Recursive Neural Network (RvNN)

WeiYang

51184506043

weiyang@godweiyang.com

https://godweiyang.com

Outline

- Introduction
- Structure of RvNN
- Backpropagation through structure (BPTS)
- More complex variants
- Applications
- Project

Compositionality

How can we know when larger units are similar in meaning?

- The snowboarder is leaping over a mogul
- A person on a snowboard jumps into the air

People interpret the meaning of larger text units entities, descriptive terms, facts, arguments, stories by semantic composition of smaller elements

Recursion

- Cognitively somewhat debatable
- But recursion is natural for describing language
 - [The man from [the company that you spoke with about [the project] yesterday]]
- Noun phrase containing a noun phrase containing a noun phrase

Ambiguation

RvNN is helpful in disambiguation. However, recurrent neural network (RNN) can't do it.

Constituency Tree

Learn Structure and Representation

RvNN vs RNN

RvNN vs RNN

- Recursive neural nets require a parser to get tree structure
- Recurrent neural nets cannot capture phrases without prefix context and often capture too much of last words in final vector

RVNN vs CNN

RVNN vs CNN

- RvNN get compositional vectors for grammatical phrases only
- CNN computes vectors for every possible phrase
 - Regardless of whether each is grammatical and many don't make sense
 - Don't need parser
 - But maybe not very linguistically or cognitively plausible

RvNN for Structure Prediction

- Inputs: two candidate children's representations
- Outputs:
 - The semantic representation if the two nodes are merged
 - Score of how plausible the new node would be

RvNN Definition

Max-Margin Framework

• The score of a tree is computed by the sum of the parsing decision scores at each node:

$$s(x,y) = \sum_{n \in nodes(y)} s_n$$

Supervised max-margin objective:

$$\mathcal{L}(heta) = \max(0, s(x_i, \hat{y}) + \Delta(y_i, \hat{y}) - s(x_i, y_i))$$

ullet Structure search for \hat{y} can use greedy, beam search and dynamic programming

Computational Graph

Question: How can we compute $\frac{\partial}{\partial W}f(W(f(Wx)))$?

Computational Graph

$$egin{aligned} & rac{\partial}{\partial W} f(W(f(Wx))) \ &= f'(v)Wf'(u)x + f'(v)f(u) \ &= f'(v)(Wf'(u)x + f(u)) \ &= f'(Wf(Wx))(Wf'(Wx)x + f(Wx)) \end{aligned}$$

Backpropagation Through Structure

Principally the same as general backpropagation

$$\delta^{(l)} = (W^{(l)})^T \delta^{(l+1)} \circ f'(z^{(l)})$$

$$rac{\partial}{\partial W^{(l)}}E_R=\delta^{(l+1)}(a^{(l)})^T$$

Three differences resulting from the recursion and tree structure:

- ullet Sum derivatives of W from all nodes (like RNN)
- Split derivatives at each mode (for tree)
- Add error messages from parent + node itself

Problems with Simple RvNN

- Single weight matrix RvNN could capture some phenomena but not adequate for more complex, higher order composition and parsing long sentences
- There is no real interaction between the input words
- The composition function is the same for all syntactic categories, punctuation, etc.
- Gradient vanishing

Syntactically-Untied RvNN

- A symbolic Context-Free Grammar (CFG) backbone is adequate for basic syntactic structure
- We use the discrete syntactic categories of the children to choose the composition matrix
- A TreeRNN can do better with different composition matrix for different syntactic environments
- The result gives us a better semantics

Matrix-Vector RvNN

- Some words act mostly as an operator, e.g. "very" in "very good"
- MV-RvNN

$$p = f(W[Ba;Ab]^T + b)$$

Tree LSTM

 Avoid gradient vanishing and can model long-distance interaction over trees

Compositional Vector Grammars

- CVG = PCFG + RvNN
- Scores at each node computed by combination of PCFG and SU-RNN:

$$s(p^{(1)}) = (v^{(B,C)})^T p^{(1)} + \log P(P_1 o BC)$$

Socher et al. ACL 2013

Semantic Representations

 Semantic Relatedness: Build a single compositional semantics for the minimal constituent including both terms

• Sentiment Classification

Scene Parsing

 Same Recursive Neural Network as for natural language parsing (Socher et al. ICML 2011)

Project

- Data Format (PTB)
 (SBARQ (WHADVP When) (SBARQ (SQ (VERB did) (SQ (NP Nixon) (VP die))) (. ?)))
- Labeled Precision (LP) $LP = (True\ predicted\ spans)/(Total\ predicted\ spans)$
- Labeled Recall (LR) $LR = (True\ predicted\ spans)/(Total\ gold\ spans)$
- F1 F1 = (2 imes LP imes LR)/(LP + LR)

Project

- Deep Learning Framework
 Dynet (recommended), Tensorflow, Pytorch, Keras, etc.
- Grading
 - Submission on time. (50')
 - o Code. (20')
 - Results. (10')
 - Report. (20')

References

A Summary of Constituent Parsing https://github.com/godweiyang/ConstituentParsing