

Faculdade de Engenharia Elétrica Teoria da Computação Prof. Felipe A. Louza

Lista 4

Lema do Bombeamento e Operações Regulares

Questão 1

Seja a linguagem $L = \{0^n 1^n \mid n \leq 3\}.$

Escreva um AF que processe L, se possível. Se não for possível use o lema do bombeamento para mostrar que L não é uma Linguagem Regular.

Questão 2

Seja a linguagem $L = \{w \mid w \in \{a,b\}^* \text{ e } w \text{ contém um número igual de } ba \text{ e } ab\}$. Escreva um AF que processe L, se possível. Se não for possível use o lema do bombeamento para mostrar que L não é uma Linguagem Regular.

Questão 3

Seja a linguagem $L = \{w \mid w \text{ possui o mesmo número de símbolos } \mathbf{0} \in \mathbf{1}\}.$

Escreva um autômato finito (AF) que processe L, se possível. Se não for possível use o lema do bombeamento para mostrar que L não é uma Linguagem Regular.

Questão 4

Seja a linguagem $L = \{a^n b^m \mid n > m\}.$

Escreva um AF que processe L, se possível. Se não for possível use o lema do bombeamento para mostrar que L não é uma Linguagem Regular.

Questão 5

O que podemos dizer de uma linguagem que possui as propriedades do lema do bombeamento?

Questão 6

O que significa dizer que uma Classe de Linguagens é fechada sobre uma operação? Dê dois exemplos para as Linguagens Regulares.

Questão 7

Considere as linguagens $L_1=\{w=ab^na\mid n\geq 0\}$ e $L_2=\{w=(ab)^n\mid n\geq 1\}.$ Escreva um AF que processe:

(a) L_1

(e) L_2L_1

(b) L_2

(f) L_1^*

(c) $L_1 \cup L_2$

(g) L_2^*

(d) L_1L_2

(h) $\overline{L_1}$

Questão 8

Mostre (com as suas palavras) que as Linguagens Regulares são fechadas sobre as operações de (i) Complemento e (ii) Intersecção.