計算の理論 後半課題4

司馬博文 J4-190549

2020年7月3日

問. 命題 $\neg \neg (A \lor \neg A)$ の証明を λ 項で表せ.

解答. 以下, 一般の型 τ に対して, 型 $\neg \tau$ とは関数型 $\tau \rightarrow$ False の略記とする.

すると、命題 $\neg\neg(A \lor \neg A)$ に対応する型は $(A + \neg A \to False) \to False$ であるから、この型を持つラムダ項を構成すれば良い、ここで、それぞれ型 $\neg A$ 、 $\neg\neg A$ を持つラムダ項 x,y を考える。このラムダ項の組 (x,y) は、ラムダ項を他のラムダ項の間の矢印 \to として表した次の図式が可換であるという意味で、直積型 $\neg A \times \neg \neg A$ 、即ち $(A \to False) \times (\neg A \to False)$ と同時に、直和型 $A + \neg A \to False$ も持つ。

以上より、次のラムダ項は型 $(\neg A \times \neg \neg A) \to \text{False}$ に加えて型 $(A + \neg A \to \text{False}) \to \text{False}$ も持ち、従って命題 $\neg \neg (A \vee \neg A)$ の 証明である.

 $\lambda(x,y): \neg A \times \neg \neg A.yx$