ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Вычислительной техники

Лабораторная работа № 1-2

по дисциплине «Интеллектуальный анализ данных и машинное обучение»

«Использование платформы H2O

для интеллектуального анализа данных и машинного обучения.

Обучение, тестирование и улучшение моделей. Загрузка моделей в базу знаний и получение их уникальных идентификаторов.»

Вариант: 5

Преподаватель: Яковина И.Н.

Группа: АММ-19

Студенты: Высоцкий Е.В.

Новосибирск

Содержание

1 Цель работы	4
2 Задание	4
3 Итоговая таблица моделей	5
4 Ход работы	6
4.1 Загрузка исходных данных в систему Н2О	6
4.2 Парсинг загруженных в систему данных	6
4.3 Эксперимент № 1. Метод Y1 – Gradient Boosting Machine (GBM)	
для полной модели «05_01_Bk_MTarg_m1_F»	7
4.3.1 Разбиение данных для обучения и проверки модели	7
4.3.2 Построение полной модели «05_01_Bk_m1_MTarg_F»	7
4.4 Эксперимент № 2. Метод Y1 – Gradient Boosting Machine (GBM)	
для усечённой модели «05_02_Bk_m1_MTarg_S»	8
4.4.1 Разбиение данных для обучения и проверки модели	8
4.4.2 Построение усечённой модели «05_02_Bk_m1_MTarg_S»	8
4.5 Эксперимент № 3. Метод Y1 – Generalized Linear Model (GLM) - binomial:	
Logistic Regression для полной модели «05_03_Bk_m8_MTarg_F»	9
4.5.1 Разбиение данных для обучения и проверки модели	9
4.5.2 Построение полной модели «05_03_Bk_m8_MTarg_F»	9
4.6 Эксперимент № 4. Метод Y1 – Generalized Linear Model (GLM) - binomial:	
Logistic Regression для усечённой модели «05_04_Bk_m8_MTarg_S»	10
4.6.1 Разбиение данных для обучения и проверки модели	10
4.6.2 Построение усечённой модели «05_04_Bk_m8_MTarg_S»	10
4.7 Эксперимент № 5. Метод Y2 – Gradient Boosting Machine (GBM)	
для полной модели «05_05_Mk_m1_Targ3m_F»	11
4.7.1 Разбиение данных для обучения и проверки модели	11
4.7.2 Построение полной модели «05_05_Mk_m1_Targ3m_F»	
4.8 Эксперимент № 6. Метод Y2 – Gradient Boosting Machine (GBM) для усечённой мо	одели
«05_06_Mk_m1_Targ3m_S»	12
4.8.1 Разбиение данных для обучения и проверки модели	12
4.8.2 Построение усечённой модели «05_06_Mk_m1_Targ3m_S»	12
4.9 Эксперимент № 7. Метод Y2 – Generalized Linear Model (GLM) - multinomial:	
Logistic Regression для полной модели «05_07_Mk_m9_Targ3m_F»	13
4.9.1 Разбиение данных для обучения и проверки модели	13
4.9.2 Построение полной модели «05_07_Mk_m9_Targ3m_F»	13
4.10 Эксперимент № 8. Метод Y2 – Generalized Linear Model (GLM) - multinomial:	
Logistic Regression для усечённой модели «05_08_Mk_m9_Targ3m_S»	14
4.10.1 Разбиение данных для обучения и проверки модели	14
4.10.2 Построение усечённой модели «05_08_Mk_m9_Targ3m_S»	14
4.11 Эксперимент № 9. Метод Y3 – Generalized Linear Model (GLM) - gaussian:	
Gaussian regression для полной модели «05_09_Rr_m4_Targ3r_F»	15
4.11.1 Разбиение данных для обучения и проверки модели	15
4.11.2 Построение полной модели «05 09 Rr m4 Targ3r F»	15

4.12 Эксперимент № 10. Метод Y3 – Generalized Linear Model (GLM) - gaussian:	
Gaussian regression для усечённой модели «05_10_Rr_m4_Targ3r_S»	16
4.12.1 Разбиение данных для обучения и проверки модели	16
4.12.2 Построение усечённой модели «05_10_Rr_m4_Targ3r_S»	16
4.13 Эксперимент № 11. Метод Y3 – Generalized Linear Model (GLM) - gamma:	
Gamma Models для полной модели «05_11_Rr_m7_Targ3r_F»	17
4.13.1 Разбиение данных для обучения и проверки модели	17
4.13.2 Построение полной модели «05_11_Rr_m7_Targ3r_F»	17
4.14 Эксперимент № 12. Метод Y3 – Generalized Linear Model (GLM) - gamma:	
Gamma Models для усечённой модели «05_10_Rr_m4_Targ3r_S»	18
4.14.1 Разбиение данных для обучения и проверки модели	18
4.14.2 Построение усечённой модели «05_10_Rr_m4_Targ3r_S»	18
4.15 Анализ информации о созданных моделях	19
4.15.1 Важность признаков в графическом виде	19
4.15.2 Важность признаков в числовом виде	21
4.15.3 Матрицы ошибок	22
4.15.4 ROC – кривая	24
4.15.5 Метрики модели	26
4.16 Загрузка моделей в базу знаний и получение их уникальных идентификаторов	
UUID	30
Выводы по работе	31
Список литературы	33

1 Цель работы

Изучить программные средства и методы платформы Н2О для создания, обучения и использования моделей регрессии, бинарной и множественной классификации исходных данных, согласно варианта — на примере моделирования диагностики ректального рака. Изучить методы загрузки моделей в базу знаний и опробовать один из них.

2 Задание

- 2.1 Загрузить исходные данные для анализа в сеансе работы платформы Н2О.
- 2.2 Проверить визуальным осмотром в исходном файле тип разделителя ячеек, десятичную точку или запятую, полноту данных, исключить неполные строки значений во избежание появления несуществующих зависимостей. Исключить из обработки столбцы с «*id*». Проверить типы данных (*Numeric* для регрессии, *Enum* для классификации). Настроить соответствующие параметры в системе.
- 2.3 Установить один, не исключенный целевой признак в «responce column».
- 2.4 Создать и обучить модели в соответствии с вариантом задания табл. 1, руководствуясь обозначением методов в табл. 3, зафиксировать результаты в таблицу, используя формат имён файлов моделей, указанный в табл. 2.
- 2.5 Сформировать комплекс характеристик моделей и загрузить их в базу знаний.
- 2.6 Проверить работу моделей полных и усеченных до 10...15 значимых признаков.
- 2.7 Зафиксировать результаты в таблицу, применив специальные кодировки параметров.
- 2.8 Сделать выводы по работе.

Таблица 1. Параметры варианта исходных данных.

Вариант	Группа	Фамилия	Бригада	Файл	Y1	Метод Ү1	Y2	Метод Ү2	Y3	Метод Ү3	Имя набора данных
05	AMM-19	Высоцкий		KPP	MTarg	m1, m8	Targ3m	m1, m9	Targ3r	m4, m7	1CRR-v2.csv

Таблица 2. Формат имени модели/файла модели.

Номер варианта	Номер эксперимента	Задача (Bk/Mk/Rr) <i>Bk</i> - Классиф. бинарн. <i>Mk</i> - Классиф. множ. <i>Rr</i> - Регрессия	Метод (m1/m2//m9)	Целевая переменная (MTarg, Targ1m,)	Набор признаков (F – Полный, S – Усеченный)	Примечания
XX	XX	XX	XX	xxxx	X	кол-во символов
01	01	Bk	m1	MTarg	F	пример

01_01_Bk_m1_MTarg_F

Таблица 3. Методы анализа данных.

Код	Классиф. бинарная (Bk)	Классиф. множ. (Mk)	Регрессия (Rr)	Имена методов
m1	Bk	Mk	Rr	Gradient Boosting Machine (GBM)
m2	Bk	Mk	Rr	Distributed Random Forest (DRF)
m3	Bk	Mk	-	Naïve Bayes
m4	-	-	Rr	Generalized Linear Model (GLM) - gaussian: Gaussian regression
m5	-	-	Rr	Generalized Linear Model (GLM) - quasibinomial: Pseudo-Logistic Regression (Quasibinomial Family)
m6	-	1	Rr	Generalized Linear Model (GLM) - Poisson regression
m7	-	1	Rr	Generalized Linear Model (GLM) - gamma: Gamma Models
m8	Bk	-	-	Generalized Linear Model (GLM) - binomial: Logistic Regression (Binomial Family)
m9	-	Mk	-	Generalized Linear Model (GLM) - multinomial: Multiclass Classification (Multinomial Family)

3 Итоговая таблица моделей

Таблица 4. Сводная таблица с результатами экспериментов.

Код модели/ Имя модели/файла	№ экс.	Задача - Классиф. бинарная (Вк) - Классиф. множ. (Мк) - Регрессия (Rr)	Метод МО	Набор входных признаков	MSE	RMSE	r2	Max F1	UUID (ИД модели в БЗ)
05_01_Bk_m1_MTarg_F	1	Классиф. бинарная	GBM	Полный	0.010497	0.102457	0.939127	1	ed57d07d- 42e3-492a- b202- e2fdc096f9c1
05_02_Bk_m1_MTarg_S	2	Классиф. бинарная	GBM	x87, x74, x76, x72, x70, x73, x68, x67, x81, x80	0.013646	0.116817	0.920868	1	914b816d- 6798-4d2a- 8e98- 02269adb6796
05_03_Bk_m8_MTarg_F	3	Классиф. бинарная	GLM	Полный	0.026021	0.161310	0.847954	0.9912	5f0cbd17-122b- 480b-b467- 8fbe31bf3741
05_04_Bk_m8_MTarg_S	4	Классиф. бинарная	GLM	x76, x73, x67, x74, x87, x68, x86, x79, x72, x71, x78, x69, x85, x28, x88	0.026837	0.16382	0.843185	0.9869	f3c8cb8c-3218- 4f41-903e- af73d5fc7ed8
05_05_Mk_m1_Targ3m_F	5	Классификация множ.	GBM	Полный	0.024655	0.157020	0.958415	-	1cfd41f7-f520- 49e3-9e5f- b5c3bd182fa8
05_06_Mk_m1_Targ3m_S	6	Классификация множ.	GBM	x76, x87, x86, x75, x74, x89, x73, x88, x24, x71, x72, x85, x4, x12, x67	0.029854	0.172783	0.949647	-	32b74501- 66ed-4f13- bb00- b2a534f37eb8
05_07_Mk_m9_Targ3m_F	7	Классификация множ.	GLM	Полный	0.138441	0.372077	0.771398	-	150a9b8d- 7ee9-4015- a3e7- c977c5fe753b
05_08_Mk_m9_Targ3m_S	8	Классификация множ.	GLM	x76, x73, x75, x86, x67, x74, x90, x10, x89, x79, x87, x28, x68, x88, x70	0.145085	0.380900	0.760428	-	9d6449da- 876e-4820- 9383- ae00cdae38e2
05_09_Rr_m4_Targ3r_F	9	Регрессия (gaussian)	GLM	Полный	0.164396	0.405458	0.728540	-	70056ab0-84f5- 4669-947f- eb9e366f644c
05_10_Rr_m4_Targ3r_S	10	Регрессия (gaussian)	GLM	x76, x73, x87, x67, x23, x79, x68, x88, x85, x75, x28	0.166716	0.408309	0.724710	-	0f48a4ae-3615- 4d97-8bf6- 5c728d20c7ac
05_11_Rr_m7_Targ3r_F	11	Регрессия (gamma)	GLM	Полный	0.219778	0.468803	0.637091	-	f1d64873-a9ea- 442d-b022- d6287e41187f
05_12_Rr_m7_Targ3r_S	12	Регрессия (gamma)	GLM	x76, x73, x23, x85, x67, x68, x87, x79, x86, x25	0.219812	0.468841	0.637036	-	d2be50f4-1dee- 4a67-814d- c78e607574d7

4 Ход работы

4.1 Загрузка исходных данных в систему Н2О

Рис 1. Загрузка файла исходных данных «1CRR-v2.csv» в систему H2O.

Рис 2. Проверка типов целевых параметров.

4.2 Парсинг загруженных в систему данных

Рис 3. Файл «**Key_Frame__1_RR_v2.hex**» с распознанными исходными данными.

4.3 Эксперимент № 1. Метод Y1 – Gradient Boosting Machine (GBM) для полной модели «05_01_Bk_MTarg_m1_F»

4.3.1 Разбиение данных для обучения и проверки модели

splitFrame "Key_Frame__1_RR_v2.hex", [0.75], ["05_01_Bk_MTarg_m1_F_0.750","05_01_Bk_MTarg_m1_F_0.250"], 9

⊞ Split Frames

Type Key

■ 05_01_Bk_MTarg_m1_F_0.750

■ 05_01_Bk_MTarg_m1_F_0.250

Рис 4. Фреймы данных для модели.

4.3.2 Построение полной модели «05 01 Bk m1 MTarg F»

buildModel "05_01_Bk_MTarg_m1_F"

Build a Model

Рис 5. Настройка параметров модели.

₹**三** Job

Run Time 00:00:01.967

Remaining Time 00:00:00.0

Type Model

Key Q a427e15a-1dd7-4828-b409-be3fa87b6a87

Description GBM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 6. Отчёт о создании модели.

4.4 Эксперимент № 2. Метод Y1 – Gradient Boosting Machine (GBM) для усечённой модели «05_02_Bk_m1_MTarg_S»

4.4.1 Разбиение данных для обучения и проверки модели

⊞ Split Frames

Type Key

□ 05_02_Bk_m1_MTarg_S_0.750

□ 05_02_Bk_m1_MTarg_S_0.250

Рис 7. Фреймы данных для модели.

4.4.2 Построение усечённой модели «05 02 Вк m1 MTarg S»

buildModel "05_02_Bk_m1_MTarg_S"

Build a Model

Рис 8. Настройка параметров модели.

≅Job

Run Time 00:00:01.455

Remaining Time 00:00:00.0

Type Model

Key Q fba73bb7-d8af-4684-a257-1d7e2dbb70c8

Description GBM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 9. Отчёт о создании модели.

4.5 Эксперимент № 3. Метод Y1 — Generalized Linear Model (GLM) - binomial: Logistic Regression для полной модели «05_03_Bk_m8_MTarg_F»

4.5.1 Разбиение данных для обучения и проверки модели

⊞ Split Frames

Type Key

■ 05_03_Bk_m8_MTarg_F_0.750

■ 05_03_Bk_m8_MTarg_F_0.250

Рис 10. Фреймы данных для модели.

4.5.2 Построение полной модели «05 03 Bk m8 MTarg F»

Рис 11. Настройка параметров модели.

€∃Job

 Run Time
 00:00:00.235

 Remaining Time
 00:00:00.0

 Type
 Model

 Key
 Q :c84d1e7f-18b2-4bb6-b999-9149f34e5d62

 Description
 GLM

 Status
 DONE

 Progress
 100%

 Done.

 Actions
 Q View

Рис 12. Отчёт о создании модели.

4.6 Эксперимент № 4. Метод Y1 – Generalized Linear Model (GLM) - binomial: Logistic Regression для усечённой модели «05_04_Bk_m8_MTarg_S»

4.6.1 Разбиение данных для обучения и проверки модели

 ${\tt splitFrame~"Key_Frame_1_RR_v2.hex",~[0.75],~["05_04_Bk_m8_MTarg_S_0.750","05_04_Bk_m8_MTarg_S_0.250"],~9}$

⊞ Split Frames

Type Key

■ 05_04_Bk_m8_MTarg_S_0.750

■ 05_04_Bk_m8_MTarg_S_0.250

Рис 13. Фреймы данных для модели.

