Chapter 7 Answers

7.1 Calculating Integrals

- 1. $x^3 + \tilde{x}^2 1/2x^2 + C$
- 3. $e^x + x^2 + C$
- 5. $-(\cos 2x)/2 + 3x^2/2 + C$
- 7. $-e^{-x} + 2\sin x + 5x^3/3 + C$
- **9.** 1084/9
- **11.** 105/2
- **13.** 844/5
- **15.** 1/12
- **17.** 0
- **19.** 6
- **21.** $3\pi/4$
- **23.** $\pi/12$

- 25, 1
- **27.** $(e^6 e^3)/3 + 3(2^{5/3} 1)/5$
- **29.** ln 5
- 31. $4 \ln 2 + 61/24$
- **33.** 400
- **35.** 116/15
- 37. (b) $e^{(e^2)} e + 3$
- **39.** (a) 11
 - (b) -8
 - (c) Note that $\int_{5}^{7} f(t) dt$ is negative
- **41.** $-2t\sqrt{e^{t^2}} + \sin 5t^4$
- **43.** 3
- **45.** (a) 0
 - (b) 5/6
 - $-\cos x$ cos(2) - 2 cos x
- if $0 < x \le 2$ if $2 < x \le \pi$

- 47. $2 + \tan^{-1}2 \frac{1}{2} \ln 5$
- **49.** 16.4
- 51. $(1/2)(e^2-1)$
- 53. $16/3 \pi$
- 55.

- 57. $\pi/4$
- 59. (a) Differentiate the right-hand side. (b) Integrate both sides of the identity. (c) 1/8
- 61. Use the fact that $tan^{-1}a$ and $tan^{-1}b$ lie in the interval $(-\pi/2, \pi/2)$
- 63. 16,000,014 meters

- 65. (a) Evaluate the integral.
 - (b) A = \$45,231.46
- **67.** (a) $R(t) = 2000e^{t/2} 2000$, $C(t) = 1000t t^2$ (b) \$57,279.90
- **69.** $1 + \ln(2) \ln(1 + e) \approx 0.380$

7.2 Integration by Substitution

- 1. $\frac{2}{5}(x^2+4)^{5/2}+C$
- 3. $-1/4(v^8+4v-1)+C$
- 5. $-1/2 \tan^2 \theta + C$
- 7. $\sin(x^2 + 2x)/2 + C$
- 9. $(x^4 + 2)^{1/2}/2 + C$
- 11. $-3(t^{4/3}+1)^{-1/2}/2+C$
- 13. $-\cos^4(r^2)/4 + C$
- 15. $\tan^{-1}(x^4)/4 + C$
- 17. $-\cos(\theta + 4) + C$
- 19. $(x^5 + x)^{101}/101 + C$
- **21.** $\sqrt{t^2+2t+3}+C$
- **23.** $(t^2+1)^{3/2}/3+C$
- **25.** $\sin \theta \sin^3 \theta / 3 + C$
- **27.** $\ln |\ln x| + C$
- **29.** $2\sin^{-1}(x/2) + x\sqrt{4-x^2}/2 + C$
- **31.** $\ln(1 + \sin \theta) + C$
- 33. $-\cos(\ln t) + C$
- 35. $-3(3+1/x)^{4/3}/4+C$
- 37. $(\sin^2 x)/2 + C$
- **39.** m a non-negative integer and n an odd positive integer, or n a non-negative integer and m an odd positive integer.

7.3 Changing Variables in the Definite Integral

- 1. $2(3\sqrt{3}-1)/3$
- 3. $(5\sqrt{5}-1)/3$
- 5. $2[(25)^{9/4} (9)^{9/4}]/9$
- 7. 1/7
- 9. (e-1)/2
- 11. -1/3

- 15. 1
- 17. $\ln(\sqrt{2}\cos(\pi/8))$
- **19.** 1/2
- **21.** $4 \tan^{-1}(3) + \pi/4$
- **23.** (a) $\pi/2$
 - (b) $\pi/4$

 - (c) $\pi/8$
- 25. The substitution is not helpful in evaluating the
- **27.** $(\sqrt{2}/2)[\tan^{-1}2\sqrt{2} \tan^{-1}(\sqrt{2}/2)]$
- **29.** $(1/\sqrt{3})\ln[(4+3\sqrt{2})/(1+\sqrt{3})]$
- **31.** Let u = x t.
- 33. $(5\sqrt{2} 2\sqrt{5})/10$
- 35. $(\pi/27)(145\sqrt{145} 10\sqrt{10})$
- **37.** (a) 1/3
 - (b) Yes.

7.4 Integration By Parts

1.
$$(x + 1)\sin x + \cos x + C$$

3.
$$x \sin 5x/5 + \cos 5x/25 + C$$

5.
$$(x^2-2)\sin x + 2x\cos x + C$$

7.
$$(x+1)e^x + C$$

9.
$$x \ln(10x) - x + C$$

11.
$$(x^3/9)(3 \ln x - 1) + C$$

13.
$$e^{3s}(9s^2-6s+2)/27+C$$

15.
$$(x^3-4)^{1/3}(x^3+12)/4+C$$

17.
$$t^2 \sin t^2 + \cos t^2 + C$$

19.
$$-(1/x)\sin(1/x) - \cos(1/x) + C$$

21.
$$-[\ln(\cos x)]^2/2 + C$$

23.
$$x \cos^{-1}(2x) - \sqrt{1 - 4x^2}/2 + C$$

25.
$$y\sqrt{1/y-1} - \tan^{-1}\sqrt{1/y-1} + C$$

27.
$$\sin^2 x/2 + C$$

29. The integral becomes more complicated.

31.
$$(16 + \pi)/5$$

33.
$$3(3 \ln 3 - 2)$$

35.
$$\sqrt{2} [(\pi/4)^2 + 3\pi/4 - 2]/2 - 1$$
.

37.
$$\sqrt{3}/8 - \pi/24$$

39.
$$e-2$$

41.
$$-(e^{2\pi}-e^{-2\pi})/4$$

43.
$$\frac{3}{5}(2^{2/3}(2^{2/3}+1)^{5/2}-2^{5/2}+\frac{2}{7}[2^{7/2}-(2^{2/3}+1)^{7/2}])\approx 4.025$$

45.
$$(\pi - 4)/8\sqrt{2} - 1/2$$

47.
$$\int_0^1 \sqrt{2-x^2} \, dx - \int_0^{\sqrt{2}} \sqrt{2-x^2} \, dx =$$

$$-\int_{1}^{\sqrt{2}} \sqrt{2-x^2} dx$$
 is $-1/8$ the area of a circle of

radius $\sqrt{2}$ corrected by the area of a triangle (draw

49. $(-2\pi\cos 2\pi a)/a + (\sin 2\pi a)/a^2$. (This tends to zero as a tends to ∞ . Neighboring oscillations tend to cancel one another.)

51. (b)
$$(5e^{3\pi/10} - 3)/34$$

53. (a) Use integration by parts, writing $\cos^n x =$ $\cos^{n-1}x \times \cos x.$

55.
$$2\pi^2$$

57. (a)
$$Q = \int EC(\alpha^2/\omega + \omega)e^{-\alpha t}\sin(\omega t) dt$$

(b)
$$Q(t) = EC \{1 - e^{\alpha t} [\cos(\omega t) + \alpha \sin(\omega t)/\omega]\}$$

59.

61. (a) $a_0 = 2$, all others are zero.

(b)
$$a_0 = 2\pi$$
, $b_n = -2/n$ if $n \neq 0$, all others are zero.

(c)
$$a_0 = 8\pi^2/3$$
, $a_n = 4/n^2$ if $n \neq 0$, $b_0 = 0$, $b_n = -4\pi/n$ if $n \neq 0$.

(d)
$$a_4 = b_2 = b_3 = 1$$
, all others are zero.

Review Exercises for Chapter 7

1.
$$x^2/2 - \cos x + C$$

3.
$$x^{4}/4 + \sin x + C$$

5.
$$e^{x} - x^{3}/3 - \ln|x| + \sin x + C$$

7.
$$e^{\theta} + \theta^3/3 + C$$

9.
$$-\cos(x^3)/3 + C$$

11.
$$e^{(x^3)}/3 + C$$

13
$$(x \pm 2)^{6}/6 \pm C$$

11.
$$e^{(x^2)}/3 + C$$

13.
$$(x+2)^6/6+C$$

15.
$$e^{4x^3}/12 + C$$

17.
$$-\frac{1}{3}\cos^3 2x + C$$

19.
$$x^2 \tan^{-1} x/2 - x/2 + \tan^{-1} x/2 + C$$

21.
$$\sin^{-1}(t/2) + t^3/3 + C$$

23.
$$xe^{4x}/4 - e^{4x}/16 + C$$

25.
$$x^2 \sin x + 2x \cos x - 2 \sin x + C$$

27.
$$(e^{-x}\sin x - e^{-x}\cos x)/2 + C$$

29.
$$x^3 \ln 3x/3 - x^3/9 + C$$

31.
$$(2/5)(x-2)(x+3)^{3/2} + C$$

33.
$$x \sin 3x/3 + \cos 3x/9 + C$$

35.
$$3x \sin 2x/2 + 3\cos 2x/4 + C$$

37.
$$x^2e^{x^2}/2 - e^{x^2}/2 + C$$

39.
$$x^2(\ln x)^2/2 - x^2(\ln x)/2 + x^2/4 + C$$

41.
$$2e^{\sqrt{x}}(\sqrt{x}-1)+C$$

43.
$$\sin x \ln |\sin x| - \sin x + C$$

45.
$$x \tan^{-1} x - \ln(1 + x^2)/2 + C$$

49.
$$\pi/25$$

51.
$$\sin(1) - \sin(1/2)$$

53.
$$(\pi^2/32 + 1/2)\tan^{-1}(\pi/4) - \pi/8$$

55.
$$(4\sqrt{2} - 2)/3 + (2\sqrt{2} - 2)a$$

57.
$$3\sqrt{3}/5$$

63.
$$(2-\sqrt{2})/2$$

65. ln 2

67.
$$2/(n+1)$$

73.
$$\frac{4}{3} [\sin(\pi x/2)\sin(\pi x)/\pi + \cos(\pi x/2)\cos(\pi x)/2\pi] + C$$

75.
$$\sin^{-1}x - \sqrt{1 - x^2} + C$$

77. (a)
$$(\ln x)^2/2 + C$$

(b)
$$(2/9)(-\sqrt{3}/3+1)$$

(b)
$$(2/9)(-\sqrt{3}/3+1)$$

79. $(x^{n+1}\ln x^{n+1}-x^{n+1})/(n+1)^2+C$

81. (a)
$$(100/26)(\sin 5t/5 + \cos 5t + e^{-25t})$$

(b) Substitute
$$t = 1.01$$
 in part (a).
83. (a) $m^2 + n^2 + mn + 2m + 2n + 1 = 0$. (b) The discriminant is negative. (c) Yes; for example $x^{-1/2}$

and
$$x^{(-3\pm\sqrt{5})/4}$$
.
85. $xe^{ax}[b\sin(bx) + a\cos(bx)]/(a^2 + b^2) + e^{ax}[(b^2 - a^2)\cos(bx) - 2ab\sin(bx)]/(a^2 + b^2)^2 + C$

