Modélisation et simulation de la formation de coalitions par la théorie des jeux

Saloua Boushine - Florian Wident

Encadré par : Sébastien Verel - Chistopher Jankee

12 juin 2015

Présentation du projet :

- Introduction
- Système Multi-Agent
 - Répartition spatiale
 - Les états des agents
 - Règles du jeu
 - Formation de coalition
 - Gestion des Stratégies
- 3 Simulation et Implémentation
 - Dilemme du Prisonnier
 - Coalition fixe
 - Coalition dynamique
- 4 Conclusion

Plan de l'exposé

- Introduction
- - Répartition spatiale
 - Les états des agents
 - Règles du jeu
 - Formation de coalition
 - Gestion des Stratégies
- - Dilemme du Prisonnier
 - Coalition fixe
 - Coalition dynamique

- Qu'est ce que la théorie de jeux?
- Théorie des jeux dans le vie réelle (Economie, Informatique, Militaire)
- Un peu d'histoire (John Von Neumann, Oskar Morgenstein)
- Dilemme Du prisonnier

- Qu'est ce que la théorie de jeux?
- Théorie des jeux dans le vie réelle (Economie , Informatique, Militaire)
- Un peu d'histoire (John Von Neumann, Oskar Morgenstein)
- Dilemme Du prisonnier

- Qu'est ce que la théorie de jeux?
- Théorie des jeux dans le vie réelle (Economie , Informatique, Militaire)
- Un peu d'histoire (John Von Neumann, Oskar Morgenstein)
- Dilemme Du prisonnier

- Qu'est ce que la théorie de jeux?
- Théorie des jeux dans le vie réelle (Economie , Informatique, Militaire)
- Un peu d'histoire (John Von Neumann, Oskar Morgenstein)
- Dilemme Du prisonnier

- Qu'est ce que la théorie de jeux?
- Théorie des jeux dans le vie réelle (Economie , Informatique, Militaire)
- Un peu d'histoire (John Von Neumann , Oskar Morgenstein)
- Dilemme Du prisonnier

1/11	С	D
С	10/10	0/20
D	20/0	*/*

Sun Tzu

- Qu'est ce que la théorie de jeux Évolutionnaire?
- Stratégie évolutionnaire stable (SES)
- Mémétique

Sun Tzu

- Qu'est ce que la théorie de jeux Évolutionnaire?
- Stratégie évolutionnaire stable (SES)
- Mémétique

Sun Tzu

- Qu'est ce que la théorie de jeux Évolutionnaire?
- Stratégie évolutionnaire stable (SES)
- Mémétique

Sun Tzu

- Qu'est ce que la théorie de jeux Évolutionnaire?
- Stratégie évolutionnaire stable (SES)
- Mémétique

Plan de l'exposé

- Introduction
- Système Multi-Agent
 - Répartition spatiale
 - Les états des agents
 - Règles du jeu
 - Formation de coalition
 - Gestion des Stratégies
- Simulation et Implémentation
 - Dilemme du Prisonnier
 - Coalition fixe
 - Coalition dynamique
- 4 Conclusion

Répartition spatiale

FIGURE: Voisinage de von Neumann.

Les états des agents

- Indépendant
- Leader

Les états des agents

- Indépendant
- Coalition Part
- Leader

Les états des agents

- Indépendant
- Coalition Part
- Leader

Les Règles du jeu

<i>i</i> 4/.		
<i>b</i> ,	C	D
С	R,R	S,T
D	T,S	P,P

(A)		
ki,	С	D
С	3,3	0,5
D	5,0	1,1

FIGURE : Matrice 2-joueurs et Matrice dilemme du prisonnier classique appliquée dans notre simulation.

Formation de coalition

- Choix de stratégie et transmission de stratégie par les leaders
- Simulation de partie : Obtention de gain
- Réduction de gain par la taxe.
- Mouvement de coalition : Algorithme de Juan C.

```
IF ( HasLeader (Ai) )
       IF ( Islsolated (Ai) )
4
          GetIndependence (Ai):
       ELSE IF ((PavOff (Ai) >= PavOff (Am)) AND (PavOff (Ai) > 0))
          ChangeCompromiseWithLeader (+10):
       ELSE IF ((PayOff(Ai) < PayOff(Am)) AND (Leader(Ai) != Am))
           ChangeCompromiseWithLeader (-10):
10
          IF ( WorstPayOff (Ai) OR (CompromiseWith (Am) > 75) )
               JoinCoalition (Am):
          ELSE IF ( (NOT HasLeader (Am)) AND
13
                   (CompromiseWithLeader (Ai) < 25) )
14
              GetIndependence (Ai):
15
16
17
      ELSE IF (IsIndependent (Ai))
18
        IF ( WorstPayOff (Ai) OR
19
          ((PavOff(Ai) < PavOff(Am)) AND CompromiseWith (Am) > 75))
20
             JoinCoalition (Am):
```

