	Eliminating E-Transitions
	NFA with E or E-NFA can be conjusted to RIFA or NFA without
	E or null moue.
1.	Episibon ceosure:-
*	For each state q in the NFA, find the set of all states
	reachable from q by following zero or more epsilon transitions.
*	This set is called the epsilon closure of q, denoted as
	E-closure (q).
2.	Remove & transition:
	Create a NFA without epsilon transition
. *	The states of the new NFA will be sets of states from the original
MAN	NFA, representing the epsilon closure of each state.
*	For each state sin the new NFA and each input synthol a:
	-> Find the set of states (T) that can be reached from any
	State in S by following a transition on a
	-> Add a transition from 8 to E-closure (T) on symbol a in
	the New NFA.
Example	Convert E-NFA to NFA
	First find E- closure for 90,9,92
Solution	ε -closure $(q_0) = \{q_0\}$
	$E - closure (q_1) = Eq_1, q_2 $
	E- closure (92) = {923
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	


```
Now find o' to consition for each input:
δ'(q0, 9) = ε- closure (δ(δ'(q0, €)), a))
          = E- closure (8 (E-closure (qo,a))
          = E- closure (6(90,9))
          = E - closure (q1)
          = 59, 923
 S'(q0,b) = ε- closure (δ(ε-closure (q0),b)))
          = E - closure (8 (90,b))
\delta'(q_1,a) = \varepsilon - closure(\delta(\varepsilon - closure(q_1),a))
          = E- closure (& (q, q,),a)
          = E-closize (d(q,,a)U &(q2,a))
          = E- closcure (dup)
δ'(q1,b) = E-closure (δ(E-closure (q1,b)))
         = E- closure (d(q,,q,),b)
          = E- closure (8(q1, b) v8(q2, b))
         = E- closure ( $ U g2)
δ'(q2, a) = ε- closure (δ(ε- closure (q2, a)))
          = E- closure (8(92,a))
6'(q2, b) = €- closure (6(€-closure (q2, b)))
         = E- cesure (5 (92,b))
```

1	1996		F. A. St.	
7	trav	neil	in	-
-0_	1001	V3/1	(Or	

$$\delta'(q_{1}, \alpha) = \emptyset$$

Transition Table :-

	And the state of t		
	States	a.	Ь
, a ⁷ 1	$\rightarrow q_0$	£91,924	ø
	* 9,1	6	5924
	* 92	0	8924
			late A 1

State q, and q2 becomes the final state as E- closure of q, and q2 contain the final state q2. The NFA can be shown by the following transition diagram shown above.