MODULAR INVARIANTS OF COMPACT QUANTUM GROUPS

Jacek Krajczok

Vrije Universiteit Brussel

based on a joint work with Piotr Soltan

Quantum group seminar, May 2024

Jacek Krajczok 1 /

Part I: introduction and general situation

Jacek Krajczok 2 /

Definition (Compact quantum group) [Woronowicz '98]

Compact quantum group \mathbb{G} consists of:

- \bullet a unital C*-algebra \mathfrak{A} ,
- a unital \star -homomorphism $\Delta \colon \mathfrak{A} \to \mathfrak{A} \otimes \mathfrak{A}$ (comultiplication) such that:

$$\begin{split} (\Delta \otimes \mathrm{id}) \Delta &= (\mathrm{id} \otimes \Delta) \Delta, \\ \overline{\mathrm{span}} \, \Delta(\mathfrak{A}) (\mathbb{1} \otimes \mathfrak{A}) &= \overline{\mathrm{span}} \, \Delta(\mathfrak{A}) (\mathfrak{A} \otimes \mathbb{1}) = \mathfrak{A} \otimes \mathfrak{A}. \end{split}$$

• [Woronowicz, Van Daele] There exisits a unique Haar integral: state $h \in \mathfrak{A}^*$ which is invariant:

$$(h \otimes id)\Delta(x) = (id \otimes h)\Delta(x) = h(x)\mathbb{1} \quad (x \in \mathfrak{A}).$$

Throughout the talk, I'll assume that h faithful.

- Let $(L^2(\mathbb{G}), \pi_h, \Omega_h)$ be the GNS representation for h.
- We write $C(\mathbb{G}) = \pi_h(\mathfrak{A}), L^{\infty}(\mathbb{G}) = \pi_h(\mathfrak{A})'', L^1(\mathbb{G}) = L^{\infty}(\mathbb{G})_*.$

Examples

• Let G be a compact Hausdorff group with Haar measure μ . Define $C(\mathbb{G}) = C(G)$ and Δ via

$$\Delta(f)(x,y) = f(xy) \quad (f \in \mathcal{C}(G), x, y \in G).$$

Then $L^{\infty}(\mathbb{G}) = L^{\infty}(G), h = \int_{C} \cdot d\mu$.

• Let Γ be a discrete group. Define $C(\mathbb{G}) = C_r^*(\Gamma)$ and

$$\Delta \colon \mathrm{C}_r^*(\Gamma) \ni \lambda_\gamma \mapsto \lambda_\gamma \otimes \lambda_\gamma \in \mathrm{C}_r^*(\Gamma) \otimes \mathrm{C}_r^*(\Gamma).$$

Then $h(\lambda_{\gamma}) = \delta_{e,\gamma}$ and $L^{\infty}(\mathbb{G}) = L(\Gamma)$. We write $\mathbb{G} = \widehat{\Gamma}$.

• With any quantum group \mathbb{G} we can associate its dual $\widehat{\mathbb{G}}$ and $\widehat{\mathbb{G}} \simeq \mathbb{G}$. If \mathbb{G} is compact, $\widehat{\mathbb{G}}$ is discrete.

Example: $\mathbb{G} = SU_q(2) \ (0 < q < 1)$

• $C(SU_q(2))$ is defined as the universal unital C*-algebra generated by $\alpha, \gamma \in C(SU_q(2))$ such that

$$\begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$$
 is unitary.

• $\Delta \colon \mathrm{C}(\mathrm{SU}_q(2)) \to \mathrm{C}(\mathrm{SU}_q(2)) \otimes \mathrm{C}(\mathrm{SU}_q(2))$ acts via

$$\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma,$$

$$\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

• $L^{\infty}(SU_q(2)) = \pi_h(C(SU_q(2)))''$.

Modular Theory of \mathbb{G}

• There is a point- w^* continuous group of modular automorphisms $\sigma_t^h \in \operatorname{Aut}(L^\infty(\mathbb{G})) \ (t \in \mathbb{R})$

$$h(xy) = h(y \sigma_{-i}^h(x))$$
 $(x, y \in L^{\infty}(\mathbb{G}) \text{ nice}).$

• There is a point- w^* continuous group of scaling automorphisms $\tau_t \in \operatorname{Aut}(L^{\infty}(\mathbb{G}))$. $\tau_{-i} = S^2_{\mathbb{G}}$, where $S_{\mathbb{G}}$ is the antipode.

