Ответы на вопросы по курсу «Теория Вероятностей» *

Колодзей Дарья, 394^{\dagger} осенний семестр 2014

Содержание

1 Вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P})$. Аксиомы Колмогорова.

Чтобы дать определение *вероятностному пространству*, нам понадобится несколько вспомогательных определений.

Место: ФИВТ МФТИ

^{*}Лектор: Жуковский Максим Евгеньевич

[†]Спасибо Алексею Журавлёву за конспекты и билеты

Спасибо Павлу Ахтямову за конспекты

Спасибо Дмитрию Иващенко за печатные конпекты

Определение 1 (Алгебра). Пусть Ω — произвольное множество. Система его подмножеств $\mathcal{A} \subset 2^{\Omega}$ называется алгеброй, если выполнены условия:

- 1. $\Omega \in \mathcal{A}$
- 2. Если A,B пара множеств, принадлежащих $\mathcal{A},$ то

$$A \cup B \in \mathcal{A}, A \cap B \in \mathcal{A}$$

3.
$$A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$$

Определение 2 (σ -алгебра). Пусть Ω — произвольное множество. Система его подмножеств $\mathcal{F} \subset 2^{\Omega}$ называется σ -алгеброй, если выполнены условия:

- 1. $\Omega \in \mathcal{F}$
- 2. Если $\{A_i\}$ последовательность множеств, принадлежащих \mathcal{F} , то

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}, \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$$

3.
$$A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F}$$

Определение 3 (Измеримое пространство). Измеримым пространством называют пару $\langle \Omega, \mathcal{A} \rangle$, где Ω — произвольное множество, а \mathcal{A} — алгебра его подмножеств.

Определение 4 (Конечно-аддитивная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию \mathbf{P} : $\mathcal{A} \to \mathbb{R}$ называют конечно-аддитивной мерой данного пространства, если выполнены свойства:

1.
$$\forall A \in \mathcal{A} \mathbf{P}(A) \geq 0$$

2.
$$A, B \in \mathcal{A}, A \cap B = \emptyset \Rightarrow \mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$$

Определение 5 (Конечно-аддитивная конечная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию $\mathbf{P}: \mathcal{A} \to \mathbb{R}$ называют конечно-аддитивной конечной мерой данного пространства, если она является конечно-аддитивной мерой данного пространства и $\mathbf{P}(\Omega) < \infty$.

Определение 6 (Конечно-аддитивная вероятностная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию $\mathbf{P}: \mathcal{A} \to \mathbb{R}$ называют конечно-аддитивной вероятностной мерой данного пространства, если она является конечно-аддитивной мерой данного пространства и $\mathbf{P}(\Omega)=1$.

Определение 7 (Счётно-аддитивная вероятностная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию $\mathbf{P}: \mathcal{A} \to \mathbb{R}$ называют *счётно-аддитивной вероятностной мерой* данного пространства, если выполнены свойства:

1.
$$\forall A \in \mathcal{A} \mathbf{P}(A) \geq 0$$

2.
$$P(\Omega) = 1$$

3. Пусть $\{A_i\}$ — последовательность попарнонеперсекающихся множеств, принадлежащих \mathcal{A} . Пусть их объединение также лежит в \mathcal{A} . Тогда верно

$$\mathbf{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Счётно-аддитивную вероятностную меру над $\langle \Omega, \mathcal{A} \rangle$ также называют:

- вероятностью над $\langle \Omega, \mathcal{A} \rangle$
- ullet распределением вероятностей над Ω
- распределением над $\langle \Omega, \mathcal{A} \rangle$

Определение 8 (Вероятностное пространство в широком смысле). Тройку $(\Omega, \mathcal{A}, \mathbf{P})$, где

- \bullet Ω произвольное множество
- \mathcal{A} алгебра над Ω
- \mathbf{P} вероятность над $\langle \Omega, \mathcal{A} \rangle$

называют вероятностным пространством в широком смысле. Элементы \mathcal{A} называют событиями. Событие Ω называют достоверным событием, событие \varnothing называют невозможным событием.

Определение 9 (Вероятностное пространство). Тройку $\langle \Omega, \mathcal{A}, \mathbf{P} \rangle$, где

- Ω произвольное множество
- $\mathcal{A}-\sigma$ -алгебра над Ω
- \mathbf{P} вероятность над $\langle \Omega, \mathcal{A} \rangle$

называют вероятностным пространством.

