roject Outline Project Status Project Outlook Summary

Optimal Scheduling of EV Charging in Distribution Networks Initial Project Presentation

Fabian Neumann

Dissertation Project
MSc Sustainable Energy Systems
School of Engineering
The University of Edinburgh

June 19, 2017

Project Outline Project Status Project Outlook Summary

Agenda

- 1 Project Outline
 - Motivation
 - Research Objectives
 - Optimisation Problem Formulation
- 2 Project Status
 - Data Acquisition
 - Optimisation Routine
- 3 Project Outlook
- 4 Summary

Impact of Electric Vehicles

Electrification of the transport sector

- additional loads in distribution networks
- voltage drops and overloadings when uncontrolled

For sustainability, decarbonisation of electricity

- variable generation calls for active network management
- EVs for demand side management as storable/deferrable load

Consensus

Existing networks can accommodate substantial penetration levels of electric vehicles if charging is coordinated.

Charging Coordination of Electric Vehicles

Typically, an aggregator acts as intermediary between multiple EV users and wholesale or ancillary service markets.

Vast amount of research was already conducted. Multitude of...

- optimisation objectives
- optimisation techniques
- optimisation hierarchies

- constraints
- scenarios / models
- uncertainty treatment

Market-based and network-based optimisation often disjunct. E.g.

- cost-minimising algorithm disregards network constraints or
- peak-shaving algorithm neglects potential economic benefits.

Uncertainties in Load Scheduling

Consideration of uncertainties about scenarios is more prevalent in academia than recognition of individual uncertainties in mobility patterns, residential demand and market prices.

Research Objectives

Optimisation study based on a developed simulation model

- Develop a robust cost-minimising (bidirectional) scheduling routine for charging EVs while observing network, equipment and demand constraints in a stochastic environment.
- Characterise inherent and conceded uncertainties incurred with the optimal scheduling of EVs. (esp. driving behaviour)
- Compare and assess the performance of multiple optimisation methods under uncertainty and approaches to mitigate their sensitivity to prediction errors.
 - greedy heuristic
 - metaheuristics
 - analytical

```
(benchmark optimisation) (PSO or GA)
```

Extract of Problem Formulation

Example: With 50 vehicles, 24 hour optimisation horizon and 15 minute resolution, the problem has minimum $2 \cdot 50 \cdot 96 = 9600$ decision variables.

Data Acquisition

Price time series

UKPX Reference Price Data

Demand time series

CREST demand model

Network topology

European LV test feeder

Mobility data

National Travel Survey

Other parameters

- vehicle specifications
- charging equipment
- ..

Travel Pattern Analysis

Travel Pattern Analysis

Project Outline Project Status Project Outlook Summary
What's next?

Outlook on Upcoming Research

Implementation of...

- optimisation/model framework (Python, OpenDSS)
- optimisation algorithms
 - greedy heuristic (manual)
 - GA/PSO (DEAP)
 - LP (Gurobi, approximation)
- uncertainty mitigation
 - stochastic programming
 - rolling optimisation horizon
- reparation controller

Anticipated Difficulties

- thermal line limits data
- computational complexity
 - decision variables
 - power flow calculations
- incorporation of ancillary services (market structure)
- uncertainty modeling of demand, PV, and price
- information transfer and modelling forecast accuracy improvements (rolling opt.)
- linear power flow approximation

In a nutshell...

Summary

Scheduling Problem

- Cost Minimisation
- Physical Constraints
- Uncertainties
- 1-phase Connection
- StochasticProgramming
- Rolling Optimisation

Done

- Data Acquisition
- Travel Patterns
- Network Topology
- Parametrisation
- Power Flow in OpenDSS

To Do

- FrameworkImplementation
- Optimisation Algorithms
- Uncertainty Mitigation
- Real-timeController
- Evaluation
- Write-up