FMI, Info, 2018/2019, Anul I Logică matematică și computațională

Seminar 2

(S2.1) Dați exemplu de familie de submulțimi ale lui \mathbb{R} , indexată, pe rând, după:

- (i) \mathbb{N}^* ;
- (ii) \mathbb{Z} ;
- (iii) $\{2, 3, 4\}$.

Determinați reuniunea și intersecția fiecărei familii date ca exemplu.

Demonstraţie:

(i) (a) $A_n = \{n\}$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} A_n = \mathbb{N}^*$, $\bigcap_{n \in \mathbb{N}^*} A_n = \emptyset$.

(b) $B_1 = \{0\}, B_2 = \mathbb{N}^*, B_3 = \mathbb{Q} \text{ şi } B_n = \mathbb{R} \text{ pentru orice } n \geq 5. \text{ Atunci } \bigcup_{n \in \mathbb{N}^*} B_n = \mathbb{R}, \bigcap_{n \in \mathbb{N}^*} B_n = \emptyset.$

(c) $E_n=(-\frac{1}{n},\frac{1}{n})$ pentru orice $n\in\mathbb{N}^*$. Atunci $\bigcup_{n\in\mathbb{N}^*}E_n=(-1,1),\bigcap_{n\in\mathbb{N}^*}E_n=\{0\}$.

(d) $A_n = \{1\}$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} A_n = \bigcap_{n \in \mathbb{N}^*} A_n = \{1\}$.

(e) $A_n = \{1, 2, ..., n\}$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} A_n = \mathbb{N}^*$, $\bigcap_{n \in \mathbb{N}^*} A_n = \{1\}$.

(ii) $C_1 = (-\infty, 0), C_2 = \{0\}, C_{-n} = \{3\}$ pentru orice $n \ge 0, C_n = \{7\}$ pentru orice $n \ge 3$. Atunci $\bigcup_{n \in \mathbb{Z}} C_n = (-\infty, 0] \cup \{3\} \cup \{7\}, \bigcap_{n \in \mathbb{Z}} C_n = \emptyset$.

(iii) $D_2 = \{0\}, D_3 = \{2\}, D_4 = \{3\}$. Atunci $\bigcup_{x \in \{2,3,4\}} D_x = \{0,2,3\}, \bigcap_{x \in \{2,3,4\}} D_x = \emptyset$.

(S2.2) Dacă $(A_i)_{i\in I}$ este o familie de submulțimi ale unei mulțimi X, arătați următoarele (legile lui De Morgan):

(i) $C_X \bigcup_{i \in I} A_i = \bigcap_{i \in I} C_X A_i$;

(ii) $C_X \bigcap_{i \in I} A_i = \bigcup_{i \in I} C_X A_i$.

Demonstrație:

- (i) Fie $x \in X$. Atunci $x \in C_X \bigcup_{i \in I} A_i \iff x \notin \bigcup_{i \in I} A_i \iff$ nu este adevărat că $x \in \bigcup_{i \in I} A_i \iff$ nu este adevărat că (există $i \in I$ a.î. $x \in A_i$) \iff pentru orice $i \in I$, $x \notin A_i \iff$ pentru orice $i \in I$, $x \notin C_X A_i \iff x \in \bigcap_{i \in I} C_X A_i$.
- (ii) Fie $x \in X$. Atunci $x \in C_X \bigcap_{i \in I} A_i \iff x \notin \bigcap_{i \in I} A_i \iff$ nu este adevărat că $x \in \bigcap_{i \in I} A_i \iff$ nu este adevărat că (pentru orice $i \in I$, $x \in A_i$) \iff există $i \in I$ a.î. $x \notin A_i \iff$ există $i \in I$ a.î. $x \in C_X A_i \iff x \in \bigcup_{i \in I} C_X A_i$.

Definiția 1. O familie de mulțimi $(A_i)_{i\in I}$ se numește disjunctă dacă pentru orice $i, j \in I$ cu $i \neq j$ avem $A_i \cap A_j = \emptyset$.

(S2.3) Fie $(A_i)_{i\in I}$ o familie de mulţimi. Pentru orice $i\in I$ notăm $A_i':=\{i\}\times A_i$. Să se arate că $A_i'\sim A_i$ pentru orice $i\in I$ şi că $(A_i')_{i\in I}$ este o familie disjunctă de mulţimi. **Demonstraţie:** Este evident că, pentru orice $i\in I$, funcţia

$$f_i: A_i \to A'_i, \quad f_i(a) = (i, a)$$

este bijecție.

