

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Offenlegungsschrift
⑯ DE 198 40 709 A 1

⑯ Int. Cl.⁶:
C 12 N 1/00

C 12 N 1/14
C 12 N 15/60
C 12 N 15/63
C 12 N 1/15
C 12 N 15/80
C 12 P 25/00
C 07 D 475/14

⑯ Aktenzeichen: 198 40 709.2
⑯ Anmeldetag: 7. 9. 98
⑯ Offenlegungstag: 24. 6. 99

DE 198 40 709 A 1

⑯ Innere Priorität:
197 57 180. 8 22. 12. 97

⑯ Anmelder:
Forschungszentrum Jülich GmbH, 52428 Jülich,
DE; BASF AG, 67063 Ludwigshafen, DE

⑯ Vertreter:
Dres. Fitzner & Münch, 40878 Ratingen

⑯ Erfinder:
Monschau, Nicole, 41199 Mönchengladbach, DE;
Stahmann, Klaus-Peter, Dr., 52428 Jülich, DE;
Sahm, Hermann, Prof. Dr., 52428 Jülich, DE; Zelder,
Oskar, Dr., 67346 Speyer, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

⑯ Ein- oder mehrzellige Organismen zur Herstellung von Riboflavin

⑯ Die vorliegende Erfindung betrifft einen ein- oder mehrzelligen Organismus, insbesondere einen Mikroorganismus zur biotechnischen Herstellung von Riboflavin. Dieser zeichnet sich dadurch aus, daß er einen derart veränderten Glycinstoffwechsel aufweist, daß seine Riboflavinproduktion ohne externe Zufuhr von Glycin mindestens gleich derjenigen eines Wildtyps der Species *Ashbya gossypii* ATCC10895 ist, der unter Standardbedingungen unter Zugabe von 6 g/l externen Glycin gezüchtet wird.

DE 198 40 709 A 1

Beschreibung

Die vorliegende Erfindung betrifft einen ein- oder mehrzelligen Organismus zur Herstellung von Riboflavin mittels Mikroorganismen.

- 5 Das Vitamin B₂, auch Riboflavin genannt, ist für Mensch und Tier essentiell. Bei Vitamin-B₂-Mangel treten Entzündungen der Mund- und Rachenschleimhäute, Risse in den Mundwinkeln, Juckreiz und Entzündungen in den Hautfalten u. a. Hautschäden, Bindegautentzündungen, verminderte Sehschärfe und Trübung der Hornhaut auf. Bei Säuglingen und Kindern können Wachstumsstillstand und Gewichtsabnahme eintreten. Das Vitamin B₂ hat daher wirtschaftliche Bedeutung insbesondere als Vitaminpräparat bei Vitaminmangel sowie als Futtermittelzusatz. Daneben wird es auch als Lebensmittelfarbstoff, beispielsweise in Mayonnaise, Eiscrème, Pudding etc., eingesetzt.

- 10 Die Herstellung von Riboflavin erfolgt entweder chemisch oder mikrobiell. Bei den chemischen Herstellungsverfahren wird das Riboflavin in der Regel in mehrstufigen Prozessen als reines Endprodukt gewonnen, wobei allerdings auch relativ kostspielige Ausgangsprodukte – wie beispielsweise D-Ribose – eingesetzt werden müssen. Daher kommt die chemische Synthese des Riboflavins nur für solche Anwendungszwecke in Betracht, für die reines Riboflavin notwendig ist, wie z. B. in der Humanmedizin.

- 15 Eine Alternative zur chemischen Herstellung des Riboflavins bietet die Herstellung dieses Stoffes durch Mikroorganismen. Die mikrobielle Herstellung des Riboflavins eignet sich insbesondere für solche Fälle, in denen eine hohe Reinheit dieser Substanz nicht erforderlich ist. Dies ist beispielsweise dann der Fall, wenn das Riboflavin als Zusatz zu Futtermittelprodukten eingesetzt werden soll. In solchen Fällen hat die mikrobielle Herstellung des Riboflavins den Vorteil, daß diese Substanz in einem einstufigen Prozeß gewinnbar ist. Auch können als Ausgangsprodukte für die mikrobielle Synthese nachwachsende Rohstoffe, wie beispielsweise pflanzliche Öle, eingesetzt werden.

20 Die Herstellung von Riboflavin durch Fermentation von Pilzen wie *Ashbya gossypii* oder *Eremothecium ashbyi* ist bekannt (The Merck Index, Windholz et al., eds. Merck & Co.

- 25 Seite 1183, 1983, A. Bacher, F. Lingens, Augen. Chem. 1969, S. 393); aber auch Hefen, wie z. B. *Candida* oder *Saccharomyces*, und Bakterien wie *Clostridium*, sind zur Riboflavinproduktion geeignet).

Zudem sind Verfahren mit der Hefe *Candida famata* beispielsweise in der US 30523 1007 beschrieben.

- 30 Riboflavin-überproduzierende Bakterienstämme sind beispielsweise in der EP 405370, GB 1434299, DE 34 20 310 und EP 0821063 beschrieben, wobei die Stämme durch Transformation der Riboflavin-Biosynthese-Gene aus *Bacillus subtilis* erhalten wurden. Diese Prokaryonten-Gene waren aber für ein rekombinantes Riboflavin-Herstellungsverfahren mit Eukaryonten wie *Saccharomyces cerevisiae* oder *Ashbya gossypii* ungeeignet. Daher wurden gemäß der WO 93/03183 für die Riboflavin-Biosynthese spezifische Gene aus einem Eukaryonten, nämlich aus *Saccharomyces cerevisiae*, isoliert, um damit ein rekombinantes Herstellungsverfahren für Riboflavin in einem eukaryontischen Produktionsorganismus bereitzustellen. Derartige rekombinante Herstellungsverfahren haben für die Riboflavin-Produktion jedoch dann keinen oder nur begrenzten Erfolg, wenn die Bereitstellung von Substrat für die an der Riboflavin-Biosynthese spezifisch beteiligten Enzyme unzureichend ist.

- 35 1967 fand Hanson (Hanson AM, 1967, in Microbial Technology, Peppler, HJ, pp.222–250 New York), daß der Zusatz der Aminosäure Glycin die Riboflavin-Bildung von *Ashbya gossypii* steigert. Ein derartiges Verfahren ist jedoch nachteilig, weil Glycin ein sehr teurer Rohstoff ist. Aus diesem Grunde war man bestrebt, durch Herstellung von Mutanten die Riboflavin-Produktion zu optimieren.

- 40 Aus der deutschen Patentschrift 195 25 281 ist ein Verfahren zur Herstellung von Riboflavin bekannt bei dem Mikroorganismen kultiviert werden, die resistent gegenüber auf Isocitrat Lyase hemmenden Substanzen sind.

