Systems Thinking for Design

Session 7

https://sites.google.com/a/iiitdm.ac.in/sudhirvs/courses/systems-thinking-for-design

• Sudhir Varadarajan, PhD

Session outline

Diagnosing the system's ability to change (Cybernetics)

Examples

Principles of complex systems (3/8): Cybernetics

Principles of complex systems (4/8): Cybernetics

Guidelines for adding polarity to relations

Symbol	Interpretation	Mathematics	Examples	
X Y	All else equal, if X increases (decreases), then Y increases (decreases) above what it would have been. In the case of accumulations, X adds to Y.	$\partial Y/\partial X > 0$ In the case of accumulations, $Y = \int_{t_0}^{t} (X +) ds + Y_{t_0}$	†	Sales Results Population
X Y	All else equal, if X increases (decreases), then Y decreases (increases) below what it would have been. In the case of accumulations, X subtracts from Y.	$\partial Y/\partial X < 0$ In the case of accumulations, $Y = \int_{t_0}^{t} (-X +) ds + Y_{t_0}$	Frustration	Sales Results Population

Source: Public (Internet)

Identifying loops affecting system behavior

It takes several negative feedback loops to keep human body stable

Identifying and designing appropriate negative feedback loops to support bio-mechanics is a key principle in robotics ... self-balancing bicycle etc.

Source: Public (Internet)

Multiple loops shape system behavior

Water Resources

Management: A

complex system of

balancing &

reinforcing loops

Source: Public (Internet)

Delays and errors can make the system unstable

... and sometimes produce counter-intuitive behaviors

Importance of DSP & Machine Learning

Multi-level feedback is critical for Learning and adaptation

Implications for human-machine interfaces

Source: Public (Internet)

A general developmental robotics architecture.

Constraints & loops that fueled Industrialization

Innovative designs through use of feedback

Innovative solutions/designs can emerge by adding new linkages that connect unique elements in the context through negative or positive feedback loops

For example, soft rock chair powered by energy harvesting

... and some complicated ones for human productivity

Exercise 7

- Identify the feedback loops in the model
- List down those loops that keep the system stable
- List down those loops that have potential to de-stabilize or change the system
- Identify critical intervention points

Appreciate unique aspects of the problem

Reflect on today's session and post your comments.

