Quiz 9

Chemistry 3BB3; Winter 2004

- 1. Write down Fermi's golden rule for dipole transitions:
- 2. The sinc function is defined as

$$\operatorname{sinc}(x) =$$

- 3. In general, what is the relationship between the frequency of absorbed radiation and the difference in energy between the initial and final states?
- 4. Let i and f denote two different electronic states of a diatomic molecule. Let R_i and R_f denote the bond lengths of state i and state f . Let k_i and k_f denote the force constants associated with state i and state f. Transitions between the ground vibrational state, $\nu_i=0$, of state i and the ground vibration state, $\nu_{\scriptscriptstyle f}=0$ of state f will be most likely to occur when

(a)
$$R_i < R_f$$
; $k_i < k_f$

(d)
$$R_i \approx R_f$$
; $k_i < k_f$

(g)
$$R_i > R_t$$
; $k_i < k_j$

(b)
$$R_i < R_f$$
; $k_i \approx k_f$

$$\begin{array}{ll} \text{(d)} \quad R_i \approx R_f; \, k_i < k_f \\ \text{(e)} \quad R_i \approx R_f; \, k_i \approx k_f \end{array} \qquad \qquad \begin{array}{ll} \text{(g)} \quad R_i > R_f; \, k_i < k_f \\ \text{(h)} \quad R_i > R_f; \, k_i \approx k_f \end{array}$$

(h)
$$R_i > R_f$$
; $k_i \approx k_j$

(c)
$$R_i < R_f; k_i > k_f$$

is an integer.

$$\text{(f)} \quad R_i \approx R_f; \, k_i > k_f$$

$$(i) \quad R_i > R_f; \, k_i > k_f$$

5,6. For each of the following statements, indicate whether the result follows from the weak-field approximation (W), long-time approximation (T), Long-Wavelength approximation (L), or the Condon approximation (C). (Select all that apply).

Perturbation theory can be used to describe the interaction of radiation with a molecule. Nonlinear optical effects are not very important. _____ Vibronic coupling is not very important. Electric dipole transitions are much more intense that electric quadrupole transitions. _____ In the absence of broadening, the absorption spectrum of a molecule is a collection of deltafunction peaks. Light can be absorbed not only at the usual excitation frequency, ω_{it} , but also at $\frac{1}{n}\omega_{it}$, where n Name:

7-10. For each of the following transitions, say whether the transition is dipole forbidden or allowed. Extra points if you say what sort of transition <i>would</i> be allowed (when it is dipole forbidden). (If the transition is formally dipole allowed but quite weak, you might denote this also.)	
The 3P to 1S transition in the Silicon atom.	
3S to 3S transitions.	
Transitions from the $1s^12p^1\ (^3P)$ state of Helium to the $1s^13p^1\ (^3P)$ state of Helium.	
Transitions from the $1s^12p^1\ (^3P)$ state of Helium to the $2s^13p^1\ (^3P)$ state of Helium.	
Electronic excitation from a σ_g (bonding) to a π_g (antibonding) orbital.	
Electronic excitation from a σ (bonding) to a π (antibonding) orbital in a heteronuclear diatomic.	
Electronic excitation from a π_u^+ to a π_u^- orbital.	
Electronic excitation from a π_u^+ to a δ_g^- orbital.	

Name:

Quiz 9 Key

Chemistry 3BB3; Winter 2004

1. Write down Fermi's golden rule for dipole transitions:

$$W_{\scriptscriptstyle fi} = rac{2\pi V^2 g ig(\hbar \omega_{\scriptscriptstyle fi}ig)}{\hbar} ig|ig\langle\Psi_{\scriptscriptstyle f} \, |\hat{\mu}|\Psi_{\scriptscriptstyle i}ig
angleig|^2$$

(Here $\hat{\mu}$ is the dipole moment operator).

2. The sinc function is defined as

$$\operatorname{sinc}(x) = \frac{\sin(x)}{x}$$

3. In general, what is the relationship between the frequency of absorbed radiation and the difference in energy between the initial and final states?

$$\nu_{\scriptscriptstyle fi} = \frac{E_{\scriptscriptstyle f} - E_{\scriptscriptstyle i}}{h}$$

4. Let i and f denote two different electronic states of a diatomic molecule. Let R_i and R_f denote the bond lengths of state i and state f. Let k_i and k_f denote the force constants associated with state i and state f. Transitions between the ground vibrational state, $\nu_i=0$, of state i and the ground vibration state, $\nu_f=0$ of state f will be most likely to occur when

(a)
$$R_i < R_f$$
; $k_i < k_f$

(d)
$$R_i \approx R_f$$
; $k_i < k_f$

(g)
$$R_i > R_f$$
; $k_i < k_f$

(b)
$$R_i < R_f$$
; $k_i \approx k_f$

(e)
$$R_i \approx R_f$$
; $k_i \approx k_f$

(h)
$$R_i > R_f$$
; $k_i \approx k_f$

(c)
$$R_i < R_f$$
; $k_i > k_f$

(f)
$$R_i pprox R_f; k_i > k_f$$

(i)
$$R_i > R_f$$
; $k_i > k_f$

5,6. For each of the following statements, indicate whether the result follows from the weak-field approximation (W), long-time approximation (T), Long-Wavelength approximation (L), or the Condon approximation (C). (Select all that apply).

____W____ Perturbation theory can be used to describe the interaction of radiation with a molecule.
____W____ Nonlinear optical effects are not very important.
____C____ Vibronic coupling is not very important.
____L___ Electric dipole transitions are much more intense that electric quadrupole transitions.
____T___ In the absence of broadening, the absorption spectrum of a molecule is a collection of delta-function peaks.
__(none; in the weak-field approximation these transitions are forbidden)___ Light can be absorbed not only at

the usual excitation frequency, ω_{if} , but also at $\frac{1}{n}\omega_{if}$, where *n* is an integer.

7-10. For each of the following transitions, say whether the transition is dipole forbidden or allowed. Extra points if you say what sort of transition *would* be allowed (when it is dipole forbidden). (If the transition is formally dipole allowed but quite weak, you might denote this also.)

_forbidden	The ${}^{3}P$ to ${}^{1}S$ transition in the Silicon atom.
_forbidden	3S to 3S transitions.
_forbidden	Transitions from the $1s^12p^1\ (^3P)$ state of Helium to the $1s^13p^1\ (^3P)$ state of Helium
_forbidden Helium.	Transitions from the $1s^12p^1\ (^3P)$ state of Helium to the $2s^13p^1\ (^3P)$ state of
forbidden	Electronic excitation from a $\sigma_{\scriptscriptstyle g}$ (bonding) to a $\pi_{\scriptscriptstyle g}$ (antibonding) orbital.
allowed heteronuclea	Electronic excitation from a σ (bonding) to a π (antibonding) orbital in a ar diatomic.
forbidden	Electronic excitation from a π_u^+ to a π_u^- orbital.
allowed	Electronic excitation from a π_u^+ to a δ_g^- orbital.