СИСТЕМЫ ОБРАБОТКИ БОЛЬШИХ ДАННЫХ

Разработка приложений

к.т.н.
Папулин Сергей Юрьевич

papulin_bmstu@mail.ru

Программа курса

Лекции

- Hadoop: Hadoop Distributed File System (HDFS)
- Управление ресурсами и приложениями (YARN), платформа MapReduce
- Apache Spark. Распределенная координация с Zookeeper
- Cистемы потоковой обработки. Apache Storm. Spark Streaming.
- Cистемы потоковой обработки. Apache Flink. Kafka
- **С**истемы обработки графов: Giraph, Spark GraphX, Spark GraphFrames
- NoSQL СУБД. Обработка больших данных с SQL/SQL-подобными запросами

Семинары

- Средства разработки и развертывания виртуальных машин в облаке
- Pазвертывание кластера Cloudera под большие данные в облаке
- **О**сновные команды HDFS, работа с API
- Использование парадигмы MapReduce для обработки данных. Особенности Hadoop Streaming
- Tunы данных. Объединение данных с MapReduce
- Разработка приложений с использованием Тех и Oozie
- Pазвертывание Spark кластера. Настройка интерактивной среды разработки

PK1

Семинары

- Spark. Основные операции над RDD
- > Spark. Основные операции над Dataframe
- Spark. Взаимодействие с HDFS, Parquet, Avro
- **Т** Потоковая обработка. Разработка Storm приложений
- 🔃 Потоковая обработка. Разработка приложений под Spark Streaming
- Oбработка графов. Разработка приложений под Spark GraphX и GraphFrame
- NoSQL СУБД. Базовые операции манипулирования данными в HBase
- Oбработка данных с SQL/SQL-подобными запросами. Базовые операции ETL для Hive, Pig

PK2

- MapReduce
- Spark + Kafka
- Spark + MLlib
- Spark GraphFrame

cloudera

Java, Scala, Python

https://github.com/bigdataprocsystems

Лекция 1. Концепция Больших Данных

Основные темы

- Большие данные 4V
- Параллельные и распределенные вычисления
- Системы обработки и хранения больших данных
- Стек технологий
- Облачные ресурсы
- Примеры использования

Большие Данные

Статистика

Пример, Facebook

2.23 млрд. активных пользователей в месяц (2018)
 90,032 постов в день (2018)

Большие Данные – 4V

Большие Данные – 4V

Чем больше данных у нас есть, тем больше знаний мы может извлечь, лучшее решение можем принять

Чем быстрее обрабатываются поступающие данные, тем быстрее можно начать анализ

Чем более разнообразные источники данных (социальные сети, история просмотров, покупок и пр.), тем лучше можно составить портрет клиента

Чем более достоверные данные, тем точнее можно составить портрет клиента

Наука о данных (Data Science)

Анализ данных

Источники данных

Источники данных

Публичные данные

Экономические

Перепись

Гео-информация

Погода

Открытые данные

Коммерческие данные

Бизнес-информация

Исследования рынка

Кредитное бюро

Социальные сети

Сообщества

Блоги

Twitter, Facebook, LinkedIn, Tumblr

Операционные данные

Сенсоры GPS Транзакции Корпоративные данные

Взаимодействия с клиентами

Отчеты

Логи

Контакты

Gartner

Анализ данных и машинное обучение

Анализ данных и машинное обучение

Регрессия

Классификация

Кластеризация

Уменьшение размерности Информационный поиск

Дескриптивный анализ

Выбор модели

Выбор признаков

Архитектура систем обработки больших данных

Вычислительные ресурсы

Общие данным Приложения Обработка Обработка Обработка СУБД Обработка Данные Данные Данные SAN/NAS Данные Данные Данные Данные Данные Данные

Данные обрабатываются там же, где они хранятся

Наращивание производительности

Узел 3

Узел 2

Узел 1

Кластер

Figure 6: Cross-rack networking

Параллельные и распределенные вычисления

Параллельное программирование

Системы обработки и хранения больших данных

Вычисления

Отложенная

Близко к реальному времени

В реальном времени

Batch

Near real-time

Real-time

Классификация систем

Обработка коллекций данных (batch processing)

Обработка потоковых данных (stream processing)

Обработка графов (graph processing)

Классификация NoSQL СУБД

ACID

Атомарность (Atomicity)

Согласованность (Consistency)

Изолированность (Isolation)

Долговечность (Durability)

BASE

Basic Availability

Soft-state

Eventual consistency

Классификация NoSQL СУБД

Примеры СУБД

Реляционные

Ключ-значение

Ориентированные на столбцы
Документно-ориентированные

Графовые

МуSQL, PostgreSQL
Vertica
Voldemort, DynamoDB
Neo4j
CouchDB

Согласованность (consistency)

Hbase, BigTable

Redis

MongoDB

Отказоустойчивость (partition tolerance)

Примеры СУБД

Customer Table

CustomerID	Title	FirstName	LastName	AddressID
1	Mr	Mark	Hanson	500
2	Ms	Lisa	Andrews	501
3	Mr	Walter	Harp	500

Address Table

AddressID	StreetAddress	City	State	ZipCode
500	999 500th Ave	Bellevue	WA	12345
501	888 W. Front St	Boise	ID	54321

Key	Value (blob)
AAAAA	110100100100111101001001001
AABAB	000110100111100100011110010
DFA766	01011001100100110011111001011
FABCC4	1111000011001010010110011001

Row Key	Column Families			
CustomerID	CustomerInfo		AddressInfo	
1	CustomerInfo:Title CustomerInfo:FirstName CustomerInfo:LastName	Mr Mark Hanson	AddressInfo:StreetAddress AddressInfo:City AddressInfo:County AddressInfo:PostCode	999 Thames St Reading Berkshire RG99 922
2	CustomerInfo:Title CustomerInfo:FirstName CustomerInfo:LastName	Ms Lisa Andrews	AddressInfo:StreetAddress AddressInfo:City AddressInfo:State AddressInfo:ZipCode	888 W. Front St Boise ID 54321
3	CustomerInfo:Title CustomerInfo:FirstName CustomerInfo:LastName	Mr Walter Harp	AddressInfo:StreetAddress AddressInfo:City AddressInfo:State AddressInfo:ZipCode	999 500th Ave Bellevue WA 12345

Примеры СУБД

Row Key	Document
1001	OrderDate: 06/06/2013 OrderItems: ProductID: 2010 Quantity: 2 Cost: 520 ProductID: 4365 Quantity: 1 Cost: 18
	OrderTotal: 1058 Customer ID: 99 ShippingAddress: StreetAddress: 999 500th Ave City: Bellevue State: WA ZipCode: 12345
1002	OrderDate: 07/07/2013 OrderItems: ProductID: 1285
	State: ID ZipCode: 54321

Стек технологий

Стек Hadoop

Стек Spark

Стек технологий

MapR

Карта технологий

Инфраструктуры анализа больших данных

Hadoop и Spark Amazon EMR

Elasticsearch **Сервис Amazon Elasticsearch**

Анализ больших данных в режиме реального времени

Хранилища и базы больших данных

Объектное хранилище Amazon S3

NoSQL **Amazon DynamoDB**

HBase в Amazon EMR

Реляционные базы данных Amazon RDS

Графовые базы данных Amazon DynamoDB для БД Titan