Topic 12

Binomial Tree Models

Outline

- 1. Binomial Trees
- 2. Replicating Portfolios
- 3. Risk Neutral Pricing

Outline

- 1. Binomial Trees
- 2. Replicating Portfolios
- 3. Risk Neutral Pricing

- ▶ Binomial trees are a convenient tool for introducing a fundamental technique to price derivative securities, called Risk Neutral Pricing
- Besides being simple to understand, they also offer a pricing methodology for complicated problems
- ► The use of binomial trees is a standard numerical procedure to solve for American options and other complex options in practice.

NPV Rule:

Value of an asset = Net present value of future cash
flows discounted at the risk-adjusted
discount rate

That is,

$$\mathsf{PV}_0(S_T) = e^{-\mu T} \mathsf{E}_0[S_T]$$

How to determine the risk-adjusted discount rate μ ?

One step binomial trees

- \blacktriangleright Consider some stock at t=0
- \blacktriangleright Analysts believe that the stock price at t=1 can either be

$$S_{1,u} = 70$$
 with probability $q = 0.7$, or $S_{1,d} = 35$ with probability $1 - q = 0.3$

► Suppose risk-adjusted discount rate $\mu = 17.4\%$. The stock price at t = 0 is $S_0 = e^{-\mu} E_0 [S_1] = e^{-\mu} (q \times S_{1,\mu} + (1-q) \times S_{1,d})$

$$= e^{-0.174} (.7 \times 70 + .3 \times 35) = 50$$

▶ We can summarize the uncertainties using a stock tree:

$$t = 0$$
 $t = 1$
 0.7
 $S_{1,u} = 70$
 $S_0 = 50$
 $S_{1,d} = 35$

Option prices on a binomial tree

- ► Consider a call option with T = 1 and K = 50
- \blacktriangleright According to the tree, what is the payoff of the call option at T=1?

In the Up Node =
$$c_{1,u}$$
 = max($S_{1,u} - K$, 0) = max($70 - 50$, 0) = 20
In the Down Node = $c_{1,d}$ = max($S_{1,d} - K$, 0) = max($35 - 50$, 0) = 0

► On the tree:

$$t = 0$$

$$t = 1$$

$$S_0 = 50$$

$$S_{1,u} = 70$$

 $c_{1,u} = \max(70 - 50, 0) = 20$

$$S_{1,d} = 35$$

 $c_{1,d} = \max(35 - 50, 0) = 0$

What is price of the call option at t = 0?

higher than that of stock Lanting Prick - 1 rate

lacktriangle The risk-adjusted discount rate is not μ for the call option...

7/ 21

Outline

- Binomial Trees
- 2. Replicating Portfolios
- 3. Risk Neutral Pricing

A replicating portfolio

▶ Recall: In the put-call parity, we learned how to replicate a call with a put, stock and bond

$$C = S_0 + P - Ke^{-rT}$$

▶ Now, we can replicate a call with just a stock and a bond!

$$C = \Delta S_0 - B_0$$

- a self-financed portfolio to borrow money at the risk free rate and then buy stocks.
- \triangleright Δ (delta) is a key concept
- ▶ the call is a leveraged position in the stock
 - \rightarrow expected return on the call > expected return on the stock

A replicating portfolio: Example

- ▶ Let the (continuously compounded) risk free interest rate be r = 11%
- ► Consider a portfolio of stocks and bonds, with
 - ▶ Position Δ = 0.5714 (shares) in stocks, with value $\Delta \times S_0$ = 28.5714
 - ▶ Position of $B_0 = -17.9167$ in bonds (negative = short bonds)
 - ► The value of the portfolio today is $V_0 = 28.5714 17.9167 = 10.6547$
- ▶ What is the value of the portfolio at time t = 1?

In the Up Node =
$$V_{1,u} = \Delta \times S_{1,u} + B_0 \times e^r = 0.5714 \times 70 - 20 = 20$$

In the Down Node = $V_{1,d} = \Delta \times S_{1,d} + B_0 \times e^r = 0.5714 \times 35 - 20 = 0$

► This is the payoff of the call option!

No Arbitrage
$$\Rightarrow c_0 = V_0 = \Delta \times S_0 + B_0 = 10.6547$$

- ► If not, "buy low and sell high"
- ▶ e.g. if $c_0 > V_0$, sell the call option, and buy the replicating portfolio

Where does the replicating portfolio come from?

- ▶ Consider using Δ shares of stock and B_0 bonds to replicate the call option.
 - \Rightarrow choose \triangle and B_0 at time 0 so that

Value of Portfolio in Up/Down Node = Call Option's Payoff in Up/Down Node

$$\iff \Delta \times S_{1,u} + B_0 \times e^r = c_{1,u}$$

$$\iff \Delta \times S_{1,d} + B_0 \times e^r = c_{1,d}$$

▶ Two equations with two unknowns (Δ and B_0):

$$\Delta = \frac{c_{1,u} - c_{1,d}}{S_{1,u} - S_{1,d}}$$

$$B_0 = e^{-r} (c_{1,u} - \Delta \times S_{1,u})$$

- Interpretation: ∆ = sensitivity of the call's price to changes in the stock price
 = implicit leverage in the option
- ▶ By law of one price, $C_0 = \Delta \times S_0 + B_0$

Summing up

- ▶ To summarize, in order to price any derivative security with payoff $V_{1,u}$ and $V_{1,d}$ on the tree, we proceed as follows:
 - (1) Compute Δ shares of the stock: $\Delta = \frac{V_{1,u} V_{1,d}}{S_{1,u} S_{1,d}}$
 - (2) Compute amount of bonds: $B_0 = e^{-rT} \times (V_{1,u} \Delta \times S_{1,u})$
 - (3) Compute the value of security: $V_0 = \Delta \times S_0 + B_0$
- ► Example: Put option with strike price K = 50 $\Rightarrow p_{1,u} = \max(K S_{1,u}, 0) = 0 \text{ and } p_{1,d} = \max(K S_{1,d}, 0) = 15$ $\Rightarrow p_{1,u} = \max(K S_{1,u}, 0) = 0 \text{ and } p_{1,d} = \max(K S_{1,d}, 0) = 15$

So = 50

- (1) Delta: $\Delta = \frac{p_{1,u} p_{1,d}}{S_{1,u} S_{1,d}} = \frac{0 15}{70 35} = -0.4285$
- (2) Bonds: $B_0 = e^{-rT} \times (p_{1,u} \Delta \times S_{1,u})$ = $e^{-0.11} \times (0 + 0.4285 \times 70) = 26.8750$
- (3) Value: $p_0 = \Delta \times S_0 + B_0 = -0.4285 \times 50 + 26.8750 = 5.4464$

Pu (K=50) = 0 L> OTM

Where did the probabilities go?

- ▶ The pricing formula does not include the probability of moving up or down (q, 1-q)
- ▶ Question: Does this imply that these probabilities do not impact option prices?
- ► Answer: yes and no
 - ► Given S_0 , $S_{1,u}$ and $S_{1,d}$, options' payoffs can be replicated without reference to probabilities
 - \Rightarrow No impact of q on option prices
 - However, q determines the expected future stock price as well as the risk of the stock return. Thus, q affects S₀ by affecting the risk-adjusted discount rate μ.
 - ⇒ The current value of S_0 already depends on q!
 - ► Since option values depend on S₀, the probability q does impact the value of options
 - ▶ But, given S_0 , the value of options is independent of q!

Exercise

Among the following factors, which does the option value depend on?

- I. Current stock price
- II. Future stock prices
- III. Probabilities of future stock prices
- IV. Strike price
- 1. I and II only
- 2. I, II and III only
- 3. I, II and IV only
- 4. I, II, III and IV

A stock price is currently \$40. It is known that at the end of one month it will be either \$42 or \$38. The risk-free interest rate is 8% per annum with continuous compounding.

What is the value of a one-month European call option with a strike price of \$39?

$$\Delta = \frac{C_{1,4} - C_{1,6d}}{S_{1,4} - S_{1,6d}} = \frac{3 - 0}{42 - 38} = 0.75$$

$$Bond = e^{0.08/12} (3 - 0.75 \times 42)$$

$$= -28.3106$$

$$Value = 0.75 \times 40 - 28.3106 = 1.689$$

Outline

- Binomial Trees
- Replicating Portfolios
- 3. Risk Neutral Pricing

Risk neutral pricing

- ► The above procedure is cumbersome
- ▶ There is an alternative procedure that is much easier to work with
- ► Since given S_0 , $S_{1,u}$ and $S_{1,d}$, the probability q does not impact the price of the option, we can choose a <u>fictitious probability</u> q^* that simplifies our computations

Risk Neutral Pricing

Choose q^* so that all risky assets yield the risk free rate

▶ Find q^* such that

$$q^* \times S_{1,u} \times e^{-rT} + (1 - q^*) \times S_{1,d} \times e^{-rT} = S_0$$

(notice the discount rate is r, not μ)

$$\Rightarrow q^* = \frac{S_0 \times e^{rT} - S_{1,d}}{S_{1,u} - S_{1,d}}$$

► In other words,

$$S_0 = e^{-rT} \mathsf{E}_0^*(S_1)$$

Risk neutral pricing

▶ We can now price any derivative security with a payoff function $G(S_T)$ using the "fictitious" probability q^* and the risk-free discount rate r:

Price of any derivative security =
$$e^{-rT} E_0^*[G(S_T)]$$
 (1)

- ► The star * on $\mathsf{E}^*_0[\cdot]$ denotes the fact that we use the fictitious probability q^*
- ▶ Does it work? (use the same example in previous slides)

► Risk Neutral Probability:
$$q^* = \frac{50 \times e^{11\%} - 35}{70 - 35} = 0.5947$$

► Call Price:

$$c_0 = e^{-rT} \times E^*[c_1] = e^{-11\%} \times [q^* \times 20 + (1 - q^*) \times 0] = 10.6547$$

