

Week 2 Workshop

```
superkey definitions Please
                               workshop questions lecture
 exam
                    Maybe learn concepts
             between great just slides got
think terms hard quiz help
each knowledge easy integrity
            really database concept foreign because
  about Data lab like much
                           much material
         other part super practice
Relation after quite Thanks
Everything live clear difficult better now helpful provide only
             explanations week mathematical all understand
                              bit hope
                  candidate content
                                            explanation
```


Housekeeping

- Please attend the lab that you had registered for and the lab signup had been finalised. Lab swaps are not allowed unless there is a special consideration and an approval.
- From Week 2 to Week 11, weekly online quiz is always due 23:59 pm. Thursday after you watch the online lectures.
- After Lab 1, If you still have any questions or issues about the lab environment, please bring your questions to the online drop-in sessions (Aug 6, Fri 3-5 pm) in Week 2.
- An optional exercise website is available for our course https://cs.anu.edu.au/dab/bench/db-exercises/
- Make effective use of Wattle discussion forum.
 - We strongly encourage you to ask your questions on the forum, and everyone in the class can benefit from the discussions and answers.
 - You should not post any solutions/results/ideas/interpretations related to assessment items (including assignments, quizzes, tests, exams).

Thanks for your feedback!

(1) Set, Tuple, Cartesian product of sets and Relation

https://en.wikipedia.org/wiki/
Anna_Kiesenhofer

https://en.wikipedia.org/wiki/ Terence_Tao

A set is a collection of distinct elements.

- A set is a collection of distinct elements.
- Collection: the elements in a set have no order.
 e.g., {A, B} = {B, A}

- A set is a collection of distinct elements.
- Collection: the elements in a set have no order.
 e.g., {A, B} = {B, A}
- Distinct: each element can not be in the set more than once.
 e.g., {A, A, B} is Not a set.
 Note that multisets allow to have duplicate elements.

- A set is a collection of distinct elements.
- Collection: the elements in a set have no order.
 e.g., {A, B} = {B, A}
- Distinct: each element can not be in the set more than once.
 e.g., {A, A, B} is Not a set.
 Note that multisets allow to have duplicate elements.
- Cardinality: the cardinality of a set is the number of elements of the set.

Tuple – Example

A tuple is an ordered list of n elements.

Tuple – Example

- A tuple is an ordered list of n elements.
- ordered: the elements in a tuple have an order. e.g., $(A, B) \neq (B, A)$

Tuple – Example

- A tuple is an ordered list of n elements.
- ordered: the elements in a tuple have an order.
 e.g., (A, B) ≠ (B, A)
- The same element can be in a tuple more than once.
 e.g., (A, A, B)is a tuple.

A set of tuples is a collection of distinct tuples.

- A set of tuples is a collection of distinct tuples.
- Set:
 - the tuples in this set have no order.
 - each tuple can not be in the set more than once.

- A set of tuples is a collection of distinct tuples.
- Set:
 - the tuples in this set have no order.
 - each tuple can not be in the set more than once.
- Tuple:
 - the elements in a tuple have an order

- A set of tuples is a collection of distinct tuples.
- Set:
 - the tuples in this set have no order.
 - each tuple can not be in the set more than once.
- Tuple:
 - the elements in a tuple have an order
- Question 1: {(A,B),(A,C)} = {(A,C),(A,B)}?

- A set of tuples is a collection of distinct tuples.
- Set:
 - the tuples in this set have no order.
 - each tuple can not be in the set more than once.
- Tuple:
 - the elements in a tuple have an order
- Question 1: {(A,B),(A,C)} = {(A,C),(A,B)}?

- A set of tuples is a collection of distinct tuples.
- Set:
 - the tuples in this set have no order.
 - each tuple can not be in the set more than once.
- Tuple:
 - the elements in a tuple have an order
- Question 1: {(A,B),(A,C)} = {(A,C),(A,B)}? Yes!

- A set of tuples is a collection of distinct tuples.
- Set:
 - the tuples in this set have no order.
 - each tuple can not be in the set more than once.
- Tuple:
 - the elements in a tuple have an order
- Question 1: {(A,B),(A,C)} = {(A,C),(A,B)}? Yes!
- Questino 2: {(A,B),(A,C)} = {(B,A),(A,C)}?

- A set of tuples is a collection of distinct tuples.
- Set:
 - the tuples in this set have no order.
 - each tuple can not be in the set more than once.
- Tuple:
 - the elements in a tuple have an order
- Question 1: {(A,B),(A,C)} = {(A,C),(A,B)}? Yes!
- Questino 2: {(A,B),(A,C)} = {(B,A),(A,C)}?

- A set of tuples is a collection of distinct tuples.
- Set:
 - the tuples in this set have no order.
 - each tuple can not be in the set more than once.
- Tuple:
 - the elements in a tuple have an order
- Question 1: {(A,B),(A,C)} = {(A,C),(A,B)}? Yes!
- Questino 2: {(A,B),(A,C)} = {(B,A),(A,C)}? No!

Cartesian product – Examples

- Let Class and Room be two sets:
 - Class = {comp2400, comp6240, comp1100}
 - *Room* = {*RT*1, *CT*1}
- What is the Cartesian product of Class × Room?

Cartesian product – Examples

- Let Class and Room be two sets:
 - Class = {comp2400, comp6240, comp1100}
 - $Room = \{RT1, CT1\}$
- What is the Cartesian product of Class × Room?
- $Class \times Room = \{(c, r) | c \in Class, r \in Room\}$ = $\{(comp2400, RT1), (comp2400, CT1), (comp6240, RT1), (comp6240, CT1), (comp1100, CT1)\}$

Class	Room
comp2400	RT1
comp2400	CT1
comp6240	RT1
comp6240	CT1
comp1100	RT1
comp1100	CT1

 \bullet $R_1 = \{(comp2400, RT1), (comp6240, RT1), (comp1100, CT1)\}$

Class	Room
comp2400	RT1
comp6240	RT1
comp1100	CT1

• $R_2 = \{(comp2400, RT1), (comp6240, RT1), (comp1100, RT1)\}$

Class	Room
comp2400	RT1
comp6240	RT1
comp1100	RT1

- Let Class and Room be two sets:
 - Class = {comp2400, comp6240, comp1100}
 - *Room* = {*RT*1, *CT*1}
- $Class \times Room = \{(c, r) | c \in Class, r \in Room\} = \{(comp2400, RT1), (comp2400, CT1), (comp6240, RT1), (comp6240, CT1), (comp1100, RT1), (comp1100, CT1)\}$
- \bullet $R_1 = \{(comp2400, RT1), (comp6240, RT1), (comp1100, CT1)\}$
- ullet $R_2 = \{(comp2400, RT1), (comp6240, RT1), (comp1100, RT1)\}$
- What is the relationship of R_1 and R_2 with $Class \times Room$?

- Let Class and Room be two sets:
 - Class = {comp2400, comp6240, comp1100}
 - *Room* = {*RT*1, *CT*1}
- $Class \times Room = \{(c, r) | c \in Class, r \in Room\} = \{(comp2400, RT1), (comp2400, CT1), (comp6240, RT1), (comp6240, CT1), (comp1100, RT1), (comp1100, CT1)\}$
- \bullet $R_1 = \{(comp2400, RT1), (comp6240, RT1), (comp1100, CT1)\}$
- Arr $R_2 = \{(comp2400, RT1), (comp6240, RT1), (comp1100, RT1)\}$
- What is the relationship of R₁ and R₂ with Class × Room?

Answer: R_1 , R_2 are the subsets of $Class \times Room$. R_1 , R_2 and $Class \times Room$ are all sets of tuples.

(2) Relation/Table, Relation Schema, Relation Database Schema and Relation Database State

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2400	2016 S2	active	11/06/2016

• Correspondence of informal and formal terms:

INFORMAL TERMS	FORMAL TERMS
Table	Relation
Column	Attribute
Data type	Domain
Row	Tuple
Table definition	Relation schema

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2400	2016 S2	active	11/06/2016

Correspondence of informal and formal terms:

INFORMAL TERMS	FORMAL TERMS
Table	Relation
Column	Attribute
Data type	Domain
Row	Tuple
Table definition	Relation schema

How many tuples and attributes does the table ENROL have?

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2400	2016 S2	active	11/06/2016

Correspondence of informal and formal terms:

INFORMAL TERMS	FORMAL TERMS
Table	Relation
Column	Attribute
Data type	Domain
Row	Tuple
Table definition	Relation schema

How many tuples and attributes does the table ENROL have?
 3 tuples and 5 attributes.

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2400	2016 S2	active	11/06/2016

Correspondence of informal and formal terms:

INFORMAL TERMS	FORMAL TERMS
Table	Relation
Column	Attribute
Data type	Domain
Row	Tuple
Table definition	Relation schema

- How many tuples and attributes does the table ENROL have?
 3 tuples and 5 attributes.
- In the relational data model, the order of tuples in a relation is important but the order of the attributes in a relation is not important?

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2400	2016 S2	active	11/06/2016

Correspondence of informal and formal terms:

INFORMAL TERMS	FORMAL TERMS
Table	Relation
Column	Attribute
Data type	Domain
Row	Tuple
Table definition	Relation schema

- How many tuples and attributes does the table ENROL have?
 3 tuples and 5 attributes.
- In the relational data model, the order of tuples in a relation is important but the order of the attributes in a relation is not important?
 No.

13/73

Relation Schema – Example

- Consider a relation schema ENROL
 - ENROL(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE).

ENROL			
StudentID CourseNo Semester Status EnrolDate			

Relational Database Schema – Example

- A relational database schema S is
 - a set of relation schemas $S = \{R_1, \dots, R_m\}$, and
 - a set of integrity constraints IC.

ENROL			
StudentID CourseNo Semester Status EnrolDate			

Relational Database State – Example

- A relational database state of S is a set of relations such that
 - there is just one relation for each relation schema in S, and
 - all the relations satisfy the integrity constraints *IC*.

STUDENT				
StudentID	Name	DoB	Email	
456	Tom	25/01/1988	tom@gmail.com	
458	Peter	23/05/1993	peter@gmail.com	
459	Fran	11/09/1987	frankk@gmail.com	

Course			
No Cname Unit			
COMP1130 Introduction to Advanced Computing I 6			
COMP2400 Relational Databases 6		6	

ENROL				
StudentID	CourseNo	Semester	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2400	2016 S2	active	11/06/2016

Relational Database State – Example

- A relational database state of S is a set of relations such that
 - there is just one relation for each relation schema in S

Relation schema

STUDENT			
StudentID	Name	DoB	Email

Relation

STUDENT				
StudentID	Name	DoB	Email	
456	Tom	25/01/1988	tom@gmail.com	
458	Peter	23/05/1993	peter@gmail.com	
459	Fran	11/09/1987	frankk@gmail.com	

Relational Database State – Example

- A relational database state of S is a set of relations such that
 - there is just one relation for each relation schema in S

Relation schema

STUDENT			
StudentID	Name	DoB	Email

Relation

STUDENT			
StudentID	Name	DoB	Email
456	Tom	25/01/1988	tom@gmail.com
458	Peter	23/05/1993	peter@gmail.com
459	Fran	11/09/1987	frankk@gmail.com

• Can there be multiple relations that correspond to the same relation schema in a relational database state?

Relational Database State - Example

- A relational database state of S is a set of relations such that
 - there is just one relation for each relation schema in S

Relation schema

STUDENT			
StudentID	Name	DoB	Email

Relation

STUDENT			
StudentID	Name	DoB	Email
456	Tom	25/01/1988	tom@gmail.com
458	Peter	23/05/1993	peter@gmail.com
459	Fran	11/09/1987	frankk@gmail.com

 Can there be multiple relations that correspond to the same relation schema in a relational database state?
 No.

(2) Superkey, Candidate key, Primary key and Foreign key

(Ashmolean Museum @ the University of Oxford www.ashmolean.org/)

• A subset of the attributes of a relation schema R is a superkey if it uniquely identifies any tuple in r(R).

- A subset of the attributes of a relation schema R is a superkey if it uniquely identifies any tuple in r(R).
- A superkey K is called a candidate key if no proper subset of K is a superkey.

- A subset of the attributes of a relation schema R is a superkey if it uniquely identifies any tuple in r(R).
- A superkey K is called a candidate key if no proper subset of K is a superkey. That is, if you take any of the attributes out of K, then it is not enough to uniquely identify tuples.

- A subset of the attributes of a relation schema R is a superkey if it uniquely identifies any tuple in r(R).
- A superkey K is called a candidate key if no proper subset of K is a superkey. That is, if you take any of the attributes out of K, then it is not enough to uniquely identify tuples.
- The primary key is chosen from the candidate keys and the primary key is one of the candidate keys.

- A subset of the attributes of a relation schema R is a superkey if it uniquely identifies any tuple in r(R).
- A superkey K is called a candidate key if no proper subset of K is a superkey. That is, if you take any of the attributes out of K, then it is not enough to uniquely identify tuples.
- The primary key is chosen from the candidate keys and the primary key is one of the candidate keys.

- A subset of the attributes of a relation schema R is a superkey if it uniquely identifies any tuple in r(R).
- A superkey K is called a candidate key if no proper subset of K is a superkey. That is, if you take any of the attributes out of K, then it is not enough to uniquely identify tuples.
- The primary key is chosen from the candidate keys and the primary key is one of the candidate keys.

Every candidate key must be a superkey in the same relation schema?

- A subset of the attributes of a relation schema R is a superkey if it uniquely identifies any tuple in r(R).
- A superkey K is called a candidate key if no proper subset of K is a superkey. That is, if you take any of the attributes out of K, then it is not enough to uniquely identify tuples.
- The primary key is chosen from the candidate keys and the primary key is one of the candidate keys.

Every candidate key must be a superkey in the same relation schema?
 Yes.

Superkey – Example

• No two courses have the same $No \Rightarrow \{No\}$ is a superkey (SK) of COURSE.

Course					
No Cname Unit					
COMP1130 Introduction to Advanced Computing I					
COMP2400 Relational Databases					

Superkey – Example

No two courses have the same No ⇒ {No} is a superkey (SK) of COURSE.

Course			
No Cname Unit			
COMP1130 Introduction to Advanced Computing I			
COMP2400 Relational Databases			

- No two students have the same StudentID ⇒ {StudentID} is a SK of STUDENT.
- No two students have the same Email ⇒ {Email} is a SK of STUDENT.

Student			
StudentID	Name	DoB	Email
456	Tom	25/01/1988	tom@gmail.com
458	Peter	23/05/1993	peter@gmail.com
459	Fran	11/09/1987	frankk@gmail.com

• {StudentID} is a **SK** of STUDENT and {Email} is also a **SK** of STUDENT.

STUDENT			
StudentID	Name	DoB	Email
456	Tom	25/01/1988	tom@gmail.com
458	Peter	23/05/1993	peter@gmail.com

• {StudentID} is a **SK** of STUDENT and {Email} is also a **SK** of STUDENT.

STUDENT			
StudentID	Name	DoB	Email
456	Tom	25/01/1988	tom@gmail.com
458	Peter	23/05/1993	peter@gmail.com

What are all SKs of STUDENT?

• {StudentID} is a **SK** of STUDENT and {Email} is also a **SK** of STUDENT.

Student			
StudentID	Name	DoB	Email
456	Tom	25/01/1988	tom@gmail.com
458	Peter	23/05/1993	peter@gmail.com

What are all SKs of STUDENT?

For STUDENT, a SK can be any subset of attributes which includes StudentID or any subset of attributes which includes Email, e.g., {StudentID}, {StudentID, Name}, {StudentID, Email}, ...

• {StudentID} is a **SK** of STUDENT and {Email} is also a **SK** of STUDENT.

STUDENT			
StudentID	Name	DoB	Email
456	Tom	25/01/1988	tom@gmail.com
458	Peter	23/05/1993	peter@gmail.com

What are all SKs of STUDENT?

