

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny Test diagnostyczny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy
Formy arkusza:	EMAP-P0- 100 -2103, EMAP-P0- 200 -2103, EMAP-P0- 300 -2103, EMAP-P0- 400 -2103, EMAP-P0- Q00 -2103
Termin egzaminu:	4 marca 2021 r.
Data publikacji dokumentu:	5 marca 2021 r.

Uwaga: Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.

Gdy wymaganie egzaminacyjne dotyczy treści z III etapu edukacyjnego – dopisano "G".

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2021¹		
Wymaganie ogólne	Wymagania szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 1.1) przedstawia liczby rzeczywiste w różnych postaciach [] z użyciem symboli pierwiastków, potęg); 2.1) używa wzorów skróconego mnożenia na $(a \pm b)^2$ oraz $a^2 - b^2$.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 1.6) wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

¹ Załącznik nr 2 do rozporządzenia Ministra Edukacji Narodowej z dnia 20 marca 2020 r. w sprawie szczególnych rozwiązań w okresie czasowego ograniczenia funkcjonowania jednostek systemu oświaty w związku z zapobieganiem, przeciwdziałaniem i zwalczaniem COVID-19 (Dz.U. poz. 493, z późn. zm.).

Zadanie 3. (0-1)

Wymagania egzaminacyjne 2021		
Wymaganie ogólne	Wymaganie szczegółowe	
I. Wykorzystanie i tworzenie informacji.	Zdający:	
	1.8) wykonuje obliczenia procentowe [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 4. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 1.4) oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach o wykładnikach wymiernych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 5. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający: G7.5) sprawdza, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 6. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający: 3.6) korzysta z własności iloczynu przy rozwiązywaniu równań typu $x(x+1)(x-7)=0$.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 7. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający: 3.3) rozwiązuje nierówności pierwszego stopnia z jedną niewiadomą [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający: 4.7) interpretuje współczynniki występujące we wzorze funkcji liniowej.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

 \mathbf{C}

Zadanie 9. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający: 4.3) odczytuje z wykresu własności funkcji [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 10. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 4.2) oblicza ze wzoru wartość funkcji dla danego argumentu [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

R

Zadanie 11. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający:
	5.4) stosuje wzór na n -ty wyraz [] ciągu
	geometrycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 12. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający:
	5.3) stosuje wzór na n -ty wyraz [] ciągu
	arytmetycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

 \mathbf{C}

Zadanie 13. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający:
	7.1) stosuje zależności między kątem
	środkowym i kątem wpisanym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 14. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 5.2) bada, czy dany ciąg jest arytmetyczny [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 15. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający: 5.1) wyznacza wyrazy ciągu określonego wzorem ogólnym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

 D

Zadanie 16. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający: 7.4) korzysta z własności funkcji trygonometrycznych w łatwych obliczeniach geometrycznych, w tym ze wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 17. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 7.3) rozpoznaje trójkąty podobne i wykorzystuje cechy podobieństwa trójkątów.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 18. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne Wymagania szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 8.5) wyznacza współrzędne środka odcinka; 8.6) oblicza odległość dwóch punktów.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 19. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 6.4) znając wartość jednej z funkcji: sinus lub cosinus, wyznacza wartości pozostałych funkcji tego samego kąta.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 20. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 6.1) wykorzystuje definicje i wyznacza wartości funkcji [] tangens kątów o miarach od 0° do 180°.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 21. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 8.2) bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

R

Zadanie 22. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 8.3) wyznacza równanie prostej, która jest równoległa lub prostopadła do prostej danej w postaci kierunkowej i przechodzącej przez dany punkt.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

