第4章 正则表达式

- 1. 正则运算与正则表达式
- 2. 正则表达式与FA的等价
- 3. 正则表达式代数定律
- 4. 正则表达式的应用

4. 1正则表达式与正则运算

	arithmetic	theory of computation
objects	numbers	languages
tools	+, ×	U, ·, *

Regular operations be used to:

- Design automata to recognize particular languages. (grep in Unix, Perl, text editors)
- Prove that certain other languages are nonregular.

Definition 4.1

Let A and B be languages. We define the regular

operations *union*, *concatenation*, and *star* as follows:

Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

Concatenation: A.B= $\{xy \mid x \in A \text{ and } y \in B\}$.

Star: $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ and each } x_i \in A\}.$

Theorem 4.1 The class of RL is closed under union operation.

其中: $q \in Q$, $a \in \sum_{\epsilon}$

Theorem 4.2 The class of RL is closed under concatenation operation.

Proof Idea:构造NFAN,N识别A1·A2

Theorem 4.2 The class of RL is closed under concatenation operation.

PROOF

Let N1 = $(Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \cdot A_2$.

- **1.** $Q = Q_1 \cup Q_2$. The states of N are all the states of N1 and N₂.
- **2.** The state q_1 is the same as the start state of N_1 .
- **3.** The accept states F_2 are the same as the accept states of N_2 .
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma \varepsilon$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 ext{ and } q
otin F_1 \ \delta_1(q,a) & q \in F_1 ext{ and } a
otin arepsilon \ \delta_1(q,a) \cup \{q_2\} & q \in F_1 ext{ and } a = oldsymbol{arepsilon} \ \delta_2(q,a) & q \in Q_2. \end{cases}$$

Theorem 4.3 The class of RL is closed under star operation.

Star: $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ and each } x_i \in A\}$

Proof Idea: Construction of N to recognize A*

- ho A* 可分解成若干个片段 $x_{i,j}$ 且 $x_{i} \in A$, 所以,接受状态应返回起始状态;
- A* 包含 ε , 所以, 起始状态起应该 是接受状态;
- ➤ 问题: N2识别A*吗?

Theorem 4.3 The class of RL is closed under star operation.

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

Construct N = $(Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

1.
$$Q = \{q_0\} \cup Q_1$$
.

The states of N are the states of N_1 plus a new start state.

- **2.** The state q_0 is the new start state.
- **3.** $F = \{q_0\} \cup F_1$.

The accept states are the old accept states plus the new start state.

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma \varepsilon$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

Definition 4.2

Given an alphabet Σ , R is a regular expression if

- 1. R = a, with $a \in \Sigma$; denoting the languages $\{a\}$.
- 2. $R = \varepsilon$; denoting the languages $\{\varepsilon\}$.
- 3. $R = \emptyset$; denoting the languages \emptyset .
- 4. $R = (R_1 + R_2)$, with R_1 and R_2 regular expressions; denoting the languages $L(R_1) \cup L(R_2)$.
- 5. $R = (R_1 \cdot R_2)$, with R_1 and R_2 regular expressions; denoting the languages L(R1) L(R2).
- 6. $R = (R_1^*)$, with R_1 a regular expression; denoting the languages $L(R_1)^*$.

Example 4.1 What is the language defined by $r = (a + b)^*(a + bb)$.

$$a \to \{a\}, b \to \{b\}$$

 $a+b \to \{a\} \cup \{b\} = \{a,b\}$
 $bb \to \{b\} \{b\} = \{bb\}$
 $a+bb \to \{a\} \cup \{bb\} = \{a,bb\}$
 $(a+b)^* \to \{a,b\}^*$
 $(a+b)^* (a+bb) \to \{a,b\}^* \{a,bb\}$
 $L(r) = \{a,bb,aa,abb,ba,bbb,......\}$

Example 4.2 What is the language defined by $r = (aa)^*(bb)^*b$

L(r) = ({ a } { a })* ({ b} {b}) * {b}
=({aa})*({bb})*{b}
= {aa}* {bb}*{b}
= {
$$a^{2n}b^{2m+1} | n \ge 0, m \ge 0$$
}

Example 4.3 Write a regular expression for the set of strings that consist of alternating 0's and 1's.

