

GRUNDLAGEN DER ELEKTROTECHNIK ET1

Teil 3 Lineare Quellen und Ersatzspannungsquellen

GLEICHSTROM

Inhalte der Kapitel 1 – 4: Gleichstrom

2 GLEICHSTROMSCHALTUNGEN

- 2.1 Zählpfeilsystem
- 2.2 Grundlegende Begriffe
- 2.3 Kirchhoffsche Gesetze
- 2.4 Parallel- und Reihenschaltung von Widerständen
- 2.5 Strom- und Spannungsteiler
- 2.6 Lineare Quellen
- 2.7 Umwandlung in Ersatzquellen
- 2.8 Überlagerungsprinzip
- 2.9 Netzwerkanalyse
- 2.10 Leistungsanpassung
- 2.11 Nichtlineare Quellen und Verbraucher
- 2.12 Gesteuerte Quellen

SPANNUNGS- UND STROMQUELLEN

Wie werden elektrische Schaltungen mit Leistung versorgt?

- · Batterie · Steddose · Generator

Solarrelle (PV)

In der Netzwerkanalyse denkt man sich eine ideale Quelle:

IDEALE SPANNUNGSQUELLE

u=R.T P=u.T

Was passiert mit einer idealen Spannungsquelle im Falle eines Kurzschlusses?

Näherungsweise Realisierung einer idealen Spannungsquelle:

A. U wird 0 have & .Q:

B. I wird 0

C. I wird unendlich groß

D. Leistung wird unendlich groß

E. Leistung geht gegen 0

Labornetzteil

REALE SPANNUNGSQUELLE

Was passiert bei einer (realen) Batterie bei einem Kurzschluss?

- A. I wird unendlich groß
- B. I wird 0
- C. I ergibt einen zunächst konstanten endlichen Wert
- D. *U* wird unendlich groß
- E. *U* wird 0
- F. *U* ergibt einen zunächst konstanten endlichen Wert

Technik und Informatik

LINEARE SPANNUNGSQUELLE

Klemmenspannung U sinkt mit steigendem Laststrom I_L

Leerlaufspannung U_0 ohne Last

Kurzschlußstrom I_0 :

$$R_L = 0$$

LINEARE SPANNUNGSQUELLE

Schaltbild

Gleichung

$$M_{L} = M_{0} - M_{1}$$

$$L_{0} R_{1} \cdot I$$

$$U_L = M_o - R : T$$

Leerlaufspannung U_0 :

Innenwiderstand

Beispiel:

$$U_0 = 1.5 V$$
 $R_i = 0.15 \Omega$
 $P_{K} = 1.5 V$

vergleiche: NiCd-Akku 0,016Ω

LINEARE SPANNUNGSQUELLE MIT LAST

Schaltung

11

ÜBUNG

Berechnen Sie Spannung, Strom und Leistung im Arbeitspunkt. gegeben: U_0 , R_i , R_L

$$U_{L} = \frac{R_{L}}{R_{i} + R_{L}} \cdot V_{0} = R_{L} \cdot I_{L} = \frac{R_{L}}{R_{i} + R_{L}} \cdot V_{0}$$

$$P_{L} = U_{L} \cdot T_{L} = \frac{K_{L}}{R_{1} + R_{L}} U_{0} \cdot U_{0} \cdot \frac{\Lambda}{R_{1} + R_{L}}$$

$$R_{1} + R_{L}$$

IDEALE STROMQUELLE

Was passiert, wenn die Klemmen einer idealen Stromquelle kurzgeschlossen werden?

