

FIG.1A

FIG.1B

FIG.1C

FIG.2B

FIG.3

FIG.4A

FIG.4B

1ST CODING NUCLEOTIDE OF DT-A GATTCTTCTTAAATCTTTTGTGAAGAAACTTTTCTTCGTACCACGGGACTA EXON 1 OF PHOSE | 5-CAGGGGAGCACCAAGGATGTTCCAG-GGGGCTGATGTTGTT AACCTGGTTATGTAGATTCCATTCAAAA-3'

p. 1c

h. 12

Trons spinced products

E1 DT-A = 1st EVENT, 196bp. Trans-SPLICING BETWEEN 5' ss OF TARGET & 3' ss OF PTM.

DT-A E3 = 2nd EVENT, 161bp. Irans- SPLICING BETWEEN 3' ss OF TARGET & 5' ss OF PTM.

FIG.8B

FIG.9

FIG. 10B

۲...

FIG.11B

FIG.11C

FIG.12A

1. NUCLEOTIDE SEQUENCES OF THE cis-SPLICED PRODUCT (285 bp):

BioLac-TR1

GCCTTTCCCTACCTGCACACACCCCCCCTGATCCTTTGCCAATACGCCCACGCGATGCGTAACACTCTTG

GCGCTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCCGTTTACAG/GCCGCCTTCGTCTAATAATG Splice junction

GGACTGGGTGGATCAGTGGCTGATTAAATATGATGAAAACGGCAACCCGTGGTCGGCTTACGGCGGTGATT1

TGGCCATACGCCCAACCATCGCCAGTTCTGTATGAACGGTCTGGTCTTTGCCCGACCGCCACCCATCCAG

2. NUCLEOTIDE SEQUENCES OF THE trans-SPLICED PRODUCT (195 bp)

BioLac-TR1

GGCTTTCGCTACCTGGAGAGGCGCCCGCTGATCCTTTGCGAATACGCCCACGCGATGCGTAACAGTCTTGC

Splice junction
CGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCGTTTACAG/GGGCTGCTGCTGCTGCTGCTGCT

GAGCATGGCGGGCATGCGAAGGAGCCACTTGGCCCACGGTGCCG

FIG. 12B

CFTR Pre-therapeutic molecule (PTM or "bullet")

F.--

FIG.13

FIG.14

DNA sequence 500 b.p. GCTAGCGTTTAA ... TGCCACTCCCAC linear

Positions of Restriction Endonucleases sites (unique sites underlined)

TITITICCTGCACACTICACTICTAATGATGATTATGGGAGAGCTGGAGCCTTCAGAGGGTAAAAT 160 GCTAGCG TTTAAACGGGCCCACCATCATTATTAGGTCATTATCCCCCGCAACATTATTATAACGTTGCTCCAGTACTAAC 80 ACCATGGAGAAGAAAAAAAGGACGTCTGAAGATGAAGATTACTACTAATACCCTCTTGACCTCGGAAGTCTCCCATTTTA CCATCCCAAATTTGCCCCGGTGGTAGTAATCCAGTAATAGCCGCTTGTAATATTGCAACGAGCTCATGTTG EXON 10 CFTR + HIS TAG + STOP Sca 1 BINDING DOMAIN INTRON 9 BD Dde I Sau96 Hae III Sau96 I Ban II Apg Xmn **IGGTACCTCTTCTT** Dra I Kpn I

