DEVOIR LIBRE 1

Exercice 1

- 1. Soit n un entier naturel.
 - (a) Étudier la parité des nombres suivants : (i) $n^2 + 3n + 4$ (ii) $(2021)^n + 4$ (iii) $2n^3 + 17n$
 - (b) Chercher tous les entiers naturels n tel que : $\frac{2n+7}{n+2} \in \mathbb{N}$.
 - (c) Montrer que : $\frac{2^n}{5^m} \in \mathbb{D}$ pour tout m et n de \mathbb{N} .
 - (d) Montrer que : $A = 7^{n+1} + 8 \times 7^n$ est divisible par 15.
- 2. Soient a = 3060, b = 1224 et c = 71.
 - (a) Montrer que c est un nombre premier.
 - (b) Décomposer les nombres a et b en produit de facteurs premiers.
 - (c) Déterminer PGCD(a, b) et PPCM(a, b).
 - (i) $A = \frac{a}{b}$ (ii) $B = \frac{7}{a} + \frac{11}{b}$ (iii) $C = \sqrt{ab}$ (d) Simplifier

Exercice 2

1. Factoriser les expressions suivantes :

(a)
$$A = (x - \sqrt{2})(3x - 1) + (x^2 - 2)(1 - x)$$

Factoriser les expressions suivantes :
(a)
$$A = (x - \sqrt{2})(3x - 1) + (x^2 - 2)(1 - x)$$

(b) $B = x^3 - 8$
(c) $C = x^2 - 2x\sqrt{3} + 3 + (x^2 - 3)$

2. Développer et réduire : $(x - \sqrt{3})(2 - x)(x + \sqrt{3}) - (x - 3)^3$.

mygrav[title=Exercice 1] ABC est un triangle.

Soient
$$I$$
, J et K des points du plan tels que :
$$\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AB}, \quad \overrightarrow{CJ} = \frac{3}{4}\overrightarrow{CA} \quad \text{et} \quad \overrightarrow{BK} = \frac{2}{3}\overrightarrow{CK}.$$

- 1. Montrer que $\overrightarrow{CK} = 3\overrightarrow{CB}$.
- 2. Construire les points I, J et K.
- 3. (a) Montrer que $\overrightarrow{IJ} = -\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$.
 - (b) Exprimer le vecteur \overrightarrow{IK} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
 - (c) En déduire que les points I, J et K sont alignés.
- 4. Soit F un point tel que $\overrightarrow{AF} = \frac{3}{2}\overrightarrow{AI} + 2\overrightarrow{AJ}$.
 - (a) Construire le point F.
 - (b) Montrer que $\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$.
 - (c) Montrer que F est le milieu du segment [BC].

CORRECTION DU DEVOIR LIBRE 1

Exercice 1

- 1. Soit n un entier naturel.
 - (a) i. Étudier la parité de $n^2 + 3n + 4$ On a $n^2 + 3n + 4 = (n^2 + n) + 2(n + 2)$. Puisque n^2 et n sont de même parité, alors leur somme $n^2 + n$ est pair. Et on a 2(n + 2) est pair. Donc $(n^2 + n) + 2(n + 2)$ est pair. D'où $n^2 + 3n + 4$ est pair.
 - ii. Étudier la parité de $(2021)^n + 4$ On a 2021 est impair, alors $(2021)^n$ l'est aussi. Et puisque 4 est pair, alors $(2021)^n + 4$ est impair.
 - iii. Étudier la parité de $2n^3 + 17n$ On a $2n^3 + 17n = 2(n^3 + 8n) + n$ Et on a $2(n^3 + 8n)$ est pair. Donc, si n est pair, alors $2(n^3 + 8n) + n$ l'est aussi. Et si n est impair, alors $2(n^3 + 8n) + n$ l'est aussi. D'où $2n^3 + 17n$ a la même parité que n.
 - (b) Chercher tous les entiers naturels n tel que : $\frac{2n+7}{n+2} \in \mathbb{N}$. Soit n un entier naturel tel $\frac{2n+7}{n+2} \in \mathbb{N}$. Alors n+2 divise 2n+7. D'autre part, on a 2n+7=2(n+2)+3. Alors $\frac{2n+7}{n+2}=2+\frac{3}{n+2}$ Donc n+2 est un diviseur de 3. Les diviseurs de 3 sont 1 et 3, alors n+2=1 ou n+2=3.

Donc $n = 1 - 2 = -1 \notin \mathbb{N}$ ou $n = 3 - 2 = 1 \in \mathbb{N}$. D'où, l'unique entier naturel n vérifiant $\frac{2n+7}{n+2} \in \mathbb{N}$ est n = 1.

- (c) Montrer que : $\frac{2^n}{5^m} \in \mathbb{D}$ pour tout m et n de \mathbb{N} .

 On a $\frac{2^n}{5^m} = \frac{2^n \times 2^m}{5^m \times 2^m} = \frac{2^{n+m}}{(5 \times 2)^m} = \frac{2^{n+m}}{10^m}$.

 Puisque $\frac{2^{n+m}}{10^m} \in \mathbb{D}$, alors $\frac{2^n}{5^m} \in \mathbb{D}$.
- (d) Montrer que : $A = 7^{n+1} + 8 \times 7^n$ est divisible par 15. On a $A = 7^{n+1} + 8 \times 7^n = 7^n \times 7 + 8 \times 7^n = 7^n \times (7+8) = 7^n \times 15$. D'où A est divisible par 15.
- 2. Soient a = 3060, b = 1224 et c = 71.
 - (a) Montrer que c est un nombre premier. On a $2^2 = 4 < 71$, et 2 ne divise pas 71. $3^2 = 9 < 71$, et 3 ne divise pas 71. $5^2 = 25 < 71$, et 5 ne divise pas 71. $7^2 = 49 < 71$, et 7 ne divise pas 71. $11^2 = 121 > 71$, alors c = 71 est un nombre premier.

(b) Décomposer les nombres a et b en produit de facteurs premiers.

On a
$$a = 3060 \mid 2$$
 et $b = 1224 \mid 2$
 $1530 \mid 2$ $612 \mid 2$
 $765 \mid 3$ $306 \mid 2$
 $255 \mid 3$ $153 \mid 3$
 $85 \mid 5$ $51 \mid 3$
 $17 \mid 17$ 17

D'où $a = 2^2 \times 3^2 \times 5 \times 17$ et $b = 2^3 \times 3^2 \times 17$.

- (c) Déterminer PGCD(a,b) et PPCM(a,b). On a $PGCD(a,b)=2^2\times 3^2\times 17=612$ et $PPCM(a,b)=2^3\times 3^2\times 5\times 17=6120$.
- (d) i. Simplifier $A = \frac{a}{b}$. On a $a = 2^2 \times 3^2 \times 5 \times 17 = 5 \times PGCD(a, b)$ et $b = 2^3 \times 3^2 \times 17 = 2 \times PGCD(a, b)$. Alors $A = \frac{a}{b} = \frac{5 \times PGCD(a, b)}{2 \times PGCD(a, b)} = \frac{5}{2}$.
 - ii. Simplifier $B = \frac{7}{a} + \frac{11}{b}$. On a $PPCM(a, b) = 2^3 \times 3^2 \times 5 \times 17 = a \times 2 = b \times 5$. Alors $B = \frac{7}{a} + \frac{11}{b} = \frac{7 \times 2}{a \times 2} + \frac{11 \times 5}{b \times 5} = \frac{14}{PPCM(a, b)} + \frac{55}{PPCM(a, b)} = \frac{69}{6120}$.
 - iii. Simplifier $C = \sqrt{ab}$. On a $a = 5 \times PGCD(a, b)$ et $b = 2 \times PGCD(a, b)$. Donc $ab = (5 \times PGCD(a, b)) \times (2 \times PGCD(a, b)) = 10 \times (PGCD(a, b))^2$. D'où $C = \sqrt{ab} = \sqrt{10 \times (PGCD(a, b))^2} = PGCD(a, b) \times \sqrt{10} = 612\sqrt{10}$.

Exercice 2

1. (a) Factoriser
$$A = (x - \sqrt{2})(3x - 1) + (x^2 - 2)(1 - x)$$
.
On a $A = (x - \sqrt{2})(3x - 1) + (x^2 - 2)(1 - x)$
 $= (x - \sqrt{2})(3x - 1) + (x^2 - (\sqrt{2})^2)(1 - x)$
 $= (x - \sqrt{2})(3x - 1) + (x - \sqrt{2})(x + \sqrt{2})(1 - x)$
 $= (x - \sqrt{2})[(3x - 1) + (x + \sqrt{2})(1 - x)]$
 $= (x - \sqrt{2})[3x - 1 + x - x^2 + \sqrt{2} - x\sqrt{2}]$
 $= (x - \sqrt{2})[-x^2 + 4x - x\sqrt{2} - 1 + \sqrt{2}]$
 $= (x - \sqrt{2})[-x^2 + (4 - \sqrt{2})x - 1 + \sqrt{2}]$

(b) Factoriser
$$B = x^3 - 8$$
.
On a $B=x^3 - 8$
 $=x^3 - 2^3$
 $=(x-2)(x^2 + x \times 2 + 2^2)$
 $=(x-2)(x^2 + 2x + 4)$

(c) Factoriser
$$C = x^2 - 2x\sqrt{3} + 3 + (x^2 - 3)$$
.

On a
$$C=x^2 - 2x\sqrt{3} + 3 + (x^2 - 3)$$

 $=x^2 - x\sqrt{3} - x\sqrt{3} + (\sqrt{3})^2 + (x^2 - 3)$
 $=x(x - \sqrt{3}) - \sqrt{3}(x - \sqrt{3}) + (x - \sqrt{3})(x + \sqrt{3})$
 $=(x - \sqrt{3})[x - \sqrt{3} + (x + \sqrt{3})]$
 $=(x - \sqrt{3})[x - \sqrt{3} + x + \sqrt{3}]$
 $=2x(x - \sqrt{3})$

2. Développer et réduire : $(x - \sqrt{3})(2 - x)(x + \sqrt{3}) - (x - 3)^3$. On a $B = (x - \sqrt{3})(2 - x)(x + \sqrt{3}) - (x - 3)^3$ $= (x - \sqrt{3})(x + \sqrt{3})(2 - x) - (x - 3)^3$ $= (x^2 - (\sqrt{3})^2)(2 - x) - (x^3 - 3 \times x^2 \times 3 + 3 \times x \times 3^2 - 3^3)$ $= (x^2 - 3)(2 - x) - (x^3 - 9x^2 + 27x - 27)$ $= (2x^2 - x^3 - 6 + 3x) - (x^3 - 9x^2 + 27x - 27)$ $= 2x^2 - x^3 - 6 + 3x - x^3 + 9x^2 - 27x + 27$ $= -2x^3 + 11x^2 - 24x + 21$

Exercice 3

ABC est un triangle.

Soient $I,\ J$ et K des points du plan tels que :

$$\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AB}, \quad \overrightarrow{CJ} = \frac{3}{4}\overrightarrow{CA} \quad \text{et} \quad \overrightarrow{BK} = \frac{2}{3}\overrightarrow{CK}.$$

- 1. Montrer que $\overrightarrow{CK} = 3\overrightarrow{CB}$.

 On a $\overrightarrow{BK} = \frac{2}{3}\overrightarrow{CK}$, alors $\overrightarrow{BC} + \overrightarrow{CK} = \frac{2}{3}\overrightarrow{CK}$, donc $\overrightarrow{BC} = \frac{2}{3}\overrightarrow{CK} \overrightarrow{CK} = \frac{2}{3}\overrightarrow{CK} \overrightarrow{CK} = \frac{2}{3}\overrightarrow{CK} \overrightarrow{CK} = \frac{2}{3}\overrightarrow{CK}$.