4.6.2 Построение усечённой модели «05_04_Bk_m8_MTarg_S»

Рис 14. Настройка параметров модели.

≔ Job

Run Time 00:00:00.239

Remaining Time 00:00:00.0

Type Model

Key Q 72cccf4a-43da-4f63-bc34-2189b9a994c2

Description GLM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 15. Отчёт о создании модели.

4.7 Эксперимент № 5. Метод Y2 – Gradient Boosting Machine (GBM) для полной модели «05_05_Mk_m1_Targ3m_F»

4.7.1 Разбиение данных для обучения и проверки модели

■ Split Frames

Type Key

□ 05_05_Mk_m1_Targ3m_F_0.750

□ 05_05_Mk_m1_Targ3m_F_0.250

Рис 16. Фреймы данных для модели.

4.7.2 Построение полной модели «05_05_Mk_m1_Targ3m_F»

buildModel "05_05_Mk_m1_Targ3m_F" Build a Model Select an algorithm: Gradient Boosting Machine PARAMETERS model_id 3230af36-4864-437c-a41d-283191959347 Destination id for this model; auto-generated if not specified. training_frame 05_05_Mk_m1_Targ3m_F_0.750 v Id of the training data frame. Id of the validation data frame. nfolds 0 Number of folds for K-fold cross-validation (0 to disable or >= 2). response_column Targ3m ~ Response variable column. ignored columns Search... Names of columns to ignore for training. Showing page 1 of 7. -60 ignored. ✓ id ✓ MTarg ENUM(2) ☑ Targ1m ENUM(5) ☑ Targ2m ENUM(5) 25% NA ☐ Targ3m ENUM(3) INT ✓ Targ1r INT 25% NA ✓ Targ2r INT ✓ Targ3r □ x1 □ x2 ☑ All ☐ None ← Previous 10 → Next 10

Рис 17. Настройка параметров модели.

≔ Job

Run Time 00:00:03.16

Remaining Time 00:00:00.0

Type Model

Key Q 3230af36-4864-437c-a41d-283191959347

Description GBM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 18. Отчёт о создании модели.

4.8 Эксперимент № 6. Метод Y2 – Gradient Boosting Machine (GBM) для усечённой модели «05_06_Mk_m1_Targ3m_S»

4.8.1 Разбиение данных для обучения и проверки модели

⊞ Split Frames

Type Key

■ 05_06_Mk_m1_Targ3m_S_0.750

■ 05_06_Mk_m1_Targ3m_S_0.250

Рис 19. Фреймы данных для модели.

4.8.2 Построение усечённой модели «05 06 Mk m1 Targ3m S»

buildModel "05_06_Mk_m1_Targ3m_S" Build a Model Select an algorithm: Gradient Boosting Machine PARAMETERS model_id 2f140483-71d8-460b-b36a-3ff1d48c8363 Destination id for this model; auto-generated if not specified. training_frame 05_06_Mk_m1_Targ3m_S_0.750 v Id of the training data frame. validation_frame Key_Frame__1_RR_v2.hex Id of the validation data frame. nfolds 0 Number of folds for K-fold cross-validation (0 to disable or >= 2). response_column Targ3m ~ Response variable column. ignored_columns Search... Names of columns to ignore for training. Showing page 1 of 7. 51 ignored. INT ✓ MTarg ENUM(2) ☑ Targ1m ENUM(5) ☑ Targ2m ENUM(5) 25% NA ☐ Targ3m ENUM(3) ☑ Targ1r INT 25% NA ✓ Targ2r INT INT ✓ Targ3r INT ✓ x1 ✓ x2 ✓ All None ← Previous 10 → Next 10

Рис 20. Настройка параметров модели.

≔ Job

Run Time 00:00:00.984

Remaining Time 00:00:00.0

Type Model

Key Q 2f140483-71d8-460b-b36a-3ff1d48c8363

Description GBM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 21. Отчёт о создании модели.

4.9 Эксперимент № 7. Метод Y2 — Generalized Linear Model (GLM) - multinomial: Logistic Regression для полной модели «05 07 Mk m9 Targ3m F»

4.9.1 Разбиение данных для обучения и проверки модели

splitFrame "Key_Frame__1_RR_v2.hex", [0.75], ["05_07_Mk_m9_Targ3m_F_0.750","05_07_Mk_m9_Targ3m_F_0.250"], 9

⊞ Split Frames

Type Key

□ 05_07_Mk_m9_Targ3m_F_0.750

□ 05_07_Mk_m9_Targ3m_F_0.250

Рис 22. Фреймы данных для модели.

4.9.2 Построение полной модели «05_07_Mk_m9_Targ3m_F»

buildModel "05_07_Mk_m9_Targ3m_F" Build a Model Select an algorithm: Generalized Linear Modeling PARAMETERS model_id bb373d1e-e658-410d-9836-60e434c6764c Destination id for this model; auto-generated if not specified. training_frame 05_07_Mk_m9_Targ3m_F_0.750 v Id of the training data frame. validation_frame Key_Frame__1_RR_v2.hex Id of the validation data frame. nfolds 0 Number of folds for K-fold cross-validation (0 to disable or >= 2). seed -1 Seed for pseudo random number generator (if applicable) response_column Targ3m Response variable column. ignored_columns Search... Names of columns to ignore for training. Showing page 1 of 7. -60 ignored. INT ✓ id family multinomial ENUM(2) ✓ MTarg rand family Search... ENUM(5) ✓ Targ1m [gaussian] ENUM(5) 25% NA ✓ Targ2m ✓ All) □ None ENUM(3) ☐ Targ3m solver AUTO INT ✓ Targ1r INT 25% NA ✓ Targ2r INT ✓ Targ3r missing_values_handling Skip ~ INT □ x1 □ x2 ☑ All ☐ None ← Previous 10 → Next 10

Рис 23. Настройка параметров модели.

≆∃Job

Run Time 00:00:00.937

Remaining Time 00:00:00.0

Type Model

Key Q bb373d1e-e658-410d-9836-60e434c6764c

Description GLM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 24. Отчёт о создании модели.

4.10 Эксперимент № 8. Метод Y2 — Generalized Linear Model (GLM) - multinomial: Logistic Regression для усечённой модели «05_08_Mk_m9_Targ3m_S»

4.10.1 Разбиение данных для обучения и проверки модели

⊞ Split Frames

Type Key

□ 05_08_Mk_m9_Targ3m_S_0.750

□ 05_08_Mk_m9_Targ3m_S_0.250

Рис 25. Фреймы данных для модели.

4.10.2 Построение усечённой модели «05_08_Mk_m9_Targ3m_S»

buildModel "05_08_Mk_m9_Targ3m_S" Build a Model Select an algorithm: Generalized Linear Modeling PARAMETERS model_id e3f51438-11bb-4992-a7b2-847d75b2f410 Destination id for this model; auto-generated if not specified. training_frame 05_08_Mk_m9_Targ3m_S_0.750 v Id of the training data frame. validation_frame Key_Frame__1_RR_v2.hex Id of the validation data frame. nfolds 0 Number of folds for K-fold cross-validation (0 to disable or >= 2). Seed for pseudo random number generator (if applicable) seed -1 response_column Targ3m ~ Response variable column. Names of columns to ignore for training. ignored columns Search... Showing page 7 of 7.51 ignored. ✓ x84 REAL family multinomial ✓ x85 REAL rand_family Search... □ x86 REAL [gaussian] □ x87 REAL ☑ All ☐ None □ x88 REAL □ x89 REAL solver AUTO □ x90 REAL missing_values_handling Skip ☑ All ☐ None ← Previous 10 → Next 10

Рис 26. Настройка параметров модели.

≆∃Job

Run Time 00:00:00.315

Remaining Time 00:00:00.0

Type Model

Key Q e3f51438-11bb-4992-a7b2-847d75b2f410

Description GLM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 27. Отчёт о создании модели.

