Corrigé du devoir à rendre le 1/03/2021

Problème 1:

Soit (E) l'équation différentielle : $(1-x)^2 y' = (2-x) y$. On note I l'intervalle $]-\infty,1[$.

1. Calculer une primitive A de la fonction a définie sur I par : $a(x) = \frac{2-x}{(1-x)^2}$.

Pour tout $x \in I$, on a $a(x) = \frac{1+1-x}{(1-x)^2} = \frac{1}{(1-x)^2} + \frac{1}{1-x}$. Une primitive de a

est donc : $A: I \to \mathbb{R}, x \mapsto \frac{1}{1-x} - \ln(1-x)$

2. Intégrer (E) sur I.

Une fonction f est solution de (E) sur I si, et seulement si, :

$$\forall x \in I, \quad f'(x) = \frac{2-x}{(1-x)^2} f(x)$$

Comme (E) est une équation différentielle homogène linéaire d'ordre 1, l'ensemble des solutions de (E) est : $S = \{I \to \mathbb{R}, x \mapsto Ce^{A(x)}, C \in \mathbb{R}\}$ soit

$$\mathcal{S} = \{ I \to \mathbb{R}, \ x \mapsto \frac{C}{1-x} e^{1/(1-x)}, \ C \in \mathbb{R} \}$$

Soit f la fonction définie sur I par $f(x) = \frac{1}{1-x}e^{\frac{1}{1-x}}$.

3. Prouver par récurrence que, pour tout entier naturel n, il existe un polynôme P_n tel que :

$$f^{(n)}(x) = P_n\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}}, \quad \forall x \in I$$

La démonstration permet d'exprimer $P_{n+1}(X)$ en fonction de $P_n(X)$, $P'_n(X)$ et X. Expliciter cette relation.

Pour tout entier n, on pose :

H(n): "Il existe un polynôme P_n tel que: $\forall x \in I$, $f^{(n)}(x) = P_n\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}}$ " Initialisation: En posant $P_0 = X$, on vérifie H(0).

Hérédité : Supposons H(n) vraie pour un certain $n \in \mathbb{N}$. Il existe alors un polynôme P_n tel que : $\forall x \in I$, $f^{(n)}(x) = P_n\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}}$.

Par suite, f est n+1 fois dérivable et pour tout $x \in I$, on a

$$f^{(n+1)}(x) = \frac{1}{(1-x)^2} P_n'\left(\frac{1}{1-x}\right) e^{\frac{1}{1-x}} + P_n\left(\frac{1}{1-x}\right) \frac{1}{(1-x)^2} e^{\frac{1}{1-x}}$$

On pose $P_{n+1} = X^2 P'_n + X^2 P_n$, on obtient un polynôme tel que :

$$\forall x \in I, \quad f^{(n+1)}(x) = P_{n+1}\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}}.$$

Ainsi, pour tout entier naturel n, il existe un polynôme P_n tel que :

$$\forall x \in I, \quad f^{(n)}(x) = P_n\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}}$$

et les polynômes P_n et P_{n+1} sont reliés pas : $P_{n+1} = X^2 P_n' + X^2 P_n$

- 4. Préciser P_0, P_1, P_2 et P_3 .

 On obtient $P_0 = X$, $P_1 = X^3 + X^2$, $P_2 = X^5 + 4X^4 + 2X^3$ et $P_3 = X^7 + 9X^6 + 18X^5 + 6X^4$.
- 5. En dérivant n fois les deux membres de l'équation (E), prouver que pour tout entier positif n:

$$P_{n+1}(X) = [(2n+1)X + X^{2}] P_{n}(X) - n^{2}X^{2}P_{n-1}(X)$$

Soit $g: x \mapsto (1-x)^2$ et $h: x \mapsto 2-x$.

Comme f est solution de (E), on a g f' = h f.

