1 Mechanics

1.1 Formulae

•
$$F\Delta t = m\Delta v$$

•
$$W = \Delta K$$

•
$$I = I_{\rm cm} + mD^2$$

• $r_{\rm cm} = \frac{1}{mD} \int r dm$

•
$$r_{\rm cm} = \frac{1}{m_{\rm total}} \int r \mathrm{d}m$$

•
$$L = mvr$$

• $\omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta$

•
$$\Delta\theta = \frac{1}{2}(\omega_f + \omega_i)\Delta t$$

•
$$\Delta \theta = \frac{1}{2}(\omega_f + \omega_i)\Delta t$$

• $F_{g\parallel} = mg \sin \theta$; $F_{g\perp} = mg \cos \theta$ (θ : angle of incline)

•
$$F_x = -\frac{\mathrm{d}U}{\mathrm{d}x}$$

•
$$v_{\text{ideal}} = \sqrt{rg \tan \theta}$$
 (banked curve)
• $v_{\text{escape}} = \sqrt{\frac{2GM}{r_e}}$

EMag

•
$$E_x = \int \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2} dq = \int \frac{1}{4\pi\varepsilon_0} \frac{\lambda}{r^2} dr$$

$$E_x = \int \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2} \mathrm{d}q = \int \frac{1}{r^2} \mathrm{d}q$$

•
$$i_L(t) = I(1 - e^{-t/\tau})$$

• $q_C(t) = Q(1 - e^{-t/\tau})$

$$i_L(t) = I(1 - e^{-t})$$

•
$$\tau_{\text{RL}} = \frac{L}{R}$$
; $\tau_{RC} = RC$
• $\varepsilon_{\text{induced}} = \vec{B}v\ell$; $I_{\text{induced}} = \frac{\vec{B}v\ell}{R}$

- $F_{\text{mag}} = ILB$
- $\Phi_E = \frac{Q}{\varepsilon_0} = \oint E \cdot \mathrm{d}A$

• Terminal velocity occurs when $F_{\text{mag}} = F_{\text{ext/grav}}$

• $V_C = E \cdot d$

2.2 Notes

- z.z Note
- Current/Charge is at max after 5 τ 's