4.11 Эксперимент № 9. Метод Y3 – Generalized Linear Model (GLM) - gaussian: Gaussian regression для полной модели «05_09_Rr_m4_Targ3r_F»

4.11.1 Разбиение данных для обучения и проверки модели

splitFrame "Key_Frame__1_RR_v2.hex", [0.75], ["05_09_Rr_m4_Targ3r_F_0.750","05_09_Rr_m4_Targ3r_F_0.250"], 9

⊞ Split Frames

Type Key

■ 05_09_Rr_m4_Targ3r_F_0.750

■ 05_09_Rr_m4_Targ3r_F_0.250

Build a Model

Рис 28. Фреймы данных для модели.

4.11.2 Построение полной модели «05 09 Rr m4 Targ3r F»

buildModel "05_09_Rr_m4_Targ3r_F"

Select an algorithm: Generalized Linear Modeling PARAMETERS model_id e4c558a7-e30c-4aec-a858-5fa0e29a9429 Destination id for this model; auto-generated if not specified. training_frame O5_09_Rr_m4_Targ3r_F_0.750 validation_frame Key_Frame__1_RR_v2.hex Id of the validation data frame.

Рис 29. Настройка параметров модели.

≨∃Job

Run Time 00:00:00.275

Remaining Time 00:00:00.0

Type Model

Key Q e4c558a7-e30c-4aec-a858-5fa0e29a9429

Description GLM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 30. Отчёт о создании модели.

4.12 Эксперимент № 10. Метод Y3 — Generalized Linear Model (GLM) - gaussian: Gaussian regression для усечённой модели «05_10_Rr_m4_Targ3r_S»

4.12.1 Разбиение данных для обучения и проверки модели

⊞ Split Frames

Type Key

05_10_Rr_m4_Targ3r_S_0.750

05_10_Rr_m4_Targ3r_S_0.250

Рис 31. Фреймы данных для модели.

4.12.2 Построение усечённой модели «05_10_Rr_m4_Targ3r_S»

buildModel "05_10_Rr_m4_Targ3r_S"

Build a Model

Рис 32. Настройка параметров модели.

≆∃Job

Run Time 00:00:00.86

Remaining Time 00:00:00.0

Type Model

Key Q 4064059d-cd68-414d-a849-9ea65a11377c

Description GLM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 33. Отчёт о создании модели.

4.13 Эксперимент № 11. Метод Y3 – Generalized Linear Model (GLM) - gamma: Gamma Models для полной модели «05_11_Rr_m7_Targ3r_F»

4.13.1 Разбиение данных для обучения и проверки модели

■ Split Frames

Type Key

□ 05_11_Rr_m7_Targ3r_F_0.750

□ 05_11_Rr_m7_Targ3r_F_0.250

Рис 34. Фреймы данных для модели.

4.13.2 Построение полной модели «05_11_Rr_m7_Targ3r_F»

buildModel "05_11_Rr_m7_Targ3r_F"

Build a Model Select an algorithm: Generalized Linear Modeling PARAMETERS model_id e36c6dd6-20de-4640-b993-263841216a34 Destination id for this model; auto-generated if not specified. training_frame 05_11_Rr_m7_Targ3r_F_0.750 Id of the training data frame. validation_frame Key_Frame__1_RR_v2.hex Id of the validation data frame. nfolds 0 Number of folds for K-fold cross-validation (0 to disable or >= 2). seed -1 Seed for pseudo random number generator (if applicable) response_column Targ3r Response variable column. ignored_columns Search... Names of columns to ignore for training. Showing page 1 of 7. -60 ignored. ✓ id ENUM(2) ✓ MTarg ENUM(5) ✓ Targ1m ENUM(5) 25% NA ✓ Targ2m ENUM(3) ✓ Targ3m INT ✓ Targ1r 25% NA ✓ Targ2r ☐ Targ3r □ x1 INT □ x2 ☑ All ☐ None ← Previous 10 → Next 10

Рис 35. Настройка параметров модели.

≔ Job

Run Time 00:00:00.338

Remaining Time 00:00:00.0

Type Model

Key Q e36c6dd6-20de-4640-b993-263841216a34

Description GLM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 36. Отчёт о создании модели.

4.14 Эксперимент № 12. Метод Y3 – Generalized Linear Model (GLM) - gamma: Gamma Models для усечённой модели «05_10_Rr_m4_Targ3r_S»

4.14.1 Разбиение данных для обучения и проверки модели

splitFrame "Key_Frame__1_RR_v2.hex", [0.75], ["05_12_Rr_m7_Targ3r_S_0.750","05_12_Rr_m7_Targ3r_S_0.250"], 9

⊞ Split Frames

Type Key

■ 05_12_Rr_m7_Targ3r_S_0.750

■ 05_12_Rr_m7_Targ3r_S_0.250

Рис 37. Фреймы данных для модели.

4.14.2 Построение усечённой модели «05_10_Rr_m4_Targ3r_S»

buildModel "05_12_Rr_m7_Targ3r_S"

Build a Model

Рис 38. Настройка параметров модели.

≆∃Job

Run Time 00:00:00.141

Remaining Time 00:00:00.0

Type Model

Key Q 3ac922a4-4679-4de3-a12e-a7fc22031b0c

Description GLM

Status DONE

Progress 100%

Done.

Actions Q View

Рис 39. Отчёт о создании модели.

4.15 Анализ информации о созданных моделях

4.15.1 Важность признаков в графическом виде

Таблица 5. Важность признаков моделей (продолжение).

4.15.2 Важность признаков в числовом виде

Таблица 6. Сравнение признаков моделей в числовом виде.

