

MECD 22 APR 2004

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

Ansökan ingavs ursprungligen på engelska.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

The application was originally filed in English.

- (71) Sökande AstraZeneca AB, Södertälje SE Applicant (s)
- (21) Patentansökningsnummer 0301010-5 Patent application number
- (86) Ingivningsdatum
 Date of filing

2003-04-07

Stockholm, 2004-02-13

För Patent- och registreringsverket For the Patent- and Registration Office

Hjördis Segerlund

Avgift

Fee 170:-

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

15

NOVEL COMPOUNDS

The present invention relates to substituted phenoxyacetic acids as useful pharmaceutical compounds for treating respiratory disorders, pharmaceutical compositions containing them, and processes for their preparation.

EPA 1 170 594 discloses methods for the identification of compounds useful for the treatment of disease states mediated by prostaglandin D2, a ligand for orphan receptor CRTH2. GB 1356834 discloses a series of compounds said to possess anti-inflammatory, analgesic and antipyretic activity. It has been found that certain phenoxyacetic acids are active at the CRTH2 receptor, and as a consequence are expected to be potentially useful for the treatment of various respiratory diseases, including asthma and COPD.

In a first aspect the invention therefore provides a compound of formula (I) or a pharmaceutically acceptable salt thereof:

20 in which:

X is halogen, cyano, nitro, SR⁶ or C₁₋₄alkyl which is substituted by one or more halogen atoms;

Y is selected from hydrogen, halogen, CN, nitro, SO₂R³, OR⁴, SR⁴, SOR³, SO₂NR⁴R⁵, CONR⁴R⁵, NR⁶SO₂R³, NR⁶CO₂R⁶, NR⁶COR³, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl or C₁₋₆alkyl, the latter four groups being optionally substituted by one or more substituents independently selected from halogen, OR⁶ and NR⁶R⁷, S(O)_nR⁶ where n is 0, 1 or 2;

Z is aryl or a ring A, where A is a six membered heterocyclic aromatic ring containing one or more nitrogen atoms or may be a 6,6 or 6,5 fused bicycle containing one or more O, N, S atoms, the aryl or A rings all being optionally substituted by one or more substituents independently selected from from hydrogen, halogen, CN, OH, SH, nitro, CO₂R⁶, SO₂R⁹, OR⁹, SR⁹, SOR⁹, SO₂NR¹⁰R¹¹, CONR¹⁰R¹¹, NR¹⁰R¹¹, NHSO₂R⁹, NR⁹SO₂R⁹, NR⁶CO₂R⁶, NHCOR⁹, NR⁹COR⁹, aryl, heteroaryl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl or C₁₋₆alkyl, the latter four groups being optionally substituted by one or more substituents independently selected from halogen, C₃-C₇ cycloalkyl, OR⁶, NR⁶R⁷, S(O)_nR⁶ (where n is 0, 1 or 2), CONR⁶R⁷, NR⁶COR⁷, SO₂NR⁶R⁷ and NR⁶SO₂R⁷.

R¹ and R² independently represent a hydrogen atom, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl or a C₁₋₆alkyl group, the latter four groups being optionally substituted by one or more substituents independently selected from halogen, C₃-C₇ cycloalkyl, NR⁶R⁷, OR⁶, S(O)_RR⁶ (where n is 0, 1 or 2);

OL

10

15

20

R¹ and R² together can form a 3-8 membered ring optionally containing one or more atoms selected from O, S, NR⁶ and itself optionally substituted by one or more C₁-C₃ alkyl or halogen;

 R^3 represents C_3 - C_7 cycloalkyl or C_{1-6} alkyl which may be optionally substituted by one or more substituents independently selected from halogen, C_3 - C_7 cycloalkyl, OR^6 and NR^6R^7 , $S(O)_nR^6$ (where n = 0.1 or 2), $CONR^6R^7$, NR^6COR^7 , $SO_2NR^6R^7$ and $NR^6SO_2R^7$;

25

30

35

 R^4 and R^5 independently represent hydrogen, C_3 - C_7 cycloalkyl or C_{1-6} alkyl, the latter two groups being optionally substituted by one or more substituents independently selected from halogen, C_3 - C_7 cycloalkyl, OR^6 and NR^6R^7 , $S(O)_nR^6$ (where n=0,1 or 2), $CONR^6R^7$, NR^6COR^7 , $SO_2NR^6R^7$ and $NR^6SO_2R^7$;

or

 R^4 and R^5 together with the nitrogen atom to which they are attached can form a 3-8 membered saturated heterocylic ring optionally containing one or more atoms selected from O, $S(O)_n$ (where n=0,1 or 2), NR^8 , and itself optionally substituted by halogen or C_{1-3} alkyl;

R⁶ and R⁷ independently represents a hydrogen atom or C₁-C₆ alkyl;

R⁸ is hydrogen, C₁₋₄ alkyl, -COC₁-C₄ alkyl, CO₂C₁-C₄alkyl or CONR⁶C₁-C₄alkyl;

 R^9 represents aryl, heteroaryl, C_3 - C_7 cycloalkyl or $C_{1\text{-}6}$ alkyl, the latter two groups may be optionally substituted by one or more substituents independently selected from halogen, C_3 - C_7 cycloalkyl, aryl, heteroaryl OR^6 and NR^6R^7 , $S(O)_nR^6$ (where n=0, 1 or 2), $CONR^6R^7$, NR^6COR^7 , $SO_2NR^6R^7$ and $NR^6SO_2R^7$;

 R^{10} and R^{11} independently represent aryl or heteroaryl, hydrogen, C_3 - C_7 cycloalkyl or $C_{1\text{-}6}$ alkyl, the latter two groups being optionally substituted by one or more substituents independently selected from halogen, C_3 - C_7 cycloalkyl, aryl, heteroaryl, OR^6 and NR^6R^7 , $S(O)_nR^6$ (where n=0, 1 or 2), $CONR^6R^7$, NR^6COR^7 , $SO_2NR^6R^7$ and $NR^6SO_2R^7$;

OT

10

15

 R^{10} and R^{11} together with the nitrogen atom to which they are attached can form a 3-8 membered saturated heterocylic ring optionally containing one or more atoms selected from O, $S(O)_n$ (where n=0, 1 or 2), NR^8 , and itself optionally substituted by halogen or C_1 - C_3 alkyl.

Examples of aryl include phenyl and naphthyl.

Heteroaryl is defined as a 5-7 member aromatic ring or can be 6,6- or 6,5-fused bicyclic ring optionally containing one or more heteroatoms selected from N, S, O.

Examples include pyridine, pyrimidine, thiazole, oxazole, pyrazole, imidazole, furan, isoxazole, pyrrole, isothiazole and azulene, naphthyl, indene, quinoline, isoquinoline, indole, indolizine, benzo[b]furan, benzo[b]thiophene, 1H-indazole, benzimidazole, benzthiazole, benzoxazole, purine, 4H-quinolizine, cinnoline, phthalazine, quinazoline, quinoxaline, 1,8-naphthyridine, pteridine and quinolone.

Aryl or heteroaryl groups can be optionally substituted by one or more substituents independently selected from hydrogen, halogen, CN, OH, SH, nitro, CO₂R⁶, SO₂R⁹, OR⁹, SR⁹, SOR⁹, SO₂NR¹⁰R¹¹, CONR¹⁰R¹¹, NR¹⁰R¹¹, NHSO₂R⁹, NR⁹SO₂R⁹, NR⁶CO₂R⁶, NHCOR⁹, NR⁹COR⁹, aryl, heteroaryl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl or

15

20

35

 $C_{1\text{-}6}$ alkyl, the latter four groups being optionally substituted by one or more substituents independently selected from halogen, C_3 - C_7 cycloalkyl, OR^6 , NR^6R^7 , $S(O)_nR^6$ (where n is 0, 1 or 2), $CONR^6R^7$, NR^6COR^7 , $SO_2NR^6R^7$ and $NR^6SO_2R^7$.

The group A is a six membered heterocyclic ring containing one or more nitrogen atoms or may be a 6,6 or 6,5 fused bicycle containing one or more O, N, S atoms. Examples of suitable rings include pyridine, pyrimidine, pyrazine, pyridazine, indole, quinoline, isoquinoline, benzimidazole, benzthiazole, benzofuran, benzoxazole, benzthiophene, phthalazine, quinazoline.

In the context of the present specification, unless otherwise indicated, an alkyl or alkenyl group or an alkyl or alkenyl moiety in a substituent group may be linear or branched.

Heterocyclic rings as defined for R⁴, R⁵ and R¹⁰ and R¹¹ means saturated heterocycles, examples include morpholine, azetidine, pyrrolidine, piperidine and piperazine.

Preferably X is trifluoromethyl or halogen, in particular chloro.

Preferably Y is hydrogen or C₁₋₆alkyl, such as methyl. More preferably Y is hydrogen.

Preferably Z is phenyl or pyrimidyl, optionally substituted as defined above, more preferably phenyl. Preferred substituents for all Z groups include those substituents exemplified herein, in particular chloro, methyl, SO₂R⁹, NR⁹SO₂R⁹

Preferably R^1 and R^2 are independently hydrogen or C_{1-3} alkyl.

Preferred compounds of the invention include:

- {[5-Chloro-4'-(ethylthio)biphenyl-2-yl]oxy}acetic acid,
- {[5-Chloro-4'-(ethylsulfonyl)biphenyl-2-yl]oxy}acetic acid,
- [(4',5-Dichlorobiphenyl-2-yl)oxy]acetic acid,
- [(5-Chloro-4'-cyanobiphenyl-2-yl)oxy]acetic acid,
- [(5-Chloro-4'-methoxybiphenyl-2-yl)oxy]acetic acid,
- (4-Chloro-2-quinolin-8-ylphenoxy)acetic acid,
- [(5-Chloro-3',4'-dimethoxybiphenyl-2-yl)oxy]acetic acid,
- 2'-(Carboxymethoxy)-5'-chlorobiphenyl-4-carboxylic acid,
- {[5-Chloro-4'-(methylsulfonyl)biphenyl-2-yl]oxy}acetic acid,

30

[[5-Chloro-4'-(ethylsulfonyl)-2'-methylbiphenyl-2-yl]oxy} acetic acid,
[[5-Cyanobiphenyl-2-yl)oxy]acetic acid,
[[5-Nitrobiphenyl-2-yl]oxy]acetic acid,
[[4'-(Methylthio)-5-(trifluoromethyl)biphenyl-2-yl]oxy} acetic acid,
[[4'-(Methylsulfonyl)-5-(trifluoromethyl)biphenyl-2-yl]oxy} acetic acid,
[[4'-(Ethylsulfonyl)-2'-methyl-5-(trifluoromethyl)biphenyl-2-yl]oxy} acetic acid,
[4-Chloro-2-pyrimidin-5-ylphenoxy)acetic acid,
[2-[5-(Aminosulfonyl)pyridin-2-yl]-4-chlorophenoxy} acetic acid,
[2-(2-Aminopyrimidin-5-yl)-4-chlorophenoxy]acetic acid,
[4-Chloro-2-(4-methyl-2-morpholin-4-ylpyrimidin-5-yl)phenoxy]acetic acid,
[4-Chloro-2-[2-(dimethylamino)pyrimidin-5-yl]phenoxy]acetic acid,
[4-Chloro-2-[2-(methylamino)pyrimidin-5-yl]phenoxy]acetic acid,
[4-Chloro-2-[2-(methylamino)pyrimidin-5-yl]phenoxy]acetic acid,
[4-Chloro-2-[2-(methylamino)pyrimidin-5-yl]phenoxy]acetic acid,

[4-Chloro-2-(2-piperidin-1-ylpyrimidin-5-yl)phenoxy]acetic acid,

and pharmaceutically acceptable salts thereof.

Certain compounds of formula (I) are capable of existing in stereoisomeric forms. It will be understood that the invention encompasses all geometric and optical isomers of the compounds of formula (I) and mixtures thereof including racemates. Tautomers and mixtures thereof also form an aspect of the present invention.

(4-Chloro-2-{2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl}phenoxy)acetic acid,

The compound of formula (I) above may be converted to a pharmaceutically acceptable salt or solvate thereof, preferably a basic addition salt such as sodium, potassium, calcium, aluminium, lithium, magnesium, zinc, benzathine, chloroprocaine, choline, diethanolamine, ethanolamine, ethyldiamine, meglumine, tromethamine or procaine, or an acid addition salt such as a hydrochloride, hydrobromide, phosphate, acetate, fumarate, maleate, tartrate, citrate, oxalate, methanesulphonate or p-toluenesulphonate.

It will be appreciated by those skilled in the art that in the processes of the present invention certain functional groups in the starting reagents or intermediate compound may need to be protected by protecting groups. Thus, the preparation of the compound of formula (I) may involve, at an appropriate stage, the removal of one or more protecting groups. The protection and deprotection of functional groups is fully described in 'Protective Groups in Organic Chemistry', edited by J. W. F. McOmie, Plenum Press

15

20

(1973), and 'Protective Groups in Organic Synthesis', 3rd edition, T. W. Greene & P. G. M. Wuts, Wiley-Interscience (1999).

Compounds of formula (I) can be prepared by reaction of a compound of formula (II):

in which X, Y and Z are as defined in formula (I) or are protected derivatives thereof, with a compound of formula (III):

L-CR¹R²CO₂R¹² (III)

Where R^1 and R^2 are as defined in formula (I) or are protected derivatives thereof, R^{12} is H or C_1 - C_{10} alkyl group and L is a leaving group, and optionally thereafter in any order:

- removing any protecting group
- hydrolysing the ester group \overline{R}^{12} to the corresponding acid
- oxidation of sulphides to sulphoxides or sulphones
- forming a pharmaceutically acceptable salt.

The reaction can be carried out in a suitable solvent such as DMF using a base such as potassium carbonate or the like. Suitable groups R^{12} include C_{1-6} alkyl groups such as methyl, ethyl or tert-butyl. Suitable L is a leaving group such as halo, in particular chlorine or bromine.

Hydrolysis of the ester group R¹² can be carried out using routine procedures, for example treatment of methyl and ethyl esters with aqueous sodium hydroxide, and treatment of tert-butyl esters with acids such as trifluoroacetic acid.

Compounds of formula (II) can be prepared by reaction of a compound of formula (IV) with a compound of formula (V) via a Suzuki coupling reaction followed by deprotection of R^{13} when R^{13} is not equal to H:

15

20

25

in which X, Y and Z are as defined in formula (I) or are protected derivatives thereof, R¹³ is H or a suitable protecting group, for example benzyl, L1 is iodide, bromide, chloride or triflate and R¹⁴ and R¹⁵ are H or C₁-C₆ alkyl groups or R¹⁴ and R¹⁵ together can form a 5 or 6 membered ring optionally substituted by one or more C₁-C₃ alkyl.

The reaction can be carried out in a suitable solvent such as dioxane using a palladium catalyst such as [1,1-bis(diphenylphosphino)ferrocene]dichloropalladium and a base such as cesium fluoride, preferably at elevated temperatures.

Compounds of formula (IV) can be prepared from a compound of formula (VI) by formation of an organometallic (VII) followed by reaction with a borate ester, as outlined in Scheme L

Scheme I

in which X, Y are as defined in formula (I) or are protected derivatives thereof, R¹³ is as defined in formula (IV), E is hydrogen or halogen and M is a metal such as Na or Li. For example when R13 is benzyl and E is bromine, butyl lithium can be used to form the intermediate (VII) where M = Li. The reaction is performed at -78° C in diethylether, then quenched with a borate ester such as trimethylborate.

Compounds of formula (IV) may also be prepared by a palladium catalysed coupling of compounds of formula (VIII) with a suitable boronic ester, for example (IX) or (X).

in which X, Y and R¹³ are as defined above and G is halogen or triflate

Compounds of formula (II) may also be prepared by reaction of a compound of formula
(XI) with a compound of formula (XII) using Suzuki coupling methodology.

in which X, Y, Z, R^{13} , L^1 , R^{14} and R^{15} are as defined above and compounds of formula (XI) and (XII) can be made using the same methodology as above.

Compounds of formula (II), where Z=heteroaryl may also be prepared by ring synthesis, for example a compound of formula (XIII) may be formed by reaction of a compound of formula (XIV) with a compound of formula (XV).

X, Y and R¹³ are as defined above and R¹⁶ is as defined as a substituent on Z as defined in formula (I) or are protected derivatives thereof. The reaction can be carried out in a solvent such as ethanol under reflux, and a base such as sodium ethoxide can be used if compound of formula (XV) is a salt

When R¹⁶ is a group S-alkyl, this may be further elaborated by oxidation to the sulfoxide or sulphone using an oxidizing agent such as mcpba in DCM at RT. This may then be displaced with an appropriate nucleophile as defined for Z in formula 1. Scheme 2;

Scheme 2

The sequence of the steps above may be changed, for example a compound of formula (XVI) may be formed by the reaction of a compound of formula (XVII) with a compound of formula (XII) using a Suzuki coupling.

