THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH2241 Introduction to Mathematical Analysis

Tutorial 3

1. Use the Monotone Convergence Theorem to show that the following sequence converges. Find also the limit. (*Hint:* prove by induction.)

$$x_1 = 1$$
 and $x_{n+1} = 1 + \sqrt{x_n}$ for any $n \in \mathbb{N}$.

2. Let a > 1. Define a sequence $\{x_n\}$ by

$$x_1=a, \quad x_{n+1}=rac{1}{2}\left(x_n+rac{a}{x_n}
ight) \ ext{for any } n\in\mathbb{N}.$$

- (a) Prove by induction that $x_n > \sqrt{a}$ for any $n \in \mathbb{N}$.
- (b) Prove that $\{x_n\}$ is decreasing. Hence show that $\{x_n\}$ converges. Find also the limit.
- 3. (a) Let $x \ge 1$. Prove that the sequence $\{x^{1/n}\}$ is bounded below and decreasing.
 - (b) Show that $\lim_{n\to\infty} x^{1/n} = 1$.
 - (c) Show also that $\lim_{n \to \infty} x^{1/n} = 1$ if 0 < x < 1 by making a change of variable $x = \frac{1}{y}$ for some y > 1.
- 4. Give an example of each of the following, or state that such a situation is impossible by referring to the theorem(s) from the lecture note:
 - (a) a sequence $\{a_n\}$ which diverges to positive infinity but has a subsequence which does not diverge to positive infinity.
 - (b) an unbounded sequence $\{a_n\}$ which has no convergent subsequence.
 - (c) an unbounded sequence $\{a_n\}$ which has a convergent subsequence.
- 5. Prove or disprove: The sequence $\left\{\cos\frac{n\pi}{128}\right\}$ is divergent.
- 6. (a) Write down the meaning of "a sequence $\{a_n\}$ is NOT a Cauchy sequence".

1

(b) Suppose $\{a_n\}$ is sequence satisfying

$$|a_{2n} - a_n| \ge \frac{1}{2} \quad \text{for any } n \in \mathbb{N}.$$

Use (a) to show that $\{a_n\}$ is NOT a Cauchy sequence.