Generalized Fermat numbers and congruences for Gauss factorials

Karl Dilcher

Dalhousie University, Halifax, Nova Scotia, Canada

CMS Winter Meeting 2015, Montréal

Joint work with

John B. Cosgrave

Dublin, Ireland

1. Introduction

We begin with Wilson's Theorem: p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}.$$

1. Introduction

We begin with Wilson's Theorem: p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}.$$

For a composite analogue we define the Gauss factorial

$$N_n! = \prod_{\substack{1 \leq j \leq N \\ \gcd(j,n)=1}} j \qquad (N,n \in \mathbb{N})$$

1. Introduction

We begin with Wilson's Theorem: p is a prime if and only if

$$(p-1)! \equiv -1 \pmod{p}.$$

For a composite analogue we define the Gauss factorial

$$N_n! = \prod_{\substack{1 \leq j \leq N \\ \gcd(j,n)=1}} j \qquad (N, n \in \mathbb{N})$$

The Gauss-Wilson theorem: For any $n \ge 2$,

$$(n-1)_n! \equiv \begin{cases} -1 \pmod{n} & \text{for} \quad n=2,4,p^{\alpha}, \text{ or } 2p^{\alpha}, \\ 1 \pmod{n} & \text{otherwise}, \end{cases}$$

where p is an odd prime and $\alpha \geq 1$.

$$\lfloor \frac{n-1}{M} \rfloor_n!$$
, $M \ge 1$, $n \equiv \pm 1 \pmod{M}$,

$$\lfloor \frac{n-1}{M} \rfloor_n !, \qquad M \ge 1, \qquad n \equiv \pm 1 \pmod{M},$$

in particular their multiplicative orders (mod n), but also, if possible, their values (mod n).

$$\lfloor \frac{n-1}{M} \rfloor_n!, \qquad M \ge 1, \qquad n \equiv \pm 1 \pmod{M},$$

in particular their multiplicative orders (mod n), but also, if possible, their values (mod n).

$$\left|\frac{n-1}{M}\right|_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}$$

$$\lfloor \frac{n-1}{M} \rfloor_n!, \qquad M \ge 1, \qquad n \equiv \pm 1 \pmod{M},$$

in particular their multiplicative orders (mod n), but also, if possible, their values (mod n).

Here: given a fixed $M \ge 1$, we consider the question: which integers n satisfy

$$\left|\frac{n-1}{M}\right|_{n}! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}$$

• M = 1: Determined by Gauss-Wilson theorem.

$$\lfloor \frac{n-1}{M} \rfloor_n!, \qquad M \ge 1, \qquad n \equiv \pm 1 \pmod{M},$$

in particular their multiplicative orders (mod n), but also, if possible, their values (mod n).

$$\left|\frac{n-1}{M}\right|_{n}! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}$$

- *M* = 1: Determined by Gauss-Wilson theorem.
- M = 2: Completely determined (JBC & KD, 2008).

$$\lfloor \frac{n-1}{M} \rfloor_n!, \qquad M \ge 1, \qquad n \equiv \pm 1 \pmod{M},$$

in particular their multiplicative orders (mod n), but also, if possible, their values (mod n).

$$\left|\frac{n-1}{M}\right|_{n}! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}$$

- *M* = 1: Determined by Gauss-Wilson theorem.
- M = 2: Completely determined (JBC & KD, 2008).
- M = 3, 4, 6: Most interesting cases.

$$\lfloor \frac{n-1}{M} \rfloor_n!, \qquad M \ge 1, \qquad n \equiv \pm 1 \pmod{M},$$

in particular their multiplicative orders (mod n), but also, if possible, their values (mod n).

$$\lfloor \frac{n-1}{M} \rfloor_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}$$

- *M* = 1: Determined by Gauss-Wilson theorem.
- M = 2: Completely determined (JBC & KD, 2008).
- M = 3, 4, 6: Most interesting cases.
 - -M = 4: Previously studied (JBC & KD, 2014).

$$\lfloor \frac{n-1}{M} \rfloor_n!, \qquad M \ge 1, \qquad n \equiv \pm 1 \pmod{M},$$

in particular their multiplicative orders (mod n), but also, if possible, their values (mod n).

$$\lfloor \frac{n-1}{M} \rfloor_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}$$

- *M* = 1: Determined by Gauss-Wilson theorem.
- M = 2: Completely determined (JBC & KD, 2008).
- M = 3, 4, 6: Most interesting cases.
 - -M = 4: Previously studied (JBC & KD, 2014).
 - -M = 3,6: Similar to each other, but different from M = 4; topic of this talk.

$$\left|\frac{n-1}{M}\right|_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}.$$
 (1)

$$\lfloor \frac{n-1}{M} \rfloor_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}.$$
 (1)

- If n has at least 3 different prime factors $\equiv 1 \pmod{M}$, then (1) always holds for $n \equiv 1 \pmod{M}$.

$$\lfloor \frac{n-1}{M} \rfloor_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}.$$
 (1)

- If *n* has at least 3 different prime factors \equiv 1 (mod *M*), then (1) always holds for *n* \equiv 1 (mod *M*).
- If *n* has **two** different prime factors $\equiv 1 \pmod{M}$, then the order of $(\frac{n-1}{M})_n! \pmod{n}$ is a divisor of *M*.

$$\lfloor \frac{n-1}{M} \rfloor_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}.$$
 (1)

- If *n* has **at least 3** different prime factors \equiv 1 (mod *M*), then (1) always holds for *n* \equiv 1 (mod *M*).
- If n has **two** different prime factors $\equiv 1 \pmod{M}$, then the order of $(\frac{n-1}{M})_n! \pmod{n}$ is a divisor of M. In certain cases, solutions of (1) can be characterized.

$$\lfloor \frac{n-1}{M} \rfloor_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}.$$
 (1)

- If *n* has at least 3 different prime factors \equiv 1 (mod *M*), then (1) always holds for *n* \equiv 1 (mod *M*).
- If n has **two** different prime factors $\equiv 1 \pmod{M}$, then the order of $(\frac{n-1}{M})_n! \pmod{n}$ is a divisor of M. In certain cases, solutions of (1) can be characterized.
- If n has one prime factor

 1 (mod M):
 Most interesting case;
 this talk will be about a specific aspect.

$$\lfloor \frac{n-1}{M} \rfloor_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}.$$
 (1)

