EXPLORATORY DATA ANALYTICS - FOOD ORDER AND DELIVERY

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore")

df=pd.read_csv("/content/food_order.csv")
df
```

	order_id	customer_id	restaurant_name	cuisine_type	cost_of_the_order	day
0	1477147	337525	Hangawi	Korean	30.75	
1	1477685	358141	Blue Ribbon Sushi Izakaya	Japanese	12.08	
2	1477070	66393	Cafe Habana	Mexican	12.23	
3	1477334	106968	Blue Ribbon Fried Chicken	American	29.20	
4	1478249	76942	Dirty Bird to Go	American	11.59	
1893	1476701	292602	Chipotle Mexican Grill \$1.99 Delivery	Mexican	22.31	
1894	1477421	397537	The Smile	American	12.18	
1895	1477819	35309	Rlue Ribbon Sushi	.lananese	25 22)

df.isna().sum()

```
order_id 0
customer_id 0
restaurant_name 0
cuisine_type 0
cost_of_the_order 0
day_of_the_week 0
rating 0
food_preparation_time 0
delivery_time 0
dtype: int64
```

df.info()

<class 'pandas.core.frame.DataFrame'>

8 delivery_time 1898 non-nu dtypes: float64(1), int64(4), object(4) memory usage: 133.6+ KB

df.describe()

deliv	<pre>food_preparation_time</pre>	cost_of_the_order	customer_id	order_id	
18	1898.000000	1898.000000	1898.000000	1.898000e+03	count
	27.371970	16.498851	171168.478398	1.477496e+06	mean
	4.632481	7.483812	113698.139743	5.480497e+02	std
	20.000000	4.470000	1311.000000	1.476547e+06	min
	23.000000	12.080000	77787.750000	1.477021e+06	25%
	27.000000	14.140000	128600.000000	1.477496e+06	50%

df["rating"].value_counts()

```
Not given 736
5 588
4 386
3 188
```

Name: rating, dtype: int64

```
df['rating_new'] = df['rating'].replace('Not given', np.nan).astype(float)
df['rating_new'] = df['rating_new'].fillna(value = df.groupby(['restaurant_name'])['rating_new'].fillna(value = df.groupby(['restaurant_
```

df.isna().sum()

```
order_id 0
customer_id 0
restaurant_name 0
cuisine_type 0
cost_of_the_order 0
day_of_the_week 0
rating 0
food_preparation_time 0
delivery_time 0
rating_new 30
dtype: int64
```

df.duplicated().sum()

0

HEAT MAP

```
plt.figure(figsize=(15,5))
sns.heatmap(df.corr(),annot=True,cmap="Blues",vmin=-1,vmax=1)
plt.show()
```


DISTRIBUTION OF DELIVERY TIME

```
plt.figure(figsize=(10,5))
sns.histplot(data=df, x='delivery_time',kde=True, color='orange')
plt.xlabel('Delivery Time')
plt.ylabel('Order Count')
plt.title('Distribution of Delivery Time')
plt.show()
```



```
plt.figure(figsize=(10,5))
sns.boxplot(data=df, x='delivery_time', color='red')
plt.xlabel('Delivery Time')
plt.title('Boxplot of Delivery Time')
plt.show()
```


AVERAGE RATING PER CUISINE TYPE

```
plt.figure(figsize=(10,7))
sns.barplot(data=df, y='cuisine_type', x='rating_new')
plt.xlabel('Avg Rating')
plt.ylabel('Cuisine Type')
plt.xlim(3,5)
plt.title('Avg Rating per Cuisine Type')
plt.show()
```


AVERAGE COST PER CUISINE TYPE

```
plt.figure(figsize=(15,8))
sns.barplot(data=df, y='cost_of_the_order', x='cuisine_type', hue='day_of_the_week')
plt.ylabel('Cost of Orders')
plt.xlabel('Cuisine Type')
plt.title('Cost of Orders per Cuisine Type')
plt.show()
```


OVER ALL ORDER RATING PER CUISINE TYPE

```
plt.figure(figsize=(7,7))
sns.barplot(data=df,x="rating_new",y="cuisine_type")
plt.xlabel("Order Rating")
plt.ylabel("Cuisine Type")
plt.xlim(3,5)
plt.title("Over all order rating per cuisine type")
plt.grid(axis="x",linestyle="--",linewidth=0.4)
plt.show()
```


Colab paid products - Cancel contracts here

✓ 1s completed at 12:00 PM

• x