Amendments to the Claims:

Please amend claims 74, 81 and 90. This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1 1-73 (canceled) 1 74. (currently amended): A probe for laser desorption/ionization mass 2 spectrometry, wherein the probe comprises at least one a sample presenting surface and a moiety 3 that binds to biotin immobilized by chemical bonding to the sample presenting surface, wherein 4 the moiety on the sample presenting surface is bound to the biotin group of at least one 5 biotinylated protein, and wherein the probe further comprises a matrix. 1 75. (previously presented): The probe of claim 74, wherein the moiety binds biotin with an affinity constant of $K_a = 10^{15} \text{ M}^{-1}$. 2 1 76-77 (canceled) 1 78. (previously presented): The probe of claim 74, wherein the sample 2 presenting surface comprises two or more moieties that bind to biotin arranged in a 3 predetermined array. 1 79. (previously presented): The probe of claim 74, wherein the moiety that binds 2 to biotin is selected from the group consisting of streptavidin and avidin. 1 80. (previously presented): The probe of claim 74, wherein the moiety is 2 covalently bonded to the sample presenting surface.

81. (currently amended): A method comprising the steps of:
a) providing a probe comprising at least one a sample presenting surface and a
moiety that binds to biotin immobilized by chemical bonding to the sample presenting surface;
b) contacting the probe with at least one biotinylated protein under conditions
allowing the biotin group to bind to the moiety that binds to biotin; and
c) performing laser desorption/ionization mass spectrometry on the proteins
bound on the surface of the probe.
82. (previously presented): The method of claim 81, further comprising after
step b) the step of:
washing to remove unbound molecules from the probe.
83. (previously presented): The method of claim 81, wherein the moiety binds
biotin with an affinity constant of $K_a = 10^{15} M^{-1}$.
84. (previously presented): The method of claim 81, wherein the probe
comprises two or more moieties that bind to biotin arranged in a predetermined array.
85. (previously presented): The method of any one of claims 81-84, wherein the
moiety is covalently bonded to the sample presenting surface.
86. (previously presented): The method of any one of claims 81-84, further
comprising the step of applying a matrix after allowing the biotin group to bind to the moiety
that binds to biotin.
87. (previously presented): The method of any one of claims 81 or 82, wherein
the moiety that binds to biotin is selected from the group consisting of streptavidin and avidin.
88. (previously presented): The method of claim 87, wherein the moiety is
covalently bonded to the sample presenting surface.

l	89. (previously presented): The method of claim 87, further comprising the step
2	of applying a matrix after allowing the biotin group to bind to the moiety that binds to biotin.
l	90. (currently amended): A mass spectrometry apparatus comprising:
2	a) a probe comprising at least one a sample presenting surface and a moiety that
3	binds to biotin immobilized by chemical bonding to the sample presenting surface;
1	b) an energy source that directs laser energy to the sample presenting surface for
5.	desorbing and ionizing a biotinylated protein captured by the moiety; and
5	c) a detector that detects the desorbed, ionized biotinylated protein.
l	91. (previously presented): The apparatus of claim 90, further comprising:
2	d) a spectrometer tube into which ionized biotinylated protein is accelerated; and
3	e) means for applying an accelerating electrical potential to the desorbed, ionized
4	protein; wherein the mass spectrometer is a time-of-flight mass spectrometer.
l	92. (previously presented): The apparatus of claim 91, further comprising:
2	f) vacuum means for applying a vacuum to the interior of the tube.
l	93. (previously presented): The apparatus of claim 90, wherein the detector
2	comprises an electron multiplier.
i	94. (previously presented): The apparatus of claim 90, wherein the moiety binds
2	biotin with an affinity constant of $K_a = 10^{15} \text{ M}^{-1}$.
1	95. (previously presented): The apparatus of claim 90, wherein the moiety on the
2	probe is bound to the biotin group of at least one biotinylated protein.
l <u>.</u>	96. (previously presented): The apparatus of claim 95, wherein the probe further
2	comprises a matrix.
1	97. (previously presented): The apparatus of claim 90, wherein the probe
2	comprises two or more moieties that bind to biotin arranged in a predetermined array.

1

2 binds to biotin is selected from the group consisting of streptavidin and avidin. 1 99. (previously presented): The apparatus of claim 91, wherein the moiety that 2 binds to biotin is selected from the group consisting of streptavidin and avidin. 1 100. (previously presented): The apparatus of claim 92, wherein the moiety that 2 binds to biotin is selected from the group consisting of streptavidin and avidin. 1 101. (previously presented): The apparatus of claim 93, wherein the moiety that 2 binds to biotin is selected from the group consisting of streptavidin and avidin. 102. (previously presented): The apparatus of claim 90, wherein the moiety is 1 2 covalently bonded to the sample presenting surface. 1 103. (previously presented): The apparatus of claim 95, wherein the moiety is 2 covalently bonded to the sample presenting surface. 104. (previously presented): The apparatus of claim 96, wherein the moiety is 1 2 covalently bonded to the sample presenting surface. 1 105. (previously presented): The apparatus of claim 98, wherein the moiety is 2 covalently bonded to the sample presenting surface. 1 106. (previously presented): The apparatus of claim 99, wherein the moiety is 2 covalently bonded to the sample presenting surface. 1 107. (previously presented): The apparatus of claim 100, wherein the moiety is 2 covalently bonded to the sample presenting surface. 1 108. (previously presented): The apparatus of claim 101, wherein the moiety is 2 covalently bonded to the sample presenting surface.

98. (previously presented): The apparatus of claim 90, wherein the moiety that

PATENT

- 1 109. (previously presented): The apparatus of claim 90, wherein the energy
- 2 source is energy from a nitrogen laser or an Nd-YAG laser.