Лабораторная работе №3

«Методы численной минимизации. Исследование на функции Розенброка»

Московкин Александр Николаевич

ИСУ: 472264

Бабич Александр Петрович

ИСУ: <u>412882</u> Группа: <u>J3112</u>

Введение

В данной работе исследуются три метода численной минимизации:

- Meтод SR1
- Метод Нестерова
- Метод тяжёлого шарика

Цель — найти минимум тестовой функции Розенброка с точностью по функции не менее 0.001. Начальное приближение генерируется с фиксированным random_state для воспроизводимости. При необходимости шаг подбирался эвристически или с помощью метода золотого сечения. Приводятся графики сходимости и оценка числа операций для каждого метода.

1. Постановка задачи

Минимизировать функцию Розенброка:

$$f(x,y) = 100(y - x^2)^2 + (1 - x)^2,$$

начиная с точки

$$(x_0, y_0) = \text{random_state} = (x_0, y_0).$$

Критерий останова:

$$|f(x_k, y_k) - f(x_{k-1}, y_{k-1})| < 0.001.$$

2. Описание методов

2.1 Meтод SR1

Обновление на итерации:

$$x_{k+1} = x_k - B_k \nabla f(x_k)$$

где $B(x_k)$ — приближение обратной матрицы Гессе, которое обновляется по формуле SR1:

$$B_{k+1} = B_k + \frac{(s_k - B_k y_k)(s_k - B_k y_k)^T}{(s_k - B_k y_k)^T y_k}$$

при этом

$$s_k = x_{k+1} - x_k, \quad y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$

Матрица B_0 инициализируется единичной матрицей и обновляется на каждой итерации.

2.2 Метод Нестерова

Использует ускорение градиентного спуска с моментумом:

$$\begin{cases} y_k = x_k + \frac{k-1}{k+2}(x_k - x_{k-1}) \\ x_{k+1} = y_k - \alpha \nabla f(y_k) \end{cases}$$

где шаг α подбирается экспериментально.

2.3 Метод тяжёлого шарика

Обновление с инерцией:

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

где параметры α, β подбирались эмпирически.

3. Результаты

3.1 Графики сходимости

Рис. 1. Сходимость метода SR1

Рис. 2. Сходимость метода Нестерова

Рис. 3. Сходимость метода тяжёлого шарика

3.2 Таблица сравнительных оценок

Метод	Число операций	Число вычислений градиента	Значение функции
Тяжёлый шарик	34	34	9.18277
Уск. град. Нестерова	16	16	9.26813
Метод SR1	7	8	8.65066

Таблица 1. Сравнение методов по числу операций, числу вычислений градиента и итоговому значению функции

4. Выводы

Все три метода успешно достигли необходимой точности по функции. Метод SR1 показал наименьшее число итераций и продемонстрировал хороший баланс между скоростью сходимости и вычислительной нагрузкой (т.к. обновляет приближение обратного гессиана без явного обращения настоящей матрицы Гессе). Методы Нестерова и тяжёлого шарика более просты в реализации и требуют меньших затрат на матричные операции, однако используют больше итераций для достижения той же точности. Выбор метода зависит от того, насколько критичны вычислительные ресурсы (обращения и хранение гессиано-подобных аппроксимаций) и насколько важна скорость сходимости для конкретной задачи.

Приложение

Полный код экспериментов и генерации графиков доступен по ссылке: https://github.com/Sanchell1o/Numerical-methods-of-analysis/blob/main/lab_3/notebooks/lab3.ipynb