Data Analytics Project - Bank Defaulters' Dataframe

Hamza Bin Riaz

- Email: hamzaa.riaaz@gmail.com)
- https://www.linkedin.com/in/hamza-bin-riaz/)

About Project ¶

I have taken the dataframe of bank defaulters, and performed several Data Analytics tasks.

- Data Summary / Description: I have performed various functions to understand dimensions, missing values, variables, types of variables, and much more about it.
- Data Visualisation I have tried to visually represent different variables of the dataframe. Some of them like: Surname, Customer ID, and row number were not considered.
- Data Cleaning I have added another column of "IsDefaulter" that was helpful in different visualisation techniques, and removed some rows where Surnames had inappropriate values.
- Hypothesis Testing There is no significant relationship between 'Tenure' and 'Exited'
- · Predictive Analysis After how much time customers are likely to exit the bank

```
LET THE FUN(WORK) BEGIN :)
```

Libraries used throughout the project

```
In [2]: ▶ os.getcwd()
```

Out[2]: 'C:\\Users\\L380\\PythonAssignment_BankLoanDefaulters'

Part 1 - Importing DataFrame

Importing dataframe into the object df

Showing data set using its object.

In [4]: ► df

Out[4]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15634602	Hargrave	619	France	Female	42	2
1	2	15647311	Hill	608	Spain	Female	41	1
2	3	15619304	Onio	502	France	Female	42	8
3	4	15701354	Boni	699	France	Female	39	1
4	5	15737888	Mitchell	850	Spain	Female	43	2
9995	9996	15606229	Obijiaku	771	France	Male	39	5
9996	9997	15569892	Johnstone	516	France	Male	35	10
9997	9998	15584532	Liu	709	France	Female	36	7
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3
9999	10000	15628319	Walker	792	France	Female	28	4
10000	rows × 14 co	lumns						

Part 2 - Data Summary

Showing the number of observations(rows) and variables(columns).

In [5]: ▶ df.shape

Out[5]: (10000, 14)

Checking the total values, null or missing values, and datatype of each variable(column) of the dataframe.

In [6]: ► df.info()

RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns): RowNumber 10000 non-null int64 10000 non-null int64 CustomerId Surname 10000 non-null object CreditScore 10000 non-null int64 10000 non-null object Geography Gender 10000 non-null object 10000 non-null int64 Age Tenure 10000 non-null int64 Balance 10000 non-null float64 10000 non-null int64 NumOfProducts HasCrCard 10000 non-null int64 IsActiveMember 10000 non-null int64 EstimatedSalary 10000 non-null float64 10000 non-null int64 Exited dtypes: float64(2), int64(9), object(3)

<class 'pandas.core.frame.DataFrame'>

Checking the following for each variable(column) of the dataframe:

- Number of values

memory usage: 1.1+ MB

- Mean
- Standard deviation
- Minimum value
- Quartile values for (Q1, Q2, and Q3)
- Maximum Values

In [7]: ▶ df.describe()

Out[7]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000
4						•

Checking names of each variable(column) of the dataframe.

In [9]: ► df.head(10)

Out[9]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1596
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	1255
5	6	15574012	Chu	645	Spain	Male	44	8	1137
6	7	15592531	Bartlett	822	France	Male	50	7	
7	8	15656148	Obinna	376	Germany	Female	29	4	1150
8	9	15792365	Не	501	France	Male	44	4	1420
9	10	15592389	H?	684	France	Male	27	2	1346
4									•

Checking last 10 observations(rows) of the dataframe.

```
In [10]: ► df.tail(10)
```

Out[10]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenur
9990	9991	15798964	Nkemakonam	714	Germany	Male	33	;
9991	9992	15769959	Ajuluchukwu	597	France	Female	53	4
9992	9993	15657105	Chukwualuka	726	Spain	Male	36	
9993	9994	15569266	Rahman	644	France	Male	28	
9994	9995	15719294	Wood	800	France	Female	29	
9995	9996	15606229	Obijiaku	771	France	Male	39	;
9996	9997	15569892	Johnstone	516	France	Male	35	1
9997	9998	15584532	Liu	709	France	Female	36	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	;
9999	10000	15628319	Walker	792	France	Female	28	,
4								•

