PENERAPAN METODE SIMPLE ADDICTIVE WEIGHTING (SAW) UNTUK MENENTUKAN KELAYAKAN PENERIMA BEASISWA KARTU INDONESIA PINTAR (KIP) KULIAH

Sasmita¹⁾, Alfis Arif ²⁾

¹⁾Prodi Teknik Informatika, Sekolah Tinggi Teknologi Pagar Alam, Jl Masik Siagim no. 75 Simpang Mbacang Dempo Tengah Pagar Alam

Email: sasmitha661@gmail.com

²⁾ Prodi Teknik Informatika, Sekolah Tinggi Teknologi Pagar Alam, Jl Masik Siagim no. 75 Simpang Mbacang Dempo Tengah Pagar Alam Email:<u>alfisarif@yahoo.com</u>

Abstrak

Tinjauan ini diharapkan dapat memberikan pilihan jaringan yang mendukung secara emosional dengan menggunakan teknik Simple Addicitive Weighting (SAW) untuk menentukan kualifikasi penerima beasiswa KIP perguruan tinggi. Dasar dari ujian ini adalah dalam menentukan penerima beasiswa Kuliah KIP, STT Pagar Alam sebenarnya menggunakan kerangka tradisional, untuk siswa yang akan datang mengumpulkan catatan dan melewati ujian yang berbeda, kemudian, pada saat itu, informasi siswa akan diperbandingkan dan aturan secara individual. Jaringan pilihan yang mendukung secara emosional adalah kerangka kerja data berbasis PC untuk membantu orang dalam memutuskan. Strategi perbaikan yang digunakan adalah Waterfall yang terdiri dari testing, plan, coding, testing dan support. Teknik Simple Addictive Weighting (SAW) akan diterapkan dalam menentukan pilihan jaringan yang mendukung secara emosional ini. Teknik ini dipilih karena strategi ini menentukan bobot insentif untuk setiap kualitas, kemudian dilanjutkan dengan penentuan posisi yang akan memilih opsi terbaik dari berbagai opsi lainnya. Jaringan pendukung emosional pilihan ini dibuat dengan memanfaatkan bahasa pemrograman PHP dengan struktur CodeIgniter 3. Pengujian framework ini menggunakan discovery testing dengan skor 3,6 dari master survey dan 3,8 dari eksekusi beta summarization dengan klasifikasi substansial sehingga dapat dibuat framework untuk melakukan teknik Simple Addictive Weighting. (SAW) untuk menentukan kualifikasi penerima Beasiswa KIP.

Kata kunci: SPK, Simple Addictive Weighting, Codeigniter

Abstract

This review means to deliver a choice emotionally supportive network utilizing the Simple Addictive Weighting (SAW) technique to decide the qualification of KIP College grant beneficiaries. The foundation of this exploration is that in deciding the beneficiaries of the KIP Lecture grants, STT Pagar Alam actually utilizes the ordinary framework, to be specific planned understudies gather documents and step through different exams, then, at that point, understudy information will be contrasted and the measures individually. Choice emotionally supportive network is a PC based data framework to help people in settling on a choice. The improvement strategy utilized is Waterfall which comprises of examination, plan, coding, testing and upkeep/support. The Simple Addictive Weighting (SAW) strategy will be applied in settling on this choice emotionally supportive network. This strategy was picked on the grounds that this technique decides the weight an incentive for each characteristic, then, at that point, continues with positioning which will choose the best option from various other options. This choice emotionally supportive network was made utilizing the PHP programming language with the codeigniter 3 structure. Testing this framework utilizing discovery testing with a score of 3.6 from master survey and 3.8 from the execution of beta restatement with substantial classifications so a framework for carrying out the Simple Addictive Weighting technique can be delivered. SAW) to decide the qualification of the beneficiaries of the KIP College grants.

Keywords: DSS, Simple Addictive Weighting, Codeigniter

1. PENDAHULUAN

Di era globalisasi saat ini perkembangan teknologi Di era globalisasi saat ini, peningkatan inovasi data sangat cepat.Peningkatan inovasi data telah berkembang dari penanganan informasi elektronik (PDE) ke kerangka data eksekutif (MIS) dan berlanjut ke jaringan yang mendukung secara emosional (DSS).Peningkatan inovasi data telah memungkinkan untuk menentukan pilihan dengan cepat dan hati-

hati.Pemanfaatan PC telah berkembang dari sekadar menyiapkan informasi atau memperkenalkan data bagi para eksekutif hingga memiliki opsi untuk memberikan keputusan sebagai bantuan dinamis yang seharusnya dimungkinkan oleh dewan. Kemampuan untuk mengambil keputusan dengan cepat dan hati-hati akan menjadi jalan menuju kesuksesan dalam kontes dunia nantinya (Suryadi, 2018).

