

SOFTWEAVE® BLACK

NOW AVAILABLE IN

OMEGA, TITAN AND TITAN XL

INSPIRED BY STREETWEAR TRIPLE-BLACK

BLACK³

BLACK³ BLACK³

What we'll be solving

Gather brand insights from video analytics and comments from Secretlab review videos on Youtube.

Build a classifier that is able to sort incoming comments into key topics that deliver insights for the product team.

The DATA

9480

Unique comments

1642

Duration of all videos (mins)

184

Videos relevant to Secretlab

Interesting facts at a glance

Days

Most videos were published on Mon and Fri, whereas most comments were published on Tue and Wed

Months

The top 2 dominant months for videos and comments published were **July** and **May** respectively

Years

More than half of the videos and comments published came from **2019** and **2020**

ESSAY

The longest comment had **721** english words in it.

LIKE

The comment with the most number of likes (1239):

" one of the best ads i've ever seen "

RESPONSE

The most frequent reply response to a comment was **1 day**. The latest response to a comment was **1119** days ~ **3 years** later.

A few hours

A few hours

2 hours

12 hours

30mins

Last night

This morning

2020 yesterday

2018 today

tomorrow
A few
weeks A year

2 Years

Aeron Amazon

Secret labs DXRacer

SecretLab

Last night

IKEA

Omega Herman
2018 Miller

Mike Ben

Titan
XL

Herman Miller
Aeron

Word2Vec

Skip-Gram

Given an input word in a sentence, the NN will predict how likely it is for each word in the vocab being that input word's nearby word (cosine similarity)

Works well with a small amount of the training data.

C-BOW

Given a context of words (surrounding a word) in a sentence, the NN will predict how likely it is for each word in the vocab being the word

Several times faster to train than the skip-gram, slightly better accuracy for the frequent words.

('sweat', 0.6054732203483582), ('material', 0.6045715808868408)]

Word2Vec

```
w2v_model.wv.most_similar(positive=["fabric", "leather"], negative=["cool"], topn=5)|

[('softweave', 0.6305164694786072),
   ('hot', 0.6189433336257935),
   ('flake', 0.617984414100647),
```

Word2Vec

```
w2v_model.predict_output_word(['my', 'next', 'chair', 'will', 'be'], topn=10)
[('worn', 0.01168655),
 ('scream', 0.007911612),
 ('backup', 0.007831355),
 ('symptom', 0.0064958106),
 ('wave', 0.006039662),
 ('circle', 0.005978039),
 ('program', 0.0058969483),
 ('news', 0.005699329),
 ('triangle', 0.0056111636),
 ('dealer', 0.005006789)]
```


Modelling

Doc2Vec

DM

Distributed Memory (DM) acts as a memory that remembers what is missing from the current context — or as the topic of the paragraph. While the word vectors represent the concept of a word, the document vector intends to represent the concept of a document.

D-BOW

DBOW is the doc2vec model analogous to Skip-gram model in word2vec. The paragraph vectors are obtained by training a neural network on the task of predicting a probability distribution of words in a paragraph given a randomly-sampled word from the paragraph.

- 175 - 150 - 125 True label 12 - 100 - 75

Predicted label

Topic 4:

Words determinant to Log Reg Classifier

('comfortably', 0.25152626633644104), ('bro', 0.23484185338020325), ('snug', 0.21710629761219025), ('originally', 0.20406052470207214), ('size', 0.2028352916240692), ('male', 0.19776876270771027), ('husband', 0.18971474468708038), ('tall', 0.187089204788208), ('chill', 0.18451052904129028), ('velcro', 0.1792258620262146)

Words determinant to Doc2Vec

('symbol', 0.36029061675071716), ('ft', 0.31007319688796997), ('bro', 0.30809274315834045), ('incredible', 0.2996496260166168), ('comfortably', 0.29147326946258545), ('snug', 0.2860320508480072), ('size', 0.2838527262210846), ('beginning', 0.27516692876815796), ('male', 0.26859986782073975), ('suggestion', 0.2587391138076782)

Spearmans correlation coefficient: 0.854

Determinant words are correlated (reject H0) p=0.000

FALL IN LOVE WITH YOUR DATA AND REALLY UNDERSTAND YOUR MODEL