		таолица	0 . Срав	нение пр	изнаков моделей		м виде.
	05_01_Bk_m	1_MTarg_F	l		05_02_Bk_m1	_MTarg_S	
variable	relative_importance s	caled_importance	percenta ^	variable	relative_importance sca	led importance	nercentage
×87	36.7900	1.0	0.31	×87	40.2597	1.0	0.3448
×74	26.6001	0.7230	0.22	×76	25.8390	0.6418	0.2213
×76	25.4015	0.6904	0.21	×74	22.8442	0.5674	0.1957
×72	7.3014	0.1985	0.06	×72	7.1993	0.1788	0.0617
×70	5.9649	0.1621	0.05	×70	6.7108	0.1667	0.0575
×73	4.2000	0.1142	0.03	×73	4.0490	0.1006	0.0347
×68	3.3680	0.0915	0.02	×68	3.6944	0.0918	0.0316
×67	3.1145	0.0847	0.02	×67	3.3670	0.0836	0.0288
×81 ×80	1.8278 0.4268	0.0497 0.0116	0.01	×80	1.8296	0.0454	0.0157
x5	0.2770	0.0075	0.00	×81	0.9592	0.0238	0.0082
A.0	05 03 Bk m				05 04 Bk m8	MTong C	
	relative_importance			x76	relative_importance sca 0.5797	1.0	
x76 x73	0.5725 0.3695	1.0 0.6454	0.17	x73	0.3800	0.6556	0.1787
x 67	0.3425	0.5982	0.10	×67	0.3393	0.5853	0.1046
x74	0.3270	0.5712	0.09	×74	0.3284	0.5665	0.1012
×87	0.2331	0.4071	0.07	×87	0.2366	0.4081	0.0729
×68	0.2149	0.3754	0.06	×68	0.2205	0.3804	0.0680
×86	0.1879	0.3282	0.05	×86	0.1920	0.3311	0.0592
×79	0.1683	0.2939	0.05	×79	0.1750	0.3019	0.0539
x72	0.1492	0.2605	0.04	×72	0.1566	0.2702	0.0483
×71	0.1099	0.1919	0.03	×28	0.1478	0.2550	0.0456
×78	0.1052	0.1838	0.03	×71	0.1138	0.1964	0.0351
×69	0.1040	0.1816	0.03	×78	0.1113	0.1920	0.0343
×85	0.0865	0.1511	0.02	×69	0.1107	0.1909	0.0341
×28	0.0864	0.1510	0.02	×85 ×88	0.0856 0.0674	0.1477	0.0264
x88	0.0643	0.1123	0.01	xoo		0.1162	0.0208
	05_05_Mk_m	1_Targ3m_ l	F		05_06_Mk_m1	_Targ3m_S	
variable	relative_importance :	ecaled importance	nercenta A	variable	relative_importance sc	aled_importance	percentage
x76	55.4540	1.0	0.15	×76	81.8404	1.0	0.2305
×87	45.5119	0.8207	0.12	×87	55.3614	0.6765	0.1560
×86	27.2492	0.4914	0.07	×86	37.6855	0.4605	0.1062
×75	26.8236	0.4837	0.07	×88	30.7696	0.3760	0.0867
×74	24.2462	0.4372	0.06	×74	29.3175 27.6745	0.3582	0.0826
×89	23.4795	0.4234	0.06	x73 x85	22.0601	0.3382 0.2696	0.0621
×73	17.9970	0.3245	0.05	x78	14.0273	0.1714	0.0395
x88	9.5550	0.1723	0.02	×67	13.2183	0.1615	0.0372
×24	8.2210	0.1482	0.02	×71	13.0628	0.1596	0.0368
×71	8.1288	0.1466	0.02	×28	11.5766	0.1415	0.0326
×72	7.8006	0.1407	0.02	×68	7.8014	0.0953	0.0220
x85	7.2709	0.1311	0.02	×79	5.2926	0.0647	0.0149
x4 x12	7.0078 6.7335	0.1264 0.1214	0.01	×72	3.8764	0.0474	0.0109
X12	0,1333	0.1214	0.01	×69	1.4166	0.0173	0.0040
	05_07_Mk_m	9_Targ3m_l	F		05_08_Mk_m9	Targ3m S	3
variable	relative_importance s	caled_importance	percenta A	variabl	e relative_importance sc	aled_importance	percentage
×76	0.5277	1.0	0.09	×76	0.5249	1.0	0.1067
x73	0.4848	0.9187	0.09	×73	0.5188	0.9884	0.1054
×75	0.4219	0.7994	0.07	×75	0.4614	0.8791	0.0938
x86	0.3677	0.6967	0.06	×28	0.4245	0.8088	0.0863
×67 ×74	0.3383 0.2941	0.6411 0.5572	0.06	×86 ×67	0.4189 0.3889	0.7980 0.7409	0.0851
×90	0.2605	0.4936	0.04	×79	0.3740	0.7125	0.0760
×10	0.2195	0.4159	0.04	×74	0.3105	0.5915	0.0631
×89	0.2100	0.3979	0.03	×68	0.3047	0.5804	0.0619
×79	0.2042	0.3869	0.03	×70	0.2456	0.4678	0.0499
×87	0.1881	0.3565	0.03	×90	0.2108	0.4016	0.0428
×28	0.1866	0.3536	0.03	×87	0.2052	0.3909	0.0417
×68	0.1838	0.3484	0.03	×89	0.1821	0.3470	0.0370
×88	0.1650	0.3126	0.03	×88	0.1774	0.3381	0.0361
×70	0.1602	0.3036	0.02	×10	0.1732	0.3300	0.0352

Таблица 6. Сравнение признаков моделей в числовом виде (продолжение).

	05_09_Rr_m	14_Targ3r_F	1		05_10_Rr_n	n4_Targ3r_S	
variable	relative_importance	scaled_importance	percenta A				
x76	0.1564	1.0	0.20				
x73	0.1367	0.8738	0.17	variable	relative_importance	scaled_importance	percentage
x87	0.0741	0.4739	0.09	×76	0.1569	1.0	0.2063
x67	0.0652	0.4166	0.08	×73	0.1383	0.8819	0.1820
x23	0.0614	0.3927	0.07	×87	0.0755	0.4812	0.0993
x79	0.0572	0.3655	0.07	×79	0.0719	0.4586	0.0946
x68	0.0410	0.2621	0.05	×67	0.0677	0.4313	0.0890
×88	0.0384	0.2458	0.04	x23	0.0598	0.3812	0.0787
x85	0.0365	0.2335	0.04	×68	0.0452	0.2881	0.0594
x75	0.0303	0.1937	0.03	×85	0.0415	0.2644	0.0545
x28	0.0279	0.1785	0.03	×88	0.0362	0.2306	0.0476
x78	0.0123	0.0783	0.01	×28	0.0343	0.2187	0.0451
x25	0.0119	0.0758	0.01	×75	0.0330	0.2105	0.0434
×10	0.0108	0.0692	0.01				
×74	0.0107	0.0686	0.01				
	05_11_Rr_n	7_Targ3r_F	1		05_12_Rr_n	17_Targ3r_S)
				variable	relative_importance	scaled_importance	percentage
				×76	0.0702	1.0	0.3582
x87	0.0124	0.1765	0.06	×73	0.0323	0.4602	0.1648
x79	0.0106	0.1500	0.05	×23	0.0162	0.2316	0.0829
x86	0.0075	0.1069	0.03	×85	0.0141	0.2013	0.0721
×25	0.0042	0.0600	0.02	×67	0.0135	0.1919	0.0687
x78	0.0023	0.0328	0.01	×79	0.0126	0.1796	0.0643
×9	0.0008	0.0108	0.00	×68	0.0125	0.1775	0.0636
×1	0	0		×87	0.0124	0.1761	0.0631
				×86	0.0077	0.1102	0.0395
				×25	0.0045	0.0636	0.0228

4.15.3 Матрицы ошибок

Таблица 7. Оценка ошибок моделирования.

Оцен	ка	на	обуч	аюи	цем наб	боре	Oi	Оценка на полном наборе						
					05	_01_Bk_1	m1_MTarg_F							
TRAIN	IING	MET	RICS -	CON	FUSION MA	ATRIX	▼ VALID	ATIC	N M	ETRIC	s - cc	ONFUSION	MATRI	
	C	F	Error	Rate	Precision	^		С	F	Error	Rate	Precision	^	
c	30	Θ	Θ	0 / 30	1.0		С	35	0	0	0 / 35	1.0		
F	Θ	95	Θ	0 / 95	1.0		F	Θ	123	0	0 / 123	1.0		
Total	30	95	0	0 / 125			Total	35	123	0	0 / 158			
					<u>:</u>		***************************************							
Recall	1.0	1.0				•	Recall	1.0	1.0			-	•	
Recall	1.0	1.0			05	_02_Bk	m1_MTarg	<u>:</u>	1.0				V	
			RICS	CON	05		m1_MTarg	_S		1ETRIC	S - C(ONFUSION	MATRI	
			RICS			ATRIX	m1_MTarg	_S				ONFUSION Precision		
	NING	MET			FUSION MA	ATRIX	m1_MTarg	S	DN M			···		
▼ TRAIN	IIN G	M E T	Error	Rate 0 /	Precision	ATRIX	m1_MTarg	S	ON M	Error	Rate 0 /	Precision		
▼ TRAIN	C 30	MET F	Error 0	Rate 0 / 30 0 /	Precision	ATRIX	m1_MTarg_	_S DATIO	ON M	Error 0	Rate 0 / 35 0 /	Precision		

Таблица 7. Оценка ошибок моделирования (продолжение).

Таблица 7. Оценка ошибок моделирования (продолжение).

