

Algorithms of Scientific Computing

Discrete Fourier Transform (DFT)

Michael Bader Technical University of Munich

Summer 2022

Fast Fourier Transform - Outline

- Discrete Fourier transform
- Fast Fourier transform
- Special Fourier transform:
 - real-valued FFT
 - sine/cosine transform
- Applications:
 - Fast Poisson solver (FST)
 - Computergraphics (FCT)
- Efficient Implementation

Discrete Fourier Transform (DFT)

Definition:

For a vector of N complex numbers $(f_0, \ldots, f_{N-1})^T$, the **discrete Fourier transform** (DFT) is given by the vector $(F_0, \ldots, F_{N-1})^T$, where

$$F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n e^{-i2\pi nk/N}.$$

Interpretation:

The DFT can be derived as (to be discussed ...):

- trigonometric interpolation/approximation
- approximation of the coefficients of the Fourier series

Applications:

- JPEG, MPEG, MP3, etc.
- signal processing in general, solvers in science and engineering

DFT as the Solution of an Interpolation Problem

Interpolation problem:

- *N* ansatz functions: $g_k(x) := e^{ikx}$ in the interval $[0, 2\pi]$, k = 0, ..., N-1
- *N* supporting points: $x_n := 2\pi n/N, n = 0, ..., N-1$
- *N* interpolation value f_n , n = 0, ..., N-1
- find N weights F_k such that at all supporting points

$$f_n = \sum_{k=0}^{N-1} F_k g_k(x_n) \qquad \Leftrightarrow \qquad f_n = \sum_{k=0}^{N-1} F_k e^{i2\pi nk/N}.$$

"trigonometric interpolation"

DFT as Interpolation – Formulation via Complex Polynomials

Interpolation problem:

- *N* ansatz functions: $\widetilde{g}_k(z) := z^k$ (complex unit polynomials), k = 0, ..., N-1
- N supporting points: $z_n := e^{i2\pi n/N} = \omega_N^n$, where $\omega_N := e^{i2\pi/N}$
- *N* interpolation values f_n , n = 0, ..., N 1, respectively.
- find the N weights F_k such that at all supporting points

$$f_n = \sum_{k=0}^{N-1} F_k \widetilde{g}_k(z_n) \qquad \Leftrightarrow \qquad f_n = \sum_{k=0}^{N-1} F_k e^{i2\pi nk/N}.$$

Polynomial interpolation at the "complex unit roots" ω_N^n

Interpretation of the Interpolation Problem

Starting from the first formulation,

$$f_n = \sum_{k=0}^{N-1} F_k g_k(x_n), \qquad g_k(x_n) = e^{i2\pi nk/N},$$

we look for a representation of the signal f_n – or of a function f(x) – of the form

$$f(x) = \sum_{k=0}^{N-1} F_k g_k(x), \qquad g_k(x) = e^{i2\pi kx}.$$

The ansatz functions are sine or cosine oscillations:

$$e^{ikx} = \cos(kx) + i\sin(kx)$$

Interpretation of the Interpolation Problem (2)

Conclusions:

- we look for the representation of a periodic function as a sum of sine and cosine modes
- the F_k are, thus, called Fourier coefficients:
 - k represents the wave number
 - the value of F_k represents the amplitude of the corresponding frequency
- the Fourier transform leads to a frequency spectrum
- useful when a problem is easier to solve in the frequency domain than in the spatial domain.

Example: Spatial vs. Frequency Domain

Solution of the Interpolation Problem

Both interpolation problems lead to the identical linear systems of equations:

$$f_n = \sum_{k=0}^{N-1} F_k \omega_N^{nk}$$
, for all $n = 0, \dots, N-1$;

where
$$\omega_N := e^{i2\pi/N}$$
, i.e. $\omega_N^{nk} := e^{i2\pi nk/N}$ ("unit roots": $\omega_N^N = 1$)

If we write the vectors of the f_n and F_k as $\mathbf{f} := (f_0, \dots, f_{N-1})$ and $\mathbf{F} := (F_0, \dots, F_{N-1})$, the linear system of equations can be formulated in matrix-vector notation

$$WF = f$$

where the entries of the **Fourier matrix W** are given by $W_{nk} := \omega_N^{nk}$.

Next Step(s): Show that system **WF** = **f** can be solved with effort $\mathcal{O}(N^2)$ – and using FFT even only $\mathcal{O}(N \log N)$ – instead of $\mathcal{O}(N^3)$.

