Viviyan Richards W

205229133

Lab10. Advanced Data Wrangling in Pandas

Import necessary modules

```
In [1]:
         import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
In [2]: excelample = pd.DataFrame({'Month': ["January", "January", "January", "January"
In [3]:
         excelample
Out[3]:
                 Month
                            Category
                                      Amount
            0
                                         74.0
                January Transportation
            1
                January
                             Grocery
                                         235.0
            2
                January
                           Household
                                        175.0
            3
                January
                        Entertainment
                                         100.0
               February
                        Transportation
                                         115.0
                                        240.0
               February
                             Grocery
               February
                           Household
                                         225.0
            7
               February
                        Entertainment
                                         125.0
            8
                 March
                        Transportation
                                         90.0
            9
                 March
                             Grocery
                                         260.0
           10
                           Household
                                        200.0
                 March
           11
                 March
                        Entertainment
                                         120.0
```

In [4]: excelample_pivot = excelample.pivot(index="Category", columns="Month", values="Ar
excelample_pivot

Out[4]:

Category			
Entertainment	125.0	100.0	120.0
Grocery	240.0	235.0	260.0
Household	225.0	175.0	200.0
Transportation	115 0	74 0	90.0

Month February January March

In [5]: excelample_pivot.sum(axis=1)

Out[5]: Category

Entertainment 345.0 Grocery 735.0 Household 600.0 Transportation 279.0

dtype: float64

In [6]: excelample_pivot.sum(axis=0)

Out[6]: Month

February 705.0 January 584.0 March 670.0 dtype: float64

Pivot is just reordering your data

Out[7]:

	Fare	Pclass	Sex	Survived
0	7.2500	3	male	0
1	71.2833	1	female	1
2	51.8625	1	male	0
3	30.0708	2	female	1
4	7.8542	3	female	0
5	13.0000	2	male	1

```
In [8]: df.pivot(index="Pclass",columns="Sex",values="Fare")
```

Out[8]:

Sex	female	male			
Pclass					
1	71.2833	51.8625			
2	30.0708	13.0000			

7.8542 7.2500

```
In [9]: df.pivot(index="Pclass",columns="Sex",values="Survived")
```

Out[9]:

Sex		female	male		
	Pclass				
	1	1	0		
	2	1	1		
	3	0	0		

Let's now use the full Titanic Dataset

In [10]: df = sns.load_dataset('titanic')
df

Out[10]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True

891 rows × 15 columns

4

Pivot Tables - Aggregating while Pivoting

Create a Pivot table with maximum 'fare' values for 'sex' vs 'pclass' columns

Create a Pivot table with the count of 'fare' values for 'sex' vs 'pclass' columns

```
In [16]: df.pivot_table(index='sex', columns='pclass', values='fare', aggfunc='count')
Out[16]:
           pclass
                        2
                             3
             sex
           female
                   94
                       76 144
            male 122 108 347
In [17]: pd.crosstab(index=df['sex'], columns=df['pclass'])
Out[17]:
           pclass
                        2
                             3
             sex
                   94
                       76 144
           female
            male
                 122 108 347
```

Exercise: Make a pivot table with the mean survival rates for pclass vs sex

Plot Bar Chart for Survival ratio

Out[19]: Text(0, 0.5, 'Survival ratio')

Make a pivot table of the median Fare payed by aged vs sex

In [20]: median_age_table=df.pivot_table(index='age', columns='sex',values='fare', aggfunc

In [21]: median_age_table.head()

Out[21]: sex female male age 8.5167 0.42 NaN 0.67 NaN 14.5000 0.75 19.2583 NaN 0.83 NaN 23.8750

NaN

151.5500

0.92

Exercise: Make a pivot table of the median Fare payed by 'underaged' vs 'sex'

In [22]: df['underaged'] =df["age"]<=18</pre>

In [23]: df

\sim		_	$\Gamma \sim$	· ~ .	١.
U	u ·	C	ΙZ	.3	1:
			_		

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True

891 rows × 16 columns

Grouping Pivot table

[].	Clas		гизс	Second	Hillu	
	sex	age				
	famala	(0, 18]	0.909091	1.000000	0.511628	
	female	(18, 80]	0.972973	0.900000	0.423729	
		(0, 18]	0.800000	0.600000	0.215686	
	male	(18, 80]	0.375000	0.071429	0.133663	

```
In [27]: fare = pd.qcut(df['fare'], 2)
           df.pivot_table('survived', ['sex', age], [fare, 'class'])
Out[27]:
                       fare
                                      (-0.001, 14.454]
                                                                  (14.454, 512.329]
                                               Third
                                                         First
                                                                            Third
                      class
                            First
                                   Second
                                                                Second
               sex
                       age
                     (0, 18]
                            NaN
                                  1.000000
                                            0.714286 0.909091
                                                               1.000000
                                                                        0.318182
            female
                    (18, 80]
                            NaN
                                  0.880000
                                            0.444444
                                                     0.972973
                                                               0.914286
                                                                        0.391304
                     (0, 18]
                                  0.000000
                                            0.260870  0.800000
                                                               0.818182 0.178571
                            NaN
             male
                    (18, 80]
                                  0.098039
                                            0.125000 0.391304
                                                               0.030303
```

Multiple Aggregate Functions

```
In [28]: df.pivot_table(index='sex', columns='class',aggfunc={'survived':sum, 'fare':'mear
Out[28]:
                                             fare
                                                              survived
             class
                        First
                                Second
                                            Third First Second Third
              sex
                   106.125798 21.970121
                                        16.118810
                                                             70
                                                                   72
            female
                                                     91
                    67.226127 19.741782 12.661633
                                                             17
                                                                   47
             male
                                                     45
```

Melt - from Pivot Table to long or tidy format

```
In [31]: pd.melt(pivoted)
```

Out[31]:

		pclass	value
_	0	sex	female
	1	sex	male
	2	1	106.125798
	3	1	67.226127
	4	2	21.970121
	5	2	19.741782
	6	3	16.11881
	7	3	12.661633

In [32]: pd.melt(pivoted, id_vars=['sex'])#, var_name='pclass', value_name='fare')

Out[32]:

	sex	pclass	value
0	female	1	106.125798
1	male	1	67.226127
2	female	2	21.970121
3	male	2	19.741782
4	female	3	16.118810
5	male	3	12.661633

Reshaping with stack and unstack

In [33]: df2 = pd.DataFrame({'A':['one', 'one', 'two', 'two'], 'B':['a', 'b', 'a', 'b'], 'C'
df2

Out[33]:

```
    A B C
    0 one a 0
    1 one b 1
    2 two a 2
    3 two b 3
```

```
In [34]: df2 = df2.set_index(['A', 'B']) # Indeed, you can combine two indices
Out[34]:
                 С
            А В
                 0
          one
          two
In [35]: result = df2['C'].unstack()
         result
Out[35]:
          one 0 1
          two 2 3
In [36]: df2 = result.stack().reset_index(name='C')
         df2
Out[36]:
              A B C
          0 one a 0
            one b 1
            two a 2
            two b 3
```

Mimick Pivot Table

In [37]: df

Out[37]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True

891 rows × 16 columns

Exercise:

- Get the same result as above based on a combination of groupby and unstack
- First use groupby to calculate the survival ratio for all groups unstack
- Then, use unstack to reshape the output of the groupby operation