```
import statistics
          import matplotlib.pyplot as plt
          import pandas as pd
          import seaborn as sns
          import numpy as np
          from mpl_toolkits.mplot3d import Axes3D
          import statsmodels.formula.api as sm
          from sklearn import cluster
          %matplotlib inline
          plot kwds = {'alpha' : 0.25, 's' : 80, 'linewidths' : 0}
In [152]: #appending letters for each bin
          def createAPBin():
              binPA = []
              for x in df.AffectedPercentage:
                  if x > 70:
                      binPA.append('I')
                  elif x > 60:
                      binPA.append('H')
                  elif x > 50:
                      binPA.append('G')
                  elif x > 40:
                      binPA.append('F')
                  elif x > 30:
                      binPA.append('E')
                  elif x > 20:
                      binPA.append('D')
                  elif x > 10:
                      binPA.append('C')
                  elif x > 0:
                      binPA.append('B')
                  else:
                      binPA.append('A')
              return binPA
          def plot clusters(data, algorithm, args, kwds, xlabel = "x", ylabel = "y", nam
          es = [], print names = False):
              labels = algorithm(*args, **kwds).fit predict(data)
              palette = sns.color palette('deep', np.unique(labels).max() + 1)
              colors = [palette[x] if x \ge 0 else (0.0, 0.0, 0.0) for x in labels]
              plt.scatter(data.T[0], data.T[1], c = colors, **plot kwds)
              frame = plt.gca()
              plt.xlabel(xlabel)
              plt.ylabel(ylabel)
              plt.title('Clusters found by {}'.format(str(algorithm. name ), fontsize=
          24))
              if print names:
                   if len(names) != 0:
                       for i, name in enumerate(names):
                           plt.annotate(name, (data[i, 0], data[i, 1]))
          def dictionary sum(dictionary):
              total = 0
```

In [151]: | #Tim Altemus, Michael Austin, Han Bui

```
for key in dictionary.keys():
    total += dictionary[key]

return total
```

```
In [153]: | df = pd.read csv("harvey.csv")
          display(df.info())
          df = df[df.PopTotal > 0]
          df = df[df.Households > 0]
          df = df[df.Occupied > 0]
          df = df[df.PopTotal / df.Affected > 1]
          df['AffectedPercentage'] = df.Affected / df.PopTotal * 100
          # CREATING AFFECTED PERCENTAGE BIN
          df['AffectedBin'] = createAPBin()
          #MHI: stands for median household income
          initialColumns = ['PopTotal', 'White', 'Black', 'Hispanic', 'Indian', 'Asian',
          'NativeAmerican', 'Other', 'Mixed', 'Households', 'Occupied', 'MHI', 'Affecte
          d', 'Children', 'Seniors', 'AffectedPercentage']
          for i in initialColumns:
              print(i, 'Mean:', '%.3f'%(statistics.mean(df[i])) , 'St Dev: ','%.3f'%(sta
          tistics.stdev(df[i])))
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2539 entries, 0 to 2538
         Data columns (total 25 columns):
         State
                          2539 non-null int64
         County
                          2539 non-null int64
                           2539 non-null int64
         Tract
         BLKGRP
                          2539 non-null int64
                         2539 non-null object
2539 non-null int64
         Geography
         PopTotal
         White
                          2539 non-null int64
                          2539 non-null int64
         Black
                         2539 non-null int64
                        2539 non-null int64
2539 non-null int64
         Hispanic
         Indian
         Asian
                          2539 non-null int64
         NativeAmerican 2539 non-null int64
                           2539 non-null int64
         Other
                          2539 non-null int64
         Mixed
         Households
                         2539 non-null int64
                          2539 non-null int64
         Unoccupied
                          2539 non-null int64
         Occupied
         Vacant
                          2539 non-null int64
                          2539 non-null int64
         MHT
                         2539 non-null int64
         Affected
         Children
                          2539 non-null int64
         Seniors
                           2539 non-null int64
         Count Af 1
                          2539 non-null int64
```

2539 non-null float64

2539 non-null float64

dtypes: float64(2), int64(22), object(1)

Shape Leng

Shape Area

memory usage: 496.0+ KB

None

PopTotal Mean: 2173.390 St Dev: 1948.456
White Mean: 771.751 St Dev: 1063.206
Black Mean: 376.602 St Dev: 591.227
Hispanic Mean: 819.930 St Dev: 801.453
Indian Mean: 4.174 St Dev: 20.283
Asian Mean: 163.950 St Dev: 418.490
NativeAmerican Mean: 1.130 St Dev: 11.454
Other Mean: 4.418 St Dev: 22.407
Mixed Mean: 31.436 St Dev: 60.561
Households Mean: 740.909 St Dev: 596.813
Occupied Mean: 740.909 St Dev: 596.813
MHI Mean: 61698.796 St Dev: 39726.164
Affected Mean: 62.625 St Dev: 102.883
Children Mean: 166.782 St Dev: 205.438
Seniors Mean: 199.936 St Dev: 164.416

