Límite de suma de Riemann

$$\lim_{\lambda \to 0} \sigma(f, P, (\xi_i)) = I$$

 $\forall \epsilon>0, \exists P_\epsilon \text{ definida en } [a,b] \colon P\supset P_\epsilon \text{ se cumple que } 0\leq |\sigma(f,P,(\xi_i))-I|<\epsilon$

Toda función no acotada no será integrable en ese intervalo

Supongamos que f es no acotada en [a,b]. Para cualquier partición P de E, siempre puede encontrarse un intervalo $[x_{k-1},x_k]$ donde f es no acotada. Sin pérdida de generalidad, en una partición cualquiera P, consideremos a σ_k como una suma integral a la que se le ha omitido el punto k-ésimo:

$$\sigma_k = \sum_{i=1}^n f(\xi_i) \Delta x_i, i \neq k$$

Puesto que f
 no va a estar acotada en el intervalo $[x_{k-1},x_k]$, pueden encontrarse puntos ξ_k que pertenez
can a él y que cumplan $f(\xi_k) > M$ sea M cualquier número prefijado. En
tonces en particular podemos tomar M > 0, ξ_k , y $\Delta x_k > 0$ (es decir la longitud del intervalo $\neq 0$) tal que: $|f(\xi_k)| \geq \frac{|\sigma_k| + M}{\Delta x_k} |f(\xi_k)| \Delta x_k \geq |\sigma_k| + M$

Además, la suma integral asociada a P va a ser:

$$\sigma(f, P, \xi_i) = \sigma_k + f(\xi_k) \Delta x_k$$

Aplicando módulo a ambas partes:

$$|\sigma(f, P, \xi_i)| = |\sigma_k + f(\xi_k)\Delta x_k|$$
$$|\sigma(f, P, \xi_i)| \ge |f(\xi_k)|\Delta x_k - |\sigma_k|$$

Sustituyendo $|f(\xi_k)|\Delta x_k$ por $|\sigma_k|+M$ encontrado anteriormente:

$$|\sigma(f, P, \xi_i)| \ge |\sigma_k| + M - |\sigma_k|$$
$$|\sigma(f, P, \xi_i)| \ge M$$

Esta demostración prueba que la suma integral de f no acotada puede hacerse tan grande como se quiera y por tanto no tendrá límite finito, lo que quiere decir que toda f no acotada es no integrable.

Establecido esto:

Demostración: $f \in \mathcal{R}[a,b] \Rightarrow \overline{I} = \underline{I}$

Demostremos que si $\forall \epsilon > 0, \exists P_{\epsilon}$ tal que $P \supset P_{\epsilon}$, se cumple que $|\sigma(f, P, (\xi_i)) - I| < \epsilon \Rightarrow \lim_{\lambda \to 0} (S - s) = 0 \Rightarrow I = \overline{I}$

Primeramente, demostremos que:

Demostración: $\lim_{\lambda \to 0} (S) = \overline{I}$ y $\lim_{\lambda \to 0} (s) = \underline{I}$

Sea el intervalo [a,b] y sean P_1 y P_2 dos particiones del mismo. Digamos que P_2 es más fina que P_1 , es decir, $P_2 \supset P_1$ Sea los puntos X_{k-1} y X_k de ambas particiones y el punto X' en P_2 tal que $X_{k-1} \leq X' \leq X_k$ Puesto que estamos trabajando en una función acotada y sus intervalos también lo estarán, podemos elegir M y m los supremos del intervalo $[X_{k-1}, X']$ y $[X', X_k]$ respectivamente, y sea M_k el supremo del intervalo $[X_{k-1}, X_k]$:

$$S(f,P_2) - S(f,P_1) = M(X'-X_{k-1}) + m(X_k-X') - M_k(X_k-X_{k-1}) \text{ por la definición de Sumas de Darboux de Particular de Sumas de Particular de Particular de Particular de Sumas de Particular de Pa$$

Pero $m \leq M_k$ y $M \leq M_k$ (M_k es el supremo del intervalo completo y por tanto el mayor de los dos)

