

CLAIMS

What is claimed is:

1 1. A method for altering an operational aspect of a mobile electronic device, the
2 method comprising:

3 providing a sensor associated with the mobile electronic device;

4 determining whether the sensor is coupled to a mating element associated with the
5 sensor;

6 developing a signal in the sensor, the signal determined by whether the sensor is
7 coupled to the mating element;

8 receiving the signal in a processor; and

9 altering a characteristic of the mobile electronic device based on the received sensor
10 signal.

1 2. The method of claim 1, wherein the altering step alters a user interface
2 characteristic of the mobile electronic device.

1 3. The method of claim 1, wherein the altering step alters a radio frequency
2 (RF) characteristic of the mobile electronic device.

1 4. The method of claim 1, further comprising using a default user interface
2 characteristic and a default radio frequency characteristic if the determining step concludes
3 that the sensor is not coupled to the mating element.

1 5. The method of claim 1, further comprising altering a user interface
2 characteristic based upon a sensor signal determined by the mating element if the determining
3 step concludes that the sensor is coupled to a mating element.

1 6. The method of claim 1, further comprising altering a radio frequency (RF)
2 characteristic based upon a sensor signal determined by the mating element if the determining
3 step concludes that the sensor is coupled to a mating element.

1 7. The method of claim 5, wherein the user interface characteristic is
2 predetermined and stored in a memory associated with the processor.

1 8. The method of claim 5, wherein the user interface characteristic is
2 dynamically adjustable by a user of the mobile electronic device.

1 9. The method of claim 6, wherein the RF characteristic is predetermined and
2 stored in a memory associated with the processor.

1 10. The method of claim 1, wherein the mating element is chosen from the group
2 consisting of, no coupling, a belt clip, a belt pouch, a charger, a car clip, and a clothing
3 carrier.

1 11. The method of claim 10, wherein the altering step alters an operational
2 aspect of the mobile electronic device based upon whether the mobile electronic device is
3 uncoupled from the mating element or located in the belt clip, the belt pouch, the charger, the
4 car clip, or the clothing carrier.

1 12. A system for altering an operational aspect of a mobile electronic device,
2 comprising:

3 a sensor associated with the mobile electronic device;
4 a mating element associated with the sensor, the sensor configured to develop a
5 signal based on the mating element; and
6 logic configured to receive the signal from the sensor and alter a characteristic of the
7 mobile electronic device based on the received sensor signal.

1 13. The system of claim 12, wherein the sensor is decoupled from the mating
2 element and the sensor signal causes the logic to use a default user interface characteristic
3 and a default radio frequency (RF) characteristic.

1 14. The system of claim 12, wherein the sensor is coupled to the mating element
2 and the mating element determines the sensor signal.

1 15. The system of claim 14, wherein the sensor signal causes the logic to alter a
2 user interface characteristic of the mobile electronic device.

1 16. The system of claim 14, wherein the sensor signal causes the logic to alter a
2 radio frequency (RF) characteristic of the mobile electronic device.

1 17. The system of claim 15, wherein the user interface characteristic is
2 predetermined and stored in a memory associated with the processor.

1 18. The system of claim 15, wherein the user interface characteristic is
2 dynamically adjustable by a user of the mobile electronic device.

1 19. The system of claim 16, wherein the RF characteristic is predetermined and
2 stored in a memory associated with the processor.

1 20. The system of claim 12, wherein the mating element is chosen from the
2 group consisting of, no coupling, a belt clip, a belt pouch, a charger, a car clip, and a clothing
3 carrier.

1 21. The system of claim 20, wherein an operational aspect of the mobile
2 electronic device is altered based upon whether the mobile electronic device is uncoupled
3 from the mating element or located in the belt clip, the belt pouch, the charger, the car clip,
4 or the clothing carrier.

1 22. A computer readable medium having a program for altering an operational
2 aspect of a mobile electronic device, the program comprising logic configured to perform the
3 steps of:

4 determining whether a sensor associated with the mobile electronic device is coupled
5 to a mating element associated with the sensor;

6 developing a signal in the sensor, the signal determined by whether the sensor is
7 coupled to the mating element;

8 receiving the signal in a processor; and

9 10 altering a characteristic of the mobile electronic device based on the received sensor
signal.

1 23. The program of claim 22, wherein the altering step alters a user interface
2 characteristic of the mobile electronic device.

1 24. The program of claim 22, wherein the altering step alters a radio frequency
2 (RF) characteristic of the mobile electronic device.

1 25. The program of claim 22, further comprising logic configured to perform the
2 step of using a default user interface characteristic and a default radio frequency
3 characteristic if the determining step concludes that the sensor is not coupled to the mating
4 element.

1 26. The program of claim 22, further comprising logic configured to perform the
2 step of altering a user interface characteristic based upon a sensor signal determined by the
3 mating element if the determining step concludes that the sensor is coupled to a mating
4 element.

1 27. The program of claim 22, further comprising logic configured to perform the
2 step of altering a radio frequency (RF) characteristic based upon a sensor signal determined
3 by the mating element if the determining step concludes that the sensor is coupled to a
4 mating element.

1 28. The program of claim 26, wherein the user interface characteristic is
2 predetermined and stored in a memory associated with the processor

1 29. The program of claim 26, wherein the user interface characteristic is
2 dynamically adjustable by a user of the mobile electronic device.

1 30. The program of claim 27, wherein the RF characteristic is predetermined and
2 stored in a memory associated with the processor.

1 31. The program of claim 22, wherein the mating element is chosen from the
2 group consisting of, no coupling, a belt clip, a belt pouch, a charger, a car clip, and a clothing
3 carrier.

1 32. The program of claim 31, wherein the altering step alters an operational
2 aspect of the mobile electronic device based upon whether the mobile electronic device is
3 uncoupled from the mating element or located in the belt clip, the belt pouch, the charger, the
4 car clip, or the clothing carrier.

10043866.2