Параллельное программирование Лабораторная работа №5. "Оптимальненькая" Численные методы решения задач оптимизации

Цель работы

Реализация численных методов решения задач оптимизации - поиска минимум функций одной (метод равномерного поиска, метод дихотомии, метод золотого сечения) и нескольких (метод покоординатного спуска, градиентный метод, метод Ньютона) переменных.

Задание

1. Создать функцию lab05_func_sca возвращающую значение найденного минимума функции одной переменной f(x), значение x в точке минимума и количество выполненных итераций. Входные параметры функции: величины a и b - границы интервала поиска минимума, название метода в виде строки, максимальное количество итераций и требуемую точность. В функции через оператор switch...case (выбор по названию метода) реализовать поиск минимума соответствующими методами.

Примечание: задать $f(x) = (x+1)^2 + 2$ как "Nested Function".

- 2. По аналогии с lab05_func_sca создать функцию lab05_func_vec возвращающую минимум функции нескольких переменных f(x) (x вектор). Входные параметры функции lab05_func_vec идентичны lab05_func_sca кроме не требуемых a и b.
 - <u>Примечание:</u> как "Nested Function" задать $f(x) = (x_1+1)^2 + (x_2+1)^2 + 2$, функцию fd возвращающую численное значение i-ого дифференциала $df(x)/dx_i$ вычисляемого в точке x^k , функцию hessian возвращающую численное значение матрицы Гессе для f(x) в точке x^k и функцию lmin находящую $\lambda = \arg\min_{\lambda} f(x^k + \lambda^k \nabla f(x^k))$ методом дихотомии или золотого сечения.
- 3. В основном скрипте реализовать вызов соответствующих функций и получение решение задачи оптимизации всеми применимыми методами. Результаты для каждой функции представить в виде таблицы (table), содержащую столбцы с переменными: название метода, найденный минимум функции, значение аргумента в точке минимума, потребовавшееся количество итераций. Принять следующие значения параметров $a=-5,\ b=5$, точность $\varepsilon=10^{-4}$, максимальное количество итераций равное 10^6 .
- 4. Построить на одной канве два графика. На первом отобразить для одномерного случая кривую f(x) и маркерами значения каждого из трех найденных минимумов. На втором графике построить поверхность f(x) для случая многомерной оптимизации и маркерами показать значения каждого минимума. Для каждого графика в легенде указать названия методов.