Chapitre 4 : Composition des vitesses et accélérations

I Mouvement

On prend deux référentiels, *R* absolu et *R*' relatif (attribution arbitraire)

A) Mouvement d'entraînement

1) Définition

C'est le mouvement de R'/R.

2) Caractérisation

•
$$\vec{v}_a(O') = \left(\frac{d\overrightarrow{OO'}}{dt}\right)_R$$

•
$$\vec{\Omega}_{R'/R} = \vec{\Omega}_e$$
. (ainsi, $\left(\frac{d\vec{u}'_x}{dt}\right)_R = \vec{\Omega}_e \wedge \vec{u}'_x$)

B) Mouvement absolu

1) Définition

C'est le mouvement par rapport à R.

2) Caractérisation

Pour un solide S:

- $\vec{v}_a(M)$ pour un point $M \in S$.
- $\vec{\Omega}_{S/R} = \vec{\Omega}_a$.

C) Mouvement relatif

1) Définition

C'est le mouvement de S par rapport à R'.

2) Caractérisation

- $\vec{v}_{r}(M), M \in S$
- $\bullet \quad \vec{\Omega}_{S/R'} = \vec{\Omega}_r$

II Composition des vitesses

A) Cas général

1) Relation entre vitesse absolue et vitesse relative

$$\begin{split} \vec{v}_{a} &= \left(\frac{d\overrightarrow{OM}}{dt} \right)_{R} = \underbrace{\left(\frac{d\overrightarrow{OO'}}{dt} \right)_{R}}_{\vec{v}_{a}(O')} + \left(\frac{d\overrightarrow{O'M}}{dt} \right)_{R}. \end{split}$$

$$\text{On a: } \overrightarrow{O'M} = x' \vec{u}'_{x} + y' \vec{u}'_{y} + z' \vec{u}'_{z}.$$

$$\text{Donc } \left(\frac{d\overrightarrow{O'M}}{dt} \right)_{R} = \dot{x}' \vec{u}'_{x} + \ldots + x' \left(\frac{d\vec{u}'_{x}}{dt} \right)_{R} + \ldots.$$

$$\text{Et } \left(\frac{d\vec{u}'_{x}}{dt} \right)_{R} = \vec{\Omega}_{e} \wedge \vec{u}'_{x} \text{, et de même pour les autres.}$$

Donc
$$\left(\frac{d\overrightarrow{O'M}}{dt}\right)_R = \dot{\Omega}_e \wedge u'_x$$
, et de meme pour les at $\dot{\overline{Q'M}}_R = \dot{\underline{Z'}}_R \dot{\overline{U'}}_x + ... + \dot{\overline{\Omega}}_e \wedge \overrightarrow{O'M}$,

D'où
$$\vec{v}_a = \vec{v}_r(M) + \underbrace{\vec{v}_a(O') + \vec{\Omega}_e \wedge \overrightarrow{O'M}}_{\vec{v}_e(M)}$$
.

2) Vitesse d'entraînement

$$\vec{v}_e(M) = \vec{v}_a(O') + \vec{\Omega}_e \wedge \overrightarrow{O'M}$$

• Interprétation physique :

Point coïncidant C: c'est le point qui a la même position que M à l'instant tmais qui est fixe dans le référentiel relatif : $\overrightarrow{O'C} = \overrightarrow{O'M}$, $\overrightarrow{v}_r(C) = \overrightarrow{0}$.

Ainsi,
$$\vec{v}_a(C) = \underbrace{\vec{v}_r(C)}_{\vec{0}} + \underbrace{\vec{v}_a(O') + \vec{\Omega}_e \wedge \overrightarrow{O'C}}_{\vec{v}_e(M)}$$
.

Donc $\underbrace{\vec{v}_e(M) = \vec{v}_a(C)}_{\vec{0}}$.

Donc
$$\vec{v}_e(M) = \vec{v}_a(C)$$

• Exemple:

$$\vec{u}_z \bigcirc M \vec{u}_r$$

Le point M est astreint à se déplacer sur la tige.

$$\vec{v}_r(M) = \dot{r}.\vec{u}_r, \ \vec{v}_e(M) = r\dot{\theta}.\vec{u}_\theta$$

Donc
$$\vec{v}_a(M) = \dot{r}.\vec{u}_r + r\dot{\theta}.\vec{u}_\theta$$
.

3) Dérivation composée d'un vecteur par rapport au temps

On considère un vecteur $\vec{A} = \overrightarrow{PQ}$.

