Smart Home

Zwischenpräsentation am 04.06.2018

Unser Produkt

- Microcontroller ESP32 mit Fenstersensor
- openHab als Smart Home Zentrale
- DIY Sicherheitssystem für Smart Homes

Funktionsweise + Ablauf

- Microcontroller sendet Nachricht, dass ein Fenster geöffnet wurde
- Message Bus (MQTT) authentifiziert ihn und akzeptiert Nachricht
- Zentrale nimmt die Nachricht und verarbeitet sie
- Zentrale sendet Nachricht, wenn die Bedingungen erfüllt wurden (Security aktiv und Fenster wird geöffnet)

Anforderungen

- Firmware nachpatchen ermöglichen
- Lokales System (ohne Cloud Zwang)
- Sichere Kommunikation zwischen Komponenten
- Ausfallsicherheit
- Spoofing Schutz
- Einfache Einrichtung und Bedienung für höhere Nutzerakzeptanz

Zentrale - openHAB

- Lokale Smart-Home-Zentrale
- Verbindung von IoT-Geräten von vielen Herstellern möglich
- Steuerung von Geräten möglich
- Smartphone-Apps verfügbar
- Push-Notification/E-Mail an den User

Notifications - bei Ereignissen

- beim Verlassen des Hauses
 - "Fenster noch offen"
- In Abwesenheit
 - "Fenster geht auf"
 - "Fenster geht zu"
- Benachrichtigung bei kritischem Batteriestand

Notifications - Statusbericht

- Statusupdate (stündliche Verifikation, dass das Sensorboard noch läuft) inkl. Infos:
 - Fensterstatus
 - Akku-/Batterieladezustand
 - Evtl. Temperatur und Luftfeuchtigkeit

Live Demo

Problem: Riot-OS Board Support

- Viele Boards sind End Of Live
- Viele Boards sind zu teuer
 - Probleme mit Stakeholdern
- Boards haben den Anforderungen nicht entsprochen

Wir haben uns für einen verbreiteten Chip (ESP32) ohne RiotOS entschieden

Problem: Aktuator

- Erfordert teure Komponenten
- Erfordert bauliche Maßnahmen
 - Keine Expertise im Team vorhanden

Wir haben uns gegen einen Schließmechanismus entschieden

Problem: Akku

- Akkus wurden spät geliefert (optimierbare Logistik)
- Eines der Boards hatte Probleme mit dem Akku
- Wichtig für die Ausfallsicherheit
- Ggf. mit Solar aufladen

Wir wollen dieses Problem weiter untersuchen

Problem: Push Notifications

- Benachrichtigungen sind wichtig für die Nutzerakzeptanz
 - Elementar für die Stakeholder
- Spätes Setup des Systems → Problemanalyse läuft

Wir werden das Problem angehen

Aussichten

Nächste Milestones

Feature: Security

- Notwendig f
 ür die Nutzerakzeptanz
- Verschlüsselung soll hinzugefügt werden
- Spoofing Schutz
- (Updatemechanismus)

Weitere Maßnahmen müssen validiert werden

Feature: Energiesparmaßnahmen

- ESP32 ist leistungsfähiger als benötigt
 - Mehrere Kerne, viel Speicher, etc.
 - -> zweiten CPU-Kern deaktivieren
- Deep-Sleep nutzen
 - Timer für periodische Daten wie z.B. Temperatur
 - Interrupt für Fenstersensor
- Energiequelle auswählen -> Tests mit den Boards/Akkus (Solarpanel)
- Längere Akkulaufzeit → Höhere Nutzerakzeptanz

Feature: Konfigurator

- Nutzerakzeptanz steigt mit einfacher Bedienung (eventuell GUI)
- Keine lange Anleitung → repetitive Schritte automatisieren
- Ein Konfigurator vereinfacht die Konfiguration und das Patchen der Boards
- openHab Konfiguration muss zeitgleich aktualisiert werden

Feature: Sensorik

- Weitere Sensoren sollen eingebunden werden können
 - Mehrere Fenstersensoren → weniger Boards → Preis/Leistung
 - Temperatursensor → Statistik, Warnungen
 - Kohlenstoffmonoxidsensor → Warnung
- Kompliziertes Setup
- Höherer Stromverbrauch → Tradeoff

Feature: Ad-Hoc Netzwerk

- Nachrichten über mehrere Knoten weiterleiten
- Verbesserte Verbindung über weitere Strecken ohne Repeater
 - Erweiterung der Reichweite des Heimnetzes entlang der Knoten
- Höhere Sicherheit durch Redundanz

Fragen?