- 45 Aus der deutschen Offenlegungsschrift 195 45 468.5-41 ist ein weiterhin Verfahren zur mikrobiellen Herstellung von Riboflavin bekannt, bei dem die Isocitratlyase-Aktivität oder die Isocitratlyase-Genexpression eines Riboflavin produzierenden Mikroorganismus erhöht ist. Aber auch im Vergleich zu diesen Verfahren besteht noch ein Bedarf, zu einer weiteren Optimierung der Riboflavin-Herstellung.

- 50 Aufgabe der vorliegenden Erfindung ist es demgemäß, einen ein- oder mehrzelligen Organismus, vorzugsweise einen Mikroorganismus, für die biotechnische Herstellung von Riboflavin zur Verfügung zu stellen, der eine weitere Optimierung der Riboflavin-Bildung ermöglicht. Insbesondere sollte ein Organismus zur Verfügung gestellt werden, der unter Einsparung von Rohstoffen für die Herstellung von Riboflavin geeignet ist und damit eine Produktion ermöglicht, die gegenüber dem bisherigen Stand der Technik wirtschaftlicher ist. Vor allem soll der Organismus eine im Vergleich zu den bisherigen Organismen erhöhte Riboflavin-Bildung ohne Zusatz von Glycin erlauben.

- 55 Diese Aufgabe wird durch einen ein- oder mehrzelligen Organismus gelöst, der einen derart veränderten Glycinstoffwechsel aufweist, daß seine Riboflavisyntheseleistung ohne externe Zufuhr von Glycin mindestens gleich derjenigen eines Wildtyps der Species *Ashbya gossypii* ATCC10895 ist, der unter Standardbedingungen unter Zugabe von 6 g/l externen Glycin gezüchtet wird.

- 60 Züchtung unter Standardbedingungen bedeutet die Kultivierung in 500 ml Schüttelkolben mit zwei Schikanen bei 120 RpM und 30°C. Als Medium werden pro Kolben 50 ml einer Lösung von 10 g/l Hefeextrakt entweder mit 10 g/l Glucose oder mit 10 g/l Sojaöl eingesetzt. Die Beimpfung erfolgt mit 1% einer 16 h Kultur unter gleichen Bedingungen.

- 65 Das Ziel dieser angestrebten Veränderung des intrazellulären Glycinstoffwechsels kann mit den bekannten Methoden der Stammverbesserung von Organismen erreicht werden. D.h. im einfachsten Falle lassen sich entsprechende Stämme nach der in der Mikrobiologie üblichen Selektion mittels Screening herstellen. Ebenso ist die Mutation mit anschließender Selektion einsetzbar. Die Mutation kann hierbei sowohl chemischer als auch mittels physikalischer Mutagenese ausgeführt werden. Eine weitere Methode ist die Selektion und Mutation mit anschließender Rekombination. Schließlich lassen sich die erfindungsgemäßen Organismen mittels Genmanipulation herstellen.

- 70 Erfindungsgemäß wird der Organismus derart verändert, daß er intrazellulär Glycin in einer Menge erzeugt, die größer als sein Bedarf für die Aufrechterhaltung seines Metabolismus ist. Diese Erhöhung der intrazellulären Glycinerzeugung läßt sich erfindungsgemäß vorzugsweise dadurch erreichen, daß ein Organismus hergestellt wird, bei dem die Enzymaktivität der Threonin-Aldolase erhöht ist. Dies kann beispielsweise dadurch erreicht werden, daß durch Veränderung des

katalytischen Zentrums ein erhöhter Substratumsatz erfolgt oder indem die Wirkung von Enzyminhibitoren aufgehoben wird. Auch kann eine erhöhte Enzymaktivität der Threonin-Aldolase durch Erhöhung der Enzmysynthese beispielsweise durch Genamplifikation oder durch Ausschaltung von Faktoren, die die Enzym-Biosynthese reprimieren, hervorgerufen werden.

Die endogene Threonin-Aldolase-Aktivität kann erfindungsgemäß vorzugsweise durch Mutation des endogenen Threonin-Aldolase-Gens erhöht werden. Derartige Mutationen können entweder nach klassischen Methoden ungerichtet erzeugt werden, wie beispielsweise durch UV-Bestrahlung oder mutationsauslösende Chemikalien, oder gezielt mittels gentechnologischer Methoden, wie Deletion, Insertion und/oder Nukleotid-Austausch. 5

Die Threonin-Aldolase-Genexpression kann durch Einbau von Threonin-Aldolase-Genkopien und/oder durch Verstärkung regulatorischer Faktoren, die die Threonin-Aldolase-Genexpression positiv beeinflussen, erreicht werden. So kann eine Verstärkung regulatorischer Elemente vorzugsweise auf Transcriptionsebene erfolgen, indem insbesondere die Transcriptionssignale erhöht werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der m-RNA verbessert wird. 10

Zur Erhöhung der Genkopienzahl kann beispielsweise das Threonin-Aldolase-Gen in ein Genkonstrukt bzw. in einen Vektor eingebaut werden, der vorzugsweise dem Threonin-Aldolase-Gen zugeordnete regulatorische Gensequenzen enthält, insbesondere solche, die die Genexpression verstärken. Anschließend wird ein Riboflavin-produzierender Mikroorganismus, mit dem das Threonin-Aldolase-Gen enthaltenden Genkonstrukt transformiert. 15

Erfindungsgemäß kann die Überexpression der Threonin-Aldolase auch durch Austausch des Promoters erzielt werden. Hierbei ist es möglich, die höhere enzymatische Aktivität alternativ durch Einbau von Genkopien oder durch Austausch des Promoters zu erzielen. Gleichermaßen ist es jedoch auch möglich, durch gleichzeitigen Austausch des Promoters und Einbau von Genkopien die gewünschte Änderung der Enzymaktivität zu erzielen. 20

Da bei einem derart veränderten Organismus das Threonin limitierend wirkt, ist bei Einsatz der erfundungsgemäßen Zelle die Zufütterung von Threonin erforderlich. Die bessere Aufnahme und nahezu quantitative Umsetzung des Threonins zu Glycin führen zu einer überraschend hohen Steigerung der Riboflavin-Bildung, wie sie bisher durch Zufütterung von Glycin nicht erreichbar war. Alternativ kann die endogene Threoninbildung des Organismus z. B. durch Ausschaltung der Feedback-Resistenz der Aspartatkinase erhöht werden. 25

Das Threonin-Aldolase-Gen wird vorzugsweise aus Mikroorganismen, besonders bevorzugt aus Pilzen, isoliert. Dabei sind Pilze der Gattung *Ashbya* wiederum bevorzugt. Höchst bevorzugt ist die Spezies *Ashbya gossypii*.

