

Dată o formulă chimică, există un compus chimic care are această formulă?

Dar unul aciclic?

Ce structuri poate avea un astfel de compus?

C_mH_n - poate exista moleculă aciclică cu această formulă?

Din studii empirice, chestionare, analize ⇒ informații despre numărul de interacțiuni ale unui nod.

Este realizabilă o rețea de legături între noduri care să respecte numărul de legături?

Dacă da, să se construiască un model de rețea.

Din studii empirice, chestionare, analize ⇒ informații despre numărul de interacțiuni ale unui nod.

Este realizabilă o rețea de legături între noduri care să respecte numărul de legături?

Dacă da, să se construiască un model de rețea.

Exemplu: Într-o grupă de studenți, fiecare student este întrebat cu câți colegi a colaborat în timpul anilor de studii. Este realizabilă o rețea de colaborări care să corespundă răspunsurilor lor (sau este posibil ca informațiile adunate să fie incorecte)?

- ☐ Studentul 1 cu 3
- ☐ Studentul 2 cu 3
- ☐ Studentul 3 cu 2
- Studentul 4 cu 3
- ☐ Studentul 5 cu 2

Dată o secvență de numere s, se poate construi un graf neorientat având secvența gradelor s?

Dar un multigraf neorientat?

Dar un arbore?

- Condiții necesare
- ☐ Condiții suficiente

Construcția de grafuri cu secvența gradelor dată

Aplicații:

- chimie studiul structurii posibile a unor compuși cu formula chimică dată
- proiectare de reţele
- biologie rețele metabolice, de interacțiuni între gene/proteine
- studii epidemiologice în care, prin chestionare anonime, persoanele declară numărul de persoane cu care au interactionat
- studii bazate pe simulări de rețele

Construcția de grafuri neorientate cu secvența gradelor dată

Problemă

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale.

Să se construiască, dacă se poate, un graf neorientat G cu $s(G) = s_0$.

Problemă

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale.

Să se construiască, dacă se poate, un graf neorientat G cu $s(G) = s_0$.

Condiții necesare pentru existența lui G:

- \Box $d_1 + ... + d_n număr par$
- \Box $d_i \le n 1, \forall i$

Problemă

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale.

Să se construiască, dacă se poate, un graf neorientat G cu $s(G) = s_0$.

Condiții necesare pentru existența lui G:

- \Box $d_1 + ... + d_n număr par$
- \Box $d_i \leq n 1, \forall i$

Pentru $s_0 = \{3,3,1,1\}$ - nu există G \Rightarrow condițiile nu sunt suficiente Totuși, putem crea un multigraf

Idee de algoritm de construcție a unui graf G cu s(G) = s₀

- 1. începem construcția de la vârful cu gradul cel mai mare
- 2. îi alegem ca vecini vârfurile cu gradele cele mai mari

Exemplu

$$s_0 = \{ 3, 4, 2, 1, 3, 4, 2, 1 \}$$

etichete vârfuri

$$\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3 \ \mathbf{X}_4 \ \mathbf{X}_5 \ \mathbf{X}_6 \ \mathbf{X}_7 \ \mathbf{X}_8$$

Pasul 1

- construim muchii pentru vârful de gradul maxim
- alegem ca vecini următoarele vârfuri cu cele mai mari grade

Idee de algoritm de construcție a unui graf G cu s(G) = s₀

- 1. începem construcția de la vârful cu gradul cel mai mare
- 2. îi alegem ca vecini vârfurile cu gradele cele mai mari
- 3. actualizăm secvența s₀ și reluăm până când
 - secvenţa conţine doar 0 ⇒ G
 - secvenţa conţine numere negative ⇒

Idee de algoritm de construcție a unui graf G cu $s(G) = s_0$

- 1. începem construcția de la vârful cu gradul cel mai mare
- 2. îi alegem ca vecini vârfurile cu gradele cele mai mari
- 3. actualizăm secvența s₀ și reluăm până când
 - secvenţa conţine doar 0 ⇒ G
 - secvenţa conţine numere negative ⇒ G nu se poate construi prin acest procedeu

Se poate construi G altfel?

