

网络与系统安全

第七章 网络与系统防御

黄玮

中国传棋日子

- 网络与系统渗透无孔不入
 - 一人
 - 一应用程序
 - —网络设备
 - 一主机/服务器操作系统
 - —物理设备
- 掌握网络与系统渗透方法
 - 一知己知彼, 百战不殆

- 防火墙在网络与系统防御中的作用和地位
- 防火墙实现的关键技术
- 防火墙实例及应用

本章内容提要

- 防火墙发展简史
- 防火墙关键技术原理
- 防火墙的实现技术
- 防火墙的配置和应用

本章内容提要

- 防火墙发展简史
- 防火墙关键技术原理
- 防火墙的实现技术
- 防火墙的配置和应用

防火墙概述

- 防火墙的定义
- 防火墙的发展简史
- 设置防火墙的目的和功能
- 防火墙的局限性
- 防火墙技术发展的动态和趋势

防火墙定义

• 什么是防火墙

防火墙定义

• 什么是防火墙

防火墙:在两个信任程度不同的网络之间设置的、用于加强访问控制的软硬件保护措施

中国传探日子

防火墙发展简史(1/3)

防火墙发展简史(2/3)

- 第一代防火墙一采用了包过滤技术
- 第二代、第三代防火墙
 - —1989年, 推出了电路层防火墙和应用层防火墙的初步结构
- 第四代防火墙
 - —1992年, 开发出了基于动态包过滤技术的第四代防火墙
- 第五代防火墙
 - —1998年, NAI公司推出一种自适应代理技术, 可以称之为 第五代防火墙

防火墙发展简史(3/3)

- 一体化安全网关UTM
 - -统一威胁管理
 - 一整合防火墙、入侵检测、入侵保护、防病毒、防垃圾邮件等综合功能
- 应用防火墙
 - 一又可以称为IPS:入侵保护
 - 病毒防火墙
 - Web防火墙
 - VoIP防火墙

_ 0 0 0

防火墙的目的和功能

- 防火墙能够强化安全策略
- 防火墙能够有效记录因特网上的活动
- 防火墙限制暴露用户点
- 防火墙是一个安全策略检查站

防火墙的局限性

- 防外不防内
- 管理和配置复杂度高
 - 一配置不当易导致安全漏洞
- 很难为用户在防火墙内外提供一致的安全策略
- 粗粒度的访问控制
 - 一应用层防火墙和UTM产生的需求驱动力

已有的防火墙产品

- 开源产品
 - —Endian

—IPCop

- -ModSecurity
- -SmoothWall
- —pfSense
- —iptables
- -m0n0wall
- 商业产品
 - —Juniper
 - 一华为
 - --思科
 - --联想网御神州

- --绿盟
- —Safe3

- 按吞吐能力
 - 一百兆/千兆/万兆
- 按并发处理能力
 - 一少于5000
 - —5000~十万
 - 一十万~五十万
 - 一五十万以上
- 按防护类型
 - 一传统防火墙
 - 一应用层防火墙
 - —防DDoS
 - —垃圾信息过滤

中国传棋日子

防火墙技术发展动态和趋势

- 更强的性能
- 可扩展的结构和功能
 - 一缓存加速/统一认证接入/防DDoS/路由器…
- 简化的安装和管理
- 积极适应持续变化的网络安全环境
 - 一防病毒与防黑客
 - 一反垃圾信息
 - 垃圾邮件 / 垃圾短信 / 垃圾电话等

本章内容提要

- 防火墙发展简史
- 防火墙关键技术原理
- 防火墙的实现技术
- 防火墙的配置和应用

本章内容提要

- 防火墙发展简史
- 防火墙关键技术原理
- 防火墙的实现技术
- 防火墙的配置和应用

防火墙关键技术

- 网络防火墙
 - 一包过滤技术
 - 一状态检测技术
 - 一代理服务技术
- 应用防火墙
 - —见下一节《入侵检测》的技术原理

包过滤技术(1/3)

应用层

TCP层

IP层

链路层

包过滤技术(1/3)

应用层

TCP层

检查IP,TCP,UDP包报头,与过滤规则比较

IP层

过 过 滤前 滤 滤 前 前 数 数 数 据 据 据 流 流 流 量 量 量 链路层

包过滤技术(1/3)

应用层

TCP层

检查IP,TCP,UDP包报头,与过滤规则比较

IP层

过 过 过 滤 滤 滤 前 前 前 数 数 数 据 据 据 流 流 流 量 量 量 链路层

过

滤

后

数

据

流

量

中国传棋日学

包过滤技术(2/3)

