Results

Descriptives

Descriptives

	Adverts	Image	Sales
N	200	200	200
Missing	0	0	0
Mean	614	6.77	193
Median	532	7.00	200
Standard deviation	486	1.40	80.7
Minimum	9.10	1.00	10.0
Maximum	2272	10.0	360
Skewness	0.853	-1.29	0.0439
Std. error skewness	0.172	0.172	0.172
Kurtosis	0.236	3.74	-0.680
Std. error kurtosis	0.342	0.342	0.342
Shapiro-Wilk W	0.925	0.877	0.985
Shapiro-Wilk p	< .001	< .001	0.030

Plots

Adverts

Image

Sales

Relationships, Prediction, and Group Comparisons

You have entered a numeric dependent variable and several numeric independent variables. Hence, <u>linear regression analysis</u> seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > Linear Regression

- Drop your dependent variable in the box below Dependent Variable
- Drop your independent variables in the box below Covariates

Click on the link to learn more about this method!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Correlation Matrix

Correlation Matrix

		Adverts	Sales	Airplay	Image
Adverts	Pearson's r p-value	_			
Sales	Pearson's r p-value	0.578 *** < .001	_		
Airplay	Pearson's r p-value	0.102 0.151	0.599 *** < .001	_ _	
Image	Pearson's r p-value	0.081 0.256	0.326 *** < .001	0.182 ** 0.010	_

Note. * p < .05, ** p < .01, *** p < .001

Adverts Sales Airplay Image

Adverts

Sales

Airplay

Image

Linear Regression

Model Fit Measures

				Overall Model Test			Гest
Model	R	R ²	Adjusted R ²	F	df1	df2	р
1	0.578	0.335	0.331	99.6	1	198	< .001
2	0.815	0.665	0.660	129.5	3	196	< .001

Model Comparisons

Comparison		_					
Model		Model	ΔR^2	F	df1	df2	р
1	-	2	0.330	96.4	2	196	< .001

Model Specific ResultsModel 1Model 2

Omnibus ANOVA Test

	Sum of Squares	df	Mean Square	F	р
Adverts	433688	1	433688	99.6	< .001
Residuals	862264	198	4355		

Note. Type 3 sum of squares

[3]

Model Coefficients - Sales

Predictor	Estimate	SE	t	р	Stand. Estimate
Intercept	134.1399	7.53657	17.80	< .001	
Adverts	0.0961	0.00963	9.98	< .001	0.578

Assumption Checks

Q-Q Plot

Residuals Plots

Omnibus ANOVA Test

	Sum of Squares	df	Mean Square	F	р
Adverts	333332	1	333332	150.3	< .001
Airplay	325860	1	325860	147.0	< .001
Image	45853	1	45853	20.7	< .001
Residuals	434575	196	2217		

Note. Type 3 sum of squares

[3]

Model Coefficients - Sales

Predictor	Estimate	SE	t	р	Stand. Estimate
Intercept	-26.6130	17.35000	-1.53	0.127	
Adverts	0.0849	0.00692	12.26	< .001	0.511
Airplay	3.3674	0.27777	12.12	< .001	0.512
Image	11.0863	2.43785	4.55	< .001	0.192

Assumption Checks

Q-Q Plot

Residuals Plots

References

[1] The jamovi project (2021). jamovi. (Version 2.2) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). *R: A Language and environment for statistical computing*. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2021-04-01).

[3] Fox, J., & Weisberg, S. (2020). *car: Companion to Applied Regression*. [R package]. Retrieved from https://cran.r-project.org/package=car.