Revisão Análise de algoritmos

l empo de execução

- O tempo de execução de um algoritmo varia de acordo com a entrada e tipicamente cresce com o tamanho da entrada
- Difícil determinar o caso médio

l empo de execução

- Geralmente o foco é na análise do pior caso
- Mais fácil de analisar
- sobre o tempo de execução para qualquer entrada. Existe a garantia de que a execução não irá demorar mais tempo O tempo de execução no pior caso é um limite superior
- frequencia Para alguns algoritmos o pior caso acontece com muita
- Muitas vezes, o caso médio é quase tão ruim quanto o pior

Estudos experimentais

- Escreva um programa que implemente um algoritmo
- Execute o programa com vários casos de teste
- Use um método como System.currentTimeMillis() para medir o tempo de execução
- Faça um gráfico com os resultados

Tamanho da entrada

50

100

Estudos experimentais

Experimento 1

Foram feitas dez amostragens para n igual a 10000, 100000 e 1000000

		3078	297	78	9
		2719	281	78	8
		3718	296	93	7
		3766	265	78	6
		3250	<u>859</u>	78	UI
		3266	312	94	4
		3844	297	94	3
		4000	312	94	2
	32563	<u>5641</u>	266	<u>187</u>	1
em 0	Tempo em ms/ n- 1000000	Tempo em ms/ n- 100000	Tempo em ms/ n- 10000	Tempo Tempo em ms/ n 10000	Número Experimento

```
public class teste {
  public static void main(String[] x) {
    long t1=System.currentTimeMillis();
    System.out.println("T1"+t1);
    for(int f=0;f<10000;f++){
        System.out.println("testando..."+f);
    }
    long t2=System.currentTimeMillis();
    System.out.println("Tempo Total:");
    System.out.print(t2-t1);
}</pre>
```

Estudos experimentais

Entrada de mesmo tamanho, mas com instâncias diferentes do mesmo problema

15	0	9
16	0	8
15	0	7
15	0	6
16	0	5
15	0	4
15	0	3
16	0	2
15	0	1
Último elemento Tempo em ms/ n=1000000	Primeiro elemento Tempo em ms/ n=1000000	Número Experimento

```
public int acha(int a[],int ch){
    for (int f=0;f<a.length;f++){
        if (ch==a[f])
            return a[f];
    }
    return -1;
}</pre>
```

15

Limitação dos experimentos

- É necessário implementar o algoritmo para pode ser difícil poder estudar o seu comportamento, o que
- Resultados podem não ser indicativos do incluídas nos casos de teste tempo de execução sobre entradas não
- Para comparar dois algoritmos, as mesmas ser usadas configurações de software e hardware devem

Análise teórica

- Usa uma descrição de alto nível do algoritmo
- Leva em consideração todas as entradas possíveis
- Nos permite avaliar a velocidade de um algoritmo independente das configurações de hardware e software

Análise teórica

Associa a cada algoritmo uma função n, n², log n função do tamanho n da entrada. Ex.: execução do algoritmo como uma f(n) que representa o tempo de

Pseudo-código

- Descrição de alto nível do algoritmo
- Mais estruturado que português
- Menos detalhado que um programa
 Melhor notação para descrever algoritmos
- Esconde detalhes inerentes da programação

Exemplo: Encontrar o maior elemento de um arranjo

Algoritmo maiorArray(A, n)
Entrada array A de n inteiros
Saída maior elemento de A

 $maior \leftarrow A[0]$ $para i \leftarrow 1 até n - 1 faça$ se (A[i] > maior) $maior \leftarrow A[i]$ retorne maior

Operações primitivas

- Computações básicas realizadas por um algoritmo
- Identificável no pseudocódigo
- Muito independente da linguagem de programação
- Definição exata não é tão importante (veremos mais a frente)

Exemplos:

- Avaliação de expressões
- Atribuição de um valor a uma variável
- Indexando um arranjo (array) elemento de um
- Chamando um método
- Retornando de um metodo

Contando operações primitivas

Inspecionando o pseudo-código, é possível determinar o número máximo de operações primitivas executadas por um algoritmo, em função do tamanho da entrada

```
Algoritmo maiorArray(A, n)
                                                                                                                               maior \leftarrow A[0]
                                                                                                           para i \leftarrow 1 até n-1 faça
                          retorne maior
                                               { incrementar i }
                                                                                      se (A[i] > maior)
                                                                  maior \leftarrow A[i]
Total 7n-2
                                                                                                                                                   # operações
                                               2(n-1)
                                                                                      2(n-1)
                                                                                                            1 + n
                                                                 2(n-1)
```

Estimando tempo de execução

- * Algoritmo *maiorArray* executa 7n-2operações primitivas no pior caso
- Defina
- a Tempo da operação primitiva mais rápida
- b Tempo da operação primitiva mais lenta
- Seja T(n) O tempo de execução de maiorArray no pior caso. Temos

$$a(7n-2) \le T(n) \le b(7n-2)$$

lacktriangle Dessa forma, o tempo de execução T(n) é limitado por duas funções lineares

laxa de crescimento

- Mudando a configuração de hardware/ software
- Não altera a taxa de crescimento de T(n)Afeta T(n) de forma constante, mas
- \blacksquare A taxa de crescimento linear de T(n) é algoritmo maiorArray uma propriedade intrínseca do

