3

વિદ્યુતચુંબકીય તરંગો

3.1 પ્રસ્તાવના (Introduction)

મિત્રો, સવારે તમે જ્યારે જાગો ત્યારે સોનેરી (પીળા-કેસરી) રંગનો સૂર્ય પૂર્વ દિશામાં ઊગતો નિહાળ્યો હશે. આ ઉપરાંત તમે રંગબેરંગી પક્ષીઓ, લીલાં છોડ-ઝાડ અને તેના પરના રંગબેરંગી ફૂલ-ફળ વગેરે નિહાળતાં હશો. આ બધું આપણે કેવી રીતે જોઈ શકીએ છીએ? તમે કહેશો કે આંખ દ્વારા જોઈએ છીએ અને આપણું મગજ તે દશ્યનું પૃથક્કરણ કરે છે. પરંતુ આપણી આંખ કેવી રીતે નિહાળે છે? આ બધું વિદ્યુતચુંબકીય તરંગોને આભારી છે. આપણી આંખ દશ્યપ્રકાશના વિદ્યુત ચુંબકીય તરંગોની મદદથી દશ્ય જોઈ શકે છે. સૂર્યમાંથી ઉદ્ભવતાં દશ્યપ્રકાશનાં (અને બીજાં) કિરણો પૃથ્વી પર પહોંચે છે. પશુ-પંખી, ફળ-ફૂલ વગેરે તેમના રંગને અનુરૂપ જુદી-જુદી તરંગલંબાઈ (કે આવૃત્તિ)વાળા દશ્યપ્રકાશના વિદ્યુતચુંબકીય તરંગોને પરાવર્તિત કરે છે, જેના કારણે જે-તે રંગનો પદાર્થ આપણે જોઈ શકીએ છીએ.

ઓગણીસમી સદીમાં મહાન વિજ્ઞાની મેક્સવેલે વિદ્યુત અને ચુંબકત્વના નિયમો, જેવા કે ગાઉસનો નિયમ, ઍમ્પિયરનો નિયમ, ફેરેડેનો નિયમ અને ચુંબકીય ક્ષેત્રરેખાઓ વડે રચાતાં બંધ ગાળા જેવી હકીકતને વિકલ સમીકરણોના રૂપમાં રજૂ કર્યા, જે વિદ્યુત્તચુંબકીય તરંગોની વિચારધારા તરફ દોરી ગયું. આ વિકલ સમીકરણોને જયારે વિદ્યુત અને ચુંબકીય ક્ષેત્રોની સંમિતિના સંદર્ભમાં તપાસવામાં આવ્યાં, ત્યારે ઍમ્પિયરના નિયમના સમીકરણમાં કંઈક ખૂટે છે તેવું માલૂમ પડ્યું. આ કંઈક ખૂટતું હતું તેને મેક્સવેલે સ્થાનાંતર પ્રવાહ (displacement current)ના રૂપમાં પૂરું પાડ્યું. હવે વિદ્યુતક્ષેત્ર \vec{E} અને ચુંબકીય ક્ષેત્ર \vec{B} માટેનાં જે વિકલ સમીકરણો મળ્યા તે આબેહૂબ તરંગ-સમીકરણો જેવાં જ હતાં. એટલું જ નહીં, પરંતુ, આ તરંગ-સમીકરણો પરથી એ પણ ફલિત થયું કે, આ તરંગોનો વેગ શૂન્યાવકાશમાં, પ્રકાશના વેગ જેટલો જ છે. આથી, એમ પ્રસ્થાપિત થયું કે, પ્રકાશના તરંગો એ વિદ્યુત ક્ષેત્ર \vec{E} અને ચુંબકીય ક્ષેત્ર \vec{B} ના સંયુક્ત તરંગો એટલે કે વિદ્યુતચુંબકીય તરંગો જ છે.

સ્થાનાંતરપ્રવાહ : એમ્પિયરના નિયમમાં રહેલી ઊશપને દૂર કરવા ઉપરાંત, મેક્સવેલના આ પદનું રસપ્રદ અર્થઘટન એમ પશ થાય છે કે, બદલાતું જતું ચુંબકીય ક્ષેત્ર વિદ્યુતક્ષેત્ર ઉત્પન્ન કરે છે (ફેરેડેના નિયમ) તે જ રીતે બદલાતું જતું વિદ્યુતક્ષેત્ર ચુંબકીય ક્ષેત્ર પેદા કરે છે. મેક્સવેલના આ સિદ્ધાંતને 1887માં હર્ટ્ઝના વિદ્યુતચુંબકીય વિકિરણના પ્રયોગોથી સમર્થન મળ્યું.

મેક્સવેલના મત મુજબ ઍમ્પિયરના નિયમમાં

 $\oint_{\mathbf{B}} \overrightarrow{\mathbf{B}} \cdot \overrightarrow{dl} = \mu_0 i + ?$

મેક્સવેલે આ ખૂટતા પદને સ્થાનાંતરપ્રવાહ એવું નામ આપ્યું. વિદ્યુત્રયુંબકીય તરંગો

આકૃતિ 3.1 સાદો કૅપેસિટર પરિપથ

સ્થાનાંતરપ્રવાહનો ખરેખર અર્થ શું છે ? આ સ્થાનાંતરપ્રવાહનો અર્થ વિદ્યુતભારોની ગતિને લીધે ઉદ્ભવતા વિદ્યુતપ્રવાહના અર્થમાં નથી. આ બાબતને સ્પષ્ટપણે આકૃતિ 3.1માં દર્શાવેલ સાદા કૅપેસિટર પરિપથ મારફતે સમજાવી શકાય.

સમાંતર પ્લેટ કૅપેસિટરમાં વિદ્યુતપ્રવાહ I ધન પ્લેટમાં દાખલ થાય છે અને ૠણ પ્લેટમાંથી બહાર આવે છે. આ પ્રવાહ લાંબા સમય સુધી ચાલુ રહેતો નથી. જ્યારે કૅપેસિટર સંપૂર્ણ વિદ્યુતભારિત બને ત્યારે પ્રવાહ શૂન્ય બને છે. જો કૅપેસિટરની બે પ્લેટો એકબીજાની ખૂબ નજીક હોય તો તેમની વચ્ચે વિદ્યુતક્ષેત્ર,

$$E \; = \; \frac{1}{\epsilon_0} \, \sigma \; = \; \frac{1}{\epsilon_0} \, \frac{Q}{A}$$

જ્યાં Q એ પ્લેટ પરનો વિદ્યુતભાર અને A પ્લેટનું ક્ષેત્રફળ છે, તેથી જ્યારે કૅપેસિટર વિદ્યુતભારિત થતું હોય તે દરમિયાન,

$$\frac{\partial \mathbf{E}}{\partial t} = \frac{1}{\varepsilon_{0} \mathbf{A}} \frac{d\mathbf{Q}}{dt} = \frac{1}{\varepsilon_{0} \mathbf{A}} i$$

$$\therefore \ \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \frac{i}{\mathbf{A}} = \mathbf{J}_d$$

$$\therefore$$
 $\epsilon_0 A rac{\partial \mathbf{E}}{\partial t} = i_d$ જેને સ્થાનાંતરપ્રવાહ કહે છે.

સંકલન સ્વરૂપમાં,

$$\varepsilon_0 \int_{\partial t} \frac{\partial \vec{E}}{\partial t} \cdot \vec{d}a = i_d$$

એમ્પિયરના નિયમમાં સ્થાનાંતરપ્રવાહનું સંકલન સ્વરૂપ ઉમેરતાં,

$$\mathbf{\mathbf{g}} \vec{\mathbf{B}} \cdot \vec{dl} = \mu_0 i_c + \mu_0 \varepsilon_0 \int \frac{\partial \vec{\mathbf{E}}}{\partial t} \cdot \vec{da}$$

અથવા
$$\{\!\!\!\!\ \ \vec{B}\cdot\vec{di}\ =\ \mu_0i_c+\ \mu_0i_d=\ \mu_0(i_c+\ i_d)$$

આ સમીકરણ ઍમ્પિયર-મેક્સવેલના નિયમ તરીકે ઓળખાય છે, જે દર્શાવે છે કે કોઈ બંધ પરિપથને ઘેરતા બંધ પૃષ્ઠમાંથી પસાર થતો કુલ પ્રવાહ, વહનપ્રવાહ અને સ્થાનાંતર પ્રવાહના સરવાળા જેવો હોય છે. કૅપેસિટરની પ્લેટના બહારના ભાગમાં ફક્ત વહનપ્રવાહ હોય છે અને કૅપેસિટરની અંદર ફક્ત સ્થાનાંતર પ્રવાહ હોય છે.