- 包过滤技术检查的数据包报头信息
 - —IP数据报的源IP地址、目的IP地址、协议类型,选项字段等
 - —TCP数据包的源端口、目标端口、标志段等
 - —UDP数据包的源端口、目标端口
 - —ICMP类型

包过滤技术(3/3)

• 优点

- 一不需要内部网络用户 做任何配置,对用户 来说是完全透明的
- 一过滤速度快,效率高

• 缺点

- 一不能进行数据内容级 别的访问控制
- ——些应用协议不适合 用数据报过滤
- 一过滤规则的配置复杂, 容易产生冲突和漏洞

状态检测技术(1/3)

应用层
TCP层
IP层
链路层

状态检测技术(1/3)

应用层 FTP、HTTP状态 状态 TCP、UDP状态 TCP层 IP、TCP、UDP包报头 IP层 链路层 据流 量

状态检测技术(1/3)

状态检测技术(2/3)

状态检测技术(3/3)

• 优点

- 一状态表是动态建立的,可以实现对一些复杂协议建立的临时端口进行有效的管理
- 一状态检测技术是为每一个 会话连接建立、维护其状态信息,并利用这些状态 信息对数据包进行过滤
- 一动态状态表是状态检测防火墙的核心,利用其可以实现比包过滤防火墙更强的控制访问能力

缺点

- 一没有对数据包内容进行检测,不能进行数据内容级别的控制
- 一允许外部主机与内部主机 直接连接,容易遭受黑客 攻击

应用层	
TCP层	
IP层	
链路层	

应用层	
TCP层	
IP层	
链路层	

应用层

TCP层

IP层

链路层

外部网络主机

应用层

TCP层

IP层

链路层

应用层

TCP层

IP层

链路层

应用层

TCP层

IP层

链路层

外部网络主机

应用层

TCP层

IP层

链路层

应用代理型防火墙

应用层

TCP层

IP层

链路层

应用层

TCP层

IP层

链路层

外部网络主机

应用层

TCP层

IP层

链路层

应用代理型防火墙

应用层

TCP层

IP层

链路层

内部网络主机

中国传棋日子

应用级代理(2/4)

应用级代理(2/4)

一个Telnet例子

应用级代理(3/4)

• 应用代理原理

- —当接收到客户方发出的连接请求后,应用代理检查客户的源和目的IP地址,并依据事先设定的过滤规则决定是否允许该连接请求
- —如果允许该连接请求,进行客户身份识别。否则, 则阻断该连接请求
- 一通过身份识别后,应用代理建立该连接请求的连接,并根据过滤规则传递和过滤该连接之间的通信数据
- 一当一方关闭连接后,应用代理关闭对应的另一方连接,并将这次的连接记录在日志内

应用级代理(4/4)

• 优点

- 一内部网络的拓扑、IP地址等被代理防火墙屏蔽,能有效实现内外网络的隔离
- —具有强鉴别和日志能力,支持用户身份识别,实现用户级的安全
- 一能进行数据内容的检查,实现基于内容的过滤,对通信进行严密的监控
- 一过滤规则比数据包过滤规 则简单

缺点

- 一代理服务的额外处理请求 降低了过滤性能,其过滤 速度比包过滤器速度慢
- 一需要为每一种应用服务编写代理软件模块,提供的服务数目有限
- 一对操作系统的依赖程度 高,容易因操作系统和应 用软件的缺陷而受到攻击

本章内容提要

- 防火墙发展简史
- 防火墙关键技术原理
- 防火墙的实现技术
- 防火墙的配置和应用

本章内容提要

- 防火墙发展简史
- 防火墙关键技术原理
- 防火墙的实现技术
- 防火墙的配置和应用

• 以Linux操作系统上的Netfilter/iptables机制为例

Netfilter/iptables框架简介

- Netfilter/iptables从Linux内核版本2.4开始,默 认被包含在内核源代码树中
- 可以对操作系统的流入和流出数据报文进行控制
 - 一防火墙
 - —NAT
 - 一数据报文自定义修改
- Netfilter工作在系统内核层
- iptables工作在用户层

Netfilter架构(1/2)

