GENERAL CHEMISTRY

Chapter 5

Chemical Equilibrium

1

1

OUTLINE

- **✓**Basic concepts
- **✓The equilibrium constant**
- **✓LeChatelier's Principle**
- ✓ Relationship between K_p &K_c
- ✓ Relationship between ΔG^{0}_{rxn} and K
- **✓**Evaluation of K at difference temperature.

Basic concepts

***Reversible reactions:**

- ✓ Reactions that do **not go to completion** and that can occur in **either direction**.
- ✓ Both the **forward and reverse reactions** occur simultaneously.

$$aA+bB \rightleftharpoons cC+dD$$

*In the balanced equation:

- ✓ "a, b, c, d" represent the stoichiometric coefficients
- ✓ A, B are called the "reactants"
- ✓ C, D are called the "products."
- \checkmark The double arrow (\rightleftharpoons) indicates that the reaction is reversible

3

3

Basic concepts

❖ Chemical equilibrium exists when two opposing reactions occur simultaneously at the same rate.

4

The equilibrium constant

❖ For a general reaction in the gas phase:

$$aA(g)+bB(g) \rightleftharpoons cC(g)+dD(g)$$

✓ The equilibrium constant expression is:

$$K_{eq} = \frac{P_{\rm C}^c \times P_{\rm D}^d}{P_{\rm A}^a \times P_{\rm B}^b}$$

 $\checkmark K_{eq}$ is the equilibrium constant.

✓ The subscript "eq" to emphasize that partial pressure in the equilibrium constant expression are those at equilibrium.

5

5

The equilibrium constant

* For a general reaction:

For
$$aA + bB \Longrightarrow cC + dD$$
, $K_c = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$ reactants

K_c values always involve equilibrium values of concentrations.

6

The equilibrium constant

- * The equilibrium constant K_{eq} has no units.
- \star The value of K_{eq} :
 - ✓ Is constant at a given temperature,
 - ✓ Changes if the temperature changes,
 - ✓ Does not depend on the initial concentrations.
 - ✓ K_c>1: most of the reactants would be converted into products, we called a reaction "product-favored."
 - ✓ K_c<1: most of the reactants remain and only small amounts of products are formed.

7

7

The equilibrium constant

IF.	v	a	m	nl	ما	
P.	X	71		D	IC.	_

-	Initi	Initial Concentrations			Equilibrium Concentrations		
	$[SO_2]$	$[O_2]$	[SO ₃]	[SO ₂]	$[O_2]$	[SO ₃]	
Experiment 1	0.400~M	0.200~M	0 M	$0.344 \ M$	0.172~M	0.056M	
Experiment 2	0 M	0 M	0.500~M	0.424~M	0.212~M	0.076M	

From experiment 1:

$$K_{\rm c} = \frac{[{\rm SO}_3]^2}{[{\rm SO}_2]^2[{\rm O}_2]} = \frac{(0.056)^2}{(0.344)^2(0.172)} = 0.15$$

From experiment 2:

$$K_{\rm c} = \frac{(0.076)^2}{(0.424)^2(0.212)} = 0.15$$

The equilibrium constant

EXAMPLE 17-13 Calculation of K_p

In an equilibrium mixture at 500°C, we find $P_{\rm NH_3}=0.147$ atm, $P_{\rm N_2}=6.00$ atm, and $P_{\rm H_2}=$ 3.70 atm. Evaluate K_p at 500°C for the following reaction.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

$$K_{\rm P} = \frac{(P_{\rm NH_3})^2}{(P_{\rm N,1})(P_{\rm H_2})^3} = \frac{(0.147)^2}{(6.00)(3.70)^3} = 7.11 \times 10^{-5}$$

9

Variation of K_c

❖ The value of K_c depends on the form of the balanced equation for the reaction.

$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g) \qquad K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

$$K_{\rm c} = \frac{[{\rm SO}_3]^2}{[{\rm SO}_2]^2[{\rm O}_2]}$$

$$2SO_3(g) \Longrightarrow 2SO_2(g) + O_2(g)$$

$$2SO_3(g) \iff 2SO_2(g) + O_2(g)$$
 $K'_c = \frac{[SO_2]^2[O_2]}{[SO_3]^2} = \frac{1}{K_c}$

$$SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g)$$

$$SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g)$$
 $K_c'' = \frac{[SO_3]}{[SO_2][O_2]^{1/2}} = K_c^{1/2}$

* If an equation for a reaction is multiplied by any factor, n, then the original value of K_c is raised to the nth power.

Variation of K_c

EXAMPLE 17-3 Variation of the Form of K_c

You are given the following reaction and its equilibrium constant at a given temperature.

$$2HBr(g) + Cl_2(g) \Longrightarrow 2HCl(g) + Br_2(g)$$
 $K_c = 4.0 \times 10^4$

Write the expression for, and calculate the numerical value of, the equilibrium constant for each of the following at the same temperature.

