Fluctuation Suppression and Enhancement in Interacting Particle Systems

Jiaheng Chen

Shanghai Jiao Tong University

June 21, 2025

Table of contents

- Part I: Kernel Stein Discrepancy Descent and its Advantages in Sampling
 - Problem Introduction
 - Kernel Stein Discrepancy (KSD)
 - KSD Descent Algorithm
 - The Analysis of KSD Descent
- Part II : Fluctuation Suppression and Enhancement in General Interacting Particle Systems
 - Problem Setting in General Cases
 - Main Results

Table of Contents

- Part I: Kernel Stein Discrepancy Descent and its Advantages in Sampling
 - Problem Introduction
 - Kernel Stein Discrepancy (KSD)
 - KSD Descent Algorithm
 - The Analysis of KSD Descent
- Part II : Fluctuation Suppression and Enhancement in General Interacting Particle Systems
 - Problem Setting in General Cases
 - Main Results

Problem Setting

Problem

Sample from a target distribution π over \mathbb{R}^d , whose density w.r.t. Lebesgue is known up to a constant Z:

$$\pi(x) = \frac{\tilde{\pi}(x)}{Z}$$

where Z is the (untractable) normalization constant.

Motivation:

- Let $\mathcal{D} = (w_i, y_i)_{i=1,\dots,N}$ observed data.
- Assume an underlying model parametrized by θ (e.g. $p(y|w,\theta)$ gaussian) \Rightarrow Likelihood: $p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(y_i|w_i,\theta)$.
- Assume also $\theta \sim p(\text{prior distribution})$. Bayes's rule: $\pi(\theta) := p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{Z}$, $Z = \int_{\mathbb{R}^d} p(\mathcal{D}|\theta)p(\theta)d\theta$.

Sampling as optimization over distributions

- Assume that $\pi \in \mathcal{P}_2(\mathbb{R}^d) = \{ \mu \in \mathcal{P}(\mathbb{R}^d), \int \|x\|^2 d\mu(x) < \infty \}.$
- The sampling task can be recast as an optimization problem:

$$\pi = \mathop{\mathsf{argmin}}_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \mathcal{D}(\mu|\pi) := \mathcal{F}(\mu),$$

where D is a dissimilarity functional.

• Starting from an initial distribution $\mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$, one can then consider the Wasserstein gradient flow of \mathcal{F} over $\mathcal{P}_2(\mathbb{R}^d)$ to transport μ_0 to π .

Choice of the loss function

Many choices of D:

• D is the Kullback-Leibler divergence:

$$\mathrm{KL}(\mu|\pi) = \begin{cases} \int_{\mathbb{R}^d} \log(\frac{\mu}{\pi}) d\mu & \text{if } \mu \ll \pi, \\ +\infty & \text{otherwise.} \end{cases}$$

• *D* is the MMD (Maximum Mean Discrepancy):

$$MMD^{2}(\mu, \pi) = \|\mu - \pi\|_{k}^{2},$$

where

$$||f||_k^2 := \iint f(x)k(x,y)f(y)dxdy$$

and $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a positive semidefinite (p.s.d.) kernel.

Table of Contents

- Part I: Kernel Stein Discrepancy Descent and its Advantages in Sampling
 - Problem Introduction
 - Kernel Stein Discrepancy (KSD)
 - KSD Descent Algorithm
 - The Analysis of KSD Descent
- Part II : Fluctuation Suppression and Enhancement in General Interacting Particle Systems
 - Problem Setting in General Cases
 - Main Results

Kernel Stein Discrepancy (Liu et al.2016)[5]

For $\mu, \pi \in \mathcal{P}_2(\mathbb{R}^d)$, the KSD of μ relative to π is

$$\mathrm{KSD}^{2}(\mu|\pi) = \iint \left[\left(s_{\pi}(x) - s_{\mu}(x) \right)^{\mathsf{T}} k(x,y) \left(s_{\pi}(y) - s_{\mu}(y) \right) \right] \mu(dx) \mu(dy).$$

where k is a p.s.d. kernel and $s_{\pi}(x) = \nabla \log \pi(x)$ is the score function of π .