• netfilter是 linux内核中一个强大的网络子系统

• netfilter是 linux内核中一个强大的网络子系统

Netfilter/iptables基本概念

- 表(tables)
 - —filter表、nat表、mangle表、raw表
- 链(chains)
 - 一数据包的传输路径,每条链其实就是众多规则中的一个检查清单
 - Input, Forward, PreRouting, PostRouting,Output
- 规则(rules)
 - —网络管理员预定义的网络访问控制策略

iptables中表的概念(1/2)

- filter表
 - —报文过滤
 - 一只读过滤报文
- nat表
 - 一实现NAT服务
- mangle表
 - 一报文处理
 - 修改报文
 - 附加额外数据到报文

Netfilter架构的数据流图(1/2)

• netfilter模块将防火墙功能引入IP层,实现防火墙代码与IP协议栈代码完全分离

Netfilter架构的数据流图(1/2)

• netfilter模块将防火墙功能引入IP层,实现防火墙代码与IP协议栈代码完全分离

Netfilter架构的数据流图(2/2)

- 对于ipv4协议来说, netfilter在IP数据包处理流程中的5个关键位置定义了5个钩子函数
 - 一若数据包是送给本机的,则要经过钩子函数 LOCAL_IN处理后传给本机上层协议
 - 一若数据包应该被转发,则它将被钩子函数 FORWARD处理,然后还要经过钩子函数 POST_ROUTING处理后才能传输到网络
 - 一本机进程产生的数据包要先经过钩子函数 LOCAL_OUT处理后,再进行路由选择处理,然后 经过钩子函数POST_ROUTING处理后再发送到网络

iptables防火墙内核模块

- 内核的防火墙模块正是通过把自己的函数注册 到netfilter的钩子函数这种方式介入了对数据包 的处理
- 函数按功能分为4种
 - —连接跟踪
 - —数据包过滤
 - —网络地址转换
 - SNAT
 - DNAT
 - 一对数据包进行修改

Netfilter/iptables防火墙工作原理

部署了Netfilter/iptables的操作系统

硬件技术

- 通用CPU架构
- ASIC架构
- 网络处理器架构

通用CPU架构

- · 又被称为x86架构
 - 一采用通用CPU和PCI总线接口
- 可编程性高
 - 一更灵活
 - 一更易扩展
- 产品功能主要由软件实现
- 代表产品
 - 一大部分的开源/商业软件防火墙(基于*nix系统)

- Application Specific Integrated Circuit
 - 一专用集成电路
 - —一种带有逻辑处理的加速处理器
- 把一些原先由CPU完成的经常性和重复工作交给ASIC芯片来负责完成
 - 一交换机、路由器、智能IC卡
- · 通常配合通用CPU单元来完成复杂运算
- 代表产品
 - 一大部分国外的商业硬件防火墙

- Network Processor
 - 一网络处理器
- 通用CPU架构和ASIC架构的折衷
 - 一开发难度
 - —性能
 - 一灵活性/可扩展性
- 代表产品
 - 一大部分国内的商业硬件防火墙

三种硬件架构的横向比较

架构类型	X86	NP	ASIC
灵活性	***	**	*
扩展性	***	**	*
性能	*	**	***
安全性	*	**	***
价格	低	中等	较高

本章内容提要

- 防火墙发展简史
- 防火墙关键技术原理
- 防火墙的实现技术
- 防火墙的配置和应用

本章内容提要

- 防火墙发展简史
- 防火墙关键技术原理
- 防火墙的实现技术
- 防火墙的配置和应用

典型网络部署模型

- 路由模式
- 透明模式
- 混合模式

路由模式

路由模式

透明模式

透明模式

混合模式

防火墙部署的其他细节(1/2)

- 双机热备模式
 - 一避免单点故障
- 负载均衡模式
 - 一性能扩展
 - 一避免单点故障

防火墙部署的其他细节(2/2)

- 防火墙在网络中的实际部署位置
 - 一串行接入在网络设备之前
 - 骨干网路由器防火墙

- 小型网络的接入防火墙
- 内网的子网防火墙
- 一直接部署于应用服务器之上
 - 单机网络防火墙
 - 应用防火墙

单机防火墙配置

- ufw
 - —ufw简介
 - —ufw使用
- iptables
 - —iptables简介
 - —iptables使用

- · ufw是为了使linux防火墙更易于使用和管理
- ufw和其他linux类防火墙一样,使用iptable作为后台
- 安装ufw
 - -sudo apt-get install ufw
 - 通常ufw默认安装

ufw使用(1/3)

- 启用ufw
 - -sudo ufw enable
 - -sudo ufw default deny
- 作用
 - 一开启了防火墙并随系统启动同时关闭外部对主机的 所有访问,本机访问外部正常
- 关闭ufw
 - -sudo ufw disable