મેક્સવેલનાં સમીકરણો (માત્ર માહિતી માટે)

(1)
$$\mathbf{\xi} \vec{\mathbf{E}} \cdot \vec{da} = \frac{q}{\varepsilon_0}$$
, (વિદ્યુતક્ષેત્ર માટે ગાઉસનો નિયમ)

(2)
$$\{ \vec{B} \cdot \vec{da} = 0, \ (ચુંબકત્વ માટે ગાઉસનો નિયમ) \}$$

(3)
$$\mathbf{\mathring{\sharp}} \vec{\mathbf{E}} \cdot \vec{dl} = \frac{-d\phi_{\mathrm{B}}}{dt}$$
, (ફેરેડેનો નિયમ)

(1)
$$\mathbf{x} \vec{\mathbf{E}} \cdot d\vec{a} = \frac{q}{\mathcal{E}_0}$$
, (વિદ્યુતક્ષેત્ર માટે ગાઉસનો નિયમ)
(2) $\mathbf{x} \vec{\mathbf{B}} \cdot d\vec{a} = 0$, (ચુંબકત્વ માટે ગાઉસનો નિયમ)
(3) $\mathbf{x} \vec{\mathbf{E}} \cdot d\vec{l} = \frac{-d\phi_B}{dt}$, (ફેરેડેનો નિયમ)
(4) $\mathbf{x} \vec{\mathbf{B}} \cdot d\vec{l} = \mu_0 (i_c + i_d)$, (ઍમ્પિયર-મેક્સવેલનો નિયમ) જયાં $i_c = \mathbf{q}$ હન પ્રવાહ અને

3.2 વિદ્યુતચુંબકીય તરંગોનું લંબગત સ્વરૂપ (Transverse Nature of Electromagnetic Waves)

ગાણિતીય રીતે મેક્સવેલે વિદ્યુતચુંબકીય તરંગોનું અસ્તિત્વ પ્રસ્થાપિત કર્યું, ત્યાર પછી ઘણાં વર્ષો સુધી તેને પ્રાયોગિક અનુમોદન મળ્યું નહીં. ત્યાર બાદ લગભગ 32 વર્ષ પછી હર્ટ્ઝે પ્રયોગશાળામાં વિદ્યુતચુંબકીય તરંગોના અસ્તિત્વની સાબિતી આપી.

આકૃતિ 3.2 હટ્ઝના પ્રયોગની સરળ ગોઠવણ

આકૃતિ 3.2માં દર્શાવ્યા મુજબ ધાતુના બે ગોળાઓ \mathbf{Q}_1 અને \mathbf{Q}_2 ને ધાતુના બે સળિયાઓ \mathbf{M} અને \mathbf{N} સાથે જોડીને બંને સળિયાઓ વચ્ચે સ્પાર્કગેપ \mathbf{S} ની રચના કરવામાં આવે છે. ઇન્ડક્શન કોઇલ વડે મોટો વિદ્યુતસ્થિતિમાનનો તફાવત મેળવી સળિયાઓ વચ્ચેની સ્પાર્કગેપમાં, સ્પાર્ક ઉત્પન્ન કરી શકાય છે. ગોળાઓ \mathbf{Q}_1 અને \mathbf{Q}_2 કેપેસિટર રચે છે, જ્યારે સળિયાઓ ઇન્ડક્ટર તરીકે વર્તે છે. આ રીતે તૈયાર થતી રચના એક \mathbf{LC} દોલક પરિપથ તરીકે ગણી શકાય, જેને હટ્ઝિયન ડાઇપોલ કહે છે. કોઈ ક્ષણે જ્યારે ગોળો \mathbf{Q}_1 ૠુણવિદ્યુતભાર અને ગોળો \mathbf{Q}_2 ધનવિદ્યુતભાર ધરાવતા હોય ત્યારે \mathbf{C} અને \mathbf{D} બિંદુઓ પાસે ઉદ્દભવતું વિદ્યુતક્ષેત્ર આકૃતિમાં દર્શાવ્યું છે. જ્યારે સ્પાર્ક પેદા થાય છે ત્યારે ઇલેક્ટ્રૉન સ્પાર્કગેપ \mathbf{S} માંથી પસાર થઈને ગોળા \mathbf{Q}_1 થી \mathbf{Q}_2 તરફ વહે છે. આ ઇલેક્ટ્રૉનપ્રવાહ આકૃતિ (3.2) માં દર્શાવ્યા મુજબ \mathbf{C} અને \mathbf{D} બિંદુઓ પાસે ચુંબકીય ક્ષેત્ર ઉત્પન્ન કરે છે. જ્યારે સ્પાર્ક પસાર થાય ત્યારે સમય સાથે ગોળો \mathbf{Q}_1 ઓછો ૠાણ અને ગોળો \mathbf{Q}_2 ઓછો ધન બનતો જાય છે અને ત્યાર બાદ અમુક સમય બાદ ગોળાઓ \mathbf{Q}_1 અને \mathbf{Q}_2 પરની ધ્રુવીયતા (polarity) ઊલટાઈ જાય છે. આ પ્રક્રિયા સમયના ચોક્કસ અંતરાલમાં પુનરાવર્તન પામતી જાય છે.

આમ, દોલનો કરતાં વિદ્યુતભારોને કારણે અવકાશમાં આવર્ત રીતે બદલાતા જતા વિદ્યુતક્ષેત્રનું નિર્માણ થાય છે. વળી, દોલન કરતા આ વિદ્યુતભારોના કારણે બદલાતા જતા વિદ્યુતપ્રવાહનું નિર્માણ થાય છે, જે આવર્ત રીતે બદલાતા જતા ચુંબકીય ક્ષેત્રનું નિર્માણ કરે છે. (ઍમ્પિયરના જમણા હાથના નિયમ વડે જાણી શકાય છે કે ઉદ્ભવતું ચુંબકીય ક્ષેત્ર વિદ્યુતક્ષેત્રને લંબરૂપે હોય છે). આમ, વિદ્યુતચુંબકીય તરંગો ઉદ્ભવે છે. ઉત્પન્ન થતા આ વિદ્યુતચુંબકીય તરંગોની આવૃત્તિ, વિદ્યુતભારોનાં દોલનની આવૃત્તિ જેટલી જ હોય છે. આ તરંગોની આવૃત્તિ, ગોળાઓ વચ્ચેના અંતર બદલવાથી બદલી શકાય છે. વિદ્યુતચુંબકીય તરંગો માટે

c (વેગ) = λ (તરંગલંબાઈ) $\times f$ (આવૃત્તિ)

હર્ટ્ઝના પ્રયોગ પછી સાત વર્ષ બાદ કોલકાતામાં જગદીશચંદ્ર બોઝે પ્રયોગશાળામાં 5 mmથી 25 mmના ગાળામાંની તરંગલંબાઈવાળા વિદ્યુતચુંબકીય તરંગો ઉત્પન્ન કર્યા હતા. લગભગ આ જ સમયે ઇટાલીમાં માર્કોની નામના વિજ્ઞાનીએ વિદ્યુતચુંબકીય તરંગોને કેટલાક માઈલો સુધી મોકલવાની સિદ્ધિ હાંસલ કરી હતી.

વિદ્યુતચુંબકીય તરંગો

આકૃતિ 3.3 કોઈ ક્ષણે વિદ્યુત અને ચુંબકીય ક્ષેત્રો

મેક્સવેલના વાદ અનુસાર વિદ્યુત અને ચુંબકીય ક્ષેત્રો તાત્કાલિક અસ્ત્વિમાં આવતાં નથી. દોલનો કરતા વિદ્યુતભારની નજીકમાં \vec{E} અને \vec{B} ક્ષેત્રો વચ્ચે કળાનો તરફાવત $\frac{\pi}{2}$ હોય છે અને તેમનાં મૂલ્યો અંતર સાથે ઝડપથી $\frac{1}{r^3}$ અનુસાર ઘટે છે (જ્યાં r= ઉદ્દગમથી અંતર). વિકિરણના, ઉદ્દગમની નજીકના આ ઘટકોને ઇન્ડક્ટિવ ઘટકો કહે છે (જુઓ આકૃતિ 3.3).

દૂરના વિસ્તારમાં \vec{E} અને \vec{B} સમાન કળામાં હોય છે અને અંતર સાથે તેમનાં મૂલ્યોમાં થતો ઘટાડો પ્રમાણમાં ધીમો હોય છે ($\frac{1}{r}$ મુજબ). વિદ્યુતચુંબકીય વિકિરણના આ ઘટકોને ઉત્સર્જિત (Radiated) ઘટકો કહે છે.

અવકાશનાં જે બિંદુઓ પાસેથી વિદ્યુતચુંબકીય તરંગો પસાર થતા હોય છે, તે બિંદુઓ પાસે વિદ્યુતક્ષેત્ર અને ચુંબકીય ક્ષેત્રના સિદશો, તરંગની પ્રસરણ દિશાને લંબ એવા સમતલમાં પરસ્પર લંબ રહીને દોલનો કરતા હોય છે (જુઓ આકૃતિ 3.4).

ધારો કે ઉદ્દગમથી દૂરના કોઈ બિંદુ પાસે કોઈ ક્ષણે \vec{E} અને \vec{B} શૂન્ય છે. જેમ સમય પસાર થાય છે, તેમ \vec{E} અને \vec{B} નાં મૂલ્યો વધતાં જાય છે. આમ, વધતાં-વધતાં તેઓ મહત્તમ બને છે અને પછી તેમનાં મૂલ્યોમાં ઘટાડો શરૂ થાય છે અને વળી પાછા તેમનાં મૂલ્યો શૂન્ય થઈ જાય છે. ત્યાર બાદ તેમની દિશા ઊલટાઈ જાય છે અને ઊલટાયેલી દિશામાં તેમનાં મૂલ્યો વધવા લાગે છે અને મહત્તમ થાય છે. વળી પાછાં તેમનાં મૂલ્યો ઘટતાં જાય છે અને શૂન્ય થાય છે. જ્યાં સુધી આ બિંદુઓ પાસે તરંગમાળા પસાર થતી હોય ત્યાં સુધી આમ જ ચાલ્યા કરે છે. આ થયો \vec{E} અને \vec{B}

નોંધ ઃ તરંગ પ્રસરણની દિશા $\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}$ અનુસાર હોય છે. આકૃતિ 3.4

સદિશોનાં દોલનોનો અર્થ. બે ગોળાઓ વચ્ચે દોલિત થતા વિદ્યુતભારની ગતિ-ઊર્જા વિદ્યુતચુંબકીય વિકિરણની ઊર્જા જેટલી હોય છે.