Formation de coalition

- Choix de stratégie et transmission de stratégie par les leaders
- Simulation de partie : Obtention de gain
- Réduction de gain par la taxe.
- Mouvement de coalition : Algorithme de Juan C.

```
IF ( HasLeader (Ai) )
       IF ( Islsolated (Ai) )
4
          GetIndependence (Ai):
       ELSE IF ((PavOff (Ai) >= PavOff (Am)) AND (PavOff (Ai) > 0))
          ChangeCompromiseWithLeader (+10):
       ELSE IF ((PayOff(Ai) < PayOff(Am)) AND (Leader(Ai) != Am))
           ChangeCompromiseWithLeader (-10):
10
          IF ( WorstPayOff (Ai) OR (CompromiseWith (Am) > 75) )
               JoinCoalition (Am):
          ELSE IF ( (NOT HasLeader (Am)) AND
13
                   (CompromiseWithLeader (Ai) < 25) )
14
              GetIndependence (Ai):
15
16
17
      ELSE IF (IsIndependent (Ai))
18
        IF ( WorstPayOff (Ai) OR
19
          ((PavOff(Ai) < PavOff(Am)) AND CompromiseWith (Am) > 75))
20
             JoinCoalition (Am):
```

Formation de coalition

- Choix de stratégie et transmission de stratégie par les leaders
- Simulation de partie : Obtention de gain
- Réduction de gain par la taxe.
- Mouvement de coalition : Algorithme de Juan C.

```
IF ( HasLeader (Ai) )
       IF ( Islsolated (Ai) )
4
          GetIndependence (Ai):
       ELSE IF ((PavOff (Ai) >= PavOff (Am)) AND (PavOff (Ai) > 0))
          ChangeCompromiseWithLeader (+10):
       ELSE IF ((PayOff(Ai) < PayOff(Am)) AND (Leader(Ai) != Am))
           ChangeCompromiseWithLeader (-10):
10
           IF ( WorstPayOff (Ai) OR (CompromiseWith (Am) > 75) )
11
               JoinCoalition (Am):
12
           ELSE IF ( (NOT HasLeader (Am)) AND
13
                   (CompromiseWithLeader (Ai) < 25) )
14
              GetIndependence (Ai):
15
16
17
      ELSE IF (IsIndependent (Ai))
18
        IF ( WorstPavOff (Ai) OR
19
           ( (PayOff(Ai) < PayOff(Am) ) AND CompromiseWith (Am) > 75 ) )
20
             JoinCoalition (Am):
```

probabiliste Tit-for-tat(PTFT)

- Méthode de choix de stratégie.
- Basée sur l'imitation des voisins.
- Selection de la stratégie la plus utilisée.
- Autre méthode : Random : Méthode de choix de stratégie aléatoire.

probabiliste Tit-for-tat(PTFT)

- Méthode de choix de stratégie.
- Basée sur l'imitation des voisins.
- Selection de la stratégie la plus utilisée.
- Autre méthode : Random : Méthode de choix de stratégie aléatoire.

probabiliste Tit-for-tat(PTFT)

- Méthode de choix de stratégie.
- Basée sur l'imitation des voisins.
- Selection de la stratégie la plus utilisée.
- Autre méthode : Random : Méthode de choix de stratégie aléatoire.

Plan de l'exposé

- Introduction
- 2 Système Multi-Agent
 - Répartition spatiale
 - Les états des agents
 - Règles du jeu
 - Formation de coalition
 - Gestion des Stratégies
- 3 Simulation et Implémentation
 - Dilemme du Prisonnier
 - Coalition fixe
 - Coalition dynamique
- 4 Conclusion

- Choix de stratégie et transmission de stratégie par les leaders
- Représentation des agents par des avions.
- Voisinage de NR = 1: 4 voisins.
- Stratégie utilisée représentée par la couleur des agents.

- Choix de stratégie et transmission de stratégie par les leaders
- Représentation des agents par des avions.
- Voisinage de NR = 1: 4 voisins.
- Stratégie utilisée représentée par la couleur des agents.

- Choix de stratégie et transmission de stratégie par les leaders
- Représentation des agents par des avions.
- ullet Voisinage de NR = 1: 4 voisins.
- Stratégie utilisée représentée par la couleur des agents.

FIGURE : moyenne des payoff des agents qui trahissent et de ceux qui coopèrent .

Courbe obtenue en utilisant la méthode random.

- Gains plus élevés pour les traîtres.
- 1 chance sur 2 de rencontrer un coopérateur et un traître pour chaqu voisin.
- MoyenneDeGainParTour = nbVoisins*((probabiliteCooperationGainSiC (probabiliteTraite *GainSiTraitre))
- Coopérateur : 4 * (0.5 * 3) = 6
- Traître : 4 * ((0.5) UNIVERSITE CÔTE D'OPALE

FIGURE : moyenne des payoff des agents qui trahissent et de ceux qui coopèrent .

