Indian Institute of Technology, Guwahati

Depratment Of Mechanical Engineering

Computational Fluid Dynamics (ME543)

Home Assignment 2

Submitted To:

Prof. Anoop K.Das

Submitted By:

Mritunjay Roll No. 214103004

Table of Content

A) C-code for lid driven cavity	3
B) Table of Result	6
C) Tecplots	
• U-velocity	7
• V-velocity	8
Stream lines	9
D) Conclusion	10

C-Code for lid Driven Cavity

```
#include<stdio.h>
#include<math.h>
#define grid 129
#define Re 400.0
#define emax .00001
int main()
{
FILE *u,*v,*s,*w;
int i,j,k=0;
float S[200][200],temp_S[200][200],W[200][200],temp_W[200][200],U[1][200],V[1][200];
float X[200],Y[200],dx=(1/128),dy=(1/128);
float N=0,D=0,e=0,er=1;
printf("Obseravtions For Reynold's no.:400\n");
for(i=0;i<grid;i++)
for(j=0;j \leq grid;j++)
S[i][j]=0;
temp_S[i][j]=0;
if(i==0||i==128)
W[i][j]=0;
temp_W[i][j]=0;
}
else
if(j==128)
W[i][j] = -2/dy;
temp_W[i][j]=-2/dy;
}
else
W[i][j]=0;
temp_W[i][j]=0;
}
//do
//
while(er>emax)
k=k+1;
printf("k=%d\n",k);
for(i=1;i<(grid-1);i++)
```

```
for(j=1;j<(grid-1);j++)
temp_S[i][j]=(temp_S[i+1][j]+temp_S[i-1][j]+temp_S[i][j+1]+temp_S[i][j-1]+(dx*dx*W[i])
[j]))*0.25;
}
}
for(j=1;j<(grid-1);j++)
W[0][j]=(-2*temp_S[1][j])/(dx*dx);
temp_W[0][j]=W[0][j];
W[128][j]=(-2*temp_S[127][j])/(dx*dx);
temp_W[128][j]=W[128][j];
for(i=1;i<(grid-1);i++)
{
W[i][0]=(-2*temp_S[i][1])/(dy*dy);
temp_W[i][0]=W[i][0];
W[i][128]=((-2*temp_S[i][127])-(2*dy))/(dy*dy);
temp_W[i][128]=W[i][128];
for(i=1;i<(grid-1);i++)
for(j=1;j<(grid-1);j++)
temp_W[i][j] = (temp_W[i+1][j] + temp_W[i-1][j] + W[i][j+1] + temp_W[i][j-1] - (0.25*Re*(W[i+1][j] - (0.25*Re*(W[i+1][i] - (0.25*R
temp_W[i-1][j])*(S[i][j+1]-S[i][j-1]))+(0.25*Re*(W[i][j+1]-temp_W[i][j-1])*(S[i+1][j]-S[i-1])
[j])))*0.25;
}
}
for(i=0;i<grid;i++)
for(j=0;j \leq grid;j++)
N=N+fabs(temp_W[i][j]-W[i][j]);
D=D+fabs(temp_W[i][j]);
}
}
e=e+(N/D);
//printf("%f",e);
for(i=0;i<grid;i++)
for(j=0;j < grid;j++)
S[i][j]=temp_S[i][j];
W[i][j]=temp_W[i][j];
}
}
er=e;
```

```
e=0;
N=0;
D=0;
//while(er>emax);
printf("\n\n");
printf("Error:%f\n",er);
printf("Total no. of Iteration till convergence:%d",k);
X[0]=0;
Y[0]=0;
for(j=0;j \leq grid;j++)
Y[j+1]=Y[j]+dy;
for(i=0;i<grid;i++)
X[i+1]=X[i]+dx;
s=fopen("Stream Function.dat","w");
fprintf(s,"X\tY\tStream function\n",grid,grid);
for(int p=0;p<grid;p++)</pre>
for(int q=0;q<grid;q++)</pre>
fprintf(s, "\%f\t\%f\n", X[p], Y[q], S[p][q]);
fclose(s);
w=fopen("Vorticity.dat","w");
fprintf(w,"X\tY\tVorticity\n",grid,grid);
for(int p=0;p<grid;p++)</pre>
for(int q=0;q < grid;q++)
fprintf(w, "\%f\t\%f\n", X[p], Y[q], W[p][q]);
fclose(w);
for(j=0;j \leq grid;j++)
U[0][j]=(S[64][j+1]-S[64][j-1])/(2*dy);
V[0][j]=(S[65][j]-S[63][j])/(2*dx);
u=fopen("U-Velocity.dat","w");
fprintf(u, "X\tY\tU-velocity", grid, grid);
```

```
for(int q=0;q<grid;q++)
{
fprintf(u,"l/2\t%f\t%f\n",Y[q],U[0][q]);
}
fclose(u);

v=fopen("V-Velocity.dat","w");
fprintf(v,"X\tY\tU-velocity",grid,grid);
for(int q=0;q<grid;q++)
{
fprintf(v,"l/2\t%f\t%f\n",Y[q],V[0][q]);
}
fclose(v);
}</pre>
```

