МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет

ИЗМЕРЕНИЕ ЭДС КОМПЕНСАЦИОННЫМ МЕТОДОМ

Отчет по (учебной) практике Студентов группы 427(0424С1ИБг1) 2 курса специалитета Скороходов С.А., Степушов Г.С.

Основная образовательная программа подготовки по направлению 10.05.02 «Информационная безопасность телекоммуникационных систем» (направленность «Системы подвижной цифровой защищенной связи»)

Содержание	

I.	Введение	2
	Цель	2
	Задачи	2
	Приборы и оборудование	2
II.	Теоретическая часть	3
	1. Введение	3
	2. Измерение ЭДС при помощи вольтметра	3
	3. Метод компенсации	4
	4. Экспериментальная установка	6
III	Практическая часть	8
IV	Контрольные вопросы	10
v.	Вывод	14
VI	Лриложение	15

І. ВВЕДЕНИЕ

Цель

Изучение метода компенсации для измерения электродвижущей силы (ЭДС) источников тока, сравнение его с прямым методом измерения с помощью вольтметра, а также приобретение практических навыков сборки электрических цепей и проведения измерений.

Задачи

- 1. Ознакомиться с характеристиками и правилами использования нормального элемента типа НЭ-65. Рассчитать величину защитного сопротивления R_3 в схеме рис. 3 в наиболее неблагоприятном случае;
- 2. Измерить \mathcal{E}_x с помощью вольтметра;
- 3. Собрать схему, изображенную на рис. 3, и измерить \mathcal{E}_x методом компенсации. Перед измерениями целесообразно оценить R_{1X} и R_{1N} ;
- 4. Измерить \mathcal{E}_{x} с помощью промышленного компенсатора.

Приборы и оборудование

- Блок питания БП-28;
- Нормальный элемент типа НЭ-65 класса 0,005 (эталонная ЭДС $\mathcal{E}_N \approx 1,0186$ В);
- Два одинаковых штепсельных магазина сопротивлениями R_1 и R_2 $(R_1 + R_2 = R);$
- Защитный резистор R_3 ;
- Нуль-гальванометр (НГ);
- Вольтметр;
- Источник с неизвестной ЭДС ${\mathcal E}_x$;
- Промышленный компенсатор (готовый прибор для компенсации, например, потенциометр типа ПП-63 или аналогичный).
- Провода, переключатели (К1) и другие соединительные элементы.

II. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1. Введение

Стационарный электрический ток в замкнутой цепи может существовать благодаря источникам тока, в которых на заряженные частицы (носители тока) действуют сторонние непотенциальные силы $\vec{F}_{\rm cr}$. Электродвижущей силой (ЭДС) на участке цепи 1–2 называется работа сторонней силы, совершаемая при перемещении по этому участку единичного положительного заряда:

$$\mathcal{E}_{12} = \int_1^2 \vec{E}_{\rm CT} d\vec{l},\tag{1}$$

где $ec{E}_{ ext{ct}}$ – напряженность поля сторонних сил.

Сторонние силы могут иметь различную природу. Так, например, в химических источниках тока стороннее силовое поле возникает в тонких контактных слоях между электродами и электролитом.

Под действием сторонних сил происходит разделение зарядов, в результате чего возникает кулоновское поле $\vec{E}_{\text{кул}}$. Работа кулоновской силы при перемещении единичного положительного заряда есть разность потенциалов:

$$\varphi_1 - \varphi_2 = \int_1^2 \vec{E}_{\text{кул}} \cdot d\vec{l}. \tag{2}$$

Кроме сторонних и кулоновских сил на носители тока действуют силы сопротивления. Поскольку алгебраическая сумма работ всех сил равна нулю, на любом участке цепи выполняется закон Ома:

$$IR_{12} = \varphi_1 - \varphi_2 + \mathcal{E}_{12}. \tag{3}$$

2. Измерение ЭДС при помощи вольтметра

Рис. 1. Измерение ЭДС при помощи вольтметра.

При подключении вольтметра с сопротивлением R_v к батарее, имеющей ЭДС $\mathcal E$ и внутреннее сопротивление r (Рис. 1), показания вольтметра:

$$U = IR_v = \frac{\mathcal{E}R_v}{R_v + r}.$$
 (4)

Показания вольтметра отличаются от значения ${\mathcal E}$ на величину

$$\mathcal{E} - U = Ir = \frac{\mathcal{E}r}{R_v + r}.$$
 (5)

При $R_v\gg r$ относительная ошибка измерения ЭДС становится малой:

$$\delta \mathcal{E} = \frac{\mathcal{E} - U}{\mathcal{E}} = \frac{\mathcal{E} r}{\mathcal{E}(R_v + r)} \approx \frac{r}{R_v}.$$
 (6)

Для высокоомных вольтметров эта ошибка может быть незначительной, но для невысокоомных вольтметров измерение дает заметную погрешность. Более точное измерение обеспечивает метод компенсации.