Chapter 8 Answers

8.1 Oscillations

1.
$$\cos(3t) = \cos\left[3\left(t + \frac{2\pi}{3}\right)\right]$$

3.
$$\cos(6t) + \sin(3t)$$

3.
$$\cos(6t) + \sin(3t)$$

= $\cos\left[6\left(t + \frac{2\pi}{3}\right)\right] + \sin\left[3\left(t + \frac{2\pi}{3}\right)\right]$
5. $\cos 3t - 2\sin 3t/3$

5.
$$\cos 3t - 2 \sin 3t / 3$$

7.
$$-\frac{1}{6}\sqrt{3}\sin(2\sqrt{3}t)$$

9.
$$2\pi/3$$
, 3, $1/3$

11.
$$2\pi$$
, 4, -1

13.
$$-\cos 2t$$

15.
$$\sqrt{26}\cos(5t-\tan^{-1}(1/5))$$

Phase shift
$$=\frac{\theta}{\omega} = \frac{\tan^{-1}(\frac{1}{5})}{5}$$

Period =
$$\frac{2\pi}{\omega} = \frac{2\pi}{5}$$

17.
$$\cos 2t + (3/2)\sin 2t$$

21. (a)
$$16\pi^2$$

(b)

23. The frequency decreases by a factor of $\sqrt{3}$.

25. (a)
$$27(d^2x/dt^2) = -3x + 2x^3$$

(b)
$$27(d^2x/dt^2) = -3x$$

27. (a)
$$x_0 = \frac{x_2 + x_1 \sqrt[3]{k_2/k_1}}{1 + \sqrt[3]{k_2/k_1}}$$

(b)
$$f'(x_0) > 0$$

29. There is no restriction on b.

31. Multiply (9) by $\omega \sin \omega t$ and (10) by $\cos \omega t$ and

33. (a) $V''(x_0) > 0$, so the second derivative test ap-

(b) Compute dE/dt using the sum and chain

(c) Since E is constant, if it is initially small, the sum of $\frac{1}{2}m\left(\frac{dx}{dt}\right)^2$ and V(x) must remain small, so both dx/dt and $x - x_0$ remain small.

8.2 Growth and Decay

1.
$$dT/dt = -0.11(T-20)$$

3.
$$dQ/dt = -(0.00028)Q$$

5.
$$2e^{-3t}$$

7.
$$e^{3t}$$

9.
$$2e^{8t-8}$$

11.
$$2e^{6-2s}$$

13. 7.86 minutes

15. 2,476 years

17.
$$e^{3t}$$

19. e^{8t+1}

21. Increasing

23. Decreasing

25. 33,000 years

27. 173,000 years

29. 1.5×10^9 years

31. 2,880 years

33. 49 minutes

35. 4.3 minutes

37. 18.5 years

39. The annual percentage rate is $100(e^{r/100}-1)$ ≈ 18.53%.

41. (a) 300 $e^{-0.3t}$

(b) 2000; 2000 books will eventually be sold.

(c)

43. K is the distance the water must rise to fill the

45. (a) Verify by differentiation.

(b) $a(t) = t(e^{-1/t} + 1 - e^{-1})$

47. $(2m/\delta)\ln 2$

8.3 The Hyperbolic Functions

1. Divide (3) by $\cosh^2 t$.

3. Proceed as in Example 2.

5. $\frac{d}{dx}(\cosh x) = \frac{1}{2} \frac{d}{dx}(e^x + e^{-x}) = \frac{1}{2}(e^x - e^{-x})$

7. Use the reciprocal rule and Exercise 5.

- 9. $(3x^2 + 2x)\cosh(x^3 + x^2 + 2)$
- 11. $\cosh x \sinh 5x + 5 \cosh 5x \sinh x$
- 13. $-8 \sin 8x \cosh(\cos 8x)$
- 15. $4 \sinh x \cosh x$
- 17. $-3 \operatorname{csch}^2 3x$
- 19. $(2 \operatorname{sech}^2 2x) \exp(\tanh 2x)$
- 21. $[\sinh x(1 + \tanh x) \operatorname{sech} x]/(1 + \tanh x)^2$
- 23. $(\sinh x)(\int [dx/(1 + \tanh^2 x)]) + \cosh x/(1 + \tanh^2 x)$
- **25.** $(\sinh 3t)/3$
- **27.** $2 \cosh \sqrt{3} t$
- **29.** $\cosh 3t + (\sinh 3t)/3$
- **31.** 2 cosh 6*t*
- 33.

35.

- 37. $(\sinh 3x)/3 + C$
- **39.** $\ln |\sinh x| + C$
- **41.** $(\sinh 2x)/4 x/2 + C$
- 43. $e^{2x}/4 x/2 + C$
- **45.** $\cosh^3 x/3 + C$
- **47.** $[y \cosh(x + y)]/[\cosh(x + y) x]$
- **49.** $-3y \operatorname{sech}^2 3xy / (\cosh y + 3x \operatorname{sech}^2 3xy)$
- **51.** (a) $x_0 = 1$ (b) $d^2x/dt^2 = 2(x-1)$
- 53. Use the definitions of $\sinh x$ and $\cosh x$. (Don't expand the *n*th power!)

8.4 The Inverse Hyperbolic Functions

1.
$$2x/\sqrt{x^4+4x^2+3}$$

3.
$$(3 - \sin x) / \sqrt{(3x + \cos x)^2 + 1}$$

5.
$$\tanh^{-1}(x^2-1)+2/(2-x^2)$$

7.
$$[(1+1/\sqrt{x^2-1})(\sinh^{-1}x+x)-(x+\cosh^{-1}x)(1+1/\sqrt{x^2+1})]/(\sinh^{-1}x+x)^2$$

9.
$$[\exp(1+\sinh^{-1}x)]/\sqrt{x^2+1}$$

11.
$$-3\sin 3x/\sqrt{\cos^2 3x+1}$$

- **13.** 0.55
- **15.** 1.87
- 17. Let $y = \cosh^{-1}x$, so $x = \frac{1}{2}(e^y + e^{-y})$. Multiply by $2e^y$, solve the resulting quadratic equation for e^y and take logs.
- 19. Let $y = \operatorname{sech}^{-1} x$ so $x = 2/(e^y + e^{-y})$. Invert and proceed as in Exercise 17.

21.
$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{\frac{d}{dy} \tanh y} = \frac{1}{\operatorname{sech}^2 y} = \frac{1}{1 - \tanh^2 y}$$
$$= \frac{1}{1 - \tanh^2 y}.$$

23.
$$\frac{d}{dx} \operatorname{sech}^{-1} x = \frac{1}{\frac{d}{dy} \operatorname{sech} y} = \frac{1}{-\operatorname{sech} y \tanh y}$$

$$= \frac{-1}{x\sqrt{1 - \operatorname{sech}^2 y}} = \frac{-1}{x\sqrt{1 - x^2}}$$

- 25. Differentiate the right hand side.
- 27. Differentiate the right hand side.
- **29.** $(1/4)\ln|(1+2x)/(1-2x)| + C$
- 31. $(1/2)\ln(2x+\sqrt{4x^2+1})+C$
- 33. $\ln(\sin x + \sqrt{\sin^2 x + 1}) + C$
- 35. $(1/2)\ln|(1+e^x)/(1-e^x)|+C$
- 37. No

8.5 Separable Differential Equations

- 1. $y = \sin x + 1$
- 3. $y = \exp(x^2 2x + 1) 1$
- 5. y = -2x
- 7. $e^y(y-1) = (1/2)\ln(x^2+1)$
- 9. y = 2x + 1
- 11. $y = \exp(-\sin x) + 1$
- 13.

- **15.** (a) $Q = EC(1 \exp(-t/RC))$ (b) $t = RC \ln(100)$
- 17. Verify that the equations hold with dx/dt = 0 and dy/dt = 0.
- 19. $P = P_0 A \exp(P_0 kt) / [1 + A \exp(P_0 kt)]$
- 21. As T_0 increases, $\cosh\left(\frac{mgx}{T_0}\right) \to 1$, so $y \to h$, which represents a straight cable.

23. (a) y' = -y/x(b) y' = x/y; $y^2 = x^2 + C$.

25. (a)

(b)
$$y' = 3cx^2$$

(c) $y' = -1/3cx^2$; $y = 1/3cx + C$

27. (a)

(b)
$$y = kx^2$$

- **29.** $y(1) \approx 2.2469$
- 31. $y(1) \approx 0.4683$
- **33.** $\lim_{x \to \infty} y(x) = 3$

35. $\lim_{x \to \infty} y(x) = 1$

- **37**. 61
- **39.** $\int h(y) dy = -\int (1/g(x)) dx$

8.6 Linear First-Order Equations

- 1. $y = 2 + (-3 \ln|1 x| + C)(1 x)$
- 3. $y = 1 + C \exp(x^4/4)$
- 5. $y = -2 + 2 \exp(\sin x)$
- 7. $y = (e^x e)/x$
- 9. The equation is $L \frac{dI}{dt} + RI = E_0 \cos \omega t + E_1$ and has solution

$$I = \frac{E_0}{L} \frac{1}{\left(R/L\right)^2 + \omega^2} \left(\frac{R}{L} \sin \omega t - \omega \cos \omega t\right)$$
$$+ Ce^{-tR/L} + \frac{E_1}{R}$$

- 11. $I = E_0C E_0C \exp(-t/RC)$; $I \rightarrow E_0C$ as $t \rightarrow +\infty$.
- 13. Set $y = .9 \times 2.51 \times 10^6$ and verify the value of t.
- 15. $6.28 \times 10^5 (8.28 \times 10^5) \exp(-2.67 \times 10^{-7}t) (2.01 \times 10^5) \exp(-1.07 \times 10^{-6}t)$
- 17. 15 seconds; 951 meters.
- 19. Use separation of variables to get

$$v = \sqrt{mg/\gamma} \tanh(\sqrt{\gamma g/m} \ t)$$

21.
$$\frac{FM_0}{M_1^2} - \frac{g}{2M_1^2}(M_0^2 + M_1^2)$$

23.
$$y = -2(x+1) + Ce^x$$

25. If y_1 and y_2 are solutions, prove, using methods of Section 8.2, uniqueness for y' = P(x)y and apply it to $y = y_1 - y_2$. (This is one of several possible procedures.)

(b)
$$y = \pm 1/(x\sqrt{c - x^2})$$

(b)
$$y = \pm 1/(x\sqrt{c} - x^2)$$

29. (a) $v = \frac{F}{\gamma - r} - \frac{g(M_0 - rt)}{\gamma - 2r} + C(M_0 - rt)^{\gamma/r - 1}$
where $C = M_0^{1 - \gamma/r} \left(\frac{gM_0}{\gamma - 2r} - \frac{F}{\gamma - r} \right)$ and

where the air resistance force is γv

(b) At burnout,
$$v = \frac{F}{\gamma - r} - \frac{gM_1}{\gamma - 2r} + CM_1^{\gamma/r-1}$$
.