- If *n* has **at least 3** different prime factors \equiv 1 (mod *M*), then (1) always holds for *n* \equiv 1 (mod *M*).
- If n has **two** different prime factors $\equiv 1 \pmod{M}$, then the order of $(\frac{n-1}{M})_n! \pmod{n}$ is a divisor of M. In certain cases, solutions of (1) can be characterized.
- If n has one prime factor

 1 (mod M):
 Most interesting case;
 this talk will be about a specific aspect.
- If n has **no** prime factor $\equiv 1 \pmod{M}$: Very little can be said.

$$\lfloor \frac{n-1}{M} \rfloor_n! \equiv 1 \pmod{n}, \qquad n \equiv \pm 1 \pmod{M}.$$
 (1)

- If *n* has **at least 3** different prime factors \equiv 1 (mod *M*), then (1) always holds for *n* \equiv 1 (mod *M*).
- If n has **two** different prime factors $\equiv 1 \pmod{M}$, then the order of $(\frac{n-1}{M})_n! \pmod{n}$ is a divisor of M. In certain cases, solutions of (1) can be characterized.
- If n has one prime factor

 1 (mod M):
 Most interesting case;
 this talk will be about a specific aspect.
- If n has **no** prime factor $\equiv 1 \pmod{M}$: Very little can be said.
- Other partial products of the "full" product $(n-1)_n!$ have also been studied (JBC & KD, 2013).

Setting the stage: We'll consider integers of the form

$$n = p^{\alpha}w$$
, with $w = q_1^{\beta_1} \dots q_s^{\beta_s}$

(
$$s \ge 0, \alpha, \beta_1, \dots, \beta_s \in \mathbb{N}$$
), where

$$p \equiv 1 \pmod{3}$$
, $q_1 \equiv \cdots \equiv q_s \equiv -1 \pmod{3}$

are distinct primes (case s = 0 is interpreted as w = 1.)

Setting the stage: We'll consider integers of the form

$$n = p^{\alpha} w$$
, with $w = q_1^{\beta_1} \dots q_s^{\beta_s}$

($s \ge 0, \alpha, \beta_1, \dots, \beta_s \in \mathbb{N}$), where

$$p \equiv 1 \pmod{3}, \quad q_1 \equiv \cdots \equiv q_s \equiv -1 \pmod{3}$$

are distinct primes (case s = 0 is interpreted as w = 1.)

Here: study integers of this type for which

$$\left\lfloor \frac{n-1}{3} \right\rfloor_n! \equiv 1 \pmod{n},\tag{2}$$

or

$$\left\lfloor \frac{n-1}{6} \right\rfloor_n! \equiv 1 \pmod{n}. \tag{3}$$

$$\left|\frac{n-1}{3}\right|_n! \equiv 1 \pmod{n}, \qquad \left|\frac{n-1}{6}\right|_n! \equiv 1 \pmod{n}$$
:

$$\lfloor \frac{n-1}{3} \rfloor_n! \equiv 1 \pmod{n}, \qquad \lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$$
:

n	factored	n	factored
26	2 · 13	1105	5 · 13 · 17
244	2 ² · 61	14365	5 · 13² · 17
305	5 · 61	34765	5 · 17 · 409
338	2 · 13 ²	303535	5 · 17 · 3571
9755	5 · 1951	309485	5 · 11 · 17 · 331
18205	5 · 11 · 331	353365	5 · 29 · 2437
33076	2 ² · 8269	508255	5 · 11 · 9241
48775	5 ² · 1951	510605	5 · 102121
60707	17 · 3571	527945	5 · 11 · 29 · 331

In bold: $p \equiv 1 \pmod{3}$.

$$\lfloor \frac{n-1}{3} \rfloor_n! \equiv 1 \pmod{n}, \qquad \lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$$
:

n	factored	n	factored
26	2 · 13	1105	5 · 13 · 17
244	2 ² · 61	14365	5 · 13² · 17
305	5 · 61	34765	5 · 17 · 409
338	2 · 13 ²	303535	5 · 17 · 3571
9755	5 · 1951	309485	5 · 11 · 17 · 331
18205	5 · 11 · 331	353365	5 · 29 · 2437
33076	2 ² · 8269	508255	5 · 11 · 9241
48775	5 ² · 1951	510605	5 · 102121
60707	17 · 3571	527945	5 · 11 · 29 · 331

In bold: $p \equiv 1 \pmod{3}$.

How can we characterize these solutions?

$$\lfloor \frac{n-1}{3} \rfloor_n! \equiv 1 \pmod{n}, \qquad \lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$$
:

n	factored	n	factored
26	2 · 13	1105	5 · 13 · 17
244	2 ² · 61	14365	5 · 13² · 17
305	5 · 61	34765	5 · 17 · 409
338	2 · 13 ²	303535	5 · 17 · 3571
9755	5 · 1951	309485	5 · 11 · 17 · 331
18205	5 · 11 · 331	353365	5 · 29 · 2437
33076	2 ² · 8269	508255	5 · 11 · 9241
48775	5 ² · 1951	510605	5 · 102121
60707	17 · 3571	527945	5 · 11 · 29 · 331

In bold: $p \equiv 1 \pmod{3}$.

How can we characterize these solutions? Let's consider some specific $p \equiv 1 \pmod{3}$.

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

(a) Solutions of $\left|\frac{n-1}{3}\right|_n! \equiv 1 \pmod{n}$:

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

(a) Solutions of $\lfloor \frac{n-1}{3} \rfloor_n! \equiv 1 \pmod{n}$:

Combination of theory and computation shows:

• For $s = 0, 1, \dots, 6$: no solutions.

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

(a) Solutions of $\lfloor \frac{n-1}{3} \rfloor_n! \equiv 1 \pmod{n}$:

Combination of theory and computation shows:

- For $s = 0, 1, \dots, 6$: no solutions.
- \bullet For s=7: exactly 27 solutions, the smallest and largest of which are

$$n = 7 \cdot 2 \cdot 5 \cdot 17 \cdot 353 \cdot 169553 \cdot 7699649 \cdot 531968664833,$$

$$n = \mathbf{7} \cdot 2^9 \cdot 5 \cdot 17 \cdot 353 \cdot 7699649 \cdot 47072139617$$

$$\cdot 531968664833,$$

with 30 and 36 decimal digits, respectively.

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

(b) Solutions of $\lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$:

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

- (b) Solutions of $\lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$:
- For s = 0: trivial solution n = 7.

