

Radhakrishnan S, Ph.D.

Department of Science and Humanities

Unit II: Quantum Mechanics of simple systems

Class #11

- One dimensional Schrodinger's time dependent wave equation
- Time dependent and position dependent wave functions
- Schrodinger's time independent wave equation

Unit I: Review of concepts leading to Quantum Mechanics

> Suggested Reading

- 1. Concepts of Modern Physics, Arthur Beiser, Chapter 5
- 2. Learning Material Unit II prepared by the Department of Physics

> Reference Videos

- 1. Video lectures: MIT 8.04 Quantum Physics I
- 2. Engineering Physics Class #10

Schrodinger's wave equation

- Schrodinger's formalism of a wave equation
- The total energy of a system E = KE + V
- This equation remains invariant when multiplied by $\psi(x,t)$

$$E\psi(x,t) = KE\psi(x,t) + V\psi(x,t)$$

The terms in the equations can be rewritten in terms of operators

$$\widehat{E}\psi(x,t) = \widehat{KE}\psi(x,t) + V\psi(x,t)$$

$$\left\{i\hbar\frac{\partial}{\partial t}\right\}\psi(x,t) = \left\{-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\right\}\psi(x,t) + V\psi(x,t)$$

Schrodinger's wave equation

The solution of this differential equation yields the wave function and its time evolution

Schrodinger's wave equation

PES UNIVERSITY ONLINE

In three dimensions the Schrodinger's time dependent wave equation

$$\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi(r, t) + i\hbar \frac{\partial \psi(r, t)}{\partial t} - V\psi(r, t) = 0$$

$$\frac{\hbar^2}{2m} \nabla^2 \psi(r, t) + i\hbar \frac{\partial \psi(r, t)}{\partial t} - V\psi(r, t) = 0$$

Schrodinger's time independent wave equation

- Steady state systems observables are time invariant
- The wave function $\psi = Ae^{\frac{i}{\hbar}(px-Et)}$ can be expressed as

$$\psi(x,t) = Ae^{\frac{i}{\hbar}(px)}e^{-\frac{i}{\hbar}Et} = \psi(x)\varphi(t)$$

where $\psi(x)=Ae^{rac{i}{\hbar}(px)}$ is the space dependent component

and $\varphi(t) = e^{-\frac{i}{\hbar}Et}$ is the time dependent component

Schrodinger's time independent wave equation

• Substituting for $\psi(x,t)$ in the time dependent Schrodinger's equation

$$\frac{\hbar^2}{2m}\frac{\partial^2\psi(x)}{\partial x^2}.\varphi(t)+i\hbar\frac{\partial\varphi(t)}{\partial t}\psi(x)-V\psi(x).\varphi(t)=0$$

- the time derivative of $\varphi(t)$ yields $-\frac{i}{\hbar}E.\varphi(t)$
- Substituting back into the above equation

$$\frac{\hbar^2}{2m}\frac{\partial^2\psi(x)}{\partial x^2}\cdot\varphi(t)+E\cdot\varphi(t)\cdot\psi(x)-V\psi(x)\cdot\varphi(t)=0$$

Schrodinger's time independent wave equation

Rewriting the equation

$$\left[\frac{\hbar^2}{2m}\frac{\partial^2\psi(x)}{\partial x^2}+E.\psi(x)-V\psi(x)\right].\varphi(t)=0$$

- the product of two functions is zero implies that either of the terms is zero
- $\varphi(t)$ cannot be zero
- Hence

$$\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial x^2} + (E - V)\psi(x) = 0$$

which is the Schrodinger's time independent wave equation

Schrodinger's time independent wave equation

Writing the equation in the standard form of a differential equation

$$\frac{\partial^2 \psi(x)}{\partial x^2} + \frac{2m}{\hbar^2} (E - V)\psi(x) = 0$$

- The solution of this equation gives the wave function of a steady state system
- The region in which the particle is moving can be defined by the potential function
- The nature of the solution is very much dependent on the potential function

Schrodinger's time independent wave equation

In the case when (E-V) is positive and constant

$$\frac{\partial^2 \psi(x)}{\partial x^2} + k^2 \psi(x) = 0$$

• where
$$k^2 = \frac{2m}{\hbar^2}(E-V)$$
 or $k = \sqrt{\frac{2m}{\hbar^2}(E-V)}$

- This is the familiar equation for a simple harmonic motion
- The solution describes a wave motion

Framework for solving Schrodinger's wave equation

- 1. Problem statement
 - a) The particle and its energy
 - b) The potential energy of the particle
 - c) The range in which the particle is can be found
- 2. Write the Schrodinger's wave equation relevant to the problem
- 3. Obtain solution of the SWE $\psi(x)$
- 4. Verify whether $\psi(x)$ is an acceptable function
 - a) $\psi(x)$ and it's derivatives are finite, continuous and single valued
 - b) $\psi(x)$ is normalized

Class #11 Quiz....

The concepts which are true of Schrodinger's wave equations ...

- 1. Standard wave equations involve second order derivative in space and time
- 2. Schrodinger's wave equation is a standard wave equation
- 3. The operator for the kinetic energy is $\left\{-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\right\}$
- 4. At t=0, $\varphi(t)$ is zero
- 5. The time independent wave equation can be used to evaluate steady state systems
- 6. The wave function is always an imaginary function

THANK YOU

Radhakrishnan S, Ph.D.

Professor, Department of Science and Humanities

sradhakrishnan@pes.edu

+91 80 21722683 Extn 759