

q	δ(q,a)	δ(q,b)
1	{2}	Ø
2	Ø	{3}
3	{1,4,5}	Ø
4	{5}	Ø
5	{1}	Ø

Kleene's Theorem, Part 1

- Theorem: For every alphabet Σ , every regular language over Σ can be accepted by a finite automaton
- Because of what we have just shown, it is enough to show that every regular language over Σ can be accepted by an NFA
- The proof is by structural induction, based on the recursive definition of the set of regular languages over $\boldsymbol{\Sigma}$

Homework: Learn both parts of Kleene's theorem (including proofs).

Kleene's Theorem, Part 1 (cont'd.)

- The basis cases are easy
- The automata pictured below accept the languages \emptyset and $\{\sigma\}$, respectively

- Induction hypothesis: both L₁ and L₂ are regular languages can be accepted by NFAs
- Induction step: $L(M_1) \cup L(M_2)$, $L(M_1)L(M_2)$, and $L(M_1)^*$ can be accepted by NFAs

Each FA is shown as having 2 accepting states

Kleene's Theorem, Part 2

- Theorem: For every finite automaton $M=(Q, \Sigma, q_0, A, \delta)$, the language L(M) is regular
- Proof: First, for two states p and q, we define the language $L(p,q) = \{x \in \Sigma^* \mid \delta^*(p,x) = q\}$
- If we can show that for every p and q in Q, L(p, q) is regular, then it will follow that L(M) is, because ...
 - $-L(M) = \cup \{L(q_0, q) \mid q \in A\}$
 - The union of a finite collection of regular languages is regular
- We will show that L(p, q) is regular by expressing it in terms of simpler languages that are regular

Kleene's Theorem, Part 2 (cont'd.)

- We will consider the distinct states through which M
 passes as it moves from p to q
- If $x \in L(p, q)$, we say x causes M to go from p to q through a state r if there are non-null strings x_1 and x_2 such that $x = x_1x_2$, $\delta^*(p, x_1) = r$, and $\delta^*(r, x_2) = q$
 - In using a string of length 1 to go from p to q, M does not go through any state
 - How can we construct an inductive proof on what happens between p and q?

Kleene's Theorem, Part 2 (cont'd.)

- Assume *Q* has *n* elements numbered 1 to *n*
- For $p, q \in Q$ and $j \ge 0$

L(p, q, j) = strings in L(p, q) that cause M to go from p to q without going through any state numbered higher than j

- Suppose that for some number $k \ge 0$, L(p, q, k) is regular for every $p, q \in Q$ and consider how a string can be in L(p, q, k+1)
 - The easiest way is for it to be in L(p, q, k)
 - If not, it causes M to go to k+1 one or more times, but M goes through nothing higher (i.e., no state k+2 for example)

Kleene's Theorem, Part 2 (cont'd.)

• Every string in L(p, q, k+1) can be described in one of those two ways and every string that has one of these two forms is in L(p, q, k+1). This leads to the formula

$$- L(p, q, k+1) = L(p, q, k) \cup L(p, k+1, k) L(k+1, k+1, k)^* L(k+1, q, k)$$

 This is the main point of a proof by induction on k and for an algorithm **Algorithm: FA** \rightarrow **RE**. Let r(i, j, k) denote a RE for L(i, j, k). Then L(M) is described by the RE we need accepting states only

$$r(M) = r(1, 1, 3) + r(1, 2, 3)$$

The recursive formula with smaller k in the proof tells

$$r(1,1,3) = r(1,1,2) + r(1,3,2)r(3,3,2)*r(3,1,2)$$

 $r(1,2,3) = r(1,2,2) + r(1,3,2)r(3,3,2)*r(3,2,2)$

Applying the formula to the expressions r(i, j, 2) we get

$$r(1, 1, 2) = r(1, 1, 1) + r(1, 2, 1)r(2, 2, 1)*r(2, 1, 1)$$

$$r(1, 3, 2) = r(1, 3, 1) + r(1, 2, 1)r(2, 2, 1)*r(2, 3, 1)$$

$$r(3, 3, 2) = r(3, 3, 1) + r(3, 2, 1)r(2, 2, 1)*r(2, 3, 1)$$

$$r(3, 1, 2) = r(3, 1, 1) + r(3, 2, 1)r(2, 2, 1)*r(2, 1, 1)$$

$$r(1, 2, 2) = r(1, 2, 1) + r(1, 2, 1)r(2, 2, 1)*r(2, 2, 1)$$

$$r(3, 2, 2) = r(3, 2, 1) + r(3, 2, 1)r(2, 2, 1)*r(2, 2, 1)$$

p	r(p, 1, 0)	r(p, 2, 0)	r(p,3,0)
1	$a + \Lambda$	b	Ø
2	a	Λ	b
3	а	b	Λ

p	<i>r</i> (p, 1, 1)	r(p, 2, 1)	r(p, 3, 1)
1	a*	a*b	Ø
2	aa*	$\Lambda + aa^*b$	b
3	aa*	a^*b	Λ

p	r(p, 1, 2)	r(p, 2, 2)	r(p, 3, 2)
1	$a^*(baa^*)^*$	$a^*(baa^*)^*b$	$a^*(baa^*)^*bb$
2	$aa^*(baa^*)^*$	$(aa^*b)^*$	(aa*b)*b
3	$aa^* + a^*baa^*(baa^*)^*$	$a^*b(aa^*b)^*$	$\Lambda + a^*b(aa^*b)^*b$

Example:
$$r(2,2,1) = r(2,2,0) + r(2,1,0)r(1,1,0)^*r(1,2,0)$$

$$= \Lambda + (a)(a+\Lambda)^*(b)$$

$$= \Lambda + aa^*b$$

Regular expressions and finite automata

- Tools such as grep, awk, and sed
- Email servers
- Pattern matching

Finite automata

- Software testing/QC
- TCP/IP, HTTP, and other protocols
- Hardware

Motivation

Grammars, Automata, Regular Expressions

- GUI
- Lexical analysis in compilers of programming languages like
 C/C++, Java, and many more

Future computers

- Biomolecular finite automata
- DNA/RNA Turing machines

More questions

- Find duplicate occurrences of a phrase (Reg Exp).
- Does a program contain an assertion violation? Does a device driver respect certain protocols? (Properties of Lang)
- Can your software be stuck in an infinite loop? (Lang Incl)
- Does a distributed algorithm contain a livelock? (Lang Incl)
- Detect malicious Javascript entered into a web application.
 The set of malicious strings is a language. (Langs Inters)
- Run-time monitoring of reactive and mission-critical systems (nuclear reactors, chemical procs). (FA, Incl/Inters)
- Bioinformatics: pattern matching → build a language
- AI: FAs are used in simulation of character behavior