A Survey of Partially Ordered Algebras

Peter Jipsen and Bianca Newell

 $\verb|jipsen@chapman.edu|, bnewell@chapman.edu|$

DRAFT version:

math.chapman.edu/~jipsen/Survey-of-po-algebras-DRAFT.pdf

VERSION 0.3, 2021 NOVEMBER 14, CHAPMAN UNIVERSITY

Contents

Chapt	er 1. Introduction	14
Dis	claimer: This project is currently in a DRAFT stage. For some classes of algebras it may contain	
	incomplete and/or incorrect information. In particular, the introduction needs to be	
	(re)written.	14
1.	Universal algebra and category theory	16
1.1.	Algebras and subalgebras	16
1.2.	Homomorphisms and isomorphisms	16
1.3.	Products and HSP	16
1.4.	Term algebras and equational classes	17
1.5.	Varieties and equational logic	17
1.6.		17
1.7.	Homomorphic images and quotient algebras	17
1.8.	Subdirectly irreducible algebras	18
2.	Partially-ordered universal algebra	18
2.1.		18
2.2.	Products and HSP	19
3.	Definitions of properties	19
4.	Comments, questions and open problems	21
5.	Naming of classes	22
Chapt	er 2. Partially ordered algebras	24
1.	Pos: Partially ordered sets	24
2.	pPos: Pointed posets	25
3.	PoUn: Partially ordered unars	26
4.	PoNUn: Partially ordered negated unars	26
5.	PoMag: Partially ordered magmas	27
6.	PoSgrp: Partially ordered semigroups	27
7.	PoMon: Partially ordered monoids	28
8.	IPoMon: Integral partially ordered monoids	29
9.	IdPoSgrp: Idempotent partially ordered semigroups	29
10.	IdPoMon: Idempotent partially ordered monoids	30
11.	PoImpA: Partially ordered implication algebras	30
12.	LrPoMag: Left-residuated partially ordered magmas	31
13.	LrPoSgrp: Left-residuated partially ordered semigroups	31
14.	LrPoMon: Left-residuated partially ordered monoids	32
15.	Polrim: Partially ordered left-residuated integral monoids	32
16.	IdLrPoSgrp: Idempotent left-residuated partially ordered semigroups	33
17.	IdLrPoMon: Idempotent left-residuated partially ordered monoids	33
18.	RPoUn: Residuated partially ordered unars	34
19.	DivPos: Division posets	34
20.	RPoMag: Residuated partially ordered magmas	35
21.	RPoSgrp: Residuated partially ordered semigroups	35
22.	RPoMon: Residuated partially ordered monoids	36
23.	Porim: Partially ordered residuated integral monoids	37
24.	IdRPoSgrp: Idempotent residuated partially ordered semigroups	37

25.	IdRPoMon: Idempotent residuated partially ordered monoids	38
26.	GalPos: Galois posets	39
27.	InPos: Involutive posets	39
28.	InPoMag: Involutive partially ordered magmas	40
29.	InPoSgrp: Involutive partially ordered semigroups	40
30.	InPoMon: Involutive partially ordered monoids	41
31.	InPorim: Involutive partially ordered integral monoids	41
32.	CyInPoMag: Cyclic involutive partially ordered magmas	42
33.	CyInPoSgrp: Cyclic involutive partially ordered semigroups	42
34.	CyInPoMon: Cyclic involutive partially ordered monoids	45
35.	CyInPorim: Cyclic involutive partially ordered integral monoids	45
36.	PoGrp: Partially ordered groups	44
37.	CPoSgrp: Commutative partially ordered semigroups	44
38.	CPoMon: Commutative partially ordered monoids	48
39.	CIPoMon: Commutative integral partially ordered monoids	45
40.	CIdPoSgrp: Commutative idempotent partially ordered semigroups	46
41.	CIdPoMon: Commutative idempotent partially ordered monoids	47
42.	CDivPos: Commutative division posets	47
43.	BCK: BCK-algebras	48
44.	CRPoMag: Commutative residuated partially ordered magmas	48
45.	HilA: Hilbert algebras	49
46.	TarA: Tarski algebras	50
47.	CRPoSgrp: Commutative residuated partially ordered semigroups	50
48.	CRPoMon: Commutative residuated partially ordered monoids	51
49.	Pocrim: Partially ordered commutative residuated integral monoids	52
50.	CIdRPoSgrp: Commutative idempotent residuated partially ordered semigroups	52
51.	CIdRPoMon: Commutative idempotent residuated partially ordered monoids	55
52.	CInPoMag: Commutative involutive partially ordered magmas	54
53.	CInPoSgrp: Commutative involutive partially ordered semigroups	54
54.	CInPoMon: Commutative involutive partially ordered monoids	54
55.	InPocrim: Involutive partially ordered commutative integral monoids	55
56.	AbPoGrp: Abelian partially ordered groups	50
Chapt	er 3. Join-semilattice-ordered algebras	57
1.	Jslat: Join-semilattices	57
2.	pJslat: Pointed join-semilattices	59
3.	lbJslat: Lower-bounded join-semilattices	59
4.	ubJslat: Upper-bounded join-semilattices	60
5.	JUn: Join-semilattice-ordered unars	61
6.	JNUn: Join-semilattice-ordered negated unars	61
7.	GalJslat: Galois join-semilattices	61
8.	JMag: Join-semilattice-ordered magmas	62
9.	JSgrp: Join-semilattice-ordered semigroups	62
10.	JMon: Join-semilattice-ordered monoids	65
11.	IdSrng ₀ : Idempotent semirings with zero	64
12.	IdSrng ₀₁ : Idempotent semirings with identity and zero	65
13.	KA: Kleene algebras	65
14.	IJMon: Integral join-semilattice-ordered monoids	66
15.	IdJSgrp: Idempotent join-semilattice-ordered semigroups	67
16.	IdJMon: Idempotent join-semilattice-ordered monoids	67
17.	JImpA: Join-semilattice-ordered implication algebras	68
18.	LrJMag: Left-residuated join-semilattice-ordered magmas	68
19.	LrJSgrp: Left-residuated join-semilattice-ordered semigroups	69
20.	LrJMon: Left-residuated join-semilattice-ordered monoids	69

21.	· · · · · · · · · · · · · · · · · · ·	70
22.	<u> </u>	70
23.	· · · · · · · · · · · · · · · · · · ·	71
24.	· · · · · · · · · · · · · · · · · · ·	71
25.	· · · · · · · · · · · · · · · · · · ·	72
26.		72
27.	Ŭ	73
28.	· ·	74
29.		74
30.	0.1	75
31.	· · · · · · · · · · · · · · · · · · ·	75
32.	V .	76
33.	·	76
34.		77
35.	J. V	78
36.	· v	78
37.	· ·	79
38.	·	79
39.	·	80
40.	V .	80
41.	· · · · · · · · · · · · · · · · · · ·	81
42.	·	82
43.		82
44.	CIdRJMon: Commutative idempotent residuated join-semilattice-ordered monoids	83
Chapt	ter 4. Meet-semilattice-ordered algebras	84
1.	Mslat: Meet-semilattices	84
2.	pMslat: Pointed meet-semilattices	85
3.	MUn: Meet-semilattice-ordered unars	86
4.	MNUn: Meet-semilattice-ordered negated unars	86
5.	GalMslat: Galois meet-semilattices	87
6.	MMag: Meet-semilattice-ordered magmas	87
7.	MSgrp: Meet-semilattice-ordered semigroups	88
8.	MMon: Meet-semilattice-ordered monoids	88
9.	IMMon: Integral meet-semilattice-ordered monoids	89
10.	<u> </u>	89
11.	IdMMon: Idempotent meet-semilattice-ordered monoids	90
12.	1 0	90
13.		91
14.	0.	91
15.		92
16.		93
17.		93
18.	ŭ	94
19.	·	94
20.		95
21.		95
22.	<u> </u>	96
23.	0 1	96
24.		97
25.		98
26.		98
27.	•	99
28.	CMSgrp: Commutative meet-semilattice-ordered semigroups	96

29.	CMMon: Commutative meet-semilattice-ordered monoids	100
30.	CIMMon: Commutative Integral meet-semilattice-ordered monoids	101
31.	CIdMSgrp: Commutative idempotent meet-semilattice-ordered semigroups	101
32.		102
33.		102
34.	BCKMslat: BCK-meet-semilattices	103
35.	CRMMag: Commutative residuated meet-semilattice-ordered magmas	103
36.		104
37.		105
38.		105
39.		106
40.		107
41.	CIdRMMon: Commutative idempotent residuated meet-semilattice-ordered monoids	107
42.	-	108
Chapt	ter 5. Lattice-ordered algebras	110
1.	Lat: Lattices	110
2.	pLat: Pointed lattices	112
3.	bLat: Bounded lattices	112
4.	LUn: Lattice-ordered unars	113
5.	LNUn: Lattice-ordered negated unars	114
6.	LMag: Lattice-ordered magmas	114
7.	LSgrp: Lattice-ordered semigroups	114
8.	LMon: Lattice-ordered monoids	115
9.	KLat: Kleene lattices	116
10.	ActLat: Action lattices	116
11.	ModLat: Modular lattices	117
12.	MultLat: Multiplicative lattices	118
13.	ILMon: Integral lattice-ordered monoids	119
14.	IdLSgrp: Idempotent lattice-ordered semigroups	119
15.	IdLMon: Idempotent lattice-ordered monoids	120
16.	LImpA: Lattice-ordered implication algebras	120
17.	LrLMag: Left-residuated lattice-ordered magmas	121
18.		121
19.		122
20.		122
21.	IdLrLSgrp: Idempotent left-residuated lattice-ordered semigroups	123
22.	IdLrLMon: Idempotent left-residuated lattice-ordered monoids	124
23.		124
24.		125
25.		125
26.	0.1	126
27.		126
28.		127
29.		128
30.		129
31.	•	129
32.		130
33.		131
34.		131
35.		132
36.		133
37.		133
38.	GalLat: Galois lattices	134

39.		134
40.	InLMag: Involutive lattice-ordered magmas	135
41.	InLSgrp: Involutive lattice-ordered semigroups	135
42.	InFL: Involutive FL-algebras	136
43.	IInFL: Integral involutive FL-algebras	137
44.	CyInLMag: Cyclic involutive lattice-ordered magmas	137
45.	CyInLSgrp: Cyclic involutive lattice-ordered semigroups	138
46.	CyInFL: Cyclic involutive FL-algebras	138
47.	CyIInFL: Cyclic involutive lattice-ordered integral monoids	139
48.		139
49.	CLMon: Commutative lattice-ordered monoids	140
50.	CILMon: Commutative Integral lattice-ordered monoids	141
51.	· · · · · · · · · · · · · · · · · · ·	141
52.		142
53.	•	142
54.		143
55.		143
56.	<u> </u>	144
57.	~ · · · · · · · · · · · · · · · · · · ·	145
58.		146
59.		146
60.		147
61.	•	147
62.	•	148
63.		149
64.	<u> </u>	149
65.		149
66.		150
67.		151
68.		152
69.		152
70.		153
71.		154
72.		155
73.		156
74.		156
75.		157
76.		157
77.		158
78.		159
79.		159
80.		159
81.	MALLA: Multiplicative additive linear logic algebras	160
Chapt	ter 6. Distributive lattice-ordered algebras	161
1.	DLat: Distributive lattices	162
2.	pDLat: Pointed distributive lattices	163
3.	bDLat: Bounded distributive lattices	163
4.	DLUn: Distributive lattice-ordered unars	164
5.	DLNUn: Distributive lattice-ordered negated unars	165
6.	pcDLat: Pseudocomplemented distributive lattices	165
7.	OckA: Ockham algebras	166
8.	DmA: De Morgan algebras	166
9.	DmMon: De Morgan monoids	167

10.	DpAlg: Distributive p-algebras	167
11.	DdpAlg: Distributive dual p-algebras	168
12.	DDblpAlg: Distributive double p-algebras	168
13.	StAlg: Stone algebras	168
14.	DblStAlg: Double Stone algebras	169
15.	DLMag: Distributive lattice-ordered magmas	169
16.	DLSgrp: Distributive lattice-ordered semigroups	170
17.	DLMon: Distributive lattice-ordered monoids	170
18.	DILMon: Distributive integral lattice-ordered monoids	171
19.	DIdLSgrp: Distributive idempotent lattice-ordered semigroups	171
20.	DIdLMon: Distributive idempotent lattice-ordered monoids	172
21.	DLImpA: Distributive lattice-ordered implication algebras	172
22.	DLrLMag: Distributive left-residuated lattice-ordered magmas	173
23.	DLrLSgrp: Distributive left-residuated lattice-ordered semigroups	173
24.	DLrLMon: Distributive left-residuated lattice-ordered monoids	174
25.	DILrLMon: Distributive integral left-residuated lattice-ordered monoids	175
26.	DIdLrLSgrp: Distributive idempotent left-residuated lattice-ordered semigroups	175
27.	DIdLrLMon: Distributive idempotent left-residuated lattice-ordered monoids	176
28.	DRLUn: Distributive residuated lattice-ordered unars	176
29.	DDivLat: Distributive division lattices	177
30.	DRLMag: Distributive residuated lattice-ordered magmas	177
31.	DRLSgrp: Distributive residuated lattice-ordered semigroups	178
32.	DRL: Distributive residuated lattices	179
33.	DIRL: Distributive integral residuated lattices	180
34.	DIdRLSgrp: Distributive idempotent residuated lattice-ordered semigroups	180
35.	DIdRL: Distributive idempotent residuated lattices	181
36.	DGalLat: Distributive Galois lattices	181
37.	DInLat: Distributive involutive lattices	182
38.	DInLMag: Distributive involutive lattice-ordered magmas	182
39.	DInLSgrp: Distributive involutive lattice-ordered semigroups	183
40.	DInFL: Distributive involutive FL-algebras	184
41.	DIInFL: Distributive integral involutive FL-algebras	184
42.	CyDInLMag: Cyclic distributive involutive lattice-ordered magmas	185
43.	CyDInLSgrp: Cyclic distributive involutive lattice-ordered semigroups	185
44.	CyDInFL: Cyclic distributive involutive FL-algebras	186
45.	CyDIInFL: Cyclic distributive involutive lattice-ordered integral monoids	186
46.	LGrp: Lattice-ordered groups	187
47.		188
48.	CDLSgrp: Commutative distributive lattice-ordered semigroups	188
49.	CDLMon: Commutative distributive lattice-ordered monoids	189
50.	CDILMon: Commutative distributive integral lattice-ordered monoids	190
51.	CDIdLSgrp: Commutative distributive idempotent lattice-ordered semigroups	190
52.	CDIdLMon: Commutative distributive idempotent lattice-ordered monoids	191
53.	CDDivLat: Commutative distributive division lattices	191
54.	CDRLMag: Commutative distributive residuated lattice-ordered magmas	192
55.	CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups	192
56.	CDRL: Commutative distributive residuated lattices	193
57.	CDIRL: Commutative distributive integral residuated lattices	194
58.	CDIdRLSgrp: Commutative distributive idempotent residuated lattice-ordered semigroups	194
59.	CDIdRL: Commutative distributive idempotent residuated lattices	195
60.	CDInLMag: Commutative distributive involutive lattice-ordered magmas	195
61.	CDInLSgrp: Commutative distributive involutive lattice-ordered semigroups	196
62.	CDInFL: Commutative distributive involutive FL-algebras	196
63.	CDIInFL: Commutative distributive integral involutive FL-algebras	197

64.	AbLGrp: Abelian lattice-ordered groups	198
65.	GBL: Generalized BL-algebras	198
66.	GMV: Generalized MV-algebras	199
67.	psMV: Pseudo MV-algebras	199
68.	WaHp: Wajsberg hoops	200
69.	BrA: Brouwerian algebras	20
70.	GBA: Generalized Boolean algebras	203
71.	BoolLat: Boolean lattices	203
72.	CRSISgrp: Commutative residuated semilinear semigroups	203
73.	CRSIMon: Commutative residuated semilinear monoids	203
74.	CIRSIMon: Commutative integral residuated semilinear monoids	20^{2}
75.	MTLA: Monoidal t-norm logic algebras	20^{4}
76.	BLA: Basic logic algebras	20
77.	MV: MV-algebras	200
78.	HA: Heyting algebras	20'
79.	GödA: Gödel algebras	208
80.	CIdRSlSgrp: Commutative idempotent residuated semilinear semigroups	209
81.	CIdRSlMon: Commutative idempotent residuated semilinear monoids	209
82.	CInSlSgrp: Commutative involutive semilinear semigroups	210
83.	CInSlMon: Commutative involutive semilinear monoids	210
84.	DunnMon: Dunn monoid	213
85.	IMTL: Involutive monoidal t-norm logic algebras	211
86.	ImpLat: Implicative lattices	21:
87.	KLA: Kleene logic algebras	213
88.	NVLGrp: Normal valued lattice-ordered groups	213
89.	LA _n : Lukasiewicz algebras of order n	214
90.	LRng: Lattice-ordered rings	214
91.	CLRng: Commutative lattice-ordered rings	213
01.	Chiras. Communative interest rings	210
CII.	- m - n - 1 - 1 - 1 - 1	24
	er 7. Totally ordered algebras	210
1.	ToLat: Totally ordered lattices	210
2.	pToLat: Pointed totally ordered lattices	21'
3.	ToMag: Totally ordered magmas	218
4.	ToSgrp: Totally ordered semigroups	218
5.	ToMon: Totally ordered monoids	219
6.	IToMon: Integral totally ordered monoids	219
7.	IdToSgrp: Idempotent totally ordered semigroups	220
8.	IdToMon: Idempotent totally ordered monoids	220
9.	ToImpA: Totally ordered implication algebras	22:
10.	LrToMag: Left-residuated totally ordered magmas	223
11.	LrToSgrp: Left-residuated totally ordered semigroups	222
12.	LrToMon: Left-residuated totally ordered monoids	222
13.	ILrToMon: Integral left-residuated totally ordered monoids	223
14.	IdLrToSgrp: Idempotent left-residuated totally ordered semigroups	223
15.	IdLrToMon: Idempotent left-residuated totally ordered monoids	22
16.	RToUn: Residuated totally-ordered unars	22
17.	ToDivLat: Totally ordered division lattices	228
18.	RToMag: Residuated totally ordered magmas	225
19.	RToSgrp: Residuated totally ordered semigroups	220
20.	RToMon: Residuated totally ordered monoids	220
21.	IRToMon: Integral residuated totally ordered monoids	22'
22.	IdRToSgrp: Idempotent residuated totally ordered semigroups	228
23.	IdRToMon: Idempotent residuated totally ordered monoids	228
24.	ToUn: Totally ordered unars	229

25.	ToNUn: Totally ordered negated unars	229
26.	GalToLat: Galois chains	230
27.	InToLat: Involutive chains	230
28.	InToMag: Involutive totally ordered magmas	231
29.	InToSgrp: Involutive totally ordered semigroups	231
30.	InToMon: Involutive totally ordered monoids	232
31.	IInToMon: Integral involutive totally ordered monoids	232
32.	CyInToMag: Cyclic involutive totally ordered magmas	233
33.	CyInToSgrp: Cyclic involutive totally ordered semigroups	233
34.	CyInToMon: Cyclic involutive totally ordered monoids	234
35.	CyIInToMon: Cyclic integral involutive totally ordered monoids	234
36.	ToGrp: Totally ordered groups	235
37.	CToSgrp: Commutative totally ordered semigroups	236
38.	CToMon: Commutative totally ordered monoids	236
39.	CIToMon: Commutative integral totally ordered monoids	237
40.	CIdToSgrp: Commutative idempotent totally ordered semigroups	237
41.	CIdToMon: Commutative idempotent totally ordered monoids	238
42.	CToDivLat: Commutative division chains	239
43.	CRToMag: Commutative residuated totally ordered magmas	239
44.	CRToSgrp: Commutative residuated totally ordered semigroups	239
45.	CRToMon: Commutative residuated totally ordered monoids	240
46.	CIRToMon: Commutative integral residuated totally ordered monoids	241
47.	CIdRToSgrp: Commutative idempotent residuated totally ordered semigroups	241
48.	CIdRToMon: Commutative idempotent residuated totally ordered monoids	242
49.	CInToMag: Commutative involutive totally ordered magmas	242
50.	CInToSgrp: Commutative involutive totally ordered semigroups	243
51.	CInToMon: Commutative involutive totally ordered monoids	243
52.	IMTLChn: Involutive monoidal t-norm logic chains	244
53.	AbToGrp: Abelian totally ordered groups	244
54.	ToRng: Totally ordered rings	245
55.	CToRng: Commutative totally ordered rings	246
56.	ToFld: Totally ordered fields	246
Chapte	er 8. Boolean-ordered algebras	247
	BA: Boolean algebras	247
2.	pBA: Pointed Boolean algebras	248
3.	BUn: Boolean unars	249
4.	BNUn: Boolean negated unars	250
5.	MA: Modal algebras	250
6.	TA: Tense algebras	251
	MonA: Monadic algebras	252
	BMag: Boolean magmas	253
	BSgrp: Boolean semigroups	253
10.	BMon: Boolean monoids	254
11.	BIMon: Boolean integral monoids	254
12.	BIdSgrp: Boolean idempotent semigroups	255
13.	BIdMon: Boolean idempotent monoids	255
14.	BImpA: Boolean implication algebras	256
15.	BLrMag: Boolean left-residuated magmas	256
16.	BLrSgrp: Boolean left-residuated semigroups	257
17.	BLrMon: Boolean left-residuated monoids	257
18.	BILTMon: Boolean integral left-residuated monoids	258
19. 20.	BIdLrSgrp: Boolean idempotent left-residuated semigroups BIdLrMon: Boolean idempotent left-residuated monoids	$258 \\ 259$
ZU.	- распамон: роолеан исентрогень тен-residuated monoids	259

21.	BRUn: Boolean residuated unars	259
22.	BDivLat: Boolean division lattices	260
23.	BRMag: Boolean residuated magmas	260
24.	BRSgrp: Boolean residuated semigroups	261
25.	BRL: Boolean residuated lattices	262
26.	BIRL: Boolean integral residuated lattices	262
27.	BIdRSgrp: Boolean idempotent residuated semigroups	263
28.	BIdRL: Boolean idempotent residuated lattices	263
29.	BGalLat: Boolean Galois lattices	264
30.	BInLat: Boolean involutive lattices	264
31.	BInMag: Boolean involutive magmas	265
32.	BInSgrp: Boolean involutive semigroups	265
33.	BInFL: Boolean involutive FL-algebras	266
34.	BIInFL: Boolean integral involutive FL-algebras	267
35.	BCyInMag: Boolean cyclic involutive magmas	267
36.	BCyInSgrp: Boolean cyclic involutive semigroups	268
37.		268
38.	· · · · · · · · · · · · · · · · · · ·	269
39.		269
40.	BCMon: Boolean commutative monoids	270
41.		270
42.		271
43.	BCIdSgrp: Boolean commutative idempotent semigroups	271
44.	BCIdMon: Boolean commutative idempotent monoids	272
45.	•	272
46.	BCRMag: Boolean commutative residuated magmas	273
47.		273
48.		274
49.	BCIRL: Boolean commutative integral residuated lattices	274
50.		275
51.		275
52.	BCInMag: Boolean commutative involutive magmas	276
53.		276
54.	BCInFL: Boolean commutative involutive FL-algebras	277
55.	BCIInFL: Boolean commutative integral involutive FL-algebras	277
56.		278
57.		278
58.	NA: Nonassociative relation algebras	279
59.	<u> </u>	280
60.		281
61.		282
-		
O1 4	0 II	204
	ter 9. Unordered algebras	284
1.	Set: The category of sets	284
2.	pSet: The category of pointed sets	285
3.	Unar: Unary Algebras	286
4.	AAlg: Associative algebras	287
5.	BCI: BCI-algebras	287
6.	RtQgrp: Right quasigroups	287
7.	Qgrp: Quasigroups	288
8.	MouQgrp: Moufang quasigroups	288
9.	Lp: Loops May In: May form loops	289
10.	1 0 1	289
11.	Shell: Shells	290

12.	Mag: Magmas	291
13.	Bnd: Bands	292
14.	NBnd: Normal bands	292
15.	RecBnd: Rectangular bands	293
16.	SkLat: Skew lattices	293
17.	Sgrp: Semigroups	294
18.	Sgrp ₀ : Semigroups with zero	294
19.	RegSgrp: Regular semigroups	295
20.	InvSgrp: Inverse semigroups	296
21.	Mon: Monoids	297
22.	CanSgrp: Cancellative semigroups	297
23.	CanMon: Cancellative monoids	298
24.	Grp: Groups	299
25.	AbpGrp: Abelian p-groups	300
26.	CMag: Commutative magmas	300
27.	CSgrp: Commutative semigroups	301
28.	LtCanSgrp: Left cancellative semigroups	301
29.	CanCSgrp: Cancellative commutative semigroups	302
30.	CInvSgrp: Commutative inverse semigroups	303
31.	CMon: Commutative monoids	303
32.	CanCMon: Cancellative commutative monoids	304
33.	AbGrp: Abelian groups	305
34.	BGrp: Boolean groups	306
35.	NFld: Near-fields	306
36.	NRng: Near-rings	307
37.	NRng ₁ : Near-rings with identity	308
38.	Neofld: Neofields	308
39.	Srng: Semirings	309
40.	Srng ₁ : Semirings with identity	309
41.	Srng ₀ : Semirings with zero	310
42.	Srng ₀₁ : Semirings with identity and zero	311
43.	Rng: Rings	311
44.	Rng ₁ : Rings with identity	312
45.	RegRng: Regular rings	313
46.	CRegRng: Commutative regular rings	314
47.	CSrng: Commutative semirings	314
48.	CSrng ₁ : Commutative semirings with identity	314
49.	CSrng ₀ : Commutative semirings with zero	315
50.	CSrng ₀₁ : Commutative semirings with identity and zero	315
51.	CRng: Commutative rings	316
52.	CRng ₁ : Commutative rings with identity	317
53.	IntDom: Integral Domain	317
54.	DivRng: Division rings	318
55.	Sfld: Semifields	319
56.	Fld: Fields	319
57.	CnjMag: Conjugative magmas	320
58.	Dtoid: Directoids	321
59.	UFDom: Unique Factorization Domains	321
60.	Ore Dom: Ore domains	322
61.	PIDom: Principal Ideal Domain	322
62.	EucDom: Euclidean Domains	322
63.	Mset: M-sets	323
64.	Gset: G-sets	323
65.		323
	to the contract of the contrac	9=9

COMPRISE	10
CONTENTS	13

66.	FVec: Vector spaces over a field	324
67.	JorA: Jordan algebras	325
68.	LNeofld: Left neofields	325
69.	BilinA: Bilinear algebras	325
70.	CliffSgrp: Clifford semigroups	326
71.	LieA: Lie algebras	326
72.	MedMag: Medial magmas	326
73.	NlGrp: Nilpotent groups	327
74.	NaA: Nonassociative algebras	327
75.	OrdA: Order algebras	328
76.	pGrp: P-groups	328
77.	Qnd: Quandles	329
78.	qMV: Quasi-MV-algebras	329
79.	sqMV: Sqrt-quasi-MV-algebras	330
80.	QtMag: Quasitrivial magmas	331
81.	TrivA: Trivial algebras	331
Appendix		333
Bibliography		338

CHAPTER 1

Introduction

Disclaimer: This project is currently in a DRAFT stage. For some classes of algebras it may contain incomplete and/or incorrect information. In particular, the introduction needs to be (re)written.

This survey of partially ordered algebras contains definitions and descriptions of many algebraic categories. The most general classes of algebraic structures covered here are partially ordered sets with finitary operations that preserve or reverse the partial order in each argument. These structures are known as po-algebras, and they form a category with morphisms that are order-preserving homomorphisms. While po-algebras are not purely algebraic, their (in)equational theory is a relatively straight forward extension of universal algebra. The details can be found in Pigozzi [2004], but we (will eventually) also cover the main points below.

Chapter 2 contains the main classes of po-algebras. Every class has a definition with quasi-inequalities that indicate for each argument of each fundamental operation whether it is

order-preserving:
$$x \leq y \implies f(z_1, \dots, z_{i-1}, x, z_{i+1}, \dots, z_n) \leq f(z_1, \dots, z_{i-1}, y, z_{i+1}, \dots, z_n)$$
 or order-reversing: $x \leq y \implies f(z_1, \dots, z_{i-1}, x, z_{i+1}, \dots, z_n) \geq f(z_1, \dots, z_{i-1}, y, z_{i+1}, \dots, z_n)$.

If the operation has (left/right) residuals this behaviour can also be inferred from the residuation property. In Chapter 3 we cover classes of join-semilattice ordered algebras, followed by classes of meet-semilattice ordered algebras in Chapter 4. Since joins and meets can both be used to define the partial order by an equation, these classes are purely algebraic and are entirely within the realm of universal algebra. However, we now also record if an argument of a fundamental operation is join/meet-preserving, and we continue to use the perspective of po-algebras since it captures the close connections between proof theory and inequational logic. Chapter 5 contains lattice-ordered algebras, with fundamental operations that preserve join and/or meets, or reverse joins and/or meets in each argument. To say that an n-ary operation f reverses joins in the ith argument means that

$$f(z_1,\ldots,z_{i-1},x\vee y,z_{i+1},\ldots,z_n)=f(z_1,\ldots,z_{i-1},x,z_{i+1},\ldots,z_n)\wedge f(z_1,\ldots,z_{i-1},y,z_{i+1},\ldots,z_n)$$

and dually for reversing meets. Any operation that preserves all joins or all meets in an argument is automatically order-preserving in that argument, and likewise any operation that reverses all joins or all meets in an argument is automatically order-reversing in that argument.

The following diagram shows the highest level of our classification of categories of partially ordered algebras, numbered by the corresponding chapter number.

FIGURE 1. Examples of a small poset from each chapter

Many of the algebras we consider have a binary operation \cdot , and the next level of classification is based on whether this operation is commutative. Categories that contain noncommutative algebras precede the commutative ones.

The third level of classification is along an axis of residuation for the operation \cdot in the order: nonresiduated, left-residuated, residuated, involutive, and cyclic involutive.

The fourth level considers whether \cdot is nonassociative, associative, unital, integral, and/or idempotent. Combinations of these properties produce a framework of roughly 50 categories in each of the eight chapters, which are then augmented by several other standard categories that satisfy additional properties. Altogether the survey currently contains (some very basic) information about \sim 500 categories, with links in the pdf-file that are useful for browsing and comparing closely related categories.

Symbols	arity	order type	
$\cdot, \odot, \circ, ;$ 2		join-preserving, join-preserving	
+,⊕	2	meet-preserving, meet-preserving	
\rightarrow , \	2	join-reversing, meet-preserving	
/	2	meet-preserving, join-reversing	
<u> </u>	2	meet-reversing, join-preserving	
$f, \Diamond, $	1	join-preserving	
g,\Box	1	meet-preserving	
$\sim,-$	1	join-reversing	
-1	1	join-and-meet-reversing	

Figure 2. Order types of operation symbols

Recall that the fine spectrum of a class of algebras is a sequence of natural numbers f_n such that up to isomorphism there are exactly f_n many algebras of size n in the class. One of the features of this survey is that for most classes the fine spectrum has been calculated (usually only up to a small value of n). In particular for the linearly ordered algebras this sequence is sometimes (related to) a sequence in the Online Encyclopedia of Integer Sequences (OEIS.org), in which case the entry in the OEIS can lead to additional references and combinatorial results relevant to these algebras.

The github page for this survey also contains some Jupyter notebooks with short Python programs that can extract and check information about the categories. It is likely that the survey will be updated from time-to-time, with the latest version (and a record of the changes) available on github.

The starting point for this survey was an online collection of web pages about classes of mathematical structures that can still be found at math.chapman.edu/~jipsen/mathstructures. In this pdf-file we concentrate on finitely axiomatized classes of partially ordered algebras and also provide some lists of finite algebras that separate many of these classes.

The signature of po-algebras in this survey mostly uses operations symbols from a fixed set, with arity < 2 and with a specific order type for each argument. The convention is given in Table 2.

In addition we adopt the following convention: If a po-algebra does not have a join operation ∨ then any operation join-preserving order type defaults to order-preserving, and the joinreversing order type defaults to order-reversing.

E.g., a jsl-semigroup and ℓ -semigroup have a binary operation \cdot that is join-preserving in both arguments, but in an msl-semigroup or a po-semigroup the operation · is only order-preserving in each argument.

An operation \cdot on a poset is *residuated* if there exist binary operations \setminus , / such that

$$xy \le z \iff y \le x \setminus z \iff x \le z/y$$
.

It is worth noting that such a residuated operation · automatically preserves all existing joins, hence is order-preserving. Its left and right residual \, / preserve all existing meets in the numerator and reverse all existing joins to meets in the denominator.

1. Universal algebra and category theory

1.1. Algebras and subalgebras. An *n*-ary operation on a nonempty set A is a function $f: A^n \to A$. Each n-ary function on A has a corresponding arity (or rank): nullary operations have arity 0 and are constants (fixed elements of A), unary operations have arity 1, binary operations have arity 2, and so on.

An algebra $\mathbf{A} = (A, f_1^{\mathbf{A}}, f_2^{\mathbf{A}}, \ldots)$ is a set A with operations $f_i^{\mathbf{A}}$ of arity $n_i \in \mathbb{N}$. The signature of an algebra is its list of operation arities (n_1, n_2, \ldots) . Operations are usually listed in descending order of their arity.

Let f be an operation on a set A and g an operation of the same arity on a subset B of A. Then g is the restriction of f to B, written $g = f|_B$, if for all $b_i \in B$, $g(b_1, \ldots, b_n) = f(b_1, \ldots, b_n)$. An algebra \mathbf{B} is a subalgebra of \mathbf{A} if $B \subseteq A$ and $f_i^{\mathbf{B}} = f_i^{\mathbf{A}}|_B$ (for all i). In other words, B is closed

under all operations of **A**.

1.2. Homomorphisms and isomorphisms. Let A, B be algebras of the same signature. A homomorphism $h: \mathbf{A} \to \mathbf{B}$ is a function $h: A \to B$ such that for all i

$$h(f_i^{\mathbf{A}}(a_1,\ldots,a_{n_i})=f_i^{\mathbf{B}}(h(a_1),\ldots,h(a_{n_i})).$$

As usual, h is surjective or onto if $h[A] = \{h(a) \mid a \in A\} = B$. In this case $\mathbf{B} = h[\mathbf{A}]$ is called a homomorphic image of A.

A homomorphism h is one-to-one if for all $x, y \in A$, $x \neq y$ implies $h(x) \neq h(y)$, and h is an isomorphism if h is a one-to-one and onto homomorphism. In this case A is said to be isomorphic to B, written $A \cong B$.

1.3. Products and HSP. Products of algebras can combine multiple algebras into one larger algebra. The cartesian product of two algebras A_1 and A_2 is defined as the set $A_1 \times A_2$ with $a_i \in A_1$ and $a'_i \in A_2$ with an operation f such that $f^{\mathbf{A}_1 \times \mathbf{A}_2}(\langle a_1, a_1' \rangle, ..., \langle a_n, a_n' \rangle) = \langle f^{\mathbf{A}_1}(a_1, ..., a_n), f^{\mathbf{A}_2}(a_1', ..., a_n') \rangle$ for $1 \leq j \leq n$. The direct product of algebras \mathbf{A}_j $(j \in J)$ is $\mathbf{A} = \prod_{j \in J} \mathbf{A}_j$ where $A = \prod_{j \in J} A_j$ and $f_i^{\mathbf{A}}(a_1, ..., a_{n_i})(j) = 1$

 $f_i^{\mathbf{A}_j}(a_1(j),\ldots,a_{n_i}(j))$ for all $j \in J$.

Let K be a class of algebras of the same signature.

- $H(\mathcal{K})$ is the class of homomorphic images of members of \mathcal{K} .
- $S(\mathcal{K})$ is the class of algebras isomorphic to subalgebras of members of \mathcal{K} .
- $P(\mathcal{K})$ is the class of algebras isomorphic to direct products of members of \mathcal{K} .

 \mathcal{K} is a variety if $H(\mathcal{K}) = S(\mathcal{K}) = P(\mathcal{K}) = \mathcal{K}$ ($\iff HSP(\mathcal{K}) = \mathcal{K}$) Tarski [1946].

1.4. Term algebras and equational classes. For a fixed signature, the set of terms with variables from a set X is the smallest set T(X) such that $X \subseteq T(X)$ and

if
$$t_1, \ldots, t_{n_i} \in T(X)$$
 then " $f_i(t_1, \ldots, t_{n_i})$ " $\in T(X)$ for all i .

The term algebra over a set X is $\mathbf{T}(X) = (T(X), f_1^{\mathbf{T}}, f_2^{\mathbf{T}}, \ldots)$ with

$$f_i^{\mathbf{T}}(t_1, \dots, t_{n_i}) = "f_i(t_1, \dots, t_{n_i})"$$
 for all i and $t_1, \dots, t_{n_i} \in T(X)$.

An equation is a pair of terms (s,t), written s=t. An assignment into an algebra **A** is a homomorphism $h: \mathbf{T}(X) \to \mathbf{A}$. An algebra \mathbf{A} satisfies s=t if h(s)=h(t) for all assignments into \mathbf{A} . For a set E of equations, $\operatorname{Mod}(E) = \{ \mathbf{A} \mid \mathbf{A} \text{ satisfies } s = t \text{ for all } s = t \in E \}$. An equational class is of the form $\operatorname{Mod}(E)$ for some set of equations E.

1.5. Varieties and equational logic. HSP "preserves" equations, so every equational class is a variety.

Conversely,

Theorem 1 (Birkhoff 1935). Every variety is an equational class

An equational theory for some class of algebras \mathcal{K} is of the form $\text{Eq}(\mathcal{K})$, where $\text{Eq}(\mathcal{K}) = \{s=t \mid \mathbf{A} \text{ satisfies }$ $s=t \text{ for all } \mathbf{A} \in \mathcal{K}$.

THEOREM 2 (Birkhoff 1935). E is an equational theory if and only if for all terms q, r, s, t $s=t \in E \implies t=s \in E; \quad r=s, \ s=t \in E \implies r=t \in E$ $q=r, s=t \in E \implies s[x\mapsto q]=t[x\mapsto r] \in E$

1.6. Equivalence relations and congruences. Let A be an algebra and θ a binary relation on A. Then θ is an equivalence relation if it is reflexive, symmetric and transitive. A binary relation θ is a congruence on A if it is an equivalence relation and

$$x\theta y$$
 implies $f_i^{\mathbf{A}}(a_1,\ldots,x,\ldots,a_{n_i}) \theta f_i^{\mathbf{A}}(a_1,\ldots,y,\ldots,a_{n_i})$ (for all $1 \leq j \leq n_i$ and all i).

A congruence class or block is a set of the form $[a]_{\theta} = \{x \mid a\theta x\}.$

A family of sets $\{C_i : i \in I\}$ is a partition of A if $A = \bigcup_{i \in I} C_i$ and $C_i \cap C_j = \emptyset$ or $C_i = C_j$. The set $A/\theta = \{[a]_{\theta} \mid a \in A\}$ of all congruence classes is a partition of \tilde{A} .

1.7. Homomorphic images and quotient algebras. The quotient algebra $\mathbf{A}/\theta = (A/\theta, f_1, f_2, \ldots)$ is defined by

$$f_i([a_1]_{\theta},\ldots,[a_{n_i}]_{\theta}) = [f_i^{\mathbf{A}}(a_1,\ldots,a_{n_i})]_{\theta}.$$

Note that f_i is well-defined if and only if θ is a congruence.

For a homomorphism $h: \mathbf{A} \to \mathbf{B}$, define the $kernel \ker h = \{(x,y) \mid h(x) = h(y)\}$. Then $\ker h$ is a congruence on \mathbf{A} and the $natural \max [.]_{\theta}: \mathbf{A} \to \mathbf{A}/\theta$ is a homomorphism.

Theorem 3 (First Isomorphism Theorem). The map $k: \mathbf{A}/\mathsf{ker}h \to h[\mathbf{A}]$ defined by $k([a]_{\mathsf{ker}h}) = h(a)$ is an isomorphism.

THEOREM 4 (Second Isomorphism Theorem). If $\theta \subseteq \psi$ are congruences on \mathbf{A} and $\varphi = \{([a]_{\theta}, [b]_{\theta}) \mid a\psi b\}$ then $T \in Con(\mathbf{A}/\theta)$ and $(\mathbf{A}/\theta)/\varphi \cong \mathbf{A}/\psi$.

THEOREM 5 (Correspondence Theorem).

1.8. Subdirectly irreducible algebras. Let $\theta_j \in \operatorname{Con}(\mathbf{A})$ and define $h: \mathbf{A} \to \prod_{j \in J} \mathbf{A}/\theta_j$ by $h(a)(j) = [a]_{\theta_j}$. Then h is one-to-one if and only if $\bigcap_{j \in J} \theta_j = id_A$. In this case h is called a *subdirect decomposition* of \mathbf{A} .

An element c in a lattice is completely meet irreducible if $c \neq \bigwedge \{x \mid c < x\}$ (note that such meets always exist).

An algebra **A** is *subdirectly irreducible* if id_A is completely meet irreducible in Con(**A**).

Theorem 6 (Birkhoff [1944]). Every algebra $\bf A$ has a subdirect decomposition using only subdirectly irreducible homomorphic images of $\bf A$

Let \mathcal{K}_{SI} be the class of subdirectly irreducible members of \mathcal{K} . Birkhoff's Theorem says that every algebra is a subalgebra of a product of subdirectly irreducible algebras (s.i. algebras for short). So, the s.i. algebras are building blocks of varieties:

$$\mathcal{V} = SP(\mathcal{V}_{SI})$$

For any class of algebras \mathcal{K} , the variety generated by \mathcal{K} is $V(\mathcal{K}) = \mathsf{HSP}(\mathcal{K})$. It is the smallest variety containing \mathcal{K} .

2. Partially-ordered universal algebra

Here we repeat the definitions from the previous section, but suitably modified to cover the partially-ordered aspect of this theory. We closely follow the presentation in Pigozzi [2004].

A partially ordered algebra or po-algebra $\mathbf{A} = (A, \leq^{\mathbf{A}}, f_1^{\mathbf{A}}, f_2^{\mathbf{A}}, \dots)$ is a poset (A, \leq) with operations $f_i^{\mathbf{A}}$ of arity $n_i \in \mathbb{N}$ that are order-preserving (isotone) or order-reversing (antitone) in each argument. The order-type τ_f of an n-ary operation f is an n-tuple with entries from $\{i,a,c,n\}$, which abbreviate i=isotone, a=antitone, c=constant on components, n=none. Note that if a function is both isotone and antitone for some argument then it maps all elements in a connected component of the poset to the same element (in that argument), so its order-type is c. The signature of a po-algebra is a list of the order-types of all its fundamental operations.

A po-algebra **B** is a *subalgebra* of a po-algebra **A** if $\leq^{\mathbf{B}} = \leq^{\mathbf{A}} \cap B^2$ and $f_i^{\mathbf{B}} = f_i^{\mathbf{A}}|_B$ (for all i). In other words, $(B, \leq^{\mathbf{B}})$ is a subposet of $(A, \leq^{\mathbf{A}})$ with the induced partial order and B is closed under all operations of **A**.

2.1. Homomorphisms and isomorphisms. Let **A**, **B** be po-algebras of the same signature. A homomorphism $h: \mathbf{A} \to \mathbf{B}$ is an order-preserving function $h: A \to B$ (i.e., $h[\leq^{\mathbf{A}}] \subseteq \leq^{\mathbf{B}}$) and for all i

$$h(f_i^{\mathbf{A}}(a_1,\ldots,a_{n_i})=f_i^{\mathbf{B}}(h(a_1),\ldots,h(a_{n_i})).$$

As usual, h is surjective or onto if $h[A] = \{h(a) \mid a \in A\} = B$. In this case $\mathbf{B} = h[\mathbf{A}]$ is called a homomorphic image of \mathbf{A} .

A homomorphism $h: \mathbf{A} \to \mathbf{B}$ is an *embedding* if it is one-to-one and *order-reflecting*, i.e., $h^{-1}[\leq^{\mathbf{B}}] \subseteq \leq^{\mathbf{A}}$, or equivalently $h(x) \leq^{\mathbf{B}} h(y) \implies x \leq y$.

A homomorphism h is an *isomorphism* if h is a surjective embedding. In this case \mathbf{A} is said to be *isomorphic* to \mathbf{B} , written $\mathbf{A} \cong \mathbf{B}$, and it is easy to check that h^{-1} is an isomorphism as well.

The concept of congruence needs to be generalized to work well with po-algebras. Recall that a preorder is a reflexive and transitive binary relation. A precongruence on a po-algebra **A** is a preorder α on A that contains $\leq^{\mathbf{A}}$ and is compatible: $x\alpha y \implies f^{\mathbf{A}}(z_1,\ldots,z_{i-1},x,z_{i+1},\ldots,z_n)\alpha f^{\mathbf{A}}(z_1,\ldots,z_{i-1},y,z_{i+1},\ldots,z_n)$ if $\sigma(f)=1$ and $x\alpha y \implies f^{\mathbf{A}}(z_1,\ldots,z_{i-1},y,z_{i+1},\ldots,z_n)\alpha f^{\mathbf{A}}(z_1,\ldots,z_{i-1},x,z_{i+1},\ldots,z_n)$ if $\sigma(f)=0$ for all $i \in \{1,\ldots,n\}$ and all fundamental operations f of \mathbf{A} .

The set of all precongruences of **A** is denoted by $Pcon(\mathbf{A})$. Every precongruence α contains a largest congruence $\hat{\alpha} = \alpha \cap \alpha^{-1}$. However, $\hat{\alpha}$ may not contain $\leq^{\mathbf{A}}$, so in general $\hat{\alpha}$ is not in $Pcon(\mathbf{A})$.

The quotient algebra \mathbf{A}/α of a po-algebra \mathbf{A} modulo a precongruence α is given by $(A/\hat{\alpha}, \alpha/\hat{\alpha}, f_1^{\mathbf{A}/\alpha}, f_2^{\mathbf{A}/\alpha}, \ldots)$, where $\alpha/\hat{\alpha}$ is the partial order given by $[x]_{\hat{\alpha}} \leq^{\mathbf{A}/\alpha} [y]_{\hat{\alpha}} \iff x\alpha y$.

With these definitions it is a good exercise to prove the isomorphism theorems and correspondence theorem for po-algebras.

2.2. Products and HSP. The product $\prod_{i \in I} \mathbf{A}_i$ of a family $\{\mathbf{A}_i \mid i \in I\}$ of po-algebras is defined as for ordinary algebras, but with the product partial order given by the pointwise order: $a \leq b \iff a(i) \leq^{\mathbf{A}_i} b(i)$ for all $i \in I$.

3. Definitions of properties

This section defines the terms found in the **Properties** tables.

Classtype: The classtype of a class of structures describes the "behavior" of the structure. It is chosen from the list of classtypes below:

- variety: A variety is a class of algebras of the same signature that is defined by a set of identities, i.e., universally quantified equations. Varieties are also called equational classes.
- po-variety: A partial order variety is a class of po-algebras that is defined by a set of (in)equations.
- quasivariety: A quasivariety is a class of algebras of the same signature that is defined by a set of quasi-identities.
- universal class: A class of first-order structures of the same signature is universal if it can be defined by first-order formulas that contain only universal quantifiers when written in prenex form.
- first-order class: A class of first-order structures of the same signature defined by a set of first-order formulas.

Equational theory: The equational theory of a class of (po-)algebras is the set of (in)equations that hold in all members of the class. For a class of algebras, this is simply the collection of all equations that hold in all members of the class.

The decision problem for the equational theory of a class of structures is the problem with input: an (in)equation of length n and output: "true" if the (in)equation holds in all members of the class, and "false" otherwise. The equational theory is decidable if there is an algorithm that solves the decision problem, otherwise it is undecidable. The complexity of the decision problem (if known) is one of PTIME (polynomial time), NPTIME (nondeterministic polynomial time), PSPACE (polynomial space), or EXPTIME (exponential polynomial time). While there are many other complexity classes, this survey only considers these particular ones.

G. Birkhoff showed that for classes of algebras, equational theories are precisely the sets of equations that are closed under the standard rules of equational logic, see Burris and Sankappanavar [1981].

Quasiequational theory: A quasiequation is a universal formula of the form

$$\phi_1$$
 and ϕ_2 and \cdots and $\phi_m \implies \phi_0$,

where the ϕ_i are (in)equations. Note that for a purely algebraic language, the ϕ_i are simply equations. For m = 0, a quasiequation is just a single (in)equation. The quasiequational theory of a class of po-algebras is the set of quasiequations that hold in all members of the class.

The decision problem for the quasiequational theory of a class of po-algebras is the problem with input: a quasiequation of length n (as a string) and output: "true" if the quasiequation holds in all members of the class, and "false" otherwise. The quasiequational theory is decidable if there is an algorithm that solves the decision problem, otherwise it is undecidable. The complexity of the decision problem (if known) is one of PTIME, NPTIME, PSPACE, or EXPTIME.

A complete deductive system for quasiequations is given in Selman [1972]. Additional information on quasiequations can be found in Burris and Sankappanavar [1981].

Universal theory:

First-order theory: A first-order formula is an expression constructed from atomic formulas combined with logical connectives not, and, or, \Longrightarrow , \Longleftrightarrow and quantifiers \forall , \exists followed by variables. The first-order theory of a class of structures is the set of first-order formulas that hold in all members of the class.

The decision problem for the first-order theory of a class of structures is the problem with input: a first-order formula of length n (as a string) and output: "true" if the formula holds in all members of the class, and "false" otherwise. A first-order theory is decidable if there is an algorithm that solves the decision problem, otherwise it is undecidable. A first-order theory is hereditarily undecidable if every consistent subtheory is undecidable. The complexity of the decision problem (if known) is one of PTIME, NPTIME, PSPACE, or EXPTIME.

Locally finite: An algebraic structure is locally finite if every finitely generated substructure is finite. A class of algebraic structures is locally finite if each member is locally finite.

Residual size: The residual size of a class of algebraic structures is the least upper bound (supremum) of the cardinalities of the subdirectly irreducible members of the class. If there is no bound on the size of the subdirectly irreducible members, the residual size is said to be unbounded. In this case the class is said to be residually large, otherwise it is residually small. If all subdirectly irreducible members are finite, the class is residually finite.

Congruence distributive: An algebra is congruence distributive (or CD for short) if its lattice of congruence relations is a distributive lattice. A class of algebras is congruence distributive if each of its members is congruence distributive.

Congruence distributivity has many structural consequences. The most striking one is perhaps Jónsson's Lemma Jonsson [1967] which implies that a finitely generated CD variety is residually finite. Congruence modularity is implied by congruence distributivity. Moreover, if an algebra has equationally definable principal congruences, then it is congruence distributive.

Congruence modular: An algebra is congruence modular (or CM for short) if its lattice of congruence relations is modular. A class of algebras is congruence modular if each of its members is congruence modular.

A Mal'cev condition (with 4-ary terms) for congruence modularity is given by Day [1969]. Another Mal'cev condition (with ternary terms) for congruence modularity is given by Gumm [1981]. Several further characterizations are given by Tschantz [1985].

If an algebra is congruence n-permutable for n = 2 or n = 3 or it is congruence distributive, then it is congruence modular.

Congruence *n*-permutable: An algebra is congruence *n*-permutable if for all congruence relations θ, ϕ of the algebra

$$\theta \circ \phi \circ \theta \circ \phi \circ \dots = \phi \circ \theta \circ \phi \circ \theta \circ \dots$$

where n congruences appear on each side of the equation. A class of algebras is congruence n-permutable if each of its members is congruence n-permutable. The term congruence permutable is short for congruence 2-permutable, i.e. $\theta \circ \phi = \phi \circ \theta$.

Congruence n-permutability implies congruence n+1-permutability. Congruence 3-permutability implies congruence modularity Jónsson [1953].

Congruence regular: An algebra is congruence regular if each congruence relation of the algebra is determined by any one of its congruence classes, i.e. $\forall a, b \ [a]_{\theta} = [b]_{\psi} \Longrightarrow \theta = \psi$. A class of algebras is congruence regular if each of its members is congruence regular.

Congruence uniform: An algebra is congruence uniform if for all congruence relations θ of the algebra it holds that all congruence classes of θ have the same cardinality. A class of algebras is congruence uniform if each of its members is congruence uniform.

Congruence types: A minimal algebra is a finite nontrivial algebra in which every unary polynomial is either constant or a permutation. Peter P. Pálfy Pálfy [1984] shows that if M is a minimal algebra then M is polynomially equivalent to one of the following:

* a unary algebra in which each basic operation is a permutation * a vector space * the 2-element Boolean algebra * the 2-element lattice * a 2-element semilattice.

The type of a minimal algebra \mathbf{M} is defined to be permutational (1), abelian (2), Boolean (3), lattice (4), or semilattice (5) accordingly.

The type set of a finite algebra is defined and analyzed extensively in the groundbreaking book Hobby and McKenzie [1988]. With each two-element interval $\{\theta, \psi\}$ in the congruence lattice of a finite algebra

the authors associate a collection of minimal algebras of one of the 5 types, and this defines the value of $\operatorname{typ}(\theta, \psi)$. For a finite algebra \mathbf{A} , $\operatorname{typ}(\mathbf{A})$ is the union of the sets $\operatorname{typ}(\theta, \psi)$ where $\{\theta, \psi\}$ ranges over all two-element intervals in the congruence lattice of \mathbf{A} . For a class \mathcal{K} of algebras, $\operatorname{typ}(\mathcal{K}) = \{\operatorname{typ}(\mathbf{A}) : \mathbf{A} \text{ is a finite algebra in } \mathcal{K}\}$.

Congruence extension property: An algebraic structure **A** has the congruence extension property (CEP) if for any algebraic substructure $\mathbf{B} \leq \mathbf{A}$ and any congruence relation θ on **B** there exists a congruence relation ψ on **A** such that $\psi \cap (B \times B) = \theta$. A class of algebraic structures has the congruence extension property if each of its members has the congruence extension property.

For a class \mathcal{K} of algebraic structures, a congruence θ on an algebra \mathbf{B} is a \mathcal{K} -congruence if $\mathbf{B}//\theta \in \mathcal{K}$. If \mathbf{B} is a subalgebra of \mathbf{A} , we say that a \mathcal{K} -congruence θ of \mathbf{B} can be extended to \mathbf{A} if there is a \mathcal{K} -congruence ψ on \mathbf{A} such that $\psi \cap (B \times B) = \theta$. Note that if \mathcal{K} is a variety and $B \in \mathcal{K}$ then every congruence of \mathbf{B} is a \mathcal{K} -congruence.

Definable principal congruences: A (quasi)variety \mathcal{K} of algebraic structures has first-order definable principal (relative) congruences (DP(R)C) if there is a first-order formula $\phi(u,v,x,y)$ such that for all $\mathbf{A} \in \mathcal{K}$ we have $\langle x,y \rangle \in \mathrm{Cg}_{\mathcal{K}}(u,v) \iff \mathbf{A} \models \phi(u,v,x,y)$. Here $\theta = \mathrm{Cg}_{\mathcal{K}}(u,v)$ denotes the smallest (relative) congruence that identifies the elements u,v, where "relative" means that $\mathbf{A}//\theta \in \mathcal{K}$.

If an algebra has equationally definable principal (relative) congruences, then it has definable principal congruences.

Equationally def. pr. cong.: A (quasi)variety \mathcal{K} of algebraic structures has equationally definable principal (relative) congruences (EDP(R)C) if there is a finite conjunction of atomic formulas $\phi(u,v,x,y)$ such that for all algebraic structures $\mathbf{A} \in \mathcal{K}$ we have $\langle x,y \rangle \in \operatorname{Cg}_{\mathcal{K}}(u,v) \iff \mathbf{A} \models \phi(u,v,x,y)$. Here $\theta = \operatorname{Cg}_{\mathcal{K}}(u,v)$ denotes the smallest (relative) congruence that identifies the elements u,v, where "relative" means that $\mathbf{A}//\theta \in \mathcal{K}$. Note that when the structures are algebras then the atomic formulas are simply equations. Blok and Pigozzi [1994]

Amalgamation property: An amalgam is a tuple $\langle \mathbf{A}, f, \mathbf{B}, g, \mathbf{C} \rangle$ such that $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are structures of the same signature, and $f : \mathbf{A} \to \mathbf{B}, g : \mathbf{A} \to \mathbf{C}$ are embeddings (injective morphisms).

A class \mathcal{K} of structures is said to have the amalgamation property if for every amalgam $\langle \mathbf{A}, f, \mathbf{B}, g, \mathbf{C} \rangle$ with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and $A \neq \emptyset$ there exists a structure $\mathbf{D} \in \mathcal{K}$ and embeddings $f' : \mathbf{B} \to \mathbf{D}$, $g' : \mathbf{C} \to \mathbf{D}$ such that $f' \circ f = g' \circ g$.

Strong amalgamation property: A class \mathcal{K} of structures is said to have the strong amalgamation property, or SAP for short, if for every amalgam $\langle \mathbf{A}, f, \mathbf{B}, g, \mathbf{C} \rangle$ with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and $A \neq \emptyset$ there exists a structure $\mathbf{D} \in \mathcal{K}$ and embeddings $f' : \mathbf{B} \to \mathbf{D}$, $g' : \mathbf{C} \to \mathbf{D}$ such that $f' \circ f = g' \circ g$ and $\operatorname{Im}(f') \cap \operatorname{Im}(g') = \operatorname{Im}(f' \circ f)$, where $\operatorname{Im}(f') = \{f'(x) | x \in B\}$.

If an algebra has the amalgamation property or its epimorphisms are surjective, then it has the strong amalgamation property. If an algebra has the strong amalgamation property, then it has the amalgamation property.

Epimorphisms are surjective: A morphism h in a category is an epimorphism if it is right-cancellative, i.e. for all morphisms f, g in the category $f \circ h = g \circ h$ implies f = g.

Epimorphisms are surjective in a (concrete) category of structures if the underlying function of every epimorphism is surjective.

If a concrete category has the amalgamation property and all epimorphisms are surjective, then it has the strong amalgamation property Kiss et al. [1983].

4. Comments, questions and open problems

A proper po-algebra is one where the partial order \leq is not equationally definable so, in particular, neither a join-semilattice nor a meet-semilattice.

The most interesting po-algebras in this survey are the proper ones with some operation(s) that are order-reversing is some coordinate(s) since they have not been studied much, especially from an algebraic point of view (with the notable exception of po-groups Glass [1999]).

Some simple results are included here, and while they may be well known, we are not aware of references to them in the literature.

Lemma 7. For any po-algebra the equivalence relation corresponding to the partition of the poset into connected components is a congruence.

LEMMA 8. If po-algebra has a residuated binary operation then the connected components of the poset are both up and down directed. Hence in the finite case each connected component is bounded.

The class of posets has several subclasses that could be of interest:

The class of (lower/upper) bounded posets Pos_{\perp} , Pos_{\top} , $Pos_{\perp \top}$.

The class of forests: $x, y \le z \implies x \le y$ or $y \le x$

The class of root systems (dual forests).

The class of posets that are both forests and root systems. (Prove this is equivalent to having all components linearly ordered.)

The class of (up/down)-directed posets (but these are not universal classes).

The class of posets with bounded components. (Is this a first-order class?)

The class Pos_m of posets with m constants that are maximal elements (for fixed m). This should not be a po-quasivariety.

The class of posets with n constants that are minimal elements (for fixed n).

Here are some (very naive) questions:

- Can a finite proper po-algebra support a residuated binary operation?
- Can Jónsson's lemma be generalized to po-algebras?
- Can the Malcev condition for congruence distributivity be generalized? How about all Malcev conditions from universal algebra? Do they transfer?
- Is there a congruence distributive po-variety that includes proper po-algebras?

5. Naming of classes

There are many conventions for naming particular categories and classes of structures. Long names usually contain several adjectives followed by a name for a (large) class. To avoid too many different names for the same class, the adjectives are usually listed in alphabetical order.

Most adjectives and prefixes refer to properties that restrict a larger class, but *pseudo*, *generalized*, *semi*, *noncommutative*, etc. remove certain properties. In this setting, the prefix *non* is usually nonexclusive, so e. g., the class of noncommutative rings includes all commutative rings (and probably should have been called *not necessarily commutative* rings).

The conventions for abbreviated names far less standardized. Here we mostly follow conventions from Galatos et al. [2007], extended with many well known abbreviations.

List of prefixes used in the unique names for (most) classes. They are usually added in alphabetical order.

- Ab = abelian xy = yx
- \bullet B = Boolean
- b = bounded $\bot < x < \top$
- C = commutative xy = yx
- $c = \text{contraction } x \leq xx$
- Can = cancellative xz = yz or $zx = zy \implies x = y$
- Cy = cyclic $\sim x = -x$
- D = distributive $x \land (y \lor z) = (x \land y) \lor (x \land z)$
- Dm = De Morgan $-(x \land y) = -x \lor -y, -(x \lor y) = -x \land -y$
- $d\ell$ = distributive lattice-ordered
- e = exchange = commutative
- G = generalized (noncommutative and no bottom constant)
- H = Heyting
- I = integral $x \le 1$, or $xy \le x, y$
- Id = idempotent xx = x
- In = involutive $-\sim x = x = \sim -x$
- J = join-semilattice-ordered
- \bullet K = Kleene
- L = lattice-ordered
- lb = lower bounded $\perp \leq x$
- Lr = left residuated $xy \le z \iff y \le x \setminus z$

- Lt = left
- M = meet-semilattice-ordered
- Mod = modular
- \bullet N = negated
- Nl = nilpotent
- p = pointed c = c
- ps = pseudo
- $\bullet q = quasi$
- Po = partially-ordered
- Reg = regular
- R = residuated = Lr and $xy \le z \iff x \le z/y$
- Rt = right
- Sl = semilinear
- Sqd = square decreasing $xx \le x$
- Sqi = square increasing $x \le xx$
- To = totally-ordered $x \leq y$ or $y \leq x$
- \bullet _w = weakening = integral and lower bounded

List of abbreviations used at the end of the unique names for (most) classes:

- Alg = A = algebras
- BL = basic logic algebras
- Bnd = bands
- Chn = chains = totally ordered sets
- Dom = domain
- Grp = groups
- FL = full Lambek algebras
- Fld = fields
- Hp = hoops
- IMTL = involutive MTL-algebras
- Jslat = join-semilattices
- Lat = lattices
- Lp = loops
- Mag = magmas
- Mon = monoids
- Mslat = meet-semilattices
- MTLA = monoidal t-norm logic algebras
- MV = many-valued logic algebras
- Pos = posets
- Qgrp = quasigroup
- RA = relation algebras
- \bullet RL = residuated lattices
- Rng = rings
- Set = sets
- Sgrp = semigroups
- Srng = semirings
- Un = Unar = set with a unary operation

CHAPTER 2

Partially ordered algebras

Thick lines mean that new operations or constants are added. Standard lines mean only new (quasi)(in)equational axioms are added.

RPoUn = residuated po-unar

Pregroups (Lambek 2000)

Abelian pregroups (Cesari 1989 https://doi.org/10.1016/S0049-237X(08)70269-6)

Quantum B-algebras (Rump 2013 https://doi.org/10.2478/s11533-013-0302-0 Def 1.2)

1. Pos: Partially ordered sets

Definition

A partially ordered set (also called ordered set or poset for short) is a po-algebra $\mathbf{P} = \langle P, \leq \rangle$ with no operations such that P is a set and \leq is a binary relation on P that is

reflexive: $x \leq x$,

transitive: $x \le y$ and $y \le z \implies x \le z$ and

antiymmetric: $x \le y$ and $y \le x \implies x = y$.

Definition

A strict partial order is a po-algebra $\langle P, < \rangle$ such that P is a set and < is a binary relation on P that is irreflexive: $\neg(x < x)$

transitive: x < y and $y < z \implies x < y$

Remark: The above definitions are related via: $x \le y \iff x < y \text{ or } x = y \text{ and } x < y \iff x \le y, x \ne y$. For a partially ordered set \mathbf{P} , define the dual $\mathbf{P}^{\partial} = \langle P, \geq \rangle$ by $x \ge y \iff y \le x$. Then \mathbf{P}^{∂} is also a partially ordered set.

Formal Definition

x < x

 $x \le y \text{ and } y \le z \implies x \le z$

 $x \le y$ and $y \le x \implies x = y$

Examples

Example 1: $\langle \mathbb{R}, \leq \rangle$, the real numbers with the standard order.

Example 2: $\langle P(S), \subseteq \rangle$, the collection of subsets of a sets S, ordered by inclusion.

Example 3: Any poset is order-isomorphic to a poset of subsets of some set, ordered by inclusion.

Properties

Classtype	Universal Horn class
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

 $f_1=1,\ f_2=2,\ f_3=5,\ f_4=16,\ f_5=63,\ f_6=318,\ f_7=2045,\ f_8=16999,\ f_9=183231,\ f_{10}=2567284,\ f_{11}=46749427,\ f_{12}=1104891746,\ f_{13}=33823827452,\ f_{14}=1338193159771,\ f_{15}=68275077901156,\ f_{16}=4483130665195087$

oeis.org/A000112

Small Members (not in any subclass)

Subclasses

Jslat: Join-semilattices Mslat: Meet-semilattices

PoImpA: Partially ordered implication algebras

PoMag: Partially ordered magmas

PoNUn: Partially ordered negated unars

PoUn: Partially ordered unars Set: The category of sets pPos: Pointed posets

Superclasses

Cont|Po|J|M|L|D|To|B|U|Ind

2. pPos: Pointed posets

Definition

A pointed poset is a po-algebra $\mathbf{P} = \langle P, \leq, c \rangle$ such that P is a partially ordered set and c is a constant operation on P.

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 11, f_4 = 47, f_5 = 243$$

Small Members (not in any subclass)

Subclasses

PoMon: Partially ordered monoids pJslat: Pointed join-semilattices pMslat: Pointed meet-semilattices pSet: The category of pointed sets

Superclasses

Pos: Partially ordered sets

Cont|Po|J|M|L|D|To|B|U|Ind

3. PoUn: Partially ordered unars

Definition

A partially ordered unar (also called a po-unar for short) is a po-algebra $\mathbf{P} = \langle P, \leq, f \rangle$ such that P is a partially ordered set and f is a unary operation on P that is

order-preserving: $x \le y \implies f(x) \le f(y)$

Formal Definition

$$x \le y \implies f(x) \le f(y)$$

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 43, f_4 = 452$$

Subclasses

GalPos: Galois posets

JUn: Join-semilattice-ordered unars MUn: Meet-semilattice-ordered unars RPoUn: Residuated partially ordered unars

Unar: Unary Algebras

Superclasses

Pos: Partially ordered sets

Cont|Po|J|M|L|D|To|B|U|Ind

4. PoNUn: Partially ordered negated unars

Definition

A partially ordered negated unar (also called a po-nunar for short) is a po-algebra $\mathbf{P} = \langle P, \leq, \sim \rangle$ such that P is a partially ordered set and \sim is a unary operation on P that is

order-reversing: $x \leq y \implies \sim y \leq \sim x$

Formal Definition

$$x \le y \implies \sim y \le \sim x$$

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 39, f_4 = 386, f_5 = 5203$$

Subclasses

GalPos: Galois posets

JNUn: Join-semilattice-ordered negated unars MNUn: Meet-semilattice-ordered negated unars

Superclasses

Pos: Partially ordered sets

Cont|Po|J|M|L|D|To|B|U|Ind

5. PoMag: Partially ordered magmas

Definition

A partially ordered magma is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot \rangle$ such that

 $\langle A, \cdot \rangle$ is a magma

 $\langle A, \leq \rangle$ is a partially ordered set

· is orderpreserving: $x \le y \implies x \cdot z \le y \cdot z$ and $z \cdot x \le z \cdot y$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 16, f_3 = 4051$$

Subclasses

JMag: Join-semilattice-ordered magmas

LrPoMag: Left-residuated partially ordered magmas

MMag: Meet-semilattice-ordered magmas PoSgrp: Partially ordered semigroups

Superclasses

Pos: Partially ordered sets

Cont|Po|J|M|L|D|To|B|U|Ind

${\bf 6.~~PoSgrp:~Partially~ordered~semigroups}$

Definition

A partially ordered semigroup is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot \rangle$ such that

 $\langle A, \cdot \rangle$ is a semigroup

 $\langle A, \leq \rangle$ is a partially ordered set

· is orderpreserving: $x \leq y \implies x \cdot z \leq y \cdot z$ and $z \cdot x \leq z \cdot y$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Examples

Example 1: The natural numbers larger than 1, with addition, or with multiplication.

Properties

Classtype Quasivariety

Finite Members

$$f_1 = 1, f_2 = 11, f_3 = 173, f_4 = 4753, f_5 = 198838, f_6 = 13457454, f_7 = 4207546916$$

Subclasses

CPoSgrp: Commutative partially ordered semigroups IdPoSgrp: Idempotent partially ordered semigroups

JSgrp: Join-semilattice-ordered semigroups

LrPoSgrp: Left-residuated partially ordered semigroups

MSgrp: Meet-semilattice-ordered semigroups

PoMon: Partially ordered monoids

Superclasses

PoMag: Partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

7. PoMon: Partially ordered monoids

Definition

A partially ordered monoid is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, 1 \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a monoid

 $\langle A, \leq \rangle$ is a partially ordered set

· is orderpreserving: $x \le y \implies wxz \le wyz$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

Basic Results

Every monoid with the discrete partial order is a po-monoid.

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 37, f_4 = 549$$

Subclasses

CPoMon: Commutative partially ordered monoids

IPoMon: Integral partially ordered monoids IdPoMon: Idempotent partially ordered monoids

JMon: Join-semilattice-ordered monoids

LrPoMon: Left-residuated partially ordered monoids

MMon: Meet-semilattice-ordered monoids

Superclasses

PoSgrp: Partially ordered semigroups

8. IPoMon: Integral partially ordered monoids

Definition

An integral partially ordered monoid is a partially ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1 \rangle$ such that $x \leq 1$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

Properties

| Classtype | po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 11, f_5 = 102, f_6 = 1609$$

Subclasses

CIPoMon: Commutative integral partially ordered monoids

IJMon: Integral join-semilattice-ordered monoids IMMon: Integral meet-semilattice-ordered monoids

Polrim: Partially ordered left-residuated integral monoids

Superclasses

PoMon: Partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

9. IdPoSgrp: Idempotent partially ordered semigroups

Definition

An idempotent partially ordered semigroup is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot \rangle$ such that $\langle A, \leq, \cdot \rangle$ is a partially ordered semigroup and

· is idempotent:
$$x \cdot x = x$$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$
$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 $x \cdot x = x$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 7, f_3 = 69, f_4 = 1035$$

Subclasses

CIdPoSgrp: Commutative idempotent partially ordered semigroups

IdJSgrp: Idempotent join-semilattice-ordered semigroups

 ${\bf IdLrPoSgrp:\ Idempotent\ left-residuated\ partially\ ordered\ semigroups}$

IdMSgrp: Idempotent meet-semilattice-ordered semigroups

IdPoMon: Idempotent partially ordered monoids

Superclasses

PoSgrp: Partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

10. IdPoMon: Idempotent partially ordered monoids

Definition

An idempotent partially ordered monoid is a partially ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1 \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot x = x$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 23, f_4 = 238, f_5 = 3356$$

Subclasses

CIdPoMon: Commutative idempotent partially ordered monoids

IdJMon: Idempotent join-semilattice-ordered monoids

IdLrPoMon: Idempotent left-residuated partially ordered monoids

IdMMon: Idempotent meet-semilattice-ordered monoids

Superclasses

IdPoSgrp: Idempotent partially ordered semigroups

PoMon: Partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

11. PoImpA: Partially ordered implication algebras

Formal Definition

$$\begin{array}{l} x \leq y \implies y \rightarrow z \leq x \rightarrow z \\ x \leq y \implies z \rightarrow x \leq z \rightarrow y \end{array}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 16, f_3 = 3981$$

Subclasses

DivPos: Division posets

JImpA: Join-semilattice-ordered implication algebras LrPoMag: Left-residuated partially ordered magmas MImpA: Meet-semilattice-ordered implication algebras

Superclasses

Pos: Partially ordered sets

Cont|Po|J|M|L|D|To|B|U|Ind

12. LrPoMag: Left-residuated partially ordered magmas

Definition

A left-residuated partially ordered magma (or lrpo-magma) is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus \rangle$ such that $\langle A, \leq \rangle$ is a partially ordered set,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$
$$x \le y \implies z \cdot x \le z \cdot y$$
$$x \cdot y \le z \iff y \le x \setminus z$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 110$$

Subclasses

LrJMag: Left-residuated join-semilattice-ordered magmas LrMMag: Left-residuated meet-semilattice-ordered magmas LrPoSgrp: Left-residuated partially ordered semigroups

RPoMag: Residuated partially ordered magmas

Superclasses

PoImpA: Partially ordered implication algebras

PoMag: Partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

13. LrPoSgrp: Left-residuated partially ordered semigroups

Definition

A left-residuated partially ordered semigroup (or lrpo-semigroup) is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus \rangle$ such that $\langle A, \leq \rangle$ is a partially ordered set,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

Properties

Finite Members

$$f_1 = 1, f_2 = 5, f_3 = 28, f_4 = 273, f_5 = 3788$$

Subclasses

IdLrPoSgrp: Idempotent left-residuated partially ordered semigroups

LrJSgrp: Left-residuated join-semilattice-ordered semigroups LrMSgrp: Left-residuated meet-semilattice-ordered semigroups

LrPoMon: Left-residuated partially ordered monoids RPoMon: Residuated partially ordered monoids RPoSgrp: Residuated partially ordered semigroups

Superclasses

LrPoMag: Left-residuated partially ordered magmas

PoSgrp: Partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

14. LrPoMon: Left-residuated partially ordered monoids

Definition

A left-residuated partially ordered monoid (or lrpo-monoid) is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus \rangle$ such that $\langle A, \leq \rangle$ is a partially ordered set,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 32, f_5 = 234, f_6 = 2493$$

Subclasses

IdLrPoMon: Idempotent left-residuated partially ordered monoids

LrJMon: Left-residuated join-semilattice-ordered monoids LrMMon: Left-residuated meet-semilattice-ordered monoids Polrim: Partially ordered left-residuated integral monoids

RPoMon: Residuated partially ordered monoids

Superclasses

LrPoSgrp: Left-residuated partially ordered semigroups

PoMon: Partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

15. Polrim: Partially ordered left-residuated integral monoids

Definition

A partially ordered left-residuated integral monoid (or politim for short) is a left-residuated partially ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus \rangle$ for which

 $x \leq 1$.

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ x \cdot 1 = x \\ 1 \cdot x = x \\ x \leq 1 \\ x \cdot y \leq z \iff y \leq x \backslash z \end{array}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 51, f_6 = 409$$

Subclasses

ILrJMon: Integral left-residuated join-semilattice-ordered monoids ILrMMon: Integral left-residuated meet-semilattice-ordered monoids

Porim: Partially ordered residuated integral monoids

Superclasses

IPoMon: Integral partially ordered monoids

LrPoMon: Left-residuated partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

16. IdLrPoSgrp: Idempotent left-residuated partially ordered semigroups

Definition

An idempotent left-residuated partially ordered semigroup is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus \rangle$ such that $\langle A, \leq, \cdot, \setminus \rangle$ is a left-residuated partially ordered semigroup and

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot x = x$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 12, f_4 = 71, f_5 = 524$$

Subclasses

IdLrJSgrp: Idempotent left-residuated join-semilattice-ordered semigroups IdLrMSgrp: Idempotent left-residuated meet-semilattice-ordered semigroups

IdLrPoMon: Idempotent left-residuated partially ordered monoids IdRPoSgrp: Idempotent residuated partially ordered semigroups

Superclasses

IdPoSgrp: Idempotent partially ordered semigroups

LrPoSgrp: Left-residuated partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

17. IdLrPoMon: Idempotent left-residuated partially ordered monoids

Definition

An idempotent left-residuated partially ordered monoid is a left-residuated partially ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \cdot \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$
$$x \le y \implies z \cdot x \le z \cdot y$$

$$\begin{aligned} &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &x \cdot y \leq z \iff y \leq x \backslash z \\ &x \cdot x = x \end{aligned}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 12, f_5 = 59, f_6 = 350$$

Subclasses

IdLrJMon: Idempotent left-residuated join-semilattice-ordered monoids IdLrMMon: Idempotent left-residuated meet-semilattice-ordered monoids

IdRPoMon: Idempotent residuated partially ordered monoids

Superclasses

IdLrPoSgrp: Idempotent left-residuated partially ordered semigroups

IdPoMon: Idempotent partially ordered monoids LrPoMon: Left-residuated partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

18. RPoUn: Residuated partially ordered unars

Formal Definition

A residuated partially ordered unar (also called a rpo-unar for short) is a po-algebra $\mathbf{P} = \langle P, \leq, f, g \rangle$ such that $\langle P, \leq \rangle$ is a partially ordered set and f, g are unary operations on P that g is the upper residual of f, or equivalently, g is the right adjoint of f:

$$f(x) \le y \iff x \le g(y).$$

Basic Results

Both f and g are order preserving. More specifically, f preserves all existing joins and g preserves all existing meets.

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 16, f_4 = 87, f_5 = 562$$

Subclasses

InPoMon: Involutive partially ordered monoids RJUn: Residuated join-semilattice-ordered unars RMUn: Residuated meet-semilattice-ordered unars

Superclasses

PoUn: Partially ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

19. DivPos: Division posets

Formal Definition

A division poset is a po-algebra $\mathbf{P} = \langle P, \leq, \backslash, / \rangle$ such that $\langle P, \leq \rangle$ is a partially ordered set, $x \leq y \implies z \backslash x \leq z \backslash y$, $x \leq y \implies x/z \leq y/z$ and

 $x \le z/y \iff y \le x \backslash z$.

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 123$$

Subclasses

CDivPos: Commutative division posets DivJslat: Division join-semilattices DivMslat: Division meet-semilattices

RPoMag: Residuated partially ordered magmas

Superclasses

PoImpA: Partially ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

20. RPoMag: Residuated partially ordered magmas

Definition

A residuated partially ordered magma (or rpo-magma) is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that $\langle A, \leq \rangle$ is a partially ordered set,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \le z \iff y \le x \setminus z$ / is the right residual of $: x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \end{array}$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 28, f_4 = 1200$$

Subclasses

CRPoMag: Commutative residuated partially ordered magmas

InPoMag: Involutive partially ordered magmas

RJMag: Residuated join-semilattice-ordered magmas RMMag: Residuated meet-semilattice-ordered magmas RPoSgrp: Residuated partially ordered semigroups

Superclasses

DivPos: Division posets

LrPoMag: Left-residuated partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

21. RPoSgrp: Residuated partially ordered semigroups

Definition

A residuated partially ordered semigroup is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that $\langle A, \leq \rangle$ is a partially ordered set, $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \le z \iff y \le x \setminus z$ \ / is the right residual of $: x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 16, f_4 = 154, f_5 = 2100$$

Subclasses

CRPoSgrp: Commutative residuated partially ordered semigroups IdRPoSgrp: Idempotent residuated partially ordered semigroups

InPoSgrp: Involutive partially ordered semigroups

RJSgrp: Residuated join-semilattice-ordered semigroups RMSgrp: Residuated meet-semilattice-ordered semigroups

RPoMon: Residuated partially ordered monoids

Superclasses

LrPoSgrp: Left-residuated partially ordered semigroups

RPoMag: Residuated partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

22. RPoMon: Residuated partially ordered monoids

Definition

A residuated partially ordered monoid (or rpo-monoid) is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that $\langle A, \leq \rangle$ is a partially ordered set,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

Properties

Classtype | po-variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 28, f_5 = 186$$

Subclasses

CRPoMon: Commutative residuated partially ordered monoids IdRPoMon: Idempotent residuated partially ordered monoids

InPoMon: Involutive partially ordered monoids

Porim: Partially ordered residuated integral monoids RJMon: Residuated join-semilattice-ordered monoids RMMon: Residuated meet-semilattice-ordered monoids

Superclasses

LrPoMon: Left-residuated partially ordered monoids LrPoSgrp: Left-residuated partially ordered semigroups

RPoSgrp: Residuated partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

23. Porim: Partially ordered residuated integral monoids

Definition

A partially ordered residuated integral monoid is an rpo-monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that x is integral: x < 1

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

Properties

| Classtype | po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 365$$

Subclasses

IRJMon: Integral residuated join-semilattice-ordered monoids IRMMon: Meet-semilattice-ordered residuated integral monoids

InPorim: Involutive partially ordered integral monoids

Pocrim: Partially ordered commutative residuated integral monoids

Superclasses

Polrim: Partially ordered left-residuated integral monoids

RPoMon: Residuated partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

24. IdRPoSgrp: Idempotent residuated partially ordered semigroups

Definition

An idempotent residuated partially ordered semigroup is a residuated partially ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \cdot, \cdot \rangle$ such that

· is idempotent: $x \cdot x = x$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

 $x \le y \implies z \cdot x \le z \cdot y$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
 $x \cdot x = x$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 24, f_5 = 169$$

Subclasses

CIdRPoSgrp: Commutative idempotent residuated partially ordered semigroups

IdRJSgrp: Idempotent residuated join-semilattice-ordered semigroups IdRMSgrp: Idempotent residuated meet-semilattice-ordered semigroups

IdRPoMon: Idempotent residuated partially ordered monoids

Superclasses

IdLrPoSgrp: Idempotent left-residuated partially ordered semigroups

RPoSgrp: Residuated partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

25. IdRPoMon: Idempotent residuated partially ordered monoids

Definition

An idempotent residuated partially ordered monoid is a residuated partially ordered monoid $\mathbf{A} = \langle A, \leq , \cdot, 1, \setminus, / \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot x = x$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 32, f_6 = 148$$

Subclasses

CIdRPoMon: Commutative idempotent residuated partially ordered monoids

IdRJMon: Idempotent residuated join-semilattice-ordered monoids IdRMMon: Idempotent residuated meet-semilattice-ordered monoids

Superclasses

IdLrPoMon: Idempotent left-residuated partially ordered monoids IdRPoSgrp: Idempotent residuated partially ordered semigroups

RPoMon: Residuated partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

26. GalPos: Galois posets

Definition

A Galois poset is a po-algebra $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that P is a partially ordered set and $\sim, -$ are a pair of unary operations on P that form a

Galois connection: $x \le \sim y \iff y \le -x$

Formal Definition

$$x \le \sim y \iff y \le -x$$

Basic Results

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 15, f_4 = 83, f_5 = 539$$

Subclasses

GalJslat: Galois join-semilattices GalMslat: Galois meet-semilattices

InPos: Involutive posets

Superclasses

PoNUn: Partially ordered negated unars

PoUn: Partially ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

27. InPos: Involutive posets

Definition

An involutive poset is a Galois poset $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that $\sim, -$ are inverses of each other:

$$\sim -x = x$$

$$-\sim x = x$$

Formal Definition

$$x \le \sim y \iff y \le -x$$

$$\sim -x = x$$

$$-\sim x = x$$

Basic Results

Properties

-	
Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 5, f_4 = 16, f_5 = 30, f_6 = 108$$

Subclasses

InLat: Involutive lattices

InPoMag: Involutive partially ordered magmas

Superclasses

GalPos: Galois posets

Cont|Po|J|M|L|D|To|B|U|Ind

28. InPoMag: Involutive partially ordered magmas

Definition

An involutive partially ordered magma (or inpo-magma) is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is a partially ordered magma,

 \sim , – is an involutive pair: $\sim -x = x = -\sim x$,

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$
 and

$$x \cdot y \le z \iff x \le -(y \cdot \sim z).$$

Formal Definition

$$\sim -x = x$$

$$-\sim x = x$$

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$

$$x \cdot y \le z \iff x \le -(y \cdot \sim z)$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 12, f_4 = 77, f_5 = 498$$

Subclasses

CyInPoMag: Cyclic involutive partially ordered magmas

InLMag: Involutive lattice-ordered magmas

InPoSgrp: Involutive partially ordered semigroups

Superclasses

InPos: Involutive posets

RPoMag: Residuated partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

29. InPoSgrp: Involutive partially ordered semigroups

Definition

An involutive partially ordered semigroup (or inpo-semigroup) is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is an involutive partially ordered magma and

$$\cdot$$
 is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Formal Definition

$$\sim -x = x$$

$$-\sim x = x$$

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$

$$x \cdot y \le z \iff x \le -(y \cdot \sim z)$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 10, f_4 = 50, f_5 = 210, f_6 = 1721$$

Subclasses

CyInPoSgrp: Cyclic involutive partially ordered semigroups

InLSgrp: Involutive lattice-ordered semigroups InPoMon: Involutive partially ordered monoids

Superclasses

InPoMag: Involutive partially ordered magmas

30. InPoMon: Involutive partially ordered monoids

Definition

An involutive partially ordered monoid (or inpo-monoid) is a po-algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is an involutive partially ordered semigroup that has an identity: $x \cdot 1 = x = 1 \cdot x$

Formal Definition

$$\begin{aligned} & \sim -x = x \\ & -\sim x = x \\ & x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \end{aligned}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 5, f_4 = 20, f_5 = 39, f_6 = 179, f_7 = 500$$

Subclasses

CyInPoMon: Cyclic involutive partially ordered monoids InPorim: Involutive partially ordered integral monoids

PoGrp: Partially ordered groups

Superclasses

InPoSgrp: Involutive partially ordered semigroups RPoMon: Residuated partially ordered monoids RPoUn: Residuated partially ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

31. InPorim: Involutive partially ordered integral monoids

Definition

An involutive partially ordered integral monoid (or in-porim) is an involutive partially ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ that is

integral: $x \leq 1$

Formal Definition

$$\begin{array}{l} {\sim}{-x} = x \\ {-\sim}{x} = x \\ x \cdot y \le z \iff y \le {\sim}(-z \cdot x) \\ x \cdot y \le z \iff x \le -(y \cdot {\sim}z) \\ (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ x \cdot 1 = x \\ 1 \cdot x = x \\ x < 1 \end{array}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 13, f_7 = 17, f_8 = 84$$

Subclasses

CyInPorim: Cyclic involutive partially ordered integral monoids

Superclasses

InPoMon: Involutive partially ordered monoids

Porim: Partially ordered residuated integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

32. CyInPoMag: Cyclic involutive partially ordered magmas

Definition

A cyclic involutive partially ordered magma (or cyinpo-magma) is an inpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$--x = x$$

$$x \cdot y \le z \iff y \le -(-z \cdot x)$$

$$x \cdot y \le z \iff x \le -(y \cdot -z)$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 12, f_4 = 76, f_5 = 481$$

Subclasses

CInPoMag: Commutative involutive partially ordered magmas

CyInLMag: Cyclic involutive lattice-ordered magmas

CyInPoSgrp: Cyclic involutive partially ordered semigroups

Superclasses

InPoMag: Involutive partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

33. CyInPoSgrp: Cyclic involutive partially ordered semigroups

Definition

A cyclic involutive partially ordered semigroup (or cyinpo-semigroup) is a cyinpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

$$\cdot$$
 is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Formal Definition

$$--x = x$$

$$x \cdot y \le z \iff y \le -(-z \cdot x)$$

$$x \cdot y \le z \iff x \le -(y \cdot -z)$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 10, f_4 = 50, f_5 = 196, f_6 = 1397$$

Subclasses

CInPoSgrp: Commutative involutive partially ordered semigroups

CyInLSgrp: Cyclic involutive lattice-ordered semigroups CyInPoMon: Cyclic involutive partially ordered monoids

Superclasses

CyInPoMag: Cyclic involutive partially ordered magmas

InPoSgrp: Involutive partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

34. CyInPoMon: Cyclic involutive partially ordered monoids

Definition

A cyclic involutive partially ordered monoid (or cyinpo-monoid) is an inpo-monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that

 \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \end{aligned}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 5, f_4 = 20, f_5 = 39, f_6 = 176, f_7 = 493$$

Subclasses

CInPoMon: Commutative involutive partially ordered monoids CyInPorim: Cyclic involutive partially ordered integral monoids

PoGrp: Partially ordered groups

Superclasses

CyInPoSgrp: Cyclic involutive partially ordered semigroups

InPoMon: Involutive partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

35. CyInPorim: Cyclic involutive partially ordered integral monoids

Definition

A cyclic involutive partially ordered integral monoid (or cyclic involutive porim) is an involutive porim $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that

 \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \\ & x \leq 1 \end{aligned}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 12, f_7 = 15, f_8 = 79$$

Subclasses

InPocrim: Involutive partially ordered commutative integral monoids

Superclasses

CyInPoMon: Cyclic involutive partially ordered monoids InPorim: Involutive partially ordered integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

36. PoGrp: Partially ordered groups

Definition

A partially ordered group is a po-algebra $\mathbf{G} = \langle G, \cdot, ^{-1}, 1, \leq \rangle$ such that

 $\langle G, \cdot, ^{-1}, 1 \rangle$ is a group

 $\langle G, \leq \rangle$ is a partially ordered set

· is orderpreserving: $x \leq y \implies wxz \leq wyz$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x^{-1} \cdot x = 1$$

$$x \cdot x^{-1} = 1$$

Examples

Example 1: The integers, the rationals and the reals with the usual order.

Basic Results

Any group is a partially ordered group with equality as partial order.

Any finite partially ordered group has only the equality relation as partial order.

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 1, f_6 = 2, f_7 = 1, f_8 = 5, f_9 = 2, f_{10} = 2$$

Subclasses

AbPoGrp: Abelian partially ordered groups

LGrp: Lattice-ordered groups

Superclasses

CyInPoMon: Cyclic involutive partially ordered monoids

InPoMon: Involutive partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

37. CPoSgrp: Commutative partially ordered semigroups

Definition

A commutative partially ordered semigroup is a partially ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot y = y \cdot x$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 7, f_3 = 83, f_4 = 1468, f_5 = 37248, f_6 = 1337698, f_7 = 71748346$$

Subclasses

CIdPoSgrp: Commutative idempotent partially ordered semigroups

CJSgrp: Commutative join-semilattice-ordered semigroups CMSgrp: Commutative meet-semilattice-ordered semigroups

CPoMon: Commutative partially ordered monoids

CRPoSgrp: Commutative residuated partially ordered semigroups

Superclasses

PoSgrp: Partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

38. CPoMon: Commutative partially ordered monoids

Definition

A commutative partially ordered monoid is a partially ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 27, f_4 = 301, f_5 = 4887$$

Subclasses

CIPoMon: Commutative integral partially ordered monoids

CIdPoMon: Commutative idempotent partially ordered monoids

CJMon: Commutative join-semilattice-ordered monoids

CMMon: Commutative meet-semilattice-ordered monoids

CRPoMon: Commutative residuated partially ordered monoids

Superclasses

CPoSgrp: Commutative partially ordered semigroups

PoMon: Partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

39. CIPoMon: Commutative integral partially ordered monoids

Definition

A commutative integral partially ordered monoid is a integral partially ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$x \cdot y = y \cdot x$ Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 60, f_6 = 590$$

Subclasses

CIJMon: Commutative Integral join-semilattice-ordered monoids CIMMon: Commutative Integral meet-semilattice-ordered monoids Pocrim: Partially ordered commutative residuated integral monoids

Superclasses

CPoMon: Commutative partially ordered monoids

IPoMon: Integral partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

40. CIdPoSgrp: Commutative idempotent partially ordered semigroups

Definition

A commutative idempotent partially ordered semigroup is a po-algebra $\mathbf{A}=\langle A,\leq,\cdot\rangle$ such that $\langle A,\leq,\cdot\rangle$ is an idempotent partially ordered semigroup and

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 19, f_4 = 171, f_5 = 2069$$

Subclasses

 ${\bf CIdJSgrp:\ Commutative\ idempotent\ join-semilattice-ordered\ semigroups}$

CIdMSgrp: Commutative idempotent meet-semilattice-ordered semigroups

CIdPoMon: Commutative idempotent partially ordered monoids

CIdRPoSgrp: Commutative idempotent residuated partially ordered semigroups

Superclasses

CPoSgrp: Commutative partially ordered semigroups

41. CIdPoMon: Commutative idempotent partially ordered monoids

Definition

A commutative idempotent partially ordered monoid is an idempotent partially ordered monoid $\mathbf{A} = \langle A, \leq A \rangle$ $,\cdot,1\rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Basic Results

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 13, f_4 = 86, f_5 = 759$$

Subclasses

CIdJMon: Commutative idempotent join-semilattice-ordered monoids CIdMMon: Commutative idempotent meet-semilattice-ordered monoids

CIdRPoMon: Commutative idempotent residuated partially ordered monoids

Superclasses

CIdPoSgrp: Commutative idempotent partially ordered semigroups

CPoMon: Commutative partially ordered monoids

IdPoMon: Idempotent partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

42. CDivPos: Commutative division posets

Definition

A commutative division partially ordered set is a division poset $\mathbf{P} = \langle P, \leq, \backslash, / \rangle$ such that

$$x \le y \implies x/z \le y/z$$
 and

\, / are commutative: $x/y = y \setminus x$.

Formal Definition

$$x \le y \implies x/z \le y/z$$

$$x \le z/y \iff y \le x \backslash z$$

$$x/y = y \backslash x$$

Basic Results

Properties

Classtype | po-variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 55, f_4 = 1434$$

Subclasses

BCK: BCK-algebras

CDivJslat: Commutative division join-semilattices CDivMslat: Commutative division meet-semilattices

CRPoMag: Commutative residuated partially ordered magmas

Superclasses

DivPos: Division posets $\operatorname{Cont}|\operatorname{Po}|\operatorname{J}|\operatorname{M}|\operatorname{L}|\operatorname{D}|\operatorname{To}|\operatorname{B}|\operatorname{U}|\operatorname{Ind}$

43. BCK: BCK-algebras

Formal Definition

A *BCK-algebra* is an algebra $\langle A, \div, 0 \rangle$ such that

(1)
$$((x \div y) \div (x \div z)) \div (z \div y) = 0$$

- (2) $x \div 0 = x$
- (3) x x = 0
- (4) $x y = y x = 0 \implies x = y$

The operation $\dot{}$ satisfies the axioms of truncated subtraction or set-difference.

Definition

A BCK-algebra is an algebra $\langle A, \rightarrow, 1 \rangle$ such that

(B)
$$(x \to y) \to ((z \to x) \to (z \to y)) = 1$$

(C)
$$x \to (y \to z) = y \to (x \to z)$$

(K)
$$x \to (y \to x) = 1$$

$$(4op) \ x \to y = y \to x = 1 \implies x = y$$

The name BCK-algebra comes from these equations. They are based on the λ -calculus combinators known as B, C, K.

Properties

Classtype	Quasivariety
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No

Finite Members

Subclasses

BCKJslat: BCK-join-semilattices BCKMslat: BCK-meet-semilattices

HilA: Hilbert algebras

Pocrim: Partially ordered commutative residuated integral monoids

Superclasses

CDivPos: Commutative division posets

Cont|Po|J|M|L|D|To|B|U|Ind

44. CRPoMag: Commutative residuated partially ordered magmas

Definition

A commutative residuated partially ordered magma is a residuated partially ordered magma $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \setminus z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot y = y \cdot x$$

Properties

| Classtype | po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 16, f_4 = 180, f_5 = 4761$$

Subclasses

CInPoMag: Commutative involutive partially ordered magmas

CRJMag: Commutative residuated join-semilattice-ordered magmas CRMMag: Commutative residuated meet-semilattice-ordered magmas CRPoSgrp: Commutative residuated partially ordered semigroups

Superclasses

CDivPos: Commutative division posets

RPoMag: Residuated partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

45. HilA: Hilbert algebras

Definition

A Hilbert algebra is an algebra $\mathbf{A} = \langle A, \rightarrow, 1 \rangle$ of type $\langle 2, 1 \rangle$ such that

$$x \to (y \to x) = 1$$
$$(x \to (y \to z)) \to ((x \to y) \to (x \to z)) = 1$$

 $x \to y = 1$ and $y \to x = 1 \implies x = y$

Definition

A Hilbert algebra is an algebra $\mathbf{A} = \langle A, \rightarrow, 1 \rangle$ of type $\langle 2, 1 \rangle$ such that

$$x \to x = 1$$

$$1 \to x = x$$

$$x \to (y \to z) = (x \to y) \to (x \to z)$$

$$(x \to y) \to ((y \to x) \to x) = (y \to x) \to ((x \to y) \to y)$$

Formal Definition

$$x \le y \iff x \to y = 1$$

$$x \to x = 1$$

$$1 \rightarrow x = x$$

$$x \to (y \to z) = (x \to y) \to (x \to z)$$

$$(x \to y) \to ((y \to x) \to x) = (y \to x) \to ((x \to y) \to y)$$

Examples

Example 1: Given any poset with top element 1, $\langle A, \leq, 1 \rangle$, define $a \to b = \begin{cases} 1 & \text{if } a \leq b \\ b & \text{otherwise.} \end{cases}$ Then $\langle A, \to, 1 \rangle$

is a Hilbert algebra.

Basic Results

Hilbert algebras are algebraic models of the implicational fragment of intuitionistic logic, i. e., they are $(\rightarrow, 1)$ -subreducts of Heyting algebras.

The variety of Hilbert algebras is not generated as a quasivariety by any of its finite members Celani and Cabrer [2005].

Properties

Classtype	variety Diego [1966]
Locally finite	yes
Congruence distributive	yes
Congruence 1-regular	yes
Congruence extension property	yes
Equationally def. pr. cong.	yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 6, f_5 = 21, f_6 = 95$$

Subclasses

TarA: Tarski algebras

Superclasses

BCK: BCK-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

46. TarA: Tarski algebras

Definition

A Tarski algebra is an algebra $\mathbf{A} = \langle A, \rightarrow, 1 \rangle$ of type $\langle 2, 1 \rangle$ such that $x \rightarrow x = 1$

$$x \to (y \to x) = x$$

$$(x \to y) \to y = (y \to x) \to x$$

$$x \to (y \to z) = y \to (x \to z)$$

Formal Definition

$$x \le y \iff x \to y = 1$$

$$1 \rightarrow x = x$$

$$x \to x = 1$$

$$x \to (y \to z) = (x \to y) \to (x \to z)$$

$$(x \to y) \to y = (y \to x) \to x$$

Basic Results

Tarski algebras are algebraic models of the implicational fragment of classical logic, i. e., they are $(\rightarrow, 1)$ -subreducts of Boolean algebras.

Properties

Classtype | Variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 2, f_6 = 3, f_7 = 5, f_8 = 8, f_9 = 11, f_{10} = 18$$

Subclasses

Superclasses

HilA: Hilbert algebras

Cont|Po|J|M|L|D|To|B|U|Ind

47. CRPoSgrp: Commutative residuated partially ordered semigroups

Definition

A commutative residuated partially ordered semigroup is a residuated partially ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \cdot, \cdot \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot y = y \cdot x$$

Properties

Classtype | po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 12, f_4 = 76, f_5 = 670$$

Subclasses

CIdRPoSgrp: Commutative idempotent residuated partially ordered semigroups

CInPoSgrp: Commutative involutive partially ordered semigroups

CRJSgrp: Commutative residuated join-semilattice-ordered semigroups CRMSgrp: Commutative residuated meet-semilattice-ordered semigroups

CRPoMon: Commutative residuated partially ordered monoids

Superclasses

CPoSgrp: Commutative partially ordered semigroups

CRPoMag: Commutative residuated partially ordered magmas

RPoSgrp: Residuated partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

48. CRPoMon: Commutative residuated partially ordered monoids

Definition

A commutative residuated partially ordered monoid is a residuated partially ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \cdot, \cdot \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Remark: These algebras are also known as lineales.

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x \cdot y &= y \cdot x \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \end{split}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 24, f_5 = 131, f_6 = 1001$$

Subclasses

CIdRPoMon: Commutative idempotent residuated partially ordered monoids

CInPoMon: Commutative involutive partially ordered monoids

CRJMon: Commutative residuated join-semilattice-ordered monoids CRMMon: Commutative residuated meet-semilattice-ordered monoids Pocrim: Partially ordered commutative residuated integral monoids

Superclasses

CPoMon: Commutative partially ordered monoids

CRPoSgrp: Commutative residuated partially ordered semigroups

RPoMon: Residuated partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

49. Pocrim: Partially ordered commutative residuated integral monoids

Definition

A partially ordered residuated integral monoid is a porim $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that x is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot y = y \cdot x$$

Properties

-	
Classtype	po-variety
Congruence distributive	Yes (relatively) Blok and Raftery [1997]
Congruence extension property	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 129$$

Subclasses

CIRJMon: Commutative integral residuated join-semilattice-ordered monoids CIRMMon: Commutative integral residuated meet-semilattice-ordered monoids

InPocrim: Involutive partially ordered commutative integral monoids

Superclasses

BCK: BCK-algebras

CIPoMon: Commutative integral partially ordered monoids CRPoMon: Commutative residuated partially ordered monoids

Porim: Partially ordered residuated integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

50. CIdRPoSgrp: Commutative idempotent residuated partially ordered semigroups

Definition

A commutative idempotent residuated partially ordered semigroup is an idempotent residuated partially ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 36, f_6 = 203$$

Subclasses

CIdRJSgrp: Commutative idempotent residuated join-semilattice-ordered semigroups

CIdRMSgrp: Commutative idempotent residuated meet-semilattice-ordered semigroups

CIdRPoMon: Commutative idempotent residuated partially ordered monoids

Superclasses

CIdPoSgrp: Commutative idempotent partially ordered semigroups CRPoSgrp: Commutative residuated partially ordered semigroups

IdRPoSgrp: Idempotent residuated partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

51. CIdRPoMon: Commutative idempotent residuated partially ordered monoids

Definition

A commutative idempotent residuated partially ordered monoid is an idmpotent residuated partially ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$
$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 6, f_5 = 20, f_6 = 78$$

Subclasses

CIdRJMon: Commutative idempotent residuated join-semilattice-ordered monoids CIdRMMon: Commutative idempotent residuated meet-semilattice-ordered monoids

Superclasses

CIdPoMon: Commutative idempotent partially ordered monoids

CIdRPoSgrp: Commutative idempotent residuated partially ordered semigroups

CRPoMon: Commutative residuated partially ordered monoids

IdRPoMon: Idempotent residuated partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

52. CInPoMag: Commutative involutive partially ordered magmas

Definition

A commutative involutive partially ordered magma (or cinpo-magma) is a inpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 12, f_4 = 69, f_5 = 354, f_6 = 3632$$

Subclasses

CInLMag: Commutative involutive lattice-ordered magmas

CInPoSgrp: Commutative involutive partially ordered semigroups

Superclasses

CRPoMag: Commutative residuated partially ordered magmas

CyInPoMag: Cyclic involutive partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

53. CInPoSgrp: Commutative involutive partially ordered semigroups

Definition

A commutative involutive partially ordered semigroup (or cinpo-semigroup) is a inpo-semigroup $\mathbf{A} = \langle A, \leq , \cdot, \sim, - \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 10, f_4 = 50, f_5 = 194, f_6 = 1356$$

Subclasses

CInLSgrp: Commutative involutive lattice-ordered semigroups CInPoMon: Commutative involutive partially ordered monoids

Superclasses

CInPoMag: Commutative involutive partially ordered magmas CRPoSgrp: Commutative residuated partially ordered semigroups

CyInPoSgrp: Cyclic involutive partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

54. CInPoMon: Commutative involutive partially ordered monoids

Definition

A commutative involutive partially ordered monoid (or cinpo-monoid) is an inpo-monoid $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype po-variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 5, f_4 = 20, f_5 = 39, f_6 = 174, f_7 = 488$$

Subclasses

AbPoGrp: Abelian partially ordered groups

InPocrim: Involutive partially ordered commutative integral monoids

Superclasses

CInPoSgrp: Commutative involutive partially ordered semigroups CRPoMon: Commutative residuated partially ordered monoids

CyInPoMon: Cyclic involutive partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

55. In Pocrim: Involutive partially ordered commutative integral monoids

Definition

An involutive partially ordered commutative integral monoid (or in-pocrim) is an in-porim $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot y = y \cdot x \\ & x \cdot 1 = x \\ & x \leq 1 \end{aligned}$$

Properties

Classtype | po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 12, f_7 = 15, f_8 = 73, f_9 = 116$$

Small Members (not in any subclass)

Subclasses

CIInFL: Commutative integral involutive FL-algebras

Superclasses

CInPoMon: Commutative involutive partially ordered monoids CyInPorim: Cyclic involutive partially ordered integral monoids Pocrim: Partially ordered commutative residuated integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

56. AbPoGrp: Abelian partially ordered groups

Definition

An abelian partially ordered group is a partially ordered group $\mathbf{A} = \langle A, \cdot, ^{-1}, 1, \leq \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x^{-1} \cdot x = 1$$

$$x \cdot x^{-1} = 1$$

$$x \cdot y = y \cdot x$$

Properties

Classtype | po-variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 1, f_6 = 1, f_7 = 1, f_8 = 3, f_9 = 2, f_{10} = 1$$

Subclasses

AbLGrp: Abelian lattice-ordered groups

Superclasses

CInPoMon: Commutative involutive partially ordered monoids

PoGrp: Partially ordered groups

Cont|Po|J|M|L|D|To|B|U|Ind

CHAPTER 3

Join-semilattice-ordered algebras

In this chapter (and Chapters 5-9) the binary operation \cdot (if present) is assumed to distribute over the join operation in both arguments. For the algebras where \cdot has both residuals, this is a consequence of residuation, but for the other classes we add this property as two equational axioms (one suffices for left-residuated algebras). As for partially ordered algebras, we view these axioms as part of the ordertype (signature) of the algebra. They ensure that in a suitable complete extension \cdot will have both residuals, and hence a convenient display calculus.

1. Jslat: Join-semilattices

Definition

A join-semilattice is an algebra $\langle S, \vee \rangle$ such that S is a set and \vee is a binary operation on S that is

- associative: $(x \lor y) \lor z = x \lor (y \lor z)$
- commutative: $x \lor y = y \lor x$
- idempotent: $x \lor x = x$ and
- partially ordered: $x \le y \iff x \lor y = y$

Definition

A join-semilattice is an algebra $\mathbf{S} = \langle S, \leq, \vee \rangle$, where \vee is an infix binary operation, called the join, such that \leq is a partial order,

```
x \le y \implies x \lor z \le y \lor z \text{ and } z \lor x \le z \lor y,
```

$$x \le x \lor y$$
 and $y \le x \lor y$,

$$x \lor x \le x$$
.

This definition shows that semilattices form a partially-ordered variety.

Definition

A *join-semilattice* is an algebra $\mathbf{S} = \langle S, \vee \rangle$, where \vee is an infix binary operation, called the *join*, such that \leq is a partial order, where $x \leq y \iff x \vee y = y$ $x \vee y$ is the least upper bound of $\{x,y\}$.

Definition

A meet-semilattice is an algebra $\mathbf{S} = \langle S, \wedge \rangle$, where \wedge is an infix binary operation, called the meet, such that \leq is a partial order, where $x \leq y \iff x \wedge y = x$ $x \wedge y$ is the greatest lower bound of $\{x, y\}$.

Formal Definition

associative: $(x \lor y) \lor z = x \lor (y \lor z)$

commutative: $x \lor y = y \lor x$ idempotent: $x \lor x = x$ and

partially ordered: $x \leq y \iff x \vee y = y$

Examples

Example 1: $\langle \mathcal{P}_{\omega}(X) - \{\emptyset\}, \cup \rangle$, the set of finite nonempty subsets of a set X, with union, is the free join-semilattice with singleton subsets of X as generators.

Properties

-	
Classtype	Variety
Equational theory	Decidable in polynomial time
Quasiequational theory	Decidable
First-order theory	Undecidable
Locally finite	Yes
Residual size	2
Congruence distributive	No
Congruence modular	No
Congruence meet-semidistributive	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Finite Members

```
f_1=1,\ f_2=1,\ f_3=2,\ f_4=5,\ f_5=15,\ f_6=53,\ f_7=222,\ f_8=1078,\ f_9=5994,\ f_{10}=37622,\ f_{11}=262776,\ f_{12}=2018305,\ f_{13}=16873364,\ f_{14}=152233518,\ f_{15}=1471613387,\ f_{16}=15150569446,\ f_{17}=165269824761
```

These results follow from Heitzig and Reinhold [2002] and the observation that semilattices with n elements are in 1-1 correspondence to lattices with n + 1 elements.

Small Members (not in any subclass)

Subclasses

JImpA: Join-semilattice-ordered implication algebras

JMag: Join-semilattice-ordered magmas

JNUn: Join-semilattice-ordered negated unars

JUn: Join-semilattice-ordered unars

Lat: Lattices

pJslat: Pointed join-semilattices

Superclasses

Pos: Partially ordered sets $\operatorname{Cont}|\operatorname{Po}|\operatorname{J}|\operatorname{M}|\operatorname{L}|\operatorname{D}|\operatorname{To}|\operatorname{B}|\operatorname{U}|\operatorname{Ind}$

2. pJslat: Pointed join-semilattices

Definition

A pointed join-semilattice is an algebra $\langle S, \vee, c \rangle$ such that S is a join-semilattice and c is a constant operation on S.

Formal Definition

c = c

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 16, f_5 = 60, f_6 = 262, f_7 = 1315$$

Small Members (not in any subclass)

Subclasses

JMon: Join-semilattice-ordered monoids lbJslat: Lower-bounded join-semilattices

pLat: Pointed lattices

ubJslat: Upper-bounded join-semilattices

Superclasses

Jslat: Join-semilattices pPos: Pointed posets

Cont|Po|J|M|L|D|To|B|U|Ind

3. lbJslat: Lower-bounded join-semilattices

Definition

A lower bounded join-semilattice is an algebra $\mathbf{S} = \langle S, \vee, \perp \rangle$ such that $\langle S, \cdot \rangle$ is a join-semilattice and

 \bot is an indentity for \lor : $x \lor \bot = x$

Formal Definition

 $x \lor \bot = x$

Properties

Classtype	Variety
Equational theory	Decidable in PTIME
Quasiequational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No

Finite Members

Same as for lattices (since every complete semilattice is a lattice).

Subclasses

IdSrng₀: Idempotent semirings with zero

bLat: Bounded lattices

Superclasses

pJslat: Pointed join-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

4. ubJslat: Upper-bounded join-semilattices

Definition

An $upper\text{-}bounded\ join\text{-}semilattice}$ is an algebra $\mathbf{S}=\langle S,\vee,\top\rangle$ such that

 $\langle S, \vee \rangle$ is a join-semilattice and \top is absorbing for \vee : $x \vee \top = \top$

Formal Definition

 $x \lor \top = \top$

Properties

Classtype	Variety
Equational theory	Decidable in PTIME
Quasiequational theory	Decidable
First-order theory	Undecidable
Locally finite	Yes
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No

Finite Members

Same as for join-semilattices (since every complete join-semilattice has a top element).

Subclasses

IJMon: Integral join-semilattice-ordered monoids

bLat: Bounded lattices

Superclasses

pJslat: Pointed join-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

5. JUn: Join-semilattice-ordered unars

Definition

A join-semilattice-ordered unar (also called a j-unar for short) is an algebra $\mathbf{P} = \langle P, \leq, f \rangle$ such that P is a join-semilattice and f is a unary operation on P that is

order-preserving: $x \le y \implies f(x) \le f(y)$

Formal Definition

$$f(x \vee y) = f(x) \vee f(y)$$

Basic Results

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 16, f_4 = 104, f_5 = 822$$

Subclasses

GalJslat: Galois join-semilattices LUn: Lattice-ordered unars

RJUn: Residuated join-semilattice-ordered unars

Superclasses

Jslat: Join-semilattices

PoUn: Partially ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

6. JNUn: Join-semilattice-ordered negated unars

Definition

A join-semilattice-ordered negated unar (also called a jn-nunar for short) is an algebra $\mathbf{P} = \langle P, \leq, \sim \rangle$ such that P is a join-semilattice and \sim is a unary operation on P that is

order-reversing: $x \leq y \implies \sim y \leq \sim x$

Formal Definition

$$x \le y \implies \sim y \le \sim x$$

Basic Results

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 15, f_4 = 113, f_5 = 1167$$

Subclasses

GalJslat: Galois join-semilattices LNUn: Lattice-ordered negated unars

Superclasses

Jslat: Join-semilattices

PoNUn: Partially ordered negated unars

Cont|Po|J|M|L|D|To|B|U|Ind

7. GalJslat: Galois join-semilattices

Definition

A Galois join-semilattice is an algebra $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that P is a join-semilattice and $\sim, -$ are a pair of unary operations on P that form a

Galois connection: $x \le \sim y \iff y \le -x$

Formal Definition

 $x \leq {\sim} y \iff y \leq -x$

Basic Results

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 9, f_4 = 52, f_5 = 361, f_6 = 2947$$

Subclasses

GalLat: Galois lattices

Superclasses

GalPos: Galois posets

JNUn: Join-semilattice-ordered negated unars

JUn: Join-semilattice-ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

8. JMag: Join-semilattice-ordered magmas

Definition

A join-semilattice-ordered magma or multiplicative semilattice (or m-semilattice, [Birkhoff, 1979, p. 323]) is an algebra $\mathbf{A} = \langle A, \vee, \cdot \rangle$ of type $\langle 2, 2 \rangle$ such that

 $\langle A, \vee \rangle$ is a semilattice

· distributes over \vee : $x(y \vee z) = xy \vee xz$, $(x \vee y)z = xz \vee yz$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

Properties

Classtype variety

Finite Members

 $f_1 = 1, f_2 = 6, f_3 = 220$

Subclasses

JSgrp: Join-semilattice-ordered semigroups

LMag: Lattice-ordered magmas

LrJMag: Left-residuated join-semilattice-ordered magmas

Superclasses

Jslat: Join-semilattices

PoMag: Partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

9. JSgrp: Join-semilattice-ordered semigroups

Definition

A join-semilattice-ordered semigroup or (additively) idempotent semiring is an algebra $\mathbf{A} = \langle A, \vee, \cdot \rangle$ such that

 $\langle A, \cdot \rangle$ is a semigroup

 $\langle A, \vee \rangle$ is a join-semilattice

· is joinpreserving: $x \cdot (y \vee z) = x \cdot y \vee x \cdot z$ and $(x \vee y) \cdot z = x \cdot z \vee y \cdot z$.

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Properties

1	
Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 61, f_4 = 866$$

Subclasses

CJSgrp: Commutative join-semilattice-ordered semigroups IdJSgrp: Idempotent join-semilattice-ordered semigroups

JMon: Join-semilattice-ordered monoids

LSgrp: Lattice-ordered semigroups

LrJSgrp: Left-residuated join-semilattice-ordered semigroups

Superclasses

JMag: Join-semilattice-ordered magmas PoSgrp: Partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

10. JMon: Join-semilattice-ordered monoids

Definition

A join-semilattice-ordered monoid or (additively) idempotent unital semiring is an algebra $\mathbf{A} = \langle A, \vee, \cdot, 1 \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a monoid,

 $\langle A, \vee \rangle$ is a join-semilattice and

· is join-preserving: $x \cdot (y \vee z) = x \cdot y \vee x \cdot z$ and $(x \vee y) \cdot z = x \cdot z \vee y \cdot z$.

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$

Basic Results

Properties

Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 11, f_4 = 73, f_5 = 703$$

Subclasses

CJMon: Commutative join-semilattice-ordered monoids

IJMon: Integral join-semilattice-ordered monoids

IdJMon: Idempotent join-semilattice-ordered monoids $IdSrng_{01}$: Idempotent semirings with identity and zero

LMon: Lattice-ordered monoids

LrJMon: Left-residuated join-semilattice-ordered monoids

Superclasses

JSgrp: Join-semilattice-ordered semigroups

PoMon: Partially ordered monoids pJslat: Pointed join-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

11. IdSrng₀: Idempotent semirings with zero

Definition

An idempotent semiring with zero is a semiring with zero $\mathbf{S} = \langle S, \vee, 0, \cdot \rangle$ such that \vee is idempotent: $x \vee x = x$

Definition

An idempotent semiring with and zero is an algebra $\mathbf{S} = \langle S, \vee, 0, \cdot \rangle$ such that $\mathbf{S} = \langle S, \vee, \cdot \rangle$ is a join-semilattice-ordered semigroup,

0 is the bottom element: $x \lor 0 = x$ and

0 is absorbing: $x \cdot 0 = 0 = 0 \cdot x$.

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \lor 0 = x$$
$$x \cdot 0 = 0, \ 0 \cdot x = 0$$

Properties

Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 12, f_4 = 129, f_5 = 1852$$

Subclasses

IdSrng₀₁: Idempotent semirings with identity and zero

Superclasses

Srng₀: Semirings with zero

lbJslat: Lower-bounded join-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

12. IdSrng₀₁: Idempotent semirings with identity and zero

Definition

An idempotent semiring with identity and zero is a semiring with identity and zero $\mathbf{S} = \langle S, \vee, 0, \cdot, 1 \rangle$ such that

 \vee is idempotent: $x \vee x = x \ (1 \vee 1 = 1 \text{ is sufficient}).$

Definition

An idempotent semiring with identity and zero is an algebra $\mathbf{S} = \langle S, \vee, 0, \cdot, 1 \rangle$ such that $\mathbf{S} = \langle S, \vee, \cdot, 1 \rangle$ is a join-semilattice-ordered monoid,

0 is the bottom element: $x \lor 0 = x$ and

0 is absorbing: $x \cdot 0 = 0 = 0 \cdot x$.

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$
$$x \lor 0 = x$$

$$x \cdot 0 = 0, \, 0 \cdot x = 0$$

Properties

Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence meet-semidistributive	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 20, f_5 = 149, f_6 = 1488, f_7 = 18554$$

Subclasses

KA: Kleene algebras

Superclasses

IdSrng₀: Idempotent semirings with zero JMon: Join-semilattice-ordered monoids Srng₀₁: Semirings with identity and zero

Cont|Po|J|M|L|D|To|B|U|Ind

13. KA: Kleene algebras

Definition

A Kleene algebra is an algebra $\mathbf{A} = \langle A, \vee, 0, \cdot, 1, * \rangle$ of type $\langle 2, 0, 2, 0, 1 \rangle$ such that $\langle A, \vee, 0, \cdot, 1 \rangle$ is an idempotent semiring with identity and zero

$$e \lor x \lor x^*x^* = x^*$$

 $x \cdot y \le y \implies x^*y = y$

$$y \cdot x \le y \implies yx^* = y$$

Properties

Classtype	Quasivariety
Equational theory	Decidable, PSPACE complete Stockmeyer and Meyer [1973]
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence meet-semidistributive	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 20, f_5 = 149, f_6 = 1488$$

Subclasses

KLat: Kleene lattices
Superclasses

IdSrng₀₁: Idempotent semirings with identity and zero

Cont|Po|J|M|L|D|To|B|U|Ind

14. IJMon: Integral join-semilattice-ordered monoids

Definition

An integral join-semilattice-ordered monoid is a join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1 \rangle$ such that x is integral: $x \leq 1$.

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$
$$x < 1$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 364$$

Subclasses

CIJMon: Commutative Integral join-semilattice-ordered monoids

ILMon: Integral lattice-ordered monoids

ILrJMon: Integral left-residuated join-semilattice-ordered monoids

Superclasses

IPoMon: Integral partially ordered monoids JMon: Join-semilattice-ordered monoids ubJslat: Upper-bounded join-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

15. IdJSgrp: Idempotent join-semilattice-ordered semigroups

Definition

An idempotent join-semilattice-ordered semigroup is an algebra $\mathbf{A}=\langle A,\vee,\cdot\rangle$ such that $\langle A,\vee,\cdot\rangle$ is a join-semilattice-ordered semigroup and

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 23, f_4 = 166, f_5 = 1379$$

Subclasses

CIdJSgrp: Commutative idempotent join-semilattice-ordered semigroups

 ${\bf IdJMon:\ Idempotent\ join-semilattice-ordered\ monoids}$

IdLSgrp: Idempotent lattice-ordered semigroups

IdLrJSgrp: Idempotent left-residuated join-semilattice-ordered semigroups

Superclasses

IdPoSgrp: Idempotent partially ordered semigroups

JSgrp: Join-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

16. IdJMon: Idempotent join-semilattice-ordered monoids

Definition

An idempotent join-semilattice-ordered monoid is a join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1 \rangle$ such that \cdot is idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$
$$x \cdot x = x$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 7, f_4 = 29, f_5 = 136$$

Subclasses

CIdJMon: Commutative idempotent join-semilattice-ordered monoids

IdLMon: Idempotent lattice-ordered monoids

IdLrJMon: Idempotent left-residuated join-semilattice-ordered monoids

Superclasses

IdJSgrp: Idempotent join-semilattice-ordered semigroups

IdPoMon: Idempotent partially ordered monoids

JMon: Join-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

17. JImpA: Join-semilattice-ordered implication algebras

Formal Definition

$$\begin{array}{l} x \leq y \implies y \rightarrow z \leq x \rightarrow z \\ x \leq y \implies z \rightarrow x \leq z \rightarrow y \end{array}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 245$$

Subclasses

DivJslat: Division join-semilattices

LImpA: Lattice-ordered implication algebras

LrJMag: Left-residuated join-semilattice-ordered magmas

Superclasses

Jslat: Join-semilattices

PoImpA: Partially ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

18. LrJMag: Left-residuated join-semilattice-ordered magmas

Definition

A left-residuated join-semilattice-ordered magma (or lrj-magma) is an algebra $\mathbf{A} = \langle A, \vee, \cdot, \setminus \rangle$ such that $\langle A, \vee \rangle$ is a join-semilattice,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y < z \iff y < x \setminus z$

Formal Definition

$$\begin{aligned} x \cdot (y \vee z) &= x \cdot y \vee x \cdot z \\ (x \vee y) \cdot z &= x \cdot z \vee y \cdot z \\ x \cdot y &\leq z \iff y \leq x \backslash z \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 52, f_4 = 4827$$

Subclasses

LrJSgrp: Left-residuated join-semilattice-ordered semigroups

LrLMag: Left-residuated lattice-ordered magmas RJMag: Residuated join-semilattice-ordered magmas

Superclasses

JImpA: Join-semilattice-ordered implication algebras

JMag: Join-semilattice-ordered magmas

LrPoMag: Left-residuated partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

19. LrJSgrp: Left-residuated join-semilattice-ordered semigroups

Definition

A left-residuated join-semilattice-ordered semigroup (or lrj-semigroup) is an algebra $\mathbf{A} = \langle A, \vee, \cdot, \setminus \rangle$ such that $\langle A, \vee \rangle$ is a join-semilattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y \le z \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 19, f_4 = 192$$

Subclasses

IdLrJSgrp: Idempotent left-residuated join-semilattice-ordered semigroups

LrJMon: Left-residuated join-semilattice-ordered monoids

LrLSgrp: Left-residuated lattice-ordered semigroups RJMon: Residuated join-semilattice-ordered monoids RJSgrp: Residuated join-semilattice-ordered semigroups

Superclasses

JSgrp: Join-semilattice-ordered semigroups

LrJMag: Left-residuated join-semilattice-ordered magmas LrPoSgrp: Left-residuated partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

20. LrJMon: Left-residuated join-semilattice-ordered monoids

Definition

A left-residuated join-semilattice-ordered monoid is an algebra $\mathbf{A} = \langle A, \vee, \cdot, 1, \setminus \rangle$ such that

 $\langle A, \vee \rangle$ is a join-semilattice,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y < z \iff y < x \setminus z$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 23, f_5 = 169, f_6 = 1635$$

Subclasses

ILrJMon: Integral left-residuated join-semilattice-ordered monoids

IdLrJMon: Idempotent left-residuated join-semilattice-ordered monoids

LrLMon: Left-residuated lattice-ordered monoids RJMon: Residuated join-semilattice-ordered monoids

Superclasses

JMon: Join-semilattice-ordered monoids

LrJSgrp: Left-residuated join-semilattice-ordered semigroups

LrPoMon: Left-residuated partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

21. ILrJMon: Integral left-residuated join-semilattice-ordered monoids

Definition

A join-semilattice-ordered left-residuated integral monoid (or ILrJMon for short) is a left-residuated join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1, \setminus \rangle$ for which $x \leq 1$.

Formal Definition

$$\begin{aligned} x\cdot (y\vee z) &= x\cdot y\vee x\cdot z\\ (x\vee y)\cdot z &= x\cdot z\vee y\cdot z\\ (x\cdot y)\cdot z &= x\cdot (y\cdot z)\\ x\cdot 1 &= x\\ 1\cdot x &= x\\ x\cdot y\leq z \iff y\leq x\backslash z\\ x\leq 1 \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 364$$

Subclasses

ILrLMon: Integral left-residuated lattice-ordered monoids IRJMon: Integral residuated join-semilattice-ordered monoids

Superclasses

IJMon: Integral join-semilattice-ordered monoids

LrJMon: Left-residuated join-semilattice-ordered monoids Polrim: Partially ordered left-residuated integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

22. IdLrJSgrp: Idempotent left-residuated join-semilattice-ordered semigroups

Definition

An idempotent left-residuated join-semilattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \vee, \cdot \rangle$ such that $\langle A, \vee, \cdot \rangle$ is a left-residuated join-semilattice-ordered semigroup and

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y \le z \iff y \le x \backslash z$$
$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 45, f_5 = 304$$

Subclasses

IdLrJMon: Idempotent left-residuated join-semilattice-ordered monoids IdLrLSgrp: Idempotent left-residuated lattice-ordered semigroups IdRJSgrp: Idempotent residuated join-semilattice-ordered semigroups

Superclasses

IdJSgrp: Idempotent join-semilattice-ordered semigroups

IdLrPoSgrp: Idempotent left-residuated partially ordered semigroups

LrJSgrp: Left-residuated join-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

23. IdLrJMon: Idempotent left-residuated join-semilattice-ordered monoids

Definition

An idempotent left-residuated join-semilattice-ordered monoid is a left-residuated join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1 \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$\begin{aligned} x\cdot (y\vee z) &= x\cdot y\vee x\cdot z\\ (x\vee y)\cdot z &= x\cdot z\vee y\cdot z\\ (x\cdot y)\cdot z &= x\cdot (y\cdot z)\\ x\cdot 1 &= x\\ 1\cdot x &= x\\ x\cdot y\leq z \iff y\leq x\backslash z\\ x\cdot x &= x \end{aligned}$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 11, f_5 = 46, f_6 = 215, f_7 = 1114$$

Subclasses

IdLrLMon: Idempotent left-residuated lattice-ordered monoids IdRJMon: Idempotent residuated join-semilattice-ordered monoids

Superclasses

IdJMon: Idempotent join-semilattice-ordered monoids

IdLrJSgrp: Idempotent left-residuated join-semilattice-ordered semigroups

IdLrPoMon: Idempotent left-residuated partially ordered monoids

LrJMon: Left-residuated join-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

24. RJUn: Residuated join-semilattice-ordered unars

Formal Definition

A residuated join-semilattice-ordered unar (also called a jsl-unar for short) is a po-algebra $\mathbf{S} = \langle S, \vee, f, g \rangle$ such that $\langle S, \vee \rangle$ is a join-semilattice-ordered set and f, g are unary operations on S that g is the upper residual of f, or equivalently, g is the right adjoint of f:

$$f(x) \le y \iff x \le g(y).$$

Basic Results

Both f and g are order preserving. More specifically, f preserves all joins and g preserves all existing meets.

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

Subclasses

RLUn: Residuated lattice-ordered unars

Superclasses

JUn: Join-semilattice-ordered unars

RPoUn: Residuated partially ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

25. DivJslat: Division join-semilattices

Definition

A division join-semilattice is an algebra $S = \langle S, \vee, \setminus, / \rangle$ such that $\langle S, \vee \rangle$ is a join-semilattice,

$$x \le y \implies z \backslash x \le z \backslash y$$
,

$$x \le y \implies x/z \le y/z$$
 and

$$x \le z/y \iff y \le x \backslash z$$

Formal Definition

$$x \le y \implies z \backslash x \le z \backslash y$$
,

$$x \le y \implies x/z \le y/z$$
 and

$$x \le z/y \iff y \le x \backslash z$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 281$$

Subclasses

CDivJslat: Commutative division join-semilattices

DivLat: Division lattices

RJMag: Residuated join-semilattice-ordered magmas

Superclasses

DivPos: Division posets

JImpA: Join-semilattice-ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

26. RJMag: Residuated join-semilattice-ordered magmas

Definition

A residuated join-semilattice-ordered magma (or rpo-magma) is an algebra $\mathbf{A} = \langle A, \vee, \cdot, \setminus, / \rangle$ such that $\langle A, \vee \rangle$ is a join-semilattice,

 $\langle A, \cdot \rangle$ is a magma and

```
\ is the left residual of : x \cdot y \leq z \iff y \leq x \setminus z
```

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \cdot y \le z \iff y \le x \setminus z$$

 $x \cdot y \le z \iff x \le z/y$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 20, f_4 = 1116$$

Subclasses

CRJMag: Commutative residuated join-semilattice-ordered magmas

RJSgrp: Residuated join-semilattice-ordered semigroups

RLMag: Residuated lattice-ordered magmas

Superclasses

DivJslat: Division join-semilattices

LrJMag: Left-residuated join-semilattice-ordered magmas

RPoMag: Residuated partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

27. RJSgrp: Residuated join-semilattice-ordered semigroups

Definition

A residuated join-semilattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \vee, \cdot, \setminus, / \rangle$ such that

 $\langle A, \vee \rangle$ is a join-semilattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x < y \implies z \cdot x < z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 12, f_4 = 129, f_5 = 1852$$

Subclasses

 ${\it CRJSgrp: Commutative \ residuated \ join-semilattice-ordered \ semigroups}$

 ${\tt IdRJSgrp:\ Idempotent\ residuated\ join-semilattice-ordered\ semigroups}$

RJMon: Residuated join-semilattice-ordered monoids

RLSgrp: Residuated lattice-ordered semigroups

Superclasses

LrJSgrp: Left-residuated join-semilattice-ordered semigroups

RJMag: Residuated join-semilattice-ordered magmas

RPoSgrp: Residuated partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

28. RJMon: Residuated join-semilattice-ordered monoids

Definition

A residuated join-semilattice-ordered monoid (or rpj-monoid) is an algebra $\mathbf{A} = \langle A, \vee, \cdot, 1, \setminus, / \rangle$ such that $\langle A, \vee \rangle$ is a join-semilattice,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 20, f_5 = 149, f_6 = 1488$$

Subclasses

CRJMon: Commutative residuated join-semilattice-ordered monoids

IRJMon: Integral residuated join-semilattice-ordered monoids

IdRJMon: Idempotent residuated join-semilattice-ordered monoids

Superclasses

LrJMon: Left-residuated join-semilattice-ordered monoids LrJSgrp: Left-residuated join-semilattice-ordered semigroups RJSgrp: Residuated join-semilattice-ordered semigroups

RPoMon: Residuated partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

29. IRJMon: Integral residuated join-semilattice-ordered monoids

Definition

An integral residuated join-semilattice-ordered monoid is a residuated join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1, \setminus, / \rangle$ such that

x is integral: $x \leq 1$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 364, f_7 = 3335$$

Subclasses

CIRJMon: Commutative integral residuated join-semilattice-ordered monoids

Superclasses

ILrJMon: Integral left-residuated join-semilattice-ordered monoids

Porim: Partially ordered residuated integral monoids RJMon: Residuated join-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

30. IdRJSgrp: Idempotent residuated join-semilattice-ordered semigroups

Definition

An idempotent residuated join-semilattice-ordered semigroup is a residuated join-semilattice-ordered semi-group $\mathbf{A} = \langle A, \vee, \cdot, \setminus, \rangle$ such that

· is idempotent: $x \cdot x = x$.

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y \leq z \iff y \leq x \backslash z \\ x \cdot y \leq z \iff x \leq z/y \\ x \cdot (y \cdot z) = (x \cdot y) \cdot z \end{array}$$

$x \cdot x = x$ Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 24, f_5 = 169, f_6 = 1404$$

Subclasses

CIdRJSgrp: Commutative idempotent residuated join-semilattice-ordered semigroups

IdRJMon: Idempotent residuated join-semilattice-ordered monoids

IdRLSgrp: Idempotent residuated lattice-ordered semigroups

Superclasses

IdLrJSgrp: Idempotent left-residuated join-semilattice-ordered semigroups

IdRPoSgrp: Idempotent residuated partially ordered semigroups

RJSgrp: Residuated join-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

31. IdRJMon: Idempotent residuated join-semilattice-ordered monoids

Definition

An idempotent residuated join-semilattice-ordered monoid is a residuated join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1, \setminus, / \rangle$ such that

· is idempotent: $x \cdot x = x$

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$\begin{aligned} 1 \cdot x &= x \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \\ x \cdot x &= x \end{aligned}$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 32, f_6 = 147, f_7 = 759$$

Subclasses

CIdRJMon: Commutative idempotent residuated join-semilattice-ordered monoids

Superclasses

 $\label{lem:identification} \begin{tabular}{l} IdLrJMon: Idempotent left-residuated join-semilattice-ordered monoids IdRJSgrp: Idempotent residuated join-semilattice-ordered semigroups \\ \end{tabular}$

IdRPoMon: Idempotent residuated partially ordered monoids

RJMon: Residuated join-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

32. CJSgrp: Commutative join-semilattice-ordered semigroups

Definition

A commutative join-semilattice-ordered semigroup is a join-semilattice-ordered semigroup $\mathbf{A} = \langle A, \vee, \cdot \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 29, f_4 = 289$$

Subclasses

CIdJSgrp: Commutative idempotent join-semilattice-ordered semigroups

CJMon: Commutative join-semilattice-ordered monoids

CLSgrp: Commutative lattice-ordered semigroups

CRJSgrp: Commutative residuated join-semilattice-ordered semigroups

Superclasses

CPoSgrp: Commutative partially ordered semigroups

JSgrp: Join-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

33. CJMon: Commutative join-semilattice-ordered monoids

Definition

A commutative join-semilattice-ordered monoid is a join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$
$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 9, f_4 = 55, f_5 = 437$$

Subclasses

CIJMon: Commutative Integral join-semilattice-ordered monoids CIdJMon: Commutative idempotent join-semilattice-ordered monoids

CLMon: Commutative lattice-ordered monoids

CRJMon: Commutative residuated join-semilattice-ordered monoids

Superclasses

CJSgrp: Commutative join-semilattice-ordered semigroups

CPoMon: Commutative partially ordered monoids

JMon: Join-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

34. CIJMon: Commutative Integral join-semilattice-ordered monoids

Definition

A commutative integral join-semilattice-ordered monoid is a integral join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \le 1$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 129$$

Subclasses

CILMon: Commutative Integral lattice-ordered monoids

CIRJMon: Commutative integral residuated join-semilattice-ordered monoids

Superclasses

CIPoMon: Commutative integral partially ordered monoids CJMon: Commutative join-semilattice-ordered monoids

IJMon: Integral join-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

35. CIdJSgrp: Commutative idempotent join-semilattice-ordered semigroups

Definition

A commutative idempotent join-semilattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \vee, \cdot \rangle$ such that $\langle A, \vee, \cdot, \rangle$ is an idempotent join-semilattice-ordered semigroup and

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot x = x$$
$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 7, f_4 = 33, f_5 = 185$$

Subclasses

 ${\bf CIdJMon:\ Commutative\ idempotent\ join-semilattice-ordered\ monoids}$

CIdLSgrp: Commutative idempotent lattice-ordered semigroups

CIdRJSgrp: Commutative idempotent residuated join-semilattice-ordered semigroups

Superclasses

CIdPoSgrp: Commutative idempotent partially ordered semigroups

CJSgrp: Commutative join-semilattice-ordered semigroups

IdJSgrp: Idempotent join-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

36. CIdJMon: Commutative idempotent join-semilattice-ordered monoids

Definition

A commutative idempotent join-semilattice-ordered monoid is an idempotent join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Basic Results

Properties

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 17, f_5 = 66, f_6 = 288$$

Subclasses

CIdLMon: Commutative idempotent lattice-ordered monoids

CIdRJMon: Commutative idempotent residuated join-semilattice-ordered monoids

Superclasses

CIdJSgrp: Commutative idempotent join-semilattice-ordered semigroups

CIdPoMon: Commutative idempotent partially ordered monoids

 ${\bf CJMon:\ Commutative\ join-semilattice-ordered\ monoids}$

IdJMon: Idempotent join-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

37. CDivJslat: Commutative division join-semilattices

Definition

A commutative division join-semilattice is a division join-semilattice $\mathbf{P} = \langle P, \vee, \setminus, / \rangle$ such that P is a join-semilattice and

\, / are commutative: $x/y = y \setminus x$.

