Re: Deep G-Buffers for Stable Global Illumination Approximation

Ferit Tohidi Far

November 11, 2018

Abstract

G-Buffers can be used to efficiently render images with an absurd amount of light sources - compared to other global illumination methods like pathtracing. This is possible thanks to a process called "deferred rendering". By using Deep G-Buffers we can speed up the whole process by approximating global illumination instead.

 ${\bf Keywords}\ \textit{g-buffer},\ \textit{deep}\ \textit{g-buffer},\ \textit{pathtracing},\ \textit{global}\ \textit{illumination},\ \textit{shading}$

Contents

	1	Def	erred Rendering	2
		1.1	Different global illumination methods (Pathtracing, photonmapping)	2
		1.2	Why they are inefficient (but pretty)	2
		1.3	How deffered rendering handles lighting more efficiently	2
	2	G-E	Buffer	2
		2.1	Frame-Buffer	2
		2.2	Z-Buffer	2
		2.3	Position-Buffer	2
		2.4	Normal-Buffer	2
		2.5	Diffuse-buffer	2
	1	2.6	Computing global illumination using G-Buffers	2
=		2.7	Performance comparison: G-buffers vs Pathtracing	2
		2.8	Output comparison: G-Buffers vs Pathtracing	2
	3	Dee	p G-Buffer	2
		3.1	Concept	2
		3.2	How Deep G-Buffers improve performance	2
		3.3	Performance comparison: G-buffers vs Deep G-Buffers vs Pathtracing	2
		3.4	Output comparison: G-Buffers vs Deep G-Buffers vs Pathtracing	2

- add a conclusion / outlook- look up some other rendering effects that could profit from deep g-buffers and present ho

1 Deferred Rendering

TODO

- 1.1 Different global illumination methods (Pathtracing, photonmapping)
- 1.2 Why they are inefficient (but pretty)
- 1.3 How deffered rendering handles lighting more efficiently
- 2 G-Buffer
- 2.1 Frame-Buffer
- 2.2 Z-Buffer
- 2.3 Position-Buffer
- 2.4 Normal-Buffer
- 2.5 Diffuse-buffer
- 2.6 Computing global illumination using G-Buffers
- 2.7 Performance comparison: G-buffers vs Pathtracing
- 2.8 Output comparison: G-Buffers vs Pathtracing
- 3 Deep G-Buffer
- 3.1 Concept
- 3.2 How Deep G-Buffers improve performance
- 3.3 Performance comparison: G-buffers vs Deep G-Buffers vs Pathtracing
- 3.4 Output comparison: G-Buffers vs Deep G-Buffers vs Pathtracing