Jacek Krajczok 6 /

Modular Theory of \mathbb{G}

- Compact quantum groups have representation theory resembling the classical one.
- Irr(G) set of (classes of) irreducible representations

$$\alpha \in \operatorname{Irr}(\mathbb{G}) \quad \leadsto \quad U^{\alpha} \in C(\mathbb{G}) \otimes B(\mathsf{H}_{\alpha}), \quad \dim \mathsf{H}_{\alpha} < +\infty.$$

$$\{\xi_i^{\alpha}\}_{i=1}^{\dim(\alpha)}$$
 orthonormal basis of $\mathsf{H}_{\alpha} \leadsto U_{i,j}^{\alpha} = (\mathrm{id} \otimes \omega_{\xi_i^{\alpha},\xi_j^{\alpha}})U^{\alpha} \in \mathcal{C}(\mathbb{G}).$

- There is a family of positive, invertible operators $\rho_{\alpha} \in B(H_{\alpha})$.
- Automorphisms σ_t^h, τ_t can be expressed using ρ_α .

$$\sigma_t^h(U_{i,j}^\alpha) = (\rho_{\alpha,i}\rho_{\alpha,j})^{it}U_{i,j}^\alpha, \quad \tau_t(U_{i,j}^\alpha) = (\frac{\rho_{\alpha,i}}{\rho_{\alpha,j}})^{it}U_{i,j}^\alpha,$$

where $\rho_{\alpha} = \operatorname{diag}(\rho_{\alpha,1}, \dots, \rho_{\alpha, \dim(\alpha)}).$

• h is tracial $\Leftrightarrow \forall_t \, \sigma_t^h = \mathrm{id} \Leftrightarrow \forall_\alpha \, \rho_\alpha = \mathbb{1} \Leftrightarrow \forall_t \, \tau_t = \mathrm{id}$. In this case \mathbb{G} is of Kac type.

Jacek Krajczok 7 /

Examples

- If $\mathbb{G} = G$ then $h = \int_G \cdot d\mu$ hence $\sigma_t^h = \tau_t = id$.
- If $\mathbb{G} = \widehat{\Gamma}$ with Γ discrete (so $L^{\infty}(\mathbb{G}) = L(\Gamma)$) then $h(\lambda_{\gamma}) = \delta_{\gamma,e}$ hence also $\sigma_t^h = \tau_t = id$.
- If $\mathbb{G} = SU_q(2)$ then the Haar integral h is not tracial and

$$\sigma_t^h(\alpha) = q^{-2it}\alpha, \quad \sigma_t^h(\gamma) = \gamma,$$

$$\tau_t(\alpha) = \alpha, \quad \tau_t(\gamma) = q^{2it}\gamma.$$

Modular invariants – motivation

- Fix $0 < \lambda < 1$. With Piotr we've constructed a family of CQGs $\{\mathbb{K}_i\}_{i\in\mathbb{I}}$ such that $L^{\infty}(\mathbb{K}_i)$ is the injective type III_{λ} factor.
- How can we show that that $\mathbb{K}_i \not\simeq \mathbb{K}_{i'}$?
- $\{1, \alpha_i\}_{i \in \mathbb{J}}$ basis of \mathbb{R} over \mathbb{Q} , $\Gamma_j = \alpha_j \frac{2\pi}{\log(\lambda)} \mathbb{Z}$,

$$\mathbb{K}_j = \Gamma_j \bowtie \mathbb{G} \text{ via } \Gamma_j \times L^{\infty}(\mathbb{G}) \ni (\gamma, x) \mapsto \tau_{\gamma}(x) \in L^{\infty}(\mathbb{G}).$$

• $\tau_t \in \operatorname{Inn}(L^{\infty}(\mathbb{K}_j))$ if and only if $t \in \Gamma_j + \frac{2\pi}{\log(\lambda)}\mathbb{Z}$

$$\Rightarrow \mathbb{K}_j \not\simeq \mathbb{K}_{j'} \ (j \neq j').$$

Let \mathbb{G} be a compact quantum group.

