Report No: CCISE170307203

FCC REPORT

(Bluetooth)

Applicant: MOVEON TECHNOLOGY LIMITED

Address of Applicant: World Trade Plaza-A block#3201-3202 Fuhong Road, Futian

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: TWISTER 5.0

Trade mark: ZOOM

FCC ID: 2AFD9-TWISTER5

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Mar., 2017

Date of Test: 30 Mar., to 13 Apr., 2017

Date of report issued: 14 Apr., 2017

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	14 Apr., 2017	Original

Tested by: Mike OU Date: 14 Apr., 2017

Test Engineer

Reviewed by: | | | CWC| Date: 14 Apr., 2017

Project Engineer

3 Contents

			Page
1	С	OVER PAGE	1
2	٧	/ERSION	2
3	C	CONTENTS	2
4		EST SUMMARY	
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	Т	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	17
	6.5	CARRIER FREQUENCIES SEPARATION	21
	6.6	HOPPING CHANNEL NUMBER	_
	6.7	DWELL TIME	_
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
		5.9.1 Conducted Emission Method	
	_	3.9.2 Radiated Emission Method	_
	6.10		
		i.10.1 Conducted Emission Method	
	_		_
7	Т	EST SETUP PHOTO	62
8	Е	UT CONSTRUCTIONAL DETAILS	63

4 Test Summary

rest Summary						
Test Item	Section in CFR 47	Result				
Antenna Requirement	15.203/15.247 (c)	Pass				
AC Power Line Conducted Emission	15.207	Pass				
Conducted Peak Output Power	15.247 (b)(1)	Pass				
20dB Occupied Bandwidth	15.247 (a)(1)	Pass				
Carrier Frequencies Separation	15.247 (a)(1)	Pass				
Hopping Channel Number	15.247 (a)(1)	Pass				
Dwell Time	15.247 (a)(1)	Pass				
Radiated Emission	15.205/15.209	Pass				
Band Edge	15.247(d)	Pass				

Pass: The EUT complies with the essential requirements in the standard.

Report No: CCISE170307203

5 General Information

5.1 Client Information

Applicant:	MOVEON TECHNOLOGY LIMITED
Address of Applicant:	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian
Manufacturer/ Factory:	MOVEON TECHNOLOGY LIMITED
Address of Manufacturer/ Factory:	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian

5.2 General Description of E.U.T.

Product Name:	Smart Phone		
Model No.:	TWISTER 5.0		
Operation Frequency:	2402MHz~2480MHz		
Transfer rate:	1/2/3 Mbits/s		
Number of channel:	79		
Modulation type:	GFSK, π/4-DQPSK, 8DPSK		
Modulation technology:	FHSS		
Antenna Type:	Internal Antenna		
Antenna gain:	0.58 dBi		
Power supply:	Rechargeable Li-ion Battery DC3.8V-2200mAh		
AC adapter:	Input: AC110-240V 50/60Hz 0.15A Output: DC 5.0V, 1A		

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GESK (1 Mbns) is the worst case mode

Report No: CCISE170307203

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Report No: CCISE170307203

5.7 Test Instruments list

Radiated Emission:									
Item	m Test Equipment Manufacturer		Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018			
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018			
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018			
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018			
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018			
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018			

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018					
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018					
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 0.58 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 1	5.207					
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz Sweep time=auto					
Limit:		•	dBuV)				
LIIIII.	Frequency range Limit (dBuV) (MHz) Quasi-peak Average						
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the log	arithm of the frequency.					
Test setup:	Reference	Plane					
	AUX Equipment E.U.T EMI Receiver Remark E.U.T EMI Receiver EVITE Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.6m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test Instruments:	Refer to section 5.7 for d	letails					
Test mode:	Bluetooth (Continuous transmitting) mode						
Test results:	Pass						

Measurement Data:

Line:

Trace: 23

: CCIS Shielding Room

Site : FCC PART15 B QP LISN LINE : Smart Phone Condition

EUT Model : Twister 5.0 Test Mode : BT mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike Remark

