Spring Forward at Your Own Risk Daylight Saving Time and Fatal Vehicle Crashes

Austin C. Smith

in AEJ: Applied Economics (2016)

January 10, 2018

Presented by Timo Freyer

DST

- Originally introduced as a wartime measure to save energy.
- Idea: Align sunlight with wakeful hours to save energy used for lighting.
- ► Today > 1.5 billion people are impacted by DST.
- Recent studies challenge the economic foundation of DST. (Kellogg, Wolff 2008; Kotchen, Grant 2011)
- Is DST a good practice from a social welfare pov?

DST

Figure: The Influence of DST on Ambient Light

This Study

Central Question

How does DST affect the number of fatal vehicle crashes?

(No. 1 cause of accidental death in the US, on average 40.000 annual fatalities (2002-2011))

This Study

Central Question

How does DST affect the number of fatal vehicle crashes?

(No. 1 cause of accidental death in the US, on average 40.000 annual fatalities (2002-2011))

Data

- ► FARS (Fatality Analysis Reporting System) data for 2002-2011, 5 years on each side of the 2007 DST extension.
- Records time + location of every fatal crash in the US since 1975.
- A crash is considered to be fatal if involving the death of a crash affected motorist/non-motorist within 30 days.

Potential Mechanisms

Ambient Light Mechanism

- ▶ DST shifts one hour of light from the morning to the evening.
- ► Fatal crashes are more prevalent in the evening than in the morning.
- ⇒ More ambient light in higher-risk evening hours might lead to a net reduction of fatal crashes.

Potential Mechanisms

Ambient Light Mechanism

- ▶ DST shifts one hour of light from the morning to the evening.
- ► Fatal crashes are more prevalent in the evening than in the morning.
- → More ambient light in higher-risk evening hours might lead to a net reduction of fatal crashes.

Sleep Mechanism

- ▶ Studies find that on the spring transition night Americans sleep \sim 40 min less but on the fall transition night only \sim 12 min more. (Barnes, Wagner 2009)
- ⇒ Sleep deprivation is likely to reduce driver alertness and might increase the number of fatal crashes.

RD Approach

Standard RD approach. (Imbens, Lemieux 2008)

- Exploit discrete transition between standard time and DST.
- Demean In(fatals_{dy}) by day-of-week and year to eliminate persistent weekday effects and long term trends.

RD Approach

Standard RD approach. (Imbens, Lemieux 2008)

- Exploit discrete transition between standard time and DST.
- ▶ Demean In(fatals_{dy}) by day-of-week and year to eliminate persistent weekday effects and long term trends.

Two major concerns in RD applications

- ► The forcing variable might be manipulable.
 - \Rightarrow Irrelevant here.
- ▶ A potential discontinuity might be caused by a change at the cutoff of the forcing variable other than the treatment.
 - \Rightarrow All other factors affecting fatal crash risk must be continuous at the transition date.

Figure: Residual Plots - Spring, Fall and Placebo Transitions

Basic RD Estimates

Spring				
		Placebo		
	(1)	(2)		
DST	0.0649***	0.000536		
	(0.0231)	(0.0225)		
Observations	550	550		
Fall				
		Placebo		
	(1)	(2)		
Leaving DST	0.00114	0.0361*		
	(0.0236)	(0.0218)		
Observations	381	381		

 \Rightarrow Significant increase (\approx 6.5%) in fatal vehicle crashes due to spring transition, no change due to fall transition.

FE Approach

Exploit Variation in DST Coverage

- ► The 2007 extension shifted the spring transition by three weeks and the fall transition by one week.
- The DST rule (transition on Sundays) causes additional 7 days of variation.
- \Rightarrow Compare crash counts of a certain date under DST/ST.

FE Approach

Exploit Variation in DST Coverage

- ► The 2007 extension shifted the spring transition by three weeks and the fall transition by one week.
- The DST rule (transition on Sundays) causes additional 7 days of variation.
- \Rightarrow Compare crash counts of a certain date under DST/ST.

$$In(Fatals_{dy}) = \beta_0 + \beta_1 SpDST_{dy} + \beta_2 FaDST_{dy} + DayofYear_d + DayofWeek_{dy} + Year_y + \epsilon_d y$$

- \triangleright β_1 measures the average effect of DST across all spring switching dates.
- \triangleright β_2 measures the average effect of DST across all fall switching dates.

Investigation of the Two Mechanisms in the FE Model

Decomposing Spring DST

- ► Effect due to sleep mechanism should vanish as we move on away from the spring transition date.
- Decompose time period after spring transition, compare average effect on days close to the transition to days further away from the transition.

Investigation of the Two Mechanisms in the FE Model

Decomposing Spring DST

- ► Effect due to sleep mechanism should vanish as we move on away from the spring transition date.
- Decompose time period after spring transition, compare average effect on days close to the transition to days further away from the transition.

Subsampling

▶ Daylight (nighttime) hours distant from sunrise/sunset would be light (dark) both under ST and DST. (Negligible light effect.)

Decomposing Spring DST in the FE Model

	All Hours		Least light impacted
_	(1)	(2)	(3)
Spring DST	0.0319*		
	(0.0165)		
First six days of DST		0.0565**	0.0574**
		(0.0231)	(0.0272)
Next eight days of DST		0.0245	0.0289
		(0.0201)	(0.0234)
Remainder of spring DST		0.0142	0.00907
		(0.0197)	(0.0230)
Fall DST	0.0228	0.0218	0.0446
	(0.0249)	(0.0250)	(0.0303)
Observations	3,341	3,341	3,341
Adjusted R^2	0.734	0.735	0.753

Wrap-Up & Take Away

- Spring transition (temporarily) increases crash risk by well over 5% while there is no significant overall effect due to the fall transition.
- The sleep mechanism is driving the overall results, whereas the ambient light mechanism reallocates crash risk within a day.

Wrap-Up & Take Away

- Spring transition (temporarily) increases crash risk by well over 5% while there is no significant overall effect due to the fall transition.
- ► The sleep mechanism is driving the overall results, whereas the ambient light mechanism reallocates crash risk within a day.
- Results suggest that practicing DST might (negatively?)
 affect the economy (c.f. sleep and worker productivity)
 beyond energy-saving (where effects are unclear).

Wrap-Up & Take Away

- Spring transition (temporarily) increases crash risk by well over 5% while there is no significant overall effect due to the fall transition.
- ► The sleep mechanism is driving the overall results, whereas the ambient light mechanism reallocates crash risk within a day.
- Results suggest that practicing DST might (negatively?)
 affect the economy (c.f. sleep and worker productivity)
 beyond energy-saving (where effects are unclear).

Clear design/good data (often) comes at the cost of a more limited relevance/scope of the question under scrutiny.