Extending the limit of compiler to show the values, we will need this for checking the unique values of each column.

```
In [11]: 

#as we have 10 thousand values in each column, so we are going to extend t

pd.options.display.max_rows = 10000
```

Checking Unique Values of Each Column

```
In [12]:
          ▶ print("Names of Columns are :", df.columns)
            Names of Columns are : Index(['RowNumber', 'CustomerId', 'Surname', 'Cred
            itScore', 'Geography',
                    'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCar
            d',
                   'IsActiveMember', 'EstimatedSalary', 'Exited'],
                  dtype='object')
         In [13]:
   Out[13]: array([15634602, 15647311, 15619304, ..., 15584532, 15682355, 15628319],
                  dtype=int64)
In [14]:

    df["Surname"].unique()

   Out[14]: array(['Hargrave', 'Hill', 'Onio', ..., 'Kashiwagi', 'Aldridge',
                    'Burbidge'], dtype=object)
```

```
In [15]:
             df["CreditScore"].unique()
   Out[15]: array([619, 608, 502, 699, 850, 645, 822, 376, 501, 684, 528, 497, 476,
                    549, 635, 616, 653, 587, 726, 732, 636, 510, 669, 846, 577, 756,
                    571, 574, 411, 591, 533, 553, 520, 722, 475, 490, 804, 582, 472,
                    465, 556, 834, 660, 776, 829, 637, 550, 698, 585, 788, 655, 601,
                    656, 725, 511, 614, 742, 687, 555, 603, 751, 581, 735, 661, 675,
                    738, 813, 657, 604, 519, 664, 678, 757, 416, 665, 777, 543, 506,
                    493, 652, 750, 729, 646, 647, 808, 524, 769, 730, 515, 773, 814,
                    710, 413, 623, 670, 622, 785, 605, 479, 685, 538, 562, 721, 628,
                    668, 828, 674, 625, 432, 770, 758, 795, 686, 789, 589, 461, 584,
                    579, 663, 682, 793, 691, 485, 650, 754, 535, 716, 539, 706, 586,
                    631, 717, 800, 683, 704, 615, 667, 484, 480, 578, 512, 606, 597,
                    778, 514, 525, 715, 580, 807, 521, 759, 516, 711, 618, 643, 671,
                    689, 620, 676, 572, 695, 592, 567, 694, 547, 594, 673, 610, 767,
                    763, 712, 703, 662, 659, 523, 772, 545, 634, 739, 771, 681, 544,
                    696, 766, 727, 693, 557, 531, 498, 651, 791, 733, 811, 707, 714,
                    782, 775, 799, 602, 744, 588, 747, 583, 627, 731, 629, 438, 642,
                    806, 474, 559, 429, 680, 749, 734, 644, 626, 649, 805, 718, 840,
                    630, 654, 762, 568, 613, 522, 737, 648, 443, 640, 540, 460, 593,
                    801, 611, 802, 745, 483, 690, 492, 709, 705, 560, 752, 701, 537,
                    487, 596, 702, 486, 724, 548, 464, 790, 534, 748, 494, 590, 468,
                    509, 818, 816, 536, 753, 774, 621, 569, 658, 798, 641, 542, 692,
                    639, 765, 570, 638, 599, 632, 779, 527, 564, 833, 504, 842, 508,
                    417, 598, 741, 607, 761, 848, 546, 439, 755, 760, 526, 713, 700,
                    666, 566, 495, 688, 612, 477, 427, 839, 819, 720, 459, 503, 624,
                    529, 563, 482, 796, 445, 746, 786, 554, 672, 787, 499, 844, 450,
                    815, 838, 803, 736, 633, 600, 679, 517, 792, 743, 488, 421, 841,
                    708, 507, 505, 456, 435, 561, 518, 565, 728, 784, 552, 609, 764,
                    697, 723, 551, 444, 719, 496, 541, 830, 812, 677, 420, 595, 617,
                    809, 500, 826, 434, 513, 478, 797, 363, 399, 463, 780, 452, 575,
                    837, 794, 824, 428, 823, 781, 849, 489, 431, 457, 768, 831, 359,
                    820, 573, 576, 558, 817, 449, 440, 415, 821, 530, 350, 446, 425,
                    740, 481, 783, 358, 845, 451, 458, 469, 423, 404, 836, 473, 835,
                    466, 491, 351, 827, 843, 365, 532, 414, 453, 471, 401, 810, 832,
                    470, 447, 422, 825, 430, 436, 426, 408, 847, 418, 437, 410, 454,
                    407, 455, 462, 386, 405, 383, 395, 467, 433, 442, 424, 448, 441,
                    367, 412, 382, 373, 419], dtype=int64)
             df["CreditScore"].min()
In [16]:
   Out[16]: 350
In [17]:
             df["CreditScore"].max()
   Out[17]:
             850
             df["Geography"].unique()
In [18]:
   Out[18]: array(['France', 'Spain', 'Germany'], dtype=object)
```

```
In [19]: | df["Gender"].unique()
   Out[19]: array(['Female', 'Male'], dtype=object)

    df["Age"].unique()

In [20]:
   Out[20]: array([42, 41, 39, 43, 44, 50, 29, 27, 31, 24, 34, 25, 35, 45, 58, 32, 3
                   46, 36, 33, 40, 51, 61, 49, 37, 19, 66, 56, 26, 21, 55, 75, 22, 3
            0,
                   28, 65, 48, 52, 57, 73, 47, 54, 72, 20, 67, 79, 62, 53, 80, 59, 6
            8,
                   23, 60, 70, 63, 64, 18, 82, 69, 74, 71, 76, 77, 88, 85, 84, 78, 8
            1,
                   92, 83], dtype=int64)
Out[21]: 18
In [22]:  df["Age"].max()
   Out[22]: 92
In [23]: | df["Tenure"].unique()
   Out[23]: array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0], dtype=int64)
In [24]:  df["Balance"].unique()
                        0., 83807.86, 159660.8, ..., 57369.61, 75075.31,
   Out[24]: array([
                   130142.79])
In [25]: | df["Balance"].min()
   Out[25]: 0.0
In [26]: | df["Balance"].max()
   Out[26]: 250898.09
In [27]: | df["NumOfProducts"].unique()
   Out[27]: array([1, 3, 2, 4], dtype=int64)
In [28]: | df["HasCrCard"].unique()
   Out[28]: array([1, 0], dtype=int64)
```

```
In [29]: | df["IsActiveMember"].unique()
Out[29]: array([1, 0], dtype=int64)

In [30]: | df["EstimatedSalary"].unique()
Out[30]: array([101348.88, 112542.58, 113931.57, ..., 42085.58, 92888.52, 38190.78])

In [31]: | df["EstimatedSalary"].min()
Out[31]: 11.58

In [32]: | df["EstimatedSalary"].max()
Out[32]: 199992.48

In [33]: | df["Exited"].unique()
Out[33]: array([1, 0], dtype=int64)
```