 \boldsymbol{c}

Zadanie 23. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne Wymaganie szczegółowe	
III. Modelowanie matematyczne.	Zdający: 7.4) korzysta z własności funkcji trygonometrycznych w łatwych obliczeniach geometrycznych [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 24. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający: G11.2) oblicza pole powierzchni i objętość graniastosłupa prostego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 25. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający: G11.2) oblicza pole powierzchni i objętość [] ostrosłupa.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 26. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne Wymaganie szczegółowe	
III. Modelowanie matematyczne.	Zdający: 10.1) zlicza obiekty w prostych sytuacjach kombinatorycznych, niewymagających użycia wzorów kombinatorycznych, stosuje regułę mnożenia i regułę dodawania.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 27. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający: 10.2) oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 28. (0-1)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: G9.3) wyznacza [] medianę zestawu danych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

ZADANIA OTWARTE

Uwaga: Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.

Zadanie 29. (0-2)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 3.5) rozwiązuje nierówności kwadratowe
	z jedną niewiadomą.

Zasady oceniania

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap to wyznaczenie pierwiastków trójmianu kwadratowego $2x^2 + 2x - 24$.

Drugi etap to zapisanie zbioru rozwiązań nierówności kwadratowej $2x^2 + 2x - 24 > 0$.

- zrealizuje pierwszy etap rozwiązania i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności, np.
 - o obliczy lub poda pierwiastki trójmianu kwadratowego: $x_1 = -4$ oraz $x_2 = 3$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
 - o odczyta z wykresu funkcji $f(x) = 2x^2 + 2x 24$ i zapisze miejsca zerowe i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,

ALBO

 realizując pierwszy etap rozwiązania zadania, popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności.

- poda zbiór rozwiązań nierówności: $(-\infty, -4) \cup (3, +\infty)$ lub $x \in (-\infty, -4) \cup (3, +\infty)$ ALBO
- poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi:

- 1. Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy obliczony wyróżnik Δ jest ujemny, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający podaje pierwiastki bez związku z trójmianem kwadratowym z zadania, to oznacza, że nie podjął realizacji 1. etapu rozwiązania i w konsekwencji otrzymuje **0 punktów** za całe rozwiązanie.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $(-4, -\infty) \cup (3, +\infty)$, to przyznajemy **2 punkty**.

Przykładowe pełne rozwiązanie

Pierwszy etap rozwiązania

Zapisujemy nierówność w postaci $2x^2+2x-24>0$ i obliczamy pierwiastki trójmianu $2x^2+2x-24$.

Obliczamy wyróżnik tego trójmianu: $\Delta = 196\,$ i stąd $x_1 = -4\,$ oraz $x_2 = 3.$

ALBO

Stosujemy wzory Viète'a:

$$x_1 \cdot x_2 = -12$$
 oraz $x_1 + x_2 = -1$, stąd $x_1 = -4$ oraz $x_2 = 3$.

ALBO

Podajemy je bezpośrednio, zapisując pierwiastki trójmianu: $x_1 = -4$ oraz $x_2 = 3$.

ALBO

Sporządzamy wykres funkcji $f(x) = 2x^2 + 2x - 24$, zaznaczamy miejsca zerowe na wykresie i podpisujemy $x_1 = -4$ oraz $x_2 = 3$.

Drugi etap rozwiązania

Podajemy zbiór rozwiązań nierówności: $(-\infty, -4) \cup (3, +\infty)$ lub $x \in (-\infty, -4) \cup (3, +\infty)$ lub

Zadanie 30. (0-2)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 3.7) rozwiązuje proste równania wymierne, prowadzące do równań liniowych lub kwadratowych [].

Zasady oceniania

Uwaga:

Jeżeli zdający popełni błąd rachunkowy przy przekształcaniu równania, otrzyma równanie kwadratowe i poprawnie je rozwiąże, to otrzymuje **1 punkt**.

Przykładowe pełne rozwiązanie

Równanie ma sens liczbowy dla $x \neq \frac{2}{3}$.

Przekształcamy równanie:

$$\frac{6x-1}{3x-2} = 3x+2$$

$$6x-1 = (3x-2)(3x+2)$$

$$6x-1 = 9x^2-4$$

$$-9x^2+6x+3=0 /: (-3)$$

$$3x^2-2x-1=0$$

Rozwiązujemy otrzymane równanie kwadratowe.

