1/10

TABLE 1

Paint with newtonian resin only

Ingredients	parts
Newtonian resin	4.20
Eastman TXIB	0.9
Bentone SD1	1.02
Tioxide TR92	9.18
Melamine	9.18
Dipentaerythritol	15.61
Exolit AP422	31.33
Solvesso 100	28.57

Paint with newtonian & crosslinked resin

Ingredients	parts
Newtonian resin	3.36
Crosslinked resin	0.84
Eastman TXIB	0.9
Bentone SD1	1.02
Tioxide TR92	9.18
Melamine	9.18
Dipentaerythritol	15.61
Exolit AP422	31.33
Solvesso 100	28.57

WO 2004/061020 PCT/IB2003/006398

2/10

TABLE 2

TABLE 2	
Paint 1 Ingredients Newtonian PMS/2EHA resin Crosslinked PMS/2EHA resin Cereclor S52 Cereclor 70 Tioxide TR92 Dipentaerythritol Melamine Exolit AP422 white spirit 17 Solvesso 100	parts 6.5 2.5 3.0 6.5 6.0 8.0 8.5 26 23
Paint 2 Ingredients Newtonian PMS/2EHA/PTBS resin Crosslinked PMS/2EHA/PTBS resin Cereclor S52 Cereclor 70 Tioxide TR92 Dipentaerythritol Melamine Exolit AP422 white spirit 17 Solvesso 100	parts 6.36 0.71 2.78 4.29 8.08 12.12 13.13 22.22 30.3
Paint 3 Ingredients Newtonian Styrene/acrylic resin Crosslinked styrene /acrylic resin Cereclor 70 Tioxide TR92 Dipentaerythritol Melamine Exolit AP422 white spirit 17 Solvesso 100	parts 8.4 2.1 8.5 9.5 7.9 7.9 26.4 26.3 3.0
comparative Paint 4 Ingredients Comparative newtonian Styrene/acrylic resin Cereclor 54DP Cereclor S52 Cereclor 70 Tioxide TR92 Dipentaerythritol Melamine Exolit AP422 white spirit 17 Solvesso 100 Bentonite	parts 9.0 5.76 3.0 1.6 6.0 8.0 8.5 26.0 19.6 10.0

WO 2004/061020 PCT/IB2003/006398

3/10

Figure 1

Thermal degradation curve of Newtonian PMS/2EHA resin, APP and of the 60/40 w mixtures of the two.

TGA curves of Ammonium polyphosphate (APP) and PMS/2EHA (75/25) linear resin

Figure 2

Thermal degradation curve of Newtonian styrene/acrylic resin, APP and of the 60/40 w mixtures of the two.

TGA curves of Ammonium polyphosphate (APP) and styrene/acrylic linear resin

Figure 3

Thermal degradation curve of cross-linked PMS/2EHA resin, APP and of the 60/40 w mixtures of the two.

Figure 4

Thermal degradation curve of cross-linked styrene/acrylic resin, APP and of the 60/40 w mixtures of the two.

Figure 5

 $\Delta(\text{T})$ curves: difference between theoretical and experimental weight loss in TGA for 60/40 blends of various PMS/2EHA resins and APP

Figure 6

Thermal insulation on aluminium plates with intumescent coatings prepared with PMS/2EHA and with styrene/acrylic resins

Figure 7

Thermal insulation on aluminium plates obtained with intumescent coatings prepared with various types of resins

Figure 8

RHR measured with intumescent coatings prepared with various types of resins and exposed at 35 $kW/m^{2}\,$

