N79-31177

FEBRUARY 1979

TOTAL MATERIALS SYSTEMS REQUIREMENTS

GOVERNMENT AND INDUSTRY PROGRAMS

PRESENTED AT FAA HEARING NOVEMBER 1977

OF POCK QUALITY

INTERIOR MATERIALS DEVELOPMENT

A NEW TEST METHODOLOGY CONCEPT

CABIN ENVIRONMENT TOLERANCE LIMITS

- TEMPERATURE
- VISIBILITY
- TOXIC GAS CONCENTRATION
- OTHERS

FUTURE MATERIALS

SELECTION BASED ON PREDICTED MATERIAL PERFORMANCE IN CABIN FIRE ENVIRONMENT

MATERIALS' PROPERTIES

- HEAT RELEASE
- SMOKE RELEASE
- . TOXIC GAS EMISSION
- FLAMMABILITY
- OTHERS

POTENTIAL DECREASE IN FIRE HAZARD LEVEL -POST CRASH FIRE-

BOEING FIRE TEST METHODOLOGY DEVELOPMENT

FIRE TEST METHODOLOGY PROGRESS

- ESTABLISHED DESIGN FIRE SOURCES (NASA CONTRACT NAS9-15168)
- SELECTED OSU APPARATUS AS POSSIBLE TEST METHOD FOR PREDICTION OF HEAT AND SMOKE IN AN AIRPLANE FIRE (REQUIRES FURTHER REFINEMENT)
- NEED MAJOR EFFORTS IN TOXICANT MEASUREMENT AND TOXICITY LIMITS

FLAMMABILITY, SMOKE AND TOXICITY GOALS

FLAMMABILITY

- •FAR 25.583 AMMENDMENT 25-32
- FLAME SPREAD INDEX MAXIMUM 25
 - APPARATUS-ASTM E 162

SMOKE

NBS CHAMBER, 2.5 WATTS CM2 HEAT FLUX:

4.0 MINUTES

*LARGE AREA , DS MAXIMUM 50

•SMALL AREA, DS MAXIMUM 200

TOXICITY

NBS SMOKE CHAMBER

GAS EMISSION (PPM)	CO	HCN	HF	HCI	SQ2	NO2
TIME					-	_
1.5 MINUTES	3000	100	150	50	30	50
4.0 MINUTES	3500	150	150	500	100	100

SCOPE - MAJOR MATERIALS SYSTEMS

DECORATIVE SANDWICH PANELS FLEXIBLE DUCTS AND TUBING

COMPRESSION MOLDED FG. FIBERGLASS LAMINATES

THERMOPLASTICS FLEY'BLE FOAMS

TRANSPARENCIES CARPETS AND UNDERLAYS

INSULATION AND COVERINGS RIGID FOAMS

SANDWICH AIR DUCTS CARGO LINING

UPHOLSTERY FABRICS

SCOPE - SECONDARY MATERIALS SYSTEMS

HIGH PRESSURE LAMINATES SEALANTS AND ADHESIVES

CCATED FABRICS

ADVANCED COMPOSITES

DRAPERY FABRICS

FLOOR PANELS

FLCOR COVERINGS

POTTING COMPOUNDS

ELASTOMERS

METAL LAMINATES

NEW MATERIAL/CURRENT MATERIAL COMPARISONS (EXAMPLES)

	SMOKE RELEASE			FLAME SPREAD & HEAT RELEASE				TOXICITY
	D _S ①	OSU D _s ②	F.S. * 10 ² 1b ③	ASTM I	-162 I _s (4)	OSU J/CM ² (5)	F.S. ★ 10 ⁶ J ⑥	NBS GOAL (7)
FLEXIBLE DUCTING CURRENT NEW	35.9 9.3	37 17		1.5 1.65	43 5	250 91	-	PASS PASS
COMPRESSION MOLDED F.G.								
CURRENT NEW	235-295 8-109	143-254 6-58	9.4 5.8	4-6 2-5	11-15 3-15	605 - 1404 476 - 767	2.0 1.2	PASS PASS
THERMOPLASTICS								
CURRENT NEW	130	462 56-136	18.3 3.0	5 1.6-6.6	24 1.6-24	1986 754-874	4.9 1.1	PASS PASS
F.G. LAMINATES				}				
CURRENT NEW	46.0	49.4 0.2	-	1.6		171 125	<i>-</i>	PASS PASS
SIDEWALLS								
CURRENT (LAMINATED/ SANDWICH PANELS)	70-90	82-90	17-25	2 -3	28-50	471-698	1.8-2.0	PASS
NEW (SANDWICH PANELS	3 49	47	PLANNED	1.6	7.2	344	PLANNED	PASS

GOAL \leq 50 @ 2.5 W/CM² @ 4 MIN. ② 5 W/CM² @ 90 SEC.

GOAL ≤ 25 ⑤ 5 W/CM² @ 215 SEC. ⑥ POST-CRASH @ 215 SEC. ⑦ @ 2.5 W/CM² @ 4 MIN.

SIMULATED FULL SCALE TEST DATA

PROGRESS IN MATERIALS DEVELOPMENT

- DEVELOPMENT OF MATERIALS TO GOALS IS NEARLY COMPLETE
- MAJOR LINING MATERIALS EVALUATED TO DATE FOR NEW AIRPLANE USE SHOW FIRE PROPERTY IMPROVEMENTS IN FULL SCALE AND LABORATORY TESTS
- THE REDUCTION IN AIRPLANE FIRE HAZARD IF NEW MATERIALS ARE USED IS NOT DEFINED

GOVERNMENTAL REGULATIONS

- RATIONAL BASIS NOT YET ESTABLISHED FOR ADDITIONAL REGULATION
 - CORRELATION OF LAB TEST TO AIRPLANE FIRE RESULTS APPEARS POSSIBLE-BUT METHODOLOGY YEARS AWAY
 - REDUCTION IN MATERIAL CONTRIBUTION TO AIRPLANE FIRE HAZARD CAN NOT BE APPRAISED YET

SAFER COMMITTEE SHOULD BE MADE-OPERATIVE

181

- CCORDINATION ON NATIONAL LEVEL NEEDED FOR REASEARCH AND REGULATIONS
- SAFER STEERING GROUP MEMBERS MUST BE TECHNICALLY KNOWLEDGEABLE AND CAPABLE OF COMMITTING RESEARCH