- 查看防火墙状态
 - —sudo ufw status
- 开启/禁用相应端口和服务举例
 - 一允许外部访问80端口
 - -sudo ufw allow 80
 - 一禁止外部访问80端口
 - —sudo ufw delete 80
 - 一允许此IP访问所有的本机端口
 - —sudo ufw allow from 192.168.1.54

ufw使用(3/3)

- 开启/禁用相应端口和服务举例(续)
 - 一禁止外部访问smtp服务
 - -sudo ufw deny smtp
 - —拒绝所有的流量从TCP的10.0.0.0/8到端口22的地址 192.168.0.1
 - —ufw deny proto tcp from 10.0.0.0/8 to 192.168.0.1 port
 - —可以允许指定网段访问这个主机
 - —sudo ufw allow from 10.0.0.0/8

iptables命令格式(1/3)

- iptables [-t 表] 命令 匹配 操作
 - 一表选项,指定命令应用于哪个内置表(filter表、nat表、mangle表)

一命令选项

命令	说明
-P或policy <链名>	定义默认策略
-L或list <链名>	查看iptables规则列表
-A或—append <链名>	在规则列表的最后增加1条规则
-I或insert <链名>	在指定的位置插入1条规则
-D或delete <链名>	从规则列表中删除1条规则
-R或replace <链名>	替换规则列表中的某条规则
-F或flush <链名>	删除表中所有规则
-Z或zero <链名>	将表中数据包计数器和流量计数器归零

iptables命令格式(2/3)

—匹配选项

匹配	说明
-i<网络接口名>	指定数据包从哪个网络接口进入,如ppp0、eth0和eth1等
-o<网络接口名>	指定数据包从哪块网络接口输出,如ppp0、eth0和eth1等
-p<协议类型>	指定数据包匹配的协议,如TCP、UDP和ICMP等
-s<源地址或子网>	指定数据包匹配的源地址
sport <源端口号>	指定数据包匹配的源端口号,可以使用"起始端口号:结束端口号"的格式指定一个范围的端口
-d<目标地址或子网>	指定数据包匹配的目标地址
dport目标端口号	指定数据包匹配的目标端口号,可以使用"起始端口号:结束

iptables命令格式(3/3)

—动作选项

动作	说明
ACCEPT	接受数据包
DROP	丢弃数据包
REDIRECT	将数据包重新转向到本机或另一台主机的某个端口,通常用功能 实现透明代理或对外开放内网某些服务
SNAT	源地址转换,即改变数据包的源地址
DNAT	目标地址转换,即改变数据包的目的地址
MASQUERADE	IP伪装,即是常说的NAT技术,MASQUERADE只能用于ADSL等拨号上网的IP伪装,也就是主机的IP是由ISP分配动态的;如果主机的IP地址是静态固定的,就要使用SNAT
LOG	日志功能,将符合规则的数据包的相关信息记录在日志中,以便 管理员的分析和排错

iptables的使用(1/3)

- 定义默认策略
 - 一当数据包不属于链中任一规则时, iptables将根据 该链预先定义的默认策略处理数据包
- 默认策略定义格式
 - —iptables [-t表名] <-P> <链名> <动作>
 - 一参数说明
 - 表名,默认策略将应用于哪个表
 - --P,定义默认策略
 - 链名,默认策略应用于哪条链
 - 动作, 处理数据包的动作

中国传棋出学

iptables的使用(2/3)

- 查看iptables规则
 - —iptables [-t表名] <-L> [链名]
 - -[-t表名],查看哪个表的规则列表
 - --L,查看指定表指定链的规则列表
 - 链名,查看指定表中哪个链的规则链表
- 增加、插入、删除、替换规则
 —iptables [-t表名] <A|I|D|R>链名 [规则编号]
 [i|o 网卡名称] [-s 源IP地址] [-d 目标IP地址]
 <-i 动作>

iptables的使用(3/3)

- 清除规则和计数器
 - —iptables [-t 表名] <-F|-Z>
 - -[-t 表名], 指定默认策略应用于哪个表
 - --F,删除表中所有规则
 - --Z,将指定表中的数据包计数器和流量计数器归零

iptables配置实例

- 传输层防护实例
 - 一禁止其他主机ssh连接自己
 - 一防止各种端口扫描
 - 一禁止自己主机使用FTP协议下载
 - —禁用DNS接口
- 网络层防护实例
 - 一防止ping洪水攻击
 - 一屏蔽一个IP
- 数据链路层防护实例

