Chapter 3

Point Estimation

3.1 Maximum Likelihood Estimator

3.1.1 Point estimator and point estimate

1 DIFFERENCE BETWEEN POINT ESTIMATOR AND POINT ESTIMATE

- Let the pdf of an r.v. X be $f(x; \theta)$ with an unknown parameter vector $\theta \in \Theta \subseteq \mathbb{R}^p$, where Θ denotes the corresponding parameter space.
- Thus, we have a family of densities $\{f(x; \theta): \theta \in \Theta\}$.
- We need to select one member from the family as the pdf of X.
- This is equivalent to estimating the parameter vector θ .
- To this end, we take a random sample X_1, \ldots, X_n from a population with the pdf $f(x; \boldsymbol{\theta})$.

1.1° Remarks

- In Chapters 1–2, we denote the pdf of an r.v. X by f(x), while starting from Chapter 3 we denote it by $f(x; \theta)$ to emphasize its dependence on the parameter vector θ .
- For example, if $X \sim N(\mu, \sigma^2)$, we have

$$f(x; \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \text{ where } \boldsymbol{\theta} = (\mu, \sigma^2)^{\mathsf{T}}.$$

— Let 2.18, 2.76, 1.80, 1.73, 1.13, 1.85, 2.02, 2.69, 1.66, 2.59 be a random sample of size 10 from $N(\mu, \sigma^2)$, how to estimate μ and σ^2 ? This is the main topic of Chapter 3.

— An advanced reference book is: Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation (2-nd ed.). Springer, New York.

Definition 3.1 (A statistic). A function of one or more r.v.'s that does not depend on the unknown parameter vector is called a *statistic*.

1.2° Comparison of Definition 3.1 with Definition 2.1 in §2.2

- In Definition 2.1, it is assumed that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F(x)$; i.e., $\{X_i\}_{i=1}^n$ is a random sample from F(x).
- In fact, the assumption of independence is not necessary.
- In other words, $\{X_i\}_{i=1}^n$ could be correlated or dependent.

1.3° Definitions of a point estimator and a point estimate

- If a statistic $Y = \varphi(\mathbf{x})$ is used to estimate the parameter θ , where $\mathbf{x} = (X_1, \dots, X_n)^{\mathsf{T}}$, then the statistic is called a *point estimator* of θ , where Y is a random variable.
- If the observations of X_1, \ldots, X_n are x_1, \ldots, x_n , then $y = \varphi(\mathbf{x})$ is called a *point estimate* of θ , where y is a *real number* and $\mathbf{x} = (x_1, \ldots, x_n)^{\mathsf{T}}$.

1.4° Illustration examples

- For example, $\bar{X} = (1/n) \sum_{i=1}^{n} X_i$ is a point estimator of $\mu = E(X)$ and $\bar{x} = (1/n) \sum_{i=1}^{n} x_i$ is a point estimate of μ .
- Similarly, $S^2 = \sum_{i=1}^n (X_i \bar{X})^2/(n-1)$ is a point estimator of $\sigma^2 = \text{Var}(X)$ and $s^2 = \sum_{i=1}^n (x_i \bar{x})^2/(n-1)$ is a point estimate of σ^2 .

1.5° How to understand a point estimator?

— A point estimator is a random variable.

- A point estimator is always related with the estimation of θ . For instance, \bar{X} is a point estimator of $\mu = E(X)$ but $\sum_{i=1}^{n} X_i$ is not.
- Point estimator is not unique. For example, S^2 is an unbiased estimator of $\sigma^2 = \text{Var}(X)$ while $\hat{\sigma}^2 = (1/n) \sum_{i=1}^n (x_i \bar{x})^2$ is the moment estimator of σ^2 for any population. In particular, $\hat{\sigma}^2$ is the maximum likelihood estimator of σ^2 for the normal population.

3.1.2 Joint density and likelihood function

2 Difference between joint pdf and likelihood function

- Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \boldsymbol{\theta})$, where $\boldsymbol{\theta}$ is the unknown parameter vector and $\boldsymbol{\Theta}$ is the parameter space.
- Let $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ be observations of $\mathbf{x} = (X_1, \dots, X_n)^{\top}$, then the joint density of \mathbf{x} is $f(\mathbf{x}; \boldsymbol{\theta}) = \prod_{i=1}^n f(x_i; \boldsymbol{\theta})$.
- Since x has been observed and its components are therefore fixed real numbers, we regard $f(x; \theta)$ as a function of θ , and define

$$L(\boldsymbol{\theta}) = L(\boldsymbol{\theta}; \boldsymbol{x}) = f(\boldsymbol{x}; \boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_i; \boldsymbol{\theta}), \quad \boldsymbol{\theta} \in \boldsymbol{\Theta},$$

as the *likelihood function* of the random sample \mathbf{x} .

• Alternatively, $L(\theta)$ is also called the likelihood function of θ .

2.1° How to understand the likelihood function $L(\theta)$?

- The joint density $f(x; \theta)$ is a term of Probability while the likelihood function $L(\theta)$ is a term of Statistics.
- $f(x; \theta)$ emphasizes x while $L(\theta)$ emphasizes θ .
- In statistics, in general, $L(\boldsymbol{\theta})$ is concave. That is $\nabla^2 L(\boldsymbol{\theta}) \leq 0$. In particular, when $\boldsymbol{\theta}$ is one-dimensional, $L(\boldsymbol{\theta})$ is concave iff $L''(\boldsymbol{\theta}) \leq 0$.

3 The log-likelihood function

• In practice, the natural logarithm of $L(\theta)$, called the *log-likelihood*, is mathematically much convenient to work with.

- We define $\ell(\boldsymbol{\theta}) = \log\{L(\boldsymbol{\theta})\} = \sum_{i=1}^n \log\{f(x_i; \boldsymbol{\theta})\}$ for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$.
- Note that there is no loss of information in using $\ell(\theta)$ instead of $L(\theta)$ because $\log(\cdot)$ is a monotonic increasing function.

3.1.3 Maximum likelihood estimator and maximum likelihood estimate

4 DEFINITION

• Suppose that a statistic

$$\hat{m{ heta}} = egin{pmatrix} \hat{ heta}_1 \ dots \ \hat{ heta}_p \end{pmatrix} = egin{pmatrix} u_1(\mathbf{x}) \ dots \ u_p(\mathbf{x}) \end{pmatrix} \;\; \hat{=} \;\; m{u}(\mathbf{x})$$

satisfies

$$L(\hat{\boldsymbol{\theta}}) = \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}).$$

• Statistically, we can equivalently write above equation as

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}) = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ell(\boldsymbol{\theta}),$$

where "arg" is the abbreviation of "argument".

• Then $\hat{\boldsymbol{\theta}} = \boldsymbol{u}(\mathbf{x})$ is called the maximum likelihood estimator (MLE) of $\boldsymbol{\theta}$ and $\boldsymbol{u}(\boldsymbol{x})$ is called a maximum likelihood estimate (mle) of $\boldsymbol{\theta}$.

4.1° Remarks

- Note that $L(\boldsymbol{\theta})$ and $\ell(\boldsymbol{\theta})$ share their maxima at the same value of $\boldsymbol{\theta}$, and it is usually easier to find the maximum of $\ell(\boldsymbol{\theta})$.
- In general, the MLE $\hat{\boldsymbol{\theta}}$ is the solution to the score equation

$$\nabla \ell(\boldsymbol{\theta}) \stackrel{\hat{=}}{=} \frac{\partial \ell(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \begin{pmatrix} \frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_1} \\ \vdots \\ \frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_p} \end{pmatrix} = \mathbf{0}_p.$$
 (3.1)

3.1 Maximum Likelihood Estimator

105

- There is no guarantee that the MLE exists or if it does whether it is unique.
- Consider the special case of p = 1. Then (3.1) becomes

$$\ell'(\theta) = \frac{\mathrm{d}\ell(\theta)}{\mathrm{d}\theta} = 0.$$

If $L(\theta)$ is a monotonic function of θ , then the MLE $\hat{\theta}$ locates at the boundary of Θ or does not exist.

4.2° Stationary point, saddle point and critical point

- A point c satisfying $\varphi'(c) = \varphi'(x)|_{x=c} = 0$ is called a stationary point of $\varphi(x)$.
- For instance, $L(\theta)$ and $\ell(\theta)$ have the same stationary points since

$$\ell'(\theta^*) = \ell'(\theta)|_{\theta=\theta^*} = \frac{L'(\theta)}{L(\theta)}\Big|_{\theta=\theta^*} = 0;$$

i.e.,
$$\ell'(\theta^*) = 0$$
 iff $L'(\theta^*) = 0$.

- It is possible for c to be a local rather than a global minimum or maximum or even to be a *saddle point*. For example, $\varphi(x) = x^3$ has a saddle point at 0.
- Let $\varphi(x)$ be defined on the closed interval [a, b]. Two endpoints a, b and any stationary points c are known as *critical points* of $\varphi(x)$.

5 Unrestricted MLE

Example 3.1 (Bernoulli distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$. Find the MLE of θ .

Solution. The parameter space $\Theta = \{\theta \colon 0 < \theta < 1\} = (0,1)$. Note that the pmf of X_i is given by

$$\frac{X_i}{p(x_i;\theta) = \Pr(X_i = x_i)} \frac{0}{1 - \theta}.$$

Thus, we have $p(x_i; \theta) = \theta^{x_i} (1 - \theta)^{1 - x_i}$, $x_i = 0, 1$. The joint pmf is

$$p(x; \theta) = \prod_{i=1}^{n} p(x_i; \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i},$$

so that the likelihood function is given by

$$L(\theta) = \theta^{n\bar{x}} (1 - \theta)^{n - n\bar{x}}, \quad 0 < \theta < 1,$$

where $\bar{x} = (1/n) \sum_{i=1}^{n} x_i$. Now

$$\ell(\theta) = n\bar{x}\log(\theta) + (n - n\bar{x})\log(1 - \theta)$$

and

$$\ell'(\theta) = \frac{n\bar{x}}{\theta} - \frac{n - n\bar{x}}{1 - \theta}.$$
 (3.2)

Solving $\ell'(\theta) = 0$ for θ , we obtain the solution $\theta = \bar{x}$. To verify that it maximizes $\ell(\theta)$ or $L(\theta)$, we have two alternative methods.

<u>Method I</u>: To check that the second derivative of $\ell(\theta)$ evaluated at \bar{x} is strictly negative; i.e., $\ell''(\bar{x}) < 0$. Now, for any $\theta \in (0, 1)$, uniformly we have

$$\frac{\mathrm{d}^2\ell(\theta)}{\mathrm{d}\theta^2} = -\left\{\frac{n\bar{x}}{\theta^2} + \frac{n - n\bar{x}}{(1 - \theta)^2}\right\} < 0.$$

Therefore,

$$\hat{\theta} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is the MLE of θ and \bar{x} is the mle of θ .

<u>Method II</u>: To check that $\ell'(\theta) > 0$ when $\theta < \bar{x}$ and $\ell'(\theta) < 0$ when $\theta > \bar{x}$. From (3.2), it is easy to check them.

In general, Method II is more convenient than Method I. However, in statistical practice, neither Method I nor Method II is necessary. \parallel

Example 3.2 (Normal distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. Find the MLEs of μ and σ^2 .

Solution. Let $\boldsymbol{\theta} = (\mu, \sigma^2)^{\mathsf{T}}$. The parameter space is

$$\mathbf{\Theta} = \{(\mu, \sigma^2)^{\mathsf{T}}: -\infty < \mu < \infty, \ \sigma^2 > 0\}$$
$$= (-\infty, \infty) \times (0, \infty) = \mathbb{R} \times \mathbb{R}_+,$$

and the likelihood function is

$$L(\mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi} \sigma} \exp\left\{-\frac{(x_i - \mu)^2}{2\sigma^2}\right\}$$

$$= \left(\frac{1}{\sqrt{2\pi} \sigma}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right\}.$$

Then

$$\ell(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}.$$

By differentiating $\ell(\mu, \sigma^2)$ with respect to μ and σ^2 and letting them equal zeros, we have

$$\frac{\partial \ell(\mu, \sigma^2)}{\partial \mu} = \frac{\sum_{i=1}^n (x_i - \mu)}{\sigma^2} = 0,$$

$$\frac{\partial \ell(\mu, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^4} = 0.$$

The solutions are $\mu = \bar{x}$ and $\sigma^2 = \sum_{i=1}^n (x_i - \bar{x})^2 / n$. Therefore,

$$\hat{\mu} = \bar{X}$$
 and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$

are the MLEs of μ and σ^2 , respectively.

Example 3.3 (Uniform distribution with one unknown endpoint). Let X_1 , ..., $X_n \stackrel{\text{iid}}{\sim} U(0, \theta]$, where $\theta > 0$. Find the MLE of θ .

Solution. The parameter space is $\Theta = (0, \infty) = \mathbb{R}_+$. The joint density of $\mathbf{x} = (X_1, \dots, X_n)^{\mathsf{T}}$ is

$$f(\boldsymbol{x}; \theta) = \begin{cases} \frac{1}{\theta^n}, & \text{if } 0 < x_i \leqslant \theta, \ i = 1, \dots, n, \\ 0, & \text{elsewhere.} \end{cases}$$

Then, the likelihood function is given by

$$L(\theta) = \begin{cases} \frac{1}{\theta^n}, & \text{if } \theta \geqslant x_{(n)} = \max(x_1, \dots, x_n), \\ 0, & \text{elsewhere.} \end{cases}$$
(3.3)

Note that $L(\theta)$ is a monotone and decreasing function of θ when $\theta \in [x_{(n)}, \infty)$ as shown in Figure 3.1, and arrives its maximum at $\theta = x_{(n)}$, thus $\hat{\theta} = X_{(n)}$ is the MLE of θ .

Figure 3.1 The likelihood function $L(\theta)$ defined by (3.3) is a monotone and decreasing function of θ when $\theta \in [x_{(n)}, \infty)$.

5.1° Difference between maximum and supremum

— In Example 3.3, if we assume that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} U(0, \theta)$, then the likelihood function (3.3) becomes

$$L(\theta) = \begin{cases} \frac{1}{\theta^n}, & \text{if } \theta > x_{(n)}, \\ 0, & \text{elsewhere.} \end{cases}$$

- Then, the MLE of θ does not exist.
- However, we can obtain

$$\sup L(\theta) = 1/x_{(n)}^n,$$

where "sup" is the abbreviation of "supremum".

— We should realize the difference between "max/min" and "sup/inf", where "inf" is the abbreviation of "infimum".

Example 3.4 (Uniform distribution with two unknown endpoints). Let X_1 , ..., $X_n \stackrel{\text{iid}}{\sim} U[\theta - 0.5, \theta + 0.5]$, where $-\infty < \theta < \infty$. Find the MLE of θ .

<u>Solution</u>. The parameter space $\Theta = \mathbb{R}$. The joint density of **x** is

$$f(\mathbf{x}; \theta) = \prod_{i=1}^{n} f(x_i; \theta) = \prod_{i=1}^{n} I_{[\theta - 0.5, \theta + 0.5]}(x_i)$$

so that the likelihood is given by

$$L(\theta) = I_{[x_{(n)}-0.5, x_{(1)}+0.5]}(\theta)$$

$$= \begin{cases} 1, & \text{if } x_{(n)} - 0.5 \leqslant \theta \leqslant x_{(1)} + 0.5, \\ 0, & \text{elsewhere.} \end{cases}$$
(3.4)

In fact, (3.4) follows since $\prod_{i=1}^{n} I_{[\theta-0.5, \theta+0.5]}(x_i)$ is unity iff all x_1, \ldots, x_n are in the interval $[\theta-0.5, \theta+0.5]$, which is true iff $\theta-0.5 \leqslant x_{(1)}$ and $x_{(n)} \leqslant \theta+0.5$ or $x_{(n)}-0.5 \leqslant \theta \leqslant x_{(1)}+0.5$. Therefore, any statistic $\hat{\theta}$ satisfying

$$X_{(n)} - 0.5 \leqslant \hat{\theta} \leqslant X_{(1)} + 0.5$$

is an MLE of θ .

