8 Appendix

8.1 Proof of Theorem 1

(1) The deterministic FAS recognizes the language defined by SOREFs.

Proof. According to the definition of an FAS, for a SOREF r, the ith subexpression of the form $r_i = r_{i_1} \& r_{i_2} \& \cdots \& r_{i_k}$ $(i, k \in \mathbb{N}, k \ge 2)$ in r, there are start marker $\&_i$ and end marker $\&_i^+$ in an FAS for recognizing the strings derived by r_i . For each subexpression r_{i_j} $(1 \le j \le k)$ in r_i , there is a concurrent marker $||_{ij}$ in an FAS for recognizing the symbols or strings derived by r_{i_j} .

In addition, for strings recognition, an FAS recognizes a string by treating symbols in a string individually. A symbol y in a string $s \in \mathcal{L}(r)$ is recognized if and only if the current state (set) p is reached such that $y \in p$. The end symbol \dashv is recognized if and only if the final state is reached. If y (resp. \dashv) is not consumed, then y (resp. \dashv) will be still read as the current symbol to be recognized. A SOREF r is a deterministic expression, every symbol in s can be uniquely matched in r, and for every symbol l in r, there must exist a state (set) in an FAS including l. According to the transition function of an FAS, for the deterministic FAS \mathcal{A} , every symbol in s can be recognized in a state in \mathcal{A} . When the last symbol of s was recognized, the end symbol \dashv is read as the current symbol, suppose the current state is q, q will be finally transit to the state q_f such that \dashv is consumed. Therefore, $s \in \mathcal{L}(\mathcal{A})$. Then, $\mathcal{L}(r) \subseteq \mathcal{L}(\mathcal{A})$. The deterministic FAS recognizes the language defined by SOREFs.

(2) The membership problem for deterministic FAS is decidable in polynomial time. I.e., for any string s, and a deterministic FAS A, we can decide whether $s \in \mathcal{L}(A)$ in polynomial time.

Proof. An FAS recognizes a string by treating symbols in a string individually. A symbol y in a string s is recognized if and only if the current state p is reached such that $y \in p$. Let p_y denote the state (a set of nodes) p including symbol y. The next symbol of y is read if and only if y has been recognized at the state p_y . y is the node transition graph of an FAS y. The number of nodes in y is $\log_2 |\mathcal{L}| + 2|\mathcal{L}| + 2$ (including y and y and y at most. Assume that the current read symbol is y and the current state is y:

- 1. $|q| \ge 1$, $\exists v \in q : y \in H$. $\succ (v)$ $(v \in \{||_{ij}\}_{i \in \mathbb{D}_{\Sigma}, j \in \mathbb{P}_{\Sigma}} \cup \Sigma)$. A state (set) q includes $\lceil \log_2 |\Sigma| \rceil + 2|\Sigma|$ nodes at most. For deterministic FAS, it takes $\mathcal{O}(|\Sigma|)$ time to search the node v. Then, the state $p_y = q \setminus \{v\} \cup \{y\}$ can be reached, y is recognized. Thus, for the current state q, it takes $\mathcal{O}(|\Sigma|)$ time to recognize y.
- 2. $|q| \ge 1$, $\exists \&_i \in q : y \in H.R(\&_i)$. For deterministic FAS, it takes $\mathcal{O}(|\Sigma|)$ time to search the node $\&_i$ in state (set) q, and it also takes $\mathcal{O}(|\Sigma|)$ time to decide whether $y \in H.R(\&_i)$. Then, the state q transits to the state $q' = q \setminus \{\&_i\} \cup H. \succ (\&_i)$. Then, there is a node $||_{ij} (||_{ij} \in H. \succ (\&_i), j \in \mathbb{P}_{\Sigma}\})$ in q' that is checked whether $y \in H. \succ (||_{ij})$. Case (1) will be considered. then, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time to recognize q.

- 3. $|q| \ge 1$, $\exists \&_i^+ \in q : y \in H.R(\&_i)$ The state $\&_i^+$ will transit to the state $\&_i$, case (2) is satisfied. Then, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time to recognize y.
- 4. $q = q_0$. If $y \in H$. $\succ (q_0)$, then, for deterministic FAS, it takes $\mathcal{O}(|\Sigma|)$ time to search the node y. Otherwise, a node $\&_i$ $(i \in \mathbb{D}_{\Sigma})$ is searched and is decided whether $y \in H.R(\&_i)$. Then, it takes $\mathcal{O}(|\Sigma|^2)$ time for q transiting to the state $\&_i$. Case (2) is satisfied. Then, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time at most to recognize y.

Thus, for deterministic FAS, a symbol $y \in \Sigma_s$ and a current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time at most to recognize y. When the last symbol of s was recognized, the end symbol \dashv requires to be consumed, it takes $\mathcal{O}(|H.V|) = \mathcal{O}(|\Sigma|)$ time to transit to the final state q_f . Let |s| denote the length of the string s, then for an FAS, it takes $\mathcal{O}(|s||\Sigma|^2)$ time to recognize s. Therefore, the membership problem for a deterministic FAS is decidable in polynomial time (uniform)⁷.

8.2 Proof of Theorem 2

(1) The learnt FAS A from a sample S is a deterministic FAS.

Proof. H is the node transition graph of an FAS A. The FAS A is learnt by constructing the node transition graph H. We convert the SOA G built for S to the digraph H, and the different markers $(\&_i, \&_i^+, ||_{ij}, i \in \mathbb{D}_{\Sigma}, \in \mathbb{P}_{\Sigma})$ are added into the SOA G by traversing the shuffle units in $P_{\&}$. For different shuffle units in $P_{\&}$, there are different start markers $\&_i$ and end markers $\&_i^+$ which are added into G. For different sets (disjoint) in a shuffle unit, there are different concurrent markers $||_{ij}$ which are added into G. The finally obtained G is the node transition graph of the learnt FAS A. Then, every node of H is labelled by distinct symbol.

For recognizing a string $s \in S$, according to the state transition function of the learnt FAS \mathcal{A} , a symbol $y \in \Sigma_s$ (resp. \dashv) is recognized if and only if the state (set) p including node y (resp. the final state q_f) is reached. If y (resp. \dashv) does not been consumed, there is only one next state p' is specified that the state p' including the node which can reach to node y (resp. node q_f) in H. Thus, each symbol $y' \in \Sigma_s \cup \{\dashv\}$ can be unambiguously recognized. The FAS \mathcal{A} is a deterministic FAS.

Lemma 1. Assume that the set of shuffle units $P_{\&} = \{[e_1, e_2, \cdots, e_k]\}$ $(k \geq 2)$ is returned by Algorithm 2. Let $r(e_i)$ $(1 \leq i \leq k)$ denote a regular expression such that $e_i = \Sigma_{r(e_i)}$. For a given finite sample S, if $\mathcal{L}(r(e_1)\& \cdots \& r(e_k)) \supseteq S$, then there does not exist a shuffle unit $[e'_1, e'_2, \cdots, e'_t]$ $(t \geq 2)$ such that $\mathcal{L}(r(e_1)\& \cdots \& r(e_k)) \supset \mathcal{L}(r(e'_1)\& \cdots \& r(e'_t)) \supseteq S$.

⁷Note that, for non-uniform version of the membership problem for a deterministic FAS, only the string to be tested is considered as input. This indicates that $|\Sigma|$ is a constant. In this case, the membership problem for a deterministic FAS is decidable in linear time.

Proof. Assume that there exists a shuffle unit $l' = [e'_1, e'_2, \cdots, e'_t]$ $(t \ge 2)$ such that $\mathcal{L}(r(e_1)\& \cdots \& r(e_k)) \supset \mathcal{L}(r(e'_1)\& \cdots \& r(e'_t)) \supseteq S$. Then, $t \le k$.

Let $l = [e_1, e_2, \dots, e_k]$. There is $\Sigma = \bigcup_{1 \leq i \leq k} e_i = \bigcup_{1 \leq i \leq t} e_i'$. According to Algorithm 2, the returned $P_{\&} = \{[e_1, e_2, \dots, e_k]\}$ implies that any two distinct symbols u and v in one set in l satisfies that u is unnecessarily interleaved with v for S. If t < k, there must exist two distinct symbols u' and v' are in the same set in l' such that u' is necessarily interleaved with v' for S. However, u is unnecessarily interleaved with v for language $\mathcal{L}(r(e_1')\& \dots \& r(e_t'))$. This will result in $\mathcal{L}(r(e_1')\& \dots \& r(e_t')) \not\supseteq S$. Thus, t = k.

Let $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\supset\mathcal{L}(r(e_1')\&\cdots\&r(e_k'))\supseteq S$. If there exists $1\leq i\leq k$ such that $e_i\neq e_i'$, then $r(e_i)\neq r(e_i')$, there exists a string s' such that $s'\in\mathcal{L}(r(e_1')\&\cdots\&r(e_k'))$ but $s'\notin\mathcal{L}(r(e_1)\&\cdots\&r(e_k))$. Then, $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\not\supset\mathcal{L}(r(e_1')\&\cdots\&r(e_k'))$. Therefore, $e_i=e_i'$ for any $1\leq i\leq k$. There is a contradiction to the initial assumption. Thus, there does not exist a shuffle unit $[e_1',e_2',\cdots,e_t']$ $(t\geq 2)$ such that $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\supset\mathcal{L}(r(e_1')\&\cdots\&r(e_t'))\supseteq S$.

(2) There does not exist an FAS \mathcal{A}' , which is learnt from S such that $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$. The FAS \mathcal{A} is a precise representation of S.

Proof. The FAS \mathcal{A} is learnt by constructing the node transition graph H of the FAS. We convert the SOA G built for S to the digraph H by traversing shuffle units in $P_{\&}$, which is obtained from Algorithm 2. The built SOA G is a precise representation of S [11].

Assume that there exists an FAS \mathcal{A}' learnt from S such that $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$. For the node transition graph H' of the FAS \mathcal{A}' , H' should be constructed by using the SOA G built for S, otherwise, the above assumption can not hold. Suppose that there is the set $P'_{\&}$ of shuffle units such that the digraph H' is constructed from the SOA G by traversing shuffle units in $P'_{\&}$.

For each shuffle unit l in $P_{\&}$, let $l = [e_1, \cdots, e_k]$ $(k \ge 2)$, according to Algorithm 3, there are corresponding start marker $\&_i$ and end marker $\&_i^+$ are added into G. Let the current digraph G denote the node transition graph of an FAS, and \mathcal{B} denote the FAS. The FAS \mathcal{B} can recognize the shuffled strings which consist of the symbols in $\bigcup_{1 \le i \le k} e_i$. Let $S_{\&}$ denote the set of the above shuffled strings extracted from S. Then, $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\supseteq S_{\&}$. According to Lemma 1, there does not exist a shuffle unit $l' = [e'_1, e'_2, \cdots, e'_t] \in P'_{\&}$ $(t \ge 2)$ such that $\mathcal{L}(r(e_1)\&\cdots\&r(e_k)) \supseteq \mathcal{L}(r(e'_1)\&\cdots\&r(e'_t)) \supseteq S_{\&}$. This implies that, for each shuffle unit l' in $P'_{\&}$, the corresponding start marker $\&_k$ and end marker $\&_k^+$ $(k \in \mathbb{D}_{\Sigma})$ are added into G to form the corresponding FAS $\mathcal{B}', \mathcal{L}(\mathcal{B}) \supset \mathcal{L}(\mathcal{B}') \supseteq S_{\&}$ can not hold for $\mathcal{L}(\mathcal{B}) = \mathcal{L}(r(e_1)\&\cdots\&r(e_k))$ and $\mathcal{L}(\mathcal{B}') = \mathcal{L}(r(e'_1)\&\cdots\&r(e'_t))$.

Then, there does not exist the set $P'_{\&}$ of shuffle units such that the digraph H' is constructed from the SOA G by traversing shuffle units in $P'_{\&}$, and then $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$. Therefore, the initial assumption does not hold. The FAS \mathcal{A} is a precise representation of S.

8.3 Proof of Theorem 3

(1) r is a SOREF.

Proof. H is the node transition graph of the learnt FAS. Algorithm InfSOREF mainly transforms the constructed digraph H to r by using algorithm Soa2Sore. According to the definition of an FAS, every symbol labels a node of H at most once. H is also an SOA if we respect markers $(\&_i, \&_i^+ \text{ and } ||_{ij}, i \in \mathbb{D}_{\Sigma}, j \in \mathbb{P}_{\Sigma})$ as alphabet symbols, and the algorithm Soa2Sore transforms the digraph H to a SORE r_s . r is obtained by introducing shuffle operators into r_s , and every alphabet symbol in r occurs once. r is a SOREF.

(2) There does not exist a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq S$.

Proof. Assume that there exists a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq \mathcal{L}(\mathcal{A})$. The node transition graph H of the learnt FAS \mathcal{A} can be considered as an SOA. According to Theorem 27 presented in [11], a SORE r_s is transformed from the digraph H by using algorithm Soa2Sore, there does not exist a SORE r'_s such that $\mathcal{L}(r_s) \supset \mathcal{L}(r'_s) \supseteq \mathcal{L}(H)$. According to algorithm 4, r_s and r'_s can be rewritten to SOREFs r and r' (no loss of precision), respectively. For an FAS \mathcal{A} , there does not exist a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq \mathcal{L}(\mathcal{A})$. There is a contradiction to the initial assumption. Therefore, there does not exist a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq \mathcal{L}(\mathcal{A})$. Note that, $\mathcal{L}(r) \supseteq \mathcal{L}(\mathcal{A}) \supseteq S$ holds by Theorem 2. And Corollary 17 [11] implies that, a precise SOREF r (for any given finite sample) satisfies that $\mathcal{L}(r) \supseteq \mathcal{L}(\mathcal{A})$. There also does not exist a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq S$. r is a precise representation of any given finite sample.

8.4 Proof of Theorem 4

Proof. According to Theorem 1, an FAS can recognize the language defined by SOREFs. This implies that, for any given SOREF r, an equivalent FAS \mathcal{A} can be constructed from the SOREF r. There must exist a finite sample S derived by r such that $\mathcal{A} = LearnFAS(S)$ ($\mathcal{L}(\mathcal{A}) \supseteq S$). The FAS \mathcal{A} is transformed to a SOREF r' by using algorithm InfSOREF. According to Theorem 3, algorithm InfSOREF returns a SOREF which is a precise representation of S. Thus, $\mathcal{L}(r') = \mathcal{L}(\mathcal{A}) = \mathcal{L}(r) \supseteq S$. Therefore, for any given SOREF r, there exists a finite sample S such that r = InfSOREF(S).