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

- (b) Solutions of $\lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$:
- For s = 0: trivial solution n = 7.
- For s = 1, ..., 5: no solutions.

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

- (b) Solutions of $\lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$:
- For s = 0: trivial solution n = 7.
- For s = 1, ..., 5: no solutions.
- For s = 6: single 40-digit solution

 $n = 7 \cdot 17 \cdot 353 \cdot 169553 \cdot 7699649 \cdot 47072139617 \cdot 531968664833.$

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

- (b) Solutions of $\lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$:
- For s = 0: trivial solution n = 7.
- For s = 1, ..., 5: no solutions.
- For s = 6: single 40-digit solution
 n = 7.17.353.169553.7699649.47072139617.531968664833.

Questions:

(i) What determines presence/absence of solutions?

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

- (b) Solutions of $\lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$:
- For s = 0: trivial solution n = 7.
- For s = 1, ..., 5: no solutions.
- For s = 6: single 40-digit solution
 n = 7.17.353.169553.7699649.47072139617.531968664833.

Questions:

- (i) What determines presence/absence of solutions?
- (ii) What are the factors q_i when solutions exist?

$$n=p^{\alpha}q_1^{\beta_1}\ldots q_s^{\beta_s}.$$

- (b) Solutions of $\lfloor \frac{n-1}{6} \rfloor_n! \equiv 1 \pmod{n}$:
- For s = 0: trivial solution n = 7.
- For s = 1, ..., 5: no solutions.
- For s = 6: single 40-digit solution

 $n = 7 \cdot 17 \cdot 353 \cdot 169553 \cdot 7699649 \cdot 47072139617 \cdot 531968664833.$

Questions:

- (i) What determines presence/absence of solutions?
- (ii) What are the factors q_i when solutions exist?
- (iii) For what p can solutions exist?

"You know, most people's favourite number is 7, but mine is 627399010364882991004825304810385572229571004927401015482947738885917389."

 $n = \mathbf{7} \cdot 2 \cdot 5 \cdot 17 \cdot 353 \cdot 169553 \cdot 7699649 \cdot 531968664833,$

. . .

 $n = 7 \cdot 2^9 \cdot 5 \cdot 17 \cdot 353 \cdot 7699649 \cdot 47072139617 \cdot 531968664833.$

For M = 6:

 $n = 7 \cdot 17 \cdot 353 \cdot 169553 \cdot 7699649 \cdot 47072139617 \cdot 531968664833.$

$$n = \mathbf{7} \cdot 2 \cdot 5 \cdot 17 \cdot 353 \cdot 169553 \cdot 7699649 \cdot 531968664833,$$

. . .

 $n = \mathbf{7} \cdot 2^9 \cdot 5 \cdot 17 \cdot 353 \cdot 7699649 \cdot 47072139617 \cdot 531968664833.$

For M = 6:

n = 7.17.353.169553.7699649.47072139617.531968664833.

Note:

$$5 \mid 7^2 + 1$$
, $17 \mid 7^{2^3} + 1$ and $169553 \mid 7^{2^3} + 1$, $353 \mid 7^{2^4} + 1$ and $47072139617 \mid 7^{2^4} + 1$, $7699649 \mid 7^{2^5} + 1$ and $531968664833 \mid 7^{2^5} + 1$.

$$n = \mathbf{7} \cdot 2 \cdot 5 \cdot 17 \cdot 353 \cdot 169553 \cdot 7699649 \cdot 531968664833,$$

. . .

 $n = \mathbf{7} \cdot 2^9 \cdot 5 \cdot 17 \cdot 353 \cdot 7699649 \cdot 47072139617 \cdot 531968664833.$

For M = 6:

n = 7.17.353.169553.7699649.47072139617.531968664833.

Note:

Also: $7^{2^2} + 1$ has no prime factor $q \equiv -1 \pmod{3}$;

$$n = \mathbf{7} \cdot 2 \cdot 5 \cdot 17 \cdot 353 \cdot 169553 \cdot 7699649 \cdot 531968664833,$$

. . .

 $n = \textbf{7} \cdot 2^9 \cdot 5 \cdot 17 \cdot 353 \cdot 7699649 \cdot 47072139617 \cdot 531968664833.$

For M = 6:

 $n = 7 \cdot 17 \cdot 353 \cdot 169553 \cdot 7699649 \cdot 47072139617 \cdot 531968664833.$

Note:

Also: $7^{2^2} + 1$ has no prime factor $q \equiv -1 \pmod{3}$; 2^9 is the exact power of 2 that divides

$$(7-1)(7+1)(7^{2^1}+1)\dots(7^{2^5}+1).$$

We can find necessary and sufficient conditions for the solutions of

$$\lfloor \frac{n-1}{3} \rfloor_n !^3 \equiv 1 \pmod{n}$$
 and $\lfloor \frac{n-1}{6} \rfloor_n !^3 \equiv 1 \pmod{n}$,

We can find necessary and sufficient conditions for the solutions of

$$\lfloor \frac{n-1}{3} \rfloor_n !^3 \equiv 1 \pmod{n}$$
 and $\lfloor \frac{n-1}{6} \rfloor_n !^3 \equiv 1 \pmod{n}$,

i.e., necessary conditions for the original congruences.

We can find necessary and sufficient conditions for the solutions of

$$\lfloor \frac{n-1}{3} \rfloor_n !^3 \equiv 1 \pmod{n}$$
 and $\lfloor \frac{n-1}{6} \rfloor_n !^3 \equiv 1 \pmod{n}$,

i.e., necessary conditions for the original congruences.

For simplicity, here: Restrict our attention to

- denominator M = 3;
- the case $s \ge 2$, where $n = p^{\alpha}w$, $w = q_1^{\beta_1} \dots q_s^{\beta_s}$,
- $w \equiv 1 \pmod{3}$, i.e., $n \equiv 1 \pmod{3}$.

We can find necessary and sufficient conditions for the solutions of

$$\lfloor \frac{n-1}{3} \rfloor_n !^3 \equiv 1 \pmod{n}$$
 and $\lfloor \frac{n-1}{6} \rfloor_n !^3 \equiv 1 \pmod{n}$,

i.e., necessary conditions for the original congruences.

For simplicity, here: Restrict our attention to

- denominator M = 3;
- the case $s \ge 2$, where $n = p^{\alpha} w$, $w = q_1^{\beta_1} \dots q_s^{\beta_s}$,
- $w \equiv 1 \pmod{3}$, i.e., $n \equiv 1 \pmod{3}$.

Main approach: Find criteria for

$$\lfloor \frac{n-1}{3} \rfloor_n!^3 \equiv 1 \pmod{w}$$
 and $\lfloor \frac{n-1}{3} \rfloor_n!^3 \equiv 1 \pmod{p^{\alpha}};$

We can find necessary and sufficient conditions for the solutions of

$$\lfloor \frac{n-1}{3} \rfloor_n !^3 \equiv 1 \pmod{n}$$
 and $\lfloor \frac{n-1}{6} \rfloor_n !^3 \equiv 1 \pmod{n}$,

i.e., necessary conditions for the original congruences.

For simplicity, here: Restrict our attention to

- denominator M = 3;
- the case $s \ge 2$, where $n = p^{\alpha} w$, $w = q_1^{\beta_1} \dots q_s^{\beta_s}$,
- $w \equiv 1 \pmod{3}$, i.e., $n \equiv 1 \pmod{3}$.

Main approach: Find criteria for

$$\lfloor \frac{n-1}{3} \rfloor_n!^3 \equiv 1 \pmod{w}$$
 and $\lfloor \frac{n-1}{3} \rfloor_n!^3 \equiv 1 \pmod{p^{\alpha}};$

then combine the two using the Chinese Remainder Theorem.

3. Generalized Fermat numbers

Congruences modulo w:

We define the partial totient function

$$\varphi(M, w) = \#\{\tau \mid 1 \le \tau \le \frac{w-1}{M}, \gcd(\tau, w) = 1\}.$$

3. Generalized Fermat numbers

Congruences modulo w:

We define the partial totient function

$$\varphi(M, w) = \#\{\tau \mid 1 \le \tau \le \frac{w-1}{M}, \gcd(\tau, w) = 1\}.$$

Lemma

With n as before, we have

$$\left(\frac{n-1}{3}\right)_n! \equiv \frac{1}{p^{\varphi(3,w)}} \pmod{w}, \qquad \varphi(3,w) = \frac{1}{3}(\varphi(w) + 2^{s-1}).$$

3. Generalized Fermat numbers

Congruences modulo w:

We define the partial totient function

$$\varphi(M, w) = \#\{\tau \mid 1 \le \tau \le \frac{w-1}{M}, \gcd(\tau, w) = 1\}.$$

Lemma

With n as before, we have

$$\left(\frac{n-1}{3}\right)_n! \equiv \frac{1}{p^{\varphi(3,w)}} \pmod{w}, \qquad \varphi(3,w) = \frac{1}{3}(\varphi(w) + 2^{s-1}).$$

Proof is very technical. Basic idea: Write

$$\frac{n-1}{3} = \frac{p^{\alpha}-1}{3}w + \frac{w-1}{3}$$
 $(n \equiv 1 \pmod{3}).$

(slightly different when $n \equiv -1 \pmod{3}$).

$$\frac{n-1}{3} = \frac{p^{\alpha}-1}{3}W + \frac{w-1}{3}.$$

$$\lfloor \frac{n-1}{3} \rfloor_n!$$
 is a product of

$$\left\{ \begin{array}{ll} \frac{\rho^{\alpha}-1}{3} \text{ "main terms", and} \\ \text{one "remainder term".} \end{array} \right.$$

$$\frac{n-1}{3} = \frac{p^{\alpha}-1}{3}W + \frac{w-1}{3}.$$

$$\lfloor \frac{n-1}{3} \rfloor_n!$$
 is a product of

$$\left\{ \begin{array}{ll} \frac{p^{\alpha}-1}{3} \text{ "main terms", and} \\ \text{one "remainder term".} \end{array} \right.$$

• Main terms mostly evaluate to 1 (mod w), by Gauss-Wilson.

$$\frac{n-1}{3} = \frac{p^{\alpha}-1}{3}W + \frac{w-1}{3}.$$

$$\lfloor \frac{n-1}{3} \rfloor_n!$$
 is a product of

 $\begin{cases} & \frac{p^{\alpha}-1}{3} \text{ "main terms", and} \\ & \text{one "remainder term".} \end{cases}$

- Main terms mostly evaluate to 1 (mod w), by Gauss-Wilson.
- Remainder term is more subtle, but can also be evaluated by Gauss-Wilson and Euler-Fermat theorems.

$$\frac{n-1}{3} = \frac{p^{\alpha}-1}{3}W + \frac{w-1}{3}.$$

$$\lfloor \frac{n-1}{3} \rfloor_n!$$
 is a product of

 $\begin{cases} & \frac{p^{\alpha}-1}{3} \text{ "main terms", and} \\ & \text{one "remainder term".} \end{cases}$

- Main terms mostly evaluate to 1 (mod w), by Gauss-Wilson.
- Remainder term is more subtle, but can also be evaluated by Gauss-Wilson and Euler-Fermat theorems.
- Similar result also for arbitrary denominators $M \ge 2$.

Now we can see how generalized Fermat numbers enter:

Raise both sides of Lemma to 3rd power.

Then

$$\left(\frac{n-1}{3}\right)_n!^3 \equiv p^{-\varphi(w)-2^{s-1}} \equiv p^{-2^{s-1}} \pmod w, \qquad \delta = \pm 1.$$

Now we can see how generalized Fermat numbers enter:

Raise both sides of Lemma to 3rd power.

Then

$$(\frac{n-1}{3})_n!^3 \equiv p^{-\varphi(w)-2^{s-1}} \equiv p^{-2^{s-1}} \pmod{w}, \qquad \delta = \pm 1.$$

Therefore

$$\left(\frac{n-1}{3}\right)_n!^3 \equiv 1 \pmod{w}$$

if and only if

$$p^{2^{s-1}}-1\equiv 0\pmod{w}.$$

Now we can see how generalized Fermat numbers enter:

Raise both sides of Lemma to 3rd power.