Example 3.5 (Laplace distribution). Let X_1, \ldots, X_n be i.i.d. random variables with Laplace density (or double exponential density)

$$f(x; \theta) = \frac{1}{2} e^{-|x-\theta|}, \quad -\infty < x < \infty, \quad -\infty < \theta < \infty.$$

Find the MLE of θ .

<u>Solution</u>. The parameter space $\Theta = \mathbb{R}$. The joint density of **x** is

$$f(\boldsymbol{x}; \theta) = \prod_{i=1}^{n} f(x_i; \theta) = \prod_{i=1}^{n} \frac{1}{2} e^{-|x_i - \theta|}$$

so that the log-likelihood is given by $\ell(\theta) = -n \log(2) - \sum_{i=1}^{n} |x_i - \theta|$. The first derivative is

$$\ell'(\theta) = \sum_{i=1}^{n} \operatorname{sgn}(x_i - \theta), \tag{3.5}$$

where sgn(t) = 1, 0, or -1 depending on whether t > 0, t = 0, or t < 0. Note that the absolute function

$$h(t) = |t| = \begin{cases} t, & \text{if } t > 0, \\ -t, & \text{if } t \le 0. \end{cases}$$

When t = 0, h(t) is not differentiable. When $t \neq 0$,

$$h'(t) = \begin{cases} 1, & \text{if } t > 0, \\ -1, & \text{if } t < 0 \end{cases}$$
$$= \operatorname{sgn}(t).$$

To get the solution to the score equation $\ell'(\theta) = 0$, we consider two cases.

- If n is even, then any point in the interval $(x_{(n/2)}, x_{(n/2+1)})$ is an mle of θ :
- If n is odd, then $median(x_1, ..., x_n)$ is the unique mle of θ because the median will make half the terms of the sum in expression (3.5) non-positive and half non-negative.

Therefore, the median(**x**) or any point in $(X_{(n/2)}, X_{(n/2+1)})$ is the MLE $\hat{\theta}$ of θ .

5.2 Remarks on Example 3.5

— Let n = 4 and $x_1 = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$, $x_4 = 0.8$. If let

$$\theta = \text{median}(x_1, \dots, x_4) = \frac{0.2 + 0.3}{2} = 0.25,$$

then $\ell'(\theta) = \sum_{i=1}^4 \operatorname{sgn}(x_i - \theta) = -1 - 1 + 1 + 1 = 0$. If fact, any point in the open interval (0.2, 0.3) is an mle of θ .

— Let n = 3 and $x_1 = -1$, $x_2 = 5$, $x_3 = 100$. If let $\theta = \text{median}(x_1, x_2, x_3) = 5$, then

$$\ell'(\theta) = \operatorname{sgn}(-1-5) + \operatorname{sgn}(5-5) + \operatorname{sgn}(100-5) = -1+0+1=0.$$

Hence, $median(x_1, x_2, x_3)$ is the unique mle of θ .

6° RESTRICTED MLE

- Case 1: Equality constraints. $\mathbf{A}\boldsymbol{\theta} = \boldsymbol{b}$, where $\mathbf{A}_{m \times p}$ and $\boldsymbol{b}_{m \times 1}$ are known, and $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^{\top}$ is an unknown parameter vector.
- Case 2: Inequality constraints. $a \leq A\theta \leq b$, where $a_{m\times 1}$ is known.
- Case 3: Convex constraint. $\theta \in \mathbb{S}$, where \mathbb{S} is a convex set.

6.1° Definition of a convex set

— Let two points $C \in \mathbb{S}$ and $D \in \mathbb{S}$. If the segment of connecting the point C with the point D still belongs to \mathbb{S} , then \mathbb{S} is called a convext set.

Example 3.6 (Multinomial distribution). Consider a multinomial experiment with n trials and p categories. The observed counts are n_1, \ldots, n_p for the p categories. Let θ_j denote the cell probability of category j for $j = 1, \ldots, p$. We have $0 \le \theta_j \le 1$ and $\sum_{j=1}^p \theta_j = 1$. Find the MLE of θ_j subject to the equality constraint $\sum_{j=1}^p \theta_j = 1$.

Solution. Let $\theta = (\theta_1, \dots, \theta_p)^{\mathsf{T}}$. The parameter vector space is

$$\mathbb{T}_p = \left\{ \boldsymbol{\theta} \colon \theta_j \geqslant 0, \ j = 1, \dots, p, \ \sum_{j=1}^p \theta_j = 1 \right\}, \tag{3.6}$$

which is the p-dimensional hyperplane. The joint pmf of n_1, \ldots, n_p is

$$f(n_1,\ldots,n_p;\boldsymbol{\theta}) = \binom{n}{n_1,\ldots,n_p} \prod_{j=1}^p \theta_j^{n_j}, \quad n_j \geqslant 0, \quad \sum_{j=1}^p n_j = n.$$

The likelihood function of θ is

$$L(\boldsymbol{\theta}) \propto \prod_{j=1}^p \theta_j^{n_j} = \left(\prod_{j=1}^{p-1} \theta_j^{n_j}\right) \left(1 - \sum_{j=1}^{p-1} \theta_j\right)^{n_p},$$

where

$$\theta_j \geqslant 0 \quad \text{and} \quad \sum_{j=1}^{p-1} \theta_j \leqslant 1.$$
 (3.7)

Then

$$\ell(\boldsymbol{\theta}) = \sum_{j=1}^{p-1} n_j \log(\theta_j) + n_p \log \left(1 - \sum_{j=1}^{p-1} \theta_j \right).$$

By differentiating $\ell(\boldsymbol{\theta})$ with θ_j for j = 1, ..., p-1 and letting them equal zeros, we obtain

$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_j} = \frac{n_j}{\theta_j} - \frac{n_p}{1 - \sum_{j=1}^{p-1} \theta_j} = \frac{n_j}{\theta_j} - \frac{n_p}{\theta_p} = 0, \quad j = 1, \dots, p-1.$$

The solutions are given by

$$\hat{\theta}_j = \frac{n_j}{n}, \quad j = 1, \dots, p - 1,$$

which satisfy the constraints specified by (3.7). In addition, $\hat{\theta}_p = n_p/n$.

6.2° Comments on Example 3.6

— Example 3.6 is a case of one equality constraint, in which we transfer the restricted case into an unrestricted case by substituting $\theta_p = 1 - \sum_{j=1}^{p-1} \theta_j$.

Example 3.7 (Normal mean with inequality constraints). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, 1)$ subject to $a \leq \mu \leq b$, where a and b are two fixed constants. Find the MLE of μ .

<u>Solution</u>. The parameter space is $\Theta = [a, b]$. The likelihood function of μ is given by

$$L(\mu) = \prod_{i=1}^{n} e^{-\frac{(x_i - \mu)^2}{2}}, \quad a \le \mu \le b$$

so that

$$\ell(\mu) = -\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2}$$

$$= -\frac{1}{2} \sum_{i=1}^{n} (x_i^2 - 2x_i \mu + \mu^2)$$

$$= -\frac{1}{2} \left(\sum_{i=1}^{n} x_i^2 - 2\mu \sum_{i=1}^{n} x_i + n\mu^2 \right)$$

$$= -\frac{n}{2} \left\{ (\mu^2 - 2\mu \bar{x} + \bar{x}^2) - \bar{x}^2 + \frac{1}{n} \sum_{i=1}^{n} x_i^2 \right\}$$

$$\propto -(\mu - \bar{x})^2, \quad a \leq \mu \leq b. \tag{3.8}$$

Figure 3.2 Plots of the log-likelihood function $\ell(\mu)$ defined by (3.8) for three cases. Top: $\bar{x} > b$; Middle: $a \leqslant \bar{x} \leqslant b$; Bottom: $\bar{x} < a$.

Figure 3.2 shows that $\ell(\mu)$ is a truncated quadratic function of μ . Hence

$$\mu = \begin{cases} b, & \text{if } \bar{x} > b, \\ \bar{x}, & \text{if } a \leqslant \bar{x} \leqslant b, \\ a, & \text{if } \bar{x} < a \end{cases}$$
$$= \text{median}(a, \bar{x}, b)$$

is the restricted mle of μ and $\hat{\mu} = \text{median}(a, \bar{X}, b)$ is the restricted MLE of μ . As an exercise, to calculate $E(\hat{\mu})$ and $\text{Var}(\hat{\mu})$.

3.1.4 The invariance property of MLE

7° Reparametrization via a one-to-one map

Theorem 3.1 (Invariance of MLE). Let $\hat{\boldsymbol{\theta}} = \boldsymbol{u}(X_1, \dots, X_n)$ be the MLE of $\boldsymbol{\theta}_{p \times 1} \in \boldsymbol{\Theta}$. If $\boldsymbol{\eta}_{p \times 1} = \boldsymbol{h}(\boldsymbol{\theta}) = (h_1(\boldsymbol{\theta}), \dots, h_p(\boldsymbol{\theta}))^{\mathsf{T}}$ is a one-to-one transformation between $\boldsymbol{\theta}$ and $\boldsymbol{\eta}$, then $\hat{\boldsymbol{\eta}} = \boldsymbol{h}(\hat{\boldsymbol{\theta}})$ is the MLE of $\boldsymbol{\eta}$.

<u>Proof.</u> Since $\eta = h(\theta)$ is a one-to-one map, we have $\theta = h^{-1}(\eta)$. The likelihood function is given by

$$L(\boldsymbol{\theta}) = L(\boldsymbol{h}^{-1}(\boldsymbol{\eta})) \stackrel{.}{=} L^*(\boldsymbol{\eta}).$$

We want to prove $L^*(\hat{\eta}) \geqslant L^*(\eta)$ for all η . In fact, we have

$$L^*(\hat{\boldsymbol{\eta}}) = L^*(\boldsymbol{h}(\hat{\boldsymbol{\theta}})) = L\boldsymbol{h}^{-1}(\boldsymbol{h}(\hat{\boldsymbol{\theta}})) = L(\hat{\boldsymbol{\theta}})$$

$$\geqslant L(\boldsymbol{\theta}) = L^*(\boldsymbol{\eta}).$$

Therefore, $\hat{\boldsymbol{\eta}} = \boldsymbol{h}(\hat{\boldsymbol{\theta}})$ is the MLE of $\boldsymbol{\eta}$.

7.1 Understanding Theorem 3.1 through Figure 3.3

$$egin{array}{cccc} oldsymbol{ heta} & \stackrel{L(\cdot)}{\longrightarrow} & \hat{oldsymbol{ heta}} & & & \\ oldsymbol{h}(\cdot) & & & & & & \\ oldsymbol{ heta} & & & & & \\ oldsymbol{\eta} & \stackrel{L^*(\cdot)}{\longrightarrow} & \hat{oldsymbol{\eta}} & & & & \\ \end{array}$$

Figure 3.3 An illustration of Theorem 3.1.

7.2° Comments on Figure 3.3

- Figure 3.3 shows that Theorem 3.1 gives two ways to reach $\hat{\eta}$.
- The first way is to first find the $\hat{\boldsymbol{\theta}}$ by maximizing the likelihood function $L(\boldsymbol{\theta})$, then to utilize the map $\boldsymbol{h}(\cdot)$ to obtain $\hat{\boldsymbol{\eta}} = \boldsymbol{h}(\hat{\boldsymbol{\theta}})$.
- The second way is to first utilize the map $h(\cdot)$ to obtain a new parameter vector $\boldsymbol{\eta}$, then to find the $\hat{\boldsymbol{\eta}}$ by maximizing the likelihood function $L^*(\boldsymbol{\eta})$.

7.3° Two illustration examples

- Since $h(\sigma) = \sigma = \sqrt{\sigma^2}$ with $\sigma > 0$ is a one-to-one map between σ^2 and σ , it follows from Example 3.2 that $\hat{\sigma} = \{(1/n) \sum_{i=1}^n (X_i \bar{X})^2\}^{1/2}$ different from $S = \{\sum_{i=1}^n (X_i \bar{X})^2/(n-1)\}^{1/2}$, is an MLE of σ .
- Similarly, the MLE of, say $\log(\sigma^2)$, is $\log\{(1/n)\sum_{i=1}^n(X_i-\bar{X})^2\}$.

8° Can we extend Theorem 3.1?

• It is very natural to ask whether Theorem 3.1 still holds if the assumption that $\eta = h(\theta)$ is a one-to-one transformation is removed.

8.1° The MLE of variance in a Bernoulli distribution

- As a first example, assume an estimate of the variance; i.e., $\theta(1-\theta)$, of the Bernoulli(θ) distribution is desired.
- Example 3.1 gives the MLE of θ to be \bar{X} , but since $\theta(1-\theta)$ is not a one-to-one function of θ , Theorem 3.1 does not give the MLE of $\theta(1-\theta)$.
- Theorem 3.2 below will give such an estimator and it will be $\bar{X}(1-\bar{X})$.

8.2° The MLE of $\mu^2 + \sigma^2$ in normal distribution

- As a second example, consider the MLE of $\mu^2 + \sigma^2$ in Example 3.2.
- Since $\mu^2 + \sigma^2$ is not a one-to-one function of μ and σ^2 , Theorem 3.1 does not give the MLE of $\mu^2 + \sigma^2$.
- Such an estimator will be obtainable from Theorem 3.2 below and it will be $\bar{X}^2 + (1/n) \sum_{i=1}^n (X_i \bar{X})^2$.

Theorem 3.2 (Extension of Theorem 3.1). Let $\hat{\boldsymbol{\theta}}$ be the MLE of $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p)^{\top} \in \boldsymbol{\Theta}$. If $\boldsymbol{\eta}_{r \times 1} = \boldsymbol{h}(\boldsymbol{\theta}) = (h_1(\boldsymbol{\theta}), \dots, h_r(\boldsymbol{\theta}))^{\top}$ for $1 \leqslant r \leqslant p$ is a many-to-few transformation between $\boldsymbol{\theta}$ and $\boldsymbol{\eta}$, then $\hat{\boldsymbol{\eta}} = \boldsymbol{h}(\hat{\boldsymbol{\theta}}) = (h_1(\hat{\boldsymbol{\theta}}), \dots, h_r(\hat{\boldsymbol{\theta}}))^{\top}$ is the MLE of $\boldsymbol{\eta}$.

<u>Proof.</u> Let \mathbb{H} denote the range space of the map $\boldsymbol{h}(\cdot) = (h_1(\cdot), \dots, h_r(\cdot))^{\mathsf{T}}$. \mathbb{H} is an r-dimensional space. Define

$$M(\boldsymbol{h}) = \max_{\{\boldsymbol{\theta}: \, \boldsymbol{h}(\boldsymbol{\theta}) = \boldsymbol{h}\}} L(\boldsymbol{\theta}),$$

which is called the likelihood function induced by $h(\cdot)$. It suffices to show

$$M(\mathbf{h}) \leqslant M(\mathbf{h}(\hat{\boldsymbol{\theta}}))$$
 for any $\mathbf{h} \in \mathbb{H}$,

which follows immediately from the inequality

$$\begin{split} M(\boldsymbol{h}) &= \max_{\{\boldsymbol{\theta}:\,\boldsymbol{h}(\boldsymbol{\theta})=\boldsymbol{h}\}} L(\boldsymbol{\theta}) \\ &\leqslant \max_{\boldsymbol{\theta}\in\boldsymbol{\Theta}} L(\boldsymbol{\theta}) = L(\hat{\boldsymbol{\theta}}) \\ &= \max_{\{\boldsymbol{\theta}:\,\boldsymbol{h}(\boldsymbol{\theta})=\boldsymbol{h}(\hat{\boldsymbol{\theta}})\}} L(\boldsymbol{\theta}) \\ &= M(\boldsymbol{h}(\hat{\boldsymbol{\theta}})), \end{split}$$

for any $h \in \mathbb{H}$.

