Assignment 3

AI22MTECH02003 - Shrey Satapara

February 18, 2022

Q 51 (June 2018) Consider a Markov Chain having state space S = 1, 2, 3, 4with a transation probability matrix $P = (p_{i,j})$ given by

Then

1.
$$\lim_{n\to\infty} p_{2,2}^{(n)} = 0$$
, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} = \infty$

2.
$$\lim_{n\to\infty} p_{2,2}^{(n)} = 0, \qquad \sum_{n=0}^{\infty} p_{2,2}^{(n)} < \infty$$

1.
$$\lim_{n\to\infty} p_{2,2}^{(n)} = 0$$
, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} = \infty$
2. $\lim_{n\to\infty} p_{2,2}^{(n)} = 0$, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} < \infty$
3. $\lim_{n\to\infty} p_{2,2}^{(n)} = 1$, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} = \infty$
4. $\lim_{n\to\infty} p_{2,2}^{(n)} = 1$, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} < \infty$

4.
$$\lim_{n\to\infty} p_{2,2}^{(n)} = 1, \qquad \sum_{n=0}^{\infty} p_{2,2}^{(n)} < \infty$$

Solution A markov chain having state space S = 1, 2, 3, 4 and transation probablity matrix $P = (p_{i,j})$ is

$$\mathbf{P} = \begin{array}{c|cccc} 1 & 2 & 3 & 4 \\ 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 2 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 4 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{array} \right|$$

Limiting Probabilities: $\lim_{n\to\infty} p_{i,j}^{(n)}$ is a probability of coming to j from i in n steps, where $n \to \infty$.

Let's look at state transition diagram

By looking at state 2 in above diagram we can say that it is a transient state. and

$$p_{2,2}^{(1)} = \frac{1}{4}$$

$$p_{2,2}^{(2)} = \frac{1}{4} * \frac{1}{4} = \left(\frac{1}{4}\right)^2$$

$$p_{2,2}^{(3)} = \left(\frac{1}{4}\right)^3$$

and so on. For $n \to \infty$

$$p_{2,2}^{(n)} = \left(\frac{1}{4}\right)^n$$

$$= \left(\frac{1}{4}\right)^{\infty}$$

$$= 0$$
(1)

Hence, $\lim_{n\to\infty} p_{2,2}^{(n)} = 0$

Now for second part $\sum_{n=0}^{\infty} p_{2,2}^{(n)}$

$$\sum_{n=0}^{\infty} p_{2,2}^{(n)} = p_{2,2}^{(1)} + p_{2,2}^{(2)} + p_{2,2}^{(3)} + \dots$$

$$= \left(\frac{1}{4}\right) + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^3 + \dots$$

$$= \frac{\frac{1}{4}}{1 - \frac{1}{4}}$$

$$= \frac{\frac{1}{4}}{\frac{3}{4}}$$

$$= \frac{1}{3}$$

$$= \frac{1}{3}$$
(2)

Means, $\sum_{n=0}^{\infty} p_{2,2}^{(n)} = \frac{1}{3} < \infty$ Here we have $\lim_{n \to \infty} p_{2,2}^{(n)} = 0$ and $\sum_{n=0}^{\infty} p_{2,2}^{(n)} = \frac{1}{3} < \infty$

Hence, Option 2 is the correct answer