WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

NTERNATIONAL APPLICATION PUBLISH	HED I	UNDER THE PATENT COOPERATION TREATY ((PCT)
(51) International Patent Classification 7:		(11) International Publication Number: WO 0	0/26667
G01N 33/53, A61K 38/02, 39/395, C07K 14/435, 16/28, C12N 15/63, 15/66, 15/85, 15/86, 15/11	A1	(43) International Publication Date: 11 May 2000	(11.05.00)
(21) International Application Number: PCT/US (22) International Filing Date: 29 October 1999 (BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, E GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JF KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, S	ES, FI, GB, P, KE, KG, MG, MK, SE, SG, SI,
(30) Priority Data: 60/106,275 30 October 1998 (30.10.98)	1	US SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU ARIPO patent (GH, GM, KE, LS, MW, SD, S UG, ZW), Eurasian patent (AM, AZ, BY, KG RU, TJ, TM), European patent (AT, BE, CH, CY	L, SZ, TZ, , KZ, MD, Y, DE, DK,
(71)(72) Applicant and Inventor: MILLER, Jonathan, L. 25 Drumlins Terrace, Syracuse, NY 13224 (US).		patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW NE, SN, TD, TG).	
(74) Agents: BRAMAN, Susan, J. et al.; Braman & Rogals P.O. Box 352, Canandaigua, NY 14424-0352 (US		Published	
		With international search report.	
		·	

(54) Title: VARIABLE HEAVY CHAIN AND VARIABLE LIGHT CHAIN REGIONS OF ANTIBODIES TO HUMAN PLATELET GLYCOPROTEIN IB ALPHA

(57) Abstract

The present invention is directed to a method of selecting a clone that binds to human platelet glycoprotein Ib alpha using a human variable heavy chain and variable light chain immunoglobulin library. The invention is further directed to isolated nucleic acid molecules encoding a variable heavy chain or variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. Expression vectors and host cells comprising the nucleic acid molecules are also provided, as well as methods for producing the variable heavy chain or the variable light chain region. An isolated variable heavy chain or variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, is also provided. An antibody comprising the variable heavy chain or variable light chain regions is provided, as is a composition comprising the antibody and a carrier. The subject invention further provides a method of inhibiting aggregation of platelets, as well as a method of binding human platelet glycoprotein Ib alpha. A method of selecting a variable heavy chain or variable light chain region of an antibody is also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA -	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/26667 PCT/US99/25495

VARIABLE HEAVY CHAIN AND VARIABLE LIGHT CHAIN REGIONS OF ANTIBODIES TO HUMAN PLATELET GLYCOPROTEIN IB ALPHA

This application claims priority of U.S. Provisional Patent Application No. 60/106,275, filed October 30, 1998.

FIELD OF THE INVENTION

The subject invention is directed generally to human platelet glycoprotein Ib alpha, and more particularly to variable heavy chain and variable light chain regions of antibodies to human platelet glycoprotein Ib alpha and uses thereof.

BACKGROUND OF THE INVENTION

15

Throughout this application various publications are referenced, many in parenthesis. Full citations for each of these publications are provided at the end of the Detailed Description. The disclosures of each of these publications in their entireties are hereby incorporated by reference in this application.

The platelet glycoprotein Ib/IX (GPIb/IX) receptor for von Willebrand factor (vWf) is believed to consist of a 1:1 heterodimeric complex (Du et al. 1987) between GPIb (160 kDa) and GPIX (17 kDa) in a noncovalent association. GPIb in turn consists of a disulfide-linked 140 kDa alpha chain (GPIb alpha) and a 22 kDa beta chain (GPIb beta) (Fitzgerald and Phillips 1989).

The GPIb/IX complex comprises one of the major
transmembrane receptor complexes on blood platelets (Roth
1991; Lopez 1994; Clemetson and Clemetson 1995),
mediating von Willebrand factor (vWF)-dependent platelet
adhesion. In the 1980's, Miller et al. developed a
series of monoclonal antibodies (mab) directed against
the GP Ib/IX complex receptor for vWf. In particular,
monoclonal antibody C-34 was characterized in detail and
it was determined that mab C-34 recognized an epitope

within the platelet glycoprotein Ib/IX complex (Miller et al. 1990). In this and subsequent work, Miller et al. showed that monoclonal antibodies C-34, AS-2 and AS-7 were potent inhibitors of the ristocetin-induced aggregation of normal platelets that was dependent upon von Willebrand factor. Miller et al. also showed that the epitopes for all three monoclonal antibodies lay within the GPIb/IX complex.

Attempts to define the binding sites for various

monoclonal antibodies have led to the development of
epitope libraries. Parmley and Smith developed a
bacteriophage expression vector that could display
foreign epitopes on its surface (Parmley and Smith 1988).
This vector could be used to construct large collections
of bacteriophage which could include virtually all
possible sequences of a short (e.g. six-amino-acid)
peptide. They also developed biopanning, which is a
method for affinity-purifying phage displaying foreign
epitopes using a specific antibody (see Parmley and Smith
1988; Cwirla et al. 1990; Scott and Smith 1990; Christian
et al. 1992; Smith and Scott 1993).

After the development of epitope libraries, Smith et al. then suggested that it should be possible to use the bacteriophage expression vector and biopanning technique of Parmley and Smith to identify epitopes from all possible sequences of a given length. This led to the idea of identifying peptide ligands for antibodies by biopanning epitope libraries, which could then be used in vaccine design, epitope mapping, the identification of genes, and many other applications (Parmley and Smith 1988; Scott 1992).

Antibody fragments have also been displayed on the surface of filamentous phage that encode the antibody genes (Hoogenboom and Winter 1992; McCafferty et al.

WO 00/26667 PCT/US99/25495

- 3 -

1990; Vaughan et al. 1996; Tomlinson et al. 1992; Nissim et al. 1994; Griffiths et al. 1994). Variable heavy chain (V_H) and variable light chain (V_L) immunoglobulin libraries have thus been developed in phage, and phage can be selected by panning with antibody. The encoded antibody fragments can then be secreted as soluble fragments from infected bacteria. This display of antibodies on phage and selection with antigen mimics immune selection and can be used to make antibodies without immunization from a single library of phage (see Hoogenboom and Winter 1992).

A human synthetic V_H and V_L ScFv library was made by recloning the heavy and light chain variable regions from the lox library vectors (Griffiths et al. 1994) into the 15 phagemid vector pHEN2 (see Fig. 1). This "Griffin.1" library is a ScFv phagemid library made from synthetic V-gene segments. The World Wide Web address to download the germline V gene sequences which comprise the Griffin.1 library is http://www.mrc-cpe.cam.ac.uk/ imt-doc/vbase-questions.html.

A need continues to exist for the elucidation of the sequence of useful epitopes of antibodies that bind to glycoprotein Ib alpha.

SUMMARY OF THE INVENTION

25

To this end, the subject invention provides a method of selecting a clone that binds to human platelet glycoprotein Ib alpha using a human variable heavy chain and variable light chain immunoglobulin library. The method comprises: incubating a human variable heavy chain and variable light chain immunoglobulin library with cells expressing human platelet glycoprotein Ib, and selecting clones of the library which bind to the cells; and incubating the selected clones of the library with

washed human platelets, and selecting resulting clones which bind to the washed human platelets, wherein the resulting clones bind to human platelet glycoprotein Ib alpha.

The subject invention further provides an isolated nucleic acid molecule encoding a variable heavy chain or a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets.

The isolated nucleic acid molecules of the invention can be inserted into suitable expression vectors and/or host cells. Expression of the nucleic acid molecules encoding a variable heavy chain or a variable light chain region results in production of variable heavy chain or variable light chain regions of an antibody (wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets) in a host cell.

Further provided is an isolated nucleic acid molecule encoding a variable heavy chain region of an 20 antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the nucleic acid molecule encoding a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence. The second 25 amino acid sequence is selected from the group consisting of SEQ ID NOS:10-15.

Also provided is an isolated nucleic acid molecule encoding a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein 30 Ib alpha and inhibits aggregation of platelets, the nucleic acid molecule encoding a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence. The second amino acid

sequence is selected from the group consisting of SEQ ID NOs:16-21.

The invention also provides an isolated variable heavy chain or a variable light chain region of an 5 antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. Further provided is an isolated variable heavy chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and 10 inhibits aggregation of platelets, the variable heavy chain region having a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of SEQ ID NOs:10-15. Also provided 15 is an isolated variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the variable light chain region having a first amino acid sequence having at least 90% amino acid 20 identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of SEO ID NOs:16-21.

Further provided is an antibody comprising the variable heavy chain or variable light chain region of 25 the subject invention, as well as a composition comprising the antibody. The subject invention further provides a method of inhibiting aggregation of platelets by exposing platelets to the composition. Further provided is a method of binding human platelet 30 glycoprotein Ib alpha by exposing human platelet glycoprotein Ib alpha to the antibody.

Also provided is a method of selecting a variable heavy chain or variable light chain region of an

antibody, wherein the antibody inhibits aggregation of platelets. The method comprises: selecting a variable heavy chain or variable light chain region according to the subject invention, wherein each of the variable heavy chain or variable light chain regions has an amino acid sequence; altering the amino acid sequence of the selected variable heavy chain or variable light chain region; constructing an antibody having the altered amino acid sequence of the variable heavy chain or variable

10 light chain region; and determining whether the antibody inhibits aggregation of platelets, wherein the altered variable heavy chain or variable light chain region of an antibody that inhibits aggregation of platelets is thereby selected.

15

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of this invention will be evident from the following detailed description of preferred embodiments when read in 20 conjunction with the accompanying drawings in which:

- Fig. 1 is a map of the pHEN2 phagemid vector;
- Fig. 2 illustrates the structure of an antibody;
- Fig. 3 illustrates the structure of the Fab-fragment of an antibody;
- Fig. 4 illustrates the structure of the Fv-fragment of an antibody;
 - Fig. 5 illustrates the amino acid sequence with alignment for HIb-1;
- Fig. 6 illustrates the amino acid sequence with 30 alignment for HIb-2;
 - Fig. 7 illustrates the amino acid sequence with alignment for HIb-3;
 - Fig. 8 illustrates the amino acid sequence with alignment for HIb-5;

WO 00/26667 PCT/US99/25495

- 7 -

Fig. 9 illustrates the amino acid sequence with alignment for HIb-6;

Fig. 10 is a direct western blot of HIb-1 human anti-GPIb alpha;

Fig. 11 shows western blots of HIb-1, HIb-2 and SZ-2 under non-reduced and reduced conditions;

Fig. 12 illustrates inhibition of ristocetin-induced platelet aggregation by clonal phagemid expressing human VH and VL ScFv;

Fig. 13 illustrates inhibition of botrocetin-induced aggregation of formalin-fixed human platelets; and

Fig. 14 illustrates inhibition of antibody by PRP aggregation induced by ristocetin.

15 DETAILED DESCRIPTION OF THE INVENTION

As used herein, antibody, variable heavy chain (V_H or Vh) and variable light chain (V_L or Vl), Fv fragment, and CDR (hypervariable regions)(CDR1, CDR2, CDR3), are used in the context of Figs. 2-4. Fig. 1 shows a schedmatic drawing of the organization of a natural IgG and derived recombinant fragments. The Fv fragment is shown as a "Single Chain Fv Fragment" (ScFv) in Fig. 4. In this type of recombinant protein, the two antigen binding regions of the light and heavy chain (Vh and Vl) are connected by a 15-18 amino acid peptide. This linker region permits appropriate interaction between the Vh and Vl regions. A further description of such recombinant antibody structure can be found at http://www.mgen.uni-heidelberg.de/SD/SDscFvSite.html.

The term "nucleic acid", as used herein, refers to either DNA or RNA. "Nucleic acid sequence" or "polynucleotide sequence" refers to a single- or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. It

includes both self-replicating plasmids, infectious polymers of DNA or RNA, and nonfunctional DNA or RNA.

"Isolated" nucleic acid refers to nucleic acid which has been separated from an organism in a substantially 5 purified form (i.e. substantially free of other substances originating from that organism), and to synthetic nucleic acid.

By a nucleic acid sequence "homologous to" or "complementary to", it is meant a nucleic acid that selectively hybridizes, duplexes or binds to DNA sequences encoding the variable heavy (V_{H}) or variable light (V_{L}) chain or portions thereof when the DNA sequences encoding the variable heavy (V_{H}) or variable light (V_{L}) chain are present in a human genomic or cDNA library.

15 A DNA sequence which is similar or complementary to a target sequence can include sequences which are shorter or longer than the target sequence so long as they meet the functional test set forth.

Typically, the hybridization is done in a Southern

20 blot protocol using a 0.2X SSC, 0.1% SDS, 65°C wash. The
term "SSC" refers to a citrate-saline solution of 0.15M
sodium chloride and 20 mM sodium citrate. Solutions are
often expressed as multiples or fractions of this
concentration. For example, 6X SSC refers to a solution

25 having a sodium chloride and sodium citrate concentration
of 6 times this amount or 0.9 M sodium chloride and 120
mM sodium citrate. 0.2X SSC refers to a solution 0.2
times the SSC concentration or 0.03M sodium chloride and
4 mM sodium citrate.

The phrase "nucleic acid molecule encoding" refers to a nucleic acid molecule which directs the expression of a specific protein or peptide (in this case, a variable heavy $(V_{\scriptscriptstyle H})$ or variable light $(V_{\scriptscriptstyle L})$ chain). The nucleic acid sequences include both the DNA strand

WO 00/26667

- 9 -

sequence that is transcribed into RNA and the RNA sequence that is translated into protein or peptide (or variable heavy (V_H) or variable light (V_L) chain). The nucleic acid molecule includes both the full length 5 nucleic acid sequences as well as non-full length sequences derived from the full length variable heavy $(V_{\scriptscriptstyle H})$ or variable light (V_L) chain. It being further understood that the sequence includes the degenerate codons of the native sequence or sequences which may be introduced to 10 provide codon preference in a specific host cell.

The term "located upstream" as used herein refers to linkage of a promoter upstream from a nucleic acid (DNA) sequence such that the promoter mediates transcription of the nucleic acid (DNA) sequence.

The term "vector", refers to viral expression 15 systems, autonomous self-replicating circular DNA (plasmids), phagemids, and includes both expression and nonexpression plasmids and phagemids. Where a recombinant microorganism or cell is described as hosting 20 an "expression vector," this includes both extrachromosomal circular DNA and DNA that has been incorporated into the host chromosome(s). Where a vector is being maintained by a host cell, the vector may either be stably replicated by the cells during mitosis as an 25 autonomous structure, or the vector may be incorporated within the host's genome.

The term "plasmid" refers to an autonomous circular DNA molecule capable of replication in a cell, and includes both the expression and nonexpression types. 30 Where a recombinant microorganism or cell is described as hosting an "expression plasmid", this includes latent viral DNA integrated into the host chromosome(s). Where a plasmid is being maintained by a host cell, the plasmid is either being stably replicated by the cell during

mitosis as an autonomous structure, or the plasmid is incorporated within the host's genome.

The term "phagemid" refers to a vector which combines attributes of a bacteriophage and a plasmid.

The phrase "heterologous protein" or "recombinantly produced heterologous protein" refers to a peptide or protein of interest (in this case the variable heavy (VH) or variable light (VL)chain) produced using cells that do not have an endogenous copy of DNA able to express the peptide or protein of interest. The cells produce the peptide or protein because they have been genetically altered by the introduction of the appropriate nucleic acid sequences. The recombinant peptide or protein will not be found in association with peptides or proteins and other subcellular components normally associated with the cells producing the peptide or protein.

The following terms are used to describe the sequence relationships between two or more nucleic acid molecules or polynucleotides, or between two or more 20 amino acid sequences of peptides or proteins (in this case, the variable heavy (V_H) or variable light (V_L)chain): "reference sequence", "comparison window", "sequence identity", "sequence homology", "percentage of sequence identity", "percentage of sequence homology", 25 "substantial identity", and "substantial homology". A "reference sequence" is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length cDNA or gene sequence given in a 30 sequence listing or may comprise a complete cDNA or gene sequence.

Optimal alignment of sequences for aligning a comparison window may be conducted, for example, by the local homology algorithm of Smith and Waterman (1981), by

WO 00/26667 PCT/US99/25495

- 11 -

the homology alignment algorithm of Needleman and Wunsch (1970), by the search for similarity method of Pearson and Lipman (1988), or by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, Wis.).

As applied to nucleic acid molecules or polynucleotides, the terms "substantial identity" or "substantial sequence identity" mean that two nucleic 10 acid sequences, when optimally aligned (see above), share at least 90 percent sequence identity, preferably at least 95 percent sequence identity, more preferably at least 96, 97, 98 or 99 percent sequence identity.

"Percentage nucleotide (or nucleic acid) identity"

or "percentage nucleotide (or nucleic acid) sequence identity" refers to a comparison of the nucleotides of two nucleic acid molecules which, when optimally aligned, have approximately the designated percentage of the same nucleotides. For example, "95% nucleotide identity"

refers to a comparison of the nucleotides of two nucleic acid molecules which when optimally aligned have 95% nucleotide identity. Preferably, nucleotide positions which are not identical differ by redundant nucleotide substitutions (the nucleotide substitution does not change the amino acid encoded by the particular codon).

As further applied to nucleic acid molecules or polynucleotides, the terms "substantial homology" or "substantial sequence homology" mean that two nucleic acid sequences, when optimally aligned (see above), share at least 90 percent sequence homology, preferably at least 95 percent sequence homology, more preferably at least 96, 97, 98 or 99 percent sequence homology.

"Percentage nucleotide (or nucleic acid) homology" or "percentage nucleotide (or nucleic acid) sequence

homology" refers to a comparison of the nucleotides of two nucleic acid molecules which, when optimally aligned, have approximately the designated percentage of the same nucleotides or nucleotides which are not identical but differ by redundant nucleotide substitutions (the nucleotide substitution does not change the amino acid encoded by the particular codon). For example, "95% nucleotide homology" refers to a comparison of the nucleotides of two nucleic acid molecules which when optimally aligned have 95% nucleotide homology.

As applied to polypeptides, the terms "substantial identity" or "substantial sequence identity" mean that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap, share at least 90 percent sequence identity, preferably at least 95 percent sequence identity, more preferably at least 96, 97, 98 or 99 percent sequence identity.

"Percentage amino acid identity" or "percentage amino acid sequence identity" refers to a comparison of the amino acids of two polypeptides which, when optimally aligned, have approximately the designated percentage of the same amino acids. For example, "95% amino acid identity" refers to a comparison of the amino acids of two polypeptides which when optimally aligned have 95% amino acid identity. Preferably, residue positions which are not identical differ by conservative amino acid substitutions. For example, the substitution of amino acids having similar chemical properties such as charge or polarity are not likely to affect the properties of a protein. Examples include glutamine for asparagine or glutamic acid for aspartic acid.

As further applied to polypeptides, the terms "substantial homology" or "substantial sequence homology" mean that two peptide sequences, when optimally aligned,

such as by the programs GAP or BESTFIT using default gap, share at least 90 percent sequence homology, preferably at least 95 percent sequence homology, more preferably at least 96, 97, 98 or 99 percent sequence homology.

"Percentage amino acid homology" or "percentage amino acid sequence homology" refers to a comparison of the amino acids of two polypeptides which, when optimally aligned, have approximately the designated percentage of the same amino acids or conservatively substituted amino 10 acids. For example, "95% amino acid homology" refers to a comparison of the amino acids of two polypeptides which when optimally aligned have 95% amino acid homology. used herein, homology refers to identical amino acids or residue positions which are not identical but differ only 15 by conservative amino acid substitutions. For example, the substitution of amino acids having similar chemical properties such as charge or polarity are not likely to affect the properties of a protein. Examples include glutamine for asparagine or glutamic acid for aspartic 20 acid.

The phrase "substantially purified" or "isolated" when referring to a protein (or peptide), means a chemical composition which is essentially free of other cellular components. It is preferably in a homogeneous state although it can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein (or peptide) which is the predominant species present in a preparation is substantially purified. Generally, a substantially purified or isolated protein (or peptide) will comprise more than 80% of all macromolecular species present in the preparation. Preferably, the protein (or peptide) is

SSX solution.

purified to represent greater than 90% of all macromolecular species present. More preferably the protein (or peptide) is purified to greater than 95%, and most preferably the protein (or peptide) is purified to essential homogeneity, wherein other macromolecular species are not detected by conventional techniques. A "substantially purified" or "isolated" protein (or peptide) can be separated from an organism, synthetically or chemically produced, or recombinantly produced.

"Biological sample" or "sample" as used herein refers to any sample obtained from a living organism or from an organism that has died. Examples of biological samples include body fluids and tissue specimens.

High stringent hybridization conditions are selected 15 at about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, 20 stringent conditions will be those in which the salt concentration is at least about 0.02 molar at pH 7 and the temperature is at least about 60°C. As other factors may significantly affect the stringency of hybridization, including, among others, base composition and size of the 25 complementary strands, the presence of organic solvents, ie. salt or formamide concentration, and the extent of base mismatching, the combination of parameters is more important than the absolute measure of any one. High stringency may be attained, for example, by overnight 30 hybridization at about 68°C in a 6X SSC solution, washing at room temperature with 6X SSC solution, followed by washing at about 68°C in a 6X SSC solution then in a 0.6X

Hybridization with moderate stringency may be attained, for example, by: 1) filter pre-hybridizing and hybridizing with a solution of 3X sodium chloride, sodium citrate (SSC), 50% formamide, 0.1M Tris buffer at pH 7.5, 5X Denhardt's solution; 2) pre-hybridization at 37°C for 4 hours; 3) hybridization at 37°C with amount of labelled probe equal to 3,000,000 cpm total for 16 hours; 4) wash in 2X SSC and 0.1% SDS solution; 5) wash 4X for 1 minute each at room temperature and 4X at 60°C for 30 minutes each; and 6) dry and expose to film.

The phrase "selectively hybridizing to" refers to a nucleic acid molecule that hybridizes, duplexes or binds only to a particular target DNA or RNA sequence when the target sequences are present in a preparation of total 15 cellular DNA or RNA. By selectively hybridizing it is meant that a nucleic acid molecule binds to a given target in a manner that is detectable in a different manner from non-target sequence under moderate, or more preferably under high, stringency conditions of 20 hybridization. "Complementary" or "target" nucleic acid sequences refer to those nucleic acid sequences which selectively hybridize to a nucleic acid molecule. Proper annealing conditions depend, for example, upon a nucleic acid molecule's length, base composition, and the number 25 of mismatches and their position on the molecule, and must often be determined empirically. For discussions of nucleic acid molecule (probe) design and annealing conditions, see, for example, Sambrook et al. 1989.

It will be readily understood by those skilled in
the art and it is intended here, that when reference is
made to particular sequence listings, such reference
includes sequences which substantially correspond to its
complementary sequence and those described including
allowances for minor sequencing errors, single base

changes, deletions, substitutions and the like, such that any such sequence variation corresponds to the nucleic acid sequence of the peptide/protein to which the relevant sequence listing relates.

The DNA molecules of the subject invention also include DNA molecules coding for protein analogs, fragments or derivatives of the protein which differ from naturally-occurring forms (the naturally-occurring protein) in terms of the identity or location of one or 10 more amino acid residues (deletion analogs containing less than all of the residues specified for the protein, substitution analogs wherein one or more residues specified are replaced by other residues, and addition analogs wherein one or more amino acid residues is added 15 to a terminal or medial portion of the protein) and which share the functional property of the naturally-occurring These molecules include: the incorporation of form. codons "preferred" for expression by selected non-mammalian hosts; the provision of sites for cleavage 20 by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate DNA sequences that facilitate construction of readily expressed vectors.

As used herein, a "peptide" refers to an amino acid
sequence of three to one hundred amino acids, and
therefore an isolated peptide that comprises an amino
acid sequence is not intended to cover amino acid
sequences of greater than 125 amino acids. Proteins and
peptides can contain any naturally-occurring or
non-naturally-occurring amino acids, including the D-form
of the amino acids, amino acid derivatives and amino acid
mimics, so long as the desired function and activity of
the protein or peptide is maintained. The choice of
including an (L)- or a (D)-amino acid in the proteins or

WO 00/26667 PCT/US99/25495

- 17 -

peptides depends, in part, on the desired characteristics of the protein or peptide. For example, the incorporation of one or more (D)-amino acids can confer increased stability on the protein or peptide and can allow a protein or peptide to remain active in the body for an extended period of time. The incorporation of one or more (D)-amino acids can also increase or decrease the pharmacological activity of the protein or peptide.

The proteins or peptides may also be cyclized, since
10 cyclization may provide the proteins or peptides with
superior properties over their linear counterparts.

As used herein, the terms "amino acid mimic" and "mimetic" mean an amino acid analog or non-amino acid moiety that has the same or similar functional

15 characteristic of a given amino acid. For instance, an amino acid mimic of a hydrophobic amino acid is one which is non-polar and retains hydrophobicity, generally by way of containing an aliphatic chemical group. By way of further example, an arginine mimic can be an analog of

20 arginine which contains a side chain having a positive charge at physiological pH, as is characteristic of the quanidinium side chain reactive group of arginine.

In addition, modifications to the peptide backbone and peptide bonds thereof are also encompassed within the scope of amino acid mimic or mimetic. Such modifications can be made to the amino acid, derivative thereof, non-amino acid moiety or the peptide either before or after the amino acid, derivative thereof or non-amino acid moiety is incorporated into the peptide. What is critical is that such modifications mimic the peptide backbone and bonds which make up the same and have substantially the same spacial arrangement and distance as is typical for traditional peptide bonds and backbones. An example of one such modification is the

reduction of the carbonyl(s) of the amide peptide
backbone to an amine. A number of reagents are available
and well known for the reduction of amides to amines such
as those disclosed in Wann et al., JOC, 46:257 (1981) and
5 Raucher et al., Tetrahedron. Lett., 21:14061 (1980). An
amino acid mimic is, therefor, an organic molecule that
retains the similar amino acid pharmacophore groups as is
present in the corresponding amino acid and which
exhibits substantially the same spatial arrangement
10 between functional groups.

The substitution of amino acids by non-naturally occurring amino acids and amino acid mimics as described above can enhance the overall activity or properties of an individual protein or peptide based on the modifications to the backbone or side chain functionalities. For example, these types of alterations to the specifically described amino acid substituents can enhance the protein's or peptide's stability to enzymatic breakdown and increase biological activity.

20 Modifications to the peptide backbone similarly can add stability and enhance activity.

One skilled in the art, using the above sequences or formulae, can easily synthesize the proteins or peptides. Standard procedures for preparing synthetic peptides are well known in the art. Peptides can be synthesized using: the solid phase peptide synthesis (SPPS) method of Merrifield (J. Am. Chem. Soc., 85:2149 (1964)) or modifications of SPPS; or, peptides can be synthesized using standard solution methods well known in the art (see, for example, Bodanzsky, M., Principles of Peptide Synthesis, 2nd revised ed., Springer-Verlag (1988 and 1993)). Alternatively, simultaneous multiple peptide synthesis (SMPS) techniques well known in the art can be used. Peptides prepared by the method of Merrifield can

be synthesized using an automated peptide synthesizer such as the Applied Biosystems 431A-01 Peptide Synthesizer (Mountain View, Calif.) or using the manual peptide synthesis technique described by Houghten, Proc. 5 Natl. Acad. Sci., USA 82:5131 (1985).

With these definitions in mind, the subject invention provides a method of selecting a clone that. binds to human platelet glycoprotein Ib alpha using a human variable heavy chain and variable light chain 10 immunoglobulin library. The method comprises: incubating a human variable heavy chain and variable light chain immunoglobulin library with cells expressing human platelet glycoprotein Ib, and selecting clones of the library which bind to the cells; and incubating the 15 selected clones of the library with washed human platelets, and selecting resulting clones which bind to the washed human platelets, wherein the resulting clones bind to human platelet glycoprotein Ib alpha.

Preferably, the cells which express the human 20 platelet glycoprotein Ib alpha are Chinese Hamster Ovary cells.

