

Universidade de Brasília

Departamento de Ciência da Computação

Disciplina: CIC 116394 – Organização e Arquitetura de Computadores – Turma A Prof. Marcus Vinicius Lamar

d0 d1 /d2 d3 d4 d5 d6 d7 d8

2014/1

ome: CABARITO Matrícula: DD/DDD

Prova 2

1)(7.0) Hoje em dia, um dos maiores gargalos dos sistemas computacionais é o acesso à memória RAM. O uso da memória cache minimiza esse problema pelo uso de um sistema de hierarquia. Considere uma memória principal SRAM de 4 GiB, que necessita sempre 4 ciclos de clock (independente da frequência) para cada acesso (leitura ou escrita) de uma word (32 bits). Uma memória cache de dados de tamanho convencional de 1 kiB, com bloco de tamanho 4 words, que necessita apenas 1 ciclo de clock para cada acesso. Considere que nunca ocorram falhas na memória de instruções.

Obs: os 4 bits do 'Byte enable' selecionam a combinação dos bytes dos 'Dados para escrita' a serem escritos na memória.

- a) (3.0) Projete uma MMU (Memory Management Unit) simples (máquina de estados) que receba um sinal de hit da cache de dados diretamente mapeada, gere um sinal de StallMem para o bloco de controle do processador, e faça o tratamento das falhas, tanto para leitura quanto para escrita (write-through) na memória SRAM.
- b) (2.0) Modifique adequadamente o Caminhos de Dados e o Bloco Controlador do MIPS MULTICICLO fornecidos em anexo de forma a implementar adequadamente as instruções: lw, lb, sw e sb
- c) (2.0) Modifique adequadamente o Caminhos de Dados e o Bloco Controlador do MIPS PIPELINE fornecidos em anexo de forma a implementar adequadamente as instruções: lw, lb, sw e sb
- 2)(4.0) Considerando o uso da estrutura de memória da questão 1) e os seguintes tempos de atraso das unidades operativas do caminho de dados:

Unidade	Tempo
Operações com a ULA	150ps
Leitura/Escrita no Banco de Registradores	50ps
Acesso à memória cache de instruções/dados	200ps

Considere \$a0=0, e que a memória cache de dados esteja vazia no início da execução do procedimento PROC.

- a) (1.0) Para a implementação uniciclo, qual será a maior frequência de clock utilizável?
- b) (1.0) Para a implementação multiciclo vista em aula, qual será a maior frequência de clock utilizável? Qual o tempo necessário para a execução deste procedimento? jr necessita 3 ciclos e addi necessita 4 ciclos.
- c) (1.0) Qual o tempo de execução da implementação pipeline, se todos os hazards e falhas da cache forem tratados apenas com inserção de bolhas? Indique no espaço reservado ao lado, o número de bolhas necessário (obs.: se não houver necessidade de bolha coloque 'zero'). Considere que os registradores podem ser lidos e escritos no mesmo ciclo, que o branch previsto como não tomado é avaliado na etapa EX, e a instrução jr necessita 2 ciclos.
- d) (1.0) Qual o tempo de execução para implementação em pipeline, se os hazards forem tratados eficientemente pelo processador com forwarding e/ou inserção de bolhas? Preencha o pipeline esquemático na folha em anexo

indicando as instruções, bolhas e forwards necessários. Considere que os registradores podem ser escritos e lidos no mesmo ciclo, que o branch previsto como não tomado é avaliado na etapa ID, e a instrução jr necessita 2 ciclos.

No pipeline desconsidere o tempo de latência

Boa Sorte!!!

ESTRUTURA PA MEMORIA COMPORME DESCRITO Na Folha

05)

Instrução	Linhas de controle do estágio de cálculo de endereço/execução							
	RegDst	OpALU1	OpALU0	OrigALU				
Formato R	1	1	0	0				
Ìw	0	0	0	1				
SW	х	0	0	1				
beq	Х	0	1	0				
Lb	0	Ð	0	1				
5h	×	0	D	1				

ESTRUTURA DA MENJALA DEDADOS CONFORME DESCRITO Na Folha.

05)

		e controle c			
Instrução	Branch	LeMem	Escreve Mem	15	
Formato R	0	0	0	0	
1w	С	1	0	0	
SW	0	0	1	0	
beq	1	0	0	۵	
16	0	1	Q	1	
5h	D	۵	1	1	
					

	do est	e controle ágio de resultado			
Instrução	Escreve Reg	Mem para Reg			
Formato R	1	0			
1w	1	1			
SW	0	х			
beq	0	х			
15	1	1			
3b	0	X			

- 2)
 a) Uniciclo: instrução mais letta = 500 clero na cache
 (5)

 T = 200p+ 50p+ 150p+ 200p+ 32.T1 +50p = 650p+32.T1

 T1 = 1 Frequência De accesso à snam

 [= 1]

 T1 = 1 Frequência De accesso à snam

 [= 1]

 T(0,5)
- b) MULTICICIO: ETAPA Mais Lorga (larsiperaro Ti: 200ps + bm)

 T = 200ps = f = 56Hz/ 95)

 Nºcicios = (5+16) + 5 + 4 + (4+32) + 4 + (5+16) + 5 + 4 + (4+16) + 3+3

 = 126

 t = 126 × 200p = 25,2 n 5/ 95)
- d) Pipe line of Fermand T=200ps

 Nociclos = 1+16+1+1+1+1+32+1+1+16+1+1+1+

 +1+16+1+1+1=.11+83=94

 t=94x200p=18,845/10) peths