

LIMPIEZA

Realizamos una limpieza del df ya que sin esto no podemos realizar los pasos posteriores:

```
columns = ['DBO mg/L', 'DQO mg/L', 'SST mg/L', 'COLI FEC NMP 100mL', 'E COLI NMP 100mL',
for i in columns:
 df_superf[i] = df_superf[i].astype('str')
  df superf[i] = df superf[i].str.replace('<25','25',regex=True)</pre>
 df superf[i] = df superf[i].str.replace('<0.2','0.2',regex=True)</pre>
  df_superf[i] = df_superf[i].str.replace('<1','1',regex=True)</pre>
 df_superf[i] = df_superf[i].str.replace('<2','2',regex=True)</pre>
 df_superf[i] = df_superf[i].str.replace('<3','3',regex=True)</pre>
  df superf[i] = df superf[i].str.replace('<20','20',regex=True)</pre>
  df superf[i] = df superf[i].str.replace('<1.1','1.1',regex=True)</pre>
  df superf[i] = df superf[i].str.replace('<10','10',regex=True)</pre>
  df superf[i] = df superf[i].str.replace('<0.02','0.02',regex=True)
  df superf[i] = df superf[i].str.replace('<0.01','0.01',regex=True)</pre>
 df superf[i] = df superf[i].str.replace('<0.003','0.003',regex=True)</pre>
 df superf[i] = df superf[i].str.replace('<0.005','0.004',regex=True)</pre>
  df superf[i] = df superf[i].str.replace('<0.0005','0.0004',regex=True)</pre>
  df superf[i] = df superf[i].str.replace('<0.0015','0.0015',regex=True)</pre>
  df superf[i] = df superf[i].str.replace('<0.025','0.025',regex=True)</pre>
  df superf[i] = df superf[i].astype('float')
  mean a = df superf[i].mean()
 df_superf[i] = df_superf[i].replace(np.nan,mean_a)
```

(df_superf.isnull().sum() * 100 / len(df_superf)).sort_values(ascending=False)

LIMPIEZA

Con la limpieza eliminamos algunas columnas:

```
columns_to_drop = ['CLAVE', 'TOX_D_48_FON_UT',
                    'CALIDAD TOX D 48 FON',
                     'TOX FIS FON 15 UT',
                      'CALIDAD TOX FIS FON 15',
                      'CALIDAD OD PORC MED',
                       'CALIDAD TOX D 48 SUP',
                        'CALIDAD ENTEROC',
                        'CALIDAD OD PORC FON',
                        'CALIDAD OD PORC SUP',
                        'CALIDAD TOX FIS SUP 15',
                        'CALIDAD OD PORC',
                        'CALIDAD TOX D 48',
                        'CALIDAD TOX V 15']
df superf.drop(columns to drop, inplace=True, axis=1)
df superf.shape
(4141, 41)
names = df superf.columns.to list()
types = df superf.dtypes.to dict()
df super clean = pd.DataFrame(SimpleImputer(strategy='most frequent').fit transform(
    df_superf), columns=names).astype(types)
```

SELECCIÓN DE X, Y

Posterior a eso, seleccionamos las variables independientes y la dependiente:

```
[ ] X = df_super_clean.drop('SEMAFORO', axis=1)
    y = LabelEncoder().fit_transform(df_super_clean['SEMAFORO'])
    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75, random_state=0)

[ ] X.describe().transpose()
```

