

Sistema de detección automática de baches en el asfalto a partir de imágenes

Autor: Diego Castro

Objetivos

Con este trabajo se pretende desarrollar un sistema de detección de baches en tiempo real para un dispositivo móvil.

Se busca que tenga una **utilidad social**, y que al mismo tiempo permita **ampliar los conocimientos** adquiridos durante el máster de Big Data & Data Science, en el ámbito de la **visión artificial**, concretamente en la **detección de objetos**.

Agenda

- Estado del arte: detección de objetos
- Solución
 - Arquitectura
 - Datos
 - Implementación
- Evaluación
- Resultados
- Conclusiones
- Mejoras

Gato

Gato

Alfombra

Enchufe

Faster R-CNN

Fast R-CNN

YOLO

R-FCN

R-CNN

SSD

Mark R-CNN

Viola-Jones

Viola-Jones

R-CNN

Fast R-CNN

Faster R-CNN

YOLO

2001

AdaBoost

Tiempo Real

Viola-Jones

R-CNN

Fast R-CNN

Faster R-CNN

YOLO

2014

Deep Learning

Búsqueda Selectiva

CNN

SVM + Regresión Lineal

Viola-Jones

R-CNN

Fast R-CNN

Faster R-CNN

YOLO

2014

Búsqueda Selectiva ◄

CNN

SVM >> Softmax

Viola-Jones

R-CNN

Fast R-CNN

Faster R-CNN

YOLO

2016

Búsqueda selectiva >> RPN

Viola-Jones

R-CNN

Fast R-CNN

Faster R-CNN

YOLO

2015

Una única CNN

Tiempo real

SSD

Mark R-CNN

R-FCN

. . .

Solución - Arquitectura

Solución - Datos I

- 1900 imágenes
- Tamaño: 3680x2760 píxeles (formato 4:3)
- Imágenes de entrenamiento: 1297
- Imágenes de test: 603

Cada línea del fichero contiene las etiquetas de una imagen:

```
<RUTA_IMG> <NUMERO_DE_ETIQUETAS>( <X0> <Y0> <ANCHO> <ALTO>)+
```

Solución - Datos II

Solución - Datos III

Solución - Implementación I

Solución - Implementación II

Solución - Implementación III

La métrica de evaluación utilizada es AP (Average Precision)

Se basa en 3 conceptos: **Precisión** (*Precision*), **Sensibilidad** (*Recall*) e **IoU** (*Intersection over Union*)

Modelo

Evaluación IV

Versión	Tamaño	Juego Datos	Épocas	AP
V3	256	completo	43	0.0747
V3	256	filtro 100x40	93	0.3077
V3	256	filtro 75x30	88	0.2513
V3	416	completo	18	0.1467
V3	416	filtro 100x40	93	0.4161
V3	416	filtro 75x30	93	0.3611
V3	640	completo	13	0.0186
V3	640	filtro 100x40	63	0.5475
V3	640	filtro 75x30	53	0.4106
V3 Tiny	256	completo	144	0.0046
V3 Tiny	256	filtro 100x40	136	0.0510
V3 Tiny	256	filtro 75x30	153	0.0392
V3 Tiny	416	completo	153	0.0145
V3 Tiny	416	filtro 100x40	153	0.1307
V3 Tiny	416	filtro 75x30	146	0.0869

Versión	Tamaño	Juego Datos	Épocas	AP
V3	256	completo	43	0.0289
V3	256	filtro 100x40	93	0.1018
V3	256	filtro 75x30	88	0.0179
V3	416	completo	18	0.0354
V3	416	filtro 100x40	93	0.0089
V3	416	filtro 75x30	93	0.0294
V3	640	completo	13	0.0017
V3	640	filtro 100x40	63	0.0342
V3	640	filtro 75x30	53	0.0961
V3 Tiny	256	completo	144	0.0086
V3 Tiny	256	filtro 100x40	136	0.0232
V3 Tiny	256	filtro 75x30	153	0.0371
V3 Tiny	416	completo	153	0.0000
V3 Tiny	416	filtro 100x40	153	0.0000
V3 Tiny	416	filtro 75x30	146	0.0006

Resultados

YOLO V3 Tiny 256

Conclusiones

- Para obtener unos buenos resultados es clave tener un juego de datos con abundantes imágenes y correctamente etiquetadas
- Es primordial conocer los datos. Gracias al estudio del aspecto y tamaño de los baches se ha realizado tratamiento inicial de las imágenes y se han creado distintos subconjuntos de entrenamiento que han mejorado los resultados del modelo
- Si la detección de objetos es un problema complejo a resolver, la detección de objetos pequeños es mucho más complejo

Mejoras

Predicciones

- Redistribución de conjunto entrenamiento/test
- Revisión de etiquetado
- Complementar juego de datos con imágenes de carreteras españolas
- Complementar juego de datos con imágenes con otro encuadre

Rendimiento

- Transformación del modelo a uno quantized
- Aprovechar la GPU del dispositivo móvil

Muchas gracias

Q&A