Basic quantum field theory

Kazuya Yonekura

Department of physics, graduate school of Science, Tohoku University

Abstract: Lecture notes for the course (Version: 2024/10/4)

Contents

0	Ab	oout this course	2
1	Noi	n-relativistic QM	3
	1.1	Notation, convention	3
	1.2	Analytical mechanics	4
	1.3	Canonical quantization	5
	1.4	Covariant derivatives and gauge transformations	5
	1.5	Harmonic oscillator	6
2	A c	9	
	2.1	A lattice model	9
	2.2	Continuum limit	10
	2.3	Lagrangian formulation	11
	2.4	Classical dynamics	12
3	Free scalar field theory		13
	3.1	Special relativity	13
	3.2	Real scalar field	14
	3.3	Quantization	15
	3.4	Hilbert space: Fock space	17
	3.5	Infinite volume	18
4	More on a real scalar field		
	4.1	Heisenberg picture in QM	21
	4.2	Heisenberg picture in QFT	22
	4.3	Non-relativistic limit	23
	4.4	Second quantization	25
5	Spinors and Dirac equations		
	5.1	Spins in QM	26
	5.2	Gamma matrices and Clifford algebra	27
	5.3	Lorentz invariance	29
	5.4	More on Lorentz transformation	32
	5.5	Spin	34
	5.6	Coupling to EM fields	36
	5.7	Magnetic moment	37
	5.8	Solutions of Dirac equation	39

6	Qua	42	
	6.1	Analytical mechanics	42
	6.2	Anti-commutation relation	43
	6.3	Creation and annihilation operators	45
	6.4	Hamiltonian and Fock space	47
7	Qua	49	
	7.1	Analytical mechanics	49
	7.2	Gauge invariance of states	50
	7.3	Quantization	51

0 About this course

- Self-introduction: Kazuya Yonekura (high energy theory)
- Google classroom (zu7iym4)
- Evaluation: by exam at the end of the semester 2025/1/28 Tuesday, (January 28th) See the calendar of the graduate school of science.
- No class on 2024/10/25 (October 25th, University Festival), 2024/11/1 (November 1st)
- Assumed knowledge: analytical mechanics, quantum mechanics (QM), electromagnetism (EM), special relativity

This course: Quantum Field Theory (QFT)

Abbreviation:

EM = electromagnetism

QM = quantum mechanics

QFT = quantum field theory

What is QFT?

- High energy physics: the fundamental framework for the laws of physics, including the standard model of particle physics
- Condensed matter physics: effective description of various many body physics phenomena (e.g. superconductivity)

Examples of fields

- All elementary particles are described by some fields.
 e.g. EM field, EM waves → photon
- Collective motions in many body systems
 e.g. sound waves → phonon

Remark

The language of relativistic QFT is used.

Natural units:

$$c$$
: speed of light (0.1)

$$hbar{\pi}$$
: Planck constant divided by 2π (0.2)

$$c = 1, \qquad \hbar = 1 \tag{0.3}$$

I will use natural units later.

For cond-mat., $c \to v$ (an appropriate speed of some field)

1 Non-relativistic QM

1.1 Notation, convention

$$t$$
: time coordinate (1.1)

$$\vec{x} = (x^i) \quad (i = 1, 2, 3) \quad : \text{ space coordinates}$$
 (1.2)

$$\vec{p} = (p^i)$$
: momentum (1.3)

(1.4)

A dot: time derivative

$$\dot{\vec{x}} = \frac{d\vec{x}}{dt} \qquad \ddot{\vec{x}} = \frac{d^2\vec{x}}{dt^2} \tag{1.5}$$

Einstein summation notation

$$A_i B_i = \sum_{i=1,2,3} A_i B_i = \vec{A} \cdot \vec{B}$$
 (1.6)

Upper and lower indices mean the same thing: $A_i = A^i$.

Partial derivative:

$$\partial_i = \frac{\partial}{\partial x^i}, \qquad \partial_t = \frac{\partial}{\partial t}$$
 (1.7)

Potentials for EM fields

$$\phi$$
: electric potential $\vec{A} = (A_i)$: vector potential (1.8)

EM fields

$$\vec{E} = -\vec{\partial}\phi - \frac{\partial\vec{A}}{\partial t} = -\partial_i\phi - \partial_t A_i \tag{1.9}$$

$$\vec{B} = \vec{\partial} \times \vec{A} = \frac{1}{2} \epsilon_{ijk} (\partial_i A_j - \partial_j A_i)$$
 (1.10)

 ϵ_{ijk} : totally antisymmetric tensor,

$$\epsilon_{ikj} = -\epsilon_{ijk}, \quad \epsilon_{kji} = -\epsilon_{ijk}, \quad \epsilon_{jik} = -\epsilon_{ijk}, \quad \epsilon_{123} = 1.$$
 (1.11)

Explicitly

$$\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1, \qquad \epsilon_{213} = \epsilon_{132} = \epsilon_{321} = -1, \qquad \text{others} = 0$$
 (1.12)

The exterior product

$$(\vec{A} \times \vec{B})_i = \epsilon_{ijk} A_j B_k$$
. (Einstein's summation notation for j, k) (1.13)

$$= \sum_{j,k} \epsilon_{ijk} A_j B_k \tag{1.14}$$

1.2 Analytical mechanics

The action for a particle interacting with EM field:

$$S = \int dt \left(\frac{1}{2}m\dot{\vec{x}}^2 - e\phi\right) + e \int A_i \frac{dx^i}{dt} dt \tag{1.15}$$

$$m$$
: mass, e : charge (1.16)

Equations of motion (EOM) is obtained by the principle of least action: Under $\vec{x} \to \vec{x} + \delta \vec{x}$ ($\delta \vec{x}$: infinitesimal), the action is stationary, $\delta S = 0$.

$$\delta S = \int dt (m \delta \dot{x}^i \dot{x}^i - e \delta x^i \partial_i \phi) + e \int dt (\delta x^j \partial_j A_i \dot{x}^i + A_i \dot{\delta x}^i)$$
(1.17)

$$= \int dt (-m\ddot{x}^i - e\partial_i\phi)\delta x^i + e \int dt \,\delta x^i (\partial_i A_j \dot{x}^j - \partial_j A_i \dot{x}^j - \partial_t A_i)$$
 (1.18)

where

$$\frac{d}{dt}A_i = \partial_j A_i \dot{x}^j + \partial_t A_i \tag{1.19}$$

is used.

$$\delta S = \int dt \left(-m\ddot{x}^i - e(\partial_i \phi + \partial_t A_i) + e(\partial_i A_j - \partial_j A_i) \dot{x}^j \right) \delta x^i = 0$$
 (1.20)

EOM

$$m\ddot{x}^{i} = -e(\partial_{i}\phi + \partial_{t}A_{i}) + e(\partial_{i}A_{j} - \partial_{j}A_{i})\dot{x}^{j}$$
(1.21)

$$= eE^{i} + e\epsilon_{ijk}B^{k}\dot{x}^{j} \qquad (\partial_{i}A_{j} - \partial_{j}A_{i} = \epsilon_{ijk}B^{k})$$

$$(1.22)$$

$$= e(\vec{E} + \dot{\vec{x}} \times \vec{B}) : EOM \tag{1.23}$$

Lagrangian L $(S = \int dt L)$

$$L = \frac{1}{2}m\dot{\vec{x}}^2 - e\phi + eA_i\dot{x}^i$$
 (1.24)

Canonical momentum

$$p_i = \frac{\partial L}{\partial \dot{x}^i} = m\dot{x}^i + eA^i \tag{1.25}$$

Hamiltonian

$$H = p_i \dot{x}^i - L \tag{1.26}$$

$$=\frac{1}{2}m\dot{\vec{x}}^2 + e\phi\tag{1.27}$$

$$= \frac{1}{2m}(\vec{p} - e\vec{A})^2 + e\phi. \tag{1.28}$$

1.3 Canonical quantization

So far classical mechanics.

Now quantum.

The rule for quantization:

$$x^{i}, p_{j}$$
: operators on the Hilbert space of physical states (1.29)

Impose canonical commutation relations to x^i and p_j ,

$$[x^i, p_j] = i\hbar \delta^i_j \tag{1.30}$$

 δ_i^i : the Kronecker delta

$$\delta_j^i = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases} \tag{1.31}$$

More explicitly, p_j is realized on wavefunctions $\Psi(\vec{x})$ by

$$p_j \Psi(\vec{x}) = -i\hbar \partial_j \Psi(\vec{x}) \tag{1.32}$$

Hamiltonian operator

$$H\Psi = \left[\frac{1}{2m}(\vec{p} - e\vec{A})^2 + e\phi\right]\Psi\tag{1.33}$$

$$= \left[\frac{1}{2m} (-i\hbar \partial_i - eA_i)^2 + e\phi \right] \Psi \tag{1.34}$$

(Time dependent) Schrödinger equation

$$i\hbar\partial_t\Psi = H\Psi \tag{1.35}$$

Here, the meaning of $(-i\hbar\partial_i - eA_i)^2$ is to act $(-i\hbar\partial_i - eA_i)$ twice and take some over i. More explicitly, definite

$$(-i\hbar\partial_i - eA_i)^2 \Psi = \sum_i (-i\hbar\partial_i - eA_i)[(-i\hbar\partial_i - eA_i)\Psi]. \tag{1.36}$$

1.4 Covariant derivatives and gauge transformations

Covariant derivative will be an important concept in QFT.

For Ψ in QM,

$$D_i = \partial_i - i \frac{e}{\hbar} A_i, \qquad D_t = \partial_t + i \frac{e}{\hbar} \phi$$
 (1.37)

Schrödinger equation is now

$$i\hbar D_t \Psi = -\frac{\hbar^2}{2m} \vec{D}^2 \Psi \tag{1.38}$$

 \vec{E},\vec{B} are invariant under gauge transformations (exercise)

$$A_i \to A_i' = A_i + \partial_i \alpha, \qquad \phi \to \phi' = \phi - \partial_t \alpha.$$
 (1.39)

 α : an arbitrary function.

The transformation of Ψ is defined as

$$\Psi \to \Psi' = \exp(i\frac{e}{\hbar}\alpha)\Psi \tag{1.40}$$

Then

$$D_i'\Psi' = \left(\partial_i - i\frac{e}{\hbar}(A_i + \partial_i\alpha)\right) \left(\exp(i\frac{e}{\hbar}\alpha)\Psi\right)$$
(1.41)

$$=\exp(i\frac{e}{\hbar}\alpha)\left(\partial_{i}-i\frac{e}{\hbar}A_{i}\right)\Psi\tag{1.42}$$

$$=\exp(i\frac{e}{\hbar}\alpha)D_i\Psi\tag{1.43}$$

Similarly

$$(D_i')^2 \Psi' = \exp(i\frac{e}{\hbar}\alpha)(D_i)^2 \Psi \tag{1.44}$$

$$D_t'\Psi' = \exp(i\frac{e}{\hbar}\alpha)D_t\Psi \tag{1.45}$$

Then

$$i\hbar D_t \Psi = -\frac{\hbar^2}{2m} \vec{D}^2 \Psi \quad \Longleftrightarrow \quad i\hbar D_t' \Psi' = -\frac{\hbar^2}{2m} \vec{D}'^2 \Psi'$$
 (1.46)

Principle: physics is invariant under gauge transformations.

1.5 Harmonic oscillator

Harmonic oscillators will play very important roles in QFT.

In QM (one-dimension),

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2. \tag{1.47}$$

 ω : parameter.

Define creation and annihilation operators a, a^{\dagger} :

$$a = \sqrt{\frac{m\omega}{2\hbar}}x + i\sqrt{\frac{1}{2\hbar\omega m}}p,\tag{1.48}$$

$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}}x - i\sqrt{\frac{1}{2\hbar\omega m}}p\tag{1.49}$$

Commutation relations

$$[a, a^{\dagger}] = \frac{1}{2\hbar} (-i[x, p] + i[p, x]) \tag{1.50}$$

$$=1 \qquad ([x,p]=i\hbar) \tag{1.51}$$

$$x = \sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dagger}), \qquad p = -i\sqrt{\frac{\hbar\omega m}{2}}(a-a^{\dagger}).$$
 (1.52)

$$H = -\frac{\hbar\omega}{4}(a - a^{\dagger})^{2} + \frac{\hbar\omega}{4}(a + a^{\dagger})^{2}$$
 (1.53)

$$= \frac{\hbar\omega}{2}(aa^{\dagger} + a^{\dagger}a) \tag{1.54}$$

$$=\hbar\omega(a^{\dagger}a+\frac{1}{2}). \tag{1.55}$$

Define state vectors $|n\rangle$ $(n = 0, 1, 2, \cdots)$ by

$$|0\rangle : a|0\rangle = 0, \tag{1.56}$$

$$|n+1\rangle = \frac{1}{\sqrt{n+1}} a^{\dagger} |n\rangle \qquad (n=0,1,2,\cdots).$$
 (1.57)

Number operator

$$N = a^{\dagger} a \tag{1.58}$$

Remark: for any operators A, B, C

$$[AB, C] = ABC - CAB = A(BC - CB) + (AC - CA)B = A[B, C] + [A, C]B$$
 (1.59)

Then

$$[N, a^{\dagger}] = [a^{\dagger}a, a^{\dagger}] = a^{\dagger}[a, a^{\dagger}] + [a^{\dagger}, a^{\dagger}]a = a^{\dagger}$$
 (1.60)

$$[N, a^{\dagger}] = a^{\dagger}, \qquad [N, a] = -a.$$
 (1.61)

One can show

$$N|n\rangle = n|n\rangle. \tag{1.62}$$

Proof by induction:

- 1. For n = 0, $a^{\dagger}a|0\rangle = 0$ by definition of $|0\rangle$.
- 2. If $N|n\rangle = n|n\rangle$, then

$$N|n+1\rangle = \frac{1}{\sqrt{n+1}}Na^{\dagger}|n\rangle \tag{1.63}$$

$$= \frac{1}{\sqrt{n+1}}([N, a^{\dagger}] + a^{\dagger}N)|n\rangle \tag{1.64}$$

$$= \frac{1}{\sqrt{n+1}} (a^{\dagger} + a^{\dagger} N) |n\rangle \tag{1.65}$$

$$= \frac{1}{\sqrt{n+1}} a^{\dagger} (n+1) |n\rangle \tag{1.66}$$

$$= (n+1)|n+1\rangle. \tag{1.67}$$

Proof completed.

Hamiltonian

$$H = \hbar\omega(N + \frac{1}{2})\tag{1.68}$$

$$[H, a^{\dagger}] = \hbar \omega a^{\dagger}, \qquad [H, a] = -\hbar \omega a.$$
 (1.69)

The energy E_n of the state $|n\rangle$:

$$H|n\rangle = E_n|n\rangle \tag{1.70}$$

$$E_n = \hbar\omega(n + \frac{1}{2}). \tag{1.71}$$

If you are not familiar with QM and analytical mechanics, learn basic things by yourself.

