Máquinas de Vector Soporte Métodos basados en Kernels en ML

Gabriel Martos Venturini gmartos@utdt.edu

Agenda

Clasificación con Máquinas de Vector Soporte

Regresiones con Máquinas de Vector Soporte

Bibliografía recomendada

ISL: Capítulo 9.

ESL: Sección 4.5 y Capítulo 12.

FML: Sección 5 .2 (detalles de los problemas de optimización).

Agenda

Clasificación con Máquinas de Vector Soporte Maximal margin classifier Support vector classifier Support vector machines

Regresiones con Máquinas de Vector Soporte

Hoja de ruta

- Clasificación:
 - Descripción del modelo y sus parámetros.
 - Clases separables: Estimación de parámetros vía maximización del margen (formulación del problema de optimización convexo).
 - ▶ Relajación del problema de optimización con variables de holgura.
 - Eliminamos el supuesto de separabilidad entre las clases.
 - ► El truco del kernel y los modelos de clasificación *no lineales*.
- Regresión con SVM.
- ▶ Implementación de los modelos en R: Librería e1071.

(recap)

Un Hiperplano en \mathbb{R}^p (parametrizado por p+1 parámetros $(\beta_0, \beta) \equiv (\beta_0, \dots, \beta_p)$) se corresponde con todos los puntos (X_1, \dots, X_p) para los que se cumple la ecuación:

$$\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p = 0.$$

Un hiperplano parte el espacio de covariables en dos:

FIGURE 9.1. The hyperplane $1 + 2X_1 + 3X_2 = 0$ is shown. The blue region is the set of points for which $1 + 2X_1 + 3X_2 > 0$, and the purple region is the set of points for which $1 + 2X_1 + 3X_2 < 0$.

► Clasificación: $Y \in \{+1, -1\}$ y features $\mathbf{x} \in \mathbb{R}^p$ numéricos.

$$Y = \operatorname{sign}\left(\underbrace{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}_{f(\mathbf{x}; \beta_0, \beta)} + \varepsilon\right).$$

Figure: El hiperplano $H(\beta_0, \beta) = \{ \mathbf{x} \in \mathbb{R}^p : \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p = 0 \}$ (parametrizado por (β_0, β)) parte el espacio de covariables en dos.

Hipografo

$$U_{\beta_0,\beta} = \{ \mathbf{x} \in \mathbb{R}^p : \beta_0 + \sum_{i=1}^p \beta_i x_i > 0 \} \text{ y } \mathbf{L}_{\beta_0,\beta} = \{ \mathbf{x} \in \mathbb{R}^p : \beta_0 + \sum_{i=1}^p \beta_i x_i < 0 \}.$$

▶ Si
$$\mathbf{x} \in U_{\beta_0,\beta} \Rightarrow$$
 Con una probabilidad alta: $Y = +1$.

Epigrafo

▶ Si
$$\mathbf{x} \in \mathbf{L}_{\beta_0,\beta} \Rightarrow$$
 Con una probabilidad alta: $Y = -1$.

▶ Dada una muestra de entrenamiento: $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$.

Figure: Aprendemos (β_0, β) maximizando el margen entre las instancias.

- Problema de optimización convexo.
- ▶ Una vez que aprendimos (β_0, β) , para \mathbf{x}_{new} predecimos¹

$$R(\mathbf{x}_{\text{new}}) = \text{sign}(\widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots + \widehat{\beta}_p x_p) \equiv \widehat{y}_{\text{new}}$$

 $\hat{y}_{\text{new}} = +1 \text{ si } \mathbf{x}_{\text{new}} \in U_{\widehat{\beta}_0,\widehat{\widehat{eta}}}$, en cambio $\widehat{y}_{\text{new}} = -1 \text{ si } \mathbf{x}_{\text{new}} \in L_{\widehat{\beta}_0,\widehat{\widehat{eta}}}$.

¹De aquí en adelante: $\beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}$.