3.3 વિદ્યુતચુંબકીય તરંગોની લાક્ષણિકતાઓ (Characteristics of Electromagnetic Waves)

આકૃતિ 3.4માં આપણે X-દિશામાં પ્રસરણ પામતું વિદ્યુતચુંબકીય તરંગ જોયું. અહીં વિદ્યુતક્ષેત્ર \vec{E} , X-Y સમતલમાં Y-અક્ષને સમાંતર છે, જ્યારે ચુંબકીય ક્ષેત્ર \vec{B} , X-Z સમતલમાં Z-અક્ષને સમાંતર છે. વિદ્યુતચુંબકીય તરંગોની લાક્ષણિકતાઓ આ મુજબ છે.

(1) સમીકરણોના રૂપમાં રજૂઆત : આકૃતિ 3.4માં દર્શાવ્યા મુજબ વિદ્યુતચુંબકીય તરંગ માટે t સમયે વિદ્યુતક્ષેત્રનો y ઘટક \mathbf{E}_y , sine વિધેય અનુસાર બદલાય છે, જયારે તેના \mathbf{E}_x અને \mathbf{E}_z ઘટકો શૂન્ય છે. આથી \mathbf{E}_y ઘટકના દોલનનું સમીકરણ

$$\mathbf{E}_{\mathbf{y}} = \mathbf{E}_{0} \sin(\omega t - kx)$$
 (3.3.1)
જે સદિશના રૂપમાં

$$\vec{E} = E_y \hat{j} = [E_0 \sin(\omega t - kx)] \hat{j}$$
 (3.3.2)

ભૌતિકવિજ્ઞાન-IV

જ્યાં $\omega=$ કોશીય આવૃત્તિ, અને $k=rac{2\pi}{\lambda}=$ તરંગસદિશનું મૂલ્ય. \overrightarrow{k} તરંગ-પ્રસરણની દિશા દર્શાવે છે.

તરંગ-પ્રસરણની ઝડપ $c=rac{\omega}{k}$ જેટલી હોય છે.

તે જ રીતે ચુંબકીય ક્ષેત્ર માટે $\mathbf{B}_{_{\mathcal{X}}}=\mathbf{B}_{_{\mathcal{Y}}}=\mathbf{0},$ અને $\mathbf{B}_{_{\mathcal{Z}}}$ ઘટક

$$\vec{\mathbf{B}} = \mathbf{B}_z \hat{k} = [\mathbf{B}_0 \sin(\omega t - kx)] \hat{k}$$
 (3.3.3)

(2) વિદ્યુતચુંબકીય તરંગમાં \vec{E} અને \vec{B} નાં મૂલ્યો વચ્ચેનો સંબંધ $\frac{E}{B} = c$ છે.

ઉદ્ગમથી દૂરના વિસ્તારમાં વિદ્યુત અને ચુંબકીય ક્ષેત્રો સમાન કળામાં દોલનો કરતાં હોય છે.

અહીં એ યાદ રાખો કે વિદ્યુતચુંબકીય તરંગો એ મુક્ત અવકાશ કે શૂન્યાવકાશમાં વિદ્યુત અને ચુંબકીય ક્ષેત્રોનાં સ્વલં<mark>બિત (Self—sustaining) દોલનો</mark> છે. વિદ્યુત અને ચુંબકીય ક્ષેત્રોનાં દોલનો સાથે માધ્યમના કણો દોલન કરતા નથી. એટલે કે તેઓ બિનયાંત્રીક તરંગો છે.

(3) શૂન્યાવકાશમાં (મુક્ત અવકાશમાં) વિદ્યુતચુંબકીય તરંગોનો વેગ,

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \tag{3.3.4}$$

આ હકીકત સૌપ્રથમ મેક્સવેલે વિદ્યુતચુંબકત્વનાં સમીકરણોની મદદથી તારવી હતી. અહીંયાં,

 $\mu_0 = \, 4\pi \, imes \, 10^{-7} \, \, \, N \, \, \, A^{-2} \, = \, \,$ મુક્ત અવકાશની પરમીએબિલિટી

 $\epsilon_{_0} = ~8.85419~ imes~10^{-12}~C^2~N^{-1}~m^{-2} = ~$ મુક્ત અવકાશની પરમીટિવિટી, અને

 $c = 2.99792 \times 10^8 \; \mathrm{ms^{-1}}$ આ મૂલ્ય શૂન્યાવકાશમાં પ્રકાશના વેગના મૂલ્ય જેટલું છે.

કોઈ માધ્યમમાં વિદ્યુતચુંબકીય તરંગોનો વેગ

$$v = \frac{1}{\sqrt{\mu\epsilon}} \tag{3.3.5}$$

જ્યાં μ = માધ્યમની પરમીએબિલિટી, અને ϵ = માધ્યમની પરમિટિવિટી

આમ, પ્રકાશનો વેગ તે માધ્યમના વિદ્યુત અને ચુંબકીય ગુણધર્મો (Properties) પર આધાર રાખે છે. કોઈ પણ માધ્યમ માટે, સાપેક્ષ પરમીએબિલિટી $\mu_r=\frac{\mu}{\mu_0}$, અને સાપેક્ષ પરમીટિવિટી $\epsilon_r=\frac{\epsilon}{\epsilon_0}=K$.

જ્યાં K = માધ્યમનો ડાઇ-ઇલેક્ટ્રિક અચળાંક

આમ, સમીકરણ (3.3.5) પરથી,

$$v = \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \frac{1}{\sqrt{\mu_r \varepsilon_r}} = \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \frac{c}{\sqrt{\mu_r K}}$$
(3.3.6)

આથી, માધ્યમનો વક્કીભવનાંક

$$n = \frac{c}{v} = \sqrt{\mu_r \varepsilon_r} = \sqrt{\mu_r K} \tag{3.3.7}$$

વિદ્યુતચુંબકીય તરંગો

અવકાશ કે શૂન્યાવકાશમાં વિદ્યુતચુંબકીય તરંગોનો વેગ એ ખૂબ જ અગત્યનો મૂળભૂત અચળાંક છે.

- (4) વિદ્યુતચુંબકીય તરંગો એ લંબગત તરંગો છે.
- (5) વિદ્યુતચુંબકીય તરંગો ઊર્જા ધરાવે છે તથા ઊર્જાનું એક સ્થળેથી બીજા સ્થળે વહન પણ કરે છે. સૂર્ય પરથી ઊર્જા વિદ્યુતચુંબકીય તરંગો દ્વારા જ પૃથ્વી સુધી પહોંચે છે, જેના કારણે પૃથ્વી પર જીવન શક્ય બન્યું છે.
- (6) વિદ્યુતચુંબકીય તરંગો જયારે કોઈ સપાટી પર આપાત થાય છે, ત્યારે તેના પર વિકિરણ દબાણ ઉત્પન્ન કરે છે, જે સપાટીને વેગમાન આપે છે. જો Δt સમયમાં A ક્ષેત્રફળની સપાટી પર લંબરૂપે આપાત થતી વિદ્યુતચુંબકીય તરંગોની ઊર્જા ΔU હોય, અને જો તે ઊર્જા સંપૂર્ણ પણે શોષાઈ જતી હોય તો વિકિરણ વડે સપાટીને મળતું વેગમાન

$$\Delta p = \frac{\Delta U}{c}$$
 (સંપૂર્ણ શોષણ માટે) (3.3.8)

જે આ સપાટી પર વિકિરણનું દબાણ ($P_{
m s}$) ઉત્પન્ન કરે છે.

(7) જે વિસ્તારમાંથી વિદ્યુતચુંબકીય તરંગો પસાર થતા હોય તે વિસ્તારમાં વિદ્યુતચુંબકીય ક્ષેત્ર પ્રવર્તે છે, તેમ કહેવાય. આ વિસ્તારમાં એકમ કદ દીઠ વિદ્યુતચુંબકીય ઊર્જા (ઊર્જાઘનતા)

$$\rho = \rho_{\rm E} + \rho_{\rm B} = \frac{1}{2} \epsilon_0 E^2 + \frac{B^2}{2\mu_0}$$
 (3.3.9)

જ્યાં, $ho_{_{
m E}}=$ વિદ્યુત ક્ષેત્ર સાથે સંકળાયેલી ઊર્જાઘનતા, અને $ho_{_{
m B}}=$ ચુંબકીય ક્ષેત્ર સાથે સંકળાયેલી ઊર્જાઘનતા

આ હકીકત આપણે કૅપેસિટર અને સૉલેનૉઇડના કિસ્સાઓ પરથી અગાઉ મેળવી હતી, જેમાં આપણે સ્થિર ક્ષેત્રો લીધાં હતાં. પરંતુ વિદ્યુતચુંબકીય તરંગોમાં $\overrightarrow{\mathbf{E}}$ અને $\overrightarrow{\mathbf{B}}$ સાઇન કે કોસાઇન વિધેયની જેમ દોલન કરતાં હોય છે. આથી વિદ્યુતચુંબકીય તરંગોની ઊર્જાઘનતા મેળવવા માટે આપણે \mathbf{E} અને \mathbf{B} ની જગ્યાએ સમીકરણ (3.3.9)માં \mathbf{E}_{rms} અને \mathbf{B}_{rms} લેવા જોઈએ.

$$\therefore \quad \rho = \frac{1}{2}\varepsilon_0 E_{rms}^2 + \frac{B_{rms}^2}{2\mu_0} \tag{3.3.10}$$

હવે
$$c^2 = \frac{1}{\epsilon_0 \mu_0} \implies \mu_0 = \frac{1}{\epsilon_0 c^2}$$

આ ઉપરાંત $\mathbf{B}_{rms} = \frac{\mathbf{E}_{rms}}{c}$

$$\therefore \ \rho = \frac{1}{2} \epsilon_0 E^2_{rms} + \frac{\frac{E^2_{rms}}{c^2}}{\frac{2}{\epsilon_0 c^2}} = \frac{1}{2} \epsilon_0 E^2_{rms} + \frac{1}{2} \epsilon_0 E^2_{rms}$$

$$\therefore \rho = \varepsilon_0 E_{rms}^2 \tag{3.3.11}$$

આ જ રીતે
$$ho = \frac{B_{rms}^2}{\mu_0}$$
 પણ મેળવી શકાય.

