6.002 电路与电子学

数字门的内部

复习

数字的抽象模型

- ●离散量 0,1
- ●静态准则 满足不同的域值电压

明确应该设计什么样的门.

复入

组合门模型

- ➡┪出仅是输入的函数
- ➡满足静态准则

例子: 一个数字电路

包含三个门的电路

- ■一个奔腾三的微处理器包含了四百万多个 门
- ■麻省理工大学计算机科学实验室设计的计 算机读写芯片大约包含三百万个门。

如何建造一个数字门电路

类似下图

用这个例子建立一个与门电路

如何建造一个数字门电路

电路模拟

当 A 和 B 都合上时, 电灯 C 亮

关键:"开关"器件

电路模拟

开关器件

等效电路

如果 C=0

短接 IN 和 OUT 之间的电路 否则

断开 IN 和 OUT 之间的电路

对于机械开关 控制 **→** 机械按扭

6.002 2000 年秋 第五讲

思考

这个呢?

这个呢?

也能搭建组合电路

MOSFET 场效应晶体管器件

GDS 三端的行为表现类似一个开关

G: 控制端

DS: 以相应的方式运行(根据我们的需要)

金属氧化物半导体场效应晶体管装置

将它看成一个二端元件来理解其工作原理

到课本中查阅它的内部结构

开关模仿金属氧化物半导体场效应晶体管器件,金属氧化物半导体场效应晶体管器件的开 关模型。

 V_{I} 为门电压 约为一伏

在示波器上检测 MOS 器件

一个由金属氧化物半导体场效应晶体 管构成的反相器

注意抽象模型的电源 反相器的符号隐去了内部的细节如电源 连接、R_L、GND等等。

(当我门构造门电路时所有门的 ↑ and 丄 是 共用的)

例如;

T1000 型的手提电脑要求门电路满足如图所示的电压阈值(静态准则),而我们的反相器能满足要求吗?

我们的反向器满足这个。

又:

我们的反相器能满足静态准则所规定的阈值吗?

$$V_{OL} = 0.2$$
V $V_{IL} = 0.5$ V $V_{OH} = 4.8$ V $V_{IH} = 4.5$ V $V_{IH} = 1.5$ V $V_{OL} = 0.5$ V $V_{IH} = 3.5$ V $V_{IH} = 3.5$ V

开关电阻型的金属氧化物半导体场效 应晶体管

更多精确的 MOS 模型

开关电阻型的金属氧化物半导体场效 应晶体管

开关电阻模型的应用

6.002 2000 年秋 第五讲