

Function Fitting

IFT6758, Fall 2019

Reading: ISLR sections 2.1, 3.2.1, 3.5

?

An Abstraction: Input → Output

Across applications we often want to model an output variable as a function of many inputs,

- Genetic profile → Chance of developing disease
- Person's characteristics → Whether thew'll wote

- 1 Clouis characteriones / whether they if vote
- Marketing plan → Total sales amount
- Image pixel values → What's in the image

An Abstraction: Input → Output

Across applications we often want to model an output variable as a function of many inputs,

- Genetic profile → Chance of developing disease
- Person's characteristics → Whether they'll vote
- Marketing plan → Total sales amount
- Image pixel values → What's in the image

$$x_i = (x_{i1}, \dots, x_{ip}) \leftarrow ext{all the inputs}$$

 $u_i = f(x_i) \leftarrow \text{inputs to output relationship}$

(

A Picture

We allow for y_i to be a different from f, perturbed by some observation-specific noise ϵ_i ,

$$y_i = f\left(x_i
ight) + \epsilon_i$$

Why this decomposition?

- f describes systematic variation in y_i , as a function of observed inputs.
- ϵ_i reflects variation whose source is unknown to us. Consider coin tosses.

Why are we doing this?

- Why not just visualize the data we have?
- Reason 1: Prediction
 - \circ We may want the y_i corresponding to an input x_i
 - o Inputs may be much easier to collect than outputs
- Reason 2: Inference
 - \circ We may care about the form of f, for personal understanding
 - o e.g., is a particular input relevant at all?
- We want quantitative estimates, not visual summaries

Estimates and Predictions

- In reality, we won't know f
- We estimate it from data and call the result \hat{f}
- To predict y_i for some input x_i , we'd use $\hat{y}_i = \hat{f}\left(x_i\right)$

Sources of Error

This process introduces two sources of error,

- ullet Approximation error: \hat{f} isn't close to f
 - This error is *reducible* (use a better algorithm)
- Irreducible error: y_i isn't close to $f(x_i)$
 - \circ Incur this error even if f were perfectly known

Sources of Error

This process introduces two sources of error,

- Approximation error: \hat{f} isn't close to f
 - This error is *reducible* (use a better algorithm)
- Irreducible error: y_i isn't close to $f(x_i)$
 - \circ Incur this error even if f were perfectly known

Sources of Error

This process introduces two sources of error,

- ullet Approximation error: \hat{f} isn't close to f
 - This error is *reducible* (use a better algorithm)
- Irreducible error: y_i isn't close to $f(x_i)$
 - \circ Incur this error even if f were perfectly known

Extending the Picture

- The abstraction is much more general
- ullet It applies to high-dimensional x_i and general y_i

Here, x_i are two dimensional.

Extending the Picture

- The abstraction is much more general
- ullet It applies to high-dimensional x_i and general y_i

Here, the response y_i is binary (blue or orange).

How to find \hat{f} ?

Generally have two steps,

- ullet Propose a model family ${\mathcal F}$
 - \circ E.g., set of all linear functions of x_i
- ullet Define a procedure to choose $\hat{f} \in \mathcal{F}$ based on the data
 - \circ E.g., the choice \hat{f} that minimizes $\sum_{i}\left(y_{i}-\hat{f}\left(x_{i}
 ight)
 ight)^{2}$

How to find \hat{f} ?

Generally have two steps,

- ullet Propose a model family ${\cal F}$
 - \circ E.g., set of all linear functions of x_i
- ullet Define a procedure to choose $\hat{f} \in \mathcal{F}$ based on the data
 - \circ E.g., the choice \hat{f} that minimizes $\sum_{i}\left(y_{i}-\hat{f}\left(x_{i}
 ight)
 ight)^{2}$

How to find f?

Generally have two steps,

- Propose a model family \mathcal{F}
 - \circ E.g., set of all linear functions of x_i
- ullet Define a procedure to choose $\hat{f} \in \mathcal{F}$ based on the data
 - \circ E.g., the choice \hat{f} that minimizes $\sum_{i}\left(y_{i}-\hat{f}\left(x_{i}
 ight)
 ight)^{2}$

How to find \hat{f} ?

Generally have two steps,

- ullet Propose a model family ${\mathcal F}$
 - \circ E.g., set of all linear functions of x_i
- ullet Define a procedure to choose $\hat{f} \in \mathcal{F}$ based on the data
 - \circ E.g., the choice \hat{f} that minimizes $\sum_{i}\left(y_{i}-\hat{f}\left(x_{i}
 ight)
 ight)^{2}$

Why ever use smaller \mathcal{F} 's?

- There is a bias-variance tradeoff
- ullet Finding the best function in a large class ${\mathcal F}$ can be hard
 - High variance: Different samples x_i , y_i might result in

very different \hat{f} , even when f hasn't changed

- \circ This variance gets worse the higher-dimensional your x_i are (the "curse of dimensionality")
- Incurring some bias, for the sake of better stability, can lead to overall better predictions

Why ever use smaller \mathcal{F} 's?