Formal Definition

$$x \le z/y \iff y \le x \backslash z$$

$$x/y = y \backslash x$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 79, f_4 = 7545$$

Subclasses

BCKJslat: BCK-join-semilattices

CDivLat: Commutative division lattices

CRJMag: Commutative residuated join-semilattice-ordered magmas

Superclasses

 $\operatorname{CDivPos:}$ Commutative division posets

DivJslat: Division join-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

38. BCKJslat: BCK-join-semilattices

Definition

A BCK-join-semilattice is an algebra $\mathbf{A} = \langle A, \vee, \rightarrow, 1 \rangle$ such that

 $\langle A, \vee \rangle$ is a join-semilattice and

$$(1): (x \to y) \to ((y \to z) \to (x \to z)) = 1$$

(2):
$$1 \to x = x$$

(3):
$$x \to 1 = 1$$

(4):
$$x \to (x \lor y) = 1$$

(5):
$$x \lor ((x \to y) \to y) = ((x \to y) \to y)$$

$$(x \lor y) \to z \le x \to z$$

$$x \to y \le x \to (y \lor z)$$

$$(x \to y) \to ((y \to z) \to (x \to z)) = 1$$

$$1 \rightarrow x = x$$

$$x \to 1 = 1$$

$$\begin{aligned} x &\to (x \vee y) = 1 \\ x &\le ((x \to y) \to y) \end{aligned}$$

Classtype Variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 14, f_5 = 87, f_6 = 745$$

Subclasses

BCKLat: BCK-lattices

Superclasses

BCK: BCK-algebras

CDivJslat: Commutative division join-semilattices

Cont Po J M L D To B U Ind

39. CRJMag: Commutative residuated join-semilattice-ordered magmas

Definition

A commutative residuated join-semilattice-ordered magma is a residuated join-semilattice-ordered magma such that

 \cdot is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \\ x \cdot y &= y \cdot x \end{split}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 10, f_4 = 148, f_5 = 4398$$

Subclasses

CRJSgrp: Commutative residuated join-semilattice-ordered semigroups

CRLMag: Commutative residuated lattice-ordered magmas

Superclasses

CDivJslat: Commutative division join-semilattices

CRPoMag: Commutative residuated partially ordered magmas

RJMag: Residuated join-semilattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

40. CRJSgrp: Commutative residuated join-semilattice-ordered semigroups

Definition

A commutative residuated join-semilattice-ordered semigroup is a residuated join-semilattice-ordered semigroup $\mathbf{A} = \langle A, \vee, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
 $x \cdot y = y \cdot x$

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 57, f_5 = 550$$

Subclasses

CIdRJSgrp: Commutative idempotent residuated join-semilattice-ordered semigroups

CRJMon: Commutative residuated join-semilattice-ordered monoids

CRLSgrp: Commutative residuated lattice-ordered semigroups

Superclasses

CJSgrp: Commutative join-semilattice-ordered semigroups

CRJMag: Commutative residuated join-semilattice-ordered magmas CRPoSgrp: Commutative residuated partially ordered semigroups

RJSgrp: Residuated join-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

41. CRJMon: Commutative residuated join-semilattice-ordered monoids

Definition

A commutative residuated join-semilattice-ordered monoid is a residuated join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1, \setminus, / \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 16, f_5 = 100, f_6 = 794$$

Subclasses

CIRJMon: Commutative integral residuated join-semilattice-ordered monoids

CIdRJMon: Commutative idempotent residuated join-semilattice-ordered monoids

Superclasses

CJMon: Commutative join-semilattice-ordered monoids

CRJSgrp: Commutative residuated join-semilattice-ordered semigroups

CRPoMon: Commutative residuated partially ordered monoids

RJMon: Residuated join-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

42. CIRJMon: Commutative integral residuated join-semilattice-ordered monoids

Definition

A commutative integral residuated join-semilattice-ordered monoid is an integral residuated join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1, \setminus, / \rangle$ such that

x is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{array}{ll} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \end{array}$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 129, f_7 = 723$$

Subclasses

Superclasses

CIJMon: Commutative Integral join-semilattice-ordered monoids CRJMon: Commutative residuated join-semilattice-ordered monoids

IRJMon: Integral residuated join-semilattice-ordered monoids

Pocrim: Partially ordered commutative residuated integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

43. CIdRJSgrp: Commutative idempotent residuated join-semilattice-ordered semigroups

Definition

A commutative idempotent residuated join-semilattice-ordered semigroup is an idempotent residuated join-semilattice-ordered semigroup $\mathbf{A} = \langle A, \vee, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 36, f_6 = 202$$

Subclasses

CIdRJMon: Commutative idempotent residuated join-semilattice-ordered monoids

CIdRLSgrp: Commutative idempotent residuated lattice-ordered semigroups

Superclasses

CIdJSgrp: Commutative idempotent join-semilattice-ordered semigroups

CIdRPoSgrp: Commutative idempotent residuated partially ordered semigroups

CRJSgrp: Commutative residuated join-semilattice-ordered semigroups

 $IdRJSgrp:\ Idempotent\ residuated\ join-semilattice-ordered\ semigroups \\ Cont[Po]J[M]L[D]To[B]U[Ind]$

44. CIdRJMon: Commutative idempotent residuated join-semilattice-ordered monoids

Definition

A commutative idempotent residuated join-semilattice-ordered monoid is an idmpotent residuated join-semilattice-ordered monoid $\mathbf{A} = \langle A, \vee, \cdot, 1, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

```
 \begin{aligned} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x \cdot y &\leq z \iff y \leq x \backslash z \end{aligned}
```

$$x \cdot y \le z \iff y \le x \setminus z$$

 $x \cdot y \le z \iff x \le z/y$

$$x \cdot x = x$$

$x \cdot y = y \cdot x$ Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 6, f_5 = 20, f_6 = 77, f_7 = 333$$

Subclasses

Superclasses

CIdJMon: Commutative idempotent join-semilattice-ordered monoids

CIdRJSgrp: Commutative idempotent residuated join-semilattice-ordered semigroups

CIdRPoMon: Commutative idempotent residuated partially ordered monoids

CRJMon: Commutative residuated join-semilattice-ordered monoids

 $IdRJMon:\ Idempotent\ residuated\ join-semilattice-ordered\ monoids \\ Cont[Po]J[M]L[D]To[B]U[Ind]$

CHAPTER 4

$Meet\text{-}semilattice\text{-}ordered\ algebras$

1. Mslat: Meet-semilattices

Definition

A meet-semilattice is a po-algebra $\mathbf{A} = \langle A, \leq, \wedge \rangle$ such that $\langle A, \leq \rangle$ is a poset in which all pairs of elements x, y have a meet $x \wedge y$, i. e.,

- \wedge is order-preserving in each argument: $x \leq y \implies x \wedge z \leq y \wedge z$ and $z \wedge x \leq z \wedge y$
- $x \wedge y$ is a lower bound for x, y: $x \wedge y \leq x$ and $x \wedge y \leq y$
- $x < x \wedge x$

It follows that $x \wedge y$ is the greatest lower bound: $z \leq x$ and $z \leq y \implies z \leq z \wedge z \leq x \wedge z \leq x \wedge y$

Definition

A meet-semilattice is an algebra $\mathbf{A} = \langle A, \wedge \rangle$ where \wedge is a binary operation that is

- associative: $(x \land y) \land z = x \land (y \land z)$
- commutative: $x \wedge y = y \wedge x$
- idempotent: $x \wedge x = x$ and
- $x \le y \iff x \land y = x$

Formal Definition

 $x \leq y \implies x \wedge z \leq y \wedge z \text{ and } z \wedge x \leq z \wedge y$

 $x \wedge y \leq x$

 $x \land y \leq y$

 $x \leq x \wedge x$

Examples

Example 1: $\langle \mathbb{R}, \leq \rangle$, the real numbers with the standard order.

Example 2: $\langle P(S), \subseteq \rangle$, the collection of subsets of a sets S, ordered by inclusion.

Example 3: Any meet-semilattice is order-isomorphic to a meet-semilattice of subsets of some set, ordered by inclusion.

Basic Results

Properties

Classtype	Variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

 $f_1=1,\ f_2=1,\ f_3=2,\ f_4=5,\ f_5=15,\ f_6=53,\ f_7=222,\ f_8=1078,\ f_9=5994,\ f_{10}=37622,\ f_{11}=262776,\ f_{12}=2018305,\ f_{13}=16873364,\ f_{14}=152233518,\ f_{15}=1471613387,\ f_{16}=15150569446,\ f_{17}=165269824761,\ f_{18}=1901910625578$

Small Members (not in any subclass)

 $M_{3,1}$ $M_{4,1}$ $M_{4,2}$ $M_{4,}$

Subclasses

Lat: Lattices

MImpA: Meet-semilattice-ordered implication algebras

MMag: Meet-semilattice-ordered magmas

MNUn: Meet-semilattice-ordered negated unars

MUn: Meet-semilattice-ordered unars pMslat: Pointed meet-semilattices

Superclasses

Pos: Partially ordered sets Cont[Po]J[M]L[D]To[B]U[Ind]

2. pMslat: Pointed meet-semilattices

Definition

A pointed meet-semilattice is an algebra $\mathbf{P} = \langle P, \wedge, c \rangle$ such that P is a meet-semilattice and c is a constant operation on P.

Formal Definition

c = c

Basic Results

Properties

| Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 16, f_5 = 60, f_6 = 262, f_7 = 1315$$

Small Members (not in any subclass)

Subclasses

MMon: Meet-semilattice-ordered monoids

pLat: Pointed lattices

Superclasses

Mslat: Meet-semilattices pPos: Pointed posets

Cont|Po|J|M|L|D|To|B|U|Ind

3. MUn: Meet-semilattice-ordered unars

Definition

A meet-semilattice-ordered unar (also called a po-unar for short) is an algebra $\mathbf{P} = \langle P, \leq, f \rangle$ such that P is a meet-semilattice and f is a unary operation on P that is

order-preserving: $x \le y \implies f(x) \le f(y)$

Formal Definition

 $x \le y \implies f(x) \le f(y)$

Basic Results

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 17, f_4 = 138, f_5 = 1555$$

Subclasses

GalMslat: Galois meet-semilattices

LUn: Lattice-ordered unars

RMUn: Residuated meet-semilattice-ordered unars

Superclasses

Mslat: Meet-semilattices

PoUn: Partially ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

4. MNUn: Meet-semilattice-ordered negated unars

Definition

A meet-semilattice-ordered negated unar is an algebra $\mathbf{P} = \langle P, \leq, \sim \rangle$ such that P is a meet-semilattice and \sim is a unary operation on P that is

order-reversing: $x \leq y \implies \sim y \leq \sim x$

Formal Definition

$$x \le y \implies \sim y \le \sim x$$

Basic Results

Properties

	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 15, f_4 = 113, f_5 = 1167$$

Subclasses

GalMslat: Galois meet-semilattices LNUn: Lattice-ordered negated unars

Superclasses

Mslat: Meet-semilattices

PoNUn: Partially ordered negated unars

Cont|Po|J|M|L|D|To|B|U|Ind

5. GalMslat: Galois meet-semilattices

Definition

A Galois meet-semilattice is an algebra $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that P is a meet-semilattice and $\sim, -$ are a pair of unary operations on P that form a

Galois connection: $x \le \sim y \iff y \le -x$

Formal Definition

$$x \le \sim y \iff y \le -x$$

Basic Results

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 30, f_5 = 184, f_6 = 1373$$

Subclasses

GalLat: Galois lattices

Superclasses

GalPos: Galois posets

MNUn: Meet-semilattice-ordered negated unars

MUn: Meet-semilattice-ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

6. MMag: Meet-semilattice-ordered magmas

Definition

A meet-semilattice-ordered magma is an algebra $\mathbf{A} = \langle A, \wedge, \cdot \rangle$ such that

 $\langle A, \cdot \rangle$ is a magma

 $\langle A, \wedge \rangle$ is a meet-semilattice.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

Properties

| Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 280$$

Subclasses

LMag: Lattice-ordered magmas

LrMMag: Left-residuated meet-semilattice-ordered magmas

MSgrp: Meet-semilattice-ordered semigroups

Superclasses

Mslat: Meet-semilattices

PoMag: Partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

7. MSgrp: Meet-semilattice-ordered semigroups

Definition

A meet-semilattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \cdot \rangle$ such that

 $\langle A, \cdot \rangle$ is a semigroup

 $\langle A, \wedge \rangle$ is a meet-semilattice

· is orderpreserving: $x \leq y \implies x \cdot z \leq y \cdot z$ and $z \cdot x \leq z \cdot y$

Formal Definition

$$\begin{aligned} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 70, f_4 = 1437$$

Subclasses

CMSgrp: Commutative meet-semilattice-ordered semigroups IdMSgrp: Idempotent meet-semilattice-ordered semigroups

LSgrp: Lattice-ordered semigroups

LrMSgrp: Left-residuated meet-semilattice-ordered semigroups

MMon: Meet-semilattice-ordered monoids

Superclasses

MMag: Meet-semilattice-ordered magmas PoSgrp: Partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

8. MMon: Meet-semilattice-ordered monoids

Definition

A meet-semilattice-ordered monoid is an algebra $\mathbf{A} = \langle A, \wedge, \cdot, 1 \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a monoid

 $\langle A, \wedge \rangle$ is a meet-semilattice

· is orderpreserving: $x \leq y \implies wxz \leq wyz$

Formal Definition

$$\begin{aligned} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \end{aligned}$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 14, f_4 = 168, f_5 = 3488$$

Subclasses

CMMon: Commutative meet-semilattice-ordered monoids

IMMon: Integral meet-semilattice-ordered monoids

IdMMon: Idempotent meet-semilattice-ordered monoids

LMon: Lattice-ordered monoids

LrMMon: Left-residuated meet-semilattice-ordered monoids

Superclasses

MSgrp: Meet-semilattice-ordered semigroups

PoMon: Partially ordered monoids pMslat: Pointed meet-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

9. IMMon: Integral meet-semilattice-ordered monoids

Definition

An integral meet-semilattice-ordered monoid is a meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1 \rangle$ such that $x \leq 1$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 11, f_5 = 102, f_6 = 1569$$

Subclasses

CIMMon: Commutative Integral meet-semilattice-ordered monoids

ILMon: Integral lattice-ordered monoids

ILrMMon: Integral left-residuated meet-semilattice-ordered monoids

Superclasses

IPoMon: Integral partially ordered monoids MMon: Meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

10. IdMSgrp: Idempotent meet-semilattice-ordered semigroups

Definition

An idempotent meet-semilattice-ordered semigroup is an algebra $\mathbf{A}=\langle A,\wedge,\cdot\rangle$ such that $\langle A,\wedge,\cdot\rangle$ is a meet-semilattice-ordered semigroup and

· is idempotent: $x \cdot x = x$

$$\begin{array}{ll} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \end{array}$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot x = x$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 28, f_4 = 308, f_5 = 4694$$

Subclasses

CIdMSgrp: Commutative idempotent meet-semilattice-ordered semigroups

IdLSgrp: Idempotent lattice-ordered semigroups

IdLrMSgrp: Idempotent left-residuated meet-semilattice-ordered semigroups

IdMMon: Idempotent meet-semilattice-ordered monoids

Superclasses

IdPoSgrp: Idempotent partially ordered semigroups

MSgrp: Meet-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

11. IdMMon: Idempotent meet-semilattice-ordered monoids

Definition

An idempotent meet-semilattice-ordered monoid is a meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1 \rangle$ such

· is idempotent: $x \cdot x = x$

Formal Definition

$$\begin{aligned} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \end{aligned}$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot x = x$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 10, f_4 = 81, f_5 = 950$$

Subclasses

CIdMMon: Commutative idempotent meet-semilattice-ordered monoids

IdLMon: Idempotent lattice-ordered monoids

IdLrMMon: Idempotent left-residuated meet-semilattice-ordered monoids

Superclasses

IdMSgrp: Idempotent meet-semilattice-ordered semigroups

IdPoMon: Idempotent partially ordered monoids

MMon: Meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

12. MImpA: Meet-semilattice-ordered implication algebras

$$x \le y \implies y \to z \le x \to z$$

$$x \to (y \land z) = (x \to y) \land (x \to z)$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 220$$

Subclasses

DivMslat: Division meet-semilattices

LImpA: Lattice-ordered implication algebras

LrMMag: Left-residuated meet-semilattice-ordered magmas

Superclasses

Mslat: Meet-semilattices

PoImpA: Partially ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

13. LrMMag: Left-residuated meet-semilattice-ordered magmas

Definition

A left-residuated meet-semilattice-ordered magma (or lrm-magma) is an algebra $\mathbf{A} = \langle A, \wedge, \cdot, \setminus, \rangle$ such that $\langle A, \wedge \rangle$ is a meet-semilattice,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 52, f_4 = 4827$$

Subclasses

LrLMag: Left-residuated lattice-ordered magmas

LrMSgrp: Left-residuated meet-semilattice-ordered semigroups

RMMag: Residuated meet-semilattice-ordered magmas

Superclasses

LrPoMag: Left-residuated partially ordered magmas MImpA: Meet-semilattice-ordered implication algebras

MMag: Meet-semilattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

14. LrMSgrp: Left-residuated meet-semilattice-ordered semigroups

Definition

A left-residuated meet-semilattice-ordered semigroup (or lrm-semigroup) is an algebra $\mathbf{A} = \langle A, \wedge, \cdot, \setminus \rangle$ such that

 $\langle A, \wedge \rangle$ is a meet-semilattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

$$\begin{aligned} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot y &\leq z \iff y \leq x \backslash z \end{aligned}$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 19, f_4 = 199, f_5 = 2946$$

Subclasses

IdLrMSgrp: Idempotent left-residuated meet-semilattice-ordered semigroups

LrLSgrp: Left-residuated lattice-ordered semigroups

LrMMon: Left-residuated meet-semilattice-ordered monoids RMSgrp: Residuated meet-semilattice-ordered semigroups

Superclasses

LrMMag: Left-residuated meet-semilattice-ordered magmas LrPoSgrp: Left-residuated partially ordered semigroups

MSgrp: Meet-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

15. LrMMon: Left-residuated meet-semilattice-ordered monoids

Definition

A left-residuated meet-semilattice-ordered monoid (or lrm-monoid) is an algebra $\mathbf{A} = \langle A, \wedge, \cdot, 1, \setminus \rangle$ such that $\langle A, \wedge \rangle$ is a meet-semilattice,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 24, f_5 = 195, f_6 = 2146$$

Subclasses

ILrMMon: Integral left-residuated meet-semilattice-ordered monoids

IdLrMMon: Idempotent left-residuated meet-semilattice-ordered monoids

 ${\bf LrLMon:\ Left\text{-}residuated\ lattice\text{-}ordered\ monoids}$

RMMon: Residuated meet-semilattice-ordered monoids

Superclasses

LrMSgrp: Left-residuated meet-semilattice-ordered semigroups

LrPoMon: Left-residuated partially ordered monoids

MMon: Meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

16. ILrMMon: Integral left-residuated meet-semilattice-ordered monoids

Definition

An integral left-residuated meet-semilattice-ordered monoid is a left-residuated meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1, \rangle$ for which x < 1.

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x &< 1 \end{split}$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 51, f_6 = 408$$

Subclasses

ILrLMon: Integral left-residuated lattice-ordered monoids

IRMMon: Meet-semilattice-ordered residuated integral monoids

RtHp: Right hoops Superclasses

IMMon: Integral meet-semilattice-ordered monoids

LrMMon: Left-residuated meet-semilattice-ordered monoids Polrim: Partially ordered left-residuated integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

17. RtHp: Right hoops

Definition

A right hoop is an algebra $\mathbf{A} = \langle A, \cdot, /, 1 \rangle$ such that $\langle A, \cdot, 1 \rangle$ is a monoid $x/(y \cdot z) = (x/z)/y$ x/x = 1 $(x/y) \cdot y = (y/x) \cdot x$

Remark: This definition shows that right hoops form a variety.

Right hoops are partially ordered by the relation $x \le y \iff y/x = 1$.

The operation $x \wedge y = (x/y) \cdot y$ is a meet with respect to this order.

Definition

A right hoop is an algebra $\mathbf{A} = \langle A, \cdot, /, 1 \rangle$ of type $\langle 2, 2, 0 \rangle$ such that $\langle A, \cdot, 1 \rangle$ is a commutative monoid and if $x \leq y$ is defined by y/x = 1 then \leq is a partial order, / is the right residual of \cdot , i.e., $x \cdot y \leq z \iff x \leq z/y$, and $(x/y) \cdot y = (y/x) \cdot x.$

$$x \le y \iff y/x = 1$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x/(y \cdot z) = (x/z)/y$$

$$x/x = 1$$

$$(x/y) \cdot y = (y/x) \cdot x$$

Classtype	Variety
Locally finite	No
Residual size	Unbounded

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 24, f_6 = 91$$

Subclasses

Hp: Hoops

Superclasses

ILrMMon: Integral left-residuated meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

18. IdLrMSgrp: Idempotent left-residuated meet-semilattice-ordered semigroups

Definition

An idempotent left-residuated meet-semilattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \cdot \rangle$ such that $\langle A, \wedge, \cdot \rangle$ is a left-residuated meet-semilattice-ordered semigroup and

· is idempotent: $x \cdot x = x$

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ x \cdot y \leq z \iff y \leq x \backslash z \\ x \cdot x = x \end{array}$$

Properties

Classtype	variety
-----------	---------

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 46, f_5 = 345, f_6 = 3180$$

Subclasses

IdLrLSgrp: Idempotent left-residuated lattice-ordered semigroups

IdLrMMon: Idempotent left-residuated meet-semilattice-ordered monoids IdRMSgrp: Idempotent residuated meet-semilattice-ordered semigroups

Superclasses

IdLrPoSgrp: Idempotent left-residuated partially ordered semigroups

IdMSgrp: Idempotent meet-semilattice-ordered semigroups

LrMSgrp: Left-residuated meet-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

19. IdLrMMon: Idempotent left-residuated meet-semilattice-ordered monoids

Definition

An idempotent left-residuated meet-semilattice-ordered monoid is a left-residuated meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1 \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot x = x$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 12, f_5 = 59, f_6 = 348, f_7 = 2372$$

Subclasses

IdLrLMon: Idempotent left-residuated lattice-ordered monoids

IdRMMon: Idempotent residuated meet-semilattice-ordered monoids

Superclasses

IdLrMSgrp: Idempotent left-residuated meet-semilattice-ordered semigroups

IdLrPoMon: Idempotent left-residuated partially ordered monoids

IdMMon: Idempotent meet-semilattice-ordered monoids

LrMMon: Left-residuated meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

20. RMUn: Residuated meet-semilattice-ordered unars

Formal Definition

A residuated meet-semilattice-ordered unar (also called a msl-unar for short) is a po-algebra $\mathbf{S} = \langle S, \wedge, f, g \rangle$ such that $\langle S, \wedge \rangle$ is a meet-semilattice-ordered set and f, g are unary operations on S that g is the upper residual of f, or equivalently, g is the right adjoint of f:

$$f(x) \le y \iff x \le g(y).$$

Basic Results

Both f and g are order preserving. More specifically, f preserves all existing joins and g preserves all existing meets. In particular, $g(x \wedge y) = g(x) \wedge g(y)$.

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

Subclasses

RLUn: Residuated lattice-ordered unars

Superclasses

MUn: Meet-semilattice-ordered unars

RPoUn: Residuated partially ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

21. DivMslat: Division meet-semilattices

A division meet-semilattice is an algebra $\mathbf{P} = \langle P, \wedge, \setminus, / \rangle$ such that P is a meet-semilattice,

$$x \setminus (y \wedge z) = x \setminus y \wedge x \setminus z,$$

$$(x \wedge y)/z = x/z \wedge y/z$$
 and

$$x \le z/y \iff y \le x \backslash z$$

Formal Definition

$$x \le z/y \iff y \le x \backslash z$$

Basic Results

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 216$$

Subclasses

CDivMslat: Commutative division meet-semilattices

DivLat: Division lattices

RMMag: Residuated meet-semilattice-ordered magmas

Superclasses

DivPos: Division posets

MImpA: Meet-semilattice-ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

22. RMMag: Residuated meet-semilattice-ordered magmas

Definition

A residuated meet-semilattice-ordered magma (or rpo-magma) is an algebra $\mathbf{A} = \langle A, \wedge, \cdot, \setminus, / \rangle$ such that $\langle A, \wedge \rangle$ is a meet-semilattice,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \le z \iff y \le x \backslash z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 20, f_4 = 1116$$

Subclasses

CRMMag: Commutative residuated meet-semilattice-ordered magmas

RLMag: Residuated lattice-ordered magmas

RMSgrp: Residuated meet-semilattice-ordered semigroups

Superclasses

DivMslat: Division meet-semilattices

LrMMag: Left-residuated meet-semilattice-ordered magmas

RPoMag: Residuated partially ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

23. RMSgrp: Residuated meet-semilattice-ordered semigroups

Definition

A residuated meet-semilattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \cdot, \setminus, / \rangle$ such that

 $\langle A, \wedge \rangle$ is a meet-semilattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 12, f_4 = 129, f_5 = 1852$$

Subclasses

 ${\it CRMSgrp: Commutative \ residuated \ meet-semilattice-ordered \ semigroups}$

IdRMSgrp: Idempotent residuated meet-semilattice-ordered semigroups

RLSgrp: Residuated lattice-ordered semigroups

RMMon: Residuated meet-semilattice-ordered monoids

Superclasses

LrMSgrp: Left-residuated meet-semilattice-ordered semigroups

RMMag: Residuated meet-semilattice-ordered magmas

RPoSgrp: Residuated partially ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

24. RMMon: Residuated meet-semilattice-ordered monoids

Definition

A residuated meet-semilattice-ordered monoid is an algebra $\mathbf{A} = \langle A, \wedge, \cdot, 1, \setminus, / \rangle$ such that $\langle A, \wedge \rangle$ is a meet-semilattice,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

| Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 20, f_5 = 149, f_6 = 1488$$

Subclasses

CRMMon: Commutative residuated meet-semilattice-ordered monoids

 $IRMMon:\ Meet-semilattice-ordered\ residuated\ integral\ monoids$

IdRMMon: Idempotent residuated meet-semilattice-ordered monoids

Superclasses

LrMMon: Left-residuated meet-semilattice-ordered monoids RMSgrp: Residuated meet-semilattice-ordered semigroups

RPoMon: Residuated partially ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

25. IRMMon: Meet-semilattice-ordered residuated integral monoids

Definition

A meet-semilattice-ordered residuated integral monoid is an rm-monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1, \setminus, / \rangle$ such that x is integral: $x \leq 1$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 364$$

Subclasses

CIRMMon: Commutative integral residuated meet-semilattice-ordered monoids

Superclasses

ILrMMon: Integral left-residuated meet-semilattice-ordered monoids

Porim: Partially ordered residuated integral monoids

RMMon: Residuated meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

26. IdRMSgrp: Idempotent residuated meet-semilattice-ordered semigroups

Definition

An idempotent residuated meet-semilattice-ordered semigroup is a residuated meet-semilattice-ordered semi-group $\mathbf{A} = \langle A, \wedge, \cdot, \setminus, \rangle$ such that

· is idempotent: $x \cdot x = x$.

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y \leq z \iff y \leq x \backslash z \\ x \cdot y \leq z \iff x \leq z/y \\ x \cdot (y \cdot z) = (x \cdot y) \cdot z \\ x \cdot x = x \end{array}$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 24, f_5 = 169, f_6 = 1404$$

Subclasses

CIdRMSgrp: Commutative idempotent residuated meet-semilattice-ordered semigroups

IdRLSgrp: Idempotent residuated lattice-ordered semigroups

IdRMMon: Idempotent residuated meet-semilattice-ordered monoids

Superclasses

IdLrMSgrp: Idempotent left-residuated meet-semilattice-ordered semigroups

IdRPoSgrp: Idempotent residuated partially ordered semigroups

RMSgrp: Residuated meet-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

27. IdRMMon: Idempotent residuated meet-semilattice-ordered monoids

Definition

An idempotent residuated meet-semilattice-ordered monoid is a residuated meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1, \setminus, / \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 32, f_6 = 147$$

Subclasses

CIdRMMon: Commutative idempotent residuated meet-semilattice-ordered monoids

Superclasses

IdLrMMon: Idempotent left-residuated meet-semilattice-ordered monoids IdRMSgrp: Idempotent residuated meet-semilattice-ordered semigroups

IdRPoMon: Idempotent residuated partially ordered monoids

RMMon: Residuated meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

28. CMSgrp: Commutative meet-semilattice-ordered semigroups

Definition

A commutative meet-semilattice-ordered semigroup is a meet-semilattice-ordered semigroup $\mathbf{A} = \langle A, \wedge, \cdot \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y = y \cdot x$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 32, f_4 = 432$$

Subclasses

CIdMSgrp: Commutative idempotent meet-semilattice-ordered semigroups

CLSgrp: Commutative lattice-ordered semigroups

CMMon: Commutative meet-semilattice-ordered monoids CRLSgrp: Commutative residuated lattice-ordered semigroups

CRMSgrp: Commutative residuated meet-semilattice-ordered semigroups

Superclasses

CPoSgrp: Commutative partially ordered semigroups

MSgrp: Meet-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

29. CMMon: Commutative meet-semilattice-ordered monoids

Definition

A commutative meet-semilattice-ordered monoid is a meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x \cdot y &= y \cdot x \end{split}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 10, f_4 = 92, f_5 = 1322$$

Subclasses

CIMMon: Commutative Integral meet-semilattice-ordered monoids

CIdMMon: Commutative idempotent meet-semilattice-ordered monoids

CLMon: Commutative lattice-ordered monoids

CRMMon: Commutative residuated meet-semilattice-ordered monoids

Superclasses

CMSgrp: Commutative meet-semilattice-ordered semigroups

CPoMon: Commutative partially ordered monoids

MMon: Meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

30. CIMMon: Commutative Integral meet-semilattice-ordered monoids

Definition

A commutative integral meet-semilattice-ordered monoid is a integral meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

 $x \le y \implies z \cdot x \le z \cdot y$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y = y \cdot x$$

Properties

| Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 60, f_6 = 572$$

Subclasses

CILMon: Commutative Integral lattice-ordered monoids

CIRMMon: Commutative integral residuated meet-semilattice-ordered monoids

Superclasses

CIPoMon: Commutative integral partially ordered monoids CMMon: Commutative meet-semilattice-ordered monoids

IMMon: Integral meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

31. CIdMSgrp: Commutative idempotent meet-semilattice-ordered semigroups

Definition

A commutative idempotent meet-semilattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \cdot \rangle$ such that $\langle A, \wedge, \cdot \rangle$ is an idempotent meet-semilattice-ordered semigroup and

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 53, f_5 = 498$$

Subclasses

CIdLSgrp: Commutative idempotent lattice-ordered semigroups

CIdMMon: Commutative idempotent meet-semilattice-ordered monoids

CIdRMSgrp: Commutative idempotent residuated meet-semilattice-ordered semigroups

Superclasses

CIdPoSgrp: Commutative idempotent partially ordered semigroups

CMSgrp: Commutative meet-semilattice-ordered semigroups

IdMSgrp: Idempotent meet-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

32. CIdMMon: Commutative idempotent meet-semilattice-ordered monoids

Definition

A commutative idempotent meet-semilattice-ordered monoid is an idempotent meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

 $1 \cdot x = x$

 $x \cdot x = x$

 $x\cdot y=y\cdot x$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 31, f_5 = 228, f_6 = 2205$$

Subclasses

CIdLMon: Commutative idempotent lattice-ordered monoids

CIdRMMon: Commutative idempotent residuated meet-semilattice-ordered monoids

Superclasses

CIdMSgrp: Commutative idempotent meet-semilattice-ordered semigroups

CIdPoMon: Commutative idempotent partially ordered monoids

CMMon: Commutative meet-semilattice-ordered monoids

IdMMon: Idempotent meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

33. CDivMslat: Commutative division meet-semilattices

Definition

A commutative division meet-semilattice is a division meet-semilattice $\mathbf{P} = \langle P, \wedge \rangle$ such that P is a meet-semilattice and

\, / are commutative: $x/y = y \setminus x$.

Formal Definition

$$x \leq z/y \iff y \leq x \backslash z$$

$$x/y = y \backslash x$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 64, f_4 = 6208$$

Subclasses

BCKMslat: BCK-meet-semilattices CDivLat: Commutative division lattices

CRMMag: Commutative residuated meet-semilattice-ordered magmas

Superclasses

CDivPos: Commutative division posets DivMslat: Division meet-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

34. BCKMslat: BCK-meet-semilattices

Definition

A BCK-meet-semilattice is an algebra $\mathbf{A} = \langle A, \wedge, \rightarrow, 1 \rangle$ such that

 $\mathbf{A} = \langle A, \wedge \rangle$ is a meet-semilattice and

(1):
$$(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1$$

(2): $1 \to x = x$

(3):
$$x \to 1 = 1$$

$$(4)$$
: $(x \wedge y) \rightarrow y = 1$

(5):
$$x \wedge ((x \rightarrow y) \rightarrow y) = x$$

Remark: $x \le y \iff x \to y = 1$ is a partial order, with 1 as greatest element, and \land is a meet in this partial order. Idziak [1984]

Formal Definition

 $x \wedge ((x \rightarrow y) \rightarrow y) = x$

$$\begin{aligned} x &\leq y \iff x \to y = 1 \\ (x \to y) &\to ((y \to z) \to (x \to z)) = 1 \\ 1 \to x = x \\ x \to 1 = 1 \\ (x \land y) \to y = 1 \end{aligned}$$

Properties

•	
Classtype	Variety
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 38, f_6 = 265$$

Subclasses

BCKLat: BCK-lattices

Superclasses

BCK: BCK-algebras

CDivMslat: Commutative division meet-semilattices

Cont Po J M L D To B U Ind

35. CRMMag: Commutative residuated meet-semilattice-ordered magmas

Definition

A commutative residuated meet-semilattice-ordered magma is a residuated meet-semilattice-ordered magma such that

· is commutative: $x \cdot y = y \cdot x$.

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot y = y \cdot x$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 10, f_4 = 148, f_5 = 4398$$

Subclasses

CRLMag: Commutative residuated lattice-ordered magmas

CRMSgrp: Commutative residuated meet-semilattice-ordered semigroups

Superclasses

CDivMslat: Commutative division meet-semilattices

CRPoMag: Commutative residuated partially ordered magmas

RMMag: Residuated meet-semilattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

36. CRMSgrp: Commutative residuated meet-semilattice-ordered semigroups

Definition

A commutative residuated meet-semilattice-ordered semigroup is a residuated meet-semilattice-ordered semigroup $\mathbf{A} = \langle A, \wedge, \cdot, \setminus, \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 57, f_5 = 550$$

Subclasses

CIdRMSgrp: Commutative idempotent residuated meet-semilattice-ordered semigroups

CRLSgrp: Commutative residuated lattice-ordered semigroups

CRMMon: Commutative residuated meet-semilattice-ordered monoids

Superclasses

CMSgrp: Commutative meet-semilattice-ordered semigroups

CRMMag: Commutative residuated meet-semilattice-ordered magmas CRPoSgrp: Commutative residuated partially ordered semigroups

RMSgrp: Residuated meet-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

37. CRMMon: Commutative residuated meet-semilattice-ordered monoids

Definition

A commutative residuated meet-semilattice-ordered monoid is a residuated meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Remark: These algebras are also known as lineales.[(dePaiva2005)]

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z / y$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 16, f_5 = 100, f_6 = 794$$

Subclasses

CIRMMon: Commutative integral residuated meet-semilattice-ordered monoids CIdRMMon: Commutative idempotent residuated meet-semilattice-ordered monoids

Superclasses

CMMon: Commutative meet-semilattice-ordered monoids

CRMSgrp: Commutative residuated meet-semilattice-ordered semigroups

CRPoMon: Commutative residuated partially ordered monoids

RMMon: Residuated meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

38. CIRMMon: Commutative integral residuated meet-semilattice-ordered monoids

Definition

A commutative integral residuated Mmetsemilattice-ordered monoid is an integral residuated Mmetsemilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1, \setminus, / \rangle$ such that

x is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x &\leq 1 \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \\ x \cdot y &= y \cdot x \end{split}$$

Properties

Classtype	variety
Congruence distributive	Yes (relatively) Blok and Raftery [1997]
Congruence extension property	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 129, f_7 = 723$$

Subclasses

CIRL: Commutative integral residuated lattices

Superclasses

CIMMon: Commutative Integral meet-semilattice-ordered monoids CRMMon: Commutative residuated meet-semilattice-ordered monoids IRMMon: Meet-semilattice-ordered residuated integral monoids

Pocrim: Partially ordered commutative residuated integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

39. Hp: Hoops

Definition

A hoop is an algebra $\mathbf{A} = \langle A, \cdot, \rightarrow, 1 \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a commutative monoid

$$x \to (y \to z) = (x \cdot y) \to z$$

$$x \to x = 1$$

$$(x \to y) \cdot x = (y \to x) \cdot y$$

Remark: This definition shows that hoops form a variety.

Hoops are partially ordered by the relation $x \leq y \iff x \to y = 1$.

The operation $x \wedge y = (x \rightarrow y) \cdot x$ is a meet with respect to this order.

Definition

A hoop is an algebra $\mathbf{A} = \langle A, \cdot, \rightarrow, 1 \rangle$ of type $\langle 2, 2, 0 \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a commutative monoid

and if $x \leq y$ is defined by $x \to y = 1$ then

 \leq is a partial order,

 \rightarrow is the residual of \cdot , i.e., $x \cdot y \leq z \iff y \leq x \rightarrow z$, and

$$(x \to y) \cdot x = (y \to x) \cdot y.$$

Formal Definition

$$x \wedge y = (x \rightarrow y) \cdot x$$

$$x \cdot y = y \cdot x$$

$$x \cdot 1 = x$$

$$x \to (y \to z) = (x \cdot y) \to z$$

$$x \to x = 1$$

$$(x \to y) \cdot x = (y \to x) \cdot y$$

Basic Results

Finite hoops are the same as generalized BL-algebras (= divisible residuated lattices) since the join always exists in a finite meet-semilattice with top, and since all finite GBL-algebras are commutative and integral.

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes

Finite Members

 $f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 5, f_5 = 10, f_6 = 23, f_7 = 49$

Subclasses

BrSlat: Brouwerian semilattices

WaHp: Wajsberg hoops

Superclasses

RtHp: Right hoops

Cont|Po|J|M|L|D|To|B|U|Ind

40. CIdRMSgrp: Commutative idempotent residuated meet-semilattice-ordered semigroups

Definition

A commutative idempotent residuated meet-semilattice-ordered semigroup is an idempotent residuated meet-semilattice-ordered semigroup $\mathbf{A} = \langle A, \wedge, \cdot, \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y < z \iff x < z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 36, f_6 = 202$$

Subclasses

CIdRLSgrp: Commutative idempotent residuated lattice-ordered semigroups

CIdRMMon: Commutative idempotent residuated meet-semilattice-ordered monoids

Superclasses

CIdMSgrp: Commutative idempotent meet-semilattice-ordered semigroups

CIdRPoSgrp: Commutative idempotent residuated partially ordered semigroups

CRMSgrp: Commutative residuated meet-semilattice-ordered semigroups

IdRMSgrp: Idempotent residuated meet-semilattice-ordered semigroups Cont[Po]JM]L[D]To|B|U|Ind

41. CIdRMMon: Commutative idempotent residuated meet-semilattice-ordered monoids

Definition

A commutative idempotent residuated meet-semilattice-ordered monoid is an idmpotent residuated meet-semilattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \cdot, 1, \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \end{aligned}$$

$$x \cdot y \le z \iff y \le x \setminus z$$

 $x \cdot y \le z \iff x \le z/y$

$$x\cdot x=x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 6, f_5 = 20, f_6 = 77$$

Subclasses

Superclasses

CIdMMon: Commutative idempotent meet-semilattice-ordered monoids

CIdRMSgrp: Commutative idempotent residuated meet-semilattice-ordered semigroups

CIdRPoMon: Commutative idempotent residuated partially ordered monoids

 ${\bf CRMMon:} \ \ {\bf Commutative} \ \ {\bf residuated} \ \ {\bf meet\text{-}semilattice\text{-}ordered} \ \ {\bf monoids}$

 $IdRMMon:\ Idempotent\ residuated\ meet-semilattice-ordered\ monoids \\ Cont|Po|J|M|L|D|To|B|U|Ind|D|To|B|U|D|D|D|To|B|U|D$

42. BrSlat: Brouwerian semilattices

Abbreviation: **BrSlat**

Definition

A Brouwerian semilattice is an algebra $\mathbf{A} = \langle A, \wedge, 1, \rightarrow \rangle$ such that

 $\langle A, \wedge, 1 \rangle$ is a semilattice with identity

 \rightarrow gives the residual of \wedge : $x \wedge y \leq z \iff y \leq x \rightarrow z$

Definition

A Brouwerian semilattice is a hoop $\mathbf{A} = \langle A, \cdot, 1, \rightarrow \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$\begin{array}{l} x \wedge y \leq z \iff y \leq x \rightarrow z \\ x \leq \top \end{array}$$

Properties

	=	
	Classtype	Variety
]]	Equational theory	Decidable
1	Locally finite	Yes
]	Residual size	Unbounded
(Congruence distributive	Yes
(Congruence modular	Yes
(Congruence n-permutable	Yes, $n=2$
(Congruence e-regular	Yes, $e = 1$

Finite Members

 $f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=3,\ f_6=5,\ f_7=8,\ f_8=15,\ f_9=26,\ f_{10}=47,\ f_{11}=82,\ f_{12}=151,\ f_{13}=269,\ f_{14}=494,\ f_{15}=891,\ f_{16}=1639,\ f_{17}=2978,\ f_{18}=5483,\ f_{19}=10006,\ f_{20}=18428$

Values known up to size 49 Erné et al. [2002]

Subclasses

BrA: Brouwerian algebras

Superclasses

Hp: Hoops

Cont|Po|J|M|L|D|To|B|U|Ind

CHAPTER 5

Lattice-ordered algebras

1. Lat: Lattices

Definition

A lattice is an algebra $\mathbf{L} = \langle L, \vee, \wedge \rangle$, where \vee and \wedge are infix binary operations called the *join* and *meet*, such that

 \vee, \wedge are associative: $(x \vee y) \vee z = x \vee (y \vee z), (x \wedge y) \wedge z = x \wedge (y \wedge z)$

 \vee , \wedge are commutative: $x \vee y = y \vee x, \ x \wedge y = y \wedge x$

 \vee, \wedge are absorbtive: $(x \vee y) \wedge x = x, (x \wedge y) \vee x = x.$

Remark: It follows that \vee and \wedge are idempotent: $x \vee x = x, x \wedge x = x$.

This definition shows that lattices form a variety.

A partial order \leq is definable in any lattice by $x \leq y \iff x \land y = x,$ or equivalently by $x \leq y \iff x \lor y = y.$

Definition

A lattice is an algebra $\mathbf{L} = \langle L, \vee, \wedge \rangle$ of type $\langle 2, 2 \rangle$ such that

 $\langle L, \vee \rangle$ and $\langle L, \wedge \rangle$ are semilattices, and

 \vee , \wedge are absorbtive: $(x \vee y) \wedge x = x$, $(x \wedge y) \vee x = x$

Definition

A lattice is an algebra $\mathbf{L} = \langle L, \leq \rangle$ that is a partially ordered set in which all elements $x, y \in L$ have a least upper bound: $z = x \vee y \iff x \leq z, \ y \leq z \text{ and } \forall w \ (x \leq w \text{ and } y \leq w \implies z \leq w)$ and a greatest lower bound: $z = x \wedge y \iff z \leq x, \ z \leq y \text{ and } \forall w \ (w \leq x \text{ and } w \leq y \implies w \leq z)$

Definition

A lattice is an algebra $\mathbf{L} = \langle L, \vee, \wedge, \leq \rangle$ such that $\langle L, \leq \rangle$ is a partially ordered set and the following quasiequations hold:

 \vee -left: $x \leq z$ and $y \leq z \implies x \vee y \leq z$

 \vee -right: $z \le x \implies z \le x \vee y$, $z \le y \implies z \le x \vee y$

 \land -right: $z \le x$ and $z \le y \implies z \le x \land y$

 \land -left: $x \le z \implies x \land y \le z, \quad y \le z \implies x \land y \le z$

Remark: These quasiequations give a cut-free Gentzen system to decide the equational theory of lattices.

Examples

Example 1: $\langle P(S), \cup, \cap, \subseteq \rangle$, the collection of subsets of a sets S, ordered by inclusion.

Properties

-	
Classtype	Variety
Equational theory	Decidable in polynomial time
Quasiequational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	yes Funayama and Nakayama [1942]
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	yes Jonsson [1956]
Epimorphisms are surjective	Yes

Finite Members

 $f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=5,\ f_6=15,\ f_7=53,\ f_8=222,\ f_9=1078,\ f_{10}=5994,\ f_{11}=37622,\ f_{12}=262776,\ f_{13}=2\,018\,305,\ f_{14}=16\,873\,364,\ f_{15}=152\,233\,518,\ f_{16}=1\,471\,613\,387,\ f_{17}=15\,150\,569\,446,\ f_{18}=165\,269\,824\,761$ Heitzig and Reinhold [2002], $f_{19}=1\,901\,910\,625\,578$ Jipsen and Lawless [2015], $f_{20}=23\,003\,059\,864\,006$ Gebhardt and Tawn [2020]

Small Members (not in any subclass)

Subclasses

JsdLat: Join-semidistributive lattices

LImpA: Lattice-ordered implication algebras

LMag: Lattice-ordered magmas

LNUn: Lattice-ordered negated unars

LUn: Lattice-ordered unars ModLat: Modular lattices

MsdLat: Meet-semidistributive lattices

OLat: Ortholattices pLat: Pointed lattices Superclasses

Jslat: Join-semilattices Mslat: Meet-semilattices SkLat: Skew lattices

Cont|Po|J|M|L|D|To|B|U|Ind

2. pLat: Pointed lattices

Definition

A pointed lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, c \rangle$ such that $\mathbf{A} = \langle A, \wedge, \vee \rangle$ is a lattice and c is a constant operation on A.

Formal Definition

c = c

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 3, f_4 = 7, f_5 = 21, f_6 = 75, f_7 = 315$$

Small Members (not in any subclass)

Subclasses

LMon: Lattice-ordered monoids pDLat: Pointed distributive lattices

Superclasses Lat: Lattices

pJslat: Pointed join-semilattices pMslat: Pointed meet-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

3. bLat: Bounded lattices

Definition

A bounded lattice is an algebra $\mathbf{L} = \langle L, \vee, \perp, \wedge, \top \rangle$ such that

 $\langle L, \wedge, \vee \rangle$ is a lattice

 \bot is the least element: $\bot \le x$ \top is the greatest element: $x \le \top$

Formal Definition

 $\begin{array}{c} \bot \leq x \\ x \leq \top \end{array}$

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Undecidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes
Locally finite	No
Residual size	Unbounded

Finite Members

 $f_1 = 1$, $f_2 = 1$, $f_3 = 1$, $f_4 = 2$, $f_5 = 5$, $f_6 = 15$, $f_7 = 53$, Same as for finite lattices since every complete lattice is bounded.

Subclasses

CplmLat: Complemented lattices bDLat: Bounded distributive lattices

Superclasses

lbJslat: Lower-bounded join-semilattices ubJslat: Upper-bounded join-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

4. LUn: Lattice-ordered unars

Definition

A lattice-ordered unar is an algebra $\mathbf{P} = \langle P, \leq, f \rangle$ such that P is a lattice and f is a unary operation on P that is

order-preserving: $x \le y \implies f(x) \le f(y)$

Formal Definition

$$f(x \vee y) = f(x) \vee f(y)$$

Basic Results

Properties

-	
Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 10, f_4 = 50, f_5 = 313$$

Subclasses

DLUn: Distributive lattice-ordered unars RLUn: Residuated lattice-ordered unars

Superclasses

JUn: Join-semilattice-ordered unars

Lat: Lattices

MUn: Meet-semilattice-ordered unars

5. LNUn: Lattice-ordered negated unars

Definition

A lattice-ordered negated unar (also called a po-nunar for short) is an algebra $\mathbf{P} = \langle P, \leq, \sim \rangle$ such that P is a lattice and \sim is a unary operation on P that is

order-reversing: $x \leq y \implies \sim y \leq \sim x$

Formal Definition

 $x \le y \implies \sim y \le \sim x$

Basic Results

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 10, f_4 = 56, f_5 = 457$$

Subclasses

DLNUn: Distributive lattice-ordered negated unars

GalLat: Galois lattices

Superclasses

JNUn: Join-semilattice-ordered negated unars

Lat: Lattices

MNUn: Meet-semilattice-ordered negated unars

Cont|Po|J|M|L|D|To|B|U|Ind

6. LMag: Lattice-ordered magmas

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

 $z \cdot (x \lor y) = z \cdot x \lor z \cdot y$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 175$$

Subclasses

DLMag: Distributive lattice-ordered magmas

LSgrp: Lattice-ordered semigroups

LrLMag: Left-residuated lattice-ordered magmas

MultLat: Multiplicative lattices

Superclasses

 ${\it JMag:}$ Join-semilattice-ordered magmas

Lat: Lattices

MMag: Meet-semilattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

7. LSgrp: Lattice-ordered semigroups

A lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that

 $\langle A, \cdot \rangle$ is a semigroup

 $\langle A, \wedge, \vee \rangle$ is a lattice

· is order preserving: $x \leq y \implies x \cdot z \leq y \cdot z$ and $z \cdot x \leq z \cdot y$

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$z \cdot (x \lor y) = z \cdot x \lor z \cdot y$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Properties

Classtype	Variety
Congruence distributive	Yes
Congruence modular	Yes

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 44, f_4 = 479$$

Subclasses

CLSgrp: Commutative lattice-ordered semigroups DLSgrp: Distributive lattice-ordered semigroups IdLSgrp: Idempotent lattice-ordered semigroups

LMon: Lattice-ordered monoids

LrLSgrp: Left-residuated lattice-ordered semigroups

Superclasses

DLImpA: Distributive lattice-ordered implication algebras

JSgrp: Join-semilattice-ordered semigroups

LMag: Lattice-ordered magmas

MSgrp: Meet-semilattice-ordered semigroups

MultLat: Multiplicative lattices

Cont|Po|J|M|L|D|To|B|U|Ind

8. LMon: Lattice-ordered monoids

Definition

A lattice-ordered monoid is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a monoid

 $\langle A, \wedge, \vee \rangle$ is a lattice

· is order preserving: $x \le y \implies wxz \le wyz$

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$z \cdot (x \lor y) = z \cdot x \lor z \cdot y$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$

Basic Results

Properties

•	
Classtype	Variety
Congruence distributive	Yes
Congruence modular	Yes

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 45, f_5 = 347$$

Subclasses

CLMon: Commutative lattice-ordered monoids DLMon: Distributive lattice-ordered monoids ILMon: Integral lattice-ordered monoids IdLMon: Idempotent lattice-ordered monoids LrLMon: Left-residuated lattice-ordered monoids

Superclasses

JMon: Join-semilattice-ordered monoids LSgrp: Lattice-ordered semigroups

MMon: Meet-semilattice-ordered monoids

pLat: Pointed lattices

Cont|Po|J|M|L|D|To|B|U|Ind

9. KLat: Kleene lattices

Definition

A Kleene lattice is an algebra $\mathbf{A} = \langle A, \vee, \wedge, 0, \cdot, 1,^* \rangle$ of type $\langle 2, 2, 0, 2, 0, 1 \rangle$ such that $\langle A, \vee, 0, \cdot, 1,^* \rangle$ is a Kleene algebra $\langle A, \vee, \wedge \rangle$ is a lattice

Properties

Classtype	Quasivariety
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 16, f_5 = 149, f_6 = 1488$$

Subclasses

ActLat: Action lattices

Superclasses

KA: Kleene algebras

Cont|Po|J|M|L|D|To|B|U|Ind

10. ActLat: Action lattices

Definition

```
An action lattice is an algebra \mathbf{A} = \langle A, \wedge, \vee, 0, \cdot, 1,^*, \setminus, / \rangle of type \langle 2, 2, 0, 2, 0, 1, 2, 2 \rangle such that \langle A, \vee, 0, \cdot, 1,^* \rangle is a Kleene algebra \langle A, \wedge, \vee \rangle is a lattice \langle A, \wedge, \vee \rangle is a lattice \langle A, \wedge, \vee \rangle is the left residual of \cdot : y \leq x \setminus z \iff xy \leq z / is the right residual of \cdot : x \leq z/y \iff xy \leq z Definition (x \cdot y) \cdot z = x \cdot (y \cdot z) x \cdot 1 = x 1 \cdot x = x
```

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$\begin{aligned} x \cdot 0 &= 0 \\ 0 \cdot x &= 0 \\ 1 \lor x \lor x^* \cdot x^* &= x^* \\ x \cdot y &\leq y \implies x^* \cdot y &= y \\ y \cdot x &\leq y \implies y \cdot x^* &= y \end{aligned}$$

Classtype	variety
Equational theory	?
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 16, f_5 = 149, f_6 = 1488$$

Subclasses

TrivA: Trivial algebras

Superclasses

KLat: Kleene lattices RL: Residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

11. ModLat: Modular lattices

Definition

A modular lattice is a lattice $\mathbf{L} = \langle L, \wedge, \vee \rangle$ that satisfies the modular identity: $((x \wedge z) \vee y) \wedge z = (x \wedge z) \vee (y \wedge z)$

Definition

A modular lattice is a lattice $\mathbf{L} = \langle L, \wedge, \vee \rangle$ that satisfies the modular law: $x \leq z \implies (x \vee y) \wedge z \leq x \vee (y \wedge z)$

Definition

A modular lattice is a lattice $\mathbf{L} = \langle L, \wedge, \vee \rangle$ such that \mathbf{L} has no sublattice isomorphic to the pentagon \mathbf{N}_5

Examples

Example 1: M_3 is the smallest nondistributive modular lattice. By a result of Dedekind [1900] this lattice occurs as a sublattice of every nondistributive modular lattice.

Properties

Classtype	Variety
Equational theory	Undecidable Freese [1980], Herrmann [1983]
Quasiequational theory	Undecidable Lipshitz [1974]
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	No

Finite Members

 $f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=4,\ f_6=8,\ f_7=16,\ f_8=34,\ f_9=72,\ f_{10}=157,\ f_{11}=343,\ f_{12}=766,\ f_{13}=1718,\ f_{14}=3899,\ f_{15}=8898,\ f_{16}=20475,\ f_{17}=47321,\ f_{18}=110024,\ f_{19}=256791,\ f_{20}=601991,\ f_{21}=1415768,\ f_{22}=3340847,\ f_{23}=7904700,\ f_{24}=18752942$

Jipsen and Lawless [2015], A006981

Small Members (not in any subclass)

 $\mathbf{ModL}_{5,1}$

 $\mathbf{ModL}_{6,1}$

 $\mathbf{ModL}_{6,2}$

 $ModL_{6,3}$

Subclasses

DLat: Distributive lattices

Superclasses
Lat: Lattices

Cont|Po|J|M|L|D|To|B|U|Ind

12. MultLat: Multiplicative lattices

Definition

A multiplicative lattice (or m-lattice) is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee \rangle$ is a lattice

- · distributes over \vee : $x(y \vee z) = xy \vee xz$, $(x \vee y)z = xz \vee yz$ and
- · distributes over \wedge : $x(y \wedge z) = xy \wedge xz$, $(x \wedge y)z = xz \wedge yz$.

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z, (x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$x \cdot (y \land z) = x \cdot y \land x \cdot z, (x \land y) \cdot z = x \cdot z \land y \cdot z$$

Properties

<u>-</u>	
Classtype	Variety
Congruence distributive	Yes
Congruence modular	Yes

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 175$$

Subclasses

LSgrp: Lattice-ordered semigroups

Superclasses

LMag: Lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

13. ILMon: Integral lattice-ordered monoids

Definition

An integral lattice-ordered monoid is a lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that $x \leq 1$.

Formal Definition

$$\begin{aligned} &(x \vee y) \cdot z = x \cdot z \vee y \cdot z \\ &z \cdot (x \vee y) = z \cdot x \vee z \cdot y \\ &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &x \leq 1 \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 364$$

Subclasses

CILMon: Commutative Integral lattice-ordered monoids DILMon: Distributive integral lattice-ordered monoids ILrLMon: Integral left-residuated lattice-ordered monoids

Superclasses

IJMon: Integral join-semilattice-ordered monoids IMMon: Integral meet-semilattice-ordered monoids

LMon: Lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

14. IdLSgrp: Idempotent lattice-ordered semigroups

Definition

An idempotent lattice-ordered semigroup is an algebra $\mathbf{A}=\langle A,\wedge,\vee,\cdot\rangle$ such that $\langle A,\wedge,\vee,\cdot\rangle$ is a lattice-ordered semigroup and

· is
$$idempotent$$
: $x \cdot x = x$

Formal Definition

$$\begin{split} (x \vee y) \cdot z &= x \cdot z \vee y \cdot z \\ z \cdot (x \vee y) &= z \cdot x \vee z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \end{split}$$

$x \cdot x = x$

Properties

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 17, f_4 = 100, f_5 = 674$$

Subclasses

CIdLSgrp: Commutative idempotent lattice-ordered semigroups DIdLSgrp: Distributive idempotent lattice-ordered semigroups

IdLMon: Idempotent lattice-ordered monoids

IdLrLSgrp: Idempotent left-residuated lattice-ordered semigroups

Superclasses

IdJSgrp: Idempotent join-semilattice-ordered semigroups IdMSgrp: Idempotent meet-semilattice-ordered semigroups

LSgrp: Lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

15. IdLMon: Idempotent lattice-ordered monoids

Definition

An idempotent lattice-ordered monoid is a lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that \cdot is idempotent: $x \cdot x = x$

Formal Definition

$$\begin{aligned} &(x \vee y) \cdot z = x \cdot z \vee y \cdot z \\ &z \cdot (x \vee y) = z \cdot x \vee z \cdot y \\ &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &x \cdot x = x \end{aligned}$$

Basic Results

Properties

Classtype	variety
Crass of Po	,

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 22, f_5 = 93, f_6 = 439$$

Subclasses

CIdLMon: Commutative idempotent lattice-ordered monoids DIdLMon: Distributive idempotent lattice-ordered monoids IdLrLMon: Idempotent left-residuated lattice-ordered monoids

Superclasses

IdJMon: Idempotent join-semilattice-ordered monoids IdLSgrp: Idempotent lattice-ordered semigroups

IdMMon: Idempotent meet-semilattice-ordered monoids

LMon: Lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

16. LImpA: Lattice-ordered implication algebras

Formal Definition

$$(x \lor y) \to z = (x \to z) \land (y \to z)$$

 $z \to (x \land y) = (z \to x) \land (z \to y)$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 175$$

Subclasses

DLImpA: Distributive lattice-ordered implication algebras

DivLat: Division lattices

LrLMag: Left-residuated lattice-ordered magmas

Superclasses

JImpA: Join-semilattice-ordered implication algebras

Lat: Lattices

MImpA: Meet-semilattice-ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

17. LrLMag: Left-residuated lattice-ordered magmas

Definition

A left-residuated lattice-ordered magma (or lrpo-magma) is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, \rangle$ such that $\langle A, \leq \rangle$ is a lattice,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$z \cdot (x \lor y) = z \cdot x \lor z \cdot y$$
$$x \cdot y \le z \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 50, f_4 = 4441$$

Subclasses

DLrLMag: Distributive left-residuated lattice-ordered magmas

LrLSgrp: Left-residuated lattice-ordered semigroups

RLMag: Residuated lattice-ordered magmas

Superclasses

LImpA: Lattice-ordered implication algebras

LMag: Lattice-ordered magmas

LrJMag: Left-residuated join-semilattice-ordered magmas LrMMag: Left-residuated meet-semilattice-ordered magmas

Cont Po J M L D To B U Ind

18. LrLSgrp: Left-residuated lattice-ordered semigroups

Definition

A left-residuated lattice-ordered semigroup (or lrpo-semigroup) is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, \rangle$ such that $\langle A, \leq \rangle$ is a lattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \le z \iff y \le x \setminus z$

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$z \cdot (x \lor y) = z \cdot x \lor z \cdot y$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y \le z \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 18, f_4 = 183, f_5 = 2500$$

Subclasses

DLrLSgrp: Distributive left-residuated lattice-ordered semigroups IdLrLSgrp: Idempotent left-residuated lattice-ordered semigroups

LrLMon: Left-residuated lattice-ordered monoids RLSgrp: Residuated lattice-ordered semigroups

Superclasses

LSgrp: Lattice-ordered semigroups

LrJSgrp: Left-residuated join-semilattice-ordered semigroups

LrLMag: Left-residuated lattice-ordered magmas

LrMSgrp: Left-residuated meet-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

19. LrLMon: Left-residuated lattice-ordered monoids

Definition

A left-residuated lattice-ordered monoid is an algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, \rangle$ such that

 $\langle A, \leq \rangle$ is a lattice,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$z \cdot (x \lor y) = z \cdot x \lor z \cdot y$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 23, f_5 = 169, f_6 = 1635$$

Subclasses

DLrLMon: Distributive left-residuated lattice-ordered monoids ILrLMon: Integral left-residuated lattice-ordered monoids IdLrLMon: Idempotent left-residuated lattice-ordered monoids

RL: Residuated lattices

Superclasses

LMon: Lattice-ordered monoids

LrJMon: Left-residuated join-semilattice-ordered monoids LrLSgrp: Left-residuated lattice-ordered semigroups

LrMMon: Left-residuated meet-semilattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

20. ILrLMon: Integral left-residuated lattice-ordered monoids

Definition

A integral left-residuated lattice-ordered monoid (or ilr ℓ -monoid for short) is a left-residuated lattice-ordered monoid $(A, \leq, \cdot, 1, \setminus, \cdot)$ that satisfies $x \leq 1$.

Formal Definition

$$\begin{split} &(x\vee y)\cdot z = x\cdot z\vee y\cdot z\\ &z\cdot (x\vee y) = z\cdot x\vee z\cdot y\\ &(x\cdot y)\cdot z = x\cdot (y\cdot z)\\ &x\cdot 1 = x\\ &1\cdot x = x\\ &x\cdot y\leq z\iff y\leq x\backslash z\\ &x\leq 1 \end{split}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 364$$

Subclasses

DILrLMon: Distributive integral left-residuated lattice-ordered monoids

IRL: Integral residuated lattices

Superclasses

ILMon: Integral lattice-ordered monoids

ILrJMon: Integral left-residuated join-semilattice-ordered monoids ILrMMon: Integral left-residuated meet-semilattice-ordered monoids

LrLMon: Left-residuated lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

21. IdLrLSgrp: Idempotent left-residuated lattice-ordered semigroups

Definition

An idempotent left-residuated lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee, \cdot \rangle$ is a left-residuated lattice-ordered semigroup and

· is idempotent:
$$x \cdot x = x$$

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$z \cdot (x \lor y) = z \cdot x \lor z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 7, f_4 = 40, f_5 = 273$$

Subclasses

DIdLrLSgrp: Distributive idempotent left-residuated lattice-ordered semigroups

IdLrLMon: Idempotent left-residuated lattice-ordered monoids IdRLSgrp: Idempotent residuated lattice-ordered semigroups

Superclasses

IdLSgrp: Idempotent lattice-ordered semigroups

IdLrJSgrp: Idempotent left-residuated join-semilattice-ordered semigroups

IdLrMSgrp: Idempotent left-residuated meet-semilattice-ordered semigroups LrLSgrp: Left-residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

22. IdLrLMon: Idempotent left-residuated lattice-ordered monoids

Definition

An idempotent left-residuated lattice-ordered monoid is a left-residuated lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$\begin{aligned} &(x \vee y) \cdot z = x \cdot z \vee y \cdot z \\ &z \cdot (x \vee y) = z \cdot x \vee z \cdot y \\ &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &x \cdot y \leq z \iff y \leq x \backslash z \\ &x \cdot x = x \end{aligned}$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 11, f_5 = 46, f_6 = 215$$

Subclasses

DIdLrLMon: Distributive idempotent left-residuated lattice-ordered monoids

IdRL: Idempotent residuated lattices

Superclasses

IdLMon: Idempotent lattice-ordered monoids

 $\label{lem:dlrJMon:} Idempotent \ left-residuated join-semilattice-ordered \ monoids \ IdLrLSgrp: \ Idempotent \ left-residuated \ lattice-ordered \ semigroups$

IdLrMMon: Idempotent left-residuated meet-semilattice-ordered monoids

LrLMon: Left-residuated lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

23. RLUn: Residuated lattice-ordered unars

Formal Definition

A residuated lattice-ordered unar (also called an ℓ -unar for short) is a po-algebra $\langle L, \wedge, \vee, f, g \rangle$ such that $\langle L, \wedge, \vee \rangle$ is a lattice and f, g are unary operations on L such that g is the upper residual of f, or equivalently, g is the right adjoint of f:

$$f(x) \le y \iff x \le g(y).$$

Basic Results

Both f and g are order preserving. More specifically, f preserves all existing joins and g preserves all existing meets. In particular, $f(x \vee y) = f(x) \vee f(y)$ and $g(x \wedge y) = g(x) \wedge g(y)$.

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

Subclasses

DRLUn: Distributive residuated lattice-ordered unars

Superclasses

LUn: Lattice-ordered unars

RJUn: Residuated join-semilattice-ordered unars RMUn: Residuated meet-semilattice-ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

24. DivLat: Division lattices

Definition

A division lattice is an algebra $\mathbf{P} = \langle P, \leq, \setminus, / \rangle$ such that P is a lattice and

$$x \le z/y \iff y \le x \backslash z$$

Formal Definition

$$x \le z/y \iff y \le x \backslash z$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 216$$

Subclasses

CDivLat: Commutative division lattices DDivLat: Distributive division lattices

RLMag: Residuated lattice-ordered magmas

Superclasses

DivJslat: Division join-semilattices DivMslat: Division meet-semilattices

LImpA: Lattice-ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

25. RLMag: Residuated lattice-ordered magmas

Definition

A residuated lattice-ordered magma (or rpo-magma) is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that $\langle A, \leq \rangle$ is a lattice,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

| Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 20, f_4 = 1116$$

Subclasses

CRLMag: Commutative residuated lattice-ordered magmas DRLMag: Distributive residuated lattice-ordered magmas

InLMag: Involutive lattice-ordered magmas RLSgrp: Residuated lattice-ordered semigroups

Superclasses

DivLat: Division lattices

LrLMag: Left-residuated lattice-ordered magmas RJMag: Residuated join-semilattice-ordered magmas RMMag: Residuated meet-semilattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

26. RLSgrp: Residuated lattice-ordered semigroups

Definition

A residuated lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

 $\langle A, \leq \rangle$ is a lattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \le z \iff y \le x \setminus z$ / is the right residual of $: x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \cdot y \le z \iff y \le x \setminus z$$
$$x \cdot y \le z \iff x \le z/y$$
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 12, f_4 = 129, f_5 = 1852$$

Subclasses

CRLSgrp: Commutative residuated lattice-ordered semigroups DRLSgrp: Distributive residuated lattice-ordered semigroups IdRLSgrp: Idempotent residuated lattice-ordered semigroups

InLSgrp: Involutive lattice-ordered semigroups

RL: Residuated lattices

Superclasses

LrLSgrp: Left-residuated lattice-ordered semigroups RJSgrp: Residuated join-semilattice-ordered semigroups

RLMag: Residuated lattice-ordered magmas

RMSgrp: Residuated meet-semilattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

27. RL: Residuated lattices

Definition

```
A residuated lattice is an algebra \mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle such that \langle A, \wedge, \vee \rangle is a lattice, \langle A, \cdot, 1 \rangle is a monoid and \setminus is the left residual of : x \cdot y \leq z \iff y \leq x \setminus z / is the right residual of : x \cdot y \leq z \iff x \leq z/y.
```

Formal Definition

 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $x \cdot 1 = x$

 $1 \cdot x = x$

 $x \cdot y \le z \iff y \le x \setminus z$

 $x \cdot y \le z \iff x \le z/y$

Properties

Classtype Variety Decidable [(OK1985)] ((implementation)) Equational theory Quasiequational theory Undecidable Undecidable First-order theory Locally finite No Residual size Unbounded Congruence distributive Yes Congruence modular Yes Yes, n=2Congruence n-permutable No Congruence regular Congruence e-regular Yes Congruence uniform No Congruence extension property No No Definable principal congruences No Equationally def. pr. cong.

Finite Members

 $f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 20, f_5 = 149, f_6 = 1488, f_7 = 18554, f_8 = 295292$

Subclasses

ActLat: Action lattices

CRL: Commutative residuated lattices CanRL: Cancellative residuated lattices DRL: Distributive residuated lattices

FL: Full Lambek algebras

IRL: Integral residuated lattices IdRL: Idempotent residuated lattices bRL: Bounded residuated lattices

Superclasses

LrLMon: Left-residuated lattice-ordered monoids RLSgrp: Residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

28. bRL: Bounded residuated lattices

Definition

A bounded residuated lattice is an algebra $\langle A, \wedge, \vee, \bot, \top, \cdot, 1, \setminus, / \rangle$ such that $\langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ is a residuated lattice,

 \bot is the least element: $\bot \lor x = x$ and \top is the greatest element: $\top \lor x = \top$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 $x \cdot 1 = x$

 $1 \cdot x = x$

$$\begin{aligned} x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \\ \bot \lor x &= x \\ \top \lor x &= \top \end{aligned}$$

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	no
Residual size	Unbounded
Congruence distributive	yes
Congruence modular	yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	yes
Congruence uniform	no
Congruence extension property	yes
Definable principal congruences	no
Equationally def. pr. cong.	no

Finite Members

 $f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 20, f_5 = 149, f_6 = 1488$ Same as for finite residuated lattices.

Subclasses

ILLA: Intuitionistic linear logic algebras

MALLA: Multiplicative additive linear logic algebras

Superclasses

FL: Full Lambek algebras

RL: Residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

29. IRL: Integral residuated lattices

Definition

An integral residuated lattice is an residuated lattice $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that x is integral: $x \leq 1$

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x &\leq 1 \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \end{split}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 364$$

Subclasses

CIRL: Commutative integral residuated lattices

DIRL: Distributive integral residuated lattices

IInFL: Integral involutive FL-algebras

Superclasses

ILrLMon: Integral left-residuated lattice-ordered monoids

RL: Residuated lattices $\operatorname{Cont}|\operatorname{Po}|\operatorname{J}|\operatorname{M}|\operatorname{L}|\operatorname{D}|\operatorname{To}|\operatorname{B}|\operatorname{U}|\operatorname{Ind}$

30. IdRLSgrp: Idempotent residuated lattice-ordered semigroups

Definition

An idempotent residuated lattice-ordered semigroup is a residuated lattice-ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \cdot, \cdot \rangle$ such that

· is idempotent: $x \cdot x = x$.

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y \leq z \iff y \leq x \backslash z \\ x \cdot y \leq z \iff x \leq z/y \\ x \cdot (y \cdot z) = (x \cdot y) \cdot z \\ x \cdot x = x \end{array}$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 24, f_5 = 169$$

Subclasses

 ${\bf CIdRLSgrp:\ Commutative\ idempotent\ residuated\ lattice-ordered\ semigroups}$

DIdRLSgrp: Distributive idempotent residuated lattice-ordered semigroups

IdRL: Idempotent residuated lattices

Superclasses

IdLrLSgrp: Idempotent left-residuated lattice-ordered semigroups

IdRJSgrp: Idempotent residuated join-semilattice-ordered semigroups

IdRMSgrp: Idempotent residuated meet-semilattice-ordered semigroups

RLSgrp: Residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

31. IdRL: Idempotent residuated lattices

Definition

An idempotent residuated lattice is a residuated lattice-ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that \cdot is idempotent: $x \cdot x = x$

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z / y \end{split}$$

$$x \cdot x = x$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 32, f_6 = 147$$

Subclasses

CIdRL: Commutative idempotent residuated lattices DIdRL: Distributive idempotent residuated lattices

Superclasses

IdLrLMon: Idempotent left-residuated lattice-ordered monoids IdRLSgrp: Idempotent residuated lattice-ordered semigroups

RL: Residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

32. FL: Full Lambek algebras

Definition

A full Lambek algebra, or FL-algebra, is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, /, 0 \rangle$ of type $\langle 2, 2, 2, 0, 2, 2, 0 \rangle$ such that

 $\langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ is a residuated lattice and

0 is an additional constant (can denote any element).

