3.2
wtorek, 17 grudnia 2024 09:53
Zadanie 120 Dany jest wielomian $w(x) = 4x^2 - 2x + 1$.
1. Dokonaj takich przekształceń wyrażenia $w(\alpha)$ dla
tego wielomianu, które są wykonywane podczas wyprowadzenia algorytmu Hornera.
2. Dla $\alpha=3$ oblicz liczby w_i użyte w opisie algorytmu.
3. Zapisz wielomian v , który jest wynikiem dzielenia w przez jednomian $x-3$. Ile wynosi reszta z tego
dzielenia?
Zadenia 120° Panj je dvillonian w (x) = 4 x²-2 x +1
1) Pohoraj prehindeten w (x) do ug provadanie Schemale Herrera
$w(x) = 1 - 2x + 4x^2 = 1 + x(-2 + x(-4))$
2) Da = 3 oblica an wight a opisie algorithm
W ₂ = 4
$u_1 = 3 \cdot 4 - 2 = 10$ $u_2 = 3 \cdot 10 + 10 = 31$
3) ropise nielomian V, ketory jest wynikiem z dzielenia mieloniona przez x-3. le wynosi ecsta.
V(x) = (x-3)(9x+10)+31
Zadanie 122 Zapisz uogólniony algorytm Hornera dla bazy Newtona zdefiniowanej przez węzły:
bazy Newtona zdemnowanej przez węzry. $1,1,\ldots,1,2,2,\ldots,2 (n \text{ jedynek i } n \text{ dwójek}).$
Algorytm ma działać w czasie $2n(\text{ops} + \text{opm}) + C$, gdzie C jest niewielka stała, $n \in \mathbb{N}$. Rozwiaż to samo zadanie
dla układu węzłów:
$1,0,1,0,1,0,\dots,1,0 (n \text{ zer i } n \text{ jedynek}).$
H PUNKCIE &
help 1 = alfa + 1;
$\frac{2n}{2}$
help-2-alfa-2
$\sqrt{2n}$ a $\sqrt{2n}$
for i = 2n - 1 i > 0 i
(f. (i \le n) \delta
N[i]=a[i]+helf-1+N[i+1]

else C

