第8章图论建模

韩建伟

2024/12/16

计算机学院

hanjianwei@zjgsu.edu.cn

垒球队教练的问题

如何挑出一个 11 人的首发阵容?

Al	Во	Che	Doug	Ella	Fay	Gene	Hal
2,8	1,5,7	2,3	1,4,5,6,7	3,8	10,11	3,8,11	2,4,9
lan	John	Kit	Leo	Moe	Ned	Paul	
8,9,10	1,5,6,7	8,9	3,9,11	1,4,6,7		9,10	

如果 Hal 不能打二垒呢?

Al	Во	Che	Doug	Ella	Fay	Gene	Hal
2,8	1,5,7	2,3	1,4,5,6,7	3,8	10,11	3,8,11	2,9
lan	John	Kit	Leo	Moe	Ned	Paul	
8,9,10	1,5,6,7	8,9	3,9,11	1,4,6,7		9,10	

哥尼斯堡七桥问题

欧拉问题

- 从该市的某处出发,走过每座桥而且只走一次,最后回到原 地可能吗?
- 给定一个图,在什么样的条件下有可能找到一条封闭的散步 路线,能走过它的每一条边,而且只走一次?

图的着色问题

给定一张地图,是否可以用四种颜色对其中的区域进行着色,使 得任何相邻区域的颜色都不相同

图的着色问题

■ 四色定理于 1977 年由 Appel, Haken 和 Koch 证明

图着色的应用

期末考试安排问题

- 每门课程创建一个顶点
- 如果一个学生同时选了某两个顶点对应的课程的话,就在这两个顶点之间画一条边
- 对该图进行着色
- 学生每种颜色的课程最多只能选一门
- 按照课程的颜色安排考试时间

图的描述

- 顶点集 $V(G) = \{a, b, c, d, e, f, g, h, i\}$
- 边集 $E(G) = \{ac, ad, af, bd, bg, ch, di, ef, ei, fg, gh, hi\}$
- $\mathbf{g} \ deg(a) = 3$

Kevin Bacon 的六度分隔

- 将一个演员和 Kevin Bacon 联系起来所需的 最少步数
- 类似的还有 Erdos 数:将一个数学家和 Erdos 联系起来的最少步骤
- Facebook, 人人网
 - · 如何解决?网络科学的新兴研究领域的一部 分。

用直线/曲线拟合数据点,必须通过第一点和最后一点

用一条线段:
$$y = \frac{y_n - y_1}{x_n - x_1}(x - x_1) + y_1$$

用多条线段: $y = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}(x - x_i) + y_i, x_i \le x \le x_{i+1}$

折衷方法

误差计算

用最小二乘法

\overline{k}	x_k	$f_{1,4}(x_k)$	y_k	$(f_{1,4}(x_k) - y_k)^2$
1	0	0	0	0
2	2	$\frac{4}{3}$	5	$\frac{121}{9}$
3	3	2	1	1
4	6	4	4	0

考虑线段模型的价格

$$\alpha + \beta \sum_{k=1}^{4} (f_{1,4}(x_k) - y_k)^2$$

	2	3	4	5	6	7
1	10	28.7778	24.4444	36.0625	38.77	55.503
2		10	24.0625	52.1389	61	56.9917
3			10	15.76	14.7755	51
4				10	12.25	51
5					10	16.76
6						10

考虑线段模型的价格

$$\alpha + \beta \sum_{k=i}^{j} (f_{i,j}(x_k) - y_k)^2$$

 $\alpha = 10, \beta = 1$, 则:

	2	3	4	5	6	7
1	10	28.7778	24.4444	36.0625	38.77	55.503
2		10	24.0625	52.1389	61	56.9917
3			10	15.76	14.7755	51
4				10	12.25	51
5					10	16.76
6						10

如何找出最优线段组合

用最短路径求最优组合

再论垒球的例子

Al	Во	Che	Doug	Ella	Fay	Gene	Hal
2,8	1,5,7	2,3	1,4,5,6,7	3,8	10,11	3,8,11	2,4,9
lan	John	Kit	Leo	Moe	Ned	Paul	
8,9,10	1,5,6,7	8,9	3,9,11	1,4,6,7		9,10	

再论垒球的例子

最大匹配集

给定任何图 G=(V(G),E(G)),子集 $M\subseteq E(G)$ 称为匹配集,如果 M 的任何两个成员关于同一个顶点都不是关联的。具有这种性质的边的集合称为是独立的。最大匹配集就是最大可能的匹配。当 G 是两部分为 < A, B > 的二分图时,显然,匹配集的数目不能大于 |A| 也不能大于 |B|

0-1 矩阵问题

 $m \times n$ 的 0-1 矩阵

0-1 矩阵问题

给定 m 和 n 以及 $r_1, r_2, ..., r_m$ 和 $s_1, s_2, ..., s_n$ 的值,是否存在满足这些条件的 0-1 矩阵? 如果

$$r_1 + r_2 + \dots + r_m \neq s_1 + s_2 + \dots + s_n$$
 \(\mathbf{w}\)?