Integrate by parts:

$$\mathrm{KSD}^2(\mu|\pi) = \iint k_{\pi}(x,y)\mu(dx)\mu(dy).$$

where

$$\begin{aligned} k_{\pi}(x,y) &= s_{\pi}(x) \cdot s_{\pi}(y) k(x,y) + s_{\pi}(x) \cdot \nabla_{y} k(x,y) \\ &+ \nabla_{x} k(x,y) \cdot s_{\pi}(y) + \operatorname{trace}(\nabla_{x} \nabla_{y} k(x,y)) \end{aligned}$$

is also p.s.d. under mild assumptions on k and π .

 √□ ▷ ✓ ⓓ ▷ ✓ ඕ ▷ ✓ ඕ ▷
 ₺
 ₺
 ♥
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 <

KSD benefits

KSD can be computed when

- one has access to $\nabla \log \pi(x)$,
- μ is a discrete measure, e.g. $\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_{x^{i}}$, then

$$\mathrm{KSD}^{2}(\mu|\pi) = \frac{1}{N^{2}} \sum_{i,j=1}^{N} k_{\pi}(x^{i}, x^{j}).$$

KSD is known to metrize weak convergence [2] when:

- ullet π is strongly log-concave at infinity,
- *k* has a slow decay rate.

KSD in the literature

The KSD has been used for

- nonparametric statistical tests for goodness-of-fit [Xu and Matsuda, 2020, Kanagawa et al.,2020]
- sampling tasks
 - (greedy algorithms) to select a suitable set of static points to approximate π , adding a new one at each iteration, [Chen et al.,2018, Chen et al.,2019]
 - to compress [Riabiz et al.,2020] or reweight [Hodgkinson et al., 2020] Markov Chain Monte Carlo (MCMC) outputs,
 - to learn a static transport map from μ_0 to π [Fisher et al., 2020],
 - to learn Energy-Based models $\pi \propto \exp(-V)$ from samples of π (use reverse KSD) [Domingo Enrich et al.,2021].

Table of Contents

- Part I: Kernel Stein Discrepancy Descent and its Advantages in Sampling
 - Problem Introduction
 - Kernel Stein Discrepancy (KSD)
 - KSD Descent Algorithm
 - The Analysis of KSD Descent
- Part II : Fluctuation Suppression and Enhancement in General Interacting Particle Systems
 - Problem Setting in General Cases
 - Main Results

KSD gradient flow

Let $\mathcal{F}(\mu) = KSD^2(\mu|\pi)$.

- Its Wasserstein gradient flow on $\mathcal{P}_2(\mathbb{R}^d)$ finds a continuous path of distributions that decreases \mathcal{F} .
- Discrete measures: For $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \delta_{x^i}$, the explicit loss function

$$L([x^i]_{i=1}^N) := \mathcal{F}(\hat{\mu}) = \frac{1}{N^2} \sum_{i,j=1}^N k_{\pi}(x^i, x^j).$$

Wasserstein gradient descent of ${\mathcal F}$ for discrete measures

(Euclidean) gradient descent of L on the particles.

KSD Descent – algorithms (Korba et al.2021) [4]

One direct way to implement KSD Descent (Gradient descent):

Algorithm 1 KSD Descent GD

Input: initial particles $(x_0^i)_{i=1}^N \sim \mu_0$, number of iterations M, step-size γ

for n=1 to M do

$$[x_{n+1}^i]_{i=1}^N = [x_n^i]_{i=1}^N - \frac{\gamma}{N^2} \sum_{j=1}^N [\nabla_2 k_\pi(x_n^j, x_n^i)]_{i=1}^N,$$

end for (12)

Return: $[x_M^i]_{i=1}^N$.

Table of Contents

- Part I: Kernel Stein Discrepancy Descent and its Advantages in Sampling
 - Problem Introduction
 - Kernel Stein Discrepancy (KSD)
 - KSD Descent Algorithm
 - The Analysis of KSD Descent
- Part II : Fluctuation Suppression and Enhancement in General Interacting Particle Systems
 - Problem Setting in General Cases
 - Main Results

KSD Descent as interacting particle system

 KSD Descent is a sampling algorithm based on the following interacting particle systems (after time scaling)

$$\begin{cases} \dot{X}_i = -\frac{1}{N} \sum_{j=1}^{N} \nabla k_{\pi}(X_i, X_j) \\ \{X_i(0)\}_{i=1}^{N} \sim \mu_0 \end{cases}$$