Didalam mengambil suatu keputusan harus Dalam menetapkan suatu pilihan harus ada perenun-

gan dalam menentukan pilihan yang dipilih. Saat ini penentuan pilihan saat ini tidak hanya dengan penjelasan manusia, kendala manusia dalam berspekulasi untuk mengurus suatu masalah sekarang akan dapat dibantu oleh kerangka PC yang telah dibuat oleh manusia sendiri. Kemajuan inovatif saat ini memungkinkan mesin untuk berpikir dan memutuskan pilihan sendirian, atau pada akhirnya memiliki otak mereka sendiri untuk memilih pilihan dengan lebih tepat, cepat, dan tepat. Pemanfaatan PC memiliki maju dari hanya penyiapan informasi danpenyajian data, hingga memiliki pilihan untukmemberikan pilihan jaringan yang mendukung secara emosional yang ditujukan untuk membantu para pemimpin dalam menangani berbagai masalah, khususnya menemukan pengaturan yang mencakup naluri manusia dalam menentukan pilihan yang layak dan terampil serta menguntungkan untuk kantor.

Berdasarkan hasil observasi dan wawancara dengan pembantu ketua bidang kemahasiswaan STT Pagar Alam bahwa untuk menentukan kelayakan beasiswa Kartu Indonesia Pintar (KIP) Kuliah saat ini masih menggunakan sistem pemilihan konvensional, dengan cara mahasiswa mengumpulkan berkas kepada tim penyeleksi beasiswa Kartu Indonesia Kuliah kemudian mengikuti tes Pintar (KIP) wawancara dan CAT. Selanjutnya tim penyeleksi mahasiswa yang berhak mendapatkan beasiswa KIP Kuliah dengan mengecek satu persatu berkas yang telah diberikan kepada tim penyeleksi. Namun sistem ini dinilai kurang efektif dan efisien karena berdasarkan data yang diperoleh dari bagian kemahasiswaan STT Pagar Alam pada tahun 2019 mahasiswa calon pendaftar sebanyak 50 sedangkan kouta yang berikan sebanyak 4 orang, pada tahun 2020 calon pendaftar sebanyak 100 sedangkan kouta yang diberikan sebanyak 49 orang sehingga membutuhkan ketelitian dan waktu karena data mahasiswa akan dibandingkan dengan kriteria satu persatu. Untuk mengatasi permasalahan yang dialami oleh tim penyeleksi maka dibutuhkan suatu sistem untuk membantu tim penyeleksi.

Sistem Pendukung Pilihan Penerima Beasiswa Mahasiswa Berprestasi dengan Metode Simple Addictive Weighting" mengemukakan bahwa, selama interaksi dinamis untuk mendapatkan hibah yang belum dilakukan biasanya, sering terjadi salinan dan informasi yang tidak valid. Hasilnya adalah pemilihan penerima hibah yang tidak sesuai dengan asumsi, misalnya siswa yang kurang berprestasi mendapatkan hibah dan siswa yang seharusnya mendapatkan hibah tidak mendapatkan hibah. Ujian ini telah menghasilkan pilihan yang baik dalam penyelesaian dan penilaian nilai standar yang dimiliki oleh siswa, sehingga hasil yang tepat diketahui selama waktu yang dihabiskan untuk siswa yang luar biasa.

Sebagaimana ditunjukkan oleh (Purwanto, Subroto, dan Kurniadi, 2018) berjudul "Sistem Rekomendasi Penerimaan Kartu Indonesia Pintar (KIP) Menggunakan Metode Pembobotan Aditif Sederhana" mengungkapkan bahwa masih banyak anak muda di Indonesia yang putus sekolah.Oleh karena itu, pemerintah memberikan program instruksi sebagai Pro-

gram Indonesia Pintar (PIP) melalui Kartu Indonesia Pintar (KIP).Program ini berencana untuk menghilangkan hambatan keuangan bagi siswa untuk melanjutkan sekolah mereka.Namun, sebenarnya penerima manfaat program ini dinilai kurang tepat. Konsekuensi dari perbaikan framework adalah dapat diterapkan teknik Simple Additive Weighting untuk memutuskan pengakuan KIP. Ini ditunjukkan tergantung pada konsekuensi estimasi secara fisik dan efek samping dari komputasi oleh kerangka kerja menunjukkan hasil yang serupa.

Dari permasalahan yang telah diklarifikasi, diyakini keberadaan Sistem Pendukung Keputusan Penetapan Kelayakan Penerimaan Beasiswa Kartu Indonesia Pintar (KIP) Perguruan Tinggi dapat membangun kecukupan dan produktivitas. Kerangka kerja ini akan memiliki beberapa menu seperti dashboard, informasi siswa, informasi aturan, sub standar, informasi karakterisasi, deklarasi, hasil pilihan dan laporan. Kerangka kerja ini akan menangani informasi dengan perhitungan Simple Addictive Weighting (SAW), teknik ini dipilih karena dapat menentukan bobot insentif untuk setiap karakteristik, kemudian, pada saat itu, siklus penentuan posisi selesai yang akan memutuskan pilihan untuk mendapatkan hasil yang lebih tepat yang memenuhi syarat untuk hibah Kartu Indonesia Pintar (KIP).