Idee de algoritm de construcție a unui graf G cu $s(G) = s_0$

- 1. începem construcția de la vârful cu gradul cel mai mare
- 2. îi alegem ca vecini vârfurile cu gradele cele mai mari
- 3. actualizăm secvența s₀ și reluăm până când
 - secvenţa conţine doar 0 ⇒ G
 - secvenţa conţine numere negative ⇒ **G nu se poate construi prin acest** procedeu

Teorema Havel-Hakimi ⇒ NU

⇒ Algoritmul anterior = **Algoritmul Havel-Hakimi**

$$s_0 = \{3, 4, 2, 1, 3, 4, 2, 1\}$$

$$x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8$$

Pasul 1

etichete vârfuri

- construim muchii pentru vârful de gradul maxim = x₂
- □ alegem ca vecini următoarele vârfuri cu cele mai mari grade

$$s_0 = \{3, 4, 2, 1, 3, 4, 2, 1\}$$

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8$

Pasul 1

etichete vårfuri

- construim muchii pentru vârful de gradul maxim = x₂
- alegem ca vecini următoarele vârfuri cu cele mai mari grade
 - ⇒ ar fi utilă sortarea descrescătoare a elementelor lui s₀

$$s_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$

etichete vârfuri
$$x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7$$

Pasul 1

$$s_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$

etichete vârfuri

Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3

Pasul 1

$$s_0 = \{4, 4, 3, 3, 2, 2, 1, 1\}$$

etichete vârfuri

Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3

Secvența rămasă:

$$s'_0 = \{$$
 3, **2**, **1**, 2, 1, 1 $\}$

etichete vârfuri
$$x_6 x_1 x_5 x_3 x_8 x_4 x_7$$

Pasul 1

$$s_0 = \{4, 4, 3, 3, 2, 2, 1, 1\}$$

etichete vârfuri

Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3

Secvența rămasă:

$$s'_0 = \{$$
 3, 2, 1, 2, 1, 1}

etichete vârfuri

$$X_6$$
 X_1 X_5 X_3 X_8 X_4 X_7

Secvența rămasă ordonată descrescător:

$$s'_0 = \{ 3, 2, 2, 1, 1, 1 \}$$

etichete vârfuri $x_6 x_1 x_5 x_8 x_3 x_4 x_7$

$$s'_0 = \{$$
 3, 2, 2, 1, 1, 1 $\}$

etichete vârfuri

Muchii construite: x_6x_1 , x_6x_5 , x_6x_8

Secvența rămasă:

$$s''_0 = \{$$
 1, **1**, **1**, **1**, **1**, **1**}

etichete vârfuri

$$X_1 \quad X_5 \quad X_8 \quad X_3 \quad X_4 \quad X_7$$

(este ordonată descrescător)

Pasul 3

$$s''_0 = \{ 1, 1, 1, 1, 1, 1 \}$$

etichete vârfuri

$$X_1$$
 X_5 X_8 X_3 X_4 X_7

Muchii construite: x_1x_5

Secvenţa rămasă:

$$s'''_0 = \{$$
 0, 1, 1, 1, 1}

etichete vårfuri

$$X_5$$
 X_8 X_3 X_4 X_7

Secvența rămasă ordonată descrescător:

$$s'''_0 = \{ 1, 1, 1, 1, 0 \}$$

etichete vârfuri

$$X_7$$
 X_3 X_4 X_8 X_5

Pasul 4

$$s'''_0 = \{ 1, 1, 1, 1, 0 \}$$

etichete vârfuri

$$X_7$$
 X_3 X_4 X_8 X_5

Muchii construite: x_7x_3

Secvenţa rămasă:

etichete vârfuri

$$X_3$$
 X_4 X_8 X_5

Secvența rămasă ordonată descrescător:

etichete vârfuri

$$X_4$$
 X_8 X_3 X_5

Pasul 5

1, 1, 0, 0}

etichete vârfuri

$$X_4$$
 X_8 X_3 X_5

Muchii construite: $x_4 x_8$

Secvența rămasă:

etichete vârfuri

$$X_8$$
 X_3 X_5

 Dacă d₁ + ... + d_n este impar sau există în s₀ un d_i > n-1, atunci scrie NU, STOP

- Dacă d₁ + ... + d_n este impar sau există în s₀ un d_i > n-1, atunci scrie NU, STOP
- Cât timp s₀ conţine valori nenule, execută
 alege d_k cel mai mare număr din secvenţa s₀
 elimină d_k din s₀
 fie d_{i1}, ..., d_{idk} cele mai mari d_k numere din s₀