In one embodiment, the method further comprises incubating the selected resulting clones with further platelets and adding an anti-glycoprotein Ib alpha

25 molecule that may displace clones already bound to the further platelets, and selecting the then-resulting clones that are not bound to the further platelets, the then-resulting clones being capable of binding to human platelet glycoprotein Ib alpha. Preferably, the anti30 glycoprotein Ib alpha molecule is a murine monoclonal antibody or peptide (such as the murine monoclonal antibody C-34 or the peptide having the amino acid sequence shown in SEQ ID NO:1).

The subject invention further provides an isolated nucleic acid molecule encoding a variable heavy chain or a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. The nucleic acid molecule can be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA, including messenger RNA or mRNA), genomic or recombinant, biologically isolated or synthetic.

The DNA molecule can be a cDNA molecule, which is a DNA copy of a messenger RNA (mRNA) encoding the variable heavy $(V_{\scriptscriptstyle H})$ or variable light $(V_{\scriptscriptstyle L})$ chain.

An example of such a variable heavy chain region of an antibody is the variable heavy chain having a

15 nucleotide sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 4. An example of such a variable light chain region of an antibody is the variable light chain having a nucleotide sequence selected from the group consisting of SEQ ID NOs:5-9.

20 The amino acid sequence encoded by these nucleotide sequences are shown in SEQ ID NOs:10-15 (heavy chains),

and SEQ ID NOs:16-21 (light chains).

The nucleic acid molecules of the subject invention can be expressed in suitable recombinant host cells using conventional techniques. Any suitable host and/or vector system can be used to express the variable heavy chain or variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. For in vitro expression, CHO cells or other mammalian cells, or Escherichia coli are preferred.

WO 00/26667 PCT/US99/25495

- 21 -

Techniques for introducing the nucleic acid
molecules into the host cells may involve the use of
expression vectors which comprise the nucleic acid
molecules. These expression vectors (such as phagemids,
plasmids, and viruses; viruses including bacteriophage)
can then be used to introduce the nucleic acid molecules
into suitable host cells. For example, DNA encoding the
variable heavy chain or variable light chain region of an
antibody can be injected into the nucleus of a host cell
or transformed into the host cell using a suitable
vector, or mRNA encoding the variable heavy chain or
variable light chain region can be injected directly into
the host cell, in order to obtain expression of variable
heavy chain or variable light chain regions of an
antibody in the host cell.

Various methods are known in the art for introducing nucleic acid molecules into host cells. One method is microinjection, in which DNA is injected directly into the nucleus of cells through fine glass needles (or RNA 20 is injected directly into the cytoplasm of cells). Alternatively, DNA can be incubated with an inert carbohydrate polymer (dextran) to which a positively charged chemical group (DEAE, for diethylaminoethyl) has been coupled. The DNA sticks to the DEAE-dextran via its 25 negatively charged phosphate groups. These large DNAcontaining particles stick in turn to the surfaces of cells, which are thought to take them in by a process known as endocytosis. Some of the DNA evades destruction in the cytoplasm of the cell and escapes to the nucleus, 30 where it can be transcribed into RNA like any other gene in the cell. In another method, cells efficiently take in DNA in the form of a precipitate with calcium phosphate. In electroporation, cells are placed in a solution containing DNA and subjected to a brief

electrical pulse that causes holes to open transiently in their membranes. DNA enters through the holes directly into the cytoplasm, bypassing the endocytotic vesicles through which they pass in the DEAE-dextran and calcium phosphate procedures. DNA can also be incorporated into artificial lipid vesicles, liposomes, which fuse with the cell membrane, delivering their contents directly into the cytoplasm. In an even more direct approach, DNA is absorbed to the surface of tungsten microprojectiles and fired into cells with a device resembling a shotgun.

Several of these methods, microinjection, electroporation, and liposome fusion, have been adapted to introduce proteins into cells. For review, see Mannino and Gould-Fogerite 1988, Shigekawa and Dower 15 1988, Capecchi 1980, and Klein et al. 1987.

Further methods for introducing nucleic acid molecules into cells involve the use of viral vectors. One such virus widely used for protein production is an insect virus, baculovirus. For a review of baculovirus vectors, see Miller (1989). Various viral vectors have also been used to transform mammalian cells, such as bacteriophage, vaccinia virus, adenovirus, and retrovirus.

As indicated, some of these methods of transforming 25 a cell require the use of an intermediate plasmid vector. U.S. Patent No. 4,237,224 to Cohen and Boyer describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids 30 are then introduced by means of transformation and replicated in unicellular cultures including procaryotic organisms and eucaryotic cells grown in tissue culture. The DNA sequences are cloned into the plasmid vector

using standard cloning procedures known in the art, as described by Sambrook et al. (1989).

It should be readily apparent that several of these methods can be used to introduce the nucleic acid 5 molecules into the cells of, or implants of cells within, a subject in vivo (gene therapy applications, including human gene therapy). For example, nucleic acid encoding the variable heavy chain and/or variable light chain, or encoding fragments thereof, or encoding an antibody 10 comprising the variable heavy chain and/or variable light chain or fragments thereof, could be introduced in vivo using a mammalian viral vector such as adenovirus. a vector could also include and introduce an inducible promoter controlling expression of the nucleic acid, or 15 other suitable positive or negative response element, so that the subject could simply take a "drug" that would turn on or turn off the expression of the nucleic acid of the subject invention. The "drug", for example, could induce the inducible promoter.

20 Host cells into which the nucleic acid encoding the variable heavy chain or variable light chain region has been introduced can be used to produce (i.e. to functionally express) the variable heavy chain or variable light chain region. The function of the encoded variable heavy chain or a variable light chain region can be assayed according to methods known in the art by incorporating the variable heavy chain or variable light chain region into an antibody, and testing the antibody for its ability to bind to human platelet glycoprotein Ib alpha and to inhibit aggregation of platelets.

The nucleic acid molecules of the subject invention can be used either as probes or for the design of primers to obtain DNA encoding other variable heavy chain or variable light chain regions of an antibody, wherein the

antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelet, by either cloning and colony/plaque hybridization or amplification using the polymerase chain reaction (PCR).

Specific probes derived from the sequences herein can be employed to identify colonies or plaques containing cloned DNA encoding a variable heavy chain or variable light chain region of an antibody using known methods (see Sambrook et al. 1989). One skilled in the 10 art will recognize that by employing such probes under high stringency conditions (for example, hybridization at 42°C with 5X SSPC and 50% formamide, washing at 50-65°C with 0.5% SSPC), sequences having regions which are greater than 90% homologous or identical to the probe can 15 be obtained. Sequences with lower percent homology or identity to the probe, which also encode variable heavy chain or variable light chain regions of an antibody, can be obtained by lowering the stringency of hybridization and washing (e.g., by reducing the hybridization and wash 20 temperatures or reducing the amount of formamide employed).

Specific primers derived from the sequences herein can be used in PCR to amplify a DNA sequence encoding a variable heavy chain or variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, using known methods (see Innis et al. 1990). One skilled in the art will recognize that by employing such primers under high stringency conditions (for example, annealing at 50-60°C, depending on the length and specific nucleotide content of the primers employed), sequences having regions greater than 75% homologous or identical to the primers will be amplified.

Various modifications of the nucleic acid and amino acid sequences disclosed herein are covered by the subject invention. These varied sequences still encode a functional variable heavy chain or variable light chain 5 region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. The invention thus further provides an isolated nucleic acid molecule encoding a variable heavy chain region of an antibody, wherein the 10 antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the nucleic acid molecule encoding a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from 15 the group consisting of SEQ ID NOs:10-15. The invention further provides an isolated nucleic acid molecule encoding a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the 20 nucleic acid molecule encoding a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of SEQ ID NOs:16-21. In further embodiments, the first amino acid 25 sequence has at least 95%, 96%, 97%, 98%, or 99% amino acid identity to the recited sequence. ention further provides an isolated variable heavy chain or a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib 30 alpha and inhibits aggregation of platelets. variable heavy chain is preferably encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID

NO: 4. The variable heavy chain preferably has an amino acid sequence selected from the group consisting of SEQ ID NOs:10-15. The variable light chain is preferably encoded by a nucleotide sequence selected from the group 5 consisting of SEQ ID NOs:5-9. The variable light chain preferably has an amino acid sequence selected from the group consisting of SEQ ID NOs:16-21. Further provided is an isolated variable heavy chain region of an antibody, wherein the antibody binds to human platelet 10 glycoprotein Ib alpha and inhibits aggregation of platelets, the variable heavy chain being encoded by a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of 15 SEQ ID NOs:10-15. Also provided is an isolated variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the variable light chain being encoded by a first amino acid sequence having 20 at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of SEQ ID NOs:16-21. In further embodiments, the first amino acid sequence has at least 95%, 96%, 97%, 98%, or 99% amino acid identity to the 25 recited sequences.

It should be readily apparent to those skilled in the art that a met residue may need to be added to the amino terminal of the amino acid sequence of the variable heavy chain or variable light chain region or an ATG added to the 5' end of the nucleotide sequence, in order to express the variable heavy chain or variable light

WO 00/26667

- 27 -

PCT/US99/25495

chain region in a host cell. The met version of the variable heavy chain or variable light chain region is thus specifically intended to be covered by reference to particular SEQ ID NOs.

The invention further provides an antibody comprising the variable heavy chain or variable light chain region disclosed herein. Antibodies of the subject invention include monovalent, bivalent, and polyvalent antibodies, as well as fragments of these antibodies.

10 Fragments of the antibodies of the present invention include, but are not limited to, the Fab and the $F(ab')_2$ fragments.

The antibodies of the subject invention may be provided in a detectably labeled form. Antibodies can be 15 detectably labeled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.), fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Epitope tags 20 can also be used, such as the c-myc peptide (to which antibodies are available that recognize the small peptide or protein of interest). The 6x-histidine tag (for which there are not only antibodies available but also chelating materials that have a high affinity for the 25 histidines) is also commonly used to purify secreted proteins. Procedures for accomplishing such labeling are well known in the art, for example see Sternberger et al. 1970, Bayer et al. 1979, Engval et al. 1972, and Goding 1976.

30 Further provided is a composition comprising the antibody and a carrier. The composition can be used to inhibit aggregation of platelets by exposing platelets to the composition. The antibody can also be used to bind to human platelet glycoprotein Ib alpha, the method

comprising exposing human platelet glycoprotein Ib alpha to the antibody.

In the methods of the invention, tissues or cells or platelet glycoprotein Ib alpha (a cell surface protein)

5 are contacted with or exposed to the composition or antibody of the subject invention. In the context of this invention, to "contact" tissues or cells or platelet glycoprotein Ib alpha with or to "expose" tissues or cells or platelet glycoprotein Ib alpha to a composition or antibody means to add the composition or antibody, usually in a liquid carrier, to a cell suspension or tissue sample, either in vitro or ex vivo, or to administer the composition or antibody to cells or tissues within an animal (including humans).

- The formulation of therapeutic compositions and their subsequent administration is within the skill in the art. In general, for therapeutics, a patient suspected of needing such therapy is given a composition in accordance with the invention, commonly in a pharmaceutically acceptable carrier, in amounts and for periods which will vary depending upon the nature of the particular disease, its severity and the patient's overall condition. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated.

 Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), oral or
- intravenous drip or infusion, subcutaneous, intraperitoneal or intramuscular injection, pulmonary administration, e.g., by inhalation or insufflation, or intrathecal or intraventricular administration.

parenteral. Parenteral administration includes

Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.

Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

Compositions for oral administration include powders or granules, suspensions or solutions in water or non10 aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.

In addition to such pharmaceutical carriers, cationic lipids may be included in the formulation to facilitate uptake. One such composition shown to facilitate uptake is LIPOFECTIN (BRL, Bethesda MD).

Dosing is dependent on severity and responsiveness of the condition to be treated, with course of treatment lasting from several days to several months or until a cure is effected or a diminution of disease state is 25 achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body and from assessment of the function of platelets obtained from blood specimens from the patient. Persons of ordinary skill can easily determine optimum dosages, 30 dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual compositions, and can generally be calculated based on IC₅₀'s or EC₅₀'s in in vitro and in vivo animal studies. For example, given the molecular weight of

compound (derived from oligonucleotide sequence and/or chemical structure) and an effective dose such as an IC_{50} , for example (derived experimentally), a dose in mg/kg is routinely calculated.

- Once a variable heavy chain or variable light chain of interest is identified, the antibody constructed using the variable heavy chain or variable light chain be used to identify peptides capable of mimicking the inhibitory activity of the antibody. One such method utilizes the
- 10 development of epitope libraries and biopanning of bacteriophage libraries. Briefly, attempts to define the binding sites for various monoclonal antibodies have led to the development of epitope libraries. Parmley and Smith developed a bacteriophage expression vector that
- 15 could display foreign epitopes on its surface (Parmley, S.F. & Smith, G.P., Gene 73:305-318 (1988)). This vector could be used to construct large collections of bacteriophage which could include virtually all possible sequences of a short (e.g. six-amino-acid) peptide. They
- 20 also developed biopanning, which is a method for
 affinity-purifying phage displaying foreign epitopes
 using a specific antibody (see Parmley, S.F. & Smith,
 G.P., Gene 73:305-318 (1988); Cwirla, S.E., et al., Proc
 Natl Acad Sci USA 87:6378-6382 (1990); Scott, J.K. &
- 25 Smith, G.P., Science 249:386-390 (1990); Christian, R.B.,
 et al., J Mol Biol 227:711-718 (1992); Smith, G.P. &
 Scott, J.K., Methods in Enzymology 217:228-257 (1993)).

After the development of epitope libraries, Smith et al. then suggested that it should be possible to use the bacteriophage expression vector and biopanning technique of Parmley and Smith to identify epitopes from all possible sequences of a given length. This led to the idea of identifying peptide ligands for antibodies by biopanning epitope libraries, which could then be used in

WO 00/26667

- 31 -

PCT/US99/25495

vaccine design, epitope mapping, the identification of genes, and many other applications (Parmley, S.F. & Smith, G.P., Gene 73:305-318 (1988); Scott, J.K., Trends in Biochem Sci 17:241-245 (1992)).

5 Using epitope libraries and biopanning, researchers searching for epitope sequences found instead peptide sequences which mimicked the epitope, i.e., sequences which did not identify a continuous linear native sequence or necessarily occur at all within a natural protein sequence. These mimicking peptides are called mimotopes. In this manner, mimotopes of various binding sites/proteins have been found.

The sequences of these mimotopes, by definition, do not identify a continuous linear native sequence or 15 necessarily occur in any way in a naturally-occurring molecule, i.e. a naturally occurring protein. The sequences of the mimotopes merely form a peptide which functionally mimics a binding site on a naturally-occurring protein.

- Many of these mimotopes are short peptides. The availability of short peptides which can be readily synthesized in large amounts and which can mimic naturally-occurring sequences (i.e. binding sites) offers great potential application.
- Using this technique, mimotopes to an antibody that recognizes platelet glycoprotein Ib alpha can be identified. The sequences of these mimotopes represent short peptides which can then be used in various ways, for example as peptide drugs that bind to platelet
- 30 glycoprotein Ib alpha and inhibit aggregation of platelets. Once the sequence of the mimotope is determined, the peptide drugs can be chemically synthesized.

WO 00/26667

The antibodies of the subject invention (or fragments thereof) can thus be used to select peptides, mimotopes, etc. that are complementary to the antibodies and that can then be used as antidotes to the antibodies 5 themselves. For example, if a subject being treated with the antibody in order to inhibit platelet aggregation was involved in a motor vehicle accident and the risk of bleeding far exceeded the risk of thrombosis, it would be desirable to turn "off" the antibody of the subject 10 invention. This could be done by using the peptide or mimotope to the antibody itself. The peptide or mimotope could thus be administered to the subject to displace the antibody from the platelets, preventing the antibody-induced inhibition of platelets.

The identified variable heavy chain and variable 15 light chain regions of an antibody, wherein the antibody inhibits aggregation of platelets, can also be used to select additional variable heavy chain and variable light chain regions of an antibody which inhibits aggregation 20 of platelets. Such a method involves the selection of a variable heavy chain or variable light chain region as defined above (for example, SEQ ID NOs:10-15 for heavy chains, SEQ ID NOs:16-21 for light chains), wherein each of the variable heavy chain or variable light chain 25 regions has an amino acid sequence; altering the amino acid sequence of the selected variable heavy chain or variable light chain region; constructing an antibody having the altered amino acid sequence of the variable heavy chain or variable light chain region; and 30 determining whether the antibody inhibits aggregation of platelets, wherein the altered variable heavy chain or variable light chain region of an antibody that inhibits aggregation of platelets is thereby selected.

EXAMPLE I

Full DNA sequences were isolated from the Human Synthetic VH and VL ScFv Library (the Griffin.1 Library, available from the Medical Research Council in England), 5 and the protein sequences of multiple ScFv clones were determined. The ScFv clones were selected on the basis of their binding to platelet GPIb. Whether displayed as. surface proteins on the phagemid or secreted as free ScFv by E. coli, several of these different ScFv clones have 10 proven capable of inhibiting von Willebrand factor (vWF)dependent aggregation of platelets, most likely due to their altering the binding site for vWF that is known to be contained within GPIb. Since the Griffin.1 Library was constructed from native human antibody heavy and 15 light chain variable sequences, ScFv isolated from this library are comprised of native human protein sequences and hence very attractive potential reagents for therapeutic purposes. The ScFv provide a new class of anti-thrombotic agents, useful for the prevention of 20 platelet-dependent thrombi in diseased arteries, bypass grafts, dialysis access, etc. In contrast to antibodies derived from mouse or other species, the human ScFv stand a far better chance of being recognized as self, rather than as a foreign protein.

In addition to the potential anti-thrombotic uses of the isolated ScFv, these ScFv are also useful as diagnostic reagents in human medicine. Since GPIb is a highly restricted antigen in its expression throughout the body, it has turned out to be one of the best markers to identify platelets, their precursor cell (the megakaryocyte), and leukemic blast cells of megakaryocytic origin. Additionally, there is some evidence in the literature that assaying a soluble form of platelet GPIb in the plasma (that presumably results

from proteolytic degradation of platelet surface GPIb)
may be useful as a clinical marker. The new anti-GPIb
ScFv are readily harvested from E.coli cultures, rather
than from the mammalian cells required for murine

5 monoclonal antibodies, and may therefore be a more
economical source of anti-GPIb markers for diagnostic
uses than were previously available.

Since the human ScFv are directed against platelet glycoprotein Ib, they have been named HIb-1, HIb-2, HIb-

- 10 3, etc., so as to reinforce the source of the ScFv (Human) and the target of the ScFv (Ib). In the case of HIb-1, HIb-2, and HIb-3, DNA sequencing has provided the amino acid sequences of both the heavy chain and light chain variable regions contributing to the ScFv,
- 15 including VH exon, particular VH CDR3, JH, linker sequence, VL exon, particular VL CDR3, and JL segments. In the case of HIb-5 and HIb-6, DNA sequencing has thus far provided the amino acid sequences of the light chain variable regions contributing to the ScFv.
- This technology provides advantages over existing technology, including:
 - 1. For therapeutic purposes, an anti-platelet antibody of human sequence may obviate the human anti-mouse antibody reaction seen when murine antibodies are used.
- 25 Platelet GPIb is an important target for anti-thrombotics that is only now beginning to be appreciated.
 - 2. The ScFv are produced by bacterial cultures, which potentially may be more economical than the mammalian cell cultures required for murine antibodies.
- 30 3. Since the ScFv are fully cloned, the opportunity to make modifications of the basic ScFv molecules is readily available.
 - 4. Since these ScFv were selected without immunization of animals, it is possible that one or more of these ScFv

is directed against an epitope within GPIb for which animals might fail to mount an immune response, due to a high degree of structural conservation across species lines. The Griffin.l library was constructed in such a manner that ScFv directed against normal human antigens are also included in the repertoire.

The ScFv clones were obtained by screening the
Griffin.1 Library. The key points in this screening
process were that the first steps in the screening

10 procedure utilized CHO cells expressing recombinant GPIb
alpha, and then applicant took the subset of the library
surviving three rounds of selection against these cells,
and then applicant went into a 4th round against normal
washed human platelets. Applicant then did two final
15 rounds where applicant attempted to displace ScFv from
washed platelets by flooding them with a lot of murine
monoclonal antibody (C-34 or SZ-2) or mimotope peptide
(AWNWRYREYV).

The human synthetic V_{H} and V_{L} ScFv library was made 20 by recloning the heavy and light chain variable regions from the lox library vectors (Griffiths et al. 1994) into the phagemid vector pHEN2 (see Fig. 1). This "Griffin.1" library is a ScFv phagemid library made from synthetic V-gene segments. The World Wide Web address to download 25 the germline V gene sequences which comprise the Griffin.1 library is http://www.mrc-cpe.cam.ac.uk/ imt-doc/vbase-questions.html. The kappa and lambda light chain variable regions were PCR amplified from the fdDOG-2loxVk and VL constructs. The PCR fragments were 30 purified and digested with ApaL1 and Not 1. The gel purified fragments were then ligated into the vector pHEN2. Heavy chain variable regions were PCR amplfied from the pUC19-2loxVH vector. The PCR fragments were purified and digested with Sfil and Xhol.

15

purified fragments were then ligated into the vector Vk-pHEN2 or VL-pHEN2.

The isolation of the HIb series of ScFv was performed as follows:

- 5 Initial three rounds of phagemid selection against transfected Chinese Hamster Ovary (CHO) cells expressing only the GPIb alpha component of the GPIb/IX/V complex on their surface
- 10¹²-10¹³ phagemid incubated 1.5 hours at RT with transfected CHO cells adherent to culture flask
 - Unbound phagemid removed by extensive washing
 - Bound phagemid eluted with triethylamine, neutralized with Tris, infected into *E. coli* suppressor strain TG1, and amplified (using helper phage) for use in next round
 - Monoclonal phagemid clone HIb-3 is a representative clone from this stage of selection

Round 4 of selection: Against washed human platelets

20 - 10¹² phagemid incubated with a suspension of washed platelets for 1.5 hours at RT

- Unbound phagemid removed by extensive washing of platelets
- Bound phagemid eluted with triethylamine,

 neutralized with Tris, infected into E. coli,
 and amplified for use in next round
 - Monoclonal phagemid clone HIb-3 is a representative clone from this stage of selection
- 30 Rounds 5 and 6 of selection: Displacement of phage bound to platelets (optional)
 - Round 5: 10^{12} Phage from round four incubated with $3x10^9$ washed platelets, unbound phage

- 37 -

removed by extensive washing, and platelets then divided into three aliquots

- Incubation of platelets for 90 min at RT with 25 μ g/mL anti-GPIb alpha murine mabs C-34 or SZ-2 or 200 μ g/mL C-34 mimotope peptide AWNWRYREYV
- Phagemid recovered from buffer then infected into E. coli, and amplified for use in next round
- Round 6: amplified phage from fifth round bound to washed platelets and then challenged with same potential displacer as used in round 5

Production of ScFv from Round 6 Phagemids

5

20

- Phagemid recovered from round 6 infected into

 E. coli non-suppressor strain HB2151
 - 24-well monoclonal culture supernatants assayed in Western blots against platelet lysates and for ability to inhibit ristocetin-induced aggregation of washed human platelets
 - Interesting clones scaled up for DNA sequencing and further functional studies on purified ScFv

This work employs ScFv technology in the development of a new family of antibody molecules directed against human platelet GPIbα--molecules that are themselves derived from human immunoglobulin variable sequences. As an alternative to natural IgG antibodies, synthetic monovalent antibodies with increasingly high affinities can be made from the heavy chain variable and light chain variable regions, separated by a linker region. Such synthetic variable antibodies are termed ScFv. The Griffin.1 synthetic ScFv library, composed of human germline VH and VL sequences used for these studies was

produced by the laboratory of Dr. Greg Winter of the MRC in Cambridge, UK. As posted on this laboratory group's web page (http://www.mrc-cpe.cam.ac.uk/~phage/), "This library contains exactly the same synthetic human V-genes 5 as the Human Synthetic Fab (4-12) 2lox Library (Griffiths, A.D. et al., (1994). EMBO J. 13, 3245-3260) but is in a single chain Fv (scFv) format instead of an. Fab format. The vector is also a phagemid rather than a phage so it is like the Human Synthetic ScFv Library or 10 "Nissim Library" (Nissim, A. et al., (1994). EMBO J. 13, 692-698) but with diversity in the light chains as well as the heavy chains." In addition to the in vitro recombination of heavy and light chains, this library has achieved an estimated total diversity of 1.2 x 109 clones 15 through in vitro randomization at the hypervariable CDR3 regions. The resulting VH and VL coding sequences were then cloned into the pHEN2 phagemid. Depending upon whether the phagemid is infected into a strain of E.coli lacking or possessing a suppressor for the amber codon, 20 one can then obtain either progeny phagemid expressing the ScFv in fusion with a major phage coat protein, or a secreted form of the ScFv. The secreted ScFv also contain a 6x-His tag which can be used in protein purification and a c-myc tag for detection with an anti-25 c-myc antibody such as 9E10.

For the present studies, the initial round of phagemid selection was performed against transfected Chinese Hamster Ovary (CHO) cells expressing only the GPIbα component of the GPIb/IX/V complex on their surface. 10¹²-10¹³ phagemid were incubated for 1.5 hours at RT with transfected CHO cells adherent to the culture flask. Unbound phagemid were removed by extensive washing, and bound phagemid were eluted with triethylamine, neutralized with Tris, infected into the

E. coli suppressor strain TG1, and then amplified (using helper phage) for use in the next round. This process was then repeated for two additional rounds.

For the 4th round of selection, we performed a

5 "crossover" step, using human platelets. We aimed by
this approach to significantly enrich for phagemid
recognizing epitopes present only on both the CHO cell
and the platelet, thereby increasing the odds of finding
ScFv with specificities for GPIbα. Monoclonal phagemid

10 clone HIb-3 is a representative clone from this stage of
selection. Whereas the polyclonal collection of all 4th
round phagemid did identify GPIbα in Western blots, most
individual clones tested did not. Moreover, random
conversion of Round 4 phagemid clones to soluble ScFv did

15 not yield ScFv that exhibited inhibitory activity in
functional assays.

We accordingly proceeded to additional rounds, designed so as to try to direct the selection of epitopes most relevant to the vWF binding function of GPIb α .

Towards this end, phage from round 4 were incubated with washed platelets, and unbound phage removed by extensive washing. Platelets were then further incubated with saturating concentrations of the anti-GPIbα murine mabs C-34 or SZ-2 or with C-34 mimotope peptide, which we have previously shown to compete with platelets for binding to C-34.. Phage recovered in the buffer following these incubations were amplified, and then used in a 6th and final round, in which displacement of phage was again attempted with the same mab or peptide used with it in the previous round.

Phagemid recovered from round 6 were directly infected into the E. coli non-suppressor strain HB2151. Secreted ScFv from overnight supernatants were assayed in Western blots against platelet lysates and were tested

for their ability to inhibit ristocetin-induced aggregation of washed human platelets. Interesting clones were then chosen for further study.

A particularly prominent clone (HIb-1) was observed 5 whether SZ-2, C-34, or C-34 mimotope peptide was used as displacer. Clone HIb-2 was uniquely seen when SZ-2 was used as displacer. Clone HIb-3, as stated above, was derived from an earlier round of selection. Clones HIb-5 and HIb-6 were recovered in the buffer when C-34 mimotope peptide was used as displacer.

The purified HIb ScFv, whether purified from culture supernatants or from periplasmic spaces, had the anticipated molecular weight of 29 kilodaltons. This is illustrated in Fig. 10, where both crude supernatant and purified periplasmic fraction from an E. coli culture were run on SDS-polyacrylamide gel electrophoresis (SDS-PAGE), electroblotted, and then incubated with the murine monoclonal antibody 9E10, which recognizes the c-myc epitope tag contained within the secreted ScFv.