20

10

10

15

20

25

30

35

In a further aspect, the present invention provides the use of a compound of formula (I), a prodrug, pharmaceutically acceptable salt or solvate thereof for use in therapy.

The compounds of formula (I) have activity as pharmaceuticals, in particular as modulators of CRTh2 receptor activity, and may be used in the treatment (therapeutic or prophylactic) of conditions/diseases in human and non-human animals which are exacerbated or caused by excessive or unregulated production of PGD₂ and its metabolites. Examples of such conditions/diseases include:

- (1) (the respiratory tract) obstructive airways diseases including: asthma (such as bronchial, allergic, intrinsic, extrinsic and dust asthma particularly chronic or inveterate asthma (e.g. late asthma and airways hyper-responsiveness)); chronic obstructive pulmonary disease (COPD)(such as irreversible COPD); bronchitis (including eosinophilic bronchitis); acute, allergic, atrophic rhinitis or chronic rhinitis (such as rhinitis caseosa, hypertrophic rhinitis, rhinitis purulenta, rhinitis sicca), rhinitis medicamentosa, membranous rhinitis (including croupous, fibrinous and pseudomembranous rhinitis), scrofoulous rhinitis, perennial allergic rhinitis, easonal rhinitis (including rhinitis nervosa (hay fever) and vasomotor rhinitis); nasal polyposis; sarcoidosis; farmer's lung and related diseases; fibroid lung; idiopathic interstitial pneumonia; cystic fibrosis; antitussive activity; treatment of chronic cough associated with inflammation or iatrogenic induced;
 - (2) (bone and joints) arthrides including rheumatic, infectious, autoimmune, seronegative, spondyloarthropathies (such as ankylosing spondylitis, psoriatic arthritis and Reiter's disease), Behcet's disease, Sjogren's syndrome and systemic sclerosis;
 - (3) (skin and eyes) psoriasis, atopical dermatitis, contact dermatitis, other eczmatous dermitides, seborrhoetic dermatitis, Lichen planus, Pemphigus, bullous Pemphigus, Epidermolysis bullosa, urticaria, angiodermas, vasculitides, erythemas, cutaneous eosinophilias, chronic skin ulcers, uveitis, Alopecia areatacorneal ulcer and vernal conjunctivitis;
 - (4) (gastrointestinal tract) Coeliac disease, proctitis, eosinopilic gastro-enteritis, mastocytosis, Crohn's disease, ulcerative colitis, irritable bowel disease; food-

10

15

20

25

30

35

related allergies which have effects remote from the gut, (such as migraine, rhinitis and eczema);

- (5) (central and peripheral nervous system) Neurodegenerative diseases and dementia disorders (such as Alzheimer's disease, amyotrophic lateral sclerosis and other motor neuron diseases, Creutzfeldt-Jacob's disease and other prion diseases, HIV encephalopathy (AIDS dementia complex), Huntington's disease, frontotemporal dementia, Lewy body dementia and vascular dementia), polyneuropathies (such as Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy, multifocal motor neuropathy), plexopathies, CNS demyelination (such as multiple sclerosis, acute disseminated/haemorrhagic encephalomyelitis, and subacute sclerosing panencephalitis), neuromuscular disorders (such as myasthenia gravis and Lambert-Eaton syndrome), spinal diorders (such as tropical spastic paraparesis, and stiff-man syndrome), paraneoplastic syndromes (such as cerebellar degeneration and encephalomyelitis), CNS trauma, migraine and stroke.
- (6) (other tissues and systemic disease) atherosclerosis, acquired Immunodeficiency Syndrome (AIDS), lupus erythematosus; systemic lupus, erythematosus; Hashimoto's thyroiditis, type I diabetes, nephrotic syndrome, eosinophilia fascitis, hyper IgE syndrome, lepromatous leprosy, idiopathic thrombocytopenia pupura; post-operative adhesions, sepsis and ischemic/reperfusion injury in the heart, brain, peripheral limbs hepatitis (alcoholic, steatohepatitis and chronic viral), glomerulonephritis, renal impairment, chronic renal failure and other organs
- (7) (allograft rejection) acute and chronic following, for example, transplantation of kidney, heart, liver, lung, bone marrow, skin and cornea; and chronic graft versus host disease;
- (8) Diseases associated with raised levels of PGD2 or its metabolites.

Thus, the present invention provides a compound of formula (I), or a pharmaceutically-acceptable salt or solvate thereof, as hereinbefore defined for use in therapy.

15

20

25

Preferably the compounds of the invention are used to treat diseases in which the chemokine receptor belongs to the CRTh2 receptor subfamily.

Particular conditions which can be treated with the compounds of the invention are asthma, rhinitis and other diseases in which raised levels of PGD₂ or its metabolites. It is preferred that the compounds of the invention are used to treat asthma.

In a further aspect, the present invention provides the use of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined in the manufacture of a medicament for use in therapy.

In a further aspect, the present invention provides the use of a compound or formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined in the manufacture of a medicament for use in therapy in combination with drugs used to treat asthma and rhinitis (such as inhaled and oral steroids, inhaled β 2-receptor agonists and oral leukotriene receptor antagonists).

In a still further aspect, the present invention provides the use of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined in the manufacture of a medicament for the treatment of human diseases or conditions in which modulation of CRTh2 receptor activity is beneficial.

In the context of the present specification, the term "therapy" also includes "prophylaxis" unless there are specific indications to the contrary. The terms "therapeutic" and "therapeutically" should be construed accordingly.

The invention still further provides a method of treating diseases mediated by PGD2 or its metabolites wherein the prostanoid binds to its receptor (especially CRTh2) receptor, which comprises administering to a patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate or prodrug thereof, as hereinbefore defined.

The invention also provides a method of treating an inflammatory disease, especially psoriasis, in a patient suffering from, or at risk of, said disease, which comprises administering to the patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined.

20

25

30

For the above-mentioned therapeutic uses the dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated.

For the above-mentioned therapeutic uses the dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated.

The compound of formula (I), prodrugs and pharmaceutically acceptable salts and solvates thereof may be used on their own but will generally be administered in the form of a pharmaceutical composition in which the formula (I) compound/salt/solvate (active ingredient) is in association with a pharmaceutically acceptable adjuvant, diluent or carrier. Depending on the mode of administration, the pharmaceutical composition will preferably comprise from 0.05 to 99 %w (per cent by weight), more preferably from 0.05 to 80 %w, still more preferably from 0.10 to 70 %w, and even more preferably from 0.10 to 50 %w, of active ingredient, all percentages by weight being based on total composition.

The present invention also provides a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as herein before defined; in association with a pharmaceutically acceptable adjuvant, diluent or carrier.

The pharmaceutical compositions may be administered topically (e.g. to the lung and/or airways or to the skin) in the form of solutions, suspensions, heptafluoroalkane aerosols and dry powder formulations; or systemically, e.g. by oral administration in the form of tablets, capsules, syrups, powders or granules, or by parenteral administration in the form of solutions or suspensions, or by subcutaneous administration or by rectal administration in the form of suppositories or transdermally. Preferably the compound of the invention is administered orally.