FIG. 15A

GTGTTTCCTATGATGATATAGATACAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGCATCATCATCATCATTAG 320

Sph I

190

CACAAAGGATACTACTTATATCTATGTCTTCGCAGTAGTTTCGTACGTTGATCTTCTCGTAGTAGTAGTAGTAGTAATC

| FAGCACAGTGGAAGAATTTCATTCTGTTGTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATGTTTG

ATTCGTGTCACCTTCTTAAAGTAAGACAAGAGTCAAAAGGACCTAATACGGACCGTGGTAATTTCTTTATAGTAGAAAC

Sac 1 Ban 11	Sau3A I	Dpn I HinD III	Kpn I	ATCTGCAGAATTGCACCACCACTGGACTAGTGGATCCGAGCTCGGTACCAAGCTTAAGTT 400	TGATCAC	CF28 17 384 1999		373 390 373		378 PRESENT IN PTM 3' UT 378 BUT NOT TARGET		
			Not I FCOR V FCOR I	ĠĊĠĊĊĊĠĊĊĠĊŢĠŢĠĊŢĠĠĬŢŢĠĊĠĠĠĬŢŢĊĊĠĊĠĊŢŢŢŢĠĠŢŢŢĠĠŢŢŢĠĠŢŢŢĠĠŢŢŢĠĠŢŢŢĠĠĠĠĠŢŢŢĊĠĠĠĠŢŢŢĊĠĠĠĠĠŢŢŢĊĠĠĠĠĠŢŢŢĊĠĠĠĠĠŢŢŢĊĠĠĠĠĠŢŢŢĊĠĠĠĠĠĠ	CGCGGCGGTGACACGTATACACGTCTTAAGGTGGTGACG	321 339 349	323 344			Sau3A I	Don I	

Ī

410 • CF27 410

CTGGAAGGTGCCACTCCCAC 500 GACCTTCCACGGTGAGGGTG

	7	-	1		1	j	i
	Sau96 1	Sca 1	Sma 1	Sph 1	Spi I	Ssp I	Stu I
nsage	t	•		į	2	ı	ì
ases site	1 Nde 1	Nhe I	Not I	Pf IM I	Pst I	Pvu I	Pvu II
ndonucle	•	 -	ı	2	1	-	i
triction E	- EcoR I	EcoR V	Hae II	Hoe III	Hinc II	HinD III	Hinf I
Res	1	****	1	ı		7	i
	Acc I	Apa I	Apal I	Avr II	BamH I	Ban II	Bbe 1

1033616033

FIG. 16

Double Splicing PTM

10| Spacer+8P+PPT+5'SS|CFTR BD intron 10 CFTR 80 intron 9 Spacer+8P+PPI+3'SS|CFTR_exon_1

FIG.17

FIG. 19

Repaired LacZ mRNA FIG.20

(1) 3' BD (120 BP): CATICACTIGCICCAAITAICAICCTAAGCAGAAGTGIATATICTTAITIGTAAAGAIICTATTAACTCATTIGATTC AAAATATTTAAAATACTTCCTGTTTCATACTCTGCTATGCAC

(2) Spacer sequences (24 bp): AACATTATTATAACCTTGCTCGAA

3'ss LacZ mini ★ exon BP Kpn | PPT EcoRV | ex (3) Branch point, pyrimidine tract and acceptor splice site: IACIAAC | GCIACC | CTICTITITITITITITITITICAIAIC CTGCAG GGC GGC

(4) 5' donor site and 2nd spacer sequence: | IGA <u>ACG</u>|67AAG1 GTTATCACCCATATGTGTCTAACCTGATTCGGGCCTTCGATACG LacZ mini 5'ss exon

CTAAGATCCACCGG

BD (260 BP): ICAAAAAGIIIICACAIAAIIICIIACCICIICIICAAAIICAIGCIIIGAIGACCCIICIGIAICIAIAIICAICAIIGCAA ACACCAATGATTTTTCTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACACAATGAAATTCTTCCACTGTGCTTAA AAAAACCCTCTGAATTCTCCATTTCTCCCATAATCATCATTACAACTGAACTGGGAAATAAAAACCCATCATTATTAACTCA (2) 2,

FTATCAAATCACGC

FIG.21

FIG.23A

FIG.23B

Double Trans-splicing Produces Full-length Protein

Figure 24

FIG. 2

QUMLLIT PHIENI

7

FIG.27

SPECIFICITY OF DOUBLE TRANS-SPLICING REACTION

FIG.29

FIG.30

PTM with a long binding domain masking two splice sites and part of exon 10 in a mini-gene target

GCCGCATCAGCTTTTGCAGCCAATTCAGTTGGATCATGCCCCGGTACCATCAAGGAGAAGATAAT CTTCGCCGTCAGTTACGACGAGTACCGCTATCGCTCGGTGATTAAGGCCTTCAGTTGGAGGAG A<u>CGAGCT</u>TGCTCATGATGATGATGGCCGAGTTAGAACCAAGTGAAGGCAAGATCAAACATTCCG

MCU in exon 10 of PTM 88 OF 192 (46%) bases in PTM exon 10 are not complementary to its binding domain (bold and underlined).

