Incorporating Risk into Algorithmic Redistricting

Assessing and Optimizing Redistricting Algorithms with a Bias-Variance Trade-Off

Ivan Sinyavin and Owen Xu Li

December 12, 2024

Introduction

- Redistricting redraws electoral district boundaries, typically after each decennial census.
- Gerrymandering manipulates boundaries to benefit a particular party by:
 - ▶ **Packing**: Concentrating opposition voters in a few districts.
 - Cracking: Diluting opposition voters across many districts.
- Our goal: Develop an algorithm that explicitly optimizes for a specific party's objectives using:
 - Historical voting data.
 - Measures of expectation and variance.
 - Optimization for short-term and long-term political success.

Past Voting Behavior in Congressional Elections

Dataset:

2012, 2016, and 2020 presidential elections used as proxies for congressional voting.

PVI Baseline:

- Calculated using 2008 presidential election results for the 2010 redistricting cycle.
- Serves as a predictive baseline for newly drawn districts post-2010 census.

► Temporal Shifts:

- Changes in voting patterns from 2012 to 2020 reflect temporal shifts in political control post-redistricting, how initial voter distributions (t = 0) evolve,
 - ▶ Sharp impact of redistricting in immediate elections (e.g., 2012).
 - Diminishing influence of initial redistricting plans as partisan compositions shift over time (e.g., by 2020).

Fitting Logistic Regressions (Part 1)

Adjusted vote shares to isolate local dynamics by removing nationwide shifts:

$$\mathsf{Movement}_t = \mathsf{Vote} \; \mathsf{Share}_t - \left(0.5 + \frac{\mathsf{Cook} \; \mathsf{PVI}}{100}\right)$$

Mean movement removed to account for national trends:

 $\mathsf{Adjusted} \ \mathsf{Vote} \ \mathsf{Share}_t = \mathsf{Vote} \ \mathsf{Share}_t - \mathsf{Mean} \ \mathsf{Movement}_t$

Fitted Coefficients:

Election Year	$eta_{f 0}$	$eta_{ extbf{1}}$
2012 (t = 2)	$\beta_{0,2} = 0.118$	$\beta_{1,2} = 0.54105964$
2016 $(t=6)$	$eta_{0,6} = 0.051$	$\beta_{1,6} = 0.37283259$
$2020 \ (t=10)$	$\beta_{0,10} = -0.0619$	$\beta_{1,10} = 0.229$

Table: Fitted Logistic Regression Coefficients.

Fitting Logistic Regressions (Part 2)

Figure: Logistic Regression Curves for 2012, 2016, and 2020 (Adjusted).

Broad Overview of Algorithm

Algorithm Steps

- 1. **Initial Partition:** Start with an initial partition $\mathcal{D} = \{D_1, D_2, \dots, D_n\}$, where each district D_k is a subset of the graph G. Use Voronoi Tessellation with a bias toward population.
- 2. **Boundary Node Selection:** Randomly select a boundary node v that lies on the border between two districts D_i and D_j .
- 3. **Reassignment:** Reassign v from its current district D_i to an adjacent district D_j .
- 4. **Evaluation:** Compute the impact of the reassignment on the overall objective function. Accept the reassignment if:
 - It improves the objective function, or
 - ▶ It satisfies the Metropolis-Hastings acceptance criterion.

Voronoi Tessellation for Initial Districts

- ► Tessellation:
 - Partitions a space into regions based on a set of seed points.
 - Each region contains points closer to its seed than any other seed.

$$V_i = \{x \in \mathbb{R}^2 \mid ||x - s_i|| \le ||x - s_j||, \forall j \ne i\},$$

where V_i is the region around seed s_i .

- Process:
 - Use population density to bias the selection of seed points.
 - Apply tessellation to assign each pixel to its closest seed.
- ► Target Population:

$$P_{\mathsf{target}} = \frac{P_{\mathsf{total}}}{N},$$

where P_{total} is the total population and N is the number of districts.

Voronoi Tessellation Map of Florida

Figure: Population-biased Voronoi Tessellation applied to Florida.