For STUDENT, a SK can be any subset of attributes which includes StudentID or any subset of attributes which includes Email, e.g., {StudentID}, {StudentID, Name}, {StudentID, Email}, ...

What are candidate keys of STUDENT?

• {StudentID} is a **SK** of STUDENT and {Email} is also a **SK** of STUDENT.

STUDENT			
StudentID	Name	DoB	Email
456	Tom	25/01/1988	tom@gmail.com
458	Peter	23/05/1993	peter@gmail.com

What are all SKs of STUDENT?

For STUDENT, a SK can be any subset of attributes which includes StudentID or any subset of attributes which includes Email, e.g., {StudentID}, {StudentID, Name}, {StudentID, Email}, ...

What are candidate keys of STUDENT?
 For STUDENT, {StudentID} and {Email} are two candidate keys.

• {StudentID} is a **SK** of STUDENT and {Email} is also a **SK** of STUDENT.

STUDENT					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		

What are all SKs of STUDENT?

For STUDENT, a SK can be any subset of attributes which includes StudentID or any subset of attributes which includes Email, e.g., {StudentID}, {StudentID, Name}, {StudentID, Email}, ...

What are candidate keys of STUDENT?
 For STUDENT, {StudentID} and {Email} are two candidate keys.

What about the primary key of STUDENT?

• {StudentID} is a **SK** of STUDENT and {Email} is also a **SK** of STUDENT.

STUDENT					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		

What are all SKs of STUDENT?

For STUDENT, a SK can be any subset of attributes which includes StudentID or any subset of attributes which includes Email, e.g., {StudentID}, {StudentID, Name}, {StudentID, Email}, ...

- What are candidate keys of STUDENT?
 For STUDENT, {StudentID} and {Email} are two candidate keys.
- What about the primary key of STUDENT?
 For STUDENT, the primary key can be chosen as either {StudentID} or {Email}.

Superkey – Example

 No two enrolments have the same StudentID, the same CourseNo in the same Semester ⇒ {StudentID, CourseNo, Semester} is a SK of ENROL.

Enrol					
StudentID	CourseNo	Semester	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
459	COMP2400	2016 S2	active	11/06/2016	

• {StudentID, CourseNo, Semester} is a SK of Enrol.

ENROL					
StudentID CourseNo Semester Status EnrolDate					
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	

• {StudentID, CourseNo, Semester} is a SK of Enrol.

ENROL					
StudentID CourseNo Semester Status EnrolDate					
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	

What are all SKs of ENROL?

• {StudentID, CourseNo, Semester} is a SK of ENROL.

ENROL				
StudentID CourseNo Semester Status EnrolDate				
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016

What are all SKs of ENROL?

For ENROL, a SK can be any subset of attributes which includes all StudentID, CourseNo and Semester, e.g., {StudentID, CourseNo, Semester}, {StudentID, CourseNo, Semester, Status}, ...

• {StudentID, CourseNo, Semester} is a SK of ENROL.

ENROL					
StudentID CourseNo Semester Status EnrolDate					
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	

What are all SKs of ENROL?

For ENROL, a SK can be any subset of attributes which includes all StudentID, CourseNo and Semester, e.g., {StudentID, CourseNo, Semester}, {StudentID, CourseNo, Semester, Status},...

What are candidate keys of ENROL?

• {StudentID, CourseNo, Semester} is a SK of Enrol.

ENROL					
StudentID	CourseNo	Semester	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	

What are all SKs of ENROL?

For ENROL, a SK can be any subset of attributes which includes all StudentID, CourseNo and Semester, e.g., {StudentID, CourseNo, Semester}, {StudentID, CourseNo, Semester, Status},...

What are candidate keys of ENROL?
 For ENROL, {StudentID, CourseNo, Semester} is the only candidate key.

• {StudentID, CourseNo, Semester} is a SK of Enrol.

ENROL				
StudentID	CourseNo	Semester	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016

What are all SKs of ENROL?

For ENROL, a SK can be any subset of attributes which includes all StudentID, CourseNo and Semester, e.g., {StudentID, CourseNo, Semester}, {StudentID, CourseNo, Semester, Status},...

- What are candidate keys of ENROL?
 For ENROL, {StudentID, CourseNo, Semester} is the only candidate key.
- What about the primary key of ENROL?

{StudentID, CourseNo, Semester} is a SK of Enrol.

ENROL					
StudentID CourseNo Semester Status EnrolDate					
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	

What are all SKs of ENROL?

For ENROL, a SK can be any subset of attributes which includes all StudentID, CourseNo and Semester, e.g., {StudentID, CourseNo, Semester}, {StudentID, CourseNo, Semester, Status},...

- What are candidate keys of ENROL?
 For ENROL, {StudentID, CourseNo, Semester} is the only candidate key.
- What about the primary key of ENROL?
 For ENROL, the primary key can only be {StudentID, CourseNo, Semester}.

- Find out candidate keys of BOOKING from the following schema of an ACCOMMODATION database held in a relational DBMS:
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).

- Find out candidate keys of BOOKING from the following schema of an ACCOMMODATION database held in a relational DBMS:
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).
- Some additional constraints are as follows:

- Find out candidate keys of BOOKING from the following schema of an ACCOMMODATION database held in a relational DBMS:
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).
- Some additional constraints are as follows:
 - A booking can be made for one day only.

- Find out candidate keys of BOOKING from the following schema of an ACCOMMODATION database held in a relational DBMS:
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).
- Some additional constraints are as follows:
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.

- Find out candidate keys of BOOKING from the following schema of an ACCOMMODATION database held in a relational DBMS:
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo}.
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).
- Some additional constraints are as follows:
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.

- Find out candidate keys of BOOKING from the following schema of an ACCOMMODATION database held in a relational DBMS:
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).
- Some additional constraints are as follows:
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.

- Find out candidate keys of BOOKING from the following schema of an ACCOMMODATION database held in a relational DBMS:
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).
- Some additional constraints are as follows:
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - **6** A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - **5** A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one quest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK? No because of (4).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one quest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK? No because of (4).
 - Is {hotelNo, date} a SK?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one quest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK? No because of (4).
 - Is {hotelNo, date} a SK? No because a hotel usually has multiple rooms (indicated by the fact that ROOM(roomNo, hotelNo, type, price) has the primary key {roomNo, hotelNo}).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - 2 A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK? No because of (4).
 - Is {hotelNo, date} a SK? No because a hotel usually has multiple rooms (indicated by the fact that ROOM(roomNo, hotelNo, type, price) has the primary key {roomNo, hotelNo}).
- Thus {guestNo, hotelNo, date} a minimal SK and hence a candidate key.

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, roomNo} a candidate key?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, roomNo} a candidate key?
 No, it is not even a SK because of (2).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - **6** A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, roomNo} a candidate key?
 No, it is not even a SK because of (2).
- Is {guestNo, date, roomNo} a candidate key?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - **6** A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, roomNo} a candidate key?
 No. it is not even a SK because of (2).
- Is {guestNo, date, roomNo} a candidate key?
 No, it is not even a SK because of (4).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - **6** A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, roomNo} a candidate key?
 No. it is not even a SK because of (2).
- Is {guestNo, date, roomNo} a candidate key?
 No, it is not even a SK because of (4).
- Is {hotelNo, date, roomNo} a candidate key?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, roomNo} a candidate key?
 No, it is not even a SK because of (2).
- Is {guestNo, date, roomNo} a candidate key?
 No, it is not even a SK because of (4).
- Is {hotelNo, date, roomNo} a candidate key?
 Yes, it is a SK because of (3) and (5) and no proper subset of {hotelNo, date, roomNo} is a SK, hence {hotelNo, date, roomNo} is a candidate key.

