

別紙添付の書類は下記の出願書類の腊本に相遊ないことを証明する。 This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1980年9月30日

... 願 番 号

昭和55年特許願第136449号

顧 人 Solicant (s): 三 共 株 式 会 社

198 月 3日

特許庁長官 Director-General, Patent Office 島田春

G. Wally

出証昭 56-25294

C07D501/34 A61K31/545

許 「特許法第38条ただし書」(1) どの規定による特許出願」(1) ど

昭和55年9月30日

(5,400 南)

島田春樹 特許庁長官`

1. 発明の名称 🔄

グロウョウラット 経口用セフアロスポリン化合物

- 2. 特許請求の範囲に記載された発明の数 5
- 3. 発 明者

東京都品川区広町 打計 2 番 5 8 芎 居所 サンキョウ・チュウィウケンキュウショナイニ

氏名

带 產 疑 確

(外4名)

4. 特許出願人

住所 〒103 東京都中央区日本橋本町3丁目1番地の6 名称 (185) 三共株式会社

代表者 取締役社長 河 村

5. 代 理 人

> 〒140 東京都品川区広町1丁目2番58号 居 所 三共株式会社内

電話 492-3131

氏名

弁理士

(6007)

樫 庄 Ш

6. 添付書類の目録

- 明細書 (1)
- . (2) 図 面
 - (3) 委任状
 - 願書副本 (4)

1通 なし

1 通

1 通

55 136449

7. 前記以外の発明者、特許出願人または代理人

(1) 発明者

氏名 蒙 社 空 任

居所 同 所

氏名 召 資 費 夫

居所 同 所

氏名 費原資 任

居所 同 所

豐

明 細 書

1. 発明の名称

経口用セフアロスポリン化合物

- 2. 特許請求の範囲
 - (1) 一般式

$$\begin{array}{c|c} N & C & CONH & S \\ H_2N & S & N \\ OR_1 & OCOY \\ \end{array}$$

「式中,R₁は水素原子または低級アルキル基,R₂は低級アルキル基,Yはフタリジル基または式 -CHOCOR₄ 基(式中,R₃は水素原子または_{R³}

メチル基を, R4は低級アルキル基または低級アルコキシ基を表わす。)]で示されるセフアロスポリン化合物 (シン異性体) およびその薬学的に許容し得る塩。

(2) 一般式

【式中,R₂は低級アルキル基,Yはフタリジル基または式−CHOCOR₄ 基(式中,R₃は水素 R₅

原子またはメチル基を,R₄は低級アルキル基または低級アルコキシ基を表わす。)〕で示される化合物を,一般式

(式中,R₅はアミノ基または保護されたアミノ基を,R₆は水酸基,保護された水酸基または低級アルコキシ基を表わす。)で示されるカルボン酸またはその反応性誘導体と反応させ,一般式

(式中, R_2 , R_5 , R_6 および Y は前述したものと同意義を有する。)を有する化合物を製造し, R_5 が保護されたアミノ基, R_6 が保護された水酸

基である場合にはその保護基を除去することを 特徴とする一般式

(式中,R₁は水素原子または低級アルキル基を示し,R₂およびYは前述したものと同意義を有する。)で示されるセフアロスポリン化合物(シン異性体)およびその薬学的に許容し得る塩の製造法。

(3) 一般式

$$\begin{array}{c|c}
 & \text{N} & \text{C} & \text{CONH} & \text{S} \\
 & \text{R}_5 & \text{S} & \text{N} \\
 & \text{R}_6 & \text{COOH}
\end{array}$$

(式中,R₂は低級アルキル基,R₅はアミノ基または保護されたアミノ基を,R₆は水酸基,保護された水酸基または低級アルコキシ基を表わす。)で示されるカルボン酸化合物またはその反応性誘導体をフタリジルハライドまたは一般

式

(式中,R₃は水素原子またはメチル基を,R₄は低級アルキル基または低級アルコキシ基を表わす。)で示される化合物若しくはその反応性誘導体と反応させ,一般式

$$\begin{array}{c|c}
N & C & CONH & S \\
R_5 & S & N & CH_2OR_2
\end{array}$$

(式中,Yはフタリジル基または 式-CHOCOR₄基(式中,R₃およびR₄は前述した I R₃

ものと同意義を有する。)を示し、R₂、R₅およびR₆は前述したものと同意義を有する。〕を有する化合物を製造し、R₅が保護されたアミノ基、R₆が保護された水酸基である場合にはその保護基を除去することを特徴とする一般式

(式中,R₁は水素原子または低級アルキル基を示し,R₂およびYは前述したものと同意義を有する。)で示されるセフアロスポリン化合物(シン異性体)およびその薬学的に許容し得る塩の製造法。

(4) 一般式

「式中,R₂は低級アルキル基,Yはフタリジル基または式-CHOCOR₄ (式中,R₃は水素原子 R₃

またはメチル基を、R₄は低級アルキル基または低級アルコキシ基を、Xはハロゲン原子を表わす。」で示される化合物をニトロソ化して、一般式

(式中,R₂, Yおよび X は前述したものと同意義を有する。)で示されるヒドロキシイミノ化合物に変換し,次いでこれをチオ尿素と反応させることを特徴とする一般式

(式中,R₂および Y は前述したものと同意義を有する。)で示されるセフアロスポリン化合物 (シン異性体) およびその薬学的に許容し得る塩の製造法。

(5) 一般式

【式中,R1は水素原子または低級アルキル基,R2は低級アルキル基,Yはフタリジル基または式-CHOCOR4基(式中,R3は水素原子またはメートR3

チル基を,R4は低級アルキル基または低級アルコキシ基を表わす。) 〕で示されるセフアロスポリン化合物(シン異性体) およびその薬学的許容し得る塩を有効成分として含有する経口投与用細菌感染症治療剤。

3. 発明の詳細な説明

本発明は経口投与用セフアロスポリン化合物 に関する。更に詳しくは,本発明は一般式(I)

$$\begin{array}{c|c}
 N & C & -CONH & S \\
 H_2N & S & N & OCH_2OR_2
\end{array}$$

$$\begin{array}{c|c}
 C & CONH & CH_2OR_2
\end{array}$$

$$\begin{array}{c|c}
 C & COOY
\end{array}$$

$$\begin{array}{c|c}
 C & COOY
\end{array}$$

「式中, R_1 は水素原子または低級アルキル基, R_2 は低級アルキル基,Yはフタリジル基または式 $-CHOCOR_4$ 基(式中, R_5 は水素原子またはメート R_5

· 100

チル基を、RAは低級アルキル基または低級アルコキシ基を表わす)〕で示されるセフアロスポリン化合物(シン異性体)およびその薬学的に許容し得る塩、その製造法並びにその化合物を有効成分として含有する経口投与用細菌感染治療剤に関する。

前記一般式(I)において好適には、R₁は水素原子または例えばメチル、エチル、ロープロピル、イソプロピル、ローブチル、イソプチル、 Bec ーブチル、tertーブチルのような炭素数1乃至4個を有する直鎖状若しくは分枝鎖状のアルキル基を示し、R₂は例えばメチル、エチル、ロープロピル、イソプロピル、ローブチル、イソプロピル、ローブチルのような炭素数1乃至4個を有する直鎖状若しくは分枝鎖状のアルキル基を示し、Yはフタリジル基または、CHOCOR4基(式中、R₃は水素原子または、R₂

メチル基を, R₄は例えばメチル,エチル,nープロピル、イソプロピル,nーブチル,イソブ

チル、Becーブチル、tertーブチルのような炭素数1乃至4個を有する直鎖状若しくは分枝鎖状のアルキル基または例えばメトキシ、エトギシ、ロープロポキシ、イソプロポキシ、ローブトキシ、Becーブトキシ、tertーブトキシのような炭素数1乃至4個を有する直鎖状若しくは分枝鎖状のアルコキシ基を表わす。)を示す。

本発明に係る前記一般式(I)を有する化合物は 新規化合物であり,消化管からの吸収がよく, 且つ生体内で速かに4位のエステルが分類型になるため,カルボン酸型になるため,カルボンは 合物の高い血中濃度を得ることがである。 とがであり、できまながったがである。 が変型になるが変更になったがです。 は性菌等の感染症の治療に対である。 が発展を有する広範囲抗生物質である。 な効果を有する広範囲などのあり、 を強型化合物も新規な化合物ですぐれた活性を有する。

ペニシリン系,セフアロスポリン系抗生物質 には,多くの優れた効果を有する化合物がみら

れるが,消化管からの吸収のよいものは極めて 少なく、そのために実用化されないまゝ開発を 断念された化合物も少くない。殊にセフアロス ポリン系抗生物質においてはセフアレキシンあ るいはその類似体のように限られた構造を有す る化合物のみが実用に供されているにすぎない。 例えば注射用セフアロスポリン剤として汎用さ れているセファロチン,セファゾリン,セフメ タゾール等を経口投与した場合の尿中回収率は いづれも投与量の5%前後で、消化管からの吸 収は極めて悪いことが知られている。その理由 はセフアロスポリンの4位のカルボキシル基の 解離度が大きく(pKa値が小さく)酸性が強い ためである。

そこでペニシリンの3位およびセフアロスポリンの4位のカルボキシル基をエステル化することによつて、消化管からの吸収を改善しようとする試みがなされており、ペニンリン系化合物については一、二実用化されているものがあるが、セフアロスポリン系化合物についてはみ

られない。

例えばセフアマンドールのアセトキシメチル エステルに関してザ・ジャーナル・オブ・アン チバイオチツクス,32巻,11号,1155頁 (1979年) に報告されているが,それによる と、エステル化によつて水に難溶性になるため 吸収は改善されない、従つてプロピレングリコ ールのような有機溶媒の溶液として投与すると とによつてのみ吸収がある程度改善されること が記述されている。また一方、水に溶けやすい エステルとしてジャーナル・オブ・メディシナ ルケミストリー,22巻,657頁(1979年) に研究結果が報告されているが、この場合は化 学的に不安定なため、吸収はよくならなかつた と記述されている。

本発明者は,長年に亘つてセファロスポリン化合物の化学的修飾による消化管からの吸収の改善,経口投与による血中濃度の増大について研究を重ねたが,それらの性質は,化合物の溝造全体に関連し,構造の一部分に変化があれば

同じような化学的修飾例えばエステル化を行なっても、その消化管からの吸収は全く予測し得ないことを知つた。本発明は、そのような研究の結果なされたものである。

即ち、本発明の化合物と一見構造が類似している下記公知化合物のピバロイルオキシメチルエステルを合成し、経口投与による尿中回収率を試験したところ、必ずしも良い結果は得られず、この系統の化合物に関しては3位の置換基が極めて重要な役割を果していることを見出した。

本発明に係る前記式(I)を有する化合物は,以下に述べる方法,すなわち

- (a) エステル化された 7 アミノー 3 アルコ キシメチルセフアロスポリン(II) のアシル化法
- (b) 化合物(I) に対応するカルボン酸 (I'),またはそのアミノ基および水酸基が保護された化合物(V) のエステル化法および脱保護化法あるいは
- (c) 7位のアシル基を他のアシル基から化学反応によつて所望のアシル基に誘導する方法 によつて製造することができる。

上記の方法は具体的には次のように実施される。

(a) は一般式

「式中,R₂は低級アルキル基,Yはフタリジル基または式-CHOCOR₄ (式中,R₃は水素原子 R₃

またはメチル基を,R₄は低級アルキル基または低級アルコキシ基を表わす)]で示される化合物を,一般式

(式中,R5はアミノ基または保護されたアミノ基を,R6は水酸基,保護された水酸基または低級アルコキシ基を表わす)で示されるカルボン酸またはその反応性誘導体と反応させ,一般式

(式中,R₂,R₅,R₆および Y は前述したものと同意義を有する。)を有する化合物を製造し、R₅が保護されたアミノ基,R₆が保護された水酸基である場合にはその保護基を除去することによつて目的化合物(I)が製造される。

上記式中, R₅が保護されたアミノ基である場

合のアミノ基の保護基としては、容易に除去されてアミノ基に復元されるものが好ましく、それ自体公知の保護基例えば酸処理で除去しかがトリチル基、ホルミル基、セーブトキシカルボニルー1ーメチルピニル基、還元的に除去しうる222ートリクロルエトキシカルボニル基、アルカリ処理で除去できる2ーメチルスルホニルエチルオキシカルボニル基、チオ尿素処理で除去しうるクロルアセチル基などが使用される。

また、Roが保護された水酸基である場合の水酸基の保護基としては、容易に除去されて水酸基に復元されるものが好ましく、それ自体公知の保護基例えば酸処理で除去しうるトリチル基、ジクロルアセチル基などが使用される。

本方法はアシル化工程と必要な場合には脱保 護工程との2工程よりなる。

アシル化工程において式皿を有する化合物は 遊離のまゝ或いはその反応性誘導体として使用 されるが,遊離のまゝ使用する場合には適当な

縮合剤を用いる。縮合剤としてはジシクロヘキ シルカルボジイミドのようなジ置換カルボジイ ミド、カルボニルジイミダゾール、チオニルジ イミダゾールのようなイミダゾライド . N ーエ トキシカルボニルー2ーエトキシー12ージヒ ドロキノリン或いはジメチルホルムアミドとオ キシ塩化リン,塩化チオニルなどから調整され るビルマイヤー試薬などがあげられる。式皿を 有する化合物の反応性誘導体としては、酸ハラ イド、酸無水物、混合酸無水物、活性エステル, 活性アミド、酸アジド等があげられる。混合酸 無水物としては炭酸モノメチルエステルや炭酸 モノイソブチルエステルなどの炭酸モノ低級ア ルキルエステルとの混合無水物や、ピバリン酸 やトリクロル酢酸などの低級アルカン酸との混 合酸無水物が使用され、活性エステルとしては p -ニトロフエニルエステル,ペンタクロルフ エニルエステル, N-ヒドロキシラタルイミド エステルなどがあげられる。

本工程は通常溶媒中で行なうのが好ましく、

使用される溶媒は本反応に悪影響を与えないも のであれば限定なく、例えばアセトン、メチル エチルケトン,テトラヒドロフラン,ジオキサ ン,酢酸エチル,クロロホルム,ジクロルメタ ン,アセトニトリル,ジメチルホルムアミド。 ジメチルスルホキシドなどの不活性有機溶媒或 いは水との混合溶媒などが使用される。使用さ れる反応性誘導体の種類によつては必要に応じ 塩基を存在させることがある。塩基の例として はアルカリ金属化合物例えば重炭酸ナトリウム。 重炭酸カリウム,炭酸ナトリウム,炭酸カリウ ムなど,脂肪族,芳香族,含窒素複素環塩基例 えばトリエチルアミン,ジメチルアニリン, N ーメチルピペリジン , N - メチルピロリジン . ピリジン,コリジン,ルチジンがあげられる。 反応温度に特に限定はないが通常反応は室温又 は冷却下で行なわれる。反応に要する時間は主 としてアシル化方法の種類,反応温度等によつ ` て も 異 な る が 通 常 数 十 分 乃 至 数 十 時 間 で あ る 。 反応終了後,式₩を有する化合物は常法によつ

て反応混合物から採取される。例えば反応溶媒が水混和性の場合には一旦減圧で留去した後水不混和性溶媒に代え、溶媒が水不混和性の場合はそのまゝ酸および塩基で洗い、乾燥した後溶媒を留去することによつて得られる。必要に応じ常法例えば各種クロマトグラフィー等によって精製することもできる。

脱保護工程は先に述べたように,各保護基の 特性に基いて常法によつてそれらの保護基を除 去し,粗生成物を精製して式(I)を有する目的化 合物を得ることができる。

また,(b)は一般式

$$\begin{array}{c|c}
N & C & CONH & S \\
R_5 & S & N & CH_2OR_2
\end{array}$$
(V)

(式中,R₂,R₅およびR₆は前述したものと同意義を有する)を有するカルボン酸化合物またはその反応性誘導体を,フタリジルハライドまたは一般式

HOCHOCOR₄

(V)

(式中,R₃およびR₄は前記と同意義を有する)を有する化合物若しくはその反応性誘導体と反応させ前記式(M)を有する化合物を得て,更にR₅およびR₆が保護された基である場合には(a)法と同様にして脱保護することによつて目的化合物(I)が製造される。

ートルエンスルホニルエステルのようなスルホ ニルエステル,ヒドロキシル基を塩素,臭素ま たは沃素で置換したハロゲン置換化合物等があ げられる。反応は適当な溶媒中で行なうのが好 ましく,そのような溶媒としては本反応に悪影 響をおよぽさないもの例えばジメチルホルムア ミド,ジメチルアセトアミド,ジメチルスルホ ヘキサメチルトリアミドホスフェート。 アセトニトリル等或いは他の不活性有機溶媒と の混合溶媒があげられる。反応は通常室温また は冷却下に行なうのが好ましい。反応に要する 時間は通常数分乃至数時間である。反応終了後, 反応混合物を水不混和性溶媒で稀釈し,重硫酸 カリウム水溶液および塩基水溶液で洗い、乾燥 後溶媒を留去することによつて本反応の目的化 合物を得ることができる。このものは更に常法 例えば各種クロマトグラフィーにより精製する ことができる。アミノ基および水酸基が保護さ ·れている場合には,前記式(M)を有する化合物の 脱保護と同様にしてアミノ基および水酸基に変

換される。

また,(c)は一般式

(式中,xは塩素,臭素のようなハロゲン原子を示し,Rzおよび Y は前記と同意義を有する。)で表わされる化合物をニトロソ化して,一般式

(式中, x, R₂および Y は前記と同意義を有する。)を有するヒドロキシイミノ化合物に変換し,次いでこれをチオ尿素と反応させることによつても前記式(I)を有する化合物(但し R₁が水素原子を表わす。)を製造することができる。

本方法はニトロソ化工程とチアゾール環形成 工程との2工程からなる。

ニトロソ化工程は,通常のβ-ジケトンのニ トロソ化と同じように行なわれる。即ち酸性の

チアゾール環の形成工程は,αーハロケト化合物とチオ尿素とによる環形成反応であり,適当な溶媒中で両者を接触させることによつて遂行される。使用される溶媒は本反応に悪影響を与えないものであれば限定はないが,ジメチルホルムアミド,ジメチルアセトアミド,アセトニトリル等の溶解性の高いものが好ましい。反

以上の製造法によつて得られる前記式(I)を有する本発明の化合物は,前記の如く消化管からの吸収がよく,カルボン酸型化合物の高い血中濃度を与えるので経口投与が可能であり,製薬的常法によつて例えばデンプン,乳糖,白糖,炭酸カルシウム,リン酸カルシウム,ポリエチレングリコール等の賦形剤,例えばアラビアゴ

ム,カルボキシメチルセルロース,ヒドロキシプロピルセルロース等の結合剤,例えばステアリン酸マグネシウム,タルク等の滑沢剤,例えばカルボキシメチルカルシウム等の崩壊剤などと混合してカプセル剤,粉剤,顆粒剤,錠剤等経口投与剤を製造することができる。その投与量は,年令,体重,症状等によつても異なるが,成人に対し1日約0.2万至5分,好ましくは0.5万至3分であり,3万至4回に分けて与えることができる。

また、前記式(I)を有する化合物を使用するに当つて、遊離の型のみでなく薬学的に許容しうる酸付加塩例えば、塩酸、硫酸、硝酸のような無機酸、メタンスルホン酸、ベンゼンスルホン酸、マロン酸などのような有機酸の酸付加塩としても使用される。

本発明の化合物を経口投与すると,前述の如く,腸管より容易に吸収され,生体内で加水分解されて対応するカルボン酸 (1)

(式中, R₁およびR₂は前記と同意義を示す。) またはその塩になる。化合物 (I')のグラム陽性 菌および陰性菌に対する抗菌活性 (最小発育阻 止濃度, 48/元) は下記の如く極めて顕著なも のである。

サルモネラ・エンテリチジス 0.4

0.2

また本発明の化合物および前述の類縁化合物 (化合物1,2および3)をマウスに経口投与 した時の尿中回収率(対応するカルボン酸の量) は夫々次の通りである。

尿中回収率(%)

実施例1の化合物40以上実施例2の化合物50以上化合物115化合物28化合物314

上記のように本発明はセフアロスポリンの3位の置換基をアルコキシメチル基にすることによつて消化管吸収が極めて良くなる点に特長がある。

次に参考例および実施例をあげて前記式(I)を有する本発明の化合物の製造方法を具体的に説明するが、本発明はこれによつて限定されるものではない。なお、本発明の化合物のオキシム部分の異性体はすべてシン型である。

参考例 1.

