UNIVERSITY OF DHAKA

Department of Mathematics Second Year B.S. (Honors) 2019-2020

Subject: Mathematics

Course No: MTH 250 Course Title: MATH Lab II

Assignment-1

Name:	Roll:	Group:
1 (dille)	11011.	OI Oup!

Write a Script file to solve each of the following problems.

- **Q1.** Use Definition with x_i^* as the right endpoint (left endpoint or midpoint) of each subinterval to find the area under the graph of $f(x) = 2 x^2$ and over the interval [0, 2].
- **Q2.** (i) Find the Minimum of $f(x, y) = x^2 + y^2 + 4x 6y + 18$ in the window $[0,2] \times [2,4]$ with increment 0.01 for x and y.
 - (ii) Find the absolute extrema of $f(x,y) = x^2 2xy + 4y^2 4x 2y + 24$ for $0 \le x \le 4$ and $0 \le y \le 2$,
- Q3. Find the local extrema and saddle points of $f(x, y) = xy x^3 y^2$ in the following format

Critical points	Value of <i>f</i>	f_{xx}	$D = f_{xx}f_{yy} - \left[f_{xy}\right]^2$	conclusion

Q4. If $f(x,y) \ge 0$, then the volume of the solid that lies above the rectangle R and below the surface z = f(x,y) is

$$V = \iint_{R} f(x, y) \ dA = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

Estimate the volume of the solid that lies above the square $R = [0,2] \times [0,2]$, and below the elliptic paraboloid $z = 16 - x^2 - 2y^2$. Divide R into four equal squares and choose the sample point to be the upper right corner point (left or middle point) of each square. Try this for large number of squares.