- № 1 (1.4 [Каргальцев)] Для любого числа $u \in \mathbb{C}$ определим множество $\mathbb{Z}[u] = \bigcup_{n=0}^{\infty} \{a_0 + a_1 u + \dots + a_n u^n | a_0, a_1, \dots, a_n \in \mathbb{Z}\}.$
 - ightharpoonup а) Докажите, что $\mathbb{Z}[u]$ является областью целостности.

То, что $\mathbb{Z}[u]$ кольцо проверяется непосредственно. Поскольку $\mathbb{Z}[u] \subset \mathbb{C}$ и \mathbb{C} — область целостности (*потому что* \mathbb{C} — *поле*), то и $\mathbb{Z}[u]$ область целостности.

б) При каких $u \in \mathbb{C}$ данное $\mathbb{Z}[u]$ "конечномерно над \mathbb{Z} ", то есть найдётся такое N, что $\mathbb{Z}[u] = \bigcup_{n=0}^{\infty} \{a_0 + a_1 u + \dots + a_n u^N | a_0, a_1, \dots, a_N \in \mathbb{Z}\}$?

Покажем, что $\mathbb{Z}[u]$ "конечномерно над \mathbb{Z} ", $\Leftrightarrow \exists f \in \mathbb{Z}[x] : f(u) = 0, f \neq 0$ и старший коэффициент f(x) равен 1 (*).

 \Rightarrow

Поскольку
$$u^{N+1} \in \mathbb{Z}[u] \Rightarrow \exists a_0, \dots, a_N \in \mathbb{Z} : u^{N+1} = \sum_{0}^N a_k u^k \Rightarrow u$$
 — корень $f(x) = x^{N+1} - \sum_{0}^N a_k x^k$

Пусть u — корень многочлена $f(x)=u^N+\sum\limits_0^N a_k x^k$, удовл. условию (*). Тогда u^N выражается через меньшие степени. $(u^N=-\sum\limits_0^{N-1}a_k u^k)$

Индукцией по $k\geqslant N$ легко показать, что u^k выражается через $1,u,\ldots u^{N-1}.$

$$(u^{k+1} = u \cdot u^k)^{\text{предположение индукции}} = u \cdot (\sum_{0}^{N-1} b_k u^k) = (\sum_{1}^{N-1} b_{k-1} u^k) + b_{N-1} u^N \stackrel{\text{база индукции}}{=} (\sum_{1}^{N-1} b_{k-1} u^k) + b_{N-1} \sum_{0}^{N-1} -a_k u^k$$

a) N(zw) = N(z)N(w).

Для каждого $z \in D$:

- б) Верно ли, что N(z) натуральное число?
- в) Верно ли, что $N(z)=1\Leftrightarrow z$ обратим?
- ▶ а) Просто проверим: $N(zw) = N(a_z + b_z i)(a_w + b_w i) = N(a_z a_w b_z b_w + (a_z b_w + a_w b_z)i) = (a_z a_w b_z b_w)^2 + (a_z b_w + b_z a_w)^2 =$ раскрыли скобки $= (a_z^2 + b_z^2)(a_w^2 + b_w^2) = N(z)N(w)$
 - б) Заметим, что $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$

Значит, $|a + bi| = a^2 + b^2 \in |N|$. Аналогично:

$$\mathbb{Z}[2i] = \{a + 2bi \mid a, b \in \mathbb{Z}\} \Rightarrow |a + 2bi| = a^2 + 4b^2 \in \mathbb{N}$$

$$\mathbb{Z}[\sqrt{2}i] = \{a + \sqrt{2}bi \mid a, b \in \mathbb{Z}\} \Rightarrow |a + \sqrt{2}bi| = a^2 + 2b^2 \in \mathbb{N}$$

$$\mathbb{Z}[\sqrt{3}i] = \{a + \sqrt{3}bi \mid a, b \in \mathbb{Z}\} \Rightarrow |a + \sqrt{3}bi| = a^2 + 3b^2 \in \mathbb{N}$$

 $_{\rm B})\Rightarrow$

$$N(z) = a^2 + b^2 = 1$$

 $\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} = \frac{a-bi}{1} = a-bi = \overline{z},$ а z и \overline{z} одновременно лежат в D, значит $\exists z^{-1} = \overline{z}.$

$$zz^{-1} = 1 \Rightarrow \begin{cases} N(zz^{-1}) = N(z)N(z^{-1}) = 1\\ N(z) = a^2 + b^2 \geqslant 1 \end{cases} \Rightarrow N(z) = 1$$

- **№** 3 Пример нефакториального кольца вида Z[u].
 - ▶ Пример: $\mathbb{Z}[2i]$ не является факториальным кольцом, потому что $4 = 2 \cdot 2 = (2i)(-2i)$, но при этом $2 \nsim 2i$ противоречие с единственностью разложения в факториальном кольце.

Еще пример: $\mathbb{Z}[\sqrt{3}i]$ (аналогичное рассуждение $4 = 2 \cdot 2 = (1 + \sqrt{3}i)(1 - \sqrt{3}i)$).

- № 4 (2.7 [Каргальцев)] Простой элемент области целостности является неразложимым.
 - ▶ Пусть p простой и $p = xy \Rightarrow x|p \land y|p$. Из определения простоты $p|x \lor p|y$. Но тогда или $x|p \land p|x$, или $y|p \land p|y$. Тогда $p \sim y \lor p \sim x \Rightarrow y \in K^* \lor x \in K^*$, то есть p неразложимый.
- № 5 (2.8) В факториальном кольце любой неразложимый элемент является простым.
 - lacktriangle Пусть x=ab неразложимый. $x=ab\Rightarrow x\,|\,ab.$

x неразложимый, значит б.о.о. $a \in K^*$. Тогда в силу единственности разложения $x = ab = ap_1 \dots p_k \Rightarrow x \sim b \Rightarrow x \mid b$.

- **№** 6 (часть 2.9 [Каргальцев)] K евклидово кольцо. Верно ли, что если для $a, b \neq 0$ выполнено равенство N(ab) = N(a), то b обратим?
 - ightharpoonup Поделим a с остатком на ab:

$$a = abq + r : r = 0 \lor N(r) < N(ab)$$

$$r = a(1 - bq)$$

Если r=0, то bq=1 и b обратим. Иначе $N(ab)>N(r)=N(a(1-bq))\geqslant N(a)=N(ab)$. Противоречие.

- № 7 (2.10) Геометрический способ доказательства того, что $\mathbb{Z}[i], \mathbb{Z}[\omega]$ евклидово кольцо.
- \blacktriangleright ВСТАВИТЬ КАРТИНКУ Пусть $a,b\in\mathbb{Z}[i].$ Поделим a на b с остатком:

a = pb + q.

Надо доказать, что если $q \neq 0$, то N(q) < N(b). Рассмотрим точку $\frac{a}{b}$, пусть ближайший к ней узел в решетке p, тогда $\frac{a}{b} = p + \frac{q}{b}$. Но $\frac{q}{b}$ по модулю меньше половины диагонали единичного квадрата $\left|\frac{q}{b}\right| \leqslant \left|\frac{\sqrt{2}}{2}\right| \leqslant 1$, т.е. $|q|^2 < |b|^2 \Rightarrow N(q) < N(b)$, если $\frac{q}{b}$ не совпадает с центром квадрата.

(TODO иначе)

 $\mathbb{Z}[\omega]$ аналогично.

9 (3.1) а) Если p – простое целое число и существует такое $z \in D$, что N(z) = p, то z — неразложимый элемент.

- б) Если p простое целое число и не существует такого $z \in D$, что N(z) = p, то p неразложимый элемент.
 - в) Если D факториальное кольцо, то для любого неразложимого элемента $z \in D$ либо N(z) = p, либо $z \sim p$ для некоторого целого простого числа p.
- lacktriangle а) Имеем: $z \in D$, N(z) = p. Пусть z = bc, тогда $N(z) = N(b)N(c) = p \Rightarrow N(b) = 1$ или N(c) = 1, т.е $b \in D^*$ или $E(c) = D^* \Rightarrow z$ неразложим (исп. задачу 2в)
 - б) Пусть p = bc. Тогда $N(p) = N(b)N(c) = p^2$. Два случая:
 - N(b) = N(c) = p невозможно по условию
 - N(a) = 1, $N(b) = p^2$ или $N(a) = p^2$, $N(b) = 1 \Rightarrow b \in D^*$ или $c \in D^*$ (исп. задачу 2в).
 - в) $N(z)=z\overline{z}=p_1^{k_1}\cdot\ldots\cdot p_m^{k_m}$ (в силу факториальности кольца). z неразложим \Rightarrow $\exists i\colon p_i\dot{:}z\Rightarrow zk=p_i$ $N(p_i)=p_i^2=N(z)N(k)\Rightarrow$ либо $N(z)=p_i\Rightarrow z$ неразложим, либо $N(z)=p_i^2\Rightarrow z\sim p_i$.
- № 10 (2.7 [Каргальцев)] Если $z \in D$, z|x, и N(z) = N(x), то $z \sim x$.
- ▶ Пусть x = yz. Тогда $N(yz) = N(z) \Rightarrow y$ обратим (по №6) и, значит, $x \sim z$.
- № 11 (3.3 [Каргальцев)] (Простые гауссовы числа) Пусть p простое целое число.
 - ▶ а) Если p = 4k + 3, то p неразложим в $\mathbb{Z}[i]$.

Если p разложим, тогда $p = z\overline{z} = Re^2z + Im^2z$. Но число, дающее остаток 3 при делении на 4 не быть представлено в виде суммы двух квадратов (квадраты дают остаток 1 при делении на 4).

б) Если p = 4k + 1, то p — разложим в $\mathbb{Z}[i]$.

Если p=4k+1, то -1 — вычет по модулю p, т. е $\exists x \in \mathbb{Z} : p|x^2+1 \Rightarrow p|(x+i)(x-i)$. Если p — неразложим, тогда p — прост и либо p|(x+i), либо p|(x-i).

• $p|(x+i) \Rightarrow x+i = p(c+di) \Rightarrow 1 = pd \Rightarrow p|1$ – плохо.

• $p|(x-i) \Rightarrow x-i = p(c+di) \Rightarrow -1 = pd \Rightarrow p \mid 1$ – плохо.

Значит, p разложим.

в) Если p=4k+1, то $p=z\overline{z}$, где z — неразложим в $\mathbb{Z}[i]$.

Следует из предыдущего пункта и пункта г) предыдущей задачи.

г) Неразложимые элементы $\mathbb{Z}[i]$, не описанные в предыдущих пунктах — $\pm 1 \pm i$.

Неразложимые элементы, не описанные в предыдущих задачах могут иметь норму или 2, или 4. Норму 4 имеет только 2 и ассоциированные с ней, но 2 = (1+i)(1-i).

С другой стороны, $N(\pm 1 \pm i) = 2$, то есть силу пункта в) предыдущей задачи $\pm 1 \pm i$ неразложимы.

№ 12 (3.10) Евклидово кольцо является кольцом главных идеалов.

▶ Пусть K – евклидово кольцо, $a \in K$, причем

$$N(a) = \min_{x \in K \setminus \{0\}} N(x)$$

Предположим, что $K \neq (a) \Rightarrow \exists b \in K \setminus (a) \Rightarrow b = aq + r$, где либо r = 0, либо N(r) < N(a).

- $r = 0 \Rightarrow b = aq \Rightarrow b \in (a)$ противоречие
- $N(r) < N(a) \Rightarrow r = b aq \in I$ противоречие с минимальностью нормы a.

№ 13 (3.13) Пусть $D = \mathbb{Z}[i]$ или $\mathbb{Z}[\omega]$.

- а) Верно ли, что из a|b следует, что N(a)|N(b)?
- б) Верно ли, что из HOД(N(a), N(b)) = 1, следует HOД(a, b) = 1?
- в) Пусть HOД(N(a), N(b)) = p простое целое число, причём $p \not| a, p \not| b$. Тогда p разложим, и если $p = z\overline{z}$, то либо z и \overline{z} порождает идеал (a, b), либо z делит одно из этих чисел, а \overline{z} другое.
- ▶ а) Верно. $a \mid b \Rightarrow b = ak \Rightarrow N(b) = N(a)N(k)$ (по свойству нормы в D) $\Rightarrow N(a) \mid N(b)$
 - б) HOД(N(a), N(b)) = p

Допустим, что $HOД(a,b) = k \notin D^*$.

Тогда a=kx, b=ky, и

$$\left. \begin{array}{l} N(a) = N(kx) = N(k)N(x) \\ N(b) = N(ky) = N(k)N(y) \end{array} \right\} \Rightarrow \text{HOД}(N(a), N(b)) \neq 1 \tag{1}$$

– противоречие. Значит, HOД(a, b) = 1.

