

Computer Science and Computer Engineering (CS)

November 12, 2020

Characterization of Objects in Indoor Spaces of Human Occupation Using Knowledge Graphs
Rodrigo Francisco (FI, UNAM)

Object Detection

Characteristics

Object detection has two main tasks:

- Image classification.
- Object localization.

Object Detection Object localization

Object detection

*-CNN

R-CNN: Regions with CNN features warped region

1. Input image

2. Extract region proposals (~2k)

4. Classify

tymonitor? no.

aeroplane? no.

person? yes.

Object detection Convolutional Layer

Object detection YOLOv2 model

Knowlegde graph Example case

GraknArchitecture

Grakn Schema

Grakn DDL & DML

Types of semantic relationships

Predicates of the semantic relationships types

Relationships draft

The following figure shows a draft of all the relations ships recover from our study object.

Solution

Graph generate with Grakn

Graph generate with Grakn

Conclusions

- We show that it is possible to create a knowledge graph from the semantic relationships that occur in an indoor space of human ocuppation
- The most accurate predicate, in our scenario for binding two objects is the spatial relationship.
 - Indeed, in most localization scenarios this predicate is the most accurate because the other produces so many combinations.
- Grakn is a very outstading tool to create knowlegde graph with a given list of predicates.
 - Grakn even offers the possibility of making machine reasoning from the data input.
- We seek to create complementary datasets that will help convolutional layer neural network to reduce processing time.