Review Exercises for Chapter 8

1.
$$y = e^{3t}$$

5.
$$y = (4e^{3t} - 1)/3$$

3.
$$y = (1/\sqrt{3})\sin\sqrt{3} t$$

7.
$$y = 4/(4-t^4)$$

9.
$$f(x) = e^{4x}$$

11.
$$f(t) = \cosh 2t + \sinh 2t/2$$

13.
$$x(t) = \cos t - \sin t$$

15.
$$x(t) = (\sinh 3t)/3$$

17.
$$y = -\ln(1/e + 1 - e^x)$$

19.
$$x(t) = e^{-4t}$$

21.
$$y = -t$$

23.
$$g(t) = \cos(\sqrt{7/3} t - (2/\sqrt{7/3})\sin(\sqrt{7/3} t);$$
 amplitude is $\sqrt{19/7}$; phase is $-\sqrt{3/7} \tan^{-1}(2\sqrt{3/7})$

25.

27.

 $29. \lim_{t\to\infty} x(t) = 3$

31.
$$x = e^t$$

33.
$$y = x^2/2 - x - 2e^{-x} + 2$$

35.
$$y(x) = \sinh 5x / \sinh 5$$

37.
$$6x \cosh(3x^2)$$

39.
$$2x/\sqrt{(x^2+1)^2-1}$$

41.
$$\cosh 3x/\sqrt{x^2+1} + 3 \sinh 3x \sinh^{-1}x$$

43.
$$(-3/\sqrt{9x^2-1})\exp(1-\cosh^{-1}(3x))$$
.

45.
$$tan^{-1}(\sinh x) + C$$

47.
$$(1/3)\tanh^{-1}(x/3) + C$$
 if $|x| < 3$
 $(1/3)\coth^{-1}(x/3) + C$ if $|x| > 3$

49.
$$x \cosh x - \sinh x + C$$

51.
$$x(t) = \cos\sqrt{2.1/5} t$$

53. (a)
$$k = 640$$

(b) -6400 newtons

55. (a)
$$y'' + (\omega^2 - \beta)y = 0$$

(c)
$$x(t) = e^{-t}(\cos(\sqrt{3} t) + (1/\sqrt{3} \sin(\sqrt{3} t))$$

- 57. 66.4 years
- 59. 54,150 years
- **61.** 27 minutes
- **63.** (a) 73 years
 - (b) $S(t) = ke^{-\alpha t}$ where k = S(0)

65.

67. (a) $y^2/9 + x^2 = k$, k = 2C/9

(b) $kx^{1/9}$, $k = e^C$

69. 15.2 minutes, no. [The "no" could be "yes" if you allow a faster addition of fresh water after draining.]

71.
$$I = 2(3 \sin \pi t - \pi \cos \pi t)/(9 + \pi^2) + [1 + 2\pi/(9 + \pi^2)]e^{-3t}$$

73. $y = -4/3 + Ce^{3x}$

75. 1

77. $y = e^x$ is the exact solution; $y(1) = e \approx 2.71828$.

79. y = -1/(x - 1) is the exact solution, it is not defined at x = 1.

81. $y = Ce^{at} - (b/a)$; the answers are all the same.

83. (a) Verify using the chain rule

(b) Integrate the relation in (a)

(c) Solve for T = t; the period is twice the time to go from $\theta = 0$ to $\theta = \theta_0$.

85. (a) $y = \cosh(x + a)$ or y = 1.

(b) Area under curve equals arc length.

Chapter 9 Answers

9.1 Volumes by the Slice Method

1. 3π

3. Ah/3

5. 2125/54

7. $4\sqrt{3}/3$

9. $x_1 = (1 - \sqrt[3]{1/4})h$, $x_2 = (1 - \sqrt[3]{1/2})h$, $x_3 = (1 - \sqrt[3]{3/4})h$

11. 0.022 m³

13. 1487.5 cm³

15. 38π

17. $3\pi^2$

21.
$$\frac{4}{3}\pi r^3$$

- 25. 13π (See Exercise 11, Section 9.2 for the figure.)
- **27.** 5 cm^3
- **29.** $V = \pi^2 (R + r)(R r)^2/4$
- 31. For the two solids, $A_1(x) = A_2(x)$. Now use the slice method.

9.2 Volumes by Shell Method

3.
$$20\pi/3$$

5.
$$\pi(17 + 4\sqrt{2} - 6\sqrt{3})/3$$

7.
$$2\pi^2 r^2 a$$

- 9. 9π (See the Figure for Exercise 23, in the left-hand column.)
- 11. 9π

13. $4\pi/5$ (You get a cylinder when this volume is added to that of Example 5, Section 9.1.)

- 15. $\sqrt{3} \pi/2$
- 17. $24\pi^2$
- **19.** (a) $V = 4\pi r^2 h + \pi h^3 / 3$
 - (b) $4\pi r^2$, it is the surface area of a sphere.
- **21.** (a) $2\pi^2 a^2 b$
 - (b) $2\pi^2b(2ah + h^2)$
 - (c) $4\pi^2 ab$
- 23. $\pi^3/4 \pi^2 + 2\pi$

9.3 Average Values and the Mean Value Theorem for Integrals

3.
$$\ln \sqrt{5/2}$$

7.
$$\pi/4$$

9.
$$\pi/2-1$$

11.
$$-2/3\pi$$

13. 9 +
$$\sqrt{3}$$

19. (a)
$$x^2/3 + 3x/2 + 2$$

- (b) The function approaches 2, which is the value of f(x) at x = 0.
- 21. Use the fundamental theorem of calculus and the definition of average value.
- 23. The average of [f(x) + k] is k + [the average of f(x)].

- **25.** $f(b) f(a) = \int_a^b f'(x) dx = f'(c) \cdot (b a)$, for some c such that a < c < b.
- 27. $\exp\left[\int_a^b \ln f(x) \, dx/(b-a)\right]$
- **29.** Write $F(x) F(x_0) = \int_{x_0}^x f(s) \, ds$. If $|f(s)| \le M$ on [a, b] (extreme value theorem), $|F(x) F(x_0)| \le M |x x_0|$, so given $\epsilon > 0$, let $\delta = \epsilon / M$.

9.4 Center of Mass

1.
$$\bar{x} = \frac{m_1 x_1 + (m_2 + m_3) \left(\frac{m_2 x_2 + m_3 x_3}{m_2 + m_3}\right)}{m_1 + (m_2 + m_3)}$$

$$= \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}.$$

- 3. Let $M_1 = m_1 + m_2 + m_3$ and $M_2 = m_4$.
- 5. $\bar{x} = 3$
- 7. $\bar{x} = 67$
- **9.** $\bar{x} = 1$, $\bar{y} = 4/3$
- 11. $\bar{x} = 29/23$, $\bar{y} = 21/23$

13. (a)
$$\bar{x} = 1/2$$
, $\bar{y} = \sqrt{3}/6$
(b) $\bar{x} = 3/8$, $\bar{y} = \sqrt{3}/8$

15.
$$\frac{m_1 x_1 + (m_2 + m_3 + m_4)}{m_1 + (m_2 + m_3 + m_4)} \frac{m_2 x_2 + m_3 x_3 + m_4 x_4}{m_2 + m_3 + m_4}$$
$$= \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + m_4 x_4}{m_1 + m_2 + m_3 + m_4}$$

17.
$$\bar{x} = 3(\ln 3)/2$$
, $\bar{y} = 26/27$

19.
$$\bar{x} = 4/(3\pi), \ \bar{y} = 4/(3\pi)$$

21.
$$\bar{x} = 4/3$$
, $\bar{y} = 2/3$
23. Since $x_1 \le h$, $\bar{x} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{2}$

23. Since
$$x_i \le b$$
, $\overline{x} = \frac{m_1 x_1 + m_2 x_2 + m_3 x}{m_1 + m_2 + m_3}$

$$\le \frac{m_1 b + m_2 b + m_3 b}{m_1 + m_2 + m_3} = b.$$

Similarly $a \le \overline{x}$. The center of mass does not lie outside the group of masses.

25. Differentiate \bar{x} to get the velocity of the center of mass and use the definitions of P and M.

27.
$$\bar{x} = -4/21$$
, $\bar{y} = 0$

29.
$$\bar{x} = (\sqrt{2}\pi/4 - 1)/(\sqrt{2} - 1), \bar{y} = 1/[4(\sqrt{2} - 1)]$$

31.
$$\bar{x} = (x_1 + x_2 + x_3)/3$$
, $\bar{y} = (y_1 + y_2 + y_3)/3$

Supplement to 9.5: Integrating Sunshine

1. The arctic circle receives 1.25 times as much energy as the equator.

3. (a)
$$F = \sum_{T=0}^{364} \left\{ \sqrt{\cos^2 l - \sin^2 D} + \right\}$$

$$\sin l \sin D \cos^{-1}(-\tan l \tan D)$$

(b) Expressing $\sin D$ in terms of T, the sum in (a) yields

$$\int_0^{365} \sqrt{\cos^2 l - \sin^2 \alpha \cos^2 (2\pi T/365)}$$

 $+\sin l\sin \alpha\cos(2\pi T/365)$

$$\times \cos^{-1} \left[\frac{-\tan l \sin \alpha \cos(2\pi T/365)}{\sqrt{1-\sin^2 \alpha \cos^2(2\pi T/365)}} \right] dT.$$

This is an "elliptic integral" which you cannot evaluate.

5. $\pi \sin l \sin D$

7. 0.294; it is consistent with the graph (T = 16.5; about July 7).

9.5 Energy, Power, and Work

- 1. 1,890,000 joules
- 3. $360 + 96/\pi$ watt-hours
- **5.** 3/2
- 7. 0.232
- 9. 98 watts
- 11. (a) $18t^2$ joules (b) 360 watts
- 13. 1.5 joules
- **15.** (a) 45,000 joules (b) 69.3 meters/second
- 17. 41,895,000 joules
- 19. 125,685,000 joules
- 21. 0.15 joules
- 23. 1.48×10^8 joules

Review Exercises for Chapter 9

- 1. (a) $\pi^2/2$ (b) $2\pi^2$
- 3. (a) $3\pi/2$ (b) $2\pi(2 \ln 2 1)$
- 5. $64\sqrt{2} \pi/81$
- 7. $72\pi/5$
- **9.** 5/4
- 11. 1

- 13. 6
- 15. Apply the mean value theorem for integrals.
- 17. 1/3, 4/45, $2\sqrt{5}/15$
- 19. 1, $(e^2-5)/4$, $\sqrt{e^2-5}/2$
- 21. 3/2, 1/4, 1/2
- **23.** (a) $\pi \int_a^b \rho(x) [f(x)]^2 dx$
- (b) $(14\pi/45)$ grams **25.** $\bar{x} = 5/3$, $\bar{y} = 40/9$
- **27.** $\bar{x} = 1/4(2 \ln 2 1), \ \bar{y} = 2(\ln 2 1)^2/(2 \ln 2 1)$
- **29.** $\bar{x} = 27/35$, $\bar{y} = -12/245$
- 31. (a) $7500 2100e^{-6}$ joules (b) $\frac{1}{6}(125 35e^{-6})$ watts

- 33. $120/\pi$ joules
- **35.** $\rho g \pi \int_0^a x^2 [f(a) f(x)] f'(x) dx$; the region is that under the graph y = f(x), $0 \le x \le a$, revolved about the y-axis.
- 37. (a) The force on a slab of height f(x) and width dx is $dx \int_0^{f(x)} \rho gy \, dy = \frac{1}{2} \rho g [f(x)]^2 \, dx$. Now integrate.
 - (b) If the graph of f is revolved about the x axis, the total force is $\rho g/2\pi$ times the volume of the solid.
 - (c) $\frac{2}{3} \rho g \times 10^6 = 6.53 \times 10^9$ Newtons.
- **39.** (a) $\left\{ \frac{1}{b-a} \sum_{j=1}^{n} \left[k_j \frac{1}{b-a} \sum_{i=1}^{n} k_i (t_i t_{i-1}) \right]^2 (t_j t_{j-1}) \right\}^{1/2}$
 - (b) $\left\{ \frac{1}{n} \sum_{j=1}^{n} \left[k_j \frac{1}{n} \sum_{i=1}^{n} k_i \right]^2 \right\}^{1/2}$
 - (c) Show that if the standard deviation is 0, $k_i \mu = 0$, which implies $k_i = \mu$.
 - (d) $\left\{ \frac{1}{n} \sum_{j=1}^{n} \left[a_i \frac{1}{n} \sum_{i=1}^{n} a_i \right]^2 \right\}^{1/2}$
 - (e) All numbers in the list are equal.
 - 41. Let $g(x) = f(\alpha x) c$. Adjust α so g has zero integral. Apply the mean value theorem for integrals to g. (There may be other solutions as well.)
 - 43. The average value of the logarithmic derivative is $\ln[f(b)/f(a)]/(b-a)$.

Chapter 10 Answers

10.1 Trigonometric Integrals

- 1. $(\cos^6 x)/6 (\cos^4 x)/4 + C$
- 3. $3\pi/4$
- 5. $(\sin 2x)/4 x/2 + C$
- 7. $1/4 \pi/16$
- 9. $(\sin 2x)/4 (\sin 6x)/12 + C$
- 11. Ò
- 13. $-1/(3\cos^3 x) + 1/(5\cos^5 x) + C$
- 15. The answers are both $\tan^{-1}x + C$
- 17. $\sqrt{x^2-4}-2\cos^{-1}(2/x)+C$
- 19. $(1/2)(\sin^{-1}u + u\sqrt{1-u^2}) + C$
- 21. $\sqrt{4+s^2}+C$
- **23.** $(-1/3)\sqrt{4-x^2}(x^2+8)+C$
- **25.** $(1/2)\sinh^{-1}((8x+1)/\sqrt{15}) + C$
- 27. $\sqrt{\left(x + \frac{1}{6}\right)^2 \frac{13}{36}}$ $\frac{1}{6\sqrt{3}} \ln \left| \frac{6x + 1}{\sqrt{13}} + \sqrt{\frac{(6x + 1)^2}{13} 1} \right| + C$

- **29.** 1, 0, 1/2, 0, 3/8, 0, 5/16.
- 31. $\overline{x} = (\sqrt{5} \sqrt{2})/\ln((\sqrt{5} + 2)/(\sqrt{2} + 1)) 1$ $\overline{y} = (\tan^{-1}2 - \pi/4)/[2\ln((\sqrt{5} + 2)/(\sqrt{2} + 1))]$
- 33. 125
- 35. $\sqrt{3}$, $9\sqrt{2}$ /4
- 37. (a) Differentiate $[S(t)]^3$ and integrate the new expression.
 - (b) $[3(-t\cos t + \sin t + t/8 (1/32)\sin 4t)]^{1/3}$
 - (c) Zeros at $t = n\pi$, n a positive integer. Maxima occur when n is odd.

10.2 Partial Fractions

- 1. $(1/125)\{4\ln[(x^2+1)/(x^2-4x+4)] + (37/2)\tan^{-1}x + (15x-20)/2(1+x^2) 5/(x-2)\} + C$
- 3. $5/4 3\pi/8$
- 5. $(1/5)\{\ln(x-2)^2 + (3/2)\ln(x^2 + 2x + 2) \tan^{-1}(x+1)\} + C$

7.
$$2 + (1/3)\ln 3 + (2/\sqrt{3})(\tan^{-1}(5/\sqrt{3}) - \tan^{-1}(3\sqrt{3}))$$

9.
$$(1/8)\ln((x^2-1)/(x^2+3)) + C$$

11. $(1/2)\ln(5/2)$

13.
$$2\sqrt{x} - 2 \tan^{-1} \sqrt{x} + C$$

15.
$$\frac{3}{8}(x^2+1)^{4/3}+C$$

17.
$$-2/(1 + \tan(x/2)) + C$$

19.
$$\pi/16 - (1/4)\ln|(1 + \tan(\pi/8))(1 + 2\tan(\pi/8) - \tan^2(\pi/8))| \approx -0.017$$

21.
$$\pi \ln(225/176)$$

23.
$$3(1+x)^{2/3}/4 + (3/4\sqrt[3]{4})\ln|\sqrt[3]{4}(1+x)^{2/3} + (2+2x)^{1/3} + 1|-(1/2\sqrt[6]{432})\tan^{-1}[(2(4+4x)^{1/3} + \sqrt[3]{2}/\sqrt[6]{108}] + C$$

25. (a)
$$\frac{1}{20} \ln \left| \frac{x - 80}{x - 60} \right| = kt + \frac{1}{20} \ln \frac{4}{3}$$

(b)
$$x = \frac{80(1 - e^{-20kt})}{\frac{4}{3} - e^{-20kt}}$$

27. (a) Using the substitution, we get

$$(q/m)\int u^{p+q-1}x^{r-m+1}\,du.$$

(b) If
$$r - m + 1 = mk$$
, the integral in (a) becomes
$$(q/m) \int u^{p+q-1} (u^q - b)^k du$$

which is an integral of a rational function of u.

10.3 Arc Length and Surface Area

5.
$$\int_{a}^{b} \sqrt{1 + n^2 x^{2n-2}} dx$$

7.
$$\int_0^1 \sqrt{1 + \cos^2 x - 2x \sin x \cos x + x^2 \sin^2 x} dx$$

9.
$$\sqrt{5} + \sqrt{2} + \sqrt{10}$$

11.
$$\sqrt{5} + \sqrt{2} + \sqrt{17}$$

13.
$$(\pi/6)(13^{3/2}-5^{3/2})$$

15. $2654\pi/9$

17.
$$2\pi(\sqrt{2} + \ln(1+\sqrt{2}))$$

19.
$$\pi[(3^{4/3}+1/9)^{3/2}-(10/9)^{3/2}]$$

21. $2\sqrt{2} \pi$

23.
$$\pi(6\sqrt{2} + 4\sqrt{5})$$

25.
$$(1/27a^2)[(4+9a^2(1+b))^{3/2}-(4+9a^2b)^{3/2}];$$
 the answer is independent of c.

27.
$$\int_{-1}^{2} \sqrt{1 + 36x^4} \, dx \approx 19$$

29. (a)
$$\int_0^{\pi/2} \sqrt{5 + \sec^4 x + 4 \sec^2 x} \ dx$$

(b)
$$2\pi \int_0^{\pi/2} (\tan x + 2x)\sqrt{5 + \sec^4 x + 4\sec^2 x} \ dx$$

31. (a)
$$\int_{1}^{2} \sqrt{1 + (1 - 1/x^{2})^{2}} dx$$

(b)
$$2\pi \int_{1}^{2} (1/x + x) \sqrt{1 + (1 - 1/x^{2})^{2}} dx$$

33. Dividing the curve into 1 mm segments and revolving these, we get about 16 cm².

35. Use
$$|\sin\sqrt{3} x| \le 1$$
 to get $L \le \int_0^{2\pi} \sqrt{1+3} dx = 4\pi$.

37. Estimate each integral numerically.

39.
$$2\pi \int_a^b [1/(1+x^2)] \left(\sqrt{1+4x^2/(1+x^2)^4}\right) dx$$
; the integrand is $\leq \sqrt{5}/(1+x^2)$.

41. (a)
$$\pi(a+b)\sqrt{1+m^2}(b-a)$$
 (b) Use part (a).

10.4 Parametric Curves

1.
$$y = (1/4)(x+9)$$

3.
$$1 = (x - 1)^2 + y^2$$

5.
$$x = t, y = \pm \sqrt{1 - 2t^2}$$
 or $x = \cos t / \sqrt{2}, y = \sin t$

7.
$$x = t$$
, $y = 1/4t$.

9.
$$x = t$$
, $y = t^3 + 1$.

11.
$$x = t$$
, $y = \cos(2t)$.

13.
$$y = (1/3)(x + 3/2)$$

15.
$$y = 1/2$$

17.
$$(13, -7)$$

21. $y^2 = (1 - x)/2$, vertical tangents at $t = n\pi$, n an integer

- **23.** $(13^{3/2} 8)/27$
- **25.** $(1/2)[\sqrt{5} + (1/2)\ln(2 + \sqrt{5})]$
- 27. (a) Calculate the speed directly to show it equals |a|.
 - (b) Calculate directly to get $|a|(t_1 t_0)$
- **29.** (a) $y = -x/2 + \pi/2 1$

- **31.** 5
- 33. (a) $\dot{x} = k(\cos \omega t \omega t \sin \omega t);$ $\dot{y} = k(\sin \omega t + \omega t \cos \omega t).$
 - (b) $k\sqrt{1 + \omega^2 t^2}$
 - (c) $2mk\omega$
- 35. (a) $x = t + (1 + 4t^2)^{-1/2}$, $y = t^2 + 2t(1 + 4t^2)^{-1/2}$ (b) $x = \pm (1/2)\sqrt{1/(x^2 - y) - 1} + \sqrt{x^2 - y}$.

- 37. (a) We estimated about 338 miles.
 - (b) We estimated about 688 miles.
 - (c) It would probably be longer.
 - (d) The measurement would depend on the definition and scale of the map used.
 - (e) From the World Almanac and Book of Facts (1974), Newspaper Enterprise Assoc., New York, 1973, p. 744, we have coastline: 228 miles, shoreline: 3,478 miles.

10.5 Length and Area in Polar Coordinates

- 1. 24
- 3. $(4/3)(13^{3/2}-8)$
- 5. $9\pi/4$

7. $9\pi^3/16$

9. $33\pi/2$

11. $2\pi r$

13.
$$s = \int_{-\pi/2}^{\pi/2} \sqrt{\sec^2(\theta/2)/4 + \tan^2(\theta/2)} d\theta$$

 $A = 2 - \pi/2$

15.
$$s = \int_0^{\pi/4} \sqrt{\sec^2\theta \tan^2\theta + \sec^2\theta + 4\sec\theta + 4} \ d\theta$$

 $A = 1/2 + \pi/2 + \ln(3 + 2\sqrt{2})$

17.
$$s =$$

$$\int_0^{\pi/2} \sqrt{(1+\cos\theta-\theta\sin\theta)^2+\theta^2(1+2\cos\theta+\cos^2\theta)} \ d\theta$$

$$A = (1/2)[\pi^3/16 + \pi^2/2 - 4 - \pi/8]$$

19.
$$s = \int_0^{\pi/2} \sqrt{(5 + 4\sin 2\theta)/(1 + 2\sin 2\theta)} \ d\theta$$

 $A = \pi/2$

21.
$$A = (1/4)(5\pi/6 - \sqrt{3})$$

 $L = (2 + \sqrt{3})\pi/6$

23.
$$A = \pi/2$$
 $L = 2\pi + 8$

25.
$$\sqrt{2} \left(e^{2(n+1)\pi} - e^{2n\pi} \right)$$

27. (a) Use
$$x = a \cos t$$
, $y = b \sin t$, where $T = 2\pi$.

Review Exercises for Chapter 10

$$1. \sin^3 x + C$$

3.
$$(\cos 2x)/4 - (\cos 8x)/16 + C$$

5.
$$(1-x^2)^{3/2} - \sqrt{1-x^2} + C$$

7.
$$4(x/4 - \tan^{-1}(x/4)) + C$$

9.
$$(2\sqrt{7}/7)\tan^{-1}[(2x+1)/\sqrt{7}] + C$$

11.
$$\ln|(x+1)/x| - 1/x + C$$

13.
$$(1/2)[\ln|x^2+1|+1/(x^2+1)]+C$$

15.
$$tan^{-1}(x+2) + C$$

17.
$$-2\sqrt{x}\cos\sqrt{x} + 2\sin\sqrt{x} + C$$

19.
$$-(1/2a)\cot(ax/2) - (1/6a)\cot^3(ax/2) + C$$

21.
$$\ln|\sec x + \tan x| - \sin x + C$$

23.
$$(\tan^{-1}x)^2/2 + C$$

25.
$$(1/3\sqrt[3]{9})[\ln|x-\sqrt[3]{9}|-\ln\sqrt{x^2+\sqrt[3]{9}x+3\sqrt[3]{3}} + \sqrt{3}\tan^{-1}((2x/\sqrt[3]{9}+1)/\sqrt{3})] + C.$$

27.
$$2\sqrt{x} e^{\sqrt{x}} - e^{\sqrt{x}} + C$$

29.
$$x - \ln(e^x + 1) + C$$

31.
$$(-1/4)[(2x^2-1)/(x^2-1)^2] + C$$

33.
$$-(1/10)\cos 5x - (1/2)\cos x + C$$

35.
$$\ln \sqrt{x^2 + 1} + C$$

37.
$$2e^{\sqrt{x}} + C$$

39.
$$\frac{1}{2} \ln 2$$

41.
$$\frac{1}{2}\ln(x^2+3)+C$$

43.
$$x^4 \ln x/4 - x^4/16 + C$$

45.
$$\frac{1}{4}[(\ln 6 + 5)^4 - (\ln 3 + 5)^4] \approx 186.12$$

47.
$$(1/4) \sinh 2 - 1/2$$

51.
$$(733^{3/2} - 4^{3/2})/243$$

55.
$$\pi(5^{3/2}-1)/6$$

59.
$$x = (y + 1)^2$$

61.
$$y = 2x/3 + 1$$

63.
$$x = 0, y \ge 0$$

65.
$$y = 3x/4 + 5/4$$

67.
$$(1/8)(\sqrt{257} \cdot 16 + \ln|\sqrt{257} + 16|)$$

69.
$$L = (1/3)[(\pi^2/4 + 4)^{3/2} - 8]$$

 $A = \pi^5/320$

71.
$$L = \int_0^{\pi} \sqrt{(5/4) + \cos 2\theta + 3\sin^2 2\theta} \ d\theta$$

 $A = 3\pi/8$

73.
$$L = 5\sqrt{2}$$

$$A = 315\pi/256 + 9/4$$

75.
$$b_2 = 1$$
, all others are zero.

77. $a_3 = 1$, all others are zero. 79. $a_4 = 3$, all others are zero.

81. $a_0 = 1$, $a_2 = -1/2$, all others are zero.

83. (a)
$$(1/k_2)\ln[N_0(k_1N(t)-k_2)/N(t)(k_1N_0-k_2)]$$

(b) N(t) = k, $N_0/[k_1N_0(1 - e^{k_2t}) + k_2e^{k_2t}]$

(c) The limit exists if $k_2 > 0$ and it equals k_2/k_1 .

85. Use $(\cos \phi) d\phi = (\sin \phi_m)(\cos \beta) d\beta$ and substitute.

87.
$$a^{-1/2} \ln|2ax + b + 2\sqrt{a} \sqrt{ax^2 + bx + c}| + C$$
,
 $a > 0$

$$(-a)^{-1/2}\sin^{-1}[(-2ax-b)/\sqrt{b^2-4ac}]+C,$$

 $a<0$

89. (a)
$$b - a + (b^{n+1} - a^{n+1})/(n+1)$$
 if $n \neq -1$. If $n = -1$, we have $b - a + \ln(b/a)$.

(b)
$$n = 0$$
: $L = b - a$; $n = 1$: $L = \sqrt{2} (b - a)$; $n = 2$: see Example 3 of Section 10.3; for $n = (2k + 3)/(2k + 2)$, $k = 0, 1, 2, 3, ...$

$$L = \left\{ \frac{n!^{1/(1-n)}}{n-1} \left(1 + n^2 x^{2n-2} \right)^{3/2} \sum_{j=0}^{k} {k \choose j} \frac{(-1)^{k-j}}{2j+3} \left(1 + n^2 x^{2n-2} \right)^j \right\} \Big|_{x=a}^{x=b};$$

$$n = \frac{3}{2} : L = \frac{1}{27} [(4+9b)^{3/2} - (4+9a)^{3/2}].$$

(c) Around the x-axis, we have

$$\pi \left[b - a + \frac{2(b^{n+1} - a^{n+1})}{n+1} + \frac{b^{2n+1} - a^{2n+1}}{2n+1} \right]$$

if
$$n \neq -1$$
 or $-1/2$. For $n = -1$ we have $\pi \left[b - a + 2 \ln(b/a) - (a^{-1} - b^{-1}) \right]$.

For
$$n = -1/2$$
 we have

$$\pi \left[b-a+4\sqrt{b}-4\sqrt{a}+\ln(b/a) \right].$$

Around the y-axis we have

$$\pi \left[b^2 - a^2 + \frac{2(b^{n+2} - a^{n+2})}{n+2} \right]$$

if $n \neq -2$. For n = -2, we have $\pi[b^2 - a^2 +$ $2\ln(b/a)$].

(d)
$$A_x = 2\pi L$$
 (from 89(b)) + A_x (from 88(d))
 $A_y = A_y$ (from 88(d))

Some answers from 88(d) needed here are:

$$n = 0$$
; $A_x = 2\pi(b - a)$

$$n = 1$$
; $A_x = \sqrt{2} \pi (b^2 - a^2)$

$$n = 2; A_x = \frac{\pi}{32} \left[(1 + 8x^2) 2x \sqrt{1 + 4x^2} - \ln(2x + \sqrt{1 + 4x^2}) \right]_{x=a}^{x=b}$$

$$n = 3$$
; $A_x = \frac{\pi}{27} (1 + 9x^4)^{3/2} \Big|_{x=0}^{x=b}$

$$n = (2k + 3)/(2k + 1); k = 0, 1, 2, 3, ...$$

$$A_x = \frac{2\pi}{n-1} n^{(1+n)/(1-n)} (1 + n^2 x^{2n-2})^{3/2} \sum_{j=0}^k {k \choose j} \frac{(-1)^{k-j}}{2j+3} (1 + n^2 x^{2n-2})^j$$

$$n = 0$$
; $A_v = \pi(b^2 - a^2)$

$$n = 1$$
; $A_y = \sqrt{2} \pi (b^2 - a^2)$

$$n = 2$$
; $A_y = \frac{\pi}{6} \left[\left(1 + 4b^2 \right)^{3/2} - \left(1 + 4a^2 \right)^{3/2} \right]$

$$n = (k+2)/(k+1); k = 0, 1, 2, 3, \dots;$$

$$A_y = \frac{2\pi}{n-1} n^{2/(1-n)} (1 + n^2 x^{2n-2})^{3/2}$$

$$\times \sum_{j=0}^{k} {k \choose j} \frac{(-1)^{k-j}}{2j+3} \left(1 + n^2 x^{2n-2}\right)^{j} |_{a}^{b}$$

91. (a)
$$2\pi \int_{0}^{\beta} r \sin \theta \sqrt{r^2 + (r')^2} d\theta$$

(b)
$$2\pi \int_{-\pi/4}^{\pi/4} \cos 2\theta \sin \theta \sqrt{1 + 3\sin^2 2\theta} \ d\theta$$

A.58 Chapter 10 Answers

93. (a)

(b) Each curve will consist of n loops for n odd or even.

(c)

(d)

95. The last formula is the average of the first two.

11.1 Limits of Functions

- 1. Choose δ less than 1 and $\varepsilon/(1+2|a|)$.
- 3. Write $x^3 + 2x^2 45 =$ $[(x-3)+3]^3 + 2[x-3]^2 - 45$ and expand.
- 5. e^3
- 7. 5 11. 6
- 9. -413. $A = 1/\sqrt[3]{\varepsilon}$
- 15. $A = -\ln \varepsilon/3$
- **17.** −2
- **19.** 2/3
- **21.** 3/5
- **23.** 1/2
- 25. 0. Consider $\sqrt{x^2 + a^2} x$ as the difference between the hypotenuse and a leg of a right triangle. As x gets large, the difference becomes small.
- 27. y = -1 is a horizontal asymptote.

- 29. +∞
- 31. +∞
- 33. +∞
- 35. −∞
- 37. -1
- **39.** −1
- 41. Vertical asymptotes at x = 2, 3. Horizontal asymptote at y = 0.

43. Vertical asymptotes at $x = \pm 1$, horizontal asymptote at y = 0.

- **45.** (a) Given ε , the A for g is the same as for f (as long as $|g(x)| \le |f(x)|$ for $x \ge A$).
 - (b) 0
- **47.** 7/9
- **49.** 3/2

- **51**: 4/5
- 53. 2n + 1
- **55.** 16/17
- **57.** +∞
- **59.** −∞
- **61.** y = 0 is a horizontal asymptote; x = -1, x = 1 are vertical asymptotes.
- 63. $y = \pm 1$ are horizontal asymptotes.
- 65. If $f(x) = a_n x^n + \cdots$ and $g(x) = b_n x^n + \cdots$, show that $a_n/b_n = l$. If $l = \pm \infty$, then $\lim_{x \to -\infty} f(x)$ can be $\pm \lim_{x \to \infty} f(x)$.
- 67. (a) f'(x) = -1 for x < 0, f'(x) = 1 for x > 0, f'(0) is not defined.

- (b) As $x \to 0$ -, the limit is -1, while as $x \to 0$ +, we get 1.
- (c) No.
- **69.** (a)

- 71. N_0 , which means that the population in the distant future will approach an equilibrium value N_0 .
- 73. Use the laws of limits
- 75. Write af(x) + bg(x) aL bM = a[f(x) L] + b[g(x) M]

- 77. Repeat the argument given, using $|x x_0| < \delta$ in place of $x_0 < x < x_0 + \delta$.
- 79. Given B > 0, let $\varepsilon = 1/B$. Choose δ so that $|1/f(x)| < \varepsilon$ when $|x - x_0| < \delta$; then |f(x)| > Bfor $|x-x_0|<\delta$.
- **81.** If $x \ge A$, $y \le \delta$ where $\delta = 1/A$, y = 1/x.