8.3 Understanding Theorem 3.2

— This property of invariance of MLEs allows us in our discussion of maximum likelihood estimation to consider estimating $(\theta_1, \dots, \theta_p)^{\top}$ rather than the more general $h_1(\theta_1, \dots, \theta_p), \dots, h_r(\theta_1, \dots, \theta_p)$.

3.2 Moment Estimator

9° Three basic methods of estimation

- The first procedure for estimating parameters is the method of maximum likelihood estimation.
- The second procedure for estimating parameters is the *method of moments* proposed by the great British statistician Karl Pearson near the turn of the twentieth century.

• The third procedure is called Bayesian estimation.

10[•] Background for the maximum likelihood estimation

- Let $x_1 = 0.099$, $x_2 = -1.146$, $x_3 = -1.172$, $x_4 = -0.290$, $x_5 = 1.435$ and $x_6 = -0.657$ be corresponding observations of a random sample of size six from the population r.v. X.
- We guess that $X_1, \ldots, X_6 \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ or $X \sim N(\mu, \sigma^2)$ and we want to find the mles of μ and σ^2 .
- We wonder if or not our guess is correct, which can be tested by statistical methods (e.g., the goodness-of-fit test, see §5.5); i.e.,

 H_0 : The distribution of X is normal

against

 H_1 : The distribution of X is not normal.

10.1° If H_0 is accepted, what can we do next step?

— Based on the observed data $\{x_i\}_{i=1}^6$, if H_0 is accepted, then by using the method of ML estimation as shown in Example 3.2, the mles of μ and σ^2 are given by

$$\bar{x} = -0.2885$$
 and $\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n} = 0.7954$,

respectively.

— We could claim that $\{x_i\}_{i=1}^6$ are observation of a random sample of size six from the most possible population N(-0.2885, 0.7954).

10.2° If H_0 is rejected, what can we do next step?

- One way is to guess another population distribution. If the new H_0 was accepted, we could repeat the above process.
- Alternatively, we can estimate the first and second moments of the unknown population distribution $F(\cdot)$ by using the *method of moments*.
- Of course, when the family of distribution is known but the parameters are unknown, the method of moments can also be applied.

11 MOMENT ESTIMATORS

• By first equating the sample moments

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}, \quad \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}, \quad \dots, \quad \frac{1}{n}\sum_{i=1}^{n}X_{i}^{r}$$

to the corresponding population moments

$$E(X), \quad E(X^2), \quad \dots, \quad E(X^r),$$

then solving the system of equations, we can obtain *moment estimators* of parameters.

• Specifically, if there are a total of r parameters, the moment estimators can be obtained from solving the system of equations:

$$\frac{1}{n} \sum_{i=1}^{n} X_i = E(X),$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = E(X^2),$$

$$\vdots$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^r = E(X^r).$$

Example 3.8 (Gamma distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha, \beta)$. Find the moment estimators of α and β .

<u>Solution</u>. Let $X \sim \text{Gamma}(\alpha, \beta)$, from Appendix A.2.4, we have $E(X) = \alpha/\beta$ and $\text{Var}(X) = \alpha/\beta^2$. Thus

$$E(X^2) = Var(X) + \{E(X)\}^2 = \frac{\alpha(\alpha+1)}{\beta^2}.$$

The moment estimators of α and β must satisfy

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = E(X) = \frac{\alpha}{\beta}, \text{ and}$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = E(X^2) = \frac{\alpha(\alpha+1)}{\beta^2}.$$

Thus,

$$\hat{\beta}^{M} = \frac{n\bar{X}}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}$$
 and $\hat{\alpha}^{M} = \frac{n\bar{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}$

are the corresponding moment estimators of α and β .

Example 3.9 (Beta distribution). Let $x_1 = 0.42$, $x_2 = 0.10$, $x_3 = 0.65$ and $x_4 = 0.23$ be observations of random variables of size n = 4 from the pdf

$$f(x;\theta) = \theta x^{\theta-1}, \quad 0 \leqslant x \leqslant 1.$$

Find the moment estimate of θ .

Solution. Let $X \sim f(x; \theta)$, we have

$$E(X) = \int_0^1 x \cdot \theta x^{\theta - 1} dx = \frac{\theta}{\theta + 1}.$$

Let E(X) equal to the first sample moment

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{0.42 + 0.10 + 0.65 + 0.23}{4} = 0.35,$$

we obtain $\theta/(\theta+1)=\bar{x}$. Thus the moment estimate for θ is

$$\hat{\theta}^{M} = \frac{\bar{x}}{1 - \bar{x}} = \frac{0.35}{1 - 0.35} = 0.54.$$

Example 3.10 (Normal distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. Find the moment estimators of μ and σ^2 .

<u>Solution</u>. Let $X \sim N(\mu, \sigma^2)$, we have $E(X) = \mu$ and $E(X^2) = \sigma^2 + \mu^2$. The moment estimators of μ and σ^2 must satisfy

$$\bar{X} = \mu$$
 and $\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \sigma^2 + \mu^2$.

Hence,

$$\hat{\mu}^{M} = \bar{X}$$
 and $\hat{\sigma}^{2M} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$

are the corresponding moment estimators of μ and σ^2 .

11.1° The application range of the method of moments

— The method of moments can be applied to both *parametric* and *non-parametric* statistics.

11.2 What is the parametric statistics?

— Make inferences (i.e., estimation and testing hypothesis) on parameters in a known/specified family of distributions $\{f(x; \boldsymbol{\theta}): \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$ based on an i.i.d. sample $\{x_i\}_{i=1}^n$ or more than one i.i.d. sample.

11.3° What is the nonparametric (or distribution-free) statistics?

— Make inferences (i.e., estimation and test) on an unknown distribution itself $F(\cdot)$ based on an i.i.d. sample $\{x_i\}_{i=1}^n$ or on two unknown distributions $F(\cdot)$ and $G(\cdot)$ based on two i.i.d. samples $\{x_i\}_{i=1}^n$ and $\{y_j\}_{j=1}^m$.

3.3 Bayesian Estimator

12° THREE REFERENCE BOOKS FOR BAYESIAN STATISTICS

- Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis (2-nd ed.). Springer, New York, USA.
- Carlin, B.P. and Louis, T.A. (2008). Bayesian Methods for Data Analysis (3-rd ed.). Chapman & Hall/CRC (Texts in Statistical Science), Boca Raton, USA.
- Gelman, A., Carlin, J.P., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B. (2013). *Bayesian Data Analysis* (3-rd ed.). Chapman & Hall/CRC (Texts in Statistical Science), Boca Raton, USA.

13° Main features of Bayesian method

- In the ML estimation method and the method of moments, we have assumed that the parameters are *fixed* but *unknown* constants.
- In the Bayesian method, we assume that θ is a random vector with a density $\pi(\theta)$, which is called the *prior density* of θ .

• Then the joint density or likelihood function (in the ML estimation method) of $\mathbf{x} = (X_1, ..., X_n)^{\mathsf{T}}$ becomes the conditional density (in the Bayesian method) of \mathbf{x} given $\boldsymbol{\theta}$, denoted by $f(\boldsymbol{x}|\boldsymbol{\theta})$, where $\boldsymbol{x} = (x_1, ..., x_n)^{\mathsf{T}}$.

13.1° The basic idea of Bayesian estimation

— The basic idea of Bayesian estimation is to utilize both the information from the prior density of θ and the likelihood function of the observed data x.

14° Three steps for determining Bayesian estimators

• Given a random sample $\mathbf{x} = (X_1, ..., X_n)^{\mathsf{T}}$, determine the joint density of \mathbf{x} and $\boldsymbol{\theta}$:

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \text{Likelihood} \times \text{Prior}$$

$$= f(\boldsymbol{x}|\boldsymbol{\theta}) \times \pi(\boldsymbol{\theta})$$

$$= \left\{ \prod_{i=1}^{n} f(x_i|\boldsymbol{\theta}) \right\} \times \pi(\boldsymbol{\theta}), \quad (3.9)$$

where $\boldsymbol{x} = (x_1, \dots, x_n)^{\top}$.

• Determine the *posterior density* (i.e., the conditional density of θ given $\mathbf{x} = \mathbf{x}$) of θ .

$$p(\boldsymbol{\theta}|\boldsymbol{x}) = \frac{f(\boldsymbol{x},\boldsymbol{\theta})}{f(\boldsymbol{x})} = c^{-1}f(\boldsymbol{x},\boldsymbol{\theta})$$

$$\propto f(\boldsymbol{x},\boldsymbol{\theta}) = \text{Likelihood} \times \text{Prior},$$
(3.10)

where $f(x) = \int_{\Theta} f(x, \theta) d\theta = c$ is the normalizing constant of $p(\theta|x)$ because $\mathbf{x} = x$ is given.

• The Bayesian estimate of $\boldsymbol{\theta}$ (i.e., the conditional expectation of $\boldsymbol{\theta}$) is defined by

$$E(\boldsymbol{\theta}|\boldsymbol{x}) = \int_{\boldsymbol{\Theta}} \boldsymbol{\theta} \cdot p(\boldsymbol{\theta}|\boldsymbol{x}) \, d\boldsymbol{\theta}. \tag{3.11}$$

Example 3.11 (Bernoulli-beta distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$ and the prior distribution of θ be $\text{Beta}(\alpha, \beta)$. Find the Bayesian estimate of θ .

<u>Solution</u>. Note that $f(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$, then the joint density of **x** and θ is

$$f(\boldsymbol{x}, \theta) = \left\{ \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} \right\} \times \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$
$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha + x_+ - 1} (1 - \theta)^{\beta + n - x_+ - 1}, \quad 0 < \theta < 1,$$

where $x_{+} = \sum_{i=1}^{n} x_{i}$. The posterior density of θ is given by

$$p(\theta|\mathbf{x}) \propto \theta^{\alpha+x_+-1} (1-\theta)^{\beta+n-x_+-1}, \quad 0 < \theta < 1;$$

i.e., $\theta | \boldsymbol{x} \sim \text{Beta}(\alpha + x_+, \beta + n - x_+)$. Therefore,

$$E(\theta|\mathbf{x}) = \frac{\alpha + x_+}{\alpha + \beta + n}$$

is the Bayesian estimate of θ , and $(\alpha + n\bar{X})/(\alpha + \beta + n)$ is the Bayesian estimator of θ .

Example 3.12 (Poisson–gamma distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Poisson}(\theta)$ and the prior distribution of θ be $\operatorname{Gamma}(a,b)$. Find the Bayesian estimate of θ .

<u>Solution</u>. Note that $f(x_i|\theta) = e^{-\theta}\theta^{x_i}/x_i!$, $x_i = 0, 1, 2, ...$, then the joint density of \mathbf{x} and θ is

$$f(\boldsymbol{x}, \theta) = \left\{ \prod_{i=1}^{n} \frac{\theta^{x_i}}{x_i!} e^{-\theta} \right\} \times \frac{b^a}{\Gamma(a)} \theta^{a-1} e^{-b\theta}$$
$$= \frac{b^a}{\Gamma(a) \prod_{i=1}^{n} x_i!} \theta^{a+x_+-1} e^{-(b+n)\theta}, \quad \theta > 0,$$

where $x_{+} \triangleq \sum_{i=1}^{n} x_{i}$. The posterior density of θ is given by

$$p(\theta|\mathbf{x}) \propto \theta^{a+x_+-1} e^{-(b+n)\theta}, \quad \theta > 0;$$

3.3 Bayesian Estimator

123

i.e., $\theta | \boldsymbol{x} \sim \text{Gamma}(a + x_+, b + n)$. Therefore,

$$E(\theta|\boldsymbol{x}) = \frac{a + x_+}{b + n}$$

is the Bayesian estimate of θ , and $(a+n\bar{X})/(b+n)$ is the Bayesian estimator of θ .

15° DIFFERENCES BETWEEN MLE AND BAYESIAN ESTIMATOR

Table 3.1 A comparison of MLE with Bayesian estimator

	MLE	Bayesian estimator
1	θ : A fixed and unknown	θ : A random vector with
	parameter vector	a prior density $\pi(\boldsymbol{\theta})$
2	$f(\boldsymbol{x}; \boldsymbol{\theta})$: The joint density of	$f(\boldsymbol{x} \boldsymbol{\theta})$: The conditional density of
	$\mathbf{x} = (X_1, \dots, X_n)^{\top}$	${f x}$ given ${m heta}$
3	$L(\boldsymbol{\theta})$: Likelihood function	$p(\boldsymbol{\theta} \boldsymbol{x}) \propto L(\boldsymbol{\theta})\pi(\boldsymbol{\theta})$: Posterior density
4	$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta})$: MLE	$\tilde{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} p(\boldsymbol{\theta} \boldsymbol{x})$: Posterior mode

15.1° The non-informative prior

— When the non-informative prior (i.e., $\pi(\boldsymbol{\theta}) \propto 1$) is taken as the prior of $\boldsymbol{\theta}$, or when $\pi(\boldsymbol{\theta})$ is flat, we have $\tilde{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}$.

16° STATISTICAL INTERPRETATION OF BAYESIAN ESTIMATOR

- Loss function: $l(\theta, a)$ computes the loss incurred when θ is the true state of nature and the action $a \in A$ is taken.
- Squared error loss: $l(\boldsymbol{\theta}, \boldsymbol{a}) = \|\boldsymbol{\theta} \boldsymbol{a}\|^2 = (\boldsymbol{\theta} \boldsymbol{a})^{\mathsf{T}} (\boldsymbol{\theta} \boldsymbol{a}).$
- Posterior risk: $\rho(p, \boldsymbol{a}) \, \hat{=} \, \int_{\boldsymbol{\Theta}} \|\boldsymbol{\theta} \boldsymbol{a}\|^2 p(\boldsymbol{\theta}|\boldsymbol{x}) \, \mathrm{d}\boldsymbol{\theta}.$
- Bayesian estimator: $E(\boldsymbol{\theta}|\boldsymbol{x})$ is the action \boldsymbol{a}^* such that the posterior risk reaches its minimum. That is,

$$E(\boldsymbol{\theta}|\boldsymbol{x}) = \boldsymbol{a}^* = \arg \ \min_{\boldsymbol{a} \in \mathcal{A}} \rho(p, \boldsymbol{a})$$

or

$$\rho(p, E(\boldsymbol{\theta}|\boldsymbol{x})) \leqslant \rho(p, \boldsymbol{a}), \quad \forall \boldsymbol{a} \in \mathcal{A}.$$

3.4 Properties of Estimators

3.4.1 Unbiasedness

17° Measures for comparing two point estimators

Definition 3.2 (Unbiased estimator and bias). An estimator $\varphi(\mathbf{x})$ is an unbiased estimator of the parameter θ if $E\{\varphi(\mathbf{x})\} = \theta$ for $\theta \in \Theta$. Otherwise, the estimator is biased and the bias is defined by

$$b(\theta) = E\{\varphi(\mathbf{x})\} - \theta, \tag{3.12}$$

where
$$\mathbf{x} = (X_1, \dots, X_n)^{\mathsf{T}}$$
.

