

Description

The VSM150N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

• $V_{DS} = 30V, I_D = 150A$ $R_{DS(ON)} < 4.0 \text{ m}\Omega$ @ $V_{GS} = 10V$ $R_{DS(ON)} < 5.0 \text{m}\Omega$ @ $V_{GS} = 4.5V$

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM150N03-T2	VSM150N03	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25 ℃unless otherwise noted)

Parameter	Symbol Limit		Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	150	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	105	А	
Pulsed Drain Current	I _{DM}	600	А	
Maximum Power Dissipation	P _D	130	W	
Derating factor		0.87	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	1700	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	Rejc	1.15	°C/W
---	------	------	------

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·		•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	35	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	•		•			
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	1.2	1.7	2.5	V
Dunin Course On Chata Desintance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	3	4	m0
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =10A		4.4	5	mΩ
Forward Transconductance	g Fs	V _{DS} =10V,I _D =20A	32	-	-	S
Dynamic Characteristics (Note4)	·		•			
Input Capacitance	C _{lss}		-	5000	-	PF
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V, F=1.0MHz	-	1135	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	563	-	PF
Switching Characteristics (Note 4)	·		•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =15V, I_{D} =2A, R_{L} =15 Ω	-	26	-	nS
Turn-on Rise Time	t _r		-	24	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	91	-	nS
Turn-Off Fall Time	t _f		-	39	-	nS
Total Gate Charge	Qg	V 45VI 20A	-	38		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=15V,I_{D}=30A,$ $V_{GS}=10V$	-	9		nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	13		nC
Drain-Source Diode Characteristics	•		•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	150	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	42	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	39	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition : Tj=25 $^{\circ}$ C,V_{DD}=20V,V_G=10V,L=1mH,Rg=25 Ω , I_{AS}=58.5A

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance