1 The Prokhorov Theorem

Definition 1.1 (Tightness and weak sequential compactness)

Suppose:

- (S, ρ) is a metric space, $\mathcal{B}(S)$ its the Borel σ -algebra, $(S, \mathcal{B}(S))$ is the corresponding measurable space.
- $\Pi \subset \mathcal{M}_1(S, \mathcal{B}(S))$ is a family of probability measures on $(S, \mathcal{B}(S))$.

The family Π is said to be:

(i) tight if, for each $\varepsilon > 0$, there exists a compact subset $K_{\varepsilon} \subset S$ such that

$$1 - \epsilon < P(K_{\varepsilon}) \le 1$$
, for each $P \in \Pi$.

(ii) weakly sequentially compact if, for every sequence $\{P_n\}_{n\in\mathbb{N}}\subset\Pi$, there exists a probability measure $P\in\mathcal{M}_1(S,\mathcal{B}(S))$ and subsequence $\{P_{n(i)}\}_{i\in\mathbb{N}}$ such that

$$P_{n(i)} \xrightarrow{w} P$$
, as $i \longrightarrow \infty$.

Theorem 1.2 (The Prokhorov Theorem, Theorems 5.1 & 5.2, [1])

Suppose:

- (S, ρ) is a metric space, $\mathcal{B}(S)$ its the Borel σ -algebra, $(S, \mathcal{B}(S))$ is the corresponding measurable space.
- $\Pi \subset \mathcal{M}_1(S, \mathcal{B}(S))$ is a collection of probability measures on $(S, \mathcal{B}(S))$.

Then, the following statements hold:

- (i) Tightness of Π implies weak sequential compactness of Π .
- (ii) Suppose further that (S, ρ) is complete and separable. Then, weak sequential compactness of Π implies tightness of Π .

PROOF We first prove statement (ii), then statement (i).

Proof of (ii)

Suppose S is complete and separable. Let $\varepsilon > 0$ be fixed. We need to find a compact subset $K \subset S$ such that

$$1-\varepsilon < P(K) < 1$$
, for each $P \in \Pi$.

Now, separability of S implies that every open cover of every subset of S admits a countable subcover (Appendix M3, [1]). Denote by $B(x,r) \subset S$ the open ball in S centred at $x \in S$ of radius r > 0. For each $k \in \mathbb{N}$, the open cover

$$\left\{ B\left(x, \frac{1}{k}\right) \right\}_{x \in S}$$

of S admits a countable subcover, say,

$$\{A_{ki}\}_{i\in\mathbb{N}} \subset \left\{B\left(x,\frac{1}{k}\right)\right\}_{x\in S}.$$

Let $G_{kn} := \bigcup_{i=1}^n A_{ki}$. Then, each G_{kn} is an open subset of S and $G_{kn} \uparrow S$, as $n \to \infty$. Hence, by the Claim below, there exists $n_k \in \mathbb{N}$ such that

$$1 - \frac{\varepsilon}{2^k} < P\left(\bigcup_{i=1}^{n_k} A_{ki}\right) \le 1$$
, for each $P \in \Pi$.

Now, let

$$K := \bigcap_{k=1}^{\infty} \bigcup_{i=1}^{n_k} A_{ki}$$

Note that K, being a closed subset of the complete metric space S, is itself complete. Note also that the set $\bigcap_{k=1}^{\infty} \bigcup_{i=1}^{n_k} A_{ki}$ is totally bounded; hence so is its closure K. Being complete and totally bounded, K is therefore compact (Appendix M5, [1]). It now remains only to show that $1-\varepsilon < P(K) \le 1$, for each $P \in \Pi$; or equivalently, that $P(K^c) \le \varepsilon$, for each $P \in \Pi$. To this end, write $B_k := \bigcup_{i=1}^{n_k} A_{ki}$. Then,

$$1 - \frac{\varepsilon}{2^k} < P(B_k) \le 1;$$
 equivalently, $P(B_k^c) \le \frac{\varepsilon}{2^k}$.

Also,

$$K := \bigcap_{k=1}^{\infty} \bigcup_{i=1}^{n_k} A_{ki} := \bigcap_{k=1}^{\infty} B_k \supset \bigcap_{k=1}^{\infty} B_k.$$

Hence,

$$K^c \subset \left(\bigcap_{k=1}^{\infty} B_k\right)^c = \bigcup_{k=1}^{\infty} B_k^c,$$

which implies:

$$P(K^c) \leq \sum_{k=1}^{\infty} P(B_k^c) \leq \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon.$$

Thus, the proof of (ii) will be complete once we prove the following:

Claim: Let $\{G_n\}_{n\in\mathbb{N}}$ be a sequence of open subsets of S with $G_n \uparrow S$. Then, for each $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that

$$1 - \varepsilon < P(G_{n_{\varepsilon}}) \le 1$$
, for each $P \in \Pi$.

