

FCC Part 15C TEST REPORT

Issued to

Reach Tec(Xiamen) CO.,LTD

For

REACH9771

Model Name : REACH9771

Trade Name : N/A

Brand Name : Cincinnati Bell FCC ID : Z5J-REACH9771

Standard : 47 CFR Part 15 Subpart C Test date : 2012-9-4 to 2012-9-22

Issue date : 2012-9-22

Shenzhen MORLA

Nie Quan

Date 2-12.9.22

Approved

Date 2012 . 09.

Review by

Echnology Co., Ltd.

Peng Huar

Date 2012 . 9. 2 2

CTIA Authorized Test Lal

IEEE 1725

OTA

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

DIRECTORY

1. (GENERAL INFORMATION	3
	EUT Description	
1.2.	Test Standards and Results	
1.3.	Facilities and Accreditations	5
2. 4	7 CFR PART 15C REQUIREMENTS	6
2.1.	Number of Hopping Frequency	6
2.2.	Peak Output Power	8
2.3.	20dB Bandwidth	9
2.4.	Carried Frequency Separation.	11
2.5.	Time of Occupancy (Dwell time)	12
2.6.	Conducted Spurious Emissions	15
2.7.	Band Edge	19
2.8.	Conducted Emission	23
2.9.	Radiated Emission	26

Change History						
Date	Reason for change					
Sep 22, 2012	First edition					
	Date					

1. General Information

1.1. EUT Description

EUT Type REACH9771

Serial No...... n.a

Hardware Version 9771 V3.1

Software Version: E9771-eng 2.3.5 GRJ90 eng.Root.20120825.052322.test-keys

5th Floor, 51#, Wang Hai Road, Software Park II, Xiamen, Fujian

Province

Manufacturer Reach Tec(Xiamen) CO.,LTD

5th Floor, 51#, Wang Hai Road, Software Park II, Xiamen, Fujian

Province

intervals of 1MHz);

The frequency block is 2400MHz to 2483.5MHz.

Modulation Type Bluetooth: FHSS (GFSK(1Mbps),

Antenna Type..... PIFA Antenna

Antenna Gain...... 0dBi

Note 1: The EUT is a REACH9771, it contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies allocated for the Bluetooth Module is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

- Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.
- Note 3: a. When power on, the EUT will scan the whole frequency until a Connection command from the other BT devices.
 - b. When receiving the signal from the other BT devices, The EUT transmit aresponse signal.
 - c. The other devices receive the response signal and recognize it, then send a connection command to establish the connection.
 - d. After the connection establish successfully, the data transmission is beginning. At the same time, the both devices will shift frequencies in synchronization per a same pseudo randomly ordered list of hopping frequencies, the hopping rate is 1600 times per second. This device conforms to the criteria in FCC Public Notice DA 00-705.
 - e. The bandwidth of the receiver, which is set to a fixed width by the software.

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

]	No.	Identity	Document Title
	1	47 CFR Part 15	Radio Frequency Devices
		(10-1-09 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section in CFR 47	Description	Result
1	15.247(a)	Number of Hopping Frequency	PASS
2	15.247(b)	Peak Output Power	PASS
3	15.247(a)	20dB Bandwidth	PASS
4	15.247(a)	Carrier Frequency Separation	PASS
5	15.247(a)	Time of Occupancy (Dwell time)	PASS
6	15.247(c)	Conducted Spurious Emission	PASS
7	15.247(c)	Band Edge	PASS
8	15.207	Conducted Emission	PASS
9	15.209	Radiated Emission	PASS
	15.247(c)		

NOTE:

701	4 4	C 1	1 1 4	41 41 1	1 C	.1 1	· D · 00 707
$1 \text{ h}\epsilon$	e tests were ne	ertormed	l according to	the method	d of measurement	s nrescribed :	1n I) A -()()- /()う

1.3. Facilities and Accreditations

1.3.1. Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at 3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

1.3.2. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Number of Hopping Frequency

2.1.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.1.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the Bluetooth Service Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Anritsu	MT8850A	6K00000270	2013.02	1year
Spectrum Analyzer	Agilent	E4407B	US39240505	2013.02	1year
Power Splitter	Agilent	11667A	(n.a.)	Agilent	(n.a.)

2.1.3. Test Result

The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

A. Test Verdict:

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Refer to Plot	Verdict
GFSK	2400 - 2483.5	79	15	Plot A	PASS

B. Test Plots:

(Plot A: GFSK)

2.2. Peak Output Power

2.2.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.2.2. Test Description

See section 2.1.2 of this report.

2.2.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

2.2.3.1. **GFSK Mode**

A. Test Verdict:

Channel	Frequency (MHz)		d Output Peak Power	Limit		Verdict
		dBm	W	dBm	W	
0	2402	-4.882	0.000325			PASS
39	2441	-4.419	0.000361	30	1	PASS
78	2480	-4.278	0.000373			PASS

2.3. 20dB Bandwidth

2.3.1. Definition

According to FCC 15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth $10*\log 1\% = 20$ dB) taking the total RF output power.

2.3.2. Test Description

See section 2.1.2 of this report.

2.3.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

2.3.3.1. **GFSK Mode**

A. Test Verdict:

The maximum 20dB bandwidth measured is 1.155MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.151	Plot A
39	2441	1.150	Plot B
78	2480	1.155	Plot C

B. Test Plots:

(Plot B: Channel = 2441 @ GFSK)

(Plot C: Channel = 2480 @ GFSK)

2.4. Carried Frequency Separation

2.4.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.4.2. Test Description

See section 2.1.2 of this report.

2.4.3. Test Result

The Bluetooth Module operates at hopping-on test mode.

For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (983KHz for GFSK mode, refer to section 2.3.3), whichever is greater. So, the verdict is PASS.

(Plot A: GFSK)

2.5. Time of Occupancy (Dwell time)

2.5.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.5.2. Test Description

See section 2.1.2 of this report.

2.5.3. Test Result

The average time of occupancy on any channel within the Period can be calculated with formulas (for DH5 package type):

```
{Total of Dwell} = {Pulse Time} * (1600 / 6) / {Number of Hopping Frequency} * {Period} 
{Period} = 0.4s * {Number of Hopping Frequency}
```

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

2.5.3.1. **GFSK Mode**

A. Test Verdict:

Channal	Frequency	Pu	lse Time	Total of Dwell	Limit (mg)	Vandiat
Channel	(MHz)	ms	Refer to Plot	(ms)	Limit (ms)	Verdict
0	2402	2.580	Plot A	275.200		PASS
39	2441	2.850	Plot B	275.200	400	PASS
78	2480	2.900	Plot C	309.333		PASS

B. Test Plots:

Note: the following plots record the Pulse Time of the Module carrier.

(Plot A: Channel = 2402 @ GFSK)

(Plot B: Channel = 2441 @ GFSK)

(Plot C: Channel = 2480 @ GFSK)

2.6. Conducted Spurious Emissions

2.6.1. Requirement

According to FCC §15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.6.2. Test Description

See section 2.1.2 of this report.

2.6.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

2.6.3.1. GFSK Mode

A. Test Verdict:

	Eraguanav	Measured Max.		Limi		
Channel	Frequency (MHz)	Out of Band	Refer to Plot	Carrier	Calculated	Verdict
	(MITIZ)	Emission (dBm)		Level	-20dBc Limit	
0	2402	-45.380	Plot A.1/A.2	-5.945	-25.945	PASS
39	2441	-45.640	Plot B.1/B.2	-4.749	-24.749	PASS
78	2480	-45.890	Plot C.1/C.2	-5.403	-25.403	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot A.1: Channel = 0, 30MHz to 3GHz @ GFSK Mode)

(Plot A.2: Channel = 0, 3GHz to 25GHz @ GFSK Mode)

(Plot B.1: Channel = 39, 30MHz to 3GHz @ GFSK Mode)

(Plot B.2: Channel = 39, 3GHz to 25GHz @ GFSK Mode)

(Plot C.1: Channel = 78, 30MHz to 3GHz @ GFSK Mode)

(Plot C.2: Channel = 78, 3GHz to 25GHz @ GFSK Mode)

2.7. Band Edge

2.7.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.7.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is powered by the Battery. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2012.05	1 year
Receiver	Agilent	E7405A	US44210471	2012.05	1 year
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2012.05	2year

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2012.05	1 year

2.7.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest and highest channels are tested to verify the band edge emissions.

The measurement results are obtained as below:

 $E \left[dB \; \mu \; V/m \right] = U_{\text{R}} + A_{\text{T}} + A_{\text{Factor}} \; \left[dB \right]; \; A_{\text{T}} = L_{\text{Cable loss}} \; \left[dB \right] - G_{\text{preamp}} \; \left[dB \right]$

A_T: Total correction Factor except Antenna

Ur: Receiver Reading
Gpreamp: Preamplifier Gain
Afactor: Antenna Factor at 3m

2.7.3.1. GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Rea	eiver ding BuV)	A _T (dB)	A _{Factor} (dB@3m)	Emi	ax. ssion µV/m)		nit μV/ 1)	Verdict
		PK	AV			PK	AV	PK	AV	
0	2402	41.47	40.25	-30.93	32.56	43.10	41.88	74	54	PASS
78	2480	41.37	39.91	-29.05	32.5	44.82	43.36	74	54	PASS

B. Test Plots:

(Plot A1: Channel = $0 \text{ PEAK} (\hat{a}) \text{ GFSK}$)

(Plot A2: Channel = 0 AVERAGE @ GFSK)

(Plot B1: Channel = 78 PEAK @ GFSK)

(Plot B2: Channel = 78 AVERAGE @ GFSK)

2.8. Conducted Emission

2.8.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN).

Eraguanay ranga (MHz)	Conducted Limit (dBµV)				
Frequency range (MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
0.50 - 30	60	50			

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

2.8.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.4:2009

The Bluetooth Module of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth Module is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting

339 bytes DH5 packages at maximum power.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2012.05	1year
LISN	Schwarzbeck	NSLK 8127	812744	2012.05	1year
Service Supplier	R&S	CMU200	100448	2012.05	1year
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	(n.a.)	(n.a.)

2.8.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

A. Test setup:

The EUT configuration of the emission tests is $\underline{EUT + Charger}$.

B. Test Plots:

(Plot A: L Phase)

(Plot B: N Phase)

2.9. Radiated Emission

2.9.1. Requirement

According to FCC section 15.247(c) and RSS-A8.5, radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- 2. For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.9.2. Test Description

A. Test Setup:

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.4 (2009). The EUT was set-up on insulator 80cm above the Ground Plane. The set-up and test methods were according to ANSI C63.4.

The Bluetooth Module of the EUT is powered by the Battery. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

For the Test Antenna:

- (a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2012.05	1year
Receiver	Agilent	E7405A	US44210471	2012.05	1year
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2012.05	2year
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2012.05	1year
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2012.05	1year
Test Antenna - circular	R&S	AC004R1	0749.3000.03	2012.05	1year

2.9.3. Test Result

According to ANSI C63.4 selection 4.2.2, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E\left[dB \; \mu \; V/m\right] = U_{\mathsf{R}} + A_{\mathsf{T}} + A_{\mathsf{Factor}} \; \left[dB\right]; \; A_{\mathsf{T}} = L_{\mathsf{Cable loss}} \; \left[dB\right] - G_{\mathsf{preamp}} \; \left[dB\right]$

A_T: Total correction Factor except Antenna

Ur: Receiver Reading
Gpreamp: Preamplifier Gain
Affactor: Antenna Factor at 3m

During the test, the total correction Factor AT and A_{Factor} werebuilt in test software.

2.9.3.1. GFSK Mode:

A. Test Verdict for Harmonics:

The Fundamental Emissions

The field strength of {Fundamental Emission} listed below is recorded, and used in the next table.

Channe	Frequency	Fundamental Emission (dBµV/m)		Antenna	Refer to Plot	
1	(MHz)	PK	AV	Polarization	Refer to 1 lot	
0 2402		85.84	N/A	Horizontal	Plot A.1	
0 2402	2402	91.71	N/A	Vertical	Plot A.2	
39 2441	39 2441 87.19 90.99	87.19	N/A	Horizontal	Plot B.1	
		N/A	Vertical	Plot B.2		
78	2480	89.17	N/A	Horizontal	Plot C.1	
	<i>2</i> 480	57.28	N/A	Vertical	Plot C.2	

B. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 0

(Plot A.2: 30MHz to 25GHz, Antenna Vertical @ GFSK, channel 0)

Plot for Channel = 39

(Plot B.0: 9kHz to 30MHz @ GFSK, channel 39)

(Plot B.2: 30MHz to 25GHz, Antenna Vertical @ GFSK, channel 39)

300M 400M 500M600M 800M 1G

5DBuV

40M 50M 60M

80M 100M

200M

20G

5G 6G 7G 8G 9G10G

(Plot C.2: 30MHz to 25GHz, Antenna Vertical @ GFSK, channel 78)

** END OF REPORT **