

MA 374: Financial Engineering Lab Lab 04

AB Satyaprakash (180123062)

11th Feb 2021

Note: 🛍

- 1. For **question 2** please wait patiently (~10 s) for the first graph since I have used **100000** data-points for depicting the feasible region.
- 2. Please run python programs using python3, i.e. python3 <filename>.py

Question 1.

(a)

The plot shows the Markowitz efficient frontier constructed using the data:

$$M = \begin{bmatrix} 0.1 & 0.2 & 0.15 \end{bmatrix}$$

$$C = \begin{bmatrix} 0.005 & -0.010 & 0.004 \\ -0.010 & 0.040 & -0.002 \\ 0.004 & -0.002 & 0.023 \end{bmatrix}$$

In constructing the efficient frontier as shown above no restrictions were put on short selling. As a result, the weights of individual assets could be negative. First, 100 points were chosen in the range [0,0.5], and then these were taken as the returns. Corresponding to the returns, the minimum possible risk was computed and plotted.

(b) The table of **weights**, **risk**, and **return** of the portfolios for 10 different values on the efficient frontier are as shown below:

Return	Risk	Weight1	Weight2	Weight3
0.05	0.1550	1.8349	-0.1651	-0.6697
0.10	0.0587	1.1193	0.1193	-0.2385
0.15	0.0724	0.4037	0.4037	0.1927
0.20	0.1714	-0.3119	0.6881	0.6239
0.25	0.2755	-1.0275	0.9725	1.0550
0.30	0.3805	-1.7431	1.2569	1.4862
0.35	0.4859	-2.4587	1.5413	1.9174
0.40	0.5913	-3.1743	1.8257	2.3486
0.45	0.6969	-3.8899	2.1101	2.7798
0.50	0.8025	-4.6055	2.3945	3.2110

(c) For a 15% risk:

- Maximum Return Portfolio:Return = 18.9555% and Weights : -0.1624, 0.6287,0.5338
- Minimum Return Portfolio:Return = 5.2447% and Weights: 1.7998, -0.1512, -0.6486
- (d) Minimum Risk Portfolio for 18% return

```
Risk = 13.0568% and Weights : -0.0257, 0.5743, 0.4514
```

(e)

The figure shows the Market Portfolio, CML, Zero-risk Portfolio, and the Markowitz Efficient Frontier.

To get the market portfolio, the point on the Efficient Frontier, which gave the maximum Sharpe Ratio, with the given risk-free return ($\mu_{rf}=10\%$), was used. The line joining the zero risk portfolio and the market portfolio is the Captial Market Line.

The computed market portfolio corresponds to the point (0.051,0.137), i.e,

- Weights: 0.5938, 0.3281, 0.0781
- Return on market portfolio = 13.6719%
- Risk on market portfolio = 5.0811%

The plot of the CML individually is drawn below:

(f) The 2 portfolios obtained are:

```
Portfolio for 10% risk:

Risk-Free Asset: -0.9681
Risky Assets Weights: 1.1685, 0.6458, 0.1538

Portfolio for 25% risk:

Risk-Free Asset: -3.9202
Risky Assets Weights: 2.9213, 1.6144, 0.3844
```

Question 2.

Graph showing efficient frontier, feasible region, and MVCs considering 2 out of 3 securities at a time.

In this question, we used a similar idea as question 1, with the difference that in this case short-selling was not allowed. Thus the weights needed to be strictly in the range [0,1].

Plots of the weights corresponding to the minimum variance curve are:

As can be easily seen, the equation that these weights satisfy is y=x-1.

Question 3.

The data of monthly prices were obtained for 10 stocks each with 60 data points all taken at the same duration over 5 years (Feb 01, 2016 - Feb 01, 2021) from https://in.finance.yahoo.com/. The following companies were considered:

SBI, Asian Paints, BharatiAirtel, CIPLA, IOC, JSW Steel, Maruti, Wipro, Axis Bank, ONGC

Following a similar approach in question 1 after having obtained the Mean Return Vector and Covariance Matrix, we get the following graphs and results.

(a)

(b) Assuming a 5% risk free return:

- Weights: -0.2859, 0.0371, 0.1714, 0.2898, -0.063,
 -0.4082, 0.0021, -0.1064, 0.2788, 1.0845
- Return on market portfolio = 38836.9569%
- Risk on market portfolio = 2614.2522%

(c)

The plots for the Capital Market Line, Efficient Frontier, and the Market Portfolio are shown above. A plot of only the CML is drawn below.

(c) For plotting the Security Market Line, $E[Ri] = Rf + (E[RM] - Rf)\beta$ was used. Beta was generated uniformly between [-2, 2], and making use of the rest of the values, the Security Market Lines were plotted for all the 10 assets.

Note: For this question, the mean return vector has been obtained by taking the mean of all the columns for the 10 different stocks. The same could also be obtained using $\frac{S(i)-S(i-1)}{S(i)}$. The graphs won't change in either case, only the mean return will get scaled.

Extras...

For this lab, we will need to make use of the following packages. The installation instructions are given alongside.

Kindly use pip3 since the code must be run in python 3 as mentioned previously.

```
Numpy - pip3 install numpy
Matplotlib - pip3 install matplotlib
Scipy - pip3 install scipy
```