- A. Nichts
- B. Strom geht gegen Null
- C. Strom geht gegen unendlich
- D. Leistung geht gegen unendlich

LINEARE STROMQUELLE

Wie sieht die Kennlinie einer linearen Stromquelle aus?

$$I_{L} = I_{0} - I_{i}$$

$$I_{i} = G_{i} \cdot M_{L}$$

$$\Rightarrow I_L = I_0 - G_1 \cdot M_L$$

Technik und Informatik

UMWANDLUNG VON LINEAREN QUELLEN

Lineare Spannungsquelle

$$U_L = U_0 - R_i I_L$$

Lineare Stromquelle

$$I_{L} = I_{0} - G_{i} U_{L}$$

$$\Rightarrow U_{L} = I_{0} - I_{L} = I_{0}$$

Beide Schaltungen verhalten sich gleich, wenn:

$$R_i = \frac{1}{6}$$

$$U_0 = T_0 / G_1$$

15

KOMBINATION VON IDEALEN QUELLEN

Welche Kombinationen sind zulässig?

В.

ZWISCHENRESUMÉE

Ideale Quelle

Abb.: Labornetzteil

$$U_{L} = U_{0}$$

$$U_{0} \downarrow U_{L}$$

Lineare Quelle

2 GLEICHSTROMSCHALTUNGEN

2.1	Zählpfeilsystem	Grundlagen
2.2	Grundlegende Begriffe	
2.3	Kirchhoffsche Gesetze	
2.4	Parallel- und Reihenschaltung von Widerständen	
2.5	Strom- und Spannungsteiler	
2.6	Lineare Quellen	
2.7	Umwandlung in Ersatzquellen	Methoden
2.8	Überlagerungsprinzip	
2.9	Netzwerkanalyse	
2.10	Leistungsanpassung	Sonstiges
2.11	Nichtlineare Quellen und Verbraucher	
2.12	Gesteuerte Quellen	

UMWANDLUNG IN ERSATZQUELLEN

Ziel: Verfahren zur Vereinfachung einer Schaltung

Idee: nur Spannung und Strom an Klemmenpaar gesucht

⇒ Betrachtung als **Eintor** = Black box mit zwei Anschlüssen

(Hinweis: Zweipol ist eine veraltete Bezeichnung für ein Eintor)

Es gilt:

Jedes aktive lineare Eintor lässt sich in eine Ersatzspannungsquelle oder Ersatzstromquelle umwandeln.

NORTON- UND THÉVENIN-THEOREM

Aktiver Linearer Zweipol

Ersatzquelle

BESTIMMUNG DER ERSATZQUELLE

- 1. Bestimmung der Quellenspannung \boldsymbol{U}_0 Leerlaufspannung des linearen Zweipols
- 2. Bestimmung des Innenwiderstandes R_i Innenwiderstand zwischen den beiden Polen (ohne den Lastwiderstand "in die Klemmen hineinschauen")
 - ideale Spannungsquellen → durch Kurzschluss ersetzen
 - ideale Stromquellen entfernen

Optional, nur wenn lineare <u>Strom</u>quelle gesucht:

3. Berechnung des Kurzschlussstromes I_0 Wenn Ersatzstromquelle gefragt \Rightarrow Kurzschlussstrom über $I_0 = U_0 / R_i$ berechnen

BEISPIEL

Bestimmen Sie die Ersatzquelle der folgenden Schaltung:

BEISPIEL

Bestimmen Sie die Ersatzquelle der folgenden Schaltung:

1. BESTIMMUNG DER LEERLAUFSPANNUNG

- Leerlauf der Klemmen 1 und 2!
- Wie groß ist der Strom durch R_2 ?

• Wie groß ist die Spannung an R_2 ?

• Wie groß ist U_0 ?

$$M_0 = M_{R3} = \frac{R_3}{R_1 + R_3}$$

24

2. BESTIMMUNG DES INNENWIDERSTANDES

Spannungsquelle → Kurzschluss Stromquelle → Unterbrechung

Widerstand zwischen den Klemmen:

Technik und Informatik

3. BESTIMMUNG DES KURZSCHLUßSTROMES

Kurzschlußsstrom berechnen: $I_0 = U_0 / R_i$

$$I_0 = \frac{U_0}{R_i} = \frac{R_3}{R_1 + R_3} \cdot U \cdot \frac{R_1 + R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3} = \frac{R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3} \cdot U$$

Ergebnis:

3 Schaltungen, die sich bzgl. der Klemmen 1-2 gleich verhalten

Vorsicht: Häufig wird die Leerlaufspannung U_0 mit U verwechselt!

ÜBUNGSAUFGABE

Bestimmen Sie die Ersatzspannungsquelle, gegeb. sind U_1, U_2 und die Widerstände.

$$U_0 = V_3 - V_4$$

$$\frac{R_{i}}{R_{i}} = \frac{R_{1} || R_{5}}{R_{5}} + \frac{R_{1} || R_{5}}{R_{4} + R_{5}}$$

$$= \frac{R_{1} \cdot R_{5}}{R_{4} + R_{5}} + \frac{R_{4} \cdot R_{5}}{R_{4} + R_{5}}$$

LÖSUNG ZUM VERGLEICH

$$U_3 = U_1 \cdot \frac{R_3}{R_1 + R_3}$$

$$U_4 = U_2 \cdot \frac{R_4}{R_4 + R_5}$$

$$U_0 = U_{12} = U_3 - U_4$$

$$R_i = \frac{R_1 \cdot R_3}{R_1 + R_3} + \frac{R_4 \cdot R_5}{R_4 + R_5}$$

LABORAUFGABE

4. Ersatzquellen

Für ein Widerstandsnetzwerk mit zwei Spannungsquellen soll rechnerisch und experimentell eine Ersatzquelle bestimmt werden, die sich bezüglich der Klemmen a und b genau wie das ursprüngliche Netzwerk verhält. Bauen Sie das folgende Netzwerk auf und schließen Sie R₇ zunächst noch nicht an.

Es gilt: $U_1 = U_2 = 4,5$ V, $R_1 = 1$ k Ω , $R_2 = 100$ Ω , $R_3 = 220$ Ω , $R_4 = 680$ Ω , $R_7 = 470$ Ω . Die beiden Spannungsquellen werden mit dem Labornetzgerät Hameg Triple Power Supply HM7042-5 gebildet.

a) Vorbereitende Berechnungen:

Berechnen Sie die folgenden Werte der Schaltung für das links von den Klemmen a und b liegende Netzwerk mit Hilfe des Verfahrens der Ersatzspannungsquelle:

- Leerlaufspannung U_L (ohne Belastung mit R₇) Zur Berechnung bietet sich das Überlagerungsprinzip über die Berechnung der Stromsumme I_{R4} = I₄₁+I₄₂ der Einzelwirkungen von U₁ (⇒ I₄₁) und U₂ (⇒ I₄₂) an.
- Kurzschlussstrom I_K (ohne Belastung mit R₇)
- Klemmspannung U7 bei Belastung mit R7
- Laststrom I₇ bei Belastung mit R₇

Technik und Informatik

2 GLEICHSTROMSCHALTUNGEN

2.1	Zählpfeilsystem	Grundlagen
2.2	Grundlegende Begriffe	
2.3	Kirchhoffsche Gesetze	
2.4	Parallel- und Reihenschaltung von Widerständer)
2.5	Strom- und Spannungsteiler	
2.6	Lineare Quellen	
2.7	Umwandlung in Ersatzquellen	Methoden
2.8	Überlagerungsprinzip	
2.9	<u>Netzwerkanalyse</u>	
2.10	Leistungsanpassung	Sonstiges
2.11	Nichtlineare Quellen und Verbraucher	
2.12	Gesteuerte Quellen	

GLEICHSTROM

Inhalte der Kapitel 1 – 4: Gleichstrom

LEISTUNG IN LAST R_L BEI LINEARER QUELLE

Wie groß ist die Leistung, die in der Last R_L umgewandelt wird?

$$P_L = \frac{R_L U_0^2}{(R_i + R_L)^2}$$

LEISTUNGSANPASSUNG BEI LINEARER QUELLE

Bei welchem Lastwiderstand ist die Leistung in R_L maximal?

