2 JUN 1994

香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九四年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1994

> 附加數學卷一 ADDITIONAL MATHEMATICS PAPER I

> > 評卷 参考 MARKING SCHEME

這份內部文件,只限閱卷員參閱,不得以任何形式翻印。 This is a restricted document. It is meant for use by markers of this paper for marking purposes only. Reproduction in any form is strictly prohibited.

It is highly undesirable that this marking scheme should fall into the hands of students. They are likely to regard it as a set of model answers, which it certainly is not.

Markers should therefore resist pleas from their students to have access to this document. Making it available to students would constitute misconduct on the part of the marker.

本評卷參考並非標準答案,故極不宜 落於學生手中,以免引起誤會。

週有學生求取此文件時, 閱卷員應嚴 予拒絕。閱卷員如向學生披露本評卷參考 內容, 即遠背閱卷員守則。

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1994

P.1

RESTRICTED 內部文件

- 1994 HKCE Add. Maths. I Marking Scheme

Marking	Scheme	<u></u>	
	Solution	Marks	Remarks
1.	$\frac{2(x+1)}{x-2} \ge 1$		
	$\frac{2(x+1)}{x-2}-1\geq 0$	1M	_
	$\frac{x+4}{x-2} \ge 0$	1A	
	$x > 2 \text{ or } x \le -4$	2A 4	1A for $x \ge 2$ or $x \le -4$
	Alternative solution (1)		
	$\frac{2(x+1)}{x-2} \ge 1$		
_	Consider the following 2 cases (i) $x > 2$, (ii) $x < 2$:	1M	Awarded even if equality sign is included.
	Case 1 : x > 2		Is included.
	$2(x+1) \geq x-2$		
	x ≥ -4		
	Since $x > 2$, $\therefore x > 2$	1A	
	Case 2 : x < 2		·
	$2(x + 1) \leq x - 2$		
	$x \leq -4$		
	Since $x < 2$, $\therefore x \le -4$		
	Combining the 2 cases, $x > 2$ or $x \le -4$	2A	1A for $x \ge 2$ or $x \le -4$
	Alternative solution (2)		*
_	$\left \frac{2(x+1)}{(x-2)} \ge 1 \right $		
	$2(x+1)(x-2) \ge (x-2)^2 \text{ (and } x \ne 2)$	1M	
	$x^2 + 2x - 8 \ge 0$ (and $x \ne 2$)		
•	$(x-2)(x+4) \ge 0$ (and $x \ne 2$)	1A	
	$x > 2$ or $x \le -4$	2A	$1A for x \ge 2 or x \le -4$
2.	A 7m2c		
-	Imaginary	1A	For circle
	Q.	1A	For centred at $z = 2i$
		1A	For radius = 1
	ρ Position of ρ	1M+1A	1M for being farthest away from O
			Axes not labelled - (pp-1)

RESTRICTED 內部文件 Provided by dse.life

RESTRICTED 內部文件

1994 HKCE Add. Maths. I Marking Scheme

CONTRACTOR OF THE PROPERTY OF

	Solution	Marks	Remarks
3.	(a) $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$	1M	Omit vector sign (pp-1)
	$=2\vec{i}-\vec{j}$	1A	
	$ \overrightarrow{PQ} = \sqrt{2^2 + (-1)^2} = \sqrt{5}$	1A	
	(b) Let $\angle QPR = \theta$		
.•	$\overrightarrow{PQ} \cdot \overrightarrow{PR} = (2\overrightarrow{i} - \overrightarrow{j}) \cdot (-3\overrightarrow{i} - 2\overrightarrow{j}) = -4$		
		1A	Omit dot sign (pp-1)
	$\cos\theta = \frac{\overrightarrow{PQ} \cdot \overrightarrow{PR}}{ \overrightarrow{PQ} \overrightarrow{PR} }$	1M	
	$=\frac{-4}{\sqrt{65}}$	12	
	$\sqrt{65}$	1A 6	
_	Alternative solution		
	(b) $ \overrightarrow{PR} = \sqrt{13}$		
	$\overrightarrow{RQ} = 5i + j$		
	$ \overrightarrow{RQ} = 51 + j$ $ \overrightarrow{RQ} = \sqrt{26}$		
	RQ = V26	1A	
	$\cos \angle QPR = \frac{ \overrightarrow{PQ} ^2 + \overrightarrow{PR} ^2 - \overrightarrow{QR} ^2}{2 \overrightarrow{PQ} \overrightarrow{PR} }$	1M	
	$\approx \frac{5 + 13 - 26}{2\sqrt{5}\sqrt{13}}$		
	$=\frac{-4}{\sqrt{65}}$	1A	
	$y = \tan\left(\frac{1}{x}\right)$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{x^2} \sec^2(\frac{1}{x})$	1M+1A	$1M \text{ for } \frac{d}{dx}(\tan x) = \sec^2 x$
	$x^2 \frac{dy}{dx} + (y^2 + 1) = -\sec^2(\frac{1}{x}) + \tan^2(\frac{1}{x}) + 1$	1M	or = $-(1 + y^2) + y^2 + 1$
	= 0	1	
	Differentiating $x^2 \frac{dy}{dx} + (y^2 + 1) = 0$ with respect		
	to x		
	$2x\frac{dy}{dx} + x^2\frac{d^2y}{dx^2} + 2y\frac{dy}{dx} = 0$	1A	
	$x^2 \frac{d^2 y}{dx^2} + 2(x + y) \frac{dy}{dx} = 0$		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{2(x+y)}{x^2} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	1_6	

