).

zu Bemerkung 3.8 (a): Für Zyklen gilt:

$$(a_1 \dots a_k) = (a_1 a_2)(a_1 a_3) \dots (a_1 a_k)$$
 SeSt!

Jede Permutation ist Produkt von Zyklen (siehe Geometrie Fehm).

Bemerkung 3.8 (b) - Bemerkung 3.8 (b) SeSt!

▶ Bemerkung

Zerlegung in Transpositionen nicht eindeutig (im Gegensatz zu SIMS-Ketten-Zerlegung satz 3.3), aber es gibt gewisse Invarianten

Definition 3.9 (gerade und ungerade Permutationen)

Sei $g \in S_n$. Eine Inversion von g ist ein Paar (i,j) mit $1 \le j \le n$ und $i^g > j^g$. zum Beispiel

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (12)(34)$$

hat zwei Inversionen: 1 < 2, 3 < 4.

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13)(2)$$

hat die Inversionen: 1 < 2, 2 < 3, 1 < 3. (=Anzahl der Vertauschungen von Nachbarn in der zweiten Zeile, um daraus 1. Zeile zu bekommen) Definiere Signum:

$$\operatorname{sgn}(g) := \begin{cases} 1 & \text{falls } \# \text{ Inversionen gerade} \\ -1 & \text{falls } \# \text{ Inversionen ungerade} \end{cases}$$

g heißt dann gerade bzw. ungerade Permutation. Es gilt:

(i)

$$sgn(g) = \prod_{\substack{i < j \\ i, j \in \underline{n}}} \frac{j^g - i^g}{j - 1} = \prod_{i < j} \frac{j^{gh} - i^{gh}}{j^h - i^h}$$

(für beliebige Permutation h)

proof. Jede Inversion liefert (-1) im Zähler. Beim Aufsetzen einer Permutation h wird genau dann im Produkt der Zähler ein Vorzeichen geändert, wenn auch Änderung im Nenner.

(ii) $\operatorname{sgn}(gh) = \operatorname{sgn}(g) \cdot \operatorname{sgn}(h)$, denn

$$\operatorname{sgn}(g) \cdot \operatorname{sgn}(h) = \prod_{i < j} \frac{j^g - i^g}{j - i} \prod_{i < j} \frac{j^h - i^h}{j - i}$$
$$= \frac{j^{gh} - i^{gh}}{j^h - i^h} \cdot \frac{j^h - i^h}{j - 1}$$
$$= \frac{j^{gh} - i^{gh}}{j - 1}$$
$$= \operatorname{sgn}(gh)$$

(iii)
$$sgn(e) = 1, sgn(g^{-1}) = sgn(g)$$
 (denn $1 = sgn(g \cdot g^1) = sgn(g) \cdot sgn(g^{-1})$)

(iv) sgn: $S_{\underline{n}} \to \{1, -1\}$ ist Homomorphismus auf der multiplikativen Gruppe $\langle \{1, -1\}, \cdot \rangle$

- (v) Die geraden Permutationen bilden Untergruppe (wegen Definition 3.9 (ii), Definition 3.9 (iii) =: die alternierende Gruppe A_n von S_n)
- (vi) $g \in S_{\underline{n}}$ gerade (bzw. ungerade) \Leftrightarrow Für jede Darstellung $g=t_1,\ldots,t_q$ als Produkt von Transpositionen ist g gerade (bzw. ungerade)

proof (Definition 3.9 (vi)).

$$g = t_1 \dots t_q$$

$$e = t_1 \dots t_q \dots t_1 = s \cdot t_1 \dots t_q$$

$$e = s \cdot t_1 \dots t_q = s(-1) \cdot t_{q-1} \dots t_1$$

$$e = s(-1) \cdot t_{q-1} \dots t_1 = s(-1)^q = 1$$

Daraus folgt:

Satz 3.10

Die alternierende Gruppe $A_{\underline{n}} \leq S_{\underline{n}}$ besteht aus allen Permutation, die sich als Produkt einer geraden Anzahl von Transpositionen darstellen lassen. $A_{\underline{n}}$ ist Normalteiler in $S_{\underline{n}}$ und enthält n!/2 Elemente.

proof. • erster Teil: Definition 3.9 (vi)

- zweiter Teil: Homorphiesatz für sgn: $S_{\underline{n}} \to \{1, -1\}$ (vergleiche Definition 3.9 (v))

$$\begin{split} &\ker(\operatorname{sgn}) = \{g \mid \operatorname{sgn}(g) = 1\} = A_{\underline{n}} \\ &\left| S_{\underline{n}/A_{\underline{n}}} \right| = \frac{\left| S_{\underline{n}} \right|}{\left| A_{\underline{n}} \right|} = 2 \end{split} \qquad \Box$$

▶ Bemerkung 3.11

 $A_{\underline{n}}$ ist einfach für $n \leq 5$ (keine Normalteiler). Daraus folgt direkt S_n ist für $n \geq 5$ nicht auflösbar. (siehe Fehm Geometrie Skript)

4. Automorphismen, invariante Relationen und die Sätze von Krasner

algebraisch haben wir folgende Sachen

kombinatorische Strukturen \leftrightarrow Gruppe der "Symmetrien" Relationen gegeben \rightarrow Automorphismen Invariante Relation \leftarrow G gegeben

► Erinnerung (Beispiel 2.8 (c))

 $g \in S_M$ induziert $\tilde{g} \in S_{M^n}$ durch

$$(a_1,\ldots,a_n)^g := (a_1,\ldots,a_n)^{\tilde{g}} := (a_1^g,\ldots,a_n^g)$$

Bezeichnung der (\tilde{G}, M^n) auch mit (G, M^n) oder $(G^{[n]}, M^n)$. Beispiel 2.8 (a) \Rightarrow Wirkung auf $\mathcal{P}(M^n)$ Bezeichnung $(G, \mathcal{P}(M^n))$ (für $G \leq S_M$:

 $\Phi^g:=\left\{\underline{a}^{\tilde{g}}\mid\underline{a}\in\Phi\right\}\quad\text{ vergleiche Definition 1.7 für }\Phi\subseteq M^n$

Definition 4.1

 $g \in S_M$, $\Phi \subseteq M^n$ n-stellige Relation (Elemente (n-Tupel) als Spalten einer "Matrix"). g bewahrt Φ (Bezeichnung $g \triangleright \Phi$), also Φ invariant für g, bzw g Automorphismus von Φ

$$:\Leftrightarrow \Phi^g \subseteq \Phi$$
 bzw. $\Phi^g = \Phi$

d.h. $\forall a_1, \dots, a_n \in M : (a_1, \dots, a_n) \in \Phi \stackrel{\Leftrightarrow}{\Rightarrow} a_1^g, \dots a_n^g \in \Phi$ (M endlich: $g \triangleright \Phi \Leftrightarrow g$ Automorphismus)

Notation

Bezeichne die Menge der endlich-stelligen Relation mit

$$R_M:=\{\Phi\mid\subseteq M^n\mid n=1,2,3,\ldots\}$$
 Aut $\Phi=\operatorname{Aut}_M\Phi:=\{g\in S_M\mid \Phi^g=\Phi\}$

Für $Q \subseteq R_M$:

$$\operatorname{Aut} \mathcal{Q} := \bigcap_{\Phi \in \mathcal{Q}} \operatorname{Aut} \Phi \quad (\operatorname{Automorphismen \ von} \ \mathcal{Q})$$

$$n - \operatorname{Inv}(G, M) := n - \operatorname{Inv}_M G \ (n - \operatorname{Inv} G)$$

$$= \{ \Phi \subseteq M^n \mid \forall g \in G \colon g \triangleright \Phi \}$$

n-stellige Invarianten von G:

$$\operatorname{Inv}_M G := \bigcup_{n=1}^\infty n - \operatorname{Inv} G \quad (\underline{\operatorname{Invarianten}} \text{ von } G)$$

Jede binäre Relation, also auch

$$\{(g,\Phi) \mid \Phi^g = \Phi\} \subseteq S_M \times R_M$$

induziert eine Galoisverbindung (φ, ψ) .

