Grafi

Progettazione di Algoritmi a.a. 2018-19 Matricole congrue a 1 Docente: Annalisa De Bonis

Grafi non direzionati

- Grafi non direzionati. G = (V, E)
- V = insieme nodi.
- E = insieme archi.
- Esprime le relazioni tra coppie di oggetti.
- Parametri del grafo: n = |V|, m = |E|.

Progettazione di Algoritmi a.a. 2018-1

A. De Bonis

Esempio di applicazione

- Archi: strade (a doppio senso di circolazione) Nodi: intersezioni tra strade
- Pesi archi: lunghezza in km

Grafi direzionati

- Gli archi hanno una direzione

 - L'arco (u,v) è diverso dall'arco (v,u) Si dice che l'arco e=(u,v) lascia u ed entra in v e che u è l'origine dell'arco e v la destinazione dell'arco

Grafi direzionati

Grafi non direzionati G = (V, E) possono essere visti come un caso particolare degli archi direzionati in cui per ogni arco (u,v) c'è l'arco di direzione opposta (v,u)

Esempio di applicazione

- Archi: strade (a senso unico di circolazione)
- · Nodi: intersezioni tra strade
- Pesi archi: lunghezza in km

Alcune applicazione dei grafi

- Rete di amicizia su un social network: ogni utente è un nodo; ogni volta che due utenti diventano amici, si crea un arco del grafo.
- Google maps: i nodi rappresentano città, intersezioni di strade, siti di interesse, ecc. e gli archi rappresentano le connessioni dirette tra i nodi.
- La rappresentazione mediante un grafo permette di trovare il percorso più corto per andare da un posto all'altro mediante un algoritmo.
- World Wide Web: le pagine web sono i nodi e il link tra due pagine è un arco.
 Google utilizza questa rappresentazione per esplorare il World Wide Web

7

Alcune applicazioni dei grafi

Graph	Nodi	Archi		
trasporto	intersezioni di strade	strade		
trasporto	aeroporti	voli diretti		
comunicazione	computer	cavi di fibra ottica		
World Wide Web	web page	hyperlink		
rete sociale	persone	relazioni		
catena del cibo	specie	predatore-preda		
scheduling	task	vincoli di precedenza		
circuiti	gate	wire		

Progettazione di Algoritmi a.a. 2018-19 A. De Bonis

Terminologia

- · Consideriamo due nodi di un grafo G connessi dall'arco e = (u,v)
- . Si dice che
 - u e v sono adiacenti
 - -L'arco (u,v) incide sui vertici u e v
 - u è un nodo vicino di v
 - -vè un nodo vicino di u
- Dato un vertice u di un grafo G
 - Grado di u = numero archi incidenti su u
 - è indicato con deg(u)

11

Numero di archi di un grafo non direzionato

m = numero di archi di G;

n= numero di nodi di G 1.

1. La somma di tutti i gradi dei nodi di $G \grave{e} 2m : \sum_{u \in V} deg(u) = 2m$

Dim. Ciascun arco incide su due vertici e quindi viene contato due volte nella sommatoria in alto. L'arco (u,v) è contato sia in deg(u) che in deg(v)

2. Il numero m di archi di un grafo G non direzionato è al più n(n-1)/2

Dim. Il numero di coppie non ordinate distinte che si possono formare con n nodi è n(n-1)/2.

Posso scegliere il primo nodo dell'arco in n modi e il secondo in modo che sia diverso dal primo nodo, cioè in n-1 modi. Dimezzo in quanto l'arco (u,v) è uguale all'arco (v,u)

Numero di archi di un grafo direzionato

m = numero di archi di G; n= numero di nodi di G

Il numero m di archi di G è al più n²

Dim. Il numero di coppie ordinate distinte che si possono formare con n nodi è n^2 . Posso scegliere il primo nodo dell'arco in n modi e il secondo in altri n modi (se ammettiamo archi con entrambe le estremità uguali).

Progettazione di Algoritmi a.a. 2018-19 A. De Bonis

12

Graph Representation: Adiacenza Matrix

- Matrice di adiacenza. Matrice $nxn con A_{uv} = 1 se (u, v) è an arco.$
- Due rappresentazioni di ciascun arco.
- Spazio proporizionale a n².
- Controllare se (u, v) è un arco richiede tempo $\Theta(1)$.
- Identificare tutti gli archi richiede tempo $\Theta(n^2)$.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Progettazione di Algoritmi a.a. 2018-1 A. De Bonis

Rappresentazione di un grafo: liste di adiacenza

- Liste di adiacenza. Array di liste in cui ogni lista è associata ad un nodo.
- Ad ogni arco corrisponde un elemento della lista.
- Spazio proporzionale a m + n.

Degree (grado)= numero di vicini di u

- Controllare se (u, v) è un arco richiede tempo O(deg(u)).
- Individuare tutti gli archi richiede tempo $\Theta(m + n)$.

