Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Math for Machine Learning

Linear algebra - Week 1

Systems of linear equations
Singular and non-singular matrices
Determinants
Rank of a matrix
Row reduction
Null space

System of Linear Equations

Machine learning motivation

Neural networks - image recognition

Image recognition in a busy street in New York.

Image recognition: Getting the computer to see images and recognize what is on them.

System of Linear Equations

System of sentences

System 1

System 1

System 2

System 1

Complete

System 2

System 1

The dog is black
The cat is orange

Complete

System 2

Redundant

System 1

The dog is **black**The cat is **orange**

Complete

System 2

Redundant

System 3

Contradictory

System 1

The dog is black
The cat is orange

Complete

System 2

Redundant

Singular

System 3

Contradictory

Singular

System 1

The dog is **black**The cat is **orange**

System 2

The dog is black
The dog is black

System 3

The dog is **black**The dog is white

Complete

Non-singular

Redundant

Singular

Contradictory

Singular

System 1

The dog is **black**The cat is **orange**The bird is **red**

System 2

System 3

System 1

System 2

System 3

System 4

Complete

Non-singular

System 1

The dog is black
The cat is orange
The bird is red

Complete

Non-singular

System 2

Redundant

Singular

System 3

System 1

The dog is black
The cat is orange
The bird is red

Complete

Non-singular

System 2

Redundant

Singular

System 3

Redundant

Singular

System 1

The dog is black
The cat is orange
The bird is red

Complete

Non-singular

System 2

The dog is black
The dog is black
The bird is red

Redundant

Singular

System 3

The dog is black
The dog is black
The dog is black

Redundant

Singular

System 4

Contradictory

Singular

Quiz: Systems of sentences

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Problem 1:

What color is the bird?

Problem 2:

Is this system singular or non-singular?

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Given this system:

Between the dog, the cat, and the bird, one is red.

• Between the dog and the cat, one is orange.

Solution 1:

Given this system:

• Between the dog, the cat, and the bird, one is red.

• Between the dog and the cat, one is orange.

• The dog is black.

Solution 1:

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.

• The dog is black.

Solution 1:

Given this system:

Between the dog, the cat, and the bird, one is red.

- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Given this system:

Between the dog, the cat, and the bird, one is red.

- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Given this system:

Between the dog, the cat, and the bird, one is red.

- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Solution: Systems of information

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

The bird is red.

Solution: Systems of information

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

The bird is red.

Solution: Systems of information

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

The bird is red.

It is non-singular. 🞢 🧮 🔏

System of Linear Equations

System of equations

Sentences → Equations

Sentences

Between the dog and the cat, one is black.

Sentences → Equations

Sentences

Between the dog and the cat, one is black.

Sentences with numbers

The price of an apple and a banana is \$10.

Sentences → Equations

Sentences

Between the dog and the cat, one is black.

and a banana is \$10.

Sentences with numbers

The price of an apple

$$a + b = 10$$

Equations

Quiz: Systems of equations 1

You go two days in a row and collect this information:

- Day 1: You bought an apple and a banana and they cost \$10.
- Day 2: You bought an apple and two bananas and they cost \$12.

Question: How much does each fruit cost?

• Day 1: You bought an apple and a banana and they cost \$10.

• Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

• Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

Quiz: Systems of equations 2

You go two days in a row and collect this information:

- Day 1: You bought an apple and a banana and they cost \$10.
- Day 2: You bought two apples and two bananas and they cost \$20.

Question: How much does each fruit cost?

Day 1: You bought an apple and a banana and they cost \$10.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

- 8 2
- 5 5

Day 1: You bought an apple and a banana and they cost \$10.

- 8 2
- 5 5
- 8.3 1.7

• Day 1: You bought an apple and a banana and they cost \$10.

- 8 2
- 5 5
- 8.3 1.7
- 0 10

Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought two apples and two bananas and they cost \$20.

Same thing!!!

Quiz: Systems of equations 3

You go two days in a row and collect this information:

- Day 1: You bought an apple and a banana and they cost \$10.
- Day 2: You bought two apples and two bananas and they cost \$24.

Question: How much does each fruit cost?

• Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

• Day 2: You bought two apples and two bananas and they cost \$24.

Contradiction!

Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought two apples and two bananas and they cost \$24.

Contradiction!

No solutions!

Systems of equations

Systems of equations

System 1

- a + b = 10
- a + 2b = 12

Systems of equations

System 1

System 2

•
$$a + b = 10$$

System 1

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

Unique solution:

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

$$b = 2$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

$$b = 2 \quad 3$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

Redundant

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

Redundant

Singular

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

Redundant

Singular

System 3

No solution

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

Infinite solutions

Redundant

Singular

System 3

No solution

Contradictory

System 1

Unique solution:

$$\rightarrow$$
 b = 2

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

Redundant

Singular

System 3

No solution

Contradictory

Singular

Linear Non-linear

Linear

Non-linear

a + b = 10

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$

Numbers

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$
Numbers

$$a^2 + b^2 = 10$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$
Numbers

$$a^2 + b^2 = 10$$

$$\sin(a) + b^5 = 15$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$
Numbers

$$a^2 + b^2 = 10$$

$$\sin(a) + b^5 = 15$$

$$2^a - 3^b = 0$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$
Numbers

$$a^2 + b^2 = 10$$

$$\sin(a) + b^5 = 15$$

$$2^a - 3^b = 0$$

$$ab^2 + \frac{b}{a} - \frac{3}{b} - \log(c) = 4^a$$

System of Linear Equations

System of equations as lines

$$a + b = 10$$

$\underset{\scriptscriptstyle{(-4,14)}}{\mathsf{Linear}} \, \underset{\scriptscriptstyle{b}}{\mathsf{equation}} \to \mathsf{line}$

Linear equation → line (0,10) a + b = 10(10,0)

Linear equation → line (0,10) a + b = 10(10,0)

Linear equation → line (0,12)(0,10)2a + 2b = 24a + b = 10(10,0)(12,0)

Linear equation → line (0,12)(0,10)2a + 2b = 24a + b = 10(10,0)(12,0)

- a + b = 10
- a + 2b = 12

System 1

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

System 1

•
$$a + b = 10$$

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

a 🎽

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

System 1

•
$$a + b = 10$$

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

System 1

•
$$a + b = 10$$

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

System 3

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

a 🍎

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

System 1

•
$$a + b = 10$$

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

System 1

•
$$a + 2b = 12$$

System 2

- a + b = 10
- 2a + 2b = 20

•
$$a + b = 10$$

System 1

- a + b = 10
- a + 2b = 12

System 2

- a + b = 10
- 2a + 2b = 20

- a + b = 10
- 2a + 2b = 24

Quiz

Problem 1

Which of the following plots corresponds to the system of equations:

- 3a + 2b = 8
- 2a b = 3

a)

b)

c)

d)

Problem 2

Is this system singular or non-singular?

Problem 2

Problem 2

Problem 2

System of Linear Equations

A geometric notion of singularity

System 1

•
$$a + b = 10$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System of Linear Equations

Singular vs nonsingular matrices

System 1

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

System 1

•
$$a + 2b = 0$$

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

System 1

•
$$a + 2b = 0$$

System 1

1 1 1 1 2

Non-singular system

(Unique solution)

System 1

Non-singular system

Non-singular matrix

(Unique solution)

System 1

Non-singular system

Non-singular matrix

(Unique solution)

System 2

Singular system

(Infinitely many solutions)

System 1

Non-singular system

Non-singular matrix

(Unique solution)

System 2

Singular system

Singular matrix

(Infinitely many solutions)