Definition 4.2

Durch Aut und Inv ist eine Galoisverbindung gegeben:

$$\varphi \colon \operatorname{Aut} \begin{cases} \mathcal{P}(R_M) & \to \mathcal{P}(S_M) \\ \mathcal{Q} & \mapsto \operatorname{Aut} \mathcal{Q} \end{cases}$$

$$\psi \colon \operatorname{Inv} \begin{cases} \mathcal{P}(S_M) & \to \mathcal{P}(R_M) \\ G & \mapsto \operatorname{Inv} G \end{cases}$$

insbesondere gelten die folgenden Eigenschaften $(G, G' \subseteq S_M, \mathcal{Q}, Q' \subseteq R_M)$:

(i)
$$G \subseteq G' \Rightarrow \operatorname{Inv} G \supseteq \operatorname{Inv} G'$$

(ii)
$$G \subseteq Q' \Rightarrow \operatorname{Aut} Q \supseteq \operatorname{Aut} Q'$$

- (iii) $G \subseteq \operatorname{Aut} \operatorname{Inv} G$
- (iv) $U \subseteq \text{Inv Aut } U \text{ What is } U \text{ here? :o}$
- (v) Aut Inv Aut Q = Aut Q
- (vi) Inv Aut Inv G = Inv G
- (vii) $G \mapsto \text{Aut Inv } G$ ist Hüllenoperator What is a Hüllenoperator?

- (viii) $\mathcal{Q} \mapsto \text{Inv Aut } \mathcal{Q} \text{ ist Hüllenoperator}$
 - (ix) $G \subseteq Aut \mathcal{Q} \Leftrightarrow Inv G \supseteq \mathcal{Q}$
 - (x) Aut und Inv sind Bijektionen auf den Galoishüllen

$$G = \operatorname{Aut} \operatorname{Inv} G \quad \mathcal{Q} = \operatorname{Inv} \operatorname{Aut} \mathcal{Q}$$

▶ Bemerkung

- Definition 4.2 (i)-Definition 4.2 (iv) definieren bereits die Galoisverbindung.
- Definition 4.2 (v) Definition 4.2 (x) sind Folgerungen aus Definition 4.2 (i)-Definition 4.2 (iv)

► Erinnerung (Hüllenoperator)

content...

Definition 4.3

Eine Relation der Form

$$(a_1, \dots, a_n)^G = \{(a_1, \dots, a_n)^g \mid g \in G\}$$

heißt <u>n-Bahn</u> (n-Orbit) von $G \leq S_M$.

Notation:

$$n - \operatorname{Orb}(G, M) = \text{Menge der } n\text{-Bahnen}$$

= $\{\underline{a}^G \mid \underline{a} \in M^n\}$

▶ Bemerkung

- 1. $\Phi \in n \operatorname{Orb}(G, M) \Leftrightarrow \Phi \in 1 \operatorname{Orb}(G^{[n]}, M^n)$
- 2. $\Phi \in \text{Inv}(G, M) \Leftrightarrow \Phi$ invariante Menge von $(G^{[n]}, M^n)$ (vergleiche Punkt 1)

Satz 4.4

Sei $G \leq S_M$.

(a) Jede n-Bahn ist eine invariante Relation:

$$n - \operatorname{Orb}(G, M) \subseteq n - \operatorname{Inv}(G, M)$$

- (b) Jede n-stellige invariante Relation ist (disjunkte) Vereinigung von n-Bahnen
- (c) $|n \text{Inv}(G, M)| = 2^{|n \text{Orb}(G, M)|}$

proof. 1. $\underline{a}^{G \cdot G} = \underline{a}^{G}$ für beliebige $\underline{a} \in M^{n}$ (wobei \underline{a}^{G} n-Bahn ist)

2. folgt aus Lemma 1.16 (d) (satz 4.4 (b) für n-Bahnen) und Bemerkung zu Definition 4.3

Folgerung aus satz 1.18.

Lemma 4.5

Für $\Phi \in n - \text{Orb}(G, M)$ und $\underline{a} = (a_1, \dots, a_n) \in \Phi$, gilt:

$$|\Phi| = [G \colon G_{a_1,\dots,a_n}] = \frac{|G|}{|(a_1,\dots,a_n)|}.$$

 $(G_{a_1,...,a_n}$ ist Stabilisator und $\mathcal{Q} = G^{[n]}$, letzteres gilt nach Beispiel 2.8)

proof.

$$\begin{split} \Phi &= (a_1, \dots, a_n)^G =: \underline{a}^{\tilde{G}} \\ \tilde{G}_{\underline{a}} &= G_{a_1 \dots a_n} \text{für Wirkung } (\tilde{G}, M^n) \\ &\xrightarrow{\underline{satz} \ 1.18} \left| \tilde{G} \right| = |G| = \left| \tilde{G}_{\underline{a}} \right| \cdot \left| \underline{a}^{\tilde{G}} \right| \end{split}$$

Galoisverbindung Aut – Inv (vergleiche??)

