

사료팜플렛(설명서) (EP)

㈜아쿠아넷

주소: 경상남도 통영시 산양읍 궁항길 39 이메일: aquatop68@hanmail.net

<u>홈페이지: http://www.aquasm.com</u>

전화: 055-641-0430 팩스: 055-643-5301

독점대리판매 계약

알러아쿠아 - ㈜아쿠아넷 (2004년)

ALLER-AQUA http://www.aller-aqua.dk

㈜ 아쿠아넷 http://www.aquasm.com

덴마크 공장

중국 공장

사료 창고

공장

지적재산권

ALLER- AQUA는

- •Aller Aqua의 어류사료 가공, 연구 및 개발 경험은 1960년 부터 시작 되었습니다.
- •Aller Aqua의 사료는 전 세계적으로 가장 효율적인 사료라는 인식을 받고 있습니다.
- •Aller Aqua 는 덴마크 . 폴란드 . 독일. 이집트. 중국의 현대화 된 공장에서 사료를 생산 합니다.
- •Aller Aqua 는 전 유럽 및 아시아의 50개 이상의 지역에 판매 되고 있습니다.
- •Aller Aqua는 어분의 구매에 있어서 가장 신선하고 싼값에 원료를 구매하고 있으며 이를 바탕으로 질 좋은 사료를 생산하고 있습니다.
- •Aller Aqua는 사료만 판매하는 것이 아니라 어종에 필요한 여러 문제들을 해결하기 위해 노력하고 있습니다.
- •ALLER- AQUA 는 수산업을 공통으로 하는 동반자로서 여러분의 편에서 여러분의 고민을 함께하는 한국의 수산회사라는 마음으로 여러분을 대하고 싶습니다.

우리 수산업은 세계화의 물결 속에 제자리를 찾지 못하고 수년동안 어려운 현실 속에 긴 터널을 지나고 있습니다.

이런 현실에서 과연 우리의 등대는 어디입니까?

새로운 정보화의 물결과 함께 좁은 국토의 한계를 극복하고 한국의 수산업도 세계화의 물결 속으로 나아가아 할 것입니다.

우리의 역량을 한곳에 집중하고 다시 세계 속에서 펼칠 수 있도록 우리의 노력을 모읍시다.

그리고 나아갑시다. 다시 태어나 강하고 성숙된 모습으로 말입니다. 젊은 패기와 힘으로 아쿠아넷이 한번 해 보겠습니다.

지켜봐주시고 격려해주시고 질책해 주시면 스스로 자각하고 변화하여 여러분과 함께 하겠습니다.

감사합니다.

덴마크 양어사료 규정

(1995년 수정)

- 사료의 총 에너지 최소요구량은 5.8Mcal/kg (건중량기준).
- 총 에너지 함량의 80%는 소화될 수 있어야 한다.
- 질소 함량의 최대 요구량은 사료 건조 중량의 9%이다.
- 인 함량의 최대 요구량은 사료 건조중량의 1%이다.

사료효율과 성장관계

단백질 48%, 인 0.9% 사료 기준

사료의 급이량 조절

- 환경적인 요인들이 충족되면 최대공급수준에서 최대 성장율 기대됨.
- 사료의 적절한 공급량은 수온과 어류의 크기에 의해 좌우되며 일일사료 공급율은 일일성장에 따라 증가.
- 최대 사료 공급 수준의 70~80%에서 FCR(사료계수)이 가장 낮다.