2. METODE

2.1Simple Addictive Weighting

Menurut (Heriawan & Subawa, 2019) Strategi SAW dikenal sebagai teknik ekspansi berbobot.Strategi ini mengharuskan kepala suku untuk menentukan bobot lagi untuk setiap sifat.Skor lengkap untuk sebuah opsi diperoleh dengan memasukkan setiap peningkatan antara peringkat (yang dapat diukur di seluruh kredit) dan bobot masing-masing properti.Peringkat setiap kualitas harus tanpa pengukuran, yang berarti telah melewati standarisasi terlebih dahulu.Strategi SAW mempersepsikan adanya 2 (dua) sks, yaitu aturan untuk (keuntungan) dan ukuran biaya (Biaya).Perbedaan mendasar antara kedua standar ini adalah dalam penentuan langkah-langkah ketika memutuskan. Cara penanggulangannya adalah:

- 1. Tentukan Alternatifnya, lebih spesifik Ai
- 2. Memutuskan aturan-aturan yang akan digunakan sebagai semacam perspektif dalam memutuskan, lebih spesifik Cj.
- 3. Berikan peringkat kewajaran setiap opsi pada setiap model.
- 4. Tentukan berat kemiringan atau tingkat signifikansi (W) untuk setiap standar.W= [W1 W2 W3 ... Wj] Persamaan 1.
- 5.Buat tabel peringkat kecocokan untuk setiap opsi pada setiap model.
- 6. Tentukan kerangka pilihan yang dibentuk dari tabel peringkat kesesuaian untuk setiap opsi pada setiap basis. Nilai setiap opsi lain (Ai) pada setiap aturan (Cj) yang tidak tetap, di mana i=1,2,...,m dan j=1,2,...,n.

$\begin{bmatrix} x_{11} \\ x \end{bmatrix}$	<i>x</i> ₁₂	<i>x</i> ₁₃	 x_{1n}
$X = \begin{bmatrix} x_{21} \\ x_{31} \end{bmatrix}$	x_{22} x_{32}	x_{23} x_{33}	 $\begin{bmatrix} x_{2n} \\ x_{3n} \end{bmatrix}$
x_{m1}	x_{m2}	x_{m3}	 $\begin{bmatrix} \\ x_{mn} \end{bmatrix}$

Gambar 2.2: Matriks Keputusan

7. Standarisasi kisi-kisi pilihan dengan menghitung standar nilai pameran (rij) dari pilihan Ai pada ukuran Cj

$$r_{ij}=rac{X_{ij}}{Max\,X_{ij}}$$
 , jika j adalah atribut keuntungan (benefit) Persamaan 2 $r_{ij}=rac{i}{X_{ij}}$, jika j adalah atribut biaya (cost) Persamaan 3

Gambar 2.3: Rumus Normalisasi

8. Konsekuensi dari aturan standar peringkat (rij) struktur kisi standar (R).

$_{\lceil}r_{11}$	r_{12}	r_{13}	 r_{1n}
r_{21}	r_{22}	r_{23}	 r_{2n}
$R = r_{31} $	r_{32}	r_{33}	 r_{3n}
$\lfloor r_{m1}$	r_{m2}	r_{m3}	 r_{mn}

Gambar 2.4: Matriks Ternormalisasi

9. Hasil akhir dari nilai kemiringan (Vi) diperoleh dari jumlah komponen garis kisi standar (R) dengan beban kemiringan (W) dibandingkan dengan komponen segmen kerangka (W).

$$V_i = \sum_{j=1}^n w_j \, r_{ij}$$
 Persamaan 4

Gambar 2.5: Rumus Nilai Preferensi

 Akibat dari estimasi nilai Vi terbesar menunjukkan bahwa pilihan Ai adalah pilihan lain yang terbaik.

1. Menentukan Alternatif

Nama alternatif tuna grahita merupakan nama-nama yang digunakan untuk pemilihan alternatif dalam perhitungan metode SAW.

Tabel 3.1: Admin

No		Alternatif	Nama Mahasiswa
1	A1		Frengky Henandes
2	A2		Riski Indriani
3	A3		Deka Agustina
4	A4		Dina Oktari

2. Menentukan Bobot Kriteria

Setelah menetukan kriteria yang akan digunakan untuk perhitungan selanjutnya menentukan bobot kriteria. Keterangan Nilai setiap kriteria adalah sebagai berikut :

Tabel 3.2: Kriteria dan Bobot

Kode Kriteria	Kriteria	Keterangan B/C	Nilai Bobot %
C1	Penghasilan Keluarga	C	10
C2	Keterangan Perumahan	С	10
C3	Kepemilikan Aset	C	10
C4	Jumlah Tanggungan	В	15
C5	Memiliki Asransi Kesehatan Lainnya	С	5
C6	Rata-rata Raport	В	20
C7	Prestasi Non Akademik	В	10
C8	Tes Wawancara	В	10
C9	Tes CAT	В	10

3. Tabel Penilaian

1. Kriteria Penghasilan Keluargan

Kriteria Penghasilan Keluarga atau C1 adalah kriteria yang dilihat dari penghasilan keluarga.Berikut tabel3 untuk nilai kriteria penghasilan keluarga.