DECTRICTED 内域 Provided by dse.life

1.94 HKCE Add. Maths. I Marking Scheme

		1 1/2 1/2 -	
	Solution	Marks	Remarks
5.	$z^2 - \sqrt{2}z + 1 = 0$		
	$z=\frac{\sqrt{2}}{2}\pm\frac{\sqrt{2}}{2}i$	1A	Accept $\frac{\sqrt{2}}{2} \pm \frac{\sqrt{-2}}{2}$
	$=\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\text{or}\cos(-\frac{\pi}{4})+i\sin(-\frac{\pi}{4})$	1A+1A	Do not accept degrees
			Do not accept $\cos \frac{\pi}{4} - i \sin \frac{\pi}{4}$
	$w^4 - \sqrt{2}w^2 + 1 = 0$		(Note: Mark the rest of the Q if z is correct but not in the specified format.)
	$w^2 = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$ or $w^2 = \cos(-\frac{\pi}{4}) + i \sin(-\frac{\pi}{4})$	1M	
_	$w = \cos\left(\frac{2k\pi + \frac{\pi}{4}}{2}\right) + i\sin\left(\frac{2k\pi + \frac{\pi}{4}}{2}\right)$		
	$=\cos(k\pi+\frac{\pi}{8})+i\sin(k\pi+\frac{\pi}{8})$	1M+1A +1A	lM for De Moivre's Theorem
	or $w = \cos\left(\frac{2k\pi - \frac{\pi}{4}}{2}\right) + i\sin\left(\frac{2k\pi - \frac{\pi}{4}}{2}\right)$,		
	$=\cos(k\pi-\frac{\pi}{8})+i\sin(k\pi-\frac{\pi}{8})$	J	
	where $k = 0$, 1 (or any 2 consecutive		
	integers)	7	
	or $w = \cos\theta + i\sin\theta$,		
	where $\theta = \frac{\pi}{8} (\text{or } -15\frac{\pi}{8} \text{ etc.}), -\frac{\pi}{8} (\text{or } \frac{15\pi}{8}), \frac{7\pi}{8} (\text{or } -\frac{9\pi}{8}),$	1A	Accept other equivalent values.
	$-\frac{7\pi}{8}\left(\text{or}\frac{9\pi}{8}\right)$		Accept degrees
		<u> </u>	
		l	

1994 HKCE Add. Maths. I Marking Scheme

	Solution			Remarks
6.	(a)	$x^2 + y \cos x - y^2 = 0$		
	•	$2x + \cos x \frac{dy}{dx} - y \sin x - 2y \frac{dy}{dx} = 0$	1A+1A	1A for $\frac{d}{dx}(y\cos x)$
				1A for other terms
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y\sin x - 2x}{\cos x - 2y}$	1A	
	(b)	At P, $\frac{dy}{dx} = \frac{-\frac{\pi}{2}\sin\frac{\pi}{2} - \pi}{\cos\frac{\pi}{2} - (-\pi)}$	lM	
		$=-\frac{3}{2}$. 1A	
		Equation of tangent is		
-		$\frac{y+\frac{\pi}{2}}{x-\frac{\pi}{2}}=-\frac{3}{2}$	1M	
		$6x + 4y - \pi = 0$	1 <u>A</u>	or $y = -\frac{3}{2}x + \frac{\pi}{4}$
· · · · · · · · · · · · · · · · · · ·		•		