$$P_L = f(R_L)$$
 hat Maximum, wenn: $P_L = O$, $\frac{dP_L}{dR_L} = O$, $\frac{dP_L}{dR_L} = O$, $\frac{dP_L}{dR_L} = O$

$$\left(\frac{f}{g}\right)' = \frac{1}{g^2}$$

$$P_L = \frac{R_L U_0^2}{(R_i + R_L)^2}$$

Mit:
$$(R_i +$$

$$\Rightarrow f = R M_0^2$$

$$g = (\mathbb{R}_i + \mathbb{R}_L)^2$$

$$P_{L}'(R_{L}) = \frac{12}{(Q_{1}+Q_{1})^{2}-2(Q_{1}+Q_{2})Q_{L}Q_{2}} = \frac{12}{(Q_{1}+Q_{1})^{2}}$$

$$g' = 1.2 \cdot (R_i + R_L)$$

RECHNUNGEN (SAUBER)

$$u = R_L U_0^2 \qquad v = (R_i + R_L)^2$$

$$u' = U_0^2 \qquad v' = 2(R_i + R_L)$$

$$P_L^{\bullet} = \frac{U_0^2 (R_i + R_L)^2 - R_L U_0^2 2(R_i + R_L)}{\langle R_i + R_L \rangle^2} \qquad - \delta$$

$$P_L^{\bullet} = 0 \quad \Leftrightarrow \quad R_L U_0^2 2(R_i + R_L) = U_0^2 (R_i + R_L)^2$$

$$2 \quad R_L = R_i$$

$$R_L = R_i$$

$$P_L(R_L) = \frac{R_i U_0^2}{(4R_i^2)} = \frac{U_0^2}{4R_i}$$

MATEMATICA LÖSUNG

https://develop.open.wolframcloud.com/app/

$$PL[RL_]:=U0^2*(RL/(RL+Ri)^2);$$

PL[Ri]

Plot[PL[RL]/.{U0->1,Ri->1},{RL,0,6}]

 $ln[1] = PL[RL] := U0 ^ 2 * (RL/(RL + Ri) ^ 2);$

In[18]:= FullSimplify[D[PL[RL], RL]]

In[19]:= Solve[D[PL[RL], RL] == 0, RL]

D[PL[RL], RL]

Out[19]= $\{\{RL \rightarrow Ri\}\}$

In[20]:= PL[Ri]

 $Out[20] = \frac{U0^2}{4 \text{ Ri}}$

HAW Hamburg

Technik und Informatik

LEISTUNGSANPASSUNG BEI LINEARER QUELLE

Die Leistung in R_L wird maximal für $R_i = R_L$ und es gilt:

$$P_{L,\max} = \frac{{U_0}^2}{4R_i}$$

2 GLEICHSTROMSCHALTUNGEN

2.1	Zählpfeilsystem	Grundlagen
2.2	Grundlegende Begriffe	
2.3	Kirchhoffsche Gesetze	
2.4	Parallel- und Reihenschaltung von Widerständen	
2.5	Strom- und Spannungsteiler	
2.6	Lineare Quellen	
2.7	Umwandlung in Ersatzquellen	Methoden
2.8	Überlagerungsprinzip	
2.9	Netzwerkanalyse	
2.10	Leistungsanpassung	Sonstiges
2.11	Nichtlineare Quellen und Verbraucher	
2.12	Gesteuerte Quellen	

GLEICHSTROM

Inhalte der Kapitel 1 – 4: Gleichstrom

ÜBERLAGERUNGSPRINZIP

Ziel: Analyse von Schaltungen mit mehr als einer Quelle

Idee: Wirkung jeder Quelle einzeln berechnen

Einzelwirkungen aufaddieren

Es gilt:

- In einem linearen Netzwerk kann die von allen Quellen hervorgerufene Wirkung an einer beliebigen Stelle des Netzwerkes als Summe der Wirkungen jeder einzelnen Quelle bestimmt werden.
- Dabei sind die idealen Quellen durch ihre idealen Innenwiderstände zu ersetzen (ideale Spannungsquelle $R_i = 0$, Stromquelle mit $R_i \to \infty$).