The invention will now be illustrated by the following non-limiting examples in which, unless stated otherwise:

- (i) when given, ¹H NMR data is quoted in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard;
- (ii) mass spectra (MS): generally only ions which indicate the parent mass are reported,

and unless otherwise stated the mass ion quoted is the positive mass ion - (M+H)+;

- (iii) the title compounds of the examples and methods were named using the ACD/name batch (version 6.0) from Advanced Chemical Development Inc, Canada;
- (iv) unless stated otherwise, reverse phase HPLC was conducted using a Symmetry,
- NovaPak or Ex-Terra reverse phase silica column;
 - (v) solvents were dried with MgSO₄ or Na₂SO₄
 - (vi) the following abbreviations are used:

	EtOAc	Ethylacetate
10	DCM	Dichloromethane
	NMP	N-methylpyrrolidine
	DMF	N,N-dimethylformamide
	THF	tetrahydrofuran
	mcpba	3-chloroperoxybenzoic acid (Aldrich 77% max)
15	Pd(dppf)Cl ₂	[1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II),
		complex with dichloromethane
	PT roor	n temperature

RT room temperature

10

15

Example 1

{[5-Chloro-4'-(ethylthio)biphenyl-2-yl]oxy}acetic acid

(i) tert-Butyl (2-bromo-4-chlorophenoxy)acetate tert-Butyl bromoacetate (2.6ml) was added to a stirred mixture of 4-bromo-2-chlorophenol (3g) and potassium carbonate (6.2g) in DMF (40ml) at RT. After 16h the reaction was partitioned between diethylether and water, the organics separated, dried and evaporated under reduced pressure. The residue was purified by chromatography on silica eluting with 4% EtOAc/iso-hexane. Yield 4.05g

¹H NMR CDCl₃: δ 7.55 (1H, d); 7.21 (1H, dd); 6.72 (1H, d); 4.57 (2H, s); 1.48 (9H, s)

- (ii) tert-Butyl {[5-chloro-4'-(ethylthio)biphenyl-2-yl]oxy}acetate
 A mixture of the product from step (i) (2g), 4-(ethylthio)phenylboronic acid (1.5g), cesium fluoride (2g) and Pd(dppf)Cl₂ (0.2g) in dioxane (40ml) was heated under reflux for 3h.
 After cooling the mixture was partitioned between diethylether and water. The organics were separated, dried and evaporated under reduced pressure. The residue was purified by chromatography on silica eluting with 5% EtOAc/iso-hexane. Yield 0.92g
- 20 MS: APCI (+ve): 379/381 (M+1)
 - (iii) {[5-Chloro-4'-(ethylthio)biphenyl-2-yl]oxy}acetic acid
 The title compound was prepared by stirring a mixture of the product from step (ii) (0.3g) and trifluoroacetic acid (4ml) in DCM (10ml) at RT for 5h. The solvent was evaporated under reduced pressure, the residue triturated with diethylether then purified by reverse phase HPLC. Yield 0.106g

¹H NMR DMSO-d6: δ 13.07 (1H, s); 7.54 (2H, d); 7.35-7.33 (4H, m); 7.02 (1H, d); 4.74 (2H, s); 3.02 (2H, q); 1.27 (3H, t)
MS: APCI (-ve): 321/3 (M-1)

Example 2

35

{[5-Chloro-4'-(ethylsulfonyl)biphenyl-2-yl]oxy}acetic acid

(i) tert-Butyl {[5-chloro-4'-(ethylsulfonyl)biphenyl-2-yl]oxy} acetate Mcpba (1.2g) was added to a stirred solution of the product from example 1 step (ii) (0.6g) in DCM (10ml) at RT. After 4h, the mixture was partitioned between DCM and aqueous

sodium metabisulphite solution, the organics separated, washed with aqueous sodium hydrogencarbonate solution, water, dried and evaporated under reduced pressure. Yield 0.65g

(ii) {[5-Chloro-4'-(ethylsulfonyl)biphenyl-2-yl]oxy}acetic acid
The title compound was prepared by the method of example 1 step (iii) using the product
from step (i). Yield 0.226g

¹H NMR DMSO-d6: δ 13.14 (1H, s); 7.92 (2H, d); 7.87 (2H, d); 7.45-7.42 (2H, m); 7.10 (1H, d); 4.79 (2H, s); 3.35 (2H, q); 1.15 (3H, t) MS: APCI (-ve): 353/5 (M-1)

Example 3

15

20

[(4',5-Dichlorobiphenyl-2-yl)oxy]acetic acid

(i) tert-Butyl [(4',5-dichlorobiphenyl-2-yl)oxy]acetate
The subtitle compound was prepared by the method of example 1 step (ii) using the product from example 1 step (i) and 4-chlorophenylboronic acid. Yield 0.63g

¹H NMR CDCl₃: δ 7.54-7.22 (6H, m); 6.76 (1H, dd); 4.48 (2H, s); 1.47 (9H, s)

- (ii) [(4',5-Dichlorobiphenyl-2-yl)oxy]acetic acid
 The title compound was prepared by the method of example 1 step (iii) using the product
 from step (i). Yield 0.224g
- ¹H NMR DMSO-d6: δ 13.00 (1H, s); 7.61 (2H, d); 7.48 (2H, d); 7.41-7.36 (2H, m); 7.05 (1H, d); 4.75 (2H, s)
 MS: APCI (-ve): 295/7 (M-1)

Example 4

[(5-Chloro-4'-cyanobiphenyl-2-yl)oxy]acetic acid

- (i) tert-Butyl [(5-chloro-4'-cyanobiphenyl-2-yl)oxy]acetate
 The subtitle compound was prepared by the method of example 1 step (ii) using the product from example 1 step (i) and 4-cyanophenylboronic acid. Yield 0.524g
- ¹H NMR CDCl₃: δ 7.70 (4H, s); 7.32-7.26 (2H, m); 6.79 (1H, d); 4.51 (2H, s); 1.48 (9H, s)

15

(ii) [(5-Chloro-4'-cyanobiphenyl-2-yl)oxy]acetic acid
The title compound was prepared by the method of example 1 step (iii) using the product
from step (i). Yield 0.109g

 1 H NMR DMSO-d6: δ 13.14 (1H, s) ; 7.90 (2H, d) ; 7.80 (2H, d) ; 7.45-7.41 (2H, m) ; 7.10 (1H, d) ; 4.78 (2H, s) MS: APCI (-ve): 286/8 (M-1)

10 Example 5

[(5-Chloro-4'-methoxybiphenyl-2-yl)oxy]acetic acid

(i) tert-Butyl [(5-chloro-4'-methoxybiphenyl-2-yl)oxy]acetate

The subtitle compound was prepared by the method of example 1 step (ii) using the product from example 1 step (i) and 4-methoxyphenylboronic acid. Yield 0.610g

¹H NMR CDCl₃: δ 7.54 (2H, d); 7.31-7.18 (2H, m); 6.96 (2H, d); 6.76 (1H, d); 4.46 (2H, s); 3.84 (3H, s); 1.46 (9H, s)

(ii) [(5-Chloro-4'-methoxybiphenyl-2-yl)oxy]acetic acid

The title compound was prepared by the method of example 1 step (iii) using the product from step (i): Yield 0.119g

¹H NMR DMSO-d6: δ 13.08 (1H, s); 7.53 (2H, d); 7.32-7.29 (2H, m); 7.01-6.96 (3H, m); 4.72 (2H, s); 3.79 (3H, s)
MS: APCI (-ve): 291/3 (M-1)

Example 6

(4-Chloro-2-quinolin-8-ylphenoxy)acetic acid, trifluoroacetic acid salt

(i) tert-Butyl (4-chloro-2-quinolin-8-ylphenoxy)acetate

The subtitle compound was prepared by the method of example 1 step (ii) using the product from example 1 step (i) and 8-quinoline boronic acid. Yield 0.356g

¹H NMR CDCl₃: δ 8.90-8.88 (1H, m); 8.18 (1H, d); 7.85 (1H, d); 7.76 (1H, d); 7.60 (1H, t); 7.40-7.30 (3H, m); 6.87 (1H, d); 4.37 (2H, s); 1.37 (9H, s)

(ii) (4-Chloro-2-quinolin-8-ylphenoxy)acetic acid, trifluoroacetic acid salt

The title compound was prepared by the method of example 1 step (iii) using the product from step (i). Yield 0.25g

¹H NMR DMSO-d6: δ 8.91-8.89 (1H, m); 8.62 (1H, d); 8.12 (1H, d); 7.85-7.67 (3H, m); 7.46 (1H, dd); 7.38 (1H, d); 7.09 (1H, d); 4.61 (2H, s)
MS: APCI (-ve): 312/4 (M-1)

Example 7

10

20

[(5-Chloro-3',4'-dimethoxybiphenyl-2-yl)oxy]acetic acid

(i) tert-Butyl [(5-chloro-3',4'-dimethoxybiphenyl-2-yl)oxy]acetate
The subtitle compound was prepared by the method of example 1 step (ii) using the
product from example 1 step (i) and 3,4-dimethoxyphenylboronic acid. Yield 0.86g

¹H NMR CDCl₃: δ 7.33-7.12 (4H, m); 6.93 (1H, d); 6.79 (1H, d); 4.46 (2H, s); 3.93 (3H, s); 3.92 (3H, s); 1.46 (9H, s)

