

Feature Selection Using Logistic Regression:

(Semiconductor Manufacturing Process Data)

주건재

OVERVIEW

- 1. INTRODUCTION
- 1. DATA
- 1. MODEL
- 1. RESULT

1. INTRODUCTION

1.1 TOPIC

Research Question

Wafer 제조 공정 중 수집한 센서데이터로 Wafer결함을 예측하고 Logistic Regression 모델을 통해 중요한 Feature(센서)를 선택한다.

Goals

1st goal: 중요한 독립변수를 찾아낸다.

2nd goal: Imbalanced Data를 적절히 처리한다.

1.2 DATA OVERVIEW

Data Description

독립변수: Wafer 공정 중 수집한 590개 Sensor Data와 Time

종속변수: Wafer 불량 여부 (-1:양품, 1: 불량)

(각 Sensor가 무엇을 측정하는지는 모름)

Data Resource: uci ML Repository (https://archive.ics.uci.edu/ml/datasets/SECOM)

	Time	0	1	2	3	4	5	6	7	8		581	582	583	584	585	586	587	588	589	Pass/Fail
0	2008- 07-19 11:55:00	3030.93	2564.00	2187.7333	1411.1265	1.3602	100.0	97.6133	0.1242	1.5005		NaN	0.5005	0.0118	0.0035	2.3630	NaN	NaN	NaN	NaN	-1
1	2008- 07-19 12:32:00	3095.78	2465.14	2230.4222	1463.6606	0.8294	100.0	102.3433	0.1247	1.4966	***	208.2045	0.5019	0.0223	0.0055	4.4447	0.0096	0.0201	0.0060	208.2045	-1

Data Summary

Data shape: (1567, 592)

Data Types:
float64 590
object 1
int64 1
Name: Types, dtype: int64

	Types	Counts	Uniques	Nulls	Min	Max
0	float64	1561	1521	6	2743.24	3356.35
1	float64	1560	1505	7	2158.75	2846.44
10	float64	1565	393	2	-0.0349	0.053
100	float64	1561	36	6	-0.003	0.0023
101	float64	1561	30	6	-0.0024	0.0017
97	float64	1561	2	6	0	0
98	float64	1561	1421	6	-5.2717	2.5698
99	float64	1561	273	6	-0.5283	0.8854
Pass/Fail	int64	1567	2	0	-1	1
Time	object	1567	1534	0	2008-01-08 02:02:00	2008-12-10 18:47:00

1.3 Evaluation Method

Evaluation:

- 1) Imbalanced Data: 양품(1) 데이터가 대다수
- 2) Wafer 공정은 불량(0)을 걸러내는 것이 중요하다.
 - => False Positive 최소화

MCC: Imbalanced Data에 주로 사용됨

"It combines both the accuracy and the coverage of the prediction in a balanced way"1)

Matthews correlation coefficient (MCC) =

$$\frac{\text{TP} \cdot \text{TN} - \text{FP} \cdot \text{FN}}{\sqrt{(\text{TP} + \text{FP}) \cdot (\text{TP} + \text{FN}) \cdot (\text{TN} + \text{FP}) \cdot (\text{TN} + \text{FN})}}$$
(worst value = -1; best value = +1).

2. DATA

2.1 Imbalanced Target

Imbalance

- SMOTE
- ADASYN
- Tomek
- Borderline SMOTE

2.2 Null Value

Result:

- 큰 차이 없어서 computation resource를 적게 사용하는 평균값 사용

Logistic Regression Evaluation F1 Score: 0.8789808917197452

AUC: 0.55

2.3 Unique Value

Number of Unique Value

Graph Definition:

X_train shape (1253, 402)의 독립 변수 당 Number of Unique value의 Histogram

Result:

- unique value 100개 이하의 독립변수 40개를 drop

Unique Value

3. MODEL

1.3 Model Overview

Cleansed Model

Feature Selected Model

Oversampled Model

4. RESULT

Research Result

- 1st goal: 중요한 독립변수를 찾아낸다.
- 중요도가 낮은 변수를 제거하면 예측 성능이 크게 저하 한다.
- Model별 중요변수의 순위가 다소 다르다.

분석: 모두 중요한 변수일것으로 예상되며 이를 정확히 설명하기 위해서는 데이터를 unmask하고 도메인 지식과 함께 보아야한다.

- 2nd goal: Imbalanced Data를 적절히 처리한다.
- Oversampling 이론적 근거를 찾지 못했다.
- 여러 방법을 적용해 본 결과 예측 성능 저하로 이어졌다.

분석: Oversampling에 적합하지 않은 데이터일 가능성이 농후하다.

Further Study

- Unique Value 100개 이하 독립변수 40개에 대한 각각의 전처리
- PCA 와 PCA loading을 활용한 Modeling 및 Feature Importance 방법
- Oversampling의 Convexity 등의 이론적 가능성을 먼저 검토후 적절한 처리

References

- Cao, C., Chicco, D., & Hoffman, M. M. (2020). The MCC-F1 curve: a performance evaluation technique for binary classification. *arXiv preprint arXiv:2006.11278*.
- Kim, J., Han, Y., & Lee, J. (2016). Data imbalance problem solving for smote based oversampling: Study on fault detection prediction model in semiconductor manufacturing process. *Advanced Science and Technology Letters*, 133, 79-84.
- Munirathinam, S., & Ramadoss, B. (2016). Predictive models for equipment fault detection in the semiconductor manufacturing process. *IACSIT International Journal of Engineering and Technology*, 8(4), 273-285.
- Kerdprasop, K., & Kerdprasop, N. (2010, March). Feature selection and boosting techniques to improve fault detection accuracy in the semiconductor manufacturing process. In *World Congress on Engineering* 2012. July 4-6, 2012. London, UK. (Vol. 2188, pp. 398-403). International Association of Engineers.