Obliczamy wyróżnik trójmianu kwadratowego $3x^2-2x-1$: $\Delta=(-2)^2-4\cdot 3\cdot (-1)=16$ i stąd $x_1=-\frac{1}{3}$ oraz $x_2=1$.

Otrzymane pierwiastki są różne od liczby $\frac{2}{3}$, więc są rozwiązaniami danego równania.

Zadanie 31. (0-2)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
V. Rozumowanie i argumentacja.	Zdający: 7.2) korzysta z własności stycznej do okręgu.

Zasady oceniania

dla sposobów 1. oraz 2.

Zdający otrzymuje 1 p. gdy:

• zapisze, że $P_{\Delta ABC} = P_{\Delta AOC} + P_{\Delta ABO}$

ALBO

• zapisze związek pomiędzy a, b i r, który wynika z proporcjonalności odpowiednich boków trójkątów podobnych DOC i ABC (lub DOC i EBO, lub EBO i ABC), np.:

$$\frac{a-r}{r} = \frac{a}{b}, \qquad \frac{a-r}{r} = \frac{r}{b-r}, \qquad \frac{r}{b-r} = \frac{a}{b}$$

Przykładowe pełne rozwiązania

Sposób 1.

Przyjmijmy oznaczenia, jak na rysunku.

Pole trójkąta ABC jest sumą pól trójkątów ABO i AOC.

Promień okręgu poprowadzony z punktu O do punktu styczności okręgu z odcinkiem AB jest prostopadły do tego odcinka, więc $P_{\Delta ABO} = \frac{1}{2} \cdot b \cdot r$. Podobnie

$$P_{\Delta AOC} = rac{1}{2} \cdot a \cdot r$$
. Zatem

$$P_{\Delta ABC} = P_{\Delta ABO} + P_{\Delta AOC} = \frac{1}{2} \cdot b \cdot r + \frac{1}{2} \cdot a \cdot r = \frac{1}{2} (a+b) \cdot r$$

Stad otrzymujemy

$$\frac{1}{2} \cdot a \cdot b = \frac{1}{2} (a+b) \cdot r$$
$$r = \frac{a \cdot b}{a+b}$$

To należało wykazać.

Sposób 2.

Przyjmijmy następujące oznaczenia:

A, B, C – wierzchołki trójkąta,

D – punkt styczności przyprostokątnej AC z okręgiem,

E – punkt styczności przyprostokątnej AB z okręgiem. (Zobacz rysunek).

Ponieważ odcinek OD jest prostopadły do odcinka AC oraz $| \not \perp DCO | = | \not \perp ACB |$, więc trójkąty DCO i ABC są podobne (na podstawie cechy kkk podobieństwa trójkątów). Stąd

$$\frac{|DC|}{|DO|} = \frac{|AC|}{|AB|}$$

Odcinek OE jest prostopadły do AB, więc |DC| = |AC| - |OE| = a - r. Zatem

$$\frac{a-r}{r} = \frac{a}{b}$$

$$(a-r) \cdot b = a \cdot r$$

$$ab-rb = ar$$

$$ab = rb + ra$$

$$ab = (a+b)r$$

$$r = \frac{ab}{a+b}$$

To należało wykazać.

Zadanie 32. (0-2)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający: 6.3) stosuje proste zależności między funkcjami trygonometrycznymi [].

Zasady oceniania

Przykładowe pełne rozwiązanie

Podnosimy obie strony równości $\sin \alpha + \cos \alpha = \frac{7}{5}$ do kwadratu i otrzymujemy:

$$\sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = \frac{49}{25}$$

Korzystamy z zależności $\sin^2\alpha + \cos^2\alpha = 1$ i otrzymujemy $1 + 2\sin\alpha\cos\alpha = \frac{49}{25}$, stąd po przekształceniu mamy: $2\sin\alpha\cos\alpha = \frac{49}{25} - 1 = \frac{24}{25}$.

