DÉPARTEMENT DE PHYSIQUE DE L'ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL

THÈSE DE DOCTORAT DE L'ÉCOLE NORMALE SUPÉRIEURE

Spécialité : PHYSIQUE QUANTIQUE

Atomes de Rydberg piégés

présentée par

Tigrane Cantat-Moltrecht

pour obtenir le grade de

DOCTEUR DE L'ÉCOLE NORMALE SUPÉRIEURE

Soutenue le 18 devant le jury composé de :

Dr.	Michel BRUNE	Directeur de thèse
Dr.	Thierry LAHAYE	Rapporteur
Pr.	Shannon WHITLOCK	Rapporteur
Dr.	Bruno LABURTHE-TOLRA	Examinateur
Pr.	Jonathan HOME	Examinateur
Pr.	Agnès MAITRE	Examinateur

Table des matières

In	trod	uction]		
1	Ato	Atomes de Rydberg alcalins en interaction				
	1.1		ie générale des Rydberg	•		
	1.2		es de Rydberg en interaction	•		
2	Des	atom	es de Rydberg froids en environnement cryogénique			
	2.1 Les atomes froids					
		2.1.1	le cryostat et la puce			
		2.1.2	séquence de piégeage et refroidissement	ļ		
		2.1.3	imagerie atomique	,		
		2.1.4	nuages typiques	ļ		
	2.2	Excita	ation et détection d'atomes de Rydberg près d'une puce	,		
		2.2.1	schéma d'excitation			
		2.2.2	schéma de détection	,		
		2.2.3	problème de champs électriques et flash de Rb	,		
		2.2.4	compensation et contrôle des champs	(
		2.2.5	manipulation et observation des Rydbergs	(
3	Inte den		n entre atomes de Rydberg sphériques et excitation de gaz	,		
	3.1		nes d'excitation en nuage dense : blocage et facilitation	,		
	5.1	3.1.1	Rappels sur l'interaction	,		
		3.1.2	Le blocage dipolaire et la facilitation	,		
	3.2		roscopie optique du nuage	,		
	0.2	3.2.1	Description de la manip	,		
		3.2.2	Données : élargissement de la raie laser par interactions	-		
	3.3		le de la dynamique d'excitation	,		
	0.0	3.3.1	Simulations	,		
		3.3.2	Les limites du modèle	8		
		3.3.3	Conclusion	8		
,						
4		atome ntique	es de Rydberg circulaires en interaction : vers un simulateur	(
	qua	muque		è		

T	$^{7}\Delta$	RI	F	DES	$M \Delta'$	TIERE	C

TABLE DES MATIÈRES

5	5 Des atomes de Rydberg circulaires sur puce				
	5.1	Comment exciter des atomes de Rydberg circulaires	11		
	5.2	Comment caractériser les atomes de Rydberg circulaires	11		
	5.3	Éjectable : Première évidence du piégeage des atomes circulaires	12		
\mathbf{C}	Conclusion 1				

Table des figures

Introduction

Atomes de Rydberg alcalins en interaction

1.1 Théorie générale des Rydberg

Hamiltonien de l'atome d'hydrogène

particularités aux grands n

Défaut quantique : comment passer aux alcalins

le défaut quantique comme un n effectif quantitativement : $\delta_{n,l,j}$ pour les niveaux qui nous concernent

Niveaux à bas l

description rapide des spécificités et schéma de niveaux taille, dipole transitions vers niveaux proches, émission spontanée, temps de vie

Niveaux circulaires

description rapide des spécificités et schéma de niveaux taille, dipole transitions vers niveaux proches, émission spontanée, temps de vie

Les grandes caractéristiques des Rydberg

gigantisme du dipole, sensibilité au champ EM, interactions lois d'échelle

1.2 Atomes de Rydberg en interaction

Deux atomes de Rydberg

hamiltonien d'interaction dipole-dipole Van der Waals interaction d'échange

les interactions entre Rydberg de bas l

origine du C_6 pour 60s-60s et C_6/A_6 avec les voisins blocage dipolaire et facilitation

4 CHAPITRE 1. ATOMES DE RYDBERG ALCALINS EN INTERACTION

les interactions entre Rydberg circulaires

 C_6 pour 50c-50c et C_6/A_6 avec les voisins

Des atomes de Rydberg froids en environnement cryogénique

2.1 Les atomes froids

2.1.1 le cryostat et la puce

2.1.2 séquence de piégeage et refroidissement

piégeage magnéto-optique piégeage magnétique refroidissement évaporatif jusqu'au BEC

2.1.3 imagerie atomique

optique d'imagerie imagerie par absorption tweaks : absorption no-log et réduction des franges

2.1.4 nuages typiques

quels MOTs, mélasses et nuages froids obtenus

2.2 Excitation et détection d'atomes de Rydberg près d'une puce

2.2.1 schéma d'excitation

laser et niveaux atomiques

2.2.2 schéma de détection

décrire la détection sélective en champ

2.2.3 problème de champs électriques et flash de Rb

vieilles raies larges et moches flash Rb belles raies fines

6 CHAPITRE~2.~DES~ATOMES~DE~RYDBERG~FROIDS~EN~ENVIRONNEMENT~CRYOGÉNIQUE

2.2.4 compensation et contrôle des champs

électrode Vcomp électrodes RF

2.2.5 manipulation et observation des Rydbergs

la spectroscopie microondes

Interaction entre atomes de Rydberg sphériques et excitation de gaz dense

3.1 Régimes d'excitation en nuage dense : blocage et facilitation

3.1.1 Rappels sur l'interaction

hamiltonien d'interaction de paire approximation de N atomes comme somme de $\frac{N(N-1)}{2}$ paires