	count	mean	std	min	25%	50%	75%	max
LONGITUD	4141.0	-101.126668	5.898307	-117.12403	-105.259510	-100.958600	-97.680560	-8.673215e+01
LATITUD	4141.0	20.040593	4.271863	14.53491	16.839720	19.454840	21.998090	3.270650e+01
PERIODO	4141.0	2020.000000	0.000000	2020.00000	2020.000000	2020.000000	2020.000000	2.020000e+03
DBO_mg/L	4141.0	16.886481	51.423215	2.00000	2.000000	13.800000	16.886481	1.500000e+03
DQO_mg/L	4141.0	64.332985	118.277690	10.00000	20.700000	64.332985	64.332985	2.871250e+03
SST_mg/L	4141.0	102.148144	405.576843	10.00000	12.000000	32.000000	102.148144	9.430000e+03
COLI_FEC_NMP_100mL	4141.0	95688.808675	922925.127897	3.00000	1333.000000	24000.000000	95688.808675	2.419600e+07
E_COLI_NMP_100mL	4141.0	79337.687452	830107.982666	3.00000	150.000000	15531.000000	79337.687452	2.419600e+07
ENTEROC_NMP_100mL	4141.0	1086.709845	2010.985728	3.00000	1086.709845	1086.709845	1086.709845	2.419600e+04
OD_PORC	4141.0	66.840289	20.692827	10.00000	66.840289	66.840289	66.840289	2.261000e+02
OD_PORC_SUP	4141.0	81.459975	17.855915	10.00000	81.459975	81.459975	81.459975	2.890000e+02
OD_PORC_MED	4141.0	71.590965	9.035034	10.00000	71.590965	71.590965	71.590965	1.330000e+02
OD_PORC_FON	4141.0	66.869239	13.471635	10.00000	66.869239	66.869239	66.869239	1.460000e+02

PIPELINE

Con todo lo anterior pudimos construir el pipeline:

```
pipe geo = Pipeline(steps= [('geo', SimpleImputer(strategy='most frequent'))])
geo = ['LONGITUD', 'LATITUD']
pipe num = Pipeline(steps= [('num', MinMaxScaler())])
num = ['DBO_mg/L','DQO_mg/L','SST_mg/L','COLI_FEC_NMP_100mL','E_COLI_NMP_100mL',
       'ENTEROC NMP 100mL', 'OD PORC', 'OD PORC SUP', 'OD PORC MED', 'OD PORC FON', 'TOX D 48 UT',
       'TOX V 15 UT', 'TOX D 48 SUP UT', 'TOX FIS SUP 15 UT']
pipe cat = Pipeline(steps= [('cat', OrdinalEncoder())])
cat columns = ['TIPO', 'SUBTIPO', 'CALIDAD DQO', 'CALIDAD DQO', 'CALIDAD SST', 'CALIDAD COLI FEC', 'CALIDAD E COLI', 'GRUPO', 'CONTAMINANTES']
pipe_bin = Pipeline(steps= [('bin', OrdinalEncoder())])
binarias = ['CUMPLE CON DBO', 'CUMPLE CON DQO', 'CUMPLE CON SST', 'CUMPLE CON CF', 'CUMPLE CON E COLI', 'CUMPLE CON ENTEROC', 'CUMPLE CON OD', 'CUMPLE CON TOX']
transformada = ColumnTransformer(transformers=[
                                         ('geo_columns', pipe geo, geo),
                                          ('num', pipe num, num),
                                          ('cat', pipe cat, cat columns),
                                         ('bin',pipe bin,binarias)])
```

columns = geo + num + cat columns + binarias

FEATURE IMPORTANCE

Posteriormente graficamos el feature importance, denotando que los contaminantes es lo más importante para el análisis de nuestro modelo.

CARACTERÍSTICAS MAS IMPORTANTES

```
def validacion scores(X,y):
 resultados = list()
 modelos = [RandomForestClassifier(random state= 0), DecisionTreeClassifier(random state= 0)]
  nombres = ['RandomForest', 'DecisionTree']
 for nombre, modelo in zip(nombres, modelos):
    KFold = RepeatedKFold(n_splits=8, n_repeats=3, random_state=0)
    score = cross_validate(estimator=modelo, X=transformada.fit_transform(X), y=y, cv=KFold)
    resultados.append({'nombre':nombre, 'score':score['test score'].mean()})
  return resultados
validacion scores(X train,y train)
[{'nombre': 'RandomForest', 'score': 0.9980675624342972},
 {'nombre': 'DecisionTree', 'score': 0.9974229564748804}]
from graphviz import Source
```

Basandonos en las características más importantes, construimos un algoritmo con dichas características.

DECISION TREE

Con todo lo anterior pudimos construir nuestro decision tree:

CONCLUSIONES

- Podemos concluir que nuestro modelo quedó algo sobreentrenado debido a que realizamos bastantes transformaciones, además de que si disminuimos las caracteristicas del mismo, este se vuelve menos complejo.
- Por último, podemos concluir que es mejor utilizar un árbol de decisión que un random forest, en el caso de nuestro modelo.

iGracias!

EQUIPO 19