Example 3.13 (Distribution with a finite second-order moment). Let X_1 , ..., X_n be a random sample from a population (which is not necessary to be a normal population) with mean μ and variance $\sigma^2 < \infty$. According to Eq.(2.9), we can see that

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ (3.13)

are unbiased estimators of μ and σ^2 , respectively.

Example 3.14 (Uniform distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} U(0, \theta)$, then

- 1) the *n*-th order statistic $X_{(n)}$ is a biased estimator of θ ;
- 2) $\frac{n+1}{n}X_{(n)}$ is an unbiased estimator of θ ; and
- 3) $2\bar{X}$ is also an unbiased estimator of θ .

<u>Solution</u>. 1) From Example 2.16, we know that the pdf of $X_{(n)}$ is

$$f_n(x) = nx^{n-1}/\theta^n, \quad 0 < x < \theta.$$

Hence,

$$E\{X_{(n)}\} = \int_0^\theta x f_n(x) \, \mathrm{d}x = \frac{n}{n+1} \cdot \theta \neq \theta, \tag{3.14}$$

indicating that $X_{(n)}$ is a biased estimator of θ .

- 2) Clearly, $\frac{n+1}{n}X_{(n)}$ is an unbiased estimator of θ .
- 3) Since

$$E(X_1) = \int_0^\theta x_1 \cdot \frac{1}{\theta} \, \mathrm{d}x_1 = \frac{\theta}{2},$$

we have $E(2\bar{X}) = 2E(\bar{X}) = 2E(X_1) = \theta$.

Definition 3.3 (MSE). Given an estimator $Y = \varphi(\mathbf{x})$ of θ , the mean square error (MSE) of the estimator is defined by

$$MSE = E\{\varphi(\mathbf{x}) - \theta\}^2.$$

17.1° Remarks on Definition 3.3

— It is easy to verify that

MSE = $E\{Y - E(Y) + E(Y) - \theta\}^2$ = $E\{Y - E(Y)\}^2 + \{E(Y) - \theta\}^2 + E[2\{Y - E(Y)\}\underbrace{\{E(Y) - \theta\}}_{\text{constant}}]$ = $Var\{\varphi(\mathbf{x})\} + b^2(\theta)$.

— Clearly, if an estimator $\varphi(\mathbf{x})$ is unbiased, then

$$MSE = Var\{\varphi(\mathbf{x})\}.$$

— Smaller MSE means greater precision.

3.4.2 Efficiency

18° Why need we the notion of efficiency?

- It is possible that there are several unbiased estimators for the same unknown parameter of interest.
- For instance, in Example 3.14, both $\frac{n+1}{n}X_{(n)}$ and $2\bar{X}$ are unbiased estimators of θ .
- Which one should we choose?
- Answer: The unbiased estimator with the *smaller* variance is the desired.
- Comparing two variances is equivalent to comparing two efficiencies.

18.1° Efficiency of an estimator

— Efficiency of an estimator $\hat{\theta}$ is proportional to the reciprocal of its variance:

$$\operatorname{Eff}_{\hat{\theta}}(\theta) \propto \frac{1}{\operatorname{Var}(\hat{\theta})}.$$

18.2° Relative efficiency of two estimators

Definition 3.4 (Relative efficiency). Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators for a parameter θ . If

$$\operatorname{Var}(\hat{\theta}_1) < \operatorname{Var}(\hat{\theta}_2), \tag{3.15}$$

we say that $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$. The relative efficiency of $\hat{\theta}_1$ to $\hat{\theta}_2$ is defined by the ratio

$$\frac{\operatorname{Eff}_{\hat{\theta}_1}(\theta)}{\operatorname{Eff}_{\hat{\theta}_2}(\theta)} = \frac{\operatorname{Var}(\hat{\theta}_2)}{\operatorname{Var}(\hat{\theta}_1)}.$$

Example 3.15 (Example 3.14 revisited). In Example 3.14, we have shown that $\hat{\theta}_1 = \frac{n+1}{n} X_{(n)}$ and $\hat{\theta}_2 = 2\bar{X}$ are two unbiased estimators of θ . Which estimator is more efficient?

<u>Solution</u>. From Appendix A.2.1, since $X_1 \sim U(0,\theta)$, we have $Var(X_1) = \theta^2/12$. Hence,

$$\operatorname{Var}(\hat{\theta}_2) = \operatorname{Var}(2\bar{X}) = \frac{4}{n^2} \cdot n \operatorname{Var}(X_1) = \frac{\theta^2}{3n}.$$

On the other hand, similar to (3.14), we have

$$E(X_{(n)}^2) = \int_0^\theta x^2 \cdot \frac{nx^{n-1}}{\theta^n} \, \mathrm{d}x = \frac{n}{n+2}\theta^2.$$
 (3.16)

Thus, based on (3.14) and (3.16), we obtain

$$\operatorname{Var}(\hat{\theta}_{1}) = \frac{(n+1)^{2}}{n^{2}} \operatorname{Var}\{X_{(n)}\}$$

$$= \frac{(n+1)^{2}}{n^{2}} \left[E(X_{(n)}^{2}) - \{E(X_{(n)})\}^{2} \right]$$

$$= \frac{(n+1)^{2}}{n^{2}} \left\{ \frac{n\theta^{2}}{n+2} - \frac{n^{2}}{(n+1)^{2}} \theta^{2} \right\} = \frac{\theta^{2}}{n(n+2)}.$$

When n > 1, we have $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$, indicating that $\hat{\theta}_1$ has a smaller variance (and hence is more efficient) than $\hat{\theta}_2$.

19° Why need we the Cramér-Rao inequality

- Let $\mathcal{U} = \{\hat{\theta}: E(\hat{\theta}) = \theta\}$ denote the family of unbiased estimators of θ . The goal is to find the $\hat{\theta}^* \in \mathcal{U}$ with the smallest variance.
- Let $m = \# \mathcal{U}$ denote the number of elements in \mathcal{U} . If m is finite, we write $\mathcal{U} = \{\hat{\theta}_1, \dots, \hat{\theta}_m\}$. Hence, we can choose the $\hat{\theta}_{k_0}$ such that

$$\operatorname{Var}(\hat{\theta}_{k_0}) \leqslant \operatorname{Var}(\hat{\theta}_j), \quad j \neq k_0, \quad j = 1, \dots, m.$$

• If m is infinite, how to find the $\hat{\theta}^*$ with the smallest variance?

19.1 A motivation

— If we could find a constant c_0 satisfying

$$\operatorname{Var}(\hat{\theta}) \geqslant c_0, \quad \forall \ \hat{\theta} \in \mathcal{U},$$

then, this inequality can guide us to choose the $\hat{\theta}^*$ with variance being c_0 .

- Thus, finding the $\hat{\theta}^*$ is equivalent to finding the lower bound c_0 , which was found by Cramér and Rao.
- The c_0 is closely related to two new concepts: Score function and Fisher information.

19.2° Score function

— Let X_1, \ldots, X_n be a random sample from the population r.v. X with density $f(x;\theta)$. Define $\mathbf{x} = (X_1, \ldots, X_n)^{\top}$ and $\mathbf{x} = (x_1, \ldots, x_n)^{\top}$ are their realizations. In the previous sections, we denote the likelihood function by

$$L(\theta) = L(\theta; x_1, \dots, x_n) = L(\theta; \boldsymbol{x}) = \prod_{i=1}^n f(x_i; \theta).$$

— If we replace x_i in $L(\theta; x_1, ..., x_n)$ by X_i , then the resultant $L(\theta; \mathbf{x})$ is also a random variable and depends on the parameter θ .

— When the expectation and variance of a specific function of $L(\theta; \mathbf{x})$ are calculated, we also denote the likelihood function by

$$L(\theta) = L(\theta; X_1, \dots, X_n) = L(\theta; \mathbf{x}) = \prod_{i=1}^n f(X_i; \theta)$$

to emphasize its dependence on \mathbf{x} .

— Let $\ell(\theta) = \log\{L(\theta)\}\$ denote the log-likelihood function of θ , we call

$$S(\theta) = S(\theta; \mathbf{x}) \stackrel{.}{=} \frac{\mathrm{d}\ell(\theta)}{\mathrm{d}\theta} = \ell'(\theta) = \frac{L'(\theta)}{L(\theta)}$$
 (3.17)

the score function.

19.3° Understanding the score function

- $S(\theta)$ is a function of θ .
- $S(\theta) = S(\theta; \mathbf{x})$ is also a function of \mathbf{x} so that

$$E\{S(\theta)\} = E_{\mathbf{x}}\{S(\theta; \mathbf{x})\} = \int S(\theta; \mathbf{x}) \prod_{i=1}^{n} f(x_i; \theta) dx_1 \cdots dx_n.$$

— $S(\theta)$ is not a statistic because it depends on the unknown parameter θ .

19.4° Fisher information

— We call

$$I_n(\theta) = \text{Var}\{S(\theta)\} = \text{Var}_{\mathbf{x}}\{S(\theta; \mathbf{x})\}$$
 (3.18)

the *Fisher information*, which is a way of measuring the amount of information that \mathbf{x} carries about the unknown parameter θ .

— In many statistical problems, we have $E\{S(\theta)\}=0$ so that (3.18) becomes

$$I_n(\theta) = E\{S^2(\theta; \mathbf{x})\} = E\left\{ \left(\frac{\mathrm{d} \log L(\theta; \mathbf{x})}{\mathrm{d}\theta} \right)^2 \right\}.$$
 (3.19)

— However, it is possible in practice that $E\{S(\theta)\} \neq 0$ as shown in the following example.

Example 3.16 (Example 3.14 revisited). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} U(0, \theta)$, where $\theta > 0$. Find the score function $S(\theta)$, $E\{S(\theta)\}$ and the Fisher information.

Solution. The population density is $f(x;\theta) = 1/\theta$, $x \in (0,\theta)$ depending on θ . We can rewrite $f(x;\theta) = (1/\theta)I_{(0,\theta)}(x)$ so that the likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f(X_i; \theta) = \theta^{-n} \prod_{i=1}^{n} \xi_i,$$

where $\xi_i = I_{(0,\theta)}(X_i) \sim \text{Bernoulli}(p_i)$ with $p_i = \Pr(0 < X_i < \theta)$. From (3.17), we have

$$S(\theta; \mathbf{x}) = \frac{L'(\theta)}{L(\theta)} = \frac{-n\theta^{-n-1}}{\theta^{-n}} \prod_{i=1}^{n} \xi_i = -\frac{n}{\theta} \prod_{i=1}^{n} \xi_i.$$

Thus,

$$E\{S(\theta; \mathbf{x})\} = -\frac{n}{\theta} \prod_{i=1}^{n} E(\xi_i) = -\frac{n}{\theta} \prod_{i=1}^{n} \Pr(0 < X_i < \theta)$$
$$= -\frac{n}{\theta} \left(\int_0^{\theta} \frac{1}{\theta} dx \right)^n = -\frac{n}{\theta} \neq 0.$$

Similarly, we have $E\{S^2(\theta; \mathbf{x})\} = n^2/\theta^2$ and $I_n(\theta) = \text{Var}\{S(\theta; \mathbf{x})\} = 0$.

19.5° A basic result on Bernoulli r.v. used in Example 3.16

- Let $\xi \sim \text{Bernoulli}(p)$, then $\xi \stackrel{\text{d}}{=} \xi^r$ for any positive integer r.
- Clearly, we have $E(\xi) = E(\xi^r)$.

20 The Cramér−Rao inequality

Theorem 3.3 (The general CR inequality). Let $\tau(\theta)$ be an arbitrary function of the unknown parameter θ . If (i) $\hat{\theta} = T(\mathbf{x})$ is an unbiased estimator of $\tau(\theta)$, and (ii) the support of the population density $f(x;\theta)$ does not depend on the parameter θ , then

$$\operatorname{Var}(\hat{\theta}) \geqslant \frac{\{\tau'(\theta)\}^2}{I_n(\theta)},\tag{3.20}$$

where $I_n(\theta)$ is the Fisher information.

Proof. On the one hand,

$$1 = \int \prod_{i=1}^{n} f(x_i; \theta) \, \mathrm{d}x_1 \cdots \mathrm{d}x_n.$$

By differentiating both sides of this identity with respect to θ , we have

$$0 = \frac{\mathrm{d}}{\mathrm{d}\theta} \int \cdots \int L(\theta) \, \mathrm{d}x_1 \cdots \mathrm{d}x_n.$$

Since the supports of x_i 's do not depend on the parameter θ , we can interchange differentiation and integration with respect to θ , yielding

$$0 = \int L'(\theta) dx_1 \cdots dx_n$$

$$\stackrel{(3.17)}{=} \int S(\theta) \prod_{i=1}^n f(x_i; \theta) dx_1 \cdots dx_n$$

$$= E\{S(\theta)\}. \tag{3.21}$$

On the other hand, $\hat{\theta}$ is unbiased, then

$$\tau(\theta) = E(\hat{\theta}) = \int T(\boldsymbol{x}) \prod_{i=1}^{n} f(x_i; \theta) dx_1 \cdots dx_n$$
$$= \int T(\boldsymbol{x}) L(\theta) dx_1 \cdots dx_n.$$

By differentiating both sides of the this equality with respect to θ , we obtain

$$\tau'(\theta) = \int T(\boldsymbol{x})L'(\theta) dx_1 \cdots dx_n$$

$$= \int T(\boldsymbol{x}) \frac{L'(\theta)}{L(\theta)} \cdot L(\theta) dx_1 \cdots dx_n$$

$$\stackrel{(3.17)}{=} \int T(\boldsymbol{x})S(\theta) \cdot \prod_{i=1}^n f(x_i; \theta) dx_1 \cdots dx_n$$

$$= E\{\hat{\theta} \times S(\theta)\}$$

$$\stackrel{(3.21)}{=} \operatorname{Cov}\{\hat{\theta}, S(\theta)\}.$$

By the Cauchy-Schwarz inequality,

$$\{\tau'(\theta)\}^2 = [\operatorname{Cov}\{\hat{\theta}, S(\theta)\}]^2 \leqslant \operatorname{Var}\{\hat{\theta}\} \times \operatorname{Var}\{S(\theta)\} = \operatorname{Var}(\hat{\theta}) \times I_n(\theta),$$
 which indicates (3.20).

20.1° Comments on Theorem 3.3

- The result in (3.20) is not valid if the support of $f(x;\theta)$ depends on θ , see Example 3.16.
- The Cauchy–Schwarz inequality states that $\{E(XY)\}^2 \leq E(X^2)E(Y^2)$ or equivalently $\{\text{Cov}(X,Y)\}^2 \leq \text{Var}(X) \cdot \text{Var}(Y)$, see Theorem 1.5.
- The right hand side of (3.20) is called the Cramér-Rao lower bound.
- In particular, if $\tau(\theta) = \theta$, then (3.20) becomes

$$\operatorname{Var}(\hat{\theta}) \geqslant \frac{1}{I_n(\theta)}.$$
 (3.22)

20.2° Two identities related to the Fisher information

- Theorem 3.4 below provides another way to calculate $I_n(\theta)$.
- That is, using (3.23) to calculate $I_n(\theta)$ is much easier than using (3.18).

Theorem 3.4 (Alternative expression). Let $I_n(\theta)$ denote the Fisher information. If $E\{S(\theta)\}=0$, then

$$I_n(\theta) = E\left\{-\frac{\mathrm{d}^2 \log L(\theta; \mathbf{x})}{\mathrm{d}\theta^2}\right\} = nI(\theta),$$
 (3.23)

where

$$I(\theta) = E\left[\left\{\frac{\mathrm{d}\log f(X;\theta)}{\mathrm{d}\theta}\right\}^{2}\right] = E\left\{-\frac{\mathrm{d}^{2}\log f(X;\theta)}{\mathrm{d}\theta^{2}}\right\}$$
(3.24)

denotes the Fisher information for a single sample.

