Package 'MultiBD'

October 12, 2022

Type P	'ackage
Title M	Multivariate Birth-Death Processes
Version	0.2.0
Date 20	016-07-19
M Fo Ja	Lam S.T. Ho [aut, cre], Marc A. Suchard [aut], orrest W. Crawford [aut], ason Xu [ctb], Vladimir N. Minin [ctb]
Mainta	iner Marc A. Suchard <msuchard@ucla.edu></msuchard@ucla.edu>
in ra in	otion Computationally efficient functions to provide direct likelihood-based inference for partially-observed multivariate birth-death processes. Such processes ange from a simple Yule model to the complex susceptible-infectious-removed model in disease dynamics. Efficient likelihood evaluation facilitates maximum likelihood estimation and Bayesian inference.
License	e Apache License 2.0
Depend	ls R (>= 3.1.0)
Imports	s Rcpp (>= 0.11.2), RcppParallel
Linking	gTo Rcpp, BH, RcppParallel
	ts testthat, knitr, rmarkdown, MCMCpack, ggplot2, matrixStats, lotrix
Roxyge	enNote 5.0.1
Vignett	eBuilder knitr
NeedsC	Compilation yes
Reposit	tory CRAN
Date/Pu	ublication 2016-12-05 18:28:46
R top	pics documented:
	bbd_prob

2 bbd_prob

Index																			8
	MultiBD . SIR_prob																		
	Eyam		 																5
	dbd_prob		 								 								3

bbd_prob

Transition probabilities of a birth/birth-death process

Description

Computes the transition pobabilities of a birth/birth-death process using the continued fraction representation of its Laplace transform

Usage

```
bbd_prob(t, a0, b0, lambda1, lambda2, mu2, gamma, A, B, nblocks = 256,
tol = 1e-12, computeMode = 0, nThreads = 4, maxdepth = 400)
```

Arguments

t	time
a0	total number of type 1 particles at $t = 0$
b0	total number of type 2 particles at $t = 0$
lambda1	birth rate of type 1 particles (a two variables function)
lambda2	birth rate of type 2 particles (a two variables function)
mu2	death rate function of type 2 particles (a two variables function)
gamma	transition rate from type 2 particles to type 1 particles (a two variables function)
Α	upper bound for the total number of type 1 particles
В	upper bound for the total number of type 2 particles
nblocks	number of blocks
tol	tolerance
computeMode	computation mode
nThreads	number of threads
maxdepth	maximum number of iterations for Lentz algorithm

Value

a matrix of the transition probabilities

References

Ho LST et al. 2015. "Birth(death)/birth-death processes and their computable transition probabilities with statistical applications". In review.

dbd_prob 3

Examples

```
## Not run:
data(Eyam)
# (R, I) in the SIR model forms a birth/birth-death process
loglik_sir <- function(param, data) {</pre>
  alpha <- exp(param[1]) # Rates must be non-negative</pre>
  beta <- exp(param[2])</pre>
  N \leftarrow data$S[1] + data$I[1] + data$R[1]
  # Set-up SIR model with (R, I)
  brates1 <- function(a, b) { 0 }</pre>
  brates2 <- function(a, b) { beta * max(N - a - b, 0) * b }
  drates2 <- function(a, b) { 0 }</pre>
  trans21 <- function(a, b) { alpha * b }</pre>
  sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k
             function(k) {
                log(
                  bbd_prob( # Compute the transition probability matrix
                    t = data$time[k + 1] - data$time[k], # Time increment
                    a0 = data\$R[k], b0 = data\$I[k],
                                                            # From: R(t_k), I(t_k)
                   brates1, brates2, drates2, trans21,
                   A = data R[k + 1], B = data R[k + 1] + data [k] - data R[k],
                    computeMode = 4, nblocks = 80
                                                            # Compute using 4 threads
                  )[dataR[k + 1] - dataR[k] + 1,
                    data[k + 1] + 1]
                                                            # To: R(t_{(k+1)}), I(t_{(k+1)})
             }))
}
loglik_sir(log(c(3.204, 0.019)), Eyam) # Evaluate at mode
## End(Not run)
```

dbd_prob

Transition probabilities of a death/birth-death process

Description

Computes the transition pobabilities of a death/birth-death process using the continued fraction representation of its Laplace transform

Usage

```
dbd_prob(t, a0, b0, mu1, lambda2, mu2, gamma, a = 0, B, nblocks = 256,
tol = 1e-12, computeMode = 0, nThreads = 4, maxdepth = 400)
```

4 dbd_prob

Arguments

t	time
a0	total number of type 1 particles at $t = 0$
b0	total number of type 2 particles at $t = 0$
mu1	death rate of type 1 particles (a two variables function)
lambda2	birth rate of type 2 particles (a two variables function)
mu2	death rate function of type 2 particles (a two variables function)
gamma	transition rate from type 2 particles to type 1 particles (a two variables function)
a	lower bound for the total number of type 1 particles (default $a = 0$)
В	upper bound for the total number of type 2 particles
nblocks	number of blocks
tol	tolerance
computeMode	computation mode
nThreads	number of threads
maxdepth	maximum number of iterations for Lentz algorithm

Value

a matrix of the transition probabilities

References

Ho LST et al. 2016. "Birth(death)/birth-death processes and their computable transition probabilities with statistical applications". In review.