20 Peroxidase-conjugated secondary anti-mouse antibody was then used to detect the presence of bound 9E10.

The binding specificity of selected clones with respect to epitope targets deriving from human platelets was also established by immunoblotting. Detergent

- lysates of platelets obtained from human blood were prepared, and were electrophoresed by SDS-PAGE either under non-reducing conditions or following reduction with b-mercaptoethanol. GPIb α has an apparent molecular mass of 135-140 kDa when electrophoresed under reducing
- 30 conditions in this system, but characteristically migrates with an apparent molecular mass in the 160-170 kDa region under non-reducing conditions, reflecting the additional mass of GPIbB with which it is covalently bonded in the non-reduced, native state. Following

PCT/US99/25495 WO 00/26667

- 41 -

electroblotting to a membrane, the electrophoresed platelet lysates were then probed with either the wellestablished anti-GPIba murine monoclonal antibody SZ-2, or with a product from one of the selected clones. 5 Detection of binding of the SZ-2 employed a peroxidaselabeled secondary anti-mouse antibody, as described above. In the earlier rounds of selection, phagemid from selected clones were directly incubated with the blots, and following washings, the residual binding of phagemid 10 was detected through the use of an anti-M13 bacteriophage antibody, since the M13 surface epitope for this antibody is preserved in the pHEN2 phagemid. This approach permitted ready distinction between clones of phagemid that mimicked the binding pattern seen with SZ-2 from 15 those that did not. Following the later rounds of selection, however, when secreted clonal ScFv became available, the ScFv were used instead of actual phagemid in the immunoblotting. Thus, ScFv secreted by clones HIb-1, HIb-2, HIb-5, and HIb-6, when used as the primary 20 antibody in a Western blot against human platelet lysates, all showed a pattern closely mimicking that of murine monoclonal antibody SZ-2. An example of this is shown in Fig. 11, for HIb-1 and HIb-2 ScFv. Following the initial incubation with and subsequent washings of 25 the membranes with the indicated ScFv, secondary antibody 9E10, and in turn peroxidase-conjugated anti-mouse antibody were incubated with the membrane, and staining developed with peroxidase substrate. As can be seen in this example, the products of the selected clones were 30 able to recognize bands having the migration characteristics of GPIba, both under non-reducing and reducing conditions.

The ability of products from the selected clones to inhibit platelet function was tested by platelet

aggregation. Since a major function of GPIba is its role as receptor for the adhesive ligand, von Willebrand factor (vWF), vWF-dependent platelet aggregation was of particular interest. In vitro, aggregation involving the binding of vWF to platelet GPIb is conventionally assessed using either ristocetin or botrocetin as mediators. ScFv obtained from clones HIbB-1, HIbB-2, HIbB-5, and HIbB-6 were found to inhibit vWF-dependent platelet aggregation induced by at least one of these mediators. In the case of HIB-3, the phagemid itself showed inhibitory activity in an aggregation assay.

A representative example of inhibition at the phagemid level is shown in Fig. 12. Human platelets that have been formalin-fixed were suspended in buffer

- 15 containing 5 μ g/mL purified vWF at a final platelet concentration of 150,000/ μ L, added to a cuvette with a stir bar, and stirred at 1200 rpm, 37 °C, in a Chronolog Aggregometer. Ristocetin was then added at varying final concentrations, and resulting change in light
- transmittance used as an indicator of platelet aggregation. As can be seen in the figure, preincubation for 1.5 hour of the platelets (at 150,000/ μ L) with 1 x 10½ HIbB-3 phagemid totally inhibited platelet aggregation at ristocetin concentrations at or below 0.35
- 25 mg/mL in this system, and even at a ristocetin concentration as high as 1.0 mg/mL continued to exert strong inhibition. In contrast, in the presence of an equal concentration of phagemid not expressing activity against platelet GPIbα (Control Phagemid), a full
- aggregatory response was reached by 0.5 mg/mL ristocetin, with moderate aggregation responses observed in the range of 0.3-0.35 mg/mL ristocetin. (Note that the formalinfixed platelets characteristically are aggregated in the

- 43 -

presence of lower concentrations of ristocetin than is usually required with non-fixed platelets.)

A representative example of inhibition at the ScFv level is shown in Fig. 13. Fixed human platelets were 5 again used under similar conditions to those previously described. In this experiment formalin-fixed human platelets at a concentration of 150,000/µL were incubated for 1.5 hour with HIB ScFv at the indicated final concentration. Purified vWF was than added to a final 10 concentration of 5 μ g/mL, the sample put in the aggregometer in the manner described above, and botrocetin added at a final concentration of 0.6 μ g/mL to initiate aggregation. In this example, the rate of light transmittance change in the aggregometer is used as 15 an index of aggregation. Quite strong (>75%) inhibition of the aggregation response is observed when the platelets have been preincubated with 12 μ g/mL HIB-1. Half-maximal inhibition is characteristically observed in the range of 5-10 μ q/mL of HIb-1. Similar results are 20 obtained when ristocetin is used as the agonist. HIB-2 ScFv similarly inhibit the aggregation of human platelets modulated by either ristocetin or botrocetin. HIB-2 ScFv also show half-maximal inhibition of such vWF-dependent platelet aggregation in the range of 5-10 μ g/m ScFv, with 25 the maximal degree of such inhibition comparable to or even exceeding that seen with HIB-1. While HIB-5 and HIB-6 also exert inhibition upon vWF-dependent platelet aggregation, the maximal degree of this inhibition has been observed to be weaker than that achieved with HIB-1 30 or HIB-2, reaching in the range of a 20-30% inhibition of the uninhibited aggregatory response.

A further representative example, in this instance demonstrating the ability of ScFv purified from the HIB clones to exert inhibitory activity upon unfixed human platelets, is shown in Fig. 14. Here the inhibitory effects of a 1 hour incubation of platelets (150,000 platelets/ μ L) with either HIB-2 ScFv or with the intact (i.e., full IgG) murine monoclonal antibody SZ-2 are directly compared. In this example, platelet-rich plasma (P.P.) was prepared by centrifugation of citrated, freshly drawn human blood, and the P.P. then studied in the platelet aggregometer under similar conditions as described above. It can be seen that HIB-2 by a concentration of 10 μ g/mL was able to produce a degree of aggregation quite comparable to that seen with SZ-2 at the same final concentration.

This work thus demonstrates the discovery of a group of ScFv selected upon the basis of the selection strategy described above, that have been found to inhibit vWF-dependent platelet aggregation induced by botrocetin or ristocetin, and that in fact specifically recognize epitopes within human platelet GPIba that survive SDS denaturation as well as reduction with mercaptoethanol.

- Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions and the like can be made without departing from the spirit of the
- 25 invention and these are therefore considered to be within the scope of the invention as defined in the claims which follow.

- 45 -

REFERENCES

- Asfari, M., et al., Endocrinology 130:167-178 (1992).
- 5 Bayer, E.A., et al., Meth Enzym 62:308 (1979).
 Bhattacharjee, A., et al., Endocrinology 138:3735-3740
 (1997).
- 10 Boyd, A.E. III, <u>Current Concepts</u>, The Upjohn Company, Kalamazoo, Michigan (1991).
 - Campbell, A.M., <u>Monoclonal Antibody Technology:</u>
 <u>Laboratory Techniques in Biochemistry and Molecular</u>
- 15 <u>Biology</u>, Elsevier Science Publishers, Amsterdam, The Netherlands (1984).
 - Capecchi, M., Cell 22:479-488 (1980).
- 20 Catterall, W.A., Science 242:50-61 (1988).
 - Catterall, W.A., Science 253:1499-1500 (1991).
- Chomczynsk, P., et al., Anal. Biochem. 162:156-157 25 (1987).
 - Chrisey, L., et al., Antisense Research and Development 1(1):57-63 (1991).
- 30 Christoffersen, R.E. and Marr, J.J., Journal of Medicinal Chemistry 38(12):2023-2037 (1995).
 - Davalli, A.M., et al., J Endocrinology 150:195-203 (1996).
- Engval, E., et al., Immunol 109:129 (1972).

35

- Goding, J.W., J Immunol Meth 13:215 (1976).
- 40 Han, L., et al., Proc Natl Acad Sci USA 88:4313-4317 (1991).
 - Hiriart, M. and Matteson, D.R., J Gen Physiol 91:145-159 (1988).
- Innis, et al., <u>PCR Protocols</u>, Academic Press, San Diego, CA (1990).
- Kato, S., et al., Metabolism 43:1395-1400 (1994).

Kato, S., et al., J Clin Invest 97:2417-2425 (1996).

Keahey, H.H., et al., Diabetes 38:188-193 (1989).

5 Klein, T.M., et al., Nature 327:70-73 (1987).

Lutz, et al., Exp Cell Res 175:109-124 (1988).

Mannino, R.J. and Gould-Fogerite, S., BioTechniques 10 6:682-690 (1988).

Miller, L.K., Bioessays 11:91-95 (1989).

Perez-Reyes, E., et al., Nature 391:896-900 (1998).

Rossi, J.J., et al., AIDS Research and Human Retroviruses 8(2):183-189 (1992).

Rossi, J.J., British Medical Bulletin 51(1):217-225 20 (1995).

Sambrook et al., <u>Molecular Cloning: A Laboratory Manual</u>, 2d Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

25 Sarver, N., et al., Science 247:1222-1225 (1990).

Seino, S., et al., Proc Natl Acad Sci USA 89:584-588 (1992).

Shigekawa, K. and Dower, W.J., BioTechniques 6:742-751 (1988).

Stea, A., et al., In: Ligand and voltage-gated ion 35 channels. pp113-151, ed. R. Alan North, CRC Press, Boca Raton (1995).

Sternberger, L.A., et al., J Histochem Cytochem 18:315 (1970).

40 St. Groth, et al., J Immunol Methods 35:1-21 (1980). Vague, P. and Moulin, J.P., Metabolism 31:139-144 (1982).

45 Wiltshire, H.R., et al., Xenobiotica 22:837-857 (1992).

Wang, L., et al., Diabetes 45:1678-1683 (1996).

Yaney, G.C., et al., Mol Endocrinol 6:2143-2152 (1992).

Hoogenboom and Winter, J Mol Biol 222:381-388 (1992).

Vaughan et al., Nature Biotech 14:309-315 (1996).

McCafferty et al., Nature 348(6301):552-554 (1990).

Tomlinson et al., J Mol Biol 227:776-798 (1992).

Nissim et al., EMBO J 13(3):692-698 (1994).

Griffiths et al., EMBO J 13(14):3245-3260 (1994).

Hiraiwa et al., Autoimmunity 8:107-113 (1990). Balass, M. et al., Proc Natl Acad Sci USA 90:10638-10642 (November 1993).

Becker, B.H. and Miller, J.L., Blood 74:690-694 (1989).

Chambers, M. et al., in Leucocyte Typing V: White Cell Differentiation Antigens, ed. Schlossman, S., pp. 1343-1345, Oxford University Press, New York (1995).

Christian, R.B. et al., J Mol Biol 227:711-718 (1992).

Clemetson, K.J. and Clemetson, J.M., Sem. Thromb. Hemost. 21:130-136 (1995).

Clemetson, K.J. and Hugli, B., in Leucocyte Typing V: White Cell Differentiation Antigens, ed. Schlossman, S., pp. 1323-1325 Oxford University Press, New York (1995).

Cwirla, S.E. et al., Proc Natl Acad Sci USA 87:6378-6382 (August 1990).

Devlin, J.J. et al., Science 249:404-406 (1990).

Du, X. et al., Blood 69:1524-1527 (1987).

Fitzgerald, L.A. and Phillips, D.R., in Platelet Immunobiology: Molecular and Clinical Aspects, Kunicki, T.J. and George, J.N., Eds., pp. 9-30, Lippincott, Philadelphia PA (1989).

Fox, J.E.B. et al., J. Biol Chem 263:4882-4890 (1988).

Hobart, M.J. et al., Proc R Soc London B 252:157-162 (1993).

Joyce, G.F., Current Opinion in Structural Biology 4:331-336 (1994).

Kupinski, J.M. and Miller, J.L., Thromb Res 43:335-344 (1986).

LaRocca, D. et al., Hybridoma 11:191-201 (1992).

Lenstra, J.A. et al., J Immunol Methods 152:149-157 (1992).

Lopez, J.A., Blood Coag. & Fibrinolysis 5:97-119 (1994).

Luzzago, A. et al., Gene 128:51-57 (1993).

Macfarlane, D.E., et al. Thrombos Diath Haemorrh 34:306-308 (1975).

Miller, J.L. and Castella, A., Blood 60:790-794 (1982).

Miller, J.L. et al., J Clin Invest 72:1532-1542 (1983).

Miller, J.L. et al., Blood 68:743-751 (1986).

Miller, J.L. et al., Blood 70:1804-1809 (1987).

Miller, J.L. et al., Br J Haemotol 74:313-319 (1990).

Miller, J.L. et al., Proc Natl Acad Sci USA 88:4761-4765 (1991).

Miller, J.L. et al., Blood 79:439-446 (1992).

Molino, M. et al., Blood 82:2442-2451 (1993).

Motti, C. et al., Gene 146:191-198 (1994).

Murata, M., et al., J Clin Invest 92:1555-1558 (1993).

Parmley, S.F. and Smith, G.P., Gene 73:305-318 (1988).

Pearson, W.R. and Lipman, D.J., Proc Natl Acad Sci USA 85:2444-2448 (1988).

Pearson, W.R., Methods in Enzymology 183:63-98 (1990).

Roth, G.J., Blood 77:5-19 (1991).

Ruan, C. et al., Blood 69:570-577 (1987).

Russell, S.D. and Roth, G.J., Blood 81:1787-1791 (1993).

Scott, J.K., Trends in Biochem Sci 17:241-245 (1992).

Scott, J.K. and Smith, G.P., Science 249:386-390 (July 27, 1990).

Smith, G.P. and Scott, J.K., Methods in Enzymology 217:228-257 (1993).

Takahashi, H. et al., Thromb Res 19:857-867 (1980).

Takahashi, H. et al., Blood 85:727-733 (1995).

Ward, C.M. and Berndt, M.C., in Leucocyte Typing V: White Cell Differentiation Antigens, ed. Schlossman, S., pp. 1336-1337, Oxford University Press, New York (1995).

Weiss, H.J. et al., N Engl J Med 306:326-362 (1982).

- 50 -

What Is Claimed Is:

- 1. A method of selecting a clone that binds to
- 2 human platelet glycoprotein Ib alpha using a human
- 3 variable heavy chain and variable light chain
- 4 immunoglobulin library, the method comprising:
- 5 incubating a human variable heavy chain and variable
- 6 light chain immunoglobulin library with cells expressing
- 7 human platelet glycoprotein Ib, and selecting clones of
- 8 the library which bind to the cells; and
- 9 incubating the selected clones of the library with
- 10 washed human platelets, and selecting resulting clones
- 11 which bind to the washed human platelets, wherein the
- 12 resulting clones bind to human platelet glycoprotein Ib
- 13 alpha.
 - The method of claim 1 wherein the cells are
- 2 Chinese Hamster Ovary cells.
- 1 3. The method of claim 1 further comprising
- 2 incubating the selected resulting clones with further
- 3 platelets and adding an anti-glycoprotein Ib alpha
- 4 molecule that may displace clones already bound to the
- 5 further platelets, and selecting the then-resulting
- 6 clones that are not bound to the further platelets, the
- 7 then-resulting clones being capable of binding to human
- 8 platelet glycoprotein Ib alpha.
- 1 4. The method of claim 3 wherein the anti-
- 2 glycoprotein Ib molecule is a murine monoclonal antibody.
- 5. The method of claim 3 wherein the anti-
- 2 glycoprotein Ib molecule is a peptide.

- 51 -

- 1 6. The method of claim 5 wherein the peptide has
- 2 an amino acid sequence as shown in SEQ ID NO:1.
- 1 7. An isolated nucleic acid molecule encoding a
- 2 variable heavy chain or a variable light chain region of
- 3 an antibody, or a fragment thereof, wherein the antibody.
- 4 binds to human platelet glycoprotein Ib alpha and
- 5 inhibits aggregation of platelets.
- 1 8. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a variable heavy chain
- 3 region and has a nucleotide sequence selected from the
- 4 group consisting of SEQ ID NO:2, SEQ ID NO:3, and SEQ ID
- 5 NO:4.
- 1 9. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a variable light chain
- 3 region and has a nucleotide sequence selected from the
- 4 group consisting of SEQ ID NO:5, SEQ ID NO:6, SEQ ID
- 5 NO:7, SEQ ID NO:8 and SEQ ID NO:9.
- 1 10. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a variable heavy chain
- 3 region having an amino acid sequence selected from the
- 4 group consisting of SEQ ID NO:10, SEQ ID NO:11, SEQ ID
- 5 NO:12, SEQ ID NO:13, SEQ ID NO:14 and SEQ ID NO:15.
- 1 11. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a variable light chain
- 3 region having an amino acid sequence selected from the
- 4 group consisting of SEQ ID NO:16, SEQ ID NO:17, SEQ ID
- 5 NO:18, SEQ ID NO:19, SEQ ID NO:20, and SEQ ID NO:21.

- 1 12. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a fragment of a
- 3 variable heavy chain region.
- 1 13. The nucleic acid molecule of claim 12 wherein
- 2 the fragment is a VH3 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:27, SEQ ID NO:28, SEQ ID NO:31, SEQ ID NO:32, SEQ ID
- 5 NO:35 and SEQ ID NO:36.
- 1 14. The nucleic acid molecule of claim 12 wherein
- 2 the fragment is a CDR1 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:29, SEQ ID NO:33 and SEQ ID NO:37.
- 1 15. The nucleic acid molecule of claim 12 wherein
- 2 the fragment is a CDR2 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:30, SEQ ID NO:34 and SEQ ID NO:38.
- 1 16. The nucleic acid molecule of claim 12 wherein
- 2 the fragment is a CDR3 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:39, SEQ ID NO:40 and SEQ ID NO:41.
- 1 17. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a fragment of a
- 3 variable light chain region.
- 1 18. The nucleic acid molecule of claim 17 wherein
- 2 the fragment has an amino acid sequence selected from the
- 3 group consisting of SEQ ID NO:42, SEQ ID NO:46, SEQ ID
- 4 NO:47, SEQ ID NO:51, SEQ ID NO:59, SEQ ID NO:60 and SEQ
- 5 ID NO:61.

PCT/US99/25495 WO 00/26667

- 53 -

- The nucleic acid molecule of claim 17 wherein
- 2 the fragment is a CDR1 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:43, SEQ ID NO:48, SEQ ID NO:52 and SEQ ID NO:55.
- The nucleic acid molecule of claim 17 wherein
- 2 the fragment is a CDR2 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:44, SEQ ID NO:49, SEQ ID NO:53 and SEQ ID NO:56.
- The nucleic acid molecule of claim 17 wherein
- 2 the fragment is a CDR3 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:45, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:57 and SEQ
- 5 ID NO:58.
- A recombinant cell comprising the nucleic acid
- 2 molecule of claim 7.
- The recombinant cell of claim 22 wherein the
- 2 cell is a bacterial cell.
- An expression vector comprising the nucleic
- 2 acid molecule of claim 7.
- The expression vector of claim 24 wherein the
- 2 vector is a phagemid.
- A recombinant cell comprising the expression
- 2 vector of claim 24.
- A method of producing a variable heavy chain or
- 2 variable light chain region of an antibody, or a fragment

- 3 thereof, to human platelet glycoprotein Ib alpha that
- 4 inhibits aggregation of platelets, the method comprising:
- 5 introducing the nucleic acid molecule of claim 7
- 6 into a host cell; and
- allowing the host cell to express the nucleic acid
- 8 molecule resulting in the production of a variable heavy
- 9 chain or variable light chain region of an antibody in
- 10 the cell.
 - 1 28. An isolated nucleic acid molecule encoding a
 - 2 variable heavy chain region of an antibody that binds to
 - 3 human platelet glycoprotein Ib alpha and inhibits
 - 4 aggregation of platelets, the nucleic acid molecule
 - 5 encoding a first amino acid sequence having at least 90%
 - 6 amino acid identity to a second amino acid sequence, the
 - 7 second amino acid sequence selected from the group
 - 8 consisting of SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12,
 - 9 SEQ ID NO:13, SEQ ID NO:14 and SEQ ID NO:15.
 - 1 29. An isolated nucleic acid molecule encoding a
 - 2 variable light chain region of an antibody that binds to
 - 3 human platelet glycoprotein Ib alpha and inhibits
 - 4 aggregation of platelets, the nucleic acid molecule
 - 5 encoding a first amino acid sequence having at least 90%
 - 6 amino acid identity to a second amino acid sequence, the
 - 7 second amino acid sequence selected from the group
 - 8 consisting of SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18,
 - 9 SEQ ID NO:19, SEQ ID NO:20, and SEQ ID NO:21.
 - 1 30. An isolated variable heavy chain or variable
 - 2 light chain region of an antibody, or a fragment thereof,
 - 3 wherein the antibody binds to human platelet glycoprotein
 - 4 Ib alpha and inhibits aggregation of platelets.

- 55 -

- 1 31. The variable heavy chain region of an antibody
- 2 of claim 30, wherein the variable heavy chain region has
- 3 an amino acid sequence selected from the group consisting
- 4 of SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID
- 5 NO:13, SEQ ID NO:14 and SEQ ID NO:15.
- 1 32. The variable light chain region of an antibody.
- 2 of claim 30, wherein the variable light chain region has
- 3 an amino acid sequence selected from the group consisting
- 4 of SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID
- 5 NO:19, SEQ ID NO:20, and SEQ ID NO:21.
- 33. A fragment of the variable heavy chain region
- 2 of an antibody of claim 30.
- 1 34. The fragment of claim 33 wherein the fragment
- 2 is a VH3 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:27, SEQ ID NO:28,
- 4 SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:35 and SEQ ID
- 5 NO:36.
- 35. The fragment of claim 33 wherein the fragment
- 2 is a CDR1 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:29, SEQ ID NO:33
- 4 and SEQ ID NO:37.
- 36. The fragment of claim 33 wherein the fragment
- 2 is a CDR2 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:30, SEQ ID NO:34
- 4 and SEQ ID NO:38.
- 37. The fragment of claim 33 wherein the fragment
- 2 is a CDR3 fragment having an amino acid sequence selected

- 3 from the group consisting of SEQ ID NO:39, SEQ ID NO:40
- 4 and SEQ ID NO:41.
- 1 38. A fragment of the variable light chain region
- 2 of an antibody of claim 30.
- 1 39. The fragment of claim 38 wherein the fragment .
- 2 has an amino acid sequence selected from the group
- 3 consisting of SEQ ID NO:42, SEQ ID NO:46, SEQ ID NO:47,
- 4 SEQ ID NO:51, SEQ ID NO:59, SEQ ID NO:60 and SEQ ID
- 5 NO:61.
- 1 40. The fragment of claim 38 wherein the fragment
- 2 is a CDR1 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:43, SEQ ID NO:48,
- 4 SEQ ID NO:52 and SEQ ID NO:55.
- 1 41. The fragment of claim 38 wherein the fragment
- 2 is a CDR2 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:44, SEQ ID NO:49,
- 4 SEQ ID NO:53 and SEQ ID NO:56.
- 1 42. The fragment of claim 38 wherein the fragment
- 2 is a CDR3 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:45, SEQ ID NO:50,
- 4 SEQ ID NO:54, SEQ ID NO:57 and SEQ ID NO:58.
- 1 43. An isolated variable heavy chain region of an
- 2 antibody, wherein the antibody binds to human platelet
- 3 glycoprotein Ib alpha and inhibits aggregation of
- 4 platelets, the isolated variable heavy chain region
- 5 having a first amino acid sequence having at least 90%
- 6 amino acid identity to a second amino acid sequence, the
- 7 second amino acid sequence selected from the group

WO 00/26667

- 57 -

- 8 consisting of SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12,
- 9 SEQ ID NO:13, SEQ ID NO:14 and SEQ ID NO:15.
- 44. An isolated variable light chain region of an 1
- 2 antibody, wherein the antibody binds to human platelet
- 3 glycoprotein Ib alpha and inhibits aggregation of
- 4 platelets, the isolated variable light chain region
- 5 having a first amino acid sequence having at least 90%
- 6 amino acid identity to a second amino acid sequence, the
- 7 second amino acid sequence selected from the group
- 8 consisting of SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18,
- 9 SEQ ID NO:19, SEQ ID NO:20 and SEQ ID NO:21.
- 45. An antibody comprising the variable heavy chain
- 2 or variable light chain region of claim 30, 43 or 44.
- The antibody of claim 45 wherein the antibody
- 2 is monovalent.
- The antibody of claim 45 wherein the antibody
- 2 is bivalent.
- The antibody of claim 45 wherein the antibody
- 2 is polyvalent.
- 49. A composition comprising the antibody of claim
- 2 45 and a carrier.
- 50. A method of inhibiting aggregation of
- 2 platelets, the method comprising exposing platelets to
- 3 the composition of claim 49.

- 1 51. A method of binding human platelet glycoprotein
- 2 Ib alpha, the method comprising exposing human platelet
- 3 glycoprotein Ib alpha to the antibody of claim 45.
- 1 52. A method of selecting a variable heavy chain or
- 2 variable light chain region of an antibody, wherein the
- 3 antibody inhibits aggregation of platelets, the method
- 4 comprising:
- 5 selecting a variable heavy chain or variable light
- 6 chain region of claim 30, 43 or 44, wherein each of the
- 7 variable heavy chain or variable light chain regions has
- 8 an amino acid sequence;
- 9 altering the amino acid sequence of the selected
- 10 variable heavy chain or variable light chain region; and
- 11 determining whether the altered variable heavy chain
- 12 or variable light chain region inhibits aggregation of
- 13 platelets, wherein the altered variable heavy chain or
- 14 variable light chain region that inhibits aggregation of
- 15 platelets is thereby selected.

Human Synthetic VH + VL ScFv Library

regions were PCR amplified from the fdDOG-2loxVk and VL constructs. The PCR fragments were purified and chain variable regions were PCR amplified from the pUC19-2loxVH vector. The PCR fragments were purified (Griffiths et al., EMBO J, 1994) into the phagemid vector pHEN2. The kappa and lambda light chain variable and digested with Sfi 1 or Nco 1 and Xho 1. The gel purified fragments were then ligated into the vector Vkdigested with ApaL1 and Not1. The gel purified fragments were then ligated into the vector pHEN2. Heavy The library was made by recloning the heavy and light chain variable regions from the lox library vectors PHEN2 or VL-pHEN2. Source: Winter Laboratory, Centre for Protein Engineering, Medical Research Council, Cambridge, England

BEST AVAILABLE COPY

CDR3

FR3

CDR2

FR2

CDR1

GK----NNRPS GIPDRFSGSSGG--NTASLTITGAQAEDEADYYC NSRDSSGNH 3 SEQ 78 12 SEQ 14

QG-DS-LRSY-YAS WYQQKPGQAPVLVIY

SSELTQDPAVSVALGQTVRITC

31

11-7

VL3

567890123456789

45678901abc234

01abcde23456 789012345678ab90123456789012345678 9012345abcde

Locus 1234567890123456789012345 6789012345 6789012345 678901234567890123456789012345 678901234567890123450777 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	cid s	sequence (VII Exon - Amino acid sequence alignment	н		Н2	
Locus 121456789012145678901214567890 1ab2145 6789012145678901214678901214567890121456789012145678901214567890121456789012145678901214567890121456789012145678901214567890121456789012145678901214567890121456789012145678901214567890121456789012145678901214567				CDR1			FR3
replan		•	1 2		4	9	7 9 9 7 100017345678901234
1-20 EVOLVESGGGVVRPGGSLRLSCAASGFTFD DYGMS WYRQAPGKGLEWVS GINWNGGSTGYADSVKG RFTISRDNAKNSLYLQNNSLRAEDTAVYYCAR) 36 Q 38 (LY ** 100	Locu		345678901234567890123456	7890 1ab23	15 67890123456789	012abc3456789012345	6/8901234300/05/05/05/05/05/05/05/05/05/05/05/05/0
"VYY" replaces the "LYH" that is present at positions 89-91 within VH3 1-3 3-20.	3-20	0 EV	⁄QLVESGGGVVRPGGSLRLSCAASG	FTFD DYGN	4S WVRQAPGKGLEWVS	GINWNGGSTGYADSVKG 560 30	RFTISRDNAKNSLYLQNNSLRAEDTAVYYCAR) SE Q 38 (LY H
	*VYY	replaces	, the "LYH" that is prese	int at posit:	lons 89-91 within w	нз 1-3 3-20.	

HXP-1

VII COK3: DIVIEND COC.

