Séance 2 Probabilités et statistiques Image SCIA EPITA

Plan

- Fonction caractéristique
- Vecteurs aléatoires
- Retour sur l'indépendance
- 4 Vecteurs gaussiens
- Modes de convergence
- 6 Théorème Central Limite

Définition

- Soit X une v.a. (aucune condition prescrite)
- ϕ définie sur $\mathbb R$ par : $\phi_X(t) = E(e^{itX})$

- caractérise la loi d'une v.a. i.e. $\phi_X = \phi_Y \Rightarrow X$ et Y suivent la même loi,
- correspond à la transformée de Fourier inverse (dans le cas continu),
- très utile en pratique pour étudier les sommes de v.a. indépendantes.

Définition

Soit d > 1

Un **vecteur aléatoire** est une fonction de Ω (univers) dans \mathbb{R}^d .

Loi conjointe

- Cas discret : donnée des probabilités $\mathbb{P}(X_1 = x_1, \dots, X_d = x_d)$
- Cas continu : densité de la loi jointe $f_{(X_1,...,X_d)}(x_1,...,x_d)$ (conditions similaires au cas unidimensionnel).

Lois marginales

- lois des v.a. X_i ,
- Impossible, sans hypothèse supplémentaire, de déterminer la loi conjointe à partir des lois marginales.

Matrice de covariance

- Matrice carrée d'ordre d définie par $m_{ij} = \operatorname{Cov}(X_i, X_j)$ pour $1 \leq i, j \leq d$
- Sa diagonale est donnée par les variances des v.a. X_i .

- Coefficient de corrélation entre les v.a. X_i et X_j : $r_{ij} = \frac{\text{Cov}(X_i, X_j)}{\sigma_i \sigma_j}$ où σ_i désigne l'écart-type de la v.a. X_i
- Matrice de corrélation : matrice carrée d'ordre d donnée par les coefficients r_{ii} .
- très utile en statistique.

Indépendance de deux variables aléatoires : cas discret

- Deux variables aléatoires X et Y sont dites indépendantes si, pour tous réels x et y de leurs supports respectifs,
- $P(\{X \le x\} \cap \{Y \le y\}) = P(\{X \le x\}) \times P(\{Y \le y\}).$
- O'autres méthodes seront disponibles pour montrer l'indépendance de deux variables aléatoires.
- Toutes les méthodes vraies dans le cas continu le seront dans le cas discret (en identifiant naturellement P(X=k) à la densité).

Rappel : vecteur aléatoire

- \bullet $(X_1,\ldots,X_p)^T$ est un vecteur aléatoire dont la loi est donnée par
- $\mathbb{P}(X_1=x_1,\ldots,X_p=x_p)$ dans le cas discret
- la densité $f_{(X_1,...,X_p)}(x_1,...,x_p)$ dans le cas continu.

Indépendance suite

- Deux variables aléatoires sont indépendantes si :
- $f_{(X,Y)}(x,y) = f_X(x)f_Y(y)$.

Fonction caractéristique

- Soit X une variable aléatoire.
- Sa fonction caractéristique est définie par :
- $\phi_X(t) = E(e^{itX})$ pour $t \in \mathbb{R}$.
- Pour un vecteur aléatoire $X = (X_1, \dots, X_p)$, $\phi_X(t) = E(e^{it \bullet X})$ pour $t \in \mathbb{R}^p$ où désigne le produit scalaire de \mathbb{R}^p .

Indépendance suite

- Deux variables aléatoires sont indépendantes si :

Définition'

- Un vecteur aléatoire $(X_1, \ldots, X_d)^T$ est dit gaussien si toute combinaison linéaire des variables aléatoires X_k est gaussienne.
- Un vecteur gaussien est entièrement caractérisé par $m=(E(X_1),\ldots,E(X_d))^T$ et sa matrice de variances-covariances Σ . Sa loi sera notée $\mathcal{N}(m,\Sigma)$ et nous parlerons de loi normale multidimensionnelle.

Proposition

Soit X un vecteur aléatoire suivant une loi $\mathcal{N}_d(m, \Sigma)$.

Sa densité est donnée par :

$$f(x) = \left(\frac{1}{\sqrt{2\pi}}\right)^d \frac{1}{\sqrt{|\det \Sigma|}} \exp\left(-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)\right)$$

Proposition

Soit $X = (X_1, ..., X_d)$ un vecteur gaussien.

Les variables aléatoires X_1, \ldots, X_d sont indépendantes si et seulement si la matrice Σ est diagonale.

Proposition

Soient $X = (X_1, ..., X_d)$ un vecteur gaussien et A une matrice de taille $d \times p$. Le vecteur AX suit une loi $\mathcal{N}(Am, A\Sigma A^T)$.

Convergence presque sûre (p.s.)

- (X_i) suite de variables aléatoires définies sur le même espace Ω et X une variable aléatoire également définie Ω .
- 2 convergence ponctuelle,
- implique tous les autres.

Convergence en probabilité

- Même cadre que précédemment :
- $\forall \varepsilon > 0, \lim_{n \to +\infty} P(\mid X_n X \mid \geq \varepsilon) = 0.$

Convergence en loi

- Même cadre que précédemment :
- $\lim_{n \to +\infty} F_{X_n}(x) = F_X(x) \text{ pour tout réel } x.$
- la convergence en probabilité implique la convergence en loi.

Théorème de Paul Lévy

- Si la suite de v.a. (X_n) converge en loi vers une v.a. X alors
- $\lim_{n \to +\infty} \phi_{X_n}(t) = \phi_X(t) \text{ pour tout réel } t.$
- **3** Réciproquement, si la suite des fonctions caractéristiques (ϕ_{X_n}) converge simplement vers une fonction ϕ quand n tend vers $+\infty$ et si la fonction ϕ est continue en zéro alors ϕ est la fonction caractéristique d'une variable aléatoire X telle que (X_n) converge vers X en loi.

Convergence L²

- 1 aussi appelée convergence en moyenne quadratique,
- $\lim_{n \to +\infty} E(|X_n X|^2) = 0,$
- ullet n'a de sens que pour les variables aléatoires telles que $E(X^2) < +\infty$,
- implique la convergence en probabilité,

Convergence L^1

- aussi appelée convergence en moyenne,
- $\lim_{n \to +\infty} E(|X_n X|) = 0,$
- ullet n'a de sens que pour les variables aléatoires telles que $E(|X|) < +\infty$,
- implique la convergence en probabilité,

Loi forte des grands nombres

Soit (X_i) une suite de variables aléatoires i.i.d. (indépendantes et suivant la même loi),

$$\lim_{n \to +\infty} \bar{X}_n = E(X)$$

au sens de la convergence p.s. où $\bar{X}_n := \frac{X_1 + \cdots + X_n}{n}$.

Cas unidimensionnel

- Soit (X_i) une suite v.a. i.i.d.
- ② Notons $m := E(X_i)$ et $\sigma^2 = V(X_i)$.
- $\frac{\sqrt{n}(\bar{X}_n m)}{\sigma}$ converge en loi vers une loi normale centrée réduite.

Cas multidimensionnel

- Soit (X_i) une suite vecteurs aléatoires de \mathbb{R}^p i.i.d.
- ② Notons $m:=E(X_i)\in\mathbb{R}^p$ et Σ la matrice de variances-covariances.
- **③** $\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-m\right)$ converge en loi vers une loi normale multidimensionnelle $N(0, \Sigma)$.