2 A condensed matter example of QFT: phonon

2.1 A lattice model

A simple model: a chain of harmonic oscillators in one-dimension.

$$(X_n, P_n)$$
 $(n = \dots, -1, 0, 1, \dots)$ (2.1)

Canonical commutation relations

$$[X_n, P_m] = i\hbar \delta_{nm} \tag{2.2}$$

$$[X_n, X_m] = 0,$$
 $[P_n, P_m] = 0$ (2.3)

Hamiltonian

$$H = \sum_{n} \left(\frac{P_n^2}{2M} + \frac{1}{2} K(X_{n+1} - X_n - a)^2 \right)$$
 (2.4)

a: lattice spacing, M: mass of each nucleus, K: spring constant (2.5)

Classically, the energy is minimized for

$$X_n = na + C$$
 (C: constant) (2.6)

We set C = 0 for simplicity.

For later convenience, define new variables (ϕ_n, π_n)

$$X_n = na + \sqrt{\frac{a}{M}}\phi_n, \qquad P_n = \sqrt{aM}\pi_n$$
 (2.7)

Then,

$$[\phi_n, \pi_m] = \frac{1}{a} [X_n, P_m] = \frac{i\hbar \delta_{mn}}{a}$$
(2.8)

Also

$$\frac{P_n^2}{2M} = \frac{1}{2}a\pi_n^2 \tag{2.9}$$

$$\frac{1}{2}K(X_{n+1} - X_n - a)^2 = \frac{aK}{2M}(\phi_{n+1} - \phi_n)^2 = \frac{a}{2}v^2 \left(\frac{\phi_{n+1} - \phi_n}{a}\right)^2$$
(2.10)

where

$$v^2 = \frac{a^2 K}{M}. (2.11)$$

Then

$$H = a \sum_{n} \left(\frac{1}{2} \pi_n^2 + \frac{1}{2} v^2 \left(\frac{\phi_{n+1} - \phi_n}{a} \right)^2 \right)$$
 (2.12)

$$[\phi_n, \pi_m] = \frac{i\hbar \delta_{mn}}{a} \tag{2.13}$$

2.2 Continuum limit

Suppose we are interested in collective motions whose wavelength λ is large enough,

$$\lambda \gg a$$
, or $ka \ll 1$, $k = \frac{2\pi}{\lambda}$: wavenumber. (2.14)

So, we take the limit

$$a \to 0. \tag{2.15}$$

Define

$$x = na$$
: the positions of nuclei (at the static positions) (2.16)

 (ϕ_n, π_n) are functions of x,

$$\phi_n \to \phi(x), \qquad \pi_n \to \pi(x).$$
 (2.17)

From the definition of derivatives and integrals,

$$\frac{\phi_{n+1} - \phi_n}{a} \to \frac{\partial \phi}{\partial x}(x) = \partial_x \phi(x), \tag{2.18}$$

$$a\sum_{n} \to \int dx.$$
 (2.19)

Hamiltonian

$$H = a \sum_{n} \left(\frac{1}{2} \pi_n^2 + \frac{1}{2} v^2 \left(\frac{\phi_{n+1} - \phi_n}{a} \right)^2 \right)$$
 (2.20)

$$\rightarrow \int dx \left(\frac{1}{2} \pi(x)^2 + \frac{1}{2} v^2 \left(\partial_x \phi(x) \right)^2 \right) \tag{2.21}$$

Define Dirac delta function:

$$\delta(x) = \begin{cases} \infty & x = 0\\ 0 & x \neq 0 \end{cases} \tag{2.22}$$

such that

$$\int_{-\infty}^{\infty} dx \delta(x) = 1 \tag{2.23}$$

Then

$$\frac{\delta_{nm}}{a} \to \delta(x-y), \qquad x = na, \quad y = ma$$
 (2.24)

because

$$\frac{\delta_{nm}}{a} = \begin{cases} \frac{1}{a} \to \infty & n - m = 0\\ 0 & n - m \neq 0 \end{cases}$$
 (2.25)

and

$$a\sum_{n} \frac{\delta_{nm}}{a} = 1. (2.26)$$

Then

$$[\phi_n, \pi_m] = \frac{i\hbar \delta_{mn}}{a} \tag{2.27}$$

$$\rightarrow [\phi(x), \pi(y)] = i\hbar \delta(x - y). \tag{2.28}$$

Summary:

$$H = \int dx \left(\frac{1}{2} \pi^2 + \frac{1}{2} v^2 (\partial_x \phi)^2 \right)$$
 (2.29)

$$[\phi(x), \pi(y)] = i\hbar \delta(x - y). \tag{2.30}$$

An example of QFT, called phonon.

2.3 Lagrangian formulation

Let's return to classical theory.

The original Hamiltonian

$$H = \sum_{n} \left(\frac{P_n^2}{2M} + \frac{1}{2} K(X_{n+1} - X_n - a)^2 \right)$$
 (2.31)

Lagrangian

$$L = \sum_{n} \left(\frac{M}{2} (\dot{X}_n)^2 - \frac{1}{2} K (X_{n+1} - X_n - a)^2 \right)$$
 (2.32)

$$X_n = na + \sqrt{\frac{a}{M}}\phi_n \tag{2.33}$$

$$L = a \sum_{n} \left(\frac{1}{2} (\dot{\phi}_n)^2 - \frac{1}{2} v^2 \left(\frac{\phi_{n+1} - \phi_n}{a} \right)^2 \right)$$
 (2.34)

$$\rightarrow \int dx \left(\frac{1}{2} (\partial_t \phi) - \frac{1}{2} v^2 (\partial_x \phi)^2 \right) \tag{2.35}$$

$$= \int dx \mathcal{L} \tag{2.36}$$

Here

$$\mathcal{L} = \frac{1}{2} (\partial_t \phi) - \frac{1}{2} v^2 (\partial_x \phi)^2 \quad : \text{Lagrangian density}$$
 (2.37)

The canonical momentum

$$\pi_n = \frac{P_n}{\sqrt{aM}} = \sqrt{\frac{M}{a}} \dot{X}_n = \dot{\phi}_n. \tag{2.38}$$

hence

$$\pi(x) = \partial_t \phi(x). \tag{2.39}$$

This can be written as

$$\pi = \frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} \tag{2.40}$$

The action

$$S = \int dt dx \mathcal{L} \tag{2.41}$$

2.4 Classical dynamics

The principles of least action:

$$S = \int dt dx \left(\frac{1}{2} (\partial_t \phi) - \frac{1}{2} v^2 (\partial_x \phi)^2 \right)$$
 (2.42)

$$\phi \to \phi + \delta \phi \tag{2.43}$$

$$0 = \delta S = \int dt dx \left(\partial_t \phi \partial_t \delta \phi - v^2 \partial_x \phi \partial_x \delta \phi \right)$$
 (2.44)

$$= \int dt dx \left(-\partial_t^2 \phi + v^2 \partial_x^2 \phi \right) \delta \phi \tag{2.45}$$

$$(-\partial_t^2 + v^2 \partial_x^2)\phi = 0 (2.46)$$

If we consider

$$\phi = \cos(kx - \omega t),\tag{2.47}$$

$$\omega$$
: angular frequence, k : wavenumber (2.48)

then

$$\omega^2 = v^2 k^2 \implies \phi = \cos k(x \mp vt)$$
 (2.49)

$$v$$
: the speed of sound (2.50)

3 Free scalar field theory

Aim: systematic quantization of a scalar field.

From now on,

- Consider relativistic QFT. (Sometimes good approximation for condensed matter systems if the speed of light c is replaced by an appropriate velocity v.)
- Use natural units

$$\hbar = 1, \qquad c = 1. \tag{3.1}$$

They can be recovered by dimensional analysis.

• Consider three spatial dimensions. (The previous example was one dimension. It is straightforward to generalize to other dimensions.)

3.1 Special relativity

Coordinates of spacetime

$$x^{\mu} = (ct, x^{i}) = (ct, x^{1}, x^{2}, x^{3}) = (x^{0}, \vec{x})$$
(3.2)

In natural units c = 1, $x^0 = t$.

space indices: Latin letters $i, j, \dots = 1, 2, 3$,

spacetime indices: Greek letters $\mu, \nu, \dots = 0, 1, 2, 3$.

Spacetime metric tensor

$$g_{\mu\nu} = \begin{pmatrix} - \\ + \\ + \\ + \end{pmatrix} \tag{3.3}$$

$$ds^{2} = -d\tau^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -(dx^{0})^{2} + (d\vec{x})^{2}.$$
 (3.4)

It is the distance between two spacetime points x^{μ} and $x^{\mu} + dx^{\mu}$:

- When $ds^2 > 0$, spatial distance ds
- When $ds^2 < 0$, proper time difference $d\tau$

4-vector

$$A^{\mu}, \qquad A_{\mu} = g_{\mu\nu}A^{\nu} \tag{3.5}$$

Einstein summation notation

$$A^{\mu}B_{\mu} = \sum_{\mu=0}^{3} A^{\mu}B_{\mu} \tag{3.6}$$

$$A^{2} = A^{\mu}A_{\mu} = -(A^{0})^{2} + (\vec{A})^{2}$$
(3.7)

4-momentum of a particle

$$p^{\mu} = m \frac{dx^{\mu}}{d\tau} = m(\frac{1}{\sqrt{1 - \vec{v}^2}}, \frac{\vec{v}}{\sqrt{1 - \vec{v}^2}})$$
(3.8)

$$\vec{v} = \frac{dx^i}{dt} \tag{3.9}$$

$$p^{2} = p^{\mu}p_{\mu} = -(p^{0})^{2} + \vec{p}^{2} = -m^{2}$$
(3.10)

$$\Longrightarrow p^0 = \sqrt{\vec{p}^2 + m^2} := E_p \tag{3.11}$$

Partial derivative

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} \tag{3.12}$$

EM potential

$$A^{\mu} = (+\phi, \vec{A}), \qquad A_{\mu} = (-\phi, \vec{A}).$$
 (3.13)

EM tensor

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \tag{3.14}$$

$$= \begin{pmatrix} 0 & -E^{1} - E^{2} - E^{3} \\ E^{1} & 0 & B^{3} - B^{2} \\ E^{2} - B^{3} & 0 & B_{1} \\ E^{3} & B^{2} - B^{1} & 0 \end{pmatrix}$$
(3.15)

$$F_{i0} = -F^{i0} = E_i (3.16)$$

$$F_{ij} = \epsilon_{ijk} B^k \tag{3.17}$$

If you are not familiar with special relativity, learn basic things by yourself.

3.2 Real scalar field

Real scalar field ϕ Lagrangian

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} \tag{3.18}$$

$$S = \int d^4x \mathcal{L} \tag{3.19}$$

Equations of motion: $\phi \to \phi + \delta \phi$,

$$0 = \delta S = \int d^4x \delta \phi (\partial^2 \phi - m^2). \tag{3.20}$$

$$(\partial^2 - m^2)\phi = 0$$
: Klein-Gordon eq. (3.21)

If we set

$$\phi = \cos(p \cdot x), \qquad p = (p^0, \vec{p}) : \text{constant 4-vector}$$
 (3.22)

then

$$(p^0)^2 - \vec{p}^2 = m^2 \tag{3.23}$$

$$\implies p^0 = \pm E_p, \qquad E_p = \sqrt{\vec{p}^2 + m^2}. \tag{3.24}$$

 \vec{p} is later interpreted as momentum of a particle.

3.3 Quantization

Lagrangian

$$\mathcal{L} = \frac{1}{2} \left((\dot{\phi})^2 - (\vec{\partial}\phi)^2 - m^2 \phi^2 \right), \qquad \dot{\phi} = \partial_t \phi. \tag{3.25}$$

The canonical momentum

$$\pi = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \dot{\phi} \tag{3.26}$$

Hamiltonian

$$H = \int d^3x (\pi \dot{\phi} - \mathcal{L}) \tag{3.27}$$

$$= \int d^3x \frac{1}{2} \left(\pi^2 + (\vec{\partial}\phi)^2 + m^2\phi^2 \right)$$
 (3.28)

Equal time commutation relations

$$[\phi(t, \vec{x}), \pi(t, \vec{y})] = i\delta^3(\vec{x} - \vec{y}). \tag{3.29}$$

For technical concreteness, impose periodic boundary condition:

$$x^i \sim x^i + L \quad (i = 1, 2, 3)$$
 (3.30)

This means

$$\phi(x^1, x^2, x^3) = \phi(x^1 + L, x^2, x^3) = \phi(x^1, x^2 + L, x^3) = \phi(x^1, x^2, x^3 + L)$$
(3.31)

Fourier modes

$$\exp(i\vec{p}\cdot\vec{x})\tag{3.32}$$

$$\vec{p} = \frac{2\pi}{L}\vec{n}, \quad \vec{n} = (n_1, n_2, n_3) \; ; \; \text{integers}$$
 (3.33)

Fourier mode expansion

$$\phi = \frac{1}{L^{3/2}} \sum_{\vec{p}} Q(\vec{p}) \exp(i\vec{p} \cdot \vec{x})$$
(3.34)

$$\pi = \frac{1}{L^{3/2}} \sum_{\vec{p}} P(\vec{p}) \exp(i\vec{p} \cdot \vec{x})$$
(3.35)

The volume of space

$$\int d^3x = L^3 \tag{3.36}$$

Convenient formula

$$\frac{1}{L^3} \int d^3x \exp(i\vec{p} \cdot \vec{x}) = \begin{cases} 1 & \vec{p} = 0\\ 0 & \vec{p} = \frac{2\pi}{L} \vec{n} \neq 0 \end{cases}$$
(3.37)

Inverse Fourier transformation

$$Q(\vec{p}) = \frac{1}{L^{3/2}} \int d^3x \phi(\vec{x}) \exp(-i\vec{p} \cdot \vec{x})$$
 (3.38)

$$P(\vec{p}) = \frac{1}{L^{3/2}} \int d^3x \pi(\vec{x}) \exp(-i\vec{p} \cdot \vec{x})$$
 (3.39)

For a real scalar, $\phi = \phi^{\dagger}$, $\pi = \pi^{\dagger}$

$$Q(\vec{p})^{\dagger} = Q(-\vec{p}), \qquad P(\vec{p})^{\dagger} = P(-\vec{p})$$
 (3.40)