 $\underline{\mathsf{Proof}}$. From (3.21), we have

$$0 = \frac{\mathrm{d}}{\mathrm{d}\theta} \int S(\theta) L(\theta) \, \mathrm{d}x_1 \cdots \mathrm{d}x_n$$

$$= \int \left\{ \frac{\mathrm{d}S(\theta)}{\mathrm{d}\theta} L(\theta) + S(\theta) L'(\theta) \right\} \, \mathrm{d}x_1 \cdots \mathrm{d}x_n$$

$$= E \left\{ \frac{\mathrm{d}S(\theta)}{\mathrm{d}\theta} \right\} + \int S(\theta) S(\theta) L(\theta) \, \mathrm{d}x_1 \cdots \mathrm{d}x_n$$

$$= E \left\{ \frac{\mathrm{d}^2 \log L(\theta)}{\mathrm{d}\theta^2} \right\} + E \{ S^2(\theta) \}$$

$$= E \left\{ \frac{\mathrm{d}^2 \log L(\theta; \mathbf{x})}{\mathrm{d}\theta^2} \right\} + I_n(\theta).$$

Therefore, the first equation in (3.23) follows. Since $L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f(X_i; \theta)$, we have

$$\log L(\theta; \mathbf{x}) = \sum_{i=1}^{n} \log f(X_i; \theta),$$

and

$$\frac{\mathrm{d}^2 \log L(\theta; \mathbf{x})}{\mathrm{d}\theta^2} = \sum_{i=1}^n \frac{\mathrm{d}^2 \log f(X_i; \theta)}{\mathrm{d}\theta^2}.$$

Therefore,

$$I_n(\theta) = E\left\{-\frac{\mathrm{d}^2 \log L(\theta; \mathbf{x})}{\mathrm{d}\theta^2}\right\}$$

$$= \sum_{i=1}^n E\left\{-\frac{\mathrm{d}^2 \log f(X_i; \theta)}{\mathrm{d}\theta^2}\right\}$$

$$= nE\left\{-\frac{\mathrm{d}^2 \log f(X; \theta)}{\mathrm{d}\theta^2}\right\}$$

$$= nI(\theta).$$

This means the second equation in (3.23).

20.3 How to check the condition $E\{S(\theta)\}=0$ in Theorem 3.4?

— If the support of the population density $f(x;\theta)$ does not depend on θ , $\Longrightarrow E\{S(\theta)\} = 0$.

— That is, that the support of $f(x;\theta)$ is free from θ is a sufficient condition for $E\{S(\theta)\}=0$. We only need to check the support of $f(x;\theta)$.

20.4° How to understand (3.24)?

— In (3.17), we consider the case of n = 1 and we have

$$S(\theta) = \ell'(\theta) = \frac{\mathrm{d}\log f(X;\theta)}{\mathrm{d}\theta} = \frac{f'(X;\theta)}{f(X;\theta)},$$

where $f'(X;\theta)$ is the derivative of $f(X;\theta)$ with respect to θ .

— On the one hand, if $\ell'(\theta)$ is close to zero, then the r.v. X does not provide much information about θ .

- On the other hand, if $|\ell'(\theta)|$ or $\{\ell'(\theta)\}^2$ is large, then the r.v. X provides much information about θ .
- Thus, we can use $\{\ell'(\theta)\}^2$ to measure the amount of information provided by X.
- However, since X is a random variable, we should consider the average case. Thus, the Fisher information (for θ) contained in the r.v. X should be defined by

$$I(\theta) = E\{\ell'(\theta)\}^2,$$

which is (3.24).

21° UMVUE AND EFFICIENT ESTIMATOR

• The inequality (3.22) told us that for any $\hat{\theta} \in \mathcal{U} = \{\hat{\theta}: E(\hat{\theta}) = \theta\}$ with infinite elements, we have $Var(\hat{\theta}) \ge 1/I_n(\theta)$, which can guide us to find a $\hat{\theta}^*$ such that

$$\hat{\theta}^* \in \mathcal{U} \quad \text{and} \quad \operatorname{Var}(\hat{\theta}^*) = \min_{\hat{\theta} \in \mathcal{U}} \operatorname{Var}(\hat{\theta}),$$
 (3.25)

- This is a mathematical definition of a uniformly minimum variance unbiased estimator (UMVUE), which is to be shown in Definition 3.5.
- If $\hat{\theta}^*$ satisfies $Var(\hat{\theta}^*) = 1/I_n(\theta)$, then $\hat{\theta}^*$ is called efficient estimator of θ . For the general case, see Definition 3.6.

Definition 3.5 (UMVUE). An estimator $\hat{\theta}^*$ is called a UMVUE of θ if it is unbiased and has the smallest variance among all unbiased estimators.

Definition 3.6 (Efficient estimator). If an unbiased estimator $\hat{\theta} = T(\mathbf{x})$ for $\tau(\theta)$ has variance equal to the Cramér–Rao lower bound, then $\hat{\theta}$ is called an efficient estimator for $\tau(\theta)$.

21.1° Efficient estimator versus UMVUE

— Obviously, an efficient estimator for $\tau(\theta)$ is a UMVUE for $\tau(\theta)$; i.e.,

efficient estimator \implies UMVUE.

— However, the converse is not always true; i.e.,

efficient estimator \Leftarrow UMVUE.

— In other words, it is possible that a UMVUE whose variance does not attain the CR lower bound. See Example 3.20 .

Example 3.17 (Bernoulli distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$. Then $\bar{X} = (1/n) \sum_{i=1}^n X_i$ is a UMVUE of θ .

<u>Solution</u>. Let $X \sim \text{Bernoulli}(\theta)$, then the pmf of X is $f(x; \theta) = \theta^x (1 - \theta)^{1 - x}$, x = 0, 1. Then, from (3.24), we have

$$I(\theta) = E \left\{ \frac{\mathrm{d}\log f(X;\theta)}{\mathrm{d}\theta} \right\}^2 = E \left(\frac{X}{\theta} - \frac{1-X}{1-\theta} \right)^2$$
$$= E \left\{ \frac{X-\theta}{\theta(1-\theta)} \right\}^2 = \frac{\mathrm{Var}(X)}{\theta^2(1-\theta)^2} = \frac{1}{\theta(1-\theta)}$$

and

$$I_n(\theta) = nI(\theta) = \frac{n}{\theta(1-\theta)}.$$

Now, \bar{X} is unbiased and

$$\operatorname{Var}(\bar{X}) = \frac{\operatorname{Var}(X)}{n} = \frac{\theta(1-\theta)}{n} = \frac{1}{I_n(\theta)};$$

i.e., the variance attains the CR lower bound. Then \bar{X} is a UMVUE of θ .

Example 3.18 (Normal distribution with known variance). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma_0^2)$ with known σ_0^2 and unknown μ . Show that $\bar{X} = (1/n) \sum_{i=1}^n X_i$ is a UMVUE for μ .

<u>Solution</u>. Let $X \sim N(\mu, \sigma_0^2)$, then the pdf of X is

$$f(x; \mu) = \frac{1}{\sqrt{2\pi} \sigma_0} \exp\left\{-\frac{(x-\mu)^2}{2\sigma_0^2}\right\}$$

and

$$\log f(x; \mu) = -\log(\sqrt{2\pi}\,\sigma_0) - \frac{(x-\mu)^2}{2\sigma_0^2}.$$

From (3.24), we have

$$I(\mu) = E \left\{ \frac{\mathrm{d}\log f(X; \mu)}{\mathrm{d}\mu} \right\}^2 = E \left(\frac{X - \mu}{\sigma_0^2} \right)^2 = \frac{1}{\sigma_0^2}.$$

and

$$I_n(\mu) = nI(\mu) = \frac{n}{\sigma_0^2}.$$

Now, \bar{X} is unbiased and

$$\operatorname{Var}(\bar{X}) = \frac{\operatorname{Var}(X)}{n} = \frac{\sigma_0^2}{n} = \frac{1}{I_n(\mu)},$$

reaching the CR lower bound. Then \bar{X} is a UMVUE of μ .

21.2° Efficiency of an unbiased estimator

— In general, the efficiency of an unbiased estimator $\hat{\theta}$ for θ is defined by

$$\mathrm{eff}_{\hat{\theta}}(\theta) = \frac{\mathrm{Cram\acute{e}r}-\mathrm{Rao\ lower\ bound}}{\mathrm{Actual\ variance}} = \frac{1/I_n(\theta)}{\mathrm{Var}(\hat{\theta})}. \tag{3.26}$$

Example 3.19 (Normal distribution with known mean). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu_0, \theta)$ with known μ_0 and unknown θ . Calcualte the efficiency of $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$.

Solution. Let $X \sim N(\mu_0, \theta)$, then the pdf of X is

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\theta}} \exp\left\{-\frac{(x-\mu_0)^2}{2\theta}\right\}$$

and

$$\log f(x; \theta) = -\frac{1}{2} \log(2\pi\theta) - \frac{(x - \mu_0)^2}{2\theta}.$$

From (3.24), we have

$$I(\theta) = E\left\{-\frac{\mathrm{d}^2 \log f(X;\theta)}{\mathrm{d}\theta^2}\right\} = E\left\{-\frac{1}{2\theta^2} + \frac{(X-\mu_0)^2}{\theta^3}\right\} = \frac{1}{2\theta^2}.$$

and

$$I_n(\theta) = nI(\theta) = \frac{n}{2\theta^2}.$$

Since $(n-1)S^2/\theta \sim \chi^2(n-1)$, we have $E(S^2) = \theta$ and

$$Var(S^2) = \frac{2\theta^2}{n-1} > \frac{2\theta^2}{n} = \frac{1}{I_n(\theta)}.$$

Therefore, S^2 is unbiased and its efficiency is

$$\operatorname{eff}_{S^2}(\theta) = \frac{1/I_n(\theta)}{\operatorname{Var}(S^2)} = \frac{n-1}{n} \to 1 \text{ as } n \to \infty;$$

i.e., S^2 is asymptotically efficient.

Example 3.20 (Poisson distribution). Let $X \sim \text{Poisson}(\theta)$ and $\tau(\theta) = e^{-\theta}$. Define

$$\hat{\theta} = g(X) = \begin{cases} 1, & \text{if } X = 0, \\ 0, & \text{otherwise.} \end{cases}$$

Use Theorem 3.7 to show that $\hat{\theta}$ is the unique UMVUE of $\tau(\theta)$, but $Var(\hat{\theta})$ is larger than the CR lower bound.

<u>Solution</u>. In Example 3.21 let n = 1, we know that T(X) = X is sufficient for θ . Next, we need to prove that T(X) = X is also complete. If

$$E\{h(X)\} = \sum_{x=0}^{\infty} h(x) \frac{\theta^x}{x!} e^{-\theta} = 0,$$

for $\theta > 0$, we have

$$\sum_{x=0}^{\infty} h(x) \frac{\theta^x}{x!} = 0.$$

Since $\theta^x/x! > 0$ for any $\theta > 0$ and $x \ge 0$, we obtain $h(X) \equiv 0$. Then T = X is also complete. Since $\hat{\theta} = g(X) = g(T)$ is unbiased for $\tau(\theta)$, it is the unique UMVUE for $\tau(\theta)$ according to Theorem 3.7.

Since $I(\theta) = 1/\theta$, and the CR lower bound is

$$\frac{\{\tau'(\theta)\}^2}{I(\theta)} = \theta e^{-2\theta},$$

we have

$$\operatorname{Var}(\hat{\theta}) = e^{-\theta} (1 - e^{-\theta}) > \theta e^{-2\theta},$$

which completes the proof.

21.3° Is the UMVUE unique?

— If $\mathcal{U} = \{\hat{\theta}: E(\hat{\theta}) = \theta\}$ is not an empty set, then there exists at most one UMVUE of θ . In other words, the number of UMVUEs is zero or one.

21.4° How to find the unique UMVUE?

— In this subsection, we provide a sufficient condition; i.e.,

if $\hat{\theta}$ is an efficient estimator $\Longrightarrow \hat{\theta}$ is the unique UMVUE.

— §3.4.4 will provide a sufficient and necessary condition, which involves two important notions: Sufficiency (§3.4.3) and completeness (§3.4.3).

3.4.3 Sufficiency

22° MOTIVATION FROM DATA REDUCTION

- In many of the estimation problems, we need to summarize the information contained in the sample $\mathbf{x} = (x_1, \dots, x_n)^{\mathsf{T}}$.
- That is, we need to find some function of the sample that tells us just as much about θ as the sample itself.
- Such a function would be sufficient for estimation purposes and accordingly is called a *sufficient statistic*.

22.1 Raw data and reduced data

- Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \mu, \sigma^2)$, then X_1, \ldots, X_n are called raw data.
- The quantities such as the sample mean \bar{X} , the sample variance S^2 , the smallest order statistic $X_{(1)}$ and the largest order statistic $X_{(n)}$ are called reduced data.
- Given raw data, any reduce data can be determined uniquely; while the converse may not be true:

raw data $\stackrel{\longrightarrow}{\Leftarrow}$ reduced data.

22.2° Intuitive interpretation on a sufficient statistic

- To estimate the population mean μ , we only need to use the reduced datum \bar{X} , which contains all information about μ .
- In other words, using \bar{X} to estimate μ will not lose any information.
- However, using $\sum_{i=1}^{n-1} X_i/(n-1)$ to estimate μ will lose information from X_n .
- Hence, \bar{X} is a sufficient estimator of μ while $\sum_{i=1}^{n-1} X_i/(n-1)$ is not a sufficient estimator of μ .

23° SINGLE SUFFICIENT STATISTIC

Definition 3.7 (Sufficient statistic). A statistic $T(\mathbf{x})$ is said to be a *sufficient statistic* of θ if the conditional distribution of \mathbf{x} , given $T(\mathbf{x}) = t$, does not depend on θ for any value of t. In discrete case, this means that

$$\Pr\{X_1 = x_1, \dots, X_n = x_n; \theta | T(\mathbf{x}) = t\} = h(\mathbf{x})$$

does not depend on θ .

23.1 Deeply understanding Definition 3.7

- The definition says that if you know the value of the sufficient statistic, then the sample values themselves are not needed and can tell you nothing more about θ .
- This is true since the distribution of the sample given the sufficient statistic does not depend on θ .
- The joint distribution of \mathbf{x} and $T(\mathbf{x})$ is

$$\Pr\{X_1 = x_1, \dots, X_n = x_n, T(\mathbf{x}) = t; \theta\}$$

$$= \Pr\{X_1 = x_1, \dots, X_n = x_n; \theta | T(\mathbf{x}) = t\} \times \Pr\{T(\mathbf{x}) = t; \theta\}$$

$$= h(\mathbf{x}) \times \Pr\{T(\mathbf{x}) = t; \theta\},$$

where the left-hand side is, in general, the joint distribution of \mathbf{x} subject to the constraint $T(\mathbf{x}) = t$.

- Thus, the MLE $\hat{\theta}$ can be obtained by maximizing log[Pr{ $T(\mathbf{x}) = t; \theta$ }].
- Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$ and $T(\mathbf{x}) = \sum_{i=1}^n X_i$. We have

$$\Pr\{X_1 = x_1, \dots, X_n = x_n, T(\mathbf{x}) = t; \theta\}$$

$$= \Pr\{X_1 = x_1, \dots, X_{n-1} = x_{n-1}, X_n = x_n = t - \sum_{j=1}^{n-1} x_j; \theta\}$$

$$= \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$$

$$= \theta^t (1-\theta)^{n-t}.$$

On the other hand, since $T(\mathbf{x}) = \sum_{i=1}^{n} X_i \sim \text{Binomial}(n, \theta)$, we obtain

$$\Pr\{T(\mathbf{x}) = t; \theta\} = \binom{n}{t} \theta^t (1 - \theta)^{n-t}.$$

The MLE $\hat{\theta} = T(\mathbf{x})/n = \bar{X}$.

