RS/Conference2020

San Francisco | February 24 – 28 | Moscone Center

HUMAN ELEMENT

SESSION ID: TECH-T11

DEEP DIVE ANALYSIS OF ENTERPRISE NETWORK SECURITY MECHANISMS

Dr. Avril Salter, AJ1VA, CCNP-W, CCNA-S, CWNE-350

Independent Consultant Salter & Associates @AvrilSalterUSA

The question that triggered this presentation

Why This Presentation Matters

- Common Enterprise Issues
 - Ambiguous network security protocols in use
 - Diversity of solutions
 - Across business units
 - Network line
 - User / equipment
 - Hardware and software variances
 - Monitoring
 - Feature complexity

Session Outline and Learning Objectives

Network security protocols

- SSH
- TLS
- IPsec
- 802.1X

Evolutionary improvements

- Functionality
- Cryptographic algorithms
- Forward secrecy

Looking for commonalty to improve understanding

Gain insights into where things are going

Today's Presentation is Mostly Demonstrations

Wireshark

Open source tool for packet analysis

PCAPs

https://tinyurl.com/qohs6lk

https://www.dropbox.com/sh/inxjtpt96lfxfng/AABTZ2gnHMOD4m-ngaLpy5nla?dl=0

Things to Observe

- Business goals drive the message flows
- Multiple protocols or layers required to deliver network security
- Same underlying security mechanisms
 - PSK, public/private cryptography
 - Sharing of keying material
 - Generate shared secret
 - Encryption, message integrity

Techniques that as security experts you are aware of

802.1X / EAP

Business Usage

Multiple Layers

TLS TTLS **PEAP Extensible Authentication Protocol** (EAP) 802.1X EAPOL Logical Link Control (LLC) 802.11 / 802.3

Evolution

Wired

- MACsec
- MACsec Key Agreement (MKA)

Wireless

WPA3	
Personal	Enterprise
128 AES	192 AES
SAE	802.1X
PMF Mandatory	PMF Mandatory

802.1X EAPOL

WPA3-Personal

802.1X Demonstration

IPsec

Business Usage

Multiple Layers

Evolution of IKE

IKEv1

- Phase 1 Main mode
 - IKE SA Negotiation
 - 6 Messages
- Phase 2 Quick Mode
 - IPSec SA Negotiation
 - 3 messages
- Validate peers
 - Pre-Shared Keys
 - Certificates

IKEv2

- Phase 1
 - 4 messages
 - Encrypts after 2 messages
- Phase 2 Creates first CHILD SA
- New DH values, encryption & hashing algorithms
- Adds EAP
- Possible future changes
 - Labeled IPsec

Evolution of IKE

IKE v2 Demonstration

TLS

Business Usage

Multiple Layers

Reports errors Change Ciph Change to negotia Alert Record Shared transport, confidentiality, integrity TCP

Evolution of TLS

TLS1.2

- IETF RFC 5246
- Incrementally modified and enhanced
- Recommended version since 2008
- Increasing number of attacks
- Performance concerns

TLS 1.3

- IETF RFC 8446
- Finalized March 2018
- Major redesign
- Cryptographic changes
 - Supported encryption algorithms
 - Messages to negotiate a session
 - PSK with DHE

Evolution of TLS

TLS 1.2 and TLS 1.3 Demonstration

Secure Shell (SSH)

Business Usage

Three layers

Connection Protocol

Multiplexes encrypted tunnel into logical channels

Authentication Protocol Client (user) authentication

Transport Layer Protocol

Server (host) authentication, confidentiality, integrity, forward secrecy

TCP/IP

SSH

Evolution of SSH

SSHv2

- Different protocol to SSHv1
- Only host keys
- Stronger encryption ciphers
- Message integrity checking
- Support for public keys certificates
- OpenSSH

Extensions

- Stronger cryptography
 - Elliptic curve
 - SHA-256, SHA-512
- Negotiation mechanism RFC 8308

SSH

Public host key

Authenticate server &

Derive symmetric

encryption and MAC keys

Dr. / ril

Private and public host keys

Derive symmetric encryption and MAC keys

RSAConference2020

SSH2 Demonstration

The Best Reference is the Specification

Internet Engineering Task Force (IETF)

Request for Comments: 8446

Obsoletes: 5077, 5246, 6961

Updates: 5705, 6066

Category: Standards Track

ISSN: 2070-1721

E. Rescorla Mozilla August 2018

The Transport Layer Security (TLS) Protocol Version 1.3

Abstract

This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.

Next Steps

7 DAYS

Find

30 DAYS

Explore

90 DAYS

Discover

What protocols are you using?

- Get permission
- Capture traffic

What fields attributes are important?

- Download technical specifications
- Look up definitions

What future access needs are essential?

- IoT
- 5G

Thank you for listening ©

www.linkedin.com/in/avrilsalter
@avrilsalterUSA