	Read	LISN	Cable		Limit	Over	
Freq	Level	Factor	Loss	Level	Line	Limit	Remark
MHz	dBu∜	<u>d</u> B	dB	dBu₹	dBu₹	<u>ab</u>	
0.158	43.49	0.14	10.78	54.41	65.56	-11.15	QP
0.198	22.31	0.15	10.76	33.22	53.71	-20.49	Average
0.505	17.29	0.24	10.76	28.29	46.00	-17.71	Average
0.513	34.67	0.25	10.76	45.68	56.00	-10.32	QP
0.582	15.48	0.28	10.77	26.53	46.00	-19.47	Average
0.668	32.87	0.31	10.77	43.95	56.00	-12.05	QP
0.853	14.21	0.29	10.83	25.33	46.00	-20.67	Average
1.016	31.35	0.26	10.87	42.48	56.00	-13.52	QP
1.858	28.55	0.31	10.95	39.81	56.00	-16.19	QP
2.540	12.16	0.33	10.94	23.43	46.00	-22.57	Average
17.944	28.64	0.31	10.90	39.85	60.00	-20.15	QP
19.326	11.66	0.33	10.92	22.91	50.00	-27.09	Average
	Freq 0.158 0.198 0.505 0.513 0.582 0.668 0.853 1.016 1.858 2.540 17.944	Read Freq Level MHz dBuV 0.158 43.49 0.198 22.31 0.505 17.29 0.513 34.67 0.582 15.48 0.668 32.87 0.853 14.21 1.016 31.35 1.858 28.55 2.540 12.16 17.944 28.64	Read LISN Level Factor MHz dBuV dB	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB	Read LISN Cable Level Factor Loss Level	Read LISN Cable Limit	Read LISN Cable Loss Level Limit Over Limit Freq Level Factor Loss Level Lime Limit MHz dBuV dB dB dBuV dBuV dB 0.158 43.49 0.14 10.78 54.41 65.56 -11.15 0.198 22.31 0.15 10.76 33.22 53.71 -20.49 0.505 17.29 0.24 10.76 28.29 46.00 -17.71 0.513 34.67 0.25 10.76 45.68 56.00 -10.32 0.582 15.48 0.28 10.77 26.53 46.00 -19.47 0.668 32.87 0.31 10.77 43.95 56.00 -12.05 0.853 14.21 0.29 10.83 25.33 46.00 -20.67 1.016 31.35 0.26 10.87 42.48 56.00 -13.52 1.858 28.55 0.31 10.95 39.81 56.00 -16.19 2.540 12.16 0.33 10.94 23.43 46.00 -22.57 17.944 28.64 0.31 10.90 39.85 60.00 -20.15

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 21

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smart Phone Model : Twister 5.0 Test Mode : BT mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike Remark :

Kemark								
		Read		Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	₫₿uѶ	dB	
1	0.158	29.78	0.13	10.78	40.69	55.56	-14.87	Average
2	0.211	38.98	0.16	10.76	49.90	63.18	-13.28	QP
3	0.211	23.85	0.16	10.76	34.77	53.18	-18.41	Average
4	0.510	33.65	0.25	10.76	44.66	56.00	-11.34	QP
1 2 3 4 5 6 7 8 9	0.510	20.40	0.25	10.76	31.41	46.00	-14.59	Average
6	1.560	13.18	0.26	10.93	24.37	46.00	-21.63	Average
7	1.878	27.94	0.26	10.95	39.15	56.00	-16.85	QP
8	2.487	12.71	0.29	10.94	23.94	46.00	-22.06	Average
9	2.608	26.65	0.29	10.93	37.87	56.00	-18.13	QP
10	5.166	27.33	0.33	10.84	38.50	60.00	-21.50	QP
11	18.232	24.93	0.27	10.91	36.11	60.00	-23.89	QP
12	18.820	10.55	0.28	10.92	21.75	50.00	-28.25	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

	GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	3.63	21.00	Pass				
Middle	4.42	21.00	Pass				
Highest	4.30	21.00	Pass				
	π/4-DQPSK mode						
Test channel	est channel Peak Output Power (dBm)		Result				
Lowest	3.47	21.00	Pass				
Middle	Middle 4.35		Pass				
Highest	Highest 4.26		Pass				
	8DPSK mo	ode					
Test channel	Test channel Peak Output Power (dBm)		Result				
Lowest	3.35	21.00	Pass				
Middle	Middle 4.20		Pass				
Highest	4.11	21.00	Pass				