Example 3.21 (Poisson distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Poisson}(\theta)$, where $\theta > 0$. Show that $T(\mathbf{x}) = \sum_{i=1}^n X_i$ is a sufficient statistic of θ .

<u>Solution</u>. From Example 2.12, we have $T(\mathbf{x}) = \sum_{i=1}^{n} X_i \sim \text{Poisson}(n\theta)$. Since the conditional distribution

$$\Pr\{X_{1} = x_{1}, \dots, X_{n} = x_{n}; \ \theta | T(\mathbf{x}) = t\}$$

$$= \frac{\Pr(X_{1} = x_{1}, \dots, X_{n-1} = x_{n-1}, X_{n} = t - \sum_{i=1}^{n-1} x_{i}; \ \theta)}{\Pr(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \left(\prod_{i=1}^{n-1} \frac{\theta^{x_{i}} e^{-\theta}}{x_{i}!}\right) \cdot \frac{\theta^{t - \sum_{i=1}^{n-1} x_{i}} e^{-\theta}}{(t - \sum_{i=1}^{n-1} x_{i})!} / \frac{(n\theta)^{t} e^{-n\theta}}{t!}$$

$$= \frac{t!}{x_{1}! \cdots x_{n-1}! (t - \sum_{i=1}^{n-1} x_{i})!} \cdot \frac{1}{n^{t}}$$

does not depend on θ for any value of t, $T(\mathbf{x})$ is a sufficient statistic of θ .

Example 3.22 (Bernoulli distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$, where $\theta > 0$. Show that $T(\mathbf{x}) = \sum_{i=1}^n X_i$ is a sufficient statistic of θ .

<u>Solution</u>. Note that $T(\mathbf{x}) = \sum_{i=1}^{n} X_i \sim \text{Binomial}(n, \theta)$, we have

$$\Pr\{X_1 = x_1, \dots, X_n = x_n; \ \theta | T(\mathbf{x}) = t\}$$

$$= \frac{\Pr(X_1 = x_1, \dots, X_n = x_n; \ \theta)}{\Pr\{T(\mathbf{x}) = t\}}$$

$$= \frac{\prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1 - x_i}}{\binom{n}{t} \theta^t (1 - \theta)^{n - t}}$$

$$= \frac{\theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i}}{\binom{n}{t} \theta^t (1 - \theta)^{n - t}} \quad [\because \sum_{i=1}^n x_i = t]$$

$$= \frac{\theta^t (1 - \theta)^{n - t}}{\binom{n}{t} \theta^t (1 - \theta)^{n - t}}$$

$$= \frac{1}{\binom{n}{t}},$$

which does not depend on θ for any value of t. Therefore, $T(\mathbf{x})$ is a sufficient statistic of θ .

23.2° How to find a sufficient statistic?

Theorem 3.5 (Factorization theorem). A statistic $T(\mathbf{x})$ is a sufficient statistic of the unknown parameter θ iff the joint pdf (or pmf) can be written in the form

$$f(x_1,\ldots,x_n;\theta) = f(\boldsymbol{x};\theta) = g(T(\boldsymbol{x});\theta) \times h(\boldsymbol{x}),$$
 (3.27)

where $h(\boldsymbol{x})$ does not depend on θ , $g(T;\theta)$ is a function of both T and θ , and it depends on x_1, \ldots, x_n only through T.

<u>Proof</u>. We give a proof for the discrete case.

" $\Leftarrow=$ " (Sufficiency). Assume that $\Pr(\mathbf{x}=\mathbf{x};\theta)=g(T(\mathbf{x});\theta)\times h(\mathbf{x})$. Note that

$$\begin{split} \Pr\{T(\mathbf{x}) = t; \theta\} &= \sum_{T(\boldsymbol{x}) = t} \Pr(\mathbf{x} = \boldsymbol{x}; \theta) \\ &= \sum_{T(\boldsymbol{x}) = t} g(T(\boldsymbol{x}); \theta) \times h(\boldsymbol{x}) \\ &= g(t; \theta) \sum_{T(\boldsymbol{x}) = t} h(\boldsymbol{x}), \end{split}$$

we obtain

$$\Pr\{\mathbf{x} = \boldsymbol{x}; \boldsymbol{\theta} | T(\mathbf{x}) = t\} = \begin{cases} 0, & \text{if } T(\boldsymbol{x}) \neq t, \\ \frac{\Pr\{\mathbf{x} = \boldsymbol{x}, T(\mathbf{x}) = t; \boldsymbol{\theta}\}}{\Pr\{T(\mathbf{x}) = t; \boldsymbol{\theta}\}}, & \text{if } T(\boldsymbol{x}) = t, \end{cases}$$

$$= \begin{cases} 0, & \text{if } T(\boldsymbol{x}) \neq t, \\ \frac{\Pr(\mathbf{x} = \boldsymbol{x}; \boldsymbol{\theta})}{\Pr\{T(\mathbf{x}) = t; \boldsymbol{\theta}\}}, & \text{if } T(\boldsymbol{x}) = t, \end{cases}$$

$$= \begin{cases} 0, & \text{if } T(\boldsymbol{x}) = t, \\ \frac{h(\boldsymbol{x})}{\sum_{T(\boldsymbol{x}) = t} h(\boldsymbol{x})}, & \text{if } T(\boldsymbol{x}) = t. \end{cases}$$

It does not depend on θ , then $T(\mathbf{x})$ is sufficient for θ .

" \Longrightarrow " (Necessity). Assume that $T(\mathbf{x})$ is sufficient, then

$$\Pr(\mathbf{x} = \mathbf{x}; \theta) = \Pr\{T(\mathbf{x}) = t\} \times \Pr\{\mathbf{x} = \mathbf{x}; \theta | T(\mathbf{x}) = t\}$$
(3.28)

with T(x) = t. Let

$$\Pr\{T(\mathbf{x}) = t\} = g(t; \theta)$$
 and $\Pr\{\mathbf{x} = \mathbf{x}; \theta | T(\mathbf{x}) = t\} = h(\mathbf{x}),$

then (3.28) becomes

$$\Pr(\mathbf{x} = \mathbf{x}; \theta) = g(t; \theta) \times h(\mathbf{x})$$

and (3.27) follows.

Example 3.23 (Normal distribution with known variance). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\theta, \sigma_0^2)$ with known σ_0^2 . Then \bar{X} is a sufficient statistic for θ .

<u>Solution</u>. The joint pdf of X_1, \ldots, X_n is

$$f(x_1, ..., x_n; \theta) = \frac{1}{(\sqrt{2\pi} \sigma_0)^n} \exp\left\{-\frac{\sum_{i=1}^n (x_i - \theta)^2}{2\sigma_0^2}\right\}$$

$$= \frac{1}{(\sqrt{2\pi} \sigma_0)^n} \exp\left\{-\frac{\sum_{i=1}^n (x_i - \bar{x} + \bar{x} - \theta)^2}{2\sigma_0^2}\right\}$$

$$= \frac{1}{(\sqrt{2\pi} \sigma_0)^n} \exp\left\{-\frac{n(\bar{x} - \theta)^2}{2\sigma_0^2}\right\}$$

$$\times \exp\left\{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma_0^2}\right\}$$

Then $T = \bar{X}$ is sufficient for θ .

Example 3.24 (Shift exponential distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \theta)$, where

$$f(x; \theta) = \begin{cases} \exp\{-(x - \theta)\}, & \text{if } x > \theta, \\ 0, & \text{elsewhere.} \end{cases}$$

Then $X_{(1)} = \min(X_1, \dots, X_n)$ is a sufficient statistic for θ .

<u>Solution</u>. The joint pdf of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n; \theta) = \prod_{i=1}^n \exp\{-(x_i - \theta)\} \cdot I_{(\theta, \infty)}(x_i)$$
$$= e^{-\sum_{i=1}^n x_i + n\theta} \prod_{i=1}^n I_{(\theta, \infty)}(x_i)$$
$$= e^{n\theta} I_{(\theta, \infty)}(x_{(1)}) \times e^{-\sum_{i=1}^n x_i}.$$

Then $X_{(1)}$ is sufficient for θ .

Example 3.25 (A special beta distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \theta)$, where

$$f(x; \theta) = \begin{cases} \theta x^{\theta - 1}, & \text{if } 0 < x < 1, \\ 0, & \text{elsewhere,} \end{cases}$$

where $\theta > 0$. Then $\prod_{i=1}^{n} X_i$ is a sufficient statistic for θ .

<u>Solution</u>. The joint pdf of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n; \theta) = \theta^n \left(\prod_{i=1}^n x_i \right)^{\theta-1} \times 1.$$

Then $\prod_{i=1}^{n} X_i$ is sufficient for θ . The function h(x) in (3.27) may be a constant as shown in this example.

23.3° Why do we need a sufficient statistic?

— Given a sufficient statistic T and an unbiased estimator Y of θ , we can immediately find another unbiased estimator Z with a smaller variance, see the beginning of §3.4.4.

— Usefulness in finding a unique UMVUE of θ : If a sufficient statistic $T(\mathbf{x})$ is also a complete statistic simultaneously, then we can immediately identify a unique UMVUE of θ , see Theorem 3.7.

23.4° Why does it take the name of sufficient statistic?

- For the normal population with known variance, we know that the sample mean \bar{X} is an unbiased estimator of the population mean θ .
- From Example 3.23, we can see that \bar{X} is also a sufficient statistic of θ .
- \bar{X} contains *all/sufficient* information from the random sample X_1, \ldots, X_n to estimate θ .
- $\sum_{i=1}^{n-1} X_i/(n-1)$ is also unbiased estimator of θ but it is not a sufficient statistic

23.5° Is a sufficient statistic unique?

- First, we note that a sufficient statistic is not unique.
- If $Y_1 = T(\mathbf{x})$ is a sufficient statistic for θ and $Y_2 = g(Y_1)$, where $g(\cdot)$ is a *one-to-one* function, then Y_2 is also sufficient.
- For instance, in Example 3.23, $\sum_{i=1}^{n} X_i = n\bar{X}$ is another sufficient statistic of θ but \bar{X}^2 is not sufficient.

23.6° Sufficient statistic versus sufficient estimator

- An estimator is a meaningful statistic.
- In Example 3.23, \bar{X} is a sufficient statistic of θ , and it is also a sufficient estimator of θ .
- Note that $\sum_{i=1}^{n} X_i$ is just a sufficient statistic of θ , not a sufficient estimator of θ .

23.7° Sufficient statistic versus unbiased estimator

— For the normal population with known variance, both \bar{X} and $n\bar{X}$ are sufficient statistics for θ . The former is unbiased while the latter is biased.

— Both \bar{X} and $\sum_{i=1}^{n-1} X_i/(n-1)$ are unbiased estimators for θ . The former is sufficient while the latter is not sufficient.

23.8° Statistic versus estimator

- An estimator \Longrightarrow a statistic.
- Based on different criteria, estimators could be classified into:

biased estimator, unbiased estimator; MLE, moment estimator, Bayesian estimator; efficient estimator, UMVUE; sufficient estimator, complete estimator.

— For example,

$$\frac{1}{a} \sum_{i=1}^{n} X_i:$$
 statistic (for any non-zero constant a),

$$\frac{1}{a} \sum_{i=1}^{n} X_{i}: \qquad \text{statistic (for any non-zero constant } a),$$

$$\frac{1}{n} \sum_{i=1}^{n} X_{i}: \qquad \begin{cases} \text{MLE,} \\ \text{moment estimator,} \\ \text{unbiased estimator,} \\ \text{UMVUE,} \\ \text{sufficient estimator.} \end{cases}$$

24° Joint Sufficient Statistics

- For some problems, no single sufficient statistic exists.
- However, there will always exist joint sufficient statistics.

Definition 3.8 (Joint sufficient statistics). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \theta)$. The statistics $T_1(\mathbf{x}), \dots T_r(\mathbf{x})$ are said to be jointly sufficient if the conditional distribution of \mathbf{x} , given $T_1 = t_1, \dots, T_r = t_r$, does not depend on $\boldsymbol{\theta}$.

Theorem 3.6 (Factorization theorem with joint sufficient statistics). A set of statistics $T_1(\mathbf{x}), \dots, T_r(\mathbf{x})$ is jointly sufficient for the parameter vector $\boldsymbol{\theta}$ iff the joint pdf (or pmf) can be written in the form

$$f(x_1, \dots, x_n; \boldsymbol{\theta}) = f(\boldsymbol{x}; \boldsymbol{\theta}) = g(T_1(\boldsymbol{x}), \dots, T_r(\boldsymbol{x}); \boldsymbol{\theta}) \times h(\boldsymbol{x}),$$
(3.29)

where $h(\boldsymbol{x})$ does not depend on $\boldsymbol{\theta}, g(T_1, \dots, T_r; \boldsymbol{\theta})$ depends on x_1, \dots, x_n only through T_1, \ldots, T_r .

24.1° Comments on Theorem 3.6

- If $T_1(\mathbf{x}), \ldots, T_r(\mathbf{x})$ is a set of jointly sufficient statistics, then any set of one-to-one functions/transformations of $T_1(\mathbf{x}), \ldots, T_r(\mathbf{x})$ is also jointly sufficient.
- In addition, the function $h(\mathbf{x})$ in (3.29) may be a constant.

Example 3.26 (Normal distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. Find jointly sufficient statistics for $\theta = (\mu, \sigma^2)$.

<u>Solution</u>. The joint pdf of X_1, \ldots, X_n is

$$f(\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{(\sqrt{2\pi\sigma^2})^n} \exp\left\{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right\}$$
$$= \frac{1}{(\sqrt{2\pi\sigma^2})^n} \exp\left(-\frac{\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2}{2\sigma^2}\right)$$
$$= (\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2}{2\sigma^2}\right) \times \frac{1}{(\sqrt{2\pi})^n}.$$

Hence, $\sum X_i$ and $\sum X_i^2$ are jointly sufficient. It can be shown that \bar{X} and $S^2 = \{1/(n-1)\} \sum (X_i - \bar{X})^2$ are one-to-one functions of $\sum X_i$ and $\sum X_i^2$; so \bar{X} and S^2 are also jointly sufficient.

3.4.4 Completeness

25° Why need we the notion of the complete statistic?

- Assume that $T(\mathbf{x})$ is sufficient for θ , and $Y(\mathbf{x})$ is an unbiased estimator of $\tau(\theta)$, a function of θ .
- Let $Z \triangleq E(Y|T) = \varphi(T)$, then we have

$$E(Z) \stackrel{(1.27)}{=} E(Y) = \tau(\theta), \text{ and}$$

$$Var(Z) = 0 + Var(Z)$$

$$\leqslant E\left\{\underbrace{Var(Y|T)}_{\text{non-negative}}\right\} + Var(Z)$$

$$= E\{Var(Y|T)\} + Var\{E(Y|T)\} \stackrel{(1.28)}{=} Var(Y).$$

• Thus, from a sufficient statistic T and an unbiased estimator Y, we can find a set of unbiased estimators $\{Z_j\}_{j=1}^m$ satisfying

$$Z_1 = E(Y|T),$$
 $Z_2 = E(Z_1|T),$
 $Z_3 = E(Z_2|T),$
 \vdots
 $Z_m = E(Z_{m-1}|T),$

and $Var(Z_m) \leqslant Var(Z_{m-1}) \leqslant \cdots \leqslant Var(Z_1) \leqslant Var(Y)$.

- Let $\mathcal{U} = \{Z: E(Z) = \tau(\theta)\}$ and $\#\mathcal{U}$ is infinite.
- We wonder if we could find a $Z^* \in \mathcal{U}$ such that

$$Var(Z^*) \leqslant Var(Z), \quad \forall Z \in \mathcal{U}.$$

In other words, Z^* is the UMVUE of $\tau(\theta)$.

• We wish that $Z^* = Z_m = \cdots = Z_1$. The notion of "complete statistic" facilitates this purpose.

26 Definition of a complete statistic

Definition 3.9 (Completeness). Let X_1, \ldots, X_n denote a random sample from the pdf (or pmf) $f(x; \theta)$ with parameter space Θ and let $T(\mathbf{x})$ be a statistic, where $\mathbf{x} = (X_1, \ldots, X_n)^{\mathsf{T}}$. The statistic T is said to be *complete* if

$$E\{h(T)\} = 0$$
 for all $\theta \in \Theta$

implies that h(T) = 0 with probability 1; i.e.,

$$\Pr\{h(T) = 0\} = 1$$
 for all $\theta \in \Theta$,

where the function h(T) is a statistic.

26.1 Alternative statement

— Alternatively, we can say: T is complete iff the *only* unbiased estimator of 0 that is a function of T is the statistic that is identically 0 with probability 1.

3.4 Properties of Estimators

147

27° How to understand the completeness?

• We need two "bridges" to reach the uniqueness of UMVUE.

27.1° Case I: $U = \{\hat{\theta}: E(\hat{\theta}) = \theta\}$ with finite elements

- Let $\hat{\theta}_i \in \mathcal{U}$ for i = 1, 2.
- The first bridge is the *sufficiency*; i.e., suppose that we have found a sufficient statistic T for θ .
- From (3.30), we know that $Z_i = E(\hat{\theta}_i|T) = h_i(T)$, i = 1, 2, are two unbiased estimators of θ so that $E(Z_1 Z_2) = \theta \theta = 0$,

$$\operatorname{Var}(Z_1) \leqslant \operatorname{Var}(\hat{\theta}_1)$$
 and $\operatorname{Var}(Z_2) \leqslant \operatorname{Var}(\hat{\theta}_2)$.

- Which one should we choose? Z_1 or Z_2 ?
- Of course, we choose Z_1 if $Var(Z_1) \leq Var(Z_2)$. Otherwise, we choose Z_2 .
- In other words, we do not need the "second bridge" (i.e., the completeness) for Case I.

27.2° Case II: $\mathcal{U} = \{\hat{\theta} \colon E(\hat{\theta}) = \theta\}$ with infinite elements

- Let $\hat{\theta}_i \in \mathcal{U}$ for $i = 1, 2, \dots$
- Define $Z_i = E(\hat{\theta}_i|T) = h_i(T), i = 1, 2, ...,$ we have $E(Z_i Z_j) = E\{h_i(T) h_j(T)\} = \theta \theta = 0$, and

$$\operatorname{Var}(Z_i) \leqslant \operatorname{Var}(\hat{\theta}_i), \quad i = 1, 2, \dots$$

- Which Z_i should we choose?
- Then, we wish to find a second "bridge" such that $Z_i = Z_j$ with probability 1. The second bridge is the completeness.

Example 3.27 (Uniform distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} U(0, \theta)$, where $\Theta = \{\theta : \theta > 0\}$. Show that $X_{(n)} = \max(X_1, \ldots, X_n)$ is complete.

<u>Solution</u>. We must show that if $E\{h(X_{(n)})\}=0$ for all $\theta>0$, then $\Pr\{h(X_{(n)})=0\}=1$ for all $\theta>0$. From Example 2.16, the density of $X_{(n)}$ is

$$f_n(x) = nx^{n-1}/\theta^n, \quad 0 < x < \theta.$$

Note that

$$E\{h(X_{(n)})\} = \int h(x)f_n(x) dx = \int_0^\theta h(x)\theta^{-n}nx^{n-1} dx,$$

and $E\{h(X_{(n)})\}=0$ for all $\theta>0$ when and only when

$$\int_0^\theta h(x)x^{n-1} dx = 0 \quad \text{for all } \theta > 0.$$

Differentiating both sides of this identity with respect to θ produces

$$h(\theta)\theta^{n-1} = 0,$$

which in turn implies $h(\theta) = 0$ for all $\theta > 0$.

28° How to find the unique UMVUE?

Theorem 3.7 (Lehmann–Scheffé theorem). Let $T(\mathbf{x})$ is a complete sufficient statistic for θ . If g(T) is an unbiased estimator of $\tau(\theta)$, then g(T) is the unique UMVUE for $\tau(\theta)$.

<u>Proof.</u> Let Y be any unbiased estimator of $\tau(\theta)$ and let $\varphi(T) = E(Y|T)$, then

$$E\{\varphi(T)\} = \tau(\theta)$$
 and $Var\{\varphi(T)\} \leqslant Var(Y)$.

Therefore,

$$E\{g(T) - \varphi(T)\} = \tau(\theta) - \tau(\theta) = 0$$
 for all θ .

As T is complete, this implies that $g(T) = \varphi(T)$ with probability 1 and

$$Var\{g(T)\} = Var\{\varphi(T)\} \leq Var(Y).$$

Consequently, g(T) is the unique function of T which is unbiased and has a smaller variance than any other unbiased estimator has. Then g(T) is the unique UMVUE of $\tau(\theta)$.

Example 3.28 (Bernoulli distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$, where $\Theta = \{\theta : 0 < \theta < 1\}$. Show that the statistic $T = \sum_{i=1}^n X_i$ is a complete sufficient statistic for θ . Find the UMVUE for θ .

Solution. The joint pdf of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n; \theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} = \theta^t (1-\theta)^{n-t},$$

where $t = \sum_{i=1}^{n} x_i$. By Theorem 3.5, $T = \sum_{i=1}^{n} X_i$ is sufficient, and $T \sim \text{Binomial}(n, \theta)$. Now assume that a function h(T) satisfies

$$E\{h(T)\} = \sum_{t=0}^{n} h(t) \Pr(T=t) = \sum_{t=0}^{n} h(t) {n \choose t} \theta^{t} (1-\theta)^{n-t} = 0, \quad (3.31)$$

for $0 < \theta < 1$. Let $y = \theta/(1 - \theta)$, then (3.31) becomes

$$\sum_{t=0}^{n} h(t) \binom{n}{t} y^{t} = 0, \quad y > 0.$$

A polynomial is identical to zero, then all coefficients are zero. Thus

$$h(t)\binom{n}{t} = 0$$
 for $t = 0, 1, \dots, n$.

Hence $h(T) \equiv 0$. Then T is also complete. Since $\bar{X} = T/n$ is unbiased for θ , it is the unique UMVUE for θ according to Theorem 3.7.

28.1° Remarks on Example 3.28

- Note that $T = \sum_{i=1}^{n} X_i$ is sufficient for θ and Y = T/n is an unbiased estimator of θ .
- We have

$$Z_1 = E(Y|T) = E\left(\frac{T}{n}\middle|T\right) = \frac{T}{n} = Y$$
 and $Z_2 = E(Z_1|T) = \frac{T}{n} = Y$

so that $\mathcal{U} = \{\hat{\theta} \colon E(\hat{\theta}) = \theta\} = \{Y\}$ and $\#\mathcal{U} = 1$.

28.2 Remarks on Example 3.23

— From Example 3.23, we know that $T = \bar{X} = \sum_{i=1}^{n} X_i/n$ is sufficient for θ and Y = T is an unbiased estimator of θ .

— We have Z = E(Y|T) = E(T|T) = T so that $\mathcal{U} = \{\hat{\theta} \colon E(\hat{\theta}) = \theta\} = \{\bar{X}\}$ and $\#\mathcal{U} = 1$.

3.5 Limiting Properties of MLE

29° MLE WEAKLY CONVERGES IN PROBABILITY TO ITS TRUE VALUE

- In §3.1.4, we have stated the invariance property of MLE. In this section, we introduce limiting properties of MLE.
- We rewrite Definition 2.3 as follows: A sequence of r.v.'s $\{X_n\}_{n=1}^{\infty}$ is said to weakly converge in probability to an r.v. X, denoted by $X_n \xrightarrow{P} X$, if for any $\varepsilon > 0$, $\lim_{n \to \infty} \Pr(|X_n X| \ge \varepsilon) = 0$.
- Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. from a population with pdf $f(x;\theta)$. Let $\hat{\theta}_n$ be the MLE of θ based on X_1, \ldots, X_n . Then under certain regularity conditions, we have

$$\hat{\theta}_n \stackrel{P}{\to} \theta \quad \text{as} \quad n \to \infty.$$
 (3.32)

29.1° MLE also converges in distribution to its true value

- The conclusion in (3.32) states that when $n \to \infty$, the MLE $\hat{\theta}_n$ weakly converges in probability to the true value of the parameter.
- From Property 2.1 in §2.5.3, we obtain $\hat{\theta}_n \stackrel{L}{\to} \theta$; i.e., the MLE $\hat{\theta}_n$ converges in distribution to the true value of the parameter.

30° MLE IS ASYMPTOTICALLY NORMALLY DISTRIBUTED

- Let $\{X_n\}_{n=1}^{\infty} \stackrel{\text{iid}}{\sim} f(x;\theta)$ and $\hat{\theta}_n$ be the MLE of θ based on X_1,\ldots,X_n .
- Let $S(\theta; \mathbf{x})$ with $\mathbf{x} = (X_1, \dots, X_n)^{\top}$ and $I_n(\theta) = nI(\theta)$ denote the score function and the Fisher information, respectively.

• If $E\{S(\theta; \mathbf{x})\} = 0$ and $Var\{S(\theta; \mathbf{x})\} = nI(\theta)$, then

$$\frac{S(\theta; \mathbf{x})}{\sqrt{nI(\theta)}} \stackrel{\mathcal{L}}{\to} N(0, 1) \quad \text{as} \quad n \to \infty$$
 (3.33)

and

$${nI(\theta)}^{1/2}(\hat{\theta}_n - \theta) \xrightarrow{L} N(0, 1) \text{ as } n \to \infty.$$
 (3.34)

• The corresponding proofs of (3.33) and (3.34) are given in §3.6.

30.1 Remarks on (3.34)

- The MLE $\hat{\theta}_n$ is an asymptotically unbiased estimator of θ .
- The MLE $\hat{\theta}_n$ is an asymptotically UMVUE because it reaches the CR lower bound in the sense that

$$\lim_{n \to \infty} \operatorname{eff}_{\hat{\theta}_n}(\theta) = \lim_{n \to \infty} \frac{1/I_n(\theta)}{\operatorname{Var}(\hat{\theta}_n)} = 1.$$

— The MLE $\hat{\theta}_n$ is asymptotically normally distributed.

Example 3.29 (A special beta distribution). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \theta)$, where

$$f(x; \theta) = \begin{cases} \theta x^{\theta - 1}, & \text{if } 0 < x < 1, \\ 0, & \text{elsewhere,} \end{cases}$$

and $\Theta = \{\theta : \theta > 0\}$. Find the MLE of θ and study its limiting properties.

Solution. The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} \theta x_i^{\theta-1} = \theta^n \left(\prod_{i=1}^{n} x_i \right)^{\theta-1}.$$

The MLE of θ is $\hat{\theta}_n = -n/\sum_{i=1}^n \log X_i$. Since

$$I(\theta) = E\left\{-\frac{\mathrm{d}^2 \log f(X;\theta)}{\mathrm{d}\theta^2}\right\} = \frac{1}{\theta^2},$$

we have

$$(n/\theta^2)^{1/2}(\hat{\theta}_n - \theta) \stackrel{\mathcal{L}}{\rightarrow} N(0, 1).$$

For large n, we have approximately

$$(n/\hat{\theta}_n^2)^{1/2}(\hat{\theta}_n - \theta) \sim N(0, 1).$$

3.6 Some Challenging Questions

Example 3.30 (Grouped Dirichlet distribution). Let $(x_1, \ldots, x_4, x_{12}, x_{34})$ be observed values of random variables $(X_1, \ldots, X_4, X_{12}, X_{34})$, respectively. Assume that the likelihood function of $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_4)^{\mathsf{T}}$ is

$$L(\boldsymbol{\theta}) = \left(\prod_{i=1}^4 \theta_i^{x_i}\right) \cdot (\theta_1 + \theta_2)^{x_{12}} (\theta_3 + \theta_4)^{x_{34}}, \quad \boldsymbol{\theta} \in \mathbb{T}_4.$$

Find the MLE of $\boldsymbol{\theta}$ subject to the constraints $\theta_i \geqslant 0$ and $\sum_{i=1}^4 \theta_i = 1$.

Solution. The log-likelihood function is given by

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{4} x_i \log \theta_i + x_{12} \log(\theta_1 + \theta_2) + x_{34} \log(\theta_3 + \theta_4)$$

$$= \sum_{i=1}^{3} x_i \log \theta_i + x_4 \log(1 - \theta_1 - \theta_2 - \theta_3)$$

$$+ x_{12} \log(\theta_1 + \theta_2) + x_{34} \log(1 - \theta_1 - \theta_2).$$

Solving the following system of equations

$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_{1}} = \frac{x_{1}}{\theta_{1}} - \frac{x_{4}}{1 - \theta_{1} - \theta_{2} - \theta_{3}} + \frac{x_{12}}{\theta_{1} + \theta_{2}} - \frac{x_{34}}{1 - \theta_{1} - \theta_{2}} = 0,$$

$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_{2}} = \frac{x_{2}}{\theta_{2}} - \frac{x_{4}}{1 - \theta_{1} - \theta_{2} - \theta_{3}} + \frac{x_{12}}{\theta_{1} + \theta_{2}} - \frac{x_{34}}{1 - \theta_{1} - \theta_{2}} = 0,$$

$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_{3}} = \frac{x_{3}}{\theta_{3}} - \frac{x_{4}}{1 - \theta_{1} - \theta_{2} - \theta_{3}} = 0,$$

$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_{3}} = 0,$$
(3.35)

we obtain

$$\begin{array}{lll} \frac{x_1}{\theta_1} & = & \frac{x_2}{\theta_2} = \frac{x_1 + x_2}{\theta_1 + \theta_2}, \\ \\ \frac{x_3}{\theta_3} & = & \frac{x_4}{\theta_4} = \frac{x_3 + x_4}{\theta_3 + \theta_4}. \end{array}$$

Hence, from (3.35), we have

$$\frac{x_1 + x_2}{\theta_1 + \theta_2} - \frac{x_3 + x_4}{\theta_3 + \theta_4} + \frac{x_{12}}{\theta_1 + \theta_2} - \frac{x_{34}}{\theta_3 + \theta_4} = 0,$$

or

$$\frac{x_1+x_2+x_{12}}{\theta_1+\theta_2} = \frac{x_3+x_4+x_{34}}{\theta_3+\theta_4} = \frac{N}{1},$$

where $N = \sum_{i=1}^{4} x_i + x_{12} + x_{34}$, resulting in

$$\theta_1 + \theta_2 = \frac{x_1 + x_2 + x_{12}}{N}.$$

Therefore, the MLE of θ_i is

$$\hat{\theta}_i = \frac{X_i}{N} \left\{ \frac{X_1 + X_2 + X_{12}}{X_1 + X_2} \cdot I_{(1 \le i \le 2)} + \frac{X_3 + X_4 + X_{34}}{X_3 + X_4} \cdot I_{(3 \le i \le 4)} \right\}. \quad \|$$

31° Proof of (3.33) and (3.34)

31.1° Recall the central limit theorem

- Let $\{Y_n\}_{n=1}^{\infty}$ be i.i.d. random variables with the common mean μ and common variance $\sigma^2 > 0$.
- The central limit theorem presented in Theorem 2.9 states that

$$\frac{\frac{1}{\sqrt{n}}\sum_{i=1}^{n}Y_{i} - \sqrt{n}\mu}{\sigma} = \frac{\sqrt{n}(\sum_{i=1}^{n}Y_{i}/n - \mu)}{\sigma} \xrightarrow{L} N(0,1)$$
(3.36)

as $n \to \infty$.