Proof of Claim: Suppose the Claim is false, and we derive a contradiction. The failure of the Claim implies that there exists some $0 < \varepsilon < 1$ such that for each $n \in \mathbb{N}$, there exists $P_n \in \Pi$ such that

$$P_n(G_n) \leq 1-\varepsilon.$$

By the hypothesis of weak sequential compactness of Π , there exists some probability measure $Q \in \mathcal{M}_1(S, \mathcal{B}(S))$ and the subsequence $\{P_{n(i)}\}$ of $\{P_n\}$ such that $P_{n(i)} \xrightarrow{w} Q$, as $i \longrightarrow \infty$. Now, for each fixed $n \in \mathbb{N}$, we have:

$$Q(G_n) \leq \liminf_{i \to \infty} P_{n(i)}(G_n)$$
, by the Portmanteau Theorem
$$\leq \liminf_{i \to \infty} P_{n(i)}(G_{n(i)})$$
, since $\{G_n\}$ is increasing
$$\leq 1 - \varepsilon$$
, by choice of P_n

But, by hypothesis, we also have $G_n \uparrow S$. Hence, we therefore have:

$$1 = Q(S) = \lim_{n \to \infty} Q(G_n) \le 1 - \varepsilon,$$

which is the desired contradiction. This completes the proof of the Claim, hence that of (ii).

Proof of (i)

Suppose $\Pi \subset \mathcal{M}_1(S, \mathcal{B}(S))$ is tight. We need to establish that Π is weakly sequentially compact. In other words, if $\{P_n\} \subset \Pi$ is a sequence of probability measures contained in Π , we need to establish that there exists a Borel probability measure $P \in \mathcal{M}_1(S, \mathcal{B}(S))$ and a subsequence $\{P_{n(i)}\} \subset \{P_n\}$ such that $P_{n(i)} \xrightarrow{w} P$, as $i \longrightarrow \infty$.

So, let $\{P_n\} \subset \Pi$. We prove the Theorem by establishing the following series of Claims. Note that the proof of the Theorem is complete once we establish Claim 5.

Claim 1: There exists an increasing sequence of compact subsets $K_1 \subset K_2 \subset K_3 \subset \cdots \subset S$ such that

$$1 - \frac{1}{m} < P_n(K_m) \le 1$$
, for every $m, n \in \mathbb{N}$.

Claim 2: Let $K_1 \subset K_2 \subset K_3 \subset \cdots \subset S$ be one such sequence of compact subsets of S as in Claim 1. Then, $\bigcup_{m=1}^{\infty} K_m$ is a separable subset of S, and there exists a countable collection A of open subsets of S such that

$$x \in G \cap \left(\bigcup_{m=1}^{\infty} K_m\right)$$
, and G is an open subset of S $\Longrightarrow x \in A \subset \overline{A} \subset G$, for some $A \in \mathcal{A}$.

Claim 3: Define:

$$\mathcal{H} := \{\varnothing\} \bigcup \left\{ \begin{array}{l} \text{all finite unions of sets of the form} \\ \overline{A} \cap K_m, \text{ where } A \in \mathcal{A} \text{ and } m \in \mathbb{N} \end{array} \right\}.$$

Then, there exists a subsequence $\{P_{n(i)}\}\subset\{P_n\}$ such that the limit

$$\alpha(H) := \lim_{i \to \infty} P_{n(i)}(H)$$
 exists, for each $H \in \mathcal{H}$.

Claim 4: There exists a Borel probability measure $P \in \mathcal{M}_1(S, \mathcal{B}(S))$ such that

$$P(G) := \sup_{H \subset G} \alpha(H)$$
, for each open subset $G \subset S$.

Claim 5: $P_{n(i)} \stackrel{w}{\longrightarrow} P$, as $i \longrightarrow \infty$.

<u>Proof of Claim 1:</u> By tightness hypothesis on Π , there exists, for each $m \in \mathbb{N}$, a compact subset $K_m \subset S$ such that

Proof of Claim 2:

Proof of Claim 3:

Proof of Claim 4:

The Prokhorov Theorem

Study Notes September 26, 2015 Kenneth Chu

Proof of Claim 5:

References

[1] BILLINGSLEY, P. Convergence of Probability Measures, second ed. John Wiley & Sons, 1999.