VIETNAM NATIONAL UNIVERSITY-HO CHI MINH CITY

UNIVERSITY OF SCIENCE

FACULTY OF INFORMATION TECHNOLOGY

FINAL PROJECT REPORT

Student : 20C14001 - Le Duong Tuan Anh

Teacher: Dr. Le Thi Nhan

Class : Master of Information System

Subject : Data Mining

Contents

1		Ger	neral Information	3
	St	udei	nt Information	3
	Re	epor	t Information	3
2		Pro	blem Statement	4
3		Dat	a Description	5
4			a Understanding	
	4.		Description	
	4.	2	Overview by ScatterPlot	8
	4.	3	Statistical Information	9
5		Dat	a Preprocessing	14
	5.	1. Fi	lling Zero-Values	14
		5.1.1	1. Fill by Mean method	. 15
		5.1.2	2. Fill by Regression Method	. 16
	5.	2. 0	utliers Removal	19
6		Solu	ution	21
	6.	1. N	ormalization	21
	6.	2. M	lodel Training	25
	6.	3. Re	esult	27
		6.3.2	1. Accuracy Score	. 27
		6.3.1	1. Confusion Matrix	. 28
7		Con	nclusion	30

1 General Information

Student Information

Student ID	Full Name	Email
20C14001	Le Duong Tuan Anh	leduongtuananh97@gmail.com

Report Information

This report is a summary of the **Final Project** based on **Diabetes prediction with given Pima Indians medical details.**

2 Problem Statement

In this project, I use dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases, which contains data between relationship between some medical details and the result on Diabetes.

The objective of the dataset is to diagnostically predict whether a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

The dataset consists of several medical predictor variables and one target variable, *Outcome*.

Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.

3 Data Description

Total instances (records): 768

Total columns: 9 (8 medical attributes + 1 Outcome Class (has diabetes or not)).

Attribute's detail:

Column	Туре	Datatype	Has missing value?
Pregnancies	Interval-scaled	Int64	No
Glucose	Interval-scaled	Int64	No
BloodPressure	Interval-scaled	Int64	No
SkinThickness	Interval-scaled	Int64	No
Insulin	Interval-scaled	Int64	No
BMI	Interval-scaled	Float	No
DiabetesPedigreeFunction	Interval-scaled	Float	No
Age	Interval-scaled	Int64	No
Outcome	Categorical Data Binary (0/1)	Int64	No

Attribute's meaning:

Pregnancies: Number of times pregnant

Glucose: Plasma Glucose Concentration.

BloodPressure: Diastolic Blood Pressure.

SkinThickness: Estimate body fat.

Insulin: 2-Hour Serum Insulin.

BMI: Body Mass Index.

DiabetesPedigreeFunction: information about diabetes history in relatives and genetics.

Age: Age (years).

Outcome: 0 = Diabetic, 1 = Not Diabetic

4 Data Understanding

4.1 Description

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	${\sf Diabetes Pedigree Function}$	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

4.2 Overview by ScatterPlot

4.3 Statistical Information

2.1. Pregnancies

2.2. Glucose

2.3. BloodPressure

2.4. SkinThickness

2.5. Insulin

2.6. BMI

2.7. DiabetesPedigreeFunction

2.8. Age

2.9. Outcome

5 Data Preprocessing

As we don't have any null-values, so we will check on zero-values and remove outliers (if needed).

5.1. Filling Zero-Values

column	total_zeros_value
Pregnancies	111
Glucose	5
BloodPressure	35
SkinThickness	227
Insulin	374
BMI	11
DiabetesPedigreeFunction	0
Age	0
Outcome	500

The **Pregnancies** column can be zero, as the gender might be male. There are 5 columns has zeros values: **Glucose**, **BloodPressure**, **SkinThickness**, **Insulin and BMI**. For example, SkinThickness cannot be zero, and BMI also. The other medical details cannot be zero, at least there must be very small values.

So, let's apply different type of zero-filling methods here.

5.1.1. Fill by Mean method

We just fill by mean on columns that have not much zero-values.

