Statistical Learning (II)
[RN2] Sec 20.3
[RN3] Sec 20.3

CS 486/686 University of Waterloo Lecture 17: Nov 6, 2012

Outline

- Learning from incomplete Data
 - EM algorithm

Incomplete data

- · So far
 - Values of all attributes are known
 - Learning is relatively easy
- But many real-world problems have hidden variables (a.k.a latent variables)
 - Incomplete data
 - Values of some attributes missing

CS486/686 Lecture Slides (c) 2012 P. Poupart

3

Unsupervised Learning

- Incomplete data → unsupervised learning
- · Examples:
 - Categorisation of stars by astronomers
 - Categorisation of species by anthropologists
 - Market segmentation for marketing
 - Pattern identification for fraud detection
 - Research in general!

S486/686 Lecture Slides (c) 2012 P. Poupart

Maximum Likelihood Learning

- ML learning of Bayes net parameters:
 - For $\theta_{V=true,pa(V)=v}$ = Pr(V=true|par(V) = v)
 - $\theta_{V=true,pa(V)=v}$ = #[V=true,pa(V)=v] #[V=true,pa(V)=v] + #[V=false,pa(V)=v]
 - Assumes all attributes have values...
- What if values of some attributes are missing?

CS486/686 Lecture Slides (c) 2012 P. Poupart

5

"Naive" solutions for incomplete data

- Solution #1: Ignore records with missing values
 - But what if all records are missing values (i.e., when a variable is hidden, none of the records have any value for that variable)
- Solution #2: Ignore hidden variables
 - Model may become significantly more complex!

CS486/686 Lecture Slides (c) 2012 P. Poupart

Heart disease example

- a) simpler (i.e., fewer CPT parameters)
- b) complex (i.e., lots of CPT parameters)

CS486/686 Lecture Slides (c) 2012 P. Poupart

7

"Direct" maximum likelihood

- Solution 3: maximize likelihood directly
 - Let Z be hidden and E observable
 - h_{ML} = $argmax_h P(e|h)$

 - = $argmax_h \Sigma_z P(e,Z|h)$ = $argmax_h \Sigma_z \Pi_i CPT(V_i)$ = $argmax_h log \Sigma_z \Pi_i CPT(V_i)$
 - Problem: can't push log past sum to linearize product

Expectation-Maximization (EM)

- Solution #4: EM algorithm
 - Intuition: if we knew the missing values, computing h_{ML} would be trival
- · Guess h_{MI}
- Iterate
 - Expectation: based on h_{ML}, compute expectation of the missing values
 - Maximization: based on expected missing values, compute new estimate of h_{ML}

CS486/686 Lecture Slides (c) 2012 P. Poupart

9

Expectation-Maximization (EM)

- · More formally:
 - Approximate maximum likelihood
 - Iteratively compute: h_{i+1} = $argmax_h \Sigma_Z P(Z|h_i,e) log P(e,Z|h)$

Expectation

Maximization

CS486/686 Lecture Slides (c) 2012 P. Poupart

Expectation-Maximization (EM)

Derivation

```
- log P(e|h) = log [P(e,Z|h) / P(Z|e,h)]

= log P(e,Z|h) - log P(Z|e,h)

= \Sigma_Z P(Z|e,h) log P(e,Z|h)

- \Sigma_Z P(Z|e,h) log P(Z|e,h)

\geq \Sigma_Z P(Z|e,h) log P(e,Z|h)
```

• EM finds a local maximum of $\Sigma_Z P(Z|e,h) \log P(e,Z|h)$ which is a lower bound of log P(e|h)

CS486/686 Lecture Slides (c) 2012 P. Poupart

11

Expectation-Maximization (EM)

- · Log inside sum can linearize product
 - h_{i+1} = $argmax_h \Sigma_Z P(Z|h_i,e) log P(e,Z|h)$ = $argmax_h \Sigma_Z P(Z|h_i,e) log \Pi_j CPT_j$ = $argmax_h \Sigma_Z P(Z|h_i,e) \Sigma_i log CPT_i$
- Monotonic improvement of likelihood
 P(e|h_{i+1}) ≥ P(e|h_i)

CS486/686 Lecture Slides (c) 2012 P. Poupart

Expectation-Maximization (EM)

- Objective: $\max_{h} \Sigma_{Z} P(Z|e,h) \log P(e,Z|h)$
- Iterative approach $h_{i+1} = \operatorname{argmax}_h \Sigma_Z P(Z|e,h_i) \log P(e,Z|h)$
- Convergence guaranteed $h_{\infty} = \operatorname{argmax}_{h} \Sigma_{Z} P(Z|e,h) \log P(e,Z|h)$
- Monotonic improvement of likelihood
 P(e|h_{i+1}) ≥ P(e|h_i)