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest cannot make two or more bookings in the same hotel for the same day.
 - A guest can make two or more bookings in different hotels for the same day.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, roomNo} a candidate key?
 No, it is not even a SK because of (2).
- Is {guestNo, date, roomNo} a candidate key?
 No, it is not even a SK because of (4).
- Is {hotelNo, date, roomNo} a candidate key?
 Yes, it is a SK because of (3) and (5) and no proper subset of {hotelNo, date, roomNo} is a SK, hence {hotelNo, date, roomNo} is a candidate key.

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK?

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK? Yes because of (3).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK? Yes because of (3).

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK? Yes because of (3).
- Thus {guestNo, hotelNo, date} is no longer a minimal SK and hence a candidate key.

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK? Yes because of (3).
- Thus {guestNo, hotelNo, date} is no longer a minimal SK and hence a candidate key.
- Now {guestNo, date} is a minimal SK and hence a candidate key.

- BOOKING(guestNo, hotelNo, date, roomNo).
 - A booking can be made for one day only.
 - A guest can make several bookings in a hotel for different days.
 - A guest is not allowed to make more than one booking for the same day even in the different hotels.
 - A booking cannot be in joint names. In other words a booking can only be held in the name of one guest.
- Is {guestNo, hotelNo, date} a minimal SK and hence a candidate key?.
 - Is {guestNo, hotelNo, date} is a SK? Yes because of (3).
 - Is {guestNo, hotelNo} a SK? No because of (2).
 - Is {guestNo, date} a SK? Yes because of (3).
- Thus {guestNo, hotelNo, date} is no longer a minimal SK and hence a candidate key.
- Now {guestNo, date} is a minimal SK and hence a candidate key.
- Note that {hotelNo, date, roomNo} is also a minimal SK and hence a candidate key.

 Assume that a relation schema R(A, B, C, D) has only two candidate keys {A,B} and {C}.

 Assume that a relation schema R(A, B, C, D) has only two candidate keys {A,B} and {C}.

Is it possible that {A} is a SK?

 Assume that a relation schema R(A, B, C, D) has only two candidate keys {A,B} and {C}.

Is it possible that {A} is a SK?

Answer: Impossible, otherwise {A,B} is not a candidate key (minimal SK).

 Assume that a relation schema R(A, B, C, D) has only two candidate keys {A,B} and {C}.

Is it possible that {A} is a SK?
 Answer: Impossible, otherwise {A,B} is not a candidate key (minimal SK).

Is it possible that {B, C} is a SK?

 Assume that a relation schema R(A, B, C, D) has only two candidate keys {A,B} and {C}.

Is it possible that {A} is a SK?
 Answer: Impossible, otherwise {A,B} is not a candidate key (minimal SK).

Is it possible that {B, C} is a SK?
 Answer: {B, C} must be a SK because {C} is a candidate key.

 Assume that a relation schema R(A, B, C, D) has only two candidate keys {A,B} and {C}.

Is it possible that {A} is a SK?
 Answer: Impossible, otherwise {A,B} is not a candidate key (minimal SK).

Is it possible that {B, C} is a SK?
 Answer: {B, C} must be a SK because {C} is a candidate key.

• If it possible that {B, D} is a SK? (tricky)

 Assume that a relation schema R(A, B, C, D) has only two candidate keys {A,B} and {C}.

Is it possible that {A} is a SK?

Answer: Impossible, otherwise $\{A,B\}$ is not a candidate key (minimal SK).

Is it possible that {B, C} is a SK?

Answer: {B, C} must be a SK because {C} is a candidate key.

If it possible that {B, D} is a SK? (tricky)
 Answer: {B, D} cannot be a SK because {B, D} does not has any candidate key as its subset.

 Assume that a relation schema R(A, B, C, D) has only two candidate keys {A,B} and {C}.

- Is it possible that {A} is a SK?
 Answer: Impossible, otherwise {A,B} is not a candidate key (minimal SK).
- Is it possible that {B, C} is a SK?
 Answer: {B, C} must be a SK because {C} is a candidate key.

If it possible that {B, D} is a SK? (tricky)
 Answer: {B, D} cannot be a SK because {B, D} does not has any candidate key as its subset.

Superkey, Candidate key and Primary key – Exercise

 Assume that a relation schema R(A, B, C, D) has only two candidate keys {A,B} and {C}.

• If it possible that {B, D} is a SK? (tricky)

Answer: $\{B, D\}$ cannot be a SK because $\{B, D\}$ does not has any candidate key as its subset.

(4) Domain constraints, Key constraints, Entity integrity constraints and Referential integrity constraints.

 Domain constraints: every value in a tuple must be from the domain of its attribute.

e.g., INT, VARCHAR, DATE, NOT NULL, etc.

 Domain constraints: every value in a tuple must be from the domain of its attribute.

e.g., INT, VARCHAR, DATE, NOT NULL, etc.

 Key constraints: a bunch of keys (superkey, candidate key and primary key).

 Domain constraints: every value in a tuple must be from the domain of its attribute.

e.g., INT, VARCHAR, DATE, NOT NULL, etc.

 Key constraints: a bunch of keys (superkey, candidate key and primary key).

• Entity integrity constraints: no primary key value can be NULL.

 Domain constraints: every value in a tuple must be from the domain of its attribute.

e.g., INT, VARCHAR, DATE, NOT NULL, etc.

 Key constraints: a bunch of keys (superkey, candidate key and primary key).

• Entity integrity constraints: no primary key value can be NULL.

- Identify foreign keys, if any, in HOTEL, ROOM, BOOKING and GUEST relations.
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).

- Identify foreign keys, if any, in HOTEL, ROOM, BOOKING and GUEST relations.
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).

Answer:

ROOM: [hotelNo] ⊆ HOTEL[hotelNo];

- Identify foreign keys, if any, in HOTEL, ROOM, BOOKING and GUEST relations.
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).

Answer:

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] ⊆ HOTEL[hotelNo],
 [guestNo] ⊆ GUEST[guestNo],
 [roomNo, hotelNo] ⊆ ROOM[roomNo, hotelNo].

- Identify foreign keys, if any, in HOTEL, ROOM, BOOKING and GUEST relations.
 - HOTEL(hotelNo, hotelName, city) with the primary key {hotelNo},
 - ROOM(roomNo, hotelNo, type, price) with the primary key {roomNo, hotelNo},
 - GUEST(guestNo, guestName, guestAddress) with the primary key {guestNo},
 - BOOKING(guestNo, hotelNo, date, roomNo).

Answer:

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] ⊆ HOTEL[hotelNo],
 [guestNo] ⊆ GUEST[guestNo],
 [roomNo, hotelNo] ⊆ ROOM[roomNo, hotelNo].

ROOM: [hotelNo] ⊆ HOTEL[hotelNo];

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] ⊆ HOTEL[hotelNo],[guestNo] ⊆ GUEST[guestNo], [roomNo, hotelNo] ⊆ ROOM[roomNo, hotelNo].

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] ⊆ HOTEL[hotelNo],[guestNo] ⊆ GUEST[guestNo], [roomNo, hotelNo] ⊆ ROOM[roomNo, hotelNo].
- Is it possible to make a booking in the BOOKING relation in the name of a person who is not listed in the GUEST relation?

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] \subseteq HOTEL[hotelNo],[guestNo] \subseteq GUEST[guestNo], [roomNo, hotelNo] \subseteq ROOM[roomNo, hotelNo].
- Is it possible to make a booking in the BOOKING relation in the name of a person who is not listed in the GUEST relation?

Answer: Impossible because in BOOKING, [guestNo] \subseteq GUEST[guestNo], i.e., the guestNo value of BOOKING must exist as a guestNo value of GUEST.

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] \subseteq HOTEL[hotelNo],[guestNo] \subseteq GUEST[guestNo], [roomNo, hotelNo] \subseteq ROOM[roomNo, hotelNo].
- Is it possible to make a booking in the BOOKING relation in the name of a person who is not listed in the GUEST relation?
 - **Answer**: Impossible because in BOOKING, [guestNo] \subseteq GUEST[guestNo], i.e., the guestNo value of BOOKING must exist as a guestNo value of GUEST.
- Is it possible to add a new room in the ROOM relation to a hotel that is not listed in the HOTEL relation?

