

TrenchP™ Power MOSFET

IXTY15P15T IXTA15P15T IXTP15P15T

 $V_{DSS} = -150V$ $I_{D25} = -15A$ $R_{DS(on)} \le 240m\Omega$

P-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum R	atings
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	- 150	V
V _{DGR}	$T_{_{\rm J}}$ = 25°C to 150°C, $R_{_{\rm GS}}$ = 1M Ω	- 150	V
V _{GSS}	Continuous	<u>+</u> 15	V
\mathbf{V}_{GSM}	Transient	<u>+</u> 25	V
I _{D25}	T _C = 25°C	- 15	А
I _{DM}	$\rm T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $\rm T_{_{\rm JM}}$	- 45	Α
IA	T _C = 25°C	- 15	Α
E _{AS}	$T_{c} = 25^{\circ}C$	300	mJ
P _D	T _C = 25°C	150	W
T _J		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in
Weight	TO-252	0.35	g
	TO-263	2.50	g
	TO-220	3.00	g

TO-252 (IXTY)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Features

- International Standard Packages
- Avalanche Rated
- Extended FBSOA
- Fast Intrinsic Diode
- ullet Low $R_{\scriptscriptstyle DS(ON)}$ and $Q_{\scriptscriptstyle G}$

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High-Side Switching
- Push Pull Amplifiers
- DC Choppers
- Automatic Test Equipment
- Current Regulators
- Battery Charger Applications

		cteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_{D} = -250\mu A$	-150			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = -250\mu A$	- 2.0		- 4.5	V
I _{GSS}	$V_{GS} = \pm 15V, V_{DS} = 0V$			±50	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			- 10 - 250	μ Α μ Α
R _{DS(on)}	V _{GS} = -10V, I _D = 0.5 • I _{D25} , Note 1			240	mΩ

Symbo (T _J = 25		Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max.
g _{fs}		$V_{DS} = -10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	9	15	s
C _{iss})			3650	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$	$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$		210	pF
\mathbf{C}_{rss}			55	pF	
t _{d(on)}	٦	Resistive Switching Times		21	ns
t _r		G		14	ns
$\mathbf{t}_{d(off)}$	1	$V_{gs} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		36	ns
t _f	$\int R_{\rm G} =$	$R_{\rm G} = 3\Omega \text{ (External)}$		11	ns
$\mathbf{Q}_{g(on)}$)			48	nC
Q_{gs}	} V _G	$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		17	nC
\mathbf{Q}_{gd}				12	nC
R _{thJC}					0.83 °C/W
$\mathbf{R}_{\mathrm{thCS}}$		TO-220		0.50	°C/W

Source-Drain Diode

		Chara Min.	cteristic Values Typ.		
I _s	$V_{GS} = 0V$			- 15	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			- 60	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			-1.3	V
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 0.5 \cdot I_{D25}, -di/dt = -100A/\mu s$ $V_R = -100V, V_{GS} = 0V$		116 638 - 11		ns nC A

Note 1: Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

I_D - Amperes

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

Fig. 18. Resistive Turn-off Switching Times vs.
Gate Resistance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

