Polar coordinates *

Dr Juan H Klopper

Contents

1 Polar and rectangular coordinates

1

1 Polar and rectangular coordinates

Definition 1.1. Any point, P, in the plane is defined by a pair of real numbers x and y. We states P(x, y). This is the rectangular coordinates of a point.

Definition 1.2. The rectangular coordinates of any point in the plane can be expressed in polar form, $P\left(r,\theta\right)$, where r is the radius from the origin to the point and θ is the angle that the radius makes with the positive x (or in this case the polar) axis. Note that there are an infinite number of angles for each radius, as we can express the angle as $\theta+2\pi n$, where $n\in\mathbb{N}$.

Definition 1.3. Given a point, P(x,y) in rectangular coordinates, the equations for conversion to polar coordinates are shown in (1)

$$P(r,\theta) = P\left(\sqrt{x^2 + y^2}, \tan^{-1}\frac{y}{x}\right) \tag{1}$$

Definition 1.4. Given a point, $P(r, \theta)$, in polar coordinates, the equations for conversion to rectangular coordinates are shown in (2).

$$P(x,y) = P(r\cos\theta, r\sin\theta) \tag{2}$$

^{*}A course in vector calculus