Introduction to Algorithms

Gou Guanglei(苟光磊) ggl@cqut.edu.cn

Teaching staff

- Instructor: Gou Guanglei(苟光磊)
 - Office room: Lab Building No.1 B209
 - Office hour: Monday 14:00-16:00
 - Email: ggl@cqut.edu.cn
- TA: None for now.

Course information

- This course introduces basic concept of design and analysis of algorithms.
- Prerequisites: discrete mathematics, data structures, basic probability
- Textbook:
 - Algorithms by Dasgupta, Papadimitriou, and Vazirani

Course material

- Web Site (youku, baidu, opencourse)
- Some recommended books

Evaluation

- Participation(attendance, quiz): 10%
- Homework: 20%
- Presentation: 20%
- Final term: 50%

Why

- Programming ==
 Data Structures +
 Algorithms
- Thinking and solving problems like computer scientist

Why study algorithms and performance?

- Algorithms help us to understand scalability.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a *language* for talking about program behavior.
- Performance is the *currency* of computing.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!

How to study

- Understanding lectures is not enough
- Doing exercises on your own solutions.
- Teaching is best way to learn. Try to explain your idea to your friends.
- Make study groups to discuss problems.

Contents

- Design paradigms
 - Divide and conquer
 - Dynamic programming
 - Greedy algorithms
 - Randomized algorithms
- Analysis techniques
 - Recurrences
 - Asymptotic analysis
 - Probabilities analysis
- Graph algorithms
 - Minimum spanning tree
 - Shortest path
- NP-completeness

Algorithms

- Definition: A well-defined computational procedure to solve a computational problem (to transform some input into a desired output).
- Statement of the problem specifies the desired input/ output relationship.
- Algorithm describes a specific computational procedure for achieving that input/output relationship.

Fibonacci numbers

Recursive definition:

$$F_{n} = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

$$0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \cdots$$

```
function fib1(n)

if n = 0: return 0

if n = 1: return 1

return fib1(n = 1) + fib1(n = 2)
```

Analysis

- Let T(n) denote computer steps needed to compute fib1(n).
- $T(n) \le 2$ for $n \le 1$
- T(n) = T(n-1) + T(n-2) + 3 for n > 1
- $T(n) \ge Fn$
- $Fn \approx 2^{0.694n}$
- T(n) is exponential in n! very slow except for very small n

Can we do better?

```
\frac{\text{function fib2}(n)}{\text{if } n = 0 \text{ return } 0}
\text{create an array } f[0...n]
f[0] = 0, f[1] = 1
\text{for } i = 2...n:
f[i] = f[i-1] + f[i-2]
\text{return } f[n]
```

More carefully analysis

- We counted the number of <u>basic computer steps</u> executed by each algorithm assuming that each step takes a constant amount of time.
- Basic computer steps: branching, loading, storing, comparisons, simple arithmetic, and so on
- This is a very useful simplification.

The problem of sorting

Input: sequence $\langle a1, a2, ..., an \rangle$ of numbers.

Output: permutation $\langle a'1, a'2, ..., a'n \rangle$ such that $a'1 \le a'2 \le ... \le a'n$.

Example:

Input: 8 2 4 9 3 6

Output:2 3 4 6 8 9

Insertion sort

INSERTION-SORT
$$(A, n)
ightharpoonup A[1 ... n]$$

for $j \leftarrow 2$ to n

do $key \leftarrow A[j]$
 $i \leftarrow j - 1$

while $i > 0$ and $A[i] > key$

do $A[i+1] \leftarrow A[i]$
 $i \leftarrow i - 1$
 $A[i+1] = key$

Algorithms

2.1 INSERTION SORT DEMO

Insert A[i] right after the largest thing that's still smaller than A[i].

This sounds like a job for...

Proof By Induction!

- Inductive hypothesis. After iteration i of the outer loop, A[:i+1] is sorted.
- Base case. When i = 0, A[:1] contains only one element, and this is sorted.
- Inductive step. Suppose that the inductive hypothesis holds for i 1, so A[:i] is sorted after the i 1'st iteration. We want to show that A[:i+1] is sorted after the i'th iteration.