Progettazione di Algoritmi a.a. 2018-19 A. De Bonis

Percorsi e connettività

- . Def. Un percorso in un grafo non direzionato G = (V, E) è una sequenza P di nodi $v_1, v_2, ..., v_{k-1}, v_k$ con la proprietà che ciascuna coppia di vertici consecutivi v_i, v_{i+1} è unita da un arco in E.
- Def. Un percorso è semplice se tutti i nodi sono distinti.
- Def. Un grafo non direzionato è connesso se per ogni coppia di nodi u e v, esiste un percorso tra u e v.

Progettazione di Algoritmi a.a. 2018-19 A. De Bonis

Applicazione del concetto di percorso

• Esempi:

Web graph. Voglio capire se è possibile, partendo da una pagina web e seguendo gli hyperlink nelle pagine via via attraversate, arrivare ad una determinata pagina

Applicazione del concetto di percorso

In alcuni casi può essere interessante scoprire il percorso più corto tra due nodi.

Esempio:

- Grafo : rete di trasporti dove i nodi sono gli aeroporti e gli archi i collegamenti diretti tra aeroporti.
- Voglio arrivare da Napoli a New York facendo il minimo numero di scali.

Progettazione di Algoritmi a.a. 2018-19

Cicli

Def. Un ciclo è un percorso $v_1, v_2, ..., v_{k-1}, v_k$ in cui $v_1 = v_k, k > 2$, e i primi k-1 nodi sono tutti distinti tra di loro

ciclo C = 1-2-4-5-3-1

Progettazione di Algoritmi a.a. 2018-19 A. De Bonis

Alberi

- Def. Un grafo non direzionato è un albero (tree) se è connesso e non contiene cicli
- Theorem. Sia G un grafo direzionato con n nodi. Ogni due delle seguenti affermazioni implica la restante affermazione.
 - $-1e2 \longrightarrow 3; 1e3 \longrightarrow 2; 2e3 \longrightarrow 1$
- 1. Gè connesso.
- 2. G non contiene cicli.
- 3. G ha n-1 archi.

Progettazione di Algoritmi a.a. 2018-1 A. De Bonis

Alberi con radice

- Albero con radice. Dato un albero T, si sceglie un nodo radice r e si considerano gli archi di T come orientati a partire da r
- · Dato un nodo v di T si dice
- Genitore di v: il nodo che w precede v lungo il percorso da r a v (v viene detto figlio di w)
- Antenato di v: un qualsiasi nodo w lungo il percorso che va da r a v (v viene detto discendente di w)
- Foglia: nodo senza discendenti

Importanza degli alberi: rappresentano strutture gerarchiche

Alberi filogenetici. Descrivono la storia evolutiva delle specie animali.

La filogenesi afferma l'esistenza di una specie ancestrale che diede origine a mammiferi e uccelli ma non alle altre specie rappresentate nell'albero (cioè, mammiferi e uccelli condividono un antenato che non è comune ad altre specie nell'albero). La filogenesi afferma inoltre che tutti gli animali discendono da un antenato non condiviso con i funghi, gli alberi e I batteri, e così via.

Progettazione di Algoritmi a.a. 2018-19
A. De Bonis

Visite di grafi

Progettazione di Algoritmi a.a. 2018-19 A. De Bonis

Connettività

- Problema della connettività tra s e t. Dati due nodi s e t, esiste un percorso tra s e t?
- Problema del percorso più corto tra s e t. Dati due nodi s e t, qual è la lunghezza del percorso più corto tra s e t?

- . Applicazioni.
- Attraversamento di un labirinto.
- Erdős number.
- Minimo numero di dispositivi che devono essere attraversati dai dati in una rete di comunicazione per andare dalla sorgente alla destinazione

Progettazione di Algoritmi a.a. 2018-1

Breadth First Search (visita in ampiezza)

BFS. Explora il grafo a partire da una sorgente s muovendosi in tutte le possibile direzioni e visitando i nodi livello per livello (N.B.: il libro li chiama layer e cioè strati).

- . BFS algorithm.
- $L_0 = \{ s \}.$
- L₁ = tutti i vicini di s.
- L_2 = tutti i nodi che non appartengono a L_0 or L_1 , e che sono uniti da un arco ad un nodo in L_1 .
- L_{i+1} = tutti i nodi che non appartengono agli strati precedenti e che sono uniti da un arco ad un nodo in L_i .

Progettazione di Algoritmi a.a. 2018-19 A. De Bonis

21

Breadth First Search

 Teorema. Per ogni i, L_i consiste di tutti i nodi a distanza I da s. C'è un percorso da s a t se e solo t appare in qualche livello.

