The best way to probe CP violation in the lepton sector is with long-baseline accelerator neutrino experiments in the appearance mode: the appearance of ν_e in predominantly ν_{μ} beams. Here we show that it is possible to discover CP violation with disappearance experiments only, by combining JUNO for electron neutrinos and DUNE or Hyper-Kamiokande for muon neutrinos. While the maximum sensitivity to discover CP is quite modest (1.6 σ with 6 years of JUNO and 13 years of DUNE), some values of δ may be disfavored by $> 3\sigma$ depending on the true value of δ .

CP-Violation with Neutrino Disappearance

Colorado State University

March 19, 2024

2309.03262

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering

 θ_{23} octant

Complex phase

Absolute mass scale

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering θ_{23} octant

Complex phase

Absolute mass scale

Outline

- 1. Why CPV is interesting
- 2. Other non-standard probes of CPV
- 3. Relationship between appearance, disappearance, CP, T, CPT
- 4. Three ways to see why there is CPV information in disappearance
 - 4.1 Parameter counting
 - 4.2 Direct analytic calculation
 - 4.3 Numerical test
- 5. Role of the matter effect
- 6. Recommendation

Why is CPV interesting?

2309.03262

δ and CP violation

$$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

C. Jarlskog PRL 55, 1039 (1985)

δ and CP violation

$$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

C. Jarlskog PRL 55, 1039 (1985)

1. Strong interaction: no observed EDM \Rightarrow CP (nearly) conserved

$$\frac{\bar{\theta}}{2\pi} < 10^{-11}$$

J. Pendlebury, et al. 1509.04411

2. Quark mass matrix: non-zero but small CP violation

$$\frac{|J_{\rm CKM}|}{J_{\rm max}} = 3 \times 10^{-4}$$

CKMfitter **1501.05013**

3. Lepton mass matrix: ?

$$\frac{|J_{\rm PMNS}|}{J_{\rm max}} < 0.34$$

PBD, J. Gehrlein, R. Pestes 2008.01110

$$J_{\text{max}} = \frac{1}{6\sqrt{3}} \approx 0.096$$

δ : what is it really?

2309.03262

7/28

 δ : what is it not?

$$\delta \not\Rightarrow$$
 Baryogenesis

The amount of leptogenesis is a function of:

- 1. the heavy mass scale
- $2. \delta$
- 3. α , β (Majorana phases)
- 4. CP phases in the RH neutrinos
- 5. ...

C. Hagedorn, et al. 1711.02866
K. Moffat, et al. 1809.08251

$$\begin{array}{lll} \text{Measuring } \delta = 0, \pi & \not \Rightarrow & \text{no leptogenesis} \\ \text{Measuring } \delta \neq 0, \pi & \not \Rightarrow & \text{leptogenesis} \end{array}$$

δ , J: current status

Maximal CP violation is already ruled out:

- 1. $\theta_{12} \neq 45^{\circ} \text{ at } \sim 15\sigma$
- 2. $\theta_{13} \neq \tan^{-1} \frac{1}{\sqrt{2}} \approx 35^{\circ} \text{ at many (100) } \sigma$
- 3. $\theta_{23} = 45^{\circ}$ allowed at $\sim 1\sigma$
- 4. $|\sin \delta| = 1$ allowed

When δ and when J?

If the goal is **CP violation** the Jarlskog invariant should be used

however

If the goal is **measuring the parameters** one must use δ

Given $\theta_{12},\,\theta_{13},\,\theta_{23},\,$ and $J,\,$ I can't determine the sign of $\cos\delta$ which is physical e.g. $P(\nu_{\mu}\to\nu_{\mu})$ depends on $\cos\delta$

Other non-standard CPV probes

1. Some information in solar due to loops in elastic scattering

V. Brdar, X-J. Xu 2306.03160

2. Sub-GeV atmospherics

K. Kelly, et al. 1904.02751

See also e.g. A. Suliga, J. Beacom 2306.11090

Solar (no systematics): $\sim 0.5\sigma$

Atmospherics at DUNE: $< 2\sigma$

Appearance, disappearance, and CP

Appearance vs. Disappearance

Some oscillation experiments can do appearance or disappearance experiments

Disappearance

MINOS, $NO\nu A$, T2K

KamLAND, Daya Bay, RENO, Double CHOOZ

(Sort of) SNO, Borexino, SK-solar

Neither appearance nor disappearance

SK-atm, IceCube

Appearance

T2K, $NO\nu A$

OPERA

CP, T: Disappearance

$$\begin{array}{cccc}
\nu_e \to \nu_e & \to & CP & \to & \bar{\nu}_e \to \bar{\nu}_e \\
& \searrow & & \downarrow & \\
& CPT & T & \\
& & \downarrow & \\
\bar{\nu}_e \to \bar{\nu}_e
\end{array}$$