RESTRICTED 内部文件

19 (HKCE Add. Maths. I Marking Scheme

7. $(x-3)^2 - x-3 - 12 = 0$		
7. $(x-3)^2 - x-3 - 12 = 0$	- 1	
Solution (1):		
$(x-3)^2 = x-3 ^2$	2M	
$ x-3 ^2 - x-3 - 12 = 0$		
(x-3 +3)(x-3 -4)=0	1A	
x-3 = 4 or $ x-3 = -3$		
$\therefore x-3 =4$		
$\therefore x = 7$ or -1	1A+1A+2	A 2A for rejecting $ x-3 =-3$
	7	
Solution (2):		
Consider 2 cases: (1) $x \ge 3$ (2) $x < 3$	1 1 1	Nosemb emissione operality sign
Case (1): $x \ge 3$	1M	Accept omitting equality sign
$(x-3)^2-(x-3)-12=0$	1A	
[(x-3)+3][(x-3)-4]=0	16	
$x^2 - 7x = 0$		
x = 0 or 7	1A	
Rejecting $x = 0$, $\therefore x = 7$	1A	
Case (2) : x < 3		
$(x-3)^2 + (x-3) - 12 = 0$	1A	
[(x-3)-3][(x-3)+4]		
$x^2 - 5x - 6 = 0$		
x = 6 or -1	1A	·
Rejecting $x = 6$, $\therefore x = -1$	1A	
Combining the 2 cases, $x = -1$ or 7		
Solution (3):		
$ (x-3)^2- x-3 -12=0$		
Let $x - 3 = u$		
$ u^2 - 12 = u $		•
$u^4 - 24u^2 + 144 = u^2$	2M .	
$u^4 - 25u^2 + 144 = 0$		
$(u^2 - 9)(u^2 - 16) = 0$	1A	
$u = \pm 3$ or $u = \pm 4$		
x = 0 or 6 or x = -1 or 7	1A+1A	
Rejecting $x = 0$ and 6 , $\therefore x = -1$ or 7	1A+1A	

RESTRICTED 内部文件 Provided by dse.life

1994 HKCE Add. Maths. I Marking Scheme

Solution				Remarks	
8.	(a)	x = 0	1 <u>A</u>		
	(b)	$x^2 + kx + (2k - 3) = 0$ has no real root.	1M	Can be omitted	
		$\Delta = k^2 - 4(2k - 3) < 0$	1M		
		$k^2 - 8k + 12 < 0$			
		(k-2)(k-6) < 0	1A		
		2 < k < 6	1_4_		
	(c)	(i) $f'(x) = 3x^2 + 2kx + (2k - 3)$	1A		
		$\begin{cases} \alpha + \beta = \frac{-2k}{3} \\ \alpha\beta = \frac{2k-3}{3} \end{cases}$	}1M		
<u></u> '		$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$	1A	Can he omitred	
		$= (\frac{-2k}{3})^2 - 4(\frac{2k-3}{3})$			
		$= \frac{4}{9} (k^2 - 6k + 9)$	1A	·	
		$=\frac{4}{3}(k-3)^2$	1A	$\Delta = 4k^2 + 12(2k - 3)$	
		Since $\alpha \neq \beta$, $\therefore k \neq 3$	1	$= \frac{3}{4} \left(\frac{\lambda}{\lambda} + \frac{3}{2}\right)^2 \dots 1A$ Since $\frac{\lambda}{\lambda} > 0$, $\frac{\lambda}{\lambda} k \neq 3 \dots 1$	
1		·		June 18 1 Sty L. N. Jan J. L. I	
		$(ii) \left \frac{2}{3}(k-3)\right \leq \frac{2}{3}$	1M		
		$ k-3 \leq 1$	1A	$ or -1 \le k - 3 \le 1 $	
		$2 \le k \le 4$	1A -		
_		Combining with $2 < k < 6$, $k \ne 3$ and k is an integer,			
		k = 4	2 <u>A</u> 11		
		Alternative solution			
		(c) (ii) $\frac{4}{9}(k^2-6k+9) \le \frac{4}{9}$	1M		
		$k^2 - 6k + 8 \le 0$	1A		
		$(k-2)(k-4)\leq 0$			
		$2 \le k \le 4$	1A		
		$\therefore k = 4$	2A		

