Curso de Estatística e Probabilidade DPA A-2.339 - Estatística e Probabilidade

Prof. Thiago VedoVatto thiago.vedovatto@ifg.edu.br thiagovedovatto.site

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus de Goiânia

Data da Atualização: 16 de julho de 2021

Modelo de Poisson

Modelo de Poisson

Uma variável X segue a distribuição de Poisson com parâmetro $\lambda>0$ se sua FDP for a seguinte:

$$\mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Notação: $X \sim Poisson(\lambda)$.

Propriedades do Modelo de Poisson

Se $X \sim Poisson(\lambda)$:

- $\bullet \ \mathbb{E}(X) = \lambda$
- $2 var(X) = \lambda$

Exercício Ref.:J23L

Mostre que se $X \sim Poisson(\lambda)$ então:

- $2 \operatorname{var}(X) = \lambda$
- 3 Se $\lambda = 1$, então $\mathbb{P}(X = 0) = \mathbb{P}(X = 1)$

$$\exp(x) = \sum_{r=0}^{\infty} \frac{x^r}{n!}$$

Exercício Ref.:N45R

Suponha que o número de erros tipográficos em uma única página de um livro siga a distribuição de Poisson com média $\lambda=1/2$. Se abrirmos o livro em uma página qualquer, qual a probabilidade de termos:

- a exatamente dois erros tipográficos.
- b nenhum erro tipográfico.
- o menos de dois erros tipográficos.
- d mais de dois erros tipográficos.

Ross (2010, p. 148)

Exercício Ref.:M2L4

Uma fonte radioativa emite em média cinco partículas alfa num intervalo de 20 minutos. Admitindo-se que o modelo de Poisson seja adequado, qual a probabilidade de que em um determinado intervalo de 20 minutos haja

- a exatamente duas emissões? $25e^{-5}$
 - R.: $\frac{25e}{2}$
- b pelos duas emissões?

R.: $1 - 6e^{-5}$

Exercício Ref.:N2K8

Seja $X \sim Poisson(\lambda)$. Se $\mathbb{P}(X=1) = \mathbb{P}(X=2)$ qual o valor de $\mathbb{P}(X<4)$? Resp.: $\frac{19e^{-2}}{}$

Resp.:

Exercício Ref.:K28I

O número de mensagens eletrônicas (em centenas) recebidas por um provedor em horário comercial foi modelado por uma variável Poisson com média de 1,5 por dia. As instalações disponíveis podem atender, com o padrão de qualidade desejado, até 200 mensagens diárias. Qual a probabilidade de que esse limite seja excedido?

Exercício Ref.:LKQ2

Suponha que uma impressora de alta qualidade cometa erros segundo um modelo Poisson com taxa de 2 erros por página.

- o Qual é a probabilidade de encontrar pelo menos 1 erro em uma página escolhida ao acaso?
- Se 5 páginas são sorteadas, ao acaso e de forma independente, qual é a probabilidade de pelo menos 1 página com pelo menos 1 erro por página?
- Dentro das condições do item anterior, considere a variável que conta o número de páginas com pelo menos um erro. Você identifica o modelo dessa variável?

Exercício Ref.:2JLQ

O número de chegadas a um posto de informações turísticas é modelado por um modelo Poisson com taxa de 2 pessoas por hora. Para uma hora qualquer, qual a probabilidade de ocorrer:

- o Pelo menos uma chegada?
- b Mais de duas chegadas, dado que chegaram menos de 5 pessoas?

Exercício Ref.:K2L8

Suponha que X tenha uma distribuição de Poisson. Determine as seguintes probabilidades quando a média de X for quatro, e repita quando a média for 0,4:

- $\mathbb{P}(X \leq 2)$
- **1** $\mathbb{P}(X=8)$

Exercício Ref.:K23W

Numa central telefônica, o número de chamadas chega segundo uma distribuição de Poisson, com a média de oito chamadas por minuto. Determinar qual a probabilidade de que num minuto se tenha:

o dez ou mais chamadas. Resp.: 0,2834

b menos que nove chamadas. Resp.: 05925

o entre sete (inclusive) e nove (exclusive) chamadas. Resp.: 0,2792

Exercício Ref.:Q2N4

Considere um dado equilibrado. Para cada uma das situações abaixo, obtenha a FDP da variável de interesse e identifique o modelo se possível.

- O dado é lançado três vezes, de forma independente. Estamos interessados no número de vezes em que ocorreu a face 1.
- **6** O dado equilibrado é lançado três vezes. Estamos interessados no número de repetições das faces observadas.
- O dado é lançado sucessivamente, de forma independente, até ocorrer a face 6. Estamos interessados em quantos lançamentos foram necessários.
- O dado é lançado 3 vezes, mas a face ocorrida num lançamento é "retirada" para próximo lançamento. Estamos interessados no número de faces ímpares obtidas.

Considere $X \sim Binomial(40, 1/100)$ e $Y \sim Poisson(2/5)$. Note que: $\mathbb{E}(X) = \mathbb{E}(Y)$.

