Conceitos e definições

Aplicações de Modelos Multiestados em Análise de Sobrevivência

Henrique Aparecido Laureano

ce063 - Tópicos em Análise de Sobrevivência Graduação em Estatística UFPR - Universidade Federal do Paraná

05 de outubro de 2016

Aplicações

Roteiro

Contextualizando

Representações por estados

Conceitos e definições

Modelos multiestados de sobrevivência markovianos

Aplicações

MASS II

Inoculação em frutos

Considerações finais

Representações por estados

Contextualizando ○●	Conceitos e definições	Aplicações 00000000 000000	Considerações finais
Representações por estados			
Aplicações de Modelos Multiestados em Análise de Sobrevivência			ce063

 Representação usual de um dado de sobrevivência:

Aplicações

 Representação usual de um dado de sobrevivência:

Aplicações

Abordagens multiestados:

Representação usual de um dado de sobrevivência:

Abordagens multiestados:

Riscos competitivos:

 Representação usual de um dado de sobrevivência:

Abordagens multiestados:

► Riscos competitivos:

Multiestados:

Modelos multiestados de sobrevivência markovianos

Modelo usual

Modelo usual

$$q_{rs}(\mathbf{Z}) = q_{rs}^0 \mathrm{exp}(oldsymbol{eta}^ op \mathbf{Z})$$

Modelo usual

$$q_{rs}(\mathbf{Z}) = q_{rs}^0 \mathrm{exp}(oldsymbol{eta}^ op \mathbf{Z})$$

➤ Z é um vetor de covariáveis em que é assumido efeito comum a todas as transições

Modelo usual

$$q_{rs}(\mathbf{Z}) = q_{rs}^0 \mathrm{exp}(oldsymbol{eta}^ op \mathbf{Z})$$

- ➤ Z é um vetor de covariáveis em que é assumido efeito comum a todas as transições
- q_{rs}⁰ é a intensidade de transição ou taxa de falha de base para a transição do estado r para o estado s,

Modelo usual

$$q_{rs}(\mathbf{Z}) = q_{rs}^0 \mathrm{exp}(oldsymbol{eta}^ op \mathbf{Z})$$

- ➤ Z é um vetor de covariáveis em que é assumido efeito comum a todas as transições
- q_{rs}⁰ é a intensidade de transição ou taxa de falha de base para a transição do estado r para o estado s,

$$q_{rs}(t) = \lim_{\delta t \to 0} \frac{P(X(t + \delta t) = s | X(t) = r)}{\delta t}$$

Um modelo multiestado pode ser:

Um modelo multiestado pode ser:

► Não markoviano

Considerações finais

Modelos multiestados de sobrevivência markovianos

Um modelo multiestado pode ser:

▶ Não markoviano
▶ Semimarkoviano

Contextualizando

Um modelo multiestado pode ser:

- ► Não markoviano
- Semimarkoviano

Markoviano

Um modelo multiestado pode ser:

- ► Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Um modelo multiestado pode ser:

- Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Contextualizando

Um modelo multiestado pode ser:

- ► Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Um modelo multiestado markoviano pode ser de três tipos:

Um modelo multiestado pode ser:

- ► Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Um modelo multiestado markoviano pode ser de três tipos:

Paramétrico

Um modelo multiestado pode ser:

- Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Um modelo multiestado markoviano pode ser de três tipos:

Paramétrico

Não paramétrico

Um modelo multiestado pode ser:

- ► Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Um modelo multiestado markoviano pode ser de três tipos:

Paramétrico

- ► Não paramétrico
- Semiparamétrico

Modelo paramétrico (package msm do R)

Modelo paramétrico (package msm do R)

 Distribuição de probabilidade assumida para o tempo médio de permanência em cada estado transiente r, comumente exponencial

Modelo paramétrico (package msm do R)

 Distribuição de probabilidade assumida para o tempo médio de permanência em cada estado transiente r, comumente exponencial

Dois tipos:

Modelo paramétrico (package msm do R)

 Distribuição de probabilidade assumida para o tempo médio de permanência em cada estado transiente r, comumente exponencial

Dois tipos:

Tempo homogêneo: intensidades de transição constantes ao longo do tempo (independentes de t)

Modelo paramétrico (package msm do R)

▶ Distribuição de probabilidade assumida para o tempo médio de permanência em cada estado transiente r, comumente exponencial

Dois tipos:

Tempo homogêneo: intensidades de transição constantes ao longo do tempo (independentes de t)