传输层防护实例(1/4)

- 禁止其它机器通过ssh连接自己
 —iptables -t filter -A INPUT -p tcp --dport 22 -j
 DROP
- 查看主机防火墙规则
 - —iptables -t filter -L

```
root@wzy-desktop: ~
文件(F) 编辑(E) 查看(V) 终端(T) 帮助(H)
root@wzy-desktop:~# iptables -t filter -L
Chain INPUT (policy ACCEPT)
          prot opt source
                                        destination
target
                                                            tcp dpt:ssh
DROP
          tcp -- anywhere
                                        anywhere
Chain FORWARD (policy ACCEPT)
                                        destination
target
          prot opt source
Chain OUTPUT (policy ACCEPT)
                                        destination
          prot opt source
target
```


传输层防护实例(2/4)

- 防止各种端口扫描
 - —iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST RST -m limit --limit 1/s -j ACCEPT
- 参数解释
 - - limit 1/s 表示每秒一次; 1/m 则为每分钟一次

传输层防护实例(3/4)

· 禁止自己主机使用FTP协议下载(即封闭TCP 协议的21端口)

—iptables -I OUTPUT -p tcp --dprot 21 -j DROP

传输层防护实例(4/4)

- · 禁用主机的DNS端口(DNS为UDP协议,使用53端口)
 - —iptables -I OUTPUT -p udp --dport 53 -j DROP

网络层防护实例

- · 防止ping洪水攻击
 - —iptables -A FORWARD -p icmp --icmp-type echorequest -m limit --limit 1/s -j ACCEPT
 - —说明
 - -限制ping的并发数,每秒一次
- ·限制一个ip访问自己主机
 - —iptables -A INPUT -s 192.168.1.102 -j DROP
 - —说明
 - 限制了ip地址为192.168.1.102主机对自己的访问

数据链路层防护实例

- · 阻断来自某个mac地址的数据包
 - —iptables -A INPUT -m mac --mac-source 00:1e:ec:f0:ae:77 -j DROP
 - 一说明:
 - 阻断了mac地址为00:1e:ec:f0:ae:77 对本机的连接

• 查看本机iptables表

```
root@wzy-desktop: ~
文件(E) 编辑(E) 查看(V) 终端(T) 帮助(H)
root@wzy-desktop: "# iptables -t filter -L
Chain INPUT (policy ACCEPT)
                                        destination
          prot opt source
target
          all -- anywhere
                                                           MAC 00:1E:EC:F0:AE:
DROP
                                        anywhere
77
Chain FORWARD (policy ACCEPT)
                                        destination
target
          prot opt source
Chain OUTPUT (policy ACCEPT)
target
          prot opt source
                                        destination
```


基于防火墙实现NAT

- 什么是私有地址
- 什么是NAT
- NAT的工作原理

私有地址

• 私有地址(private address)属于非注册地址,是 专门为组织机构内部使用而划定的

私有IP地址范围	子网掩码
$10.0.0.0 \sim 10.255.255.255$	255.0.0.0
169.254.0.0~169.254.255.255	255.255.0.0
172.16.0.0~172.31.255.255	255.255.0.0
192.168.0.0~192.168.255.255	255.255.255.0

- NAT是将一个地址域(如专用Intranet)映射到另 一个地址域(如internet)的标准方法
 - —NAT可以将内部网络中的所有节点的地址转换成 一个IP地址,反之亦然
 - 一可以应用到防火墙技术里,把个别IP地址隐藏起来不被外部发现,使外部无法直接访问内部网络设备

NAT工作原理(1/3)

• 静态网络地址转换

中国传棋日子

NAT工作原理(2/3)

• 动态网络地址转换

NAT工作原理(2/3)

• 动态网络地址转换

分配临时的外部IP地址

内部公有IP 内部私有IP 202.96.128.2 192.168.16.10 202.96.128.3 192.168.16.11

202.96.128.2 192.168.16.12

192.168.16.10

192.168.16.11

192.168.16.12

NAT工作原理(3/3)

• 网络地址端口映射

NAT工作原理(3/3)

• 网络地址端口映射

192.168.16.10

192.168.16.11

映射到同一IP 地址不同端 NAT映射表

内部公有IP	内部私有IP
202.96.128.2:3200	192.168.16.10
202.96.128.2:3206	192.168.16.11
202.96.128.2:3542	192.168.16.12

192.168.16.12

使用实例(1/2)

• 源NAT

- —更改所有来自192.168.1.0/24的数据包的源ip地址为1.2.3.4
- —iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -i eth0 -jSNAT to 1.2.3.4
 - 注意,系统在路由及过虑等处理直到数据包要被 送出时才进行SNAT

使用实例(2/2)

- 目的SNAT(DNAT)
 - —更改所有来自192.168.1.0/24的数据包的目的ip地址 为1.2.3.4
 - —iptables -t nat -A PREROUTING -s 192.168.1.0/24 -i eth1 -jDNAT--to 1.2.3.4
 - 注意,系统是先进行DNAT,然后才进行路由及 过虑等操作

iptables实现NAT综合实例

• IP映射情景

- · 将分配给主机A、B的真实IP绑定到防火墙的外网接口
 - —ifconfig eth0 add 202.110.1.100 netmask 255.255.255.0
 - —ifconfig eth0 add 202.110.1.101 netmask 255.255.255.0
- 对防火墙接收到的目的ip为202.110.1.100和 202.110.1.101的所有数据包进行DNAT
 - —iptables -A PREROUTING -i eth0 -d 202.110.1.100 -j DNAT--to192.168.1.100
 - —iptables -A PREROUTING -i eth0 -d 202.110.1.101 -j DNAT--to192.168.1.200

- 对防火墙接收到的源ip地址为192.168.1.100和192.168.1.200的数据包进行SNAT
 - —iptables -A POSTROUTING -o eth0 -s 192.168.1.100 -j SNAT--to202.110.1.100
 - —iptables -A POSTROUTING -o eth0 -s 192.168.1.200 -j SNAT--to202.110.123.101

防火墙规则调试

•查看概要统计数据

—iptables -L -v

```
Chain INPUT (policy DROP 15986 packets, 931K bytes)
 pkts bytes target
                       prot opt in
                                                                     destination
                                               source
30642 33M ACCEPT
                       all -- lo
                                               anywhere
                                                                     anywhere
                                       any
  157 79153 DROP
                                               anywhere
                                                                     anywhere
                                                                                         tcp flags:!FIN,SYN,RST,ACK/SYN state NEW
                       tcp --
                                                                                         state RELATED, ESTABLISHED
2287K 1227M ACCEPT
                                               anywhere
                                                                     anywhere
                                any
                                       any
   49 3008 ACCEPT
                                               anywhere
                                                                     anywhere
                                                                                         tcp dpt:8322 state NEW
                       tcp --
                                any
                                        any
27246 1563K ACCEPT
                                               anywhere
                                                                     anywhere
                                                                                         tcp dpt:www state NEW
                       tcp --
                                any
                                        any
 1117 68884 ACCEPT
                       tcp --
                                any
                                               anywhere
                                                                     anywhere
                                                                                         tcp dpt:https state NEW
                                       any
   72 4472 ACCEPT
                       icmp -- any
                                               anywhere
                                                                     anywhere
                                                                                         icmp echo-request
                                        any
Chain FORWARD (policy DROP 0 packets, 0 bytes)
pkts bytes target
                                                                     destination
                       prot opt in
                                       out
                                               source
Chain OUTPUT (policy ACCEPT 1702K packets, 1600M bytes)
 pkts bytes target
                       prot opt in
                                                                     destination
                                       out
                                               source
30642 33M ACCEPT
                   all -- any
                                       lo
                                               anywhere
                                                                     anywhere
```

- 日志法
 - —j LOG --log-prefix "DEBUG_IPT"
 - —-t raw -A PREROUTING -j TRACE
 - —-t raw -A OUTPUT -j TRACE

syslog

/var/log/kern.log

- 黑盒测试
 - —利用扫描器

防火墙规则安全审查

- 静态分析工具
 - 一防火墙规则的语义理解
 - 数据流图分析
 - 自动化规则树生成
 - 一举例
 - ITVal (见参考文献)
- 黑盒测试工具
 - 一基于网络扫描器的fuzz测试

参考文献

- Netfilter/iptables官方文档 http://www.netfilter.org/
- iptables的相关概念和数据包的流程 http://selboo.com.cn/post/721/
- Robert Marmorstein, Phil Kearns, A Tool for Automated iptables Firewall Analysis, 2005 USENIX Annual Technical Conference

课后思考题

- 防火墙的典型网络部署方式有哪些
- 防火墙能实现的和不能实现的防护各有哪些