Ainsi, pour tout entier n, on a:

$$(gf')^{(n)} = \sum_{k=0}^{n} \binom{n}{k} g^{(k)} f^{(n+1-k)} = (hf)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} h^{(k)} f^{(n-k)}.$$

Comme $g^{(k)}$ est nulle pour $k \leq 3$ et que $h^{(k)}$ est nulle pour $k \leq 2$, on en déduit que

$$gf^{(n+1)} + ng'f^{(n)} + \frac{n(n-1)}{2}g''f^{(n-1)} = hf^{(n)} + nh'f^{(n-1)}$$

i.e. que, pour tout $x \in I$, on a

$$(2-x)P_n\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}} - nP_{n-1}\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}}$$

$$= (1-x)^2P_{n+1}\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}} - 2n(1-x)P_n\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}}$$

$$+ n(n-1)P_{n-1}\left(\frac{1}{1-x}\right)e^{\frac{1}{1-x}}.$$

Donc, pour tout $x \in I$, on a, en posant $u = \frac{1}{1-x}$,

$$(1+1/u)P_n(u) - nP_{n-1}(u) = \frac{1}{u^2}P_{n+1} - 2n\frac{1}{u}P_n(u) + n(n-1)P_{n-1}(u)$$

i.e. $(u^2+u)P_n\left(u\right)-nu^2P_{n-1}\left(u\right)=P_{n+1}-2nuP_n\left(u\right)+n(n-1)u^2P_{n-1}\left(u\right)$. Le polynôme $(X^2+X)P_n-nX^2P_{n-1}-P_{n+1}+2nXP_n-n(n-1)X^2P_{n-1}$ admet donc une infinité de racines (l'ensemble des $\frac{1}{1-x},\ x\in I$ i.e. \mathbb{R}^{+*}). Par suite, on a

$$P_{n+1} = [(2n+1)X + X^2]P_n - n^2X^2P_{n-1}$$

Le but de cette partie est d'établir quelques propriétés des nombres $a_n = f^{(n)}(0)$.

6. Pour tout entier positif n, exprimer a_{n+1} en fonction de n, a_n et a_{n-1} . Pour tout entier n, on a $a_n = P_n(1) e$. Donc le relation précédente donne :

$$a_{n+1} = 2(n+1)a_n - n^2 a_{n-1}$$

7. Préciser : a_0, a_1, a_2 et a_3 . Pour tout entier n, on a $a_n = P_n(1) e$. Donc

$$a_0 = e, \ a_1 = 2e, \ a_2 = 7e, \ a_3 = 34e.$$

8. On désigne par (u_p) la suite définie pour tout entier naturel p par : u_p = ∑ 1/i!.
En appliquant une formule de Taylor à la fonction exponentielle, prouver que la suite (u_p) converge vers e.
La fonction exp étant de classe C[∞], on a, pour tout p ∈ N, l'inégalité de Taylor-Lagrange :

$$|u_p - e| = \left| \exp(0) - \sum_{k=0}^p \frac{(1-0)^k \exp^{(k)}(0)}{k!} \right| \le \frac{(1-0)^{p+1}}{(p+1)!} \max_{[0,1]} \left| \exp^{(p+1)} \right| = \frac{e}{(p+1)!}$$

Comme $\lim_{p\to +\infty}\frac{e}{(p+1)!}=0$, on en déduit par encadrement que $\lim_{p\to +\infty}u_p=e$

Soit p et n des entiers naturels quelconques, on pose $S_p(n) = \sum_{i=0}^p \frac{(n+i)!}{(i!)^2}$

9. (a) Exprimer $S_p(0)$ et $S_p(1)$ à l'aide de u_p et u_{p-1} pour $p \ge 1$.

On a
$$S_p(0) = \sum_{i=0}^{p} \frac{1}{i!} = u_p$$
 et

$$S_{p}(1) = \sum_{i=0}^{p} \frac{(1+i)!}{(i!)^{2}} = \sum_{i=0}^{p} \frac{1+i}{i!} = u_{p} + \sum_{i=1}^{p} \frac{1}{(i-1)!} \text{ i.e.}$$

$$\boxed{S_{p}(1) = u_{p} + u_{p-1}}$$

(b) Prouver que les suites $p \to S_p(0)$ et $p \to S_p(1)$ convergent et préciser leur limite en fonction de e.