(ii) [(5-Chloro-3',4'-dimethoxybiphenyl-2-yl)oxy]acetic acid
The title compound was prepared by the method of example 1 step (iii) using the product
from step (i). Yield 0.32g

¹H NMR DMSO-d6: δ 13.08 (1H, s); 7.36-7.27 (3H; m); 7.12-6.98 (3H, m); 4.74 (2H, s); 3.78 (6H, 2xs)
MS: APCI (-ve): 321/3 (M-1)

25 Example 8

2'-(Carboxymethoxy)-5'-chlorobiphenyl-4-carboxylic acid

The title compound was prepared by the method of example 1 step (ii) and step (iii) using the product from example 1 step (i) and 4-carboxyphenylboronic acid. Yield 0.035g

¹H NMR DMSO-d6: δ 7.98-7.38 (6H, m); 7.08-7.05 (1H, m); 4.75 (2H, s) MS: APCI (-ve): 305 (M-1)

Example 9

{[5-Chloro-4'-(methylsulfonyl)biphenyl-2-yl]oxy}acetic acid

The title compound was prepared by the method of example 1 step (ii) and example 2 using the product from example 1 step (i) and 4-(methylthio)benzeneboronic acid. Yield 0.1g

¹H NMR DMSO-d6: δ 7.97-7.08 (7H, m); 4.78 (2H, s); 3.31 (3H, bs) MS: APCI (-ve): 339 (M-1)

Example 10

10

20

{[5-Chloro-4'-(ethylsulfonyl)-2'-methylbiphenyl-2-yl]oxy}acetic acid

- (i) 4-Bromo-3-methylphenyl ethyl sulfide
 Bromine (2.2ml) was added to a solution of 1-(ethylthio)-3-methylbenzene (6.6g) in acetic
 acid (20ml) at 0°C. The mixture was stirred at RT for 2h then the solvent removed under
 reduced pressure. The residue was purified by chromatography on silica eluting with
 DCM. Yield 6.6g
- 15 MS: APCI (+ve): 247/9 (M+1)
 - (ii) 2-[4-(Ethylthio)-2-methylphenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane A mixture of the product from step (i) (6.6g), 4,45,5-tetramethyl-[1,3,2]-dioxaborolane (1.94ml), triethylamine (2.4ml), palladium acetate (0.06g) and 2-(dicyclohexylphosphino) biphenyl (0.3g) in dioxane (20ml) was heated at 85°C for 2h. The mixture was quenched with aqueous ammonium chloride solution, extracted with diethylether, the organics dried and evaporated under reduced pressure. The residue was purified by chromatography on silica eluting with 50% isohexane/DCM. Yield 0.7g
- ¹H NMR CDCl₃: δ 7.66 (1H, d); 7.08-7.05 (2H, m); 2.94-2.92 (2H, q); 2.5 (3H, s); 1.43-1.27 (15H, m)
 - (iii) {[5-Chloro-4'-(ethylsulfonyl)-2'-methylbiphenyl-2-yl]oxy} acetic acid
 The title compound was prepared by the method of example 1 step (ii) and example 2
 using the product from step (ii) and the product from example 1 step (i). Yield 0.035g

 $^1 H$ NMR DMSO-d6: δ 7.79-6.99 (6H, m) ; 4.67 (2H, s) ; 3.35 (2H, q) ; 2.23 (3H, s) ; 1.15 (3H, t)

MS: APCI (-ve): 367 (M-1)

Example 11

[(5-Cyanobiphenyl-2-yl)oxy]acetic acid

The title compound was prepared by the method of example 1 using 3-bromo-4-hydroxybenzonitrile and phenylboronic acid. Yield 0.175g

¹H NMR DMSO-d6: δ 13.18 (1H, s); 7.81-7.17 (8H, m); 4.87 (2H, s) MS: APCI (-ve): 252 (M-1)

Example 12

[(5-Nitrobiphenyl-2-yl)oxy]acetic acid

The title compound was prepared by the method of example 1 using 2-bromo-4-nitrophenol and phenylboronic acid. Yield 0.065g

¹H NMR DMSO-d6: δ 13.26 (1H, s); 8.23 (1H, dd); 8.12 (1H, d); 7.63 (2H, d); 7.50-7.38 (3H, m); 7.25 (1H, d); 4.94 (2H, s)
MS: APCI (-ve): 272 (M-1)

Example 13

15

20

25

{[4'-(Methylthio)-5-(trifluoromethyl)biphenyl-2-yl]oxy}acetic acid

(i) 2-Iodo-4-(trifluoromethyl)phenol
Sodium iodide (3.32g) then chloramine-T (5.91g) were added to a stirred solution of 4trifluoromethylphenol (3.0g) in DMF (30ml) at Θ°C. The mixture was warmed to RT,
stirred for 1h, diluted with dilute hydrochloric acid then extracted with diethylether. The
organic layer was washed with aqueous sodium thiosulphate solution, dried and the solvent

removed under reduced pressure. Yield 5.25g

MS: APCI (-ve): 287 (M-1)

(ii) {[4'-(Methylthio)-5-(trifluoromethyl)biphenyl-2-yl]oxy}acetic acid
The title compound was prepared by the method of example 1 using the product from step
(i) and 4-(methylthio)benzeneboronic acid. Yield 0.13g

 1 H NMR DMSO-d6: δ 13.16 (1H, s) ; 7.68-7.18 (7H, m) ; 4.85 (2H, s) ; 2.51 (3H, s) MS: APCI (-ve): 341 (M-1)

Example 14

{[4'-(Methylsulfonyl)-5-(trifluoromethyl)biphenyl-2-yl]oxy}acetic acid

The title compound was prepared by the methods of example 1 and 2 using the product from example 13 step (i) and 4-(methylthio)benzeneboronic acid. Yield 0.14g

¹H NMR DMSO-d6: δ 13.21 (1H, s); 8.00-7.69 (6H, m); 7.27 (1H, d); 4.89 (2H, s); 3.27 (3H, s)
MS: APCI (-ve): 373 (M-1)

Example 15

10

15

20

25

{[4'-(Ethylsulfonyl)-2'-methyl-5-(trifluoromethyl)biphenyl-2-yl]oxy}acetic acid
The title compound was prepared by the methods of example 1 and 2 using the product
from example 13 step (i) and the product from example 10 step (ii). Yield 0.055g

¹H NMR DMSO-d6: δ 7.80-7.12 (6H, m) ; 4.63 (2H, s) ; 3.39-3.29 (2H, q) ; 2.23 (3H, s) ; 1.18-1.11 (3H, t) MS: APCI (-ve): 401 (M-1)

Example 16

(4-Chloro-2-pyrimidin-5-ylphenoxy)acetic acid, ammonium salt

(i) Benzyl 2-bromo-4-chlorophenyl ether
Benzyl bromide (13.1ml) was added to a stirred mixture of 2-bromo-4-chlorophenol
(20.7g) and potassium carbonate (27.6g) in DMF (200ml). After 72h, the mixture was
partitioned between diethylether and water, the organic layer washed with water, dried and
the solvent evaporated under reduced pressure. The residue was purified by
chromatography on silica eluting with 2% EtOAc/isohexane. Yield 18.1g

¹H NMR CDCl₃: δ 7.55 (1H, s); 7.46-7.18 (6H, m); 6.84 (1H, d); 5.14 (2H, s)

(ii) [2-(Benzyloxy)-5-chlorophenyl]boronic acid
A solution of butyl lithium (1.6M in hexane) (50ml) was added dropwise to a stirred solution of the product from step (i) (23g) in diethylether (300ml) at -70°C. After 1h a further 18ml of butyl lithium was added, left for 0.75h, then trimethylborate (10ml) added and the mixture warmed to RT and left for 16h. 2M Hydrochloric acid (100ml) was added, stirred for 1h then the organic layer separated and extracted with aqueous sodium hydroxide solution. The basic layer was acidified with 2M hydrochloric acid solution, extracted with diethylether which was dried and evaporated under reduced pressure. The residue was triturated with iso-hexane and filtered. Yield 10.8g

10

20

25

¹H NMR CDCl₃: δ 7.82 (1H, d); 7.44-7.34 (6H, m); 6.90 (1H, d); 5.99 (2H, s); 5.12 (2H, s)

(iii) 5-[2-(Benzyloxy)-5-chlorophenyl]pyrimidine

A mixture of the product from step (ii) (0.2g), 5-bromopyrimidine (0.16g), sodium
carbonate (0.21g) and tetrakistriphenylphosphine palladium (0) (0.05g) in dioxane (6ml)
was heated under reflux for 48h. The mixture was partitioned between EtOAc and water,
the organics separated, dried, and evaporated under reduced pressure. The residue was
purified by chromatography on silica eluting with 20% EtOAc/isohexane. Yield 0.283g.