Commutations relations at a fixed time (say t = 0)

$$[Q(\vec{p}), P(\vec{q})] = \frac{1}{L^3} \int d^3x d^3y [\phi(\vec{x}), \pi(\vec{y})] \exp(-i\vec{p} \cdot \vec{x} - i\vec{q} \cdot \vec{y})$$
(3.41)

$$= \frac{1}{L^3} \int d^3x d^3y i \delta^3(\vec{x} - \vec{y}) \exp(-i\vec{p} \cdot \vec{x} - i\vec{q} \cdot \vec{y})$$
(3.42)

$$= \frac{i}{L^3} \int d^3x \exp(-i(\vec{p} + \vec{q}) \cdot \vec{x}) \tag{3.43}$$

$$=i\delta_{\vec{p},-\vec{q}} \qquad \text{(Kronecker delta)} \tag{3.44}$$

Hamiltonian

$$H = \frac{1}{2} \int d^3x \left(\pi^2 + (\vec{\partial}\phi)^2 + m^2\phi^2 \right)$$
 (3.45)

$$= \frac{1}{2L^3} \int d^3x \sum_{\vec{n}} \sum_{\vec{q}} \left(P(\vec{p})P(\vec{q}) + (-\vec{p} \cdot \vec{q} + m^2)Q(\vec{p})Q(\vec{q}) \right) \exp(-i(\vec{p} + \vec{q}) \cdot \vec{x}) \quad (3.46)$$

$$= \frac{1}{2} \sum_{\vec{p}} \sum_{\vec{q}} \left(P(\vec{p}) P(\vec{q}) + (-\vec{p} \cdot \vec{q} + m^2) Q(\vec{p}) Q(\vec{q}) \right) \delta_{\vec{p}, -\vec{q}}$$
(3.47)

$$= \frac{1}{2} \sum_{\vec{p}} \left(|P(\vec{p})|^2 + (\vec{p}^2 + m^2)|Q(\vec{p})|^2 \right)$$
 (3.48)

$$= \frac{1}{2} \sum_{\vec{p}} \left(|P(\vec{p})|^2 + E_p^2 |Q(\vec{p})|^2 \right) \qquad (E_p = \sqrt{\vec{p}^2 + m^2})$$
 (3.49)

Define creation and annihilation operators

$$A_{\vec{p}} = \frac{1}{\sqrt{2E_p}} (E_p Q(\vec{p}) + iP(\vec{p}))$$
 (3.50)

$$A_{\vec{p}}^{\dagger} = \frac{1}{\sqrt{2E_p}} (E_p Q(-\vec{p}) - iP(-\vec{p}))$$
 (3.51)

Commutation relations

$$[A_{\vec{p}}, A_{\vec{q}}^{\dagger}] = \frac{1}{2E_p} (-iE_p[Q(\vec{p}), P(-\vec{q})] + iE_p[P(\vec{p}), Q(-\vec{q})]) = \delta_{\vec{p}, \vec{q}}$$
(3.52)

In this way,

$$[A_{\vec{p}}, A_{\vec{q}}^{\dagger}] = \delta_{\vec{p}, \vec{q}}, \qquad [A_{\vec{p}}, A_{\vec{q}}] = [A_{\vec{p}}^{\dagger}, A_{\vec{q}}^{\dagger}] = 0$$
 (3.53)

Hamiltonian

$$H = \frac{1}{2} \sum_{\vec{p}} E_p \left(A_{\vec{p}}^{\dagger} A_{\vec{p}} + A_{\vec{p}}^{\dagger} A_{\vec{p}} \right) \tag{3.54}$$

$$=\sum_{\vec{p}} E_p \left(A_{\vec{p}}^{\dagger} A_{\vec{p}} + \frac{1}{2} \right) \tag{3.55}$$

For each Fourier mode \vec{p} , there is one harmonic oscillator with creation/annihilation operators $A_{\vec{p}}, A_{\vec{p}}^{\dagger}$.

$$[H, A_{\vec{p}}^{\dagger}] = E_p A_{\vec{p}}^{\dagger}, \qquad [H, A_{\vec{p}}] = -E_p A_{\vec{p}}.$$
 (3.56)

Define vacuum energy

$$E_{\text{vac}} = \sum_{\vec{s}} \frac{1}{2} E_p \tag{3.57}$$

This is the zero point energy of harmonic oscillators.

$$H = \sum_{\vec{p}} E_p A_{\vec{p}}^{\dagger} A_{\vec{p}} + E_{\text{vac}}.$$
 (3.58)

3.4 Hilbert space: Fock space

The Hilbert space of states is the same as a collection of harmonic oscillators.

Define the vacuum state $|\Omega\rangle$ by

$$A_{\vec{p}}|\Omega\rangle = 0$$
 (For all \vec{p}) (3.59)

The ground state of harmonic oscillators.

$$H|\Omega\rangle = E_{\text{vac}}|\Omega\rangle$$
 (3.60)

 $E_{\rm vac}$ is related to cosmological constant. I do not discuss it, and simply set

$$E_{\rm vac} \to 0.$$
 (3.61)

A state

$$A_{\vec{n}}^{\dagger}|\Omega\rangle$$
 (3.62)

Its energy

$$HA_{\vec{p}}^{\dagger}|\Omega\rangle = ([H, A_{\vec{p}}^{\dagger}] + A_{\vec{p}}^{\dagger}H)|\Omega\rangle = E_p A_{\vec{p}}^{\dagger}|\Omega\rangle \qquad (E_{\text{vac}} = 0)$$
 (3.63)

$$E_{\vec{p}} = \sqrt{\vec{p}^2 + m^2} \tag{3.64}$$

Interpretation: A single particle with 4-momentum $p = (E_{\vec{p}}, \vec{p})$. A particle appears from a field!

More general states:

$$|n\rangle = \left(\prod_{\vec{p}} (A_{\vec{p}}^{\dagger})^{n_{\vec{p}}}\right) |\Omega\rangle \tag{3.65}$$

$$n = (n_{\vec{p}})$$
: A nonnegative integer $n_{\vec{p}}$ for each \vec{p} (3.66)

$$(A_{\vec{n}}^{\dagger}A_{\vec{p}})|n\rangle = n_{\vec{p}}|n\rangle. \tag{3.67}$$

$$E = \sum_{\vec{p}} n_{\vec{p}} E_p \tag{3.68}$$

Interpretation:

- $n_{\vec{p}}$ particles with $p = (E_{\vec{p}}, \vec{p})$ for each \vec{p} .
- Identical particles are not distinguished.
- Any number $n_{\vec{p}}$ of particles is possible in a single one-particle state \vec{p} :
 Bose-Einstein statictics.

This kind of Hilbert space: Fock space

3.5 Infinite volume

L was artificial. We are going to take $L \to \infty$.

$$\phi = \frac{1}{L^{3/2}} \sum_{\vec{p}} Q(\vec{p}) \exp(i\vec{p} \cdot \vec{x}) \tag{3.69}$$

$$A_{\vec{p}} = \frac{1}{\sqrt{2E_p}} (E_p Q(\vec{p}) + iP(\vec{p}))$$
 (3.70)

$$A_{\vec{p}}^{\dagger} = \frac{1}{\sqrt{2E_p}} (E_p Q(-\vec{p}) - iP(-\vec{p}))$$
 (3.71)

(3.72)

From them

$$Q(\vec{p}) = \frac{1}{\sqrt{2E_p}} (A_{\vec{p}} + A_{-\vec{p}}^{\dagger}), \quad P(\vec{p}) = -i\sqrt{\frac{E_p}{2}} (A_{\vec{p}} - A_{-\vec{p}}^{\dagger})$$
(3.73)

$$\phi = \frac{1}{L^{3/2}} \sum_{\vec{p}} \frac{1}{\sqrt{2E_{\vec{p}}}} \left(A_{\vec{p}} \exp(i\vec{p} \cdot \vec{x}) + A_{\vec{p}}^{\dagger} \exp(-i\vec{p} \cdot \vec{x}) \right)$$
(3.74)

Recall

$$\vec{p} = \frac{2\pi}{L}\vec{n}, \qquad \vec{n} = (n_1, n_2, n_3).$$
 (3.75)

When $L \to \infty$, \vec{p} continuous,

$$\left(\frac{2\pi}{L}\right)^3 \sum_{\vec{n}} \to \int d^3p \tag{3.76}$$

Delta function

$$\frac{L^3}{(2\pi)^3} \delta_{\vec{p},\vec{q}} \to \delta^3(\vec{p}): \text{ Dirac delta function.}$$
 (3.77)

Check:

$$\int d^3 p \, \delta^3(\vec{p} - \vec{q}) = \left(\frac{2\pi}{L}\right)^3 \sum_{\vec{p}} \frac{L^3}{(2\pi)^3} \delta_{\vec{p}, \vec{q}} = 1. \tag{3.78}$$

Define

$$a_{\vec{p}} = L^{3/2} A_{\vec{p}}. (3.79)$$

$$[a_{\vec{p}}, a_{\vec{q}}^{\dagger}] = L^3 \delta_{\vec{p}, \vec{q}} \tag{3.80}$$

$$\rightarrow (2\pi)^3 \delta^3(\vec{p} - \vec{q}). \tag{3.81}$$

$$\phi = \frac{1}{L^3} \sum_{\vec{r}} \frac{1}{\sqrt{2E_{\vec{p}}}} \left(a_{\vec{p}} \exp(i\vec{p} \cdot \vec{x}) + a_{\vec{p}}^{\dagger} \exp(-i\vec{p} \cdot \vec{x}) \right)$$
(3.82)

$$\rightarrow \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \left(a_{\vec{p}} \exp(i\vec{p} \cdot \vec{x}) + a_{\vec{p}}^{\dagger} \exp(-i\vec{p} \cdot \vec{x}) \right). \tag{3.83}$$

$$H = \sum_{\vec{p}} E_p A_{\vec{p}}^{\dagger} A_{\vec{p}} = \frac{1}{L^3} \sum_{\vec{p}} E_p a_{\vec{p}}^{\dagger} a_{\vec{p}}$$
 (3.84)

$$\rightarrow \int \frac{d^3p}{(2\pi)^3} E_p a_{\vec{p}}^{\dagger} a_{\vec{p}} \tag{3.85}$$

One particle state

$$|\vec{p}\rangle = \sqrt{2E_{\vec{p}}}a_{\vec{p}}^{\dagger}|\Omega\rangle. \tag{3.86}$$

 $(\sqrt{2E_{\vec{p}}} \text{ is just convention, often used in high energy physics.})$ Normalization

$$\langle \vec{p} | \vec{q} \rangle = \sqrt{2E_{\vec{p}}} \sqrt{2E_{\vec{q}}} \langle \Omega | a_{\vec{p}} a_{\vec{q}}^{\dagger} | \Omega \rangle \tag{3.87}$$

$$= \sqrt{2E_{\vec{p}}}\sqrt{2E_{\vec{q}}}\langle\Omega|\left((2\pi)^3\delta^3(\vec{p}-\vec{q}) + a_{\vec{q}}^{\dagger}a_{\vec{p}}\right)|\Omega\rangle$$
 (3.88)

$$=2E_{\vec{p}}(2\pi)^3\delta^3(\vec{p}-\vec{q}). \tag{3.89}$$

4 More on a real scalar field

- Heisenberg picture
- Non-relativistic limit
- Second quantization

4.1 Heisenberg picture in QM

One particle quantum mechanics

$$[x,p] = i \quad (\hbar = 1), \qquad H = \frac{p^2}{2m} + V(x)$$
 (4.1)

Schrödinger eq. for time-dependent states $|\Psi, t\rangle$:

$$i\frac{\partial}{\partial t}|\Psi,t\rangle = H|\Psi,t\rangle$$
 (4.2)

Formal solution

$$|\Psi, t\rangle = e^{-itH} |\Psi\rangle \qquad (|\Psi\rangle = |\Psi, t = 0\rangle)$$
 (4.3)

It is called Schrödinger picture.

Here

$$e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$
 for any operator A . (4.4)

Heisenberg picture:

Define time dependent operators

$$x(t) = e^{itH}xe^{-itH}, p(t) = e^{itH}pe^{-itH} (4.5)$$

For any operator O,

$$O(t) = e^{itH}Oe^{-itH} (4.6)$$

The reason for the definition:

Expectation value of O at t is

$$\langle \Psi, t | O | \Psi, t \rangle = \langle \Psi | e^{itH} O e^{-itH} | \Psi \rangle = \langle \Psi | O(t) | \Psi \rangle \tag{4.7}$$

- Schrödinger picture: states depend on t, operators do not.
- \bullet Heisenberg picture: operators depend on t, states do not.

They are physically equivalent. Just a matter of interpretation.

Note

$$\frac{\partial}{\partial t}e^{itH} = iHe^{itH} = e^{itH}iH \tag{4.8}$$

Heisenberg equations:

$$\frac{\partial}{\partial t}O(t) = \left(\frac{\partial}{\partial t}e^{itH}\right)Oe^{-itH} + e^{itH}O\left(\frac{\partial}{\partial t}e^{-itH}\right) \tag{4.9}$$

$$=i[H,O(t)]. (4.10)$$

Computations for x(t), p(t):

$$[p^2, x] = p[p, x] + [p, x]p = -2ip, (4.11)$$

$$[V(x), p] = [V(x), -i\partial_x] = i\partial_x V(x)$$
(4.12)

$$\frac{d}{dt}x(t) = ie^{itH}[H, x]e^{-itH} = ie^{itH}[\frac{p^2}{2m}, x]e^{-itH} = e^{itH}\frac{p}{m}e^{-itH} = \frac{p(t)}{m}$$
 (4.13)

$$\frac{d}{dt}p(t) = ie^{itH}[H, p]e^{-itH} = -e^{itH}\partial_x V(x)e^{-itH} = -\partial_x V(x(t))$$
(4.14)

$$p(t) = m\dot{x}(t) \tag{4.15}$$

$$m\ddot{x}(t) = -\partial_x V(x(t)) \tag{4.16}$$

The same form as classical equations, but x(t), p(t) are operators.

4.2 Heisenberg picture in QFT

In QFT, operators $\phi(\vec{x})$ depend on \vec{x} .

Relativity requires to treat (t, \vec{x}) on the same footing.

