Quickselect

Shusen Wang

55 8 29 68 3 41 32 12 53 17

```
55 8 29 68 3 41 32 12 53 17
```

```
int min(int arr[], int n) {
         int i = 0;
         int minVal = arr[0];
         for (i=1; i<n; i++) {</pre>
              if (arr[i] < minVal)</pre>
                   minVal = arr[i];
         return minVal;
```

```
        55
        8
        29
        68
        3
        41
        32
        12
        53
        17
```

```
int min(int arr[], int n) {
     int i = 0;
 int minVal = arr[0];
     for (i=1; i<n; i++) {</pre>
          if (arr[i] < minVal)</pre>
               minVal = arr[i];
     return minVal;
```

```
        55
        8
        29
        68
        3
        41
        32
        12
        53
        17
```

```
int min(int arr[], int n) {
     int i = 0;
     int minVal = arr[0];
     for (i=1; i<n; i++) {</pre>
          if (arr[i] < minVal)</pre>
               minVal = arr[i];
     return minVal;
```


Naïve Algorithms

• O(n) for finding the smallest.

• O(n) for finding the smallest.

- O(n) for finding the smallest.
- O(n) for finding the 2nd smallest.

- O(n) for finding the smallest.
- O(n) for finding the 2nd smallest.

- O(n) for finding the smallest.
- O(n) for finding the 2nd smallest.
- O(n) for finding the 3^{rd} smallest.

- O(n) for finding the smallest.
- O(n) for finding the 2nd smallest.
- O(n) for finding the 3^{rd} smallest.

55 🗶 29 68 🗶 41 32 🎉 53 17

- O(n) for finding the smallest.
- O(n) for finding the 2nd smallest.
- O(n) for finding the 3rd smallest.

• O(n) for finding the k-th smallest.

O(nk) time in total

Sorting: $O(n \log n)$ time

 55
 8
 29
 68
 3
 41
 32
 12
 53
 17

• $O(n \log n)$ time for sorting the array.

Sorting: $O(n \log n)$ time

- $O(n \log n)$ time for sorting the array.
- After sorting, the k-th smallest element is at the (k-1)-th position.
- O(1) time for finding the k-th smallest element.

Quickselect: O(n) time

 55
 8
 29
 68
 3
 41
 32
 12
 53
 17

Step 1: Picking a pivot.

• Heuristic:

pivot = median(left, center, right)

Step 1: Picking a pivot.

Heuristic:pivot = median(left, center, right)

 12
 8
 29
 32
 3
 17
 41
 55
 53
 68

Group 1: $\{x \mid x \le 41\}$.

Group 2: $\{x \mid x \ge 41\}$.

Step 2: Partition.

Step 2: Partition.

The 4th smallest is on the left

Step 3: Recursion.

Search the 4th smallest in the left part.

Step 3: Recursion.

The 9th smallest is on the right

Step 3: Recursion.

- Find the 9th smallest element.
- Pivot is the 7th smallest element.
- Search the 9-7=2 smallest in the right part.

Step 3: Return the value of pivot.

Summary of Quickselect

Inputs: arr (array) and k (select the k-th smallest).

Summary of Quickselect

Inputs: arr (array) and k (select the k-th smallest).

- 1. Pick a pivot.
- 2. Partition the array into two parts (left and right).
 - Suppose the pivot is at the *i*-th position
 - Let p = i + 1. (Pivot is the p-th smallest element.)

Summary of Quickselect

Inputs: arr (array) and k (select the k-th smallest).

- 1. Pick a pivot.
- 2. Partition the array into two parts (left and right).
 - Suppose the pivot is at the *i*-th position
 - Let p = i + 1. (Pivot is the p-th smallest element.)
- 3. Recursion:
 - If k == p ==> Return the value of pivot, i.e., arr[i].
 - If k < p ==> Find the k-th smallest in the left part.
 - If k > p ==> Find the (k p)th smallest in the right part.

Time Complexity

Time Complexity (Simplified)

Assume pivot is the median.

- T(n): Time complexity for size-n array.
- Sizes of the left and right parts are both $\frac{n}{2}$.
- Recurrence relation:

$$T(n) = T(n/2) + c n.$$

$$\bullet \rightarrow T(n) = O(n)$$
.

Time Complexity (Average Case)

Assume the data is randomly shuffled.

• The pivot's position can be any of $\{0, 1, 2, \dots, n-1\}$ (with equal probability).

Time Complexity (Average Case)

Assume the data is randomly shuffled.

- The pivot's position can be any of $\{0, 1, 2, \cdots, n-1\}$ (with equal probability).
- The expected time complexity is O(n).

Thank You!