Test plot as follows:

Date: 28.MAR.2017 08:42:47

Lowest channel

Date: 28.MAR.2017 08:43:18

Middle channel

Date: 28.MAR.2017 08:43:37

Highest channel

Date: 28.MAR.2017 08:45:46

Lowest channel

Date: 28.MAR.2017 08:45:13

Middle channel

Date: 28.MAR.2017 08:44:41

Highest channel

Date: 28.MAR.2017 08:46:16

Lowest channel

Date: 28.MAR.2017 08:46:42

Middle channel

Date: 28.MAR.2017 08:47:05

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	20dB Occupy Bandwidth (kHz)			
rest channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	832	1120	1164	
Middle	832	1120	1164	
Highest	828	1120	1160	

Test plot as follows:

Date: 28.MAR.2017 08:49:09

Lowest channel

Date: 28.MAR.2017 08:49:59

Middle channel

Date: 28.MAR.2017 08:51:04

Highest channel

Date: 28.MAR.2017 08:52:08

Lowest channel

Date: 28.MAR.2017 08:53:03

Middle channel

Date: 28.MAR.2017 08:53:57

Highest channel

Date: 28.MAR.2017 08:56:12

Lowest channel

Date: 28.MAR.2017 08:58:46

Middle channel

Date: 28.MAR.2017 09:00:17

Highest channel

6.5 Carrier Frequencies Separation

_	•		
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

GFSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Lowest	1004	554.67	Pass			
Middle	1004	554.67	Pass			
Highest	1004	554.67	Pass			
	π/4-DQPSK mode					
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result			
Lowest	1008	746.67	Pass			
Middle	1004	746.67	Pass			
Highest	1008	746.67	Pass			
	8DPSK mode					
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result			
Lowest	1004	776.00	Pass			
Middle	1004	776.00	Pass			
Highest 1004		776.00	Pass			

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)	
GFSK	832	554.67	
π/4-DQPSK	1120	746.67	
8DPSK	1164	776.00	

Test plot as follows:

Date: 28.MAR.2017 09:01:37

Lowest channel

Date: 28.MAR.2017 09:02:56

Middle channel

Date: 28.MAR.2017 09:03:52

Highest channel

Date: 28.MAR.2017 09:06:26

Lowest channel

Date: 28.MAR.2017 09:05:31

Middle channel

Date: 28.MAR.2017 09:04:42

Highest channel

Date: 28.MAR.2017 09:07:39

Lowest channel

Date: 28.MAR.2017 09:08:27

Middle channel

Date: 28.MAR.2017 09:09:22

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 12.APR.2017 15:31:28

Date: 12.APR.2017 15:38:26

Date: 28.MAR.2017 09:11:16

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB DA00-705		
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12480		
GFSK	DH3	0.26688	0.4	Pass
	DH5	0.31061		
	2-DH1	0.12736		
π/4-DQPSK	2-DH3	0.26880	0.4	Pass
	2-DH5	0.31147		
	3-DH1	0.12736		
8DPSK	3-DH3	0.26784	0.4	Pass
	3-DH5	0.31147		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.390*(1600/ (2*79))*31.6=124.80ms DH3 time slot=1.668*(1600/ (4*79))*31.6=266.88ms DH5 time slot=2.912*(1600/ (6*79))*31.6=310.61ms

2-DH1 time slot=0.398*(1600/ (2*79))*31.6=127.36ms 2-DH3 time slot=1.680*(1600/ (4*79))*31.6=268.80ms

2-DH5 time slot=2.920*(1600/ (6*79))*31.6=311.47ms

3-DH1 time slot=0.398*(1600/ (2*79))*31.6=127.36ms

3-DH3 time slot=1.674*(1600/ (4*79))*31.6=267.84ms

3-DH5 time slot=2.920*(1600/ (6*79))*31.6=311.47ms

Test plot as follows:

