

RECEIVED
AUG 27 2001
#9

TECH CENTER 1600/2900 PATENTS
AEOMICA-1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants : Sharron G. Penn et al.
Serial No. : 09/774,203
Conf. No. : 7320
Filed: : January 29, 2001
For: : METHODS AND APPARATUS FOR PREDICTING,
CONFIRMING, AND DISPLAYING FUNCTIONAL
INFORMATION DERIVED FROM GENOMIC
SEQUENCE

Group Art Unit : 1645

Hon. Commissioner for Patents
Washington, D.C. 20231

SECOND SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT

Sir:

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98,
applicants hereby make the following documents of record in
the above identified application:
^{*}

Other Documents

Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377, 3-174 (1995).

Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185-2195 (2000).

* Applicants reserve the right to challenge the status of any of the cited documents as prior art.

RECEIVED
JAN 24 2002

TECH CENTER 1600/2900

Altschul, S.F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).

Batzoglou, S., Pachter, L., Mesirov, J. P., Berger, B. & Lander, E. S. Human and mouse gene structure: comparative analysis and application to exon prediction. Genome Res. 10, 950-958 (2000).

Black, D. L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367-370 (2000).

Brett, D. et al. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett. 474, 83-86 (2000).

Boguski, M. S. Biosequence exegesis. Science 286, 453-455 (1999).

Claverie, J. M. Computational methods for the identification of genes in vertebrate genomic sequences. Hum. Mol. Genet. 6, 1735-1744 (1997).

de Souza, S. J. et al. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags. Proc. Natl Acad. Sci. USA 97, 12690-12693 (2000).

Ewing, B. & Green, P. Analysis of expressed sequence tags indicates 35,000 human genes. Nature Genet. 25, 232-234 (2000).

Guigo, R., Agarwal, P., Abril, J. F., Burset, M. & Fickett, J. W. An assessment of gene prediction accuracy in large DNA sequences. Genome Res. 10, 1631-1642 (2000).

Hanke, J. et al. Alternative splicing of human genes: more the rule than the exception? Trends Genet. 15, 389-390 (1999).

Hubbard, T. & Birney, E. Open annotation offers a democratic solution to genome sequencing. Nature 403, 825 (2000).

Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109-126 (2000).

Liang, F. et al. Gene index analysis of the human genome estimates approximately 120,000 genes. Nature Genet. 25, 239-240 (2000).

Makalowski, W. & Boguski, M. S. Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc. Natl Acad. Sci. USA 95, 9407-9412 (1998).

Marshall, E. Public-private project to deliver mouse genome in 6 months. Science 290, 242-243 (2000).

Blanchard, A. P., Kaiser, R. J. & Hood, L. E. High-density oligonucleotide arrays. Biosens. Bioelectron. 6/7, 687-690 (1996).

Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. 4, 1293-1301 (1998).

Mironov, A. A., Fickett, J. W. & Gelfand, M. S. Frequent alternative splicing of human genes. Genome Res. 9, 1288-1293 (1999).

The RIKEN Genome Exploration Research Group Phase II Team and the FANTOM Consortium. Functional annotation of a full-length mouse cDNAs collection. Nature 409, 685-690 (2001).

Roberts, C. J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873-880 (2000).

Roest Crollius, H. et al. Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence. Nature Genet. 25, 235-238 (2000).

Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204-2215 (2000).

Strausberg, R. L., Feingold, E. A., Klausner, R. D. & Collins, F. S. The mammalian gene collection. Science 286, 455-457 (1999).

Ullrich, B. et al. Functional properties of multiple synaptotagmins in brain. Neuron 13(6): 1281-1291 (1994).

Wheelan, S. J. & Boguski, M. S. Late-night thoughts on the sequence annotation problem. Genome Res. 8, 168-169 (1998).

Wigge, P. & McMahon, H.T. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci. 21, 339-344 (1998).

Worley, J. et al. "A systems approach to fabricating and analyzing DNA microarrays," in Microarray Biochip Technology (ed. Schena, M.) 65-86 (Biotechniques Books, Natick, Massachusetts, 2000).

Copies of the aforementioned documents, which are listed on the accompanying Form PTO-1449 (submitted in duplicate), are enclosed herewith.

It is respectfully requested that this document be (1) fully considered by the Patent and Trademark Office during the examination of this application; and (2) printed on any patent that may issue on this application.

Applicants request that a copy of Form PTO-1449 (submitted in duplicate herewith), as considered and initialed by the Examiner, be returned with the next communication.

An early and favorable action is respectfully requested.

16 AUG 2001

Date

I hereby Certify that this
Correspondence is being
Deposited with the U.S.
Postal Service as First
Class Mail in an Envelope
Addressed to:
ASSISTANT
COUNSEL FOR PATENTS
WILMINGTON, D.C. 20231, ON

08-16-2001

LIAO JIANG

Signature of Person Signing

Respectfully submitted,

Daniel M. Becker

Reg. No. 38,376

Attorney for Applicants

FISH & NEAVE

Customer No. 1473

1251 Avenue of the Americas

New York, N. Y. 10020

(650) 617-4000 (CA)

Sheet 1 of 1

FORM PTO-1449

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICEATTY. DOCKET NO.
AEOMICA-1SERIAL NO.
09/774,203INFORMATION DISCLOSURE
STATEMENT BY APPLICANTAPPLICANT
Penn et al.FILING DATE
January 29, 2001TECH CENTER 1600/2900
GROUP 545
2002 JAN 24

AUG 27 2001

RECEIVED

U.S. PATENT DOCUMENTS

EXAMINER INITIAL	DOCUMENT NUMBER	DATE	NAME	CLASS	SUBCLASS	TECH CENTER 1600/2900	FILING DATE IF APPROPRIATE

FOREIGN PATENT DOCUMENTS

EXAMINER INITIAL	DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	TRANSLATION	
						YES	NO

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.)

