

Teknik Informatika - Fakultas Informatika

Pertemuan 14 – Graph

Author: Wahyu Andi Saputra [WAA]

Outline

Konsep Graph

Jenis Graph

Representasi Graph

Implementasi Graph

Konsep Graph

Graph

• Merepresentasikan objek-objek dan hubungan antar objek

Graph

• Merepresentasikan objek-objek dan hubungan antar objek

Contoh Penerapan Graph

Contoh Penerapan Graph

- PLN: mencari rute terpendek untuk menghubungkan jalur kelistrikan dari 2 desa
- Pertamina: mengetahui rute pipa paling optimal untuk mencapai suatu titik tujuan
- SI Mahasiswa: menentukan urutan pengambilan mata kuliah yang saling berkaitan

Perbedaan Konsep antar SD

Challenge!

 Jelaskan perbedaan konsep struktur data linear vs struktur data tree vs struktur data graph!

Jenis Graph

- Undirected Graph
- Directed Graph
- Weighted Graph

 Graph yang tidak memiliki orientasi/arah, sehingga tidak terdapat arrow pada Edge

Jenis Graph: Undigraph

- $G = \{V, E\}$
- V = {SS, TS, BW, BB, SR}
- E = {{SS,TS}, {TS,BW}, {BW,SR}, {TS,SR}, {BB,SR}, {BB,SS}}

Jenis Graph: Undigraph

• Complete Undirected Graph: semua node saling terkait

Jenis Graph: Digraph

 Graph yang memiliki orientasi/arah dan terdapat arrow pada Edge yang menunjukkan V asal dan V tujuan

Jenis Graph: Digraph

- G = {V,E}
- V = {SS, TS, BW, BB, SR}
- E = {{TS,SS}, {SS,BB}, {BB,SR}, {TS,SR}, {SR,BW}, {TS,BW}}

Jenis Graph: Weighted Graph

- Graph yang memiliki nilai/beban/bobot pada setiap Edge
- Bobot bisa merepresentasikan berbagai hal

Representasi Graph

degree(SR) = 3

degree(BW = 2)

indegree(SR) = 2

indegree(BW) = 2

indegree(TS) = 0

outdegree(SR) = 1

outdegree(BB) = 1

outdegree(SS) = 1

Bentuk adjacency list dari graph

Graph Path

Graph Path dari BB ke BW:

- 1. BB-SR-BW
- 2. BB-SS-TS-BW
- 3. BB-SR-TS-BW
- 4. BB-SS-TS-SR-BW

Implementasi Graph

Dijkstra's Algorithm

- Algoritma Dijkstra menghitung jarak tiap simpul dari simpul awal hingga akhi diketahui jarak terpendek simpul akhir yang diinginkan.
- Algoritma mengingat simpul mana saja yang telah dihitung jarak terpendeknya dan dinyatakan dalam kelompok hijau (pada literatur dinyatakan sebagai awan putih/white cloud).
- Untuk simpul yang baru sebagian dihitung jaraknya dan belum bisa dipastikan apakah itu jarak terpendek, dinyatakan dengan kelompok abu-abu.
- Untuk simpul yang sama sekali belum dihitung, dinyatakan dalam kelompok hitam.

Dijkstra's Algorithm

- Algoritma menggunakan label D[v] untuk menyimpan perkiraan jarak terpendek antara s dan v.
- Ketika sebuah simpul v ditambahkan kedalam kelompok aba-abu nilai D[v] sama dengan bobot antara s dan v.
- Pada awalnya, nilai label D untuk setiap simpul adalah:
 - -D[s] = 0
 - D[v] = ∞ untuk v ≠ s

Dijkstra's Algorithm

Mencari rute terpendek dari ITTP menuju node yang lain

Institut Teknologi

• Step 1: memilih ITTP sebagai titik start

Institut Teknologi

• Step 2: Visit node yang bisa dikunjungi

Institut Teknologi

• Step 3: Lalu, pilih node yang terdekat, yaitu Ritamall

• Step 5: Lakukan rekap jalur terpendek

Graph Path

Challenge!

• Buatlah resume mengenai perbedaan Dijkstra vs Prim's vs Kruskal!

TERIMA KASIH