Formal Definition

$$\begin{split} &(x\cdot y)\cdot z = x\cdot (y\cdot z)\\ &x\cdot 1 = x\\ &1\cdot x = x\\ &x\cdot y \leq z \iff y \leq x\backslash z\\ &x\cdot y \leq z \iff x \leq z/y\\ &d=d \end{split}$$

Properties

Classtype	Variety
Equational theory	Decidable Ono and Komori [1985]
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, n=2
Congruence regular	No
Congruence e-regular	Yes
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 9, f_4 = 79, f_5 = 737$$

Subclasses

 FL_c : Full Lambek algebras with contraction FL_c : Full Lambek algebras with exchange

 FL_w : Full Lambek algebras with weakening

InFL: Involutive FL-algebras bRL: Bounded residuated lattices

Superclasses

RL: Residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

33. FL_c : Full Lambek algebras with contraction

Definition

A FL_c -algebra is an FL-algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, /, 0 \rangle$ such that \cdot is contractive: $x \leq x \cdot x$

Formal Definition

$$\begin{split} &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &x \cdot y \leq z \iff y \leq x \backslash z \\ &x \cdot y \leq z \iff x \leq z/y \\ &d = d \\ &x \leq x \cdot x \end{split}$$

Properties

*	
Equational theory	undecidable[(CH2016)]
Quasiequational theory	undecidable
First-order theory	undecidable
Locally finite	no
Residual size	infinite
Congruence distributive	yes
Congruence modular	yes
Congruence <i>n</i> -permutable	yes

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 39, f_5 = 279$$

Subclasses

FL_{ec}: Full Lambek algebras with exchange and contraction

Superclasses

FL: Full Lambek algebras

Cont|Po|J|M|L|D|To|B|U|Ind

34. FL_e : Full Lambek algebras with exchange

Definition

A full Lambek algebra with exchange, or FL_e -algebra, is an FL-algebra $\langle A, \wedge, \vee, \cdot, 1, \setminus, /, 0 \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{split} &(x\cdot y)\cdot z = x\cdot (y\cdot z)\\ &x\cdot 1 = x\\ &1\cdot x = x\\ &x\cdot y \leq z \iff y \leq x\backslash z\\ &x\cdot y \leq z \iff x \leq z/y\\ &d=d \end{split}$$

$$x \cdot y = y \cdot x$$

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	No
Congruence e-regular	Yes
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 9, f_4 = 63, f_5 = 492$$

Subclasses

 FL_{ec} : Full Lambek algebras with exchange and contraction FL_{ew} : Full Lambek algebras with exchange and weakening

ILLA: Intuitionistic linear logic algebras

Superclasses

FL: Full Lambek algebras

Cont|Po|J|M|L|D|To|B|U|Ind

35. FL_w : Full Lambek algebras with weakening

Definition

A FL_w -algebra is an FL-algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, /, 0 \rangle$ that is *integral* (i.e. satisfies the weakening rules): $0 \le x \le 1$

Formal Definition

$$\begin{split} &(x\cdot y)\cdot z = x\cdot (y\cdot z)\\ &x\cdot 1 = x\\ &1\cdot x = x\\ &x\cdot y \leq z \iff y \leq x\backslash z\\ &x\cdot y \leq z \iff x \leq z/y\\ &x\cdot y = y\cdot x\\ &0 \leq x\\ &x \leq 1 \end{split}$$

Properties

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 129, f_7 = 723$$

Subclasses

Superclasses

FL: Full Lambek algebras

Cont|Po|J|M|L|D|To|B|U|Ind

36. FL_{ec}: Full Lambek algebras with exchange and contraction

Definition

A full Lambek algebra with exchange and contraction, or FL_{ec} -algebra, is an FL_{e} -algebra $\langle A, \vee, 0, \wedge, T, \cdot, 1, \setminus, / \rangle$ such that

· is contractive or square-increasing: $x \leq x \cdot x$

Formal Definition

$$\begin{aligned} &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &x \cdot y \leq z \iff y \leq x \backslash z \\ &x \cdot y \leq z \iff x \leq z/y \\ &d = d \\ &x \leq x \cdot x \\ &x \cdot y = y \cdot x \end{aligned}$$

Properties

Variety
Decidable
Undecidable
Undecidable
No
Unbounded
Yes
Yes
Yes, $n=2$
No
Yes
No
No
No
No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 31, f_5 = 199$$

Subclasses

Superclasses

 FL_c : Full Lambek algebras with contraction FL_c : Full Lambek algebras with exchange

Cont|Po|J|M|L|D|To|B|U|Ind

37. FL_{ew} : Full Lambek algebras with exchange and weakening

Definition

A FL_{ew} -algebra is an FL_e -algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, /, 0 \rangle$ that is *integral* and bounded (i.e. satisfies the weakening rules): $0 \le x \le 1$.

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot y = y \cdot x$$

 $0 \le x$

 $x \leq 1$

Properties

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 129, f_7 = 723$$

Subclasses

Superclasses

 FL_e : Full Lambek algebras with exchange

Cont|Po|J|M|L|D|To|B|U|Ind

38. GalLat: Galois lattices

Definition

A Galois lattice is an algebra $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that P is a lattice and $\sim, -$ are a pair of unary operations on P that form a

Galois connection: $x \le \sim y \iff y \le -x$

Formal Definition

$$x \le \sim y \iff y \le -x$$

Basic Results

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 30, f_5 = 184$$

Subclasses

DGalLat: Distributive Galois lattices

InLat: Involutive lattices

Superclasses

GalJslat: Galois join-semilattices GalMslat: Galois meet-semilattices LNUn: Lattice-ordered negated unars

 $\mathrm{Cont}|\mathrm{Po}|\mathrm{J}|\mathrm{M}|\mathrm{L}|\mathrm{D}|\mathrm{To}|\mathrm{B}|\mathrm{U}|\mathrm{Ind}$

39. InLat: Involutive lattices

Definition

An involutive lattice is a Galois lattice $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that $\sim, -$ are inverses of each other:

$$\sim -x = x$$

$$-\sim x = x$$

Formal Definition

$$x \le \sim y \iff y \le -x$$

$$\sim -x = x$$

$$-\sim x = x$$

Basic Results

Properties

Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes

Finite Members

 $f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 5, f_6 = 14, f_7 = 27$

Subclasses

Bilat: Bilattices

DInLat: Distributive involutive lattices InLMag: Involutive lattice-ordered magmas

Superclasses

GalLat: Galois lattices InPos: Involutive posets

Cont|Po|J|M|L|D|To|B|U|Ind

40. InLMag: Involutive lattice-ordered magmas

Definition

An involutive lattice-ordered magma is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is a lattice-ordered magma,

 \sim , – is an involutive pair: $\sim -x = x = -\sim x$,

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$
 and

$$x \cdot y \le z \iff x \le -(y \cdot \sim z).$$

Formal Definition

 $\sim -x = x$ $-\sim x = x$

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$

$$x \cdot y \le z \iff x \le -(y \cdot \sim z)$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 42, f_5 = 342$$

Subclasses

CyInLMag: Cyclic involutive lattice-ordered magmas DInLMag: Distributive involutive lattice-ordered magmas

InLSgrp: Involutive lattice-ordered semigroups

Superclasses

InLat: Involutive lattices

InPoMag: Involutive partially ordered magmas RLMag: Residuated lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

41. InLSgrp: Involutive lattice-ordered semigroups

Definition

An involutive lattice-ordered semigroup is an algebra $\mathbf{A}=\langle A,\leq,\cdot,\sim,-\rangle$ such that $\langle A,\leq,\cdot\rangle$ is an involutive lattice-ordered magma and

```
\cdot is associative: (x \cdot y) \cdot z = x \cdot (y \cdot z)
```

Formal Definition

$$\begin{aligned} & \sim -x = x \\ & -\sim x = x \\ & x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{aligned}$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 29, f_5 = 146, f_6 = 1308$$

Subclasses

CyInLSgrp: Cyclic involutive lattice-ordered semigroups

DInLSgrp: Distributive involutive lattice-ordered semigroups

InFL: Involutive FL-algebras

Superclasses

InLMag: Involutive lattice-ordered magmas

InPoSgrp: Involutive partially ordered semigroups RLSgrp: Residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

42. InFL: Involutive FL-algebras

Definition

An involutive FL-algebra is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \sim, - \rangle$ such that $\langle A, \wedge, \vee, \cdot, \sim, - \rangle$ is an involutive lattice-ordered semigroup that has an identity: $x \cdot 1 = x = 1 \cdot x$

Formal Definition

Properties

Classtype	variety
Equational theory	Decidable Galatos and Jipsen [2013]
Locally finite	No
Residual size	∞
Congruence distributive	Yes
Congruence modular	Yes
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 21, f_6 = 101, f_7 = 284, f_8 = 1464$$

Subclasses

CyInFL: Cyclic involutive FL-algebras DInFL: Distributive involutive FL-algebras

IInFL: Integral involutive FL-algebras

Superclasses

FL: Full Lambek algebras

InLSgrp: Involutive lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

43. IInFL: Integral involutive FL-algebras

Definition

An integral involutive FL-algebra is an involutive FL-algebra $\mathbf{A}=\langle A,\leq,\cdot,1,\sim,-\rangle$ that is

integral: $x \leq 1$

Formal Definition

$$\begin{aligned} & \sim -x = x \\ & -\sim x = x \\ & x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \\ & x \leq 1 \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 12, f_7 = 17, f_8 = 78$$

Subclasses

CyIInFL: Cyclic involutive lattice-ordered integral monoids

DIInFL: Distributive integral involutive FL-algebras

Superclasses

IRL: Integral residuated lattices

InFL: Involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

44. CyInLMag: Cyclic involutive lattice-ordered magmas

Definition

A cyclic involutive lattice-ordered magma (or cyinpo-magma) is an inpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 42, f_5 = 328$$

Subclasses

CInLMag: Commutative involutive lattice-ordered magmas

CyDInLMag: Cyclic distributive involutive lattice-ordered magmas

CyInLSgrp: Cyclic involutive lattice-ordered semigroups

Superclasses

CyInPoMag: Cyclic involutive partially ordered magmas

InLMag: Involutive lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

45. CyInLSgrp: Cyclic involutive lattice-ordered semigroups

Definition

A cyclic involutive lattice-ordered semigroup (or cyinpo-semigroup) is a cyinpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \cdot is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 29, f_5 = 132, f_6 = 1018$$

Subclasses

CInLSgrp: Commutative involutive lattice-ordered semigroups

CyDInLSgrp: Cyclic distributive involutive lattice-ordered semigroups

CyInFL: Cyclic involutive FL-algebras

Superclasses

CyInLMag: Cyclic involutive lattice-ordered magmas

CyInPoSgrp: Cyclic involutive partially ordered semigroups

InLSgrp: Involutive lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

46. CyInFL: Cyclic involutive FL-algebras

Definition

A cyclic involutive FL-algebra is an inpo-monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \end{aligned}$$

Properties

Classtype	Variety
Equational theory	Decidable Galatos and Jipsen [2013]
Locally finite	No
Residual size	∞
Congruence distributive	Yes
Congruence modular	Yes
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 21, f_6 = 101, f_7 = 279, f_8 = 1433$$

Subclasses

CInFL: Commutative involutive FL-algebras

CyDInFL: Cyclic distributive involutive FL-algebras

CyIInFL: Cyclic involutive lattice-ordered integral monoids

Superclasses

CyInLSgrp: Cyclic involutive lattice-ordered semigroups

InFL: Involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

47. CyIInFL: Cyclic involutive lattice-ordered integral monoids

Definition

A cyclic integral involutive FL-algebra is an inporim $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{aligned}$$

$$x\cdot 1=x$$

$$1 \cdot x = x$$

$$x \leq 1$$

Properties

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 12, f_7 = 15, f_8 = 75$$

Subclasses

CIInFL: Commutative integral involutive FL-algebras

CyDIInFL: Cyclic distributive involutive lattice-ordered integral monoids

Superclasses

CyInFL: Cyclic involutive FL-algebras IInFL: Integral involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

48. CLSgrp: Commutative lattice-ordered semigroups

Definition

A commutative lattice-ordered semigroup is a lattice-ordered semigroup $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} &(x \vee y) \cdot z = x \cdot z \vee y \cdot z \\ &z \cdot (x \vee y) = z \cdot x \vee z \cdot y \\ &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot y = y \cdot x \end{aligned}$$

Classtype	variety
Congruence distributive	yes
Congruence modular	yes

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 20, f_4 = 149, f_5 = 1427$$

Subclasses

CDLSgrp: Commutative distributive lattice-ordered semigroups CIdLSgrp: Commutative idempotent lattice-ordered semigroups

CLMon: Commutative lattice-ordered monoids

CRLSgrp: Commutative residuated lattice-ordered semigroups

Superclasses

CJSgrp: Commutative join-semilattice-ordered semigroups CMSgrp: Commutative meet-semilattice-ordered semigroups

LSgrp: Lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

49. CLMon: Commutative lattice-ordered monoids

Definition

A commutative lattice-ordered monoid is a lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} &(x \vee y) \cdot z = x \cdot z \vee y \cdot z \\ &z \cdot (x \vee y) = z \cdot x \vee z \cdot y \\ &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype	Variety
Congruence distributive	yes
Congruence modular	yes

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 31, f_5 = 199$$

Subclasses

CDLMon: Commutative distributive lattice-ordered monoids CILMon: Commutative Integral lattice-ordered monoids CIdLMon: Commutative idempotent lattice-ordered monoids

CRL: Commutative residuated lattices

Superclasses

CJMon: Commutative join-semilattice-ordered monoids CLSgrp: Commutative lattice-ordered semigroups

CMMon: Commutative meet-semilattice-ordered monoids

141

50. CILMon: Commutative Integral lattice-ordered monoids

Definition

A commutative integral lattice-ordered monoid is a integral lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} &(x \vee y) \cdot z = x \cdot z \vee y \cdot z \\ &z \cdot (x \vee y) = z \cdot x \vee z \cdot y \\ &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &x \leq 1 \\ &x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 129$$

Subclasses

CDILMon: Commutative distributive integral lattice-ordered monoids

CIRL: Commutative integral residuated lattices

Superclasses

CIJMon: Commutative Integral join-semilattice-ordered monoids CIMMon: Commutative Integral meet-semilattice-ordered monoids

CLMon: Commutative lattice-ordered monoids

ILMon: Integral lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

51. CIdLSgrp: Commutative idempotent lattice-ordered semigroups

Definition

A commutative idempotent lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee, \cdot \rangle$ is an idempotent lattice-ordered semigroup and

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$z \cdot (x \lor y) = z \cdot x \lor z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

| Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 19, f_5 = 86, f_6 = 462$$

Subclasses

CDIdLSgrp: Commutative distributive idempotent lattice-ordered semigroups

CIdLMon: Commutative idempotent lattice-ordered monoids

CIdRLSgrp: Commutative idempotent residuated lattice-ordered semigroups

Superclasses

CIdJSgrp: Commutative idempotent join-semilattice-ordered semigroups CIdMSgrp: Commutative idempotent meet-semilattice-ordered semigroups

CLSgrp: Commutative lattice-ordered semigroups IdLSgrp: Idempotent lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

52. CIdLMon: Commutative idempotent lattice-ordered monoids

Definition

A commutative idempotent lattice-ordered monoid is an idempotent lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$z \cdot (x \lor y) = z \cdot x \lor z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Basic Results

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 4, f_4 = 12, f_5 = 41, f_6 = 159$$

Subclasses

CDIdLMon: Commutative distributive idempotent lattice-ordered monoids

CIdRL: Commutative idempotent residuated lattices

Superclasses

CIdJMon: Commutative idempotent join-semilattice-ordered monoids CIdLSgrp: Commutative idempotent lattice-ordered semigroups

CIdMMon: Commutative idempotent meet-semilattice-ordered monoids

CLMon: Commutative lattice-ordered monoids IdLMon: Idempotent lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

53. CDivLat: Commutative division lattices

Definition

A commutative division lattice is a division lattice $\mathbf{P} = \langle P, \leq \rangle$ such that P is a lattice and

Formal Definition

$$x \le z/y \iff y \le x \backslash z$$
$$x/y = y \backslash x$$

Basic Results

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 64, f_4 = 6208$$

Subclasses

CDDivLat: Commutative distributive division lattices

CRLMag: Commutative residuated lattice-ordered magmas

Superclasses

CDivJslat: Commutative division join-semilattices CDivMslat: Commutative division meet-semilattices

DivLat: Division lattices

Cont|Po|J|M|L|D|To|B|U|Ind

54. BCKLat: BCK-lattices

Definition

A BCK-lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow, 1 \rangle$ of type $\langle 2, 2, 2, 0 \rangle$ such that

 $\langle A, \vee, \rightarrow, 1 \rangle$ is a BCK-join-semilattice

 $\langle A, \wedge, \rightarrow, 1 \rangle$ is a BCK-meet-semilattice

Remark: $x \le y \iff x \to y = 1$ is a partial order, with 1 as greatest element, and \vee , \wedge are a join and meet for this order. Idziak [1984]

Formal Definition

$$(x \lor y) \to z = (x \to z) \land (y \to z)$$

$$z \to (x \land y) = (z \to x) \land (z \to y)$$

$$(x \to y) \to ((y \to z) \to (x \to z)) = 1$$

$$1 \to x = x$$

$$x \rightarrow 1 = 1$$

$$x \to (x \lor y) = 1$$

$$x \lor ((x \to y) \to y) = ((x \to y) \to y)$$

Properties

Classtype	Variety
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	yes $n=2$

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 129$$

Subclasses

HA: Heyting algebras

Superclasses

BCKJslat: BCK-join-semilattices BCKMslat: BCK-meet-semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

55. CRLMag: Commutative residuated lattice-ordered magmas

Definition

A commutative residuated lattice-ordered magma is a residuated lattice-ordered magma such that \cdot is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y \leq z \iff y \leq x \backslash z \\ x \cdot y \leq z \iff x \leq z/y \\ x \cdot y = y \cdot x \end{array}$$

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 10, f_4 = 148, f_5 = 4398$$

Subclasses

CDRLMag: Commutative distributive residuated lattice-ordered magmas

CInLMag: Commutative involutive lattice-ordered magmas CRLSgrp: Commutative residuated lattice-ordered semigroups

Superclasses

CDivLat: Commutative division lattices

CRJMag: Commutative residuated join-semilattice-ordered magmas CRMMag: Commutative residuated meet-semilattice-ordered magmas

RLMag: Residuated lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

56. CRLSgrp: Commutative residuated lattice-ordered semigroups

Definition

A commutative residuated lattice-ordered semigroup is a residuated lattice-ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \cdot, \cdot, \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \setminus z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot y = y \cdot x$$

Properties

Classtype	variety
Congruence distributive	yes
Congruence modular	yes

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 57, f_5 = 550$$

Subclasses

CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups

 ${\bf CIdRLSgrp:\ Commutative\ idempotent\ residuated\ lattice-ordered\ semigroups}$

 ${\it CInLSgrp: Commutative involutive lattice-ordered semigroups}$

CRL: Commutative residuated lattices

Superclasses

CLSgrp: Commutative lattice-ordered semigroups

 ${\it CMSgrp: Commutative meet-semilattice-ordered semigroups}$

CRJSgrp: Commutative residuated join-semilattice-ordered semigroups

CRLMag: Commutative residuated lattice-ordered magmas

CRMSgrp: Commutative residuated meet-semilattice-ordered semigroups

RLSgrp: Residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

57. CRL: Commutative residuated lattices

Definition

A commutative residuated lattice is a residuated lattice $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

1	
Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	No
Congruence e-regular	Yes
Congruence uniform	No
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 16, f_5 = 100, f_6 = 794, f_7 = 7493, f_8 = 84961$$

Subclasses

CDRL: Commutative distributive residuated lattices

CIRL: Commutative integral residuated lattices

CIdRL: Commutative idempotent residuated lattices

CInFL: Commutative involutive FL-algebras

Superclasses

CLMon: Commutative lattice-ordered monoids

CRLSgrp: Commutative residuated lattice-ordered semigroups

RL: Residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

58. CIRL: Commutative integral residuated lattices

Definition

A lattice-ordered residuated integral monoid is a residuated lattice-ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that

x is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot y = y \cdot x$$

Properties

Classtype	variety
Congruence distributive	Yes (relatively) Blok and Raftery [1997]
Congruence extension property	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 129, f_7 = 723$$

Subclasses

CDIRL: Commutative distributive integral residuated lattices

CIInFL: Commutative integral involutive FL-algebras

Superclasses

CILMon: Commutative Integral lattice-ordered monoids

CIRMMon: Commutative integral residuated meet-semilattice-ordered monoids

CRL: Commutative residuated lattices

IRL: Integral residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

59. CIdRLSgrp: Commutative idempotent residuated lattice-ordered semigroups

Definition

A commutative idempotent residuated lattice-ordered semigroup is an idempotent residuated lattice-ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype | variety

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 36, f_6 = 202$$

Subclasses

CDIdRLSgrp: Commutative distributive idempotent residuated lattice-ordered semigroups

CIdRL: Commutative idempotent residuated lattices

Superclasses

CIdLSgrp: Commutative idempotent lattice-ordered semigroups

CIdRJSgrp: Commutative idempotent residuated join-semilattice-ordered semigroups CIdRMSgrp: Commutative idempotent residuated meet-semilattice-ordered semigroups

CRLSgrp: Commutative residuated lattice-ordered semigroups

IdRLSgrp: Idempotent residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

60. CIdRL: Commutative idempotent residuated lattices

Definition

A commutative idempotent residuated lattice is an idmpotent residuated lattice $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 6, f_5 = 20, f_6 = 77$$

Subclasses

CDIdRL: Commutative distributive idempotent residuated lattices

CIdInFL: Commutative idempotent involutive FL-algebras

Superclasses

CIdLMon: Commutative idempotent lattice-ordered monoids

CIdRLSgrp: Commutative idempotent residuated lattice-ordered semigroups

CRL: Commutative residuated lattices

IdRL: Idempotent residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

61. CIdInFL: Commutative idempotent involutive FL-algebras

Definition

A commutative idempotent involutive FL-algebra or commutative idempotent involutive residuated lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \sim \rangle$ of type $\langle 2, 2, 2, 0, 1 \rangle$ such that $\langle A, \wedge, \vee \rangle$ is a lattice

 $\langle A, \cdot, 1 \rangle$ is a semilattice with top \sim is an *involution*: $\sim \sim x = x$ and

$$xy \le z \iff x \le \sim (y(\sim z))$$

Definition

A commutative involutive FL-algebra or commutative involutive residuated lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \sim \rangle$ of type $\langle 2, 2, 2, 0, 1 \rangle$ such that

 $\langle A, \vee \rangle$ is a semilattice

 $\langle A, \cdot \rangle$ is a semilattice and

 $x \leq z \iff x \cdot \sim y \leq \sim 1$, where $x \leq y \iff x \vee y = y$.

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

 $x \cdot x = x$

-	
Classtype	Value
Equational theory	Decidable Galatos and Jipsen [2013]
Locally finite	No
Residual size	∞
Congruence distributive	Yes
Congruence modular	Yes
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1$$
, $f_2 = 1$, $f_3 = 1$, $f_4 = 2$, $f_5 = 2$, $f_6 = 4$, $f_7 = 4$, $f_8 = 9$, $f_9 = 10$, $f_{10} = 21$, $f_{11} = 22$, $f_{12} = 49$, $f_{13} = 52$, $f_{14} = 114$, $f_{15} = 121$, $f_{16} = 270$

Subclasses

Superclasses

CIdRL: Commutative idempotent residuated lattices

CInFL: Commutative involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

62. CInLMag: Commutative involutive lattice-ordered magmas

Definition

A commutative involutive lattice-ordered magma (or cinpo-magma) is a inpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

C11 .	
Classtype	varietv
Cimppoype	V COLIC U y

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 38, f_5 = 238, f_6 = 2722$$

Subclasses

CDInLMag: Commutative distributive involutive lattice-ordered magmas

CInLSgrp: Commutative involutive lattice-ordered semigroups

Superclasses

CInPoMag: Commutative involutive partially ordered magmas CRLMag: Commutative residuated lattice-ordered magmas

CyInLMag: Cyclic involutive lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

63. CInLSgrp: Commutative involutive lattice-ordered semigroups

Definition

A commutative involutive lattice-ordered semigroup (or cinpo-semigroup) is a inpo-semigroup $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 29, f_5 = 130, f_6 = 984$$

Subclasses

CDInLSgrp: Commutative distributive involutive lattice-ordered semigroups

CInFL: Commutative involutive FL-algebras

Superclasses

CInLMag: Commutative involutive lattice-ordered magmas

CInPoSgrp: Commutative involutive partially ordered semigroups CRLSgrp: Commutative residuated lattice-ordered semigroups

CyInLSgrp: Cyclic involutive lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

64. CInFL: Commutative involutive FL-algebras

Definition

A commutative involutive FL-algebra is an involutive FL-algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \\ & x \cdot y = y \cdot x \end{aligned}$$

Classtype	variety
Equational theory	Decidable Galatos and Jipsen [2013]
Locally finite	No
Residual size	∞
Congruence distributive	Yes
Congruence modular	Yes
Equationally def. pr. cong.	No

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 21, f_6 = 100, f_7 = 276, f_8 = 1392$$

Subclasses

CDInFL: Commutative distributive involutive FL-algebras

CIInFL: Commutative integral involutive FL-algebras

CIdInFL: Commutative idempotent involutive FL-algebras

MALLA: Multiplicative additive linear logic algebras

Superclasses

CInLSgrp: Commutative involutive lattice-ordered semigroups

CRL: Commutative residuated lattices CyInFL: Cyclic involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

65. CIInFL: Commutative integral involutive FL-algebras

Definition

A commutative integral involutive FL-algebra is an in-porim $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot y = y \cdot x \\ & x \cdot 1 = x \\ & x \leq 1 \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 12, f_7 = 15, f_8 = 70, f_9 = 112$$

Subclasses

CDIInFL: Commutative distributive integral involutive FL-algebras

Superclasses

CIRL: Commutative integral residuated lattices

CInFL: Commutative involutive FL-algebras

CyIInFL: Cyclic involutive lattice-ordered integral monoids

InPocrim: Involutive partially ordered commutative integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

66. JsdLat: Join-semidistributive lattices

Definition

A join-semidistributive lattice is a lattice $\mathbf{L} = \langle L, \vee, \wedge \rangle$ that satisfies

the join-semidistributive law SD_{\vee}: $x \lor y = x \lor z \implies x \lor y = x \lor (y \land z)$

Examples

Example 1: $D[d] = \langle D \cup \{d'\}, \vee, \wedge \rangle$, where D is any distributive lattice and d is an element in it that is split into two elements d, d' using Alan Day's doubling construction.

Properties

Classtype	Quasivariety
First-order theory	Undecidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Amalgamation property	No
Strong amalgamation property	No
Locally finite	No
Residual size	Unbounded

Finite Members

 $f_1=1,\,f_2=1,\,f_3=1,\,f_4=2,\,f_5=4,\,f_6=9,\,f_7=23,\,f_8=65,\,f_9=197,\,f_{10}=636,\,f_{11}=2171,\,f_{12}=7756,\,f_{13}=28822,\,f_{14}=110805$

Small Members (not in any subclass)

$\mathbf{JsdL}_{7,1}$ $\mathbf{Subclasses}$

SdLat: Semidistributive lattices

Superclasses
Lat: Lattices

Cont|Po|J|M|L|D|To|B|U|Ind

67. MsdLat: Meet-semidistributive lattices

Definition

A meet-semidistributive lattice is a lattice $\mathbf{L} = \langle L, \vee, \wedge \rangle$ that satisfies the meet-semidistributive law $\mathrm{SD}_{\wedge} \colon x \wedge y = x \wedge z \implies x \wedge y = x \wedge (y \vee z)$

Examples

Example 1: $D[d] = \langle D \cup \{d'\}, \vee, \wedge \rangle$, where D is any distributive lattice and d is an element in it that is split into two elements d, d' using Alan Day's doubling construction.

Troperties	
Classtype	Quasivariety
First-order theory	Undecidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Amalgamation property	No
Strong amalgamation property	No
Locally finite	No
Residual size	Unbounded

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 4, f_6 = 9, f_7 = 23, f_8 = 65, f_9 = 197, f_{10} = 636, f_{11} = 2171, f_{12} = 7756, f_{13} = 28822, f_{14} = 110805$$

Small Members (not in any subclass)

$\mathbf{MsdL}_{7,1}$ Subclasses

SdLat: Semidistributive lattices

Superclasses

68. SdLat: Semidistributive lattices

Definition

A semidistributive lattice is a lattice $\mathbf{L} = \langle L, \vee, \wedge \rangle$ such that

$$\mathrm{SD}_{\wedge} \colon x \wedge y = x \wedge z \implies x \wedge y = x \wedge (y \vee z)$$

 $\mathrm{SD}_{\vee} \colon x \vee y = x \vee z \implies x \vee y = x \vee (y \wedge z)$

Examples

Example 1: $D[d] = \langle D \cup \{d'\}, \vee, \wedge \rangle$, where D is any distributive lattice and d is an element in it that is split into two elements d, d' using Alan Day's doubling construction.

Properties

F	
Classtype	Quasivariety
First-order theory	Undecidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Amalgamation property	No
Strong amalgamation property	No
Locally finite	No
Residual size	Unbounded

Finite Members

$$f_1=1,\,f_2=1,\,f_3=1,\,f_4=2,\,f_5=4,\,f_6=9,\,f_7=22,\,f_8=60,\,f_9=174,\,f_{10}=534,\,f_{11}=1720,\,f_{12}=5767,\,f_{13}=20013,\,f_{14}=71546$$

Subclasses

NdLat: Neardistributive lattices

Superclasses

JsdLat: Join-semidistributive lattices
MsdLat: Meet-semidistributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

69. NdLat: Neardistributive lattices

Definition

A near distributive lattice is a lattice $\mathbf{L} = \langle L, \vee, \wedge \rangle$ such that

$$SD^{2}_{\wedge} : x \wedge (y \vee z) = x \wedge [y \vee (x \wedge [z \vee (x \wedge y)])]$$

$$SD^{2}_{\vee} : x \vee (y \wedge z) = x \vee [y \wedge (x \vee [z \wedge (x \vee y)])]$$

Formal Definition

$$x \wedge (y \vee z) = x \wedge [y \vee (x \wedge [z \vee (x \wedge y)])]$$

$$x \vee (y \wedge z) = x \vee [y \wedge (x \vee [z \wedge (x \vee y)])]$$

Examples

Example 1: $D[d] = \langle D \cup \{d'\}, \vee, \wedge \rangle$, where D is any distributive lattice and d is an element in it that is split into two elements d, d' using Alan Day's doubling construction.

Properties

Classtype	Variety
First-order theory	Undecidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Amalgamation property	No
Strong amalgamation property	No
Locally finite	No
Residual size	Unbounded

Finite Members

Subclasses

AdLat: Almost distributive lattices

Superclasses

 ${\bf SdLat:\ Semidistributive\ lattices}$

Cont|Po|J|M|L|D|To|B|U|Ind

70. AdLat: Almost distributive lattices

Definition

An almost distributive lattice is a near distributive lattice $\mathbf{L} = \langle L, \wedge, \vee \rangle$ such that

$$\mathrm{AD}_{\wedge}\colon v \wedge [u \vee (x \wedge [y \vee (x \wedge z)])] \leq u \vee [(x \wedge [y \vee (x \wedge z)]) \wedge (v \vee (x \wedge y) \vee (x \wedge z))]$$

$$\mathrm{AD}_{\vee} \colon v \vee [u \wedge (x \vee [y \wedge (x \vee z)])] \geq u \wedge [(x \vee [y \wedge (x \vee z)]) \vee (v \wedge (x \vee y) \wedge (x \vee z))]$$

Formal Definition

$$v \wedge [u \vee (x \wedge [y \vee (x \wedge z)])] \leq u \vee [(x \wedge [y \vee (x \wedge z)]) \wedge (v \vee (x \wedge y) \vee (x \wedge z))]$$
$$v \vee [u \wedge (x \vee [y \wedge (x \vee z)])] \geq u \wedge [(x \vee [y \wedge (x \vee z)]) \vee (v \wedge (x \vee y) \wedge (x \vee z))]$$

Examples

Example 1: $D[d] = \langle D \cup \{d'\}, \vee, \wedge \rangle$, where D is any distributive lattice and d is an element in it that is split into two elements d, d' using Alan Day's doubling construction.

Classtype	Variety
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Amalgamation property	No
Strong amalgamation property	No

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 4$$

Small Members (not in any subclass)

Subclasses

DLat: Distributive lattices

Superclasses

NdLat: Neardistributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

71. CplmLat: Complemented lattices

Definition

A complemented lattice is a bounded lattice $\mathbf{L} = \langle L, \vee, \perp, \wedge, \top \rangle$ such that every element has a complement: $\exists y (x \vee y = \top \text{ and } x \wedge y = \bot)$

Formal Definition

$$\begin{split} &\bot \vee x = x \\ &\top \vee x = \top \\ &\exists y (x \vee y = \top \text{ and } x \wedge y = \bot) \end{split}$$

Examples

Example 1: $\langle P(S), \cup, \emptyset, \cap, S \rangle$, the collection of subsets of a set S, with union, empty set, intersection, and the whole set S.

Classtype	first-order
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 2$$

Subclasses

CplmModLat: Complemented modular lattices

Superclasses

bLat: Bounded lattices

Cont|Po|J|M|L|D|To|B|U|Ind

72. OLat: Ortholattices

Definition

An ortholattice is an algebra $\mathbf{L} = \langle L, \vee, \perp, \wedge, \top, ' \rangle$ such that

 $\langle L, \vee, \perp, \wedge, \top \rangle$ is a bounded lattice

Examples

Example 1: $\langle P(S), \cup, \emptyset, \cap, S \rangle$, the collection of subsets of a set S, with union, empty set, intersection, and the whole set S.

Properties

F	
Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes [(BrunsHarding1997)]

Finite Members

$$f_1=1,\ f_2=1,\ f_3=0,\ f_4=1,\ f_5=0,\ f_6=2,\ f_7=0,\ f_8=5,\ f_9=0,\ f_{10}=15$$

Subclasses

OModLat: Orthomodular lattices

Superclasses

Lat: Lattices

Cont|Po|J|M|L|D|To|B|U|Ind

^{&#}x27; is complementation: $x \vee x' = \bot$, $x \wedge x' = \top$, x'' = x

^{&#}x27; satisfies De Morgan's laws: $(x \vee y)' = x' \wedge y', (x \wedge y)' = x' \vee y'$

73. OModLat: Orthomodular lattices

Definition

An orthomodular lattice is an ortholattice $\mathbf{L} = \langle L, \vee, 0, \wedge, 1, ' \rangle$ such that

the orthomodular law holds: $x \leq y \implies x \vee (x' \wedge y) = y$.

This law is equivalent to satisfying the identity $x \lor (x' \land (x \lor y)) = x \lor y$.

Examples

Example 1: The closed subspaces of (countably dimensional) Hilbert Space form an orthomodular lattice that is not modular (for finite dimensional vector spaces all subspaces are closed, hence the lattice of closed subspaces is modular).

Example 2: The smallest nonmodular orthomodular lattice has 10 elements and is isomorphic to a parallel sum of a 4-element Boolean algebra and an 8-element Boolean algebra. A failure of the modular law $x \vee (y \wedge (x \vee z)) = (x \vee y) \wedge (x \vee z)$ occurs when x, z are atoms of the 8-element algebra and y is an atom of the 4-element algebra.

Properties

Classtype	Variety
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0, f_6 = 1, f_7 = 0, f_8 = 2$$

Many Greechie diagrams of orthomodular lattices with blocks containing 3 atoms have been computed at http://cs.anu.edu.au/ Brendan.McKay/nauty/greechie.html

Subclasses

ModOLat: Modular ortholattices

Superclasses
OLat: Ortholattices

Cont|Po|J|M|L|D|To|B|U|Ind

74. ModOLat: Modular ortholattices

Definition

A modular ortholattice is an ortholattice $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, ' \rangle$ such that the modular law holds: $x \leq z \implies (x \vee y) \wedge z \leq x \vee (y \wedge z)$

Properties

Finite Members

Subclasses

BA: Boolean algebras

Superclasses

OModLat: Orthomodular lattices

Cont|Po|J|M|L|D|To|B|U|Ind

75. Bilat: Bilattices

Definition

A bilattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee, \oplus, \otimes, \neg \rangle$ such that

 $\langle L, \wedge, \vee \rangle$ is a lattice,

 $\langle L, \oplus, \otimes \rangle$ is a lattice,

 \neg is a De Morgan operation for \lor , \land : $\neg(x \lor y) = \neg x \land \neg y$, $\neg \neg x = x$ and

 \neg commutes with \oplus , \otimes : $\neg(x \oplus y) = \neg x \oplus \neg y$, $\neg(x \otimes y) = \neg x \otimes \neg y$.

Properties

Classtype	Variety
First-order theory	Undecidable
Congruence distributive	Yes
Congruence modular	Yes
Locally finite	No
Residual size	Unbounded

Finite Members

$$f_1 = 1, f_2 = 0, f_3 = 0, f_4 = 1, f_5 = 3, f_6 = 32, f_7 = 284$$

Subclasses

TrivA: Trivial algebras

Superclasses

InLat: Involutive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

76. CanRL: Cancellative residuated lattices

Definition

A cancellative residuated lattice is a residuated lattice $\mathbf{L} = \langle L, \wedge, \vee, \cdot, e, \rangle$ such that

- · is right-cancellative: $x \cdot z = y \cdot z \implies x = y$
- · is left-cancellative: $z \cdot x = z \cdot y \implies x = y$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot z = y \cdot z \implies x = y$$

$$z \cdot x = z \cdot y \implies x = y$$

Classtype	Variety
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	No
Congruence e-regular	Yes
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No

$$f_1 = 1, f_2 = 0, f_n = 0 \text{ for } n > 1$$

Subclasses

TrivA: Trivial algebras

Superclasses

RL: Residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

77. CplmModLat: Complemented modular lattices

Definition

A complemented modular lattice is a complemented lattice $\mathbf{L} = \langle L, \vee, 0, \wedge, 1 \rangle$ that is a modular lattice: $((x \wedge z) \vee y) \wedge z = (x \wedge z) \vee (y \wedge z)$

Formal Definition

$$((x \land z) \lor y) \land z = (x \land z) \lor (y \land z)$$

$$\bot \lor x = x$$

$$\top \lor x = \top$$

$$\exists y(x \lor y = \top \text{ and } x \land y = \bot)$$

Basic Results

This class generates the same variety as the class of its finite members plus the non-desargean planes.

Properties

first-order
Decidable
Undecidable
Undecidable
No
Unbounded
Yes
Yes
Yes
No
No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 1$$

Subclasses

BA: Boolean algebras

Superclasses

78. FRng: Function rings

Definition

A function ring (or f-ring) is a lattice-ordered ring $\mathbf{F} = \langle F, \wedge, \vee, +, -, 0, \cdot \rangle$ such that $x \wedge y = 0$ and $z \geq 0 \implies x \cdot z \wedge y = 0$ and $z \cdot x \wedge y = 0$

Basic Results

The variety of f-rings is generated by the class of linearly ordered ℓ -rings. This means f-rings are subdirect products of linearly ordered ℓ -rings, i.e. f-rings are representable ℓ -rings (see e.g. [G. Birkhoff, Lattice Theory, 1967]).

Properties

Classtype	Variety
Congruence distributive	Yes, see lattices
Congruence n-permutable	Yes, $n = 2$, see groups
Congruence regular	Yes, see groups
Congruence uniform	Yes, see groups

Finite Members

Only the one-element f-ring.

Subclasses

TrivA: Trivial algebras

Superclasses

LRng: Lattice-ordered rings

Cont|Po|J|M|L|D|To|B|U|Ind

79. ILLA: Intuitionistic linear logic algebras

Definition

An intuitionistic linear logic algebra (or IL-algebra with storage Troelstra [1992]) is an algebra $\langle A, \vee, \perp, \wedge, \top, \cdot, 1, \setminus, /, 0, ! \rangle$ such that $\langle A, \wedge, \vee, \cdot, 1, \rightarrow, 0 \rangle$ is an FL_e-algebra

 \bot is the least element: $\bot \le x$ \top is the greatest element: $x \le \top$

! is a storage operator: $!x \le x$

 $!x \le y \implies !x \le !y$

 $!\top = 1$

 $!(x \wedge y) = !x \cdot !y$

Properties

Classtype variety

Finite Members

Subclasses

LLA: Linear logic algebras

Superclasses

FL_e: Full Lambek algebras with exchange

bRL: Bounded residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

80. LLA: Linear logic algebras

A linear logic algebra is an algebra $\mathbf{A} = \langle A, \vee, \perp, \wedge, \top, \cdot, 1, +, 0, \neg \rangle$ such that

 $\langle A, \wedge, \vee, \cdot, 1, \neg \rangle$ is a commutative involutive FL-algebra

 \bot is the least element: $\bot \leq x$

 \top is the greatest element: $x \leq \top$

+ is the dual of $x + y = \neg(\neg x \cdot \neg y)$

0 is the dual of 1: $0 = \neg 1$

Properties

Finite Members

Subclasses

TrivA: Trivial algebras

Superclasses

ILLA: Intuitionistic linear logic algebras

MALLA: Multiplicative additive linear logic algebras

Cont|Po|J|M|L|D|To|B|U|Ind

81. MALLA: Multiplicative additive linear logic algebras

Definition

A multiplicative additive linear logic algebra is an algebra $\mathbf{A} = \langle A, \vee, \perp, \wedge, \top, +, 0, \cdot, 1,^{\perp} \rangle$ such that $\langle A, \wedge, \vee, \cdot, 1,^{\perp} \rangle$ is a commutative involutive FL-algebra,

 \perp is the least element: $\perp \leq x$

 \top is the greatest element: $x \leq \top$

+ is the dual of $x + y = (x^{\perp} \cdot y^{\perp})^{\perp}$

0 is the dual of 1: $0 = 1^{\perp}$

Properties

1	
Classtype	Variety
Equational theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence <i>n</i> -permutable	Yes, $n=2$
Congruence regular	No
Congruence uniform	No

Finite Members

Subclasses

LLA: Linear logic algebras

Superclasses

CInFL: Commutative involutive FL-algebras

bRL: Bounded residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

CHAPTER 6

Distributive lattice-ordered algebras

1. DLat: Distributive lattices

Formal Definition

A distributive lattice is a lattice $\mathbf{L} = \langle L, \vee, \wedge \rangle$ such that \wedge distributes over \vee : $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ and \vee distributes over \wedge : $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$

Definition

A distributive lattice is a lattice $\mathbf{L} = \langle L, \vee, \wedge \rangle$ such that $(x \wedge y) \vee (x \wedge z) \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) \wedge (y \vee z)$

Definition

A distributive lattice is a lattice $\mathbf{L} = \langle L, \vee, \wedge \rangle$ such that \mathbf{L} has no sublattice isomorphic to the diamond \mathbf{M}_3 or the pentagon \mathbf{N}_5

Definition

A distributive lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee \rangle$ of type $\langle 2, 2 \rangle$ such that $x \wedge (x \vee y) = x$ and $x \wedge (y \vee z) = (z \wedge x) \vee (y \wedge x)$.[(Sholander1951)]

Examples

Example 1: $\langle P(S), \cup, \cap, \subseteq \rangle$, the collection of subsets of a sets S, ordered by inclusion.

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Undecidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	Yes
Amalgamation property	Yes
Strong amalgamation property	No
Epimorphisms are surjective	No
Locally finite	Yes
Residual size	2

Finite Members

 $f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=3,\ f_6=5,\ f_7=8,\ f_8=15,\ f_9=26,\ f_{10}=47,\ f_{11}=82,\ f_{12}=151,\ f_{13}=269,\ f_{14}=494,\ f_{15}=891,\ f_{16}=1639,\ f_{17}=2978,\ f_{18}=5483,\ f_{19}=10006,\ f_{20}=18428$ Values known up to size 49 Erné et al. [2002]

Small Members (not in any subclass)

Subclasses

BA: Boolean algebras

DLImpA: Distributive lattice-ordered implication algebras

DLMag: Distributive lattice-ordered magmas

DLNUn: Distributive lattice-ordered negated unars

DLUn: Distributive lattice-ordered unars

ToLat: Totally ordered lattices bDLat: Bounded distributive lattices pDLat: Pointed distributive lattices

pcDLat: Pseudocomplemented distributive lattices

Superclasses

AdLat: Almost distributive lattices

ModLat: Modular lattices

Cont|Po|J|M|L|D|To|B|U|Ind

2. pDLat: Pointed distributive lattices

Definition

A pointed distributive lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, c \rangle$ such that $\mathbf{A} = \langle A, \wedge, \vee \rangle$ is a distributive lattice and c is a constant operation on A.

Formal Definition

c = c

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 3, f_4 = 7, f_5 = 13, f_6 = 27, f_7 = 50$$

Subclasses

DLMon: Distributive lattice-ordered monoids

bDLat: Bounded distributive lattices

pBA: Pointed Boolean algebras

pToLat: Pointed totally ordered lattices

Superclasses

DLat: Distributive lattices
ToLat: Totally ordered lattices

pLat: Pointed lattices

Cont|Po|J|M|L|D|To|B|U|Ind

3. bDLat: Bounded distributive lattices

Definition

A bounded distributive lattice is an algebra $\mathbf{L} = \langle L, \vee, 0, \wedge, 1 \rangle$ such that

 $\langle L, \vee, \wedge \rangle$ is a distributive lattice 0 is the least element: $0 \le x$ 1 is the greatest element: $x \le 1$

Examples

Example 1: $\langle \mathcal{P}(S), \cup, \emptyset, \cap, S \rangle$, the collection of subsets of a set S, with union, empty set, intersection, and the whole set S.

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Undecidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	No
Epimorphisms are surjective	No
Locally finite	Yes
Residual size	2

 $f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=3,\ f_6=5,\ f_7=8,\ f_8=15,\ f_9=26,\ f_{10}=47,\ f_{11}=82,\ f_{12}=151$ $f_{13}=269,\ f_{14}=494,\ f_{15}=891,\ f_{16}=1639,\ f_{17}=2978,\ f_{18}=5483,\ f_{19}=10006,\ f_{20}=18428$ Values known up to size 49 Erné et al. [2002].

Subclasses

BA: Boolean algebras BoolLat: Boolean lattices

DdpAlg: Distributive dual p-algebras DpAlg: Distributive p-algebras

OckA: Ockham algebras

Superclasses

DLat: Distributive lattices bLat: Bounded lattices

pDLat: Pointed distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

4. DLUn: Distributive lattice-ordered unars

Definition

A distributive lattice-ordered unar is an algebra $\mathbf{P} = \langle P, \leq, f \rangle$ such that P is a distributive lattice and f is a unary operation on P that is

order-preserving: $x \le y \implies f(x) \le f(y)$

Formal Definition

$$f(x \vee y) = f(x) \vee f(y)$$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 10, f_4 = 50, f_5 = 226$$

Subclasses

BUn: Boolean unars

DGalLat: Distributive Galois lattices

DRLUn: Distributive residuated lattice-ordered unars

ToUn: Totally ordered unars

Superclasses

DLat: Distributive lattices LUn: Lattice-ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

5. DLNUn: Distributive lattice-ordered negated unars

Definition

A distributive lattice-ordered negated unar is an algebra $\mathbf{P} = \langle P, \leq, \sim \rangle$ such that P is a distributive lattice and \sim is a unary operation on P that is

order-reversing: $x \le y \implies \sim y \le \sim x$

Formal Definition

$$x \le y \implies \sim y \le \sim x$$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 10, f_4 = 56, f_5 = 276$$

Subclasses

BNUn: Boolean negated unars

DGalLat: Distributive Galois lattices

OckA: Ockham algebras

ToNUn: Totally ordered negated unars

Superclasses

DLat: Distributive lattices

LNUn: Lattice-ordered negated unars

Cont|Po|J|M|L|D|To|B|U|Ind

6. pcDLat: Pseudocomplemented distributive lattices

Definition

A pseudocomplemented distributive lattice (also called a Distributive p-algebra) is an algebra $\mathbf{L} = \langle L, \vee, \perp, \wedge, ^* \rangle$ such that

 $\langle L, \vee, \perp, \wedge \rangle$ is a distributive lattice with bottom element $\perp x^*$ is the *pseudo complement* of x: $y \leq x^* \iff x \wedge y = \perp$

Formal Definition

A pseudocomplemented distributive lattice is an algebra $\mathbf{L} = \langle L, \vee, \perp, \wedge, ^* \rangle$ such that

 $\langle L, \wedge, \vee \rangle$ is a distributive lattice

 \perp is the bottom element: $\perp \leq x$

 $x \wedge (x \wedge y)^* = x \wedge y^*$

 $x\wedge \bot^* = x$

 $(0^*)^* = 0$

Classtype	Variety
Equational theory	Decidable
Congruence distributive	Yes
Amalgamation property	Yes

Subclasses

DpAlg: Distributive p-algebras

Superclasses

DLat: Distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

7. OckA: Ockham algebras

Definition

An *Ockham algebra* is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, ' \rangle$ such that

 $\langle A, \vee, 0, \wedge, 1 \rangle$ is a bounded distributive lattice

' is a dual endomorphism: $(x \wedge y)' = x' \vee y', (x \vee y)' = x' \wedge y', 0' = 1, 1' = 0$

Properties

Classtype	Variety
Congruence distributive	Yes
Congruence modular	Yes

Finite Members

Subclasses

DmA: De Morgan algebras

Superclasses

DLNUn: Distributive lattice-ordered negated unars

bDLat: Bounded distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

8. DmA: De Morgan algebras

Definition

A De Morgan algebra is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg \rangle$ such that

 $\langle A, \vee, 0, \wedge, 1 \rangle$ is a bounded distributive lattice

 \neg is a De Morgan involution: $\neg(x \land y) = \neg x \lor \neg y, \, \neg \neg x = x$

Remark: It follows that $\neg(x \lor y) = \neg x \land \neg y$, $\neg 1 = 0$ and $\neg 0 = 1$ (e.g. $\neg 1 = \neg 1 \lor 0 = \neg 1 \lor \neg \neg 0 = \neg(1 \land \neg 0) = \neg \neg 0 = 0$). Thus \neg is a dual automorphism.

Examples

Example 1: Let $\{0 < a, b < 1\}$ be the 4-element lattice with a, b incomparable, and define ' by 0' = 1, a' = a, b' = b.

Basic Results

The algebra in Example 1 generates the variety of De Morgan algebras, see e.g. www.math.uic.edu/~kauffman/DeMorgan.pdf

Classtype	Variety
Equational theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence extension property	Yes
Locally finite	Yes
Residual size	4

 $f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 1, f_6 = 4, f_7 = 2, f_8 = 9, f_9 = 5, f_{10} = 14$

Subclasses

KLA: Kleene logic algebras

 LA_n : Lukasiewicz algebras of order n

Superclasses

OckA: Ockham algebras

Cont|Po|J|M|L|D|To|B|U|Ind

9. DmMon: De Morgan monoids

Definition

A De Morgan monoid is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, ', \rangle$ such that

 $\langle A, \wedge, \vee \rangle$ is a distributive lattice,

 $\langle A, \cdot, 1 \rangle$ is a commutative monoid,

· is involutive residuated: $x \cdot y \le z \iff y \le (z' \cdot x)'$ and

· is square-increasing: $x \leq x \cdot x$.

Remark: It follows that x'' = x and that $(x \lor y)' = x' \land y'$.

Note that a De Morgan monoid is the same thing as a commutative distributive involutive square-increasing residuated lattice.

Properties

Classtype Variety

Finite Members

Subclasses

Superclasses

CDInFL: Commutative distributive involutive FL-algebras

DunnMon: Dunn monoid

Cont|Po|J|M|L|D|To|B|U|Ind

10. DpAlg: Distributive p-algebras

Definition

A distributive p-algebra is an algebra $\mathbf{L} = \langle L, \vee, 0, \wedge, 1, * \rangle$ such that

 $\langle L, \vee, 0, \wedge, 1 \rangle$ is a bounded distributive lattice

 x^* is the *pseudo complement* of x: $y \le x^* \iff x \land y = 0$

Properties

F	
Classtype	Variety
Equational theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Amalgamation property	Yes

Finite Members

Subclasses

StAlg: Stone algebras

Superclasses

bDLat: Bounded distributive lattices

pcDLat: Pseudocomplemented distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

11. DdpAlg: Distributive dual p-algebras

Definition

A distributive dual p-algebra is an algebra $\mathbf{L} = \langle L, \vee, 0, \wedge, 1, + \rangle$ such that $\langle L, \vee, 0, \wedge, 1 \rangle$ is a bounded distributive lattice x^+ is the dual pseudocomplement of x: $x^+ \leq y \iff x \vee y = 1$

Properties

Classtype	Variety
Equational theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence extension property	Yes
Amalgamation property	Yes

Finite Members

Subclasses

DDblpAlg: Distributive double p-algebras

Superclasses

bDLat: Bounded distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

12. DDblpAlg: Distributive double p-algebras

Definition

A distributive double p-algebra is an algebra $\mathbf{L} = \langle L, \vee, 0, \wedge, 1, *, + \rangle$ such that $\langle L, \vee, 0, \wedge, 1, * \rangle$ is a distributive p-algebra and $\langle L, \vee, 0, \wedge, 1, + \rangle$ is a distributive dual p-algebra

Properties

Classtype	Variety
Equational theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence extension property	Yes

Finite Members

Subclasses

DblStAlg: Double Stone algebras

Superclasses

DdpAlg: Distributive dual p-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

13. StAlg: Stone algebras

Definition

A Stone algebra is a distributive p-algebra $\mathbf{L} = \langle L, \vee, 0, \wedge, 1, * \rangle$ such that $(x^*)^* \vee x^* = 1, 0^* = 1$

Properties

Equational theory	decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence extension property	Yes
Amalgamation property	Yes

Finite Members

$$f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=2,\ f_6=4,\ f_7=5,\ f_8=10,\ f_9=16,\ f_{10}=28$$

Subclasses

DblStAlg: Double Stone algebras

Superclasses

DpAlg: Distributive p-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

14. DblStAlg: Double Stone algebras

Definition

A double Stone algebra is an algebra $\mathbf{L} = \langle L, \vee, 0, \wedge, 1,^* \rangle$ such that

 $\langle L, \vee, 0, \wedge, 1,^* \rangle$ is a Stone algebra

 $\langle L, \wedge, 1, \vee, 0, ^* \rangle$ is a Stone algebra

Properties

Classtype	Variety
Congruence distributive	Yes
Congruence modular	Yes
Congruence extension property	Yes

Finite Members

Subclasses

BA: Boolean algebras

Superclasses

DDblpAlg: Distributive double p-algebras

StAlg: Stone algebras

Cont|Po|J|M|L|D|To|B|U|Ind

15. DLMag: Distributive lattice-ordered magmas

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 175$$

Subclasses

BMag: Boolean magmas

DLSgrp: Distributive lattice-ordered semigroups

DLrLMag: Distributive left-residuated lattice-ordered magmas

ToMag: Totally ordered magmas

Superclasses

DLat: Distributive lattices

LMag: Lattice-ordered magmas

16. DLSgrp: Distributive lattice-ordered semigroups

Definition

A distributive lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that

 $\langle A, \cdot \rangle$ is a semigroup

 $\langle G, \leq \rangle$ is a distributive lattice

· is order preserving: $x \leq y \implies x \cdot z \leq y \cdot z$ and $z \cdot x \leq z \cdot y$

Formal Definition

$$x \cdot (y \vee z) = x \cdot y \vee x \cdot z$$
$$(x \vee y) \cdot z = x \cdot z \vee y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 44, f_4 = 479$$

Subclasses

BSgrp: Boolean semigroups

CDLSgrp: Commutative distributive lattice-ordered semigroups DIdLSgrp: Distributive idempotent lattice-ordered semigroups

DLMon: Distributive lattice-ordered monoids

DLrLSgrp: Distributive left-residuated lattice-ordered semigroups

ToSgrp: Totally ordered semigroups

Superclasses

DLMag: Distributive lattice-ordered magmas

LSgrp: Lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

17. DLMon: Distributive lattice-ordered monoids

Definition

A distributive lattice-ordered monoid is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a monoid

 $\langle G, \leq \rangle$ is a distributive lattice

· is orderpreserving: $x \le y \implies wxz \le wyz$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$

Properties

| Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 45, f_5 = 279$$

Subclasses

BMon: Boolean monoids

CDLMon: Commutative distributive lattice-ordered monoids DILMon: Distributive integral lattice-ordered monoids DIdLMon: Distributive idempotent lattice-ordered monoids DLrLMon: Distributive left-residuated lattice-ordered monoids

ToMon: Totally ordered monoids

Superclasses

DLSgrp: Distributive lattice-ordered semigroups

LMon: Lattice-ordered monoids pDLat: Pointed distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

18. DILMon: Distributive integral lattice-ordered monoids

Definition

A distributive integral lattice-ordered monoid is a distributive lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

 $x \leq 1$.

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$
$$x \le 1$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 359$$

Subclasses

BIMon: Boolean integral monoids

CDILMon: Commutative distributive integral lattice-ordered monoids DILrLMon: Distributive integral left-residuated lattice-ordered monoids

IToMon: Integral totally ordered monoids

Superclasses

DLMon: Distributive lattice-ordered monoids ILMon: Integral lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

19. DIdLSgrp: Distributive idempotent lattice-ordered semigroups

Definition

An distributive idempotent lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee, \cdot \rangle$ is a distributive lattice-ordered semigroup and

· is distributive idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$x \cdot x = x$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 17, f_4 = 100, f_5 = 576$$

Subclasses

BIdSgrp: Boolean idempotent semigroups

CDIdLSgrp: Commutative distributive idempotent lattice-ordered semigroups

DIdLMon: Distributive idempotent lattice-ordered monoids

DIdLrLSgrp: Distributive idempotent left-residuated lattice-ordered semigroups

IdToSgrp: Idempotent totally ordered semigroups

Superclasses

DLSgrp: Distributive lattice-ordered semigroups IdLSgrp: Idempotent lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

20. DIdLMon: Distributive idempotent lattice-ordered monoids

Definition

An distributive idempotent lattice-ordered monoid is a distributive lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

 \cdot is distributive idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$
$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 22, f_5 = 75, f_6 = 274$$

Subclasses

BIdMon: Boolean idempotent monoids

CDIdLMon: Commutative distributive idempotent lattice-ordered monoids DIdLrLMon: Distributive idempotent left-residuated lattice-ordered monoids

IdToMon: Idempotent totally ordered monoids

Superclasses

DIdLSgrp: Distributive idempotent lattice-ordered semigroups

DLMon: Distributive lattice-ordered monoids IdLMon: Idempotent lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

21. DLImpA: Distributive lattice-ordered implication algebras

Formal Definition

$$\begin{array}{ccc} x \leq y & \Longrightarrow & y \rightarrow z \leq x \rightarrow z \\ x \leq y & \Longrightarrow & z \rightarrow x \leq z \rightarrow y \end{array}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 175$$

Subclasses

BImpA: Boolean implication algebras

CDLSgrp: Commutative distributive lattice-ordered semigroups

DDivLat: Distributive division lattices

DLrLMag: Distributive left-residuated lattice-ordered magmas

ImpLat: Implicative lattices

LSgrp: Lattice-ordered semigroups

ToImpA: Totally ordered implication algebras

Superclasses

DLat: Distributive lattices

LImpA: Lattice-ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

22. DLrLMag: Distributive left-residuated lattice-ordered magmas

Definition

A distributive left-residuated lattice-ordered magma is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, \rangle$ such that $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \le z \iff y \le x \setminus z$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$x \cdot y \le z \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 50, f_4 = 4441$$

Subclasses

BLrMag: Boolean left-residuated magmas

DLrLSgrp: Distributive left-residuated lattice-ordered semigroups

DRLMag: Distributive residuated lattice-ordered magmas

LrToMag: Left-residuated totally ordered magmas

Superclasses

DLImpA: Distributive lattice-ordered implication algebras

DLMag: Distributive lattice-ordered magmas LrLMag: Left-residuated lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

23. DLrLSgrp: Distributive left-residuated lattice-ordered semigroups

Definition

A distributive left-residuated lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, \rangle$ such that

 $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y \le z \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 18, f_4 = 183, f_5 = 1968$$

Subclasses

BLrSgrp: Boolean left-residuated semigroups

DIdLrLSgrp: Distributive idempotent left-residuated lattice-ordered semigroups

DLrLMon: Distributive left-residuated lattice-ordered monoids DRLSgrp: Distributive residuated lattice-ordered semigroups

LrToSgrp: Left-residuated totally ordered semigroups

Superclasses

DLSgrp: Distributive lattice-ordered semigroups

DLrLMag: Distributive left-residuated lattice-ordered magmas

LrLSgrp: Left-residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

24. DLrLMon: Distributive left-residuated lattice-ordered monoids

Definition

A distributive left-residuated lattice-ordered monoid is an algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, \rangle$ such that $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$
$$x \cdot y \le z \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 23, f_5 = 130, f_6 = 976$$

Subclasses

BILrMon: Boolean integral left-residuated monoids

DILrLMon: Distributive integral left-residuated lattice-ordered monoids

DIdLrLMon: Distributive idempotent left-residuated lattice-ordered monoids

DRL: Distributive residuated lattices

LrToMon: Left-residuated totally ordered monoids

Superclasses

DLMon: Distributive lattice-ordered monoids

DLrLSgrp: Distributive left-residuated lattice-ordered semigroups

LrLMon: Left-residuated lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

25. DILrLMon: Distributive integral left-residuated lattice-ordered monoids

Definition

A distributive lattice-ordered left-residuated integral monoid is a distributive left-residuated lattice-ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, \rangle$ for which x < 1.

Formal Definition

$$\begin{aligned} x\cdot(y\vee z) &= x\cdot y\vee x\cdot z\\ (x\vee y)\cdot z &= x\cdot z\vee y\cdot z\\ (x\cdot y)\cdot z &= x\cdot (y\cdot z)\\ x\cdot 1 &= x\\ 1\cdot x &= x\\ x\cdot y \leq z \iff y \leq x\backslash z\\ x\leq 1 \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 359$$

Subclasses

BIdLrSgrp: Boolean idempotent left-residuated semigroups

DIRL: Distributive integral residuated lattices

ILrToMon: Integral left-residuated totally ordered monoids

Superclasses

DILMon: Distributive integral lattice-ordered monoids

DLrLMon: Distributive left-residuated lattice-ordered monoids

ILrLMon: Integral left-residuated lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

26. DIdLrLSgrp: Distributive idempotent left-residuated lattice-ordered semigroups

Definition

An distributive idempotent left-residuated lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee, \cdot \rangle$ is a distributive left-residuated lattice-ordered semigroup and

· is distributive idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y \le z \iff y \le x \backslash z$$
$$x \cdot x = x$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 7, f_4 = 40, f_5 = 213$$

Subclasses

BIdLrMon: Boolean idempotent left-residuated monoids

DIdLrLMon: Distributive idempotent left-residuated lattice-ordered monoids DIdRLSgrp: Distributive idempotent residuated lattice-ordered semigroups

IdLrToSgrp: Idempotent left-residuated totally ordered semigroups

Superclasses

DIdLSgrp: Distributive idempotent lattice-ordered semigroups
DLrLSgrp: Distributive left-residuated lattice-ordered semigroups

IdLrLSgrp: Idempotent left-residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

27. DIdLrLMon: Distributive idempotent left-residuated lattice-ordered monoids

Definition

An distributive idempotent left-residuated lattice-ordered monoid is a distributive left-residuated lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$\begin{aligned} x\cdot (y\vee z) &= x\cdot y\vee x\cdot z\\ (x\vee y)\cdot z &= x\cdot z\vee y\cdot z\\ (x\cdot y)\cdot z &= x\cdot (y\cdot z)\\ x\cdot 1 &= x\\ 1\cdot x &= x\\ x\cdot y\leq z \iff y\leq x\backslash z\\ x\cdot x &= x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 11, f_5 = 37, f_6 = 134$$

Subclasses

BRUn: Boolean residuated unars

DIdRL: Distributive idempotent residuated lattices

IdLrToMon: Idempotent left-residuated totally ordered monoids

Superclasses

DIdLMon: Distributive idempotent lattice-ordered monoids

DIdLrLSgrp: Distributive idempotent left-residuated lattice-ordered semigroups

DLrLMon: Distributive left-residuated lattice-ordered monoids

 $IdLrLMon: \ Idempotent \ left-residuated \ lattice-ordered \ monoids \\ Cont[Po]J[M]L[D]To[B]U[Ind]$

28. DRLUn: Distributive residuated lattice-ordered unars

A distributive residuated lattice-ordered unar (also called an $dr\ell$ -unar for short) is a residuated lattice-ordered unar $\langle D, \wedge, \vee, f, g \rangle$ such that $\langle D, \wedge, \vee \rangle$ is a distributive lattice.

Formal Definition

$$f(x) \le y \iff x \le g(y).$$

Basic Results

Both f and g are order preserving. More specifically, f preserves all existing joins and g preserves all existing meets. In particular, $f(x \vee y) = f(x) \vee f(y)$ and $g(x \wedge y) = g(x) \wedge g(y)$.

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

Subclasses

BDivLat: Boolean division lattices

RToUn: Residuated totally-ordered unars

Superclasses

DLUn: Distributive lattice-ordered unars RLUn: Residuated lattice-ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

29. DDivLat: Distributive division lattices

Definition

A distributive division lattice is a division lattice $\langle D, \wedge, \vee, \setminus, / \rangle$ such that $\langle D, \wedge, \vee \rangle$ is a distributive lattice.

Formal Definition

$$x \setminus (y \wedge z) = x \setminus y \wedge x \setminus z,$$

 $(x \wedge y)/z = x/z \wedge y/z \text{ and }$
 $x \leq z/y \iff y \leq x \setminus z$

Properties

Classtype	variety
0 - 0.00 t.) F 0	

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 216$$

Subclasses

BRMag: Boolean residuated magmas

CDDivLat: Commutative distributive division lattices DRLMag: Distributive residuated lattice-ordered magmas

ToDivLat: Totally ordered division lattices

Superclasses

DLImpA: Distributive lattice-ordered implication algebras

DivLat: Division lattices Cont[Po]J[M]L[D]To[B]U[Ind]

30. DRLMag: Distributive residuated lattice-ordered magmas

Definition

A distributive residuated lattice-ordered magma is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

 $x \leq y \implies x \cdot z \leq y \cdot z$ $x \leq y \implies z \cdot x \leq z \cdot y$ $x \cdot y \leq z \iff y \leq x \backslash z$ $x \cdot y \leq z \iff x \leq z/y$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 20, f_4 = 1116$$

Subclasses

BRSgrp: Boolean residuated semigroups

CDRLMag: Commutative distributive residuated lattice-ordered magmas

DInLMag: Distributive involutive lattice-ordered magmas DRLSgrp: Distributive residuated lattice-ordered semigroups

RToMag: Residuated totally ordered magmas

Superclasses

DDivLat: Distributive division lattices

DLrLMag: Distributive left-residuated lattice-ordered magmas

RLMag: Residuated lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

31. DRLSgrp: Distributive residuated lattice-ordered semigroups

Definition

A distributive residuated lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \setminus z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 12, f_4 = 129, f_5 = 1437$$

Subclasses

BRL: Boolean residuated lattices

CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups DIdRLSgrp: Distributive idempotent residuated lattice-ordered semigroups

DInLSgrp: Distributive involutive lattice-ordered semigroups

DRL: Distributive residuated lattices

RToSgrp: Residuated totally ordered semigroups

Superclasses

DLrLSgrp: Distributive left-residuated lattice-ordered semigroups

DRLMag: Distributive residuated lattice-ordered magmas

RLSgrp: Residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

32. DRL: Distributive residuated lattices

Definition

A distributive residuated lattice is a residuated lattice $\mathbf{L} = \langle L, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ such that

 \land, \lor are distributive: $x \land (y \lor z) = (x \land y) \lor (x \land z)$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

Variety
Undecidable
Undecidable
No
Unbounded
Yes
Yes
Yes, n=2
No
Yes
No
No
No
No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 20, f_5 = 115, f_6 = 899, f_7 = 7782, f_8 = 80468$$

Subclasses

BIRL: Boolean integral residuated lattices

CDRL: Commutative distributive residuated lattices

DIRL: Distributive integral residuated lattices

DIdRL: Distributive idempotent residuated lattices

DInFL: Distributive involutive FL-algebras

GBL: Generalized BL-algebras

RToMon: Residuated totally ordered monoids

Superclasses

DLrLMon: Distributive left-residuated lattice-ordered monoids DRLSgrp: Distributive residuated lattice-ordered semigroups

RL: Residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

33. DIRL: Distributive integral residuated lattices

Definition

A distributive integral residuated lattice is an distributive residuated lattice $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that x is integral: $x \leq 1$

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x &\leq 1 \\ x \cdot y &\leq z \iff y \leq x \backslash z \end{split}$$

 $x \cdot y \le z \iff x \le z/y$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 49, f_6 = 359$$

Subclasses

BIdRSgrp: Boolean idempotent residuated semigroups

CDIRL: Commutative distributive integral residuated lattices

DIInFL: Distributive integral involutive FL-algebras IRToMon: Integral residuated totally ordered monoids

Superclasses

DILrLMon: Distributive integral left-residuated lattice-ordered monoids

DRL: Distributive residuated lattices

IRL: Integral residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

34. DIdRLSgrp: Distributive idempotent residuated lattice-ordered semigroups

Definition

An distributive idempotent residuated lattice-ordered semigroup is a distributive residuated lattice-ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is distributive idempotent: $x \cdot x = x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \setminus z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 24, f_5 = 124$$

Subclasses

BIdRL: Boolean idempotent residuated lattices

CDIdRLSgrp: Commutative distributive idempotent residuated lattice-ordered semigroups

DIdRL: Distributive idempotent residuated lattices

IdRToSgrp: Idempotent residuated totally ordered semigroups

Superclasses

DIdLrLSgrp: Distributive idempotent left-residuated lattice-ordered semigroups

DRLSgrp: Distributive residuated lattice-ordered semigroups

IdRLSgrp: Idempotent residuated lattice-ordered semigroups Cont|Po|J|M|L|D|To|B|U|Ind

35. DIdRL: Distributive idempotent residuated lattices

Definition

An distributive idempotent residuated lattice is a distributive residuated lattice-ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \cdot, \cdot \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 27, f_6 = 96$$

Subclasses

CDIdRL: Commutative distributive idempotent residuated lattices

IdRToMon: Idempotent residuated totally ordered monoids

Superclasses

DIdLrLMon: Distributive idempotent left-residuated lattice-ordered monoids DIdRLSgrp: Distributive idempotent residuated lattice-ordered semigroups

DRL: Distributive residuated lattices IdRL: Idempotent residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

36. DGalLat: Distributive Galois lattices

Definition

A distributive Galois lattice is an algebra $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that P is a distributive lattice and $\sim, -$ are a pair of unary operations on P that form a

Galois connection: $x \le \sim y \iff y \le -x$

Formal Definition

$$x \le \sim y \iff y \le -x$$

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 30, f_5 = 126$$

Subclasses

BGalLat: Boolean Galois lattices DInLat: Distributive involutive lattices

GalToLat: Galois chains

Superclasses

DLNUn: Distributive lattice-ordered negated unars

DLUn: Distributive lattice-ordered unars

GalLat: Galois lattices

Cont|Po|J|M|L|D|To|B|U|Ind

37. DInLat: Distributive involutive lattices

Definition

A distributive involutive lattice is a distributive Galois lattice $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that $\sim, -$ are inverses of each other:

$$\sim -x = x$$

$$-\sim x = x$$

Formal Definition

$$x \le \sim y \iff y \le -x$$

$$\sim -x = x$$

$$-\sim x = x$$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 1, f_6 = 4, f_7 = 3, f_8 = 11$$

Subclasses

BInMag: Boolean involutive magmas

DInLMag: Distributive involutive lattice-ordered magmas

InToLat: Involutive chains

Superclasses

DGalLat: Distributive Galois lattices

InLat: Involutive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

38. DInLMag: Distributive involutive lattice-ordered magmas

Definition

A distributive involutive lattice-ordered magma is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is a distributive lattice-ordered magma,

$$\sim$$
, – is an involutive pair: $\sim -x = x = -\sim x$,

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$
 and

$$x \cdot y \le z \iff x \le -(y \cdot \sim z).$$

Formal Definition

$$\begin{aligned} & \sim -x = x \\ & -\sim x = x \\ & x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 42, f_5 = 164$$

Subclasses

BInSgrp: Boolean involutive semigroups

CyDInLMag: Cyclic distributive involutive lattice-ordered magmas

DInLSgrp: Distributive involutive lattice-ordered semigroups

InToMag: Involutive totally ordered magmas

Superclasses

DInLat: Distributive involutive lattices

DRLMag: Distributive residuated lattice-ordered magmas

InLMag: Involutive lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

39. DInLSgrp: Distributive involutive lattice-ordered semigroups

Definition

An distributive involutive lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is an distributive involutive lattice-ordered magma and \cdot is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Formal Definition

$$\begin{aligned} & \sim -x = x \\ & -\sim x = x \\ & x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 29, f_5 = 63, f_6 = 454$$

Subclasses

BInFL: Boolean involutive FL-algebras

CyDInLSgrp: Cyclic distributive involutive lattice-ordered semigroups

DInFL: Distributive involutive FL-algebras InToSgrp: Involutive totally ordered semigroups

Superclasses

DInLMag: Distributive involutive lattice-ordered magmas DRLSgrp: Distributive residuated lattice-ordered semigroups

InLSgrp: Involutive lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

40. DInFL: Distributive involutive FL-algebras

Definition

An distributive involutive FL-algebra is an algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is an distributive involutive lattice-ordered semigroup that has an identity: $x \cdot 1 = x = 1 \cdot x$

Formal Definition

$$\begin{aligned} & \sim -x = x \\ & -\sim x = x \\ & x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 8, f_6 = 43, f_7 = 49$$

Subclasses

 $\operatorname{BIInFL}:$ Boolean integral involutive FL-algebras

 ${\bf CyDInFL: \ Cyclic \ distributive \ involutive \ FL-algebras}$

DIInFL: Distributive integral involutive FL-algebras

Superclasses

DInLSgrp: Distributive involutive lattice-ordered semigroups

DRL: Distributive residuated lattices

InFL: Involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

41. DIInFL: Distributive integral involutive FL-algebras

Definition

A distributive integral involutive FL-algebra is an involutive FL-algebra $\mathbf{A}=\langle A,\leq,\cdot,1,\sim,-\rangle$ that is integral: $x\leq 1$

Formal Definition

$$\begin{array}{l} {\sim}{-x} = x \\ {-\sim}{x} = x \\ x \cdot y \le z \iff y \le {\sim}(-z \cdot x) \\ x \cdot y \le z \iff x \le -(y \cdot {\sim}z) \\ (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ x \cdot 1 = x \\ 1 \cdot x = x \\ x \le 1 \end{array}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 12, f_7 = 13, f_8 = 66$$

Subclasses

BCyInMag: Boolean cyclic involutive magmas

CyDIInFL: Cyclic distributive involutive lattice-ordered integral monoids

psMV: Pseudo MV-algebras

Superclasses

DIRL: Distributive integral residuated lattices DInFL: Distributive involutive FL-algebras

IInFL: Integral involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

42. CyDInLMag: Cyclic distributive involutive lattice-ordered magmas

Definition

A cyclic distributive involutive lattice-ordered magma is an inpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 42, f_5 = 156$$

Subclasses

BCyInSgrp: Boolean cyclic involutive semigroups

CDInLMag: Commutative distributive involutive lattice-ordered magmas CyDInLSgrp: Cyclic distributive involutive lattice-ordered semigroups

CyInToMag: Cyclic involutive totally ordered magmas

Superclasses

CyInLMag: Cyclic involutive lattice-ordered magmas DInLMag: Distributive involutive lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

43. CyDInLSgrp: Cyclic distributive involutive lattice-ordered semigroups

Definition

A cyclic distributive involutive lattice-ordered semigroup is a cyinpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 29, f_5 = 55, f_6 = 353$$

Subclasses

BCyInFL: Boolean cyclic involutive FL-algebras

CDInLSgrp: Commutative distributive involutive lattice-ordered semigroups

CyDInFL: Cyclic distributive involutive FL-algebras

CyInToSgrp: Cyclic involutive totally ordered semigroups

Superclasses

CyDInLMag: Cyclic distributive involutive lattice-ordered magmas

CyInLSgrp: Cyclic involutive lattice-ordered semigroups

DInLSgrp: Distributive involutive lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

44. CyDInFL: Cyclic distributive involutive FL-algebras

Definition

A cyclic distributive involutive FL-algebra is an inpo-monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 8, f_6 = 43, f_7 = 48$$

Subclasses

BCyIInFL: Boolean cyclic involutive integral monoids

CDInFL: Commutative distributive involutive FL-algebras

CyDIInFL: Cyclic distributive involutive lattice-ordered integral monoids

LGrp: Lattice-ordered groups

Superclasses

CyDInLSgrp: Cyclic distributive involutive lattice-ordered semigroups

CyInFL: Cyclic involutive FL-algebras

DInFL: Distributive involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

45. CyDIInFL: Cyclic distributive involutive lattice-ordered integral monoids

Definition

A cyclic distributive integral involutive FL-algebra is an inporim $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \\ & x \leq 1 \end{aligned}$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 12, f_7 = 12, f_8 = 65$$

Small Members (not in any subclass)

Subclasses

CDIInFL: Commutative distributive integral involutive FL-algebras

Superclasses

CyDInFL: Cyclic distributive involutive FL-algebras

CyIInFL: Cyclic involutive lattice-ordered integral monoids

DIInFL: Distributive integral involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

46. LGrp: Lattice-ordered groups

Definition

A lattice-ordered group is an algebra $\mathbf{G} = \langle G, \cdot, ^{-1}, 1, \leq \rangle$ such that

 $\langle G, \cdot, ^{-1}, 1 \rangle$ is a group

 $\langle G, \leq \rangle$ is a lattice

· is orderpreserving: $x \le y \implies wxz \le wyz$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x\cdot y)\cdot z = x\cdot (y\cdot z)$$

$$x \cdot 1 = x$$

$$x \cdot x^{-1} = 1$$

Examples Basic Results

Properties

-	
Classtype	Variety
Equational theory	Decidable Holland and McCleary [1979]
Quasiequational theory	Undecidable Glass and Gurevich [1983]
First-order theory	hereditarily undecidable Burris [1985]
Congruence distributive	Yes, see lattices
Congruence n-permutable	Yes, $n = 2$, see groups
Congruence regular	Yes, see groups
Congruence uniform	Yes, see groups
Amalgamation property	No
Strong amalgamation property	No

Finite Members

$$f_1 = 1, f_2 = 0, f_3 = 0, f_4 = 0, f_5 = 0, f_6 = 0$$

Subclasses

NVLGrp: Normal valued lattice-ordered groups

Superclasses

CyDInFL: Cyclic distributive involutive FL-algebras

ImpLat: Implicative lattices
PoGrp: Partially ordered groups

Cont|Po|J|M|L|D|To|B|U|Ind

47. RepLGrp: Representable lattice-ordered groups

Definition

A representable lattice-ordered group is an algebra $\mathbf{G} = \langle G, \cdot, ^{-1}, 1, \leq \rangle$ such that

 $\langle G, \cdot, ^{-1}, 1 \rangle$ is a group $\langle G, \leq \rangle$ is a lattice

· is order preserving: $x \le y \implies wxz \le wyz$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$x \cdot x^{-1} = 1$$

Examples

Basic Results

Properties

Classtype	Variety
Equational theory	Decidable Holland and McCleary [1979]
Quasiequational theory	Undecidable Glass and Gurevich [1983]
First-order theory	hereditarily undecidable Burris [1985]
Congruence distributive	Yes, see lattices
Congruence n-permutable	Yes, $n = 2$, see groups
Congruence regular	Yes, see groups
Congruence uniform	Yes, see groups
Amalgamation property	No
Strong amalgamation property	No

Finite Members

$$f_1 = 1, f_2 = 0, f_3 = 0, f_4 = 0, f_5 = 0, f_6 = 0$$

Subclasses

AbLGrp: Abelian lattice-ordered groups

ToGrp: Totally ordered groups

Superclasses

NVLGrp: Normal valued lattice-ordered groups

Cont|Po|J|M|L|D|To|B|U|Ind

48. CDLSgrp: Commutative distributive lattice-ordered semigroups

Definition

A commutative distributive lattice-ordered semigroup is a distributive lattice-ordered semigroup $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that

· is $commutative: x \cdot y = y \cdot x$

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 20, f_4 = 149, f_5 = 1106$$

Subclasses

BCMon: Boolean commutative monoids

CDIdLSgrp: Commutative distributive idempotent lattice-ordered semigroups

CDLMon: Commutative distributive lattice-ordered monoids

CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups

CToSgrp: Commutative totally ordered semigroups

Superclasses

CLSgrp: Commutative lattice-ordered semigroups

DLImpA: Distributive lattice-ordered implication algebras

DLSgrp: Distributive lattice-ordered semigroups

Cont Po J M L D To B U Ind

49. CDLMon: Commutative distributive lattice-ordered monoids

Definition

A commutative distributive lattice-ordered monoid is a distributive lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 31, f_5 = 149$$

Subclasses

BCIMon: Boolean commutative integral monoids

CDILMon: Commutative distributive integral lattice-ordered monoids

CDIdLMon: Commutative distributive idempotent lattice-ordered monoids

CDRL: Commutative distributive residuated lattices CToMon: Commutative totally ordered monoids

Superclasses

CDLSgrp: Commutative distributive lattice-ordered semigroups

CLMon: Commutative lattice-ordered monoids

DLMon: Distributive lattice-ordered monoids

50. CDILMon: Commutative distributive integral lattice-ordered monoids

Definition

A commutative distributive integral lattice-ordered monoid is a distributive integral lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \le 1$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 124, f_7 = 645$$

Subclasses

BCIdSgrp: Boolean commutative idempotent semigroups CDIRL: Commutative distributive integral residuated lattices CIToMon: Commutative integral totally ordered monoids

Superclasses

CDLMon: Commutative distributive lattice-ordered monoids CILMon: Commutative Integral lattice-ordered monoids DILMon: Distributive integral lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

51. CDIdLSgrp: Commutative distributive idempotent lattice-ordered semigroups

Definition

A commutative distributive idempotent lattice-ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee, \cdot \rangle$ is an distributive idempotent lattice-ordered semigroup and

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot x = x$$
$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 19, f_5 = 68$$

Subclasses

BCIdMon: Boolean commutative idempotent monoids

CDIdLMon: Commutative distributive idempotent lattice-ordered monoids

CDIdRLSgrp: Commutative distributive idempotent residuated lattice-ordered semigroups

CIdToSgrp: Commutative idempotent totally ordered semigroups

Superclasses

CDLSgrp: Commutative distributive lattice-ordered semigroups CIdLSgrp: Commutative idempotent lattice-ordered semigroups

DIdLSgrp: Distributive idempotent lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

52. CDIdLMon: Commutative distributive idempotent lattice-ordered monoids

Definition

A commutative distributive idempotent lattice-ordered monoid is a distributive idempotent lattice-ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$x \cdot x = x$$
$$x \cdot y = y \cdot x$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 4, f_4 = 12, f_5 = 31, f_6 = 90, f_7 = 241$$

Subclasses

BCDivLat: Boolean commutative division lattices

CDIdRL: Commutative distributive idempotent residuated lattices CIdToMon: Commutative idempotent totally ordered monoids

Superclasses

CDIdLSgrp: Commutative distributive idempotent lattice-ordered semigroups

CDLMon: Commutative distributive lattice-ordered monoids CIdLMon: Commutative idempotent lattice-ordered monoids DIdLMon: Distributive idempotent lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

53. CDDivLat: Commutative distributive division lattices

Definition

A commutative distributive division lattice is a division lattice $\mathbf{P} = \langle P, \leq \rangle$ such that P is a distributive lattice and

Formal Definition

$$(x \wedge y)/z = x/z \wedge y/z$$

$$x \le z/y \iff y \le x \backslash z$$

$$x/y = y \backslash x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 20, f_4 = 364$$

Subclasses

BCRMag: Boolean commutative residuated magmas

CDRLMag: Commutative distributive residuated lattice-ordered magmas

Superclasses

CDivLat: Commutative division lattices DDivLat: Distributive division lattices

Cont|Po|J|M|L|D|To|B|U|Ind

54. CDRLMag: Commutative distributive residuated lattice-ordered magmas

Definition

A commutative distributive residuated lattice-ordered magma is a distributive residuated lattice-ordered magma such that

 \cdot is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 10, f_4 = 148, f_5 = 3554$$

Subclasses

CDInLMag: Commutative distributive involutive lattice-ordered magmas CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups

CRToMag: Commutative residuated totally ordered magmas

Superclasses

CDDivLat: Commutative distributive division lattices CRLMag: Commutative residuated lattice-ordered magmas DRLMag: Distributive residuated lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

55. CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups

Definition

A commutative distributive residuated lattice-ordered semigroup is a distributive residuated lattice-ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot y = y \cdot x$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 57, f_5 = 392$$

Subclasses

CDIdRLSgrp: Commutative distributive idempotent residuated lattice-ordered semigroups

CDInLSgrp: Commutative distributive involutive lattice-ordered semigroups

CDRL: Commutative distributive residuated lattices

CRSlSgrp: Commutative residuated semilinear semigroups

Superclasses

CDLSgrp: Commutative distributive lattice-ordered semigroups

CDRLMag: Commutative distributive residuated lattice-ordered magmas

CRLSgrp: Commutative residuated lattice-ordered semigroups

DRLSgrp: Distributive residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

56. CDRL: Commutative distributive residuated lattices

Definition

A commutative distributive residuated lattice is a distributive residuated lattice $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 16, f_5 = 70, f_6 = 399$$

Subclasses

CDIRL: Commutative distributive integral residuated lattices

CDIdRL: Commutative distributive idempotent residuated lattices

CDInFL: Commutative distributive involutive FL-algebras

CRSIMon: Commutative residuated semilinear monoids

DunnMon: Dunn monoid

Superclasses

CDLMon: Commutative distributive lattice-ordered monoids

CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups

CRL: Commutative residuated lattices

DRL: Distributive residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

57. CDIRL: Commutative distributive integral residuated lattices

Definition

A distributive lattice-ordered residuated integral monoid is a distributive residuated lattice-ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that

x is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot y = y \cdot x$$

Properties

Classtype	variety
Congruence distributive	Yes (relatively) Blok and Raftery [1997]
Congruence extension property	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 26, f_6 = 124, f_7 = 645$$

Subclasses

CDIInFL: Commutative distributive integral involutive FL-algebras

CIRSIMon: Commutative integral residuated semilinear monoids

Superclasses

CDILMon: Commutative distributive integral lattice-ordered monoids

CDRL: Commutative distributive residuated lattices

CIRL: Commutative integral residuated lattices

DIRL: Distributive integral residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

58. CDIdRLSgrp: Commutative distributive idempotent residuated lattice-ordered semigroups

Definition

A commutative idempotent residuated lattice-ordered semigroup is an distributive idempotent residuated lattice-ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 25, f_6 = 97$$

Subclasses

CDIdRL: Commutative distributive idempotent residuated lattices

CIdRSlSgrp: Commutative idempotent residuated semilinear semigroups

Superclasses

CDIdLSgrp: Commutative distributive idempotent lattice-ordered semigroups CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups CIdRLSgrp: Commutative idempotent residuated lattice-ordered semigroups

DIdRLSgrp: Distributive idempotent residuated lattice-ordered semigroups Cont[Po]J[M]L[D]To[B]U[Ind

59. CDIdRL: Commutative distributive idempotent residuated lattices

Definition

A commutative idempotent residuated lattice is an idmpotent residuated lattice $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 6, f_5 = 15, f_6 = 44, f_7 = 115$$

Subclasses

BCInMag: Boolean commutative involutive magmas

CIdRSlMon: Commutative idempotent residuated semilinear monoids

Superclasses

CDIdLMon: Commutative distributive idempotent lattice-ordered monoids

CDIdRLSgrp: Commutative distributive idempotent residuated lattice-ordered semigroups

CDRL: Commutative distributive residuated lattices CIdRL: Commutative idempotent residuated lattices DIdRL: Distributive idempotent residuated lattices

DunnMon: Dunn monoid

monoid Cont|Po|J|M|L|D|To|B|U|Ind

60. CDInLMag: Commutative distributive involutive lattice-ordered magmas

Definition

A commutative distributive involutive lattice-ordered magma is a inpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 38, f_5 = 90, f_6 = 858$$

Subclasses

CDInLSgrp: Commutative distributive involutive lattice-ordered semigroups

CInToMag: Commutative involutive totally ordered magmas

Superclasses

CDRLMag: Commutative distributive residuated lattice-ordered magmas

CInLMag: Commutative involutive lattice-ordered magmas

CyDInLMag: Cyclic distributive involutive lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

61. CDInLSgrp: Commutative distributive involutive lattice-ordered semigroups

Definition

A commutative distributive involutive lattice-ordered semigroup is a inpo-semigroup $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 29, f_5 = 53, f_6 = 330$$

Subclasses

CDInFL: Commutative distributive involutive FL-algebras

CInSlSgrp: Commutative involutive semilinear semigroups

Superclasses

CDInLMag: Commutative distributive involutive lattice-ordered magmas CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups

CInLSgrp: Commutative involutive lattice-ordered semigroups

CyDInLSgrp: Cyclic distributive involutive lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

62. CDInFL: Commutative distributive involutive FL-algebras

Definition

A commutative distributive involutive FL-algebra is an inpo-monoid $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{aligned}$$

 $x \cdot 1 = x$

 $1 \cdot x = x$

 $x \cdot y = y \cdot x$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 9, f_5 = 8, f_6 = 42, f_7 = 46$$

Subclasses

AbLGrp: Abelian lattice-ordered groups

CDIInFL: Commutative distributive integral involutive FL-algebras

CInSlMon: Commutative involutive semilinear monoids

DmMon: De Morgan monoids

Superclasses

CDInLSgrp: Commutative distributive involutive lattice-ordered semigroups

CDRL: Commutative distributive residuated lattices

CInFL: Commutative involutive FL-algebras

CyDInFL: Cyclic distributive involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

63. CDIInFL: Commutative distributive integral involutive FL-algebras

Definition

A commutative distributive integral involutive FL-algebra is an in-porim $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot y = y \cdot x \\ & x \cdot 1 = x \\ & x \leq 1 \end{aligned}$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 12, f_7 = 12, f_8 = 60, f_9 = 73$$

Subclasses

Superclasses

CDIRL: Commutative distributive integral residuated lattices

CDInFL: Commutative distributive involutive FL-algebras

CIInFL: Commutative integral involutive FL-algebras

CyDIInFL: Cyclic distributive involutive lattice-ordered integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

64. AbLGrp: Abelian lattice-ordered groups

Definition

An abelian lattice-ordered group is a lattice-ordered group $\mathbf{A} = \langle A, \cdot, ^{-1}, 1, \leq \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x^{-1} \cdot x &= 1 \end{split}$$

 $x \cdot x^{-1} = 1$

 $x \cdot y = y \cdot x$

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	hereditarily undecidable Burris [1985]
Locally finite	No
Congruence distributive	yes (see lattices)
Congruence modular	Yes
Congruence n-permutable	Yes, $n = 2$ (see groups)
Congruence regular	Yes, (see groups)
Congruence uniform	Yes, (see groups)
Amalgamation property	Yes
Strong amalgamation property	no Cherri and Powell [1993]

Finite Members

$$f_1 = 1, f_2 = 0, f_3 = 0, f_4 = 0, f_5 = 0, f_6 = 0$$

Subclasses

AbToGrp: Abelian totally ordered groups

LRng: Lattice-ordered rings

Superclasses

AbPoGrp: Abelian partially ordered groups

CDInFL: Commutative distributive involutive FL-algebras CInSlMon: Commutative involutive semilinear monoids CInToMon: Commutative involutive totally ordered monoids

RepLGrp: Representable lattice-ordered groups

Cont|Po|J|M|L|D|To|B|U|Ind

65. GBL: Generalized BL-algebras

Definition

A generalized BL-algebra is a residuated lattice $\mathbf{L} = \langle L, \wedge, \vee, \cdot, e, \setminus, / \rangle$ such that $x \wedge y = y \cdot (y \setminus x \wedge e), \ x \wedge y = (x/y \wedge e) \cdot y$

Classtype	Variety
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	No
Congruence e-regular	Yes
Congruence uniform	No

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 5, f_5 = 10, f_6 = 23, f_7 = 49, f_8 = 111$$

Subclasses

BLA: Basic logic algebras

GMV: Generalized MV-algebras

Superclasses

DRL: Distributive residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

66. GMV: Generalized MV-algebras

Definition

A generalized MV-algebra is a residuated lattice $\mathbf{L} = \langle L, \wedge, \vee, \cdot, e, \backslash, / \rangle$ such that $x \vee y = x/(y \backslash x \wedge e), \ x \vee y = (x/y \wedge e) \backslash y$

Properties

Classtype	Variety
Equational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	No
Congruence e-regular	Yes
Congruence uniform	No

Finite Members

Subclasses

MV: MV-algebras
Superclasses

GBL: Generalized BL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

67. psMV: Pseudo MV-algebras

Definition

A pseudo MV-algebra[(GI2001)] (or psMV-algebra for short) is a structure $\mathbf{A}=\langle A,\oplus,^-,^\sim,0,1\rangle$ such that $(x\oplus y)\oplus z=x\oplus (y\oplus z)$

$$x \oplus 0 = x$$

$$x \oplus 1 = 1$$

$$(x^- \oplus y^-)^{\sim} = (x^{\sim} \oplus y^{\sim})^-$$

$$(x \oplus y^{\sim})^{-} \oplus x = y \oplus (x^{-} \oplus y)^{\sim}$$

$$x \oplus (y^{-} \oplus x)^{\sim} = y \oplus (x^{-} \oplus y)^{\sim}$$

$$x^{-\sim} = x$$

$$0^{-} = 1$$

Basic Results

 $0+x=x, 1+x=1, x^{\sim -}=x, 0^{\sim}=1$ and axiom A7 in[(GI2001)] follow from the above axioms.

Pseudo MV-algebras are term-equivalent to divisible involutive residuated lattices.

Every psMV-algebra is obtained from an interval in a lattice-ordered group[(Dvu2002)].

Every finite psMV-algebra is commutative.

Every commutative psMV-algebra is an MV-algebra.

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes
Congruence e-regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes

Finite Members

$$f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=1,\ f_6=2,\ f_7=1,\ f_8=3,\ f_9=2,\ f_{10}=2$$

Subclasses

MV: MV-algebras

Superclasses

DIInFL: Distributive integral involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

68. WaHp: Wajsberg hoops

Definition

A Wajsberg hoop is a hoop $\mathbf{A} = \langle A, \cdot, \rightarrow, 1 \rangle$ such that

$$(x \to y) \to y = (y \to x) \to x$$

Remark: Lattice operations are term-definable by $x \wedge y = x \cdot (x \to y)$ and $x \vee y = (x \to y) \to y$.

Properties

Classtype	Variety
Equational theory	Decidable
Locally finite	No
Congruence distributive	Yes
Congruence modular	Yes
Congruence regular	Yes

Finite Members

Subclasses

MV: MV-algebras

Superclasses

Hp: Hoops

Cont|Po|J|M|L|D|To|B|U|Ind

69. BrA: Brouwerian algebras

Definition

A Brouwerian algebra is an algebra $\mathbf{A} = \langle A, \wedge, \vee, 1, \rightarrow \rangle$ such that $\langle A, \wedge, \vee, 1 \rangle$ is a distributive lattice with top \rightarrow gives the residual of \wedge : $x \wedge y \leq z \Longleftrightarrow y \leq x \rightarrow z$

Definition

A Brouwerian algebra is a BL-algebra $\mathbf{A}=\langle A,\wedge,\vee,1,\cdot,\to\rangle$ such that $x\wedge y=x\cdot y$

Properties

Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence e-regular	Yes, $e = 1$
Congruence uniform	No
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Finite Members

 $f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=3,\ f_6=5,\ f_7=8,\ f_8=15,\ f_9=26,\ f_{10}=47,\ f_{11}=82,\ f_{12}=151,\ f_{13}=269,\ f_{14}=494,\ f_{15}=891,\ f_{16}=1639,\ f_{17}=2978,\ f_{18}=5483,\ f_{19}=10006,\ f_{20}=18428$ Values known up to size 49 Erné et al. [2002]

Subclasses

GBA: Generalized Boolean algebras

HA: Heyting algebras

Superclasses

BrSlat: Brouwerian semilattices

Cont|Po|J|M|L|D|To|B|U|Ind

70. GBA: Generalized Boolean algebras

Definition

A generalized Boolean algebra is a Brouwerian algebra $\mathbf{A} = \langle A, \wedge, \vee, 1, \rightarrow \rangle$ such that $x \vee y = (x \to y) \to y$

$\begin{array}{ c c c c } \hline \text{Classtype} & \text{Variety} \\ \hline \text{Equational theory} & \text{Decidable} \\ \hline \text{Quasiequational theory} & \text{Decidable} \\ \hline \text{First-order theory} & \text{Decidable} \\ \hline \text{Locally finite} & \text{Yes} \\ \hline \text{Residual size} & 2 \\ \hline \text{Congruence distributive} & \text{Yes} \\ \hline \text{Congruence modular} & \text{Yes} \\ \hline \text{Congruence n-permutable} & \text{Yes}, n=2 \\ \hline \text{Congruence regular} & \text{Yes}, n=2 \\ \hline \text{Congruence e-regular} & \text{Yes}, e=1 \\ \hline \text{Congruence uniform} & \text{Yes} \\ \hline \text{Congruence extension property} & \text{Yes} \\ \hline \text{Definable principal congruences} & \text{Yes} \\ \hline \text{Equationally def. pr. cong.} & \text{Yes} \\ \hline \text{Strong amalgamation property} & \text{Yes} \\ \hline \text{Epimorphisms are surjective} & \text{Yes} \\ \hline \end{array}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Classtype	Variety
First-order theory Locally finite Residual size Congruence distributive Congruence modular Congruence n-permutable Congruence regular Congruence e-regular Congruence e-regular Congruence e-regular Congruence wniform Congruence extension property Definable principal congruences Equationally def. pr. cong. Amalgamation property Strong amalgamation property Yes Decidable Yes Yes Yes Yes Yes Yes Yes Yes Strong amalgamation property Yes	Equational theory	Decidable
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Quasiequational theory	Decidable
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	First-order theory	Decidable
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Locally finite	Yes
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Residual size	2
	Congruence distributive	Yes
$ \begin{array}{c cccc} \textbf{Congruence regular} & \textbf{Yes} \\ \textbf{Congruence e-regular} & \textbf{Yes}, \ e = 1 \\ \textbf{Congruence uniform} & \textbf{Yes} \\ \textbf{Congruence extension property} & \textbf{Yes} \\ \textbf{Definable principal congruences} & \textbf{Yes} \\ \textbf{Equationally def. pr. cong.} & \textbf{Yes} \\ \textbf{Amalgamation property} & \textbf{Yes} \\ \textbf{Strong amalgamation property} & \textbf{Yes} \\ \end{array} $	Congruence modular	Yes
$ \begin{array}{c cccc} \text{Congruence e-regular} & \text{Yes, } e = 1 \\ \text{Congruence uniform} & \text{Yes} \\ \text{Congruence extension property} & \text{Yes} \\ \text{Definable principal congruences} & \text{Yes} \\ \text{Equationally def. pr. cong.} & \text{Yes} \\ \text{Amalgamation property} & \text{Yes} \\ \text{Strong amalgamation property} & \text{Yes} \\ \end{array} $	Congruence n-permutable	Yes, $n=2$
Congruence uniform Congruence extension property Pes Definable principal congruences Equationally def. pr. cong. Amalgamation property Strong amalgamation property Yes Yes	Congruence regular	Yes
Congruence extension property Definable principal congruences Equationally def. pr. cong. Amalgamation property Strong amalgamation property Yes Yes	Congruence e-regular	Yes, $e = 1$
Definable principal congruences Yes Equationally def. pr. cong. Yes Amalgamation property Yes Strong amalgamation property Yes	Congruence uniform	Yes
Equationally def. pr. cong. Yes Amalgamation property Yes Strong amalgamation property Yes	Congruence extension property	Yes
Amalgamation property Yes Strong amalgamation property Yes	Definable principal congruences	Yes
Strong amalgamation property Yes	Equationally def. pr. cong.	Yes
~ · · · · · · · · · · · · · · · · · ·	Amalgamation property	Yes
Epimorphisms are surjective Yes	Strong amalgamation property	Yes
	Epimorphisms are surjective	Yes

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0, f_6 = 0$$

Subclasses

BA: Boolean algebras

Superclasses

BrA: Brouwerian algebras

Cont|Po|J|M|L|D|To|B|U|Ind

71. BoolLat: Boolean lattices

Definition

A Boolean lattice is a bounded distributive lattice $\mathbf{L} = \langle L, \vee, 0, \wedge, 1 \rangle$ such that every element has a complement: $\exists y (x \vee y = 1 \text{ and } x \wedge y = 0)$

Examples

Example 1: $\langle \mathcal{P}(S), \cup, \emptyset, \cap, S \rangle$, the collection of subsets of a set S, with union, empty set, intersection, and the whole set S.

Properties

-	
Classtype	first-order
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	Yes
Locally finite	Yes

Finite Members

Any finite member is a power of the 2-element Boolean lattice.

Subclasses

BA: Boolean algebras

72. CRSlSgrp: Commutative residuated semilinear semigroups

Definition

A commutative residuated semilinear semigroup is a residuated semilinear semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y \leq z \iff y \leq x \backslash z \\ x \cdot y \leq z \iff x \leq z/y \\ x \cdot (y \cdot z) = (x \cdot y) \cdot z \\ x \cdot y = y \cdot x \end{array}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 57, f_5 = 392$$

Subclasses

CIdRSISgrp: Commutative idempotent residuated semilinear semigroups

CInSlSgrp: Commutative involutive semilinear semigroups CRSlMon: Commutative residuated semilinear monoids

CRToSgrp: Commutative residuated totally ordered semigroups

Superclasses

CDRLSgrp: Commutative distributive residuated lattice-ordered semigroups Cont|Po|J|M|L|D|To|B|U|Ind

73. CRSIMon: Commutative residuated semilinear monoids

Definition

A commutative residuated semilinear monoid is a residuated semilinear monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$1 \le x \backslash y \vee y \backslash x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 12, f_5 = 47, f_6 = 220$$

Subclasses

CIRSIMon: Commutative integral residuated semilinear monoids CIdRSIMon: Commutative idempotent residuated semilinear monoids

CInSlMon: Commutative involutive semilinear monoids CRToMon: Commutative residuated totally ordered monoids

Superclasses

CDRL: Commutative distributive residuated lattices

CRSlSgrp: Commutative residuated semilinear semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

74. CIRSIMon: Commutative integral residuated semilinear monoids

Definition

A commutative integral residuated semilinear monoid is a residuated semilinear monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that

x is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x\cdot 1=x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y = y \cdot x$$

$$1 \leq x \backslash y \vee y \backslash x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 23, f_6 = 99, f_7 = 464$$

Subclasses

CIRToMon: Commutative integral residuated totally ordered monoids

IMTL: Involutive monoidal t-norm logic algebras

MTLA: Monoidal t-norm logic algebras

Superclasses

CDIRL: Commutative distributive integral residuated lattices

CRSlMon: Commutative residuated semilinear monoids

Cont|Po|J|M|L|D|To|B|U|Ind

75. MTLA: Monoidal t-norm logic algebras

Definition

A monoidal t-norm logic algebra is a FLew-algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \rightarrow, 0 \rangle$ such that \cdot is prelinear: $(x \to y) \lor (y \to x) = 1$

Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence <i>n</i> -permutable	Yes, $n=2$
Congruence regular	No
Congruence uniform	No

Subclasses

BLA: Basic logic algebras

Superclasses

CIRSIMon: Commutative integral residuated semilinear monoids

Cont|Po|J|M|L|D|To|B|U|Ind

76. BLA: Basic logic algebras

Definition

A basic logic algebra or BL-algebra is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \cdot, \rightarrow \rangle$ such that

 $\langle A, \vee, 0, \wedge, 1 \rangle$ is a bounded lattice

 $\langle A, \cdot, 1 \rangle$ is a commutative monoid

 \rightarrow gives the residual of $: x \cdot y \leq z \iff y \leq x \rightarrow z$

prelinearity: $(x \to y) \lor (y \to x) = 1$

BL: $x \cdot (x \to y) = x \wedge y$

Remark: The BL identity implies that the lattice is distributive.

Definition

A basic logic algebra is an FL_e-algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \cdot, \rightarrow \rangle$ such that

linearity: $(x \to y) \lor (y \to x) = 1$

BL: $x \cdot (x \to y) = x \wedge y$

Remark: The BL identity implies that the identity element 1 is the top of the lattice.

Properties

-	
Classtype	Variety
Equational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence e-regular	Yes, $e = 1$
Congruence uniform	No
Congruence extension property	Yes
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 5, f_5 = 10, f_6 = 23, f_7 = 49, f_8 = 111$$

The number of subdirectly irreducible BL-algebras of size n is 2^{n-2} .

Subclasses

HA: Heyting algebras MV: MV-algebras

Superclasses

GBL: Generalized BL-algebras

77. MV: MV-algebras

Definition

An MV-algebra (short for multivalued logic algebra) is an algebra $\mathbf{A} = \langle A, +, 0, \neg \rangle$ such that $\langle A, +, 0 \rangle$ is a commutative monoid

$$\neg \neg x = x$$

$$x + \neg 0 = \neg 0$$

$$\neg(\neg x + y) + y = \neg(\neg y + x) + x$$

Remark: This is the definition from Cignoli et al. [2000]

Definition

An MV-algebra is an algebra $\mathbf{A} = \langle A, +, 0, \cdot, 1, \neg \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a commutative monoid

$$\neg$$
 is a DeMorgan involution for $+, \because \neg \neg x = x, \ x + y = \neg (\neg x \cdot \neg y)$

$$\neg 0 = 1, \ 0 \cdot x = 0, \ \neg(\neg x + y) + y = \neg(\neg y + x) + x$$

Definition

An MV-algebra is a basic logic algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \cdot, \rightarrow \rangle$ that satisfies

MV:
$$x \lor y = (x \to y) \to y$$

Definition

A Wajsberg algebra is an algebra $\mathbf{A} = \langle A, \rightarrow, \neg, 1 \rangle$ such that

$$1 \rightarrow x = x$$

$$(x \to y) \to ((y \to z) \to (x \to z) = 1$$

$$(x \to y) \to y = (y \to x) \to x$$

$$(\neg x \to \neg y) \to (y \to x) = 1$$

Remark: Wajsberg algebras are term-equivalent to MV-algebras via $x \to y = \neg x + y$, $1 = \neg 0$ and $x + y = \neg x \to y$, $0 = \neg 1$.

Definition

A bounded Wajsberg hoop is an algebra $\mathbf{A} = \langle A, \cdot, \rightarrow, 0, 1 \rangle$ such that

$$\langle A, \cdot, \rightarrow, 1 \rangle$$
 is a hoop

$$(x \to y) \to y = (y \to x) \to x$$

$$0 \rightarrow x = 1$$

Remark: Bounded Wajsberg hoops are term-equivalent to Wajsberg algebras via $x \cdot y = \neg(x \to \neg y)$, $0 = \neg 1$, and $\neg x = x \to 0$. See [(BP1994)] for details.

Definition

A lattice implication algebra is an algebra $\mathbf{A} = \langle A, \rightarrow, -, 1 \rangle$ such that

$$x \to (y \to z) = y \to (x \to z)$$

$$1 \to x = x$$

$$x \to 1 = 1$$

$$x \to y = -y \to -x$$

$$(x \to y) \to y = (y \to x) \to x$$

Remark: Lattice implication algebras are term-equivalent to MV-algebras via $x+y=-x \rightarrow y, 0=-1$, and $\neg x=-x$.

Classtype	Variety
Equational theory	Decidable
Universal theory	Decidable (FEP[(BF2000)])
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence e-regular	Yes, $e = 1$
Congruence extension property	Yes
Equationally def. pr. cong.	No
Amalgamation property	yes [(Mu1987)]

$$f_1=1,\,f_2=1,\,f_3=1,\,f_4=2,\,f_5=1,\,f_6=2,\,f_7=1,\,f_8=3$$

The number of algebras with n elements is given by the number of ways of factoring n into a product with nontrivial factors, see A001055

Subclasses

BA: Boolean algebras

Superclasses

BLA: Basic logic algebras GMV: Generalized MV-algebras ImpLat: Implicative lattices WaHp: Wajsberg hoops psMV: Pseudo MV-algebras qMV: Quasi-MV-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

78. HA: Heyting algebras

Definition

A Heyting algebra is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \rightarrow \rangle$ such that

 $\langle A, \vee, 0, \wedge, 1 \rangle$ is a bounded distributive lattice

 \rightarrow gives the residual of \wedge : $x \wedge y \leq z \iff y \leq x \rightarrow z$

Definition

A Heyting algebra is a FLew-algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \cdot, \rightarrow \rangle$ such that

 $x \wedge y = x \cdot y$

Examples

Example 1: The open sets of any topological space **X** form a Heyting algebra under the operations of union \cup , empty set \emptyset , intersection \cap , whole space X, and the operation $U \to V =$ interior of $(X - U) \cup V$.

Example 2: Any frame can be expanded to a unique Heyting algebra by defining $x \to y = \bigvee \{z : x \land z \le y\}$.

Basic Results

Any finite distributive lattice is the reduct of a unique Heyting algebra. More generally the same result holds for any complete and completely distributive lattice.

A Heyting algebra is subdirectly irreducible if and only if it has a unique coatom.

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence e-regular	Yes, $e = 1$
Congruence uniform	No
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

 $f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=3,\ f_6=5,\ f_7=8,\ f_8=15,\ f_9=26,\ f_{10}=47,\ f_{11}=82,\ f_{12}=151,\ f_{13}=269,\ f_{14}=494,\ f_{15}=891,\ f_{16}=1639,\ f_{17}=2978,\ f_{18}=5483,\ f_{19}=10006,\ f_{20}=18428$ Values known up to size 49 Erné et al. [2002]

Subclasses

GödA: Gödel algebras

Superclasses

BCKLat: BCK-lattices BLA: Basic logic algebras BrA: Brouwerian algebras

Cont|Po|J|M|L|D|To|B|U|Ind

79. GödA: Gödel algebras

Definition

A Gödel algebra is a Heyting algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \rightarrow \rangle$ such that $(x \to y) \lor (y \to x) = 1$

Remark: Gödel algebras are also called *linear Heyting algebras* since subdirectly irreducible Gödel algebras are linearly ordered Heyting algebras.

Definition

A Gödel algebra is a representable FLew-algebra $\mathbf{A}=\langle A,\vee,0,\wedge,1,\cdot,\rightarrow\rangle$ such that

 $x \wedge y = x \cdot y$

1	
Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
Residual size	countable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence e-regular	Yes, $e = 1$
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 1, f_6 = 2, f_7 = 1, f_8 = 3, f_9 = 1, f_{10} = 2$$

Subclasses

BA: Boolean algebras

BCIdRSgrp: Boolean commutative idempotent residuated semigroups

Superclasses

HA: Heyting algebras

Cont|Po|J|M|L|D|To|B|U|Ind

80. CIdRSlSgrp: Commutative idempotent residuated semilinear semigroups

Definition

A commutative idempotent residuated semilinear semigroup is an idempotent residuated semilinear semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 25, f_6 = 97$$

Subclasses

CIdRSIMon: Commutative idempotent residuated semilinear monoids

CIdRToSgrp: Commutative idempotent residuated totally ordered semigroups

Superclasses

CDIdRLSgrp: Commutative distributive idempotent residuated lattice-ordered semigroups

CRSlSgrp: Commutative residuated semilinear semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

81. CIdRSlMon: Commutative idempotent residuated semilinear monoids

Definition

A commutative idempotent residuated semilinear monoid is an idmpotent residuated semilinear monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$1 \le x \backslash y \vee y \backslash x$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 5, f_5 = 9, f_6 = 20, f_7 = 38$$

Subclasses

BCInSgrp: Boolean commutative involutive semigroups

CIdRToMon: Commutative idempotent residuated totally ordered monoids

Superclasses

CDIdRL: Commutative distributive idempotent residuated lattices

CIdRSlSgrp: Commutative idempotent residuated semilinear semigroups

CRSlMon: Commutative residuated semilinear monoids

Cont|Po|J|M|L|D|To|B|U|Ind

82. CInSlSgrp: Commutative involutive semilinear semigroups

Definition

A commutative involutive semilinear semigroup is an insl-semigroup $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$--x = x$$

$$x \cdot y \leq z \iff y \leq -(-z \cdot x)$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot y = y \cdot x$$

Properties

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 29, f_5 = 53, f_6 = 330$$

Subclasses

CInSlMon: Commutative involutive semilinear monoids

CInToSgrp: Commutative involutive totally ordered semigroups

Superclasses

CDInLSgrp: Commutative distributive involutive lattice-ordered semigroups

CRSlSgrp: Commutative residuated semilinear semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

83. CInSlMon: Commutative involutive semilinear monoids

Definition

A commutative involutive semilinear monoid is an insl-monoid $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

$$--x = x$$

$$x \cdot y \le z \iff y \le -(-z \cdot x)$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$1 \le -(-x \cdot y) \vee -(-y \cdot x)$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 5, f_5 = 8, f_6 = 20, f_7 = 36, f_8 = 90$$

Subclasses

AbLGrp: Abelian lattice-ordered groups

CInToMon: Commutative involutive totally ordered monoids

IMTL: Involutive monoidal t-norm logic algebras

Superclasses

CDInFL: Commutative distributive involutive FL-algebras CInSlSgrp: Commutative involutive semilinear semigroups CRSlMon: Commutative residuated semilinear monoids

Cont|Po|J|M|L|D|To|B|U|Ind

84. DunnMon: Dunn monoid

Definition

A Dunn monoid is a commutative distributive residuated lattice $\mathbf{L} = \langle L, \wedge, \vee, \cdot, e, \rightarrow \rangle$ such that

· is square-increasing: $x \le x^2$

Remark: Here $x^2 = x \cdot x$. These algebras were first defined by J.M.Dunn in [(Du1966)] and were named by R.K. Meyer[(Me1972)].

Properties

Classtype	Variety
Equational theory	Undecidable[(Ur1984)]
Congruence distributive	Yes
Congruence modular	Yes

Finite Members

Subclasses

CDIdRL: Commutative distributive idempotent residuated lattices

DmMon: De Morgan monoids

Superclasses

CDRL: Commutative distributive residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

85. IMTL: Involutive monoidal t-norm logic algebras

Definition

An involutive monoidal t-norm logic algebra, or IMTL-algebra, is a commutative involutive semilinear monoid $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

· is integral: $x \leq 1$.

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot y = y \cdot x \\ & x \cdot 1 = x \\ & x \leq 1 \\ & 1 \leq -(-x \cdot y) \vee -(-y \cdot x) \end{aligned}$$

Definition

An *m-zeroid* (or IMTL-algebra with dual signature) is an algebra $\mathbf{A} = \langle A, \wedge, \vee, +, 0, - \rangle$ such that $\langle A, + \rangle$ is a commutative semigroup

 $\langle A, \wedge, \vee \rangle$ is a lattice

$$-x = x$$

$$x + 0 = 0$$

$$x + -x = 0$$

$$x \le y \iff 0 = -x + y$$

$$x + (y \lor z) = (x + y) \lor (x + z)$$

Basic Results

All subdirectly irreducible algebras are linearly ordered.

The lattice is always bounded, with top element 0.

The bottom element -0 is the identity of +.

The dual operation $x \cdot y = -(-y + -x)$ is the fusion of a commutative integral involutive semilinear residuated lattice. In fact, m-zeroids are precisely the duals of these residuated lattices, which are also known as involutive IMTL algebras.

Properties

Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence e-regular	Yes, $e = 1$

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 3, f_5 = 3, f_6 = 8, f_7 = 12, f_8 = 35$$

Subclasses

IMTLChn: Involutive monoidal t-norm logic chains

Superclasses

CIRSIMon: Commutative integral residuated semilinear monoids

CInSlMon: Commutative involutive semilinear monoids

Cont|Po|J|M|L|D|To|B|U|Ind

86. ImpLat: Implicative lattices

Definition

An *implicative lattice* is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow \rangle$ such that

 $\langle A, \wedge, \vee \rangle$ is a distributive lattice and

 \rightarrow is a (semi-classical) implication:

$$x \to (y \lor z) = (x \to y) \lor (x \to z)$$

$$x \to (y \land z) = (x \to y) \land (x \to z)$$

$$(x \lor y) \to z = (x \to z) \land (y \to z)$$

$$(x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z)$$

Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes

Subclasses

LGrp: Lattice-ordered groups

MV: MV-algebras
Superclasses

DLImpA: Distributive lattice-ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

87. KLA: Kleene logic algebras

Definition

A Kleene logic algebra is a De Morgan algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg \rangle$ that satisfies

 $x \land \neg x \leq y \lor \neg y$.

Remark: Also called Kleene algebras, but this name more commonly refers to the algebraic models of regular languages.

Examples

Example 1: Let $\{0 < a < 1\}$ be the 3-element lattice with 0' = 1, a' = a, b' = b.

Basic Results

The algebra in Example 1 generates the variety of Kleene logic algebras

Properties

Classtype	Variety
Equational theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence extension property	Yes
Locally finite	Yes
Residual size	3

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 1, f_6 = 3, f_7 = 2, f_8 = 6, f_9 = 4, f_{10} = 10$$

Subclasses

BA: Boolean algebras

Superclasses

DmA: De Morgan algebras

Cont|Po|J|M|L|D|To|B|U|Ind

88. NVLGrp: Normal valued lattice-ordered groups

Definition

A normal valued lattice-ordered group (or normal valued ℓ -group) is a lattice-ordered group $\mathbf{L} = \langle L, \wedge, \vee, \cdot,^{-1}, e \rangle$ that satisfies

$$(x\vee x^{-1})(y\vee y^{-1})\leq (y\vee y^{-1})^2(x\vee x^{-1})^2$$

Basic Results

The variety of normal valued ℓ -groups is the largest proper subvariety of lattice-ordered groups Holland [1976].

Classtype	Variety
First-order theory	hereditarily undecidable Burris [1985]
Locally finite	No
Congruence distributive	yes (see lattices)
Congruence modular	Yes
Congruence n-permutable	Yes, $n = 2$ (see groups)
Congruence regular	Yes, (see groups)
Congruence uniform	Yes, (see groups)

None

Subclasses

RepLGrp: Representable lattice-ordered groups

Superclasses

LGrp: Lattice-ordered groups

Cont|Po|J|M|L|D|To|B|U|Ind

89. LA_n : Lukasiewicz algebras of order n

Definition

A Lukasiewicz algebra of order n is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg, \sigma_0, \dots, \sigma_{n-1} \rangle$ such that $\langle A, \vee, 0, \wedge, 1, \neg \rangle$ is a De Morgan algebra

- 1. σ_i is a lattice homomorphism: $\sigma_i(x \vee y) = \sigma_i(x) \vee \sigma_i(y)$ and $\sigma_i(x \wedge y) = \sigma_i(x) \wedge \sigma_i(y)$
- 2. $\sigma_i(x) \vee \neg(\sigma_i(x)) = 1$, $\sigma_i(x) \wedge \neg(\sigma_i(x)) = 0$
- 3. $\sigma_i(\sigma_j(x)) = \sigma_j(x)$ for $1 \le j \le n-1$
- 4. $\sigma_i(\neg x) = \neg(\sigma_{n-i}(x))$
- 5. $\sigma_i(x) \wedge \sigma_j(x) = \sigma_i(x)$ for $i \leq j \leq n-1$
- 6. $x \vee \sigma_{n-1}(x) = \sigma_{n-1}(x), x \wedge \sigma_1(x) = \sigma_1(x)$
- 7. $y \wedge (x \vee \neg(\sigma_i(x)) \vee \sigma_{i+1}(y)) = y$ for $i \neq n-1$

Properties

-	
Classtype	Variety
Equational theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Locally finite	Yes
Residual size	n

Finite Members

Subclasses

BA: Boolean algebras

Superclasses

DmA: De Morgan algebras

Cont|Po|J|M|L|D|To|B|U|Ind

90. LRng: Lattice-ordered rings

Definition

```
A lattice-ordered ring (or \ell-ring) is an algebra \mathbf{L} = \langle L, \wedge, \vee, +, -, 0, \cdot \rangle such that \langle L, \wedge, \vee \rangle is a lattice \langle L, +, -, 0, \cdot \rangle is a ring + is order-preserving: x \leq y \implies x + z \leq y + z \uparrow 0 is closed under \cdot: 0 \leq x, y \implies 0 \leq x \cdot y
```

Formal Definition

Basic Results

The lattice reducts of lattice-ordered rings are distributive lattices.

Properties

Classtype	Variety
Congruence distributive	Yes, see lattices
Congruence n-permutable	Yes, $n = 2$, see groups
Congruence regular	Yes, see groups
Congruence uniform	Yes, see groups

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 3, f_6 = 5, f_7 = 8$$

Subclasses

CLRng: Commutative lattice-ordered rings

FRng: Function rings

ToRng: Totally ordered rings

Superclasses

AbLGrp: Abelian lattice-ordered groups

Cont|Po|J|M|L|D|To|B|U|Ind

91. CLRng: Commutative lattice-ordered rings

Definition

A commutative lattice-ordered ring is a lattice-ordered ring $\mathbf{A} = \langle A, \wedge, \vee, +, -, 0, \cdot \rangle$ such that

· is commutative: xy = yx

Properties

Congruence distributive	yes
Congruence modular	yes
Congruence <i>n</i> -permutable	Yes, $n=2$
Congruence regular	yes
Congruence uniform	yes

Finite Members

Subclasses

CToRng: Commutative totally ordered rings

Superclasses

LRng: Lattice-ordered rings Cont|Po|J|M|L|D|To|B|U|Ind

CHAPTER 7

Totally ordered algebras

1. ToLat: Totally ordered lattices

Formal Definition

A totally ordered lattice is a lattice $\mathbf{L} = \langle L, \vee, \wedge \rangle$ such that

 \wedge is conservative: $x \wedge y = x$ or $x \wedge y = y$

Examples

 $\mathbf{C}_n = \langle \{0, 1, \dots, n-1\}, \wedge, \vee \rangle$, the *n*-element chain with $x \wedge y = \min\{x, y\}$ and $x \vee y = \max\{x, y\}$.

Any linearly ordered poset with the same operations as in the previous example.

Classtype	Universal class
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	Yes
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes
Locally finite	Yes
Residual size	2

 $f_1 = 1, f_2 = 1, f_n = 1 \text{ for } n > 1$

Small Members (not in any subclass)

Subclasses

ToImpA: Totally ordered implication algebras

ToMag: Totally ordered magmas

ToNUn: Totally ordered negated unars

ToUn: Totally ordered unars

pDLat: Pointed distributive lattices pToLat: Pointed totally ordered lattices

Superclasses

DLat: Distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

2. pToLat: Pointed totally ordered lattices

Definition

A pointed distributive lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, c \rangle$ such that $\langle A, \wedge, \vee \rangle$ is a totally ordered lattice and c is a constant operation on A.

Formal Definition

c = c

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 3, f_4 = 4, f_n = n$$

Small Members (not in any subclass)

Subclasses

ToMon: Totally ordered monoids

Superclasses

ToLat: Totally ordered lattices pDLat: Pointed distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

3. ToMag: Totally ordered magmas

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$x \cdot (y \land z) = x \cdot y \land x \cdot z$$
$$(x \land y) \cdot z = x \cdot z \land y \cdot z$$

Properties

Classtype	universal class
-----------	-----------------

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 175$$

Subclasses

LrToMag: Left-residuated totally ordered magmas

ToSgrp: Totally ordered semigroups

Superclasses

DLMag: Distributive lattice-ordered magmas

ToLat: Totally ordered lattices

Cont|Po|J|M|L|D|To|B|U|Ind

4. ToSgrp: Totally ordered semigroups

Definition

A totally ordered semigroup is an algebra $\langle C, \wedge, \vee, \cdot \rangle$ such that

 $\langle C, \wedge, \vee \rangle$ is a totally ordered lattice,

 $\langle C, \cdot \rangle$ is a semigroup and

· is orderpreserving: $x \leq y \implies x \cdot z \leq y \cdot z$ and $z \cdot x \leq z \cdot y$.

Formal Definition

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$x \land y = x \text{ or } x \land y = y$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Properties

Classtype | universal class

Finite Members

Subclasses

CToSgrp: Commutative totally ordered semigroups IdToSgrp: Idempotent totally ordered semigroups LrToSgrp: Left-residuated totally ordered semigroups ToMon: Totally ordered monoids

Superclasses

DLSgrp: Distributive lattice-ordered semigroups

ToMag: Totally ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

5. ToMon: Totally ordered monoids

Definition

A totally ordered monoid is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a monoid

 $\langle G, \leq \rangle$ is a distributive lattice

· is orderpreserving: $x \le y \implies wxz \le wyz$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1=1,\ f_2=2,\ f_3=8,\ f_4=34,\ f_5=184,\ f_6=1218,\ f_7=9742,\ f_8=92882,\ f_9=1053248,\ f_{10}=14592054$$

Subclasses

CToMon: Commutative totally ordered monoids

IToMon: Integral totally ordered monoids

IdToMon: Idempotent totally ordered monoids LrToMon: Left-residuated totally ordered monoids

Superclasses

DLMon: Distributive lattice-ordered monoids

ToSgrp: Totally ordered semigroups

pToLat: Pointed totally ordered lattices

Cont|Po|J|M|L|D|To|B|U|Ind

6. IToMon: Integral totally ordered monoids

Definition

An integral totally ordered monoid is a totally ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that $x \leq 1$.

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x < 1$$

Properties

Classtype | variety

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 44, f_6 = 308, f_7 = 2641, f_8 = 27120, f_9 = 332507, f_{10} = 5035455$$

Subclasses

CIToMon: Commutative integral totally ordered monoids ILrToMon: Integral left-residuated totally ordered monoids

Superclasses

DILMon: Distributive integral lattice-ordered monoids

ToMon: Totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

7. IdToSgrp: Idempotent totally ordered semigroups

Definition

An idempotent totally ordered semigroup is an algebra $\mathbf{A}=\langle A,\wedge,\vee,\cdot\rangle$ such that $\langle A,\wedge,\vee,\cdot\rangle$ is a totally ordered semigroup and

· is idempotent:
$$x \cdot x = x$$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 17, f_4 = 82, f_5 = 422$$

Subclasses

CIdToSgrp: Commutative idempotent totally ordered semigroups IdLrToSgrp: Idempotent left-residuated totally ordered semigroups

IdToMon: Idempotent totally ordered monoids

Superclasses

DIdLSgrp: Distributive idempotent lattice-ordered semigroups

ToSgrp: Totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

8. IdToMon: Idempotent totally ordered monoids

Definition

An idempotent totally ordered monoid is a totally ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \vee z) = x \cdot y \vee x \cdot z$$

$$(x \vee y) \cdot z = x \cdot z \vee y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot x = x$$

Properties

Classtype variety

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 16, f_5 = 44, f_6 = 120$$

Subclasses

CIdToMon: Commutative idempotent totally ordered monoids IdLrToMon: Idempotent left-residuated totally ordered monoids

Superclasses

DIdLMon: Distributive idempotent lattice-ordered monoids

IdToSgrp: Idempotent totally ordered semigroups

ToMon: Totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

9. ToImpA: Totally ordered implication algebras

Formal Definition

$$\begin{array}{ll} x \leq y \implies y \rightarrow z \leq x \rightarrow z \\ x \leq y \implies z \rightarrow x \leq z \rightarrow y \end{array}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 175$$

Subclasses

LrToMag: Left-residuated totally ordered magmas

ToDivLat: Totally ordered division lattices

Superclasses

DLImpA: Distributive lattice-ordered implication algebras

ToLat: Totally ordered lattices

Cont|Po|J|M|L|D|To|B|U|Ind

10. LrToMag: Left-residuated totally ordered magmas

Definition

A left-residuated totally ordered magma is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, \rangle$ such that

 $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$\begin{aligned} x \cdot (y \vee z) &= x \cdot y \vee x \cdot z \\ (x \vee y) \cdot z &= x \cdot z \vee y \cdot z \\ x \cdot y &\leq z \iff y \leq x \backslash z \end{aligned}$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 50, f_4 = 4116$$

Subclasses

LrToSgrp: Left-residuated totally ordered semigroups

RToMag: Residuated totally ordered magmas

Superclasses

DLrLMag: Distributive left-residuated lattice-ordered magmas

ToMag: Totally ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

11. LrToSgrp: Left-residuated totally ordered semigroups

Definition

A left-residuated totally ordered semigroup is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, \rangle$ such that $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y \le z \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 18, f_4 = 144, f_5 = 1370$$

Subclasses

IdLrToSgrp: Idempotent left-residuated totally ordered semigroups

LrToMon: Left-residuated totally ordered monoids RToSgrp: Residuated totally ordered semigroups

Superclasses

DLrLSgrp: Distributive left-residuated lattice-ordered semigroups

LrToMag: Left-residuated totally ordered magmas

ToSgrp: Totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

12. LrToMon: Left-residuated totally ordered monoids

Definition

A left-residuated totally ordered monoid is an algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, \rangle$ such that $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$
$$x \cdot y \le z \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 17, f_5 = 92, f_6 = 609$$

Subclasses

ILrToMon: Integral left-residuated totally ordered monoids IdLrToMon: Idempotent left-residuated totally ordered monoids

RToMon: Residuated totally ordered monoids

Superclasses

DLrLMon: Distributive left-residuated lattice-ordered monoids

LrToSgrp: Left-residuated totally ordered semigroups

ToMon: Totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

13. ILrToMon: Integral left-residuated totally ordered monoids

Definition

An integral left-residuated totally ordered monoid is a left-residuated totally ordered monoid $\mathbf{A} = \langle A, \leq , \cdot, 1, \setminus, \rangle$ for which $x \leq 1$.

Formal Definition

$$\begin{aligned} x\cdot (y\vee z) &= x\cdot y\vee x\cdot z\\ (x\vee y)\cdot z &= x\cdot z\vee y\cdot z\\ (x\cdot y)\cdot z &= x\cdot (y\cdot z)\\ x\cdot 1 &= x\\ 1\cdot x &= x\\ x\cdot y\leq z \iff y\leq x\backslash z\\ x\leq 1 \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 44, f_6 = 308$$

Subclasses

IRToMon: Integral residuated totally ordered monoids

Superclasses

DILrLMon: Distributive integral left-residuated lattice-ordered monoids

IToMon: Integral totally ordered monoids

LrToMon: Left-residuated totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

14. IdLrToSgrp: Idempotent left-residuated totally ordered semigroups

Definition

An idempotent left-residuated totally ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee, \cdot \rangle$ is a left-residuated totally ordered semigroup and \cdot is idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y \le z \iff y \le x \backslash z$$
$$x \cdot x = x$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 7, f_4 = 30, f_5 = 144, f_6 = 740$$

Subclasses

IdLrToMon: Idempotent left-residuated totally ordered monoids IdRToSgrp: Idempotent residuated totally ordered semigroups

Superclasses

DIdLrLSgrp: Distributive idempotent left-residuated lattice-ordered semigroups

IdToSgrp: Idempotent totally ordered semigroups

LrToSgrp: Left-residuated totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

15. IdLrToMon: Idempotent left-residuated totally ordered monoids

Definition

An idempotent left-residuated totally ordered monoid is a left-residuated totally ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 8, f_5 = 22, f_6 = 60, f_7 = 164$$

Subclasses

IdRToMon: Idempotent residuated totally ordered monoids

Superclasses

DIdLrLMon: Distributive idempotent left-residuated lattice-ordered monoids

IdLrToSgrp: Idempotent left-residuated totally ordered semigroups

IdToMon: Idempotent totally ordered monoids

 $Lr To Mon: \ Left-residuated \ totally \ ordered \ monoids \\ Cont[Po]J[M]L[D]To[B]U[Ind]$

16. RToUn: Residuated totally-ordered unars

Definition

A residuated totally-ordered unar (also called an rto-unar for short) is a residuated lattice-ordered unar $\langle C, \wedge, \vee, f, g \rangle$ such that $\langle C, \wedge, \vee \rangle$ is a chain.

Formal Definition

$$f(x) \le y \iff x \le g(y).$$

Basic Results

Both f and g are order preserving. More specifically, f preserves all existing joins and g preserves all existing meets. In particular, $f(x \vee y) = f(x) \vee f(y)$ and $g(x \wedge y) = g(x) \wedge g(y)$.

Properties

Classtype	po-variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

Subclasses

InToMon: Involutive totally ordered monoids

Superclasses

DRLUn: Distributive residuated lattice-ordered unars

ToUn: Totally ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

17. ToDivLat: Totally ordered division lattices

Definition

A totally ordered division lattice is a division lattice $\mathbf{C} = \langle C, \wedge, \vee, \rangle$ such that $\langle C, \wedge, \vee \rangle$ is a totally ordered lattice.

Formal Definition

$$x \le z/y \iff y \le x \backslash z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 216$$

Subclasses

CToDivLat: Commutative division chains RToMag: Residuated totally ordered magmas

Superclasses

DDivLat: Distributive division lattices

ToImpA: Totally ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

18. RToMag: Residuated totally ordered magmas

Definition

A residuated totally ordered magma is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

 $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 20, f_4 = 980$$

Subclasses

CRToMag: Commutative residuated totally ordered magmas

InToMag: Involutive totally ordered magmas RToSgrp: Residuated totally ordered semigroups

Superclasses

DRLMag: Distributive residuated lattice-ordered magmas

LrToMag: Left-residuated totally ordered magmas

ToDivLat: Totally ordered division lattices

Cont|Po|J|M|L|D|To|B|U|Ind

19. RToSgrp: Residuated totally ordered semigroups

Definition

A residuated totally ordered semigroup is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

 $\langle A, \leq \rangle$ is a distributive lattice,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 12, f_4 = 101, f_5 = 1003$$

Subclasses

CRToSgrp: Commutative residuated totally ordered semigroups

IdRToSgrp: Idempotent residuated totally ordered semigroups InToSgrp: Involutive totally ordered semigroups

RToMon: Residuated totally ordered monoids

Superclasses

DRLSgrp: Distributive residuated lattice-ordered semigroups

LrToSgrp: Left-residuated totally ordered semigroups

RToMag: Residuated totally ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

20. RToMon: Residuated totally ordered monoids

Definition

A residuated totally ordered monoid is a totally ordered monoid $\mathbf{L} = \langle L, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ such that \wedge, \vee are distributive: $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$\begin{aligned} 1 \cdot x &= x \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \end{aligned}$$

Properties

Classtype	Variety
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	No
Congruence e-regular	Yes
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 15, f_5 = 84, f_6 = 575$$

Subclasses

CRToMon: Commutative residuated totally ordered monoids

IRToMon: Integral residuated totally ordered monoids

IdRToMon: Idempotent residuated totally ordered monoids

InToMon: Involutive totally ordered monoids

Superclasses

DRL: Distributive residuated lattices

LrToMon: Left-residuated totally ordered monoids RToSgrp: Residuated totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

21. IRToMon: Integral residuated totally ordered monoids

Definition

An integral residuated totally ordered monoid is a residuated totally ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that

x is integral: $x \leq 1$

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x &\leq 1 \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \end{split}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 8, f_5 = 44, f_6 = 308$$

Subclasses

CIRToMon: Commutative integral residuated totally ordered monoids

IInToMon: Integral involutive totally ordered monoids

Superclasses

DIRL: Distributive integral residuated lattices

ILrToMon: Integral left-residuated totally ordered monoids

RToMon: Residuated totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

22. IdRToSgrp: Idempotent residuated totally ordered semigroups

Definition

An idempotent residuated totally ordered semigroup is a residuated totally ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \cdot, \cdot \rangle$ such that

· is idempotent: $x \cdot x = x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$

Properties

C1 /	
Classtype	variety
Classin	V COLICO,

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 4, f_4 = 17, f_5 = 82$$

Subclasses

CIdRToSgrp: Commutative idempotent residuated totally ordered semigroups

IdRToMon: Idempotent residuated totally ordered monoids

Superclasses

DIdRLSgrp: Distributive idempotent residuated lattice-ordered semigroups

IdLrToSgrp: Idempotent left-residuated totally ordered semigroups

RToSgrp: Residuated totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

23. IdRToMon: Idempotent residuated totally ordered monoids

Definition

An idempotent residuated totally ordered monoid is a residuated totally ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$\begin{aligned} x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \\ x \cdot x &= x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 6, f_5 = 16, f_6 = 44, f_7 = 120$$

Subclasses

CIdRToMon: Commutative idempotent residuated totally ordered monoids

Superclasses

DIdRL: Distributive idempotent residuated lattices

IdLrToMon: Idempotent left-residuated totally ordered monoids IdRToSgrp: Idempotent residuated totally ordered semigroups

RToMon: Residuated totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

24. ToUn: Totally ordered unars

Definition

A totally ordered unar is an algebra $\mathbf{P} = \langle P, \leq, f \rangle$ such that P is a distributive lattice and f is a unary operation on P that is

order-preserving: $x \le y \implies f(x) \le f(y)$

Formal Definition

$$x \le y \implies f(x) \le f(y)$$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 10, f_4 = 35, f_5 = 126, f_6 = 462$$

Subclasses

RToUn: Residuated totally-ordered unars

Superclasses

DLUn: Distributive lattice-ordered unars

ToLat: Totally ordered lattices

Cont|Po|J|M|L|D|To|B|U|Ind

25. ToNUn: Totally ordered negated unars

Definition

A totally ordered negated unar is an algebra $\mathbf{C} = \langle C, \wedge, \vee, \sim \rangle$ such that $\langle C, \wedge, \vee \rangle$ is a chain and \sim is a unary operation on C that is

order-reversing: $x \leq y \implies \sim y \leq \sim x$

Formal Definition

$$x \le y \implies \sim y \le \sim x$$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

$$f_1 = 1, f_2 = 3, f_3 = 10, f_4 = 35, f_5 = 126, f_6 = 462$$

Subclasses

GalToLat: Galois chains

Superclasses

DLNUn: Distributive lattice-ordered negated unars

ToLat: Totally ordered lattices

Cont|Po|J|M|L|D|To|B|U|Ind

26. GalToLat: Galois chains

Definition

A Galois chain is an algebra $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that P is a distributive lattice and $\sim, -$ are a pair of unary operations on P that form a

Galois connection: $x \le \sim y \iff y \le -x$

Formal Definition

$$x < \sim y \iff y < -x$$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 20, f_5 = 70, f_6 = 252, f_7 = 924$$

Subclasses

InToLat: Involutive chains

Superclasses

DGalLat: Distributive Galois lattices ToNUn: Totally ordered negated unars

Cont|Po|J|M|L|D|To|B|U|Ind

27. InToLat: Involutive chains

Definition

An involutive chain is a Galois chain $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that $\sim, -$ are inverses of each other:

 $\sim -x = x$

 $-\sim x = x$

Formal Definition

$$x \le \sim y \iff y \le -x$$

 $\sim -x = x$

 $-\sim x = x$

Properties

Classtype	variety
	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 1, f_5 = 1, f_6 = 1$$

Small Members (not in any subclass)

Subclasses

InToMag: Involutive totally ordered magmas

Superclasses

DInLat: Distributive involutive lattices

GalToLat: Galois chains

Cont|Po|J|M|L|D|To|B|U|Ind

28. InToMag: Involutive totally ordered magmas

Definition

An involutive totally ordered magma is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 $\langle A, \leq, \cdot \rangle$ is a totally ordered magma,

 \sim , – is an involutive pair: $\sim -x = x = -\sim x$,

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$
 and

$$x \cdot y \le z \iff x \le -(y \cdot \sim z).$$

Formal Definition

 $\sim -x = x$

$$-\sim x = x$$

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$

$$x \cdot y \le z \iff x \le -(y \cdot \sim z)$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 22, f_5 = 142$$

Subclasses

CyInToMag: Cyclic involutive totally ordered magmas

InToSgrp: Involutive totally ordered semigroups

Superclasses

DInLMag: Distributive involutive lattice-ordered magmas

InToLat: Involutive chains

RToMag: Residuated totally ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

29. InToSgrp: Involutive totally ordered semigroups

Definition

An involutive totally ordered semigroup is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is an involutive totally ordered magma and

$$\cdot$$
 is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Formal Definition

$$\sim -x = x$$

$$-\sim x = x$$

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$

$$x \cdot y \le z \iff x \le -(y \cdot \sim z)$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 14, f_5 = 43, f_6 = 147, f_7 = 578$$

Subclasses

CyInToSgrp: Cyclic involutive totally ordered semigroups

InToMon: Involutive totally ordered monoids

Superclasses

DInLSgrp: Distributive involutive lattice-ordered semigroups

InToMag: Involutive totally ordered magmas RToSgrp: Residuated totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

30. InToMon: Involutive totally ordered monoids

Definition

An involutive totally ordered monoid is an algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is an involutive totally ordered semigroup that has an identity: $x \cdot 1 = x = 1 \cdot x$

Formal Definition

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 4, f_5 = 8, f_6 = 17, f_7 = 38$$

Subclasses

CyInToMon: Cyclic involutive totally ordered monoids IInToMon: Integral involutive totally ordered monoids

Superclasses

InToSgrp: Involutive totally ordered semigroups RToMon: Residuated totally ordered monoids RToUn: Residuated totally-ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

31. IInToMon: Integral involutive totally ordered monoids

Definition

An integral involutive totally ordered monoid is an involutive totally ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ that is

integral: $x \leq 1$

Formal Definition

$$\begin{array}{l} \sim -x = x \\ -\sim x = x \\ x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \\ (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ x \cdot 1 = x \\ 1 \cdot x = x \\ x \leq 1 \end{array}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 3, f_6 = 7, f_7 = 12, f_8 = 35$$

Subclasses

CyIInToMon: Cyclic integral involutive totally ordered monoids

Superclasses

IRToMon: Integral residuated totally ordered monoids

InToMon: Involutive totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

32. CyInToMag: Cyclic involutive totally ordered magmas

Definition

A cyclic involutive totally ordered magma is an insl-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 22, f_5 = 138$$

Subclasses

CInToMag: Commutative involutive totally ordered magmas CyInToSgrp: Cyclic involutive totally ordered semigroups

Superclasses

CyDInLMag: Cyclic distributive involutive lattice-ordered magmas

InToMag: Involutive totally ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

33. CyInToSgrp: Cyclic involutive totally ordered semigroups

Definition

A cyclic involutive totally ordered semigroup is a cyinsl-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \cdot is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Formal Definition

$$--x = x$$

$$x \cdot y \leq z \iff y \leq -(-z \cdot x)$$

$$x \cdot y \leq z \iff x \leq -(y \cdot -z)$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 14, f_5 = 39, f_6 = 119$$

Subclasses

CInToSgrp: Commutative involutive totally ordered semigroups

CyInToMon: Cyclic involutive totally ordered monoids

Superclasses

CyDInLSgrp: Cyclic distributive involutive lattice-ordered semigroups

CyInToMag: Cyclic involutive totally ordered magmas

InToSgrp: Involutive totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

34. CyInToMon: Cyclic involutive totally ordered monoids

Definition

A cyclic involutive totally ordered monoid is an insl-monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$--x = x$$

$$x \cdot y \le z \iff y \le -(-z \cdot x)$$

$$x \cdot y \le z \iff x \le -(y \cdot -z)$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 4, f_5 = 8, f_6 = 17, f_7 = 38, f_8 = 91$$

Subclasses

CInToMon: Commutative involutive totally ordered monoids

CyIInToMon: Cyclic integral involutive totally ordered monoids

ToGrp: Totally ordered groups

Superclasses

CyInToSgrp: Cyclic involutive totally ordered semigroups

InToMon: Involutive totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

35. CyIInToMon: Cyclic integral involutive totally ordered monoids

Definition

A cyclic integral involutive totally ordered monoid is an inporim $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that

 \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \\ & x \leq 1 \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 3, f_6 = 7, f_7 = 12, f_8 = 35$$

Small Members (not in any subclass)

Subclasses

IMTLChn: Involutive monoidal t-norm logic chains

Superclasses

CyInToMon: Cyclic involutive totally ordered monoids IInToMon: Integral involutive totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

36. ToGrp: Totally ordered groups

Definition

A totally ordered group is a lattice-ordered group $\langle G, \wedge, \vee, \cdot,^{-1}, 1 \rangle$

Formal Definition

$$\begin{aligned} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x^{-1} \cdot x &= 1 \\ x \cdot x^{-1} &= 1 \end{aligned}$$

Examples

Properties

Classtype	Variety
Equational theory	Decidable Holland and McCleary [1979]
Quasiequational theory	Undecidable Glass and Gurevich [1983]
First-order theory	hereditarily undecidable Burris [1985]
Congruence distributive	Yes, see lattices
Congruence n-permutable	Yes, $n = 2$, see groups
Congruence regular	Yes, see groups
Congruence uniform	Yes, see groups
Amalgamation property	No
Strong amalgamation property	No

$$f_1 = 1, f_2 = 0, f_n = 0 \text{ for } n > 1$$

Subclasses

AbToGrp: Abelian totally ordered groups

Superclasses

CyInToMon: Cyclic involutive totally ordered monoids

RepLGrp: Representable lattice-ordered groups

Cont|Po|J|M|L|D|To|B|U|Ind

37. CToSgrp: Commutative totally ordered semigroups

Definition

A commutative totally ordered semigroup is a totally ordered semigroup $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y = y \cdot x$$

Properties

Classtype	variety

Finite Members

$$f_1=1,\ f_2=4,\ f_3=20,\ f_4=114,\ f_5=710,\ f_6=4726,\ f_7=33157,\ f_8=243048,\ f_9=1850817,\ f_{10}=14590692$$

Subclasses

CIdToSgrp: Commutative idempotent totally ordered semigroups CRToSgrp: Commutative residuated totally ordered semigroups

CToMon: Commutative totally ordered monoids

Superclasses

CDLSgrp: Commutative distributive lattice-ordered semigroups

ToSgrp: Totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

38. CToMon: Commutative totally ordered monoids

Definition

A commutative totally ordered monoid is a totally ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative:
$$x \cdot y = y \cdot x$$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$\begin{split} &(x\vee y)\cdot z = x\cdot z\vee y\cdot z\\ &(x\cdot y)\cdot z = x\cdot (y\cdot z)\\ &x\cdot 1 = x\\ &1\cdot x = x\\ &x\cdot y = y\cdot x \end{split}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 22, f_5 = 92, f_6 = 426$$

Subclasses

CIToMon: Commutative integral totally ordered monoids CIdToMon: Commutative idempotent totally ordered monoids CRToMon: Commutative residuated totally ordered monoids

Superclasses

CDLMon: Commutative distributive lattice-ordered monoids

CToSgrp: Commutative totally ordered semigroups

ToMon: Totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

39. CIToMon: Commutative integral totally ordered monoids

Definition

A commutative integral totally ordered monoid is a integral totally ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} x\cdot(y\vee z) &= x\cdot y\vee x\cdot z\\ (x\vee y)\cdot z &= x\cdot z\vee y\cdot z\\ (x\cdot y)\cdot z &= x\cdot (y\cdot z)\\ x\cdot 1 &= x\\ 1\cdot x &= x\\ x\leq 1\\ x\cdot y &= y\cdot x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 6, f_5 = 22, f_6 = 94, f_7 = 451$$

Subclasses

CIRToMon: Commutative integral residuated totally ordered monoids

Superclasses

CDILMon: Commutative distributive integral lattice-ordered monoids

CToMon: Commutative totally ordered monoids

IToMon: Integral totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

40. CIdToSgrp: Commutative idempotent totally ordered semigroups

Definition

A commutative idempotent totally ordered semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee, \cdot \rangle$ is an idempotent totally ordered semigroup and

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot x = x$$
$$x \cdot y = y \cdot x$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 14, f_5 = 42, f_6 = 132$$

Subclasses

CIdRToSgrp: Commutative idempotent residuated totally ordered semigroups

CIdToMon: Commutative idempotent totally ordered monoids

Superclasses

CDIdLSgrp: Commutative distributive idempotent lattice-ordered semigroups

CToSgrp: Commutative totally ordered semigroups IdToSgrp: Idempotent totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

41. CIdToMon: Commutative idempotent totally ordered monoids

Definition

A commutative idempotent totally ordered monoid is an idempotent totally ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 4, f_4 = 8, f_5 = 16, f_6 = 32, f_7 = 64$$

Subclasses

CIdRToMon: Commutative idempotent residuated totally ordered monoids

Superclasses

CDIdLMon: Commutative distributive idempotent lattice-ordered monoids

CIdToSgrp: Commutative idempotent totally ordered semigroups

CToMon: Commutative totally ordered monoids IdToMon: Idempotent totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

42. CToDivLat: Commutative division chains

Definition

A commutative totally ordered division lattice is a commutative division lattice $\mathbf{C} = \langle C, \wedge, \vee, \rangle$ such that $\langle C, \wedge, \vee \rangle$ is a totally ordered lattice.

