10	30	50
		GCCTTCTCCCTCCTCTGCCTCC AlaPheSerLeuLeuCysLeuL 110
		ACCTGCCCCTGGCCACCTCCCC ThrCysProTrpProProProA 170
		GGCTGCTGCCGGGTATGTGCAC GlyCysCysArgValCysAlaA 230
		GACGCCAGCCAGGGCCTGGTCT AspAlaSerGlnGlyLeuValC 290
		GCCTCTTGGCAGAGGACGACA CysLeuLeuAlaGluAspAspS 350
		GAGACCTTCCAGCCCCACTGCA GluThrPheGlnProHisCysS 410
		GTGCCGCTGTGCAGCGAGGATG ValProLeuCysSerGluAspV 470
		GTCGAGGTCCTGGGCAAGTGCT ValGluValLeuGlyLysCysC 530
		ACCCAGCCCCTTCCAGCCCAAG hrGlnProLeuProAlaGlnG 590
		GGTGTCCCCTGCCCAGAATGGA GlvValProCvsProGluTrpS

610	630	650
		GGCATGGCCACCCGGGTGTCCA GlyMetAlaThrArgValSerA 710
		CCTGTGCCTGTCCAGGCCCTGCC LeuCysLeuSerArgProCysF 770
	GTCCACAAAACAGTGCCTTC erProGlnAsnSerAlaPhe 810	TAGAGCCGGGCTGGGAATGGGG End 830
ACACGGTGTCCACCATCCC 850	CCAGCTGGTGGCCCTGTGCC 870	TGGGCCCTGGGCTGATGGAAGA 890
TGGTCCGTGCCCAGGCCCT 910	TGGCTGCAGGCAACACTTT. 930	AGCTTGGGTCCACCATGCAGAA 950
CACCAATATTAACACGCTG 970	GCCTGGTCTGTCTGGATCCC 990	GAGGTATGGCAGAGGTGCAAGA 1010
CCTAGTCCCCTTTCCTCTA 1030	ACTCACTGCCTAGGAGGCT 1050	GGCCAAGGTGTCCAGGGTCCTC
TAGCCCACTCCCTGCCTAC 1090	CACACACAGCCTATATCAAA 1110	CATGCACACGGGCGAGCTTTCT 1130
CTCCGACTTCCCCTGGGCA 1150	VAGAGATGGGACAAGCAGTC 1170	CCTTAATATTGAGGCTGCAGCA 1190
GGTGCTGGGCTGGACTGGC 1210	CCATTTTTCTGGGGGTAGGA	TGAAGAGAAGGCACACAGAGAT 1250
TCTGGATCTCCTGCTGCCT 1270	TTTCTGGAGTTTGTAAAAT	TGTTCCTGAATACAAGCCTATG
CGTGAAAAAAAAAAAAAAAA	ΔΔΔΔΔΔ	

	1				50
CTGF-1aa CTGF-3aa				SGPCRCPDEP PTPCTCP.WP	
CTGF-1aa CTGF-3aa				LFCDFGSPAN LVCQPGAGPG	
CTGF-1aa CTGF-3aa		· · · · · · · · · · · · · · · · · · ·	•	GAVGCMPLCS GGFTCVPLCS	
CTGF-1aa CTGF-3aa			•	LAAYRLEDTF AQGPQFSGLV	
CTGF-1aa CTGF-3aa	•			RLEKQSRLCM RLETQRRLCL	
CTGF-1aa CTGF-3aa	251 NIKKGKKCIR SPQNSAF	TPKISKPIKF	ELSGCTSMKT	YRAKFCGVCT	300 DGRCCTPHRT
CTGF-1aa CTGF-3aa	301 TTLPVEFKCP	DGEVMKKNMM	FIKTCACHYN	CPGDNDIFES	350 LYYRKMYGDM
CTGF-1aa CTGF-3aa	351 A				

FIG.2