Then

$$\left(\frac{n-1}{3}\right)_n!^3 \equiv p^{-\varphi(w)-2^{s-1}} \equiv p^{-2^{s-1}} \pmod{w}, \qquad \delta = \pm 1.$$

Therefore

$$\left(\frac{n-1}{3}\right)_n!^3 \equiv 1 \pmod{w}$$

if and only if

$$p^{2^{s-1}}-1\equiv 0\pmod{w}.$$

This factors:

$$p^{2^{s-1}} - 1 = (p-1)(p+1)(p^2+1)\dots(p^{2^{s-2}}+1).$$

We have therefore shown:

Proposition

Let n be as before, with $s \ge 1$. Then

$$\left(\frac{n-1}{3}\right)_n!^3 \equiv 1 \pmod{w}$$

iff every $q_i^{\beta_i}$ is a divisor of $p^{2^{s-1}} - 1$; i.e., iff every

$$q_i^{\beta_i} \ divides egin{cases} p-1, & \textit{for } s=1, \\ (p-1)(p+1)(p^2+1)\dots(p^{2^{s-2}}+1), & \textit{for } s\geq 2. \end{cases}$$

We have therefore shown:

Proposition

Let n be as before, with $s \ge 1$. Then

$$\left(\frac{n-1}{3}\right)_n!^3 \equiv 1 \pmod{w}$$

iff every $q_i^{\beta_i}$ is a divisor of $p^{2^{s-1}} - 1$; i.e., iff every

$$q_i^{\beta_i} \ \text{divides} \begin{cases} p-1, & \text{for } s=1, \\ (p-1)(p+1)(p^2+1)\dots(p^{2^{s-2}}+1), & \text{for } s\geq 2. \end{cases}$$

Note: This is in fact true for

$$\left|\frac{n-1}{3}\right|_n! \equiv 1 \pmod{w}$$
.

4. Jacobi primes

Congruences modulo p^{α} :

The following is the second crucial ingredient.

Lemma

Let $n \equiv 1 \pmod{3}$ be as before. Then for $s \ge 2$,

$$\left(\frac{n-1}{3}\right)_n! \equiv (q_1 \dots q_s)^{(-1)^{s-1} \frac{\varphi(p^\alpha)}{3}} \left(\left(\frac{p^\alpha - 1}{3}\right)_p!\right)^{2^s} \pmod{p^\alpha}.$$

4. Jacobi primes

Congruences modulo p^{α} :

The following is the second crucial ingredient.

Lemma

Let $n \equiv 1 \pmod{3}$ be as before. Then for $s \ge 2$,

$$\left(\frac{n-1}{3}\right)_n! \equiv (q_1 \dots q_s)^{(-1)^{s-1} \frac{\varphi(p^\alpha)}{3}} \left(\left(\frac{p^\alpha - 1}{3}\right)_p!\right)^{2^s} \pmod{p^\alpha}.$$

Once again:

- Lemma holds in greater generality;
- proof is very technical.

4. Jacobi primes

Congruences modulo p^{α} :

The following is the second crucial ingredient.

Lemma

Let $n \equiv 1 \pmod{3}$ be as before. Then for $s \ge 2$,

$$\left(\frac{n-1}{3}\right)_n! \equiv (q_1 \dots q_s)^{(-1)^{s-1} \frac{\varphi(p^\alpha)}{3}} \left(\left(\frac{p^\alpha - 1}{3}\right)_p!\right)^{2^s} \pmod{p^\alpha}.$$

Once again:

- Lemma holds in greater generality;
- proof is very technical.

To apply this lemma, first observe:

By cubing both sides, the $(q_1 \dots q_s)$ term becomes 1 (mod p^{α}).

Therefore the main conditions is

$$(\frac{p^{\alpha}-1}{3})_{p}!^{3\cdot 2^{s}}\equiv 1\pmod{p^{\alpha}}.$$
 (4)

Therefore the main conditions is

$$\left(\frac{p^{\alpha}-1}{3}\right)_{p}!^{3\cdot 2^{s}} \equiv 1 \pmod{p^{\alpha}}.$$
 (4)

We'll see: primes *p* that satisfy this are rather special.

Using the notation

$$\gamma_{\alpha}(p) := \operatorname{ord}_{p^{\alpha}}((\frac{p^{\alpha}-1}{3})_{p}!) \qquad p \equiv 1 \pmod{3}),$$

for the multiplicative order modulo p^{α} , (4) implies

$$\gamma_{\alpha}(p) = 2^{\ell} \quad \text{or} \quad 3 \cdot 2^{\ell} \qquad (0 \le \ell \le s).$$
 (5)

Therefore the main conditions is

$$\left(\frac{p^{\alpha}-1}{3}\right)_{p}!^{3\cdot2^{s}}\equiv1\pmod{p^{\alpha}}.\tag{4}$$

We'll see: primes *p* that satisfy this are rather special.

Using the notation

$$\gamma_{\alpha}(p) := \operatorname{ord}_{p^{\alpha}}((\frac{p^{\alpha}-1}{3})_{p}!) \qquad p \equiv 1 \pmod{3}),$$

for the multiplicative order modulo p^{α} , (4) implies

$$\gamma_{\alpha}(p) = 2^{\ell} \quad \text{or} \quad 3 \cdot 2^{\ell} \qquad (0 \le \ell \le s).$$
 (5)

We showed earlier (IJNT, 2011, in greater generality): sequence $\gamma_1(p)$, $\gamma_2(p)$,... behaves in a very specific way; means that (5) implies

$$\gamma_1(p) = 2^{\ell}$$
 or $3 \cdot 2^{\ell}$.

This gives rise to the following definition:

Definition

A prime $p \equiv 1 \pmod{3}$ is a Jacobi prime of level ℓ if

$$\operatorname{ord}_{\rho}\left(\frac{\rho-1}{3}!\right)=2^{\ell}\quad \text{or}\quad \operatorname{ord}_{\rho}\left(\frac{\rho-1}{3}!\right)=3\cdot 2^{\ell}.$$

This gives rise to the following definition:

Definition

A prime $p \equiv 1 \pmod{3}$ is a Jacobi prime of level ℓ if

$$\operatorname{ord}_{\rho}\left(\tfrac{\rho-1}{3}!\right)=2^{\ell}\quad\text{or}\quad\operatorname{ord}_{\rho}\left(\tfrac{\rho-1}{3}!\right)=3\cdot2^{\ell}.$$

Examples: We consider the first three primes $p \equiv 1 \pmod{6}$ and compute:

$$\begin{split} \rho &= 7: & \quad \frac{p-1}{3}! = 2, & \quad \operatorname{ord}_{\rho}\left(\frac{p-1}{3}!\right) = 3 = 3 \cdot 2^{0}; \\ \rho &= 13: & \quad \frac{p-1}{3}! = 24, & \quad \operatorname{ord}_{\rho}\left(\frac{p-1}{3}!\right) = 12 = 3 \cdot 2^{2}; \\ \rho &= 19: & \quad \frac{p-1}{3}! = 720, & \quad \operatorname{ord}_{\rho}\left(\frac{p-1}{3}!\right) = 9. \end{split}$$