в) HOД(N(a), N(b)) = p

Покажем, что p – разложим. $N(a) = a\overline{a} = pt, p \not| a, p$ – простое число \Rightarrow допустим, что p неразложима: $p \mid \overline{a}$ (по свойству факториального кольца). Тогда $\overline{a} = x - iy : p \Leftrightarrow x : p, y : p \Rightarrow a : p$ – противоречие $\Rightarrow p$ – разложим.

$$\begin{cases}
 a\overline{a} = z\overline{z}k \\
 b\overline{b} = z\overline{z}l
\end{cases} \Rightarrow
\begin{cases}
 a \vdots z \text{ if } b \vdots \overline{z} \\
 a \vdots \overline{z} \text{ if } b \vdots z \\
 a \vdots z \text{ if } b \vdots z
\end{cases} \tag{2}$$

В последнем случае идеал $(t)=(a,b)\subseteq(z,\overline{z})$ – очевидно. Докажем в обратную сторону, что $(z,\overline{z})\subseteq(a,b)$

 $z\overline{z} = a\overline{a}\xi + b\overline{b}\eta \dot{z}t$

№ 14 (3.14) Умение находить порождающий элемент идеала в кольце $\mathbb{Z}[i]$.

▶ Возможный вариант решения: найдем нормы двух чисел, потом найдем n — НОД этих норм. После этого переберем все числа, которые имеют норму n и проверим их на то, что они являются порождающим элементом. При этом искать можно только в первой четверти комплексной плоскости (т.к. найдя одно число, получаем сразу 4 поворотами на $\pi/2$). Если не один из них не подойдет, то проделаем то же самое со всеми делителями n в порядке уменьшения модуля, пока не дойдем до 1.

Рассмотрим пример:

3.14. Найти порождающий элемент (11+7i,18-i) в $\mathbb{Z}[i]$. *Решение*. Заметим, что $\mathbb{Z}[i]$ – евклидово кольцо, значит, оно является $\mathrm{K}\Gamma\mathrm{M}\Rightarrow$ все идеалы главные \Rightarrow идеал (11+7i,18-i) порождается одним элементом (t). Найдем этот элемент.

$$N(11 + 7i) = 170$$

$$N(18 - i) = 325$$

$$HOД(170, 325) = 5.$$

Перебором выясняем, что в первой четверти числу с нормой 5 соответствуют два числа: 1+2i и 2+i.

Заметим, что 1+2i не может быть порождающим элементом:

$$\frac{18-i}{1+2i} = \frac{(18-i)(1-2i)}{(1+2i)(1-2i)} = \dots = \frac{16}{5} - \frac{37}{5}i \notin \mathbb{Z}[i]$$

C 2 + i тоже плохо:

$$\frac{11+7i}{2+i} = \frac{29}{5} + \frac{3}{5}i \notin \mathbb{Z}[i].$$

Следовательно, среди чисел с нормой 5 нет $HOД(a,b) \Rightarrow$ его норма $1 \Rightarrow (11+7i,18-i)=(1)$.

№ 15 Пусть $I \subset K$ является подмножеством, для которого выполнено следующее условие: для любых $a \in K, x \in I$, $y \in I$ верно, что $x + y \in I$, $ax \in I$. Верно ли что это условие равносильно тому, что I — идеал?

▶ ⇒:

В предположении, что I непусто:

- 1. $(I, +) \subset (K, +)$ подгруппа по сложению.
 - Замкнутость по сложению дана по условию.
 - Нейтральный по сложению лежит в I: действительно, возьмем произвольный $x \in I$ и $a = 0 \in K$: тогда $0 = ax \in I$.
 - Обратный по сложению лежит в I: т.к. $-1 \in K$, то $\forall x \in I : -x = (-1) \cdot x \in I$.
- 2. $\forall a \in K, x \in I : ax \in I$ дано по условию.

=:

- 1. $\forall x \in I, y \in I : x + y \in I$ выполнено, т.к. идеал подгруппа по сложению.
- 2. $\forall a \in K, x \in I : ax \in I$ выполнено по определению идеала.
- № 16 (3.17) а) Идеал (x,y) кольца $\mathbb{Q}[x,y]$ конечно порождён, но не является главным.
 - б) Приведите пример области целостности K и идеала I, который не конечно порождён.
 - ▶ a) (x, y) конечно порожден по определению.

Предположим, что (x,y) — главный. Тогда $\exists f(x,y): (x,y)=(f(x,y)).$

T.K. x : f(x,y), y : f(x,y), to deg $f \le 1$.

Если $\deg f(x,y)=0$, то $f(x,y)\in\mathbb{Q}$: при f(x,y)=0 (f(x,y))=0, при $f(x,y)\neq0$ $(f(x,y))=\mathbb{Q}[x,y]$. Оба случая нам не подходят.

