Лабораторная работа №6.2

«Изучение законов внешнего фотоэффекта»

Вариант 11

$$r = 11,50$$

Цель работы: Изучение явления внешнего фотоэлектрического эффекта на виртуальной лабораторной установке, экспериментальное подтверждение закономерностей внешнего фотоэффекта.

Приборы: 1 – Источник света;

2 – Вакуумная трубка;
 4 – Вольтметр;
 5 – Амперметр
 6 – Источник ЭДС
 7 – Анод (электрод)
 8 – Катод (электрод)
 9 – Фотоэлектроны
 10 – Световой поток

Схема установки:

$$A = \frac{hc}{\lambda_{\text{\tiny MHH}}} - eU_3$$

А – работа выхода электронов из вещества

h – постоянная Планка

с – скорость света в вакууме

 $\lambda_{\text{мин}}$ – минимальная длина волны в спектре источника света

е – заряд электрона

 U_3 – величина задерживающего потенциала, при котором прекращается фототок.

Решение:

A) Определить величину задерживающего потенциала ${\it U}_{3}$

$$U_3 = 1,68$$

				Е	Веществ	o 1 - Ka <i>i</i>	пий						
№ п/п	1	2	3	4	5	6	7	8	9	10	11	12	13
Потенциал U, B	-1,68	-2,0	-1,5	-1,0	-0,5	0,0	0,5	1,0	1,5	2,0	2,5	3,0	5,28
Фототок I, Ам	0,000	0,000	0,017	0,061	0,105	0,146	0,192	0,236	0,278	0,322	0,366	0,409	0,420

$$U_3 = 1,54$$

				E	Зеществ	o 2 - Ли ⁻	тий						
№ п/п	1	2	3	4	5	6	7	8	9	10	11	12	13
Потенциал U, B	-1,54	-2,0	-1,5	-1,0	-0,5	0,0	0,5	1,0	1,5	2,0	2,5	3,0	4,41
Фототок I, Ам	0,000	0,000	0,007	0,054	0,098	0,139	0,185	0,229	0,275	0,319	0,365	0,405	0,415

Б) Вычислить численное значение работы выхода электронов

	А, Дж	А, эВ
Вещество	3,52763E-	
1 -Калий	19	2,204765625
Вещество	3,75163E-	
2 - Литий	19	2,344765625

Таблица 1 Работа выхода электронов из металла

Металл	А, Дж	A, 3B
Платина	10.10-19	6,3
Серебро	7,5·10 ⁻¹⁹	4,7
Цинк	6,4·10 ⁻¹⁹	4,0
Литий	3,7·10 ⁻¹⁹	2,3
Калий	3,5·10 ⁻¹⁹	2,2
Рубидий	3,4·10 ⁻¹⁹	2,1
Цезий	3,2·10 ⁻¹⁹	2,0

По таблице определяем, что Вещество 1 это Калий, а Вещество 2 это Литий.

Вопросы:

- 1. Что такое фотоны?
- 2. Как определяется энергия фотона.
- 3. Напишите формулу, связывающую энергию фотона и его массу.
- 4. Определите связь энергии фотона с его импульсом.
- 5. Дайте формулировку явления внешнего фотоэффекта.
- 6. Опишите, что происходит с фотоном, падающим на границу металла.
- 7. Опишите, что происходит со свободным электроном металла, после его взаимодействия с фотоном.
- 8. Что такое работа выхода?
- 9. Напишите формулу Эйнштейна для внешнего фотоэффекта.
- 10. Дайте определение красной границы фотоэффекта.
- 11. Что такое фотоэлемент?
- 12. Почему катод фотоэлемента называют фотокатодом?
- 13. Что такое запирающее напряжение для данного фотокатода.
- 14. Как движется фотоэлектрон в фотоэлементе если потенциал анода ниже (или выше) потенциала фотокатода?

