Using H2O AutoML for Kaggle Competitions

- AutoML? Does it work?
- About H₂O AutoML

• Q & A

Jo-fai (Joe) Chow
Data Scientist at H2O.ai
joe@h2o.ai

About Me

- Civil (Water) Engineer
 - 2010 2015
 - Consultant (UK)
 - Utilities
 - Asset Management
 - Constrained Optimization
 - EngD (Industrial PhD) (UK)
 - Infrastructure Design Optimization
 - Machine Learning +
 Water Engineering
 - Discovered H₂O in 2014

- Data Scientist
 - 2015 2016
 - Virgin Media (UK)
 - Domino Data Lab (Silicon Valley)
 - 2016 Present
 - H₂O.ai (Silicon Valley)
 - How?
 - bit.ly/joe_kaggle_story

H₂O AutoML: Does it work?

Some of the H₂O Kagglers

Marios Michailidis (KazAnova) Mathias Müller (Faron)

Dmitry Larko ... and his father

Joe ... trying to catch up ...
Used AutoML a lot to save time
37 out of 3839 (Top 1%)

Does it work with other tools?

Does it work with other tools?

YES – I used H₂O and StackNet together

Introducing StackNet Meta-Modelling Framework

Marios Michaildis

Research Data Scientist at H2O.ai

Email: marios@h2o.ai

Why bother learning more about StackNet?

- It helps to improve predictions given the same input data
- Its is **educational** in its own way, especially in understanding Stacking.
- Compiles the **pinnacle of machine learning** into one framework-and-library.
- Has won 2 kaggle competitions (<u>link A</u> and <u>Link B</u>)
- Has helped many people get top 10 results in kaggle.
- It has helped me become kaggle #1

About H2O AutoML

Scalable Automatic Machine Learning

Why Use AutoML?

Automates Model Building Workflow

- Includes Automatic training & tuning of a large selection of candidate models
- Allows for user-specified performance metric-based Stopping (riterion or time-limit
- Provides Real-time monitoring of model building progress
- Includes highly predictive Stacked Ensembles trained on collection of models

What is Completed?

Fast: Distributed & In-Memory

AutoML

Who is it For?

Who is it For?

AUTOMATES

- basic preprocessing
- · model training
- hyperparameter tuning
- stacking
- · model results table

FREES TIME FOR

- data-preprocessing
- feature engineering
- model deployment

Who is it For?

AUTOMATES

- basic preprocessing
- model training
- tuning with validation
- stacking
- model results table

FREES TIME FOR

- data-preprocessing
- feature engineering
- model deployment

The Interface

Simplify Machine Learning

2 Required parameters training frame & response

The Interface

R

PYTHON

```
# Identify predictors and response
x = train.columns
y = "response"
x.remove(y)
# Run AutoML for 30 seconds
aml = H2OAutoML(max_runtime_secs = 30)
aml.train(x = x, y = y,
          training_frame = train,
          leaderboard_frame = test)
# View the AutoML Leaderboard
lb = aml.leaderboard
lb
```

Grid Search

- Large selection of models
- Hyperparameter tuning
- Early Stopping

Stacked Ensemble

 Highly predictive ensemble trains on all the models

Stacking Base Learners

Why meta modelling?

Base Learner Results

CV Prediction Results Column

Get CV Prediction Column

Split Dataset

Split into Train and Valid

Split into Train and Valid per Fold

Form Prediction Column

Base Learner Results

Prediction Results Column

 Collect the predicted values from k-fold CV that was performed on each of the L base learners

$$\operatorname{n}\left\{ \left[p_{1}\right] \cdots \left[p_{L}\right] \left[y\right] \right.
ightarrow \operatorname{n}\left\{ \left[\begin{array}{c} Z \end{array} \right] \left[y\right] \right.$$

 Collect the predicted values from k-fold CV that was performed on each of the L base learners

$$\operatorname{n}\left\{\left[\begin{matrix} p_1 \end{matrix}\right] \cdots \left[\begin{matrix} p_L \end{matrix}\right] \left[\begin{matrix} y \end{matrix}\right] \right. \to \left[\begin{matrix} n \\ \end{matrix}\right] \left[\begin{matrix} Z \end{matrix}\right] \left[\begin{matrix} y \end{matrix}\right]$$

- Collect the predicted values from k-fold CV that was performed on each of the L base learners
- Column-bind ("stack") these prediction vectors together to form a new design matrix, Z

$$\operatorname{n}\left\{\left[\begin{matrix} p_1 \end{matrix}\right] \cdots \left[\begin{matrix} p_L \end{matrix}\right] \left[\begin{matrix} y \end{matrix}\right] \right. \to \left[\left[\begin{matrix} I \end{matrix}\right] \left[\begin{matrix} I$$

- Collect the predicted values from k-fold CV that was performed on each of the L base learners
- Column-bind ("stack") these prediction vectors together to form a new design matrix, Z
- Train the metalearner (currently a GLM) using Z, y

Appendix

Early Stopping

GBM

Average number of trees are used to train on 100% of the training data

Average number of epochs are used to train on 100% of the training data

GLM

Best Lambda from all folds is used to train on 100% of the training data

Each Fold Uses its Holdout for Early Stopping

TRAIN				Holdout
TRAIN			Holdout	
TRAIN		Holdout		
TRAIN	Holdout			
Holdout				TRAIN

Average number of trees are used to train on 100% of the training data

Average number of trees are used to train on 100% of the training data – The Model You Get Back

Auto-Splits

User provides: Training Frame

Train is Split: 70% Train, 15% Valid, 15% Leaderboard

Auto-Splits

User provides: Training & Validation Frames

Valid is Split: 50% Valid, 50% Leaderboard

Auto Splits

User provides: Training, Validation & Leaderboard Frames

Data is Left as is