[K., Sołtan '23] Modular invariants

Define subgroups of \mathbb{R} :

$$T^{\tau}(\mathbb{G}) = \{ t \in \mathbb{R} \mid \tau_t = \mathrm{id} \},$$

$$T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = \{ t \in \mathbb{R} \mid \tau_t \in \mathrm{Inn}(\mathrm{L}^{\infty}(\mathbb{G})) \},$$

$$T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = \{ t \in \mathbb{R} \mid \tau_t \in \overline{\mathrm{Inn}}(\mathrm{L}^{\infty}(\mathbb{G})) \}.$$

And similarly $T^{\sigma}(\mathbb{G}) = \{t \in \mathbb{R} \mid \sigma_t^h = \mathrm{id}\}, T_{\mathrm{Inn}}^{\sigma}(\mathbb{G}), T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G}).$

• $T_{\operatorname{Inn}}^{\sigma}(\mathbb{G}) = T(L^{\infty}(\mathbb{G}))$ is the Connes' T-invariant.

Jacek Krajczok 10 /

Let \mathbb{G} be a locally compact quantum group.

[K., Sołtan '23] Modular invariants

Define subgroups of \mathbb{R} :

$$T^{\tau}(\mathbb{G}) = \{ t \in \mathbb{R} \mid \tau_t = \mathrm{id} \},$$

$$T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = \{ t \in \mathbb{R} \mid \tau_t \in \mathrm{Inn}(\mathrm{L}^{\infty}(\mathbb{G})) \},$$

$$T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = \{ t \in \mathbb{R} \mid \tau_t \in \overline{\mathrm{Inn}}(\mathrm{L}^{\infty}(\mathbb{G})) \}.$$

And similarly
$$T^{\sigma}(\mathbb{G}) = \{t \in \mathbb{R} \mid \sigma_t^{\varphi} = \mathrm{id}\}, T_{\mathrm{Inn}}^{\sigma}(\mathbb{G}), T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G}),$$

$$\operatorname{Mod}(\mathbb{G}) = \{t \in \mathbb{R} \mid \delta^{it} = 1\}$$
 where $\delta \eta \operatorname{L}^{\infty}(\mathbb{G})$ is the modular element.

- $T_{\operatorname{Inn}}^{\sigma}(\mathbb{G}) = T(L^{\infty}(\mathbb{G}))$ is the Connes' T-invariant.
- ullet All these sets depends only on the isomorphism class of ${\mathbb G}.$

Jacek Krajczok 11 /

Let \mathbb{G} be a locally compact quantum group.

Modular invariants

• A priori we obtain 14 subgroups of \mathbb{R} :

$$T^\tau, T^\tau_{\mathrm{Inn}}, T^\tau_{\overline{\mathrm{Inn}}}, T^\sigma, T^\sigma_{\overline{\mathrm{Inn}}}, T^\sigma_{\overline{\mathrm{Inn}}} \text{ and Mod for } \mathbb{G}, \widehat{\mathbb{G}}.$$

• There are easy reductions:

$$T^\tau(\mathbb{G}) = T^\tau(\widehat{\mathbb{G}}), \quad T^\sigma(\mathbb{G}) = T^\tau(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}})$$

so we have 11 subgroups. It follows from

- $(\tau_t \otimes \widehat{\tau}_t) \mathbf{W}^{\mathbb{G}} = \mathbf{W}^{\mathbb{G}}$.
- $\nabla_{ab}^{it} = \hat{\delta}^{-it} P^{-it}$ (P^{it} implements τ_t and $\hat{\tau}_t$).

Modular invariants

• If $\mathbb G$ is compact then $\delta=\mathbb 1,\ell^\infty(\widehat{\mathbb G})=\prod_{\alpha\in\operatorname{Irr}(\mathbb G)}\operatorname{B}(\mathsf H_\alpha)$ so we are left with 6 invariants

$$T^{\tau}(\mathbb{G}), T^{\tau}_{\mathrm{Inn}}(\mathbb{G}), T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}), T^{\sigma}_{\mathrm{Inn}}(\mathbb{G}), T^{\sigma}_{\overline{\mathrm{Inn}}}(\mathbb{G}), \mathrm{Mod}(\widehat{\mathbb{G}}).$$

• If additionally $L^{\infty}(\mathbb{G})$ is semifinite, then $T_{\operatorname{Inn}}^{\sigma}(\mathbb{G}) = T_{\overline{\operatorname{Inn}}}^{\sigma}(\mathbb{G}) = \mathbb{R}$ and there are 4 possibly non-trivial invariants. This is the case for G_a .

