# Adult Census Income Prediction Project

This project analyzes demographic data and income information to predict whether an individual's salary is greater than \$50k. Data is collected, preprocessed, and analyzed to create a predictive model for exploring factors that influence higher salaries. Results show valuable insights and opportunities for potential intervention with income inequality.





## **Data Collection and Preprocessing**

1 Collection

Utilized 1994 US Census data featuring over 32,000 entries with 14 independent and 1 target variable.

2 Preprocessing

Performed data cleaning, replaced missing values with imputations, encoded categorical variables, and normalized continuous variables.

## **Exploratory Data Analysis**

#### Distribution Analysis Examined the distribution of individual variables and their correlations, **Visualizations** identifying associations conducive to higher income groups. Created various visualizations to explain the distribution of variables and how they relate to each other, 3 Correlation Analysis including scatter plots, box plots, and histograms. Performed a correlation analysis to identify highly correlated and



therefore redundant variables.

reducing dimensionality and improving

the performance of predictive models.

## Feature Engineering and Selection

#### Feature Engineering

Generated new features based on existing variables and identified latent relationships that could improve the model's predictive power.

#### Feature Selection

Performed feature selection to reduce the impact of irrelevant features or those that could introduce bias.

#### **Model Metrics**

Weighted feature importance and monitored metrics such as Gini Index, AUC, and F1 score to optimize the model.



## Model Building and Evaluation

Deployed various machine learning models, including Random Forest, Logistic Regression, and Gradient Boosting. Evaluated the models based on robust cross-validation procedures, and fine-tuned hyperparameters to improve model performance.

## **Results and Discussion**

| Model               | AUC Score | Accuracy | Precision |
|---------------------|-----------|----------|-----------|
| Random Forest       | 0.89      | 0.86     | 0.80      |
| Logistic Regression | 0.84      | 0.82     | 0.76      |
| Gradient Boosting   | 0.87      | 0.85     | 0.78      |

The random forest model outperformed the other models in all three metrics. Further analysis showed that education, age, and occupation were the strongest predictors of whether someone earned over \$50k per year.



## **Conclusion and Future Work**

#### Conclusion

This project successfully predicted highincome earners based on demographic characteristics, specifically education, age, and occupation.

#### **Future Work**

Further expansion of this model's capabilities could include analyzing new datasets and implementing deep learning models for better accuracy.

# **Benefits of Predictive Modeling**



Predictive modeling reduces guesswork and supports evidence-based decisionmaking.



It helps find new insights and creates opportunities for growth.



Predictive modeling stimulates creativity and innovation among programmers and data scientists.