LOGIC GATES

Question 1

5 (a) A logic circuit is given:

Complete the following truth table for the logic circuit.

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(b) Identify one logic gate not used in the logic circuit in part (a).

Draw the symbol for this logic gate and complete its truth table.

Logic gate:

Symbol:

Truth table:

Ing	out	Output
A	В	Output
0	0	
0	1	
1	0	
1	1	

[3]

Question 2

3 The following is a logic expression.

Draw the logic circuit for the given expression using a maximum of **four** gates.

3 (a) The following is a logic expression.

Draw the logic circuit for the given expression, using a maximum of four logic gates.

(b) Complete the truth table for the logic expression:

X = NOT(A OR B) OR (A AND (B XOR C))

A	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

(c) The following is a logic expression.

Logic gate symbol:

A AND B XOR C OR NOT A

Identify one logic gate that would not be used in the logic circuit for this expression. Draw the symbol for the logic gate.
Logic gate

Question 4

6 (a) Draw a logic circuit to represent the logic expression:

X = A OR (B AND NOT C) OR (A AND B)

[5]

(b) Complete the truth table for the logic expression in part (a).

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

3 (a) A bank approves a customer for an account based on the criteria in the following table.

Parameter	Description of parameter	Binary value	Condition
Δ	Employed	1	True
A .	Етпрюуес	0	False
В	Self-employed	1	True
В	Sell-employed	0	False
С	Over 21	1	True
C	Over 21	0	False
D	Earn more than 30 000	1	True
Ь	Earn more than 30 000	0	False
E	Another account	1	True
E	Another account	0	False

A customer is approved (X = 1) if the person:

- is over 21 and employed
 - is over 21 and self-employed and
 - either earns more than 30000 or
 - nas another account.

Draw a logic circuit to represent the model.

[5]

(b) Complete the truth table for the logic expression:

X = (A AND C) OR (NOT A AND (B XOR C))

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

2 (a) Draw a logic circuit to represent the following logic expression:

(b) Complete the truth table for the logic expression:

X = NOT (A AND B) OR (A AND (B XOR C))

A	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

5 (a) Draw a logic circuit to represent the logic expression:

X = NOT (A OR C) OR (A AND NOT B)

(b) Complete the truth table for the logic expression:

X = NOT (A OR C) OR (A AND NOT B)

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Question 8

4 (a) An alarm system (X) is enabled and disabled using either a switch (A) or a remote control (B). There are two infra-red sensors (C, D) and one door pressure sensor (E).

Parameter	Description of parameter	Binary value	Condition
A	Switch	1	Switch enabled
^	SWILLII	0	Switch disabled
В	Remote control	1	Remote enabled
В	Heriote control	0	Remote disabled
С	Infra-red sensor	1	Activated
, i	Illianed serisor	0	Not activated
	Infra-red sensor	1	Activated
ь	Illia red serisor	0	Not activated
E	Door pressure	1	Activated
=	sensor	0	Not activated

The alarm sounds (X = 1) if the alarm is enabled and any one or more of the sensors is activated.

Draw a logic circuit to represent the alarm system.

(b) Complete the truth table for the logic expression: X = A OR (B XOR C)

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Question 9

2 (a) A greenhouse control system has four input parameters (H, D, T, W) and two outputs (X, Y).

Parameter	Description of parameter	Binary value	Condition
н	Humidity	0	Too low
	Hullidaty	1	Acceptable
D	Day	0	Night
	Day	1	Day
-	Temperature	0	Too high
	remperature	1	Acceptable
w	Windows	0	Closed
w	WINDOWS	1	Open

The watering system turns on (X = 1) if:

either it is daytime and the temperature is too high

or the humidity is too low.

The fan turns on (Y = 1) if the temperature is too high and the windows are closed.

Draw a logic circuit to represent the greenhouse control system.

