Билет 28

Aвтор1, ..., AвторN

21 июня 2020 г.

Содержание

0.1	Б илет 28: н епрерывные отооражения. н епрерывность композиции. А арактеристи-	
	ка непрерывности в терминах прообразов	_

Билет 28 СОДЕРЖАНИЕ

0.1. Билет 28: Непрерывные отображения. Непрерывность композиции. Характеристика непрерывности в терминах прообразов.

Определение 0.1.

Пусть $\langle X, \rho_X \rangle$, $\langle Y, \rho_Y \rangle$ - метрические пространства, $E \subset X, f : E \mapsto Y$.

f называется непрерывной в точке $a \in E$ если a - изолированная точка (**TODO**: не предельная? Или есть пустая проколотая окрестность в X?), либо $a \in E'$ и $\lim_{x \to a} f(x) = f(a)$.

Теорема 0.1.

Пусть $\langle X, \rho_X \rangle$, $\langle Y, \rho_Y \rangle$, $\langle Z, \rho_Z \rangle$ - метрические пространства, $E \subset X$, $f : E \mapsto Y$, $f(E) \subset \tilde{E} \subset Y$, $g : \tilde{E} \mapsto Z$.

Если f непрерывна в $a \in E$, а q непрерывна в f(a), то $q \circ f$ непрерывна в a.

Доказательство.

$$f$$
 непрерывна в $a \implies \forall \delta > 0 \quad \exists \lambda > 0 \quad \forall x \in \mathring{B}^X_{\lambda}(a) \cap E \quad f(x) \in B^Y_{\delta}(f(a)) \cap \tilde{E}.$ g непрерывна в $f(a) \implies \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in \mathring{B}^Y_{\delta}(f(a)) \cap \tilde{E} \quad g(x) \in B_{\varepsilon}(g(f(a))).$

Комбинируем:

$$\forall \varepsilon > 0 \quad \exists \lambda > 0 \quad \forall x \in \mathring{B}^{X}_{\lambda}(a) \quad g(f(x)) \in B_{\varepsilon}(g(f(a))) \implies g \circ f$$
 непрерывна в a .

Теорема 0.2.

Пусть $\langle X, \rho_X \rangle$, $\langle Y, \rho_Y \rangle$ - метрические пространства, $f: X \mapsto Y$.

f непрерывна на $X \iff \forall$ открытого $U \subset X$ $f^{-1}(U) = \{x \in X \mid f(x) \in U\}$ открыт.

Доказательство.

Hеобходимость (\Longrightarrow):

Пусть $V = f^{-1}(U)$.

Пусть $a \in V$. Так-как U открыто, $\exists \varepsilon > 0$ $B_{\varepsilon}^{Y}(f(a)) \subset U$.

По непрерывности $\exists \delta > 0 \quad f(B_{\delta}^X(a)) \subset B_{\varepsilon}^Y(f(a)) \subset U.$

 $f(B^X_\delta(a))\subset U\implies B^X_\delta(a)\subset V\implies a\in {\rm Int}\,V\implies V$ - открытое.

Достаточность (\iff):

Проверим непрервыность в $a \in X$.

 $U:=B_{arepsilon}^{Y}(f(a))$ - открытое множество.

Значит, $\exists \delta > 0 \quad B_{\delta}^{X}(a) \subset f^{-1}(U) = f^{-1}(B_{\varepsilon}^{Y}(f(a)))$

Тоесть, $f(B^X_\delta(a))\subset B^Y_\varepsilon(f(a)),$ а это и есть определение непрерывности в терминах шаров. $\ \ \Box$