Agenda

Clasificación con Máquinas de Vector Soporte Maximal margin classifier

Support vector classifier Support vector machines

Regresiones con Máquinas de Vector Soporte

Maximal margin hyperplane

Figure: Muestra de entrenamiento (n = 10). Las instancias identificadas con \square se corresponden con Y = -1 mientras que las instancias \bigcirc con Y = +1.

- ► Hiperplano óptimo: Clasifica sin errores y esta más alejado de todas las observaciones de la muestra de entrenamiento.
- **Margen:** Espacio entre el hiperplano $H(b_0, \mathbf{b})$ y cada una de las nubes de puntos. El hiperplano óptimo maximiza el margen.

Elementos del problema de aprendizaje

- ▶ Llamemos $S_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ al conjunto de train.
- ► Margen: $M(b_0, \mathbf{b}, S_n) = 2 \min_{i=1,...,n} d(\mathbf{x}_i, H(b_0, \mathbf{b})).$

$$d(\mathbf{x}_i, H(b_0, \mathbf{b})) = \frac{\left|b_0, \mathbf{b}^T \mathbf{x}_i\right|}{\|\mathbf{b}\|}, \text{ para } i = 1, \dots, n.$$

▶ Si $H(b_0, \mathbf{b})$ particiona correctamente el espacio de covariables:

$$y_i(b_0 + \mathbf{b}^T \mathbf{x}_i) \ge 0$$
 para $i = 1, ..., n$.

El modelo plantea aprender los parámetros resolviendo:

$$\max_{b_0,\mathbf{b}} M(b_0,\mathbf{b},\mathcal{S}_n); \quad \text{sa: } y_i(b_0+\mathbf{b}^T\mathbf{x}_i) \geq 0 \text{ para } i=1,\ldots,n.$$

Problema de optimización cuadrático y convexo.

Technicalities (BackUp slide)

Formulación naive del problema de optimización:

$$\max_{b_0, \mathbf{b}} \left\{ 2 \min_{i=1,...,n} \frac{\left| b_0 + \mathbf{b}^T \mathbf{x}_i \right|}{\|\mathbf{b}\|} \right\}, \text{ sa: } y_i(b_0 + \mathbf{b}^T \mathbf{x}_i) \ge 0, i = 1,..., n.$$

- linvarianza de escala: $\min_{i=1,...,n} |b_0 + \mathbf{b}^T \mathbf{x}_i| = 1$.
 - ▶ Luego se cumple que $\min_{i=1,...,n} d(\mathbf{x}_i, H(b_0, \mathbf{b})) = 2/\|\mathbf{b}\|$.
- ► El problema queda planteado como:

$$\max_{b_0,\mathbf{b}} \left\{ \frac{2}{\|\mathbf{b}\|} \right\}, \quad \text{st: } y_i(b_0 + \mathbf{b}^T \mathbf{x}_i) \geq \mathbf{1}, \quad i = 1, \dots, n.$$

► Maximizar $2/\|\mathbf{b}\|$ equivale a minimizar $\|\mathbf{b}\|^2/2$, finalmente:

$$\min_{b,b} \left\{ \frac{b_1^2 + \dots + b_p^2}{2} \right\}, \text{ st: } y_i(b_0 + \mathbf{b}^T \mathbf{x}_i) \ge 1, i = 1,\dots, n.$$

Problema cuadrático y convexo (fácil de escalar en p).

Lagrangiano y condiciones de KKT (BackUp slide)

$$L(b_0, \mathbf{b}, \lambda) = \frac{b_1^2 + \dots + b_p^2}{2} - \sum_{i=1}^n \lambda_i (y_i (b_0 + \mathbf{b}^T \mathbf{x}_i) - 1).$$

Derivando e igualando a cero obtenemos que:

(1)
$$L_b': \widehat{\boldsymbol{\beta}} = \sum_{i=1}^n \lambda_i y_i \mathbf{x}_i$$
 (recuerda que \mathbf{x} y $\boldsymbol{\beta} \in \mathbb{R}^p$),

(2)
$$L'_{b_0}: \sum_{i=1}^n \lambda_i y_i = 0$$
,

(3)
$$L_{\lambda_i}: \lambda_i(y_i(\widehat{\beta_0} + \widehat{\boldsymbol{\beta}}^T \mathbf{x}_i) - 1) = 0$$
, con $\lambda_i \geq 0$, para $i = 1, \dots, n$.

