

Make Sense of The World

GMP102 temperature compensated pressure calculation

Application note

Please download these data in advance

- Example Code: GMP102-Ref-Code-master
 https://github.com/GlobalMEMS/GMP102-Example-Code-nRF51-DK
- GMP102_Calibration_Verification_Tool.xlsx
 https://github.com/GlobalMEMS/Application_ Notes/blob/master/GMP102_Calibration_Verification_Tool.xlsx

Temperature compensated pressure calculation for GMP102

6 steps to calculate calibrated pressure:

- 1. Get the raw pressure
- 2. Get the calibrated temperature
- 3. Read the calibration registers :AAh~BBh
- 4. Get the parameters: fParam[0]~ fParam[8]
- 5. Calculate temperature compensated pressure
- 6. Verify the calculated compensated pressure data by GMP102_Calibration_Verification_Tool.xlsx

Step1: Get the raw pressure

- The pressure data output is encoded to a 24-bit value and stored across three bytes.
- Data representation is 2's complement, i.e. MSB (bit 23) is the sign bit with 1'b1 representing negative value.

Register 06h~08h: Pressure Data Registers

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
06h	PRESSH	Pressure [23:16]								R	NA
07h	PRESSM	Pressure [15:8]							R	NA	
08h	PRESSL	Pressure [7:0]								R	NA

Step2: Get the calibrated temperature

- The temperature data output is encoded to a 16-bit value and stored across two bytes. Data representation is 2's complement, i.e. MSB (bit 15) is the sign bit with 1'b1 representing negative value.
- The temperature sensor has sensitivity of 256 LSB/ $^{\circ}$ C. The central value (0x00) stands for 0 $^{\circ}$ C.

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
09h	ТЕМРН		Temperature[15:8]							R	NA
0Ah	TEMPL	Temperature[7:0]							R	NA	

$$T(^{\circ}C) = \frac{Temperature[15:0]}{256}$$

Step3:

Read the calibration registers: AAh~BBh

Calculate the calibrated pressure value with the calibration parameters (AAh~BBh).

User Register Map

Table 4: User Register Map Table

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
00h	RESET	SPI4W	R'ved	RST	0	0	RST	R'ved	SPI4W	RW	0x00
01h	PID	PID[7:0]								R	0x02
02h	STATUS	Reserved 0 0 0							DRDY	R	NA
06h	PRESSH	Pressure [23:16]								R	NA
07h	PRESSM	Pressure [15:8]								R	NA
08h	PRESSL	Pressure [7:0]								R	NA
09h	ТЕМРН	Temperature[15:8]								R	NA
0Ah	TEMPL	Temperature[7:0]								R	NA
30h	CMD	Reserved Measure_CTRL[3:0]								RW	0x00
A5h	CONFIG1	Reserved Raw Reserved						RW	0x00		
A6h	CONFIG2	Reserved OSR[2:0]							RW	0x1F	
AAh	Calib00	Calibration data									
~	~								R	NA	
BBh	Calib17										

Step4:

Get the parameters: **fParam**[]

Step4 Get the parameters (Code)

```
//Read the calibration registers
          comRsIt = gmp102 burst read(GMP102 REG CALIB00, u8DataBuf,
GMP102 CALIBRATION REGISTER COUNT);
          if(comRslt < GMP102 CALIBRATION REGISTER COUNT){
                     comRsIt = -1;
                     goto EXIT;
// Get the parameters
          shift = sizeof(s32)*8 - 16;
          for(i = 0; i < GMP102 CALIBRATION PARAMETER COUNT; ++i){
                     tmp = (u8DataBuf[2 * i] << 8) + u8DataBuf[2 * i + 1];
                    fCalibParam[i] = ((tmp << shift) >> (shift + 2)) * (pow(10, (u8DataBuf[2 * i + 1] &
0x03))) * GMP102 CALIB SCALE FACTOR[i];
                      static const float GMP102 CALIB SCALE FACTOR[] = {
                                           1.0E+00,
                                           1.0E-05,
                                           1.0E-10,
                                           1.0E-05,
                                           1.0E-10,
                                           1.0E-15,
                                           1.0E-12,
                                           1.0E-17,
                                           1.0E-21 };
```


Step5

Calculate temperature compensated pressure

GMP102 temperature and pressure compensation

```
param s16T: calibrated temperature in code param s32P: raw pressure in code param fParam[]: pressure calibration parameters
```

Confidential

Step6 Verify the calibrated pressure

GMP102_Calibration_Verification_Tool.xlsx

The "Calibration Verification" sheet provides a tool to verify your calibration implementation for GMP102 readouts.

- Put in the calibration registers (AAh~BBh) values read from your GMP102 device. The calibration parameters (β0~β8) will be calculated. Check them against your implementation result.
- 2. Put in the P and T raw data from the reading of your GMP102 device. The calibrated P(Pa) and T(°C) will be calculated. Check them against your implementation result.