TABLE OF RESULT

Grid	U-velocity	Grid	U-velocity	Grid	U-velocity	Grid	U-velocity
no.	_	no.	_	no.	_	no.	
1	-0,01	35	-0,16	69	-0,2	103	0,14
2	-0,01	36	-0,16	70	-0,19	104	0,16
3	-0,02	37	-0,16	71	-0,19	105	0,18
4	-0,02	38	-0,17	72	-0,18	106	0,2
5	-0,03	39	-0,17	73	-0,18	107	0,22
6	-0,03	40	-0,17	74	-0,17	108	0,24
7	-0,04	41	-0,18	75	-0,16	109	0,26
8	-0,04	42	-0,18	76	-0,16	110	0,29
9	-0,05	43	-0,19	77	-0,15	111	0,31
10	-0,05	44	-0,19	78	-0,14	112	0,34
11	-0,06	45	-0,19	79	-0,14	113	0,37
12	-0,06	46	-0,2	80	-0,13	114	0,4
13	-0,06	47	-0,2	81	-0,12	115	0,44
14	-0,07	48	-0,2	82	-0,11	116	0,47
15	-0,07	49	-0,2	83	-0,1	117	0,51
16	-0,08	50	-0,21	84	-0,09	118	0,56
17	-0,08	51	-0,21	85	-0,08	119	0,6
18	-0,09	52	-0,21	86	-0,07	120	0,64
19	-0,09	53	-0,21	87	-0,06	121	0,69
20	-0,09	54	-0,21	88	-0,05	122	0,74
21	-0,1	55	-0,21	89	-0,04	123	0,79
22	-0,1	56	-0,22	90	-0,03	124	0,84
23	-0,11	57	-0,22	91	-0,02	125	0,9
24	-0,11	58	-0,22	92	-0,01	126	0,95
25	-0,11	59	-0,22	93	0	127	1
26	-0,12	60	-0,22	94	0,01	128	0
27	-0,12	61	-0,22	95	0,03		
28	-0,13	62	-0,21	96	0,04		
29	-0,13	63	-0,21	97	0,05		
30	-0,14	64	-0,21	98	0,06		
31	-0,14	65	-0,21	99	0,08		
32	-0,14	66	-0,21	100	0,09		
33	-0,15	67	-0,2	101	0,11		
34	-0,15	68	-0,2	102	0,12		

TECPLOTS

• <u>U-Velocity</u>

• <u>V-Velocity</u>

Grid	V-Velocity	Grid	l V-Velocity	Grid	V-Velocity	Grid	V-Velocity
no.	-	no.	-	no.	-	no.	-
1	0.01	35	0.27	69	0.53	103	0.8
2	0.02	36	0.28	70	0.54	104	0.81
3	0.02	37	0.29	71	0.55	105	0.81
4	0.03	38	0.29	72	0.56	106	0.82
5	0.04	39	0.3	73	0.57	107	0.83
6	0.05	40	0.31	74	0.57	108	0.84
7	0.05	41	0.32	75	0.58	109	0.84
8	0.06	42	0.33	76	0.59	110	0.85
9	0.07	43	0.33	77	0.6	111	0.86
10	0.08	44	0.34	78	0.6	112	0.87
11	0.09	45	0.35	79	0.61	113	0.88
12	0.09	46	0.36	80	0.62	114	0.88
13	0.1	47	0.36	81	0.63	115	0.89
14	0.11	48	0.37	82	0.64	116	0.9
15	0.12	49	0.38	83	0.64	117	0.91
16	0.12	50	0.39	84	0.65	118	0.91
17	0.13	51	0.4	85	0.66	119	0.92
18	0.14	52	0.4	86	0.67	120	0.93
19	0.15	53	0.41	87	0.67	121	0.94
20	0.16	54	0.42	88	0.68	122	0.95
21	0.16	55	0.43	89	0.69	123	0.95
22	0.17	56	0.43	90	0.7	124	0.96
23	0.18	57	0.44	91	0.71	125	0.97
24	0.19	58	0.45	92	0.71	126	0.98
25	0.19	59	0.46	93	0.72	127	0.98
26	0.2	60	0.47	94	0.73	128	0.99
27	0.21	61	0.47	95	0.74		
28	0.22	62	0.48	96	0.74		
29	0.22	63	0.49	97	0.75		
30	0.23	64	0.5	98	0.76		
31	0.24	65	0.5	99	0.77		
32	0.25	66	0.51	100	0.78		
33	0.26	67	0.52	101	0.78		
34	0.26	68	0.53	102	0.79		

• <u>Streamlines</u>

CONCLUSION

All the Tecplots and Tables are very much syncronizing with the $\ensuremath{\mathsf{GHIA}}$ and $\ensuremath{\mathsf{GHIA}}$ experiment.