Algebra III

April 1, 2024

Chapter 0: Review

Definition: Category

A category ${\mathcal C}$ consists of the following data:

- 1. A class of objects, Obj(C).
- 2. For any pair of objects $X, Y \in \mathsf{Obj}(\mathcal{C})$, a set of morphisms $\mathsf{Mor}_{\mathcal{C}}(X, Y)$, $\mathsf{Hom}_{\mathcal{C}}(X, Y)$ or $\mathcal{C}(X, Y)$.
- 3. For any triple of objects $X, Y, Z \in Obj(\mathcal{C})$, a map

$$\operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(Y,Z)$$

 $(g,f) \mapsto g \circ f$

called compositions subject to the following axioms:

- 1. Associativity: $f \circ (g \circ h) = (f \circ g) \circ h$ whenever this makes sense.
- 2. For every object $X \in \text{Obj}(\mathcal{C})$, there exists a morphism $\text{id}_X \in \text{Hom}_{\mathcal{C}}(X,X)$ such that

$$\operatorname{id}_X \circ f = f$$
 and $g \circ \operatorname{id}_X = g$, $\forall f \in \operatorname{Hom}_{\mathcal{C}}(W, X), g \in \operatorname{Hom}_{\mathcal{C}}(X, W)$

Example 1

Let E be a set (or a class).

Define
$$\mathcal{C}$$
 by taking $\operatorname{Obj}(\mathcal{C}) = E$ and $\operatorname{Hom}_{\mathcal{C}}(X,Y) = \begin{cases} \emptyset & \text{if } x \neq y \\ \{\operatorname{id}_X\} & \text{if } x = y \end{cases}$.

Example 2

Let C = Set the category of all sets with set functions acting as morphisms.

Let C = Grp the category of all groups with group homomorphisms acting as morphisms.

Abelian Rings: Ab, Rings: Ring, Commutative Rings: CRing, Vector Spaces over F: Vect $_F$, Topological Spaces: Top, etc.

Example 3

Let G be a group (or more generally a monoid).

Define $Obj(\mathcal{C}) = \{*\}, Hom_{\mathcal{C}}(*, *) = G \text{ and }$

$$\operatorname{Hom}_{\mathcal{C}}(*,*) \times \operatorname{Hom}_{\mathcal{C}}(*,*) \to \operatorname{Hom}_{\mathcal{C}}(*,*)$$

the group operator.

Example 4

Let (E, \leq) be a preordered set (i.e. reflexive and transitive). Define \mathcal{C} by $\mathsf{Obj}(\mathcal{C}) = E$,

$$\operatorname{Hom}_{\mathcal{C}}(x,y) = \begin{cases} \emptyset & \text{if } x \nleq y \\ \{f_{xy}\} & \text{if } x \leq y \end{cases}$$

Notation

If $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ we write $X \xrightarrow{f} Y$ in \mathcal{C} .

Definition: Isomorphism

A morphism $f: X \to Y$ in \mathcal{C} is an isomorphism if $\exists g: Y \to X$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$.

Definition: Endomorphism

A morphism on X with $f: X \to X$.

Definition: Automorphism

An automorphism on X is just an isomorphism $f: X \tilde{\to} X$ from X to itself. Note that $\operatorname{Aut}_{\mathcal{C}}(X) \subseteq \operatorname{End}_{\mathcal{C}}(X) = \operatorname{Hom}_{\mathcal{C}}(X,X)$.

Remark:

The collection of all endomorphisms on X form a monoid.

The collection of all automorphisms on X forms a group called the automorphism group of X.

Example 1

Let
$$C = \text{Set}$$
, $X = \{1, ..., n\}$. Then $\text{Aut}_{\text{Set}}(\{1, ..., n\}) = \text{Perm}(X) = S_n$.

Example 2

Let
$$C = \text{Vect}_F$$
, $X = F^n$. Then $\text{Aut}_{\text{Vect}_F}(F^n) = \text{GL}_n(F)$.

Definition: Functors

Let \mathcal{C} and \mathcal{D} be categories.

A functor $F: \mathcal{C} \to \mathcal{D}$ from \mathcal{C} to \mathcal{D} consists of the following data

- 1. For each object $X \in \text{Obj}(\mathcal{C})$, a chosen object $F(X) \in \text{Obj}(\mathcal{D})$.
- 2. For each pair of objects $X, Y \in Obj(\mathcal{C})$, a function

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{D}(F(X),F(Y))$$

 $f \mapsto F(f)$

such that

- 1. For any two composable morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in C, we have $F(g \circ f) = F(g) \circ F(f)$.
- 2. For each object $X \in \text{Obj}(\mathcal{C})$, $F(\text{id}_X) = \text{id}_{F(X)}$.

Example 1

For $\mathcal{D} := \mathcal{C}$, $\operatorname{Id} : \mathcal{C} \to \mathcal{C}$, $X \mapsto X$, $f \mapsto f$.