Marking Scheme				
	Solu	tion	Marks	Remarks
	(a).	Put $x = 0$, $y = -\frac{4}{3}$: y-intercept is $-\frac{4}{3}$	1A	
		Put $y = 0$, $\frac{x^2}{1+x} - \frac{4}{3} = 0$		
		$3x^2 - 4x - 4 = 0$ x = 2, -\frac{2}{3}		
		x = 2, -3		
		$\therefore x$ -intercepts are 2 and $-\frac{2}{3}$.	1 <u>A</u>	
			2	
	(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x(1+x)-x^2}{(1+x)^2}$	1M	For quotient rule
		$=\frac{2x+x^2}{(1+x)^2}$	1A	
		$\frac{d^2y}{dx^2} = \frac{(2+2x)(1+x)^2 - 2(1+x)(2x+x^2)}{(1+x)^4}$		
		$=\frac{2}{(1+x)^3}$	1	
			_3	
	(c)	$\frac{2x+x^2}{(1+x)^2}=0$	1M	
		x = 0 or -2	1A+1A	
		When $x = 0$, $y = -\frac{4}{3}$		
		$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 2 (\text{or} > 0)$	1M	
		$\therefore (0, -\frac{4}{3})$ is a minimum point	1A	No mark if checking is omitted
		When $x = -2$, $y = -\frac{16}{3}$	·	
		$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = -2 (\text{or} < 0)$		
		$\therefore (-2, -\frac{16}{3})$ is a maximum point	<u>1A</u>	No mark if checking is omitted
			_6	
				•
		<i>*</i>		
		•		

1994 HKCE Add. Maths. I Marking Scheme

RFSTRICTFD 内部文件rovided by dse.life

RESTRICTED 內部文件

1944 IKCE Add. Maths. I Marking Scheme

	Scheme		Marks	Remarks
	Solu	tion	Marks	Remarks
	(a)	$\overrightarrow{OC} = \frac{1}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$	1A C	omit vector sign (pp-1
		$\overrightarrow{DA} = \overrightarrow{OA} - \overrightarrow{OD}$	1M C	Can be omitted
		$= \overrightarrow{a} - \frac{1}{2} \overrightarrow{b}$	1A 3	
	(þ)	$\overrightarrow{BE} = \overrightarrow{OE} - \overrightarrow{OB}$		
		$= (k+1)\overrightarrow{OC} - \overrightarrow{OB}$	1 1	For $\overrightarrow{OE} = (k+1)\overrightarrow{OC}$
		$= \frac{k+1}{3} \overrightarrow{a} + \frac{2k-1}{3} \overrightarrow{b}$	1_2	$\frac{\overrightarrow{OC}}{\overrightarrow{CE}} = \frac{1}{k} (pp-1)$
		Alternative solution $\overrightarrow{BE} = \overrightarrow{BC} + \overrightarrow{CE}$		•
		$=\frac{1}{3}\overrightarrow{BA} + \overrightarrow{kOC}$	1A	
		$=\frac{1}{3}(\overrightarrow{a}-\overrightarrow{b})+k(\frac{\overrightarrow{a}+2\overrightarrow{b}}{3})$	e in commence of the commence	
		$=\frac{k+1}{3}\overrightarrow{a}+\frac{2k-1}{3}\overrightarrow{b}$	1	
	(c)	$\overrightarrow{a} - \frac{1}{2}\overrightarrow{b} = \lambda \left(\frac{k+1}{3}\overrightarrow{a} + \frac{2k-1}{3}\overrightarrow{b} \right)$	1M	No mark if λ is omitted
		$\begin{cases} 1 = \lambda \left(\frac{k+1}{3} \right) \\ -\frac{1}{2} = \lambda \left(\frac{2k-1}{3} \right) \end{cases}$	1M N	No mark if λ is omitted
		$k=\frac{1}{5}$	1A	
	•	Alternative solution		
		$\frac{\frac{k+1}{3}}{1} = \frac{\frac{2k-1}{3}}{-\frac{1}{2}}$		pp-1) for considering the slope of the vectors
		$k=\frac{1}{5}$	1A	
		<u> </u>	3	
		(i) $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \overrightarrow{b} \cos \frac{\pi}{3}$	lm c	Omit dot sign (pp-1)
-		$= (1)(2) \cos \frac{\pi}{3} = 1$	la ,	·