• The empirical measure $\mu_N := \frac{1}{N} \sum_{i=1}^N \delta(x - X_i(t))$, then

$$\dot{X}_i = -\int \nabla k_{\pi}(X_i, x) \mu_{N}(dx) = -\nabla \Big(\int k_{\pi}(X_i, x) \mu_{N}(dx)\Big).$$

• In general, we consider

$$\dot{X}_i = -\nabla V(X_i, \mu_N), \quad i = 1, \cdots, N,$$

where

$$V(x,\mu) = F(x) + \int K(x,x')\mu(dx').$$

Our interests and motivation

$$\dot{X}_i = -\nabla V(X_i, \mu_N) \quad \leadsto \quad \partial_t \mu_N = \nabla \cdot (\nabla V(x, \mu_N) \mu_N).$$

• As $N \to \infty$, μ_N can be shown to converge in some sense to the Fokker-Planck equation [6]

$$\partial_t \mu = \nabla \cdot (\nabla V(x, \mu) \mu).$$

• Now suppose that μ_N converges to μ , the **fluctuation** in the $N \to \infty$ limit

$$\eta := \lim_{N \to \infty} \sqrt{N} (\mu_N - \mu).$$

- Question: How will the fluctuation evolve during the dynamics?
 - If the particles are i.i.d. sampled, the fluctuation follows the Central Limit Theorem (CLT) and $\mu_N \mu$ has variance 1/N.
 - No longer simple since the dynamics introduce interactions among the particles.

Jiaheng Chen (SJTU)

Sampling via Flows

June 21, 2025

16/40

Our interests and motivation

• The interacting particle system:

$$\dot{X}_i = -\nabla V(X_i, \mu_N) \quad \rightsquigarrow \quad \partial_t \mu_N = \nabla \cdot (\nabla V(x, \mu_N) \mu_N). \tag{1}$$

The mean field equation

Jiaheng Chen (SJTU)

$$\dot{X}_i = -\nabla V(X_i, \underline{\mu}) \quad \rightsquigarrow \quad \partial_t \mu = \nabla \cdot (\nabla V(x, \mu)\mu). \tag{2}$$

- *N* particles $\bar{X}_i(0)$ i.i.d. drawn from ρ_0 , evolve according to **ODE** (2) \Longrightarrow independence for any t > 0.
- These particles can be viewed as **Monte Carlo samplings** from μ for every t. The fluctuation in this case

$$\bar{\eta} := \lim_{N \to \infty} \sqrt{N} (\bar{\mu}_N - \mu).$$

• We want to compare $\|\eta\|_K$ with $\|\bar{\eta}\|_K$ pointwisely or in the long-time average.

Sampling via Flows

June 21 2025

Flow mapping methods in Chen et. al.2020[1]

The mean field Wasserstein gradient flow

$$\partial_t \mu_t = \nabla \cdot (\nabla V(x, \mu_t) \mu_t), \quad \mu_{t=0} = \mu_0.$$
 (3)

Interpreted as the pushforward of the characteristic flow map

$$\int \chi(x)\mu_t(dx) = \int \chi(\Theta_t(x))\mu_0(dx),$$

where χ is a continuous test function and Θ_t solves

$$\dot{\Theta}_t(x) = -\nabla V(\Theta_t(x), \mu_t), \quad \Theta_0(x) = x.$$

Similarly, for Wasserstein gradient flow of the empirical measure

$$\dot{\Theta}_t^{(N)}(x) = -\nabla V(\Theta_t^{(N)}(x), \mu_t^{(N)}), \quad \Theta_0^{(N)}(x) = x.$$

Jiaheng Chen (SJTU)

Flow mapping methods in Chen et. al.2020[1]

