HOMOTOPIE ET HOMOLOGIE

Prof. K. HESS-BELLWALD TEXÉ par Cédric HO THANH

Automne 2012

Relu et corrigé

Table des matières

1	Une	e introduction axiomatique à l'homologie	5
	1.1	Éléments de la théorie des catégories	5
	1.2	Invariants homotopiques	9
		1.2.1 Homotopie dans $\mathbf{Top}_{\mathrm{rel}}$	9
	1.3	Les axiomes d'Eilenberg - Steenrod	13
	1.4	Conséquences des axiomes d'Eilenberg - Steenrod	15
	1.5	Application du théorème de Mayer - Vietoris	15
		1.5.1 Suspensions	15
		1.5.2 Sphères	16
	1.6	Démonstration du théorème de Mayer - Vietoris	17
2	<i>Н</i> -е	spaces et co-H-espaces	21
	2.1	<i>H</i> -espaces	21
	2.2	Co- <i>H</i> -espaces	25
	2.3	Le cas abélien	28
3	Suites exactes de Puppe 33		
	3.1	Le cas absolu	33
	3.2	Le cas relatif	40
4	Cofibrations et extensions d'homotopies		
	4.1	Définition, caractérisation et exemples	45
	4.2	Propriétés	47
5	Inti	roduction aux CW-complexes	51
	5.1	Définitions et propriétés fondamentales	51
	5.2	HELP et ses conséquences	54
	5.3	Approximation cellulaire	58
6	Hor	mologie	59
	6.1	Produit symétrique infini	59
	6.2	Propriétés de SP	61
	6.3	Définition de l'homologie	63
		6.3.1 Le cas pointé	63
		6.3.2 Le car relatif	67

Introduction

Définition. Ce polycopié est le retranscription des notes du cours d'homotopie et homologie donné par le professeur K. HESS-BELLWALD durant le semestre d'automne 2012.

Corollaire. Malgré de nombreuses relectures, des erreurs peuvent subsister... ce polycopié est donc fourni sans garantie!

Chapitre 1

Une introduction axiomatique à l'homologie

1.1 Éléments de la théorie des catégories

- 1.1.1 Définition (Catégorie). Une catégorie C est constituée des éléments suivants :
 - Une classe Obj C appelée les objets de C,
 - Pour chaque paire $X, Y \in \text{Obj } \mathbb{C}$, une classe $\mathbb{C}(X, Y)$ de morphismes de X vers Y,
 - Pour tout $X, Y, Z \in \text{Obj } \mathbf{C}$, une fonction de composition associative :

$$\mathbf{C}(X,Y) \times \mathbf{C}(Y,Z) \quad \longrightarrow \quad \mathbf{C}(X,Z)$$

$$(f,g) \quad \longmapsto \quad g \circ f$$

que l'on peut représenter par le diagramme suivant :

• Pour tout $X \in \text{Obj } \mathbf{C}$, un unique morphisme Id_X appelé le morphisme identité et qui est tel que :

$$f \circ \operatorname{Id}_X = f$$
 et $\operatorname{Id}_Y \circ f = f$, $\forall f \in \mathbf{C}(X, Y)$.

- **1.1.2 Notation.** Si $f \in \mathbf{C}(X,Y)$, alors on note $f: X \longrightarrow Y$ ou encore $X \stackrel{f}{\longrightarrow} Y$,
 - \bullet La classe des morphismes de ${\bf C}$ est notée :

$$\operatorname{Mor} \mathbf{C} = \bigcup_{X,Y \in \operatorname{Obj} \mathbf{C}} \mathbf{C}(X,Y).$$

1.1.3 Exemples. 1. On note **Set** la catégorie des ensembles. On a que Obj **Set** est la classe de tous les ensembles et que si $X, Y \in \text{Obj Set}$, alors Set(X, Y) est la classe des fonctions de X vers Y. La composition est la composition de fonctions usuelle. Le morphisme identité est la fonction identité usuelle.

- 2. On note **Top** la catégorie des espaces topologiques. On a que Obj **Top** est la classe de tous les espaces topologiques et que si $X, Y \in \text{Obj Top}$, alors Top(X, Y) est la classe des fonctions continues de X vers Y.
- 3. On note \mathbf{Top}_* la catégorie des espaces topologiques pointés. On a que $\mathrm{Obj}\,\mathbf{Top}_*$ est la classe de tous les espaces topologiques pointés et que si $X,Y\in\mathrm{Obj}\,\mathbf{Top}_*$, alors $\mathbf{Top}_*(X,Y)$ est la classe des fonctions continues pointés de X vers Y.
- 4. On note **Grp** la catégorie des groupes.
- 5. On note Ab la catégorie des groupes abéliens.
- 6. Soit G un groupe. On note \mathbf{G} la catégorie qui est telle que Obj $\mathbf{G} = \{*\}$ et que $\mathbf{G}(*,*) = G$. La composition est alors $a \circ b = ab$ pour tout $a, b \in \mathbf{G}(*,*)$. L'identité est $\mathrm{Id}_* = \mathrm{Id}_G$.
- **1.1.4 Définition** (Foncteur). Soient \mathbf{C} et \mathbf{D} deux catégories. Un foncteur $F: \mathbf{C} \longrightarrow \mathbf{D}$ est définit par deux fonctions :

$$F_0 : \text{Obj } \mathbf{C} \longrightarrow \text{Obj } \mathbf{D}$$

 $F_1 : \text{Mor } \mathbf{C} \longrightarrow \text{Mor } \mathbf{D}$

telles que:

- Pour tout $X, Y \in \text{Obj } \mathbf{C}$, on a $F_1 : \mathbf{C}(X, Y) \longrightarrow \mathbf{D}(F_0(X), F_0(Y))$,
- Pour tout $X, Y, Z \in \text{Obj } \mathbf{C}$ et pour tout morphismes $f: X \longrightarrow Y$ et $g: Y \longrightarrow Z$, on a $F_1(g \circ f) = F_1(g) \circ F_1(f)$,
- Pour tout $X \in \text{Obj } \mathbf{C}$, on a $F_1(\text{Id}_X) = \text{Id}_{F_0(X)}$.
- 1.1.5 Exemples. 1. Le groupe fondamental $\pi_1 : \mathbf{Top}_* \longrightarrow \mathbf{Grp}$.
 - 2. Le foncteur oubli

$$U: \mathbf{Grp} \longrightarrow \mathbf{Set}$$
 $U_0: G \longmapsto G$
 $U_1: f \longmapsto f$

qui "oublie" la structure de groupe. On peut définir de même les foncteurs suivants :

$$\begin{array}{ccc} U: \mathbf{Ab} & \longrightarrow & \mathbf{Set} \\ U: \mathbf{Top} & \longrightarrow & \mathbf{Set} \\ U: \mathbf{Top}_* & \longrightarrow & \mathbf{Set} \\ U: \mathbf{Ab} & \longrightarrow & \mathbf{Grp} \\ U: \mathbf{Top}_* & \longrightarrow & \mathbf{Top}. \end{array}$$

3. Le foncteur "discret":

$$D: \mathbf{Set} \longrightarrow \mathbf{Top}$$

$$D_0: X \longmapsto (X, \mathfrak{T}_{\mathrm{disc}})$$

$$D_1: f \longmapsto f.$$

1.1.6 Définition (Diagramme commutatif). Soit \mathbf{C} une catégorie. Soient $A,B,C,D\in \mathrm{Obj}\,\mathbf{C}$ et $f:A\longrightarrow B,\,g:A\longrightarrow C,\,i:C\longrightarrow D,\,j:B\longrightarrow D$ des morphismes tels que $j\circ f=i\circ g$. Alors on

CHAPITRE 1. UNE INTRODUCTION AXIOMATIQUE À L'HOMOLOGIE

dit que le diagramme suivant commute :

1.1.7 Définition (Pushout). Soit C une catégorie. Soit le diagramme suivant :

Soit $P\in {\rm Obj}\, {\bf C}$ et $i:C\longrightarrow P,\, j:B\longrightarrow P$ des morphismes tels que le diagramme suivant commute :

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
g \downarrow & & \downarrow j \\
C & \xrightarrow{i} & P
\end{array}$$

On dit que P, i, j est un **pushout** de A, B, C, f, g si $\forall P' \in \text{Obj } \mathbf{C}, \forall i' : C \longrightarrow P, \forall j' : B \longrightarrow P$ tels que le diagramme suivant commute :

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
g \downarrow & & \downarrow j' \\
C & \xrightarrow{i'} & P'
\end{array}$$

alors il existe un unique morphisme $u: P \longrightarrow P'$ tel que le diagramme suivant commute :

1.1. ÉLÉMENTS DE LA THÉORIE DES CATÉGORIES

1.1.8 Notation. On note alors:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
g & & & \downarrow j \\
C & \xrightarrow{i} & P
\end{array}$$

ou encore:

$$P = B \coprod_{\Delta} C.$$

1.1.9 Exemples. 1. Prenons la catégorie Top :

2. Prenons la catégorie Ab:

$$\mathbb{Z} \xrightarrow{\times m} \mathbb{Z}$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$\mathbb{Z}/n\mathbb{Z} \xrightarrow{} \mathbb{Z}/mn\mathbb{Z}$$

1.1.10 Définition (Pullback). Soit C une catégorie. Soit le diagramme suivant :

$$C \xrightarrow{g} A \xrightarrow{B} f$$

Soit $P \in \text{Obj}\,\mathbf{C}$ et $i: P \longrightarrow C, \ j: P \longrightarrow B$ des morphismes tels que le diagramme suivant commute :

$$P \xrightarrow{j} B$$

$$i \downarrow \qquad \qquad \downarrow f$$

$$C \xrightarrow{g} A$$

On dit que P, i, j est un **pullback** de A, B, C, f, g si $\forall P' \in \text{Obj } \mathbf{C}, \forall i' : P \longrightarrow C, \forall j' : P \longrightarrow B$ tels que le diagramme suivant commute :

$$P' \xrightarrow{j'} B$$

$$i' \downarrow \qquad \qquad \downarrow f$$

$$C \xrightarrow{g} A$$

alors il existe un unique morphisme $v: P' \longrightarrow P$ tel que le diagramme suivant commute :

1.1.11 Notation. On note alors:

$$P \xrightarrow{j} B$$

$$\downarrow i \qquad \downarrow f$$

$$\downarrow f$$

$$\downarrow f$$

$$\downarrow f$$

$$\downarrow f$$

1.1.12 Exemple. Prenons la catégorie Top :

$$(x,y) \mapsto x \downarrow \qquad \qquad \downarrow y \mapsto 1 - y^2$$

$$\mathbb{R} \xrightarrow{x \mapsto x^2} \mathbb{R}$$

1.2 Invariants homotopiques

- 1.2.1 **Définition.** On définit la catégorie Top_{rel} par :
 - Objets : Couples d'espaces topologiques (X, A) où A est un sous espace de X,
 - Morphismes : $f \in \mathbf{Top}_{rel}((X, A), (Y, B))$ si $f \in \mathbf{Top}(X, Y)$ et si $f(A) \subseteq B$,
 - On utilise la composition et l'identité usuelle.

Sous catégories importantes :

- \mathbf{Top}_* : On restreint la classe des objets aux couples $(X, \{x_0\})$ avec $x_0 \in X$. Les morphismes deviennent les applications basées.
- Top : On restreint la classe des objets aux couples (X,\emptyset) . Les morphismes deviennent les applications continues.

1.2.1 Homotopie dans Top_{rel}

1.2.2 Définition (Homotopie). Soient $f, g: (X, A) \longrightarrow (Y, B)$. Une **homotopie de** f **vers** g est un morphisme de $\mathbf{Top}_{\mathrm{rel}}$

$$H: (X \times I, A \times I) \longrightarrow (Y, B)$$

tel que H(x,0) = f(x) et H(x,1) = g(x) pour tout $x \in X$.

1.2.3 Remarque. H étant un morphisme, on a que $H(a,t) \in B, \forall a \in A, \forall t \in I$.

Cas spéciaux:

- Si $A = \{x_0\}, B = \{y_0\}$, alors on parle d'homotopie basée.
- Si $A, B = \emptyset$ alors on parle juste d'homotopie (absolue).
- **1.2.4 Proposition.** La relation sur $\mathbf{Top}_{rel}((X, A), (Y, B))$ donnée par l'homotopie est une relation d'équivalence.

Cette proposition justifie l'introduction de :

1.2.5 Notations. On note \simeq_A la relation donnée par l'homotopie sur $\mathbf{Top}_{\mathrm{rel}}((X,A),(Y,B))$. Le quotient est noté

$$[(X,A),(Y,B)] = \mathbf{Top}_{\mathrm{rel}}((X,A),(Y,B))/\simeq_A.$$

La classe d'un morphisme f est noté [f].

1.2.6 Notations (Abus de). Dans le cas où $A = \{x_0\}$ et $B = \{y_0\}$, on note \simeq_* pour \simeq_A , $[f]_*$ pour [f] et $[X,Y]_*$ pour $[(X,A),(Y,B)]_*$.

On va utiliser cette notion d'homotopie pour formuler une relation d'équivalence sur les espaces qui les classifiera "à déformation continue près".

1.2.7 Définition (Équivalence d'homotopie, type d'homotopie). Un morphisme $f:(X,A) \longrightarrow (Y,B)$ est une **équivalence d'homotopie** s'il admet un inverse à homotopie près : $\exists g:(Y,B) \longrightarrow (X,A)$ tel que

$$g \circ f \simeq_A \operatorname{Id}_X$$
 et $f \circ g \simeq_B \operatorname{Id}_Y$.

Deux objets $(X, A), (Y, B) \in \text{Obj } \mathbf{Top}_{rel}$ ont le même **type d'homotopie** s'il existe une équivalence d'homotopie qui les relie. On note alors $(X, A) \simeq (Y, B)$.

Le but de la théorie de l'homotopie est de classifier tous les types d'homotopie en utilisant les invariants homotopiques.

- **1.2.8 Définition** (Invariant homotopique). Un foncteur $F: \mathbf{Top}_{rel} \longrightarrow \mathbf{C}$ est un **invariant** homotopique si $\forall f, g: (X, A) \longrightarrow (Y, B)$ on a $f \simeq_A g \Longrightarrow F(f) = F(g)$.
- **1.2.9 Proposition.** Si $F : \mathbf{Top}_{\mathrm{rel}} \longrightarrow \mathbf{C}$ est un invariant homotopique, alors $(X, A) \simeq (Y, B) \Longrightarrow F(X, A) \cong F(Y, B)$.

Démonstration. Si $(X,A) \simeq (Y,B)$, alors $\exists f: (X,A) \longrightarrow (Y,B)$ un équivalence d'homotopie d'inverse homotopique $g: (Y,B) \longrightarrow (X,A)$. Ainsi $g \circ f \simeq_A \operatorname{Id}_X$ et $f \circ g \simeq_B \operatorname{Id}_Y$. Puisque F est un invariant homotopique, on a:

$$\operatorname{Id}_{F(X,A)} = F(\operatorname{Id}_{(X,A)}) = F(\operatorname{Id}_X)$$

$$= F(g \circ f) = F(g) \circ F(f).$$

De même, $\mathrm{Id}_{F(Y,B)} = F(f) \circ F(g)$. Ainsi, $F(X,A) \cong F(Y,B)$.

1.2.10 Propriété. Si F est un invariant homotopique, alors :

$$F(X, A) \ncong F(Y, B) \implies (X, A) \not\simeq (Y, B).$$

Car particuliers:

- Invariants homotopiques basés : $F: \mathbf{Top}_* \longrightarrow \mathbf{C}$ avec $f \simeq_* g \Longrightarrow F(f) = F(g)$.
- Invariants homotopiques (absolus) : $F: \mathbf{Top} \longrightarrow \mathbf{C}$ avec $f \simeq g \implies F(f) = F(g)$.

1.2.11 Exemple.

$$\pi_1 : \mathbf{Top}_* \longrightarrow \mathbf{Grp}$$
 $(X, x_0) \longmapsto \pi_1(X, x_0) = [(I, \{0, 1\}), (X, \{x_0\})]$

est un invariant homotopique basé.

1.2.12 Proposition. La composition d'applications continues induit une application bien définie :

$$[(X,A),(Y,B)] \times [(Y,B),(Z,C)] \longrightarrow [(X,A),(Z,C)]$$
$$([f],[g]) \longmapsto [g \circ f].$$

Démonstration. A voir : si $f \simeq_A f'$ et $g \simeq_B g'$, alors $g \circ f \simeq_A g' \circ f'$. Soient $H: (X \times I, A \times I) \longrightarrow (Y, B)$ une homotopie de f vers f' et $K: (Y \times I, B \times I) \longrightarrow (Z, C)$ une homotopie de g vers g'. Observer que $g \circ H: (X \times I, A \times I) \longrightarrow (Z, C)$ est une homotopie de $g \circ f$ vers $g \circ f'$ car $g \circ H(x, 0) = g \circ f(x)$ et $g \circ H(x, 1) = g \circ f'(x)$ pour tout $x \in X$. Pour conclure, il faut une homotopie de $g \circ f'$ vers $g' \circ f'$. Définissons $K': (X \times I, A \times I) \longrightarrow (Z, C)$ par K'(x, t) = K(f'(x), t). Elle est évidemment continue. Par ailleurs, $K'(a, t) \in C$ pour tout $a \in A$ et $t \in I$. Donc K' est bien un morphisme de $\operatorname{Top}_{\mathrm{rel}}$. Enfin, $K'(x, 0) = K(f(x), 0) = g \circ f'(x)$ et $K'(x, 1) = K(f'(x), 1) = g' \circ f'(x)$. Donc on a:

$$g \circ f \simeq_A g \circ f' \simeq_A g' \circ f'$$
.

1.2.13 Corollaire. 1. $\forall f: (X,A) \longrightarrow (Y,B)$, il existe une application bien définie

$$f^*: [(Y,B),(Z,C)] \longrightarrow [(X,A),(Z,C)]$$
$$[g] \longmapsto [g \circ f].$$

De plus, $f \simeq_A f' \implies f^* = (f')^*$.

2. $\forall q:(Y,B)\longrightarrow (Z,C)$, il existe une application bien définie

$$g_*: [(X,A),(Y,B)] \longrightarrow [(X,A),(Z,C)]$$

 $[f] \longmapsto [g \circ f].$

De plus, $g \simeq_B g' \implies g_* = g'_*$.

Démonstration. 1. Considérons

$$\psi_f : [(Y,B),(Z,C)] \longrightarrow [(X,A),(Y,B)] \times [(Y,B),(Z,C)]$$
$$[g] \longmapsto ([f],[g]).$$

On
$$a \ f^* : [g] \xrightarrow{\psi_f} ([f], [g]) \longmapsto [g \circ f]$$
. Puis $f \simeq_A f' \implies [f] = [f'] \implies [g \circ f] = [g \circ f'] \implies f^* = (f')^*$.

2. De même...

1.2.14 Corollaire. Pour tout objet $(X, A) \in \text{Obj}\,\mathbf{Top}_{\mathrm{rel}}$, il existe un invariant homotopique :

$$\begin{array}{ccc} [(X,A),-]: \mathbf{Top_{\mathrm{rel}}} & \longrightarrow & \mathbf{Set} \\ & (Y,B) & \longmapsto & [(X,A),(Y,B)] \\ \\ \left((Y,B) \stackrel{g}{\longrightarrow} (Z,C)\right) & \longmapsto & \left([(X,A),(Y,B)] \stackrel{g_*}{\longrightarrow} [(X,A),(Z,C)]\right). \end{array}$$

Démonstration. • Nous avons déjà vu que $g \simeq_B g' \implies g_* = g'_*$.