CS786 Lecture Slides (c) 2012 P. Poupart

13

Optimization Step

- For one data point e: $h_{i+1} = argmax_h \Sigma_z P(Z|h_i,e) log P(e,Z|h)$
- For multiple data points: $h_{i+1} = argmax_h \Sigma_e n_e \Sigma_Z P(Z|h_i,e) log P(e,Z|h)$ Where n_e is frequency of e in dataset
- Compare to ML for complete data $h^* = \operatorname{argmax}_h \Sigma_d \operatorname{n_d} \log P(\mathbf{d}|h)$

CS786 Lecture Slides (c) 2012 P. Poupart

Optimization Solution

- Since $\mathbf{d} = \langle z, e \rangle$
- Let $n_d = n_e P(z|h_i,e) \leftarrow expected frequency$
- Similar to the complete data case, the optimal parameters are obtained by setting the derivative to 0, which yields relative expected frequencies
 - E.g. $\theta_{V,pa(V)} = P(V|pa(V)) = n_{V,pa(V)} / n_{pa(V)}$

CS786 Lecture Slides (c) 2012 P. Poupart

15

Candy Example

- Suppose you buy two bags of candies of unknown type (e.g. flavour ratios)
- You plan to eat sufficiently many candies of each bag to learn their type
- Ignoring your plan, your roommate mixes both bags...
- How can you learn the type of each bag despite being mixed?

CS486/686 Lecture Slides (c) 2012 P. Poupart

Unsupervised Clustering

- · "Class" variable is hidden
- · Naïve Bayes model

CS486/686 Lecture Slides (c) 2012 P. Poupart

- · Unknown Parameters:
 - $-\theta_i = P(Bag=i)$
 - θ_{Fi} = P(Flavour=cherry|Bag=i)
 - θ_{Wi} = P(Wrapper=red|Bag=i)
 - θ_{Hi} = P(Hole=yes|Bag=i)
- · When eating a candy:
 - F, W and H are observable
 - B is hidden

CS486/686 Lecture Slides (c) 2012 P. Poupart

19

Candy Example

- Let true parameters be:
 - $-\theta=0.5$, $\theta_{F1}=\theta_{W1}=\theta_{H1}=0.8$, $\theta_{F2}=\theta_{W2}=\theta_{H2}=0.3$
- · After eating 1000 candies:

	W=red		W=green	
	H=1	H=0	H=1	H=0
F=cherry	273	93	104	90
F=lime	79	100	94	167

CS486/686 Lecture Slides (c) 2012 P. Poupart

- · EM algorithm
- Guess h₀:
 - θ =0.6, θ_{F1} = θ_{W1} = θ_{H1} =0.6, θ_{F2} = θ_{W2} = θ_{H2} =0.4
- · Alternate:
 - Expectation: expected # of candies in each bag
 - Maximization: new parameter estimates

CS486/686 Lecture Slides (c) 2012 P. Poupart

21

Candy Example

- Expectation: expected # of candies in each bag
 - #[Bag=i] = $\Sigma_j P(B=i|f_j,w_j,h_j)$
 - Compute $P(B=i|f_j,w_j,h_j)$ by variable elimination (or any other inference alg.)
- Example:
 - #[Bag=1] = 612
 - #[Bag=2] = 388

CS486/686 Lecture Slides (c) 2012 P. Poupart

- Maximization: relative frequency of each bag
 - $-\theta_1 = 612/1000 = 0.612$
 - $-\theta_2 = 388/1000 = 0.388$

CS486/686 Lecture Slides (c) 2012 P. Poupart

23

Candy Example

- Expectation: expected # of cherry candies in each bag
 - #[B=i,F=cherry] = $\bar{\Sigma}_j$ P(B=i|f_j=cherry,w_j,h_j)
 - Compute P(B=i|f;=cherry,w;,h;) by variable elimination (or any other inference alg.)
- · Maximization:
 - θ_{F1} = #[B=1,F=cherry] / #[B=1] = 0.668
 - θ_{F2} = #[B=2,F=cherry] / #[B=2] = 0.389

CS486/686 Lecture Slides (c) 2012 P. Poupart

25

Bayesian networks

- EM algorithm for general Bayes nets
- Expectation:
 - $\#[V_i=v_{ij},Pa(V_i)=pa_{ik}]$ = expected frequency
- · Maximization:
 - $\theta_{v_{ij},pa_{ik}}$ = #[V_i = v_{ij} , $Pa(V_i)$ = pa_{ik}] / #[$Pa(V_i)$ = pa_{ik}]

ure Slides (c) 2012 P. Poupart

Next Class

- · Next Class:
 - ·Markov networks

CS486/686 Lecture Slides (c) 2012 P. Poupart