Tempo não homogêneo: intensidades de transição variáveis ao longo do tempo, constantes sob segmentos

Contextualizando

Modelo (não e) semiparamétrico (package mstate do R)

Contextualizando

Modelos multiestados de sobrevivência markovianos

Modelo (não e) semiparamétrico (package mstate do R)

▶ Modelo de Cox estratificado por transição

Modelo (não e) semiparamétrico (package mstate do R)

- ▶ Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Modelo (não e) semiparamétrico (package mstate do R)

- Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Além do modelo usual, permite a especificação de modelos mais elaborados com:

Modelo (não e) semiparamétrico (package mstate do R)

- Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Além do modelo usual, permite a especificação de modelos mais elaborados com:

Diferentes efeitos das covariáveis em cada transição

Modelo (não e) semiparamétrico (package mstate do R)

- ► Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Além do modelo usual, permite a especificação de modelos mais elaborados com:

- Diferentes efeitos das covariáveis em cada transição
- Intensidades de transição proporcionais

Modelo (não e) semiparamétrico (package mstate do R)

- ► Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Além do modelo usual, permite a especificação de modelos mais elaborados com:

- Diferentes efeitos das covariáveis em cada transição
- Intensidades de transição proporcionais
- Covariáveis que aparecem apenas em algumas transições

Inferências

Inferências

▶ Probabilidades de transição e de sobrevivência

Inferências

Contextualizando

- Probabilidades de transição e de sobrevivência
- ▶ Tempos médios esperados de permanência em estados e para transição entre estados

Inferências

- ▶ Probabilidades de transição e de sobrevivência
- ► Tempos médios esperados de permanência em estados e para transição entre estados

Qualidade do ajuste

Inferências

- ▶ Probabilidades de transição e de sobrevivência
- ► Tempos médios esperados de permanência em estados e para transição entre estados

Qualidade do ajuste

Modelo paramétrico: métodos formais e informais

Inferências

▶ Probabilidades de transição e de sobrevivência

Conceitos e definições

00000

▶ Tempos médios esperados de permanência em estados e para transição entre estados

Qualidade do ajuste

Modelo paramétrico: métodos formais e informais

Modelo (não e) semiparamétrico: verificação usual

Modelos multiestados de sobrevivência markovianos

Inferências

- ▶ Probabilidades de transição e de sobrevivência
- ► Tempos médios esperados de permanência em estados e para transição entre estados

Qualidade do ajuste

Modelo paramétrico: métodos formais e informais

Modelo (não e) semiparamétrico: verificação usual

 Análise gráfica de resíduos e verificação da suposição de taxas de falha proporcionais (na presença de covariáveis) Contextualizando

Aplicações

MASS II

MASS II

Pacientes com doença arterial coronariana multiarterial, angina estável e função ventricular preservada

Contextualizando

Pacientes com doença arterial coronariana multiarterial, angina estável e função ventricular preservada

Aplicações

Contextualizando

Pacientes que não entraram em óbito (448)

Aplicações

00000000

Pacientes que entraram em óbito (163)

Tempo até a primeira falha • Tempo de sobrevivência *

Modelo multiestado markoviano paramétrico

Modelo multiestado markoviano paramétrico

As covariáveis grupo de risco e histórico de IAM não são significativas

Modelo multiestado markoviano paramétrico

As covariáveis grupo de risco e histórico de IAM não são significativas

	Tempos médios de permanência, em anos, para cada estado transiente									
		Estimativa pontual	Erro padrão	Mínimo - IC de 95%	Máximo - IC de 95%					
	1: TM	7.98	0.66	6.71	9.27					
	2: ICP	10.26	0.91	8.38	11.99					
0	3: CRM	19.25	2.13	14.99	23.59					
ΤΑΓ	4: CRM	21.43	4.59	13.51	31.13					
ES	5: ICP	16.41	3.09	11.7	23.98					
	6: IAM	11.46	1.9	8.27	16.15					
	7: AVC	10.09	5.91	3.9	26.23					

