

ARHITEKTURA RAČUNALA 2

Nositelji:

Prof.dr.sc. Slobodan Ribarić

Prof.dr.sc. Siniša Šegvić

Doc.dr.sc. Tomislav Hrkać

Asistenti:

Branko Samaržija, dipl.inž

Marijo Maračić, dipl.inž.

Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave (ZEMRIS), 3. kat D zgrade

Uvodno predavanje

- · Sadržaj: što ćemo proučavati?
- Motivacija: zašto je to korisno znati?
- Kontekst: aktualni tehnološki trendovi
- O predmetu: način održavanja nastave, razdioba bodova, literatura, teme

Zašto koristimo računala?

Računalni sustav nekad (Eniac, 1943-1946, \$5e5)

Zašto koristimo računala? (2)

Računalni sustavi danas

Opseg proizvodnje elektroničkih uređaja

[Patterson09]

- Slika prikazuje milijune proizvedenih uređaja godišnje (svijet)
- Broj korištenih uređaja (2004): 2e9 TV-a, 1.8e9 mobitela, 8e8 PCja

Zastupljenost procesorskih arhitektura

[Patterson07]

Što je arhitektura računala?

- Veza između korisnika i logičkih komponenata (registara, zbrajala, ...) grozno komplicirana
- Moderni sustavi tu vezu izvode u više slojeva
- Arhitektura računala (IBM 360, 1964):
 - proučava hijerarhijsko organiziranje sklopovlja za obradu podataka na različitim razinama apstrakcije
 - cilj: postići optimalna svojstva primjenom dostupnih tehnologija
 - performansa (brzina izvođenja, fokus na višim programskim jezicima)
 - cijena
 - utrošak energije
 - · pouzdanost, raspoloživost, ...
- Arhitektura računala ne razmatra tzv. fizičko oblikovanje (tranzistore i bistabile oblikuju mikroelektroničari)

Razine apstrakcije u modernim sustavima

Λ					
A	O	Πŀ	(a	CI	ıa
				بالا	

Programski jezik

Operacijski sustav

Instrukcijski skup

Mikroarhitektura

(organizacija računala)

Oblikovanje podsustava

(sabirnice, memorija, registri, ...)

Sklopovi

Elementi

Fizika materijala

Arhitektura računala

Oblikovanje sklopovlja

Fokus kolegija!!

Analogija s građevinskom djelatnošću

- Arhitekti razmatraju komponente više razine (ALU, upravljanje, priručne memorije, ...), te kako ih posložiti u funkcionalnu cjelinu
- Izvedbeni inženjeri (mikroelektroničari)
 razvijaju građevne elemente (sklopove,
 tranzistore) i inoviraju tehnološke procese

Područja glavnog interesa kolegija

- Specifičnosti računala opće namjene
 - prijenosnici, radne stanice, poslužitelji
 - izvorni kod pisan u višem programskom jeziku
- Detalji organizacije procesora (µarhitektura)
- Iskorištavanje paralelizma
 - instrukcijski paralelizam (ILP)
 - vektorske instrukcije (SIMD)
 - višeprocesorska računala (MIMD)

Motivacija: zašto bi se studenti računarstva trebali upoznati s konceptima arhitekture računala?

- Steći osjećaj što definira svojstva računala
 - moći odabrati optimalnu konfiguraciju s obzirom na zahtjeve (performansa, cijena, potrošnja, dostupnost, pouzdanost)
- Biti sposoban optimirati program na standardnom procesoru
 - razumijevanje organizacije računala kritično za optimiranje performanse
 - porast brzine integriranih sklopova je usporen, dok tržište svejedno traži sve sofisticiraniju funkcionalnost
 - moderne arhitekture postaju sve složenije, formalna naobrazba važna
- Projektiranje složenih digitalnih sustava kao profesija (ne biste bili prvi FER-ovac koji sudjeluje u stvaranju vrhunskog sklopovlja)
- Ugrađene aplikacije obično zahtijevaju posebno dobro poznavanje arhitekture i organizacije računala

Koji su ciljevi kolegija?

- Upoznati termine i koncepte arhitekture i organizacije računala
- Razumjeti kako temeljni koncepti utječu na svojstva računala i performansu programa
- Naučiti čitati i evaluirati arhitektonske opise modernih računala
- Upoznati se s instrukcijskim skupovima procesora MC680x0, RISC i x86
- Biti sposoban oblikovati upotrebljivi procesor na razini logičkih vrata

Motivacijski primjer

- Quicksort, O(n log(n)), vs Radix sort, O(k n)
- teorijska složenost (gore) i vrijeme izvođenja (sredina)
- složeniji algoritam brži zbog veće lokalnosti radnog skupa (dolje: učestalost promašaja PM)!
- lijepa ilustracija razlike između matematike i računarstva

Tehnološki kontekst

- računala se (uglavnom) izvode na površini silicija (dominantna je tehnologija CMOS)
- logika se ostvaruje upravljivim sklopkama
- komunikacija preko vanjskih izvoda spora → trebamo što veću površinu integriranog sklopa
- komunikacija to brža što su sklopovi bliži → trebamo što sitnije tranzistore

Proizvodni proces (1)

Proizvodni proces (2)

- silicijski wafer d=20cm
- uz 100% prinos → 117
 čipova AMD Opteron X2
- konkretni proces u praksi postiže prinos od oko 85%
- prinos utječe na cijenu i tako ograničava veličinu integriranog sklopa
- → površina čipa je kompromis između perfomanse i cijene!

[Patterson07]

Proizvodni proces (3)

[Patterson07]

AMD Opteron Barcelona X4, fizički raspored, 285 mm²

Tehnološki trendovi (1970-2000):

- Gustoća tranzistora: 35% godišnje
- Površina sklopa: 10%-20% godišnje
- Broj tranzistora na sklopu: 40%-55%
 Moore: udvostručenje svake 2 godine
- Brzina tranzistora raste s korijenom gustoće (linearno s rezolucijom tehnologije)
- Kašnjenje signalnih linija slabo pada: važna lokalnost obrade u digitalnom sklopu
- "Višak" tranzistora stvara prilike za arhitekte: protočnost, cachevi, predviđanje grananja, šire sabirnice (8, 14, 32, 64), više jezgri, ...

Performansa uniprocesora

- zahvaljujući povoljnom tehnološkom okruženju, 1986-2002 zabilježen konstantni rast od oko 50% godišnje
 - povećanje broja tranzistora na sklopu
 - povećanje radnog takta
- dostupnost performanse potiče stvaranje novih aplikacija (npr, face whisperer!)
 - a nove aplikacije traže još performanse
 - performanse neće nikad biti dovoljno!
- međutim, u 21 stoljeću imamo porast performanse od samo 20% godišnje
- što se dogodilo?

Novi tehnološki trendovi (2000-):

- Tehnologija je dosegnula graničnu gustoću disipacije
 - problemi s hlađenjem, energijom, udaljenošću elemenata
 - kraj porasta radnog takta (veći takt ⇒ veća disipacija, 0.1W → 135W)
 - "=Power wall"
- Procesna moć i propusnost rastu (puno) brže od latencije
 - pristup glavnoj memoriji 25× sporiji od FP množenja
 - "=Memory wall"
- Usložnjavanje arhitekture donosi sve manje koristi
 - instrukcijski paralelizam (ILP) donosi sve manje prinose
 - protočnost, superskalarnost, izvođenje izvan redosljeda ...
 - tranzistora imamo više nego što ih možemo iskoristiti u uniprocesoru!
 - ("=ILP wall")
 - razvoj složenih sklopova u agresivnoj tehnologiji sve skuplji
 - kašnjenja i preslušavanje linija, sinkronizacija signala takta, ...

Kretanje disipacije procesora

[Patterson07]

Zašto performansa slabije raste?

- Promjena tehnološkog konteksta!
 - disipacija ograničava gustoću elemenata
 - instrukcijski paralelizam iscrpljen
 - sporo poboljšanje latencije memorije
 - power wall + ILP wall + memory wall = brick wall
- Kraj ere uniprocesora!
 - nitko nije proizveo uniprocesor opće namjene već godinama
- Inovacije: multicore, SMP, MPP, ...

Akutalni tehnološki kontekst

- svijet se mijenja: industrija navikla na ogromne prihode u velikom je strahu!
 - crni scenario (slika!): što ako ljudi počnu kupovati računala tek kad se pokvare?
 - sve nade usmjerene prema paralelizmu (teži problem od svih dosadašnjih!)
- postotak uspjeha tvrtki koje su se do sada bavile paralelizmom: 0%!

ambiciozni cilj industrije i istraživača:

- odustati od uniprocesorske performanse (!)
- rast postići udvostručenjem jezgara svake dvije godine (!!
- stvoriti povoljno ozračje prikladnim inovacijama (podrška za paralelno programiranje, ...)

Informacije o predmetu

- Službene stranice predmeta:
 - obavijesti, forum,
 - raspored i zadatci za laboratorij,
 - repozitorij datoteka
 - http://www.fer.hr/predmet/arhrac2
- Neslužbene stranice predmeta:
 - studentski projekti
 - zanimljivi članci
 - http://www.zemris.fer.hr/~ssegvic/ar2/

Kakvo predznanje očekujemo?

- Digitalna logika
- Arhitektura računala 1
- Programiranje i programsko inženjerstvo
- (Elektronika)

Predavanja

- Ponedjeljkom 11-14, B2 i B3
- Povremene kratke provjere znanja
- Materijali dostupni na stranicama predmeta nakon predavanja
- Nazočnost ne bismo provjeravali

Laboratorij

- Tijekom semestra održavaju se tri grupe laboratorijskih vježbi
 - mikroprogramiranje,
 - programiranje u zbirnom jeziku (MC68000, IA32),
 - utjecaj arhitekture na izvođenje programa u C-u
- Vježbe se pripremaju kod kuće te predaju u Ferku
 - rok za predaju je dan prije izvođenja vježbi
 - temeljem programa napisanih kod kuće ne dobivaju se bodovi
 - za pristup laboratoriju potrebno je predati barem 50% vježbe
 - moći će se nadoknaditi jedna vježba
 - uz ispričnicu ili najavu barem tjedan dana prije vježbe
 - termin u 3. ciklusu će biti pravovremeno oglašen
- Protokol vježbi u laboratoriju:
 - 20 minuta za slobodnu diskusiju s asistentima
 - 20 minuta za rješavanje praktičnog zadatka na računalu (1/3 bodova) (upotrebu mobitela i interneta ćemo na žalost morati zabraniti)
 - 20 minuta za rješavanje blica (10 zadataka, abcd, 2/3 bodova)
- Zadatci će biti zamrznuti tri tjedna prije termina odgovarajućih vježbi

Razdioba bodova

- Periodičke provjere znanja
 - ABCD pitalice ili kratke nadopune teksta
 - 5 bodova
- Izlazni testovi laboratorijskih vježbi
 - 15 bodova
- Međuispit i završni ispit
 - 35 i 45 bodova
- Projektni zadatci (?)

Detalji

- Ponovljeni međuispit: nema
- Ponovljeni završni ispit: nema
- Preduvjeti za izlazak na završni ispit: nema
- Klasični ispitni rok
 - nakon završnog ispita, preduvjet za izlazak je 50% laboratorija
- Usmeni dio ispita
 - prag za izlazak je 50% bodova do tada
 - · izlazak na usmeni ispit nije obavezan
- Pragovi su fiksni: 50 (2), 63 (3), 76 (4), 89 (5)

Literatura

- S. Ribarić, *Građa računala arhitektura i organizacija računarskih sustava*, Algebra, Zagreb, 2011
- S. Ribarić, *Arhitektura računala RISC i CISC*, Školska knjiga, Zagreb, 1996.
- J. L. Hennessy, D. A. Patterson, Computer Architecture, A Quantitative Approach, Morgan Kaufmann, 4th ed, 2006
- D. A. Patterson, J. L. Hennessy, Computer Organization & Design, The Hardware/Software Interface, Morgan Kaufmann, 4th ed, 2009.

Struktura kolegija

- 0. Uvodno predavanje
- 1. Klasična arhitektura računala
 - Von Neumannov model računala
 - Pojednostavnjeni model organizacije računala
 - Ožičena izvedba upravljačke jedinice
 - Mikroprogramirano upravljanje
 - Sučelje prema programskoj podršci:
 - · upravljački stogovi i iznimke
 - prevođenje, povezivanje i pokretanje programa

2. Moderna računala opće namjene

- Performansa računala, klasifikacija modernih arhitektura
- Instrukcijske arhitekture procesora (x86, tipični RISC)
- (međuispit)
- Put podataka protočnog procesora (arhitektura MIPS)
- Iskorištavanje instrukcijskog paralelizma
- Prirucna Memorija
- Virtualna Memorija
- Višejezgrene arhitekture
- SMT, NUMA