MATH 254 Tutorial 6 (Dense Subsets and Sequences):

Problem 1 (Baire Category Theorem): A subset $U \subseteq \mathbb{R}$ is called **open** if for any $a \in U$ there is a real number r > 0 such that $(a - r, a + r) \subseteq U$. A subset $U \subseteq \mathbb{R}$ is called **dense** if for any real numbers x < y there is an $a \in U$ such that x < a < y. In this problem, we want to prove that any countable intersection of open dense subsets of real numbers is dense and see a few numbers of its applications.

- a) Let $U \subseteq \mathbb{R}$ be dense. Prove that U is nonempty. Moreover, if we have $U \subseteq V \subseteq \mathbb{R}$, then V is also dense.
- b) Let x < y be two real numbers and $U \subseteq \mathbb{R}$ be open and dense. Prove that there are real numbers x' < y' such that $[x', y'] \subseteq U \cap (x, y)$.
- c) Let x < y be two real numbers and $U_n \subseteq \mathbb{R}$ be open and dense for each $n \in \mathbb{N}$. Using part b and mathematical induction, prove that there are numbers $x_n < y_n$ for each $n \in \mathbb{N}$ such that $[x_1, y_1] \subseteq U_1 \cap (x, y)$ and $[x_{n+1}, y_{n+1}] \subseteq U_{n+1} \cap (x_n, y_n)$ for all $n \in \mathbb{N}$.
- d) Let $U_n \subseteq \mathbb{R}$ be open and dense for each $n \in \mathbb{N}$. Using part c, prove that $\bigcap_{n=1}^{\infty} U_n$ is dense in real numbers (In particular, the intersection is nonempty).
- e) Let $C \subseteq \mathbb{R}$ be countable. Using part d, prove that $\mathbb{R} C$ is dense in real numbers (In particular, it is nonempty).
 - f) Using part e, give a new proof of uncountablity of real numbers.
- g) Using part e, give a new proof of density of irrational numbers in real numbers.
- h) Prove that any union of open subsets of real numbers is open and any finite intersection of open subsets of real numbers is open. Give an example for part d such that the intersection is not open. Moreover, prove that the empty set, \mathbb{R} and open intervals are among open subsets of real numbers.

Problem 2: Let (x_n) be a sequence of natural numbers (integers) converging to $x \in \mathbb{R}$.

- a) Prove that the limit x should be a natural number (an integer).
- b) Prove that the sequence should be eventually constant i.e. there is an $N \in \mathbb{N}$ such that $x_n = x$ for all $n \geq N$.

Problem 3: Let (x_n) be a sequence of real numbers. Prove that (x_n) converges to 0 if and only if $(|x_n|)$ converges to 0. Give an example to show that the convergence of $(|x_n|)$ need not imply the convergence of (x_n) .

Problem 4: Let (x_n) be a sequence of real numbers converging to x.

- a) Prove that if x > 0, then the sequence should be eventually positive i.e. there is an $N \in \mathbb{N}$ such that $x_n > 0$ for all $n \ge N$. Does this statement remain true if we replace both > with \ge , < or \le ?
- b) Prove that if the sequence is eventually non-negative, then the limit x should be non-negative. Does this statement remain true if we replace both non-negative with positive, non-positive or negative?

Problem 5: Let (x_n) and (y_n) be two sequences of real numbers.

a) Prove that if (x_n) and $(x_n + y_n)$ are convergent, then (y_n) is convergent.

- b) Give an example of divergent sequences (x_n) and (y_n) such that both $(x_n + y_n)$ and $(x_n \cdot y_n)$ are convergent.
- c) Prove that if (x_n) converges to 0 and (y_n) is bounded, then $(x_n.y_n)$ converges to 0. Give an example of convergent sequence (x_n) and divergent sequence (y_n) such that $(x_n.y_n)$ is convergent.
- d) Prove that if (x_n) and $(x_n.y_n)$ are convergent and $\lim(x_n) \neq 0$, then (y_n) is convergent.
- e) Assume that (x_n) and $(x_n.y_n)$ are convergent but (y_n) is divergent. Should we have $\lim(x_n) = 0$? What about $\lim(x_n.y_n) = 0$?

Problem 6: Suppose that (x_n) is a convergent sequence and (y_n) is such that for any $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_n - y_n| < \epsilon$ for all $n \geq N$. Does it follow that (y_n) is convergent?

Problem 7: Let (x_n) and (y_n) be two sequences of real numbers converging to x and y, respectively. Prove that $(max\{x_n, y_n\})$ and $(min\{x_n, y_n\})$ converge to $max\{x, y\}$ and $min\{x, y\}$, respectively.