# Mintaillesztés

Feladat: Egy szövegben egy minta összes előfordulását keressük.

#### Jelölések:

- szöveg: *T* [1..*n*]
- minta: P[1..m] (Feltesszük, hogy 1≤m≤n.)
- Érvényes eltolások halmaza: S
- ábécé:  $\Sigma = \{\sigma_1, \sigma_2, ..., \sigma_d\}$   $(\sigma_1, \sigma_2, ..., \sigma_d \text{ az ábécé betűi})$

Mintaillesztő algoritmusok összehasonlításánál két fontos kérdéssel foglalkozunk:

- Műveletigény (hány összehasonlítást végzünk el)
- Mennyire "ugrál" a szövegben (Ez azért fontos, mert előfordulhat, hogy a mintaillesztést olyan adatszerkezetre kell megoldani (pl. szekvenciális fájl, bináris fa), ahol nem megengedett művelet az indexelés. Ekkor az olyan algoritmusoknál, ahol a szövegben ugrálunk, buffer segítségét kell igénybe venni.)

### Brute-Force (BF) algoritmus:

A Brute-Force (nyers erő) algoritmus nem más, mint egy kiválogatásba ágyazott optimista lineáris keresés. Az algoritmust szemléletesen úgy lehet elképzelni, mintha a mintát tartalmazó sablont tolnánk végig a szövegen, és balról jobbra ellenőrizzük, hogy a minta karakterei egyeznek-e a lefedett szöveg karaktereivel. Amennyiben nem egyező karakterpárt találunk, a mintát eggyel jobbra toljuk a szövegen, és megint kezdjük a minta elejéről az összehasonlítást.

### BF algoritmus stuktogramja





#### Műveletigény:

Legjobb eset: A minta első karaktere nincs a szövegben.

Ekkor  $m\ddot{O}(n,m) = n - m + 1 \in \Theta(n)$  (A betűk összehasonlításait számoljuk, ami most lényegében véve megfelel a ciklusiterációk számának.)

<u>Legrosszabb eset:</u> A minta minden eltolásnál csak a minta utolsó karakterénél romlik el az illeszkedés. Ekkor  $M\ddot{O}(n,m) = (n-m+1) * m \in \Theta(n*m)$  (m<<n esetén)

### Szekvenciális sorozatokra, fájlokra való alkalmazhatóság:

A szövegben "ugrálunk", ezért az olyan adatszerkezeteknél ahol nem megengedett az indexelés, szükség van buffer használatára.

# Knuth-Morris-Pratt (KMP) algoritmus:

A KMP algoritmusnál nem szükséges minden esetben a minta elejéről kezdeni az illeszkedést. Amennyiben a mintával akkorát ugrunk, hogy a minta kezdőszelete (prefixe) egy valódi végszeletnél

(szuffix) kezdődjön, azaz a prefix a szuffixel kerüljön fedésbe, a prefixet már nem kell újra vizsgálni. Ehhez a minta előfeldolgozására van szükség.

Az előfeldolgozás során definiálunk egy **next** függvényt, amely megadja a minta egyes kezdőrészleteire a leghosszabb egymással egyező prefix-szuffix párok hosszát. Ezt felhasználva tudjuk megadni a mintával való "ugrás" mértékét.

### A next függvény alapvető tulajdonságai:

- 1.  $next(j) \in 0..(j-1) (j \in 1..m)$
- 2.  $next(j+1) \le next(j)+1 (j \in 1..m-1)$
- 3.  $P_{h+1} \supset T_{j+1} \Leftrightarrow P_h \supset T_j \land P[h+1] = T[j+1]$
- 4.  $0 \le h < j \le m$  és  $P_i \supset T_i$  esetén  $P_h \supset T_i \iff P_h \supset P_j$
- 5.  $\max_{l+1} H(j) = next(\max_{l} H(j)) (j \in 1...m, l \in 1...|H(j)|-1)$

### KMP algoritmus stuktogramja:



#### Műveletigény:

Az *init* műveletigénye  $\Theta(m)$ . (Ahol m a minta hossza.)

Tegyük fel, hogy m≤n, ekkor a KMP műveletigénye legjobb és legrosszabb esetben is **Θ(n)**.

( $T \in \Omega(n)$ , mivel i növekedni egyesével tud, és n-ig nő  $\Longrightarrow$  biztos van n lefutás

 $T \in O(n)$   $0 \le j \le i \le n$ , mivel a fő ciklus max 2n-szer fut le.)

#### KMP algoritmus előnye:

A szövegben nem kell visszaugrani. Ennek jelentősége pl szekvenciális sorozat/fájl formában adott szövegnél van, mivel ekkor buffer használata nélkül is tudjuk alkalmazni a KMP algoritmust.

