#### Lecture 9

Brad McNeney

2018-03-15

## Load packages

#### References

- ggplot2 cheatsheet at [https://www.rstudio.com/wp-content/ uploads/2016/11/ggplot2-cheatsheet-2.1.pdf]
- ► Wickham (2009) ggplot2: Elegant graphics for data analysis, Chapters 4 and 5.
- ► Chang (2012) R graphics cookbook. Available at [http://www.cookbook-r.com/Graphs/]

## More details on ggplot2

#### Layers

- data, aesthetic mapping, geom, statistical transformation and position adjustment (to be defined)
- ► Tools for working with layers
- Scales, axes and legends
- Faceting

## Basic plot for demonstrations

```
p <- ggplot(diamonds,aes(x=carat,y=price,colour=cut)) +</pre>
  geom_point()
names(p)
## [1] "data"
                      "layers"
                                     "scales"
                                                    "mapping"
                                                                   "theme"
## [6] "coordinates" "facet"
                                     "plot_env"
                                                    "labels"
                                                    cut
    15000 -
                                                         Fair
                                                         Good
    10000 -
                                                         Very Good
                                                         Premium
     5000 -
                                                         Ideal
                          carat
```

#### Data

- ▶ The data must be a data frame
- ► A **copy** of the data is stored in the plot object (changes to the source dataframe do not change plot)
- ▶ Possible to change the data of a plot object with %+%, as in

```
set.seed(123)
subdiamonds <- sample_n(diamonds, size=100)
p <- p %+% subdiamonds
p</pre>
```



## Different data in different layers

Can specify data for a layer to use.



## Aesthetic mappings

- A description of how variables will be perceived on a plot.
  - ► E.G., aes(x=carat,y=price,color=cut)
- Can specify default aesthetics in the initialization, or specific aesthetics in the layers
  - When specified in the layers they over-ride the defaults

```
p<-p + geom_point(aes(color=clarity))</pre>
```

#### Aesthetic over-ride

- Overriding affects only the layer, not the default scales
  - Unexpected behaviour: titles on legends and axes are taken from the default scale and layer; e.g., cut and clarity categories

10 / 43



#### Aesthetic over-ride, cont.

▶ To modify the scale, set with a scale function (more later).

```
clarityscale <- c("SI2","SI1","VS1","VS2","VVS2","VVS1","I1","IF")
p + scale_color_discrete(name="clarity",breaks=clarityscale)</pre>
```



#### Setting vs mapping

- An alternative to mapping aesthetics to variables is to set the aesthetic to a constant.
  - ▶ Set with the layer *parameter*, rather than mapping with aes()
  - ▶ E.G., set the color of points on a plot to dark blue

ggplot(subdiamonds,aes(x=carat,y=price)) + geom\_point(color="darkblue") 15000 -10000 -5000 -2.0

## Setting vs mapping, cont.

5000 -

- ▶ Don't use aes() if you want a paramter.
  - e.g., aes(color="darkblue") creates a variable whose only value is "darkblue"

```
ggplot(subdiamonds,aes(x=carat,y=price)) +
geom_point(aes(color="darkblue"))

15000 -

Colour

darkblue
```

2.0

## Grouping

- ▶ Many geoms in ggplot2 group observations (rows of the dataframe).
  - ► E.G., a boxplot of a quantitative variable by a categorical variable groups observations by the categorical variable.
- ▶ Default group is combinations (interaction) of all categorical variables in the aesthetic specification.
- ▶ If this is not what you want, or if there are no categorical variables, specify group yourself.

### Grouping to plot time series

For plotting time series (multiple measurements on each observational unit) we want to group by observational unit.

ggplot(gapminder,aes(x=year,y=lifeExp,group=country)) + geom\_line(alpha=.5)



#### Different groups on different layers

To add summaries by continent, we need to specify different groups on different layers.



## Using interaction() to specify groups

► Could do boxplots of life expectancy by year **and** continent. (Not recommended – too busy – just using for illustration.)