Disappearance measurements are even eigenstates of CP

$$CP[P(\nu_e \to \nu_e)] = P(\bar{\nu}_e \to \bar{\nu}_e) \stackrel{CPT}{=} P(\nu_e \to \nu_e)$$

Assume that CPT is a good symmetry

CP, T: Appearance

$$\begin{array}{cccc}
\nu_{\mu} \to \nu_{e} & \to & CP & \to & \bar{\nu}_{\mu} \to \bar{\nu}_{e} \\
& \searrow & & \downarrow & \\
& CPT & T & \\
& & \downarrow & \\
\bar{\nu}_{e} \to \bar{\nu}_{\mu} & \\
\end{array}$$

Appearance measurements are not eigenstates of CP

Appearance and Disappearance, CP even and CP odd terms

Disappearance:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 1}|^{2}|U_{\alpha 2}|^{2}\sin^{2}\Delta_{21}$$
$$-4|U_{\alpha 1}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{31}$$
$$-4|U_{\alpha 2}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{32}$$
$$= P_{\alpha\alpha}^{CP+}$$

Appearance and Disappearance, CP even and CP odd terms

Disappearance:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 1}|^{2}|U_{\alpha 2}|^{2}\sin^{2}\Delta_{21}$$
$$- 4|U_{\alpha 1}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{31}$$
$$- 4|U_{\alpha 2}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{32}$$
$$= P_{\alpha \alpha}^{CP+}$$

Appearance:

$$P(\nu_{\alpha} \to \nu_{\beta}) = -4\Re[U_{\alpha 1}U_{\beta 1}^{*}U_{\alpha 2}^{*}U_{\beta 2}]\sin^{2}\Delta_{21}$$
$$-4\Re[U_{\alpha 1}U_{\beta 1}^{*}U_{\alpha 3}^{*}U_{\beta 3}]\sin^{2}\Delta_{31}$$
$$-4\Re[U_{\alpha 3}U_{\beta 3}^{*}U_{\alpha 2}^{*}U_{\beta 2}]\sin^{2}\Delta_{32}$$
$$\pm 8J_{CP}\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32}$$
$$= P_{\alpha\beta}^{CP+} + P_{\alpha\beta}^{CP-}$$

Sign depends on α, β

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$

Conventional Wisdom

 $1. \ \, \text{Appearance}$ is sensitive to CPV

[True]

Conventional Wisdom

1. Appearance is sensitive to CPV

[True]

2. Disappearance has no CPV sensitivity

[False]

Conventional Wisdom

1. Appearance is sensitive to CPV

[True]

2. Disappearance has no CPV sensitivity

[False]

3. Any δ dependence in disappearance is in ν_μ not ν_e

[Confusing/False]

$$\begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Correct Statements

- ightharpoonup Appearance is the best way to measure δ and CPV
 - ... given known oscillation parameters, systematics, and realistic experiments
 - ightharpoonup Probes mostly $\sin \delta$ not $\cos \delta$
 - ▶ Don't need both ν and $\bar{\nu}$ (but systematics)
- ightharpoonup Disappearance can measure δ
 - ► CPV can be discovered with only disappearance measurements
 - ightharpoonup Probes mostly $\cos \delta$ not $\sin \delta$
 - ► Requires measurements of two flavors
 - "Works through unitarity" (as do nearly all oscillation measurements)

1. Four parameters in the PMNS matrix

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one

L. Zhan, et al. 0807.3203

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_μ disappearance, 4 independent parameters will be measured
 - ▶ Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) \Rightarrow no one row is ever enough
 - ▶ That is, CPV is physical and cannot depend on parameterization

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_μ disappearance, 4 independent parameters will be measured
 - Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) \Rightarrow no one row is ever enough
 - ► That is, CPV is physical and cannot depend on parameterization
- 5. This is sufficient to constrain $\cos \delta$ and three mixing angles

Parameter Counting

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_μ disappearance, 4 independent parameters will be measured
 - Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) \Rightarrow no one row is ever enough
 - ► That is, CPV is physical and cannot depend on parameterization
- 5. This is sufficient to constrain $\cos \delta$ and three mixing angles
- 6. If we determine $\cos \delta \neq \pm 1 \implies \text{CP is violated!}$

Direct Analytic Calculation

Disappearance experiments measure various $|U_{\alpha i}|^2$ terms Suppose 4 are measured: $|U_{e2}|^2$, $|U_{e3}|^2$, $|U_{\mu 2}|^2$, $|U_{\mu 3}|^2$

