Einführung in die Algebra

BLATT 6

Jendrik Stelzner

26. November 2013

Aufgabe 6.1.

Es sei n > 1 so dass

$$a^n = a \text{ für alle } a \in R,$$
 (1)

und $\mathfrak p$ ein Primideal in R. Da $\mathfrak p$ ein Primideal ist, ist $R/\mathfrak p$ ein Integritätsring, sowie $R/\mathfrak p \neq 0$, da $\mathfrak p$ von R verschieden ist. Da R kommutativ ist, ist es auch $R/\mathfrak p$, und es ist offensichtlich, dass die Bedingung (1) auf $R/\mathfrak p$ vererbt wird. Da für alle $r \in R/\mathfrak p$ mit $r \neq 0$

$$r \cdot r^{n-1} = r^n = r = r \cdot 1,$$

folgt, wie bereits letzte Woche gezeigt, wegen der Nullteilerfreiheit von R/\mathfrak{p} , dass $r^{n-1}=1$ für alle $r\in R/\mathfrak{p}$. Als ist für alle $r\in R/\mathfrak{p}$ mit $r\neq 0$

$$rr^{n-2} = r^{n-1} = 1,$$

d.h. alle $r \in R/\mathfrak{p}$ mit $r \neq 0$ sind multiplikativ invertierbar. Zusammen mit der Kommutativität von R/\mathfrak{p} und $R/\mathfrak{p} \neq 0$ zeigt dies, dass R/\mathfrak{p} ein Körper ist. Dies ist äquivalent dazu, dass \mathfrak{p} ein maximales Ideal ist.

Aufgabe 6.2.

Bemerkung 1. Sei R ein nicht notwendigerweise kommutativer Ring. Für $x,y\in R$ ist genau dann $xy\in R^*$, wenn $x,y\in R^*$.

Beweis. Sind $x,y\in R^*$ so ist auch $xy\in R^*$, da die Einheitengruppe unter Multiplikation abgeschlossen ist.

Sei andererseits $c:=xy\in R^*$. Da $c\in R^*$ gibt es $c^{-1}\in R^*$ mit $cc^{-1}=1$. Es ist daher

$$x(yc^{-1}) = (xy)c^{-1} = cc^{-1} = 1,$$

also $x \in R^*$ mit $x^{-1} = yc^{-1}$. Damit ist auch

$$y(c^{-1}x) = (yc^{-1})x = x^{-1}x = 1,$$

also auch $y \in R^*$.

Für alle $a\in \ker \varphi$ ist 1-a multiplikativ invertierbar: Für $n\geq 1$ mit $a^n=0$ ergibt sich, dass

$$(1+a+a^2+\ldots+a^{n-1})(1-a)=1-a^n=1$$
 und $(1-a)(1+a+a^2+\ldots+a^{n-1})=1-a^n=1$.

Folglich ist

$$1 + \ker \varphi = 1 - \ker \varphi \subseteq R^*$$
.

Wir bemerken auch, dass

$$x \in 1 + \ker \varphi \Leftrightarrow \varphi(x) = 1$$
,

denn da $1 \in \varphi^{-1}(\{1\})$ ist $1 + \ker \varphi$ als Nebenklasse von 1 bezüglich $\ker \varphi$ die Faser $\varphi^{-1}(\{1\})$ von $1 \in S$ unter φ .

Bekanntermaßen induziert φ einen Gruppenhomomorphismus $\varphi_{|R^*}: R^* \to S^*$ der entsprechenden Einheitengruppen. Die Surjektivität von φ vererbt sich dabei auf $\varphi_{|R^*}$: Für $s \in S^*$ gibt es $r, r' \in R$ mit $\varphi(r) = s$ und $\varphi(r') = s^{-1}$. Es ist

$$\varphi(rr') = \varphi(r)\varphi(r') = ss^{-1} = 1,$$

also wie oben bemerkt $rr'\in 1+\ker \varphi\subseteq R^*$. Nach Bemerkung 1 ist daher $r\in R^*$. Es ist nun nach den obigen Beobachtungen

$$\ker \varphi_{|R^*} = \{ x \in R^* : \varphi(x) = 1 \} = R^* \cap \varphi^{-1}(\{1\})$$
$$= R^* \cap (1 + \ker \varphi) = 1 + \ker \varphi.$$

Folglich ist $1 + \ker \varphi$ ein Normalteiler von R^* und

$$R^*/(1 + \ker \varphi) \cong S^*$$
.

Bemerkung

Bemerkung 2. Ist R ein kommutativer Ring, so ist jedes echte Ideal $\mathfrak{a} \subsetneq R$ in einem maximalen Ideal von R enthalten.