Heisenberg picture is more convenient.

$$\phi = \phi(t, \vec{x}) = \phi(x), \qquad x = (x^{\mu}) = (t, \vec{x}).$$
 (4.17)

$$\phi(t=0,\vec{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \left(a_{\vec{p}} \exp(i\vec{p} \cdot \vec{x}) + a_{\vec{p}}^{\dagger} \exp(-i\vec{p} \cdot \vec{x}) \right). \tag{4.18}$$

In Heisenberg picture,

$$\phi(t, \vec{x}) = e^{itH}\phi(0, \vec{x})e^{-itH} \tag{4.19}$$

Recall

$$[H, a_{\vec{p}}] = -E_p a_{\vec{p}}, \quad [H, a_{\vec{p}}^{\dagger}] = +E_p a_{\vec{p}}^{\dagger}$$
 (4.20)

Then

$$e^{itH}a_{\vec{p}}e^{-itH} = e^{-itE_p}a_{\vec{p}}, \qquad e^{itH}a_{\vec{p}}^{\dagger}e^{-itH} = e^{itE_p}a_{\vec{p}}^{\dagger}$$
 (4.21)

Proof: If $H|\Psi\rangle = E|\Psi\rangle$, then

$$Ha_{\vec{p}}^{\dagger}|\Psi\rangle = (E + E_p)a_{\vec{p}}^{\dagger}|\Psi\rangle$$
 (4.22)

Then

$$e^{itH}a_{\vec{p}}{}^{\dagger}e^{-itH}|\Psi\rangle = e^{itH}a_{\vec{p}}{}^{\dagger}e^{-itE}|\Psi\rangle = e^{it(E+E_p)}e^{-itE}a_{\vec{p}}{}^{\dagger}|\Psi\rangle \tag{4.23}$$

$$=e^{itE_p}a_{\vec{p}}^{\dagger}|\Psi\rangle \tag{4.24}$$

 $|\Psi\rangle$ was an arbitrary energy eigenstate, so

$$e^{itH}a_{\vec{p}}^{\dagger}e^{-itH} = e^{itE_p}a_{\vec{p}}^{\dagger}. \tag{4.25}$$

 $e^{itH}a_{\vec{p}}e^{-itH} = e^{-itE_p}a_{\vec{p}}$ is the same.

$$\phi(t, \vec{x}) = e^{itH}\phi(0, \vec{x})e^{-itH} \tag{4.26}$$

$$= \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \left(e^{itH} a_{\vec{p}} e^{-itH} \exp(i\vec{p} \cdot \vec{x}) + e^{itH} a_{\vec{p}}^{\dagger} e^{-itH} \exp(-i\vec{p} \cdot \vec{x}) \right)$$
(4.27)

$$= \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{p}}}} \left(a_{\vec{p}} e^{ip \cdot x} + a_{\vec{p}}^{\dagger} e^{-ip \cdot x} \right) \tag{4.28}$$

where

$$p \cdot x = -p^0 t + \vec{p} \cdot \vec{x}, \qquad p^0 = E_p.$$
 (4.29)

Klein-Gordon equation

$$(\partial^2 - m^2)\phi = 0 \tag{4.30}$$

because

$$(\partial^2 - m^2) \exp(\pm ip \cdot x) = (-p^2 - m^2) \exp(\pm ip \cdot x) = 0.$$
 (4.31)

4.3 Non-relativistic limit

Non-relativistic limit

$$|\vec{p}| \ll m \tag{4.32}$$

In this limit,

$$E_p \simeq m + \frac{\vec{p}^2}{2m} \tag{4.33}$$

m: Einstein's mass energy

Define

$$K_p = \frac{\vec{p}^2}{2m}.\tag{4.34}$$

$$\phi(x) = \frac{1}{\sqrt{2m}} e^{-\mathrm{i}mt} \varphi + \frac{1}{\sqrt{2m}} (e^{-\mathrm{i}mt} \varphi)^*$$
(4.35)

$$\varphi(x) = \int \frac{d^3p}{(2\pi)^3} a_{\vec{p}} e^{-iK_p t + i\vec{p} \cdot \vec{x}}.$$
(4.36)

From

$$\left(i\frac{\partial}{\partial t} + \frac{1}{2m}\vec{\partial}^{2}\right)e^{-iK_{p}t + i\vec{p}\cdot\vec{x}} = \left(K_{p} - \frac{\vec{p}^{2}}{2m}\right)e^{-iK_{p}t + i\vec{p}\cdot\vec{x}} = 0. \tag{4.37}$$

Equations of motion

$$i\frac{\partial}{\partial t}\varphi = -\frac{1}{2m}\vec{\partial}^2\varphi \tag{4.38}$$

The same form as Schrödinger eq. with zero potential (and $\hbar = 1$).

Suppose: $|\Psi\rangle$ is a one-particle state: superposition of $a_{\vec{p}}^{\dagger}|\Omega\rangle$. Define

$$\Psi(t, \vec{x}) = \langle \Omega | \varphi | \Psi \rangle. \tag{4.39}$$

Then

$$\mathrm{i}\frac{\partial}{\partial t}\Psi(t,\vec{x}) = \langle \Omega | \mathrm{i}\frac{\partial}{\partial t}\varphi | \Psi \rangle \tag{4.40}$$

$$= \langle \Omega | -\frac{1}{2m} \vec{\partial}^2 \varphi | \Psi \rangle \tag{4.41}$$

$$= -\frac{1}{2m}\vec{\partial}^2 \Psi(t, \vec{x}). \tag{4.42}$$

Schrödinger eq.

Example:

$$|\Psi\rangle = a_{\vec{p}}^{\dagger} |\Omega\rangle. \tag{4.43}$$

Then

$$\Psi(t, \vec{x}) = \langle \Omega | \left(\int \frac{d^3q}{(2\pi)^3} a_{\vec{q}} e^{-iK_q t + i\vec{q} \cdot \vec{x}} \right) a_{\vec{p}}^{\dagger} | \Omega \rangle$$
(4.44)

$$= \langle \Omega | \int \frac{d^3q}{(2\pi)^3} e^{-iK_q t + i\vec{q}\cdot\vec{x}} (2\pi)^3 \delta^3(\vec{p} - \vec{q}) | \Omega \rangle \quad (: [a_{\vec{p}}, a_{\vec{q}}^{\dagger}] = (2\pi)^3 \delta^3(\vec{p} - \vec{q})) \quad (4.45)$$

$$=e^{-iK_pt+ip\cdot x} \tag{4.46}$$

This is the wavefunction for the state with momentum \vec{p} .

4.4 Second quantization

Consider a QFT with action

$$S = \int dt d^3x \left(\frac{1}{2} (\partial_t \phi)^2 - \frac{1}{2} (\vec{\partial}\phi)^2 - \frac{1}{2} m^2 \phi^2 - mV(\vec{x})\phi^2 \right)$$
 (4.47)

 ϕ : field

 $V(\vec{x})$: some function.

EOM

$$-\partial_t^2 \phi = \left(-\vec{\partial}^2 + m^2 + 2mV(\vec{x}) \right) \phi. \tag{4.48}$$

Take

$$\phi(x) = \frac{1}{\sqrt{2m}} e^{-imt} \varphi + \frac{1}{\sqrt{2m}} (e^{-imt} \varphi)^*$$
(4.49)

In the limit $m \to \infty$, EOM becomes

$$i\partial_t \phi = \left(-\frac{1}{2m}\vec{\partial}^2 + V(\vec{x})\right)\phi. \tag{4.50}$$

Terms oscillating rapidly as e^{2imt} are neglected.

The same form as Schrödinger eq.

Find eigenfunctions $\Psi_n(\vec{x})$,

$$H\Psi_n(\vec{x}) = E_n \Psi_n(\vec{x}) \qquad H = -\frac{1}{2m} \vec{\partial}^2 + V(\vec{x}).$$
 (4.51)

(For notational simplicity, assume discrete states.)

Expand the field φ ,

$$\varphi(t, \vec{x}) = \sum_{n} \Psi_n(\vec{x}) e^{-iE_n t} A_n, \tag{4.52}$$

 A_n : operators.

Quantization of the field ϕ turns out to give (exercise)

$$[\varphi(\vec{x}), \varphi(\vec{y})^{\dagger}] = \delta^{3}(\vec{x} - \vec{y}), \quad [\varphi(\vec{x}), \varphi(\vec{y})] = 0, \quad [\varphi(\vec{x})^{\dagger}, \varphi(\vec{y})^{\dagger}]$$

$$(4.53)$$

This gives (exercise)

$$[A_n, A_m^{\dagger}] = \delta_{nm}, \quad [A_n, A_m] = 0, \quad [A_n^{\dagger}, A_m^{\dagger}] = 0.$$
 (4.54)

Interpretation:

 A_n, A_n^{\dagger} are creation and annihilation operators for the state corresponding to Ψ_n .

Schrödinger eq. is satisfied not by states but by the field φ : Sometimes called second quantization.

5 Spinors and Dirac equations

5.1 Spins in QM

Spin degrees of freedom $\vec{S} = (S_i)$:

Commutation relations

$$[S_i, S_j] = i\epsilon_{ijk}S_k \qquad (\hbar = 1). \tag{5.1}$$

Electron (or quark) : spin $\frac{1}{2}$, two states

$$|\uparrow\rangle : \text{spin up} \quad S_3|\uparrow\rangle = +\frac{1}{2}|\uparrow\rangle$$
 (5.2)

$$|\downarrow\rangle$$
: spin down $S_3|\downarrow\rangle = -\frac{1}{2}|\downarrow\rangle$. (5.3)

State vectors (neglecting positions)

$$c_1|\uparrow\rangle + c_2|\downarrow\rangle$$
 (5.4)

With basis vectors, $(|\uparrow\rangle, |\downarrow\rangle)$, state vectors are two-dimensional vector space

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \quad (2 \text{ dim. vector}) \tag{5.5}$$

Pauli matrices

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \tag{5.6}$$

Properties:

$$\sigma^i \sigma^j = \delta^{ij} + i \epsilon^{ijk} \sigma^k \tag{5.7}$$

More explicitly,

$$(\sigma^1)^2 = 1, \qquad \sigma^1 \sigma^2 = i\sigma^3, \text{ etc..}$$
 (5.8)

Spin angular momentum for an electron is

$$S^i = \frac{1}{2}\sigma^i \tag{5.9}$$

Eigenstates for S_3

$$S^{3}\begin{pmatrix}1\\0\end{pmatrix} = +\frac{1}{2}\begin{pmatrix}1\\0\end{pmatrix}, \qquad S^{3}\begin{pmatrix}0\\1\end{pmatrix} = -\frac{1}{2}\begin{pmatrix}0\\1\end{pmatrix}$$
 (5.10)

So far we have neglected position \vec{x} . Let's include \vec{x} .

Wave functions

$$\Psi(\vec{x},t) = \begin{pmatrix} \Psi_1(\vec{x},t) \\ \Psi_2(\vec{x},t) \end{pmatrix}$$
 (5.11)

Interpretation:

 $|\Psi_1(\vec{x})|^2$ is the probability density for spin up states. Similarly for $|\Psi_2(\vec{x})|^2$. Total probability =1

$$\int d^3x |\Psi(\vec{x})|^2 = 1, \qquad |\Psi(\vec{x})|^2 = |\Psi_1(\vec{x})|^2 + |\Psi_2(\vec{x})|^2$$
(5.12)

Experimental fact:

Spin \vec{S} and magnetic field \vec{B} interact, with the Hamiltonian

$$H = H_0 + H_1 (5.13)$$

 H_0 does not involve spin,

$$H_0 = \frac{1}{2m}(-i\partial_i - eA_i)^2 + e\phi$$
 (5.14)

 H_1 includes spin,

$$H_1 = -g \frac{e}{2m} \vec{S} \cdot \vec{B} \tag{5.15}$$

g: dimensionless parameter

$$\frac{g-2}{2} = \begin{cases} 0.001 \ 159 \ 652 \ 181 \ 64(76) \ \text{(theoretical calculation by QFT)} \\ 0.001 \ 159 \ 652 \ 180 \ 73(28) \ \text{(experimental value)} \end{cases}$$
 (5.16)

Extremely good agreement.

5.2 Gamma matrices and Clifford algebra

Dirac equation

$$(\gamma^{\mu}\partial_{\mu} + m)\psi = 0. \tag{5.17}$$

 $\gamma^{\mu}~(\mu=0,1,2,3)$: gamma matrices, to be discussed.

Historical motivation: relativistic version of Schrödinger equation. This motivation is not valid today. It is an EOM for fields.

- Klein-Gordon eq. : spin 0 fields
- Dirac eq. : spin $\frac{1}{2}$ fields
- Maxwell (or Yang-Mills) eq. : spin 1 fields

Properties of γ^{μ} : For plane waves $\Psi \propto \exp(ip_{\mu}x^{\mu})$

$$(\gamma^{\mu}\partial_{\mu} + m)\Psi = (i\gamma_{\mu}p^{\mu} + m)\Psi = 0 \tag{5.18}$$

$$m\Psi = (-i\gamma_{\mu}p^{\mu})\Psi \tag{5.19}$$

Using it twice,

$$m^2\Psi = -(\gamma_\mu p^\mu)^2\Psi \tag{5.20}$$

Requirement: there is a solution with $m^2 = -p^2$.

$$p^{2} = (\gamma_{\mu}p^{\mu})^{2} = \gamma_{\mu}\gamma_{\nu}p^{\mu}p^{\nu} = \frac{1}{2}(\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu})p^{\mu}p^{\nu}.$$
 (5.21)

In general, define anticommutator

$$\{A, B\} = AB + BA \tag{5.22}$$

If

$$\{\gamma_{\mu}, \gamma_{\nu}\} = \gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2g_{\mu\nu} \tag{5.23}$$

Then $p^2=-m^2$. This anticommutation relation is called Clifford algebra.

 γ_{μ} need to be matrices.

In three (not four) dimensions, Pauli matrices σ_i satisfy the desired relations:

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \tag{5.24}$$

$$\{\sigma^i, \sigma^j\} = (\sigma^i \sigma^j + \sigma^j \sigma^i) = 2\delta_{ij}$$
(5.25)

Pauli matrices: 2×2 . In four dimensions, $\{\gamma_{\mu}, \gamma_{\nu}\} = 2g_{\mu\nu}$ requires 4×4 matrices.

Explicit examples of γ^{μ} :

$$\gamma^i = \begin{pmatrix} 0 & -i\sigma^i \\ i\sigma^i & 0 \end{pmatrix} \tag{5.26}$$

$$\gamma^0 = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \tag{5.27}$$

Each block is 2×2 . In total, 4×4

Check of Clifford algebra:

$$\gamma^{i}\gamma^{j} = \begin{pmatrix} 0 & -i\sigma^{i} \\ i\sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & -i\sigma^{j} \\ i\sigma^{j} & 0 \end{pmatrix} = \begin{pmatrix} \sigma^{i}\sigma^{j} & 0 \\ 0 & \sigma^{i}\sigma^{j} \end{pmatrix}$$
 (5.28)

$$\gamma^{i}\gamma^{j} + \gamma^{j}\gamma^{i} = \begin{pmatrix} 2\delta^{ij} & 0\\ 0 & 2\delta^{ij} \end{pmatrix} = 2\delta^{ij}$$
 (5.29)

$$\gamma^{i}\gamma^{0} = \begin{pmatrix} 0 & -i\sigma^{i} \\ i\sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} = \begin{pmatrix} -\sigma^{j} & 0 \\ 0 & \sigma^{j} \end{pmatrix}$$
 (5.30)

$$\gamma^{0}\gamma^{i} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i\sigma^{i} \\ i\sigma^{i} & 0 \end{pmatrix} = \begin{pmatrix} \sigma^{i} & 0 \\ 0 & -\sigma^{i} \end{pmatrix}$$
 (5.31)

$$\gamma^i \gamma^0 + \gamma^0 \gamma^i = 0 \tag{5.32}$$

$$\{\gamma^0, \gamma^0\} = 2(\gamma^0)^2 = -2 \tag{5.33}$$

Combining them,

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} \tag{5.34}$$

By using tensor products in linear algebra,

$$\gamma^i = \sigma^2 \otimes \sigma^i \tag{5.35}$$

$$\gamma^0 = -i\sigma^1 \otimes 1 \tag{5.36}$$

 γ_{μ} need not be the above explicit form.