Por tanto es posible reemplazar m y M por M_k y cambiar el = por \leq , obteniéndose:

$$S(f, P_2) - S(f, P_1) \le M_k(X' - X_{k-1}) + M_k(X_k - X') - M_k(X_k - X_{k-1})$$

Sacando factor común M_k y simplificando:

$$S(f,P_2) - S(f,P_1) \leq M_k(X_k - X_{k-1}) - M_k(X_k - X_{k-1}) = 0$$

$$S(f,P_2) - S(f,P_1) \leq 0$$

Por tanto,

$$P_2 \supset P_1 \Rightarrow S(f, P_2) \le S(f, P_1)$$

Esto significa que mientras más fina sea la partición, menor será la suma superior que le corresponde. Por tanto, mientras más disminuye λ (la longitud del intervalo mayor) menor es la suma superior.

$$P_{n+1} \supset P_n \Rightarrow S(f, P_{n+1}) \leq S(f, P_n),$$

Entonces la función va a ser monótona decreciente con λ que tiende a 0, por lo que su límite es su ínfimo. Pero como el ínfimo de las particiones de la Suma superior está definido como \bar{I} :

$$\lim_{\lambda \to 0} (S) = \overline{I}$$

Ahora, para la suma inferior, planteamos a m, M, y M_k como los ínfimos de los intervalos previamente dados, que sabemos que exiten por la acotación, y volvemos a expresar: $s(f, P_2) - s(f, P_1) = M(X' - X_{k-1}) + m(X_k - X') - M_k(X_k - X_{k-1})$ por la definición de Sumas de Darboux

Pero $m \ge M_k$ y $M \ge M_k$ (M_k es el ínfimo del intervalo completo y por tanto el menor de los dos)

Por tanto es posible reemplazar m y M por M_k y cambiar el = por \geq , obteniéndose:

$$s(f,P_2) - s(f,P_1) \geq M_k(X' - X_{k-1}) + M_k(X_k - X') - M_k(X_k - X_{k-1})$$

Sacando factor común M_k y simplificando:

$$s(f,P_2) - s(f,P_1) \ge M_k(X_k - X_{k-1}) - M_k(X_k - X_{k-1}) \le 0$$

$$s(f,P_2) - s(f,P_1) \ge 0$$

Por tanto,

$$P_2 \supset P_1 \Rightarrow s(f, P_2) \ge s(f, P_1)$$

Como mientras más fina sea la partición, mayor será la suma inferior, esta función va a ser monótona creciente de forma análoga y su límite el supremo, que está definido como \underline{I} . Por tanto:

$$\lim_{\lambda \to 0} (s) = \underline{I}$$

Concluyendo, $\lim_{\lambda \to 0} (S-s) = \lim_{\lambda \to 0} (S) - \lim_{\lambda \to 0} (S) = \overline{I} - \underline{I}$ Entonces, $\lim_{\lambda \to 0} (S-s) = 0 \Rightarrow \overline{I} - \underline{I} = 0 \Rightarrow \overline{I} = \underline{I}$, al mismo tiempo que $\overline{I} = \underline{I} \Rightarrow \overline{I} - \underline{I} = 0 \Rightarrow \lim_{\lambda \to 0} (S-s) = 0$

Por tanto:

$$\lim_{\lambda \to 0} (S - s) = 0 \iff \overline{I} = \underline{I}$$

Ahora, demostremos que f
 integrable por Riemann $\Rightarrow \lim_{\lambda \to 0} (S-s) = 0$, lo cual a su vez va a implicar $\overline{I} = \underline{I}$: Por hipótesis, $\forall \epsilon > 0, \exists P_{\epsilon}$ tal que $P \supset P_{\epsilon}$ va a cumplirse:

$$I - \epsilon < \sigma(f, P, (\xi_i)) < \epsilon + I$$

Ahora, sabemos que \overline{I} es el ínfimo de las sumas superiores de las posibles particiones del intervalo, por tanto, $\overline{I} \leq S(f,P)$, e \underline{I} es el supremo de las sumas inferiores de las posibles particiones del intervalo, por tanto $\underline{I} \geq s(f,P)$

