Questions de cours

Points du plan complexe d'affixes z tels que $\frac{z+i}{z+1}$ soit réel (Pratique 3)

Posons z = a + ib avec $(a, b) \in \mathbb{R}^2$. Cherchons une CNS sur a et b pour que $\frac{z+1}{z+i} \in \mathbb{R}$. Càd: $\frac{a+1+ib}{a+i(b+1)} = \frac{a-i(b+1)}{a-i(b+1)} \cdot \frac{a+1+ib}{a+i(b+1)} = \frac{(a-i(b+1))(a+1+ib)}{a^2+(b+1)^2} \in \mathbb{R}$

Donc Il faut que (a - i(b + 1))((a + 1) + ib) soit réel et que $z \neq -1$.

C'est-à-dire que la partie imaginaire doit être nulle :

$$i(ab - (a+1)(b+1)) = 0 \iff a+b+1 = 0$$

Les complexes cherchés sont donc les affixes des points du plan complexe suitués sur la droite d'équation y=-x-1, privée du point $\binom{-1}{0}$

Linéariser sin³ cos³ (Pratique 8)

Soit $x \in \mathbb{R}$. On va utiliser l'identité : $\sin(2x) = 2\sin(x)\cos(x)$:

$$\begin{split} \sin^3(x)\cos^3(x) &= (\sin(x)\cos(x))^3 = \left(\frac{1}{2}\sin(2x)\right)^3 = \frac{1}{8}\left(\frac{e^{i2x} - e^{-i2x}}{2i}\right)^3 \\ &= -\frac{1}{64i}(e^{i6x} - 3e^{i2x} + 3e^{-i2x} - e^{-i6x}) = -\frac{1}{64i}((e^{i6x} - e^{-i6x}) - 3(e^{i2x} - e^{-i2x})) \\ &= -\frac{-2i}{64i}\sin(6x) - \frac{2i}{64i}3\sin(2x) = -\frac{1}{32}\sin(6x) + \frac{3}{32}\sin(2x) \end{split}$$

La Technique de l'angle moitié

La technique de l'angle moitié permet de factoriser $e^{ia} \pm e^{ib}$, avec a et b réels Soit $(a,b) \in \mathbb{R}^2$, alors :

$$e^{ia} + e^{ib} = e^{\frac{i(a+b)}{2}} \left(e^{\frac{i(a-b)}{2}} + e^{-\frac{i(a-b)}{2}} \right) = 2e^{\frac{i(a+b)}{2}} \cos\left(\frac{a-b}{2}\right)$$

Et:

$$e^{ia} - e^{ib} = e^{\frac{i(a+b)}{2}} \left(e^{\frac{i(a-b)}{2}} - e^{-\frac{i(a-b)}{2}} \right) = 2ie^{\frac{i(a+b)}{2}} \sin\left(\frac{a-b}{2}\right)$$

Peut-être écrire $\exp(x)$ plutôt que e^x au tableau... sinon c'est un peu imbuvable

Théorème de description des racines n-ièmes d'un complexe. ÉNONCÉ

Soit $n \in \mathbb{N}^*$ et $z = \rho e^{i\theta}$ avec $\rho > 0$ un complexe non-nul.

- * 0 admet une unique racine n-ième qui est 0.
- * z possède n racines n-ièmes distinctes deux-à-deux : $\sqrt[n]{\rho}\exp\bigl(i\frac{\theta}{n}+\frac{2ik\pi}{n}\bigr)$ pour $k\in [\![0,n-1]\!]$

En particulier : l'ensemble des racines n-ièmes de l'unité est :

$$\mathbb{U}_n = \left\{ e^{\frac{2ik\pi}{n}} \mid k \in \llbracket 0, n-1 \rrbracket \right\}$$

PREUVE

Cherchons sous forme trigonométrique $re^{i\varphi}$ les complexes de puissance n-ième $z=\rho e^{i\theta}$ non-nul.

On obtient par passage au module : $r^n = \rho$. Donc par positivité de $r, r = \sqrt[n]{\rho}$. Puis $e^{in\varphi} = e^{i\theta}$ donc $\varphi = \frac{\theta}{n}$ modulo $2\pi/n$, ce qui donne n racines n-ièmes de z également réparties sur le cercle du plan complexe centré à l'origine et de rayon $\sqrt[n]{|z|}$. On voit aussi que ces n racines s'obtiennent en multipliant $\sqrt[n]{\rho}e^{i\theta/n}$ par les racines n-ièmes de l'unité.

Calcul des racines carrées sous forme algébrique de 3-4i (Pratique 13)

Rappel de la méthode :

On cherche $\zeta=x+iy$ tel que $\zeta^2=z=a+ib$ avec $(a,b)\in\mathbb{R}^2, (x,y)\in\mathbb{R}^2.$ Il vient :

$$\begin{cases} x^2 - y^2 = a \\ x^2 + y^2 = |\zeta|^2 = |z| = \sqrt{a^2 + b^2} \\ 2xy = b \end{cases}$$

Ce système donne facilement x^2 et y^2 , donc 4 possibilités pour (x,y), puis on sélectionne les deux bornes en utilisant que le signe de xy est du signe de b.

On cherche x et y tels que $(x+iy)^2=3-4i$. Ce qui équivaut à :

$$\begin{cases} x^2 - y^2 = 3 & (1) \\ x^2 + y^2 = 5 & (2) \\ 2xy = -4 & (3) \end{cases}$$

(1)+(2)donne : $x^2=4,$ puis (2)-(1)donne $y^2=1.$ Et comme xy est négatif, les solutions sont : $\pm(2-i)$

Théorèmes à citer

Théorème pour l'exponentielle complexe

Soit $a\in\mathbb{C}^*$. L'ensemble des solutions de l'équation : $\exp(z)=a$ d'inconnue z est : $\{\ln(|a|)+i\arg(a)+2ik\pi\mid k\in\mathbb{Z}\}$

Formules de Moivre et Euler

Soit $n \in \mathbb{N}, \theta \in \mathbb{R}$

Moivre:

$$e^{i\theta n} = (e^{i\theta})^n$$
, ou encore $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$

Euler:

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Ne pas oublier d'apprendre ses formules trigonométriques.