

Design and Implementation of a Computing Scenario Forecasting System Based on Generative Adversarial Networks

Student: Jaime Pérez Sánchez

Advisor: Patricia Arroba García

Table of Contents

1. Motivation

- 2. Contributions
- 3. Review of GANs
- 4. Case Study
- 5. Experiments and Results
- 6. Reflection on Research

Digital Economy & Society

World's Population Using the Internet					
2018	51%				
2023	66%				
European Citizens Using Internet Daily					
2014	48%				
2018	73%				

Daily Hours Spent on Digital Media by U.S. Citizens

2013 <5h 2018 >6h

Internet Traffic Share

Cloud Computing Paradigm

- Vast majority of new technologies base their operations on Cloud
- \triangleright 2010 \rightarrow 2018: Compute instances increased by **550%** and IP traffic by **1,000%**
- ≥ 2018: Cloud Global Energy Use of 205 TWh (1% of Global Energy Consumption)

Cloud Computing Paradigm

- Progress on Data Center energy efficiency
 - Global Power Usage Effectiveness (PUE) of 1.67 (ideal = 1)
 - Energy use per computation has dropped ~400%

- ▶ How much longer can we improve energy efficiency?
 - Cooling energy expenses represent, on average, up to 40% of the total bill
 - o In the next **3 or 4 years** the number of compute instances will **double** again

Cloud Computing Paradigm

- Progress on Data Center energy efficiency
 - Global Power Usage Effectiveness (PUE) of 1.67 (ideal = 1)
 - Energy use per computation has dropped ~400%

- ▶ How much longer can we improve energy efficiency?
 - Cooling energy expenses represent, on average, up to 40% of the total bill
 - o In the next **3 or 4 years** the number of compute instances will **double** again

We urgently need better optimization in Data Centers!

Data-Driven Optimization

- Outstanding results of Machine Learning and Deep Learning. Why?
 - Massive amounts of data
 - Increased computing power (GPUs)
 - Transfer learning from expert pre-trained models
- ML and DL optimization in Data Centers
 - Systems incredibly challenging to optimize
 - Google achieved 40% of cooling energy saving (15% reduction of PUE)

Source: DeepMind

Data-Driven Optimization

- Outstanding results of Machine Learning and Deep Learning. Why?
 - Massive amounts of data
 - Increased computing power (GPUs)
 - Transfer learning from expert pre-trained models
- ML and DL optimization in Data Centers
 - Systems incredibly challenging to optimize
 - Google achieved 40% of cooling energy saving (15% reduction of PUE)

Source: DeepMind

What can we do if we do not have enough data?

Synthetic Data Generation

- Adoption of synthetic data
 - Companies: Google, IBM, NVIDIA
 - o Agencies: US Census Bureau
- More efficient access to data
- Enable better analytics when gather real data is too costly, dangerous, or unethical

Generative Adversarial Networks (GANs)

Real Image

Synthetic Image

Source: NVIDIA

Table of Contents

- 1. Motivation
- 2. Contributions
- 3. Review of GANs
- 4. Case Study
- 5. Experiments and Results
- 6. Reflection on Research

State Of the Art: Synthetic Time-Series Data

Generation Based on Statistical Methods:

- ▶ Naive: Gaussian Noise, Rotation, Scaling, Warping...
- AutoRegressive Models: ARIMA, ARMA...
- Markov Models: Hidden Markov Models
- ▶ Bayesian Models: Dynamic Bayesian Networks, Bayesian Structural Time-Series...

PROS

- Interpretability
- Can be applied in small datasets

CONS

- Require expertise knowledge
- Poor work on multivariate data with non-linear relationships
- ☐ Do not always improve with more data

2. Contributions

State Of the Art: Synthetic Time-Series Data

Generation Based on GANs:

PROS

- Outstanding empirical results
- Can handle multi-variable data with non-linear relationships
- Flexible tune generation
- Can be applied in conjunction with traditional data augmentation methods

CONS

- ☐ Unstable training (partially solved)
- ☐ Diversity of the generated data can be limited and biased by the available data
- ☐ It needs relatively large amounts of data for efficient training
- ☐ It does not compute an explicit density estimation (i.e., black-box model)

2. Contributions

State Of the Art: Synthetic Time-Series Data using GANs

	Data Augmentation	Single-Variable Scenario Generation					Ours
	[42]	[49]	[50]	[51]	[53]	[54]	
Realistic Data Generation	✓	1	✓	✓	✓	✓	1
Scenario Generation	×	✓	1	✓	✓	✓	✓
Generate Data from Particular Time Instants	×	✓	×	×	×	×	√
Generate on-demand anomalous situations	×	×	×	×	×	×	✓
Multi-variable Generation	✓	×	×	×	×	×	1
Introduce Categorical Variables	✓	×	×	×	✓	×	✓
Introduce Spatial Information	Not Tested	×	✓	×	✓	×	1
Disentangled Latent Space	×	×	×	×	×	✓	Future Work

Table of Contents

- 1. Motivation
- 2. Contributions
- 3. Review of GANs
- 4. Case Study
- 5. Experiments and Results
- 6. Reflection on Research

Discriminative Models vs. Generative Models

	Discriminative model	$\label{eq:Generative model} $ Estimate $P(x y)$ to then deduce $P(y x)$			
Goal	Directly estimate $P(y x)$				
What's learned	Decision boundary	Probability distributions of the data			
Illustration					
Examples	Regressions, SVMs	GDA, Naive Bayes			

Generative Models Taxonomy

Generative Adversarial Networks (GANs)

Training GANs: Two-Player Game

Minimax Objective Function:

Generative Adversarial Networks (GANs)

Table of Contents

- 1. Motivation
- 2. Contributions
- 3. Review of GANs
- 4. Case Study
- 5. Experiments and Results
- 6. Reflection on Research

Sensor Data in Data Center Facility

Real data gathered from an operating Data Center:

- Sensors: TycheTools [https://www.tychetools.com]
 - 35 sensors → Temperature and Relative Humidity collected every 10 minutes

Example of Data Gathered by One Sensor

Exploratory Data Analysis: Temperature

Exploratory Data Analysis: Temperature

Exploratory Data Analysis: Relative Humidity

Exploratory Data Analysis: Relative Humidity

Exploratory Data Analysis: Correlations

Exploratory Data Analysis: Correlations

Methodology

Training Improvements:

- Wasserstein-Loss with Gradient Penalty
- Spectral Normalization
- Two Time-Scale Update Rule (TTUR)
- GanHacks by DCGAN authors [https://github.com/soumith/ganhacks]
 - Embedding layers for categorical variables

Data Generation Improvements:

Metropolis-Hastings GAN (MH-GAN)

Methodology

Evaluation Metrics

Kullback-Leibler (KL) Divergence

$$D_{ ext{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log igg(rac{P(x)}{Q(x)}igg)$$

Pinball Loss Function

$$L_{ au}(y,z) = (y-z) au \quad ext{if } y \geq z \ = (z-y)(1- au) \quad ext{if } z > y$$

Mean Squared Error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

Table of Contents

- 1. Motivation
- 2. Contributions
- 3. Review of GANs
- 4. Case Study

5. Experiments and Results

6. Reflection on Research

5. Experiments and Results

Software Tools

Programming Language	Python 3.6			
IDE	Google Colab			
Deep Learning Framework	Tensorflow			
Python Libraries for Data Processing	Pandas, Scikit-Learn, and Numpy			
Python Libraries for Data Visualization	Matplotlib and Seaborn			

Initial Hyperparameters

Fixed Architectures:

- Generator: Long Short-Term Memory (LSTM) neurons, ~165k parameters
- Discriminator: 1D Convolution neurons, ~735k parameters

Feature Scaling	Min-Max Scaler [-1, 1]			
Loss Function	Wasserstein-Loss with Gradient Penalty			
Batch Normalization in Generator	✓			
Spectral Normalization	✓			
Networks Size Ration (Discriminator / Generator)	~4.5			
Gaussian Noise Dimension	8			
Embedding Layer Dimension	8			
Batch Size	64			

Experiments

Tuned Hyperparameters:

Optimizer: Adam / Adabelief

▷ Skip-Connection Architecture: ✓ or ✗

Output Activation in Generator: linear / tanh

▶ TTUR: ✓ or ✗

▷ Dropout: ✓ or ※

Experiments Methodology:
Random scenario generation of 24
time-steps duration, from a
validation set

Best Results									
Hyperparameter				Metrics					
()httm://pr	· · · · · · · · · · · · · · · · · · ·	Output	TTUR	Dropout	KL Divergence [bits]	Pinball Loss		MSE	
	Architecture	e Activation				Temp.	Humid.	Temp.	Humid.
AdaBelief	×	linear	1	1	1.432	0.488	0.219	0.977	0.438

Experiments

Experiments Methodology: Random scenario generation of 24 time-steps duration, from a validation set

Scenario Generation: Exploring Latent Space

Low uncertainty example

Scenario Generation: Exploring Latent Space

> Increasing uncertainty example

Scenario Generation: MH-GAN

> Low uncertainty example

Scenario Generation: MH-GAN

Increasing uncertainty example

On-Demand Anomaly Generation

Anomaly Generation
Methodology:
Increase standard deviation
of Gaussian latent space on
specific time instants

On-Demand Anomaly Generation

Anomaly Generation
Methodology:
Increase standard deviation
of Gaussian latent space on
specific time instants

Table of Contents

- 1. Motivation
- 2. Contributions
- 3. Review of GANs
- 4. Case Study
- 5. Experiments and Results
- 6. Reflection on Research

Conclusions

The results obtained in this work establish a methodology that extends **synthetic time-series data** applications, enabling to use **categorical variables** and **multi-variable scenario generation**.

On-demand anomaly generation introduces significant data variability without additional effort or endangering electronic equipment integrity.

The proposed methodology can be employed in any similar time-series-like problems in **other fields of application**.

Our research will help to apply synthetic data generation to different real-world time-series problems. Through the proposed use case, enabling better optimization of Data Centers, and thus, a more sustainable and greener future.

Open Issues

Scarce Research on Time-Series GANs

Leads to unstable training and the need for intensive hyperparameter search.

Generated Data Bias

Generated data variability is limited and biased by the available data.

We also need better metrics to measure "realism".

Human Supervision is Needed

The fact that the training process is not perfect and the accessible data is limited, implies that some generated samples do not correspond to real situations.

Relatively Large Amounts of Data are Needed

GANs require "large" amounts of data for stable training. Still, this amount is tiny compared to that needed to achieve state-of-the-art results in Deep Learning models

Future Work

Hyperparameter Optimization

Analyze Scalability of Multi-Variables Datasets

Further Study on the Usefulness of the Results

E.g., Train on Synthetic, Test on Real

Disentangled Latent Space

[54]

Add Supplementary Conditional Information

E.g., Freq., ARIMA, Time Information...

Explore Alternatives Evaluation Metrics

E.g., Divergence of Freq. Spectrum

Explore Further GAN Architectures and Improvements

E.g., StyleGAN, Model Weight Averaging...

Thanks! Any questions?

BACKUP

Backup