Jet Energy Resolution for the Dijet Balance Method

Rebecca Pickles, Darren Price

February 25, 2016

Status

- Started looking at the fits for the 25GeV < pTavg < 40GeV.
- Started to look at subtracting the MC Truth resolution from the MC Reco and Data for Sherpa
- \bullet Compared Powheg+Pythia8 with Sherpa for EM+JES and Truth
- Corrected resolution calculation due to the EtaInterCalibration method's deviation from the original method of calculating Asymmetry (factor of $\sqrt{2}$)

JER vs Eta: 25 < pTavg < 40

• Truth MC has a higher resolution than Reco MC.

$\overline{\sf JER}$ vs Eta: 25 < pTavg < 40 : Data fits

$\overline{\sf JER}$ vs Eta: 25 < pTavg < 40 : Data fits

JER vs Eta: 25 < pTavg < 40: Data fits

25 s p^m < 40 GeV

LT_(15: (-3.7 ± 2.2)%

-0.8 s η₁₁ < 0.8 3.2 s η₁₁₁₀ < 3.6

JER vs Eta: 25 < pTavg < 40: Powheg+Pythia8 EM+JES fits

JER vs Eta: 25 < pTavg < 40: Powheg+Pythia8 EM+JES fits

JER vs Eta: 25 < pTavg < 40: Powheg+Pythia8 EM+JES fits

JER vs Eta: 25 < pTavg < 40: Powheg+Pythia8 Truth fits

JER vs Eta: 25 < pTavg < 40: Powheg+Pythia8 Truth fits

JER vs Eta: 25 < pTavg < 40: Powheg+Pythia8 Truth fits

-0.5

Powheg+Pythia8 vs Sherpa

Powheg+Pythia8 vs Sherpa: Problematic bins

 The problems seem to lie in the extreme eta regions and so could be down to the definition of the resolution that I'm currently using.

Powheg+Pythia8 subtraction

 Changed the resolution calculation to account for the EtaInterCal deviation from the run 1 method

Sherpa subtraction...

Lots of the points seem to be missing... any ideas?

Calculating the resolution:

- For jets in the same rapidity region: $\sigma(A) = \sqrt{2} \frac{\sigma(p_T)}{p_T}$
- If one of the two leading jets is in the probe region and the other is in the reference region:

$$\frac{\sigma(\rho_T)}{\rho_T} = \sqrt{4\sigma^2(A_{(i,j)}) - 2\sigma^2(A_{(i,i)})}$$

Need to correct for this

To-do

- Restrict the RMS value for the fits
- Look into the missing points in the sherpa subtraction
- Change the resolution definition to take into account the difference in asymmetry for the probe and reference rapidity regions