Task-Level motion planning for Multi-manipulator systems

Team: US-Cobots

Team Members

1. Muskaan Maheshwari

Present: MS(Owning), Robotics and Autonomous Systems(AI), Arizona State University,

Tempe, Arizona, United States.

Past: BTech, Electrical Engineering, IIT Palakkad, India

<u>Strength</u>: Leadership, AI Algorithms, Deep Learning, Control System etc.

Contacts:

Email: muskaanmaheshwari13@gmail.com

LinkedIn: https://www.linkedin.com/in/muskaan-maheshwari-0103/

2. Rajendra Singh

Present: Sr. Software Developer @ R&D, US Technology

Past: BTech, Computer Science and Engineering, IIT Palakkad, India

Strength: ROS^[1], Perception^[2], Robot-Manipulation^[3], Open-source^[4] etc.

Contacts:

Email: singh.raj1997@gmail.com

LinkedIn: https://www.linkedin.com/in/iamrajee/ Website: https://iamrajee.github.io/projects/

Youtube: https://www.youtube.com/channel/UCzNSEsxHfpg 84-EkU9CRnQ

3. Shravani Ventrapragada

<u>Present</u>: MS(Owning), Robotics and Autonomous Systems(AI), Arizona State University, Tempe, Arizona, United States.

<u>Past</u>: BTech, Electronics and Telecommunication Engineering, Symbiosis Institute of Technology

Strength: OpenCV, Control System, Deep Learning, Al Algorithms etc.

Contacts:

Email: vsshravani99@gmail.com

LinkedIn: https://www.linkedin.com/in/shravani-ventrapragada/

Description

We want to solve the problem of multi-arm manipulation. There are various complex manipulation tasks^[5] with can't be done using a single^[6] robotic arm and require two or more arms^[7]. However, as the number of arms increases, the manipulation task becomes more complex as they have a shared space. Additionally, to get the optimal performance, all the arms have to work with each other to accomplish more complex tasks which can't be done using a single arm otherwise.

Our solution is to use task-level^[8] motion planning to break down the complex task into more simple sub-tasks and then use multi-arm planning avoiding all obstacles and self-collision on the way using pointcloud^[9] from the OAK-D-Lite camera. We see great potential in our solution primarily because our long term goal is to implement a dual-robotics arm on a mind^[10] controlled wheelchair^[11]. We see this could bring great independence to war-amputees or those specially-abled people who have limited mobility. Our vision is total independence to those in need, i.e cooking, cloth changing, housework etc.

We will be using three OAK-D-Lite cameras to generate a 3D point cloud of the environment. Two OAK-D-Lite(*Auto Focus*) would be attached to the end-effect of each arm to give a closer look at the various objects in the environment. One more OAK-D-Lite(*Fixed Focus*) would be used to watch the entire scene for avoiding obstacles and self-collisions. Stereo images from OAK-D-Lite will be passed to the point cloud library(PCL)^[12] and 3D-Object detection model^[13] to create a 3D point cloud and then detect 3D objects in the scene to be able to manipulate with them. Any 6-DOF arm can be used for manipulation tasks however for the initial prototype during 3 months, we are planning to use Lego Mindstorm kit to build two 6-DOF custom arms^[14].

During 3 months we wish to at least accomplish a simple multi-arm manipulation task^[15] autonomously with Lego arms and OAK-D-Lite stereo cameras.

Mockups

Link: https://youtu.be/-4GLB-gUQ7E

Prior Work/References

- [1]. ROS Related Repositories: https://github.com/iamrajee/roskinectic_src, Few More...
- [2]. Perception: https://github.com/iamrajee/perception_ws
- [3]. Manipulated Code: https://github.com/iamrajee/ws-moveit
- [4]. Open-source contributions: https://github.com/iamrajee
- [5]. Multi-Arm Manipulation: https://youtu.be/tS2U0AX3r_M
- [6]. Writing using Uarm: https://youtu.be/9NbwE4PMeyQ
- [7]. Team RoboSimian Darpa Robotics Challenge https://youtu.be/OesfwU1rsyg
- [8]. Task-Level Motion Planning for Multi-Manipulator System: Report, Presentation
- [9]. Manipulation in 3D: https://youtu.be/WAmr9yiQ7aw
- [10]. Team CEREBROS OpenCV AI Competition 2021: https://youtu.be/yrghhSulJKs
- [11]. Aachen Armchair Engineers: https://youtu.be/Ezp-A3RLB50
- [12]. PCL-Based Shape(Cylinder) Detection: https://www.youtube.com/watch?v=Hbbucm-V4uo
- [13]. 3D-Object(drones) detections using with stereo camera: https://youtu.be/Q3dO8PBsrjl
- [14]. Lego 6-DOF ARM: https://youtu.be/LEbUUOfdNLM
- [15]. Multi-Arm Construction: https://youtu.be/K7N7RMx9Q88