Оц	ень	са н	а об	учаю	щем	наборе	?	Оценка на полном наборе							
						05_08_	Mk_m	9_Targ3	m_	S					
▼ TRAIN	NING	METI	RICS -	CONFU	SION	MATRIX RO					ETRIC	s - con	IFUSIO	ON MATRIX	ROW
	Α	В	С	Error	Rate	Precision	^		Α	В	С	Error	Rate	Precision	^
A	27	Θ	Θ	0	0 / 27	0.96		A	32	0	0	0	0 / 32	0.91	
В	1	32	7	0.2000	8 / 40	0.82		В	2	40	9	0.2157	11 / 51	0.82	
c	0	7	41	0.1458	7 / 48	0.85		С	1	9	53	0.1587	10 / 63	0.85	
Total	28	39	48	0.1304	15 / 115			Total	35	49	62	0.1438	21 / 146		
Recall	1.0	0.80	0.85				~	Recall	1.0	0.78	0.84				~
						05_09	_Rr_m	4_Targ3	r_I	र					
				нет				нет							
						05_10	_Rr_m	4_Targ3	8r_8	5					
				нет				нет							
						05_11	_Rr_m	7_Targ3	r_I	7					
				нет								нет			
						05_12	_Rr_m	7_Targ3	r_9	8					
				нет								нет			

4.15.4 ROC – кривая

Таблица 8. Сравнение ROC – кривых моделирования.

Таблица 8. Сравнение ROC – кривых моделирования (продолжение).

Таблица 9. Сравнение метрик моделей.

```
Оценка на обучающем наборе
                                                                  Оценка на полном наборе
                                     05 01 Bk m1 MTarg F
 ▼ OUTPUT - TRAINING_METRICS
                                                             OUTPUT - VALIDATION_METRICS
             model a427e15a-1dd7-4828-b409-be3fa87b6a87
                                                                         model a427e15a-1dd7-4828-b409-be3fa87b6a87
       model_checksum 4675357570860780905
                                                                  model_checksum 4675357570860780905
      frame 05_01_Bk_MTarg_m1_F_0.750
                                                                         frame Key_Frame__1_RR_v2.hex
       frame_checksum -8499038547437041722
                                                                  frame checksum 3609225813034810295
      description ·
                                                                 description ·
       model_category Binomial
                                                                  model_category Binomial
     scoring_time 1616012841969
                                                                scoring_time 1616012841977
        predictions ·
                                                                    predictions ·
          MSE 0.000069
                                                                    MSE 0.010497
               RMSE 0.008286
                                                                          RMSE 0.102457
                                                                 nobs 158
         nobs 125
   custom_metric_name .
                                                               custom_metric_name
 custom_metric_value 0
                                                             custom_metric_value 0
                 r2 0.999624
                                                                            r2 0.939127
         logloss 0.005695
                                                                  logloss 0.031177
                                                                           AUC 1
                AUC 1
                                                                         pr auc 1
             pr auc 1
                                                                           Gini 1
                Gini 1
                                                             mean_per_class_error 0
 mean per class error 0
                                     05 02 Bk m1
                                                            MTarg_S
                                                            ▼ OUTPUT - VALIDATION_METRICS
   ▼ OUTPUT - TRAINING METRICS
                                                                       model fba73bb7-d8af-4684-a257-1d7e2dbb70c8
             model fba73bb7-d8af-4684-a257-1d7e2dbb70c8
                                                                 model_checksum -6418063867740376216
        model_checksum -6418063867740376216
      frame 05_02_Bk_m1_MTarg_S_0.750
                                                                   frame Key_Frame__1_RR_v2.he
                                                                 frame_checksum 3609225813034810295
        frame checksum -8499038547437041722
                                                                description ·
         description ·
                                                                 model_category Binomial
        model_category Binomial
                                                               scoring_time 1616013337102
     scoring time 1616013337089
           predictions .
                                                                    predictions .
         MSE 0.000079
                                                                  MSE 0.013646
                 RMSE 0.008888
                                                                          RMSE 0.116817
   nobs 125
                                                            nobs 158
     custom_metric_name .
                                                              custom_metric_name .
   custom_metric_value 0
                                                            custom_metric_value 0
                  r2 0.999567
                                                                           r2 0.920868
              logloss 0.005792
                                                                       logloss 0.040903
                 AUC 1
                                                                           AUC 1
               pr_auc 1
                                                                        pr_auc 1
                 Gini 1
                                                                          Gini 1
   mean_per_class_error 0
                                                            mean_per_class_error 0
                                     05 03 Bk m8
                                                           MTarg F
▼ OUTPUT - TRAINING METRICS
                                                            OUTPUT - VALIDATION_METRICS
                                                                    model c84d1e7f-18b2-4bb6-b999-9149f34e5d
                 model c84d1e7f-18b2-4bb6-b999-9149f34e5d62
           model_checksum 719885607915930504
                                                                       model_checksum 719885607915930504
                 frame 05_03_Bk_m8_MTarg_F_0.750
                                                                             frame Key_Frame__1_RR_v2.he>
                                                                        frame_checksum 3609225813034810295
           frame_checksum -8499038547437041722
                                                                         description ·
            description ·
                                                                       model_category Binomial
           model_category Binomial
                                                                       scoring time 1616013651967
            scoring_time 1616013651919
                                                                          predictions .
             predictions .
                                                                           MSE 0.026021
                MSE 0.026210
                                                                                RMSE 0.161310
                   RMSE 0.161895
                                                                               nobs 146
                  nobs 115
                                                                    custom_metric_name
        custom_metric_name
                                                                   custom metric value 0
       custom_metric_value 0
                                                                                 r2 0.847954
                     r2 0.854113
                                                                             logloss 0.119050
                 logloss 0.122035
                                                                                AUC 0.997807
                    AUC 0.999158
                                                                              pr_auc 0.999406
                 pr_auc 0.999746
                    Gini 0.998316
                                                                   mean_per_class_error 0.008772
      mean_per_class_error 0.005682
                                                                     residual_deviance 34.762481
         residual deviance 28.068122
                                                                    null_deviance 153.753828
       null_deviance 125.347919
                                                                                AIC 78.762481
                    ATC 72,068122
                                                            null_degrees_of_freedom 145
null_degrees_of_freedom 114
                                                             residual_degrees_of_freedom 124
residual_degrees_of_freedom 93
```

Оценка на обучающем наборе Оценка на полном наборе 05_04_Bk_m8_MTarg_S ▼ OUTPUT - TRAINING_METRICS ▼ OUTPUT - VALIDATION_METRICS model 72cccf4a-43da-4f63-bc34-2189b9a994c2 model 72cccf4a-43da-4f63-bc34-2189b9a994c2 model_checksum 4571794923473261100 model_checksum 4571794923473261100 frame 05_04_Bk_m8_MTarg_S_0.750 frame Key_Frame__1_RR_v2.he frame checksum -8499038547437041722 frame_checksum 3609225813034810295 description · description · model_category Binomial model_category Binomial scoring_time 1616014716159 scoring_time 1616014716203 predictions . MSE 0.026639 MSE 0.026837 RMSE 0.163213 RMSE 0.163821 nobs 115 nobs 146 custom metric name custom metric name custom_metric_value 0 custom_metric_value 0 r2 0.843185 logloss 0.123115 logloss 0.120987 AUC 0.999158 AUC 0.997259 pr_auc 0.999746 pr_auc 0.999252 Gini 0.998316 mean_per_class_error 0.005682 mean_per_class_error 0.035636 residual_deviance 28.316344 residual_deviance 35.328198 null_deviance 125.347919 null_deviance 153.753828 AIC 60.316344 AIC 67.328198 null_degrees_of_freedom 114 null_degrees_of_freedom 145 residual_degrees_of_freedom 99 residual_degrees_of_freedom 130 05 05 Mk m1 Targ3m F T - VALIDATION_METRICS ▼ OUTPUT - TRAINING_METRICS model 3230af36-4864-437c-a41d-283191959347 model 3230af36-4864-437c-a41d-283191959347 model_checksum -2422654752514827456 model_checksum -2422654752514827456 frame Key_Frame__1_RR_v2.hex frame 05_05_Mk_m1_Targ3m_F_0.750 frame_checksum 3609225813034810295 frame checksum -8499038547437041722 description · description · model_category Multinomial model_category Multinomial scoring_time 1616015874035 scoring_time 1616015874036 predictions MSE 0.000351 MSE 0.024655 RMSE 0.157020 RMSE 0.018740 nobs 125 nobs 158 custom_metric_name . custom_metric_name . custom_metric_value 0 custom_metric_value 0 r2 0.999423 logloss 0.015443 logloss 0.094182 mean_per_class_error 0.026924 mean per class error 0 AUC NaN AUC NaN pr_auc NaN pr_auc NaN multinomial_auc_table · multinomial_auc_table · multinomial_aucpr_table multinomial_aucpr_table 05 06 Mk m1 Targ3m S OUTPUT - VALIDATION_METRICS ▼ OUTPUT - TRAINING_METRICS model 2f140483-71d8-460b-b36a-3ff1d48c8363 model 2f140483-71d8-460b-b36a-3ff1d48c8363 model_checksum 7207282506279251456 model_checksum 7207282506279251456 frame Key Frame 1 RR v2.hex frame 05_06_Mk_m1_Targ3m_S_0.750 frame_checksum -8499038547437041722 frame checksum 3609225813034810295 description · description · model_category Multinomial model_category Multinomial scoring_time 1616017487087 scoring_time 1616017487087 predictions · MSE 0.001513 predictions MSE 0.029854 RMSE 0.038901 RMSE 0.172783 nobs 125 nobs 158 custom metric name . custom_metric_name . custom_metric_value 0 custom_metric_value 0 r2 0.997515 r2 0.949647 logloss 0.030324 logloss 0.107703 mean_per_class_error 0 mean_per_class_error 0.032574 AUC NaN AUC NaN pr_auc NaN pr_auc NaN multinomial auc table · multinomial_auc_table ·