System of Linear Equations

Linear dependence and independence

Linear dependence between rows

Non-singular

•
$$a + 2b = 0$$

Singular system

Linear dependence between rows

Non-singular

•
$$a + 2b = 0$$

Singular system

Second equation is a multiple of the first one

Linear dependence between rows

Non-singular

•
$$a + 2b = 0$$

Singular system

a multiple of the

first one

Second equation is

Second row is a multiple of the first row

Non-singular

•
$$a + 2b = 0$$

Singular system

Second equation is a multiple of the first one

Second row is a multiple of the first row

Non-singular

No equation is a multiple of the other one

Singular system

Second equation is a multiple of the first one

Second row is a multiple of the first row

Non-singular

No equation is a multiple of the other one

No row is a multiple of the other one

Singular system

Second equation is a multiple of the first one

Second row is a multiple of the first row

Non-singular

No equation is a multiple of the other one

No row is a multiple of the other one

Rows are linearly independent

Singular system

Second equation is a multiple of the first one

Second row is a multiple of the first row

System of Linear Equations

The determinant

Non-singular matrix

Non-singular matrix

Non-singular matrix

Singular matrix

1 1

Non-singular matrix

Singular matrix

1 1 x 2 =

Non-singular matrix

Singular matrix

1 1 x2 = 2 2

Non-singular matrix

Singular matrix

1 1 x 2 = 2 2

Non-singular matrix

Singular matrix

1 1 x2 = 2 2

Non-singular matrix

1 1

Singular matrix

Non-singular matrix

1 1 x? =

Singular matrix

1 1 x2 = 2 2

Non-singular matrix

1 1 x? = 1 2

Singular matrix

1 1 x2 = 2 2

Non-singular matrix

1 1 x? = 1 2

Rows linearly independent

Singular matrix

1 1 x2 = 2 2

Matrix is singular if

a b *k = c d

ak = c

$$ak = c$$

$$bk = d$$

$$ak = c$$

$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

$$ak = c$$
$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

$$ad = bc$$

$$ak = c$$

$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

$$ad = bc$$

$$ad - bc = 0$$

Matrix is singular if

$$ak = c$$
$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

$$ad = bc$$

Determinant ad - bc =

$$Determinant = ad - bc$$

$$ak = c$$
$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

Matrix is singular if

С

b

$$ad = bc$$

$$ad - bc = 0$$

$$ak = c$$

$$bk = d$$

$$Determinant = ad - bc$$

a d

$$\frac{c}{a} = \frac{d}{b} = k$$

Matrix is singular if

b

(=

d

$$ad = bc$$

$$ad - bc = 0$$

$$ak = c$$
$$bk = d$$

$$Determinant = ad - bc$$

$$\frac{c}{a} = \frac{d}{b} = k$$

Matrix is singular if

b

С

d

$$ad = bc$$

$$ad - bc = 0$$

$$ak = c$$
$$bk = d$$

Determinant = ad - bc

$$\frac{c}{a} = \frac{d}{b} = k$$

Matrix is singular if

$$ad = bc$$

$$ad - bc = 0$$

Non-singular matrix

Non-singular matrix

Determinant

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Singular matrix

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Singular matrix

$$1 \cdot 2 - 2 \cdot 1 = 0$$

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Singular matrix

$$1 \cdot 2 - 2 \cdot 1 = 0$$

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Singular matrix

$$1 \cdot 2 - 2 \cdot 1 = 0$$

Determinant and singularity

ad - bc

Determinant and singularity

Quiz: Determinant

Problem 1: Find the determinant of the following matrices

Matrix 1

5	1
-1	3

Matrix 2

2	-1
-6	3

Problem 2: Are these matrices singular or non-singular?

Solutions: Determinant

Matrix 1: det =
$$5 \cdot 3 - 1 \cdot (-1) = 15 + 1 = 16$$

5	1
-1	3

Non-singular

Matrix 2: det =
$$2 \cdot 3 - (-1) \cdot (-6) = 6 - 6 = 0$$

Singular

System of Linear Equations

System of equations (3x3)

Quiz: Systems of equations

Problem 1: You're trying to figure out the price of apples, bananas, and cherries at the store. You go three days in a row, and bring this information.

- Day 1: You bought an apple, a banana, and a cherry, and paid \$10.
- Day 2: You bought an apple, two bananas, and a cherry, and paid \$15.
- **Day 3:** You bought an apple, a banana, and two cherries, and paid \$12. How much does each fruit cost?

System of equations 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System of equations 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

Solution

Quiz: More systems of equations

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2	2
----------	---

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

$$+3c = 20$$

Infinitely many sols.

$$c = 5$$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

a + b + 3c = 20

Infinitely many sols.

$$c = 5$$

 $a + b = 5$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

No solutions

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

No solutions

From 1st and 2nd: c = 5From 2nd and 3rd: c = 3

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

No solutions

From 1st and 2nd: c = 5From 2nd and 3rd: c = 3

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

Infinitely many solutions

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

No solutions

From 1st and 2nd:

$$c = 5$$

From 2nd and 3rd:
 $c = 3$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

Infinitely many solutions

Any 3 numbers that add to 10 work. (0,0,10), (2,7,1), ...

System of Linear Equations

Singular vs non-singular matrices

System 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 15$
 $3a + 3b + 3c = 20$

System 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 15$
 $3a + 3b + 3c = 20$

Unique solution

System	1
--------	---

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 15$
 $3a + 3b + 3c = 20$

Unique solution

Infinite solutions

System 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 15$
 $3a + 3b + 3c = 20$

Unique solution

Infinite solutions

No solutions

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions

Complete

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant		

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant
Non-singular			

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant
Non-singular	Singular		

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant
Non-singular	Singular	Singular	

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant
Non-singular	Singular	Singular	Singular

System 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

$$a = 0$$
$$b = 0$$
$$c = 0$$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

Unique solution:

a = 0

b = 0

c = 0

Complete

Non-singular

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

a = 0b = 0c = 0

Complete

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

Infinite solutions:

$$c = 0$$

 $a + b = 0$
 (i.e., $a = -b$)

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

a = 0b = 0c = 0

Complete

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

Infinite solutions:

$$c = 0$$

 $a + b = 0$
 (i.e., $a = -b$)

Redundant

Singular

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

a = 0b = 0c = 0

Complete

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

Infinite solutions:

$$c = 0$$

a + b = 0
(i.e., a = -b)

Redundant

Singular

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

Infinite solutions:

$$a + b + c = 0$$

(i.e., $c = -a - b$)

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

$$a = 0$$
$$b = 0$$
$$c = 0$$

Complete

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

Infinite solutions:

$$c = 0$$

a + b = 0
(i.e., a = -b)

Redundant

Singular

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

Infinite solutions:

$$a + b + c = 0$$

(i.e., $c = -a - b$)

Redundant

Singular

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

1	1	1
1	1	2
1	1	3

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

1	1	1
1	1	2
1	1	3

Singular

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

Singular

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

Singular

System of Linear Equations

System of equations as planes (3x3)

$$a + b + c = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$3a - 5b + 2c = 0$$

$$3a - 5b + 2c = 0$$

Linear equation in 3 variables -> Plane

$$3a - 5b + 2c = 0$$

$$3(0) + 5(0) + 2(0) = 0$$

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

System 1

• a + b + c = 0

- a + 2b + c = 0
- a + b + 2c = 0

System 1

• a + b + c = 0

- a + 2b + c = 0
- a + b + 2c = 0

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

System 2

• a + b + c = 0

- a + b + 2c = 0
- a + b + 3c = 0

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

System 3

• a + b + c = 0

- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

System of Linear Equations

$$a = 1$$

 $b = 2$
 $a + b = 3$

$$a = 1$$

 $b = 2$
 $a + b = 3$

1	0	0
0	1	0
1	1	0

1	0	0
0	1	0
1	1	0

Row 1 + Row 2 = Row 3

1	0	0
0	1	0
1	1	0

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	0	0
0	1	0
1	1	0

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	0	0
0	1	0
1	1	0

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	0	0	
0	1	0	
1	1	0	

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	0	0
0	1	0
1	1	0

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

Row
$$1 + Row 2 = Row 3$$

1	1	1
2	2	2
3	3	3

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	1	1
2	2	2
3	3	3

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

Rows are linearly dependent

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

1	1	1
1	1	2
1	1	3

1	1	1
1	1	2
1	1	3

1	1	1
1	1	2
1	1	3

1	1	1
1	1	2
1	1	3

1	1	1
1	1	2
1	1	3

3

Average of Row 1 and Row 3 is Row 2 Row 2 **depends** on rows 1 and 3 Rows are **linearly dependent**

