Title

D. Zack Garza

Contents

Contents

Prologu		3
0.1	References	3
0.2	Notation	4
0.3	Summary of Important Concepts	5
0.4	Useful Examples	6
	0.4.1 Varieties	6
	0.4.2 Presheaves / Sheaves	6
0.5	Useful Algebra Facts	6
0.6	The Algebra-Geometry Dictionary	7

Contents 2

Prologue

 $\bullet \ \ Gathmann's \ Algebraic \ Geometry \ notes [@Andreas Gathmann 515].$

0.1 References 3

• If a property P is said to hold **locally**, this means that for every point p there is a neighborhood $U_p \ni p$ such that P holds on U_p .

0.2 Notation 4

Projective closure of a subset

 \overline{X}

Lots of notation to fill in.

Algebra	Geometry
Radical ideals $J = \sqrt{J} \le k[x_1, \cdots, x_n]$	V(J) the zero locus
I(S) the ideal of a set	$S \subseteq \mathbb{A}^n$ a subset
I + J	$V(I) \cap V(J)$
$\sqrt{I(V) + I(W)}$	$V \cap W$
$\dot{I}\cap J, IJ$	$V(I) \cup V(J)$
$I(V) \cap I(W), \sqrt{I(V)I(W)}$	$V \cup W$
I(V):I(W)	$\overline{V\setminus W}$
Prime ideals $\mathfrak{p} \in \operatorname{Spec}(k[x_1, \cdots, x_n])$	Irreducible subsets

0.3 Summary of Important Concepts

- What is an affine variety?
- What is the coordinate ring of an affine variety?
- What are the constructions $V(\cdot)$ and $I(\cdot)$?
- What is the Nullstellensatz?
- What are the definitions and some examples of:
 - The Zariski topology?
 - Irreducibility?
 - Connectedness?
 - Dimension?
- What is the definition of a presheaf?
 - What are some examples and counterexamples?
- What is the definition of sheaf?
 - What are some examples?
 - What are some presheaves that are not sheaves?
- What is the definition of \mathcal{O}_X , the sheaf of regular functions?
 - How does one compute \mathcal{O}_X for X = D(f) a distinguished open?
- What is a morphism between two affine varieties?
- What is the definition of separatedness?
 - What are some examples of spaces that are and are not separated?
- What is a projective space?
- What is a projective variety?
- What is the projective coordinate ring?
- How does one take the closure of an affine variety X in projective space?
- What is completeness?
 - What are some examples and counterexamples of complete spaces?

0.4 Useful Examples

- $V(xy-1) \subseteq \mathbb{A}^2$ a hyperbola
- V(x) a coordinate axis
- V(x-p) a point.

0.4.2 Presheaves / Sheaves

- $C^{\infty}(\cdot,\mathbb{R})$, a sheaf of smooth functions
- $C^0(\cdot,\mathbb{R})$, a sheaf of continuous functions
- $\mathcal{O}_X(\cdot)$, the sheaf of regular functions on X
- $\mathbb{R}(\cdot)$, the constant sheaf associated to \mathbb{R} (locally constant real-valued functions)
- $\operatorname{Hol}(\cdot,\mathbb{C})$, a sheaf of holomorphic functions
- K_p the skyscraper sheaf:

$$K_p(U) := \begin{cases} k & p \in U \\ 0 & \text{else.} \end{cases}$$

0.5 Useful Algebra Facts

Fact 0.5.1:

- $\mathfrak{p} \leq R$ is prime $\iff R/\mathfrak{p}$ is a domain.
- $\mathfrak{p} \leq R$ is maximal $\iff R/\mathfrak{p}$ is a field.
- Maximal ideals are prime.
- Prime ideals are radical.
- If R is a PID and $\langle f \rangle \leq R$ is generated by an irreducible element f, then $\langle f \rangle$ is maximal

Proposition 0.5.2 (Finitely generated polynomial rings are Noetherian).

A polynomial ring $k[x_1, \dots, x_n]$ on finitely many generators is Noetherian. In particular, every ideal $I \subseteq k[x_1, \dots, x_n]$ has a finite set of generators and can be written as $I = \langle f_1, \dots, f_m \rangle$.

Proof(?).

A field k is both Artinian and Noetherian, since it has only two ideals and thus any chain of ideals necessarily terminates. By Hilbert's basis theorem (Theorem 0.5.5), $k[x_1, \dots, x_n]$ is thus Noetherian.

0.4 Useful Examples 6

Proposition 0.5.3 (Properties and Definitions of Ideal Operations).

$$\begin{split} I+J &\coloneqq \left\{f+g \;\middle|\; f \in I, \, g \in J\right\} \\ IJ &\coloneqq \left\{\sum_{i=1}^N f_i g_i \;\middle|\; f_i \in I, \, g_i \in J, N \in \mathbb{N}\right\} \\ I+J &= \langle 1 \rangle \implies I \cap J = IJ & \text{(coprime or comaximal)} \; \langle a \rangle + \langle b \rangle = \langle a,b \rangle \,. \end{split}$$

Theorem 0.5.4 (Noether Normalization).

Any finitely-generated field extension $k_1 \hookrightarrow k_2$ is a finite extension of a purely transcendental extension, i.e. there exist t_1, \dots, t_ℓ such that k_2 is finite over $k_1(t_1, \dots, t_\ell)$.

Theorem 0.5.5 (Hilbert's Basis Theorem).

If R is a Noetherian ring, then R[x] is again Noetherian.

0.6 The Algebra-Geometry Dictionary

 \sim

Let $k = \bar{k}$, we're setting up correspondences

Ring Theory Geometry/Topology of Affine Varieties Polynomial functions Affine space $k[x_1,\cdots,x_n] \qquad \mathbb{A}^n/k \coloneqq \{[a_1,\cdots,a_n] \in k^n\}$

Maximal ideals $\langle x_1 - a_1, \cdots, x_n - a_n \rangle$ Points $[a_1, \cdots, a_n] \in \mathbb{A}^n/k$

Radical ideals $I \leq k[x_1, \dots, x_n]$ Affine varieties $X \subset \mathbb{A}^n/k$, vanishing locii of polynomia

$$I \mapsto V(I) \coloneqq \left\{ a \mid f(a) = 0 \forall f \in I \right\}$$

$$I(X) \coloneqq \left\{ f \;\middle|\; f|_X = 0 \right\} \hookleftarrow X$$

Radical ideals containing I(X), i.e. ideals in A(X) closed subsets of X, i.e. affine subvarieties

A(X) is a domain X irreducible A(X) is not a direct sum X connected

Prime ideals in A(X) Irreducible closed subsets of X

Krull dimension n (longest chain of prime ideals) dim X = n, (longest chain of irreducible closed subsets