In [1]: import pandas as pd
In [2]: df=pd.read_csv("dataset restrarant new.csv")
In [3]: df

Out[3]:		Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	Averag Cost fo
	0	51040	Truffles	1	Bangalore	28, 4th 'B' Cross, Koramangala 5th Block, Bang	Koramangala 5th Block	Koramangala 5th Block, Bangalore	77.614293	12.933298	American, Burger, Cafe	8(
	1	51705	Toit	1	Bangalore	298, Namma Metro Pillar 62, 100 Feet Road, Ind	Indiranagar	Indiranagar, Bangalore	77.640709	12.979166	ltalian, American, Pizza	200
	2	308322	Hauz Khas Social	1	New Delhi	9A & 12, Hauz Khas Village, New Delhi	Hauz Khas Village	Hauz Khas Village, New Delhi	77.194471	28.554285	Continental, American, Asian, North Indian	160
	3	20404	Peter Cat	1	Kolkata	18A, Park Street, Park Street Area, Kolkata	Park Street Area	Park Street Area, Kolkata	88.352885	22.552672	Continental, North Indian	100
	4	56618	AB's Absolute Barbecues	1	Bangalore	90/4, 3rd Floor, Outer Ring Road, Munnekollaly	Marathahalli	Marathahalli, Bangalore	77.699386	12.949934	European, Mediterranean, North Indian	14(
ç	9543	18486858	6 Packs Momos	1	Noida	Spice World Mall, Sector 25, Noida	Spice World Mall, Sector 25	Spice World Mall, Sector 25, Noida	77.340602	28.586000	Chinese	3(
S	9544	18431152	Cafe' Wow	1	Noida	Food Court, 3rd Floor, The Great India Palace	The Great India Place, Sector 38	The Great India Place, Sector 38, Noida	77.325600	28.567514	Fast Food	2(
ġ	9545	18439721	Chef's Basket Pop Up Cafe	1	Noida	Inside Big Bazaar, The Great India Place, Sect	The Great India Place, Sector 38	The Great India Place, Sector 38, Noida	0.000000	0.000000	Italian, Chinese	2(

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	Averag Cost fo tw
9546	18428504	The HangoutDeli	1	Noida	320A, 3rd Floor, The Great India Place Mall, S	The Great India Place, Sector 38	The Great India Place, Sector 38, Noida	77.323213	28.567751	Continental, Lebanese, Mexican	100
9547	18254559	Platters	1	Noida	Shop 1, Tulip Mall, Near HDFC Bank, Sector 48,	Tulip Mall, Sector 48, Noida	Tulip Mall, Sector 48, Noida, Noida	77.367322	28.557930	North Indian, Chinese	5(

9548 rows × 20 columns

level 1

TASK 1: TOP CUISINES

North Indian 9.803100
North Indian, Chinese 5.351906
Chinese 3.707583
Name: Cuisines, dtype: float64

TASK 2: City Analysis

```
In [6]: top_City = df['City'].value_counts().idxmax()
        print("City with the highest number of restaurants:", top_City)
        City with the highest number of restaurants: New Delhi
        df["Aggregate rating"] = pd.to_numeric(df["Aggregate rating"], errors="coerce")
In [7]:
        average ratings = df.groupby('City')['Aggregate rating'].mean()
        print(average ratings)
        City
        Abu Dhabi
                           4.300000
                           3.965000
        Agra
        Ahmedabad
                           4.161905
        Albany
                           3.555000
        Allahabad
                           3.395000
        Weirton
                           3.900000
        Wellington City
                           4.250000
        Winchester Bay
                           3.200000
        Yorkton
                           3.300000
                           4.292857
        estanbul
        Name: Aggregate rating, Length: 141, dtype: float64
        df["Aggregate rating"] = pd.to_numeric(df["Aggregate rating"], errors="coerce")
In [8]:
        average ratings = df.groupby("City")["Aggregate rating"].mean()
        top_city = average_ratings.idxmax()
        print("City with the highest average rating:", top city)
        City with the highest average rating: Inner City
        Task 3: Price Range Distribution
        import matplotlib.pyplot as plt
In [9]:
```

```
In [10]: price_range_counts = df["Price range"].value_counts().sort_index()

# Plot the bar chart
plt.figure(figsize=(10, 5))
plt.bar(price_range_counts.index, price_range_counts.values, color="purple")
plt.xlabel("Price Range")
plt.ylabel("Number of Restaurants")
plt.title("Distribution of Price Ranges Among Restaurants")
plt.xticks(price_range_counts.index)
plt.grid(axis="y", linestyle="--", alpha=0.9)

# Show the plot
plt.show()
```

Distribution of Price Ranges Among Restaurants


```
# Count occurrences of each price range and calculate percentages
In [11]:
         price range percentages = (df["Price range"].value counts(normalize=True) * 100).sort index()
         # Display the result
         print(price_range_percentages)
              46.533305
              32.593213
              14.736070
               6.137411
         Name: Price range, dtype: float64
         Task 4: ONLINE DELIVERY
         online_delivery_count = df["Has Online delivery"].value_counts(normalize=True) * 100
In [12]:
         print(online_delivery_count)
         False
                  74.329703
                  25.670297
         True
         Name: Has Online delivery, dtype: float64
         df["Aggregate rating"] = pd.to_numeric(df["Aggregate rating"], errors="coerce")
In [13]:
         average ratings = df.groupby("Has Online delivery")["Aggregate rating"].mean()
         print(average_ratings)
         Has Online delivery
         False
                  3.467453
         True
                  3.381274
         Name: Aggregate rating, dtype: float64
         LEVEL 2
```

