Rule 0.16 (Use Short-Circuiting for Conditional Expressions)

```
 \begin{bmatrix} [\dots] \\ \textbf{contract } A \ \{ \\ [\dots] \\ \textbf{function } f(pds) \ \{ \\ [\dots] \\ \textbf{temp} = expr_2; \\ \textbf{if } (expr_1 \ op \ temp) \ \{ \\ stmts \\ \} \\ stmts' \\ \} \\ [\dots] \\ \}
```

where

```
expr_1 is a less expensive boolean expression (cheap check);

expr_2 is a more expensive boolean expression (expensive check);

op is a short-circuiting logical operator (\land \land for AND or \lor \lor for OR);

temp is a temporary variable storing the result of expr_2;

pds are the parameter declarations of function f;

stmts and stmts' represent statement sequences.
```

provided

For $op = \land \land$: $expr_1$ should be the cheaper condition that fails early; For $op = \lor \lor$: $expr_1$ should be the cheaper condition that succeeds early; The expression $expr_2$ is only evaluated when necessary due to short-circuit evaluation; The expressions $expr_1$ and $expr_2$ have no side effects that affect each other; The order of evaluation does not affect the correctness of the program; $expr_2$ is more expensive (in gas) than $expr_1$.

Invariant:

Let s_i and s'_i be the initial state of A and A', respectively.

Let s_f and s'_f be the state reached by A and A', respectively, after A.f() and A'.f() are executed from s_i and s'_i , respectively.

Then, the coupling invariant is

$$\forall s_i, s_i' : (s_i = s_i') \rightarrow (s_f = s_f')$$