(8) એકમ ક્ષેત્રફળ ધરાવતી સપાટીમાંથી, સપાટીને લંબ રૂપે એક સેકન્ડમાં પસાર થતી વિકિરણ-ઊર્જાને વિકિરણની તીવ્રતા (Intensity of Radiation) (I) કહે છે.

$$I = \frac{000000}{00000} = \frac{0000}{00000}$$

હવે, એકમક્ષેત્રફળમાંથી, એક સેકન્ડમાં પસાર થતી વિકિરણ-ઊર્જા, આકૃતિ 3.5માં દર્શાવેલ એકમ ક્ષેત્રફળવાળા અને c લંબાઈના લંબઘનમાં સમાય છે. જો ઊર્જાઘનતા ρ હોય, તો આ લંબઘનમાં ઊર્જા $\rho.c$ હોય.

આકૃતિ 3.5 એકમક્ષેત્રફળ ધરાવતી સપાટીમાંથી, સપાટીને લંબ રૂપે એક સેકન્ડમાં પસાર થતી વિકિરણ-ઊર્જા

$$\therefore I = \rho.c. = \varepsilon_0 c E_{rms}^2$$
 (3.3.12)

અથવા I =
$$\frac{c B_{rms}^2}{\mu_0}$$

(9) $\vec{E} \times \vec{B}$ ની દિશા વિદ્યુતચુંબકીય તરંગના પ્રસરણની દિશા દર્શાવે છે.

ઉદાહરણ $\mathbf{1}$: $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$ નો એકમ વેગનો એકમ છે, તેમ μ_0 અને ϵ_0 ના એકમો લઈને સાબિત કરો.

ઉકેલ :
$$\mu_0$$
નો એકમ $=rac{N}{A^2}$ તથા ϵ_0 નો એકમ $=rac{C^2}{Nm^2}$

$$\therefore \ \left[\frac{1}{\sqrt{\mu_0 \epsilon_0}} \right] \ = \ \frac{1}{\sqrt{\frac{N}{A^2} \frac{C^2}{Nm^2}}} \ = \ \frac{1}{\sqrt{\frac{A^2 \, s^2}{A^2 \, m^2}}} \ = \ ms^{-1}$$

ઉદાહરણ 2: 1000 Wના બલ્બથી 10 m દૂર આવેલ ગોળાકાર સપાટી (જેનું કેન્દ્ર બલ્બ છે) પર બલ્બ વડે ઉદ્ભવેલા વિદ્યુતચુંબકીય તરંગો માટે E_0 , B_0 તીવ્રતા I અને સપાટી પર લાગતું બળ શોધો. બલ્બની કાર્યક્ષમતા 2.5~% લો અને બલ્બને બિંદુવત્ ઉદ્દગમ ધારો. $\varepsilon_0=8.85\times 10^{-12}~\mathrm{SI}$ અને $c=3.0\times 10^8~\mathrm{ms^{-1}}$ સપાટી પર ઊર્જાઘનતા પણ ગણો.

😘 : 1000 Wના બલ્બમાં દર સેકન્ડે વપરાતી વિદ્યુતઊર્જા = 1000 J

બલ્બની કાર્યક્ષમતા 2.5 % હોવાથી, બલ્બમાંથી દર સેકન્ડે મળતી વિકિરણ-ઊર્જા,

$$\Delta U = 1000 \times \frac{2.5}{100}$$

$$\therefore \Delta U = 25 \text{ Js}^{-1}$$

બલ્બને કેન્દ્ર તરીકે લેતાં, ગોળાકાર સપાટીનું ક્ષેત્રફળ,

$$A = 4\pi R^2 = (4) (3.14) (10^2) = 1256 m^2$$

હવે,
$$I = \varepsilon_0 c E_{rms}^2 = 0.02$$

$$\therefore \ \, \mathrm{E}_{rms} \, = \, \left\lceil \frac{0.02}{8.85 \times 10^{-12} \times 3.0 \times 10^{8}} \right\rceil^{\frac{1}{2}} = \, 2.74 \ \, \mathrm{V} \ \, \mathrm{m}^{-1}$$

હવે,
$$B_{rms} = \frac{E_{rms}}{c} = \frac{2.74}{3.0 \times 10^8} = 9.13 \times 10^{-9} \text{ T}$$

હવે,
$${\rm E_0}=~\sqrt{2}~{\rm E}_{rms}=~3.87~{\rm V}~{\rm m}^{-1}$$
 અને ${\rm B_0}=~\sqrt{2}~{\rm B}_{rms}=~1.29~{\rm \times}~10^{-8}~{\rm T}$

સપાટી પર આપાત થતી કુલ ઊર્જા = 25 J

∴ સપાટીને એક સેકન્ડમાં મળતું વેગમાન (= બળ),

$$\Delta p = \frac{\Delta U}{c} = F = \frac{25}{3 \times 10^8} = 8.33 \times 10^{-8} \text{ N}$$

 $I = \rho c$ પરથી ઊર્જાઘનતા,

$$\rho = \frac{I}{c} = \frac{0.02}{3 \times 10^8} = 6.67 \times 10^{-11} \text{ J m}^{-3}$$

3.4 વિદ્યુતચુંબકીય વર્ણપટ અને તેમના ઉપયોગોની પ્રાથમિક હકીકતો (Electromagnetic Spectrum and Primary Facts of its Applications)

મેક્સવેલના વિદ્યુતચુંબકીય વાદ અને હર્ઝ દ્વારા તેના સફળ પરીક્ષણ બાદ વિજ્ઞાનીઓએ જુદી-જુદી તરંગલંબાઈના વિદ્યુત-ચુંબકીય તરંગો ઉત્પન્ન કરવાની શરૂઆત કરી.

ઈ.સ. 1895માં રોન્જને શોધેલા X-rays પણ વિદ્યુતચુંબકીય તરંગો જ છે, તેવું ઈ.સ. 1906માં પ્રસ્થાપિત થયું. ત્યાર બાદ આશરે 10^{-15} mથી માંડીને આશરે 10^8 m તરંગલંબાઈઓ ધરાવતા વિદ્યુતચુંબકીય તરંગોનો અભ્યાસ કરવામાં આવ્યો છે. આ સમગ્ર વિસ્તાર પર વિદ્યુતચુંબકીય તરંગોની તરંગલંબાઈનાં મૂલ્યો સતત રીતે પથરાયેલાં છે. આમાંથી આપણી આંખ તો માત્ર ખૂબ જ નાના વિસ્તાર પર પથરાયેલા તરંગો પૂરતી જ સંવેદનશીલ છે. જેમની તરંગલંબાઈ આશરે 4000 Å થી 7000 Å સુધીની છે. બાકીની તરંગલંબાઈનાં વિદ્યુતચુંબકીય તરંગો માટે આપણી આંખ સંવેદનશીલ નથી. (ખરેખર તો, આ જ આપણા પર ઈશ્વરની કૃપા કહેવાય, નહીંતર રાત્રે પણ આપણી આજુબાજુના વિસ્તારમાંથી ઉત્સર્જાતાં ઇન્ફ્રારેડ અને બીજી તરંગલંબાઈનાં વિકિરણો આપણને દેખાતાં હોય અને આપણે રાત્રે સૂઈ જ ન શકત, કદાચ આપણા માટે રાત પડત જ નહીં). જુદાં-જુદાં પ્રાણીઓની દેષ્ટિસંવેદના વર્ણપટના જુદા-જુદા વિભાગ માટે જુદી-જુદી હોય છે. કેટલાંક પક્ષીઓ અને પ્રાણીઓ દેશ્યવર્ણપટ ઉપરાંત ઇન્ફ્રારેડ અથવા અલ્ટ્રાવાયોલેટ વિસ્તાર માટે પણ સંવેદનશીલ હોય છે. વિદ્યુતચુંબકીય તરંગોનું તેમની તરંગલંબાઈ અથવા આવૃત્તિ અનુસાર વર્ગીકરણ કરવામાં આવ્યું છે, જેને વિદ્યુતચુંબકીય વર્શપટ કહે છે (જુઓ આકૃતિ 3.6). આ વર્શપટમાં પાસપાસેના વિભાગો વચ્ચે કોઈ તીવ્ર (સ્પષ્ટ) સીમા હોતી નથી.