- [(X, A), -] est un foncteur car:
 - $-\forall g: (Y,B) \longrightarrow (Z,C), \forall h: (Z,C) \longrightarrow (W,D), \forall [f] \in [(X,A),(Y,B)], \text{ on a que } :$

$$(h \circ g)_*([f]) = [h \circ g \circ f] = h_* \circ g_*([f])$$

$$\Longrightarrow (h \circ g)_* = h_* \circ g_*.$$

 $- \forall (Y,B) \in \text{Obj } \mathbf{Top}_{\mathrm{rel}}, \forall [f] \in [(X,A),(Y,B)] \text{ on a que } :$

1.2.15 Exemple. Soient $(\mathbb{S}^1, 1)$ et $(\mathbb{S}^1 \times \mathbb{S}^1, (1, 1))$. Alors on sait que $\pi_1(\mathbb{S}^1, 1) \cong \mathbb{Z}$ et que $\pi_1(\mathbb{S}^1 \times \mathbb{S}^1, (1, 1)) \cong \mathbb{Z} \times \mathbb{Z}$. Observons que dans \mathbf{Grp} , $\mathbb{Z} \not\cong \mathbb{Z} \times \mathbb{Z}$ mais que dans \mathbf{Set} , $\mathbb{Z} \cong \mathbb{Z} \times \mathbb{Z}$. Ainsi, la structure de groupe rend l'invariant plus fort.

On verra plus tard pour quel type d'espace (X,A) l'ensemble [(X,A),(Y,B)] admet une structure de groupe naturelle. On verra par exemple que $[(\mathbb{S}^n,\{z_0\}),(Y,\{y_0\})]$ admet toujours une structure de groupe. Il est même abélien si $n \geq 2$.

1.2.16 Définition (Groupes d'homotopie supérieurs). Le *n*-ième groupe d'homotopie est définit par le foncteur :

$$\pi_n : \mathbf{Top}_* \longrightarrow \mathbf{Grp}$$

$$(Y, y_0) \longmapsto [(\mathbb{S}^n, \{z_0\}), (Y, y_0)].$$

- **1.2.17 Exercice.** Montrer que $[(\mathbb{S}^1, 1), (Y, y_0)] \cong [(I, \{0, 1\}), (Y, \{y_0\})]$.
- 1.2.18 Définition (Équivalence faible). On dit qu'un morphisme de \mathbf{Top}_* est une équivalence faible si $\forall n \geq 1$, le morphisme $\pi_n(g) = \pi_n g$ est un isomorphisme.
- 1.2.19 Remarque. Toute équivalence d'homotopie est une équivalence faible. En revanche, une équivalence faible n'est en général par une équivalence d'homotopie. On verra cependant en fin de semestre que si Y et Z sont des $\mathbf{CW\text{-}complexes}$, alors toute équivalence faible entre Y et Z est une équivalence d'homotopie...
- **1.2.20 Remarque.** Les foncteurs π_n sont en général TRÈS difficiles à calculer. Par exemple, $\pi_n(\mathbb{S}^m, \{z_0\})$ n'est connu que pour un nombre fini de couples (n, m)...

Le but du cours est d'étudier une approximation aux groupes d'homotopie : les groupes d'homologie d'un espace basé. Leur définition est plus compliquée (comme vous allez avoir le plaisir de constater) mais leur calcul sont plus simples. L'idée est la suivante :

où C est le cône, SP est le produit symétrique infini, \widetilde{H}_n est le n-ième groupe d'homologie réduit et H_n est le n-ième groupe d'homologie relative.

1.3 Les axiomes d'Eilenberg - Steenrod

Le but est de donner une liste d'axiomes qui caractérisent complètement l'homologie relative et qui nous permettent de faire des calculs.

Pour commencer, une notion algébrique essentielle :

1.3.1 Définition (Suite exacte). Une suite exacte de groupes abéliens est une suite

$$\cdots \longrightarrow A_{n+1} \xrightarrow{f_{n+1}} A_n \xrightarrow{f_n} A_{n-1} \xrightarrow{f_{n-1}} \cdots$$

où $A_n \in \text{Obj } \mathbf{Ab}, \forall n \text{ et où } \text{Im } f_{n+1} = \ker f_n.$

Voici un cas particulier:

1.3.2 Définition (Courte suite exacte). Une courte suite exacte est une suite exacte de la forme :

$$0 \xrightarrow{\quad 0\quad} A \xrightarrow{\quad f\quad} B \xrightarrow{\quad g\quad} C \xrightarrow{\quad 0\quad} 0$$

Donc on a:

- $\operatorname{Im} 0 = \{0\} = \ker f$, f est injective,
- $\operatorname{Im} f = \ker g$,
- $\operatorname{Im} g = \ker 0 = C$, g est surjective.
- 1.3.3 Exemples.

$$0 \longrightarrow \mathbb{Z} \stackrel{\times 3}{\longrightarrow} \mathbb{Z} \stackrel{\pi}{\longrightarrow} \mathbb{Z}/3\mathbb{Z} \longrightarrow 0$$

 $0 \longrightarrow \mathbb{Z}/3\mathbb{Z} \xrightarrow{f} \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z} \xrightarrow{g} \mathbb{Z}/5\mathbb{Z} \longrightarrow 0$

où $f: \overline{m} \longmapsto (\overline{m}, \overline{0})$ et $g: (\overline{m}, \overline{n}) \longmapsto \overline{n}$.

1.3.4 Notation. Posons:

$$\mathcal{U}: \mathbf{Top}_{\mathrm{rel}} \longrightarrow \mathbf{Top}_{\mathrm{rel}}$$

 $(X, \emptyset) \longmapsto (X, A).$

- **1.3.5 Définition** (Triade excissive). Soit X un espace topologique et $A, B \subseteq X$ deux sous espaces tels que $\mathring{A} \cup \mathring{B} = X$. On appelle alors (X; A, B) une **triade excissive**.
- **1.3.6 Définition** (Théorie d'homologie, théorie d'homologie ordinaire). Soit une famille d'invariants homotopiques $\{E_n: \mathbf{Top}_{\mathrm{rel}} \longrightarrow \mathbf{Ab}\}_{n \in \mathbb{N}}$ et une famille de transformations naturelles $\{\partial_n: E_n \longrightarrow E_{n-1} \circ \mathcal{U}\}_{n \in \mathbb{N}}$, i.e. $\forall f: (X, A) \longrightarrow (Y, B), \forall n \in \mathbb{N}:$

$$E_{n}(X,A) \xrightarrow{\partial_{n}} E_{n-1}(A,\emptyset)$$

$$E_{n}f \downarrow \qquad \qquad \downarrow E_{n-1}f|_{A}$$

$$E_{n}(Y,B) \xrightarrow{\partial_{n}} E_{n-1}(B,\emptyset)$$

Ces éléments forment une **théorie d'homologie** sur Top_{rel} si les axiomes (H1), (H2), (H3), (H4) ci-dessous sont satisfait. Cette théorie est **ordinaire** si l'axiome (H5) est aussi satisfait.

1.3.7 Axiomes (Eilenberg - Steenrod). (H1) Exactitude : $\forall (X, A) \in \text{Obj } \mathbf{Top}_{rel}$, la suite suivante est exacte :

$$\cdots \longrightarrow E_n(A,\emptyset) \xrightarrow{E_n i} E_n(X,\emptyset) \xrightarrow{E_n j} E_n(X,A) \longrightarrow \\ \longrightarrow E_{n-1}(A,\emptyset) \xrightarrow{E_{n-1} i} E_{n-1}(X,\emptyset) \longrightarrow \cdots$$

où $i:A\hookrightarrow X$ et $j:\emptyset\hookrightarrow A$.

(**H2**) Excision : Soit (X;A,B) une triade excissive. Alors l'inclusion $(A,A\cap B)\hookrightarrow (X,B)$ induit un isomorphisme

$$E_n(A, A \cap B) \xrightarrow{\cong} E_n(X, B).$$

(H3) Additivité: Pour toute collection d'objets disjoints $\{(X_j, A_j)\}_{i \in \mathcal{J}} \subseteq \text{Obj } \mathbf{Top}_{rel}$, les inclusions

$$\alpha_j: (X_j, A_j) \hookrightarrow \left(\coprod_{j \in \mathcal{J}} X_j, \coprod_{j \in \mathcal{J}} A_j \right)$$

induisent un isomorphisme

$$\bigoplus_{j \in \mathcal{J}} E_n(X_j, A_j) \stackrel{\cong}{\longrightarrow} E_n \left(\coprod_{j \in \mathcal{J}} X_j, \coprod_{j \in \mathcal{J}} A_j \right)$$

$$\sum_{j \in \mathcal{J}} e_j \longmapsto \sum_{j \in \mathcal{J}} E_n(\alpha_j)(e_j).$$

- (**H4**) Invariance : Si $f:(X,A)\longrightarrow (Y,B)$ est une équivalence faible, alors $E_nf:E_n(X,A)\longrightarrow E_n(Y,B)$ est un isomorphisme.
- (**H5**) Dimension : $\exists G \in \text{Obj } \mathbf{Ab} \text{ tel que } \forall (\{x\}, \emptyset) \in \text{Obj } \mathbf{Top_{rel}}$

$$E_n(\lbrace x \rbrace, \emptyset) = \begin{cases} G & \text{si } n = 0 \\ 0 & \text{si } n > 0 \end{cases}.$$

1.3.8 Notations. On peut noter une théorie d'homologie de la manière suivante :

$${E_n : \mathbf{Top_{rel}} \longrightarrow \mathbf{Ab}}_{n \in \mathbb{N}} = E_*.$$

Par abus de notation : $E_n(X, \emptyset) = E_n(X) = E_nX$.

1.3.9 Théorème. Pour tout groupe abélien G, il existe une unique théorie d'homologie ordinaire qui vérifie l'axiome de dimension pour G.

Démonstration.
$$A$$
 venir...

Étant donné ce théorème, on peut introduire :

 ${f 1.3.10}$ Notation. On note l'unique théorie d'homologie qui vérifie l'axiome de dimension pour G de la manière suivante :

$$\{H_n(-;G): \mathbf{Top}_{\mathrm{rel}} \longrightarrow \mathbf{Ab}\}_{n \in \mathbb{N}} = H_*(-;G).$$

1.4 Conséquences des axiomes d'Eilenberg - Steenrod

Comment faire des calculs à partir des axiomes? Soit E_* une théorie d'homologie.

1.4.1 Théorème (Mayer - Vietoris). Soit (X; A, B) une triade excissive. La suite suivante est exacte :

$$\cdots \longrightarrow E_n(A \cap B) \xrightarrow{\psi_n} E_n(A) \oplus E_n(B) \xrightarrow{\phi_n} E_n(X) \longrightarrow \\ \longleftarrow \delta_n \xrightarrow{} \cdots$$

où:

- $\psi_n(e) = (E_n i(e), E_n j(e))$ avec $i: A \cap B \hookrightarrow A$ et $j: A \cap B \hookrightarrow B$,
- $\phi_n(a,b) = E_n k(a) E_n l(b)$ avec $k: A \hookrightarrow X$ et $l: B \hookrightarrow X$,
- δ_n est obtenu par composition :

$$E_n(X,\emptyset) \xrightarrow{E_n \mathcal{U}} E_n(X,B) \cong E_n(A,A \cap B)$$

$$\downarrow \partial_n$$

$$\downarrow \partial_n$$

$$E_{n-1}(A \cap B)$$

Pour rappel, $E_n(X, B) \cong E_n(A, A \cap B)$ est obtenu par l'axiome d'excision.

"Lorsque j'ai pour la première fois vu ce théorème, je faisais mon doctorat au MIT. Et quand je l'ai lu, j'ai pensé à Beethoven! [Il est bon de préciser que notre professeur faisait partie du coeur du MIT] Il est vraiment GÉNIAL!"

Prof. K. Hess-Bellwald Le 04/10/2012

1.5 Application du théorème de Mayer - Vietoris

Soit G un groupe abélien. Considérons la théorie d'homologie ordinaire $H_*(-;G)$.

1.5.1 Suspensions

1.5.1 Rappel. Soit (X,\mathcal{T}) un espace topologique. La suspension de (X,\mathcal{T}) est l'espace

$$\Sigma X = X \times I / [(x,0) \sim (x',0), (x,1) \sim (x',1)].$$

Posons $A=X\times[0,1[/(x,0)\sim(x',0)$ et $B=X\times]0,1]/(x,1)\sim(x',1)$. On a que $(\Sigma X;A,B)$ forme une triade excissive. En effet, A et B sont ouverts dans ΣX et $A\cup B=\Sigma X$. De plus, A et B sont contractiles, donc $A,B\simeq\{*\}$, et $A\cap B=X\times]0,1[\simeq X$. Par le théorème de Mayer - Vietoris, la suite

$$\cdots \longrightarrow H_{n+1}(X;G) \longrightarrow H_{n+1}(A;G) \oplus H_{n+1}(B;G) \longrightarrow H_{n+1}(\Sigma X;G)$$

$$\delta \longrightarrow H_n(X;G) \longrightarrow H_n(A;G) \oplus H_n(B;G) \longrightarrow \cdots$$

est exacte. Or $H_n(A;G) \oplus H_n(B;G) = 0, \forall n > 0$ par l'axiome (**H5**). Ainsi, on a :

• n > 0: On a:

$$0 \longrightarrow H_{n+1}(\Sigma X; G) \stackrel{\delta}{\longrightarrow} H_n(X; G) \longrightarrow 0$$

et donc δ est un isomorphisme.

• n = 0: On a:

$$0 \longrightarrow H_1(\Sigma X; G) \stackrel{\delta}{\longrightarrow} H_0(X; G) \longrightarrow G \oplus G \longrightarrow H_0(\Sigma X; G) \longrightarrow 0$$

et donc δ est au moins injective.

1.5.2 Sphères

On va voir que:

$$H_n(\mathbb{S}^m;G) = \begin{cases} G \oplus G & \text{si } m = n = 0 \\ G & \text{si } m = n > 0, \text{ ou } m > 0, n = 0 \\ 0 & \text{sinon} \end{cases}.$$

• $m \in \{0,1\}$: On a que $\mathbb{S}^0 = \{-1,1\} = \{-1\} \coprod \{1\}$. Par l'axiome (**H3**), on a que :

$$H_n(\mathbb{S}^0;G) \cong H_n(\{-1\};G) \oplus H_n(\{1\};G) = \begin{cases} G \oplus G & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$$
.

Pour rappel, $\Sigma \mathbb{S}^m \cong \mathbb{S}^{m+1}$. Ainsi, par notre analyse des suspensions

$$H_{n+1}(\mathbb{S}^{m+1};G) \cong H_{n+1}(\Sigma \mathbb{S}^m;G) \cong H_n(\mathbb{S}^m;G), \quad \forall n > 0.$$

Donc, il suffira de montrer que

$$H_n(\mathbb{S}^1; G) = \begin{cases} G & \text{si } n \in \{0, 1\} \\ 0 & \text{sinon} \end{cases}$$
.

pour conclure que $H_n(\mathbb{S}^n;G)\cong H_1(\mathbb{S}^1;G)\cong G, \forall n>0$ et $H_{n+k}(\mathbb{S}^n;G)\cong H_{1+k}(\mathbb{S}^1;G)=0, \forall k>0$. Par ailleurs, si l'on sait que $H_n(\mathbb{S}^m;G)=0$ si $n\neq 0$, le théorème de Mayer - Vietoris nous dira que $\forall n>0$:

$$0 \longrightarrow H_{n+1}(\mathbb{S}^{m+1}; G) \stackrel{\cong}{\longrightarrow} H_n(\mathbb{S}^m; G) \longrightarrow 0$$

et on pourra conclure que $H_{n+1}(\mathbb{S}^{m+1};G)=0$ si $n\neq m$. Considérons le cas \mathbb{S}^1 . Posons N=(0,1), E=(1,0), S=(0,-1), W=(-1,0) et $A=\mathbb{S}^1\setminus\{N\}, B=\mathbb{S}^1\setminus\{S\}$. On considère que $\mathbb{S}^0=\{E,W\}$. Alors A et B sont contractiles, $A\cap B=\mathbb{S}^1\setminus\{N,S\}\simeq\mathbb{S}^0$. Par le théorème de Mayer - Vietoris :

où ψ_0 est induit par $A \stackrel{i_A}{\hookrightarrow} X \stackrel{i_B}{\hookrightarrow} B$. Or, $H_0(\mathbb{S}^0; G) = H_0(A; G) \oplus H_0(B; G) = G \oplus G$. Puis :

$$\psi_0 = H_0(i_A; G) \oplus H_0(i_B; G)$$

$$\implies \psi_0(g_1, g_2) = H_0(i_A; G)(g_1, g_2) \oplus H_0(i_B; G)(g_1, g_2)$$

$$\in H_0(A; G) \oplus H_0(B; G).$$

On a les rétractions :

De plus, r et r' sont des équivalences d'homotopies. Ainsi, on peut conclure que $H_0(i_A; G)(g_1, g_2) = g_1 + g_2$. De la même manière : $H_0(i_B; G)(g_1, g_2) = g_1 + g_2$. Donc :

$$\psi_0(g_1, g_2) = (g_1 + g_2, g_1 + g_2)$$

$$\implies \ker \psi = \{(g, -g) \mid g \in G\} \cong G.$$

Or Im $\delta = \ker \psi_0$ et δ est injective. Donc $H_1(\mathbb{S}^1; G) \cong G$. Ainsi, la suite suivante est exacte :

$$0 \longrightarrow G \xrightarrow{G} G \oplus G \xrightarrow{\psi_0} G \oplus G \xrightarrow{\phi_0} H_0(\mathbb{S}^1; G) \longrightarrow 0$$

Donc $\ker \phi_0 \cong G$ ce qui implique par premier théorème d'isomorphisme que $(G \oplus G)/\ker \phi_0 \cong H_0(\mathbb{S}^1; G)$.

• m > 1: Par le théorème de Mayer - Vietoris, on a :

$$\longrightarrow H_1(\mathbb{S}^m; G) \longrightarrow \delta \longrightarrow H_0(\mathbb{S}^m; G) \longrightarrow H_0(\mathbb{S}^m; G) \longrightarrow 0$$

Par un argument semblable au cas où m=1, on a que ψ_0 est injective et que $H_1(\mathbb{S}^m;G)\cong 0$ ce qui entraine que $H_0(\mathbb{S}^m;G)\cong G$.

1.6 Démonstration du théorème de Mayer - Vietoris

Soit E_* une théorie d'homologie (pas nécessairement ordinaire).

1.6.1 Proposition. Soient $B \subset A \subset X$. Alors la suite

$$\cdots \longrightarrow E_n(A,B) \xrightarrow{E_n i} E_n(X,B) \xrightarrow{E_n j} E_n(X,A) \xrightarrow{} \delta \xrightarrow{} E_{n-1}(A,B) \xrightarrow{E_{n-1} i} \cdots$$

est exacte, où $i:A\hookrightarrow X,\,j:B\hookrightarrow A,\,\mathcal{U}:\emptyset\hookrightarrow B$ et

$$E_n(X,A) \xrightarrow{\partial_n} E_{n-1}A$$

$$\downarrow E_{n-1} \mathcal{U}$$

$$E_{n-1}(A,B)$$

Démonstration. Allons chasser dans le diagramme suivant :

 $\operatorname{Im} E_n j = \ker \delta$: Montrons que $\operatorname{Im} E_n j \subseteq \ker \delta$. On a:

$$\delta \circ E_n j = E_{n-1} \mathcal{U}^{AB} \circ \partial_n^{XA} \circ E_n j$$
$$= E_{n-1} \mathcal{U}^{AB} \circ E_{n-1} j \circ \partial_n^{XB}$$
$$= 0$$

par l'axiome $(\mathbf{H1})$.