- $\bullet \ \eta_t^{(N)} := \sqrt{N}(\mu_t^{(N)} \mu_t)$
- Take a test function $\chi(x)$,

$$\begin{split} &\int \chi(x) \eta_{t}^{(N)}(dx) = \sqrt{N} \int \chi(x) \Big(\mu_{t}^{(N)}(dx) - \mu_{t}(dx) \Big) \\ &= \sqrt{N} \int \chi(\Theta_{t}^{(N)}(x)) \mu_{0}^{(N)}(dx) - \chi(\Theta_{t}(x)) \mu_{0}(dx) \\ &= \sqrt{N} \int \chi(\Theta_{t}^{(N)}(x)) \mu_{0}^{(N)}(dx) - \chi(\Theta_{t}(x)) \mu_{0}^{(N)}(dx) \\ &+ \chi(\Theta_{t}(x)) \mu_{0}^{(N)}(dx) - \chi(\Theta_{t}(x)) \mu_{0}(dx) \\ &= \int \chi(\Theta_{t}(x)) \eta_{0}^{(N)}(dx) + \sqrt{N} \Big[\chi(\Theta_{t}^{(N)}(x)) - \chi(\Theta_{t}(x)) \Big] \mu_{0}^{(N)}. \end{split}$$

- The first term: $\Theta_t^{(N)}$ remains equal to Θ_t .
- The second term captures the deviation to the flow Θ_t induced by the perturbation of μ_0 , i.e. how much $\Theta_t^{(N)}$ differs from Θ_t .

Flow mapping methods in Chen et. al.2020[1]

Proposition 3.1[1]

Under mild conditions, $\forall t > 0$, as $N \to \infty$ we have $\eta_t^{(N)} \rightharpoonup \eta_t$ weakly in law with respect to \mathbb{P}_0 , where η_t is such that given a test function χ ,

$$\int \chi(x)\eta_t(dx) = \int \chi(\Theta_t(x))\eta_0(dx) + \int \nabla\chi(\Theta_t(x)) \cdot T_t(x)\mu_0(dx).$$

Here η_0 is the Gaussian measure with mean zero and covariance

$$\mathbb{E}_{0}[\eta_{0}(dx)\eta_{0}(dx')] = \mu_{0}(dx)\delta_{x}(dx') - \mu_{0}(dx)\mu_{0}(dx'),$$

and $T_t = \lim_{N \to \infty} \sqrt{N} (\Theta_t^{(N)} - \Theta_t)$ is the flow solution to

$$\dot{T}_t(x) = -\nabla \nabla V(\Theta_t(x), \mu_t) T_t(x) - \int \nabla K(\Phi_t(x), x') \eta_t(dx')$$

Recall: $V(x, \mu) = F(x) + \int K(x, x')\mu(dx')$.

4□ > 4団 > 4 豆 > 4 豆 > 豆 めので

Jiaheng Chen (SJTU) Sampling via Flows June 21, 2025

KSD Descent:

$$\dot{X}_i = -\int \nabla k_{\pi}(X_i, x') \mu_N(dx') = -\nabla \Big(\int k_{\pi}(X_i, x') \mu_N(dx')\Big)$$

where

$$egin{aligned} k_\pi(x,x') &= s_\pi(x) \cdot s_\pi(x') k(x,x') + s_\pi(x) \cdot
abla' k(x,x') \ &+
abla k(x,x') \cdot s_\pi(x') + \mathrm{tr}(
abla
abla' k(x,x')) \end{aligned}$$

and $s_{\pi}(x) = \nabla \log \pi(x)$.

KSD Descent can be seen as a specific example when

$$V(x,\mu) = \int k_{\pi}(x,x')\mu(dx').$$

Recall

$$\int \chi(x)\eta_t(dx) = \int \chi(\Theta_t(x))\eta_0(dx) + \int \nabla\chi(\Theta_t(x)) \cdot T_t(x)\mu_0(dx)$$

where T_t solves

$$\dot{T}_t(x) = -\nabla \nabla V(\Theta_t(x), \mu_t) T_t(x) - \int \nabla k_{\pi}(\Theta_t(x), x') \eta_t(dx').$$

By the Duhamel's principle

$$T_t(x) = -\int_0^t J_{t,s}(x) \int \nabla k_{\pi}(\Theta_s(x), x') \eta_s(dx') ds,$$

where $J_{t,s}$ is the solution to

$$\frac{d}{dt}J_{t,s}(x) = -\nabla\nabla V(\Theta_t(x), \mu_t)J_{t,s}(x), \quad J_{s,s}(x) = Id.$$

