

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (four - year) Degree in Applied Sciences

Fourth Year - Semester I Examination - September/October 2019

PHY 4210 - ADVANCED QUANTUM MECHANICS

Time: Two (02) hours

Answer all four questions

Unless otherwise specified all symbols have their usual meaning.

- 1. A particle moves in 1-D in the presence of an attractive potential V(x) which is infinite for x < 0, is equal to the constant value $-V_0$ in the region 0 < x < a, and is equal to 0 for x > a.
 - a) Obtain the functional form of positive energy solutions (E > 0) to the energy eigenvalue equation in the three regions of interest. (10 marks)
 - b) What are the appropriate boundary conditions for this system at x = 0 and x = a? (06 marks)
 - c) Applying the boundary conditions, determine up to a single normalization constant A, the eigenstates of this system for positive energy solutions. For what energies, if any, are the solutions with E > 0 square normalizable?

(09 marks)

- 2. a) Describe the five basic postulates of quantum mechanics. (10 marks)
 - b) An operator \hat{A} is said to be Hermitian if it satisfies the condition $\langle \psi_1 | \hat{A} \psi_2 \rangle = \langle \hat{A} \psi_1 | \psi_2 \rangle$ for any two functions ψ_1 and ψ_2 of the function space which the operator \hat{A} acts on. Prove that the momentum operator $-i\hbar \overline{\nabla}$ is Hermitian.

(08 marks)

c) Show that the eigenvalues of a Hermitian operator are real. (07 marks)

- 3. a) Prove the following operator identities:
 - (i) $\left[\hat{A}, \hat{B} + \hat{C}\right] = \left[\hat{A}, \hat{B}\right] + \left[\hat{A}, \hat{C}\right]$ (05 marks)

(ii) $[\hat{A}, \hat{B}^{-1}] = -\hat{B}^{-1}[\hat{A}, \hat{B}]\hat{B}^{-1}$ (05 marks)

- b) If \hat{A} and \hat{B} are Hermitian operators, then show that the product $\hat{C} = \hat{A}\hat{B}$ is Hermitian, only if $[\hat{A}, \hat{B}] = 0$. (07 marks)
- c) If \hat{A} and \hat{B} are integrals of motion, then show that $i[\hat{A}, \hat{B}]$ is also an integral of motion.

Hint: If \hat{A} and \hat{B} are integrals of motion, then they commute with \hat{H} .

(08 marks)

4. a) Use the variational method to calculate the ground state energy of a harmonic oscillator using a family of trial functions of the form $e^{-\beta x^2}$, where β is a variational parameter. Compare the results with the exact value of the ground state energy. The one-dimensional harmonic oscillator Hamiltonian is

 $\widehat{H} = \frac{\widehat{p}^2}{2m} + \frac{1}{2}m\omega_0^2 x^2. \tag{18 marks}$

b) If we repeat the calculation in (a) using a family of trial functions of the form $xe^{-\beta x^2}$, then the result is $\frac{3}{2}\hbar\omega_0$. Compare and explain the difference between the calculation in (a) with the result of (b) with respect to even and odd trial functions. (07 marks)

Helpful integrals:

$$\int_0^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{4\alpha}} \quad \text{and} \quad \int_0^\infty x^2 e^{-\alpha x^2} dx = \frac{1}{4\alpha} \sqrt{\frac{\pi}{\alpha}}$$

$$\int_{-\pi/\alpha}^{\pi/\alpha} \sin^2(\alpha x) dx = \pi/\alpha \quad \text{and} \quad \int_{-\pi/\alpha}^{\pi/\alpha} x^2 \sin^2(n\alpha x) dx = \pi(2n^2\pi^2 - 3)/6n^2\alpha^3$$