On a :

$$\begin{split} \left(\frac{d\vec{A}}{dt}\right)_{R} &= \vec{v}_{a}(Q) - \vec{v}_{a}(P) \\ &= \vec{v}_{r}(Q) - \vec{v}_{r}(P) + \vec{\Omega}_{e} \wedge \overrightarrow{O'Q} - \vec{\Omega}_{e} \wedge \overrightarrow{O'P} \\ &= \vec{v}_{r}(Q) - \vec{v}_{r}(P) + \vec{\Omega}_{e} \wedge \overrightarrow{PQ} \\ \text{Soit} \left(\frac{d\vec{A}}{dt}\right)_{R} &= \left(\frac{d\vec{A}}{dt}\right)_{R'} + \vec{\Omega}_{e} \wedge \vec{A} \end{split}.$$

B) Cas particuliers

1) Si R' est en translation par rapport à R.

On a
$$\vec{\Omega}_e = \vec{0}$$
. Donc $\vec{v}_e(M) = \vec{v}_a(O')$

2) Si R' est en rotation autour de Δ fixe dans R.

On a $\vec{\Omega}_e = \dot{\theta}.\vec{u}_z$, $\vec{v}_a(O') = \vec{0}$.

Donc $\vec{v}_a(M) = r\dot{\theta}.\vec{u}_a$.

III Composition des accélérations

A) Cas général

1) Formule de composition

$$\vec{a}_a(M) = \left(\frac{d^2 \overrightarrow{OM}}{dt^2}\right)_R = \underbrace{\left(\frac{d^2 \overrightarrow{OO'}}{dt^2}\right)_R}_{\vec{a}_a(O')} + \underbrace{\left(\frac{d^2 \overrightarrow{O'M}}{dt^2}\right)_R}_R.$$

On a
$$\overrightarrow{O'M} = x' \overrightarrow{u'}_x + \dots$$

Donc
$$\left(\frac{d^2 \overrightarrow{O'M}}{dt^2}\right)_R = \underbrace{\ddot{x}' \vec{u}'_x + \dots}_{\vec{a}_r(M)} + x' \left(\frac{d^2 \vec{u}'_x}{dt^2}\right)_R + \dots + \underbrace{2\dot{x} \left(\frac{d\vec{u}'_x}{dt}\right)_R + \dots}_{=2\dot{x}\Omega_e \wedge \ddot{u}'_x + \dots}$$

Ainsi,
$$\vec{a}_a(M) = \vec{a}_r(M) + \vec{a}_a(O') + x' \left(\frac{d^2 \vec{u}'_x}{dt^2} \right)_p + ... + 2\vec{\Omega}_e \wedge \vec{v}_r$$

2) Accélération d'entraînement

Définition:

$$\vec{a}_{\rho}(M) = \vec{a}_{\sigma}(C)$$
.

On a:

$$\vec{a}_{a}(C) = \underbrace{\vec{a}_{r}(C)}_{\hat{0}} + \vec{a}_{a}(O') + x' \left(\frac{d^{2}\vec{u}'_{x}}{dt^{2}}\right)_{R} + \dots + 2\underbrace{\vec{\Omega}_{e} \wedge \vec{v}_{r}}_{=\hat{0}}$$

$$= \vec{a}_{a}(O') + x' \left(\frac{d^{2}\vec{u}'_{x}}{dt^{2}}\right)_{R} + \dots$$

Donc $\vec{a}_a(M) = \vec{a}_r(M) + \vec{a}_e(M) + 2\vec{\Omega}_e \wedge \vec{v}_r$

3) Accélération complémentaire/de Coriolis

• Expression:
$$\vec{a}_c(M) = 2\vec{\Omega}_e \wedge \vec{v}_r$$

- $\vec{\Omega}_e = \vec{0}$, c'est-à-dire que R' est en translation par rapport à R.
- $\vec{v}_r = \vec{0}$: *M* est immobile dans *R*'.
- $\vec{\Omega}_{e} / / \vec{v}_{r}$.

B) Cas particuliers

- 1) Si R' est en translation par rapport à R.
 - Translation quelconque:

On a
$$\vec{a}_c = \vec{0}$$
, et $\vec{a}_e(M) = \vec{a}_a(O')$.

Donc
$$\vec{a}_{a}(M) = \vec{a}_{r}(M) + \vec{a}_{a}(O')$$
.

