Question	Scheme	Marks
5(a)	$-\frac{1}{12} = \frac{10 - 0}{p - 123} \left[\text{or} -\frac{1}{12} = \frac{0 - 10}{123 - p} \right]$	M1
	$\Rightarrow p - 123 = -12 \times 10 \Rightarrow p = 3*$	A1
		cso [2]
(b)	$y-10 = -\frac{1}{12}(x-3) \Rightarrow 12y+x-123 = 0$	M1A1 [2]
(c)	$m_k = 12$	B1
	$y-10=12(x-3) \Rightarrow y=12x-26$	M1A1 [3]
(d)	At $C: y = 12x - 26$ when $y = 0$, $x = \frac{26}{12}$ oe	M1A1
	Area _{ABC} = $\frac{1}{2} \times 10 \times \left(123 - \frac{13}{6}\right) = \frac{3625}{6}$ ALT	M1A1
	Area = $\frac{1}{2} \begin{vmatrix} 3 & 123 & 13/6 & 3\\ 10 & 0 & 0 & 10 \end{vmatrix} = \frac{3625}{6}$	[M1A1]
		[4]
Total 11 marks		

Question	Notes	Marks	
5(a)	States a correct expression for the gradient in terms of <i>p</i>		
	either $-\frac{1}{12} = \frac{10-0}{p-123}$ or $-\frac{1}{12} = \frac{0-10}{123-p}$		
	1	M1	
	and attempts to solve their equation in p		
	$p-123 = -12 \times 10 \Rightarrow p = \dots$		
	Finds the value of $p = 3*$	A1	
	Must show an intermediate step e.g. $k = p \pm c$ or $c = \frac{p}{k}$ or $c = kp$	[2]	
(b)	Forms an equation using either the formula or $y = mx + c$ with the		
	given values		
	$y-10=-\frac{1}{12}(x-3)$	M1	
	OR .		
	$y-0=-\frac{1}{12}(x-123)$		
	For the correct equation in the required form $12y+x-123=0$	A1	
	Coefficients must be integers.	[2]	
	Allow for $r = 1$, $s = 12$, $t = -123$		
(c)	For the gradient of the normal when $x = 3$ is 12	B1	
	Forms an equation of the normal using either the formula or y		
	= mx + c with their values of the gradient of the normal.		
	y-12=12(x-3)	M1	
	For the correct equation in the required form.		
	y = 12x - 26	A1	
		[3]	
(d)	Attempts to find the x coordinate at point C		
	y = 12x - 26 when $y = 0$, $x =$		
	Their linear equation from (c) with $y = 0$ and attempt to solve.	M1	
	For the correct value of x		
	$x = \frac{26}{12}$ oe	A1	
	For attempting to find the area of triangle <i>ABC</i>	7 1 1	
	Area = $\frac{1}{2} \times 10 \times \left(123 - \frac{13}{6}\right) = \dots$		
	_	M1	
	or Area = $\frac{1}{2} \begin{vmatrix} 3 & 123 & 13/6 & 3\\ 10 & 0 & 0 & 10 \end{vmatrix}$		
	For the correct area of the triangle $\frac{3625}{6}$ oe	A1 [4]	
	isw rounding		
	Total 11 marks		