 \mathbb{G} is second countable $\Leftrightarrow C(\mathbb{G})$ is separable.

[K., Sołtan '23] Conjecture

Let \mathbb{G} be a second countable compact quantum group. Assume $T_{\operatorname{Inn}}^{\tau}(\mathbb{G}) = \mathbb{R}$. Is \mathbb{G} of Kac type?

- Equivalently: \mathbb{G} second countable, not of Kac type. Do we have $T_{\text{Inn}}^{\tau}(\mathbb{G}) \neq \mathbb{R}$?
- [K., Soltan '23] The answer is affirmative in special cases:
 - there is a unitary representation U with $2 = \dim(U) < \dim_q(U)$,
 - $C^u(\mathbb{G})$ is type I, in particular $\mathbb{G} = G_q$,
 - $\mathbb{G} = U_F^+,$
 - $\widehat{\mathbb{G}}$ satisfies an ICC-type condition.

Jacek Krajczok 14 /

Part II: q-deformations

Jacek Krajczok 15 /

Lie group G and companions

- \bullet Let G be a simply connected, semisimple, compact Lie group with:
 - $\bullet\,$ complexified Lie algebra $\mathfrak{g},$
 - maximal torus $\mathbb{T}^r \simeq T \subseteq G$ with complexified Lie algebra \mathfrak{h}
 - root system $\Phi \subseteq \mathfrak{h}^*$, positive roots Φ^+ , simple roots $\alpha_1, \ldots, \alpha_r \in \Phi^+$,
 - Weyl group W and W-invariant $\langle \cdot | \cdot \rangle$ form on \mathfrak{h} such that $\langle \alpha | \alpha \rangle = 2$ for short roots α .
 - Weyl vector $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha \in \mathbf{P}^+,$
 - root and weight lattice $\mathbf{Q} \subseteq \mathbf{P} \subseteq \mathfrak{h}^*$,
 - positive cone $\mathbf{P}^+ \subseteq \mathbf{P}$.

For
$$SU(n+1)$$
: $r = n, W = S_{n+1}$,

$$\mathbf{P} = \{(\lambda_1, \dots, \lambda_{n+1}) \mid \lambda_i - \lambda_j \in \mathbb{Z}\}/\mathbb{R}(1, \dots, 1) \simeq \mathbb{Z}^n,$$

$$\mathbf{Q} = \{(\lambda_1, \dots, \lambda_{n+1}) \mid \lambda_i \in \mathbb{Z}, \sum_{i=1}^{n+1} \lambda_i = 0\}/\mathbb{R}(1, \dots, 1), \ \mathbf{P}/\mathbf{Q} \simeq \mathbb{Z}_{n+1},$$

$$\mathbf{P}^+ = \{(\lambda_1, \dots, \lambda_{n+1}) \mid \lambda_i - \lambda_{i+1} \in \mathbb{Z}_+\}/\mathbb{R}(1, \dots, 1).$$

Fix 0 < q < 1.

q-DEFORMED ENVELOPING ALGEBRA OF $\mathfrak g$

- $U_q\mathfrak{g}$ is the unital algebra generated by $E_i, F_i, K_i, K_i^{-1} (1 \leq i \leq r)$ satisfying certain relations.
- $U_q\mathfrak{g}$ has structure of a Hopf *-algebra. If $\pi\colon U_q\mathfrak{g}\to \mathrm{B}(\mathscr{H})$ is a *-representation, then $\xi \in \mathcal{H}$ has weight $\operatorname{wt}(\xi) \in \mathbf{P}$ if

$$\forall_{1 \leqslant i \leqslant r} \, \pi(K_i) \xi = q^{\langle \operatorname{wt}(\xi) | \alpha_i \rangle} \xi.$$