Contextualizando

Modelo multiestado markoviano paramétrico

As covariáveis grupo de risco e histórico de IAM não são significativas

Aplicações

	PROBABILIDADES DE TRANSIÇÃO ENTRE ESTADOS PARA O PERÍODO DE 1 ANO										
						DESTINO					
1 2		2	3	4	5	6	7	8	9		
		(TM)	(ICP)	(CRM)	(CRM)	(ICP)	(IAM)	(AVC)	(ANGINA)	(MORTE)	
	1	0.882	0	0	0.041	0.022	0.032	0.004	0.0008	0.018	
	(TM)	[0.86 - 0.897]	Ü	U	[0.03 - 0.053]	[0.015 - 0.031]	[0.024 - 0.043]	[0.001 - 0.009]	[0 - 0.005]	[0.012 - 0.026]	
	2	_	0.907	0	0.019	0.041	0.019	0.003	0.002	0.007	
	(ICP)	U	[0.886 - 0.92]	Ü	[0.014 - 0.028]	[0.031 - 0.053]	[0.013 - 0.028]	[0.001 - 0.008]	[0 - 0.007]	[0.005 - 0.013]	
	3	3 0	0	0.949	0.002	0.007	0.01	0.003	0.002	0.026	
	(CRM)	U	U	[0.935 - 0.958]	[0 - 0.005]	[0.004 - 0.012]	[0.006 - 0.016]	[0.001 - 0.007]	[0 - 0.006]	[0.02 - 0.035]	
	4 (CRM)		0	0	0.954	0	0	0.002	0	0.044	
_		0	U	U	[0.929 - 0.968]		U	[0 - 0.013]	v	[0.03 - 0.065]	
ORIGEM	5		0	0	0	0.941	0	0	0	0.059	
8	(ICP)	U	U	U	U	[0.918 - 0.958]	Ü	U		[0.042 - 0.081]	
-	6		0	0	0	0	0.916	0	0	0.083	
	(IAM)	·	v	v	v	v	[0.885 - 0.939]	Ü		[0.06 - 0.115]	
	7	0	0	0	0	0	0	0.905	0	0.094	
	(AVC)		v					[0.769 - 0.964]		[0.035 - 0.23]	
	8	0	0	0	0	0	0	0	1	0	
	(ANGINA)	Ü	v	Ü	Ü	Ü	Ŭ	Ü	-	Ü	
	9	0	0	0	0	0	0	0	0	1	
	(MORTE)										

Contextualizando

Curvas de sobrevivência para os estados transientes

Aplicações

Contextualizando

Modelo multiestado markoviano (não e) semiparamétrico

As covariáveis grupo de risco e histórico de IAM não são significativas

Aplicações

	Tempos esperados de permanência, em anos, para cada transição entre estados											
						DESTINO						
		1: TM	2: ICP	3: CRM	4: CRM	5: ICP	6: IAM	7: AVC	8: ANGINA	9: MORTE		
	1: TM	6.38	0	0	2.11	1.14	1.31	0.14	0.04	2.64		
E	2: ICP	0	7.28	0	1.07	1.97	0.92	0.1	0.09	2.33		
	3: CRM	0	0	9.65	0.13	0.43	0.59	0.14	0.09	2.73		
	4: CRM	0	0	0	9.04	0	0	0.05	0	4.67		
9	5: ICP	0	0	0	0	10.05	0	0	0	3.72		
OR	6: IAM	0	0	0	0	0	3.89	0	0	9.88		
	7: AVC	0	0	0	0	0	0	10.44	0	3.33		
	8: ANGINA	0	0	0	0	0	0	0	13.77	0		
	9: MORTE	0	0	0	0	0	0	0	0	13.77		

Contextualizando

Modelo multiestado markoviano (não e) semiparamétrico

As covariáveis grupo de risco e histórico de IAM não são significativas

Aplicações

Contextualizando

- 1 TM
- 2 ICP
- 3 CRM
- 4 CRM
- 5 ICP
- 6 IAM
- 7 AVC
- 8 ANGINA
- 9 MORTE

Inoculação em frutos

Inoculação em frutos

Contextualizando ○○	Conceitos e definições	Aplicações ○○○○○○○ ○●○○○○	Considerações finais
Inoculação em frutos			
Aplicações de Modelos Mult	iestados em Análise de Sobrevivência		ce063

Inoculação em frutos

Contextualizando

Objetivo

Verificar possíveis diferenças entre gêneros de Colletotrichum em relação ao tempo com que a lesão progride nos frutos de maçã, e se existe diferença entre frutos com e sem ferimento

Aplicações

Inoculação em frutos

Contextualizando

Objetivo

Verificar possíveis diferenças entre gêneros de Colletotrichum em relação ao tempo com que a lesão progride nos frutos de maçã, e se existe diferença entre frutos com e sem ferimento

Aplicações

0000000

Colletotrichum?