Tabel 3.3: Kriteria Penghasilan Keluarga

Kode	Nama Kriteria	Sub Kriteria	Nilai
		<1.000.000	100
C1	Penghasilan	1.000.000-5.000.000	75
	Keluarga	>5.000.000-10.000.000	50
		> 10.000.000	25

2. Keterangan Perumahan

Kriteria Keterangan Perumahan atau C2 terdiri 3 sub kriteria yaitu status penguasaan, luas lantai, dan jenis dinding terluas. Berikut tabel 4 untuk nilai kriteria keterangan perumahan.

Tabel 3.4: Kriteria Keterangan Perumahan

Kode	Nama Kriteria	Sub Kriteria	Nilai
		Status Penguasaan	
		Kontrak atau Sewa	100
		Milik Sendiri	25
		Luas Lantai	
		<50 m2	100
		50-100 m2	75
	Keterangan	>100-400 m2	50
		>400 m2	25
C2	Perumahan	Jenis Dinding Terluas	
	101011111111	Tembok Kualitas	40
		Tinggi	
		Tembok Kualitas	65
		Rendah	
		Kayu Kualitas Tinggi	0
		Tembok Kualitas	80
		Rendah	
		Bambu	100

3. Kepemilikan Aset

Kriteria Kepemilikan Aset atau C3 terdiri 3 sub kriteria yaitu aset bergerak, aset tidak bergerak, dan kepemilikaan ternak berkaki empat. Berikut tabel 4 untuk nilai kriteria kepemilikan aset.

Tabel 3.5: Kriteria Kepemilikan Aset

Kode	Nama Kriteria	Sub Kriteria	Nilai
		Aset Bergerak	
		Memiliki Mobil	0
		Tidak Memiliki	100
		Aset Tidak Bergerak	
		Memiliki Sawah/ Tanah	0
		Tidak Memiliki	100
C3	Kepemilikan Aset	Kepemilikan Ternak Berkaki Er	mpat
	Asct	Tidak Memiliki	100
		1 Ekor	80
		2 Ekor	60
		3-5 Ekor	40
		>5-10 Ekor	20
		>10 Ekor	0

4. Jumlah Tanggungan

Kriteria Jumlah Tanggungan atau C4 merupakan penjumlahan dari tanggungan anggota keluarga yang masih menjadi tanggungan kepala keluarga.Berikut tabel 4 untuk nilai kriteria jumlah tanggungan.

Tabel 3.6: kriteria jumlah tanggungan

Kode	Nama Kriteria	Sub Kriteria	Nilai
		0	0
C4	Jumlah	1 Anak	50
	Tanggungan	2-4 Anak	75
		> 4 Anak	100

5. Kepemilikan Asuransi Lainnya

Kriteria Kepemilikan Asuransi Lainnya atau C5 merupakan kepemilikan kartu asuransi kesehatan lainnya. Berikut tabel 4 untuk nilai kriteria kartu asuransi kesehatan lainnya.

Tabel 3.7: : Kriteria Kepemilikan Asuransi Lainnya

Kode	Nama Kriteria	Sub Kriteria	Nilai
	Kepemilikan	Ya	0
C5	Asuransi	Tidak	100
63	Kesehatan		
	Lainnya		

6. Rata-rata Raport

Kriteria Rata-rata Raport atau C6 merupakan prestasi akademik yang menghitung nilai rata-rata raport. Berikut tabel 4 untuk nilai kriteria rata-rata raport.

Tabel 3.8: Kriteria Rata-rata Raport

Kode	Nama Kriteria	Sub Kriteria	Nilai
	C6 Rata-rata Raport	91-100	100
		86-90	80
C6		81-85	75
		75-80	60
		70-74	50

7. Prestasi Non Akademik

Kriteria Prestasi Non Akademik atau C7 merupakan prestasi yang ditinjau dari keikutsertaan maupun prestasi yang tidak ada kaitannya dengan kegiatan akademis . Berikut tabel 4 untuk nilai kriteria prestasi non akademik Tabel 3.9: Kriteria Prestasi Non Akademik

Kode	Nama	Sub Kriteria	Nilai
	Kriteria		
		Internasional	100
	Prestasi Non	Nasional	80
C7		Provinsi	75
0,	Akademik	Kabupaten/Kota	60
		Sekolah	50
		Tidak Memiliki	0

8. Tes Wawancara

Kriteria Tes Wawancara atau C8 merupakan proses Tanya jawab secara lisan guna mendapatkan informasi lebih lanjut. Berikut tabel 4 untuk nilai kriteria tes wawancara.