But we require

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}, \qquad (\gamma_0)^{\dagger} = -\gamma_0, \quad (\gamma_i)^{\dagger} = \gamma_i.$$
 (5.37)

5.3 Lorentz invariance

Lorentz transformation

$$y^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} \tag{5.38}$$

 ds^2 must be invariant:

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = g_{\mu\nu}dy^{\mu}dy^{\nu}$$
 (5.39)

$$\implies g_{\rho\sigma}\Lambda^{\rho}_{\ \mu}\Lambda^{\sigma}_{\ \nu} = g_{\mu\nu} \tag{5.40}$$

Transformation of Dirac equation

$$(\gamma^{\mu} \frac{\partial}{\partial x^{\mu}} + m)\psi = (\gamma^{\mu} \frac{\partial y^{\nu}}{\partial x^{\mu}} \frac{\partial}{\partial y^{\nu}} + m)\psi$$
 (5.41)

$$= (\gamma^{\mu} \Lambda^{\nu}_{\ \mu} \frac{\partial}{\partial y^{\nu}} + m)\psi \tag{5.42}$$

Assume ψ also transforms:

$$\psi'(y) = S(\Lambda)\psi(x) \tag{5.43}$$

 $S(\Lambda)$: some matrix given in terms of γ^{μ} , to be determined.

Comparison: a vector field $A^{\mu}(x)$ transforms as

$$A'^{\mu}(y) = \Lambda^{\mu}_{\ \nu} A^{\nu}(x). \tag{5.44}$$

 ψ is neither scalar nor vector. It is called spinor.

$$(\gamma^{\mu}\Lambda^{\nu}_{\ \mu}\frac{\partial}{\partial y^{\nu}} + m)\psi = \left(\gamma^{\mu}\Lambda^{\nu}_{\ \mu}\frac{\partial}{\partial y^{\nu}} + m\right)S(\Lambda)^{-1}\psi' \tag{5.45}$$

$$= S(\Lambda)^{-1} \left(\Lambda^{\nu}_{\ \mu} S(\Lambda) \gamma^{\mu} S(\Lambda)^{-1} \frac{\partial}{\partial y^{\nu}} + m \right) \psi' \tag{5.46}$$

If

$$\Lambda^{\nu}_{\ \mu}S(\Lambda)\gamma^{\mu}S(\Lambda)^{-1} = \gamma^{\nu} \tag{5.47}$$

$$\iff S(\Lambda)^{-1} \gamma^{\mu} S(\Lambda) = \Lambda^{\mu}_{\ \nu} \gamma^{\nu} \tag{5.48}$$

then

$$\left(\gamma^{\mu} \frac{\partial}{\partial x^{\mu}} + m\right) \psi(x) = S(\Lambda)^{-1} \left(\gamma^{\mu} \frac{\partial}{\partial y^{\mu}} + m\right) \psi'(y) \tag{5.49}$$

Then Dirac equation is Lorentz invariant.

We need to find $S(\Lambda)$.

Infinitesimal Lorentz transformation

Consider

$$\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \omega^{\mu}_{\ \nu}, \qquad \omega : \text{infinitesimal}$$
 (5.50)

$$g_{\mu\nu} = g_{\rho\sigma} \Lambda^{\rho}_{\ \mu} \Lambda^{\sigma}_{\ \nu} \tag{5.51}$$

$$=g_{\rho\sigma}(\delta^{\rho}_{\mu} + \omega^{\rho}_{\mu})(\delta^{\sigma}_{\nu} + \omega^{\sigma}_{\nu}) \tag{5.52}$$

$$=g_{\mu\nu} + \omega_{\nu\mu} + \omega_{\mu\nu} \tag{5.53}$$

Here indices are raised and lowered by $g_{\mu\nu}$:

$$\omega_{\mu\nu} = g_{\mu\rho}\omega^{\rho}_{\ \nu} \tag{5.54}$$

We get

$$\omega_{\nu\mu} + \omega_{\mu\nu} = 0$$
 : antisymmetric (5.55)

 $S(\Lambda)$ for $\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \omega^{\mu}_{\ \nu}$.

The answer that works:

$$S(\Lambda) = 1 + \frac{1}{4}\omega_{\rho\sigma}\gamma^{\rho}\gamma^{\sigma} \tag{5.56}$$

Not so many possibilities if it is given in terms of γ^{μ} and $\omega_{\mu\nu}$.

Check of $S(\Lambda)^{-1}\gamma^{\mu}S(\Lambda) = \Lambda^{\mu}_{\ \nu}\gamma^{\nu}$:

For infinitesimal $\omega_{\mu\nu}$,

$$S(\Lambda)^{-1} = 1 - \frac{1}{4}\omega_{\rho\sigma}\gamma^{\rho}\gamma^{\sigma} \tag{5.57}$$

Then

$$S(\Lambda)^{-1}\gamma^{\mu}S(\Lambda) \tag{5.58}$$

$$= (1 - \frac{1}{4}\omega_{\rho\sigma}\gamma^{\rho}\gamma^{\sigma})\gamma^{\mu}(1 + \frac{1}{4}\omega_{\rho\sigma}\gamma^{\rho}\gamma^{\sigma})$$
 (5.59)

$$= \gamma^{\mu} - \frac{1}{4}\omega_{\rho\sigma}(\gamma^{\rho}\gamma^{\sigma}\gamma^{\mu} - \gamma^{\mu}\gamma^{\rho}\gamma^{\sigma}) \tag{5.60}$$

$$= \gamma^{\mu} - \frac{1}{4} \omega_{\rho\sigma} \left[\gamma^{\rho} (\gamma^{\sigma} \gamma^{\mu} + \gamma^{\mu} \gamma^{\sigma}) - (\gamma^{\rho} \gamma^{\mu} + \gamma^{\mu} \gamma^{\rho}) \gamma^{\sigma} \right]$$
 (5.61)

$$= \gamma^{\mu} - \frac{1}{4} \omega_{\rho\sigma} [2\gamma^{\rho} g^{\mu\sigma} - 2g^{\rho\mu} \gamma^{\sigma}] \tag{5.62}$$

$$=\gamma^{\mu} + \omega^{\mu}_{\ \rho}\gamma^{\rho} \tag{5.63}$$

$$= \Lambda^{\mu}_{\ \rho} \gamma^{\rho} \tag{5.64}$$

This confirms the desired property of $S(\Lambda)$.

Finite Lorentz transformation

For finite ω , suppose

$$\Lambda = \exp(\omega) \tag{5.65}$$

In general, for a matrix $\omega = (\omega^{\mu}_{\ \nu})$,

$$\exp(\omega) = \sum_{k=0}^{\infty} \frac{1}{k!} \omega^k. \tag{5.66}$$

Another formula:

$$\exp(\omega) = \lim_{N \to \infty} \left(1 + \frac{1}{N} \omega \right)^N \tag{5.67}$$

 $\exp(\omega)$ is given by doing an infinitesimal $(1+\frac{1}{N}\omega)$ many times. Then

$$S(\Lambda) = \exp(\frac{1}{4}\omega_{\rho\sigma}\gamma^{\rho}\gamma^{\sigma}) \tag{5.68}$$

$$= \lim_{N \to \infty} \left(1 + \frac{1}{4} \frac{\omega_{\mu\nu}}{N} \gamma^{\mu} \gamma^{\nu} \right)^{N} \tag{5.69}$$

Transformation law

$$\psi'(y) = S(\Lambda)\psi(x), \qquad (y = \Lambda x)$$
 (5.70)

A field transforming like this: spinor field. ψ has 4 components

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} \tag{5.71}$$

 $S(\Lambda)$ is a 4×4 matrix.

Summary: Under Lorentz transformation $y^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$,

• Scalar : $\phi'(y) = \phi(x)$

• Vector : $A'^{\mu}(y) = \Lambda^{\mu}_{\ \nu} A^{\nu}(x)$

• Spinor : $\psi'(y) = S(\Lambda)\psi(x)$

5.4 More on Lorentz transformation

Summary of previous discussions:

$$y^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} \tag{5.72}$$

$$\psi'(y) = S(\Lambda)\psi(x) \tag{5.73}$$

Here

$$\Lambda = \exp(\omega) \qquad S(\Lambda) = \exp(\frac{1}{4}\gamma^{\mu}\gamma^{\nu}\omega_{\mu\nu}) \tag{5.74}$$

$$S(\Lambda)^{-1}\gamma^{\mu}S(\Lambda) = \Lambda^{\mu}_{\ \nu}\gamma^{\nu}. \tag{5.75}$$

 $S(\Lambda)$ is not a unitary matrix.

For later purposes, study $S(\Lambda)^{\dagger}$.

From $\gamma^i \gamma^0 = -\gamma^0 \gamma^i$ and $(\gamma^i)^{\dagger} = \gamma^i$,

$$(\gamma^i)^{\dagger} = -(\gamma^0)\gamma^i(\gamma^0)^{-1} \tag{5.76}$$

From $\gamma^0 \gamma^0 = \gamma^0 \gamma^0$ and $(\gamma^0)^{\dagger} = -\gamma^0$,

$$(\gamma^0)^{\dagger} = -(\gamma^0)\gamma^0(\gamma^0)^{-1} \tag{5.77}$$

Summarizing,

$$(\gamma^{\mu})^{\dagger} = -(\gamma^0)\gamma^{\mu}(\gamma^0)^{-1} \tag{5.78}$$

Then

$$(\gamma^{\mu}\gamma^{\nu}\omega_{\mu\nu})^{\dagger} = (\gamma^{\nu})^{\dagger}(\gamma^{\mu})^{\dagger}\omega_{\mu\nu} \tag{5.79}$$

$$= (\gamma^0) \gamma^{\nu} (\gamma^0)^{-1} (\gamma^0) \gamma^{\mu} (\gamma^0)^{-1} \omega_{\mu\nu}$$
 (5.80)

$$= (\gamma^0)(\gamma^{\nu}\gamma^{\mu}\omega_{\mu\nu})(\gamma^0)^{-1} \tag{5.81}$$

$$= -(\gamma^0)(\gamma^\mu \gamma^\nu \omega_{\mu\nu})(\gamma^0)^{-1} \qquad (\because \omega_{\mu\nu} = -\omega_{\nu\mu}). \tag{5.82}$$

Recall the definition of exp of matrices,

$$\exp(A) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$
 (5.83)

From it,

$$\exp(A)^{\dagger} = \exp(A^{\dagger}), \qquad \exp(BAB^{-1}) = B\exp(A)B^{-1}, \qquad \exp(A)^{-1} = \exp(-A) \quad (5.84)$$

Then

$$S(\Lambda)^{\dagger} = \exp(\frac{1}{4}(\gamma^{\mu}\gamma^{\nu}\omega_{\mu\nu})^{\dagger}) \tag{5.85}$$

$$= \exp(-\frac{1}{4}(\gamma^0)(\gamma^{\mu}\gamma^{\nu}\omega_{\mu\nu})(\gamma^0)^{-1})$$
 (5.86)

$$= (\gamma^{0}) \exp(-\frac{1}{4} (\gamma^{\mu} \gamma^{\nu} \omega_{\mu\nu})) (\gamma^{0})^{-1}$$
 (5.87)

$$= (\gamma^0) S(\Lambda)^{-1} (\gamma^0)^{-1} \tag{5.88}$$

 $S(\Lambda)^{-1}$ is the inverse matrix of $S(\Lambda)$.

Summary:

$$S(\Lambda)^{-1} = (\gamma^0)^{-1} S(\Lambda)^{\dagger} (\gamma^0). \tag{5.89}$$

Notation:

$$\overline{\psi} = i\psi^{\dagger}\gamma^0 \tag{5.90}$$

Lorentz transformation

$$\overline{\psi}'(y) = i\psi^{\dagger}(x)S(\Lambda)^{\dagger}\gamma^{0} \tag{5.91}$$

$$= i\psi^{\dagger}(x)\gamma^{0}(\gamma^{0})^{-1}S(\Lambda)^{\dagger}\gamma^{0}$$
(5.92)

$$= \overline{\psi}S(\Lambda)^{-1} \tag{5.93}$$

This is useful for constructing Lorentz covariant quantities.

Some examples:

1. A scalar

$$\overline{\psi}'\psi' = \overline{\psi}S(\Lambda)^{-1}S(\Lambda)\psi = \overline{\psi}\psi. \tag{5.94}$$

2. A vector

$$\overline{\psi}'\gamma^{\mu}\psi' = \overline{\psi}S(\Lambda)^{-1}\gamma^{\mu}S(\Lambda)\psi = \Lambda^{\mu}_{\ \nu}\overline{\psi}\gamma^{\nu}\psi. \tag{5.95}$$

More general tensors

$$\overline{\psi}'\gamma^{\mu_1}\cdots\gamma^{\mu_k}\psi' = \Lambda^{\mu_1}_{\nu_1}\cdots\Lambda^{\mu_k}_{\nu_k}\overline{\psi}\gamma^{\nu_1}\cdots\gamma^{\nu_k}\psi$$
 (5.96)

3. Another scalar

$$\overline{\psi}'\gamma^{\mu}\frac{\partial}{\partial y^{\mu}}\psi' = \overline{\psi}\gamma^{\mu}\frac{\partial}{\partial x^{\mu}}\psi \tag{5.97}$$

and so on.

