ReSight: Building the Future of Pet Industry Analytics

ETL Infrastructure Strategic Overview

Nathan Lunceford

2025-01-21

Table of contents

1 Executive Overview			2
	1.1	Current State Analysis (2024)	2
		1.1.1 Daily Processing Statistics	2
		1.1.2 Load Distribution Analysis	2
		1.1.3 Data Volume Patterns	2
	1.2	Target State (2026)	3
	1.3	Growth Requirements	3
2	Infra	astructure Strategy	4
	2.1	Core Requirements	4
		2.1.1 Scalability	4
		2.1.2 Real-time Processing	4
		2.1.3 Advanced Analytics	4
		2.1.4 Reliability	4
	2.2	Key Performance Indicators	4
3	lmp	lementation Roadmap	5
	3.1	Phase 1: Foundation (Q1 2025)	5
	3.2	Phase 2: Scaling (Q2-Q3 2025)	5
	3.3	Phase 3: Optimization (Q4 2025)	5
	3.4	Phase 4: Enterprise Scale (2026)	5
4	Con	clusion	5

1 Executive Overview

ReSight is positioning itself to become the authoritative source of truth and insights for the U.S. pet industry. This transformation requires a robust, scalable ETL infrastructure capable of processing comprehensive industry data at scale.

1.1 Current State Analysis (2024)

Our current ETL infrastructure demonstrates significant daily processing capacity with notable variability in workload:

1.1.1 Daily Processing Statistics

Metric	Typical Day (Median)	Peak Day	Average (Mean)
Loads Processed Rows Processed	40 70,588	303 824,719	59.2 105,218
	Flexible	Flexible	Flexible

1.1.2 Load Distribution Analysis

• Daily Load Range: 1-303 loads per day

• Typical Range (Q1-Q3): 24-65 loads per day

• Standard Deviation: 54.8 loads, indicating high variability

• Processing Reliability: 361 days of consistent operation with no outages

1.1.3 Data Volume Patterns

• **Daily Row Range**: 28-824,719 rows

• Typical Range (Q1-Q3): 15,606-159,225 rows

• Volume Variability: Standard deviation of 115,282 rows

• Processing Success Rate: 100% (no missing days)

Metric	Value	Growth Factor

1.2 Target State (2026)

Metric	Value	Growth Factor
Daily Loads	400+/day	10x current median
Data Volume	700K+ rows/day typical	10x current median
Data Sources	1000+ integrated sources	10x current scale
Complexity	High (ML pipelines, real-time analytics)	Significant increase
Processing Window	Near real-time requirements	Minutes vs. flexible

1.3 Growth Requirements

Our next-generation ETL pipeline must support:

1. Scalable Data Integration

- Handle 10x increase in daily load frequency
- Process 10x current data volumes
- Support 10x growth in data source connections
- Maintain sub-minute processing latency

2. Advanced Processing Capabilities

- Real-time data transformation
- Predictive analytics pipelines
- Machine learning model integration
- Market insight generation

3. Enterprise-Scale Operations

- Consistent high-volume processing
- 24/7 operation with high availability
- Real-time data freshness
- Industry-leading security controls

2 Infrastructure Strategy

2.1 Core Requirements

2.1.1 Scalability

- Support for 400+ daily loads (10x current median)
- Peak capacity of 8M+ rows per day
- Elastic resource allocation
- Horizontal scaling support

2.1.2 Real-time Processing

- Sub-minute processing latency
- Streaming data ingestion
- Real-time analytics pipelines
- Event-driven architecture

2.1.3 Advanced Analytics

- ML pipeline integration
- Complex data transformations
- Data science toolkit support
- Predictive modeling capability

2.1.4 Reliability

- Zero downtime (matching current 100% reliability)
- Automated failover
- Comprehensive monitoring
- Proactive scaling

2.2 Key Performance Indicators

Metric	Current (2024)	Target (2026)
Daily Loads (Median)	40	400+
Peak Daily Loads	303	3000+
Daily Rows (Median)	$70,\!588$	700K +
Peak Daily Rows	824,719	8M+

Metric	Current (2024)	Target (2026)
Processing Latency Data Sources	Hours ~100	Minutes 1000+

3 Implementation Roadmap

3.1 Phase 1: Foundation (Q1 2025)

- Scale current infrastructure to handle 2x current peak load
- Implement comprehensive monitoring
- Begin real-time processing pilot

3.2 Phase 2: Scaling (Q2-Q3 2025)

- Deploy new stream processing architecture
- Expand data source integration capacity
- Implement ML pipeline framework

3.3 Phase 3: Optimization (Q4 2025)

- Fine-tune real-time processing
- Scale to 5x current capacity
- Deploy advanced analytics capabilities

3.4 Phase 4: Enterprise Scale (2026)

- Achieve full target state capabilities
- Complete migration to real-time processing
- Deploy full ML/AI integration

4 Conclusion

This ETL infrastructure strategy outlines our path from current state to future vision, supporting ReSight's goal of becoming the authoritative analytics platform for the pet industry. Our implementation roadmap ensures a methodical progression toward our 2026 targets while maintaining our current high standards of reliability and data quality.

Key success factors include:

- $\bullet\,$ Maintaining 100% reliability while scaling 10x in load frequency
- Achieving sub-minute processing latency
- Supporting 10x growth in data sources
- Enabling real-time analytics and ML integration