Partition:

$$010101...0101$$
 \longrightarrow $(01)^*$
 $101010...1010$ \longrightarrow $(10)^*$
 $0101010...1010$ \longrightarrow $0(10)^*$ or $(01)^*0$
 $101010...10101$ \longrightarrow $1 (01)^*$ or $(10)^*1$

The regular expression:

$$(01)^* + (10)^* + 0(10)^* + 1(01)^* = (\varepsilon + 1)(01)^* (\varepsilon + 0)$$

Example 4.4 Design regular expression for L, $L=\{w \mid w \in \{0, 1\}^* \text{ and } w \text{ has no pair of consecutive 0's } \}$.

```
Partition:

no 0 \longrightarrow 1*

one 0 \longrightarrow 1*01*

more 0's \longrightarrow (1* 011*)* (0+ \epsilon)
```

$$r1 = (1*011*)*(0+\epsilon)+1*(0+\epsilon)$$
 \cancel{x} $r2 = (1+01)*(0+\epsilon)$

思考题:

- 1. r1 = r2?
- 2. $L(r) = \{w \in \Sigma^* | w \text{ has at least one pair of consecutive zeros} \}$. R = ?

构造正则表达式的一般性规则

1. 语言只含一个字符串:字符串作为正则表达式。如:正则表达式00和11表示语言{00}和{11}。

2. 语言含多个字符串的连接得到的串:字符串的连接作为 正则表达式。

如:正则表达式00和11表示语言{00}和{11},那么,正则表达式0011表示语言{0011}。

3. 语言含零次或多次出现的串: 串的闭包作为正则表达式。如: 含01的零次或多次出现的串,正则表达式为(01)*。

构造正则表达式的一般性规则

4. 语言中的串有多种可能的形式: 用+运算符表达多种可能性(相当于语言的并)。

如: (01)*+(10)*+0(10)*+1(01)*。

5. 语言的串中含<u>可有、可无</u>的子串:用ε和该子串的并与串的其余部分连接。

如: (ε+1)(01)*(ε+0)

Example 4.5 In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

- 1. $0*10* = \{w | w \text{ contains a single } 1\}.$
- 2. $\Sigma^* 1 \Sigma^* = \{ w | w \text{ has at least one } 1 \}$.
- 3. $\Sigma^*001\Sigma^* = \{w | w \text{ contains the string } 001 \text{ as a substring} \}.$
- 4. $1*(01^+)* = \{w | \text{ every } 0 \text{ in } w \text{ is followed by at least one } 1\}.$
- 5. $(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length}\}.$
- 6. $(\Sigma\Sigma\Sigma)^* = \{w | \text{ the length of w is a multiple of 3} \}.$
- 7. $01 + 10 = \{01, 10\}.$

Example 4.5 (续)

- 8. $0\Sigma^*0 + 1\Sigma^*1 + 0 + 1 = \{w | w \text{ starts and ends with the same symbol}\}.$
- 9. $(0 + \varepsilon)1^* = 01^* \cup 1^*$.
- 10. $(0 + \varepsilon)(1 + \varepsilon) = \{\varepsilon, 0, 1, 01\}.$
- 11. $1*\emptyset = \emptyset$.
- 12. $\emptyset^* = \{ \epsilon \}.$
- 13. $R + \emptyset = R$.
- 14. $R \bullet \epsilon = R$.
- 15. $\mathbf{R} \bullet \mathbf{\emptyset} = \mathbf{\emptyset}$.

思考题: $\emptyset^* = ?$, $\emptyset^0 = ?$

4.2 正则表达式与FA的等价关系

FA & RE

Theorem 4. 4 A language is regular if and only if some regular expression describes it.

Lemma 4.5 If a language is described by a regular expression, then it is regular.

(正则表达式表示的语言是正则语言, RE⇒FA)

Lemma 4.6 If a language is regular, then it is described by a regular expression.

(正则语言可以用正则表达式表示, FA⇒RE)

Lemma 4.5 If a language is described by a regular expression, then it is regular.

(正则表达式表示的语言是正则语言, RE⇒FA)

Proof Idea:

NFA N recognizes L(N), L(N) is RL. (己知)

How to convert RE R to NFA N?

Proof1: Let's convert R to NFA N. We consider the six cases in the formal definition of regular expressions.

1. R = a for some $a \in \Sigma$. Then $L(R) = \{a\}$, and the following NFA recognizes L(R).

- Note that this machine fits the definition of an NFA but not that of a DFA.
- Formally, $N = \{ \{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\} \}$, where we describe δ By saying that $\delta(q_1,a) = \{q_2\}$ and that $\delta(r,b) = \phi$ for $r \neq q_1$ or $b \neq a$.