AffectedPercentage Mean: 4.340 St Dev: 7.593

In [154]: popTotal = sum(df['PopTotal'])

popColumns = ['White', 'Black', 'Hispanic', 'Indian', 'Asian', 'NativeAmerica
n', 'Other', 'Mixed']

for i in popColumns:
 percentage = (sum(df[i]) / popTotal)
 percentage = '%.2f'%(float(percentage)*100)
 print(i, 'percentage:', percentage, '%')

White percentage: 35.51 % Black percentage: 17.33 % Hispanic percentage: 37.73 % Indian percentage: 0.19 % Asian percentage: 7.54 %

NativeAmerican percentage: 0.05 %

Other percentage: 0.20 % Mixed percentage: 1.45 %

In [155]: df[['PopTotal', 'Households', 'Unoccupied', 'Occupied', 'Vacant']].corr()

Out[155]:

	PopTotal	Households	Unoccupied	Occupied	Vacant
PopTotal	1.000000	0.956875	0.940517	0.956875	0.259328
Households	0.956875	1.000000	0.992090	1.000000	0.339835
Unoccupied	0.940517	0.992090	1.000000	0.992090	0.455203
Occupied	0.956875	1.000000	0.992090	1.000000	0.339835
Vacant	0.259328	0.339835	0.455203	0.339835	1.000000

Out[156]:

	МНІ	Affected	Households	Unoccupied	Occupied	Vacant
МНІ	1.000000	-0.098142	0.184385	0.156466	0.184385	-0.135591
Affected	-0.098142	1.000000	-0.089817	-0.076428	-0.089817	0.064468

```
Households
            0.184385 -0.089817
                                   1.000000
                                               0.992090
                                                         1.000000
                                                                   0.339835
Unoccupied 0.156466 -0.076428
                                   0.992090
                                               1.000000
                                                         0.992090
                                                                   0.455203
  Occupied 0.184385 -0.089817
                                   1.000000
                                               0.992090
                                                        1.000000
                                                                   0.339835
    Vacant -0.135591 0.064468
                                   0.339835
                                               0.455203 0.339835
                                                                  1.000000
```

```
In [157]: df[['White', 'MHI', 'Affected','Households', 'Unoccupied', 'Occupied', 'Vacan
t']].corr()
```

Out[157]:

	White	MHI	Affected	Households	Unoccupied	Occupied	Vacant
White	1.000000	0.453211	-0.190802	0.771011	0.750424	0.771011	0.153466
МНІ	0.453211	1.000000	-0.098142	0.184385	0.156466	0.184385	-0.135591
Affected	-0.190802	-0.098142	1.000000	-0.089817	-0.076428	-0.089817	0.064468
Households	0.771011	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Unoccupied	0.750424	0.156466	-0.076428	0.992090	1.000000	0.992090	0.455203
Occupied	0.771011	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Vacant	0.153466	-0.135591	0.064468	0.339835	0.455203	0.339835	1.000000

```
In [158]: df[['Black', 'MHI', 'Affected','Households', 'Unoccupied', 'Occupied', 'Vacan
t']].corr()
```

Out[158]:

	Black	МНІ	Affected	Households	Unoccupied	Occupied	Vacant
Black	1.000000	-0.136720	0.145845	0.522868	0.526884	0.522868	0.238770
МНІ	-0.136720	1.000000	-0.098142	0.184385	0.156466	0.184385	-0.135591
Affected	0.145845	-0.098142	1.000000	-0.089817	-0.076428	-0.089817	0.064468
Households	0.522868	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Unoccupied	0.526884	0.156466	-0.076428	0.992090	1.000000	0.992090	0.455203
Occupied	0.522868	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Vacant	0.238770	-0.135591	0.064468	0.339835	0.455203	0.339835	1.000000

```
In [159]: df[['Hispanic', 'MHI', 'Affected','Households', 'Unoccupied', 'Occupied', 'Vac
ant']].corr()
```

Out[159]:

	Hispanic	MHI	Affected	Households	Unoccupied	Occupied	Vacant
Hispanic	1.000000	-0.232042	-0.018740	0.524969	0.518594	0.524969	0.161746
МНІ	-0.232042	1.000000	-0.098142	0.184385	0.156466	0.184385	-0.135591
Affected	-0.018740	-0.098142	1.000000	-0.089817	-0.076428	-0.089817	0.064468
Households	0.524969	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Unoccupied	0.518594	0.156466	-0.076428	0.992090	1.000000	0.992090	0.455203
Occupied	0.524969	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Vacant	0.161746	-0.135591	0.064468	0.339835	0.455203	0.339835	1.000000

```
In [160]: df[['Indian', 'MHI', 'Affected','Households', 'Unoccupied', 'Occupied', 'Vacan
t']].corr()
```

```
Indian
                        MHI
                             Affected Households Unoccupied Occupied
                                                                      Vacant
    Indian
           1.000000
                    0.048216 -0.055114
                                        0.283762
                                                   0.276259
                                                            0.283762
                                                                     0.057037
      MHI
           0.184385
                                                   0.156466
                                                            0.184385
                                                                    -0.135591
  Affected -0.055114 -0.098142 1.000000
                                       -0.089817
                                                  -0.076428 -0.089817
                                                                     0.064468
Households
          1.000000
                                                   0.992090
                                                            1.000000
                                                                     0.339835
                                        0.992090
Unoccupied 0.276259 0.156466 -0.076428
                                                   1.000000
                                                            0.992090
                                                                     0.455203
 Occupied 0.283762 0.184385 -0.089817
                                        1.000000
                                                   0.992090
                                                            1.000000
                                                                     0.339835
   Vacant 0.057037 -0.135591
                             0.064468
                                        0.339835
                                                   0.455203
                                                            0.339835
                                                                     1.000000
```

In [161]: df[['Asian', 'MHI', 'Affected','Households', 'Unoccupied', 'Occupied', 'Vacan
t']].corr()

Out[161]:

Out[160]:

	Asian	МНІ	Affected	Households	Unoccupied	Occupied	Vacant
Asian	1.000000	0.215121	-0.091156	0.650993	0.635739	0.650993	0.145518
МНІ	0.215121	1.000000	-0.098142	0.184385	0.156466	0.184385	-0.135591
Affected	-0.091156	-0.098142	1.000000	-0.089817	-0.076428	-0.089817	0.064468
Households	0.650993	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Unoccupied	0.635739	0.156466	-0.076428	0.992090	1.000000	0.992090	0.455203
Occupied	0.650993	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Vacant	0.145518	-0.135591	0.064468	0.339835	0.455203	0.339835	1.000000

In [162]: df[['NativeAmerican', 'MHI', 'Affected','Households', 'Unoccupied', 'Occupied'
, 'Vacant']].corr()

Out[162]:

	NativeAmerican	МНІ	Affected	Households	Unoccupied	Occupied	Vacant
NativeAmerican	1.000000	0.005899	-0.021270	0.072154	0.070842	0.072154	0.018963
мні	0.005899	1.000000	-0.098142	0.184385	0.156466	0.184385	-0.135591
Affected	-0.021270	-0.098142	1.000000	-0.089817	-0.076428	-0.089817	0.064468
Households	0.072154	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Unoccupied	0.070842	0.156466	-0.076428	0.992090	1.000000	0.992090	0.455203
Occupied	0.072154	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Vacant	0.018963	-0.135591	0.064468	0.339835	0.455203	0.339835	1.000000

In [163]: df[['Other', 'MHI', 'Affected','Households', 'Unoccupied', 'Occupied', 'Vacan
t']].corr()

Out[163]:

	Other	МНІ	Affected	Households	Unoccupied	Occupied	Vacant
Other	1.000000	0.070739	-0.034731	0.192849	0.190842	0.192849	0.061927
МНІ	0.070739	1.000000	-0.098142	0.184385	0.156466	0.184385	-0.135591
Affected	-0.034731	-0.098142	1.000000	-0.089817	-0.076428	-0.089817	0.064468
Households	0.192849	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Unoccupied	0.190842	0.156466	-0.076428	0.992090	1.000000	0.992090	0.455203
Occupied	0.192849	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835

Vacant 0.061927 -0.135591 0.064468 0.339835 0.455203 0.339835 1.000000

```
In [164]: df[['Mixed', 'MHI', 'Affected','Households', 'Unoccupied', 'Occupied', 'Vacan
t']].corr()
```

Out[164]:

	Mixed	МНІ	Affected	Households	Unoccupied	Occupied	Vacant
Mixed	1.000000	0.189682	-0.107092	0.519732	0.508938	0.519732	0.126552
МНІ	0.189682	1.000000	-0.098142	0.184385	0.156466	0.184385	-0.135591
Affected	-0.107092	-0.098142	1.000000	-0.089817	-0.076428	-0.089817	0.064468
Households	0.519732	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Unoccupied	0.508938	0.156466	-0.076428	0.992090	1.000000	0.992090	0.455203
Occupied	0.519732	0.184385	-0.089817	1.000000	0.992090	1.000000	0.339835
Vacant	0.126552	-0.135591	0.064468	0.339835	0.455203	0.339835	1.000000

```
In [165]: sns.scatterplot(x = 'White', y = 'MHI', data=df, hue='Affected')
   plt.xlim(0, 10000)
   plt.show()
```


In [166]: sns.scatterplot(x = 'Black', y = 'MHI', data=df, hue='Affected')
plt.xlim(0, 4500)
plt.show()


```
In [167]:
            sns.scatterplot(x = 'Hispanic', y = 'MHI', data=df, hue='Affected')
            plt.xlim(0, 6000)
            plt.show()
               250000
                                                              Affected
                                                              400
               200000
                                                              800
                                                              1200
              150000
            Ξ
               100000
               50000
                                   2000
                           1000
                                            3000
                                                   4000
                                                           5000
                                                                   6000
                                          Hispanic
In [168]: sns.scatterplot(x = 'Indian', y = 'MHI', data=df, hue='Affected')
            plt.xlim(0, 100)
            plt.show()
               250000
                                                              Affected
                                                              400
               200000
                                                              800
                                                              1200
              150000
              100000
               50000
                   0
                              20
                                                           80
                                                                    100
                     0
                                                 60
                                           Indian
In [169]:
            sns.scatterplot(x = 'Asian', y = 'MHI', data=df, hue='Affected')
            plt.xlim(0, 2500)
            plt.show()
               250000
                                                              Affected
                                                              0
                                                              400
               200000
                                                              800
                                                              1200
              150000
               100000
               50000
                   0
                             500
                                      1000
                                                          2000
                                                1500
                                                                   2500
                                           Asian
```

```
In [170]: sns.scatterplot(x = 'NativeAmerican', y = 'MHI', data=df, hue='Affected')
   plt.xlim(0, 200)
   plt.show()
```



```
In [171]: sns.scatterplot(x = 'Other', y = 'MHI', data=df, hue='Affected')
plt.xlim(0, 200)
plt.show()
```



```
In [172]: sns.scatterplot(x = 'MHI', y = 'Affected', data=df, hue='Affected')
plt.xlim(10, 200000)
plt.ylim(10, 1200)
plt.show()
```

