Review of Signals and Systems-1

B. Sainath

sainath.bitragunta@pilani.bits-pilani.ac.in

Department of Electrical and Electronics Engineering Birla Institute of Technology and Science, Pilani

August 9, 2018

Important Instructions

- Check 'Nalanda' for useful course material and lab related stuff.
- Bring a dedicated lab note book to do rough work.
- Please maintain decency in lab. Mind works faster and better in peaceful atmosphere.
- You may leave lab after evaluation. Make sure that your evaluation is done before you leave lab.
- You may take a short break for 5-7 minutes after one and half hour.
- Note down all useful commands in your notebook.
- Save all your work (e.g., codes, plots) in Google drive or somewhere else for your reference. Delete your work files from your computer.

Important Instructions (contd.,)

- Try to complete all tasks within 2 hours. After 2 hrs, evaluation starts.
 Each lab carries three marks (one mark for attendance, and two marks for successful completion of tasks)
- For each subtask, create mfiles (e.g., Gibbs.m) and save them with suitable name.
- Prepare a word document naming your name and ID. In it, save all results including plots.
- In all plots, put x-label, y-label, legend, font 'Arial' (font size = 10), and, Width '2'. By doing this, visibility of figures will improve.
- Makeup policy: There is no makeup for lab. However, if you are absent for the n^{th} lab, you can complete it in the $(n+1)^{\text{th}}$ lab. In this scenario, you will be evaluated only for lab tasks. Note that this is allowed with prior permission from the Instructor-in-charge. You may be asked to show a valid proof.

Task1: C-S Inequality

• Two finite energy signals $g_1(t)$ and $g_2(t)$ are defined in the interval $a \le t \le b$. Cauchy-Schwarz inequality is given by

$$\left| \int_a^b g_1(t) \, g_2(t) \, dt \right|^2 \leq \int_a^b \left| g_1(t) \right|^2 \, dt \, \int_a^b \left| g_2(t) \right|^2 \, dt.$$

- Using MATLAB help, understand the following commands:
 - a). expb). integral
- Questions (1 mark): (i). Write a MATLAB program to verify the C-S inequality for the following signals:

$$g_1(t) = \exp(-t) u(t), \quad g_2(t) = \exp(-2t) u(t),$$

where u(t) denotes the unit-step.

ii). Let $g_1(t) = \exp(-t) u(t)$ and $\mu = -1$. Write a MATLAB program to verify equality when $g_2(t) = -\mu g_1(t)$.

Task 2: Gibbs Phenomenon

- Consider the rectangular pulse train shown in the Figure.
- Trigonometric Fourier Series (FS) coefficients: $a_0 = \frac{A}{2}$, $a_n = A \operatorname{sinc}\left(\frac{n}{2}\right)$, and $b_n = 0$ (Verify).
- Understand following commands
 - a). clc b). close all c). clf d). linspace e). zeros f). ones g). int2str

August 9, 2018

Task 2: Gibbs Phenomenon

Consider the FS expansion up to finite N terms

$$g_N(t) = a_0 + \sum_{n=1}^N a_n \cos(n\omega_0 t),$$

where $\omega_0 = \frac{2\pi}{T_0}$.

• Question (1 mark): Let A = 2. Write a MATLAB program to plot the generating function g(t) and $g_N(t)$ for N = [1, 3, 9, 29, 49, 99]. Use: axis([-2 2 -0.5 2.5]); **You must show all six subplots in one Figure.** Further, for each scenario, display N value as title. Compare $g_N(t)$ and g(t). Comment on $g_N(t)$.