Tabel 3.10: Kriteria Tes Wawancara

Kođe	Nama Kriteria	Sub Kriteria	Nilai
	Tes Wawancara	A	100
		A-	80
C8		B+	75
		В	60
		С	50
		D	20

9. Tes CAT

Kriteria Tes CAT (*Computer Assisted Test*) atau C9 merupakan tes berbasis komputer yang digunakan untuk seleksi. Berikut tabel 4 untuk nilai kriteria tes CAT.

Tabel 3.11: Kriteria Tes CAT

Kode	Nama Kriteria	Sub Kriteria	Nilai
	Kriteria		
		91-100	100
		86-90	80
C9	Tes CAT	81-85	75
	140 0111	75-80	60
		60-75	50
		40-59	20

Selanjutnya cara menghitung C2 danC3 yang masing-masing terdapat sub-kriteria yaitu dengan menjumlahkan nilai dari masing-masing sub-kriteria kemudian dibagi dengan jumlah sub-kriteria tersebut atau dengan cara sebagai berikut: Keterangan Perumahan= (status penguasaan)+(luas lantai)+(jenis diinding terluas)

Nilai C2 dari A1 =
$$\frac{3}{25+100+65}$$
 = 63,3333
Nilai C2 dari A1 = $\frac{25+75+40}{3}$ = 46,6667
Nilai C2 dari A1 = $\frac{25+75+80}{3}$ = 60
Nilai C2 dari A1 = $\frac{25+75+65}{3}$ = 55
Untuk mencari nilai C3 adalah sebagai berikut:

Untuk mencari nilai C3 adalah sebagai berikut: Kepemilikan Aset= (aset bergerak)+(aset tidak bergerak)+(kepemilikan empat)

Nilai C3 dari A1 =
$$\frac{3}{100+0+100}$$
 = 66,6667
Nilai C3 dari A2 = $\frac{100+0+100}{3}$ = 66,6667
Nilai C3 dari A3 = $\frac{100+100+80}{3}$ = 93,3333
Nilai C3 dari A4 = $\frac{100+0+100}{3}$ = 66,6667

Dari data alternatif yang didapat maka akan di buat Tabel alternatif dari masing – masing kriteria sebagai berikut:

Tabel 3.12: Data Alternatif

No	Nama	Nama Kreteria								
		C1	C2	C3	C4	C5	C6	C7	C8	C9
1	Frengky	100	63,3333	66,6	75	100	50	75	80	50
	Hernandes			667						
2	Riski	100	46,6667	66,6	50	100	60	50	75	60
	Indriani			667						
3	Deka	100	60	93,3	100	100	75	50	75	60
	Agustini			333						
4	Dina	100	55	66,6	0	100	50	0	75	50
	Oktari			667						

Dari setiap kriteria akan di ubah menjadi data matrik X dengan data yang akan di uraikan menurun yaitu {} begitupun seterusnya. Matriknya sebagai berikut:

$$X = \{100,100,100,100\}$$

X adalah alternatif dari setiap kriteria yang ada dari setiap alternatif.

a. Selanjutnya akan dilakukan normalisasi kepada matrik X yaitu sebagai berikut:

1. C1 Penghasilan Keluarga

$${}^{r}11 = \frac{\{100,100,100,100\}}{100} = \frac{100}{100} = 1$$

$${}^{r}12 = \frac{\{100,100,100,100\}}{100} = \frac{100}{100} = 1$$

$${}^{r}13 = \frac{\{100,100,100,100\}}{100} = \frac{100}{100} = 1$$

$${}^{r}14 = \frac{\{100,100,100,100\}}{100} = \frac{100}{100} = 1$$

2. C2 Keterangan Perumahan

$${}^{r}11 = \frac{\{63,3333,46,6667,60,55\}}{63,3333} = \frac{46,6667}{63,3333} = 0,736$$

$${}^{r}12 = \frac{\{63,3333,46,6667,60,55\}}{46,6667} = \frac{46,6667}{46,6667} = 1$$

$${}^{r}13 = \frac{\{63,3333,46,6667,60,55\}}{60} = \frac{46,6667}{60} = 0,777$$

$${}^{r}14 = \frac{\{63,3333,46,6667,60,55\}}{55} = \frac{46,6667}{55} = 0,848$$
3. C3 Kepemilikan Aset

$${}^{r}11 = \frac{\{66,6667,66,6667,93,3333,66,6667\}}{66,6667} = \frac{66,6667}{66,6667} = 1$$

$${}^{r}12 = \frac{\{66,6667,66,6667,93,3333,66,6667\}}{66,6667} = \frac{66,6667}{66,6667} = 1$$

$${}^{r}13 = \frac{\{66,6667,66,6667,93,3333,66,6667\}}{66,6667} = \frac{66,6667}{93,3333} = 0,714$$

$${}^{r}14 = \frac{\{66,6667,66,6667,93,3333,66,6667\}}{66,6667} = \frac{66,6667}{66,6667} = 1$$