MS: APCI (+ve): 297/9 (M+1)

(iv) 4-Chloro-2-pyrimidin-5-ylphenol
 A mixture of the product from step (iii) (0.28g), 10% palladium on carbon (0.04g) in ethanol (20ml) was hydrogenated at 2Bar for 24h. After filtration the solvent was evaporated under reduced pressure. Yield 0.19g

MS: APCI (+ve): 207/9 (M+1)

(v) tert-Butyl-(4-chloro-2-pyrimidin-5-ylphenoxy)acetate
The subtitle compound was prepared by the method of example 1 step (i). Yield 0.216g

MS: APCI (+ve): 321/3 (M+1)

(vi) (4-Chloro-2-pyrimidin-5-ylphenoxy)acetic acid, ammonium salt The title compound was prepared by the method of example 1 step (iii). Yield 0.033g

¹H NMR DMSO-d6: δ 9.15 (1H, s); 9.08 (2H, s); 7.57 (1H, d); 7.44 (1H, dd); 7.10 (1H, d); 4.67 (2H, s)

MS: APCI (+ve): 265/7(M+1)

Example 17

{2-[5-(Aminosulfonyl)pyridin-2-yl]-4-chlorophenoxy}acetic acid
The title compound was prepared by the method of example 16. Yield 0.022g

25

¹H NMR DMSO-d6: δ 13.19 (1H, s); 9.05 (1H, s); 8.29 (1H, d); 8.21 (1H, d); 7.84 (1H, d); 7.65 (2H, s); 7.49 (1H, dd); 7.16 (1H, d); 4.86 (2H, s)
MS: APCI (+ve): 343/5(M+1)

Example 18

[2-(2-Aminopyrimidin-5-yl)-4-chlorophenoxy]acetic acid, trifluoroacetate salt The title compound was prepared by the method of example 16. Yield 0.036g

¹H NMR DMSO-d6: δ 8.56 (2H, s); 7.45 (1H, d); 7.33 (1H, dd); 7.05 (1H, d); 4.76 (2H, s)

MS: APCI (+ve): 280/2(M+1)

Example 19

[4-Chloro-2-(4-methyl-2-morpholin-4-ylpyrimidin-5-yl)phenoxy]acetic acid

(i) 2-[2-(Benzyloxy)-5-chlorophenyl]-N-methoxy-N-methylacetamide
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (8.6g) was added to a
solution of (2-benzyloxy-5-chlorophenyl)-acetic acid (10.6g), N,O-dimethylhydroxylamine
hydrochloride (4.4g), 1-hydroxybenzotriazole (6.9g) and N,N-diisopropylethylamine
(20ml) in DMF (150ml) and the mixture stirred at RT for 16h, then partitioned between
ethylacetate and water. The organics were washed with 2M hydrochloric acid, water,
dried, and evaporated under reduced pressure. Yield 12.2g

MS: APCI (+ve): 320/2(M+1)

(ii) 1-[2-(Benzyloxy)-5-chlorophenyl]acetone

A solution of methylmagnesium chloride (3M in THF) (6ml) was added dropwise to a stirred solution of the product from step (i) (5.2g) in THF (150ml) at -70°C. After 1h the mixture was warmed to RT, stirred for 1h then quenched with aqueous ammonium chloride solution. The mixture was partitioned between diethylether and water, the organics separated, dried, and evaporated under reduced pressure. The residue was purified by chromatography on silica eluting with 10% EtOAc/isohexane. Yield 2.22g

¹H NMR CDCl₃: δ 7.40-7.30 (5H, m); 7.26-7.12 (2H, m); 6.85 (1H, d); 5.03 (2H, s); 3.67 (2H, s); 2.12 (3H, s)

10

20

25

30

(iii) (3Z)-3-[2-(Benzyloxy)-5-chlorophenyl]-4-(dimethylamino)but-3-en-2-one A mixture of the product from step (ii) (5.72g) and dimethylformamide dimethyl acetal (3.5ml) in toluene (50ml) were heated at 100°C for 12h. The solvent was evaporated under reduced pressure to give an oil, 6.37g.

MS: APCI (+ve): 330/2(M+1)

(iv) 5-[2-(Benzyloxy)-5-chlorophenyl]-4-methyl-2-(methylthio)pyrimidine
A solution of the product from step (iii) (4.3g) in ethanol (20ml) was added to a stirred mixture of sodium ethoxide (0.98g) and S-methylisothiouronium sulphate (2g) in ethanol (30ml), and the mixture heated under reflux for 8h. A further 2g of S-methylisothiouronium sulphate and 1.18g of sodium ethoxide were added and heating continued for 16h. The mixture was cooled, partitioned between diethylether and water, the organics washed with water, dried, and evaporated under reduced pressure. The residue was purified by chromatography on silica eluting with 3-5% EtOAc/isohexane. Yield 1.84g

MS: APCI (+ve): 357/9(M+1)

(v) 5-[2-(Benzyloxy)-5-chlorophenyl]-4-methyl-2-(methylsulfonyl)pyrimidine
The subtitle compound was prepared by the method of example 2 step (i). Yield 0.85g

MS: APCI (+ve): 389/91(M+1)

(vi) 4-Chloro-2-[4-methyl-2-(methylsulfonyl)pyrimidin-5-yl]phenol
The subtitle compound was prepared by the method of example 16 step (iv). Yield 0.5g

MS: APCI (+ve): 299/301(M+1)

(vii) tert-Butyl {4-chloro-2-[4-methyl-2-(methylsulfonyl)pyrimidin-5-yl]phenoxy}acetate

The subtitle compound was prepared by the method of example 1 step (i). Yield 0.65g

MS: APCI (+ve): 413(M+1)

(viii) tert-Butyl [4-chloro-2-(4-methyl-2-morpholin-4-ylpyrimidin-5-yl)phenoxy]acetate

A solution of the product from step (vii) (0.15g) and morpholine (0.15ml) in dioxane (3ml) was heated at 90°C for 24h, cooled and the solvent evaporated under reduced pressure.

Product used crude.

MS: APCI (+ve): 420/422(M+1)

(ix) [4-Chloro-2-(4-methyl-2-morpholin-4-ylpyrimidin-5-yl)phenoxy]acetic acid The title compound was prepared by the method of example 1 step (iii). Yield 0.046g

 1 H NMR DMSO-d6: δ 8.12 (1H, s) ; 7.39 (1H, dd) ; 7.25 (1H, d) ; 7.00 (1H, d) ; 4.71 (2H, s) ; 3.73-3.67 (8H, m) ; 2.18 (3H, s) MS: APCI (+ve): 364/6(M+1)

15 Example 20

10

20

25

{4-Chloro-2-[2-(dimethylamino)pyrimidin-5-yl]phenoxy}acetic acid

(i) 5-[2-(Benzyloxy)-5-chlorophenyl]-2-chloropyrimidine
The subtitle compound was prepared by the method of example 1 step (ii) using the
product from example 16 step (ii) (3.2g) and 2-chloro-5-bromopyrimidine (2.59g). Yield
2.43g

MS: APCI (+ve): 33·1/3(M+1)

(ii) 5-[2-(Benzyloxy)-5-chlorophenyl]-2-(propylthio)pyrimidine
Propanethiol (3.1ml) was added to a stirred suspension of sodium hydride (1.4g, 60% in oil) in DMF (30ml). After 1 hour a solution of the product from step (i) (2.4g) in DMF (10ml) was added. The reaction mixture was stirred at RT for 1 hour then partitioned between EtOAc and water. The organics were washed with water, brine, dried and evaporated under reduced pressure. The residue was purified by chromatography on silica eluting with 5% EtOAc/isohexane. Yield 1.87g

MS: APCI(+ve) 371 (M+1)

(iii) 5-[2-(Benzyloxy)-5-chlorophenyl]-2-(propylsulfonyl)pyrimidine
The subtitle compound was prepared by the method of example 2 step (i) using the product from step (ii).