Example 2: Forgetful Functors

 $\mathcal{U}: \mathsf{Grp} \to \mathsf{Set} \ \mathsf{given} \ \mathsf{as} \ (G, \cdot) \mapsto G.$ Ring $\to \mathsf{Ab} \ \mathsf{given} \ \mathsf{as} \ (R, +, \cdot) \mapsto (R, +).$

Example 3: Tensors

Let R be a commutative ring, $M \in \mathsf{Mod}_R$. Then $\otimes_R M : \mathsf{Mod}_R \to \mathsf{Mod}_R$ and $\mathsf{Hom}_R(M, -) : \mathsf{Mod}_R \to \mathsf{Mod}_R$.

Definition:

Let X be an object in a category \mathcal{C} and G a group. An action of G on X is a group homomorphism $G \to \operatorname{Aut}_{\mathcal{C}}(X)$.

Example 1

Let C = Set.

A G-set is a set $X \in S$ et equipped wit a group homomorphism

$$G \rightarrow \mathsf{Perm}(X) = \mathsf{Aut}_{\mathsf{Set}}(X)$$

Exercise 1

A *G*-set is the same thing as a functor $G \to \text{Set}$, $* \mapsto X$, $\text{Hom}_{\mathcal{C}}(*,*) \to \text{Hom}_{\text{Set}}(X,X)$ ($G \to \text{Aut}_{\text{Set}}(X)$).

 $-\circ F(f)\downarrow$

Definition: Adjunctions

Let \mathcal{C} and \mathcal{D} be categories and $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ be functors.

We say that F is left adjoint to G (and that G is right adjoint to F, and that we have a pair of adjoint functors) if for each object $X \in \text{Obj}(\mathcal{C})$ and $Y \in \text{Obj}(\mathcal{D})$, we have a bijection

$$\operatorname{Hom}_{\mathcal{D}}(F(X), Y) \tilde{\to} \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$$

which is "natural in X and Y": For any $f: X \to X'$ in C,

$$\operatorname{Hom}_{\mathcal{D}}(F(X'),Y) \stackrel{\sim}{\to} \operatorname{Hom}_{\mathcal{C}}(X',G(Y))$$

$$\operatorname{Hom}_{\mathcal{D}}(F(X), Y) \stackrel{\sim}{\to} \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$$

3

and for every $g: Y \to Y'$ in \mathcal{D}

$$\operatorname{Hom}_{\mathcal{D}}(F(X),Y) \stackrel{\tilde{\rightarrow}}{\rightarrow} \operatorname{Hom}_{\mathcal{C}}(X,G(Y))$$

 $g \circ - \downarrow \qquad \qquad \downarrow G(g) \circ -$
 $\operatorname{Hom}_{\mathcal{D}}(F(X),Y') \stackrel{\tilde{\rightarrow}}{\rightarrow} \operatorname{Hom}_{\mathcal{C}}(X,G(Y'))$

We write

$$C$$
 $F \uparrow \downarrow G$
 D

Example 1

For $M \in Mod_R$ we have

$$\mathsf{Mod}_R$$
 $-\otimes_R M \updownarrow \mathsf{Hom}_R(M,-)$
 Mod_R

where

$$\operatorname{Hom}_R(M_1 \otimes M_2, N) \cong \operatorname{Hom}_R(M_1, \operatorname{Hom}_R(M, \operatorname{Hom}_R(M_2, N)))$$

 $f \mapsto (x \mapsto (y \mapsto f(x \otimes y)))$

Example 2

Let $R \stackrel{\phi}{\longrightarrow} S$ be a ring homomorphism. We can regard an S-module N as an R-module via

$$r \cdot x := \phi(r)x, \quad \forall r \in R, ; x \in N$$

This defines a functor $Mod_S \rightarrow Mod_R$ called a "restriction of scalars", which has a left adjoint called "extension of scalars."

$$S \otimes_R - \uparrow \downarrow$$
$$\mathsf{Mod}_S$$

Recall

For commutative ring R, $\rightsquigarrow \text{Mod}_R$. e.g. R = F a field, $\text{Mod}_R \equiv \text{Vect}_F$; $R = \mathbb{Z}$, $\text{Mod}_R \equiv \text{Ab}$.

Definition: R-Algebra

An R-algebra is an Abelian group (A, +) that has both the structure of

- 1. an R-module and
- 2. a ring

which are compatible in that

$$r(ab) = (ra)b = a(rb), \quad \forall r \in R, a, b \in A$$

Example 1

The polynomial ring R[x] is an R-algebra.

Example 2

The ring of $n \times n$ matrices $M_n(R)$ is an R-algebra.

Example 3

If $R \xrightarrow{\phi} S$ is a homomorphism of commutative rings, then S is an R-algebra via $r := \phi(r)a$, $\forall r \in R$, $a \in S$.

