Inferential Statistics for Data Science

Outline

- Motivation
- Population and Sample
- Sampling and its types
- Inferential Statistics
- Sampling Distribution and Central Limit Theorem
- Estimating Population Mean and Population Proportion

Motivation

- Recall Descriptive Statistics:
 - Describes the characteristics of the dataset
 - Distribution, central tendencies (mean, median, mode) and variability (standard deviation, variance, etc.) are used to describe the given data
- Question: What if we want to make some inferences or predictions from the data which is not fully available or is too large?
- Examples:
 - What is the battery life of a particular mobile model?
 - What is the average salary of a data scientist in India?
 - What is the most preferred OTT platform for watching movies in India?
- Question: How to make inferences about data which is partially known or is too large to analyse?

Population and Sample

4

Population and Sample

Population:

- Refers to the whole group or set of data points on which inferences or predictions are to be made
- Size of the population could be very large depending on the inference to be made
- Battery life example: Population is the set of all mobiles of that particular model
- OTT example: Population is the set of all people in India who watch movies on OTT platforms

Sample:

- A set of data points which are representative of the population
- Size of sample set is generally much smaller than the size of population

5

Obtaining Sample from Population

- Sampling is performed to get a sample set from the actual population
- 3 types of Sampling:
 - Random sampling: Each data point of population is picked with equal probability

OTT Example: How would random sampling be done in this case?

Obtaining Sample from Population

- Sampling is performed to get a sample set from the actual population
- 3 types of Sampling:
 - Random sampling: Each data point of population is picked with equal probability
 - Systematic sampling: Every kth data point is picked from the population set

OTT Example: How would systematic sampling be done in this case?

Obtaining Sample from Population

- Sampling is performed to get a sample set from the actual population
- 3 types of Sampling:
 - Random sampling: Each data point of population is picked with equal probability
 - Systematic sampling: Every kth data point is picked from the population set
 - Stratified sampling: Population is divided into subsets (stratums) based on some criteria. Random sampling is performed on each stratum

Stratified Population dataset

OTT Example: How would stratified sampling be done in this case?

Inferential Statistics

Inferential Statistics

- Makes predictions about the population based on a sample set collected from the population
- Generalises over the population by analysing the sample set
- Comprises of:
 - Estimating parameters: Estimating the parameters (such as mean, standard deviation, etc.) of the population using sample data
 - Example: What is the battery life of a particular mobile model ? Mean battery of all mobiles of that particular model
 - Hypothesis testing: Testing a claim on a parameter or distribution of the population (hypothesis) using the sample data
 - Example: 'Hotstar' is preferred by more than 50% OTT users in India. How to test this claim?
- Note: Parameter of a sample (such as mean, standard deviation, etc.) is referred to as 'statistic'

Inferential Statistics

 Makes predictions about the population based on a sample set collected from the population

Sampling Distribution and Central Limit Theorem

Sampling Distribution

- Suppose multiple samples (sets) are sampled from a population of size N
- Sampling distribution is the probability distribution of a particular statistic computed using each of the sample sets
- Example: Suppose population size is N and many sample sets $(x_1, x_2, ...)$ of size n are drawn from the population
- Mean of each sample set is computed (say $\overline{x_1}$, $\overline{x_2}$...) and plotted as a distribution
- Note: Here, variable takes numerical values

of Sample Means

Parameters of the Sampling Distribution

- Mean of the sampling distribution of sample means: $\mu_{ar{\chi}}$
- Standard deviation of the sampling distribution (referred to as Standard error): $\sigma_{\bar{x}}$
- Sampling distribution mean and standard error have special properties in relation to population mean (μ) and standard deviation (σ)
- Central Limit Theorem describes the relation between $\mu \& \mu_{\bar{x}}$ and $\sigma \& \sigma_{\bar{x}}$

Example of Mean Sampling Distribution

- Population set: $\{1,3,5,7,9\}$; N=5; $\mu=5$; $\sigma=2.83$
- Consider multiple samples of size 3 i.e., n = 3