사료 공급 전략

추천 사료

ALLER AQUA FEED 어종별 추천사료

	11.2	사이즈	1.5, 2mm	3mm	4.5mm	6mm	8mm	11mm	13mm up
	시 노	사이스	2mm	3mm	4mm	5mm	6mm	7mm	8mm~11mm up
	INFA FUTURA 64/8 60/15		NOVA 51/12	51/12	NOVA(침강,부상) 51/12	NOVA(침강,부상) 51/12	NOVA(침강,부상) 51/12	NOVA(침강,부상) 51/12	NOVA(침강,부상) 51/12
넙치 	INFA 64/8	FUTURA 60/15	NOVA 51/12	TURBO(침강,부 상) 50/8	TURBO(침강,부상) 50/8	TURBO(침강,부상) 50/8	TURBO(침강,부상) 50/8	TURBO(침강,부상) 50/8	TURBO(침강,부상) 50/8
강도다리,	INFA 64/8	FUTURA 60/15	NOVA 51/12	NOVA(침강,부상) 51/12	NOVA(침강,부상) 51/12	NOVA(침강,부상) 51/12	NOVA(침강,부상) 51/12	NOVA(침강,부상) 51/12	NOVA(침강,부상) 51/12
6포커디 [,] 터봇 	INFA 64/8	FUTURA 60/15	NOVA 51/12	TURBO(침강,부 상) 50/8	TURBO(침강,부상) 50/8	TURBO(침강,부상) 50/8	TURBO(침강,부상) 50/8	TURBO(침강,부상) 50/8	TURBO(침강,부상) 50/8
	INFA 64/8	FUTURA 60/15	NOVA 51/12	NOVA 51/12	NOVA 51/12	NOVA 51/12	NOVA 51/12	NOVA 51/12	NOVA 51/12
도미 	INFA 64/8	FUTURA 60/15	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14
0 =1	INFA 64/8	FUTURA 60/15	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14
우럭	INFA 64/8	FUTURA 60/15	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14	TRIDENT 47/14
송어, 연어	INFA 64/8	FUTURA 60/15	NOVA 51/12	NOVA 51/12	SILVER(100A) 43/22	SILVER(100A) 41/23	SILVER(100A) 41/23	SILVER(100A) 41/23	SILVER(100A) 41/23
산천어	INFA 64/8	FUTURA 60/15	NOVA 51/12	NOVA 51/12	NOVA 51/12				
숭어	INFA 64/8	FUTURA 60/15	PERFORMA (부상) 48/21	PRIMO(부상) 37/12	PRIMO(부상) 37/12	PRIMO(부상) 37/12	PRIMO(부상) 37/12		

사료의 조성 에너지

ALLER AQUA FEED 조성 에너지

제품명	입자도(mm)	포장단위	조단백(%)	조지방(%)	총에너지(MJ)	소화에너지(MJ)
INFA (0.4)	0.4	6kg	64	8	19.4	18
FUTURA (0.5~1)	0.5~1.0	20kg	60	15	21.2	19.7
FUTURA (0.9~1.6)	0.9~1.6	20kg	60	15	21.2	19.7
FUTURA (1.3~2.0)	1.3~2.0	20kg	60	15	21.2	19.7
NOVA	1.5, 2mm	25kg	51	12	20.3	18
NOVA	3~8mm	25kg	51	12	20.3	18
NOVA 부상	3~8mm	15kg	51	12	20.3	18
TRIDENT	1.5, 2mm	25kg	47	14	20.7	18.7
TRIDENT	3~8mm	25kg	47	14	20.7	18.7
TURBO	1.5, 2mm	25kg	48	12		
TURBO	3~8mm	25kg	50	8		
TURBO 부상	3~8mm	15kg	50	8		
PRIMO	2~8mm	25kg	37	12	19.6	16
SILVER(100A)	3mm	25kg	45	20	22.2	18.9
SILVER	4.5mm	25kg	43	22	22,5	19.2
NOVA EX	1.5, 2mm	25kg	51	12	20.3	18
NOVA EX	3~8mm	25kg	51	12	20.3	18
NOVA EX부상	3~8mm	20kg	51	12	20.3	18
SILVER EX(100A)	6mm~이상	25kg	41	23	22.8	19.4
SILVER EX	6mm~이상	25kg	41	23	22.8	19.4
PERFORMA EX	1.5mm	25kg	48	21	22.1	20

크기별 수온별 어체중당 일일 사료량(%)

광어 급이 율표

구분	어체중(g)	3	10	20	50	100	200	300	400	500	600	700	800	1000
입자크기	mm	1.5mm	2.0mm	3.0mm	4.5mm	6.0mm	8.0mm	8.0mm	11.0mm	11.0mm	11.0mm	11.0mm	11.0mm	11.0mm
NOVA	명칭	1.5	2.0	3.0	4.5	6.0	8.0	8.0	11.0	11.0	11.0	11.0	11.0	11.0
CP,CF	%	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12
	12℃													
	13℃													
	14℃													
	15℃	3.8	2.4	1.9	1.4	0.8	0.7	0.6	0.5	0.4	0.4	0.4	0.4	0.4
	16℃	4.7	2.8	2.2	1.6	1.1	0.8	0.7	0.6	0.5	0.4	0.4	0.4	0.4
	17℃	5.6	2.8	2.4	1.7	1.1	0.9	0.8	0.7	0.5	0.4	0.4	0.4	0.4
E.P	18℃	6.6	3.8	2.8	1.9	1.2	0.9	0.8	0.8	0.6	0.5	0.4	0.4	0.4
침강	19℃	6.6	3.8	2.8	1.9	1.4	1.0	0.9	0.8	0.6	0.5	0.4	0.4	0.4
(부상)	20℃	7.5	4.7	3.3	2.2	1.5	1.1	0.9	0.8	0.6	0.5	0.5	0.4	0.4
	21℃	7.5	5.6	3.8	2.4	1.6	1.1	1.0	0.8	0.7	0.6	0.5	0.5	0.4
	22℃	8.5	6.6	4.2	2.6	1.7	1.2	1.1	0.8	0.7	0.6	0.6	0.6	0.5
	23℃	9.4	7.5	4.7	2.8	1.7	1.2	1.1	0.9	0.8	0.7	0.6	0.5	0.5
	24℃	9.4	7.5	4.7	2.8	1.7	1.3	1.2	0.9	0.8	0.7	0.6	0.5	0.5
	25℃	8.5	6.6	3.8	2.4	1.6	1.2	1.1	0.9	0.8	0.6	0.5	0.4	0.4
	26℃													

크기별 수온별 어체중당 일일 사료량(%)

우럭 급이 율표

구분	어체중(g)	1	3	10	20	30	50	100	200	300	400	500
입자크기	mm	1.3mm	1.5mm	2.0mm	3.0mm	3.0mm	4.5mm	6.0mm	6.0~8.0	8.0mm	8.0~11.0	11.0mm
NOVA	명칭	1.3	1.5	2.0	3.0	3.0	4.5	6.0	6.0~8.0	8.0	8.0~11.0	11.0
CP,CF	%	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12	51,12
	12℃	1.41	1.17	0.89	0.85	0.81	0.68	0.51	0.38	0.34	0.34	0.30
	13℃	1.61	1.33	1.01	0.98	0.93	0.76	0.55	0.47	0.38	0.38	0.34
	14℃	1.81	1.49	1.13	1.10	1.02	0.89	0.68	0.51	0.47	0.42	0.38
	15℃	2.22	1.81	1.41	1.36	1.27	1.06	0.85	0.64	0.59	0.55	0.51
	16℃	2.42	1.97	1.53	1.49	1.36	1.19	0.93	0.72	0.64	0.59	0.55
	17℃	2.58	2.18	1.69	1.66	1.53	1.32	1.06	0.81	0.72	0.68	0.59
E.P 침강	18℃	2.66	2.42	1.85	1.78	1.66	1.44	1.19	0.89	0.81	0.76	0.68
(대사열	19℃	2.58	2.22	1.73	1.70	1.61	1.36	1.10	0.85	0.81	0.76	0.68
량	20℃	2.46	2.18	1.69	1.66	1.57	1.32	1.02	0.81	0.72	0.68	0.59
0	21℃	2.42	2.10	1.61	1.57	1.49	1.23	0.98	0.81	0.72	0.68	0.59
	22℃	2.34	1.97	1.53	1.49	1.36	1.15	0.89	0.72	0.64	0.59	0.55
	23℃	2.22	1.89	1.45	1.44	1.32	1.06	0.81	0.68	0.64	0.64	0.51
	24℃	2.14	1.81	1.37	1.36	1.15	0.98	0.76	0.59	0.51	0.51	0.42
	25℃	1.89	1.69	1.29	1.27	1.10	0.89	0.64	0.55	0.38	0.38	0.34
	26℃	1.81	1.61	1.21	1.15	1.02	0.85	0.59	0.51	0.34	0.34	0.34

비만도의 중요성

사료의 급이량과 관계되며 적정한 비만도를 유지해야 건강한 어류를 질병 없이 양성할 수 있다.