De (3) se deduce que:

▶ Solo los *vectores soportes* (SV = { $i \subseteq (1, ..., n) | \lambda_i > 0$ }) contribuyen a determinar los valores de **b** y b_0 a través de (1).

Vectores soportes

Figure: Las observaciones de la muestra de entrenamiento para las que se cumpla que $y_i(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}^T \mathbf{x}_i) = 1$, determinan las estimaciones de $\widehat{\beta}_0$ y $\widehat{\boldsymbol{\beta}}$.

Formulación dual (BackUp slide)

- Permitirá modelar márgenes no lineales (kernel-trick).
- ▶ Introduciendo (1) y (2) en $L(\beta_0, \beta, \lambda)$:

$$L_D(\lambda_1, \dots, \lambda_n) = -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j \underbrace{\mathbf{x}_i^T \mathbf{x}_j}_{\langle \mathbf{x}_i, \mathbf{x}_j \rangle} + \sum_{i=1}^n \lambda_i. \quad (\text{ver slide §-30})$$

- ► La maximización del dual (<u>de Wolfe</u>) es también un problema convexo y cuadrático (existencia, unicidad y escalabilidad).
- ▶ El solver te devuelve $\lambda_1, \ldots, \lambda_n$ con $\lambda_i > 0 \Leftrightarrow i \in SV$.

$$\widehat{\boldsymbol{\beta}} = \sum_{i \in \mathsf{SV}} \lambda_i y_i \mathbf{x}_i \text{ con } |\mathsf{SV}| \text{ pequeño.}$$

$$\blacktriangleright \ \widehat{\beta}_0 = \frac{1}{|SV|} \sum_{i \in SV} (y_i - \sum_{j=1}^n \lambda_j y_j \mathbf{x}_j^T \mathbf{x}_i).$$

Agenda

Clasificación con Máquinas de Vector Soporte

Maximal margin classifier

Support vector classifier

Implementación en R y caso de estudio Support vector machines

Regresiones con Máquinas de Vector Soporte

Introduciendo $\{\xi_1, \dots, \xi_n\}$ relajamos supuesto de *separabilidad*.

$$\min_{b_0, \mathbf{b}} \frac{1}{2} \|\mathbf{b}\|^2, \quad \text{sujeto a:} \qquad \qquad \min_{b_0, \mathbf{b}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{b}\|^2 + \frac{C}{\sum_{i=1}^n} \xi_i, \quad \text{sujeto a:}$$

$$\underbrace{y_i(b_0 + \mathbf{b}^T \mathbf{x}_i) \geq 1}_{j_0, \mathbf{b}, \boldsymbol{\xi}}, \quad i = 1, \dots, n.$$

$$y_i(b_0 + \mathbf{b}^T \mathbf{x}_i) \geq 1 - \xi_i,$$

$$\xi_i \geq 0 \text{ para } i = 1, \dots, n.$$

C nos permite calibrar el trade-off entre bias y variance.

Interpretación del hiperparámetro 'C'

- C es el hiperparámetro sensible del modelo:
 - ▶ \uparrow *C*: Margen más pequeños \Rightarrow vectores soporte.
 - ▶ \downarrow sesgo y \uparrow varianza \Rightarrow incrementa riesgo overfitting.
 - ▶ \downarrow *C*: Margen mas grandes \Rightarrow + vectores soporte.
 - ▶ \uparrow sesgo y \downarrow varianza \Rightarrow incrementa riesgo underfitting.
- Aprendemos C por validación cruzada.
- Sólo aquellas observaciones con parámetros de holgura positivos (más próximas a $H(\widehat{\beta}_0, \widehat{\beta})$) determinan el hiperplano óptimo.
 - Además si $\hat{\xi}_i > 1/\|\hat{\beta}\| \Rightarrow y_i \neq \hat{y}_i$.
 - Detalles del problema de optimización en ESL § 12.2.1 (pp 420).

