Course Name: **B.Tech. 3**th **Sem.** Subject: **Data Structures**

Paper Code: ETCS-209

No of hours allotted to complete the syllabi: **44 Hours** No of hours allotted per week: **3 Hours**

Topic Details	No of Hours Planned	Methodology*	Reference /text book**
UNIT-I			
Programming methodologies Algorithms, how to formulate an algorithm and pseudocode generation.	2	L	T1
Abstract data type. Relationship between data structures and abstract data type.			T2
Define space and time Complexity. Examples for calculating space and Time complexity.			
Data Structures- definition, Types- Linear, Non-Linear, Basic operations, Array representation			Т3
Arrays: Introduction to linear arrays, Representation of linear arrays in memory, Traversing linear arrays, Insertion & deletion Sparse arrays	3	L, T	
Multidimensional Arrays: Two Dimensional array, Implementation of two dimensional arrays in memory			
Definition and Overview of Stacks, Queues, Linked List			
Stacks -Implementation using Arrays. Algorithm for PUSH & POP operations			
Evaluation of Postfix expression,			

Conversion for infix to postfix expression and their algorithms.	4	L, T	T4
Queues- Implementation using Array and Algorithms for insertion deletion from the queue using above implementations.			
Circular queue- implementation using arrays & Linked List.			
Priority queues, Dqueues, Multiple Stacks and Queues			
Linked List- Representation in memory, Dynamic allocation, Creation of a Linked List			
Algorithm – creation, traversing, Counting elements and Searching in a linked list.	3	L	Т4
Memory allocation, Garbage Collection, Avail List.			
Algorithm for sorting elements in a linked list.			
Algorithm for inserting and deleting elements from a linked list from first last and middle position			
Implementation of stack and queue using Linked List			
Doubly Linked List - Algorithm for creation, Traversal (Forward/ Backward), Insertion and deletion			
Header List (Circular & Grounded) - Algorithm for creation, insertion, traversal and deletion.	4	L	Т4
Polynomial arithmetic - Algorithm for Polynomial addition using circular Linked			

list			
Generalized Lists. Sparse Matrices- Creation, Addition, Transpose and Multiplication algorithms. Equivalence Relations.			Т7
UNIT-II			
Searching - Linear Search, Binary Search & their complexity			
Trees: Overview of Trees—Terminology, Definitions, Binary tree, Complete, full and strictly binary tree.	3	L, A	T4, T10
Tree Traversals (preorder, postorder and preorder), Representation of Arithmetic expression as a binary tree. Formation of Binary tree from given Inorder and preorder/ postorder traversals.	2		
Non-recursive and Recursive algorithms for preorder, Inorder, Postorder traversal.			
Expression trees and their usage.			
First Term Exam			
Threaded binary trees. Binary Search Tree—Build, Search an element, Insertion (Algorithms)			
Algorithm for deletion of a node in a BST having no child, one child and two children.	2		
Heap —Build a heap, insertion and deletion from a heap	3		
Balanced Trees —AVL trees, Build an AVL tree and Insertion (Rebalancing), AVL trees—Deletion and Rebalancing		L, T	T4, T5

Multiway Search trees: B-Tree—Build, Insertion (splitting), Deletion (concatenation), B+ tree, B* tree Application of trees—Set representations, Game trees, Decision trees	2	L, A	T5, T7
UNIT-III Graphs, Digraphs and associated terminology (Path, degree, Connected, Isolated, Cycle, depth etc.) Representation of graphs- Sequential & Linked (Adjacency Matrix, Path matrix, Adjacency List)	3	L	T4, T7
Graph traversals- Breadth first search, Depth First Search Connected components, Transitive closure, Topological Sort Spanning Tree, Minimum cost spanning tree, Kruskal's and Prim's Algorithm	4	L	T4, T7, T8, T9
Shortest path- Dijkstra's Algorithm & Implementation and Floyd Warshall algorithm Activity Network, Critical Path Sorting—Internal (Selection sort, Bubble sort, Insertion sort, Radix sort, Merge Sort, Shell sort, Heap sort, Quick sort) & their complexity	2		
Second Class Test	0		
UNIT-IV Differences between External and Internal searching/ Sorting. List search, sequential search.	2	L	T10, T11

External Sorting-(K-way Mergesort, Balanced and PolyPhase MergeSort)			
UNIT-IV Files, Queries and Sequential organization. Cylinder Surface Indexing, Tree Indexing, Trie Indexing	3	L,A	T4, T7
Random File Organization- Direct Addressing, Directory Lookup, Hashing Hashing methods- direct, subtraction, modulo division, mid square folding, pseudorandom hashing			
Collision reduction- linear probing, quadratic probe, pseudorandom collision resolution, linked list collision resolution Bucket hashing			
Linked Organization, Inverted files, Cellular Partitions			
Revision and Discuss last year Question Papers	2		

*Methodology Used: L-Lecture, T-Tutorial, A-Assignment

**Text Books/ Reference Books:	
T1-→ Fundamentals of Computer Algorithms	S. Sahni Galgotia Publications
T2-→ Fundamentals of Data Structures using C++	S. SahniGalgotia Publications
T3-→ Expert Data Structures with C	R.B.PatelKhanna Publications
T4-→Theory & Problems of Data Structures	SeymourTMH
T5-→ Data Structures & Program Design	R.L.KrusePHI
T6-→ Data Structures using C & C++	TanenbaumPHI
T7-→ Fundamentals of Data Structures	S. Sahni Galgotia Publications
(2003 Reprint)	
T8-→Data Structures, Algo's & applications in C++.	S. SahniMcGraw Hill
T9-→Graph Theory with applications to CS	N. DeoPHI
T10→An Intro. to Data Structures with Applications.	TremblayMcGraw Hill
T11→File Structures- an OO approach with C++	M. J. FolkPearson Edu.