SMACC

SDSS MOC4 Asteroid Color Classification

Ben Montgomery, Daniel Shepard, Emily Wall

University of Southern Maine

June 8, 2019

Introduction

- The Sloan Digital Sky Survey is a multi-spectral survey of celestial objects, most notably of asteroids.
- About a half-million observations of asteroids have been made over the course of 18 years.
- Classifying the compositions of these asteroids has been something of a hot topic.

Notable Previous Efforts

- Solar System Objects in the SDSS Commissioning Data (2000): Used Autoclass, a NASA-developed unsupervised Bayesian classification algorithm.
 Concluded that there were two classes: C— and S— classes [1].
- Searching for V-Type and Q-Type Main-Belt Asteroids Based On SDSS Colors
 (2007): Used extensive computational and numerical analysis to conclude
 there were four classes: C-, S- V-, and Q- classes [2].
- SDSS-based taxonomic classification and orbital distribution of main belt asteroids (2009): Used templates of what different classes "should look like", applied supervised learning, and concluded there were **sixteen classes** [3].

What We're Doing

We plan to use at least a K-Means++ algorithm and Carvano's data correction methods to see if we can reasonably replicate his results using only unsupervised learning.

- If we keep the growth trend from before, we might find out that there are actually 256 classes.
- More realistically, we expect to find that there are less than sixteen classes.
- It is the belief of some professors here that it is only possible to identify five or six, given the kind of color information in the database.

References

R. P. B. et al., "Searching for v-type and q-type main-belt asteroids based on sdss colors," 2007. [Online]. Available: https://www.lpi.usra.edu/meetings/lpsc2007/pdf/1851.pdf

J. M. Carvano, P. H. Hasselmann, D. Lazzaro, and T. Mothé-Diniz, "SDSS-based taxonomic classification and orbital distribution of main belt asteroids," *Astronomy and Physics*, 2009.

