

SQL Processing

```
SELECT e.last_name, j.job_title, d.department_name
      hr.employees e, hr.departments d, hr.jobs j
WHERE e.department id = d.department id
      e.job id = j.job id
      e.last name LIKE 'A%';
                        Join methods: techniques to execute a join of two tables
Execution Plan
Plan hash value: 9758370/11
                                                       Access paths: techniques for retrieving
                                                       data from the database.
| Id| Operation
                                 Name
     SELECT STATEMENT
                                                3 | 189 | 7(15) | 00:00:01 |
      HASH JOIN
                                                3 | 189 | 7(15)| 00:00:01
       HASH JOIN
[ *4 |
         INDEX RANGE SCAN
        TABLE ACCESS FULL
       TABLE ACCESS FULL
Predicate Information (identified by operation id):
  1 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
  2 - access("E"."JOB_ID"="J"."JOB_ID")
  4 - access("E"."LAST NAME" LIKE 'A%')
      filter("E"."LAST NAME" LIKE 'A%')
```

What you will learn about in this section

1. Joins

- 2. Nested Loop Join (NLJ)
- 3. Block Nested Loop Join (BNLJ)
- 4. Index Nested Loop Join (INLJ)

 $R \bowtie S$

SELECT R.A, B,C,D FROM R, S WHERE R.A = S.A

2	3	4	2

 $R \bowtie S$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

 $R \bowtie S$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

 $R \bowtie S$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

 $R \bowtie S$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

Semantically: A Subset of the Cross Product

 $R \bowtie S$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A Example: Returns all pairs of tuples $r \in R$, $s \in S$ such that r.A = s.A

2	3	4	2
2	3	4	3
2	5	2	2
2	5	2	3
3	1	1	7

Can we actually implement a join in this way?

Notes

- We write R ⋈ S to mean join R and S by returning all tuple pairs where all shared attributes are equal
- We write $R \bowtie S$ on A to mean join R and S by returning all tuple pairs where attribute(s) A are equal
- For simplicity, we'll consider joins on two tables and with equality constraints ("equijoins")

However, joins *can* merge > 2 tables, and some algorithms do support non-equality constraints!

Nested Loop Joins

Notes

We are considering "IO aware" algorithms:
 care about disk IO

- Given a relation R, let:
 - T(R) = # of tuples in R
 - P(R) = # of pages in R

Recall that we read / write entire pages with disk IO

```
T(R) = \# of tuples in R
 P(R) = \# of pages in R
```

```
Compute R \bowtie S on A:

for r in R:

for s in S:

if r[A] == s[A]:

yield (r,s)
```

```
T(R) = \# of tuples in R
P(R) = \# of pages in R
```

```
Compute R \bowtie S \ on \ A:
```

for r in R:

for s in S:

if r[A] == s[A]:

yield (r,s)

Cost:

P(R)

1. Loop over the tuples in R

Note that our IO cost is based on the number of *pages* loaded, not the number of tuples!

```
T(R) = \# of tuples in R
P(R) = \# of pages in R
```

```
Compute R \bowtie S on A:

for r in R:

for s in S:

if r[A] == s[A]:

yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S)$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S

Have to read **all of S** from disk for **every tuple in R!**

```
T(R) = \# of tuples in R
P(R) = \# of pages in R
```

Compute $R \bowtie S \ on \ A$: for r in R:

for s in S:

Cost:

$$P(R) + T(R)*P(S)$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S

3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just check in the *if* statement!

```
T(R) = \# of tuples in R
 P(R) = \# of pages in R
```

Compute $R \bowtie S \text{ on } A$: for r in R:

for s in S:

if
$$r[A] == s[A]$$
:

Cost:

$$P(R) + T(R)*P(S) + OUT$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S
- 3. Check against join conditions
- 4. Write out (to page, then when page full, to disk)

```
T(R) = \# of tuples in R
P(R) = \# of pages in R
```

```
Compute R \bowtie S on A:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S) + OUT$$

What if R ("outer") and S ("inner") switched?

$$P(S) + T(S)*P(R) + OUT$$

Outer vs. inner selection makes a huge difference- DBMS needs to know which relation is smaller!