Examples

```
## Not run:
data(Eyam)
loglik_sir <- function(param, data) {</pre>
  alpha <- exp(param[1]) # Rates must be non-negative</pre>
  beta <- exp(param[2])</pre>
  # Set-up SIR model
  drates1 <- function(a, b) { 0 }</pre>
  brates2 <- function(a, b) { 0 }</pre>
  drates2 <- function(a, b) { alpha * b</pre>
  trans12 <- function(a, b) { beta * a * b }</pre>
  sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k
             function(k) {
                log(
                  dbd_prob( # Compute the transition probability matrix
                    t = data$time[k + 1] - data$time[k], # Time increment
                    a0 = data\$S[k], b0 = data\$I[k], # From: S(t_k), I(t_k)
```

Eyam 5

```
drates1, brates2, drates2, trans12,
                  a = data$S[k + 1], B = data$S[k] + data$I[k] - data$S[k + 1],
                  )[1, data$I[k + 1] + 1]
                                                     # To: S(t_{k+1}), I(t_{k+1})
              )
            }))
 }
 loglik_sir(log(c(3.204, 0.019)), Eyam) # Evaluate at mode
## End(Not run)
# Birth-death-shift model for transposable elements
lam = 0.0188; mu = 0.0147; v = 0.00268; # birth, death, shift rates
drates1 <- function(a, b) { mu * a }</pre>
brates2 <- function(a, b) { lam * (a + b) }
drates2 <- function(a, b) { mu * b }</pre>
trans12 <- function(a, b) { v * a }
# Get transition probabilities
p \leftarrow dbd_prob(t = 1, a0 = 10, b0 = 0,
             drates1, brates2, drates2, trans12,
             a = 0, B = 50
```

Eyam

Eyam plague.

Description

A dataset containing the number of susceptible, infectious and removed individuals during the Eyam plague from June 18 to October 20, 1666.

Usage

data(Eyam)

Format

A data frame with 8 rows and 4 variables:

time Months past June 18 1666

S Susceptible

I Infectious

R Removed

SIR_prob

References

Ragget G (1982). A stochastic model of the Eyam plague. Journal of Applied Statistics 9, 212-226.

MultiBD

Multivariate birth-death processes

Description

The MultiBD package computes the transition probabilities of several multivariate birth-death processes.

References

Ho LST et al. 2016. "Birth(death)/birth-death processes and their computable transition probabilities with statistical applications". In review.

SIR_prob

Transition probabilities of an SIR process

Description

Computes the transition pobabilities of an SIR process using the bivariate birth process representa-

Usage

```
SIR_prob(t, alpha, beta, S0, I0, nSI, nIR, direction = c("Forward",
    "Backward"), nblocks = 20, tol = 1e-12, computeMode = 0, nThreads = 4)
```

Arguments

t	time
alpha	removal rate
beta	infection rate
S0	initial susceptible population
10	initial infectious population
nSI	number of infection events
nIR	number of removal events
direction	$direction\ of\ the\ transition\ probabilities\ (either\ Forward\ or\ Backward)$
nblocks	number of blocks
tol	tolerance
computeMode	computation mode
nThreads	number of threads

SIR_prob 7

Value

a matrix of the transition probabilities

Examples

```
data(Eyam)
loglik_sir <- function(param, data) {</pre>
  alpha <- exp(param[1]) # Rates must be non-negative</pre>
  beta <- exp(param[2])</pre>
  if(length(unique(rowSums(data[, c("S", "I", "R")]))) > 1) {
   stop ("Please make sure the data conform with a closed population")
  }
  sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k
             function(k) {
              log(
                 SIR_prob( # Compute the forward transition probability matrix
                   t = data$time[k + 1] - data$time[k], # Time increment
                   alpha = alpha, beta = beta,
                   S0 = data$S[k], I0 = data$I[k],
                                                        # From: R(t_k), I(t_k)
                   nSI = data$S[k] - data$S[k + 1], nIR = data$R[k + 1] - data$R[k],
                   computeMode = 4, nblocks = 80
                                                    # Compute using 4 threads
                 )[dataS[k] - dataS[k + 1] + 1,
                   dataR[k + 1] - dataR[k] + 1]
                                                   # To: R(t_(k+1)), I(t_(k+1))
            }))
}
loglik_sir(log(c(3.204, 0.019)), Eyam) # Evaluate at mode
```

Index

```
bbd_prob, 2
dbd_prob, 3
Eyam, 5
MultiBD, 6
MultiBD-package (MultiBD), 6
SIR_prob, 6
```