Representation Theory

Ikhan Choi

July 22, 2022

Contents

I	Finite group representations	3
1	Character theory 1.1 Irreducible representations 1.2 Group algebra 1.3 Characters	2
2	Classification of representations 2.1 Symmetric groups	6
3	Brauer theory	7
II	Lie algebras	8
4	Semisimple Lie algebras	ç
5	Root systems	10
6	Representations of Lie algebras6.1 Representations of $\mathfrak{sl}(2,\mathbb{C})$ 6.2 Highest weight theorem6.3 Multiplicity formulas	11 11 11 11
II]	I Lie groups	12
7	Lie correspondence 7.1 Baker-Campbell-Hausdorff formula	13 13 13
8	Compact Lie groups 8.1 Special orthogonal groups	14 14 14 14
9	Representations of Lie groups 9.1 Peter-Weyl theorem	15 15 15

IV	Hopf algebras	16
10		17
11 (Quantum groups	18

Part I Finite group representations

Character theory

1.1 Irreducible representations

- 1.1 (Definition of group representations).
- 1.2 (Intertwining maps).
- 1.3 (Subrepresentations). We say invariant or stable
- 1.4 (Irreducible representations). indecomposable and irreducible
- **1.5** (Maschke's theorem). Let G be a finite group and k be a field. Suppose the characteristic of k does not divide |G|. Let V be a finite-dimensional representation of G over k.
 - (a) Every invariant subspace W of V has a complement W' in V that is also invariant.
 - (b) *V* is isomorphic to the direct sum of irreducible representations of *G* over *k*.
 - (c) If $k = \mathbb{R}$ or \mathbb{C} , then V admits an inner product such that $W \perp W'$ and $\rho_V(g)$ is unitary for all $g \in G$.
- **1.6** (Schur's lemma). Let G be a group and k be a field. Let V and W be irreducible representations of G over k. Let $\psi: V \to W$ be an intertwining map.
 - (a) If $V \not\cong W$, then $\psi = 0$.
 - (b) If $V \cong W$, then ψ is an isomorphism.
 - (c) If k is algebraically closed and $\dim V < \infty$, then every intertwining map $\psi : V \to V$ is a homothety.

1.2 Group algebra

- **1.7** (Modules and representations). ring <-> group module <-> representation finitely generated <-> finite dimensional
- 1.8 (Wedderburn's theorem). central idempotents dimension computation
- **1.9** (Group algebra). regular representation k[G]-module and G-representation correspondence
 - (a) $\mathbb{C}[G]$ is the direct sum of all irreducible representations.
 - (b) $|G| = \sum_{[V] \in \hat{G}} (\dim V)^2$.
- **1.10.** The number of irreducible representations and the number of conjugacy classes double counting on $Z(\mathbb{C}[G])$.

1.3 Characters

- 1.11 (Space of class functions). Ring and inner product structure on the space of class functions.
 - (a) $\dim \hom_G(V, W) = \langle \chi_V, \chi_W \rangle$.
 - (b) Irreducible characters form an orthonormal basis of the space of class functions.
- **1.12** (Characters classify representations). Let G be a finite group and let Rep(G) be the category of finite-dimensional representations of G over \mathbb{C} .

$$Tr : \mathbf{Rep}(G) \to \{\text{finite sum of irreducible characters}\}\$$

surjectivity: trivial injectivity: Suppose two characters are equal. Maschke -> all characters are sum of irreducible characters Schur -> orthogonality, so the coefficients are all equal irreducible-factor-wisely construct an isomorphism.

1.13 (Character table). computation of matrix elements by character table abelian group, 1dim rep lifting

the dual inner product: conjugacy check relation to normal subgroups center of rep algebraic integer dim of irrep divides group order burnside pq theorem

Classification of representations

2.1 Symmetric groups

young tableux

2.2 Linear groups over finite fields

GL2 and SL2 over finite fields

2.3 Induced representations

induction and restriction of reps (from and to subgroup) frobenius reciprocity, mackey theory tensoring, complex, real symmetric, exterior

Brauer theory

Part II Lie algebras

Semisimple Lie algebras

Solvability and nilpotency Engel's theorem Killing forms Casimir element Weyl's theorem Cartan subalgebra uniqueness? (conjugacy theorem)

Root systems

root space decomposition integrality Weyl group Coxeter graph Dynkin diagram Real forms Isomorphism theorem Existence theorem Universal enveloping algebra PBW theorem Verma module

Representations of Lie algebras

6.1 Representations of $\mathfrak{sl}(2,\mathbb{C})$

6.1 (Pauli matrices). Pauli matrices are

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (a) $\{\sigma_1, \sigma_2, \sigma_3\}$ is a basis of complex Lie algebra $\mathfrak{sl}(2, \mathbb{C})$, and $\{i\sigma_1, i\sigma_2, i\sigma_3\}$ is a basis of real Lie algebra $\mathfrak{so}(3)$.
- (b) For a unit vector $n = (n_1, n_2, n_3) \in \mathbb{R}^3$, $n_1 \sigma_1 + n_2 \sigma_2 + n_3 \sigma_3$ has eigenvalues ± 1 .

6.2 Highest weight theorem

6.3 Multiplicity formulas

Exercises

6.2 (Triplets and quadraplets). Let (π_2, V_2) be the irreducible representation of $\mathfrak{sl}(2, \mathbb{C})$ of degree two. Consider $V_2 \otimes V_2$. Cartan element S_z . $V_2^{\otimes 3}$.

6.3 (Casimir element). Casimir element decomposes a representation into irreducible representations.

Part III

Lie groups

Lie correspondence

7.1 Baker-Campbell-Hausdorff formula

Lie's three theorems

7.2 Fundamental groups of Lie groups

Compact Lie groups

- 8.1 Special orthogonal groups
- 8.2 Special unitary groups
- 8.3 Symplectic groups

Exercises

```
8.1 (Lorentz group). SL(2,\mathbb{C}) \rightarrow SO^+(1,3)
```

(a) O(1,3) has four components and $SO^+(1,3)$ is the identity component. Orthochronous $O^+(1,3)$, proper SO(1,3).

Representations of Lie groups

- 9.1 Peter-Weyl theorem
- 9.2 Spin representations

Clifford algebra

Part IV Hopf algebras

Quantum groups