(a)
$$4HBr(g) + 2Cl_2(g) \iff 4HCl(g) + 2Br_2(g)$$

(b)
$$HBr(g) + \frac{1}{2}Cl_2(g) \Longrightarrow HCl(g) + \frac{1}{2}Br_2(g)$$

$$K_{\rm c} = \frac{[{\rm HCl}]^2 [{\rm Br}_2]}{[{\rm HBr}]^2 [{\rm Cl}_2]} = 4.0 \times 10^4$$

$$K'_{c} = \frac{[\text{HCl}]^{4}[\text{Br}_{2}]^{2}}{[\text{HBr}]^{4}[\text{Cl}_{2}]^{2}}$$
 $K'_{c} = (K_{c})^{2} = (4.0 \times 10^{4})^{2} = 1.6 \times 10^{9}$

$$K_{\rm c}'' = \frac{[\text{HCl}][\text{Br}_2]^{1/2}}{[\text{HBr}][\text{Cl}_2]^{1/2}} = \sqrt{K_{\rm c}} = \sqrt{4.0 \times 10^4} = 2.0 \times 10^2$$

11

11

Calculating Keq

❖ In one of their experiments, Harber and co-workers introduced a mixture of hydrogen and nitrogen into a reaction vessel and allowed the system to attain chemical equilibrium at 472°C. The equilibrium mixture of gases was analyzed and found to contain 0.1207 M H₂, 0.0402 M N₂, and 0.00272 M NH₃. From these data, calculate the equilibrium constant, K_{eq}, for

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Calculating K_{eq}

- ❖ Gaseous Hydrogen iodide is placed in a closed container at 425 °C, where it partially decomposes to hydrogen and iodine: 2HI (g) \rightleftharpoons H₂(g) + I₂(g). At equilibrium, it is found that [HI] = $3.35 \times 10^{-3} M$; [H₂] = $4.79 \times 10^{-4} M$. What is the value of K_{eq} at this temperature.
- A mixture of 0.100 mole of NO, 0.050 mole of H_2 , and 0.050 mole of H_2 O is placed in a 1.00-L vessel. The following equilibrium is established:

$$2NO(g) + 2H_2(g) \rightleftharpoons N_2(g) + 2H_2O(g)$$

Calculate the K_{eq} for the reaction.

13

13

Calculating K_{eq}

❖ Enough ammonia is dissolved in 5.00 liters of water at 25°C to produce a solution that is 0.0124 *M* in ammonia. The solution is then allowed to come to equilibrium. Analysis of the equilibrium mixture shows that the concentration of OH⁻ is 4.64 x 10⁻⁴M. Calculate K_{eq} at 25 °C for the reaction.

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Calculating K_{eq}

❖ A mixture of 5.00 x 10⁻³ mol of H₂ and 1.00 x 10⁻² mol of I₂ is placed in a 5.00 L container at 448 °C and allowed to come to equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87 x 10⁻³ M. Calculate the Kc at 448 °C for the reaction.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

$$K_{eq} = 50.51$$

15

15

Calculating K_{eq}

❖ Sulfur trioxide decomposes at high temperature in a sealed container:

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$
.

Initially the vessel is charged at 1000K with $SO_3(g)$ at a concentration of 6.09 x $10^{-3} M$. At equilibrium, the SO_3 concentration is 2.44 x $10^{-3} M$. Calculate the value for K_{eq} at 1000 K.

The reaction quotient

❖ The reaction quotient, Q, for the general reaction is given as follows:

For
$$aA + bB \implies cC + dD$$
, $Q = \frac{[C]^c[D]^d}{[A]^a[B]^b} \iff$ not necessarily equilibrium concentrations

Increasing $Q \longrightarrow$

(reactants only)

Reaction proceeds toward right, forming more products

Reaction proceeds toward left, forming more reactants

17

17

The reaction quotient

- \checkmark **Q** < **K**_c: Forward reaction predominates until equilibrium is established.
- \checkmark **Q** = **K**_c: System is at equilibrium.
- \checkmark Q > K_c : Reverse reaction predominates until equilibrium is established.

The reaction quotient

EXAMPLE 17-4 The Reaction Quotient

At a very high temperature, $K_c = 65.0$ for the following reaction.

$$2HI(g) \Longrightarrow H_2(g) + I_2(g)$$

The following concentrations were detected in a mixture. Is the system at equilibrium? If not, in which direction must the reaction proceed for equilibrium to be established?