Recall

$$\int \chi(x)\eta_t(dx) = \int \chi(\Theta_t(x))\eta_0(dx) + \int \nabla\chi(\Theta_t(x)) \cdot T_t(x)\mu_0(dx)$$

where T_t solves

$$\dot{T}_t(x) = -\nabla \nabla V(\Theta_t(x), \mu_t) T_t(x) - \int \nabla k_{\pi}(\Theta_t(x), x') \eta_t(dx').$$

• By the Duhamel's principle

$$T_t(x) = -\int_0^t J_{t,s}(x) \int \nabla k_{\pi}(\Theta_s(x), x') \eta_s(dx') ds,$$

where $J_{t,s}$ is the solution to

$$\frac{d}{dt}J_{t,s}(x) = -\nabla\nabla V(\Theta_t(x), \mu_t)J_{t,s}(x), \quad J_{s,s}(x) = Id.$$

←□▶←□▶←□▶←□▶ □ ∽Q

Jiaheng Chen (SJTU) Sampling via Flows June 21, 2025

Theorem 3.7[5]

Assume k(x,x') is a positive definite kernel with positive eigenvalues $\{\lambda_j\}$ and eigenfunctions $\{e_j(x)\}$, then $k_\pi(x,x')$ is also a positive definite kernel, and can be rewritten into

$$k_{\pi}(x,x') = \sum_{j} \lambda_{j} [\mathcal{A}_{\pi} e_{j}(x)]^{T} [\mathcal{A}_{\pi} e_{j}(x')],$$

where $A_{\pi}e_j(x) = s_{\pi}(x)e_j(x) + \nabla e_j(x)$ is the Stein's operator acted on e_j . In addition,

$$\mathrm{KSD}^{2}(\mu|\pi) = \mathbb{E}_{x,x'\sim\mu} k_{\pi}(x,x') = \sum_{j} \lambda_{j} \|\mathbb{E}_{x\sim\mu} [\mathcal{A}_{\pi} e_{j}(x)]\|_{2}^{2}.$$

Calculations:

$$T_{t}(x) = -\int_{0}^{t} J_{t,s}(x) \int \nabla k_{\pi}(\Theta_{s}(x), x') \eta_{s}(dx') ds$$

$$= -\sum_{i} \lambda_{i} \int_{0}^{t} J_{t,s}(x) \nabla \mathcal{A}_{\pi} e_{i}(\Theta_{s}(x)) \int \mathcal{A}_{\pi} e_{i}(x') \eta_{s}(dx') ds.$$

- Introduce $g_t^{(j)} := \int A_{\pi} e_j(x') \eta_t(dx')$.
- By the property of η_t :

$$g_t^{(j)} = \int \mathcal{A}_{\pi} e_j(\Theta_t(x)) \eta_0(dx) + \int \nabla \mathcal{A}_{\pi} e_j(\Theta_t(x)) \cdot T_t(x) \mu_0(dx)$$
$$= \bar{g}_t^{(j)} - \sum_i \lambda_i \int_0^t \Gamma_{t,s}^{i,j} g_s^{(i)} ds$$

where

$$\Gamma_{t,s}^{i,j} = \int \nabla \mathcal{A}_{\pi} e_j(\Theta_t(x)) J_{t,s}(x) \nabla \mathcal{A}_{\pi} e_i(\Theta_s(x)) \mu_0(dx).$$

For every j it holds that

$$g_t^{(j)} = \bar{g}_t^{(j)} - \sum_i \lambda_i \int_0^t \Gamma_{t,s}^{i,j} g_s^{(i)} ds.$$

Taking the dot product by $\lambda_j g_t^{(j)}$ on both sides and sum over j

$$\sum_{j} \lambda_{j} |g_{t}^{(j)}|^{2} = \sum_{j} \lambda_{j} g_{t}^{(j)} \cdot \bar{g}_{t}^{(j)} - \sum_{i,j} \lambda_{i} \lambda_{j} \int_{0}^{t} \langle g_{t}^{(j)}, \Gamma_{t,s}^{i,j} g_{s}^{(i)} \rangle ds.$$