This gives rise to the following definition:

Definition

A prime $p \equiv 1 \pmod{3}$ is a Jacobi prime of level ℓ if

$$\operatorname{ord}_{\rho}\left(\tfrac{\rho-1}{3}!\right)=2^{\ell}\quad\text{or}\quad\operatorname{ord}_{\rho}\left(\tfrac{\rho-1}{3}!\right)=3\cdot2^{\ell}.$$

Examples: We consider the first three primes $p \equiv 1 \pmod{6}$ and compute:

$$\begin{split} \rho &= 7: & \frac{p-1}{3}! = 2, & \operatorname{ord}_{\rho}\left(\frac{p-1}{3}!\right) = 3 = 3 \cdot 2^{0}; \\ \rho &= 13: & \frac{p-1}{3}! = 24, & \operatorname{ord}_{\rho}\left(\frac{p-1}{3}!\right) = 12 = 3 \cdot 2^{2}; \\ \rho &= 19: & \frac{p-1}{3}! = 720, & \operatorname{ord}_{\rho}\left(\frac{p-1}{3}!\right) = 9. \end{split}$$

Thus, 7 and 13 are Jacobi primes of levels 0, resp. 2; 19 is not a Jacobi prime.

Why "Jacobi prime"? Recall:

Theorem (Jacobi, 1837)

Let $p \equiv 1 \pmod{3}$, and write $4p = r^2 + 27t^2$, $r \equiv 1 \pmod{3}$, which uniquely determines the integer r. Then

$$\binom{\frac{2(p-1)}{3}}{\frac{p-1}{3}} \equiv -r \pmod{p}.$$

Why "Jacobi prime"? Recall:

Theorem (Jacobi, 1837)

Let $p \equiv 1 \pmod{3}$, and write $4p = r^2 + 27t^2$, $r \equiv 1 \pmod{3}$, which uniquely determines the integer r. Then

$$\binom{\frac{2(p-1)}{3}}{\frac{p-1}{3}} \equiv -r \pmod{p}.$$

An easy consequence:

Corollary

Let p and r be as above. Then

$$\left(\frac{p-1}{3}\right)!^3 \equiv \frac{1}{r} \pmod{p}. \tag{6}$$

This leads to equivalent definition:

Corollary

A prime $p \equiv 1 \pmod{3}$ is a Jacobi prime of level ℓ iff

$$\operatorname{ord}_p(r)=2^\ell.$$

This leads to equivalent definition:

Corollary

A prime $p \equiv 1 \pmod{3}$ is a Jacobi prime of level ℓ iff

$$\operatorname{ord}_p(r) = 2^{\ell}$$
.

Examples:

$$\begin{split} \rho &= 7: \qquad 4\rho = 1^2 + 27 \cdot 1^2, \qquad & \mathrm{ord}_{\rho}(1) = 2^0; \\ \rho &= 13: \qquad 4\rho = (-5)^2 + 27 \cdot 1^2, \qquad & \mathrm{ord}_{\rho}(-5) = 2^2; \\ \rho &= 19: \qquad 4\rho = 7^2 + 27 \cdot 1^2, \qquad & \mathrm{ord}_{\rho}(7) = 3. \end{split}$$

Consistent with previous examples.

Some further properties:

Proposition

(a) A prime p is a level-0 Jacobi prime if and only if

$$p = 27X^2 + 27X + 7$$
 $(X \in \mathbb{Z}).$

- (b) There is no level-1 Jacobi prime.
- (c) The only level-2 Jacobi prime is p = 13.

Some further properties:

Proposition

(a) A prime p is a level-0 Jacobi prime if and only if

$$p = 27X^2 + 27X + 7$$
 $(X \in \mathbb{Z}).$

- (b) There is no level-1 Jacobi prime.
- (c) The only level-2 Jacobi prime is p = 13.

Remarks: (1) As expected, level-0 Jacobi primes are quite abundant; the first few (up to 1000) are 7, 61, 331 and 547; a total of 215105 up to 10^{14} .

Some further properties:

Proposition

(a) A prime p is a level-0 Jacobi prime if and only if

$$p = 27X^2 + 27X + 7$$
 $(X \in \mathbb{Z}).$

- (b) There is no level-1 Jacobi prime.
- (c) The only level-2 Jacobi prime is p = 13.

Remarks: (1) As expected, level-0 Jacobi primes are quite abundant; the first few (up to 1000) are 7, 61, 331 and 547; a total of 215 105 up to 10¹⁴.

(2) On the other hand, Jacobi primes of levels $\ell \geq 3$ are very rare, with only 44 up to 10^{14} . The first few are 13, 97, 193, 409, 769.

5. Main results

Using a slightly more general setting again, with $n \equiv w \equiv \pm 1 \pmod{3}$, we have

Theorem

Let n be as above, with $\alpha \ge 1$ and $s \ge 2$. Then a necessary and sufficient condition for

$$\lfloor \frac{n-1}{3} \rfloor_n!^3 \equiv 1 \pmod{n}$$

to hold is that all of the following be satisfied:

- (a) p is $(\alpha 1)$ -exceptional if $\alpha > 1$;
- (b) p is a level- ℓ Jacobi prime for some $0 \le \ell \le s$;
- (c) $q_i^{\beta_i} \mid (p-1)(p+1)(p^2+1)\dots(p^{2^{s-2}}+1)$ for all $1 \leq i \leq s$.

5. Main results

Using a slightly more general setting again, with $n \equiv w \equiv \pm 1 \pmod{3}$, we have

Theorem

Let n be as above, with $\alpha \ge 1$ and $s \ge 2$. Then a necessary and sufficient condition for

$$\left\lfloor \frac{n-1}{3} \right\rfloor_n !^3 \equiv 1 \pmod{n}$$

to hold is that all of the following be satisfied:

- (a) p is $(\alpha 1)$ -exceptional if $\alpha > 1$;
- (b) p is a level- ℓ Jacobi prime for some $0 \le \ell \le s$;
- (c) $q_i^{\beta_i} \mid (p-1)(p+1)(p^2+1)\dots(p^{2^{s-2}}+1)$ for all $1 \leq i \leq s$.

