2007 (Bush 2008 Stimulus) Full States EV and EC of Two Checks

This is the example vignette for function: **snw_evuvw19_jaeemk_foc** from the **PrjOptiSNW Package.** 2008 integrated over VU and VW, given optimal savings choices, unemployment shocks and various expectations.

Given 2008 policy and value functions (given expectation of 2009 crisis unemployment shocks), call SNW_V08_JAEEMK to solve for value and consumption given stimulus checks. And then integrate over 08 JAEEMK states given 07 JAEEMK states (age, endogenous savings, education, income shock, marital status, kids count). The stimulus will be provisioned based on 07 JAEEMK states. Note that snw_evuvw19_jaeemk does not solve the 07/08 problem.

Despite the name, this function supports solving the 2019 looking into 2020 as well as the 2007 looking into 2008 problems. The idea is that the planner only has information from 2019 and from 2007, and must allocate using those information. Stimulus, however, is given in 2020 and in 2008. So the planner needs to consider expected values in consumption or welfare given the transition probabilities of states in 2007 to 2008 and in 2019 to 2020. The snw_evuvw19_jmky file then aggregates the full state-space results to just JMKY state-space, which is the extend of information available to the planner.

Test SNW_EVUVW19_JAEEMK Defaults for 2019

Call the function with defaults. First, set up some parameters.

```
clear all;
% Solution types
st_biden_or_trump = 'bushchck';
% Solve the VFI Problem and get Value Function
mp_controls = snw_mp_control('default_test');
% Solve for Unemployment Values
mp_controls('bl_print_a4chk') = false;
mp_controls('bl_print_a4chk_verbose') = false;
mp_controls('bl_print_vfi') = false;
mp controls('bl print vfi verbose') = false;
mp_controls('bl_print_ds') = false;
mp controls('bl print ds verbose') = false;
mp_controls('bl_print_precompute') = false;
mp_controls('bl_print_evuvw20_jaeemk') = false;
mp controls('bl print evuvw20 jaeemk verbose') = false;
mp_controls('bl_print_v08p08_jaeemk') = false;
mp_controls('bl_print_v08p08_jaeemk_verbose') = false;
mp_controls('bl_print_v08_jaeemk') = true;
mp_controls('bl_print_v08_jaeemk_verbose') = false;
```

Second, run initializing functions.

```
% 1. generate MP_PARAMS specific to 2008 stimulus
% Use non-default values for Bush Stimulus
mp_more_inputs = containers.Map('KeyType','char', 'ValueType','any');
mp_more_inputs('fl_ss_non_college') = 0.225;
mp_more_inputs('fl_ss_college') = 0.271;
```

```
fl p50 hh income 07 = 54831;
mp_more_inputs('fl_scaleconvertor') = fl_p50_hh_income_07;
% st_param_group = 'default_small';
st_param_group = 'default_dense';
st_param_group = 'default_docdense';
mp_params = snw_mp_param(st_param_group, false, 'tauchen', false, 8, 8, mp_more_inputs);
mp_params('st_biden_or_trump') = st_biden_or_trump;
mp_params('beta') = 0.95;
% 2. Solve value steady state (2009 employed)
[V_ss, ap_ss, cons_ss, mp_valpol_more_ss] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
Completed SNW_VFI_MAIN_BISEC_VEC; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time=495.65
V_{emp}_{2009} = V_{ss};
inc_ss = mp_valpol_more_ss('inc_VFI');
spouse_inc_ss = mp_valpol_more_ss('spouse_inc_VFI');
total_inc_ss = inc_ss + spouse_inc_ss;
% 3. Solve value unemployed 2009
mp_params('xi') = 0.532;
mp_params('b') = 0.37992;
mp_params('a2_covidyr') = mp_params('a2_greatrecession_2009');
mp_params('TR') = 100/fl_p50_hh_income_07;
[V unemp 2009] = snw vfi main bisec vec(mp params, mp controls, V ss);
Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time
% 4. Value and Optimal choice in 2008
[V_2008, ap_2008, cons_2008, ev_empshk_2009] = ...
    snw_v08p08_jaeemk(mp_params, mp_controls, V_emp_2009, V_unemp_2009);
Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time
Completed SNW_V08P08_JAEEMK;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time=497.3876
% 5. matrixes to pre-compute
% Only using the SNW A4CHK WRK BISEC VEC function, no unemployment
% related matrixes needed Also don't need REF EARN WAGEIND GRID,
% become unemployment not conditional on wage in 2009.
cl_st_precompute_list = {'a', ...
    'inc', 'inc_unemp', 'spouse_inc',...
    'ar_z_ctr_amz'};
% Shared: Steady-State distribution
[Phi_true] = snw_ds_main(mp_params, mp_controls, ap_ss, cons_ss, mp_valpol_more_ss);
Completed SNW_DS_MAIN; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time=1775.4241
% Shared: precompute, get Matrixes
% note, the mp_params inputs are based on unemployed in 2020 (MIT) or unemployed in 2009 (Expedience)
% note, however, for the 2008/9 problem, only will use inc, inc_unemp, spouse_inc
mp_controls('bl_print_precompute_verbose') = false;
[mp_precompute_res] = snw_hh_precompute(mp_params, mp_controls, cl_st_precompute_list, ap_ss, F
```

