

Конспект занятия

Планиметрия №17

Планиметрия №17

Счётные теоремы Фигуры

Конструкции

Telegram канал (планиметрия каждый четверг)

Счётные теоремы

- 1. Теорема Пифагора
- 2. Подобие Треугольников
- 3. Теорема Косинусов
- 4. Теорема Синусов
- 5. Свойство биссектрисы
- 6. Теорема Фалеса | Обратная

- 7. Теорема о пропорциональных
- отрезках Обратная
- 8. Теорема Менелая
- 9. Теорема Чевы
- 10. Теорема Птолеменя
- 11. Рельсы Евклида

Подобие треугольников

Определение: треугольники подобны тогда, когда стороны, лежащие напротив равных углов пропорционально равны.

$$\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1} = k - коэффициент подобия$$

Признаки подобия:

1 По двум сторонам и углу между ними:

4 /10°

2 По двум углам:

Конструкции

$$\frac{AB}{DC} = \frac{BO}{DO} = \frac{AO}{OC}$$

2 DE || AB

$$\frac{DE}{AB} = \frac{EC}{AC} = \frac{DC}{BC}$$

Типаниметрия | №17

$$\frac{AM}{AC} = \frac{EM}{BC} = \frac{AE}{AB}$$

$$\frac{\overline{DE}}{AC} = \frac{\overline{BE}}{AB} = \frac{\overline{BD}}{BC}$$

Теорема Синусов

$$\frac{a}{\sin(\alpha)} = 2 \cdot R$$

Вывод:

1.
$$\sin \alpha = \frac{a}{AB}$$

2. AB =
$$\frac{a}{\sin\alpha}$$

3.
$$2R = \frac{a}{\sin \alpha}$$

Планиметрия | №17

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} = 2 \cdot R$$

Свойство биссектрисы

$$\frac{AB}{AC} = \frac{BM}{MC}$$

Вывод:

- 1. Проведём CD || AB
- 2. △АВМ подобен △ОСМ (по 2-м углам)
- 3. Из подобия треугольников:

$$\frac{AB}{DC} = \frac{BM}{MC} \rightarrow \frac{AB}{AC} = \frac{BM}{MC}$$

(2)

- 1. $2\alpha + 2\beta = 180^{\circ}$
- 2. $\alpha + \beta = 90^{\circ}$

Угол между биссектрисами развёрнутого угла равен 90°

Теорема Фалеса

Если на одной из сторон угла отложить последовательно отрезки и через их концы провести параллельные прямые, то прямые отсекут на другой стороне угла отрезки, пропорциональные отрезком на первой стороне.

Обратная Теорема Фалеса

Если прямые, пересекающие две другие прямые, отсекают на обеих из них равные (или пропорциональные) между собой отрезки, начиная от вершины, то такие прямые параллельны.

Теорема о пропорциональных отрезках

Параллельные прямые отсекают на секущих пропорциональные отрезки

Обратная теорема о пропорциональных отрезках

Пример 1: На рисунке FE проведена параллельно NM, KE = 6 см, FK = 5 см, NF = 15 см. Найдите длину отрезка ME.

По т. о пропорциональных отрезках:

$$\frac{NF}{FK} = \frac{ME}{EK} \rightarrow \frac{15}{5} = \frac{x}{6} \rightarrow x = 18$$

Ответ: 18.

Пример 2: Через стороны угла L проведены две прямые - а и b таким образом, что AB = 16, BL = 4, DC = 12, CL = 3. Являются ли прямые а и b параллельными?

$$\frac{AB}{BL} = \frac{16}{4} = 4$$
 u $\frac{DC}{CL} = \frac{12}{3} = 4$

Так как отношения равны, то а || b.

Ответ: a || b.

Пример 3: В произвольном треугольнике ABC проведена линия, параллельная стороне AB, пересекающая стороны AC и BC в точках O и K соответственно. Известно, что AO = 2 см, OC = 5 см, сторона BC = 21 см. Найдите длину отрезка KC.

Так как KC = 21, то пусть BK = x, тогда BK = 21 - x
По т. о пропорциональных отрезках:

$$\frac{BK}{KC} = \frac{AO}{OC} = \frac{21-x}{x} = \frac{2}{5} \longrightarrow x = 15$$

Ответ: 15.

Пример 4: В треугольнике МNК на сторонах МN и NK отметили точки О и Р соответственно. При этом:

$$\frac{NO}{OM} = 0.5; \frac{NP}{NK} = 1/3.$$

Докажите, что прямые МК и ОР параллельны.

По условию $\frac{NO}{OM} = 0.5$. Отсюда следует, что $OM = 2 \cdot ON$.

При этом
$$\frac{NO}{NM} = \frac{ON}{2ON + ON} = \frac{1}{3} = \frac{NP}{PK}$$
.

Значит, прямые ОР и МК параллельны по обратной теореме Фалеса. Что и требовалось доказать.