Formal Definition

$$(x \wedge y)/z = x/z \wedge y/z$$

$$x \le z/y \iff y \le x \backslash z$$

$$x/y = y \backslash x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 20, f_4 = 294$$

Subclasses

CRToMag: Commutative residuated totally ordered magmas

Superclasses

ToDivLat: Totally ordered division lattices

Cont|Po|J|M|L|D|To|B|U|Ind

43. CRToMag: Commutative residuated totally ordered magmas

Definition

A commutative residuated totally ordered magma is a residuated totally ordered magma such that \cdot is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 10, f_4 = 112, f_5 = 2772$$

Subclasses

CInToMag: Commutative involutive totally ordered magmas CRToSgrp: Commutative residuated totally ordered semigroups

Superclasses

CDRLMag: Commutative distributive residuated lattice-ordered magmas

CToDivLat: Commutative division chains RToMag: Residuated totally ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

44. CRToSgrp: Commutative residuated totally ordered semigroups

Definition

A commutative residuated totally ordered semigroup is a residuated totally ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \cdot, \cdot, \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 8, f_4 = 41, f_5 = 241$$

Subclasses

CIdRToSgrp: Commutative idempotent residuated totally ordered semigroups

CInToSgrp: Commutative involutive totally ordered semigroups CRToMon: Commutative residuated totally ordered monoids

Superclasses

CRSlSgrp: Commutative residuated semilinear semigroups CRToMag: Commutative residuated totally ordered magmas

CToSgrp: Commutative totally ordered semigroups RToSgrp: Residuated totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

45. CRToMon: Commutative residuated totally ordered monoids

Definition

A commutative residuated totally ordered monoid is a residuated totally ordered monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \leq y \implies z \cdot x \leq z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \leq z \iff x \leq z/y$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 11, f_5 = 46, f_6 = 213$$

Subclasses

CIRToMon: Commutative integral residuated totally ordered monoids

CIdRToMon: Commutative idempotent residuated totally ordered monoids

CInToMon: Commutative involutive totally ordered monoids

Superclasses

CRSIMon: Commutative residuated semilinear monoids

CRToSgrp: Commutative residuated totally ordered semigroups

 ${\bf CToMon:}\ {\bf Commutative\ totally\ ordered\ monoids}$

RToMon: Residuated totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

46. CIRToMon: Commutative integral residuated totally ordered monoids

Definition

A commutative integral residuated totally ordered monoid is a residuated totally ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \cdot, \cdot \rangle$ such that

x is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 6, f_5 = 22, f_6 = 94$$

Subclasses

IMTLChn: Involutive monoidal t-norm logic chains

Superclasses

CIRSIMon: Commutative integral residuated semilinear monoids

CIToMon: Commutative integral totally ordered monoids

 $\operatorname{CRToMon}$: Commutative residuated totally ordered monoids

IRToMon: Integral residuated totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

47. CIdRToSgrp: Commutative idempotent residuated totally ordered semigroups

Definition

A commutative idempotent residuated totally ordered semigroup is an idempotent residuated totally ordered semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

 $x \cdot y \le z \iff x \le z/y$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$
$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 5, f_5 = 14, f_6 = 42$$

Subclasses

CIdRToMon: Commutative idempotent residuated totally ordered monoids

Superclasses

CIdRSlSgrp: Commutative idempotent residuated semilinear semigroups

CIdToSgrp: Commutative idempotent totally ordered semigroups CRToSgrp: Commutative residuated totally ordered semigroups

IdRToSgrp: Idempotent residuated totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

48. CIdRToMon: Commutative idempotent residuated totally ordered monoids

Definition

A commutative idempotent residuated totally ordered monoid is an idempotent residuated totally ordered monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \leq z \iff y \leq x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

| Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 4, f_5 = 8, f_6 = 16, f_7 = 32$$

Subclasses

Superclasses

CIdRSIMon: Commutative idempotent residuated semilinear monoids

CIdRToSgrp: Commutative idempotent residuated totally ordered semigroups

CIdToMon: Commutative idempotent totally ordered monoids CRToMon: Commutative residuated totally ordered monoids

IdRToMon: Idempotent residuated totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

49. CInToMag: Commutative involutive totally ordered magmas

Definition

A commutative involutive totally ordered magma is a insl-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 18, f_5 = 72, f_6 = 384$$

Subclasses

CInToSgrp: Commutative involutive totally ordered semigroups

Superclasses

CDInLMag: Commutative distributive involutive lattice-ordered magmas

CRToMag: Commutative residuated totally ordered magmas

CyInToMag: Cyclic involutive totally ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

50. CInToSgrp: Commutative involutive totally ordered semigroups

Definition

A commutative involutive totally ordered semigroup is an insl-semigroup $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 14, f_5 = 37, f_6 = 107$$

Subclasses

CInToMon: Commutative involutive totally ordered monoids

Superclasses

CInSlSgrp: Commutative involutive semilinear semigroups CInToMag: Commutative involutive totally ordered magmas CRToSgrp: Commutative residuated totally ordered semigroups

CyInToSgrp: Cyclic involutive totally ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

51. CInToMon: Commutative involutive totally ordered monoids

Definition

A commutative involutive totally ordered monoid is an insl-monoid $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} --x &= x \\ x \cdot y &\le z \iff y \le -(-z \cdot x) \end{aligned}$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 4, f_5 = 8, f_6 = 17, f_7 = 36, f_8 = 81$$

Subclasses

AbLGrp: Abelian lattice-ordered groups

IMTLChn: Involutive monoidal t-norm logic chains

Superclasses

CInSlMon: Commutative involutive semilinear monoids

CInToSgrp: Commutative involutive totally ordered semigroups CRToMon: Commutative residuated totally ordered monoids

CyInToMon: Cyclic involutive totally ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

52. IMTLChn: Involutive monoidal t-norm logic chains

Definition

A involutive monoidal t-norm logic chain is an integral involutive to-monoid $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot y = y \cdot x \\ & x \cdot 1 = x \\ & x \leq 1 \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 3, f_6 = 7, f_7 = 12, f_8 = 31, f_9 = 59$$

Subclasses

TrivA: Trivial algebras

Superclasses

CIRToMon: Commutative integral residuated totally ordered monoids

CInToMon: Commutative involutive totally ordered monoids CyIInToMon: Cyclic integral involutive totally ordered monoids

IMTL: Involutive monoidal t-norm logic algebras

Cont|Po|J|M|L|D|To|B|U|Ind

53. AbToGrp: Abelian totally ordered groups

Definition

An abelian totally ordered group is a totally ordered group $\mathbf{A} = \langle A, \wedge, \vee, \cdot, ^{-1}, 1 \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x^{-1} \cdot x &= 1 \\ x \cdot x^{-1} &= 1 \\ x \cdot y &= y \cdot x \end{split}$$

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	hereditarily undecidable Burris [1985]
Locally finite	No
Congruence distributive	yes (see lattices)
Congruence modular	Yes
Congruence n-permutable	Yes, $n = 2$ (see groups)
Congruence regular	Yes, (see groups)
Congruence uniform	Yes, (see groups)
Amalgamation property	Yes
Strong amalgamation property	no Cherri and Powell [1993]

Finite Members

 $f_1 = 1, f_2 = 0, f_n = 0 \text{ for } n > 1$

Subclasses

TrivA: Trivial algebras

Superclasses

AbLGrp: Abelian lattice-ordered groups

ToGrp: Totally ordered groups

Cont|Po|J|M|L|D|To|B|U|Ind

54. ToRng: Totally ordered rings

Definition

A totally ordered ring is an algebra $\mathbf{A} = \langle A, +, -, 0, \cdot, 1, \leq \rangle$ such that

 $\langle A, +, -, 0, \cdot, 1 \rangle$ is a ring

 $\langle A, \leq \rangle$ is a linear order

+ is order-preserving: $x \le y \implies x + z \le y + z$

· is order-preserving for positive elements: $x \leq y$ and $0 \leq z \implies xz \leq yz$

Properties

Classtype Universal

Finite Members

Subclasses

ToFld: Totally ordered fields

Superclasses

LRng: Lattice-ordered rings

Cont|Po|J|M|L|D|To|B|U|Ind

55. CToRng: Commutative totally ordered rings

Definition

A commutative totally ordered ring is an totally ordered ring $\mathbf{A} = \langle A, +, -, 0, \cdot, \leq \rangle$ such that

· is commutative: xy = yx

Properties

Finite Members

Subclasses

ToFld: Totally ordered fields

Superclasses

CLRng: Commutative lattice-ordered rings

Cont|Po|J|M|L|D|To|B|U|Ind

56. ToFld: Totally ordered fields

Definition

An ordered field is an algebra $\mathbf{F} = \langle F, +, -, 0, \cdot, 1, \leq \rangle$ such that

 $\langle F, +, -, 0, \cdot, 1 \rangle$ is a field

 $\langle F, \leq \rangle$ is a linear order

+ is order-preserving: $x \le y \implies x + z \le y + z$

· is order-preserving for positive elements: $x \leq y$ and $0 \leq z \implies xz \leq yz$

Properties

Classtype | Universal

Finite Members

None

Subclasses

Superclasses

CToRng: Commutative totally ordered rings

ToRng: Totally ordered rings

Cont|Po|J|M|L|D|To|B|U|Ind

CHAPTER 8

Boolean-ordered algebras

1. BA: Boolean algebras

Definition

A Boolean algebra is a complemented lattice $\mathbf{A} = \langle A, \wedge, \vee, \neg, 0, 1 \rangle$ such that $\langle A, \wedge, \vee, 0, 1 \rangle$ is a distributive lattice

Formal Definition

Examples

Example 1: $\langle \mathcal{P}(S), \cup, \emptyset, \cap, S, - \rangle$, the collection of subsets of a sets S, with union, intersection, and set complementation.

Properties

Classtype	Variety
Equational theory	NPTIME
Quasiequational theory	Decidable
First-order theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes
Locally finite	Yes
Residual size	2

 $f_1=1,\ f_2=1,\ f_3=0,\ f_4=1,\ f_5=0,\ f_6=0,\ f_7=0,\ f_8=1,\ f_9=0,\ f_{2^n}=1,\ f_k=0\ \text{if}\ k\neq 2^n$

Small Members (not in any subclass)

Subclasses

BImpA: Boolean implication algebras

BMag: Boolean magmas

BNUn: Boolean negated unars

BUn: Boolean unars

pBA: Pointed Boolean algebras

Superclasses

BoolLat: Boolean lattices

CRng₁: Commutative rings with identity CplmModLat: Complemented modular lattices

DLat: Distributive lattices

DblStAlg: Double Stone algebras GBA: Generalized Boolean algebras

GödA: Gödel algebras KLA: Kleene logic algebras

 LA_n : Lukasiewicz algebras of order n

MV: MV-algebras

ModOLat: Modular ortholattices bDLat: Bounded distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

A pointed Boolean algebra is an algebra $\mathbf{A} = \langle A, \wedge, \vee, -, 0, 1, c \rangle$ such that $\langle A, \wedge, \vee, -, 0, 1 \rangle$ is a Boolean algebra and c is a constant operation on A.

Formal Definition

c = c

Properties

_	
Classtype	Variety
Equational theory	NPTIME
Quasiequational theory	Decidable
First-order theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes
Locally finite	Yes
Residual size	2

Finite Members

 $f_1 = 1$, $f_2 = 2$, $f_3 = 0$, $f_4 = 3$, $f_5 = 0$, $f_6 = 0$, $f_7 = 0$, $f_8 = 1$, $f_9 = 0$, $f_{2^n} = n + 1$, $f_k = 0$ if $k \neq 2^n$ Small Members (not in any subclass)

Subclasses

BMon: Boolean monoids

Superclasses

BA: Boolean algebras

pDLat: Pointed distributive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

3. BUn: Boolean unars

Formal Definition

A Boolean unar is an algebra $\langle B, \wedge, \vee, \neg, \bot, \top, f \rangle$ such that $\langle B, \wedge, \vee, \neg, \bot, \top \rangle$ is a Boolean algebra and f is a unary operation on B that is

join-preserving: $f(x \lor y) = f(x) \lor f(y)$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 0, f_4 = 15, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 147, f_9 = 0$$

Subclasses

BRMod: Boolean modules over a relation algebra

BRUn: Boolean residuated unars

CA₂: Cylindric algebras of dimension 2

MA: Modal algebras
Superclasses

BA: Boolean algebras

DLUn: Distributive lattice-ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

4. BNUn: Boolean negated unars

Formal Definition

A Boolean negated unar is an algebra $\langle B, \wedge, \vee, \neg, \bot, \top, \sim \rangle$ such that $\langle B, \wedge, \vee, \neg, \bot, \top \rangle$ is a Boolean algebra and \sim is a unary operation on B that is

join-reversing: $\sim (x \vee y) = \sim y \wedge \sim x$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

 $f_1 = 1, f_2 = 3, f_3 = 0, f_4 = 15, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 147, f_9 = 0$

Subclasses

BGalLat: Boolean Galois lattices

Superclasses

BA: Boolean algebras

DLNUn: Distributive lattice-ordered negated unars

Cont|Po|J|M|L|D|To|B|U|Ind

5. MA: Modal algebras

Definition

A modal algebra is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg, \diamond \rangle$ such that

 $\langle A, \vee, 0, \wedge, 1, \neg \rangle$ is a Boolean algebra

 \diamond is join-preserving: $\diamond(x \lor y) = \diamond x \lor \diamond y$

 \diamond is normal: $\diamond 0 = 0$

Remark: Modal algebras provide algebraic models for modal logic. The operator \diamond is the *possibility operator*, and the *necessity operator* \square is defined as $\square x = \neg \diamond \neg x$.

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No
Discriminator variety	No
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Subclasses

MonA: Monadic algebras

TA: Tense algebras
Superclasses

BUn: Boolean unars

Cont|Po|J|M|L|D|To|B|U|Ind

6. TA: Tense algebras

Definition

A tense~algebra is an algebra $\mathbf{A}=\langle A,\vee,0,\wedge,1,\neg,\diamond_f,\diamond_p\rangle$ such that both

 $\langle A,\vee,0,\wedge,1,\neg,\diamond_f\rangle$ and $\langle A,\vee,0,\wedge,1,\neg,\diamond_p\rangle$ are modal algebras

 \diamond_p and \diamond_f are $\mathit{conjugates} \colon x \wedge \diamond_p y = 0$ iff $\diamond_f x \wedge y = 0$

Remark: Tense algebras provide algebraic models for logic of tenses. The two possibility operators \diamond_p and \diamond_f are intuitively interpreted as at some past instance and at some future instance.

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No
Discriminator variety	No
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Subclasses

TrivA: Trivial algebras

Superclasses

MA: Modal algebras

Cont|Po|J|M|L|D|To|B|U|Ind

7. MonA: Monadic algebras

Definition

A monadic algebra is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg, f \rangle$ of type $\langle 2, 0, 2, 0, 1, 1 \rangle$ such that $\langle A, \vee, 0, \wedge, 1, \neg \rangle$ is a Boolean algebra

f is a unary closure operator: $f(x \lor y) = f(x) \lor f(y), f(0) = 0, x \le f(x) = f(f(x))$

f is self conjugated: $f(x) \wedge y = 0 \iff x \wedge f(y) = 0$

Properties

-	
Classtype	Variety
Equational theory	Decidable
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes
Amalgamation property	Yes

Finite Members

Subclasses

TrivA: Trivial algebras

Superclasses

MA: Modal algebras

Cont|Po|J|M|L|D|To|B|U|Ind

8. BMag: Boolean magmas

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

 $(x \lor y) \cdot z = x \cdot z \lor y \cdot z$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 0, f_4 = 1176$$

Subclasses

BLrMag: Boolean left-residuated magmas

BSgrp: Boolean semigroups

Superclasses

BA: Boolean algebras

DLMag: Distributive lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

9. BSgrp: Boolean semigroups

Definition

A Boolean semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that

 $\langle A, \cdot \rangle$ is a semigroup

 $\langle G, \leq \rangle$ is a Boolean algebra

 $\cdot \text{ is } \textit{orderpreserving: } x \leq y \implies x \cdot z \leq y \cdot z \text{ and } z \cdot x \leq z \cdot y$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

Properties

1 Toper ties	
Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 0, f_4 = 93, f_5 = 0, f_6 = 0, f_7 = 0$$

Subclasses

BCSgrp: Boolean commutative semigroups BIdSgrp: Boolean idempotent semigroups BLrSgrp: Boolean left-residuated semigroups

BMon: Boolean monoids

Superclasses

BMag: Boolean magmas

DLSgrp: Distributive lattice-ordered semigroups

10. BMon: Boolean monoids

Definition

A Boolean monoid is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

 $\langle A, \cdot, 1 \rangle$ is a monoid

 $\langle G, \leq \rangle$ is a Boolean algebra

· is orderpreserving: $x \leq y \implies wxz \leq wyz$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$1 \cdot x = x$$

Properties

Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 11, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 383$$

Subclasses

BCMon: Boolean commutative monoids

BIMon: Boolean integral monoids

BIdMon: Boolean idempotent monoids BLrMon: Boolean left-residuated monoids

Superclasses

BSgrp: Boolean semigroups

DLMon: Distributive lattice-ordered monoids

pBA: Pointed Boolean algebras

Cont|Po|J|M|L|D|To|B|U|Ind

11. BIMon: Boolean integral monoids

Definition

A Boolean integral monoid is a Boolean monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that $x \leq 1$.

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0$$

Subclasses

BCIMon: Boolean commutative integral monoids BILrMon: Boolean integral left-residuated monoids

Superclasses

BMon: Boolean monoids

DILMon: Distributive integral lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

12. BIdSgrp: Boolean idempotent semigroups

Definition

An Boolean idempotent semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that

 $\langle A, \wedge, \vee, \cdot \rangle$ is a Boolean semigroup and

· is Boolean idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot x = x$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 0, f_4 = 18, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 88, f_9 = 0, f_{10} = 0$$

Subclasses

BCIdSgrp: Boolean commutative idempotent semigroups

BIdLrSgrp: Boolean idempotent left-residuated semigroups

BIdMon: Boolean idempotent monoids

Superclasses

BSgrp: Boolean semigroups

DIdLSgrp: Distributive idempotent lattice-ordered semigroups

Cont Po J M L D To B U Ind

13. BIdMon: Boolean idempotent monoids

Definition

An Boolean idempotent monoid is a Boolean monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is Boolean idempotent: $x \cdot x = x$

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot x = x$$

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 6, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 24$$

Subclasses

BCIdMon: Boolean commutative idempotent monoids BIdLrMon: Boolean idempotent left-residuated monoids

Superclasses

BIdSgrp: Boolean idempotent semigroups

BMon: Boolean monoids

DIdLMon: Distributive idempotent lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

14. BImpA: Boolean implication algebras

Formal Definition

$$x \to (y \land z) = (x \to y) \land (x \to z)$$
$$(x \lor y) \to z = (x \to z) \land (y \to z)$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 6, f_3 = 0, f_4 = 1176, f_5 = 0, f_6 = 0, f_7 = 0$$

Subclasses

BDivLat: Boolean division lattices

BLrMag: Boolean left-residuated magmas

Superclasses

BA: Boolean algebras

DLImpA: Distributive lattice-ordered implication algebras

Cont|Po|J|M|L|D|To|B|U|Ind

15. BLrMag: Boolean left-residuated magmas

Definition

A Boolean left-residuated magma is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, \rangle$ such that

 $\langle A, \leq \rangle$ is a Boolean algebra,

 $\langle A, \cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$x \cdot y \le z \iff y \le x \setminus z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 0, f_4 = 325, f_5 = 0, f_6 = 0, f_7 = 0$$

Subclasses

BLrSgrp: Boolean left-residuated semigroups

BRMag: Boolean residuated magmas

Superclasses

BImpA: Boolean implication algebras

BMag: Boolean magmas

DLrLMag: Distributive left-residuated lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

16. BLrSgrp: Boolean left-residuated semigroups

Definition

A Boolean left-residuated semigroup is an algebra $\mathbf{A}=\langle A,\leq,\cdot, \setminus, \rangle$ such that

 $\langle A, \leq \rangle$ is a Boolean algebra,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot y \le z \iff y \le x \setminus z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 0, f_4 = 39, f_5 = 0$$

Subclasses

BIdLrSgrp: Boolean idempotent left-residuated semigroups

BLrMon: Boolean left-residuated monoids BRSgrp: Boolean residuated semigroups

Superclasses

BLrMag: Boolean left-residuated magmas

BSgrp: Boolean semigroups

DLrLSgrp: Distributive left-residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

17. BLrMon: Boolean left-residuated monoids

Definition

A Boolean left-residuated monoid is an algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, \rangle$ such that

 $\langle A, \leq \rangle$ is a Boolean algebra,

 $\langle A, \cdot, 1 \rangle$ is a monoid and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

$$x\cdot (y\vee z)=x\cdot y\vee x\cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \setminus z$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 6, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 90$$

Subclasses

BILrMon: Boolean integral left-residuated monoids BIdLrMon: Boolean idempotent left-residuated monoids

BRL: Boolean residuated lattices

Superclasses

BLrSgrp: Boolean left-residuated semigroups

BMon: Boolean monoids

Cont|Po|J|M|L|D|To|B|U|Ind

18. BILrMon: Boolean integral left-residuated monoids

Definition

A Boolean left-residuated integral monoid is a Boolean left-residuated monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, \rangle$ for which $x \leq 1$.

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \le 1$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0$$

Subclasses

BIRL: Boolean integral residuated lattices

Superclasses

BIMon: Boolean integral monoids

BLrMon: Boolean left-residuated monoids

DLrLMon: Distributive left-residuated lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

19. BIdLrSgrp: Boolean idempotent left-residuated semigroups

Definition

An Boolean idempotent left-residuated semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee, \cdot \rangle$ is a Boolean left-residuated semigroup and \cdot is Boolean idempotent: $x \cdot x = x$

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot x = x$$

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 10, f_5 = 0, f_6 = 0$$

Subclasses

BIdLrMon: Boolean idempotent left-residuated monoids BIdRSgrp: Boolean idempotent residuated semigroups

Superclasses

BIdSgrp: Boolean idempotent semigroups BLrSgrp: Boolean left-residuated semigroups

DILrLMon: Distributive integral left-residuated lattice-ordered monoids Cont|Po|J|M|L|D|To|B|U|Ind

20. BIdLrMon: Boolean idempotent left-residuated monoids

Definition

An Boolean idempotent left-residuated monoid is a Boolean left-residuated monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot x = x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 3, f_5 = 0, f_6 = 0$$

Subclasses

BIdRL: Boolean idempotent residuated lattices

Superclasses

BIdLrSgrp: Boolean idempotent left-residuated semigroups

BIdMon: Boolean idempotent monoids BLrMon: Boolean left-residuated monoids

DIdLrLSgrp: Distributive idempotent left-residuated lattice-ordered semigroups Cont|Po|J|M|L|D|To|B|U|Ind

21. BRUn: Boolean residuated unars

Formal Definition

A boolean residuated unar (also called a br-unar for short) is an algebra of the form $\langle B, \wedge, \vee, \neg, \top, \bot, f, g \rangle$ such that $\langle B, \wedge, \vee, \neg, \top, \bot \rangle$ is a Boolean algebra and

$$f(x) \le y \iff x \le g(y).$$

Basic Results

Both f and g are order preserving. More specifically, f preserves all existing joins and g preserves all existing meets. In particular, $f(x \vee y) = f(x) \vee f(y)$ and $g(x \wedge y) = g(x) \wedge g(y)$.

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 10, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 104$$

Subclasses

BInFL: Boolean involutive FL-algebras

Superclasses

BUn: Boolean unars

DIdLrLMon: Distributive idempotent left-residuated lattice-ordered monoids Cont[Po]J[M]L[D]To[B]U[Ind

22. BDivLat: Boolean division lattices

Formal Definition

A Boolean division lattice is an algebra $\langle B, \wedge, \vee, \neg, \top, \bot, \rangle$ such that $\langle B, \wedge, \vee, \neg, \top, \bot \rangle$ is a Boolean algebra, $x \setminus (y \wedge z) = x \setminus y \wedge x \setminus z$, $(x \wedge y)/z = x/z \wedge y/z$ and $x \leq z/y \iff y \leq x \setminus z$

Basic Results

In any Boolean division lattice $x/(y \lor z) = x/y \land x/z$ since $w \le x/(y \lor z) \iff y \lor z \le w \lor x \iff y \le w \lor x$ and $z \le w \lor x \iff w \le x/y$ and $w \le x/z \iff w \le x/y \land x/z$. Similarly, $(x \lor y) \lor z = x \lor z \land y \lor z$.

Properties

Classtype	variety

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 0, f_4 = 325$$

Subclasses

BCDivLat: Boolean commutative division lattices

BRMag: Boolean residuated magmas

Superclasses

BImpA: Boolean implication algebras

DRLUn: Distributive residuated lattice-ordered unars

Cont|Po|J|M|L|D|To|B|U|Ind

23. BRMag: Boolean residuated magmas

Definition

A Boolean residuated magma is an algebra $\mathbf{A}=\langle A,\leq,\cdot,\backslash,/\rangle$ such that $\langle A,\leq \rangle$ is a Boolean algebra, $\langle A,\cdot \rangle$ is a magma and

\ is the left residual of $: x \cdot y \le z \iff y \le x \setminus z$ / is the right residual of $: x \cdot y \le z \iff x \le z/y$.

$$\begin{aligned} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \end{aligned}$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 136, f_5 = 0$$

Subclasses

BCRMag: Boolean commutative residuated magmas

BInMag: Boolean involutive magmas BRSgrp: Boolean residuated semigroups NA: Nonassociative relation algebras

Superclasses

BDivLat: Boolean division lattices

BLrMag: Boolean left-residuated magmas DDivLat: Distributive division lattices

Cont|Po|J|M|L|D|To|B|U|Ind

24. BRSgrp: Boolean residuated semigroups

Definition

A Boolean residuated semigroup is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

 $\langle A, \leq \rangle$ is a Boolean algebra,

 $\langle A, \cdot \rangle$ is a semigroup and

\ is the left residual of $: x \cdot y \leq z \iff y \leq x \setminus z$

/ is the right residual of $x \cdot y \le z \iff x \le z/y$.

Formal Definition

$$x \leq y \implies x \cdot z \leq y \cdot z$$

$$x < y \implies z \cdot x < z \cdot y$$

$$x \cdot y \le z \iff y \le x \setminus z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 28, f_5 = 0, f_6 = 0$$

Subclasses

BCRSgrp: Boolean commutative residuated semigroups

BIdRSgrp: Boolean idempotent residuated semigroups

BInSgrp: Boolean involutive semigroups

BRL: Boolean residuated lattices

Superclasses

BLrSgrp: Boolean left-residuated semigroups

BRMag: Boolean residuated magmas

DRLMag: Distributive residuated lattice-ordered magmas

Cont Po J M L D To B U Ind

25. BRL: Boolean residuated lattices

Definition

A Boolean residuated lattice is a residuated lattice $\mathbf{L} = \langle L, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ such that \wedge, \vee are distributive: $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

Properties

Classtype	Variety
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	No
Congruence e-regular	Yes
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

$$f_1=1,\,f_2=1,\,f_3=0,\,f_4=5,\,f_5=0,\,f_6=0$$

Subclasses

BCRL: Boolean commutative residuated lattices

BIRL: Boolean integral residuated lattices

BIdRL: Boolean idempotent residuated lattices

BInFL: Boolean involutive FL-algebras

Superclasses

BLrMon: Boolean left-residuated monoids BRSgrp: Boolean residuated semigroups

DRLSgrp: Distributive residuated lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

26. BIRL: Boolean integral residuated lattices

Definition

A Boolean integral residuated lattice is an Boolean residuated lattice $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that x is integral: $x \leq 1$

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{array}$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \leq 1$$

$$x \cdot y \le z \iff y \le x \setminus z$$

 $x \cdot y \le z \iff x \le z/y$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0, f_6 = 0$$

Subclasses

BCIRL: Boolean commutative integral residuated lattices

BIInFL: Boolean integral involutive FL-algebras

SeqA: Sequential algebras

Superclasses

BILrMon: Boolean integral left-residuated monoids

BRL: Boolean residuated lattices DRL: Distributive residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

27. BIdRSgrp: Boolean idempotent residuated semigroups

Definition

An Boolean idempotent residuated semigroup is a Boolean residuated semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that \cdot is Boolean idempotent: $x \cdot x = x$.

Formal Definition

$$x \le y \implies x \cdot z \le y \cdot z$$

$$x \le y \implies z \cdot x \le z \cdot y$$

$$x \cdot y \le z \iff y \le x \backslash z$$

$$x \cdot y \le z \iff x \le z/y$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

 $x \cdot x = x$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 7, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 26$$

Subclasses

BCIdRSgrp: Boolean commutative idempotent residuated semigroups

BIdRL: Boolean idempotent residuated lattices

Superclasses

BIdLrSgrp: Boolean idempotent left-residuated semigroups

BRSgrp: Boolean residuated semigroups

DIRL: Distributive integral residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

28. BIdRL: Boolean idempotent residuated lattices

Definition

An Boolean idempotent residuated lattice is a Boolean residuated monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that \cdot is idempotent: $x \cdot x = x$

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z/y \end{split}$$

 $x \cdot x = x$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 2, f_5 = 0, f_6 = 0$$

Subclasses

BCIdRL: Boolean commutative idempotent residuated lattices

Superclasses

BIdLrMon: Boolean idempotent left-residuated monoids BIdRSgrp: Boolean idempotent residuated semigroups

BRL: Boolean residuated lattices

 $\label{eq:definition} DIdRLSgrp:\ Distributive\ idempotent\ residuated\ lattice-ordered\ semigroups \\ Cont[Po]J[M]L[D]To[B]U[Ind]$

29. BGalLat: Boolean Galois lattices

Definition

A Boolean Galois lattice is an algebra $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that P is a Boolean algebra and $\sim, -$ are a pair of unary operations on P that form a

Galois connection: $x \le \sim y \iff y \le -x$

Formal Definition

$$x \le \sim y \iff y \le -x$$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 10, f_5 = 0, f_6 = 0$$

Subclasses

BInLat: Boolean involutive lattices

Superclasses

BNUn: Boolean negated unars

DGalLat: Distributive Galois lattices

Cont|Po|J|M|L|D|To|B|U|Ind

30. BInLat: Boolean involutive lattices

Definition

A Boolean involutive lattice is a Boolean Galois lattice $\mathbf{P} = \langle P, \leq, \sim, - \rangle$ such that $\sim, -$ are inverses of each other:

$$\sim -x = x$$

$$-\sim x = x$$

Formal Definition

$$x \le \sim y \iff y \le -x$$
$$\sim -x = x$$
$$-\sim x = x$$

Properties

Classtype	variety
Universal theory	Decidable
First-order theory	Undecidable

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 2, f_5 = 0, f_6 = 0$$

Subclasses

BInMag: Boolean involutive magmas

Superclasses

BGalLat: Boolean Galois lattices

Cont|Po|J|M|L|D|To|B|U|Ind

31. BInMag: Boolean involutive magmas

Definition

A Boolean involutive magma is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is a Boolean magma,

 \sim , – is an involutive pair: $\sim -x = x = -\sim x$,

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$
 and

$$x \cdot y \le z \iff x \le -(y \cdot \sim z).$$

Formal Definition

$$\sim -x = x$$

$$-\sim x = x$$

$$x \cdot y \le z \iff y \le \sim (-z \cdot x)$$

$$x \cdot y \le z \iff x \le -(y \cdot \sim z)$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 20, f_5 = 0$$

Subclasses

BCyInMag: Boolean cyclic involutive magmas

BInSgrp: Boolean involutive semigroups

Superclasses

BInLat: Boolean involutive lattices BRMag: Boolean residuated magmas DInLat: Distributive involutive lattices

Cont|Po|J|M|L|D|To|B|U|Ind

32. BInSgrp: Boolean involutive semigroups

Definition

An Boolean involutive semigroup is an algebra $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that $\langle A, \leq, \cdot \rangle$ is an Boolean involutive magma and

 \cdot is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Formal Definition

$$\begin{aligned} & \sim -x = x \\ & -\sim x = x \\ & x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 15, f_5 = 0, f_6 = 0$$

Subclasses

BCyInSgrp: Boolean cyclic involutive semigroups

BInFL: Boolean involutive FL-algebras

Superclasses

BInMag: Boolean involutive magmas BRSgrp: Boolean residuated semigroups

DInLMag: Distributive involutive lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

33. BInFL: Boolean involutive FL-algebras

Definition

An Boolean involutive FL-algebra is an algebra $\mathbf{A}=\langle A,\leq,\cdot,1,\sim,-\rangle$ such that $\langle A,\leq,\cdot\rangle$ is an Boolean involutive semigroup that has an identity: $x\cdot 1=x=1\cdot x$

Formal Definition

$$\begin{array}{l} \sim -x = x \\ -\sim x = x \\ x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \\ (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ x \cdot 1 = x \\ 1 \cdot x = x \end{array}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 5, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 25$$

Subclasses

BCyInFL: Boolean cyclic involutive FL-algebras BIInFL: Boolean integral involutive FL-algebras

Superclasses

BInSgrp: Boolean involutive semigroups

BRL: Boolean residuated lattices BRUn: Boolean residuated unars

DInLSgrp: Distributive involutive lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

34. BIInFL: Boolean integral involutive FL-algebras

Definition

A Boolean integral involutive FL-algebra is an involutive FL-algebra $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ that is integral: $x \leq 1$

Formal Definition

$$\begin{aligned} & \sim -x = x \\ & -\sim x = x \\ & x \cdot y \leq z \iff y \leq \sim (-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot \sim z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \end{aligned}$$

Properties

 $x \leq 1$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 1$$

Subclasses

BCyIInFL: Boolean cyclic involutive integral monoids

Superclasses

BIRL: Boolean integral residuated lattices BInFL: Boolean involutive FL-algebras DInFL: Distributive involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

35. BCyInMag: Boolean cyclic involutive magmas

Definition

A cyclic distributive involutive magma is an inpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \sim , - are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \end{aligned}$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 20, f_5 = 0$$

Subclasses

BCInMag: Boolean commutative involutive magmas BCyInSgrp: Boolean cyclic involutive semigroups

Superclasses

BInMag: Boolean involutive magmas

DIInFL: Distributive integral involutive FL-algebras

Cont Po J M L D To B U Ind

36. BCyInSgrp: Boolean cyclic involutive semigroups

Definition

A cyclic distributive involutive semigroup is a cyinpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

$$\cdot$$
 is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 15, f_5 = 0, f_6 = 0$$

Subclasses

BCInSgrp: Boolean commutative involutive semigroups

BCyInFL: Boolean cyclic involutive FL-algebras

Superclasses

BCyInMag: Boolean cyclic involutive magmas

BInSgrp: Boolean involutive semigroups

CyDInLMag: Cyclic distributive involutive lattice-ordered magmas

Cont|Po|J|M|L|D|To|B|U|Ind

37. BCyInFL: Boolean cyclic involutive FL-algebras

Definition

A cyclic distributive involutive FL-algebra is an inpo-monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 5, f_5 = 0, f_6 = 0, f_7 = 0$$

Subclasses

BCInFL: Boolean commutative involutive FL-algebras BCyInFL: Boolean cyclic involutive integral monoids

Superclasses

BCyInSgrp: Boolean cyclic involutive semigroups

BInFL: Boolean involutive FL-algebras

CyDInLSgrp: Cyclic distributive involutive lattice-ordered semigroups

Cont Po J M L D To B U Ind

38. BCyIInFL: Boolean cyclic involutive integral monoids

Definition

A cyclic distributive integral involutive FL-algebra is an inporim $\mathbf{A} = \langle A, \leq, \cdot, 1, \sim, - \rangle$ such that \sim , – are cyclic: $\sim x = -x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y \leq z \iff x \leq -(y \cdot -z) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \end{aligned}$$

Properties

 $x \le 1$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 1$$

Subclasses

BCIInFL: Boolean commutative integral involutive FL-algebras

Superclasses

BCyInFL: Boolean cyclic involutive FL-algebras BIInFL: Boolean integral involutive FL-algebras CyDInFL: Cyclic distributive involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

39. BCSgrp: Boolean commutative semigroups

Definition

A commutative distributive semigroup is a Boolean semigroup $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot y = y \cdot x$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 0, f_4 = 35, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 1237, f_9 = 0$$

Subclasses

BCIdSgrp: Boolean commutative idempotent semigroups

BCMon: Boolean commutative monoids

BCRSgrp: Boolean commutative residuated semigroups

BSlat: Boolean semilattices

Superclasses

BSgrp: Boolean semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

40. BCMon: Boolean commutative monoids

Definition

A commutative distributive monoid is a Boolean monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} x \cdot (y \vee z) &= x \cdot y \vee x \cdot z \\ (x \vee y) \cdot z &= x \cdot z \vee y \cdot z \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \end{aligned}$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 9, f_5 = 0, f_6 = 0, f_7 = 0$$

Subclasses

BCIMon: Boolean commutative integral monoids

BCIdMon: Boolean commutative idempotent monoids

BCRL: Boolean commutative residuated lattices

Superclasses

BCSgrp: Boolean commutative semigroups

BMon: Boolean monoids

CDLSgrp: Commutative distributive lattice-ordered semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

41. BCIMon: Boolean commutative integral monoids

Definition

A commutative distributive integral monoid is a Boolean integral monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \le 1$$

$$x \cdot y = y \cdot x$$

Properties

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0, f_6 = 0$$

Subclasses

BCIRL: Boolean commutative integral residuated lattices

Superclasses

BCMon: Boolean commutative monoids BIMon: Boolean integral monoids

42. BSlat: Boolean semilattices

Definition

A Boolean semilattice is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg, \cdot \rangle$ such that

 ${f A}$ is in the variety generated by complex algebras of semilattices

Let $\mathbf{S} = \langle S, \cdot \rangle$ be a semilattice. The *complex algebra* of \mathbf{S} is $Cm(\mathbf{S}) = \langle P(S), \cup, \emptyset, \cap, S, -, \cdot \rangle$, where $\langle P(S), \cup, \emptyset, \cap, S, - \rangle$ is the Boolean algebra of subsets of S, and

$$X \cdot Y = \{x \cdot y \mid x \in X, \ y \in Y\}.$$

Properties

Classtype	Variety
Finitely axiomatizable	open
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence extension property	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 5, f_5 = 0, f_6 = 0, f_7 = 0$$

Subclasses

TrivA: Trivial algebras

Superclasses

BCSgrp: Boolean commutative semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

43. BCIdSgrp: Boolean commutative idempotent semigroups

Definition

A commutative distributive idempotent semigroup is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot \rangle$ such that $\langle A, \wedge, \vee, \cdot \rangle$ is an Boolean idempotent semigroup and

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z$$
$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot x = x$$
$$x \cdot y = y \cdot x$$

Properties

Classtype	variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 5, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 13$$

Subclasses

BCIdMon: Boolean commutative idempotent monoids

BCIdRSgrp: Boolean commutative idempotent residuated semigroups

Superclasses

BCSgrp: Boolean commutative semigroups BIdSgrp: Boolean idempotent semigroups

CDILMon: Commutative distributive integral lattice-ordered monoids

Cont|Po|J|M|L|D|To|B|U|Ind

44. BCIdMon: Boolean commutative idempotent monoids

Definition

A commutative distributive idempotent monoid is a Boolean idempotent monoid $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1 \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} x\cdot(y\vee z) &= x\cdot y\vee x\cdot z\\ (x\vee y)\cdot z &= x\cdot z\vee y\cdot z\\ (x\cdot y)\cdot z &= x\cdot (y\cdot z)\\ x\cdot 1 &= x\\ 1\cdot x &= x\\ x\cdot x &= x\\ x\cdot y &= y\cdot x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 4, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 9$$

Subclasses

BCIdRL: Boolean commutative idempotent residuated lattices

Superclasses

BCIdSgrp: Boolean commutative idempotent semigroups

BCMon: Boolean commutative monoids BIdMon: Boolean idempotent monoids

CDIdLSgrp: Commutative distributive idempotent lattice-ordered semigroups Cont[Po]J[M]L[D]To[B]U[Ind

45. BCDivLat: Boolean commutative division lattices

Definition

A commutative distributive division lattice is a division lattice $\mathbf{P} = \langle P, \leq \rangle$ such that P is a Boolean algebra and

Formal Definition

$$(x \wedge y)/z = x/z \wedge y/z$$
 and $x \leq z/y \iff y \leq x \backslash z$ $x/y = y \backslash x$

Properties

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 0$$
 $f_4 = 70, f_5 = 0, f_6 = 0, f_7 = 0$

Subclasses

BCRMag: Boolean commutative residuated magmas

Superclasses

BDivLat: Boolean division lattices

46. BCRMag: Boolean commutative residuated magmas

Definition

A commutative distributive residuated magma is a Boolean residuated magma such that \cdot is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y \leq z \iff y \leq x \backslash z \\ x \cdot y \leq z \iff x \leq z/y \end{array}$$

$x \cdot y = y \cdot x$ Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 36, f_5 = 0, f_6 = 0$$

Subclasses

BCInMag: Boolean commutative involutive magmas BCRSgrp: Boolean commutative residuated semigroups

Superclasses

BCDivLat: Boolean commutative division lattices

BRMag: Boolean residuated magmas

CDDivLat: Commutative distributive division lattices

Cont|Po|J|M|L|D|To|B|U|Ind

47. BCRSgrp: Boolean commutative residuated semigroups

Definition

A commutative distributive residuated semigroup is a Boolean residuated semigroup $\mathbf{A} = \langle A, \leq, \cdot, \setminus, / \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y \leq z \iff y \leq x \backslash z \\ x \cdot y \leq z \iff x \leq z/y \\ x \cdot (y \cdot z) = (x \cdot y) \cdot z \\ x \cdot y = y \cdot x \end{array}$$

Properties

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 16, f_5 = 0, f_6 = 0$$

Subclasses

BCIdRSgrp: Boolean commutative idempotent residuated semigroups

BCInSgrp: Boolean commutative involutive semigroups

BCRL: Boolean commutative residuated lattices

Superclasses

BCRMag: Boolean commutative residuated magmas

BCSgrp: Boolean commutative semigroups BRSgrp: Boolean residuated semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

48. BCRL: Boolean commutative residuated lattices

Definition

A commutative distributive residuated lattice is a Boolean residuated lattice $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x \cdot y &= y \cdot x \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z / y \end{split}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 5, f_5 = 0$$

Subclasses

BCIRL: Boolean commutative integral residuated lattices

BCIdRL: Boolean commutative idempotent residuated lattices

BCInFL: Boolean commutative involutive FL-algebras

Superclasses

BCMon: Boolean commutative monoids

BCRSgrp: Boolean commutative residuated semigroups

BRL: Boolean residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

49. BCIRL: Boolean commutative integral residuated lattices

Definition

A Boolean residuated integral monoid is a Boolean residuated monoid $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that x is commutative: $x \cdot y = y \cdot x$

$$\begin{split} x &\leq y \implies x \cdot z \leq y \cdot z \\ x &\leq y \implies z \cdot x \leq z \cdot y \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \\ x \cdot 1 &= x \\ 1 \cdot x &= x \\ x &\leq 1 \\ x \cdot y &\leq z \iff y \leq x \backslash z \\ x \cdot y &\leq z \iff x \leq z / y \end{split}$$

$$x \cdot y = y \cdot x$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0, f_6 = 0$$

Subclasses

BCIInFL: Boolean commutative integral involutive FL-algebras

Superclasses

BCIMon: Boolean commutative integral monoids BCRL: Boolean commutative residuated lattices

BIRL: Boolean integral residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

50. BCIdRSgrp: Boolean commutative idempotent residuated semigroups

Definition

A commutative idempotent residuated semigroup is an Boolean idempotent residuated semigroup $\mathbf{A} = \langle A, \leq, \cdot, \cdot, \cdot, \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Formal Definition

$$\begin{array}{l} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \\ x \cdot y \leq z \iff y \leq x \backslash z \\ x \cdot y \leq z \iff x \leq z/y \\ x \cdot (y \cdot z) = (x \cdot y) \cdot z \\ x \cdot x = x \end{array}$$

$x\cdot y=y\cdot x$

Properties

Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 3, f_5 = 0, f_6 = 0$$

Subclasses

BCIdRL: Boolean commutative idempotent residuated lattices

Superclasses

BCIdSgrp: Boolean commutative idempotent semigroups BCRSgrp: Boolean commutative residuated semigroups BIdRSgrp: Boolean idempotent residuated semigroups

GödA: Gödel algebras

Cont|Po|J|M|L|D|To|B|U|Ind

51. BCIdRL: Boolean commutative idempotent residuated lattices

Definition

A commutative idempotent residuated lattice is an idmpotent residuated lattice $\mathbf{A} = \langle A, \leq, \cdot, 1, \setminus, / \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

$$\begin{array}{ll} x \leq y \implies x \cdot z \leq y \cdot z \\ x \leq y \implies z \cdot x \leq z \cdot y \end{array}$$

$$\begin{split} &(x\cdot y)\cdot z = x\cdot (y\cdot z)\\ &x\cdot 1 = x\\ &1\cdot x = x\\ &x\cdot y \leq z \iff y \leq x\backslash z\\ &x\cdot y \leq z \iff x \leq z/y\\ &x\cdot x = x\\ &x\cdot y = y\cdot x \end{split}$$

| Classtype | variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 2, f_5 = 0, f_6 = 0$$

Subclasses

Superclasses

BCIdMon: Boolean commutative idempotent monoids

BCIdRSgrp: Boolean commutative idempotent residuated semigroups

BCRL: Boolean commutative residuated lattices BIdRL: Boolean idempotent residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

52. BCInMag: Boolean commutative involutive magmas

Definition

A commutative distributive involutive magma is a inpo-magma $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 20, f_5 = 0$$

Subclasses

BCInSgrp: Boolean commutative involutive semigroups

Superclasses

BCRMag: Boolean commutative residuated magmas

BCyInMag: Boolean cyclic involutive magmas

CDIdRL: Commutative distributive idempotent residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

53. BCInSgrp: Boolean commutative involutive semigroups

Definition

A commutative distributive involutive semigroup is a inpo-semigroup $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

$$\begin{aligned} --x &= x \\ x \cdot y &\leq z \iff y \leq -(-z \cdot x) \end{aligned}$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$x \cdot y = y \cdot x$ **Properties**

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 0, f_4 = 15, f_5 = 0, f_6 = 0$$

Subclasses

BCInFL: Boolean commutative involutive FL-algebras

Superclasses

BCInMag: Boolean commutative involutive magmas BCRSgrp: Boolean commutative residuated semigroups BCyInSgrp: Boolean cyclic involutive semigroups

CIdRSlMon: Commutative idempotent residuated semilinear monoids

Cont|Po|J|M|L|D|To|B|U|Ind

54. BCInFL: Boolean commutative involutive FL-algebras

Definition

A commutative distributive involutive FL-algebra is an inpo-monoid $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$\begin{aligned} & --x = x \\ & x \cdot y \leq z \iff y \leq -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ & x \cdot 1 = x \\ & 1 \cdot x = x \\ & x \cdot y = y \cdot x \end{aligned}$$

Properties

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 5, f_5 = 0, f_6 = 0, f_7 = 0$$

Subclasses

BCIInFL: Boolean commutative integral involutive FL-algebras

Superclasses

BCInSgrp: Boolean commutative involutive semigroups

 BCRL : Boolean commutative residuated lattices

BCyInFL: Boolean cyclic involutive FL-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

55. BCIInFL: Boolean commutative integral involutive FL-algebras

Definition

A commutative distributive integral involutive FL-algebra is an in-porim $\mathbf{A} = \langle A, \leq, \cdot, \sim, - \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

$$\begin{aligned} & --x = x \\ & x \cdot y \le z \iff y \le -(-z \cdot x) \\ & (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{aligned}$$

$$x \cdot y = y \cdot x$$
$$x \cdot 1 = x$$

$$x \leq 1$$

Classtype variety

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 1, f_9 = 0$$

Subclasses

TrivA: Trivial algebras

Superclasses

BCIRL: Boolean commutative integral residuated lattices BCInFL: Boolean commutative involutive FL-algebras BCyInFL: Boolean cyclic involutive integral monoids

Cont|Po|J|M|L|D|To|B|U|Ind

56. CA₂: Cylindric algebras of dimension 2

Definition

A cylindric algebra of dimension $\alpha = 2$ is a Boolean algebra with operators $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, -, c_i, d_{ij} : i, j < \alpha \rangle$ such that for all $i, j < \alpha$

the c_i are increasing: $x \leq c_i x$

the c_i semi-distribute over \wedge : $c_i(x \wedge c_i y) = c_i x \wedge c_i y$

the c_i commute: $c_i c_j x = c_j c_i x$

the diagonals d_{ii} equal the top element: $d_{ii} = 1$

 $d_{ij} = c_k(d_{ik} \wedge d_{kj})$ for $k \neq i, j$

 $c_i(d_{ij} \wedge x) \wedge c_i(d_{ij} \wedge -x) = 0 \text{ for } i \neq j$

Properties

Classtype	Variety
Equational theory	Undecidable for $\alpha \geq 3$, decidable otherwise
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence <i>n</i> -permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes

Finite Members

Subclasses

TrivA: Trivial algebras

Superclasses

BUn: Boolean unars

Cont|Po|J|M|L|D|To|B|U|Ind

57. SeqA: Sequential algebras

Definition

A sequential algebra is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg, \circ, e, \triangleright, \triangleleft \rangle$ such that $\langle A, \vee, 0, \wedge, 1, \neg \rangle$ is a Boolean algebra $\langle A, \circ, e \rangle$ is a monoid

```
ightharpoonup is the right-conjugate of \circ: (x \circ y) \wedge z = 0 \iff (x \triangleright z) \wedge y = 0 
ightharpoonup is the left-conjugate of \circ: (x \circ y) \wedge z = 0 \iff (z \triangleleft y) \wedge x = 0 
ightharpoonup, 
ightharpoonup are balanced: x \triangleright e = e \triangleleft x 
ightharpoonup is euclidean: x \cdot (y \triangleleft z) \leq (x \cdot y) \triangleleft z
```

Classtype	Variety
Equational theory	Undecidable
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes
Discriminator variety	No
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	No

Finite Members

Subclasses

RA: Relation algebras

Superclasses

BIRL: Boolean integral residuated lattices

Cont|Po|J|M|L|D|To|B|U|Ind

58. NA: Nonassociative relation algebras

Definition

```
A nonassociative relation algebra is an algebra \mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg, \circ, \widetilde{\phantom{a}}, e \rangle such that \langle A, \vee, 0, \wedge, 1, \neg \rangle is a Boolean algebra e is an identity for \circ: x \circ e = x, e \circ x = x \circ is join-preserving: (x \vee y) \circ z = (x \circ z) \vee (y \circ z) \widetilde{\phantom{a}} is an involution: x \widetilde{\phantom{a}} = x, (x \circ y) \widetilde{\phantom{a}} z = y \widetilde{\phantom{a}} \circ x \widetilde{\phantom{a}} is join-preserving: (x \vee y) \widetilde{\phantom{a}} z = x \widetilde{\phantom{a}} \vee y \widetilde{\phantom{a}} is residuated: x \widetilde{\phantom{a}} \circ (\neg (x \circ y)) \leq \neg y
```

Clagatuma	Vaniates
Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Discriminator variety	No

Subclasses

RA: Relation algebras

Superclasses

BRMag: Boolean residuated magmas

Cont|Po|J|M|L|D|To|B|U|Ind

59. RA: Relation algebras

Definition

```
A relation algebra is an algebra \mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg, \circ, \check{\ }, e \rangle such that \langle A, \vee, 0, \wedge, 1, \neg \rangle is a Boolean algebra \langle A, \circ, e \rangle is a monoid \circ is join-preserving: (x \vee y) \circ z = (x \circ z) \vee (y \circ z) \check{\ } is an involution: x \check{\ } = x, \ (x \circ y) \check{\ } = y \check{\ } \circ x \check{\ } \check{\ } is join-preserving: (x \vee y) \check{\ } = x \check{\ } \vee y \check{\ } \circ is residuated: x \check{\ } \circ (\neg (x \circ y)) \leq \neg y
```

Examples

Example 1: $\langle \mathcal{P}(U^2), \cup, \emptyset, \cap, U^2, -, \circ, \smile, id_U \rangle$ the full relation algebra of binary relations on a set U. Example 2: $\langle \mathcal{P}(G), \cup, \emptyset, \cap, G, -, \circ, \smile, \{e\} \rangle$ the group relation algebra of a group $\langle G, *, ^{-1}, e \rangle$, where $X \circ Y = \{x * y : x \in X, y \in Y\}$ and $X \smile = \{x^{-1} : x \in X\}$.

Classtype	Variety
Equational theory	Undecidable
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes
Discriminator variety	Yes
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	No

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 3, f_5 = 0, f_6 = 0$$

Subclasses

IRA: Integral relation algebras

Superclasses

NA: Nonassociative relation algebras

SeqA: Sequential algebras

Cont|Po|J|M|L|D|To|B|U|Ind

60. IRA: Integral relation algebras

Definition

An integral relation algebra is a relation algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, ', \circ, \smile, e \rangle$ in which the identity element e is 0 or an atom: $e = x \vee y \implies x = 0$ or y = 0

Examples

For any group $\mathbf{G} = \langle G, *, ^{-1}, e \rangle$, construct the integral relation algebra $\mathcal{R}(G) = \langle \mathcal{P}(G), \cup, \emptyset, \cap, G, ', \circ, \smile, \{e\} \rangle$, where $X \circ Y = \{x * y : x \in X, y \in Y\}$ and $X \smile = \{x^{-1} : x \in X\}$ for $X, Y \subseteq G$.

Basic Results

Every nontrivial integral relation algebra is simple.

Every simple commutative relation algebra is integral.

Every group relation algebra is integral.

Classtype	Universal
Equational theory	Undecidable
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	No
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No

 $f_1 = 1$, $f_2 = 1$, $f_3 = 0$, $f_4 = 2$, $f_5 = 0$, $f_6 = 0$, $f_7 = 0$, $f_8 = 10$, $f_{16} = 102$, $f_{32} = 4412$, $f_{64} = 4886349$ For $n \neq 2^k$, the number of algebras is 0.

Subclasses

TrivA: Trivial algebras

Superclasses

RA: Relation algebras

Cont|Po|J|M|L|D|To|B|U|Ind

61. BRMod: Boolean modules over a relation algebra

Definition

A Boolean module over a relation algebra **R** is an algebra $\mathbf{A} = \langle A, \vee, 0, \wedge, 1, \neg, f_r \ (r \in R) \rangle$ such that $\langle A, \vee, 0, \wedge, 1, \neg \rangle$ is a Boolean algebra

 f_r is join-preserving: $f_r(x \vee y) = f_r(x) \vee f_r(y)$

 $f_{r\vee s}(x) = f_r(x) \vee f_s(x)$

 $f_r(f_s(x)) = f_{r \circ s}(x)$

 $f_{1'}$ is the identity map: $f_{1'}(x) = x$

 $f_0(x) = 0$

 $f_r \cup (\neg(f_r(x))) \le \neg x$

Remark: Since f_r is order-preserving, the last identity is equivalent to the condition that $f_r \sim$ and f_r are conjugate operators. It follows that f_r is normal: $f_r(0) = 0$.

Properties

Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

Subclasses

TrivA: Trivial algebras

Superclasses

BUn: Boolean unars

Cont|Po|J|M|L|D|To|B|U|Ind

CHAPTER 9

Unordered algebras

1. Set: The category of sets

Definition

A set is an algebra $\mathbf{A} = \langle A \rangle$ with no operations or relations defined on A.

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Decidable
Locally finite	Yes
Residual size	2
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

 $f_1 = 1, f_2 = 1, f_n = 1 \text{ for all } n.$

Subclasses

Mag: Magmas

Unar: Unary Algebras

pSet: The category of pointed sets

Superclasses

Pos: Partially ordered sets

Cont|Po|J|M|L|D|To|B|U|Ind

2. pSet: The category of pointed sets

Definition

A pointed set is an algebra $\mathbf{A} = \langle A, c \rangle$ with a constant operation c.

This category can also be considered the category of sets with partial functions as morphisms. All elements that map to c are considered undefined.

Properties

-	
Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Decidable
Locally finite	Yes
Residual size	2
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Finite Members

 $f_1 = 1, f_2 = 1, f_n = 1$ for all n.

Subclasses
Mon: Monoids
Superclasses

Set: The category of sets pPos: Pointed posets

Cont|Po|J|M|L|D|To|B|U|Ind

3. Unar: Unary Algebras

Definition

A unar is an algebra $\langle A, f \rangle$ such that f is a unary operation on A.

Examples

Example 1: The free unary algebra on one generator is isomorphic to the natural numbers \mathbb{N} . The number 0 is the generator x, and the operation f is the successor function, i.e., f(n) = n + 1.

The free unary algebra on X generators is a union of |X| disjoint copies of the one-generated free algebra.

Basic Results

Monounary algebras are equivalent to directed graphs in which every vertex has exactly one outgoing edge. One-generated monounary algebras are either isomorphic to the free one-generated algebra or they are finite and contain a path of length l from the generator to a cycle of length k (where $l \ge 0$ and $k \ge 1$).

The variety of monounary algebras has countably many subvarieties, each determined by an equation of the form $f^m(x) = f^n(x)$.

Let $j > k \ge 0$ and $m > n \ge 0$. Then $\operatorname{Mod}(f^j(x) = f^k(x) \subseteq \operatorname{Mod}(f^m(x) = f^n(x))$ if and only if $k \le n$ and (j-k)|(m-n).

Hence the lattice of nontrivial subvarieties of monounary algebras is isomorphic to $(\mathbb{N}, \leq) \times (\mathbb{N}, |)$, which is itself isomorphic to the lattice of divisibility of the natural numbers. The variety $\operatorname{Mod}(x=y)$ of trivial subvarieties is the unique element below the variety $\operatorname{Mod}(f(x)=x)$ (which is term-equivalent to the variety of sets).

Properties

Classtype	Variety
Equational theory	Undecidable if $I > 2$
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

Depends on *I* **Subclasses**Mset: M-sets **Superclasses**

PoUn: Partially ordered unars Set: The category of sets

Cont|Po|J|M|L|D|To|B|U|Ind

4. AAlg: Associative algebras

Definition

An associative algebra is a nonassociative algebra $\mathbf{A} = \langle A, +, -, 0, \cdot, s_r \ (r \in F) \rangle$ where \mathbf{F} is a field such that \cdot is associative: (xy)z = x(yz)

Properties

Finite Members

Subclasses

Superclasses

BilinA: Bilinear algebras

Cont|Po|J|M|L|D|To|B|U|Ind

5. BCI: BCI-algebras

Formal Definition

A BCI-algebra is an algebra $\langle A, \cdot, 0 \rangle$ of type $\langle 2, 0 \rangle$ such that

(1):
$$((x \cdot y) \cdot (x \cdot z)) \cdot (z \cdot y) = 0$$

(2):
$$(x \cdot (x \cdot y)) \cdot y = 0$$

(3):
$$x \cdot x = 0$$

(4):
$$x \cdot y = 0$$
 and $y \cdot x = 0 \implies x = y$

(5):
$$x \cdot 0 = 0 \implies x = 0$$

Properties

•	
Classtype	Quasivariety
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 22, f_5 = 118, f_6 = 974$$

Subclasses

Superclasses

Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

6. RtQgrp: Right quasigroups

Formal Definition

A right quasigroup is an algebra $\mathbf{A} = \langle A, \cdot, / \rangle$ such that

$$(y/x) \cdot x = y$$

$$(x \cdot y)/y = x$$

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No

 $f_1 = 1$, $f_2 = 3$, $f_3 = 44$, $f_4 = 14022$ See also https://oeis.org/A193623

Subclasses

Qgrp: Quasigroups

RtLp:

Superclasses Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

7. Qgrp: Quasigroups

Formal Definition

A quasigroup is an algebra $\langle A, \cdot, \cdot, \cdot, / \rangle$ of type $\langle 2, 2, 2 \rangle$ such that

 $(y/x) \cdot x = y$

 $x \cdot (x \backslash y) = y$

 $(x \cdot y)/y = x$

 $x \setminus (x \cdot y) = y$

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 5, f_4 = 35, f_5 = 1411$$

Subclasses
Lp: Loops

MouQgrp: Moufang quasigroups

Superclasses

RtQgrp: Right quasigroups

Cont|Po|J|M|L|D|To|B|U|Ind

8. MouQgrp: Moufang quasigroups

Definition

A Moufang quasigroup is a quasigroup $\langle A, \cdot, \backslash, / \rangle$ such that

· satisfies the Moufang law: $ye = y \implies ((xy)z)x = x(y((ez)x))$

$$(y/x) \cdot x = y$$

$$x\cdot (x\backslash y)=y$$

$$(x \cdot y)/y = x$$

$$x \backslash (x \cdot y) = y$$

$$y \cdot 1 = y \implies ((x \cdot y) \cdot z) \cdot x = x \cdot (y \cdot ((1 \cdot z) \cdot x))$$

Properties

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 5, f_4 = 29, f_5 = 1351$$

Subclasses

MouLp: Moufang loops

Superclasses
Qgrp: Quasigroups

Cont|Po|J|M|L|D|To|B|U|Ind

9. Lp: Loops

Definition

A loop is a quasigroup $\langle A,\cdot, \setminus, /, 1 \rangle$ of type $\langle 2,2,2,0 \rangle$ such that 1 is an identity for $x \cdot 1 = x$, $1 \cdot x = x$

Formal Definition

$$(y/x) \cdot x = y$$

$$x \cdot (x \setminus y) = y$$

$$(x \cdot y)/y = x$$

$$x \setminus (x \cdot y) = y$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

Properties

*	
Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$

Finite Members

 $f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=6,\ f_6=109,\ f_7=23746,\ f_8=106228849,\ f_9=9365022303540,\ f_{10}=20890436195945769617,\ f_{11}=1478157455158044452849321016$

Subclasses

LNeofld: Left neofields MouLp: Moufang loops

Superclasses

Qgrp: Quasigroups

RtLp:

Cont|Po|J|M|L|D|To|B|U|Ind

10. MouLp: Moufang loops

Definition

A Moufang loop is a loop $\mathbf{A} = \langle A, \cdot, \setminus, /, e \rangle$ such that $((xy)z)x = x(y(zx)), \ y(x(yz)) = ((yx)y)z, \ (yx)(zy) = (y(xz))y$

$$\begin{split} &(y/x) \cdot x = y \\ &x \cdot (x \backslash y) = y \\ &(x \cdot y) / y = x \\ &x \backslash (x \cdot y) = y \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &((x \cdot y) \cdot z) \cdot x = x \cdot (y \cdot (z \cdot x)) \\ &y \cdot (x \cdot (y \cdot z)) = ((y \cdot x) \cdot y) \cdot z \\ &(y \cdot x) \cdot (z \cdot y) = (y \cdot (x \cdot z)) \cdot y \end{split}$$

Properties

_	
Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No

Finite Members

$$f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=1,\ f_6=2,\ f_7=1,\ f_8=5,\ f_9=2,\ f_{10}=2,\ f_{11}=1$$

Subclasses

Grp: Groups
Superclasses

Lp: Loops

MouQgrp: Moufang quasigroups

Cont|Po|J|M|L|D|To|B|U|Ind

11. Shell: Shells

Formal Definition

A shell is an algebra $\mathbf{S} = \langle S, +, 0, \cdot, 1 \rangle$ of type $\langle 2, 0, 2, 0 \rangle$ such that

0 is an identity for +: 0 + x = x, x + 0 = x

1 is an identity for $x \cdot 1 \cdot x = x$, $x \cdot 1 = x$

0 is a zero for \cdot : $0 \cdot x = 0$, $x \cdot 0 = 0$

Properties

F	
Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 243$$

Subclasses

Srng₀₁: Semirings with identity and zero

Superclasses Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

12. Mag: Magmas

Definition

A magma is an algebra $\mathbf{A} = \langle A, \cdot \rangle$ where \cdot is any binary operation on A.

