Voice emotion transformation:

Generating expressive Fo contours with RNN-LSTM sequence-to-sequence models

Carl Robinson - TRIED M2 internship 2018 - IRCAM

_

Motivation

- F0 is the vocal pitch i.e. the intonation in the prosody
- Applications of F0 transformation
 - Voice assistants, screen readers...
 - Film, TV, video games
- My contribution:
 - Continuation of [Veaux & Rodet, 2011] (GMM-HMM)
 - Neural networks and sequence models

End-to-end Transformation Process

Data

WAV Database:

Parallel database

Joy Anger Sad Fear

10 ph, 8 emo, 6 int = ~480 total

48KHz, 25ms, 5ms

Source/Target Fo:

Neutral / Emotive

Phoneme contours

Variable-length

Integers

Listen:

Phrase 5:

- Original
- Joie (io2)
- Peur (io2)
- Tristesse (io2)
- Colère (io2)

My contribution: technical details

- Phrase too long (4s/5ms = 800!) >> Split into syllables
- Syllables partly unvoiced >> Split into voiced phonemes
- Improve context >> Match phrase & position
- Improve context >> Condition F0 on syllable position

Phoneme frequency contours for a single phrase

and silences

Conditioned model

- Phrase 3 Original
- Phrase 3 Peur
- Phrase 3 Colère
- Phrase 10 Original
- Phrase 10 Tristesse
- Phrase 10 Peur
- Phrase 5 Original
- Phrase 5 Tristesse
- Phrase 5 Joie
- Phrase 1 Original
- Phrase 1 Peur
- Phrase 1 Joie

Non-conditioned model

- Phrase 5 Original
- Phrase 5 Joie
- Phrase 5 Colère
- Phrase 10 Original
- Phrase 10 Peur
- Phrase 10 Colère
- Phrase 3 Original
- Phrase 3 Tristesse
- Phrase 3 Peur
- Phrase 1 Original
- Phrase 1 Tristesse
- Phrase 1 Joie

Experimental evaluation

- Joy / anger / sad / fear
- 96 samples:
 - o 32 cond
 - o 32 no-cond
 - 32 original
- 87 participants *20 randomised samples= 1734 responses

Results: Model Type

Originals samples are ambiguous; perception is mixed

Significant difference for anger between models

Comparison with Veaux & Rodet 2011

My best results

Target					
	Joy	Fear	Sadness	Anger	Model
Joy	40.27%	15.44%	35.57%	8.72%	NoCond
Fear	5.00%	45.63%	42.50%	6.88%	Cond
Sadness	16.26%	33.33%	47.15%	3.25%	NoCond
Anger	3.21%	19.23%	23.08%	54.49%	Cond

Their best results

Target	Perceived Emotion					
	Joy	Fear	Sadness	Anger		
Joy	64,4	6.8	20,3	8.5		
Fear	9.4	55,4	6.4	28.7		
Sadness	19,3	6.1	73,4	1.2		
Anger	7.1	31.2	1.5	60,1		

- Same parallel dataset used
- Best model for Fear & Anger = Conditioned on syll position
- Best model for Joy & Sadness = Not Conditioned
- My output sequence lengths generated, not forced!

Conclusions

- Seq2seq transforms F0 intonation as well as prev. work
- More context = better results (same phrase, same phon)
- Conditioning on syll pos only benefits some emotions

Future work

- Larger dataset, multiple speakers & genders
- Model other vocal components in addition to frequency
- Multi-tier architecture for syll/phrase level correlations

_

Thank you

carl.robinson@gmail.com