1200 —


```
In [173]: sns.scatterplot(x = 'Mixed', y = 'MHI', data=df, hue='Affected')
plt.xlim(0, 100)
plt.show()
```



```
In [174]:
          data = df[['MHI', 'AffectedPercentage']].to numpy()
          binPA = list(df.AffectedBin)
          plot clusters(data, cluster.KMeans, (), {'n clusters': 9}, 'MHI', 'AffectedPe
          rcentage', binPA)
          labels = cluster.KMeans(n clusters=9, random state=0).fit(data)
          # FIND AVERAGE MHI PER CLUSTER for groups in the cluster that were affected by
          over 10 percent (remove A's and B's)
          cluster data = { 0 : {'total' : 0, 'total mhi' : 0, 'total affected %' : 0}, 1
          : {'total' : 0, 'total mhi' : 0, 'total affected %' : 0}, 2 : {'total' : 0, 't
          otal mhi' : 0, 'total affected %' : 0}, 3 : {'total' : 0, 'total mhi' : 0 , 't
          otal affected %' : 0}, 4 : {'total' : 0, 'total mhi' : 0, 'total affected %' :
          0}, 5 : {'total' : 0, 'total mhi' : 0, 'total affected %' : 0}, 6 : {'total' :
          0, 'total mhi' : 0, 'total affected %' : 0}, 7 : {'total' : 0, 'total mhi' : 0
            'total affected %' : 0}, 8 : {'total' : 0, 'total mhi' : 0, 'total affected
           %': 0}
          cluster_counts = \{0: \{\}, 1: \{\}, 2: \{\}, 3: \{\}, 4: \{\}, 5: \{\}, 6: \{\}, 7:
          {}, 8 : {} }
          for i in range(len(labels.labels)):
              clust = labels.labels [i]
              point bin = binPA[i]
              if point bin in cluster counts[clust] :
                  cluster counts[clust][point bin] += 1
```

```
cluster_data[clust]['total'] += 1
    cluster_data[clust]['total_mhi'] += data[i][0]
    cluster_data[clust]['total_affected_%'] += data[i][1]

else:
    cluster_counts[clust][point_bin] = 1

for clust in cluster_counts:
    cluster_data[clust]['average_mhi'] = cluster_data[clust]['total_mhi'] / cluster_data[clust]['total']
    print('Cluster {}: {}, Avg MHI: ${:,.2f}, Average Affected Percentage:
{:,.2f}%'.format(clust, {key : cluster_counts[clust][key] for key in sorted(cluster_counts[clust].keys())}, cluster_data[clust]['average_mhi'], cluster_data[clust]['total_affected_%'] / cluster_data[clust]['total'] ))
```

```
Cluster 0: {'A': 201, 'B': 118, 'C': 20, 'D': 6, 'E': 3, 'I': 1}, Avg MHI:
$74,920.16, Average Affected Percentage: 2.37%
Cluster 1: {'A': 16, 'B': 10, 'C': 4, 'D': 2}, Avg MHI: $213,368.29, Average
Affected Percentage: 3.55%
Cluster 2: {'A': 101, 'B': 288, 'C': 92, 'D': 24, 'E': 7, 'F': 1, 'G': 1,
'H': 1}, Avg MHI: $26,213.50, Average Affected Percentage: 6.14%
Cluster 3: {'A': 109, 'B': 46, 'C': 5, 'D': 4, 'E': 2, 'F': 2, 'G': 3, 'I':
1}, Avg MHI: $127,536.88, Average Affected Percentage: 3.00%
Cluster 4: {'A': 269, 'B': 175, 'C': 39, 'D': 7, 'E': 1, 'F': 1}, Avg MHI:
$56,905.36, Average Affected Percentage: 2.71%
Cluster 5: {'A': 142, 'B': 77, 'C': 19, 'D': 3, 'E': 2, 'G': 1}, Avg MHI: $9
7,110.34, Average Affected Percentage: 2.70%
Cluster 6: {'A': 36, 'B': 28, 'C': 16, 'D': 2, 'E': 1, 'F': 1}, Avg MHI: $1,
173.36, Average Affected Percentage: 4.53%
Cluster 7: {'A': 45, 'B': 21, 'C': 7, 'D': 3, 'E': 3}, Avg MHI: $166,048.36,
Average Affected Percentage: 3.59%
Cluster 8: {'A': 208, 'B': 268, 'C': 69, 'D': 18, 'E': 2, 'F': 1, 'G': 3}, A
vg MHI: $40,753.49, Average Affected Percentage: 4.62%
```



```
In [175]: | #Parses out different values from our clusters
          under 50k = 0
          over 50k = 0
          for clust in cluster counts :
              print('Average MHI: ${:,.2f}, Total Affected: {}'.format(cluster data[clus
          t]['average mhi'], dictionary sum({ key if key != 'A' and key != 'B' else '' :
          cluster counts[clust][key] if key != 'A' and key != 'B' else 0 for key in clus
          ter counts[clust].keys()}))
              if cluster data[clust]['average mhi'] < 50000 :</pre>
                  under 50k += dictionary sum({ key if key != 'A' and key != 'B' else ''
          : cluster counts[clust][key] if key != 'A' and key != 'B' else 0 for key in cl
          uster counts[clust].keys()})
              else:
                  over 50k += dictionary sum({ key if key != 'A' and key != 'B' else ''
          : cluster counts[clust][key] if key != 'A' and key != 'B' else 0 for key in cl
          uster counts[clust].keys()})
          print()
          print('Under 50k groups affected by over 10% of population: {}'.format(under 5
          print('Over 50k groups affected by over 10% of population: {}'.format(over 50k
          ) )
          Average MHI: $74,920.16, Total Affected: 30
          Average MHI: $213,368.29, Total Affected: 6
          Average MHI: $26,213.50, Total Affected: 126
          Average MHI: $127,536.88, Total Affected: 17
          Average MHI: $56,905.36, Total Affected: 48
          Average MHI: $97,110.34, Total Affected: 25
          Average MHI: $1,173.36, Total Affected: 20
          Average MHI: $166,048.36, Total Affected: 13
          Average MHI: $40,753.49, Total Affected: 93
          Under 50k groups affected by over 10% of population: 239
          Over 50k groups affected by over 10% of population: 139
In [176]: #>10% Affected Population for Blocks $<50K MHI
          239 / len(df.loc[df.MHI < 50000]) *100
Out[176]: 19.96658312447786
In [177]: #>10% Affected Population for Blocks $>50K MHI
          139 / len(df.loc[df.MHI > 50000])*100
Out[177]: 10.388639760837071
```