Coq cheat sheet

Notation

Propositions	Coq
\top, \bot	True, False
$p \wedge q$	p /\ q
$p \Rightarrow q$	p -> q
$p \lor q$	p \/ q
$\neg p$	~ p
$\forall x \in A . p(x)$	forall x:A, p x
$\forall x, y \in A . \forall u, v \in B . q$	forall (x y:A) (u v:B), q
$\exists x \in A . p(x)$	exists x:A, p x

Sets	\mathbf{Coq}
1	unit
$A \times B$	prod A B or A * B
A + B	sum A B or A + B
$B^A \text{ or } A \to B$	A -> B
$\{x \in A \mid p(x)\}$	{x:A p x}
$\sum_{x \in A} B(x)$	{x:A & B x} or sig A B
$\prod_{x \in A} B(x)$	forall x:A, B x

Elements	\mathbf{Coq}	
$\star \in 1$	tt : unit	
$x \mapsto f(x) \text{ or } \lambda x \in A \cdot f(x)$	fun (x : A) => f x	
$\lambda x, y \in A . \lambda u, v \in B . f(x)$	fun (x y : A) (u v : B) => f x	
$(a,b) \in A \times B$	(a,b) : A * B	
$\pi_1(t)$ where $t \in A \times B$	fst t	
$\pi_2(t)$ where $t \in A \times B$	snd t	
$\pi_1(t)$ where $t \in \sum_{x \in A} B(x)$	projT1 t	
$\pi_2(t)$ where $t \in \sum_{x \in A} B(x)$	projT2 t	
$\iota_1(t) \in A + B \text{ where } t \in A$	inl t	
$\iota_2(t) \in A + B \text{ where } t \in B$	inr t	
$t \in \{x \in A \mid p(x)\}$ because ρ	exist t $ ho$	
$\iota(t)$ where $\iota: \{x \in A \mid p(x)\} \hookrightarrow A$	projT1 t	

Basic tactics

When the goal is	use tactic
very simple	auto, tauto or firstorder
p /\ q	split
p \/ q	left or right
p -> q	intro
~p	intro
p <-> q	split
an assumption	assumption
forall x, p	intro
exists x, p	exists t

To use hypothesis H	use tactic	
p \/ q	destruct H as $\llbracket H_1 H_2 rbracket$	
p /\ q	destruct H as $[H_1 \ H_2]$	
p -> q	apply H	
p <-> q	apply H	
~p	apply H or elim H	
False	contradiction	
forall x, p	apply H	
exists x, p	destruct H as $[x \ G]$	
a = b	rewrite H or rewrite <- H	

If you want to	\dots then use
prove by contradiction $p \land \neg p$	absurd p
simplify expressions	simpl
prove via intermediate goal p	cut p
prove by induction on t	induction t
pretend you are done	admit
import package P	Require Import P
compute t	Eval compute in t
print definition of p	Print p
check the type of t	Check t
search theorems about p	${\tt SearchAbout}\ p$

Inductive definitions

Inductive definition of X

```
Inductive X args :=
   | constructor1 : args1 -> X
   | constructor2 : args2 -> X
   ...
   | constructorN : argsN -> X.
```

Coq generates induction and recursion principles X_{ind} , X_{rec} , X_{rec} .

Construction of an object by cases

Recursive definition of f

```
Fixpoint f args := \dots
```