Montrons maintenant l'inclusion inverse : $\operatorname{Im} E_n j \supseteq \ker \delta$. Soit $a \in \ker \delta$. Alors!

$$E_{n-1} \mathcal{U}^{AB} \circ \partial_n^{XA}(a) = 0$$

$$\implies \partial_n^{XA}(a) \in \ker E_{n-1} \mathcal{U}^{AB} = \operatorname{Im} E_{n-1} j$$

$$\implies \exists b \in E_{n-1} B \text{ tel que } E_{n-1} j(b) = \partial_n^{XA}(a).$$

Par ailleurs:

$$\operatorname{Im} \partial_{n}^{XA} = \ker E_{n-1}i$$

$$\Longrightarrow 0 = E_{n-1}i \circ \partial_{n}^{XA}(a)$$

$$= E_{n-1}i \circ E_{n-1}j(b)$$

$$= E_{n-1}(i \circ j)(b).$$

Ainsi, $b \in \ker E_{n-1}(i \circ j) = \operatorname{Im} \partial_n^{XB}$. Donc $\exists c \in E_n(X,B) \text{ tel que } \partial_n^{XB}(c) = b$. Puis :

$$\partial_{n}^{XA}(a - E_{n}j(c)) = \partial_{n}^{XA}(a) - \partial_{n}^{XA} \circ E_{n}j(c)
= \partial_{n}^{XA}(a) - E_{n-1}j \circ \partial_{n}^{XB}(c)
= 0
\implies a - E_{n}j(c) \in \ker \partial_{n}^{XA} = \operatorname{Im} E_{n}\mathcal{U}^{XA} = \operatorname{Im} E_{n}j \circ E_{n}\mathcal{U}^{XB}
\implies \exists d \in E_{n}X \text{ tel que } a - E_{n}j(c) = E_{n}j \circ E_{n}\mathcal{U}^{XB}(d)
\implies a \in E_{n}j(c + E_{n}\mathcal{U}^{XB}(d))
\implies a \in \operatorname{Im} E_{n}j.$$

 $\operatorname{Im} \delta = \ker E_{n-1}i$: Montrons que $\operatorname{Im} \delta \subseteq \ker E_{n-1}i$. On a :

$$E_{n-1}i \circ \delta = E_{n-1}i \circ E_{n-1}\mathcal{U}^{AB} \circ \partial_n^{XA}$$
$$= E_{n-1}\mathcal{U}^{XB} \circ E_{n-1}i \circ \partial_n^{XA}$$
$$= 0$$

par l'axiome (H1).

Montrons maintenant l'inclusion inverse : Im $\delta j \supseteq \ker E_{n-1}i$.

1.6.2 Proposition. Soit (X; A, B) une triade excissive. Alors l'homomorphisme $E_n(A, A \cap B) \oplus E_n(B, A \cap B) \longrightarrow E_n(X, A \cap B)$ induit par les inclusions $A \hookrightarrow X$ et $B \hookrightarrow X$ est un isomorphisme.

Démonstration. On sait que $A\cap B\subset A\subset X$ et que $A\cap B\subset B\subset X$. Donc par la proposition précédente :

 $Ainsi,\ on\ obtient\ une\ suite\ scind\'ee:$

$$\cdots \longrightarrow E_n(A, A \cap B) \xrightarrow{E_n(X, A \cap B)} \xrightarrow{E_n(B, A \cap B)} \cdots$$

Par l'exercice 2 de lé série 3 on a $E_n(A, A \cap B) \oplus E_n(B, A \cap B) \cong E_n(X, A \cap B)$.

Démonstration : Théorème de Mayer - Vietoris, grandes idées. Considérons le diagramme suivant :

avec $\delta_n = \delta \circ \beta \circ E_n \mathcal{U}^{XB}$ et $-\delta_n = \delta \circ \alpha \circ E_n \mathcal{U}^{XA}$. Quelques arguments d'exactitude : $\operatorname{Im} \psi_n \subset \ker \phi_n$: On a que :

$$\phi_n \circ \psi_n = (E_n k - E_n l) \circ (E_n i, E_n j)$$

$$= E_n (k \circ i) - E_n (l \circ j)$$

$$= 0.$$

 $\operatorname{Im} \phi_n \subset \ker \delta_n : \operatorname{Soit} (a,b) \in E_n A \oplus E_n B. \operatorname{Alors} \phi_n(a,b) = E_n k(a) - E_n l(b) \in E_n X. \operatorname{Or} :$

$$\delta_n \circ E_n k = -(\delta \circ \alpha \circ E_n \mathcal{U}^{XA}) \circ E_n k$$
$$= -\delta \circ \alpha \circ (E_n \mathcal{U}^{XA} \circ E_n k)$$
$$= 0$$

De la même manière $\delta_n \circ E_n l = 0$. Donc $\delta \circ (E_n k(a) - E_n l(b)) = 0$ ce qui implique que $\operatorname{Im} \phi_{\cdot} \subset \ker \delta_n$.

Im $\delta_n \subset \ker \psi_{n-1}$: On a que $\delta_n = \delta \circ \beta \circ E_n \mathcal{U}^{XB}$ et donc Im $\delta_n \subset \operatorname{Im} \delta$. Or Im $\delta = \ker E_{n-1}i$. Donc $E_{n-1}i \circ \delta = 0$ ce qui implique que $E_{n-1} \circ \delta_n = 0$. De même : $E_{n-1}j \circ \delta_n = 0$. Par conséquent :

$$\psi_n \circ \delta_n = (E_{n-1}i \circ \delta_n, E_{n-1}j \circ \delta_n)$$
$$= 0.$$

Le reste de la preuve est laissé en maxi-exercice...

Chapitre 2

H-espaces et co-H-espaces

Le but est de caractériser les espaces $(X, x_0), (Y, y_0) \in \mathbf{Top}_*$ tels que $[(X, x_0), (Z, z_0)]_*$ et $[(W, w_0), (Y, y_0)]_*$ admettent des structures de groupe naturelles pour tout $(W, w_0), (Z, z_0) \in \mathbf{Top}_*$. On obtient des invariants homotopiques $[-, (Y, y_0)]_*$ et $[(X, x_0), -]_*$ plus puissants.

2.1 H-espaces

2.1.1 Rappel. Un groupe consiste en un ensemble G est 3 applications

$$\mu: G \times G \longrightarrow G$$

$$\sigma: G \longrightarrow G$$

$$\eta: \{*\} \longrightarrow G$$

telle que les diagrammes suivants commutent :

1. Associativité

$$G \times G \times G \xrightarrow{\mu \times \operatorname{Id}_G} G \times G$$

$$\operatorname{Id}_G \times \mu \downarrow \qquad \qquad \downarrow \mu$$

$$G \times G \xrightarrow{\mu} G$$

2. Élément neutre

$$G \times \{*\} \xrightarrow{\operatorname{Id}_G \times \eta} G \times G \xleftarrow{\eta \times \operatorname{Id}_G} \{*\} \times G$$

$$\cong \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \cong$$

3. Élément inverse

$$G \times G \longleftarrow \begin{array}{c|c} \operatorname{Id}_G \times \sigma & G \times G & \xrightarrow{\sigma \times \operatorname{Id}_G} & G \times G \\ \mu \downarrow & \Delta \uparrow & \downarrow \mu \\ G \longleftarrow \{*\} \longleftarrow \varepsilon & G \longrightarrow \{*\} & \xrightarrow{\varepsilon} G \end{array}$$

ou ε est l'unique application $G \longrightarrow \{*\}.$

Soit $(Y, y_0) \in \mathbf{Top}_{rel}$ un espace tel que

Ainsi, $[-,(Y,y_0)]_*$ peut être vu comme un foncteur vers **Grp**. On peut donc définir une structure de groupe à homotopie près sur Y comme suit :

1. Multiplication : $[(Y \times Y, (y_0, y_0)), (Y, y_0)]_*$ est un groupe par hypothèse. Puis, $[\operatorname{proj}_1]_*$, $[\operatorname{proj}_2]_* \in [(Y \times Y, (y_0, y_0)), (Y, y_0)]_*$. Donc $[\operatorname{proj}_1]_* \cdot [\operatorname{proj}_2]_*$ a un sens et est un élément du groupe. Par conséquent, il existe une application basée $\mu: (Y \times Y, (y_0, y_0)) \longrightarrow (Y, y_0)$ (non nécessairement unique) telle que :

$$[\mu]_* = [\operatorname{proj}_1]_* \cdot [\operatorname{proj}_2]_*.$$

- 2. Element neutre : il existe une unique application $\eta: (\{*\}, *) \longrightarrow (Y, y_0)$.
- 3. Inversion : $[(Y, y_0), (Y, y_0)]_*$ est un groupe par hypothèse et $[\mathrm{Id}_Y]_*$ en est un élément. Donc $[\mathrm{Id}_Y]_*^{-1}$ a un sens et est un élément du groupe. Donc il existe une application basée $\sigma: (Y, y_0) \longrightarrow (Y, y_0)$ (non nécessairement unique) telle que :

$$[\sigma]_* = [\mathrm{Id}_Y]_*^{-1}.$$

2.1.2 Proposition. Avec les notations ci-dessus, les diagrammes suivants commutent à homotopie près :

1.

$$\begin{array}{c} Y \times Y \times Y \xrightarrow{\mu \times \operatorname{Id}_Y} Y \times Y \\ \operatorname{Id}_Y \times \mu \Big| & \downarrow \mu \\ Y \times Y \xrightarrow{\mu} Y \end{array}$$

2.

$$Y \times \{*\} \xrightarrow{\operatorname{Id}_Y \times \eta} Y \times Y \xleftarrow{\eta \times \operatorname{Id}_Y} \{*\} \times Y$$

$$\cong \bigvee_{Y} \bigvee_{\cong} \bigvee_{Y} \bigvee_{\cong} \bigvee_{\cong} \bigvee_{Y} \bigvee_{\cong} \bigvee_{Y} \bigvee_{\cong} \bigvee_{Y} \bigvee_{\cong} \bigvee_{Y} \bigvee_{\cong} \bigvee_{Y} \bigvee_{Y} \bigvee_{\cong} \bigvee_{Y} \bigvee_{Y} \bigvee_{Y} \bigvee_{\cong} \bigvee_{Y} \bigvee_$$

3.

ou ε_Y est l'unique application basée $(Y, y_0) \longrightarrow (\{*\}, *)$.

Démonstration. A venir...

- **2.1.3 Définition** (*H*-espace, *H*-espace associatif, *H*-groupe). Un espace basé (Y, y_0) muni d'applications basées $\eta: (\{*\}, *) \longrightarrow (Y, y_0)$ et $\mu: (Y \times Y, (y_0, y_0)) \longrightarrow (Y, y_0)$ telle η soit un élément neutre pour μ à homotopie près est un *H*-espace. Si de plus μ est associative à homotopie près, alors (Y, y_0) est un *H*-espace associatif. Si on a de plus une application basée $\sigma: (Y, y_0) \longrightarrow (Y, y_0)$ qui est un inverse pour μ et η à homotopie près, alors (Y, y_0) est un *H*-groupe.
- **2.1.4 Notation.** On note les *H*-espaces (Y, y_0, η, μ) et les *H*-groupes $(Y, y_0, \eta, \mu, \sigma)$.
- **2.1.5 Définition** (*H*-morphisme). Soient (Y, y_0, η, μ) et (Y', y'_0, η', μ') deux *H*-espaces. Alors un *H*-morphisme $f: (Y, y_0, \eta, \mu, \sigma) \longrightarrow (Y', y'_0, \eta', \mu', \sigma')$ est une application continue basée $f: (Y, y_0) \longrightarrow (Y', y'_0)$ telle que le diagramme suivant commute à homotopie près :

$$\begin{array}{ccc} Y \times Y & \xrightarrow{f \times f} Y' \times Y' \\ \mu & & \downarrow \mu' \\ Y & \xrightarrow{f} Y' \end{array}$$

Si $(Y, y_0, \eta, \mu, \sigma)$ et $(Y', y'_0, \eta', \mu', \sigma')$ donc des H-groupes, alors f doit de plus faire commuter ce diagramme à homotopie près :

$$\begin{array}{ccc}
Y & \xrightarrow{f} & Y' \\
\sigma \downarrow & & \downarrow \sigma' \\
Y & \xrightarrow{f} & Y'
\end{array}$$

- **2.1.6 Lemme.** Pour tout $(X, x_0) \in \text{Obj } \mathbf{Top}_*$, l'élément neutre du groupe $[(X, x_0), (Y, y_0)]_*$ est $[\eta \circ \varepsilon_X]_*$ où $\varepsilon_X : X \longrightarrow \{*\}$ et $\eta : (\{*\}, *) \longrightarrow (Y, y_0)$.
- Démonstration. L'ensemble $[(\{*\},*),(Y,y_0)]_*$ est un groupe par hypothèse sur (Y,y_0) . Or, la seule application basée de $(\{*\},*)$ vers (Y,y_0) est η . Donc $[(\{*\},*),(Y,y_0)]_*$ admet pour élément neutre $[\eta]_* = [\eta \circ \varepsilon_{\{*\}}]_*$.
 - Par ailleurs, $\forall (X, x_0)$, l'application ε_X est basée et donc induit un homomorphisme :

$$\varepsilon_X^* : [(\{*\},*),(Y,y_0)]_* \longrightarrow [(X,x_0),(Y,y_0)]_*$$
$$[g]_* \longmapsto [g \circ \varepsilon_X]_*.$$

En particulier, ε_X^* préserve l'élément neutre. Donc $\varepsilon_X^*([\eta]_*) = [\eta \circ \varepsilon_X]_*$ est l'élément neutre de $[(X, x_0), (Y, y_0)]_*$.

Démonstration de la proposition 2.1.2. 1. Laissé en exercice...

2. On doit montrer que $\mu \circ (\eta \times \operatorname{Id}_Y) \simeq_* \operatorname{Id}_Y \simeq_* \mu \circ (\operatorname{Id}_Y \times \eta)$. Autrement dit, on veut montrer que $[\mu \circ (\eta \times \operatorname{Id}_Y)]_* = [\operatorname{Id}_Y]_* = [\mu \circ (\operatorname{Id}_Y \times \eta)]_*$. Or :

$$\begin{split} [\mu \circ (\eta \times \operatorname{Id}_Y)]_* &= (\eta \times \operatorname{Id}_Y)^*([\mu]_*) \\ &= (\eta \times \operatorname{Id}_Y)^*([\operatorname{proj}_1]_* \cdot [\operatorname{proj}_2]_*) \\ &= (\eta \times \operatorname{Id}_Y)^*([\operatorname{proj}_1]_*) \cdot (\eta \times \operatorname{Id}_Y)^*([\operatorname{proj}_2]_*) \\ &= [\operatorname{proj}_1 \circ (\eta \times \operatorname{Id}_Y)]_* \cdot [\operatorname{proj}_2 \circ (\eta \times \operatorname{Id}_Y)]_* \\ &= [\eta \circ \varepsilon_Y]_* \cdot [\operatorname{Id}_Y]_* \\ &= [\operatorname{Id}_Y]_*. \end{split}$$

On montre de la même manière l'autre égalité.

Prof. K. Hess-Bellwald

3. On doit montrer que $\mu \circ (\sigma \times \operatorname{Id}_Y) \circ \Delta \simeq_* \eta \circ \varepsilon_Y \simeq_* \mu \circ (\operatorname{Id}_Y \times \sigma) \circ \Delta$. Autrement dit, on veut montrer que $[\mu \circ (\sigma \times \operatorname{Id}_Y) \circ \Delta]_* = [\eta \circ \varepsilon_Y]_* = [\mu \circ (\operatorname{Id}_Y \times \sigma) \circ \Delta]_*$. Or:

$$\begin{split} [\mu \circ (\sigma \times \operatorname{Id}_Y) \circ \Delta]_* &= ((\sigma \times \operatorname{Id}_Y) \circ \Delta)^*([\mu]_*) \\ &= ((\sigma \times \operatorname{Id}_Y) \circ \Delta)^*([\operatorname{proj}_1]_* \cdot [\operatorname{proj}_2]_*) \\ &= ((\sigma \times \operatorname{Id}_Y) \circ \Delta)^*([\operatorname{proj}_1]_*) \cdot ((\sigma \times \operatorname{Id}_Y) \circ \Delta)^*([\operatorname{proj}_2]_*) \\ &= [\operatorname{proj}_1 \circ (\sigma \times \operatorname{Id}_Y) \circ \Delta]_* \cdot [\operatorname{proj}_2 \circ (\sigma \times \operatorname{Id}_Y) \circ \Delta]_* \\ &= [\sigma]_* \cdot [\operatorname{Id}_Y]_* \\ &= [\operatorname{Id}_Y]_*^{-1} \cdot [\operatorname{Id}_Y]_* \\ &= [\eta \circ \varepsilon_Y]_*. \end{split}$$

On montre de la même manière l'autre égalité.

2.1.7 Remarque. De manière générale : $\forall f, g: U \longrightarrow V$

2.1.8 Proposition. Si $(Y, y_0, \mu, \sigma, \eta)$ est un *H*-groupe, alors

$$[-,(Y,y_0)]_*: \mathbf{Top}_* \longrightarrow \mathbf{Grp}$$

est un foncteur.

Démonstration. Laissé en exercice... Indication : $\forall (X, x_0) \in \text{Obj } \mathbf{Top}_*$ on définit une multiplication $sur\ [(X, x_0), (Y, y_0)]_*$ $par\ : \forall [f]_*, [g]_* \in [(X, x_0), (Y, y_0)]_*$

$$[f]_* \cdot [g]_* = [\mu \circ (f \times g) \circ \Delta]_*.$$

2.1.9 Exemple. Soit $(Z, z_0) \in \text{Obj} \mathbf{Top}_*$. L'espace des lacets sur Z basés en z_0 est définit par :

$$\Omega_{z_0} Z = \{ \lambda \in \operatorname{Map}(I, Z) \mid \lambda(0) = \lambda(1) = z_0 \}$$

muni de sa topologie de sous espace. Cet espace peut être muni d'une structure de H-groupe :

• Élément neutre :

$$\eta: \{*\} \quad \longrightarrow \quad \Omega_{z_0} Z$$

$$\quad * \quad \longmapsto \quad c_{z_0}$$

où c_{z_0} est le chemin constant en z_0 .

• Multiplication :

$$\mu: \Omega_{z_0} Z \times \Omega_{z_0} Z \longrightarrow \Omega_{z_0} Z$$
$$(\lambda, \lambda') \longmapsto \lambda \star \lambda'$$

où \star est la concaténation.

• Élément inverse :

$$\begin{array}{ccc} \sigma: \Omega_{z_0} Z & \longrightarrow & \Omega_{z_0} Z \\ \lambda & \longmapsto & \overline{\lambda} \end{array}$$

où $\overline{\lambda}$ est le lacet λ parcourut dans le sens inverse.

On a vérifié les axiomes des H-groupes dans le cours de Topologie 2! La preuve que μ et σ sont des applications continues est laissé en exercice. Donc $(\Omega_{z_0}Z, z_0, \mu, \sigma, \eta)$ est un H-groupe.

2.2 Co-H-espaces

On va dualiser tout ce que l'on vient de faire pour les H-espaces et les H-groupes. Supposons que $(X, x_0) \in \text{Obj } \mathbf{Top}_*$ soit tel qu'il existe une factorisation

Donc:

- L'ensemble $[(X, x_0), (Y, y_0)]_*$ est muni d'une structure de groupe $\forall (Y, y_0) \in \text{Obj} \mathbf{Top}_*$,
- Pour toute application continue basée $g:(Y,y_0)\longrightarrow (Z,z_0)$, on a une application induite

$$g_* : [(X, x_0), (Y, y_0)]_* \longrightarrow [(X, x_0), (Z, z_0)]_*$$

 $[f]_* \longmapsto [g \circ f]_*.$

Ceci induit sur (X, x_0) une structure de co-H-groupe.

2.2.1 Définition (Wedge). Soient $(X, x_0), (Y, y_0) \in \text{Obj Top}_*$. Le **wedge** (ou **bouquet**) de ces deux espaces est définit par l'espace :

$$(X, x_0) \lor (Y, y_0) = \{(x, y) \in (X, x_0) \times (Y, y_0) \mid x = x_0 \text{ ou } y = y_0\}$$

basé en (x_0, y_0) et muni de sa topologie de sous espace.

