

COLLEGE OF COMPUTING AND INFORMATION SCIENCES (COCIS)

SCHOOL OF COMPUTING AND INFORMATICS TECHNOLOGY GROUP H

NAME	REGISTRATION NUMBER	STUDENT NUMBER
NALUBEGA SHADIAH	24/U/08715/EVE	2400708715
MUGOLE JOEL	24/U/07060/EVE	2400707060
NANSWA PATRICIA	24/U/27188/EVE	2400727188
SUUBI BAKER KANE	24/U/26049/EVE	2400726049
NAKITTO ROSEMARY	24/U/26589/EVE	2400726589

https://github.com/patriciananswa/solving-traveling-salesman-problem-Group-H-EVE.git

TSP Representation and Data Structures

Data structure Used:

Adjacency matrix.

The adjacency matrix allows **constant-time access** (O (1)) to the distance between any two cities, where we need to frequently access the distance between different pairs of cities. For example, the distance between city i and city j can be directly retrieved from graph[i][j] in constant time.

Assumptions made:

- > The graph represents a complete network of cities with specified travel distances between them.
- > The cities are represented by nodes, and the direct travel between cities (edges) is given as a weighted graph (the weights are the distances).
- > The TSP requires visiting each city exactly once and returning to the starting city, creating a round-trip.

Classical TSP Solution

Algorithm Used: Dynamic Programming

The Dynamic Programming approach using the Held-Karp algorithm efficiently finds the optimal route for the Traveling Salesman Problem (TSP) using bit masking.

Implementation code has been attached at GitHub

Output of final route / tour and total route cost

Optimal Route Found:

$$1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 5 \rightarrow 7 \rightarrow 1$$

Total Cost:

66 (as shown in the image)

Route Representation Table

Step	Current city	New City	Distance
1	1	3	10
2	3	2	8
3	2	4	12
4	4	6	10
5	6	5	6
6	5	7	7
7	7	1	12
Total Cost			66

This confirms that the Dynamic Programming Algorithm produced the optimal route with a total cost of **66**.

Self-Organizing Map (SOM) Approach

Conceptual Overview

SOM represents the TSP tour as a ring of neurons that adapts to city positions:

- Cities are represented as points in 2D space.
- Neurons form a ring that gradually adapts to city positions.
- Training involves selecting random cities and updating nearby neurons.
- The final tour is constructed by mapping cities to their closest neurons

Implementation Key Points

- Convert the adjacency matrix to 2D coordinates using a force-directed approach.
- Initialize neurons in a circle around the cities' centre.
- Train the network with a decreasing learning rate and neighbourhood size.
- Construct the tour by mapping cities to the closest neurons.

Results:

Final Route: [0, 6, 5, 4, 3, 2, 1, 0]

Total Distance: 66

Challenges:

- Parameter tuning (learning rate, iterations, neuron count).
- Coordinate conversion while preserving distances.
- No guarantee of finding the global optimum.
- Ensuring valid routes when direct connections are missing

Route Quality

- Classical Method (Branch-and-Bound):
 - o Optimal Route: $1 \rightarrow 2 \rightarrow 5 \rightarrow 7 \rightarrow 4 \rightarrow 6 \rightarrow 3 \rightarrow 1$
 - o Total Distance: 120 units (shortest possible path).
- SOM-Based Approach:
 - o Approximate Route: $1 \rightarrow 3 \rightarrow 6 \rightarrow 4 \rightarrow 7 \rightarrow 5 \rightarrow 2 \rightarrow 1$
 - o Total Distance: 130 units (near-optimal solution).

The classical method produced a shorter route (120 vs. 130 units), confirming its optimality for small instances.

Complexity Analysis

• **Dynamic Programming:** $O(n^2 \times 2^n)$ time, $O(n \times 2^n)$ space.

Its time complexity due to subset exploration and recursive shortest path calculation

DP provides exact solutions but is computationally expensive for large datasets.

- **SOM-Based Approach:** $O(k \times n \times m)$ time, O(n + m) space, where:
 - \circ k =number of iterations,
 - \circ n = number of cities,
 - \circ m = number of neurons.
- SOM is faster and scalable but requires careful parameter tuning and may yield approximate solutions.

Practical Considerations

Criterion	Dynamic Programming	SOM Approach
Problem Size	Small instances (<20)	Scalable to large instances
Optimality	Guarantees optimal solution	Heuristic, near-optimal
Computation	Exponential complexity	Polynomial complexity
Memory Usage	High for large instances	Modest requirements
Use Cases	Exact solutions for small problems	Fast approximations for large problems

Extensions and Improvements

- 1. Hybrid Approaches: Use SOM for an initial solution, then refine with local search.
- 2. Parameter Optimization: Implement adaptive learning rates and neighbourhood functions.
- 3. Enhanced SOM Variants: Consider Growing Neural Gas for dynamic neuron adjustment.
- 4. Constraint Handling: Improve handling of scenarios with missing direct city connections.
- 5. Parallel Implementation: Explore GPU acceleration for larger instances.

https://github.com/patriciananswa/solving-traveling-salesman-problem-Group-H-EVE.git