Если $\deg f(x,y) = 1$, то $\exists a, b \in \mathbb{Q}^* : f(x,y) = ax = by$, откуда $x = a^{-1}by$, что тоже неверно.

б)
$$K = \mathbb{Q}[x_1, x_2, \ldots x_n, \ldots]$$

$$I = (x_1, x_2, \ldots, x_n, \ldots)$$

Предположим, I конечно-порожден, т.е $\exists f_1, \ldots, f_t \in K: I = (f_1, \ldots, f_t)$. f_i можно представить в виде $x_1g_i^1 + \ldots + x_{N_i}g_i^{N_i}$ для некоторого $N_i \in \mathbb{N}$, т.к. f_i лежит в идеале $(x_1, \ldots, x_n, \ldots)$. Положим $N = \max\{N_1, \ldots, N_t\}$, тогда $f_i = x_1g_i^1 + \ldots + x_Ng_i^N$.

Т.к. $x_{N+1} \in I = (f_1, \ldots, f_t)$, то $\exists a_1, \ldots a_t : x_{N+1} = a_1 f_1 + \ldots a_t f_t$. Приравнивая $x_1 = \ldots = x_N = 0$ — на них все f_1, \ldots, f_t равны 0 — и $x_{N+1} = 1$, приходим к противоречию.

- № 17 (4.3) Умение находить факторкольца.
- **№** 18 (4.8) Пусть $J \subset I \subset K$ цепочка вложенных идеалов в кольце K. Тогда кольцо (K/J)/(I/J) изоморфно K/I.
 - ▶ Рассмотрим гомоморфизм $\varphi: K/J \to K/I, x+J \mapsto x+I.$

Гомоморфизм корректен, т.к. независимо от выбора представителя x получим одно и то же: $x+J=y+J\Rightarrow x-y\in J\Rightarrow x-y\in I\Rightarrow x+I=y+I.$

 φ — сюръекция, т.к. $\forall a+I \in K/I: \exists x=a: \varphi(a)=a+I.$

Значит, по теореме о гомоморфизме: $(K/J)/\ker \varphi \cong K/I$.

Т.к. $\ker \varphi = \{x+J: x+I=I\} = \{x+J: x\in I\} = I/J$, то $(K/I)/(I/J)\cong I/J$, ч.т.д..

- № 19 (4.9) В кольце главных идеалов любой простой идеал максимален.
- ▶ Пусть (p) простой идеал в КГИ K. Пусть I идеал в K: $(p) \subset I \subset K$.

I — порожден одним элементом $\Rightarrow I = (x) \Rightarrow p$: x по задаче 15a) на 3-4.

Т.к. (p) — простой идеал, то p — простой элемент (по задаче 20 на 3-4) $\Rightarrow x \sim p$ или $x \in K^*$.

Если $x \sim p \Rightarrow I = (x) = (p)$. Если $x \in K^* \Rightarrow I = (x) = K$.

Таким образом, $\nexists I:(p) \subsetneq I \subsetneq K \Rightarrow (p)$ — максимален.

- № 20 (4.10) Умение находить максимальные и простые идеалы.
 - ▶ Для решения таких задач необходимы следующие теоремы:
 - В факториальном кольце из неразложимости элемента следует его простота.
 - В области целостности, $\forall p \neq 0$: (p) простой идеал \Leftrightarrow р простой элемент

Пусть K - коммутативное кольцо, а I - идеал.

- ullet К/I область целостности \Leftrightarrow I простой идеал
- ullet К/I поле \Leftrightarrow идеал I максимален \Leftrightarrow в К/I нет нетривиальных идеалов
- Любой максимальный идеал прост
- В КГИ простой идеал является максимальным.
- **№ 21 (5.3)** а)Верно ли, что $Quot(Quot(K)) \cong Quot(K)$?

б)Пусть $K \subset L \subset Quot(K)$ верно ли, что $Quot(K) \cong Quot(L)$?

ightharpoonup а) Пусть L - поле. Тогда $Quot(L)\cong L$.

Изоморфизм $\varphi: L \leftrightarrow Quot(L)$ выглядит как $\varphi: (a*b^{-1}) \leftrightarrow \frac{a}{b}$, где $\frac{a}{b} \in Quot(L)$.

Quot(K) - поле. Тогда, в частности, $Quot(Quot(K)) \cong Quot(K)$.