5.5 Spin

Generally,

$$symmetry \Longrightarrow conserved quantity \tag{5.98}$$

In particular,

rotational symmetry
$$\implies$$
 angular momentum (5.99)

The angular momentum is found by infinitesimal rotation

$$y^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\mu} \tag{5.100}$$

$$\psi'(y) = S(\Lambda)\psi(x) \tag{5.101}$$

Change notation $y \to x$

$$\psi'(x) = S(\Lambda)\psi(\Lambda^{-1}x). \tag{5.102}$$

Rotation : $\omega_{\mu\nu}$ has only spatial components

$$\omega_{ij} \neq 0, \qquad \omega_{ij} = -\omega_{ji} \tag{5.103}$$

 $\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \omega^{\mu}_{\ \nu}.$

Introduce ω^i

$$\omega_{ij} = \epsilon_{ikj}\omega^k, \quad \omega_{0i} = 0 \tag{5.104}$$

Upper and lower indices are not distinguished for i = 1, 2, 3.

$$\Lambda^{i}{}_{j}x^{j} = x^{i} + \epsilon^{ikj}\omega_{k}x_{j} = \vec{x} + \vec{\omega} \times \vec{x}$$
 (5.105)

By previous results,

$$S(\Lambda) = 1 + \frac{1}{4}\omega_{ij}\gamma^{i}\gamma^{j} = 1 - \frac{1}{4}\epsilon_{ijk}\omega^{i}\gamma^{j}\gamma^{k}$$
(5.106)

$$\psi'(\vec{x}) = S(\Lambda)\psi(\Lambda^{-1}\vec{x}) \tag{5.107}$$

$$= (1 - \frac{1}{4} \epsilon^{ijk} \omega_i \gamma_j \gamma_k) \psi(\vec{x} - \omega \times \vec{x})$$
 (5.108)

$$= \psi(\vec{x}) - \left(\frac{1}{4}\epsilon_{ijk}\omega^i\gamma^j\gamma^k + \epsilon^{ijk}\omega_jx_k\partial_i\right)\psi(\vec{x})$$
 (5.109)

$$= \psi(\vec{x}) - i\omega^i J_i \psi(\vec{x}) \tag{5.110}$$

where

$$J_i = -\frac{1}{4}i\epsilon_{ijk}\gamma^j\gamma^k - i\epsilon_{ijk}x^j\partial^k = S_i + L_i$$
(5.111)

The generator for infinitesimal rotation.

orbital angular momentum :
$$L_i = -i\epsilon_{ijk}x^j\partial^k = \vec{x} \times \vec{p}$$
 $(p_i = -i\partial_i)$ (5.112)

spin angular momentum :
$$S_i = -\frac{1}{4}i\epsilon_{ijk}\gamma^j\gamma^k$$
 (5.113)

total angular momentum :
$$J_i = L_i + S_i$$
 (5.114)

Computation of S_i : using

$$\gamma^i = \begin{pmatrix} 0 & -i\sigma^i \\ i\sigma^i & 0 \end{pmatrix} \tag{5.115}$$

then

$$S_i = -\frac{1}{4}i\epsilon_{ijk}\gamma^j\gamma^k \tag{5.116}$$

$$= -\frac{1}{4}i\epsilon_{ijk} \begin{pmatrix} \sigma^i \sigma^j & 0\\ 0 & \sigma^i \sigma^j \end{pmatrix}$$
 (5.117)

$$= \frac{1}{2} \begin{pmatrix} \sigma^i & 0 \\ 0 & \sigma^i \end{pmatrix} \tag{5.118}$$

 $\frac{1}{2}\sigma^i$: spin operator in QM. In particular,

$$S_z = S_3 = \frac{1}{2} \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \\ & & -1 \end{pmatrix}$$
 (5.119)

eigenvalue:
$$\pm \frac{1}{2}$$
 : spin $\frac{1}{2}$ (5.120)

Remark:

The relation between QM wavefunction Ψ and the operator ψ :

$$\Psi(x) = \langle \Omega | \psi(x) | \Psi \rangle, \quad | \Psi \rangle : \text{a single particle state in QFT}$$
 (5.121)

 S_i is the spin operator for QM wavefunction Ψ .

5.6 Coupling to EM fields

Recall

$$A_{\mu} = (-\phi, A_i)$$
: EM potential (5.122)

Gauge transformation

$$A_{\mu} \to A'_{\mu} = A_{\mu} + \partial_{\mu}\alpha, \qquad \alpha : \text{arbitrary function}$$
 (5.123)

Under it,

$$F'_{\mu\nu} = \partial_{\mu}A'_{\nu} - \partial_{\nu}A'_{\mu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = F_{\mu\nu}$$

$$(5.124)$$

EM tensor $F_{\mu\nu}$ is invariant.

For wavefunction Ψ ,

$$\Psi \to \Psi' = \exp(ie\alpha)\Psi. \tag{5.125}$$

Covariant derivative

$$D_{\mu}\Psi = (\partial_{\mu} - ieA_{\mu})\Psi \tag{5.126}$$

For $D'_{\mu} = \partial_{\mu} - ieA'_{\mu}$

$$D'_{\mu}\Psi' = \exp(ie\alpha)D_{\mu}\Psi. \tag{5.127}$$

In the same way, for the operator ψ ,

$$\psi \to \psi' = \exp(ie\alpha)\psi \tag{5.128}$$

$$D'_{\mu}\psi' = \exp(ie\alpha)D_{\mu}\psi. \tag{5.129}$$

More generally, if some $\Phi(x)$ transforms as

$$\Phi(x) \to \Phi'(x) = \exp(iq\alpha),$$
(5.130)

define

$$D_{\mu}\Phi(x) = (\partial_{\mu} - iqA_{\mu})\Phi. \tag{5.131}$$

q: charge of the operator

For example,

$$\overline{\psi} = i\psi^{\dagger}\gamma^0 \tag{5.132}$$

$$\overline{\psi} \to \overline{\psi}' = \exp(-ie\alpha)\overline{\psi}$$
 (5.133)

Then

$$D_{\mu}\overline{\psi} = (\partial_{\mu} + ieA_{\mu})\overline{\psi}. \tag{5.134}$$

Integration by parts: for example,

$$\int d^4x \overline{\psi} \gamma^{\mu} (\partial_{\mu} - ieA_{\mu}) \psi = \int d^4x (-\partial_{\mu} \overline{\psi} - ieA_{\mu} \overline{\psi}) \gamma^{\mu} \psi$$
 (5.135)

hence

$$\int d^4x \overline{\psi} \gamma^{\mu} D_{\mu} \psi = -\int d^4x (D_{\mu} \overline{\psi}) \gamma^{\mu} \psi. \tag{5.136}$$

Dirac eq. when $A_{\mu} \neq 0$: replace

$$(\gamma^{\mu}\partial_{\mu} + m)\psi = 0 \tag{5.137}$$

by

$$(\gamma^{\mu}D_{\mu} + m)\psi = 0 \tag{5.138}$$

Feynman slash notation: For any vector B^{μ} ,

$$\not B = \gamma^{\mu} B_{\mu}. \tag{5.139}$$

Then

$$(\not\!\!D + m)\psi = (\gamma^{\mu}D_{\mu} + m)\psi = 0. \tag{5.140}$$

5.7 Magnetic moment

Purpose: to compute the interaction $\propto \vec{B} \cdot \vec{S}$ in QM.

Dirac eq.

$$(\gamma^{\mu}D_{\mu} + m)\psi = 0 \tag{5.141}$$

 $D_{\mu} = \partial_{\mu} - ieA_{\mu}$

$$m^2 \psi = (-\gamma^{\mu} D_{\mu})^2 \psi \tag{5.142}$$

$$= \gamma^{\mu} D_{\mu} \gamma^{\nu} D_{\nu} \psi \tag{5.143}$$

$$= \left(\frac{1}{2} \{\gamma^{\mu}, \gamma^{\nu}\} + \frac{1}{2} [\gamma^{\mu}, \gamma^{\nu}]\right) D_{\mu} D_{\nu} \psi \tag{5.144}$$

$$= \left(g^{\mu\nu} + \frac{1}{2}[\gamma^{\mu}, \gamma^{\nu}]\right) D_{\mu} D_{\nu} \psi \tag{5.145}$$

$$= \left(D^2 + \frac{1}{4} [\gamma^{\mu}, \gamma^{\nu}] [D_{\mu}, D_{\nu}]\right) \psi \tag{5.146}$$

(5.147)

Commutation relation

$$[D_{\mu}, D_{\nu}] = [\partial_{\mu} - ieA_{\mu}, \partial_{\nu} - ieA_{\nu}] \tag{5.148}$$

$$= -ie(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) \tag{5.149}$$

$$= -ieF_{\mu\nu} \tag{5.150}$$

$$\left(D^2 - m^2 - ie\frac{1}{2}\gamma^{\mu}\gamma^{\nu}F_{\mu\nu}\right)\psi = 0$$
(5.151)

Suppose

$$A_{\mu} = (0, A_i), \qquad \partial_t A_i = 0.$$
 (5.152)

In particular, $\vec{B} \neq 0$, $\vec{E} = 0$.

$$F_{ij} = \epsilon_{ijk} B^k, \quad F_{0i} = 0.$$
 (5.153)

Then

$$-ie\frac{1}{2}\gamma^{\mu}\gamma^{\nu}F_{\mu\nu} \tag{5.154}$$

$$= -ie\frac{1}{2}(\gamma^i \gamma^j \epsilon_{ijk} B^k) \tag{5.155}$$

$$=2eS_kB^k \qquad (S_k = -\frac{i}{4}\gamma^i\gamma^j\epsilon_{ijk}: \text{ spin })$$
 (5.156)

$$\left(-\partial_t^2 + \vec{D}^2 - m^2 + 2eS_k B^k\right)\psi = 0$$
 (5.157)

Non-relativistic limit $m \to \infty$: define

$$\psi = e^{-imt}\widetilde{\psi} + e^{imt}\widetilde{\psi}' \tag{5.158}$$

$$-\partial_t^2(e^{-imt}\widetilde{\psi}) = e^{-imt}(m^2 + 2im\partial_t - \partial_t^2)\widetilde{\psi}$$
(5.159)

EOM

$$0 = e^{imt} \left(-\partial_t^2 + \vec{D}^2 - m^2 + 2eS_k B^k \right) \psi$$
 (5.160)

$$= \left(-\partial_t^2 + 2im\partial_t + \vec{D}^2 + 2eS_k B^k\right) \widetilde{\psi} + e^{2imt}(\cdots) \widetilde{\psi}'$$
 (5.161)

In the limit $m \to \infty$, neglect

- (1) ∂_t^2 compared to $m\partial_t$
- (2) rapidly oscillating e^{2imt}

Then

$$\left(2im\partial_t + \vec{D}^2 + 2eS_k B^k\right)\widetilde{\psi} = 0 \tag{5.162}$$

$$\implies i\partial_t \Psi = \left(-\frac{1}{2m} \vec{D}^2 - \frac{e}{m} \vec{S} \cdot \vec{B} \right) \widetilde{\psi}$$
 (5.163)

In QM, it corresponds to the interaction

$$H_1 = -g \frac{e}{2m} \vec{S} \cdot \vec{B}, \tag{5.164}$$

$$g = 2 \tag{5.165}$$

This is a good approximation to the actual value

$$g = 2..002 \cdots . (5.166)$$

5.8 Solutions of Dirac equation

Purpose: to obtain solutions of Dirac eq. when $A_{\mu}=0$:

$$(\partial + m)\psi = 0. (5.167)$$

Modes with momentum p,

$$\psi = e^{\pm ip \cdot x} w, \qquad p^0 > 0, \quad w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{pmatrix} : \text{constant.}$$
(5.168)

Then

$$(\partial + m)(e^{\pm ip \cdot x}w) = e^{\pm ip \cdot x}(\pm ip + m)w = 0.$$
 (5.169)

$$\implies (\pm i \not p + m) w = 0 \tag{5.170}$$

Computation of w:

Recall

$$\gamma^{i} = \begin{pmatrix} 0 & -i\sigma^{i} \\ i\sigma^{i} & 0 \end{pmatrix} \qquad \gamma^{0} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$$
 (5.171)

Write

$$w = \begin{pmatrix} \chi \\ \eta \end{pmatrix} \tag{5.172}$$

 χ, η : 2-component

$$\begin{pmatrix} m & \mp(p^0 - \vec{\sigma}\vec{p}) \\ \mp(p^0 + \vec{\sigma}\vec{p}) & m \end{pmatrix} \begin{pmatrix} \chi \\ \eta \end{pmatrix}$$
 (5.173)

Then

$$\pm (p^0 + \vec{\sigma}\vec{p})\chi = m\eta, \qquad \pm (p^0 - \vec{\sigma}\vec{p})\eta = m\chi. \tag{5.174}$$

From them,

$$m^{2}\eta = (p^{0} + \vec{\sigma}\vec{p})(p^{0} - \vec{\sigma}\vec{p})\eta \tag{5.175}$$

$$= [(p^0)^2 - (\vec{\sigma}\vec{p})^2]\eta \tag{5.176}$$

$$= [(p^0)^2 - \vec{p}^2]\eta \tag{5.177}$$

$$=-p^2\eta\tag{5.178}$$

Here

$$(\vec{\sigma}\vec{p})^2 = \frac{1}{2} \{\sigma_i, \sigma_j\} p^i p^j = \delta_{ij} p^i p^j. \tag{5.179}$$

$$m^2 = -p^2 \implies p^0 = E_p = \sqrt{\vec{p}^2 + m^2}$$
 : on-shell (5.180)

 $p^0 - \vec{\sigma} \vec{p}$ and $p^0 + \vec{\sigma} \vec{p}$ are

- (i) hermitian matrices
- (ii) with positive eigenvalues (exercise)
- (iii) and commute with each other .

For any hermitian A with positive eigenvalues, \sqrt{A} such that $(\sqrt{A})^2 = A$ can be defined. Proof: If $A = UDU^{\dagger}$, with U unitary and D diagonal

$$D = \begin{pmatrix} D_1 & & \\ & D_2 & \\ & & \ddots \end{pmatrix} \tag{5.181}$$

Then $\sqrt{A} = U\sqrt{D}U^{\dagger}$ with

$$D = \begin{pmatrix} \sqrt{D_1} & & \\ & \sqrt{D_2} & \\ & & \ddots \end{pmatrix} \tag{5.182}$$

If [A, B] = 0, they are simultaneously diagonalizable and

$$\sqrt{A}\sqrt{B} = \sqrt{AB}. (5.183)$$

We can define

$$\sqrt{p^0 - \vec{\sigma}\vec{p}}, \qquad \sqrt{p^0 + \vec{\sigma}\vec{p}} \tag{5.184}$$

and

$$\sqrt{p^0 - \vec{\sigma}\vec{p}}\sqrt{p^0 + \vec{\sigma}\vec{p}} = \sqrt{(p^0 - \vec{\sigma}\vec{p})(p^0 + \vec{\sigma}\vec{p})} = \sqrt{(p^0)^2 - \vec{p}^2} = m.$$
 (5.185)

Solution for w:

$$w = \begin{pmatrix} \chi \\ \eta \end{pmatrix} = \begin{pmatrix} \sqrt{p^0 - \vec{\sigma}\vec{p}}\,\xi \\ \pm \sqrt{p^0 + \vec{\sigma}\vec{p}}\,\xi \end{pmatrix}, \qquad \xi : \text{ arbitrary}$$
 (5.186)

In fact,

$$\pm (p^{0} + \vec{\sigma}\vec{p})\chi = \pm (p^{0} + \vec{\sigma}\vec{p})\sqrt{p^{0} - \vec{\sigma}\vec{p}}\xi = \pm m\sqrt{p^{0} + \vec{\sigma}\vec{p}}\xi = m\eta.$$
 (5.187)

$$\pm (p^{0} - \vec{\sigma}\vec{p})\eta = (p^{0} - \vec{\sigma}\vec{p})\sqrt{p^{0} + \vec{\sigma}\vec{p}}\xi = m\sqrt{p^{0} - \vec{\sigma}\vec{p}}\xi = m\chi.$$
 (5.188)

Define

$$u_{\vec{p}}(\xi) = \begin{pmatrix} \sqrt{p^0 - \vec{\sigma}\vec{p}}\,\xi\\ \sqrt{p^0 + \vec{\sigma}\vec{p}}\,\xi \end{pmatrix}$$
 (5.189)

$$v_{\vec{p}}(\xi) = \begin{pmatrix} \sqrt{p^0 - \vec{\sigma}\vec{p}}\,\xi\\ -\sqrt{p^0 + \vec{\sigma}\vec{p}}\,\xi \end{pmatrix}$$
 (5.190)

 ξ : arbitrary.

