Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2019-20

Πράξεις με δυαδικούς αριθμούς

(αριθμητικές πράξεις)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Πράξεις με δυαδικούς αριθμούς

 Δυαδικοί Αριθμοί

- Ο υπολογιστής μπορεί να εκτελέσει
 - Λογικές πράξεις
 - Αριθμητικές πράξεις
- Οι πράξεις εκτελούνται
 - Σε ομάδες bits (bytes ή πολλαπλάσιά τους)

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Δεκαεξαδικό Σύστημα

- Δυαδικοί αριθμοί
- 16 ψηφία
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Αντιστοιχία με τους δεκαδικούς 0 έως 15
- Σε δυνάμεις του 16
 - 16ⁿ ...16⁴ 16³ 16² 16¹ 16⁰
 - $\Pi.\chi$. $16F(hex) = 1x16^2 + 6x16^1 + 15x16^0$
 - = 256 + 96 + 15 = 367 (δεκαδικό)
- Χρήσιμο μόνο ως "συντομογραφία" δυαδικών αριθμών

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Παράδειγμα στο δεκαεξαδικό σύστημα

- Δυαδικοί αριθμοί
- Παράδειγμα: 1100100110010100

1100 1001 1001 0100

4 = C994(hex)

 Παράδειγμα: 10000101011110 0010 0001 0101 1110

= 215E (hex)Ε

- Συμπλήρωση με 0 στα αριστερά
- Δεν αλλάζει τον αριθμό, όπως ακριβώς και στο δεκαδικό σύστημα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Δεκαεξαδικό Σύστημα

• Δυαδικοί αριθμοί

Κάθε 4 δυαδικά ψηφία αντιστοιχούν σε ένα δεκαεξαδικό!

0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Φυσικοί αριθμοί (χωρίς πρόσημο)

- Δυαδικοί αριθμοί • Φυσικοί αριθμοί
 - Άμεση αντιστοιχία

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9

- Με *n* bits περιγράφονται
 - Οι φυσικοί αριθμοί από θ έως και 2ⁿ-1

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Ποια η χρήση των "φυσικών αριθμών";

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί

• Για αναπαράσταση

- Διαφορετικών "πραγμάτων"
 - Συνήθως χωρίς αριθμητική έννοια
 - Αν και η ταξινόμηση είναι bonus!
- Απαρίθμηση!
 - Παρέχοντας μοναδικούς αναγνωριστικούς αριθμούς
- Παραδείγματα
 - Οι ξεχωριστές διευθύνσεις μνήμης
 - Οι χαρακτήρες σε ένα αλφάβητο
- Ξανά: με *n* bits απαριθμούνται
 - έως και 2ⁿ διαφορετικά "πράγματα"

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

11

Ακέραιοι αριθμοί (προσημασμένοι - signed)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Επίσης όχι καλή ιδέα:
 - Συμπλήρωμα ως προς 1
 - αντιστροφή όλων των bits του αριθμού
 - Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Διάστημα τιμών για αριθμούς με n bits
 - $-(2^{n-1}-1) \epsilon \omega \zeta + (2^{n-1}-1) (\gamma \iota \alpha \tau i;)$
 - Τα ίδια προβλήματα με την χρήση ξεχωριστού bit πρόσημου!
- Καλή ιδέα!
 - Συμπλήρωμα ως προς 2
 - Πώς υπολογίζεται;

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

• Φυσικοί αριθμοί

• Πώς θα αναπαρασταθούν οι αρνητικοί;

Ακέραιοι αριθμοί (με πρόσημο)

Για να γίνονται εύκολα οι πράξεις!

• Όχι καλή ιδέα:

Ξεχωριστό bit πρόσημου

Μέγεθος (N-1 bits) Πρόσημο (1 bit)

Διάστημα τιμών για αριθμούς με n bits

 $-(2^{n-1}-1) \dot{\epsilon}\omega\zeta + (2^{n-1}-1) \quad (\gamma\iota\alpha n=8, -127 \dots +127)$

- ένα χρήσιμο bit λιγότερο
- δυσκολία στις πράξεις
- 2 αναπαραστάσεις του 0;

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

10

Συμπλήρωμα ως προς 2

• Δυαδικοί αριθμοί

• Δυαδικοί

αριθμοί

• Ακέραιοι

- Φυσικοί αριθμοί
- Ακέραιοι
- Τσο με το "συμπλήρωμα ως προς 1" + 1
 - εμπειρικός κανόνας
 - "αντιστροφή όλων των bits εκτός από τα δεξιότερα συνεχόμενα 0 και το πρώτο 1 αριστερά από αυτά"
 - Προσοχή στο 0 (και το 10000....0)

• Συμπλήρωμα ως προς 2: παραδείγματα

• $001011100 \Rightarrow 110100100$

0111111111 ⇒ 100000001

• Προσοχή:

000000000 ⇒ 000000000

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Ακέραιοι σε συμπλήρωμα ως προς 2

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Διάστημα τιμών για αριθμούς με *n* bits
 - $-(2^{n-1}) \dot{\varepsilon}\omega\varsigma + (2^{n-1}-1)$ (yia n=8, -128 ... +127)
 - Μόνο το +(2ⁿ⁻¹) δεν μπορεί να αναπαρασταθεί
- Ευκολία στις πράξεις
 - αφαίρεση = πρόσθεση του συμπληρώματος ως προς 2
 - Μία και μοναδική αναπαράσταση του 0
- Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Δεν είναι όμως bit προσήμου!!!

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

13

15

Αριθμοί κινητής υποδιαστολής

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Κλασματικοί
- 3 μέρη
 - Πρόσημο (Π) (1 bit)
 - 0 = + 1 = -
 - Εκθέτης (Ε) (8 ή 11 bits)
 - Η βάση είναι το 2 (εννοείται)
 - Θετικοί και αρνητικοί εκθέτες με πλεόνασμα 127 ή 1023 $(\pi.\chi. \text{ anti } -55, E = -55 + 127 = 72!)$
 - Σημαινόμενο τμήμα (Σ) (23 ή 52 bits)
 - Κανονικοποίηση: μορφή 1,xxxxxxxxxxxx...
 - Το '1,' εννοείται και δεν αποθηκεύεται
- Τελικός αριθμός: -1^Π x 1.Σ x 2^{E-127} (ή 2^{E-1023)}
 - Ειδικοί αριθμοί: 0, ∞, NaN (Not a Number)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Κλασματικοί αριθμοί

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Κλασματικοί
- Θεωρητικά:
 - Θα μπορούσαμε να επεξεργαζόμαστε ξεχωριστά το ακέραιο και το κλασματικό μέρος
- Αλλά:
 - Δυσκολία στις πράξεις απώλεια ακρίβειας κατά τις διαιρέσεις
 - Αδυναμία αναπαράστασης πολύ μεγάλων και πολύ μικρών αριθμών
- Η λύση:
 - Αριθμοί κινητής υποδιαστολής (floating point)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

14

Αριθμητικές πράξεις

- Αριθμητικές πράξεις
- Οι βασικές πράξεις
 - Πρόσθεση
 - Αφαίρεση
- Άλλες πράξεις
 - Πολλαπλασιασμός
 - Διαίρεση
 - Επίσης:
 - Τετραγωνική ρίζα, τριγωνομετρικές συναρτήσεις, εκθετικά, λογάριθμοι κλπ..
 - Υλοποίηση σε υλικό με διάφορες τεχνικές
 - Π.χ με πολυώνυμα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Προσθέτοντας 2 bits

• Αριθμητικές πράξεις

bits	άθροισμα	κρατούμενο
0+0	0	0
0 + 1	1	0
1+0	1	0
1 + 1	0	1

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

17

Προσθέτοντας δυαδικούς αριθμούς (μη προσημασμένους)

Κρατούμενο	,1,1,1
Α' Αριθμός (119)	0 1 1 1 0 1 1 1
Β' Αριθμός (88)	0 1 0 1 1 0 0 0
Άθροισμα (207)	1 1 0 0 1 1 1 1

- 1. Αριθμοί με ίδιο μήκος (ίσος αριθμός bits)
- 2. Αρχίζοντας από το λιγότερο σημαντικό bit (το δεξιότερο)
- 3. Προσθέτουμε ζεύγη bits και μεταφέρουμε το κρατούμενο (αν υπάρχει) προς τα αριστερά
 - Το προσθέτουμε στο επόμενο ζεύγος bits

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Πρόσθεση αριθμών με πλήρεις αθροιστές

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

21

Προσθέτοντας δυαδικούς αριθμούς

(προσημασμένους)

