ECS 154A Homework 4

Hardy Jones 999397426 Professor Nitta Fall 2013

1. Implement the following D flipflop as a JK flipflop.

D

	QX				
	00 01 11 10				
00		1	0	0	1
01		1	1	1	0
11		1	1	1	1
10		0	1	0	0
	01 11	00 01 11	00 1 01 1 11 1	00 01 00 1 0 01 1 1 11 1 1	00 01 11 00 1 0 01 1 0 0 01 1 1 1 11 1 1

J

$$J=Z+\overline{X}\ \overline{Y}+XY$$

Κ

$$K = X\overline{Z} + Y\overline{Z} + \overline{X}\ \overline{Y}Z$$

2. Implement the following D flipflop as a T flipflop.

D

		QX			
		00 01 11 10			
(00	0	0	1	1
YZ)1	1	1	0	0
Y Z.	11	1	1	0	0
-	10	0	0	1	1

Т

	QX			
	00 01 11 10			
00	0 0 0 0			
$YZ \stackrel{01}{\cdot}$	1 1 1 1			
$\begin{bmatrix} I & Z \\ & & 11 \end{bmatrix}$	1 1 1 1			
10	0 0 0 0			

$$T = Z$$

- 3. Implement the state diagram using D flipflops. Show the state transition table, state encoding, k-maps, and equations.
 - (a) State transitions

Current	X_1	X_0	Next
A	d	0	В
A	d	1	A
В	0	0	В
В	0	1	D
В	1	0	D
В	1	1	В
\overline{C}	0	0	С
\mathbf{C}	d	1	D
\mathbf{C}	1	0	A
D	0	D	С
D	1	D	D

Output

State	Z_1	Z_0
A	0	0
В	0	1
\mathbf{C}	1	0
D	0	0

(b) State encoding

State	S_1	S_0
A	0	0
В	0	1
\mathbf{C}	1	0
D	1	1

Encoded state transitions

Cur	rent	Input		Next	
S_1	S_0	X_1	X_0	S_1'	S_0'
0	0	d	0	0	1
0	0	d	1	0	0
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	d	1	1	1
1	0	1	0	0	0
1	1	0	d	1	0
1	1	1	d	1	1

Encoded output

 S_0'

$$S_1' = (S_1 + S_0)(S_1 + \overline{X_1} + \overline{X_0})(S_1 + X_1 + X_0)(\overline{S_1} + \overline{S_0} + \overline{X_1} + X_0)$$

$$S_0' = (S_1 + S_0 + \overline{X_0})(\overline{S_1} + \overline{S_0} + X_1)(\overline{S_1} + S_0 + X_0)$$

$$Z_1 = S_1\overline{S_0}$$

$$Z_0 = \overline{S_1}S_0$$