

Capstone Project Cardiovascular Risk Prediction

by

Roshan Jamthe

Points for Discussion

- Problem Statement
- Data Summary
- Data Visualization
- Feature engineering
- Feature selection
- Train Test datasets
- ML Models' performance
- Best model
- Feature Importance
- Conclusions

Problem Statement

The dataset is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts. The classification goal is to predict whether the patient has a 10-year risk of future coronary heart disease (CHD).

The dataset provides the patients' information. It includes over 3,000 records and 15 attributes. Each attribute is a potential risk factor. There are demographic, behavioral, and medical risk factors.

Data Summary

Demographic:

Sex: male or female("M" or "F")

Age: Age of the patient; (Continuous - the concept of age is continuous)

Behavioral:

is_smoking: whether or not the patient is a current smoker ("YES" or "NO")

Cigs Per Day: the number of cigarettes that the person smoked on average in one day.(can be considered continuous as one can have any number of cigarettes, even half a cigarette.)

Medical (history):

BP Meds: whether or not the patient was on blood pressure medication (Nominal)

Prevalent Stroke: whether or not the patient had previously had a stroke (Nominal)

Prevalent Hyp: whether or not the patient was hypertensive (Nominal)

Diabetes: whether or not the patient had diabetes (Nominal)

Medical(current):

Tot Chol: total cholesterol level (Continuous)

Sys BP: systolic blood pressure (Continuous)

Dia BP: diastolic blood pressure (Continuous)

BMI: Body Mass Index (Continuous)

Heart Rate: heart rate (Continuous - In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of large number of possible values.)

Glucose: glucose level (Continuous)

Predict variable (desired target):

TenYearCHD: 10-year risk of coronary heart disease CHD(binary: "1", means "Yes", "0" means "No") - DV

Data Visualization

Feature Engineering

Blood Pressures:

Sys_BP: systolic blood pressure (Continuous)

Dia_BP: diastolic blood pressure (Continuous)

New feature,

avg_BP = average of sys_BP and dia_BP

<u>Historical features:</u>

disease_history = BPMeds + prevalentStroke + prevalentHyp + diabetes

Feature Selection

Method

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

- 0.0

-0.1

For feature selection we used Boruta algorithm which is build on top of Random Forest

Train Test datasets

Datasets Explanation

y_train:
Untreated imbalanced
train dataset

y_tl: Undersampled with tomeklinks but still imbalanced train dataset

y_smote:
Oversampled with
SMOTE, so balanced
train dataset

y_test: Imbalanced test dataset

ML Models' performance

Abbrevations

Models

Ir:

Logistic Regression

SVC:

Support vector machine

rf:

Random forest

xgb: XGBoost

Dataset

o : original

tl : under-sampled sm : over-sampled

Best model: Logistic Regression model

Properties of the model:

The model has the best precision and the best auc_roc score.

The model is really fast to react, takes less than 1 second to give out the results.

Feature Importance

Top 3 features

The top 3 features are +vely correlated with the dependent variable.

The top risk factor is age followed by cigarettes per day and blood pressure.

Conclusions

- Selected features for model building : age, cigsPerDay, totChol, avgBP, BMI, heartRate, glucose, disease_history.
- Three train datasets were used for the analysis.
- Built naive bayes, logistic regression, support vector machine, random forest and XGBoost model using the 3 train datasets.
- On comparing all the models, Logistic regression model trained with original dataset gave best performance.
- We found out that, Logistic Regression model is performing the best with the minimum roc_auc score of 0.68, accuracy of 0.66, recall of 0.69 and precision of 0.263.
- Top 3 features that are helpful in predicting the class in decreasing order of their importance are age, cigs_per_day, avgBP.

Thank you!