7 ー [2 ー (2 ー クロルアセトアミドチアゾールー4 ー イル) ー 2 ー メトキシイミノアセトアミド] ー 3 ー メトキシメチルー 3 ー セフエムー 4 ー カルボン酸ジフェニルメチルエステルの製造法

- (A) ジメチルホルムアミド 0.057ml に、氷冷攪拌しながらオキシ塩化リン 0.061mlを加え、40℃に加温して1時間攪拌後、乾燥した塩化メチレンを用い2回共沸する。これに酢酸エチル1mlを加え、室温ではげしく攪拌しながら2-(2-クロルアセトアミドチアゾール-4-イル)-2-メトキシイミノ酢酸200 mgを加え30分間反応する。
- (B) 一方,7ーアミノー3ーメトキシメチルー

3 ーセフエムー4 ーカルボン酸ジフエニルメチルエステル 200 mgをジエチルアニリン 145 mgと共に,乾燥した塩化メチレン 5 ml に溶解し、-5℃に冷却して攪拌する。

この混合液(B) に前述の反応液(A) を滴下して 15 分間攪拌後, 反応液を減圧濃縮する。

残渣を酢酸エチル20mlおよび水5mlを用いて分液する。酢酸エチル層を分離し、さらに順次、飽和重炭酸ナトリウム水5ml、5 %塩酸水5mlの洗浄し、無水硫酸マグネシウムを加えて脱水乾燥する。乾燥剤を沪去して沪液を減圧濃縮し、得られた残渣をシリカゲル(Kieselgelー60)30%、溶媒系カーへキサン一酢酸エチル(3:2)を用いてクロマトグラフィー処理し、7ー〔2ー(2ークロルアセチルアミノチアゾールー4ーイル)ー2ーメトキシイミノアセトアミド〕ー3ーメトキシメチルー3ーセフエムー4ーガルボン酸ジフエニルメチルエステル213 mgを得た。

核磁気共鳴スペクトル (CDCl₃) δ_{ppm}

6.
$$7 \sim 7$$
. 6 (12 H, m)

参考例 2.

7-[2-(2-アミノチアゾールー4ーイル) -2-メトキシイミノアセトアミド]-3-メトキシメチル-3-セフエム-4-カルボン酸トリフルオロ酢酸塩の製造法

$$\begin{array}{c|c} N & C - CONH & S \\ H_2N & S & N \\ OCH_3 & COOH \end{array}$$

CF COOH

7-[2-(2-クロルアセトアミドチアゾ

ールー4ーイル) ー2ーメトキシイミノアセト アミド]ー3ーメトキシメチルー3ーセフエム - 4 -カルボン酸ジフエニルメチルエステル 200 mをN , N - ジメチルアセトアミド 5 ml に 溶解し、チオ尿素 4 5 吸を加えて溶解し、室温 で2時間反応する。反応液に飽和重炭酸ナトリ ウム水溶液を加え、酢酸エチル20㎡を用いて 抽出する。酢酸エチル層をよく水洗して過剰の チオ尿素を除去し,無水硫酸マグネシウム上で 脱水乾燥し、乾燥剤を沪去後、沪液を減圧濃縮 する。こうして得た残渣をシリカゲル(ワコー ゲル C - 100) 3 0 9上, 酢酸エチルを用いて クロマトグラフィー処理し,7-[2-(2-アミノチアゾールー4ーイル) -2ーメトキシ イミノアセトアミド]ー3ーメトキシメチルー 3 -セフエム-4 -カルボン酸ジフエニルメチ ルエステル63gを得た。

これをアニソール 2 ml に溶解し、氷冷攪拌下にトリフルオロ酢酸 1 ml を加え、室温にして 30 分処理する。反応液を減圧濃縮し、イソプロピ

ルエーテルを加えて生じた沈澱を沪取し,乾燥して,7-[2-(2-アミノチアゾールー4-イル)-2-メトキシイミノアセトアミド]-3-メトキシメチル-3-セフエム-4-カルボン酸トリフルオロ酢酸塩27mを得た。 核磁気共鳴スペクトル(重アセトン中,重水添加)

δ ppm

3.29 (3 H, S, 3位-OCH₃)

3.57 (2H,S,2位 CH,)

3.96 (3 H, S, OCH₃)

4.27 (2H,S,3位 CH₂)

5.15 (1 H, a, J = 2.5 Hz, 6 1)

5.97 (1 H, d, J = 2.5 Hz, 7位)

6.59 (1 H, S)

参考例 3.

7-フェノキシアセトアミドー3ーメトキシメチルー3ーセフェムー4ーカルボン酸ジフェニルメチルエステルの製造法

ーフエノキシアセトアミドー3-シメチルー3 -セフエムー4 -カルボン酸 10.9 8と重炭酸ナトリウム 2.25 8を水 200 ㎡ に溶解 し, Bacillus subtilis ATCC6633の凍結乾 燥菌体 1 0 9 を加え, pH7. 5 ~ 8 に調整して 40 でで1日攪拌する。菌体を沪去し,沪液を塩酸 で pH2~3 に調整し、酢酸エチル 200 ㎡で3回. 計 600 ㎡で抽出し、これを 5 0 ㎡の飽和食塩水 で洗浄後無水硫酸マグネシウムを加えて脱水乾 燥する。乾燥剤を沪去し、ジフェニルジアゾメ タン 6.3 9 を 加え , 2 時間 静 置 し , こ れ を 減 圧 濃縮する。残渣にエーテル 500 ㎡を加えて攪拌 し、生じた固体を沪取乾燥して、7-フェノキ シアセトアミドー3ーヒドロキシメチルー3ー セフエムー4ーカルボン酸ジフエニルメチルエ ステル128を得た。

核磁気共鳴スペクトル (重DMSO中) δ ppm

- 3.65 (2H,S,2位 CH₂)
 - 429 (2H, d, J=3Hz, 3位 CH₂)
 - 4.65 (2 H, S, CH₂)
 - 5.17 (1 H, t, J=3 Hz, 3位 OH)
 - 5.19 (1 H, d, J=2.5 Hz, 6位)
 - 5.76 (1 H, d·d, J=2.5, 4.5 Hz, 7位)
 - 6.7~7.8 (16H,m)
 - 9.11 (1 H, d, J = 4.5 Hz, NH)

7 ーフエノキシアセトアミドー3 ーヒドロキシメチルー3 ーセフエムー4ーカルボン酸ジフエニルメチルエステル5 を乾燥した塩化メチレン 400 ml に溶解し、3 弗化ホウ素エチルエーテル 0.1 ml を加えてー5 ~ 0 ℃に冷却し、過剰のジアゾメタン(約 3 を、Nーメチル-Nーニトロソーロートルエンスルホンアミド 21.4 gr から調整したエーテル溶液を加温して吹き込む)を作用させー日攪拌する。反応液を減圧濃縮し、シリカゲル 250 を、溶媒系 n ーヘキサンー酢酸

エチル (3:2) を用いて精製し,7-フェノキシアセトアミドー3-メトキシメチルー3-セフエムー4-カルボン酸ジフェニルメチルエステル439を得た。

核磁気共鳴スペクトル (CDCL3) 8 ppm

3.20 (3 H , S , 3 位 OCH₃)

3.50 (2 H , S , 2位 CH₂)

4.25 (2H,S,3位 CH₂)

4.57 (2 H , S , CH₂)

5.00 (1 H, d, J = 2.5 Hz, 6位)

5.87 (1 H, d·d, J=25, 45 Hz, 7位)

6.7 \sim 7.6 (17 H, m)

参考例 4.

7-[2-(2-アミノチアゾールー4ーイル)-2-ヒドロキシイミノアセトアミド]ー3-メトキシメチルー3-セフエムー4ーカルボン酸トリフルオロ酢酸塩の製造法

ジケテン 16.8 吸を 2 200の塩化メチレンに溶解 し, - 3 0 ℃ に 冷却 攪拌 する。 これ に 臭素 320 啊を塩化メチレン 2 ml に溶解して滴下する。 C の反応液を-5℃に冷却した7-アミノ-3-メトキシメチルー3ーセフエムー4ーカルボン 酸ジフエニルメチルエステル 362 吻およびジェ チルアニリン 299 弓を含む塩化メチレン溶液 5 ml に 滴下し, 3 0 分間 反応する。 反応 液を減圧 濃縮し,酢酸エチル50㎡に溶解し各5㎡の水, 5 % 塩酸水,飽和食塩水で洗浄し,無水硫酸マ グネシウム上で脱水乾燥後,脱水剤を沪去して **炉液を減圧濃縮する。こうして得た残渣をシリ** カゲル309,溶媒系n-ヘキサン一酢酸エチ ル (1:1) を用いてクロマトグラフィー処理 し、ブロムアセチルアセトアミドー3ーメトキ

シメチルー3 ーセフェムー 4 ーカルボン酸ジフ エニルメチルエステル 118 *咽*を得た。

これを酢酸 5 ml に溶解し、室温で攪拌しながら 亜硝酸ナトリウム 1 6 mgを少しずつ加え、30 分間攪拌する。これに酢酸エチル 2 0 mlを加え、飽和食塩水で 3 回洗浄後無水硫酸マグネシウムを用いて脱水乾燥 1 0 9 を発を 1 0 9 のシリカゲル上溶媒系ローへキサンー酢酸エチル(1:1)でクロマトグラフィー処理して、7 ー(2 ープロムアセチルー 2 ーヒドロキシイミノアセトアミド)ー3 ーメトキシメチルー3 ーセフエムー4 ーカルボン酸ジフエニルメチルエステル 7 6 mgを得た。