- \bullet $\mathbf{P}^+ \leftrightarrow$ (Finite-dimensional irreducible representations which are direct sums of weight spaces): $\varpi \mapsto (\mathscr{H}_{\varpi}, \pi_{\varpi})$
- $\operatorname{Pol}(G_a) = \operatorname{span}\{\operatorname{matrix coefficients of } \pi_{\varpi} \text{ as above}\} \subseteq (U_a\mathfrak{g})^*.$

Compact quantum group G_a

- We complete $Pol(G_q)$ to a C*-algebra $C(G_q)$ and G_q is a CQG.
- $Irr(G_q) = \mathbf{P}^+$, $Pol(G_q)$ is spanned by

$$U^{\varpi}(\xi,\eta) \quad (\varpi \in \mathbf{P}^+, \xi, \eta \in \mathscr{H}_{\varpi}, \operatorname{wt}(\xi), \operatorname{wt}(\eta) \in \mathbf{P}).$$

• Pairing $U_q\mathfrak{g} \times \operatorname{Pol}(G_q) \to \mathbb{C}$ is given by

$$\langle x, U^{\varpi}(\xi, \eta) \rangle = \langle \xi | \pi_{\varpi}(x) \eta \rangle.$$

Automorphisms for G_q

- $\sigma_t^h(U^{\varpi}(\xi,\eta)) = q^{\langle 2\rho | \operatorname{wt}(\xi) + \operatorname{wt}(\eta) \rangle it} U^{\varpi}(\xi,\eta),$
- $\tau_t(U^{\varpi}(\xi,\eta)) = q^{\langle 2\rho | \operatorname{wt}(\xi) \operatorname{wt}(\eta) \rangle it} U^{\varpi}(\xi,\eta).$

where $\rho \in \mathbf{P}^+$ is the Weyl vector and $\langle \cdot | \cdot \rangle$ is the W-invariant form on \mathfrak{h}^* .

Jacek Krajczok 19 /

C^* -ALGEBRA $C(G_q)$

• [Soibelman] Irreducible representations of $C(G_q)$ are (up to equivalence) precisely

$$\pi_{\lambda,w} = \pi_{\lambda} \star \pi_w = (\pi_{\lambda} \otimes \pi_w) \Delta \colon \mathcal{C}(G_q) \to \mathcal{B}(\ell^2(\mathbb{Z}_+)^{\otimes \ell(w)}) \quad ((\lambda, w) \in T \times W)$$

where

$$\pi_{\lambda} \colon \mathcal{C}(G_q) \ni U^{\varpi}(\xi, \eta) \mapsto \langle \xi | \eta \rangle \langle \operatorname{wt}(\xi), \lambda \rangle \in \mathbb{C}$$

are characters and

$$\pi_w \colon \mathrm{C}(G_q) \to \mathrm{B}(\ell^2(\mathbb{Z}_+)^{\otimes \ell(w)})$$

are built using $C(G_q) \to C(SU_{q_i}(2)) \to B(\ell^2(\mathbb{Z}_+))$.

• $C(G_q)$ is type I.

Haar integral on G_q

• [Reshetikhin-Yakimov '01] Haar integral on G_q can be calculated as

$$h(x) = \left(\prod_{\alpha \in \Phi^+} (1 - q^{2\langle \rho | \alpha \rangle})\right) \int_T \text{Tr}\left(\pi_{\lambda, w_o}(x|b_\rho|^2)\right) d\lambda \quad (x \in C(G_q))$$

where $d\lambda$ is normalised Lebesgue measure on T, w_{\circ} is the longest element in W,

- $b_{\rho} = U^{\rho}(\xi_{\rho}, \eta_{w_{\circ}\rho}) \in \text{Pol}(G_q)$ (equal to $-\gamma$ for $\text{SU}_q(2)$).
- Desmedt's theorem: we obtain:
 - unitary $\mathcal{Q}_L \colon L^2(G_q) \to \int_T^{\oplus} HS(\mathscr{H}_{\lambda}) d\lambda$ such that
 - $\mathcal{Q}_L L^{\infty}(G_q) \mathcal{Q}_L^* = \int_T^{\oplus} B(\mathscr{H}_{\lambda}) \otimes \mathbb{1}_{\widetilde{\mathscr{H}_{\lambda}}} d\lambda.$

