# Week 7

Mining Asset Detection (MAD)

# Holiday recap

- Lasso concluded with main learnings:
  - a. Different bands matter for different mine types/ regions
  - b. Quick and dirty yolo model worked pretty well
- How should we now proceed with yolo training?

Following is a list of the different training possibilities

# Tree of possibilities - Cleanup the satellite images

#### General idea...

- The quality of the model probably depends on the quality of the input pictures.
- => Try to increase the image quality as much as possible
  - Try different sources for the satellite images?
  - Use single satellite images instead of accumulations?

Requires redownloading and some filtering of the images (Essentially done)

# Tree of possibilities - Use cleaned satellite images

Train on this, instead of



this.



### Tree of possibilities - Perturbate instead of grid

#### General idea...

- The final training set is very small (2GB, as it is jpeg), maybe too small for model retraining
- => Try to increase the dataset size by perturbation
  - So instead of only using the grid images, per Maus polygon, use multiple images perturbed as...
    - From different Zoom levels
    - Different centering in the image
  - Use this inflated dataset to train the model again and compare the inputs against the baseline

Either redownload the perturbed images, or stitch them together from existing ones.

# Tree of possibilities - Perturbate instead of grid





# Tree of possibilities - Models per region

General idea...

- From the lasso we know that different ecoregions may influence mine characteristics
- => Train different models for different ecoregions
  - Separate the images by ecoregions

Dispatch would need to be implemented, given an image, dispatch to the correct model based on metadata.

# Tree of possibilities - Models per region

Use different models for different Ecoregions







### Tree of possibilities - Use different bands

General idea...

- From lasso we suspect that using multiple bands might increase precision
- => Find a way to utilise the multiple bands
  - Use the bands after model inference (to make the output more precise)
  - Use the bands for the training (Train models for different band combinations)

Bands after inference: Define a quality, discriminate based on that.

Bands for training: Would require changing the underlying model and not allow for using existing model, or doing a hack.

# Tree of possibilities - Use different bands - Precision

Use Lasso prediction



+ Model output



To determine true hits



# Tree of possibilities - Use different bands - Inference



### Tree of possibilities - Use labelled mine data

#### General idea...

- Use different models specialised for different mine types
- => Generate labels for mines
  - Use the labelled mine dataset (from Julie) to classify different mines
  - Use a more mature model to label what type our images are
    - Use human supervision to check if the labels seem reasonable

Requires generating the labelling data, other parts should be similar to simply training yolo.

# Tree of possibilities - Use labelled mine data

Cobalt mines



Use labelled data (cobalt mines) to label our data

With the labelled data train specialised models for each labelling type.

# Tree of possibilities - How to proceed

- 1. Create a universal test set for which models are tested
- 2. Generate a baseline model with the cleaner S2 satellite images
- 3. For each other model idea, train the model and compare it to the baseline based on the universal test set.

### Tree of possibilities - What we have

- Around 2.5TB of Sentinel 2 satellite images
- Given a set of .tif images:
  - We generate a dataset for training a yolo model automatically
  - The training is done (For the first trial, 50k images, ca. 5hrs on a single GPU)
  - o The final model can be used to infer
- Should be scalable enough to define different characteristics for the dataset generations for all scenarios

# Final output

What should the model be utilised for?

- Integration with something like QGIS? (Select AOI and see labelled mines?)
- One large global run with a dataset of findings?
- Typical Model output (as in a square around mine) or the exact area as a polygon?
- Classification between different mine types?