Además,
$$S(f, P) = \sup(\sigma(f, P, (\xi_i))), y s(f, P) = \inf(\sigma(f, P, (\xi_i)))$$

De lo anterior se deduce que $\inf(\sigma(f,P,(\xi_i))) = s(f,P) \le \sigma(f,P,(\xi_i)) \le S(f,P) = \sup(\sigma(f,P,(\xi_i)))$ Insertando este resultado en $I - \epsilon < \sigma(f,P,(\xi_i)) < I + \epsilon$, se cumple que $I - \epsilon \le s \le S \le I + \epsilon$

Ahora, dado que $s \leq S : S - s \leq 0$

Usamos
$$I - \epsilon \le s$$
 y $S \le I + \epsilon$, restando, $S - s \le (I + \epsilon) - (I - \epsilon) = 2\epsilon$

Uniendo ambas, $0 \le S - s \le 2\epsilon$, y como $\epsilon > 0$, podemos decir $-2\epsilon \le S - s \le 2\epsilon$, es decir:

$$\lim_{\lambda \to 0} (S - s) = 0$$

Que a su vez implica que $\overline{I} = \underline{I}$

Concluyendo, $f(x) \in \mathcal{R}[a,b] \Rightarrow \overline{I} = \underline{I}$

Cualesquiera sean P_1 y $P_2,\ s(f,P_1) \leq S(f,P_2)$

Demostración: Sea $P\supset P_1$ y $P\supset P_2,$ se cumple que:

$$s(f,P_1) \leq s(f,P) \leq S(f,P) \leq S(f,P_2)$$

Como fue demostrado anteriormente. Entonces por transitividad queda demostrado que $s(f, P_1) \leq S(f, P_2)$.

Demostración: $\overline{I} = \underline{I} \Rightarrow f \in \mathcal{R}[a,b]$

Es decir:

$$\underline{I} = \overline{I} \Rightarrow \forall \epsilon > 0, \exists P_\epsilon : P \supset P_\epsilon \text{ tal que } |\sigma(f,P,(\xi_i)) - I| < \epsilon$$

De las definiciones de integral superior e inferior se obtiene que:

$$s \leq \underline{I} \leq \overline{I} \leq S$$

Restando $\overline{I} \leq S$ y $s \leq \underline{I}$:

$$\overline{I} - \underline{I} \leq S - s$$

Sea el caso $\underline{I}=\overline{I},$ designaremos al valor común de \underline{I} y \overline{I} como la variable I, entonces:

$$s \leq I \leq S$$

Luego $0 \le I - s \le S - s$ (restando s), y como $S - s \ge S - I \ge 0$ (restando S en la inicial y multiplicando por -1), equivalente a $0 \le S - I \le S - s$, entonces:

$$\lim_{\lambda \to 0} (I - s) = 0 \quad \text{y} \quad \lim_{\lambda \to 0} (S - I) = 0$$

Es decir que $\forall \epsilon > 0, \exists P_{\epsilon} : P \supset P_{\epsilon}$, entonces $I - s < \epsilon$ y $S - I < \epsilon$.

Se tiene que $s \le \sigma(f, P, (\xi_i)) \le S \Rightarrow -(S - I) \le I - \sigma(f, P, (\xi_i)) \le I - s$ (restándole a I, cada miembro)

Luego reemplazamos lo anterior y llegamos a: $-\epsilon \le I - \sigma(f, P, (\xi_i)) \le \epsilon$, lo cual multiplicando por -1, es equivalente a $-\epsilon \le \sigma(f, P, (\xi_i)) - I \le \epsilon$ lo que significa que:

$$\lim_{\lambda \to 0} \sigma(f, P, (\xi_i)) = I$$

Hemos demostrado que $\overline{I} = \underline{I} \Rightarrow f \in \mathcal{R}[a, b]$

Ahora que tenemos el implica en ambos sentidos, hemos llegado a:

$$f \in \mathcal{R}[a,b] \iff \overline{I} = \underline{I} \iff \lim_{\lambda \to 0} (S-s) = 0$$

Que es lo que queríamos demostrar.