- Dacă d₁ + ... + d_n este impar sau există în s₀ un d_i > n-1, atunci scrie NU, STOP
- 2. Cât timp s₀ conține valori nenule, execută alege d_k cel mai mare număr din secvența s₀ elimină d_k din s₀ fie d_{i1}, ..., d_{idk} cele mai mari d_k numere din s₀ pentru j ∈ {i₁, ..., i_{dk}} execută

- Dacă d₁ + ... + d_n este impar sau există în s₀ un d_i > n-1, atunci scrie NU, STOP
- 2. Cât timp s_0 conține valori nenule, execută alege d_k cel mai mare număr din secvența s_0 elimină d_k din s_0 fie d_{i1} , ..., d_{idk} cele mai mari d_k numere din s_0 pentru $j \in \{i_1, ..., i_{dk}\}$ execută adaugă muchia $x_k x_j$ la G înlocuiește d_j în secvența s_0 cu d_j -1 dacă d_i -1 < 0, atunci scrie NU, STOP

 Dacă d₁ + ... + d_n este impar sau există în s₀ un d_i > n-1, atunci scrie NU, STOP

```
2. Cât timp s_0 conține valori nenule, execută alege d_k cel mai mare număr din secvența s_0 elimină d_k din s_0 fie d_{i1}, \ldots, d_{idk} cele mai mari d_k numere din s_0 pentru j \in \{i_1, \ldots, i_{dk}\} execută adaugă muchia x_k x_j la G înlocuiește d_j în secvența s_0 cu d_j-1 dacă d_i-1 < 0, atunci scrie NU, STOP
```

Observație: Pentru a determina ușor care este cel mai mare număr din secvență și care sunt cele mai mari valori care îi urmează, este util ca pe parcursul algoritmului secvența s₀ să fie ordonată descrescător.

Algoritm Havel-Hakimi

 Dacă d₁ + ... + d_n este impar sau există în s₀ un d_i > n-1, atunci scrie NU, STOP

```
2. Cât timp s_0 conține valori nenule, execută alege d_k cel mai mare număr din secvența s_0 elimină d_k din s_0 fie d_{i1}, ..., d_{idk} cele mai mari d_k numere din s_0 pentru j \in \{i_1, ..., i_{dk}\} execută adaugă muchia x_k x_j la G înlocuiește d_j în secvența s_0 cu d_j-1 dacă d_i-1 < 0, atunci scrie NU, STOP
```

Observație: Pentru a determina ușor care este cel mai mare număr din secvență și care sunt cele mai mari valori care îi urmează, este util ca pe parcursul algoritmului secvența s₀ să fie ordonată descrescător.

Complexitate?

Teorema Havel-Hakimi

O secvență de n ≥ 2 numere naturale

$$s_0 = \{d_1 \ge ... \ge d_n\}$$

cu $d_1 \le n-1$ este secvența gradelor unui graf neorientat (cu n vârfuri) \Leftrightarrow

secvența

$$s'_0 = \{d_2 - 1, ..., d_{d1+1} - 1, d_{d1+2}, ..., d_n\}$$

este secvența gradelor unui graf neorientat (cu n-1 vârfuri).

Teorema Havel-Hakimi

O secvență de n ≥ 2 numere naturale

$$s_0 = \{d_1 \ge ... \ge d_n\}$$

cu d₁ ≤ n-1 este secvența gradelor unui graf neorientat (cu n vârfuri) ⇔

secvența

$$s'_0 = \{d_2 - 1, ..., d_{d1+1} - 1, d_{d1+2}, ..., d_n\}$$

este secvența gradelor unui graf neorientat (cu n-1 vârfuri).

Observatie: Secvența $s'_0 = \{d_2 - 1, ..., d_{d1+1} - 1, d_{d1+2}, ..., d_n\}$ se obține din s_0 eliminând primul element (d_1) și scăzând 1 din primele d_1 elemente rămase – acestea au indicii 2, 3, ..., d_1+1 .