Let $\phi(t,x) := \sum_j \lambda_j \nabla \mathcal{A}_\pi e_j(\Theta_t(x)) g_t^{(j)}$, then

$$\sum_{i} \lambda_{j} |g_{t}^{(j)}|^{2} = \sum_{i} \lambda_{j} g_{t}^{(j)} \cdot \bar{g}_{t}^{(j)} - \int_{0}^{t} \int \langle \phi(t,x), J_{t,s}(x) \phi(s,x) \rangle \mu_{0}(dx) ds.$$

$$\sum_{j} \lambda_{j} |g_{t}^{(j)}|^{2} = \sum_{j} \lambda_{j} g_{t}^{(j)} \cdot \bar{g}_{t}^{(j)} - \int_{0}^{t} \int \langle \phi(t,x), J_{t,s}(x)\phi(s,x)\rangle \mu_{0}(dx)ds.$$

• $J_{t,s}$ satisfies

$$\frac{d}{dt}J_{t,s}(x) = -\nabla\nabla V(\Theta_t(x), \mu_t)J_{t,s}(x), \quad J_{s,s}(x) = Id.$$

• If $J_{t,s}$ is a nonnegative Volterra kernel, then for every T > 0

$$\int_0^T \sum_j \lambda_j |g_t^{(j)}|^2 dt \leq \int_0^T \sum_j \lambda_j g_t^{(j)} \cdot \bar{g}_t^{(j)} dt,$$

which implies that

$$\int_0^T \|\eta_t\|_{k_\pi}^2 dt = \int_0^T \sum_j \lambda_j |g_t^{(j)}|^2 dt \leq \int_0^T \sum_j \lambda_j |\bar{g}_t^{(j)}|^2 dt = \int_0^T \|\bar{\eta}_t\|_{k_\pi}^2 dt.$$

Note:

$$\|\eta_t\|_{k_{\pi}}^2 := \iint k_{\pi}(x,x')\eta_t(dx)\eta_t(dx').$$

Some comments on the fluctuation in KSD Descent

• Under the thermal equilibrium, namely $\mu_0 = \mu_t = \mu_\infty$, $\Theta_t(x) = \Theta_\infty(x) \equiv x$ and $\nabla \nabla V(x, \mu_\infty)$ is p.s.d., then

$$J_{t,s} = e^{-(t-s)\nabla\nabla V(x,\mu_{\infty})}$$

is a nonnegative Volterra kernel, which means

$$\int_0^T \int_0^t \langle \phi(t), J(t-s)\phi(s) \rangle ds dt \geq 0.$$

Then

$$\int_0^T \|\eta_t\|_{k_\pi}^2 dt \le \int_0^T \|\bar{\eta}_t\|_{k_\pi}^2 dt.$$

Table of Contents

- Part I: Kernel Stein Discrepancy Descent and its Advantages in Sampling
 - Problem Introduction
 - Kernel Stein Discrepancy (KSD)
 - KSD Descent Algorithm
 - The Analysis of KSD Descent
- Part II : Fluctuation Suppression and Enhancement in General Interacting Particle Systems
 - Problem Setting in General Cases
 - Main Results

General interacting particle systems

ullet Generally, the first order SDE systems for N interacting particles in the mean field scaling

$$dX_i = -\nabla V(X_i)dt - \frac{1}{N}\sum_j \nabla W(X_i - X_j)dt + \sqrt{2\beta^{-1}}dB_i, \quad i = 1, \dots, N.$$

• The corresponding Fokker-Planck equation

$$\partial_t \rho = \nabla \cdot ((\nabla V + \nabla W * \rho)\rho) + \beta^{-1} \Delta \rho.$$

- Note: For the system with noise, the approach in [1] using the flow mapping is not accessible.
- The SPDE that the fluctuation satisfies [7]

$$\partial_t \eta = \nabla \cdot (\nabla U(x,t)\eta) + \beta^{-1} \Delta \eta + \nabla \cdot (\nabla W * \eta \mu_t) - \sqrt{2\beta^{-1}} \nabla \cdot (\sqrt{\mu_t} \xi)$$

where $U(x, t) = V(x) + W * \mu$ and ξ is a space-time noise.