Les suites $(S_p(0))_{p\in\mathbb{N}}$ et $(S_p(1))_{p\in\mathbb{N}}$ convergent respectivement vers e et 2e.

10. Prouver que quels que soient les entiers p et n supérieurs ou égaux à 1 :

$$S_p(n+1) - (2n+2) S_p(n) + n^2 S_p(n-1) = S_{p-1}(n) - S_p(n)$$

Soient n et p deux entiers strictement positifs. On a :

$$S_{p}(n+1) - (2n+2) S_{p}(n) + n^{2} S_{p}(n-1)$$

$$= \sum_{i=0}^{p} \frac{(n+1+i)!}{(i!)^{2}} - (2n+2) \sum_{i=0}^{p} \frac{(n+i)!}{(i!)^{2}} + n^{2} \sum_{i=0}^{p} \frac{(n-1+i)!}{(i!)^{2}}$$

$$= \sum_{i=0}^{p} \frac{(n-1+i)!}{(i!)^{2}} (-n+i(i-1)) = \sum_{i=0}^{p} \frac{(n-1+i)!}{(i!)^{2}} (-(n+i)+i^{2})$$

$$= -S_{p}(n) + \sum_{i=1}^{p} \frac{(n-1+i)!}{((i-1)!)^{2}} = -S_{p}(n) + \sum_{i=0}^{p-1} \frac{(n+i)!}{(i!)^{2}}$$

Donc
$$S_p(n+1) - (2n+2) S_p(n) + n^2 S_p(n-1) = S_{p-1}(n) - S_p(n)$$

11. En déduire que pour tout entier naturel n, la suite $p \to S_p(n)$ converge. Pour tout entier n, on pose : H(n) : "La suite $(S_p(n))_{p \in \mathbb{N}}$ converge " Initialisation : Les suites $(S_p(0))_{p \in \mathbb{N}}$ et $(S_p(1))_{p \in \mathbb{N}}$ convergent.

Hérédité : Soit $n \in \mathbb{N}^*$ tel que les suites $(S_p(n))_{p \in \mathbb{N}}$ et $(S_p(n-1))_{p \in \mathbb{N}}$ convergent. Pour tout entier p non nul, on a :

$$S_p(n+1) = (2n+2) S_p(n) - n^2 S_p(n-1) + S_{p-1}(n) - S_p(n)$$

Par conséquent, la suite $(S_p(n+1))_{p\in\mathbb{N}}$ converge.

On a donc prouvé par une récurrence double que pour tout entier n, la suite $(S_p(n))_{p\in\mathbb{N}}$ converge.

12. Prouver que : $a_n = \lim_{p \to +\infty} \sum_{i=0}^p \frac{(n+i)!}{(i!)^2} = \lim_{p \to +\infty} n! \sum_{i=0}^p \binom{n+i}{n} \cdot \frac{1}{i!}$

Pour tout entier n, on pose ℓ_n la limite de la suite $(S_p(n))_{p\in\mathbb{N}}$.

Pour tout entier n, on pose : H(n) : "La suite $(S_p(n))_{p\in\mathbb{N}}$ converge vers a_n ."

Initialisation: Les suites $(S_p(0))_{p\in\mathbb{N}}$ et $(S_p(0))_{p\in\mathbb{N}}$ convergent respectivement vers a_0 et a_1 .

Hérédité : Soit $n \in \mathbb{N}^*$ tel que les suites $(S_p(n))_{p \in \mathbb{N}}$ et $(S_p(n-1))_{p \in \mathbb{N}}$ convergent respectivement vers a_n et a_{n-1} .

