Klausur zur Vorlesung Lineare Algebra für *-Informatik Modul-Nr.: FMI-MA0022

Wintersemester 2020/21

24.02.2021

Aufgabe 1: Lineare Gleichungssysteme mit Parametern

(6 P.) Seien $A := \begin{pmatrix} 1 & -2 & -5 \\ 1 & s & 1 \\ 0 & 6 & -9 \end{pmatrix} \in M_3(\mathbb{R})$ und $\vec{b} := \begin{pmatrix} a \\ 5 \\ s \end{pmatrix} \in \mathbb{R}^3$ mit Parametern $a, s \in \mathbb{R}$. Untersuchen Sie, wie viele Lösungen $\vec{x} \in \mathbb{R}^3$ das lineare Gleichungssystem $A \cdot \vec{x} = \vec{b}$ abhängig von den Werten von a, s jeweils hat, und berechnen Sie LR $(A; \vec{b})$ in dem Fall, bei dem es unendlich viele Lösungen gibt.

Hinweis: Man darf nicht durch 0 dividieren; je nach Rechenweg kann sich daraus ein separat zu untersuchender Fall ergeben. Ansonsten treten die üblichen Fälle "keine, eine oder unendlich viele Lösungen" auf.

Aufgabe 2: Lineare Abbildungen Sei \mathbb{K} ein Körper und $n \in \mathbb{N}$.

- a) (3 P.) Sei $f: \mathbb{K}^7 \to \mathbb{K}^4$ eine surjektive \mathbb{K} -lineare Abbildung. Zeigen Sie, dass es zwei *verschiedene* \mathbb{K} -lineare Abbildungen $g_1, g_2: \mathbb{K}^4 \to \mathbb{K}^7$ gibt, so dass
- b) (2 P.) Es sei V ein n-dimensionaler \mathbb{K} -Vektorraum, und es sei $f \colon V \to V$ eine lineare Abbildung, so dass $f(f(\vec{x})) = \vec{0}$ für alle $\vec{x} \in V$. Beweisen Sie: Rang $(f) \leq \frac{n}{2}$. **Hinweis:** Warum gilt Bild $(f) \subseteq \ker(f)$? Rangformel.

 $f \circ g_1 = f \circ g_2 = \mathrm{Id}_{\mathbb{K}^4}$. Hinweise: Rangformel, lineare Fortsetzung.

Aufgabe 3: Euklidische Räume

- a) (4 P.) Sei $\vec{u}_1 := \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$, $\vec{u}_2 := \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}$, $\vec{u}_3 := \begin{pmatrix} 2\\2\\0\\0 \end{pmatrix}$. Berechnen Sie eine Orthonormalbasis von $U := \operatorname{Span}(\vec{u}_1, \vec{u}_2, \vec{u}_3) \leq \mathbb{R}^4$ mit Hilfe des Gram-Schmidt-Verfahrens.
- b) (4 P.) Sei $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch $f(\vec{x}) := F \cdot \vec{x}$ mit

$$F := \begin{pmatrix} \frac{3}{4} & -\frac{1}{4}\sqrt{6} & \frac{1}{4} \\ \frac{1}{4}\sqrt{6} & \frac{1}{2} & -\frac{1}{4}\sqrt{6} \\ \frac{1}{4} & \frac{1}{4}\sqrt{6} & \frac{3}{4} \end{pmatrix}.$$

Sie dürfen verwenden, dass $F \in O_3$. Untersuchen Sie den Typ von f (Drehung? Drehspiegelung?) und berechnen Sie den Betrag des Drehwinkels. **Zusatzaufgabe**, (2 Bonus-P.): Berechnen Sie die Drehachse von f.

Bitte wenden

Aufgabe 4: Matrixarithmetik und orthogonale Matrizen

Für $n \in \mathbb{N}$ betrachten wir \mathbb{R}^n als euklidischen Raum mit dem Standardskalarprodukt und der Standardbasis $[\vec{e}_1,...,\vec{e}_n]$. Für einen normierten Vektor $\vec{v} \in \mathbb{R}^n$ (also $\|\vec{v}\| = 1$) sei $H_{\vec{v}} := \mathbb{1}_n - 2 \cdot \vec{v} \cdot \vec{v}^{\top}$, wobei wir wie üblich mit Spaltenvektoren arbeiten. **Anmerkung:** $\vec{v} \cdot \vec{v}^{\top} \in M_n(\mathbb{R})$, denn es ist $\vec{v} \in \mathbb{R}^{n \times 1}$ und $\vec{v}^{\top} \in \mathbb{R}^{1 \times n}$.