Proof1(续):

2. $R = \varepsilon$. Then $L(R) = \{\varepsilon\}$, and the following NFA recognizes L(R).

Formally, $N=\{\ \{q_{\scriptscriptstyle l}\}, \Sigma, \delta, q_{\scriptscriptstyle l}, \{q_{\scriptscriptstyle l}\}\ \}$, where $\delta(r,b)=\phi$ for any r and b.

3. $R = \emptyset$. Then $L(R) = \phi$, and the following NFA recognizes L(R).

Formally, $N = \{ \{q\}, \Sigma, \delta, q, \phi \}$, where $\delta(r,b) = \phi$ for any r and b.

Proof1 (续): Let's convert R into an NFA N. We consider the six cases in the formal definition of regular expressions.

- 4. $R = R_1 + R_2$
- 5. $R = R_1 . R_2$
- 6. $R = R_1^*$

We construct the NFA for R from the NFAs for R_1 and R_2 (or just R_1 in case 6) and the appropriate closure construction. THeorem4.1, 4.2, 4.3.

Example 4.6 将正则表达式(a+b)*aba转化为NFA。

Proof2:对正则表达式的运算符个数n进行归纳证明。

1. n=0, R是单个字母,如R=a,造自动机识别它

- 2. 设定理对n=k成立
- 3. n=k+1时,r有3种情况 r_1+r_2 , r_1 . r_2 , r_1^* 。对最后计算的一个符号分情况(连接,并,星)用定理(Theorem 4.1,4.2,4.3)即得。

Lemma 4.6 If a language is regular, then it is described by a regular expression.

(正则语言可以用正则表达式表示, FA⇒RE)

Proof Idea:

方法一: GNFA法

- ① RL有DFA M识别,把DFA转化成广义的GNFA。
- ② 把广义的GNFA转化成正则表达式 RE。

方法二: R_{ij}^{k} 迭代法

GNFA

Definition 4.3

A Generalized nondeterministic finite automaton(GNFA) is a

5-tuple(Q, Σ , δ , q_{start}, q_{accept}), where

- 1. Q is the finite states.
- 2. Σ is the input alphabet.
- 3. q_{start} is the start state.
- 4. q_{accept} is the accept state.
- 5. $\delta:(Q-\{q_{accept}\})\times(Q-\{q_{start}\}) \to \mathcal{R}$ is the transition function.
- \blacksquare \mathcal{R} is the set of regular expressions over Σ .
- $\delta(q_i, q_i)=R \Leftrightarrow \text{ from } q_i \text{ to } q_i \text{ has the RE R as the label, } R \in \mathcal{R}.$

A generalized nondeterministic finite automaton

GNFA的特点

- 1. The interior Q- $\{q_{accept}, q_{start}\}$ is fully connected by δ
- 2. From q_{start} only 'outgoing transitions'
- 3. To q_{accept} only 'ingoing transitions'
- 4. Impossible $q_i \rightarrow q_i$ transitions are " $\delta(q_i, q_i) = \emptyset$ "
- 5. $q_{accept} \neq q_{start}$

Observation: This GNFA recognizes the language L(R) $R \in \mathcal{R}$ $R \in \mathcal{R}$

- **GNFA与一般NFA的唯一区别**: GNFA的边推广为 **RE**(子自动机),而不是单个的字母或ε。
- 为了简洁易读,通常省略不可能的转移 $(q_i,q_i) = \emptyset$ 。

Proof Idea (given a DFA M):

减少状态(减少跳转标号), 扩大广义边(子程序)

- Construct an equivalent GNFA M' with k≥2 states
- 2. Reduce one-by-one the internal states until k=2 逐个等价地减少状态,把内部的正则表达式变大
- 3. This GNFA will be of the form

This regular expression R will be such that L(R) = L(M)

证明(方法一: GNFA法)

Let M have k states $Q = \{q_1, ..., q_k\}$

- 1. Add two states q_{accept} and q_{start} (加首尾)
 - Connect q_{start} to earlier q₁:
 - Connect old accepting states to q_{accept}

2. Complete missing transitions by Ø (补空边)

$$Q_i \xrightarrow{\emptyset} q_j$$

3. Join multiple transitions

 q_i becomes

(并标号)

4. Rip the internal states, one by one

- ① Removing state q_{rip}∈Q- {q_{start}} {q_{accept}}: Q'=Q {q_{rip}} 逐步减少内态
- ① Changing the transition function δ by $\delta'(q_i,q_j) = \delta(q_i,q_j) + \delta(q_i,q_{rip})(\delta(q_{rip},q_{rip}))^*\delta(q_{rip},q_j)$ for every $q_i \in Q'$ $\{q_{accept}\}$ and $q_i \in Q'$ $\{q_{start}\}$

5. If k > 2 goto 4, else return R

Example 4.7 Converting a two-state DFA to an equivalent regular expression.

证明(方法二)

设 DFA M($\{q_1,q_2,...,q_n\}$, \sum , δ , q_1 ,F) 接受语言 L,对M的状态进行了编号。在此基础上,引入记号 R_{ij}^k ,它是字符串的集合,定义如下:

 $R_{ij}^{k} = \{ x \mid \delta(q_i,x) = q_j, 且中间不经过编号大于k的状态,但i、j可以大于k,x <math>\in \Sigma^* \}$ 注意: x 是字符串

k的意义是: 对于x的一切非空真前缀y, $\delta(q_i,y) = q_m$,其中m≤k。

证明(方法二) 基本思想:引入R_{ii}的递归定义。

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1} (R_{kk}^{k-1}) R_{kj}^{k-1} + R_{ik}^{k-1} (R_{ik}^{k-1}) R_{ij}^{k-1}$$

R_{ii}k的递归定义如下:

- ① $R_{ij}^{0} = \{a \mid a \in \Sigma, \exists \delta(q_i, a) = q_j\}$ (i≠j) ② $R_{ij}^{0} = \{a \mid a \in \Sigma, \exists \delta(q_i, a) = q_j\} \cup \{\epsilon\}$ (i = j) ③ $R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}$ (k=1,2,...,n)

解释:

- ① k=0 & i ≠ j时,q_i到q_i只能一步到达,::a是单个字符;
- ② k=0 & i = j时,除了a外,还包括ε, ::对于任意状态q_i,都 有 δ (q_i, ε) = q_i。
- ③ R_{ii}k分两种情况讨论:见下一页。

③ R_{ii}^k分两种情况讨论(续)

Case 1: 若M从 q_i 出发,读字符串x,到达 q_j 的过程中,不经过编号大于k-1的任何状态,则x应在 R_{ij}^{k-1} 中,当然也在 R_{ii}^{k} 中,所以它应是 R_{ii}^{k} 的一部分;

Case 2: 若经过编号等于k的状态一次或多次,状态变化 序列如下,其中 "…"处出现的状态编号均小于k。

$$q_i \dots q_k \dots q_k \dots q_j$$

从 q_i ... 读过x的子串属于 R_{ik}^{k-1} , 从 q_k ... 读过的x的子串属于 $(R_{kk}^{k-1})^*$, 从最后一个 q_k 开始, q_k ... 读过的x的子串属于 R_{ki}^{k-1} 。因此,x应在 R_{ik}^{k-1} (R_{kk}^{k-1})* R_{ki}^{k-1} 中。

综合case1、2有: $R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1} (R_{kk}^{k-1}) * R_{kj}^{k-1}$

回到原点: Lemma 4.6 If a language is regular, then it is described by a regular expression. 即,已知DFA M识别语言L(M),如何证明语言L(M)

即,已知DFA M识别语言L(M),如何证明语言L(M)可用正则表达式描述?

$$L(M) = \bigcup_{q_f \in F} R_{1f}^n$$

L(M)就是DFA M识别的语言,其中 q_f 是可接受状态。问题:如何将L(M)用正则表达式表示呢?如果对于任意的 R_1r^n ,存在正则表达式 r_4r^n ,则即可。

证毕。

现证,对于任何R_{ii}k,存在正则表达式r_{ii}k 代表R_{ii}k。

归纳基础: k=0。 R_{ij}^{0} 是一个有穷集合,其中每个元素是 Σ 中的符号或 ε ,因此 r_{ij}^{0} 可以写成 $a_1+a_2+...+a_p$ ($i\neq j$)或 $a_1+a_2+...+a_p+\varepsilon$ (i=j)的形式。这里, $\{a_1,a_2,...,a_p\}$ 是使 $\delta(q_i,a)=q_i$ 的一切符号a的集合。

归纳步骤: 设对m<k的一切m,都已求出正则表达式 r_{ij}^m 代表 R_{ij}^m ,现在考虑m=k。根据 R_{ij}^k 递归定义,存在正则表达式 $r_{ij}^{k}=r_{ik}^{k-1} (r_{kk}^{k-1})*r_{kj}^{k-1}+r_{ij}^{k-1}$ 代表 R_{ij}^k 。

Example 4.8 给定一个**DFA M**,按照证明方法二 构造一个正则表达式代表**L(M)**。

1

分析:

- 1. 共3个状态, n=3; k=0, 1, 2, 3;
- 2. 根据递归公式求 r_{ij}^k ,其中k=0,1,2. (见下页)

$$r_{ij}^{k} = r_{ik}^{k-1} (r_{kk}^{k-1}) * r_{kj}^{k-1} + r_{ij}^{k-1}$$

3. 由状态图可知L(M) = $R_{12}^3 \cup R_{13}^3$,问题是求 $r_{12}^3 + r_{13}^3$ 代表L(M)。

	k=0	k=1	k=2
r_{11}^{k}	ε	ε	(00)*
r_{12}^{k}	0	0	0(00)*
r_{13}^{k}	1	1	0*1
r_{21}^{k}	0	0	0(00)*
r_{22}^{k}	ε	ε +00	(00)*
r_{23}^{k}	1	1+01	0*1
r_{31}^k	Ø	Ø	(0+1)(00)*0
r_{32}^k	0+1	0+1	(0+1)(00)*
r_{33}^k	ε	ε	ε+(0+1)0*1

$$r_{12}^3 = r_{12}^2 + r_{13}^2 (r_{33}^2) * r_{32}^2$$

 $r_{13}^3 = r_{13}^2 + r_{13}^2 (r_{33}^2) * r_{33}^2$
 $r = r_{12}^3 + r_{13}^3$
 $= \cdots$

主要目的:正则表达式的变换。

基本问题: 在定义相同语言的意义下, 两个表达

式等价。

基本思路: 类比算术代数, 比如: 加法交换律、

乘法分配律等

用途:正则表达式化简、变换、推算

1. 交换律与结合律

设L、M和N是正则表达式,则:

- ① L+M=M+L, 并的交换率
- ② (L+M)+N=L+(M+N),并的结合律
- ③ (LM)N = L(MN), 连接的结合律

2. 单位元与零元

单位元: 当运算符作用于单位元和某个其它值时,结果等于其他值。

零 元: 当运算符作用到零元和其它值时,结果是零元。

- ① $\phi + L = L + \phi = L$, ϕ 是并运算的单位元
- ② $\mathcal{E}\mathsf{L} = \mathsf{L}\mathcal{E} = \mathsf{L}$, \mathcal{E} 是连接运算的单位元
- ③ $\phi L = L\phi = \phi$, ϕ 是连接运算的零元

3. 分配律

$$L(M + N) = LM + LN$$
, 连接对于并的左分配律 $(M + N)L = ML + NL$, 连接对于并的右分配律

4. 幂等律

幂等:一个运算符作用到两个相同的参数值, 结果还是那个值。

5. 与闭包有关的定律

- ① (L*)* = L*, 表达式闭包的闭包, 不改变该语言
- ② $L(\Phi^*) = L(\mathcal{E}) = \{\mathcal{E}\}$, Φ 的闭包与 \mathcal{E} 等价,可以写 Φ^* = \mathcal{E}
- ③ $\mathcal{E}^* = \mathcal{E}$,多个空串连接,还是空串
- ④ L+ = LL* =L*L, L+表示1个或多个L
- (5) $L^* = L^{+} + \varepsilon$

4.4 正则表达式的应用

- UNIX中的正则表达式
- 词法分析
- 查找文本中的模式

参见:

- 霍普克罗夫特. 自动机理论、语言和计算导论:第3版[M]. 机械工业出版社,2008. p73-77
- 2. 陈火旺. 程序设计语言编译原理. 第3版[M]. 国防工业出版社, 2000. 第三章词法分析

Review

• Review:

- Language & Regular language
 - A language is a set of strings;
 - language is called a regular language if some finite automaton recognizes it.
- Regular Operations
 - Theorem 4.1,4.2, 4.2.
- Regular Expressions
 - The value of a Regular expression is a language.
 - Theorem 4.4 RL ↔ RE (describes it)
 - Lemma 4.5 If a language is described by a regular expression, then it is regular
 - Lemma 4.6 If a language is regular, then it is described by a regular expression.

Review

- RL: Regular Language
- RG: Regular Grammar
- RE: Regular Expression
- FA: Finite Automaton