Taxas de crescimento

- Funções de taxa de crescimento:
- Linear $\approx n$
- Quadradica $\approx n^2$
- Cúbica $\approx n^3$
- Em um gráfico de escala logarítmica, a inclinação das linhas corresponde a *taxa* de crescimento das funções

Fatores constantes

- A taxa de crescimento não é afetada por:
- Fatores constantes
- Termos de baixa ordem
- Exemplos
- $10^2n + 10^5$ é uma função linear
- $10^5 n^2 + 10^8 n$ é uma função quadrádica

Notação Big-Oh

Pada funções $f(n) \in g(n)$, podemos dizer que f(n) é O(g(n)) se existem constantes positivas $c \in n_0$ tal que

$$f(n) \leq c g(n)$$
 para $n \geq n_0$

- Exemplo: $2n + 10 \in O(n)$
- $2n+10 \le cn$
- $(c-2) n \ge 10$
- $n \ge 10/(c-2)$
- Pegue c = 3 e $n_0 = 10$

Notação *Big-Oh* (cont.)

Exemplo: a função n^2 não é O(n)

100,000

10,000

 $n^2 \le cn$

 $n \leq c$

vez que c deve ser pode ser satisfeita uma uma constante

A inequação acima não

Big-Oh e taxa de crescimento

- A notação big-Oh dá o limite superior da taxa de crescimento de uma função
- \circledast A afirmação "f(n) é O(g(n))" quer dizer que a taxa de crescimento de f(n) não é maior que a taxa de crescimento de g(n)
- Podemos usar a notação big-Oh para ranquear funções de acordo com suas taxas de crescimento

	$f(n) \in O(g(n))$	$g(n) \notin O(f(n))$
g(n) cresce mais	Sim	Não
f(n) cresce mais	Não	Sim
Mesmo cresc.	Sim	Sim

Classes de funções

- $igoplus \{g(n)\}$ denota a classe (conjunto) de funções que são O(g(n))
- Temos que $\{n\} \subset \{n^2\} \subset \{n^3\} \subset \{n^4\} \subset \{n^5\} \subset ...$ onde a continência é estrita

Regras Big-Oh

- \circledast Se f(n) é polinomial de grau d, então f(n) é $O(n^d)$, i.e.,
- Elimine termos de baixa ordem
- 2. Elimine fatores constantes
- Use a menor classe possível de funções
- Diga " $2n \notin O(n)$ " ao invés de " $2n \notin O(n^2)$ "
- Use a expressão mais simples da classe
- Diga " $3n + 5 \in O(n)$ " ao invés de " $3n + 5 \in O(3n)$ "

Exemplo Big-Oh

Analisando o
algoritmo ao lado,
percebemos que para
o pior caso ele é
O(n³). Ou seja,
quando x for diferente
de 0 o produto das
matrizes A e B será
efetuado

```
Algoritmo A(A,B,x)

Entrada array A,B \ e \ o \ int \ x

Saída Soma / Produto de A,B

if (x=0) { // soma de A e B

para i \leftarrow 1 até n faça

para j \leftarrow 1 até n faça

c<sub>ij</sub> \leftarrow a_{ij} + b_{ij}
}else {

para i \leftarrow 1 até n faça

para j \leftarrow 1 até n faça

para j \leftarrow 1 até n faça

para j \leftarrow 1 até n faça

c<sub>ij</sub> \leftarrow 0

para k \leftarrow 1 até n faça

c<sub>ij</sub> \leftarrow 0

c<sub>ij</sub> \leftarrow 0
```

Notação Ômega

Dada funções f(n) e g(n), podemos dizer que f(n) é $\Omega(g(n))$ se existem constantes positivas c e n_0 tal que

$$cg(n) \leq f(n)$$
 para $n \geq n_0$

- Define uma cota assintótica inferior
- Pode-se dizer que a notação omega é a do melhor caso e é pelo tamanho da entrada) geralemente limitada pelos limite inferiores triviais (determinados
- Exemplo: a função $g(n)=7n^3+5$, cresce menos rapidamente do que uma função exponencial $f(n)=2^n$. Diz-se que $f(n)=\Omega(g(n))$

Exemplo Notação Ómega

Analisando o algoritmo ao lado, percebemos que para o melhor caso ele é o melhor caso ele é quando x for 0 a soma das matrizes A e B será efetuada

```
Algoritmo A(A,B,x)
Entrada array A,B \ e \ o \ int \ x
Saída Soma / Produto de A,B
if (x=0) { // soma de A \ e \ B
para i \leftarrow 1 até n faça
para j \leftarrow 1 até n faça
para i \leftarrow 1 até n faça
para j \leftarrow 1 até n faça
para j \leftarrow 1 até n faça
para j \leftarrow 1 até n faça
c;j \leftarrow 0
para k \leftarrow 1 até n faça
c;j \leftarrow 0
```