[HI] = 0.500 M,
$$[H_2] = 2.80 M$$
, and $[I_2] = 3.40 M$

$$Q = \frac{[H_2][I_2]}{[HI]^2} = \frac{(2.80)(3.40)}{(0.500)^2} = 38.1$$
 Q < Kc

- ✓ The system is not at equilibrium the forward reaction must occur to a greater extent than the reverse reaction;
- ✓ Some HI must react to form more H_2 and I_2 to reach equilibrium $_{19}$

19

The reaction quotient

❖ At 448 °C the equilibrium constant, K_{eq} , for the reaction: $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is 50.5. Predict how the reaction will proceed to reach equilibrium at 448 °C if we start with 2.0 x 10⁻² mol of HI, 1.0 x 10⁻² mol of H₂, and 3.0×10^{-2} mol of I_2 in a 2.0L container.

LeChatelier's Principle

LeChatelier's Principle:

If a change of conditions (stress) is applied to a system at equilibrium, the system shifts in the direction that reduces the stress to move toward a new state of equilibrium.

- **♦ Three types of changes** can disturb the equilibrium of a reaction:
- 1. Changes in concentration
- 2. Changes in pressure or volume (for reactions that involve gases)
- 3. Changes in temperature.

LeChatelier's Principle (is pronounced "le-SHOT-lee-ay.")

21

21

FACTORS THAT AFFECT EQUILIBRIA

***** Changes in Concentration:

$$A + B \Longrightarrow C + D$$
 $K_c = \frac{[C][D]}{[A][B]}$

Stress	Q	Direction of Shift of $A + B \rightleftharpoons C + D$
Increase concentration of A or B	Q < K	$-\!$
Increase concentration of C or D	Q > K	left ←
Decrease concentration of A or B	Q > K	left ←──
Decrease concentration of C or D	Q < K	\longrightarrow right

FACTORS THAT AFFECT EQUILIBRIA

***** Changes in Concentration:

- ✓ Adding a reactant or product shifts the equilibrium away from the increase.
- ✓ Removing a reactant or product shifts the equilibrium towards the decrease.
- ✓ To optimize the amount of product at equilibrium, we need to flood the reaction vessel with reactant and continuously remove product (*LeChatelier's Principle*).

23

23

FACTORS THAT AFFECT EQUILIBRIA

EXAMPLE 17-8 Applying a Stress to a System at Equilibrium

Given the following reaction at equilibrium in a closed container at 500° C, predict the effect of each of the following changes on the amount of NH_3 present at equilibrium: (a) forcing more H_2 into the system; (b) removing some NH_3 from the system.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

(a) forcing more H₂ into the system;

More NH₃ is formed.

(b) removing some NH₃ from the system.

More NH₃ is formed.

FACTORS THAT AFFECT EQUILIBRIA

***** Changes in Volume and Pressure:

$$A(g) \Longrightarrow 2D(g)$$
 $K_c = \frac{[D]^2}{[A]}$

Stress	Direction of Shift of $A(g) \Longrightarrow 2D(g)$
Volume decrease, pressure increase	Toward smaller number of moles of gas (left for <i>this</i> reaction)
Volume increase, pressure decrease	Toward larger number of moles of gas (right for <i>this</i> reaction)

25

25

FACTORS THAT AFFECT EQUILIBRIA

***** Changes in Volume and Pressure:

✓ If there is no change in the total number of moles of gases, a volume (pressure) change does not affect the position of equilibrium.

✓ If changing in the total number of moles of gases:

- A decrease in volume (increase in pressure) shifts a reaction in the direction that produces the smaller total number of moles of gas.
- An increase in volume (decrease in pressure) shifts a reaction in the direction that produces the larger total number of moles of gas.

FACTORS THAT AFFECT EQUILIBRIA

Changes in Temperature:

- ✓ Adding heat (i.e. heating the vessel) favors away from the increase:
 - if $\Delta H > 0$, adding heat favors the forward reaction.
 - if $\Delta H < 0$, adding heat favors the reverse reaction.
- ✓ Removing heat (i.e. cooling the vessel), favors towards the decrease:
 - if $\Delta H > 0$, cooling favors the reverse reaction.
 - if $\Delta H < 0$, cooling favors the forward reaction.

27

27

FACTORS THAT AFFECT EQUILIBRIA

* Addition of a Catalyst:

- ✓ A catalyst lowers the activation energy barrier for the reaction.
- ✓ Therefore, a catalyst will decrease the time taken to reach equilibrium.
- ✓ A catalyst does not effect the composition of the equilibrium mixture.

RELATIONSHIP BETWEEN K_p & K_c

In general, the relationship between K_c and K_p is:

$$K_{\rm P} = K_{\rm c}(RT)^{\Delta n}$$

$$\Delta n = (n_{\text{gas prod}}) - (n_{\text{gas react}})$$

Be Careful About the Value of R

$$R = 0.082 \frac{L.atm}{mol.K}$$

29

29

HETEROGENEOUS EQUILIBRIA

✓ Heterogeneous equilibria involve species in more than one phase.