### Overriding group on a layer

 Boxplots of life expectancy by year and continent on one layer, by continent alone on another



#### Geoms

- These are the shapes you want on the plot.
  - See the list of geoms on the cheatsheet.
- Each has a set of aesthetics that are required for drawing and a set of aesthetics that it understands.
  - ► E.G., geom\_point() requires x and y position, and understands color, size and shape.
- Aesthetics can also be passed to geoms as parameters.
  - Recall difference between geom\_point(color="darkblue")
    and geom\_point(aes(color="darkblue"))
- Each geom also has a default statistic (stat) and positional adjustment.
  - More on these next.

#### Stats

- Stats are statistical summaries of groups of data points. E.G.,
  - stat\_smoother() is a moving average of the y positions over windows of x positions.
  - stat\_bin() is a binning of a quantitative variable into bins of a given width
  - See the cheatsheet for a list.
- Stats create new variables, and these variables can be mapped to aesthetics.
  - ▶ E.G., stat\_bin() creates the variables count, density and x
  - Enclose derived variable name with .. to use.

```
p <- ggplot(gapminder,aes(x=lifeExp)) +
  geom_histogram(aes(y= ..density..))</pre>
```

## Position adjustment

- See cheatsheet for list.
- Default for most geoms is no adjustment ("identity")
- ► Adjustment to x and/or y position, such as "jitter" can reduce overplotting.
- ▶ Boxplots in recent plot of gapminder data were "dodge"d.
- ► Histograms of a continuous variable by a categorical grouping variable are "stack"ed by default.

```
gdat <- filter(gapminder, year==1952)</pre>
ggplot(gdat,aes(x=lifeExp,color=continent)) + geom_histogram()
                                                            Africa
   10 -
count
                                                            Americas
    5 -
                                                            Asia
                                                            Europe
                                                            Oceania
         30
                  40
                           50
                                    60
                                             70
                         lifeExp
```

# More details on ggplot2

- Layers
- ► Tools for working with layers
- Scales, axes and legends
- Faceting

## Tools for working with layers

- Many possible topics
- ▶ In the interest of time, focus on a few
  - displaying distributions
  - adding error bars and other measures of uncertainty
  - annotating a plot

## Displaying distributions

- ► The standard histogram is geom\_histogram().
  - Displays counts by default, but we have seen how to display as density
  - Density is better for comparing the shape of distributions
- To include group information, can stack bars (see previous example), use faceting to produce separate histograms, or superpose density histograms.

### Histograms with faceting

```
gdat <- filter(gdat,continent != "Oceania")
h <- ggplot(gdat,aes(x=lifeExp))
h + geom_histogram(aes(y= ..density..), binwidth=5) + facet_grid(continent ~ .)</pre>
```



### Histograms superposed

h + geom\_freqpoly(aes(y=..density..,color=continent), binwidth=5)



### Density estimation

- geom\_density() plots a density estimate
  - ► Think of adding up small normal densities centred at each observed datapoint, with the width of each distribution a user-defined parameter
- Can superpose multiple density plots.



#### Violin plots

- ▶ Instead of superposing, dodge density estimates with a violin plot.
  - Violins are density estimate and its mirror image displayed vertically

h + geom\_violin(aes(x=continent,y=lifeExp))



## Adding measures of uncertainty

- geom\_smooth() includes pointwise error bands by default.
- For factors can add error bars.

```
#msum <- gdat %>%
# group_by(continent) %>%
# summarize(mean=mean(lifeExp),se=sd(lifeExp)/sqrt(n())) %>%
# mutate(lwr=mean-se*1.96,upr=mean+se*1.96)
gfit <- lm(lifeExp ~ continent,data=gdat)
newdat <- data.frame(continent=c("Africa","Americas","Asia","Europe"))
mm <- data.frame(newdat,predict(gfit,newdata=newdat,interval="confidence"))
ggplot(mm,aes(x=continent,y=fit)) +
geom_point() + geom_errorbar(aes(ymin=lwr,ymax=upr))</pre>
```



