Devoir à la maison n°18

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 La fonction $z\mapsto \frac{z}{1-z}$ admet un développement en série entière de rayon de convergence 1. A l'aide de produit de Cauchy, on montre par récurrence que pour tout $n\in\mathbb{N}, z\mapsto \left(\frac{z}{1-z}\right)^n$ admet un développement en série entière de rayon de convergence supérieur ou égal à 1.

On sait que pour $x \in]-1,1[$,

$$(1-x)^{-n} = \sum_{k=0}^{+\infty} {n \choose k} (-x)^k$$

$$= \sum_{k=0}^{+\infty} \frac{-n(-n-1)\dots(-n-k+1)}{k!} (-1)^k x^k$$

$$= \sum_{k=0}^{+\infty} \frac{n(n+1)\dots(n+k-1)}{k!} x^k$$

$$= \sum_{k=0}^{+\infty} {n+k-1 \choose n-1} x^k$$

Ainsi pour tout $x \in]-1,1[$

$$\left(\frac{x}{1-x}\right)^n = \sum_{k=0}^{+\infty} \binom{n+k-1}{n-1} x^{n+k} = \sum_{k=n}^{+\infty} \binom{k-1}{n-1} x^k$$

Par ailleurs, pour tout $x \in]-1,1[$,

$$\left(\frac{x}{1-x}\right)^n = \sum_{k=0}^{+\infty} a_{n,k} x^k$$

Par unicité du développement en série entière,

$$\forall (n,k) \in \mathbb{N}^2, \ a_{n,k} = \begin{cases} \binom{k-1}{n-1} & \text{si } n \leq k \\ 0 & \text{si } n > k \end{cases}$$

On précise que $a_{0,k} = \begin{cases} 1 & \text{si } k = 0 \\ 0 & \text{sinon} \end{cases}$ puisque $\left(\frac{z}{1-z}\right)^0 = 1$.

3 3.a Pour n > k, $a_{n,k} = 0$ donc la somme définissant b_k est finie.

3.b On trouve

$$\begin{split} b_0 &= a_{0,0} = 1 \\ b_1 &= a_{0,1} - a_{1,1} = 0 - 1 = -1 \\ b_2 &= a_{0,2} - a_{1,2} + \frac{1}{2}a_{2,2} = 0 - 1 + \frac{1}{2} = -\frac{1}{2} \end{split}$$

1

Remarquons que les $a_{n,k}$ sont positifs d'après l'expression trouvée à la question 2. La série $\sum_{k \in \mathbb{N}} |u_{n,k}| = \sum_{k \in \mathbb{N}} \frac{a_{n,k}}{n!} |z|^k$ converge puisque, par définition, c'est le développement en série entière de $\frac{1}{n!} \left(\frac{|z|}{1-|z|}\right)^n$. Ainsi

$$\sum_{k=0}^{+\infty} |u_{n,k}| = \frac{1}{n!} \left(\frac{|z|}{1 - |z|} \right)^n$$

Mais la série $\sum_{n\in\mathbb{N}}\frac{1}{n!}\left(\frac{|z|}{1-|z|}\right)^n$ converge également puisque c'est une série exponentielle. La famille $(u_{n,k})_{(n,k)\in\mathbb{N}^2}$ est donc sommable.

5 D'après le théorème de Fubini

$$\sum_{k=0}^{+\infty} \sum_{n=0}^{+\infty} u_{n,k} = \sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} u_{n,k}$$

ce qui signifie que

$$\sum_{k=0}^{+\infty} b_k z^k = \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\frac{z}{1-z}\right)^n = \exp\left(\frac{z}{1-z}\right) = F(z)$$

6. 6.a De manière, générale, $|e^Z| = e^{Re(Z)}$ pour tout $Z \in \mathbb{C}$. Ainsi

$$\forall z \neq 1, \ \ln |F(z)| = \text{Re}\left(\frac{z}{z-1}\right) = \frac{x^2 + y^2 - x}{x^2 + y^2 - 2x + 1}$$

