Detección de anomalías basada en técnicas de ensembles

Ignacio Aguilera Martos

7 de septiembre de 2019

Trabajo Fin de Grado Código disponible en GitHub

Contenidos

- 1. Concepto de anomalía basado en distancias
- 2. Aprendizaje Automático
- 3. Probabilidad Multivariante
- 4. Concepto probabilístico de anomalía

Concepto de anomalía basado en distancias

Pensado para el caso uno-dimensional.

Pensado para el caso uno-dimensional.

Tukey's Fences

Valores fuera del rango $[Q_1-k(Q_3-Q_1),\,Q_3+k(Q_3-Q_1)]$ con k=1,5

Pensado para el caso uno-dimensional.

Tukey's Fences

Valores fuera del rango $[Q_1-k(Q_3-Q_1),\,Q_3+k(Q_3-Q_1)]$ con k=1,5

La propuesta de k = 1,5 es arbitraria.

Criterio

Aplicar el criterio de Tukey a cada una de las características.

Criterio

Aplicar el criterio de Tukey a cada una de las características. <u>Trivial</u>.

Criterio

Aplicar el criterio de Tukey a cada una de las características. Trivial.

Criterio de clusters

1. Agrupamos los datos por clusters.

Criterio

Aplicar el criterio de Tukey a cada una de las características. Trivial.

Criterio de clusters

- 1. Agrupamos los datos por clusters.
- 2. Encontramos el cluster más cercano para cada instancia.

Criterio

Aplicar el criterio de Tukey a cada una de las características. Trivial.

Criterio de clusters

- 1. Agrupamos los datos por clusters.
- 2. Encontramos el cluster más cercano para cada instancia.
- 3. Si la distancia del objeto al centroide del cluster es mayor que 1,5 veces la mayor distancia intercluster entonces es una anomalía.

Aprendizaje Automático

Problema que abordamos

Problema que abordamos

Problema de detección de anomalías

Es un problema de aprendizaje no supervisado pues no disponemos de las etiquetas.

Problema que abordamos

Problema de detección de anomalías

Es un problema de aprendizaje no supervisado pues no disponemos de las etiquetas.

Partes teóricas del problema

- 1. Generador.
- 2. Sistema.
- 3. Máquina de aprendizaje.

Propiedades de conjuntos de alta dimensionalidad

1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.

Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.

Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.
- 3. Casi todo punto está más cerca del borde del conjunto que de otro punto.

$$D(d,n) = (1 - \frac{1}{2}^{\frac{1}{n}})^{\frac{1}{d}}$$

Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.
- 3. Casi todo punto está más cerca del borde del conjunto que de otro punto.

$$D(d,n) = (1 - \frac{1}{2}^{\frac{1}{n}})^{\frac{1}{d}}$$

4. Casi todo punto es una anomalía sobre su propia proyección.

Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.
- 3. Casi todo punto está más cerca del borde del conjunto que de otro punto.

$$D(d,n) = (1 - \frac{1}{2}^{\frac{1}{n}})^{\frac{1}{d}}$$

4. Casi todo punto es una anomalía sobre su propia proyección.

Maldición de la alta dimensionalidad

A mayor dimensionalidad mayor número de puntos necesitamos para obtener una aproximación con funciones de igual regularidad.

Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

Teoremas útiles

• Teorema de Aproximación de Weierstrass

Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

Teoremas útiles

- Teorema de Aproximación de Weierstrass
- Serie de Fourier

Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

Teoremas útiles

- Teorema de Aproximación de Weierstrass
- Serie de Fourier
- Teorema de Kolmogorov-Arnold

Teorema de Aproximación de Weierstrass

Teorema de Aproximación de Weierstrass

Teorema de Aproximación de Weierstrass

Supongamos que tenemos una función $f:[a,b] \to \mathbb{R}$ continua.

Entonces $\forall \epsilon > 0$ existe un polinomio p tal que $\forall x \in [a, b]$ tenemos que

$$|f(x)-p(x)|<\epsilon.$$

Teorema de Aproximación de Weierstrass

Teorema de Aproximación de Weierstrass

Supongamos que tenemos una función $f:[a,b]\to\mathbb{R}$ continua. Entonces $\forall \epsilon>0$ existe un polinomio p tal que $\forall x\in[a,b]$ tenemos que $|f(x)-p(x)|<\epsilon$.