Objective Function

Objective Function

The objective function is defined as:

$$f(\xi) = \alpha P(\xi) + \beta C(\xi) + \gamma F(\xi)$$

where:

Population Equalization:
$$P(\xi) = \sum_{i=1}^{n} \max \left(0, \left| \frac{\text{pop}(V_i) - \text{Total Population}/n}{\text{Total Population}/n} \right| - 0.05 \right)^2$$

Compactness Constraint:
$$C(\xi) = \sum_{i=1}^{n} \frac{\operatorname{Perimeter}(V_i)}{\sqrt{\operatorname{Area}(V_i)}}$$

Political Favorability:
$$F(\xi) = N - \left(\sum_{i=1}^n \frac{1}{1 + e^{-(\beta_0 + \beta_1 V_i(X))}} - \text{Variance Penalty}\right)$$

Political Favorability: Overview

Most existing algorithms do not explicitly optimize for political favorability or incorporate measures of risk/reward. We construct a parameter explicitly optimizing for a specific political party.

$$\mathbb{E}[D_{\mathsf{won}}] = \sum_{i=1}^n P(\mathsf{win}_i), \quad \mathsf{Var}[D_{\mathsf{won}}] = \sum_{i=1}^n .P(\mathsf{win}_i(t)) \cdot (1 - P(\mathsf{win}_i(t)))$$

Final Political Favorability Term:

$$F(\xi) = N - (\mathbb{E}[D_{\mathsf{won}}] - \lambda \cdot \mathsf{Var}[D_{\mathsf{won}}]).$$

Variance penalty approximated via logistic curve adjustment:

$$P_{\mathsf{win}_i} = rac{1}{1 + e^{-rac{eta_0 + eta_1 V_i(0)}{T}}}$$

Larger T: flatter curve, penalizing variance over time.

Accepting or Rejecting the New Map

- ► For each iteration:
 - Randomly select a boundary node v.
 - Consider moving v from district i to adjacent district j.
 - ► Compute change in objective function:

$$\Delta f = f(\xi') - f(\xi).$$

Acceptance Probability:

$$P(\mathsf{accept}) = egin{cases} 1 & \text{if } \Delta f \leq 0, \\ e^{-\Delta f/T} & \text{if } \Delta f > 0, \\ 0 & \text{if the flip disconnects the district.} \end{cases}$$

Update temperature:

$$T_k = T_0 \times \alpha^k$$
,

where T_0 is initial temperature, $\alpha \in (0,1)$ is cooling rate, and k is current iteration.

Refined Cooling Schedule

- Initial approach:
 - $T_0 = 1000$, cooling factor $\alpha = 0.995$.
 - Observed premature convergence due to rapid decay of temperature.
- Dynamic Cooling Schedule:
 - 1. Start with $T_0 = 1000$ and cool using:

$$T_k = T_0 \times \alpha^k$$
.

- 2. If $T_k < 10^{-8}$, reset $T_k = 400$.
- 3. Resume cooling with the same factor $\alpha = 0.995$.
- Pros of Dynamic Cooling:
 - Prevents premature convergence to suboptimal solutions.
 - Introduces variability by accepting "worse" moves.

Redistricting Results for Florida - Republican

Redistricting Results for Florida - Republican

Redistricting Results for Wisconsin - Democratic

Redistricting Results for Wisconsin - Democratic

Redistricting Results for Wisconsin - Republican

Redistricting Results for Wisconsin - Republican

Conclusion and Future Work

- ▶ We introduced a different approach to redistricting by integrating partisan objectives, population equality, and compactness.
- ▶ Our algorithm uses historical voting data measures of expected risk/reward.
 - Case studies in Florida and Wisconsin, optimizing districts for partisan objectives while maintaining constraints.
 - Incorporates variance penalties and long-term favorability, which allows the algorithm to optimize against demographic and electoral changes.
- ► Future work includes refining variance penalties, compactness measures (e.g., Reock or Polsby-Popper), and integrating demographic/geospatial dynamics.