EXAMINER INITIAL	REDACTED
	Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377, 3-174 (1995).
	Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185-2195 (2000).
	Altschul, S.F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).
	Batzoglou, S., Pachter, L., Mesirov, J. P., Berger, B. & Lander, E. S. Human and mouse gene structure: comparative analysis and application to exon prediction. Genome Res. 10, 950-958 (2000).
	Black, D. L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367-370 (2000).
	Brett, D. et al. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett. 474, 83-86 (2000).
	Boguski, M. S. Biosequence exegesis. Science 286, 453-455 (1999).
	Claverie, J. M. Computational methods for the identification of genes in vertebrate genomic sequences. Hum. Mol. Genet. 6, 1735-1744 (1997).
	de Souza, S. J. et al. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags. Proc. Natl Acad. Sci. USA 97, 12690-12693 (2000).
	Ewing, B. & Green, P. Analysis of expressed sequence tags indicates 35,000 human genes. Nature Genet. 25, 232-234 (2000).

EXAMINER

DATE CONSIDERED

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO 1449

U.S. DEPARTMENT OF COMMERCE
PATENT & TRADEMARK OFFICEINFORMATION DISCLOSURE
STATEMENT BY APPLICANTATTY. DOCKET NO.
AEOMICA-1SERIAL NO.
09/774,203APPLICANT
Penn et al.FILING DATE
January 29, 2001D 02
GROUP
1645 4^t

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.)

EXAMINER INITIAL	
	Guigo, R., Agarwal, P., Abril, J. F., Burset, M. & Fickett, J. W. An assessment of gene prediction accuracy in large DNA sequences. <i>Genome Res.</i> 10, 1631-1642 (2000).
	Hanke, J. et al. Alternative splicing of human genes: more the rule than the exception? <i>Trends Genet.</i> 15, 389-390 (1999).
	Hubbard, T. & Birney, E. Open annotation offers a democratic solution to genome sequencing. <i>Nature</i> 403, 825 (2000).
	Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. <i>Cell</i> 102, 109-126 (2000).
	Liang, F. et al. Gene index analysis of the human genome estimates approximately 120,000 genes. <i>Nature Genet.</i> 25, 239-240 (2000).
	Makalowski, W. & Boguski, M. S. Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. <i>Proc. Natl Acad. Sci. USA</i> 95, 9407-9412 (1998).
	Marshall, E. Public-private project to deliver mouse genome in 6 months. <i>Science</i> 290, 242-243 (2000).
	Blanchard, A. P., Kaiser, R. J. & Hood, L. E. High-density oligonucleotide arrays. <i>Biosens. Bioelectron.</i> 6/7, 687-690 (1996).
	Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. <i>Nature Med.</i> 4, 1293-1301 (1998).
	Mironov, A. A., Fickett, J. W. & Gelfand, M. S. Frequent alternative splicing of human genes. <i>Genome Res.</i> 9, 1288-1293 (1999).
	The RIKEN Genome Exploration Research Group Phase II Team and the FANTOM Consortium. Functional annotation of a full-length mouse cDNAs collection. <i>Nature</i> 409, 685-690 (2001).
	Roberts, C. J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. <i>Science</i> 287, 873-880 (2000).
	Roest Crolli, H. et al. Estimate of human gene number provided by genome-wide analysis using <i>Tetraodon nigroviridis</i> DNA sequence. <i>Nature Genet.</i> 25, 235-238 (2000).
	Rubin, G. M. et al. Comparative genomics of the eukaryotes. <i>Science</i> 287, 2204-2215 (2000).
	Strausberg, R. L., Feingold, E. A., Klausner, R. D. & Collins, F. S. The mammalian gene collection. <i>Science</i> 286, 455-457 (1999).
	Ullrich, B. et al. Functional properties of multiple synaptotagmins in brain. <i>Neuron</i> 13(6): 1281-1291 (1994).
	Wheelan, S. J. & Boguski, M. S. Late-night thoughts on the sequence annotation problem. <i>Genome Res.</i> 8, 168-169 (1998).

EXAMINER

DATE CONSIDERED

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449

AUG 21 2001

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICEINFORMATION DISCLOSURE
STATEMENT BY APPLICANTATTY. DOCKET NO.
AEOMICA-1SERIAL NO.
09/774,203APPLICANT
Penn et al.FILING DATE
January 29, 2001GROUP
24645

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, etc.)

EXAMINER INITIAL	
	Wigge, P. & McMahon, H.T. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci. 21, 339-344 (1998).
	Worley, J. et al. "A systems approach to fabricating and analyzing DNA microarrays," in Microarray Biochip Technology (ed. Schena, M.) 65-86 (Biotechniques Books, Natick, Massachusetts, 2000).

EXAMINER

DATE CONSIDERED

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not conformance and not considered. Include copy of this form with next communication to applicant.