Actually this gives all 9 magnitudes by unitarity

Direct Analytic Calculation

Disappearance experiments measure various $|U_{\alpha i}|^2$ terms Suppose 4 are measured: $|U_{e2}|^2$, $|U_{e3}|^2$, $|U_{\mu 2}|^2$, $|U_{\mu 3}|^2$

Actually this gives all 9 magnitudes by unitarity

$$J_{CP}^{2} = |U_{e2}|^{2} |U_{\mu 2}|^{2} |U_{e3}|^{2} |U_{\mu 3}|^{2}$$
$$-\frac{1}{4} \left(1 - |U_{e2}|^{2} - |U_{\mu 2}|^{2} - |U_{e3}|^{2} - |U_{\mu 3}|^{2} + |U_{e2}|^{2} |U_{\mu 3}|^{2} + |U_{e3}|^{2} |U_{\mu 2}|^{2}\right)^{2}$$

Disappearance can tell us if CP is violated, but not if nature prefers ν 's or $\bar{\nu}$'s

Numerical Studies

Inputs are *only*:

$ ightharpoonup$ Daya Bay for θ_{13}	1809.02261
---	------------

▶ JUNO 6 yrs precision on
$$\theta_{12}$$
, Δm_{21}^2 , Δm_{31}^2 2204.13249

► DUNE 6.5+6.5 yrs disappearance channels only 2103.04797

Also looked at varying JUNO's and DUNE's runtime, and at HK

Where is $|U_{\mu 2}|^2$?

Where is $|U_{\mu 2}|^2$?

	$\cos \delta$	ROI 1	ROI 2
65 yrs u retos	1	5506	5038
6.5 yrs ν_{μ} rates	0	5418	5115
	-1	5334	5193

Final Sensitivities

▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm_{21}^2 somewhat PBD, J. Gehrlein 2302.08513

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$
- ▶ There is δ information in $|U_{u1}|^2 |U_{u2}|^2$
- ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm_{21}^2 somewhat PBD, J. Gehrlein 2302.08513

► This term is

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

$$\approx -2 \quad (0.21 + 0.03 \cos \delta) \left(\frac{\pi}{33} \right)^2$$

 $\Delta m^2_{21}/|\Delta m^2_{31}|\approx 33$

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm_{21}^2 somewhat PBD, J. Gehrlein 2302.08513

► This term is

$$\approx -4c_{23}^{2} \left(s_{12}^{2} c_{12}^{2} + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^{2} \Delta_{21}$$

$$\approx -2 \quad (0.21 + 0.03 \cos \delta) \left(\frac{\pi}{33} \right)^{2}$$

 $\Delta m_{21}^2/|\Delta m_{31}^2| \approx 33$

- ▶ So the probability is large for $\cos \delta = -1$?
- ▶ So the effect is $\sim -0.0005 \cos \delta$?

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$ ▶ This comes from the Δm_{21}^2 term

This term is

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

$$\approx -2 \quad (0.21 + 0.03 \cos \delta) \left(\frac{\pi}{33} \right)^2$$

 $\Delta m_{21}^2 / |\Delta m_{21}^2| \approx 33$

▶ So the probability is large for
$$\cos \delta = -1$$
?

▶ So the effect is
$$\sim -0.0005 \cos \delta$$
?

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$
- ► There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
 - ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm^2_{21} somewhat PBD, J. Gehrlein 2302.08513

This term is

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

$$\approx -2$$
 (0.21 +

$$0.03\cos\delta)\left(\frac{\pi}{33}\right)^2$$

- ▶ So the probability is large for $\cos \delta = -1$?
- So the effect is $\sim -0.0005 \cos \delta$?

 $\Delta m_{21}^2/|\Delta m_{31}^2| \approx 33$ Sign is wrong

Magnitude is ~ 15 too small

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 S_{\odot}$$

$$S_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.6$$

at $E=1.3~{\rm GeV}$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.6$$

at E = 1.3 GeV

Mixing angle is modified

$$\cos 2\theta_{12} \to \frac{\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2}{S_{\odot}} \approx -0.97 < 0$$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.6$$

at $E=1.3~{\rm GeV}$

Mixing angle is modified

$$\cos 2\theta_{12} \to \frac{\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2}{S_{\odot}} \approx -0.97 < 0$$

► So the sign is swapped

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.37 \rightarrow -0.25$$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.6$$

at $E=1.3~{
m GeV}$

Mixing angle is modified

$$\cos 2\theta_{12} \to \frac{\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2}{S_{\odot}} \approx -0.97 < 0$$

► So the sign is swapped

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.37 \rightarrow -0.25$$

▶ Also s_{13} increases in matter $\sim 15\%$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.6$$

Mixing angle is modified

$$\cos 2\theta_{12} \to \frac{\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2}{S_{\odot}} \approx -0.97 < 0$$

at E=1.3 GeV

► So the sign is swapped

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.37 \rightarrow -0.25$$

- ▶ Also s_{13} increases in matter $\sim 15\%$
- This gets us most of the effect, and the correct sign

Matter effects at HK

Leading order approximations

	\mathcal{S}_{\odot}	$\sin 2\theta_{12}\cos 2\theta_{12}$	s_{13}
Vacuum	1	0.37	0.141
$_{ m HK}$	1.04	-0.42	0.145
DUNE	3.6	-0.25	0.16

Varying Runtime/Power

Improvement requires both experiments!