- 비만도 측정을 몇일마다 하는 것이 좋은가?
 - 15일에서 1달 간격으로 치어 입식에서부터 출하까지 지속적으로 측정하여야 한다.
- 비만도 구하는 공식
 - 비만도 = W / $L^3 * 10^3$ (W: 어체중, L: 체장<꼬리지느러미를 뺀 길이>)
- 어종별 적정 비만도
 - 이 비만도는 일본의 자료를 바탕으로 작성된 것이며 우리의 현실과 차이가 있을 수 있으나 참고 자료로 이용하시기를 바라며 지금 아쿠아넷에 있는 데이터와 귀 현장의 데이터를 참고로 한국형 어종에 맞는 어류양성 표준을 만들고자 합니다.

비만도									
	저체중(Underweight)	정상(Normal)	과체중(Overweight)						
감성돔	Below 39	39~40	Above 40						
참돔	Below 24	24~26	Above 26						
돌돔	Below 25	25~26	Above 26						
볼락	Below 35	35~36	Above 36						
넙치	Below 11	11~12	Above 12						
농어	Below 17	17~18	Above 18						
자주복	Below 37	37~39	Above 39						

우럭 성장도(통영지역)

※ 아래의 성장도는 어장여건과 환경에 따라 다소 차이가 있을 수 있습니다.

일자	월말평체(g)	급이량(g)
2010년 6월	2.89	6,239
2010년 7월	6.64	26,244
2010년 8월	12.27	43,863
2010년 9월	19.24	62,718
2010년 10월	32.91	123,013
2010년 11월	51.47	170,675
2010년 12월	61.62	137,053
2011년 1월	72.00	140,088
2011년 2월	82.87	146,702
2011년 3월	96.82	188,381
2011년 4월	110.26	181,364
2011년 5월	140.38	406,719
2011년 6월	174.44	459,735
2011년 7월	207.90	455,599
2011년 8월	235.45	385,609
2011년 9월	267.93	454,747
2011년 10월	317.20	697,569
2011년 11월	363.05	664,759
2011년 12월	395.87	475,975
2012년 1월	425.66	431,896
2012년 2월	455.55	433,404
2012년 3월	477.38	316,505
급이총	량(g)	6,408,857

미수: 10,000 미 최초 어체중: 2g

★ 어장여건과 환경에 맞춰 <성장도 시뮬레이션 프로그램>을 제공해 드립니다. ★

넙치 성장도(제주지역)

※ 아래의 성장도는 어장여건과 환경에 따라 다소 차이가 있을 수 있습니다.

일자	월말평체(g)	급이량(g)				
2010년 1월	10.13	56,882				
2010년 2월	22.26	97,085				
2010년 3월	45.74	187,814				
2010년 4월	76.12	269,010				
2010년 5월	123.37	425,192				
2010년 6월	194.45	639,738				
2010년 7월	283.49	883,863				
2010년 8월	392.75	1,184,084				
2010년 9월	507.65	1,265,828				
2010년 10월	608.83	1,163,525				
2010년 11월	685.28	879,153				
2010년 12월	756.40	845,267				
급이총	급이총량(g)					

미수: 10,000 미 최초 어체중: 2g

★ 어장여건과 환경에 맞춰 넙치 <성장도 시뮬레이션 프로그램>을 제공해 드립니다.

송어 성장도(순환여과식 시스템 양어장)

※ 아래의 성장도는 어장여건과 환경에 따라 다소 차이가 있을 수 있습니다.

