Projeto 1 Sistema de Streaming de Filmes usando TCP

Curso: Programação em Redes de Computadores (MC833) - UNICAMP

1. Introdução

Este projeto consiste na implementação de um sistema de consulta para streaming de filmes baseado em uma arquitetura cliente-servidor utilizando sockets TCP. O servidor armazenará e gerenciará um banco de dados de filmes, permitindo operações de registro, consulta e remoção. A comunicação entre cliente e servidor será feita via TCP, garantindo uma transmissão confiável e sem perdas. É permitido o uso de bancos de dados para armazenar as informações, no entanto, o uso deles deve ser transparente para o usuário final, ou seja, o sistema deve funcionar da mesma maneira, independentemente de utilizar um banco de dados ou armazenamento em arquivos.

2. Requisitos do Projeto

2.1. Protocolo e Arquitetura

Protocolo: TCP (Transmission Control Protocol).

Modelo: Cliente-servidor.

Servidor: Concorrente (suporta múltiplos clientes simultaneamente). Clientes: Aplicações que enviam solicitações e recebem respostas.

2.2. Banco de Dados de Filmes

O servidor armazenará informações sobre os filmes e permitirá sua consulta. Cada filme terá os seguintes atributos:

Campo	Descrição
Identificador	Número único para cada filme
Título	Nome do filme
Gênero	Pode ter um ou mais gêneros
Diretor(a)	Nome do diretor(a)
Ano de lançamento	Ano em que foi lançado

Considerações sobre o armazenamento:

Pode-se utilizar um banco de dados (ex: SQLite, PostgreSQL, MySQL). Alternativamente, pode-se usar arquivos locais (JSON, CSV, binários). Independentemente do método utilizado, o cliente não deve perceber a diferença.

3. Funcionalidades

O sistema deve permitir as seguintes operações:

3.1. Operações de Registro e Modificação (Escrita)

(1) Cadastrar um novo filme

O usuário insere os dados do filme.

O sistema gera um identificador único e armazena as informações.

(2) Adicionar um novo gênero a um filme

Adiciona um gênero a um filme existente.

Verifica se o filme existe antes de modificá-lo.

◆ (3) Remover um filme pelo identificador

Busca o identificador e, se existir, remove o filme.

3.2. Operações de Consulta (Leitura)

◆ (4) Listar todos os títulos de filmes com seus identificadores

Exibe uma lista com o identificador e o título de cada filme.

◆ (5) Listar informações de todos os filmes

Retorna título, gênero, diretor e ano de todos os filmes no banco de dados.

◆ (6) Listar informações de um filme específico

Busca um filme pelo seu identificador e exibe todos os detalhes.

(7) Listar todos os filmes de um determinado gênero

Filtra e exibe filmes que pertencem a um gênero específico.

4. Requisitos Técnicos

4.1. Cliente-Servidor em Máquinas Físicas Diferentes

Executar o cliente e o servidor em máquinas físicas diferentes.

O funcionamento deve ser testado em uma rede real.

4.2. Concorrência no Servidor

O servidor deverá suportar múltiplos clientes concorrentemente.

Deve-se utilizar multiprocessamento (fork) ou multithreading (threads).

Deve-se implementar um mecanismo de sincronização caso haja acesso simultâneo aos dados (uso de mutex, semáforos, etc.).

Deve-se garantir que não haja condições de corrida ou corrupção de dados em acessos simultâneos.

4.3. Requisitos de Comunicação

O protocolo TCP garantirá que as mensagens cheguem completas e na ordem correta. Deve-se evitar atrasos e perdas na comunicação.

4.4. Armazenamento de Dados

Opção 1: Banco de Dados (SQLite, PostgreSQL, MySQL).

Opção 2: Arquivos Locais (JSON, CSV, binários).

Independente do método utilizado, o cliente não deve notar a diferença.

5. Entregáveis

5.1. Código-Fonte

Implementado em C.

Deve compilar sem erros em um ambiente Linux. Comentários explicativos sobre cada função.

6.2. Relatório Deve incluir:

Introdução: Explicação geral do sistema.

Arquitetura: Diagrama do modelo cliente-servidor.

Estrutura de armazenamento: Como os dados são organizados. Descrição das operações: Explicação de cada funcionalidade.

Detalhes da implementação: Bibliotecas utilizadas, design da comunicação.

Casos de Uso. Conclusão Referências

Data de entrega: 9 de abril