この化合物 7 6 meを、N、Nージメチルアセトアミド 3 ml に溶解し、チオ尿素 1 9 meを加えて 2 時間攪拌する。反応液を酢酸エチル 2 0 ml に加え、飽和重炭酸ナトリウム水でよく洗浄して過剰のチオ尿素を除去し、無水硫酸マグネシウム上で脱水乾燥し、乾燥剤を除いて減圧濃縮

する。

こうして得た残渣を、シリカゲル5 g、溶媒 酢酸エチルを用いてクロマトグラフィー処理し、 7-[2-(2-アミノチアゾールー4ーイル) -2-ヒドロキシイミノアセトアミド]-3-メトキシメチル-3-セフエム-4-カルボン 酸ジフエニルメチルエステル 4 g mgを得た。

この化合物 4 9 Wをアニソール 1 ml に溶解しトリフルオロ酢酸 0.5 ml を加えて室温で一時間静置し,反応液を減圧濃縮する。これをアセトン 1 ml に溶解しイソプロピルエーテル 2 0 ml を加えて生じた沈澱を沪取乾燥して,7一〔2 ー イン)ー2 ー に ドロキシイミノアセトアミド 3 ー メトキシメチルー3 ーセフエムー4 ーカルボン酸トリフルオロ酢酸塩 2 8 Wを得た。

核磁気共鳴スペクトル (重メタノールーd₄) 8_{ppm}

3.28 (3 H , S , 3位 OCH₃)

3.55 (2H,S,2位 CH₂)

4.29 (2H,S,3位 CH₂)

参考例 5.

7-フェノキシアセトアミドー3ーメトキシメチルー3ーセフエムー4ーカルボン酸ピバロイルオキシメチルエステルの製造法

7-フェノキシアセトアミドー3-メトキシメチルー3-セフェムー4ーカルボン酸ナトリウム塩19をジメチルスルホキシド50mlに溶解し、ピバロイルオキシメチルブロミド975号を加えて室温で15分間攪拌後、酢酸エチル200mlを加え、飽和重炭酸ナトリウム水溶液50ml、飽和重硫酸カリウム水溶液50mlで順次洗浄し、無水硫酸マグネシウムで脱水乾燥後、乾

燥剤を沪去して減圧濃縮する。

こうして得た残渣をシリカゲル 100 g,溶媒系 n ー へ キ サン 一 酢酸 エ チル (1:1) を 用いてクロマトグラフィー処理し, 7 ー フェノキシアセトアミドー 3 ー メトキシメチルー 3 ー セフエムー 4 ー カルボン酸ピバロイルオキシメチルエステル 750 mgを 得た。

1.25 (9 H, S)

3.35 (3H,S,3位 OCH₃)

3.54 (2H,S,2位 CH₂)

4.29 (2H,S,3位 CH₂)

4.58 (2 H, S, CH₂-0-Phe)

5.01 (1H,d,J=25Hz,6位)

5.6~6.1 (3H,m,7位およびCH₂)

6.7~7.6 (6 H, m, PhenyitiUNH)

実施例 1.

7-[2-(2-アミノチアゾールー4ーイル) -2-メトキシイミノアセトアミドコー3

ーメトキシメチルー3 -セフエムー4 ーカルボン酸ピバロイルオキシメチルエステルの製造法

五塩化リン 488 咿を乾燥した塩化メチレン 5 **ルに溶解し、オキシ塩化リン 120 吻を加え、室** 温で攪拌しながらピリジン 247 啊を加える。こ れを一10℃まで冷却し、7-フェノキシアセ トアミドー3ーメトキシメチルー3ーセフエム 4 - カルボン酸ピバロイルオキシメチルエス テル 769 吻を加え、徐々に室温にもどす。 2 時 間攪拌後再び0℃に冷却し, n ープロピルアル コール 1.5 mlを加えて30分間攪拌する。さら に少量の水を加え15分攪拌し,酢酸エチル50 nd を加え飽和重炭酸ナトリウム水で洗浄する。 酢酸エチル層を無水硫酸マグネシウム上で乾燥 し、乾燥剤を沪去して減圧濃縮する。これにイ ソプロピルエーテルを加えてこすり、生じた沈

澱を沪取乾燥して,7-アミノ-3-メトキシメチル-3-セフエム-4-カルボン酸ピパロイルオキシメチルエステル 443 吻を得た。

こうして得たアーアミノー3ーメトキシメチ ルー3 ーセフエムー4ーカルボン酸ピパロイル オキシメチルエステル 121 78, ジエチルアニリ ン 141 啊,およびジメチルホルムアミド71啊. オキシ塩化リン 135 啊, 2 - (2 - クロルアセ トアミドチアゾールー4ーイル) -2 -メトキ シイミノ酢酸 265 gを用い参考例1の場合と同 様にアミド化し、反応液を分液抽出して目的物 を含む残渣を得,これをシリカゲル108溶媒 系酢酸エチルーnーヘキサン(2:1)を用い てクロマトグラフイー処理して, 7β-[2-(2-クロルアセトアミドチアゾール-4-イ ル) -2-メトキシイミノアセトアミド]-3 ーメトキシメチルー3 ーセフエムー4 ーカルボ ン酸ピパロイルオキシメチルエステル55呀を 得た。

これをN,Nージメチルアセトアミド1mlに

溶解し、チオ尿素 13.5 写を加え室温で2時間攪拌後酢酸エチル20㎡を加えて、飽和重炭ウウムでよく洗浄し、無水硫酸マグネと磯部シウ 縮上で脱水乾燥し、乾燥剤を沪去して減圧酸エトル・カゲル5 9、溶媒系のロマミノル・カーへキサン(3:1)を用いてクラフィー処理し、7ー〔2ー(2ーアミノアマゾールー4ーイル)ー2ーメトキシメチルー3ーセトアミド〕ー3ーメトキシメチルー3・アミド」ー3ーメトキシメチルー3・アミド」ーカルボン酸ピバロイルオキシステル36 写を得た。

核磁気共鳴スペクトル (重アセトン中) $\delta_{
m ppm}$

- 1.19 (9 H,S)
- 3.23 (3H,S,3位 OCH₃)
- 3.52 (2H,S,2位 CH₂)
- 3.90 (3 H , S , OCH₃)
- 4.18 (2H,S,3位 CH₂)
- 5.12 (1H, d, J=2.5Hz, 6位)
- 5.8~6.1 (3 H, m, 7位および CH₂)
- 6.78 (1 H,S)

6.6 ~ 7.1 (2 H , bs , NH₂)

8.0 1 (1 H , d , J = 4.5 H z , N H)

寒施例 2.

7-[2-(2-アミノチアゾールー4-イル)-2-ヒドロキシイミノアセトアミド]-3-メトキシメチルー3-セフエムー4-カルボン酸ピバロイルオキシメチルエステルの製造法

ジケテン 168 mg , 臭素 320 mg , 7 ーアミノー 3 ーメトキシメチルー 3 ーセフエムー 4 ーカル ボン酸ピバロイルオキシメチルエステル 322 mg およびジエチルアニリン 299 mgを用い参考例 4 の場合と同様に反応処理して得た残渣をシリカゲル 3 0 タ溶媒系 n ーヘキサン一酢酸エチル (1:1)を用いて精製し, 7 ーブロムアセチルアセトアミドー 3 ーメトキシメチルー 3 ーセフ

エムー4ーカルボン酸ピバロイルオキシメチル エステル 288 吻を得た。これを酢酸 5 ㎡ 化溶解 し亜硝酸ナトリウム38%を用いて参考例4と 同様に反応、処理し、シリカゲル159、溶媒 系n-ヘキサンー酢酸エチル (1:1)を用い て精製し、7-(2-プロモアセチルー2-ヒ ドロキシイミノアセトアミド) -3-メトキシ メチルー3 ーセフエムー4 ーカルボン酸ピバロ イルオキシメチルエステル 200 吻を得た。これ を N , N - ジメチルアセトアミド 5 ml に溶解し チオ尿素 5 5 吻を用い参考例 4 と同様に処理し て後,シリカゲル109溶媒,酢酸エチルを用 いてクロマトグラフィー処理し、7一〔2一(2-アミノチアゾールー4-イル) -2-ヒド ロキシイミノアセトアミド] - 3 - メトキシメ チルー 3 ーセフエムー 4 ーカルボン酸ピバロイ ルオキシメチルエステル 118 吸を得た。

核磁気共鳴スペクトル (重アセトン中) δ_{ppm}

1.21 (9H,S)

3.28 (3H,S,3位 OCH₃)

- 6.87 (1H,S)
- $6.4 \sim 7.6 (3 H, m, NH₂, OH)$
- 9.0 (1 H, d, J = 4.5 Hz, NH)

実施例 3.

7-[2-(2-クロルアセトアミドチアゾールー4-イル) -2-メトキシイミノアセトアミド]-3-メトキシメチルー3-セフエムー4-カルボン酸(シン異性体)19,ピバリン酸プロムメチルエステル380 PPおよび弗化カリ240 PPをジメチルスルホキシド「0 mlに加え、室温で1時間攪拌する。反応液に酢酸エチル100 mlを加え、水、5%重曹水、10%重硫酸

カリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥後、減圧で溶媒を留去マートグラフィー [溶媒・クロホルムー酢酸・イー [2ークロルアセトアミドチールー4ーイル)ー2ーメトキシイミノアセトアミド]ー3ーメトキシメチルー3ーセフエムー4ーカルボ炎費色粉末状で得られた。

上記化合物およびチオ尿素 6 0 写をジメチルアセトアミド 3 元に溶かし、室温で 4 時間攪拌する。反応液を飽和重質水 1 0 元に注ぎ、酢酸エチルで抽出する。抽出液を 1 0 多重硫酸カリウム水溶液、飽和食塩水で順次洗つた後、硫酸マグネシウムで乾燥後、減圧で濃縮する。残留物をシリカゲルを用いたカラムクロマトグラフィー [溶媒、酢酸エチルーnーベキサン (3・1)]で精製すると、7ー[2ー(2ーアミノチアゾールー4ーイル)ー2ーメトキシイミ

ノアセトアミド] ー 3 ーメトキシメチルー 3 ーセフエムー 4 ーカルボン酸ピバロイルオキシメチルエステル 200 弓を得た。本品は実施例 1 の方法で得た化合物と同一であることを核磁気共鳴スペクトル、赤外線吸収スペクトルで確認した。

実施例 4.

