# Введение в обработку сигналов (Scipy, Numpy, Torchaudio/Vision)

НИУ ВШЭ, Нижний Новгород

December 9, 2022

## План

### Подтемы

## Часть 1: математический анализ (непрерывные функции!)

- 1. Комплексные числа
- 2. Преобразование Фурье от произвольной функции
- 3. Ортогональность Фурье-экспонент
- (a.k.a. "почему можно сделать обратное преобразование")

## Часть 2: сигналы (дискретные!), фильтры

- 4. Сигналы (временные ряды): равномерность, частота дискретизации, теорема Котельникова
- 5. Сверточные фильтры (фильтры с конечной импульсной характеристикой)
- 6. Фильтры с бесконечной импульсной характеристикой



## Комплексные числа



#### Надо знать

$$i=\sqrt{-1}$$
 - комплексная единица  $e^{i\phi}=cos\phi+i\cdot sin\phi$  - формула Эйлера

## Вопрос на подумать

Как перейти от декартового представления к полярному?



## Преобразование Фурье и как его интерпретировать





## Надо знать

Пусть t - время,  $\omega$  - частота.

Тогда спектр  $f_{\omega}(\omega)$  функции f(t) - результат свертки функции f(t) с элементом Фурье-базиса: функцией  $e^{-i\omega t}$ .



## Формула преобразования Фурье

### Прямое преобразование Фурье

$$f_{\omega}(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$$
 - результат преобразования Фурье.

## Обратное преобразование Фурье

 $f(t)=rac{1}{2\pi}\int_{-\infty}^{\infty}f_{\omega}(\omega)e^{i\omega t}d\omega$  - результат обратного преобразования Фурье.

#### **Takeaway**

То, что результат обратного преобразования равен исходной функции - это **принципиальное** свойство системы экспонент  $e^{-i\omega t}$ . Оно называется *ортогональностью*.

Таким свойством не обладают произвольные вейвлеты.



## Ортогональность функций в пространстве $L_2$



## Разложение произвольного вектора в пространстве

Мы можем представить произвольный вектор в n-мерном пространстве как сумму ортогональных составлящих, так? Какая операция для этого нужна?

## Функция - это тоже вектор! Только надо определить скалярное произведение.



### Свертка одной Фурье-экспоненты с другой

$$rac{1}{2\pi}\int_{-\infty}^{\infty}\mathrm{e}^{i\omega_{1}t}\mathrm{e}^{i\omega_{2}t}dt=\delta(\omega_{1},\omega_{2})$$

## Скалярное произведение

$$(f,g) = \int_{-\infty}^{\infty} g(t)f(t)dt$$

Подумать: чему это противоречит?



## Функция - это тоже вектор! Просто базис - это Фурье-экспоненты.

Представление функции по "координатам"

$$f(t) = \int_{-\infty}^{\infty} f_{\omega}(\omega) e^{i\omega t} d\omega = \sum ...$$