Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o

Oddelek za fiziko

Določanje Boltzmannove konstante k_B

Poročilo pri fizikalnem praktikumu IV

Kristofer Č. Povšič

Asistentka: Jelena Vesić

Uvod

Boltzmannovo konstanto k_B lahko izmerimo preko tokov znotraj bipolarnega tranzistorja. Tranzistor ima tri kontakte emitor, kolektor in bazo. Slednja dva v vaji sklenemo, da pride do kratkega stika in merimo odvisnost toka skozi kolektor. Napoved te odvisnosti je podana z Ebers-Millovo enačbo:

$$I_C = I_S(T) \left[exp\left(\frac{e_0 U_{BE}}{k_B T}\right) - 1 \right] \tag{1}$$

kjer so e_0 osnovni naboj, T absolutna temperatura, U_{BE} pozitivna napetost med bazo in emitorjem ter $I_S(T)$ velikost nasičenega toka v zaporni smeri. Brez izgube natančnosti lahko poenostavimo v

$$I_C \approx I_S(T) exp\left(\frac{e_0 U_{BE}}{k_B T}\right)$$
 (2)

Naloga

- 1. Izmerite kolektorski tok tranzistorja I_C v odvisnosti od U_{BE} pri treh temperaturah: približno $15^{\circ}C$, $35^{\circ}C$, $55^{\circ}C$
- 2. Določite razmerje $\frac{e_0}{k_B}$
- 3. Izmerite temperaturno odvisnost kolektorskega toka tranzistorja pri dveh napetostih U_{BE} približno 0.5V in 0.58V

Potrebščine

- bipolarni n-p-n tranzistor tipa BC182B
- potenciometer in baterija ali drug stabilen vir enosmerne napetosi do 1.5V
- voltmeter(Voltcraft 870), namizni multimeter (SigLent SDM 3060X)
- žice
- termometer, Dewarjeva posoda in čaše za vodo
- prenosnik s programom Boltz

Navodilo

Vpišem se v računalnik in zaženem program Boltz. Vključim multimetre in jih povežem z računalnikom. Za prvi del vodo segrejem na tri različne temperature $15^{\circ}C$, $35^{\circ}C$, $55^{\circ}C$ in vsakič potopim tranzistor v vodo ter spreminjam napetost na potenciometru od 0.4V do 0.6V. Potem narišem diagram $\ln(I_C/I)$ v odvisnosti od U_{BE} , ki naj bi bil v teoriji premica z naklonom e_0/k_BT . Za drugi del nastavim potenciometer na eno izmed dveh, v nalogi omenjenih vrednosti, in s potopljenim tranzistorjem segrevam vodo od ledišča do vrelišča in beležim, kako se tok spreminja v odvisnosti od temperature.

Obdelava podatkov

Za prvi del dobim sledeč graf:

Slika 1: Graf prikazuje odvisnost kolektorskega toka od napetosti med bazo in emitorjem pri treh različnih temperaturah v legendi. Črtkane črte so regresivne premice podatkov.

Za drugi del dobim naslednji graf:

$T[^{\circ}C]$	$\frac{e_0}{k_B} \left[\cdot 10^{-6} \frac{V}{K} \right]$	$k_B[\cdot 10^{-23} \frac{J}{K}]$
287.9 ± 0.4	86.4 ± 0.3	1.38 ± 0.05
304 ± 1	86.1 ± 0.4	1.38 ± 0.06
328 ± 1.6	91.0 ± 0.8	1.4 ± 0.1

Slika 2: Odvisnost kolektorskega toka od temperature pri dveh različnih napetostih med bazo in emitorjem. Pri napetosti 0.58V za nizke in visoke temperature izmerki očitno izstopajo.