- a) (3 P.) Berechnen Sie $\vec{v} := \frac{1}{\|\vec{y} \|\vec{y}\| \cdot \vec{e}_1\|} \cdot (\vec{y} \|\vec{y}\| \cdot \vec{e}_1), H_{\vec{v}} \text{ und } H_{\vec{v}} \cdot A \text{ im Spezialfall } \vec{y} := (\frac{3}{4}) \in \mathbb{R}^2, \ \vec{z} := (\frac{-2}{2}) \in \mathbb{R}^2, \ A := (\vec{y}, \vec{z}) \in M_2(\mathbb{R}).$
- b) (2 P.) Verifizieren Sie: Für alle $\vec{v} \in \mathbb{R}^n$ mit $\|\vec{v}\| = 1$ ist $H_{\vec{v}}$ eine orthogonale Matrix. **Hinweis:** Ausmultiplizieren; Darstellung von $\|\vec{v}\|^2$ als Matrixprodukt.
- c) (3 P.) Es sei $\vec{e} \in \mathbb{R}^n$ mit $\|\vec{e}\| = 1$, es sei $\vec{y} \in \mathbb{R}^n$ und $\alpha := \|\vec{y}\|$ mit $\vec{y} \neq \alpha \cdot \vec{e}$, und es sei $\vec{v} := \frac{1}{\|\vec{y} \alpha \cdot \vec{e}\|} \cdot (\vec{y} \alpha \cdot \vec{e})$. Verifizieren Sie $H_{\vec{v}} \cdot \vec{y} = \|\vec{y}\| \cdot \vec{e}$. **Hinweis:** Drücken Sie in $H_{\vec{v}} \cdot \vec{y}$ sowohl $(\vec{y} - \alpha \cdot \vec{e})^{\top} \cdot \vec{y}$ als auch $||\vec{y} - \alpha \cdot \vec{e}||^2$ in möglichst einfacher Weise durch α und $\langle \vec{e} \mid \vec{y} \rangle$ aus.
- d) Zusatzaufgabe (3 Bonus-P.): Folgern Sie aus den vorigen Teilaufgaben: Für alle $A \in \mathbb{R}^{m \times n}$ gibt es $T \in O_m$, so dass $T \cdot A$ Zeilenstufenform hat.

Aufgabe 5: Determinanten und Eigenwertprobleme

a) (4 P.) Berechnen Sie jeweils die Determinante folgender Matrizen aus $M_4(\mathbb{R})$:

$$i) \ \ A := \begin{pmatrix} 1 & -21 & 3 & -1 \\ 0 & -2 & 7 & -2 \\ 0 & 0 & 8 & 17 \\ 0 & 0 & 0 & 3 \end{pmatrix} \qquad ii) \ \ B := \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 3 & 7 & -4 & 2 \\ -2 & 5 & 1 & 1 \end{pmatrix} \qquad iii) \ \ C := \begin{pmatrix} 1 & -1 & 0 & -8 \\ 2 & -1 & 1 & -14 \\ 0 & -2 & 4 & -4 \\ -3 & 2 & 3 & 24 \end{pmatrix}$$

b) (6 P.) Berechnen Sie die Hauptachsentransformation (also eine speziell orthogonale diagonalisierende Matrix) für $A := \begin{pmatrix} -1 & 2 \\ 2 & 2 \end{pmatrix} \in M_2(\mathbb{R}).$

Hinweis: Die Berechnung der Eigenwerte ist Teil der Aufgabe. Zur Kontrolle des Zwischenergebnisses: Sie sollten die Eigenwerte 3 und -2 berechnen.

Ich wünsche Ihnen viel Erfolg!

Erreichbare Punktzahl: 37