Análise de Sentimento com Naive-Bayes e N-grams

Entrega	Arquivo .ipynb com células já executadas
Modalidade	Individual

Objetivo

Construir e avaliar um modelo de Machine Learning (**Naive-Bayes Multinomial**) para classificar reviews em três categorias de sentimento: **Negativo** (0), **Neutro** (1), e **Positivo** (2).

Dataset

• Arquivo: B2W-Reviews01.csv

Roteiro do Notebook (9 Etapas)

Seu notebook deve ser claro, bem documentado (usando Markdown) e rodar sequencialmente.

#	Seção	Instruções e Requisitos
1	Preparação do Ambiente	Importar as bibliotecas necessárias (pandas, nltk, sklearn, seaborn, matplotlib). Baixar recursos NLTK (punkt, stopwords).
2	Carregamento e Limpeza	Carregar o DataFrame (review_text, overall_rating). Remover linhas com valores nulos (dropna()). Exibir o total de reviews restantes.
3	Definição das Classes	Criar a função de mapeamento de notas para 3 classes: 1 → 0 (Negativo), 2, 3, 4 → 1 (Neutro), 5 → 2 (Positivo). Aplicar e exibir a distribuição das novas classes.
4	Pré- processamento (NLP)	Criar e aplicar a função preprocessText para: remover pontuação, converter para minúsculas, tokenizar, remover <i>stopwords</i> (Português) e dígitos. Gerar a coluna texto_pre.
5	Vetorização N- grams	Instanciar CountVectorizer com ngram_range=(1,3). Ajustar/Transformar texto_pre para criar a matriz de recursos X. Imprimir o X.shape.

6	Divisão dos Dados	Usar train_test_split (20% para teste, random_state=42) para separar os dados. Imprimir os shapes dos conjuntos de treino e teste.
7	Treinamento Naive-Bayes	Instanciar e treinar (fit) o modelo MultinomialNB() . Imprimir a acurácia de treino e teste.
8	Avaliação Completa	Gerar o classification_report . Plotar o confusion_matrix como um heatmap (seaborn) para visualização da performance por classe.
9	Teste Manual (Demo)	Criar e rodar uma função interativa (input()) que: processa o texto do usuário, vetoriza, prevê a classe e exibe o resultado final com o nível de confiança (predict_proba).

Foco na Avaliação (Criatividade e Documentação)

- **Documentação:** Cada seção deve ter um breve cabeçalho em **Markdown** explicando o propósito da etapa.
- **Análise:** Inclua comentários (em Markdown ou código) sobre o volume de dados perdido (Etapa 2), o balanceamento das classes (Etapa 3), e a interpretação dos resultados do classification_report (Etapa 8).
- **Teste Criativo:** Crie 5 exemplos de frases distintas para demonstrar o funcionamento e os limites do modelo na Etapa 9.