Materials 20 - Optimal Taylor rule coefficients

Laura Gáti

March 10, 2020

Overview

1	Trocedure	
2	Remarks on the noninertial plan for the anchoring model	3
3	Optimal Taylor-rule coefficients	4

1 Procedure

- 1. obtain the optimal noninertial plan for the endogenous variables,
- 2. perform coefficient-comparison on the Taylor rule.

Details:

Given optimal noninertial paths of the form $z_t = \bar{z} + f_z u_t + g_z r_t^n$, $z = \pi, x, i$, the Taylor rule

$$i_t = \psi_\pi(\pi_t - \bar{\pi}) + \psi_x(x_t - \bar{x}) + \bar{i}_t$$
 (1)

can be written as

$$i_t = \bar{i} + \psi_\pi (f_\pi u_t + g_\pi r_t^n) + \psi_x (f_x u_t + g_x r_t^n)$$
(2)

which has to satisfy

$$i_t = \bar{i} + f_i u_t + g_i r_t^n \tag{3}$$

allowing one to solve for (ψ_{π}^*, ψ_x^*) as the solution to

$$f_i = \psi_\pi f_\pi + \psi_x f_x \tag{4}$$

$$g_i = \psi_\pi g_\pi + \psi_x g_x \tag{5}$$

Details on obtaining the coefficients f_z, g_z of the optimal noninertial plan $z_t = \bar{z} + f_z u_t + g_z r_t^n$ for the anchoring model

- 1. Conjecture $z_t = \bar{z} + f_z u_t + g_z r_t^n$ where $z = \{\pi, x, i, f_a, f_b, \bar{\pi}, k^{-1}\}$
- 2. Plug conjecture into model equations (6) (11) (the simplified version of the baseline model):

$$\pi_t - \kappa x_t - (1 - \alpha)\beta f_a(t) - \kappa \alpha \beta b_2 (I_3 - \alpha \beta h_x)^{-1} s_t - e_3 (I_3 - \alpha \beta h_x)^{-1} s_t = 0$$
(6)

$$x_t + \sigma i_t - \sigma f_b(t) - (1 - \beta)b_2(I_3 - \beta h_x)^{-1}s_t + \sigma \beta b_3(I_3 - \beta h_x)^{-1}s_t - \sigma e_1(I_3 - \beta h_x)^{-1}s_t = 0$$
 (7)

$$f_a(t) - \frac{1}{1 - \alpha \beta} \bar{\pi}_{t-1} - b_1 (I_3 - \alpha \beta h_x)^{-1} s_t = 0$$
(8)

$$f_b(t) - \frac{1}{1-\beta}\bar{\pi}_{t-1} - b_1(I_3 - \beta h_x)^{-1}s_t = 0$$
(9)

$$\bar{\pi}_t - \bar{\pi}_{t-1} - k_t^{-1} (\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1})) = 0$$
(10)

$$k_t^{-1} - f(\pi_t - \bar{\pi}_{t-1} - b_1 s_{t-1}) = 0 \tag{11}$$

- 3. Note that there are n_y deterministic components \bar{z} , n_y f_z -terms and n_y g_z -terms. Imposing that the conjecture fulfills the model equations (6) (11) yields $n_y 1$ constraints separately for \bar{z} , f_z and g_z . That is, I have three non-interacting equation systems, each consisting of $n_y 1$ equations in n_y variables.
- 4. Solve 3 minimizations:

$$\bar{z} = \arg\min L^{det}$$
 s.t the 1st set of $n_y - 1$ constraints from step 3. (12)

$$f_z = \arg\min L^{stab,u}$$
 s.t the 2nd set of $n_y - 1$ constraints from step 3. (13)

$$g_z = \arg\min L^{stab,r}$$
 s.t the 3rd set of $n_y - 1$ constraints from step 3. (14)

where I'm using the following decomposition of the central bank's loss: The central bank's loss function