MS: APCI(+ve) 403 (M+1)

(iv) tert-Butyl {4-chloro-2-[2-(propylsulfonyl)pyrimidin-5-yl]phenoxy} acetate
The subtitle compound was prepared by the method of example 16 step (iv) and example 1
step (i) using the product from step (iii). Yield 1.04g

MS: APCI(+ve) 427 (M+1)

(v) {4-Chloro-2-[2-(dimethylamino)pyrimidin-5-yl]phenoxy} acetic acid Dimethylamine hydrochloride (0.82g) was added to a stirred solution of the product from step (iv) (0.2g) and N,N-diisopropylethylamine (0.9ml) in NMP (5ml). The reaction mixture was heated at 90°C for 6h then diluted with EtOAc, washed with water, brine, dried and evaporated under reduced pressure. The residue was dissolved in DCM (10ml) then trifluoroacetic acid (10ml) added and stirred for 18h at RT. The reaction mixture was evaporated to dryness and the residue purified by reverse phase HPLC followed by trituration with methanol to give a white solid. Yield 0.035g

1H NMR DMSO-d6: δ8.60 (2H, s); 7.42 (1H, d); 7.32 (1H, dd); 7.05 (1H, d); 4.77 (2H, s); 3.16 (6H, s).
MS: APCI(-ve) 306 (M-1)

Example 21

15

.20

25

[4-Chloro-2-(2-morpholin-4-ylpyrimidin-5-yl)phenoxy]acetic acid

The title compound was prepared from the product of example 20 step (iv) and morpholine by the method of example 20 step (v).

1H NMR DMSO-d6: δ13.10 (1H, brs); 8.65 (2H, s); 7.45 (1H, d); 7.34 (1H, dd); 7.06 (1H, d); 4.77 (2H, s); 3.75 (4H, m); 3.67 (4H, m)
MS: APCI(-ve) 348 (M-1)

Example 22

{4-Chloro-2-[2-(methylamino)pyrimidin-5-yl]phenoxy}acetic acid
The title compound was prepared from the product of example 20 step (iv) and
methylamine hydrochloride by the method of example 20 step (v).

35 1H NMR DMSO-d6: δ8.54 (2H,s); 7.42 (1H, d); 7.32 (1H, dd); 7.25 (1H, brs); 7.04 (1H, d); 4.76 (2H, s): 2.84 (3H, s)

MS: APCI(-ve) 292 (M-1)

Example 23

{2-[2-(Benzylamino)pyrimidin-5-yl]-4-chlorophenoxy}acetic acid

The title compound was prepared from the product of example 20 step (iv) and benzylamine by the method of example 20 step (v).

1H NMR DMSO-d6: δ13.09 (1H, brs); 8.54 (2H, s); 7.90 (1H, t); 7.42 (1H, d); 7.35-7.29 (5H, m); 7.22 (1H, m); 7.03 (1H, d); 4.76 (2H, s); 4.55 (2H, d)
MS: APCI(-ve) 368 (M-1)

Example 24

[4-Chloro-2-(2-piperidin-1-ylpyrimidin-5-yl)phenoxy]acetic acid

The title compound was prepared from the product of example 20 step (iv) and piperidine by the method of example 20 step (v).

1H NMR DMSO-d6: δ13.10 (1H, brs); 8.59 (1H, d); 7.32 (1H, dd); 7.04 (1H, d); 4.77 (2H, s); 3.79 (4H, t); 1.65 (2H, m); 1.53 (4H, m)
MS: APCI(-ve) 346 (M-1)

20

15

Example 25

(4-Chloro-2-{2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl}phenoxy)acetic acid

(i) N-(5-Bromopyrimidin-2-yl)-N-methylmethanesulfonamide

Sodium hydride (0.22g, 60% in oil) was added to a solution of (5-bromopyrimidin-2-yl)methylamine (0.85g) in DMF (10ml) at 0°C and stirred for 30min. Methanesulphonyl chloride (0.62g) was added dropwise, the mixture warmed to RT and stirred for a further 2h. The reaction was quenched with water and then extracted with EtOAc. The organics were washed with water, dried, and evaporated under reduced pressure. The residue was purified by chromatography on silica eluting with 1% methanol/DCM. Yield 0.42g

1

MS: APCI (+ve): 266(M+1)

(ii) N-[5-(5-Chloro-2-hydroxyphenyl)pyrimidin-2-yl]-N-methylmethanesulfonamide The subtitle compound was prepared by the method of example 1 step (ii) using the product from step (i) and 2-hydroxy-5-chloroboronic acid (0.27g). Yield 0.2g

25

30

35

MS: APCI (+ve): 314(M+1)

- (iii) (4-Chloro-2-{2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl}phenoxy)acetic acid
- The title compound was prepared by the method of example 1 step (i) and (iii) using the product from step (ii). Yield 0.017g

¹H NMR DMSO-d6: δ 13.16 (1H, s); 8.94 (2H, s); 7.57 (1H, d); 7.45-7.42 (1H, m); 7.14 (1H, d); 4.82 (2H, s); 3.55 (3H, s); 3.47 (3H, s)
MS: APCI (-ve): 370(M-1)

Pharmacological Data

Ligand Binding Assay

15 [3H]PGD₂ was purchased from Perkin Elmer Life Sciences with a specific activity of 100-210Ci/mmol. All other chemicals were of analytical grade.

HEK cells expressing rhCRTh2 / Gα16 were routinely maintained in DMEM containing 10% Foetal Bovine Serum (HyClone), 1mg/ml geneticin, 2mM L-glutamine and 1% nonessential amino acids. For the preparation of membranes, the adherent transfected HEKcells were grown to confluence in two layer tissue culture factories (Fisher, catalogue number TKT-170-070E). Maximal levels of receptor expression were induced by addition of 500mM sodium butyrate for the last 18 hours of culture. The adherent cells were washed once with phosphate buffered saline (PBS, 50ml per cell factory) and detached by the addition of 50ml per cell factory of ice-cold membrane homogenisation buffer [20mM HEPES (pH 7.4), 0.1mM dithiothreitol, 1mM EDTA, 0.1mM phenyl methyl sulphonyl fluoride and $100\mu g/ml$ bacitracin]. Cells were pelleted by centrifugation at 220xg for 10minutes at 4°C, re-suspended in half the original volume of fresh membrane homogenisation buffer and disrupted using a Polytron homogeniser for 2 x 20 second bursts keeping the tube in ice at all times. Unbroken cells were removed by centrifugation at 220xg for 10 minutes at 4°C and the membrane fraction pelleted by centrifugation at 90000xg for 30 minutes at 4°C. The final pellet was re-suspended in 4 ml of membrane homogenisation buffer per cell factory used and the protein content determined. Membranes were stored at -80°C in suitable aliquots.

All assays were performed in Corning clear bottomed, white 96-well NBS plates (Fisher). Prior to assay, the HEK cells membranes containing CRTh2 were coated onto SPA PVT WGA beads (Amersham). For coating membranes were incubated with beads at typically 25µg membrane protein per mg beads at 4°C with constant agitation overnight. (The optimum coating concentrations were determined for each batch of membranes) The beads were pelleted by centrifugation (800xg for 7minutes at 4°C), washed once with assay buffer (50mM HEPES pH 7.4 containing 5mM magnesium chloride) and finally resuspended in assay buffer at a bead concentration of 10mg/ml.

- Each assay contained 20μl of 6.25nM [³H]PGD₂, 20μl membrane saturated SPA beads both in assay buffer and 10μl of compound solution or 13,14-dihydro-15-keto prostaglandin D₂ (DK-PGD₂, for determination of non-specific binding, Cayman chemical company). Compounds and DK-PGD₂ were dissolved in DMSO and diluted in the same solvent to 100x the required final concentration. Assay buffer was added to give a final concentration of 10% DMSO (compounds were now at 10x the required final concentration) and this was the solution added to the assay plate. The assay plate was incubated at room temperature for 2 hours and counted on a Wallac Microbeta liquid scintillation counter (1 minute per well).
- Compounds of formula (I) have an IC₅₀ value of less than (<) $10\mu M$. Specifically, example 9 has a \overline{p} IC₅₀ = 7.4 and \overline{e} xample 25 has a \overline{p} IC₅₀ = 8.0.