Аксиомы Колмогорова — это аксиомы, которым должно удовлетворять вероятностное пространство. В нашем случае аксиомы Колмогорова зашиты внутрь определения вероятностного пространства.

- 2 Дискретные вероятностые пространства. Классическое определение вероятности. Примеры. Геометрические вероятности. Примеры.
- 2.1 Дискретные вероятностные пространства

Определения

Определение 10 (Дискретное вероятностное пространство). Вероятностное пространство $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ называется дискретным вероятностным пространством, если Ω не более чем счётно.

Определение 11 (Классическое определение вероятности). Вероятностное пространство $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ называется классическим вероятностным пространством, если:

- Ω конечно, $|\Omega| = n$
- $\mathcal{F} = 2^{\Omega}$
- $\forall \omega \in \Omega \ \mathbf{P}(\omega) = \frac{1}{n}$

Примеры классических вероятностных пространств

Пример 1 (Упорядоченный k-кратный выбор из n объектов с возвращением). Упорядоченный k-кратный выбор из n объектов с возвращением описывается вероятностным пространством $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ следующего вида:

- $\Omega=$ все слова длины k над алфавитом мощности n
- $\mathcal{F} = 2^{\Omega}$
- $\mathbf{P}(\{\omega\}) = \frac{1}{n^k}$, где $\omega \in \Omega$

Примеры конечных (неклассических) дискретных вероятностных пространств

Пример 2 (Распределение Бернулли). Вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P})$ следующего вида

- $\Omega = \{0, 1\}$
- $\mathcal{F}=2^{\Omega}$
- $\mathbf{P}(1) = p, \mathbf{P}(0) = q$, где q = 1 p

описывает некоторый однократный эксперимент, в котором 1 соответствует успеху, p — вероятности успеха, а 0 и q — провалу и его вероятности. Распределение вероятностей $\mathbf{P}: \{\varnothing, \{0\}, \{1\}, \{0, 1\}\} \to \{0, q, p, 1\}$ называют распределением Бернулли.

Пример 3 (Схема Бернулли). Опыт, состоящий в n-кратном повторении некоторого эксперимента с вероятностью успеха p, и соответствующее ему вероятностное пространство

- $\Omega =$ все последовательности нулей и единиц длины n.
- $\mathcal{F}=2^{\Omega}$
- $\mathbf{P}(\omega) = p^k q^(n-k)$, где q = 1 p, $k = |\omega|_1$

называют схемой Бернулли

Примеры бесконечных дискретных вероятностных пространств

Пример 4 (Геометрическое распределение). Вероятностное пространство $\langle \Omega, \mathcal{F}, \mathbf{P} \rangle$ следующего вида

- $\Omega = 0 \cup \mathbb{N}$
- $\mathcal{F} = 2^{\Omega}$
- $\mathbf{P}(k) = pq^k$, где $q = 1 p, k \in 0 \cup \mathbb{N}$

описывает бесконечное повторение эксперимента до тех пор пока не случится успех. Элементарное событие k соответствует получению первого успеха после k неудачных попыток. Соответствующее распределение вероятностей называют seomempuческим seomempu

Пример 5 (Распределение Пуассона).

2.2 Геометрические вероятности

Определение 12. Вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P})$, где

- $\Omega \subset \mathbb{R}^n$
- \mathcal{F} имеющие объём (измеримые по Жордану) подмножества Ω

ullet $\mathbf{P}(A)=rac{|A|}{|\Omega|},$ т. е. частному соотвествующих объёмов

называется геометрическим вероятностным пространством.

С помощью геометрической вероятности можно решать следующую задачу: пусть есть два студента. Пусть про каждого студента известно, что он приходит в столовую в случайное время в течение часа и обедает в течение 15 минут. Спрашивается вероятность встречи этих студентов. Решение заключается в том, чтобы отложить по координатным осям времена прихода студентов, отметить область точек, внутри которой студенты встречаются, и посчитать площадь этой области.

Говоря о геометрических вероятностях, можно упомянуть метод Монте-Карло (способ подсчёта чегонибудь, (например, отношения площадей) с помощью многократного моделирования случайного процесса (например, бросания точки на фигуру)).