• Translation rectiligne uniforme:

$$\vec{a}_a(O') = \vec{0} .$$

Donc
$$\vec{a}_a(M) = \vec{a}_r(M)$$
.

2) Si R' est en rotation autour d'un axe $^{\Delta}$ fixe dans R.

- $\vec{a}_r(M) = (\ddot{r} r\dot{\psi}^2)\vec{u}_r + (2\dot{r}\dot{\psi} + r\ddot{\psi})\vec{u}_{\psi} + \ddot{z}\vec{u}_z$
- $\vec{a}_e(M) = -r\dot{\theta}^2\vec{u}_r + r\ddot{\theta}\vec{u}_w$
- $\bullet \quad \vec{a}_c(M) = 2\vec{\Omega}_e \wedge \vec{v}_r = 2\dot{\theta}.\vec{u}_z \wedge (\dot{r}.\vec{u}_r + r\dot{\psi}.\vec{u}_\theta + \dot{z}.\vec{u}_z) = -2r\dot{\theta}\dot{\psi}.\vec{u}_r + 2\dot{r}\dot{\theta}.\vec{u}_\psi$
- $\vec{a}_a(M) = (\ddot{r} r(\dot{\theta} + \dot{\psi})^2) \cdot \vec{u}_r + (2\dot{r}(\dot{\theta} + \dot{\psi}) + r(\ddot{\theta} + \ddot{\psi})) \cdot \vec{u}_w + \ddot{z} \cdot \vec{u}_z$

IV Composition des mouvements d'un solide

On a $\vec{v}_{a}(M) = \vec{v}_{r}(M) + \vec{v}_{e}(M)$.

On va chercher une relation entre $\,\vec{\Omega}_a\,,\,\vec{\Omega}_r\,$ et $\,\vec{\Omega}_e\,$

A) Composition des vecteurs instantanés de rotation

1) Cas général

Soient A et B deux points de S, on note C_A et C_B (dans R') les points coı̈ncidents.

On a

$$\vec{v}_a(A) = \vec{v}_a(B) + \overrightarrow{AB} \wedge \vec{\Omega}_a, \ \vec{v}_r(A) = \vec{v}_r(B) + \overrightarrow{AB} \wedge \vec{\Omega}_r,$$

Et
$$\vec{v}_a(C_A) = \vec{v}_a(C_B) + \overrightarrow{C_A C_B} \wedge \vec{\Omega}_e$$
, d'où $\vec{v}_e(A) = \vec{v}_e(B) + \overrightarrow{AB} \wedge \vec{\Omega}_e$.

Donc
$$\overrightarrow{AB} \wedge \overrightarrow{\Omega}_a = \overrightarrow{AB} \wedge (\overrightarrow{\Omega}_e + \overrightarrow{\Omega}_r)$$
.

Donc, comme la relation est valable pour tous points A et B:

$$\vec{\Omega}_a = \vec{\Omega}_e + \vec{\Omega}_r$$

2) Cas particulier

Si R' est en translation par rapport à R, on a $\vec{\Omega}_e = \vec{0}$ donc $\vec{\Omega}_a = \vec{\Omega}_r$.

B) Exemples

1) Exemple 1

• Paramétrage :

$$x = x(C), \theta$$
.

On a donc deux degrés de liberté.

• Condition de roulement sans glissement :

$$\vec{v}_a(I_1) = \vec{v}_a(I_2) = \vec{0} \ (I_2 \text{ est fixe})$$

On a

$$\vec{v}_a(I_1) = \vec{v}_a(C) + \overrightarrow{I_1C} \wedge \vec{\Omega}_a$$
, soit $\vec{0} = \dot{x}\vec{u}_x + R\vec{u}_y \wedge \vec{\Omega}_a$.

Et
$$\vec{\Omega}_a = \vec{\Omega}_r + \vec{\Omega}_e = \dot{\theta} \vec{u}_z + \vec{0}$$

Donc
$$\dot{x}\vec{u}_x = -R\dot{\theta}\vec{u}_x$$
, soit $\dot{x} = -R\dot{\theta}$

Ou en intégrant : $\Delta x = -R\Delta\theta$.