6.b Remarquons que la condition $z \neq 1$ équivaut à $(x, y) \neq (1, 0)$. En posant $\mu = \ln \lambda$ une équation de C_{λ} est

$$x^2 + y^2 - x = \mu(x^2 + y^2 - 2x + 1)$$

ou encore

$$(\mu - 1)(x^2 + y^2) + (1 - 2\mu)x + \mu = 0$$

Si $\mu=1$ i.e. $\lambda=e$, C_e est la droite d'équation x=1 privée du point (1,0). Sinon, C_{λ} est le cercle de centre $\left(\frac{2\mu-1}{2(\mu-1)},0\right)$ est de rayon $\frac{1}{2|\mu-1|}$ privé du point (1,0).

6.c

7 Pour tout $z \neq 1$,

$$2\ln|F(z)| = 2\operatorname{Re}\left(\frac{z}{z-1}\right) = \frac{z}{z-1} + \frac{\overline{z}}{\overline{z}-1} = \frac{2|z|^2 - 2\operatorname{Re}(z)}{|z|^2 - 2\operatorname{Re}(z) + 1}$$

Or pour tout $z \in \Delta'$, $|z| \le 1$ donc $|z|^2 - 2\operatorname{Re}(z) + 1 \ge 2|z|^2 - 2\operatorname{Re}(z) > 0$ puis $2\ln|F(z)| \le 1$. De plus, $2\ln|F(z)| = 1 \iff |z| = 1$. Par conséquent, $|F(z)| \le \sqrt{e}$ pour tout $z \in \Delta'$ et $|F(z)| = \sqrt{e} \iff |z| = 1$. Par conséquent, $|F(z)| = \sqrt{e}$ et cette borne supérieure est atteinte sur Δ' en les points de module 1.

8.a Par opérations, $z \mapsto \frac{z}{z-1}$ est continue sur $\mathbb{C}\setminus\{1\}$. De plus, exp est continue sur \mathbb{C} . Par composition, F est continue sur $\mathbb{C}\setminus\{1\}$.

8.b Posons $u_n = 1 + \frac{1}{n}$ pour $n \in \mathbb{N}^*$. Alors $\lim_{n \to +\infty} u_n = 1$ et $F(u_n) = \exp(n+1) \xrightarrow[n \to +\infty]{} +\infty$. Ainsi F n'admet pas de limite en 1

8.c Le contre-exemple précédent n'est plus valide puisque (u_n) n'est pas à valeurs dans Δ' .

Posons cette-fois ci, $u_n = 1 - \frac{1}{n}$ pour $n \in \mathbb{N}^*$. Alors (u_n) est à valeurs dans Δ' , $\lim_{n \to +\infty} u_n = 1$ et $F(u_n) = \exp(1-n) \xrightarrow[n \to +\infty]{} 0$.

Posons également $v_n = e^{\frac{i}{n}}$ de sorte que (v_n) est à valeurs dans Δ' et $\lim_{n \to +\infty} u_n = 1$. Mais (v_n) est en fait à valeurs dans $\mathbb U$ et la question 7 montre que $|F(v_n)| = \sqrt{e}$ pour tout $n \in \mathbb N^*$. On ne peut donc avoir $\lim_{n \to +\infty} v_n = 0$.

La restriction de F à Δ' n'admet pas non plus de limite.

9 On sait déjà que R ≥ 1 . Supposons que R > 1 et notons S la somme de la série entière $\sum_{k \in \mathbb{N}} b_k z^k$. Alors S serait

continue sur D(0,R). Notamment, S admettrait une limite en 1. Comme F et S sont continues sur $\Delta' = \overline{\Delta} \setminus \{1\}$ et que F et S coïncidents sur Δ , on montre que F et S coïncident sur Δ' . Comme S admet une limite en 1, sa restriction à Δ' également. Ainsi la restriction de F à Δ' admettrait également une limite, ce qui n'est pas. Ainsi R = 1.

