

Introduction

STATS 303 Statistical Machine Learning

Spring 2022

Lecture 1

syllabus

instructor's information

instructor:

- Dongmian Zou, Assistant Professor of Data Science
 - email: dongmian.zou@dukekunshan.edu.cn
 - office hour: Tuesday 11:15am 12:15pm; Thursday 3pm 4pm; or by appointment (let me know beforehand if you want to join a zoom room)

TA:

- recitation: Eric Qu
 - email: <u>zhonghang.qu@dukekunshan.edu.cn</u>
- homework: Xue Chen
 - email: xue.chen240@dukekunshan.edu.cn

What will I do in this course?

lectures + recitation

homework assignments

presentation

midterm and final exams (open-book)

lectures and recitation

- synchronous meeting time:
 - lectures: Monday Thursday 8:30am 9:45am
 - recitation: Thursday 7pm 8pm
 - At the beginning of the course, you will form groups (of 4 ~ 5). Each week, there is a worksheet for your group to work together on. During the recitation sessions, Eric will lead the discussion.

presentation

- You will work in your group to explore a topic of interest that is not covered in class.
- During the last week of lectures, you will give a presentation on your discovery.
- The detailed rubric for this is on Sakai.

presentation

- The topic must be relevant to statistical machine learning and not covered in STATS302/303.
- You can either choose a topic and collect relevant materials, e.g.
 - conditional random field
 - upper confidence bound (UCB) algorithm in reinforcement learning
 - concentration inequalities
 - genetic algorithms
 - differential privacy

presentation

- Or choose a paper in statistical machine learning and present the technical contents, e.g.
 - Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005, August). Learning to rank using gradient descent. In *Proceedings of the 22nd international conference on Machine learning (ICML)* (pp. 89-96).
 - Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. Advances in neural information processing systems (Neurlips), 20.
- If you choose to work with a paper, make sure that it is understandable (*oldies and goldies* may work well).

grades

activity	points	comments
homework	20%	submit on Sakai; 6 in total, lowest score dropped
presentation	10%	submit slides on Sakai; deliver during the last week
midterm	30%	open-book
final	40%	open-book

Please refer to the following scale for your grading.

```
A+=98\%-100\%; A=97\%-93\%; A-=90\%-92\%; B+=87\%-89\%; B=83\%-86\%; B-=80\%-82\%; C+=77\%-79\%; C=73\%-76\%; C-=70\%-72\%; D+=67\%-69\%; D=63\%-66\%; D-=60\%-62\%; C=59\% and below
```

textbooks

- Lectures are self-contained and slides will be posted on Sakai (slides will be updated after each class).
- Lectures are based mainly on the following books:
 - Elements of statistical learning [HaTF] by Hastie, Tibshirani and Friedman
 - available at the official webpage: https://web.stanford.edu/~hastie/ElemStatLearn/
 - Pattern recognition and machine learning [Bi] by Bishop
 - available at Microsoft webpage: https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
 - Introduction to Machine Learning [AI] by Alpaydin
 - available from the Duke library: https://find.library.duke.edu/catalog/DUKE007630227
 - Understanding Machine Learning: From Theory to Algorithms [S-S] by Shalev-Shwartz and Ben-David
 - available at the official webpage: https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html

textbooks

The Elements of Statistical Learning

Author : Trevor Hastie / Robert Tibshirani / Jerome

Friedman

Publisher: Springer

subtitle: the Data Mining, Inference, and Prediction,

Second Edition

Published: 2009-10-1

Pages: 745

Price: GBP 62.99 Binding: Hardcover

Series: Springer Series in Statistics

Douban score 9.4 677 Ratings 5 stars 18.3% 4 stars 18.3% 3 stars 12.4% 2 stars 0.1% 1 star 0.3%

Pattern Recognition and Machine Learning

Author: Christopher Bishop

Publisher: Springer Published: 2007-10-1

Pages: 738

Price: USD 94.95 Binding: Hardcover

ISBN: 9,780,387,310,732

Introduction to Machine Learning

Author: Ethen Alpaydin

Press: Machinery Industry Press

Original Title: Introduction to Machine Learning translator : Fan Ming / Zan Hongying / cow Chang Yong Published:

2009-6 Pages: 272 Price: 39.00 yuan Binding: Paperback

Series: Computer Science Series ISBN: 9787111265245

Understanding Machine Learning

Author: Shai Shalev-Shwartz / Shai Ben-David

Publisher: Cambridge University Press Subtitle: From Theory to Algorithms

Publication year: 2014

Pages: 424

Price: USD 48.51Finishing

: Hardcover

ISBN: 9781107057135

Remind the instructor to create a Wechat group as an unofficial Q&A channel.