- Was sind die Galoishüllen? (d.h. Aut Q bzw. Inv G?)
- Probleme:
 - Welche (Permutations)Gruppen sind Automorphismengruppen von geeigneten invarianten Relation?
 - Welche Relationsmengen sind die invarianten Relationen für eine geeignete Gruppe $G \leq S_M$?
- Setze von Maire Krasner (1912-1985) (hier nur für endliche Grundmengen M)

Vorbemerkung:

Satz 4.6

Sei $\mathcal{Q} \subseteq R_M$. Dann ist $\operatorname{Aut}_M \mathcal{Q}$ eine (Permutations)Gruppe ($\leq S_M$).

proof. SeSt!

Theorem 4.7 (1. Satz von Krasner)

Sei $M = \{a_1, \dots, a_m\}$ endlich!

(i) Jede Permutationsgruppe (G, M) ist Automorphismengruppe einer geeigneten Menge von Relationen. Insbesondere gilt:

 $G = \operatorname{Aut} \operatorname{Inv} G$

= Aut Orb G Orb alle n-Bahn, $n \in \{1, 2, 3, \ldots\}$

 $= \operatorname{Aut} m - \operatorname{Orb} G$

 $= \operatorname{Aut} \underline{a}G \quad (\underline{a} := (a_1, \dots, a_m))$

(Es reicht eine einzige m-stellige Relation)

(ii) Für beliebige Teilmenge $G \subseteq S_M$ gilt:

$$\langle G \rangle = \operatorname{Aut} \operatorname{Inv} G$$

 $(\langle G \rangle$ interne Beschreibung der von Gerzeugten Untergruppe, Aut InvGexterne Beschreibung der von Gerzeugten Untergruppe (als Galoishülle))

Definition 4.8

1. zu Theorem 4.7 (i) Wir zeigen zunächst

$$\operatorname{Aut}\Phi\subseteq G$$

für die von
$$\underline{a} = (a_1, \dots, a_m)$$
 erzeugte m -Bahn $\Phi = aG$. Sei $f \in \text{Aut } \Phi \Rightarrow \underbrace{(a_1, \dots, a_m)}_{\in \Phi} = \underline{a}\underline{G}$,

also $\exists g \in G : (a_1, \dots, a_m)^f = (a_1, \dots, a_m)^g \in \underline{\underline{a}}^{\underline{G}}$, d.h. $f = g \in G$, also Aut $\Phi \subseteq G$. Die angegebenen Gleichungen folgen nun unmittelbar:

$$G \overset{Definition}{\subseteq} \overset{4.2 \text{ (iii)}}{\text{Aut Inv }} G \overset{Definition}{\subseteq} \overset{4.2 \text{ (ii)}}{\subseteq} \text{Aut Orb } G$$

$$\text{Aut } m - \text{Orb } G \subseteq \text{Aut} \{\Phi\} \subseteq G.$$

2. zu Theorem 4.7 (ii)

$$G \subseteq \operatorname{Aut} \operatorname{Inv} G \quad \operatorname{Definition} \ 4.2 \ (iii)$$

$$\Rightarrow \langle G \rangle \subseteq \langle \operatorname{Aut} \operatorname{Inv} G \rangle \stackrel{\operatorname{satz}}{=} \stackrel{4.6}{=} \operatorname{Aut} \operatorname{Inv} G \subseteq \operatorname{Aut} \operatorname{Inv} \langle G \rangle \stackrel{\operatorname{Theorem}}{=} \stackrel{4.7}{=} \stackrel{(i)}{\langle} G \rangle.$$

▶ Bemerkung 4.9 (Operationen auf Relationen)

Jede Formel $\varphi(M, \ldots, R_q, a_1, \ldots, x_n)$ des Prädikantenkalküls 1. Stufe $(\exists, \forall, \vee, \wedge, \neg, =)$ und Relationssymbole (Prädikate) R_1, \ldots, R_q (R_i sind *i*-stellig, $i = 1, \ldots, q$) und freie Variablen x_1, \ldots, x_n definiert eine *q*-stellige Operation

$$Fq: \mathcal{P}(M^{r_i}) \times \dots \mathcal{P}(M^{r_i}) \to \mathcal{P}(M^n)$$

(genau er logische Operation), die q vielen Relationen $\Phi_1 \subseteq M^{r_1}, \ldots, \Phi_g \subseteq M^{r_q}$ eine n-stellige Relation $F_{\varphi}(\Phi_1, \ldots, \Phi_q)$ zuordnet:

$$F_{\varphi}(\Phi_1,\ldots,\Phi_q):=\{(a_1,\ldots,a_q)\in M^n\mid\models \varphi(\Phi_1,\ldots,\Phi_q,a_1,\ldots,a_n)\}$$

(wobei \models "es gilt" heisst.)

