习题纸5

习题 1. 对 \mathbb{R}^3 空间的如下两组基 \mathcal{B}_1 和 \mathcal{B}_2 , 求过渡矩阵 $P_{\mathcal{B}_1,\mathcal{B}_2}$ 。

$$\mathcal{B}_1 = \{(1,2,1), (2,3,3), (3,7,1)\} \notin \mathcal{B}_2 = \{(3,1,4), (5,3,2), (1,-1,7)\}$$

习题 2. 设 $A, B \in M_n(\mathbb{R})$,且 $A \cap B \in M_n(\mathbb{C})$ 中相似。证明: $A \cap B \in M_n(\mathbb{R})$ 中相似。

习题 3. 设 $A \in M_n(\mathbb{C})$ 。证明下列命题等价:

- 1. $A\bar{A} = I_n$;
- 2. 存在 $P \in GL_n(\mathbb{C})$ 使得 $A = P\bar{P}^{-1}$ 。

习题 4. 1. 证明:对所有n阶方阵A和B都有Tr(AB) = Tr(BA)。

2. 对方阵 $A \in M_n(\mathbb{F})$,记 $f_A \in (M_n(\mathbb{F}))^*$ 为线性函数

$$f_A: M_n(\mathbb{F}) \to \mathbb{F}$$

 $X \mapsto \operatorname{Tr}(AX).$

证明:线性映射

$$M_n(\mathbb{F}) \to (M_n(\mathbb{F}))^*$$

 $A \mapsto f_A$

是一个同构。

- 3. 设 $f: M_n(\mathbb{F}) \to \mathbb{F}$ 为线性函数,且满足f(AB) = f(BA)。证明:存在 $\lambda \in \mathbb{F}$ 使得 $f(A) = \lambda \operatorname{Tr}(A)$ 。
- **习题 5.** 1. 设 $A, B \in M_n(\mathbb{Z})$ 。证明:对任何质数p, $\mathrm{Tr}(A+B)^p$ 与 $\mathrm{Tr}(A^p)+\mathrm{Tr}(B^p)$ 模p同余。
 - 2. 设 $A \in M_n(\mathbb{Z})$ 。证明:对任何质数p, $Tr(A^p)$ 与Tr(A)模p同余。
 - 3. 设递归整数列 $(a_n)_n$ 满足 $a_0 = 3$, $a_1 = 0$, $a_2 = 2$,以及对任何非负整数n, $a_{n+3} = a_{n+1} + a_n$ 。证明:对任何质数p, $a_p \neq p$ 的倍数。