Realistic policies on influenza vaccination and risk of subsequent influenza among university students: application of targeted maximum likelihood with interference

Paul Zivich
Department of Epidemiology

Acknowledgements¹

Supported by T32-HD091058, T32-Al007001

 Special thanks to my dissertation committee: Allison Aiello (chair), M. Alan Brookhart, Michael Hudgens, James Moody, David Weber

¹ Footnotes are reserved for asides or references

Defining Vaccine Effectiveness (VE)

Potential outcomes

$$Y_i(\boldsymbol{v}) = Y_i(v_i, v_{-i})$$

where
$$v = (v_1, v_2, ..., v_i, ..., v_n)$$

Under no interference

$$Y_i(v_i, v_{-i}) = Y_i(v_i)$$

Vaccine effectiveness (VE)

- Direct or unit-specific VE
 - Common in both randomized and observational studies²

$$\frac{1}{n}\sum_{i}^{n}Y_{i}(1,v_{-i})-Y_{i}(0,v_{-i})$$

 "What is the expected risk of changing a single person's vaccination status, holding the vaccination status of the remainder of the population as constant?"

Alternative definition of VE

• Instead, estimate the risk under varying vaccination distributions

$$\frac{1}{n}\sum_{i}^{n}Y_{i}(\boldsymbol{v}')$$

Application

Motivating question

Importance of university students

- 1. Elevated risk of influenza
- 2. Low vaccination rates
- 3. Negative impacts on well-being
- 4. Importance for subsequent transmission

What is the 10-week risk of influenza under different distributions of influenza vaccination (policies)?

Policies shift the log-odds of vaccination

eX-FLU³

- Cluster randomized trial
 - Effect of 3-day self-isolation to mitigate transmission
 - Jan Apr 2013
 - Midwestern university

Covariates

- Exposure
 - Self-reported vaccination
- Outcome
 - Influenza-like illness (coughing + fever, body aches, or chills)
 - Laboratory-confirmed influenza (PCR)
- Confounders
 - Gender, race, stress, hand hygiene, high-risk conditions, sleep quality, alcohol use, assigned intervention

Measurement error

Self-reported weekly contacts prone to measurement errors

Bayesian network measurement error correction⁴

- Sensitivity and specificity
 - Subsample (n=103) had Bluetooth-collected contacts
- Estimate probability of edges between all pairs
- Multiple imputation for measurement error correction
 - Generated 100 networks

Policies

- Three categories of policies
 - Based on self-reported reasons for unvaccinated
 - 1. Educational (dispel myths and highlight benefits)
 - 2. Non-financial barriers (ease access and availability)
 - 3. Financial barriers (reduce cost)
- Shift in log-odds of vaccination
 - Shift by ω if targeted, $\omega/3$ otherwise
 - $\omega = (0, 0.25, 0.50, ..., 3)$

	Unvaccinated (n=241, 53%)	
Educational	50 (21%)	
Non-financial	93 (39%)	
Financial	18 (8%)	
Allergy	2 (1%)	

Estimation

Targeted maximum likelihood estimation for network data

- Allows for dependence due to immediate contacts in network
 - Dependence due to vaccination and other covariates

$$Y_i(v_i, v_{-i}) \rightarrow Y_i(v_i, v_i^s)$$

- Estimation of outcome model and propensity scores
 - Super-learner
 - Generalized linear model, elastic-net penalty, generalized additive model

Descriptive summary

		Overall (n=454)	Vaccinated (n=161)
Influenza-like illness		190 (42%)	65 (40%)
Lab-confirmed influenza		17 (4%)	2 (1%)
Female		269 (60%)	104 (65%)
Class year			
	Freshman	256 (57%)	97 (61%)
	Sophomore	111 (25%)	35 (22%)
	Junior	32 (7%)	12 (8%)
	Senior (4+)	50 (12%)	16 (10%)

Conclusions

- General challenges to evaluating VE
 - Parameter of public health importance
 - COVID vaccination, masks, etc.
- Limitations
 - Power
 - Interference limited to immediate contacts

Realistic policies on influenza vaccination and risk of subsequent influenza among university students: application of targeted maximum likelihood with interference

Paul Zivich (pzivich@unc.edu)

Adapted from Halloran ME, Longini Jr IM, Struchiner CJ. Design and Analysis of Vaccine Studies.

New York, NY: Springer; 2010