Figure: Los vectores soporte se corresponden con los datos del conjunto de entrenamiento que caen dentro del margen y los mal clasificados. Valores más grande de *C* producen soluciones con márgenes más pequeños (ESL).

▶ Warning: En ISL § 9.2.2. (pp 377, V2) se define el problema de optimización de otra manera (equivalente) y el parámetro C se interpreta exactamente al revés de como lo hacemos aquí.

(BackUp)

$$L_P(b_0, \mathbf{b}, \boldsymbol{\xi}) = \frac{1}{2} \|\mathbf{b}\|^2 + \mathbf{C} \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i [y_i(b_0 + \mathbf{b}^T \mathbf{x}_i) - (1 - \xi_i)] + \mu_i \sum_{i=1}^n \xi_i.$$

Figure: SV = $\{i \in \{1, ..., n\} | \lambda_i > 0 \& \xi_i \ge 0\}$, luego $\widehat{\beta} = \sum_{i \in SV} \lambda_i y_i \mathbf{x}_i$

▶ M. Mohri et al: Foundations of Machine Learning (pp 89 § 5.3.2).

Agenda

Clasificación con Máquinas de Vector Soporte

Maximal margin classifier

Support vector classifier Implementación en R y caso de estudio

Support vector machines

Regresiones con Máquinas de Vector Soporte

El paquete e1071 en R

```
library(e1071)
svm(y~., data , kernel = "radial", cross , type,
gamma , cost , scale, na.action = na.omit)
```

- Librería que implementa varios modelos de aprendizaje automático, entre ellos las máquinas de vector soporte.
- Nos ayuda a hacer validación cruzada para los parámetros de la SVM de manera eficiente (ver función tune.svm()).
- Modelos no lineales: Implementa de manera automática el uso de núcleos polinómicos, Gaussiano y sigmoide (ver próximas slides).
- ▶ En problemas <u>multiclase</u> utiliza la estrategia de <u>uno contra uno</u>.

Predicción del rango de precio de teléfonos celulares

```
battery_power: Total energy a battery (in mAh).
blue: Has bluetooth or not.
clock_speed: microprocessor speed.
dual_sim: Has dual sim support or not.
fc: Front Camera mega pixels.
four_g: Has 4G or not.
int_memory: Internal Memory (in Gbt).
m_dep: Mobile Depth in cm.
mobile_wt: Weight of mobile phone
n_cores: Number of cores of processor.
pc: Primary Camera mega pixels.
... (algunas variables más) ...
price_range: 0(low cost), 1(medium cost),
             2(high cost) and 3(very high cost).
```

Agenda

Clasificación con Máquinas de Vector Soporte

Maximal margin classifier Support vector classifier

Support vector machines

Regresiones con Máquinas de Vector Soporte

Márgenes no lineales

Figure: Mapeamos los datos y modelamos (linealmente) en el feature space.

No es necesario explicitar Φ. Para aprender los parámetros (y hacer predicciones) sólo necesitas computar el producto interior:

$$K_{\sigma}(x, x') \equiv \Phi(x)^T \Phi(x')$$

Ejemplo

▶ Problema de clasificación con $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$:

Si consideramos el mapa:

$$\Phi(x_1, x_2) \equiv (z_1 = x_1^2, z_2 = x_2^2, z_3 = \sqrt{2}x_1x_2).$$

▶ ... en las coordenadas $\{(\mathbf{z}_1, y_1), \dots, (\mathbf{z}_n, y_n)\}$ el problema se puede resolver utilizando técnicas lineales (por ejemplo con SVM's!).