Examples

Example 1: $\langle \mathbb{N}, ^{\wedge} \rangle$ is the exponentiation magma of the natural numbers, where $0^{\wedge}0 = 1$. It is not associative nor commutative, and does not have a (two-sided) identity.

Properties

Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Finite Members

 $f_1=1,\ f_2=10,\ f_3=3330,\ f_4=178981952,\ f_5=2483527537094825,\ f_6=14325590003318891522275680$ See also https://oeis.org/A001329

Subclasses

BCI: BCI-algebras

CnjMag: Conjugative magmas

Dtoid: Directoids

MedMag: Medial magmas OrdA: Order algebras

Qnd: Quandles

QtMag: Quasitrivial magmas RtQgrp: Right quasigroups

Sgrp: Semigroups Shell: Shells Superclasses

Set: The category of sets

Cont|Po|J|M|L|D|To|B|U|Ind

13. Bnd: Bands

Definition

A band is a semigroup $\langle B, \cdot \rangle$ such that

· is idempotent: $x \cdot x = x$.

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 $x \cdot x = x$

Properties

Classtype	Variety
Equational theory	Decidable in polynomial time
Locally finite	Yes
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Amalgamation property	No
Strong amalgamation property	No

Finite Members

$$f_1=1,\ f_2=3,\ f_3=10,\ f_4=46,\ f_5=251,\ f_6=1682,\ f_7=13213$$

Subclasses

NBnd: Normal bands

Superclasses

OrdA: Order algebras

RegSgrp: Regular semigroups

Sgrp: Semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

14. NBnd: Normal bands

Definition

A normal band is a band $\mathbf{B} = \langle B, \cdot \rangle$ such that

· is normal: $x \cdot y \cdot z \cdot x = x \cdot z \cdot y \cdot x$.

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot x = x$$

$$x \cdot y \cdot z \cdot x = x \cdot z \cdot y \cdot x$$

Properties

Classtype	Variety
Equational theory	Decidable in polynomial time
Locally finite	Yes

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 8 f_4 = 30, f_5 = 114, f_6 = 536$$

Subclasses

RecBnd: Rectangular bands

Superclasses

Bnd: Bands

Cont|Po|J|M|L|D|To|B|U|Ind

15. RecBnd: Rectangular bands

Definition

A rectangular band is a band $\mathbf{B} = \langle B, \cdot \rangle$ such that

· is rectangular: $x \cdot y \cdot x = x$.

Definition

A rectangular band is a band $\mathbf{B} = \langle B, \cdot \rangle$ such that

 $x \cdot y \cdot z = x \cdot z.$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 $x \cdot x = x$

 $x \cdot y \cdot x = x$

Properties

Classtype	Variety
Equational theory	Decidable in polynomial time
Locally finite	Yes

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 2, f_4 = 3, f_5 = 2, f_6 = 4, f_7 = 2, f_8 = 4, f_9 = 3, f_{10} = 4$$

Subclasses

Superclasses

NBnd: Normal bands SkLat: Skew lattices

Cont|Po|J|M|L|D|To|B|U|Ind

16. SkLat: Skew lattices

Definition

A skew lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee \rangle$ such that

 $\langle A, \wedge \rangle$ is a band,

 $\langle A, \vee \rangle$ is a band,

and the following absorption laws hold: $x \wedge (x \vee y) = x = x \vee (x \wedge y), (x \vee y) \wedge y = y = (x \wedge y) \vee y.$

Formal Definition

$$(x \wedge y) \wedge z = x \wedge (y \wedge z)$$

 $x \wedge x = x$

$$(x \lor y) \lor z = x \lor (y \lor z)$$

 $x\vee x=x$

 $x \wedge (x \vee y) = x$

 $x \lor (x \land y) = x$

 $(x \lor y) \land y = y$

 $(x \wedge y) \vee y = y$

Properties

Classtype Variety

Finite Members

Subclasses

Lat: Lattices

RecBnd: Rectangular bands

Superclasses

17. Sgrp: Semigroups

Formal Definition

A semigroup is an algebra $\langle S, \cdot \rangle$, where \cdot is an infix binary operation, called the semigroup product, such that \cdot is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

Examples

Example 1: $\langle X^X, \circ \rangle$, the collection of functions on a sets X, with composition.

Example 2: $\langle \Sigma^+, \cdot \rangle$, the collection of nonempty strings over Σ , with concatenation.

Properties

•	
Classtype	Variety
Equational theory	Decidable in polynomial time
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	No

Finite Members

 $f_1=1,\ f_2=5,\ f_3=24,\ f_4=188,\ f_5=1915,\ f_6=28634,\ f_7=1627672,\ f_8=3684030417,\ f_9=105978177936292$

See also https://oeis.org/A027851

Subclasses

Bnd: Bands

CSgrp: Commutative semigroups

LtCanSgrp: Left cancellative semigroups

Mon: Monoids

RegSgrp: Regular semigroups Sgrp₀: Semigroups with zero

Superclasses Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

18. $Sgrp_0$: Semigroups with zero

Definition

A semigroup with zero is a semigroup $\langle S, \cdot, 0 \rangle$ of type $\langle 2, 0 \rangle$ such that 0 is a zero for \cdot : $x \cdot 0 = 0$, $0 \cdot x = 0$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 0 = 0$$
$$0 \cdot x = 0$$

Properties

Classtype	Variety
Equational theory	Decidable in PTIME
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 12, f_4 = 90, f_5 = 960$$

Subclasses

Srng₀: Semirings with zero

Superclasses

Sgrp: Semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

19. RegSgrp: Regular semigroups

Definition

An element x of a semigroup S is said to be regular if exists y in S such that xyx = x.

Definition

A regular semigroup is a semigroup $\mathbf{S} = \langle S, \cdot \rangle$ such that each element is regular.

Definition

A regular semigroup is an algebra $\mathbf{S} = \langle S, \cdot \rangle$, where \cdot is an infix binary operation, called the semigroup product, such that

```
· is associative: (xy)z = x(yz)
each element is regular: \exists y(xyx = x)
```

Definition

We say that y is an *inverse* of an element x in a semigroup S if x = xyx and y = yxy.

Examples

Example 1: $\langle T_X, \circ \rangle$, the full transformation semigroup of functions on X, with composition.

 $\langle End(V), \circ \rangle$, the endomorphism monoid of a vector space V, with composition.

Basic Results

If x is a regular element of a semigroup (say x = xyx), then x has an inverse, namely yxy, since x = x(yxy)x and yxy = (yxy)x(yxy).

Properties

1	
Classtype	First-order
Locally finite	No
Congruence distributive	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No

Finite Members

 $f_1 = 1$, $f_2 = 3$, $f_3 = 9$, $f_4 = 42$, $f_5 = 206$, $f_6 = 1352$, $f_7 = 10168$, $f_8 = 91073$, $f_9 = 925044$ (the opposite of a semigroup S is identified with S in the table above, see https://oeis.org/A001427)

Subclasses

Bnd: Bands

InvSgrp: Inverse semigroups

Superclasses
Sgrp: Semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

20. InvSgrp: Inverse semigroups

Definition

An inverse semigroup is an algebra $\mathbf{S} = \langle S, \cdot, ^{-1} \rangle$ such that

$$\cdot$$
 is associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

$$^{-1}$$
 is an inverse: $xx^{-1}x = x$ and $(x^{-1})^{-1} = x$ idempotents commute: $xx^{-1}yy^{-1} = yy^{-1}xx^{-1}$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot x^{-1} \cdot x = x$$

$$(x^{-1})^{-1} = x$$

$$x \cdot x^{-1} \cdot y \cdot y^{-1} = y \cdot y^{-1} \cdot x \cdot x^{-1}$$

Examples

Example 1: $\langle I_X, \circ, ^{-1} \rangle$, the *symmetric inverse semigroup* of all one-to-one partial functions on a set X, with composition and function inverse. Every inverse semigroup can be embedded in a symmetric inverse semigroup.

Basic Results

$$x * x = x \implies \exists y \ x = y * y^{-1}$$
$$\forall x \exists y \ xx^{-1} = y^{-1}y$$

Properties

Classtype	Variety
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Finite Members

$$f_1=1,\ f_2=2,\ f_3=5,\ f_4=16,\ f_5=52,\ f_6=208,\ f_7=911,\ f_8=4637,\ f_9=26422,\ f_{10}=169163,\ f_{11}=1198651,\ f_{12}=9324047,\ f_{13}=78860687,\ f_{14}=719606005,\ f_{15}=7035514642$$

https://oeis.org/A001428

Subclasses

CInvSgrp: Commutative inverse semigroups

CliffSgrp: Clifford semigroups

Superclasses

RegSgrp: Regular semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

21. Mon: Monoids

Definition

A monoid is a semigroup $\langle M, \cdot, 1 \rangle$, such that 1 is an identity for \cdot : $1 \cdot x = x$, $x \cdot 1 = x$.

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

Examples

Example 1: $\langle X^X, \circ, id_X \rangle$, the collection of functions on a sets X, with composition, and identity map.

Example 2: $\langle M(V)_n, \cdot, I_n \rangle$, the collection of $n \times n$ matrices over a vector space V, with matrix multiplication and identity matrix.

Example 3: $\langle \Sigma^*, \cdot, \lambda \rangle$, the collection of strings over a set Σ , with concatenation and the empty string. This is the free monoid generated by Σ .

Properties

-	
Classtype	Variety
Equational theory	Decidable in polynomial time
Quasiequational theory	Undecidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	No

Finite Members

$$f_1=1,\ f_2=2,\ f_3=7,\ f_4=35,\ f_5=228,\ f_6=2237,\ f_7=31559$$

Subclasses

CMon: Commutative monoids

LtCanMon:

Superclasses

Sgrp: Semigroups

pSet: The category of pointed sets

Cont|Po|J|M|L|D|To|B|U|Ind

22. CanSgrp: Cancellative semigroups

Definition

A cancellative semigroup is a semigroup $S = \langle S, \cdot \rangle$ such that

- · is left cancellative: $z \cdot x = z \cdot y \implies x = y$
- · is right cancellative: $x \cdot z = y \cdot z \implies x = y$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$z \cdot x = z \cdot y \implies x = y$$

$$x \cdot z = y \cdot z \implies x = y$$

Examples

Example 1: $(\mathbb{N}, +)$, the natural numbers, with additition.

Properties

Classtype	Quasivariety
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 1, f_6 = 2, f_7 = 1, f_8 = 5, f_9 = 2, f_{10} = 2, f_{11} = 1$$

Subclasses

CanCSgrp: Cancellative commutative semigroups

CanMon: Cancellative monoids

Superclasses

LtCanSgrp: Left cancellative semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

23. CanMon: Cancellative monoids

Definition

A cancellative monoid is a monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ such that

- · is left cancellative: $z \cdot x = z \cdot y \implies x = y$
- · is right cancellative: $x \cdot z = y \cdot z \implies x = y$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$z \cdot x = z \cdot y \implies x = y$$

$$x \cdot z = y \cdot z \implies x = y$$

Examples

Example 1: $(\mathbb{N}, +, 0)$, the natural numbers, with addition and zero.

Basic Results

All free monoids are cancellative.

All finite (left or right) cancellative monoids are reducts of groups.

Properties

Classtype	Quasivariety
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No

Finite Members

$$f_1=1,\ f_2=1,\ f_3=1,\ f_4=2,\ f_5=1,\ f_6=2,\ f_7=1,\ f_8=5,\ f_9=2,\ f_{10}=2,\ f_{11}=1$$

Subclasses

CanCMon: Cancellative commutative monoids

Grp: Groups
Superclasses

CanSgrp: Cancellative semigroups

LtCanMon:

Cont|Po|J|M|L|D|To|B|U|Ind

24. Grp: Groups

Definition

A group is an algebra $\langle G, \cdot, ^{-1}, 1 \rangle$, where $^{-1}$ is a postfix unary operation, called the group inverse, such that $\langle G, \cdot, 1 \rangle$ is a monoid and

⁻¹ gives a right-inverse: $x \cdot x^{-1} = 1$.

Remark: It follows that $^{-1}$ gives a left inverse: $x^{-1}x = 1$. Also, it suffices to assume \cdot has a right identity x1 = x, then 1x = x follows as well.

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot 1 = x$$
$$x \cdot x^{-1} = 1$$

Examples

Example 1: $\langle S_X, \circ, ^{-1}, id_X \rangle$, the collection of permutations of a sets X, with composition, inverse, and identity map.

Example 2: The general linear group $\langle GL_n(V), \cdot, ^{-1}, I_n \rangle$, the collection of invertible $n \times n$ matrices over a vector space V, with matrix multiplication, inverse, and identity matrix.

Properties

Variety
Decidable in polynomial time
Undecidable
Undecidable
no $(\mathbb{Z}_2 \times \mathbb{Z}_2)$
Yes
Yes, n=2, $p(x, y, z) = xy^{-1}z$ is a Mal'cev term
Yes
Yes
1=permutational
no, consider a non-simple subgroup of a simple group
No
Yes
Yes
Yes
No
Unbounded

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 1, f_6 = 2, f_7 = 1, f_8 = 5, f_9 = 2, f_{10} = 2, f_{11} = 1, f_{12} = 5, f_{13} = 1, f_{14} = 2, f_{15} = 1, f_{16} = 14, f_{17} = 1, f_{18} = 5$$

Information about small groups up to size 2000: http://www.tu-bs.de/ hubesche/small.html

Subclasses

AbGrp: Abelian groups NRng: Near-rings

NlGrp: Nilpotent groups

pGrp: P-groups
Superclasses

CanMon: Cancellative monoids CliffSgrp: Clifford semigroups

MouLp: Moufang loops

Cont|Po|J|M|L|D|To|B|U|Ind

25. AbpGrp: Abelian p-groups

Definition

An Abelian p-group is a p-group $\langle A, +, -, 0 \rangle$ such that

· is commutative: x + y = y + x

Properties

Classtype	higher-order
Congruence distributive	No
Congruence modular	Yes
Congruence <i>n</i> -permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

Subclasses

BGrp: Boolean groups

Superclasses pGrp: P-groups

Cont|Po|J|M|L|D|To|B|U|Ind

26. CMag: Commutative magmas

Definition

A commutative magma is a magma $\langle A, \cdot \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$.

Examples

Example 1: $\langle \mathbb{N}, |\cdot| \rangle$ is the distance magma of the natural numbers, where the binary operation is |x-y|.

Properties

1 Toperties	
Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Finite Members

 $f_1=1,\ f_2=4,\ f_3=129,\ f_4=43968,\ f_5=254429900,\ f_6=30468670170912$ See also https://oeis.org/A001425

Subclasses

CSgrp: Commutative semigroups

Superclasses

CnjMag: Conjugative magmas

Cont|Po|J|M|L|D|To|B|U|Ind

27. CSgrp: Commutative semigroups

Definition

A commutative semigroup is a semigroup $\langle S, \cdot \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot y = y \cdot x$$

Examples

Example 1: $(\mathbb{N}, +)$, the natural numbers, with additition.

Properties

-	
Classtype	Variety
Equational theory	Decidable in polynomial time
Quasiequational theory	Decidable
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	No

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 12, f_4 = 58, f_5 = 325, f_6 = 2143, f_7 = 17291$$

Subclasses

CMon: Commutative monoids

CanCSgrp: Cancellative commutative semigroups

qMV: Quasi-MV-algebras

Superclasses

CMag: Commutative magmas

Sgrp: Semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

28. LtCanSgrp: Left cancellative semigroups

Definition

A left cancellative semigroup is a semigroup $\mathbf{S} = \langle S, \cdot \rangle$ such that

 \cdot is left cancellative: $z \cdot x = z \cdot y \implies x = y$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 $z \cdot x = z \cdot y \implies x = y$

Examples

Example 1: $(\mathbb{N}, +)$, the natural numbers, with additition.

Properties

Classtype	Quasivariety
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	No

Finite Members

$$f_1=1,\ f_2=2,\ f_3=2,\ f_4=4,\ f_5=2,\ f_6=5,\ f_7=2,\ f_8=9$$

Subclasses

CanSgrp: Cancellative semigroups

LtCanMon: Superclasses

Sgrp: Semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

29. CanCSgrp: Cancellative commutative semigroups

Definition

A cancellative commutative semigroup is a commutative semigroup $\mathbf{S} = \langle S, \cdot \rangle$ such that

· is cancellative:
$$x \cdot z = y \cdot z \implies x = y$$

Formal Definition

$$\begin{aligned} &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot z = y \cdot z \implies x = y \\ &x \cdot y = y \cdot x \end{aligned}$$

Examples

Example 1: $(\mathbb{N}, +)$, the natural numbers, with additition.

Properties

Classtype	Quasivariety
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 1, f_6 = 1, f_7 = 1$$

Subclasses

CanCMon: Cancellative commutative monoids

Superclasses

CSgrp: Commutative semigroups CanSgrp: Cancellative semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

30. CInvSgrp: Commutative inverse semigroups

Definition

A commutative inverse semigroup is an inverse semigroup $\langle S, \cdot, ^{-1} \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$x \cdot x^{-1} \cdot x = x$$
$$(x^{-1})^{-1} = x$$
$$x \cdot y = y \cdot x$$

Properties

•	
Classtype	Variety
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	Yes
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Finite Members

 $f_1=1,\ f_2=2,\ f_3=5,\ f_4=16,\ f_5=51,\ f_6=201,\ f_7=877,\ f_8=4443,\ f_9=25284,\ f_{10}=161698,\ f_{11}=1145508,\ f_{12}=8910291,\ f_{13}=75373563,\ f_{14}=687950735,\ f_{15}=6727985390$

Subclasses

AbGrp: Abelian groups

Superclasses

InvSgrp: Inverse semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

31. CMon: Commutative monoids

Definition

A commutative monoid is a monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$x \cdot y = y \cdot x$$

Examples

Example 1: $\langle \mathbb{N}, +, 0 \rangle$, the natural numbers, with addition and zero. The finitely generated free commutative monoids are direct products of this one.

Properties

1 Toperties	
Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 5, f_4 = 19, f_5 = 78, f_6 = 421, f_7 = 2637$$

Subclasses

CanCMon: Cancellative commutative monoids

Srng: Semirings
Superclasses

CSgrp: Commutative semigroups

Mon: Monoids

Cont|Po|J|M|L|D|To|B|U|Ind

32. CanCMon: Cancellative commutative monoids

Definition

A cancellative commutative monoid is a cancellative monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ such that

 \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$x \cdot z = y \cdot z \implies x = y$$

$$x \cdot y = y \cdot x$$

Examples

Example 1: $(\mathbb{N}, +, 0)$, the natural numbers, with addition and zero.

Basic Results

All commutative free monoids are cancellative.

All finite commutative (left or right) cancellative monoids are reducts of abelian groups.

Properties

Classtype	Quasivariety
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 2, f_5 = 1, f_6 = 1, f_7 = 1$$

Subclasses

AbGrp: Abelian groups

Superclasses

CMon: Commutative monoids

CanCSgrp: Cancellative commutative semigroups

CanMon: Cancellative monoids

Cont|Po|J|M|L|D|To|B|U|Ind

33. AbGrp: Abelian groups

Formal Definition

$$(x + y) + z = x + (y + z)$$

 $x + 0 = x$
 $-x + x = 0$
 $x + y = y + x$

Examples

Example 1: $\langle \mathbb{Z}, +, -, 0 \rangle$, the integers, with addition, unary subtraction, and zero. The variety of abelian groups is generated by this algebra.

Example 2: $\mathbb{Z}_n = \langle \mathbb{Z}/n\mathbb{Z}, +_n, -_n, 0 + n\mathbb{Z} \rangle$, integers mod n.

Example 3: Any one-generated subgroup of a group.

Basic Results

The free abelian group on n generators is \mathbb{Z}^n .

Classification of finitely generated abelian groups: Every n-generated abelian group is isomorphic to a direct product of $\mathbb{Z}_{p_i^{k_i}}$ for $i=1,\ldots,m$ and n-m copies of \mathbb{Z} , where the p_i are (not necessarily distinct) primes and $m \geq 0$.

Properties

Classtype	Variety
Equational theory	Decidable in polynomial time
Quasiequational theory	Decidable
First-order theory	Decidable Szmielew [1949]
Locally finite	No
Residual size	ω
Congruence distributive	no $(\mathbb{Z}_2 \times \mathbb{Z}_2)$
Congruence n-permutable	Yes, $n = 2$, $p(x, y, z) = x - y + z$
Congruence regular	Yes, congruences are determined by subalgebras
Congruence uniform	Yes
Congruence types	permutational
Congruence extension property	Yes, if $K \leq H \leq G$ then $K \leq G$
Definable principal congruences	No
Equationally def. pr. cong.	No
Amalgamation property	Yes
Strong amalgamation property	Yes

Finite Members

$$f_1 = 1$$
, $f_2 = 1$, $f_3 = 1$, $f_4 = 2$, $f_5 = 1$, $f_6 = 1$, $f_7 = 1$, $f_8 = 3$, $f_9 = 2$, $f_{10} = 1$, $f_{11} = 1$, $f_{12} = 2$, $f_{13} = 1$, $f_{14} = 1$

See A000688

Subclasses

BGrp: Boolean groups

Rng: Rings

Superclasses

CInvSgrp: Commutative inverse semigroups CanCMon: Cancellative commutative monoids Grp: Groups

NlGrp: Nilpotent groups

34. BGrp: Boolean groups

Definition

A Boolean group is a monoid $\mathbf{M} = \langle M, \cdot, e \rangle$ such that every element has order 2: $x \cdot x = e$.

Examples

Example 1: $\langle \{0,1\},+,0\rangle$, the two-element group with addition-mod-2. This algebra generates the variety of Boolean groups.

Properties

-	
Classtype	Variety
Equational theory	Decidable in polynomial time
Quasiequational theory	Decidable
First-order theory	Decidable
Locally finite	Yes
Residual size	2
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 0, f_4 = 1, f_5 = 0, f_6 = 0, f_7 = 0, f_8 = 1$$

Subclasses

TrivA: Trivial algebras

Superclasses

AbGrp: Abelian groups AbpGrp: Abelian p-groups

Cont|Po|J|M|L|D|To|B|U|Ind

35. NFld: Near-fields

Definition

A near-field is a near-ring with identity $\mathbf{N} = \langle N, +, -, 0, \cdot, 1 \rangle$ such that

N is non-trivial: $0 \neq 1$

every non-zero element has a multiplicative inverse: $x \neq 0 \implies \exists y (x \cdot y = 1)$

Remark: The inverse of x is unique, and is usually denoted by x^{-1} .

Basic Results

0 is a zero for \cdot : $0 \cdot x = 0$ and $x \cdot 0 = 0$.

Properties

Classtype	first-order
Locally finite	No
Residual size	Unbounded
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

Subclasses Fld: Fields Superclasses

Rng₁: Rings with identity

Cont|Po|J|M|L|D|To|B|U|Ind

36. NRng: Near-rings

Definition

A near-ring is an algebra $\langle N, +, -, 0, \cdot \rangle$ of type $\langle 2, 1, 0, 2 \rangle$ such that $\langle N, +, -, 0 \rangle$ is a group

 $\langle N, \cdot \rangle$ is a semigroup

· right-distributes over +: $(x + y) \cdot z = x \cdot z + y \cdot z$

Formal Definition

$$(x+y) + z = x + (y+z)$$

$$x+0 = x$$

$$x + (-x) = 0$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

Examples

Example 1: $\langle \mathbb{R}^{\mathbb{R}}, +, -, 0, \cdot \rangle$, the near-ring of functions on the real numbers with pointwise addition, subtraction, zero, and composition.

Basic Results

0 is a zero for \cdot : $0 \cdot x = 0$ and $x \cdot 0 = 0$.

Properties

1	
Classtype	Variety
Equational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 5, f_4 = 35, f_5 = 10, f_6 = 99, f_7 = 24, f_8 = 3856, f_9 = 486$$

Subclasses

NRng₁: Near-rings with identity

Rng: Rings Superclasses

Grp: Groups

37. NRng₁: Near-rings with identity

Definition

A near-ring with identity is an algebra $\mathbf{N} = \langle N, +, -, 0, \cdot, 1 \rangle$ of type $\langle 2, 1, 0, 2, 0 \rangle$ such that $\langle N, +, -, 0, \cdot \rangle$ is a near-ring

1 is a multiplicative identity: $x \cdot 1 = x$ and $1 \cdot x = x$

Formal Definition

$$(x+y) + z = x + (y+z)$$

$$x + 0 = x$$

$$x + (-x) = 0$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

Examples

Example 1: $\langle \mathbb{R}^{\mathbb{R}}, +, -, 0, \cdot, 1 \rangle$, the near-ring of functions on the real numbers with pointwise addition, subtraction, zero, composition, and the identity function.

Basic Results

0 is a zero for \cdot : $0 \cdot x = 0$ and $x \cdot 0 = 0$.

Properties

Classtype	Variety
Equational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 6, f_5 = 1, f_6 = 1, f_7 = 1, f_8 = 53, f_9 = 11, f_{10} = 1$$

Subclasses

Rng₁: Rings with identity

Superclasses

NRng: Near-rings

Cont|Po|J|M|L|D|To|B|U|Ind

38. Neofld: Neofields

Definition

A neofield is an algebra
$$\mathbf{F} = \langle F, +, \setminus, /, 0, \cdot, 1,^{-1} \rangle$$
 of type $\langle 2, 2, 2, 0, 2, 0, 1 \rangle$ such that $\langle F, +, \setminus, /, 0 \rangle$ is a loop $\langle F - \{0\}, \cdot, 1,^{-1} \rangle$ is a group \cdot distributes over $+$: $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(x+y) \cdot z = x \cdot z + y \cdot z$

Properties

Finite Members

Subclasses

DivRng: Division rings

Superclasses

LNeofld: Left neofields

Cont|Po|J|M|L|D|To|B|U|Ind

39. Srng: Semirings

Definition

A semiring is an algebra $\mathbf{S} = \langle S, +, \cdot \rangle$ of type $\langle 2, 2 \rangle$ such that

 $\langle S, \cdot \rangle$ is a semigroup

 $\langle S, + \rangle$ is a commutative semigroup

· distributes over +: $x \cdot (y+z) = x \cdot y + x \cdot z$, $(y+z) \cdot x = y \cdot x + z \cdot x$

Formal Definition

$$(x+y) + z = x + (y+z)$$

$$x + y = y + x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(y+z) \cdot x = y \cdot x + z \cdot x$$

Properties

Clagatuma	Vaniates
Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No

Finite Members

$$f_1 = 1, f_2 = 10, f_3 = 132, f_4 = 2341$$

Subclasses

CSrng: Commutative semirings

Srng₀: Semirings with zero

Srng₁: Semirings with identity

Superclasses

CMon: Commutative monoids

Cont|Po|J|M|L|D|To|B|U|Ind

40. Srng₁: Semirings with identity

Definition

A semiring with identity is an algebra $\mathbf{S} = \langle S, +, \cdot, 1 \rangle$ of type $\langle 2, 2, 0 \rangle$ such that

 $\langle S, + \rangle$ is a commutative semigroup

 $\langle S, \cdot, 1 \rangle$ is a monoid

· distributes over +: $x \cdot (y+z) = x \cdot y + x \cdot z, (y+z) \cdot x = y \cdot x + z \cdot x$

$$(x+y) + z = x + (y+z)$$

$$x + y = y + x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$\begin{aligned} 1 \cdot x &= x \\ x \cdot (y+z) &= x \cdot y + x \cdot z \\ (y+z) \cdot x &= y \cdot x + z \cdot x \end{aligned}$$

Properties

Variety
Decidable
Undecidable
No
Unbounded
No
No

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 22, f_4 = 169, f_5 = 1819$$

Subclasses

Sfld: Semifields

 $Srng_{01}$: Semirings with identity and zero

Superclasses

Srng: Semirings

Cont|Po|J|M|L|D|To|B|U|Ind

41. Srng₀: Semirings with zero

Definition

A semiring with zero is an algebra $\mathbf{S} = \langle S, +, 0, \cdot \rangle$ of type $\langle 2, 0, 2 \rangle$ such that

 $\langle S, +, 0 \rangle$ is a commutative monoid

 $\langle S, \cdot \rangle$ is a semigroup

0 is a zero for \cdot : $0 \cdot x = 0$, $x \cdot 0 = 0$

· distributes over +: $x \cdot (y+z) = x \cdot y + x \cdot z$, $(y+z) \cdot x = y \cdot x + z \cdot x$

Formal Definition

$$(x+y) + z = x + (y+z)$$

$$x + y = y + x$$

$$x + 0 = x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$0 \cdot x = 0$$

$$x\cdot 0=0$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

Properties

Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 22, f_4 = 283$$

Subclasses

IdSrng₀: Idempotent semirings with zero

43. RNG: RINGS 311

Superclasses

Sgrp₀: Semigroups with zero

Srng: Semirings

Cont|Po|J|M|L|D|To|B|U|Ind

42. Srng₀₁: Semirings with identity and zero

Definition

A semiring with identity and zero is an algebra $\langle S, +, 0, \cdot, 1 \rangle$ of type $\langle 2, 0, 2, 0 \rangle$ such that $\langle S, +, 0 \rangle$ is a commutative monoid

 $\langle S, \cdot, 1 \rangle$ is a monoid

0 is a zero for \cdot : $0 \cdot x = 0$, $x \cdot 0 = 0$

· distributes over +: $x \cdot (y+z) = x \cdot y + x \cdot z$, $(y+z) \cdot x = y \cdot x + z \cdot x$

Formal Definition

$$(x+y) + z = x + (y+z)$$

$$x + y = y + x$$

$$x + 0 = x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$0 \cdot x = 0$$

$$x \cdot 0 = 0$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

Properties

*	
Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 6, f_4 = 40, f_5 = 295, f_6 = 3246$$

Subclasses

IdSrng₀₁: Idempotent semirings with identity and zero

Rng₁: Rings with identity

Superclasses

Shell: Shells

Srng₁: Semirings with identity

Cont|Po|J|M|L|D|To|B|U|Ind

43. Rng: Rings

Definition

A ring is an algebra $\mathbf{R} = \langle R, +, -, 0, \cdot \rangle$ of type $\langle 2, 1, 0, 2 \rangle$ such that

 $\langle R, +, -, 0 \rangle$ is an abelian group

 $\langle R, \cdot \rangle$ is a semigroup

· distributes over +: $x \cdot (y+z) = x \cdot y + x \cdot z$, $(y+z) \cdot x = y \cdot x + z \cdot x$

Formal Definition

$$\begin{split} &(x+y) + z = x + (y+z) \\ &x + 0 = x \\ &-x + x = 0 \\ &x + y = y + x \\ &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot (y+z) = x \cdot y + x \cdot z \\ &(y+z) \cdot x = y \cdot x + z \cdot x \end{split}$$

Examples

Example 1: $(\mathbb{Z}, +, -, 0, \cdot)$, the ring of integers with addition, subtraction, zero, and multiplication.

Basic Results

0 is a zero for \cdot : $0 \cdot x = 0$ and $x \cdot 0 = 0$.

Properties

-	
Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 2, f_4 = 11, f_5 = 2, f_6 = 4$$

Subclasses

CRng: Commutative rings Rng₁: Rings with identity

Superclasses

AbGrp: Abelian groups

NRng: Near-rings

Cont|Po|J|M|L|D|To|B|U|Ind

44. Rng₁: Rings with identity

Definition

A ring with identity is an algebra $\mathbf{R}=\langle R,+,-,0,\cdot,1\rangle$ of type $\langle 2,1,0,2,0\rangle$ such that

$$\langle R, +, -, 0, \cdot \rangle$$
 is a ring

1 is an identity for $x \cdot 1 = x$, $1 \cdot x = x$

Formal Definition

$$\begin{split} &(x+y) + z = x + (y+z) \\ &x + 0 = x \\ &-x + x = 0 \\ &x + y = y + x \\ &(x \cdot y) \cdot z = x \cdot (y \cdot z) \\ &x \cdot 1 = x \\ &1 \cdot x = x \\ &x \cdot (y + z) = x \cdot y + x \cdot z \end{split}$$

 $(y+z) \cdot x = y \cdot x + z \cdot x$

Examples

Example 1: $\langle \mathbb{Z}, +, -, 0, \cdot, 1 \rangle$, the ring of integers with addition, subtraction, zero, multiplication, and one.

Basic Results

0 is a zero for \cdot : $0 \cdot x = 0$ and $x \cdot 0 = 0$.

Properties

Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

 $f_1=1,\ f_2=1,\ f_3=1,\ f_4=4,\ f_5=1,\ f_6=1,\ f_7=1,\ f_8=11,\ f_9=4,\ f_{10}=1$

Subclasses

CRng₁: Commutative rings with identity

NFld: Near-fields OreDom: Ore domains RegRng: Regular rings

Superclasses

NRng₁: Near-rings with identity

Rng: Rings

 $Srng_{01}$: Semirings with identity and zero

Cont|Po|J|M|L|D|To|B|U|Ind

45. RegRng: Regular rings

Definition

A regular ring is a ring with identity $\mathbf{R} = \langle R, +, -, 0, \cdot, 1 \rangle$ such that every element has a pseudo-inverse: $\forall x \exists y (x \cdot y \cdot x = x)$

Properties

-	
Classtype	first-order
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

Subclasses

CRegRng: Commutative regular rings

DivRng: Division rings

Superclasses

Rng₁: Rings with identity

Cont|Po|J|M|L|D|To|B|U|Ind

46. CRegRng: Commutative regular rings

Definition

A commutative regular ring is a regular ring $\mathbf{R} = \langle R, +, -, 0, \cdot, 1 \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Properties

Classtype	first-order
Locally finite	No
Residual size	Unbounded
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

Subclasses

Fld: Fields
Superclasses

RegRng: Regular rings

Cont|Po|J|M|L|D|To|B|U|Ind

47. CSrng: Commutative semirings

Definition

A commutative semiring is a semiring $(S, +, \cdot)$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x+y) + z = x + (y+z)$$

$$x + y = y + x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(y+z) \cdot x = y \cdot x + z \cdot x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype | Variety

Finite Members

Subclasses

CSrng₀: Commutative semirings with zero CSrng₁: Commutative semirings with identity

Superclasses

Srng: Semirings

Cont|Po|J|M|L|D|To|B|U|Ind

48. CSrng₁: Commutative semirings with identity

Definition

A commutative semiring with identity is a semiring with identity $(S, +, \cdot, 1)$ such that

· is commutative: $x \cdot y = y \cdot x$

$$(x+y) + z = x + (y+z)$$

$$x + y = y + x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(y+z)\cdot x = y\cdot x + z\cdot x$$

$$x \cdot y = y \cdot x$$

Properties

Classtype Variety

Finite Members

Subclasses

CSrng₀₁: Commutative semirings with identity and zero

Superclasses

CSrng: Commutative semirings

Cont|Po|J|M|L|D|To|B|U|Ind

49. CSrng₀: Commutative semirings with zero

Definition

A commutative semiring with zero is a semiring with zero $\langle S, +, 0, \cdot \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x+y) + z = x + (y+z)$$

$$x + y = y + x$$

$$x + 0 = x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$0 \cdot x = 0$$

$$x \cdot 0 = 0$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

$$x \cdot y = y \cdot x$$

Properties

Classtype | Variety

Finite Members

Subclasses

CSrng₀₁: Commutative semirings with identity and zero

Superclasses

CSrng: Commutative semirings

Cont|Po|J|M|L|D|To|B|U|Ind

50. CSrng₀₁: Commutative semirings with identity and zero

Definition

A commutative semiring with identity and zero is a semiring with identity and zero $(S, +, 0, \cdot, 1)$ such that \cdot is commutative: $x \cdot y = y \cdot x$

$$(x+y) + z = x + (y+z)$$

$$x + y = y + x$$

$$x + 0 = x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$
$$1 \cdot x = x$$

$$0 \cdot x = 0$$

$$x \cdot 0 = 0$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

$$x \cdot y = y \cdot x$$

Properties

Classtype Variety

Finite Members

Subclasses

Superclasses

CSrng₀: Commutative semirings with zero CSrng₁: Commutative semirings with identity

Cont|Po|J|M|L|D|To|B|U|Ind

51. CRng: Commutative rings

Definition

A commutative ring is a ring $\mathbf{R} = \langle R, +, -, 0, \cdot \rangle$ such that

· is commutative: $x \cdot y = y \cdot x$

Remark: $Idl(R) = \{allidealsof R\}$

I is an ideal if $a, b \in I \implies a + b \in I$

and $\forall r \in R \ (r \cdot I \subseteq I)$

Formal Definition

$$(x+y) + z = x + (y+z)$$

$$x + 0 = x$$

$$-x + x = 0$$

$$x + y = y + x$$

$$(x\cdot y)\cdot z = x\cdot (y\cdot z)$$

$$x \cdot y = y \cdot x$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

Examples

Example 1: $\langle \mathbb{Z}, +, -, 0, \cdot \rangle$, the ring of integers with addition, subtraction, zero, and multiplication.

Basic Results

0 is a zero for \cdot : $0 \cdot x = x$ and $x \cdot 0 = 0$.

Properties

Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 2, f_4 = 9, f_5 = 2, f_6 = 4$$

Subclasses

CRng₁: Commutative rings with identity

Fld: Fields
Superclasses
Rng: Rings

Cont|Po|J|M|L|D|To|B|U|Ind

52. CRng₁: Commutative rings with identity

Definition

A commutative ring with identity is a ring with identity $\mathbf{R} = \langle R, +, -, 0, \cdot, 1 \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$

Formal Definition

$$(x + y) + z = x + (y + z)$$

$$x + 0 = x$$

$$-x + x = 0$$

$$x + y = y + x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot (y + z) = x \cdot y + x \cdot z$$

Examples

Example 1: $\langle \mathbb{Z}, +, -, 0, \cdot, 1 \rangle$, the ring of integers with addition, subtraction, zero, multiplication, and one.

Basic Results

0 is a zero for \cdot : $0 \cdot x = x$ and $x \cdot 0 = 0$.

Properties

Classtype	Variety
Equational theory	Decidable
First-order theory	Undecidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 4, f_5 = 1, f_6 = 1, f_7 = 1, f_8 = 10, f_9 = 4, f_{10} = 1$$

Subclasses

BA: Boolean algebras IntDom: Integral Domain

Superclasses

CRng: Commutative rings Rng₁: Rings with identity

Cont|Po|J|M|L|D|To|B|U|Ind

53. IntDom: Integral Domain

Definition

An integral domain is a commutative ring with identity $\mathbf{R} = \langle R, +, -, 0, \cdot, 1 \rangle$ that

has no zero divisors: $\forall x, y \ (x \cdot y = 0 \implies x = 0 \text{ or } y = 0)$

Examples

Example 1: $\langle \mathbb{Z}, +, -, 0, \cdot, 1 \rangle$, the ring of integers with addition, subtraction, zero, and multiplication is an integral domain.

Basic Results

Every finite integral domain is a field.

Properties

Classtype	Universal class
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 1, f_5 = 1, f_6 = 0$$

Subclasses

UFDom: Unique Factorization Domains

Superclasses

CRng₁: Commutative rings with identity

Cont|Po|J|M|L|D|To|B|U|Ind

54. DivRng: Division rings

Definition

A division ring (also called skew field) is a ring with identity $\mathbf{R} = \langle R, +, -, 0, \cdot, 1 \rangle$ such that

R is non-trivial: $0 \neq 1$

every non-zero element has a multiplicative inverse: $x \neq 0 \implies \exists y (x \cdot y = 1)$

Remark: The inverse of x is unique, and is usually denoted by x^{-1} .

Formal Definition

$$(x + y) + z = x + (y + z)$$

$$x + 0 = x$$

$$-x + x = 0$$

$$x + y = y + x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

$$x \cdot (y + z) = x \cdot y + x \cdot z$$

$$(y + z) \cdot x = y \cdot x + z \cdot x$$

$$0 \neq 1$$

$$x \neq 0 \implies x \cdot x^{-1} = 1$$

Examples

Example 1: $\langle \mathcal{Q}, +, -, 0, \cdot, 1 \rangle$, the division ring of quaternions with addition, subtraction, zero, multiplication, and one.

Basic Results

0 is a zero for \cdot : $0 \cdot x = x$ and $x \cdot 0 = 0$.

Every finite division ring is a field (i.e. · is commutative).

Properties

Classtype	first-order
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

 $f_1 = 1, f_2 = 2, f_3 = 3, f_4 = 3, f_5 = 5, f_6 = 0, f_7 = 7, f_8 = 4$

Subclasses Fld: Fields Superclasses

Neofld: Neofields OreDom: Ore domains RegRng: Regular rings

Cont|Po|J|M|L|D|To|B|U|Ind

55. Sfld: Semifields

Definition

A semifield is a semiring with identity $\mathbf{S} = \langle S, +, \cdot, 1 \rangle$ such that $\langle S^*, \cdot, 1 \rangle$ is a group, where $S^* = S - \{0\}$ if S has an absorbtive 0, and $S = S^*$ otherwise.

Basic Results

The only finite semifield that is not a field is the 2-element Boolean semifield: https://arxiv.org/pdf/1709.06923.pdf

Properties

Locally finite	No
Residual size	Unbounded
Congruence distributive	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 1, f_4 = 1, f_5 = 1, f_6 = 0$$

Subclasses Fld: Fields

Superclasses

Srng₁: Semirings with identity Cont|Po|J|M|L|D|To|B|U|Ind

56. Fld: Fields

Definition

A field is a commutative ring with identity $\mathbf{F} = \langle F, +, -, 0, \cdot, 1 \rangle$ such that

F is non-trivial: $0 \neq 1$

every non-zero element has a multiplicative inverse: $x \neq 0 \implies \exists y (x \cdot y = 1)$

Remark: The inverse of x is unique, and is usually denoted by x^{-1} .

$$(x+y) + z = x + (y+z)$$

$$x + 0 = x$$

$$-x + x = 0$$

$$x + y = y + x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$\begin{aligned} x \cdot 1 &= x \\ x \cdot y &= y \cdot x \\ x \cdot (y+z) &= x \cdot y + x \cdot z \\ 0 &\neq 1 \\ x &\neq 0 \implies x \cdot x^{-1} = 1 \end{aligned}$$

 $0^{-1} = 0$ (needed to avoid multiple isomorphic copies)

Examples

Example 1: $\langle \mathbb{Q}, +, -, 0, \cdot, 1 \rangle$, the field of rational numbers with addition, subtraction, zero, multiplication, and one.

Basic Results

0 is a zero for \cdot : $0 \cdot x = x$ and $x \cdot 0 = 0$.

Properties

Classtype	first-order
Locally finite	No
Residual size	Unbounded
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

 $f_1 = 0, f_2 = 1, f_3 = 1, f_4 = 1, f_5 = 1, f_6 = 0, f_7 = 1, f_n = 1 \iff n = p^k$ for some k > 0 and prime p, i.e., n is a prime power.

Subclasses

Superclasses

CRegRng: Commutative regular rings

CRng: Commutative rings
DivRng: Division rings
EucDom: Euclidean Domains

NFld: Near-fields Sfld: Semifields

Cont|Po|J|M|L|D|To|B|U|Ind

57. CnjMag: Conjugative magmas

Definition

A conjugative magma is a magma $\mathbf{A} = \langle A, \cdot \rangle$ such that

· is conjugative: $\exists w, \ x \cdot w = y \iff \exists w, \ w \cdot x = y$.

Properties

-	
Classtype	first-order
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No

Finite Members

$$f_1 = 1, f_2 = 4, f_3 = 215$$

Subclasses

CMag: Commutative magmas

Superclasses

Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

58. Dtoid: Directoids

Definition

A directoid is an algebra $\mathbf{A} = \langle A, \cdot \rangle$, where \cdot is an infix binary operation such that

· is idempotent: $x \cdot x = x$

Formal Definition

$$(x \cdot y) \cdot x = x \cdot y$$

$$y \cdot (x \cdot y) = x \cdot y$$

$$x \cdot ((x \cdot y) \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x = x$$

Basic Results

The relation $x \leq y \iff x \cdot y = x$ is a partial order.

Properties

±	
Classtype	Variety
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence types	semilattice (5)
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 7, f_5 = 61$$

Subclasses

Superclasses

Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

59. UFDom: Unique Factorization Domains

Definition

A unique factorization domain is an integral domain D such that

every element is a product of irreducibles: $\forall a \in D \exists p_1, ..., p_r \in D, n_1, ..., n_r \in \mathbb{N}$ such that $a = p_1^{n_1} \cdot_2^{n_2} ... p_r^{n_r}$ and p_i is irreducible for i = 1, ..., r

the product is unique up to associates: \forall irreducibles p_i, q_j if $a = p_1^{n_1} \cdot p_2^{n_2} \dots p_r^{n_r} = q_1^{m_1} \cdot q_2^{m_2} \dots q_s^{m_s}$ then r = s and each p_i is an associate of some q_j

Examples

Example 1: $\mathbb{Z}[x]$, the ring of polynomials with integer coefficients.

Properties

Classtype second-order

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 1, f_5 = 1, f_6 = 0$$

Subclasses

PIDom: Principal Ideal Domain

IntDom: Integral Domain

Cont|Po|J|M|L|D|To|B|U|Ind

60. OreDom: Ore domains

Definition

An Ore domain is a ring with identity $\mathbf{A} = \langle A, +, -, 0, \cdot, 1 \rangle$ such that \cdot is integral: $xy = 0 \implies x = 0$ or y = 0 nonzero common multiples exist: $x \neq 0 \neq y \implies \exists u \exists v (xu = yv \neq 0)$ and $\exists u \exists v (ux = vy \neq 0)$

Properties

Finite Members

Subclasses

DivRng: Division rings

Superclasses

Rng₁: Rings with identity

Cont|Po|J|M|L|D|To|B|U|Ind

61. PIDom: Principal Ideal Domain

Definition

A principal ideal domain is an integral domain $\mathbf{R} = \langle R, +, -, 0, \cdot, 1 \rangle$ in which every ideal is principal: $\forall I \in Idl(R) \ \exists a \in R \ (I = aR)$ Ideals are defined for commutative rings

Examples

Example 1: $a + b\theta | a, b \in Z, \theta = \langle 1 + \langle -19 \rangle^{1/2} \rangle / 2$ is a Principal Ideal Domain that is not an Euclidean domain See Oscar Campoli's "A Principal Ideal Domain That Is Not a Euclidean Domain" in ji; The American Mathematical Monthly; i; 95 (1988): 868-871

Properties

Classtype Second-order

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 1, f_5 = 1, f_6 = 0$$

Subclasses

EucDom: Euclidean Domains

Superclasses

UFDom: Unique Factorization Domains

Cont|Po|J|M|L|D|To|B|U|Ind

62. EucDom: Euclidean Domains

Definition

A Euclidean domain is an integral domain $\langle D, +, -, 0, \cdot, 1 \rangle$ together with a function $d: D \setminus \{0\} \to \mathbf{N}$ such that

$$\forall a, b \ (a \neq 0, b \neq 0 \implies d(a) \leq d(ab))$$

$$\forall a, b \exists q, r \ (a = b \cdot q + r, (r = 0 \text{ or } d(r) < d(b)))$$

Examples

Example 1: $\langle \mathbb{Z}, +, -, 0, \cdot, 1, d \rangle$, the ring of integers with addition, subtraction, zero, and multiplication is a Euclidean domain with d(a) = |a|.

Properties

Classtype first-order

Finite Members

$$f_1=1,\,f_2=1,\,f_3=1,\,f_4=1,\,f_5=1,\,f_6=0$$

Subclasses Fld: Fields Superclasses

PIDom: Principal Ideal Domain

Cont|Po|J|M|L|D|To|B|U|Ind

63. Mset: M-sets

Definition

An **M**-set is an algebra $\mathbf{A} = \langle A, f_m(m \in M) \rangle$, where $\mathbf{M} = \langle M, \cdot, 1 \rangle$ is a monoid, such that

 f_1 is the identity map: 1x = x and

the monoid action associates: $(m \cdot n)x = m(nx)$

Remark: $f_m(x) = mx$ is a unary operation called the monoid action by m.

Properties

Classtype Variety

Finite Members

Subclasses Gset: G-sets

Superclasses

 $Unar: \ Unary \ Algebras \\ Cont|Po|J|M|L|D|To|B|U|Ind$

64. Gset: G-sets

Definition

A G-set is an algebra $\mathbf{A} = \langle A, f_g(g \in G) \rangle$, where $\langle G, \cdot, ^{-1}, 1 \rangle$ is a group, such that

 f_1 is the identity map: 1x = x and

the group action associates: $(g \cdot h)x = g(hx)$

Remark: $f_g(x) = gx$ is a unary operation called the group action by g.

If follows from the associativity that $f_{g^{-1}}$ is the inverse function of f_g .

Properties

Finite Members

Subclasses

RMod: Modules over a ring

Superclasses

Mset: M-sets Cont[Po]J[M]L[D]To[B]U[Ind]

65. RMod: Modules over a ring

Definition

Let **R** be a ring with identity. A module over **R** (or **R**-module) is an algebra $\mathbf{A} = \langle A, +, -, 0, f_r \ (r \in R) \rangle$

 $\langle A, +, -, 0 \rangle$ is an abelian group and for all $r, s \in R$

 f_r preserves addition: $f_r(x+y) = f_r(x) + f_r(y)$

 f_1 is the identity map: $f_1(x) = x$

 $f_{r+s}(x)) = f_r(x) + f_s(x)$

 $f_{r \cdot s}(x) = f_r(f_s(x))$

Remark: f_r is called scalar multiplication by r, and $f_r(x)$ is usually written simply as rx.

Properties

Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

Subclasses

FVec: Vector spaces over a field

Superclasses

Gset: G-sets

Cont|Po|J|M|L|D|To|B|U|Ind

66. FVec: Vector spaces over a field

Definition

A vector space over a field **F** is an algebra $\mathbf{V} = \langle V, +, -, 0, f_a \ (a \in F) \rangle$ such that $\langle V, +, -, 0 \rangle$ is an abelian group

scalar product f_a distributes over vector addition: a(x+y) = ax + ay

 f_1 is the identity map: 1x = x

scalar product distributes over scalar addition: (a + b)x = ax + bx

scalar product associates: $(a \cdot b)x = a(bx)$

Remark: $f_a(x) = ax$ is called scalar multiplication by a.

Properties

1 Toper des	
Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	Yes
Congruence n-permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	No
Equationally def. pr. cong.	No

Finite Members

Subclasses

NaA: Nonassociative algebras

Superclasses

RMod: Modules over a ring

67. JorA: Jordan algebras

Definition

A Jordan algebra is a nonassociative algebra $\langle A, +, -, 0, \cdot, s_r \ (r \in F) \rangle$ such that \cdot is commutative: $x \cdot y = y \cdot x$ the Jordan identity holds: $(xy)x^2 = x(yx^2)$

Properties

Finite Members

Subclasses

Superclasses

NaA: Nonassociative algebras

Cont|Po|J|M|L|D|To|B|U|Ind

68. LNeofld: Left neofields

Definition

A left neofield is an algebra $\mathbf{F} = \langle F, +, \setminus, /, 0, \cdot, 1,^{-1} \rangle$ of type $\langle 2, 2, 2, 0, 2, 0, 1 \rangle$ such that $\langle F, +, \setminus, /, 0 \rangle$ is a loop $\langle F - \{0\}, \cdot, 1,^{-1} \rangle$ is a group \cdot left-distributes over +: $x \cdot (y + z) = x \cdot y + x \cdot z$

Properties

Finite Members

Subclasses

Neofld: Neofields
Superclasses

Lp: Loops

Cont|Po|J|M|L|D|To|B|U|Ind

69. BilinA: Bilinear algebras

Definition

A bilinear algebra is an algebra $\mathbf{A} = \langle A, +, -, 0, \cdot, s_r \ (r \in F) \rangle$ of type $\langle 2, 1, 0, 2, 1_r \ (r \in F) \rangle$ such that $\langle A, +, -, 0, s_r \ (r \in F) \rangle$ is a vector space over a field F \cdot is bilinear: x(y+z) = xy + xz, (x+y)z = xz + yz, and $s_r(xy) = s_r(x)y = xs_r(y)$

Properties

Classtype Variety

Finite Members

Subclasses

AAlg: Associative algebras

LieA: Lie algebras

Superclasses

NaA: Nonassociative algebras

Cont|Po|J|M|L|D|To|B|U|Ind

70. CliffSgrp: Clifford semigroups

Definition

A Clifford semigroup is an inverse semigroup $\mathbf{S} = \langle S, \cdot, ^{-1} \rangle$ that is also a completely regular semigroup.

Definition

A Clifford semigroup is an algebra $\mathbf{S} = \langle S, \cdot, ^{-1} \rangle$ such that

· is associative: (xy)z = x(yz)

 $^{-1}$ is an inverse: $xx^{-1}x = x$, $(x^{-1})^{-1} = x$

 $xx^{-1} = x^{-1}x, xx^{-1}y^{-1}y = y^{-1}yxx^{-1}, xx^{-1} = x^{-1}x$

Properties

_	
Classtype	Variety
Locally finite	No
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Congruence extension property	No
Equationally def. pr. cong.	No
Amalgamation property	No
Strong amalgamation property	No
Epimorphisms are surjective	Yes

Finite Members

Subclasses

Grp: Groups

Superclasses

InvSgrp: Inverse semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

71. LieA: Lie algebras

Definition

A Lie algebra is a bilinear algebra $\mathbf{A} = \langle A, +, -, 0, \cdot, s_r \ (r \in F) \rangle$ over a field \mathbf{F} such that

xx = 0 and

(xy)z + (yz)x + (zx)y = 0.

Properties

Classtype Variety

Finite Members

Subclasses

Superclasses

BilinA: Bilinear algebras

Cont|Po|J|M|L|D|To|B|U|Ind

72. MedMag: Medial magmas

Definition

A medial magma is an algebra $\mathbf{G} = \langle G, \cdot \rangle$, where \cdot is an infix binary operation such that

· mediates: $(x \cdot y) \cdot (z \cdot w) = (x \cdot z) \cdot (y \cdot w)$

Formal Definition

$$(x \cdot y) \cdot (z \cdot w) = (x \cdot z) \cdot (y \cdot w)$$

Examples

Example 1: $\langle S, * \rangle$, where $\langle S, +, \cdot \rangle$ is any commutative semiring, $a, b \in S$, and $x * y = a \cdot x + b \cdot y$.

Properties

•	
Classtype	Variety
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence <i>n</i> -permutable	No
Congruence regular	No
Congruence uniform	No
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 7, f_3 = 75, f_4 = 3969$$

Subclasses Superclasses

Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

73. NlGrp: Nilpotent groups

Definition

A nilpotent group is a group $G = \langle G, \cdot, ^{-1}, 1 \rangle$ that is

nilpotent: if $Z_0 = \{1\}$ and $\forall i(Z_{i+1} = \{x \in G : \forall y \ xyx^{-1}y^{-1} \in Z_i\})$ then $\exists n(Z_n = G)$

Remark: Note that $Z_1 = Z(G)$, the center of G. The smallest n for which $Z_n = G$ is the nilpotence class of G. E.g. Abelian groups are of nilpotence class 1.

Properties

Classtype	higher-order
Congruence modular	yes
Congruence <i>n</i> -permutable	Yes, $n=2$
Congruence regular	yes
Congruence uniform	yes

Finite Members

Subclasses

AbGrp: Abelian groups

Superclasses

Grp: Groups

Cont|Po|J|M|L|D|To|B|U|Ind

74. NaA: Nonassociative algebras

Definition

A (nonassociative) algebra is an algebra $\mathbf{A} = \langle A, +, -, 0, \cdot, s_r \ (r \in F) \rangle$ of type $\langle 2, 1, 0, 2, 1_r \ (r \in F) \rangle$ such that

 $\langle A, +, -, 0, s_r \ (r \in F) \rangle$ is a vector space over a field F

· is bilinear: x(y+z) = xy + xz, (x+y)z = xz + yz, and $s_r(xy) = s_r(x)y = xs_r(y)$

Properties

Finite Members

Subclasses

BilinA: Bilinear algebras JorA: Jordan algebras

Superclasses

FVec: Vector spaces over a field

Cont|Po|J|M|L|D|To|B|U|Ind

75. OrdA: Order algebras

Formal Definition

An order algebra Freese et al. [2002] is an algebra $\mathbf{A} = \langle A, \cdot \rangle$, where \cdot is an infix binary operation such that \cdot is idempotent: $x \cdot x = x$

$$(x \cdot y) \cdot x = y \cdot x$$
$$(x \cdot y) \cdot y = x \cdot y$$
$$x \cdot ((x \cdot y) \cdot z) = x$$

$$x \cdot ((x \cdot y) \cdot z) = x \cdot (y \cdot z)$$
$$((x \cdot y) \cdot z) \cdot y = (x \cdot z) \cdot y$$

Properties

Classtype	Variety
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence regular	No
Congruence uniform	No
Equationally def. pr. cong.	No

Finite Members

$$f_1 = 1, f_2 = 2, f_3 = 7, f_4 = 36, f_5 = 251$$

Subclasses Bnd: Bands Superclasses

Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

76. pGrp: P-groups

Definition

A *p-group* is a group $\mathbf{G} = \langle G, \cdot, ^{-1}, 1 \rangle$ such that p is a prime number and $\forall x \exists n \in \mathbb{N}(x^{(p^n)} = 1)$

Properties

Classtype	higher-order
Congruence distributive	No
Congruence modular	Yes
Congruence <i>n</i> -permutable	Yes, $n=2$
Congruence regular	Yes
Congruence uniform	Yes

Finite Members

Subclasses

AbpGrp: Abelian p-groups

Superclasses

Grp: Groups

Cont|Po|J|M|L|D|To|B|U|Ind

77. Qnd: Quandles

Formal Definition

A quandle is an algebra $\mathbf{Q} = \langle Q, \triangleright, \triangleleft \rangle$ of type $\langle 2, 2 \rangle$ such that

 \triangleright is left-selfdistributive: $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$

 \triangleleft is right-selfdistributive: $(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$

 $(x \triangleright y) \triangleleft x = y$

 $x \triangleright (y \triangleleft x) = y$

 \triangleright is idempotent: $x \triangleright x = x$

Remark: The last identity can equivalently be replaced by \triangleleft is idempotent: $x \triangleleft x = x$

Examples

Example 1: If $\langle G, \cdot, ^{-1}, 1 \rangle$ is a group and $x \triangleright y = xyx^{-1}, \ x \triangleleft y = x^{-1}yx$ (conjugation) then $\langle G, \triangleright, \triangleleft \rangle$ is a quandle.

Properties

-	
Classtype	Variety
Congruence distributive	No
Congruence modular	No
Congruence <i>n</i> -permutable	Yes, $n=2$

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 3, f_4 = 7, f_5 = 22, f_6 = 73, f_7 = 298, f_8 = 1581, f_9 = 11079$$

Subclasses

Superclasses

Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

78. qMV: Quasi-MV-algebras

Formal Definition

A quasi-MV-algebra Ledda et al. [2006] is a structure $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ such that

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

x'' = x

 $x \oplus 1 = 1$

 $(x' \oplus y)' \oplus y = (y' \oplus x)' \oplus x$

 $(x \oplus 0)' = x' \oplus 0$

 $(x \oplus 0) \oplus 0 = x \oplus 0$

0' = 1

Examples

The standard qMV-algebra is $\mathbf{S} = \langle [0,1]^2, \oplus, ', \mathbf{0}, \mathbf{1} \rangle$ where $\langle a, b \rangle \oplus \langle c, d \rangle = \langle \min(1, a+c), \frac{1}{2} \rangle$, $\langle a, b \rangle' = \langle 1-a, 1-b \rangle$, $\mathbf{0} = \langle 0, \frac{1}{2} \rangle$ and $\mathbf{1} = \langle 1, \frac{1}{2} \rangle$.

Basic Results

The variety of qMV-algebras is generated by the standard qMV-algebra.

The operation \oplus is commutative: $x \oplus y = y \oplus x$.

Every qMV-algebra that satisfies $x \oplus 0 = x$ is an MV-algebra.

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence e-regular	No
Congruence uniform	No
Congruence extension property	Yes
Equationally def. pr. cong.	No
Amalgamation property	yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 9, f_5 = 9, f_6 = 467$$

Subclasses

MV: MV-algebras

sqMV: Sqrt-quasi-MV-algebras

Superclasses

CSgrp: Commutative semigroups

Cont|Po|J|M|L|D|To|B|U|Ind

79. sqMV: Sqrt-quasi-MV-algebras

Definition

A $\sqrt{quasi-MV}$ -algebra Giuntini et al. [2007] is a structure $\mathbf{A} = \langle A, \oplus, \sqrt{q}, ', 0, 1, k \rangle$ such that $\sqrt{quasi-MV}$ is a unary operation,

 $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ is a quasi-MV-algebra,

$$x' = \sqrt{\sqrt{x}},$$

$$k' = k$$
, and

$$\sqrt{(x \oplus 0)} \oplus 0 = k.$$

Examples

The standard \sqrt{q} MV-algebra is $\mathbf{S}_r = \langle [0,1]^2, \oplus, \sqrt{\gamma}, \mathbf{0}, \mathbf{1}, \mathbf{k} \rangle$ where $\langle a, b \rangle \oplus \langle c, d \rangle = \langle \min(1, a+c), \frac{1}{2} \rangle$, $\sqrt{\gamma} \langle a, b \rangle' = \langle b, 1-a \rangle$, $\langle a, b \rangle' = \langle 1-a, 1-b \rangle$, $\mathbf{0} = \langle 0, \frac{1}{2} \rangle$, $\mathbf{1} = \langle 1, \frac{1}{2} \rangle$ and $\mathbf{k} = \langle \frac{1}{2}, \frac{1}{2} \rangle$.

Basic Results

The variety of \sqrt{q} MV-algebras is generated by the standard \sqrt{q} MV-algebra.

The operation \oplus is commutative: $x \oplus y = y \oplus x$.

Only the trivial \sqrt{q} MV-algebra is an MV-algebra.

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
Locally finite	No
Residual size	Unbounded
Congruence distributive	No
Congruence modular	No
Congruence n-permutable	No
Congruence e-regular	No
Congruence uniform	No
Congruence extension property	Yes
Equationally def. pr. cong.	No
Amalgamation property	yes

Finite Members

$$f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 2, f_5 = 5, f_6 = 5, f_7 = 8$$

Subclasses

Superclasses

qMV: Quasi-MV-algebras

Cont|Po|J|M|L|D|To|B|U|Ind

80. QtMag: Quasitrivial magmas

Formal Definition

A quasitrivial magma is a magma $\mathbf{A} = \langle A, \cdot \rangle$ such that

· is quasitrivial: $x \cdot y = x$ or $x \cdot y = y$

Basic Results

Quasitrivial magmas are in 1-1 correspondence with reflexive relations. E.g. a translations is given by $x \cdot y = x$ iff $\langle x, y \rangle \in E$.

Properties

Classtype	Universal

Finite Members

$$f_1 = 1, f_2 = 3, f_3 = 16$$

Subclasses

Superclasses

Mag: Magmas

Cont|Po|J|M|L|D|To|B|U|Ind

81. TrivA: Trivial algebras

Definition

A *trivial algebra* is an algebra with exactly one element. We assume that the algebras in this variety have a signature with all possible operation symbols of each finite arity. Hence this category is the unique category at the bottom of the hierarchy.

Formal Definition

x = y

Properties

Classtype	Variety
Equational theory	Decidable
Quasiequational theory	Decidable
First-order theory	Decidable
Locally finite	Yes
Residual size	1
Congruence distributive	Yes
Congruence modular	Yes
Congruence n-permutable	Yes
Congruence regular	Yes
Congruence uniform	Yes
Congruence extension property	Yes
Definable principal congruences	Yes
Equationally def. pr. cong.	Yes
Amalgamation property	Yes
Strong amalgamation property	Yes
Epimorphisms are surjective	Yes

Finite Members

 $f_1 = 1, f_2 = 0, f_n = 0 \text{ for all } n > 1.$

Subclasses Superclasses

AbToGrp: Abelian totally ordered groups

ActLat: Action lattices

BCIInFL: Boolean commutative integral involutive FL-algebras

BGrp: Boolean groups

BRMod: Boolean modules over a relation algebra

BSlat: Boolean semilattices

Bilat: Bilattices

CA₂: Cylindric algebras of dimension 2 CanRL: Cancellative residuated lattices

FRng: Function rings

 $IMTLChn:\ Involutive\ monoidal\ t-norm\ logic\ chains\ https://www.overleaf.com/project/60bfec78c1e72aa63c5a0e8dhttps://www.overleaf.com/project/60bfec78c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa64c1e72aa$

IRA: Integral relation algebras LLA: Linear logic algebras MonA: Monadic algebras

TA: Tense algebras ${\rm Cont}|{\rm Po}|{\rm J}|{\rm M}|{\rm L}|{\rm D}|{\rm To}|{\rm B}|{\rm U}|{\rm Ind}$

Appendix

The table below contains an initial segment of the fine spectrum for each of the classes in this survey. The classes are ordered in lexicographically decreasing order of their fine spectrum sequence and, if available, the sequence is followed by a link to the <code>oeis.org</code> entry for this sequence.

