Microstrip Antenna Arrays

Prof. Girish Kumar

Electrical Engineering Department, IIT Bombay

gkumar@ee.iitb.ac.in (022) 2576 7436

MSA Array Feed Networks

- >Series Feed
- **≻**Corporate (Parallel) Feed
- >Series and Corporate Feed

Series Feed

Advantages:

- Reduced feed length
- Reduced losses
- Lower Sidelobe

Disadvantages:

- Beam tilt with Frequency
- Narrow BW

Corporate Feed

Advantages:

- Equal power to all element
- Larger BW
- Modular in nature

Disadvantages:

- Higher Feed losses
- Higher cross polar

Series Fed MSA Array

Elements	Value (mm)
Patch Length (pl)	2.68
Patch Width (pw)	3.2
Connecting line length (cl)	2.77
Connecting line width (cw)	0.4
Space between patches	5.45

Antenna at Ka-Band

RT 5880 substrate:

$$\varepsilon_r = 2.2$$
, $h = 0.254$ mm and $\tan \delta = 0.0015$

23×1 Series Fed Array at Ka Band

13x1 Series Fed MSA Array at 5.8 GHz

Patch Length = 16.84mm Patch width = 12.7mm Feed line length = 18.85mm Inter element spacing = $0.6\lambda o$

Radiation Pattern at 5.8GHz

Max Gain at 5.82 GHz is ≈17 dB

7x1 Series Fed MSA Array at 5.8 GHz

Fabricated 7-element series-fed Array

VSWR vs. Frequency Plot

Gain vs. Frequency Plot

Comparison of Central feed with End feed MSAA

Comparison of Central feed with End feed (Cont.)

S. No.	Parameters	Central Feed	End Feed
1	VSWR <2 Bandwidth (MHz)	100	141
2	Maximum Gain (dBi)	14.8	14.5
3	E-plane HPBW at 5.73 GHz (degrees)	-7.2 to 7.2	-4.3 to 9.7
4	E-plane HPBW at 5.78 GHz (degrees)	-6.7 to 6.8	-2.2 to 10.6
5	E-plane HPBW at 5.83 GHz (degrees)	-6.3 to 6.3	0.7 to 12.7
6	Cross-polar levels (dB)	35	20

Radiation Pattern at (a) 5.73, (b) 5.78 and (c) 5.83 GHz

Corporate Feed Planar MSA Array at X-Band

X-band antenna designed at f=8.75 GHz Substrate: RT Duroid 5880 ($\epsilon_r=2.2$, h=1.59 mm and $tan\delta=0.001$) Patch Length = 13.23 mm, Patch Width = 10.17 mm Inter element spacing in the E and H planes = 23 mm (0.67 λ_0)

Corporate Feed 2x2 MSA Array Results

BW for VSWR ≤ 2 is more than 500 MHz (~6%)

Radiation Pattern at 8.75 GHz

8x8 Corporate feed MSA Array

8x8 Corporate feed MSA Array Results

Frequency (GHz)

BW for VSWR ≤ 1.5 is 8.55 - 9.0 GHz (~5%)

Radiation Pattern at 8.75 GHz

E-Plane HPBW = 9.9°

 $H-Plane\ HPBW = 9.4^{\circ}$

Max SLL = -12.5

Max Gain = 21.3 dB

Broadband 4x4 EMCP MSA Array

Monopulse System using EMCP MSA Array having Series and Corporate Feeds

Monopulse System using EMCP MSA Array having Series and Corporate Feeds - Results

- \triangleright Max. Gain = 24.7 dBi at 9.7GHz
- ➤ Variation in Gain < 0.5 dB over the bandwidth of 1 GHz
- ➤ HPBW: 9° in Azimuth and Elevation Planes
- \gt SLL \leq -15 dB

Space Fed CMSA Array (1B7T)

1B7T Space-Fed Array Top View

Elements	Value (mm)
Bottom element radius (r)	13.1
Top element radius (r ₁ , r ₂)	13.1, 12.7
Inter-element Spacing (s)	33
Air gap (g)	25.85 $(\lambda_0/2)$

1B7T Space-Fed Array Side View

1B7T Space-Fed CMSA Array Results

VSWR vs Frequency Plot

E-Plane Radiation Pattern

Gain vs Frequency Plot

H-Plane Radiation Pattern

Series-Fed Array of Gap Coupled RMSA

(a) Fabricated 3-element broadband linear series-fed antenna array on finite ground plane of 115 mm x 100 mm. Simulated and measured (b) VSWR and (b) Gain vs. frequency plots

Measured VSWR \leq 2 BW = 5.535 to 5.84 GHz (~5%)

Max gain of antenna array =13.4 dBi

EMCP Dual Polarized MSA in S-Band

Elements	Value (mm)
Square Element (L ₁)	39.6
Air gap (g ₁)	3
Feed Offset (s)	2.3
Quarter wave	16 x 9.2
Transformer (l ₂ x w ₂)	

EMCP Dual Polarized MSA Results

EMCP Dual Polarized MSA Array at 5.8 GHz

3x3 Power Divider for Two Ports

Microstrip Line Feed Network

Top 6x6 Radiating Elements Integrated 6x6 EMCP Antenna Array

EMCP Dual Polarized MSA Array at 5.8 GHz - Results

Measured (a) VSWR, (b) S_{21} and (c) Gain vs. frequency plots of 6x6 array of EMCP dual polarized antenna

Phased Array Antenna

Active Phased Array Antennas