Supposons que $\sum |b_n|$ converge. Alors la série entière $\sum_{k\in\mathbb{N}}b_kz^k$ convergerait normalement sur $\overline{\Delta}$ donc S serait continue sur

 $\overline{\Delta}$. Notamment, la restriction de S à $\Delta' = \overline{\Delta} \setminus \{1\}$ admettrait une limite finie en 1. Comme précédemment, ceci impliquerait que la restriction de F à Δ' admet une limite en 1. Ainsi $\sum |b_n|$ diverge.

10 10.a Fixons $n \in \mathbb{N}$ et posons $\varphi_k : \theta \mapsto b_k r^k e^{i(k-n)\theta}$ de telle sorte que

$$\forall \theta \in \mathbb{R}, \ F(re^{i\theta})e^{-in\theta} = \sum_{k=0}^{+\infty} \varphi_k(\theta)$$

Tout d'abord, pour tout $k \in \mathbb{N}$, φ_k est continue sur le segment $[0,2\pi]$. De plus, pour tout $k \in \mathbb{N}$, $\|\varphi_k\|_{\infty} = b_k r^k$. Ainsi $\sum \|\varphi_k\|_{\infty}$ converge puisque 0 < r < 1 et que le rayon de convergence de la série entière $\sum b_n z^n$ vaut 1. Par conséquent, la série $\sum \varphi_k$ converge normalement et donc uniformément sur le segment $[0,2\pi]$. Par interversion série/intégrale,

$$\begin{split} \int_0^{2\pi} \mathbf{F}(re^{i\theta}) e^{-in\theta} \ \mathrm{d}\theta &= \int_0^{2\pi} \sum_{k=0}^{+\infty} \varphi_k(\theta) \ \mathrm{d}\theta \\ &= \sum_{k=0}^{+\infty} \int_0^{2\pi} \varphi_k(\theta) \ \mathrm{d}\theta \\ &= \sum_{k=0}^{+\infty} b_k r^k \int_0^{2\pi} e^{i(k-n)\theta} \ \mathrm{d}\theta \\ &= \sum_{k=0}^{+\infty} b_k r^k \cdot 2\pi \delta_{k,n} \\ &= 2\pi b_k r^n \end{split}$$

La fonction $\theta \mapsto F(re^{i\theta})e^{-in\theta}$ est 2π -périodique donc

$$\int_{0}^{2\pi} F(re^{i\theta})e^{-in\theta} d\theta = \int_{-\pi}^{\pi} F(re^{i\theta})e^{-in\theta} d\theta = \int_{-\pi}^{0} F(re^{i\theta})e^{-in\theta} d\theta + \int_{0}^{p} iF(re^{i\theta})e^{-in\theta} d\theta$$

Par changement de variable $\theta \mapsto -\theta$,

$$\int_{-\pi}^{0} F(re^{i\theta})e^{-in\theta} d\theta = \int_{0}^{\pi} F(re^{-i\theta})e^{in\theta} d\theta$$

Mais comme les b_n sont réels, $F(re^{-i\theta}) = \overline{F(re^{i\theta})}$. Finalement,

$$\int_{-\pi}^{0} F(re^{i\theta})e^{-in\theta} d\theta = \int_{0}^{\pi} \overline{F(re^{i\theta})e^{-in\theta}} d\theta = \overline{\int_{0}^{\pi} F(re^{i\theta})e^{-in\theta} d\theta}$$

puis

$$\int_0^{2\pi} \mathbf{F}(re^{i\theta})e^{-in\theta} d\theta = \int_0^{\pi} \mathbf{F}(re^{i\theta})e^{-in\theta} d\theta + \overline{\int_0^{\pi} \mathbf{F}(re^{i\theta})e^{-in\theta} d\theta} = 2\operatorname{Re}\left(\int_0^{\pi} \mathbf{F}(re^{i\theta})e^{-in\theta} d\theta\right)$$

10.b $\theta \mapsto e^{i\theta}$ est continue sur $]0,\pi]$ à valeurs dans $\mathbb{U}\setminus\{1\}$ et F est continue sur $\mathbb{U}\setminus\{1\}$ donc $\theta \mapsto F(e^{i\theta})e^{-in\theta}$ est continue sur $]0,\pi]$. De plus, |F| est majorée par \sqrt{e} sur Δ' donc $\theta \mapsto F(e^{i\theta})e^{-in\theta}$ est bornée sur $]0,\pi]$. Comme toute constante est intégrale sur l'intervalle borné $]0,\pi]$, $\theta \mapsto F(e^{i\theta})e^{-in\theta}$ est intégrable sur $]0,\pi]$. A fortiori, l'intégrale $\int_0^\pi F(e^{i\theta})e^{-in\theta} \ d\theta$ converge.

10.c Pour tout $\theta \in]0,\pi]$, $\lim_{r\to 1^-} F(re^{i\theta})e^{-in\theta} = F(re^{i\theta})e^{-in\theta}$ par continuité de F sur $\mathbb{C}\setminus\{1\}$. De plus, comme |F| est majorée par \sqrt{e} sur Δ' ,

$$\forall r \in [0, 1[, \forall \theta \in]0, \pi], |F(re^{i\theta})e^{-in\theta}| \le \sqrt{e}$$

Enfin, $\theta \mapsto \sqrt{e}$ est évidemment intégrable sur $]0,\pi]$ donc, par théorème de convergence dominée,

$$\lim_{r \to 1^{-}} \int_{0}^{\pi} F(re^{i\theta}) e^{-in\theta} d\theta = \int_{0}^{\pi} F(e^{i\theta}) e^{-in\theta} d\theta$$

11 On rappelle que

$$b_n r^n = \frac{1}{\pi} \operatorname{Re} \left(\int_0^{\pi} F(re^{i\theta}) e^{-in\theta} d\theta \right)$$

En passant à la limite lorsque r tend vers 1^- , on obtient

$$b_n = \frac{1}{\pi} \operatorname{Re} \left(\int_0^{\pi} F(e^{i\theta}) e^{-in\theta} d\theta \right)$$

De plus,

$$\frac{e^{i\theta}}{e^{i\theta}-1} = \frac{e^{i\theta/2}}{e^{i\theta/2}-e^{-i\theta/2}} = \frac{\cos(\theta/2) + i\sin(\theta/2)}{2i\sin(\theta/2)} = \frac{1}{2} - \frac{i}{2}\cot(\theta/2)$$

done

$$F(e^{i\theta}) = \sqrt{e} \exp\left(-\frac{i}{2} \cot \frac{\theta}{2}\right)$$

Par conséquent,

$$b_n = \frac{\sqrt{e}}{\pi} \operatorname{Re} \left(\int_0^{\pi} \exp \left(-in\theta - \frac{i}{2} \cot \frac{\theta}{2} \right) dt \right)$$

Par changement de variable $t = \theta/2$, on obtient

$$b_n = \frac{2\sqrt{e}}{\pi} \operatorname{Re} \left(\int_0^{\frac{\pi}{2}} \exp\left(-2int - \frac{i}{2} \cot nt\right) dt \right)$$

$$= \frac{2\sqrt{e}}{\pi} \int_0^{\frac{\pi}{2}} \operatorname{Re} \left(\exp\left(-2int - \frac{i}{2} \cot nt\right) \right) dt$$

$$= \frac{2\sqrt{e}}{\pi} \int_0^{\frac{\pi}{2}} \operatorname{Re} \left(\exp\left(2int + \frac{i}{2} \cot nt\right) \right) dt$$

$$= \frac{2\sqrt{e}}{\pi} \operatorname{Re} \left(\int_0^{\frac{\pi}{2}} \exp\left(2int + \frac{i}{2} \cot nt\right) dt \right)$$

12

$$|b_n| = \frac{2\sqrt{e}}{\pi} \left| \operatorname{Re} \left(\int_0^{\frac{\pi}{2}} \exp\left(2int + \frac{i}{2} \cot nt\right) dt \right) \right|$$

$$\leq \frac{2\sqrt{e}}{\pi} \left| \int_0^{\frac{\pi}{2}} \exp\left(2int + \frac{i}{2} \cot nt\right) dt \right|$$

$$\leq \frac{2\sqrt{e}}{\pi} \int_0^{\frac{\pi}{2}} \left| \exp\left(2int + \frac{i}{2} \cot nt\right) \right| dt$$

$$= \frac{2\sqrt{e}}{\pi} \int_0^{\frac{\pi}{2}} d\theta = \sqrt{e}$$

13 Pour tout $t \in \left]0, \frac{\pi}{2}\right[$,

$$u_n(t) = 2nt + \frac{1}{2}\cot(t)$$

$$u'_n(t) = 2n - \frac{1}{2\sin^2 t}$$

$$u''_n(t) = \frac{\cos t}{\sin^3 t} > 0$$

Ainsi u'_n est strictement croissante et s'annule en $T_n = \arcsin \frac{1}{2\sqrt{n}}$. On en déduit le tableau de variation suivant :

t	$0 T_n \frac{\pi}{2}$
$u_n''(t)$	+ +
$u'_n(t)$	$\begin{array}{c c} & & & & \\ -\infty & & & & \\ \end{array}$
$u_n(t)$	$+\infty$ $u_n(T_n)$ $n\pi$

14 14.a u'_n est continue et strictement croissante sur $]0, T_n]$ et

$$-\infty = \lim_{n \to \infty} u'_n < -n^{\frac{3}{4}} < u'_n(T_n) = 0$$

donc, d'après le théorème des valeurs intermédiares, il existe un unique $\alpha_n \in]0, T_n[$ tel que $u_n'(\alpha_n) = -n^{\frac{3}{4}}$. De même, u_n' est continue et strictement croissante sur $[T_n, \pi/2[$ et

$$u'_n(T_n) = 0 < n^{\frac{3}{4}} < n < \frac{4n-1}{2} = \lim_{\pi/2} u'_n$$

donc, d'après le théorème des valeurs intermédiares, il existe un unique $\beta_n \in]T_n, \pi/2[$ tel que $u_n'(\beta_n) = n^{\frac{3}{4}}$.

14.b Comme $u'_n(\beta_n) = 0$,

$$\frac{1}{\sin^2 \beta_n} = 2n$$

Ainsi

$$u_n''(\beta_n)^2 = \frac{\cos^2\beta_n}{\sin^6\beta_n} = \frac{1}{\sin^4\beta_n} \left(\frac{1}{\sin^2\beta_n} - 1\right) = 4n^2(2n-1) = 8n^3 - 4n^4 \ge 4n^3$$

Comme u_n'' est psoitive, $u_n''(\beta_n) \ge 2n^{\frac{3}{2}}$.

14.c On vérifie aisément que u_n'' est décroissante sur $]0, \beta_n]$. Ainsi

$$\forall t \in [\alpha_n, \beta_n], \ u_n''(t) \ge u_n''(\beta_n) \ge 2n^{\frac{3}{2}}$$

D'après l'inégalité des accroissements finis,

$$2n^{\frac{3}{4}} = u'_n(\beta_n) - u'_n(\alpha_n) \ge 2n^{\frac{3}{2}}(\beta_n - \alpha_n)$$

puis

$$\beta_n - \alpha_n \le \frac{1}{n^{\frac{3}{4}}}$$

15 | 15.a Par inégalité triangulaire,

$$|K_n| \le \beta_n - \alpha_n \le \frac{1}{n^{\frac{3}{4}}}$$

15.b On intégre par parties

$$L_n = \left[\frac{1}{iu'_n(t)} e^{iu_n(t)} \right]_{\beta_n}^{\frac{\pi}{2}} + \int_{\beta_n}^{\frac{\pi}{2}} \frac{u''_n(t)}{iu'_n(t)^2} e^{iu_n(t)} dt = \frac{2e^{in\pi}}{(4n-1)i} - \frac{e^{iu_n(\beta_n)}}{\frac{3}{in^{\frac{3}{4}}}} + \int_{\beta_n}^{\frac{\pi}{2}} \frac{u''_n(t)}{iu'_n(t)^2} e^{iu_n(t)} dt$$

Par inégalité triangulaire,

$$|\mathcal{L}_n| \le \frac{2}{4n-1} + \frac{1}{n^{\frac{3}{4}}} + \int_{\beta_n}^{\frac{\pi}{2}} \frac{u_n''(t)}{u_n'(t)^2} dt = \frac{2}{4n-1} + \frac{1}{n^{\frac{3}{4}}} - \left[\frac{1}{u_n'(t)}\right]_{\beta_n}^{\frac{\pi}{2}} = \frac{2}{n^{\frac{3}{4}}}$$

15.c En raisonnant de la même manière, on obtient

$$|\mathbf{J}_n| \le \frac{2}{n^{\frac{3}{4}}}$$

15.d Par inégalité triangulaire,

$$|I_n| = |J_n + K_n + L_n| \le |J_n| + |K_n| + |L_n| \le \frac{5}{n^{\frac{3}{4}}}$$

Puisque $|Re(Z)| \le |Z|$, on obtient à nouveau par inégalité triangulaire,

$$|b_n| \le \frac{2\sqrt{e}}{\pi} \cdot \frac{5}{n^{\frac{3}{4}}} = \frac{10\sqrt{e}}{\pi n^{\frac{3}{4}}}$$

16 On vérifie aisément que

$$\forall x \in]-1,1[, (1-x)^2F'(x) + F(x) = 0$$

17. 17. On sait que le rayon de convergence de la série entière $\sum b_n x^n$ vaut 1. Ainsi

$$\forall x \in]-1,1[, \ \mathbf{F}'(x) = \sum_{n=1}^{+\infty} nb_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1)b_{n+1} x^n$$

$$\forall x \in]-1,1[, (1-x)^{2}F'(x) + F(x) = \sum_{n=0}^{+\infty} (n+1)b_{n+1}x^{n} - 2\sum_{n=1}^{+\infty} nb_{n}x^{n} + \sum_{n=0}^{+\infty} nb_{n}x^{n+1} + \sum_{n=0}^{+\infty} b_{n}x^{n}$$

$$= \sum_{n=0}^{+\infty} (n+1)b_{n+1}x^{n} - 2\sum_{n=1}^{+\infty} nb_{n}x^{n} + \sum_{n=1}^{+\infty} (n-1)b_{n-1}x^{n} + \sum_{n=0}^{+\infty} b_{n}x^{n}$$

$$= b_{1} + b_{0} + \sum_{n=1}^{+\infty} [(n+1)b_{n+1} - (2n-1)b_{n} + (n-1)b_{n-1}]x^{n} = 0$$

Par unicité du développement en série entière

$$\forall n \in \mathbb{N}^*, \; (n+1)b_{n+1} - (2n-1)b_n + (n-1)b_{n-1} = 0$$

En posant $c_n = nb_n$, on a donc bien

$$\forall n \in \mathbb{N}^*, \ c_{n+1} = \left(2 - \frac{1}{n}\right) c_n - c_{n-1}$$

17.b On obtient

$$c_0 = 0$$
 $c_1 = b_1 = -1$ $c_2 = -1$ $c_3 = -\frac{1}{2}$ $c_4 = \frac{1}{6}$ $c_5 = \frac{19}{24}$ $c_6 = \frac{151}{120}$

17.c Si $c_n = 0$, alors c_{n+1} et c_{n-1} sont opposés. Si l'un des deux est nul, les deux sont nuls. La relation de récurrence permet alors de montrer que $\forall k \in [\![1,n]\!]$, $c_k = 0$ ce qui est faux. Ainsi c_{n+1} et c_{n-1} sont non nuls et de signes opposés.

18 Si la suite (c_n) est positive à partir d'un certain rang, (d_n) est décroissante à partir d'un certain rang. Ainsi (d_n) converge ou diverge vers $-\infty$.

Si (d_n) converge, alors la série télescopique $\sum d_{n+1} - d_n$ converge. Ceci signifie que la série $\sum b_n$ converge. Comme les c_n sont positifs à partir d'un certain rang, les b_n également. On aurait donc convergence de la série $\sum |b_n|$ mais on a vu que ce n'était pas le cas.

On en déduit que (d_n) diverge vers $-\infty$. Mais dans ce cas, $c_{n+1} - c_n = d_{n+1} \le -1$ à partir d'un certain rang N donc $c_n \le c_N - N$ pour $n \ge N$ et (c_n) diverge vers $-\infty$. Ceci contredit le fait que (c_n) est positive à partir d'un certain rang.

19. 19.a Remarquons déjà que $n \ge 2$ de sorte que $\theta_n \ge \theta_2 = 4$ car c_1 , c_2 , c_3 sont négatifs et c_4 est positif. Comme n est pair, $c_{\theta_n} \ge 0$ et

$$c_{\theta_n+1}-c_{\theta_n}=\left(1-\frac{1}{\theta_n}\right)c_{\theta_n}-c_{\theta_n-1}\geq -c_{\theta_n-1}$$

Par définition de la suite (θ_n) , $c_{\theta_{n-1}} < 0$ donc $c_{\theta_{n+1}} > c_{\theta_n}$. Ainsi

$$0 \le c_{\theta_n} < c_{\theta_n+1}$$

Par définition de la suite (θ_n) , $c_{\theta_{n+1}-1} > 0$ et

$$c_{\theta_{n+1}-2} - c_{\theta_{n+1}-1} = \left(1 - \frac{1}{\theta_{n+1}-1}\right) c_{\theta_{n+1}-1} - c_{\theta_{n+1}}$$

Or $c_{\theta_{n+1}} \le 0$, $1 - \frac{1}{\theta_{n+1} - 1} > 0$ car $\theta_{n+1} > \theta_n > 4$ et $c_{\theta_{n+1} - 1} > 0$ donc $c_{\theta_{n+1} - 2} - c_{\theta_{n+1} - 1} > 0$. Ainsi

$$c_{\theta_{n+1}-2} > c_{\theta_{n+1}-1} > 0$$

Comme $c_{\theta_{n+1}-2} > 0$, $\theta_{n+1}-2 \ge \theta_n$. De plus, on ne peut avoir $\theta_{n+1}-2 = \theta_n$ car cela contredirait les inégalités précédentes. Ainsi $\theta_{n+1}-\theta_n \ge 3$.

19.b On rappelle que $d_{p+1} - d_p = -\frac{c_p}{p} \le 0$ pour $p \in U_n$ donc (d_p) est décroissante sur U_n .

19.c On a vu plus haut que

$$c_{\theta_n+1} - c_{\theta_n} > 0 > c_{\theta_{n+1}-1} - c_{\theta_{n+1}-2}$$

c'est-à-dire

$$d_{\theta_{n+1}} > 0 > d_{\theta_{n+1}-1}$$

Ainsi (d_p) prend des valeurs positives et négatives sur U_n . Comme (d_p) est décroissante sur U_n , $(d_p) = (c_p - c_{p-1})$ sera d'abord positive puis négative. Ainsi (c_p) sera d'abord croissante puis décroissante.

19.d Remarquons que, par décroissance de (d_p) sur U_n

$$c_q - c_p = \sum_{k=p+1}^q d_k \ge (q-p)d_q$$

donc

$$\frac{c_q - c_p}{q - p} \ge d_q$$

De même,

$$c_r - c_q = \sum_{k=q+1}^r d_k \le (q-p)d_{q+1}$$

donc

$$\frac{c_r - c_q}{r - q} \le d_{q+1}$$

Or $d_{q+1} - d_q = \frac{c_q}{a} < 0$ car $\theta_n < q < \theta_{n+1}$. On en déduit que $d_{q+1} > d_q$ puis que

$$\frac{c_q - c_p}{q - p} > \frac{c_r - c_q}{r - q}$$

Ceci signifie que la suite (c_n) est strictement concave sur U_n .

19.e On prouverait de même que, pour n impair, (c_n) est décroissante puis croissante et qu'elle est strictement convexe.

20 20.a Par décroissance de (d_p) sur U_n ,

$$c_{\theta_n+h} - c_{\theta_n-1} = \sum_{k=\theta_n}^{\theta_n+h} d_k \le (h+1)d_{\theta_n}$$

Or $c_{\theta_n-1} < 0$ par définition de la suite (θ_n) donc

$$c_{\theta_n+h} \le (h+1)d_{\theta_n}$$

20.b D'après la question précédente, pour tout $k \in [0, h-1]$

$$\frac{c_{\theta_n+k}}{\theta_n+k} \le \frac{(k+1)d_{\theta_n}}{\theta_n+k} \le \frac{(k+1)d_{\theta_n}}{\theta_n}$$

On rappelle que $d_{p+1} - d_p = -\frac{c_p}{p}$ donc

$$d_{\theta_n+k} - d_{\theta_n+k+1} \le \frac{(k+1)d_{\theta_n}}{\theta_n}$$

Par télescopage,

$$\sum_{k=0}^{h-1} d_{\theta_n+k} - d_{\theta_n+k+1} \leq \sum_{k=0}^{h-1} \frac{(k+1)d_{\theta_n}}{\theta_n}$$

ou encore

$$d_{\theta_n} - d_{\theta_n + h} \le \frac{h(h+1)d_{\theta_n}}{\theta_n}$$

puis

$$d_{\theta_n+h} \geq d_{\theta_n} \left(1 - \frac{h(h+1)}{2\theta_n}\right)$$

20.c Puisque n est pair, les c_p pour $p \in U_n$ sont positifs. Ainsi $M_n = \max_{p \in U_n} c_p$. En particulier, $c_{\omega_n} \ge c_{\omega_n + 1}$ i.e. $d_{\omega_n + 1} \le 0$. En prenant $h = \omega_n + 1 - \theta_n$ dans l'inégalité précédente, on obtient

$$d_{\theta_n} \left(1 - \frac{(\omega_n + 1 - \theta_n)(\omega_n + 2 - \theta_n)}{2\theta_n} \right) \le d_{\omega_n + 1} \le 0$$

Comme $d_{\theta_n} \geq 0$,

$$1 - \frac{(\omega_n + 1 - \theta_n)(\omega_n + 2 - \theta_n)}{2\theta_n} \le 0$$

ou encore

$$2\theta_n \leq (\omega_n + 1 - \theta_n)(\omega_n + 2 - \theta_n) \leq (\omega_n + 2 - \theta_n)^2$$

On en déduit que

$$\omega_n \ge \theta_n + \sqrt{2\theta_n} - 2$$

20.d On constate que

$$\theta_{n+1} - \theta_n \ge \omega_n - \theta_n \ge \sqrt{2\theta_n} - 2$$

Comme (θ_n) est une suite strictement croissante d'entiers, elle diverge vers $+\infty$. Par minoration,

$$\lim_{n\to +\infty}\theta_{n+1}-\theta_n=+\infty$$