31.2° Proof of (3.33)

- The likelihood function of θ is $L(\theta; \mathbf{x}) = \prod_{i=1}^n f(X_i; \theta)$ so that the log-likelihood function is $\ell(\theta; \mathbf{x}) = \sum_{i=1}^n \log f(X_i; \theta)$.
- The score function is

$$S(\theta; \mathbf{x}) = \frac{\mathrm{d}\ell(\theta; \mathbf{x})}{\mathrm{d}\theta} = \sum_{i=1}^{n} \frac{\mathrm{d}\log f(X_i; \theta)}{\mathrm{d}\theta} \,\,\hat{=}\,\, \sum_{i=1}^{n} Y_i,\tag{3.37}$$

so that

$$E\{S(\theta; \mathbf{x})\} = nE(Y_1) \text{ and } Var\{S(\theta; \mathbf{x})\} = nVar(Y_1),$$
 (3.38)

where $\{Y_i\}_{i=1}^{\infty}$ be i.i.d. random variables with the common mean

$$\mu = E(Y_1) \stackrel{(3.38)}{=} \frac{E\{S(\theta; \mathbf{x})\}}{n} = 0$$
 (3.39)

and the common variance

$$\sigma^2 = \operatorname{Var}(Y_1) \stackrel{(3.38)}{=} \frac{\operatorname{Var}\{S(\theta; \mathbf{x})\}}{n} = \frac{I_n(\theta)}{n} = I(\theta). \tag{3.40}$$

— Thus

$$\frac{S(\theta; \mathbf{x}) - E\{S(\theta; \mathbf{x})\}}{\sqrt{\operatorname{Var}\{S(\theta; \mathbf{x})\}}} \stackrel{(3.39)}{=} \frac{S(\theta; \mathbf{x})}{\sqrt{nI(\theta)}}$$

$$\stackrel{(3.37)}{=} \frac{\sum_{i=1}^{n} Y_{i}}{\sqrt{nI(\theta)}} \stackrel{(3.40)}{=} \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}}{\sigma}$$

$$\stackrel{(3.36)}{=} \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i} - \sqrt{n} \times 0}{\sigma}$$

$$\stackrel{L}{\to} N(0, 1) \text{ as } n \to \infty,$$

which completes the proof of (3.33).

31.3° Proof of (3.34)

— By applying the first-order Taylor expansion to the score function $S(\theta; \mathbf{x})$ around the MLE $\hat{\theta}_n$ and noting $S(\hat{\theta}_n; \mathbf{x}) = 0$, we have

$$S(\theta; \mathbf{x}) = S(\hat{\theta}_n; \mathbf{x}) + (\theta - \hat{\theta}_n) \frac{\mathrm{d}S(\theta; \mathbf{x})}{\mathrm{d}\theta} \bigg|_{\theta = \theta^*} = 0 + (\theta - \hat{\theta}_n) H(\theta^*; \mathbf{x}),$$

where θ^* is a point between θ and $\hat{\theta}_n$. Thus

$$\frac{S(\theta; \mathbf{x})}{\sqrt{nI(\theta)}} = \sqrt{nI(\theta)} \left(\hat{\theta}_n - \theta \right) \times \frac{-H(\theta^*; \mathbf{x})/n}{I(\theta)}.$$

— We only need to prove that

$$-\frac{H(\theta^*; \mathbf{x})}{n} \xrightarrow{P} I(\theta) \quad \text{as} \quad n \to \infty.$$
 (3.41)

Exercise 3 155

— According to the weak law of large number (see, Theorem 2.7), we have

$$-\frac{H(\theta; \mathbf{x})}{n} = -\frac{1}{n} \cdot \frac{\mathrm{d}S(\theta; \mathbf{x})}{\mathrm{d}\theta} \stackrel{(3.37)}{=} \frac{1}{n} \sum_{i=1}^{n} -\frac{\mathrm{d}^{2} \log f(X_{i}; \theta)}{\mathrm{d}\theta^{2}}$$

$$\hat{=} \frac{1}{n} \sum_{i=1}^{n} Z_{i} \stackrel{\mathrm{P}}{\to} E(Z_{1}) \quad \text{as} \quad n \to \infty. \tag{3.42}$$

From (3.24), we obtain

$$E(Z_1) = E\left\{-\frac{\mathrm{d}^2 \log f(X_1; \theta)}{\mathrm{d}\theta^2}\right\} = I(\theta).$$

From (3.32), since $\hat{\theta}_n \stackrel{P}{\rightarrow} \theta$ as $n \rightarrow \infty$, we have

$$-\frac{H(\theta^*; \mathbf{x})}{n} = -\frac{H(\theta; \mathbf{x})}{n} \times \frac{H(\theta^*; \mathbf{x})}{H(\theta; \mathbf{x})} \quad \text{[by using (3.42)]}$$

$$\stackrel{\text{P}}{\to} I(\theta) \times 1 = I(\theta) \quad \text{as} \quad n \to \infty,$$

implying (3.41).

Exercise 3

- **3.1** Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} U[\theta_1, \theta_2]$. Find the MLEs of θ_1 and θ_2 .
- **3.2** A sample of size n_1 is drawn from $N(\mu_1, \sigma_1^2)$. A second sample of size n_2 is drawn from $N(\mu_2, \sigma_2^2)$. Assume that the two samples are independent.
 - (a) What is the MLE of $\theta = \mu_1 \mu_2$?
 - (b) If we assume that the total sample size $n = n_1 + n_2$ is fixed, how should the *n* observations be approximately divided between the two populations in order to minimize the variance of the $\hat{\theta}$?
- **3.3** The joint pmf of N_1 , N_2 , N_3 and N_4 is assumed to be

$$p(n_1,\ldots,n_4;\boldsymbol{\theta}) = \binom{n}{n_1,\ldots,n_4} \prod_{i=1}^4 \theta_i^{n_i},$$

where $n_i \ge 0$, $\sum_{i=1}^4 n_i = n$, and $\boldsymbol{\theta} = (\theta_1, \dots, \theta_4)^{\top} \in \mathbb{T}_4$. Let $\theta_1 = \alpha \beta$, $\theta_2 = \alpha(1-\beta)$, $\theta_3 = (1-\alpha)\beta$, and $\theta_4 = (1-\alpha)(1-\beta)$, where $0 < \alpha < 1$ and $0 < \beta < 1$. Find the MLEs of α and β .

3.4 Let $X_{i1}, \ldots, X_{in} \stackrel{\text{iid}}{\sim} N(\mu_i, \sigma^2)$ for $i = 1, \ldots, 4$, where $\mu_1 = a + b + c$, $\mu_2 = a + b - c$, $\mu_3 = a - b + c$, and $\mu_4 = a - b - c$. The four samples are independent. What are the MLEs of a, b, c and σ^2 ?

- **3.5** Let $X_1, \ldots, X_n \sim U[\mu \sqrt{3}\sigma, \ \mu + \sqrt{3}\sigma]$, where $\mu \in \mathbb{R}$ and $\sigma > 0$.
 - (a) Find the MLEs of μ and σ .
 - (b) Find the moment estimators of μ and σ .
- **3.6** Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \theta)$ with $f(x; \theta) = e^{-(x-\theta)}$ for $x \geqslant \theta$ and $\theta \in \mathbb{R}$.
 - (a) Find the MLE of θ .
 - (b) Find the moment estimator of θ .
 - (c) Using the prior density $\pi(\theta) = e^{-\theta} I_{(0,\infty)}(\theta)$, find the Bayesian estimator of θ .
- **3.7** Let $X \sim \text{Bernoulli}(\theta)$. Let $t_1(X) = X$ and $t_2(X) = 1/2$.
 - (a) Are both $t_1(X)$ and $t_2(X)$ unbiased?
 - (b) Compare the MSE of $t_1(X)$ with that of $t_2(X)$.
- 3.8 Let $\{Y=1\}$ denote the class of people who possess a sensitive characteristic (e.g., drug-taking, shoplifting, driving under influence and so on) and $\{Y=0\}$ denote the complementary class. Let W be a non-sensitive dichotomous variate and be independent of Y. The interviewer should select a suitable W so that the proportion $p=\Pr(W=1)$ can be estimated easily. Without loss of generality, p is assumed to be known. For example, we may define W=1 if the respondent was born between August and December and W=0 otherwise. Hence, it is reasonable to assume that $p\approx 5/12=0.41667$. Our aim is to estimate the proportion $\pi=\Pr(Y=1)$.

To collect sensitive information, the interviewer may adopt the format at the left-hand side of Table 3.2. The interviewee is then asked to put a tick in either the open circle or in the triangle formed by the three solid dots in Table 3.2 according to his/her truthful answer. In this case, $\{Y=0,\ W=0\}$ means that the interviewee was neither a drug user nor born between August and December. That is, $\{Y=0,\ W=0\}$ represents a non-sensitive subclass. On the other hand, a tick in

Exercise 3 157

the triangle may possibly indicates the interviewee was born between August and December (i.e., $\{W=1\}$). Therefore, respondents who are drug users are well covered their true identities by those who are between–August–December born non-drug users, and are willing to circle the triangle formed by the three dots. Such a design encourages the respondents to not only participate in the survey but also provide their truthful responses.

Table 3.2 The triangular model and its cell probabilities

Category	W = 0	W = 1		W = 0	W = 1	Total
Y = 0	0	•	Y = 0	$(1-\pi)(1-p)$	$(1-\pi)p$	$1-\pi$
Y = 1	•	•	Y = 1	$\pi(1-p)$	πp	π
			Total	1-p	p	1

Note: Please truthfully put a tick in the circle (i.e., \bigcirc) or circle the triangle formed by the three dots (i.e., \bullet).

Let $Y_{\text{obs}} = \{y_i: i = 1, ..., n\}$ denote the observed data for n respondents with $y_i = 1$ if the i-th respondent puts a tick in the triangle; $y_i = 0$ otherwise.

- (a) Find the MLE $\hat{\pi}$ of π .
- (b) Find the expectation of $\hat{\pi}$.
- **3.9** A discrete random variable Y is said to follow a zero-truncated binomial (ZTB) distribution if its pmf is

$$\Pr(Y = y) = {m \choose y} \pi^y (1 - \pi)^{m-y} / [1 - (1 - \pi)^m], \quad 1 \leqslant y \leqslant m,$$

where $\pi \in (0,1)$ is an unknown parameter, and m is a known positive integer. We will write $Y \sim \text{ZTB}(m,\pi)$.

Let $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \text{ZTB}(m, \pi)$. Find the MLE of π by using the Fisher scoring algorithm.

- **3.10** Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu_0, \theta)$, where μ_0 is known and $\theta > 0$.
 - (a) Find the MLE $\hat{\theta}$ of θ ?
 - (b) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$?
- **3.11** Let X_1, \ldots, X_n be a random sample from a distribution with density

$$f(x;\theta) = \frac{g(x)}{h(\theta)}, \quad a(\theta) \leqslant x \leqslant b(\theta),$$

where g(x) is a function of x only and $h(\theta) = \int_{a(\theta)}^{b(\theta)} g(x) dx$ a function of θ only. Let $a^{-1}(\theta)$ and $b^{-1}(\theta)$ be the inverse functions of $a(\theta)$ and $b(\theta)$, respectively. Prove that

- (a) If $a(\theta)$ and $b(\theta)$ are monotone-increasing and monotone-decreasing functions of θ , respectively, then the sufficient statistic for θ is $\hat{\theta} = \min\{a^{-1}(X_{(1)}), b^{-1}(X_{(n)})\}$, where $X_{(1)}$ and $X_{(n)}$ are the smallest and largest order statistics, respectively.
- (b) If $a(\theta)$ and $b(\theta)$ are monotone-decreasing and monotone-increasing functions of θ , respectively, then the sufficient statistic for θ is $\hat{\theta} = \max\{a^{-1}(X_{(1)}), b^{-1}(X_{(n)})\}.$
- (c) The $\hat{\theta}$ is also the MLE of θ .
- 3.12 Let Y=1 if a respondent is a drug user and Y=0 otherwise. Let U denote the number of travel out of Hong Kong per year for the same respondent in a population in Hong Kong. Obviously, Y is a sensitive binary r.v. (thus it is not observable if the question is asked directly) and U is a non-sensitive random variable. Define X=Y+U. Let $Y \sim \operatorname{Bernoulli}(\theta), U \sim \operatorname{Poisson}(\lambda), \text{ and } Y \perp U$. The interviewer could ask the i-th respondent to report the sum $X_i = U_i + Y_i$ according to his/her truthful answer, $i = 1, \ldots, n$. Let the observed data be X_1, \ldots, X_n .
 - (a) Find the moment estimators of θ and λ .
 - (b) Find the MLEs of θ and λ .
- **3.13** Let X_1, \ldots, X_n be a random sample from $f(x; \theta) = e^{-(x-\theta)} I_{(\theta,\infty)}(x)$ for $-\infty < \theta < \infty$ and $Y_1 = \min(X_1, \ldots, X_n)$.
 - (a) Show that Y_1 is a complete sufficient statistic for θ .

Exercise 3 159

- (b) Find the function of Y_1 which is the unique UMVUE of θ .
- **3.14** Let a random sample of size n be taken from a discrete distribution with pmf $f(x;\theta) = 1/\theta, x = 1, 2, \dots, \theta$, where θ is an unknown positive integer.
 - (a) Show that the largest observation $X_{(n)} = Y$ is a complete sufficient statistic for θ .
 - (b) Prove that

$$\frac{Y^{n+1} - (Y-1)^{n+1}}{Y^n - (Y-1)^n}$$

is the unique UMVUE of θ .

- **3.15** Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$. Define $\tau(\theta) = \text{Var}(X) = \theta(1 \theta)$.
 - (a) Find the Cramér–Rao lower bound for the unbiased estimator of $\tau(\theta)$.
 - (b) Find the unique UMVUE of $\tau(\theta)$ if such exists.
- **3.16** Let $X_i \sim \operatorname{Poisson}(\lambda_i)$ for i = 0, 1, 2, and X_0, X_1, X_2 are independent. Define $Y_1 = X_0 + X_1$ and $Y_2 = X_0 + X_2$. Then $(Y_1, Y_2)^{\top}$ is said to follow the two-dimensional Poisson distribution with parameters $(\lambda_0, \lambda_1, \lambda_2)$, denoted by $(Y_1, Y_2)^{\top} \sim \operatorname{MP}_2(\lambda_0, \lambda_1, \lambda_2)$.
 - (a) Find the joint probability mass function of $(Y_1, Y_2)^{\mathsf{T}}$.
 - (b) Let $\mathbf{y}_1, \dots, \mathbf{y}_n \overset{\text{iid}}{\sim} \text{MP}_2(\lambda_0, \lambda_1, \lambda_2)$, where $\mathbf{y}_j = (Y_{1j}, Y_{2j})^{\top}$ and $\mathbf{y}_j = (y_{1j}, y_{2j})^{\top}$ denotes the realization of \mathbf{y}_j , $j = 1, \dots, n$. Furthermore, let $\min(\mathbf{y}_j) = \min(y_{1j}, y_{2j}) = 0$ for all $j = 1, \dots, n$. Find the MLEs of $(\lambda_0, \lambda_1, \lambda_2)$.