આકૃતિ 3.6 વિદ્યુતચુંબકીય વર્જાપટ (માત્ર જાણકારી માટે)

વિદ્યુતચુંબકીય વર્શપટના જુદા-જુદા વિભાગોનું ટૂંકમાં વર્શન અને તેમના ઉપયોગો અહીં દર્શાવ્યા છે :

- (1) રેડિયો-તરંગો (Radio Waves) : વાહક તારમાંથી પ્રવેગિત ગતિ કરતા વિદ્યુતભારો રેડિયો-તરંગો ઉત્પન્ન કરે છે. તેમનો ઉપયોગ રેડિયો અને ટેલિવિઝનના પ્રસારણ માટે થાય છે. ઍમ્પ્લિટ્યૂડ મૉડ્યુલેટેડ તરંગોનો વિસ્તાર 530 kHz થી 1710 kHz સુધી હોય છે. ટૂંકી તરંગલંબાઈના વિસ્તાર (Shortwave Band) માટે 54 MHz સુધીની ઊંચી આવૃત્તિનો ઉપયોગ થાય છે. ફ્રિક્વન્સી મૉડ્યુલેટેડ રેડિયો માટે 88 MHzથી 108 MHzની આવૃત્તિનો વિસ્તાર હોય છે. સેલ્યુલર ફોન અલ્ટ્રાહાઈ ફ્રિક્વન્સી (UHF)ના વિસ્તારનો ઉપયોગ અવાજના પ્રસારણ (Communication) માટે કરે છે.
- (2) માઇક્રોવેવ (Microwaves) : લગભગ 0.3 GHzથી 300 GHzની આવૃત્તિના વિસ્તારમાં આવતા માઇક્રોવેલ્ઝ ક્લાઇસ્ટ્રૉન, મૅગ્નેટ્રોન કે ગન ડાયોડની મદદથી ઉત્પન્ન કરી શકાય છે. લડાકુ વિમાનો, જળપરિવહનમાં અને સેટેલાઇટ પ્રસારણમાં ઉપયોગી રડારપ્રણાલીમાં આ તરંગો ઉપયોગી છે. રડારના આ સિદ્ધાંતનો ઉપયોગ બૉલની ઝડપ માપવા, ટેનિસસર્વિસની પ્રૅક્ટિસ માટે અને ટ્રાફિક-પોલીસ દ્વારા ઇન્ટરસેપ્ટર વાનમાં કરવામાં આવે છે. ઘરેલુ માઇક્રોવેવ ઓવન 0.915 GHz અથવા 2.45 GHz આવૃત્તિનો ઉપયોગ ખોરાકને રાંધવા અથવા ગરમ કરવા માટે કરે છે, જયારે પાણીના અણુઓ ધરાવતો ખોરાક માઇક્રોવેવ ઓવનમાં મૂકવામાં આવે ત્યારે, પાણીના અણુઓ આ આવૃત્તિથી આવર્તન (Rotation) કરે છે. આમ માઇક્રોવેવની ઊર્જાનું પાણીના અણુઓની ગતિ-ઊર્જામાં મહત્તમ (Efficiently) રૂપાંતરણ થાય છે, જે પાણી ધરાવતા ખોરાકનું તાપમાન વધારે છે.
- (3) ઇન્ફારેડ તરંગો (Infrared Waves) : ઇન્ફ્રારેડ તરંગો, ગરમ પદાર્થો અને અશુઓમાંથી ઉદ્ભવે છે. આ તરંગોનો વિસ્તાર માઇક્રોવેવ અને દશ્યપ્રકાશના વિસ્તારની વચ્ચે છે. મોટા ભાગના પદાર્થોમાં રહેલા પાણીના અશુઓ $(CO_2, NH_3$ વગેરે પણ) ઇન્ફ્રારેડ તરંગોનું શોષણ કરે છે, જેના કારણે તેમની ઉષ્મીય ગતિ (ઉષ્મીય દોલનો) વધે છે. આ દોલનોને કારણે તેવા પદાર્થની આંતરિક ઊર્જા અને તેથી તેનું તાપમાન વધે છે. આ કારણથી ઇન્ફ્રારેડ તરંગોને ક્યારેક હીટવેજી (Heat Waves) પણ કહે છે. ઇન્ફ્રારેડ લેમ્પનો ઉપયોગ ફ્રિઝિયોથેરાપીમાં પણ કરવામાં આવે છે.

સૂર્યમાંથી આવતાં દશ્યપ્રકાશનાં કિરણો પૃથ્વીની સપાટી દ્વારા શોષાય છે, જે ઇન્ફ્રારેડ કિરણોના રૂપમાં ફરીથી ઉત્સર્જિત થાય છે. આ કિરણો ગ્રીનહાઉસ વાયુઓ જેવા કે ${
m CO}_2$ અને પાણીની વરાળ દ્વારા શોષાય છે. આ રીતે, ગ્રીનહાઉસ પ્રક્રિયા દ્વારા ઇન્ફ્રારેડ કિરણો પૃથ્વીનું સરેરાશ તાપમાન જાળવી રાખવામાં મદદરૂપ થાય છે.

ઇન્ફ્રારેડ ડિટેક્ટર્સનો ઉપયોગ સેટેલાઇટ રિમોટ-સેન્સિંગમાં, મિલિટરી માટે તેમજ ખેતીવાડી માટે થાય છે. ટીવી, વીડિયોપ્લેયર અને હાઈ-ફાઈ સિસ્ટિમ્સના રિમોટ કન્ટ્રોલરના ચાલન માટે પણ ઇન્ફ્રારેડ LED (લાઇટ એમિટિંગ ડાયોડ)નો ઉપયોગ થાય છે.

(4) દેશ્યપ્રકાશનાં કિરણો (Visible Rays) : દેશ્યપ્રકાશનાં કિરણો પણ સૂર્યમાંથી આવતાં વિકિરણોનો એક ભાગ જ છે. આ કિરણો જવાળાઓ, બલ્બ, ઇન્કન્ડેસન્ટ લેમ્પ વડે પણ ઉત્પન્ન થાય છે. દેશ્યપ્રકાશની આવૃત્તિનો વિસ્તાર લગભગ 4.3×10^{14} Hzથી લગભગ 7.5×10^{14} Hz સુધીનો, અથવા અનુક્રમે લગભગ 700 nmથી લગભગ 400 nmની તરંગલંબાઈ સુધીનો છે. આપણી આંખો આ તરંગલંબાઈના વિસ્તાર માટે સંવેદનશીલ છે. જુદાંજુદાં પ્રાણીઓની સંવેદનશીલતા જુદી-જુદી તરંગલંબાઈના વિસ્તાર સુધીની હોય છે. જેમકે, સાપ ઇન્ફ્રારેડ કિરણો પણ અનુભવી શકે છે, જે તેમને તેમના શિકારના શરીરમાંથી ઉત્સર્જાતાં ઇન્ફ્રારેડ કિરણોને કારણે રાત્રે પણ શિકાર કરવામાં મદદરૂપ થાય છે.

માત્ર જાણ સાર્ડું : દેશ્યપ્રકાશની આવૃત્તિ (તરંગલંબાઈ)નો વિસ્તાર સ્પષ્ટ રીતે વ્યાખ્યાયિત નથી. માનવઆંખની સાપેક્ષ સંવેદનશીલતા દેશ્યપ્રકાશની જુદી-જુદી તરંગલંબાઈઓ માટે આકૃતિમાં દર્શાવી છે.

જો આપણે જુદી-જુદી તરંગલંબાઈઓ માટે આંખની સંવેદનશીલતાની મર્યાદા એ રીતે નક્કી કરીએ કે જે તેની સંવેદનાના મહત્તમ મૂલ્યથી 1% સુધી ઘટે ત્યાં સુધી હોય, તો આ મર્યાદાઓ લગભગ 430 nm અને 690 nm છે. જો પ્રકાશની તીવ્રતા પૂરતી ઊંચી હોય તો માનવઆંખ આ મર્યાદાઓ કરતાં આગળની તરંગલંબાઈ પણ જોઈ શકે છે. આંખની સંવેદના 555 nm તરંગલંબાઈ, એટલે કે પીળા-લીલા રંગ માટે મહત્તમ હોય છે.

(5) અલ્ટ્રાવાયોલેટ કિરણો (Ultraviolet Rays): અલ્ટ્રાવાયોલેટ (UV) કિરણો સ્પેશિયલ પ્રકારના લેમ્પ અને ખૂબ ગરમ પદાર્થીમાંથી ઉદ્ભવે છે. સૂર્ય પણ અલ્ટ્રાવાયોલેટ કિરણોનું એક અગત્યનું ઉદ્દગમસ્થાન છે. સદ્દભાગ્યે મોટા ભાગનાં અલ્ટ્રાવાયોલેટ કિરણો ઓઝોન સ્તરમાં શોષાઈ જાય છે, જે પૃથ્વીની સપાટીથી આશરે 40-50 km ઊંચાઈએ આવેલું છે. મોટા પ્રમાણમાં અલ્ટ્રાવાયોલેટ કિરણો માનવશરીરને હાનિકર્તા છે. અલ્ટ્રાવાયોલેટ કિરણો લાંબા સમય સુધી ચામડી પર પડે તો તે મેલેનીન ઉત્પન્ન કરે છે, જે ચામડીને કાળી બનાવે છે. સામાન્ય કાચ મોટા ભાગનાં અલ્ટ્રાવાયોલેટ કિરણોનું શોષણ કરી લે છે, આથી કાચમાંથી આવતાં કિરણો દ્વારા સનબર્ન એટલે કે ચામડી કાળી પડી જવાની શક્યતા ઓછી હોય છે.