일자	월말평체(g)	급이량(g)
2010년 1월	6.07	13,448
2010년 2월	8.84	18,036
2010년 3월	12.80	25,720
2010년 4월	19.16	41,348
2010년 5월	31.05	77,274
2010년 6월	50.91	129,059
2010년 7월	84.84	220,601
2010년 8월	133.08	341,404
2010년 9월	178.19	405,992
2010년 10월	240.92	564,611
2010년 11월	312.23	684,723
2010년 12월	366.53	732,980
2011년 1월	420.54	729,203
2011년 2월	476.14	750,579
2011년 3월	536.40	813,580
2011년 4월	612.73	1,030,412
2011년 5월	719.28	1,438,420
2011년 6월	810.36	1,314,702
2011년 7월	902.13	1,376,552
2011년 8월	1,004.29	1,532,442
2011년 9월	1,114.16	1,648,050
2011년 10월	1,240.33	1,892,623
2011년 11월	1,376.03	2,035,403
2011년 12월	1,524.54	2,227,766
급이총	등량(g)	20,044,929

미수: 10,000 미 최초 어체중: 4g

★ 어장여건과 환경에 맞춰 송어 <성장도 시뮬레이션 프로그램>을 제공해 드립니다. ★

참돔 성장도(통영지역)

※ 아래의 성장도는 어장여건과 환경에 따라 다소 차이가 있을 수 있습니다.

	1			
일자	월말평체(g)	급이량(g)		
2011년 6월	6.99	31,920		
2011년 7월	15.82	76,335		
2011년 8월	33.66	160,591		
2011년 9월	60.02	255,687		
2011년 10월	86.07	286,588		
2011년 11월	103.27	195,681		
2011년 12월	116.92	177,571		
2012년 1월	132.39	201,059		
2012년 2월	148.71	212,098		
2012년 3월	167.03	254,798		
2012년 4월	186.76	276,223		
2012년 5월	215.32	399,792		
2012년 6월	257.43	589,528		
2012년 7월	318.77	858,723		
2012년 8월	394.94	1,066,403		
2012년 9월	486.23	1,278,082		
2012년 10월	556.39	1,063,606		
2012년 11월	595.87	611,952		
2012년 12월	633.03	575,959		
2013년 1월	672.51	611,875		
2013년 2월	710.27	585,393		
2013년 3월	754.57	686,537		
2013년 4월	800.06	731,229		
2013년 5월	863.36	955,010		
2013년 6월	960.00	1,497,953		
2013년 7월	1,080.56	1,868,666		
2013년 8월	1,213.98	2,068,066		
2013년 9월	1,344.77	2,027,204		
2013년 10월	1,472.25	1,975,984		
급이총	급이총량(g)			

미수: 10,000 미 최초 어체중: 3g

어분의 분류

1.백색어분 : 신선도 선어도가 높은 어분입니다

주요성분: 단백질 67%이상, 지방 8.5%, 회분 18%, FFA 7.5

제조어종: 명태, 대구류.

2.갈색어분 : 신선도 및 단백질 함량 어종에 따라 다음과 같이 분류합니다.

제조어종: 고등어, 참치, 정어리, 멸치 등 다양함

1) 슈퍼프라임 : 단백질 68%이상, 지방 10% , 회분 15%, FFA 7.5 TVN 100, HISTAMINE 500

2) 프라임 : 단백질 67%이상 지방 10% 회분 15% FFA 7.5 TVN 120 HISTAMINE 1500

Max

3) 스탠다드 : 단백질 65%이상 지방 18% 회분15% 그이외사양 규정하지 않음.

Min

1. Fish meal

LT-meal

		IVIIII.	MIGIA.
	Protein, %	68-72	-
알러	Moisture, %	6	10
-	Fat (Soxhlet), %	-	11
아쿠	Ash, %	-	13
	Salt, %	-	3
OF .	Antioxidant (Ethoxyquin), mg/kg	150	-
•	Salmonella	not detecte	d
	Particle size:	min. 70% n	nust pass a 0.25 mm screen
OI H	Cadaverine, mg/kg	-	1000
어분	Histamine, mg/kg	-	500
구성	Water soluble protein, % of protein	18	32
ΤÖ	Biological digestible protein, %	90	-

Other fish meal

Same specifications as LT-meal for:

protein, moisture, fat, ash, salt, antioxidant and salmonella.