Date: 28.MAR.2017 09:15:13

DH1

Date: 28.MAR.2017 09:18:55

DH3

Date: 28.MAR.2017 09:21:57

DH5

Date: 28.MAR.2017 09:16:27

2-DH1

Date: 28.MAR.2017 09:19:51

2-DH3

Date: 28.MAR.2017 09:23:20

2-DH5

Date: 28.MAR.2017 09:16:59

3-DH1

Date: 28.MAR.2017 09:20:29

3-DH3

Date: 28.MAR.2017 09:24:27

3-DH5

Report No: CCISE170307203

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

GFSK

Lowest Channel

Date: 28.MAR.2017 09:27:51

Date: 28.MAR.2017 09:37:21

No-hopping mode

Hopping mode

Highest Channel

Date: 28.MAR.2017 09:41:57

Date: 28.MAR.2017 09:56:52

No-hopping mode

Hopping mode

π/4-DQPSK

Lowest Channel

Date: 28.MAR.2017 09:29:02

Date: 28.MAR.2017 09:35:43

No-hopping mode

Hopping mode

Highest Channel

Date: 28.MAR.2017 09:44:53

Date: 28.MAR.2017 09:50:50

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

Date: 28.MAR.2017 09:30:02

Date: 28.MAR.2017 09:34:09

No-hopping mode

Hopping mode

Highest Channel

Date: 28.MAR.2017 09:46:24

Date: 28.MAR.2017 09:48:26

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205		
Test Method:	ANSI C63.10:	2013			
Test Frequency Range:	2.3GHz to 2.50	GHz			
Test site:	Measurement	Distance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
·	AL 4011	Peak	1MHz	3MHz	Peak Value
	Above 1GHz	RMS	1MHz	3MHz	Average Value
Limit:	Frequen		nit (dBuV/m @:		Remark
			54.00		Average Value
	Above 10	SHZ -	74.00		Peak Value
		(Turntable)	Ground Reference Plane	n Antenna To	ower
Test Procedure:	ground at a determine the second at a determine the second antenna, who tower. 3. The antennating ground to de horizontal at measureme 4. For each surand then the and the rotal maximum resumments. The test-recond Specified Bases. If the emission limit specified EUT would a 10dB marginist.	a meter camber of the position	er. The table wante highest radials away from the ted on the top of the ted on the top of the ted on the EUT was set to Peak Maximum Hold EUT in peak me could be stoppetherwise the entitle of the ted from the ted	as rotated 36 ation. interference of a variable-leter to four most the field stantenna are as arranged as from 1 meters to 360 d Detect Fundamental Detect Fundament	e-receiving height antenna seters above the crength. Both e set to make the to its worst case ter to 4 meters egrees to find the etion and dB lower than the beak values of the did not have ak, quasi-peak or
Test Instruments:	Refer to sectio				
Test mode:	Non-hopping m				
Test results:	Passed				
Pomork:	-				

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone Model : Twister 5.0
Test mode : DH1-L mode
Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Mike REMARK :

LINCILL	200		Antenna Factor					
ě	MHz	—dBu∇	— <u>dB</u> /m	 	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000	100 to 10			48.69 35.78		The second of the second of	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smart Phone Condition

: Twister 5.0

Test mode : DH1-L mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike

REMARK : EUT

MAK	K:								
	Freq		Antenna Factor						
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	2390.000								
2	2390.000	7.43	23.68	4.69	0.00	35.80	54.00	-18.20	Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone Model : Twister 5.0 Test mode : DH1-H mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Mike REMARK

1 2

HH7										
	<u> 22</u> 5		Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark	
	MHz	dBu₹	dB/m	₫B	dB	dBuV/m	dBu√/m	dB		-
	2483.500	18.69	23.70	4.81	0.00	47.20	74.00	-26.80	Peak	
)	2483.500	8.12	23.70	4.81	0.00	36.63	54.00	-17.37	Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Smart Phone

Model : Twister 5.0

Test mode : DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Mike
REMARK :

1 2

JT.	m :									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∀		dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2483.500	18.13	23.70	4.81	0.00	46.64	74.00	-27.36	Peak	
	2483,500	8.08	23.70	4.81	0.00	36.59	54.00	-17.41	Average	

