Diskrete Mathematik und Logik

Universität Konstanz, Wintersemester 2022/23

Dozent: Prof. Dr. Sven Kosub

Ausarbeitung: Dr. Matthias Droth

Inhaltsverzeichnis

1	Mat	thematische Grundlagen	5
	1.1	Zuweisung	5
	1.2	Iteration	5
	1.3	Rekursion	6
	1.4	Strukturierte Induktion	7

Kapitel 1

Mathematische Grundlagen

1.1 Zuweisung

• Zuweisung als Standardform (linke Seite wird durch rechte Seite definiert):

$$x =_{\text{def}} y \quad \text{oder} \quad X := y. \tag{1.1}$$

 \Rightarrow ,x" ist der Name für y.

 $\bullet\ x$ und y dürfen beliebig vertauscht werden.

Beispiele:

- 1. $x =_{\text{def}} 2$,
- 2. $x =_{\text{def}} 2n + 1$,
- 3. $f(x) =_{\text{def}} 2n + 1$,
- 4. $p|q \Leftrightarrow_{\text{def}} \exists k : q = k \cdot p \text{ (es gibt ein } k \text{ mit } q = k \cdot p).$

Beachte: "x=y" behauptet eine Gleichheit \Rightarrow Beweis nötig!

1.2 Iteration

• Definitionsform zum Ausdrücken von Wiederholungen in Variablen, aber mit bestimmten Grenzen:

$$\sum_{k=1}^{n} a_k =_{\text{def}} a_1 + a_2 + a_3 + \ldots + a_n, \quad \prod_{k=1}^{n} a_k = a_1 \cdot a_2 \cdot \ldots \cdot a_n.$$
 (1.2)

Beispiel: $n! =_{\text{def}} \prod_{k=1}^{n} k$.

• Typisches Problem: Finde wertgleichen Ausdruck onhe die Laufvariable k. Besipiel: $\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$.

1.3 Rekursion

- Definitionsform, bei der die definierte Seite auf der definierenden Seite vorkommen darf: $x =_{\text{def}} \dots x \dots$
- Um unendliche Schachtelungen auszuschließen werden Abbruchbedingungen festgelegt. Ein paar Beispiele:
 - 1. $n! =_{\text{def}} n \cdot (n-1)!$ für $n \ge 1$ und $0! =_{\text{def}} 1$.
 - 2. Euklid $(m, n) =_{\text{def}} \begin{cases} \text{Euklid } (\text{mod}(n, m), m) & \text{falls } m \nmid n, \\ m & \text{falls } m \mid n. \end{cases}$
 - 3. Fibonacci Reihe: $F_n =_{\text{def}} F_{n-1} + F_{n-2}$ für $n \ge 2$ und mit $F_0 =_{\text{def}} 0$, $F_1 =_{\text{def}} 1$.

$$\Rightarrow F_5 = F_4 + F_3$$

$$= (F_3 + F_2) + (F_2 + F_1)$$

$$= ((F_2 + F_1) + (F_1 + F_0)) + ((F_1 + F_0) + F_1)$$

$$= (((F_1 + F_0) + F_1) + (F_1 + F_0)) + ((F_1 + F_0) + F_1)$$

$$= 5F_1 + 3F_0 = 5 \cdot 1 + 3 \cdot 0 = 5.$$
(1.3)

Merke: Rekursionen werden ausgewertet, indem sie in Iterationen umgewandelt werden.

4. Ackermann Funktion (auf natürlichen Zahlen x, y):

$$A(0, y) =_{\text{def}} y + 1,$$

 $A(x, 0) =_{\text{def}} x,$
 $A(x, y) =_{\text{def}} A(x - 1, A(x, y - 1)), \text{ für } x \ge 1, y \ge 1.$ (1.4)

5. Typische Probleme: Terminierung, Auflösung (n-te Fibonacci-Zahl) und Abschätzung bei rekursiven Definitionen.

Beispiele:

1.
$$\left(\frac{n}{2}\right)^{\frac{n}{2}} \le n! \le n^2$$

7

2. Ackermann-Funktion:

Die Ackermann Funktion ist nicht mit einer for-Schleife berechenbar.

