

SFullcore - Monte Carlo výpočty reaktorů VVER

Milan Gren

ÚJV Řež

Řež, prosinec 2017

Obsah

1 Popis a možnosti programu SFullcore

Porovnaní výpočtů s měřením

Nring Sviring

Obsah

1 Popis a možnosti programu SFullcore

2 Porovnaní výpočtů s měřením

SFullcore - základní popis

SFullcore = **S**erpent **fullcore** automated processing

- automatická režie přípravy fullcore výpočtu v programu SERPENT
- jednoduchá textová definice výpočtu jednoho stavu
- nodální, obecný přístup, aplikace na šablony reaktoru

Požadavky na program:

- jednoduchá definice vsázky (značení kazet jako v ANDREA)
- jednoduchá definice nodalizace
- snadná manipulace s axiálním rozložením reaktoru (mřížky ...)
- jednoduchá definice samotného výpočtu

Vulux

SFullcore - možnosti/využití

- 1 výpočty stavů bez vyhoření a bez vazby na výkon
 - izotermické modely
 - testy F5-ARO (kritická BC) na začátku kampaně u1c9 a u2c9
- výpočty stavů bez vyhoření a s vazbou na výkon
 - jednokanálový teplotní model (TRANSURANUS)
 - výpočty s Xe=0, výpočty s Xe=E
 - výkonové stavy na začátku u1c9 a u2c9
- 3 výpočty stavů s vyhořením bez vazby na výkon
 - vyhoření predikované programem ANDREA
 - složení paliva předpočteno programem SCALE nebo HELIOS
 - testy F5-ARO pro vyhořelé vsázky
- 4 výpočty stavů s vyhořením a s vazbou na výkon
 - kombinace bodů 2 a 3
 - výkonové stavy za předpokladu Xe=E

ZVĻŪZ ZVĻŪZ

Nodální přístup - ilustrace

Výpočet rozložení výkonů na HFP

- rychlost výpočtu rozložení výkonu na HFP je závislá na počtu iterací rozložení výkonu/teplot
- je tedy vhodné mít co nejlepší odhad rozložení teplot v nódech před výpočtem

Vu'u'

Vstupní soubor programu SFullcore

content...

Výstupy programu

- koeficient násobení
- nodální rozložení neutronových toků (v definové grupové struktuře)
- nodální rozložení definovaných reakčních rychlostí

Obsah

1 Popis a možnosti programu SFullcore

Porovnaní výpočtů s měřením

Testy spouštění – F5 ARO

- vyhoření predikované programem ANDREA
- složení paliva v závislosti na vyhoření předpočteno programem SCALE

	CMS	SERPENT	Rozdíl		CMS	SERPENT	Rozdíl
u1c9	6.591	6.576	-0.015	u2c9	6.690	6.591	-0.099
u1c10	8.941	8.996	0.055	u2c10	9.116	9.188	0.072
u1c11	10.088	10.032	-0.056	u2c11	8.804	8.709	-0.095
u1c12	10.020	9.927	-0.093	u2c12	10.540	10.479	-0.061
u1c13	10.220	10.069	-0.151	u2c13	10.649	10.512	-0.137
u1c14	0.000	0.000	0.000	u2c14	9.116	9.024	-0.092

Table: F5 ARO – kritická kocentrace kys. borité

VILUX VILUX

Testy spouštění – F4 ITC

- snížení a zvýšení teploty systému o 1.5 °C
- $ITC = \frac{k_{zvýšení} k_{snížení}}{3}$
- velice náročný výpočet z hlediska jeho přesnosti
- výsledek negativně ovlivněn velkým rozptylem teplot

	CMS	SERPENT min	SERPENT mean	SERPENT max
u1c9	-3.530	-1.333	-2.667	-4.000
u2c9	-4.500	-3.333	-4.667	-6.000

Table: F4 ITC

Výkonový stav – U2C9/S12

- výpočet proveden bez vyhoření
- u2c9/S12 kompromis mezi rovnováhou xenonu a 'čerstvostí' vsázky
- reálné vyhoření cca 3.5 Teff, vliv odpovídá cca 0.2 g/kg BC

	CMS	SERPENT (včetně uvážení vlivu 3.5 Teff)
u2c9/s12	4.331	4.332

Table: Kritcká BC stavu S12

NEUX VEUX

Výkonový stav – U2C9/S12 (mapa)

fha full_vs_cms dkeff = -304, dBC = 0.0 (CMS - serpent) case info:

Výkonový stav – U2C9/S12 (mapa)

fha sixth vs cms dkeff = -304, dBC = 0.0 (CMS - serpent) case info:

Figure: Srovnání SERPENT - CMS

Obsah

1 Popis a možnosti programu SFullcore

2 Porovnaní výpočtů s měřením