3. Метод компенсации

Для пояснения идеи метода компенсации рассмотрим схему, приведенную на рис. 2.

Рис. 2. Принципиальная схема измерения ЭДС методом компенсации.

Здесь \mathcal{E}_x — неизвестная ЭДС, \mathcal{E} — ЭДС источника питания ($\mathcal{E} > \mathcal{E}_x$). Методика измерения состоит в подборе сопротивления R_1 при неизменной сумме

$$R_1 + R_2 = R = \text{const}, \tag{7}$$

до достижения нулевого тока через нуль-гальванометр.

Для получения тока через гальванометр, рассмотрим рис. 2 и расставим направления течения тока и обхода. Запишем первый и второй законы Кирхгофа:

$$\begin{cases} I_3 = I_1 + I_2 \\ -\mathcal{E}_x = I_3 r + I_2 R_1 \\ \mathcal{E} = I_1 R_2 - I_2 R_1 \end{cases}$$
 (8)

Выведем силу тока на промежутке с нуль гальванометре (I_3) :

$$\begin{cases}
I_{3} = I_{1} + I_{2} \\
I_{2} = \frac{\mathcal{E}_{x}}{R_{1}} - I_{3} \frac{r}{R_{1}} \\
I_{1} = I_{2} \frac{R_{1}}{R_{2}} - \frac{\mathcal{E}}{R_{2}} = \left(\frac{\mathcal{E}_{x}}{R_{1}} - I_{3} \frac{r}{R_{1}}\right) \frac{R_{1}}{R_{2}} - \frac{\mathcal{E}}{R_{2}} = \frac{\mathcal{E}_{x} - \mathcal{E}}{R_{2}} - I_{3} \frac{r}{R_{2}}
\end{cases}$$

$$I_{3} = \frac{\mathcal{E}_{x} - \mathcal{E}}{R_{2}} - I_{3} \frac{r}{R_{2}} + \frac{\mathcal{E}_{x}}{R_{1}} - I_{3} \frac{r}{R_{1}}$$

$$I_{3} \left(1 + \frac{r}{R_{2}} + \frac{r}{R_{1}}\right) = \frac{\mathcal{E}_{x} - \mathcal{E}}{R_{2}} + \frac{\mathcal{E}_{x}}{R_{1}}$$

$$I_{3} \frac{rR + R_{1}R_{2}}{R_{1}R_{2}} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{3} = \frac{\mathcal{E}R_{1} - \mathcal{E}_{x}R}{rR + R_{2}R_{2}}.$$
(10)

При компенсации ($I_3 = 0$) неизвестная ЭДС:

$$0 = \mathcal{E}R_{1x} - \mathcal{E}_x R$$

$$\mathcal{E}_x = \frac{R_{1x}}{R} \mathcal{E},\tag{11}$$

где R_{1x} – значение R_1 при компенсации.

Чтобы исключить \mathcal{E} из расчетов, проводят измерение с эталонной ЭДС \mathcal{E}_N :

$$\mathcal{E}_N = \frac{R_{1N}}{R} \mathcal{E}. \tag{12}$$

Из (11) и (12) получаем:

$$\mathcal{E}_x = \frac{R_{1x}}{R_{1N}} \mathcal{E}_N. \tag{13}$$

Таким образом, для измерения \mathcal{E}_x необходимо определить два значения сопротивления R_1 при компенсации. ЭДС источника питания знать не требуется.

4. Экспериментальная установка

Рабочая схема для измерения ЭДС методом компенсации приведена на рис. 3.

В качестве источника питания используется блок питания БП-28, эталонной ЭДС – нормальный элемент НЭ-65. Резисторы R_1 и R_2 – два одинаковых штепсельных магазина с постоянной суммой $R=R_1+R_2$.

Рис. 3. Рабочая схема для определения ЭДС методом компенсации

Защитный резистор R_3 предохраняет нормальный элемент и гальванометр от больших токов. Перед измерениями R_3 вводят полностью, а при приближении к компенсации уменьшают до нуля.

Схема включается ключом K_2 с последовательным замыканием цепей для защиты приборов. Сначала замыкается цепь питания, затем подключается ветвь с измеряемой ЭДС.