Properties of the Fourier Matrix W

• **W** is symmetric: $\mathbf{W} = \mathbf{W}^T$, and has the form

$$\mathbf{W} = \begin{pmatrix} \omega_{N}^{0} & \omega_{N}^{0} & \omega_{N}^{0} & \dots & \omega_{N}^{0} \\ \omega_{N}^{0} & \omega_{N}^{1} & \omega_{N}^{2} & \dots & \omega_{N}^{(N-1)} \\ \omega_{N}^{0} & \omega_{N}^{2} & \omega_{N}^{4} & \dots & \omega_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ \omega_{N}^{0} & \omega_{N}^{(N-1)} & \omega_{N}^{2(N-1)} & \dots & \omega_{N}^{(N-1)(N-1)} \end{pmatrix}$$

• $\mathbf{W} (\mathbf{W}^T)^* = \mathbf{W} \mathbf{W}^H = N \mathbf{I}$, since

$$\left[\mathbf{W}\mathbf{W}^{H}\right]_{kl} = \sum_{i=0}^{N-1} \omega_{N}^{kj} \left(\omega_{N}^{lj}\right)^{*} = \sum_{i=0}^{N-1} \omega_{N}^{(k-l)j} = \begin{cases} N & \text{if } k = l \\ 0 & \text{if } k \neq l. \end{cases}$$

inverse of W easily available!

Properties of the Fourier Matrix W (details)

- important property #1: $(\omega_N^k)^N = e^{N \cdot i2\pi k/N} = e^{i2\pi k} = 1$
- important property #2: $(\omega_N^k)^* = (e^{i2\pi k/N})^* = (\cos(2\pi k/N) + i\sin(2\pi k/N))^* = \cos(2\pi k/N) i\sin(2\pi k/N) = \cos(-2\pi k/N) + i\sin(-2\pi k/N) = e^{-i2\pi k/N} = \omega_N^{-k}$
- $\mathbf{W} (\mathbf{W}^T)^* = \mathbf{W} \mathbf{W}^H = N \mathbf{I}$, since

$$\left[\mathbf{W}\mathbf{W}^{H}\right]_{kl} = \sum_{j=0}^{N-1} \omega_{N}^{kj} \left(\omega_{N}^{lj}\right)^{*} = \sum_{j=0}^{N-1} \omega_{N}^{kj} \omega_{N}^{-lj} = \sum_{j=0}^{N-1} \omega_{N}^{(k-l)j}$$

- if k = l then $\sum_{j=0}^{N-1} \omega_N^{(k-l)j} = \sum_{j=0}^{N-1} \omega_N^0 = N$
- if $k \neq l$ then $\sum_{j=0}^{N-1} \omega_N^{(k-l)j} = \sum_{j=0}^{N-1} \xi^j$ where $\xi = \omega_N^{(k-l)}$ and then:

$$(1-\xi)\sum_{j=0}^{N-1}\xi^j=\sum_{j=0}^{N-1}\xi^j-\sum_{j=0}^{N-1}\xi^{(j+1)}=1-\xi^N, \text{thus} \quad \sum_{j=0}^{N-1}\xi^j=\frac{1-\xi^N}{1-\xi}$$

Remember that $(\omega_N^k)^N=1$ for any k ("unit roots"!), thus $\sum_{j=0}^{N-1}\omega_N^{(k-l)j}=0$

Computation of the Fourier Coefficients F_k

• Since $\mathbf{W}\mathbf{W}^H = N\mathbf{I}$, the inverse of \mathbf{W} is $\mathbf{W}^{-1} = \frac{1}{N}\mathbf{W}^H$:

$$\mathbf{W}^{-1} = \frac{1}{N} \begin{pmatrix} \omega_N^0 & \omega_N^0 & \omega_N^0 & \dots & \omega_N^0 \\ \omega_N^0 & \omega_N^{-1} & \omega_N^{-2} & \dots & \omega_N^{-(N-1)} \\ \omega_N^0 & \omega_N^{-2} & \omega_N^{-4} & \dots & \omega_N^{-2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ \omega_N^0 & \omega_N^{-(N-1)} & \omega_N^{-2(N-1)} & \dots & \omega_N^{-(N-1)(N-1)} \end{pmatrix}$$

 \Rightarrow the vector **F** of the Fourier coefficients can be computed **easily** as a matrix-vector product – with computational effort $\mathcal{O}(N^2)$:

$$\mathbf{F} = \frac{1}{N} \mathbf{W}^H \mathbf{f}$$
 or $F_k = \frac{1}{N} \sum_{n=1}^{N-1} f_n \omega_N^{-nk}$.

Inverse Discrete Fourier Transform (IDFT)

Definition:

The inverse Discrete Fourier Transform (IDFT) of the vector (F_0, \ldots, F_{N-1}) is given by the vector (f_0, \ldots, f_{N-1}) , where

$$f_n = \sum_{k=0}^{N-1} F_k e^{i2\pi nk/N}.$$

Observation:

DFT and IDFT are inverse operations:

$$F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n e^{-i2\pi nk/N} , \qquad f_n = \sum_{k=0}^{N-1} F_k e^{i2\pi nk/N} .$$

$$\mathbf{F} = \mathsf{DFT}(\mathsf{IDFT}(\mathbf{F})) \qquad \text{or} \qquad \mathbf{f} = \mathsf{IDFT}(\mathsf{DFT}(\mathbf{f})).$$

The Pair DFT/IDFT as Matrix-Vector Product

With the notation $\omega_N := e^{i2\pi/N}$, i.e. $\omega_N^{-nk} := e^{-i2\pi nk/N}$, we formulate the DFT/IDFT as

$$F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n \omega_N^{-nk}$$
 $f_n = \sum_{k=0}^{N-1} F_k \omega_N^{nk}$

With the vectors $\mathbf{f} := (f_0, \dots, f_{N-1})^T$ and $\mathbf{F} := (F_0, \dots, F_{N-1})^T$, we denote (and compute) the DFT und IDFT as matrix-vector products

$$\mathbf{F} = \frac{1}{N} \mathbf{W}^H \mathbf{f} , \qquad \qquad \mathbf{f} = \mathbf{W} \mathbf{F} ,$$

where the elements of the Fourier matrix **W** are $W_{nk} := \omega_N^{nk}$.

Properties of the DFT

DFT and IDFT are (as a matrix-vector product) linear:

$$\mathsf{DFT}(\alpha f + \beta g) = \alpha \; \mathsf{DFT}(f) + \beta \; \mathsf{DFT}(g)$$

$$\mathsf{IDFT}(\alpha f + \beta g) = \alpha \; \mathsf{IDFT}(f) + \beta \; \mathsf{IDFT}(g)$$

• since $\omega_N^{nk} = \omega_N^{n(k+N)} = \omega_N^{(n+N)k}$, the f_n and the F_k are periodic:

$$f_{n+N} = f_n$$
 $F_{k+N} = F_k$ for all $k, n \in \mathbb{Z}$

Alternative Forms of the DFT

Possible variants (in all imaginable combinations):

- Scaling factor $\frac{1}{N}$ in the IDFT instead of the DFT; alternatively a factor $\frac{1}{\sqrt{N}}$ in DFT and IDFT.
- switched signs in the exponent of the exponential function in DFT and IDFT
- use j for the imaginary unit (electrical engineering)

Shift of indices:

- periodic data: $F_k = F_{k+N}$
- aliasing of frequencies: $e^{-i2\pi nk/N} = e^{-i2\pi n(k\pm N)/N}$

DFT with Shifted Indices

Data and frequencies "symmetric":

$$F_k = rac{1}{N} \sum_{n=-rac{N}{2}+1}^{rac{N}{2}} f_n e^{-i2\pi nk/N} \;, \qquad f_n = \sum_{k=-rac{N}{2}+1}^{rac{N}{2}} F_k e^{i2\pi nk/N}$$

In general:

$$F_k = \frac{1}{N} \sum_{n=P+1}^{P+N} f_n e^{-i2\pi nk/N} , \qquad f_n = \sum_{k=Q+1}^{Q+N} F_k e^{i2\pi nk/N}$$

DFT in Program Libraries

Different conventions for sign factors in exponent, normalization factors etc.

- Python/NumPy: numpy.fft; normalization factor $\frac{1}{N}$ in *inverse* transform by default
- Matlab, IMSL (Int. Math. and Stat. Library):

$$F_{k+1} = \sum_{n=0}^{N-1} f_{n+1} e^{-i2\pi nk/N} \qquad k = 0, \dots, N-1$$

$$f_{n+1} = \frac{1}{N} \sum_{k=0}^{N-1} F_{k+1} e^{i2\pi nk/N} \qquad n = 0, \dots, N-1$$

• Maple: $\frac{1}{\sqrt{N}}$ as factor for DFT and IDFT.

Index shift by +1, since:

- Data/coefficients start at index 0
- · Arrays to store the numbers start at index 1