#### 1. példa: P[1..6]=ABABAC, T[1..9]=ABABABACA

Az init(next,P) algoritmus szemléltetése az ABABAC mintán:

| i | j | next[j] | 1<br><i>A</i> | 2<br><i>B</i> | 3<br><b>A</b> | 4<br><i>B</i> | 5<br><b>A</b> | 6<br><b>C</b> |
|---|---|---------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0 | 1 | 0       |               | A             |               |               |               |               |
| 0 | 2 | 0       |               |               | <u>A</u>      |               |               |               |
| 1 | 3 | 1       |               |               | Α             | <u>B</u>      |               |               |
| 2 | 4 | 2       |               |               | Α             | В             | <u>A</u>      |               |
| 3 | 5 | 3       |               |               | Α             | В             | Α             | ₽             |
| 1 | 5 | 3       |               |               |               |               | Α             | ₿             |
| 0 | 5 | 3       |               |               |               |               |               | A             |
| 0 | 6 | 0       |               |               |               |               |               |               |

# A végeredmény:

| P[j]=    | Α | В | Α | В | Α | С |
|----------|---|---|---|---|---|---|
| j=       | 1 | 2 | 3 | 4 | 5 | 6 |
| next[j]= | 0 | 0 | 1 | 2 | 3 | 0 |

# A P[1..6] = ABABAC mintát keressük a T[1..9] = ABABABACA szövegben.

| i=    | Hasonlítások<br>száma | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | Magyarázat                                                                                                                                                                                                                                                                                                                                             |
|-------|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T[i]= |                       | Α        | В        | Α        | В        | Α        | В        | Α        | С        | Α        |                                                                                                                                                                                                                                                                                                                                                        |
|       | 6                     | <u>A</u> | <u>B</u> | <u>A</u> | <u>B</u> | <u>A</u> | €        |          |          |          | Ekkor a szöveg és a minta 5. pozíciójánál vagyunk (i=j=5), és a szöveg 6. karakterét hasonlítjuk a minta 6. karakterével. Mivel nincs egyezés, a mintában az aktuális pozíciónkat (5) felülírjuk a next[5]-tel, azaz a szövegben az 5. pozíción maradunk, de a mintában a 3. –nál leszünk és a szöveg 6. pozícióját hasonlítjuk a mintánk 4. elemével. |
| s=2   | 3                     |          |          | Α        | В        | Α        | <u>B</u> | <u>A</u> | <u>C</u> |          | A piros karaktereket nem hasonlítjuk, mivel a next[5]=3 azt jelenti,<br>hogy a mintánk első három eleme megegyezik a 35. elemével.                                                                                                                                                                                                                     |
|       | 1                     |          |          |          |          |          |          |          |          | <u>A</u> |                                                                                                                                                                                                                                                                                                                                                        |

S={2}

### 2. példa: P[1..7]=BABABAB, T[1..9]=BABBABABABABABABABABABABAB

Az init(next,P) algoritmus szemléltetése az ABABAC mintán:

|   |   |         | 1 | 2 | 3        | 4        | 5        | 6        | 7        |
|---|---|---------|---|---|----------|----------|----------|----------|----------|
| ' | J | next[j] | В | Α | В        | Α        | В        | Α        | В        |
| 0 | 1 | 0       |   | ₿ |          |          |          |          |          |
| 0 | 2 | 0       |   |   | <u>B</u> |          |          |          |          |
| 1 | 3 | 1       |   |   | В        | <u>A</u> |          |          |          |
| 2 | 4 | 2       |   |   | В        | Α        | <u>B</u> |          |          |
| 3 | 5 | 3       |   |   | В        | Α        | В        | <u>A</u> |          |
| 4 | 6 | 4       |   |   | В        | Α        | В        | Α        | <u>B</u> |
| 5 | 7 | 5       |   |   |          |          |          |          |          |

### A végeredmény:

| P[j]=    | В | Α | В | Α | В | Α | В |
|----------|---|---|---|---|---|---|---|
| j=       | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| next[j]= | 0 | 0 | 1 | 2 | 3 | 4 | 5 |

A P[1..7] = BABABAB mintát keressük a T[1..22] = BABBABABAB ABBABABABABAB szövegben.

|             |       |   |   |          |          |          |          |          |          |          | 1        |          | 1        |          |          | 1        | 1        |          |          |          |          |    |          |
|-------------|-------|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----|----------|
| i=          | H.SZ. | 1 | 2 | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20       | 21 | 22       |
| T[i]=       |       | В | Α | В        | В        | Α        | В        | Α        | В        | Α        | В        | Α        | В        | В        | Α        | В        | Α        | В        | Α        | В        | Α        | Α  | В        |
|             | 4     | В | A | <u>B</u> | A        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |    |          |
|             | 1     |   |   | В        | A        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |    |          |
| <i>s</i> =3 | 7     |   |   |          | <u>B</u> | <u>A</u> | <u>B</u> | <u>A</u> | <u>B</u> | <u>A</u> | <u>B</u> |          |          |          |          |          |          |          |          |          |          |    |          |
| <i>s</i> =5 | 2     |   |   |          |          |          | В        | Α        | В        | Α        | В        | <u>A</u> | <u>B</u> |          |          |          |          |          |          |          |          |    |          |
|             | 1     |   |   |          |          |          |          |          | В        | Α        | В        | Α        | В        | A        |          |          |          |          |          |          |          |    |          |
|             | 1     |   |   |          |          |          |          |          |          |          | В        | Α        | В        | A        |          |          |          |          |          |          |          |    |          |
|             | 1     |   |   |          |          |          |          |          |          |          |          |          | В        | A        |          |          |          |          |          |          |          |    |          |
| s=12        | 7     |   |   |          |          |          |          |          |          |          |          |          |          | <u>B</u> | <u>A</u> | <u>B</u> | <u>A</u> | <u>B</u> | <u>A</u> | <u>B</u> |          |    |          |
|             | 2     |   |   |          |          |          |          |          |          |          |          |          |          |          |          | В        | Α        | В        | Α        | В        | <u>A</u> | ₿  |          |
|             | 1     |   |   |          |          |          |          |          |          |          |          |          |          |          |          |          |          | В        | Α        | В        | Α        | В  |          |
|             | 1     |   |   |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | В        | Α        | В  |          |
|             | 1     |   |   |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | В  |          |
|             | 1     |   |   |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |    | <u>B</u> |