CLAIMS

1. A compound of formula (I) or a pharmaceutically acceptable salt thereof:

in which:

25

30

 X is halogen, cyano, nitro, SR⁶ or C₁₄alkyl which is substituted by one or more halogen atoms;

Y is selected from hydrogen, halogen, CN, nitro, SO₂R³, OR⁴, SR⁴, SOR³, SO₂NR⁴R⁵, CONR⁴R⁵, NR⁶SO₂R³, NR⁶CO₂R⁶, NR⁶COR³, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl or C₁₋₆alkyl, the latter four groups being optionally substituted by one or more substituents independently selected from halogen, OR⁶ and NR⁶R⁷, S(O)_nR⁶ where n is 0, 1 or 2:

Z is aryl or a ring A, where A is a six membered heterocyclic ring containing one or more nitrogen atoms or may be a 6,6 or 6,5 fused bicycle containing one or more O, N, S atoms, the aryl or A rings all being optionally substituted by one or more substituents independently selected from from hydrogen, halogen, CN, OH, SH, nitro, CO₂R⁶, SO₂R⁹, OR⁹, SR⁹, SOR⁹, SO₂NR¹⁰R¹¹, CONR¹⁰R¹¹, NR¹⁰R¹¹, NHSO₂R⁹, NR⁹SO₂R⁹, NR⁶CO₂R⁶, NHCOR⁹, NR⁹COR⁹, aryl, heteroaryl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl or C₁₋₆alkyl, the latter four groups being optionally substituted by one or more substituents independently selected from halogen, C₃-C₇ cycloalkyl, OR⁶, NR⁶R⁷, S(O)_nR⁶ (where n is 0, 1 or 2), CONR⁶R⁷, NR⁶COR⁷, SO₂NR⁶R⁷ and NR⁶SO₂R⁷;

R¹ and R² independently represent a hydrogen atom, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl or a C₁₋₆alkyl group, the latter four groups being optionally substituted by one

or more substituents independently selected from halogen, C_3 - C_7 cycloalkyl, NR^6R^7 , OR^6 , $S(O)_nR^6$ (where n is 0, 1 or 2);

or

5

 R^1 and R^2 together can form a 3-8 membered ring optionally containing one or more atoms selected from O, S, NR^6 and itself optionally substituted by one or more C_1 - C_3 alkyl or halogen;

R³ represents C₃-C₇ cycloalkyl or C₁₋₆alkyl which may be optionally substituted by one or more substituents independently selected from halogen, C₃-C₇ cycloalkyl, OR⁶ and NR⁶R⁷, S(O)_nR⁶ (where n = 0,1 or 2), CONR⁶R⁷, NR⁶COR⁷, SO₂NR⁶R⁷ and NR⁶SO₂R⁷;

 R^4 and R^5 independently represent hydrogen, C_3 - C_7 cycloalkyl or C_{1-6} alkyl, the latter two groups being optionally substituted by one or more substituents independently selected from halogen, C_3 - C_7 cycloalkyl, OR^6 and NR^6R^7 , $S(O)_nR^6$ (where n=0,1 or 2), $CONR^6R^7$, NR^6COR^7 , $SO_2NR^6R^7$ and $NR^6SO_2R^7$;

Or .

20

 R^4 and R^5 together with the nitrogen atom to which they are attached can form a 3-8 membered saturated heterocylic ring optionally containing one or more atoms selected from O, $S(O)_n$ (where n=0,1 or 2), NR^8 , and itself optionally substituted by halogen or C_{1-3} alkyl;

25

 R^6 and R^7 independently represents a hydrogen atom or C_1 - C_6 alkyl;

R⁸ is hydrogen, C₁₋₄ alkyl, -COC₁-C₄ alkyl, CO₂C₁-C₄alkyl or CONR⁶C₁-C₄alkyl;

R⁹ represents aryl, heteroaryl, C₃-C₇ cycloalkyl or C₁₋₆alkyl, the latter two groups may be optionally substituted by one or more substituents independently selected from halogen, C₃-C₇ cycloalkyl, aryl, heteroaryl OR⁶ and NR⁶R⁷, S(O)_nR⁶ (where n = 0, 1 or 2), CONR⁶R⁷, NR⁶COR⁷, SO₂NR⁶R⁷ and NR⁶SO₂R⁷;

R¹⁰ and R¹¹ independently represent aryl or heteroaryl, hydrogen, C₃-C₇ cycloalkyl or

 C_{1-6} alkyl, the latter two groups being optionally substituted by one or more substituents independently selected from halogen, C_3 - C_7 cycloalkyl, aryl, heteroaryl, OR^6 and NR^6R^7 , $S(O)_nR^6$ (where n=0, 1 or 2), $CONR^6R^7$, NR^6COR^7 , $SO_2NR^6R^7$ and $NR^6SO_2R^7$;

0

15

20

 R^{10} and R^{11} together with the nitrogen atom to which they are attached can form a 3-8 membered saturated heterocylic ring optionally containing one or more atoms selected from O, $S(O)_n$ (where n=0, 1 or 2), NR^8 , and itself optionally substituted by halogen or C_1 - C_3 alkyl.

- 2. A compound according to claim 1 in which X is halogen or trifluoromethyl.
- 3. A compound according to claim 1 or 2 in which Y is hydrogen or C₁₋₆alkyl.
- 4. A compound according to any one of claims 1 to 3 in which Z is phenyl or pyrimidyl or optionally substituted as defined in claim 1.
- A compound according to any one of claims 1 to 4 in which R¹ and R² are independently hydrogen or C₁₋₃ alkyl.
 - 6. A compound according to any one of claims 1 to 5 selected from:
 - {[5-Chloro-4'-(ethylthio)biphenyl-2-yl]oxy}acetic acid,
 - {[5-Chloro-4'-(ethylsulfonyl)biphenyl-2-yl]oxy}acetic acid,
- 25 [(4',5-Dichlorobiphenyl-2-yl)oxy]acetic acid,
 - [(5-Chloro-4'-cyanobiphenyl-2-yl)oxy]acetic acid,
 - [(5-Chloro-4'-methoxybiphenyl-2-yl)oxy]acetic acid,
 - (4-Chloro-2-quinolin-8-ylphenoxy)acetic acid,
 - [(5-Chloro-3',4'-dimethoxybiphenyl-2-yl)oxy]acetic acid,
- 30 2'-(Carboxymethoxy)-5'-chlorobiphenyl-4-carboxylic acid,
 - {[5-Chloro-4'-(methylsulfonyl)biphenyl-2-yl]oxy}acetic acid,
 - {[5-Chloro-4'-(ethylsulfonyl)-2'-methylbiphenyl-2-yl]oxy}acetic acid,
 - [(5-Cyanobiphenyl-2-yl)oxy]acetic acid,
 - [(5-Nitrobiphenyl-2-yl)oxy]acetic acid,
- 35 {[4'-(Methylthio)-5-(trifluoromethyl)biphenyl-2-yl]oxy}acetic acid, {[4'-(Methylsulfonyl)-5-(trifluoromethyl)biphenyl-2-yl]oxy}acetic acid,

25

{[4'-(Ethylsulfonyl)-2'-methyl-5-(trifluoromethyl)biphenyl-2-yl]oxy}acetic acid, (4-Chloro-2-pyrimidin-5-ylphenoxy)acetic acid, {2-[5-(Aminosulfonyl)pyridin-2-yl]-4-chlorophenoxy}acetic acid, [2-(2-Aminopyrimidin-5-yl)-4-chlorophenoxy]acetic acid, , [4-Chloro-2-(4-methyl-2-morpholin-4-ylpyrimidin-5-yl)phenoxy]acetic acid, 4-Chloro-2-[2-(dimethylamino)pyrimidin-5-yl]phenoxy}acetic acid, {4-Chloro-2-(2-morpholin-4-ylpyrimidin-5-yl)phenoxy}acetic acid, {4-Chloro-2-[2-(methylamino)pyrimidin-5-yl]phenoxy}acetic acid, {2-[2-(Benzylamino)pyrimidin-5-yl]-4-chlorophenoxy}acetic acid, {4-Chloro-2-(2-piperidin-1-ylpyrimidin-5-yl)phenoxy]acetic acid, (4-Chloro-2-{2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl}phenoxy)acetic acid, and pharmaceutically acceptable salts thereof.

- 7. A compound of formula (I) according to any one of claims 1 to 6 for use in therapy.
- 8. A method of treating a disease mediated by prostaglandin D2, which comprises administering to a patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt as defined in claims 1 to 6.
- 9. A method of treating a respiratory disease, such as asthma and rhinitis, in a patient suffering from, or at risk of, said disease, which comprises administering to the patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as defined in claims 1 to 6.

ABSTRACT

The invention relates to substituted phenoxyacetic acids as useful pharmaceutical compounds for treating respiratory disorders, pharmaceutical compositions containing them, and processes for their preparation.