ET3230 Điện tử tương tự I

Bài giảng: Khuếch đại thuật toán

Nội dung

- 11.1 Giới thiệu chung
- 11.2 Ứng dụng
 - Khuếch đại đảo
 - Khuếch đại không đảo
 - Mạch cộng đảo
 - Mach trù
 - Bộ đệm điện áp
 - Mạch tích phân
 - Mạch vi phân
 - Nguồn áp
 - Nguồn dòng
 - Bộ lọc

11.1 Giới thiệu chung

- 11.1.1 Các khái niệm cơ bản
- 11.1.2 Hệ số nén đồng pha
- 11.1.3 Đặc tuyến truyền đạt
- 11.1.4 Dòng vào tĩnh, điện áp lệch không

11.1.1 Các khái niệm cơ bản

- Ký hiệu
 - Đầu vào đảo
 - Đầu vào không đảo
- Bộ KĐTT lý tưởng
 - Trở kháng vào $Z_{i}=\infty$
 - Trở kháng ra $Z_{a}=0$
 - Hệ số KĐ $A_{_{\! d}}=\infty$

• Điện áp đầu ra $V_o = A_d V_d + A_c V_c$

$$V_{d} = V_{i_{1}} - V_{i_{2}}$$

$$V_{c} = V_{i_{1}} + V_{i_{2}}$$

$$A_{\!\scriptscriptstyle d}$$
 Hệ số KĐ vi sai $A_{\!\scriptscriptstyle c}$ Hệ số KĐ đồng pha

11.1.2 Hệ số nén đồng pha

- CMRR: Common Mode Rejection Ratio
 - Đánh giá khả năng làm việc của KĐTT thực so với KĐTT lý tưởng

$$CMRR = \frac{A_d}{A_c}$$

$$V_o = A_d V_d \left(1 + \frac{1}{\text{CMRR}} \frac{V_c}{V_d} \right)$$

11.1.3 Đặc tuyến truyền đạt

1.11.4 Dòng điện tĩnh, điện áp lệch không

$$I_{{\scriptscriptstyle IB}}=rac{I_{{\scriptscriptstyle IB}}^{^{+}}+I_{{\scriptscriptstyle IB}}^{^{-}}}{2}$$
 dòng vào tĩnh

$$I_{{\scriptscriptstyle IO}} = I_{{\scriptscriptstyle IB}}^{^+} - I_{{\scriptscriptstyle IB}}^{^-}$$
 dòng vào lệch không

 $V_{\scriptscriptstyle IO}$ điện áp vào lệch không

$$V_o ext{ (offset)} = V_{IO} \frac{R_1 + R_f}{R_1}$$

$$V_o$$
 (offset due to I_{IO}) = $I_{IO}R_f$

Ví dụ các mạch cơ bản dùng KĐTT

Ví dụ các mạch cơ bản dùng KĐTT

uA741

TABLE 14.1 Absolute Maximum Ratings

Supply voltage	±22 V
Internal power dissipation	500 mW
Differential input voltage	±30 V
Input voltage	±15 V

TABLE 14.2 μ A741 Electrical Characteristics: $V_{CC} = \pm 15 \text{ V}$,

Characteristic	MIN	TYP	MAX	Unit
V _{IO} Input offset voltage		1	6	mV
I _{IO} Input offset current		20	200	nA
I _{IB} Input bias current		80	500	nA
$V_{\rm ICR}$ Common-mode input voltage range	±12	±13		V
$V_{\rm OM}$ Maximum peak output voltage swing	±12	±14		V
A _{VD} Large-signal differential voltage amplification	20	200		V/mV
Γ_I Input resistance	0.3	2		${ m M}\Omega$
r_o Output resistance		75		Ω
C, Input capacitance		1.4		pF
CMRR Common-mode rejection ratio	70	90		dB
I _{CC} Supply current		1.7	2.8	mA
P_D Total power dissipation		50	85	mW

Khuếch đại đảo

$$A = -\frac{R_f}{R_1}$$

Khuếch đại không đảo

$$A = 1 + \frac{R_f}{R_1}$$

Mạch cộng đảo

Mạch trừ

$$V_{o} = -\left(rac{R_{f}}{R_{2}}V_{2} - rac{R_{f}}{R_{3}}rac{R_{f}}{R_{1}}V_{1}
ight)$$

Mạch trừ

$$V_o = \frac{R_3}{R_1 + R_3} \frac{R_2 + R_4}{R_2} V_1 - \frac{R_4}{R_2} V_2$$

Bộ đệm điện áp

$$V_o = V_1$$

Mạch tích phân

Mạch vi phân

Nguồn áp được điều khiển bởi điện áp

$$V_o = -\frac{R_f}{R_1}V_1 = kV_1$$

$$V_{o} = -\frac{R_{f}}{R_{1}}V_{1} = kV_{1}$$
 $V_{o} = \left(1 + \frac{R_{f}}{R_{1}}\right)V_{1} = kV_{1}$

Nguồn dòng được điều khiển bởi điện áp

Nguồn áp được điều khiển bởi dòng điện

Nguồn dòng được điều khiển bởi dòng điện

$$I_o = I_1 + I_2 = I_1 + \frac{I_1 R_2}{R_1} = \left(1 + \frac{R_1}{R_2}\right)I_1 = kI_1$$

- Bộ lọc
 - Thông thấp
 - Thông cao
 - Thông dải

Bộ lọc thông thấp bậc 1

$$A_{v} = 1 + \frac{R_{f}}{R_{1}}$$

$$f_{OH} = \frac{1}{2\pi R_1 C_1}$$

(b)

Bộ lọc thông thấp bậc 2

Bộ lọc thông cao bậc 1 và bậc 2

$$f_{OL} = \frac{1}{2\pi R_1 C_1}$$

Bộ lọc thông dải

$$f_{OL} = \frac{1}{2\pi R_{1}C_{1}}$$

$$f_{OH} = \frac{1}{2\pi R_{2}C_{2}}$$

Mắc nối tiếp nhiều bộ KĐTT

$$A = A_1 A_2 A_3$$

Tóm tắt

- Khuếch đại thuật toán
- Các ứng dụng của khuếch đại thuật toán

Bài tập

- Bài tập [1]:
 - Chapter 14: 1, 4, 9, 10, 12, 15, 17, 18
 - Chapter 15: 1, 6, 8, 11, 14, 16, 17