• Considerando $\Phi(\mathbf{x} = (x_1, x_2)) \equiv (z_1 = x_1^2, z_2 = x_2^2, z_3 = \sqrt{2}x_1x_2)$:

$$\Phi(\mathbf{x})^{T}\Phi(\mathbf{x}') = x_{1}^{2}x_{1}'^{2} + x_{2}^{2}x_{2}'^{2} + 2x_{1}x_{1}'x_{2}x_{2}'$$
$$= \underbrace{(x_{1}x_{1}' + x_{2}x_{2}')^{2}}_{K(\mathbf{x},\mathbf{x}')}$$

- Existe una relación biunívoca entre K y Φ (condiciones).
- ► La función K(x, x') codifica relaciones de similaridad en el feature—space entre pares de observaciones x y x'.
- ▶ Para estimar el hiperplano en el feature—space (partir de manera no lineal el imput—space), las SVM's sólo necesitan evaluar:

$$K(\mathbf{x}_i, \mathbf{x}_i) \equiv \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_i), \text{ con } i, j \in \{1, \dots, n\}.$$

Núcleo K y su relación con Φ

▶ Si $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}^+$ es un mapa simétrico y definido positivo (technicalities) entonces existe una única función Φ tal que

$$K(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x})^T \Phi(\mathbf{x}'), \ \forall \, \mathbf{x}, \mathbf{x}' \in \mathbb{R}^p.$$

- Esta dualidad permite modelar el problema en el feature—space sin necesidad de definir explícitamente la función Φ (elegimos K).
 - ► El algoritmo sólo necesita computar $\Phi(\mathbf{x})^T \Phi(\mathbf{x}') = K(\mathbf{x}, \mathbf{x}')$ cada vez que estimo los parámetros del modelo y/o hago predicciones.
- K tendrá parámetros que aprenderemos (por VC).
 - lacktriangle Cambiando parámetros de Kightarrow diferentes grados de linealización.
 - El costo de la linealización lo pagamos en términos de complejidad.
 - Bias-variance trade off.
- ... algunos ejemplos de K's y sus parámetros...

Kernels utilizados habitualmente en ML

 \blacktriangleright Kernel Polinómico de parámetros σ y c:

$$K_{c,\sigma}(\mathbf{x},\mathbf{x}') = (\mathbf{x}^T\mathbf{x}'+c)^{\sigma}.$$

- $ightharpoonup \sigma$ determina la dimensión del feature space $((p+\sigma)!/(\sigma!p!))$
- c localiza la media en el feature space.
- ▶ Kernel Sigmoide de parámetros σ y c:

$$K_{\sigma,c}(\mathbf{x},\mathbf{x}') = \frac{\exp[2(\sigma \mathbf{x}^T \mathbf{x}' + c)] + 1}{\exp[2(\sigma \mathbf{x}^T \mathbf{x}' + c)] - 1}.$$

Kernel Gaussiano (Radial Basis Function) de parámetro σ :

$$K_{\sigma}(\mathbf{x}, \mathbf{x}') = \exp(-\sigma||\mathbf{x} - \mathbf{x}'||^2).$$

- σ: Parámetro que tunea la complejidad del mapa.
- Kernel suficientemente flexible como para lidiar con muchos de los problemas de aprendizaje supervisado (aprendemos σ por VC).

Aprendizaje de parámetros (BackUp)

- ▶ Dado Φ y el data set de TRAIN: $\{(\Phi(\mathbf{x}_1), y_1), \dots, (\Phi(\mathbf{x}_n), y_n)\}$.
- ► De la formulación dual (ver slide §-15):

$$L(\lambda_1,\ldots,\lambda_n) = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i,j=1}^n \lambda_i \lambda_j y_i y_j \underbrace{\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j)}_{K_{\sigma}(\mathbf{x}_i,\mathbf{x}_j)}.$$

- Para aprender los parámetros $\{\lambda_i\}_{i=1}^n$ (y con estos (β_0, β) en el feature space) solo necesito poder computar $K_{\sigma}(\mathbf{x}_i, \mathbf{x}_i)$.
- ▶ Tu solución dependerá de los hiperparámetros σ de K_{σ} (VC).
 - Y del hiperparámetro C (omitido en el planteo para simplificar).
- ▶ Una vez aprendidos $(\widehat{\beta}_0, \widehat{\beta})$, $H(\widehat{\beta}_0, \widehat{\beta})$ en el feature space se corresponde con una **partición no lineal del input space**: $H_{\widehat{f}} = \{\mathbf{x} : \widehat{f}(\mathbf{x}) = 0\}$ (Epi = $\{\mathbf{x} : \widehat{f}(\mathbf{x}) > 0\}$ e Hipo $\{\mathbf{x} : \widehat{f}(\mathbf{x}) < 0\}$).

