UNDERTAKING

We declare that the work presented in this project titled "Person Identification System Using

Machine Learning", submitted to the Department of Electronics & Communication

Engineering, Motilal Nehru National Institute of Technology Allahabad, for the award of the

Bachelor of Technology degree in Electronics and Communication Engineering is our original

work. We have not plagiarized or submitted the same work for the award of any other degree. In

case this undertaking is found incorrect, we accept that our degree may be unconditionally

withdrawn.

Date: 23-04-19

Place: Prayagraj, India

Deepanjan Saha

(Reg. no. 20152048)

Aman Agarwal

(Reg. no. 20155066)

Pawan Kumar Thapa

(Reg. no. 20155032)

i

Department of Electronics & Communication Engineering Motilal Nehru National Institute of Technology Allahabad

Prayagraj – INDIA

CERTIFICATE

This is to certify that the work contained in the project titled "Person Identification System

Using Machine Learning", submitted by Deepanjan Saha, Aman Agarwal and Pawan

Kumar Thapa in the partial fulfilment of the requirement for the award of Bachelor of

Technology in Electronics & Communication Engineering to the Electronics & Communication

Engineering Department, Motilal Nehru National Institute of Technology, Allahabad, is a

bonafide work of the students carried out under my supervision.

Date: 23-04-19

Place: Prayagraj, India

Dr. Haranath Kar

Professor

ECE Department

MNNIT, Allahabad

ii

ACKNOWLEDGEMENT

It gives us immense pleasure to present this project for the partial fulfilment for the award of

B.Tech in Electronics and communication Engineering. We owe special debt of gratitude to our

supervisor Dr. Haranath Kar, Professor Department of Electronics and Communication

Engineering, Motilal Nehru National Institute of Technology, Allahabad for her constant support

and guidance throughout the course of our work.

We would also like to thank all other faculty members of Electronics and Communication

Engineering Department for their valuable suggestions and co-operation at every step in this

project.

Date: 23-04-19

Place: Prayagraj, India

Deepanjan Saha (Reg. No 20152048)

Aman Agarwal (Reg. No 20155066)

Pawan Kumar Thapa (Reg. No 20155032)

iii

ABSTRACT

Our project on Person Identification System aims to design a model which can detect as well as identify the person from still image or video with high degree of accuracy. Face (facial) recognition is the identification of humans by the unique characteristics of their Faces. Face recognition technology is the least intrusive and fastest bio-metric technology. It works with the most obvious individual identifier the human face. With increasing security needs and with advancement in technology extracting information has become much simpler. This project aims on building an application based on face recognition using different algorithms and comparing the results. The basic purpose being to identify the face and retrieving information stored in database. It involves two main steps. First to identify the distinguishing factors in image n storing them and Second step to compare it with the existing images and returning the data related to that image. The various algorithms used for face detection are PCA Algorithm and Gray Scale Algorithm.

Table of Contents

Undertaking	i
Certificate	ii
Acknowledgement	iii
Abstract	iv
Table of Contents	v
List of Figures	vii
List of Tables	viii
Chapter 1: Introduction	1-5
 1.1: Introduction 1.2: Motivation 1.3: Methodology 1.4: Dataset 1.4.1: Cambridge ORL Dataset 1.4.2: MNNIT Faces Dataset 1.5: Workflow 1.6: Application 1.6.1: Biometrics 1.6.2: Face Detection 1.6.3: Face Recognition 	1 1 2 2 2 2 3 3 3 3 4 4
Chapter 2: Preprocessing	6-8
2.1: Introduction2.2: Histogram Equalization2.3: Blur Filters2.3.1: Median Filter2.3.2: Resizing	6 6 7 7 8
Chapter 3: Face Detection	9-15
3.1: Introduction 3.2: Voila Jones Algorithm 3.2.1: Haar Features 3.2.2: Integral Image 3.3.3: Ada Boost 3.3.4: Cascading	9 9 9 9 10 10

3.3: Haar Cascade	11
3.4: LBP Cascade	11
3.5: Face Detection Result	14
3.6: Summary of Face Detection Algorithm used	15
Chapter 4: Feature Extraction	16
4.1: Introduction	16
4.2: Deep Metric Learning	16
Chapter 5: Learning Algorithms	17-24
5.1: Introduction	17
5.2: Machine Learning	17
5.3: Support Vector Machines	18
5.3.1: Motivation	18
5.3.2: Result	18
5.4: Random Forest	19
5.4.1: Result	20
5.5: Decision Trees	20
5.5.1: Result	21
5.6: Logistic Regression	22
5.6.1: Result	22
5.7: Naïve Bayes	23
5.7.1: Result	23
5.8: Summary of trained models	24
Chapter 6: Results and Conclusion	25-27
6.1: Results	25
6.2: Conclusion	27
6.3: Future Scope	27
References	28-29

List of Figures

Fig 1.1: Workflow Followed	3
Fig 2.1: Normalized histogram for pixel intensities	6
Fig 2.2: Formula for Histogram Equalization	6
Fig 3.1: Formula for integral image	10
Fig 3.2: Applying LBP operation	12
Fig 3.3: Circular LBP	13
Fig 3.4: Dividing image into multiple grids	13
Fig 3.5: Euclidean Distance formula	14
Fig 3.6: Face detection result 1	15
Fig 3.7: Face detection result 2	15
Fig 5.1: SVM result	19
Fig 5.2: Random Forest result	20
Fig 5.3: Decision Tree result	21
Fig 5.4: Logistic Regression result	23
Fig 5.5: Naïve Bayes result	24

List of Tables

Table 3.1: Face Detection algorithm summary	15
Table 5.1: Training model used and accuracy	24