Homomorphism of Groups

Let G_1 , G_1 be groups. A function $f: G_1 \rightarrow G_1$ is said to be a group homomorphism if $f(g_1g_2) = f(g_1) f(g_2)$ $\forall g_1, g_2 \in G_1$

A group homomorphism is said to be an isomorphism if f is a bijection.

• If $f: G \rightarrow G'$ is an isomorphism, then so is f^{-1} .

(inef) Need to show that f'' is a group homomorphism So, $f''(g_1,g_2) = f''(g_1) f''(g_2)$

Since f is injective, there exist unique a_1, a_2 in G such that $f(a_1) = g_1$, $f(a_2) = g_2$

$$f^{-1}(g_1, g_2) = f^{-1}(f(a_1) f(a_2))$$

$$f^{-1}(g_1, g_2) = f^{-1}(f(a_1, a_2)) = (a_1, a_2)$$

$$f^{-1}(g_1, g_2) = f^{-1}(g_1) f^{-1}(g_2)$$

Thus, a map $f:G_1 \longrightarrow G_1'$ is a group isomorphism if f is bijective and both f,f^{-1} are group homomorphisms.

Examples

(i) Any cyclic group of order n is isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

Let $G_1 = \langle x \rangle$ where $|G_1| = \operatorname{ord}(x) = n$.

Define $f: G_1 \to \mathbb{Z}/n\mathbb{Z}$. $f(x^{m_1} x^{m_2}) = f(x^{m_1+m_2})$.

 $= \overline{m_1} + \overline{m_2} = f(x^{m_1}) + f(x^{m_2})$

clearly f is surjective and one-one.

Thus, f is a bijection and hence a group isomorphism.

(ii) $G = \{G \mid G \text{ is a group}\}$ Define a relation \cong on G $G \cong G' \iff \text{there is an isomorphism } f: G \to G'$ Reflexive :- Id: $G \hookrightarrow G'$

Symmetric : - Bijection

To prove transitive, we use the following lemma

Lemma If $f: G_1 \longrightarrow G_2$ and $g: G_2 \longrightarrow G$ are group homomorphisms, then so is gof

Let $x,y \in G_1$ g(f(xy)) = g(f(x) f(y)) $= g \circ f(x) g \circ f(y)$ $g \circ f \text{ is a homorphism}$

Transitive: Follows from Lemma

Definition

Let G be a group and $f:G\to G$ be a group isomorphism. Then f is called an automorphism of the group G

Aut (G1) = { f: G1 -> G1 | f is an automorphism}

Lemma

Aut (G1) is a group under composition of maps

We prove that Aut (G1) is a subgroup of Bij (G1, G1)

- · Aut (G1) # \$ as id \in Aut(G1)
- . f,g & Aut(G1) =) g of & Aut(G1)
- . ge Aut (G) => g-1 e Aut (G)

Examples

(i)
$$f: IR \longrightarrow IR_{>0}$$
 $(IR, +) \rightarrow (IR_{>0}, \cdot)$
 $\times \longmapsto e^{\times}$ is an isomorphism

(ii) Let G be a group and
$$a \in G$$

Define $\forall a : G \longrightarrow G$
 $g \longmapsto a g a^{-1}$
 $\forall a (91 92) = a 9192 a^{-1}$
 $= (a 91 a^{-1}) (a 92 a^{-1})$
 $= \forall a (91) \forall a (92)$

one-one:
$$\forall a (91) = \forall a (92)$$

=> $a g_1 a^{-1} = a g_2 a^{-1}$
=> $a^{-1} a g_1 a^{-1} a = a^{-1} a g_2 a^{-1} a$
=> $g_1 = g_2$

Onto:

For any
$$g \in G_1$$
, $\delta_a(\bar{a}^{\prime}ga^{\prime\prime}) = g$

=) δ_a is surjective

Thus da is an automorphism of Gr.

It is also called an inner automorphism of Gr.

Inn (G1) = { 8a: G1 -> G1}

(Exercise!)

(iii) Let G be a group and a ϵ G. We define ta: G \longrightarrow G (called left multiplication by a) $g \mapsto ag$

ta is a bijection (Trivial!)

Let G be a group we define & : G -> Sa claim: & is a homomorphism Ø(ab) = Ø(a) Ø(b) tab(x) = tabtb(x) abx = ta(bx) = abxclaim: & is injective $\phi(a) = \phi(b)$ e) ta = tb =) a(e) = >(e) =) a = b Injective map :- Gr C> S C. Lemma If \$: G1 -> G2 is a group homomorphism, then Ø(GI) < GI2 Proof: -Ø(e) & G12 where e is identity of G1, Lemma: If \$: G1 -> G2 is a group homomorphism Then (i) $\emptyset(e_{G_1}) = e_{G_2}$ (i) $\phi(e_{\alpha_1}) = \phi(e_{\alpha_1}, e_{\alpha_1}) = \phi(e_{\alpha_1}) \phi(e_{\alpha_1})$ =) \$ (en) = enz (ii) gg-1 = ec, \$ (9) \$ (9-1) = PG2 $\phi(g^{-1}) = (\phi(g))^{-1}$

Now, we show inverse exists in \$ (G1) because

 $(x(g))^{-1} = x(g^{-1})$ and $g^{-1} \in G_1$

Cayley's Theorem

Every group G is isomorphic to a subgroup of S_{G} .

In particular, if |G| = n then $G \cong a$ subgroup of S_n

Definition

Let β : $G \rightarrow G'$ be a group homomorphism. We define Kernel of β , denoted by ker β as $\ker(\beta) = \{x \in G \mid \beta(x) = \mathbf{1}_{G'}\}$

Proposition

(i) Ker (\$) < G

Ker (ø) ≠ Ø ~ null set

Since \emptyset is a homomorphism $\emptyset(xy) = \emptyset(x) \emptyset(y)$ $= I_{G'}$

If $z \in \ker(\emptyset)$, then $\emptyset(x^{-1}) = (\emptyset(x))^{-1}$ $= 1_{G^{-1}}^{-1} = 1_{G^{-1}}$

Ø is injective => ker(Ø) = {1 m'}

Let us assume that ker(\$) = \$193

 $\phi(x) = \phi(y)$

Øc22 (Øcy)) = 1 G1

Ø(a) Ø(y-1) = 1 91

& cay-1) = 1a1

=) 2y" & ker(\$)

But xer(\$) = {16}

=) xy=1 = 1a =) [x=y]