REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

TORM TO THE ABOVE ADDITEOU.				
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)		
Jan 2014	Briefing Charts	Jan 2014- Apr 2014		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER			
		In-House		
Investigation of Optimal Numerical Method	5b. GRANT NUMBER			
Simulations	,			
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)	5d. PROJECT NUMBER			
Edoh, A., Karagozian, A., Merkle, C. a	5e. TASK NUMBER			
•				
		5f. WORK UNIT NUMBER		
		O12M		
7. PERFORMING ORGANIZATION NAME(8. PERFORMING ORGANIZATION			
(o, mio moonico (20)	REPORT NO.		
Air Force Research Laboratory (AFMC	C)			
AFRL/RQR				
5 Pollux Drive.				
Edwards AFB CA 93524-7048				
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Research Laboratory (AFMC		10. SI CHOCK/MONITOR S ACKON IM(S)		
AFRL/RQR	-)			
~		44 CDONCOD/MONITODIC DEDORT		
5 Pollux Drive.		11. SPONSOR/MONITOR'S REPORT		
Edwards AFB CA 93524-7048		NUMBER(S)		
		AFRL-RQ-ED-VG-2014-067		
12. DISTRIBUTION / AVAILABILITY STATE	EMENT	I		

Distribution A: Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

Briefing Charts presented at 8th SoCal Symposium on Flow Physics, UCLA, CA, April 12, 2014. PA#14193

14. ABSTRACT

Briefing Charts

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON V. Sankaran	
a. REPORT	b. ABSTRACT	c. THIS PAGE	SAR	15	19b. TELEPHONE NO (include area code)
Unclassified	Unclassified	Unclassified	SAK		661-275-5534

Investigation of Optimal Numerical Methods for High Reynolds Number Unsteady Simulations

Ayaboe Edoh, Ann Karagozian, Charles Merkle (Purdue U.), Venkateswaran Sankaran (AFRL)

8th SoCal Symposium on Flow Physics
April 12, 2014

Motivation: Large-Eddy Simulation (LES) Challenges

Ref: 2013 - Cocks, Sankaran, Soteriou, "Is LES of reacting flow predictive? Part 1: Impact of Numerics"

Need to determine **BEST** discretization scheme for Reacting LES

Approach

- Investigate dissipation and dispersion characteristics of schemes
 - tied to solution accuracy
 - use Von Neumann Stability Analysis

- Schemes to investigate:
 - Standard Collocated Grid
 - Standard Staggered Grid
 - Kinetic Energy Preserving
 - Collocated & Staggered

FIG. 1. Regular grid system.

FIG. 2. Staggered grid system.

Von Neumann Analysis

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} = 0 \quad \text{1D Euler Eqns} \quad \longrightarrow \quad \frac{\partial Q}{\partial t} + A \frac{\partial Q}{\partial x} = 0 \quad \text{with } A = \partial E / \partial Q$$

Eigenvalues of the amplification matrix specify growth factor and phase errors.

$$Q^{n+1} = GQ^n$$

Staggered Grid Scheme/ Quasi-Linear Form

$$\frac{\Gamma_{ce} \left(\frac{\partial Q_{pT}}{\partial t} + \frac{\partial Q_u}{\partial t} \right)_i}{\partial t} + \Gamma_m \left(\frac{\partial Q_{pT}}{\partial t} + \frac{\partial Q_u}{\partial t} \right)_{i+1/2} + \frac{A_{ce} \left(\frac{\partial Q_{pT}}{\partial x} + \frac{\partial Q_u}{\partial x} \right)_i}{\partial t} + A_m \left(\frac{\partial Q_{pT}}{\partial x} + \frac{\partial Q_u}{\partial x} \right)_{i+1/2} = 0$$

Growth Factor

$$||g_i||$$

Phase Error

$$\frac{\phi}{\phi_{exact}} = \frac{-\tan^{-1}\{Imag(g_i)/Re(g_i)\}}{CFL \times \beta}$$

Stability Analysis

Stability Analysis

Test Cases

1D Duct

- Periodic BC's

Saw-tooth i.c.

Sinusoidal i.c.

Particle Wave High Frequency Behavior

Runge Kutta Scheme

$$CFL = 1 = \frac{\lambda_2 \Delta t}{\Delta x}$$

$$Mach = 0.28$$

$$distrub = 0.01\%$$

Acoustic Wave High Frequency Behavior

Effect of Boundary Conditions

$$CFL = 1 = \frac{\lambda_2 \Delta t}{\Delta x}$$

$$Mach = 0.28$$

$$distrub = 0.01\%$$

$$\begin{aligned} &\Omega + [\Delta \hat{q}_{bc} - \Delta \hat{q}_{int}] = 0 \\ &\Omega_{inlet} = \begin{bmatrix} \rho u - \dot{m}_{in} \\ T - T_{in} \\ 0 \end{bmatrix}, \Omega_{outlet} = \begin{bmatrix} 0 \\ 0 \\ p - p_{out} \end{bmatrix} \end{aligned}$$