実施例3の方法に従つて、ピバリン酸ブロムメチルエステルの代りにイソ酪酸ブロムメチルエステル360 mgを用いて反応させ、全く同様に処理することによつて、7-[2-(2-アミノチアゾールー4ーイル)ー2ーメトキシイミノアセトアミド]ー3ーメトキシズチルー3ーセフエムー4ーカルボン酸 イソブチリルオキシメチルエステル 180 mgを微黄色粉末状に得る。

核磁気共鳴スペクトル (CDCL₃) δ_{ppm}:

1.20 (6 H, d,
$$J = 6.5$$
)

2.66 (1 H, Septet,
$$J = 6.5$$
)

- 3.21 (3H,S)
- 3.40 (2 H , ABq)
- 4.01 (3 H, S)
- 4.16 (2H,S)
- 5.05(1 H, d, J = 5)
- 5.6~6.2 (5 H, m)
- 6.65 (1 H, S)
- 8.06 (1 H, d, J=9)

実施例 5.

実施例3の方法に従つて、ピバリン酸ブロムメチルエステルの代りにプロピオン酸ブロムメチルエステル340 啊を用いて反応させ、全く同様に処理することによつて、7-[2-(2-

アミノチアゾールー4 ーイル) ー2 ーメトキシ イミノアセトアミド] ー3 ーメトキシメチルー 3 ーセフエムー4 ーカルボン酸 プロピオニル オキシメチルエステルが殆ど無色の粉末状で 165 my 得られた。

核磁気共鳴スペクトル (CDC L₃) δ_{ppm}:

1.17 (3 H, t,
$$J = 6.5$$
)

2.41 (2 H, q,
$$J = 6.5$$
)

$$5.09 (1 H, d, J = 5)$$

8.25 (1 H, d,
$$J = 9$$
)

実施例 6.

実施例3の方法に従つて、ピバリン酸ブロムメチルエステルの代りにαーエトキシカルボニルオキシエチルブロマイド (αーエトキシルカリド 600 mg、臭化ナトリル 3 ml 中 1 0 時間加速)を用いて反応させ、全くローアミリカとによつて、7ー〔2ー(2ーアイ・ノアセトアミド〕ー3ーメトキシメチルー3ーセフエムー4ーカルボン酸 1ーエトキシカルボニルオキシエチルエステル 6 0 mg を淡黄色粉末として得る。

核磁気共鳴スペクトル (CDC &) δ_{ppm}:

- 1.30 (3 H, t, J = 7)
- 1.61 (3 H, d, J = 5)
- 3.22 (3 H, S)
- 3.42 (2 H , A B q)
- 4.03 (3 H, S)
- 4.15 (2H,S)
- 4.21 (2 H, q, J = 7)

実施例7.

7-[2-(2-クロルアセトアミドチアゾールー4ーイル)ー2ーメトキシイミノアセトアミド]ー3ーメトキシメチルー3ーセフエムー4ーカルボン酸(シン異性体)19をジメチルスルホキシド10㎡中に加え,トリエチルアミン200mを加え,ついでフタリジルブロマイド420mを加える。室温で30分攪拌後,酢酸エチル100mlを加え,水,5%重曹水,飽和重硫酸カリウム水溶液,飽和食塩水で順次洗浄し,

硫酸マグネシウムで乾燥後,減圧で溶媒を留去する。残留物をシリカゲルを用いたカラムクロマトグラフィー〔溶媒,クロロホルムー酢酸エチル(1:1)〕で精製すると,7一〔2一(2 ークロルアセトアミドチアゾールー 4 ーイル)ー 2 ーメトキシイミノアセトアミド〕ー3 ーメトキシメチルー3 ーセフエムー4 ーカルボン酸フタリジルエステル710 mgが淡黄色粉末として得られる。

上記化合物 300 *啊をチオ*尿素 6 0 *啊とジメチルアセトアミド 3 配中*,室温で 4 時間反応させ以下実施例 3 の方法に従つて処理すると, 7 ー [2 ー (2 ー アミノチアゾールー 4 ー イル) ー 2 ーメトキシイミノアセトアミド] ー 3 ーメトキシメチルー 3 ーセフエムー 4 ーカルボン酸フタリジルエステル 120 *啊*を得る。

核磁気共鳴スペクトル $(CDC \ell_3)$ δ_{ppm} :

- 3.22 (3 H, S)
- 3.50 (2 H, S)
- 3.95 (3 H, S)

4.17 (2H,S)

5.10 (1H,a)

5.82 (1 H, m)

6.58 (0.6 H, S)

6.67 (0.4H,S)

7. 3 ~ 8. 3 (5 H , m)

8.5 (2 H , br)

実施例 8.

実施例2の方法に順じて次の化合物を得る。

- (2) 7-[2-(2-アミノチアゾールー4ーイル) -2-ヒドロキシイミノアセトアミド] -3-メトキシメチルー3-セフエムー4ーカルボン酸 イソバレリルオギシメチルエステル
- (3) 7-[2-(2-アミノチアゾールー4-

イル) - 2 - ヒドロキシイミノアセトアミド]
- 3 - メトキシメチル - 3 - セフェム - 4 カルボン酸 フタリジルエステル

実施例9.

実施例1の方法に順じて次の化合物を得る。

- (1) 7-[2-(2-アミノチアゾールー4ーイル) -2-メトキシイミノアセトアミド]-3-メトキシメチル-3-セフエムー4ーカルボン酸 アセトキシメチルエステル
- (2) 7-[2-(2-アミノチアゾールー4ーイル) -2-メトキシイミノアセトアミド]
 -3-メトキシメチルー3-セフエムー4ーカルボン酸 イソバレリルオキシメチルエステル
- (3) 7-「2-(2-アミノチアゾールー4ー イル)-2-エトキシイミノアセトアミド] -3-メトキシメチル-3-ゼラエム-4-カルボン酸 ビッパロイルオキシメチルエステル
- (4) 7-[2-(2-アミノチアゾールー4-

イル) - 2 - メトキシイミノアセトアミドリ - 3 - エトキシメチル- 3 - セフエム- 4 -カルボン酸 ピバロイルオキシメチルエステ ル

実施例 1 0.

7-〔2-(2-アミノチアゾ‐ ル) - 2 - ヒドロキシイミノアセトアミド]-3 ーメトキシメチルー3 ーセフエムー4 ーカル ピバロイルオキシメチルエステル 500 ボン酸 明を酢酸エチル 2 0 ml にとかした液に塩化水素 を飽和したエーテル 2 ㎡を加え,滅圧で約 5 ㎡ 迄 濃 縮し、ついでジイソプロピルエーテル 2 0 nd を加える。析出した結晶を沪取し、ジイソプ ロピルエーテルで洗浄,乾燥すると,7-[2 (2-アミノチアゾールー4-イル)-2 ヒドロキシイミノアセトアミド]-3-メトキ シメチルー3 ーセフエムー4 ーカルボン酸 バロイルオキシメチルエステル 塩酸塩が得ら れる。収量 480 啊。

> 特許出願人 三 共 株 式 会 社 代 理 人 *弁*理士 樫 出 庄 治

手続補正書(自発)

昭和55年11月[1日

特許庁長官 島田春樹 殿

1. 事件の表示

昭和55 年特許願第 136449号

2. 発明の名称

経口用セフアロスポリン化合物。

3. 補正をする者

事件との関係 特許出願人

住所 〒103 東京都中央区日本橋本町3丁目1番地の6

名称 (185) 三共株式会社

代表者 取締役社長 河村喜典

4. 代 理 人

居所 〒140 東京都品川区広町1丁目2番58号

三共株式会社内

電話 492-3131

氏名 弁理士 (6007) 樫出庄

5. 補正により増加する発明の数 なし

6:補正の対象 明細書の発明の詳細な説明の欄

7. 補正の内容 別紙の通り

1. 明細書第16頁下から3乃至2行目の 「N-ヒドロキシフタルイミドエステル」の後 に、

「 N - ヒドロキシベンズトリアゾール エステル」 を挿入する。

2. 同第29頁6行目の

「J=2.5 Hz」を

「J=5Hz」と訂正する。

3. 同第29頁7行目の

「J=2.5, 4.5Hz」を

「J=5,9Hz」と訂正する。

4. 同第31頁12 および13行目の

「J=2.5 Hz」を

「J=5Hz」と訂正する。

5. 同第33頁3および5行目の

「J=3 Hz 」を

「J-6Hz」と訂正する。

6. ・ 同第33頁6行目の

「J=2.5 Hz | を

「J=5Hz」と訂正する。

- 多地
- 7. 同第33頁7行目の

 $[J=2.5,4.5\,\mathrm{Hz}]$ &

「J=5,9Hz」と訂正する。

8. 同第33頁9行目の

「J=4.5 Hz」を

「J-9 Hz」と訂正する。

9. 同第34頁10行目の

「J=2.5 Hz」を

「J-5Hz」と訂正する。

10. 同第34頁11行目の

「J=2.5, 4.5 Hz」を

「」-5,9Hz」と訂正する。

11. 同第38頁1 および2行目の

「J = 2.5 Hz」 åæ

「J=5Hz」と訂正する。

12. 同第39頁14行目の

「J=2.5 Hz」を

·「J=5Hz」と訂正する。

13. 同第42頁下から3行目の

「J=2.5 Hz」を

「J-5 Hz」と訂正する。

14. 同第 4 3 頁 2 行目の

「J=4.5 Hz」を

「J-9Hz」と訂正する。

15. 同第 4 5 頁 3 行目の

「J=2.5 Hz」を

「J=5Hz」と訂正する。

16. 同第45頁7行目の

「J=4.5Hz」を

「J=9Hz」と訂正する。

以上

手 続 補 正 書 (自発)

昭和56年7月16日

特許庁長官 島田春樹 殿

1. 事件の表示

昭和55年特許顯第136449 号

- 2. 発明の名称 経口用セフアロスポリン化合物
- 3. 補正をする者

事件との関係 特許出願人

住所 〒103 東京都中央区日本橋本町3丁目1番地の6

名称

(185) 三共株式会社

代表者 取締役社長 河村 喜典

4. 代 理 人

居所 〒140 東京都品川区広町1丁目2番58号 三共株式会社内

電話 492-3131

氏名 #理士 (6007) 樫

5. 補正により減少する発明の数 1

6. 補正の対象 明細書の特許請求の範囲の欄及び発明の 詳細な説明の欄____

7. 補正の内容 別紙の通り 56 別紙の通り 56

出

庄

訂 正 明 細 書

- 1. 発明の名称 経口用セフアロスポリン化合物
- 2 特許請求の範囲
 - (1) 一般式

(式中、R1はメチル基またはエチル基を表わす。)で示されるセフアロスポリン化合物(シン異性体) およびその薬学的に許容し得る<u>酸付加塩。</u>

(2) 式

で示される化合物を、一般式

(式中、R₂はアミノ基または保護されたアミノ基を、R₁はメチル基またはエチル基を表わす。) で示されるカルボン酸またはその反応性誘導体 と反応させ、一般式

(式中、R₁ および R₂ は前述したものと同意義を有する。)を有する化合物を製造し、R₂が保護されたアミノ基である場合にはその保護基を除去することを特徴とする一般式

(式中、R₁は前述したものと同意義を有する。)

で示されるセフアロスポリン化合物(シン異性体)およびその薬学的に許容し得る酸付加塩の 製造法。

(3) 一般式

(式中、R₁はメチル基またはエチル基、R₂はアミノ基または保護されたアミノ基を表わす。)で示されるカルボン酸化合物またはその反応性誘導体を一般式

$XCH_2OCOC(CH_3)_3$

(式中、xはハロゲン原子を表わす。)で示される化合物と反応させ、一般式

(式中、 R_1 および R_2 は前述したものと同意 義を有する。)を有する化合物を製造し、 R_2

が保護されたアミノ基である場合にはその保護 基を除去することを特徴とする一般式

(式中、R₁は前述したものと同意義を有する。) で示されるセフアロスポリン化合物(シン異性 体) およびその薬学的に許容し得る<u>酸付加塩</u>の 製造法。

(4) 一般式

(式中、R₁はメチル基またはエチル基を表わす。)で示されるセフアロスポリン化合物(シン異性体) およびその薬学的許容し得る<u>酸付加塩</u>を有効成分として含有する経口投与用細菌感染症治療剤。

3. 発明の詳細な説明

本発明は経口投与用セフアロスポリン化合物 に関する。更に詳しくは、本発明は一般式(I)

$$\begin{array}{c|c}
 & N & C & CONH & S \\
 & & & CH_2 OCH_3 \\
 & & & COOCH_2 OCOC(CH_3)_3
\end{array}$$
(1)

(式中、R₁はメチル基またはエチル基を表わす。)で示されるセフアロスポリン化合物(シン異性体)およびその薬学的に許容し得る酸付加塩、その製造法並びにその化合物を有効成分として含有する経口投与用細菌感染治療剤に関する。

本発明に係る前記一般式(I)を有する化合物は新規化合物であり、消化管からの吸収がよく、且つ生体内で速かに 4 位のエステル部分が分解してカルボン酸型になるため、カルボン酸型化合物の高い血中濃度を得ることができ、したがつて経口投与によつてクラム陽性菌およびクラム陰性菌等の感染症の治療に対して極めて顕著

な効果を有する広範囲抗生物質である。カルボン酸型化合物も新規な化合物であり、その抗菌活性は後述するように極めてすぐれた活性を有する。

ペニシリン系、セフアロスポリン系抗生物質 には、多くの優れた効果を有する化合物がみら れるが、消化管からの吸収のよいものは極めて 少なく、そのために実用化されないまゝ開発を 断念された化合物も少くない。殊にセファロス ポリン系抗生物質にむいてはセフアレキシンあ るいはその類似体のように限られた構造を有す る化合物のみが実用に供されているにすぎない。 例えば注射用セフアロスポリン剤として汎用さ れているセフアロチン、セフアゾリン、セフメ タゾール等を経口投与した場合の尿中回収率は いずれも投与量の5%前後で、消化管からの吸 収は極めて悪いことが知られている。その理由 はセフアロスポリンの4位のカルボキシル基の 解離度が大きく(pKa値が小さく)酸性が強い ためである。

そこでペニシリンの3位およびセフアロスポリンの4位のカルボキシル基をエステル化することによつて、消化管からの吸収を改善しようとする試みがなされており、ペニシリン系化合物については一、二実用化されているものがあるが、セフアロスポリン系化合物についてはみられない。

例えばセフアマンドールのアセトキシメチルエステルに関してザ・ジャーナル・オブ・ア頁(1979年)に報告されているが、それによると、エステル化によつて水に難溶性になるため吸いはつまったのみ吸収がある程度改善されるといれている。また一方、水に配ったが、オブ・メデイシャルを記れている。また一方、水にでするとがエステルとしてジャーナル・オブ・メデイシャルを記れている。また一方、水にですが、たったの場合は化学的に不安定なため、吸収はよくならなかつたと記して、またのではよくならなかった。

述されている。

本発明者は、長年に亘つてセフアロスポリン化合物の化学的修飾による消化管からの吸収の改善、経口投与による血中濃度の増大について研究を重ねたが、それらの性質は、化合物の構造全体に関連し、構造の一部分に変化があれば同じような化学的修飾例えばエステル化を行なつても、その消化管からの吸収は全く予測し得ないことを知つた。本発明は、そのような研究の結果なされたものである。

即ち、本発明の化合物と一見構造が類似している下記公知化合物のピバロイルオキシメチルエステルを合成し、経口投与による尿中回収率を試験したところ、必ずしも良い結果は得られず、この系統の化合物に関しては3位の置換基が極めて重要な役割を果していることを見出した。

本発明に係る前記式(I)を有する化合物は、以下に述べる方法、すなわち

- (a) エステル化された 7 アミノ 3 メトキ シメチルセフアロスポリン(II) のアシル化法 あるいは
- (b) 化合物(I) に対応するカルボン酸またはその アミノ基が保護された化合物(V) のエステル化 法および脱保護化法

によつて製造することができる。

上記の方法は具体的には次のように実施される。

(a) は式

$$\begin{array}{c|c} H_2 N & & & \\ \hline & & \\ CH_2 O CH_3 & & \\ \hline & & \\ COOCH_2 O COC (CH_3)_3 & & \\ \end{array}$$

で示される化合物を、一般式

$$\begin{array}{c|c}
\mathbf{R_2} & \mathbf{N} & \mathbf{C} - \mathbf{COOH} \\
\mathbf{R_2} & \mathbf{N} & \mathbf{OR_1}
\end{array}$$

(式中、R2はアミノ基または保護されたアミノ基を、R1はメチル基またはエチル基を表わす)で示されるカルボン酸またはその反応性誘導体と反応させ、一般式

$$\begin{array}{c|c}
 & N & C & CONH & S \\
 & & & CH_2 O CH_3 \\
 & & & COOCH_2 O CO C (CH_3)_3
\end{array}$$
(M)

(式中、R₁ および R₂ は前述したものと同意義を有する。)を有する化合物を製造し、R₂ が保護されたアミノ基である場合にはその保護基を除去することによつて目的化合物(I)が製造される。

上記式中、R₂が保護されたアミノ基である場合のアミノ基の保護基としては、容易に除去されてアミノ基に復元されるものが好ましく、そ

れ自体公知の保護基例えば酸処理で除去しうるトリチル基、ホルミル基、 t ープトキシカルボニルー1 ーメチルビニル基、アルカリ処理で除去できる 2 ーメチルスルホニルエチルオキシカルボニル基、チオ尿素処理で除去しうるクロルアセチル基などが使用される。

本方法はアシル化工程と必要な場合には脱保 護工程との2工程よりなる。

本工程は通常溶媒中で行なりのが好ましく、使用される溶媒は本反応に悪影響を与えないかのであれば限定なく、例えばアセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、酢酸エチル、クロホルム、ジクロルメタン、アセトニトリル、ジメチルホルムアミドなどの不活性有機溶媒ないは水との混合溶媒などが使用される。使用される。使用されるの混合溶媒などが使用される。使用されるの混合溶媒などが使用される。使用されるの混合溶媒などが使用される。使用されるの混合溶媒などが使用される。使用されるの混合溶媒などが使用される。

れる反応性誘導体の種類によつては必要に応じ 塩基を存在させることがある。塩基の例として はアルカリ金属化合物例えば重炭酸ナトリウム、 重 炭 酸 カ リ ウ ム 、 炭 酸 ナ ト リ ウ ム 、 炭 酸 カ リ ゥ ムなど、脂肪族、芳香族、含窒素複素環塩基例 えばトリエチルアミン、ジメチルアニリン、ジ エチルアニリン、N-メチルピペリジン、N メチルピロリジン、ピリジン、コリジン、ルチ ジンがあげられる。反応温度に特に限定はない が通常反応は室温又は冷却下で行なわれる。反 応に要する時間は主としてアシル化方法の種類、 反応温度等によつても異なるが通常数十分乃至 数十時間である。反応終了後、式伽を有する化 合物は常法によつて反応混合物から採取される。 例えば反応溶媒が水混和性の場合には一旦減圧 で留去した後水不混和性溶媒に代え、溶媒が水 不混和性の場合はそのまゝ酸および塩基で洗い、 乾燥した後溶媒を留去することによつて得られ る。 必 要 に 応 じ 常 法 例 え ば 各 種 ク ロ マ ト グラフ イー等によつて精製することもできる。