- m = 4, n = 6
- $r_1 = 3, r_2 = 2, r_3 = 3, r_4 = 4$
- $s_1 = 3, s_2 = 2, s_3 = 2, s_4 = 3, s_5 = 1, s_6 = 1$

供应商问题

最大流问题

维护城市治安

顶点覆盖问题

给定一个图 G=(V(G),E(G)), 顶点覆盖问题就是要寻找一个成员数最少的子集 $S\subseteq V(G)$ 使得图中每条边与 S 中至少一个成员关联。

最短路径算法

- Dijkstra 算法解决了单源的最短路径算法问题
- Bellman-Ford 算法解决了边权值可负的单源最短路径问题
- A* 搜索算法用启发式技术加速搜索,找出一对最短路径
- Floyd-Warshall 算法能够找出图中所有的最短路径
- Johnson 算法能够找出图中所有的最短路径,对于稀疏图来 说速度比 Floyd-Warshall 算法更快

Dijkstra 算法

输入	图 $G = (V(G), E(G))$ 的源 s 和汇 $t, ij \in E(G)$ 的边长 $c_{ij} \geq s$
输出	G 中 s 到 t 的最短路径的长度
第0步	从对顶点做标记开始: $L(s)=0$, 除 s 之外的 $L(i)=\infty$,
第1步	将最小标记的点(若有几个随机取一个)标记为永久标记
第2步	更新永久标记 i 的邻节点 j : $L(j) = min\{L(i) + c_{ij}\}$

最大流问题

给定一个有向图 G=(V(G),A(G)), 源 s 和汇 t, 以及对每条有 向边 $ij\in A(G)$ 的有限流容量 u_{ij} , 求图中从顶点 s 到顶点 t 的最大流

最大流算法

	有向图 $G = (V(G), A(G))$ 的源 s 和汇 t ,
输入	有向边 $ij \in A(G)$ 的容量 u_{ij}
输出	G 中从顶点 s 到顶点 t 的最大流
第0步	$f_c \leftarrow 0$
第1步	从图中找出一条 s 到 t 的有向路径,若没有,停止
第2步	计算 u_{min} ,即有向路径的最小容量
第3步	对有向路径中的每条有向边 i,j ,
弗 3 亚	更新当前图中的剩余容量 $u_{ij} \leftarrow u_{ij} - u_{min}$
	更新反向容量 $u_{ji} \leftarrow u_{ji} + u_{min}$
第 5 步	令 $f_c \leftarrow f_c + u_{min}$,回到第 1 步

利用最大流求解二分图匹配问题

将匹配问题转化为最大流问题

旅行商问题

给定一个完全图 G = (V(G), E(G)),以及 E(G) 中每条边 ij 的 费用 c_{ij} ,求最小费用的一条行程。(没有很好的解法)

用数学规划解顶点覆盖问题

令:

$$x_i = \begin{cases} 1 & \mathbf{yn} \in S \\ 0 & \mathbf{yn} \notin S \end{cases}$$

如何表示一条路径被覆盖?

■ 穷举: 计算量大

如何表示一条路径被覆盖?

- 穷举: 计算量大
- $(1-x_i)(1-x_j)=0$: 非线性

如何表示一条路径被覆盖?

- 穷举: 计算量大
- $(1-x_i)(1-x_j)=0$: 非线性
- $x_i + x_j \ge 1$: 线性

顶点覆盖问题的数学规划

$$\mathsf{Min} \ \sum_{i \in V(G)} x_i$$

$$x_i + x_j \ge 1 \quad \forall ij \in E(G)$$

 $x_i \in \{0, 1\} \quad \forall i \in V(G)$

■ 这是一个线性规划

s.t.

- 这是一个整数规划
- 这是一个 0-1 规划

最大流

令 x_{ij} 表示从顶点 i 到顶点 j 的流.

$$\begin{aligned} \text{Max } z &= \sum_{j} x_{sj} \\ \text{s.t.} & \\ \sum_{i} x_{ij} &= \sum_{k} x_{jk} \quad \forall j \in \mathit{V}(\mathit{G}) - \{s,t\} \\ x_{ij} &\leq u_{ij} \qquad \forall ij \in \mathit{A}(\mathit{G}) \\ x_{ij} &\geq 0 \qquad \forall ij \in \mathit{A}(\mathit{G}) \end{aligned}$$