Name	Fine spectrum	OEIS
PoMag	1, 16, 4051	No
PoImpA	1, 16, 3981	No
PoSgrp	1, 11, 173, 4753, 198838,	No
Mag	1, 10, 3330, 178981952,	A001329
Srng	1, 10, 132, 2341	No
CPoSgrp	1, 7, 83, 1468, 37248,	No
MedMag	1, 7, 75, 3969	No
IdPoSgrp	1, 7, 69, 1035	No
MMag	1, 6, 280	
JImpA	1, 6, 245	
MImpA	1, 6, 220	
JMag	1, 6, 220	
ToMag	1, 6, 175	
ToImpA	1, 6, 175	
MultLat	1, 6, 175	
DLMag	1, 6, 175	
DLImpA	1, 6, 175	
LMag	1, 6, 175	
LImpA	1, 6, 175	
DivPos	1, 6, 123	
LrPoMag	1, 6, 110	
MSgrp	1, 6, 70, 1437	No
JSgrp	1, 6, 61, 866	No
CDivPos	1, 6, 55, 1434	No
DLSgrp	1, 6, 44, 479	No
LSgrp	1, 6, 44, 479	No
ToSgrp	1, 6, 44, 386	A084965
PoUn	1, 6, 43, 452	No
PoNUn	1, 6, 39, 386, 5203	No
BMag	1, 6, 0, 1176, 0, 0, 0	No
BImpA	1, 6, 0, 1176, 0, 0, 0	No
BSgrp	1, 6, 0, 93, 0, 0, 0	No
LrPoSgrp	1, 5, 28, 273, 3788	No
Sgrp	1, 5, 24, 188, 1915, 28634,	A027851
DivJslat	1, 4, 281	No
DivMslat	1, 4, 216	
DivLat	1, 4, 216	
ToDivLat	1, 4, 216	
DDivLat	1, 4, 216	
CnjMag	$ \ 1,\ 4,\ 215$	

CMag	1, 4, 129, 43968, 254429900,	A001425
CDivJslat	1, 4, 79, 7545	No
CDivMslat	1, 4, 64, 6208	No
CDivLat	1, 4, 64, 6208	No
PoMon	1, 4, 37, 549	No
CMSgrp	1, 4, 32, 432	??
CJSgrp	1, 4, 29, 289	No
IdMSgrp	1, 4, 28, 308, 4694	No
CPoMon	1, 4, 27, 301, 4887	No
IdJSgrp	1, 4, 27, 301, 4887	No
Srng ₀	1, 4, 22, 283	No
	1, 4, 22, 283 1, 4, 22, 169, 1819	No
Srng ₁		No
CLSgrp	1, 4, 20, 149, 1106	No
CLSgrp	1, 4, 20, 149, 1427	
CToSgrp	1, 4, 20, 114, 710, 4726,	A346414
IdLSgrp	1, 4, 17, 100, 674	No
DIdLSgrp	1, 4, 17, 100, 576	No
IdToSgrp	1, 4, 17, 82, 422	??
RPoUn	1, 4, 16, 87, 562	No
GalPos	1, 4, 15, 83, 539	No
InPoMag	1, 4, 12, 77, 498	No
CyInPoMag	1, 4, 12, 76, 481	No
CInPoMag	1, 4, 12, 69, 354, 3632	No
InPoSgrp	1, 4, 10, 50, 210, 1721	No
CyInPoSgrp	1, 4, 10, 50, 196, 1397	No
CInPoSgrp	1, 4, 10, 50, 194, 1356	No
BCSgrp	1, 4, 0, 35, 0, 0, 0, 1237, 0	No
BIdSgrp	1, 4, 0, 18, 0, 0, 0, 88, 0, 0	No
LrMMag	1, 3, 52, 4827	No
LrJMag	1, 3, 52, 4827	No
LrLMag	1, 3, 50, 4441	No
DLrLMag	1, 3, 50, 4441	No
LrToMag	1, 3, 50, 4116	??
RtQgrp	1, 3, 44, 14022	??
RPoMag	1, 3, 28, 1200	No
IdPoMon	1, 3, 23, 238, 3356	No
CDDivLat	1, 3, 20, 364	??
CToDivLat	1, 3, 20, 294	No
LrMSgrp	1, 3, 19, 199, 2946	No
LrJSgrp	1, 3, 19, 192	No
CIdPoSgrp	1, 3, 19, 171, 2069	No
LrLSgrp	1, 3, 18, 183, 2500	No
DLrLSgrp	1, 3, 18, 183, 1968	No
LrToSgrp	1, 3, 18, 144, 1370	No
MUn	1, 3, 17, 138, 1555	No
QtMag	1, 3, 16, 218	??
CRPoMag	1, 3, 16, 180, 4761	No
RPoSgrp	1, 3, 16, 154, 2100	No
JUn	1, 3, 16, 104, 822	No
MNUn	1, 3, 15, 113, 1167	No
JNUn	1, 3, 15, 113, 1167	No
CIdPoMon	1, 3, 13, 86, 759	No
CRPoSgrp	1, 3, 12, 76, 670	No
IdLrPoSgrp	1, 3, 12, 71, 524	No
CSgrp	1, 3, 12, 58, 325, 2143, 17291,	A001426
pPos	1, 3, 11, 47, 243	No
	•	

LNUn	1, 3, 10, 56, 457	No	IdJMon	1, 2, 7, 29, 136	??
DLNUn	1, 3, 10, 56, 276	No	OrdA	1, 2, 7, 36, 251	No
LUn	1, 3, 10, 50, 270	No	Srng ₀₁	1, 2, 6, 40, 295, 3246	No
DLUn	1, 3, 10, 50, 313	No	FL_c	1, 2, 6, 39, 279	No
Bnd	1, 3, 10, 36, 226	A058112	LrPoMon	1, 2, 6, 33, 273	No
ToNUn	1, 3, 10, 45, 251, 1682, 15215	A030112	CIdMMon	1, 2, 6, 31, 228, 2205	No
ToUn	1, 3, 10, 35, 126, 462		CLMon		No
RegSgrp	1, 3, 9, 42, 206, 1352, 10168,	A001427	FL_{ec}	1, 2, 6, 31, 199 1, 2, 6, 31, 199	No
NBnd	1, 3, 8, 30, 114, 536	No No	CDLMon	1, 2, 6, 31, 199	No
InPoMon	1, 3, 5, 30, 114, 330	No No	GalMslat	1, 2, 6, 31, 149	No
CyInPoMon	1, 3, 5, 20, 39, 179, 300	No No	Gallat	1, 2, 6, 30, 184	No
CInPoMon	1, 3, 5, 20, 39, 170, 493	No No	DGalLat	1, 2, 6, 30, 184	No
InPos	1, 3, 5, 16, 30, 108	No No	IdLMon	1, 2, 6, 30, 120	No
NRng	1, 3, 5, 10, 30, 100 1, 3, 5, 35, 10, 99, 24, 3856,	A305858	CToMon	1, 2, 6, 22, 93, 439	110
BDivLat	1, 3, 0, 325	No	DIdLMon	1, 2, 6, 22, 75, 274	No
BLrMag	1, 3, 0, 325, 0, 0, 0	No No	GalToLat	1, 2, 6, 22, 73, 274 1, 2, 6, 20, 70, 252, 924	NO
BCDivLat	1, 3, 0, 323, 0, 0, 0	No	IdToMon	1, 2, 6, 16, 44, 120	
BLrSgrp	1, 3, 0, 70, 0, 0, 0	No	InLMag	1, 2, 5, 42, 342	No
BUn	1, 3, 0, 35, 0	No	CyInLMag	1, 2, 5, 42, 342	No
BNUn	1, 3, 0, 15, 0, 0, 0, 147, 0	No	DInLMag	1, 2, 5, 42, 164	No
Shell	1, 2, 243	110	CyDInLMag	1, 2, 5, 42, 164	No
RMMag	1, 2, 243	No	CInLMag	1, 2, 5, 38, 238, 2722	No
RJMag	1, 2, 20, 1116	No	CDInLMag	1, 2, 5, 38, 236, 2722	No
RLMag	1, 2, 20, 1116	No	InLSgrp	1, 2, 5, 29, 146, 1308	No
DRLMag	1, 2, 20, 1116	No	CyInLSgrp	1, 2, 5, 29, 130, 1308	No
RToMag	1, 2, 20, 1110	??	CInLSgrp	1, 2, 5, 29, 130, 984	No
MMon	1, 2, 14, 168, 3488	No	DInLSgrp	1, 2, 5, 29, 63, 454	No
RMSgrp	1, 2, 12, 129, 1852	No	CyDInLSgrp	1, 2, 5, 29, 55, 353	No
RJSgrp	1, 2, 12, 129, 1852	No	CDInLSgrp	1, 2, 5, 29, 53, 330	No
RLSgrp	1, 2, 12, 129, 1852	No	CInSlSgrp	1, 2, 5, 29, 53, 330	No
$IdSrng_0$	1, 2, 12, 129, 1852	No	RPoMon	1, 2, 5, 28, 186	No
DRLSgrp	1, 2, 12, 129, 1437	No	CRPoMon	1, 2, 5, 24, 131, 1001	No
RToSgrp	1, 2, 12, 101, 1003	No	InToMag	1, 2, 5, 22, 142	No
$Sgrp_0$	1, 2, 12, 90, 960	No	CyInToMag	1, 2, 5, 22, 138	??
JMon	1, 2, 11, 73, 703	No	BCI	1, 2, 5, 22, 118, 974	No
CRMMag	1, 2, 10, 148, 4398	No	CIdLSgrp	1, 2, 5, 19, 86, 462	No
CRJMag	1, 2, 10, 148, 4398	No	CMon	1, 2, 5, 19, 78, 421, 2637	A058131
CRLMag	1, 2, 10, 148, 4398	No	CDIdLSgrp	1, 2, 5, 19, 68	No
CDRLMag	1, 2, 10, 148, 3554	No	CInToMag	1, 2, 5, 18, 72, 384	No
CRToMag	1, 2, 10, 112, 2772	??	CIdJMon	1, 2, 5, 17, 66, 288	No
CMMon	1, 2, 10, 92, 1322	No	Pos	1, 2, 5, 16, 63, 318, 2045, 16999,	A000112
IdMMon	1, 2, 10, 81, 950	No	pMslat	1, 2, 5, 16, 60, 262, 1315	No
FL	1, 2, 9, 79, 737	No	pJslat	1, 2, 5, 16, 60, 262, 1315	No
FL_e	1, 2, 9, 63, 492	No	InvSgrp	1, 2, 5, 16, 52, 208, 911, 4637,	A001428
CJMon	1, 2, 9, 55, 437	No	CInvSgrp	1, 2, 5, 16, 51, 201,	A234843
GalJslat	1, 2, 9, 52, 361, 2947	No	InToSgrp	1, 2, 5, 14, 43, 147, 578	??
CRMSgrp	1, 2, 8, 57, 550	No	CIdToSgrp	1, 2, 5, 14, 42, 132	
CRJSgrp	1, 2, 8, 57, 550	No	CyInToSgrp	1, 2, 5, 14, 39, 119	No
CRLSgrp	1, 2, 8, 57, 550	No	CInToSgrp	1, 2, 5, 14, 37, 107	No
CRSlSgrp	1, 2, 8, 57, 392	No	CIdLMon	1, 2, 4, 12, 41, 159	No
CDRLSgrp	1, 2, 8, 57, 392	No	CDIdLMon	1, 2, 4, 12, 31, 90, 241	No
CIdMSgrp	1, 2, 8, 53, 498	No	CIdToMon	1, 2, 4, 8, 16, 32, 64	
IdLrMSgrp	1, 2, 8, 46, 345, 3180	No	pLat	1, 2, 3, 7, 21, 75, 315	No
LMon	1, 2, 8, 45, 347	No	pDLat	1, 2, 3, 7, 13, 27, 50	No
IdLrJSgrp	1, 2, 8, 45, 304	No	pToLat	1, 2, 3, 4, 5, 6,	A000027
DLMon	1, 2, 8, 45, 279	No	DivRng	1, 2, 3, 3, 5, 0, 7, 4	No
CRToSgrp	1, 2, 8, 41, 241	No	Rng	1, 2, 2, 11, 2, 4	A027623
ToMon	1, 2, 8, 34, 184, 1218,	A346413	CRng	1, 2, 2, 9, 2, 4	A037289
IdLrLSgrp	1, 2, 7, 40, 273	No	LtCanSgrp	1, 2, 2, 4, 2, 5, 2, 9	No
DIdLrLSgrp	1, 2, 7, 40, 213	No	RecBnd	1, 2, 2, 3, 2, 4, 2, 4, 3, 4	
Mon	1, 2, 7, 35, 228, 2237, 31559	A058129	•	•	. '
CIdJSgrp	1, 2, 7, 33, 185				
IdLrToSgrp	1, 2, 7, 30, 144, 740	No			

Sfld	1 1 1 1 1 0	1 1	ILrMMon	1 1 9 0 51 400	l Ma
	1, 2, 1, 1, 1, 0	3.7	1	1, 1, 2, 9, 51, 408	No
BRMag	1, 2, 0, 136, 0	No	Porim	1, 1, 2, 9, 49, 365	No
BCRMag	1, 2, 0, 36, 0, 0	No	IRJMon	1, 1, 2, 9, 49, 364, 3335	No
BRSgrp	1, 2, 0, 28, 0, 0	No	IRMMon	1, 1, 2, 9, 49, 364	No
BInMag	1, 2, 0, 20, 0	No	IJMon	1, 1, 2, 9, 49, 364	No
BCyInMag	1, 2, 0, 20, 0	No	IRL	1, 1, 2, 9, 49, 364	No
BCInMag		No	ILrJMon	1, 1, 2, 9, 49, 364	No
_	1, 2, 0, 20, 0	NO			
BCRSgrp	1, 2, 0, 16, 0, 0		ILrLMon	1, 1, 2, 9, 49, 364	No
BInSgrp	1, 2, 0, 15, 0, 0	No	ILMon	1, 1, 2, 9, 49, 364	No
BCyInSgrp	1, 2, 0, 15, 0, 0	No	DIRL	1, 1, 2, 9, 49, 359	No
BCInSgrp	1, 2, 0, 15, 0, 0	No	DILrLMon	1, 1, 2, 9, 49, 359	No
BMon	1, 2, 0, 11, 0, 0, 0, 383	No	DILMon	1, 1, 2, 9, 49, 359	No
BRUn	1, 2, 0, 10, 0, 0, 0, 104	No	InFL	1, 1, 2, 9, 21, 101, 284, 1464	No
BIdLrSgrp		No	CyInFL		No
	1, 2, 0, 10, 0, 0			1, 1, 2, 9, 21, 101, 279, 1433	
BGalLat	1, 2, 0, 10, 0, 0	No	CInFL	1, 1, 2, 9, 21, 100, 276, 1392	No
BCMon	1, 2, 0, 9, 0, 0, 0	No	DInFL	1, 1, 2, 9, 8, 43, 49	No
BIdMon	1, 2, 0, 6, 0, 0, 0, 24	No	CyDInFL	1, 1, 2, 9, 8, 43, 48	No
BCIdSgrp	1, 2, 0, 5, 0, 0, 0, 13	No	CDInFL	1, 1, 2, 9, 8, 42, 46	No
BCIdMon	1, 2, 0, 4, 0, 0, 0, 9	No	IToMon	1, 1, 2, 8, 44, 308, 2641,	A253950
pBA	1, 2, 0, 3, 0, 0, 0, 1, 0, 0	1	IRToMon	1, 1, 2, 8, 44, 308	
1 *		A057991	I		
Qgrp	1, 1, 5, 35, 1411,		ILrToMon	1, 1, 2, 8, 44, 308	3.7
MouQgrp	1, 1, 5, 29, 1351	No	BCKMslat	1, 1, 2, 8, 38, 265	No
LrMMon	1, 1, 4, 24, 195, 2146	No	CIdRPoSgrp	1, 1, 2, 8, 36, 203	No
IdRMSgrp	1, 1, 4, 24, 169, 1404	No	CIdRMSgrp	1, 1, 2, 8, 36, 202	No
IdRJSgrp	1, 1, 4, 24, 169, 1404	No	CIdRJSgrp	1, 1, 2, 8, 36, 202	No
IdRPoSgrp	1, 1, 4, 24, 169	No	CIdRLSgrp	1, 1, 2, 8, 36, 202	No
IdRLSgrp	1, 1, 4, 24, 169	No	IdRPoMon	1, 1, 2, 8, 32, 148	No
DIdRLSgrp	1, 1, 4, 24, 124	No	IdRJMon	1, 1, 2, 8, 32, 147, 759	No
LrLMon	1, 1, 4, 23, 169, 1635	No	IdRMMon	1, 1, 2, 8, 32, 147	No
LrJMon	1, 1, 4, 23, 169, 1635	No	IdRL	1, 1, 2, 8, 32, 147	No
DLrLMon	1, 1, 4, 23, 130, 976	No	DIdRL	1, 1, 2, 8, 27, 96	No
LrToMon	1, 1, 4, 17, 92, 609	No	CIdRSlSgrp	1, 1, 2, 8, 25, 97	No
IdRToSgrp	1, 1, 4, 17, 82	No	CDIdRLSgrp	1, 1, 2, 8, 25, 97	No
RL	1, 1, 3, 20, 149, 1488, 18554,	No??	RtHp	1, 1, 2, 8, 24, 91	No
			1 -		
$IdSrng_{01}$	1, 1, 3, 20, 149, 1488, 18554,	No	Dtoid	1, 1, 2, 7, 61	No
bRL	1, 1, 3, 20, 149, 1488	No	CIRMMon	1, 1, 2, 7, 26, 129, 723	No
RMMon	1, 1, 3, 20, 149, 1488	No	CIRL	1, 1, 2, 7, 26, 129, 723	No
RJMon	1, 1, 3, 20, 149, 1488	No	CIRJMon	1, 1, 2, 7, 26, 129, 723	No
KA	1, 1, 3, 20, 149, 1488	No	FL_{ew}	1, 1, 2, 7, 26, 129, 723	No
KLat	1, 1, 3, 16, 149, 1488	No	FL_w	1, 1, 2, 7, 26, 129, 723	No
ActLat	1, 1, 3, 16, 149, 1488	No	Pocrim	1, 1, 2, 7, 26, 129	No
I					
DRL	1, 1, 3, 20, 115, 899, 7782,	No	CIJMon	1, 1, 2, 7, 26, 129	No
CRL	1, 1, 3, 16, 100, 794, 7493,	No	CILMon	1, 1, 2, 7, 26, 129	No
CRMMon	1, 1, 3, 16, 100, 794	No	BCKLat	1, 1, 2, 7, 26, 129	No
CRJMon	1, 1, 3, 16, 100, 794	No	CDIRL	1, 1, 2, 7, 26, 124, 645	No
CDRL	1, 1, 3, 16, 70, 399	No	CDILMon	1, 1, 2, 7, 26, 124, 645	No
RToMon	1, 1, 3, 15, 84, 575	No	CIRSIMon	1, 1, 2, 7, 23, 99, 464	No
BCKJslat	1, 1, 3, 14, 87, 745	No	CIToMon	1, 1, 2, 6, 22, 94, 451	A030453
IdLrPoMon	1, 1, 3, 12, 59, 350	No	CI-IRD-M-	1, 1, 2, 6, 22, 94, 451	Same as above??
IdLrMMon	1, 1, 3, 12, 59, 348, 2372	No	CIdRPoMon	1, 1, 2, 6, 20, 78	
CRSlMon	1, 1, 3, 12, 47, 220	No	CIdRJMon	1, 1, 2, 6, 20, 77, 333	No
IdLrJMon	1, 1, 3, 11, 46, 215, 1114	No	CIdRMMon	1, 1, 2, 6, 20, 77	
IdLrLMon	1, 1, 3, 11, 46, 215	No	CIdRL	1, 1, 2, 6, 20, 77	
CRToMon	1, 1, 3, 11, 46, 213		IdRToMon	1, 1, 2, 6, 16, 44, 120	No
DIdLrLMon	1, 1, 3, 11, 37, 134	No	CDIdRL	1, 1, 2, 6, 15, 44, 115	No
IdLrToMon		??	Mslat		
	1, 1, 3, 8, 22, 60, 164			1, 1, 2, 5, 15, 53, 222, 1078,	A006966
Qnd	1, 1, 3, 7, 22, 73, 298, 1581,	A181769	Jslat	1, 1, 2, 5, 15, 53, 222, 1078,	A006966
IPoMon	1, 1, 2, 11, 102, 1609	No	ubJslat	1, 1, 2, 5, 15, 53, 222, 1078,	A006966
IMMon	1, 1, 2, 11, 102, 1569	No	CIdRToSgrp	1, 1, 2, 5, 14, 42	
CIPoMon	1, 1, 2, 9, 60, 590	No	GBL	1, 1, 2, 5, 10, 23, 49, 111	No
CIMMon	1, 1, 2, 9, 60, 572	No	BLA	1, 1, 2, 5, 10, 23, 49, 111	No
Polrim	1, 1, 2, 9, 51, 409	No	Нр	1, 1, 2, 5, 10, 23, 49	No
1 1 0111111	, -, -, 0, 01, 100	1 1,0	CIdRSlMon		No
				1, 1, 2, 5, 9, 20, 38	
			CInSlMon	1, 1, 2, 5, 8, 20, 36, 90	No
			InToMon	1, 1, 2, 4, 8, 17, 38	??

CyInToMon	1, 1, 2, 4, 8, 17, 38, 91		PIDom	1, 1, 1, 1, 1, 0	
CInToMon	1, 1, 2, 4, 8, 17, 36, 81	No	IntDom	1, 1, 1, 1, 1, 0	
CIdRToMon	1, 1, 2, 4, 8, 16, 32	2.0	EucDom	1, 1, 1, 1, 1, 0	
$_{ m sqMV}$	1, 1, 2, 2, 5, 5, 8		$NRng_1$	1, 1, 1, 6, 1, 1, 1, 53, 11, 1	No
qMV	1, 1, 1, 9, 9, 467	No	MouLp	$\begin{bmatrix} 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$	
Rng_1	1, 1, 1, 4, 1, 1, 1, 11, 4, 1	A037291	LRng	1, 1, 1, 2, 3, 5, 8	
$CRng_1$	1, 1, 1, 4, 1, 1, 1, 10, 4, 1	A127707	BIdRSgrp	1, 1, 0, 7, 0, 0, 0, 26	No
HilA	1, 1, 1, 3, 8, 27, 113	No	BLrMon	1, 1, 0, 6, 0, 0, 0, 90	??
InLat	1, 1, 1, 3, 5, 14, 27	No	BSlat	1, 1, 0, 5, 0, 0, 0	
InPorim	1, 1, 1, 3, 3, 13, 17, 84	No	BInFL	1, 1, 0, 5, 0, 0, 0, 25	No
IInFL	1, 1, 1, 3, 3, 12, 17, 78	No	BCyInFL	1, 1, 0, 5, 0, 0, 0	(Stopped)
CyInPorim	1, 1, 1, 3, 3, 12, 15, 79	No	BCInFL	1, 1, 0, 5, 0, 0, 0	
CyIInFL	1, 1, 1, 3, 3, 12, 15, 75	No	BRL	1, 1, 0, 5, 0, 0	
InPocrim	1, 1, 1, 3, 3, 12, 15, 73, 116	No	BCRL	1, 1, 0, 5, 0	
CIInFL	1, 1, 1, 3, 3, 12, 15, 70, 112	No	RA	1, 1, 0, 3, 0, 0	
DIInFL	1, 1, 1, 3, 3, 12, 13, 66	No	BldLrMon	1, 1, 0, 3, 0, 0	
CyDIInFL	1, 1, 1, 3, 3, 12, 12, 65	No	BCIdRSgrp	1, 1, 0, 3, 0, 0	
CDIInFL	1, 1, 1, 3, 3, 12, 12, 60, 73	No	IRA	1, 1, 0, 2, 0, 0, 0, 10, 102, 4412	
MZrd	1, 1, 1, 3, 3, 8, 12, 35	No	BInLat	1, 1, 0, 2, 0, 0	
IMTL	1, 1, 1, 3, 3, 8, 12, 35	No No	BIdRL	1, 1, 0, 2, 0, 0	
DinLat	1, 1, 1, 3, 1, 4, 3, 11	No No	BCIdRL ColmLet	$\begin{bmatrix} 1, 1, 0, 2, 0, 0 \\ 1, 1, 0, 1, 2 \end{bmatrix}$	
DmA	1, 1, 1, 3, 1, 4, 2, 9, 5, 14	No A057771	CplmLat CdMLat	$\begin{bmatrix} 1, 1, 0, 1, 2 \\ 1, 1, 0, 1, 1 \end{bmatrix}$	
Lp Lat	1, 1, 1, 2, 6, 109, 23746,	A006966		1, 1, 0, 1, 1	
lbJslat	1, 1, 1, 2, 5, 15, 53, 222, 1078, 1, 1, 1, 2, 5, 15, 53	A006966	OMLat	$ \begin{vmatrix} 1, 1, 0, 1, 0, 2, 0, 5, 0, 15 \\ 1, 1, 0, 1, 0, 1, 0, 2 \end{vmatrix} $	
bLat	1, 1, 1, 2, 5, 15, 53	A006966		1, 1, 0, 1, 0, 1, 0, 2	
MsdLat	1, 1, 1, 2, 4, 9, 23, 65, 197, 636	No	BCIInFL	1, 1, 0, 1, 0, 0, 0, 1, 0	
JsdLat	1, 1, 1, 2, 4, 9, 23, 65, 197, 636	No	BIInFL	1, 1, 0, 1, 0, 0, 0, 1	
SdLat	1, 1, 1, 2, 4, 9, 22, 60, 174, 534	A292790	BGrp	1, 1, 0, 1, 0, 0, 0, 1	
ModLat	1, 1, 1, 2, 4, 8, 16, 34, 72, 157	A006981	BCyIInFL	1, 1, 0, 1, 0, 0, 0, 1	
AdLat	1, 1, 1, 2, 4		GBA	1, 1, 0, 1, 0, 0	
IInToMon	1, 1, 1, 2, 3, 7, 12, 35		BIRL	1, 1, 0, 1, 0, 0	
CyIInToMon	1, 1, 1, 2, 3, 7, 12, 35		BCIRL	1, 1, 0, 1, 0, 0	
IMTLChn	1, 1, 1, 2, 3, 7, 12, 31, 59	A034786	BCIMon	1, 1, 0, 1, 0, 0	
HA	1, 1, 1, 2, 3, 5, 8, 15, 26, 47	A006982		1, 1, 0, 1, 0	
DLat	1, 1, 1, 2, 3, 5, 8, 15, 26, 47		BILrMon	1, 1, 0, 1, 0	
BrSlat	1, 1, 1, 2, 3, 5, 8, 15, 26, 47	A006982		1, 0, 0, 1, 3, 32, 284	
BrA	1, 1, 1, 2, 3, 5, 8, 15, 26, 47	A006982	1 1	1, 0, 0, 0, 0, 0	
bDLat	1, 1, 1, 2, 3, 5, 8, 15, 26, 47		AbLGrp	1, 0, 0, 0, 0, 0	
StAlg	1, 1, 1, 2, 2, 4, 5, 10, 16, 28	No	LGrp	1, 0, 0, 0, 0, 0	
CIdInFL	1, 1, 1, 2, 2, 4, 4, 9, 10, 21	No No	TrivA	1, 0, 0	
KLA PoCrp	1, 1, 1, 2, 1, 3, 2, 6, 4, 10	No 4,000001	ToGrp	1, 0, 0	
PoGrp Grp	$ \begin{vmatrix} 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1 \\ 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1 \end{vmatrix} $	A000001 A000001	CanRL AbToGrp	1, 0, 0 1, 0, 0	
CanSgrp	$ \begin{array}{c} 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1 \\ 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1 \end{array} $	A000001 A000001	Fld	[0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1]	A069513
psMV	$\begin{bmatrix} 1, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1 \\ 1, 1, 1, 2, 1, 2, 1, 3, 2, 2 \end{bmatrix}$	11000001	pcDLat	, -, -, -, -, -, 0, -, -, -, 0, -	11000010
GödA	1, 1, 1, 2, 1, 2, 1, 3, 1, 2		pGrp		
MV	1, 1, 1, 2, 1, 2, 1, 3		WaHp		
CanMon	1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1	A000001	Unar		
AbPoGrp	1, 1, 1, 2, 1, 1, 1, 3, 2, 1	A000688	ToRng		
AbGrp	1, 1, 1, 2, 1, 1, 1, 3, 2, 1	A000688	ToFld		
CanCSgrp	1, 1, 1, 2, 1, 1, 1	A000688	TA		
CanCMon	1, 1, 1, 2, 1, 1, 1	A000688			
InToLat	1, 1, 1, 1, 1, 1, 1, 1, 1		SeqA		
ToLat	1, 1, 1, 1, 1, 1, 1, 1, 1	A000012	RegRng		
Set	1, 1, 1, 1, 1, 1, 1, 1, 1	A000012			
UFDom	1, 1, 1, 1, 1, 0		OreDom		
			OckA		
			NIGrp		
			Neofld NdLat		
			NaA		
			11011	I	

NVLGrp NFld NAMset MonAMTLAModOLat \mathbf{MALLA} MA ${
m Lie}{
m A}$ LNeofld LLA LA_n JorA ${\bf ImpLat}$ ILLA Gset GMVFVecFRng ${\bf DunnMon}$ DpAlg DdpAlg DblStAlg DmMon DDblpAlg CliffSgrp CToRng ${\rm CRegRng}$ CA_2 CLRng BoolLat BilinA BRModBCK

 $\begin{array}{c} {\rm AbpGrp} \\ {\rm AAlg} \end{array}$

Bibliography

- Garrett Birkhoff. Subdirect unions in universal algebra. *Bull. Am. Math. Soc.*, 50:764–768, 1944. ISSN 0002-9904; 1936-881X/e.
- Garrett Birkhoff. Lattice theory. Corr. repr. of the 1967 3rd ed, volume 25. American Mathematical Society (AMS), Providence, RI, 1979.
- W. J. Blok and D. Pigozzi. On the structure of varieties with equationally definable principal congruences. III. Algebra Univers., 32(4):545–608, 1994. ISSN 0002-5240; 1420-8911/e.
- Willem J. Blok and James G. Raftery. Varieties of commutative residuated integral pomonoids and their residuation subreducts. *J. Algebra*, 190(2):280–328, 1997. ISSN 0021-8693.
- S Burris and H.P Sankappanavar. A course in Universal Algebra. Springer, 1981. ISBN 9781417642595. URL http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html.
- Stanley Burris. A simple proof of the hereditary undecidability of the theory of lattice- ordered Abelian groups. *Algebra Univers.*, 20:400–401, 1985. ISSN 0002-5240; 1420-8911/e.
- Sergio Celani and Leonardo Cabrer. Duality for finite Hilbert algebras. *Discrete Math.*, 305(1-3):74–99, 2005. ISSN 0012-365X.
- Mona Cherri and Wayne B. Powell. Strong amalgamations of lattice ordered groups and modules. *Int. J. Math. Math. Sci.*, 16(1):75–80, 1993. ISSN 0161-1712; 1687-0425/e.
- Roberto L. O. Cignoli, Itala M. Loffredo D'Ottaviano, and Daniele Mundici. *Algebraic foundations of many-valued reasoning*, volume 7. Dordrecht: Kluwer Academic Publishers, 2000. ISBN 0-7923-6009-5/hbk.
- Alan Day. A characterization of modularity for congruence lattices of algebras. Can. Math. Bull., 12:167–173, 1969. ISSN 0008-4395: 1496-4287/e.
- R. Dedekind. Ueber die von drei Moduln erzeugte Dualgruppe. *Math. Ann.*, 53:371–403, 1900. ISSN 0025-5831; 1432-1807/e.
- A. Diego. Sur les algèbres de Hilbert. Paris: Gauthier-Villars, Editeur; Louvain: E. Nauwelaerts, Editeur. VIII, 54 p. (1966)., 1966.
- Marcel Erné, Jobst Heitzig, and Jürgen Reinhold. On the number of distributive lattices. *Electron. J. Comb.*, 9(1):research paper r24, 23, 2002. ISSN 1077-8926/e.
- R. Freese, J. Ježek, P. Jipsen, P. Marković, M. Maróti, and R. McKenzie. The variety generated by order algebras. *Algebra Univers.*, 47(2):103–138, 2002. ISSN 0002-5240. doi: 10.1007/s00012-002-8178-z.
- Ralph Freese. Free modular lattices. Trans. Am. Math. Soc., 261:81–91, 1980. ISSN 0002-9947; 1088-6850/e. Nenosuke Funayama and Tadasi Nakayama. On the distributivity of a lattice of lattice-congruences. Proc. Imp. Acad. Tokyo, 18:553–554, 1942. ISSN 0369-9846. doi: 10.3792/pia/1195573786.
- Nikolaos Galatos and Peter Jipsen. Residuated frames with applications to decidability. *Trans. Am. Math. Soc.*, 365(3):1219–1249, 2013. ISSN 0002-9947; 1088-6850/e.
- Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Residuated lattices. An algebraic glimpse at substructural logics, volume 151. Amsterdam: Elsevier, 2007. ISBN 978-0-444-52141-5/hbk.
- Volker Gebhardt and Stephen Tawn. Constructing unlabelled lattices. J. Algebra, 545:213–236, 2020. ISSN 0021-8693. doi: 10.1016/j.jalgebra.2018.10.017.
- Roberto Giuntini, Antonio Ledda, and Francesco Paoli. Expanding quasi-MV algebras by a quantum operator. Stud. Log., 87(1):99–128, 2007. ISSN 0039-3215; 1572-8730/e.
- A. M. W. Glass. Partially ordered groups. Singapore: World Scientific, 1999. ISBN 981-02-3493-7.
- A. M. W. Glass and Yuri Gurevich. The word problem for lattice-ordered groups. Trans. Am. Math. Soc., 280:127–138, 1983. ISSN 0002-9947; 1088-6850/e.
- H. Peter Gumm. Congruence modularity is permutability composed with distributivity. *Arch. Math.*, 36: 569–576, 1981. ISSN 0003-889X; 1420-8938/e.

Bibliography 339

- Jobst Heitzig and Jürgen Reinhold. Counting finite lattices. Algebra Univers., 48(1):43–53, 2002. ISSN 0002-5240; 1420-8911/e.
- Christian Herrmann. On the word problem for the modular lattice with four free generators. *Math. Ann.*, 265:513–527, 1983. ISSN 0025-5831; 1432-1807/e.
- David Hobby and Ralph McKenzie. *The structure of finite algebra*, volume 76. Providence, RI: American Mathematical Society, 1988. ISBN 0-8218-5073-3.
- W. Charles Holland. The largest proper variety of lattice ordered groups. Proc. Am. Math. Soc., 57:25–28, 1976. ISSN 0002-9939; 1088-6826/e.
- W. Charles Holland and Stephen H. McCleary. Solvability of the word problem in free lattice-ordered groups. Houston J. Math., 5:99–105, 1979. ISSN 0362-1588.
- Paweł M. Idziak. Lattice operation in BCK-algebras. Math. Japon., 29:839–846, 1984. ISSN 0025-5513.
- Peter Jipsen and Nathan Lawless. Generating all finite modular lattices of a given size. Algebra Univers., 74(3-4):253–264, 2015. ISSN 0002-5240. doi: 10.1007/s00012-015-0348-x.
- B. Jonsson. Algebras whose congruence lattices are distributive. *Math. Scand.*, 21:110–121, 1967. ISSN 0025-5521; 1903-1807/e.
- Bjarni Jónsson. On the representation of lattices. *Math. Scand.*, 1:193–206, 1953. ISSN 0025-5521; 1903-1807/e.
- Bjarni Jonsson. Universal relational systems. *Math. Scand.*, 4:193–208, 1956. ISSN 0025-5521. doi: 10.7146/math.scand.a-10468.
- E. W. Kiss, L. Márki, P. Pröhle, and W. Tholen. Categorical algebraic properties. A compendium of amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity. *Stud. Sci. Math. Hung.*, 18:79–141, 1983. ISSN 0081-6906; 1588-2896/e.
- Antonio Ledda, Martinvaldo Konig, Francesco Paoli, and Roberto Giuntini. MV-algebras and quantum computation. Stud. Log., 82(2):245–270, 2006. ISSN 0039-3215; 1572-8730/e.
- L. Lipshitz. The undecidability of the word problems for projective geometries and modular lattices. *Trans. Am. Math. Soc.*, 193:171–180, 1974. ISSN 0002-9947; 1088-6850/e.
- Hiroakira Ono and Yuichi Komori. Logics without the contraction rule. J. Symb. Log., 50:169–201, 1985. ISSN 0022-4812; 1943-5886/e.
- P. P. Pálfy. Unary polynomials in algebras. I. Algebra Univers., 18:262-273, 1984. ISSN 0002-5240; 1420-8911/e.
- Don Pigozzi. Partially ordered varieties and quasivarieties. Preprint available at http://www.math.iastate.edu/dpigozzi, 2004.
- A. Selman. Completeness of calculii for axiomatically defined classes of algebras. *Algebra Univers.*, 2:20–32, 1972. ISSN 0002-5240; 1420-8911/e.
- L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary report. Proc. 5th ann. ACM Symp. Theor. Comput., Austin 1973, 1-9 (1973)., 1973.
- W. Szmielew. Decision problem in group theory. Proc. 10. Internat. Congr. Philos., Amsterdam 1948, No. 2, 763-766 (1949)., 1949.
- Alfred Tarski. A remark on functionally free algebras. *Ann. Math.* (2), 47:163–165, 1946. ISSN 0003-486X; 1939-8980/e.
- A. S. Troelstra. *Lectures on linear logic*, volume 29. Stanford, CA: Stanford University, Center for the Study of Language and Information, 1992. ISBN 0-937073-78-4; 0-937073-77-6.
- Steven T. Tschantz. More conditions equivalent to congruence modularity. Universal algebra and lattice theory, Proc. Conf., Charleston/S.C. 1984, Lect. Notes Math. 1149, 270-282 (1985)., 1985.

\mathbf{Index}

ℓ -unar, 124	BCIInFL, 277
M-set, 323	BCIMon, 270
$dr\ell$ -unar, 177	BCInFL, 277
g is the restriction of f to B , 16	BCInMag, 276
m-lattice, 118	BCInSgrp, 276
m-semilattice, 62	BCIRL, 274
p-group, 328	BCK, 48
(additively) idempotent semiring, 62	BCK-algebra, 48
(additively) idempotent unital semiring, 63	BCK-join-semilattice, 79
(nonassociative) algebra, 327	BCK-lattice, 143
-algebra, 133	BCK-meet-semilattice, 103
-group, 213	BCKJslat, 79
-ring, 159, 214	BCKLat, 143
	BCKMslat, 103
A course in Universal Algebra, 338	BCMon, 270
AAlg, 287	BCRL, 274
Abelian p -group, 300	BCRMag, 273
abelian lattice-ordered group, 198	BCRSgrp, 273
abelian partially ordered group, 56	BCSgrp, 269
abelian totally ordered group, 244	BCyIInFL, 269
AbGrp, 305	BCyInFL, 268
AbLGrp, 198	BCyInMag, 267
AbpGrp, 300	BCyInSgrp, 268
AbPoGrp, 56	BDivLat, 260
AbToGrp, 244	bDLat, 163
action lattice, 116	BGalLat, 264
ActLat, 116	BGrp, 306
AdLat, 153	BIdLrMon, 259
algebra, 16	BIdLrSgrp, 258
Algebra Univers., 338, 339	BIdMon, 255
Algebraic foundations of many-valued reasoning, 338	
all congruence classes, 17	BIdRL, 263
almost distributive lattice, 153	BIdRSgrp, 263
Ann. Math. (2), 339	BIdSgrp, 255
Arch. Math., 338	BIInFL, 267
assignment, 17	Bilat, 157
associative algebra, 287	bilattice, 157
at some future instance, 251	BilinA, 325
at some past instance, 251	bilinear, 325, 327
	bilinear algebra, 325
BA, 247	BILrMon, 258
balanced, 279	BIMon, 254
band, 292	BImpA, 256
basic logic algebra, 205	BInFL, 266
BCDivLat, 272	BInLat, 264
BCI, 287	BInMag, 265
BCI-algebra, 287	BInSgrp, 265
BCIdMon, 272	BIRL, 262
BCIdRL, 275	BL-algebra, 205
BCIdRSgrp, 275	BLA, 205
BCIdSgrp, 271	bLat, 112

block, 17	cancellative, 302
BLrMag, 256	cancellative commutative monoid, 304
BLrMon, 257	cancellative commutative semigroup, 302
BLrSgrp, 257	cancellative monoid, 298
BMag, 253	cancellative residuated lattice, 157
BMon, 254	cancellative semigroup, 297
Bnd, 292	CanCMon, 304
BNUn, 250	CanCSgrp, 302
Boolean algebra, 247	CanMon, 298
Boolean division lattice, 260	CanRL, 157
Boolean Galois lattice, 264	CanSgrp, 297
Boolean group, 306	cartesian product, 16
Boolean idempotent, 255, 258, 263	CDDivLat, 191
Boolean idempotent left-residuated monoid, 259	CDIdLMon, 191
Boolean idempotent left-residuated semigroup, 258	CDIdLSgrp, 190
Boolean idempotent monoid, 255	CDIdRL, 195
Boolean idempotent residuated lattice, 263	CDIdRLSgrp, 194
Boolean idempotent residuated semigroup, 263	CDIInFL, 197
Boolean idempotent semigroup, 255	CDILMon, 190
Boolean integral involutive FL-algebra, 267	CDInFL, 196
Boolean integral monoid, 254	CDInLMag, 195
Boolean integral residuated lattice, 262	CDInLSgrp, 196
Boolean involutive FL-algebra, 266	CDIRL, 194
Boolean involutive lattice, 264	CDivJslat, 79
Boolean involutive magma, 265	CDivLat, 142
Boolean involutive semigroup, 265	CDivMslat, 102
Boolean lattice, 202	CDivPos, 47
Boolean left-residuated integral monoid, 258	CDLMon, 189
Boolean left-residuated magma, 256	CDLSgrp, 188
Boolean left-residuated monoid, 257	CDRL, 193
Boolean left-residuated semigroup, 257	CDRLMag, 192
Boolean module over a relation algebra, 282	CDRLSgrp, 192
Boolean monoid, 254	CIdInFL, 147
Boolean negated unar, 250	CIdJMon, 78
Boolean residuated integral monoid, 274	CIdJSgrp, 78
Boolean residuated lattice, 262	CIdLMon, 142
Boolean residuated magma, 260	CIdLSgrp, 141
Boolean residuated semigroup, 261	CIdMMon, 102
boolean residuated unar, 259	CIdMSgrp, 101
Boolean semigroup, 253	CIdPoMon, 47
Boolean semilattice, 271	CIdPoSgrp, 46
Boolean unar, 249	CIdRJMon, 83
BoolLat, 202	CIdRJSgrp, 82
bounded distributive lattice, 163	CIdRL, 147
bounded lattice, 112	CIdRLSgrp, 146
bounded residuated lattice, 127	CIdRMMon, 107
bounded Wajsberg hoop, 206	CIdRMSgrp, 107
br-unar, 259	CIdRPoMon, 53
BrA, 201	CIdRPoSgrp, 52
BRL, 262	CIdRSIMon, 209
bRL, 127	CIdRSISgrp, 209
BRMag, 260	CI-DT-S mm 241
BRMod, 282	CIdToMon 228
Brouwerian algebra, 201	CIdToMon, 238 CIdToSgrp, 237
Brouwerian semilattice, 108	
BRSgrp, 261	CIInFL, 150
BrSlat, 108	CIJMon, 77 CILMon, 141
BRUn, 259	CILMON, 141 CIMMON, 101
BSgrp, 253	CIMMON, 101 CInFL, 149
BSlat, 271	CInLMag, 148
Bull. Am. Math. Soc., 338	CInLNag, 148 CInLSgrp, 149
BUn, 249	cinpo-magma, 54, 148
c, 25, 59, 85, 112, 163, 217, 249	cinpo-monoid, 55
Can. Math. Bull., 338	cinpo-semigroup, 54, 149
	ompo bonnaroup, or, 170

CInPoMag, 54	commutative division partially ordered set, 47
CInPoMon, 54	commutative idempotent involutive FL-algebra, 147
CInPoSgrp, 54	commutative idempotent involutive residuated lattice, 147
CInSlMon, 210	commutative idempotent join-semilattice-ordered monoid,
CInSlSgrp, 210	78
CInToMag, 242	commutative idempotent join-semilattice-ordered
CInToMon, 243	semigroup, 78
	·
CInToSgrp, 243	commutative idempotent lattice-ordered monoid, 142
CInvSgrp, 303	commutative idempotent lattice-ordered semigroup, 141
CIPoMon, 45	commutative idempotent meet-semilattice-ordered
CIRJMon, 82	monoid, 102
CIRL, 146	commutative idempotent meet-semilattice-ordered
CIRMMon, 105	semigroup, 101
CIRSIMon, 204	commutative idempotent partially ordered monoid, 47
CIRToMon, 241	commutative idempotent partially ordered semigroup, 46
CIToMon, 237	commutative idempotent residuated
CJMon, 76	join-semilattice-ordered monoid, 83
CJSgrp, 76	commutative idempotent residuated
Clifford semigroup, 326	join-semilattice-ordered semigroup, 82
CliffSgrp, 326	commutative idempotent residuated lattice, 147, 195, 275
CLMon, 140	commutative idempotent residuated lattice-ordered
CLRng, 215	semigroup, 146, 194
CLSgrp, 139	commutative idempotent residuated
CMag, 300	meet-semilattice-ordered monoid, 107
CMMon, 100	· · · · · · · · · · · · · · · · · · ·
,	commutative idempotent residuated
CMon, 303	meet-semilattice-ordered semigroup, 107
CMSgrp, 99	commutative idempotent residuated partially ordered
CnjMag, 320	monoid, 53
commutative, 44–47, 50–53, 56, 76–78, 80–83, 99–102,	commutative idempotent residuated partially ordered
104, 105, 107, 108, 139–142, 144–147, 188–195, 198,	semigroup, 52
203, 204, 209, 215, 236–238, 240–242, 244, 246,	commutative idempotent residuated semigroup, 275
269–275, 300	commutative idempotent residuated semilinear monoid,
commutative distributive division lattice, 191, 272	209
commutative distributive idempotent lattice-ordered	commutative idempotent residuated semilinear semigroup,
monoid, 191	209
commutative distributive idempotent lattice-ordered	commutative idempotent residuated totally ordered
semigroup, 190	monoid, 242
commutative distributive idempotent monoid, 272	commutative idempotent residuated totally ordered
commutative distributive idempotent semigroup, 271	semigroup, 241
commutative distributive integral involutive FL-algebra,	commutative idempotent totally ordered monoid, 238
197, 277	commutative idempotent totally ordered semigroup, 238
	commutative integral involutive FL-algebra, 150
commutative distributive integral lattice-ordered monoid,	
190	commutative integral join-semilattice-ordered monoid, 77
commutative distributive integral monoid, 270	commutative integral lattice-ordered monoid, 141
commutative distributive involutive FL-algebra, 196, 277	commutative integral meet-semilattice-ordered monoid,
commutative distributive involutive lattice-ordered	101
magma, 195	commutative integral partially ordered monoid, 46
commutative distributive involutive lattice-ordered	commutative integral residuated join-semilattice-ordered
semigroup, 196	monoid, 82
commutative distributive involutive magma, 276	commutative integral residuated Mmetsemilattice-ordered
	<u> </u>
commutative distributive involutive semigroup, 276	monoid, 105
commutative distributive lattice-ordered monoid, 189	commutative integral residuated semilinear monoid, 204
commutative distributive lattice-ordered semigroup, 188	commutative integral residuated totally ordered monoid,
commutative distributive monoid, 270	241
commutative distributive residuated lattice, 193, 274	commutative integral totally ordered monoid, 237
commutative distributive residuated lattice-ordered	commutative inverse semigroup, 303
magma, 192	commutative involutive FL-algebra, 148, 149
commutative distributive residuated lattice-ordered	commutative involutive lattice-ordered magma, 148
	G ,
semigroup, 192	commutative involutive lattice-ordered semigroup, 149
commutative distributive residuated magma, 273	
	commutative involutive partially ordered magma, 54
commutative distributive residuated semigroup, 273	commutative involutive partially ordered monoid, 55
commutative distributive residuated semigroup, 273 commutative distributive semigroup, 269	
9 17	commutative involutive partially ordered monoid, 55
commutative distributive semigroup, 269	commutative involutive partially ordered monoid, 55 commutative involutive partially ordered semigroup, 54

commutative involutive totally ordered magma, 242	CRJMag, 80
commutative involutive totally ordered monoid, 243	CRJMon, 81
commutative involutive totally ordered semigroup, 243	CRJSgrp, 80
commutative join-semilattice-ordered monoid, 76	CRL, 145
commutative join-semilattice-ordered semigroup, 76	CRLMag, 143
commutative lattice-ordered monoid, 140	CRLSgrp, 144
commutative lattice-ordered ring, 215	CRMMag, 103
commutative lattice-ordered semigroup, 139	CRMMon, 105
commutative magma, 300	CRMSgrp, 104
commutative meet-semilattice-ordered monoid, 100	CRng, 316
commutative meet-semilattice-ordered semigroup, 99	CRPoMag, 48
commutative monoid, 303	CRPoMon, 51
commutative partially ordered monoid, 45	CRPoSgrp, 50
commutative partially ordered semigroup, 44	CRSlMon, 203
commutative regular ring, 314	CRSlSgrp, 203
commutative residuated join-semilattice-ordered magma,	CRToMag, 239
80	CRToMon, 240
commutative residuated join-semilattice-ordered monoid, 81	CRToSgrp, 239
commutative residuated join-semilattice-ordered	CSgrp, 301
semigroup, 80	CSrng, 314
commutative residuated lattice, 145	CToDivLat, 239
commutative residuated lattice, 145 commutative residuated lattice-ordered magma, 143	CToMon, 236
commutative residuated lattice-ordered semigroup, 144	CToRng, 246
commutative residuated meet-semilattice-ordered magma,	CToSgrp, 236
103	cyclic distributive integral involutive FL-algebra, 186, 269
commutative residuated meet-semilattice-ordered monoid,	cyclic distributive involutive FL-algebra, 186, 268
105	cyclic distributive involutive lattice-ordered magma, 185
commutative residuated meet-semilattice-ordered	cyclic distributive involutive lattice-ordered semigroup,
semigroup, 104	185
commutative residuated partially ordered magma, 48	cyclic distributive involutive magma, 267
commutative residuated partially ordered monoid, 51	cyclic distributive involutive semigroup, 268
commutative residuated partially ordered semigroup, 50	cyclic integral involutive FL-algebra, 139
commutative residuated semilinear monoid, 203	cyclic integral involutive totally ordered monoid, 234
commutative residuated semilinear semigroup, 203	cyclic involutive FL-algebra, 138
commutative residuated totally ordered magma, 239	cyclic involutive lattice-ordered magma, 137
commutative residuated totally ordered monoid, 240	cyclic involutive lattice-ordered semigroup, 138
commutative residuated totally ordered semigroup, 240	cyclic involutive partially ordered integral monoid, 43
commutative ring, 316	cyclic involutive partially ordered magma, 42
commutative ring with identity, 317	cyclic involutive partially ordered monoid, 43
commutative semigroup, 301	cyclic involutive partially ordered semigroup, 42
commutative semiring, 314	cyclic involutive porim, 43
commutative semiring with identity, 314	cyclic involutive totally ordered magma, 233
commutative semiring with identity and zero, 315	cyclic involutive totally ordered monoid, 234
commutative semiring with zero, 315	cyclic involutive totally ordered semigroup, 233
commutative totally ordered division lattice, 239	CyDIInFL, 186
commutative totally ordered monoid, 236	CyDInFL, 186
commutative totally ordered ring, 246	CyDInLMag, 185
commutative totally ordered semigroup, 236	CyDInLSgrp, 185
compatible, 18	CylinFL, 139
complemented lattice, 154	CyInToMon, 234 CyInFL, 138
complemented modular lattice, 158	•
completely meet irreducible, 18	CyInLMag, 137
complex algebra, 271	CyInLSgrp, 138
congruence, 17	cyinpo-magma, 42, 137
congruence class, 17	cyinpo-monoid, 43
conjugates, 251	cyinpo-semigroup, 42, 138 CyInPoMag, 42
conjugative magma, 320	•
constants, 16	CyInPoMon, 43
contractive, 131	CyInPorim, 43 CyInPoSgrp, 42
CplmLat, 154	CylnToMag, 233
CPoMon. 45	CyInToMon, 234
CPoMon, 45 CPoSgrp, 44	CyInToSorp, 233
Crosgrp, 44 CRegRng, 314	cylindric algebra, 278
Oroginis, 314	cymianic aigebra, 210

DblStAlg, 169	division join-semilattice, 72
DDblpAlg, 168	division lattice, 125
DDivLat, 177	division meet-semilattice, 96
DdpAlg, 168	division poset, 34
De Morgan algebra, 166	division ring, 318
De Morgan monoid, 167	DivJslat, 72
decision problem, 19	•
-	DivLat, 125
DGalLat, 181	DivMslat, 95
DIdLMon, 172	DivPos, 34
DIdLrLMon, 176	DivRng, 318
DIdLrLSgrp, 175	DLat, 162
DIdLSgrp, 171	DLImpA, 172
DIdRL, 181	DLMag, 169
DIdRLSgrp, 180	DLMon, 170
DIInFL, 184	DLNUn, 165
DILMon, 171	DLrLMag, 173
DILrLMon, 175	DLrLMon, 174
DInFL, 184	
	DLrLSgrp, 173
DInLat, 182	DLSgrp, 170
DInLMag, 182	DLUn, 164
DInLSgrp, 183	DmA, 166
direct product, 16	DmMon, 167
direct products, 17	double Stone algebra, 169
directoid, 321	DpAlg, 167
DIRL, 180	DRL, 179
Discrete Math., 338	DRLMag, 177
Distributive p-algebra, 165	DRLSgrp, 178
distributive division lattice, 177	·
distributive double p-algebra, 168	DRLUn, 176
	Dtoid, 321
distributive dual p-algebra, 168	dual pseudocomplement, 168
distributive Galois lattice, 181	Dunn monoid, 211
distributive idempotent, 171, 172, 175, 180	DunnMon, 211
distributive idempotent lattice-ordered monoid, 172	
distributive idempotent lattice-ordered semigroup, 171	Electron. J. Comb., 338
distributive idempotent left-residuated lattice-ordered	embedding, 18
monoid, 176	endomorphism monoid, 295
distributive idempotent left-residuated lattice-ordered	equation, 17
semigroup, 175	equational class, 17
distributive idempotent residuated lattice, 181	equational theory, 17
distributive idempotent residuated lattice-ordered	equivalence relation, 17
semigroup, 180	,
distributive integral involutive FL-algebra, 184	EucDom, 322
distributive integral involutive FE-algebra, 164 distributive integral lattice-ordered monoid, 171	euclidean, 279
,	Euclidean domain, 322
distributive integral residuated lattice, 180	0.11.040
distributive involutive FL-algebra, 184	field, 319
distributive involutive lattice, 182	first-order class, 19
distributive involutive lattice-ordered magma, 182	FL, 130, 133
distributive involutive lattice-ordered semigroup, 183	FL_c -algebra, 131
distributive lattice, 162	FL_e -algebra, 131
distributive lattice-ordered left-residuated integral	FL_w -algebra, 132
monoid, 175	FL_{ec} -algebra, 133
distributive lattice-ordered monoid, 170	FL-algebra, 130
distributive lattice-ordered negated unar, 165	Fld, 319
, , , , , , , , , , , , , , , , , , ,	
distributive lattice-ordered residuated integral monoid,	FRng, 159
194	full Lambek algebra, 130
distributive lattice-ordered semigroup, 170	full Lambek algebra with exchange, 131
distributive lattice-ordered unar, 164	full Lambek algebra with exchange and contraction, 133
distributive left-residuated lattice-ordered magma, 173	full transformation semigroup, 295
distributive left-residuated lattice-ordered monoid, 174	function ring, 159
distributive left-residuated lattice-ordered semigroup, 174	FVec, 324
distributive p-algebra, 167	
distributive residuated lattice, 179	G-set, 323
distributive residuated lattice-ordered magma, 177	GödA, 208
distributive residuated lattice-ordered semigroup, 178	Gödel algebra, 208
distributive residuated lattice-ordered unar, 177	GalJslat, 61
distribution residence interior ordered until, 111	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GalLat, 134	idempotent residuated meet-semilattice-ordered
GalMslat, 87	semigroup, 98
Galois chain, 230	idempotent residuated partially ordered monoid, 38
Galois join-semilattice, 62	idempotent residuated partially ordered semigroup, 37
Galois lattice, 134	idempotent residuated totally ordered monoid, 228
Galois meet-semilattice, 87	idempotent residuated totally ordered semigroup, 228
Galois poset, 39	idempotent semiring with and zero, 64
GalPos, 39	idempotent semiring with identity and zero, 65
GalToLat, 230	idempotent semiring with zero, 64
GBA, 201	idempotent totally ordered monoid, 220
GBL, 198	idempotent totally ordered semigroup, 220
generalized, 22	identity, 279
generalized BL-algebra, 198	IdJMon, 67
generalized Boolean algebra, 201	IdJSgrp, 67
generalized MV-algebra, 199	IdLMon, 120
GMV, 199	IdLrJMon, 71
group, 299	IdLrJSgrp, 70
group inverse, 299	IdLrLMon, 124
Grp, 299	IdLrLSgrp, 123
Gset, 323	IdLrMMon, 94
	IdLrMSgrp, 94
HA, 207	IdLrPoMon, 33
Heyting algebra, 207	IdLrPoSgrp, 33
HilA, 49	IdLrToMon, 224
Hilbert algebra, 49	IdLrToSgrp, 223
homomorphic image, 16, 18	IdLSgrp, 119
homomorphic images, 16	IdMMon, 90
homomorphism, 16, 18	IdMSgrp, 89 IdPoMon, 30
hoop, 106	IdPoSgrp, 29
Houston J. Math., 339	IdRJMon, 75
Hp, 106	IdRJSgrp, 75
	IdRL, 129
idempotent, 29, 30, 33, 37, 38, 67, 70, 71, 75, 89, 90, 94,	IdRLSgrp, 129
95, 98, 99, 119, 120, 123, 124, 129, 176, 181, 220, 223,	IdRMMon, 99
224, 228, 259, 263, 329	IdRMSgrp, 98
idempotent join-semilattice-ordered monoid, 67	IdRPoMon, 38
idempotent join-semilattice-ordered semigroup, 67	IdRPoSgrp, 37
idempotent lattice-ordered monoid, 120	IdRToMon, 228
idempotent lattice-ordered semigroup, 119	IdRToSgrp, 228
idempotent left-residuated join-semilattice-ordered	IdToMon, 220
monoid, 71	IdToSgrp, 220
idempotent left-residuated join-semilattice-ordered	IInFL, 137
semigroup, 70	IInToMon, 232
idempotent left-residuated lattice-ordered monoid, 124	IJMon, 66
idempotent left-residuated lattice-ordered semigroup, 123	ILLA, 159
idempotent left-residuated meet-semilattice-ordered	ILMon, 119
monoid, 94	$ilr\ell$ -monoid, 123
idempotent left-residuated meet-semilattice-ordered	ILrJMon, 70
semigroup, 94	ILrLMon, 122
idempotent left-residuated partially ordered monoid, 33	ILrMMon, 93
idempotent left-residuated partially ordered semigroup, 33	ILrToMon, 223
idempotent left-residuated totally ordered monoid, 224	IMMon, 89
idempotent left-residuated totally ordered semigroup, 223	ImpLat, 212
idempotent meet-semilattice-ordered monoid, 90	implicative lattice, 212
idempotent meet-semilattice-ordered semigroup, 89	IMTL, 211
idempotent partially ordered monoid, 30	IMTLChn, 244
idempotent partially ordered semigroup, 29	in-pocrim, 55
idempotent residuated join-semilattice-ordered monoid, 75	in-porim, 41
idempotent residuated join-semilattice-ordered semigroup,	InFL, 136
75	InLat, 134
idempotent residuated lattice, 129	InLMag, 135
idempotent residuated lattice-ordered semigroup, 129	InLSgrp, 135
idempotent residuated meet-semilattice-ordered monoid,	inpo-magma, 40
99	inpo-monoid, 41

inpo-semigroup, 40	JImpA, 68
InPocrim, 55	JMag, 62
InPoMag, 40	JMon, 63
InPoMon, 41	jn-nunar, 61
InPorim, 41	JNUn, 61
InPos, 39	join, 58, 110
InPoSgrp, 40	join-preserving, 63, 250, 279, 280, 282
Int. J. Math. Math. Sci., 338	join-semidistributive lattice, 150
IntDom, 317	join-semilattice, 57, 58
integral, 37, 74, 98, 128, 132, 133, 180, 227, 262, 322	join-semilattice-ordered left-residuated integral monoid, 70
integral domain, 317	join-semilattice-ordered magma, 62
integral involutive FL-algebra, 137	join-semilattice-ordered monoid, 63
integral involutive totally ordered monoid, 233	join-semilattice-ordered negated unar, 61
integral join-semilattice-ordered monoid, 66	join-semilattice-ordered semigroup, 62
integral lattice-ordered monoid, 119	join-semilattice-ordered unar, 61
integral left-residuated lattice-ordered monoid, 123	joinpreserving, 63
integral left-residuated meet-semilattice-ordered monoid,	Jor A, 325
93	Jordan algebra, 325
integral left-residuated totally ordered monoid, 223	JsdLat, 150
integral meet-semilattice-ordered monoid, 89	JSgrp, 62
integral partially ordered monoid, 29	jsl-unar, 71
integral relation algebra, 281	Jslat, 57
integral residuated join-semilattice-ordered monoid, 74	JUn, 61
integral residuated lattice, 128	***
integral residuated totally ordered monoid, 227	KA, 65
integral totally ordered monoid, 219	kernel, 17
InToLat, 230	KLA, 213
InToMag, 231	KLat, 116
InToMon, 232	Kleene algebra, 65
InToSgrp, 231	Kleene lattice, 116
intuitionistic linear logic algebra, 159	Kleene logic algebra, 213
inverse, 295	Lat, 110
inverse semigroup, 296	lattice, 110, 111
involution, 148, 279, 280	lattice implication algebra, 206
involutive chain, 230	Lattice theory. Corr. repr. of the 1967 3rd ed, 338
involutive FL-algebra, 136	lattice-ordered group, 187
involutive lattice, 134	lattice-ordered monoid, 115
involutive lattice-ordered magma, 135	lattice-ordered negated unar, 114
involutive lattice-ordered semigroup, 135	lattice-ordered residuated integral monoid, 146
involutive monoidal t-norm logic algebra, 211	lattice-ordered ring, 214
involutive monoidal t-norm logic chain, 244	lattice-ordered semigroup, 114
involutive partially ordered commutative integral monoid,	lattice-ordered unar, 113
55	lbJslat, 59
involutive partially ordered integral monoid, 41	Lectures on linear logic, 339
involutive partially ordered magma, 40	left cancellative semigroup, 301
involutive partially ordered monoid, 41	left neofield, 325
involutive partially ordered semigroup, 40 involutive poset, 39	left-conjugate, 279
• /	left-residuated join-semilattice-ordered magma, 68
involutive totally ordered magma, 231 involutive totally ordered monoid, 232	left-residuated join-semilattice-ordered monoid, 69
involutive totally ordered semigroup, 231	left-residuated join-semilattice-ordered semigroup, 69
	left-residuated lattice-ordered magma, 121
InvSgrp, 296 IPoMon, 29	left-residuated lattice-ordered monoid, 122
IRA, 281	left-residuated lattice-ordered semigroup, 121
IRJMon, 74	left-residuated meet-semilattice-ordered magma, 91
IRL, 128	left-residuated meet-semilattice-ordered monoid, 92
IRMMon, 98	left-residuated meet-semilattice-ordered semigroup, 91
IRToMon, 227	left-residuated partially ordered magma, 31
isomorphic, 16, 18	left-residuated partially ordered monoid, 32
isomorphism, 16, 18	left-residuated partially ordered semigroup, 31
IToMon, 219	left-residuated totally ordered magma, 221
110:10:1, 210	left-residuated totally ordered monoid, 222
j-unar, 61	left-residuated totally ordered semigroup, 222
J. Algebra, 338	left-selfdistributive, 329
J. Symb. Log., 339	LGrp, 187

Lie algebra, 326	MNUn, 86
LieA, 326	modal algebra, 250
LImpA, 120	ModLat, 117
lineales, 51, 105	ModOLat, 156
linear Heyting algebras, 208	modular identity, 117
linear logic algebra, 160	modular lattice, 117
LLA, 159	modular law, 117, 156
LMag, 114	modular ortholattice, 156
LMon, 115	module over \mathbf{R} , 323
LNeofld, 325	Mon, 297
LNUn, 114	MonA, 252
loop, 289	monadic algebra, 252
lower bounded join-semilattice, 59	monoid, 297
Lp, 289	monoidal t-norm logic algebra, 204
lrj-magma, 68	Moufang loop, 289
lrj-semigroup, 69	Moufang quasigroup, 288
LrJMag, 68	MouLp, 289
LrJMon, 69	MouQgrp, 288
LrJSgrp, 69	MsdLat, 151
LrLMag, 121	Mset, 323
LrLMon, 122	MSgrp, 88
LrLSgrp, 121	msl-unar, 95
lrm-magma, 91	Mslat, 84
lrm-monoid, 92	MTLA, 204
lrm-semigroup, 91	multiplicative additive linear logic algebra, 160
LrMMag, 91	multiplicative identity, 308
LrMMon, 92	multiplicative lattice, 118
LrMSgrp, 91	multiplicative semilattice, 62
LRng, 214	multivalued logic algebra, 206
lrpo-magma, 31, 121	MultLat, 118
lrpo-monoid, 32	MUn, 86
lrpo-semigroup, 31, 121 LrPoMag, 31	MV, 206
LrPoMon, 32	MV-algebra, 206
LrPoSgrp, 31	NA, 279
LrToMag, 221	NaA, 327
LrToMon, 222	natural map, 17
LrToSgrp, 222	NBnd, 292
LSgrp, 114	NdLat, 152
LtCanSgrp, 301	near-field, 306
Lukasiewicz algebra of order n , 214	near-ring, 307
LUn, 113	near-ring with identity, 308
,	neardistributive lattice, 152
m-zeroid, 212	necessity operator, 250
MA, 250	neofield, 308
Mag, 291	Neofld, 308
magma, 291	NFld, 306
MALLA, 160	nilpotence class of G , 327
Math. Ann., 338, 339	nilpotent, 327
Math. Japon., 339	nilpotent group, 327
Math. Scand., 339	NlGrp, 327
medial magma, 326	non, 22
MedMag, 326	nonassociative relation algebra, 279
meet, 58, 110	noncommutative, 22
meet-semidistributive lattice, 151	normal, 250, 282
meet-semilattice, 58, 84	normal band, 292
meet-semilattice-ordered magma, 87	normal valued, 213
meet-semilattice-ordered monoid, 88	normal valued lattice-ordered group, 213
meet-semilattice-ordered negated unar, 86	not necessarily commutative, 22
meet-semilattice-ordered residuated integral monoid, 98	NRng, 307
meet-semilattice-ordered semigroup, 88	NVLGrp, 213
meet-semilattice-ordered unar, 86 MImpA, 90	OckA, 166
MMag, 87	Ockham algebra, 166
MMon, 88	OLat, 155

OModLat, 156	pPos, 25
one-to-one, 16	precongruence, 18
onto, 16, 18	prelinear, 204
operation, 16	preorder, 18
OrdA, 328	Preprint available at http://www. math. iastate.
order algebra, 328	edu/dpigozzi, 339
order-preserving, 18, 245, 246	principal ideal domain, 322
order-reflecting, 18	Proc. Am. Math. Soc., 339
order-type, 18	Proc. Imp. Acad. Tokyo, 338
ordered field, 246	proper, 21
ordered set, 24	pSet, 285
orderpreserving, 27, 28, 44, 88, 115, 170, 187, 188, 218,	pseudo, 22
219, 253, 254	-
	pseudo complement, 165, 167
Ore domain, 322	pseudo MV-algebra, 199
OreDom, 322	pseudocomplemented distributive lattice, 165
ortholattice, 155	psMV, 199
orthomodular lattice, 156	psMV-algebra, 199
	pToLat, 217
partial, 18	
partially ordered algebra, 18	Qgrp, 288
partially ordered group, 44	qMV, 329
Partially ordered groups, 338	Qnd, 329
partially ordered left-residuated integral monoid, 32	QtMag, 331
partially ordered magma, 27	quandle, 329
partially ordered monoid, 28	quasi-MV-algebra, 329, 330
partially ordered negated unar, 26	quasigroup, 288
partially ordered residuated integral monoid, 37, 52	quasitrivial, 331
partially ordered semigroup, 27	quasitrivial magma, 331
partially ordered set, 24	quasivariety, 19
partially ordered unar, 26	quotient algebra, 17, 18
partition, 17	4
pBA, 248	RA, 280
pcDLat, 165	RecBnd, 293
pDLat, 163	rectangular band, 293
pGrp, 328	RegRng, 313
	RegSgrp, 295
PIDom, 322	
pJslat, 59	regular, 295
pLat, 112	regular ring, 313
pMslat, 85	regular semigroup, 295
po-algebra, 18	relation algebra, 280
po-algebras, 14	RepLGrp, 188
po-nunar, 26, 114	representable lattice-ordered group, 188
po-unar, 26, 86	residuated, 16
po-variety, 19	residuated join-semilattice-ordered magma, 72
Pocrim, 52	residuated join-semilattice-ordered monoid, 74
PoGrp, 44	residuated join-semilattice-ordered semigroup, 73
PoImpA, 30	residuated join-semilattice-ordered unar, 71
pointed Boolean algebra, 249	residuated lattice, 126
pointed distributive lattice, 163, 217	residuated lattice-ordered magma, 125
pointed join-semilattice, 59	residuated lattice-ordered semigroup, 126
pointed lattice, 112	residuated lattice-ordered unar, 124
pointed meet-semilattice, 85	Residuated lattices. An algebraic glimpse at substructura
pointed poset, 25	logics, 338
pointed set, 285	residuated meet-semilattice-ordered magma, 96
Polrim, 32	residuated meet-semilattice-ordered monoid, 97
	•
polrim, 32	residuated meet-semilattice-ordered semigroup, 97
PoMag, 27	residuated meet-semilattice-ordered unar, 95
PoMon, 28	residuated partially ordered magma, 35
PoNUn, 26	residuated partially ordered monoid, 36
Porim, 37	residuated partially ordered semigroup, 35
Pos, 24	residuated partially ordered unar, 34
poset, 24	residuated totally ordered magma, 225
PoSgrp, 27	residuated totally ordered monoid, 226
possibility operator, 250	residuated totally ordered semigroup, 226
PoUn, 26	residuated totally-ordered unar, 224

reverses joins, 14	SkLat, 293
reversing meets, 14	sqMV, 330
right hoop, 93	Srng, 309
right quasigroup, 287	StAlg, 168
right-conjugate, 279	Stone algebra, 168
right-selfdistributive, 329	strict partial order, 25
ring, 311	Stud. Log., 338, 339
ring with identity, 312	Stud. Sci. Math. Hung., 339
RJMag, 72	subalgebra, 16, 18
RJMon, 74	subalgebras, 17
RJSgrp, 73	subdirect decomposition, 18
RJUn, 71	subdirectly irreducible, 18
RL, 126	surjective, 16, 18
RLMag, 125	symmetric inverse semigroup, 296
RLSgrp, 126	0 17
RLUn, 124	TA, 251
RMMag, 96	TarA, 50
RMMon, 97	Tarski algebra, 50
RMod, 323	tense algebra, 251
RMSgrp, 96	term algebra over a set X , 17
RMUn, 95	the group action by g , 323
Rng, 311	the identity element e is 0 or an atom, 281
rpj-monoid, 74	the monoid action by $m, 323$
	The structure of finite algebra, 339
rpo-magma, 35, 72, 96, 125	ToDivLat, 225
rpo-monoid, 36	ToFld, 246
rpo-unar, 34	ToGrp, 235
RPoMag, 35	ToImpA, 221
RPoMon, 36 RPoSgrp, 35	ToLat, 216
RPoUn, 34	ToMag, 218
	ToMon, 219
RtHp, 93	ToNUn, 229
rto-unar, 224	ToRng, 245
RToMag, 225	ToSgrp, 218
RToMon, 226 RToSgrp, 226	totally ordered division lattice, 225
RToUn, 224	totally ordered group, 235
	totally ordered lattice, 216
RtQgrp, 287	totally ordered monoid, 219
satisfies, 17	totally ordered negated unar, 229
scalar multiplication by a , 324	totally ordered ring, 245
scalar multiplication by r , 324	totally ordered semigroup, 218
SdLat, 152	totally ordered unar, 229
self conjugated, 252	ToUn, 229
semi, 22	Trans. Am. Math. Soc., 338, 339
semidistributive lattice, 152	TrivA, 331
semifield, 319	trivial algebra, 331
semigroup, 294	171
semigroup product, 294, 295	ubJslat, 60
semigroup with zero, 294	UFDom, 321
semiring, 309	Unar, 286
semiring with identity, 309	unar, 286
semiring with identity and zero, 311	unary closure operator, 252
semiring with zero, 310	unique factorization domain, 321
SegA, 278	universal class, 19
sequential algebra, 278	upper-bounded join-semilattice, 60
Set, 284	variety, 17, 19
set, 284	variety generated by \mathcal{K} , 18
set of terms with variables from a set X , 17	vector space, 324
Sfld, 319	opaco, v=1
Sgrp, 294	WaHp, 200
Shell, 290	Wajsberg algebra, 206
shell, 290	Wajsberg hoop, 200
signature, 16, 18	well-defined, 17
skew field, 318	with the induced partial order, 18
skew lattice, 293	