Inferência Bayesiana Lista 2 de Exercícios

Prof. Bruno Santos

- 1. Seja X_1, \ldots, X_n uma amostra aleatória da distribuição Exponencial (θ) .
 - a) Mostre como construir um intervalo de credibilidade para θ usando uma distribuição a priori conjugada e também com a priori de Jeffreys.
 - b) Suponha que queremos testar $H_0 = \theta = 1$ contra $H_1 : \theta \neq 1$. Considere a priori $\theta|H_1 \sim \text{Gama}(3,3)$. Para n = 4, $\bar{x} = 1$, $4 \in p_0 = 1/2$, calcule $P(H_0|x)$ e o fator de Bayes a favor de H_0 .
- 2. Pretende-se testar $H_0: \mu = \mu_0$ contra $H_1: \mu \neq \mu_0$ considerando n observações do modelo $N(\mu, \sigma^2)$, com σ^2 conhecido.
 - i) $P\{\mu = \mu_0\} = p_0$;
 - ii) $\mu | H_1 \sim N(\mu_0, b^2)$.

Encontre o fator de Bayes a favor da hipótese nula.

- 3. Reconsidere o exercício 9 da Lista 1.
 - a) Para a distribuição a priori considerada no item a), obtenha $P(\theta_A < \theta_B | y_A, y_B)$ considerando amostras de Monte Carlo. Apresente o programa computacional utilizado.
 - b) Para alguns valores de n_0 , obtenha

$$P(\theta_A < \theta_B | y_A, y_B)$$

para $\theta_A \sim \text{Gama}(120, 10)$ e $\theta_B \sim \text{Gama}(12 \times n_0, n_0)$. Descreva o quão sensível as conclusões sobre o evento $\{\theta_A > \theta_B\}$ são com respeito à distribuição a priori em θ_B .

4. Os dados "CoalDisast.csv" dizem respeito a desastres verificados em minas de carvão na Grã-Bretanha de 1851 a 1962. Suponha que Y_i representa o número de desastres no ano t_i e que haja uma quebra no comportamento das taxas de ocorrência no k-ésimo ano dos dados, expressado por $Y_i \sim Poisson(\theta)$ para i = 1, 2, ..., k e $Y_i \sim Poisson(\lambda)$ para i = k + 1, k + 2, ..., n.

Admita que os parâmetros do modelo θ , λ , k são independentes a priori, k com distribuição uniforme $\{1,2,...,n\}$, $\theta \sim Gama(a_1,b_1)$, $\lambda \sim Gama(a_2,b_2)$. Para os hiperparâmetros assuma uma estrutura hierárquica, em que b_1 e b_2 são independentes com $b_1 \sim Gama(0,0001;d_1)$ e $b_2 \sim Gama(0,0001;d_2)$ e $a_1 = a_2 = 0,5$. Considere d_1 e d_2 conhecidos e iguais a 1.

Usando o amostrador de Gibbs, estime os parâmetros do modelo e obtenha representações gráficas das distribuições a posteriori.

1

5. Os dados "Wage.txt" correspondem a n=1.217 observações de uma pesquisa feita nos Estados Unidos (*National Longitudinal Survey of Youth (NLSY*)). A primeira coluna é o logaritmo do salário por hora (Y) de cada indivíduo e a segunda coluna apresenta os anos de educação (X).

Considere um modelo de regressão linear simples, em que

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

em que $\epsilon_i \sim N(0, \sigma^2)$. Considere que $\sigma^2 = 0,2668$ e assuma uma distribuição Normal a priori para cada β_i , com média $b_0 = 0$ e variância $B_0 = 10$.

- a) Obtenha amostras da distribuição a priori de $\beta = (\beta_1, \beta_0)$, utilizando amostrador de Gibbs. Obtenha uma estimativa do estimador de Bayes para cada parâmetro, considerando a perda quadrática. E construa um intervalo de credibilidade de 95% para cada parâmetro.
- b) Refaça o item a), porém centralizando a variável preditora (X), isto é, subtraindo todas as observações pela média amostral. Compare as cadeias geradas em cada um itens e comente as diferenças.
- 6. Considere duas variáveis aleatórias, X e Y, em que exista o interesse em modelar a correlação ρ entre essas duas variáveis. Suponha que essas variáveis possam ser modeladas com uma distribuição Normal bivariada

$$\begin{pmatrix} X \\ Y \end{pmatrix} \mid \rho \sim N(\mu, \Sigma) \tag{1}$$

em que $\mu = (\mu_x \quad \mu_y)^t$ e

$$\Sigma = egin{bmatrix} \sigma_{\!\scriptscriptstyle \chi\chi} &
ho \
ho & \sigma_{\!\scriptscriptstyle yy} \end{bmatrix}$$

Assuma que $\mu_x = \mu_y = 0$, $\sigma_{xx} = \sigma_{yy} = 1$.

- a) Escreva a verossimilhança considerando uma amostra de pares (X_i, Y_i) com n observações.
- b) Considerando a priori de Jeffreys,

$$\pi(\mu,\Sigma)=|\Sigma|^{-3/2},$$

escreva a distribuição a posteriori de ρ , a menos de uma constante de proporcionalidade.

- c) Gere 30 valores da distribuição Normal em (1) e escreva um algoritmo de Metropolis-Hastings para obter 1000 amostras da distribuição a posteriori de ρ , considerando as seguintes propostas.
 - $\rho^{\text{prop}} \sim \text{Uniforme}(\rho^{i-1} \delta_u, \rho^{i-1} + \delta_u);$
 - $-\rho^{\text{prop}} \sim \text{Normal}(\rho^{i-1}, \delta_n);$
 - $-\rho^{\mathrm{prop}} \sim \mathrm{Gama}(\rho^{i-1} * \delta_g, \delta_g).$

Ajuste os valores δ_u , δ_n , δ_g para obter taxas de aceitação do algoritmo entre 0,15 e 0,50.