Pressure at 10T₃

characteristic variables at 10T₃

high frequency in Collocated pressure solution
 lack of acoustic damping

Kinetic Energy Preservation (KEP)

- "in computations of turbulent flow fields, dissipative errors show up at the level of kinetic energy" (Mahesh 2004)
- Robust at inviscid limit (Re $\rightarrow \infty$)

Incompressible Flow:

$$u_{i} \left\{ \frac{\partial u_{i}}{\partial t} + \frac{\partial u_{i}u_{j}}{\partial x_{j}} = \frac{1}{\rho} \left(-\frac{\partial P}{\partial x_{i}} + \frac{\partial \tau_{ij}}{\partial x_{j}} \right) \right\} \xrightarrow{\frac{\partial u_{j}}{\partial x_{j}}} \frac{\partial}{\partial t} \left(\frac{1}{2} u_{i}^{2} \right) + \frac{\partial}{\partial x_{j}} \left(\frac{1}{2} u_{i}^{2} u_{j} \right) = \frac{1}{\rho} \left(-\frac{\partial u_{i}P}{\partial x_{i}} + u_{i} \frac{\partial \tau_{ij}}{\partial x_{j}} \right)$$

- K = ½ u_i² bounded and constant at inviscid limit
 KEP schemes satisfy secondary equation discretely
 Richtmeyer & Morton (1967)
- Arakawa (1966)

Compressible Flow:

$$\frac{-u_{i}^{2}}{2} \left\{ \frac{\partial}{\partial t} \rho + \frac{\partial}{\partial x_{j}} \rho u_{j} \right\} + u_{i} \left\{ \frac{\partial}{\partial t} \rho u_{i} + \frac{\partial}{\partial x_{j}} \rho u_{i} u_{j} + \frac{\partial}{\partial x_{i}} P - \frac{\partial}{\partial x_{j}} \tau_{ij} \right\} = 0$$

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho u_{i}^{2} \right) + \frac{\partial}{\partial x_{j}} \left(\rho u_{j} \frac{u_{i}^{2}}{2} \right) = \frac{1}{\rho} \left(-u_{i} \frac{\partial P}{\partial x_{i}} + u_{i} \frac{\partial \tau_{ij}}{\partial x_{j}} \right)$$

- Discrete analogue seeks:
 - Accurate transport of KE →accurate physical transfer of energy: E = KE + U_{int}

KEP: Applied to 1D Euler

(Collocated Grid)

- compare Crank-Nicolson (CN) with Fully KEP scheme (F-KEP)

$$\frac{(\rho \phi_{k})_{i}^{n+1} - (\rho \phi_{k})_{i}^{n}}{\Delta t} + \frac{1}{V_{i}} \sum_{f} (\phi)_{f}^{m} (\rho \mathbf{u}_{j})_{f}^{n+1/2} \cdot S_{i} + \frac{1}{V_{i}} \sum_{f} \left(\frac{\partial p v_{k,j}}{\partial x_{j}} \right)_{f}^{n+1/2} \cdot S_{i} = 0$$

$$\phi^{m} = \frac{1}{2}(\phi^{n+1} + \phi^{n}) \qquad \phi^{m} = \frac{(\sqrt{\rho}\phi)^{n+1} + (\sqrt{\rho}\phi)^{n}}{(\sqrt{\rho})^{n+1} + (\sqrt{\rho})^{n}}$$
(CN)
(F-KEP)

Subbareddy/Candler(2009)
Merkle (2013)

$$\phi = \begin{bmatrix} 1 \\ u \\ e \\ Y_k \end{bmatrix}$$

- discrete secondary equation satisfied to machine zero if KEP

$$\frac{(\rho\phi_{k}^{2})_{i}^{n+1} - (\rho\phi_{k}^{2})_{i}^{n}}{2\Delta t} + \frac{1}{V_{i}} \sum_{f} (\rho u_{j}^{n+1/2})_{f} \left(\frac{\phi_{k}^{2}}{2}\right)_{f}^{m} \cdot S_{f,i} + \phi_{k,i}^{m} \frac{1}{V_{i}} \sum_{f} (\rho v_{k,j})^{n+1/2} \cdot S_{f,i} = RESIDUAL$$
with
$$\left(\frac{\phi_{k}^{2}}{2}\right)_{f}^{m} = \frac{1}{2} \left(\frac{\phi_{k}}{2}\right)_{i}^{m} \left(\frac{\phi_{k}}{2}\right)_{nbr}^{m}$$

Evaluating KEP: u²

Going Forward

Key Questions:

- What is the advantage of kinetic energy preservation for LES?
- Does it help minimize or eliminate the need for artificial dissipation?
- What about the relative importance of dispersion errors?
- Implement Merkle's generalized KEP schemes
 - Formulated for both staggered and collocated schemes
 - Major advantage is that it is KE preserving for the scalar transport as well
 - Can we minimize or eliminate the need for artificial dissipation for scalars?
- Extend schemes to multi-dimensional code
 - Apply to non-reacting and reacting LES computations

Acknowledgment:

Supported by Dr. Fariba Fahroo (AFOSR)