3.1.2 Le blocage dipolaire et la facilitation

les deux régimes d'excitation déterminée par les interactions négligeabilité des excitations de paires

3.2 Spectroscopie optique du nuage

- 3.2.1 Description de la manip
- 3.2.2 Données : élargissement de la raie laser par interactions

conséquence de la facilitation

3.3 Modèle de la dynamique d'excitation

3.3.1 Simulations

modèle d'équation de taux résultats de simulations comparés aux manips

8CHAPITRE 3. INTERACTION ENTRE ATOMES DE RYDBERG SPHÉRIQUES ET EXCITATION

3.3.2 Les limites du modèle

photons thermiques et apparition de niveaux p

3.3.3 Conclusion

il faut prendre en compte le mouvement, mais aussi les transferts thermiques vers les niveaux p

Les atomes de Rydberg circulaires en interaction : vers un simulateur quantique

Reprendre le PRX

10CHAPITRE 4. LES ATOMES DE RYDBERG CIRCULAIRES EN INTERACTION : VERS UN SIMU

Des atomes de Rydberg circulaires sur puce

5.1 Comment exciter des atomes de Rydberg circulaires

Les niveaux atomiques du fondamental au Rydberg circulaire

schéma de niveaux et Stark maps

Spectroscopie 5s-50d

en champ nul et en champ non-nul -> choix de m_i

Spectroscopie 50d-50f

en champ nul et en champ non-nul -> choix de m_l et problème d'élargissement

Le passage adiabatique

et le dispositif radio-fréquence

5.2 Comment caractériser les atomes de Rydberg circulaires

Spectroscopie microonde

50c-51c et optimisation de la RF 50c-49c?

Temps de vie

temps de vie théorique, temps de vie mesuré, température effective

Temps de cohérence

franges de Ramsey

5.3 Éjectable : Première évidence du piégeage des atomes circulaires

chute par gravité et/ou expansion du nuage compensée par un tube de lumière

Conclusion

14 Conclusion

Conclusion 17

Laser Trapping of Circular Rydberg Atoms

Abstract: Quantum simulation offers a highly promising way to understand large correlated quantum systems, and many experimental platforms are now being developed. Rydberg atoms are especially appealing thanks to their strong and short-range dipole-dipole interaction.

In our setup, we prepare and manipulate ensembles of Rydberg atoms excited from an ultracold atomic cloud magnetically trapped above a superconducting chip. The dynamics of the Rydberg excitation can be controlled through the laser excitation process. The manybody atomic interaction energy spectrum is then directly measured through microwave spectroscopy. This thesis develops a rigorous Monte Carlo model that provides an insight into the excitation process. Using this model, we discuss a possibility to explore quantum simulations of energy transport in a 1D chain of low angular momentum Rydberg atoms. Furthermore, we propose an innovative platform for quantum simulations. It relies on a groundbreaking approach, based on laser-trapped ensemble of extremely long-lived, strongly interacting circular Rydberg atoms. We present intensive numerical results as well as discuss a wide range of problems that can be addressed with the proposed model.

Keywords: quantum simulation, Rydberg atoms, circular atoms, dipole-dipole interaction, atom chip, microwave spectroscopy

Piégeage laser d'atomes de Rydberg circulaires

Résumé: La simulation quantique offre un moyen très prometteur pour comprendre les systèmes quantiques corrélés macroscopiques. De nombreuses plateformes expérimentales sont en cours d'élaboration. Les atomes de Rydberg sont particulièrement intéressants grâce à leur forte interaction dipolaire de cours portée. Dans notre manip, nous préparons et manipulons des ensembles d'atomes de Rydberg excités à partir d'un nuage atomique ultra-froid piégé magnétiquement sur une puce à atome supraconductrice. La dynamique de l'excitation est contrôlée par le processus d'excitation du laser. Le spectre d'énergie d'interaction atomique des N corps est mesuré directment par spectroscopie micro-onde. Dans cette thèse, nous développons un modèle Monte Carlo rigoureux qui nous éclaire sur le processus d'excitation. En utilisant ce modèle, nous discutons de la possibilité de réaliser des simulations quantiques du transport d'énergie sur une chaîne 1D d'atomes de Rydberg de faible moment angulaire. De plus, nous proposons une plateforme innovante pour la réalisation de simulations quantiques. Elle repose sur une approche révolutionnaire basée sur un ensemble d'atomes de Rydberg dont le temps de vie est extrêmement long, qui interagissent fortement et qui sont piégés par laser. Nous présentons les résultats de simulations numériques et nous discutons du large éventail de problèmes qui peuvent être traités avec le modèle proposé.

Mots-clés : simulation quantique, atomes de Rydberg, atomes circulaires, interaction dipolaire, puce à atome, spectroscopie micro-ondre