

PMAC Servo Control Algorithm

PMAC PID and Notch Filter

PID Parameters

K_p Ixx30, Proportional gain

K_d Ixx31, Derivative gain

K_{vff} Ixx32, Velocity feedforward gain

K_i Ixx33, Integral gain

IM Ixx34, Integration mode

K_{aff} Ixx35, Acceleration feedforward gain

Notch Filter Coefficients

 n_1 Ixx36

 n_2 Ixx37

 d_1 Ixx38

 d_2 Ixx39

PMAC Extended Servo Algorithm

Note: Must be tuned by an external algorithm (e.g. pole placement).

Proportional Control

$$T = K \bullet \Theta = -J \frac{d^2 \Theta}{dt^2}, \ \omega_0 = \sqrt{\frac{K}{J}}, \ \zeta = 0$$

Θ [rad]

 ζ : Damping Ratio

 ω_0 : Natural Frequency

Θ: Angular Displacement

T: Input Torque

K: Spring Constant

J: Moment of Inertia

P: Period of Oscillation

t: Time

Example Response:

Proportional Control

Ref.
$$e(t)$$
 K_P
 K_C
 K_A
 K_T
 $\frac{1}{J}$
 K_d
 K_d

$$T(t) = K_p \bullet K_C \bullet K_A \bullet K_T \bullet e(t) = -K_p \bullet K_C \bullet K_A \bullet K_T \bullet \Theta(t) = J \bullet \frac{d^2 \Theta}{dt^2}$$

 K_C : DAC Conversion Gain

K_A: Amplifier Gain

K_⊤: Motor Torque Constant

$$\omega_0 = \sqrt{\frac{K_p \bullet K_C \bullet K_A \bullet K_T}{J}}, \quad \zeta = 0$$

This is an <u>undamped</u> Simple Harmonic Oscillator (SHO)

Thus, the proportional gain K_P correlates with spring stiffness.

Higher K_P → higher stiffness

Derivative Control

$$T = K \bullet \Theta + c \bullet \frac{d\Theta}{dt} = -J \bullet \frac{d^2\Theta}{dt^2}, \quad \omega_0 = \sqrt{\frac{K}{J}}, \quad \zeta = \frac{c}{2}\sqrt{KJ}$$

⊕ [rad]

 ζ : Damping Ratio

 ω_0 : Natural Frequency

Θ: Angular Displacement

T: Input Torque

C: Damping Coefficient

K: Spring Constant

J: Moment of Inertia

t: Time

Example Response:

Ref. Input

$$T(t) = -K_p \bullet K_C \bullet K_A \bullet K_T \bullet \Theta(t) - K_p \bullet K_C \bullet K_A \bullet K_d \bullet \frac{d\Theta}{dt} = J \bullet \frac{d^2\Theta}{dt^2}$$

This is a damped SHO.

K_C: DAC Conversion Gain

K_∆: Amplifier Gain

Integral Control

Pulley Attached to Motor Shaft

Without the integral, the governing equation is:

$$T(t) = (K_P \bullet K_C \bullet K_A \bullet K_T) \bullet e(t) = m \bullet g \bullet r$$

Moment of

K_C: DAC Conversion Gain

K_A: Amplifier Gain

Adding the Integral

$$T(t) = (K_P \bullet K_C \bullet K_A \bullet K_T) \bullet [K_i \int e(t)dt + e(t) + K_d \frac{d\Theta(t)}{dt}] = m \bullet g \bullet r$$

Therefore as $t \to \infty$, $e(t) \to 0$

K_C: DAC Conversion Gain

K_∆: Amplifier Gain

Steady State Errors Due to Constant Speed Trajectory Tracking

Response (assuming friction = 0):

Block Diagram without K_{vff}

K_C: DAC Conversion Gain

K_A: Amplifier Gain

Purpose of Velocity Feedforward

Selecting $K_{vff} = K_d \rightarrow e_{ss} = 0$

No steady state error due to constant velocity tracking

Block Diagram with K_{vff}

Typically, setting $K_{\text{vff}} = K_d$ is a good starting place for tuning the servo loop.

Purpose of Acceleration Feedforward

In general, the trajectories contain higher order time functions:

$$\Theta_d(t) = c_0 + c_1 \bullet t + c_2 \bullet t^2$$

Example: Constant Jerk Trajectory By choosing:

$$K_{aff} = \frac{J_1}{K_P \bullet K_C \bullet K_A \bullet K_T} \rightarrow e(t) = 0$$

$$T(t) = \left(\frac{J_1}{K_P \bullet K_C \bullet K_A \bullet K_T}\right) \frac{d^2 \Theta_d}{dt^2} (K_P \bullet K_C \bullet K_A \bullet K_T) = \frac{J_1 \bullet d^2 \Theta_d}{dt^2}$$

> This results in no following error for the *Ideal* system; i.e.:

> Since
$$\frac{d^2\Theta_d}{dt^2} = \frac{d^2\Theta}{dt^2}$$
 \rightarrow $\Theta_d = \Theta$ \rightarrow No Following Error

Acceleration Feedforward: K_{aff}

K_C: DAC Conversion Gain

K_A: Amplifier Gain

Servo Loop Modifier I-Variables

Ixx59: Motor xx User-Written Servo/Phase Enable

- = 0: Use standard PID phase algorithms
- = 1: Use custom servo, standard phase algorithms
- = 2: Use standard PID, custom phase algorithms
- = 3: Use custom servo, phase algorithms

Ixx60: Motor xx Servo Cycle Extension Period [Servo Cycles]

Loop closed every (Ixx60+1) servo interrupts Useful for slow, low-resolution axes Useful for process control "axes"

Ixx63: Motor xx Integration Limit [(Ixx33 / 2¹⁹) counts * servo cycles]

Maximum integrated error accumulated When negative, killed on saturation

Ixx64: Motor xx Deadband Gain Factor

Controls the effective gain within the deadband zone

Ixx65: Motor xx Deadband Size [1/16 count]

Defines the size of the position error band, measured from zero error, within which there will be changed or no control effort, for the PMAC feature known as deadband compensation.

Deadband Compensation

Servo Loop Modifier I-Variables (cont.)

Ixx67: Motor xx Position Error Limit [1/16 Count]

Limits error that filter "sees"

Ixx68: Motor xx Friction Feedforward [16-bit DAC Bits]

Compensates for dry (Coulumb) friction

Ixx69: Output Command (DAC) Limit [16-bit DAC Bits]

Limits output of filter

Acts as torque (current) limit if commutating

Servo Loop Modifiers

α: Phase angle in Phase A β: Phase angle in Phase B

Closing a Force Loop around a Position Loop

See the "Cascading Servo Loops" section of the Turbo PMAC User Manual for detailed information on how to configure this type of hybrid control.