વેલ્ડિંગ કરતી વખતે મોટા પ્રમાણમાં અલ્ટ્રાવાયોલેટ કિરણો ઉત્સર્જિત થાય છે. આથી, વેલ્ડિંગ કરનારા તેમની આંખની કાળજી રાખવા માટે કાળા કાચની બારીવાળાં મહોરાં રાખે છે અથવા સ્પેશિયલ પ્રકારના કાચના ગોગલ્સ પહેરે છે. અલ્ટ્રાવાયોલેટ કિરણોની તરંગ લંબાઈ ઘણી ટૂંકી હોય છે જેનો વિસ્તાર 400 nmથી 0.6 nm સુધી હોય છે. આથી અલ્ટ્રાવાયોલેટ કિરણોને અત્યંત સાંકડા બીમ (શેરડા)ના રૂપમાં કેન્દ્રિત કરીને ખૂબ ચોકસાઈ જરૂરી હોય તેવાં કાર્યો, જેમકે આંખની LASIK સર્જરી (Laser—Assisted in Situ Keratomileusis)માં ઉપયોગ થાય છે. કેટલાક વૉટર પ્યુરિફાયરમાં જીવાણુઓનો નાશ કરવા માટે UV લેમ્પનો ઉપયોગ થાય છે.

અલ્ટ્રાવાયોલેટ કિરણો સામે રક્ષણ કરતા ઓઝોનસ્તરમાં અમુક વિસ્તારમાં ઓઝોનનું પ્રમાણ ઘટાડતા વાયુઓ જેવા કે CFCs (Chloro Fluoro Carbons) (જેમકે ફ્રિઓન) આંતરરાષ્ટ્રીય ચર્ચાનો વિષય છે.

- (6) ક્ષ-કિરણો (X-rays): ખૂબ ઊંચી ઊર્જા ધરાવતા ઇલેક્ટ્રૉનને ધાતુના ટાર્ગેટ પર આપાત કરીને X-rays ઉત્પન્ન કરી શકાય છે. વિદ્યુત્રચુંબકીય વર્ણપટમાં X-raysનો વિસ્તાર, અલ્ટ્રાવાયોલેટ વિસ્તારથી આગળ, લગભગ 10 nm (10⁻⁸ m)થી લગભગ 10⁻⁴ nm (10⁻¹³ m) સુધી હોય છે. મેડિકલ ક્ષેત્રમાં X-raysનો ઉપયોગ હાડકાનું ફ્રૅક્ચર (તીરાડ અથવા તૂટવું) શોધવા માટે, તેમજ અમુક પ્રકારના કૅન્સરની સારવારમાં થાય છે. X-rays જીવંત કોષો અને શરીર તંત્રને નુકસાન કરી શકે તેવા હોવાથી, તેમનો ઉપયોગ કરતી વખતે વિશેષ કાળજી રાખવી પડે છે, તેથી બિનજરૂરી કે વધારે પડતું Exposure ટાળવું જોઈએ.
- (7) ગેમા કિરણો (Gamma Rays) : ન્યુક્લિયર પ્રક્રિયાઓ વખતે અને કેટલાક રેડિયો-ઍક્ટિવ ન્યુક્લિયસમાંથી ગેમા કિરણો ઉત્સર્જિત થાય છે. ગેમા કિરણો વિદ્યુતચુંબકીય વર્ણપટમાં ઊંચી આવૃત્તિવાળા વિસ્તાર કે જેમની તરંગલંબાઈ 10^{-10} mથી ઘટીને 10^{-14} m સુધી ગણવામાં આવે છે. ગેમા કિરણોનો ઉપયોગ મેડિકલ સર્જરીમાં કૅન્સરપ્રસ્ત કોષોનો નાશ કરવા માટે થાય છે.

ટેબલ 3.1માં જુદા-જુદા પ્રકારના વિદ્યુતચુંબકીય તરંગો, તેમનાં ઉદ્ભવસ્થાન અને સંવેદી ઉપકરણો દર્શાવ્યા છે. એ યાદ રહે કે વર્શપટના કોઈ પણ બે વિસ્તારો વચ્ચે સ્પષ્ટ (તીવ્ર) ભેદરેખા હોતી નથી.

ટેબલ 3.1 જુદા-જુદા પ્રકારના વિદ્યુતચુંબકીય તરંગો

પ્રકાર (વિભાગ)	તરંગલંબાઈનો વિસ્તાર	ઉદ્ભવસ્થાન	ડિકેક્ટર
રેડિયો	> 0.1 m	વાહક એન્ટેનામાંથી ઇલેક્ટ્રૉનની	રિસીવરનું એન્ટેના (વાહક તાર)
		પ્રવેગિત અને પ્રતિપ્રવેગિત ગતિ	
માઇક્રોવેવ	0.1 mથl 1 mm	ક્લાઇસ્ટ્રૉન, મૅગ્નેટ્રોન, ગનડાયોડ	પૉઇન્ટ કૉન્ટેક્ટ ડાયોડ
ઇ - ક્રારેડ (IR)	1 mmથી 700 nm	અશુઓ અને પરમાશુઓનાં દોલનો	થરમૉપાઇલ, બોલોમીટર,
		ફોટોગ્રાફિક ફિલ્મ	ઇન્ફ્રારેડ ફોટોગ્રાફિક ફિલ્મ
દશ્યપ્રકાશ	700 nmथl 400 nm	જ્યારે અશુમાંના ઇલેક્ટ્રૉન એક ઊર્જા	આંખ, ફોટોસેલ્સ, ફોટોગ્રાફિક
		સ્તરમાંથી ઓછી ઊર્જાવાળા સ્તરમાં	ફિલ્મ, ફોટોડાયોડ, લાઇટ ડિપેન્ડન્ટ
		જાય, ત્યારે પ્રકાશ ઉત્સર્જિત કરે છે.	રેઝિસ્ટર (LDR), સોલરસેલ.
અલ્ટ્રાવાયોલેટ	400 nmથી 1 nm	પરમાશુની અંદરની કક્ષામાંના	કોટોસેલ્સ, કોટોગ્રાફિક ફિલ્મ
(UV)		ઇલેક્ટ્રૉન જ્યારે એક ઊર્જાસ્તરમાંથી	11.01111
		ઓછી ઊર્જાના સ્તરમાં જાય ત્યારે	
X-rays	1 nmथl 10 ⁻³ nm	X-ray ટ્યૂબ, પરમાણુઓની અંદરની	કોટોગ્રાફિક ફિલ્મ, ગાઇગર
		કક્ષાના ઇલેક્ટ્રૉન	ટ્યૂબ, આયોનાઇઝેશન ચેમ્બર
ગેમા કિરણો	$< 10^{-3} \text{ nm}$	રેડિયો-ઍક્ટિવ ન્યુક્લિયસનો ક્ષય	ઉપર મુજબ

સારાંશ

- દોલન કરતા વિદ્યુતભારોના કારણે અવકાશમાં આવર્ત રીતે બદલાતા જતા વિદ્યુતક્ષેત્રનું નિર્માણ થાય છે. દોલન કરતા આ વિદ્યુતભારોના કારણે બદલાતા જતા વિદ્યુતપ્રવાહનું પણ નિર્માણ થાય છે, જે આવર્ત રીતે બદલાતા જતા ચુંબકીય ક્ષેત્રનું નિર્માણ કરે છે. આમ, વિદ્યુતચુંબકીય તરંગો ઉદ્ભવે છે.
- 2. વિદ્યુતચુંબકીય તરંગોની આવૃત્તિ, વિદ્યુતભારોના દોલનની આવૃત્તિ જેટલી જ હોય છે. વિદ્યુતચુંબકીય તરંગો માટે c (વેગ) = λ (તરંગલંબાઈ) \times f (આવૃત્તિ)
- 3. દોલનો કરતા વિદ્યુતભારની નજીકમાં \vec{E} અને \vec{B} ક્ષેત્રો વચ્ચે કળાનો તફાવત $\frac{\pi}{2}$ હોય છે અને તેમનાં મૂલ્યો અંતર સાથે ઝડપથી $\frac{1}{r^3}$ અનુસાર ઘટે છે (જ્યાં r= ઉદ્દગમથી અંદર). વિકિરણના આ શરૂઆતના ઘટકોને ઇન્ડક્ટિવ ઘટકો કહે છે.
- 4. ઉદ્દગમથી દૂરના વિસ્તારમાં \vec{E} અને \vec{B} સમાન કળામાં હોય છે અને અંતર સાથે તેમનાં મૂલ્યોમાં થતો ઘટાડો પ્રમાણમાં ધીમો હોય છે ($\frac{1}{r}$ મુજબ). વિદ્યુતચુંબકીય વિકિરણના આ ઘટકોને ઉત્સર્જિત (Radiated) ઘટકો કહે છે.
- 5. વિદ્યુતચુંબકીય તરંગો એ મુક્ત અવકાશ કે શૂન્યાવકાશમાં વિદ્યુત અને ચુંબકીય ક્ષેત્રોનાં સ્વલંબિત (Self–Sustaining) દોલનો છે. વિદ્યુત અને ચુંબકીય ક્ષેત્રોનાં દોલનો કોઈ માધ્યમ સાથે નિસ્બત ધરાવતાં નથી.
- 6. શૂન્યાવકાશ (મુક્ત અવકાશ)માં વિદ્યુતચુંબકીય તરંગોનો વેગ,

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = 2.99792 \times 10^8 \text{ m s}^{-1}$$

7. કોઈ માધ્યમમાં વિદ્યુતચુંબકીય તરંગોનો વેગ $v=rac{1}{\sqrt{\mu\epsilon}}$

જ્યાં, μ = માધ્યમની પરમીએબિલિટી, અને

દ = માધ્યમની પરમીટિવિટી

- 8. પ્રકાશનો વેગ તે માધ્યમની વિદ્યુત અને ચુંબકીય પ્રકૃતિ પર આધાર રાખે છે.
- 9. કોઈ માધ્યમનો વક્કીભવનાંક $n=rac{c}{v}=\sqrt{\mu_r \epsilon_r}=\sqrt{\mu_r K}$
- 10. વિદ્યુતચુંબકીય તરંગો જ્યારે કોઈ સપાટી પર અથડાય છે, ત્યારે તેના પર વિકિરણ-દબાણ ઉત્પન્ન કરે છે.
- 11. જો એકમ સમયમાં એકમસપાટીને લંબ રૂપે આપાત થતી વિદ્યુતચુંબકીય તરંગોની ઊર્જા ΔU હોય અને જો તે ઊર્જા સંપૂર્ણપણે શોષાઈ જતી હોય, તો સપાટીને મળતું વેગમાન $\Delta p = rac{\Delta U}{c}$.

જે વિકિરણનું દબાણ (Pc) પણ દર્શાવે છે.

12. એકમ કદ દીઠ વિદ્યુતચુંબકીય ઊર્જા (ઊર્જાઘનતા)

$$\rho = \rho_{\rm E} + \rho_{\rm B} = \frac{1}{2} \epsilon_0 E^2 + \frac{B^2}{2\mu_0} = \epsilon_0 E_{rms}^2$$

13	3. એકમક્ષેત્રફળ ધરાવતી સપાટીમાંથી સપાટીને લંબ રૂપે એક સેકન્ડમાં પસાર થતી વિકિરણ ઊર્જાને વિકિરણની તીવ્રતા (I) કહે છે.
14	4. બે ગોળાઓ વચ્ચે દોલિત થતા વિદ્યુતભારની ગતિ-ઊર્જા વિદ્યુતચુંબકીય વિકિરણની ઊર્જાના સ્વરૂપમાં પ્રાપ્ત થાય છે. બંનેનાં મૂલ્યો સરખાં હોય છે.
	સ્વાધ્યાય
ચિન	ાં વિધાનો માટે આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
1.	3 mmથી 100 cm સુધીની તરંગલંબાઈવાળા વિદ્યુતચુંબકીય તરંગો કૃત્રિમ ઉપગ્રહો દ્વારા થતા સંદેશાવ્યવહારમાં વપરાય છે, તો આ તરંગલંબાઈના ગાળાને અનુરૂપ આવૃત્તિનો ગાળો છે. $[c=3\times10^8 \text{ m s}^{-1}]$
	(A) 30 MHz왻 10 ⁴ MHz (B) 300 MHz왻 10 ⁵ MHz
	(C) 3 MHz 4 3 × 10 8 MHz (D) 3 MHz 4 10 6 MHz
2.	રેડિયો-ખગોળશાસ્ત્રીય અભ્યાસો પરથી એવું માલૂમ પડ્યું છે કે, આંતર ગેલેક્સી અવકાશમાંથી 21 cm તરંગલંબાઈન્ વિદ્યુતચુંબકીય વિકિરણ પૃથ્વી પર આવી રહ્યું છે, તો આ વિકિરણની આવૃત્તિ હશે.
	$[c = 3 \times 10^8 \text{ m s}^{-1}]$
	(A) 1.43 GHz (B) 1.43 MHz (C) 1.43 kHz (D) 1.43 Hz
3.	જો $v_{_{\it g}},v_{_{\it x}}$ અને $v_{_{\it m}}$ એ અનુક્રમે γ -rays, X-rays અને માઇક્રોવેવ્ઝની અવકાશમાં ઝડપ હોય, તો
	(A) $v_g > v_x > v_m$ (B) $v_g < v_x < v_m$ (C) $v_x > v_m > v_g$ (D) $v_g = v_x = v_m$
4.	જો μ_r અને K એ આપેલ માધ્યમની અનુક્રમે સાપેક્ષ પરમીએબિલિટી અને ડાઇ-ઇલેક્ટ્રિક અચળાંક હોય, તે માધ્યમનો વક્રીભવનાંક $n=\dots$
	(A) $\sqrt{\mu_r K}$ (B) $\sqrt{\mu_0 \varepsilon_0}$ (C) $\frac{1}{\mu_r K}$ (D) $\sqrt{\frac{\mu_r}{K}}$
5.	એક વિદ્યુત ચુંબકીય તરંગમાં $ec{ extbf{E}}$ નું મહત્તમ મૂલ્ય 18 V $ extbf{m}^{-1}$ છે, તો $ec{ extbf{B}}$ નું મહત્તમ મૂલ્ય
	(A) 3×10^{-6} T (B) 6×10^{-8} T (C) 9×10^{-9} T (D) 2×10^{-10} T
6.	અવકાશમાંથી પસાર થતું એક વિદ્યુતચુંબકીય તરંગ નીચેના સમીકરણ વડે રજૂ કરી શકાય છે :
	$\mathrm{E} = \mathrm{E}_0 \mathrm{sin}(\omega t - kx)$ અને $\mathrm{B} = \mathrm{B}_0 \mathrm{sin}(\omega t - kx)$. તો નીચેનામાંથી કયો વિકલ્પ સાચો છે ?
	(A) $E_0 B_0 = \omega k$ (B) $E_0 \omega = B_0 k$ (C) $E_0 k = B_0 \omega$ (D) $\frac{E_0}{B_0} = \frac{1}{\omega k}$
7.	એક સમતલ વિદ્યુતચુંબકીય તરંગ X-દિશામાં ગતિ કરે છે. કોઈ એક સ્થાને અને ક્ષણે તેના વિદ્યુતક્ષેત્રનો ઘટક
	$ec{ ext{E}} \ = \ 6.3 \ \hat{j} \ ext{V} \ ext{m}^{-1}$ છે. આ સ્થાને અને સમયે તેના ચુંબકીય ક્ષેત્રનો ઘટક હોય.
	(A) $2.1 \times 10^{-8} \hat{k}$ T (B) $-2.1 \times 10^{-8} \hat{k}$ T (C) $6.3 \hat{k}$ T (D) $-6.3 \hat{k}$ T
8.	બે વિજાતીય વિદ્યુતભારિત કણો મુક્ત અવકાશમાં તેમના મધ્યમાનસ્થાનની આસપાસ 10 ⁹ Hz આવૃત્તિથી દોલન્ કરે છે. તેમને અનુરૂપ ઉત્પન્ન થયેલા વિદ્યુતચુંબકીય તરંગોની તરંગલંબાઈ હશે.

(A) 0.3 m (B) $3 \times 10^{17} \text{ m}$ (C) 10^9 m (D) 3.3 m

વિદ્યુતચુંબકીય તરંગો

9.	સોડિયમ જોડકા (Doublet)ની તરંગલંબાઈઓ 5890 Å વિસ્તારમાં આવે છે.	અને 5896 Å વિદ્યુતચુંબકીય વર્શપટના		
	(A) ઇન્ફ્રારેડ (B) દેશ્યપ્રકાશ (C)	અલ્ટ્રાવાયોલેટ (D) માઇક્રોવેવ		
10.	-	ાકીય તરંગની આવૃત્તિ 2 MHz છે. જેની સાપેક્ષ પરમિટિવિટી $oldsymbol{arepsilon}_r=4.0$ હોય તેવા પસાર થાય, ત્યારે તેની તરંગલંબાઈ અને આવૃત્તિ		
	(A) બમણી થાય, અડધી થાય. (B)	બમણી થાય, અચળ રહે.		
	(C) અડધી થાય, બમણી થાય. (D)) અડધી થાય, અચળ રહે.		
11.	સૂર્ય પરથી આવતા વિકિરણના વિદ્યુતક્ષેત્રની ${ m rms}$ કિંમત J ${ m m}^{-3}$ હોય.	(મૂલ્ય) 720 N/C છે. તેની સરેરાશ વિકિરણઘનતા		
	(A) 81.35×10^{-12} (B) 3.3×10^{-3} (C)	4.58×10^{-6} (D) 6.37×10^{-9}		
12.	દોલનો કરતા વિદ્યુતભારોની નજીકમાં $\stackrel{ ightharpoonup}{ ext{E}}$ અને $\stackrel{ ightharpoonup}{ ext{B}}$ ક્ષેત્રો મૂલ્યો ઉદ્દગમથી અંતર r સાથે ઝડપથી અનુસાર			
	(A) $0, r^{-1}$ (B) $\frac{\pi}{2}, r^{-3}$ (C)	$\frac{\pi}{2}$, r^{-1} (D) 0, r^{-3}		
13.	દોલનો કરતા વિદ્યુતભારથી દૂરના વિસ્તારમાં $\overrightarrow{ extbf{E}}$ અને $\overrightarrow{ extbf{B}}$ r સાથે અનુસાર ઘટે છે, તથા આ ઘટકોને	·		
	(A) r^{-3} , ઇન્ડક્ટિવ (B) r^{-1} , ઉત્સર્જિત (C)	r^{-3} , ઉત્સર્જિત $ m (D)$ r^{-1} , ઇન્ડક્ટિવ		
14.	ઓરડાના તાપમાને જો પાણીની સાપેક્ષ પરમિટિવિટી 80 હે પાણીમાં પ્રકાશનો વેગ m s ^{–1} હોય.	ોય, તથા સાપેક્ષ પરમિએબિલિટી 0.0222 હોય, તો		
	(A) 3×10^8 (B) 2.5×10^8 (C)	2.25×10^8 (D) 3.5×10^8		
15.		ALL CONTRACTOR OF THE CONTRACT		
	ઊર્જાધનતા J m $^{-3}$ હોય. [$\epsilon_0=8.85 imes10^{-12}$			
	(A) 4.425×10^{-16} (B) 6.26×10^{-14} (C)			
16.	અનંત અંતરેથી આવતું એક વિદ્યુતચુંબકીય તરંગ શૂન્યાવકાશ માધ્યમ પર આધારિત નથી (માધ્યમમાં બદલાશે નહીં).	ાથી એક માધ્યમમાં પ્રવેશે છે. તે તરગ માટે		
	(A) ω (B) k (C)	$\frac{\omega}{k}$ (D) λ		
17.	હવામાંથી પસાર થતા $6~\mathrm{GHz}$ આવૃત્તિના વિકિરણ માટે ($1~\mathrm{GHz}=10^9~\mathrm{Hz}$).	1 m લંબાઈ દીઠ તરંગોની સંખ્યા હોય.		
	(A) 3 (B) 5 (C)) 20 (D) 30		
18.	હર્ટ્ઝના પ્રયોગમાં ઉદ્ભવતા વિકિરણની બે ગોળાઅં હોય છે.	ો વચ્ચે દોલિત થતા વિદ્યુતભારોની ગતિ ઊર્જા જેટલી		
	(A) આવૃત્તિ (B) ઊર્જા (C)	તરંગલંબાઈ (D) વેગ		
19.	${ m B_0} = 1.0 imes 10^{-4} \; { m T}$ ધરાવતા સમતલ વિદ્યુતચુંબકીય ત	રંગની તીવ્રતા W m^{-2} હોય.		
	[c =	= 3 \times 10 ⁸ m s ⁻¹ , μ_0 = 4 π \times 10 ⁻⁷ N A ⁻²]		
	(A) 2.38×10^6 (B) 1.19×10^6 (C)	6×10^5 (D) 4.76×10^6		
88		ભૌતિકવિજ્ઞાન-IV		