Zadanie 33. (0-2)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający: G10.9) oblicza pola i obwody trójkątów i czworokątów.

Zasady oceniania

Zdający otrzymuje1 p. gdy:

• zastosuje twierdzenie Pitagorasa i zapisze równość prowadzącą do obliczenia wysokości trójkąta równoramiennego BCD opuszczonej na podstawę tego trójkąta, np.: $h^2=13^2-5^2$

ALBO

• obliczy ze wzoru Herona pole trójkąta BCD

ALBO

• obliczy pole trójkąta *ABD*.

Zdający otrzymuje2 p. gdy zapisze, że pole czworokąta *ABCD* jest równe 125.

Przykładowe pełne rozwiązanie

Przekątna BD dzieli czworokąt ABCD na trójkąt prostokątny ABD oraz trójkąt równoramienny BCD (zobacz rysunek).

Pole trójkąta prostokątnego ABD jest równe 65. Obliczamy wysokość h trójkąta równoramiennego BCD poprowadzoną z wierzchołka C. Stosujemy twierdzenie Pitagorasa i otrzymujemy $h=\sqrt{13^2-5^2}=\sqrt{144}=12$.

Pole trójkąta BCD jest równe $\frac{1}{2} \cdot 10 \cdot 12 = 60$. Pole czworokąta ABCD jest sumą pól obu trójkątów: $P_{ABCD} = 60 + 65 = 125$.

Uwaga:

Pole trójkąta *BCD* można obliczyć ze wzoru Herona:

$$P_{BCD} = \sqrt{18 \cdot (18 - 10) \cdot (18 - 13) \cdot (18 - 13)} = \sqrt{18 \cdot 8 \cdot 5 \cdot 5} = 3 \cdot 4 \cdot 5 = 60$$

Zadanie 34. (0-2)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymaganie szczegółowe
V. Rozumowanie i argumentacja.	Zdający: 4.10) interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci kanonicznej, w postaci ogólnej i w postaci iloczynowej (o ile istnieje).

Zasady oceniania

Przykładowe pełne rozwiązanie

Funkcja kwadratowa $f(x)=x^2+bx+c$ nie ma miejsc zerowych, więc f(x)>0 dla każdej liczby rzeczywistej x. W szczególności f(-1)=1-b+c>0, czyli 1+c>b. To należało wykazać.

Zadanie 35. (0-5)

Wymagania egzaminacyjne 2021	
Wymaganie ogólne	Wymagania szczegółowe
III. Modelowanie matematyczne.	Zdający: 5.3) stosuje wzory na <i>n</i> -ty wyraz i sumę <i>n</i> początkowych wyrazów ciągu arytmetycznego; 5.4) stosuje wzory na <i>n</i> -ty wyraz i sumę <i>n</i> początkowych wyrazów ciągu geometrycznego.

Zasady oceniania

dla sposobów 1 oraz 2.

Zdający otrzymuje1 p. gdy:

• wykorzysta wzór na sumę S_5 i zapisze równanie z niewiadomymi a_1 oraz r: $\frac{(a_1+a_1+4r)\cdot 5}{2}=10$

ALBO

wykorzysta wzór na n-ty wyraz ciągu arytmetycznego i zapisze

$$a_1 + a_1 + r + a_1 + 2r + a_1 + 3r + a_1 + 4r = 10$$

ALBO

• uzależni a_3 , a_5 , a_{13} od a_1 oraz r i zapisze równość wynikającą z własności ciągu geometrycznego: $(a_1+4r)^2=(a_1+2r)(a_1+12r)$.