Für die Isolierung des Gens kommen aber auch alle weiteren Organismen, deren Zellen die Sequenz zur Bildung der Threonin-Aldolase enthalten, also auch pflanzliche und tierische Zellen, in Betracht. Die Isolierung des Gens kann durch homologe oder heterologe Komplementation einer im Threonin-Aldolase-Gen defekten Mutante oder auch durch heterologes Probing oder PCR mit heterologen Primern erfolgen. Zur Subklonierung kann das Insert des komplementierenden Plasmids anschließend durch geeignete Schritte mit Restriktionsenzymen in der Größe minimiert werden. Nach Sequenzierung und Identifizierung des putativen Gens erfolgt eine präzise Subklonierung durch Fusions-PCR. Plasmide, die die so erhaltenen Fragmente als Insert tragen, werden in die Threonin-Aldolase-Gen-Defekte Mutante eingebracht, die auf Funktionalität des Threonin-Aldolase-Gens getestet wird. Funktionelle Konstrukte werden schließlich zur Transformation eines Riboflavin-Produzenten eingesetzt. 30

Nach Isolierung und Sequenzierung sind die Threonin-Adolasc-Gene mit Nukleotidsequenzen erhältlich, die für die angegebene Aminosäure-Sequenz oder deren Allelvariation kodieren. Allelvariationen umfassen insbesondere Derivate, die durch Deletion, Insertion und Substitution von Nukleotiden aus entsprechenden Sequenzen erhältlich sind, wobei die Threonin-Aldolase-Aktivität erhalten bleibt. Eine entsprechende Sequenz ist in Fig. 2b von Nukleotid 1 bis 1149 angegeben. 40

Den Threonin-Aldolase-Genen ist insbesondere ein Promotor der Nukleotidsequenz von Nukleotid-1231 bis -1 gem. der oben genannten Sequenz oder eine im wesentlichen gleich wirkende DNA-Sequenz vorgeschaltet. So kann beispielsweise dem Gen ein Promotor vorgeschaltet sein, der sich von dem Promotor mit der angegebenen Nukleotidsequenz durch ein oder mehrere Nukleotidaustausche, durch Insertion und/oder Deletion unterscheidet, ohne daß aber die Funktionalität bzw. die Wirksamkeit des Promotors beeinträchtigt wird. Des Weiteren kann der Promotor durch Veränderung seiner Sequenz in seiner Wirksamkeit erhöht oder komplett durch wirksame Promotoren ausgetauscht werden. 45

Dem Threonin-Aldolase-Gen können des Weiteren regulatorische Gen-Sequenzen bzw. Regulatorgene zugeordnet sein, die insbesondere die Threonin-Adolase-Gen-Aktivität erhöhen. So können dem Threonin-Aldolase-Gen beispielsweise sog. "enhancer" zugeordnet sein, die über eine verbesserte Wechselwirkung zwischen RNA-Polymerase und DNA eine erhöhte Threonin-Aldolase-Gen-Expression bewirken. 50

Dem Threonin-Aldolase-Gen mit oder ohne vorgesetztem Promotor bzw. mit oder ohne Regulator-Gen können ein oder mehrere DNA-Sequenzen vor- und/oder nachgeschaltet sein, so daß das Gen in einer Gen-Struktur enthalten ist. Durch Klonierung des Threonin-Aldolase Gens sind Plasmide bzw. Vektoren erhältlich, die das Threonin-Aldolase-Gen enthalten und zur Transformation eines Riboflavin-Produzenten geeignet sind. Die durch Transformation erhältlichen Zellen enthalten das Gen in replizierbarer Form, d. h. in zusätzlichen Kopien auf dem Chromosom, wobei die Genkopien durch homologe Rekombination an beliebigen Stellen des Genoms integriert werden. 55

Das erfundungsgemäße Ziel einer teilweisen oder vollständigen intrazellulären Glycinbildung kann auch dadurch erreicht werden, daß Organismen hergestellt werden, bei denen der intrazelluläre Abbau des Glycins wenigstens teilweise blockiert ist. Derartige Mutationen können – wie bereits oben geschildert – nach klassischen Methoden durch physikalische oder chemische Mutagenese ungerichtet erzeugt werden, wie beispielsweise durch UV-Bestrahlung oder mutationsauslösende Chemikalien, oder gezielt mittels gentechnologischer Methoden. 60

Erfundungsgemäß kann das Ziel der erhöhten intrazellulären Glycinbildung vorzugsweise durch eine Veränderung des Gens der Serin-Hydroxymethyltransferase erreicht werden. Solche Änderungen sind beispielsweise durch Mutationen wie Insertionen, Deletionen oder Substitutionen im Strukturen, oder den damit verbundenen regulatorischen Elementen wir Promotoren und Transkriptionsfaktoren erreichbar. 65

DE 198 40 709 A 1

Erfnungsgemäß wurde überraschend festgestellt, daß hierzu Mutanten gehören, die gegen Glycin-Antimetaboliten resistent sind. Vorzugsweise handelt es sich um solche ein- oder mehrzellige Organismen, die gegenüber Alpha-Aminomethylphosphonsäure und/oder Alpha-Aminosulphonsäure resistent sind.

Ebenso kann dies z. B. durch die Selektion von Mutanten, die gegen das Threoninstrukturanalogen β -Hydroxy-Nova-

lin und/oder an der Threonin- und/oder Lysin-Analoga ausgetauscht werden, erreicht werden.

Demgemäß können erfungsgemäß einsetzbare Mutanten auch durch entsprechende Selektion hergestellt werden. Die Herstellung solcher resistenten ein- oder mehrzelligen Organismen läßt sich daher mit klassischen Screening-Metho-

den erreichen, wie sie in der Mikrobiologie allgemein üblich sind.

Eine weitere Steigerung der Riboflavin-Produktion kann bei den beschriebenen Organismen erreicht werden, wenn der Export des intrazellulär gebildeten Glycins ins Medium wenigstens teilweise blockiert ist. Im einfachsten Falle genügt hierfür die Supplementierung von Glycin. Alternativ können die für den Export verantwortlichen Carrier durch Dis-

ruption des Gens ausgeschaltet werden.

Ferner läßt sich eine Erhöhung der intrazellulären Glycinkonzentration durch Veränderung des Glyoxylatstoffwechsels, z.B. durch Steigerung der Glyoxylat-Aminotransferaseaktivität erreichen. Eine andere Möglichkeit ist, die Synthese

von intrazellulärem Glycin aus Kohlendioxid und Ammoniak zu optimieren.

Zusammenfassend ist festzustellen, daß die erfungsgemäß Aufgabe vorzugsweise durch Erhöhung der intrazellulären Synthese des Glycins, wenigstens teilweise Blockierung des Abbaus des Glycins, wenigstens teilweise Hemmung des Transports des Glycins aus der Zelle, Veränderung des Glyoxylatstoffwechsel und Optimierung der Glycinsynthese aus Ammoniak und Kohlendioxid gelöst werden kann. Diese Lösungen können alternativ, kumulativ oder in beliebiger

Kombination zum Einsatz kommen.

Eine zusätzliche Steigerung der Riboflavinbildung läßt sich durch Zugabe von Glycin zum Nährmedium erzielen.

Bei den erfungsgemäß erhaltenen ein- oder mehrzelligen Organismen kann es sich um beliebige für biotechnische Verfahren einsetzbare Zellen handeln. Hierzu zählen beispielsweise Pilze, Hefen, Bakterien sowie pflanzliche und tierische Zellen. Erfungsgemäß handelt es sich vorzugsweise um transformierte Zellen von Pilzen, besonders bevorzugt von Pilzen der Gattung *Ashbya*. Hierbei ist die Spezies *Ashbya gossypii*-besonders-bevorzugt.

Im folgenden wird die Erfindung näher anhand von Beispielen erläutert, ohne daß damit eine Begrenzung auf den Ge-
genstand der Beispiele verbunden sein soll:

30

Beispiel 1

Selektionierung einer gegen Alpha-Aminomethylphosphonsäure (AMPS) resistenten Mutante

Mittels UV-Licht wurden Sporen von *Ashbya gossypii* mutagenisiert. Diese wurden auf mit 70 mM Alpha-Aminomethylphosphonsäure versetzte Platten gegeben. Die Hemmung der Riboflavin-Bildung ist dadurch erkennbar, daß der Pilz ohne Hemmstoff gelbe und mit Hemmstoff weiße Kolonien bildet. Demgemäß wurden die gelben, d. h. hemmstoffresistenten Organismen vereinzelt. Auf diese Art wurde u. a. der resiente Stamm AMPS-NM-01 erhalten.

Versuche auf Platten mit 200 mM AMPS zeigten, daß der Stamm immer noch eine gelbe Koloniefarbe im Gegensatz zum Ausgangsstamm aufwies, der völlig weiß blieb. In Submerskultur zeigte die Mutante ohne Glycin die gleiche Riboflavin-Bildung wie der Wildtyp mit Glycin (vgl. Fig. 1).

40 Untersuchungen der spezifischen Enzymaktivitäten von Wildtyp und Mutante ergaben eine auf 50% reduzierte Aktivität der Serin Hydroxymethyltransferase (Fig. 7). Da durch Fütterung von ^{13}C -markiertem Threonin gezeigt werden konnte, daß eine Serinbildung aus Glycin erfolgt (Tabelle 1), die vermutlich durch Serin Hydroxymethyltransferase katalysiert wird, kann die erhöhte Riboflavinbildung durch eine Reduzierung des Abflusses von Glycin zu Serin erklärt werden.

45 Das gemäß Tabelle 1 verwendete Minimalmedium setzt sich wie folgt zusammen:

50

55

60

65

DE 198 40 709 A 1

Lösung A: KH₂PO₄ 200 g/l pH 6,7 mit KOH
(100 fach)

<u>Lösung B:</u>	NH ₄ Cl	15	g/l	5
(10 fach)	Asparagin	5	g/l	10
	NaCl	2	g/l	15
	MgSO ₄ x 7H ₂ O	4	g/l	15
	MnSO ₄ x H ₂ O	0,5	g/l	15
	CaCl ₂ x 2 H ₂ O	0,4	g/l	20
	myo-Inositol	1,0	g/l	
	Nicotinsäureamid	2,5	g/l	
	Hefeextrakt	2	g/l	
<u>C-Quelle:</u>	Glucose oder Sojaöl	2,5	g/l	25

Zur Herstellung des Mediums wurde einfach konzentrierte Lösung B mit der C-Quelle versetzt und durch Autoklavieren sterilisiert. Nach Abkühlung des Mediums wurde 1/100 Volumen getrennt autoklavierte Lösung A zugegeben.

Beispiel 2

30

Isolierung des GLY1-Gens aus Ashbya gossypii

Zur Isolierung des Gens für die Threonin-Aldolase wurde die glycinauxotrophe Mutante von *Saccharomyces cerevisiae* YM 13F (SHM1 :: HIS3 shm2 :: LEU2 gly1 :: UAA3) nach Selektion auf Fluororotsäureresistenz mit einer Genbank von *Ashbya gossypii* transformiert. Die Genbank bestand aus mit Sau3A partiell verdauter genomicscher DNA, von Ycp352 ligiert worden waren. Zuerst wurden die Transformanden auf Uracilprototrophic selektiert. Im zweiten Schritt erfolgte nach Replikatlattierung eine Selektion auf Glycinprototrophic. Von etwa 70.000 Uracilprototopenen Klonen konnten 25 Glycinprototrophe Klone isoliert werden. Kurierung der Transformanden sowie Retransformation mit den isolierten Plasmiden zeigte, daß die Komplementation plasmidkodiert war. Während im Glycinauxotrophen *Saccharomyces*-Stamm keine Threonin-Aldolase-Aktivität messbar war (<0,1 mU/mg Protein), konnte in den mit den isolierten Genbankplasmiden transformierten Stämmen eine deutliche Enzymaktivität gemessen werden (25 mU/mg Protein). Ein subkloniertes 3,7 kb Hind III-Fragment, das Komplementation zeigte, wurde sequenziert (Fig. 2). Es wurde ein dem GLY1 aus *Saccharomyces cerevisiae* homologes Gen, das für eine Threonin-Aldolase kodiert gefunden.

35

40

45

Beispiel 3

50

Überexpression des GLY1-Gens in *Ashbya gossypii*

Zur Überexpression des GLY1-Gens wurde es in den Expressionsvektor pAG203 kloniert (vgl. WO 9200379). In diesem Plasmid steht das Gen unter Kontrolle des TEF-Promotors und des TEF-Terminators (Fig. 3). Als Selektionsmarker und anschließender Isolierung von Einsporenländern, weil die Sporen einkernig und haploid sind, wurde die Aktivität der Threonin-Aldolase im Rohextrakt gemessen. Im Vergleich zu einem mit dem leeren Plasmid pAG203 transformierten Stamm konnten bei *A.g.p.AG203GLY1* sowohl bei Wachstum auf Glukose als auch bei Wachstum auf Sojaöl eine mindestens 10-fache Überexpression gemessen werden (Fig. 4).

