VE 320 Summer 2019

Introduction to Semiconductor Devices

Instructor: Rui Yang (杨睿)

Office: JI Building 434

rui.yang@sjtu.edu.cn

Band gap

For 1D solid

Brillouin zone

Real-space

Replacing (a+b) by p ...

$$-\frac{2\pi}{p}$$
 $-\frac{\pi}{p}$ $\frac{\pi}{p}$ $\frac{2\pi}{p}$ k

E-k diagram

For 2D solid

Real-space

1st B-Z

E-k diagram

For 2D solid

1st B-Z

E-k diagram

Const. Energy Surface

Band structure in 3D k-space

Γ - center of the BZ

X - [100] intercept; $\Gamma - X$ path Δ

K - [110] intercept; Γ – K path Σ L - [111] intercept; Γ – L path Λ

E-k along Γ-X Direction

E-k along Γ-L Direction

Band structure in 3D k-space

- Direct bandgap
 (electron excited, k constant, E↑ → f↑, v = f λ↑)
- Indirect bandgap

E-k diagram for GaAs

Light holes and heavy holes

Density of states effective mass

- Holes: In the 3D k_x - k_y - k_z coordinate system, the constant energy is essentially spherical for both the heavy and light holes.
- "Average" effective mass
- The volume of a sphere in momentum space is

Volume
$$\propto p^3$$

$$p_{hh}^2 = 2m_{hh}E$$
 and $p_{lh}^2 = 2m_{lh}E$

 $m_{\rm hh}$: effective mass of heavy hole

 $m_{\rm lh}$: effective mass of light hole

2 spheres for hh and lh Total volume $\propto (m_{hh})^{3/2} + (m_{lh})^{3/2}$

Density of states function for holes

$$g_v(E) \propto \text{Volume} \propto (m_{dp}^*)^{3/2} = (m_{hh})^{3/2} + (m_{lh})^{3/2}$$

Density of states effective hole mass $m_{dp}^* = [(m_{hh})^{3/2} + (m_{lh})^{3/2}]^{2/3}$