Pour tout entier p non nul, on a:

$$S_p(n+1) = (2n+2) S_p(n) - n^2 S_p(n-1) + S_{p-1}(n) - S_p(n)$$

Par conséquent, la suite $(S_p(n+1))_{n\in\mathbb{N}}$ converge vers

$$(2n+2) a_n - n^2 a_{n-1} + a_n - a_n = (2n+2) a_n - n^2 a_{n-1} = a_{n+1}$$

d'après la question 6. Ainsi, $\forall n \in \mathbb{N}$, $a_n = \lim_{p \to +\infty} \sum_{i=0}^p \frac{(n+i)!}{(i!)^2}$ Pour tout $(n,i) \in$

$$\mathbb{N}^2$$
, on a $\binom{n+i}{n} \cdot \frac{1}{i!} = \frac{(n+i)!}{n! (i!)^2}$ donc

$$\forall n \in \mathbb{N}, \quad a_n = \lim_{p \to +\infty} n! \sum_{i=0}^p \binom{n+i}{n} \cdot \frac{1}{i!}$$

Problème 2:

On note $p: x \mapsto e^x$, $q: x \mapsto e^{2x}$ et $r: x \mapsto e^{x^2}$. On note $\mathcal{B} = (p,q,r)$ et \mathcal{E} le sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ engendré par la famille \mathcal{B} .

13. Prouver que \mathcal{B} est une base de \mathcal{E} Par définition, la famille \mathcal{B} engendre \mathcal{E} . Montrons que cette famille est libre.

Soient $(a, b, c) \in \mathbb{R}^3$ tel que ap + bq + cr soit la fonction nulle. Alors :

$$\forall x \in \mathbb{R}, \quad ae^x + be^{2x} + ce^{x^2} = 0.$$

En particulier, a+b+c=0 et $ae+be^2+ce=0$, ce qui implique que $be^2=be$ soit b=0 et a+c=0.

De plus, $ae^{-1} + ce = 0$ donc a = c = 0.

Par suite, la famille \mathcal{B} est libre donc $\boxed{\mathcal{B}}$ est une base de \mathcal{E}

On note ψ l'application qui, à $f \in \mathcal{E}$, associe le triplet de réels (f(0), f'(0), f(1)).

14. Prouvez que ψ est un isomorphisme du \mathbb{R} -espace vectoriel \mathcal{E} sur le \mathbb{R} -espace vectoriel \mathbb{R}^3 .

Montrons que ψ est une application linéaire bijective de \mathcal{E} dans \mathbb{R}^3 .

Soit $(f, g, \lambda) \in \mathcal{E}^2 \times \mathbb{R}$. Alors:

$$\psi(f + \lambda g) = ((f + \lambda g)(0), (f + \lambda g)'(0), (f + \lambda g)(1))$$

= $(f(0), f'(0), f(1)) + \lambda(g(0), g'(0), g(1))$
= $\psi(f) + \lambda \psi(g)$.

Ainsi, ψ est une application linéaire.

Soit $(a, b, c) \in \mathbb{R}^3$ et f = Ap + Bq + Cr. On a

$$\psi(f) = (a, b, c) \Longleftrightarrow \begin{cases} A + B + C = a \\ A + 2B = b \iff \begin{cases} A + B + C = a \\ B - C = b - a \end{cases} \\ e(e - 1)B = c - ea \end{cases}$$

donc

$$\psi(f) = (a, b, c) \iff \begin{cases} B = \frac{c - ea}{e(e - 1)} = \frac{-1}{e - 1}a + \frac{1}{e(e - 1)}c \\ C = \frac{e - 2}{e - 1}a - b - \frac{1}{e(e - 1)}c \\ A = \frac{2}{e - 1}a - b - \frac{2}{e(e - 1)}c \end{cases}$$

donc tout élément de \mathbb{R}^3 admet un unique antécédent par ψ .

Ainsi, $|\psi|$ est un isomorphisme de \mathcal{E} dans \mathbb{R}^3 .

