Corrigé : DS1 Topchair

Q-2

- 1. OUI, il fonctionne entre 15 cm et 150 cm
- 2. La documentation ne donne pas d'information sur la précision. Ill n'y a pas de réponse précise à la question de la précision, on peut dire que la réponse du capteur étant continue, il est à priori, « infiniment » précis (ce n'est bien sûr pas possible). La précision de la mesure est ici, liée à la

conversion analogique numérique, il faut que le quantum (la plus petite variation mesurable) soit supérieure à la la varaition de tension pour 1cm.

3. deux défauts

- Il n'est pas linéaire.
- pour une même valeur de la tension de sortie, correspond 2 positions différentes.

Q-3

Q-4

Q-5 A faire

Q-6

inf ₄
inf ₃
inf ₉
inf ₆
inf ₇
i

mesure de l'inclinaison	inf ₁
Énergie de la batterie	E ₁
Énergie mécanique (allongement de la vis)	E ₅
Énergie électrique stabilisée	E ₂
Énergie mécanique (rotation du moteur)	E ₄
Énergie électrique modulée	E ₃

Q-7

Seul le cas K = 100, a = 100 permet de respecter le cahier des charges, tous les autres on soit un dépassement trop important soit un temps de réponse trop long. $\epsilon_i = 0$ l'erreur indicielle est nulle pour toutes les courbes et le gain statique est de 1.

on note par exemple pour le cas K = 200, a = 10

- temps de reponse : $T_{5\%} \approx 10$ s,
- dépassement relatif : $D_{\%} = \frac{2}{5} = 40\%$

Q-8 Quel réglage préconisez-vous pour cette asservissement.