Regular Expression

2. After removing non-bridge state 3

(aa+bb) 4

5

3. After removing bridge state 1

0

a(aa+bb)

4

b

5

4. After removing bridge

DFA after removing state 2

DFA after removing state 3

DFA after removing state 5

DFA after removing state 1

DFA after removing state 4

- We have shown we can convert an automata to a RE. To show equivalence we must also go the other direction, convert a RE to an automaton.
- We can do this easiest by converting a RE to an ε-NFA
 - Inductive construction
 - Start with a simple basis, use that to build more complex parts of the NFA

• Basis:

- Convert $R = (ab+a)^*$ to an NFA
 - We proceed in stages, starting from simple elements and working our way up

- Another approach
 - Mishra