EECS 376: Foundations of **Computer Science**

Lecture 10 - Diagonalization and Undecidability

Today's Agenda

- Recap: Turing Machines, Church-Turing thesis
- Deciders (vs "loopers") and decidability
- Diagonalization and an undecidable language

Turing Machines: Essential Features

Decision Programs

- Q: Suppose we run a TM on string. What are the possible outcomes?
- either: (i) accepts, (ii) rejects, or (iii) "loops" (forever

Definition: A TM *M* decides language *L* if: 1. M accepts every string $x \in L$ ("accepts"), and 2. M rejects every string $x \notin L$ ("rejects").

We say that M is a **decider** (for L), and L is **decidable**. Note: By definition, M does not loop on any input!

Code vs TMs

- Claim: Given any TM, we can simulate it using a Boolean function on string written in C++ code.
- bool **simulateM**(string **x**):
 // hard-coded transition function of TM **M**
- // copy x into array representing a tape // repeatedly read/write/move according M return accept/reject according to M
- Q: Given any Boolean function on strings written in C++ code, can we simulate it using a TM?
- . A: Yes. It is tedious to prove
- Church-Turing thesis:
 - TM can simulate any model of computation.

Take away: $TM \equiv \text{``bool } M(string x)$ ''

Summary So Far

- General: Any finite object (integer, graph, PDF, C++ code) can be encoded as a finite string. A TM takes a finite string as input.
- Church–Turing thesis:

'Anything that is computable by some physical device (a 'computer') is computable by some **Turing machine**."

- In short: Turing Machines = computer programs.
- Implication: If a problem is not decidable by a TM, it cannot be solved by <u>any</u> computer! (including future/alien technology)

Proving Decidability

Proving Decidability

- \mathbf{Q} To prove that a language L is decidable, must we design an actual TM?
- A: No! Simulation lets us write an algorithm in C++ or pseudocode.
- - $L = \{(n, m) \mid n \text{ and } m \text{ are coprime}\}.$

CoPrime(n, m):
If n < m, swap n and m.
If Euclid(n, m) = 1, return "accept" Else return "reject".

Euclid(x, y): || for $x \ge y > 0$ if $(x \bmod y = 0)$, return y. else return Euclid $(y, x \bmod y)$

- By definition, $\gcd(n,m)=1 \Leftrightarrow$ n and m are coprime.
- Euclid(x, y) always halts and returns gcd(x, y).
- There exists a TM that <u>simulates</u> CoPrime, Euclid and therefore decides *L*.

Undecidable Languages?

- Question: Do there exist <u>undecidable</u> languages? i.e., are there problems that no computer can solve?
- ullet The goal of today's lecture: There $\underline{\it exists}$ an undecidable language L .
- The key idea of today's lecture:
- Let $\mathcal L$ be the set of all languages and $\mathcal M$ be the set of all TMs, say both over the alphabet $\Sigma=\{0,1\}$.
- If we could show that $|\mathcal{M}| < |\mathcal{L}|$, we would be done!
- Why: Each TM M decides at most 1 language.
- Problem: Both $|\mathcal{L}|$ and $|\mathcal{M}|$ are infinite! Can we do anything about it?

Before Proving Undecidability:

Introduction to Countable and Uncountable Sets

How can we compare the "size" of infinite sets?

5/22/24

203 Review: Countability

The attributes "equal,"
"greater," and "less," are
not applicable to infinite,
but only to finite,
quantities.

Galileo (1638)

Georg Cantor (1895)

- * **Definition:** A set *S* is **countable** if it is "no larger than" the naturals $\mathbb{N} = \{0,1,2,...\}$, i.e. $|S| \leq |\mathbb{N}|$.
- * **Equivalently:** S is countable if there exists a 1-to-1 (injective) function $f: S \to \mathbb{N}$.
- * We can also show S is countable by demonstrating how to list all the elements in S such that each element s ∈ S appears somewhere on the list. Why?

Transfinite Cardinal Numbers

- Cardinality of a finite set is simply the number of elements in the set.
- Cardinalities of *infinite* sets are not natural numbers, but are special objects called transfinite cardinal numbers.

(N₀:≡|N|) is the *first transfinite cardinal* number.

• continuum hypothesis claims that |R|=N₁, the second transfinite cardinal.

Ordinals (con.)

- The least ordinal is (vacuously) = Ø. We take:
- o= Ø
- •1={Ø}={o}
- •2 = $\{\emptyset, \{\emptyset\}\}$ = $\{0,1\}$
- •3 = $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ = $\{0,1,2\}$
- 4 = ... = (0,1,2,3} and so on. In general, we have n = {0,1,2, ..., n-1}

... (-,-,-, ..., ...