Notação Teta

Dada funções $f(n) \in g(n)$, podemos dizer que $f(n) \in \Theta(g(n))$ se existem constantes positivas c_1,c_2 e n_0 tal que

$$c_1 g(n) \le f(n) \le c_2 g(n)$$
 para $n \ge n_0$

- Define uma cota assintótica exata
- Pode-se dizer que a notação teta é a do caso médio ou esperado
- E mais complicada para determinar, pois utiliza conceitos de probabilidades

Exemplo Notação Teta

- Sendo p a
 probabilidade de x=0
 (melhor caso) e q a
 probabilidade de x!=0
 (pior caso) e que
 p+q=1
- A complexidade no caso médio é dado por $p*n^2 + (1-p)*n^3$

```
Algoritmo A(A,B,x)
Entrada array A,B \ e \ o \ int \ x
Saída Soma / Produto de A,B
if (x=0) { // soma de A \ e \ B
para i \leftarrow 1 até n faça
para j \leftarrow 1 até n faça
c<sub>ij</sub> \leftarrow a_{ij} + b_{ij}
} else {
para i \leftarrow 1 até n faça
para j \leftarrow 1 até n faça
para j \leftarrow 1 até n faça
c<sub>ij</sub> \leftarrow 0

para k \leftarrow 1 até n faça
c<sub>ij</sub> \leftarrow 0
```

Omega Gráficos da Notação O, Teta e

Algoritmos Ótimos

- Um algoritmo é definido como sendo ótimo quando sua cota superior assintótica inferior conhecida é igual a sua cota assintótica
- Exemplo: Algoritmo para inversão de seqüências

$$O(n) = \Omega(n)$$

Limite assintótico inferior trivial (baseado no tamanho da entrada) n elementos de entrada é igual ao limite no pior caso

Análise assintótica de algoritmos

- A análise assintótica de algoritmos determina o tempo de execução na notação big-Oh
- Para fazer a análise assintótica
- Encontramos o número de operações primitivas executadas no pior caso em função da entrada
- Expressamos esta função usando a notação big-Oh

Exemplo:

- Determinamos que o algoritmos *maiorArray* executa pelo menos 7n-2 operações primitivas
- Podemos dizer que o algoritmo maiorArray "executa em tempo O(n)''
- Como fatores constantes e termos de baixa ordem as operações primitivas serao retirados, podemos ignora-los quando contando

Exemplos de Análises Assintóticas

```
S
S
O(n)
para i \leftarrow 1 \text{ até n faça}
para i \leftarrow 1 \text{ até n faça}
para j \leftarrow 1 \text{ até n faça}
para i \leftarrow 1 \text{ até n faça}
para i \leftarrow 1 \text{ até n faça}
para j \leftarrow i \text{ até n faça}
para j \leftarrow i \text{ até n faça}
```

```
O(log n)
Enquanto n>1 faça
n ← n div 2;
S

O(n log n)
para i ← 1 até n faça
m ← n
Enquanto m>1 faça
m ← m div 2;
S
```

Computação de médias pré-fixadas

- Ilustraremos a análise assintótica com dois algoritmos de médias préfixadas.
- A Fésima média pré-fixada de um array X é a média dos primeiros (i + 1) elementos de X

$$A[i] = X[0] + X[1] + ... + X[i]$$

Médias pré-fixadas são bastante usadas em aplicações de análise financeira

Média pré-fixada (quadrádica)

O algoritmo a seguir computa as médias pré-fixadas em tempo quadrádico aplicando a definição

Algoritmo mediasPrefixada1(X, n)Entrada array X de n inteiros para $i \leftarrow 0$ até n-1 faça Saída array A das médias pré-fixadas retorne A $A \leftarrow$ novo array de n inteiros $A[i] \leftarrow s / (i+1)$ para j ← 1 até i faça $S \leftarrow X[0]$ $S \leftarrow S + X[j]$ [+2+...+(n-1)]+2+...+(n-1)operações

lempo de execução

O tempo de execução de mediasPrefixadas1 é

$$O(1 + 2 + ... + n)$$

A soma dos n primeiros inteiros é n(n+1)/2

Então, o algoritmo mediasPrefixadas1 roda em tempo $O(n^2)$

Média pré-fixada (linear)

O seguinte algoritmo computa as médias pré-fixadas em tempo linear mantendo a soma parcial

<u> </u>	$\mathbf{retorne}A$
n	$A[i] \leftarrow s / (i+1)$
n	$S \leftarrow S + X[i]$
n	para $i \leftarrow 0$ até $n-1$ faça
	$s \leftarrow 0$
n	$A \leftarrow$ novo array de n inteiros
de operações	Saída array A das médias pré-ficadas de
	Entrada array X de n inteiros
	Algoritmo $mediasPrefixada2(X, n)$

igoplus Algoritmo mediasPrefixadas2 roda em tempo O(n)