2.2.2 Remarques. 1. Pour tout applications continues basées $f:(X,x_0) \longrightarrow (X',x_0')$ et $g:(Y,y_0) \longrightarrow (Y',y_0')$, il existe

$$f \vee g: (X, x_0) \vee (Y, y_0) \longrightarrow (X', x_0') \vee (Y', y_0')$$
$$(x, y) \longmapsto (f(x), g(y)).$$

On a que

$$f \vee g = f \times g|_{(X,x_0)\vee(Y,y_0)}^{(X',x_0')\vee(Y',y_0')}.$$

2. Pour tout espace basé $(X, x_0) \in \text{Obj } \mathbf{Top}_*$, on a l'application de pliage définie par :

$$\nabla: (X, x_0) \vee (X, x_0) \longrightarrow (X, x_0)$$

$$(x_1, x_2) \longmapsto \begin{cases} x_2 & \text{si} x_1 = x_0 \\ x_1 & \text{sinon} \end{cases}.$$

Si $\{x_0\}$ est fermé dans X, alors on peut montrer que ∇ est continue (en appliquant le lemme de recollement). De manière analogue au fait que $\operatorname{proj}_i \circ (f_1 \times f_2) \circ \Delta = f_i, \forall i \in \{1,2\}$, on a que $\forall f_1, f_2 : (X, x_0) \longrightarrow (Y, y_0)$

$$(X, x_0) \lor (X, x_0) \xrightarrow{f_1 \lor f_2} (Y, y_0) \lor (Y, y_0)$$

$$\iota_i \uparrow \qquad \qquad \downarrow \nabla$$

$$(X, x_0) \xrightarrow{f_i} (Y, y_0)$$

οù

$$\iota_1: (X, x_0) \longrightarrow (X, x_0) \vee (X, x_0)$$

$$x \longmapsto (x, x_0)$$

$$\iota_2: (X, x_0) \longrightarrow (X, x_0) \vee (X, x_0)$$

$$x \longmapsto (x_0, x)$$

Donc $\nabla \circ (f_1 \vee f_2) \circ \iota_i = f_i, \forall i \in \{1, 2\}.$

Regardons maintenant la structure sur (X, x_0) induite par $[(X, x_0), -]_*$:

1. Co-multiplication : $[(X, x_0), (X, x_0) \lor (X, x_0)]_*$ est un groupe. Soit $\psi : (X, x_0) \longrightarrow (X, x_0) \lor (X, x_0)$ une application continue basée telle que

$$[\psi]_* = [\iota_1]_* \cdot [\iota_2]_*.$$

2. Co-inversion : $[(X,x_0),(X,x_0)]_*$ est un groupe. Soit $\tau:(X,x_0)\longrightarrow (X,x_0)$ une application continue basée telle que

$$[\tau]_* = [\mathrm{Id}_X]_*^{-1}.$$

- 3. Co-unité : $\varepsilon_X : (X, x_0) \longrightarrow (\{*\}, *)$.
- **2.2.3 Proposition.** Avec le notations ci-dessus, les diagrammes suivants commutent à homotopie près :
 - 1. Co-unité

$$X \vee \{*\} \underbrace{\overset{\operatorname{Id}_{X} \vee \varepsilon_{X}}{\longleftarrow}}_{\cong} X \vee X \xrightarrow{\varepsilon_{X} \vee \operatorname{Id}_{X}}_{\cong} \{*\} \vee X$$

2. Co-associativité:

$$X \xrightarrow{\psi} X \vee X$$

$$\psi \downarrow \qquad \qquad \downarrow \psi \vee \operatorname{Id}_X$$

$$X \vee X \xrightarrow{\operatorname{Id}_X \vee \psi} X \vee X \vee X$$

3. Co-inversion:

- **2.2.4 Définition** (Co-H-espace, co-H-espace associatif, co-H-groupe). Une famille $(X, x_0, \varepsilon_X, \psi)$ qui vérifie la condition 1. est un **co-H-espace**. Si elle vérifie de plus la condition 2., alors c'est un **co-H-espace** associatif. Une famille $(X, x_0, \varepsilon_X, \psi, \tau)$ qui vérifie les conditions 1., 2. et 3. est un **co-H-groupe**.
- **2.2.5 Lemme.** Soit $(X, x_0, \varepsilon_X, \psi)$ un co-H-espace et $(Y, y_0) \in \text{Obj } \mathbf{Top}_*$. Alors l'élément neutre du groupe $[(X, x_0), (Y, y_0)]$ est donné par $[\eta_Y \circ \varepsilon_X]_*$ où $\varepsilon_X : X \longrightarrow \{*\}$ et où $\eta_Y : \{*\} \longrightarrow Y$.

Démonstration. • Posons $(Y, y_0) = (\{*\}, *)$. Alors il existe une unique application $(X, x_0) \longrightarrow (Y, y_0)$ qui est donné par ε_X . Donc $[(X, x_0), (Y, y_0)] = \{[\varepsilon_X]_*\} = \{[\eta_Y \circ \varepsilon_X]_*\}$ car $\eta_{\{*\}} = \mathrm{Id}_{\{*\}}$.

• Soit $(Y, y_0) \in \text{Obj } \mathbf{Top}_*$. Alors η_Y est une application basée et donc induite un homomorphisme

$$(\eta_Y)_* : [(X, x_0), (\{*\}, *)] \longrightarrow [(X, x_0), (Y, y_0)]$$

 $[\varepsilon_X]_* \longmapsto [\eta_Y \circ \varepsilon_X]_*.$

Donc, comme $[\varepsilon_X]_*$ est l'élément neutre de $[(X,x_0),(\{*\},*)]$, on a que $[\eta_Y \circ \varepsilon_X]_*$ est l'élément neutre de $[(X,x_0),(Y,y_0)]$.

Démonstration de la proposition 2.2.3. 1. On doit vérifier que $(\varepsilon_X \vee \operatorname{Id}_X) \circ \psi \simeq_* \operatorname{Id}_X \simeq_* (\operatorname{Id}_X \vee \varepsilon_X) \circ \psi$. On a:

$$\begin{split} [(\varepsilon_X \vee \operatorname{Id}_X) \circ \psi]_* &= (\varepsilon_X \vee \operatorname{Id}_X)_*([\psi]_*) \\ &= (\varepsilon_X \vee \operatorname{Id}_X)_*([\iota_1]_* \cdot [\iota_2]_*) \\ &= (\varepsilon_X \vee \operatorname{Id}_X)_*([\iota_1]_*) \cdot (\varepsilon_X \vee \operatorname{Id}_X)_*([\iota_2]_*) \\ &= [(\varepsilon_X \vee \operatorname{Id}_X) \circ \iota_1]_* \cdot [(\varepsilon_X \vee \operatorname{Id}_X) \circ \iota_2]_* \\ &= [\eta_Y \circ \varepsilon_X]_* \cdot [\operatorname{Id}_X]_* \\ &= [\operatorname{Id}_X]_*. \end{split}$$

On montre de la même manière que $[\mathrm{Id}_X]_* = [(\mathrm{Id}_X \vee \varepsilon_X) \circ \psi]_*$.

- 2. Exercice...
- 3. Exercice...

2.2.6 Proposition. Si $(X, x_0, \varepsilon, \psi, \tau)$ est un co-H-groupe, alors le foncteur $[(X, x_0), -]_*$ prend son image dans **Grp**.

Démonstration, grandes idées. On définit la multiplication sur $[(X, x_0), (Y, y_0)]$ par :

$$[f]_* \cdot [g]_* = [\nabla \circ (f \vee g) \circ \psi]_*.$$

L'inverse d'un élément $[f]_*$ est définit par :

$$[f]_*^{-1} = [f \circ \tau]_*.$$

2.2.7 Exemple. La suspension réduite d'un espace basé $(Z, z_0) \in \text{Obj} \operatorname{Top}_*$ est définit par l'espace

$$\Sigma_{z_0} Z = Z \times I / [(z, 0) \sim (z_0, t) \sim (z', 1)]$$

basé en $[X \times \{0\}] = [\{z_0\} \times I] = [X \times \{1\}]$. Le **smash** de $z \in Z$ et $t \in I$ est la classe de (z, t) dans $\Sigma_{z_0} Z$ que l'on note $z \wedge t$.

"Pour les suspensions, je vous laisse en suspend pendant la pause... blague terrible..."

Prof. K. Hess-Bellwald Le 01/11/2012

- **2.2.8 Exercices.** 1. Montrer que $\Sigma_0 \mathbb{S}^n \cong \mathbb{S}^{n+1}$.
 - 2. Posons:

$$\begin{array}{cccc} \psi: \Sigma_{z_0}Z & \longrightarrow & \Sigma_{z_0}Z \vee \Sigma_{z_0}Z \\ & & & & \\ z \wedge t & \longmapsto & \left\{ \begin{array}{ccc} (z \wedge 2t, z \wedge 0) & \text{si } t \in [0, 1/2] \\ (z \wedge 0, z \wedge (2t-1)) & \text{sinon} \end{array} \right., \\ \tau: \Sigma_{z_0}Z & \longmapsto & \Sigma_{z_0}Z \\ & & & & \\ z \wedge t & \longmapsto & z \wedge (1-t). \end{array}$$

Alors $(\Sigma_{z_0} Z, z_0 \wedge 0, \varepsilon, \psi, \tau)$ est un co-H-groupe. En particulier, \mathbb{S}^n est un co-H-groupe si $n \geq 1$.

2.3 Le cas abélien

2.3.1 Lemme (Eckmann - Hilton). Soit G un ensemble muni de deux opérations binaires

$$\begin{array}{cccc} \mu: G \times G & \longrightarrow & G \\ (a,b) & \longmapsto & a \odot b, \\ \nu: G \times G & \longrightarrow & G \\ (a,b) & \longmapsto & a \cdot b \end{array}$$

qui admettent un élément neutre commun $e \in G$. Si

$$(a \odot b) \cdot (c \odot d) = (a \cdot c) \odot (b \cdot d), \quad \forall a, b, c, d \in G,$$

alors:

- 1. Les deux opérations sont égales : $a \odot b = a \cdot b$, $\forall a, b \in G$,
- 2. Les deux opérations sont commutatives,
- 3. Les deux opérations sont associatives.

On peut se représenter la relation avec un diagramme :

Prof. K. Hess-Bellwald

Démonstration. 1. Considérons la configuration

$$\begin{bmatrix} a & e \\ e & b \end{bmatrix}.$$

On a que:

$$(a \odot e) \cdot (e \odot b) = (a \cdot e) \odot (e \cdot b) \iff a \odot b = a \cdot b, \quad \forall a, b \in G.$$

2. Considérons la configuration

$$\begin{bmatrix} e & a \\ b & e \end{bmatrix}.$$

On a que:

$$(e \odot a) \cdot (b \odot e) = a \cdot b = a \odot b$$
$$= (e \cdot b) \odot (a \cdot e) = b \odot a = b \cdot a.$$

3. Considérons la configuration

$$\begin{bmatrix} a & b \\ e & c \end{bmatrix}.$$

On a que:

$$(a \odot b) \cdot (e \odot c) = (a \odot b) \cdot c = (a \odot b) \odot c = (a \cdot b) \cdot c$$
$$= (a \cdot e) \odot (b \cdot c) = a \odot (b \cdot c) = a \odot (b \odot c) = a \cdot (b \cdot c).$$

2.3.2 Proposition. Si $(X, x_0, \varepsilon, \psi, \tau)$ est un co-H-groupe et si $(Y, y_0, \eta, \mu, \sigma)$ est un H-groupe, alors les deux structures de groupes sur $[(X, x_0), (Y, y_0)]$ sont les mêmes et le groupe est abélien.

Démonstration. On sait que $[\eta_Y \circ \varepsilon_X]_*$ est l'élément neutre de μ et ψ . Posons

$$\begin{split} [f]_* \odot [g]_* &= [\nabla \circ (f \vee g) \circ \psi]_*, \\ [f]_* \cdot [g]_* &= [\mu \circ (f \times g) \circ \Delta]_*. \end{split}$$

Soient $f, g, h, k : (X, x_0) \longrightarrow (Y, y_0)$. Alors :

$$\begin{split} ([f]_* \odot [g]_*) \cdot ([h]_* \odot [k]_*) &= [\nabla \circ (f \vee g) \circ \psi]_* \cdot [\nabla \circ (h \vee k) \circ \psi]_* \\ &= [\mu \circ ((\nabla \circ (f \vee g) \circ \psi) \times (\nabla \circ (h \vee k) \circ \psi)) \circ \Delta]_* \\ ([f]_* \cdot [h]_*) \odot ([g]_* \cdot [k]_*) &= [\mu \circ (f \times h) \circ \Delta]_* \odot [\mu \circ (g \times k) \circ \Delta]_* \\ &= [\nabla \circ ((\mu \circ (f \times h) \circ \Delta) \vee (\mu \circ (g \times k) \circ \Delta)) \circ \psi]_*. \end{split}$$

On a alors le diagramme suivant :

Il vient que ce diagramme commute (exactement). Donc les deux applications sont les mêmes, sont associatives et commutatives. \Box

2.3.3 Lemme. Soient $(X, x_0), (Y, y_0) \in \text{Obj } \mathbf{Top}_*$. Alors :

$$[\Sigma X, Y]_* \cong [X, \Omega Y]_*.$$

Démonstration. Définissons

$$\begin{array}{cccc} \alpha: [\Sigma X, Y]_* & \longrightarrow & [X, \Omega Y]_* \\ & [f]_* & \longmapsto & [f^{\sharp}]_*, \\ f^{\sharp}: X & \longrightarrow & \Omega Y \\ & x & \longmapsto & f^{\sharp}(x), \\ f^{\sharp}(x): I & \longrightarrow & Y \\ & t & \longmapsto & f(x \wedge t). \end{array}$$

On a que:

• $f^{\sharp}(x)$ est continue car elle est donnée par :

$$I \hookrightarrow \{x\} \times I \xrightarrow{\quad q \quad} \Sigma X \xrightarrow{\quad f \quad} Y$$

- $f^{\sharp}(x)$ est bien un lacet basé car $f^{\sharp}(x)(0) = f(x \wedge 0) = y_0$, car $x \wedge 0$ est le point de base de ΣX , et $f^{\sharp}(x)(1) = f(x \wedge 1) = y_0$.
- α est bien définie car si $f \simeq_* f'$, alors $f^{\sharp} \simeq_* (f')^{\sharp}$ puisque si $H: X \times I \longrightarrow Y$ est une homotopie basée de f vers f', alors

$$\begin{array}{ccc} H^{\sharp}: \Sigma X \times I & \longrightarrow & \Omega Y \\ (x,t) & \longmapsto & H((x \wedge -),t): I \longrightarrow Y \end{array}$$

est une homotopie basée de f^{\sharp} vers $(f')^{\sharp}$.

- f^{\sharp} est continue. On utilise le fait que ΩY est muni de la topologie de sous espace induite par la topologie compact-ouvert de Map(I,Y).
- α est un homomorphisme car $\forall [f]_*, [g]_* \in [\Sigma X, Y]_*$ on a que:

$$\begin{array}{rcl} \alpha\left([f]_*,[g]_*\right) & = & \alpha\left(\left[\nabla\circ\left(f\vee g\right)\circ\psi\right]_*\right) \\ & = & \left[\left(\nabla\circ\left(f\vee g\right)\circ\psi\right)^\sharp\right]_*, \\ \alpha([f]_*)\cdot\alpha([g]_*) & = & \left[f^\sharp\right]_*\cdot\left[g^\sharp\right]_* \\ & = & \left[\mu\circ\left(f^\sharp\times g^\sharp\right)\circ\Delta\right]_*. \end{array}$$

Or:

$$\begin{split} (\nabla \circ (f \vee g) \circ \psi)^{\sharp} : X &\longrightarrow \Omega Y \\ (\nabla \circ (f \vee g) \circ \psi)^{\sharp}(x) : I &\longrightarrow Y \\ t &\longmapsto (\nabla \circ (f \vee g) \circ \psi)(x \wedge t) \\ &= \begin{cases} \nabla \circ (f \vee g)(x \wedge 2t, *) & si \ t \in [0, 1/2] \\ \nabla \circ (f \vee g)(*, x \wedge (2t - 1)) & si \ t \in]1/2, 0] \end{cases} \\ &= \begin{cases} \nabla (f(x \wedge 2t), *) & si \ t \in [0, 1/2] \\ \nabla (*, g(x \wedge (2t - 1))) & si \ t \in]1/2, 0] \end{cases} \\ &= \begin{cases} f(x \wedge 2t) & si \ t \in [0, 1/2] \\ g(x \wedge (2t - 1)) & si \ t \in]1/2, 0] \end{cases} \end{split}$$

et

$$\mu \circ (f^{\sharp} \times g^{\sharp}) \circ \Delta : X \longrightarrow \Omega Y,$$

$$X \xrightarrow{\Delta} X \times X \xrightarrow{f^{\sharp} \times g^{\sharp}} \Omega Y \times \Omega Y \xrightarrow{\mu} \Omega Y$$

$$x \longmapsto (x, x) \longmapsto (f^{\sharp}(x), g^{\sharp}(x)) \longmapsto f^{\sharp}(x) \star g^{\sharp}(x)$$

avec

$$(f^{\sharp}(x) \star g^{\sharp}(x))(t) = \begin{cases} f^{\sharp}(x)(2t) & si \ t \in [0, 1/2] \\ g^{\sharp}(x)(2t-1) & si \ t \in]1/2, 0] \end{cases}$$

$$= \begin{cases} f(x \wedge 2t) & si \ t \in [0, 1/2] \\ g(x \wedge (2t-1)) & si \ t \in]1/2, 0] \end{cases} .$$

 $Donc \ (\nabla \circ (f \vee g) \circ \psi)^{\sharp} = \mu \circ (f^{\sharp} \times g^{\sharp}) \circ \Delta \ \ ce \ qui \ implique \ que \ \alpha \ \ est \ bien \ un \ homomorphisme.$

• α admet un inverse

$$\begin{split} \beta: [X,\Omega Y]_* & \longrightarrow & [\Sigma X,Y]_* \\ & [g]_* & \longmapsto & \left[g^\flat\right]_*, \\ g^\flat: \Sigma X & \longrightarrow & Y \\ & x \wedge t & \longmapsto & g(x)(t). \end{split}$$

2.3.4 Corollaire. Le groupe d'homotopie $\pi_n(Y, y_0)$ est abélien $\forall n \geq 2$.

Démonstration. On a que

$$\pi_{n}(Y, y_{0}) = [(\mathbb{S}^{n}, 0), (Y, y_{0})]_{*}
\cong [\Sigma_{0}\Sigma_{0}\mathbb{S}^{n-2}, (Y, y_{0})]_{*}
\cong [\Sigma_{0}\mathbb{S}^{n-2}, \Omega_{y_{0}}Y]_{*}.$$

Or, $\Sigma_0 \mathbb{S}^{n-2}$ est un co-H-groupe et $\Omega_{y_0} Y$ est un H-groupe. Donc $[(\mathbb{S}^n, 0), (Y, y_0)]_*$ est abélien. \square

Chapitre 3

Suites exactes de Puppe

Le but de ce chapitre est de démontrer l'existence d'une longue suite exacte de groupes d'homotopie dont découlera l'axiome d'exactitude de notre théorie d'homologie.

3.1 Le cas absolu

3.1.1 Définition (Cône réduit sur un espace basé). Le cône réduit est un foncteur

$$\begin{array}{cccc} C: \mathbf{Top}_* & \longrightarrow & \mathbf{Top}_* \\ (X,x_0) & \longmapsto & C(X,x_0) = X \times I/\left[(x,1) \sim (x_0,t)\right] \\ \left((X,x_0) \xrightarrow{f} (Y,y_0)\right) & \longmapsto & \left(C(X,x_0) \xrightarrow{\widetilde{f}} C(Y,y_0)\right) \\ \widetilde{f}: C(X,x_0) & \longrightarrow & C(Y,y_0) \\ \left[(x,t)] & \longmapsto & \left[(f(x),t)\right] \end{array}$$

où $C(X, x_0)$ est basé en $[(x_0, 0)]$.