- Προσημασμένοι ακέραιοι
 - Συμπλήρωμα ως προς 2
 - Το περισσότερο σημαντικό bit υποδηλώνει το πρόσημο
 - 0=θετικός, 1=αρνητικός
 - αριθμός με N bits ⇒ πεδίο τιμών [-2^{N-1} ...0... +2^{N-1} 1]
 - π.χ. για αριθμούς με 8 bits, από -128 έως +127
- Πρόσθεση
 - Όπως σε μη προσημασμένους
 - Τελικό κρατούμενο αγνοείται
 - Πώς γίνεται τώρα ο έλεγγος υπεργείλισης;
 - Αφαίρεση = πρόσθεση του συμπληρώματος ως προς 2 του αφαιρετέου
 - A B = A + (-B)
 - χωρίς πρόσθετα κυκλώματα για την αφαίρεση!

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

23

Προσθέτοντας δυαδικούς αριθμούς

(μη προσημασμένους)

- Υπερχείλιση
 - Στον υπολογιστή το πλήθος των bits ανά αριθμό είναι προκαθορισμένο
 - Το αποτέλεσμα της πρόσθεσης θα πρέπει να χωρά στα διαθέσιμα bits ενός καταχωρητή
 - Μη προσημασμένοι αριθμοί:
 - αριθμός με N bits ⇒ πεδίο τιμών [0 ... 2^N 1]
 - π.χ. για αριθμούς με 8 bits, από 0 έως 255

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

22

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

Κρατούμενο	_/ 1							
Α' Αριθμός (+17)	0	0	0'	1	0	0	0	1
Β' Αριθμός (+22)	0	0	0	1	0	1	1	0
Άθροισμα (+39)	0	0	1	0	0	1	1	1

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

Κρατούμενο	1, 1, 1, 1, 1,
Α' Αριθμός (+24)	0'0'0'1'1 0 0 0
Β' Αριθμός (-17)	1 1 1 0 1 1 1 1
Άθροισμα (+7)	0 0 0 0 0 1 1 1

• το κρατούμενο αγνοείται

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Υπερχείλιση σε προσημασμένους αριθμούς

25

27

Κρατούμενο	1ر 1ر 1ر 1ر 1ر 1ر	l
Α' Αριθμός (+127)	0 1 1 1 1 1 1 1	Ī
Β' Αριθμός (+3)	00000011	I
Άθροισμα (-126;)	10000010)

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο!
 - στην αντίθετη περίπτωση: υπερχείλιση

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Υπερχείλιση σε προσημασμένους αριθμούς

11111111 (-1) 00000000 (0)

προσημασμένοι αριθμοί με 8 bits

αρνητικοί θετικοί 00111111 (+63)

Εισιγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς" 26

Υπερχείλιση σε προσημασμένους αριθμούς

Κρατούμενο χ1		/1					
Α' Αριθμός (-126)	1 0 0	0	0	0	1	0	
Β' Αριθμός (-5)	1 1 1	1	1	0	1	0	
Άθροισμα (+124;)	0 1 1	1	1	1	0	0	

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο!
 - στην αντίθετη περίπτωση: υπερχείλιση
 - πώς θα ήταν ένα κύκλωμα με πύλες για ανίχνευση υπερχείλισης;

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Πράξεις με αριθμούς κινητής υποδιαστολής

- Αριθμητικές πράξεις
- Σύνθετη διαδικασία
- Η γενική μορφή της πρόσθεσης:
 - 1. Σύγκριση προσήμων
 - αν είναι ίδια ⇒ πρόσθεση
 - αλλιώς ⇒ αφαίρεση
 - 2. Εξίσωση εκθετών
 - μετακίνηση υποδιαστολής
 - 3. Πρόσθεση ή αφαίρεση σημαινόμενων τμημάτων
 - ακέραιο και κλασματικό μέρος
 - 4. Κανονικοποίηση αποτελέσματος
 - 5. Έλεγχος για υπερχείλιση

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

29

Πράξεις με αριθμούς κινητής υποδιαστολής

132

Α' αριθμός: 0 10000100 1011000000000000000000

+ 2¹³²⁻¹²⁷ x 1,1011 (+2⁵ x 1,1011)

130

Β' αριθμός: 0 10000010 0110000000000000000000

+ 2¹³⁰⁻¹²⁷ x 1,011 (+2³ x 1,011)

αποτέλεσμα: 0 10000101 000001000000000000000

30

Εισαγωγή στην Επιστήμη των Υπολογιστών - 133 με δυαδικούς αριθμούς"