સમરૂપતા અને પાયથાગોરસ પ્રમેય

7

It is not enough to have a good mind. The main thing is to use it well.

- Rene Des Cartes

7.1 પ્રાસ્તાવિક

"શાળાભૂમિતિના અભ્યાસ દરમિયાન તમે શીખ્યા હો તેવું કયું પ્રમેય તમને યાદ છે ?" તમે કોઈ પણ વ્યક્તિને આ પ્રશ્ન પૂછો. આ માણસ કોઈ શિક્ષક, ઇજનેર, ડૉક્ટર કે વિજ્ઞાનનો સ્નાતક હોય તેવું જરૂરી નથી. જેશે શાળાકીય અભ્યાસ પૂરો કર્યો હોય તેવો બેંકનો કર્મચારી, વકીલ કે વેપારી હશે તો પણ ચાલશે. ઉત્તર 'પાયથાગોરસનું પ્રમેય' સાંભળીને તમને આનંદ થશે.

આ પ્રમેય આશરે 3000 વર્ષ પહેલાં શોધાયું છે. વિશ્વ તેને 'પાયથાગોરસ પ્રમેય' તરીકે ઓળખે છે પણ આ પ્રમેય સિંધુ અને ગંગા-યમુનાના મેદાનમાં પાંગરેલી ભારતીય સંસ્કૃતિ સહીત તમામ પ્રાચીન સંસ્કૃતિઓમાં સ્વતંત્ર રીતે શોધાયું હતું. ઘણા નિષ્ણાત ગણિતજ્ઞો આ પ્રમેયથી આકર્ષાયા હતા. તેથી જ આ પ્રમેયની સ્વતંત્ર, 370 થી વધુ સાબિતી મળે છે. કોઈ પણ સર્ચ ઍન્જિન ખોલી તેમાં 'Pythagoras Theorem' ટાઇપ કરો. તમને આ પ્રમેય અને તેને સંલગ્ન માહિતી ધરાવતા 100 થી વધુ પાનાં મળી આવશે. આ પ્રકરણમાં આપણે આ પ્રમેય અને તેને સંલગ્ન બીજા પરિણામોનો અભ્યાસ કરવાના છીએ.

7.2 કાટકોણ ત્રિકોણ અને સમરૂપતા

પાયથાગોરસનું પ્રમેય સાબિત કરવા માટે આપણે સમરૂપતાની વિભાવનાનો ઉપયોગ કરવાના છીએ. આ પ્રમેય કાટકોણ ત્રિકોણનો એક ગુણધર્મ છે.

ધારો કે એક કાટકોણ ત્રિકોણ આપેલ છે. જો ત્રિકોણનો કોઈ એક ખૂણો કાટખૂણો હોય, તો બાકીના બે ખૂણા લઘુકોણ જ હોય. આપેલા ત્રિકોણના જે શિરોબિંદુએ કાટખૂણો રચાતો હોય તે બિંદુમાંથી ત્રિકોણના કર્ણ પર વેધ દોરવામાં આવે તો વેધને સમાવતી રેખાના જુદા જુદા બંધ અર્ધતલમાં બે ત્રિકોણો રચાય છે. આપણે આ બે ત્રિકોણો વચ્ચેના સંબંધનો અભ્યાસ કરવાના છીએ ઉપરાંત આપણે આ બે ત્રિકોણોના આપેલા ત્રિકોણ સાથેના સંબંધનો પણ અભ્યાસ કરવાના છીએ.

આપણે નીચેનું પ્રમેય સાબિતી આપ્યા વિના સ્વીકારી લઈશું.

પ્રમેય 7.1 ઃ કાટકોણ ત્રિકોણના કર્ણ પર વેધ દોરવામાં આવે તો વેધને સમાવતી રેખાના ભિન્ન બંધ અર્ધતલોમાં રચાતા બે ત્રિકોણો મૂળ ત્રિકોણને સમરૂપ હોય છે અને આ બે ત્રિકોણો પરસ્પર પણ સમરૂપ હોય છે.

 \triangle ABC માં \angle A કાટકોણ છે. જો \overline{AD} \bot \overline{BC} , $D \in \overline{BC}$ તો \triangle ADB ~ \triangle ABC, \triangle ADC ~ \triangle ABC અને \triangle ADB ~ \triangle ADC.

પહેલાં તો એ નોંધીએ કે ઉપરોક્ત ત્રણે ત્રિકોણો કાટકોણ ત્રિકોણ છે. કાટકોણ ત્રિકોણમાં બે લઘુકોણોના માપનો સરવાળો 90 થાય.

તેથી જો
$$m\angle ACD = m\angle ACB = x$$
, ધારીએ તો $m\angle DAC = 90 - x$. વળી, $B-D-C$ હોવાથી $m\angle BAD = 90 - (90 - x) = x$.

ગણિત 10

તેથી, સંગતતા ADB ↔ CAB સમરૂપતા છે.

સંગતતા ADC \leftrightarrow BAC સમરૂપતા છે.

સંગતતા ADB \leftrightarrow CDA સમરૂપતા છે.

સમગુણોત્તર મધ્યક

જો x, y, z ધન વાસ્તવિક સંખ્યાઓ હોય અને $\frac{x}{y} = \frac{y}{z}$ (એટલે કે $y^2 = zx$) હોય, તો y ને x અને z નો સમગુણોત્તર મધ્યક કહેવામાં આવે છે. બીજા શબ્દોમાં કહીએ તો બે ધન વાસ્તવિક સંખ્યા a અને b નો સમગુણોત્તર મધ્યક \sqrt{ab} છે. સામાન્ય રીતે સમગુણોત્તર મધ્યકને આપણે G વડે દર્શાવીએ છીએ. જો a < b અને a અને b નો સમગુણોત્તર મધ્યક G હોય, તો એવું સાબિત કરી શકાય કે a < G < b.

સંલગ્ન રેખાખંડો : જો \triangle ABCમાં \overline{AD} \bot \overline{BC} , $D \in \overline{BC}$ તો \overline{BD} ને \overline{AB} નો સંલગ્ન રેખાખંડ કહેવામાં આવે છે અને \overline{CD} ને \overline{AC} નો સંલગ્ન રેખાખંડ કહેવામાં આવે છે.

અહીં ΔABCમાં ∠A લઘુકોણ, કાટકોણ કે ગુરુકોણ હોઈ શકે.

પ્રમેય 7.1 પરથી તુરત જ મળતા પરિણામ સ્વરૂપે એક ઉપપ્રમેય નોંધીએ જે આપણે વૈધાનિક રીતે સાબિત કર્યા વિના સ્વીકારીશું.

ઉપપ્રમેય 1 : કાટકોણ ત્રિકોણના કર્ણ પર વેધ દોરેલ હોય, તો (1) વેધની લંબાઈ એ વેધથી બનતા કર્ણના રેખાખંડોની લંબાઈનો ગુણોત્તર મધ્યક છે. (2) કર્ણ સિવાયની દરેક બાજુની લંબાઈ એ કર્ણની લંબાઈ અને કર્ણના તે બાજુને સંલગ્ન રેખાખંડની લંબાઈનો ગુણોત્તર મધ્યક છે.

બીજા શબ્દોમાં,

 ΔABC માં $\angle A$ કાટખૂણો છે. જો $\overline{AD} \perp \overline{BC}$, $D \in \overline{BC}$, તો

- (1) $AD^2 = BD \cdot DC$
- (2) (i) $AB^2 = BD \cdot BC$
 - (ii) $AC^2 = CD \cdot BC$

પ્રમેય 7.1માં આપણે જોયું છે કે ΔADB અને ΔADC ની સંગતતા $ADB \leftrightarrow CDA$ સમરૂપતા છે.

$$\therefore$$
 AD² = BD · DC

 ΔADB અને ΔABC ની સંગતતા $ADB \leftrightarrow CAB$ સમરૂપતા છે.

$$\therefore \quad \frac{AB}{BC} = \frac{BD}{AB}$$

$$\therefore$$
 AB² = BD · BC

 ΔADC અને ΔABC ની સંગતતા $ADC \leftrightarrow BAC$ સમરૂપતા છે.

$$\therefore \quad \frac{AC}{BC} = \frac{CD}{AC}$$

$$\therefore$$
 AC² = CD · BC

ભૂમિતિના પિતામહ તરીકે ઓળખાતા એવા થેઇલ્સના શિષ્ય, મહાન ગ્રીક ભૂમિતિવિદ્ પાયથાગોરસ દ્વારા શોધાયેલ વિખ્યાત પ્રમેય સાબિત કરવા માટે હવે આપણે પર્યાપ્ત રીતે સજ્જ છીએ. આ પ્રમેયની જે સાબિતી આધુનિક પાઠ્યપુસ્તકોમાં આપવામાં આવે છે તે પાયથાગોરસે પોતે આપેલી અને યુક્લિડે તેના પુસ્તક 'Elements' માં વર્ણવેલી તે સાબિતી નથી. અત્રે આપવામાં આવેલ સાબિતી પ્રમેય 7.1 અને તેના ઉપપ્રમેયમાં આપણે જોઈ ગયા તે 'ત્રિકોણોની સમરૂપતા'ની સંકલ્પના પર આધારિત છે.

7.3 પાયથાગોરસનું પ્રમેય

પાયથાગોરસ-પ્રમેયના ઉપયોગોનો વ્યાપ ઘણો વિશાળ છે. તેથી જ પાયથાગોરસ પ્રમેય વિખ્યાત છે. જે રેખાખંડોની લંબાઈ $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{17}$ વગેરે જેવી અસંમેય હોય તેવા રેખાખંડોની રચના કરવા માટે આપણે પાયથાગોરસ-પ્રમેયનો ઉપયોગ કરી ગયા છીએ. ત્રિકોણમિતીય ગુણોત્તરોની વ્યાખ્યા આપણે કાટકોણ ત્રિકોણ પરથી આપીએ છીએ. નિત્યસમ $\sin^2\theta + \cos^2\theta = 1$ મેળવવા માટે આપણે પાયથાગોરસ-પ્રમેયનો ઉપયોગ કર્યો છે. પુરાતન ભારતીય સંસ્કૃતિમાં બૌધાયને (800 BC) લખેલા 'સૂલ્બસૂત્રો' માં પાયથાગોરસ-પ્રમેયનું વર્ણન છે. ભાસ્કરાચાર્ય અને બ્રહ્મગુપ્તે આ પ્રમેયની જુદી જુદી સાબિતીઓ આપી છે. મહાન કલાકાર, શિલ્પી, સ્થપતિ અને ચિત્ર 'મોનાલિસા' વડે જાણીતા ચિત્રકાર લિયોનાર્ડો દ' વિન્શીએ પણ આ પ્રમેયની સુંદર સાબિતી આપી છે.

પ્રમેય 7.2 : પાયથાગોરસનું પ્રમેય : કાટકોણ ત્રિકોણમાં કર્ણની લંબાઈનો વર્ગ એ તે ત્રિકોણની બાકીની બાજુઓની લંબાઈના વર્ગોના સરવાળા જેટલો હોય છે.

પક્ષ : ∆ABC માં ∠A કાટકોણ છે.

સાધ્ય : $BC^2 = AB^2 + AC^2$

સાબિતી : ધારો કે $\overline{AD} \perp \overline{BC}$, $D \in \overline{BC}$.

ΔABC માં ∠A કાટખૂશો છે.

∴ ∠B અને ∠C એ ΔABC ના લઘુકોણો છે.

તથા B−D−C ∴ BD + DC = BC

(i)

આકૃતિ 7.5

હવે પ્રમેય 7.1 ના ઉપપ્રમેયનો ઉપયોગ કરતાં,

 $AB^2 = BD \cdot BC$ અને $AC^2 = DC \cdot BC$

$$\therefore AB^2 + AC^2 = BD \cdot BC + DC \cdot BC$$

 $= (BD + DC) \cdot BC$

(-- - - - -)

 $= BC \times BC$

 $= BC^2$

પાયથાગોરસ-પ્રમેયનું પ્રતિપ્રમેય

આપણે એક પ્રવૃત્તિ કરીએ. આપણે જાણીએ છીએ કે જો ત્રિકોણની ત્રણ બાજુઓનાં માપ આપેલાં હોય, તો ત્રિકોણ રચી શકાય.

આપણે એવો ΔABC રચીએ જેની બાજુઓનાં માપ AB=3, BC=4 અને AC=5 હોય. હવે $\angle B$ નું માપ કોણમાપકનો ઉપયોગ કરી મેળવીએ.

આપણે એક બીજો $\triangle PQR$ રચીએ જેમાં PQ=5, QR=12 અને PR=13 હોય. $\angle Q$ નું માપ મેળવીએ.

ઉપરોક્ત પ્રવૃત્તિમાં ∠B અને ∠Q કાટકોશ છે તેવું માલુમ પડશે.

તમે એ નોંધ્યું કે $\triangle ABCમાં AC^2 = AB^2 + BC^2 છે$?

તમે એવું અવલોકન કર્યું કે ΔPQR માં $PR^2 = PQ^2 + QR^2$ છે ?

ઉપરોક્ત પ્રયોગના પરિણામોથી આપણે એવું તારણ કરવા પ્રેરાઈએ છીએ કે જ્યારે એક ત્રિકોણમાં કોઈ એક બાજુના માપનો વર્ગ એ બાકીની બે બાજુઓનાં માપના વર્ગોના સરવાળા જેટલો થાય ત્યારે તે ત્રિકોણ કાટકોણ ત્રિકોણ હોવો જોઈએ. આ પાયથાગોરસના પ્રમેયનું પ્રતિપ્રમેય છે. હવે તે સાબિત કરીએ.

પ્રમેય 7.3 : પાયથાગોરસ-પ્રમેયનું પ્રતિપ્રમેય : જો કોઈ ત્રિકોણમાં એક બાજુનો વર્ગ એ બાકીની બે બાજુઓના વર્ગોના સરવાળા જેટલો હોય, તો પહેલી બાજુની સામેનો ખુણો કાટકોણ હોય.

બીજા શબ્દોમાં,

 $\triangle ABCમાં જો BC^2 = AB^2 + AC^2$ હોય, તો ∠A (\overline{BC} ની સામેનો ખૂશો) કાટકોણ હોય.

પશ : $\triangle ABC$ માં $BC^2 = AB^2 + AC^2$.

સાધ્ય : ∠A કાટકોણ છે.

આકૃતિ 7.6

સાબિતી : ધારો કે OX કોઈ કિરણ છે.

આપણે એવું \overrightarrow{OY} દોરી શકીએ કે જેથી $\overrightarrow{OY} \perp \overrightarrow{OX}$ થાય.

 $M \in \overrightarrow{OY}$ લઈએ કે જેથી OM = AC.

 $N \in \overrightarrow{OX}$ લઈએ કે જેથી ON = AB.

MN દોરીએ.

 Δ OMN કાટકોણ ત્રિકોણ છે કારણ કે $\overrightarrow{OM} \perp \overrightarrow{ON}$ છે.

 $(M \in \overrightarrow{OY}, N \in \overrightarrow{OX})$

∠MON કાટકોણ છે.

- ∴ MN કર્શ છે.
- ∴ પાયથાગોરસ પ્રમેય પ્રમાણે,

$$MN^2 = OM^2 + ON^2 = AC^2 + AB^2$$

પરંતુ
$$AB^2 + AC^2 = BC^2$$
 (પશ)

 $\therefore MN^2 = BC^2$

$$\therefore MN = BC$$

 \therefore \triangle ABC અને \triangle ONM માં સંગતતા ABC \leftrightarrow ONM માટે,

$$\overline{AB} \cong \overline{ON}$$
 (ON = AB)

$$\overline{AC} \cong \overline{OM}$$
 (OM = AC)

$$\overline{BC} \cong \overline{MN}$$
 (BC = MN)

 \therefore સંગતતા ABC \leftrightarrow ONM એકરૂપતા છે. તેથી \triangle ABC \cong \triangle ONM

∴ ∠A ≅ ∠O

પરંતુ રચનાથી ∆ONMનો ∠O કાટકોણ છે.

- ∴ ∠A કાટકોણ છે.
- હવે આપણે કેટલાંક ઉદાહરણો ઉકેલીએ.

ઉદાહરણ 1 : ΔPQR માં $m\angle Q=90$ અને \overline{QM} એક વેધ છે અને $M\in \overline{PR}$. જો QM=12, PR=26 તો PM અને RM શોધો. જો PM<RM તો PQ અને QR શોધો.

ઉકેલ : ΔPQRમાં OM વેધ છે.

$$m \angle Q = 90$$

∴
$$M \in \overline{PR}$$
 અને $P-M-R$.

ધારો કે MP = x.

$$\therefore$$
 RM = PR - MP = 26 - x (PR = 26)

હવે $QM^2 = PM \cdot RM$

$$\therefore$$
 12² = x(26 - x) (QM = 12)

$$\therefore$$
 $x^2 - 26x + 144 = 0$

$$(x-8)(x-18)=0$$

તદત્તુરૂપ
$$RM = 26 - 8 = 18$$
 અથવા $RM = 26 - 18 = 8$

હવે, PM < RM.

∴ PM = 8, RM = 18 અને PR = 26

$$PQ^2 = PM \cdot PR = 8 \times 26 = 16 \times 13$$

∴
$$PQ = 4\sqrt{13}$$

 $QR^2 = RM \cdot PR = 18 \times 26 = 36 \times 13$

$$\therefore$$
 QR = $6\sqrt{13}$

ઉદાહરણ 2 : $\triangle ABCમાં m\angle B = 90$, $\overline{BM} \perp \overline{AC}$, $M \in \overline{AC}$. $\Re AM = x$, $BM = y \ d\lambda AB$, BC અને CM ને x અને y ના સ્વરૂપમાં મેળવો. (x > 0, y > 0)

(i)

ઉકેલ : આપણે જાણીએ છીએ કે
$$BC^2 = CM \cdot AC$$

$$AB^2 = AM \cdot AC$$

$$AB^2 = AM^2 + BM^2$$

(i)

$$AC^2 = AB^2 + BC^2$$

અહીં, AM = x, BM = y

$$AB^2 = AM^2 + BM^2 = x^2 + y^2$$

((iii) પરથી)

$$\therefore AB = \sqrt{x^2 + y^2}$$

(ii)નો ઉપયોગ કરતાં, AB² = AM • AC

$$\therefore x^2 + y^2 = x \text{ AC}$$

$$\therefore AC = \frac{x^2 + y^2}{x}$$

$$\therefore \quad CM = AC - AM = \frac{x^2 + y^2}{x} - x = \frac{y^2}{x}$$
 (vi)

BC² = CM · AC =
$$\frac{y^2}{x} \left(\frac{x^2 + y^2}{x} \right) = \frac{y^2(x^2 + y^2)}{x^2}$$
 ((i) dal (vi) 428)

$$\therefore BC = \frac{y}{x} \sqrt{x^2 + y^2}$$
 (vii)

આમ, AB =
$$\sqrt{x^2 + y^2}$$
, BC = $\frac{y}{x}\sqrt{x^2 + y^2}$, CM = $\frac{y^2}{x}$

ઉદાહરણ 3: કાટકોણ ΔPQR માં $\angle P$ કાટકોણ છે અને \overline{PM} કર્ણ પરનો વેધ છે. જો PQ=8, PR=6, તો PM શોધો.

ઉકેલ : ΔPQR માં ∠P કાટકોણ છે.

$$PO^2 + PR^2 = OR^2$$
. વળી $PR = 6$ અને $PO = 8$.

$$\therefore$$
 QR² = 6² + 8² = 100

$$\therefore$$
 QR = 10

$$PQ^2 = QM \cdot QR$$

$$QM = \frac{PQ^2}{QR} = \frac{64}{10} = 6.4$$

$$\therefore$$
 RM = QR - QM = 10 - 6.4 = 3.6

$$PM^2 = QM \cdot MR = 6.4 \times 3.6$$

$$\therefore$$
 PM² = $\frac{(36)(64)}{100}$

$$\therefore PM = \frac{6 \times 8}{10} = 4.8$$

$$PR - PQ = 9$$
 अने $PR - QR = 18$ तो

ΔPOR ની પરિમિતિ શોધો.

ઉકેલ : ΔPOR માં ∠O કાટકોણ છે.

ધારો કે
$$PQ = r$$
, $PR = q$, $QR = p$; p , q , $r > 0$

હવે,
$$PR - PQ = 9$$
 અને $PR - QR = 18$

$$\therefore q-r=9$$

$$q - p = 18 \tag{ii}$$

પાયથાગોરસના પ્રમેયનો ઉપયોગ કરતાં, $PQ^2 + QR^2 = PR^2$

$$\therefore \quad r^2 + p^2 = q^2 \tag{iii}$$

(i) પરથી
$$r = q - 9$$
 અને (ii) પરથી $p = q - 18$

(iii) માં મૂકતાં,

$$(q-9)^2 + (q-18)^2 = q^2$$

આકૃતિ 7.9

$$\therefore q^2 - 54q + 405 = 0$$
$$(q - 45)(q - 9) = 0$$
$$q \neq 9$$

$$(\Re q = 9 \ \text{d}) \ r = q - 9 = 0)$$

$$\therefore q = 45$$

∴
$$\Delta PQR$$
 ની પરિમિતિ = $PQ + QR + PR$
= $r + p + q = 36 + 27 + 45 = 108$

∴ ΔPOR ની પરિમિતિ 108 છે.

ઉદાહરણ 5: નીચે \triangle ABC ની બાજુઓ \overline{AB} , \overline{BC} , \overline{AC} નાં માપ આપેલ છે. દરેકમાં કયા કાટકોણ ત્રિકોણ છે તે નક્કી કરો. જો કાટકોણ ત્રિકોણ હોય, તો કયો ખૂણો કાટકોણ છે તે જણાવો.

(1)
$$AB = 25$$
, $BC = 7$, $AC = 24$

(2)
$$AB = 8$$
, $BC = 6$, $AC = 3$

(3)
$$AB = 8$$
, $BC = 6$, $AC = 10$

(4)
$$AB = 4$$
, $BC = 5$, $AC = 6$

6કેલ : કાટકોશ ત્રિકોણમાં કર્ણ સૌથી મોટી બાજુ છે. તેથી જો ∆ABC કાટકોણ હોય તો જેનું માપ સૌથી મોટું છે તે બાજુ કર્ણ હોય.

(1)
$$AB = 25$$
, $BC = 7$, $AC = 24$

જો ΔABC કાટકોણ ત્રિકોણ હોય, તો \overline{AB} તેનો કર્ણ હોય.

$$AB^2 = 25^2 = 625$$
, $BC^2 + AC^2 = 7^2 + 24^2 = 49 + 576 = 625$

$$\therefore AB^2 = BC^2 + AC^2$$

∴ ΔABC કાટકોણ ત્રિકોણ છે અને ∠C કાટકોણ છે.

(2)
$$AB = 8$$
, $BC = 6$, $AC = 3$

જો $\triangle ABC$ કાટકોણ ત્રિકોણ હોય તો $AB^2 = BC^2 + AC^2$ થવું જોઈએ.

$$AB^2 = 8^2 = 64$$
, $BC^2 + AC^2 = 6^2 + 3^2 = 45$

$$\therefore$$
 AB² \neq BC² + AC²

∴ ΔABC કાટકોણ ત્રિકોણ નથી.

(3)
$$AB = 8$$
, $BC = 6$, $AC = 10$

જો $\triangle ABC$ કાટકોણ ત્રિકોણ હોય તો $AC^2 = AB^2 + BC^2$ થવું જોઈએ.

$$AC^2 = 10^2 = 100$$
, $AB^2 + BC^2 = 8^2 + 6^2 = 64 + 36 = 100$

$$\therefore AC^2 = AB^2 + BC^2$$

∴ ΔABC કાટકોણ ત્રિકોણ છે, જેમાં ∠B કાટકોણ છે.

(4)
$$AB = 4$$
, $BC = 5$, $AC = 6$

જો $\triangle ABC$ કાટકોણ ત્રિકોણ હોય તો $AC^2 = AB^2 + BC^2$ થવું જોઈએ.

$$AC^2 = 6^2 = 36$$
, $AB^2 + BC^2 = 4^2 + 5^2 = 16 + 25 = 41$

$$AC^2 \neq AB^2 + BC^2$$

∴ ΔABC કાટકોણ ત્રિકોણ નથી.

ઉદાહરણ 6 : ΔABCમાં AC + BC = 28, AB + BC = 32 અને AC + AB = 36. ΔABCનો પ્રકાર નક્કી કરો.

ઉકેલ : \triangle ABCમાં AB = c, BC = a, AC = b લઈએ.

આપણને આપેલ છે કે AC + BC = 28 એટલે કે
$$b + a = 28$$

$$AB + BC = 32$$
 એટલે કે $c + a = 32$

$$AC + AB = 36$$
 એટલે કે $b + c = 36$

(ii)

(i), (ii) અને (iii)નો સરવાળો કરતાં

$$2a + 2b + 2c = 28 + 32 + 36 = 96$$

$$a + b + c = 48$$

પરંતુ
$$a+b=28$$

$$c = 48 - 28 = 20$$

(ii) પરથી
$$a = 12$$
 અને (iii) પરથી $b = 16$

$$\therefore$$
 $a = BC = 12, b = AC = 16, c = AB = 20$

$$a^2 + b^2 = 12^2 + 16^2 = 144 + 256 = 400 = c^2$$

$$\therefore a^2 + b^2 = c^2$$

$$\therefore BC^2 + AC^2 = AB^2$$

∴
$$\triangle ABCHi BC^2 + AC^2 = AB^2$$

∴ પાયથાગોરસ પ્રમેયના પ્રતિપ્રમેયથી, ∆ABC કાટકોણ ત્રિકોણ છે.

આકૃતિ 7.11

ઉદાહરણ $7:\Delta ABC$ માં \overline{BM} વેધ છે. $M\in\overline{AC}$ અને $\angle B$

કાટકોણ છે. સાબિત કરો કે $\frac{AB^2}{BC^2} = \frac{AM}{CM}$.

ઉકેલ : $\triangle ABC$ માં $\angle B$ કાટખૂણો છે અને $\overline{BM} \perp \overline{AC}$, $M \in \overline{AC}$.

∴
$$AB^2 = AM \cdot AC$$
 અને $BC^2 = CM \cdot AC$

$$\therefore \quad \frac{AB^2}{BC^2} = \frac{AM \cdot AC}{CM \cdot AC}$$

$$\therefore \quad \frac{AB^2}{BC^2} = \frac{AM}{CM}$$

ઉદાહરણ 8 : ∆ABC માં *m*∠B = 90 અને

$$\overline{BM} \perp \overline{AC}$$
, $M \in \overline{AC}$. $\Re AM = 4MC$,

તો સાબિત કરો કે, AB = 2BC.

ઉંકેલ : $\triangle ABC$ માં $m \angle B = 90$ અને $\overline{BM} \perp \overline{AC}$, $M \in \overline{AC}$ છે.

$$\therefore$$
 AB² = AM · AC

$$BC^2 = CM \cdot AC$$

$$\therefore \quad \frac{AB^2}{BC^2} = \frac{AM \cdot AC}{MC \cdot AC} = \frac{AM}{MC}$$

$$\therefore \quad \frac{AB^2}{BC^2} = \frac{4MC}{MC} = 4$$

$$\therefore \quad \frac{AB}{BC} = 2$$

$$\therefore$$
 AB = 2BC

(AM = 4MC)

ઉદાહરણ $9:\Delta ABC$ માં $\angle B$ કાટકોણ છે અને \overline{BM} વેધ છે. $M\in\overline{AC}$. જો AB=2AM તો સાબિત કરો કે AC = 4AM.

(i)

(ii)

ઉકેલ : \triangle ABC માં, m∠B = 90 $\overline{BM} \perp \overline{AC}, M \in \overline{AC}.$

$$\therefore$$
 AB² = AM · AC

$$\therefore$$
 (2AM)² = AM · AC

$$\therefore$$
 4AM² = AM · AC

$$\therefore$$
 AC = 4AM

ઉદાહરણ 10 : $\triangle ABC$ માં $m\angle A = 90$ અને $\overline{AD} \perp \overline{BC}$

$$D \in \overline{BC}$$
 તો સાબિત કરો કે $\frac{1}{AD^2} = \frac{1}{AB^2} + \frac{1}{AC^2}$.

$$Gallet : AB^2 = BD \cdot BC$$

તથા
$$AC^2 = DC \cdot BC$$

$$\therefore \frac{1}{AB^2} + \frac{1}{AC^2} = \frac{1}{BD \cdot BC} + \frac{1}{DC \cdot BC}$$

$$= \frac{DC + BD}{BD \cdot DC \cdot BC}$$

$$= \frac{BC}{BD \cdot DC \cdot BC} = \frac{1}{BD \cdot DC}$$

વળી,
$$AD^2 = BD \cdot DC$$

$$\therefore \quad \frac{1}{AB^2} + \frac{1}{AC^2} = \frac{1}{AD^2}$$

ઉદાહરણ 11 : લંબચોરસ ABCD ના અંદરના ભાગમાં P કોઈ બિંદ

છે. સાબિત કરો કે
$$PA^2 + PC^2 = PB^2 + PD^2$$
.

ઉકેલ : લંબચોરસ ABCD ના અંદરના ભાગમાં P કોઈ બિંદુ છે.

બિંદુ P માંથી $\overline{\mathrm{AD}}$ ને સમાંતર રેખા દોરો જે $\overline{\mathrm{AB}}$ અને a-xCD ને અનુક્રમે Q અને Rમાં છેદે.

ધારો કે
$$AB = CD = a$$
, $AD = BC = QR = b$, $AQ = DR = x$.

$$\therefore$$
 QB = CR = $a - x$

હવે, ΔAQP અને ΔBQP કાટકોણ ત્રિકોણ છે.

તે જ પ્રમાણે ΔPRD અને ΔPRC પણ કાટકોણ ત્રિકોણ છે.

ધારો કે PQ =
$$y$$
, જેથી PR = $b - y$

∴
$$PA^2 = x^2 + y^2$$
 અને $PC^2 = (a - x)^2 + (b - y)^2$

$$\therefore$$
 PA² + PC² = x² + y² + (a - x)² + (b - y)²

∴
$$PB^2 = (a - x)^2 + y^2$$
 અને $PD^2 = (b - y)^2 + x^2$

$$\therefore$$
 PB² + PD² = $x^2 + y^2 + (a - x)^2 + (b - y)^2$

(i) અને (ii) પરથી, $PA^2 + PC^2 = PB^2 + PD^2$

આકૃતિ 7.14

(iii)

આકૃતિ 7.16

(∠Q કાટખુણો છે.)

(∠R કાટખુણો છે.)

(QR = AD = BC = b)

(i)

(ii)

ઉદાહરણ 12 : \triangle PQR માં $m\angle$ Q = 90, PQ² − QR² = 260. $\overline{\text{QS}}$ એ કર્શ પરનો વેધ છે. જો S ∈ $\overline{\text{PR}}$ અને PS − SR = 10, તો PR શોધો.

ઉકેલ : $\triangle PQR$ માં \overline{QS} કર્ણ પરનો વેધ છે. ∠Q કાટખુશો છે.

$$\therefore PQ^2 = PS \cdot PR$$

$$OR^2 = SR \cdot PR$$

$$\therefore$$
 PQ² - QR² = PR(PS - SR)

પરંતુ
$$PQ^2 - QR^2 = 260$$
 અને $PS - SR = 10$

$$\therefore$$
 260 = PR(10)

$$\therefore$$
 PR = $\frac{260}{10}$ = 26

स्वाध्याय 7.1

- 1. \triangle ABC માં ∠B કાટકોણ છે. $\overline{BD} \perp \overline{AC}$ અને D ∈ \overline{AC} . જો AD = 4DC હોય, તો સાબિત કરો કે BD = 2DC.
- એક ત્રિકોણની બાજુઓનાં માપ 5, 12 અને 13 છે. સાબિત કરો કે ત્રિકોણ કાટકોણ ત્રિકોણ છે. ત્રિકોણના કર્ણ પરનાં વેધની લંબાઈ શોધો.
- 3. ΔPQR માં \overline{QM} એ કર્ણ \overline{PR} પરનો વેધ છે. જો PM=8, RM=12 હોય, તો PQ, QR અને QM શોધો.
- 4. ΔABC માં m∠B = 90, BM ⊥ AC, M ∈ AC. જો AM − MC = 7, AB² − BC² = 175, તો AC શોધો.
- 5. $\triangle ABC$ માં ∠A કાટકોણ છે. \overline{AD} એ ત્રિકોણનો એક વેધ છે. જો $AB = \sqrt{5}$, BD = 2 હોય, તો ત્રિકોણના કર્ણની લંબાઈ શોધો.
- 6. \triangle ABC માં $m\angle$ B = 90, \overline{BM} એ \overline{AC} પરનો વેધ છે.
 - (1) જો AM = BM = 8, તો AC શોધો.
- (2) જો BM = 15, AC = 34, તો AB શોધો.
- (3) $\Re BM = 2\sqrt{30}$, MC = 6, $\dim AC$ શોધો. (4) $\Re AB = \sqrt{10}$, AM = 2.5, $\dim AC$ શોધો.
- 7. $\triangle PQR$ માં $m\angle Q = 90$, PQ = x, QR = y અને $\overline{QD} \perp \overline{PR}$ હોય, $D \in \overline{PR}$ તો PD, QD અને RD, x અને yના સ્વરૂપમાં મેળવો.
- 8. $\triangle PQR$ માં $\angle Q$ કાટકોણ ત્રિકોણ છે. $\overline{QM} \perp \overline{PR}$, $M \in \overline{PR}$. જો PQ = 4QR હોય, તો PM = 16RM સાબિત કરો.
- 9. □ PQRS લંબચોરસ છે. જો PQ + QR = 7 અને PR + QS = 10 હોય, તો □ PQRSનું ક્ષેત્રફળ શોધો.
- 10. બહિર્મુખ □ ABCD નાં વિકર્ણા કાટખૂરો છેદે છે. સાબિત કરો કે AB² + CD² = AD² + BC².
- 11. $\triangle PQR$ માં $m\angle Q=90$, $M\in\overline{QR}$ અને $N\in\overline{PQ}$ તો સાબિત કરો કે $PM^2+RN^2=PR^2+MN^2$.
- **12.** $a^2 + b^2$, 2ab, $a^2 b^2$, a > b, a, $b \in \mathbb{R}^+$ એ ત્રિકોશની બાજુઓનાં માપ છે, સાબિત કરો કે $a^2 + b^2$ માપની બાજુની સામેનો ત્રિકોશનો ખૂશો કાટકોશ છે.
- 13. \triangle ABC માં $m\angle$ B = 90 અને \overline{BE} એક મધ્યગા છે, સાબિત કરો કે AB² + BC² + AC² = 8BE².
- 14. $\triangle ABC$ માં AB=AC અને $\angle A$ કાટકોણ છે. જો $BC=\sqrt{2}\,a$ તો ત્રિકોણનું ક્ષેત્રફળ શોધો. $(a\in R,\,a>0)$

*

એક અગત્યનું પરિણામ : (એપોલોનિયસનું પ્રમેય)

 $\triangle ABC$ માં \overline{AD} મધ્યગા છે. સાબિત કરો કે $AB^2 + AC^2 = 2(AD^2 + BD^2)$

63લ : ધારો કે \overline{AM} એ ΔABC નો એક વેધ છે.

AD મધ્યગા છે.

જો
$$AB = AC$$
 હોય, તો $D = M$.

$$AD = AM$$
 અને $\overline{AM} \perp \overline{BC}$

$$AB^2 + AC^2 = 2AB^2$$

$$2(AD^2 + BD^2) = 2(AM^2 + BM^2) = 2AB^2$$

$$AB^2 + AC^2 = 2(AM^2 + BM^2)$$

ધારો કે AB ≠ AC. ∠ADB અને ∠ADC પૈકી

કોઈ એક લઘુકોણ હશે.