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] ⊆ HOTEL[hotelNo],[guestNo] ⊆ GUEST[guestNo], [roomNo, hotelNo] ⊆ ROOM[roomNo, hotelNo].
- Is it possible to make a booking in the BOOKING relation in the name of a person who is not listed in the GUEST relation?
 - **Answer**: Impossible because in BOOKING, [guestNo] \subseteq GUEST[guestNo], i.e., the guestNo value of BOOKING must exist as a guestNo value of GUEST.
- Is it possible to add a new room in the ROOM relation to a hotel that is not listed in the HOTEL relation?

Answer: Impossible because in ROOM: [hotelNo] ⊆ HOTEL[hotelNo], i.e., the hotelNo value of ROOM must exist as a hotelNo value of HOTEL.

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] ⊆ HOTEL[hotelNo],[guestNo] ⊆ GUEST[guestNo], [roomNo, hotelNo] ⊆ ROOM[roomNo, hotelNo].
- Is it possible to make a booking in the BOOKING relation in the name of a person who is not listed in the GUEST relation?
 - Answer: Impossible because in BOOKING, [guestNo] ⊆ GUEST[guestNo], i.e., the guestNo value of BOOKING must exist as a guestNo value of GUEST.
- Is it possible to add a new room in the ROOM relation to a hotel that is not listed in the HOTEL relation?
 - **Answer**: Impossible because in ROOM: [hotelNo] \subseteq HOTEL[hotelNo], i.e., the hotelNo value of ROOM must exist as a hotelNo value of HOTEL.
- Is it possible to add a new hotel without any bookings or room information to the ACCOMMODATION database?

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] ⊆ HOTEL[hotelNo],[guestNo] ⊆ GUEST[guestNo], $[roomNo, hotelNo] \subseteq Room[roomNo, hotelNo].$
- Is it possible to make a booking in the BOOKING relation in the name of a person who is not listed in the GUEST relation?
 - **Answer**: Impossible because in BOOKING, [guestNo] ⊆ GUEST[guestNo], i.e., the guestNo value of BOOKING must exist as a guestNo value of GUEST.
- Is it possible to add a new room in the ROOM relation to a hotel that is not listed in the HOTEL relation?
 - **Answer**: Impossible because in ROOM: [hotelNo] ⊂ HOTEL[hotelNo], i.e., the hotelNo value of ROOM must exist as a hotelNo value of HOTEL.
- Is it possible to add a new hotel without any bookings or room information to the ACCOMMODATION database?
 - **Answer**: Possible because none of the attributes in HOTEL(hotelNo, hotelName, city) references to any attribute in ROOM, GUEST and BOOKING.

- ROOM: [hotelNo] ⊆ HOTEL[hotelNo];
- BOOKING: [hotelNo] ⊆ HOTEL[hotelNo],[guestNo] ⊆ GUEST[guestNo], $[roomNo, hotelNo] \subseteq Room[roomNo, hotelNo].$
- Is it possible to make a booking in the BOOKING relation in the name of a person who is not listed in the GUEST relation?
 - **Answer**: Impossible because in BOOKING, [guestNo] ⊆ GUEST[guestNo], i.e., the guestNo value of BOOKING must exist as a guestNo value of GUEST.
- Is it possible to add a new room in the ROOM relation to a hotel that is not listed in the HOTEL relation?
 - **Answer**: Impossible because in ROOM: [hotelNo] ⊂ HOTEL[hotelNo], i.e., the hotelNo value of ROOM must exist as a hotelNo value of HOTEL.
- Is it possible to add a new hotel without any bookings or room information to the ACCOMMODATION database?
 - **Answer**: Possible because none of the attributes in HOTEL(hotelNo, hotelName, city) references to any attribute in ROOM, GUEST and BOOKING.

 In ENROL, [CourseNo]⊆ COURSE[No] and [StudentID]⊆ STUDENT[StudentID].

STUDENT					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

Course				
No Cname Unit				
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

		ENROL		
StudentID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
456	COMP1130	2016 S1	active	20/02/2016
459	COMP2400	2016 S2	active	11/06/2016

Student						
StudentID	Name	DoB	Email			
456	Tom	25/01/1988	tom@gmail.com			
458	Peter	23/05/1993	peter@gmail.com			
459	Fran	11/09/1987	frankk@gmail.com			

Course				
No Cname Unit				
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

ENROL					
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
458	COMP2400	2016 S2	active	11/06/2016	

Question: Does the above database satisfy the foreign key of ENROL: [StudentID] STUDENT[StudentID]?

Student						
StudentID	Name	DoB	Email			
456	Tom	25/01/1988	tom@gmail.com			
458	Peter	23/05/1993	peter@gmail.com			
459	Fran	11/09/1987	frankk@gmail.com			

Course				
<u>No</u>	Cname	Unit		
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

ENROL						
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate		
456	COMP2400	2016 S2	active	25/05/2016		
458	COMP1130	2016 S1	active	20/02/2016		
458	COMP2400	2016 S2	active	11/06/2016		

Question: Does the above database satisfy the foreign key of ENROL: $[StudentID] \subseteq STUDENT[StudentID]$?

Yes.

Student					
<u>StudentID</u>	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

Course				
<u>No</u>	Cname	Unit		
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

ENROL					
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
458	COMP3600	2016 S2	active	11/06/2016	

Question: Does the above database satisfy the foreign key of ENROL: [CourseNo]⊆ COURSE[No]?

Student					
<u>StudentID</u>	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

Course				
<u>No</u>	Cname	Unit		
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

Enrol					
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
458	COMP3600	2016 S2	active	11/06/2016	

Question: Does the above database satisfy the foreign key of ENROL:

[CourseNo]⊆ Course[No]?

No, because COMP3600 does not exist as a No value in Course.

STUDENT					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

Course				
<u>No</u>	Cname	Unit		
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

ENROL					
StudentID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
458	COMP2400	2016 S2	active	11/06/2016	

Question: Can we delete the first tuple in STUDENT?

STUDENT					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

Course				
<u>No</u>	Cname	Unit		
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

ENROL				
StudentID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
458	COMP2400	2016 S2	active	11/06/2016

Question: Can we delete the first tuple in STUDENT?

No, because it will violate the foreign key of ENROL: [StudentID]⊆

STUDENT[StudentID]

STUDENT						
StudentID	Name	DoB	Email			
456	Tom	25/01/1988	tom@gmail.com			
458	Peter	23/05/1993	peter@gmail.com			
459	Fran	11/09/1987	frankk@gmail.com			

Course				
No Cname				
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

ENROL					
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
458	COMP2400	2016 S2	active	11/06/2016	

Question: Can we delete the first tuple in ENROL?

		STUDENT	
StudentID	Name	DoB	Email
456	Tom	25/01/1988	tom@gmail.com
458	Peter	23/05/1993	peter@gmail.com
459	Fran	11/09/1987	frankk@gmail.com

Course				
No Cname				
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

ENROL						
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate		
456	COMP2400	2016 S2	active	25/05/2016		
458	COMP1130	2016 S1	active	20/02/2016		
458	COMP2400	2016 S2	active	11/06/2016		

Question: Can we delete the first tuple in ENROL? Yes.

STUDENT						
StudentID	Name	DoB	Email			
456	Tom	25/01/1988	tom@gmail.com			
458	Peter	23/05/1993	peter@gmail.com			
459	Fran	11/09/1987	frankk@gmail.com			

Course				
No Cname				
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

ENROL					
StudentID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
458	COMP2400	2016 S2	active	11/06/2016	

Question: Can we update COMP2400 to be COMP6240 in COURSE?

STUDENT						
StudentID	Name	DoB	Email			
456	Tom	25/01/1988	tom@gmail.com			
458	Peter	23/05/1993	peter@gmail.com			
459	Fran	11/09/1987	frankk@gmail.com			

Course				
No Cname				
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

ENROL					
Stud	entID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate
4!	56	COMP2400	2016 S2	active	25/05/2016
4	58	COMP1130	2016 S1	active	20/02/2016
4:	58	COMP2400	2016 S2	active	11/06/2016

Question: Can we update COMP2400 to be COMP6240 in COURSE? No, because it will violate the foreign key of ENROL: [CourseNo]⊆ COURSE[No].

