STRUCTURAL PARAMETERS OF THE HOUSEHOLDS

Parameter	Value	Units	Parameter	Value	Units
House length (L_1)	20	m	Area of windows	1	m ²
**************************************			Area of walls	236	m ²
House width (L_2)	10	m	Wall thermal coefficient	136.8	J/h·m· °C
House height (L_3)	4	m	Window thermal coefficient	2808	J/h·m· °C
Roof angle (β)	40	deg	Thickness of windows	0.07	m
Number of windows	4	-	Thickness of walls	0.20	m

Consider that the normal comfort temperature of the mentioned household's owner is 19°C and the household is subjected to an hourly average ambient temperature variation given below on a very hot summer day

Time	Temperature [°C]	
12am-1pm	30	
1pm-2pm	30	
2pm-3pm	31	
3pm-4pm	30	

Considering a time granularity of 1 hour and the household has a regulated indoor temperature of 19° C at 12 am, draw the graphs of the HVAC power consumption for 6 minutes (0.1 hour) of time granularity for the period between 12 am and 4 pm both for the case of set temperature value of 21° C and calculate the total energy consumption value for the mentioned case for a HVAC unit of 3 kW, with COP of 2 and ∓ 1 C dead-band limits. Firstly, solve the question numerically. Then, solve the same problem using the code you write as an m-file in MATLAB to verify the obtained numerical results.

Formulas:

$$V_h = (L_{1,h} \times L_{2,h} \times L_{3,h}) + (tan(\beta) \times L_{1,h} \times L_{2,h})$$

$$M_{a,h} = V_h \times \delta_{air}$$

$$R_{eq,h} = \frac{1}{N} \sum_{i} \frac{l_{i,h}}{\sigma_{i,h} A_{i,h}}$$

$$\begin{split} T_{in,h,t} &= \left(\left(1 - \frac{\Delta T}{1000 \times M_{a,h} \times c_a \times R_{eq,h}} \right) \times T_{in,h,t-1} \right) + \left(\left(\frac{\Delta T}{1000 \times M_{a,h} \times c_a \times R_{eq,h}} \right) \times T_{air,b,t-1} \right) - u_{AC,h,t-1} \times \left(\frac{COP_h \times P_{AC,h} \times \Delta T}{0.000277 \times M_{a,h} \times c_a} \right), \forall t > 1 \end{split}$$

$$p_{AC,h,t} = P_{AC,h} \times u_{AC,h,t}, \forall t$$

$$\textstyle \sum_{h} p_{AC,h,t} \leq \max \left(P_{total,ref,t}\right), \forall t \in [t_1,t_2]$$

$$avg\big(\textstyle\sum_{h}p_{AC,h,t}\big)\leq avg\big(P_{total,ref,t}\big), \forall t\in [t_1,t_2]$$