Ответы:

1) Основной постулат корпускулярной теории электромагнитного излучения звучит так: электромагнитное излучение (и, в частности, свет) — это поток частиц, называемых фотонами. Они участвуют в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

Фотон – частица, не обладающая массой покоя. Она может существовать, только двигаясь со скоростью света с.

2) Фотонная (корпускулярная) теория показывает, что в монохроматическом пучке все фотоны имеют одинаковую энергию (равную hv). Увеличение интенсивности светового пучка означает увеличение числа фотонов в пучке, но не сказывается на их энергии, если частота остается неизменной. Согласно теории Эйнштейна, электрон выбивается с поверхности металла при соударении с ним отдельного фотона. При этом вся энергия фотона передается электрону, а фотон перестает существовать. Так как электроны удерживаются в металле силами притяжения, для выбивания электрона с поверхности металла требуется минимальная энергия A (которая называется работой выхода и составляет для большинства металлов величину порядка нескольких электронвольт).

$$E = h\nu = h\left(\frac{c}{\lambda}\right)$$

3)Энергия фотона (hv) равна кинетической энергии вылетевшего электрона плюс работе по выбиванию электрона из металла:

$$m_{\Phi} = \frac{E}{c^2} = \frac{hc}{\lambda c^2} = \frac{h}{\lambda c}$$

$$m_{\Phi} = \frac{hv}{c^2}$$

4) Всякая движущаяся частица (*корпускула*) обладает импульсом, причём согласно теории относительности энергия частицы E и ее импульс p связаны формулой

$$E = \sqrt{E_0^2 + (\mathrm{cp})^2}$$

Где E_0 — энергия покоя частицы. Так как энергия покоя фотона равна нулю, то из следуют две очень важные формулы:

$$E = cp$$

$$p = \frac{h}{\lambda}$$

- 5) Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).
- **6**) Фотон, падающий на границу металла, поглощается свободным электроном, отдавая ему всю свою энергию.
- 7) Кинетическая энергия электрона внутри вещества увеличивается на энергию фотона h v, но при вылете фотоэлектрона из вещества им совершается работа ABЫХ (работа выхода) против сил электростатического притяжения к металлу. Таким образом сообщенная электрону фотоном дополнительная энергия уменьшается на величину, равную работе выхода из металла (фотокатода), а оставшаяся часть имеет вид кинетической энергии фотоэлектрона вне металла (фотокатода).
- 8) Работой выхода называется минимальная энергия, которую надо сообщить электрону вещества, чтобы он мог его покинуть. Работа выхода есть характеристика данного вещества.
- 9) Формула:

$$hv = \frac{mV^2}{2} + A$$

10) Красная граница фотоэффекта есть минимальная частота ЭМИ, при которой еще наблюдается фотоэффект, т.е. для которой энергия фотона равна работе выхода:

$$hv_{\rm Kp} = A_{\scriptscriptstyle
m BMX}$$

11) Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Подразделяются на электровакуумные и полупроводниковые фотоэлементы. Действие прибора основано на фотоэлектронной эмиссии или внутреннем фотоэффекте.

Фотоэлемент включает в себя корпус, из которого откачан воздух. Корпус имеет окно, прозрачное для ЭМИ. Внутри корпуса находятся электроды, один из которых является фотокатодом, и на который попадает ЭМИ.

- 12) Катод фотоэлемента называют фотокатодом, т.к. он эмитирует электроны при облучении электромагнитным излучением. Обычный катод эмитирует электроны в результате нагрева.
- 13) Запирающим (задерживающим) напряжением называется минимальное тормозящее напряжение между анодом фотоэлемента и фотокатодом, при котором отсутствует ток в цепи фотоэлемента, т.е. фотоэлектроны не долетают до анода.
- 14) Если потенциал ниже, то фотоэлектрон тормозится электрическим полем и может возвратиться на фотокатод.

Если же потенциал выше, то фотоэлектрон ускоряется электрическим полем, попадает на анод и поглощается им.