STUDENT					
<u>StudentID</u>	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

Course				
No Cname U				
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

		ENROL		
StudentID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
458	COMP2400	2016 S2	active	11/06/2016

Question: Can we insert a new course COMP3600 Algorithms with 6 units in COURSE?

STUDENT				
StudentID Name DoB Email				
456	Tom	25/01/1988	tom@gmail.com	
458	Peter	23/05/1993	peter@gmail.com	
459	Fran	11/09/1987	frankk@gmail.com	

Course			
No Cname Unit			
COMP1130 Introduction to Advanced Computing I			
COMP2400	Relational Databases	6	

	ENROL				
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
458	COMP2400	2016 S2	active	11/06/2016	

Question: Can we insert a new course COMP3600 Algorithms with 6 units in COURSE?

Yes.

STUDENT				
<u>StudentID</u>	Name	DoB	Email	
456	Tom	25/01/1988	tom@gmail.com	
458	Peter	23/05/1993	peter@gmail.com	
459	Fran	11/09/1987	frankk@gmail.com	

Course				
No Cname Unit				
COMP1130 Introduction to Advanced Computing I		6		
COMP2400	Relational Databases	6		

	ENROL				
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
458	COMP2400	2016 S2	active	11/06/2016	

Question: The foreign key StudentID in Enrol references StudentID in Student. The StudentID values in Enrol must be distinct?

Student				
StudentID Name DoB Email				
456	Tom	25/01/1988	tom@gmail.com	
458	Peter	23/05/1993	peter@gmail.com	
459	Fran	11/09/1987	frankk@gmail.com	

Course			
No Cname Unit			
COMP1130 Introduction to Advanced Computing I		6	
COMP2400	Relational Databases	6	

ENROL				
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
458	COMP2400	2016 S2	active	11/06/2016

Question: The foreign key StudentID in Enrol references StudentID in Student. The StudentID values in Enrol must be distinct?

No.

Foreign Key (referential integrity) – A Common Pitfall

- Consider the following relation schemas:
 - ROOM(roomNo, hotelName, type, price) with the primary key {roomNo, hotelName},
 - BOOKING(guestNo, date, roomNo, hotelName).

Room					
roomNo hotelName type price					
01	01 Sydney twin 200				
02	Sydney	single	100		
01	Canberra	single	150		

Booking				
guestNo date roomNo hotelName				
P1 30/07/2018 02 Sydney				
P2	31/07/2018	01	Canberra	

Foreign Key (referential integrity) – A Common Pitfall

- Consider the following relation schemas:
 - ROOM(roomNo, hotelName, type, price) with the primary key {roomNo, hotelName},
 - BOOKING(guestNo, date, roomNo, hotelName).

Room					
roomNo hotelName type price					
01 Sydney twin 200					
02	Sydney	single	100		
01	Canberra	single	150		

Booking		
date	roomNo	hotelName
30/07/2018	02	Sydney
31/07/2018	01	Canberra
	date 30/07/2018	date roomNo 30/07/2018 02

Now we add the following foreign key constraint:

BOOKING[roomNo, hotelName]⊆ROOM[roomNo, hotelName]

- Consider the following relation schemas:
 - ROOM(roomNo, hotelName, type, price) with the primary key {roomNo, hotelName},
 - BOOKING(guestNo, date, roomNo, hotelName).

	Rooм					
roomNo	hotelName	price				
01	Sydney	twin	200			
02	Sydney	single	100			
01	Canberra	single	150			

Booking						
guestNo date roomNo hotelName						
P1 30/07/2018 02 Sydney						
P2 31/07/2018 01 Canberra						

Now we add the following foreign key constraint:

- BOOKING[roomNo, hotelName]⊆ROOM[roomNo, hotelName]
- Is the above equivalent to: BOOKING[roomNo]⊆ROOM[roomNo], and BOOKING[hotelName]⊂ROOM[hotelName]?

Room				
roomNo	hotelName	type	price	
01	Sydney	twin	200	
02	Sydney	single	100	
01	Canberra	single	150	

	Booking					
guestNo date roomNo hotelName						
P1	01	Sydney				
P2	31/07/2018	02	Canberra			

Room				
roomNo	hotelName	type	price	
01	Sydney	twin	200	
02	Sydney	single	100	
01	Canberra	single	150	

Booking						
guestNo date roomNo hotelName						
P1 30/07/2018 01 Sydn						
P2	31/07/2018	02	Canberra			

- The above relations satisfy the foreign keys:
 - BOOKING[roomNo]⊆ROOM[roomNo], and
 - BOOKING[hotelName]⊆ROOM[hotelName]

Room				
roomNo	hotelName	type	price	
01	Sydney	twin	200	
02	Sydney	single	100	
01	Canberra	single	150	

Booking					
guestNo date roomNo hotelName					
P1 30/07/2018 01 Sydney					
P2	31/07/2018	02	Canberra		

- The above relations satisfy the foreign keys:
 - BOOKING[roomNo]⊆ROOM[roomNo], and
 - BOOKING[hotelName]⊆ROOM[hotelName]

but does not satisfy the foreign key:

Воокінд[roomNo, hotelName]⊆Rоом[roomNo, hotelName]

(5) SQL: Data Definition Language(v.s. Relation Schema + Integrity Constraints)

Data Definition Language – Relation Schema

- Create a relation schema ENBOL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

Data Definition Language – Relation Schema

- Create a relation schema ENROL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

		ENROL		
		Little		
StudentID	CourseNo	Semester	Status	EnrolDate
	StudentID	StudentID CourseNo	StudentID CourseNo Semester	ENROL StudentID CourseNo Semester Status

 The CREATE TABLE statement is used to create a new relation schema by specifying its name, its attributes and, optionally, its constraints.

```
CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE);
```


- Create a relation schema ENROL
 - Enrol(StudentID, CourseNo, Semester, Status, EnrolData)

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

- Create a relation schema ENBOL
 - Enrol(StudentID, CourseNo, Semester, Status, EnrolData)

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

• Can we use the following CREATE TABLE statement to create the above relation schema?

```
CREATE TABLE Enrol(StudentID, CourseNo, Semester, Status,
EnrolDate);
```

- Create a relation schema ENBOL
 - Enrol(StudentID, CourseNo, Semester, Status, EnrolData)

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

• Can we use the following CREATE TABLE statement to create the above relation schema?

```
CREATE TABLE Enrol(StudentID, CourseNo, Semester, Status,
EnrolDate);
```

• No because the data type is required for each attribute.

- Create a relation schema ENROL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

ENROL				
StudentID	CourseNo	Semester	Status	EnrolDate

- Create a relation schema ENBOL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

			ENROL		
ĺ	StudentID	CourseNo	Semester	Status	EnrolDate

- Which of the following CREATE TABLE statements is/are correct?
 - CREATE TABLE Enrol(StudentID INT; CourseNo VARCHAR(20); Semester VARCHAR(50); Status VARCHAR(50); EnrolDate DATE);
 - ② CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE,);
 - 3 CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE),

- Create a relation schema ENROL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

- Create a relation schema ENROL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

None of the following CREATE TABLE statements is correct.