JH - Amino acid sequence alignment
H3
-----CDR3
-----100
110

JIII-WGQGTLVTVSS

VL Exon - Amino acid sequence alignment

FRI

CDR1-2 Locus 1234567891234567890123

JL - Amino acid sequence alignment CDR3

100

JL3 - VFGGGTKLTVL

EVQLVESGGSVVRPGGSLRLSCAASGFTFDDYGMSWVRQAPGKGLEWVSGINWNGGSTGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARLXM<math>VINSGGGGSGGGSGGGSGGGSGGSALSSELTQDPAV SVALGQTVRITCQCDSLRSYYASWYQOKPGQAPVLVIYGKNNRPSGIPDRFSGSSGCNTASLIITGAQAEDEADYYCNSRDSSGNIVFGGGTKLTVLGFull Soquence of MID-1: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

FSh&rksjb attachmentsWIBLB WPD

HID-2

			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				4	<i>1</i>	12	9012345abcde $staso$ (43) $staso$ so $staso$ so $staso$ so so so
	FR3	7 8 67890123456789012abc345678901234	rftisrddskntlylomnslktedtavycar } \$60 31 (AR) \$60 32 (TT)						FR3	8 123456789012345678 \SLAISGLRSEDEADYYC
Н2	CDR2	5 6 012abc3456789012345	RIKSKTDGGTTDYAAPVKG \$6@34 VH3 1-U 3-15.						CDR2	5 01abcde23456 78901: 560 49 RNNQRPS GVPDRI
	FR2	67890123456789	WVRQAPGKGLEWVG ons 93-94 within						FR2	SG7890123456789 WYQQLPGTAPKLLIY ab following pos
H1	CORI	34567890 1ab2345	1.0						CDR1	3 45678901abc234 56446 SGSSSNIGSN-YVY
ence alignment	FR1	1 2 2 3 3 1 2 3 3 1 2 3 3 3 3 3 3 3 3 3	VH3 1-U 3-15 EVQLVESGGGLVKPGGSLRLSCAASGFTFS		alignment		S		uence alignment FRI	CDR1-2 Locus 1234567891234567890123 45678901234 567890123456789 01abcde23456 789012345678ab901
VH Exon - Amino acid sequence alignment		H1-H2 Locus	VH3 1-U 3-15 NOTE: For HIb-2 the "AR"	VH CDR3: NPKLVK 56Q 40	JH - Amino acid sequence alignment H3	CDR3	100 110) - - - -	VI, Exon - Amino acid sequence alignment FR	CDR1-2 Locus VL1 13-7(A) 19 NOTE: For HIb-2 "LS" rep

Full Sequence of Hlb-2: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

-VFGGGTKLTVL

313

100

JL - Amino acid sequence alignment
CDR3

560 23 EVOLVESGGGLVKPGGSLRLSCAASGFTFSNAWMSHVRQAPGKGLEMVGRIKSKTDGGTTDYAAPVKGRFTISRDDSKNTLYLQMNSLKTEDTAVYYCARNPKLVKWGGGTLVTV<u>SSGGGGSGGGSGGSAL</u>GSVLTQPPSASG TPGQRVTISCSGSSSNIGSNYVYHYQQLPGTAPKLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAMDDSLLSVFGGGTKLTVLG

F:\b&r\sjb attachments\III\II\II\D

CDR3

FR3

CDR2

FR2

CDR1

SEC 54 SEG 51

\$60 53 WYQQKPGQAPVLVIY GK----NNRPS GIPDRFSGSSSG--NTASLTITGAQAEDEADYYC 567890123456789 0labcde23456 789012345678ab90123456789012345678

9012345abcde

AISG-	WYDOADGKGLEWVS	2	- DATA CAMPONDORGIEMUS AISG-		
012ab	67890123456789	1ab2345	123456789012345678901234567890 lab2345 67890123456789 012ab	Locus	111-112
2	4		1 2 3		•
	FR2	COR1	FR1		
•		:::	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
•		-	ence alignment	acid sequ	VH Exon - Amino acid sequence alignment
					HIP-3

CDR2

H2

:--SGGSTYYADSVKG RFIISRDNSKNTLYLQMNSLRAEDTAVYYCAW \\ 56Q 35 (v) 5EQ 36 (L) bc3456789012345 67890123456789012abc345678901234 SEQ 38 EVQLVESGGGLVQPGGSLRLSCAASGFTFS S--YAMS 3-23

NOTE: For HIb-3 the "V" replaces the "L" at position 5 and the "W" replaces the "R" at position 94 that are present within VH3 1-3 3-23.

VH CDR3: KSLIML \$60 4 6 4 4 1

1.3

JH - Amino acid sequence alignment

CDR3 100

VL Exon - Amino acid sequence alignment-wgggtlvtvss

569 52 SSELTQDPAVSVALGQTVRITC QG-DS-LRSY-YAS 45678901abc234 1234567891234567890123 Locus 31 CDR1-2 11-7 VL3

JL - Amino acid sequence alignment CDR3

100

-VFGGGTKLTVL 313

Full Sequence of HIb-3: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSHVRQAPGKGLEMVSA1SGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAM KSLLMLMGQGTLVTV<u>SSGGGGGGGGGGGGSAL</u>SSELTQDPAV $\int_{\mathcal{S}} \mathcal{S} \mathcal{C}_{\mathbf{Q}}$ 34 34 svalggtvritcqcdslrsyynswyqokpgqapvlviygknnrpsgipdrfsgssggntasltitgaqaedeadyycnsrdsggrkltvlg

F: Wartsjb attachments IIII 1111 WPD

_		4.4
h	,	12

CDR1 FR2 CDR2 FR3 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3 CDR3 CD	
FR3 8 1123456789012345678 1FTLKISRVEAEDVGVYYC	
FR3 6 7 78901234567890123456789 GVPDRFSGSGSGTDFTLKISRVE	The state of the s
L2 CDR2 5 0123456 360 56 LGSNRAS	
FR2 4 567890121456789 WYLQKPGQSPQLLIY	
VK Exon - Amino acid sequence alignment FR1 L1-L2-L3 Locus 12345678901234567890123 VKII 4-1-(1) A3 DVVMTQSPLSLPVTPGEPASISC	
cid seque Locus	
VK Exon - Amino acid seq L1-L2-L3 Locus VKII 4-1-(1) A3	
VK Exon	

HIP-5

NOIE: For HIb-5 "V" replaces the "I" that is present at position 2, and an additional "PF" follows position 95

JK - Amino acid sequence alignment

100 CDR3

.TFGQGTKLEIK JK2

SSGGGSGGGSGGSAL DVWTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGGTDFTLKISRVEAEDVGVYYCMQALQTPPFTFGQGTKLEIKR } 360 25 Sequenced region of HID-5: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

There is some homology in the light chain with VK Exon VKII 3-1-(1) OII. However, while the general structure of the VK exon appears appropriate, the number of deviations of specific amino acids from VKII 3-1-(1) OII are so numerous, that HIb-6 would appear to have a VK unique enough to warrant receiving its own numerical assignment.

VK Exon - Amino acid sequence: ElvHTQTPLSLSITPGEQASMSCRSSQSLLHSDGYTYLYMFLQKARPVSTLLICEVSNRFSGVPDRFSGSGTDFTLKISRVEAEDVGVYCMQDAQDP \$60

JK - Amino acid sequence alignment

C

CDR3

-TFGQGTKLEIK

SSGGGGGGGGGGGGGGGALEIVMTQTPLSL,SITPGEQASMSCRSSQSLLHSDGYTYLYWFLQKARPVSTLLICEVSNRFSGVPDRFSGSGGTDFTLKISRVEAEDVGVYYCMQDAQDPTFGGGTKLEIKR } \$60 A6 Sequenced region of HID-6: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

HIb-1 Human Anti-GPIbα

Direct Western Blot with 9E10 (Anti-c-myc)

Fig. 1

SEQUENCE LISTING

HIb1VH

\$\frac{5\infty}{2} \quad \text{gagggtgagctggggagctggggagggt} \text{\$\frac{5\infty}{2} \quad \text{10-} \text{E} \quad \text{V} \quad \text{Q} \quad \text{L} \quad \text{V} \quad \text{E} \quad \text{G} \quad \text{F} \quad \text{T} \quad \text{F} \quad \text{D} \quad \text{G} \quad \text{R} \quad \text{L} \quad \text{S} \quad \text{G} \quad \text{R} \quad \text{L} \quad \text{E} \quad \text{W} \quad \text{V} \quad \text{S} \quad \text{G} \quad \text{G} \quad \text{E} \quad \text{W} \quad \text{V} \quad \text{S} \quad \text{G} \quad \text{R} \quad \text{F} \quad \text{T} \quad \text{I} \quad \text{L} \quad \text{G} \quad \text{R} \quad \text{F} \quad \text{T} \quad \text{I} \quad \text{G} \quad \text{R} \quad \text{F} \quad \text{T} \quad \text{L} \quad \text{R} \quad \text{R} \quad \text{E} \quad \text{R} \quad \text{E} \quad \text{D} \quad \text{S} \quad \text{R} \quad \text{E} \quad \text{L} \quad \text{R} \quad \text{E} \quad \text{R} \quad \text{E} \quad \text{D} \quad \text{G} \quad \text{R} \quad \quad \text{E} \quad \text{D} \quad \quad \text{C} \quad \quad \text{R} \quad \text{E} \quad \text{D} \quad \quad \text{B} \quad \quad \text{E} \quad \text{D} \quad \quad \text{C} \quad \quad \quad \text{R} \quad \text{E} \quad \text{R} \quad \text{E} \quad \text{D} \quad \q

SEQ 11 = SEQ 10 with LYH in place of VYY

HIb1VL

caagetecagggaaggggctggagtgggtetecggtattaattggaatggtggtag€ acaggttatgcagactctgtgaagggeegattcaccatetecagagacaaegceaagaae <u> K G R F F</u> tecetgtatcrgcaaargaacagccrgagagccgaggaeaeggeegtgtattactgtgca LYLQMNS LRAESTAVIY agattgaagatgcoteatgcgtggggccaaggtaecetggtcaecgtc<u>tcgagtggta</u> RIKMPHAWGQGTI-TUSSGG ageogtteaggeggaggtggctctggcggtagtgcactttcttctgagctgactcaggac Q Q C C C C C C C A D S S E L T Q D cctgctgtgtctgtggccttgggacagacagtcaggatcacatgccaaggagacagcctc PAVSVALGQTVRITCQGDSL agaagctattatgcaagctggtaccagcagaagccaggacaggcccctgtacttgtcatc tatggtaaaaacaaccggccctcagggatcccagaccgattctctggctccagctcagga YGKNNRPSGIPDRFSGSSSG aacacagcttccttgaccatcactggggctcaggcggaagatgaggctgactattactgt NTASLTITGAQAEDEADYYC aactcccgggacagcagtggtaaccacgtattcggcggagggaccaagctgaccgtccta N S R D S S G N H V F G G G T K L T V L ggt G

nucl = SEQ 5.

HIb2VH partial

gggtcccttagactccctgtgcagcctctggattcactttcagtaccgcc
G S L R L S C A A S G F T F S N A

tggatgagctgggtccgccaggctccagggaaggggctgagtgggttggccgtattaaa
W M S W V R Q A P G K G L E W V G R I K

agcaaaactgatggtgggacaacagactacgctgcacccgtgaaaggcagattcaccatc
S K T D G G T T D Y A A P V K G R F T I

tcaagagatgattcaaaaaacacgctgtatctgcaaatgacaaccgaagac
S R D D S K N T L Y L Q M N S L K T E D

acggccgtgtattactgtgcaagaaatccgaagttggtgaagtggggccaaggtaccttg
T A V Y Y C A R N P K L V K W G Q G T L

gtcaccgtc
V T V

partial and = 5EQ 3

SEQ 13 = SEO 12 with TT in place of AR

HIb2VL

gergeacccgtgaaaggcagatteaccatctcaagagatyattcaaaaaacacgctgta* ctgcaaatgaacageetgaaaaccgaggaeacggccgtgtattactgtgeaagaaatccgaagttggtgaagtggggeeaaggtaeeetggteacegretegattggtggaggeggttea K L V K W C Q G T L V T V B S G C G CCCCSCSALQSVLTQPPSA tctgggacccccgggcagagggtcaccatctcttgttctggaagcagctccaacatcgga S G T P G Q R V T I S C S G S S S N I G agraattatgtatactggtaccagcagctcccaggaacggcccccaaactcctcatctat S N Y V Y W Y Q Q L P G T A P K L L I Y aggaataatcagcggccctcaggggtccctgaccgattctctggctccaagtctggcacc R N N Q R P S G V P D R F S G S K S G T tcagcctccctggccatcagtgggctccggtccgaggatgaggctgattattactgtgca S A S L A I S G L R S E D E A D Y Y C A gcatgggatgacagcctgttgagtgtattcggcggagggaccaagctgaccgtcctaggt AWDDSLLSVFGGGTKLTVLG

nucl = 5E0 6

94 - SEQ 17

HIb3VH

nud = 5EQ 4

aa = 5E0 14

SEQ 15 = SEQ 14 with L in place of V
and R in place of W

HIb3VL

tetggattcaccttt. agcagttatgccatgägctgggtccgccaggetccagggaaggggctggagtgggtetca gctattagtggtagtggtagcacatactacgcagactccgtgaagggccggttcacc S 8 S G S T V V A D S V K G atctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagecgag I S R D N S K N T L Y L Q .gacaeggeegtgtattaetgtgcatggaagtctttgettatgetttggggeeaaggtacc etggtcaccqtctcqaqtqqtqqaqqcqctccaqqcqqaqqqqctctqqcqqtaqtqqa ett tettetgagetgaeteaggaecetgetgtgtetgtggeettgggaeagaeagteagg ESSELTQDPAVSVALGQTVR __atcacatgccaaggagacagcctcagaagctattatgcaagctggtaccagcagaagcca I T C Q G D S L R S Y Y A S W Y Q Q K P ggacaggcccctgtacttgtcatctatggtaaaaacaaccggccctcagggatcccagac G Q A P V L V I Y G K N N R P S G I P D cgattctctggctccagctcaggaaacacagcttccttgaccatcactggggctcaggcg RFSGSSSGNTASLTITGAQA gaagatgaggctgactattactgtaactcccgggacagcagtggtaaccatgtattcggc EDEADYYCNSRDSSGNHVFG ggagggaccaagctgaccgtcctaggt G G T K L T V L G

nucl = 5E0 \$7

aa = 5EQ = 18

HIb5VL

nucl = 5EQ 8

aa - 5E0 19

SEQ 20 = SEQ 19 with I in place of V

HIb6VL

togagtggtggaggggttcaggcgga

STATES OF THE PROOF OF THE

nud = 560 9

aa = 5E0 21

بن. و.۶		6	578901234	DTAVYYCAR \$ 56 Q 28 (VYY) SC Q 28 (LYH)	
	FR3	7 B	67890123456789012abc3456	RFT I SRDNAKNSLYLQMNSL.RAEI	
Н2	CDR2	9	012abc3456789012345	GINWNGGSTGYADSVKG	JUN 1-1 1-20
	FR2	4	67890123456789	WVRQAPGKGLEWVS	00 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	1900		1ab2345	DYGMS	
alignment H1		FK C	123456789012345678901234567890 1ab2345 67890123456789 012abc3456789012345 67890123456789012abc345678901234	EVQLVESGGGVVRFGGSLRLSCAASGFTFD DYCHS WVRQAPGKGLEWVS GINWNGGSTGYADSVKG RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR \$ 560 39 (YYY) 560 30	
VI Exon - Amino acid sequence alignment			Pocus	3-20	
n - Amino a			И1-Н2	1-3	
VII Exo				CIIV	

NOTE: For Hib-1 "VYY" replaces the "LYH" that is present at positions 89-91 within VH3 1-3 3-20.

VII СDR3: І,КИРІІА 56Q 39

JH - Amino acid sequence alignment
H3
CDR3
-----100 110
| | | |

CDR3	1 1 1 1 1 1 1 1	6	9012345abcde	NSRDSSGNH } SEQ 18 42	५६० ५५	
FR3		6 7 8	5678901abc234 567890123456789 01abcde23456 789012345678ab90123456789012345678 9012345abcde	SSELTODPANSVALGQTVRITC QG-DS-LRSY-YAS WYQQKPGQAPVLVIY GKNNRPS GIPDRFSGSSSGNTASLTITGAQAEDEADYYC NSRDSSGNH } SEQ 78 42.		
CDR2	, . ,	v	01abcde23456	GKNNRPS	SEG 44	
FR2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	567890123456789	WYQQKPGQAPVLVIY		
CDR1		n	45678901abc234	QG-DS-LRSY-YAS	560 43	
VL Exon - Amino acid sequence alignment FR1		8	1234567891234567890123 456	SSELTODPAVSVALGQTVRITC		
acid sequ			Locus	31	:	
on - Amino			CDR1-2	2.11		
VL Ex				£.17		

JL . Amino acid sequence alignment

. - C

100

- VFGGGTKLTVL

JLJ

Full Sequence of HIb-1: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

EVQLVESGGGVVRPGGSLRLSCAASGFTFDDYGMSWVRQAPGKGLEMVSGINWNGGSTGYADSVKGRFTISRDNAKNSLYIQMNSLRAEDTAVYYCARLKMPHAWGOGTLVTV<u>ESGGGGSGGGGGGGGGGGGGGG</u>SGTTQDPAV) SEG 22. SVALGGTVRITCQGDSLRSYYASWYQQRPGOAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHVFGGGTKLTVLG

F: Warts jb attachments VIII 010. WPD

					SEQ 31 (AR)) seq 32 (TT)
Pig. 6		FR3	D	123456789012145678901214567890 lab2145 67890121456789 012abc1456789012145 67890121456789012205578901245678901	THE STATE OF THE SEASOFIES NOT AND WINDAPCKGLEWUG RIKSKTDGGTTDYAAPUKG RFTISRDDSKNTLYLQMNSLKTEDTAVYYCAR \$ 560 31 (AR)	
	Н2	 CDR2	 o o	012abc3456789012345	RIKSKTDGGTTDYAAPVKG	560 34
		FR2	 4	67890123456789	WVROAPGKGLEWVG	
		 CDR1		1ab2345	SMM4 N	560 33
	VH Exon - Amino acid sequence alignment	FR1	1 2 3	123456789012345678901234567890	Patterna to to contract the section of the section	EVQLVESGGGLVNFGGSENESGGSGS
	oid sequen			Locus	;	3-15
	on - Amino ac			H1-H2		1-0
HID-2	VH Ex					VH3

NOTE: For HID-2 the "AR" replaces the "TT" that is present at positions 93-94 within VH3 1-U 3-15.

VH CDR3: NPKLVK 56Q 40

JH - Amino acid sequence alignment ------MGQGTLVTVSS 100 CDR3

5fg 46 (15) 19 QSVLTQPPSASGTPGQRVTISC SGSSSNIGSN-YVY WYQQLPGTAPKLLIY RN----NQRPS GVPDRFSGSKSG--TSASLAISGLRSEDEADYYC AAWDDSLLS 5 6Q 46 (15) NOTE: For Hib-2 "LS" replaces the "SG" that is present at positions ab following position 95 within VL1 13-7 (A) 19. 01abcde23456 789012345678ab90123456789012345678 FR3 CDR2 567890123456789 FR2 45678901abc234 CDR1 1234567891234567890123 VL Exon - Amino acid sequence alignment

9012345abcde

CDR3

JL - Amino acid sequence alignment CDR3

100

- VFGGGTKLTVL

313

Full Sequence of Hib-1: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAMMSWVRQAPGKGLEMVGRIKSKTDGGTTDYAAPVKGRFTISRDB**skntlyklomnslktedtav**yycarnpklykmgggtlyst<u>ssggggsgggggggggsgsal</u>gsvltqppsasg}

| SEQ #3

Fib&risjb attachmentsWH02B,WPD

SCO SY NSRDSSGNH 3 SEQ 5 !

9012345abcde

CDR3

FR3

			(~) 56 93 (~)	36936 (4)	
		FR1 CDR2 FR3 FR3 1	A CONTRACTOR OF STATE	EVOLVESGGGLVQPGGSLRLSCAASGFTFS SYAMS HVRQAPGKGLENVS AISQSGGSTYTADSVKG KFIISKDASKATISCHONSKATISCHONSKAT KFIISKDASKAT KF	re present within the 1-2-2-
	H2	FR2 CDR2		AISGSGGSTYYADSVKG	at position 94 that a
		FR2	67830143406143	WVRQAPGKGLEWVS	replaces the "R"
		CDR1	1ab2345	SYAMS 569 37	he "W"
	VH Exon - Amino acid sequence alignment	FR1 CD	123456789012345678901234567890	EVQLVESGGGLVQPGGSLRLSCAASGFTFS	start the "r." at nosition 5 and the "W" replaces the "R" at position 94 that are present within "
	id sequen		Locus	3-23	1
	on - Amino ac		H1-H2	1-3	•
110-3	VH Exc			VH3	

NOTE: For HIb-3 the "V" replaces the

VII CDR3: KSLLML \$60 40 6% 41

JII - Amino acid sequence alignment 100 CDR3 £

VL Exon - Amino acid sequence alignment TIIC

789012345678ab90123456789012345678 GIPDRFSGSSSG--NTASLTITGAQAEDEADYYC 1234567891234567890123 45678901abc234 567890123456789 01abcde23456 560 52 Story AVQQKPGQAPVLVIY GK----NNRPS CDR2 FR2 CDR1 SSELTQDPAVSVALGQTVRITC Locus 3 CDR1-2 11-7 VL3

JL - Amino acid sequence alignment

100

- VFGGGTKLTVL 313

Full Soquence of HIb-3: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDN**SKNTLYLQMNSLRAEDTAVYYCAM** KSLLMLMGGGTLVTV<u>SSGGGGSGGGGGGGGGGAAL</u>SSELTQDPAV \int 5¢Q 34 SVALGGTVRITCGGDSLRSYYASWYQQKPGGAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHVFGGGTKLTVLG

Fibaris battachments VII B3D. WPD

00	
ق	

		الراق الراق	143 66 C	25 CA	-,05)
	3 :	CDR3	(2) 66 C. de2412109 6	569 57	MORLOTEPE 3 seo sa (M) (-PF)
		FR3	6 7 8 6 7 8 8 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	12345678901234567890123 45678901abcdef234 567890123456789 0123456 /890123456/8901234567890123456789 369 57 369 57	DVVWTQSPLSLPVTPGEPASISC RSSQSLIAIS-NGYNYLD WYLQKPGGSPQLLIY LGSNRAS GVPDRFSGSGSGTDFTLKISRVEAEDVGVYYC
	2	CDR2		360 Sc	LGSNRAS
	•	FR2		567890123456789	WYLQKPGQSPQLLIY
	171	CDR1	e .	45678901abcdef234	RSSQSLLIIS-NGYNYLD
	VK Exon - Amino acid sequence alignment	FR1	1 2	12345678901234567890123	DWMTQSPLSLPVTPGEPASISC
	acid seque			Locus	A 3
	- Amino			L1-L2-L3 Locus	VKII 4-1-(1) A3
HIP-5	VK Exol				VKII

NOTE: For HID-5 "V" replaces the "I" that is present at position 2, and an additional "PP" follows position 95 within VKII 4-1(1) A3.

JK - Amino acid sequence alignment

CDR3

-TFGQGTKLEIK JK2

SSGGGGSGGGSGGSAL DVVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDMYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPPFTFGQGTKLEIKR } SEG 25 Sequenced region of HIb-5: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

Fib&rlsjb attachmentsVIIBSB.WPD

<u>.</u>

There is some homology in the light chain with VK Exon VKII 3-1-(1) OII. However, while the general structure of the VK exon appears appropriate, the number of deviations of specific amino acids from VKII 3-1-(1) OII are so numerous, that HID-6 would appear to have a VK unique enough to warrant receiving its own numerical assignment.

VK Exon - Amino acid sequence: ELVMFQTPLSLSITFGEQASMSCRSSQSLLHSDQYTYLYMFLQKARPVSTLLICEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQDAQDP \$60

JK - Amino acid sequence alignment

COR3 S

100

- TFGQGTKLEIK

SSGGGGSGGSALEIVMTQTPLSLSITPGEQASMSCRSSQSLLHSDGYTYLYWFLQKARPVSTLLICEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQDAQDPTFCQGTKLEIKR $\int S \mathcal{E} \mathcal{G} \ \mathcal{A} \mathcal{L}$ Sequenced region of Hib-6: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

International application No. PCT/US99/25495

				,	
	SSIFICATION OF SUBJECT MATTER				
IPC(7)	:Please See Extra Sheet.				
US CL According	:Please See Extra Sheet. to International Patent Classification (IPC) or to both	notional alassification	4 IDG		
	LDS SEARCHED	nauonai classification	and IPC	····	
		 			
i	locumentation searched (classification system follow	•	•		
U.S. :	436/548; 435/7.1, 320.1, 326, 328; 514/12; 424/13				
Documenta	tion searched other than minimum documentation to the	ne extent that such docum	nents are included	in the fields searched	
	iata base consulted during the international search (nembase, biosis, medline, caplus	name of data base and, w	where practicable	, search terms used)	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		·		
Category*	Citation of document, with indication, where a	ppropriate, of the relevan	nt passages	Relevant to claim No.	
Y	GRIFFITHS et al. Isolation of hig directly from large synthetic repertoire No. 14, pages 3245-3260, especially	s. EMBO. J. 199	94, Vol. 13.	1-5	
Y	NISSIM et al. Antibody fragments from a `single pot` phage display library as immunochemical reagents. EMBO. J. 1994, Vol 13, No. 3, pages 692-698, especially pages 692 and 696-698.				
Y	Miller et al. Mimotope/anti-mimo relationships in platelet glycoprotein USA. April 1996, Vol. 93, pages 356	Iba Proc. Natl.	Acad. Sci	7, 12, 17, 22-27, 30, 33, 38	
	•			•	
X Furth	er documents are listed in the continuation of Box C	See patent	family annex.		
* Spe	ocial categories of cited documents:	"T" later document p	ublished after the inte	rnational filing date or priority	
"A" do:	nument defining the general state of the art which is not considered be of particular relevance	date and not in the principle or t	conflict with the appli theory underlying the	ication but cited to understand invention	
"E" car	lier document published on or after the international filing date	"X" document of par	rticular relevance; the	claimed invention cannot be	
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other					
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents and the combination					
P document published prior to the international filing date but later than the priority date claimed being obvious to a person skilled in the art document member of the same patent family					
Date of the	actual completion of the international search	Date of mailing of the	international sear	rch report	
16 JANUA	16 JANUARY 2000 10 FEB 2000				
Commission	nailing address of the ISA/US ner of Patents and Trademarks	Authorized officer		B	
Box PCT Washington	, D.C. 20231	AMY DECLOUX	1	fin.	
Facsimile N	o. (703) 305-3230	Telephone No. (703	3) 308-0196		

International application No. PCT/US99/25495

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: 6, 8-11, 13-16, 18-21, 28-29, 31-32, 34-37, 39-52 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
No CRF for this case has been filed. The instant claims recite SEQ ID NO:s or depend therefrom and cannot be searched other than a sequence search.
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite paymen of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report cover only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.
PCT/US99/25495

C (Continue	Relevant to claim No.		
Category*	KONKLE et al. Cytikine-enhanced Expression of Glycoprotein Iba in Human Endothelium. The Journal of Biological Chemistry. 1990, Vol. 265, No. 32, pages 19833-19838, especially pages 19833-98834.	7, 12, 17, 22-27, 30, 33 and 38.	

International application No. PCT/US99/25495

	1
A. CLASSIFICATION OF SUBJECT MATTER: IPC (7):	<u>.</u>
G01N 33/53; A61K 38/02, 39/395; C07K 14/435, 16/28; C12N 15/63, 15/66, 15/	85, 15/86, 15/11
A. CLASSIFICATION OF SUBJECT MATTER: US CL:	·
436/548; 435/7.1, 320.1, 326, 328; 514/12; 424/139.1; 530/387.1, 388.22; 536/23	3.1
	,

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 May 2000 (11.05.2000)

PCT

(10) International Publication Number WO 00/26667 A1

ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP.

KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,

MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD. SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN,

KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent

(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,

(84) Designated States (regional): ARIPO patent (GH, GM,

- (51) International Patent Classification7: G01N 33/53, A61K 38/02, 39/395, C07K 14/435, 16/28, C12N 15/63, 15/66, 15/85, 15/86, 15/11
- (21) International Application Number: PCT/US99/25495
- (22) International Filing Date: 29 October 1999 (29,10,1999)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/106,275

30 October 1998 (30.10.1998) US Published:

With international search report.

YU, ZA, ZW.

(71) Applicant and

- (72) Inventor: MILLER, Jonathan, L. [US/US]; 25 Drumlins Terrace, Syracuse, NY 13224 (US).
- (74) Agents: BRAMAN, Susan, J. et al.; Braman & Rogalskyi. LLP, P.O. Box 352, Canandaigua, NY 14424-0352 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE,

(48) Date of publication of this corrected version:

GA, GN, GW, ML, MR, NE, SN, TD, TG).

12 April 2001

(15) Information about Correction: see PCT Gazette No. 15/2001 of 12 April 2001, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VARIABLE HEAVY CHAIN AND VARIABLE LIGHT CHAIN REGIONS OF ANTIBODIES TO HUMAN PLATELET GLYCOPROTEIN IB ALPHA

(57) Abstract: The present invention is directed to a method of selecting a clone that binds to human platelet glycoprotein Ib alpha using a human variable heavy chain and variable light chain immunoglobulin library. The invention is further directed to isolated nucleic acid molecules encoding a variable heavy chain or variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. Expression vectors and host cells comprising the nucleic acid molecules are also provided, as well as methods for producing the variable heavy chain or the variable light chain region. An isolated variable heavy chain or variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, is also provided. An antibody comprising the variable heavy chain or variable light chain regions is provided, as is a composition comprising the antibody and a carrier. The subject invention further provides a method of inhibiting aggregation of platelets, as well as a method of binding human platelet glycoprotein Ib alpha. A method of selecting a variable heavy chain or variable light chain region of an antibody is also provided.

WO 00/26667 PCT/US99/25495

VARIABLE HEAVY CHAIN AND VARIABLE LIGHT CHAIN REGIONS OF ANTIBODIES TO HUMAN PLATELET GLYCOPROTEIN IB ALPHA

This application claims priority of U.S. Provisional 5 Patent Application No. 60/106,275, filed October 30, 1998.

FIELD OF THE INVENTION

The subject invention is directed generally to human platelet glycoprotein Ib alpha, and more particularly to variable heavy chain and variable light chain regions of antibodies to human platelet glycoprotein Ib alpha and uses thereof.

15 BACKGROUND OF THE INVENTION

Throughout this application various publications are referenced, many in parenthesis. Full citations for each of these publications are provided at the end of the Detailed Description. The disclosures of each of these publications in their entireties are hereby incorporated by reference in this application.

The platelet glycoprotein Ib/IX (GPIb/IX) receptor for von Willebrand factor (vWf) is believed to consist of a 1:1 heterodimeric complex (Du et al. 1987) between GPIb (160 kDa) and GPIX (17 kDa) in a noncovalent association. GPIb in turn consists of a disulfide-linked 140 kDa alpha chain (GPIb alpha) and a 22 kDa beta chain (GPIb beta) (Fitzgerald and Phillips 1989).

The GPIb/IX complex comprises one of the major
transmembrane receptor complexes on blood platelets (Roth
1991; Lopez 1994; Clemetson and Clemetson 1995),
mediating von Willebrand factor (vWF)-dependent platelet
adhesion. In the 1980's, Miller et al. developed a
series of monoclonal antibodies (mab) directed against
the GP Ib/IX complex receptor for vWf. In particular,
monoclonal antibody C-34 was characterized in detail and
it was determined that mab C-34 recognized an epitope

within the platelet glycoprotein Ib/IX complex (Miller et al. 1990). In this and subsequent work, Miller et al. showed that monoclonal antibodies C-34, AS-2 and AS-7 were potent inhibitors of the ristocetin-induced
5 aggregation of normal platelets that was dependent upon von Willebrand factor. Miller et al. also showed that the epitopes for all three monoclonal antibodies lay within the GPIb/IX complex.

Attempts to define the binding sites for various

10 monoclonal antibodies have led to the development of
epitope libraries. Parmley and Smith developed a
bacteriophage expression vector that could display
foreign epitopes on its surface (Parmley and Smith 1988).
This vector could be used to construct large collections

15 of bacteriophage which could include virtually all
possible sequences of a short (e.g. six-amino-acid)
peptide. They also developed biopanning, which is a
method for affinity-purifying phage displaying foreign
epitopes using a specific antibody (see Parmley and Smith
1988; Cwirla et al. 1990; Scott and Smith 1990; Christian
et al. 1992; Smith and Scott 1993).

After the development of epitope libraries, Smith et al. then suggested that it should be possible to use the bacteriophage expression vector and biopanning technique of Parmley and Smith to identify epitopes from all possible sequences of a given length. This led to the idea of identifying peptide ligands for antibodies by biopanning epitope libraries, which could then be used in vaccine design, epitope mapping, the identification of genes, and many other applications (Parmley and Smith 1988; Scott 1992).

Antibody fragments have also been displayed on the surface of filamentous phage that encode the antibody genes (Hoogenboom and Winter 1992; McCafferty et al.

1990; Vaughan et al. 1996; Tomlinson et al. 1992; Nissim et al. 1994; Griffiths et al. 1994). Variable heavy chain $(V_{\scriptscriptstyle H})$ and variable light chain $(V_{\scriptscriptstyle L})$ immunoglobulin libraries have thus been developed in phage, and phage can be selected by panning with antibody. The encoded antibody fragments can then be secreted as soluble fragments from infected bacteria. This display of antibodies on phage and selection with antigen mimics immune selection and can be used to make antibodies without immunization from a single library of phage (see Hoogenboom and Winter 1992).

A human synthetic V_H and V_L ScFv library was made by recloning the heavy and light chain variable regions from the lox library vectors (Griffiths et al. 1994) into the 15 phagemid vector pHEN2 (see Fig. 1). This "Griffin.1" library is a ScFv phagemid library made from synthetic V-gene segments. The World Wide Web address to download the germline V gene sequences which comprise the Griffin.1 library is http://www.mrc-cpe.cam.ac.uk/ imt-doc/vbase-questions.html.

A need continues to exist for the elucidation of the sequence of useful epitopes of antibodies that bind to glycoprotein Ib alpha.

25 SUMMARY OF THE INVENTION

To this end, the subject invention provides a method of selecting a clone that binds to human platelet glycoprotein Ib alpha using a human variable heavy chain and variable light chain immunoglobulin library. The 30 method comprises: incubating a human variable heavy chain and variable light chain immunoglobulin library with cells expressing human platelet glycoprotein Ib, and selecting clones of the library which bind to the cells; and incubating the selected clones of the library with

washed human platelets, and selecting resulting clones which bind to the washed human platelets, wherein the resulting clones bind to human platelet glycoprotein Ib alpha.

The subject invention further provides an isolated nucleic acid molecule encoding a variable heavy chain or a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets.

The isolated nucleic acid molecules of the invention can be inserted into suitable expression vectors and/or host cells. Expression of the nucleic acid molecules encoding a variable heavy chain or a variable light chain region results in production of variable heavy chain or variable light chain regions of an antibody (wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets) in a host cell.

Further provided is an isolated nucleic acid molecule encoding a variable heavy chain region of an 20 antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the nucleic acid molecule encoding a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence. The second 25 amino acid sequence is selected from the group consisting of SEQ ID NOS:10-15.

Also provided is an isolated nucleic acid molecule encoding a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein 30 Ib alpha and inhibits aggregation of platelets, the nucleic acid molecule encoding a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence. The second amino acid

sequence is selected from the group consisting of SEQ ID NOs:16-21.

The invention also provides an isolated variable heavy chain or a variable light chain region of an 5 antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. Further provided is an isolated variable heavy chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and 10 inhibits aggregation of platelets, the variable heavy chain region having a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of SEQ ID NOs:10-15. Also provided 15 is an isolated variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the variable light chain region having a first amino acid sequence having at least 90% amino acid 20 identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of SEO ID NOs:16-21.

Further provided is an antibody comprising the variable heavy chain or variable light chain region of the subject invention, as well as a composition comprising the antibody. The subject invention further provides a method of inhibiting aggregation of platelets by exposing platelets to the composition. Further provided is a method of binding human platelet glycoprotein Ib alpha by exposing human platelet glycoprotein Ib alpha to the antibody.

Also provided is a method of selecting a variable heavy chain or variable light chain region of an

antibody, wherein the antibody inhibits aggregation of platelets. The method comprises: selecting a variable heavy chain or variable light chain region according to the subject invention, wherein each of the variable heavy chain or variable light chain regions has an amino acid sequence; altering the amino acid sequence of the selected variable heavy chain or variable light chain region; constructing an antibody having the altered amino acid sequence of the variable heavy chain or variable

10 light chain region; and determining whether the antibody inhibits aggregation of platelets, wherein the altered variable heavy chain or variable light chain region of an antibody that inhibits aggregation of platelets is thereby selected.

15

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of this invention will be evident from the following detailed description of preferred embodiments when read in

- 20 conjunction with the accompanying drawings in which:
 - Fig. 1 is a map of the pHEN2 phagemid vector;
 - Fig. 2 illustrates the structure of an antibody;
 - Fig. 3 illustrates the structure of the Fab-fragment of an antibody;
- 25 Fig. 4 illustrates the structure of the Fv-fragment of an antibody;
 - Fig. 5 illustrates the amino acid sequence with alignment for HIb-1;
- Fig. 6 illustrates the amino acid sequence with 30 alignment for HIb-2;
 - Fig. 7 illustrates the amino acid sequence with alignment for HIb-3;
 - Fig. 8 illustrates the amino acid sequence with alignment for HIb-5;

- 7 -

Fig. 9 illustrates the amino acid sequence with alignment for HIb-6;

Fig. 10 is a direct western blot of HIb-1 human anti-GPIb alpha;

Fig. 11 shows western blots of HIb-1, HIb-2 and SZ-2 5 under non-reduced and reduced conditions;

Fig. 12 illustrates inhibition of ristocetin-induced platelet aggregation by clonal phagemid expressing human VH and VL ScFv;

Fig. 13 illustrates inhibition of botrocetin-induced 10 aggregation of formalin-fixed human platelets; and

Fig. 14 illustrates inhibition of antibody by PRP aggregation induced by ristocetin.

DETAILED DESCRIPTION OF THE INVENTION 15

As used herein, antibody, variable heavy chain $(V_H$ or Vh) and variable light chain (V, or Vl), Fv fragment, and CDR (hypervariable regions) (CDR1, CDR2, CDR3), are used in the context of Figs. 2-4. Fig. 1 shows a schedmatic 20 drawing of the organization of a natural IgG and derived recombinant fragments. The Fv fragment is shown as a "Single Chain Fv Fragment" (ScFv) in Fig. 4. type of recombinant protein, the two antigen binding regions of the light and heavy chain (Vh and Vl) are 25 connected by a 15-18 amino acid peptide. This linker region permits appropriate interaction between the Vh and V1 regions. A further description of such recombinant antibody structure can be found at http://www.mgen.uniheidelberg.de/SD/SDscFvSite.html.

The term "nucleic acid", as used herein, refers to 30 either DNA or RNA. "Nucleic acid sequence" or "polynucleotide sequence" refers to a single- or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Ιt includes both self-replicating plasmids, infectious polymers of DNA or RNA, and nonfunctional DNA or RNA.

"Isolated" nucleic acid refers to nucleic acid which has been separated from an organism in a substantially purified form (i.e. substantially free of other substances originating from that organism), and to synthetic nucleic acid.

By a nucleic acid sequence "homologous to" or "complementary to", it is meant a nucleic acid that selectively hybridizes, duplexes or binds to DNA sequences encoding the variable heavy $(V_{\scriptscriptstyle H})$ or variable light $(V_{\scriptscriptstyle L})$ chain or portions thereof when the DNA sequences encoding the variable heavy $(V_{\scriptscriptstyle H})$ or variable light $(V_{\scriptscriptstyle L})$ chain are present in a human genomic or cDNA library.

15 A DNA sequence which is similar or complementary to a target sequence can include sequences which are shorter or longer than the target sequence so long as they meet the functional test set forth.

Typically, the hybridization is done in a Southern

20 blot protocol using a 0.2X SSC, 0.1% SDS, 65°C wash. The
term "SSC" refers to a citrate-saline solution of 0.15M
sodium chloride and 20 mM sodium citrate. Solutions are
often expressed as multiples or fractions of this
concentration. For example, 6X SSC refers to a solution

25 having a sodium chloride and sodium citrate concentration
of 6 times this amount or 0.9 M sodium chloride and 120
mM sodium citrate. 0.2X SSC refers to a solution 0.2
times the SSC concentration or 0.03M sodium chloride and
4 mM sodium citrate.

The phrase "nucleic acid molecule encoding" refers to a nucleic acid molecule which directs the expression of a specific protein or peptide (in this case, a variable heavy (V_H) or variable light (V_L) chain). The nucleic acid sequences include both the DNA strand

WO 00/26667 PCT/US99/25495

- 9 -

sequence that is transcribed into RNA and the RNA sequence that is translated into protein or peptide (or variable heavy (V_H) or variable light (V_L) chain). The nucleic acid molecule includes both the full length 1 nucleic acid sequences as well as non-full length 1 sequences derived from the full length variable heavy (V_H) or variable light (V_L) chain. It being further understood 1 that the sequence includes the degenerate codons of the 1 native sequence or sequences which may be introduced to 1 provide codon preference in a specific host cell.

The term "located upstream" as used herein refers to linkage of a promoter upstream from a nucleic acid (DNA) sequence such that the promoter mediates transcription of the nucleic acid (DNA) sequence.

The term "vector", refers to viral expression systems, autonomous self-replicating circular DNA (plasmids), phagemids, and includes both expression and nonexpression plasmids and phagemids. Where a recombinant microorganism or cell is described as hosting an "expression vector," this includes both extrachromosomal circular DNA and DNA that has been incorporated into the host chromosome(s). Where a vector is being maintained by a host cell, the vector may either be stably replicated by the cells during mitosis as an autonomous structure, or the vector may be incorporated within the host's genome.

The term "plasmid" refers to an autonomous circular DNA molecule capable of replication in a cell, and includes both the expression and nonexpression types.

30 Where a recombinant microorganism or cell is described as hosting an "expression plasmid", this includes latent viral DNA integrated into the host chromosome(s). Where a plasmid is being maintained by a host cell, the plasmid is either being stably replicated by the cell during

mitosis as an autonomous structure, or the plasmid is incorporated within the host's genome.

The term "phagemid" refers to a vector which combines attributes of a bacteriophage and a plasmid.

The phrase "heterologous protein" or "recombinantly produced heterologous protein" refers to a peptide or protein of interest (in this case the variable heavy (V_H) or variable light (V_L) chain) produced using cells that do not have an endogenous copy of DNA able to express the peptide or protein of interest. The cells produce the peptide or protein because they have been genetically altered by the introduction of the appropriate nucleic acid sequences. The recombinant peptide or protein will not be found in association with peptides or proteins and other subcellular components normally associated with the cells producing the peptide or protein.

The following terms are used to describe the sequence relationships between two or more nucleic acid molecules or polynucleotides, or between two or more 20 amino acid sequences of peptides or proteins (in this case, the variable heavy (V_H) or variable light (V_L)chain): "reference sequence", "comparison window", "sequence identity", "sequence homology", "percentage of sequence identity", "percentage of sequence homology", 25 "substantial identity", and "substantial homology". A "reference sequence" is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length cDNA or gene sequence given in a sequence listing or may comprise a complete cDNA or gene sequence.

Optimal alignment of sequences for aligning a comparison window may be conducted, for example, by the local homology algorithm of Smith and Waterman (1981), by

WO 00/26667 PCT/US99/25495

- 11 -

the homology alignment algorithm of Needleman and Wunsch (1970), by the search for similarity method of Pearson and Lipman (1988), or by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, Wis.).

As applied to nucleic acid molecules or polynucleotides, the terms "substantial identity" or "substantial sequence identity" mean that two nucleic 10 acid sequences, when optimally aligned (see above), share at least 90 percent sequence identity, preferably at least 95 percent sequence identity, more preferably at least 96, 97, 98 or 99 percent sequence identity.

"Percentage nucleotide (or nucleic acid) identity"

15 or "percentage nucleotide (or nucleic acid) sequence identity" refers to a comparison of the nucleotides of two nucleic acid molecules which, when optimally aligned, have approximately the designated percentage of the same nucleotides. For example, "95% nucleotide identity"

20 refers to a comparison of the nucleotides of two nucleic acid molecules which when optimally aligned have 95% nucleotide identity. Preferably, nucleotide positions which are not identical differ by redundant nucleotide substitutions (the nucleotide substitution does not change the amino acid encoded by the particular codon).

As further applied to nucleic acid molecules or polynucleotides, the terms "substantial homology" or "substantial sequence homology" mean that two nucleic acid sequences, when optimally aligned (see above), share at least 90 percent sequence homology, preferably at least 95 percent sequence homology, more preferably at least 96, 97, 98 or 99 percent sequence homology.

"Percentage nucleotide (or nucleic acid) homology" or "percentage nucleotide (or nucleic acid) sequence

homology" refers to a comparison of the nucleotides of two nucleic acid molecules which, when optimally aligned, have approximately the designated percentage of the same nucleotides or nucleotides which are not identical but differ by redundant nucleotide substitutions (the nucleotide substitution does not change the amino acid encoded by the particular codon). For example, "95% nucleotide homology" refers to a comparison of the nucleotides of two nucleic acid molecules which when optimally aligned have 95% nucleotide homology.

As applied to polypeptides, the terms "substantial identity" or "substantial sequence identity" mean that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap, share at least 90 percent sequence identity, preferably at least 95 percent sequence identity, more preferably at least 96, 97, 98 or 99 percent sequence identity.

"Percentage amino acid identity" or "percentage amino acid sequence identity" refers to a comparison of the amino acids of two polypeptides which, when optimally aligned, have approximately the designated percentage of the same amino acids. For example, "95% amino acid identity" refers to a comparison of the amino acids of two polypeptides which when optimally aligned have 95% amino acid identity. Preferably, residue positions which are not identical differ by conservative amino acid substitutions. For example, the substitution of amino acids having similar chemical properties such as charge or polarity are not likely to affect the properties of a protein. Examples include glutamine for asparagine or glutamic acid for aspartic acid.

As further applied to polypeptides, the terms "substantial homology" or "substantial sequence homology" mean that two peptide sequences, when optimally aligned,

WO 00/26667 PCT/US99/25495

- 13 -

such as by the programs GAP or BESTFIT using default gap, share at least 90 percent sequence homology, preferably at least 95 percent sequence homology, more preferably at least 96, 97, 98 or 99 percent sequence homology.

"Percentage amino acid homology" or "percentage 5 amino acid sequence homology" refers to a comparison of the amino acids of two polypeptides which, when optimally aligned, have approximately the designated percentage of the same amino acids or conservatively substituted amino 10 acids. For example, "95% amino acid homology" refers to a comparison of the amino acids of two polypeptides which when optimally aligned have 95% amino acid homology. used herein, homology refers to identical amino acids or residue positions which are not identical but differ only 15 by conservative amino acid substitutions. For example, the substitution of amino acids having similar chemical properties such as charge or polarity are not likely to affect the properties of a protein. Examples include glutamine for asparagine or glutamic acid for aspartic 20 acid.

The phrase "substantially purified" or "isolated" when referring to a protein (or peptide), means a chemical composition which is essentially free of other cellular components. It is preferably in a homogeneous state although it can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein (or peptide) which is the predominant species present in a preparation is substantially purified. Generally, a substantially purified or isolated protein (or peptide) will comprise more than 80% of all macromolecular species present in the preparation. Preferably, the protein (or peptide) is

purified to represent greater than 90% of all macromolecular species present. More preferably the protein (or peptide) is purified to greater than 95%, and most preferably the protein (or peptide) is purified to essential homogeneity, wherein other macromolecular species are not detected by conventional techniques. A "substantially purified" or "isolated" protein (or peptide) can be separated from an organism, synthetically or chemically produced, or recombinantly produced.

"Biological sample" or "sample" as used herein refers to any sample obtained from a living organism or from an organism that has died. Examples of biological samples include body fluids and tissue specimens.

High stringent hybridization conditions are selected 15 at about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. 20 stringent conditions will be those in which the salt concentration is at least about 0.02 molar at pH 7 and the temperature is at least about 60°C. As other factors may significantly affect the stringency of hybridization, including, among others, base composition and size of the 25 complementary strands, the presence of organic solvents, ie. salt or formamide concentration, and the extent of base mismatching, the combination of parameters is more important than the absolute measure of any one. stringency may be attained, for example, by overnight 30 hybridization at about 68°C in a 6X SSC solution, washing at room temperature with 6X SSC solution, followed by washing at about 68°C in a 6X SSC solution then in a 0.6X SSX solution.

WO 00/26667 PCT/US99/25495

Hybridization with moderate stringency may be attained, for example, by: 1) filter pre-hybridizing and hybridizing with a solution of 3X sodium chloride, sodium citrate (SSC), 50% formamide, 0.1M Tris buffer at pH 7.5, 5X Denhardt's solution; 2) pre-hybridization at 37°C for 4 hours; 3) hybridization at 37°C with amount of labelled probe equal to 3,000,000 cpm total for 16 hours; 4) wash in 2X SSC and 0.1% SDS solution; 5) wash 4X for 1 minute each at room temperature and 4X at 60°C for 30 minutes 10 each; and 6) dry and expose to film.

The phrase "selectively hybridizing to" refers to a nucleic acid molecule that hybridizes, duplexes or binds only to a particular target DNA or RNA sequence when the target sequences are present in a preparation of total 15 cellular DNA or RNA. By selectively hybridizing it is meant that a nucleic acid molecule binds to a given target in a manner that is detectable in a different manner from non-target sequence under moderate, or more preferably under high, stringency conditions of 20 hybridization. "Complementary" or "target" nucleic acid sequences refer to those nucleic acid sequences which selectively hybridize to a nucleic acid molecule. annealing conditions depend, for example, upon a nucleic acid molecule's length, base composition, and the number 25 of mismatches and their position on the molecule, and must often be determined empirically. For discussions of nucleic acid molecule (probe) design and annealing conditions, see, for example, Sambrook et al. 1989.

It will be readily understood by those skilled in
the art and it is intended here, that when reference is
made to particular sequence listings, such reference
includes sequences which substantially correspond to its
complementary sequence and those described including
allowances for minor sequencing errors, single base

changes, deletions, substitutions and the like, such that any such sequence variation corresponds to the nucleic acid sequence of the peptide/protein to which the relevant sequence listing relates.

- The DNA molecules of the subject invention also include DNA molecules coding for protein analogs, fragments or derivatives of the protein which differ from naturally-occurring forms (the naturally-occurring protein) in terms of the identity or location of one or 10 more amino acid residues (deletion analogs containing less than all of the residues specified for the protein, substitution analogs wherein one or more residues specified are replaced by other residues, and addition analogs wherein one or more amino acid residues is added 15 to a terminal or medial portion of the protein) and which share the functional property of the naturally-occurring form. These molecules include: the incorporation of codons "preferred" for expression by selected non-mammalian hosts; the provision of sites for cleavage 20 by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate DNA sequences that facilitate construction of readily
- As used herein, a "peptide" refers to an amino acid
 sequence of three to one hundred amino acids, and
 therefore an isolated peptide that comprises an amino
 acid sequence is not intended to cover amino acid
 sequences of greater than 125 amino acids. Proteins and
 peptides can contain any naturally-occurring or
 non-naturally-occurring amino acids, including the D-form
 of the amino acids, amino acid derivatives and amino acid
 mimics, so long as the desired function and activity of
 the protein or peptide is maintained. The choice of
 including an (L)- or a (D)-amino acid in the proteins or

expressed vectors.

WO 00/26667 PCT/US99/25495

- 17 -

peptides depends, in part, on the desired characteristics of the protein or peptide. For example, the incorporation of one or more (D)-amino acids can confer increased stability on the protein or peptide and can allow a protein or peptide to remain active in the body for an extended period of time. The incorporation of one or more (D)-amino acids can also increase or decrease the pharmacological activity of the protein or peptide.

The proteins or peptides may also be cyclized, since 10 cyclization may provide the proteins or peptides with superior properties over their linear counterparts.

As used herein, the terms "amino acid mimic" and "mimetic" mean an amino acid analog or non-amino acid moiety that has the same or similar functional

15 characteristic of a given amino acid. For instance, an amino acid mimic of a hydrophobic amino acid is one which is non-polar and retains hydrophobicity, generally by way of containing an aliphatic chemical group. By way of further example, an arginine mimic can be an analog of arginine which contains a side chain having a positive charge at physiological pH, as is characteristic of the guanidinium side chain reactive group of arginine.

In addition, modifications to the peptide backbone and peptide bonds thereof are also encompassed within the scope of amino acid mimic or mimetic. Such modifications can be made to the amino acid, derivative thereof, non-amino acid moiety or the peptide either before or after the amino acid, derivative thereof or non-amino acid moiety is incorporated into the peptide. What is critical is that such modifications mimic the peptide backbone and bonds which make up the same and have substantially the same spacial arrangement and distance as is typical for traditional peptide bonds and backbones. An example of one such modification is the

reduction of the carbonyl(s) of the amide peptide
backbone to an amine. A number of reagents are available
and well known for the reduction of amides to amines such
as those disclosed in Wann et al., JOC, 46:257 (1981) and
5 Raucher et al., Tetrahedron. Lett., 21:14061 (1980). An
amino acid mimic is, therefor, an organic molecule that
retains the similar amino acid pharmacophore groups as is
present in the corresponding amino acid and which
exhibits substantially the same spatial arrangement
10 between functional groups.

The substitution of amino acids by non-naturally occurring amino acids and amino acid mimics as described above can enhance the overall activity or properties of an individual protein or peptide based on the

- 15 modifications to the backbone or side chain functionalities. For example, these types of alterations to the specifically described amino acid substituents can enhance the protein's or peptide's stability to enzymatic breakdown and increase biological activity.
- 20 Modifications to the peptide backbone similarly can add stability and enhance activity.

One skilled in the art, using the above sequences or formulae, can easily synthesize the proteins or peptides. Standard procedures for preparing synthetic peptides are well known in the art. Peptides can be synthesized using: the solid phase peptide synthesis (SPPS) method of Merrifield (J. Am. Chem. Soc., 85:2149 (1964)) or modifications of SPPS; or, peptides can be synthesized using standard solution methods well known in the art

30 (see, for example, Bodanzsky, M., Principles of Peptide Synthesis, 2nd revised ed., Springer-Verlag (1988 and 1993)). Alternatively, simultaneous multiple peptide synthesis (SMPS) techniques well known in the art can be used. Peptides prepared by the method of Merrifield can WO 00/26667 PCT/US99/25495

be synthesized using an automated peptide synthesizer such as the Applied Biosystems 431A-01 Peptide Synthesizer (Mountain View, Calif.) or using the manual peptide synthesis technique described by Houghten, Proc. 5 Natl. Acad. Sci., USA 82:5131 (1985).

With these definitions in mind, the subject invention provides a method of selecting a clone that binds to human platelet glycoprotein Ib alpha using a human variable heavy chain and variable light chain 10 immunoglobulin library. The method comprises: incubating a human variable heavy chain and variable light chain immunoglobulin library with cells expressing human platelet glycoprotein Ib, and selecting clones of the library which bind to the cells; and incubating the 15 selected clones of the library with washed human platelets, and selecting resulting clones which bind to the washed human platelets, wherein the resulting clones bind to human platelet glycoprotein Ib alpha.

Preferably, the cells which express the human 20 platelet glycoprotein Ib alpha are Chinese Hamster Ovary cells.

In one embodiment, the method further comprises incubating the selected resulting clones with further platelets and adding an anti-glycoprotein Ib alpha
25 molecule that may displace clones already bound to the further platelets, and selecting the then-resulting clones that are not bound to the further platelets, the then-resulting clones being capable of binding to human platelet glycoprotein Ib alpha. Preferably, the anti30 glycoprotein Ib alpha molecule is a murine monoclonal antibody or peptide (such as the murine monoclonal antibody C-34 or the peptide having the amino acid sequence shown in SEQ ID NO:1).

