ROTOR TRIAXIAL RIGID - POTENTIAL V(Q)

Studiul potentialului V(q) - variatia minimului V(q) ca functie de unghiul de coupling θ

- ullet Pentru V(q), cu $q\in [0,8]$, am fixat parametrii $\mathbf{X}=\{A_1,A_2,A_3,I,j\}.$
- Valorile parametrilor fixati sunt in functie figura, spinul I=45/2 si j=11/2

Descriere procedura de calcul

Pornind de la o anumita ordine pentru momentele de inertie, fixez setul \mathbf{X} si plec cu intervalul de valori pentru $\theta \in [-180, 180]$ cu pasi de step $_{\theta} = 1^{o}$.

- 1. Pentru un θ , calculez un vector de valori V(q), cu q in intervalul precizat mai sus, dar cu pasi marunti, de ${\rm step}_q=0.01$.
- 2. Odata avand array-ul cu valorile lui V, aflu minimul acelui potential $\equiv V_{min}^{ heta}$.
- 3. De asemenea memorez si q -ul corespunzator acestui minim $\equiv q_{min}^{\theta}$.
- 4. Eliberez vectorii din memorie si cresc pe θ .
- 5. Repet 1,2,3,4 pana ajung cu θ la 180°

Astfel formez un grafic cu evolutia lui V_{min}^{θ} pentru o anumita ordine ale momentelor de inertie \mathcal{I}_k .

Reprezentari grafice are rezultatelor

Obs: Valorile luate pentru setul de momente de inertii, sunt cele din figura 3 din draft: si anume 100, 40, 20.

Evolutia minimului pentru cazul ${\cal I}_1 > {\cal I}_2 > {\cal I}_3$

Evolutia minimului pentru cazul $\mathcal{I}_2 > \mathbf{2}_2 > \mathcal{I}_1$

Evolutia minimului pentru cazul ${\cal I}_1 > {\cal I}_2 > {\cal I}_3$