multinomial_aucpr_table .

multinomial_aucpr_table .

Таблица 9. Сравнение метрик моделей (продолжение).

Оценка на обучающем наборе

Оценка на полном наборе

05_07_Mk_m9_Targ3m_F

```
▼ OUTPUT - TRAINING_METRICS
    model bb373dle-e658-410d-9836-60e434c6764c
           model_checksum -4117968269583996000
                frame 05_07_Mk_m9_Targ3m_F_0.750
           frame checksum -8499038547437041722
            description ·
           model_category Multinomial
        scoring_time 1616018123959
             predictions .
      MSE 0.140112
                   RMSE 0.374315
               nobs 115
   custom_metric_value 0
                    r2 0.773585
    logloss 0.441767
      mean_per_class_error 0.108333
   AUC NaN
                 pr auc NaN
multinomial_auc_table ·
    multinomial_aucpr_table
residual_deviance 101.606515
           null_deviance 246.941441
                   AIC NaN
    null_degrees_of_freedom 114
residual dearees of freedom 71
```

```
model bb373dle-e658-410d-9836-60e434c6764c
           model_checksum -4117968269583996000
                 frame Key_Frame__1_RR_v2.hex
           frame_checksum 3609225813034810295
           description ·
           model_category Multinomial
          scoring_time 1616018123971
             predictions .
          MSE 0.138441
                   RMSE 0.372077
custom_metric_value 0
                    r2 0.771398
    logloss 0.435727
      mean_per_class_error 0.106443
   AUC NaN
                 pr auc NaN
multinomial_auc_table ·
   multinomial_aucpr_table
residual_deviance 127.232219
           null_deviance 311.300199
                   AIC NaN
   null_degrees_of_freedom 145
residual_degrees_of_freedom 102
```

$05_08_Mk_m9_Targ3m_S$

```
▼ OUTPUT - TRAINING_METRICS
model e3f51438-11bb-4992-a7b2-847d75b2f410
           model_checksum -9010798361369360592
                 frame 05_08_Mk_m9_Targ3m_S_0.750
            frame_checksum -8499038547437041722
             description ·
           model_category Multinomial
          scoring_time 1616020328939
              predictions
                MSE 0.147234
                    RMSE 0.383710
                  nobs 115
        custom metric name
    custom_metric_value 0
                     r2 0.762077
     logloss 0.459992
       mean_per_class_error 0.115278
                    AUC NaN
                  pr_auc NaN
   multinomial_auc_table ·
    multinomial_aucpr_table
residual_deviance 105.798210
           null_deviance 246.941441
    null degrees of freedom 114
residual_degrees_of_freedom 89
```

▼ OUTPUT - VALIDATION_METRICS model e3f51438-11bb-4992-a7b2-847d75b2f410 model_checksum -9010798361369360592 frame Key Frame 1 RR v2.hex frame_checksum 3609225813034810295 description · model_category Multinomial scoring_time 1616020328967 predictions . MSE 0.145085 RMSE 0.380900 nobs 146 custom_metric_name custom_metric_value 0 r2 0.760428 logloss 0.452312 mean_per_class_error 0.124805 AUC NaN pr auc NaN multinomial_auc_table · multinomial_aucpr_table residual_deviance 132.075060 null_deviance 311.300199 AIC NaN null_degrees_of_freedom 145 residual_degrees_of_freedom 120

05_09_Rr_m4_Targ3r_F

```
▼ OUTPUT - TRAINING_METRICS
      model e4c558a7-e30c-4aec-a858-5fa0e29a9429
           model_checksum -439472540292352192
                  frame 05_09_Rr_m4_Targ3r_F_0.750
            frame_checksum -8499038547437041722
            description ·
            model_category Regression
           scoring_time 1616021114045
              predictions .
             MSE 0.159760
                    RMSE 0.399699
                 nobs 115
        custom metric name
     custom_metric_value 0
                      r2 0.741835
     mean_residual_deviance 0.159760
                     mae 0.317318
                 rmsle 0.130890
         residual_deviance 18.372355
       null_deviance 71.165217
                     AIC 149.436080
null_degrees_of_freedom 114
residual_degrees_of_freedom 99
```

```
▼ OUTPUT - VALIDATION_METRICS
                 model e4c558a7-e30c-4sec-a858-5fa0e29a9429
           model_checksum -439472540292352192
                  frame Key Frame 1 RR v2.hex
           frame checksum 3609225813034810295
           description ·
           model_category Regression
         scoring_time 1616021114057
              predictions .
           MSE 0.164396
                    RMSE 0.405458
                 nobs 146
        custom metric name
    custom_metric_value 0
                     r2 0.728540
    mean_residual_deviance 0.164396
                    mae 0.315061
          rmsle 0.129972
         residual deviance 24.001872
    null_deviance 88.546767
                    AIC 184.730735
null_degrees_of_freedom 145
residual dearees of freedom 130
```

Таблица 9. Сравнение метрик моделей (продолжение).

Оценка на обучающем наборе

Оценка на полном наборе

05_10_Rr_m4_Targ3r_S

```
▼ OUTPUT - TRAINING METRICS
            model 4064059d-cd68-414d-a849-9ea65a11377c
            model_checksum 5702330899411735360
                   frame 05_10_Rr_m4_Targ3r_S_0.750
            frame_checksum -8499038547437041722
            description ·
            model_category Regression
            scoring_time 1616021983753
                  MSE 0.161069
                     RMSE 0.401334
                    nobs 115
         custom_metric_name .
        custom_metric_value 0
                       r2 0.739719
    mean_residual_deviance 0.161069
                      mae 0.318552
                  rmsle 0.131300
          residual_deviance 18.522945
        null_deviance 71.165217
                      AIC 142.374848
null_degrees_of_freedom 114
 residual_degrees_of_freedom 103
```

```
▼ OUTPUT - VALIDATION_METRICS
                   model 4064059d-cd68-414d-a849-9ea65a11377c
            model_checksum 5702330899411735360
                   frame Key Frame 1 RR v2.h
            frame_checksum 3609225813034810295
          description ·
            model_category Regression
          scoring_time 1616021983760
               predictions
             MSE 0.166716
                     RMSE 0.408309
           nobs 146
         custom_metric_name
       custom_metric_value 0
                      r2 0.724710
     mean_residual_deviance 0.166716
                      mae 0.317564
                  rmsle 0.130781
          residual_deviance 24.340545
        null_deviance 88.546767
                      AIC 178.776432
null_degrees_of_freedom 145
 residual_degrees_of_freedom 134
```