- 6) $K \subset L \subset Quot(K) \Rightarrow Quot(K) \subset Quot(L) \subset Quot(Quot(K)) \cong Quot(K) \Rightarrow Quot(K) \cong Quot(L)$
- **№ 22 (5.4)** Является ли кольцо $\mathbb{Z}[x]$ евклидовым?
 - ▶ В $\mathbb{Z}[x]$ (и в $\mathbb{Z}_6[x]$, например) идеал $(2x, x^2)$ не является главным. Из евклидовости кольца следует, что оно является кольцом главных идеалов. Значит, из того, что кольцо не является кольцом главных идеалов следует, что оно не является евклидовым кольцом. \blacktriangleleft

- **№ 23 (5.5)** Какие многочлены степени 0:
 - а) неприводимы в $\mathbb{Z}[x]$
 - б) являются простыми элементами в $\mathbb{Z}[x]$
 - ▶ Многочлены степени 0 в $\mathbb{Z}[x]$ это $\mathbb{Z} \subset \mathbb{Z}[x]$.
 - а) Составные числа являются приводимыми элементами $\mathbb{Z}[x]$ (по определению).

Простые числа - неприводимы: $p \in \mathbb{Z} \subset \mathbb{Z}[x] \Rightarrow p = fg \Rightarrow (deg(f) \leq 0, deg(g) \leq 0) \Rightarrow deg(f) = deg(g) = 0 \Rightarrow f \in \mathbb{Z}, g \in \mathbb{Z} \Rightarrow (f \in \mathbb{Z}^*) \lor (g \in \mathbb{Z}^*) \Rightarrow$ многочлен a неприводим.

б) Составные числа не являются простыми элементами $\mathbb{Z}[x]$. Рассмотрим ab = x|x = ab, где |a| > 1, |b| > 1. Ясно, что $(ab \not|a) \wedge (ab \not|b)$ в \mathbb{Z} и в $\mathbb{Z}[x]$. Тогда это не простой элемент $\mathbb{Z}[x]$.

Простые числа являются простыми элементами $\mathbb{Z}[x]$: пусть f(x)g(x):p, но $(f(x)\not|p) \wedge (g(x)\not|p)$. Тогда хотя бы один коэффициент у каждого многочлена не делится на p. Тогда пусть $f(x) = \sum f_k x^k, g(x) = \sum g_k x^k; f(x)g(x) = \sum f_k x^k$

 $\sum a_k x^k; i = max(i|f_i \not p), j = max(j|g_j \not p) \Rightarrow a_{i+j} = (f_{i+j}g_0 + f_{i+j-1}g_1 + ... + f_ig_j + ... + f_0g_{i+j})$ Заметим, что в этой сумме все слагаемые, кроме f_ig_j делятся на p т.к. по выбору i и j, один из коэффициентов имеет номер больший

максимального, не делящегося. Следовательно, $a_{i+j} \not| p \Rightarrow f(x)g(x) \not| p$. Получено противоречие с делимостью. \blacktriangleleft

- lacktriangledown 24 (5.6) а) Примитивный многочлен $f\in\mathbb{Z}[x]$ ненулевой степени: неприводим в $\mathbb{Z}[x]$ \Leftrightarrow неприводим в $\mathbb{Q}[x]$
 - б)Произведение примитивных многочленов примитивно
 - в) Примитивный неприводимый многочлен в $f \in \mathbb{Z}[x]$ - простой элемент кольца
 - \blacktriangleright Определим содержание c(f) многочлена f как НОД коэффициентов многочлена.

Таким образом, многочлен f примитивен $\Leftrightarrow c(f) = 1$

Лемма Гаусса: $\forall f,g \in \mathbb{Q}[x]: c(fg) = c(f) \cdot c(g)$. Она доказывается с использованием утверждения 23.

 $\mathbf{a},\Rightarrow)$ $f\in\mathbb{Q}[x]$ неприводим \Rightarrow $f\in\mathbb{Z}[x](\subset\mathbb{Q}[x])$ неприводим. (Если есть приведение f=gh в $\mathbb{Z}[x]$, то оно есть и в $\mathbb{Q}[x]$)