વ્યાપકતા ગુમાવ્યા વિના સ્વીકારી શકાય કે ∠ADB લઘુકોણ છે.

∴
$$MB = BD - DM$$
 અને $MC = DM + DC = DM + BD$ (BD = DC)

ΔABM અને ΔAMC કાટકોણ ત્રિકોણ છે.

$$AB^2 + AC^2 = (AM^2 + MB^2) + (AM^2 + MC^2)$$

$$= 2AM^2 + MB^2 + MC^2$$

$$= 2AM^2 + (BD - DM)^2 + (DM + BD)^2$$

$$= 2AM^2 + 2DM^2 + 2BD^2$$

$$= 2BD^2 + 2(AM^2 + DM^2)$$

$$= 2BD^2 + 2AD^2$$

$$AB^2 + AC^2 = 2(AD^2 + BD^2)$$

હવે એપોલોનિયસના પ્રમેયનો ઉપયોગ કરી કેટલાંક ઉદાહરણો ગણીએ.

ઉદાહરણ 13 : AABC માં AD, BE, CF મધ્યગાઓ છે.

સાબિત કરો કે.

$$4(AD^2 + BE^2 + CF^2) = 3(AB^2 + BC^2 + AC^2).$$

ઉકેલ : એપોલોનિયસના પ્રમેયમાં આપણે સાબિત કર્યું કે,

$$AB^2 + AC^2 = 2(AD^2 + BD^2)$$

ધારો કે
$$AB = c$$
, $BC = a$, $CA = b$

AD એક મધ્યગા છે.

$$\therefore \quad \mathrm{BD} = \tfrac{1}{2} \mathrm{BC} = \tfrac{1}{2} a.$$

$$c^2 + b^2 = 2 \left[AD^2 + \left(\frac{a}{2}\right)^2 \right] = 2AD^2 + \frac{a^2}{2}$$

આકૃતિ 7.19

$$\therefore 2c^2 + 2b^2 = 4AD^2 + a^2$$

$$AD^2 = 2c^2 + 2b^2 - a^2$$

((i) પરથી)

154

(ii)

તે જ પ્રમાણે,
$$4BE^2 = 2c^2 + 2a^2 - b^2$$

અને
$$4CF^2 = 2a^2 + 2b^2 - c^2$$
 (iv)

(ii), (iii), (iv) પરથી,

$$4(AD^2 + BE^2 + CF^2) = 3(a^2 + b^2 + c^2)$$

= $3(BC^2 + CA^2 + AB^2)$

$$\therefore$$
 4(AD² + BE² + CF²) = 3(AB² + BC² + AC²)

ઉદાહરણ 14 : ΔPQR કાટકોણ ત્રિકોણ છે. $m\angle P=90$. M અને N એ અનુક્રમે \overline{PQ} અને \overline{PR} નાં મધ્યબિંદુ છે. સાબિત કરો કે $4(RM^2+QN^2)=5QR^2$.

6કેલ : △PQR માં ∠P કાટકોણ છે.

M એ PQનું મધ્યબિંદુ છે.

$$\therefore$$
 PM = $\frac{1}{2}$ PQ

N એ PR નું મધ્યબિંદુ છે.

$$\therefore PN = \frac{1}{2}PR$$

ΔPMR માં ∠P કાટખુણો છે.

$$\therefore RM^2 = PR^2 + PM^2$$

$$\therefore RM^2 = PR^2 + \left(\frac{1}{2}PQ\right)^2$$

$$\therefore RM^2 = PR^2 + \frac{1}{4}PQ^2$$

$$\therefore 4RM^2 = 4PR^2 + PQ^2$$

ΔPNQ માં ∠P કાટખૂણો છે.

 $\therefore 4QN^2 = 4PQ^2 + PR^2$

:.
$$QN^2 = PN^2 + PQ^2 = \left(\frac{1}{2}PR\right)^2 + PQ^2$$

$$4(RM^2 + QN^2) = 4(PR^2 + PQ^2) + (PQ^2 + PR^2)$$

પરંતુ
$$PQ^2 + PR^2 = QR^2$$

$$4(RM^2 + QN^2) = 4QR^2 + QR^2$$

$$4(RM^2 + QN^2) = 5QR^2$$

ઉદાહરણ 15 : ΔPQR કાટકોણ ત્રિકોણ છે, જેમાં $m\angle Q=90$. M અને N એ \overline{PR} ના ત્રિભાગ બિન્દુઓ છે. એપોલોનિયસ-પ્રમેયની મદદથી સાબિત કરો કે $QM^2+QN^2=5MN^2$.

ઉકેલ : ∠Q કાટખૂશો છે અને

$$PO^2 + QR^2 = PR^2 = (3MN)^2 = 9MN^2$$

$$(PM = MN = NR = \frac{1}{3}PR) \quad (i)$$

 $\overline{\mathrm{QM}}$ એ $\Delta\mathrm{PQN}$ ની મધ્યગા છે.

(iii)

(i)

(ii)

(∆PQRમાં ∠P કાટખૂણો છે.)

∴ એપોલોનિયસના પ્રમેયનો ઉપયોગ કરતાં,

$$PQ^2 + QN^2 = 2QM^2 + 2MN^2$$
 (ii)

 $\overline{\rm ON}$ એ $\Delta {\rm OMR}$ ની મધ્યગા છે.

$$\therefore QM^2 + QR^2 = 2QN^2 + 2MN^2$$
 (iii)

(ii) અને (iii)નો સરવાળો કરતાં,

$$PQ^2 + QN^2 + QM^2 + QR^2 = 2QM^2 + 2QN^2 + 4MN^2$$

$$9MN^2 = OM^2 + ON^2 + 4MN^2$$

((i)ના ઉપયોગથી)

 $\therefore QM^2 + QN^2 = 5MN^2$

स्वाध्याय 7.2

- 1. લંબચોરસ ABCDમાં AB + BC = 23, AC + BD = 34. લંબચોરસનું ક્ષેત્રફળ શોધો.
- ΔABCમાં m∠A = m∠B + m∠C, AB = 7, BC = 25. ΔABCની પરિમિતિ શોધો.
- 6.5 મીટર લંબાઈની નીસરણી દિવાલને 6 મીટર ઊંચાઈએ સ્પર્શે છે. જમીન પરના નીસરણીના છેડાનું દિવાલથી અંતર શોધો.
- ΔABCમાં AB = 7, AC = 5, AD = 5. જો D એ BC નું મધ્યબિંદુ હોય તો BC શોધો.
- **5.** સમબાજુ ત્રિકોણ ABC માં D ∈ \overline{BC} અને BD : DC = 1 : 2. સાબિત કરો કે 3AD = $\sqrt{7}$ AB.
- 6. ΔABC માં AB = 17, BC = 15, AC = 8. ત્રિકોશની સૌથી મોટી બાજુ પરની મધ્યગાની લંબાઈ શોધો.
- 7. $\triangle ABC$ માં \overline{AD} મધ્યગા છે. $AB^2 + AC^2 = 148$ અને AD = 7 તો BC શોધો.
- 8. લંબચોરસ ABCD માં AC = 25 અને CD = 7 છે. લંબચોરસની પરિમિત્તિ શોધો.
- 9. સમબાજુ ચતુષ્કોણ XYZW માં XZ = 14 અને YW = 48. XY શોધો.
- **10.** ΔPQR માં *m*∠Q : *m*∠R : *m*∠P = 1 : 2 : 1. જો PQ = 2√6 હોય, તો PR શોધો.