- **3.1.2 Notations.** Dans le cône réduit, on note les classes d'équivalences comme suit : [x, t] = [(x, t)]. Pour alléger les notations, on note $CX = C(X, x_0)$.
- **3.1.3 Remarque.** Soit $(X, x_0) \in \text{Obj Top}_*$. Alors il existe un morphisme

$$\iota_X : (X, x_0) \longrightarrow CX$$
 $x \longmapsto [x, 0].$

3.1.4 Définition (Cône réduit d'une application basée). Soit $f:(X,x_0) \longrightarrow (Y,y_0)$. On définit **cône réduit** de f (aussi appelé le **mapping cone**) comme étant le pushout :

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\iota_X & & & & \downarrow i_f \\
CX & \xrightarrow{} & Cf
\end{array}$$

οù

$$Cf = CX \coprod Y/[[x,0] \sim f(x)].$$

On a donc :

$$X \xrightarrow{f} Y \xrightarrow{i_f} Cf \xrightarrow{i_{i_f}} Ci_f \xrightarrow{f} \cdots$$

L'espace

3.1.5 Définition (Suite exacte d'ensembles). Une suite

$$(A, a_0) \xrightarrow{f} (B, b_0) \xrightarrow{g} (C, c_0)$$

est exacte si $g^{-1}(\lbrace c_0 \rbrace) = \operatorname{Im} f$.

3.1.6 Théorème. On a que

$$Ci_f \simeq_* \Sigma X.$$

Ce théorème est important pour démontrer

3.1.7 Théorème. Pour toute application basée $f:(X,x_0)\longrightarrow (Y,y_0)$, on a une suite d'applications basées

qui induit pour tout espace $(W, w_0) \in \text{Obj } \mathbf{Top}_*$ une suite exacte

- **3.1.8 Remarque.** Le dernier niveau représente une suite exacte d'ensembles, l'avant dernier niveau représente une suite exacte de groupes et les niveaux précédents représentent une suite exactes de groupes abéliens.
- **3.1.9 Lemme.** Soit $y_0 \in Y' \subseteq Y$ où $(Y, y_0), (Y', y_0) \in \text{Obj } \mathbf{Top}_*$. S'il existe une homotopie $H: Y \times I \longrightarrow Y$ telle que Y' soit contractile dans Y, i.e. telle que

- 1. H(y,0) = y, $\forall y \in Y$,
- 2. $H(y',t) \in Y' \quad \forall y' \in Y', \forall t \in I,$
- 3. $H(y', 1) = y_0 \quad \forall y' \in Y',$
- 4. $H(y_0, t) = y_0 \quad \forall t \in I$,

alors l'application quotient $q: Y \longrightarrow Y/Y'$ est une équivalence d'homotopie.

Démonstration. Il faut montrer que $\exists s: Y/Y' \longrightarrow Y$ telle que

$$s \circ q \simeq_* \operatorname{Id}_Y \qquad et \qquad q \circ s \simeq_* \operatorname{Id}_{Y/Y'}.$$

Observer que $H(-,1): Y \longrightarrow Y$ envoie tout élément de Y' sur y_0 . Par conséquent, il existe une unique application continue $s: Y/Y' \longrightarrow Y$ telle que le diagramme suivant commute :

Donc $s \circ q = H(-,1)$. Par définition de s, on a que H est une homotopie basée de Id_Y vers $s \circ q$. Pour trouver une homotopie de $q \circ s$ vers $\mathrm{Id}_{Y/Y'}$, considérons

$$\begin{array}{c|c} Y \times I & \xrightarrow{H} Y & \xrightarrow{q} Y/Y' \\ q \times \operatorname{Id}_I & & & \\ Y/Y' \times I & & & \end{array}$$

Puisque $q \circ H(y', t) = [y_0], \quad \forall y' \in Y', \forall t \in I, il existe une unique homotopie <math>H' : Y/Y' \times I \longrightarrow Y/Y'$ telle que $H' \circ (q \times \operatorname{Id}_I) = q \circ H$. Par ailleurs, on a que

$$H'([y], 0) = [H(y, 0)] = [y],$$

 $H'([y], 1) = [H(y, 1)] = q \circ s(y),$
 $H'([y_0], t) = [H(y_0, t)] = [y_0].$

On a donc un homotopie basée de $\mathrm{Id}_{Y/Y'}$ vers $q \circ s$.

3.1.10 Lemme. Soit

$$i_0: X \longrightarrow X \times I$$

 $x \longmapsto (x,0).$

Alors tout application basée $h:Ci_0\longrightarrow Y$ s'étend en une application $H:CX\times I\longrightarrow Y$, i.e. on a :

avec $H \circ j = h$.

Démonstration. Définissons

$$\begin{array}{cccc} T: CX \times I & \longrightarrow & Y \\ & ([x,s],t) & \longmapsto & \left\{ \begin{array}{ll} h([x,1-(1-s)(1+t)]) & si \ (1-s)(1+t) \leq 1 \\ h(x,(1-s)(1+t)-1) & si \ (1-s)(1+t) \geq 1. \end{array} \right. \end{array}$$

C'est bien définit car si (1-s)(1+t)=1, alors 1-(1-s)(1+t)=0=(1-s)(1+t)-1 et h([x,0])=h(x,0) car [x,0] et (x,0) sont dans les mêmes classes d'équivalence dans Ci_0 . Enfin,

$$H \circ j(x,t) = H([x,0],t) = h(x,t),$$

 $H \circ j([x,s]) = H([x,s],0) = h([x,s]).$

3.1.11 Lemme. Soit $(X, x_0) \in \mathbf{Top}_*$ et $A \subset X$ fermé. Soit $f : A \longrightarrow Y$ une application continue. Considérons le pushout :

$$\begin{array}{ccc}
A & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
X & \xrightarrow{} & X \coprod_{A} Y
\end{array}$$

οù

$$X \coprod_{A} Y = \left(X \coprod Y \right) / \left[a \sim f(a) \right].$$

Alors l'application induite $X/A \longrightarrow (X \coprod_A Y) \, / Y$ est un homéomorphisme.

Démonstration. Voire l'exercice 3 de la série 23 du cours de Topologie 2.

$$X \xrightarrow{i_1} X \coprod Y \xrightarrow{q'} (X \coprod_A Y)/Y$$

$$q \downarrow \qquad \qquad \downarrow \\ X/A \qquad \qquad \exists ! hom\'eom.$$

Démonstration du théorème 3.1.6. Analysons d'abord Ci_f : on a

$$Y \xrightarrow{i_f} Cf$$

$$\iota_Y \downarrow \qquad \qquad \downarrow i_{i_f}$$

$$CY \xrightarrow{j_{i_f}} Ci_f$$

où

$$\begin{split} Ci_f &= \left. \left(CY \coprod Cf \right) / \left[[y,0] \sim i_f(y) \right] \\ &= \left. \left(CY \coprod Y \coprod CX \right) / \left[[y,0] \sim y, [x,0] \sim f(x) \right] \\ &\cong \left. \left(CY \coprod CX \right) / \left[[x,0] \sim [f(x),0] \right]. \end{split}$$

Voici l'idée de la preuve : on a que $CY \simeq_* \{*\}$, même dans Ci_f . Donc

$$Ci_f \simeq_* Ci_f/CY \cong CX/[[x,0] \sim [x',0]] \cong \Sigma X.$$

• Soit G l'homotopie contractante donnée par

$$G: CY \times I \longrightarrow CY$$

 $([y, s], t) \longmapsto [y, 1 - (1 - s)(1 - t)].$

 $Observer\ que:$

$$\begin{array}{lcl} G([y,s],0) & = & [y,s] \\ G([y,s],1) & = & [y,1] \\ G([y_0,s],t) & = & [y_0,1-(1-s)(1-t)]. \end{array}$$

Définissons $h': X \times I \longrightarrow Ci_f$ par :

$$X \times I \xrightarrow{f \times \operatorname{Id}_I} Y \times I \xrightarrow{\iota_Y \times \operatorname{Id}_I} CY \times I \xrightarrow{G} CY \xrightarrow{j_{i_f}} Ci_f$$

$$(x,t) \longmapsto (f(x),t) \longmapsto ([f(x),0],t) \longmapsto [f(x),t] \longmapsto [[f(x),t]]$$

et soit $h'': CX \longrightarrow Ci_f$ définie par :

$$CX \hookrightarrow CX \coprod CY \xrightarrow{q} Ci_f$$

$$[x,s] \longmapsto [x,s] \longmapsto [[x,s]]$$

Alors le diagramme suivant commute

$$\begin{array}{ccc} X & \xrightarrow{i_0} & X \times I \\ \iota_X & & & \downarrow h' \\ CX & \xrightarrow{h''} & Ci_f \end{array}$$

car

$$h' \circ i_0(x) = h'(x,0) = [[f(x),0]]$$

 $h'' \circ \iota_X(x) = h''([x,0]) = [[x,0]] = [[f(x),0]].$

- Ainsi, il existe une unique application $h:Ci_0\longrightarrow Ci_f$ telle que le diagramme suivant commute :

Par le lemme 3.1.10, on sait que $\exists H: CX \times I \longrightarrow Ci_f$ une homotopie telle que le diagramms suivant commute :

$$Ci_0 \xrightarrow{h} Ci_f$$

$$\downarrow \qquad \qquad \downarrow$$

$$CX \times I$$

A partir de G et de H, on va construire une homotopie K sur Ci_f contractant CY (suivant les conditions du lemme 3.1.9).

- Définissons K par :

$$\begin{array}{cccc} K:Ci_f\times I & \longrightarrow & Ci_f\\ & ([[z,s]]\,,t) & \longmapsto & \left\{ \begin{array}{ccc} H([z,s],t) & si\;z\in X\\ G([z,s],t) & si\;z\in Y \end{array} \right.. \end{array}$$

On vérifie que c'est bien défini en utilisant la propriété universelle de l'espace quotient :

Il vient que K satisfait les hypothèses du lemme 3.1.9. Donc on sait que l'application quotient $Ci_f \longrightarrow Ci_f/CY$ est une équivalence d'homotopie. Par le lemme 3.1.11, les deux diagrammes suivants commutent :

$$Y \xrightarrow{i_f} Cf \xrightarrow{} Cf/Y$$

$$\iota_Y \downarrow \qquad \qquad \uparrow \cong$$

$$CY \xrightarrow{} Ci_f \xrightarrow{} Ci_f/CY$$

$$X \xrightarrow{f} Y$$

$$X \xrightarrow{f} Y$$

$$\iota_X \downarrow \qquad \qquad \downarrow$$

$$CX \xrightarrow{} Cf$$

$$\downarrow \qquad \qquad \downarrow$$

$$CX/X \cong \Sigma X \xleftarrow{\cong} Cf/Y$$

Donc

$$Ci_f \simeq_* Ci_f/CY \cong Cf/Y \cong CX/X \cong \Sigma X.$$

Maintenant on peut démontrer :

3.1.12 Lemme. Soit $(X,x_0),(Y,y_0),(W,w_0)\in \mathrm{Obj}\,\mathbf{Top}_*$ et $f:(X,x_0)\longrightarrow (Y,y_0).$ La suite suivante est exacte (pour les ensembles pointés):

$$[Cf,W]_* \xrightarrow{i_f^*} [Y,W]_* \xrightarrow{f^*} [X,W]_*$$

Démonstration. Remarquons que $i_f \circ f \simeq_* c_{[x_0,0]}$, où $c_{[x_0,0]}$ est le chemin constant en $[x_0,0]$, le point de base de Cf.

- Soit $[g]_* \in [Cf, W]_*$. Alors $f^* \circ i_f^*([g]_*) = f^*([g \circ i_f]_*) = [g \circ i_f \circ f]_* = [g \circ c_{[x_0,0]}]_* = [c_{w_0}]_*$. Soit $[h]_* \in [Y, W]_*$ telle que $f^*([h]_*) = [h \circ f]_* = [c_{w_0}]_*$. Alors $c_{w_0} \simeq_* h \circ f$. Donc il existe une homotopie $H: X \times I \longrightarrow W$ telle que

$$H(x,0) = h \circ f(x), \qquad H(x,1) = w_0, \qquad \forall x \in X.$$

On a que le diagramme suivant commute :

avec $\widehat{H}([x,t]) = H(x,t)$. En effet,

$$H(x, 1) = w_0 = H(x', 1) = H(x_0, t), \quad \forall x, x' \in X, \forall t \in I.$$

On a donc que le diagramme suivant commute :

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\iota_X & & \downarrow h \\
CX & \xrightarrow{\widehat{H}} & W
\end{array}$$

 $car\ H \circ \iota_X(x) = \widehat{H}([x,0]) = H(x,0) = h \circ f(x)$. Donc le diagramme suivant commute

En particulier, $g \circ i_f = h$, ce qui implique que

$$[h]_* = [g \circ i_f]_* = i_f^*([g]_*).$$

Démonstration du théorème 3.1.7. Pour obtenir l'exactitude de la longue suite, observer que tout couple de flèches consécutives dans la suite

$$X \xrightarrow{f} Y \xrightarrow{i_f} Cf$$

$$\hookrightarrow \Sigma X \longrightarrow \Sigma Y \longrightarrow \Sigma Cf$$

$$\hookrightarrow \Sigma \Sigma X \longrightarrow \Sigma \Sigma Y \longrightarrow \Sigma \Sigma Cf$$

peut être vu à homotopie près comme étant de la forme

$$A \xrightarrow{a} B \longrightarrow Ca$$

par le théorème 3.1.6.

3.1.13 Remarque. La suite d'applications du théorème 3.1.7 est l'une des deux suites de Dold - Puppe . L'autre se trouve sur la série 8.

3.2 Le cas relatif

La construction de paragraphe précédent de généralise facilement pour mener au résultat suivant :

3.2.1 Théorème. Soit $(X,A,x_0),(Y,B,y_0)\in \operatorname{Obj}\mathbf{Top}_{\mathrm{rel}}$ et soit $f:(X,A,x_0)\longrightarrow (Y,B,y_0)$. Il existe une suite d'applications continues de couples basés

$$(X,A) \xrightarrow{f} (Y,B) \xrightarrow{} (Cf,Cf|_A^B) \xrightarrow{}$$

$$(\Sigma X,\Sigma A) \xrightarrow{} (\Sigma Y,\Sigma B) \xrightarrow{} (\Sigma Cf,\Sigma Cf|_A^B) \xrightarrow{}$$

$$(\Sigma \Sigma X,\Sigma \Sigma A) \xrightarrow{} (\Sigma \Sigma Y,\Sigma \Sigma B) \xrightarrow{} (\Sigma \Sigma Cf,\Sigma \Sigma Cf|_A^B) \xrightarrow{}$$

$$\vdots$$

telle que $\forall (Z,C,z_0) \in \text{Obj}\,\mathbf{Top}_{\mathrm{rel}},$ la suite induite soit exacte :

$$\overbrace{ \left[(\Sigma \Sigma C f, \Sigma \Sigma C f|_A^B), (Z, C) \right]_* }^{B} \rightarrow \left[(\Sigma \Sigma Y, \Sigma \Sigma B), (Z, C) \right]_* \rightarrow \left[(\Sigma \Sigma X, \Sigma \Sigma A), (Z, C) \right]_*$$

$$\overbrace{ \left[(\Sigma C f, \Sigma C f|_A^B), (Z, C) \right]_* }^{B} \rightarrow \left[(\Sigma Y, \Sigma B), (Z, C) \right]_* \longrightarrow \left[(\Sigma X, \Sigma A), (Z, C) \right]_*$$

$$\overbrace{ \left[(C f, C f|_A^B), (Z, C) \right]_* }^{B} \rightarrow \left[(X, A), (Z, C) \right]_*$$

3.2.2 Lemme. Soit $(X, A, x_0) \in \text{Obj Top}_{\text{rel}*}$. Alors :

- 1. $[(\mathbb{S}^n, \{z_0\}), (X, A)]_* \cong \pi_n(X, x_0),$
- 2. $[(\mathbb{S}^n, \mathbb{S}^n), (X, A)]_* \cong \pi_n(A, x_0).$

Démonstration. 1. On a une bijection

$$\mathbf{Top}_{\mathrm{rel}*}((\mathbb{S}^n,\{z_0\},z_0),(X,A,x_0)) \longleftrightarrow \mathbf{Top}_*((\mathbb{S}^n,z_0),(X,x_0))$$

compatible avec les homotopies basées et dont on déduit l'isomorphisme.

2. On a une bijection

$$\mathbf{Top}_{\mathrm{rel}*}((\mathbb{S}^n, \mathbb{S}^n, z_0), (X, A, x_0)) \longleftrightarrow \mathbf{Top}_*((\mathbb{S}^n, z_0), (A, x_0))$$

compatible avec les homotopies basées et dont on déduit l'isomorphisme.

3.2.3 Exemple (Important). Considérons $j:(\partial I,\{0\},0)\hookrightarrow(\partial I,\partial I,0)$. En général, le cône $C\operatorname{Id}_X$ se calcule comme suit :

avec

$$X\coprod_{Y}CX=X\coprod CX/\left[x\sim\left[x,0\right]\right]\cong CX.$$

En particulier, on a que $Cj = C\partial I = \partial I \times I/[(0,t) \sim (1,1)] \cong I$. Puis, en général, si k est l'inclusion du point de base $k: \{x_0\} \hookrightarrow X$, alors le cône Ck se calcule comme suit :

Or, $X\coprod_{\{x_0\}} C\{x_0\} \cong X$. Donc $Cj|_{\{0\}}^{\partial I} \cong \partial I$. Ainsi, il existe une suite de couples basés :

$$(\partial I, \{0\}) \xrightarrow{j} (\partial I, \partial I) \xrightarrow{} (I, \partial I) \xrightarrow{} (\Sigma \partial I, \Sigma \partial I, \Sigma \partial I) \xrightarrow{} (\Sigma \partial I, \Sigma \partial I, \Sigma \partial I) \xrightarrow{} (\Sigma \partial I, \Sigma \partial I, \Sigma \partial I) \xrightarrow{} (\Sigma \partial I, \Sigma \partial I, \Sigma \partial I) \xrightarrow{} (\Sigma \partial I, \Sigma \partial I, \Sigma \partial I, \Sigma \partial I) \xrightarrow{} (\Sigma \partial I, \Sigma \partial I, \Sigma \partial I, \Sigma \partial I) \xrightarrow{} (\Sigma \partial I, \Sigma \partial I,$$

Or, il vient que

$$\begin{array}{rcl} \Sigma^n\partial I &\cong& \mathbb{S}^n \\ \Sigma^n\{0\} &\cong& \{z_0\} \\ &\Sigma^nI &\cong& \mathbb{D}^{n+1} \\ (\Sigma^nI,\Sigma^n\partial I) &\cong& (\mathbb{D}^{n+1},\mathbb{S}^n) \text{ en tant que couple.} \end{array}$$

La suite est donc homéomorphe espace par espace à la suite suivante :

$$(\mathbb{S}^{0}, \{z_{0}\}) \xrightarrow{j} (\mathbb{S}^{0}, \mathbb{S}^{0}) \xrightarrow{} (\mathbb{D}^{1}, \mathbb{S}^{0}) \xrightarrow{}$$

$$(\mathbb{S}^{1}, \{z_{0}\}) \xrightarrow{} (\mathbb{S}^{1}, \mathbb{S}^{1}) \xrightarrow{} (\mathbb{D}^{2}, \mathbb{S}^{1}) \xrightarrow{}$$

$$(\mathbb{S}^{n}, \{z_{0}\}) \xrightarrow{} (\mathbb{S}^{n}, \mathbb{S}^{n}) \xrightarrow{} (\mathbb{D}^{n+1}, \mathbb{S}^{n}) \xrightarrow{}$$

$$(\mathbb{S}^{n}, \{z_{0}\}) \xrightarrow{} (\mathbb{S}^{n}, \mathbb{S}^{n}) \xrightarrow{} (\mathbb{D}^{n+1}, \mathbb{S}^{n}) \xrightarrow{}$$

Prof. K. Hess-Bellwald

Soit $(X,A,x_0) \in \text{Obj}\,\mathbf{Top}_{\mathrm{rel}*}$. Appliquons maintenant $[-,(X,A)]_*$ à cette suite :

où $\pi_n(X,A)=[(\mathbb{D}^{n+1},\mathbb{S}^n),(X,A)]_*$. Cette suite nous donnera l'exactitude de l'homologie plus tard...