1.5632

1.0335

Completed SNW_HH_PRECOMPUTE; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time cost=254.7405

0.71528

Wage quintile cutoffs=0.4645

Solve for 2019 Evuvw With 0 and 2 Checks

Solve for 0 and 2 checks, by finding the increase to asset state-space that is equivalent to the check increase, so that the problem can be solved without increasing the state-space.

```
% Call Function
welf checks = 0;
[ev07_jaeemk_check0, ec07_jaeemk_check0, ev08_jaeemk_check0, ec08_jaeemk_check0] = snw_evuvw19
     welf checks, mp params, mp controls, ...
     ap_ss, V_2008, cons_2008, mp_precompute_res);
Solve for V_2008_check for 0 stimulus checks
Completed SNW_A4CHK_WRK_BISEC_VEC;SNW_MP_PARAM=bushchck;welf_checks=0;TR=0.0018238;SNW_MP_PARAM=default_docdense;SNW_MP_PARAM=default_docdense
Completed SNW_V08_JAEEMK; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; timeEUEC=6.99e-05
Completed SNW_EVUVW19_JAEEMK_FOC; st_biden_or_trump=bushchck; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_tes
_____
CONTAINER NAME: mp outcomes ND Array (Matrix etc)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
                   i
                        idx
                                                                colN
                                                                                                       std
                                                                                                                 coefva
                               ndim
                                          numel
                                                      rowN
                                                                                sum
                                                                                            mean
    ec07_jaeemk
                   1
                         1
                                6
                                       4.3173e+07
                                                       82
                                                              5.265e+05
                                                                             1.9685e+08
                                                                                            4.5597
                                                                                                      5.3244
                                                                                                                  1.167
    ec08_jaeemk
                   2
                         2
                                6
                                          4.37e+07
                                                       83
                                                              5.265e+05
                                                                             2.3277e+08
                                                                                            5.3267
                                                                                                      8.4419
                                                                                                                  1.584
    ev07_jaeemk
                   3
                         3
                                6
                                        4.3173e+07
                                                       82
                                                              5.265e+05
                                                                            -6.4618e+08
                                                                                           -14.967
                                                                                                       21.06
                                                                                                                 -1.407
    ev08_jaeemk
                   4
                         4
                                6
                                          4.37e+07
                                                       83
                                                              5.265e+05
                                                                            -6.6426e+08
                                                                                           -15.201
                                                                                                       21.85
                                                                                                                 -1.437
xxx TABLE:ec07_jaeemk xxxxxxxxxxxxxxxxxx
                                                   с4
                                                               c5
                                                                         c526496
                                                                                    c526497
                                                                                               c526498
                                                                                                          c526499
              c1
                          c2
                                       c3
                                                                        12.009
           0.039543
                                   0.039978
                                                0.042271
    r1
                       0.039543
                                                             0.04854
                                                                                    12.281
                                                                                               12.561
                                                                                                          12.849
           0.039889
                                   0.040323
    r2
                       0.039889
                                                0.043305
                                                            0.049735
                                                                        12.251
                                                                                    12.524
                                                                                               12.806
                                                                                                          13.095
           0.041432
                                   0.041608
                                                0.043991
                                                            0.050734
                                                                                    12.759
                                                                                               13.042
    r3
                       0.041432
                                                                        12.485
                                                                                                          13.331
    r4
           0.042935
                       0.042935
                                   0.043023
                                                0.045459
                                                            0.052199
                                                                         12.742
                                                                                    13.017
                                                                                                 13.3
                                                                                                          13.588
    r5
           0.044395
                       0.044395
                                   0.044399
                                                0.046895
                                                            0.053615
                                                                         12.99
                                                                                    13.266
                                                                                               13.548
                                                                                                          13.834
    r78
             0.2016
                         0.2016
                                     0.2016
                                                  0.2016
                                                             0.20214
                                                                         27.775
                                                                                    28.774
                                                                                               29.785
                                                                                                           30.965
    r79
             0.2016
                         0.2016
                                      0.2016
                                                  0.2016
                                                              0.2016
                                                                         30.43
                                                                                    31.663
                                                                                               32.736
                                                                                                           33.958
    r80
             0.2016
                         0.2016
                                      0.2016
                                                  0.2016
                                                              0.2016
                                                                         33.68
                                                                                    35.501
                                                                                               37.368
                                                                                                          38.956
    r81
             0.2016
                         0.2016
                                      0.2016
                                                  0.2016
                                                              0.2016
                                                                         40.118
                                                                                    41.397
                                                                                               43.175
                                                                                                          45.605
    r82
             0.2016
                         0.2016
                                      0.2016
                                                  0.2016
                                                              0.2016
                                                                           52.1
                                                                                    55.541
                                                                                               58.464
                                                                                                          60.094
xxx TABLE:ec08_jaeemk xxxxxxxxxxxxxxxxxx
                                                   с4
                                                               c5
                                                                         c526496
                                                                                    c526497
                                                                                               c526498
              c1
                          c2
                                       c3
                                                                                                           c526499
    r1
           0.036218
                       0.036736
                                   0.038184
                                                0.042735
                                                            0.048545
                                                                         12.256
                                                                                    12.541
                                                                                               12.835
                                                                                                          13.136
    r2
           0.036271
                       0.036736
                                   0.038385
                                                0.043404
                                                            0.049852
                                                                         12.491
                                                                                    12.778
                                                                                               13.072
                                                                                                          13.374
    r3
           0.036717
                       0.037251
                                   0.039845
                                                0.044907
                                                            0.051515
                                                                        12.744
                                                                                    13.032
                                                                                               13.327
                                                                                                          13.628
    r4
           0.038144
                       0.038678
                                   0.041269
                                                0.046371
                                                            0.053128
                                                                        12.989
                                                                                    13.277
                                                                                               13.573
                                                                                                          13.872
    r5
           0.039534
                       0.040068
                                    0.042653
                                                0.047793
                                                            0.054687
                                                                         13.224
                                                                                    13.513
                                                                                               13.809
                                                                                                          14.105
                                                 0.21598
    r79
             0.2016
                        0.20214
                                    0.20586
                                                             0.23568
                                                                         35.82
                                                                                    37.367
                                                                                               39.414
                                                                                                          41.705
                                                                                               45.289
                                                                                                           47.95
    r80
             0.2016
                        0.20214
                                    0.20586
                                                 0.21598
                                                             0.23568
                                                                        40.755
                                                                                    42.955
                                                 0.21598
                                                                                    52.041
    r81
             0.2016
                        0.20214
                                    0.20586
                                                             0.23568
                                                                        48.912
                                                                                               55.022
                                                                                                           57.919
    r82
             0.2016
                        0.20214
                                                 0.21598
                                                                         66.719
                                                                                    69.201
                                                                                                          77.005
                                    0.20586
                                                             0.23568
                                                                                               72.373
    r83
             0.2016
                        0.20214
                                    0.20586
                                                 0.21598
                                                             0.23568
                                                                         116.83
                                                                                    122.65
                                                                                               128.67
                                                                                                          134.89
xxx TABLE:ev07 jaeemk xxxxxxxxxxxxxxxxxx
                                               c4
                                                          c5
                                                                    c526496
                                                                                  c526497
                                                                                               c526498
                                                                                                             c526499
             c1
                        c2
                                    c3
    r1
           -282.59
                      -282.59
                                  -282.23
                                             -278.38
                                                         -270.8
                                                                      -4.3833
                                                                                   -4.2888
                                                                                                -4.1954
                                                                                                              -4.1032
    r2
           -272.49
                      -272.49
                                  -272.13
                                             -268.93
                                                        -261.76
                                                                      -4.2754
                                                                                   -4.1844
                                                                                                -4.0945
                                                                                                              -4.0056
```

r3	-262.36	-262.36	-262.23	-259.89	-253.05	-4.1651	-4.0777	-3.9913	-3.9057			
r4	-253.22	-253.22	-253.16	-250.92	-244.6	-4.0512	-3.9675	-3.8846	-3.8025			
r5	-244.95	-244.95	-244.95	-242.81	-236.93	-3.9436	-3.8633	-3.7837	-3.7047			
r78	-13.362	-13.362	-13.362	-13.362	-13.349	-0.27313	-0.26104	-0.24971	-0.2389			
r79	-12.032	-12.032	-12.032	-12.032	-12.032	-0.21855	-0.20781	-0.19875	-0.19057			
r80	-10.388	-10.388	-10.388	-10.388	-10.388	-0.16126	-0.15407	-0.14734	-0.14134			
r81	-8.1801	-8.1801	-8.1801	-8.1801	-8.1801	-0.10114	-0.097396	-0.093438	-0.089426			
r82	-4.9651	-4.9651	-4.9651	-4.9651	-4.9651	-0.044201	-0.041462	-0.039412	-0.038348			
xxx TABLE:ev08_jaeemk xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx												
	c1	c2	c 3	c4	c5	c526496	c526497	c526498	c526499			
r1	-295.66	-295.26	-292.66	-286.62	-277.22	-4.3615	-4.2673	-4.1741	-4.0822			
r2	-286.11	-285.71	-283.12	-277.16	-268.03	-4.2548	-4.1641	-4.0744	-3.9858			
r3	-276.49	-276.09	-273.59	-267.84	-259.11	-4.1461	-4.0589	-3.9727	-3.8874			
r4	-266.77	-266.41	-264.08	-258.7	-250.49	-4.0342	-3.9507	-3.868	-3.7862			
r5	-257.99	-257.65	-255.48	-250.43	-242.69	-3.9287	-3.8485	-3.769	-3.6903			
_												
r79	-13.356	-13.343	-13.253	-13.025	-12.638	-0.22088	-0.21055	-0.20083	-0.1917			
r80	-12.025	-12.012	-11.923	-11.695	-11.308	-0.16977	-0.1618	-0.15428	-0.14721			
r81	-10.382	-10.369	-10.28	-10.052	-9.6651	-0.11711	-0.11162	-0.10645	-0.10156			
r82	-8.1742	-8.1611	-8.0716	-7.844	-7.457	-0.065329	-0.062239	-0.059357	-0.056632			
r83	-4.9602	-4.9471	-4.8576	-4.6301	-4.2431	-0.020966	-0.019971	-0.019037	-0.01816			

% Call Function

 $welf_checks = 2;$

[ev07_jaeemk_check2, ec07_jaeemk_check2, ev08_jaeemk_check2, ec08_jaeemk_check2] = snw_evuvw19_ welf_checks, mp_params, mp_controls, ...

ap_ss, V_2008, cons_2008, mp_precompute_res);

Solve for V_2008_check for 2 stimulus checks

Completed SNW_A4CHK_WRK_BISEC_VEC;SNW_MP_PARAM=bushchck;welf_checks=2;TR=0.0018238;SNW_MP_PARAM=default_docdense;SNW_Completed SNW_V08_JAEEMK;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;timeEUEC=2.82e-05 Completed SNW_EVUVW19_JAEEMK_FOC;st_biden_or_trump=bushchck;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

			i	idx	ndim	numel	rowN	colN	SI	ım	mean	std	coefva
			-										
	ec07_ja	eemk	1	1	6	4.3173e	+07 82	5.265e+05	1.968	38e+08	4.5603	5.3245	1.167
	ec08_ja	eemk	2	2	6	4.37e	+07 83	5.265e+05	2.32	28e+08	5.3273	8.442	1.584
	ev07_ja	eemk	3	3	6	4.3173e	+07 82	5.265e+05	-6.456	51e+08	-14.954	21.011	-1.405
	ev08_ja	eemk	4	4	6	4.37e	+07 83	5.265e+05	-6.636	55e+08	-15.187	21.798	-1.435
xxx	TABLE:e	c07 ja	eemk	xxxxxxxx	xxxxxx	(XXX							
		c1		c2		c 3	с4	c 5	c526496	c526497	7 c52649	8 c5264	199 d
	r1	0.0408	27	0.04082	70.	040972	0.04389	0.049551	12.009	12.281	12.561	12.84	19 1
	r2	0.0420	96	0.04209	5	0.0424	0.045024	0.050802	12.251	12.524	12.806	13.09	95 1
	r3	0.0436	24	0.04362	4 0.	043746	0.045821	0.051869	12.485	12.76	13.042	13.33	31 1
	r4	0.045	11	0.0451	1 6	0.04517	0.047304	0.053361	12.742	13.017	13.3	13.58	88 1
	r5	0.046	55	0.0465	5 0.	046553	0.048751	0.054802	12.99	13.266	13.549	13.83	34 1
	r78	0.205	25	0.2052	5 6	20525	0.20525	0.20579	27.775	28.775	29.786	30.96	6 3
	r79	0.205	25	0.2052	5 6	20525	0.20525	0.20525	30.431	31.664	32.737	33.9	6 3
	r80	0.205	25	0.2052	5 6	0.20525	0.20525	0.20525	33.681	35.503	37.369	38.95	57 4
	r81	0.205	25	0.2052	5 6	20525	0.20525	0.20525	40.119	41.4	43.178	45.60	7
	r82	0.205	25	0.2052	5 6	0.20525	0.20525	0.20525	52.103	55.545	58.468	60.09	98 6
xxx	TABLE:e	c08_ja	eemk	xxxxxxxx	xxxxxx	ххх							
		c1		c2		c 3	c4	c5	c526496	c526497	7 c52649	8 c5264	199 d

r1	0.037941	0.038148	0.039819	0.043807	0.04924	4 12.256	12.541	12.835	13.136 1		
r2	0.038108	0.038344	0.040188	0.044594			12.778	13.073	13.374 1		
r3	0.03941	0.039781	0.041664	0.046126			13.032	13.327	13.628 1		
r4	0.040834	0.041205	0.043102	0.047618			13.278	13.573	13.872		
r5	0.04222	0.042589	0.0445	0.049065	0.05543	5 13.224	13.513	13.809	14.105 1		
r79	0.20525	0.20579	0.20951	0.21963	0.2377	6 35.821	37.368	39.415	41.707		
r80	0.20525	0.20579	0.20951	0.21963	0.2377	6 40.756	42.957	45.29	47.952		
r81	0.20525	0.20579	0.20951	0.21963	0.237	8 48.914	52.043	55.024	57.92		
r82	0.20525	0.20579	0.20951	0.21963	0.2381	4 66.72	69.203	72.375	77.007		
r83	0.20525	0.20579	0.20951	0.21963	0.2393	3 116.84	122.66	128.68	134.89 1		
xxx TABLE:ev07_jaeemk xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx											
	c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499		
			.=	27.	252 25	4 2022	4 0007	4 4054	4 4004		
r1	-280.23	-280.23	-279.88		-269.35	-4.3833	-4.2887	-4.1954	-4.1031		
r2	-270.21	-270.21	-269.89		-260.35	-4.2753	-4.1844	-4.0944	-4.0055		
r3	-260.26	-260.26	-260.13		-251.71	-4.165	-4.0777	-3.9912	-3.9057		
r4	-251.26	-251.26	-251.2		-243.33	-4.0511	-3.9674	-3.8846	-3.8025		
r5	-243.12	-243.12	-243.12		-235.73	-3.9436	-3.8633	-3.7837	-3.7047		
r78 r79	-13.274 -11.944	-13.274 -11.944	-13.274 -11.944		-13.262 -11.944	-0.27312 -0.21854	-0.26103 -0.2078	-0.2497 -0.19875	-0.23889 -0.19056		
r80	-11.944	-11.944	-11.944	-11.944	-11.944	-0.21834	-0.2078	-0.14733	-0.14134		
r81	-8.0921	-8.0921	-8.0921		-8.0921	-0.10123	-0.15406	-0.14/33	-0.14134		
r82	-4.8771	-4.8771	-4.8771			-0.044198	-0.097391	-0.03941	-0.038346		
102	-4.07/1	-4.8//1	-4.07/1	-4.8//1	-4.07/1	-0.044138	-0.04140	-0.03941	-0.038340		
xxx TABLI	E:ev08_jaeem	k xxxxxxxxx	xxxxxxx								
	c1	c2	с3	c4	c5	c526496	c526497	c526498	c526499		
r1	-293.09	-292.72	-290.49	-284.88	-275.86	-4.3615	-4.2672	-4.1741	-4.0821		
r2	-283.55	-283.18	-280.98		-266.73	-4.2548	-4.164	-4.0743	-3.9857		
r3	-274.01	-273.65	-271.52		-257.88	-4.146	-4.0589	-3.9726	-3.8874		
r4	-264.47	-264.13	-262.14		-249.33	-4.0341	-3.9506	-3.8679	-3.7861		
r5	-255.84	-255.53	-253.66		-241.59	-3.9286	-3.8484	-3.769	-3.6903		
r79	-13.268	-13.255	-13.171		-12.578	-0.22088	-0.21054	-0.20082	-0.1917		
r80	-11.937	-11.924	-11.841		-11.248	-0.16976	-0.16179	-0.15428	-0.1472		
r81	-10.294	-10.281	-10.198		-9.6057	-0.11711	-0.11162	-0.10644	-0.10156		
r82	-8.0862	-8.0735	-7.9895			-0.065327	-0.062237	-0.059355	-0.056631		
r83	-4.8723	-4.8595	-4.7755	-4.5584	-4.1854	-0.020965	-0.01997	-0.019036	-0.018159		

Differences between Checks in Expected Value and Expected Consumption

```
mn_V_U_gain_check_07 = ev07_jaeemk_check2 - ev07_jaeemk_check0;
mn_MPC_U_gain_share_check_07 = (ec07_jaeemk_check2 - ec07_jaeemk_check0)./(welf_checks*mp_parameter)
```

Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:99;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
```

```
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

Tabulate value and policies along savings and shocks:

group	savings	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mean_
1	0	0.52526	0.48873	0.44813	0.40715	0.3683	0.33276	0
2	0.00051498	0.52526	0.48873	0.44813	0.40715	0.3683	0.33276	0
3	0.0041199	0.52469	0.48792	0.44711	0.40616	0.36748	0.3321	0
4	0.013905	0.47091	0.43897	0.40471	0.37007	0.337	0.30644	0
5	0.032959	0.39774	0.3737	0.34722	0.32037	0.29449	0.27025	0
6	0.064373	0.32479	0.30724	0.28795	0.26815	0.24878	0.23037	0

```
% Consumption
st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check_07, true, ["mean"], 4, 1, cl_mp_
```

XXX	group	_MPC_U_GAIN_C savings	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mean_
	1	0	0.74182	0.72635	0.71164	0.69952	0.69052	0.68421	0.67
	2	0.00051498	0.74182	0.72635	0.71164	0.69952	0.69052	0.68421	0.67
	3	0.0041199	0.74131	0.72479	0.70912	0.69655	0.68793	0.68245	0.67
	4	0.013905	0.69437	0.6887	0.68682	0.6856	0.68485	0.68443	0.68
	5	0.032959	0.62728	0.6255	0.62438	0.62423	0.62492	0.62615	0.62
	6	0.064373	0.55114	0.54963	0.54908	0.54953	0.55084	0.55275	0.55

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' n
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

Savings States, a LOG(X+min(X))

-6

-7 -8

-6

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' num2str(we
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```

hz=1.42;wz=-3.12 hz=0.00;wz=-3.12 hz=-1.35;wz=-3.12

hz=-2.70;wz=-3.12

Analyze Marginal Value and MPC over Y(a,eta), Conditional On Kids, Marry, Age, Education

Income is generated by savings and shocks, what are the income levels generated by all the shock and savings points conditional on kids, marital status, age and educational levels. Plot on the Y axis MPC, and plot on the X axis income levels, use colors to first distinguish between different a levels, then use colors to distinguish between different eta levels.

Set Up date, Select Age 37vn

, unmarried, no kids, lower education:

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
% 38 year old, unmarried, no kids, lower educated
% Only Household Head Shock Matters so select up to 'n_eta_H_grid'
mn_total_inc_jemk_ss = total_inc_ss(19,:,1:mp_params('n_eta_H_grid'),1,1,1);
mn_V_W_gain_check_use_07 = ev07_jaeemk_check2 - ev07_jaeemk_check0;
mn_C_W_gain_check_use_07 = ec07_jaeemk_check2 - ec07_jaeemk_check0;
```

Select Age, Education, Marital, Kids Count:s

```
% Selections
it_age = 21; % +18
it marital = 1; % 1 = unmarried
it_kids = 1; % 1 = kids is zero
it_educ = 1; % 1 = lower education
% Select: NaN(n jgrid,n agrid,n etagrid,n educgrid,n marriedgrid,n kidsgrid);
mn_C_W_gain_check_jemk_07 = mn_C_W_gain_check_use_07(it_age, :, 1:mp_params('n_eta_H_grid'), it
mn_V W gain check jemk 07 = mn_V W gain check use 07(it_age, :, 1:mp_params('n_eta_H grid'), it
% Reshape, so shock is the first dim, a is the second
mt_total_inc_jemk = permute(mn_total_inc_jemk_ss,[3,2,1]);
mt_C_W_gain_check_jemk_07 = permute(mn_C_W_gain_check_jemk_07,[3,2,1]);
mt C W gain check jemk 07(mt C W gain check jemk 07<=1e-10) = 1e-10;
mt V W gain check jemk 07 = permute(mn V W gain check jemk 07,[3,2,1]);
mt_V_W_gain_check_jemk_07(mt_V_W_gain_check_jemk_07<=1e-10) = 1e-10;</pre>
% Generate meshed a and shock grid
[mt_eta_H, mt_a] = ndgrid(eta_H_grid(1:mp_params('n_eta_H_grid')), agrid);
```

Marginal Value Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

```
figure();
it_a = 1;
scatter((mt_total_inc_jemk(:,it_a)), (mt_V_W_gain_check_jemk_07(:,it_a)), 100);
title({'MN\_V\_W\_GAIN\_CHECK(Y(A, eta)), Lowest A, J38M0E0K0', ...
    'Each Circle is A Different Shock Level'});
xlabel('Y(a,eta) = Spouse + Household head Income Joint');
ylabel('MN\_V\_W\_GAIN\_CHECK(A, eta)');
grid on;
grid minor;
```

MN_V_W_GAIN_CHECK(Y(A, eta)), Lowest A, J38M0E0K0 Each Circle is A Different Shock Level

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_V_W_gain_check_jemk_07(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_V\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```



```
figure();
scatter((mt_total_inc_jemk(:)), log(mt_V_W_gain_check_jemk_07(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
xlim([0,7]);
grid on;
grid minor;
```


Marginal Consumption Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_C_W_gain_check_jemk_07(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_C\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```


income(a,eps)

```
figure();
scatter(log(mt_total_inc_jemk(:)), log(mt_C_W_gain_check_jemk_07(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('log of income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
grid on;
grid minor;
```

(MN_C_W_GAIN_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0 Color Represent different A Savings State, Circle-Group=Shock

Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
```

```
% Value Function
st_title = ['MEAN(MN_V_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_V_U_gain_check_07, true, ["mean"], 3, 1, cl_mp_datasetc
```

marry mean_age_18 mean age 19 mean age 20 mean_age_22 mean_age_23 mean age 21 1 1 0 0.031908 0.030377 0.028045 0.025708 0.023751 0.0221 2 2 0 0.043916 0.04186 0.038596 0.035292 0.032514 0.030161 0.035317 3 3 0 0.04891 0.044943 0.04117 0.038001 0.051104 4 4 0 0.057927 0.055555 0.051064 0.046812 0.043241 0.040216 5 5 0 0.055977 0.044303 0.06325 0.060842 0.051401 0.047557 6 1 1 0.005762 0.0053279 0.0048412 0.0043955 0.0040141 0.0036902 7 2 1 0.0081705 0.0075587 0.0068473 0.0061989 0.005658 0.0051977

0.0091765

0.011465

0.014388

% Consumption Function

3

4

1

1

0.0099025

0.012339

0.015374

8

9

10

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check_07, true, ["mean"], 3, 1, cl_mp_

0.0083275

0.01043

0.013133

0.0075396

0.0094589

0.01196

0.0068765

0.008631

0.010966

0.0063167

0.0079256

0.01013

xxx MEAN(M	IN_MPC_U_	GAIN_CHEC	K(KM,J)), welf_	checks=2, TR=0.	0018238 xxxxxx	xxxxxxxxxxxxx	XXXXXX	
group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.078069	0.086102	0.087377	0.085109	0.082559	0.080767
2	2	0	0.088091	0.096475	0.099705	0.096801	0.094582	0.092454
3	3	0	0.096309	0.10647	0.11111	0.10818	0.10451	0.10207
4	4	0	0.10137	0.11245	0.11806	0.11424	0.11063	0.1079
5	5	0	0.10569	0.11834	0.12441	0.11996	0.11559	0.11262
6	1	1	0.091639	0.097614	0.095796	0.09274	0.094336	0.09373
7	2	1	0.098891	0.10394	0.10413	0.10026	0.097592	0.097894
8	3	1	0.10228	0.10811	0.10782	0.10839	0.10652	0.10731
9	4	1	0.10459	0.11283	0.11208	0.11053	0.10913	0.10771
10	5	1	0.11468	0.12506	0.12335	0.12035	0.11807	0.11752

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

marry

mean_age_18

Tabulate value and policies:

group

mean_age_20

mean age 21

mean_age_23

mean_age_22

mean_age_19

1	0	0	0.051256	0.049485	0.046969	0.044331	0.041985	0.039891
2	1	0	0.047986	0.045532	0.040481	0.035822	0.032041	0.028948
3	0	1	0.01129	0.010552	0.0097415	0.0089796	0.0083154	0.0077436
4	1	1	0.0093296	0.0086141	0.0076904	0.0068414	0.0061429	0.0055604

% Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check_07, true, ["mean"], 3, 1, cl_mp_

XXX	xxx MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=2, TR=0.0018238 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx										
	group	edu	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23		
	1	0	0	0.081794	0.085652	0.08723	0.08665	0.085947	0.085754		
	2	1	0	0.10602	0.12228	0.12903	0.12307	0.1172	0.11257		
	3	0	1	0.093649	0.097104	0.096702	0.095946	0.095996	0.096866		
	4	1	1	0.11118	0.12192	0.12057	0.11696	0.11426	0.1128		

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


