Лабораторная работа №2

Настройка сетей LAN и VLAN в программном обеспечении Cisco Packet Tracer

Цель работы: Научиться с помошью LAN и VLAN создавать сети различной логической структуры , а также конфигурировать магистральные порты и маршрутизацию между разными LAN и VLAN .

Теоретическая часть:

LAN означает **Локальная сеть** — это группа сетевых устройств, которые обеспечивают связь между подключенными устройствами

VLAN означает **Виртуальную локальную сеть**, которая используется для повышения производительности локальных сетей.

Основное различие между LAN (локальная сеть) и VLAN (виртуальная локальная сеть) состоит в том, что LAN работает в одном широковещательном домене, с другой стороны, VLAN работает в нескольких широковещательных доменах, а в локальной сети пакет объявляется каждому устройству, пока в виртуальных локальных сетях передаются пакеты в определенный широковещательный домен

Figure of VLAN

VLAN A

Cisco Packet Tracer — это мощная программа моделирования сетей, которая позволяет системным администраторам экспериментировать с поведением сети и оценивать

VLAN B

возможные сценарии развития событий. Этот инструмент дополняет физическое оборудование, позволяя создавать сети с практически неограниченным количеством устройств, и помогает получить практические навыки конфигурирования, поиска и устранения проблем и обнаружения устройств.

Практическая часть:

Окно программы и его структура представлены ниже.

Открыть Packet Tracer и создать на рабочем поле:

- а. 16 компьютеров
- b. Сервер
- с. 3 коммутатора Cisco 2960
- d. Маршрутизатор Cisco 1941
- e. Poyrep Cisco WRT300N

Итого: 22 устройства

У четырёх компьютеров в третьем отделе заменить LAN разъём на Wi-Fi антенну. Для этого открываем устройство, выключаем его, вынимаем старый модуль, меняем его на Wi-Fi (WMP300N) антенну. Включаем компьютер.

Каждому компьютеру в первом и втором отделе, а также серверу присвоим значения по формуле: N0.0.0.n, где N — номер отдела, а n — номер устройства (например, 10.0.0.2 — второй компьютер на первом этаже). Сервер, так как он третье устройство на втором этаже будет иметь адрес 20.0.0.3.

Маску	подсети	выставим	на	255.255.255.0.
Default	Gateway		выставим	N0.0.0.254.
DNS Server	выставляем на 20.0.0.3.			

Пример правильно настроенного ПК в первом отделе:

Пример правильно настроенного ПК во втором отделе:

На сервере выставим такие настройки:

Выставим IP по формуле 30.0.0.10n, где n — номер ПК. Пример правильно настроенного ПК в третьем отделе:

Продолжим настройку ПК. Первый IP -30.0.0.101, а последний -30.0.0.110

Настройка роутера.

Выставим настройки:

IP - 30.0.0.253

Маска - 255.255.255.0

Start IP Address - 30.0.0.1

Maximum number of Users – 20

Static DNS 1 - 20.0.0.3

Network Name - Cisco2107

SSID Broadcast - Disabled

Security Mode - WPA2-Personal

Passphrase - junior17

Скриншоты всех настраиваемых вкладок роутера:

Настройка беспроводных ПК. Задаём имя сети **Cisco2107** и WPA2-Personal пароль – **junior17**

Пример настроек одного из ПК:

Подключаем кабели и соединяем отделы.

Соединяем ПК витой парой.

Во всех коммутаторах подключаем кабели к FastEthernet по часовой стрелке. В маршрутизаторе подключимся к гигабитному разъёму, предварительно его включив. Настраиваем VLAN на всех коммутаторах. Для этого открываем коммутатор в первом отделе. Переходим в интерфейс командной строки и вводим команды:

Switch>en

Switch#conf t

Switch(config)#vlan 10

Switch(config-vlan)#name Office1

Switch(config-vlan)#end

Рассмотрим все команды.