 $S={3; 5; 12}$ 

# Quick Search (QS) algoritmus:

<u>Alapötlet:</u> Ha elromlik az illeszkedés, akkor nézzük a szövegben a minta utáni karaktert, és úgy toljuk el a mintát, hogy illeszkedjen a szöveg ezen karakteréhez. Ha a mintában nem szerepel ez a karakter, akkor átugorjuk a mintával. Az új vizsgálatot mindig a minta elejéről nézzük.

A mintával való "ugrás" végrehajtásához bevezetjük a shift függvényt. A shift függvény az ABC minden betűjére megadja az "ugrás" nagyságát, amelyet akkor tehetünk, ha az illeszkedés elromlása esetén az illető betű lenne a szöveg minta utáni első karaktere.

### Quicksearch algoritmus stuktogramja:



 $\Theta(d)$ 

### Műveletigény:

Az initShift műveletigénye:  $\Theta(d)+\Theta(m)\in\Theta(m)$  (d: az ábécé elemszáma, konstans)

<u>legjobb eset:</u>  $m\ddot{O}(n,m) \in \Theta(n/(m+1))$  (A minta első karakterénél már elromlik az illeszkedés, továbbá a minta utáni karakter sem fordul elő a mintában, így azt "átugorjuk".)

<u>legrosszabb eset:</u>  $M\ddot{O}(n) \in \Theta(n^*m)$  (m<<n esetén. A minta végén romlik el az illeszkedés, így kicsi az "ugrás".)

### Szekvenciális sorozatokra, fájlokra való alkalmazhatóság:

A szövegben "ugrálunk", ezért az olyan adatszerkezeteknél ahol nem megengedett az indexelés, szükség van buffer használatára.

### 1. példa: P=ABCA, T=ABDAEBBCBBCABCBABCA

A szöveg alapján az ábécé: Σ={A, B,C, D, E}

### Előkészítő eljárás:

| σ   |                       | Α | В | С | D | Ε |
|-----|-----------------------|---|---|---|---|---|
|     |                       | 5 | 5 | 5 | 5 | 5 |
| Α   | 1                     | 4 |   |   |   |   |
| В   | 2                     |   | 3 |   |   |   |
| С   | 3                     |   |   | 2 |   |   |
| Α   | 4                     | 1 |   |   |   |   |
| SHI | <b>FT(</b> <i>σ</i> ) | 1 | 3 | 2 | 5 | 5 |

### Mintaillesztő eljárás:



| 1. elromlás: D-C | A minta utáni elem (5.) <b>E</b>  | shift(E)=5, ezért a mintát 5-tel toljuk el.  |
|------------------|-----------------------------------|----------------------------------------------|
| 2. elromlás: B-A | A minta utáni elem (10.) B        | shift(B)=3, ezért a mintát 3-mal toljuk el.  |
| 3. elromlás: B-A | A minta utáni elem (13.) B        | shift(B)=3, ezért a mintát 3-mal toljuk el.  |
| 4. elromlás: B-A | A minta utáni elem (16.) A        | shift(A)=1, ezért a mintát 1-gyel toljuk el. |
| 5. elromlás: B-A | A minta utáni elem (17.) <b>B</b> | shift(B)=3, ezért a mintát 3-mal toljuk el.  |

# 2. PÉLDA: P= DBAABC, T=DBDGEDBCADBCAHDAGDBAABC

Σ={ A, B ,C, D,E ,G,H}

| σ        | Α | В | С | D | Ε | G | Н |
|----------|---|---|---|---|---|---|---|
| SHIFT(σ) | 3 | 2 | 1 | 6 | 7 | 7 | 7 |

| D | В | D | G | Е | D | В | С | Α | D | В | С | Α | Н | D | Α | G | D | В | Α | Α | В | С |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| D | В | Α | Α | В | С |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   | D | В | Α | Α | В | С |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   | D | В | Α | Α | В | С |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   | D | В | Α | Α | В | С |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   | D | В | Α | Α | В | С |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   | D | В | Α | Α | В | С |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   | D | В | Α | Α | В | С |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | D | В | Α | Α | В | С |

### eltolások:

shift(B)=2

shift(A)=3

shift(C)=1

shift(A)=3

shift(A)=3

shift(B)=2

shift(A)=3