*

ઉદાહરણ $16:\Delta ABC$ માં $\overline{AB}\cong \overline{AC}$ અને \overline{AD} મધ્યગા છે. જો AD=12 અને ΔABC ની પરિમિતિ 48 હોય, તો ΔABC નું ક્ષેત્રફળ શોધો.

6કેલ : $\triangle ABC$ માં $\overline{AB}\cong \overline{AC}$ અને \overline{AD} મધ્યગા છે.

- ∴ D એ BCનું મધ્યબિંદુ છે.
- \therefore BD = DC
- $\therefore \overline{BD} \cong \overline{DC}$

 Δ ADB અને Δ ADC માં

 $\overline{AB} \cong \overline{AC}$, $\overline{BD} \cong \overline{DC}$ અનੇ $\overline{AD} \cong \overline{AD}$

- ∴ \triangle ADB \cong \triangle ADC અને \angle ADB તથા \angle ADC રૈખિક જોડના ખૂણા છે.
- \therefore $m\angle ADB = m\angle ADC = 90$
- ∴ \overline{AD} એ ΔABC નો \overline{BC} પરનો વેધ છે.

∴
$$\triangle ABC$$
નું ક્ષેત્રફળ = $\frac{1}{2}BC \cdot AD$.

(i)

ધારો કે AB = AC = x.

∆ABCની પરિમિતિ 48 છે.

$$\therefore$$
 AB + AC + BC = 48

$$\therefore x + x + BC = 48$$

∴ BC =
$$48 - 2x$$
. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ BD = $24 - x$

ΔADB કાટકોણ ત્રિકોશ છે. ∠ADB કાટખૂશો છે.

$$\therefore$$
 AB² = BD² + AD²

$$\therefore x^2 = (24 - x)^2 + 12^2$$

$$\therefore x^2 - (24 - x)^2 = 12^2$$

$$-576 + 48x = 144$$

$$\therefore$$
 48x = 144 + 576 = 720

$$\therefore x = 15$$

$$\therefore$$
 AB = AC = 15

$$\therefore$$
 BC = 48 - 30 = 18

$$\therefore$$
 (i) પરથી $\triangle ABC$ નું ક્ષેત્રફળ = $\frac{1}{2}BC \cdot AD$

$$=\frac{1}{2}\times18\times12=108$$

ઉદાહરણ 17 : \triangle ABC માં \overline{BD} વેધ છે. AB = 2AD,

CD = 3AD અને A-D-C. સાબિત કરો કે ΔABC કાટકોણ ત્રિકોણ છે.

ઉકેલ : Δ ABC માં AB = 2AD.

ધારો કે
$$AD = x$$
.

$$\therefore$$
 AB = 2x, CD = 3x

વળી, A-D-C.

$$\therefore$$
 AC = AD + DC = $x + 3x = 4x$

ΔADB કાટકોણ ત્રિકોણ છે.

$$AB^2 = AD^2 + BD^2$$

$$\therefore$$
 BD² = AB² - AD² = $(2x)^2 - x^2 = 3x^2$

ΔBDC કાટકોશ ત્રિકોશ છે.

$$\therefore$$
 BC² = BD² + CD² = $3x^2 + (3x)^2 = 12x^2$

હવે,
$$AB^2 + BC^2 = (2x)^2 + 12x^2$$

= $16x^2$

∴ $\triangle ABC$ માં $AB^2 + BC^2 = AC^2$

$$= AC^2$$

∴ પાયથાગોરસના પ્રમેયના પ્રતિપ્રમેયનો ઉપયોગ કરતાં સાબિત થાય છે કે,

ΔABC કાટકોણ ત્રિકોણ છે અને ∠B કાટકોણ છે.

$$(\overline{BD} \perp \overline{AC})$$

$$(\overline{BD} \perp \overline{AC})$$

((i) પરથી)

ઉદાહરણ 18 : ΔABC માં m∠A + m∠C = m∠B અને AC : AB = 17 : 15. જો BC = 12 હોય, તો ΔABC નું ક્ષેત્રફળ શોધો.

ઉકેલ : $\triangle ABC$ માં $m\angle A + m\angle C + m\angle B = 180$.

પરંતુ $m\angle A + m\angle C = m\angle B$

$$\therefore m\angle B + m\angle B = 180$$

∴
$$m\angle B = 90$$
 અને \overline{AC} ત્રિકોશનો કર્શ છે.

∴ ΔABC કાટકોણ ત્રિકોણ છે, જેમાં ∠B કાટકોણ છે.
 AC : AB = 17 : 15

$$\therefore$$
 ધારો કે AC = 17k, AB = 15k, જ્યાં $k > 0$

 ΔABC માં $AC^2 = AB^2 + BC^2$

$$\therefore$$
 BC² = AC² - AB² = 289 k^2 - 225 k^2 = 64 k^2

$$k = 12.$$

$$k = \frac{12}{8} = \frac{3}{2}$$

:. AB =
$$15k = 15 \times \frac{3}{2} = \frac{45}{2}$$

BC = 12

:. ABC =
$$\frac{1}{2}$$
BC × AB = $\frac{1}{2}$ × 12 × $\frac{45}{2}$ = 45 × 3 = 135

स्वाध्याय 7

- 1. \overline{AD} , \overline{BE} , \overline{CF} એ ΔABC ની મધ્યગાઓ છે. જો BE=12, CF=9 અને $AB^2+BC^2+AC^2=600$ હોય, તો AD શોધો.
- 2. \triangle ABC નો વેધ \overline{AD} છે કે જેથી B−D−C. જો $AD^2 = BD \cdot DC$, તો સાબિત કરો કે \angle BAC કાટખૂણો છે. [સૂચના : $\overline{AD} \perp \overline{BC}$. અને B−D−C આપેલ છે. \triangle ADB અને \triangle ADC કાટકોણ ત્રિકોણો છે તેથી પાયથાગોરસ પ્રમેયનો ઉપયોગ કરી શકાય. આ જ રીતે નીચેના દાખલા 3, 4, 5 ગણી શકાય.]
- 3. \triangle ABC માં \overline{AD} \perp \overline{BC} , B−D−C. જો AB² = BD · BC, તો સાબિત કરો કે ∠BAC કાટકોણ છે.
- **4.** \triangle ABC માં \overline{AD} \perp \overline{BC} , B−D−C. જો $AC^2 = CD \cdot BC$, તો સાબિત કરો કે \angle BAC કાટકોણ છે.
- 5. \triangle ABC માં \overline{AD} મધ્યગા છે. જો BD = AD હોય, તો સાબિત કરો કે \triangle ABCનો \angle A કાટકોણ છે.
- 6. આકૃતિ 7.25 માં AC એ મેદાનમાં લંબદિશામાં ઊભા કરેલા એક થાંભલાની લંબાઈ છે. થાંભલાને B બિંદુએથી વાળવામાં આવે છે કે જેથી થાંભલાની ટોચ મેદાનને અડે તે બિંદુ થાંભલાના તળીયાથી 15 મીટર દૂર હોય અને જો થાંભલાની લંબાઈ 25 મીટર હોય, તો થાંભલાના ઉપરના ભાગની લંબાઈ શોધો.

7. \triangle ABC માં AB > AC. \overline{BC} નું મધ્યબિંદુ D છે. $\overline{AM} \perp \overrightarrow{BC}$ કે જેથી B-M-C. સાબિત કરો કે, $AB^2 - AC^2 = 2BC \cdot DM$.

B આકૃતિ 7.24

\triangle ABC માં BD ⊥ AC, D ∈ AC અન ∠B કાટકાશ છે. જા AC = 5CD તા સાબિત કરા કે, BD = 2CD.				
નીચે આપેલું દરેક વિધા	ન સાચું બને તે રીતે આપેલ	ા વિકલ્પો (a), (b), (c) ર	ખથવા (d) માંથી યોગ્ય વિકલ	પ પસંદ
કરીને 🔃 માં લખો :				
(1) ΔPQR માં m∠P + m∠Q = m∠R. PR = 7, QR = 24 હોય, તો PQ =				
(a) 31	(b) 25	(c) 17	(d) 15	
(2) \triangle ABC માં \overline{AD} વેધ છે અને ∠A કાટકોણ છે. જો AB = $\sqrt{20}$, BD = 4 તો CD =				
(a) 5	(b) 3	(c) $\sqrt{5}$	(d) 1	
(3) $\triangle ABC$ માં $AB^2 + AC^2 = 50$. મધ્યગાની લંબાઈ $AD = 3$. તેથી $BC =$				
(a) 4	(b) 24	(c) 8	(d) 16	
(4) ΔABC માં m∠B = 90, AB = BC, તો AB : AC =				
(a) 1:3	(b) 1:2	(c) $1:\sqrt{2}$	(d) $\sqrt{2}:1$	
(5) ΔABC માં <i>m</i> ∠B = 90 અને AC = 10. મધ્યગાની લંબાઈ BM =				
(a) 5	(b) $5\sqrt{2}$	(c) 6	(d) 8	
(6) ΔABC માં AB =	$BC = \frac{AC}{\sqrt{2}}$, dì $\angle B$			
	(b) ગુરુકોણ છે.		(d) મેળવી શકાય નહિ.	
(7) $\triangle ABC$ માં $\frac{AB}{1} = \frac{AC}{2} = \frac{BC}{\sqrt{3}}$, તેથી $m \angle C =$				
(a) 90	(b) 30	(c) 60	(d) 45	
(8) ΔΧΥΖ માં <i>m</i> ∠X : <i>m</i> ∠Y : <i>m</i> ∠Z = 1 : 2 : 3. જો XY = 15 હોય, તો YZ =				
(a) $\frac{15\sqrt{3}}{2}$	(b) 17	(c) 8	(d) 7.5	
(9) \triangle ABC માં ∠B કાટકોણ છે અને \overline{BD} વેધ છે. જો AD = BD = 5, તો DC =				
(a) 1	(b) $\sqrt{5}$	(c) 5	(d) 2.5	
(10) \triangle ABC માં \overline{AD} મધ્યગા છે. જો AB ² + AC ² = 130 અને AD = 7, તો BD =				
	(b) 8		(d) 32	
(11)ચોરસના વિકર્શની લંબાઈ 5 $\sqrt{2}$ છે. ચોરસની બાજુનું માપ થાય.				
(a) 10	(b) 5	(c) 3√2	(d) $2\sqrt{2}$	
(12)લંબચોરસના વિકર્ણની લંબાઈ 13 છે. જો લંબચોરસની એક બાજુનું માપ 5 હોય, તો લંબચોરસ				યોરસની
પરિમિતિ થા	ય.			
(a) 36	(b) 34	(c) 48	(d) 52	
(13)એક સમબાજુ ત્રિકો	ણની મધ્યગાનું માપ √ 3 ધ	છે. તેની બાજુનું માપ	થાય. —	
(a) 1	(b) $2\sqrt{3}$	(c) 2	(d) $3\sqrt{3}$	
(14)એક સમબાજુ ત્રિકોણની પરિમિતિ 6 છે. ત્રિકોણના વેધનું માપ થાય.				
(a) $\frac{\sqrt{3}}{2}$	(b) $2\sqrt{3}$	(c) 2	(d) $\sqrt{3}$	

9.

(15) \triangle ABC માં m∠A = 90. \overline{AD} તેની મધ્યગા છે. જો AD = 6, AB = 10, તો AC = (d) $2\sqrt{11}$ (a) 8 (b) 7.5 (c) 16 (16) $\triangle PQR$ માં $m\angle Q=90$ અને PQ=QR. \overline{OM} \bot \overline{PR} , $M\in\overline{PR}$. જો QM=2, તો PQ=.....(b) $2\sqrt{2}$ (c) 8 (a) 4 (d) 2(17) \triangle ABC માં $m\angle$ A = 90, \overline{AD} વેધ છે. AB² = (c) $\frac{BD}{DC}$ (a) BD · BC (b) BD·DC (d) BC • DC (18) △ABC માં m∠A = 90, AD વેધ છે. તેથી BD • DC = (a) AB² (b) BC² (c) AC² (d) AD^2

*

સારાંશ

આ પ્રકરણમાં આપણે નીચે આપેલા મુદ્દાઓનો અભ્યાસ કર્યો :

- 1. \triangle ABCમાં જો $m\angle$ B = 90 અને \overline{BD} એ ત્રિકોશનો એક વેધ હોય, તો સંગતતા ABC \leftrightarrow ADB, સંગતતા ABC \leftrightarrow BDC અને સંગતતા ADB \leftrightarrow BDC સમરૂપતા છે. આ સમરૂપતાઓનો ઉપયોગ કરી આપશે નીચેનાં પરિશામો મેળવ્યા :
 - (i) $AB^2 = AD \cdot AC$ (ii) $BC^2 = CD \cdot AC$ (iii) $BD^2 = AD \cdot DC$
- પાયથાગોરસનો પ્રમેય : કાટકોણ ત્રિકોણમાં કર્ણનો વર્ગ બાકીની બે બાજુઓના વર્ગોનાં સરવાળો જેટલો હોય.
 બીજા શબ્દોમાં, ∆ABCમાં જો ∠A કાટકોણ હોય, તો BC² = AB² + AC².
- 3. પાયથાગોરસના પ્રમેયનું પ્રતિપ્રમેય : જો કોઈ ત્રિકોણમાં કોઈ એક બાજુનો વર્ગ એ બાકીની બે બાજુઓના વર્ગના સરવાળા જેટલો હોય, તો ત્રિકોણ કાટકોણ ત્રિકોણ હોય અને પહેલી બાજુની સામેનો ખૂણો કાટકોણ હોય.
- 4. એપોલોનિયસ પ્રમેય : જો $\triangle ABC$ માં \overline{AD} મધ્યગા હોય, તો $AB^2 + AC^2 = 2(AD^2 + BD^2)$.

•

Kaprekar constant:

Kaprekar discovered the Kaprekar constant or 6174 in 1949.[4] He showed that 6174 is reached in the limit as one repeatedly subtracts the highest and lowest numbers that can be constructed from a set of four digits that are not all identical. Thus, starting with 1234, we have

4321 - 1234 = 3087, then 8730 - 0378 = 8352, and 8532 - 2358 = 6174.

Repeating from this point onward leaves the same number (7641 - 1467 = 6174). In general, when the operation converges it does so in at most seven iterations.

A similar constant for 3 digits is 495. However, in base 10 a single such constant only exists for numbers of 3 or 4 digits.

160 ગણિત 10