

# **DIGITAL CIRCUTIS 1**<sup>st</sup> **MIDTERM EXAM (Question 1)**

# **QUESTION 1 (30 Points):**

**a.** A is a 4-bit and B is an 8-bit, **signed**, binary integer, which are given as follows:  $A=(8)_{16}$  and  $B=(FA)_{16}$ .

Perform necessary operations on **binary numbers** to compare the **absolute values** (|A|, |B|) of two numbers. Decide which number has the greater absolute value by interpreting the obtained binary result. Explain the operations and interpretation of the result.

**b.** Assume that the numbers A and B are **unsigned**, and answer the same question.

#### **Solution:**

Note: Base 10 values are not necessary. Digital circuits can only operate on binary numbers. All operations must be performed (as written in the question) on **binary numbers**.

a.

A= 1000 Sign extension to obtain 8-bit A= 1111 1000

B= 1111 1010 (Because Hex F=1111, Hex A=1010)

Both numbers are negative (sign =1)

To obtain absolute values we apply 2's complement operations.

2's complement of A= 1111 1000 : 0000 0111 + 1 = 0000 1000 = |A| 2's complement of B= 1111 1010: 0000 0101 + 1 = 0000 0110 = |B|

To compare the absolute values we perform |A| - |B| = |A| + 2's complement of |B|

|A|: 0000 1000

2's complement of |B|: + 1111 1010

**1** 000 0010

#### Interpretation:

Absolute values are unsigned numbers. Therefore we investigate the carry (barrow). Carry=1, that means no barrow. Consequently |A|>|B|

#### Ь.

A= 1000 Extension to obtain 8-bit A= 000 1000 (A is unsigned)

B= 1111 1010

As the numbers are unsigned A = |A|, and B = |B|

To compare the numbers we perform A-B=A+2's complement of B

A: 0000 1000

2's complement of B:  $\pm 00000110$ 

0000 1110

## Interpretation:

Absolute values are unsigned numbers. Therefore we investigate the carry (barrow). Carry=0, that means barrow. Consequently A< B and |A|< |B|

## **QUESTION 2 (35 Points):**

**a.** Using axioms and theorems of Boolean algebra show that  $(a \oplus b \oplus c) + (a \odot b \odot c) = a \oplus b \oplus c$ 

#### Note:

- i. The output of the  $x \oplus y$  function is 1 if the operands are different  $(x \neq y)$ .
- ii. The output of the  $x \odot y$  is 1 if the operands are same (equal) (x=y).
- **b.**  $A=(a_1a_0)$  and  $B=(b_1b_0)$  are two 2-bit, binary integers.

Find the logical expression F, that outputs 1 if A = B by using bitwise comparison. Implement the expression using **only** 2-input NAND gates.

#### **Solution:**

a) Note:

$$a \oplus b = a\overline{b} + \overline{a}b$$
 output is 1 if the operands are different (x $\neq$ y).  $a \odot b = ab + \overline{a}\overline{b}$  output is 1 if the operands are same (equal) (x=y).

#### Also:

$$\frac{\overline{(a \oplus b)} = a \odot b}{\overline{(a \odot b)} = a \oplus b}$$

$$(a \oplus b \oplus c) + (a \odot b \odot c) = a \oplus b \oplus c ?$$

$$= \left( \, a \overline{(b \oplus c)} + \overline{a} (b \oplus c) \, \right) + \left( a \, \underbrace{(b \odot c)}_{\overline{(b \oplus c)}} + \overline{a} \, \underbrace{\overline{(b \odot c)}}_{\overline{(b \oplus c)}} \, \right)$$

$$= a\overline{(b \oplus c)} + \overline{a}(b \oplus c) + a\overline{(b \oplus c)} + \overline{a}(b \oplus c)$$

$$=\underbrace{a\overline{(b\oplus c)} + a\overline{(b\oplus c)}}_{a\overline{(b\oplus c)}} + \underbrace{\overline{a}(b\oplus c) + \overline{a}(b\oplus c)}_{\overline{a}(b\oplus c)}$$

$$= a\overline{(b \oplus c)} + \overline{a}(b \oplus c) = a \oplus b \oplus c \quad \sqrt{\phantom{a}}$$

Note: There are also other possible solutions.

b) 
$$F = (a_0 \odot b_0)(a_1 \odot b_1) = (a_0 b_0 + \overline{a_0 b_0})(a_1 b_1 + \overline{a_1 b_1})$$



## **QUESTION 3 (35 Points):**

Consider the logical function given below:  $f(a,b,c,d)=U_1(0,1,3,6,9)+U_{\Phi}(4,7,8,13,15)$ 

- **a.** Draw the Karnaugh map of the function f(a,b,c,d) and find all prime implicants.
- **b.** Assuming 2 units cost for each variable and 1 unit cost for each complement, find the expression of f(a,b,c,d) with the lowest cost.
- **c.** Implement the expression (found in b.) with **only** 2-input NAND gates.



$$f(a,b,c,d) = \left[ \left( \overline{b}\overline{c} + \overline{a}c(b+d) \right)' \right]'$$

$$= \left[ \left( \overline{b}\overline{c} \right)' \cdot \left( \overline{a}c(b+d) \right)' \right]'$$

$$= \left[ \left( \overline{b}\overline{c} \right) \cdot \left[ \left( \overline{a}c \right)' + \left( \overline{b}\overline{d} \right) \right]' \right]'$$

$$= \left[ \left( \overline{b}\overline{c} \right) \cdot \left[ \left( \overline{a}bc \right) + \left( \overline{b}\overline{d} \right) \right]' \right]'$$

$$= \left[ \left( \overline{b}\overline{c} \right) \cdot \left[ \left( \overline{a}bc \right)' \cdot \left( \overline{b}\overline{d} \right) \right]' \right]'$$

$$= \left[ \left( \overline{b}\overline{c} \right) \cdot \left[ \left( \overline{a}bc \right)' \cdot \left( \overline{b}\overline{d} \right) \right]' \right]'$$

$$= \left[ \left( \overline{b}\overline{c} \right) \cdot \left[ \left( \overline{a}bc \right)' \cdot \left( \overline{b}\overline{d} \right) \right] \right]'$$

$$= \left[ \left( \overline{b}\overline{c} \right) \cdot \left[ \left( \overline{a}bc \right)' \cdot \left( \overline{b}\overline{d} \right) \right] \right]'$$

$$= \left[ \left( \overline{b}\overline{c} \right) \cdot \left[ \left( \overline{a}bc \right)' \cdot \left( \overline{b}\overline{d} \right) \right] \right]'$$

$$= \left( \overline{b}\overline{c} \right) \cdot \left[ \left( \overline{a}bc \right)' \cdot \left( \overline{b}\overline{d} \right) \right]'$$