◆ロト ◆団ト ◆草ト ◆草ト 草 めなぐ

Table of Contents

- Part I: Kernel Stein Discrepancy Descent and its Advantages in Sampling
 - Problem Introduction
 - Kernel Stein Discrepancy (KSD)
 - KSD Descent Algorithm
 - The Analysis of KSD Descent
- Part II : Fluctuation Suppression and Enhancement in General Interacting Particle Systems
 - Problem Setting in General Cases
 - Main Results

The basic equations in the thermal equilibrium

Proposition 1

Both $\hat{\eta}_t$ and $\hat{ar{\eta}}_t$ are Gaussian stochastic processes. They satisfy the relation

$$\hat{\eta}_t(\omega) = \hat{ar{\eta}}_t(\omega) \mp rac{1}{(2\pi)^d} \int_0^t \int_{\hat{\mathbf{X}}} k(\omega, \omega', t - s) \hat{\Phi}(\omega') \hat{\eta}_s(\omega') d\omega' ds,$$

where "–" sign corresponds to $W=\Phi$ and "+" corresponds to $W=-\Phi$ respectively, and

$$k(\omega,\omega',s) = \beta \int_{\mathbf{X}} \left(e^{-\frac{1}{2}s\mathcal{A}} e^{-i\omega \cdot y} \right) \mathcal{A}(e^{-\frac{1}{2}s\mathcal{A}} e^{i\omega' \cdot y}) \mu_*(dy).$$

Here $\mathcal{A} = -\mathcal{L} = \nabla U(x) \cdot \nabla - \beta^{-1} \Delta = -\beta^{-1} e^{\beta U} \nabla \cdot (e^{-\beta U} \nabla)$. For each s, k is Hermitian with

$$k(\omega, \omega', s) = \overline{k(\omega', \omega, s)}$$

and is positive semi-definite in s.

32 / 40

Reduced system using eigen-expansion

• Assume $\mathcal L$ has a spectral gap, then $\mathcal A=-\mathcal L$ is a nonnegative self-adjoint operator in $L^2(\mathbb R^d;\mu_*)$ with discrete spectrum. The eigenvalue problem for the generator is

$$-\mathcal{L}\phi_n = \lambda_n \phi_n, \quad n = 0, 1, \dots$$

Proposition 2

For all i, j

$$G_{ij} = \iint_{\mathbf{X} \times \mathbf{X}} \Phi(y - y') \phi_i(y) \phi_j(y') \mu_*(dy) \mu_*(dy') \in \mathbb{R}.$$

The operator $G:\ell^2\to\ell^2$ is positive semi-definite. If moreover $\hat{\Phi}$ has full support in $\hat{X},\ G$ is positive definite.

Reduced system using eigen-expansion

- Introduce $\tilde{X}_i(t) = \int_{\mathbf{X}} \phi_i(y) \eta_t(dy)$, $\tilde{Y}_i(t) = \int_{\mathbf{X}} \phi_i(y) \bar{\eta}_t(dy)$.
- Define $X := G^{1/2}\tilde{X}, \quad Y := G^{1/2}\tilde{Y}.$

Proposition 3

- lacktriangle Almost surely, $X(t) = G^{1/2} \tilde{X}(t) \in \ell^2$ and $Y(t) = G^{1/2} \tilde{Y}(t) \in \ell^2$.
- It holds that

$$\|\eta_t\|_{\Phi}^2 = \|\hat{\eta}_t\|_{L^2(\nu)}^2 = \langle X, X \rangle_{\ell^2} = \langle \tilde{X}, G\tilde{X} \rangle_{\ell^2}.$$

and similar relations hold for $\bar{\eta}_t$ and Y(t).

Introducing a family of operators $\Lambda(t): \ell^2 \to \ell^2$ for t > 0, defined by $(\Lambda(t)X)_i = \lambda_i e^{-\lambda_i t} X_i$, then the following equation holds

$$X(t) = Y(t) \mp \beta \int_0^t G^{1/2} \Lambda(t-s) G^{1/2} X(s) ds,$$
 (4)

where "–" sign corresponds to $W=\Phi$ and "+" corresponds to $W=-\Phi$ respectively.

Jiaheng Chen (SJTU) Sampling via Flows June 21, 2025 34/

The space homogenous systems on torus

Theorem 1

① If $W = \Phi$, $\mathbb{E} \|\eta_t\|_{\Phi}^2$ is decreasing in time, and for any t > 0

$$\mathbb{E}\|\eta_t\|_{\Phi}^2 < \mathbb{E}\|\bar{\eta}_t\|_{\Phi}^2.$$

Moreover, as $t \to \infty$, one has

$$\lim_{t\to\infty} \mathbb{E}\|\eta_t\|_{\Phi}^2 = \sum_{j\geq 1} \frac{\mathbb{E}|Y_j|^2}{1+\beta\mathbb{E}|Y_j|^2},$$

and consequently $\lim_{\beta \to +\infty} \lim_{t \to \infty} \|\eta_t\|_{\Phi}^2 = 0$.

