CODE CONVERTERS

10/5/2021 Lecture 5

Code converters

- A code converter circuit will convert coded information in one form to a different coding form.
- Coded representation for 10 decimal symbols is known as binary coded decimal (or BCD) or decimal codes.
- Minimum 4-bits are required to represent decimal symbol.
- Out of 16, 4-bit combinations, only 10 combinations are used to represent 10 decimal symbols and remaining 6 will not be used (don't cares)

Binary and Binary coded Decimal(BCD)

Decimal	Binary	BCD	(0
0	0000	0000	./ \/
	11	11	0000
9	1001	1000	0001
10	1010	00000000	7 8421 BCD code
11	1011	1000 1000	8421
12	1100	0001001	o \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
13	1101	1100 1000	
67		0110 0111	
90		1001 0000	
23		00100011	

Difference between binary and BCD representation

(28)₁₀

Binary representation: (11100) 2

8421 BCD representation: (0010 1000) 2

Introduction to BCD codes (4-615)

Weighted codes = 8421, 84-2-1, 84-2-1 **Gray code** 8421 Excess 3 2421 **Decimal** digit (BCD) Self-Complementary 0000 0 . 0000 0011 0000 0000 codes 0001 -> Excess -3 0001 0100 0111 0001 0011 84-2-1 0010/1000 0101 0110 0010 2421 00010 0011 1001 3 0101 0011 0110 .0100 [0]0 0111 0100 4 0100 0100 = 0111 1011 \$1011 Olo 1 0101 1000 🗸 5 >100 Dud 0/01 6 0110 1001 1010 0111 1010 (101) 0100 1001 0111 1000 1011 / 1100 8 1000 1100 / 1111 1101 1001 0000 0000,0001 0001,0010, 1000 Don't cares 1010, 1011 1110, 1111 0011 1001 000 00N, 1100, 0001,0101 1011,0100 וסוו,ס סוו 16 10 1101,110 010,1011 100 1001,1001 10/5/2021 | [0 , |] | 1110, 1111

Complements

Are used for simplifying the subtraction operation and for logical manipulation.

There are two complements for each base:

- (R-1)'s complement (Diminished radix complement)
- R's complement (Radix complement)

(R-1)'s complement of a number is $(R^n-1)-N$ single degit no R=1 Where $R \rightarrow b$ base R=1 N R=1

10/5/2021

R's complement

R's complement of a number is $R^n - N$ Where $R \rightarrow base$

N → number who's complement is to be takenn → number of digits/bits in the number N

Examples: R=2, N=0, 2's complete of a no g's complete I=8 $R^{n}-N=1$ single bit = n=1 $R^{n}-N=1$ N=0, $R^{n}-N=1$ N=0, $R^{n}-N=1$ N=0,

Ex: R = 10, n = 1 (R - 1)S = 9S (R' - 1) - N = (9 - N) = 9S completely N N = 8 = 19 - 8 = 1ken 9S completely 8 ■ Any questions?