Tutorial Set-2 (EPHY105L)

- 1. Express the unit vectors $(\hat{r}, \hat{\theta}, \hat{\phi})$ in spherical polar coordinates in terms of the unit vectors $(\hat{\imath}, \hat{\jmath}, \hat{k})$ in the Cartesian coordinate system. Invert these equations to express the unit vectors $(\hat{\imath}, \hat{\jmath}, \hat{k})$ in the Cartesian coordinate system in terms of the unit vectors $(\hat{r}, \hat{\theta}, \hat{\phi})$ in the spherical polar coordinate system.
- 2. Express the unit vectors $(\hat{r}, \hat{\phi}, \hat{z})$ in cylindrical coordinates in terms of the unit vectors $(\hat{\iota}, \hat{\jmath}, \hat{k})$ in the Cartesian coordinate system. Invert these equations to express the unit vectors $(\hat{\iota}, \hat{\jmath}, \hat{k})$ in the Cartesian coordinate system in terms of the unit vectors $(\hat{r}, \hat{\phi}, \hat{z})$ in the cylindrical coordinate system.
- 3. Express the following points given in Cartesian coordinates $(\hat{\imath}, \hat{\jmath}, \hat{k})$ in the spherical polar coordinate system $(\hat{r}, \hat{\theta}, \hat{\phi})$ (all values in meters):
 - a) x = 10; y = 0, z = 0
 - b) x = 0; y = 0, z = 5
 - c) x = 5; y = 2, z = 0
 - d) x = 0; y = 3; z = 3

Express the unit vector \hat{r} in terms of the Cartesian unit vectors at the above points. Notice that the direction of unit vector in spherical polar coordinates depends on the coordinates of the point.

- 4. Express the following points given in spherical polar coordinates $(\hat{r}, \hat{\theta}, \hat{\phi})$ in Cartesian coordinate system $(\hat{\imath}, \hat{\jmath}, \hat{k})$ (all values in meters):
 - a) $r = 5, \theta = \pi/2, \phi = \pi/4$
 - b) $r = 3, \theta = \pi/4, \phi = 0$
 - c) $r = 8, \theta = \pi/2, \phi = \pi$
- 5. Find the gradients $(\nabla \phi)$ of the following scalar functions at a point *P* with Cartesian coordinates (2, -1, 2):
 - a) $f(x, y, z) = x^2 + y^2 + z^2 9$
 - b) $g(x, y, z) = x^2 + y^2 z 3$

Using the gradients obtain the angle between the surfaces given by f(x, y, z) = 0 and g(x, y, z) = 0 at the point P. [Ans: $cos^{-1}(8/3\sqrt{21}) \approx 54.4^{\circ}$]

- Obtain the maximum directional derivative of the scalar function $f(x, y, z) = x^2yz^3$ at a point with coordinates (2, 1, -1). [Ans: 13.27]
- \checkmark . Calculate the divergence $(\nabla \cdot \vec{F})$ of the following vector functions:
 - a) $\vec{F}_1 = \hat{\imath}x \hat{\jmath}y$
 - b) $\vec{F}_2 = \hat{k}z$
 - c) $\vec{F}_3 = \alpha \vec{r} = \alpha (\hat{\imath} x + \hat{\jmath} y + \hat{k} z)$
 - $\vec{F}_4 = \beta \frac{\hat{r}}{r^2} = \beta \frac{\hat{r}}{r^3} = \beta \frac{(\hat{x} + \hat{y} + \hat{k}z)}{(x^2 + y^2 + z^2)^{3/2}}$ for $r \neq 0$.
- 8. Calculate the curl $(\nabla \times \vec{F})$ of the following vector functions:
 - a) $\vec{F}_1 = \hat{\imath} \alpha y$
 - b) $\vec{F}_2 = \hat{\imath}\alpha x + \hat{\jmath}\beta y^2$
 - c) $\vec{F}_3 = \hat{\imath}x^2 + 3xz^2\hat{\jmath} 2xz\hat{k}$
- 9 Consider a scalar function given by $f(x, y, z) = \alpha x y^2$.
 - a) Calculate the gradient of the function f.

- b) Obtain the curl of the gradient of the function and show that it is zero. [Note: Curl of the gradient of a function is always zero. Thus if we find a vector function whose curl is zero, then the vector function can always be represented by the gradient of a scalar function.]
- 10. Consider a vector function given by $\vec{G} = \hat{\imath}x^2 + 3xz^2\hat{\jmath} 2xz\hat{k}$.
 - a) Calculate the curl of the vector function \vec{G} .
 - b) If $\nabla \times \vec{G} = \vec{A}$ then show that $\nabla \cdot \vec{A} = 0$. [Note: The divergence of the curl of a vector function is always zero. Thus if we find a vector function whose divergence is zero, then we can always represent the vector function as the curl of another vector function.]