$$L^{CB} = \mathbb{E}_t \sum_{T=t}^{\infty} \{ \pi_T^2 + \lambda_x (x_T - x^*)^2 + \lambda_i (i_T - i^*) \}$$
 (15)

can be decomposed into a component coming from the long-run means, and a component from

fluctuations of the endogenous variables:

$$L^{det} = \sum_{T=t}^{\infty} \beta^{T-t} \{ \mathbb{E}_t \, \pi_T^2 + \lambda_x (\mathbb{E}_t \, x_T - x^*)^2 + \lambda_i (\mathbb{E}_t \, i_T - i^*)^2 \}$$
 (16)

$$L^{stab} = \sum_{T=t}^{\infty} \beta^{T-t} \{ \operatorname{var}_t(\pi_T) + \lambda_x \operatorname{var}_t(x_T) + \lambda_i \operatorname{var}_t(i_T) \}$$
(17)

$$L^{stab,u} \propto f_{\pi}^2 + \lambda_x f_x^2 + \lambda_i f_i^2 \tag{18}$$

$$L^{stab,r} \propto q_{\pi}^2 + \lambda_x q_x^2 + \lambda_i q_i^2 \tag{19}$$

5. Solve the three decoupled $n_y \times n_y$ equation systems for \bar{z} , f_z and g_z .

(I didn't solve for \bar{z} because the TR-coefficients only depend on f_z and g_z .)

2 Remarks on the noninertial plan for the anchoring model

- 1. Treat long-run expectations f_a, f_b , the gain k^{-1} and expected mean inflation $\bar{\pi}$ as endogenous variables (part of the vector z).
- 2. Postulate a gain function

$$k_t^{-1} - k_{t-1}^{-1} = c + d(\pi_t - \bar{\pi}_{t-1} - b_{11}r_t^n - b_{13}u_t)$$
(20)

- 3. Step 2 yields interaction terms between f_k , $f_{\bar{\pi}}$ and g_k , $g_{\bar{\pi}}$, as well as between the shocks (of the form $u_t r_t^n$, u_t^2 , $(r_t^n)^2$) and these coefficients loading on lagged shocks u_{t-1} , r_{t-1}^n (which also show up in interaction terms).
 - To keep the solution linear, I therefore impose f_k = g_k = f_{π̄} = g_{π̄} = 0.
 Interpretation: in the optimal plan, the planner wants the gain and expected mean inflation not to fluctuate in response to shocks.
 - A direct consequence of this is:

$$f_{f_a} = \frac{b_{13}}{1 - \alpha \beta \rho_u}$$
 $f_{f_b} = \frac{b_{13}}{1 - \beta \rho_u}$ $g_{f_a} = \frac{b_{11}}{1 - \alpha \beta \rho_r}$ $g_{f_b} = \frac{b_{11}}{1 - \beta \rho_r}$ (21)

i.e. long-run expectations are just the discounted sums of the rational expectation of disturbances.

Optimal Taylor-rule coefficients 3

$$\psi_{\pi}^{anchor} = \frac{\kappa \sigma}{\lambda_i} \tag{22}$$

$$\psi_x^{anchor} = \frac{\lambda_x \sigma}{\lambda_i} \tag{23}$$

For the rational expectations version of the model with the assumption $\rho \equiv \rho_u = \rho_r$, the coefficients are

$$\psi_{\pi}^{RE} = \frac{\kappa \sigma}{\lambda_i (\rho - 1)(\beta \rho - 1) - \kappa \lambda_i \rho \sigma} \tag{24}$$

$$\psi_{\pi}^{RE} = \frac{\kappa \sigma}{\lambda_i (\rho - 1)(\beta \rho - 1) - \kappa \lambda_i \rho \sigma}$$

$$\psi_{x}^{RE} = \frac{\lambda_x \sigma (1 - \beta \rho)}{\lambda_i (\rho - 1)(\beta \rho - 1) - \kappa \lambda_i \rho \sigma}$$
(24)