III. ПРАКТИЧЕСКАЯ ЧАСТЬ

С помощью вольтметра измеряем ЭДС батарейки \mathcal{E}_x . Полученное значение:

$$\mathcal{E}_x = (1,461 \pm 0,262) \text{ B}$$

Таблица 1: Результаты измерений компенсирующих сопротивлений

\mathcal{E} , B	3	6
$R_{1N_{\mathrm{cp}}}$, OM $R_{1x_{\mathrm{cp}}}$, OM	3 781,0 5 425,0	1 880,0 2 707,5

(b) Теоретические данные

\mathcal{E} , B	3	6
R_{1N} , OM R_{1x} , OM		

Собираем схему согласно рис. 3. Подключаем эталонный источник ЭДС $\mathcal{E}_N = (1{,}018 \pm 0{,}005)$ В, выставляем ЭДС источника питания $\mathcal{E} = 3$ В, устанавливаем сопротивление R_3 на максимальное значение и замыкаем ключ.

Методом подбора сопротивлений R_1 , R_2 и постепенного уменьшения R_3 находим значение R_1 , при котором нуль-гальванометр показывает +1 мкA, фиксируем R_1^+ , затем находим R_1^- для -1 мкA. Среднее значение вычисляем по формуле:

$$R_{1N} = \frac{R_1^+ + R_1^-}{2}$$

Аналогичные измерения проводим для ЭДС источника $\mathcal{E} = 6$ В и для измеряемой батарейки \mathcal{E}_x . Все полученные данные заносим в табл. 1а и 1b.

Также вычислим R_{1N} и R_{1x} по формуле (10) полученная в ре... Далее вычислим \mathcal{E}_x по формуле (12), для всех случаев:

Таблица 2: Теоретические данные

	\mathcal{E} , B	3	6
Метод компенсации Вольтметр	\mathcal{E}_{xB} , B \mathcal{E}_{xB} , B	,	*

Вычисление погрешностей

Погрешность R_{1x} и R_{1N} из характеристик приборов:

$$\Delta R_{1x} = \Delta R_{1N} = \pm 11,1 \text{ Om}$$

Приборная погрешность $\Delta \mathcal{E}_{xB}$ из характеристик прибора:

$$\Delta \mathcal{E}_{xB} = \pm 0.18 \text{ B}$$

$$\Delta \mathcal{E}_{1N} = \pm 0,005 \text{ B}$$

$$\Delta R_{1x} = \pm (0.1 + 0.2)$$

Следовательно \mathcal{E}_x вычисленное методом компенсации имеет вид:

$$\mathcal{E}_x = (1,460 \pm 0,005) \text{ B}$$

Сравним: Абсолютная погрешность измерения методом компенсации меньше погрешности измерения вольтметром.

IV. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Постройте качественный график зависимости относительной погрешности измерения ЭДС вольтметром от отношения внутреннего сопротивления источника и вольтметра.
- 2. Получите формулу (10).

Рассмотрим рис. 2 и расставим направления течения тока и обхода. Запишем первый и второй законы Кирхгофа:

$$\begin{cases} I_3 = I_1 + I_2 \\ -\mathcal{E}_x = I_3 r + I_2 R_1 \\ \mathcal{E} = I_1 R_2 - I_2 R_1 \end{cases}$$
 (14)

Выведем силу тока на промежутке с нуль гальванометре (I_3) :

$$\begin{cases}
I_{3} = I_{1} + I_{2} \\
I_{2} = \frac{\mathcal{E}_{x}}{R_{1}} - I_{3} \frac{r}{R_{1}} \\
I_{1} = I_{2} \frac{R_{1}}{R_{2}} - \frac{\mathcal{E}}{R_{2}} = \left(\frac{\mathcal{E}_{x}}{R_{1}} - I_{3} \frac{r}{R_{1}}\right) \frac{R_{1}}{R_{2}} - \frac{\mathcal{E}}{R_{2}} = \frac{\mathcal{E}_{x} - \mathcal{E}}{R_{2}} - I_{3} \frac{r}{R_{2}}
\end{cases}$$

$$I_{3} = \frac{\mathcal{E}_{x} - \mathcal{E}}{R_{2}} - I_{3} \frac{r}{R_{2}} + \frac{\mathcal{E}_{x}}{R_{1}} - I_{3} \frac{r}{R_{1}}$$

$$I_{3} \left(1 + \frac{r}{R_{2}} + \frac{r}{R_{1}}\right) = \frac{\mathcal{E}_{x} - \mathcal{E}}{R_{2}} + \frac{\mathcal{E}_{x}}{R_{1}}$$

$$I_{3} \frac{rR + R_{1}R_{2}}{R_{1}R_{2}} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{3} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{4} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{5} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{6} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{7} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{8} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{8} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{8} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{9} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{10} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{10} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

$$I_{10} = \frac{R_{1}\mathcal{E} - R\mathcal{E}_{x}}{R_{1}R_{2}}$$

3. Может ли разность потенциалов между полюсами источника тока, включенного в электрическую цепь, быть больше его ЭДС? Равна нулю?

Нет, разность потенциалов между полюсами, включенного в цель, источника тока не может быть больше его ЭДС. Она может быть равной 0 только если источник имеет нулевое внутренние сопротивление.