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone Model : Twister 5.0 Test mode : 2DH1-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Mike

REMARK

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
-	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB		
	2390.000 2390.000									

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Smart Phone EUT Model : Twister 5.0 Test mode : 2DH1-L mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa Test Engineer: Mike REMARK:

IIICTA									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	−dBuV		<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	2390.000	18.29	23.68	4.69	0.00	46.66	74.00	-27.34	Peak
2	2390,000	7.82	23.68	4.69	0.00	36.19	54.00	-17.81	Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Twister 5.0
Test mode : 2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Mike
REMARK : EUT : Smart Phone

EMAK	K :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Phone : Twister 5.0 Model Test mode : 2DH1-H mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% 101KPa Test Engineer: Mike REMARK :

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Phone Condition

EUT Model : Twister 5.0 Test mode : 3DH1-L mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% 101KPa Test Engineer: Mike REMARK :

	•	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
- 2	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	dB	
	2390.000								
2	2390.000	7.44	23.68	4.69	0.00	35.81	54.00	-18.19	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Phone Model : Twister 5.0 Test mode : 3DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK

Elleria			Antenna Factor					
-	MHz	dBu∜	$\overline{dB/m}$	 <u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000							

Test channel: Highest

Horizontal:

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart Phone : Twister 5.0 Model Test mode : 3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike

REMARK

шина	•	Read	Antenna	Cable	Preamo		Limit	Over		
	Freq		Factor						Remark	
<u> </u>	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		-
1	2483.500	24.44	23.70	4.81	0.00	52.95	74.00	-21.05	Peak	
2	2483.500	8.20	23.70	4.81	0.00	36.71	54.00	-17.29	Average	

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Smart Phone : Twister 5.0
Test mode : 3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Mike
REMARK : EUT

ITHT									
	Freq		Antenna Factor						
-	MHz	dBu₹	<u>dB</u> /m	āB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1	2483.500	20.75	23.70	4.81	0.00	49.26	74.00	-24.74	Peak
2	2483, 500	8, 15	23, 70	4.81	0.00	36, 66	54,00	-17.34	Average

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Non-hopping mode							
Test results:	Pass							

Test plot as follows:

Date: 26.MAR.2017 20:39:28

30MHz~25GHz

Date: 26.MAR.2017 20:41:32

30MHz~25GHz

Date: 26.MAR.2017 20:42:25

30MHz~25GHz

$\pi/4$ -DQPSK

Date: 26.MAR.2017 20:44:13

30MHz~25GHz

Date: 26.MAR.2017 20:45:08

30MHz~25GHz

Date: 26.MAR.2017 20:46:06

30MHz~25GHz

Date: 26.MAR.2017 20:47:21

30MHz~25GHz

Date: 26.MAR.2017 20:48:47

30MHz~25GHz

Date: 26.MAR.2017 20:50:03

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission M	lethod									
Test Requirement:	Test Requirement: FCC Part 15 C Section 15.209									
Test Method:	ANSI C63.10: 2	ANSI C63.10: 2013								
Test Frequency Range:	9 kHz to 25 GH	Z								
Test site:	Measurement D	istance: 3r	m							
Receiver setup:	Frequency Detector RBW VBW Remark									
	30MHz-1GHz	Quasi-peal		k 120kHz 300l		Ηz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	ЗМН	lz	Peak Value			
	Above 10112	RMS	S 1MHz 3M		ЗМН	z	Average Value			
Limit:	Frequenc	у	Lim	it (dBuV/m @	93m)		Remark			
	30MHz-88N	1Hz		40.0		(Quasi-peak Value			
	88MHz-216	ИНz		43.5		(Quasi-peak Value			
	216MHz-960	MHz		46.0		(Quasi-peak Value			
	960MHz-10	SHz		54.0		(Quasi-peak Value			
	Above 1GI	H2 -	54.0				Average Value			
	7,5575 131	12	74.0				Peak Value			
Above 1GHz Test setup: Below 1GHz Ante						ceiver				

1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz) Test Procedure: /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.7 for details Test mode: Non-hopping mode Test results:

