Probability Theory & Statistics

Innopolis University, BS-I,II Spring Semester 2016-17

Lecturer: Nikolay Shilov

Part I

ANATOMY OF INDEPENDENCE

Back to a problem from Mid-Term

• Assume that Ω is a finite set of outcomes of a random variable X with uniform probability distribution and $|\Omega|=$ n>0. What can be size of the image X(Ω) (i.e. how many element this set may have)?

How to solve it

- $m_1 = ... = m_k$ since X is uniform (flat);
- hence m= m₁= ... = m_k divides n (notation: m|n),
- and k, the size of X(Ω), also divides n (k|n).

Anatomy of Discrete Uniform Distribution

What if X and Y are independent?

Anatomy of two Independent Uniform Distributions

For each $\Omega_{\rm j}$ the ratio of

- blue within $\Omega_{\rm j}$ to m,
- green within $\Omega_{\rm j}$ to m,
- yellow within $\Omega_{\rm j}$ to m,
- red within $\Omega_{\rm j}$ to m is 1/4.

Back to Beauty and the Beast example (from lecture for week 7)

• A staircase function X(t)=k on [(1-q^(k-1)), (1-q^k)) is a random variable with outcomes [0,1) and geometric distribution:

Back to Beauty and the Beast example (cont.)

Question: Build any random variable Y
 variable with the same outcomes [0,1) and the
 geometric distribution that is independent
 with the above random variable X.

Part II

MULTIVARIATE DISCRETE DISTRIBUTIONS

Distinguish please...

Equally distributed random variables X, Y, Z over Ω :

A random variable g(X,Z) over $\Omega \times \Omega$:

Two independent variables over Ω

Sample distributions:

•
$$P_X(0) = P_X(1) =$$

= $P_X(2) = 1/3$

•
$$P_{Y}(0) = 2/3$$
, $P_{Y}(1) = 1/3$.

Two exercises

We have not proved expectation additivity. Prove that for any two random variables with depicted distributions.

Two exercises (cont)

"Design" values for dependent random variables X and Z such that

$$M(X*Z) = M(X)*M(Z)$$

Random variable g(X,Z) over $\Omega \times \Omega$

Sample *multivariate* distribution:

Y\X	0	1	2	
0	2/9	2/9	2/9	
1	1/9	1/9	1/9	

Tuples of Random Variables (example)

- Experiment: flipping an ideal coin 3 times.
- Random variables:
 - -X number of tails (T);
 - Y number of heads (H) before the first head.

Ω	ннн	HHT	HTH	HTT	THH	THT	TTH	TTT
Р	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
X	0	1	1	2	1	2	2	3
Υ	3	2	1	1	0	0	0	0

Multivariate Discrete Distribution (example)

Random variables:

Ω	ннн	HHT	нтн	HTT	THH	THT	TTH	TTT
Р	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
X	0	1	1	2	1	2	2	3
Υ	3	2	1	1	0	0	0	0

Joint Probability Mass Function:

X\Y	0	1	2	3
0	0	0	0	1/8
1	1/8	1/8	1/8	0
2	2/8	1/8	0	0
3	1/8	0	0	0

Marginal Distributions

X\Y	0	1	2	3	P _X =
					$\Sigma_{y \in [03]}$
0	0	0	0	1/8	1/8
1	1/8	1/8	1/8	0	3/8
2	2/8	1/8	0	0	3/8
3	1/8	0	0	0	1/8
P _Y =	4/8	2/8	1/8	1/8	
$\Sigma_{x \in [03]}$					

Exercises for slides 14-16

- Are random variables X and Y independent?
- Explain why the marginal distribution for X is the same as the distribution of X. (Same for Y).
- Build conditional distribution distributions $P_{X|Y}$ and $P_{Y|X}$ (i.e. distributions for each random variable given an admissible value for another one).

Part III

VARIANCE, COVARIANCE AND CORRELATION

Moments of a random variable

- Let k>0 be an integer, and X be a discrete random variable.
- k-th (initial) moment of X is expectation of X^k:

$$M(X^k) = \sum_{x \in R} x^k * P_X(x);$$

• k-th *central moment* of X is expectation of the random variable $[X - E(X)]^k$:

$$M([X - E(X)]^k) = \sum_{x \in R} (x - E(X))^k * P_X(x).$$

(Recall: Mean is Expectation!)

Variance (дисперсия;-)

 Variance of a (discrete) random variable X is its 2nd central moment:

$$D(X) = var(X) = M([X - E(X)]^2).$$

•
$$D(X) = M[X^2 - 2X*E(X) + E^2(X)] =$$

= $M(X^2) - 2*E(X)*M(X) + E^2(X) =$
= $M(X^2) - M^2(X)$.

Example and Exercise

- Example: X is "rolling dice" random variable:
 - -M(X) = 7/2 (lecture for week 7);
 - $-M(X^2) = \sum_{1 \le k \le 6} k^2 * P_X(k) = 91/6;$
 - $-D(X) = M(X^2) M^2(X) = 91/6 49/4 = 35/12.$
- Exercise: compute expectation, 2nd moment and variance for a "dice" with n different values (i.e. a random variable X with values [1..n] and uniform distribution).

Some Properties of Variance

- Prove: if a∈R is a constant then
 - -D(a)=0;
 - -D(X + a) = D(X);
 - $-D(a*X)=a^2*D(X).$
- Prove: if X and Y have the same outcomes then

$$D(X + Y) = D(X) + D(Y) + + 2[M(X*Y) - M(X)*M(Y)].$$

Prove yourself:

- If X and Y are independent random variables than D(X + Y) = D(X) + D(Y);
- if a,b∈R are constants and X and Y have the same outcomes then

$$D(a*X + b*Y) = a^{2}D(X) + b^{2}D(Y) +$$

$$+ 2ab*[M(X*Y) - M(X)*M(Y)]$$

Variance of selected discrete distributions

- If X= Bernoulli(p) then
 D(X) = M(X²) M²(X) = p p² = p*q,
 where q=(1-p).
- If X= Binomial(n,p) then D(X)= n*D(X) = n*p*q where q=(1-p).
- Problem: prove that

$$D(X)=q/p^2,$$

where q=(1-p) and X=geom(p).

Deviation and Covariance

- For any discrete random variable X its (standard) deviation is $\sigma(X) = D^{1/2}(X)$.
- For any discrete random variable X and Y (with same set of outcomes) their covariance is cov(X,Y) =

=
$$M[(X-E(X))*(Y-E(X))] =$$

= $M(X*Y) - M(X)*M(Y)];$

- if X and Y are independent then cov(X,Y)=0.

Correlation Coefficient

 For any discrete random variable X and Y (with same set of outcomes) their correlation coefficient is

$$r(X,Y) = \rho(X,Y) = corr(X,Y) = \frac{cov(X,Y)}{\sigma(X)*\sigma(Y)}.$$

- Some properties:
 - Prove: -1≤cor(X,Y)≤1 for all random variables X and Y.
 - If X and Y are independent then cor(X,Y)=0 (they are uncorrelated).

Correlation vs. Linear Expressibility

Prove: if Y= a*X + b then

corr(X,Y) =
$$\begin{cases} 1, & \text{if } a > 0; \\ -1, & \text{if } a < 0. \end{cases}$$

Question: is the opposite implication valid?
 Prove or refute by an example.