The subject invention further provides an isolated nucleic acid molecule encoding a variable heavy chain or a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. The nucleic acid molecule can be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA, including messenger RNA or mRNA), genomic or recombinant, biologically isolated or synthetic.

The DNA molecule can be a cDNA molecule, which is a DNA copy of a messenger RNA (mRNA) encoding the variable heavy ($V_{\rm H}$) or variable light ($V_{\rm L}$) chain.

An example of such a variable heavy chain region of an antibody is the variable heavy chain having a

- nucleotide sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 4. An example of such a variable light chain region of an antibody is the variable light chain having a nucleotide sequence selected from the group consisting of SEQ ID NOs:5-9.
- 20 The amino acid sequence encoded by these nucleotide sequences are shown in SEQ ID NOs:10-15 (heavy chains), and SEQ ID NOs:16-21 (light chains).

The nucleic acid molecules of the subject invention can be expressed in suitable recombinant host cells using conventional techniques. Any suitable host and/or vector system can be used to express the variable heavy chain or variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. For in vitro

30 expression, CHO cells or other mammalian cells, or Escherichia coli are preferred. WO 00/26667 PCT/US99/25495

- 21 -

Techniques for introducing the nucleic acid molecules into the host cells may involve the use of expression vectors which comprise the nucleic acid These expression vectors (such as phagemids, molecules. 5 plasmids, and viruses; viruses including bacteriophage) can then be used to introduce the nucleic acid molecules into suitable host cells. For example, DNA encoding the variable heavy chain or variable light chain region of an antibody can be injected into the nucleus of a host cell 10 or transformed into the host cell using a suitable vector, or mRNA encoding the variable heavy chain or variable light chain region can be injected directly into the host cell, in order to obtain expression of variable heavy chain or variable light chain regions of an 15 antibody in the host cell.

Various methods are known in the art for introducing nucleic acid molecules into host cells. One method is microinjection, in which DNA is injected directly into the nucleus of cells through fine glass needles (or RNA 20 is injected directly into the cytoplasm of cells). Alternatively, DNA can be incubated with an inert carbohydrate polymer (dextran) to which a positively charged chemical group (DEAE, for diethylaminoethyl) has been coupled. The DNA sticks to the DEAE-dextran via its 25 negatively charged phosphate groups. These large DNAcontaining particles stick in turn to the surfaces of cells, which are thought to take them in by a process known as endocytosis. Some of the DNA evades destruction in the cytoplasm of the cell and escapes to the nucleus, 30 where it can be transcribed into RNA like any other gene in the cell. In another method, cells efficiently take in DNA in the form of a precipitate with calcium phosphate. In electroporation, cells are placed in a solution containing DNA and subjected to a brief

WO 00/26667 PCT/US99/25495

electrical pulse that causes holes to open transiently in their membranes. DNA enters through the holes directly into the cytoplasm, bypassing the endocytotic vesicles through which they pass in the DEAE-dextran and calcium phosphate procedures. DNA can also be incorporated into artificial lipid vesicles, liposomes, which fuse with the cell membrane, delivering their contents directly into the cytoplasm. In an even more direct approach, DNA is absorbed to the surface of tungsten microprojectiles and fired into cells with a device resembling a shotgun.

Several of these methods, microinjection, electroporation, and liposome fusion, have been adapted to introduce proteins into cells. For review, see Mannino and Gould-Fogerite 1988, Shigekawa and Dower 15 1988, Capecchi 1980, and Klein et al. 1987.

Further methods for introducing nucleic acid molecules into cells involve the use of viral vectors. One such virus widely used for protein production is an insect virus, baculovirus. For a review of baculovirus vectors, see Miller (1989). Various viral vectors have also been used to transform mammalian cells, such as bacteriophage, vaccinia virus, adenovirus, and retrovirus.

As indicated, some of these methods of transforming
25 a cell require the use of an intermediate plasmid vector.
U.S. Patent No. 4,237,224 to Cohen and Boyer describes
the production of expression systems in the form of
recombinant plasmids using restriction enzyme cleavage
and ligation with DNA ligase. These recombinant plasmids
30 are then introduced by means of transformation and
replicated in unicellular cultures including procaryotic
organisms and eucaryotic cells grown in tissue culture.
The DNA sequences are cloned into the plasmid vector

WO 00/26667

- 23 -

PCT/US99/25495

using standard cloning procedures known in the art, as described by Sambrook et al. (1989).

It should be readily apparent that several of these methods can be used to introduce the nucleic acid 5 molecules into the cells of, or implants of cells within, a subject in vivo (gene therapy applications, including human gene therapy). For example, nucleic acid encoding the variable heavy chain and/or variable light chain, or encoding fragments thereof, or encoding an antibody 10 comprising the variable heavy chain and/or variable light chain or fragments thereof, could be introduced in vivo using a mammalian viral vector such as adenovirus. a vector could also include and introduce an inducible promoter controlling expression of the nucleic acid, or 15 other suitable positive or negative response element, so that the subject could simply take a "drug" that would turn on or turn off the expression of the nucleic acid of the subject invention. The "drug", for example, could induce the inducible promoter.

Host cells into which the nucleic acid encoding the variable heavy chain or variable light chain region has been introduced can be used to produce (i.e. to functionally express) the variable heavy chain or variable light chain region. The function of the encoded variable heavy chain or a variable light chain region can be assayed according to methods known in the art by incorporating the variable heavy chain or variable light chain region into an antibody, and testing the antibody for its ability to bind to human platelet glycoprotein Ib alpha and to inhibit aggregation of platelets.

The nucleic acid molecules of the subject invention can be used either as probes or for the design of primers to obtain DNA encoding other variable heavy chain or variable light chain regions of an antibody, wherein the

antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelet, by either cloning and colony/plaque hybridization or amplification using the polymerase chain reaction (PCR).

5 Specific probes derived from the sequences herein can be employed to identify colonies or plaques containing cloned DNA encoding a variable heavy chain or variable light chain region of an antibody using known methods (see Sambrook et al. 1989). One skilled in the 10 art will recognize that by employing such probes under high stringency conditions (for example, hybridization at 42°C with 5X SSPC and 50% formamide, washing at 50-65°C with 0.5% SSPC), sequences having regions which are greater than 90% homologous or identical to the probe can 15 be obtained. Sequences with lower percent homology or identity to the probe, which also encode variable heavy chain or variable light chain regions of an antibody, can be obtained by lowering the stringency of hybridization and washing (e.g., by reducing the hybridization and wash 20 temperatures or reducing the amount of formamide employed).

Specific primers derived from the sequences herein can be used in PCR to amplify a DNA sequence encoding a variable heavy chain or variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, using known methods (see Innis et al. 1990). One skilled in the art will recognize that by employing such primers under high stringency conditions (for example, annealing at 50-60°C, depending on the length and specific nucleotide content of the primers employed), sequences having regions greater than 75% homologous or identical to the primers will be amplified.

Various modifications of the nucleic acid and amino acid sequences disclosed herein are covered by the subject invention. These varied sequences still encode a functional variable heavy chain or variable light chain 5 region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets. The invention thus further provides an isolated nucleic acid molecule encoding a variable heavy chain region of an antibody, wherein the 10 antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the nucleic acid molecule encoding a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from 15 the group consisting of SEQ ID NOs:10-15. The invention further provides an isolated nucleic acid molecule encoding a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the 20 nucleic acid molecule encoding a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of SEQ ID NOs:16-21. In further embodiments, the first amino acid 25 sequence has at least 95%, 96%, 97%, 98%, or 99% amino acid identity to the recited sequence. ention further provides an isolated variable heavy chain or a variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib 30 alpha and inhibits aggregation of platelets. variable heavy chain is preferably encoded by a nucleotide sequence selected from the group consisting of

SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID

NO: 4. The variable heavy chain preferably has an amino acid sequence selected from the group consisting of SEQ ID NOs:10-15. The variable light chain is preferably encoded by a nucleotide sequence selected from the group 5 consisting of SEQ ID NOs:5-9. The variable light chain preferably has an amino acid sequence selected from the group consisting of SEQ ID NOs:16-21. Further provided is an isolated variable heavy chain region of an antibody, wherein the antibody binds to human platelet 10 glycoprotein Ib alpha and inhibits aggregation of platelets, the variable heavy chain being encoded by a first amino acid sequence having at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of 15 SEQ ID NOs:10-15. Also provided is an isolated variable light chain region of an antibody, wherein the antibody binds to human platelet glycoprotein Ib alpha and inhibits aggregation of platelets, the variable light chain being encoded by a first amino acid sequence having 20 at least 90% amino acid identity to a second amino acid sequence, the second amino acid sequence selected from the group consisting of SEQ ID NOs:16-21. In further embodiments, the first amino acid sequence has at least 95%, 96%, 97%, 98%, or 99% amino acid identity to the 25 recited sequences.

It should be readily apparent to those skilled in the art that a met residue may need to be added to the amino terminal of the amino acid sequence of the variable heavy chain or variable light chain region or an ATG 30 added to the 5' end of the nucleotide sequence, in order to express the variable heavy chain or variable light

1976.

chain region in a host cell. The met version of the variable heavy chain or variable light chain region is thus specifically intended to be covered by reference to particular SEQ ID NOs.

- The invention further provides an antibody comprising the variable heavy chain or variable light chain region disclosed herein. Antibodies of the subject invention include monovalent, bivalent, and polyvalent antibodies, as well as fragments of these antibodies.
- 10 Fragments of the antibodies of the present invention include, but are not limited to, the Fab and the $F(ab')_2$ fragments.

The antibodies of the subject invention may be provided in a detectably labeled form. Antibodies can be 15 detectably labeled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymaticlabels (such as horseradish peroxidase, alkaline phosphatase, etc.), fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Epitope tags 20 can also be used, such as the c-myc peptide (to which antibodies are available that recognize the small peptide or protein of interest). The 6x-histidine tag (for which there are not only antibodies available but also chelating materials that have a high affinity for the 25 histidines) is also commonly used to purify secreted proteins. Procedures for accomplishing such labeling are well known in the art, for example see Sternberger et al. 1970, Bayer et al. 1979, Engval et al. 1972, and Goding

30 Further provided is a composition comprising the antibody and a carrier. The composition can be used to inhibit aggregation of platelets by exposing platelets to the composition. The antibody can also be used to bind to human platelet glycoprotein Ib alpha, the method

WO 00/26667

PCT/US99/25495

comprising exposing human platelet glycoprotein Ib alpha to the antibody.

In the methods of the invention, tissues or cells or platelet glycoprotein Ib alpha (a cell surface protein)

5 are contacted with or exposed to the composition or antibody of the subject invention. In the context of this invention, to "contact" tissues or cells or platelet glycoprotein Ib alpha with or to "expose" tissues or cells or platelet glycoprotein Ib alpha to a composition or antibody means to add the composition or antibody, usually in a liquid carrier, to a cell suspension or tissue sample, either in vitro or ex vivo, or to administer the composition or antibody to cells or tissues within an animal (including humans).

The formulation of therapeutic compositions and their subsequent administration is within the skill in the art. In general, for therapeutics, a patient suspected of needing such therapy is given a composition in accordance with the invention, commonly in a

- 20 pharmaceutically acceptable carrier, in amounts and for periods which will vary depending upon the nature of the particular disease, its severity and the patient's overall condition. The pharmaceutical compositions of the present invention may be administered in a number of
- 25 ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), oral or parenteral. Parenteral administration includes
- 30 intravenous drip or infusion, subcutaneous, intraperitoneal or intramuscular injection, pulmonary administration, e.g., by inhalation or insufflation, or intrathecal or intraventricular administration.

WO 00/26667

PCT/US99/25495

Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.

Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

Compositions for oral administration include powders or granules, suspensions or solutions in water or non10 aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.

In addition to such pharmaceutical carriers, cationic lipids may be included in the formulation to facilitate uptake. One such composition shown to 20 facilitate uptake is LIPOFECTIN (BRL, Bethesda MD).

Dosing is dependent on severity and responsiveness of the condition to be treated, with course of treatment lasting from several days to several months or until a cure is effected or a diminution of disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body and from assessment of the function of platelets obtained from blood specimens from the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual compositions, and can generally be calculated based on IC₅₀'s or EC₅₀'s in in vitro and in vivo animal studies. For example, given the molecular weight of

compound (derived from oligonucleotide sequence and/or chemical structure) and an effective dose such as an IC_{50} , for example (derived experimentally), a dose in mg/kg is routinely calculated.

- Once a variable heavy chain or variable light chain of interest is identified, the antibody constructed using the variable heavy chain or variable light chain be used to identify peptides capable of mimicking the inhibitory activity of the antibody. One such method utilizes the
- development of epitope libraries and biopanning of bacteriophage libraries. Briefly, attempts to define the binding sites for various monoclonal antibodies have led to the development of epitope libraries. Parmley and Smith developed a bacteriophage expression vector that
- 15 could display foreign epitopes on its surface (Parmley, S.F. & Smith, G.P., Gene 73:305-318 (1988)). This vector could be used to construct large collections of bacteriophage which could include virtually all possible sequences of a short (e.g. six-amino-acid) peptide. They
- 20 also developed biopanning, which is a method for
 affinity-purifying phage displaying foreign epitopes
 using a specific antibody (see Parmley, S.F. & Smith,
 G.P., Gene 73:305-318 (1988); Cwirla, S.E., et al., Proc
 Natl Acad Sci USA 87:6378-6382 (1990); Scott, J.K. &
- 25 Smith, G.P., Science 249:386-390 (1990); Christian, R.B.,
 et al., J Mol Biol 227:711-718 (1992); Smith, G.P. &
 Scott, J.K., Methods in Enzymology 217:228-257 (1993)).

After the development of epitope libraries, Smith et al. then suggested that it should be possible to use the bacteriophage expression vector and biopanning technique of Parmley and Smith to identify epitopes from all possible sequences of a given length. This led to the idea of identifying peptide ligands for antibodies by biopanning epitope libraries, which could then be used in

WO 00/26667

vaccine design, epitope mapping, the identification of genes, and many other applications (Parmley, S.F. & Smith, G.P., Gene 73:305-318 (1988); Scott, J.K., Trends in Biochem Sci 17:241-245 (1992)).

Using epitope libraries and biopanning, researchers searching for epitope sequences found instead peptide sequences which mimicked the epitope, i.e., sequences which did not identify a continuous linear native sequence or necessarily occur at all within a natural protein sequence. These mimicking peptides are called mimotopes. In this manner, mimotopes of various binding sites/proteins have been found.

The sequences of these mimotopes, by definition, do not identify a continuous linear native sequence or 15 necessarily occur in any way in a naturally-occurring molecule, i.e. a naturally occurring protein. The sequences of the mimotopes merely form a peptide which functionally mimics a binding site on a naturally-occurring protein.

- Many of these mimotopes are short peptides. The availability of short peptides which can be readily synthesized in large amounts and which can mimic naturally-occurring sequences (i.e. binding sites) offers great potential application.
- Using this technique, mimotopes to an antibody that recognizes platelet glycoprotein Ib alpha can be identified. The sequences of these mimotopes represent short peptides which can then be used in various ways, for example as peptide drugs that bind to platelet
- 30 glycoprotein Ib alpha and inhibit aggregation of platelets. Once the sequence of the mimotope is determined, the peptide drugs can be chemically synthesized.

The antibodies of the subject invention (or fragments thereof) can thus be used to select peptides, mimotopes, etc. that are complementary to the antibodies and that can then be used as antidotes to the antibodies 5 themselves. For example, if a subject being treated with the antibody in order to inhibit platelet aggregation was involved in a motor vehicle accident and the risk of bleeding far exceeded the risk of thrombosis, it would be desirable to turn "off" the antibody of the subject 10 invention. This could be done by using the peptide or mimotope to the antibody itself. The peptide or mimotope could thus be administered to the subject to displace the antibody from the platelets, preventing the antibody-induced inhibition of platelets.

- The identified variable heavy chain and variable light chain regions of an antibody, wherein the antibody inhibits aggregation of platelets, can also be used to select additional variable heavy chain and variable light chain regions of an antibody which inhibits aggregation
- of platelets. Such a method involves the selection of a variable heavy chain or variable light chain region as defined above (for example, SEQ ID NOs:10-15 for heavy chains, SEQ ID NOs:16-21 for light chains), wherein each of the variable heavy chain or variable light chain
- 25 regions has an amino acid sequence; altering the amino acid sequence of the selected variable heavy chain or variable light chain region; constructing an antibody having the altered amino acid sequence of the variable heavy chain or variable light chain region; and
- 30 determining whether the antibody inhibits aggregation of platelets, wherein the altered variable heavy chain or variable light chain region of an antibody that inhibits aggregation of platelets is thereby selected.

WO 00/26667

- 33 -

PCT/US99/25495

EXAMPLE I

Full DNA sequences were isolated from the Human Synthetic VH and VL ScFv Library (the Griffin.1 Library, available from the Medical Research Council in England), 5 and the protein sequences of multiple ScFv clones were determined. The ScFv clones were selected on the basis of their binding to platelet GPIb. Whether displayed as surface proteins on the phagemid or secreted as free ScFv by E. coli, several of these different ScFv clones have 10 proven capable of inhibiting von Willebrand factor (vWF) dependent aggregation of platelets, most likely due to their altering the binding site for vWF that is known to be contained within GPIb. Since the Griffin.1 Library was constructed from native human antibody heavy and 15 light chain variable sequences, ScFv isolated from this library are comprised of native human protein sequences and hence very attractive potential reagents for therapeutic purposes. The ScFv provide a new class of anti-thrombotic agents, useful for the prevention of 20 platelet-dependent thrombi in diseased arteries, bypass grafts, dialysis access, etc. In contrast to antibodies derived from mouse or other species, the human ScFv stand a far better chance of being recognized as self, rather than as a foreign protein.

In addition to the potential anti-thrombotic uses of the isolated ScFv, these ScFv are also useful as diagnostic reagents in human medicine. Since GPIb is a highly restricted antigen in its expression throughout the body, it has turned out to be one of the best markers to identify platelets, their precursor cell (the megakaryocyte), and leukemic blast cells of megakaryocytic origin. Additionally, there is some evidence in the literature that assaying a soluble form of platelet GPIb in the plasma (that presumably results

from proteolytic degradation of platelet surface GPIb)
may be useful as a clinical marker. The new anti-GPIb
ScFv are readily harvested from E.coli cultures, rather
than from the mammalian cells required for murine

5 monoclonal antibodies, and may therefore be a more
economical source of anti-GPIb markers for diagnostic
uses than were previously available.

Since the human ScFv are directed against platelet glycoprotein Ib, they have been named HIb-1, HIb-2, HIb-

- 10 3, etc., so as to reinforce the source of the ScFv (Human) and the target of the ScFv (Ib). In the case of HIb-1, HIb-2, and HIb-3, DNA sequencing has provided the amino acid sequences of both the heavy chain and light chain variable regions contributing to the ScFv,
- including VH exon, particular VH CDR3, JH, linker sequence, VL exon, particular VL CDR3, and JL segments. In the case of HIb-5 and HIb-6, DNA sequencing has thus far provided the amino acid sequences of the light chain variable regions contributing to the ScFv.
- This technology provides advantages over existing technology, including:
 - 1. For therapeutic purposes, an anti-platelet antibody of human sequence may obviate the human anti-mouse antibody reaction seen when murine antibodies are used.
- 25 Platelet GPIb is an important target for anti-thrombotics that is only now beginning to be appreciated.
 - 2. The ScFv are produced by bacterial cultures, which potentially may be more economical than the mammalian cell cultures required for murine antibodies.
- 30 3. Since the ScFv are fully cloned, the opportunity to make modifications of the basic ScFv molecules is readily available.
 - 4. Since these ScFv were selected without immunization of animals, it is possible that one or more of these ScFv

is directed against an epitope within GPIb for which animals might fail to mount an immune response, due to a high degree of structural conservation across species lines. The Griffin.1 library was constructed in such a manner that ScFv directed against normal human antigens are also included in the repertoire.

The ScFv clones were obtained by screening the Griffin.1 Library. The key points in this screening process were that the first steps in the screening 10 procedure utilized CHO cells expressing recombinant GPIb alpha, and then applicant took the subset of the library surviving three rounds of selection against these cells, and then applicant went into a 4th round against normal washed human platelets. Applicant then did two final 15 rounds where applicant attempted to displace ScFv from washed platelets by flooding them with a lot of murine monoclonal antibody (C-34 or SZ-2) or mimotope peptide (AWNWRYREYV).

The human synthetic V_H and V_L ScFv library was made 20 by recloning the heavy and light chain variable regions from the lox library vectors (Griffiths et al. 1994) into the phagemid vector pHEN2 (see Fig. 1). This "Griffin.1" library is a ScFv phagemid library made from synthetic V-gene segments. The World Wide Web address to download 25 the germline V gene sequences which comprise the Griffin.1 library is http://www.mrc-cpe.cam.ac.uk/ imt-doc/vbase-questions.html. The kappa and lambda light chain variable regions were PCR amplified from the fdDOG-2loxVk and VL constructs. The PCR fragments were 30 purified and digested with ApaL1 and Not 1. The gel purified fragments were then ligated into the vector pHEN2. Heavy chain variable regions were PCR amplfied from the pUC19-2loxVH vector. The PCR fragments were purified and digested with Sfil and Xhol. The gel

15

25

purified fragments were then ligated into the vector Vk-pHEN2 or VL-pHEN2.

The isolation of the HIb series of ScFv was performed as follows:

- 5 Initial three rounds of phagemid selection against transfected Chinese Hamster Ovary (CHO) cells expressing only the GPIb alpha component of the GPIb/IX/V complex on their surface
- 10¹²-10¹³ phagemid incubated 1.5 hours at RT with transfected CHO cells adherent to culture flask
 - Unbound phagemid removed by extensive washing
 - Bound phagemid eluted with triethylamine, neutralized with Tris, infected into *E. coli* suppressor strain TG1, and amplified (using helper phage) for use in next round
 - Monoclonal phagemid clone HIb-3 is a representative clone from this stage of selection

Round 4 of selection: Against washed human platelets 10^{12} phagemid incubated with a suspension of

- washed platelets for 1.5 hours at RT
- Unbound phagemid removed by extensive washing of platelets
- Bound phagemid eluted with triethylamine, neutralized with Tris, infected into E. coli, and amplified for use in next round
 - Monoclonal phagemid clone HIb-3 is a representative clone from this stage of selection
- 30 Rounds 5 and 6 of selection: Displacement of phage bound to platelets (optional)
 - Round 5: 10¹² Phage from round four incubated with 3x10⁹ washed platelets, unbound phage

WO 00/26667

- 37 ~

removed by extensive washing, and platelets then divided into three aliquots

PCT/US99/25495

- Incubation of platelets for 90 min at RT with 25 μ g/mL anti-GPIb alpha murine mabs C-34 or SZ-2 or 200 μ g/mL C-34 mimotope peptide AWNWRYREYV
 - Phagemid recovered from buffer then infected into E. coli, and amplified for use in next round
- Round 6: amplified phage from fifth round bound to washed platelets and then challenged with same potential displacer as used in round 5

Production of ScFv from Round 6 Phagemids

5

20

- Phagemid recovered from round 6 infected into E. coli non-suppressor strain HB2151
 - 24-well monoclonal culture supernatants assayed in Western blots against platelet lysates and for ability to inhibit ristocetin-induced aggregation of washed human platelets
 - Interesting clones scaled up for DNA sequencing and further functional studies on purified ScFv

This work employs ScFv technology in the development of a new family of antibody molecules directed against human platelet GPIbα--molecules that are themselves derived from human immunoglobulin variable sequences. As an alternative to natural IgG antibodies, synthetic monovalent antibodies with increasingly high affinities can be made from the heavy chain variable and light chain variable regions, separated by a linker region. Such synthetic variable antibodies are termed ScFv. The Griffin.1 synthetic ScFv library, composed of human germline VH and VL sequences used for these studies was

produced by the laboratory of Dr. Greg Winter of the MRC in Cambridge, UK. As posted on this laboratory group's web page (http://www.mrc-cpe.cam.ac.uk/~phage/), "This library contains exactly the same synthetic human V-genes 5 as the Human Synthetic Fab (4-12) 2lox Library (Griffiths, A.D. et al., (1994). EMBO J. 13, 3245-3260) but is in a single chain Fv (scFv) format instead of an Fab format. The vector is also a phagemid rather than a phage so it is like the Human Synthetic ScFv Library or 10 "Nissim Library" (Nissim, A. et al., (1994). EMBO J. 13, 692-698) but with diversity in the light chains as well as the heavy chains." In addition to the in vitro recombination of heavy and light chains, this library has achieved an estimated total diversity of 1.2 x 10° clones 15 through in vitro randomization at the hypervariable CDR3 regions. The resulting VH and VL coding sequences were then cloned into the pHEN2 phagemid. Depending upon whether the phagemid is infected into a strain of E.coli lacking or possessing a suppressor for the amber codon, 20 one can then obtain either progeny phagemid expressing the ScFv in fusion with a major phage coat protein, or a secreted form of the ScFv. The secreted ScFv also contain a 6x-His tag which can be used in protein purification and a c-myc tag for detection with an anti-25 c-myc antibody such as 9E10.

For the present studies, the initial round of phagemid selection was performed against transfected Chinese Hamster Ovary (CHO) cells expressing only the GPIbα component of the GPIb/IX/V complex on their surface. 10¹²-10¹³ phagemid were incubated for 1.5 hours at RT with transfected CHO cells adherent to the culture flask. Unbound phagemid were removed by extensive washing, and bound phagemid were eluted with triethylamine, neutralized with Tris, infected into the

E. coli suppressor strain TG1, and then amplified (using helper phage) for use in the next round. This process was then repeated for two additional rounds.

For the 4th round of selection, we performed a

5 "crossover" step, using human platelets. We aimed by
this approach to significantly enrich for phagemid
recognizing epitopes present only on both the CHO cell
and the platelet, thereby increasing the odds of finding
ScFv with specificities for GPIba. Monoclonal phagemid

10 clone HIb-3 is a representative clone from this stage of
selection. Whereas the polyclonal collection of all 4th
round phagemid did identify GPIba in Western blots, most
individual clones tested did not. Moreover, random
conversion of Round 4 phagemid clones to soluble ScFv did

15 not yield ScFv that exhibited inhibitory activity in
functional assays.

We accordingly proceeded to additional rounds, designed so as to try to direct the selection of epitopes most relevant to the vWF binding function of $GPIb\alpha$.

Towards this end, phage from round 4 were incubated with washed platelets, and unbound phage removed by extensive washing. Platelets were then further incubated with saturating concentrations of the anti-GPIbα murine mabs C-34 or SZ-2 or with C-34 mimotope peptide, which we have previously shown to compete with platelets for binding to C-34.. Phage recovered in the buffer following these incubations were amplified, and then used in a 6th and final round, in which displacement of phage was again attempted with the same mab or peptide used with it in the previous round.

Phagemid recovered from round 6 were directly infected into the E. coli non-suppressor strain HB2151. Secreted ScFv from overnight supernatants were assayed in Western blots against platelet lysates and were tested

for their ability to inhibit ristocetin-induced aggregation of washed human platelets. Interesting clones were then chosen for further study.

A particularly prominent clone (HIb-1) was observed 5 whether SZ-2, C-34, or C-34 mimotope peptide was used as displacer. Clone HIb-2 was uniquely seen when SZ-2 was used as displacer. Clone HIb-3, as stated above, was derived from an earlier round of selection. Clones HIb-5 and HIb-6 were recovered in the buffer when C-34 mimotope 10 peptide was used as displacer.

The purified HIb ScFv, whether purified from culture supernatants or from periplasmic spaces, had the anticipated molecular weight of 29 kilodaltons. This is illustrated in Fig. 10, where both crude supernatant and purified periplasmic fraction from an E. coli culture were run on SDS-polyacrylamide gel electrophoresis (SDS-PAGE), electroblotted, and then incubated with the murine monoclonal antibody 9E10, which recognizes the c-myc epitope tag contained within the secreted ScFv.