Part 3 - Data Cleaning

Adding A New Column of "IsDefaulter"

Adding this column for safe side to use it for data visualisation or hypothesis testing. Sometimes, to check a variable, we need atleast 2 variables to show them on any kind of plot. For that, we are adding a new column of "IsDefaulter" with value as "1" for all rows.

In [35]: df Out[35]: RowNumber CustomerId Surname CreditScore Geography Gender 0 1 15634602 Hargrave 619 France Female 1 2 15647311 608 Spain Female Hill 2 3 502 15619304 Onio France Female 3 4 15701354 Boni 699 France Female 4 5 15737888 Mitchell 850 Spain Female 5 6 645 Spain 15574012 Chu Male 6 7 15592531 Bartlett 822 France Male 7 8 Obinna 376 Germany Female 15656148 8 9 15792365 He 501 France Male H? 9 10 15592389 684 France Male

Removing Rows with InAppropriate Sur Names

When we checked the unique values of each column, some "Surnames" had special characters in them, we know for a fact that some special characters are acceptable like single quotation O'neil, but question mark is inappropriate, so we have removed the rows with Surnames having question marks in them.

```
In [36]:  #Some Surnames have inappropriate character in them i.e "?" - removing suc
refined_df = df[~df['Surname'].str.contains('\?')]
```

