SOLVE MICHAELIS-MENTEN EQUATION FOR K_M WHEN $V_0 = \frac{V_{max}}{2}$

Equation 1:
$$\frac{1}{\frac{V_{max}}{2}} = \frac{K_m}{V_{max} * [S]} + \frac{1}{V_{max}}$$

$$= \frac{2}{V_{max}} = \frac{K_m}{V_{max} * [S]} + \frac{1}{V_{max}}$$

$$= \frac{K_M}{V_{max} * [S]} = -\frac{2}{V_{max}} + \frac{1}{V_{max}}$$

$$=\frac{K_M}{V_{max}*[S]}=\frac{1}{V_{max}}$$

$$= K_{M} = \frac{1}{V_{max}} * (V_{max} * [S])$$

$$=K_M=[S]$$

- lacksquare As K_M increases , you need MORE substrate concentration to reach $rac{V_{max}}{2}$
- As K_M decreases , you need LESS substrate concentration to reach $\frac{V_{max}}{2}$
- $K_{\rm M}$ = substrate concentration at $\frac{V_{max}}{2}$

- What is the K_M value as you can estimate from Graph 1 ?
 - $V_{\text{max}} \approx 4.5$

$$\frac{V_{max}}{2} = 2.25$$

 $Larrow : K_M \approx 2.25$

- ▶ As K_M INCREASES, the curve shifts Left
- ▶ As K_M DECREASES, the curve shifts Right