Beweis. Es sei R ein kommutativer Ring und $\mathfrak{a} \subseteq R$ ein Ideal mit $\mathfrak{a} \neq R$. Die Menge

$$\mathcal{I} := \{ I \subseteq R : I \text{ ist ein Ideal in } R \text{ mit } I \neq R \text{ und } \mathfrak{a} \subseteq I \} \subseteq \mathcal{P}(R).$$

ist bezüglich der Teilmengenrelation \subseteq partiell geordnet. Da $\mathfrak{a} \in \mathcal{I}$ ist \mathcal{I} nichtleer. Es sei $\mathcal{C} \subseteq \mathcal{I}$ eine nichtleere Kette. \mathcal{C} besitzt ein obere Schranke in \mathcal{I} . Um dies zu zeigen, nutzen wir die folgende Bemerkung:

Bemerkung 3. Sei G eine abelsche Gruppe, und $(G_i)_{i\in I}$ eine Kette von Untergruppen von G, d.h. für alle $i\in I$ ist G_i eine Untergruppe von G und für $i,j\in I$ ist $G_i\subseteq G_j$ oder $G_j\subseteq G_i$. Dann ist

$$\sum_{i \in I} G_i = \bigcup_{i \in I} G_i.$$

Beweis. Für alle $i \in I$ ist $G_i \subseteq \bigcup_{j \in I} G_j$, also ist auch $\sum_{i \in I} G_i \subseteq \bigcup_{i \in I} G_i$. Für $x \in \sum_{i \in I} G_i$ gibt es Indizes $i_1, \ldots, i_n \in I$ und Elemente $g_{i_1} \in G_{i_1}, \ldots, g_{i_n} \in G_{i_n}$ mit $x = \sum_{j=1}^n g_{i_j}$. Da die G_i bezüglich \subseteq total geordnet sind, gibt es ein $k \in \{1, \ldots, n\}$ mit $G_{i_j} \subseteq G_{i_k}$ für $j = 1, \ldots, n$. Insbesondere ist $g_{i_j} \in G_{i_k}$ für $j = 1, \ldots, n$, also auch $x \in G_{i_k}$. Damit ist $x \in \bigcup_{i \in I} G_i$, also $\sum_{i \in I} G_i \subseteq \bigcup_{i \in I} G_i$.

Aus dieser Behauptung folgt, dass

$$C := \bigcup_{I \in \mathcal{C}} I = \sum_{I \in \mathcal{C}} I$$

ein Ideal in R ist. Für alle $I \in \mathcal{C}$ gilt, dass $I \neq R$, also $1 \notin I$, und daher auch $1 \notin C$, also $C \neq R$. Auch ist $\mathfrak{a} \subseteq I \subseteq C$ für $I \in C$. Es ist also $C \in \mathcal{I}$, und deshalb C eine obere Schrankte für \mathcal{C} in \mathcal{I} .

Mit dem Lemma von Zorn folgt, dass es ein $M \in \mathcal{I}$ gibt, dass bezüglich \subseteq maximal in \mathcal{I} ist. M ist ein maximales Ideal in R: Für jedes Ideal M' mit $M \subseteq M' \subsetneq R$ ist $\mathfrak{a} \subseteq M \subseteq M'$ und $M' \neq R$, also $M' \in \mathcal{I}$. Wegen der Maximalität von M in \mathcal{I} ist daher M' = M.

Aufgabe 6.3.

Bemerkung 4. Für alle $a \in R$ ist a genau dann eine Einheit, wenn a in keinem maximalen Ideal in R enthalten ist.

Beweis. Ist a keine Einheit, so ist $(a) \neq R$; wäre nämlich (a) = R, so gebe es insbesondere ein $b \in R$ mit ab = 1. Da (a) ein echtes Ideal in R ist, folgt aus Bemerkung 2, dass es ein maximales Ideal $\mathfrak m$ in R mit

$$a\in(a)\subseteq\mathfrak{m}$$

gibt.

Ist andererseits a eine Einheit mit inversen Element a', so folgt für jedes Ideal $\mathfrak{a} \subseteq R$ mit $a \in \mathfrak{a}$, dass $1 = aa' \in \mathfrak{a}$, also $\mathfrak{a} = R$. Insbesondere ist \mathfrak{a} nicht maximal.

Aufgrund von Bemerkung 4 reicht nun zu zeigen, dass $a \in R$ genau dann in jedem maximalen Ideal von R liegt, wenn 1-ab für alle $b \in R$ in keinem maximalen Ideal von R liegt. Dabei wird im Folgenden der Fall R=0 ausgeschlossen, da die Aussage in diesem Fall offenbar erfüllt ist. Nach Bemerkung 2 enthält $R \neq 0$ mindestens ein maximales Ideal, da $0 \subseteq R$ ein echtes Ideal ist.

Angenommen, a liegt in jedem maximalen Ideal von R. Gibt es ein maximales Ideal \mathfrak{m} von R, und $b \in R$ mit $1-ab \in \mathfrak{m}$, so ist wegen $a \in \mathfrak{m}$ auch $ab \in \mathfrak{m}$, also $1=1-ab+ab \in \mathfrak{m}$. Damit ist $\mathfrak{m}=R$, was der Maximalität von R widerspricht. Also ist $1-ab \notin \mathfrak{m}$ für jedes $b \in R$ und maximale Ideal \mathfrak{m} von R.

Angenommen, es gibt ein maximals Ideal $\mathfrak m$ von R mit $a \not\in \mathfrak m$. Dann ist $(a) + \mathfrak m$ ein Ideal von R mit $\mathfrak m \subsetneq (a) + \mathfrak m$, wegen der Maximalität von $\mathfrak m$ also $(a) + \mathfrak m = R$. Insbesondere gibt es ein $b \in R$ und $m \in \mathfrak m$ mit ab+m=1. Es ist also $1-ab=m \in \mathfrak m$ nach Bemerkung 4 keine Einheit.