지방산의 구성표

fatty acid	d	fish oil*1	safflower*1	beef tallow*1	백색어분	정어리어분	방어* ² (양식)	방어* ² (천연)	참돔(양식)	참돔 ^{*2} (천연)	0 feed*3	aller NOVA*3	aller SILVER*3
지방산명	4					항산화제첨가	총지질9.8%	총지질2.9%	총지질5.7%	총지질1.4%	조지방8%	조지방12%	조지방23%
myristic acid	14:0	5.1		2.9	3.0	4.0	6.4	6.0	4.0	1.6	9.8	4.5	3.7
palmitic acid	16:0	17.0	5.7	18.8			18.5	18.2	19.4	21.0	28.1	17.0	13.3
palmitoleic acid	16:1ω7	9.4	1.9	5.1	7.0	5.0	9.2	9.5	7.3	5.4	7.9	4.6	3.8
stearic acid	18:0	3.2	1.9	10.9	2.0	4.0	3.4	4.5	5.7	7.6	5.7	3.7	2.6
oleic acid	18:1ω9	16.8	12.4	57.5	17.0	10.0					18.1	23.0	35.2
linoleic acid	18:2ω6	2.5	72.5	2.1	1.0	3.0	2.4	1.8	2.0	1.0	5.0	17.4	13.2
linolenic acid	18:3ω3	3.1	2.9				4.3	2.9	4.0	1.9	0.9	3.1	5.0
arachidonic acid	20:4ω3	2.0					2.9	2.6	3.3	4.7			
EPA	20:5ω3	17.2			12.0	18.0	11.5	10.6	8.7	8.4	3.4	7.0	5.4
DPA	22:5 ω3	2.9			2.0	4.0	3.6	4.3	4.2	6.0			
DHA	22:6 ω3	13.2			19.0	26.0	11.4	12.5	17.7	19.3	3.3	8.5	6.9
EPA + DF	I A	30.4	0.0	0.0	31.0	44.0	22.9	23.1	26.4	27.7	6.6	15.5	12.3
	어	체 및 사료	100g 중 EP	A + DHA 함량			2.2	0.7	1.5	0.4	0.5	1.9	2.0

^{*1} PRINCIPLES OF WARMWATER AQUACULTURE, Robert R. Stickney

^{*2} 천연 및 양식산 어류의 지질성분 및 정미성분의 비교, 김상조

^{*3} 단미사료협회 2013년1월 시료 분석자료

비타민의 안정성

<상온에서의 3개월 후 사료내 비타민의 안전성>

<Nutrition & fish health>

비타민	펠렛 Steam pellet(%)	E.P Extuded peiiet(%)		
Vitamin A (beadlet,cross-linked)	85–95	70–90		
Vitamin D (beadlet,cross-linked)	90-100	75–100		
Vitamin E(acetate)	90–100	90–100		
Vitamin K(MNB)	70-90	40-70		
Thiamine (B1)	85–100	60-80		
Riboflavin (B2)	90–100	90–100		
Pyridoxine (B6)	90–100	80-90		
Pantothenic acid (B3)	90–100	80–100		
Niacin (B4)	90–100	90–100		
Biotin	90–100	70–90		
Folic avid	70–90	50-65		
Vitamin B12 (cyanocobaiamin)	60-90	40-80		
Inositol	100	100		
Choline	100	100		
Ascorbic acid, crystalline	30-70	10–30		
Ascorbate-2-phosphate	90	90		