1.4 Strukturierte Induktion

- Beim rekursiven Definieren geht es ums **Zerlegen** und beim induktiven Definieren geht es ums **Zusammensetzen**.
- Tpyisch für Konstruktionen von Mengen.
- Form:
 - 1. (IA) Festlegen der Basiselemente.
 - 2. (IS) Festlegen der Operationen zur Konstruktion neuer Elemente aus bestehenden Elementen.
 - 3. Nichts sonst ist ein Element dieser Menge.

Beispele:

- 1. Natürliche Zahlen:
 - 0 ist eine natürliche Zahl.
 - Ist n eine natürliche Zahl, so ist n+1 auch eine natürliche Zahl.
 - Nichts sonst ist eine natürliche Zahl.
- 2. Korrekte Klammerausdrücke
 - (a) () ist ein korrekter Klammerausdruck.
 - (b) Sind H_1 , H_2 korrekte Klammerausdrücke, so sind (H_1) und H_1H_2 korrekte Klammerausdrücke.
 - (c) Nichts sonst ist ein korrekter Klammerausdruck.

Beispiel: "((())())" ist ein korrekter Klammerausdruck, ")(" ist kein korrekter Klammerausdruck, ")

merausdruck. Fallbeispiel: Suchbäume

- Datenstruktur zur Suche in geordneten Mengen
- wollen wisse, ob 1, 2, 3, 5, 7, 11, 13, 17, 19 eine Zahl a enthält.
- Die kombinatorische Struktur: volle, gewurzelte Binärbäume.
- voller, gewurzelter Binärbaum T besteht aus Konten $(0, \square)$ und Verweise (\rightarrow) . Ein Knoten r ist die Wurzel.
 - (IA) Für jedes r ist der KNoten r ein Baum, \square
 - (IS) Soind T_1 , T_2 Bäume mit Wurzeln r_1 , r_2 und keinen gemeinsamen Knoten, so ist die Kollektion der Knoten und Kanten aus T_1 und T_2 sowie den neuen Kanten $r \to r_1$, $r \to r_2$ für $r \neq r_1$, r_2 ein Baum; r ist die neuer Wurzel.

Nichts sonst ist ein voller, gewurzelter Binärbaum.

Beispiel: XXX image2 XXX

- Wollen die induktive Struktur der Bäume benutzen, um Sachverhalte zu beweisen.
- Knoten ohne ausgehende Kantne heißt Blatt, sonst heißt der Knoten innerer Knoten.

Proposition

Für einen vollen, gewurzelten Binärbaum T seien n_T die Anzahl der inneren Knoten und m_T die Anzahl der Blätter. Dann gilt stets $nT = m_T - 1$.

Beweis (induktion über Aufbau der Bäume):

- (IA) Ist T ein Baum mit einem Knoten τ , so gilt $m_{\tau} = 1$, $n_{\tau} = 0$.
- (IS) Es sei T ein Baum mit mehr als einem Knoten, mit Wurzel r. Dann gibt es Bäume T_1 , T_2 mit Wurzeln τ_1 , τ_2 , aus denen T zusammengesetzt ist.

Insbesondere:Blätter bzw. innere Knoten von τ_1 , τ_2 sind auch Blätter bzw. innere Knoten von T. Die Wurzel r ist ein innerer Knoten von T. Es gilt:

$$n_{T} = n_{T_{1}} + n_{T_{2}} + 1$$

$$= (m_{T_{1}} - 1) + (m_{T_{2}} - 1) + 1$$

$$= (m_{T_{1}} + m_{T_{2}}) - 1$$

$$= m_{T} - 1.$$
(1.5)

Literaturverzeichnis

- [1] G. Baym, Lectures on Quantum Mechanics (Addison Wesley, 1993).
- [2] F. Schwabl, Quantenmechanik und Quantenmechanik für Fortgeschrittene (Springer, 2007 und 2005).
- [3] W. Nolting, Grundkurs Theoretische Physik, Bände 4, 5/2 und 7 (Springer, 2005, 2006 und 2005).
- [4] A. Messiah, Quantenmechanik 2 (de Gruyter, 1990).
- [5] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford, 2004).