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\}$$
 \Rightarrow $s'_0 = \{d_2 - 1, ..., d_{d1+1} - 1, d_{d1+2}, ..., d_n\}$

$$G, s(G) = s_0$$

primele d₁ (cu gradele cele mai mari)

Teorema Havel-Hakimi - Demonstraţie

$$s_0 = \{d_1 \ge \dots \ge d_n\}$$

$$\Rightarrow$$

$$s_0 = \{d_1 \ge ... \ge d_n\}$$
 \Rightarrow $s'_0 = \{d_2 - 1, ..., d_{d_{1+1}} - 1, d_{d_{1+2}}, ..., d_n\}$

$$G, s(G) = s_0$$

primele d (cu gradele cele mai mari)

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge \dots \ge d_n\}$$

(cu gradele cele mai

mari)

$$\Rightarrow$$

$$s_0 = \{d_1 \ge ... \ge d_n\}$$
 \Rightarrow $s'_0 = \{d_2 - 1, ..., d_{d_{1+1}} - 1, d_{d_{1+2}}, ..., d_n\}$

$$G, s(G) = s_0$$

transformare t pe pătrat

$$G^*$$
, $s(G^*) = s_0$
 $N_{G^*}(x_1) = \{x_2, ..., x_{d_{1+1}}\}$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\}$$
 \in $s'_0 = \{d_2 - 1, ..., d_{d1+1} - 1, d_{d1+2}, ..., d_n\}$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \qquad \leftarrow \qquad s'_0 = \{d_2 - 1, ..., d_{d1+1} - 1, d_{d1+2}, ..., d_n\}$$
Fie G' cu s(G') = $s'_0 = \{d_2 - 1, ..., d_{d1+1} - 1, d_{d1+2}, ..., d_n\}$

$$\begin{bmatrix} O \cdot O \cdot O \cdot O & O & O \cdot O \cdot O \\ x_2 & x_i & X_{d_1+1} & X_{d_1+2} & X_i & X_n \end{bmatrix}$$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\}$$
 \in $s'_0 = \{d_2 - 1, ..., d_{d1+1} - 1, d_{d1+2}, ..., d_n\}$

Fie G' cu
$$s(G') = s'_0$$

G:
$$V(G) = V(G') \cup \{x_1\}$$

 $E(G) = E(G') \cup \{x_1x_2, ..., x_1x_{d1+1}\}$

Avem
$$s(G) = s_0$$

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a teoremei Havel-Hakimi

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale mai mici sau egale cu n-1 și fie $i \in \{1,..., n\}$ fixat. Fie secvența obținută din s_0 astfel:

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale mai mici sau egale cu n-1 și fie $i \in \{1,..., n\}$ fixat. Fie secvența obținută din s_0 astfel:

eliminăm elementul d_i

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale mai mici sau egale cu n-1 și fie $i \in \{1,..., n\}$ fixat. Fie secvența obținută din s_0 astfel:

eliminăm elementul d_i

scădem o unitate din primele di componente, în ordine descrescătoare a secvenței rămase

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d, este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale mai mici sau egale cu n-1 și fie $i \in \{1,..., n\}$ fixat. Fie secvența obținută din s_0 astfel:

eliminăm elementul d_i

scădem o unitate din primele d_i componente, în ordine descrescătoare a secvenței rămase

Are loc echivalența:

s₀ este secvența gradelor unui graf neorientat ⇔ s₀⁽ⁱ⁾ este secvența gradelor unui graf neorientat

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a teoremei Havel-Hakimi

La un pas, vârful poate fi ales arbitrar (nu neapărat cel corespunzător elementului maxim).

Se păstrează, însă, criteriul de alegere al vecinilor (cu gradele cele mai mari).

Construcția de grafuri cu secvența gradelor dată

Cu ajutorul transformării t pe pătrat, putem obține, pornind de la un graf G, toate grafurile cu secvența gradelor s(G) (și mulțimea vârfurilor V(G)).

Construcția de grafuri cu secvența gradelor dată

Cu ajutorul transformării t pe pătrat, putem obține, pornind de la un graf G, toate grafurile cu secvența gradelor s(G) (și mulțimea vârfurilor V(G)).

Mai exact, are loc următorul rezultat (exercițiu):

Fie G_1 și G_2 două grafuri neorientate cu mulțimea vârfurilor $V = \{1, ..., n\}$. Atunci $s(G_1) = s(G_2) \Leftrightarrow$ există un șir de transformări t de interschimbare pe pătrat, prin care se poate obține graful G_2 din G_1 .

Construcția de grafuri cu secvența gradelor dată

Teorema Erdös-Gallai (suplimentar)

O secvență de n \geq 2 numere naturale $s_0 = \{d_1 \geq ... \geq d_n\}$ este secvența gradelor unui graf neorientat \Leftrightarrow

- $d_1 + ... + d_n \text{ par si}$

O muchie este **critică** ⇔ nu este conținută într-un ciclu.

Găsirea unui ciclu - parcurgere DF

- muchii de avansare ale arborelui DF (memorat cu un vector de taţi), prin care se descoperă vârfuri noi
- muchii de întoarcere închid ciclu, nu pot fi critice

Cum testăm dacă o muchie de avansare (i, j) este critică?

Cum testăm dacă o muchie de avansare (i, j) este critică?

nu este conținută într-un ciclu închis de o muchie de întoarcere

O muchie de avansare (i, j) este critică

 \Leftrightarrow

nu este conținută într-un ciclu închis de o muchie de întoarcere

 \Leftrightarrow

nu există nicio muchie de întoarcere cu

- o extremitate în j sau într-un descendent al lui j
- cealaltă extremitate în i sau într-un ascendent al lui i (într-un vârf de pe un nivel mai mic sau egal cu nivelul lui i)

Memorăm, pentru fiecare vârf i:

niv_min[i] = nivelul minim al unui vârf care este extremitate a unei muchii de întoarcere
din i sau dintr-un descendent al lui i

= nivelul minim la care se închide un ciclu elementar care conține vârful i (printr-o muchie de întoarcere)

- nivel[i] = nivelul lui i în arborele DF
- niv_min[i] = min { nivel[i], A, B }
 - A = min { nivel[k] | ik muchie de întoarcere }
 - B = min { nivel[k] | j descendent al lui i, jk muchie de întoarcere }

O muchie de avansare ij este critică

O muchie de avansare ij este critică ⇔ niv_min[j] > nivel[i]

Cum calculăm eficient niv_min[i]?

- □ **niv_min[i]** = min { nivel[i], A, B }
 - o A = min { nivel[k] | ik muchie de întoarcere }
 - B = min { nivel[k] | j descendent al lui i, jk muchie de întoarcere }

Cum calculăm eficient niv_min[i]?

- □ **niv_min[i]** = min { nivel[i], A, B }
 - A = min { nivel[k] | ik muchie de întoarcere }
 - B = min { nivel[k] | j descendent al lui i, jk muchie de întoarcere }

B se poate calcula recursiv

Cum calculăm eficient niv_min[i]?

- □ **niv_min[i]** = min { nivel[i], A, B }
 - A = min { nivel[k] | ik muchie de întoarcere }
 - o B = min { nivel[k] | j descendent al lui i, jk muchie de întoarcere }

1/1 (1)

6/3

Test muchie critică: niv_min[6] = 3 > nivel[2] = 2

Indicații de implementare

```
void df(int i) {
    viz[i] = 1:
    niv_min[i] = nivel[i];
    for (j vecin al lui i)
        if (viz[j] == 0) {     //ij muchie de avansare
             nivel[j] = nivel[i] + 1;
             df(j);
             //actualizare niv_min[i] - formula B
             niv_min[i] = min{ niv_min[i], niv_min[j] }
             //test ij este muchie critica
             . . .
        else
             if(nivel[j] < nivel[i] - 1) //ij muchie de intoarcere</pre>
                 //actualizare niv_min[i] - formula A
```

Indicații de implementare

```
void df(int i) {
    viz[i] = 1:
    niv_min[i] = nivel[i];
    for (i vecin al lui i)
        if (viz[j] == 0) {     //ij muchie de avansare
             nivel[j] = nivel[i] + 1;
             df(j);
             //actualizare niv_min[i] - formula B
             niv_min[i] = min{ niv_min[i], niv_min[j] }
             //test ij este muchie critica
             if (niv_min[i]> nivel[i]) scrie muchia ij
        else
             if(nivel[j] < nivel[i] - 1) //ij muchie de intoarcere</pre>
                 //actualizare niv_min[i] - formula A
                 niv_min[i] = min{ niv_min[i], niv[j] }
```

Puncte critice

Puncte critice

Un vârf este **punct critic** ⇔ există două vârfuri x,y ≠ v astfel încât aparține oricărui x,y-lanț.

Arborele DF

□ **rădăcina** este punct critic

un alt vârf i din arbore este critic

Puncte critice

Un vârf este **punct critic** ⇔ există două vârfuri x,y ≠ v astfel încât aparține oricărui x,y-lanț.

Arborele DF

□ rădăcina este punct critic ⇔

are cel puțin 2 fii în arborele DF

are cel puţin un fiu j cu niv_min[j] ≥ nivel[i]