Jacek Krajczok 21 /

[K., Sołtan '23] Scaling group

For $t \in \mathbb{R}, x = \int_T^{\oplus} x_{\lambda} \otimes \mathbb{1}_{\overline{\mathscr{K}_{\lambda}}} d\lambda \in L^{\infty}(G_q)$ we have

$$\tau_t(x) = \int_T^{\oplus} \pi_{w_{\circ}}(|b_{\rho}|^{-2it}) x_{\lambda \lambda_{2t}} \pi_{w_{\circ}}(|b_{\rho}|^{2it}) \otimes \mathbb{1}_{\overline{\mathscr{H}_{\lambda}}} d\lambda$$

where $\mathbb{R} \ni t \mapsto \lambda_t \in T$ is given by $\langle \varpi, \lambda_t \rangle = q^{\langle 2\rho | \varpi \rangle it} (\varpi \in \mathbf{P} \simeq \widehat{T}).$

• Corollary: $T_{\text{Inn}}^{\tau}(G_q) = T_{\overline{\text{Inn}}}^{\tau}(G_q)$.

Jacek Krajczok 22 /

LEMMA

- $\{\langle 2\rho | \alpha \rangle \mid \alpha \in \mathbf{Q}\} = 2\mathbb{Z},$
- $\{\langle 2\rho | \varpi \rangle | \varpi \in \mathbf{P}\} = \Upsilon_{\Phi} \mathbb{Z}$ is a nontrivial subgroup of \mathbb{Z} $(\Upsilon_{\Phi} \in \mathbb{N})$.

[K., Sołtan '23] Theorem

Modular invariants for G_q are given by

$$T^{\tau}(G_q) = \frac{\pi}{\log(q)} \mathbb{Z}, \quad T^{\tau}_{\text{Inn}}(G_q) = T^{\tau}_{\overline{\text{Inn}}}(G_q) = \operatorname{Mod}(\widehat{G_q}) = \frac{\pi}{\Upsilon_{\Phi} \log(q)} \mathbb{Z}.$$

Consequently Conjecture holds for G_q .

Jacek Krajczok 23 /

Irreducible root systems

- Every root system Φ decomposes as $\Phi_1 \oplus \cdots \oplus \Phi_l$ for Φ_i irreducible.
- $\Upsilon_{\Phi} = \gcd(\Upsilon_{\Phi_1}, \ldots, \Upsilon_{\Phi_t}).$
- Irreducible root systems are classifed:
 - type A_n $(n \ge 1), G = SU(n+1),$
 - type B_n $(n \ge 2), G = \text{Spin}(2n+1),$
 - type C_n $(n \ge 3), G = \operatorname{Sp}(2n),$
 - type D_n $(n \ge 4), G = \text{Spin}(2n),$
 - exceptional types: E_6, E_7, E_8, F_4, G_2 .

$$T^{\tau}(G_q) = \frac{\pi}{\log(q)} \mathbb{Z}, \, T^{\tau}_{\mathrm{Inn}}(G_q) = \frac{\pi}{\Upsilon_{\Phi} \log(q)} \mathbb{Z}.$$

[K., Sołtan '23] Invariants in simple case

- $A_n(n \ge 1)$, $G_q = SU_q(n+1)$: $\Upsilon_{\Phi} = 1$ (n odd), $\Upsilon_{\Phi} = 2$ (n even).
 - In particular $\Upsilon_{\Phi} = 2$ for $SU_q(3)$.
- $B_n(n \ge 2)$: $\Upsilon_{\Phi} = 1 (n \text{ odd}), \Upsilon_{\Phi} = 2 (n \text{ even}).$
- $C_n(n \geqslant 3)$: $\Upsilon_{\Phi} = 2$.
- $D_n(n \ge 4)$: $\Upsilon_{\Phi} = 2 (n \in 4\mathbb{N} + \{0, 1\}), \Upsilon_{\Phi} = 1 (n \in 4\mathbb{N} + \{2, 3\}).$
- For E_6, E_7, E_8, F_4, G_2 number Υ_{Φ} is equal to 2, 1, 2, 2, 2.

