CS M51A, Sec. 1, Class Exercises No. 7 - SOLUTIONS

Exercise 7.15

From the state table we get

$$P_1 = (a, b, c, e)(d, h)(f)(g)$$

To obtain P_2 , we determine the class of P_1 to which the successors of the states belong.

Thus,

$$P_2 = (a, c)(b, e)(d, h)(f)(g)$$

To obtain P_3 , we determine the group of states of P_2 to which the successors of the state belong.

Therefore, $P = P_3 = P_2 = (a, c)(b, e)(d, h)(f)(g)$ and the reduced table is

	Input	
PS	x = 0	x = 1
a	f, 0	b, 0
b	d, 0	a, 0
d	g, 1	a, 0
f	f, 1	b, 1
g	g, 0	d, 1
	NS, Output	