11.2 L'Hôpital's Rule

- 1. 108 5. -9/10
- 7. -4/3
- 9. ∞
- 11. 0

- **13.** 0
- **15.** 0
- **17.** 1
- 19. 0 **23.** 0
- 21. 0 **25.** 0
- 27. does not exist (or is $+\infty$)

31. 1/24

33. 0

- **35.** 1/120
- **37.** 0
- **39.** The slope of the chord joining (g(a), f(a)) to (g(b), f(b)) equals the slope of the tangent line at some intermediate point.
- 41.

- **43.** (a) 1/2
 - (b) 1
 - (c) yes

11.3 Improper Integrals

1. 3

- 3. $e^{-5}/5$
- 5. $(\ln 3)/2$
- 7. $\pi/2$
- **9.** Use $1/x^3$
- 11. Use e^{-x}
- 13. Use $1/\sqrt{3}x$ on $[1, \infty)$ 15. Use 1/x
- 17. $3\sqrt[3]{10}$
- 19. 2
- 21. Diverges
- 23. Converges
- 25. Converges
- 27. Converges
- 29. Converges 33. Converges
- 31. Diverges
- 37. Diverges
- 35. Converges
- **41.** k > 1 or k = 0
- 39. Diverges
- 43. ≈ 2.209 47. $\pi e^{-20}/2$
- **45.** $6\sqrt{3}$ hours **49.** ln(2/3)
- 51. Follow the method of Example 11.

- 53. (a) Change variables
 - (b) Use the comparison test. (Compare with $e^{x/2}$ for $x \le -1$ and $e^{-x/2}$ for $x \ge 1$.)
- - (b) (p-1)(q-1) < 0.
- 57. $f(x) = f(0) + \int_0^x f'(s) ds$; the integral converges.

11.4 Limits of Sequences and Newton's Method

- 1. n must be at least 6.
- 3. $\lim_{n\to\infty} (a_n) = 2$
- 5. $0, -1, 4-2\sqrt{2}, 9-2\sqrt{3}, 12$
- **7.** 1/7, 1/14, 1/21, 1/28, 1/35, 1/42
- **9.** The sequence is 1/2 for all n.
- 11. $N \geqslant 3/\varepsilon$
- 13. $n \geqslant 3/2\varepsilon$
- **15.** 3
- 17. -3
- 19. 4
- **21.** 0
- **23.** 0
- **25.** The limit is 1.
- **27.** The limit is 1.
- **29.** 0
- 31. 0
- **33.** 0
- **35.** (a) x = 0.523148 is a root.
- (b) x = -0.2475, 7.724337. x = 1.118340 is a root.
- **39.** One root is x = 4.493409.
- 41.

	$\alpha = 2$	$\alpha = 3$	$\alpha = 5$
λ_1	1.1656	1.3242	1.4320
λ_2	4.6042	4.6407	4.6696
λ_3	7.7899	7.8113	7.8284

- **43.** $1/e \approx 0.36788$
- **45.** $a_n = 2^{2^{n-1}}$
- 47. Use the definition of limit and let ε be a.
- **49.** $1, 1/2, 1/4, 1/8, 1/16, \ldots, 1/(2^n), \ldots$; the limit is 0.
- 51. The limit does not exist.
- **53.** 3/4
- **55.** (a) For any $A \ge 0$ there is an N such that $a_n \ge A$ if $n \ge N$, (b) let N = 16A.
- 57. (a) Assume $\lim_{n \to \infty} b_n < L$ and look at

$$\lim_{n\to\infty}b_n-\lim_{n\to\infty}a_n.$$

- (b) Write $b_n L = (b_n a_n) + (a_n L) \le$ $(c_n - a_n) + (a_n - L).$
- **59.** (a) Below about a = 3.0, iterates converge to a single point; at $a \approx 3.1$, they oscillate between two points; as a increases towards 4, the behavior gets more complicated.
 - (b), (c) See the references on p. 548.

11.5 Numerical Integration

- 1. 2.68; actual value is 8/3 3. ≈ 0.13488
- 5. ≈ 0.3246
- 7. ≈ 1.464

- 9. ≈ 2.1824
- 11. Evaluation gives a $(x_2^3 x_1^3)/3 + b(x_2^2 x_1^2)/2 +$ $c(x_2 - x_2)$. Since f''''(x) = 0, Simpson's rule gives the exact answer. The error for the trapezoidal rule depends on f''(x) and is nonzero.
- 13. 180, 9
- 15. 158 seconds
- 17. The first 2 digits are correct.

Review Exercises for Chapter 11

- 1. Choose δ to be min(1, $\varepsilon/4$).
- 3. Choose δ to be min(1, $\varepsilon/5$); min(1, $\varepsilon/3$) is also correct.
- 5. tan(-1)
- **7.** 1
- 9. 0
- 11. ∞
- **13.** 0
- **15.** 0
- $y = \pm \pi/2$ are horizontal asymptotes.

y = 0 is a horizontal asymptote.

- **23.** 0 21. 1/4 **27.** 5 **25.** 0
- 31. $\sec^2(3)$ **29.** -1/6
- **35.** 0 **33.** 1
- 39. 1 **37.** 0 **43.** 0 41. e^2 47. Diverges
- 45. Converges to 1 51. Converges to 5/3
- 49. Converges to 2 **55.** $2\pi/3\sqrt{3}$
- 53. Converges to -1/457. $\pi/4$ **59.** 32,768
- **61.** *e*⁸ **63.** 0 **65.** 1 67. tan 3
- 69. Does not exist 71. -2/5**73.** 1 **75.** 0
 - 77. -1.35530 (the only real root)
 - **79.** 1.14619
 - 81. 2.31992
- 83, 50,154
- 85. Both
- **87.** $1/\sqrt{x}$
- **89.** (b)
 - $\lim_{h\to 0} \left\{ \left[f(x_0 + 2h) 3f(x_0 + h) + 3f(x_0) f(x_0 h) \right] / h^3 \right\}$
- 91. 1
- 93. S_n is the Riemann sum for $f(x) = x + x^2$.
- 95. The exact amount is

$$P(e^r + e^{364r/365} + \cdots + e^{r/365})$$

97. (a)

- (c) Choose $\delta = \varepsilon/2m$, (or h, whichever is smallest).
- 101. (a) Use the definition of N
 - (b) Use the quotient rule
 - (c) $|N(x) \bar{x}| \le (Mq/p^2)|x \bar{x}|^2$
 - (d) 5

Chapter 12 Answers

12.1 The Sum of an **Infinite Series**

- 1. 1/2, 5/6, 13/12, 77/60
- **3.** 2/3, 30/27, 38/27, 130/81
- **5.** 7/6
- 7. 7
- 9. \$40,000
- 11. 1/12
- **13.** 16/27
- **15.** 81/2

- 17. 3/2
- **19.** 64/9
- 21. $\sum 1$ diverges and $\sum 1/2^i$ converges

- 25. Diverges
- 27. Diverges
- 29. Diverges
- 31. Reduce to the sum of a convergent and a divergent series.
- 33. Let $a_i = 1$ and $b_i = -1$.
- **35.** (a) $a_1 + a_2 + \cdots + a_n = (b_2 b_1) +$ $(b_3 - b_2) + \cdots + (b_{n+1} - b_n) = b_{n+1} - b_1$ (see Section 4.1).
 - (b) 1

37. (b) $\sum t_{2n+1} = \frac{12/27}{1-r}$ and $\sum t_{2n+2} = \frac{r \cdot 12/13}{1-r}$

The sum is 1.

12.2 The Comparison Test and Alternating Series

- 1. Use $8/3^{i}$
- 3. Use $1/3^{i}$
- 5. Use $1/3^{i}$
- 7. Use $1/2^{i}$
- **9.** Use 1/i
- 11. Use 4/3i
- 13. Converges
- 15. Converges
- 17. Diverges

- 19. Converges
- 21. Converges
- 23. Diverges
- 25. Converges
- 27. Diverges
- 29. Converges
- 31. Diverges
- 33. Converges
- **35.** 0.29
- **37.** 0.37
- 39. Diverges
- 41. Diverges
- 43. Converges absolutely
- 45. Diverges
- 47. Converges conditionally
- 49. Converges conditionally
- 51. -0.18
- 53. -0.087
- 55. Converges
- **57.** (a) $a_1 = 2$, $a_2 = \sqrt{6}$, $a_3 = \sqrt{4 + \sqrt{6}}$
 - (b) $\lim_{n\to\infty} a_n \approx 2.5616$
- 59. Increasing, bounded above. (Use induction.)
- **61.** Increasing for $n \ge 2$, bounded above.
- 63. Show by induction that a_2, a_3, \ldots is decreasing and bounded below, so converges. The limit I satisfies $l = \frac{1}{2}(l + \frac{B}{l})$.
- **65.** $\lim_{n \to \infty} a_n = 4$
- 67. The limit exists by the decreasing sequence prop-
- **69.** Compare with $(3/4)^n$.

12.3 The Integral and Ratio Tests

- 1. Diverges
- 3. Converges
- 5. Converges
- 7. Converges
- **9.** 0.44
- 11. Use Figure 12.3.2.
- 13. Converges
- 15. Converges
- **17.** 11.54
- **19.** (a) ≈ 1.708
- (b) ≈ 1.7167
 - (c) 8 or more terms.
- 21. Converges
- 23. Diverges
- 25. Converges
- 27. Diverges
- 29. Converges
- 31. Converges
- 33. Converges
- 35. Converges

- 37. Show that if $|a_n|^{1/n} > 1$, then $|a_n| > 1$.
- 39. p > 1
- **41.** p > 1

- **43.** (a) $S \frac{1}{2}f(n) = \sum_{i=1}^{n-1} f(i) + \frac{1}{2}f(n) + \frac{1}{2}f(n)$ $\frac{1}{2} \int_{n}^{n+1} f(x) dx + \int_{n+1}^{\infty} f(x) dx$ $\leq \sum_{i=1}^{\infty} f(i) + \frac{1}{2} f(n) + \frac{1}{2} f(n) + \int_{n+1}^{\infty} f(x) dx;$
 - now use the hint. (b) Sum the first 9 terms to get 1.0819. The first method saves the work of adding 6 additional
- **45.** (b)

12.4 Power Series

- 1. Converges for $-1 \le x < 1$.
- 3. Converges for $-1 \le x \le 1$.
- 5. Converges for 0 < x < 2.
- 7. Converges for all x.
- **9.** Converges for -4 < x < 4.
- 11. $R=\infty$
- 13. R = 2
- 15. $R=\infty$
- 17. R = 1, converges for x = 1 and -1.
- 19. R = 3
- **21.** R = 0
- **23.** Note that f(0) = 0 and f'(0) = 1.
- **25.** (a) R = 1