20 Peroxidase-conjugated secondary anti-mouse antibody was then used to detect the presence of bound 9E10.

The binding specificity of selected clones with respect to epitope targets deriving from human platelets was also established by immunoblotting. Detergent

- lysates of platelets obtained from human blood were prepared, and were electrophoresed by SDS-PAGE either under non-reducing conditions or following reduction with b-mercaptoethanol. GPIb α has an apparent molecular mass of 135-140 kDa when electrophoresed under reducing
- 30 conditions in this system, but characteristically migrates with an apparent molecular mass in the 160-170 kDa region under non-reducing conditions, reflecting the additional mass of GPIbB with which it is covalently bonded in the non-reduced, native state. Following

electroblotting to a membrane, the electrophoresed platelet lysates were then probed with either the wellestablished anti-GPIba murine monoclonal antibody SZ-2, or with a product from one of the selected clones. 5 Detection of binding of the SZ-2 employed a peroxidaselabeled secondary anti-mouse antibody, as described above. In the earlier rounds of selection, phagemid from selected clones were directly incubated with the blots, and following washings, the residual binding of phagemid 10 was detected through the use of an anti-M13 bacteriophage antibody, since the M13 surface epitope for this antibody is preserved in the pHEN2 phagemid. This approach permitted ready distinction between clones of phagemid that mimicked the binding pattern seen with SZ-2 from 15 those that did not. Following the later rounds of selection, however, when secreted clonal ScFv became available, the ScFv were used instead of actual phagemid in the immunoblotting. Thus, ScFv secreted by clones HIb-1, HIb-2, HIb-5, and HIb-6, when used as the primary 20 antibody in a Western blot against human platelet lysates, all showed a pattern closely mimicking that of murine monoclonal antibody SZ-2. An example of this is shown in Fig. 11, for HIb-1 and HIb-2 ScFv. Following the initial incubation with and subsequent washings of 25 the membranes with the indicated ScFv, secondary antibody 9E10, and in turn peroxidase-conjugated anti-mouse antibody were incubated with the membrane, and staining developed with peroxidase substrate. As can be seen in this example, the products of the selected clones were 30 able to recognize bands having the migration characteristics of $GPIb\alpha$, both under non-reducing and reducing conditions.

The ability of products from the selected clones to inhibit platelet function was tested by platelet

aggregation. Since a major function of GPIba is its role as receptor for the adhesive ligand, von Willebrand factor (vWF), vWF-dependent platelet aggregation was of particular interest. In vitro, aggregation involving the binding of vWF to platelet GPIb is conventionally assessed using either ristocetin or botrocetin as mediators. ScFv obtained from clones HIbB-1, HIbB-2, HIbB-5, and HIbB-6 were found to inhibit vWF-dependent platelet aggregation induced by at least one of these mediators. In the case of HIB-3, the phagemid itself showed inhibitory activity in an aggregation assay.

A representative example of inhibition at the phagemid level is shown in Fig. 12. Human platelets that have been formalin-fixed were suspended in buffer

- 15 containing 5 μ g/mL purified vWF at a final platelet concentration of 150,000/ μ L, added to a cuvette with a stir bar, and stirred at 1200 rpm, 37 °C, in a Chronolog Aggregometer. Ristocetin was then added at varying final concentrations, and resulting change in light
- transmittance used as an indicator of platelet aggregation. As can be seen in the figure, preincubation for 1.5 hour of the platelets (at 150,000/ μ L) with 1 x 10¹² HIbB-3 phagemid totally inhibited platelet aggregation at ristocetin concentrations at or below 0.35
- 25 mg/mL in this system, and even at a ristocetin concentration as high as 1.0 mg/mL continued to exert strong inhibition. In contrast, in the presence of an equal concentration of phagemid not expressing activity against platelet GPIbα (Control Phagemid), a full
- aggregatory response was reached by 0.5 mg/mL ristocetin, with moderate aggregation responses observed in the range of 0.3-0.35 mg/mL ristocetin. (Note that the formalinfixed platelets characteristically are aggregated in the

presence of lower concentrations of ristocetin than is usually required with non-fixed platelets.)

A representative example of inhibition at the ScFv level is shown in Fig. 13. Fixed human platelets were 5 again used under similar conditions to those previously described. In this experiment formalin-fixed human platelets at a concentration of $150,000/\mu$ L were incubated for 1.5 hour with HIB ScFv at the indicated final concentration. Purified vWF was than added to a final 10 concentration of 5 μ g/mL, the sample put in the aggregometer in the manner described above, and botrocetin added at a final concentration of 0.6 μ q/mL to initiate aggregation. In this example, the rate of light transmittance change in the aggregometer is used as 15 an index of aggregation. Quite strong (>75%) inhibition of the aggregation response is observed when the platelets have been preincubated with 12 μ g/mL HIB-1. Half-maximal inhibition is characteristically observed in the range of 5-10 μ g/mL of HIb-1. Similar results are 20 obtained when ristocetin is used as the agonist. ScFv similarly inhibit the aggregation of human platelets modulated by either ristocetin or botrocetin. HIB-2 ScFv also show half-maximal inhibition of such vWF-dependent platelet aggregation in the range of 5-10 μ g/m ScFv, with 25 the maximal degree of such inhibition comparable to or even exceeding that seen with HIB-1. While HIB-5 and HIB-6 also exert inhibition upon vWF-dependent platelet aggregation, the maximal degree of this inhibition has been observed to be weaker than that achieved with HIB-1 30 or HIB-2, reaching in the range of a 20-30% inhibition of the uninhibited aggregatory response.

A further representative example, in this instance demonstrating the ability of ScFv purified from the HIB clones to exert inhibitory activity upon unfixed human platelets, is shown in Fig. 14. Here the inhibitory effects of a 1 hour incubation of platelets (150,000 platelets/ μ L) with either HIB-2 ScFv or with the intact (i.e., full IgG) murine monoclonal antibody SZ-2 are directly compared. In this example, platelet-rich plasma (P.P.) was prepared by centrifugation of citrated, freshly drawn human blood, and the P.P. then studied in the platelet aggregometer under similar conditions as described above. It can be seen that HIB-2 by a concentration of 10 μ g/mL was able to produce a degree of aggregation quite comparable to that seen with SZ-2 at the same final concentration.

This work thus demonstrates the discovery of a group of ScFv selected upon the basis of the selection strategy described above, that have been found to inhibit vWF-dependent platelet aggregation induced by botrocetin or ristocetin, and that in fact specifically recognize epitopes within human platelet GPIba that survive SDS denaturation as well as reduction with mercaptoethanol.

Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the claims which follow.

WO 00/26667 PCT/US99/25495

- 45 -

REFERENCES

- Asfari, M., et al., Endocrinology 130:167-178 (1992).
- 5 Bayer, E.A., et al., Meth Enzym 62:308 (1979).
 - Bhattacharjee, A., et al., Endocrinology 138:3735-3740 (1997).
- 10 Boyd, A.E. III, <u>Current Concepts</u>, The Upjohn Company, Kalamazoo, Michigan (1991).
 - Campbell, A.M., <u>Monoclonal Antibody Technology:</u>
 <u>Laboratory Techniques in Biochemistry and Molecular</u>
- 15 <u>Biology</u>, Elsevier Science Publishers, Amsterdam, The Netherlands (1984).
 - Capecchi, M., Cell 22:479-488 (1980).
- 20 Catterall, W.A., Science 242:50-61 (1988).
 - Catterall, W.A., Science 253:1499-1500 (1991).
- Chomczynsk, P., et al., Anal. Biochem. 162:156-157 25 (1987).
 - Chrisey, L., et al., Antisense Research and Development 1(1):57-63 (1991).
- 30 Christoffersen, R.E. and Marr, J.J., Journal of Medicinal Chemistry 38(12):2023-2037 (1995).
 - Davalli, A.M., et al., J Endocrinology 150:195-203 (1996).
- 35 Engval, E., et al., Immunol 109:129 (1972).
 - Goding, J.W., J Immunol Meth 13:215 (1976).
- 40 Han, L., et al., Proc Natl Acad Sci USA 88:4313-4317 (1991).
 - Hiriart, M. and Matteson, D.R., J Gen Physiol 91:145-159 (1988).
- Innis, et al., <u>PCR Protocols</u>, Academic Press, San Diego, CA (1990).
- Kato, S., et al., Metabolism 43:1395-1400 (1994).

25

40

Kato, S., et al., J Clin Invest 97:2417-2425 (1996).

Keahey, H.H., et al., Diabetes 38:188-193 (1989).

5 Klein, T.M., et al., Nature 327:70-73 (1987).

Lutz, et al., Exp Cell Res 175:109-124 (1988).

Mannino, R.J. and Gould-Fogerite, S., BioTechniques 10 6:682-690 (1988).

Miller, L.K., Bioessays 11:91-95 (1989).

Perez-Reyes, E., et al., Nature 391:896-900 (1998).

Rossi, J.J., et al., AIDS Research and Human Retroviruses 8(2):183-189 (1992).

Rossi, J.J., British Medical Bulletin 51(1):217-225 20 (1995).

Sambrook et al., <u>Molecular Cloning: A Laboratory Manual</u>, 2d Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

Sarver, N., et al., Science 247:1222-1225 (1990).

Seino, S., et al., Proc Natl Acad Sci USA 89:584-588 (1992).

Shigekawa, K. and Dower, W.J., BioTechniques 6:742-751 (1988).

Stea, A., et al., In: Ligand and voltage-gated ion 35 channels. pp113-151, ed. R. Alan North, CRC Press, Boca Raton (1995).

Sternberger, L.A., et al., J Histochem Cytochem 18:315 (1970).

St. Groth, et al., J Immunol Methods 35:1-21 (1980).

Vague, P. and Moulin, J.P., Metabolism 31:139-144 (1982).

45 Wiltshire, H.R., et al., Xenobiotica 22:837-857 (1992).

Wang, L., et al., Diabetes 45:1678-1683 (1996).

Yaney, G.C., et al., Mol Endocrinol 6:2143-2152 (1992).

Hoogenboom and Winter, J Mol Biol 222:381-388 (1992).

Vaughan et al., Nature Biotech 14:309-315 (1996).

McCafferty et al., Nature 348(6301):552-554 (1990).

Tomlinson et al., J Mol Biol 227:776-798 (1992).

Nissim et al., EMBO J 13(3):692-698 (1994).

Griffiths et al., EMBO J 13(14):3245-3260 (1994).

Hiraiwa et al., Autoimmunity 8:107-113 (1990).
Balass, M. et al., Proc Natl Acad Sci USA 90:10638-10642 (November 1993).

Becker, B.H. and Miller, J.L., Blood 74:690-694 (1989).

Chambers, M. et al., in Leucocyte Typing V: White Cell Differentiation Antigens, ed. Schlossman, S., pp. 1343-1345, Oxford University Press, New York (1995).

Christian, R.B. et al., J Mol Biol 227:711-718 (1992).

Clemetson, K.J. and Clemetson, J.M., Sem. Thromb. Hemost. 21:130-136 (1995).

Clemetson, K.J. and Hugli, B., in Leucocyte Typing V: White Cell Differentiation Antigens, ed. Schlossman, S., pp. 1323-1325 Oxford University Press, New York (1995).

Cwirla, S.E. et al., Proc Natl Acad Sci USA 87:6378-6382 (August 1990).

Devlin, J.J. et al., Science 249:404-406 (1990).

Du, X. et al., Blood 69:1524-1527 (1987).

Fitzgerald, L.A. and Phillips, D.R., in <u>Platelet</u> <u>Immunobiology: Molecular and Clinical Aspects</u>, Kunicki, T.J. and George, J.N., Eds., pp. 9-30, Lippincott, Philadelphia PA (1989).

Fox, J.E.B. et al., J. Biol Chem 263:4882-4890 (1988).

Hobart, M.J. et al., Proc R Soc London B 252:157-162 (1993).

Joyce, G.F., Current Opinion in Structural Biology 4:331-336 (1994).

Kupinski, J.M. and Miller, J.L., Thromb Res 43:335-344
(1986).

LaRocca, D. et al., Hybridoma 11:191-201 (1992).

Lenstra, J.A. et al., J Immunol Methods 152:149-157 (1992).

Lopez, J.A., Blood Coag. & Fibrinolysis 5:97-119 (1994).

Luzzago, A. et al., Gene 128:51-57 (1993).

Macfarlane, D.E., et al. Thrombos Diath Haemorrh 34:306-308 (1975).

Miller, J.L. and Castella, A., Blood 60:790-794 (1982).

Miller, J.L. et al., J Clin Invest 72:1532-1542 (1983).

Miller, J.L. et al., Blood 68:743-751 (1986).

Miller, J.L. et al., Blood 70:1804-1809 (1987).

Miller, J.L. et al., Br J Haemotol 74:313-319 (1990).

Miller, J.L. et al., Proc Natl Acad Sci USA 88:4761-4765 (1991).

Miller, J.L. et al., Blood 79:439-446 (1992).

Molino, M. et al., Blood 82:2442-2451 (1993).

Motti, C. et al., Gene 146:191-198 (1994).

Murata, M., et al., J Clin Invest 92:1555-1558 (1993).

Parmley, S.F. and Smith, G.P., Gene 73:305-318 (1988).

Pearson, W.R. and Lipman, D.J., Proc Natl Acad Sci USA 85:2444-2448 (1988).

Pearson, W.R., Methods in Enzymology 183:63-98 (1990).

Roth, G.J., Blood 77:5-19 (1991).

Ruan, C. et al., Blood 69:570-577 (1987).

Russell, S.D. and Roth, G.J., Blood 81:1787-1791 (1993).

Scott, J.K., Trends in Biochem Sci 17:241-245 (1992).

Scott, J.K. and Smith, G.P., Science 249:386-390 (July 27, 1990).

Smith, G.P. and Scott, J.K., Methods in Enzymology 217:228-257 (1993).

Takahashi, H. et al., Thromb Res 19:857-867 (1980).

Takahashi, H. et al., Blood 85:727-733 (1995).

Ward, C.M. and Berndt, M.C., in Leucocyte Typing V: White Cell Differentiation Antigens, ed. Schlossman, S., pp. 1336-1337, Oxford University Press, New York (1995).

Weiss, H.J. et al., N Engl J Med 306:326-362 (1982).

What Is Claimed Is:

- 1 A method of selecting a clone that binds to
- 2 human platelet glycoprotein Ib alpha using a human
- 3 variable heavy chain and variable light chain
- 4 immunoglobulin library, the method comprising:
- 5 incubating a human variable heavy chain and variable
- 6 light chain immunoglobulin library with cells expressing
- 7 human platelet glycoprotein Ib, and selecting clones of
- 8 the library which bind to the cells; and
- 9 incubating the selected clones of the library with
- 10 washed human platelets, and selecting resulting clones
- 11 which bind to the washed human platelets, wherein the
- 12 resulting clones bind to human platelet glycoprotein Ib
- 13 alpha.
- 1 2. The method of claim 1 wherein the cells are
- 2 Chinese Hamster Ovary cells.
- The method of claim 1 further comprising
- 2 incubating the selected resulting clones with further
- 3 platelets and adding an anti-glycoprotein Ib alpha
- 4 molecule that may displace clones already bound to the
- 5 further platelets, and selecting the then-resulting
- 6 clones that are not bound to the further platelets, the
- 7 then-resulting clones being capable of binding to human
- 8 platelet glycoprotein Ib alpha.
- 1 4. The method of claim 3 wherein the anti-
- 2 glycoprotein Ib molecule is a murine monoclonal antibody.
- The method of claim 3 wherein the anti-
- 2 glycoprotein Ib molecule is a peptide.

WO 00/26667 PCT/US99/25495

- 1 6. The method of claim 5 wherein the peptide has
- 2 an amino acid sequence as shown in SEQ ID NO:1.
- 7. An isolated nucleic acid molecule encoding a
- 2 variable heavy chain or a variable light chain region of
- 3 an antibody, or a fragment thereof, wherein the antibody
- 4 binds to human platelet glycoprotein Ib alpha and
- 5 inhibits aggregation of platelets.
- 1 8. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a variable heavy chain
- 3 region and has a nucleotide sequence selected from the
- 4 group consisting of SEQ ID NO:2, SEQ ID NO:3, and SEQ ID
- 5 NO:4.
- 1 9. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a variable light chain
- 3 region and has a nucleotide sequence selected from the
- 4 group consisting of SEQ ID NO:5, SEQ ID NO:6, SEQ ID
- 5 NO:7, SEQ ID NO:8 and SEQ ID NO:9.
- 1 10. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a variable heavy chain
- 3 region having an amino acid sequence selected from the
- 4 group consisting of SEQ ID NO:10, SEQ ID NO:11, SEQ ID
- 5 NO:12, SEQ ID NO:13, SEQ ID NO:14 and SEQ ID NO:15.
- 1 11. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a variable light chain
- 3 region having an amino acid sequence selected from the
- 4 group consisting of SEQ ID NO:16, SEQ ID NO:17, SEQ ID
- 5 NO:18, SEQ ID NO:19, SEQ ID NO:20, and SEQ ID NO:21.

- 1 12. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a fragment of a
- 3 variable heavy chain region.
- 1 13. The nucleic acid molecule of claim 12 wherein
- 2 the fragment is a VH3 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:27, SEQ ID NO:28, SEQ ID NO:31, SEQ ID NO:32, SEQ ID
- 5 NO:35 and SEQ ID NO:36.
- 1 14. The nucleic acid molecule of claim 12 wherein
- 2 the fragment is a CDR1 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:29, SEQ ID NO:33 and SEQ ID NO:37.
- 1 15. The nucleic acid molecule of claim 12 wherein
- 2 the fragment is a CDR2 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:30, SEQ ID NO:34 and SEQ ID NO:38.
- 1 16. The nucleic acid molecule of claim 12 wherein
- 2 the fragment is a CDR3 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:39, SEQ ID NO:40 and SEQ ID NO:41.
- 1 17. The nucleic acid molecule of claim 7 wherein
- 2 the nucleic acid molecule encodes a fragment of a
- 3 variable light chain region.
- 1 18. The nucleic acid molecule of claim 17 wherein
- 2 the fragment has an amino acid sequence selected from the
- 3 group consisting of SEQ ID NO:42, SEQ ID NO:46, SEQ ID
- 4 NO:47, SEQ ID NO:51, SEQ ID NO:59, SEQ ID NO:60 and SEQ
- 5 ID NO:61.

WO 00/26667 PCT/US99/25495

- 53 -

- 1 19. The nucleic acid molecule of claim 17 wherein
- 2 the fragment is a CDR1 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:43, SEQ ID NO:48, SEQ ID NO:52 and SEQ ID NO:55.
- 1 20. The nucleic acid molecule of claim 17 wherein
- 2 the fragment is a CDR2 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:44, SEQ ID NO:49, SEQ ID NO:53 and SEQ ID NO:56.
- 1 21. The nucleic acid molecule of claim 17 wherein
- 2 the fragment is a CDR3 fragment having an amino acid
- 3 sequence selected from the group consisting of SEQ ID
- 4 NO:45, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:57 and SEQ
- 5 ID NO:58.
- 1 22. A recombinant cell comprising the nucleic acid
- 2 molecule of claim 7.
- 1 23. The recombinant cell of claim 22 wherein the
- 2 cell is a bacterial cell.
- 1 24. An expression vector comprising the nucleic
- 2 acid molecule of claim 7.
- 1 25. The expression vector of claim 24 wherein the
- 2 vector is a phagemid.
- 1 26. A recombinant cell comprising the expression
- 2 vector of claim 24.
- 27. A method of producing a variable heavy chain or
- 2 variable light chain region of an antibody, or a fragment

- 3 thereof, to human platelet glycoprotein Ib alpha that
- 4 inhibits aggregation of platelets, the method comprising:
- 5 introducing the nucleic acid molecule of claim 7
- 6 into a host cell; and
- 7 allowing the host cell to express the nucleic acid
- 8 molecule resulting in the production of a variable heavy
- 9 chain or variable light chain region of an antibody in
- 10 the cell.
- 1 28. An isolated nucleic acid molecule encoding a
- 2 variable heavy chain region of an antibody that binds to
- 3 human platelet glycoprotein Ib alpha and inhibits
- 4 aggregation of platelets, the nucleic acid molecule
- 5 encoding a first amino acid sequence having at least 90%
- 6 amino acid identity to a second amino acid sequence, the
- 7 second amino acid sequence selected from the group
- 8 consisting of SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12,
- 9 SEQ ID NO:13, SEQ ID NO:14 and SEQ ID NO:15.
- 1 29. An isolated nucleic acid molecule encoding a
- 2 variable light chain region of an antibody that binds to
- 3 human platelet glycoprotein Ib alpha and inhibits
- 4 aggregation of platelets, the nucleic acid molecule
- 5 encoding a first amino acid sequence having at least 90%
- 6 amino acid identity to a second amino acid sequence, the
- 7 second amino acid sequence selected from the group
- 8 consisting of SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18,
- 9 SEQ ID NO:19, SEQ ID NO:20, and SEQ ID NO:21.
- 30. An isolated variable heavy chain or variable
- 2 light chain region of an antibody, or a fragment thereof,
- 3 wherein the antibody binds to human platelet glycoprotein
- 4 Ib alpha and inhibits aggregation of platelets.

- 31. The variable heavy chain region of an antibody
- 2 of claim 30, wherein the variable heavy chain region has
- 3 an amino acid sequence selected from the group consisting
- 4 of SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID
- 5 NO:13, SEQ ID NO:14 and SEQ ID NO:15.
- 1 32. The variable light chain region of an antibody
- 2 of claim 30, wherein the variable light chain region has
- 3 an amino acid sequence selected from the group consisting
- 4 of SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID
- 5 NO:19, SEQ ID NO:20, and SEQ ID NO:21.
- 1 33. A fragment of the variable heavy chain region
- 2 of an antibody of claim 30.
- 1 34. The fragment of claim 33 wherein the fragment
- 2 is a VH3 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:27, SEQ ID NO:28,
- 4 SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:35 and SEQ ID
- 5 NO:36.
- 1 35. The fragment of claim 33 wherein the fragment
- 2 is a CDR1 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:29, SEQ ID NO:33
- 4 and SEQ ID NO:37.
- 1 36. The fragment of claim 33 wherein the fragment
- 2 is a CDR2 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:30, SEQ ID NO:34
- 4 and SEQ ID NO:38.
- 1 37. The fragment of claim 33 wherein the fragment
- 2 is a CDR3 fragment having an amino acid sequence selected

- 3 from the group consisting of SEQ ID NO:39, SEQ ID NO:40
- 4 and SEQ ID NO:41.
- 1 38. A fragment of the variable light chain region
- 2 of an antibody of claim 30.
- 1 39. The fragment of claim 38 wherein the fragment
- 2 has an amino acid sequence selected from the group
- 3 consisting of SEQ ID NO:42, SEQ ID NO:46, SEQ ID NO:47,
- 4 SEQ ID NO:51, SEQ ID NO:59, SEQ ID NO:60 and SEQ ID
- 5 NO:61.
- 1 40. The fragment of claim 38 wherein the fragment
- 2 is a CDR1 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:43, SEQ ID NO:48,
- 4 SEQ ID NO:52 and SEQ ID NO:55.
- 1 41. The fragment of claim 38 wherein the fragment
- 2 is a CDR2 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:44, SEQ ID NO:49,
- 4 SEQ ID NO:53 and SEQ ID NO:56.
- 1 42. The fragment of claim 38 wherein the fragment
- 2 is a CDR3 fragment having an amino acid sequence selected
- 3 from the group consisting of SEQ ID NO:45, SEQ ID NO:50,
- 4 SEQ ID NO:54, SEQ ID NO:57 and SEQ ID NO:58.
- 1 43. An isolated variable heavy chain region of an
- 2 antibody, wherein the antibody binds to human platelet
- 3 glycoprotein Ib alpha and inhibits aggregation of
- 4 platelets, the isolated variable heavy chain region
- 5 having a first amino acid sequence having at least 90%
- 6 amino acid identity to a second amino acid sequence, the
- 7 second amino acid sequence selected from the group

- 8 consisting of SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12,
- 9 SEQ ID NO:13, SEQ ID NO:14 and SEQ ID NO:15.
- 44. An isolated variable light chain region of an
- 2 antibody, wherein the antibody binds to human platelet
- 3 glycoprotein Ib alpha and inhibits aggregation of
- 4 platelets, the isolated variable light chain region
- 5 having a first amino acid sequence having at least 90%
- 6 amino acid identity to a second amino acid sequence, the
- 7 second amino acid sequence selected from the group
- 8 consisting of SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18,
- 9 SEQ ID NO:19, SEQ ID NO:20 and SEQ ID NO:21.
- 1 45. An antibody comprising the variable heavy chain
- 2 or variable light chain region of claim 30, 43 or 44.
- 1 46. The antibody of claim 45 wherein the antibody
- 2 is monovalent.
- 1 47. The antibody of claim 45 wherein the antibody
- 2 is bivalent.
- 1 48. The antibody of claim 45 wherein the antibody
- 2 is polyvalent.
- 1 49. A composition comprising the antibody of claim
- 2 45 and a carrier.
- 50. A method of inhibiting aggregation of
- 2 platelets, the method comprising exposing platelets to
- 3 the composition of claim 49.

- 1 51. A method of binding human platelet glycoprotein
- 2 Ib alpha, the method comprising exposing human platelet
- 3 glycoprotein Ib alpha to the antibody of claim 45.
- 1 52. A method of selecting a variable heavy chain or
- 2 variable light chain region of an antibody, wherein the
- 3 antibody inhibits aggregation of platelets, the method
- 4 comprising:
- 5 selecting a variable heavy chain or variable light
- 6 chain region of claim 30, 43 or 44, wherein each of the
- 7 variable heavy chain or variable light chain regions has
- 8 an amino acid sequence;
- 9 altering the amino acid sequence of the selected
- 10 variable heavy chain or variable light chain region; and
- 11 determining whether the altered variable heavy chain
- 12 or variable light chain region inhibits aggregation of
- 13 platelets, wherein the altered variable heavy chain or
- 14 variable light chain region that inhibits aggregation of
- 15 platelets is thereby selected.

Fab-FRAGMENT

CI

Ch1

Fv-FRAGMENT PEPTIDE LINKER

SUBSTITUTE SHEET (RULE 26)

SEQ 22

1	30 30 30 30			;	1			
3 30 30 30 at:	30 30 30 at:			FRI	CDR1	FR2	CDR2	FR3
PD at	e at:	=======================================			Lab2345	4 67890123456789	5 012abc3456789012345	7 8 8 67890123456789012abc345678901234
a :	e ÷	1.3	3-20		DYGMS	WVRQAPGKGLEWVS	GINW NGGSTGYADSVKG	RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR} SEQ 29 (VYY)
	DR3: LKMPHA SEQ 39	For II	ib.1 "VYY" rep	a.	SEU 29 position	s 89-91 within VI	УЕО 30 нз 13 3-20.	SEQ 28 (LYH)

HIB. 1

3/12	9012345abcde	NSRDSSGNH} SEQ 47 SEQ 45	
FR3	45678901abx:234 567890123456789 01abcde23456 789012345678ab90123456789012345678 9012345abcde	LRBY YAS WYQQKPGQAPVLVIY GK NNRPS GIPDRFSGSSGNTASLTITGAQAEDEADYYC NSRDSSGNH}SEQ 47	
CDR2	5 01abcde23456	GK NNRPS SEQ 44	
FR2	567890123456789	WYQQKPGQAPVLVIY	
CDR1	45678901abc234	QG-DS-LRSY YAS	
100 110 TH	1234567891234567890123	SSELTQDPAVSVALGQTVRITC QG-DS-1	lignment
nino acid sequenc	rocns	31	sednence a
100	CDR1-2	11.7	(L Amino acid sequence alignment
TI. 100 110 TH	ET (RI	ੁ U LE 2	 6)

- VFGGGTKLTVL 100 JL3

Full Sequence of HIb-1: (Underlined linker sequence is from vertor, not actual immunoglobulin chains.)