✓Example:

$$2 \text{HgO}(s) \implies 2 \text{Hg}(\ell) + \text{O}_2(g)$$

$$K_{\rm c} = [{\rm O_2}]$$
 and $K_{\rm P} = P_{{\rm O_2}}$

✓ Pure liquids and pure solids do not appear in the K expressions for heterogeneous equilibria.

HETEROGENEOUS EQUILIBRIA

EXAMPLE 17-15 K_c and K_p for Heterogeneous Equilibrium

Write both K_c and K_p for the following reversible reactions.

(a)
$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$$

(b)
$$2NH_3(g) + H_2SO_4(\ell) \iff (NH_4)_2SO_4(s)$$

(c)
$$S(s) + H_2SO_3(aq) \rightleftharpoons H_2S_2O_3(aq)$$

(a)
$$K_{\rm c} = \frac{[{\rm SO_3}]^2}{[{\rm SO_2}]^2[{\rm O_2}]}$$
 $K_{\rm P} = \frac{(P_{{\rm SO_3}})^2}{(P_{{\rm SO_2}})^2(P_{{\rm O_2}})}$
(b) $K_{\rm c} = \frac{1}{[{\rm NH_3}]^2} = [{\rm NH_3}]^{-2}$ $K_{\rm P} = \frac{1}{(P_{{\rm NH_3}})^2} = (P_{{\rm NH_3}})^{-2}$

(b)
$$K_{\rm c} = \frac{1}{[{\rm NH_3}]^2} = [{\rm NH_3}]^{-2}$$
 $K_{\rm P} = \frac{1}{(P_{\rm NH_3})^2} = (P_{\rm NH_3})^{-2}$

(c)
$$K_{\rm c} = \frac{[{\rm H_2S_2O_3}]}{[{\rm H_2SO_3}]}$$

 $K_{\rm P}$ undefined; no gases involved

31

31

RELATIONSHIP BETWEEN ΔG⁰rxn & K

$$aA + bB \iff cC + dD$$

$$\Delta G_{\rm rxn} = \Delta G_{\rm rxn}^0 + RT \ln Q$$

$$0 = \Delta G_{\rm rxn}^0 + RT \ln K \qquad {\rm (at~equilibrium)}$$

$$\Delta G_{\rm rxn}^0 = -RT \ln K$$

RELATIONSHIP BETWEEN ΔG⁰rxn & K

When the relationship $\Delta G_{\text{rxn}}^0 = -RT \ln K$ is used with

- 1. all gaseous reactants and products, K represents K_p ;
- **2.** all solution reactants and products, K represents K_c ;
- 3. a mixture of solution and gaseous reactants, K represents the thermodynamic equilibrium constant, and we do not make the distinction between K_p and K_c .

$\Delta G_{ m rxn}^0$	K	Product Formation
$\Delta G_{ m rxn}^0 < 0$ $\Delta G_{ m rxn}^0 = 0$ $\Delta G_{ m rxn}^0 > 0$	K > 1 $K = 1$ $K < 1$	Products favored over reactants at equilibrium At equilibrium when $[C]^c[D]^d \dots = [A]^a[B]^b \dots$ Reactants favored over products at equilibrium

33

33

RELATIONSHIP BETWEEN AGorxn & K

EXAMPLE 17-19 K versus $\Delta G_{\rm rxn}^0$

The equilibrium constant, $K_{\rm p}$, for the following reaction is 5.04×10^{17} at 25°C. Calculate ΔG_{298}^0 for the hydrogenation of ethylene to form ethane.

$$C_2H_4(g) + H_2(g) \Longrightarrow C_2H_6(g)$$

Solution

$$\Delta G_{298}^{0} = -RT \ln K_{\rm p}$$

$$= -(8.314 \text{ J/mol} \cdot \text{K})(298 \text{ K}) \ln (5.04 \times 10^{17})$$

$$= -1.01 \times 10^{5} \text{ J/mol}$$

$$= -101 \text{ kJ/mol}$$

Evaluation of K at difference temperature

* The van't Hoff equation

$$\ln\left(\frac{K_{T_2}}{K_{T_1}}\right) = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

35

35

Evaluation of K at difference temperature

Example:

We found that $K_p = 4.4 \times 10^{-31}$ at 25°C (298 K) for the following reaction, $\Delta H^0 = 180.5$ kJ/mol for this reaction. Evaluate K_p at 2400K.

$$N_2(g) + O_2(g) \Longrightarrow 2NO(g)$$

$$K_{T_2} = 2.2 \times 10^{-3}$$
 at 2400. K

36