- 1. En enable. Расширенный доступ к конфигурации
- 2. Conf t Configuration terminal. Открывает терминал настройки
- 3. Vlan 10 создаёт виртуальную сеть с индексом 10
- 4. Name Office1 задаётся имя VLAN. Имя Office1.
- 5. End завершения настройки.

Открываем коммутатор во втором отделе и прописываем следующие команды:

Switch>en

Switch#conf t

Switch(config)#vlan 10

Switch(config-vlan)#name Office1

Switch(config-vlan)#exit

Switch(config)#vlan 20

Switch(config-vlan)#name Office2

Switch(config-vlan)#exit

Switch(config)#vlan 30

Switch(config-vlan)#name Office3

Switch(config-vlan)#exit

Switch(config)#end

Открываем коммутатор в третьем отделе и прописываем следующие команды:

Switch>en

Switch#conf t

Switch(config)#vlan 30

Switch(config-vlan)#name Office3

Switch(config-vlan)#end

Выставляем на пером коммутаторе VLAN 10 на все порты, к которым есть подключение (Fa0/1-Fa0/5).

На втором коммутаторе нужно выставить порт, к которому подключен коммутатор из первого отдела VLAN-10, из третьего VLAN-30, а 2 ПК и сервер второго отдела VLAN-20. То есть Fa0/1-VLAN-10, Fa0/2-Fa0/4-VLAN-20, Fa0/5-VLAN-30. Fa0/6, соединяющий коммутатор и маршрутизатор выставляем в Trunk режим.

На третьем коммутаторе нужно выставить на все порты VLAN 30 (Fa0/1-Fa0/8). Затем, производим настроим маршрутизатора для работы с VLAN.

Также, переходим во вкладку CLI и прописывает там команды:

Router>en

Router#conf t

Router(config)#int gig 0/0.10

Router(config-subif)#encapsulation dot1Q 10

Router(config-subif)#ip address 10.0.0.254 255.255.255.0

Router(config-subif)#exit

Router(config)#int gig 0/0.20

Router(config-subif)#encapsulation dot1Q 20

Router(config-subif)#ip address 20.0.0.254 255.255.255.0

Router(config-subif)#exit

Router(config)#int gig 0/0.30

Router(config-subif)#encapsulation dot1Q 30

Router(config-subif)#ip address 30.0.0.254 255.255.255.0

Router(config-subif)#end

Теперь разберём команды:

- 1. int gig 0/0.10. Команда подключает виртуальный интерфейс для работы с разными VLAN. Цифра после точки номер VLAN.
- 2. Encapsulation dot1Q 10. Команда настройки VLAN в sub. Номер после dot1Q номер VLAN.
- 3. ip address 10.0.0.254 255.255.255.0. IP адрес выхода пакетов информации.

Теперь протестируем сеть командой ping. Возьмём любой компьютер в каждом отделе и пропингуем все отделы (в третьем отделе проверим и проводную сеть и беспроводную).

Первый отдел

Второй отдел

Третий отдел (кабель)

```
Physical Cords Contain Proposing Attributes

Sementic Transe PC Command line 1:0

Civipida 30.0.0.128 visits B bytes of data:

Reply from 50.0.128 visits B bytes of data:

Reply from 50.0.138 visits B bytes of data:

Reply from 50.0.108 visits B
```

Третий отдел (Wi-Fi)

Добавляем административный VLAN (40 — Management).

Настройка сервера.

Включаем DNS.

Name — www.cisco.com.

Address – 20.0.0.3.

Проверим возможность выхода на сайт из любого отдела. Вводим URL имя в браузере и нажимаем Go

В итоге работа выполнена так:

Задание:

• В качестве проверки отправить пакет из каждого, либо узла до места назначения. Если он пройдет, то сеть настроена и построена правильна.

Контрольные вопросы:

- 1. Различие между LAN и VLAN?
- 2. Что такое Cisco Packet Tracer?
- 3. В чём заключаются преимущества маршрутизации между VLAN с использованием транкового канала или конфигурации ROS?
- 4. Какие существуют режимы работы в консоли Cisco Packet Tracer? Охарактеризуйте их.