

MCMC: algorithmes avancés

Hamiltonian Dynamics

En grande dimension, les algorithmes Metropolis / MALA explorent inefficacement l'espace.

Idée: au lieu d'explorer avec une position aléatoire x, simuler une vitesse initiale aléatoire.

En physique, on parle du moment: p=mv

 \rightarrow

Simuler un vecteur de moment p' (direction et vitesse)

2. Déterminer la trajectoire

Suivre la trajectoire et s'arrêter (nouveau x')

4. Accepter ou rejeter (x', p')

Répéter 5.

(animated)

Hamiltonian Dynamics

En grande dimension, les algorithmes Metropolis / MALA explorent inefficacement l'espace.

Idée: au lieu d'explorer avec une position aléatoire x, simuler une vitesse initiale aléatoire.

En physique, on parle du moment:
$$\ \vec{p}=m\vec{v}$$

Hamiltonian Monte-Carlo (Duane 1987, Neal 1996)

- 1. Simuler un vecteur de moment p' (direction et vitesse)
- 2. Déterminer la trajectoire
- 3. Suivre la trajectoire et s'arrêter (nouveau x')
- 4. Accepter ou rejeter (x', p')
- 5. Répéter

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

MCMC: algorithmes avancés

Hamiltonian Dynamics

Hamiltonian Monte-Carlo (Duane 1987, Neal 1996)

- 1. Simuler un vecteur de moment p' (direction et vitesse)
- 2. Déterminer la trajectoire
- 3. Suivre la trajectoire et s'arrêter (nouveau x')
- 4. Accepter ou rejeter (x', p')
- 5. Répéter