RESTRICTED 内部文件rovided by dse.life

1994 HKCE Add. Maths. I Marking Scheme

Solution	Marks	Remarks
$(ii) \overrightarrow{BE} \cdot \overrightarrow{OE} = 0$	1M	
$\left(\frac{k+1}{3}\overrightarrow{a} + \frac{2k-1}{3}\overrightarrow{b}\right) \cdot \frac{k+1}{3}\left(\overrightarrow{a} + 2\overrightarrow{b}\right) = 0$		
$\frac{k+1}{9}$ [$(k+1)\vec{a}\cdot\vec{a}+(2k+2+2k-1)$		
$\overrightarrow{a} \cdot \overrightarrow{b} + 2(2k-1)\overrightarrow{b} \cdot \overrightarrow{b}] = 0$	1M	For distribution
$k + 1 + 4k + 1 + 8(2k - 1) = 0 \ (k \neq -1)$		
$k=\frac{2}{7}$	1A	
For $k = \frac{2}{7}$, $\overrightarrow{BE} = \frac{3}{7} \overrightarrow{a} - \frac{1}{7} \overrightarrow{b}$	1M	Trying to find \overrightarrow{BE}
$\left \overrightarrow{BE} \right ^2 = \overrightarrow{BE} \cdot \overrightarrow{BE}$	1M	Trying to find $ \overrightarrow{BE} $
$= \left(\frac{3}{7}\vec{a} - \frac{1}{7}\vec{b}\right) \cdot \left(\frac{3}{7}\vec{a} - \frac{3}{7}\vec{b}\right)$		
$= \frac{9}{49} \vec{a} \cdot \vec{a} - \frac{6}{49} \vec{a} \cdot \vec{b} + \frac{1}{49} \vec{b} \cdot \vec{b}$		
$= \frac{9}{49} - \frac{6}{49} + \frac{4}{49} = \frac{1}{7}$		
\therefore Distance of B from $OC = \frac{\sqrt{7}}{7}$,	<u>1A</u>	
	_8	

RESTRICTED 内部文件

, 15 (4HKCE Add. Maths. I Marking Scheme

So	lution		Marks	Poma wha
	1401011		MAIRS	Remarks
11. (a)	(i)	$\frac{z^2}{\overline{z}} = \frac{r^2(\cos 2\theta + i\sin 2\theta)}{r(\cos \theta - i\sin \theta)}$	1A+1A	1A for denominator
		$=\frac{r^2(\cos 2\theta + i\sin 2\theta)}{r(\cos(-\theta) + i\sin(-\theta))}$	1A	1A for numerator For denominator
		$r(\cos(-\theta) + i\sin(-\theta))$ $= r(\cos 3\theta + i\sin 3\theta)$	1	
	(ii)	$z^2 = \pm \overline{z}$		
		$r(\cos 3\theta + i\sin 3\theta) = i$	1A	
		$=\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$	1A	Or other equivalent polar
_		r = 1	1A	form (can be omitted)
-		$3\theta = 2\mathrm{n}\pi + \frac{\pi}{2}$		
		$\theta = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$	1A+1A	Any one correct - 1A
		$(\text{or }\theta = \frac{2n\pi}{3} + \frac{\pi}{6}, \text{ where } k = -1, 0, 1)$		All correct - 2%
		Alternative solution (ii) $r(\cos 3\theta + i \sin 3\theta) = i$	1A	·
		$\begin{cases} r\cos 3\theta = 0 \\ r\sin 3\theta = 1 \end{cases}$	1A	or $\cos 3\theta = 0$ $\sin 3\theta = 1$
		$r^2(\sin^2 3\theta + \cos^2 3\theta) = 1$		(can be omitted)
		r = 1	1A	
		$3\theta = 2n\pi + \frac{\pi}{2}$		
		$\theta = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$	1A+1A	Any one connect - la
				All correct - 2A
			9	
			, ,	

RFSTRICTFD 内部文件rovided by dse.life

RESTRICTED 内部文件

19 94 M	E Add. Maths.	I
M	cheme	

M. 4	Sheme						
	Sol	ution		Marks	Remarks		
	(b)	(i)	$w - i = \cos\alpha + i\sin\alpha$	1A			
			$ w - i = (\sqrt{\cos^2\alpha + \sin^2\alpha}) = 1$	1A			
		(ii)	Since $(w-i)^2 = = i\overline{w} - 1$				
.*			$=i(\overline{w-i})$,	1A			
			$\therefore w - i$ satisfies the equation $z^2 = i\overline{z}$				
			Using the result of (a),				
			$w - i = \cos\theta + i\sin\theta$, where $\theta = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$	1M			
·			$w - i = -i$, $\frac{\sqrt{3}}{2} + \frac{1}{2}i$, $\frac{-\sqrt{3}}{2} + \frac{1}{2}i$				
_			$w = 0, \frac{\sqrt{3}}{2} + \frac{3}{2}i, \frac{-\sqrt{3}}{2} + \frac{3}{2}i$	1A+1A+1	$\underline{\mathbf{A}} \text{ (pp-1) for } w = \cos x + i(1 + \sin \alpha)$		
				7	where $\alpha = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$		

