

Elena Abril Medina

Ing. Telecomunicación

5 años trabajando en Data Science & Machine Learning en varias empresas para clientes de distintos sectores y con varios lenguajes

https://www.linkedin.com/in/elenaabrilmedina/

@eabrilm

Los materiales están disponibles en:

https://github.com/eabrilm/pycones2018

Preguntas que vamos a resolver hoy

- ¿Qué es una serie temporal?
- ¿Qué componentes tiene una serie temporal?
- ¿Cómo preparamos nuestra serie para poder trabajar con ella?
- ¿Qué modelos de predicción podemos plantear?

AEMET publica de forma diaria los datos de 700 estaciones. Sólo son accesibles los últimos 7 días

https://datosclima.es/index.htm

Recopilación de datos

- Desde Mayo de 2013
- Zip mensual con fichero Excel diario con filas en blanco al principio

- Primeras filas
- Campos con valores y horas

A Coruña

A Coruña

A Coruña

14.6 (14:40)

16.6 (15:50)

17.8 (16:00)

11.5 (23:30)

11.3 (22:20)

11.7 (21:20)

Campos vacíos

Mazaricos

Sobrado

Santiago de Compostela Aeropuerto

España Actualizado: miércoles, 08 mayo 2013 a las 09:00 Fecha: martes, 07 mayo 2013	hors official										
Estación	Provincia	Temperatura máxima (°C)	Temperatura mínima (°C)	Temperatura media (°C)	Racha (km/h)	Velocidad máxima (km/h)	Precipitación 00- 24h (mm)	Precipitación 00-06h (mm)	Precipitación 06-12h (mm)	Precipitación 12-18h (mm)	Precipitación 18-24h (mm)
Estaca de Bares	A Coruña	19.5 (14:40)	14.2 (03:40)	16.8	95 (15:40)	69 (15:40)	0.4	0	0.2	0.2	0
As Pontes	A Coruña	17.8 (15:10)	12.9 (01:10)	15.3			16.8	10.8	3	3	0
A Coruña	A Coruña	19.7 (13:30)	15.0 (00:00)	17.4	66 (19:10)	31 (14:50)	1.2	1	0	0.2	0
A Coruña Aeropuerto	A Coruña	19.2 (13:30)	14.8 (00:00)	17	68 (19:30)	39 (19:20)	0.1	0	0	0.1	0
Carballo, Depuradora	A Coruña	18.2 (14:40)	13.2 (00:00)	15.7			3.6	1.8	1.2	0.6	0
Cabo Vilan	A Coruña	15.3 (13:40)	13.2 (00:00)	14.3	81 (17:50)	56 (17:50)	22.1	9.9	8.1	2.5	1.6
Vimianzo	A Coruña	15.7 (14:30)	12.1 (23:59)	13.9			39.8	17	14.4	3	5.4
Fisterra	A Coruña	13.3 (01:30)	12.2 (15:30)	12.8	97 (20:00)	74 (20:00)	18.4	6.8	6.4	3.2	2

58 (15:20)

35 (17:50)

68

37.2

1.4

17.2

0.4

3.4

10.2

0.4

13.1

14

Preparamos un csv con los datos agregados para cada día:

	rain_all	rain_00_06	rain_06_12	rain_12_18	rain_18_24	rn	date	year	month
0	733.7	322.1	190.7	63.7	172.6	0	2013-05-07	2013	5
1	402.3	73.1	155.7	123.0	68.5	1	2013-05-08	2013	5
2	2075.8	89.9	740.3	813.2	469.1	2	2013-05-09	2013	5
3	88.3	46.3	19.8	9.6	13.6	3	2013-05-10	2013	5
4	23.8	6.2	3.6	9.8	4.4	4	2013-05-11	2013	5

- Del 07-05-2013 al 30-08-2017 hay
 1.942 días
- Solo 1.936 registros

Amount of rain per day

¿Qué es una serie temporal?