Then

$$(i\not p + m)u_{\vec{p}}(\xi) = 0, \qquad (-i\not p + m)v_{\vec{p}}(\xi) = 0.$$
 (5.191)

Solutions of Dirac equation are

$$e^{ip\cdot x}u_{\vec{p}}(\xi), \quad e^{-ip\cdot x}v_{\vec{p}}(\xi) \qquad (p^0 = E_p)$$
 (5.192)

Orthonormality properties:

$$u_{\vec{p}}(\xi)^{\dagger}u_{\vec{p}}(\xi') = \left(\xi^{\dagger}\sqrt{p^0 - \vec{\sigma}\vec{p}} \ \xi^{\dagger}\sqrt{p^0 + \vec{\sigma}\vec{p}}\right) \begin{pmatrix} \sqrt{p^0 - \vec{\sigma}\vec{p}}\xi' \\ \sqrt{p^0 + \vec{\sigma}\vec{p}}\xi' \end{pmatrix}$$
(5.193)

$$= \xi^{\dagger} \left((p^0 - \vec{\sigma}\vec{p}) + (p^0 + \vec{\sigma}\vec{p}) \right) \xi' \tag{5.194}$$

$$=2E_p\xi^{\dagger}\xi'\tag{5.195}$$

In the same way,

$$v_{\vec{p}}(\xi)^{\dagger}v_{\vec{p}}(\xi') = 2E_p \xi^{\dagger} \xi'. \tag{5.196}$$

Also,

$$u_{\vec{p}}(\xi)^{\dagger}v_{-\vec{p}}(\xi') = \left(\xi^{\dagger}\sqrt{p^0 - \vec{\sigma}\vec{p}} \ \xi^{\dagger}\sqrt{p^0 + \vec{\sigma}\vec{p}}\right) \begin{pmatrix} \sqrt{p^0 + \vec{\sigma}\vec{p}}\xi' \\ -\sqrt{p^0 - \vec{\sigma}\vec{p}}\xi' \end{pmatrix}$$
(5.197)

$$= \xi^{\dagger} \left(m - m \right) \xi' \tag{5.198}$$

$$=0.$$
 (5.199)

Setting

$$\xi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \xi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{5.200}$$

and defining

$$u_{(\vec{p},s)} = u_{\vec{p}}(\xi_s), \qquad v_{(\vec{p},s)} = v_{\vec{p}}(\xi_s) \qquad (s = 1, 2)$$
 (5.201)

Summary:

For a given \vec{p} , the following four vectors are orthogonal, with absolute value $2E_p$.

$$u_{(\vec{p},1)}, u_{(\vec{p},2)}, v_{(-\vec{p},1)}, v_{(-\vec{p},2)}$$
 (5.202)

6 Quantization of Dirac field

Recall: for Lorentz transformation $\Lambda = (\Lambda^{\mu}_{\nu}), S(\Lambda)$ is a 4×4 matrix such that

$$S(\Lambda)^{-1} \gamma^{\mu} S(\Lambda) = \Lambda^{\mu}_{\ \nu} \gamma^{\nu} \tag{6.1}$$

Dirac field ψ transforms

$$\psi'(x) = S(\Lambda)\psi(\Lambda^{-1}x) \tag{6.2}$$

 ψ has 4 components

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} \tag{6.3}$$

 γ^{μ} and $S(\Lambda)$ are 4×4 matrices.

Feynman slash notation: For any vector B^{μ} ,

$$B = \gamma^{\mu} B_{\mu} \tag{6.4}$$

In particular,

$$\partial = \gamma^{\mu} \partial_{\mu} \tag{6.5}$$

$$D = \gamma^{\mu} D_{\mu} \tag{6.6}$$

6.1 Analytical mechanics

The Lagrangian

$$\mathcal{L} = -\overline{\psi}(\cancel{D} + m)\psi \tag{6.7}$$

$$\overline{\psi} = \psi^{\dagger}(i\gamma^0) \tag{6.8}$$

This is Lorentz invariant.

Action

$$S = \int d^4x \mathcal{L} \tag{6.9}$$

Equations of motion : $\psi \to \psi + \delta \psi$,

$$\delta S = -\int d^4x \delta \overline{\psi} (\mathcal{D} + m) \psi + \overline{\psi} (\mathcal{D} + m) \delta \psi$$
 (6.10)

$$= -\int d^4x \delta \overline{\psi} (\not\!\!D + m) \psi + (-D_\mu \overline{\psi} \gamma^\mu + m \overline{\psi}) \delta \psi$$
 (6.11)

where

$$D_{\mu}\overline{\psi} = (\partial_{\mu} + ieA_{\mu})\overline{\psi}. \tag{6.12}$$

$$(\cancel{D} + m)\psi = 0: \text{ Dirac eq.}$$
 (6.13)

$$(-D_{\mu}\overline{\psi}\gamma^{\mu} + m\overline{\psi}) = 0. \tag{6.14}$$

The second equation follows from the first one:

$$(\gamma^{\mu}D_{\mu} + m)\psi = 0 \tag{6.15}$$

$$\Longrightarrow D_{\mu}\psi^{\dagger}(\gamma^{\mu})^{\dagger} + m\psi^{\dagger} \qquad (\because \text{taking } \dagger) = 0. \tag{6.16}$$

Recall

$$(\gamma^{\mu})^{\dagger} = -\gamma^0 \gamma^{\mu} (\gamma^0)^{-1}, \qquad \overline{\psi} = i \psi^{\dagger} \gamma^0. \tag{6.17}$$

Then

$$0 = D_{\mu}\psi^{\dagger}(\gamma^{\mu})^{\dagger} + m\psi^{\dagger} = (-D_{\mu}\overline{\psi}\gamma^{\mu} + m\overline{\psi})(\gamma^{0})^{-1}.$$
 (6.18)

Canonical momentum: I do not give a systematic discussion.

From

$$\mathcal{L} = -\overline{\psi}\gamma^0 \partial_t \psi \dots = i\psi^{\dagger} \partial_t \psi + \dots \tag{6.19}$$

define canonical momentum

$$\pi = \frac{\partial \mathcal{L}}{\partial \dot{\psi}} = i\psi^{\dagger} \tag{6.20}$$

Regard ψ and ψ^{\dagger} as independent canonical variables.

Hamiltonian

$$H = \int d^3x (\pi \partial_t \psi - \mathcal{L}) \tag{6.21}$$

6.2 Anti-commutation relation

Important point : quantization is different from the usual case.

For a harmonic oscillator,

canonical commutation relation \implies creation/annihilation operators a, a^{\dagger} (6.22)

$$[a, a^{\dagger}] = 1, \quad [a, a] = [a^{\dagger}, a^{\dagger}] = 0$$
 (6.23)

$$a|0\rangle = 0 \tag{6.24}$$

$$|n\rangle \propto (a^{\dagger})^n |0\rangle, \qquad n = 0, 1, 2, 3, \dots$$
 (6.25)

$$H = \omega(a^{\dagger}a + \frac{1}{2}), \qquad H|n\rangle = \omega(n + \frac{1}{2})|n\rangle.$$
 (6.26)

Applied to a scalar field, it has led to Bose-Einstein statistics.

This is not the case for fermions.

A general theorem:

$$spin-statistics\ theorem: \begin{cases} integer\ spin = Bose-Einstein\ statistics:\ boson\\ half-integer\ spin = Fermi-Dirac\ statistics:\ fermion \end{cases} \tag{6.29}$$

A theoretical consequence of QFT, agreeing with experiment.

Fermi-Dirac requires anticommutation relation:

Creation and annihilation operators a, a^{\dagger}

$$\{a, a^{\dagger}\} = aa^{\dagger} + a^{\dagger}a = 1, \qquad \{a, a\} = \{a^{\dagger}, a^{\dagger}\} = 0$$
 (6.30)

In particular,

$$(a)^2 = \frac{1}{2} \{a, a\} = 0, \qquad (a^{\dagger})^2 = \frac{1}{2} \{a^{\dagger}, a^{\dagger}\} = 0$$
 (6.31)

Only two states:

$$|0\rangle, \qquad a|0\rangle = 0 |1\rangle = a^{\dagger}|0\rangle, \qquad a^{\dagger}|1\rangle = (a^{\dagger})^{2}|0\rangle = 0$$
(6.32)

Interpretation: 0 or 1 particle.

Number operator

$$N = a^{\dagger} a \tag{6.33}$$

In fact,

$$[a^{\dagger}a, a] = (a^{\dagger}a)a - a(a^{\dagger}a) = a^{\dagger}a^2 - (aa^{\dagger})a = 0 - (1 - a^{\dagger}a)a = -a \tag{6.34}$$

$$\implies [N, a] = -a. \tag{6.35}$$

In the same way,

$$[N, a^{\dagger}] = a^{\dagger} \tag{6.36}$$

$$N|0\rangle = a^{\dagger}a|0\rangle = 0, \qquad (a|0\rangle = 0).$$
 (6.37)

$$N|1\rangle = Na^{\dagger}|0\rangle = (a^{\dagger} + a^{\dagger}N)|0\rangle = a^{\dagger}|0\rangle = |1\rangle.$$
 (6.38)

If the Hamiltonian is

$$H = \omega a^{\dagger} a \tag{6.39}$$

Then

$$H|0\rangle = 0, \qquad H|1\rangle = \omega|1\rangle.$$
 (6.40)

For a Dirac field ψ with canonical momentum $\pi=i\psi^\dagger$:

Define quantization by anti-commutation relations

$$\{\psi(t, \vec{x}), \pi(t, \vec{y})\} = i\delta^3(\vec{x} - \vec{y})I_4 \qquad \pi = i\psi^{\dagger}$$
 (6.41)

 $I_4: 4 \times 4$ unit matrix. More explicitly,

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}, \qquad \pi = (\pi_1, \pi_2, \pi_3, \pi_4)$$
(6.42)

Then

$$\{\psi_a(t,\vec{x}), \pi_b(t,\vec{y})\} = i\delta^3(\vec{x} - \vec{y})\delta_{ab} \qquad (a,b=1,2,3,4)$$
 (6.43)

We will abbreviate it by omitting even I_4 ,

$$\{\psi(t, \vec{x}), \pi(t, \vec{y})\} = i\delta^3(\vec{x} - \vec{y}),$$
 both sides regarded as 4×4 matrices (6.44)

Using $\pi = i\psi^{\dagger}$,

$$\{\psi(t,\vec{x}),\psi^{\dagger}(t,\vec{y})\} = \delta^{3}(\vec{x}-\vec{y})$$
 (6.45)

6.3 Creation and annihilation operators

Recall solutions of Dirac equations

$$e^{ip \cdot x} u_{(\vec{p},s)}, \quad e^{-ip \cdot x} v_{(\vec{p},s)}, \quad s = 1, 2, \quad p^0 = E_p$$
 (6.46)

Properties:

$$(ip + m)u_{(\vec{p},s)} = 0, \qquad (-ip + m)v_{(\vec{p},s)} = 0,$$
 (6.47)

Four vectors

$$u_{(\vec{p},s)}, \quad v_{(-\vec{p},s')} \quad (s=1,2)$$
 (6.48)

are orthogonal.

Expand

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left(a_{(\vec{p},s)} u_{(\vec{p},s)} \exp(ip \cdot x) + b_{(\vec{p},s)}^{\dagger} v_{(\vec{p},s)} \exp(-ip \cdot x) \right)$$
(6.49)

 $a_{(\vec{p},s)}, b_{(\vec{p},s)}$: operators.

The adjoint on $b_{(\vec{p},s)}$ is for later convenience.

Commutation relations turn out to be

$$\{a_{(\vec{p},s)}, a_{(\vec{q},s')}^{\dagger}\} = \delta_{s,s'}(2\pi)^3 \delta(\vec{p} - \vec{q}) \qquad \{b_{(\vec{p},s)}, b_{(\vec{q},s')}^{\dagger}\} = \delta_{s,s'}(2\pi)^3 \delta(\vec{p} - \vec{q})$$

$$(6.50)$$

other anticommutatiors =
$$0$$
 (6.51)

Derivation:

At t = 0,

$$\psi(\vec{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left(a_{(\vec{p},s)} u_{(\vec{p},s)} + b_{(-\vec{p},s)}^{\dagger} v_{(-\vec{p},s)} \right) \exp(i\vec{p} \cdot \vec{x})$$
(6.52)

Recall

$$\{\psi(\vec{x}), \psi^{\dagger}(\vec{y})\} = \delta^3(\vec{x} - \vec{y})$$
 (6.53)

Using

$$\int d^3x \exp(i\vec{p} \cdot \vec{x}) = (2\pi)^3 \delta^3(\vec{p})$$
(6.54)

and orthogonality

$$u_{(\vec{p},s)}^{\dagger}u_{(\vec{p},s')} = 2E_{p}\delta_{ss'}, \quad v_{(-\vec{p},s)}^{\dagger}v_{(-\vec{p},s')} = 2E_{p}\delta_{ss'}, \quad u_{(\vec{p},s)}^{\dagger}v_{(-\vec{p},s')} = 0.$$
 (6.55)

then (exercise)

$$a_{(\vec{p},s)} = \frac{1}{\sqrt{2E_p}} \int d^3x \, u^{\dagger}_{(\vec{p},s)} \psi(\vec{x}) \exp(-i\vec{p} \cdot \vec{x})$$
 (6.56)

$$b_{(-\vec{p},s)}^{\dagger} = \frac{1}{\sqrt{2E_p}} \int d^3x \, v_{(-\vec{p},s)}^{\dagger} \psi(\vec{x}) \exp(-i\vec{p} \cdot \vec{x})$$
 (6.57)

From it,

$$\{a_{(\vec{p},s)}, a_{(\vec{a},s')}^{\dagger}\}\$$
 (6.58)

$$= \frac{1}{\sqrt{2E_n}\sqrt{2E_a}} \int d^3x d^3y \, u^{\dagger}_{(\vec{p},s)} \{\psi(\vec{x}), \psi(\vec{y})^{\dagger}\} u_{(\vec{q},s')} \exp(-i\vec{p} \cdot \vec{x} + i\vec{q} \cdot \vec{y})$$
 (6.59)

$$= \frac{1}{\sqrt{2E_p}\sqrt{2E_q}} \int d^3x d^3y \, u^{\dagger}_{(\vec{p},s)} \delta^3(\vec{x} - \vec{y}) u_{(\vec{q},s')} \exp(-i\vec{p} \cdot \vec{x} + i\vec{q} \cdot \vec{y})$$
(6.60)

$$= \frac{1}{\sqrt{2E_p}\sqrt{2E_q}} \int d^3x \, u^{\dagger}_{(\vec{p},s)} u_{(\vec{q},s')} \exp(-i(\vec{p} - \vec{q}) \cdot \vec{x})$$
 (6.61)

$$= \frac{1}{2E_p} u_{(\vec{p},s)}^{\dagger} u_{(\vec{p},s')} (2\pi)^3 \delta^3(\vec{p} - \vec{q})$$
(6.62)

$$= \delta_{s,s'}(2\pi)^3 \delta^3(\vec{p} - \vec{q}) \tag{6.63}$$

Other relations can be obtained similarly.

