Appendix 5. Simulated Tissues

The body mixture consists of water, Polysorbate (Tween 20) and salt. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

Ingredient	Frequency 835/850/900 MHz						
(% by weight)	Head	Body					
De-Ionized Water	52.87	71.30					
Polysorbate 20	46.10	28.00					
Salt	1.03	0.70					

Issue Date: 10 September 2014

Appendix 6. System Check and Dielectric Parameters

Dielectric Property Measurements: The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within ± 2°C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 to 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

System Performance Check: Prior to the assessment, the system was verified in the flat region of the phantom, 900 MHz dipole was used. A forward power of 250 mW was applied to the 900 MHz and the system was verified to a tolerance of $\pm 5\%$ for the 900MHz dipole.

The applicable verification normalised to 1 Watt.

Site 57:

System Check 900 Head Date: 20/08/2014

Validation Dipole and Serial Number: D900V2 SN: 035

Simulant	Frequency (MHz)	Room Temp	Liquid Temp	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
Head	900	23.0	22.0	ε _r	41.50	41.00	-1.20	5.00
				σ	0.97	0.95	-1.65	5.00
				1g SAR	10.50	10.48	-0.19	5.00
				10g SAR	6.69	6.84	2.24	5.00

Site 56:

System Check 900 Body

Date: 20/08/2014

Validation Dipole and Serial Number: D900V2 SN: 035

Simulant	Frequency (MHz)	Room Temp	Liquid Temp	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
	900	23.0	22.5	ε _r	55.00	52.43	-1.04	5.00
Body				σ	1.05	1.01	-3.62	5.00
Body				1g SAR	10.40	9.92	-4.62	5.00
				10g SAR	6.73	6.60	-1.93	5.00

Issue Date: 10 September 2014

Appendix 7. Measurement Uncertainty Table

Measurement uncertainty tables for technologies tested.

A.7.1. Uncertainty - UMTS FDD 5 Head Configuration 1g

Туре	Source of uncertainty	+	_	Probability	Divisor	C _{i (1g)}	Stan Uncer	υ _i or	
31		Value	Value	Distribution		. (.9)	+ u (%)	- u (%)	Veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	8
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	× ×
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	8
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.510	2.510	normal (k=1)	1.0000	1.0000	2.510	2.510	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	8
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	8
Α	Liquid Conductivity (measured value)	2.950	2.950	normal (k=1)	1.0000	0.6400	1.888	1.888	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	8
А	Liquid Permittivity (measured value)	2.840	2.840	normal (k=1)	1.0000	0.6000	1.704	1.704	5
	Combined standard uncertainty			t-distribution			9.58	9.58	>500
	Expanded uncertainty			k = 1.96			18.77	18.77	>500

Issue Date: 10 September 2014

A.7.2. Uncertainty Rate- UMTS FDD 5 Body Configuration 1g

Type	Source of uncertainty	+	-	Probability	Divisor	C _{i (1g)}	Stan Uncer	υ _i or	
. , , , ,		Value	Value	Distribution	2111001	OI (Ig)	+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	oc
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	oc
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	oc
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	oc o
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	oc
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	oc
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	× ×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	oc
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	oc
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	× ×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration /Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.510	2.510	normal (k=1)	1.0000	1.0000	2.510	2.510	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	2.000	2.000	normal (k=1)	1.0000	0.6400	1.280	1.280	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	1.560	1.560	normal (k=1)	1.0000	0.6000	0.936	0.936	5
	Combined standard uncertainty			t-distribution			9.37	9.37	>500
	Expanded uncertainty			k = 1.96			18.36	18.36	>500

Appendix 8. 3G Test set-up

The module power levels were measured in both HSPA and 3G RMC 12.2kbps modes and compared to ensure the correct mode of operation had been established.

The following tables taken from FCC 3G SAR procedures (KDB 941225 D01 SAR test for 3G devices v02) below were applied using an wireless communications test set which supports 3G / HSDPA release 5 / HSUPA release 6.

Sub-test Setup for Release 5 HSDPA										
Sub-test	βς	eta_d	B _d (SF)	$\beta_{c/}\beta_d$	β _{hs} ⁽¹⁾	SM (dB) ⁽²⁾				
1	2/15	15/15	64	2/15	4/15	0.0				
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0				
3	15/15	8/15	64	15/8	30/15	1.5				
4	15/15	4/15	64	15/4	30/15	1.5				

Note 1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_{c/}$ β_{d} = 12/15, B_{hs}/β_{c} = 24/15

Note 3: For subtest 2 the $\beta_{c/}$ β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$

Sub-	Sub-test Setup for Release 6 HSUPA												
Sub- test	βε	βd	B _d (SF)	βαβα	β _{hs} ⁽¹⁾	B _{oc}	B _{od}	B _{od} (SF)	B _{od} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴) Inde	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	31/15	B _{al1} : 47/15 B _{al2} : 47/15	4	1	2.0	1.0	15	92
4	2/15	15/15	64	2/15	2/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	24/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_{c'}/\beta_d$ = 12/15, B_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH AND E-DPCCH for the Power Back-off is based on the relative CM difference.

Note 3: For subtest 1 the $\beta_{c'}$ β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.

Note 4: For subtest 5 the $\beta_{c'}$ β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: Bod can not be set directly; it is set by Absolute Grant Value.

Issue Date: 10 September 2014