- Allure des champs de vitesse
- \vec{v}_r (on suppose $\dot{\theta} > 0$)

- \vec{v}_e est uniforme (translation).

$$\vec{v}_a(I_1) = \vec{0}$$

Donc
$$\vec{v}_r(I_1) + \vec{v}_e = \vec{0}$$

Donc
$$\vec{v}_e = -\vec{v}_r(I_1)$$
:

- \vec{v}_a

On obtient ainsi le champ de vitesse d'une rotation (c'est-à-dire d'un mouvement hélicoïdal sans translation) autour de I_1 .

 $I_{\scriptscriptstyle 1}$ s'appelle le centre instantané de rotation. On peut ainsi obtenir $\vec{v}_{\scriptscriptstyle a}$ en n'importe quel point.

2) Exemple 2

- Dans le cas général, φ et θ peuvent varier indépendamment.
- Condition de roulement sans glissement :

$$\vec{v}_a(I_1) = \vec{0}.$$

On a de plus $\vec{v}_a(O) = \vec{0}$.

Donc
$$\vec{0} = \vec{0} + \overrightarrow{I_1 O} \wedge \vec{\Omega}_a$$
.

On a
$$\overrightarrow{I_1O} = R\overrightarrow{u}_z - l\overrightarrow{u}_r$$
.

On note $R' = (C, \vec{u}_r, \vec{u}_\varphi, \vec{u}_z)$. Ainsi, le mouvement de la roue dans R' est un mouvement de rotation autour de l'axe (C, \vec{u}_r) .

Donc $\vec{\Omega}_r = \dot{\theta}.\vec{u}_r$, et on a $\vec{\Omega}_e = \dot{\varphi}.\vec{u}_z$ (le mouvement de R' est un mouvement de rotation)

Donc
$$\vec{0} = (R\vec{u}_z - l\vec{u}_r) \wedge (\dot{\theta}.\vec{u}_r + \dot{\varphi}.\vec{u}_z)$$
, d'où $R\dot{\theta} = -l\dot{\varphi}$.

L'axe $\overrightarrow{OI_1}$ s'appelle l'axe instantané de rotation (O et I_1 sont fixes)

(Le mouvement correspond à celui d'un mouvement hélicoïdal sans translation autour de $\overrightarrow{OI_1}$)

V Complément

A) Mouvement d'un solide autour d'un point fixe

On suppose O fixe dans R. Il faut donc trois paramètres pour déterminer le mouvement du solide S.

1) Angles d'Euler

On considère deux trièdres orthonormés directs, $(O,\vec{u}_x,\vec{u}_y,\vec{u}_z)$ lié à R et $(O,\vec{u}'_x,\vec{u}'_y,\vec{u}'_z)$ lié à S.

(En astronomie, l'axe (O, \vec{u}) s'appelle l'axe des nœuds)

Comme \vec{u} est dans chacun des deux disques, on a $\vec{u} \perp \vec{u}_z$ et $\vec{u} \perp \vec{u}_z$.

• Précession ψ :

$$(\vec{u}_x,\vec{u}_y,\vec{u}_z) \xrightarrow{\psi,\vec{u}_z} (\vec{u},\vec{v},\vec{u}_z) \,.$$

$$\psi = (\vec{u}_r, \vec{u})$$

• Nutation θ :

$$(\vec{u}, \vec{v}, \vec{u}_z) \xrightarrow{\theta, \vec{u}} (\vec{u}, \vec{v}', \vec{u}'_z)$$

$$\theta = (\vec{u}_z, \vec{u}_z)$$
 (ainsi, \vec{u}_z et \vec{u}_z coïncident)

• Rotation propre φ :

$$(\vec{u},\vec{v}',\vec{u}'_z) \xrightarrow{\varphi,\vec{u}'_z} (\vec{u}'_x,\vec{u}'_y,\vec{u}'_z)$$

$$\varphi = (\vec{u}, \vec{u}_x) = (\vec{v}, \vec{u}_z).$$

2) Vecteur instantané de rotation

$$\vec{\Omega} = \dot{\psi}.\vec{u}_z + \dot{\theta}.\vec{u} + \dot{\varphi}.\vec{u}'_z$$

3) Mouvement d'une toupie

Si on maintient l'axe de la toupie, seul φ varie, et on a une rotation propre.

Si on ne maintient plus l'axe, l'axe va décrire un cône, et on a donc un mouvement de précession ; dans ce mouvement, c'est ψ qui varie (d'où son nom)

Lorsqu'on donne un coup sur l'axe, l'angle de l'axe s'ouvre et se referme en oscillant, et θ varie, d'où le nom de nutation (« nutare » : dire bonjour en saluant)