If any one of the relations fits entirely into the memory, it is a must to use that relation as the inner relation. It is because we will read the inner relation only once.

IO-Aware Approach

Block Nested Loop Join (BNLJ)

Buffer


```
Compute R \bowtie S \ on \ A:
 for each B-1 pages pr of R:
  for page ps of S:
   for each tuple r in pr:
     for each tuple s in ps:
      if r[A] == s[A]:
       yield (r,s)
```

Given **B+1** pages of memory

Cost:

P(R)

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we're reading in multiple pages sequentially however we'll ignore this here!

```
Compute R \bowtie S on A:
 for each B-1 pages pr of R:
  for page ps of S:
   for each tuple r in pr:
    for each tuple s in ps:
      if r[A] == s[A]:
       yield (r,s)
```

Given **B+1** pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S

Note: Faster to iterate over the *smaller* relation first!

Compute $R \bowtie S \ on \ A$:

for each B-1 pages pr of R:

for page ps of S:

for each tuple r in pr:

for each tuple s in ps:

$$if[r[A] == s[A]:$$

yield (r,s)

Given **B+1** pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check against the join conditions

BNLJ can also handle non-equality constraints

Compute $R \bowtie S \ on \ A$:

for each B-1 pages pr of R:

for page ps of S:

for each tuple r in pr:

for each tuple s in ps:

if
$$r[A] == s[A]$$
:

yield (r,s)

OUT could be bigger than P(R)*P(S)... but usually not that bad

Given **B+1** pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S) + \mathsf{OUT}$$

- Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check the join conditions

4. Write out

BNLJ vs. NLJ: Benefits of IO Aware

- In BNLJ, by loading larger chunks of R, we minimize the number of full disk reads of S
 - We only read all of S from disk for every (B-1)-page segment of R!
 - Still the full cross-product, but more done only in memory

NLJ

P(R) + T(R)*P(S) + OUT

BNLJ

$$P(R) + \frac{P(R)}{R-1}P(S) + OUT$$

BNLJ is faster by roughly $\frac{(B-1)T(R)}{P(R)}$!

BNLJ vs. NLJ: Benefits of IO Aware

NLJ

P(R) + T(R)*P(S) + OUT

BNLJ

$$P(R) + \frac{P(R)}{B-1}P(S) + \mathsf{OUT}$$

Ignore OUT
Assume IO cost 0.01 sec

- Example:
 - R: 500 pages
 - S: 1000 pages
 - 100 tuples / page
 - We have 12 pages of memory (B = 11)
- NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours
- BNLJ: Cost = $500 + \frac{500*1000}{10} = 50$ Thousand IOs ~= 0.14 hours

A very real difference from a small change in the algorithm!

Smarter than Cross-Products

From Quadratic to Nearly Linear

All joins that compute the full cross-product have some

NLJ

- quadratic term
- For example we saw:

$$P(R) + T(R)P(S) + OUT$$

BNLJ
$$P(R) + \frac{P(R)}{R-1}P(S) + OUT$$

- Now we'll see (nearly) linear joins:
 - ~ O(P(R) + P(S) + OUT), where again OUT could be quadratic but is usually better

We get this gain by **taking advantage of structure**- moving to equality constraints ("equijoin") only!

Index Nested Loop Join (INLJ)

```
Compute R \bowtie S \ on \ A:
```

Given index idx on S.A:

for r in R:

s in idx(r[A]):

yield r,s

Cost:

$$P(R) + T(R)*L + OUT$$

where **L** is the cost of finding matching S tuples. For each R tuple, cost of probing S index is about 2-4 for B+ tree. Cost of then finding S tuples depends on index clustering

→ We can use an index (e.g. B+ Tree) to avoid doing the full cross-product!

Summary

 We covered joins--an *IO aware* algorithm makes a big difference.

 Fundamental strategies: blocking and reorder loops (asymmetric costs in IO)

Can we do better/differently?
What happens if we have very large tables (that do not fit in memory?)

Returning to

Buffer Basics:

Efficiently merge two sorted files when both are much larger than our main memory buffer

The (Simplified) Buffer

- Read(page): Read page from disk -> buffer if not already in buffer
- **Flush(page):** Evict page from buffer & write to disk

Release(page): Evict page from buffer without writing to disk

Challenge: Merging Big Files with Small Memory

How do we *efficiently* merge two sorted files when both are much larger than our main memory buffer?

External Merge

External Merge Algorithm

- Input: 2 sorted lists of length M and N
- Output: 1 sorted list of length M + N
- **Required:** At least 3 Buffer Pages
- **IOs**: 2(M+N)

External Merge Algorithm

Georgia Koutrika © 2021

We can merge lists of **arbitrary length** with *only* 3 buffer pages.

If lists of size M and N, then

Cost: 2(M+N) IOs

Each page is read once, written once

What if our files are not sorted?

External Merge Sort

What you will learn about in this section

- 1. External merge sort
- 2. External merge sort on larger files
- 3. Optimizations for sorting

External Merge Sort

Why are Sort Algorithms Important?

- Data requested from DB in sorted order is **extremely common**
 - e.g., find students in increasing GPA order

Why not just use quicksort in main memory??

Average performance: O(n log n)

What about if we need to sort 1TB of data with 1GB of RAM...

A classic problem in computer science!

More reasons to sort...

• Sorting useful for eliminating *duplicate copies* in a collection of records (Why?)

• Sort-merge join algorithm involves sorting

Next lecture

So how do we sort big files?

- 1. SORT phase: Split into chunks small enough to sort in memory ("runs")
- MERGE phase: Merge pairs (or groups) of runs using the external merge algorithm
- 3. Keep merging the resulting runs (each time = a "pass") until left with one sorted file!

Example:

- 3 Buffer pages
- 6-page file

Orange file = unsorted

1. SORT phase:

Split into chunks small enough to sort in memory

Example:

- 3 Buffer pages
- 6-page file

Orange file = unsorted

1. SORT phase:

Split into chunks small enough to sort in memory

Example:

- 3 Buffer pages
- 6-page file

Orange file = unsorted

1. SORT phase:

Sort the current run in memory

Example:

- 3 Buffer pages
- 6-page file

Orange file = unsorted

1. SORT phase: Similarly for R2

Example:

- 3 Buffer pages
- 6-page file

2. MERGE phase:

Now just run the external merge algorithm & we're done!

Calculating IO Cost

External Merge Sort

For 3 buffer pages, 6 page file:

- Split into <u>two 3-page runs</u> and sort in memory
 Cost = 1 R + 1 W for each run = 2*(3 + 3) = 12 IO operations
- 2. Merge each pair of sorted chunks using the external merge algorithm

 Cost = 2*(3 + 3) = 12 IO operations
- 3. Total cost = 24 IO

Assume we still only have 3 buffer pages (Buffer not pictured)

Assume we still only have 3 buffer pages (Buffer not pictured)

1. **Split** into files small enough to sort in buffer

Assume we still only have 3 buffer pages (Buffer not pictured)

Call each of these sorted files a *run*

1. **Split** into files small enough to sort in buffer... and **sort**

2. Now merge pairs of (sorted) files... the resulting files will be sorted!

3. Repeat until all sorted!

Call each of these steps a *pass*

Simplified 3-page Buffer Version

Assume for simplicity that we split an N-page file into N single-page *runs* and sort these; then:

- First pass: Merge N/2 pairs of runs each of length 1 page
- Second pass: Merge N/4 pairs of runs each of length 2 pages
- In general, for N pages, we do $\lceil log_2 N \rceil$ passes
 - +1 for the initial split & sort
- Each pass involves reading in and writing out all the pages = 2N IO

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a time!

