

G5B. EQUILIBRIO IÓNICO ÁCIDOS Y BASES

Ejercicio Resuelto N° 9

- 9) Una solución acuosa 3.10⁻² M de un ácido monoprótico débil a 25 °C, está disociado en un 12%.
- a) Calcular el pH de la solución.
- b) Calcular la constante K_a.
- c) Plantear los equilibrios presentes con sus constantes y los balances de especies y de cargas.

Datos: $[AH]_0 = 3.10^{-2}$ M, grado de disociación del 12% (α = 0,12)

a)
$$pH = - log [H^+]$$

$$AH \rightleftharpoons H^+ + A^-$$

Inicialmente tengo solo AH, pero a medida que la reacción avanza la concentración de AH disminuye y la concentración de H⁺ y A⁻ aumentan.

AH
$$\rightleftharpoons$$
 H⁺ + A⁻
3.10⁻² - - Concentración Inicial
3.10⁻² - x x x A medida que avanza la reacción

El grado de disociación $\alpha = [A^-]/[AH]_0 = x / 3.10^{-2} = 0,12$, por lo tanto x = 0,12. 3.10^{-2} M = 0,0036 M

$$[H^+] = x = 0,0036 \text{ M}$$

 $pH = -\log [H^+] = -\log 0,0036 = 2,44$

b) Constante K_a

AH
$$\rightleftharpoons$$
 H⁺ + A⁻ Ka = $\frac{[A^-][H^+]}{[AH]} = \frac{x \cdot x}{0.03 - x} = \frac{0.0036^2}{0.03 - 0.0036} = 0.000491 = 4.91 10^{-4}$

c) Equilibrios presentes y constantes. Balance de especies y cargas

AH
$$\rightleftharpoons$$
 H⁺ + A⁻ Ka = $\frac{[A^-][H^+]}{[AH]}$ = 4,91 10⁻⁴
H₂O \rightleftharpoons H⁺ + OH⁻ Kw = [H⁺] [OH⁻] = 10⁻¹⁴

Balance de masa:
$$[HA]_0 = [HA] + [A^-]$$

La determinación de la concentración de todas las especies en equilibrio de la disolución acuosa diluida de ácidos y bases se resume a un problema de N ecuaciones no lineales con N incógnitas, más la condición que **no puede haber ninguna concentración negativa**, lo que permite elegir una, entre todas las posibles soluciones.