6.4 Hamiltonian and Fock space

Hamiltonian

$$H = \int d^3x \left(\pi \partial_t \psi - \mathcal{L}\right), \qquad \pi = i\psi^{\dagger} \tag{6.64}$$

EOM $(\partial + m)\psi = 0$ gives

$$\mathcal{L} = -\overline{\psi}(\partial \!\!\!/ + m)\psi = 0. \tag{6.65}$$

Thus

$$H = \int d^3x \, i\psi^{\dagger} \partial_t \psi \tag{6.66}$$

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left(a_{(\vec{p},s)} u_{(\vec{p},s)} \exp(ip \cdot x) + b_{(\vec{p},s)}^{\dagger} v_{(\vec{p},s)} \exp(-ip \cdot x) \right)$$
(6.67)

Using orthogonality of $u_{(\vec{p},s)}, v_{(-\vec{p},s)},$ one get (exercise)

$$H = \int \frac{d^3p}{(2\pi)^3} \sum_{s} E_p \left(a^{\dagger}_{(\vec{p},s)} a_{(\vec{p},s)} - b_{(\vec{p},s)} b^{\dagger}_{(\vec{p},s)} \right)$$
(6.68)

$$= \int \frac{d^3p}{(2\pi)^3} \sum_{s} E_p \left(a^{\dagger}_{(\vec{p},s)} a_{(\vec{p},s)} + b^{\dagger}_{(\vec{p},s)} b_{(\vec{p},s)} \right) + E_{\text{vac}}$$
 (6.69)

Here

$$E_{\text{vac}} = \int \frac{d^3 p}{(2\pi)^3} \sum_{s} E_p \left(-2(2\pi)^3 \delta(0) \right)$$
 (6.70)

We neglect it.

 $a^{\dagger}_{(\vec{p},s)}, b^{\dagger}_{(\vec{p},s)}$ creat energies:

$$[H, a_{(\vec{p},s)}^{\dagger}] = E_p a_{(\vec{p},s)}^{\dagger}, \qquad [H, b_{(\vec{p},s)}^{\dagger}] = E_p b_{(\vec{p},s)}^{\dagger}$$
 (6.71)

Define vacuum $|\Omega\rangle$

$$a_{(\vec{p},s)}|\Omega\rangle = 0, \qquad b_{(\vec{p},s)}|\Omega\rangle = 0$$

$$(6.72)$$

One particle states

$$a^{\dagger}_{(\vec{p},s)}|\Omega\rangle$$
 : particle (6.73)

$$b_{(\vec{p},s)}^{\dagger}|\Omega\rangle$$
 : anti-particle (6.74)

Particle and anti-particle has the same energy, opposite charge: $\psi \sim a + b^{\dagger} \Longrightarrow a, b^{\dagger}$ has the same charge, or a^{\dagger} and b^{\dagger} has different charge.

More general states: act each of $a^\dagger_{(\vec{p},s)}, b^\dagger_{(\vec{p},s)}$ on $|\Omega\rangle$ zero or one time. From

$$(a_{(\vec{p},s)}^{\dagger})^2 = 0, \qquad (b_{(\vec{p},s)}^{\dagger})^2 = 0$$
 (6.75)

each of them cannot act twice.

Summary:

- $a_{(\vec{p},s)}^{\dagger}$ create a particle with momentum \vec{p} and spin s
- $\bullet\,$ Each one-particle state has 0 or 1 particle: Fermi-Dirac statistics.

7 Quantization of electromagnetic field

EM field $A_{\mu} \to \text{photon}$

Interaction of A_{μ} and ψ : quantum electrodynamics (QED). But we only consider free A_{μ} .

7.1 Analytical mechanics

EM tensor

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \tag{7.1}$$

Gauge transformation

$$A_{\mu} \to A_{\mu} + \partial \alpha$$
 α : arbitrary (7.2)

Physics invariant under it.

Lagrangian \mathcal{L} and action S

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}(\vec{E}^2 - \vec{B}^2)$$
 (7.3)

$$S = \int d^4x \mathcal{L} \tag{7.4}$$

 $F_{ij} = \epsilon_{ijk} B^k, F_{0i} = -E_i$

Equations of motion: from $\delta S = 0$,

$$\delta S = -\frac{1}{4} \int d^4 x 2F^{\mu\nu} (\partial_\mu \delta A_\nu - \partial_\nu \delta A_\mu)$$
 (7.5)

$$= -\int d^4x F^{\mu\nu} \partial_\mu \delta A_\nu \tag{7.6}$$

$$= \int d^4x (\partial_\mu F^{\mu\nu}) \delta A_\nu \tag{7.7}$$

then

$$\partial_{\mu}F^{\mu\nu} = 0$$
: Maxwell eq. (7.8)

Canonical momentum and quantization are subtle. We use ad hoc method. Terms including time derivatives:

$$\mathcal{L} = +\frac{1}{2}(\partial_0 A_i - \partial_i A_0)^2 + \cdots$$
 (7.9)

Canonical momenta for A_i (i = 1, 2, 3):

$$\pi^{i} = \frac{\partial \mathcal{L}}{\partial \dot{A}_{i}} = \partial_{0} A_{i} - \partial_{i} A_{0} = F_{0i} = -E_{i}$$

$$(7.10)$$

 A_0 does not have time derivative. No canonical momentum for it. Equation of motion from δA_0

$$\partial_i F^{i0} = \partial_i \pi^i = 0 \tag{7.11}$$

Hamiltonian

$$H = \int d^3x (\pi^i \dot{A}_i - \mathcal{L}) \tag{7.12}$$

$$= \int d^3x (\pi^i(\pi_i + \partial_i A_0) - \mathcal{L}) \tag{7.13}$$

$$= \int d^3x \frac{1}{2} (\vec{\pi}^2 + \vec{B}^2 - A_0 \partial_i \pi^i)$$
 (7.14)

$$= \int d^3x \frac{1}{2} (\vec{\pi}^2 + \vec{B}^2) \quad (\because \partial_i \pi^i = 0)$$
 (7.15)

7.2 Gauge invariance of states

Naive canonical commutation relations:

$$[A_i(\vec{x}), \pi^j(\vec{y})] = i\delta_i^j \delta^3(\vec{x} - \vec{y}) \tag{7.16}$$

However,

$$\partial_i \pi^i = 0 \tag{7.17}$$

These two are inconsistent,

$$[A_i(\vec{x}), \partial_j \pi^j(\vec{y})] = i \frac{\partial}{\partial y^i} \delta^3(\vec{x} - \vec{y}) \neq 0$$
(7.18)

Interpretation?

Conceptual (not practical) understanding: wavefunction of \vec{A} ,

$$\Psi(\vec{A}) \tag{7.19}$$

This is a functional of the function \vec{A} . Canonical momentum

$$\pi^i = -i \frac{\delta}{\delta A_i}$$
 functional derivative (7.20)

Interpret $\partial_i \pi_i = 0$ as follows:

 $\partial_i \pi^i$ is nonzero as an operator.

But impose that physical states satisfy

$$(\partial_i \pi^i) \Psi(\vec{A}) = 0 \tag{7.21}$$

 $\partial_i \pi_i = 0$ is not an equation for the operators π^i but a condition for physical states.

More consideration:

For infinitesimal $\alpha(\vec{x})$,

$$0 = \int d^3x \alpha(\vec{x}) \partial_i \pi^i(\vec{x}) \Psi(\vec{A})$$
 (7.22)

$$0 = -\int d^3x \partial_i \alpha(\vec{x}) \pi^i(\vec{x}) \Psi(\vec{A})$$
 (7.23)

$$= i \int d^3x (\partial_i \alpha) \frac{\delta \Psi(\vec{A})}{\delta A_i} \tag{7.24}$$

$$= i \left[\Psi(\vec{A} + \vec{\partial}\alpha) - \Psi(\vec{A}) \right] \tag{7.25}$$

then

$$\Psi(\vec{A} + \vec{\partial}\alpha) = \Psi(\vec{A}) \tag{7.26}$$

Interpretation: $\Psi(\vec{A})$ is invariant under gauge transformation

$$A_i \to A_i + \partial_i \alpha$$
 (7.27)

Physical states are gauge invariant.

7.3 Quantization

Practically, it is convenient to fix the gauge.

Fourier modes

$$A_i(\vec{x}) = \int \frac{d^3p}{(2\pi)^3} \tilde{A}_i(\vec{p}) \exp(i\vec{p} \cdot \vec{x})$$
 (7.28)

Gauge transformation in momentum space:

$$\tilde{A}_i(\vec{p}) \to \tilde{A}_i(\vec{p}) + ip_i\tilde{\alpha}(\vec{p})$$
 (7.29)

 \tilde{A}_i in the direction $\vec{p}/|\vec{p}|$ is not physical degrees of freedom.

Gauge fixing:

$$p_i \tilde{A}^i = 0 \implies \partial_i A^i = 0$$
: Coulomb gauge (7.30)

Then

$$\partial_i \pi^i = 0, \qquad \partial_i A^i = 0 \tag{7.31}$$

Among 3 components of A_i and π^i , only 2 perpendicular to \vec{p} are physical degrees of freedom.

Mode expansion:

$$\vec{A}_i(\vec{x}) = \int \frac{d^3p}{(2\pi)^3} (\vec{\epsilon}_1 Q_1(\vec{p}) + \vec{\epsilon}_2 Q_2(\vec{p})) \exp(i\vec{p} \cdot \vec{x})$$
 (7.32)

$$\pi_i(\vec{x}) = \int \frac{d^3p}{(2\pi)^3} (\vec{\epsilon}_1 P_1(\vec{p}) + \vec{\epsilon}_2 P_2(\vec{p})) \exp(i\vec{p} \cdot \vec{x})$$
 (7.33)

 $\vec{\epsilon}_1, \ \vec{\epsilon}_2$: polarization vectors

$$\vec{\epsilon}_k \cdot \vec{\epsilon}_\ell = \delta_{k,\ell}, \qquad \vec{p} \cdot \vec{\epsilon}_k = 0 \qquad (k, \ell = 1, 2)$$
 (7.34)

Hamiltonian

$$H = \int d^3x \frac{1}{2} (\vec{\pi}^2 + \vec{B}^2) \tag{7.35}$$

$$= \int d^3 (\frac{1}{2}\vec{\pi}^2 + \frac{1}{4}(\partial_i A_j - \partial_j A_i)^2)$$
 (7.36)

$$= \frac{1}{2} \int d^3x (\vec{\pi}^2 + (\partial_i A_j)^2 - \partial_i A_j \partial_j A_i)$$

$$(7.37)$$

$$= \frac{1}{2} \int d^3x (\vec{\pi}^2 + (\partial_i A_j)^2) \qquad \text{(integration by parts, } \partial_i A^i) = 0 \tag{7.38}$$

$$= \dots$$
similar computation to scalar fields (7.39)

$$= \frac{1}{2} \int \frac{d^3p}{(2\pi)^3} (|P_1(\vec{p})|^2 + |P_2(\vec{p})|^2 + \vec{p}^2 (|Q_1(\vec{p})|^2 + |Q_2(\vec{p})|^2))$$
(7.40)

Each pair (Q_1, P_1) , (Q_2, P_2) behaves similarly to a real scalar field with m = 0.

The rest is similar to real scalar.

Results:

Commutation relations

$$[Q_k(\vec{p}), P_\ell(\vec{q})] = i\delta_{k,\ell}(2\pi)^3 \delta(\vec{p} - \vec{q}) \tag{7.41}$$

Creation, annihilation operators

$$a_{(\vec{p},k)} = \frac{1}{\sqrt{2E_p}} (E_p Q_k(\vec{p}) + iP_k(\vec{p}))$$
 (7.42)

$$a_{(\vec{p},k)}^{\dagger} = \frac{1}{\sqrt{2E_p}} (E_p Q_k(-\vec{p}) - i P_k(-\vec{p}))$$
 (7.43)

$$[a_{(\vec{p},k)}, a_{(\vec{q},\ell)}^{\dagger}] = \delta_{k,\ell} (2\pi)^3 \delta(\vec{p} - \vec{q})$$
(7.44)

Hamiltonian

$$H = \sum_{k} \int \frac{d^{3}p}{(2\pi)^{3}} E_{p} \left(a_{(\vec{p},k)}^{\dagger} a_{(\vec{p},k)} \right) + E_{\text{vac}}$$
 (7.45)

$$E_p = |\vec{p}|, \qquad E_{\text{vac}} = \sum_{\vec{p}} E_p \tag{7.46}$$

Interpretation:

- $a^{\dagger}_{(\vec{p},k)}$, (k=1,2) create two polarization photons with $p^{\mu}=(|\vec{p}|,\vec{p})$.
- Bose-Einstein statistics

$$\vec{A}(t,\vec{x}) = \sum_{k} \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \vec{\epsilon}_k \left(a_{(\vec{p},k)} \exp(ip \cdot x) + a_{(\vec{p},k)}^{\dagger} \exp(-ip \cdot x) \right)$$
(7.47)