Presupunem prin reducere la absurd că $(A_i')_{i\in I}$ nu este o familie disjunctă de mulțimi. Atunci există $j,k\in I$ cu $j\neq k$ a.î. $A_j'\cap A_k'\neq\emptyset$, deci există $x\in A_j'\cap A_k'$. Deoarece $x\in A_j'$, există $a\in A_j$ cu x=(j,a). Similar, deoarece $x\in A_k'$, există $b\in A_k$ cu x=(k,b). Rezultă că (j,a)=(k,b), deci k=j, ceea ce contrazice presupunerea.

(S2.4) Arătați, pe rând, următoarele:

- (i) N* este numărabilă.
- (ii) \mathbb{Z} este numărabilă.
- (iii) $\mathbb{N}\times\mathbb{N}$ este numărabilă.

Demonstraţie:

(i) Definim

$$f: \mathbb{N} \to \mathbb{N}^*, \quad f(n) = n + 1.$$

Se demonstrează imediat că f este bijecție, inversa sa fiind

$$f^{-1}: \mathbb{N}^* \to \mathbb{N}, \quad f^{-1}(n) = n - 1.$$

(ii) Enumerăm elementele lui \mathbb{Z} astfel:

$$0, -1, 1, -2, 2, -3, 3, \dots$$

Funcția $f: \mathbb{N} \to \mathbb{Z}$ corespunzătoare acestei enumerări este următoarea:

$$f(n) = \begin{cases} \frac{n}{2} & \text{dacă } n \text{ e par} \\ -\frac{n+1}{2} & \text{dacă } n \text{ e impar.} \end{cases}$$

E clar că f e bijectivă și că $h: \mathbb{Z} \to \mathbb{N}$ definită prin:

$$h(s) = \begin{cases} 2s & \text{dacă } s \ge 0\\ -2s - 1 & \text{dacă } s < 0 \end{cases}$$

este inversa lui f.

(iii) Ordonăm elementele lui $\mathbb{N} \times \mathbb{N}$ după suma coordonatelor şi în cadrul elementelor cu aceeași sumă după prima componentă în ordine crescătoare:

linia 0
$$(0,0)$$
,
linia 1 $(0,1), (1,0)$,
linia 2 $(0,2), (1,1), (2,0)$,
linia 3 $(0,3), (1,2), (2,1), (3,0)$,
 \vdots
linia k $(0,k), (1,k-1), \dots, (k-1,1), (k,0)$,
 \vdots

Prin urmare, pentru fiecare $k \in \mathbb{N}$, pe linia k sunt k+1 perechi $(i,k-i), i=0,\ldots,k$. Definim $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ astfel: $f(0,0)=0, \ f(0,1)=1, \ f(1,0)=2,\ldots$ În general, f(i,j) se definește ca fiind numărul perechilor situate înaintea lui (i,j). Deoarece (i,j) este al (i+1)-lea element pe linia i+j, rezultă că înaintea sa sunt $1+2+3+\ldots+(i+j)+i=\frac{(i+j)(i+j+1)}{2}+i$ elemente. Așadar, bijecția va fi funcția

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad f(i,j) = \frac{(i+j)(i+j+1)}{2} + i.$$

Această funcție se numește și funcția numărare diagonală a lui Cantor (în engleză, Cantor pairing function).

(S2.5) Arătați, pe rând, următoarele:

- (i) Produsul cartezian a două mulțimi numărabile este numărabil.
- (ii) Produsul cartezian al unui număr finit (≥ 2) de mulțimi numărabile este numărabil.

Demonstrație:

(i) Fie A_1 şi A_2 două mulțimi numărabile. Prin urmare, le putem enumera:

$$A_1 = \{a_{1,0}, a_{1,1}, \dots, a_{1,n}, \dots, \}, A_2 = \{a_{2,0}, a_{2,1}, \dots, a_{2,n}, \dots, \}.$$

Definim

$$f: \mathbb{N} \times \mathbb{N} \to A_1 \times A_2, \quad f(m,n) = (a_{1,m}, a_{2,n}).$$

Se demonstrează ușor că f este bijecție.

(ii) Demonstrăm prin inducție după n că pentru orice $n \in \mathbb{N}, n \geq 2$ și pentru orice mulțimi numărabile $A_1, \ldots, A_n, A_1 \times A_2 \ldots A_n$ este numărabilă.

$$n=2$$
: Aplicăm (i).

 $n \Rightarrow n+1$. Fie A_1, \ldots, A_{n+1} mulțimi numărabile și $B = \prod_{i=1}^n A_i$. Atunci B este numărabilă, conform ipotezei de inducție, deci, conform (i), $B \times A_{n+1}$ este numărabilă. Se observă imediat că funcția

$$f: \prod_{i=1}^{n+1} A_i \to B \times A_{n+1}, \quad f((a_1, a_2, \dots, a_n, a_{n+1})) = ((a_1, a_2, \dots, a_n), a_{n+1})$$

este bijecție. Prin urmare, $\prod_{i=1}^{n+1} A_i$ este numărabilă.