55

60

Beispiel 4

60

Steigerung der Riboflavin-Bildung durch GLY1-Überexpression und Fütterung von Threonin

Um zu prüfen, ob das in der Zelle gebildete Threonin die Glycinbildung durch die überexprimierte Threonin-Aldolase limitiert, wurde Threonin ins Medium gegeben. Bei Zugabe von 6 Gramm pro Liter Threonin wurde bei Wachstum auf Glukose als Kohlenstoffquelle von *A.g.p.AG203GLY1* etwa doppelt soviel Riboflavin gebildet als bei Zugabe von 6 Gramm pro Liter Glycin (Fig. 5). Der Test mit einem Wildtyp und einem mit dem Lcrplasmid transformierten Kontrollstamm zeigten diesen Effekt nicht. Die Analyse der Aminosäuren im Medium ergab, daß beim GLY1-Überexprimierer

65

DE 198 40 709 A 1

nur noch etwa 6 mM der gefütterten 52 mM Threonin übrig waren und überraschenderweise die Glycinkonzentration von 2 mM auf 42 mM zugenommen hatte. Diese Ergebnisse zeigten eine Limitierung der Glycinbildung durch Threonin, die Funktionsfähigkeit der überexprimierten Threonin-Aldolase, eine bessere Wirksamkeit intrazellulär gebildeten Glycins im Vergleich zu extrazellulär gefüttertem und den massiven Export von Glycin durch die Pilzzellen.

5

Beispiel 5

Hemmung des Glycinexports

- 10 Wurde der Threoninaldolase überexprimierende Stamm A.g.pAG203GLY1 auf Sojaöl anstatt wie in Beispiel 4 auf Glucose gezüchtet, so ergab sich keine Steigerung der Riboflavinbildung bei Fütterung von Threonin, die die mit Glycin übertraf (Fig. 6). Die Analyse des Mediums zeigte aber, daß das Threonin bis auf etwa 13 mM abgebaut wurde. Eine Limitierung im Threonin kann also nicht vorgelegen haben. Gleichzeitig wurde gefunden, daß das extrazelluläre Glycin von 2 auf etwa 44 mM zugenommen hatte. Es war also alles gebildete Glycin vom Pilz in das Medium exportiert worden.
 15 Dieser Export ließ sich durch Vorlage von Glycin im Medium hemmen, was sich dann bei gleicher Threoninaufnahme in einer deutlich erhöhten Riboflavinbildung auswirkte (Tabelle 2). Um auszuschließen, daß nur das vorgelegte Glycin für die gesteigerte Produktion verantwortlich ist, wurde in einer Kontrolle soviel Glycin vorgelegt, wie im Experiment mit Glycin und Threonin letztlich an Glycin entstand. Dieser Befund unterstreicht, daß intrazellulär gebildetes Glycin viel
 20 wirksamer ist als extrazellulär zugegebenes.

20

Beispiel 6

Steigerung der Riboflavin-Bildung durch Selektion von β -Hydroxy-Norvalin resistenten Mutanten.

- 25 Da nicht die Threoninumsetzung zu Glycin, sondern die Threoninsynthese als erstes die Glycinbildung limitierte,
 wurde mit dem Threoninanalogon β -Hydroxy-Norvalin nach resistenten Mutanten gesucht. Auf Agarplatten mit Minimalmedium, das 2,5 mM β -Hydroxy-Norvalin enthielt, war das radiale Wachstum deutlich gehemmt. An den Kolonie-rändern bildeten sich spontan Mutanten, die besser wuchsen. Durch Isolierung von Sporen und erneute Selektion ließen sich stabile Mutanten erzeugen, die auf dem Minimalmedium β -Hydroxy-Norvalin deutlich besser wuchsen als die Elternstämme (Fig. 8). Eine Untersuchung der Riboflavinbildung zeigte eine deutliche Steigerung der Produktivität. So bildete der Stamm HNV-TB-25 in Minimalmedium mit Sojaöl 41 ± 11 mg/l Riboflavin während sein Elternstamm nur 18 ± 3 mg/l produzierte. Auch der Abkömmling HNV-TB-29 zeigt mit 116 ± 4 mg/l eine deutliche Steigerung gegenüber seinem Ursprungsstamm Ita-GS-01, der nur 62 ± 10 mg/l bildete.

35

Tabelle 1: ^{13}C -Anreicherung in den C-Atomen von Serin, Threonin und Glycin nach Wachstum von *A. gossypii* ATC10895 auf den angegebenen Medien und anschließender Totalhydrolyse der resultierenden Biomasse. (MM: Minimalmedium; HE: Hefeextrakt; YNB: Yeast Nitrogen Base; n. b.: nicht bestimmt)

40

45

50

55

60

65

	Medium	MM + 0,2 g/l HE + 1 g/l Ethanol + 2,7 mg/l $^{13}\text{C}_2$ -Serin	MM + 0,2 g/l YNB + 1 g/l Ethanol + 2,6 mg/l $^{13}\text{C}_1$ -Threonin
Serin	C_1	1,1	4,9
	C_2	5,9	1,1
	C_3	1,1	1,1
Threonin	C_1	n.b.	39,0
	C_2		1,1
	C_3		1,1
	C_4		1,1
Glycin	C_1	1,1	7,1
	C_2	4,3	1,1

Tabelle 2: Einfluß von Threonin- und Glycin-Supplementation auf die Riboflavinbildung bei gleichzeitiger Überexpression von GLY1

Stamm	Kohlenstoffquelle	t = 0 Supplément	t = 72 h Riboflavin [mg/l]	t = 72 h Gly [mM]	t = 72 h Thr [mM]
WT	Sojaöl	80 mM Gly 50 mM Thr	22 ± 1	80 ± 2	42 ± 0
		130 mM Gly	18 ± 3	129 ± 2	n. d.
	Glucose	80 mM Gly 50 mM Thr	5 ± 1	80 ± 0	35 ± 0
		130 mM Gly	7 ± 1	126 ± 2	n. d.
Ag pAG 203 GLY1	Sojaöl	80 mM Gly 50 mM Thr	31 ± 0	117 ± 2	11 ± 1
		130 mM Gly	20 ± 3	129 ± 1	n. d.
	Glucose	80 mM Gly 50 mM Thr	40 ± 1	113 ± 2	12 ± 0,7
		130 mM Gly	9 ± 1	129 ± 3	n. d.
					n. d. = nicht detektierbar

Erläuterungen zu den Figuren

Fig. 1 Riboflavinbildung der *Ashbya gossypii*-Stämme ATCC 10895 (Wildtyp, WT) und der AMPS-resistenten Mutante AMPS-MN-01 mit oder ohne 6 g/l Glycin nach Wachstum auf Vollmedium mit 10 g/l Sojaöl als Kohlenstoffquelle. Die Meßwerte stammen aus drei unabhängigen Experimenten.

Fig. 2a Gly 1-Lokus im Genom von *Ashbya gossypii*. Die Klone GB 7-1 und GB 26-9 sowie der 3,7 kb HindIII-Subkロン GB-26-9-6 komplementieren die *S. cerevisiae*-Mutante. GB-26-9-6 wurde ganz, GB 7-1 zur Vervollständigung des C-Terminus von GLY1 sequenziert.

Fig. 2b Nukleotidsequenz und davon abgeleitete Aminosäuresequenz des *A. gossypii* GLY1-Gens sowie flankierende Nukleotidsequenz.

Fig. 3 Schematische Darstellung der Konstruktion des Vektores pAG203GLY1 zur Überexpression des GLY1-Genes in *A. gossypii*.

Fig. 4 Vergleich von *Ashbya gossypii* Wildtyp (gefüllte Symbole) und *A.g.pAG203GLY1* (leere Symbole) bezüglich Wachstum, Riboflavinbildung und spezifischer Aktivität der Threonin-Aldolase während einer Kultivierung auf Vollmedium mit 10 g/l Sojaöl.

Fig. 5 Wachstum und Riboflavinbildung der *Ashbya gossypii*-Stämme ATCC 10895 (Wildtyp), pAG203 und pAG203GLY1 bei Kultivierung auf HA-Vollmedium mit 10 g/l Glucose als C-Quelle und Glycin- bzw. Threoninkonzentrationierung. Die Tabelle zeigt die Glycin- und Threoninkonzentrationen im Medium jeweils vor und nach der Kultivierung. Die angegebenen Mittelwerte und Standardabweichungen sind das Ergebnis dreier unabhängiger Experimente.

Fig. 6 Wachstum und Riboflavinbildung der *Ashbya gossypii*-Stämme ATCC 10895 (Wildtyp), pAG203 und pAG203GLY1 bei Kultivierung auf Vollmedium mit 10 g/l Glucose als C-Quelle und Glycin- bzw. Threoninkonzentrationierung. Die Tabelle zeigt die Glycin- und Threoninkonzentrationen im Medium jeweils vor und nach der Kultivierung. Die angegebenen Mittelwerte und Standardabweichungen sind das Ergebnis dreier unabhängiger Experimente.

DE 198 40 709 A 1

Fig. 7 Vergleich von *Ashbya gossypii* Wildtyp (gefüllte Symbole) und AMPS-resistenter Mutante AMPS-NM-01 bezüglich Wachstum, Riboflavinbildung sowie spezifische Aktivitäten der Threonin Aldolase, Serin Hydroxymethyltransferase und Glutamat Glyoxylat Aminotransferase während der Kultivierung auf Vollmedium mit 10 g/l Sojaöl. Die Meßwerte stammen aus drei unabhängigen Experimenten.

5 **Fig. 8** Wirkung von β -Hydroxy-Norvalin auf *Ashbya gossypii* Wachstum von Wildtyp (W) und HNV-TB-25 (H) auf einer Agarplatte mit Minimalmedium, das 2,5 g/l Glucose und 2,5 mM β -Hydroxynorvalin enthält.

	T	TGCCATTAAAT	GACCGGGAGC	CTGAAGGTGT	-1201		
10	AGCTCGCAT	AGGCAGTCTT	CCCCGCGCGT	CGCCAACCTG	TCGTCATATA	ATCCCGGAAA	-1141
	AGCTCGCAT	AGGTGAAATT	TTTCTTAGGA	ATTACATCTG	CTACTGACAA	AACTAAGTAA	-1081
	AAAGCTCCGAT	AGGTGACCGT	GCTGCCGAGC	ACCTGCCAA	TACACGCAGG	CGCCATACAC	-1021
	TATTTAACCA	CAATGTTATC	GCCCCGCAAC	TTGAGGTATT	CCTGGTCGAT	GCCAGGTGTC	-961
	ATAGGCTGAA	TCACCAAGCGA	GTAGACCTCA	CTATTGAGA	AGCGCACCCC	GTTGCTGGGG	-901
	GACTTGTAGC	GCGCGTGTAG	CCCCGTGATG	TCGCAGTAGC	GTTTCACGGG	ATACTGCGAT	-841
	GTGTCGCGCT	GAATGTTGAA	GTATGTCAGC	TCGTCGCGCC	CTGCGTCACG	CCGGGCTTC	-781
15	GACTGTGCT	CTGTCGCGAG	CGGTTCCAC	TCGTCGTC	GAAGCTGACG	TGTCGGCTTG	-721
	TGGCGGCCG	TGGGTTCTT	CCACGTGGGC	GACTTGAAGT	CGCTACGACT	GTTATCATT	-661
	CGTGTGCAA	TCGCGTGGAG	GTTCTCCATC	TGGGTTCCAC	GGTCGCTCGT	TGATCTGTCT	-601
	ATCTCGAAAT	CCCTGCCCCAG	ATGTAATCCC	ATGTTATCAC	GTGACACAC	GCGGTTTTCG	-541
	TGTGTAGTGA	TGCAAGATGGT	TCTAGAGCAT	CACCGGGCTT	ACATAGTTT	GTTACATAAT	-481
	CGATTTTCCG	CAGGAGCGTT	ACGTCCAACG	GTCGTTCTGT	GCCAAAAAGCA	ACAACGTGAGC	-421
20	GTCAAGGCGGC	CGTCTCCCA	GACACGCTCC	GCCCCAAACT	GAGCTCCACG	CGGCCTTCTG	-361
	TCCGAGTTAA	GTTCTCTCCC	GTCGTCAGC	ACGGGGTCTT	TCGTCGCCAA	TCCCTCTGCA	-301
	GCCTTCGCTA	CTGCAAGATCG	TGAGCAGTGC	CACCCGGCAG	CAAAAGGAA	ATTATGTC	-241
	CTTACGCAAG	GAATATGCTT	CGCGCCATGC	CATCGCAAAG	AGTGATGCCG	CAGAGGTTGC	-181
	TTCTGCAGG	CAACTCCTGG	GCAATAGGGT	GGAAAATTCA	GCTGGGCTT	ATATAAAAAGA	-121
	AACCGTTCGA	GCTCGTCGGA	GCCAGGTGGA	AAATTTTCG	TAACGTAGT	AGAGGTTATA	-61
25	GTTAGCGTCA	GTCTCTTTTC	TGCCAAGCTG	CTACAGTTGA	CTACAAGTAA	CAAACCCAGG	-1
	ATG AAT CAG GAT ATG GAA CTA CCA GAG GCG TAC ACG TCG GCT TCG AAC				48		
	1-Met-Aasn-Gln-Asp-Met-Clu-Leu-Fro-Glu-Ala-Tyr-Thr-Ser-Ala-Ser-Asn						
	GAC TTC CGT TCG GAC ACG TTC ACC ACT CCA ACG CGC GAA ATG ATC GAG				96		
30	17 Asp Phe Arg Ser Asp Thr Phe Thr Pro Thr Arg Glu Met Ile Glu						
	GCT GCG CTA ACG GCG ACC ATC GGT GAC GCC GTC TAC CAA GAG GAC ATC				144		
	33 Ala Ala Leu Thr Ala Thr Ile Gly Asp Ala Val Tyr Gin Glu Asp Ile						
	GAC ACG TTG AAG CTA GAA CAG CAC GTC GCC AAG CTG GCC GGC ATG GAG				192		
35	49 Asp Thr Leu Lys Leu Glu Gin His Val Ala Lys Leu Ala Gly Met Glu						
	GCC GGT ATG TTC TGC GTA TCT GGT ACT TTG TCC AAC CAG ATT GCT TTG				240		
	65 Ala Gly Met Phe Cys Val Ser Gly Thr Leu Ser Asn Gin Ile Ala Leu						
	CGG ACC CAC CTA ACT CAG CCA CCA TAT TCG ATT CTT TGC GAC TAC GGT				288		
40	81 Arg Thr Gly Leu Thr Gln Pro Pro Tyr Ser Ile Leu Cys Asp Tyr Arg						
	GCG CAT GTG TAC ACG CAC GAG GCT GCG GGG TTG GCA ATT TTG TCC CAG				336		
	97 Ala His Val Tyr Thr His Glu Ala Ala Gly Leu Ala Ile Leu Ser Gln						
	GCC ATG GTG ACA CCT GTC ATT CCT AAC GGC AAC TAC TTG ACT TTG				384		
45	113 Ala Met Val Thr Pro Val Ile Pro Ser Asn Gly Asn Tyr Leu Thr Leu						
	GAA GAC ATC AAG AAG CAC TAC ATT CCT GAT GAT GGC GAC ATC CAC GGT				432		
	129 Glu Asp Ile Lys Lys His Tyr Ile Pro Asp Asp Gly Asp Ile His Gly						
	GCT CCA ACA AAG GTT ATC TCG TTG GAA AAC ACC TTG CAC GGT ATC ATT				480		
50	145 Ala Pro Thr Lys Val Ile Ser Leu Glu Asn Thr Leu His Gly Ile Ile						
	CAC CCA CTA GAG GAG CTT GTT CGG ATC AAG GCT TGG TGT ATG GAG AAC				528		
	161 His Pro Leu Glu Leu Val Arg Ile Lys Ala Trp Cys Met Glu Asn						
	GAC CTC AGA CTA CAC TGC GAT GGT GCG AGA ATC TGG AAC GCG TCC GCA				576		
55	177 Asp Leu Arg Leu His Cys Asp Gly Ala Arg Ile Trp Asn Ala Ser Ala						
	GAA TCC GGT GTG CCT CTA AAA CAG TAC GGA GAG CTA TTC GAC TCC ATT				624		
	193 Glu Ser Gly Val Pro Leu Lys Gln Tyr Gly Glu Leu Phe Asp Ser Ile						
	TCC ATC TGC TTG TCC AAG TCC ATG GGT GCC CCA ATG GGC TCC ATT CTC				672		
60	209 Ser Ile Cys Leu Ser Lys Ser Met Gly Ala Pro Met Gly Ser Ile Leu						

225	GTC GGG TCG CAC AAG TTC ATA AAG AAG GCG AAC CAC TTC AGA AAG CAG Val Gly Ser His Lys Phe Ile Lys Lys Ala Asn His Phe Arg Lys Gln	720
241	CAA GGT GGT GGT GTC AGA CAG TCT GGT ATG ATG TGC AAG ATG GCG ATG Gln Gly Gly Gly Val Arg Gln Ser Gly Met Met Cys Lys Met Ala Met	768
257	GTG GCT ATC CAG GGT GAC TGG AAG GGC AAG ATG AGG CGT TCG CAC AGA Val Ala Ile Gln Gly Asp Trp Lys Gly Lys Met Arg Arg Ser His Arg	816
273	ATG GCT CAC GAG CTG GCC AGA TTT TGC GCA GAG CAC GGC ATC CCA TTG Met Ala His Glu Leu Ala Arg Phe Cys Ala Glu His Gly Ile Pro Leu	864
289	GAG TCG CCT GCT GAC ACC AAC TTT GTC TTT TTG GAC TTG CAG AAG AGC Glu Ser Pro Ala Asp Thr Asn Phe Val Phe Leu Asp Leu Gln Lys Ser	912
305	AAG ATG AAC CCT GAC GTG CTC GTC AAG AAG AGT TTG AAG TAC GGC TGC Lys Met Asn Pro Asp Val Leu Val Lys Ser Leu Lys Tyr Gly Cys	960
321	AAG CTA ATG GGC GGG CGT GTC TCC TTC CAC TAC CAG ATA TCT GAG GAG Lys Leu Met Gly Gly Arg Val Ser Phe His Tyr Gln Ile Ser Glu Glu	1008
337	TCC CTT GAG AAG ATC AAG CAG GCC ATC CTA GAG GCG TTC GAG TAC TCG Ser Leu Glu Lys Ile Lys Gln Ala Ile Leu Glu Ala Phe Glu Tyr Ser	1056
353	AAG AAG AAC CCT TAC GAT GAA AAC GGC CCC ACG AAG ATC TAC AGA AGT Lys Lys Asn Pro Tyr Asp Glu Asn Gly Pro Thr Lys Ile Tyr Arg Ser	1104
369	GAG TCC GCT GAC GCT GTG GGT GAG ATC AAG ACC TAC AAG TAT TAA Glu-Ser-Ala-Asp-Ala-Val-Gly-Glu-Ile-Lys-Thr-Tyr-Lys-Tyr	1149
		25
	GGGATTCGA TGATGACATG AAAAATTACA TATTGGCACCG GCATAGGCAT TGGGTAATAT TAAGCATATG GTTGAGATGA ATTACTGTTG GGGTACCGGAG ATTTCACAAAG TGCTGTCGAC TTTGCAAGA GATGGCTATG AATGGGGCAC GCTCCATCAC CTCTCTGCGA GCCGGACTCA GCATTATATC CATCTCAAAA CCTAATATCA AATGGGATTG TGGTGCAG TACATGCGCA GTGCTGCACA TTGAGGATC AATGGGTTT TCCAGGCCT GCCTGGGTCA CTCACCCATAT TGCAGGGAGGA CTAGTAGCTC TACCAATTCTG AGCTGACTAA AATGTTGAT TCTTTGGTA CTTA	1209 1269 1329 1389 1449 1509
		30

Figur 2b

Patentansprüche

35

1. Ein- oder mehrzelliger Organismus, insbesondere Mikroorganismus, zur biotechnischen Herstellung von Riboflavin **dadurch gekennzeichnet**, daß er einen derart veränderten Glycinstoffwechsel aufweist, daß seine Riboflavin syntheseleistung ohne externe Zufuhr von Glycin mindestens gleich derjenigen eines Wildtyps der Species *Ashbya gossypii* ATCC10895 ist, der unter Standardbedingungen unter Zugabe von 6 g/l externen Glycin gezüchtet wird.
2. Ein- oder mehrzelliger Organismus nach Anspruch 1 dadurch gekennzeichnet, daß bei ihm die intrazelluläre Synthese des Glycins erhöht und/oder der intrazelluläre Abbau des Glycins und/oder der Transport des Glycins aus der Zelle wenigstens teilweise gehemmt ist.
3. Ein- oder mehrzelliger Organismus nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß er eine erhöhte Threonin-Aldolase-Aktivität aufweist.
4. Ein- oder mehrzelliger Organismus nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei ihm die intrazelluläre Serinbildung aus Glycin wenigstens teilweise blockiert ist.
5. Ein- oder mehrzelliger Organismus nach Anspruch 4, dadurch gekennzeichnet, daß bei ihm die Serinhydroxymethyltransferase-Aktivität wenigstens teilweise blockiert ist.
6. Ein- oder mehrzelliger Organismus nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß er resistent gegen Glycin-Antimetaboliten ist.
7. Ein- oder mehrzelliger Organismus nach Anspruch 6, dadurch gekennzeichnet, daß er gegenüber Alpha-Amino-methylphosphonsäure oder Alpha-Aminosulfonsäure, β-Hydroxy-Norvalin und/oder andere Threonin- und/oder Lysin-Analogen resistent ist.
8. Ein- oder mehrzelliger Organismus nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß er ein Pilz, vorzugsweise aus der Gattung *Ashbya* ist.
9. Ein- oder mehrzelliger Organismus nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, daß er ein Pilz der Spezies *Ashbya gossypii* ist.
10. Threonin-Aldolase-Gen mit einer für die in Fig. 2b angegebenen Aminosäuresequenz und deren Allelvariation kodierenden Nukleotidsequenz.
11. Threonin-Aldolase-Gen nach Anspruch 10 mit der Nukleotidsequenz von Nukleotid 1 bis 1149 gem. der Fig. 2b oder einer im wesentlichen gleich wirkenden DNA-Sequenz.
12. Threonin-Aldolase-Gen nach einem der Ansprüche 10 oder 11 mit einem vorgeschalteten Promotor der Nukleotidsequenz mit Nukleotid-1231 bis -1 gem. der Fig. 2b oder einer im wesentlichen gleich wirkenden DNA-Sequenz.
13. Threonin-Aldolase-Gen nach einem der Ansprüche 10 bis 12 mit diesem zugeordneten regulatorischen Gense-

quenzen.

14. Gen-Struktur enthaltend ein Threonin-Aldolase-Gen nach einem der Ansprüche 10 bis 13.
15. Vektor enthaltend ein Threonin-Aldolase-Gen nach einem der Ansprüche 10 bis 13 oder eine Gen-Struktur nach Anspruch 14.
- 5 16. Transformierter Organismus zur Herstellung von Riboflavin enthaltend in replizierbarer Form ein Threonin-Al-
dolase-Gen nach einem der Ansprüche 10 bis 13 oder eine Gen-Struktur nach Anspruch 14.
17. Transformierter Organismus nach Anspruch 16 enthaltend einen Vektor nach Anspruch 15.
18. Verfahren zur Herstellung von Riboflavin, dadurch gekennzeichnet, daß ein Organismus gem. einem der An-
sprüche 1 bis 9 eingesetzt wird.
- 10 19. Verfahren zur Herstellung eines Riboflavin produzierenden ein- oder mehrzelligen Organismus, dadurch ge-
kennzeichnet, daß er so verändert wird, daß er einen derart veränderten Glycinstoffwechsel aufweist, daß seine Ri-
boflavinsyntheseleistung ohne externe Zufuhr von Glycin mindestens gleich derjenigen eines Wildtyps der Species
Ashbya gossypii ATCC10895 ist, der unter Standardbedingungen unter Zugabe von 6 g/l externen Glycin gezüchtet
wird.
- 15 20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Veränderung des Organismus mittels gentech-
nischer Methoden erfolgt.
21. Verfahren nach einem der Ansprüche 19 oder 20, dadurch gekennzeichnet, daß die Veränderung des Organis-
mus durch Austausch des Promotors und/oder Erhöhung der Genkopienzahl erzielt wird.
22. Verfahren nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, daß durch die Änderung des endoge-
nen Threonin-Aldolase-Gens ein Enzym mit erhöhter Aktivität erzeugt wird.
- 20 23. Verfahren nach einem der Ansprüche 19 bis 22, dadurch gekennzeichnet, daß durch die Änderung des endoge-
nen Serinhydroxymethyltransferasengens die Aktivität der Serinhydroxymethyltransferase wenigstens teilweise
blockiert wird.
24. Verwendung des Organismus nach einem der Ansprüche 1 bis 9 sowie 16 und 17 zur Herstellung von Ribofla-
vin.
- 25 25. Verwendung des Threonin-Aldolase-Gens nach einem der Ansprüche 10 bis 13 und der Gen-Struktur nach An-
spruch 14 zur Herstellung eines Organismus nach einem der Ansprüche 1 bis 9 sowie 16 und 17.
26. Verwendung des Vektors nach Anspruch 15 zur Herstellung eines Organismus nach einem der Ansprüche 1 bis
9 sowie 16 und 17.

30

Hierzu 8 Seite(n) Zeichnungen

35

40

45

50

55

60

65

Fig. 1

Numm.
Int. Cl.⁶:
Offenlegungstag:

DE 198 40 709 A1
C 12 N 1/00
24. Juni 1999

Fig. 2a

Fig. 3

Fig. 4

Stamm	Medium	vor Kultivierung		nach Kultivierung	
		Gly [mM]	Thr [mM]	Gly [mM]	Thr [mM]
A. g. WT	-	2	1,6	2,3 ± 0,04	0,18 ± 0,08
	+ 6 g/l Gly	82	1,6	79,6 ± 0,8	1,2 ± 0,1
	+ 6 g/l Thr	2	51,6	6,3 ± 0,3	32,0 ± 1,2
A. g. pAG203GLY1	-	2	1,6	4,0 ± 0,08	0,14 ± 0,01
	+ 6 g/l Gly	82	1,6	80,2 ± 0,7	0 ± 0
	+ 6 g/l Thr	2	51,6	41,3 ± 0,7	6,1 ± 1,0

Fig. 5

Stamm	Medium	vor Kultivierung		nach Kultivierung	
		Gly [mM]	Thr [mM]	Gly [mM]	Thr [mM]
A. g. ATCC 10895	-	2	1,6	2,4 ± 0,03	0 ± 0
	+ 6 g/l Gly	82	1,6	76,5 ± 0,4	0 ± 0
	+ 6 g/l Thr	2	51,6	5,6 ± 0,7	42,8 ± 1,0
A. g. pAG203GLY1	-	2	1,6	4,0 ± 0,06	0 ± 0
	+ 6 g/l Gly	82	1,6	78,3 ± 2,0	0 ± 0
	+ 6 g/l Thr	2	51,6	44,0 ± 4,1	12,6 ± 1,8

Fig. 6

Fig. 7

Fig. 8