

Background

 Reconstructing the "Tree of Life" is one of the enduring goals of evolutionary biology.

Since 19th

Background

- The massive accumulation of sequence data should provide more accurate phylogenies with the hope to resolve the tree of life.
- Recently, the Open Tree of Life was presented.

Current approaches for reconstructing mega phylogenies

- **Supertree:** compile many individual trees with partially overlapping taxa into a single large phylogeny.
- Supermatrix: gather sequence data for many loci into a single multiple sequence alignment, which is then used to reconstruct a large phylogeny.

+ twist

Species1: ATGGCATATCCCATACAACTAGGATTCCAAGATGCAACC
Species2: ATGGCACACCCAACGCAACTAGGTTTCAAGGACGCGGC
Species3: ATGGCCAACCACTCCCAACTAGGTTTCAAGACGCCTCC
Species4: ATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTAC
Species5: ATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTAC
Species6: ATGGCACATGCAGCGCAAGTAGGTCTACAAGACGCTAC
Species7: ATGGCTTACCAATTTCAACTTGGCTTACAAGACGCTACC
Species8: ATGGCATACCCCCTACAAATAGGCCTACAAGATGCAAC

**

The reconstructed trees can only be as good as their underlying multiple sequence alignment (garbage in -> garbage out).

Slowly evolving regions: to align – good for solving divergence events, cannot be used to solve events.

Rapidly evolving regions: to align – good for solving event, cannot be used to solve divergence events.

**

The problem

Aligning rapidly evolving loci for highly diverged taxa

leads to **POOr** alignments and inaccurate trees.

. . .

Species9999: ATGGCA-TAC—----ACAA—TAG-CACAA--GATGC-AAC-Species10000:ATGG----ATATCCCATACAACTAGGATTCCAA----GCAAC

The problem

- Almost all MSA algorithms build a phylogeny during the estimation procedures.
- Those phylogenies are often based on pairwise distances.
- Pairwise distances:
 - raw pairwise distances (uncorrected).
 - model-corrected (e.g. Jukes-Cantor).

ATGGCATATCCCATACAACTAGG
ATGGCACACCCAACGCAACTAGC
ATGGCCAACCACTCCCAACTAGG
ATGGCACATGCAGCGCAAGTAGC
ATGGCACATGCAGCGCAAGTAGC
ATGGCACATGCAGCGCAAGTAGC
ATGGCTTACCCATTTCAACTTGGC
ATGGCATACCCCCTACAAATAGG

The problem

 These methods are susceptible to problems with Saturation
 (i.e. multiple mutations at the same site for the same organism)

ATGGCATATCCCATACAACTAGG
ATGGCACACCCAACGCAACTAGC
ATGGCCAACCACTCCCAACTAGG
ATGGCACATGCAGCGCAAGTAGC
ATGGCACATGCAGCGCAAGTAGC
ATGGCACATGCAGCGCAAGTAGC
ATGGCTTACCCATTTCAACTTGGC
ATGGCATACCCCCTACAAATAGG

Mega phylogeny approach

 Separate sequences into subgroups of aligned sequences based on the degree of sequence saturation.

Mega phylogeny approach

- If the most inclusive group of sequences is saturated, then the group is broken up into less inclusive groups using the next level in the taxonomic hierarchy.
- For example, if an "order" is found to be saturated, it would be broken into "families". Each smaller subset of sequences is then re-aligned and the saturation reassessed.
- This process continues iteratively.

Order

Saturated?

ves

Family1

TATGGGCAATGGAAATTTCAATAT
TAAGGGCAATGGAAATTGCAATAT
TATGCGCA ATGCAAATTTCAATAT

Family2

TATCCCGGGAAGCTAATTAATGGAGGAATTTCAAGTATATT
TATCCCTGGAAAGCTAATCAATGGAGGAATTTCAAGTATAT

Detect saturation across a set of sequence data

d1 = raw pair-wise distance

d2 = Jukes-Cantor distance

ACGGTCATGTATAC
TCTCTCCTGTGAAT d1 = 0.5

ACGGTCATGTATAC TCTCTCCTGTGAAT d2 = 0.8

- x = |d1 d2| (x = 0.3)
- Measure of dispersion is based on the median absolute deviation (MAD):

$$MAD = Med(|xi - Med(x)|)$$

e.g.: (9,6,4,2,1,1)

absolute deviations:

$$(7,4,2,0,0,1,1) => (7,4,2,1,1,0,0)$$

Detect saturation across a set of sequence data

- The larger the MAD -> the larger the overall spread of distances.
- That is, above a certain value the assumed nucleotide substitution model is no longer adequately accounting for the rate variation exhibited by pair-wise distances among species.

Assessing saturation

Determine a threshold for subdividing sequences into smaller alignments.

Assessing saturation

Tree

length

One more slide: Our mega phylogeny approach

Locus 1 ->

ATGGCATATCCCATACAACTAGGATTCCAAGT ATGGCTTACCCATTTCAACTTGGCTTACAAGA ATGGCCAACCACTCCCAACTAGGCTTTCAAGT ATGGCACATCCCACACAATTAGGATTCCAAGA ATGGCCTACCCATTCCAACTTGGTCTACAAGA

Locus 2 ->

TATCCCGGG AAGCTAATT	-AATGGAGG	AATTICAAG	IAIAII
TAT GGGCA	ATGGA	- AATTTCAA -	TAT
TATCCCTGG AAAGCTAAT	-CAATGGAG	GAATTTCAAG	TATAT
TAA GGGCA	ATGGA	-AATTGCAA -	TAT
TAT GCGCA	ATGCA	- AATTTCAA -	TAT

Locus 1

Locus 2a

Locus 2b

TATCCCGGGAAGCTAATTAATGGAGGAATTTCAAGTATAT	
TATCCCTGGAAAGCTAATCAATGGAGGAATTTCAAGTATA	T
	TATGGGCAATGGAAATTTCAATAT
	TAAGGGCAATGGAAATTGCAATAT
	-IAIGCGCAAIGCAAAIIICAAIAII

Thanks.