Quadratic programming (BackUp slide)

► El 'solver' resuelve:

$$\min_{\lambda_1,\ldots,\lambda_n} \lambda^T \begin{bmatrix} y_1^2 K(x_1,x_1) & y_1 y_2 K(x_1,x_2) & \cdots & y_1 y_n K(x_1,x_n) \\ \vdots & \ddots & \ddots & \vdots \\ y_1 y_n K(x_n,x_1) & y_n y_2 K(x_n,x_2) & \cdots & y_n^2 K(x_n,x_n) \end{bmatrix} \lambda - \mathbf{1}^T \lambda$$

$$s.a: \quad \mathbf{y}^T \lambda = \mathbf{0} \quad \forall \quad \lambda \geq \mathbf{0}.$$

- No necesitamos conocer Φ para aprender $\lambda_1, \ldots, \lambda_n$.
- ightharpoonup El algoritmo escala bien en p y mal en n.
- ightharpoonup Aprendemos los hiperparámetros σ y C por VC.
- ► Solución rala en el feature space:

$$\lambda_i > 0 \rightarrow x_i \in SV \text{ y } \lambda_i = 0 \text{ en otro caso},$$

donde SV es el conjunto de vectores soportes (en el feature space).

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

... se puede demostrar que (BackUp)

► En el feature space:

$$\widehat{\boldsymbol{\beta}} = \sum_{i \in SV} \lambda_i y_i \Phi(\mathbf{x}_i) \text{ y por tanto } R(\mathbf{x}) = \text{sign}[\widehat{\boldsymbol{\beta}}^T \Phi(\mathbf{x}) + \widehat{\beta}_0].$$

Utilizando el planteo dual:

$$R(\mathbf{x}) = \operatorname{sign}\left[\underbrace{\sum_{i \in SV} \lambda_i y_i \mathcal{K}_{\sigma}(\mathbf{x}_i, \mathbf{x}) + \widehat{\beta}_0}_{\widehat{f}(\mathbf{x})}\right].$$

En el espacio original (input), la SVM tiene asociada una frontera de clasificación que no es lineal (ver slide anterior).

$$H(\widehat{f}, \sigma, C) = \{\mathbf{x} : \widehat{f}(\mathbf{x}) = \sum_{i \in SM} \lambda_i y_i \mathcal{K}_{\sigma}(\mathbf{x}_i, \mathbf{x}) + \widehat{\beta}_0 = 0\}.$$

Informalmente, el hiperplano que separa en dos partes el espacio de covariables ya no es una función lineal (un hiperplano).

Recapitulación

- + Aprendemos parámetros vía optimización cuadrática y convexa.
 - ► No hay mínimos locales :)
 - ► El algoritmo escala sin problemas en *p*.
 - Estandarizar features acelera la velocidad de convergencia.
- + Flexibilidad: Podemos modelar problemas no lineales.
- + Podemos fitear el modelo aún cuando $p \gg n$.
- + No hay especificaciones fuertes.
- o Atípicos: Funciones de riesgo robustas.
- o One-hot o método equivalente para features cualitativos.
- Modelo caja negra (¿importancia de cada feature?).
- No gestiona de forma automática los datos faltantes.

Agenda

Clasificación con Máquinas de Vector Soporto

Regresiones con Máquinas de Vector Soporte

► El modelo más simple con svm plantea: $Y = \underbrace{\beta_0 + \beta_1 X}_{\text{Modelo para } f(X)} + \delta.$

Dada una muestra de train y un parámetro $\varepsilon > 0$, aprendemos (β_0, β_1) resolviendo el siguiente problema:

$$\min_{b_0,b_1} \frac{1}{2} ||b_1||^2, \text{ s.a. } |y_i - b_0 - b_1 x_i| \le \varepsilon.$$

Vía optimización convexa y cuadrática:

$$\widehat{f}(X) = \widehat{\beta}_0 + \widehat{\beta}_1 X$$

- No se corresponde con OLS.
- ightharpoonup Las restricciones garantizan un ECM pequeño (si ε es pequeño).
- La función objetivo intenta *regularizar* el modelo.
- ► Veamos ahora el planteo más general.