What is statistical machine learning?

a little bit history

statistical Learning
emphasizes statistical
principles +
mathematical frameworks
for making inference

data science
suggested by Michael
Jordan to call the overall
field

categories of machine learning

- supervised learning
 - learn through Q&A from a supervisor (objective: generalization)
 - e.g. regression, classification
- unsupervised learning
 - learn by himself/herself
 - e.g. clustering, outlier detection
- reinforcement learning
 - the supervisor does not directly give answers to the student's questions but gives feedbacks
 - e.g. computer games, robots

Cluster 3

Bayesian decision theory

unobservable and observable variables

- Suppose we toss a coin; the outcome will be either a head (H) or a tail (T).
- If we have extra knowledge, e.g., the exact composition of the coin, its initial position, the force applied to the coin, and forth, the exact outcome of the toss could be predicted.
- The extra pieces of knowledge that we do not have access to are named the unobservable variables, or latent variables.
- In the example of coin tossing, the only observable variable is the outcome (H or T).

 deterministic function
- We have, in reality, x = f(z)observable unobservable

random variables

- We don't have access to the z, so we define the outcome X as a random variable drawn from a probability distribution P(X = x) that specifies the process.
- In the coin tossing example, let X=1 for (H) and X=0 for (T)

$$P(X = 1) = p_0$$

 $P(X = 0) = 1 - P(X = 1) = 1 - p_0$

samples

- If we don't know P(X) and want to estimate this from a given sample, then we are in the realm of statistics
- We have a sample $\chi = \{x_n\}_{n=1}^N$ drawn from the probability distribution of the observables p(x)
- Aim: build an approximator $\hat{p}(x)$ using the sample χ
- In the coin tossing example,

$$\hat{p}_0 = \frac{\#\{\text{tosses with outcome } (\textit{H})\}}{\#\{\text{tosses}\}}$$

Classification

- · Suppose we work in a bank, and would like to learn the classes "high-risk customer" [C=1] and "low-risk customer" [C=0].
- · We decide there are two pieces of information available:
 - X₁: yearly income X₂: savings
- If we know $P(C|X_1,X_2)$, when a new application arrives with $X_1=x_1$, $X_2=x_2$, we can choose

$$C = 1$$
 if $P(C = 1 | X_1 = x_1, X_2 = x_2)$

classification

- Let $x = [x_1, x_2]^T$. The problem is to calculate P(C|x).
- By Bayes' Rule,

$$P(C|\mathbf{x}) = \frac{P(C)p(\mathbf{x}|C)}{p(\mathbf{x})}$$

That is,

$$posterior = \frac{prior \times likelihood}{evidence}$$

classification in general

• In general, we have K classes (mutually exclusive, and exhaustive): $C_1, C_2, \cdots, C_{K_{\nu}}$

• We have $P(C_i) \ge 0$ and $\sum_{i=1}^K P(C_i) = 1$ $P(x) = \sum_{k=1}^K P(x_i, C_k)$

$$P(C_i|x) = \frac{p(x|C_i)P(C_i)}{p(x)} = \frac{p(x|C_i)P(C_i)}{\sum_{k=1}^{K} p(x|C_k)P(C_k)}$$

 Bayes' classifier: choose the class with the highest posterior probability:

choose
$$C_i$$
 if $P(C_i|x) = \max_{k=1,\dots,K} P(C_k|x)$

loss and risk

- Define
 - action α_i as the decision to assign the input to class $\underline{C_i}$
 - λ_{ik} as the loss incurred for taking α_i when the input actually belongs to C_k (if we allow abuse of notation, we can say $x \in C_k$).
- Then the **expected risk** for taking α_i is

$$R(\alpha_i|\mathbf{x}) = \sum_{k=1}^K \lambda_{ik} P(C_k|\mathbf{x})$$

loss and risk

•
$$R(\alpha_i|\mathbf{x}) = \sum_{k=1}^K \lambda_{ik} P(C_k|\mathbf{x})$$

• In the special case of **0/1 loss**, where $\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ 1 & \text{if } i \neq k \end{cases}$

•
$$R(\alpha_i|\mathbf{x}) = \sum_{k \neq i} P(C_k|\mathbf{x}) = 1 - P(C_i|\mathbf{x})$$

reject

- In the above, we already have actions α_i as the decision to assign the input to class C_i , $i=1,2,\cdots,K$
- Let's define an additional action of reject (not making any decision, indecisive): α_{K+1}
- By modifying the 0/1 loss, a possible loss function is

$$\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ 1 & \text{if } i \in [K] - \{k\} = \begin{cases} 0 & \text{if } i = k \\ \lambda & \text{if } i = K+1 \end{cases}$$

$$\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ \lambda & \text{if } i = K+1 \end{cases}$$

$$\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ \lambda & \text{otherwise} \end{cases}$$

Here
$$[K] = \{1, 2, \dots, K\}$$

reject

- The risk of reject is $R(\alpha_{K+1}|x) = \sum_{k=1}^{K} \lambda P(C_k|x) = \lambda$
- The risk of choosing C_i is $1 P(C_i|x)$

reject

- The optimal decision rule:
 - Choose C_i if (1) $R(\alpha_i|\mathbf{x}) < R(\alpha_k|\mathbf{x})$ for all $k \neq i$ and (2) $R(\alpha_i|\mathbf{x}) < R(\alpha_{K+1}|\mathbf{x})$
 - Reject if $R(\alpha_{K+1}|x) < R(\alpha_i|x)$ for all i

