

Computer Organization and Design (ECE 37100) Electrical and Computer Engineering Department Purdue University Northwest, Hammond, IN-46323

Laboratory 5, Total Points: 30

Due Date: March 21, 2019 (Thursday), 11:59 PM CST

Textbook Sections: Digital Design and Computer Architecture: 5.2.4

Arithmetic and Logic Unit is an essential component for a processor. In this lab, you will design a 32-bit Arithmetic Logic Unit (ALU) in VHDL. The ALU will provide four functions: ADD, SUB,

AND, and OR. You will also write a VHDL testbench file to test the ALU.

Acknowledgement: The lab assignment is adopted from authors' website.

VHDL Code

Create a 32-bit ALU module in VHDL. Name the module alu.vhd. It should have the following entity declaration:

```
entity alu is
```

```
port(A, B: in std_logic_vector (31 downto 0);
ALUControl: in std_logic_vector (1 downto 0);
Result: out std_logic_vector (31 downto 0);
ALUFlags: out std_logic_vector (3 downto 0));
```

end entity alu;

The four bits of **ALUFlags** should be TRUE if a condition is met. The four flags are as follows:

ALUFlag bit	Meaning			
3	Result is negative			
2	Result is 0			
1	The adder produces a carry out			
0	The adder results in overflow			

<u>Note</u>: An adder is a relatively expensive piece of hardware. Be sure that your design uses no more than one adder.

Table 2: ALU Operations

Test	ALUControl[1:0]	A ALC Operation	В	Result	ALUFlags
ADD 0+0	0	00000000	00000000	00000000	4
ADD 0+(-1)	0	00000000	FFFFFFFF	FFFFFFF	8
ADD 1+(-1)	0	00000001	FFFFFFFF	0000000	6
ADD FF+1	0	000000FF	00000001		
SUB 0-0	1	00000000	00000000	00000000	6
SUB 0-(-1)		00000000	FFFFFFFF	00000001	0
SUB 1-1		00000001			
SUB 100-1		00000100			
AND FFFFFFFF, FFFFFFFF		FFFFFFFF			
AND FFFFFFFF, 12345678		FFFFFFFF	12345678	12345678	0
AND 12345678, 87654321		12345678			
AND 00000000, FFFFFFF		00000000			
OR FFFFFFFF, FFFFFFF		FFFFFFFF			_
OR 12345678, 87654321		12345678			
OR 00000000, FFFFFFF		00000000			
OR 00000000, 00000000		0000000			

Computer Organization and Design (ECE 37100) Electrical and Computer Engineering Department Purdue University Northwest, Hammond, IN-46323

VHDL Testbench

Before writing the testbench, fill the missing cells in column 2, 4, 5, and 6 in Table 2. Now write a VHDL testbench that takes ALU inputs from Column 2, 3, and 4 and generates outputs. The produced outputs should be similar to Column 2 and 4.

<u>Note:</u> Remember that each hexadecimal digit in the table represents 4 bits. You may use hexadecimal values for signals by prefixing the value with X, e.g. $A \le X$ "FFFFFFF".

Submission

Submit the ALU block diagram (5 pts), completed Table 2 (5 pts), VHDL code and testbench (15 pts), and simulation results (5 pts).