脱保護工程は先に述べたように、各保護基の 特性に基いて常法によつてそれらの保護基を除 去し、粗生成物を精製して式(I)を有する目的化 合物を得ることができる。

また、(b)は一般式

$$\begin{array}{c|c}
N & C & CONH & S \\
R_2 & N & CH_2 O CH_3
\end{array}$$
(V)

(式中、R₁ および R₂ は前述したものと同意 義を有する)を有するカルボン酸化合物または その反応性誘導体を式

$$X CH_2 O C O C (CH_3)_3$$
 (W)

(式中、xは塩素、臭素または沃素のようなハロゲン原子を表わす。)を有する化合物と反応させ前記式(M)を有する化合物を得て、更にR2が保護されたアミノ基である場合には(a)法と同様にして脱保護することによつて目的化合物(1)が製造される。

本反応に おいて、式(V)を有する化合物を縮合

に有利な反応性誘導体として使用してもよい。 式(V)を有する化合物のカルボン酸部分の反応性 誘導体としては、例えばナトリウム、カリウム のような金属との塩、トリエチルアミン、ジシ クロヘキシルアミンのような有機アミンとの塩 等があげられる。反応は適当な溶媒中で行なり のが好ましく、そのような溶媒としては本反応 に悪影響をおよぼさないもの例えばジメチルホ ルムアミド、ジメチルアセトアミド、ジメチル スルホキシド、ヘキサメチルトリアミドホスフ エート、アセトニトリル等或いは他の不活性有 機溶媒との混合溶媒があげられる。反応は通常 室 温 ま た は 冷 却 下 に 行 な う の が 好 ま しい 。 反 応 に 要 する時 間は通常 数分乃至数時間である。 反 応終了後、反応混合物を水不混和性溶媒で稀釈 し、重硫酸カリウム水溶液および塩基水溶液で 洗い、乾燥後溶媒を留去することによつて本反 応の目的化合物を得ることができる。このもの は更に常法例えば各種クロマトグラフィーによ り精製することができる。アミノ基が保護され

ている場合には、前記式(m)を有する化合物の脱保護と同様にしてアミノ基に変換される。

以上の製造法によつて得られる前記式(I)を有 する本発明の化合物は、前記の如く消化管から の吸収がよく、カルボン酸型化合物の高い血中 濃度を与えるので経口投与が可能であり、製薬 的常法によつて例えばデンプン、乳糖、白糖、 炭酸カルシウム、リン酸カルシウム、ポリエチ レングリコール等の賦形剤、例えばアラビアゴ カルボキシメチルセルロース、ヒドロキシ プロピルセルロース等の結合剤、例えばステア リン酸マグネシウム、タルク、ラウリル硫酸ナ トリウム等の滑沢剤、例えばカルボキシメチル セルロースカルシウム等の崩壊剤などと混合し てカプセル剤、散剤、顆粒剤、錠剤等経口投与 剤を製造することができる。その投与量は、年 令、体重、症状等によつても異なるが、成人に 対し 1 日約 0. 2 乃至 5 8、好ましくは 0. 5 乃至 3 8 であり、3 乃至4回に分けて与えることが できる。

また、前記式(I)を有する化合物を使用するに当つて、遊離の型のみでなく薬学的に許容しうる酸付加塩例えば、塩酸、硫酸、硝酸のような無機酸、メタンスルホン酸、ペンゼンスルホン酸、マロン酸などのような有機酸の酸付加塩としても使用される。

本発明の化合物を経口投与すると、前述の如く、腸管より容易に吸収され、生体内で加水分解されて対応するカルボン酸(1')

$$H_{2N} \stackrel{N}{\downarrow}_{S} \stackrel{C}{\downarrow}_{N} \stackrel{CONH}{\downarrow}_{OR_{1}} \stackrel{S}{\downarrow}_{CH_{2}OCH_{3}}$$

$$(1')$$

(式中、R₁は前記と同意義を示す。)またはその塩になる。化合物(I')のグラム陽性菌および陰性菌に対する抗菌活性(最小発育阻止濃度, μg/ml)は下記の如く極めて顕著なものである。

化合物 (1')
$$R_1 = C_2H_5$$

スタヒロコツカス・アウレ	0. 4	0. 2
ウス 209P		
エシエリヒア・コリNIHJ	0.4	0.8
シゲラ・フレキシネリ	0. 8	0. 4
クレプシェラ・ニューモニエ	0. 1	0. 2
プロテウス・プルガリス	0.01	0.01
サルモネラ・エンテリチジス	0. 2	0.4

また本発明の化合物および前述の類縁化合物 (化合物 1 および 2)をマウスに経口投与した 時の尿中回収率(対応するカルボン酸の量)は 夫々次の通りである。

尿中回収率(%)(0~24時間)

実施例1の化合物	7 5. 9
実施例2の化合物	7 8
化合物1	8
化合物 2	1 4

このように本発明は上記化合物 1 および 2 のようなセフアロスポリン化合物の 3 位の置換基をメトキシメチル基にすることによつて消化管吸収が極めて良くなる点に特長がある。

次に参考例および実施例をあげて前記式(I)を有する本発明の化合物の製造方法を具体的に説明するが、本発明はこれによつて限定されるものではない。なお、本発明の化合物のオキシム部分の異性体はすべてシン型である。 参考例 1.

<u>7-フェノキシアセトアミドー3-メトキシ</u> メチルー3-セフエムー4-カルボン酸ピバロ イルオキシメチルエステルの製造法

7-フェノキシアセトアミド-3-メトキシメチル-3-セフエム-4-カルボン酸ナトリウム塩1gをジメチルスルホキシド50配に溶解し、ピバロイルオキシメチルプロミド 975 町を加えて室温で15分間攪拌後、酢酸エチル200 配を加え、飽和重炭酸ナトリウム水溶液50 配、飽和重硫酸カリウム水溶液50 配で順次流

浄し、無水硫酸マクネシウムで脱水乾燥後、乾燥剤を沪去して減圧濃縮する。

こうして得た残渣をシリカゲル 100 g、溶媒系 n - ヘキサン - 酢酸 エチル (1:1)を用いてクロマトグラフイー処理し、7 - フェノキシアセトアミド-3 - メトキシメチル-3 - セフエム-4 - カルボン酸ピバロイルオキシメチルエステル 750 mg を得た。

核磁気共鳴スペクトル (CDC ℓ_3) δ_{ppm}

- 1. 25 (9 н, в)
- 3.35(3H, s, 3位 OCH₃)
- 3.54(2H, s, 2位 CH₂)
- 4.29(2H, s, 3位 CH₂)
- 4.58 (2H, s, CH₂-0-P_{he})
- 5.01(1H,d,J-5Hz,6位)
- 5.6~6.1 (3H,m,7位およびCH₂)
- 6.7 ~ 7.6 (6 H, m, Phenyl z U NH)

参考例 2

(a) <u>7-[2-(2-クロルアセトアミドチア</u> ソールー4-イル)-2-メトキシイミノアセ

トアミド]-3-メトキシメチル-3-セフェ ム-4-カルボン酸ジフエニルメチルエステル の製造法

反応液(A) ジメチルホルムアミド 0.057ml に、氷冷 攪拌しながらオキシ塩化リン 0.061 mlを加え、 40℃に加温して1時間攪拌後、乾燥した塩 化メチレンを用い2回共沸する。これに酢酸 エチル1mlを加え、室温ではげしく攪拌しな がら2-(2-クロルアセトアミドチアゾー ルー4-イル)-2-メトキシイミノ酢酸 200 mgを加え30分間反応する。

混合液(B) 一方、7-アミノ-3-メトキシメチル-3-セフエム-4-カルボン酸ジフエニルメチルエステル 200 房をジエチルアニリン145 房と共に、乾燥した塩化メチレン 5 型に溶解し、-5℃に冷却して攪拌する。

この混合液的に前述の反応液(A)を滴下して15 分間攪拌後、反応液を減圧濃縮する。

残渣を酢酸エチル20mlおよび水5mlを用いて分液する。酢酸エチル層を分離し、さらに順

次、飽和重炭酸ナトリウム水 5 ml、 5 匆塩酸水 5 ml、飽和食塩水 5 mlで洗浄し、無水硫酸マクネシウムを加えて脱水乾燥する。乾燥をシリカゲル(Kieselgel-60) 3 0 g、溶媒 不 1 ー 2 ー 6 0) 3 0 g、溶媒 不 1 ー 7 ー 1 を 1 と 1 ア セ チ ル (3 : 2)を 用いて 2 ー クロル ア セ チ ル ア ミ ノ テ ア ー 4 ー イ ル) ー 2 ー メ ト キ シ イ ミ ノ ア セ ト ア ミ ド] ー 3 ー 2 シ メ チ ル ー 3 ー セ フ エ ム ー 4 ー カ ル ボン酸 ジェニルメチルエステル 213 mgを得た。

核磁気共鳴スペクトル $(CDCl_3)$ δ_{ppm}

- 3.19(3H, s, 3位 OCH₃)
- 3.51(2H, s, 2位 CH₂)
- 4.09 (3 H, s, OCH₃)
- 4.20(2H, s, 3位 CH₂)
- 4. 2 2 (2 H , s , Cl CH₂ · CO)
- 502(1H,d,J=5Hz,6位)
- 5.86(1H,dd,J=5,9Hz,7位)
- 6.7 ~ 7.6 (12H,m)

(b) <u>7-[2-(2-クロルアセトアミノチア</u> <u>ゾール-4-イル)-2-メトキシイミノアセ</u> トアミド]-3-メトキシメチル-3-セフェ ム-4-カルボン酸の製造法

参考例2-(a)の方法で得たて-[2-(2クロルアセトアミノチアゾールー4-イル)ー
2ーメトキシイミノアセトアミド]ー3ーメトキシイミノアセトカルボン酸
キシメチルー3ーセフエムー4ーカルボ通り
サンエニルメチルエステル 7.65g を常とよび
塩化メチレン 25 ml、アニソール5 ml お 後 び ト
リフルオロ酢酸 20 ml で室温 3 0 分反 応 出 物 下
リフルエーテル 300 ml を加 え て 析 出 ト イ
取すると、7-[2-(2-クロルアセト テミドナアセトアミド]ー3ーメトキシメチルー3ー
メアセトアミド]ー3ーメトキシメチルー3ー
セフエムー4ーカルボン酸(シン異性体)5.95

核 磁 気 共 鳴 ス ペ ク ト ル (重アセトンと重 DMSO 混液) δ ppm

3.30(3H, B, OCH₃ 3位)

3.60(2H,s,2位 CH₂)

3.97 (3 H, s, OCH₃)

4.25(2H, s, 3位 - CH₂-)

4.37 (2H,s, C&CH2CO)

5.20(1H, a, 6位 H)

5.90(1H,d,d,7位 H)

7.40(1日,8,チアゾール 5位)

9.50(1H,d,7位 CONH)

参考例 3.