RESTRICTED 内部文件rovided by dse.life

,

RESTRICTED 內部文件

 15ς ψHKCE Add. Maths. I Marking Scheme

	Solution			Remarks
2.	(a)	$x = 4sin\theta$	1A	
		$\frac{\mathrm{d}x}{\mathrm{d}t} = 4\cos\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$	1M	For differentiating
		Put $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{2}$		wrt t
		$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{1}{8\cos\theta}.$	1A	
			_3	
	(b)	$y = 4\cos\theta$	1A	
		$\frac{\mathrm{d}y}{\mathrm{d}t} = -4\sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$		
		$=-\frac{\tan\theta}{2}$	1A	
		$z = \sqrt{25 - 16 \sin^2 \theta}$	1M	or √25 - x ²
		$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{-32\sin\theta\cos\theta}{2\sqrt{25 - 16\sin^2\theta}} \frac{\mathrm{d}\theta}{\mathrm{d}t}$		
		$=\frac{-2\sin\theta}{\sqrt{25-16\sin^2\theta}}$	1A	
		Rate of change = $\frac{dy}{dt} + \frac{dz}{dt}$	1M	
		At $\theta = \frac{\pi}{6}$, Rate = $-\frac{\tan \frac{\pi}{6}}{2} - \frac{2 \sin \frac{\pi}{6}}{\sqrt{25 - 16 \sin^2 \frac{\pi}{6}}}$		
		$= -0.507 \text{ (m s}^{-1}\text{)}$	1 <u>A</u> _6	
((c)	Let A be the area of $\triangle OPR$		
		$A = \frac{1}{2}xy$		
		= $8\sin\theta\cos\theta$	1A	
		= $4\sin 2\theta$		
		A is maximum when $\sin 2\theta = 1$	2M	
		$2\theta = \frac{\pi}{2}$		
		$\therefore \theta = \frac{\pi}{4}$	1A	

Solution		Marks	Remarks
	Alternative solution (1)		
	$A = 8\sin\theta\cos\theta$	1A	
	$\frac{\mathrm{d}A}{\mathrm{d}\theta} = 8(\cos^2\theta - \sin^2\theta)$		
	$\frac{dA}{d\theta} = 0, \cos^2\theta - \sin^2\theta = 0$	1M	
	$\tan^2\theta = 1$		
	$\theta = \frac{\pi}{4}$	1A	
	$\frac{\mathrm{d}^2 A}{\mathrm{d}\theta^2} = -32 \sin\theta \cos\theta$		
***	$\frac{\mathrm{d}^2 A}{\mathrm{d}\theta^2} < 0 \text{at} \theta = \frac{\pi}{4}$		
	\therefore A is maximum when $\theta = \frac{\pi}{4}$	1M	For checking
	Alternative solution (2)		
	$A = 4\sin 2\theta$	1A	
	$\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}\theta} = 8\cos 2\theta$		
	$\frac{\mathrm{d}A}{\mathrm{d}\theta} = 0, \cos 2\theta = 0$	1M	
	$\theta = \frac{\pi}{4}$	1A	
	$\frac{\mathrm{d}^2 A}{\mathrm{d}\theta^2} = -16\sin 2\theta$		
-	$\frac{\mathrm{d}^2 A}{\mathrm{d}\theta^2} < 0 \text{at} \theta = \frac{\pi}{4}$		
	\therefore A is a maximum when $\theta=rac{\pi}{4}$	1M·	For checking
	Similarly, area of ΔORQ is maximum when		
	$\angle OQR = \frac{\pi}{4}$	lM	
•	By Sine Law,		
	$\frac{\sin\frac{\pi}{4}}{4} = \frac{\sin\theta}{5}$	1M	
	$\theta = 1.08$	1 <u>A</u> 7	
			And the second s

RFSTRICTFD 内部文件Provided by dse.life