

MAE 5803 NONLINEAR CONTROL SYSTEMS

Course Introduction

Yongki Go

Mechanical & Aerospace Engineering

Course Contents

- Nonlinear system fundamentals
 - Peculiar dynamics
- Nonlinear system analysis
 - Dynamics behavior
 - Stability concept and analysis
- Nonlinear control design
 - Lyapunov-based control methods
 - Gain scheduling
 - Feedback linearization
 - Sliding control
 - Adaptive control
 - Background knowledge: linear control system analysis and design

 Florida Institute of Technology

Course Administration (1)

- Course materials:
 - Lecture notes:
 - Lecture slides: posted in Canvas
 - Class notes written on the board
 - Supplementary materials: posted in Canvas or distributed in class
 - Homework/assignments: posted in Canvas
- Textbook: Slotine & Li, Applied Nonlinear Control,
 Prentice-Hall, 1991
- Other references:
 - □ Khalil, *Nonlinear Control*, Pearson, 2015
 - Astrom & Wittenmark, Adaptive Control, Addison-Wesley, 1995

Course Administration (2)

- Grading:
 - □ Homeworks/assignments: 30%
 - □ Midterm exam: 30%
 - □ Term paper: 40%
 - The topic of the term paper is open, but it has to be related to nonlinear control design or analysis
 - Students are encouraged to select a topic relevant to their area of interest or research
 - Topic selection has to be finalized before spring break
 - Term paper is due one-week before the last day of semester
 - Presentation of the term paper will be held on the last week of the semester

Goals of Control

- Regardless of the type of the system (linear or nonlinear), goals of control are the same:
 - To stabilize an unstable system
 - □ To improve stability of a system
 - To have better *relative stability*
 - Equivalent to improving *transient response* of the system
 - □ To improve tracking performance (command-following characteristics)
 - Reduce/eliminate *steady-state errors* to certain type of inputs
 - To maintain adequate performance in the presence of disturbances and uncertainties
 - Good disturbance-rejection and robustness characteristics

Linear Control

- Linear control has been widely used and studied:
 - □ Well-developed theory → clear system structure
 - Unique equilibrium

$$\dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{B} \, \mathbf{u}(t)$$
 $\mathbf{x}(t) \in \mathbb{R}^n$: state vector $\mathbf{u}(t) \in \mathbb{R}^m$: input vector Equilibrium: $\dot{\mathbf{x}}(t) = \mathbf{0}$ unique $(\mathbf{x}_0, \mathbf{u}_0)$ solution

Principle of superposition

$$\mathbf{u} = \alpha \mathbf{u}_1 + \beta \mathbf{u}_2$$
 Linear $\mathbf{x} = \alpha \mathbf{x}_1 + \beta \mathbf{x}_2$ System α, β : arbitrary constants

- Various powerful methods for analysis and design
 - Classical SISO (root locus, frequency response) and modern MIMO methods (eigenstructure assignment, LQR, LQG, H_{∞} , etc.)
- Successful applications

Limitations of Linear Control

- Fact: all physical systems are inherently nonlinear
- Linear control is based on *linear model of a system*, which is usually obtained by linearization about certain operational condition (equilibrium)
 - OK for some applications
 - □ *But*, linear model may have very limited range of validity
 - Also, linearization does not make sense for some classes of nonlinear systems
 - Some nonlinear phenomena *cannot be captured* by the linearized model

Motivation for Nonlinear Control

- Improvement over existing linear control systems
 - Not limited by the validity of the linear assumption
 - Potentially better performance as design considers nonlinear effects
- Presence of hard nonlinearities (discontinuity)
 - Linear approximation cannot be applied
- Handling of model uncertainties
 - Certain classes of nonlinear controllers can tolerate model uncertainties better than linear controllers
- Design simplicity
 - Nonlinear control designs may be simpler and more intuitive than their linear counterparts

Example of Nonlinear Behavior

Consider simplified model of underwater vehicle motion:

 $\dot{v} + |v|v = u$

v: speed

u: thrust from propeller

Typical "square-law" drag

Different response speed for positive and negative inputs

Response does not scale proportionally with the input

Nonlinear Phenomena (1)

- Some common nonlinear phenomena:
 - Multiple isolated equilibria
 - System may settle at one of these equilibria depending on the initial condition

Example: $\dot{x} = -x + x^2$ \longrightarrow Linearization: $\dot{x} = -x$

Response comparison:

Nonlinear Phenomena (2)

- Limit cycles
 - Sometimes called *self-excited oscillations*: oscillations with constant amplitude and frequency without external excitation

Famous example: Van der Pol equation

Nonlinear Phenomena (3)

Bifurcations

 Change in system parameters results in change the number of equilibrium points and their stability characteristics

Example: Duffing equation $\ddot{x} + \alpha x + x^3 = 0$

Another example: Hopf bifurcation

Emergence/disappearance of limit cycles as parameter is varied across its bifurcation value

Nonlinear Phenomena (4)

- Chaos
 - Unpredictability of system response

Example: $\ddot{x} + 0.1\dot{x} + x^5 = 6\sin t$ (deterministic equation)

Response comparison:

Nonlinear Phenomena (5)

