

The Opportunity

Wavelength Router, also referred to as Wavelength Routing Element™ or WRE

- DWDM optical transport networks require wavelength-selective switching functions to provide network management for wavelength-based service provisioning, bandwidth management, optical-layer protection and restoration.
 - OADM, WSXC and protection switches
- No integrated all-optical solutions exist yet
 - We can be the first to offer integrated all-optical dynamic wavelength routing

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 1

Everybody Else's Solution

1. De-multiplex the DWDM stream into individual wavelengths on separate fibers
2. Switch the optical fibers electronically or optically (OXC, FXC)
3. Re-multiplex all the fibers into DWDM.

Complex and Expensive!

OADM Conventional Solution

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 2

Cost = \$3,000 per λ

COPY

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 3

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 4

WSXC Conventional Solution

Cost = \$3,000-\$5,000 per λ per fiber
Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 5

An Alternative Approach

- Network Photonics has a novel solution:

Wavelength Routing Element™

All-optical wavelength routing component which enables networking functions by directly switching wavelengths instead of switching fibers.

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 6

Wavelength Routing Element™

Any wavelength to any output

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 7

Wavelength Routing Element™

it works in both directions

Wavelength Routing Element™

Any wavelength from any input

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 8

COPY

A Building Block

- The WRE is a building block for many optical layer applications:
 - Optical Add-Drop Multiplexer
 - Wavelength-Selective Cross-connect
 - Wavelength-Selective Protection Switching
 - Wavelength Distribution Router

WRE Configurations: Optical Add/Drop Multiplexer (OADM)

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 9

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 10

Cost = \$700 per λ

WRE Configurations: Wavelength-Selective Cross-Connect

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 11

WRE Configurations: BLSR Protection Switching

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 12

COPY

WRE Technology Overview

- 2 parts working in combination:
 - Dispersion-Free Spectrometer (DFS)
 - Micro-optic Routing Array (MRA)
- DFS performs spatial conversion of multiplexed wavelengths
- MRA performs switching/routing functions

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 13

MRA Overview

- Implemented as an array of micro-optic retroreflectors
- Performs either dynamic or static routing
 - dynamic design uses electronic actuation
 - static design requires no power
- Non-blocking and latching

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 15

DFS Overview

- DFS is the heart of the WRE
 - a single design for dynamic and passive WREs
- Requires only one optical element both for wavelength separation and recombination
- Based on free-space diffractive optics
 - unique light path eliminates chromatic dispersion
- no electronics or moving parts

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 14

DFS Light Path

(Not To Scale)

Appendix to Application of Robert T. Weverka et al. for Wavelength Router

COPY
Prepared for

Dynamic MRA Implementation

- MEMS tilting micromirror array
 - proprietary design
 - one switching mirror per λ fabricated on a 5 mm x 50 mm silicon substrate
 - requires only $\pm 10^\circ$ mirror tilt
 - ◆ can use Texas Instruments DMD technology
 - ◆ CMOS semiconductor fab process

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 17

WRE Switching

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 19

MEMS Tilting MicroMirror Design

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 18

Directly Switching Wavelengths

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 19

COPY

Trapezoidal Passbands Superior Optical Performance

- 50 GHz channel spacing
- uniform gain characteristic across all channels
- low insertion loss - 3dB
- low crosstalk and high SNR - 40dB

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 21

Dynamic WRE

- Dynamically-reconfigurable routing
- 250 μ sec switching time
- Latching
 - retains configuration with power off
- Scales to higher or lower DWDM channel densities

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 22

Passive WRE

- Static MRA is fabricated on a silicon chip using gray-scale photolithography
 - no electronics or moving parts
 - proprietary design for 3-D retroreflector array
 - low-cost volume-fabrication process
 - same DFS as DWRE

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 23

WRE Value Proposition

- Integrated subsystem functionality
 - simpler system design
 - ◆ no need to de-mux & re-mux
 - ◆ far fewer switching elements
 - ◆ far fewer fiber connections
- Lower system cost
 - less than _____ the cost of alternatives
- Superior optical performance
- Higher system reliability

COPY
Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 24

Network Applications: Network Interconnect

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 25

Network Applications: 2-f BLSR Restoration

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 27

Network Applications: Undersea Passive OADM

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 26

Network Applications: FTTx Distribution Router

Appendix to Application of Robert T. Weverka et al. for Wavelength Router — Page 26

COPY

Document comparison done by DeltaView on Monday, December 08, 2003 2:32:12
PM

Input:	
Document 1	file:///H:/PTS/19930-1.DOC
Document 2	file:///H:/PTS/19930-1-3 Sub Spec for Div.DOC
Rendering set	Standard

Legend:	
<u>Insertion</u>	
<u>Deletion</u>	
<u>Moved from</u>	
<u>Moved to</u>	
<u>Style change</u>	
<u>Format change</u>	
<u>Moved deletion</u>	
<u>Inserted cell</u>	
<u>Deleted cell</u>	
<u>Moved cell</u>	
<u>Split/Merged cell</u>	
<u>Padding cell</u>	

Statistics:	
	Count
Insertions	140
Deletions	43
Moved from	1
Moved to	1
Style change	0
Format changed	0
Total changes	185