DNA sequencing, FASTQ format, tools.

BFX Workshop Week 3

Chris Miller

Many slides adapted from:
Applied Computational Genomics

https://github.com/quinlan-lab/applied-computational-genomics **Aaron Quinlan**

How to sequence a human genome: Sanger method

Key points:

- 1) sequencing by synthesis (not degradation)
- 2) primers hybridize to DNA
- 3) polymerase + dNTPS + ddNTP terminators at low concentration
- 4) 1 lane per base, visually interpret ladder

```
5' 32P-TAGCTGACTC3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

DNA polymerase + dATP, dGTP, dCTP, dTTP + ddGTP in low concentration

5' 32P-TAGCTGACTCAG3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

5' 32P-TAGCTGACTCAGTTCTCG3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

5' 32P-TAGCTGACTCAGTTCTCG3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...

5' 32P-TAGCTGACTCAGTTCTCGATAACCCG3'
3' ATCGACTGAGTCAAGAACTATTGGGCTTAA...
```


Sanger sequencing: technological advances

1 hard working technician = 700 bases per day **1977**: Fred Sanger = 118,000 years to sequence the human genome **1985**: ABI 370 (first 5000 bases per day automated sequencer) = 16,000 years**1995:** ABI 377 (Bigger gels, better 19,000 bases per day chemistry & optics, more sensitive = 4,400 yearsdyes, faster computers) **1999:** ABI 3700 (96 capillaries, 96 well 400,000 bases per day plates, fluid handling robots) = 205 years

The next wave of DNA sequencing technologies

whiz-bang terms

- "Massively parallel" sequencing
- "High-throughput" sequencing
- "Ultra high-throughput" sequencing
- "Next generation" sequencing (NGS)
- "Second generation" sequencing

- 2005: 454 (Roche)
- •2006: Solexa (Illumina)
- 2007: ABI/SOLiD (Life Technologies)
- •2010: Complete Genomics
- •2011: Pacific Biosciences
- 2010: Ion Torrent (Life Technologies)
- •2015: Oxford Nanopore Technologies

Solexa (Illumina) sequencing (2006)

- PCR amplify sample (opt.)
- Immobilize and amplify single molecules on a solid surface
- <u>Reversible</u> terminator sequencing with 4 color dye-labelled nucleotides

Cluster amplification by "bridge" PCR

4 different images merged

6 cycles w/ base-calling

Top: CATCGT Bottom: CCCCCC

Illumina sequencing summary

Advantages:

- Best throughput, accuracy and read length for any 2nd gen. sequencer
- Fast & robust library preparation

Disadvantages:

- Inherent limits to read length (practically, 150bp)
- Some runs are error prone

Illumina X-plus

8-16 Tb per run 64 human genomes per run 48 hours

~\$400 per genome

Paired-end sequencing:

A molecular hack to sequence longer fragments

Pacific Biosciences

Key Points:

- 1 DNA molecule and 1 polymerase in each well (zero-mode waveguide)
- 4 colors flash in real time as polymerase acts
- Methylated cytosine has distinct pattern
- No theoretical limit to DNA fragment length

Pacific Biosciences: long reads. Great for genome assembly

Oxford Nanopore Technologies

Neural networks to translate signal into base calls

- Guppy (many versions)
- Dorado (v0.4, eventual guppy replacement)
- many others

Practically, that means that we can't yet throw away our raw signal intensities. (1 Tb or more per run)

doi.org/10.1016/j.tig.2021.09.001

ONT sequence length distribution

their relative amounts.

Read length (kb)	Aggregated reads (Mb)
100 - 164	886.98
164 - 228	36.06
228 - 292	4.02
292 - 344	0.35

Recent run of a tumor sample

Nanopore sequencing is *extremely* portable

Kate Rubins sequencing DNA on the ISS

Long reads. Great for genome assembly

Single haplotype assembly of the human genome from a hydatidiform mole

Karyn Meltz Steinberg, Valerie A. Schneider, Tina A. Graves-Lindsay, 1 Robert S. Fulton, Richa Agarwala, John Huddleston, A Sergey A. Shiryev, 2 Aleksandr Morgulis, 2 Urvashi Surti, 5 Wesley C. Warren, 1 Deanna M. Church, 6 Evan E. Eichler, 3,4 and Richard K. Wilson1

¹The Genome Institute at Washington University, St. Louis. Missouri 63108. USA: ²National Center for Riotechnology Information. National Library of Medicine, National Institutes University of Washington, Seattle, Washington 91 Washington 98195, USA; 5 Department of Patholo USA: 6 Personalis, Inc., Menlo Park, California 940

The complete sequence of a human genome

SCIENCE • 31 Mar 2022 • Vol 376, Issue 6588 • pp. 44-53 • DOI: 10.1126/science.abj6987

T2T consortium made heavy use of PacBio and ONT long reads

Base calling: the conversion of signal to a nucleotide sequence

ACCTTCGAACGGCGGGGGTTACAA

(Mostly) all technologies yield DNA sequences in FASTQ format

The FASTQ format. Welcome to a minor hell.