Samples			Sample Mean \bar{x}
1	3	5	3.00
1	3	7	3.67
1	3	9	4.33
1	5	7	4.33
1	5	9	5.00
1	7	9	5.67
3	5	7	5.00
3	5	9	5.67
3	7	9	6.33
5	7	9	7.00

Mean $(\mu_{\bar{x}})$	5
Standard distribution $(\sigma_{\bar{x}})$	1.21

• Proves that:

- 1. Sampling distribution of means approaches a normal distribution as the sample size (n) increases, irrespective of the distribution of the population
- 2. Mean of the sampling distribution is equal to the mean of the population distribution i.e., $\mu = \mu_{\bar{x}}$
- 3. Standard error is related to the standard deviation of population distribution as follows: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

Sampling Distribution of Sample Means

Population distributions

Point 1:

- Sampling distribution of means approaches a normal distribution as the sample size (n) increases
- Shape of the population distribution does not matter
- Generally normal distribution is observed when $n \ge 30$
- Note: If population distribution is normal, then value of n does not matter

n = 5

Linear Algebra

n = 30

 \bar{x}

Population distributions

Point 2:

- Mean of the sampling distribution is equal to the mean of the population distribution i.e., $\mu = \mu_{\bar{x}}$
- Shape of the population distribution does not matter

Sampling distributions of sample means

18

Point 3:

Standard error is related to the standard deviation of population distribution as follows:

$$\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$$

- Standard error decreases as the sample size
 n increases
- Note: Standard error becomes zero when n = N

Sampling Distribution of Sample Means

19

Estimating Population Parameters: Mean

Estimating Mean of Population

- Question: Given a sample x, how to estimate the mean of the population?
- Mean of the sample \bar{x} lies somewhere on the sampling distribution
- \bar{x} is most likely close to the mean of sampling distribution $(\mu_{\bar{x}})$ because it is a normal distribution as per CLT
- Therefore, \bar{x} can be considered to be an estimate of μ since $\mu = \mu_{\bar{x}}$ as per CLT
- Question: How good is the estimate? What is the margin of error for the estimate?

Sampling Distribution of Sample Means

Margin of Error

 Margin of error: Range of possible error between the sample mean and population mean (mean of sampling distribution)

$$\mu = \bar{x} \pm \epsilon$$

- Question: How to find epsilon?
- Idea: Use the standard error $\sigma_{\bar{\chi}}$ to quantify the margin of error
- For a normal distribution,
 - 68.3% of data falls within 1 standard deviation of the mean
 - 95.4% of data falls within 2 standard deviations of the mean
 - 99.7% of data falls within 3 standard deviations of the mean

Sampling Distribution of Sample Means

Margin of Error and Probability

- Margin of error: $\mu = \bar{x} \pm \epsilon$
- In the mean sampling distribution,
 - \circ 68.3% of data falls within $1\sigma_{\bar{x}}$
 - \circ 95.4% of data falls within $2\sigma_{\bar{x}}$
 - \circ 99.7% of data falls within $3\sigma_{\bar{x}}$
- Example: Suppose a sample mean is calculated to be 10 and standard error $\sigma_{\bar{x}}=0.5$
- Implies the following:
 - $\mu = 10 \pm 0.5$ with a probability of 68.3%
 - $\mu = 10 \pm 1$ with a probability of 95.4%
 - $\mu = 10 \pm 1.5$ with a probability of 99.7%

of Sample Means

Confidence Levels and Intervals

- Confidence level: Probability that the population parameter lies within an error margin of the sample statistic
- Confidence interval: Range in which the population parameter could lie with a given confidence level
- Example: $\bar{x}=10$ and $\sigma_{\bar{x}}=0.5$
- Implies the following:
 - Confidence interval of $\mu = (9.5, 10.5)$ with confidence level of 68.3%
 - $^{\circ}$ Confidence interval of $\mu = (9, 11)$ with confidence level of 95.4%
 - Confidence interval of $\mu = (8.5, 11.5)$ with confidence level of 99.7%

95.4% confidence interval

Confidence Levels and Intervals

- Question: How to determine the confidence interval for a particular confidence level?
- Idea: Use z-score corresponding to the confidence level
- Confidence interval of $\mu = (\bar{x} z\sigma_{\bar{x}}, \bar{x} + z\sigma_{\bar{x}})$
- Z scores for some confidence intervals:

Confidence Level	Z-score
90%	1.65
95%	1.96
98%	2.33

Estimating Mean of Population: Summary

- Steps to estimate the mean of the population given a representative sample of size n:
 - 1. Calculate the mean of the sample \bar{x} and the standard error $\sigma_{\bar{x}}$
 - 2. Decide the confidence level with which the population mean is to be estimated
 - 3. Take the z-score corresponding to the chosen confidence level (%C)
 - 4. Compute the confidence interval of the population mean

$$\mu = (\bar{x} - z\sigma_{\bar{x}}, \bar{x} + z\sigma_{\bar{x}})$$

5. Conclude that population mean lies in the range $(\bar{x} - z\sigma_{\bar{x}}, \bar{x} + z\sigma_{\bar{x}})$ with a confidence level (probability) of %*C*

Estimating Mean of Population: Points to Note

- Question: What to do if the range of the confidence interval is to be reduced?
 - \circ Value of $\sigma_{\bar{x}}$ is to be reduced
 - Increase the sample size n because $\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$
- Question: What if the population standard deviation (σ) is not known?
 - Standard deviation of the sample σ_x is taken as an estimate of σ
 - For a reasonable estimate of σ , $n \ge 30$ is recommended
 - \circ Standard error is estimated to be $\frac{\sigma_\chi}{\sqrt{n}}$
 - Z-score for interval calculation is replaced by t-score
 - Note: While Z-score is fixed for a given confidence level, t-score is dependent on the sample size n

Estimating Population Parameters: Proportion

Estimating Proportion of Population

- Proportion is considered when the variable is a categorical variable
- Example: For how many people in India, 'Hotstar' is the preferred OTT platform?
- Suppose 10 crore people in India subscribe to OTT platforms
- Question: How to estimate the proportion of 'Hotstar' preferred users?
- Proven result: Sampling distribution of proportions approaches a normal distribution as sample size increases
- Note: Proportions have binomial distribution distribution

Population of OTT users in India

Preferred OTT	# People	Proportion of population
Hotstar	3.5 Crore	0.35
Prime	2.5 Crore	0.25
Netflix	0.5 Crore	0.05
Zee5	2 Crore	0.2
Sonyliv	1.5 Crore	0.15
Total	10 Crore	1

Proportion,
$$p = \frac{\#Items\ in\ Category}{Population\ size} = \frac{c}{N}$$

Estimating Proportion of Population: Summary

- Steps to estimate the proportion of a category of the population given a representative sample of size n:
 - 1. Calculate the proportion of the category in the given sample:

$$p_{\chi} = \frac{c_{\chi}}{n}$$

2. Estimate the standard error of sampling distribution of proportions:

$$\sigma_p = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{p_x(1-p_x)}{n}}$$

- 3. Decide the confidence level with which the proportion is to be estimated
- 4. Take the z-score or t-score corresponding to the chosen confidence level (%C)
- 5. Compute the confidence interval of the population mean at %C

Linear Algebra

$$p = (p_x - z\sigma_p, p_x + z\sigma_p) \text{ or } p = (p_x - t\sigma_p, p_x + t\sigma_p)$$

30

Summary

- Inferential statistics is the study of techniques which are used to makes inferences about the population using a representative sample
- Sample can be obtained by using different sampling techniques
- Central limit theorem relates the population parameters with sample statistics through the sampling distribution
- CLT can be used to estimate population mean from a sample mean with certain level of confidence
- Confidence interval gives the range in which population mean lies with certain probability
- For categorical variables, the confidence interval of proportion of a category in the population can be estimated with certain probability

```
or_object
peration == "MIRROR_X":
mirror_mod.use_x = True
mirror_mod.use_y = False
### Irror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
lrror_mod.use_y = True
mlrror_mod.use_z = False
  operation == "MIRROR_Z":
 lrror_mod.use_x = False
 Irror mod.use y = False
 Irror_mod.use_z = True
  election at the end -add
  ob.select= 1
 ler ob.select=1
  ntext.scene.objects.active
  "Selected" + str(modifier
  int("please select exaction
```

THANK YOU