

FEG2C3 Elektromagnetika I

Syarat Batas

Program Studi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom 2014

Materi

- Pendahuluan
- Komponen Tangensial dan Komponen Normal
- Syarat Batas Medan Listrik
- Syarat Batas Medan Magnet

Pendahuluan

- Sejauh ini diasumsikan bahwa medan-medan terjadi dalam ruang tak-terbatas dengan sifat-sifat elektrik dan magnetik yang dimilikinya.
- Setelah membahas modifikasi-modifikasi yang terjadi pada medan listrik dan medan magnet sebagai akibat kehadirannya dalam material, mungkin dapat ditanyakan tentang "bagaimana medan-medan ini menyesuaikan sifat mereka pada antarmuka antara dua bahan yang berbeda?"
- Relasi matematis yang menjelaskan sifat-sifat transisi/peralihan dari medan-medan dari satu daerah ke daerah lain.

Komponen Normal dan Komponen Tangensial

- Medan Listrik yang terletak pada suatu bidang dapat diuraikan menjadi komponen "normal" dan komponen "tangensial".
- Komponen Normal: Komponen yang "tegak lurus" bidang.
- Komponen Tangensial: Komponen yang "menyinggung" bidang.

E: Medan Listrik

E_N: Komponen Normal

E_T: Komponen Tangensial

Komponen Normal dan Komponen Tangensial

Secara Vektor, berlaku:

$$\vec{\mathbf{E}}_{\mathbf{N}} + \vec{\mathbf{E}}_{\mathbf{T}} = \vec{\mathbf{E}}$$

Secara Amplitudo (besar vektor), berlaku:

$$\left|\vec{\mathbf{E}}_{\mathbf{N}}\right|^{2} + \left|\vec{\mathbf{E}}_{\mathbf{T}}\right|^{2} = \left|\vec{\mathbf{E}}\right|^{2}$$

Menentukan Komponen Normal dan Komponen Tangensial

Lebih mudah untuk menentukan komponen NORMAL terlebih dahulu.

- 1. Tentukan Vektor NORMAL SATUAN pada titik pangkal vektor (= a_n).
- 2. Tentukan Komponen NORMAL: $\vec{\mathbf{E}}_{\mathbf{N}} = (\vec{\mathbf{E}} \cdot \hat{\mathbf{a}}_{\mathbf{n}})\hat{\mathbf{a}}_{\mathbf{n}}$
- 3. Tentukan Komponen TANGENSIAL: $\vec{\mathbf{E}}_T = \vec{\mathbf{E}} \vec{\mathbf{E}}_N$

Syarat Batas Medan Listrik

Apa perubahan yang terjadi jika medan listrik E merambat dari suatu medium masuk ke medium lain?

Syarat Batas Medan Listrik

Oleh karena vektor pada suatu permukaan dapat diuraikan menjadi komponen NORMAL dan TANGENSIAL, maka analisis lebih mudah dilakukan pada komponen NORMAL dan TANGENSIALnya.

Syarat Batas Medan Listrik

Syarat Batas Medan Listrik Komponen Normal diperoleh dengan menerapkan hukum Gauss Medan Listrik (Lihat Penurunannya di Magdy Iskander, Hal. 211-213)

$$\hat{\mathbf{n}} \bullet \left(\vec{\mathbf{D}}_1 - \vec{\mathbf{D}}_2 \right) = \rho_s$$

atau

$$\mathbf{D_{1N}} - \mathbf{D_{2N}} = \boldsymbol{\rho_{S}}$$

 $D_1 = \varepsilon_1 E_1$ adalah Rapat Flux Listrik di Media I.

 $D_2 = \varepsilon_2 E_2$ adalah Rapat Flux Listrik di Media II.

 ρ_s = Rapat muatan di permukaan batas.

Syarat Batas Medan Listrik

Syarat Batas Medan Listrik Komponen Tangensial diperoleh dengan menerapkan hukum Faraday (Lihat Penurunannya di Magdy Iskander, Hal. 214-215)

$$\hat{\mathbf{n}} \times \left(\vec{\mathbf{E}}_1 - \vec{\mathbf{E}}_2 \right) = 0$$

$$\mathbf{E_{1T}} - \mathbf{E_{2T}} = \mathbf{0}$$

E₁ adalah Medan Listrik di Media I.

E₂ adalah Medan Listrik di Media II.

Syarat Batas Medan Magnet

Syarat Batas Medan Magnet Komponen Normal diperoleh dengan menerapkan hukum Gauss Medan Listrik (Lihat Penurunannya di Magdy Iskander, Hal. 218-219)

$$\hat{\mathbf{n}} \bullet \left(\vec{\mathbf{B}}_1 - \vec{\mathbf{B}}_2 \right) = \mathbf{0}$$

atau

$$\mathbf{B_{1N}} - \mathbf{B_{2N}} = \mathbf{0}$$

 $B_1 = \mu_1 H_1$ adalah Rapat Flux Magnet di Media I.

 $B_2 = \mu_2 H_2$ adalah Rapat Flux Magnet di Media II.

Syarat Batas Medan Magnet

Syarat Batas Medan Magnet Komponen Tengensial diperoleh dengan menerapkan hukum Faraday (Lihat Penurunannya di Magdy Iskander, Hal. 219-221)

$$\hat{\mathbf{n}} imes \left(\vec{\mathbf{H}}_1 - \vec{\mathbf{H}}_2 \right) = \vec{\mathbf{J}}_s$$
 atau $H_{1T} - H_{2T} = J_s$

 H_1 adalah Intensitas Magnet di Media I. H_2 adalah Intensitas Magnet di Media II. J_s = Rapat arus permukaan.