Suppose that j^* is the largest integer in $\{0, \ldots, i-1\}$ so that $A[j^*] < A[i]$. Then the effect of the inner loop is to turn

$$[A[0], A[1], \dots, A[j^*], \dots, A[i-1], A[i]]$$

into

$$[A[0], A[1], \dots, A[j^*], A[i], A[j^*+1], \dots, A[i-1]].$$

We claim that this latter list is sorted. This is because $A[i] > A[j^*]$, and by the inductive hypothesis, we have $A[j^*] \ge A[j]$ for all $j \le j^*$, and so A[i] is larger than everything that is positioned before it. Similarly, by the choice of j^* we have $A[i] \le A[j^*+1] \le A[j]$ for all $j \ge j^*+1$, so A[i] is smaller than everything that comes after it. Thus, A[i] is in the right place. All of the other elements were already in the right place, so this proves the claim.

Thus, after the *i*'th iteration completes, A[:i+1] is sorted, and this establishes the inductive hypothesis for *i*.

- What does the running time depend on?
- What is best/worst running time?

Running time

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input: short sequences are easier to sort than long ones.
- Usually, interested in the worst-case running time because
 - It gives an upper bound (because everybody likes a guarantee)
 - - For some algorithms, the worst case occurs often.
 - Average case is often as bad as the worst case.

Kinds of analyses

Worst-case: (usually):

• T(n) =maximum time of algorithm on any input of size n.

Average-case: (sometimes)

- T(n) =expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Best-case: (bogus)

• Cheat with a slow algorithm that works fast on someinput.

Machine-independent time

What is insertion sort's worst-case time?

It depends on the speed of our computer:

- relative speed (on the same machine),
- absolute speed (on different machines).

BIG IDEA:

- Ignore machine-dependent constants.
- Look at growth of T(n) as $n \rightarrow \infty$.

"Asymptotic Analysis"

Asymptotic Analysis

• Look only at the leading term of the formula for running time.

Example: for insertion sort, the worst-case running time is $an^2 + bn + c$.

It grows like n².

Asymptotic notation

O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

For example

$$T(n) = 3n^{2} + 17$$

$$T(n) = O(n^{2}) \checkmark$$

$$T(n) = O(n^{3}) \checkmark$$

Ω -notation (lower bounds)

$$\Omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n0 > 0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n0 \}$$

For example

$$T(n) = 3n^{2} - 2n$$

$$T(n) = \Omega(n^{2}) \sqrt{1}$$

$$T(n) = \omega(n\log n) \sqrt{1}$$

Θ-notation (tight bounds)

 $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c1, c2, \text{ and } n0 \text{ such that } 0 \le c1 \text{ } g(n) \le f(n) \le c2 \text{ } g(n) \text{ for all } n \ge n0\}$

• Example: $3n^3 + 90n^2 - 5n + 6046 = \Theta(n^3)$

o-notation

We write f(n) = o(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

- ω-notation
- $\omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n0 \}$

Theta	$f(n) = \theta(g(n))$	$f(n) \approx c g(n)$
BigOh	f(n) = O(g(n))	$f(n) \le c g(n)$
Omega	$f(n) = \Omega(g(n))$	$f(n) \ge c g(n)$
Little Oh	f(n) = o(g(n))	$f(n) \le c g(n)$
Little Omega	$f(n) = \omega(g(n))$	f(n) > c g(n)

Theorem

$$f(n) = \Theta(n)$$
 if and only if $f(n) = O(n)$ and $f(n) = \Omega(n)$

Properties

- P1: Transitivity $f \in O(g)$ and $g \in O(h) \Rightarrow f \in O(h)$ How about Ω , θ , θ , θ , θ
- P2: Duality $f \in O(g) \Leftrightarrow g \in \Omega(f)$
- P3: $f \in \Theta(g) \Rightarrow g \in \Theta(f)$
- P4: $O(f+g) = O(max\{f,g\})$