- Other nonlinear phenomena:
 - *Jump resonance*: sudden jump in the amplitude and frequency of oscillations
 - *Finite escape time*: response goes to infinity in finite time
 - Subharmonic or harmonic oscillations: Under periodic excitation, nonlinear system response may oscillate with frequencies that are submultiples or multiples of input frequency

Nonlinear Dynamical System Model (1)

Model used to express nonlinear dynamical system:

Note: output may comprise some system states or combination of states

- Scalar differential equations
 - Sometimes describe direct input-output relationship
- State-space models
 - Capture internal system dynamics (state dynamics)

Nonlinear Dynamical System Model (2)

General state-space model:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$
 \longrightarrow state dynamics $\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), t)$ \longrightarrow output equation

 $\mathbf{x}(t) \in \mathbb{R}^n$: state vector, describing the "state" of the system

 $\mathbf{u}(t) \in \mathbb{R}^m$: input vector, containing input variables

 $\mathbf{y}(t) \in \mathbb{R}^p$: output vector, containing output variables

f and **g** are vector-valued functions

- Choice of state variables is not unique, but often desirable to choose *physically meaningful* state variables
 - Often associated with the energy storage elements in the system
 - For example mechanical-system state variables:

```
positions \longrightarrow potential energy velocities \longrightarrow kinetic energy
```


Example: Simple Pendulum (1)

 Differential equation representation of simple pendulum motion:

Example: Simple Pendulum (2)

State-space model of the simple pendulum motion with the displacement θ as the output of interest:

State variables: $x_1 = \theta$ \longrightarrow potential energy

$$x_2 = \dot{\theta}$$
 \longrightarrow kinetic energy

Input variable: $u = T_c$ \longrightarrow external torque

Output variable: $y = \theta$

State-space model:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -(g/L)\sin x_1 + (1/mL^2)u$$

$$y = x_1$$

$$\begin{cases} \dot{x}_1 \\ \dot{x}_2 \end{cases} = \begin{bmatrix} x_2 \\ -(g/L)\sin x_1 + (1/mL^2)u \end{bmatrix}$$

$$y = x_1$$

Special System Models

System with no explicit presence of u:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- □ Either no external input or the input has been specified as a function of time and/or state variables
- □ Two cases:
 - $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ Autonomous/time invariant
 - $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$ Non-autonomous/time varying
- In control, system model is often expressed as:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

- $\mathbf{u} = \mathbf{u}(t)$ Non-autonomous/time varying
- $\mathbf{u} = \mathbf{u}(\mathbf{x})$ \longrightarrow Autonomous feedback control
 - typically in stabilization
- $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$ Non-autonomous feedback control
 - typically in tracking

Nonlinear Control Problems (1)

- Stabilization problems: to stabilize the states of the system around an equilibrium condition
 - □ *Asymptotic stabilization problem*:

Given $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$ with equilibrium $\mathbf{x} = \mathbf{0}$, find \mathbf{u} such that starting from anywhere in a region Ω , $\mathbf{x} \to \mathbf{0}$ as $t \to \infty$

- Tracking problems: to track certain output trajectory
 - □ *Asymptotic tracking problem*:

Given $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$, $\mathbf{y} = \mathbf{g}(\mathbf{x})$ and desired output trajectory \mathbf{y}_d , find \mathbf{u} such that starting from anywhere in a region Ω , $\mathbf{y} \to \mathbf{y}_d$ as $t \to \infty$, while \mathbf{x} remains bounded

Nonlinear Control Problems (2)

- Relations between stabilization and tracking problems:
 - Tracking problems can often be treated as stabilization problems

$$\mathbf{e} = \mathbf{y} - \mathbf{y}_d \implies \dot{\mathbf{e}} = \mathbf{h}(\mathbf{e}, \mathbf{u}, t)$$

Tracking problem: find **u** to make $\mathbf{e} \to \mathbf{0}$ as $t \to \infty$

→ stabilization problem

■ Stabilization problem can often be regarded as special case of tracking problems $\implies \mathbf{y}_d = \mathbf{constant}$

Evaluation of Control Characteristics

- Desired control behaviors for nonlinear systems need to be examined in the operating region of interest
- Relevant control characteristics:
 - *Stability*: guarantee of stability in local or global sense, region of stability, convergence
 - Accuracy and speed of response: tolerable accuracy and consistent tracking for some typical motions in the region of operation
 - □ *Robustness*: degree of sensitivity to effects not considered in the nominal design, e.g. disturbances, measurement noise, unmodeled dynamics, etc.
 - □ *Cost*: requirement on number and type of actuators, sensors, and controller complexity

Nonlinear Control Methods

- Trial-and-error: apply linear compensation techniques (lead and/or lag) based on knowledge of system behaviors
- Gain-scheduling: schedule gains (based on operating conditions) from applying linear control methodologies to linearization of nonlinear system about several points
- Compensate for nonlinearities: nominal nonlinearities can be compensated e.g. feedback linearization
- *Robust control*: dominate nonlinearities by including model uncertainties, e.g. sliding control
- Adaptive control: allow controller to adapt to unknown or changing system parameters
- Neural-network approach: allow controller to predict the system behavior and compensate for it

Florida Institute of Technology