Auch bezeichnet als: Superpositionsprinzip oder Helmholtz-Prinzip

METHODE DES ÜBERLAGERUNGSPRINZIPS

- je Quelle ein Schaltbild:
 - alle anderen idealen Spannungsquellen kurzgeschlossen
 - alle anderen idealen Stromquellen entfernt
- je Schaltbild berechnet man dann den gesuchten Teilstrom oder die gesuchte Teilspannung
- Ergebnis
 - Summe der Teilströme oder Teilspannungen (die Superposition)

BEISPIEL

Bestimmen Sie den Laststrom $L_{472\Omega}$ = $\frac{6.6V}{55\Omega}$ = 120 mA

1. SCHALTBILD: EINFLUSS VON \boldsymbol{U}_0

2. SCHALTBILD: EINFLUSS VON I_{0}

$$I_{4b} =$$

Technik und Informatik

3. SUPERPOSITION

$$I_4 = I_{4a} + I_{4b} = 120_{\text{mA}} + 40_{\text{mA}} = 160_{\text{mA}} + 0,16A$$

ÜBUNGSAUFGABE ZUR SUPERPOSITION

Bestimmen Sie den Strom I_3 durch den mittleren Widerstand.

1. EINFLUSS VON U_1

Prof. Dr.-Ing. lartin Lapke

2. EINFLUSS VON U_2

50

3. SUPERPOSITION

$$I_{3a} = 2/3 mA$$

 $I_{3b} = 4/3 mA$
 $\Rightarrow I_3 = I_{3a} + I_{35} = 6/5 mA = 2mA$

LABORAUFGABE

4. Ersatzquellen

Für ein Widerstandsnetzwerk mit zwei Spannungsquellen soll rechnerisch und experimentell eine Ersatzquelle bestimmt werden, die sich bezüglich der Klemmen a und b genau wie das ursprüngliche Netzwerk verhält. Bauen Sie das folgende Netzwerk auf und schließen Sie R₇ zunächst noch nicht an.

Es gilt: $U_1 = U_2 = 4,5$ V, $R_1 = 1$ k Ω , $R_2 = 100$ Ω , $R_3 = 220$ Ω , $R_4 = 680$ Ω , $R_7 = 470$ Ω . Die beiden Spannungsquellen werden mit dem Labornetzgerät Hameg Triple Power Supply HM7042-5 gebildet.

a) Vorbereitende Berechnungen:

Berechnen Sie die folgenden Werte der Schaltung für das links von den Klemmen a und b liegende Netzwerk mit Hilfe des Verfahrens der Ersatzspannungsquelle:

- Leerlaufspannung U_L (ohne Belastung mit R_7) Zur Berechnung bietet sich das Überlagerungsprinzip über die Berechnung der Stromsumme $I_{R4} = I_{41} + I_{42}$ der Einzelwirkungen von $U_1 \iff I_{41}$ und $U_2 \iff I_{42}$ an.
- Kurzschlussstrom I_K (ohne Belastung mit R₇)
- Klemmspannung U₇ bei Belastung mit R₇
- Laststrom I₇ bei Belastung mit R₇

WAS SIE MITNEHMEN SOLLEN... (1)

Kennlinien und Schaltbild der linearen Quellen

lineare Spannungsquelle:

lineare Stromquelle:

Umwandlung von linearer Spannungs- in lineare Stromquelle:

Widerstand: Risp = R; s≥

• Stromquelle: $V_{\bullet} = \mathbb{R}_{1} \mathcal{I}_{\bullet}$

Umwandlung eines aktiven linearen Netzwerkes in Ersatzquelle:

1. Innerwidestand and Sight d. Anschlüsse

2. Leer landspung emitteln

Leistungsanpassung ist gegeben, wenn:

$$R:=R_{L}$$

= 40°

WAS SIE MITNEHMEN SOLLEN (2)

Wie bestimmt man den Innenwiderstand einer Quelle?

WAS SIE MITNEHMEN SOLLEN... (3)

Überlagerungsprinzip

- · eingesetzt, wenn: Mehrere Quellen
- · Vorgehen: Jede Quelle einzeln betrachten
- Spannungsquelle ersetzen durch: $\phi \Rightarrow | kwzschluss$

Stromquelle ersetzen durch: