LITMO

Machine Learning for Industrial Data

Laboratory task Nº 2

Students:

Kirill Mukhin J4234c Alexander Petrov J4234c Alexander Semiletov J4232c

Task formulation

- The large amount of accumulated production data forms an expert layer valuable for analysis, which can serve as a basis both for the creation of automated tools that use this data and for the creation of a wide range of support and decision-making systems for human experts in various fields.
- We need to develop a semantic model that allows us to efficiently define generalized classes for tasks that do not have this information.

Dataset description

The dataset contains information about approximately 716 thousand tasks. For each of the \Box tasks, information about its name in the construction plan is available, as well as partially specified information about the task hierarchy and generalized name classes to which these tasks belong.

- Tasks from the dataset are presented with following information:
 - work name Text name of the task in the construction plan (without preprocessing).
 - generalized work class Information about the generalized class of work names to which the task belongs.
 - global work class Information about the highest level of task name generalization.
 - upper_works Information about the hierarchy of names of objects and work blocks, within which this task was performed.

Data exploration (1)

Some info about dataset after cleaning of empty values and rows:

0

- generalized work class:
 - number of unique generalized classes is 207
 - most frequent class in generalized classes is "Монтаж мк": 26081
- global_work_class:
 - number of unique global classes is 56
 - most frequent class in global classes is "Монтаж": 38286
- work_name:
 - o number of unique work names is 8292
 - o most frequent work name in work_name is "пнр": 7498

Data exploration (2)

VITMO

Data exploration (3)

Model description

For current task we have decided to regular MLP model for our multiclass classification problem

Layer (type)	Output Shape
dense (Dense)	(None, 512)
dense_1 (Dense) dropout (Dropout)	(None, 1024) (None, 1024)
dense_3 (Dense)	(None, 207)

Prediction and Metrics

Prediction examples:

```
Predicted generalized work class --> обратная засыпка --> Actual generalized work class --> обратная засыпка
Associated global work class --> засыпка --> Actual global work class --> засыпка
Predicted generalized work class --> обратная засыпка --> Actual generalized work class --> обратная засыпка
Associated global work class --> засыпка --> Actual global work class --> засыпка
Predicted generalized work class --> изоляция резервуара --> Actual generalized work class --> изоляция резервуара
Associated global work class --> изоляция --> Actual global work class --> изоляция
Predicted generalized work class --> монтаж оборудования --> Actual generalized work class --> монтаж оборудования
Associated global work class --> montax --> Actual global work class --> montax
Predicted generalized work class --> огрунтовка мк --> Actual generalized work class --> огрунтовка мк
Associated global work class --> огрунтовка и окраска --> Actual global work class --> огрунтовка и окраска
Predicted generalized work class --> монтаж мк --> Actual generalized work class --> монтаж мк
Associated global work class --> montax mk --> Actual global work class --> montax mk
```


F1 score: 0.9949 *Accuracy:* 0.9948

Balanced Accuracy: 0.9595

Thank you for your attention!

ITSMOre than a UNIVERSITY

Google colab notebook link:
https://colab.research.google.com/drive/1ncIHUdY4cRRzSb3m9xqsChN817gI46Uk#scrollTo=daN87kbl8vqd