MP3401/3402 DEMO TEST	REPORT

目录

1	DEMO BOARD 资料	3
	1.1Demo Board 实物图	3
	1.2 SCH 图	
	1.3 PCB 图	5
	1.4 BOM 表	7
2	功能测试	8
	2.1 功能特点	8
	2.2 待机功耗	8
	2.3 电池充电 V/I 特性曲线:	9
	2.4 Vout 调节特性	9
	2.5 Vout 效率曲线图	10
	2.6 带载输出纹波(ΔV)	10
	2.7 带载动态响应:	11
	2.8 CC 模式下的输出曲线	11
	2.9 LED 灯指示	12
	2.10 温升测试	13
3	PCB Layouт 指导	13
	3.1 PCB Lavout 指导	13

1 Demo Board 资料

1.1Demo Board 实物图

1.1.1 MP3401 Demo Board 实物图:

图 1.1.1 Demo Board1 正面

图 1.1.2 Demo Board1 反面

图 1.1.3 Demo Board2 正面

图 1.1.4 Demo Board2 反面

1.1.2 MP3402 Demo Board 实物图:

图 1.1.5 Demo Board 3 正面

图 1.1.6 Demo Board 3 正面

1.2 SCH 图

图 1.2.1 MP3401 Demo Board 电路原理图

图 1.2.2 MP3402 Demo Board 电路原理图

1.3 PCB 图

图 1.3.1 Demo Board1 PCB 正面

图 1.3.2 Demo Board1 PCB 反面

图 1.3.2 Demo Board 2 PCB 正面

图 1.3.2 Demo Board2 PCB 反面

图 1.3.2 Demo Board 3 PCB 正面

图 1.3.2 Demo Board3 PCB 反面

1.4 BOM 表

1.4.1 MP3401 应用 bom 表,以口红板为例见表 1.4.1 所示:

表 1.4.1:

序号	描述	标号	数量
1	贴片电感,CD43, 2.2uH, ±10%	L1	1
2	贴片 A 型 USB 母座	P2	1
3	贴片 micro 型 USB, 母座	P1	1
4	贴片电容, 0603, 1uF, ,±20%	C1、C2	2
5	贴片电容, 0805, 10uF(>10V), ±20%	C3	1
6	贴片电容,0603,2.2nF,,±20%	C4	1
7	贴片电阻, 0603, 1Ω, ,±5%	R1	1
8	贴片 LED, 0603, 红色,	LED1	1
9	贴片 LED, 0603, 蓝色	LED2	1
10	主芯片 MP3401 SOP8	U1	1
总数			11 个

备注:

1、BOM 表中的标号只作参考之用,不与 Demo board 标示一一相对应。

1.4.2 MP3402 应用 BOM 表,以口红板为例见表 1.4.2 所示:

表 1.4.1:

序号	描述	标号	数量
1	贴片电感, CD43, 2.2uH, ±10%	L1	1
2	贴片 A型 USB 母座	P2	1
3	贴片 micro 型 USB, 母座	P1	1
4	贴片电容, 0603, 1uF, ,±20%	C1、C2	2
5	贴片电容, 0805, 10uF(>10V), ±20%	C3	1
6	贴片电容, 0603, 2.2nF, ,±20%	C4	1
7	贴片电阻, 0603, 1Ω, ,±5%	R1	1
8	贴片 LED, 0603, 红色,	LED1	1
9	贴片 LED, 0603, 蓝色	LED2	1
10	贴片按键	Key	1
11	主芯片 MP3402 SOP8	U1	1
总数			12 个

2 功能测试

2.1 功能特点

功能特点	MP3401	MP3402
充电模式	线性 Ich=0.7A	线性 Ich=0.7A
升压模式	同步 Iout=1.0A	同步 Iout=1.0A
开机模式	常输出	按键开机
关机模式	无	自动关机
过温保护	有	有
过流保护	有	有
短路保护	有	有
过压保护	有	有
欠压保护	有	有
充电指示	有	有
放电指示	有	有

备注:

1)关于充电指示和放电指示详细内容在"2.9 LED指示"中有详细说明。

2.2 待机功耗

待机功耗测试见表 2.2.1 所示:

表 2.2.1:

样品	MP3401	MP3402
Idd (uA)	123	31

2.3 电池充电 V/I 特性曲线:

电池充电 V/I 特性曲线见图 2.3.1 所示:

图 2.3.1 电池充电 V/I 特性曲线

2.4 Vout 调节特性

Vout 调节特性见表 2.4.1 所示:

表 2.4.1:

What (V)	Vout (V)		A II (-V)
Vbat (V)	I=0. 1A	I=1. 0A	ΔU (mV)
3. 1	4. 952	4. 5	450
3. 3	4. 953	4.80	153
3. 4	4. 953	4. 957	4
3. 7	4. 954	4. 957	3
4.0	4. 954	4. 957	3
4. 2	4. 955	4. 956	1

备注:

1、表中"ΔU"表示重载(1.0A)和轻载(0.1A)之间的压差。

2.5 Vout 效率曲线图

2.5.1 Vout 效率曲线图见图 2.5.1 所示:

图 2.5.1 Vout 效率曲线图

2.6 带载输出纹波 (ΔV)

2.6.1 带载输出纹波(ΔV)见表 2.6.1 所示

表: 2.6.1:

Vbat (V)	ΔV (mV)		
VDat (V)	I=0. 5A	I=0.8A	I=1. 0A
3. 3V	54	80	100
3. 7V	52	70	86
4. 0V	44	66	80
4. 2V	40	55	68

2.7 带载动态响应:

图 2.7.1 带载 0.1A-1.0A-0.1A 动态响应波形图

备注:

- 1) 通道1(黄色) 所示为动态响应输出直流测试波形。
- 2) 通道 2(蓝色) 所示为动态响应输出交流测试波形。

2.8 CC 模式下的输出曲线

2.8.1 CC 模式下的输出曲线

图 2.8.1 CC 模式下 Vout 曲线图

2.9 LED 灯指示

工作状态与电量指示如下:

LED1、LED2为PMOS漏极输出,分别外接LED灯来指示充放电状态与电量:

- 1) 充电时LED2以1Hz闪烁, LED1灭;
- 2) 电池充满后LED2亮, LED1灭;
- 3) 拔掉充电电源后LED2灯灭, LED1灭;
- 4) 正常放电时,LED1灯亮,LED2灭;
- 5) 放电时, 若电池电压低于3.1V, LED1以1Hz闪烁, LED2灭;
- 6) 放电结束,即放电电流小于20mA(典型值)16秒后,LED1灯灭,LED2灭;
- 7) 在充电过程中,如果发生异常,无法充电时,LED1、LED2灭。在放电过程中,如果发生短路保护、过流保护、过温保护,LED1、LED2灯灭,芯片进入打嗝模式。表: 2.9.1:

What (V)	充电		放电	
Vbat (V)	LED1 (LO)	LED2 (LC)	LED1 (LO)	LED2 (LC)
Vbat≥4.2	灭	亮	亮	灭
3.1≤Vbat<4.2	灭	1Hz 闪烁	亮	灭
2.9≤Vbat<3.1	灭	1Hz 闪烁	1Hz 闪烁	灭
Vbat < 2.9	灭	1Hz 闪烁	灭	灭

表 2.9.2

灯亮灭条件	MP3401	MP3402
放电亮灯	带载有输出电流触发亮灯	按下按键启动升压触发亮灯
放电灭灯	移除负载后 16S 自动灭灯	移除负载后 16S 自动灭灯
充电亮灯	适配器接入触发亮灯	适配器接入触发亮灯
充电灭灯	移除适配器自动灭灯	移除适配器自动灭灯

2.10 温升测试

2.10.1 充电温升:

表 2.10.1:

Vbat (V)	Ich (A)	Vin(V)	IC 温升(℃)
3. 0	0.65	5. 0	90
3. 7	0. 75	5. 0	85
4. 0	0. 7	5. 0	75

2.10.2 放电温升:

表 2.10.2:

Vbat (V)	Iout(A)	Vout(V)	IC 温升
3. 3	1.0	4. 953	79
3. 7	1.0	4. 953	76
4.0	1. 0	4. 954	66

3. PCB Layout 指导

3.1 PCB Layout 指导

- 1) Cbat尽量靠近BAT脚, Cin尽量靠近VCC 脚,并且走线时都经过电容再到IC管脚。
- 2)R1(1Ω)和C4(2. 2nF)组成的RC电路必须靠近第一脚(LX)引脚,使得从电感焊盘出发的线路先经过R1的焊盘再到芯片引脚焊盘。
- 3) 过孔会引起路径的高阻抗,如果设计中大电流需要通过过孔,建议使用多个过孔以减小阻抗。
- 4) LX有高频振荡信号,电感必须靠近LX,并且尽量减小开关环路的阻抗及其所布线所包围的面积;其它敏感的器件必须远离电感以减小耦合效应。
- 5) PCB的地线覆铜面积尽可能大,以利于散热。