15. Déterminer ψ^{-1} .

Pour tout $(a, b, c) \in \mathbb{R}^3$, on a:

$$\psi^{-1}((a,b,c)) = \left(\frac{2}{e-1}a - b - \frac{2}{e(e-1)}c\right)p + \left(\frac{c-ea}{e(e-1)} = \frac{-1}{e-1}a + \frac{1}{e(e-1)}c\right)q + \left(\frac{e-2}{e-1}a - b - \frac{1}{e(e-1)}c\right)r.$$

On note φ l'application de $\mathcal E$ dans lui-même qui, à $f\in\mathcal E$, associe $\varphi(f)=Ap+Bq+Cr$ où

$$\begin{cases} A = \frac{2}{e-1}f(0) + f'(0) + \frac{2}{e(e-1)}f(1) \\ B = -\frac{1}{e-1}f(0) - \frac{1}{e(e-1)}f(1) \\ C = \frac{e-2}{e-1}f(0) - f'(0) - \frac{1}{e(e-1)}f(1) \end{cases}$$

16. On note $\mathcal{P} = \{f \in \mathcal{E} : \varphi(f) = f\}$ l'ensemble des vecteurs de \mathcal{E} invariants par f. Montrez que $\mathcal{P} = \{f \in \mathcal{E} : f(1) = 0\}$. Déterminer une équation de \mathcal{P} dans la base \mathcal{B} ; exhibez une base (e_1, e_2) de \mathcal{P} . Soit $f \in \mathcal{E}$.

Comme ψ est bijective, $\varphi(f) = f$ si, et seulement si, $\psi(\varphi(f)) = \psi(f)$. Or,

$$\psi\left(\varphi(f)\right) = \left(f(0), f'(0), -f(1)\right)$$

donc $\varphi(f) = f$ si, et seulement si, f(1) = 0 i.e. $\mathcal{P} = \{f \in \mathcal{E} : f(1) = 0\}$

Soit $f = Ap + Bp + Cr \in \mathcal{P}$, on a $f \in \mathcal{P}$ si, et seulement si, f(1) = 0 donc si, et seulement si, $Ae + Be^2 + Ce = 0$.

Une équation de \mathcal{P} dans la base \mathcal{B} est donc A + eB + C = 0

Ainsi, $\mathcal{P} = \{Ap + Bq - (A + eB)r, \ (A, B) \in \mathbb{R}^2\} = \text{Vect}(p - r, q - er) \text{ i.e. la famille } (p - r, q - er) \text{ engendre } \mathcal{P}. \text{ Comme les fonctions } e_1 = p - r \text{ et } e_2 = q - er \text{ ne}$

sont pas colinéaires, on en déduit que | la famille (e_1,e_2) est une base de $\mathcal P$

17. On note D = {f ∈ E : φ(f) = −f} l'ensemble des vecteurs de E transformés en leur opposé par f. Déterminez des équations de D dans la base B. Exhibez une base (e₃) de D, et donnez une caractérisation des éléments de D. Soit f ∈ E.

Comme ψ est bijective, $\varphi(f) = -f$ si, et seulement si, $\psi(\varphi(f)) = -\psi(f)$. Or,

$$\psi\left(\varphi(f)\right) = \left(f(0), f'(0), -f(1)\right)$$

donc $\varphi(f) = -f$ si, et seulement si, f(0) = f'(0) = 0 i.e.

$$\mathcal{D} = \{ f \in \mathcal{E} : f(0) = f'(0) = 0 \}$$

Soit $f = Ap + Bp + Cr \in \mathcal{P}$, on a $f \in \mathcal{D}$ si, et seulement si, f(0) = f'(0) = 0 donc si, et seulement si, A + B + C = A + 2B = 0.

Une équation de \mathcal{D} dans la base \mathcal{B} est donc A + B + C = A + 2B = 0

Ainsi, $\mathcal{D} = \{Ap - \frac{A}{2}q - fracA2r, A \in \mathbb{R}^2\} = \text{Vect}(2p - q - r)$ i.e. la famille (2p - q - r) engendre \mathcal{P} . Comme la fonction $e_3 = 2p - q - r$ est non nulle, on en déduit que la famille (e_3) est une base de \mathcal{D} .

18. Montrez que $\mathcal{E} = \mathcal{P} \oplus \mathcal{D}$.

Montrons que $\mathcal{P} \cap \mathcal{D} = \{0\}.$

Soit $f \in \mathcal{P} \cap \mathcal{D}$, alors $\varphi(f) = f = -f$ donc f = 0.

Les sev \mathcal{P} et \mathcal{D} sont donc en somme directe.

Soit $f = Ap + Bq + Cr \in \mathcal{E}$. Si on pose

$$\begin{cases} a = \frac{1+e}{e-1}A - \frac{2e}{1-e}B - \frac{2}{1-e}C \\ b = \frac{A+B+C}{1-e} \\ c = \frac{1}{1-e}A + \frac{e}{1-e}B + \frac{1}{1-e}C \end{cases}$$

alors $f = ae_1 + be_2 + ce_3$ donc $f \in \mathcal{P} + \mathcal{D}$.

Par conséquent, $\boxed{\mathcal{E} = \mathcal{P} \oplus \mathcal{D}}$

Ainsi : s est la symétrie par rapport à $\mathcal P$ parallèlement à $\mathcal D$

19. Prouver que $C = (e_1, e_2, e_3)$ est une base de \mathcal{E} .

On a déjà prouvé que (e_1, e_2, e_3) engendre \mathcal{E} .

Soit $(a, b, c) \in \mathbb{R}^3$ tel que $ae_1 + be_2 + ce_3 = 0$, alors $ae_1 + be_2 = -ce_3 \in \mathcal{P} \cap \mathcal{D}$ donc c = 0 et $ae_1 + be_2 = 0$ donc a = b = c = 0 ce qui prouve la liberté de la famille (e_1, e_2, e_3) .

Ainsi, $C = (e_1, e_2, e_3)$ est une base de \mathcal{E}

On note \mathcal{F} l'ensemble des éléments de $\mathbb{R}[X]$ dont le terme constant est nul. On identifie un polynôme P et la fonction polynôme $x \mapsto P(x)$ qui lui est naturellement associée.

20. Montrez que \mathcal{F} est un sous-espace vectoriel de $\mathbb{R}[X]$ et en donner une base Comme \mathcal{F} est le noyau de l'application linéaire Θ : $\mathbb{R}[X] \to \mathbb{R}$, $P \mapsto P(0)$, $\boxed{\mathcal{F}}$ est un sous-espace vectoriel de $\mathbb{R}[X]$.

La famille $(X^k)_{k\in\mathbb{N}^*}$ engendre \mathcal{F} et est échelonnée en degré donc libre. Ainsi : $(X^k)_{k\in\mathbb{N}^*}$ est une base de \mathcal{F} .

Soit $(P_k)_{1 \le k \le q}$ une famille d'éléments de $\mathcal F$ vérifiant la condition suivante :

$$\forall k \in [1, q], \quad \lim_{x \to +\infty} P_{k+1}(x) - P_k(x) = +\infty$$

On note $f_k = \exp \circ P_k$ l'application qui, à $x \in \mathbb{R}$, associe $f_k(x) = e^{P_k(x)} = \exp(P_k(x))$.

21. Montrez que la famille $(f_k)_{1 \leq k \leq q}$ est libre.

Soit $(\lambda_k)_{1 \le k \le q}$ tel que $\sum_{k=1}^q \lambda_k f_k = 0$. Montrons que $\lambda_1 = \dots = \lambda_q = 0$.

Supposons, par l'absurde, que $(\lambda_k)_{1 \leq k \leq q}$ soit non nul, alors l'ensemble $\{k \in [1,q] : \lambda_k = 0\}$ est une partie de $\mathbb N$ non vide; elle admet donc un plus petit élément que l'on note r.

On a alors $\sum_{k=1}^{r} \lambda_k f_k = f_r \left(\lambda_r + \sum_{k=1}^{r-1} \lambda_k e^{P_k - P_r} \right) \operatorname{donc} \lambda_r + \sum_{k=1}^{r-1} \lambda_k e^{P_k - P_r} = 0$

Or, pour tout $k \in [1, r-1]$,

$$e^{P_k - P_r} = \prod_{j=k}^{r-1} e^{P_j - P_{j+1}}$$

 $\operatorname{donc} \lim_{+\infty} e^{P_k - P_r} = 0.$

Par suite, $\lambda_r=0$ ce qui contredit l'hypothèse initiale.

Par conséquent, la famille $(f_k)_{1 \le k \le q}$ est libre.