Report No: CCISE170307203

Remark:

- 1. During the test, pre-scan the GFSK, π/4-DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Pass

Measurement data:

Below 1GHz

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : Smart Phone Model : Twister 5.0 : BT mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa Test Engineer: Mike REMARK :

шиши		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
_	MHz	dBu₹	<u>dB</u> /π	₫B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	70.584	47.89	6.73	1.54	29.72	26.44	40.00	-13.56	QP
2	79.800	45.26	6.49	1.65	29.64	23.76	40.00	-16.24	QP
3	122.404	53.33	11.92	2.19	29.38	38.06	43.50	-5.44	QP
4	127.665	47.90	12.18	2.26	29.34	33.00	43.50	-10.50	QP
5	163.182	46.25	9.86	2.61	29.11	29.61	43.50	-13.89	QP
6	325.596	34.51	13.46	3.02	28.51	22.48	46.00	-23.52	QP

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT Smart Phone Model : Twister 5.0 Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike

: Freq						Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
34.639	37.09	14.54	1.04	29.95	22.72	40.00	-17.28	QP
73.617	35.99	6.43	1.61	29.69	14.34	40.00	-25.66	QP
154.821	47.11	10.30	2.55	29.18	30.78	43.50	-12.72	QP
163.182	53.52	9.86	2.61	29.11	36.88	43.50	-6.62	QP
185.788	46.92	9.49	2.77	28.93	30.25	43.50	-13.25	QP
325.596	44.66	13.46	3.02	28.51	32.63	46.00	-13.37	QP
	Freq MHz 34.639 73.617 154.821 163.182 185.788	Read. Freq Level MHz dBuV 34.639 37.09 73.617 35.99 154.821 47.11 163.182 53.52 185.788 46.92	ReadAntenna Freq Level Factor MHz dBuV dB/m 34.639 37.09 14.54 73.617 35.99 6.43 154.821 47.11 10.30 163.182 53.52 9.86 185.788 46.92 9.49	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 34.639 37.09 14.54 1.04 73.617 35.99 6.43 1.61 154.821 47.11 10.30 2.55 163.182 53.52 9.86 2.61 185.788 46.92 9.49 2.77	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 34.639 37.09 14.54 1.04 29.95 73.617 35.99 6.43 1.61 29.69 154.821 47.11 10.30 2.55 29.18 163.182 53.52 9.86 2.61 29.11 185.788 46.92 9.49 2.77 28.93	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 34.639 37.09 14.54 1.04 29.95 22.72 73.617 35.99 6.43 1.61 29.69 14.34 154.821 47.11 10.30 2.55 29.18 30.78 163.182 53.52 9.86 2.61 29.11 36.88 185.788 46.92 9.49 2.77 28.93 30.25	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over

Above 1GHz:

Te	st channel:	1	Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	49.09	35.99	6.80	41.81	50.07	74.00	-23.93	Vertical	
4804.00	48.21	35.99	6.80	41.81	49.19	74.00	-24.81	Horizontal	
Te	st channel		Low	vest	Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	39.12	35.99	6.80	41.81	40.10	54.00	-13.90	Vertical	
4804.00	38.24	35.99	6.80	41.81	39.22	54.00	-14.78	Horizontal	

Te	st channel:		Middle		Lev	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	47.83	36.38	6.86	41.84	49.23	74.00	-24.77	Vertical	
4882.00	47.78	36.38	6.86	41.84	49.18	74.00	-24.82	Horizontal	
Te	st channel		Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	38.30	36.38	6.86	41.84	39.70	54.00	-14.30	Vertical	
4882.00	38.30	36.38	6.86	41.84	39.70	54.00	-14.30	Horizontal	

Te	st channel:		Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.57	36.71	6.91	41.87	50.32	74.00	-23.68	Vertical	
4960.00	47.75	36.71	6.91	41.87	49.50	74.00	-24.50	Horizontal	
Te	st channel		Highest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	38.20	36.71	6.91	41.87	39.95	54.00	-14.05	Vertical	
4960.00	38.40	36.71	6.91	41.87	40.15	54.00	-13.85	Horizontal	

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.