4. C4 Jumlah Tanggungan

$${}^{r}11 = \frac{75}{\{75,50,100,0\}} = \frac{75}{100} = 0,75$$

$${}^{r}12 = \frac{50}{\{75,50,100,0\}} = \frac{50}{100} = 0,5$$

$${}^{r}13 = \frac{100}{\{75,50,100,0\}} = \frac{100}{100} = 1$$

$${}^{r}14 = \frac{0}{\{75,50,100,0\}} = \frac{0}{100} = 0$$

C5 Memiliki asuransi kesehatan lainnya

6. C6 Rata-Rata raport

$${}^{r}11 = \frac{50}{\{50,60,75,50\}} = \frac{50}{75} = 0,666$$

$${}^{r}12 = \frac{60}{\{50,60,75,50\}} = \frac{60}{75} = 0,8$$

$${}^{r}13 = \frac{75}{\{50,60,75,50\}} = \frac{75}{75} = 1$$

$${}^{r}14 = \frac{50}{\{50,60,75,50\}} = \frac{50}{75} = 0,666$$

C7 Prestasi Non Akademik

$${}^{r}11 = \frac{75}{\{75,50,50,0\}} = \frac{75}{75} = 1$$

$${}^{r}12 = \frac{50}{\{75,50,50,0\}} = \frac{50}{75} = 0,666$$

$${}^{r}13 = \frac{50}{\{75,50,50,0\}} = \frac{50}{75} = 0,666$$

$${}^{r}14 = \frac{0}{\{75,50,50,0\}} = \frac{0}{75} = 0$$

8. C8 Tes Wawancara

$${}^{r}11 = \frac{80}{\{80,75,75,75\}} = \frac{80}{80} = 1$$

$${}^{r}12 = \frac{75}{\{80,75,75,75\}} = \frac{75}{80} = 0,9375$$

$${}^{r}13 = \frac{75}{\{80,75,75,75\}} = \frac{75}{80} = 0,9375$$

$${}^{r}14 = \frac{75}{\{80,75,75,75\}} = \frac{75}{80} = 0,9375$$

9. C9 Tes CAT

$${}^{r}11 = \frac{50}{\{50,60,60,50\}} = \frac{50}{60} = 0,833$$

$${}^{r}12 = \frac{60}{\{50,60,60,50\}} = \frac{60}{60} = 1$$

$${}^{r}13 = \frac{50}{\{50,60,60,50\}} = \frac{60}{60} = 1$$

$${}^{r}14 = \frac{50}{\{50,60,60,50\}} = \frac{50}{60} = 0,833$$

b. Selanjutnya akan diubah menjadi matrik normalisasi R seperti berikut:

$$\begin{pmatrix} 1 & 0,736 & 1 & 0,75 & 1 & 0,666 & 1 & 1 & 0,833 \\ 1 & 1 & 1 & 0,5 & 1 & 0,8 & 0,666 & 0,9375 & 1 \\ 1 & 0,777 & 0,714 & 1 & 1 & 1 & 0,666 & 0,9375 & 1 \\ 1 & 0,848 & 1 & 0 & 1 & 0,666 & 0 & 0.9375 & 0,833 \\ \hline \vdots & & & & & & & & & & & & & & \\ \hline \vdots & & & & & & & & & & & & \\ \hline \end{bmatrix}$$

Perangkingan

V1=
$$\sum_{i=i}^{n} w_{j} r_{ij}$$

Keterangan:

```
Vi = Nilai Bobot Preferensi dari setiap alternatif
     W<sub>i</sub> = Nilai Bobot Kriteria
    R<sub>ii</sub> = Nilai Rating Kinerja
     \vec{W} = \{ 0,1; 0,1; 0,1; 0,15; 0,05; 0,2; 0,1; 0,1; 0,1 \}
     V1 = (0.1 \times 1) + (0.1 \times 0.736) + (0.1 \times 1) + (0.15 \times 0.75)
              (0.05x1)+(0.2x0.666)+(0.1x1)+(0.1x1)+(0.1x0.833)
              =(0,1+0,0736+0,1+0,1125+0,05+0,1333+0,1+0,1+0,0
              833)
     = 0.852851
     V2 = (0.1 \times 1) + (0.1 \times 1) + (0.1 \times 1) + (0.15 \times 0.5)
                  (0.05x1)+(0.2x0.8+(0.1x 0.666+(0.1 x0.9375)+(0.1x 0.666+(0.1 x0.9375)+(0.1x 0.666+(0.1x 
              =(0,1+0,1+0,1+0,075+0,05+0,16+0,0666+0,09375+0,
              1)
    = 0.845417
V3 = (0.1x 1) + (0.1 x 0.777) + (0.1 x 0.714) + (0.15 x 1)
              (0.05x1)+(0.2x1)+(0.1x 0.666)+(0.1 x 0.9375+(0.1)
              =(0.1+0.07777+0.0714+0.15+0.05+0.2+0.0666+0.937
              5+0.1)
    =0.909623
     V4 = (0.1 \times 1) + (0.1 \times 0.848) + (0.1 \times 1) + (0.15 \times 0)
           (0.05x1)+(0.2x0.666)+(0.1x0)+(0.1 x 0.9375)+(0.1 x 0.9375)
           =(0,1+0,0848+0,1+0+0,05+0,1333+0+0,09375+0,0833
     =0.645265
```

