

Matteo Colaianni

Erlangen, 29.05.2017

Computer Animation Course (Assignment Sheet 1)

This tiny Exercise will introduce you with the Math-Framework Eigen. In some steps you will learn to create vectors and matrices and do basic arithmetic with. In a next step we use this framework to do transformations on points.

Assignment 1.0 (Prerequisites) Download and unpack the Exercise Folder from https://cloud9.informatik.un erlangen.de/index.php/s/TId2hQjmN4jaejp. It contains a Contrib subfolder and the first assignment. In the following assignments on this sheet you will edit the file main.cpp. Once you are done, submit this file to matteo.colaianni@fau.de.

Assignment 1.1 [5 Points] (Basic Vectors)

- a) Initialize a basic 3-dimensional float vector v_1 with zeroes.
- b) Set v_1 to (1 -1 2).
- c) Setup another 3-dimensional float vector v_2 to be (6 5 4.5).
- d) Set the vector v_{sum} to be the sum of v_1 and v_2 .
- e) Set the vector v_{diff} to be the difference of v_1 and v_2 .
- f) Set the float value s_{dot} to be the scalar-product of v_1 and v_2 .
- g) Set the vector v_{cross} to be the cross-product of v_1 and v_2 .
- h) Calculate the length between the vectors v_1 and v_2 .

Assignment 1.2 [5 Points] (Basic Matrices)

- a) Initialize a basic 3×3 float matrix M_1 with zeroes.
- b) Initialize a basic 3×3 float matrix M_2 to be the identity.
- c) Calculate and output: the ...
 - ... sum of M_1 and M_2
 - ... difference of M_1 and M_2
 - ... the product of M_1 and M_2
 - ... the matrix-vector product of M_1 and M_2
 - ... division of M_1 with the scalar 10

Assignment 1.3 [5 Points] (Advanced Matrices)

- a) Initialize a basic 3×3 float matrix M_3 to be an *upper right triangular* matrix with the value 2.
- b) What issue occurs usint the matrix transposition 'M3 = M3.transpose()'. Write your answer as a comment in the code?
- c) Fix the issue mentioned in (b).
- d) Invert the matrix M_4 and output the result.
- e) Initialize the matrix M_5 to be $\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and check wether it is orthogonal or not using Eigen.

Assignment 1.4 [5 Points] (Block Operations)

- a) Output the second column of M_5 using block operations.
- b) Output the second column of M_6 using block operations.

Assignment 1.5 [5 Points] (Advanced Matrices II / Rigid Transoformation)

- a) Given: a rotation matrix M_{rot} and a translation vector v_{trans} . Output the rigid transformation $\tilde{x} = M_{rot} \cdot x + v_{trans}$.
- b) Build a 4×4 float matrix T, that allows the transformation $T \cdot x$ with a single matrix-vector multiplication. Consider also to convert the 3-dimensional vector x into a properly dimensioned vector in order to do that.

Good Luck!