CSCA48 Winter 2018 Week 10:Algorithm Analysis

Marzieh Ahmadzadeh, Nick Cheng University of Toronto Scarborough

Algorithm

- Definition:
 - Solving a problem step-by-step in finite amount of time.
- Analysis:
 - How much of computer resources does an algorithm use?
 - Memory Space
 - We are not interested in this for now
 - CPU time
 - Dependent to input size
- How to measure running time?
 - Experimental method
 - Theoretical analysis

Experimental Method

- Implement the algorithm using one of the programming languages.
- Start the timer
- Execute the algorithm
- Stop the timer
- Plot the results to compare.

Disadvantage of experimental method

- It needs implementing the algorithms
- Results are only indicative of the running time on data included in the experiment
- The same hardware and software in similar execution atmosphere must be used to compare two algorithms.

Theoretical Analysis

Requirement

- Uses a pseudo-code instead of a code to describe the algorithm
- Allows us to compute the running time of the algorithm independent of the environment and language.
- Takes into account the worst case scenario for inputs
 - Best case is not the reality.
 - Average case coverage is difficult to determine
- Describe the execution time as a function of input size.
- Assumes that every primitive operation takes one unit of time in a certain machine model.
 - expression evaluation, assignment, indexing into an array, function call, returning from a function, comparison, follow an object reference

Example

• In worst case scenario:

```
Function find_max(a_list, n)

max \leftarrow a_list[0]

for i \leftarrow 1 to n - 1 do

if a_list[i] > max

max = a_list[i]

return max
```

 $\verb"a_list" is a list containing n comparable data"$

Code	# of Operations
$max \leftarrow a_list[0]$	2
for $i \leftarrow 1$ to $n-1$	2n + 1
if a_list[i] > max	2 (n-1)
max = a_list[i]	2 (n-1)
Increment i	2 (n-1)
return max	1
	8n - 2

If n = 100 then 798 operations is required to execute this code If n = 10 then 78 operations is required

Time Complexity

- Is the time that is taken to run an algorithm when maximum amount of resources is required.
 - i.e. worst case complexity
- Since complexity varies with different input size, it is shown by a function:
 - T(n) = r, where n: input size, r: running time, T(n): worst case complexity.
 - $n \in N, r \in \mathbb{R}^+$
 - For previous example: T(n) = 8n 2
- We don't need to know the exact value of T(n), instead an upper bound (i.e. dominant term) is used as an estimate.

Upper-bound (1)

- Suppose T(n) = 8n 2
- We define the order of magnitude as the dominant part of T(n) that increases fastest as the value of n increases.
 - Order of magnitude is n (i.e. O(n)) since $\exists c, \forall n \in \mathbb{N}: T(n) \leq c.f(n)$
 - T(n) = 8n 2, f(n) = n, c = 8
- Big-O notation is used to show the order of magnitude.
 - T has order n
 - T is big- oh of n

Upper-bound (2)

• Suppose T(n) = 2n + 10, then 2n is only dominant if n is large enough

- So we define asymptotic upper-bound:
 - Let $f: N \to R^+$, $T: N \to R^+$ be functions then: $O(f(n)) = \{T(n) | \exists c, \exists b, \forall n \ge b : T(n) \le c, f(n)\}$

• $T(n) = (2n + 10), f(n) = n, c = 4, n \ge 11$

Example:

- If $T(n) = 3n^2 + 5n 7$ then running time is $O(n^2)$
- Find c and b such that $3n^2 + 5n 7 \le cn^2$
 - c = 4, b = 2
 - So $3n^2 + 5n 7 \in O(n^2)$

Important Functions

- Constant : O(1)
- Logarithmic: $O(\log n)$
- Linear: O(n)
- N-Log-N: $O(n \log n)$
- Quadratic: $O(n^2)$
- Cubic : $O(n^3)$
- Exponential: $O(2^n)$

O(1) O(n^2) O(n^3) O(2^n)

Examples:

- Find the running time of
 - Insertion & removal into/from
 - a list at a certain index where it is implemented by a single linked list (with a pointer to tail and without a pointer to tail)
 - the end of a list, where it is implemented by a single linked list (with and without tail)
 - the end of a list, where it is implemented by a double linked list
 - Appending to a list, implemented by a single linked list
 - Finding an item in the list
 - Insertion & removal into/from a
 - dictionary
 - PQ
 - BST
 - Heap
 - Bubble sort