

WHAT IS CLAIMED IS:

1. A negative active material for a rechargeable lithium battery comprising a particle-agglomerated product comprising a carbonaceous material and an amorphous metal compound, the carbonaceous material being a material into or from which lithium is intercalated or deintercalated, and the amorphous metal compound being able to make an alloy with lithium.

2. The negative active material of claim 1 wherein the amorphous metal compound is partially coated on a surface of the particle-agglomerated product.

3. The negative active material of claim 1 wherein the amorphous metal compound is included in the particle-agglomerated product.

4. The negative active material of claim 1 wherein an average diameter of the particle-agglomerated product is 6 to 40 μm .

5. The negative active material of claim 1 wherein the metal compound includes one or more than two metals selected from the group consisting of Sn, Ag, Fe, Pd, Rb, Al, Si, In, Ni, Cu, Co, Zn and Cd.

6. The negative active material of claim 1 wherein the metal compound includes one or both of SnO_2 or SnO .

7. A negative electrode for a rechargeable lithium battery comprising the negative active material of claim 1.

8. A rechargeable lithium battery comprising the negative active material of claim 1.

9. A method of preparing a negative active material for a

rechargeable lithium battery comprising the steps of:

adding a fatty acid metal salt to a carbonaceous material while the fatty acid metal salt and the carbonaceous material are agglomerated to produce an agglomerated precursor; and

heat-treating the agglomerated precursor to convert the fatty acid metal salt into the amorphous metal compound and to produce a particle agglomerated product.

10. The method of claim 9 wherein the fatty acid metal salt is used in the form of an aqueous solution.

11. The method of claim 9 wherein the carbonaceous material has an average diameter of 3 to 20 μm and the particle-agglomerated product has an average diameter of 6 to 40 μm .

12. The method of claim 9 wherein the fatty acid metal salt includes one or more than two metals selected from the group consisting of Sn, Ag, Fe, Pd, Pb, Al, Si, In, Ni, Cu, Co, Zn and Cd.

13. The method of claim 9 wherein the fatty acid metal salt is tin acetate.

14. The method of claim 9 wherein the metal compound includes one or both of SnO_2 or SnO .

20 15. The method of claim 9 wherein the heat-treating is performed at 250 to 800°C.