What does " $(\alpha - 1)$ -exceptional" mean?

$$\gamma_{\alpha}^{M}(p) := \operatorname{ord}_{p^{\alpha}}((\frac{p^{\alpha}-1}{M})_{p^{\alpha}}!).$$

$$\gamma_{\alpha}^{M}(p) := \operatorname{ord}_{p^{\alpha}}((\frac{p^{\alpha}-1}{M})_{p^{\alpha}}!).$$

In what follows: Fix M and p; let α vary.

$$\gamma_{\alpha}^{M}(p) := \operatorname{ord}_{p^{\alpha}}((\frac{p^{\alpha}-1}{M})_{p^{\alpha}}!).$$

In what follows: Fix M and p; let α vary.

What can we say about the sequence

$$\{\gamma_{\alpha}^{M}(p)\}_{\alpha\geq 1}$$
?

$$\gamma_{\alpha}^{M}(p) := \operatorname{ord}_{p^{\alpha}}((\frac{p^{\alpha}-1}{M})_{p^{\alpha}}!).$$

In what follows: Fix M and p; let α vary.

What can we say about the sequence

$$\{\gamma_{\alpha}^{M}(p)\}_{\alpha\geq 1}$$
?

Note:

$$(\frac{p^{\alpha}-1}{M})_{p^{\alpha}}!=(\frac{p^{\alpha}-1}{M})_{p}!;$$

We can therefore replace the subscript p^{α} by p.

$$\gamma_{\alpha}^{M}(p) := \operatorname{ord}_{p^{\alpha}}((\frac{p^{\alpha}-1}{M})_{p^{\alpha}}!).$$

In what follows: Fix M and p; let α vary.

What can we say about the sequence

$$\{\gamma_{\alpha}^{M}(p)\}_{\alpha\geq 1}$$
?

Note:

$$(\frac{p^{\alpha}-1}{M})_{p^{\alpha}}!=(\frac{p^{\alpha}-1}{M})_{p}!;$$

We can therefore replace the subscript p^{α} by p.

Let's look at some examples with M = 4:

α/p	5	13	17	29	37
1	1	12	16	7	18
2	10	156	272	406	333
3	25	2 0 2 8	4 624	5 887	24 642
4	250	26 364	78 608	341 446	455 877
5	625	342 732	1 336 336	4 950 967	33 734 898

α/p	5	13	17	29	37
1	1	12	16	7	18
2	10	156	272	406	333
3	25	2 028	4 624	5 887	24 642
4	250	26 364	78 608	341 446	455 877
5	625	342 732	1 336 336	4 950 967	33 734 898
1	γ	γ	γ	γ	γ
2	$2p\gamma$	$p\gamma$	$oldsymbol{p}\gamma$	2 $p\gamma$	$\frac{1}{2}p\gamma$
3	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$	$\bar{p}^2\gamma$
4	$2p^3\gamma$	$p^3\gamma$	$p^3\gamma$	$2p^3\gamma$	$\frac{1}{2}p^3\gamma$
5	$p^4\gamma$	$p^4\gamma$	$p^4\gamma$	$ ho^4\gamma$	$p^4\gamma$

Table 1: $\gamma := \gamma_1^4(p), \ p \equiv 1 \pmod{4}$.

α/p	5	13	17	29	37
1	1	12	16	7	18
2	10	156	272	406	333
3	25	2 028	4 624	5 887	24 642
4	250	26 364	78 608	341 446	455 877
5	625	342732	1 336 336	4 950 967	33 734 898
1	γ	γ	γ	γ	γ
2	$2p\gamma$	$m{p}\gamma$	$oldsymbol{p}\gamma$	$2p\gamma$	$\frac{1}{2}p\gamma$
3	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$
4	$2p^3\gamma$	$p^3\gamma$	$p^3\gamma$	$2p^{3}\gamma$	$\frac{1}{2}p^3\gamma$
5	$p^4\gamma$	$p^4\gamma$	$p^4\gamma$	$p^4\gamma$	$p^4\gamma$

Table 1: $\gamma := \gamma_1^4(p), \ p \equiv 1 \pmod{4}$.

Note the 3 different patterns; otherwise regular.

α/p	5	13	17	29	37
1	1	12	16	7	18
2	10	156	272	406	333
3	25	2 028	4 624	5 887	24 642
4	250	26 364	78 608	341 446	455 877
5	625	342 732	1 336 336	4 950 967	33 734 898
1	γ	γ	γ	γ	γ
2	$2p\gamma$	$p\gamma$	$oldsymbol{p}\gamma$	2 $p\gamma$	$\frac{1}{2}p\gamma$
3	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$
4	$2p^3\gamma$	$p^3\gamma$	$p^3\gamma$	2 $p^3\gamma$	$\frac{1}{2}p^3\gamma$
5	$p^4\gamma$	$\rho^4\gamma$	$p^4\gamma$	$p^4\gamma$	$p^4\gamma$

Table 1: $\gamma := \gamma_1^4(p), \ p \equiv 1 \pmod{4}$.

Note the 3 different patterns; otherwise regular.

• Are there more patterns?

α/p	5	13	17	29	37
1	1	12	16	7	18
2	10	156	272	406	333
3	25	2 028	4 624	5 887	24 642
4	250	26 364	78 608	341 446	455 877
5	625	342 732	1 336 336	4 950 967	33 734 898
1	γ	γ	γ	γ	γ
2	$2p\gamma$	$p\gamma$	$oldsymbol{p}\gamma$	2 $p\gamma$	$\frac{1}{2}p\gamma$
3	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$	$p^2\gamma$
4	$2p^3\gamma$	$p^3\gamma$	$p^3\gamma$	2 $p^3\gamma$	$\frac{1}{2}p^3\gamma$
5	$p^4\gamma$	$\rho^4\gamma$	$p^4\gamma$	$p^4\gamma$	$p^4\gamma$

Table 1:
$$\gamma := \gamma_1^4(p), \ p \equiv 1 \pmod{4}$$
.

Note the 3 different patterns; otherwise regular.

