Санкт-Петербургский государственный политехнический университет Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе №3 Курс «Теория автоматического управления»

Работу выполнил студент группы № 43501/4	Вашуров А.С
Работу принял преподаватель	Нестеров С.А

Содержание

1. Лабо	раторная работа №3
1.1.	Цель работы
1.2.	Программа работы
	Индивидуальное задание
1.4.	Ход работы
1.4	l.1. Матрицы управляемости
1.4	l.2. Матрицы преобразования
1.4	1.3. Анализ свойств объекта
1.5.	Вывод

Лабораторная работа №3

1.1 Цель работы

Получить навыки работы с моделями ВСВ и анализа свойств заданного объекта.

1.2 Программа работы

- -Найти матрицы управления для форм НФУ, НФН, КФ
- -Рассчитать матрицы преобразования между формами
- -Проверить для всех матриц

1.3 Индивидуальное задание

a)
$$x'' + 25x' = 5u' + 25u$$
, $x(0) = 0$, $x'(0) = 0$, $u(t) = 1(t)$

b)
$$x'' +25x' =5u'+25u$$
, $x(0)=1$, $x'(0)=0$, $u(t)=0(t)$

1.4 Ход работы

1.4.1 Матрицы управляемости

Матрица управляемости находится как блочная матрица, где первый столбец равен матрице В, а второй столбец равен произведению АВ:

$$U = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

Матрица управляемости нормальной формы управления (НФУ):

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -25 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 & 1 \\ 1 & -25 \end{bmatrix}, U^{-1} = \begin{bmatrix} 25 & 1 \\ 1 & 0 \end{bmatrix}$$

Матрица управляемости нормальной формы наблюдения(НФН):

$$A = \begin{bmatrix} 0 & 0 \\ 1 & -25 \end{bmatrix}, B = \begin{bmatrix} 25 \\ 5 \end{bmatrix}$$

$$U = \begin{bmatrix} 25 & 0 \\ 5 & -100 \end{bmatrix}, U^{-1} = \frac{1}{500} \begin{bmatrix} 20 & 0 \\ 1 & -5 \end{bmatrix}$$

Матрица управляемости канонической формы(КФ):

$$A = \begin{bmatrix} 0 & 0 \\ 0 & -25 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 0 \\ 4 & -100 \end{bmatrix}, U^{-1} = \frac{1}{100} \begin{bmatrix} 100 & 0 \\ 4 & -1 \end{bmatrix}$$

1.4.2 Матрицы преобразования

Матрица преобразования вычисляется по формуле:

$$P = U_* U^{-1}$$

- Матрица преобразования из НФУ в НФН:

$$P = U_*U^{-1} = \begin{bmatrix} 25 & 0 \\ 5 & -100 \end{bmatrix} \begin{bmatrix} 25 & 1 \\ 1 & 0 \end{bmatrix} = 5 \begin{bmatrix} 125 & 5 \\ 5 & 1 \end{bmatrix}$$

Проверим корректность полученной матрицы преобразования Р. Для этого получим матрицу В.

$$B_* = PB = > B_* = 5 \begin{bmatrix} 125 & 5 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 5 \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 25 \\ 5 \end{bmatrix}$$

- Матрица преобразования из НФУ в КФ:

$$P = U_* U^{-1} = \begin{bmatrix} 1 & 0 \\ 4 & -100 \end{bmatrix} \begin{bmatrix} 25 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 25 & 1 \\ 0 & 4 \end{bmatrix}$$

Проверим корректность полученной матрицы преобразования Р. Для этого получим матрицу В.

$$B_* = PB = > B_* = \begin{bmatrix} 25 & 1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

- Матрица преобразования из НФН в НФУ:

$$P = U_* U^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -25 \end{bmatrix} \frac{1}{500} \begin{bmatrix} 20 & 1 \\ 1 & -5 \end{bmatrix} = \frac{1}{500} \begin{bmatrix} 1 & -5 \\ -5 & 125 \end{bmatrix}$$

Проверим корректность полученной матрицы преобразования Р. Для этого получим матрицу В.

$$B_* = PB = > B_* = \frac{1}{500} \begin{bmatrix} 1 & -5 \\ -5 & 125 \end{bmatrix} \begin{bmatrix} 25 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- Матрица преобразования из НФН в КФ:

$$P = U_* U^{-1} = \begin{bmatrix} 1 & 0 \\ 4 & -100 \end{bmatrix} \frac{1}{500} \begin{bmatrix} 20 & 1 \\ 1 & -5 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 1 & 0 \\ -1 & 25 \end{bmatrix}$$

Проверим корректность полученной матрицы преобразования Р. Для этого получим матрицу В.

$$B_* = PB = > B_* = \frac{1}{25} \begin{bmatrix} 1 & 0 \\ -1 & 25 \end{bmatrix} \begin{bmatrix} 25 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

- Матрица преобразования из КФ в НФУ:

$$P = U_* U^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -25 \end{bmatrix} \frac{1}{100} \begin{bmatrix} 100 & 0 \\ 4 & -1 \end{bmatrix} = \frac{1}{100} \begin{bmatrix} 4 & -1 \\ 0 & 25 \end{bmatrix}$$

Проверим корректность полученной матрицы преобразования Р. Для этого получим матрицу В.

$$B_* = PB \implies B_* = \frac{1}{100} \begin{bmatrix} 4 & -1 \\ 0 & 25 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- Матрица преобразование из КФ в НФН:

$$P = U_* U^{-1} = \begin{bmatrix} 25 & 0 \\ 5 & -100 \end{bmatrix} \frac{1}{100} \begin{bmatrix} 100 & 0 \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 1 & 1 \end{bmatrix}$$

Проверим корректность полученной матрицы преобразования Р. Для этого получим матрицу В.

$$B_* = PB = > B_* = \begin{bmatrix} 25 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 25 \\ 5 \end{bmatrix}$$

5

1.4.3 Анализ свойств объекта

Управляемость

Проверим управляемость системы по критерию Калмана:

$$detU = det \begin{bmatrix} 0 & 1 \\ 1 & -25 \end{bmatrix} = -1 \neq 0$$
 RangU=2

Определитель одной из матриц не нулевой, что значит система полностью управляема.

Наблюдаемость

Проверим наблюдаемость системы по критерию Калмана:

$$N = \begin{bmatrix} C^T & A^T C^T & A^{T^{n-1}} C^T \end{bmatrix}$$

Rang $N_n = n(det N \neq 0)$

$$N = \begin{bmatrix} 25 \\ 5 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & -25 \end{bmatrix} \begin{bmatrix} 25 \\ 5 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 5 & -100 \end{bmatrix}$$

$$detN = det \begin{bmatrix} 25 & 0 \\ 5 & -100 \end{bmatrix} = -2505 \neq 0$$

Определитель одной из матриц наблюдаемости не нулевой, что означает, что система полностью наблюдаема.

Устойчивость

Для линейных систем требования устойчивости сводится к не положительности вещественных частей — полюсов передаточных функций, где полюса — корни знаменателя. Если 1 корень имеет нулевое значение, то система является нейтральной. В нашем случае полюса передаточной функции равны $p_1=0, p_2=-25,$ что означает, что система является нейтральной и находится на границе устойчивости.

Минимальнофазовость

Для того чтобы запаздывание по фазе в системе было минимально, требуется, чтобы в числителях и знаменателях передаточных функций были корни с отрицательной вещественной частью. Так как корни знаменателя мы уже проверяли на устойчивость, то остаётся рассмотреть лишь корни

числителя: $p_3=-5$. Так как все корни числителя и знаменателя имеют отрицательные вещественные части (кроме нулевого корня, вносимого в систему интегратором, он находится на границе устойчивости), то мы делаем вывод, что получившийся объект является минимальнофазовым и устойчивым.

1.5 Вывод

Модель ВСВ весьма гибкая, так как помимо трех канонических форм, рассмотренных в работе, существуют произвольные формы, которые иногда могут быть полезны. Стоит отметить, что, получив матрицы управляемости для модели ВСВ можно легко преобразовать систему.

В то же время, информация об управляемости, наблюдаемости, минимальнофазовости, минимальности и устойчивости получается простейшими вычислениями, поэтому эти свойства рекомендуется находить, чтобы получить больше полезной информации о системе.