• Ultimately, you want your model to perform well on outof-sample data

2

Why ever use smaller \mathcal{F} 's?

- There is a bias-variance tradeoff
- ullet Finding the best function in a large class ${\mathcal F}$ can be hard
 - \circ High variance: Different samples x_i, y_i might result in very different \hat{f} , even when f hasn't changed
 - Incurring some bias, for the sake of better stability, can

lead to overall better predictions

Why ever use smaller \mathcal{F} 's?

- There is a bias-variance tradeoff
- ullet Finding the best function in a large class ${\mathcal F}$ can be hard
 - High variance: Different samples x_i, y_i might result in very different \hat{f} , even when f hasn't changed
 - Incurring some bias, for the sake of better stability, can lead to overall better predictions

Why ever use smaller \mathcal{F} 's?

- There is a bias-variance tradeoff
- ullet Finding the best function in a large class ${\mathcal F}$ can be hard
 - High variance: Different samples x_i, y_i might result in very different \hat{f} , even when f hasn't changed
 - Incurring some bias, for the sake of better stability, can lead to overall better predictions

Why ever use smaller \mathcal{F} 's?

- There is a bias-variance tradeoff
- ullet Finding the best function in a large class ${\mathcal F}$ can be hard
 - High variance: Different samples x_i, y_i might result in very different \hat{f} , even when f hasn't changed
 - Incurring some bias, for the sake of better stability, can lead to overall better predictions

- What are the advantages of a more vs. a less flexible regression model? When would you prefer one vs. the other?
 - How does your answer depend on the input dimension of the x_i ?
 - Our How does your answer depend on the sample size?

Model Flexibility -- Takeaways

This tradeoff can be summarized with a few takeaways,

- If you don't have too many samples, you should prefer a simpler model
- If you have many samples, you can afford a more complex model
- We'll need some sort of mechanism to tell which regime we're in

Examples of Model Families

- Before discussing specific algorithms in detail, let's get a feel for how different model families look like
- We'll dive into their details in the next few lectures
- We're using the Advertising dataset (how does advertising affect sales?)

```
In [14]:
ads = pd.read_csv("https://gist.githu
d51e9aa149768/advertising.csv").iloc[
ads
Out [14]:
         TV Radio Newspaper
                               Sales
     230.1
              37.8
                          69.2
                                 22.1
      44.5
              39.3
                         45.1
                                 10.4
      17.2
              45.9
                         69.3
                                9.3
3
     151.5
              41.3
                         58.5
                                18.5
     180.8
              10.8
                         58.4
                                12.9
195
      38.2
               3.7
                         13.8
                                  7.6
      94.2
                                9.7
     177.0
               9.3
                                12.8
     283.6
                         66.2
                                 25.5
              42.0
     232.1
               8.6
                          8.7
                                 13.4
[200 rows x + 4 columns]
```

Examples of Model Families

- Before discussing specific algorithms in detail, let's get a feel for how different model families look like
- We'll dive into their details in the next few lectures
- We're using the Advertising dataset (how does advertising affect sales?)

Linear Regression

K-Nearest Neighbors

Linear Regression with Interaction

?

Notice that each line has a different slope.

+

Trees

This vaguely resembles the KNN fit.

Linear Regression with Nonlinear Basis

A *linear* combination of *nonlinear* functions will be *nonlinear*.

Generalized Additive Modes

It looks quite similar to the interaction model, but is a little more wiggly.

Discussion

Which of the function families above would you guess is parametric? Which would you guess is nonparametric?

(I don't expect you to know the answer yet, but make an educated guess based on the pictures)

Post-training Analysis

- There's a certain set of checks you should always do after you fit a model, no matter what family it is
 - Yes, even deep learning models
- You can do better than looking at the validation loss
- Residual analysis, error modeling, outliers, high-leverage

?

Residual Analysis

- Make a histogram of errors $e_i = y_i \hat{y}_i$
- Plot them against a few input variables
- ullet If you notice systematic variation in them, this is information you can squeeze into f

Nesiuuai Allaiysis

- Make a histogram of errors $e_i = y_i \hat{y}_i$
- Plot them against a few input variables
- If you notice systematic variation in them, this is information you can squeeze into f

+

Error Modeling

- You can use models to seek out systematic variation in e_i
- Cluster the x_i associated with large errors $|e_i|$
- Train a model with e_i as a response
 - E.g., if you use a tree, the first few split variables still have information that you haven't made use of (we'll describe trees next lecture)

Outliers and Leverage

• Look for outliers either in the x or y directions

• High leverage points are those that, if they were perturbed slightly, would dramatically alter the fit


```
slide = f()

+ <style>

hl = ▶ Object {highlight: f(e, t, a, c), highlightAuto: f(e, t), fixMarkup: f(e), highlightBlock: f(e), confi
```