- Create a relation schema ENBOL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

			ENROL		
Stu	dentID	CourseNo	Semester	Status	EnrolDate

- None of the following CREATE TABLE statements is correct.
 - O CREATE TABLE Enrol(StudentID INT; CourseNo VARCHAR(20); Semester VARCHAR(50); Status VARCHAR(50); EnrolDate DATE);

- Create a relation schema ENROL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

			ENROL		
Stu	dentID	CourseNo	Semester	Status	EnrolDate

- None of the following CREATE TABLE statements is correct.
 - O CREATE TABLE Enrol(StudentID INT; CourseNo VARCHAR(20); Semester VARCHAR(50); Status VARCHAR(50); EnrolDate DATE);
 - © CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE,);

- Create a relation schema ENBOL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

			ENROL		
Stu	dentID	CourseNo	Semester	Status	EnrolDate

- None of the following CREATE TABLE statements is correct.
 - O CREATE TABLE **Enrol**(StudentID INT; CourseNo VARCHAR(20); Semester VARCHAR(50); Status VARCHAR(50); EnrolDate DATE);
 - ② CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE,);
 - © CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE),

- Create a relation schema ENROL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

The correct CREATE TABLE statement

```
CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE);
```


- Create a relation schema ENROL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

The correct CREATE TABLE statement

```
CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE);
```

What about the following two CREATE TABLE statements?

```
create table Enrol(StudentID int, CourseNo varchar(20), Semester varchar(50), Status varchar(50), EnrolDate date); CREATE TABLE enrol(studentiD INT, courseno VARCHAR(20), semester VARCHAR(50), status VARCHAR(50), enroldate DATE);
```


- Create a relation schema ENROL
 - Enrol(StudentID: INT, CourseNo: STRING, Semester: STRING, Status: STRING, EnrolData: DATE)

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

 PostgreSQL switches CREATE TABLE statements to lower case unless we use double quotes.

```
create table enrol(studentid int, courseno varchar(20),
semester varchar(50), status varchar(50), enroldate date);
```

```
u1024708=> \d enrol
Table "public.enrol"

Column | Type | Modifiers

studentid | integer
courseno | character varying(20) |
semester | character varying(50) |
status | character varying(50) |
enroldate | date
```


• Can we create two relation schemas with the same name in the same database?

```
CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE); create table enrol(studentid int, courseno varchar(20), semester varchar(50), status varchar(50), enroldate date);
```


• Can we create two relation schemas with the same name in the same database?

```
CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE); create table enrol(studentid int, courseno varchar(20), semester varchar(50), status varchar(50), enroldate date);
```

No with the following error message.

```
u1024708=> create table enrol(studentid int, courseno varchar(20),
u1024708(> semester varchar(50), status varchar(50), enroldate date);
ERROR: relation "enrol" already exists
```


• Can we create the following two relation schemas in the same database?

```
u1024708=> CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20),
Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE);
CREATE TABLE
u1024708=> CREATE TABLE "Enrol"(StudentID INT, CourseNo VARCHAR(20),
Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE);
CREATE TABLE
```

• Can we create the following two relation schemas in the same database?

```
u1024708=> CREATE TABLE Enrol(StudentID INT, CourseNo VARCHAR(20),
Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE);
CREATE TABLE
u1024708=> CREATE TABLE "Enrol"(StudentID INT, CourseNo VARCHAR(20),
Semester VARCHAR(50), Status VARCHAR(50), EnrolDate DATE);
CREATE TABLE
```

Yes. Enrol and "Enrol" are different.

Data Definition Language – Relational Database Schema

- A relational database schema S is
 - a set of relation schemas $S = \{R_1, \dots, R_m\}$, and
 - a set of integrity constraints IC.

		ENROL		
StudentID	CourseNo	Semester	Status	EnrolDate

Data Definition Language – Domain Constraints

Enrol					
StudentID	CourseNo	Semester	Status	EnrolDate	

CREATE TABLE STUDENT(StudentID INT, Name VARCHAR(50), DoB Date, Email VARCHAR(100));

CREATE TABLE COURSE(No VARCHAR(20), Cname VARCHAR(50), Unit SMALLINT);

CREATE TABLE ENROL(StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50));

Data Definition Language – Key Constraints

UNIQUE: uniquely identify each tuple in a table.
 Every superkey is UNIQUE. Should we specify UNIQUE for every superkey?

STUDENT						
StudentID	Name	DoB	Email			

Data Definition Language – Key Constraints

STUDENT						
StudentID	Name	DoB	Email			

```
CREATE TABLE STUDENT
(StudentID INT,
Name VARCHAR(50),
DoB Date,
Email VARCHAR(100),
UNIQUE(StudentID),
UNIQUE(Email),
UNIQUE(StudentID, Email),
UNIQUE(StudentID, Name),
UNIQUE(StudentID, DoB),
...
UNIQUE(StudentID, Name, DoB, Email));
```


Data Definition Language – Candidate Key

STUDENT						
StudentID	Name	DoB	Email			

- UNIQUE: uniquely identify each tuple in a table.
 Specify UNIQUE for every candidate key.
- For example, {StudentID} and {Email} are two candidate keys for STUDENT.

```
CREATE TABLE STUDENT
(StudentID INT,
Name VARCHAR(50),
DoB Date,
Email VARCHAR(100),
UNIQUE(StudentID),
UNIQUE(Email));
```


Data Definition Language – Candidate Key

ENROL					
StudentID	CourseNo	Semester	Status	EnrolDate	

{StudentID, CourseNo, Semester} is a candidate key of ENROL.

```
CREATE TABLE ENROL
(StudentID INT,
CourseNo VARCHAR(20),
Semester VARCHAR(50),
Status VARCHAR(50),
EnrolDate DATE,
UNIQUE(StudentID, CourseNo, Semester));
```


STUDENT						
StudentID Name DoB Email						

- PRIMARY KEY: Specify PRIMARY KEY the primary key.
- For example, {StudentID} and {Email} are two candidate keys for STUDENT, and {StudentID} is selected as the primary key.

```
CREATE TABLE STUDENT
(StudentID INT,
Name VARCHAR(50),
DoB Date,
Email VARCHAR(100),
PRIMARY KEY(StudentID),
UNIQUE(Email));
```


ENROL					
StudentID	CourseNo	Semester	Status	EnrolDate	

• {StudentID, CourseNo, Semester} is the primary key of ENROL.

```
CREATE TABLE ENROL
(StudentID INT,
CourseNo VARCHAR(20),
Semester VARCHAR(50),
Status VARCHAR(50),
EnrolDate DATE,
PRIMARY KEY(StudentID, CourseNo, Semester));
```


STUDENT						
StudentID	Name	DoB	Email			

• Can we select multiple primary keys for the same relation schema?

```
CREATE TABLE STUDENT
(StudentID INT,
Name VARCHAR(50),
DoB Date,
Email VARCHAR(100),
PRIMARY KEY(StudentID),
PRIMARY KEY(Email));
```


STUDENT						
StudentID	Name	DoB	Email			

• Can we select multiple primary keys for the same relation schema?

```
CREATE TABLE STUDENT
(StudentID INT,
Name VARCHAR(50),
DoB Date,
Email VARCHAR(100),
PRIMARY KEY(StudentID),
PRIMARY KEY(Email));
```

 No because multiple primary keys for the same relation schema are not allowed.

Data Definition Language – Candidate Key

STUDENT						
StudentID Name DoB Email						

Can we add multiple UNIQUE constraints for the same relation schema?

```
CREATE TABLE STUDENT
(StudentID INT,
Name VARCHAR(50),
DoB Date,
Email VARCHAR(100),
UNIQUE(StudentID),
UNIQUE(Email));
```


Data Definition Language – Candidate Key

STUDENT						
StudentID	Name	DoB	Email			

Can we add multiple UNIQUE constraints for the same relation schema?

```
CREATE TABLE STUDENT
(StudentID INT,
Name VARCHAR(50),
DoB Date,
Email VARCHAR(100),
UNIQUE(StudentID),
UNIQUE(Email));
```

 Yes because multiple candidate keys (or superkeys) for the same relation schema are allowed.

• Entity integrity constraints: no primary key value can be NULL.

- Entity integrity constraints: no primary key value can be NULL.
- Can the StudentID value be NULL?

```
CREATE TABLE ENROL
(StudentID INT,
CourseNo VARCHAR(20),
Semester VARCHAR(50),
Status VARCHAR(50),
EnrolDate DATE,
PRIMARY KEY(StudentID, CourseNo, Semester));
```

- Entity integrity constraints: no primary key value can be NULL.
- Can the StudentID value be NULL?

```
CREATE TABLE ENROL
(StudentID INT,
CourseNo VARCHAR(20),
Semester VARCHAR(50),
Status VARCHAR(50),
EnrolDate DATE,
PRIMARY KEY(StudentID, CourseNo, Semester));
```

• No. None of the columns listed in the primary key can be NULL.

What about UNIQUE constraints?

- What about UNIQUE constraints?
- Can the StudentID value be NULL?

```
CREATE TABLE STUDENT
(StudentID INT,
Name VARCHAR(50),
DOB Date,
Email VARCHAR(100),
UNIQUE(StudentID),
UNIQUE(Email));
```


- What about UNIQUE constraints?
- Can the StudentID value be NULL?

```
CREATE TABLE STUDENT
(StudentID INT,
Name VARCHAR(50),
DOB Date,
Email VARCHAR(100),
UNIQUE(StudentID),
UNIQUE(Email));
```

• In PostgreSQL, two NULL values are not considered equal. That means even in the presence of a unique constraint it is possible to store duplicate rows that contain a null value in at least one of the constrained columns.
But other SQL databases might not follow this rule and be careful when developing applications that are intended to be portable.

Data Definition Language – Referential Integrity Constraints

 Referential integrity constraints: the values in a column (or a group of columns) in one table must match the values appearing in some row of another table.

```
CREATE TABLE STUDENT( StudentID INT PRIMARY KEY, Name VARCHAR(50), DoB Date, Email VARCHAR(100));

CREATE TABLE COURSE( No VARCHAR(20) PRIMARY KEY, Cname VARCHAR(50), Unit SMALLINT);

CREATE TABLE ENROL( StudentID INT, CourseNo VARCHAR(20), Semester VARCHAR(50), Status VARCHAR(50));
```

- Every StudentID appearing in ENROL must exist in STUDENT.
- Every CourseNo appearing in ENROL must exist in COURSE.

Data Definition Language – Foreign Key

```
CREATE TABLE STUDENT
       (StudentID INT PRIMARY KEY,
        Name VARCHAR(50).
        DoB Date,
        Email VARCHAR(100)):
CREATE TABLE COURSE
       (No VARCHAR(20) PRIMARY KEY,
        Cname VARCHAR(50),
        Unit SMALLINT);
CREATE TABLE ENROL
        StudentID INT,
        CourseNo VARCHAR(20),
        Semester VARCHAR(50),
        Status VARCHAR(50).
        FOREIGN KEY(StudentID) REFERENCES STUDENT(StudentID),
        FOREIGN KEY(CourseNo) REFERENCES COURSE(No));
```


Data Definition Language – Foreign Key

```
CREATE TABLE STUDENT
       (StudentID INT PRIMARY KEY,
        Name VARCHAR(50).
        DoB Date,
        Email VARCHAR(100)):
                                      Does {StudentID} in
CREATE TABLE COURSE
                                        STUDENT have to be the
       (No VARCHAR(20) PRIMARY KEY,
                                        primary key of STUDENT?
        Cname VARCHAR(50),
        Unit SMALLINT);
CREATE TABLE ENROL
        StudentID INT,
        CourseNo VARCHAR(20),
        Semester VARCHAR(50),
        Status VARCHAR(50).
        FOREIGN KEY(StudentID) REFERENCES STUDENT(StudentID),
        FOREIGN KEY(CourseNo) REFERENCES COURSE(No));
```


Data Definition Language – Foreign Key

```
CREATE TABLE STUDENT
       (StudentID INT PRIMARY KEY,
        Name VARCHAR(50).
        DoB Date,
        Email VARCHAR(100)):
                                      Does {StudentID} in
CREATE TABLE COURSE
                                         STUDENT have to be the
       (No VARCHAR(20) PRIMARY KEY,
                                         primary key of STUDENT?
        Cname VARCHAR(50),
                                         Answer: In PostgreSQL,
        Unit SMALLINT);
                                         {StudentID} in STUDENT
                                         must be either the primary
CREATE TABLE ENROL
                                         key or form a unique
        StudentID INT.
                                         constraint.
         CourseNo VARCHAR(20),
        Semester VARCHAR(50),
        Status VARCHAR(50).
        FOREIGN KEY(StudentID) REFERENCES STUDENT(StudentID),
        FOREIGN KEY(CourseNo) REFERENCES COURSE(No));
```


Attribute Constraints – Foreign Key

```
CREATE TABLE ENROL
       (StudentID INT,
        CourseNo VARCHAR(20),
        Semester VARCHAR(50),
        Status VARCHAR(50),
        FOREIGN KEY(StudentID) REFERENCES STUDENT(StudentID),
        FOREIGN KEY(CourseNo) REFERENCES COURSE(No)):

    Can we define ENROL

CREATE TABLE STUDENT
                                         before STUDENT and
       (StudentID INT PRIMARY KEY,
                                         COURSE?
        Name VARCHAR(50).
        DoB Date,
        Email VARCHAR(100)):
CREATE TABLE COURSE
       (No VARCHAR(20) PRIMARY KEY,
        Cname VARCHAR(50),
        Unit SMALLINT);
```


Attribute Constraints – Foreign Key

```
CREATE TABLE ENROL
        StudentID INT,
        CourseNo VARCHAR(20).
        Semester VARCHAR(50),
        Status VARCHAR(50),
        FOREIGN KEY(StudentID) REFERENCES STUDENT(StudentID),
        FOREIGN KEY(CourseNo) REFERENCES Course(No)):

    Can we define ENBOL

CREATE TABLE STUDENT
                                         before STUDENT and
       (StudentID INT PRIMARY KEY,
                                         COURSE?
        Name VARCHAR(50).
                                         Answer: No. ENROL has
        DoB Date,
                                         the foreign keys that
        Email VARCHAR(100)):
                                         reference STUDENT and
                                         Course.
CREATE TABLE COURSE
       (No VARCHAR(20) PRIMARY KEY,
        Cname VARCHAR(50),
```

Unit SMALLINT);

CREATE INDEX constructs an index on the specified column(s) of the specified table.

In PostgreSQL, the index methods include B-tree, hash and others.

STUDENT			
StudentID	Name	Age	
111	Ava	30	
222	Tom	25	
333	John	35	
444	Emily	35	

Course		
<u>CourseNo</u>	Name	Unit
ECON2102	Economics	6
COMP2400	Databases	6
BUSN2011	Accounting	6

ENROL				
CourseNo	Semester			
BUSN2011	S2 2020			
COMP2400	S2 2020			
ECON2102	S2 2019			
BUSN2011	S2 2020			
COMP2400	S2 2020			
BUSN2011	S2 2020			
COMP2400	S2 2020			
ECON2102	S2 2020			
	CourseNo BUSN2011 COMP2400 ECON2102 BUSN2011 COMP2400 BUSN2011			

FK (StudentID) references STUDENT(StudentID)

FK (CourseNo) references COURSE(CourseNo)

https://www.postgresql.org/docs/12/sql-createindex.html

CREATE INDEX constructs an index on the specified column(s) of the specified table.

How to use 'B-tree' (binary search tree) to construct an index?

https://en.wikipedia.org/wiki/Binary_search_tree

CREATE INDEX constructs an index on the specified column(s) of the specified table.

How to use 'Hash Function' to construct an index?

CREATE INDEX constructs an index on the specified column(s) of the specified table.

How to use 'Hash Function' to construct an index?

(credit cookie) René Descartes and the Cartesian Product

https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes

René Descartes (Renatus Cartesius, 1596-1650) was a French

René Descartes (Renatus Cartesius, 1596-1650) was a French

• Philosopher: Cogito Ergo Sum ("I think, therefore I am")

René Descartes (Renatus Cartesius, 1596-1650) was a French

- Philosopher: Cogito Ergo Sum ("I think, therefore I am")
- Mathematician: Cartesian coordinate system (Cartesian Product?)

René Descartes (Renatus Cartesius, 1596-1650) was a French

- Philosopher: Cogito Ergo Sum ("I think, therefore I am")
- Mathematician: Cartesian coordinate system (Cartesian Product?)

Scientist: "contact" lenses