[6]

(b) Complete the truth table for the logic expression: X = NOT A AND (B NAND C)

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(a) A student needs to design a logic circuit to model the requirements for membership of a snooker club. Membership (X) depends on four criteria, as shown in the table:

Parameter	Description of parameter	Binary value	Condition
Δ.	Over 18	1	True
A	Over 16	0	False
В	Recommended	1	True
	Recommended	0	False
С	Full-time	1	True
,	Fairante	0	False
n	Retired	1	True
	neurou	0	False

Membership is approved (X = 1) if the person:

- is over the age of 18 and has been recommended by a pre-existing member and
- either is working full-time or is retired, but not both.

Draw a logic circuit to represent the membership requirements.

(b) Complete the truth table for the logic expression: X = (A XOR B) AND NOT C

Α	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

Question 11

8 (a) Draw a logic circuit to represent the logic expression:

$$X = (A XOR B) OR (NOT(C AND A))$$

(b) Complete the truth table for the logic expression in part (a).

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

Question 12

5 A motor is controlled by a logic circuit. The circuit has inputs (0 or 1) from three sensors R, T and W. The motor is switched off when the output from the logic circuit is 1.

The following table shows the three sensors and the conditions being monitored.

Sensor	Description	Binary value	Condition
		0	rotation < 4000 rpm
R	rotation	1	rotation >= 4000 rpm
		0	temperature >= 90 °C
1	temperature	1	temperature < 90 °C
		0	water flow rate >= 50 litre/min
W	water flow rate	1	water flow rate < 50 litre/min

The output, X, is 1 if:

temperature >= 90 °C and rotation >= 4000 rpm

or

temperature < 90°C and water flow rate >= 50 litre/min

(i) Draw a corresponding logic circuit.

(ii)	Give a logic statement corresponding to the logic circuit in part (i).				
	[2				

(iii) Complete the truth table for this system.

	INPUT		Workspace	OUTPUT
R	Т	w		x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

1 (a) A student writes the following logic expression:

X is 1 IF (B is NOT 1 AND S is NOT 1) OR (P is NOT 1 AND S is 1)

Draw a logic circuit to represent this logic expression.

Do not attempt to simplify the logic expression.

(b) Complete the truth table for the logic expression given in part (a).

В	S	Р	Working space	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

[6]

5 A motor is controlled by a logic circuit. The circuit has inputs (0 or 1) from three sensors R, T and W. The motor is switched off when the output from the logic circuit is 1.

The following table shows the three sensors and the conditions being monitored.

Sensor	Description	Binary value	Condition
		0	rotation < 4000 rpm
R	rotation	1	rotation >= 4000 rpm
т		0	temperature >= 90 °C
	temperature	1	temperature < 90 °C
		0	water flow rate >= 50 litre/mir
W	water flow rate	1	water flow rate < 50 litre/min

The output, X, is 1 if:

temperature >= 90 °C and rotation >= 4000 rpm

or

temperature < 90°C and water flow rate >= 50 litre/min

(i) Draw a corresponding logic circuit.

[5]

(III)	Give a logic statement corresponding to the logic circuit in part (i).					
	[2					

(iii) Complete the truth table for this system.

	INPUT		Workspace	OUTPUT
R	T	w		x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

Question 15

7 A system is monitored using sensors. The sensors output binary values corresponding to physical conditions, as shown in the table:

Parameter	Description of parameter	Binary value	Description of condition
P	oil pressure	1	pressure >= 3 bar
'	oil pressure	0	pressure < 3 bar
т	temperature	1	temperature >= 200°C
'		0	temperature < 200°C
R	rotation	1	rotation <= 1000 revs per minute (rpm)
, n	rotation	0	rotation > 1000 revs per minute (rpm)

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, X, is 1 if any of the following three conditions occur:

either	oil pressure >= 3 bar and temperature >= 200° C
or	oil pressure < 3 bar and rotation > 1000 rpm
or	temperature >= 200°C and rotation > 1000 rpm

(a) Draw a logic circuit to represent the above system.

(b) Complete the truth table for this system.

			Workspace	
P	Т	R	-	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

6 (a) Three digital sensors A, B and C are used to monitor a process. The outputs from the sensors are used as the inputs to a logic circuit.

Output, X, has a value of 1 if either of the following two conditions occur:

- sensor A outputs the value 1 OR sensor B outputs the value 0
- sensor B outputs the value 1 AND sensor C outputs the value 0

Draw a logic circuit to represent these conditions.

(b) Complete the truth table for the logic circuit described in part (a).

A	В	С	Working Space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[5]

(c) Write a logic statement that describes the following logic circuit.

	E-100

6 (a) A student wrote the following logic statement:

X is 1 if (B is NOT 1 AND S is NOT 1) OR (P is NOT 1 AND S is 1)

Draw a logic circuit to represent the above logic statement.

(b) Complete the truth table for this system.

			Working space	
В	s	P		x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

8 A car has an engine management system (EMS). The EMS outputs the following signals.

signal	value	description
	0	temperature within limits
A	1	temperature too high (fault condition)
	0	pressure within limits
В	1	pressure too high (fault condition)
	0	carbon emissions within limits
С	1	carbon emissions too high (fault condition)

(a) (i) Draw a logic circuit for the following fault condition:

All three signals (A = 1, B = 1 and C = 1) indicate a fault. The driver is warned to stop the engine - output X = 1.

(ii) Draw a logic circuit for the fault condition:

Either (A = 1 and B = 1) or (B = 1 and C = 1) indicate a fault. The driver is warned that the engine needs a service – output Y = 1.

(iii) Draw a logic circuit for the fault condition:

Either A = 1 or B = 1 or C = 1 indicate a fault. A red warning light shows up on the dashboard – output Z = 1.

[2]

(b) Complete the truth table for the three fault conditions:

A	В	С	working	x	Y	z
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

[6]

Question 19

8 (a) Complete the truth table for the following logic circuit:

Α	В	С	working	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

(b) Draw a logic circuit corresponding to the following logic statement:

$$X = 1$$
 if $(A = NOT 1 OR B = 1) AND $(B = NOT 1 AND C = NOT 1)$$

[6]

6 A wind turbine must shut down when certain conditions are met.

The three variables and the conditions which dictate their values are shown in the table:

	variable		condition
name	description	value	
w	wind speed	1	wind speed ≥ 100 kilometres per hour (kph)
		0	wind speed < 100 kilometres per hour (kph)
P	oil pressure	1	oil pressure low
		0	oil pressure normal
т	T motor		motor temperature ≥ 50 °C
	temperature	0	motor temperature < 50 °C

A logic circuit is to be designed where the output, X, is 1 if:

either wind speed ≥ 100 kph and oil pressure normal

or motor temperature ≥ 50°C and oil pressure low

or wind speed < 100 kph and motor temperature $\ge 50^{\circ}C$

(a) Draw a logic circuit.

(b) Complete the truth table for this system:

w	P	т	working	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

9 (a) Draw the logic circuit corresponding to the following logic statement:

X = 1 IF (A is 1 AND B is 1) OR (B is 1 OR C is NOT 1)

(b) Complete the truth table for the above logic statement:

			Working space	
Α	В	С		X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

4 (a) Draw the logic circuit that directly corresponds to the following logic statement:

X = 1 IF (A is NOT 1 OR B is 1) AND (B is 1 OR C is 1)

[4]

(b) Complete the truth table for the above logic statement.

			Working space	
Α	В	С		x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

9 (a) Complete the truth table to show the output from the logic gate shown.

Α	В	x
0	0	
0	1	
1	0	
1	1	

[2]

(b) Complete the truth table to show the outputs from the logic circuit shown.

Α	В	C	D	Y
0	0			
0	1			
1	0			
1	1			