■ Beispiel 4.10 (logische Operationen)

(a)
$$\varphi(R_1, R_2, x, y) :\equiv \exists z : R_1(x, y) \vee R_2(z, y)$$

$$F_{\omega}(\Phi_1, \Phi_2) = \{(x, y) \in M^2 \mid \exists z \colon \Phi_1(x, z) \lor \Phi_2(z, y)\} = \varphi_1 \circ \Phi_2$$
 Relationenprodukt

(b)

$$\varphi_{12}(R_1, R_2, x, y) :\equiv R_1(x, y) \vee \bigwedge R_2(x, y)$$
$$F_{\varphi_1, \varphi_2}(\Phi_1, \Phi_2) = \Phi_1 \cap \bigcup \Phi_2$$

(c)
$$\varphi(R_1, x_1, ..., x_n) := \neg R_1(x_1, ..., x_n)$$

$$F_{\varphi}(\Phi_1) = \neg \Phi_1 \quad (= M^n \setminus \Phi \text{ Komplement})$$

(d) $\varphi(x_1,\ldots,x_4)\vee x_1=x_2\vee x_3=x_4$ (keine Prädikate für q=0) \Rightarrow konstante Operation,

$$F_{\varphi} = \{(a_1, a_2, a_3, a_4) \in M^4 \mid a_1 = a_2 \lor a_3 = a_4 \subseteq M^4\}$$

(e)
$$\varphi(x_1, x_2) := x_1 = x_2 \Rightarrow \text{Konstante}$$

$$F_{\varphi} = \{(a_1, a_2) \in M^2 \mid a_2 = a_1\} = \Delta_M$$
 Gleichheitsrelation

(f)
$$\varphi(R_1, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \exists x_i : R_1(x_1, \dots, x_i, \dots, x_n)$$

$$\begin{split} F_{\varphi}(\Phi_1) &= \left\{ (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n) \in M^{n-1} \mid \exists a_i \colon (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n) \in \Phi_1 \right\} \\ &=: \pi_{n \setminus \{i\}}(\Phi_1) \text{ Projektion von } \Phi_1 \text{ auf die } (\underline{n} \setminus \{i\}) \text{-ten Koordinaten.} \end{split}$$

Streichen der *i*-ten Zeile (Bei Darstellung von Relationen durch "Matrix", Elemente (*n*-Tupel) als Spalten)

Definition 4.11 (Krasner-Algebra)

Für $Q \subseteq R_M$ sei

$$[\mathcal{Q}] := \{ F_{\varphi}(\Phi_1, \dots, \Phi_q) \mid \Phi_1, \dots, \Phi_q \in \mathcal{Q}, \varphi(R_1, \dots, R_q, x_1, \dots, x_n) \}$$

formal wie in Bemerkung 4.9 mit $q \in \{0,1,2,\ldots\}, \, n \in \{1,2,\ldots\}$

Index

<i>n</i> -Bahn, 21	Permutationsdarstellung, 10 Permutationsgruppe, 5
Bahn, 6	T office with the state of the
bewahrt, 20	rechtsreguläre Darstellung, 11
Erzeugendensystem, 13	Signum, 18
	SIMS, 13
Galoisverbindung, 20	SIMS-Basis, 14
gerade, 18	SIMS-Kette, 14
Graph, 4	Stabilisator, 6
Gruppenwirkung, 10	
	transitiv, 6
invariant, 20	Transversale, 7, 14
invariante Menge, 6	true, 10
Inversion, 18	
	ungerade Permutation, 18
konjugiert, 9	
	verkürtzte Zyklendarstellung, 4
logische Operation, 23	
Multipllikation, 4	Zyklendarstellung einer Permutation f , zyklische Permutation, 4
Permutation, 3	ähnlich, 9