In [37]: ▶ refined_df

Out[37]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender
0	1	15634602	Hargrave	619	France	Female
1	2	15647311	Hill	608	Spain	Female
2	3	15619304	Onio	502	France	Female
3	4	15701354	Boni	699	France	Female
4	5	15737888	Mitchell	850	Spain	Female
5	6	15574012	Chu	645	Spain	Male
6	7	15592531	Bartlett	822	France	Male
7	8	15656148	Obinna	376	Germany	Female
8	9	15792365	Не	501	France	Male
10	11	15767821	Bearce	528	France	Male
44		15707170	• •	107	^ ·	

In [38]: ▶ refined df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9908 entries, 0 to 9999
Data columns (total 15 columns):
                   9908 non-null int64
RowNumber
CustomerId
                   9908 non-null int64
Surname
                   9908 non-null object
CreditScore
                   9908 non-null int64
Geography
                   9908 non-null object
Gender
                   9908 non-null object
Age
                   9908 non-null int64
                   9908 non-null int64
Tenure
Balance
                   9908 non-null float64
NumOfProducts
                   9908 non-null int64
HasCrCard
                   9908 non-null int64
IsActiveMember
                   9908 non-null int64
                   9908 non-null float64
EstimatedSalary
                   9908 non-null int64
Exited
```

dtypes: float64(2), int64(10), object(3)

After removing rows and adding another column of "IsDefaulter" the number of rows have been reduced to 9908, initially they were 10,000. And the no. of columns are 15 now, previously they were 14.

9908 non-null int64

```
In [39]:  refined_df.shape
```

IsDefaulter

memory usage: 1.2+ MB

Out[39]: (9908, 15)

Data has been cleaned now, and new dataframe is saved with file name as "Refined_DataFrame" AND the new object that we will use for further coding will be "refined df"

Part 4 - Data Visualization

In the data visualisation section, we are expressing almost all of variables of our dataframe except ROw Number, Customer ID, and Surname. As they don't require any representation.

Credit Score Distribution

Below we have histogram with 10 bins, along x-axis, we have different ranges of Credit Scores of each individual and on y-axis we have the toltal number of observations that fall in each range.

Below is just another representation of Credit Score variable using Kernal Density plot

```
In [42]:  #Using kernal density plot to represent credit score
sn.kdeplot(df['CreditScore'], shade = True)

# Setting title and labels of plot
plotting.xlabel('Credit Score')
plotting.ylabel('Density')
plotting.title('Credit Score Distribution Using Kernel Density Plot')

#showing the plot
plotting.show()
```


Region Based Distribution of Defaulters

Below is a pie chart that represents the distribution of bank defaulters based on their region. We have data of defaulters, from 3 countries as France, Germany, and Spain. From the percentages it's evident that Most of the defaulters are from france, then from Germany and last from Spain.

Out[43]: Text(0.5, 1.0, 'Region Based Distribution of Bank Defaulters')

Gender Based Distribution of Defaulters

In the pie chart below, we are showing the gender based distribution of bank defaulters.

Out[44]: Text(0.5, 1.0, 'Gender Based Distribution of Bank Defaulters')

Gender Based Distribution of Bank Defaulters

Age Groups of Defaulters

Difining age groups for defaulters and showing their distribution using the "Age" variable.

```
In [45]: #using the histogram as visualisation technique, and choosing the no of bi
plotting.hist(df['Age'], bins = 10, edgecolor = 'black', color = 'green')

#Choosing the title and Label of histogram
plotting.xlabel('Age Groups ')
plotting.ylabel('No. of Obs. Per Age Group')
plotting.title('Age Based Distribution Using Histogram')

#showing the histogram
plotting.show()
```


Age Distribution Based on Genders

In the scatter plot below, we are representing the age of bank defaulters by defining the custom age groups, as we know the minimum and maximum values of Age variable.

Tenure Representation Using Histogram

In the histogram below, we are showing the tenure based distribution. Tenure represent the no of years an individual has stayed with the bank as a customer.

No. of Products Distribution

In the count plot below, we are showing the distribution based on the products subscribed by each customer. There were maximum of 4 products, and each bar represents the no of people who were subscribed to that no. of products.

Has Credit Card Distribution

In the circle/donut plot below, we have shown the percentage based division of people with Credit Cards and Without Credit Cards.