- obliczy trzeci wyraz ciągu arytmetycznego $\,a_3\colon\,a_3=a_1+2r=2\,$ ALBO
 - zapisze układu równań z niewiadomymi a_1 oraz r, np.:

$$\begin{cases} \frac{(2a_1 + 4r) \cdot 5}{2} = 10\\ (a_1 + 4r)^2 = (a_1 + 2r)(a_1 + 12r) \end{cases}$$

$$(2+2r)^2 = 2 \cdot (2+10r) \ \text{lub} \ (a_1)^2 + 2a_1 - 8 = 0 \ \text{lub} \ r^2 - 3r = 0.$$

Zdający otrzymuje4 p. gdy:

• rozwiąże równanie $r^2 - 3r = 0$: r = 0 oraz r = 3

ALBO

• rozwiąże równanie $(a_1)^2 + 2a_1 - 8 = 0$: $a_1 = -4$ lub $a_1 = 2$

ALBO

 rozwiąże układ równań z błędem rachunkowym (na przykład błąd w redukcji wyrazów podobnych lub w przepisywaniu) i konsekwentnie doprowadzi rozwiązanie do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste).

Uwaga:

Jeśli zdający nie odrzuci rozwiązania r=0, to za całe rozwiązanie otrzymuje **4 punkty**.

Przykładowe pełne rozwiązania

Sposób 1.

Z warunków zadania wiemy, że $S_5 = 10$, czyli $\frac{(a_1 + a_1 + 4r) \cdot 5}{2} = 10$.

Po przekształceniu ostatniej zależności otrzymujemy: $a_1 + 2r = 2 = a_3$.

Z warunków zadania wiemy, że wyrazy $a_3=2$, $a_5=a_3+2r$, $a_{13}=a_3+10r$ tworzą w podanej kolejności ciąg geometryczny. Stąd mamy $(2+2r)^2=2\cdot(2+10r)$. Otrzymujemy równanie kwadratowe $r^2-3r=0$, którego rozwiązaniami są liczby r=0 oraz r=3. Odrzucamy odpowiedź r=0, ponieważ ciąg arytmetyczny jest rosnący.

Dla
$$r = 3$$
 obliczamy a_1 : $a_1 = a_3 - 2r = 2 - 6 = -4$.

Wyznaczamy wzór na n-ty wyraz ciągu arytmetycznego:

$$a_n = a_1 + (n-1) \cdot r = -4 + (n-1) \cdot 3 = 3n - 7.$$

Sposób 2.

Z warunków zadania wiemy, że $S_5 = 10$, czyli $\frac{(a_1 + a_1 + 4r) \cdot 5}{2} = 10$.

Z własności ciągu geometrycznego $(a_5)^2 = a_3 \cdot a_{13}$, co zapisujemy w postaci:

$$(a_1 + 4r)^2 = (a_1 + 2r)(a_1 + 12r).$$

Otrzymujemy następujący układ równań:

$$\begin{cases} \frac{(2a_1 + 4r) \cdot 5}{2} = 10\\ (a_1 + 4r)^2 = (a_1 + 2r)(a_1 + 12r) \end{cases}$$

z którego obliczamy wartość pierwszego wyrazu ciągu i różnicę ciągu, np.:

$$\begin{cases} r = 1 - \frac{1}{2}a_1 \\ (a_1 + 4r)^2 = (a_1 + 2r)(a_1 + 12r) \end{cases}$$

$$\begin{cases} r = 1 - \frac{1}{2}a_1 \\ (4 - a_1)^2 = 2 \cdot (12 - 5a_1) \end{cases}$$

$$16 - 8a_1 + (a_1)^2 = 24 - 10a_1$$

$$(a_1)^2 + 2a_1 - 8 = 0$$

$$\Delta = 4 + 32 = 36$$

$$a_1 = -4 \text{ lub } a_1 = 2$$

Dla $a_1=-4$ otrzymujemy r=3, natomiast dla $a_1=2$ otrzymujemy r=0. Ciąg arytmetyczny jest rosnący, więc r=0 odrzucamy. Wyznaczamy wzór na n-ty wyraz ciągu arytmetycznego:

$$a_n = a_1 + (n-1) \cdot r = -4 + (n-1) \cdot 3 = 3n - 7.$$