Evaluation Report

Team

Mourya Gottipati - U01099603 - gottipati.22@wright.edu

Niranjan Kumar Ramineni - U01065247 - <u>ramineni.15@wright.edu</u>

1.) Introduction:

This report is based on the evaluation of a Bernoulli Naive Bayes classifier implemented manually and using the scikit-learn library. This classifier was tested on a dataset of documents classified into two categories those are Windows and Hockey.

2.) Evaluation Metrics:

The evaluation metrics used here to compare the performance of the classifiers are

Accuracy: The ratio of correctly predicted instances to the total instances.

<u>Precision</u>: The ratio of correctly predicted positive observations to the total predicted positives.

<u>Recall</u>: The ratio of correctly predicted positive observations to the all observations in actual class.

<u>F1 Score</u>: The weighted average of Precision and Recall.

3.) <u>Classifier Performance</u>:

Manual Implementation:

The performance of the manually implemented Naive Bayes Multivariate Bernoulli classifier is

Accuracy= 0.945 Precision= 1.0

> Recall= 0.8910891089108911 F1Score= 0.9424083769633508

Confusion Matrix= [[99 0]

[11 90]]

Confusion Matrix:

LinePlot:

Scikit-learn Implementation:

The performance of the Naive Bayes Multivariate Bernoulli classifier using Scikit-learn is

Accuracy= 0.945

Precision= 1.0

Recall= 0.8910891089108911

F1Score= 0.9424083769633508

Confusion Matrix= [[99 0]

[11 90]]

Confusion Matrix:

LinePlot:

Both implementations produce identical results which indicate that the manual implementation is correct and matches the performance of the Scikit-learn implementation.

4.) Comparative Analysis:

Accuracy: 0.945

Both implementations give an accuracy of 94.5%. This high accuracy indicates that the classifiers correctly predict the class labels for most test documents.

Precision: 1.0

Both implementations give a perfect precision of 1.0 which means that when the classifier predicts a document as positive it is always correct.

Recall: 0.891089108910

The recall for both implementations is 0.8911. This indicates that the classifier correctly identifying 89.11% of the positive documents but misses 10.89% of them.

F1Score: 0.9424083769633508

The F1 Score, which is the harmonic mean of precision and recall is 0.9424 for both implementations.

Confusion Matrix:

[[99 0]

[11 90]]

This matrix indicates that:

→ 99 true negative cases were correctly classified as negative.

- → 90 true positive cases were correctly classified as positive.
- \rightarrow 11 false negative cases were incorrectly classified as negative.
- \rightarrow 0 false positive cases were incorrectly classified as positive.

5.) Conclusion:

Results of both the manual and Scikit-learn implementations of the Naive Bayes Multivariate Bernoulli classifier performing identically on the given dataset with high accuracy, perfect precision, and a strong F1 score. This result helps in showcasing the correctness of the manual implementation with Scikit-learn implementation.