學號:R06921083 系級: 電機碩一 姓名:鄭克宣

請實做以下兩種不同feature的模型,回答第(1)~(3)題:

- (1) 抽全部9小時內的污染源feature的一次項(加bias)
- (2) 抽全部9小時內pm2.5的一次項當作feature(加bias)

備註:

- a. NR請皆設為0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的

1. (2%)記錄誤差值 (RMSE)(根據kaggle public+private分數),討論兩種feature的影響 ANS:

1) RMSE:

	public private	
18 feature	7.46655	5.62719
1 feature	7.44013	5.43338

2) Feature 的影響:

由上述的結果不難看出,variance 的數目多並不代表訓練的結果可以最好,而是要看 資訊本身是否適合做為訓練的 feature ,如果做 feature selection 的話,可以有更好的 結果,再這很明顯的前 9 小時的 P.M. 2.5 可能就是些很好的特徵。

2. (1%)將feature從抽前9小時改成抽前5小時,討論其變化

ANS:

1) RMSE:

	public	private
18 feature	7.65447	5.40005
1 feature	7.57904	5.79187

2) 變化:

很明顯的當天數減少時, RMSE 都有些許下降了, 所以可以猜測 P.M. 2.5 的預測, 跟前面多個小時的值相當有關係。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001 ,並作圖 **ANS** :

1) 18 feature:

	λ=0.1	$\lambda = 0.01$	$\lambda = 0.001$	λ=0.0001
public	7.49359	7.46925	7.46682	7.46658
private	5.39818	5.39468	5.39437	5.39434

2) 1 feature:

	λ=0.1	λ=0.01	λ=0.001	λ=0.0001
public	7.46651	7.44276	7.44039	7.44015
private	5.64168	5.62863	5.62733	5.62720

3) Public RMSE (左) & Private RMSE 變化 (右)

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一存量 y^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum\limits_{n=1}^N (y^n-x^n\cdot w)^2$ 。若將所有訓練資料的特徵值以矩陣 $X=[x^1\ x^2\ ...\ x^N]^T$ 表示,所有訓練資料的標註以向量 $y=[y^1\ y^2\ ...\ y^N]^T$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。(其中 X^TX 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-2}X^{T}y$

ANS: C

minimize 11 g - Xw11 ⇔ Xw = projxg

⟨3-Xw, b>=0 , ∀b∈ R(X)

: b∈ R(X), & b=Xw'

⟨y - Xw, Xw'⟩ = 0

⟨ ⟨ ⟨ ⟨ ⟨ ⟨ ⟩ ⟩ − ⟨ X ω , X ω , ⟩ = 0

⟨ g , X w' ⟩ = ⟨X w , X w' ⟩

(Xw')^T Z = (Xw')^T (Xw)

⇔

w^T X^T y = w^T X^T X w

€) ⟨X^Ty, W'⟩ = ⟨X^TXW, W'>

⇔ X^T y = X^T X ω

: (XTX) is invertible

:. W: (XTX)"3