 D'où $\overrightarrow{BC} = \frac{1}{3}\overrightarrow{CK}$, et par suite $\overrightarrow{CK} = 3\overrightarrow{CB}$.
- 2. Construire les points I, J et K.

3. (a) Montrer que $\overrightarrow{IJ} = -\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$.

On a
$$\overrightarrow{IJ} = \overrightarrow{IA} + \overrightarrow{AC} + \overrightarrow{CJ}$$

 $= -\overrightarrow{AI} + \overrightarrow{AC} + \overrightarrow{CJ}$
 $= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + \frac{3}{4}\overrightarrow{CA}$
 $= -\frac{1}{3}\overrightarrow{AB} + \frac{4}{4}\overrightarrow{AC} - \frac{3}{4}\overrightarrow{AC}$
 $= -\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$
D'où $\overrightarrow{IJ} = -\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$.

(b) Exprimer le vecteur \overrightarrow{IK} en fonction de \overrightarrow{AB} et \overrightarrow{AC} . On a $\overrightarrow{IK} = \overrightarrow{IA} + \overrightarrow{AC} + \overrightarrow{CK}$

On a
$$\overrightarrow{IK} = \overrightarrow{IA} + \overrightarrow{AC} + \overrightarrow{CK}$$

 $= -\overrightarrow{AI} + \overrightarrow{AC} + \overrightarrow{CK}$
 $= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + 3\overrightarrow{CB}$
 $= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + 3(\overrightarrow{CA} + \overrightarrow{AB})$
 $= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + 3(-\overrightarrow{AC} + \overrightarrow{AB})$
 $= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} - 3\overrightarrow{AC} + 3\overrightarrow{AB}$
 $= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} - 3\overrightarrow{AC} + 3\overrightarrow{AB}$
 $= -\frac{1}{3}\overrightarrow{AB} - 2\overrightarrow{AC} + \frac{9}{3}\overrightarrow{AB}$
 $= \frac{8}{3}\overrightarrow{AB} - 2\overrightarrow{AC}$
D'où $\overrightarrow{IK} = \frac{8}{3}\overrightarrow{AB} - 2\overrightarrow{AC}$.

(c) En déduire que les points I, J et K sont alignés.

On a
$$-8\overrightarrow{IJ} = -8\left(-\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}\right) = \frac{8}{3}\overrightarrow{AB} - 2\overrightarrow{AC} = \overrightarrow{IK}$$
.

Alors, les vecteurs \overrightarrow{IJ} et \overrightarrow{IK} sont colinéaires.

D'où, les points I, J et K sont alignés.

- 4. Soit F un point tel que $\overrightarrow{AF} = \frac{3}{2}\overrightarrow{AI} + 2\overrightarrow{AJ}$.
 - (a) Construire le point F. Voir la figure.
 - (b) Montrer que $\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$.

On a
$$\overrightarrow{AF} = \frac{3}{2}\overrightarrow{AI} + 2\overrightarrow{AJ}$$

$$= \frac{3}{2} \times \frac{1}{3}\overrightarrow{AB} + 2(\overrightarrow{AC} + \overrightarrow{CJ})$$

$$= \frac{1}{2}\overrightarrow{AB} + 2\left(\overrightarrow{AC} + \frac{3}{4}\overrightarrow{CA}\right)$$

$$= \frac{1}{2}\overrightarrow{AB} + 2\left(\frac{4}{4}\overrightarrow{AC} - \frac{3}{4}\overrightarrow{AC}\right)$$

$$= \frac{1}{2}\overrightarrow{AB} + 2 \times \frac{1}{4}\overrightarrow{AC}$$

$$= \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$
D'où $\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$.

(c) Montrer que F est le milieu du segment [BC]. On a $\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AF}$ $= -\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ $= -\frac{2}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ $= -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ $= -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ $= \frac{1}{2}(-\overrightarrow{AB} + \overrightarrow{AC})$ $= \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{AC})$ $= \frac{1}{2}\overrightarrow{BC}$

D'où F est le milieu du segment [BC].