▶ Put Price:

$$p_0 = e^{-rT} \times E^*[p_1] = e^{-11\%} \times [q^* \times 0 + (1 - q^*) \times 15] = 5.4464$$

Risk neutral pricing: a general recipe

- ► The recipe to price derivative securities is as follows:
 - ► Assume everyone is risk neutral
 - ► Compute the risk-neutral probabilities with which the underlying asset S can be evaluated using the risk-free rate as the discount factor
 - ▶ Price any derivative security with payoff function $G(S_T)$ as

```
Price of Derivative Security = e^{-r \times T} \times E_0^*[G(S_T)]
```

- ► This methodology works even outside of the binomial tree model
 - ▶ It is the implication of no arbitrage.

$$q^* = \frac{S_0 \times e^{rT} - S_{1,d}}{S_{1,u} - S_{1,d}}$$
 TAPPS

$$S_0 = e^{-rT} \mathsf{E}_0^*(S_1)$$

 $c_0 = e^{-rT} \times \mathsf{E}^*[c_1]$

A stock price is currently \$40. It is known that at the end of one month it will be either \$42 or \$38. The risk-free interest rate is 8% per annum with continuous compounding.

Using risk neutral pricing, what is the value of a one-month European call option with a strike price of \$39?

$$\mathcal{C}^* = \frac{40 \times e^{\frac{0.08}{12}} - 38}{42 - 38} = 0.566 \text{ egg}$$

$$\mathcal{C}_0 = e^{-rT} \times \mathcal{E}^* [C,] = e^{-\frac{0.08}{12}} \times [0.56688] \times 3 + 0]$$

$$= 1.689$$

Connection: risk neutral pricing and discount rates

- ► The previous examples show the convenience of risk neutral pricing technique
- ► Fundamental theory: This technique is backed by no arbitrage conditions
- ► It is a convenient pricing device, and it DOES NOT imply that market participants are risk neutral!
 - ► Market participants are risk averse in our setting
 - ► We can account for risk aversion in two different ways:
 - (1) by adding a risk premium to the risk-free discount rate
 - (2) by "distorting" the probabilities towards the bad states
 - Key Idea: With these distorted probabilities, we can pretend that market participants are risk neutral and discount future payoffs with the risk-free rate

Connection: risk neutral pricing and discount rates

Let's revisit the stock example:

$$t = 0$$
 $t = 1$ $S_{1,u} = 70$ $S_0 = 50$ $S_{1,d} = 35$

► Pricing the stock under actual probabilities:

$$S_0 = e^{-\mu T} \times \mathbb{E}_0[S_1] = e^{-\mu T} \times [q \times S_{1,u} + (1 - q) \times S_{1,d}]$$

= $e^{-17.4\%} (.7 \times 70 + .3 \times 35) = 50$

► Pricing the stock under distorted probabilities:

$$S_0 = e^{-rT} \times \mathbb{E}^*_0 [S_1] = e^{-rT} (q^* \times S_{1,u} + (1 - q^*) \times S_{1,d})$$

= $e^{-11\%} (0.5947 \times 70 + 0.4053 \times 35) = 50$

► Risk adjustment: $\mu > r \iff q^* < q$ (intuitions?)

Risk neutral pricing: revisit forward prices

► The payoff at T from a forward contract is

$$G(S_T) \equiv S_T - F_{0,T}$$

▶ It costs nothing to enter into a forward contract \Rightarrow the value today is 0

$$e^{-rT} \times E^*_0 [S_T - F_{0,T}] = 0$$
 $\Rightarrow F_{0,T} = E^*_0 [S_T]$

- ▶ If everybody is risk neutral, what should be the return on stocks?
 - ⇒ the risk free rate

$$S_0 = e^{-r \times T} \mathsf{E}^*_0 [S_T]$$

► Thus, we find

$$F_{0,T} = \mathbb{E}^*_0[S_T] = S_0 \times e^{r \times T}$$

Forward Pricing:

Forward price is the risk-neutral expectation of the underling asset value at ${\cal T}$

Conclusion

- ► Binomial Trees
- ► Replicating Portfolios
- ► Risk Neutral Pricing

Appendix:

Risk neutral pricing: revisit forward prices

► As a final comment, we found that the forward price is

$$F_{0,T} = \mathsf{E}^*[S_T] \neq \mathsf{E}[S_T]$$

- ▶ The forward price is the risk neutral expected future stock price
- ► There is little information in forward prices about the true market expectations of stock prices in the future
 - ► A risk adjustment has to be made. In fact, we have

$$F_{0,T} = S_0 \times e^{r \times T}$$

► However, using the true expectations and expected returns for the stock, we have:

$$E[S_T] = S_0 \times e^{\mu \times T}$$

► Substitute, to obtain the relation

$$F_{0,T} = e^{-(\mu-r)\times T} E[S_T]$$

 \Rightarrow The forward price is the expected future stock price, discounted at the excess rate of return $(\mu - r)$: risk premium

Prep for Next Class

- Next topic: Mutli-step Binomial tree models
- Read Ch. 13
- Assignment 4 to be due on Apr 10 (Wed)
- Attend tutorials on Wed/Thur