Dari hasil yang di dapat dari perhitungan diatas, maka alternatif yang memiliki nilai tertinggi dan bisa dipilih adalah alternatif nilai teringgi atas nama Deka Agustini dengan nilai 0,909623 dan alternatif dengan nilai 0,645265 atas nama Dina Oktari sebagai yang terendah.

Tabel 3.13: Hasil Perangkingan

Leve1	Nama Mahasiswa	Rangking
1	Frengky Hernandes	0,852851
2	Riski Indriani	0,845417
3	Deka Agustini	0,909623
4	Dina Oktari	0,645265

3. Metode Pengembangan Sistem

Metode pengembangan yang digunakan adalah metode waterfall prosedur dari metode waterfall atau air terjun menyediakan pendekatan alur hidup perangkat lunak secara sekuensial atau terurut dimulai dari analisis, desain, pengodean, pengujian dan ta-

hap pendukung (*support*). (Rosa & M.Shalahuddin, 2018:28).

Gambar 3.1: Metode Waterfall

Tahap tersebut antara lain:

1. Analisis Persyaratan Pemrograman

Cara yang paling umum dari prasyarat urusan sosial diselesaikan dengan serius untuk menentukan kebutuhan pemrograman sehingga klien bisa mendapatkan program seperti apa yang dibutuhkan oleh klien.

2. Rencana

Ukuran multi-langkah yang menyoroti rencana program produk termasuk struktur informasi, teknik pemrograman, penggambaran antarmuka, dan teknik pengkodean. Tahap ini menguraikan prasyarat produk dari tahap pemeriksaan kebutuhan hingga penggambaran rencana sehingga dapat dilaksanakan dengan baik ke dalam program pada tahap selanjutnya.

3. Kode pemrograman

Rencana tersebut harus diubah menjadi program produk.Konsekuensi dari tahap ini adalah program PC sesuai dengan rencana yang telah dibuat pada tahap perencanaan.

4. Pengujian

Pusat pengujian di sekitar produk secara sah dan praktis dan menjamin bahwa semua bagian telah dicoba.Hal ini dilakukan untuk membatasi kesalahan dan menjamin bahwa hasil yang diberikan sesuai dengan yang diinginkan.

5. Dukungan atau dukungan

Hal ini bisa diterapkan untuk produk untukberubah ketika telah dikirim dari klien. Perubahan dapat terjadi karena kesalahan yang muncul dan tidak dibedakan selama pengujian atau produk harus menyesuaikan dengan iklim lain. Tahap bantuan atau pemeliharaan dapat mengulangi siklus perbaikan dari pemeriksaan detail ke perubahan pada pemrograman yang ada, namun tidak membuat pemrograman

c. HASIL DAN PEMBAHASAN

3.1 HASIL IMPLEMENTASI

Penelitian ini menghasilkan sebuah system pendukung keputusan untuk menentukan kelayakan penerima beasiswa Kartu Indonesia Pintar (KIP) Kuliah pada Sekolah Tinggi Teknologi Pagar Alam metode yang digunakan dalam pembuatan sIstem ini adalah metode Simple Addictive Weighting (SAW). Dalam pembuatan system ini dibutuhkan beberapa software yang digunakan sebagai perancangan dan dalam pembuatan program.

3.2 Tampilan Sistem

a. Implementasi Halaman Login

Halaman *login admin* merupakan halaman yang pertama kali tampil dimana *admin* dapat memasukkan *username* dan *password* untuk dapat masuk ke halaman utama.

Gambar 8: Implementasi Halaman Login

b. Implementasi Halaman Menu Utama Admin

Pada halaman utama *admin* terdapat menu-menu yang dapat ditambahkan oleh *admin*.

Gambar 9: Implementasi Halaman Utama Admin

c. Impkementasi Halaman Data Mahasiswa

Pada halaman data mahasiswa *admin* data yang sudah diinputkan oleh *user* masuk ke halaman data mahasiswa *admi*n, dan *admin* juga dapat menginputkan data mahasiswa, *read*, *update*, dan *delete*

Gambar 10:ImplementasiHalaman Data Mahasiswa

d. Desain Halaman Data Kriteria

Pada halaman data kriteria *admin* dapat menginputkan nama kriteria, bobot dari masing-masing kriteria, dan keterangan dari kriteria tesebut.