EVQLVESGGGVVRPGGSLRLSCAASGFTFDDYGMSWVRQAPGKGLEWVSGINWNGGSTGYAFSTRISRDNAKNSLYLQMNSI.RAEDTAVYYCARI.KMPHAWGQGTI.<mark>BINGGGSGGGGGGGGGGGGAI</mark>ISEI.TQDPAV SVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVI.VIYGKNNRPSGIPDRFSGSSSGNTASI.TITGAQAEDEADYYCNSRDSSGNHVFGGGTKLTVI.G

SEQ 23

						н2		
			FR1	CDR1	FR2	CDR2	FR3	
	н1н2	Locus	1 123456789012345678901234567890	1ab2345	4 67890123456789	67890123456789 012abc3456789012345	7 8 9 67890123456789012abc345678901234	
VH3	1-0	3-15	EVQLVESGGGLVKPGGSLRLSCAASGFTFS	N- AWMS	WVRQAPGKGLEWVG	N- AMMS WVRQAPGKGLEWVG RIKSKTINGGTTDYAALVKK	RFT1SHDDSKNTLYLQMNSLKTEDTAVYCAR } CFD 31 (AB)	CEO 21 (AD
NOTE: 1	For Hib-2 th	ie "AR" i	NOTE: For HIb-2 the "AR" replaces the "TT" that is present a	SEU 33 at positi	SEQ 34 at positions 93-94 within VH3 1-U 3-15.	SEQ 34 VH3 1-U 3-15.		SEQ 32 (TT)
VH CDR	VH CDR3: NPKLVK SEQ 40	0 40						

4/12			SEQ 46 (LS) Seq 47 (SG)
	CDR3	9 9012345abcde SEQ 50	AAWDDSLLS > SEQ 46 (LS) SEQ 47 (SG)
	FR3	8 :3456789012345678	LAISGLKSEDEADYYC
	CDR2	5 01abcde23456 SEQ 49	ition 95 within
	FR2	4 567890123456789 WYOOLECTARKLITY	ab following pos
	CDR1	3 45678901abc234 SEQ 48 SGSSNIGSN-YVY	ent at positions
SS	L Exon - Amino acid sequence alignment FR1	2 3 1234567891234567890123 45678901a SEQ 4 QSVLTQPPSASGTPGORVTISC SGSSSNIGS	OTE: For HIb-2 "LS" replaces the 'SG" that is present at positions ab following position 95 within VI.1 13-7 (A) 19.
33 0 110 1 10	acid sequ	Locus 1g	"LS" repla
CDR3 CDR3	on - Amino	CDR1-2 13:7 (A)	For HIb-2
E Surstitute	SHEE SHEE	្តី ពេលក	된 26

L - Amino acid sequence alignment CDR3

100

-VFGGGTKLTVL JL3

Full Sequence of Hib-2: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

HIP-2

VH Exon - Amino acid sequence alignment

HIb-3

s :	3-2:	VH3 1-3 3-2: NOTE: For HIb-3 the "VH CND3, VEITM EED 41	HI HI	 FR1 CDR1 FR2 CDR2 FR3	《中华》中,一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	1 23456789012345678901234567890 1ab2345 67890123456789 012abc3456789012345 67890123456789012abc345678901234	EVQLVESCGGLVQPGGSLRLSCAASGFTFS S - YAMS WVRQAPGKGLEWVS AISGSGGSTYYADSVKG RFTISHDNSKNTLYLQMNSLRAEDTAVYYCAW }	NOTE: For HIb-3 the "V" replaces the "L" at position 5 and the "W" replaces the "R" at position 94 that are present within VH3 1-3 3-23.	
	3-23 3-23 3-4 the 'V'	VH3 1-3 3-23 NOTE: For HIb-3 the "V"				1 123456789012.	EVQLVESGGGLV(replaces the "L"	

JH - Amino acid sequence alignment H3

				110		FLVTVSS	
:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CDR3	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	100			
	;	SU	В	ST	Ī.	π	J

45678901abc234 **SEQ 52** QG-DS-LRSY-YAS 1234567891234567890123 SSELTQDPAVSVALGQTVRITC Exon - Amino acid sequence alignment
FR1

CDR1-2 Locus 12345678912345

Amino acid sequence alignment
CDR3

CDR3

CDR3

CDR3

CDR3

GK-----NNRPS GIPDRFSGSSSG--NTASLTITGAQAEDEADYYC NSRDSSGNH > SEQ 51

789012345678ab90123456789012345678

01abcde23456 **SEQ 53**

567890123456789 WYQQKPGQAPVLVIY

9012345abcde

CDR3

FR3

CDR2

FR2

CDR1

100

-VFGGGTKLTVL

Full Sequence of HIb-3: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAW KSIJIMLWGQGTL<mark>JSGGGGSGGGGGGGGGGGG</mark>GSGGSAILTQDPAV SVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVIJVYGKNNRPSGIPDRFSGSSSGNTASIJTTGAQAEDEADYYCNSRDSSGNHVFGGGTKLTVI,G

> SEQ 24

C/	19
0/	ΙZ

	1.3	CDR3	9 9 5678 9012345ab		SEQ 58(-PF) SEQ 60 (I)(-PF)
		FR3	1 12345678901234567890123 45678901abcdef234 567890123456789 0123456 78901234567890123456789012345678	GVPDRFSGSGSGTDFTLKISRVEAEDVGVYYC	
	1.2	CDR2	5 0123456	SEQ 56 LGSNRAS	
		FR2	4 567890123456789	WYLQKPGQSPQLLIY	
	L1	CDR1	3 45678901abcdef234	SSQSLLHS-NGYNYLD	
VK Exon - Amino acid sequence alignment		FR1	$\begin{matrix} 1 \\ 12345678901234567890123 \end{matrix}$	SEU 55 DVVMTQSPLSLPVTPGEPASISC RSSQSLLHS-NGYNYLD	ATIL ADDRESS OF THE STATE OF TH
acid sequ			rocus	A3	17
n - Amino a			L1-L2-L3 Locus	VKII 4-1-(1) A3	or UTB C
VK EXO				VKII	NOTE:

HID-5

"V" replaces the "I" that is present at position 2, and an additional "PF" follows position 95 within VKII 4-1(1) A3.

AND TE: For HIb-5 "V" replaces the "I"

L3

CDR3

L00

100

100

100

100

100

Sequenced region of HIb-5: (Underlined linker sequence is from vector, not actual immunoglobulin chains.)

SSGGGSSGGGSGGSAL DVVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPPFTFGQGTKLEIKR } SEQ 25

7/12

There is some homology in the light chain with VK Exon VKII 3-1-(1) Oll. However, while the general structure of the VK exon appears appropriate, the number of deviations of specific amino acids from VKII 3-1-(1) 011 are so numerous, that HIb-6 would appear to have a VK unique enough to warrant receiving its own numerical assignment. VK Exon - Amino acid sequence: EIVMTQTPLSLSITPGEQASMSCRSSQSLLHSDGYTYLYWFLQKARPVSTLLICEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQDAQDP}\$EQ61

Amino acid sequence alignment

L3

CDR3

- TFGQCTKLEIK

T - TFGQCTKLEIK

SGGGSGGGSGGSALEIVMTQTPLSLSITPGEQASMSCRSSQSLLHSDGYTYLYWFLQKARPVSTLLICEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQDAQDPTFGQGTKLEIKR }SEQ 26

HIP-6

8/12

HIb-1 Human Anti-GPIb α DIRECT WESTERN BLOT WITH 9E10 (ANTI-c-myc)

-29 kDa

Sup Peri

FIG. 10

FIG. 11

SUBSTITUTE SHEET (RULE 26)

YG. 13

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

```
<110> Miller, Jonathan L
<120> Variable Heavy Chain and Variable Light Chain Regions
      of Antibodies to Human Platelet Glycoprotein Ib Alpha
<130> 027.00030
<140> PCT/US99/25495
<141> 1999-10-29
<150> US 60/106,275
<151> 1998-10-30
<150> 51
<170> PatentIn Ver. 2.1
<210> 1
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Mimotope
      peptide directed to human monoclonal antibody
     C-34
<400> 1
Ala Trp Asn Trp Arg Tyr Arg Glu Tyr Val
                  5
<210> 2
<211> 339
<212> DNA
<213> Homo sapiens
<400> 2
gaggtgcagc tggtggagtc tgggggaggt gtggtacggc ctggggggtc cctgagactc 60
tectgegeag cotetggatt cacetttgat gattatggea tgagetgggt cegecaaget 120
ccagggaagg ggctggagtg ggtctccggt attaattgga atggtggtag cacaggttat 130
gragactetg tgaagggrog attraccate tecagagara acgeraagaa etcectgtat 240
ctgcaaatga acagcctgag agccgaggac acggccgtgt attactgtgc aagattgaag 300
atgesteatg cgtggggcca aggtaccetg gtcaccgte
                                                                   339
```

```
<210> 3
   <211> 300
   <212> DNA
   <213> Homo sapiens
   <400> 3
   gggtccctta gactctcctg tgcagcctct ggattcactt tcagtaacgc ctggatgagc 60
   tgggtccgcc aggctccagg gaaggggctg gagtgggttg gccgtattaa aagcaaaact 120
   gatggtggga caacagacta cgctgcaccc gtgaaaggca gattcaccat ctcaagagat 180
   gattcaaaaa acacgctgta tctgcaaatg aacagcctga aaaccgagga cacggccgtg 240
   tattactgtg caagaaatcc gaagttggtg aagtggggcc aaggtaccct ggtcaccgtc 300
   <210> 4
   <211> 336
   <212> DNA
   <213> Homo sapiens
   <400> 4
  gaggtgcagc tggtggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60
  tootgtgcag cotctggatt cacctttagc agctatgcca tgagctgggt ccgccagget 120
  ccagggaagg ggctggagtg ggtctcagct attagtggta gtggttggtag cacatactac 180
  gcagactecg tgaagggeeg gttcaccate tecagagaea attecaagaa caegetgtat 240
  ctgcaaatga acagcctgag agccgaggac acggccgtgt attactgtgc atggaagtct 300
  ttgcttatgc tttggggcca aggtaccctg gtcacc
                                                                     336
  <210> 5
  <211> 324
  <212> DNA
  <213> Homo sapiens
  <400> 5
  tettetgage tgaetcagga ecetgetgtg tetgtggeet tgggaeagae agteaggate 60
  acatgccaag gagacagcct cagaagctat tatgcaagct ggtaccagca gaagccagga 120
  caggecectg tacttgteat etatggtaaa aacaacegge eeteagggat eecagacega 180
  tretetgget ceageteagg aaacacaget teettgacca teaetgggge teaggeggaa 240
  gatgaggetg actattactg taacteeegg gacageagtg gtaaccaegt atteggegga 300
  gggaccaagc tgaccgtcct aggt
                                                                     324
<210> 6
  <211> 330
  <212> DNA
  <213> Homo sapiens
  <400> 6
 cagtetgtgc tgactcagcc accetcagcg tetgggaccc cegggcagag ggtcaccate 60
```

```
tottgttctg gaagcagete caacategga agtaattatg tataetggta ceageagete 120
 ccaggaacgg cccccaaact cctcatctat aggaataatc agcggccctc aggggtccct 130
gaccgattct ctggctccaa gtctggcacc tcagcctccc tggccatcag tgggctccgg 240
 teegaggatg aggetgatta tractgtgea geatgggatg acageetgtt gagtgtatte 300
ggcggaggga ccaagctgac cgtcctaggt
                                                                    330
 <210> 7
 <211> 324
 <212> DNA
 <213> Homo sapiens
< 400 > 7
tettetgage tgaeteagga ecetgetgtg tetgtggeet tgggaeagae agteaggate 60
acatgccaag gagacagcct cagaagctat tatgcaagct ggtaccagca gaagccagga 120
caggeeeetg taettgteat etatggtaaa aacaaeegge eeteagggat eeeagaeega 180
ttettetgget ceageteagg aaacacaget teettgacca teaetgggge teaggeggaa 240
gargaggetg actartactg taacteeegg gacageagtg gtaaccargr arreggegga 300
gggaccaagc tgaccgtcct aggt
                                                                    324
<210> 8
<211> 342
<212> DNA
<213> Homo sapiens
<400> 8
gatgttgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
atotoctgca ggtctagtca gagcotoctg catagtaatg gatacaacta tttggattgg 120
tacctgcaga agccagggca gtctccacag ctcctgatct atttgggttc taatcgggcc 180
teeggggtee etgacaggtt cagtggeagt ggateaggea cagattttae actgaaaate 240
ageagagtgg aggetgagga tgttggggtt tattaetgea tgeaagetet acaaacteet 300
cottttacgt toggocaagg gaccaagetg gaaatcaaac gt
                                                                   342
<210> 9
<211> 336
<212> DNA
<213> Homo sapiens
< 100 > 9
gagattgtga tgacccagac tccactctcc ttgtctatca cccctggaga gcaggcctcc 60
atgteetgea ggtetagtea gageeteetg catagtgatg gatacaccta titgtatigg 120
tttctgcaga aagccaggcc agtctccacg ctcctgatct gtgaagtttc caaccggttc 180
tcaggagtgc cagataggtt cagtggcagc gggtcaggga cagatttcac actgaaaatc 240
agccgggtgg aggctgagga tgttggagtt tattactgca tgcaagatgc acaagatccc 300
acgttcggcc aagggaccaa gctggaaatc aaacgt
                                                                   336
```

<210> 10

<211> 113

<212> PRT

<213> Homo sapiens

<400> 10

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Arg Pro Gly Gly

1 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr
20 25 30

Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Leu Lys Met Pro His Ala Trp Gly Gln Gly Thr Leu Val Thr
100 105 110

Val

<210> 11

<211> 113

<212> PRT

<213> Homo sapiens

<400> 11

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Arg Pro Gly Gly

1 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr
20 25 30

Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val

50 55

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr His Cys
85 90 95

Ala Arg Leu Lys Met Pro His Ala Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val

<210> 12

<211> 100

<212> PRT

<213> Homo sapiens

<400> 12

Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn 1 5 10 15

Ala Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
20 25 30

Val Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala
35 40 45

Ala Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn 50 55 60

Thr Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val 65 70 75 80

Tyr Tyr Cys Ala Arg Asn Pro Lys Leu Val Lys Trp Gly Gln Gly Thr
85 90 95

Leu Val Thr Val

<210> 13

<211> 100

<212> PRT

<213> Homo sapiens

<400> 13

Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn 1 5 10 15

Ala Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
20 25 30

Val Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala 35 40 45

Ala Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn 50 55 60

Thr Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val 65 70 75 80

Tyr Tyr Cys Thr Thr Asn Pro Lys Leu Val Lys Trp Gly Gln Gly Thr
85 90 95

Leu Val Thr Val

<210> 14

<211> 112

<212> PRT

<213> Homo sapiens

<400> 14

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly

10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 sc

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Trp Lys Ser Leu Leu Met Leu Trp Gly Gln Gly Thr Leu Val Thr

100. 105 110

<210> 15

<211> 112

<212> PRT

<213> Homo sapiens

<400> 15

Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Lys Ser Leu Leu Met Leu Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

<210> 16

<211> 108

<212> PRT

<213> Homo sapiens

<400> 16

Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu Gly Gln

1 10 15

Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser Tyr Tyr Ala 20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45

Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser 50 55 60

Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln Ala Glu 65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His

Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly

<210> 17

<211> 110

<212> PRT

<213> Homo sapiens

<400> 17

Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln

1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn 20 25 30

Tyr Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Arg
65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu 85 90 95

Leu Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105 110

<210> 18

<211> 108

<212> PRT

<213> Homo sapiens

<400> 18

Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu Gly Gln
1 5 10 15

Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser Tyr Tyr Ala 20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45

Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser
50 55 60

Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln Ala Glu 65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His
85 90 95

Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105

<210> 19

<211> 114

<212> PRT

<213> Homo sapiens

<400> 19

Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30

Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45

Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala 85 90 95

Leu Gln Thr Pro Pro Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile
100 105 110

Lys Arg

<210> 20

<211> 112

<212> PRT

<213> Homo sapiens

<400> 20

Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30

Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45

Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 . 60 .

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala 85 90 95

Leu Gln Thr Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg

<210> 21

<211> 112

<212> PRT

<213> Homo sapiens

<400> 21

Glu Ile Val Met Thr Gln Thr Pro Leu Ser Leu Ser Ile Thr Pro Gly

1 5 10 15

Glu Gln Ala Ser Met Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30

Asp Gly Tyr Thr Tyr Leu Tyr Trp Phe Leu Gln Lys Ala Arg Pro Val 35 40 45

Ser Thr Leu Leu Ile Cys Glu Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Asp 85 90 95

Ala Gln Asp Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105 110

<210> 22

<211> 238

<212> PRT

<213> Homo sapiens

<400> 22

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Arg Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr
20 25 30

Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Leu Lys Met Pro His Ala Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Ser 115 120 125

Ala Leu Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu 130 135 140

Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser Tyr
145 150 155 160

Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val

Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser 180 185 190

Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln 195 200 205

Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly
210 215 220

Asn His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
225 230 235

<210> 23

<211> 242

<212> PRT

<213> Homo sapiens

<400> 23

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly

1 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Ala 20 25 30

Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60

Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 80

Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr

90

85

Tyr Cys Ala Arg Asn Pro Lys Leu Val Lys Trp Gly Gln Gly Thr Leu 100 105 110

Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly
115 120 125

Gly Ser Ala Leu Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly
130 135 140

Thr Pro Gly Gln Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn 145 150 155 160

The Gly Ser Asn Tyr Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala 165 170 175

Pro Lys Leu Leu Ile Tyr Arg Asn Asn Gln Arg Pro Ser Gly Val Pro 180 185 190

Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile 195 200 205

Ser Gly Leu Arg Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp 210 215 220

Asp Asp Ser Leu Leu Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val 225 230 235

Leu Gly

<210> 24

<211> 238

<212> PRT

<213> Homo sapiens

<400> 24

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly

1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Wal 50 55 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 70 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 Ala Trp Lys Ser Leu Leu Met Leu Trp Gly Gln Gly Thr Leu Val Thr 100 105 Val Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Ser 115 120 Ala Leu Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu Gly Gln Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser Tyr 150 155 Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val 165 170 Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser 180 185 Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Glm 195 200 Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly 210 215 Asn His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 225 230 <210> 25 <211> 131 <212> PRT <213> Homo sapiens <400> 25 Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Ser Ala 5 10 Leu Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro

- 20

Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His 40 Ser Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val 70 75 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 85 90 Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln 105 Ala Leu Gln Thr Pro Pro Phe Thr Phe Gly Gln Gly Thr Lys Leu Glu 120 Ile Lys Arg 130 <210> 26 <211> 129 <212> PRT <213> Homo sapiens <400> 26 Ser Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Ser Ala 10 Leu Glu Ile Val Met Thr Gln Thr Pro Leu Ser Leu Ser Ile Thr Pro 25 Gly Glu Gln Ala Ser Met Ser Cys Arg Ser Ser Gln Ser Leu Leu His 35 40 Ser Asp Gly Tyr Thr Tyr Leu Tyr Trp Phe Leu Gln Lys Ala Arg Pro 50 55 Val Ser Thr Leu Leu Ile Cys Glu Val Ser Asn Arg Phe Ser Gly Val 65 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 85 90 95

Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln

100

105

11

Asp Ala Gln Asp Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys

Arg

<210> 27

<211> 98

<212> PRT

<213> Homo sapiens

<400> 27

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Arg Pro Gly Gly

1 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr
20 25 30

Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 50

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

<210> 28

<211> 98

<212> PRT

<213> Homo sapiens

<400> 28

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Arg Pro Gly Gly

1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr
20 25 30

```
Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
         35
                             40
Ser Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val
                         55
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
                     70
                                         75
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr His Cys
                 85
Ala Arg
<210> 29
<211> 5
<212> PRT
<213> Homo sapiens
<400> 29
Asp Tyr Gly Met Ser
<210> 30
<211> 17
<212> PRT
<213> Homo sapiens
Gly Ile Asn Trp Asn Gly Gly Ser Thr Gly Tyr Ala Asp Ser Val Lys
                 5
                                     10
Gly
<210> 31
<211> 100
<212> PRT
<213> Homo sapiens
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
                                     10
                                                         15
```

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Ala 20 25 30

Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60

Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr

Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr
85 90 95

Tyr Cys Ala Arg

<210> 32

<211> 100

<212> PRT

<213> Homo sapiens

<400> 32

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly

1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Ala 20 25 30

Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60

Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 30

Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr
85 90 95

Tyr Cys Thr Thr

```
<210> 33
<211> 5
<212> PRT
<213> Homo sapiens
<400> 33
Asn Ala Trp Met Ser
<210> 34
<211> 19
<212> PRT
<213> Homo sapiens
<400> 34
Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala Pro
                                   10
Val Lys Gly
<210> 35
<211> 98
<212> PRT
<213> Homo sapiens
<400> 35
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
                                  10
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                               25
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                          40
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55
                                          60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                85
                                  90
Ala Tro
```

```
<210> 36
 <211> 98
 <212> PRT
 <213> Homo sapiens
 <400> 36
 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
                                      10
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                               . 25
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                              40
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65
                     70
                                          75
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                      90
Ala Arg
<210> 37
<211> 5
<212> PRT
<213> Homo sapiens
<400> 37
Ser Tyr Ala Met Ser
<210> 38
<211> 17
<212> PRT
<213> Homo sapiens
```

Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys

<400> 38

10 1 15 Gly <210> 39 <211> 6 <212> PRT <213> Homo sapiens <400> 39 Leu Lys Met Pro His Ala <210> 40 <211> 6 <212> PRT <213> Homo sapiens <400> 40 Asn Pro Lys Leu Val Lys <210> 41 <211> 6 <212> PRT <213> Homo sapiens <400> 41 Lys Ser Leu Leu Met Leu <210> 42 <211> 96 <212> PRT <213> Homo sapiens <400> 42 Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu Gly Gln 10 Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser Tyr Tyr Ala

25

30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr

```
Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser
     50
                        55
 Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln Ala Glu
                    70
 Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His
                 85
                                   90
<210> 43
<211> 11
<212> PRT
<213> Homo sapiens
<400> 43
Gln Gly Asp Ser Leu Arg Ser Tyr Tyr Ala Ser
         5
<210> 44
<211> 7
<212> PRT
<213> Homo sapiens
<400> 44
Gly Lys Asn Asn Arg Pro Ser
 1 5
<210> 45
<211> 9
<212> PRT
<213> Homo sapiens
<400> 45
Asn Ser Arg Asp Ser Ser Gly Asn His
<210> 46
<211> 98
```

<212> PRT

<213> Homo sapiens

<400> 46

Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln
1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn 20 25 30

Tyr Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Arg Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Arg
65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu 85 90 95

Leu Ser

<210> 47

<211> 98

<212> PRT

<213> Homo sapiens

<400> 47

Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln
1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn 20 25 30

Tyr Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Arg Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Arg
65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu

WO 00/26667

85

90

95

PCT/US99/25495

Ser Gly

<210> 48

<211> 13

<212> PRT

<213> Homo sapiens

<400> 48

Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Tyr Val Tyr 5

<210> 49

<211> 7

<212> PRT

<213> Homo sapiens

<400> 49

Arg Asn Asn Gln Arg Pro Ser 1

<210> 50

<211> 9

<212> PRT

<213> Homo sapiens

<400> 50

Ala Ala Trp Asp Asp Ser Leu Leu Ser . 5

<210> 51

<211> 96

<212> PRT

<213> Homo sapiens

<400> 51

Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu Gly Gln 10

Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser Tyr Tyr Ala 20 25

```
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
                             40
Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser
Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln Ala Glu
 65
Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His
<210> 52
<211> 11
<212> PRT
<213> Homo sapiens
<400> 52
Gln Gly Asp Ser Leu Arg Ser Tyr Tyr Ala Ser
                5
<210> 53
<211> 7
<212> PRT
<213> Homo sapiens
<400> 53
Gly Lys Asn Asn Arg Pro Ser
<210> 54
<211> 9
<212> PRT
<213> Homo sapiens
<400> 54
Asn Ser Arg Asp Ser Ser Gly Asn His
```

<210> 55 <211> 16

```
<212> PRT
 <213> Homo sapiens
 <400> 55
 Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Tyr Asn Tyr Leu Asp
                   5
                                       10
 <210> 56
 <211> 7
 <212> PRT
 <213> Homo sapiens
 <400> 56
 Leu Gly Ser Asn Arg Ala Ser
                  5
 <210> 57
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 57
Met Gln Ala Leu Gln Thr Pro Pro Phe
<210> 58
<211> 7
<212> PRT
<213> Homo sapiens
<400> 58
Met Gln Ala Leu Gln Thr Pro
<210> 59
<211> 102
<212> PRT
<213> Homo sapiens
<400> 59
Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
                  5
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
```

20 25 30

Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45

Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala 85 90 95

Leu Gln Thr Pro Pro Phe
100

<210> 60

<211> 100

<212> PRT

<213> Homo sapiens

<400> 60

Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30

Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45

Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val.Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala 85 90 95

Leu Gln Thr Pro

<210> 61 <211> 100

<212> PRT

<213> Homo sapiens

<400> 61

Glu Ile Val Met Thr Gln Thr Pro Leu Ser Leu Ser Ile Thr Pro Gly

1 5 10 15

Glu Gln Ala Ser Met Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30

Asp Gly Tyr Thr Tyr Leu Tyr Trp Phe Leu Gln Lys Ala Arg Pro Val

Ser Thr Leu Leu Ile Cys Glu Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Asp 85 90 95

Ala Gln Asp Pro 100

International application No. PCT/US99/25495

A. CLASSIFICATION OF SUBJECT MATTER					
IPC(7) :Please See Extra Sheet.					
US CL :Please See Extra Sheet.					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)					
l	·	•			
U.S. :	436/548; 435/7.1, 320.1, 326, 328; 514/12; 424/139	.1; 530/387.1, 388.22; 536/23.1			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) patents, embase, biosis, medline, caplus					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
Y	GRIFFITHS et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO. J. 1994, Vol. 13, No. 14, pages 3245-3260, especially pages 3245, 3254-59.		1-5		
Y	NISSIM et al. Antibody fragments from a `single pot` phage display library as immunochemical reagents. EMBO. J. 1994, Vol 13, No. 3, pages 692-698, especially pages 692 and 696-698.		1-5		
Y	Miller et al. Mimotope/anti-mimotope probing of structural relationships in platelet glycoprotein Iba Proc. Natl. Acad. Sci., USA. April 1996, Vol. 93, pages 3565-3569, especially page 3565.		7, 12, 17, 22-27, 30, 33, 38		
X Further documents are listed in the continuation of Box C. See patent family annex.					
date and not in confli			ernational filing date or priority lication but cited to understand		
	becoment defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the			
E earlier document published on or after the international filing date		"X" document of particular relevance; the			
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		when the document is taken alone	•		
special reason (as specified)		"Y" document of particular relevance; the considered to involve an inventive	step when the document is		
	document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art				
P document published prior to the international filing date but later than *&* document member of the same patent family the priority date claimed					
Date of the actual completion of the international search Date of mailing of the international search report					
16 JANUARY 2000		10 FEB 2000			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks		Authorized officer			
Box PCT Washington, D.C. 20231		AMY DECLOUX	fin		
Faccimile No. (703) 305-3230		Telephone No. (703) 308-0196	<u> </u>		

International application No. PCT/US99/25495

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	Relevant to claim No	
	KONKLE et al. Cytikine-enhanced Expression of Glycoprotein Ibα in Human Endothelium. The Journal of Biological Chemistry. 1990, Vol. 265, No. 32, pages 19833-19838, especially pages 19833-98834.		7, 12, 17, 22-27, 30, 33 and 38.
	•		
	-		_
		ĺ	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)#

International application No. PCT/US99/25495

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. X Claims Nos.: 6, 8-11, 13-16, 18-21, 28-29, 31-32, 34-37, 39-52 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: No CRF for this case has been filed. The instant claims recite SEQ ID NO:s or depend therefrom and cannot be searched other than a sequence search.				
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
·				
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark on Protest The additional search fees were accompanied by the applicant's protest.				
No protest accompanied the payment of additional search fees.				

International application No. PCT/US99/25495

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (7):
G01N 33/53; A61K 38/02, 39/395; C07K 14/435, 16/28; C12N 15/63, 15/66, 15/85, 15/86, 15/11

A. CLASSIFICATION OF SUBJECT MATTER: US CL $\,:\,$

436/548; 435/7.1, 320.1, 326, 328; 514/12; 424/139.1; 530/387.1, 388.22; 536/23.1

Form PCT/ISA/210 (extra sheet)(July 1992)*