

Machine Learning

Logistic Regression

Simplified cost function and gradient descent

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\operatorname{Note:} y = 0 \text{ or } 1 \text{ always}$$

$$\operatorname{Cost}(h_{\theta}(x), y) = -(y) \operatorname{Cost}(h_{\theta}(x)) - ((-y) \operatorname{Cost}(1 - h_{\theta}(x)))$$

$$\operatorname{Tf} y = 1 : \operatorname{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

$$\operatorname{Tf} y = 0 : \operatorname{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$
 Great Θ

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat
$$\{$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\{ \text{Simultaneously update all } \theta_j \}$$

$$\{ \text{Simultaneously update all } \theta_j \}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$
 Want $\min_{\theta} J(\theta)$:
$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$\text{(simultaneously update all } \theta_j)$$

Algorithm looks identical to linear regression!