#### Computer Networks

Signal Encoding Techniques (Analog to Analog)

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

### **DFT** Properties

$$z_m = \sum_{n=0}^{N-1} x_n e^{\frac{-j2\pi \cdot m \cdot n}{N}}$$

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$

Linearity property: 
$$x_1(t) \leftrightarrow X_1(f)$$
,  $x_2(t) \leftrightarrow X_2(f) \equiv a_1 x_1(t) + a_2 x_2(t) \leftrightarrow a_1 X_1(f) + a_2 X_2(f)$ 

$$a_{1}x_{1}(t) + a_{2}x_{2}(t) \leftrightarrow \int_{-\infty}^{\infty} \{a_{1}x_{1}(t) + a_{2}x_{2}(t)\}e^{-j2\pi ft} dt$$

$$= \int_{-\infty}^{\infty} a_{1}x_{1}(t)e^{-j2\pi ft} dt + \int_{-\infty}^{\infty} a_{2}x_{2}(t)e^{-j2\pi ft} dt = a_{1}X_{1}(f) + a_{2}X_{2}(f)$$

### **DFT** Properties

$$z_m = \sum_{n=0}^{N-1} x_n e^{\frac{-j2\pi \cdot m \cdot n}{N}}$$

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$

Frequency shifting property:  $x(t) \leftrightarrow X(f) \equiv e^{j2\pi f_c t} x(t) \leftrightarrow X(f - f_c)$ 

$$e^{j2\pi f_c t} x(t) \leftrightarrow \int_{-\infty}^{\infty} e^{j2\pi f_c t} x(t) e^{-j2\pi f t} dt = \int_{-\infty}^{\infty} x(t) e^{-j2\pi (f - f_c)t} dt = X(f - f_c)$$

#### DSB-SC Modulation

**Transmitted signal:**  $m(t) \cos(2\pi f_c t)$ 



$$F[m(t)\cos(2\pi f_c t)] = F\left\{ \left( \frac{e^{j2\pi f_c t} + e^{-j2\pi f_c t}}{2} \right) m(t) \right\}$$

$$= \frac{1}{2} \left[ F\left\{ e^{j2\pi f_c t} m(t) \right\} + F\left\{ e^{-j2\pi f_c t} m(t) \right\} \right] = \frac{1}{2} \left[ M(f - f_c) + M(f + f_c) \right]$$

#### **DSB-SC** Modulation



#### DSB-SC Demodulation



$$F[m(t)\cos^{2}(2\pi f_{c}t)] = F\left\{\left(\frac{1+\cos(2\pi 2f_{c}t)}{2}\right)m(t)\right\} = \frac{1}{2}M(f) + \frac{1}{4}[M(f-2f_{c}) + M(f+2f_{c})]$$

#### DSB-SC Modulation



$$F[m(t)\cos^{2}(2\pi f_{c}t)] = F\left\{\left(\frac{1+\cos(2\pi 2f_{c}t)}{2}\right)m(t)\right\} = \frac{1}{2}M(f) + \frac{1}{4}[M(f-2f_{c}) + M(f+2f_{c})]$$

#### DSB-TC Modulation

☐ The carrier is sent along with the message

**Transmitted signal:**  $A \cos(2\pi f_c t) + m(t) \cos(2\pi f_c t)$ 

$$F[A\cos(2\pi f_c t) + m(t)\cos(2\pi f_c t)] = F[A\cos(2\pi f_c t)] + m(t)[\cos(2\pi f_c t)]$$

$$= \frac{A}{2}[\delta(f - f_c) + \delta(f + f_c)] + \frac{1}{2}[M(f - f_c) + M(f + f_c)]$$

#### DSB-TC Modulation



## Angle Modulation (Frequency Modulation)

$$s(t) = A \cos \theta(t)$$

Instantaneous angular frequency is 
$$w_i(t) = \frac{d\theta}{dt}$$
  $\therefore \theta(t) = \int_0^t w_i(\alpha) d\alpha$ 

- ☐ Angle modulation:
  - ☐ Frequency modulation
  - ☐ Phase modulation

$$w_i(t) = 2\pi f_c t + k_f m(t)$$

$$\therefore s_{FM}(t) = \cos((2\pi f_c + k_f m(t))t)$$

# Angle Modulation (Phase Modulation)

$$s(t) = A \cos \theta(t)$$

Instantaneous angular frequency is  $w_i(t) = \frac{d\theta}{dt}$   $\therefore \theta(t) = \int_0^t w_i(\alpha) d\alpha$ 

$$\theta(t) = 2\pi f_c t + k_p m(t) \qquad \qquad \therefore s_{PM}(t) = \cos(2\pi f_c t + k_p m(t))$$

### Angle Modulation

$$s(t) = A \cos \theta(t)$$

Instantaneous angular frequency is  $w_i(t) = \frac{d\theta}{dt}$   $\therefore \theta(t) = \int_0^t w_i(\alpha) d\alpha$ 

$$\theta(t) = 2\pi f_c t + k_p m(t)$$

$$\therefore s_{PM}(t) = \cos(2\pi f_c t + k_p m(t))$$

$$w_i(t) = 2\pi f_c t + k_f m(t) \qquad \therefore s_{FM}(t) = \cos((2\pi f_c + k_f m(t))t)$$
  
$$\therefore \theta(t) = \int_0^t w_i(\alpha) d\alpha = 2\pi f_c \int_0^t d\alpha + k_f \int_0^t m(\alpha) d\alpha = 2\pi f_c t + k_f \int_0^t m(\alpha) d\alpha$$



### Angle Modulation

$$s(t) = A \cos \theta(t)$$

Instantaneous angular frequency is  $w_i(t) = \frac{d\theta}{dt}$   $\therefore \theta(t) = \int_0^t w_i(\alpha) d\alpha$ 

$$w_i(t) = 2\pi f_c t + k_f m(t)$$

$$\therefore s_{FM}(t) = \cos((2\pi f_c + k_f m(t))t)$$

$$\theta(t) = 2\pi f_c t + k_p m(t)$$

$$\therefore s_{PM}(t) = \cos(2\pi f_c t + k_p m(t))$$

Instantaneous angular frequency is  $w_i(t) = \frac{d\theta}{dt} = 2\pi f_c + k_p \dot{m}(t)$ 



### AM vs FM/PM

### Why Modulation?

# THANK YOU

QUESTIONS???