Gambar 11: Implementasi Halaman Data Kriteria e.Implementasi Halaman Sub Kriteria

Pada halaman data sub kriteria ini merupakan kelanjutan dari halaman data kriteria dimana *admin* dapat menginputkan kriteria secara detail yaitu nama kriteria, list penilaian, serta nilai dari kriteria yang diinputkan.

Gambar 11: Implementasi Halaman Sub Kriteria

f. Imlementasi Halaman Data Penilaian

Halaman *create* data penilaian merupakan halaman untuk menginputkan data penilaian melalui *admin*.

Gambar 12: Implementasi Halaman Data Penilaian . Implementasi Hasil Seleksi

Halaman hasil seleksi merupakan halaman perhitungan dengan metode *Simple Addictive Weighting* (SAW) yang sudah terelasi dengan nim dan nama dimana ada data kriteria, normalisasi dan perangkingan. Berdasarkan perhitungan manual dengan perhitungan di sistem mempunyai hasil yang sama.

Gambar 14: Implementasi Halaman Hasil Seleksi h. Implementasi Halaman Utama *User*\.

Halaman utama user merupakan tampilan utama saat user mengakses system pendukung keputusan.

Gambar 15:Implentasi Halaman UtamaUser

g. Implementasi Halaman Registrasi User

Halaman daftar akun merupakan halaman yang mewajibkan *user* mengisi data diri untuk dapat melakukan *login*.

Gambar 16:Implementasi Halaman Registrasi User

h. Implementasi Halaman Utama User

Halaman utama *user* merupakan halaman yang pertama kali muncul pada saat mahasiswa *login*.

Gambar 17 :Implementasi Halaman UtamaUser

Saran

Berdasarkan penelitian yang telah dilakukan maka sistem ini memiliki beberapa saran yaitu sebagai berikut:

- 1. Pada halaman *user* yaitu menu data mahasiswa peneliti belum bisa menampilkan *view* yang lebih bagus, sehingga diharapkan pengembang dapat membuat sistem yang lebih baik.
- 2. Sistem ini hanya menggunkan metode *Simple Addictive Weighting* (SAW) saja sehingga dapat dikomparasikan dengan metode lainnya.

d. SIMPULAN

Berdasarkan hasil penelitian yang telah dilakukan maka dapat disimpulan bahwa:

- 1. Penelitian ini telah menghasilkan sebuah Sistem Pendukung Keputusan Untuk Menentukan Kelayakan Penerima Beasiswa Kartu Indonesia Pintar (KIP) Kuliah dengan menggunkan metode Simple Addictive Weighting (SAW).
- 2. Sistem ini memiliki keunggulan yaitu *user friendly*sehingga mudah dipahami oleh *user*.
- 3. Setelah melakukan perhitungan secara *konvensional* maupun perhitungan di sistem memiliki nilai yang sama.

e. UCAPAN TERIMAKASIH

Ucapan Terima Kasih disampaikan pada Sekolah Tinggi Teknologi Pagar Alam telah mendukung kami dalam melakukan penelitian ini

f. DAFTAR PUSTAKA

- gio Tatu, S. E., E.Widjaja, A., & Suryasari. (2019). Pengembangan Sistem Informasi Manajemen Dan Reservasi Hotel Ranaka Berbasis Web.
- Hidayat, R. (2017). Sistem Pendukung Keputusan Penerima Beasiswa Murid Berprestasi Dengan Metode Simple Addictive Weighting. *Sisfotek Global*, 1.
- Maita, I., & Adawiyah, A. (2017). Sistem Informasi Reservasi Online Pada Guest House Uin Suska Riau Berbasiskan Web. *Ilmiah Rekayasa Dan Manajemen Sistem Informasi*, 85.
- Pursitasari, A., Hernawati S.T, M. N., & Tridalestari, S. F. (2017). Aplikasi Web Reservasi Kamar Hotel Cihampelas 2 Bandung Menggunakan Framework Codeigniter.
- Purwanto, M. A., Subroto, I. M., & Kurniadi, D. (2018). Sistem Rekomendasi Penerimaan Kartu Indonesia Pintar (Kip) Menggunakan Metode Simple Addictive Weighting. *Transistor Elektro Dan Informatika (Transstor Ei)*, 111.
- Rosa, & M.Shalahuddin. (2018:28). *Rekayasa Perangkat Lunak*. Bandung: Informatika.
- Sahrul, I. F., & Marhaeni. (2019). Pembuatan Website Reservasi Berbasis Php Dan Mysql. *Rekayasa Informasi*, 131.
- Suryadi, K. (2018). Sistem Pendukung Keputusan Suatu Wacana Struktural Idealisasi Dan Implementasi Konsep Pengambilan Keputusan. Bandung: Rosda.