### Measures of uncertainty with stat summaries

- ▶ Variety of built-in summaries, or can write your own (not covered).
- ▶ Summarize y for different values of x or bins of x values.

```
ggplot(gdat,aes(x=continent,y=lifeExp)) +
geom_violin() + # superpose over violin plot
stat_summary(fun.data="mean_cl_normal",color="red")
```



## Annotating a plot

- ▶ Basic tools for annotating are
  - geom\_text() and geom\_label() to add text
  - Geoms such as geom\_abline() to add line segments (see cheetsheet)
  - labs() for adding axis labels, titles, and captions
  - annotate() to add annotations using aesthetics passed as vectors to the function, rather than mapped from a dataframe.
- Can add annotations one at a time or many at a time
  - to add many at a time, create a data frame

#### Many annotations

```
gm07 <- filter(gapminder, year ==2007)
topOilbyGDP <- c("Kuwait","Guinea","Norway","Saudi Arabia")
gdpOil <- filter(gm07,country %in% topOilbyGDP)
ggplot(gm07,aes(x=gdpPercap,y=lifeExp)) + geom_point() +
    geom_text(data=gdpOil,aes(label=country))</pre>
```



## More details on ggplot2

- Layers
- ► Tools
- Scales, axes and legends
- Faceting

#### Scales

- Scales are mappings from the data to the graphics device
  - domain of continent is the five continents, range is the hexidecimal of the five colors represented on the graph
  - ▶ domain of lifeExp is 23.599 to 82.603, range is [0,1], which grid converts to a range of vertical pixels on the graph.
  - legends and axes provide the inverse mapping

```
p <- ggplot(gapminder,aes(x=gdpPercap,y=lifeExp,color=continent)) +
    geom_point(alpha=0.5) + coord_trans(x="log10")
p</pre>
```



## Steps to map domain to range

- ► Transformation: For continuous domains, we may want a transformation of the data
  - ► E.G., log base 10 of GDP, specified by coord\_trans(x="log10")
- Training: If multiple layers will be plotted, take the union of the domains of each
  - Can over-ride training and specify manually (next slide)
- Mapping: Apply the scaling function to map data values to what we see.

#### Axis labels and limits

- breaks are the locations of the tick marks on the axes
- limits are the limits of the axes

```
p + scale_x_continuous(breaks=c(1000,10000,100000)) +
scale_y_continuous(limits = c(0,100))
```



## Types of scales

- ► In the previous example we saw position scales that control x and y positions of objects
- ▶ Other scales control colour and fill, shape, line type and size.
  - See the cheetsheet for a list

## Color scale settings and legends

► For discrete variables used to set the colour aesthetic, colour scale settings affect the legend labels and titles



# More details on ggplot2

- Layers
- ► Tools
- Scales
- Faceting

## Faceting

- ► Facets are panels that show plots for subsets of the data defined by groups.
- Layout of facets can be as a grid or a ribbon.
- ▶ Use a subset of the mpg dataset from ggplot2 to illustrate

```
data(mpg)
mpgsub <- subset(mpg,cyl !=5 & drv %in% c("4","f"))</pre>
```

#### Facet grid

Lay out plots in a 2d grid, specified by a formula.

```
p <- ggplot(mpgsub,aes(x=cty,y=hwy)) +
  geom_point() + facet_grid(drv~ cyl)
p</pre>
```



## Freeing the scales across rows/columns of panels

```
p <- ggplot(mpgsub,aes(x=cty,y=hwy)) +
  geom_point() + facet_grid(drv~ cyl, scales="free")
p</pre>
```



#### Facet wrap

```
ggplot(gapminder,aes(x=log10GdpPercap,y=lifeExp,color=continent)) +
  geom_point() + facet_wrap(~year,ncol=4)
```