SVM (y kernel) lineal:
$$Y = \underbrace{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}_{\text{Modelo para } f(X_1, \dots, X_p)} + \delta.$$

▶ Dados $\varepsilon > 0$ y una muestra de train $S_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, aprendemos los parámetros del modelo de forma tal que:

Figure: Para $i = 1, ..., n : |y_i - b_0 - \mathbf{b}^T \mathbf{x}_i| \le \varepsilon$.

- ▶ Problema de optimización convexo para aprender $(\beta_0, \dots, \beta_p)$.
- $ightharpoonup \varepsilon$ es un hiperparámetro del modelo.
- La solución puede no existir si ε es pequeño.

A. Smola: A Tutorial on Support Vector Regression. Stat & Comp. (2003).

Relajación del modelo de regresión

Al igual que en clasificación, introducimos parámetros de holgura $\{\xi_1,\ldots,\xi_n\}$ que nos permiten aprender los parámetros del modelo permitiendo que algunas observaciones estén a una distancia mayor que ε de la función de regresión.

Aprendizaje de parámetros (BackUp)

$$\min_{b_0, \mathbf{b}, \boldsymbol{\xi}, \boldsymbol{\xi}^*} \mathbf{C} \sum_{i=1}^n (\xi_i + \xi_i^*) + \frac{1}{2} \|\mathbf{b}\|^2$$
subject to
$$y_i - (b_0 + \mathbf{b}^T \mathbf{x}_i) \le \varepsilon + \xi_i, \ i = 1, \dots, n.$$

$$(b_0 + \mathbf{b}^T \mathbf{x}_i) - y_i \le \varepsilon + \xi_i^*, \ i = 1, \dots, n.$$

$$\xi_i \ge 0, \quad \xi_i^* \ge 0, \ i = 1, \dots, n.$$

- ► A. Smola (A tutorial on support vector regression):
 - C determines the trade-off between the flatness of f and the amount up to which deviations larger than ε are tolerated.
- ▶ ↑ C: Pendiente 'cambiante' (+ varianza).
- ► ↓ C: Poca pendiente (+ bias).
- **D**eslinealizamos el modelo introduciendo un K_{σ} de parámetro σ .
- Aprendemos (C, σ) por validación cruzada.

Extensiones al caso no lineal

▶ $\Phi : \mathbb{R}^p \to \mathbb{R}^q$ (con $q \gg p$ modelo lineal en el feature space).

$$\widehat{f}_{\sigma}(\mathbf{x}) = \sum_{i=1}^{n} c_{i} \langle \Phi(\mathbf{x}_{i}), \Phi(\mathbf{x}) \rangle + \widehat{\beta}_{0} = \sum_{i=1}^{n} c_{i} K_{\sigma}(\mathbf{x}_{i}, \mathbf{x}) + \widehat{\beta}_{0}.$$

Las constantes $\{c_i\}_{i=1}^n$ se aprenden vía optimización convexa.

Modelando precios de pólizas de seguro

age: edad del beneficiario de la póliza. sex: género declarado por el asegurado.

bmi: índice de masa corporal.

children: número de hijos cubiertos en la póliza.

smoker: si quien contrata la póliza es fumador o no.

region: lugar de residencia del beneficiario.

insuranceclaim: reclamación de costos (1 = si y 0 = no).

charges: costo registrado de los tratamientos médicos.

Dividí los datos en train y test: Aprende los parámetros de la SVM por VC con train (selección de modelo) y estima el ECM del modelo seleccionado sobre los datos de test. Este modelo servirá de benchmark para comprar contra las redes neuronales profundas (próxima clase).