THE SKEW-NORMAL APPROXIMATION OF THE BINOMIAL DISTRIBUTION

Joyce Tipping

Truman State University

Spring 2011

 $X \sim Bin(n, p)$ where 0 and <math>n = 1, 2, 3, ...

$$X \sim Bin(n, p)$$
 where $0 and $n = 1, 2, 3, ...$$

$$f_X(x) = \binom{n}{x} p^x q^{n-x}$$

$$X \sim Bin(n, p)$$
 where $0 and $n = 1, 2, 3, ...$$

$$f_X(x) = \binom{n}{x} p^x q^{n-x}$$

$$F_X(x) = P(X \le x) = \sum_{k=0}^x f_X(k)$$

The binomial cdf is easy to calculate for small $n\dots$

The binomial cdf is easy to calculate for small $n \dots$

But as *n* gets larger, it becomes increasingly difficult.

The binomial cdf is easy to calculate for small $n \dots$

But as *n* gets larger, it becomes increasingly difficult.

For example ...

When
$$n = 3$$
,

$$F(1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix} p^1 q^2 + \begin{pmatrix} 3 \\ 0 \end{pmatrix} p^0 q^3$$

When n = 3,

$$F(1) = \binom{3}{1} p^1 q^2 + \binom{3}{0} p^0 q^3$$

When n = 25,

$$\begin{split} F(12) = & \binom{25}{12} \ \rho^{12} q^{13} + \binom{25}{11} \ \rho^{11} q^{14} + \binom{25}{10} \ \rho^{10} q^{15} + \binom{25}{9} \ \rho^{9} q^{16} \\ & + \binom{25}{8} \ \rho^{8} q^{17} + \binom{25}{7} \ \rho^{7} q^{18} + \binom{25}{6} \ \rho^{6} q^{19} + \binom{25}{5} \ \rho^{5} q^{20} \\ & + \binom{25}{4} \ \rho^{4} q^{21} + \binom{25}{3} \ \rho^{3} q^{22} + \binom{25}{2} \ \rho^{2} q^{23} + \binom{25}{1} \ \rho^{1} q^{24} \\ & + \binom{25}{0} \ \rho^{0} q^{25} \end{split}$$

Normal Approximation of the Binomial:

$$F_X(x) \approx \Phi\left(\frac{x + 0.5 - \mu}{\sigma}\right)$$
,

where $\mu = np$, $\sigma = \sqrt{np(1-p)}$, and Φ is the standard normal cdf.

When does this work well? ...

Normal Approximation of the Binomial:

$$F_X(x) \approx \Phi\left(\frac{x + 0.5 - \mu}{\sigma}\right),$$

where $\mu = np$, $\sigma = \sqrt{np(1-p)}$, and Φ is the standard normal cdf.

When does this work well? ... In a nutshell, when the binomial is symmetric.

The binomial is symmetric when p = 0.5

The binomial is symmetric when p = 0.5 or n is very large.

However, when n is medium and p is extreme ...

the binomial is very skewed.

However, when n is medium and p is extreme ...

the normal approximation doesn't work very well.

However, when n is medium and p is extreme ...

Can we do better?

However, when n is medium and p is extreme ...

Can we do better? Introducing ... the skew-normal distribution.

What we're going to cover:

What we're going to cover:

1. Skew-Normal distribution – basic properties

What we're going to cover:

- 1. Skew-Normal distribution basic properties
- 2. Method of Moments derive an approximation

What we're going to cover:

- 1. Skew-Normal distribution basic properties
- 2. Method of Moments derive an approximation
- 3. Accuracy compare to the normal approximation

THE SKEW-NORMAL DISTRIBUTION

DEFINITION (SKEW-NORMAL)

Let Y be a skew-normal distribution, with location parameter $\mu \in \mathbb{R}$, scale parameter $\sigma > 0$, and shape parameter $\lambda \in \mathbb{R}$. Then Y has pdf

$$f(x|\mu,\sigma,\lambda) = \frac{2}{\sigma} \cdot \phi\left(\frac{x-\mu}{\sigma}\right) \cdot \Phi\left(\frac{\lambda(x-\mu)}{\sigma}\right), \quad x \in \mathbb{R},$$

where ϕ is the standard normal pdf and Φ is the standard normal cdf.

We write $Y \sim SN(\mu, \sigma, \lambda)$.