### Organization and Function of the Nervous System

말초신경계통 末稍/周围神经系统 Peripheral Nervous System (PNS)

Somatic 체성신경계 SNS



**Somatic** Autonomic

자율신경계 ANS 自主/植物/内脏 神经系统



중추신경계통 中樞神經系統 Central

**Nervous System (CNS)** 

**Brain** Spinal Cord

뇌

척수





## Peripheral Nervous System (PNS)

**Somatic:** Nerves connecting to voluntary skeletal muscles and sensory receptors

- <u>Afferent Nerve Fibers (incoming)</u>: Axons that carry info away from the periphery to the CNS 들신경섬유-神經纖維,구심(求心)신경섬유
- <u>Efferent Nerve Fibers (outgoing)</u>: Axons that carry info from the CNS outward to the periphery 날신경섬유, 원심(遠心)신경섬유

**Autonomic:** Nerves that connect to the heart, blood vessels, smooth muscles, and glands





## Central Nervous System (CNS)

### **CNS** = Spinal Cord + Brain

### **Spinal Cord**

- Local feedback loops control reflexes ("reflex arcs")
- Descending motor control signals from the brain activate spinal motor neurons
- Ascending sensory axons convey sensory information from muscles and skin back to the brain





# **CNS** = Spinal Cord + **Brain**



### 〔의학〕 능뇌(菱腦); 후뇌; 수뇌(獸腦); 〔동물〕 (곤충 등의 ) 후대뇌

Major Brain Regions: The Hindbrain

Medulla Oblongata 수(髓) + elongated = 연수(延髓)

Controls breathing, muscle tone and blood pressure 근(육)긴장

bridge(latin)다리뇌 또는 교뇌(橋腦) 晒栎 Pons

Connected to the cerebellum & involved in sleep and arousal

Cerebellum

Coordination and timing of voluntary movements, sense of equilibrium, language, attention,...



### Major Brain Regions: Midbrain & Retic. Formation

### Midbrain

Eye movements, visual and auditory reflexes

rete = net(latin)그물체/망상체 网状结构<sub>Reticular Formation</sub>

Modulates muscle reflexes, breathing & pain perception. Also regulates sleep, wakefulness & arousal





### Major Brain Regions: Thalamus & Hypothalamus

Thalamus 시상(視床) 丘脑

"Relay station" for all sensory info (except smell) to the cortex, regulates sleep/wakefulness

시상하부 下丘脑 <u>Hypothalamus</u> Regulates basic needs Fighting, Fleeing, Feeding, and Mating



## Major Brain Regions: The Cerebrum

 Consists of: <u>Cerebral</u> <u>cortex</u>, <u>basal ganglia</u>, <u>hippocampus</u>, and <u>amygdala</u>

♣ Involved in perception and motor control, cognitive functions, emotion, memory, and learning





## **Cerebral Cortex**: A Layered Sheet of Neurons

◆ Cerebral Cortex: Convoluted surface of cerebrum, about 1/8<sup>th</sup> of an inch thick (a 14-inch thin pizza...

- Approximately 30 billion neurons
- Each neuron makes about 10,000 synapses, approximately 300 trillion connections in total
- → Six layers of neurons
  - Relatively uniform in structure
  - Is there a common computational principle operating across cortex?



regions 6 to thalamus

# How do all of these brain regions interact to produce cognition and behavior?

## Don't know fully yet!

### But inching closer based on:

- electrophysiological,
- optical,
- molecular,
- functional imaging,
- psychophysical,
- anatomical
- connectomic\*
- lesion (brain damage) studies... 손상

<sup>\*</sup>the production and study of connectomes: comprehensive maps of connections within an organism's nervous system, typically its brain or eye.

## Neural versus Digital Computing

#### **♦** Device count:

- $\Rightarrow$  Human Brain:  $10^{11}$  neurons (each neuron  $\sim 10^4$  connections)
- $\Rightarrow$  Silicon Chip:  $10^{10}$  transistors with sparse connectivity

### **→** Device speed:

- ⇒ Biology has 100µs temporal resolution
- ⇒ Digital circuits are approaching a 100ps clock (10 GHz)

### **♦** Computing paradigm:

- ⇒ Brain: Massively parallel computation & adaptive connectivity
- ⇒ Digital Computers: sequential information processing via CPUs with fixed connectivity

### **→** Capabilities:

- ⇒ Digital computers excel in math & symbol processing...
- ⇒ Brains: Better at solving ill-posed problems (speech, vision)

## Conclusions and Summary

- ❖ Structure and organization of the brain suggests computational analogies

  - Primary computing elements: Neurons
  - Computational basis: Currently unknown
- → In this course, we will try to understand computation in the brain through:
  - Descriptive models
  - ⇒ Mechanistic models
  - ❖ Interpretive models

# Computational Neuroscience