FIG. 31

۲. ۱

Sequence of a double Trans—spliced product

FIG.32

CF—TR Repair: 5' Exon—Replacement schematic diagram of a PTM binding to the splices site of intron 10 of a mini—gene target

FIG.34A

FIG.34B

PTM with a long binding domain masking two splice sites and the whole of exon 10 in a mini-gene target.

FIG.34C

MCU in exon 10 of PTM 88 of 192 (46%) bases in PTM exon 10 are not complemetary to its binding domain.

G<u>CCGCATCAGC</u>TT<u>T</u>TG<u>CAGC</u>CA<u>A</u>TT<u>CAGTT</u>GGAT<u>C</u>ATGCC<u>CGGGT</u>ACCAT<u>CAAGGAGAACATAAT</u> <u>C77</u>GGGCT<u>CAGTT</u>AGGA<u>C</u>CA<u>G</u>TA<u>CC</u>GGTA<u>TCGCTOG</u>GT<u>G</u>AT<u>T</u>AAGGCCTTCAGTTG</u>GAGGAG ACCAGCTTGCTCATGATGATGATGGGGGTTAGAACCAAGTGAAGGGAAGATCAAACATTCCG

FIG. 3.

Target

Figure 36

FIG.37A

FIG.37B

nooset on the

Š.

Figure 38B

9196969199

PAGE, 20

Figure 40A

FIG.41A

FIG.41C

153 bp PTM24 Binding Domain:

Nhe I

CCTAGC-MATAATGACCAAGCCGCCCTCACGCTCAGGATTCACTTGCCTCCAATTATCATCCTAAGCAGAAGTGTATA

TICTTATTTGTAAAGATTCTATTAACTCATTTGATTCAAATATTTAAAATACTTCCTGTTTCACCTACTCTGCTATGC

Sac II

FIG.43A

FIG. 44A

FIG.44B

CTCCGAAAGTIICCTTTTATGGCGAGGCGGCGGCGGCGGCCGCCG<mark>TATAAA</mark>AAGCGAAGCGGCGGGCG COACTOCOTICCACCTCCCTTCCCCOCOTICCOAACCTCCCCCTCSACCTTACCTCAACTATTTTTAGAA TATTAAAATCCTAAGCTTTTATATCTCTATCCCTCTATCTTTTGCTCTCTATCCAATTTTTATTAACTTAGA **CTTTAAAAAGAAAC**TTATG**AGAAAA**TTTČČČĆĆAACA*TTATTATAACGTTGCTGGAATACTAACTGGTAC* CICTICITITITITIGĂTATOCIOCAG

Promoter

Nucleotide changes are shown in blue
Boxed=Cat box, TATA box
Boxed+Arrow=Transcription Start
Oval=Downstream elements
Bold=Binding domain
Italicized=Spacer+PPT+BP+AG dinucleotide

Chicken &-actin

Sequence not included in construct CCCCCCTCCCCCCCCCCCCCCCCCCCTTACTCCCCACAGGTGAC CCCCCTCCCCCCTCTCCTCCCCCCCTGAATTAGCCCTTGATTAATCACCCT CCCCCTTCTTCTCCTCCCCCTGAATTAGCCCTTCGTTAATTCGTA

Chicken Beta Actin Promoter (including exon 1 and part of intron 1)

FIG.44C

FIG.44[

FIG 4

Excise TSD and part of exon 16 with XhoI and PfIMI and ligate in a PCR product that:
1) eliminates the TSD and splice acceptor site
2) inserts EcoRV adjacent to exon 16
3) restores the coding for exon 16

noopoed name

Repair of Factor VIII Preliminary results from one experiment

FVIII activity in Exon 16 FVII—KO mice after IV PTM—FVII intraportal infusion (100 μ gDNA)(n=3)

FIG.46

Anna And Anna And Ile And

5

Detailed structure of a mouse factor VIII PTM containing normal sequences for exons 16—26 and a C—terminal FLAG tag. BGH=bovine growth hormone 3' UTR; Binding domain= 125 bp.

FIG.47A

FLAG=C—terminal tag to be used to detect repaired factor VIII protein.

FIG. 47