Discussion

- ► Disappearance can discover CPV
- ▶ Requires two good measurements: JUNO and DUNE/HK
- ▶ Can rule out some values of δ at > 3σ
- ► Analyses already exist but...
- ▶ LBL Experiments should break down δ analyses into app vs. dis
- ▶ Since systematics are different, provides a good cross check
- ▶ Subject to BSM degeneracies, as are most other oscillation measurements
- ▶ Works in vacuum or matter; matter slightly minimizes HK's effect

Backups

References


```
SK hep-ex/9807003
```

M. Gonzalez-Garcia, et al. hep-ph/0009350

M. Maltoni, et al. hep-ph/0207227

 $\rm SK\ hep-ex/0501064$

SK hep-ex/0604011

T. Schwetz, M. Tortola, J. Valle 0808.2016

M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524

T2K 1106.2822

D. Forero, M. Tortola, J. Valle 1205.4018

D. Forero, M. Tortola, J. Valle 1405.7540

P. de Salas, et al. 1708.01186

F. Capozzi et al. 2003.08511

Complex phase in different parameterizations

- ► Can relate the complex phase in one parameterization to that in another
- $ightharpoonup U_{132}$ and U_{213} similar to U_{123}
- δ constrained to $\sim [150^{\circ}, 210^{\circ}]$ in $U_{231}, U_{312}, U_{321}$
- ▶ Bands indicate 3σ uncertainty on θ_{12} , θ_{13} , θ_{23}
- ▶ "50% of possible values of δ "
 - ⇒ parameterization dependent

DUNE TDR II 2002.03005

Quark mixing

From the PDG, V_{CKM} in the V_{123} parameterization is

$$\theta_{12} = 13.09^{\circ}$$
 $\theta_{13} = 0.2068^{\circ}$ $\theta_{23} = 2.323^{\circ}$ $\delta_{PDG} = 68.53^{\circ}$

Looks like "large" CPV:

$$\sin \delta_{\rm PDG} = 0.93 \sim 1$$

yet $J_{CKM}/J_{max} = 3 \times 10^{-4}$.

Switch to V_{212} parameterization, $\Rightarrow \delta' = 1^{\circ}$ and $\sin \delta' = 0.02$.

Standard oscillation parameters

Can see that the combination doesn't like the NO while it does like the IO IO preferred over NO at $\Delta\chi^2=2.3$

CP violation in oscillations

In vacuum at first maximum:

$$P_{\mu e} - \bar{P}_{\mu e} \approx 8\pi J \frac{\Delta m_{21}^2}{\Delta m_{32}^2}$$

 $J \equiv s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$

C. Jarlskog PRL 55, 1039 (1985)

- \triangleright Extracting δ from data requires every other oscillation parameter
- ▶ J requires only Δm_{21}^2 (up to matter effects)

Matter effects are easily accounted for

$$\hat{J} \simeq \frac{J}{\sqrt{(c_{212} - c_{13}^2 a/\Delta m_{21}^2)^2 + s_{212}^2} \sqrt{(c_{213} - a/\Delta m_{ee}^2)^2 + s_{213}^2}}$$

PBD, S. Parke 1902.07185

PBD, H. Minakata, S. Parke 1604.08167

Repeated rotations

	U_{121}	U_{131}	U_{212}	U_{232}	U_{313}	U_{323}
$ U_{e2} $	1	1	1	1	X	X
$ U_{e3} $	1	1	X	X	1	1
$ U_{e2} $ $ U_{e3} $ $ U_{\mu 3} $	X	X	1	1	1	1

Note that $e^{i\delta}$ must be on first or third rotation

The importance of $\cos \delta$

- ▶ If only $\sin \delta$ is measured \Rightarrow sign degeneracy: $\cos \delta = \pm \sqrt{1 \sin^2 \delta}$
- ightharpoonup Most flavor models predict $\cos \delta$

— TBM — GR2 NEW7 Probability density -0.50.0 0.5 $\cos \delta$

J. Gehrlein, et al. 2203.06219

L. Everett, et al. 1912.10139