Aproximación por polinomios

El Teorema de Aproximación de Weierstrass nos da una forma de aproximar funciones por polinomios.

Serie de Fourier

Serie de Fourier

Serie de Fourier

Si tenemos una función $f:\mathbb{R}\to\mathbb{R}$ integrable en el intervalo $[t_0-\frac{T}{2},t_0+\frac{T}{2}]$ entonces se puede obtener el desarrollo de Fourier de f en dicho intervalo. Si f es periódica en toda la recta real la aproximación es válida en todos los valores en los que esté definida.

$$f(t) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(\frac{2n\pi}{T}t) + b_n \sin(\frac{2n\pi}{T}t) \right]$$

$$a_0 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt, \ a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(\frac{2n\pi}{T}t) dt,$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(\frac{2n\pi}{T}t) dt$$

Teorema de Kolmogorov-Arnold

Teorema de Kolmogorov-Arnold

Teorema de Superposición Kolmogorov-Arnold

Sea f una función continua de varias variables $f: X_1 \times ... \times X_n \to \mathbb{R}$, entonces existen funciones $\Phi_q: \mathbb{R} \to \mathbb{R}$ y $\phi_{q,p}: X_p \to [0,1]$ tales que f se puede expresar como:

$$f(x) = f(x_1, ..., x_n) = \sum_{q=0}^{2n} \Phi_q(\sum_{p=1}^n \phi_{q,p}(x_p))$$

Teorema de Kolmogorov-Arnold

Teorema de Superposición Kolmogorov-Arnold

Sea f una función continua de varias variables $f: X_1 \times ... \times X_n \to \mathbb{R}$, entonces existen funciones $\Phi_q: \mathbb{R} \to \mathbb{R}$ y $\phi_{q,p}: X_p \to [0,1]$ tales que f se puede expresar como:

$$f(x) = f(x_1, ..., x_n) = \sum_{q=0}^{2n} \Phi_q(\sum_{p=1}^n \phi_{q,p}(x_p))$$

Dimensionalidad en datos y funciones

La maldición de la dimensionalidad es intrínseca a los datos. Este Teorema nos dice que la capacidad expresiva o complejidad de las funciones de una sola variable es la misma que las de varias variables.

Equilibrio Sesgo-Varianza

Equilibrio Sesgo-Varianza

Notación

$$MSE = \frac{1}{n} \sum_{i=1}^{n} y_i - g(X_i, D)^2$$

$$E[MSE] = \frac{1}{n} \sum_{i=1}^{n} E[y_i - g(X_i, \mathcal{D})^2] = \cdots$$

$$=\frac{1}{n}\sum_{i=1}^{n}\{f(X_{i})-E[g(X_{i},\mathcal{D})]\}^{2}+\frac{1}{n}\sum_{i=1}^{n}E[\{E[g(X_{i},\mathcal{D})]-g(X_{i},\mathcal{D})\}^{2}]$$

$$= sesgo^2 + varianza$$

Teoría del Aprendizaje

Teoría del Aprendizaje

Teorema clave de la Teoría del Aprendizaje

Para funciones de pérdida acotadas el principio inductivo de minimización del error empírico es consistente sí y sólo si el error empírico converge uniformemente al valor real del error en el siguiente sentido:

$$\lim_{n\to\infty} P[\sup_{\omega} |R(\omega) - R_{emp}(\omega)| > \epsilon] = 0 \ , \ \forall \epsilon > 0$$

Dimensión VC

Decimos que un conjunto de funciones tiene dimensión VC h si puede resolver de forma óptima todos los casos de tamaño h pero existe al menos uno de tamaño h+1 que no puede resolver.

Dimensión VC

Decimos que un conjunto de funciones tiene dimensión VC h si puede resolver de forma óptima todos los casos de tamaño h pero existe al menos uno de tamaño h+1 que no puede resolver.

Cota ERM

Con probabilidad $1-\eta$

$$R(\omega) \leq R_{emp}(\omega) + \frac{\epsilon}{2} \left(1 + \sqrt{1 + \frac{4 \cdot R_{emp}(\omega)}{\epsilon}} \right)$$

Dimensión VC

Decimos que un conjunto de funciones tiene dimensión VC h si puede resolver de forma óptima todos los casos de tamaño h pero existe al menos uno de tamaño h+1 que no puede resolver.

