MATH10101, for supervision in week 08. Counting. Definition of GCD

Q1.

- (*) (i) Write down one example of a function $f: \{1, 2, 3, 4\} \rightarrow \{a, b, c, d\}$ such that f is not injective but the restriction, $f|_{\{1,2,3\}}$, of f onto the subset $\{1,2,3\}$ of the domain is injective.
 - (ii) Prove that there are n(n!) functions $f \colon \mathbb{N}_n \to \mathbb{N}_n$ such that the restriction $f|_{\mathbb{N}_{n-1}}$ is injective.
- (\star) **Q2**. Find the number of subsets of $\{1, 2, \dots, 10\}$ which contain 1 and do not contain 10.
 - **Q3**. (i) Prove, using the Binomial Theorem, that for all $n \in \mathbb{Z}^{\geq}$, $\sum_{r=0}^{n} \binom{n}{r} = 2^{n}$.
 - (ii) Now prove the same statement without using the Binomial Theorem by considering a set A with |A|=n and calculating the cardinality of $\bigcup_{r=0}^n \mathcal{P}_r\left(A\right)$.
 - (iii) Check that the statement in (i) is true for n=5 by direct evaluation of both sides.
- (*) **Q4**. (i) Using the Binomial Theorem, prove that $\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$.
- (*) (ii) Use the result of (i) along with **Q3**(i) to evaluate the sums $\sum_{\substack{r=0\\r \text{ even}}}^{n} \binom{n}{r}$ and $\sum_{\substack{r=1\\r \text{ odd}}}^{n} \binom{n}{r}$.
- (\star) (iii) Check that both of your answers in (ii) are correct for n=4 by direct calculation.
 - **Q5**. Use the Binomial Theorem to calculate $\sum_{r=0}^{100} 4^{2r} 5^{100-2r} \binom{100}{r}$. [Answer: 8.2^{100}]
 - **Q6**. Let A be a finite set and let $\mathcal{Q}(A) = \{(C, D) \in \mathcal{P}(A) \times \mathcal{P}(A) : C \subseteq D\}$. Prove that $|\mathcal{Q}(A)| = 3^{|A|}$.
- (\star) **Q7**. Find the quotient q and remainder r on dividing the following numbers by 17:
 - (i) 1; (ii) -1; (iii) 100; (iv) -100.
 - **Q8**. Let a, b be integers such that $b \mid a$.
- (*) (i) Carefully prove the following proposition: $\forall c \in \mathbb{Z}, ((c \mid b) \implies (c \mid a))$.
- (*) (ii) Assume $b \ge 0$. Use the definition of gcd to prove that gcd(a, b) = b.