7-[2-(2-アミノチアゾールー4-イル)-2-メトキシイミノアセトアミド]-3
 -メトキシメチル-3-セフエム-4-カルボン酸トリフルオロ酢酸塩の製造法

7-[2-(2-クロルアセトアミドチアゾールー4-イル)-2-メトキシイミノアセトアミド]-3-メトキシメチルー3-セフエムー4-カルボン酸ジフエニルメチルエステル200 弓をN,N-ジメチルアセトアミド5 配に容解し、チオ尿素 4 5 弓を加えて溶解し、室温で2時間反応する。反応液に飽和重炭酸ナトリ

これをアニソール 2 ml に溶解し、氷冷攪拌下にトリフルオロ酢酸 1 ml を加え、室温にして30分処理する。反応液を減圧濃縮し、イソプロピルエーテルを加えて生じた沈澱を沪取し、乾燥して、1-[2-(2-アミノチアゾールー4-1ル)-2-メトキシイミノアセトアミド]
-3-メトキシメチルー3-セフエムー4ーカルポン酸トリフルオロ酢酸塩27mgを得た。核磁気共鳴スペクトル(重アセトン中,重水添加)

 δ_{ppm}

3.29(3H, B, 3位 -OCH₃)

3.57(2H, s, 2位 CH₂)

3.96(3H, B, OCH₃)

4.27(2H, s, 3位 CH₂)

5.15(1H,d,J=5Hz,6位)

5.97(1H,d,J=5Hz,7位)

6.59(1H,s)

実施例 1.

7 - [2 - (2 - アミノチアゾール - 4 - イル) - 2 - メトキシイミノアセトアミド] - 3
 - メトキシメチル - 3 - セフエム - 4 - カルボン酸ピバロイルオキシメチルエステルの製造法

五塩化リン 488 啊を乾燥した塩化メチレン 5 ml に溶解し、オキシ塩化リン 120 啊を加え、室温で攪拌しながらビリジン 247 啊を加える。こ

れを-10℃ まで冷却し、参考例2-10/におい て得られた7-フエノキシアセトアミド-3-メトキシメチルー3ーセフエムー4ーカルボン 酸ピパロイルオキシメチルエステル 769 Wを加 え、徐々に室温にもどす。2時間攪拌後再び0℃ に冷却し、nープロピルアルコール 1.5 mlを加 えて30分間攪拌する。さらに少量の水を加え 1 5 分 攪 拌 し、酢 酸 エチル 5 0 ㎡ を 加 え 飽 和 重 炭酸ナトリウム水で洗浄する。酢酸エチル層を 無水硫酸マクネシウム上で乾燥し、乾燥剤を沪 去して減圧濃縮する。これにイソプロピルエー テルを加えてこすり、生じた沈澱を沪取乾燥し て、1-アミノー3-メトキシメチルー3-セ フェムー4ーカルポン酸ピバロイルオキシメチ ルエステル 443 脚を得た。

こうして得た 7 - アミノ - 3 - メトキシメチ ル - 3 - セフエム - 4 - カルボン酸ピバロイル オキシメチルエステル 121 写、ジエチルアニリ ン 141 写、およびジメチルホルムアミド 7 1 写、 オキシ塩化リン 135 写、2 - (2 - クロルアセ

トアミドチアゾールー 4 ー イル) ー 2 ー メトキシイミノ酢酸 265 弓形を用い参考例 2 ー (a) の場合と同様にアミド化し、反応液を分液抽出して目的物を含む残渣を得、これをシリカゲル 1 0 g 溶媒系酢酸エチルーローペキサン(2:1)を用いてクロルアセトアミドチアゾールー 4 ー イル) ー 2 ー メトキシイミノアセトアミドー コーメトキシメチルー 3 ー メトキシメチルー 3 ー セフエムー 4 ー カルボン酸ピベロイルオキシメチルエステル 5 5 弓を得た。

これをN,N-ジメチルアセトアミド1㎡に 答解し、チオ尿素 13.5 mg を加え 室温で 2 時間攪拌後酢酸エチル 2 0 ml を加えて、飽和重炭酸ナトリウムでよく洗浄し、無水硫酸マグネシウム上で脱水乾燥し、乾燥剤を沪去して減圧濃縮した。これをシリカゲル 5 g、溶媒系酢酸エチルーn-ヘキサン(3:1)を用いてクロマトグラフィー処理し、7-[2-(2-アミノチアソール-4-イル)-2-メトキシイミノアセ

トアミド] - 3 - メトキシメチル - 3 - セフェム - 4 - カルボン酸ピパロイルオキシメチルエステル 3 6 写を得た。

核磁気共鳴スペクトル (重アセトン中) δ_{ppm}

1.19(9H,s)

3.23(3H,s,3位 OCH₃)

3.52(2H, s, 2位 CH_2)

 $3.90\ (3\ \mbox{H}\ ,\ \mbox{s}\ ,\ \mbox{OCH}_{3}\)$

4.18(2H, s, 3位 CH₂)

5.12(1H,d,J=5Hz,6位)

5.8 \sim 6.1 (3 H , m , 7位および \mathtt{CH}_2)

6.78 (1 H , s)

6.6 \sim 7.1 (2 H , bs , NH $_2$)

8.01(1H,d,J=9Hz,NH)

実施例 2.

実施例1の方法に順じて次の化合物を得た。

核磁気共鳴スペクトル (重クロロホルム) δ ppm

1.22(9H,s)

1.31 (3 H , t , $\mathrm{och}_2\mathrm{ch}_3$)

 $3.\ 3\ 0$ ($3\ \mbox{H}$,s , $0\ \mbox{CH}_{3}$)

3.53(2H, B, 2位 CH₂)

4.30(2H,s,3位 CH₂)

4.28(2H,q,OCH₂CH₃)

5.01(1H,d,J=5Hz,6位)

5.7 ~ 6.2 (5 H , m , 7位 H , NH₂ , $COOCH_2-O-$)

6.76(1日,8,チアゾール 5位)

7.70 (1H,d,J=9Hz, CONH)

実施例3.

考例2-(b)において得られた1-[2-(2 - クロルアセトアミドチアゾール - 4 - イル) - 2 - メトキシイミノアセトアミド] - 3 - メ トキシメチルー3-セフエム-4-カルボン酸 (シン異性体) 1 9、ビバリン酸プロムメチル エステル 380 羽および 弗化カリ 240 羽をジメチ ルスルホキシド10㎡に加え、室温で1時間攪 拌する。反応液に酢酸エチル 100 ml を加え、水、 5 多 重 曹 水 、 1 0 多 重 硫 酸 カ リ ウ ム 水 溶 液 、 飽 和食塩水で順次洗浄し、硫酸マグネシウムで乾 燥 後 、 減 圧 で 溶 媒 を 留 去 す る 。 残 留 物 を シ リ カ ゲルを用いたカラムクロマトグラフィー「溶媒, クロロホルム - 酢酸エチル(1:1)で精製す ると、7-[2-(2-クロルアセトアミドチ アソールー4ーイル) -2 -メトキシイミノア セトアミド] - 3 - メトキシメチル - 3 - セフ エムー 4 - カルボン酸ピパロイル エキシメチル エステル300 Wが淡黄色粉末状で得られた。

上記化合物およびチオ尿素 6 0 mgをジメチルアセトアミド 3 ml に溶かし、室温で 4 時間攪拌

する。反応液を飽和重曹水10㎖中に注ぎ、酢 酸エチルで抽出する。抽出液を10多重硫酸カ リウム水溶液、飽和食塩水で順次洗つた後、硫 酸マクネシウムで乾燥後、減圧で濃縮する。残 留物をシリカゲルを用いたカラムクロマトグラ フィー[溶媒,酢酸エチルーn-ヘキサン(3)〕で精製すると、7-「2-(2-アミ ノチアゾールー4-イル)-2-メトキシイミ ノアセトアミド] - 3 - メトキシメチル - 3 -セフエム - 4 - カルボン酸ピバロイルオキシメ チルエステル 200 mg を得た。本品は実施例1の 方法で得た化合物と同一であることを核磁気共 鳴スペクトル、赤外線吸収スペクトルで確認し た。

実施例 4.

7-[2-(2-アミノチアゾール-4-イル)-2-メトキシイミノアセトアミド]-3-メトキシメチル-3-セフエム-4-カルボン酸 ピバロイルオキシメチルエステル 500 砂を酢酸エチル20mlにとかした液に塩化水素を

飽和したエーテル2mlを加え、減圧で約5ml迄 濃縮し、ついでジイソプロピルエーテル20ml を加える。析出した結晶を沪取し、ジイソプロ ピルエーテルで洗浄、乾燥すると、7-[2-(2-アミノチアゾールー4-イル)-2 -メ トキシイミノアセトアミド]-3-メトキシメ チルー3-セフエムー4-カルボン酸 ビバた イルオキシメチルエステル 塩酸塩が得られた。 収量 470 mg。

特許出願人 三 共 株 式 会 社 代 理 人 弁理士 樫 出 庄 治

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☒ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☑ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.