矩阵论 Winter 2017

Lecture 6: 范数与极限

Lecturer: Zhitao Liu Scribes: Yusu Pan

6.1 向量范数

定义 6.1.1. 向量 α 的范数, 赋范线性空间

- 向量范数的性质 P5
- 由范数决定的距离 P5
- 1 范数,2 范数与 ∞ 范数 P6
- p 范数 P7

引理 6.1.1. 如果实数 p > 1, q > 1 且 $\frac{1}{p} + \frac{1}{q} = 1$, 则对任意非负实数 a, b 有 $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$

定理 6.1.1. (Holder 不等式) P9

定理 6.1.2. (Minkowski 不等式) P9

定理 6.1.3. $(p \ 范数趋向于 \infty \ 范数)$ 对任意向量 $x = (x_1, \cdots, x_n)^T \in \mathbb{C}^n, 1 \le p < \infty, \|x\|_p = \left(\sum\right) P10$

定理 6.1.4. (由已知范数构造新的向量范数) 设 $\|\cdot\|_{\beta}$ 是 \mathbb{C}^m 上的向量范数, $\mathbf{A} \in \mathbb{C}^{m \times n}$ 且 $rank(\mathbf{A}) = n$, 则由

$$\left\|x\right\|_{\alpha} = \left\|\mathbf{A}x\right\|_{\beta}, x \in \mathbb{C}^{n}$$

所定义的 $\|\cdot\|_{\alpha}$ 是 \mathbb{C}^n 上的向量范数.

定理 6.1.5. 设 \mathbf{V} 是数域 \mathbf{P} 上的 n 维线性空间, P11

定义 6.1.2. (范数的等价性) P13

定理 6.1.6. (向量范数的连续性) 设 $\|\cdot\|$ 是数域 \mathbb{P} 上的 n 维线性空间 \mathbb{V} 上的任一向量范数, $\epsilon_1, \dots \epsilon_n$ 为 $i\mathbb{V}$ 的一组基, \mathbb{V} 中的任一向量 α 可以唯一地表示为 $\alpha = \sum_{i=1}^n x_i \epsilon_i, x = (x_1, \dots, x_n)^T \in \mathbb{P}^n$, 则 $\|\alpha\|$ 是 $x_1, \dots x_n$ 的连续函数.

定理 6.1.7. 有限维线性空间 V 上的任意两个向量范数都是等价的.

定义 6.1.3. (向量序列的收敛性) 收敛, 极限, 发散 P16

向量收敛性的性质 (P17)

- 1
- 2

定理 6.1.8. (向量收敛的充要条件) P18

6-2 Lecture 6: 范数与极限

6.2 矩阵范数

6.2.1 矩阵范数的定义与等价性定理

定义 6.2.1. (矩阵范数的定义) P21

- 非负性
- 齐次性
- 三角不等式

定理 6.2.1. (矩阵范数等价性定理) P23

6.2.2 相容矩阵范数

相容性条件 P24

$$\|\mathbf{A}\mathbf{B}\| \le \|\mathbf{A}\| \|\mathbf{B}\|$$

- Fribenius 范数 $\|\cdot\|_F$ 具备相容性条件
- 矩阵范数 ||·||, 具备相容性条件
- 并非所有矩阵范数都具备相容性条件, 如矩阵范数 ||·||′__

定义 6.2.2. (矩阵范数与向量范数的相容性定义) P26

定理 6.2.2. 设 $\|\cdot\|$ 是 $\mathbb{C}^{n\times n}$ 上的相容矩阵范数,则在 \mathbb{C}^n 上存在与 $\|\cdot\|$ 相容的向量范数.

定理 6.2.3. P28

• 可用于谱半径的估计: $\rho(\mathbf{A}) = \max_i |\lambda_i| \le ||\mathbf{A}||$

6.2.3 算子范数

引理 6.2.1. (有界闭集) P29

引理 6.2.2. P29

定理 6.2.4. (由向量范数导出矩阵范数的定义) 设 $\|\cdot\|_{\mu}$ 和 $\|\cdot\|_{\nu}$ 分别是 \mathbb{C}^m 和 \mathbb{C}^n 上的两个向量范数, 对 $\mathbf{A}\in\mathbb{C}^{m\times n}$, 令

$$\|\mathbf{A}\|_{\mu,\nu} = \max_{\|x\|_{\nu}=1} \|\mathbf{A}x\|_{\mu}$$

则 $\|\cdot\|_{\mu,\nu}$ 是 $\mathbb{C}^{m\times n}$ 上的矩阵范数, 并且 $\|\cdot\|_{\mu},\|\cdot\|_{\nu}$ 和 $\|\cdot\|_{\mu,\nu}$ 相容.

定义 6.2.3. (算子范数) P32

定理 6.2.5. (算子范数之间的相容性) P33

Lecture 6: 范数与极限 6-3

6.2.4 常见矩阵级数

6.2.4.1 p 算子范数 $||A||_n$

定理 6.2.6. (列和范数, 谱范数, 行和范数) P36

6.2.4.2 Frobenius 范数 $||A||_F$

P38

定理 6.2.7. P38

6.2.4.3 谱范数 ||A||₂

定理 6.2.8. P39

6.3 矩阵序列与矩阵级数

6.3.1 矩阵序列

定义 6.3.1. P41

定理 6.3.1. P42

矩阵序列的极限运算的性质 P43

定理 6.3.2. P44

定理 6.3.3. P46

定理 6.3.4. P47

6.3.2 矩阵级数

定义 6.3.2. (矩阵级数的定义) P48

矩阵级数的性质 P49

定义 6.3.3. (矩阵级数绝对收敛的定义) P50

定理 6.3.5. (矩阵级数绝对收敛的充要条件) P50

定义 6.3.4. (矩阵幂级数的定义) P51

定理 6.3.6. (矩阵幂级数绝对收敛的充分条件) P51

推论 6.3.1. P52

定理 6.3.7. P52

6-4 Lecture 6: 范数与极限

推论 6.3.2. (幂级数收敛与矩阵幂级数收敛) P53

定理 6.3.8. P53

定理 6.3.9. (矩阵幂级数收敛的充要条件) P54

可相比于数项级数

$$\sum_{k=0}^{\infty} L^k = \frac{1}{1-L}, 0 < L < 1$$

6.4 矩阵扰动分析

(不在考试范围之内)

6.4.1 矩阵逆的扰动分析

定理 6.4.1. (矩阵逆的扰动上界) P59

定理 **6.4.2.** P60

引理 6.4.1. (条件数的定义) P61

6.4.2 线性方程组解的扰动分析

定理 6.4.3. (线性方程组解的扰动上界) P63

作业

P198 Q10