4. Укажите направления токов, вызванных каждым источником в отдельности и обоими источниками вместе во всех ветвях схемы рис. 2.

Рис. 4. Принципиальная схема измерения ЭДС методом компенсации.

5. Постройте качественный график зависимости тока через гальванометр от сопротивления R_1 .

Рис. 5. Качественный график зависимости тока через гальванометр

Значение сопротивления резистора R_1 может иметь значения только в диапазоне от 0 до R из условия (7). Рассмотрим значения силы тока I_3 в этих точках по формуле (10):

$$I_3(R) = \frac{R_1 \mathcal{E} - R \mathcal{E}_x}{rR + R_1 R_2} = \frac{\mathcal{E} - \mathcal{E}_x}{r}$$

$$I_3(0) = -\frac{\mathcal{E}_x R}{rR} = -\frac{\mathcal{E}_x}{r}$$
(17)

$$I_3(0) = -\frac{\mathcal{E}_x R}{rR} = -\frac{\mathcal{E}_x}{r} \tag{18}$$

Найдем точку пересечения графика с осью абсцисс:

$$0 = \frac{R_1 \mathcal{E} - R \mathcal{E}_x}{rR + R_1 R_2} \quad \Rightarrow \quad R_1(0) = \frac{\mathcal{E}_x}{\mathcal{E}} R \tag{19}$$

Найдем I и II производные формулы (10) для анализа формы графика:

$$I_{3}' = \left(\frac{R_{1} \mathcal{E} - R_{1} \mathcal{E}_{x} - R_{2} \mathcal{E}_{x}}{rR_{1} + rR_{2} + R_{1}R_{2}}\right)_{R_{1}}' =$$

$$= \frac{(\mathcal{E} - \mathcal{E}_{x})(rR_{1} + rR_{2} + R_{1}R_{2}) - (R_{1}\mathcal{E} - R_{1}\mathcal{E}_{x} - R_{2}\mathcal{E}_{x})(r + R_{2})}{(rR_{1} + rR_{2} + R_{1}R_{2})^{2}} =$$

$$= \frac{rR_{1}\mathcal{E} + rR_{2}\mathcal{E} + R_{1}R_{2}\mathcal{E} - rR_{1}\mathcal{E}_{x} - rR_{2}\mathcal{E}_{x} - R_{1}R_{2}\mathcal{E}_{x}}{(rR_{1} + rR_{2} + R_{1}R_{2})^{2}} - \frac{rR_{1}\mathcal{E}_{x} - rR_{1}\mathcal{E}_{x} - rR_{2}\mathcal{E}_{x} + R_{1}R_{2}\mathcal{E} - R_{1}R_{2}\mathcal{E}_{x} - R_{2}\mathcal{E}_{x}}{(rR_{1} + rR_{2} + R_{1}R_{2})^{2}} =$$

$$= \left[R_{2}\frac{r\mathcal{E} + R_{2}\mathcal{E}_{x}}{(rR + R_{1}R_{2})^{2}}\right] = R_{2}(r\mathcal{E}_{x} + R_{2}\mathcal{E}_{x})(rR_{1} + rR_{2} + R_{1}R_{2})^{-2} \quad (20)$$

$$I_{3}'' = \left(R_{2}(r \mathcal{E}_{x} + R_{2} \mathcal{E}_{x})(rR_{1} + rR_{2} + R_{1}R_{2})^{-2}\right)_{R_{1}}' =$$

$$= -2R_{2}(r \mathcal{E} + R_{2} \mathcal{E}_{x})(rR_{1} + rR_{2} + R_{1}R_{2})^{-3}(r + R_{2}) =$$

$$= \left[-2R_{2}\frac{(r \mathcal{E} + R_{2} \mathcal{E}_{x})(r + R_{2})}{(rR + R_{1}R_{2})^{3}}\right] (21)$$

6. Как зависит чувствительность компенсационных измерений по схеме на рис. 3 от величины вспомогательной ЭДС \mathcal{E} ?

Вспомогательное ЭДС \mathcal{E} должно быть больше \mathcal{E}_x , для правильного направления тока. Исходя из практических наблюдений ΔR_{1x} и ΔR_{1N} уменьшаются с увеличением \mathcal{E} , следовательно, чем выше \mathcal{E} тем точнее измерение \mathcal{E}_x .

7. Как зависит чувствительность компенсационных измерений по схеме на рис. 3 от суммы $R_1 + R_2 = R$?

Для измерения \mathcal{E}_x нам важно не сумма $R_1 + R_2 = R$, а отношение величины R_1 к R.

V. ВЫВОД

Мы изучили метод компенсации для измерения ЭДС, сравнили его с методом прямого измерения вольтметром и показали, что он дает меньшую ошибку, чем прямое измерение.

VI. ПРИЛОЖЕНИЕ