- Courbe obtenue en utilisant la méthode random.
- Gains plus élevés pour les traîtres.
- 1 chance sur 2 de rencontrer un coopérateur et un traître pour chaqu voisin.
- MoyenneDeGainParTour = nbVoisins*((probabiliteCooperationGainSiCooperationGainSiTraite *GainSiTraitre))
- Coopérateur : 4 * (0.5 * 3) = 6 .
- Traître : 4 * ((0.5 b) Traître : 4 * (0.5 core populari propale

- Courbe obtenue en utilisant la méthode random.
- Gains plus élevés pour les traîtres.
- 1 chance sur 2 de rencontrer un coopérateur et un traître pour chaque voisin.
- MoyenneDeGainParTour = nbVoisins*((probabiliteCooperationGainSiC (probabiliteTraite *GainSiTraitre))
- Coopérateur : 4 * (0.5 * 3) = 6
- Traître : 4 * ((0.5 5) JUDI DI UNIVERSITI

- Courbe obtenue en utilisant la méthode random.
- Gains plus élevés pour les traîtres.
- 1 chance sur 2 de rencontrer un coopérateur et un traître pour chaque voisin.
- MoyenneDeGainParTour = nbVoisins*((probabiliteCooperationGainSiC (probabiliteTraite *GainSiTraitre))
- Coopérateur : 4*(0.5*3)=6 .
 Traître : $4*((0.5 \bigcirc 0.5))$

- Courbe obtenue en utilisant la méthode random.
- Gains plus élevés pour les traîtres.
- 1 chance sur 2 de rencontrer un coopérateur et un traître pour chaque voisin.
- MoyenneDeGainParTour = nbVoisins*((probabiliteCooperationGainSiC (probabiliteTraite *GainSiTraitre))
- Coopérateur : 4 * (0.5 * 3) = 6 .
- Traître : 4 * ((0.5 5) COS DUILITISTAI
 CÔISTICHE CONTROLL
 CONTROL
 CONT

- Courbe obtenue en utilisant la méthode random.
- Gains plus élevés pour les traîtres.
- 1 chance sur 2 de rencontrer un coopérateur et un traître pour chaque voisin.
- MoyenneDeGainParTour = nbVoisins*((probabiliteCooperationGainSiC (probabiliteTraite *GainSiTraitre))
- Coopérateur : 4 * (0.5 * 3) = 6 .
- Traître : 4 * ((0.5 * 5) + (0.5 * 20) PALE OF ALL OF ALL

pTFT Random.jpg

- Moitié pTFT, moitié Random (en haut, rouge et vert).
- plus de traîtres que de coopérateurs . noir et rose).
- différence due à la stratégie PTFT (bleu et marron).
- Payoff du pTFT plus élevé que celui du Random.

FIGURE : Analyse des stratégies pTFT et random .

pTFT Random.jpg

- Moitié pTFT, moitié Random (en haut, rouge et vert).
- plus de traîtres que de coopérateurs . noir et rose).
- différence due à la stratégie PTFT (bleu et marron).
- Payoff du pTFT plus élevé que celui du Random.

FIGURE : Analyse des stratégies pTFT et random .

Dilemme du Prisonnier

pTFT Random.jpg

- Moitié pTFT, moitié Random (en haut, rouge et vert).
- plus de traîtres que de coopérateurs . noir et rose).
- différence due à la stratégie PTFT (bleu et marron).
- Payoff du pTFT plus élevé que celui du Random.

FIGURE : Analyse des stratégies pTFT et random .

Dilemme du Prisonnier

pTFT Random.jpg

- Moitié pTFT, moitié Random (en haut, rouge et vert).
- plus de traîtres que de coopérateurs . noir et rose).
- différence due à la stratégie PTFT (bleu et marron).
- Payoff du pTFT plus élevé que celui du Random.

FIGURE : Analyse des stratégies pTFT et random .

- Représentation des coalitions par la couleur de fond de la cellule.
- Initialisation du nombre de leaders et de la taxe selon un slider (a gauche de l'image).

- Représentation des coalitions par la couleur de fond de la cellule.
- Initialisation du nombre de leaders et de la taxe selon un slider (a gauche de l'image).

FIGURE : Gains leaders par rapport aux indépendants et aux membres de la coalition Ajouter a coté de l'image .

- Gain leader plus élevé => taxe imposée.
- Gain coalition part => gain indépendant => coopération interne

FIGURE : Gains leaders par rapport aux indépendants et aux membres de la coalition Ajouter a coté de l'image .