Inoculação em frutos

Objetivo

Verificar possíveis diferenças entre gêneros de *Colletotrichum* em relação ao tempo com que a lesão progride nos frutos de maçã, e se existe diferença entre frutos com e sem ferimento

Colletotrichum?

 O fungo Colletotrichum é o principal causador da doença Mancha Foliar de Glomerella (MFG), muito severa em pomares de macieira do estado do Paraná

Aplicações ○○○○○○○ ○○●○○○

Inoculação em frutos

Representação dos estados

Contextualizando

Modelo multiestado markoviano paramétrico

- Diferença significativa entre frutos com e sem ferimento
- Sem diferença significativa entre os gêneros de Colletotrichum

Aplicações

Inoculação em frutos

Modelo multiestado markoviano paramétrico

- Diferença significativa entre frutos com e sem ferimento
- Sem diferença significativa entre os gêneros de Colletotrichum

Aplicações

0000000

Inoculação em frutos

Modelo multiestado markoviano paramétrico

- ▶ Diferença significativa entre frutos com e sem ferimento
- ▶ Sem diferença significativa entre os gêneros de *Colletotrichum*

	Tempos médios de permanência, em dias, para cada estado transiente									
Frutos sem ferimento Frutos com ferimento										
		Estimativa	Erro padrão	Mínimo *	Máximo *	Estimativa	Erro padrão	Mínimo *	Máximo *	
	1 (Inoculação)	68.87	24.35	34.44	137.71	8.65	1.7	5.89	12.71	
OQ	2 ((0, 10] mm)	1	0.38	0.48	2.1	2.32	0.49	1.53	3.52	
ESTADO	3 ((10, 30] mm)	9.17	3.74	4.12	20.4	5	1.04	3.32	7.52	
	4 ((30, 50] mm)	4.6	2.06	1.91	11.05	4.65	0.97	3.09	7	
	* Mínimo e máximo de um intervalo de 95% de confianca									

Contextualizando

Modelo multiestado markoviano (não e) semiparamétrico

- Diferença significativa entre frutos com e sem ferimento
- Sem diferença significativa entre os gêneros de Colletotrichum

Aplicações

Inoculação em frutos

Modelo multiestado markoviano (não e) semiparamétrico

- ▶ Diferença significativa entre frutos com e sem ferimento
- ▶ Sem diferença significativa entre os gêneros de *Colletotrichum*

	Tempos esperados de permanência, em dias, para cada transição entre estados												
	Frutos sem ferimento							Frutos com ferimento					
	DESTINO								DESTINO				
		1	2	3	4	5	1	2	3	4	5		
		(Inoculação)	((0, 10] mm)	((10, 30] mm)	((30, 50] mm)	((50, máx.] mm)	(Inoculação)	((0, 10] mm)	((10, 30] mm)	((30, 50] mm)	((50, máx.] mm)		
ORIGEM	1 (Inoculação)	15.61	1.86	2.44	1.29	0.8	9.04	1.29	3.24	3.21	5.2		
	2 ((0, 10] mm)	0	8.93	7.09	3.66	2.31	0	5.59	5.04	4.33	7.04		
	3 ((10, 30] mm)	0	0	14.8	4.43	2.77	0	0	10.62	4.33	7.04		
	4 ((30, 50] mm)	0	0	0	17.44	4.56	0	0	0	14.61	7.39		
	5 ((50, máx.] mm)	0	0	0	0	22	0	0	0	0	22		

Inoculação em frutos

Modelo multiestado markoviano (não e) semiparamétrico

- Diferença significativa entre frutos com e sem ferimento
- Sem diferença significativa entre os gêneros de Colletotrichum

Aplicações

Considerações finais

► Ambos os modelos geraram inferências muito similares

Considerações finais

- ► Ambos os modelos geraram inferências muito similares
- ▶ Modelo (não e) semiparamétrico se mostrou mais robusto

Considerações finais

- Ambos os modelos geraram inferências muito similares
- Modelo (não e) semiparamétrico se mostrou mais robusto
- Ambos os modelos se mostraram altamente dependentes do tamanho amostral

- ► Ambos os modelos geraram inferências muito similares
- ▶ Modelo (não e) semiparamétrico se mostrou mais robusto
- ► Ambos os modelos se mostraram altamente dependentes do tamanho amostral
 - O Grande amostra
 - \otimes Grande amostra em cada transição

00000000

Obrigado por seu tempo!