출처: NUTRITION AND FISH HEALTH, Chhorn Lim

<사료 보관기간 동안 비타민C의 손실>

<Nutrition & fish health>

_			<nutrition &="" fish="" health=""></nutrition>						
	원료	온도(℃)	사료형태		LOS	S(%)		참조문헌	
			기표용대	4주		12주		日上上已	
	AA	25	trout-pellet	Ę	55	74		Grant et al (1989)	
	APP	25	trout-pellet	1	12 87		25	Grant et al (1989)	
	AA	40	trout-pellet	8			95	Grant et al (1989)	
	APP	40	trout-pellet	29 - - - 74 70		32 85 11 87		Grant et al (1989)	
	ECAA	25	trout-EP					Gadient (1991)	
	APP	25	trout-EP					Gadient (1991)	
	ECAA	-	trout-EP					Grant et al (1989)	
	ECAA	-	trout-EP					Grant et al (1989)	
	APP	-	trout-EP		1	0		Grant et al (1989)	
	ECAA	-	catfish-EP	7	78 0		_	Rolminson (1992)	
	APP	-	catfish-EP				_	Rolminson (1992)	
				1시간	12시간	24시간	48시간		
	AA		moist-pellet	58	100	-	-	Grant et al (1989)	
	APP		moist-pellet	0	4	24	_	Grant et al (1989)	
	ECAA		moist-pellet	99	_	100	_	Grant et al (1989)	
	APP		moist-pellet	0	-	4	16	Schai (1991)	
	APP		moist-pellet	0	_	0	2	Schai (1991)	

AA: crystalline L-ascorbic acid(일반 비타민C)

ECAA: ethylcellulose- coated ascorbic acid (메틸셀루로즈 코팅된 Vit. C)

FCAA: fat- coated ascorbic acid (지방이 코팅된 Vit. C) APP: ascorbyl-2- polyphosphate (인이 결합된 Vit. C) NaAA: sodium ascorbic acid (나트륨이 결합된 Vit. C)

GCAA: glyceride- coated ascorbic (클리세린이 코팅된 Vit. C)

AS: ascorbyl-2- sulfate (황인 결합된 Vit. C)

AP: ascorbyl-6- palmitate (팔미드산이 결합된 Vit. C)

배합사료의 물류 및 유통의 특수성

과도한 물류비

복잡한 유통구조

유통의 특수성

일반제조업과 사료제조업과의 물류비용 비교												
		운반, 하역, 보관비			매클	출 액	비율					
구분		제조업(A)	사료산업(B)		제조업(C)	사료산업(D)	A/C	B/D				
		단위 : 백만원			단위 : 백만원							
1992		2,311,051	63,262		183,261,096	1,713,389	1.30%	3.70%				
1999		5,649,767	123,216		420,380,177	4,340,786	1.34%	2.84%				

- ▶ 배합사료회사 → 중간대리점 → 사양가
- ▶ 배합사료회사 → 농수협중앙회 → 지역농,수협 → 양축,어가
- ▶ 배합사료회사, 농(수)협사료공장 → 지역농,수협 → 양축,어가
- ▶ 배합사료회사 → 도매단계 → 소매단계 → 실수요자 (특수사료로서 백화점, 슈퍼마켓, 동물병원 등에서 판매)
- ▶ 농(수)협사료공장 → 사료공장 (미)소유 농(수)협 → 양축,어가
- ▶ 농협사료공장 → 농협조합원, 양축농가
 - ※ 외국 배합사료회사 → 수입사료 회사 → 대리점 → 사양가

(공급측면)

- ▶ 배합사료 생산업체가 많고 거래처의 신용도나 취급물량에 따라 외상기일, 가격조건 등 거래 조건이 복잡, 다양하다.
- ▶ 또한 업체간 과다한 판촉경쟁으로 거래 조건을 변칙 운용하는 등 불공정 거래의 발생소지가 많다.
- ▶ 사료는 다른 공산품과 달리 유통 및 유효기간이 짧아 장기적으로 보관 및 비축이 어렵다.
- ▶ 생산업체마다 성분비율을 달리하여 제품을 차별화함으로서 업체간 가격비교가 어렵다.
- ▶ 제품의 Life Cycle이 짧은 편이며 신제품 개발이 빈번하다. (수요측면)
- ▶ 사양 농어가는 입식에서 출하까지 급여중인 사료를 중도에 바꾸지 않으려는 경향이 있어 사양기간 중에는 사료의 대체성이 낮은 편이다.
- ▶ 사양 농어가는 사료 공급자로부터 사후봉사를 받고 있으며, 일정규모 이상의 축수산 농어가는 금융서비스, 사양관리 등 사후 봉사를 이유로 업체와의 직거래로 전환하는 경향이 많다.

함께 성장 합시다.!

-Let's grow together!