જવાબો

- 1. (B) 2. (A) 3. (D) 4. (A) 5. (B) 6. (C)
- 7. (A) 8. (A) 9. (B) 10. (D) 11. (C) 12. (B)
- 13. (B) 14. (C) 15. (A) 16. (A) 17. (C) 18. (B)
- 19. (B)

નીચે આપેલ પ્રશ્નોના જવાબ ટૂંકમાં આપો :

- 1. કયા વિજ્ઞાનીએ સૌપ્રથમ પ્રયોગશાળામાં વિદ્યુતચુંબકીય તરંગોનું અસ્તિત્વ સાબિત કર્યું ?
- 🛂 વિદ્યુત અને ચુંબકત્વને સાંકળતાં સમીકરણોમાં શું ખૂટતું હતું?
- $oldsymbol{3}$. વિદ્યુતચુંબકીય તરંગોના ઉદ્ગમસ્થાનથી દૂરના અંતરે $\overrightarrow{ extbf{E}}$ અને $\overrightarrow{ extbf{B}}$ વચ્ચેનો કળા–તફાવત કેટલો હોય છે ?
- 4. કયા વિજ્ઞાનીએ સૌપ્રથમ 5 mmથી 25 mmની તરંગલંબાઈ ધરાવતા વિદ્યુતચુંબકીય તરંગો ઉત્પન્ન કર્યા હતા ?
- રેડિયેશનની તીવ્રતાની વ્યાખ્યા આપો.
- 6. કઈ તરંગલંબાઈના વિસ્તારો માનવઆંખ જોઈ શકતી નથી ?
- **7.** કયા તરંગોને હીટવેવ્ઝ કહે છે ?
- 🕵 આંખની LASIK સર્જરી માટે કયા પ્રકારનાં કિરણો ઉપયોગમાં લેવાય છે ?
- 🞐 ન્યુક્લિયર પ્રક્રિયાઓ દરમિયાન કયા પ્રકારનાં કિરણો ઉદ્ભવે છે ?
- 10. વિદ્યુતચુંબકીય તરંગની ઊર્જાઘનતા વ્યાખ્યાયિત કરો.

નીચેના પ્રશ્નોના જવાબ આપો :

- 🧘 હર્ટ્ઝના પ્રયોગની આકૃતિ દોરીને વિદ્યુતચુંબકીય તરંગો કેવી રીતે ઉદ્દભવે છે, તે ટૂંકમાં સમજાવો.
- 2. વિદ્યુતચુંબકીય તરંગના ઇન્ડક્ટિવ અને ઉત્સર્જિત ઘટકો જરૂરી આકૃતિ દોરીને સમજાવો.
- વિદ્યુતચુંબકીય તરંગોની કોઈ પણ ચાર લાક્ષણિકતાઓ સમજાવો.
- 4. વિદ્યુતચુંબકીય વર્શપટના કોઈ બે વિભાગોની આવૃત્તિના ઉદ્ભવ તથા તેમના ઉપયોગોની માહિતી આપો.

નીચેના દાખલા ગણો :

1 ૠષ્ટ X-દિશામાં ગતિ કરતાં એક સમતલ વિદ્યુતચુંબકીય તરંગ માટે,

 $\mathbf{B}_y = 2 \times 10^{-7} \mathrm{sin} \ (0.5 \times 10^3 x + 1.5 \times 10^{11} t) \ \mathrm{T}$ છે, તો (a) તરંગની તરંગલંબાઈ અને આવૃત્તિ શોધો. (b) વિદ્યુતક્ષેત્ર માટે સમીકરણ લખો.

[84] : $\lambda = 1.26$ cm, f = 23.9 GHz, $E_z = 60 \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t)$ Vm⁻¹]

2. 100 Wના એક બલ્બની 5 % ઊર્જા દશ્યપ્રકાશમાં રૂપાંતરણ પામે છે, તો બલ્બથી 1 m દૂર આવેલી ગોળીય સપાટી પર સરેરાશ તીવ્રતા શોધો. બલ્બને બિંદુવત્ ઉદ્દગમ ગણો અને માધ્યમ આઇસોટ્રોપિક ધારો.

[જવાબ : 0.4 W m⁻²]

3. એક બિંદુવત આઇસોટ્રોપિક પ્રકાશના ઉદ્ગમથી $10~\mathrm{m}$ અંતરે મહત્તમ વિદ્યુતક્ષેત્ર $3.0~\mathrm{V}~\mathrm{m}^{-1}$ છે તો, (a) તે અંતરે મહત્તમ ચુંબકીય ક્ષેત્ર કેટલું હશે? (b) પ્રકાશની સરેરાશ તીવ્રતા કેટલી હશે? (c) પ્રકાશના ઉદ્ગમનો પાવર કેટલો હશે ? $[c=3\times10^8~\mathrm{m}~\mathrm{s}^{-1},~\epsilon_0=8.854\times10^{-12}~\mathrm{C}^2~\mathrm{N}^{-2}~\mathrm{m}^{-2}]$

[8414]:
$$B_0 = 10^{-8}$$
 T, $I = 1.195 \times 10^{-2}$ Wm⁻², $P = 15$ W]

4. 40 W પાવર ઉત્સર્જિત કરતા પ્રકાશના બિંદુવત આઇસોટ્રોપિક ઉદ્દ્ગમથી 2 m અંતરે એક અવલોકનકાર ઊભો છે. અવલોકનકાર પાસે આ ઉદ્દગમ વડે ઉદ્દભવતા વિદ્યુત અને ચુંબકીય ક્ષેત્રનાં rms મૂલ્યો કેટલાં હશે?

$$[c = 3 \times 10^8 \text{ m s}^{-1}, \ \epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}]$$

[804 :
$$E_{rms} = 17.3 \text{ V m}^{-1}, B_{rms} = 5.77 \times 10^{-8} \text{ T}$$
]

5. X-દિશામાં ગિત કરતા એક સમતલ વિદ્યુતચુંબકીય તરંગના વિદ્યુતક્ષેત્રનો કંપવિસ્તાર, Y-અક્ષની દિશામાં, $300~V~m^{-1}$ છે. (a) આ તરંગની તીવ્રતા કેટલી હશે? (b) જો આ તરંગ $3.0~m^2$ ક્ષેત્રફળ ધરાવતા સંપૂર્ણ શોષણ કરી શકે તેવા પતરા પર લંબરૂપે આપાત થાય, તો પતરાને મળતું વેગમાન તથા પતરા પર ઉદ્ભવતું રેડિયેશન દબાણ કેટલું હશે ? [$\varepsilon_0=8.854\times 10^{-12}~C^2~N^{-1}~m^{-2},~c=3\times 10^8~ms^{-1}$]

[8414 : 119.529 W m⁻², 1.195
$$\times$$
 10⁻⁶ N, 3.98 \times 10⁻⁷ P_a]

6. X-અક્ષની દિશામાં રહેલા, 10 cm^2 આડછેદનું ક્ષેત્રફળ ધરાવતા તથા 100 cm લંબાઈના નળાકાર પર $E = 10 \sin (\omega t - kx) \frac{N}{C}$ વિદ્યુતક્ષેત્ર ધરાવતું વિદ્યુતચુંબકીય તરંગ લંબરૂપે આપાત થાય છે. તો વિકિરણની (a) ઊર્જાઘનતા, (b) નળાકારમાં સમાયેલી ઊર્જા, (c) તરંગની તીવ્રતા, (d) સંપૂર્ણ શોષણ માટે 1 સેકન્ડમાં નળાકારના આડછેદને મળતું વેગમાન તથા (e) વિકિરણનું દબાણ શોધો.

$$[\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}, \text{ c} = 3 \times 10^8 \text{ ms}^{-1}]$$

[% 4.427
$$\times$$
 10⁻¹⁰ J m⁻³, (b) 4.427 \times 10⁻¹³ J, (c) 1.3278 \times 10⁻¹ Wm⁻²,

(d)
$$1.475 \times 10^{-21}$$
 N, (e) 1.475×10^{-18} N m⁻²]

ભૌતિકવિજ્ઞાન-IV