Cota ERM

Con probabilidad $1-\eta$

$$R(\omega) \le R_{emp}(\omega) + \frac{\epsilon}{2} \left(1 + \sqrt{1 + \frac{4 \cdot R_{emp}(\omega)}{\epsilon}} \right)$$

$$\epsilon = a_1 \cdot \frac{h(\ln(\frac{a_2 n}{h}) + 1) - \ln(\frac{\eta}{4})}{n}$$

Probabilidad Multivariante

Contenidos útiles

• Vectores aleatorios.

- Vectores aleatorios.
- Independencia.

- Vectores aleatorios.
- Independencia.
- Probabilidad condicionada (sucesos, variables y σ -álgebras) y sus propiedades.

- Vectores aleatorios.
- Independencia.
- Probabilidad condicionada (sucesos, variables y σ -álgebras) y sus propiedades.
- Esperanza condicionada (sucesos, variables y σ -álgebras) y sus propiedades.

- Vectores aleatorios.
- Independencia.
- Probabilidad condicionada (sucesos, variables y σ -álgebras) y sus propiedades.
- Esperanza condicionada (sucesos, variables y σ -álgebras) y sus propiedades.
- Desigualdades famosas.

Desigualdad de Markov y Chebychev

Desigualdad de Markov y Chebychev

Desigualdad de Markov

Sea X una variable aleatoria que toma valores no negativos. Entonces para cualquier constante α satisfaciendo $E[X] < \alpha$ se cumple que:

$$P(X > \alpha) \le \frac{E[X]}{\alpha}$$

Desigualdad de Chebychev

Sea X una variable aleatoria arbitraria. Entonces para cualquier constante α se tiene que:

$$P(|X - E[X]| > \alpha) \le \frac{Var[X]}{\alpha^2 d}$$

Desigualdades famosas

Desigualdades famosas

Desigualdades estudiadas

- Desigualdad de Markov
- Desigualdad de Chebychev
- Cotas de Chernoff
- Desigualdad de Hoeffding

Concepto probabilístico de

anomalía

Notación usada

$$X = \{x_1, ..., x_n\}, \ x_i = (x_{s_1}, ..., x_{s_d})$$

Notación usada

$$X = \{x_1, ..., x_n\}, \ x_i = (x_{s_1}, ..., x_{s_d})$$

$$S = \{s_i | s_i \in \{s_1, ..., s_d\} \text{ con } i \in \Delta\}$$

Notación usada

$$X = \{x_1, ..., x_n\}, x_i = (x_{s_1}, ..., x_{s_d})$$

$$S = \{s_i | s_i \in \{s_1, ..., s_d\} \text{ con } i \in \Delta\}$$

X_S proyección de los datos en el subespacio S

Notación usada

$$X = \{x_1, ..., x_n\}, \ x_i = (x_{s_1}, ..., x_{s_d})$$

$$S = \{s_i | s_i \in \{s_1, ..., s_d\} \text{ con } i \in \Delta\}$$

X_S proyección de los datos en el subespacio S

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p})$$

Notación usada

$$X = \{x_1, ..., x_n\}, \ x_i = (x_{s_1}, ..., x_{s_d})$$

$$S = \{s_i | s_i \in \{s_1, ..., s_d\} \text{ con } i \in \Delta\}$$

X_S proyección de los datos en el subespacio S

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p})$$

$$p_{s_i}(x_{s_i})$$

Definición subespacio incorrelado

Decimos que un subespacio S es un subespacio incorrelado si y sólo si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) = \prod_{i=1}^p p_{s_i}(x_{s_i})$$

Definición subespacio incorrelado

Decimos que un subespacio S es un subespacio incorrelado si y sólo si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) = \prod_{i=1}^p p_{s_i}(x_{s_i})$$

Definición anomalía no trivial

Decimos que un objeto x_S es una anomalía no trivial respecto del subespacio S si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) \ll p_{esp}(x_{s_1},...,x_{s_p})$$

Definición subespacio incorrelado

Decimos que un subespacio S es un subespacio incorrelado si y sólo si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) = \prod_{i=1}^p p_{s_i}(x_{s_i})$$

Definición anomalía no trivial

Decimos que un objeto x_S es una anomalía no trivial respecto del subespacio S si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) \ll p_{esp}(x_{s_1},...,x_{s_p})$$

Relación entre conceptos de anomalía

Este concepto de anomalía es complementario.

Ejemplo de anomalía

Ejemplo de anomalía

¿Preguntas?