Теорема Менелая

Вывод:

1.
$$\triangle$$
TBE подобен \triangle EAD (по 2-м углам):

$$\frac{TB}{AD} = \frac{BE}{AE} \rightarrow TB = \frac{BE \cdot AD}{AE}$$

2. △ТВF подобен △FCD (по 2-м углам):

$$\frac{TB}{CD} = \frac{BF}{FC} \rightarrow TB = \frac{CD \cdot BF}{FC}$$

3. Приравняем:

$$\frac{\text{CD} \cdot \text{BF}}{\text{FC}} = \frac{\text{BE} \cdot \text{AD}}{\text{AE}} : \frac{\text{BE} \cdot \text{AD}}{\text{AE}} \longrightarrow \frac{\text{CD} \cdot \text{BF} \cdot \text{AE}}{\text{FC} \cdot \text{BE} \cdot \text{AD}} = 1 \longrightarrow$$

$$\frac{AE}{BE} \cdot \frac{BF}{FC} \cdot \frac{CD}{AD} = 1$$

Теорема Чевы

Вывод:

Сделаем доп. построение

1. △ЕВС₁ подобен △АСС₁ (по 2-м углам):

$$\frac{BE}{AC} = \frac{BC_1}{AC_1} \rightarrow AC = \frac{BE \cdot AC_1}{BC_1}$$

2. △ВҒА₁ подобен △АА₁С (по 2-м углам):

$$\frac{BF}{AC} = \frac{BA_1}{CA_1} \rightarrow AC = \frac{BF \cdot CA_1}{BA_1}$$

3. Приравняем:

$$\frac{BE \cdot AC_1}{BC_1} = \frac{BF \cdot CA_1}{BA_1} : \frac{BF \cdot CA_1}{BA_1} \longrightarrow \frac{BE \cdot AC_1 \cdot BA_1}{BF \cdot BC_1 \cdot CA_1} = 1 \longrightarrow$$

$$AC_1 \quad BA_1 \quad BF$$

$$\frac{AC_1}{BC_1} \cdot \frac{BA_1}{CA_1} \cdot \frac{BE}{BF} = 1$$

4. △ВЕО подобен △СОВ₁ (по 2-м углам):

$$\frac{BE}{B_1C} = \frac{BO}{OB_1}$$

5. △ВГО подобен △АОВ₁ (по 2-м углам):

$$\frac{BE}{AB_1} = \frac{BO}{OB_1}$$

6. Приравняем:

$$\frac{BE}{B_1C} = \frac{BF}{AB_1} \longrightarrow \frac{BE}{BF} = \frac{B_1C}{AB_1}$$

7. Возвращаемся с п. 3 и делаем замену

$$\frac{AC_1}{BC_1} \cdot \frac{BA_1}{CA_1} \cdot \frac{B_1C}{AB_1} = 1$$

Теорема Ван - Обеля

Теорема Птолемея

$AC \cdot BD = AB \cdot CD + BC \cdot AD$

Вывод:

△АВК подобен △DBC (по 2-м углам):

$$\frac{AK}{DC} = \frac{AB}{BD} \rightarrow AK = \frac{DC \cdot AB}{BD}$$

2. △ВКС подобен △ВАD (по 2-м углам):

$$\frac{KC}{AD} = \frac{BC}{BD} \rightarrow KC = \frac{AD \cdot BK}{BD}$$

3. Диагональ АС = АК + КС

$$AC = \frac{DC \cdot AB}{BD} + \frac{AD \cdot BK}{BD} = \frac{DC \cdot AB + AD \cdot BK}{BD}$$

 $AC \cdot BD = DC \cdot AB + AD \cdot BK$

Пример 5: Четырехугольник ABCD вписан в окружность. Диагональ BD равна 6. Сторона AB = 6, BC = 3, CD = 2, AD = 5. Найдите вторую диагональ четырехугольника.

По т. Птолемея:
$$AC \cdot BD = DC \cdot AB + AD \cdot BK$$

 $\frac{\mathsf{AM}}{\mathsf{MC}}$

$$AC \cdot 6 = 6 \cdot 2 + 3 \cdot 5$$

$$AC = \frac{27}{6}$$

Ответ: $\frac{27}{6}$

Рельсы Евклида

Площади треугольников (проведена чевиана)

Пример 6: В треугольнике ABK на стороне AB расположена точка О так, что AO: ОВ = 1: 4. На стороне AK взята точка L так, что AL = 2LK. Известно, что прямые BL и KO пересекаются в точке H. Найдите площадь треугольника ABK, если площадь треугольника BHK равна 60.

1. По т. Менелая для △ABL и секущей ОК:

$$\frac{AO}{BO} \cdot \frac{BH}{HL} \cdot \frac{LK}{AK} = 1 \quad \longrightarrow \quad \frac{x}{4x} \cdot \frac{BH}{HL} \cdot \frac{y}{3y} = 1 \quad \longrightarrow \quad \frac{BH}{HL} \cdot \frac{1}{12} = 1 \quad \longrightarrow \quad \frac{BH}{HL} = 12$$

2.
$$\frac{S_{BHK}}{S_{LKH}} = \frac{12a}{a} \longrightarrow S_{LKH} = 5$$

3.
$$\frac{S_{ABL}}{S_{KBL}} = \frac{2y}{y} \longrightarrow S_{ABL} = 130$$

4. Искомая площадь = 130 + 60 + 5 = 195

Ответ: 195.

Параллелограмм

Свойства:

- 1. Противоположные углы равны
- 2. Точкой пересечения диагонали делятся попалам
- 3. Противоположные стороны равны

Признаки:

- 1. Две противоположные стороны равны и параллельны
- 2. Противоположные стороны попарно параллельны
- 3. Диагонали точкой пересечения делятся пополам
- 4. Противоположные углы равны

Биссектриса параллелограмма

Диагонали параллелограмма

$$\begin{cases} d_2^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(180^\circ - \alpha) \\ d_1^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\alpha) \end{cases}$$

$$\int d_2^2 = a^2 + b^2 + 2 \cdot a \cdot b \cdot \cos(\alpha)$$
$$d_1^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\alpha)$$

$$d_2^2 + d_1^2 = 2a^2 + 2b^2$$

Формула длины медианы треугольника:

$$m = \frac{\sqrt{2a^2 + 2b^2 - c^2}}{2}$$