 - (b) $\sum_{i=1}^{\infty} x^{i+1}$ (c) $f(x) = x(2-x)/(1-x)^2$ for |x| < 1
- 27. $\sum_{n=0}^{\infty} [(-1)^n x^{2n} / n!]$ 29. $\tan^{-1}(x) = \sum_{n=0}^{\infty} [(-1)^n x^{2n+1} / (2n+1)], \text{ and } (d/dx)(\tan^{-1}x) = \sum_{n=0}^{\infty} (-1)^n x^{2n}.$
- 31. $1/2 + 3x/4 + 7x^2/8 + 15x^3/16 + \cdots$
- 33. $x^2 x^4/3 + 2x^6/45 + \cdots$
- 35. Set f(x) = 1/(1-x) and $g(x) = -x^2/(1-x)$.
- 37. (a) $x + (1/3)x^3 + (2/15)x^5 + \cdots$ (b) $1 + x^2 + (2/3)x^4 + \cdots$ (c) $1 - x^2 + (1/3)x^4 - \cdots$
- **39.** $\sum_{i=1}^{\infty} (-1)^{i+1} (1/i) x^i$
- **41.** Use the fact that $\sqrt[i]{i} \to 1$ as $i \to \infty$.
- **43.** Write $f(x) f(x_0) = \left(f(x) \sum_{i=0}^{N} a_i x^i \right)$ $+\left(\sum_{i=0}^{N}a_{i}x^{i}-\sum_{i=0}^{N}a_{i}x_{0}^{i}\right)+\left(\sum_{i=0}^{N}a_{i}x_{0}^{i}-f(x_{0})\right)$

45. Show that $f(x) = \int_0^x g(t) dt$.

12.5 Taylor's Formula

- 1. $3x 9x^3/2 + 81x^5/40 243x^7/560 + \cdots$
- 3. $2-2x+3x^2/2-4x^3/3+17x^4/24-4x^5/15+$ $7x^6/80 - 8x^7/315 + \cdots$
- 5. $1/3 2(x-1)/3 + 5(x-1)^2/9 + 0 \cdot (x-1)^3$
- 7. $e + e(x 1) + e(x 1)^2/2 + e(x 1)^3/6$. 9. (a) $1 x^2 + x^6 + \cdots$ (b) 720
- 11. Valid if $-1 < x \le 1$ (Integrate 1/(1+x) = $1-x+x^2-x^3+\cdots)$
- 13. Let x 1 = u and use the bionomial series.
- **15.** (a) $1 (1/2)x^2 + (3/8)x^4 (5/16)x^6 +$ $(35/128)x^8 - \cdots$
 - (b) (-1/2)(-1/2-1)...(-1/2-10+1).(20!)/(10!)
- 17. $f_0(x) = f_1(x) = 1$, $f_2(x) = f_3(x) = 1 x^2/2$, $f_4(x) = 1 - x^2/2 + x^4/24$.

- 19. ≈ 0.095
- **21.** ≈ 0.9
- 23. ≈ 0.401
- 25. (a) The remainder is less than $R^4M_3/12$ where M_3 is the maximum value of |f'''(x)| on the interval $[x_0 - R, x_0 + R]$.
 - (b) 0.9580. Simpsons rule gives 0.879.
- 27. -4/3
- 29. 1/6
- 31. $\sum_{n=0}^{\infty} x^n$ for |x| < 1
- 33. $\sum_{n=0}^{\infty} 2x^{2n+1}$ for |x| < 135. $\sum_{n=0}^{\infty} x^{2n}$ for |x| < 1
- 37. $\overline{1+2x^2+x^4}$
- **39.** $\int_{1}^{x} \ln t \, dt = \sum_{n=2}^{\infty} \{(-1)^{i} (x-1)^{i} / [i(i-1)]\}.$ $x \ln x = (x-1) + \sum_{i=2}^{\infty} \{(-1)^i (x-1)^i / [i(i-1)]\}.$ Conclude $\int_{1}^{x} \ln t \, dt = x \ln x - x + 1.$
- 41. 1, 0, 1/2, 0
- **43.** 0, -1, 0, -1/2
- **45.** $1/2 x^2/4! + x^4/6! \cdots$
- **47.** $1-2x+2x^2-2x^3-2x^4+2x^5+\cdots$
- **49.** (a) $(x-1) (x-1)^2/2 + (x-1)^3/3 (x-1)^4/4$
 - (b) $1 + (x e)/e (x e)^2/2e^2 +$ $(x-e)^3/3e^3-(x-e)^4/4e^4$
 - (c) $\ln 2 + (x-2)/2 (x-2)^2/8 +$ $(x-2)^3/24-(x-2)^4/64$
- 51. $\ln 2 + x/2 + x^2/8 x^4/192 + \cdots$

- 53. $\sin 1 + (\cos 1)x + [(\cos 1 \sin 1)/2]x^2 [(\sin 1)/2]x^3 + \cdots$
- 55. (a) 0.5869768
 - (b) It is within 1/1000 of sin 36°.
 - (c) $36^{\circ} = \pi/5$ radians, and she used the first two terms of the Taylor expansion.
 - (d) Use the fact that $10^{\circ} = \pi/18$ radians and $\tan x \approx$ $x(1+x^2/3)$
- 57. (a) 0, -1/3, 0
 - (b) $1 x^2/3! + x^4/5! x^6/7! + \cdots$
- 59. Follow the method of Example 3(d).

12.6 Complex Numbers

- 1. -i
- 3. -i
- 5.

9.

- 13. -14 + 8i
- 17. (5 + 3i)/34
- 15. 3 + 4i
- **19.** (41 + 3i)/65
- **21.** $\pm \sqrt{3}i$
- **23.** $(1 \pm \sqrt{17} i)/6$
- **25.** $(7 \pm \sqrt{53})/2$
- **27.** $\pm 2(1+i)$
- **29.** $\pm 2\sqrt{2}(i-1)$
- 31. -1

A.64 Chapter 12 Answers

- 33. -11/5
- **35.** 328/565
- 37. 5-2i
- **39.** $\sqrt{3} i/2$
- 41. -1/3 + 2i/3
- **43.** (-7 + 11i)/20
- **45.** 3
- **47.** $|z| = \sqrt{2}$, $\theta = 5\pi/4$

49. |z| = 2, $\theta = 0$

51. |z| = 5/6, $\theta = -0.93$

53. $|z| = \sqrt{74}$, $\theta = 2.19$

55. $|z| = \sqrt{68}$, $\theta = -2.9$ or 3.4

57. $|z| = \sqrt{1.93}$, $\theta = 0.53$

- **59.** Let $z_1 = a + ib$, $z_2 = c + id$ and calculate $|z_1 z_2|$ and $|z_1| \cdot |z_2|$.
- **61.** $(8+3i)^4$
- 63.

- **67.** 2√5
- **69.** e^x , y
- 71. $1/2 + \sqrt{3} i/2$
- 73. –ei
- 75. ei
- 77. (3-4i)/25
- **79.** (a) $e^{ix} \cdot e^{-ix} = (\cos x + i \sin x)(\cos x i \sin x)$; multiply out
 - (b) Show $e^z \cdot e^{-z} = 1$ using (a).
- **81.** Show $e^{3\pi i/2} = -i$.
- **83.** Use $(e^{i\theta})^n = e^{in\theta}$.
- **85.** $\sqrt{2} e^{i\pi/4}$
- **87.** $(\sqrt{5}/5)e^{i(0.46)}$
- **89.** $\sqrt{58} e^{i(-0.4)}$

- **91.** $(\sqrt{37}/2)e^{i(-1.74)}$
- 93. $25e^{i(1.85)}$
- **95.** $e^{i(\pi/15+2\pi k/5)}$, k = 0, 1, 2, 3, 4; (1.08) $e^{i(0.22+2\pi k/5)}$, k = 0, 1, 2, 3, 4

97. $\sqrt[12]{14}e^{i(0.155+2\pi k/6)}, k = 0, 1, 2, 3, 4, 5;$ $\sqrt[12]{14}e^{i(0.107+2\pi k/6)}, k = 0, 1, 2, 3, 4, 5$

- **99.** z is rotated by $\pi/4$ and its length multiplied by $1/\sqrt{2}$.
- 101. Show that $z^4 = 1$ and then that $z^2 = 1$.
- 103. Write $e^{i\theta} = \cos \theta + i \sin \theta$.

105.
$$\frac{1}{2} \left(\sqrt{2} z + \frac{1}{\sqrt{\sqrt{2} - 1}} - i\sqrt{\sqrt{2} - 1} \right)$$

$$\times \left(\sqrt{2} z - \frac{1}{\sqrt{\sqrt{2} - 1}} + i\sqrt{\sqrt{2} - 1} \right)$$

- 107. (z + 2i + 2)(z 2)
- **109.** (a) $\tan i\theta = i \tanh \theta$ (b) $\tan i\theta = (\tanh \theta)e^{i\pi/2}$
- 111. $z_1 = aiz_2$, a a real number

- 113. (a) Factor $z^n 1$
 - (b) Use your factorization in (a).
 - (c) -1, i, -i
- 115. The motion of the moon with the sun at the origin.
- 117. (a) $(2n+1)\pi i$ for any integer n.
 - (b) You could define $ln(-1) = i\pi$, although there are other possibilities.

12.7 Second-Order Linear Differential Equations

- 1. $y = c_1 \exp(3x) + c_2 \exp(x)$
- 3. $y = c_1 \exp(x/3) + c_2 \exp(x)$
- 5. $y = \frac{1}{2} \exp(3x) \frac{1}{2} \exp(x)$
- 7. $v = e^x$
- 9. $y = c_1 \exp[(2+i)x] + c_2 \exp[(2-i)x]$ = $\exp(2x)[a_1 \cos x + a_2 \sin x]$
- 11. $y = c_1 \exp[(3+2i)x] + c_2 \exp[(3-2i)x]$ = $\exp(3x)[a_1\cos 2x + a_2\sin 2x]$
- 13. $y = x \exp(3x)$
- 15. $y = (x 1)\exp(-\sqrt{2} + \sqrt{2} x)$
- 17. (a) Underdamped
 - (b) $x = (1/\overline{\omega})(\sin \overline{\omega}t) \exp(-\pi t/32), \ \overline{\omega} = \dot{\pi}\sqrt{255}/32$ $\approx \pi/2.$

- 19. (a) Critically damped
 - (b) $x = t \exp(-\pi t/6)$

- **21.** $y = c_1 \exp(3x) + c_2 \exp(x) + 2x + 6$.
- 23. $x = c_1 \exp(t/3) + c_2 \exp(t) + (2/5)\cos t + (-1/5)\sin t$
- 25. $y = e^{2x}(c_1 \cos x + c_2 \sin x) + x^2/5 + 13x/25 + 42/125$
- 27. $y = (c_1 + c_2 x) \exp(\sqrt{2} x) + [(1 + 2\sqrt{2})/9] \cos x + [(1 \sqrt{2})/9] \sin x$