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

$$a + b + c = 0$$

 $a + 2b + c = 0$ No relations between equations
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

$$a + b + c = 0$$

 $a + 2b + c = 0$ No relations between equations
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

No relations between rows

$$a + b + c = 0$$

 $a + 2b + c = 0$ No relations between equations
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

No relations between rows

Rows are linearly independent

Problem: Determine if the following matrices have linearly dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

3Row1 + 2Row2 = Row3

Dependent (singular)

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

$$3Row1 + 2Row2 = Row3$$

$$Row1 - Row2 = Row3$$

Dependent (singular)

Dependent (singular)

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

$$3Row1 + 2Row2 = Row3$$

$$Row1 - Row2 = Row3$$

No relations

Dependent (singular)

Dependent (singular)

Independent (Non-singular)

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

$$3Row1 + 2Row2 = Row3$$

$$Row1 - Row2 = Row3$$

No relations

$$2Row1 = Row3$$

Dependent (singular)

System of Linear Equations

The determinant (3x3)

Diagonals in a 3x3 matrix

Diagonals in a 3x3 matrix

Diagonals in a 3x3 matrix

Determinant

Determinant

Determinant

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

 $+ 1 \cdot 2 \cdot 2$

1	1	1
1	2	1
1	1	2

 $+ 1 \cdot 2 \cdot 2$

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

$$+ 1 \cdot 1 \cdot 1$$

 $-1\cdot 2\cdot 1$

1	1	1
1	2	1
1	1	2

$$+ 1 \cdot 1 \cdot 1$$

$$-1\cdot 2\cdot 1$$

$$-1\cdot 1\cdot 1$$

1	1	1
1	2	1
1	1	2

$$+ 1 \cdot 1 \cdot 1$$

$$-1\cdot 1\cdot 1$$

$$-1\cdot 1\cdot 2$$

1	1	1	1	1	1
1	2	1	2	1	1
1	1	2	4 2	1 1	1
			+ 1 · 2 · 2	+ 1 · 1 · 1	+ 1 · 1 · 1
			1	1	1
				1	1
			1 2	1	1 2 2

1	1	1
1	2	1
1	1	2

$$Det = 4+1+1 \\ -2-1-2$$

1	1	1
1	2	1
1	1	2

Det =
$$4+1+1$$

-2-1-2
= 1

Quiz: Determinants

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Determinant = 0

Singular

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Determinant = 0

Determinant = 0

Singular

Singular

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

$$Determinant = 0$$

$$Determinant = 0$$

Singular

Singular

Non-singular

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

$$Determinant = 0$$

$$Determinant = 0$$

$$Determinant = 0$$

1	1	1
0	2	2
0	0	3

1	1	1
0	2	2
0	0	3

$$+1\cdot 2\cdot 3$$

$$Det = 6+0+0-0-0-0$$

1	1	1
0	2	2
0	0	3

1 2 3

 $+1\cdot 2\cdot 3$

0 + 1·2·0

$$Det = 6+0+0-0-0-0$$
$$= 6$$

1	1	1
0	2	2
0	0	3

2 3

+ 1 · 2 · 3

0

+ 1 · 2 · 0

0

 $+ 1 \cdot 0 \cdot 0$

$$Det = 6+0+0-0-0-0$$
$$= 6$$

1	1	1
0	2	2
0	0	3

Det = 6+0+0-0-0-0

= 6

$$-1\cdot 2\cdot 0$$

1	1	1
0	2	2
0	0	3

$$Det = 6+0+0-0-0-0$$
$$= 6$$

1	1	1
0	2	2
0	0	3

$$Det = 6+0+0-0-0-0$$
$$= 6$$

 $+1\cdot 2\cdot 3$

 $-1 \cdot 0 \cdot 3$

 $+1\cdot 2\cdot 3$

 $-1 \cdot 0 \cdot 3$

$$Det = 6+0+0-0-0-0$$
$$= 6$$

$$Det = 6+0+0-0-0-0$$
$$= 6$$

1	1	1
0	2	2
0	0	0

$$Det = 0+0+0-0-0-0$$

 $-1 \cdot 0 \cdot 0$

 $-1 \cdot 0 \cdot 0$

System of Linear Equations

Conclusion