Mechatronic System Instrumentation - MECH 421 -

Minkyun Noh

Assistant Professor
UBC Mechanical Engineering

Wikipedia's View

Dr. Noh's View

^{*} The term *instrumentation* usually connotes sensing and measurement. For mechatronic systems, we use it in a broader sense.

Q. What is this course about?

MECH 421 is about "Control and Instrumentation"

Control and Instrumentation are complementary areas of knowledge

Control

:Theoretical knowledge to design and analyze mechatronic systems

Instrumentation

:Hardware-oriented knowledge to realize mechatronic systems

We need to understand these two to interconnect various subsystems, such as controller, sensors, actuators, and mechanical systems.

Electronics are "glue" between the subsystems.

Mechatronic System

Control View

Instrumentation View

Instrumentation View +

Example: Magnetic-levitation Motor

Suspension Test

- M. Noh and D. L. Trumper, *IEEE Transactions on Industrial Electronics*, Sep. 2019.
- M. Noh et al., in Proc. 16th International Symposium on Magnetic Bearings, Aug. 2018.
- M. Noh and D. L. Trumper, U.S. Patent Application, Dec. 2018.

Rotation Test

- M. Noh and D. L. Trumper, *IEEE Transactions on Industrial Electronics*, Sep. 2019.
- M. Noh et al., in Proc. 16th International Symposium on Magnetic Bearings, Aug. 2018.
- M. Noh and D. L. Trumper, U.S. Patent Application, Dec. 2018.

Blood Pumping Test

Sensor Instrumentation

Signal Electronics

Inductance-to-Digital Converter (LDC)

Resonance frequency measurement

$$f_i = \frac{1}{2\pi\sqrt{L_i C_i}}$$

LDC Interfacing with FPGA

Staggered Tuning

- Synchronized SPI ports (x4)
- Simultaneous sampling @2kHz
- Position signals:

$$v_{\chi} = a_{\chi}(f_2 - f_1)$$

$$v_{\nu} = a_{\nu}(f_4 - f_3)$$

Controls

Rotation Control

Suspension Control

Power Amplifier

M. Noh et al., IEEE/ASME Transactions on Mechatronics, Oct. 2017

Course Contents

Circuits

- Linear circuits
- Op-amp circuits
- Power amplifier
- Differential measurement

Controls

- LTI systems
- Loop shaping
- Digital control
- Noise Filtering

Motors

- Brushed dc motor
- Brushless dc motor (permanent-magnet synchronous motor)