At the beginning, we can split the N pages into runs of length B+1 and sort these in memory

IO Cost:

$$2N(\lceil \log_2 N \rceil + 1) \qquad \qquad 2N(\left\lceil \log_2 \frac{N}{B+1} \right\rceil + 1)$$

Starting with runs of length 1

Starting with runs of length **B+1**

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge.

On each pass, we can merge groups of **B** runs at a time (vs. merging pairs of runs)!

IO Cost:

$$2N(\lceil \log_2 N \rceil + 1)$$

$$2N(\left[\log_2\frac{N}{B+1}\right]+1)$$

$$2N(\left[\log_{B}\frac{N}{B+1}\right]+1)$$

Starting with runs of length 1 Starting with runs of length **B+1**

Performing **B**-way merges

Repacking

Repacking for even longer initial runs

- With B+1 buffer pages, we can now start with B+1-length initial runs (and use B-way merges) to get $2N(\left\lceil \log_B \frac{N}{B+1} \right\rceil + 1)$ IO cost...
- Can we reduce this cost more by getting even longer initial runs?

 Use <u>repacking</u>- produce longer initial runs by "merging" in buffer as we sort at initial stage

Repacking Example: 3 page buffer

• Start with unsorted single input file, and load 2 pages

Repacking Example: 3 page buffer

• Take the minimum two values, and put in output page

Also keep track of max (last) value in current run...

Repacking Example: 3 page buffer

• Next, *repack*

Next, repack, then load another page and continue!

 Now, however, the smallest values are less than the largest (last) in the sorted run...

• Now, however, the smallest values are less than the largest (last) in the sorted run... Disk

• Now, however, the smallest values are less than the largest (last) in the sorted run... Disk

• Now, however, the smallest values are less than the largest (last) in the sorted run... Disk

• Once all buffer pages have a frozen value, or input file is empty, start new run with the frozen values Disk

• Once all buffer pages have a frozen value, or input file is empty, start new run with the frozen values Disk

Nested Loop Join Methods: Recap

```
T(R) = \# of tuples in R
P(R) = \# of pages in R
```

Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:

for s in S:

if r[A] == s[A]:

yield (r,s)

$$P(R) + T(R)*P(S) + OUT$$

Block Nested Loop Join (BNLJ)

Compute $R \bowtie S \ on \ A$:

for each B-1 pages pr of R:

for page ps of S:

for each tuple r in pr:

for each tuple s in ps:

if
$$r[A] == s[A]$$
:

yield (r,s)

$$P(R) + \frac{P(R)}{B-1}P(S) + \mathsf{OUT}$$

Index Nested Loop Join (INLJ)

Compute $R \bowtie S \ on \ A$:

Given index idx on S.A:

for r in R:

s in idx(r[A]):

yield r,s

$$P(R) + T(R)*L + OUT$$

External Merge Sort Algorithm: Recap

- 3 Buffer pages
- 6-page file

1. Split into chunks small enough to sort in memory

External Merge Sort Algorithm: Recap

- 3 Buffer pages
- 6-page file

1. Split into chunks small enough to sort in memory

External Merge Sort Algorithm: Recap

- 3 Buffer pages
- 6-page file

Do the same for F2

- 1. Split into chunks small enough to sort in memory
- 2. Sort in memory
- 3. Run the external merge algorithm

86

More on Join Methods

1. Sort-Merge Join (SMJ)

2. Hash Join (HJ)

Sort Merge Join (SMJ): Basic Procedure

To compute $R \bowtie S \ on \ A$:

Note that we are only considering equality join conditions here

- 1. Sort R, S on A using *external merge sort*
- 2. Scan sorted files and "merge"

Note that if R, S are already sorted on A, SMJ will be awesome!

$R \bowtie S \ on \ A \ with 3 \ page \ buffer$

• For simplicity: Let each page be *one tuple*, and let the first value be A

 $R \bowtie S \ on \ A \ with 3 \ page \ buffer$

1. Sort the relations R, S on the join key (first value)

 $R \bowtie S \ on \ A \ with 3 \ page \ buffer$

2. Scan and "merge" on join key!

 $R \bowtie S \ on \ A \ with 3 \ page \ buffer$

2. Scan and "merge" on join key!

 $R \bowtie S \ on \ A \ with 3 \ page \ buffer$

2. Scan and "merge" on join key!

What happens with duplicate join keys?