The applied columns: Glucose, BloodPressure, BMI.

```
# Glucose, BloodPressure, BMI can't be zero as well
# Let's fill by mean
for col in ['Glucose', 'BloodPressure', 'BMI']:
    data[col] = data[col].replace(value=data[col].mean(), to_replace=0)
# SkinThickness and Insulin should not have the zero values,
# but many are missing, so we skip at this step
```


5.1.2. Fill by Regression Method

The regression method is a very useful when the columns that having zero-values are very correlated with the other columns. So we will try this method on these columns: **Insulin, SkinThickness.**

Correlation Matrix, **Pearson metric** (on dataset that have Insulin != 0 and SkinThickness != 0):

We can see that there are some high correlations between:

Insulin and Glucose (0.58).

SkinThickness and BMI (0.66).

We try to estimate the zero-values by Linear Regression:

Insulin = Glucose * 2.23952761

SkinThickness = BMI * 0.99549695

Now the filling result:

5.2. Outliers Removal

We would consider outliers by using **Inter-quartile Range** method. In case the data point is out of range

$$[Q1 - 1.5*IQR, Q3 + 1.5*IQR]$$

it might be outliers.

Total removed outliers in dataset: 11,2%

6 Solution

In this section, I will do some different classification methods to classify if the people have diabetes or not, based on their medical details.

Before we do the classification tasks, we need to normalize the input first.

6.1. Normalization

We standardize features by removing the mean, then scaling dataset to unit variance.

Note that we will not standardize the **Outcome** column, as it is a **categorical column**.

The standardized score is calculated as below:

$$Z = (X - U) / S$$

Where:

- X: The value of sample in dataset.
- U: The mean of dataset.
- S: The standard deviation of dataset.

```
df = data.drop(['Outcome'], axis=1)
df.mean()
Pregnancies
                           3.70350
Glucose
                         121.18250
BloodPressure
                           69.14550
SkinThickness
                           20.93500
                           80.25400
Insulin
                           32.19300
BMI
DiabetesPedigreeFunction
                            0.47093
                            33.09050
dtype: float64
df.std()
                            3.306063
Pregnancies
                           32.068636
Glucose
BloodPressure
                           19.188315
SkinThickness
                           16.103243
Insulin
                           111.180534
BMI
                            8.149901
DiabetesPedigreeFunction
                            0.323553
                           11.786423
dtype: float64
```

The result after normalization (the blue shows original, the red shows normalized)

6.2. Model Training

In this project, I have done on some different kind of classification methods as below:

- Logistic Regression

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Decision Tree

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

Random Forest

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

- SVM (Linear Kernel)

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

- kNN

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html The implementation has been done by scikit-learn library (Python), so I just use the model in the library.

The data is split to **trainset** and **testset**, with ratio **7/3**: 70% data for training and 30% for testing, respectively.

The splitting data and training code:

```
# We need to split dataset to train/test data
# 70% train, 30% test
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7)
# We will do some different type of algorithms to determine which is the best
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
list_models = [
    LogisticRegression(),
    DecisionTreeClassifier(),
    RandomForestClassifier(),
    {\tt KNeighborsClassifier(),}
# Now training
for model in list_models:
  model.fit(x_train.values, y_train)
```

6.3. Result

The testing result are calculated on 30% data (testset).

6.3.1. Accuracy Score

model_name	accuracy_score
LogisticRegression	0.819512
DecisionTreeClassifier	0.673171
Random Forest Classifier	0.785366
SVC	0.790244
KNeighborsClassifier	0.756098

Model Scores Comparison

With accuracy metrics, the LogisticRegression gave the best result.

6.3.1. Confusion Matrix

To analyze more in detail on the prediction of classification problems, we use confusion matrix.

This classification is done on **medical examination**, which is the False Negative is one of the most importance metrics. Based on this result, Logistic Regression method gave the best result with **8.78%** (lower is better).

7 Conclusion

In this project, I have done end-to-end flow to analyze, process and do some classification methods on the Diabetes Prediction task.

The precision, recall and f-score of all methods are below:

fscore	recall	precision	model_name
0.760128	0.761841	0.758484	LogisticRegression
0.599341	0.595879	0.609666	DecisionTreeClassifier
0.716566	0.716566	0.716566	Random Forest Classifier
0.713696	0.721923	0.707139	SVC
0.705460	0.695309	0.728695	KNeighborsClassifier

In conclusion, **the simple Logistic Regression** performs the **best result** on the provided dataset.

This result might be improved if we use other complex methods, e.g., Deep Learning.