```
Goldmine2 in C++
#include <iostream>
#include <vector>
using namespace std;
int maxGold = 0;
void travel(vector<vector<int>>& arr, int i, int j,
vector<vector<bool>>& visited, vector<int>& bag) {
  if (i < 0 | | j < 0 | | i >= arr.size() | | j >=
arr[0].size() \mid | arr[i][j] == 0 \mid | visited[i][j]) 
     return:
  }
  visited[i][j] = true;
  bag.push_back(arr[i][j]);
  travel(arr, i - 1, j, visited, bag);
  travel(arr, i, j + 1, visited, bag);
  travel(arr, i, j - 1, visited, bag);
  travel(arr, i + 1, j, visited, bag);
void getMaxGold(vector<vector<int>>& arr) {
  int rows = arr.size();
  int cols = arr[0].size();
  vector<vector<br/>bool>> visited(rows,
vector<bool>(cols, false));
  for (int i = 0; i < rows; i++) {
     for (int j = 0; j < cols; j++) {
        if (arr[i][j] != 0 && !visited[i][j]) {
           vector<int> bag;
           travel(arr, i, j, visited, bag);
          int sum = 0;
          for (int val : bag) {
             sum += val;
          if (sum > maxGold) {
             maxGold = sum;
  }
}
int main() {
  vector<vector<int>> arr = {
     \{0, 1, 4, 2, 8, 2\},\
     \{4, 3, 6, 5, 0, 4\},\
     \{1, 2, 4, 1, 4, 6\},\
     \{2, 0, 7, 3, 2, 2\},\
     \{3, 1, 5, 9, 2, 4\},\
     \{2,\,7,\,0,\,8,\,5,\,1\}
  };
  getMaxGold(arr);
  cout << maxGold << endl;</pre>
  return 0;
}
```

Sample Grid (Visual):

```
Ο,
                2,
                     8,
                         2 },
{
      1,
      3,
                5,
                         4 },
  4,
                    Ο,
                         6 },
  1,
       2,
           4,
                1,
                     4,
  2,
           7,
                    2,
                         2 },
               3,
{ 3,
                    2,
           5,
               9,
                         4 },
  2,
```

We'll start traversal from (1,2) where value = 6

Dry Run Table (DFS Traversal Steps):

Step	Cell Visited	Gold at Cell	Cumulative Sum	Stack (DFS Recursion Path)	
1	(1,2)	6	6	(1,2)	
2	(0,2)	4	10	$(1,2) \rightarrow (0,2)$	
3	(0,3)	2	12	$\begin{vmatrix} (1,2) \rightarrow (0,2) \\ \rightarrow (0,3) \end{vmatrix}$	
4	(0,4)	8	20		
5	(0,5)	2	22		
5	(1,5)	4	26		
7	(2,5)	6	32		
8	(2,4)	4	36		
9	(3,4)	2	38		
10	(3,5)	2	40		
11	(4,5)	4	44		
12	(4,4)	2	46		
13	(4,3)	9	55		
14	(5,3)	8	63		
15	(5,4)	5	68		
16	(5,5)	1	69		
17	(3,3)	3	72		
18	(2,3)	1	73		
19	(2,2)	4	77		
20	(1,3)	5	82		
21	(1,1)	3	85		
22	(2,1)	2	87		
23	(2,0)	1	88		
24	(3,0)	2	90	•••	
25	(4,0)	3	93		
26	(4,1)	1	94		
27	(5,1)	7	101		
28	(5,0)	2	103		

	✓ Result: At the end of this traversal:			
32	(4,2)	3	120	
$\overline{32}$		5	120	
31	(3,2)	7	115	
30	(0,1)	1	108	•••
29	(1,0)	4	107	•••

At the end of this traversal:

- All connected gold cells are visited
- Sum = 120
- This is the **maximum** among all components

♣ Final Output:

Output: 120

Output:-

120