Example 4

 $\mathbb{R} \hookrightarrow \mathbb{C}.$ So \mathbb{C} is an $\mathbb{R}\text{-algebra}.$

$$R \hookrightarrow R[x].$$

More generally, $R[x_1, x_2, ..., x_n]$ is an R-algebra.

Commutative R-Algebras

An R-algebra is commutative if it is commutative as a ring. $\mathsf{CAlg}_R \subset \mathsf{Alg}_R$.

Question: Why are polynomials important?

An algebraic perspective: they are the "free commutative algebras."

Recall

For R a commutative ring, we have the notion of a free R-module – one that admits a basis. Categorically, we have an adjunction.

Set
$$f \uparrow \downarrow \mathcal{U}$$
 Mod_R

The left adjoint of the forgetful functor sends a set I to the free R-module with basis I.

$$F(I) = R^{(I)} = \bigoplus_{i \in I} R$$

The adjunction says that for any set I and R-module M,

$$\operatorname{Hom}_{\operatorname{\mathsf{Mod}}_R}(R^{(I)},M) \tilde{\to} \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Set}}}(I,M)$$
 $\exists ! R\text{-linear map}_{\substack{f: R^{(I)} \to M \ e_i \mapsto x_i}} \longleftrightarrow \{x_i\}_{i \in I}$

Similarly, the forgetful functor $\mathcal{U}: \mathsf{CAlg}_R \to \mathsf{Set}$ has a left adjoint

Set
$$f \uparrow \downarrow \mathcal{U}$$
 CAlg_R

which sends a set I to the "free commutative R-algebra on I." Explicitly, $F(I) = R[\{x_i\}_{i \in I}]$ the polynomial algebra with an indeterminate x_i for each $i \in I$.

Example 1

$$I = \{*\} \rightsquigarrow F(\{*\}) = R[x].$$

$$I = \{1, ..., n\} \rightsquigarrow F(\{1, ..., n\}) = R[x_1, ..., x_n].$$

$$I = \mathbb{N} \rightsquigarrow F(\mathbb{N}) = R[x_1, x_2, ...].$$

Adjunction

For any set *I* and commutative *R*-algebra $A \in CAlg_R$, we have a bijection

$$\operatorname{Hom}_{\operatorname{CAlg}_R}(R[\{x_i\}_{i\in I},A)\cong\operatorname{Hom}_{\operatorname{Set}}(I,A)$$

 $\exists !R\text{-algebra homomorphism}_{R[\{x_i\}_{i\in I}]\to A} \longleftrightarrow \{a_i\}_{i\in I}$

Exmple 1

Let A be a commutative R-algebra.

For any $a \in A$, there exists a unique R-algebra homomorphism $R[x] \to A$ which sends $X \mapsto a$. Explicitly, $f(x) \mapsto f(a)$.

Corollary

Let $R \xrightarrow{\phi} S$ be a homomorphism of commutative rings.

For any $a \in S$, there is a unique ring $R[x] \xrightarrow{\overline{\phi}} S$ such that $\overline{\phi}|_R = \phi$ and $\overline{\phi}(X) = a$.

Example 1

Let $R \subseteq S$ be a subring.

For each $a \in S$, there is a unique ring homomorphism $R[x] \xrightarrow{\phi} S$ such that $\phi|_R = \operatorname{id}$ and $\phi'(X) = a$. We call this the "evaluation at a."

$$R[x] \xrightarrow{\operatorname{ev}_a} S$$
$$f \mapsto f(a)$$

Definition: Subalgebra

Let *A* be a commutative *R*-algebra, and let $S \subset A$ be a subset.

The subalgebra of A generated by S, denoted R[S], is the intersection of all subalgebras of A which contain S. Explicitly,

$$R[S] = \{a \in A : \exists n \ge 1, \ s_1, \dots, s_n \in S, \ f \in R[x_1, \dots, x_n], \ a = f(s_1, \dots, s_n)\}$$

Example 1

Let A = R[x]. Then A = R[x]. That is, A is generated by $\{x\}$ as an algebra. Similarly, $R[x_1, \ldots, x_n]$ is generated as an algebra by $\{x_1, \ldots, x_n\}$.

Example 2

If R[x]/I with $I \subset R[x]$ an ideal, and $x := \overline{X} \in A$, then A = R[x]. That is, A is generated by $x = \overline{X}$ as an algebra. More generally, if $I \subset R[x_1, \dots, x_n]$ an ideal, then $R[x_1, \dots, x_n]/I$ is generated by $\{\overline{x}_1, \dots, \overline{x}_n\}$.

Proposition

If $A \in \mathsf{CAlg}_R$ is a finitely generated, commutative R-algebra, then $A \cong R[x, \ldots, x_n]/I$ for some $n \ge 1$ and ideal $I \subset R[x_1, \ldots, x_n]$.