Übungen zu Analysis 3, 6. Übung 18. 11. 2019

46. Zeigen Sie

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

indem Sie $\int_0^\infty \frac{\sin x}{x} e^{-\lambda x} dx$ nach λ differenzieren mit genauer Begrünung aller nichttrivialeer Rechenschritte und Erklärung in welchem Sinn auftretende Integrale existieren.

47. Zeigen Sie

$$\frac{\sin x}{x} = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

mit $a_n = \frac{1}{\pi} \int_{(n-1)\pi}^{(n+1)\pi} \frac{\sin x}{x} dx$ und berechnen Sie damit

$$\int_0^\infty \frac{\sin x}{x} dx.$$

48. Zeigen Sie: Ist $f \in L^1(\mathbb{R})$ ungerade, so existiert $\int_0^t \frac{\hat{f}(\xi)}{\xi} d\xi$ für t > 0 und es gilt

$$\forall t>0: \quad \left|\int_0^t \frac{\hat{f}(\xi)}{\xi} d\xi\right| \leq \sqrt{\frac{2}{\pi}} C \|f\|_1, \quad C = \sup\left\{\left|\int_0^t \frac{\sin\xi}{\xi} d\xi\right| : \ t>0\right\} < \infty.$$

Zeigen Sie damit, dass die Fouriertransformaton nicht surjektiv von $L^1(\mathbb{R})$ nach $C_0(\mathbb{R})$ abbildet.

Hinw.: Zeigen Sie, dass g nicht auf \mathbb{R}_+ integrierbar ist für $g(x) = \frac{1}{x \ln x}, \ x > 2$.

- 49. Seien $(M_1, d_1), (M_2, d_2)$ metrische Räume und $f: M_1 \to M_2$ eine Hölder-stetige Abbildung, d.h. es gibt C, γ mit $d_2(f(x), f(y)) \le Cd_1(x, y)^{\gamma} \, \forall x, y \in M_1$. Zeigen Sie, dass die Hausdorffdimension von M_2 durch $\frac{1}{\gamma}$ mal der Hausdorffdimension von M_1 beschränkt ist.
- 50. Sei μ ein Maß auf dem metrischen Raum M mit $\mu(M) > 0$. Zeigen Sie dass

$$\frac{2^{s}}{\omega_{s}}H_{\delta}^{s}(M) \ge \mu(M)^{2} \left(\int \int_{\{(x,y):d(x,y)<\delta\}} d(x,y)^{-s} d\mu(x) d\mu(y) \right)^{-1}$$

gilt.

Hinw.: Für eine δ -Überdeckung (C_i) gilt $\{(x,y):d(x,y)<\delta\}\supseteq \cup C_i$. Betr. sie eine paaarweise disjunkte Überdeckung und verwenden Sie Cauchy-Schwarz.

51. Zeigen Sie dass das Bild einer kompakten Menge K in einem metr. Raum (M_1,d_1) unter einer injektiven stetigen Abbildung f in einen metr. Raum (M_2,d_2) nicht notwendigerweise die gleiche Hausdorffdimension hat.

Hinw.: Betrachten sie $[0, 1 \text{ mit } d_1(x, y) = |x - y| \text{ und } d_2(x, y) = \sqrt{|x - y|}.$

52. Den Sierpinskiteppich T erhält man indem man das abg. Einheitsquadrat in 9 gleichgroße abg. Teilquadrate der Kantenlänge 1/3 zerlegt und das Innere des mittleren entfernt. Im nächsten Schritt zerlegt man die verbleibenden 8 Teilquadrate in 9 gleichgroße abgeschlossene Teilquadrate der Kantenlänge 1/9 und entfernt das Innere des mittleren. Mit den verbliebenen 8^2 fährt man so fort. Geben Sie eine Abbildung A des Einheitsquadrates W auf sich mit $T = AT = \lim_{n \to \infty} AW$.

Bestimmen Sie eine möglichst gute obere Schranke für die Hausdorffdimension des Sierpinskiteppichs.

Definieren Sie den Menger-Würfel (Bild 2) und berechnen Sie für ihn eine möglichst gute obere Schranke.

53. Definieren Sie auf einem metrischen Raum (X,d) Mengenfunktionen \mathcal{B}^s_{δ} analog zum Hausdorffmaß aber mit der zusätzlichen Forderung dass die Mengen der Überdeckung Kugeln $B(x_i,r_i)$ um Punkte $x_i \in X$ und $2r_i \leq \delta$ sind. Zeigen Sie, dass diese Mengenfunktionen \mathcal{B}^s_{δ} äußere Maße sind, dass der Grenzwert $\mathcal{B}^s(A) = \lim_{\delta \to 0} \mathcal{B}^s_{\delta}(A)$ für jede Teilmenge A von X existiert und \mathcal{B} ein Borelmaß ist.

Geben sie pos. Schranken a,b für die $a\mathcal{B}^s(A) \leq \mathcal{H}^s(A) \leq b\mathcal{B}^s(A)$ gilt.

54. Zeigen Sie den folgenden Überdeckungssatz: Sei K ein kompakter metrischer Raum und $\bigcup_{i \in I} (B(x_i, r_i)) = K$ eine Überdeckung. Dann gibt es eine endliche Teilmenge $I_0 \subset I$ mit $\bigcup_{j \in I_0} B(x_j, 3r_j) = K$ und die Kugeln $\{B(x_i, r_i) : i \in I_0\}$ sind paarweise disjunkt.