PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 15

MAT1106 — Introducción al Cálculo Fecha: 2020-10-20

Problema 1:

- (a) Demuestre que $\lim_{n\to\infty}\sqrt{1-\frac{1}{n^2}}=1$
- (b) Demuestre que $\lim_{n\to\infty} \cos\left(\frac{1}{n}\right) = 1$
- (c) Demuestre que $\lim_{n\to\infty} n \sin\left(\frac{1}{n}\right) = 1$

Solución problema 1:

Problema 2:

Sea x_n una sucesión convergente y $\varepsilon > 0$, demuestre que existe una subsucesión x_{n_k} tal que para todo $k \in \mathbb{N}$ se tiene

$$\left| x_{n_k} - x_{n_{k+1}} \right| < \varepsilon.$$

Solución problema 2:

Problema 3:

Sean 0 < a < b reales. Se definen las sucesiones x_n, y_n como

$$x_1 = \sqrt{ab}$$
 $y_1 = \frac{a+b}{2}$ $x_{n+1} = \sqrt{x_n y_n}$ $y_{n+1} = \frac{x_n + y_n}{2}$.

Demuestre que ambas sucesiones convergen al mismo límite.

Solución problema 3:

Problema 4:

Sea x_n una sucesión. Definimos $s_n = \sum_{k=1}^n x_k$. Asuma que $s_n \to L$ y que x_n es siempre positiva. Definimos

$$r_n = \lim_{m \to \infty} \sum_{k=n+1}^m x_k.$$

- (a) Encuentre r_n de manera explicita.
- (b) Demuestre que $r_n \to 0$.

Solución problema 4: