$\begin{array}{c} P_1 \nearrow \\ P_2 & \\$

P2t2 (for correct correspondence)

3 vectors P_1, P_2, t lie in the same plane scalar triple product = $P_2^T(t \times P_1) = 0$ (1) "Epipolar constraint"

we can write eqn O in terms of P1, t1, P2, t2, U1, U2. i. we have I eqn in the unknown camera params.

& Alt BORD MINISTER, E=t2-t,

P1 ~ RTK1 41. P2 ~ RTK2 42

> solve set of non linear egns

$$u_1 = \sqrt[4]{\frac{x}{Z}}$$

$$u_2 = \sqrt[4]{\frac{x - \Delta x}{Z}}$$

$$u_1 - u_2 = \frac{4}{Z}$$

"disparity" $\times \frac{1}{Z}$

$$Z = \frac{g \Delta \times}{v_1 - v_2}$$

$$x$$
 at ∞ ,
 $u_1 = u_2$
disparity
 $= 0$

disparity -re Anot possible.