- а, \Leftarrow) пусть f=gh приведение в $\mathbb{Q}[x]$. $f=\frac{A}{B}\overline{g}\frac{C}{B}\overline{h}$, где A,C наибольшие общие делители коэффициентов многочленов g и h соответственно. B,D общий знаменатель коэффициентов. Таким образом, \overline{g} и \overline{h} примитивные. $\Rightarrow f=\frac{AC}{BD}\overline{g}\overline{h}, BDf=AC\overline{g}\overline{h}\Rightarrow c(BDf)=c(BD)\cdot 1=c(AC\overline{g}\overline{h})=c(AC)\cdot 1\cdot 1\Rightarrow AC=BD\cdot u$ и $u\in\mathbb{Z}^*\Rightarrow\overline{f}=u\overline{g}\overline{h}$ в $\mathbb{Z}[x]$ \Rightarrow таким образом, из приводимости в $\mathbb{Q}[x]$, следует приводимость в $\mathbb{Z}[x]$, следовательно, из неприводимости в $\mathbb{Z}[x]$ следует неприводимость в $\mathbb{Q}[x]$
- б) произведение примитивных примитивно Пусть $f = c(f)f_1$, $g = c(g)g_1$. Тогда f_1 и g_1 примитивны. $\Rightarrow fg = c(f) \cdot c(g) \cdot f_1 \cdot g_1 = c(f)c(g)f_1g_1$. Пусть простое число р делит fg. Тогда по утверждению в том, что простые в $\mathbb Z$ являются простыми в $\mathbb Z[x]$ имеем $p|f \lor p|g$. Но они примитивны \Rightarrow противоречие.
- в) $\mathbb{Q}[x]$ факториально \Rightarrow из неприводимости следует простота

 $\rho(x)h(x)$: f(x) в $\mathbb{Z}[x]$ \Rightarrow без ограничения общности $f(x)|\rho(x)$ в $\mathbb{Q}[x]$ \Rightarrow $f(x)l(x) = \rho(x)$ в $\mathbb{Q}[x]$

 $f(x) \frac{A}{B} \overline{l(x)} = \rho(x), \ f(x) \frac{A}{B} \overline{l(x)} = \underline{c(\rho)} \overline{\rho(x)} \Rightarrow Af(x) \overline{l(x)} = Bc(\rho) \overline{\rho(x)} \Rightarrow A \sim Bc(\rho)$ по лемме Гаусса $\Rightarrow A \cdot u = B \cdot c(\rho), u \in \mathbb{Z}[x]^* \Rightarrow f(x) \overline{l(x)} = u \overline{\rho(x)} \Rightarrow f(x) \overline{\rho(x)}$ в $\mathbb{Z}[x]$, т.е. получена простота в $\mathbb{Z}[x]$ из простоты в $\mathbb{Q}[x]$

№ 25 [Каргальцев] Докажите, что в кольце главных идеалов любая возрастающая цепочка идеалов

$$(a_1) \subset (a_2) \subset \ldots \subset (a_n) \subset \ldots$$

стабилизируется, то есть найдется такое k, то $(a_k) = (a_{k+1}) = \dots$

▶ Поскольку $(a_i) \subset (a_{i+1}) \Rightarrow a_{i+1}|a_i$.

Возьмем $I = \bigcup_{k=1}^{\infty} (a_k)$. покажем, что I – идеал. Пусть $a \in I, b \in I \Rightarrow \exists k_1, k_2 : a \in (a_{k_1}), b \in (a_{k_2})$. Тогда положим $k = max(k_1, k_2)$. $a, b \in (a_k) \Rightarrow (a+b) \in (a_k)((a_k)$ — идеал) $\Rightarrow (a+b) \in I$. Аналогично $\forall x \in Kxa \in (a_k) \Rightarrow xa \in I$.

Поскольку $K - \mathrm{K}\Gamma\mathrm{U}$, то существует x: I = (x). $x \in I \Rightarrow \exists k: x \in (a_k)$. Но $a_k \in (x)$. Тогда $x | a_k \wedge a_k | x \Rightarrow x \sim a_k$. Но в силу вложенности это верно и для всех j > k, то есть $\forall j \geqslant k a_j \sim a_k \Rightarrow (a_j) = (a_k)$. То есть цепочка действительно стабилизируется.

№ 26 (4.8) В КГИ из простоты идеала следует его максимальность

▶ Простота идеала: $\forall ab \in I \rightarrow ((a \in I) \lor (b \in I))$

От противного: пусть $I \subset J \subset K$, где I = (p) - простой идеал над кольцом K. Тогда $p \in I \subset J = (x) \Rightarrow p \in J$. КГИ является факториальным кольцом (вопрос 6 на 7-8), следовательно: (p) - простой идеал \Leftrightarrow р - простой элемент (задача 20 на 3-4). Тогда $x \sim p$ или $x \in K^*$ (из p = kx). Тогда:

- $x \sim p \Rightarrow I = J$
- $x \in K^* \Rightarrow J = (x) = (1) = K$

№ 27 Любой максимальный идеал прост

▶ Теорема 1 (вопрос 21 (4.6) на 3-4): K/I - поле \Leftrightarrow нетривиальный идеал I - максимален \Leftrightarrow K/I не имеет нетривиальных идеалов

Теорема 2 (вопрос 22 (4.7) на 3-4): K/I - область целостности $\Leftrightarrow I$ - прост

Поле является областью целостности ($ab=0\Rightarrow a=0*b^{-1}=0$ или b=0). Тогда получим: I - максимален \Rightarrow K/I - поле \Rightarrow I - прост

ightharpoonup 28 Признак неприводимости Эйзенштейна для простого идеала I и факториального кольца K

- ▶ Формулировка: Пусть K факториальное кольцо, $I \subset K$ простой идеал, $f(x) = \sum_{k=0}^n a_k x^k \in K[x]$ многочлен степени $n \ge 1$. Пусть $a_0...a_{n-1} \in I$, $a_0 \not\in I^2$, $a_n \not\in I$. Тогда у f(x) нет делителей степени d при $1 \le d \le n-1$
 - Доказательство (с консультации) повторяет доказательство признака Эйзенштейна для многочленов с целыми коэффициентами: пусть $f(x) = g(x)h(x), 0 < deg(g(x)) < n, 0 < deg(h(x)) < n, g(x) \in K[x], h(x) \in K[x].$

 $g(x) = \sum_{k=0}^{\deg(g(x))} g_k x^k, \ h(x) = \sum_{k=0}^{\deg(h(x))} h_k x^k.$ По условию $a_0 = g_0 h_0 \not\in I^2 \Rightarrow (g_0 \not\in I) \lor (h_0 \not\in I)$. Без ограничения общности $g_0 \not\in I$ и $h_0 \in I$. Пусть $h_0...h_k \in I, h_{k+1} \not\in I$. Рассмотрим коэффициент при x^{k+1} : $a_{k+1} = g_0 h_{k+1} + g_1 h_k + ... + g_{k+1} h_0$. По предположению все слагаемые, кроме первого, лежат в I, а $g_0 h_{k+1}$ не лежит. Но тогда $a_{k+1} \not\in I \Rightarrow k+1 = n \Rightarrow \deg(h(x)) \ge k+1 = n$. Получено противоречие со степенью многочлена h(x).

№ ?? (?.?)

№ ?? [Каргальцев]

▶ а) Если z — неразложимый элемент D, то существует такое простое целое число p, что N(z) = p или $N(z) = p^2$ $N(z) = z\overline{z}$. Разложим N(z) в произведение простых как натуральное число:

$$z\overline{z} = N(z) = p_1^{\alpha_1} \cdot \ldots \cdot p_n^{\alpha_n}.$$

Так как z неразложим, а D — евклидово, то z — прост, значит $\exists k : z | p_k$.

 $p_k=zu\Rightarrow p_k=\overline{p_k}=\overline{zu}\Rightarrow \overline{z}|p_k\Rightarrow N(z)|p_k^2\Rightarrow N(z)=1,$ или p_k^2 . Но так как если N(z)=1, то z — обратим (а, следовательно, неразложим), то $(z)=p_k\vee N(z)=p_k^2$.

б) Если z — неразложимый элемент D и $N(z)=p^2$, то $z\sim p$.

Пусть $\overline{z} = ab \Rightarrow z = \overline{a}\overline{b} \Rightarrow \overline{z}$ — неразложим.

 $z\overline{z} = N(z) = p \cdot p$. В силу единственности разложения на неразложимые, $z \sim p$.

в) Если N(z) = p, то z — неразложимый элемент D.

в $Da|b \Rightarrow N(a)|N(b)$.

Пусть $a|z\Rightarrow N(a)|N(z)$. В силу простоты N(z) либо N(a)=1 и, следовательно, a — обратимый, либо N(a)=N(z) и тогда $a\sim z$. То есть z неразложим.

г) Пусть p — простое целое число. Тогда есть два варианта: либо p неразложимо в D, либо $p=z\overline{z}$, где z — неразложимо в D. Таким образом описываются все неразложимые элементы D.

Пусть p разложимо в D. Тогда найдется такой неразложимый z:z|p. Поскольку z не ассоциирован с p, $N(z) \neq N(p) \Rightarrow N(z) = p$. Тогда z – неразложимый и $z\overline{z} = N(z) = p$.

Любой неразложимый элемент D — либо простое целое число, либо его норма — простое целое число.