MATH544 Notes

Justin Baum

January 16, 2019

Contents

Contents			1
1	Pre-Class		
	1.1	Number Fields	2
	1.2	Theory of Linear Algebra	3
	1.3	Determinant	3
	1.4	Acknowledgements	3
2	Lectures		
	2.1	14 January 2019	5
	2.2	16 January 2019	7

Chapter 1

Pre-Class

1.1 Number Fields

Definition 1.1.1. A field is any set \mathbb{K} which follow the Field Axioms:

- 1. $\alpha + \beta = \beta + \alpha$ (addition is commutative).
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ (addition is associative).
- 3. There exists an element 0 such that $\alpha + 0 = \alpha$.
- 4. For every $\alpha \in \mathbb{K}$, there exists β such that $\alpha + \beta = 0$.
- 5. $\alpha\beta = \beta\alpha$ (multiplication is commutative).
- 6. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ (multiplication is associative).
- 7. There exists an element 1 such that $1 \cdot \alpha = \alpha$.
- 8. For every α there exists a γ such that $\alpha \gamma = 1$.
- 9. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$, multiplication is distributive over addition.

Definition 1.1.2. Two fields, \mathbb{K} and \mathbb{K}' are said to be **isomorphic** if we can setup a one to one correspondence between \mathbb{K} and \mathbb{K}' .

The most common fields are, \mathbb{Q} , \mathbb{R} , \mathbb{C} .

1.2 Theory of Linear Algebra

Involving space, and the most general case, a series of linear equations.

1.3 Determinant

The determinant is the scalar that a 1 area, volume, hypervolume etc. gets scaled by. Even a one length can be scaled or reduced to 0. When a determinant is 0, it means that all space, gets squished to a lower dimension and thus has 0 volume, or 0 area, and so on.

$$D = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{2n} & \dots & a_{nn} \end{vmatrix} = \det ||a||$$

1.4 Acknowledgements

Almost none of this work is of my own. This work is from *Linear Algebra* by George Shilov. And lecture notes from Dr. Matt Miller's MATH544H class taught at the University of South Carolina in the Spring of 2019.

Figure 1.1: Vector Space \mathbb{R}^2 for $\forall (x,y); -4 \leq x \leq 4$ and $-4 \leq y \leq 4$.

Chapter 2

Lectures

2.1 14 January 2019

Definition 2.1.1. Linear Algebra is the study of vector spaces and the maps between them.

Definition 2.1.2. A function $T: V \to W$, from vector space V, the domain, to vector space W, the codomain, is called a linear transformation if

$$T(c\vec{u}+\vec{v})=cT(\vec{u})+T(\vec{v}); \ \forall \vec{u},\vec{v}\in V \land c\in \mathbb{R}$$

Example 2.1.1.

$$T: \mathbb{R} \to \mathbb{R}; \ T(x) = 2x$$

$$T(cu+v) = 2cu+v = cT(u) + T(v)$$

So this is a linear transformation.

Example 2.1.2.

$$C^0[0,2\pi] = \{f: [0,2\pi] \to \mathbb{R} \mid f \text{ is continuous}\}$$

$$S: C^0[0,2\pi] \to \mathbb{R}$$

$$S(f) = f(\pi)$$

Check linearity.

$$S(cf + g) = (cf + g)(\pi) = cf(\pi) + g(\pi) = cS(f) + S(g)$$

Example 2.1.3.

Let
$$T: C^0[0, 2\pi] \to \mathbb{R}$$

$$T(f) = \bar{f}$$

$$T(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) \ dx$$

Check linearity.

$$T(cf+g) = \frac{1}{2\pi} \int_0^{2\pi} (cf+g)(x) dx$$

$$T(cf+g) = \frac{1}{2\pi} (c \int_0^{2\pi} f(x) dx + \int_0^{2\pi} g(x) dx)$$

$$T(cf+g) = cT(f) + T(g)$$

 \mathbb{R}^2 and \mathbb{R}^3 are vector spaces, (x,y) is mapped to the vector $\begin{bmatrix} x \\ y \end{bmatrix}$ and (x,y,z) is mapped to the vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$.

Example 2.1.4. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x + 3y \\ -x + y \\ 2x + y \end{bmatrix}$$

Verify linearity.

$$T(c \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} z \\ w \end{bmatrix}) = T(\begin{bmatrix} cx+z \\ cy+w \end{bmatrix} = \begin{bmatrix} cx+z+3cu+3w \\ -cx-z+cy+w \\ 2cx+2z+cy+w \end{bmatrix}$$

$$T(c \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} z \\ w \end{bmatrix}) = \begin{bmatrix} cx + 3cu \\ -cx + cy \\ 2cx + cy \end{bmatrix} + \begin{bmatrix} z + 3w \\ -z + w \\ 2z + w \end{bmatrix}$$

$$T(c \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} z \\ w \end{bmatrix}) = c \begin{bmatrix} x + 3u \\ -x + y \\ 2x + y \end{bmatrix} + \begin{bmatrix} z + 3w \\ -z + w \\ 2z + w \end{bmatrix}$$

$$T(c \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} z \\ w \end{bmatrix}) = cT(\begin{bmatrix} x \\ y \end{bmatrix}) + T(\begin{bmatrix} z \\ w \end{bmatrix})$$

This transformation is the same as the matrix transformation,

$$\begin{bmatrix} 1 & 3 \\ -1 & 1 \\ -2 & 1 \end{bmatrix}$$

Definition 2.1.3. Let $T: V \to W$ be a linear transformation. The range or image of T is the set range (T).

2.2 16 January 2019

Definition 2.2.1. Let $T: V \to W$ be a linear transformation. The range or image of T is the set range $(T) = T(V) = \operatorname{im}(T)$.

$$\{\vec{w} \in W \mid (\exists \vec{v} \in V)\vec{w} = T(\vec{v})\}\$$

Definition 2.2.2. The kernel or nullspace of T is ker(T) = (T).

$$\{\vec{v} \in V \mid T(V) = \vec{0}_W\}$$

Note: The kernel is a vector space.

] [

Example 2.2.1. Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
; $T(\begin{bmatrix} x \\ y \end{bmatrix}) = T(\begin{bmatrix} x+3y \\ -x+y \\ 2x+y \end{bmatrix})$.

$$ker(T) = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^3 \right\}$$
$$x + 3y = 0$$
$$-x + y = 0$$

$$4y = 0 \implies y = 0 \implies x = 0 \implies ker(T) = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \}$$

$$T(V) = \left\{ \begin{bmatrix} x + 3y \\ -x + y \\ 2x + y \end{bmatrix} \mid x, y \in \mathbb{R} \right\}$$

$$T(V) = \{x \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + y \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} \mid x, y \in \mathbb{R}\} = \{t\vec{a} + s\vec{b} \mid t, s \in \mathbb{R}\}$$

Which plane is it? Contrast $L(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$.

This is the plane, 3x - 5y - 4z = 0. This proves $T(V) \subseteq P$. To prove T(V) = P, we also need to prove $P \subseteq T(V)$.