```
In [50]: No counts = refined_df['HasCrCard'].value_counts()
labels = ['No', 'Yes']

fig, ax = plotting.subplots()
ax.pie(counts, labels = labels, autopct = '%1.1f%%', startangle = 90, wedg

center_circle = plotting.Circle((0, 0), 0.70, fc = 'white')
fig.gca().add_artist(center_circle)

ax.axis('equal')
ax.set_title('Has Credit Card? Distribution Using Donut Plor')
plotting.show()
```

Has Credit Card? Distribution Using Donut Plor

Is Active Member Distribution

Again, using the donut plot method, we are showing the percentage distribution of people who are currently the active members of the bank and people who are not active members at the moment.

```
In [51]: M counts = refined_df['IsActiveMember'].value_counts()
labels = ['Inactive', 'Active']

plotting.pie(counts, labels = labels, autopct = '%1.1f%%', startangle = 90

# Draw a white circle at the center to create a donut chart
center_circle = plotting.Circle((0, 0), 0.70, fc = 'white')
fig = plotting.gcf()
fig.gca().add_artist(center_circle)

plotting.axis('equal')
plotting.title('IsActiveMember Distribution - Donut Chart')

plotting.show()
```

IsActiveMember Distribution - Donut Chart

Understanding the Salary Spans

In the scatter plot below we have tried to define custom salary spans and represented the observations in different salary spans.

```
In [52]: #defining the custom salary spans and their colors
    salary_spans = [(0, 20000, 'red'), (20001, 40000, 'blue'), (40001, 60000,

#creating objects
fig, salary_image = plotting.subplots()

#looping through the age groups and plotting the scatter points
for salary_span in salary_spans:
    x = refined_df[refined_df['EstimatedSalary'].between(salary_span[0], s
    y = refined_df[refined_df['EstimatedSalary'].between(salary_span[0], s
    salary_image.scatter(x, y, c=salary_span[2], label = '{}-{}'.format(sa

salary_image.set_title('Salary of Bank Defaulters')
    salary_image.set_vlabel('ID')
    salary_image.set_ylabel('Row Number')

salary_image.legend()
plotting.show()
```


Part 5 - Hypothesis Testing

```
In [62]: #print the results
    print('T-Statistic: ', t_statistic)
    print('P-Value: ', p_value)

#comparing the p-value with the significance level(0.05)
    if p_value < 0.05:
        print("Null hypothesis has been rejected. There is a significant relatelse:
        print("Failed to reject the null hypothesis. There is no significant r

T-Statistic: 1.3196271681627358
    P-Value: 0.1870572447799254
    Failed to reject the null hypothesis. There is no significant relationship between 'Tenure' and 'Exited'.</pre>
```

Visual Representation of Exited and Tenure

```
In [63]: #using boxplot
sn.boxplot(x = 'Exited', y = 'Tenure', data = refined_df)

plotting.xlabel('Exited')
plotting.ylabel('Tenure')
plotting.title('Tenure vs. Exited - Box Plot')

plotting.show()
```


Correlation between "Tenure" and "Exited" Variables

```
In [64]: N correlation = refined_df['Tenure'].corr(refined_df['Exited'])
print("Correlation coefficient: ", correlation)
```

Correlation coefficient: -0.013407416162277981

Part 6 - Predictive Analysis

In this section, we are going to use logistic regression model to to predict, after how much time, customers are predicted to exit(leave) the bank.

```
#selecting the features and target variable
In [69]:
             X = refined_df[['Tenure']]
             y = refined df['Exited']
             #creating an instance of the logistic regression model
             model = LogisticRegression()
             #fiting model to data
             model.fit(X, y)
             #getting he coefficients of the model
             coefficients = model.coef_[0]
             #finding index of the maximum coefficient
             max coefficient index = np.argmax(np.abs(coefficients))
             #getting the corresponding tenure value
             tenure threshold = X.iloc[max coefficient index]['Tenure']
             #printing outcome
             print("People are more likely to exit the bank after ", tenure_threshold,
```

People are more likely to exit the bank after 2 years.

C:\Users\L380\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.p
y:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22.
Specify a solver to silence this warning.
FutureWarning)

Part 7 - References

Source of the dataframe: https://www.kaggle.com/datasets/vanshikagupta1136/artificial-neural-network-case-study-data

```
In [ ]: ▶
```