 L_1 : livello dei nodi a distanza 1 da s L_2 : livello dei nodi a distanza 2 da s

... L_{n-1}: livello dei nodi a distanza n-1 da s

-n-1: IIVEIIO dei nodi a distanza n-1 da

Progettazione di Algoritmi a.a. 2018-1 A. De Bonis

. |

Breadth First Search

Pseudocodice

- 1. BFS(s)
- 2. $L_0=\{s\}$
- **3 For**(i=0;i≤n-2;i++)
- 4. $L_{i+1} = \emptyset$;
- 5. Foreach nodo u in Li
- Foreach nodo v adiacente ad u
- 7. if(v non appartiene ad $L_1,...,L_i$)
- 8. $L_{i+1}=L_{i+1} \cup \{v\}$
- **EndIf** 9.
- 10. Endforeach
- 11. Endforeach
- 12. Endfor

Occore un modo per capire se un nodo è gia stato visitato in precedenza. Il tempo di esecuzione dipende dal modo scelto, da come è implementato il grafo e da come sono rappresentati gli insiemi Li che rappresentano i livelli Progettazione di Algoritmi a.a. 2018-19 A. De Bonis

il for alle linee 6-10 è

Teseguito $\sum_{u \in V} deg(u)$ volte

Esempio di esecuzione di BFS

G

- L₀={1} a. L₁={2,3}
- b. L₂={4,5,7,8} c. L₃={6}

Breadth First Search Tree (Albero BFS)

- Proprietà. L'algoritmo BFS produce un albero che ha come radice la sorgente s e come nodi tutti i nodi del grafo raggiungibili da s.
- L'albero si ottiene in questo modo:
- Consideriamo il momento in cui un vertice v viene scoperto, cioè il momento in cui visitato per la prima volta.
 - Ciò avviende durante l'esame dei vertici adiacenti ad un un certo vertice u di un certo livello L_i (linea 6).
 - In questo momento, oltre ad aggiungere v al livello L_{i+1} (linea 8), aggiungiamo l'arco (u,v) e il nodo v all'albero

Progettazione di Algoritmi a.a. 2018-19 A. De Bonis

29

Breadth First Search Tree

- Proprietà. Si consideri un'esecuzione di BFS su G = (V, E), e sia (x, y) un arco di G. I livelli di x e y differiscono di al più di 1.
- Dim. Sia Li il livello di x ed Li quello di y. Supponiamo senza perdere di generalità che x venga scoperto prima di y cioè che isj. Consideriamo il momento in cui l'algoritmo esamina gli archi incidenti su x.
- Caso 1. Il nodo y è stato già scoperto:
 Siccome per ipotesi y viene scoperto dopo x allora sicuramente y viene inserito o nel livello i dopo x (se adiacente a qualche nodo nel livello i-1) o nel livello i+1 (se adiacente a qualche nodo del livello i esaminato nel For each alla linea 5 prima di x). Quindi in questo caso j= i o j=i+1.
- Caso 2. Il nodo y non è stato ancora scoperto: Siccome tra gli archi incidenti su x c'è anche (x,y) allora y viene inserito in questo momento in L_{i+1}. Quindi in questo caso j=i+1.

2 3

3 4 5 7 8

(a) (b)
PROGETTAZIONE DI ALGORITMI a.a. 2018-19
A. DE BONIS

```
Implementazione di BFS per grafo implementato con liste di adiacenza
   ullet Ciascun insieme L_i è rappresentato da una lista L[i]
   • Usiamo un array di valori booleani Discovered per associare a ciascun nodo il valore
   vero o falso a seconda che sia già stato scoperto o meno

    Durante l'algoritmo costruiamo anche l'albero BFS

        BFS(s):
  1
       Poni Discovered[s] = true e Discovered[v] = false per tutti gli altri v
  2.
   3.
        Inizializza L[O] in modo che contenga solo s
        Poni il contatore dei livelli i = 0
  5
        Inizializza il BFS tree T con un albero vuoto
   6
        While L[i] non è vuota
                                                    //L[i] è vuota se non ci sono
            Inizializza L[i+1] con una lista vuota //nodi raggiungibili da L[i-1]
  7.
  8.
            Foreach u \in L[i]
  9.
             Foreach arco (u, v) incidente su u
   10.
               If Discovered[v] = false
  11.
                 Poni Discovered[v] = true
                 Aggiungi v alla lista L[i+1]
  12.
  13.
                 Aggiungi l'arco (u, v) all'albero T
  14.
             Endif
  15.
            Endfor
          EndFor
  16
  17.
          i=i+1
  18. Endwhile
```


Implementazione di BFS con coda FIFO

L'algoritmo BFS si presta ad essere implementato con un coda Ogni volta che viene scoperto un nodo u, il nodo u viene inserito nella coda Vengono esaminati gli archi incidenti sul nodo al front della coda

BFS(s)

- Inizializza Q con una coda vuota
- Inizializza il BFS tree T con un albero vuoto
- Poni Discovered[s] = true e Discovered[v] = false per tutti gli altri ν
- 4. Inserisci s in coda a Q con una enqueue
- 5. While(Q non è vuota)
- estrai il front di Q con una deque e ponilo in u 6.
- 7. Foreach arco (u,v) incidente su u
- If(Discovered[v]=false) 8.
- Poni Discovered[v]= true 9.
- aggiungi v in coda a Q con una enqueue aggiungi (u,v) al BFS tree T10.
- 11.
- Endif 12.
- 13. Endfor Dimostrare per esercizio che il tempo di esecuzione è O(n+m)
- (svolto in classe) 14. Endwhile