"Backup"

"Backup"

"Backup"

"Backup"

"Backup"

1. Start with sorted relations, and begin scan / merge...

Georgia Koutrika © 2021

Backup

- At best, no backup \rightarrow scan takes P(R) + P(S) reads
 - For ex: if no duplicate values in join attribute
- At worst (e.g. full backup each time), scan could take P(R) * P(S) reads!
 - For ex: if *all* duplicate values in join attribute, i.e. all tuples in R and S have the same value for the join attribute
 - Roughly: For each page of R, we'll have to back up and read each page of S...
- Often not that bad however, plus we can:
 - Leave more data in buffer (for larger buffers)

SMJ: Total cost

- Cost of SMJ is cost of sorting R and S...
- Plus the cost of scanning: ~P(R)+P(S)
 - Because of backup: in worst case P(R)*P(S); but this would be very unlikely
- Plus the cost of writing out: ~P(R)+P(S) but in worst case T(R)*T(S)

$$\sim$$
 Sort(P(R)) + Sort(P(S)) + P(R) + P(S) + OUT

Recall: Sort(N)
$$\approx 2N \left(\left[\log_B \frac{N}{2(B+1)} \right] + 1 \right)$$

Note: this is using repacking, where we estimate that we can create initial runs of length ~2(B+1)

SMJ vs. BNLJ

$$Sort(P(R)) + Sort(P(S)) + P(R) + P(S) + OUT$$

SMJ

$$P(R) + \frac{P(R)}{B-1}P(S) + \mathsf{OUT}$$

BNLJ

- If we have B+1=100 buffer pages, P(R) = 1000 pages and P(S) = 500 pages:
 - Sort both in two passes: 2 * 2 * 1000 + 2 * 2 * 500 = 6,000 IOs
 - Merge phase 1000 + 500 = 1,500 IOs
 - = 7,500 lOs + OUT

What is BNLJ?

- $500 + 1000* \left[\frac{500}{98} \right] = 6,500 \text{ IOs} + \text{OUT}$
- But, if we have 35 buffer pages?
 - Sort Merge has same behavior (still 2 passes)
 - BNLJ? <u>15,500 IOs + OUT!</u>

SMJ is ~ linear vs. BNLJ is quadratic... But it's all about the memory.

A Simple Optimization: Merges Merged!

Given **B+1** buffer pages

- SMJ is composed of a *sort phase* and a *merge phase*
- During the sort phase, run passes of external merge sort on R and S
 - Suppose at some point, R and S have <= **B** (sorted) runs in total
 - We could do two merges (for each of R & S) at this point, complete the sort phase, and start the merge phase...
 - OR, we could combine them: do one B-way merge and complete the join!

Un-Optimized SMJ

Given **B+1** buffer pages

Unsorted input relations

Simple SMJ Optimization

Given **B+1** buffer pages

Unsorted input relations

Simple SMJ Optimization

Given **B+1** buffer pages

- Now, on this last pass, we only do P(R) + P(S) IOs to complete the join!
- If we can initially split R and S into B total runs each of length approx. <= 2(B+1),
 assuming repacking lets us create initial runs of ~2(B+1)- then we only need 3(P(R) +
 P(S)) + OUT for SMJ!
 - 2 R/W per page to sort runs in memory, 1 R per page to B-way merge / join!
- How much memory for this to happen?

$$- \frac{P(R) + P(S)}{B} \le 2(B+1) \Rightarrow \sim P(R) + P(S) \le 2B^2$$

- Thus, $max{P(R), P(S)} \le B^2$ is an approximate sufficient condition

If the larger of R,S has \leq B² pages, then SMJ costs 3(P(R)+P(S)) + OUT!

Takeaway points from SMJ

If input already sorted on join key, skip the sorts.

- SMJ is basically linear.
- Nasty but unlikely case: Many duplicate join keys.