A "standard" format for storing and defining sequences from next-generation sequencing technologies.

http://en.wikipedia.org/wiki/FASTQ_format

The FASTQ format's sequence identifier (first line of each record)

Old format

@HWUSI-EAS100R:6:73:941:1973#0/1

the unique instrument name
flowcell lane
tile number within the flowcell lane
'x'-coordinate of the cluster within the tile
'y'-coordinate of the cluster within the tile
index number for a multiplexed sample (0 for no indexing)
the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

New format

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

EAS139	the unique instrument name			
136	the run id			
FC706VJ	the flowcell id			
2	flowcell lane			
2104	tile number within the flowcell lane			
15343	'x'-coordinate of the cluster within the tile			
197393	y'-coordinate of the cluster within the tile			
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)			
Y	Y if the read is filtered, N otherwise			
18	0 when none of the control bits are on, otherwise it is an even number			
ATCACG	index sequence			

FASTQ quality scores: estimate of confidence in each base (sequencing technologies make errors!)

```
Sequence ID
Sequence
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

(separator)

Quality scores
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCCC65
```

FASTQ quality scores: estimate of confidence in each base (sequencing technologies make errors!)

Qualities are based on the Phred scale and are encoded

$$Q = -10*log_{10}(P_{err})$$

Phred quality score calculation

$$Q = -10*log_{10}(Perr)$$

Error probability (P _{err})	log ₁₀ (P _{err})	Phred quality score			
1	0	0			
0.1	-1	10			
0.01	-2	20			
0.001	-3	30			
0.0001	-4	40			

FASTQ quality scores: estimate of confidence in each base (sequencing technologies make errors!)

```
Sequence ID
Sequence
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

(separator)

Quality scores
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCCC65
```

Quality score encoding based on ASCII table

Dec	Hex	Char	Dec	Нех	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	
1	01	Start of heading	33	21	į.	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	€	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	H	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	oc	Form feed	44	2C	1	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	t .= 2	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2F	1	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	a
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	s	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	ЗА	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	1
29	1D	Group separator	61	ЗD	-	93	5D]	125	7D	}
30	1E	Record separator	62	ЗE	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	ЗF	2	95	5F	220	127	7F	

Formula for getting PHRED quality from encoded quality:

$$Q = ascii(char) - 33$$

Historically, FASTQ has had different encoding schemes for encoding PHRED quality scores. Ouch.

FASTQE

https://github.com/fastqe/fastqe

Quality score binning

Table 1: Q-Score Bins for an Optimized 8-Level Mapping

Quality Score Bins	Example of Empirically Mapped Quality Scores*
N (no call)	N (no call)
2–9	6
10–19	15
20–24	22
25–29	27
30–34	33
35–39	37
≥ 40	40

https://www.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf

FASTQ vs FASTA

>seq1

ACGACGAGACCTTCATCAAAAACATCATCATCCAGGACTGTATGTGGAGCGGCTTCTCGG CCGCCGCCAAGCTCGTCTCAGAGAAGCTGGCCTCCTACCAGGCTGCGCGCAAAGACAGCG GCAGCCCGAACCCCGCCGCGCCACAGCGTCTGCTCCACCTCCAGCTTGTACCTGCAGG ATCTGAGCGCCGCCCCCAGAGTGCATCGACCCCTCGGTGGTCTTCCCCTACCCTCTCA ACGACAGCAGCTCGCCCAAGTCCTGCGCCTCGCAAGACTCCAGCGCCTTCTCTCCGTCCT CGGATTCTCTGCTCTCCTCGACGGAGTCCTCCCCGCAGGGCAGCCCCCGAGC

>seq2

FASTQC: Is my sequence data any good?

Computing Environments

- Laptop
 - You administer
 - You control completely
- Shared compute cluster
 - A sysadmin or group administers it
 - You control very little
- Docker (containers)
 - Sysadmins handle the hardware
 - You control the software almost completely

Docker containers

Using docker on your laptop

- 0) Make sure docker is installed
- 1) Pull the docker image you would like to use

```
docker pull chrisamiller/genomic-analysis:0.2
```

2) Run the docker container interactively

```
docker run -it chrisamiller/genomic-analysis:0.2 /bin/bash
```

3) Run a container while mounting the current directory as /data

```
docker run -v $(pwd -P):/data -it chrisamiller/genomic-analysis:0.2 /bin/bash
```

Some useful UNIX commands

- headprint the first 10 lines of a file
- tail print the last 10 lines of a file getting fancy: tail -n +2
- wc count the number of characters/words/lines in a file
 wc -1 for only lines
- lessbecause you don't want 3 million lines scrolling through your terminal
 q to exit, -s to wrap lines (lots more useful options here)
- grepto search through a file (-v to search for lines without pattern)

(pipes)

You cannot be a productive command line user until you really understand the power of pipes

```
grep TP53 genes.txt | grep "exon" | wc -1
```

This kind of construction allows you to get answers quickly!

Working with compressed data

tar work with a "bundle" of data

create: tar -cvf output.tar infile1 infile2

extract: tar -xvf output.tar

- gzip compress a single file

```
create: gzip mydata.txt (creates mydata.txt.gz) extract: gunzip mydata.txt.gz (creates mydata.txt)
```

Often these operations are combined

tar -czvf myfile.tar.gz <list of files>
tar -xzvf myfile.tar.gz

sed and awk

sed is most commonly used for find and replace operations:

```
cat file.txt | sed 's/foo/bar/g' >file fixed.txt
```

Awk can be used to reorder particular columns (here, third, first, then second):

```
awk '{print $3,$1,$2}' file.txt >file2.txt
```

Or to print only certain lines of a file - here, every third line, starting at line 0

```
awk 'NR % 3 == 0' file > file2.txt
```

(both are very powerful, if somewhat opaque tools, this is just scratching the surface!)

Homework