MATH 240 – Lecture 10

Enlai Li

February 3, 2023

1 Relations

 $R\subseteq A\times A$ intention of pairing together elemtns that are "equivalent" from a certain point of view . . .

ex:

$$\frac{a}{b} \sim \frac{c}{d} \iff ad = bc$$

What does it mean for 2 things to be "equivalent" from a mathematical POV? Definition: A relation $R \subseteq A \times A$ is <u>reflexive</u> if $\forall x \in A, xRx$

 \bullet = : because x = x

 $\bullet \sim : \frac{a}{b} \sim \frac{a}{b} \iff ab = ba$

• |: $x|y \iff y = kx (k \in \mathbb{Z})$ Reflexive: $x|x \iff \exists k.x = kx$ True with k = 1

non-examples:

• Unit cercle: $xCy \iff x^2 + y^2 = 1$ We do not necessarily have xCx..., that would mean

$$x^{2} + x^{2} = 1$$
$$2x^{2} = 1$$
$$x = + -\frac{1}{\sqrt{2}}$$

• Strict order: < (on \mathbb{R} , on \mathbb{Z}, \dots) Counterexample: $42 \not < 42$, in fact x < x is never true. but <= is reflexive. x <= x

1.1 Transitive

Def: $R \subseteq A \times A$ is transitive of $\forall x, y, z \in A, xRyhatyRz \Rightarrow xRz$

Assume: $x \sim y$ and $y \sim z$ i.e. ad = bc and cf = de Goal: show $x \sim z$, i.e. af = be?

$$df = bc$$

$$adf = bcf$$

$$a \cancel{A} f = b \cancel{A} e$$

$$ad = be$$

1.2 Divisibility

$$x|ycapy|z? \Rightarrow x|z$$

Assume x|y and y|z where y=kx and z=ly . Then $z=ly=l(kx)=(lk)x\Rightarrow x|z$

Note: < and <= are also transitive

Non example:

Unit circle:

$$0 \subset 1$$
 because $0^2 + 1^2 = 1$
 $1 \subset 0$ because $0^2 + 1^2 = 1$
But $0 \not\subset 0$ because $0^2 + 0^2 \neq 1$

Non-equality (\neq) :

$$0 \neq 1$$
 and $1 \neq 0$
but it is not true that $0 \neq 0$

1.3 Symmetric

Def: $R \subseteq A \times A$ is symmetric if $xRy \Rightarrow yRx$ ex:

$$x = y \Rightarrow y = x$$
 Unit cercle
$$xCy \Rightarrow x^2 + y^2 = 1$$

$$\Rightarrow y^2 + x^2 = 1 \Rightarrow yCx$$

Fraction:

$$\frac{a}{b} \sim \frac{c}{d} \iff ad = bc$$

$$\iff bc = ad$$

$$\iff \frac{c}{d} = \frac{a}{b}$$

Non-ex:

< and <= are not symmetric

Divisibility:

$$2|6$$
 $6 = 3 \times 2$
 $but6/2$ because $2 = k6$
 $k = \frac{2}{6} \notin \mathbb{Z}$

1.4 equivalence relation

Def: if R is reflective, transitive and symmetric

ex:

= and \sim

 $A \sim Bif|A| = |B| \iff \exists f: A \to B \text{ Bijective}$

Show equivalence relation:

1. Reflexive: $A \sim A$ consider identity function

$$id_A: A \to A$$
 invertible $id_A(x) = x$ bijective

2. Symmetric: $A \sim B \Rightarrow \exists f: a \to \text{bijective}$. Then f is invertible and $f^{-1}iB \to A$ and f^{-1} is also invertible (hence bijective)

$$(f^{-1})^{-1} = f \Rightarrow B \sim A$$

 $\frac{2}{3}$ and $\frac{4}{6}$ are equivalent because $\frac{2}{3}\sim\frac{4}{6}$

1.5 equivalent relation

Def: Given an equivalent relation on a set A and an elemtn $a \subseteq A$, the equivalence class of a is the set

$$[a] = \{ x \in A \mid x \sim a \}$$

ex:

$$= \text{ Then } [a]_{=} = \{a\}$$
on \mathbb{F} : $[\frac{a}{b}]_{\sim} = \{\frac{c}{d} \mid ad = bc\}$
ex: $[\frac{1}{2}]_{\sim} = \{\frac{1}{2}, \frac{2}{4}, \frac{42}{84}, \dots\}$
 $[\mathbb{N}] = \{\text{comptable infinite sets}\}$

Remark:

- 1. $[a]_{\sim} \neq \emptyset$ because $a \in [a]$ be reflexivity $a \sim a$
- 2. $a \sim b \iff [a]_{\sim} = [b]_{\sim}$ Assume $a \sim b$ NTS $[a]_{\sim} = [b]_{\sim}$ Double inclusion: $[a]_{\sim} \subseteq [b]_{\sim}$
- 3. if $a \not\sim b$, then $[a]_{\sim} \sim [b]_{\sim} = \emptyset$ proof by contrapositive: if $[a]_{\sim} \sim [b]_{\sim} \neq \emptyset$

In the case of fractions we can ocnsider that teh rational number $\frac{1}{2}$ is the class $\left[\frac{1}{2}\right]_{\sim}$

Def: equivelence relation on A, then the quotient set of $Az \sim$

$$A/\sim = \{[x]_{\sim} \mid x \in A\}$$

is the set of equivalence classes. We could define $\mathbb{Q}=\mathbb{F}/\sim$ so when we write

$$\frac{1}{2} = \frac{2}{4} \quad \text{(as in } \mathbb{Q}\text{)}$$

it means $[\frac{1}{2}_{\sim}]=[\frac{2}{4}_{\sim}]$