Implementation

```
int select(int arr[], int left, int right, int k) {
     if (left+10 > right) { // for short array
            return naiveAlgorithm(arr, left, right, k);
     else { // for long array
          int j = selectpivot(arr, left, right);// pivot position
           swap(arr, j, right-1); //put pivot in the end
          int i = partition(arr, left, right);
           swap(arr, i, right-1); // restore pivot
          int p = i + 1; // pivot is the p-th smallest
          if (k == p) return arr[i];
          if (k < p) return select(arr, left, i - 1, k);
          if (k > p) return select(arr, i + 1, right, k-p);
```

```
int select(int arr[], int left, int right, int k) {
     if (left+10 > right) { // for short array
           return naiveAlgorithm(arr, left, right, k);
     else { // for long array
          int j = selectpivot(arr, left, right);// pivot position
          swap(arr, j, right-1); //put pivot in the end
          int i = partition(arr, left, right);
          swap(arr, i, right-1); // restore pivot
          int p = i + 1; // pivot is the p-th smallest
          if (k == p) return arr[i];
          if (k < p) return select(arr, left, i - 1, k);
          if (k > p) return select(arr, i + 1, right, k-p);
```

```
int select(int arr[], int left, int right, int k) {
     else { // for long array
          int j = selectpivot(arr, left, right);// pivot position
           swap(arr, j, right-1); //put pivot in the end
          int i = partition(arr, left, right);
           swap(arr, i, right-1); // restore pivot
          // now, pivot is at the i-th position
          int p = i + 1; // pivot is the p-th smallest
          if (k == p) return arr[i];
          if (k < p) return select(arr, left, i - 1, k);
          if (k > p) return select(arr, i + 1, right, k-p);
```

```
int select(int arr[], int left, int right, int k) {
     else { // for long array
           int j = selectpivot(arr, left, right);// pivot position
           swap(arr, j, right-1); //put pivot in the end
           int i = partition(arr, left, right);
           swap(arr, i, right-1); // restore pivot
          int p = i + 1; // pivot is the p-th smallest
          if (k == p) return arr[i];
           if (k < p) return select(arr, left, i - 1, k);</pre>
           if (k > p) return select(arr, i + 1, right, k-p);
```

Proof of the simplified case

Time Complexity (Simplified)

• Time complexity:
$$T(n) = T(\frac{n}{2}) + c n$$
.

• Thus,
$$T(n) = T\left(\frac{n}{2}\right) + cn$$

 $= T\left(\frac{n}{4}\right) + \frac{cn}{2} + cn$
 $= T\left(\frac{n}{8}\right) + \frac{cn}{4} + \frac{cn}{2} + cn$
 $= \cdots$
 $= c \cdot \left(1 + 2 + 4 + 8 + \cdots + \frac{n}{4} + \frac{n}{2} + n\right)$
 $= c(2n - 1).$

Proof of the average-case time complexity

Assume the data is randomly shuffled.

• Let p_i be the probability that the pivot is at the i-th position.

• Assume
$$p_0 = p_1 = p_2 = \dots = p_{n-1} = \frac{1}{n}$$
.

- The pivot is in the left of the target: $\mathbb{P}[i < k] = \frac{k}{n}$.
- The pivot is in the right of the target: $\mathbb{P}[i > k] = \frac{n-k}{n}$.

•
$$T(n) = \frac{n-k}{n} \cdot T(i) + \frac{k}{n} \cdot T(n-i) + cn.$$

The pivot happens to be in the left.

•
$$T(n) = \frac{n-k}{n} \cdot T(i) + \frac{k}{n} \cdot T(n-i) + cn.$$

Time of partition

•
$$T(n) = \frac{n-k}{n} \cdot T(i) + \frac{k}{n} \cdot T(n-i) + cn.$$

•
$$\mathbb{E}[T(n)] = cn + \sum_{i=0}^{n-1} p_i \cdot \left[\frac{n-k}{n} \cdot T(i) + \frac{k}{n} \cdot T(n-i) \right]$$

$$= cn + \sum_{i=0}^{n-1} \frac{1}{n} \cdot \left[\frac{n-k}{n} \cdot T(i) + \frac{k}{n} \cdot T(n-i) \right]$$

$$= cn + \frac{n-k}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{n} \cdot T(i) + \frac{k}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{n} \cdot T(n-i)$$

$$= cn + \frac{1}{n} \cdot \sum_{i=0}^{n-1} T(i).$$

•
$$T(n) = \frac{n-k}{n} \cdot T(i) + \frac{k}{n} \cdot T(n-i) + cn.$$

•
$$\mathbb{E}[T(n)] = cn + \sum_{i=0}^{n-1} p_i \cdot \left[\frac{n-k}{n} \cdot T(i) + \frac{k}{n} \cdot T(n-i) \right]$$

$$= cn + \sum_{i=0}^{n-1} \frac{1}{n} \cdot \left[\frac{n-k}{n} \cdot T(i) + \frac{k}{n} \cdot T(n-i) \right]$$

$$= cn + \frac{n-k}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{n} \cdot T(i) + \frac{k}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{n} \cdot T(n-i)$$

$$= cn + \frac{1}{n} \cdot \sum_{i=0}^{n-1} T(i).$$

If T(n) = 2cn, then the two sides are equal.