Dep. Matem., Univ. Minho

filgebra Linear

Exame - A

Nome: ______ Nº: _____

Duração: 2 horas

Nota. Preencha devidamente o cabeçalho deste enunciado e da sua folha de exame. As respostas aos grupos I e II devem ser indicadas no enunciado, enquanto que o grupo III deve ser resolvido na folha de exame. O enunciado deve ser portanto entregue com a folha de exame. Para cada resposta errada dos grupos I, II desconta-se 20% do seu valor.

I. Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente.

1. Seja A uma matriz real, quadrada de ordem 3, tal que det(A) = 3 e seja B = 3A.

$$\mathbf{a}) \det(A^T) = \frac{1}{3}.$$
 V F

$$\mathbf{b}$$
) A matriz B é invertível. V F

$$\mathbf{c}) \ \det(B) = 9.$$

d) O sistema homogéneo
$$Bx = 0$$
 tem soluções não nulas. V F

2. Sejam x_1, x_2 e x_3 três vectores linearmente independentes do espaço vectorial \mathbb{R}^4 .

a) Os vectores
$$x_1$$
, $3x_2$ e $x_1 + x_3$ são linearmente independentes. V F

b) Os vectores
$$x_1, x_2, x_3 \in \mathbf{0}$$
 geram \mathbb{R}^4 .

c) O vector nulo não é combinação linear dos vectores
$$x_1, x_2$$
 e x_3 . V F

d) Se
$$x_4 \in \mathbb{R}^4 \setminus \langle x_1, x_2, x_3 \rangle$$
, então $\{x_1, x_2, x_3, x_4\}$ é uma base de \mathbb{R}^4 . V F

3. Considere a matriz A seguinte

LEI

$$A = \left(\begin{array}{rrr} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

a) $1 \in 3$ são valores próprios de A.

b) O sistema $(A - I_3)x = 0$ tem duas soluções distintas. V F

c) -1 é valor próprio de -A. V F

 $\mathbf{d}) \det(A) = 9.$

('otegoog			Parte III-1		Parte III-3
	2+2+2	1.5 + 1.5	1.5 + 1 + 1.5 + 1 + 1	2+1	2

- II. Para cada questão deste grupo, indique a (única) alínea que contém uma afirmação verdadeira, colocando uma circunferência no símbolo correspondente.
 - 1. Considere a matriz

$$A = \left(\begin{array}{ccc} 4 & 1 & -5 \\ 0 & -1 & 0 \\ 2 & 0 & -3 \end{array}\right).$$

- a) A matriz A é simétrica.
- **b**) A transposta de A é a matriz $\begin{pmatrix} -3 & 0 & -5 \\ 0 & -1 & 1 \\ 2 & 0 & 4 \end{pmatrix}$.
- \mathbf{c}) A matriz A tem característica igual a 2.
- d) A matriz A é invertível e a sua inversa é a matriz $\frac{1}{2}\begin{pmatrix} 3 & 3 & -5 \\ 0 & -2 & 0 \\ 2 & 2 & -4 \end{pmatrix}$.
- **2**. Considere o seguinte subespaço F de \mathbb{R}^3

$$F = \left\{ (x, y, z) \in \mathbb{R}^3 : x_1 + 2x_3 = 0 = x_1 + x_2 + 4x_3 \right\},\,$$

e seja $\{e_1, e_2, e_3\}$ a base canónica de \mathbb{R}^3 .

- $\mathbf{a}) \ \dim(F) = 3.$
- **b**) $2e_1 e_2 \in F$.
- c) F é gerado pelo vector (2, 2, -1).
- d) Existem vectores $u, v \in F$ tais que $u + v \notin F$.
- III. Responda às questões deste grupo justificando a sua resposta e apresentando todos os cálculos efectuados.
 - 1. Considere a aplicação $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por:

$$f(x, y, z) = (x - y + z, x + 3z, -y - 2z)$$

- a) Mostre que a aplicação f é linear.
- b) Determine a matriz da aplicação linear f relativamente à base canónica de \mathbb{R}^3 .
- c) Determine o núcleo da aplicação e a sua dimensão.
- d) Verifique se a aplicação é injectiva.
- e) Verifique se $(0, -1, 0) \in \text{Im}(f)$.
- 2. Considere o seguinte sistema de equações lineares nas incógnitas $x, y \in z$.

$$\begin{cases} x - y + 2z = 1 \\ -x + 3y - 2z = \alpha - 2 \\ 2x - y + (\beta + 2)z = 2 \end{cases}$$

- a) Discuta o sistema em função dos parâmetros reais α e β .
- **b**) Para $\alpha = 2$ e $\beta = 0$, verifique se (-1,0,1) é solução do sistema.
- 3. Sejam u_1 , u_2 , u_3 três vectores linearmente independentes de um espaço vectorial real V. Prove que, se $v \in V$ é tal que os vectores u_1 , u_2 , u_3 , v são linearmente dependentes, então v pode ser escrito como combinação linear de u_1 , u_2 , u_3 .