Conjunto de valores que representan una misma variable ordenados en el tiempo en intervalos regulares

Creando nuestra serie temporal


```
dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m-%d')
data = pd.read csv('./PyCon/aemet all.csv', sep=';', parse dates=['date'], index col='date', date parser=dateparse)
data.index
            DatetimeIndex(['2013-05-07', '2013-05-08', '2013-05-09', '2013-05-10',
                           '2013-05-11', '2013-05-12', '2013-05-13', '2013-05-14',
                           '2013-05-15', '2013-05-16',
                           '2018-08-21', '2018-08-22', '2018-08-23', '2018-08-24',
                           '2018-08-25', '2018-08-26', '2018-08-27', '2018-08-28',
                           '2018-08-29', '2018-08-30'],
                          dtype='datetime64[ns]', name='date', length=1936, freg=None)
data = data.asfreq('d')
data.index
            DatetimeIndex(['2013-05-07', '2013-05-08', '2013-05-09', '2013-05-10',
                            '2013-05-11', '2013-05-12', '2013-05-13', '2013-05-14',
                            '2013-05-15', '2013-05-16',
                            '2018-08-21', '2018-08-22', '2018-08-23', '2018-08-24',
                           '2018-08-25', '2018-08-26', '2018-08-27', '2018-08-28',
                           '2018-08-29', '2018-08-30'],
                          dtype='datetime64[ns]', name='date', length=1942, freq='D')
```

Componentes de una serie temporal

Serie Temporal

=

Tendencia

+

Estacionalidad

+

Resto

Componentes de la serie temporal


```
decomposition = seasonal decompose(data['rain all'])
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
mpl.rc("figure", figsize=(15,6))
plt.subplot(411)
plt.plot(data['rain all'], label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonality')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residuals')
plt.legend(loc='best')
plt.tight_layout()
```

Componentes de la serie temporal

Vamos a agregar a nivel año-mes

Serie agregada a nivel año-mes

Time decomposition of time series

¿Cómo necesitamos que sea la serie?

Serie estacionaria

- 1. Media constante en el tiempo
- 2. Varianza constante en el tiempo
- 3. Covarianza constante en el tiempo

En una serie estacionaria sus propiedades no dependen del instante de observación.

Una serie estacionaria tiene una autocorrelación que decae exponencialmente

¿Nuestra serie es estacionaria?


```
# code found in: https://www.analyticsvidhya.com/blog/2016/02/time-series-forecasting-codes-python/def
test_stationarity(timeseries):
    #Determing rolling statistics
    rolmean = pd.rolling_mean(timeseries, window=12)
    rolstd = pd.rolling_std(timeseries, window=12)
    #Plot rolling statistics:
    orig = plt.plot(timeseries, color='blue',label='Original')
    mean = plt.plot(rolmean, color='red', label='Rolling Mean')
    std = plt.plot(rolstd, color='black', label = 'Rolling Std')
    plt.legend(loc='best')
    plt.title('Rolling Mean & Standard Deviation')
    plt.show(block=False)
```

¿Nuestra serie es estacionaria?

¿Cómo preparamos nuestra serie?

- 1. Transformación logarítmica
- 2. Diferenciación
- 3. Ajuste de estacionalidad
- 4. Suavizado EDA

- \succ ts_log = np.log(ts)
- ts_log ts_log.shift()
- ts_log pd.rolling_mean(ts_log,12)
- ts_log pd.ewma(ts_log, halflife=12)

¿Cómo preparamos nuestra serie?

Transformación logarítmica

¿Cómo preparamos nuestra serie?

Transformación logarítmica + diferenciación

¿Qué modelos podemos plantear?

Modelo AR

Modelo MA

Auto + Regresión =

Auto + serie "retrasada" p veces

Un modelo de media móvil usa los errores de predicciones pasadas para ajustar un "modelo de tipo regresión"

¿Qué modelos podemos plantear?

¿Qué modelos podemos plantear?

PYCONES ¿Qué modelos podemos plantear? MÁLAGA AR (6,1,0) | RMSE: 26911.237 MA (0,1,5) | RMSE: 24509.626 ARIMA (5,1,1) | RMSE: 27878.986 SARIMAX (5,1,1) (2,1,0,12) | RMSE: 21892.210

Thankyou