Ordinals (con.)

- •So, every natural number is an ordinal.
- But the ordinals continue after the natural numbers leave off. If ω denotes the smallest ordinal which is not a natural number, then ω is the set of natural numbers.
- •Then the next ordinal after ω is $\omega \cup \{\omega\} = \omega + 1$, and so on .

Functions and Set Cardinality

- A function $f: A \to B$ maps each element $x \in A$ to an element $f(x) \in B$.
- A function f is injective (1-to-1) if no two elements in A are mapped to the same element of B.
 - Formally: f injective means $\nexists a, a'. a \neq a' \land f(a) = f(a')$.

Warning: properties of "≤" for finite values do not necessarily

- If an injective $f: A \to B$ exists, then $|A| \le |B|$.
- If injective $f: A \to B$ and $g: B \to A$ exist, then |A| = |B|.
- This is the <u>definition</u> of "≤" and "=" for set cardinality.

Countable Sets

- **Def:** A set *S* is countable if it is "no larger than" the naturals $\mathbb{N} = \{0,1,2,\ldots\}$, i.e. $|S| \leq |\mathbb{N}|$.
- Equivalently: S is countable if \exists an injective function $f: S \to \mathbb{N}$.
- Claim: Any finite set is countable.
- Proof:
 - $\bullet \ \, \mathsf{Let} \, \mathsf{S} = \{s_1, \dots, s_n\} \, \mathsf{be} \, \mathsf{a} \, \mathsf{set} \, \mathsf{with} \, n \, \mathsf{elements}.$
 - Then $f: S \to \mathbb{N}$, $f(s_i) = i$ is an injection from S to \mathbb{N} .
- Q: Which infinite sets are countable ("countably infinite")?

Proving Countability

- **Recall:** S is countable if there is an injective $f: S \to \mathbb{N}$.
- We can prove that a set is countable by explicitly defining such a
- Or, we can show how to <u>list</u> elements of S (possibly with duplicates) so that each element must appear at some finite position in the list.
 - This is enough. It implicitly defines an injective $f: S \to \mathbb{N}$.

List including all elements in S:

Countably Infinite Sets

- By Definition: N = {0, 1, 2, 3, 4, ...}.
- $\bullet \ \ \text{Is} \ \mathbb{Z} \ \text{countable (listable)?}$

 - First try: Z = {0,1,2,3,4 ..., -1, -2, -3, -4, ...}.
 Does not work! (What is the exact position of "-1" in the list?)
 - 2nd Try: List $\mathbb{Z} = \{0,1,-1,2,-2,3,-3,4,-4,5,-5,\dots\}$.
- Is Q⁺ countable (listable)?
 - How to list \mathbb{Q}^+ : First list all x/y with x+y=1, then x+y=2, etc.

	1	2	3	4	***
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	

More Countably Infinite Sets: **Finite Binary Strings**

- Let $S = \{0,1\}^*$ be the set of all <u>finite</u> binary strings.
- Claim: S is countable.
- **Proof:** List the elements of in *lexicographic order:*
 - by length, and then
 - in sorted order among strings with equal length. $S: \epsilon, 0, 1, 00, 01, 10, 11, 000, ...$
- Every element of S appears in the list.

Diagonalization:

Showing |Countable set| < |Uncountable set|

Proving Uncountability via Diagonalization

- Q: How do we show that a set S is <u>uncountable</u>?
- A: Prove that no injective $f: S \to \mathbb{N}$ exists.
- How? Proof by contradiction! Template:
 - 1. Assume there exists a list of elements of S such that every element $x \in S$ appears <u>somewhere</u> in the list.
 - 2. Use it to 'construct' some $x^* \notin S$ that is <u>not</u> in the list.
 - 3. Contradiction! So, no such list can exist.
- Diagonalization is the usual technique for step 2

First Example:

Set of infinite-length binary sequences is uncountable

- Now let S be the set of <u>infinite-length</u> binary sequences.
- Suppose there is some list $(s_1, s_2, s_3, ...)$ of all elements of S.
- Let $s_i[j]$ be the jth bit of s_i .
- Take the 'diagonal' bits and flip them:
 - $\bullet \ \underline{x^*[j]} = \overline{s_j[j]} = 1 s_j[j].$

				_			
s_1	0	1	1	0	1	0	
s_2	1	0	0	0	0	0	
s_3	0	1	1	1	0	1	
S_4	0	0	0	0	0	0	
s_5	1	1	1	1	1	1	

First Example:

Set of infinite-length binary sequences is uncountable

- Claim: x^* is not in the list!
- **Proof:** If it were in the list, then for some i, $s_i = x^*$.
- By construction, $x^*[i] = 1 s_i[i] \neq s_i[i]$, so $x^* \neq s_i$.
- This contradicts the original assumption that it was possible to list the elements of S. Hence S is not countable.

s_1	0			0		0	
s_2	1	0	0	0	0	0	
s_3	0	1	1	1	0	1	
S_4	0	0	0	0	0	0	
s_5	1	1	1	1	1	1	

First Example:

Set of *infinite-length* binary sequences is uncountable

- Conclusion: The set of all infinite binary sequences is uncountable.
- Diagonalization Summary: For any candidate list of such sequences, there is a sequence <u>not</u> in that list.

Cantor's Theorem

Cantor's Theorem:

For any set X, |X| < |P(X)|.

Proving Undecidability

via Diagonalization

Plan: How to show the existence of undecidable language

- Let £ be the set of all languages.
- Let ${\mathcal M}$ be the set of all TMs.
- Will show that $|\mathcal{M}| < |\mathcal{L}|$.
- Q1: Is \mathcal{M} countable?
- A: Yes. (We'll see.)
- Q2: Is £ countable
- A: No! (We'll see.)

The set of TMs is countable

• Claim: The set of Turing Machines is countable. (0,1) = (0,1,00,01,-) • Idea: Use lexicographical ordering on source code (Every TM has an encoding as a finite-length string!) (奶) ## 'bool A(string x): return F"

"bool A(string x): return T" finite by, 图布 "bool A(string x): return T" "bool A(string x): for i=1...x: ..." 我们和中 "bool A(string x): let x=x-1 ... " binary stong & enodet BAD M (0,1) To {all binon stongs} = (0,1) * to & countrable to > M ctb

The set of Languages is uncountable

LEE* A Infinite

- Claim: Any language L can be represented by an infinite binary sequence.
- Idea: List all input strings $\Sigma^* = \{s_1, s_2, s_3, ...\}$
 - Then $L: x_1x_2x_3 \cdots$, where $x_i = 1$ if $s_i \in L$ and 0 otherwise.
- Example: Suppose $\Sigma = \{0,1\}$.

 - $\begin{array}{lll} \bullet & \Sigma^{\star} = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\} \\ \bullet & L: & 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ \ldots \end{array} \end{array} \\ \begin{array}{lll} & \text{Language L decided by} \\ \text{"bool M(string x): } \mathbf{return} \left(|\mathbf{x}| \text{ is even} \right) \end{array}$

Conclude:

There exists an undecidable language

- $\bullet \,$ The set $\, \mathcal{M} \,$ of all TMs is countable, $|\mathcal{M}| \leq |\mathbb{N}|$
- \bullet The set ${\mathcal L}\,$ of all languages is uncountable, $|{\mathcal L}|>|{\mathbb N}|.$
- So $|\mathcal{M}| < |\mathcal{L}|$.
- Each TM decides at most one decidable language.
- So there exists an undeciable language.
- Next: Can also prove this directly using a diagonalization

Another way to show: There exists an undecidable language

- ullet Construct a table T representing <u>all</u> decidable languages.
 - Columns: list all input strings $\Sigma^* = \{s_1, s_2, s_3, ...\}$
 - Rows: list all TMs {M₁, M₂, M₃, ...}
 T[i, j] = 1 iff machine M_i accepts string s_i, o otherwise.
- \bullet Claim: No TM decides the language represented by $L^{\ast}.$ $L^*[j] = 1 - T[j,j]$

	s_1	s_2	s_3	s ₄	<i>s</i> ₅	<i>s</i> ₆	
$L(M_1)$	1	0	0	1	1	0	
$L(M_2)$	0	1	1	0	0	0	
$L(M_3)$	1	1	1	1	1	1	
$L(M_4)$	0	0	0	0	0	0	
$L(M_5)$	1	0	1	0	0	0	

• **Proof.** If L^* is decidable then $L^* = L(M_i)$ for some i. But $s_i \in L(M_i) \Leftrightarrow s_i \notin L^*$, so $L^* \neq L(M_i)$. Contradiction.

Conclusion

- Theorem: There \underline{exists} an undecidable language L^* .
- Interpretation: There is a "problem" that no computer program can solve correctly (on all inputs).
- Question: What problem does L* represent? Do we care about it? Would it be useful to solve?
- Answer: We do not know, since the proof is 'non-constructive': only shows existence of L^* !
- Next time: Some explicit undecidable languages.