

New Zealand Mathematical Olympiad Committee

2011 May Problems

1. Let x_1 and x_2 be the distinct roots of the equation $2x^2 - 3x + 4 = 0$. Compute the value of

$$\frac{1}{x_1^3} + \frac{1}{x_2^3}.$$

Solution: If α and β are the roots of the quadratic $x^2 - ax + b = 0$ then

$$x^{2} - ax + b = (x - \alpha)(x - \beta) = x^{2} - (\alpha + \beta)x + \alpha\beta,$$

so $\alpha + \beta = a$ and $\alpha\beta = b$. In our case this gives $x_1 + x_2 = 3/2$ and $x_1x_2 = 2$.

Now also $x^2 = \frac{3}{2}x - 2$, so $x^3 = \frac{3}{2}x^2 - 2x = \frac{3}{2}(\frac{3}{2}x - 2) - 2x = \frac{1}{4}x - 3$. We then get

$$\frac{1}{x_1^3} + \frac{1}{x_2^3} = \frac{x_1^3 + x_2^3}{x_1^3 x_2^3} = \frac{\frac{1}{4}(x_1 + x_2) - 6}{(x_1 x_2)^3} = \frac{\frac{3}{8} - 6}{8} = -\frac{45}{64}.$$

2. Six points are given inside a square of side-length 10, such that the distance between any two of them is an integer. Prove that at least two of these distances are the same.

Solution: The maximum possible distance between two points in the square is $10\sqrt{2}$, when the points are placed at diagonally opposite vertices. Since $10\sqrt{2}\approx 14.14$, the maximum possible integer distance between two points in the square is 14. So there are fourteen possible integer distances between two points in the square, namely $1, 2, \ldots, 14$. However, six points gives a total of $\binom{6}{2} = \frac{6\cdot 5}{2} = 15$ pairs of points, so there are a total of fifteen distances. By the pigeonhole principle two of them must be the same.

3. Find all possible ways of expressing 2010 as a sum of (one or more) consecutive positive integers.

Solution: Suppose that

$$2010 = \sum_{j=k+1}^{n} j.$$

Then

$$2010 = \sum_{j=1}^{n} j - \sum_{j=1}^{k} j$$

$$= \frac{n(n+1)}{2} - \frac{k(k+1)}{2}$$

$$= \frac{n^2 - k^2 + n - k}{2}$$

$$= \frac{(n-k)(n+k+1)}{2}.$$

Hence (n-k)(n+k+1) = 4020, so we are interested in factorisations of $4020 = 2^2 \cdot 3 \cdot 5 \cdot 67$. Now n-k and n+k+1 differ by 2k+1, and so have opposite parities; thus, one is divisible by 4, and of course n-k must be the smaller of the two factors. This gives the following possibilities:

$ \frac{n-k}{n+k+1} $	1	3	4	5	12	15	20	60
n + k + 1	4020	2010	1005	804	335	268	201	67
n	2010	671	504	404	173	141	110	63
k	2009	668	500	399	161	126	90	3

(here we have used n = ((n-k) + (n+k+1) - 1)/2, k = ((n+k+1) - (n-k) - 1)/2). Hence

$$2010 = 2010$$

$$= 669 + 670 + 671$$

$$= 501 + 502 + 503 + 504$$

$$= 400 + 401 + 402 + 403 + 404$$

$$= 162 + 163 + 164 + \dots + 172 + 173 \qquad \text{(twelve terms)}$$

$$= 127 + 128 + 129 + \dots + 141 \qquad \text{(fifteen terms)}$$

$$= 91 + 92 + \dots + 110 \qquad \text{(twenty terms)}$$

$$= 4 + 5 + 6 + 7 + \dots + 63 \qquad \text{(sixty terms)}$$

as a sum of consecutive positive integers.

4. In a right triangle the median and bisector of the right angle divide the hypotenuse in three parts. The lengths of these parts, in a certain order, from an arithmetic sequence. Find all possible ratios of the lengths of the legs of the triangle (i.e., of the sides adjacent to the right angle).

Solution: Let the legs of the triangle have lengths a and b, with $a \leq b$, and let the hypotenuse have length c. Then the median divides the hypotenuse into two segments of length c/2, and the bisector then divides one of these into two segments of lengths s and t (see diagram). So the longest of the three segments has length c/2, and either s, t, c/2 or t, s, c/2 is an arithmetic progression, depending on which of s and t is the larger.

Suppose for the moment that t < s, as in the diagram. Then s + t = c/2, and also c/2 = t + 2(s - t); solving, we find that s = 2t. So t, s and c/2 are in the ratio 1:2:3 or 2:1:3.

We now apply the angle bisector theorem, to obtain a/b = BD/AD. If t < s then a/b = 2/4 = 1/2; and if s < t then a/b = 1/5. So the possible ratios of the smaller leg over the longer are 1/2 and 1/5.

Note that the problem can be completed without the angle bisector theorem, essentially by proving it in this special case. Use the sine rule to obtain $a/\sin(BDC) = BD/\sin(45^\circ)$ and $b/\sin(CDA) = DA/\sin(45^\circ)$, and then note that $\sin(CDA) = \sin(180^\circ - CDB) = \sin(CDB)$.

June 3, 2011 www.mathsolympiad.org.nz