Rep.2. Elektrisitet $e = 1,60 \cdot 10^{-17}$ $F \oplus F' \oplus F' \oplus F' \oplus G$ elementarladningen Metaller har ledningselektroner $U = \frac{W}{g} \times el. \text{ ar beid}$ $\int el. \text{ (adning)}$ el. spenning —Ø— voltmeter (U) (R stor) ——A— amperemeter (I) (R Liten) Strøm ! $I = \frac{9}{t}$ motstand Kirchhoffs Z. Cov (vekse(strom 1~+) +1- (ikestrom polspenning Up $\sum U_{opp} = \sum U_{ned}$ (i serie krets) Kirchhoffs 1. Lov $I_o = I_1 + I_2$ Parallellkopling: $V_{R1} = V_{R2}$ I_0 $R_1 = V_{R2}$ I_2 (greinstrøm) Resistans: $R = \frac{U}{I} \left(\frac{V}{A} = \Omega \right)$ Ohms (ov når Rer konst. ledere-halvledereisolatoren Serie: Rs = R1 + R2 + --dobbeltisolering: [] Parallell: $R_p = \frac{1}{\left(\frac{1}{R_1} + \frac{1}{R_2} + \cdots\right)}$ jording: 12,303 1 308 sikring: (Imax) $E = R_i I + R_y I = R_i I + U_p$ I tindre Rytre R -378 El.energi 9322+ W = UI, t = (RI)It = RIt(el. motorisk spenning) .324 325 $\int (pga U = RI) \qquad \boxed{332}$ Wh = W.60.60s = 3600Wstil komponent W= U.(K).t kWh = 3,6.10 7 [11.23,24,25,30] P = UIel. effekt $= \frac{U^2}{R}, t$

13. Kraft og bevegelse I

Newtons 1,2.093, (ov

$$\sum \vec{F} = m\vec{a}$$
 $\sum F_x = ma_x$ $\sum F_y = ma_y$

uarhengighets prinsippet

Skråplan:

$$\sum F_x = ma_x$$
 $a_x = ?$

$$a_x = ?$$

mgsind-umgcosd=ma $U = \sqrt{N^2 + R^2}$

$$\sum F_1 = m_1 a$$

$$S=m_1a$$

$$G_2 - S = m_2 a$$

$$m_2 g - m_1 a = m_2 a$$

$$m_2g = (m_1 + m_2)\alpha$$

Sirkelberegelse:

$$\sum_{r=ma=\frac{mv^2}{r}} K_{sentripetalkraft}$$

$$\sum F_x = ma_x$$
 $\sum F_y = 0$

$$S \cdot \sin \alpha = m \frac{v^2}{r} \qquad S \cdot \cos \alpha = G$$

Kjeglependel

Planpendel

E=E.

mgh + 1mv = mgho+ 1mk

Elastisk pendel

A=amplitude

X f=frekvens

$$-kx = mx''$$

$$x'' + \frac{k}{m}x = 0$$
 svinge likninga

$$x'' + \frac{k}{m} x = 0 \qquad S$$

gir
$$x(t) = A \cdot cos(2\pi ft)$$

med
$$v(t) = x'(t)$$
 og $a(t) = x'(t)$

$$f = \frac{1}{2\pi} \sqrt{\frac{K}{m}}$$
 og $T = \frac{1}{f}$

Generalt:

- * Brok Newtons Lover
- * Bruk Ex+Ep bevart * Bruk Emv bevart
- * Få oversikt
- * Stor figor med all info, symboler, fortegn
- * Prove og feile

13,304,311,319,320,327,338 13.342,345,347

14. Statikk

Likevektsvilkår

a)
$$\sum M=0$$
 $S=\overline{?}$
 $M_S-M_L=0$ $(M_T=0)$
 $a_s\cdot S=a_L\cdot mg$
 $\frac{1}{2}(\cdot(sin30^\circ)\cdot S=(\cdot mg)$
 $S=\frac{2mg}{sin30^\circ}$

$$\sum F_{x} = 0 \qquad og$$

$$T_{x} = S_{x}$$

$$T_{x} = S \cdot \cos 30^{\circ}$$

og
$$\Sigma F_y = 0$$

 $T_y + S_y = G_L$
 $T_y = mg - S \cdot sin 30^\circ$

Tyngdepunkt:
$$X_T = \frac{\sum x_i G_i}{G}$$

G; deltyngde G : hele tyngden

[14.05,06,10,306(307),315]