05_11_Rr_m7_Targ3r_F

```
▼ OUTPUT - TRAINING_METRICS
                  model e36c6dd6-20de-4640-b993-263841216a34
            model_checksum -7298735667466584432
               frame 05_11_Rr_m7_Targ3r_F_0.750
            frame checksum -8499038547437041722
            description ·
            model_category Regression
            scoring_time 1616023014234
               predictions .
                MSE 0.207822
                     RMSE 0.455875
                  nobs 115
        custom_metric_name .
       custom_metric_value 0
                       r2 0.664168
     mean_residual_deviance 0.052172
                  rmsle 0.146470
         residual deviance 5.999763
        null_deviance 18.601232
                      AIC NaN
null_degrees_of_freedom 114
residual_degrees_of_freedom 102
```

▼ OUTPUT - VALIDATION_M	ETRICS
model	e36c6dd6-20de-4640-b993-263841216a34
model_checksum	-7298735667466584432
frame	Key_Frame1_RR_v2.hex
frame_checksum	3609225813034810295
description	
model_category	Regression
scoring_time	1616023014243
predictions	•
MSE	0.219778
RMSE	0.468805
nobs	146
custom_metric_name	•
custom_metric_value	0
r2	0.637091
mean_residual_deviance	0.053392
mae	0.371596
	0.148539
residual_deviance	7.795210
null_deviance	22.762012
AIC	
null_degrees_of_freedom	145
residual_degrees_of_freedom	133

$05_12_Rr_m7_Targ3r_S$

```
▼ OUTPUT - TRAINING_METRICS
                model 3ac922a4-4679-4de3-a12e-a7fc22031b0c
             model_checksum -5517217425360759936
                    frame 05_12_Rr_m7_Targ3r_S_0.750
             frame_checksum -8499038547437041722
              description ·
             model_category Regression
             scoring time 1616024334028
               predictions .
                     MSE 0.207888
                      RMSE 0.455948
                     nobs 115
         custom metric name .
      custom_metric_value 0
                       r2 0.664061
     mean_residual_deviance 0.052219
                    rmsle 0.146513
          residual deviance 6.005202
        null_deviance 18.601232
                       AIC NaN
   null_degrees_of_freedom 114
 residual_degrees_of_freedom 104
```

```
▼ OUTPUT - VALIDATION_METRICS
      model 3ac922a4-4679-4de3-a12e-a7fc22031b0c
           model_checksum -5517217425360759936
                 frame Key_Frame__1_RR_v2.hex
           frame_checksum 3609225813034810295
           description ·
           model_category Regression
         scoring_time 1616024334051
             predictions
           MSE 0.219812
                    RMSE 0.468841
        custom_metric_name
    custom_metric_value 0
mean_residual_deviance 0.053455
         residual_deviance 7.804500
    null_deviance 22.762012
null_degrees_of_freedom 145
residual_degrees_of_freedom 135
```

4.16 Загрузка моделей в базу знаний и получение их уникальных идентификаторов UUID

Для загрузки моделей в БЗ и их эксплуатации в качестве одного из вариантов используется web-интерфейс инструмента «A swagger API», доступный по ссылке: https://knowledge-base-2021.herokuapp.com/apidocs/.

Загрузка осуществляется командой «POST /upload-model» с указанием файла модели в json-формате, предварительно сохраненного средствами системы H2O.

Рис. 40. Интерфейс загрузки в БЗ на примере модели «05_01_Bk_MTarg_m1_F».

На рис. 41 представлен ответ сервера базы знаний, в теле которого содержится уникальный идентификатор модели «**uuid**», который используется для последующих обращений к модели, загруженной и находящейся в этой базе.

Рис. 41. Ответ сервера после отправки файла.

Кроме того, сервер даёт информацию для программного доступа к моделям по API с помощью утилиты «curl» с параметрами:

```
curl -X POST "https://knowledge-base-
2021.herokuapp.com/upload-model" -H "accept:
application/json" -H "Content-Type: multipart/form-data" -F
"file=@a427e15a-1dd7-4828-b409-be3fa87b6a87
(05 01 Bk MTarg m1 F).model"
```

Выводы по работе

В текущей работе проводилось создание, обучение и тестирование моделей интеллектуального анализа данных и машинного обучения средствами платформы «H2O» с использованием исходных данных медицинского направления, содержащих параметры обследований пациентов на наличие признаков ректального рака.

Результатом работы стали 12 обученных для задач регрессии, бинарной и множественной классификации на полном и усечённом наборах данных моделей, протестированных на полном наборе данных. Все модели были загружены в базу знаний средствами web-интерфейса инструмента «A swagger API».

Анализ результатов работы моделей на основе предложенных исходных данных показывает, что:

- 1. Задача бинарной классификации наилучшим образом была решена методом градиентного бустинга «m1» моделью, обученной на полном наборе данных, где выявился самый высокий уровень корреляции признаков, а также, наблюдались среднеквадратичные отклонения отсутствие наименьшие классификации. При этом, точность распознавания у модели с усечённым набором входных параметров оказалась чуть ниже, но сопоставимой с точностью модели, обученной полным набором данных. По мнению автора обусловлено потерей работы, ЭТО корреляционной отсутствующими параметрами усечённого набора данных. Это подтверждает и пара моделей, работающих по методу «m8» - биноминальной логистической регрессии класса обобщенных линейных моделей, где обученная полным набором данных модель, показала немногим более высокую точность распознавания, но с наличием некоторого числа ошибок распознавания признаков класса «F», что может быть связано с меньшим количеством данных класса «F» при усечении набора и недостаточным уровнем обученности модели на этом классе.
- 2. Задача множественной классификации наиболее успешно была решена методом «m1» градиентным бустингом с самым высоким значением коэффициента корреляции «r2» у модели, обученной полным набором данных, при этом метод «m9» линейной модели мультиноминальной классификации дал в двое большее среднеквадратические отклонение у обоих моделей. Точность классификации у метода «m9» значительно ниже, чем у метода «m1», причём тенденция лучшего результата наблюдается у моделей, обученных полным набором данных для обоих методов «m1» и «m9». В данном случае метод «m9» оказался более чувствителен к усечению набора обучающих данных, что отразилось на большем числе ошибок классификации.
- 3. Задача регрессии решена с наилучшими показателями методом Гаусса «m4» обоими моделями, где минимальное преимущество осталось за моделью, обученной полным набором данных. В свою очередь метод «гамма»-регрессии «m7», несколько хуже обнаружил корреляционные зависимости в тестовом наборе данных по сравнению с методом «m4», где полная модель проявила минимальный перевес в точности прогнозирования в отношении модели с усечённым набором данных, при этом, обе модели метода «m7» показали

примерно одинаковые отклонения в прогнозах и почти равные значения коэффициента корреляции.

Несмотря на отсутствие ошибок классификации в соответствующих моделях их точность не равна 1, что может быть связано с пропуском строк, содержащих неполные исходные данные, установленным соответствующей опцией при построении моделей системой «H2O», что даёт более «чистые» результаты анализа при поиске связей между параметрами.

Учитывая несущественно малую разницу в точности результатов моделей с полным и усечённым набором данных относительно всех решаемых в данной работе задач всеми методами, можно гарантировано использовать модели с ограниченным набором данных для практического применения.

Список литературы

Яковина И.Н., Осипенко И.В.

Интеллектуальный анализ данных и машинное обучение. Методические указания к лабораторным работам №1, 2. Электронный документ. НГТУ. АВТФ. 2021 URL:

 $\frac{https://docs.google.com/document/d/1L1YnY3VL4JJe8if1dInXKDGKsFpegasGclP1U}{mho_0/edit\#}$