29.
$$y = c_1 \exp(3x) + c_2 \exp(x) + 2x + 6$$

31.
$$x = c_1 \exp(t/3) + c_2 \exp(t) - \sin t/5 - 2\cos t/5$$

33.
$$y = c_1 \exp(3x) + c_2 \exp(x) + [\exp(3x/2)] \int (\tan x) \exp(-3x) dx - \cos(x) dx$$

$$[\exp(x)/2] \int (\tan x) \exp(-x) \, dx$$

35.
$$y = e^{2x} (C_1 \cos 2x + C_2 \sin 2x) + [e^{2x} \cos 2x/2] \cdot \int \{e^{2x} [(1 - \cot 2x)(\cos 2x) - (\cos 2x)] \cdot (\cos 2x) + (\cos$$

$$(1 + \cot 2x)(\sin 2x)] \cdot (1 + \cos^2 x)\}^{-1} dx +$$

$$\cdot [e^{2z} \sin 2x/2] \int \{e^{2x} [(1 - \tan 2x) \cdot (\cos 2x) +$$

$$(1 + \tan 2x)(\sin 2x)](1 + \cos^2 x)^{-1} dx$$

37.
$$x = -\cos 2t + \cos t = 2\sin(3t/2)\sin(t/2)$$

39.
$$x = (-1/24)\cos 5t + (1/5)\sin 5t + (1/24)\cos t$$

41. (a)

$$x(t) = e^{-4t} \left[\frac{-40}{101\sqrt{21}} \sin(\sqrt{21} t) - \frac{42}{505} \cos(\sqrt{21} t) \right]$$

+
$$\frac{2}{\sqrt{505}} \cos \left[2t - \tan^{-1} \left(\frac{8}{21} \right) \right]$$

(b) Looks like
$$(2/\sqrt{505})\cos(2t - \tan^{-1}(8/21))$$

43. (a)
$$x(t) = \exp(-t/2)[(7/10)\cos(\sqrt{15} t/2) + (-1/2\sqrt{15}) \cdot \sin(\sqrt{15} t/2)] + (1/\sqrt{10})\cos(t - \tan^{-1}(1/3))$$

- (b) Looks like $(1/\sqrt{10})\cos(t \tan^{-1}(1/3))$.
- **45.** Show that the Wronskian of y_1 and y_2 does not
- 47. (a) Subtract two solutions with the same initial conditions.
 - (b) Show that they are zero when x = 0.
 - (c) Solve algebraically for y(x).
- 49. (a) Compute the derivative of the Wronskian
 - (b) If $(\alpha 1)^2 \neq 4\beta$ and r_1, r_2 are roots, then y = $c_1 x^{r_1} + c_2 x^{r_2}$; if $(\alpha - 1)^2 = 4\beta$ and r is the root, then $y = c_1 x^r + c_2 x^{(1-\alpha)/2} \ln x$. (Assume x > 0 in each case).
- 51. (a) Add all three forces
 - (b) Substitute and differentiate.

53.
$$c_1 e^{\lambda} + c_2 e^{i\lambda} + c_3 e^{-\lambda} + c_4 e^{-i\lambda}$$

where
$$\lambda = (1 + i)/\sqrt{2}$$
 or

$$e^{x/\sqrt{2}} \left[b_1 \cos\left(\frac{x}{\sqrt{2}}\right) + b_2 \sin\left(\frac{x}{\sqrt{2}}\right) \right]$$

$$+e^{-x/\sqrt{2}}\left[b_3\cos\left(\frac{x}{\sqrt{2}}\right)+b_4\sin\left(\frac{x}{\sqrt{2}}\right)\right]$$

55. $\frac{1}{2}e^x + f(x)$, where f(x) is the solution to Exercise

12.8 Series Solutions of **Differential Equations**

1.
$$y = a_0 \left[\sum_{1=0}^{\infty} \frac{x^{2n}}{2^n n!} \right] + a_1 \left[\sum_{n=0}^{\infty} \frac{2^n n!}{(2n+1)!} x^{2n+1} \right]$$

3.
$$y = a_0 + a_1 x + a_1 \left[\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)(n+1)!} \right]$$

5.
$$y = x - x^3/3 + x^5/10 - \cdots$$

7.
$$y = 2x - x^3 + 7x^5/20 - \cdots$$

9.
$$y = a_0 \left(1 + \frac{x^3}{6} + \frac{x^6}{180} + \cdots \right) + a_1 \left(x + \frac{x^4}{12} + \frac{x^7}{504} + \cdots \right)$$

The recursion relation is

$$a_{n+3} = a_n/[(n+3)(n+2)]$$

11.
$$y = c_1 \left(1 + x - \frac{x^2}{4} + \frac{x^3}{60} - \frac{x^4}{1920} + \cdots \right) + c_2 \left(x^{4/3} - \frac{x^{7/3}}{7} + \frac{x^{10/3}}{140} - \frac{x^{13/3}}{5460} + \cdots \right)$$

13.
$$c_1 x^{(1+1)i/6} + c_2 x^{(1-1)i/6}$$
.

or
$$x^{1/6} \left[b_1 \cos\left(\frac{11 \ln x}{6}\right) + b_2 \sin\left(\frac{11 \ln x}{6}\right) \right]$$
 (no

15. (a)
$$x^k + \frac{x^{k+2}}{4k+4} + \frac{x^{k+4}}{(4k+4)(8k+16)} + \cdots$$

+ $\frac{x^{k+2j}}{4^{j}(k+1)(2k+4)\cdots(jk+j^2)} + \cdots$

$$+\frac{x^{k+2j}}{4^{j}(k+1)(2k+4)\cdots(jk+j^{2})}+\cdots$$

(b)
$$x^{-k} + \frac{x^{-k+2}}{-4k+4}$$

(b)
$$x^{-k} + \frac{x^{-k+2}}{-4k+4} + \frac{x^{-k+4}}{(-4k+4)(-8k+16)} + \cdots$$

$$+ \frac{x^{-k+2j}}{4^{j}(-k+1)(-2k+4)\cdots(-jk+j^{2})} + \cdots$$

- 17. Solve recursively for coefficients, then recognize the series for sine and cosine.
- 19. (a) Use the ratio test

(b)
$$x, -\frac{1}{2} + \frac{3}{2}x^2, -\frac{3}{2}x + \frac{5}{2}x^3$$

- 21. Show that the Wronskian is non-zero
- 23. (a) Solve recursively
 - (b) Substitute the given function in the equation. (To discover the solution, use the methods for solving first order linear equations given in Section 8.6).

Review Exercises for Chapter 12

- 1. Converges to 1/11.
- 3. Converges to 45/2
- 5. Converges to 7/2
- 7. Diverges
- 9. Converges
- 11. Converges
- 13. Converges
- 15. Diverges 19. Converges
- 17. Diverges 21. Converges

- 23. Converges
- **25.** 0.78
- **27.** -0.12
- **29.** -0.24
- 31. 0.25
- 33. False
- 35. False
- 37. False
- 39. False
- **41.** True
- 43. True
- 45. True
- 47. Use the comparison test.
- **49.** 1/8
- **51.** 1
- 53. $R = \infty$
- 55. $R = \infty$
- 57. R = 2

59.
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, where $a_{2i} = \frac{2^{2i}}{(2i)!}$, $a_{2i+1} = \frac{(-1)^i 3^{2i+1} + 2^{2i+1}}{(2i+i)!}$

- **61.** $\sum_{i=1}^{\infty} [(-1)^{i+1} x^{4i}/i]$
- **63.** $\sum_{i=1}^{\infty} [(-1)^i x^{2i}/(2i)!]$
- **65.** $\sum_{i=1}^{\infty} [x^i/[i(i!)]]$
- **67.** $\sum_{i=0}^{\infty} [e^2(x-2)^i/i!], R = \infty$

69.
$$\sum_{i=0}^{\infty} \frac{\frac{3}{2}(\frac{3}{2}-1)\cdots(\frac{3}{2}-i+1)}{i!} (x-1)^{i}$$

- 71. $\pi^2/2$
- **73.** 3
- 75, 3, 7, 3 $-7i\sqrt{58}$

77.
$$\pm (1 + \frac{1}{2}\sqrt{5})^{1/2} \approx \pm 1.46$$
, $\mp (-1 + \frac{1}{2}\sqrt{5})^{1/2} \approx \pm 0.344$, $\sqrt{2+i} \approx \pm 1.46 \pm 0.344i$, $\sqrt[4]{5} \approx 1.50$

79. $z = \sqrt{2} \exp(-\pi i/4)$

81. $z = \exp(\pi i)$

- **83.** $1 \pm \sqrt{1 \pi i} \approx 2.4658 1.0717i$, -0.4658 + 1.0717i
- **85.** $c_1 \cos 2x + c_2 \sin 2x$
- **87.** $y = c_1 \exp(-5x) + c_2 \exp(-x)$
- **89.** $y = -e^x/6 11\cos x/130 + 33\sin x/130 +$

$$c_1 \exp(-5x) + c_2 \exp(2x)$$
91. $c_1 e^{3x} + c_2 x e^{3x} + \frac{140}{1369} \cos\left(\frac{x}{2}\right) - \frac{48}{1369} \sin\left(\frac{x}{2}\right)$

- **93.** $-\cos(2x)\int \frac{x\sin(2x)}{\sqrt{x^2+1}} dx$ $+\sin(2x)\int \frac{x\cos(2x)}{\sqrt{x^2+1}} dx$
- **95.** $c_1 + e^{-x}(c_2\cos x + c_3\sin x)$ **97.** $m = 1, \ k = 9, \ \gamma = 1, \ F_0 = 1, \ \Omega = 2, \ \omega = 3, \ \delta$ = $\tan^{-1}(\frac{1}{2})$. As $t \to \infty$, the solution approaches $\frac{1}{\sqrt{34}}\cos[2t-\tan^{-1}(\frac{2}{5})].$
- **99.** m = 1, k = 25, $\gamma = 6$, $F_{-} = 1$, $\Omega = \pi$, $\omega = 5$, δ = $\tan^{-1}[6\pi/(25-\pi^2)]$. As $t\to\infty$, the solution ap-

$$\frac{1}{\sqrt{625 - 14\pi^2 - \pi^4}} \cos \left[\pi t - \tan^{-1} \left(\frac{6\pi}{25 - \pi^2} \right) \right]$$
101. $a_0 \left(1 - \frac{x^3}{3} + \cdots \right) + a_1 \left(x - \frac{x^4}{6} + \cdots \right)$

- **103.** $a_0 \left(1 x^2 + \frac{x^4}{6} \frac{x^5}{5} + \cdots \right)$ $+a_1\left(x-\frac{x^3}{3}+\frac{x^4}{6}-\frac{x^5}{20}+\cdots\right)$
- **105.** $1-x+\frac{x^2}{2}-\frac{11x^3}{6}+\cdots$
- **107.** $x + \frac{x^3}{8} + \frac{x^5}{192} + \cdots$
- **109.** (a) m = L, k = 1/C, $\gamma = R$
 - (b) $0.01998e^{-19.90t} 0.02020e^{-0.1005t}$ $+ 0.002099 \sin(60\pi t)$ $+0.0002227\cos(60\pi t)$
- 111. Factor out x^2 .
- 113. (a) The partial sums converge to y(x,t) for each
 - (b) $\sum_{k=0}^{\infty} (-1)^k A_{2k+1}$
- 115. ≈ 0.659178
- 117. (a) ≈ 1.12
 - (b) ≈ 2.24 . It is accurate to within 0.02.
- 119. -1/2, 1/6, 0
- **121.** (a) ≈ 3.68
 - (b)

- 123. Show by induction that $g^{(n)}(x)$ is a polynomial times g(x).
- 125. True
- 127. (a) Collect terms
 - (b) The radius of convergence is at most 1. (c) e
- 129. Show that $\alpha < 1/k$ by using a Maclaurin series with remainder.