Task 1: Restrarant rating

```
In [14]: df["Aggregate rating"] = pd.to_numeric(df["Aggregate rating"], errors="coerce")

plt.figure(figsize=(8, 5))
plt.hist(df["Aggregate rating"].dropna(), bins=10, color="Green", edgecolor="black")
plt.xlabel("Aggregate Rating")
plt.ylabel("Number of Restaurants")
plt.title("Distribution of Aggregate Ratings")
plt.grid(axis="y", linestyle="--", alpha=0.7)

# Show the plot
plt.show()

most_common_rating_range = df["Aggregate rating"].round(1).value_counts().idxmax()
print("Most common rating:", most_common_rating_range)
```


Most common rating: 3.2

Average number of votes received by restaurants: 156.78

Task 2: Cuisines Combination

```
cuisine_combinations = df["Cuisines"].value_counts()
In [16]:
         print("Most common cuisine combinations:")
         print(cuisine_combinations.head(5)) # Show top 10
         Most common cuisine combinations:
         North Indian
                                   936
         North Indian, Chinese
                                   511
         Chinese
                                   354
         Fast Food
                                   353
         North Indian, Mughlai
                                   333
         Name: Cuisines, dtype: int64
         df["Aggregate rating"] = pd.to_numeric(df["Aggregate rating"], errors="coerce")
In [17]:
         cuisine_ratings = df.groupby("Cuisines")["Aggregate rating"].mean()
         top cuisine combinations = cuisine ratings.sort values(ascending=False)
         print("Cuisine combinations with highest ratings:")
         print(top_cuisine_combinations.head(5))
         Cuisine combinations with highest ratings:
         Cuisines
         Burger, Bar Food, Steak
                                          4.9
         American, BBQ, Sandwich
                                          4.9
         Sunda, Indonesian
                                          4.9
         European, Asian, Indian
                                          4.9
         Italian, Bakery, Continental
                                          4.9
         Name: Aggregate rating, dtype: float64
```

Task 3: Geographic Analysis

```
In [18]: df["Longitude"] = pd.to_numeric(df["Longitude"], errors="coerce")

# Plot the Locations
plt.figure(figsize=(10, 6))
plt.scatter(df["Longitude"], df["Latitude"], alpha=0.5, c="skyblue", edgecolors="black")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.ylabel("Restaurant Locations on Map")
plt.grid(True)

# Show the plot
plt.show()
```


In [19]: from sklearn.cluster import KMeans

```
In [20]: df["Longitude"] = pd.to_numeric(df["Longitude"], errors="coerce")
df["Latitude"] = pd.to_numeric(df["Latitude"], errors="coerce")

df = df.dropna(subset=["Longitude", "Latitude"])

kmeans = KMeans(n_clusters=5, random_state=42, n_init=10)
df["Cluster"] = kmeans.fit_predict(df[["Longitude", "Latitude"]])

#Plot the clusters
plt.figure(figsize=(10, 6))
plt.scatter(df["Longitude"], df["Latitude"], c=df["Cluster"], cmap="viridis", alpha=0.6, edgecolors="black")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.grid(True)

# Show the plot
plt.show()
```


Task 4:Restrarant Chains

```
restaurant counts = df["Restaurant Name"].value counts()
In [21]:
         restaurant_chains = restaurant_counts[restaurant_counts > 1]
          #Display the result
         print("Restaurant chains found in the dataset:")
         print(restaurant_chains)
         Restaurant chains found in the dataset:
         Cafe Coffee Day
                             83
         Domino's Pizza
                             79
         Subway
                             63
         Green Chick Chop
                              51
         McDonald's
                              48
         Chaap Point
                              2
         Punjabi Chicken
                              2
         Shawarma King's
                              2
         Italiano
         Wood Box Cafe
         Name: Restaurant Name, Length: 736, dtype: int64
         df["Aggregate rating"] = pd.to_numeric(df["Aggregate rating"], errors="coerce")
In [22]:
         df["Votes"] = pd.to_numeric(df["Votes"], errors="coerce")
         restaurant counts = df["Restaurant Name"].value counts()
         restaurant_chains = restaurant_counts[restaurant_counts > 1].index
         chain data = df[df["Restaurant Name"].isin(restaurant chains)]
         chain_analysis = chain_data.groupby("Restaurant Name").agg(
             Average_Rating=("Aggregate rating", "mean"),
             Total Votes=("Votes", "sum")
         ).sort_values(by="Average_Rating", ascending=False)
         # Display the result
         print("Ratings and Popularity of Restaurant Chains:")
         print(chain analysis.head(10)) # Show top 10 chains
```

Ratings a	and	Popularity	of	Restaurant	Chains:
-----------	-----	------------	----	------------	---------

	Average_Rating	Total_Votes
Restaurant Name		
Talaga Sampireun	4.900	5514
Silantro FilMex	4.850	1364
AB's Absolute Barbecues	4.850	3151
AB's Absolute Barbecues	4.825	13400
Naturals Ice Cream	4.800	3094
Gymkhana	4.700	328
The Cheesecake Factory	4.650	3010
Garota de Ipanema	4.600	59
Dishoom	4.600	1269
Chili's	4.580	8156

In []: