Übungen zur Vorlesung "Mathematik 1"

Angewandte Informatik/Infotronik

Blatt 4

Aufgabe 31. Welche Aussagen sind in \mathbb{R} wahr, welche falsch?

a)
$$\forall x \ x \ge 0$$

b)
$$\forall x_1 \, \exists x_2 \, x_1 \cdot x_2 = 1$$

b)
$$\forall x_1 \exists x_2 \ x_1 \cdot x_2 = 1$$
 c) $\forall x_1 \exists x_2 \ (x_1 \neq 0) \rightarrow (x_1 \cdot x_2 = 1)$

$$d) \exists x_1 \forall x_2 \ x_1 \ge x_2$$

e)
$$\forall x_1 \exists x_2 \ x_1 \geq x_2$$

e)
$$\forall x_1 \exists x_2 \ x_1 \ge x_2$$
 f) $\forall x_1 \exists x_2 \exists x_3 \ x_2^2 + X_3^2 = X_1^2$

g)
$$\forall x_1 \exists x_2 \forall x_3 \ x_3^2 + x_1 > x_2$$

$$h) \ \forall x_1 \ \exists x_2 \ x_1 x_2^2 - x_2 = 0$$

g)
$$\forall x_1 \exists x_2 \forall x_3 \ x_3^2 + x_1 > x_2$$
 h) $\forall x_1 \exists x_2 \ x_1 x_2^2 - x_2 = 0$ k) $\forall x \ (x^2 - 3x + 2 = 0) \rightarrow (x > 0)$

Aufgabe 32. Skizzieren Sie die Erfüllungsmengen folgender Formeln (über \mathbb{R}).

a)
$$\varphi(x_1, x_2) := (x_1 \ge 0) \land (x_2 \ge 0)$$

a)
$$\varphi(x_1, x_2) := (x_1 \ge 0) \land (x_2 \ge 0)$$
 b) $\varphi(x_1, x_2) := (x_1^2 + x_2^2 - 1 = 0) \land (x_2 \ge 0)$

c)
$$\varphi(x_1, x_2) := (x_1^2 - 1) = 0$$

c)
$$\varphi(x_1, x_2) := (x_1^2 - 1 = 0)$$
 d) $\varphi(x_1, x_2) := (x_2 \ge x_1^2 - 1) \land (x_2 \le -x_1^2 + 1)$

e)
$$\varphi(x_1) := (\exists x_2 \frac{x_2^2}{4} - \frac{x_1^2}{9} = 1)$$
 f) $\varphi(x_1) := (\exists x_2 x_2^2 - 4x_1 \ge 0)$

f)
$$\varphi(x_1) := (\exists x_2 \ x_2^2 - 4x_1 > 0)$$

g)
$$\varphi(x_1, x_2) := (x_2 \le -x_1 + 1) \land (x_2 \le x_1 + 1) \land (x_2 \ge -x_1 - 1) \land (x_2 \ge x_1 - 1)$$

h)
$$\varphi(x_1, x_2) := (x_1 \le 1) \land (x_1 \ge -1) \rightarrow (x_2 = x_1^2 - 1)$$

l)
$$\varphi(x_1, x_2) := ((x_2 \ge 0) \land ((x_1 + 1)^2 + x_2^2 - 1 = 0)) \lor ((x_2 \le 0) \land ((x_1 - 1)^2 + x_2^2 - 1 = 0))$$

Aufgabe 33. Geben Sie jeweils eine Formel $\varphi(x_1, x_2)$ zur Beschreibung folgender Mengen an.

Aufgabe 34. Zeigen Sie unter Anwendung der vollständigen Induktion.

- a) Die Summe der ersten n ungeraden b) Die Summe der ersten n geraden Zahlen ist gleich n^2
- Zahlen ist gleich $n^2 + n$

c) $\sum_{i=0}^{n-1} 2^i = 2^n - 1$

d) $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

e) $\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}$

- f) $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$ $(q \neq 1)$ (geometrische Summenformel)
- g) $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ (Binomischer Lehrsatz)
- h) Eine n-el. Menge besitzt genau $\binom{n}{k}$ k-el. Teilmengen

Aufgabe 35. Bestimmen Sie jeweils ggT und kgV unter Verwendung der Primfaktorzerlegung.

- a) 56, 49
- b) 128, 96 c) 500, 525
- d) 2205, 22275
 - e) 68600, 67375, 11011

Aufgabe 36. Bestimmen Sie jeweils den ggT unter Verwendung des erweiterten euklidischen Algorithmus und stellen Sie diesen linear dar.

- a) 48, 162 b) 1323, 3087 c) 13475, 2541
- d) 24310, 31395 e) 242000, 4695327

Aufgabe 37. Berechnen Sie folgende Terme im jeweiligen Restklassenring.

a)
$$\bar{3}^2 \cdot (\bar{7} - \bar{8})^3$$
 in $\mathbb{Z}/4\mathbb{Z}$

b)
$$(\bar{8} - \bar{3})^4 - (\bar{4} - \bar{10})^{-1}$$
 in $\mathbb{Z}/13\mathbb{Z}$

c)
$$-\frac{\bar{8}}{\bar{9}} + \left(\frac{\bar{2}}{\bar{3}} - \frac{\bar{8}}{\bar{5}}\right)^2 - \left(\bar{1} - \frac{\bar{1}}{\bar{18}}\right)$$
 in $\mathbb{Z}/23\mathbb{Z}$

a)
$$\bar{3}^2 \cdot (\bar{7} - \bar{8})^3$$
 in $\mathbb{Z}/4\mathbb{Z}$ b) $(\bar{8} - \bar{3})^4 - (\bar{4} - \bar{10})^{-1}$ in $\mathbb{Z}/13\mathbb{Z}$ c) $-\frac{\bar{8}}{\bar{9}} + \left(\frac{\bar{2}}{\bar{3}} - \frac{\bar{8}}{\bar{5}}\right)^2 - \left(\bar{1} - \frac{\bar{1}}{\bar{18}}\right)$ in $\mathbb{Z}/23\mathbb{Z}$ d) $\left[(-\bar{3})^2\right]^{-3} - \left(-\frac{\bar{2}}{\bar{5}}\right)^4 + \frac{1}{\bar{6}}$ in $\mathbb{Z}/7\mathbb{Z}$

Aufgabe 38.

- a) Bestimmen Sie zu den jeweiligen Restklassenringen alle Einheiten und zu jeder Einheit das zugehörige multiplikative Inverse.
 - i) $\mathbb{Z}/4\mathbb{Z}$ ii) $\mathbb{Z}/6\mathbb{Z}$ iii) $\mathbb{Z}/7\mathbb{Z}$ iv) $\mathbb{Z}/8\mathbb{Z}$ v) $\mathbb{Z}/9\mathbb{Z}$ vi) $\mathbb{Z}/12\mathbb{Z}$ vii) $\mathbb{Z}/15\mathbb{Z}$ viii) $\mathbb{Z}/30\mathbb{Z}$
- b) Bestimmen Sie das multiplikative Inverse von $\overline{13}$ in $\mathbb{Z}/9797\mathbb{Z}$

Aufgabe 39. Beim RSA-Kryptosystem wählt man zwei große Primzahlen p und q, und setzt $N = p \cdot q$. Der sog. öffentliche Schlüssel ist eine zufällig gewählte natürliche Zahl e mit $1 < e < \varphi(N)$, die teilerfremd zu $\varphi(N) = (p-1)(q-1)$ ist. Für den sog. geheimen Schlüssel d (1 < d < $\varphi(N)$) gilt: \bar{d} ist das multiplikative Inverse von \bar{e} in $\mathbb{Z}/\varphi(N)\mathbb{Z}$. Die zu verschlüsselnden Daten werden durch natürliche Zahlen $0 \le m < N$ dargestellt. Die Daten m werden durch Potenzieren $\bar{c} = \bar{m}^e$ in $\mathbb{Z}/N\mathbb{Z}$ verschlüsselt und durch $\bar{m} = \bar{c}^d$ in $\mathbb{Z}/N\mathbb{Z}$ wieder entschlüsselt.

- a) Zeigen Sie, dass e=35 ein öffentlicher Schlüssel für p=13 und q=17 ist und bestimmen Sie den zugehörigen geheimen Schlüssel.
- b) Verschlüsseln Sie den Text "RSA", indem Sie zunächst jedem Buchstaben seinen ASCII-Code zuordnen; entschlüsseln Sie anschließend den verschlüsselten Text.

Aufgabe 40. Rechnen Sie in das jeweilige Zahlensystem um.

- a) 99 (3-adisch)
- b) 645 (8-adisch)
- c) 2048 (16-adisch)
- d) 1234 (2-adisch)

- e) $(756)_8$ (5-adisch) f) $(10AD)_{16}$ (8-adisch) g) $(121212)_3$ (2-adisch) h) $(33333)_4$ (16-adisch)

- k) (1011011101)₂ (16-adisch, direkt) l) (AF381ED90D)₁₆ (2-adisch, direkt)