- Gain leader plus élevé => taxe imposée.
- Gain coalition part => gain indépendant => coopération interne.

- La moyenne diminue => Recalcule des taxes imposées par les leaders.
- Agents restants à la fin : petite taxe de l'ordre de 1/10 de l'initialisation.

- La moyenne diminue => Recalcule des taxes imposées par les leaders.
- Agents restants à la fin : petite taxe de l'ordre de 1/10 de l'initialisation.

- Méthode random utilisée par tous les agents (courbe verte).
- Agents restants à la fin : petite taxe
- Le nombre d'agents en coalition
- donc le cumul des gains en coalition
- Avec le temps : Grandes coalitions.
- Approche du gain optimal => Coopération entre to

- Méthode random utilisée par tous les agents (courbe verte).
- Agents restants à la fin : petite taxe de l'ordre de 1/10 de l'initialisation.
- Le nombre d'agents en coalition
- donc le cumul des gains en coalition
- Avec le temps : Grandes coalitions.
- Approche du gain optimal => Coopération entre tou

- Méthode random utilisée par tous les agents (courbe verte).
- Agents restants à la fin : petite taxe de l'ordre de 1/10 de l'initialisation.
- Le nombre d'agents en coalition augmente au fil du temps.
- donc le cumul des gains en coalition
- Avec le temps : Grandes coalitions.
- Approche du gain optimal => Coopération entre to

- Méthode random utilisée par tous les agents (courbe verte).
- Agents restants à la fin : petite taxe de l'ordre de 1/10 de l'initialisation.
- Le nombre d'agents en coalition augmente au fil du temps.
- donc le cumul des gains en coalition augmente.
- Avec le temps : Grandes coalitions.
- Approche du gain optimal => Coopération entre to

- Méthode random utilisée par tous les agents (courbe verte).
- Agents restants à la fin : petite taxe de l'ordre de 1/10 de l'initialisation.
- Le nombre d'agents en coalition augmente au fil du temps.
- donc le cumul des gains en coalition augmente.
- Avec le temps : Grandes coalitions.
- Approche du gain optimal => Coopération entre to

- Méthode random utilisée par tous les agents (courbe verte).
- Agents restants à la fin : petite taxe de l'ordre de 1/10 de l'initialisation.
- Le nombre d'agents en coalition augmente au fil du temps.
- donc le cumul des gains en coalition augmente .
- Avec le temps : Grandes coalitions.
- Approche du gain optimal =>
 Coopération entre tous les agents?

-gain cumule+ Repartition des agents PTFT.jpg

• Moitié Random Moitié pTFT..

- Tous les agents qui utilisent le pTFT Trahissent les membres ne faisant pas partie de leur coalitions.
- Le nombre d'agents en coalition augmente au fil du temps.
- Les agents qui utilisent le random Trahissent aussi => pTFT Leaders coalition qui dictent la stratégie.
- Stagnation du système : plus de mouvement de coalition

- Moitié Random Moitié pTFT..
- Tous les agents qui utilisent le pTFT Trahissent les membres ne faisant pas partie de leur coalitions.
- Le nombre d'agents en coalition augmente au fil du temps.
- Les agents qui utilisent le random Trahissent aussi => pTFT Leaders coalition qui dictent la stratégie.
- Stagnation du système : plus de mouvement de coalition

- Moitié Random Moitié pTFT..
- Tous les agents qui utilisent le pTFT Trahissent les membres ne faisant pas partie de leur coalitions.
- Le nombre d'agents en coalition augmente au fil du temps.
- Les agents qui utilisent le random Trahissent aussi => pTFT Leaders c coalition qui dictent la stratégie.
- Stagnation du système : plus de mouvement de coalition

- Moitié Random Moitié pTFT..
- Tous les agents qui utilisent le pTFT Trahissent les membres ne faisant pas partie de leur coalitions.
- Le nombre d'agents en coalition augmente au fil du temps.
- Les agents qui utilisent le random Trahissent aussi => pTFT Leaders d coalition qui dictent la stratégie.
- Stagnation du système : plus de mouvement de coali

- Moitié Random Moitié pTFT..
- Tous les agents qui utilisent le pTFT Trahissent les membres ne faisant pas partie de leur coalitions.
- Le nombre d'agents en coalition augmente au fil du temps.
- Les agents qui utilisent le random Trahissent aussi => pTFT Leaders d coalition qui dictent la stratégie.
- Stagnation du système : plus de mouvement de coalition

Plan de l'exposé

- Introduction
- Système Multi-Agent
 - Répartition spatiale
 - Les états des agents
 - Règles du jeu
 - Formation de coalition
 - Gestion des Stratégies
- Simulation et Implémentation
 - Dilemme du Prisonnier
 - Coalition fixe
 - Coalition dynamique
- 4 Conclusion

Simulation et Implémentation Conclusion