3.2.4 Remarque. On peut montrer que $\pi_n(X, A)$ est un groupe si $n \geq 2$ et un groupe abélien si $n \geq 3$. On a que $\pi_1(X, A)$ n'est pas un groupe en général car $\mathbb{D}^1 = I$ n'est pas une suspension.

Chapitre 4

Cofibrations et extensions d'homotopies

4.1 Définition, caractérisation et exemples

Le but de ce chapitre est d'étudier des applications basées qui se "comportent homotopiquement" comme $\iota_X: X \hookrightarrow CX$ ou comme $i_f: Y \longrightarrow Cf$ où $f: (X, x_0) \longrightarrow (Y, y_0)$. Référence : [Piccinini, $\S 2.3 - 2.4$].

4.1.1 Rappel. On a :

Un "bon comportement homotopique" serait de permettre une extension d'homotopie. Pour explique une restriction sur les couples étudiés :

4.1.2 Lemme. Si A est un sous espace fermé de X, alors le pushout de l'inclusion $A \hookrightarrow X$ et de $i_0 : A \hookrightarrow A \times I$ est la réunion $(X \times \{0\}) \cup (A \times I)$.

Démonstration. On définit le diagramme commutatif suivant :

Vérifions la propriété universelle :

Définissons \widetilde{H} par $\widetilde{H}(x,0)=f(x), \widetilde{H}(a,t)=H(a,t)$. C'est bien définit car $H\circ i=f\circ j$, donc $H(a,0)=f(a), \forall a\in A$. La continuité de \widetilde{H} et due au lemme de recollement (car A est fermé). L'unicité de \widetilde{H} provient de fait que $(X\times\{0\})\cup(A\times I)=\operatorname{Im}\widetilde{j}\cup\operatorname{Im}\widetilde{i}$.

4.1.3 Définition (Propriété d'extension d'homotopie). Soit (X, A) un couple d'espace où A est fermé dans X. Alors le couple vérifie la **propriété d'extension d'homotopie** (abrégée **PEH**) si $\forall h: (X \times \{0\}) \cup (A \times I) \longrightarrow Y$, il existe une extension $H: X \times I \longrightarrow Y$ i.e. le diagramme suivant commute :

- **4.1.4 Définition** (Cofibration). Une application continue $j:A\longrightarrow X$ est une **cofibration** si :
 - j est un plongement i.e. $j|^{\text{Im }j}$ est un homéomorphisme,
 - Im j est fermé dans X,
 - le couple $(X, \operatorname{Im} j)$ vérifie la PEH.

Souvent, on va abuser un peu de cette notion et supposer que tout cofibration est une inclusion d'un sous espace fermé...

- **4.1.5 Notation.** Si $j: A \longrightarrow X$ est une cofibration, on note $j: A \rightarrowtail X$.
- **4.1.6 Exemple.** Pour tout $(X, x_0) \in \text{Obj } \mathbf{Top}_*$, l'application $\iota_X : X \hookrightarrow CX$ est une cofibration (par le lemme 3.1.10).
- **4.1.7 Rappel.** L'application $k: (CX \times \{0\}) \cup (\iota_X(X) \times I) \hookrightarrow CX \times I$ admet une rétraction.

De manière analogue :

4.1.8 Proposition (Caractérisation des cofibrations). Soit A un sous espace fermé de X. Alors l'inclusion $j:A\hookrightarrow X$ est une cofibration (i.e. le couple (X,A) vérifie la PEH) si et seulement si il existe une rétraction de $k:(X\times\{0\})\cup(A\times I)\hookrightarrow X\times I$ i.e. une application $r:X\times I\longrightarrow(X\times\{0\})\cup(A\times I)$ telle que $r\circ k=\mathrm{Id}_{(X\times\{0\})\cup(A\times I)}$.

Démonstration. \Rightarrow On applique la PEH au diagramme

Prof. K. Hess-Bellwald

 \Leftarrow On a:

$$(X \times \{0\}) \cup (A \times I) \xrightarrow{h} Y$$

$$k \bigcap r$$

$$X \times I$$

 $car(h \circ r) \circ k = h.$

4.1.9 Exemple (Très important pour la suite). L'inclusion $\mathbb{S}^n \hookrightarrow \mathbb{D}^{n+1}$ est une cofibration (cf série 9).

"Ici, la rétraction consiste à enfoncer son doigt dans un cylindre en pâte à modeler!"

Prof. K. Hess-Bellwald Le 22/11/2012

4.1.10 Remarques. Les cofibrations sont préservées sous certaines constructions topologiques, comme le pushout :

$$A \xrightarrow{f} Y$$

$$j \downarrow \qquad \qquad \qquad \downarrow \widetilde{j}$$

$$X \xrightarrow{} X \coprod_{A} Y$$

4.2 Propriétés

Résultat analogue au lemme 3.1.9 :

4.2.1 Proposition. Si $j: A \rightarrow X$ est une cofibration et si A est contractile (pas forcément dans X), alors l'application quotient $q: X \longrightarrow X/A$ est une équivalence d'homotopie.

Démonstration. Il existe une homotopie contractante $H: A \times I \longrightarrow A$ i.e. une homotopie telle que $H(a,0) = a, H(a,1) = a_0, \forall a \in A$. On a donc une application continue \widetilde{H} telle que le diagramme suivant commute :

$$(X \times \{0\}) \cup (A \times I) \xrightarrow{\text{(Id}_{X \times \{0\}}) \cup (j \circ H)} X$$

car j est une cofibration. On a que :

$$\begin{split} \widetilde{H}(x,0) &= x, \qquad \forall x \in X, \\ \widetilde{H}(a,t) &= j \circ H(a,t) \in A, \qquad \forall a \in A, \forall t \in I, \\ \widetilde{H}(a,1) &= a_0, \qquad \forall a \in A. \end{split}$$

Le lemme 3.1.9 nous permet de conclure.

4.2.2 Corollaire. Si $j: A \rightarrow X$ est une cofibration, alors $Cj \simeq X/A$.

Démonstration. Considérons le pushout :

$$A \xrightarrow{j} X$$

$$\iota_{A} \downarrow \qquad \qquad \qquad \downarrow \widetilde{\iota}$$

$$CA \xrightarrow{\widetilde{j}} Cj$$

Par l'exercice 1 de la série 9, \widetilde{j} et $\widetilde{\imath}$ sont des cofibrations. Par la proposition précédente, on a que l'application quotient $q:Cj\longrightarrow Cj/CA$ est une équivalence d'homotopie. Par le lemme 3.1.11, on a:

4.2.3 Remarque. Il existe des contre exemples si j n'est pas une cofibration...

4.2.4 Théorème (Les cofibrations sont partout! (partouuuuut!)). Pour toute application continue $f: X \longrightarrow Y$, il existe une cofibration $j_f: X \longrightarrow M_f$ et une équivalence d'homotopie $p_f: M_f \longrightarrow Y$ telles que le diagramme suivant commute :

Démonstration. Considérons le pushout :

$$X \xrightarrow{f} Y$$

$$i_0 \downarrow \bigcap \qquad \qquad \downarrow \widehat{i}$$

$$X \times I \longrightarrow M_f$$

 $o\grave{u}$

$$M_f = Y \coprod (X \times I) / [f(x) \sim (x,0)].$$

 $D\'{e}finissons$

$$\begin{array}{cccc} j_f: X & \longrightarrow & M_f \\ & x & \longmapsto & [x,0], \\ p_f: M_f & \longrightarrow & Y \\ & [y] & \longmapsto & y \\ & [x,s] & \longmapsto & f(x). \end{array}$$

On a que p_f est l'unique application continue $M_f \longrightarrow Y$ donnée par la propriété universelle du pushout :

• Montrons que j_f est une cofibration. On utilise la caractérisation. donc on va montrer qu'il existe une rétraction $r: M_f \times I \longrightarrow (M_f \times \{0\}) \cup (j_f(X) \times I) \cong (M_f \times \{0\}) \cup (X \times \{1\} \times I)$. Posons

$$r: M_f \times I \longrightarrow (M_f \times \{0\}) \cup (X \times \{1\} \times I)$$

$$([y], t) \longmapsto ([y], 0)$$

$$([x, s], t) \longmapsto \begin{cases} \left([x, 1], t - \frac{(1-s)(1-t)}{s}\right) & \text{si } s \ge 1 - t \\ \left([x, s + \frac{st}{1-t}], 0\right) & \text{si } s \le 1 - t \end{cases}$$

Clairement, $\operatorname{Im} r \subseteq (M_f \times \{0\}) \cup (X \times \{1\} \times I)$. Par ailleurs,

$$r([y], 0) = ([y], 0),$$

 $r([x, s], 0) = ([x, s], 0),$
 $r([x, 1], t) = ([x, 1], t).$

Donc r est bien une rétraction de l'inclusion $(M_f \times \{0\}) \cup (X \times \{1\} \times I) \hookrightarrow M_f \times I$. Pour vérifier la continuité, un applique le lemme de recollement. Ainsi, j_f est bien une cofibration.

• Montrons que p_f est une équivalence d'homotopie. Rappelons que $\hat{i}: y \longmapsto [y]$. Observer que $p_f \circ \hat{i} = \operatorname{Id}_Y$. Par ailleurs, $\hat{i} \circ p_f([y]) = \hat{i}(y) = [y]$ et $\hat{i} \circ p_f([x,s]) = \hat{i} \circ f(x) = [f(x)]$. Définissons

$$\begin{array}{cccc} H: M_f \times I & \longrightarrow & M_f \\ & [y] & \longmapsto & [y], \\ & [x,s] & \longmapsto & [x,st]. \end{array}$$

Par le lemme de recollement, on a que H est continue et est donc une homotopie. De plus :

$$H([x, s], 0) = [x, 0] = [f(x)] = \hat{i} \circ p_f([x, s]),$$

 $H([x, s], 1) = [x, s].$

Ainsi, $\hat{i} \circ p_f \sim \operatorname{Id}_{M_f}$ par H et p_f est bien une équivalence d'homotopie.

• On a que

$$p_f \circ j_f(x) = p_f([x,1]) = f(x), \quad \forall x \in X.$$

Ainsi, $f = p_f \circ j_f$.

4.2.5 Terminologie. L'espace M_f s'appelle le mapping cylinder de f.

Chapitre 5

Introduction aux CW-complexes

Le but de ce chapitre est d'étudier une classe d'espaces topologiques qui se prêtent très bien à des constructions récursives d'applications continues et à des preuves par récurrence. Référence : [May, Ch 10].

5.1 Définitions et propriétés fondamentales

- **5.1.1 Définition** (CW-complexe). Un espace topologique X est un **CW-complexe** s'il existe une suite d'espaces topologiques $\{X_n\}_{n\in\mathbb{N}}$ appelée **décomposition CW de** X et qui est telle que :
 - 1. L'espace X_0 est discret.
 - 2. On a les inclusions :

$$X_0 \hookrightarrow X_1 \hookrightarrow X_2 \hookrightarrow \ldots \hookrightarrow X_n \hookrightarrow \ldots$$

3. Pour tout $n \in \mathbb{N}$, il existe un ensemble d'indices \mathcal{J}_n et une famille d'applications continues $\{\phi_j : \mathbb{S}^n \longrightarrow X_n\}_{j \in \mathcal{J}_n}$ telle que

$$\coprod_{j \in \mathcal{J}_n} \mathbb{S}^n \xrightarrow{\sum_{j \in \mathcal{J}} \phi_j} X_n$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\coprod_{j \in \mathcal{J}_n} \mathbb{D}^n \xrightarrow{\widetilde{\phi}} X_{n+1}$$

4. On a

$$\bigcup_{n\in\mathbb{N}} X_n \cong X$$

où $\bigcup_{n\in\mathbb{N}} X_n$ est muni de la **topologie de l'adhérence finie** i.e.

$$C\subseteq \bigcup_{n\in \mathbb{N}} X_n \text{ est ferm\'e} \iff C\cap X_k \text{ et ferm\'e dans } X_k, \quad \forall k\in \mathbb{N}.$$

- **5.1.2 Terminologie.** Si $X \cong X_n$ pour un certain $n \in \mathbb{N}$, alors X est de dimension n et on note dim X = n.
 - L'espace X_n est appelé le n-squelette de X.

5.1. DÉFINITIONS ET PROPRIÉTÉS FONDAMENTALES

- Les applications ϕ_j sont les applications caractéristiques du CW-complexe.
- L'image Im $\phi|_{\mathbb{D}^{n+1}_i}$ est une (n+1)-cellule
- **5.1.3 Exemples.** 1. Posons $X = \mathbb{S}^1$.
 - (a) Posons $X_0 = \{x_0\}$. Considérons $\mathcal{J}_0 = \{1\}$ et $\phi_1 : \mathbb{S}^0 \longrightarrow X_0$ la seule application continue possible. Formons le pushout :

$$\begin{array}{ccc}
\mathbb{S}^0 & \xrightarrow{\phi_1} & X_0 \\
\downarrow & & & \downarrow \\
\mathbb{D}^1 & \longrightarrow & X_1
\end{array}$$

οù

$$X_1 = X_0 \coprod \mathbb{D}^1 / \left[1 \sim x_0 \sim (-1)\right] \cong \mathbb{S}^1.$$

On a donc $X_0 \hookrightarrow X_1 \cong \mathbb{S}^1 = X$.

(b) Posons $X_0 = \{x_+, x_-\}$. Considérons $\mathcal{J}_0 = \{+, -\}$ et

$$\phi_{+}: \mathbb{S}^{0} \longrightarrow X_{0}$$

$$\pm 1 \longmapsto x_{\pm},$$

$$\phi_{-}: \mathbb{S}^{0} \longrightarrow X_{0}$$

$$\pm 1 \longmapsto x_{\mp}.$$

Formons le pushout :

- (c) De manière semblable, on obtient une décomposition CW de \mathbb{S}^1 de la forme $X_0 \hookrightarrow X_1 \cong \mathbb{S}^1$ avec $X_0 = \{x_1, \dots, x_n\}$ pour tout $n \in \mathbb{N}^*$.
- 2. Posons $X = \mathbb{S}^2$.
 - (a) Posons $X_0 = \{x_0\}$ et $\mathcal{J}_0 = \emptyset$. On a alors $X_1 = X_0$. Puis, considérons $\mathcal{J}_1 = \{1\}$ et $\phi_1 : \mathbb{S}^1 \longrightarrow X_1$ est la seule application continue possible. Formons le pushout :

$$\downarrow^{\mathbb{S}^1} \xrightarrow{\phi_1} X_1$$

$$\downarrow^{\Gamma} \downarrow^{\Gamma}$$

$$\mathbb{D}^2 \longrightarrow X_2$$

οù

$$X_2 = \{x_0\} \coprod \mathbb{D}^2 / \left[z \sim x_0, \ \forall z \in \mathbb{S}^1\right] \cong \mathbb{S}^2.$$

(b) On utilise la décomposition CW de \mathbb{S}^1 du point 1. (a). On pose $X_0 = \{x_0\}$, $X_1 = \mathbb{S}^1$, $\mathcal{J}_2 = \{+, -\}$ où $\phi_+ = \phi_- = \mathrm{Id}_{\mathbb{S}^1}$. Formons le pushout :

$$\mathbb{S}^{1}_{+} \coprod \mathbb{S}^{1}_{-} \xrightarrow{\phi_{+} + \phi_{-}} X_{1}$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\mathbb{D}^{2}_{+} \coprod \mathbb{D}^{2}_{-} \xrightarrow{} X_{2} \cong \mathbb{S}^{2}$$

3. Posons $X = \mathbb{S}^1 \times \mathbb{S}^1$, le tore creux. Rappelons que $\mathbb{S}^1 \times \mathbb{S}^1$ est un quotient de $I \times I$. Posons $X_0 = \{x_0\}, X_1 = \mathbb{S}^1 \vee \mathbb{S}^1$. Alors :

5.1.4 Lemme. Tout CW-complexe est un espace normal et localement connexe par arcs.

Démonstration. Voire la Série 10.

5.1.5 Propriété (Cruciale). Soit K un espace topologique compact et X un CW-complexe de décomposition CW $\{X_n\}_{n\in\mathbb{N}}$. Alors pour tout application continue $f:K\longrightarrow X$, il existe $n\in\mathbb{N}$ tel que Im $f\subseteq X_n$.

Démonstration. Comme f est continue, on a que $\operatorname{Im} f$ est compact. On va utiliser la caractérisation de la compacité par la PIF pour arriver à une contradiction $si \not \exists n \in \mathbb{N}$ tel que $\operatorname{Im} f \in X_n$. Supposons donc que $\forall n \in \mathbb{N}$ on a $\operatorname{Im} f \not \subset X_n$. Ainsi, $\forall n, \exists x_n \in \operatorname{Im} f$ tel que $x_n \not \in X_n$. Puisque $X_m \subseteq X_n$ si $m \le n$, on a que $x_n \not \in X_m$ pour tout $m \le n$. Par conséquent, $\forall n \in X_n \in X_n$ on a $\sharp (X_n \cap \{x_k\}_{k \in \mathbb{N}}) < n$. Puisque le singleton $\{x_k\}$ est fermé $\forall k$, on sait que $X_n \cap \{x_k\}_{k \in \mathbb{N}}$ est aussi fermé dans X_n pour tout n et donc $\{x_k\}_{k \in \mathbb{N}}$ est fermé dans X par la définition de la topologie de l'adhérence finie. Considérons maintenant

$$\mathcal{C} = \{ \{x_k\}_{k \ge n} \mid n \in \mathbb{N} \}.$$

C'est une collection de partie fermés de X vérifient la PIF mais telle que $\bigcap_{C \in \mathcal{C}} C = \emptyset$. Ainsi, Im f n'est pas compact ce qui est absurde.

Penchons nous maintenant sur le cas relatif :

- **5.1.6 Définition** (CW-complexe relatif). Un couple d'espaces $(X, A) \in \mathbf{Top}_{rel}$ est un **CW-complexe relatif** s'il existe une suite d'espaces topologiques $\{X_n\}_{n\in\mathbb{N}}$ appelée **décomposition CW de** (X, A) et qui est telle que :
 - 1. On a

$$X_0 = A \coprod X_0'$$

où X_0' est discret.

2. On a les inclusions:

$$X_0 \hookrightarrow X_1 \hookrightarrow X_2 \hookrightarrow \ldots \hookrightarrow X_n \hookrightarrow \ldots$$

3. Pour tout $n \in \mathbb{N}$, il existe un ensemble d'indices \mathcal{J}_n et une famille d'applications continues $\{\phi_j: \mathbb{S}^n \longrightarrow X_n\}_{j \in \mathcal{J}_n}$ telle que

$$\coprod_{j \in \mathcal{J}_n} \mathbb{S}^n \xrightarrow{\sum_{j \in \mathcal{J}} \phi_j} X_n$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\coprod_{j \in \mathcal{J}_n} \mathbb{D}^n \xrightarrow{\widetilde{\phi}} X_{n+1}$$

4. On a

$$\bigcup_{n\in\mathbb{N}} X_n \cong X$$

où $\bigcup_{n\in\mathbb{N}} X_n$ est muni de la topologie de l'adhérence finie.

En fait, le seul point qui change de la définition d'un CW-complexe est la définition du 0-squelette X_0 .

- **5.1.7 Remarques.** 1. Si (X, A) est un CW-complexe relatif, alors $A \hookrightarrow X$ est une cofibration.
 - 2. $\dim(X, A) = n$ si et seulement si $X \cong X_n$.
 - 3. Le couple $(\mathbb{D}^{n+1},\mathbb{S}^n)$ est un CW-complexe relatif. En voici une décomposition CW :

$$X_0 = \dots = X_n = \mathbb{S}^n$$
 et

$$\mathbb{S}^{n} \xrightarrow{\mathrm{Id}_{\mathbb{S}^{n}}} \mathbb{S}^{n}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

5.2 HELP et ses conséquences

Une généralisation (assez massive) de la PEH des cofibrations. On a besoin de la notion suivante :

- **5.2.1 Définition** (n-équivalence). Une application basée $f:(X,x_0) \longrightarrow (Y,y_0)$ est une n-équivalence si $\pi_k f:\pi_k(X,x_0) \longrightarrow \pi_k(Y,y_0)$ est un isomorphisme $\forall k < n$ et une surjection si k < n
- **5.2.2 Remarque.** Une application f est une n-équivalence $\forall n \in \mathbb{N}$ si et seulement si c'est une équivalence faible.

Voici l'exemple le plus important d'une n-équivalence :

5.2.3 Théorème. L'inclusion $j: \mathbb{S}^n \hookrightarrow \mathbb{D}^{n+1}$ est une *n*-équivalence, i.e. $\pi_k \mathbb{S}^n = 0$ si k < n (cela suffit car \mathbb{D}^n est contractile).

Démonstration, esquisse. Référence : [Lundell, Weingram : The Topology of CW-complexes, Chap. II.8]. La clé de l'argument est d'appliquer le lemme de Lebesgue à $\operatorname{Im} f$ où $f: \mathbb{S}^k \longrightarrow \mathbb{S}^n$, avec k < n.

L'idée est que si k < n, alors $\forall f : (\mathbb{S}^k, z_0) \longrightarrow (\mathbb{S}^n, z_0)$, on peut construire $f' : (\mathbb{S}^k, z_0) \longrightarrow (\mathbb{S}^n, z_0)$ telle que $f \simeq_* f'$ et que f' ne soit pas surjective. On a donc

ce qui implique que

$$f' \simeq_* c_{z_0} \implies [f]_* = [f']_* = [c_{z_0}]_*$$

 $\implies \pi_k \mathbb{S}_n = \{[c_{z_0}]_*\}.$

De manière semblable :

5.2.4 Théorème. Soit (X,A) un CW-complexe relatif. Alors l'inclusion $X_n \hookrightarrow X$ est une n-équivalence $\forall n \in \mathbb{N}$. Donc $\pi_k X = \pi_k X_n$ si $k \leq n$.

Démonstration, esquisse. Il s'agit là du même genre d'argument de topologie générale que dans la démonstration précédente. On utilise de plus le fait que $\forall f: \mathbb{S}^k \longrightarrow X$, il existe $n \in \mathbb{N}$ tel que $\mathrm{Im} f \subseteq X_n$.

5.2.5 Théorème (Homotopy Extention Lifting Property, HELP). Soit (X,A) un CW-complexe relatif de dimension au plus n. Soit $e:Y\longrightarrow Z$ une n-équivalence. Alors $\forall f:X\longrightarrow Z, \forall g:A\longrightarrow Y$ et $\forall H:A\times I\longrightarrow Z$ des application continues telles que le diagramme suivant commute :

$$A \xrightarrow{i_0} A \times I \xleftarrow{i_1} A$$

$$j \downarrow \qquad \qquad \downarrow g$$

$$X \xrightarrow{f} Z \xleftarrow{e} Y$$

i.e. H est une homotopie de $f \circ j$ vers $e \circ g$. Alors $\exists \widehat{g} : X \longrightarrow Y$ et $\exists \widehat{H} : X \times I \longrightarrow Z$ telles que le diagramme suivant commute :

i.e. $\widehat{g} \circ j = g$ (\widehat{g} est une extension de g), $\widehat{H} \circ (j \times \operatorname{Id}_I) = H$ (\widehat{H} est une extension de H) et \widehat{H} est une homotopie de f vers $e \circ \widehat{g}$.

Démonstration. Référence : [May].

Cas spécial:

5.2.6 Exemple. Posons Y = Z et $e = Id_Y$. Alors si le diagramme suivant commute

alors, par HELP, on a

ce qui est équivalent à

$$X \times \{0\} \cup A \times I \xrightarrow{f+H} Y$$

$$\downarrow \qquad \qquad \exists \widehat{H}$$

i.e. la PEH car j est une cofibration. Donc dans ce cas, HELP se réduit à la PEH de la cofibration j.

Voyons maintenant les conséquences de HELP :

5.2.7 Théorème (de Witehead I). Si X est un CW-complexe et si $e: Y \longrightarrow Z$ est une n-équivalence, alors $e_*: [X,Y] \longrightarrow [X,Z]$ est une bijection si $\dim X < n$ et une surjection si $\dim X \le n$. On obtient un résultat similaire avec des espaces pointés.

Démonstration. On démontre ici le cas non pointé.

• Montrons que e_* est surjective. Soit $[f] \in [X, Z]$. A voire, $\exists [\widehat{g}] \in [X, Y]$ telle que $e_*([\widehat{g}]) = [f]$. Appliquons HELP:

i.e. \widehat{H} est une homotopie de f vers $e \circ \widehat{g}$, donc $[f] = [e \circ \widehat{g}] = e_*([\widehat{g}])$ et e_* est surjective.

Prof. K. Hess-Bellwald

• Montrons l'injectivité de e_* quand $\dim X < n$. Remarquons que $si \dim X = m$, alors $\dim(X \times I) = m+1$ car

$$(X \times I)_k = (X_k \times \{0\}) \prod (X_k \times \{1\}) \prod (X_{k-1} \times [0, 1]) / \sim$$

voire série 10. Soient $g_0, g_1 : X \longrightarrow Y$ tels que $e_*([g_0]) = e_*([g_1])$. A voire : $[g_0] = [g_1]$. Il existe une homotopie $F : X \times I \longrightarrow Z$ de $e \circ g_0$ vers $e \circ g_1$. Appliquons HELP à $(X \times I, X \times \partial I)$ (c'est un CW-complexe relatif de dimension au plus n):

 $où H(x,i,t) = e \circ g_1(x) = F(x,i)$. On a donc

$$\widehat{g} \circ j = g_0 + g_1 \iff \begin{cases} \widehat{g}(x,0) = (g_0 + g_1)(x,0) = g_0(x) \\ \widehat{g}(x,1) = (g_0 + g_1)(x,1) = g_1(x) \end{cases}$$
.

Donc \hat{g} est une homotopie de g_0 vers g_1 , ce qui implique que $[g_0] = [g_1]$. Ainsi, e_* est injective et donc bijective.

5.2.8 Remarque. Si $e: Y \longrightarrow Z$ est une n-équivalence, alors $\pi_k e: [\mathbb{S}^k, Y] \longrightarrow [\mathbb{S}^k, Z]$ est une bijection si k < n et une surjection si $k \le n$.

5.2.9 Corollaire. Si $e: Y \longrightarrow Z$ est une équivalence faible, alors $e_*: [X,Y] \longrightarrow [X,Z]$ est une bijection pour tout X un CW-complexe de dimension finie.

5.2.10 Théorème (de Witehead II). Soient Y, Z deux CW-complexes tels que dim Y, dim $Z \le n$. Alors si $e: Y \longrightarrow Z$ est une n-équivalence, c'est une équivalence d'homotopie.

Démonstration. On applique le théorème de Whitehead I au cas X = Z. Alors $e_* : [Z, Y] \longrightarrow [Z, Z]$ est une bijection. En particulier, $\exists ! [f] \in [Z, Y]$ tel que $e_*([f]) = [e \circ f] = [\operatorname{Id}_Z]$. Donc $e \circ f \sim \operatorname{Id}_Z$. Affirmation : $f \circ e \sim \operatorname{Id}_Y$ et donc f est un inverse homotopique de e. Observer que puisque e est une n-équivalence, on a que $\operatorname{Id}_{\pi_k Z} = \pi_k \operatorname{Id}_Z = \pi_k (e \circ f) = \pi_k e \circ \pi_k f$ pour tout k < n. Donc $\pi_k f$ est un isomorphisme. Ainsi, f est une (n-1)-équivalence. Par le théorème de Whitehead I appliqué à X = Y, on a que $f_* : [Y, Z] \longrightarrow [Y, Y]$ est au moins surjectif. Par conséquent, $\exists [e'] \in [Y, Z]$ tel que $f_*([e']) = [f \circ e'] = [\operatorname{Id}_Y]$. Donc $f \circ e' \sim \operatorname{Id}_Y$. Puis

$$e = e \circ \operatorname{Id}_Y \sim e \circ f \circ e' \sim \operatorname{Id}_Z \circ e' = e'.$$

Donc $f \circ e \sim f \circ e' \sim \mathrm{Id}_Y$.

5.2.11 Corollaire. Toute équivalence faible entre deux CW-complexes est une équivalence d'homotopie.

5.3 Approximation cellulaire

Le but de cette section est de montrer que les CW-complexes et les applications qui respectent leur structure cellulaire sont partout.

- **5.3.1 Définition** (Application cellulaire). Soient (X, A) et (Y, B) deux CW-complexes relatifs. Une application $f: (X, A) \longrightarrow (Y, B)$ est dite **cellulaire** si $f(X_n) \subseteq Y_n$ pour tout $n \in \mathbb{N}$.
- **5.3.2 Définition** (CW-approximation). Soit (X, A) un couple d'espaces. Une **CW-approximation** de (X, A) consiste en un CW-complexe relatif $(\widetilde{X}, \widetilde{A})$ muni d'une équivalence faible $(\widetilde{X}, \widetilde{A}) \longrightarrow (X, A)$.
- **5.3.3 Théorème** (Tout est CW! (Tout!)). Soit $f:(X,A) \longrightarrow (Y,B)$ une application entre deux coupes d'espaces. Alors il existe une application cellulaire $\widetilde{f}:(\widetilde{X},\widetilde{A}) \longrightarrow (\widetilde{Y},\widetilde{B})$ telle que le diagramme suivant commute à homotopie près :

$$\begin{array}{ccc} (X,A) & \stackrel{f}{\longrightarrow} (Y,B) \\ \alpha & & \beta \\ (\widetilde{X},\widetilde{A}) & \stackrel{\widetilde{f}}{\longrightarrow} (\widetilde{Y},\widetilde{B}) \end{array}$$

Démonstration, esquisse. • Existence des CW-approximations. On construit explicitement $(\widetilde{X}, \widetilde{A})$ par récurrence :

- d'abord, un ÉNORME wedge de sphères dont l'homotopie surjecte sur π_*X ,
- ensuite, dimension par dimension, on rajoute des disques \mathbb{D}^n pour "tuer l'homotopie en trop". Rappelons que $Z_n \hookrightarrow Z$ est une cofibration pour tout CW-complexe Z.
- Existence de remplacements cellulaires d'applications. Soit g: W → Z une application entre deux CW-complexes W et Z. On construit g et l'homotopie par récurrence sur la dimension des cellules de W à l'aide de HELP et du fait que Sⁿ → Dⁿ⁺¹ est une n-équivalence.
- Existence d'au moins une application $\widehat{f}:(\widetilde{x},\widetilde{A})\longrightarrow (\widetilde{Y},\widetilde{B})$ telle que $\beta\circ\widehat{f}\sim f\circ\alpha$. On utilise Whitehead. Voire la série 11.

Chapitre 6

Homologie

Le but de ce chapitre est de définir les groupes d'homologie ordinaire $H_*(-;\mathbb{Z})$.

6.1 Produit symétrique infini

On présente ici le dernier invariant homotopique dont nous avons besoin pour définit l'homologie.

- **6.1.1 Définition** (Com**TopMon**). On note Com**TopMon** la catégorie des monoïdes topologiques abéliens, i.e. la catégorie des monoïdes abéliens (A, μ, a_0) muni d'une topologie rendant la multiplication μ continue et basé en a_0 .
- **6.1.2 Exemples.** 1. Tout groupe abélien (G, +) muni de la topologie discrète et basé en 0_G est un monoïde topologique abélien.
 - 2. Les lacets de Moore $\Omega_M X$ d'un espace basé (X, x_0) forme un monoïde topologique non abélien.
 - 3. (\mathbb{S}^1, \cdot) muni de la multiplication complexe.
 - 4. $(\mathbb{R}^n, +)$.
- **6.1.3 Définition** (Produit symétrique infini). Soit $n \in \mathbb{N}^*$ et (X, x_0) un espace topologique basé. Définissons une relation d'équivalence sur X^n :

$$(x_1,\ldots,x_n)\sim (y_1,\ldots,y_n)\iff \exists \sigma\in\mathfrak{S}_n \text{ tel que } (x_{\sigma(1)},\ldots,x_{\sigma(n)})=(y_1,\ldots,y_n).$$

Posons

$$SP^{n}(X, x_{0}) = (X^{n} / \sim, [x_{0}, \dots, x_{0}]) = (X, x_{0})^{n} / \mathfrak{S}_{n}.$$

Soit $f:(X,x_0)\longrightarrow (Y,y_0)$ une application continue. Posons

$$\operatorname{SP}^n f : \operatorname{SP}(X, x_0) \longrightarrow \operatorname{SP}^n(Y, y_0)$$

 $[x_1, \dots, x_n] \longmapsto [f(x_1), \dots, f(x_n)].$

Il est facile de vérifier que $SP^n f$ est bien définie, continue et basée. De plus, $SP^n(g \circ f) = SP^n g \circ SP^n f$ et $SP^n \operatorname{Id}_{(X,x_0)} = \operatorname{Id}_{SP^n(X,x_0)}$. Ainsi, on a un foncteur

$$SP^n : \mathbf{Top}_* \longrightarrow \mathbf{Top}_*.$$

- Remarquons que $(X, x_0) = SP^1(X, x_0)$. Définissons

$$\iota_n : \mathrm{SP}^n(X, x_0) \longrightarrow \mathrm{SP}^{n+1}(X, x_0)$$

 $[x_1, \dots, x_n] \longmapsto [x_0, x_1, \dots, x_n].$

Il est facile de vérifier que ι_n est un plongement. On a donc une suite de plongements

$$(X, x_0) = \operatorname{SP}^1(X, x_0) \xrightarrow{\iota_1} \operatorname{SP}^2(X, x_0) \xrightarrow{\iota_2} \operatorname{SP}^3(X, x_0) \xrightarrow{\iota_3} \cdots$$

- Posons

$$SP(X, x_0) = \bigcup_{n \in \mathbb{N}^*} SP^n(X, x_0)$$

muni de la topologie de l'adhérence finie et basé en $[x_0] = [x_0, x_0] = [x_0, \dots, x_0]$. Observons que $w \in SP(X, x_0)$ si et seulement si $\exists n \in \mathbb{N}^*$ et $x_1, \dots, x_n \in X$ tels que $w = [x_1, \dots, x_n]$. Posons

$$SP(X, x_0) \times SP(X, x_0) \longrightarrow SP(X, x_0)$$

$$([x_1, \dots, x_n], [x'_1, \dots, x'_{n'}]) \longmapsto [x_1, \dots, x_n, x'_1, \dots, x'_{n'}].$$

C'est une application continue et basée qui définit une multiplication associative, unitaire et commutative. Ainsi,

$$SP(X, x_0) \in Obj Com$$
TopMon.

- Soit $f:(X,x_0)\longrightarrow (Y,y_0)$ une application continue. Posons

$$\operatorname{SP} f : \operatorname{SP}(X, x_0) \longrightarrow \operatorname{SP}(Y, y_0)$$

 $[x_1, \dots, x_n] \longmapsto [f(x_1), \dots, f(x_n)].$

Il est facile de vérifier que SP f est continue, basée et compatible avec les multiplications de $SP(X, x_0)$ et $SP(Y, y_0)$. Ainsi, $SP f \in Mor Com Top Mon$ De plus, SP préserve les composition et les identités. Ainsi, on a un foncteur

$$\mathrm{SP}:\mathbf{Top}_*\longrightarrow Com\mathbf{TopMon}.$$

Le **produit symétrique infini** d'un espace (X, x_0) est le monoïde topologique abélien $SP(X, x_0)$.

6.1.4 Proposition. Le foncteur SP est un invariant homotopique.

Démonstration. Etant donné $f,g:(X,x_0)\longrightarrow (Y,y_0)$ deux applications continues homotopes par une homotopie $H:X\times I\longrightarrow Y$, on considère la composition

$$\operatorname{SP}(X, x_0) \times I \longrightarrow \operatorname{SP}(X \times I, (x_0, 0)) \longrightarrow \operatorname{SP}(Y, y_0)$$

$$([x_1, \dots, x_n], t) \longmapsto [(x_1, t), \dots, (x_n, t)]$$

Cette construction va nous donner une homotopie basée de SPf vers SPg dans ComTopMon.

6.1.5 Remarques. • L'espace $SP(X, x_0)$ est le monoïde abélien libre sur (X, x_0) , i.e.

$$Com$$
TopMon $(SP(X, x_0), (A, \mu, a_0)) \cong$ **Top** $_* ((X, x_0), (A, a_0))$.

• Si (X, x_0) est un CW-complexe, alors $SP(X, x_0)$ est aussi naturellement un CW-complexe qui est tel que μ (la multiplication de $SP(X, x_0)$) soit cellulaire.

6.2 Propriétés de SP

6.2.1 Notation. Notons $\eta_X:(X,x_0)\longrightarrow \mathrm{SP}(X,x_0)$ l'inclusion évidente (car, $(X,x_0)=\mathrm{SP}^1(X,x_0)$).

6.2.2 Proposition. L'application $\eta_{\mathbb{S}^1}: (\mathbb{S}^1, 1) \longrightarrow SP(\mathbb{S}^1, 1)$ est une équivalence d'homotopie.

Démonstration. Soit $(A, \mu, a_0) \in \text{Obj } Com \textbf{TopMon}$. Posons

$$m_A : \mathrm{SP}(A, a_0) \longrightarrow (A, a_0)$$

 $[a_1, \dots, a_n] \longmapsto \prod_{i=1}^n a_i.$

Cette application est bien définie, continue, basée et multiplicative. De plus, $m_A \circ \eta_A = \operatorname{Id}_A$. Ainsi, $m_{\mathbb{S}^1} \circ \eta_{\mathbb{S}^1} = \operatorname{Id}_{\mathbb{S}^1}$. Il reste à voir que $\eta_{\mathbb{S}^1} \circ m_{\mathbb{S}^1} \sim \operatorname{Id}_{\operatorname{SP}(\mathbb{S}^1,1)}$. Or :

$$\eta_{\mathbb{S}^1} \circ m_{\mathbb{S}^1}([z_1, \dots, z_n]) = \eta_{\mathbb{S}^1} \left(\prod_{i=1}^n z_i\right)$$

$$= \left[\prod_{i=1}^n z_i\right]$$

$$= \left[\prod_{i=1}^n z_i, 1, \dots, 1\right].$$

Définissons alors

$$H: \mathrm{SP}(\mathbb{S}^1, 1) \times I \longrightarrow \mathrm{SP}(\mathbb{S}^1, 1)$$

 $([z_1, \dots, z_n], t) \longmapsto \left[z_1 \cdot \left(\prod_{i=2}^n z_i \right)^t, z_2^{1-t}, \dots, z_n^{1-t} \right].$

Il est facile de voire que H est bien une homotopie et $Id_{SP(\mathbb{S}^1,1)}$ vers $\eta_{\mathbb{S}^1} \circ m_{\mathbb{S}^1}$.

6.2.3 Définition (Quasi-fibration). Une application continue $p: Y \longrightarrow Z$ est une quasi-fibration si $\forall z_0 \in Z$ et $\forall y \in p^{-1}(z_0)$ on a que

$$p_*: \pi_n(Y, p^{-1}(z_0), y_0) \longrightarrow \pi_n(Z, \{z_0\}, z_0)$$
$$[f] \longmapsto [p \circ f]$$

est un isomorphisme $\forall n \in \mathbb{N}$.

6.2.4 Remarque. Si $p:Y\longrightarrow Z$ est une quasi-fibration, alors la longue suite exacte du couple

 $(Y, p^{-1}(z_0))$ devient:

6.2.5 Théorème (Dold - Thom). Soit X un espace de Hausdorff. Soit $A \subseteq X$ un sous espace connexe par arcs. Si $A \hookrightarrow X$ est une cofibration, alors l'application quotient $q: X \longrightarrow X/A$ induit une quasi-fibration $\operatorname{SP} q: \operatorname{SP} X \longrightarrow \operatorname{SP}(X/A)$. En particulier, $\forall n \in \mathbb{N}$

$$\pi_n (\operatorname{SP} X, \operatorname{SP} A) \cong \pi_n \operatorname{SP}(X/A).$$

On a donc une suite exacte:

$$\cdots \longrightarrow \pi_{n+1} \operatorname{SP} X \longrightarrow \pi_{n+1} \operatorname{SP}(X/A) \longrightarrow$$

$$\longrightarrow \pi_n \operatorname{SP} A \longrightarrow \pi_n \operatorname{SP} X \longrightarrow \cdots$$

6.2.6 Exemple (Cas spécial). Soit $X, Y \in \text{Obj} \operatorname{\mathbf{Top}}$ deux espaces de Hausdorff où Y est connexe par arcs et $f: X \longrightarrow Y$. Considérons le pushout

$$\begin{array}{c|c} X & \xrightarrow{f} & Y \\ \iota_X \bigvee & \Gamma & \bigvee_{i_f} i_f \\ CX & \xrightarrow{Cf} & \downarrow \\ & Cf/Y \simeq \Sigma X \end{array}$$

Appliquons le théorème de Dold - Thom à i_f :

$$\pi_n(\operatorname{SP} Cf, \operatorname{SP} Y) \cong \pi_n \operatorname{SP}(\Sigma X).$$

Si Y = X et si $f = \mathrm{Id}_X$, alors Cf = CX et $\pi_n(\mathrm{SP}\,CX,\mathrm{SP}\,X) \cong \pi_n\,\mathrm{SP}\,\Sigma X$. On obtient alors une

longue suite exacte:

Or CX est contractile, ce qui entraine que SP CX est contractile et donc que π_n SP CX = 0. Ainsi,

$$\pi_{n+1} \operatorname{SP} \Sigma X \cong \pi_n \operatorname{SP} X.$$

6.3 Définition de l'homologie

On va d'abord parler d'homologie réduite d'un espace pointé.

6.3.1 Le cas pointé

6.3.1 Définition (Groupe d'homologie réduite). Le n-ième **groupe d'homologue réduite** d'un espace pointé (X, x_0) est définit par :

$$\widetilde{H}_n(X, x_0) = \pi_{n+1} \operatorname{SP} \Sigma \widetilde{X}$$

où \widetilde{X} est une CW-approximation de X.

- **6.3.2 Remarques.** 1. La valeur de \widetilde{H} ne dépend pas de la CW-approximation choisie.
 - 2. On suspend \widetilde{X} afin de pouvoir appliquer le théorème de Dold Thom plus tard. En effet, ΣY est connexe par arcs pour tout espace $Y \in \text{Obj } \mathbf{Top}$.
 - 3. Comme \widetilde{X} est un CW-complexe, on a que $\Sigma\widetilde{X}$ est aussi un CW-complexe. En effet, $\Sigma\mathbb{S}^n\cong\mathbb{S}^{n+1}$ et $\Sigma\mathbb{D}^n\cong\mathbb{D}^{n+1}$.

On se retrouve donc dans la configuration suivante :

$$\mathbf{CW}_* \xrightarrow{\Sigma} \mathbf{CW}_* \xrightarrow{\mathrm{SP}} \mathbf{CW}_* \cap Com\mathbf{TopMon}$$

$$\downarrow^{\pi_{n+1}}$$

$$\mathbf{Ab}$$

6.3.3 Axiomes (Eilenberg - Steenrod pour une théorie d'homologie réduite). $(\widetilde{\mathbf{H}}\mathbf{1})$ Exactitude : Soient $(X, x_0), (Y, y_0) \in \mathrm{Obj}\,\mathbf{Top}_*$ et $f: (X, x_0) \longrightarrow (Y, y_0)$. Alors on a une suite exacte

$$\widetilde{H}_n X \xrightarrow{\widetilde{H}_n f} \widetilde{H}_n Y \xrightarrow{\widetilde{H}_n i_f} \widetilde{H}_n Cf$$

 $(\widetilde{\mathbf{H}}\mathbf{2})$ Suspension: Soit $(X, x_0) \in \mathrm{Obj} \, \mathbf{Top}_*$. Alors

$$\widetilde{H}_n X \cong \widetilde{H}_{n+1} \Sigma X.$$

 $(\widetilde{\mathbf{H}}\mathbf{3})$ Additivité : Pour toute collection $\{(X_j,x_j)\}_{j\in\mathcal{J}}\subset \mathrm{Obj}\,\mathbf{Top}_*$, les inclusions $X_i\hookrightarrow\bigvee_{j\in\mathcal{J}}X_j$ induisent un isomorphisme

$$\bigoplus_{j\in\mathcal{J}}\widetilde{H}_nX_j\stackrel{\cong}{\longrightarrow}\widetilde{H}_n\left(\bigvee_{j\in\mathcal{J}}X_j\right).$$

 $(\widetilde{\mathbf{H4}})$ Invariance : Si $f:(X,x_0)\longrightarrow (Y,y_0)$ est une équivalence faible, alors $\widetilde{H}_nf:\widetilde{H}_nX\longrightarrow \widetilde{H}_nY$ est un isomorphisme.

 $(\widetilde{\mathbf{H5}})$ Dimension: On a:

$$\widetilde{H}_n \mathbb{S}^0 = \left\{ \begin{array}{ll} \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{si } n > 0 \end{array} \right.$$

6.3.4 Remarque. Une analogie duale à l'axiome $(\widetilde{\mathbf{H}}\mathbf{2})$ est que $\pi_n X \cong \pi_{n-1}\Omega X$.

6.3.5 Théorème. L'ensemble $\{\widetilde{H}_n : \mathbf{Top}_* \longrightarrow \mathbf{Ab}\}_{n \in \mathbb{N}}$ vérifie les axiomes d'Eilenberg - Steenrod d'une théorie d'homologie réduite ordinaire.

Démonstration. $(\widetilde{\mathbf{H}}\mathbf{1}): Soient(X,x_0), (Y,y_0) \in \mathrm{Obj}\,\mathbf{Top}_*\ et\ f:(X,x_0) \longrightarrow (Y,y_0).\ Soient\ \widetilde{X}$ et \widetilde{Y} des CW-approximations de X et Y respectivement. Alors on sait par le théorème 5.3.3 qu'il existe une application cellulaire \widetilde{f} telle que le diagramme suivant commute à homotopie près :

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ \uparrow & & \uparrow \\ \widetilde{X} & \xrightarrow{\widetilde{f}} & \widetilde{Y} \end{array}$$

On applique le théorème 4.2.4 pour avoir

où $p_{\widetilde{f}}$ est une équivalence d'homotopie. Appliquons Σ :

$$\Sigma \widetilde{X} \longleftarrow \Sigma M_{\widetilde{f}} \longrightarrow \Sigma C\widetilde{f}$$

Par le théorème de Dold - Thom, on a une longue suite exacte :

$$\cdots \longrightarrow \underbrace{\pi_{n+1}\operatorname{SP}\Sigma\widetilde{X}}_{\widetilde{H}_nX} \longrightarrow \underbrace{\pi_{n+1}\operatorname{SP}\Sigma M_{\widetilde{f}}}_{\widetilde{H}_nY} \longrightarrow \underbrace{\pi_{n+1}\operatorname{SP}\Sigma C\widetilde{f}}_{\widetilde{H}_nC\widetilde{f}=\widetilde{H}_nCf} \longrightarrow \cdots$$

 $(\widetilde{\mathbf{H}}\mathbf{2})$: On sait que

$$\begin{split} \widetilde{H}_n X &= \pi_{n+1} \operatorname{SP} \Sigma \widetilde{X} \\ &\cong \pi_{n+2} \operatorname{SP} \Sigma \Sigma X \\ &= \widetilde{H}_{n+1} \Sigma X. \end{split}$$

 $(\widetilde{\mathbf{H}}\mathbf{3}): Montrons \ que \ \widetilde{H}_n(X \vee Y) \cong \widetilde{H}_nX \oplus \widetilde{H}_nY. \ On \ a:$

$$X \xrightarrow{i} X \vee Y \xrightarrow{j} (X \vee Y)/X = Y$$

$$Y \xrightarrow{q} X \vee Y \xrightarrow{r} (X \vee Y)/Y = X$$

Par le théorème de Dold - Thom, on a que les suites suivantes sont exactes :

$$\begin{split} \widetilde{H}_n X & \xrightarrow{\widetilde{H}_n i} \widetilde{H}_n (X \vee Y) \xrightarrow{\widetilde{H}_n j} \widetilde{H}_n Y \\ \widetilde{H}_n Y & \xrightarrow{\widetilde{H}_n q} \widetilde{H}_n (X \vee Y) \xrightarrow{\widetilde{H}_n r} \widetilde{H}_n X \end{split}$$

Par ailleurs, comme $r \circ i = \operatorname{Id}_X$ et $q \circ j = \operatorname{Id}_Y$, on a que les deux suites sont scindées. Donc $\widetilde{H}_n(X \vee Y) \cong \widetilde{H}_nX \oplus \widetilde{H}_nY$. On conclut par récurrence transfinie.

 $(\widetilde{\mathbf{H}}\mathbf{4}): Soit \ f:(X,x_0) \longrightarrow (Y,y_0) \ est \ une \ \'equivalence faible. Soient \ \widetilde{X} \ et \ \widetilde{Y} \ des \ CW-approximations de \ X \ et \ Y \ respectivement. Alors on sait par le th\'eorème 5.3.3 qu'il existe une application cellulaire \ \widetilde{f} \ telle que le diagramme suivant commute \ \grave{a} \ homotopie \ pr\ \grave{e}s :$

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ \alpha & & \uparrow & \uparrow \beta \\ \widetilde{X} & \xrightarrow{\widetilde{f}} & \widetilde{Y} \end{array}$$

Donc $\forall k \in \mathbb{N}$, on a que $\pi_k \beta \circ \pi_k \widetilde{f} = \pi_k f \circ \pi_k \alpha$. Donc $\pi_k \widetilde{f}$ est un isomorphisme $\forall k \in \mathbb{N}$ et donc \widetilde{f} est une équivalence faible. Or \widetilde{X} et \widetilde{Y} sont des CW-complexes, ce qui entraine que \widetilde{f} est une équivalence d'homotopie par le théorème de Whitehead. Donc $\Sigma \widetilde{f}$ et $SP \Sigma \widetilde{f}$ sont aussi des équivalences d'homotopie. Par conséquent, $\widetilde{H}_n f = \pi_{n+1} SP \Sigma \widetilde{f}$ est un isomorphisme.

 $(\widetilde{\mathbf{H5}})$: En utilisant le fait que $\mathbb{S}^1 \hookrightarrow \mathrm{SP}\,\mathbb{S}^1$ est une équivalence d'homotopie, on a :

$$\widetilde{H}_n \mathbb{S}^0 = \pi_{n+1} \operatorname{SP} \Sigma \mathbb{S}^0$$

$$= \pi_{n+1} \operatorname{SP} \mathbb{S}^1$$

$$= \pi_{n+1} \mathbb{S}^1$$

$$= \begin{cases} \mathbb{Z} & si \ n = 0 \\ 0 & si \ n > 0 \end{cases}.$$

6.3.6 Remarques. 1. En commençant par les valeurs de $\widetilde{H}_n\mathbb{S}^0$ d'où l'on déduit que

$$\widetilde{H}_k \mathbb{S}^n = \begin{cases} \mathbb{Z} & \text{si } k = 0, n \\ 0 & \text{sinon} \end{cases}$$

on peut calculer l'homologie réduite \widetilde{H}_*X récursivement comme suit :

Prof. K. Hess-Bellwald

- On choisit \widetilde{X} une CW-approximation de X. Comme \widetilde{X}_0 est discret, on a que $\widetilde{X}_0 \cong \bigvee_{j \in \mathcal{J}} \mathbb{S}^0$ pour un certain ensemble \mathcal{J} de même cardinalité que \widetilde{X}_0 . Puis, par $(\widetilde{\mathbf{H}}\mathbf{3})$, on a que

$$\widetilde{H}_n\widetilde{X}_0 = \bigoplus_{j \in \mathcal{J}} \widetilde{H}_n \mathbb{S}^0.$$

– Supposons que $\widetilde{H}_*\widetilde{X}_k$ sont connus $\forall k \leq n.$ On a un pushout :

$$\coprod_{\alpha \in \mathcal{K}} \mathbb{S}_{\alpha}^{n} \longrightarrow \widetilde{X}_{n}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\coprod_{\alpha \in \mathcal{K}} \mathbb{D}_{\alpha}^{n+1} \longrightarrow \widetilde{X}_{n+1}$$

Comme tous ces espaces sont pointés, on peut réécrire :

$$C\left(\bigvee_{\alpha\in\mathcal{K}}\mathbb{S}^{n}_{\alpha}\right)\overset{\cong}{\longleftrightarrow}\bigvee_{\alpha\in\mathcal{K}}\mathbb{D}^{n+1}_{\alpha}\overset{\cong}{\longrightarrow}\widetilde{X}_{n+1}\cong Cf$$

Donc par l'axiome (H1) et la suite de Dold - Puppe, on a une suite exacte

$$\overset{\cdots}{\Longrightarrow} \widetilde{H}_{k+1} \left(\bigvee_{\alpha \in \mathcal{K}} \mathbb{S}^{n}_{\alpha} \right) \longrightarrow \widetilde{H}_{k+1} \widetilde{X}_{n} \longrightarrow \widetilde{H}_{k+1} \widetilde{X}_{n+1} \longrightarrow \widetilde{H}_{k} \left(\bigvee_{\alpha \in \mathcal{K}} \mathbb{S}^{n}_{\alpha} \right) \longrightarrow \cdots$$

Ainsi, si $k \neq n, n-1$, on a

$$0 \longrightarrow \widetilde{H}_{n+1}\widetilde{X}_n \xrightarrow{\cong} \widetilde{H}_{n+1}\widetilde{X}_{n+1}$$

Si k = n, alors on a

$$0 \longrightarrow \widetilde{H}_{n+1}\widetilde{X}_n \longrightarrow \widetilde{H}_{n+1}\widetilde{X}_{n+1}$$

$$\longleftrightarrow \bigoplus_{\alpha \in \mathcal{K}} \mathbb{Z} \longrightarrow \widetilde{H}_n\widetilde{X}_n \longrightarrow \cdots$$

Si k = n - 1, alors on a

Donc $\widetilde{H}_n\widetilde{X}_{n+1}$ est un quotient de $\widetilde{H}_n\widetilde{X}_n$ dont la valeur dépend de a. On a $\widetilde{H}_*\widetilde{X}=\widetilde{H}_*X$.

2. L'analyse ci-dessus montre que $\forall (X, x_0) \in \text{Obj } \mathbf{Top}_*$ et $\forall n \in \mathbb{N}$, les groupes $\widetilde{H}_n X$ sont entièrement déterminés par les axiomes $(\widetilde{\mathbf{H}}\mathbf{1})$ à $(\widetilde{\mathbf{H}}\mathbf{5})$. Ainsi, $\forall \{G_n : \mathbf{Top}_* \longrightarrow \mathbf{Ab}\}_{n \in \mathbb{N}}$ une collection de foncteurs tels que les axiomes $(\widetilde{\mathbf{H}}\mathbf{1})$ à $(\widetilde{\mathbf{H}}\mathbf{4})$ soient vérifiés et

$$G_n \mathbb{S}^0 = \left\{ \begin{array}{ll} \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{si } n > 0 \end{array} \right.,$$

alors $G_n X \cong \widetilde{H}_n X$.

6.3.2 Le car relatif

6.3.7 Définition (Groupe d'homologie relative). Le n-ième **groupe d'homologie relative** d'un couple d'espaces (X, A) est définit par :

$$H_n(X, A) = \widetilde{H}_n C\widetilde{j}$$

où \widetilde{j} est la CW-approximation cellulaire de l'inclusion $j:A\hookrightarrow X$.

6.3.8 Théorème. Les foncteurs $\{H_n: \mathbf{Top}_* \longrightarrow \mathbf{Ab}\}_{n \in \mathbb{N}}$ définissent une théorie d'homologie ordinaire avec

$$H_n(\lbrace x \rbrace, \emptyset) = \begin{cases} \mathbb{Z} & \text{si } n = 0 \\ 0 & \text{si } n > 0 \end{cases}.$$

Démonstration. On ne démontre que l'axiome d'excision.

(**H2**): Soit une triade excissive (X, A, B) (i.e. $A, B \subseteq X$ et $\mathring{A} \cup \mathring{B} = X$). Posons les CW-approximations:

On a
$$H_n(A, A \cap B) = H_n(\widetilde{A}/(\widetilde{A} \cap \widetilde{B}))$$
. Or $\widetilde{A}/(\widetilde{A} \cap \widetilde{B}) \cong (\widetilde{A} \cup \widetilde{B})/\widetilde{B}$. Donc

$$H_n(A, A \cap B) = H_n(\widetilde{A}/(\widetilde{A} \cap \widetilde{B})) = H_n((\widetilde{A} \cup \widetilde{B})/\widetilde{B}) = H_n(X, B).$$

Index

— Symboles —	Axiome
$(X, x_0) \lor (Y, y_0) \ldots 25$	d'additivité
(X; A, B)	d'exactitude
$A \rightarrowtail X$	d'excision
$C(X,x_0)$	d'invariance
\overrightarrow{CX}	de dimension
Cf	de suspension
E_*	Axiomes
H_*	d'Eilenberg - Steenrod
M_f	pour une théorie d'homologie réduite .63
$[(X,A),-] \dots \dots$	1
$[X,Y]_*$	— B —
[f]	Bouquet
$[f]_*$	1
[x,t]33	— C —
$\Omega_{z_0}Z$	Cône
ΣX	réduit
$\sum_{z_0} Z$	d'une application basée
U	Catégorie
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cellule
$ \begin{array}{ccccc} \eta_X & \dots & & & & & & & & & & & & & & & & & $	Co-
$[(X,A),(Y,B)] \dots \dots$	associativité
∇	inversion
∂_n	multiplication
π_n	unité
	Cofibration
(pushout)	Co- <i>H</i> -espace
(pushout)	Co- <i>H</i> -espace associatif27
f^*	Co- <i>H</i> -groupe
g_*	ComTopMon
i_f	Courte suite exacte
$z \wedge t$	CW-
	approximation
— A —	complexe
Ab 6	relatif53
Application	— D —
caractéristique d'un CW-complexe 51	_
cellulaire	Décomposition CW
de pliage	Diagramme commutatif
Associativité	Dimension d'un CW-complexe51

— E —	— S —
Elément	Set 5
inverse	Smash
neutre	SP
Equivalence faible	Squelette
Espace des lacets	Suite
-	de Dold - Puppe
— F —	exacte
Foncteur	d'ensembles
oubli6	Suite exacte
- G $-$	courte
_	Suspension
Groupe d'homologie	réduite28
d'homologie réduite	TD.
	— T —
relative	Théorie d'homologie
d'homotopie supérieur	ordinaire
Grp6	Top
— H —	Topologie de l'adhérence finie51
HELP55	$\mathbf{Top}_{\mathrm{rel}}$ 9
<i>H</i> -espace	Top _* 6
H-espace associatif	Triade excissive
<i>H</i> -groupe	— W —
<i>H</i> -morphisme	Wedge
Homotopie9	wedge25
absolue 10	
basée 10	
équivalence de 10	
type d'10	
T	
— I —	
Invariant homotopique	
absolu 10	
basé 10	
— M —	
Mapping	
cone	
— N —	
n-équivalence	
D	
— P —	
PEH	
Propriété d'extension d'homotopie46	
Pullback	
Pushout	
- Q $-$	
Quasi-fibration	
-y 01	