- Are there more patterns?
- Do we always have $1, p, p^2, p^3, \dots$?

$$\begin{cases} \gamma, p\gamma, p^2\gamma, p^3\gamma, \dots & \text{when } p \equiv 1 \pmod{8} \\ & \text{or } p \equiv 5 \pmod{8} \text{ and } 4|\gamma, \\ \gamma, \frac{1}{2}p\gamma, p^2\gamma, \frac{1}{2}p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \equiv 2 \pmod{4}, \\ \gamma, 2p\gamma, p^2\gamma, 2p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \text{ is odd.} \end{cases}$$

$$\begin{cases} \gamma, p\gamma, p^2\gamma, p^3\gamma, \dots & \text{when } p \equiv 1 \pmod{8} \\ & \text{or } p \equiv 5 \pmod{8} \text{ and } 4|\gamma, \\ \gamma, \frac{1}{2}p\gamma, p^2\gamma, \frac{1}{2}p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \equiv 2 \pmod{4}, \\ \gamma, 2p\gamma, p^2\gamma, 2p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \text{ is odd.} \end{cases}$$

Computations seem to support this.

$$\begin{cases} \gamma, p\gamma, p^2\gamma, p^3\gamma, \dots & \text{when } p \equiv 1 \pmod{8} \\ & \text{or } p \equiv 5 \pmod{8} \text{ and } 4|\gamma, \\ \gamma, \frac{1}{2}p\gamma, p^2\gamma, \frac{1}{2}p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \equiv 2 \pmod{4}, \\ \gamma, 2p\gamma, p^2\gamma, 2p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \text{ is odd.} \end{cases}$$

Computations seem to support this.

However, for
$$p = 29789$$
: $\gamma_1^4 = 14894$, **but** $\gamma_2^4 = 7447$.

$$\begin{cases} \gamma, p\gamma, p^2\gamma, p^3\gamma, \dots & \text{when } p \equiv 1 \pmod{8} \\ & \text{or } p \equiv 5 \pmod{8} \text{ and } 4|\gamma, \\ \gamma, \frac{1}{2}p\gamma, p^2\gamma, \frac{1}{2}p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \equiv 2 \pmod{4}, \\ \gamma, 2p\gamma, p^2\gamma, 2p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \text{ is odd.} \end{cases}$$

Computations seem to support this.

However, for p=29789: $\gamma_1^4=14894$, **but** $\gamma_2^4=7447$. The sequence "forgot" the factor p in the step $\gamma_1^4\to\gamma_2^4$.

$$\begin{cases} \gamma, p\gamma, p^2\gamma, p^3\gamma, \dots & \text{when } p \equiv 1 \pmod{8} \\ & \text{or } p \equiv 5 \pmod{8} \text{ and } 4|\gamma, \\ \gamma, \frac{1}{2}p\gamma, p^2\gamma, \frac{1}{2}p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \equiv 2 \pmod{4}, \\ \gamma, 2p\gamma, p^2\gamma, 2p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \text{ is odd.} \end{cases}$$

Computations seem to support this.

However, for
$$p=29789$$
: $\gamma_1^4=14894$, **but** $\gamma_2^4=7447$. The sequence "forgot" the factor p in the step $\gamma_1^4\to\gamma_2^4$.

We call such primes "exceptional primes" for M.

$$\begin{cases} \gamma, p\gamma, p^2\gamma, p^3\gamma, \dots & \text{when } p \equiv 1 \pmod{8} \\ & \text{or } p \equiv 5 \pmod{8} \text{ and } 4|\gamma, \\ \gamma, \frac{1}{2}p\gamma, p^2\gamma, \frac{1}{2}p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \equiv 2 \pmod{4}, \\ \gamma, 2p\gamma, p^2\gamma, 2p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \text{ is odd.} \end{cases}$$

Computations seem to support this.

However, for
$$p=29789$$
: $\gamma_1^4=14894$, **but** $\gamma_2^4=7447$. The sequence "forgot" the factor p in the step $\gamma_1^4\to\gamma_2^4$.

We call such primes "exceptional primes" for M.

• They can be characterized and computed.

$$\begin{cases} \gamma, p\gamma, p^2\gamma, p^3\gamma, \dots & \text{when } p \equiv 1 \pmod{8} \\ & \text{or } p \equiv 5 \pmod{8} \text{ and } 4|\gamma, \\ \gamma, \frac{1}{2}p\gamma, p^2\gamma, \frac{1}{2}p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \equiv 2 \pmod{4}, \\ \gamma, 2p\gamma, p^2\gamma, 2p^3\gamma, \dots & \text{when } p \equiv 5 \pmod{8} \text{ and } \gamma \text{ is odd.} \end{cases}$$

Computations seem to support this.

However, for
$$p=29789$$
: $\gamma_1^4=14894$, **but** $\gamma_2^4=7447$. The sequence "forgot" the factor p in the step $\gamma_1^4\to\gamma_2^4$.

We call such primes "exceptional primes" for M.

- They can be characterized and computed.
- They are exceedingly rare:

М	p	up to
3	13, 181, 2521, 76543, 489061	10 ¹²
4	29 789	10 ¹¹
5	71	2 · 10 ⁶
6	13, 181, 2521, 76543, 489061	10 ¹²
10	11	2 · 10 ⁶
18	1 090 891	2 · 10 ⁶
21	211, 15 583	2 · 10 ⁶
23	3 0 3 7	2 · 10 ⁶
24	73	2 · 10 ⁶
29	59	2 · 10 ⁶
35	1 471	2 · 10 ⁶
44	617	2 · 10 ⁶
48	97	2 · 10 ⁶

Table 2: 1-exceptional primes p for $3 \le M \le 100$.

No 2-exceptional primes are known.

Relevant here:

p = 13 is **the only** Jacobi prime $< 10^{12}$ that is also 1-exceptional.

Relevant here:

p = 13 is **the only** Jacobi prime $< 10^{12}$ that is also 1-exceptional.

Theorem

Let n be as above, with $\alpha \ge 1$ and $s \ge 2$. Then a necessary and sufficient condition for

$$\left\lfloor \frac{n-1}{3} \right\rfloor_n !^3 \equiv 1 \pmod{n}$$

to hold is that all of the following be satisfied:

- (a) p is $(\alpha 1)$ -exceptional if $\alpha > 1$;
- (b) p is a level- ℓ Jacobi prime for some $0 \le \ell \le s$;

(c)
$$q_i^{\beta_i} \mid (p-1)(p+1)(p^2+1) \dots (p^{2^{s-2}}+1)$$
 for all $1 \leq i \leq s$.

Thank you

Much more could be said ...

The paper itself (to be published in Math. Comp.):

http://www.mathstat.dal.ca/~dilcher/jacobi.html

For extensive computations and other related papers:

http://www.johnbcosgrave.com/