Quiz: Convolutions

This quiz is designed to test your knowledge of convolutions of 2π -periodic functions.

In this entire quiz, the expression f*g denotes convolution of f and g, while the expression fg denotes the pointwise product of f and g. The expression \hat{f} denotes the Fourier transform of f, thus $\hat{f}(n)$ is the n^{th} Fourier coefficient of f.

Discuss this guiz

(Key; correct, incorrect, partially correct.)

1. Let f and g be continuously differentiable 2π -periodic functions. The derivative (f*g)' of the convolution f*g is given by

$$(f') * g$$

This is one of two correct answers.

B.
$$\cap f * (g') + (f') * g$$

You're thinking of the product rule: (fg)'=f'g+fg' . Convolutions behave differently from products.

$$(f')*(g')$$

You're thinking of the sum rule: (f+g)'=f'+g' . Convolutions behave differently from sums.

D.
$$\cap$$
 $(g') * (f')$

You might be thinking of Abel's formula for matrices: $(AB)^{-1} = B^{-1}A^{-1}$, Convolutions behave differently from inverses.

$$f * (g')$$

This is one of two correct answers.

- F.

 In general, there is no simple formula available.
- 2. Let f and g be continuously differentiable 2π -periodic functions, and let n be an integer. The $n^{ ext{th}}$ Fourier coefficient $\widehat{f*g}(n)$ of the convolution f*g is given by

A.
$$\cap$$
 $\hat{f} * g(n)_{\text{(incorrect)}}$

B. C
$$\hat{f}(n)\hat{g}(n)_{\text{(correct)}}$$

C.
$$\hat{f} * \hat{g}(n)_{\text{(incorrect)}}$$

D.
$$\hat{f}(n) + \hat{g}(n)_{\text{(incorrect)}}$$

E.
$$\hat{f}(n)g + f\hat{g}(n)_{\text{(incorrect)}}$$

- F.

 In general, there is no simple formula available.
- 3. Let f and g be continuously differentiable 2π -periodic functions. The average value of f*g is equal to
 - A. igcirc The difference between the average value of f and the average value of g.
 - B. igcirc The average of the average value of f and the average value of g.
 - C. \Box The convolution of the average value of f and the average value of g.

 This is true if one thinks of the average values of f and g as constant functions rather than numbers, but this is a rather clumsy way to phrase the answer.
 - D. $\,$ $\,$ $\,$ The product of the average value of f and the average value of g.
 - E. igcap The sum of the average value of f and the average value of g.

- F. In general, there is no simple formula available.
- 4. Let f , g , h be continuous 2π -periodic functions. The expression f*(g+h) can also be written as
 - A. $\bigcirc (f+g)*h_{(incorrect)}$
 - B. $\circ f * h + g * h_{\text{(incorrect)}}$
 - $g*f+f*h_{(correct)}$
 - D. $f * (g * h)_{(incorrect)}$
 - E. $g*(f+h)_{\text{(incorrect)}}$
 - F.

 None of the above.
- 5. Let f , g , h be continuous 2π -periodic functions. The expression (f+3h)*(2g) can also be written as
 - A. C $2(f*g) + 6(h*g)_{\text{(correct)}}$
 - B. $0.6*f*g*h_{(incorrect)}$
 - $2*f*g+3*h*g_{(incorrect)}$
 - D. \bigcirc $(2f)*g+(3h)*g_{\text{(incorrect)}}$
 - E. \bigcirc 6*h*g+2*f*g (incorrect)
 - F.

 None of the above.
- 6. Let f , g , h be continuous 2π -periodic functions. The expression f*(gh) can also be written as
 - A. \cap $(fg) * h_{(incorrect)}$
 - B. $C(f*g)(f*h)_{\text{(incorrect)}}$
 - c. C $f*g+f*h_{\text{(incorrect)}}$
 - D. $f(g+h)_{\text{(incorrect)}}$
 - E. $\cap f(g*h)_{(incorrect)}$
 - F.

 None of the above.

In general, there is no useful formula for pulling a product out of a convolution (or a convolution out of a product).

- 7. Let f,g be 2π -periodic functions. If f is continuously differentiable, and g is twice continuously differentiable, then the best we can say about f*g is that it is 2π -periodic and
 - A. C Riemann integrable.
 - B. Piecewise continuous.
 - C. C Continuous.
 - D. Continuously differentiable.
 - E. C Twice continuously differentiable.
 - F. O Three times continuously differentiable.

 Convolving two functions combines their orders of smoothness together.
 - G.

 Infinitely differentiable.
- 8. Let f,g be 2π -periodic functions. If f is continuously differentiable, and g is twice continuously differentiable, then the best we can say about f+g is that it is 2π -periodic and
 - A. C Riemann integrable.
 - B. Piecewise continuous.
 - C. C Continuous.
 - D. C Continously differentiable.

		In general, the sum of two functions is only as smooth as the rougher of its two factors.
E.	\circ	Twice continuously differentiable.
F.	\circ	Three times continuously differentiable.
G.	\odot	Infinitely differentiable.
9. Let f,g be 2π -periodic functions. If f is continuously differentiable, and g is twice continuously differentiable, then the say about fg is that it is 2π -periodic and		
		Riemann integrable.
		Piecewise continuous.
		Continuous.
D.	О	Continously differentiable. In general, the product of two functions is only as smooth as the rougher of its two factors.
E.	\circ	Twice continuously differentiable.
F.	\circ	Three times continuously differentiable.
G.	\odot	Infinitely differentiable.
10. Let f , and	g_{b}	e 2π -periodic functions. If f and g are Riemann integrable, then the best we can say about $f*g$ is that it is 2π -periodic
A.	\circ	Bounded.
В.	0	Riemann integrable. While this true, more can be said.
c.	\circ	Piecewise continuous.
		Continuous.
		Continously differentiable.
		Twice continuously differentiable.
		Infinitely differentiable.
٥.		Trimitely differentiable.
11. Let f , and	g_{b}	e 2π -periodic functions. If f and g are Riemann integrable, then the best we can say about fg is that it is 2π -periodic
A.	0	Bounded. While this true, more can be said.
В.	\circ	Riemann integrable.
c.	\circ	Piecewise continuous.
D.	\circ	Continuous.
E.	\circ	Continously differentiable.
		Twice continuously differentiable.
		Infinitely differentiable.
٥.		
12 Let f	he a	2π -periodic function, and let 1 be the constant function 1 . Then $f*1$ is
		The same function as f .
		The constant function ${f 1}$.
		The constant function with value equal to the mean of f .
		The value of $f(x)$ at the point $x=0$.
		0. (incorrect)
F.	⊙	The constant function with value equal to $f(1)$.

Page 3 of 4 2013-12-12 09:47

- 13. Let f be a continuous 2π -periodic function, and let K_n be a family of approximations to the identity (a.k.a. good kernels). Which of the following statements is true?
 - A. C For each x, $f*K_n(x)$ converges to 1 as n goes to infinity.
 - B. C For each x, $K_n(x)$ converges to f(x) as n goes to infinity.
 - C. C For each x, $f * K_n(x)$ converges to f(x) as n goes to infinity.
 - D. C For each n, $f*K_n(x)$ converges to f(x) as x goes to infinity. E. C For each x and each n, we have $f*K_n(x)=f(x)$.

 - F. \odot The functions $f*K_n$ converge to zero as n goes to infinity.

Score: 20/130

Expand all answers

Page 4 of 4 2013-12-12 09:47