 $\dim(\varpi) \geqslant 2$ for non-trivial $\varpi \in \mathbf{P}^+$.

COROLLARY

If $\Upsilon_{\Phi} \geqslant 2$, then G_q has non-trivial, inner scaling automorphisms not implemented by a group-like unitary.

Jacek Krajczok 25 j

[K., Sołtan '23] Inner scaling automorphism

- Choose G such that $\Upsilon_{\Phi} = 2$ and set $t_0 = \frac{\pi}{2\log(q)}$. Then $\tau_{t_0} \in \operatorname{Aut}(G_q)$ is inner, non-trivial, not implemented by a group-like unitary.
- τ_{t_0} is implemented by unitary $\int_T^{\oplus} \pi_{w_0}(|b_{\rho}|)^{-2it_0} \otimes \mathbb{1}_{\overline{\mathscr{M}}} d\lambda$.
- If $\tau_{t_0} = \operatorname{Ad}(v)$ then $v \notin C(G_q)$. Consequently $\tau_{t_0} \upharpoonright_{C(G_q)}$ is not inner.

These results hold in particular for $G_q = SU_q(3)$.

Jacek Krajczok 26 /

Part III: Special case of conjecture

Jacek Krajczok 27 / I

[K., SOŁTAN '23] THEOREM

Let $\mathbb G$ be a second countable compact quantum group, assume:

• there is a finite dimensional unitary representation U with $2 = \dim(U) < \dim_q(U)$.

Then $T_{\operatorname{Inn}}^{\tau}(\mathbb{G}) \neq \mathbb{R}$.

Jacek Krajczok 28 /

- Assume by contradiction $T_{\text{Inn}}^{\tau}(\mathbb{G}) = \mathbb{R}$. Then $\tau_t = \text{Ad}(a^{it})$ for strictly positive $a \eta L^{\infty}(\mathbb{G})$.
- There is a family of irreducible representations $(U^n)_{n\in\mathbb{N}}$ such that:
 - $U^1 = U$,

 $\gamma(U^n) = \gamma(U)^{2n}, \Gamma(U^n) = \Gamma(U)^{2n}, \gamma(U^n) = \Gamma(U^n)^{-1}$ where $\gamma(U^n), \Gamma(U^n)$ is the smallest/largest eigenvalue of ρ_{U^n} .

• $\inf_{n \in \mathbb{N}} \frac{\Gamma(U^n)}{\dim_q(U^n)} > 0.$

- Set $\mathbb{H} = \mathbb{G} \times \mathbb{G}$, write $||x||_2 = h_{\mathbb{H}}(x^*x)^{1/2}$.
- Set $\varepsilon_t = ||a^{it} \otimes a^{it} \mathbb{1} \otimes \mathbb{1}||_2$ for $t \in \mathbb{R}$ and $X_n = U^n_{1,\dim U^n} \otimes \overline{U^n_{\dim U^n,1}}$.
- We have $\sigma_t^{h_{\mathbb{H}}}(X_n) = X_n, \tau_t^{\mathbb{H}}(X_n) = \Gamma(U^n)^{-4it}X_n$ and

$$||X_n||_2 = \frac{\Gamma(U^n)}{\dim_q(U^n)} \geqslant \inf_{m \in \mathbb{N}} \frac{\Gamma(U^m)}{\dim_q(U^m)} = c > 0.$$

• Using $\tau_t^{\mathbb{H}} = \operatorname{Ad}(a^{it} \otimes a^{it})$ we obtain

$$|\Gamma(U^n)^{-4it} - 1|c \leqslant |\Gamma(U^n)^{-4it} - 1| ||X_n||_2 = ||\tau_t^{\mathbb{H}}(X_n) - X_n||_2$$

= $||(a^{it} \otimes a^{it})X_n(a^{-it} \otimes a^{-it}) - X_n||_2$
 $\leqslant \cdots \leqslant 4\varepsilon_t.$

$$\varepsilon_t \xrightarrow[t \to 0]{} 0, \ \Gamma(U^n) = \Gamma(U)^{2n} \xrightarrow[n \to \infty]{} +\infty \sim \text{contradiction.}$$

Jacek Krajczok 30 /