① If $W=-\Phi$, $\mathbb{E}\|\eta_t\|_\Phi^2$ is increasing in time, and for any t>0

$$\mathbb{E}\|\eta_t\|_{\Phi}^2 > \mathbb{E}\|\bar{\eta}_t\|_{\Phi}^2,$$

Moreover, there is a critical value β_c such that when $\beta > \beta_c$, $\lim_{t\to\infty} \mathbb{E}\|\eta_t\|_\Phi^2 = +\infty$.

General cases

Theorem 2

($W = \Phi$, positive definite case) For any T > 0, it holds almost surely that

$$\int_0^T \|\eta_t\|_{\Phi}^2 dt \le \int_0^T \|\bar{\eta}_t\|_{\Phi}^2 dt.$$

lacktriangle $(W=-\Phi,$ negative definite case) Assume the interaction is weak such that

$$||G|| \le 2\beta^{-1},$$

where $\|\cdot\|$ is the operator norm. Then for any T>0 it holds almost surely that

$$\int_0^T \|\eta_t\|_{\Phi}^2 dt \ge \int_0^T \|\bar{\eta}_t\|_{\Phi}^2 dt.$$

- Relates to Volterra equation with convolution kernels of positive type[3].
- The condition $\|G\| \le 2\beta^{-1}$ is equivalent to that $G^{1/2}\Lambda(t-s)G^{1/2}$ is of **anti-coercive type** with coercivity constant $q=2\beta^{-1}$

General cases

1

($W = \Phi$, positive definite case) For any T > 0, it holds almost surely that

$$\int_0^T \|\eta_t\|_{\Phi}^2 dt \le \int_0^T \|\bar{\eta}_t\|_{\Phi}^2 dt.$$

$$||G|| \le 2\beta^{-1},$$

where $\|\cdot\|$ is the operator norm. Then for any T>0 it holds almost surely that

$$\int_0^T \|\eta_t\|_{\Phi}^2 dt \ge \int_0^T \|\bar{\eta}_t\|_{\Phi}^2 dt.$$

- Relates to Volterra equation with convolution kernels of positive type[3].
- The condition $||G|| \le 2\beta^{-1}$ is equivalent to that $G^{1/2}\Lambda(t-s)G^{1/2}$ is of **anti-coercive type** with coercivity constant $q=2\beta^{-1}$

Summary

- In general interacting particle systems, compared to the fluctuation in Monte Carlo sampling
 - positive definite interaction potentials (repulsive) \Longrightarrow smaller fluctuation
 - ullet negative definite interaction potentials (attractive) \Longrightarrow larger fluctuation

Benefits:

- Help to understand the properties of some particle based variational inference sampling methods (e.g. KSD Descent).
- May help to gain deeper understanding to some physical systems like Poisson-Boltzmann systems.

Zhengdao Chen, Grant Rotskoff, Joan Bruna, and Eric Vanden-Eijnden. A dynamical central limit theorem for shallow neural networks. Advances in Neural Information Processing Systems, 33:22217–22230, 2020.

Jackson Gorham and Lester Mackey.

Measuring sample quality with kernels.

In *International Conference on Machine Learning*, pages 1292–1301. PMLR, 2017.

Gustaf Gripenberg, Stig-Olof Londen, and Olof Staffans.

Volterra integral and functional equations.

Number 34. Cambridge University Press, 1990.

Anna Korba, Pierre-Cyril Aubin-Frankowski, Szymon Majewski, and Pierre Ablin.

Kernel stein discrepancy descent.

In International Conference on Machine Learning, pages 5719–5730. PMLR, 2021.

Qiang Liu, Jason Lee, and Michael Jordan.

A kernelized stein discrepancy for goodness-of-fit tests.

In International conference on machine learning, pages 276–284. PMLR, 2016.

Alain-Sol Sznitman.

June 21, 2025

Thanks for your attention!