COMS20011 – Data-Driven Computer Science

January 2023 Majid Mirmehdi

Some slides in this lecture are adapted from those authored by Dima Damen and Andrew Calway

Lecture #1

COMS20011 Unit

- This is a "new" unit that started in the 2020-21 academic year
- Replaced the 20CP COMS20212 (SPS) unit
- Exam materials can be used for revision BUT...
- Use SPS materials with caution...depth, breadth & requirements may differ.

What is Data?

- Data comes in many forms, e.g. symbols, patterns and signals!
- Data: Structured and Unstructured
 - Numeric (measurements, finance spreadsheets, ...)
 - > Textual (emails, social media, web pages, medical records, ...)
 - Visual (images, video, graphics, animations)
 - Auditory (speech, audio)
 - Signals (GPS signals, accelerometer, heart rate, ...)
 - Many others...

This Unit

- This unit is about doing things with data... but not
 - storing, shuffling, searching (Algorithms I & II)
 - sending (Computer Systems)
 - compressing or encrypting (Cryptology)
- This unit is about:
 - extracting knowledge from data
 - generating data and making predictions
 - making decisions based on data
 - Often referred to as:

Same Basic Stats, Different Data!

Data is the new Oil

The Largest Companies By Market Cap

Data Science & Analytics

But it's not about the data – it's about the science

Tracking and predicting [disease,mortality,floods,fires, and fun etc.] by Twitter!

This Unit

Why is it important for Computer Science?

- Fundamental to many application areas:
 - Artificial Intelligence, Machine Learning, Deep Learning
 - > Image Processing and Pattern Recognition
 - Graphics, Animation and Virtual Reality
 - Computer Vision and Robotics
 - Speech and Audio Processing.
 - With growing applications in: neuroscience, literature, agriculture, etc.
- > Hence, preparation for units in years 3 and 4.

Ex1. A Fishy Problem

Data: images of fish

Aim: distinguish between sea bass and salmon

Ex1. A Fishy Problem

12

Fishing for a Solution

Steps:

- 1. Pre-processing e.g. Rotate and align, Segment fish from background
- 2. Feature Selection e.g. Measure length or lightness
- 3. Classification e.g. Find a threshold

Fishing for a Solution

Multiple features could be selected, resulting in a multi-dimensional feature vector.

Fishing for a Solution

Complex decision model

Typical Data Analysis Problem

Steps:

- 1. Pre-processing [Unit Part 1] → Majid Mirmehdi (~10%)
- 2. Feature Selection [Unit Part 3] → Majid Mirmehdi (~40%)
- 3. Modelling & Classification [Unit Part 2] → Laurence Aitchison [UD] (~50%)

Ex2. Speech Recognition

Data: Analogue speech signals (time series numerical data)

Aim: Convert audio into text (think Echo/Siri...)

- 1. Pre-processing Digitisation
- 2. Feature Selection Wave amplitude, frequencies
- 3. Inference Hidden Markov Models (Viterbi algorithm) [or Deep learning]

Ex3. Spam Filter

Data: Email texts

Aim: Determine whether the email is spam

- 1. Pre-processing Normalise words
- 2. Feature Selection Presence of words
- 3. Classification Naive Bayes classifier

Select subset of words w_i and determine $P(w_i \mid spam)$ and $P(w_i \mid \neg spam)$ rom frequencies in training data.

For an Email that contains $w_1, w_2, ..., w_n$ of the subset of words, assume

$$P(email|spam) = P(w_1|spam)P(w_2|spam)...P(w_n|spam)$$
 (1)

and

$$P(email \mid \neg spam) = P(w_1 \mid \neg spam)P(w_2 \mid \neg spam)...P(w_n \mid \neg spam)$$
 (2)

A new Email is spam if

$$P(email|spam) > P(email|\neg spam)$$
 (3)

Ex4.1 – Towards Autonomous Driving

Data: Video

Aim: Determine knowledge from the road or inside the vehicle

- 1. Pre-processing (Detect vanishing point)
- 2. Feature Selection (Use constraints to reduce number and dimensionality)
- 3. Recognition (Perspective transformations and OCR)

Ex4.2 – Towards Autonomous Driving

- 1. Pre-processing (Detect vanishing point)
- 2. Feature Selection (Straight lines)
- 3. Model Building (Detecting, predicting, decision making)

Ex4.3 – Towards Autonomous Driving

- 1. Pre-processing (Detect vanishing point)
- 2. Feature Selection (MSERs, Histogram of Gradients)
- 3. Classification (Support Vector Machines)

Ex4.4 – Towards Autonomous Driving

- 1. Pre-processing (Background subtraction)
- 2. Feature Selection (hand shapes)
- 3. Classification (Random Forest classifier)

COMS20011 Unit

Lectures

- Mondays 14:00 14:50 QUEENS PUGSLEY 1.40
- Thursdays 13:00 13:50 CHEM LT1

Labs

- Thursdays 16:00 17:00 [by timetable]: Group 1
- Thursdays 17:00 18:00 [by timetable]: Group 2
- Lab Environment [Jupyter + Python]
- > TA support in Teams: grp-COMS20011_2022
- Labs are <u>essential</u> for learning unit content!

Unit pages: https://github.com/LaurenceA/COMS20011 2022