Considere $X \sim Binomial(60, \frac{1}{300})$ e $Y \sim Poisson(\frac{1}{5})$. Note que: $\mathbb{E}(X) = \mathbb{E}(Y)$.

Considere $X \sim Binomial(45, 3/20)$ e $Y \sim Poisson(27/4)$. Note que: $\mathbb{E}(X) = \mathbb{E}(Y)$.

Aproximação da Binomial pela Poisson - Exemplo 3

Considere $X_1 \sim Binomial(10, 1/2), X_2 \sim Binomial(20, 1/4), X_3 \sim Binomial(40, 1/8)$ e $Y \sim Poisson(5)$. Note que: $\mathbb{E}(X_1) = \mathbb{E}(X_2) = \mathbb{E}(X_3) = \mathbb{E}(Y)$.

Aproximação entre Poisson e Binomial

A variável aleatória $X \sim Poisson(\lambda)$ tem distribuição aproximadamente igual à variável aleatória $Y \sim Binomial(n,p)$ quando:

- \bullet $\lambda = np$, ou seja, $\mathbb{E}(X) = \mathbb{E}(Y)$
- $\mathbf{2}$ n é "muito grande"
- 3 p é "muito pequeno"
- **4** $\mathbb{E}(X) = np < 7$

Suponha que $X \sim Binomial(n, p)$ então sua FDP será:

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Se $\lambda = np$, então $p = \lambda/n$, assim podemos reescrever:

$$\mathbb{P}(X = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

Dessa forma:

$$\lim_{n \to \infty} \mathbb{P}(X = k) = \lim_{n \to \infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^k}{k!} \cdot \lim_{n \to \infty} \frac{1}{n^k} \cdot \frac{n!}{(n-k)!} \cdot \left(1 - \frac{\lambda}{n}\right)^n \cdot \left(1 - \frac{\lambda}{n}\right)^{-k}$$

$$= \frac{\lambda^k}{k!} \cdot \lim_{n \to \infty} \frac{n}{n} \cdot \frac{n-1}{n} \cdot \dots \cdot \frac{n-k+1}{n} \cdot \frac{(n-k)!}{(n-k)!} \cdot \left(1 - \frac{\lambda}{n}\right)^n \cdot \left(1 - \frac{\lambda}{n}\right)^{-k}$$

$$= \frac{e^{-\lambda} \lambda^k}{k!}$$

Portanto, quando $n \to \infty$ e $\lambda = np$ a distribuição Binomial(n, p) se aproxima da distribuição $Poisson(\lambda)$.

$$\exp(t) = \lim_{n \to \infty} \left(1 + \frac{t}{n} \right)^n$$

Exercício Ref.:K2L8

O número de chamadas telefônicas que chegam a uma central é frequentemente modelado como uma variável aleatória de Poisson. Considere que, em média, haja dez chamadas por hora. Determine as seguintes probabilidades:

- a Exatamente cinco chamadas em uma hora.
- b Três ou menos chamadas em uma hora.
- o Exatamente 15 chamadas em duas horas.
- d Exatamente cinco chamadas em 30 minutos.

Exercício Ref.:J23K

Uma amostra de 1000 peças é retirada de uma máquina que produz 0.5% de peças defeituosas.

- a Qual é a distribuição do número de peças defeituosas nessa amostra?
- Qual a probabilidade de encontrarmos 3 peças defeituosas nessa amostra?

Exercício Ref.:2L6Q

Uma companhia de seguros afirma que 0.1% da população tem certo tipo de acidentes cada ano. Se os 10000 segurados da companhia foram selecionados aleatoriamente desta população. Qual será a probabilidade de que no máximo de 5 destes clientes, tenham um acidente o próximo ano?

Exercício Ref.:M21L

Suponha que o número de clientes que entrem em um banco em uma hora seja uma variável aleatória de Poisson. Suponha também que $\mathbb{P}(X=0)=0,05$. Determine a média e a variância de X.

Exercício Ref.:358J

Dados provenientes de www.centralhudsonlabs.com determinaram que o número médio de fragmentos de insetos em uma barra de 225 gramas de chocolate foi igual a 14,4; porém, três marcas apresentaram contaminação por inseto maior que duas vezes a média. Veja o U.S. Food and Drug Administration – Center for Food Safety and Applied Nutrition for Defect Action Levels para produtos alimentícios. Considere que o número de fragmentos (contaminantes) siga a distribuição de Poisson.

- Se você consumir uma barra de 225 gramas de uma marca com um nível médio de contaminação, qual será a probabilidade de não ocorrer contaminação por insetos?
- O Suponha que você consuma uma barra que tem um quinto do tamanho testado (45 gramas) de uma marca com um nível médio de contaminação. Qual é a probabilidade de não ocorrer contaminação por insetos?
- Se você consumir sete barras de 28,35 gramas, essa semana, de uma marca com um nível médio de contaminação, qual será a probabilidade de você consumir um ou mais fragmentos de inseto em mais de uma barra?
- d) A probabilidade de uma contaminação ser maior do que duas vezes a média de 14,4 não é usual, ou pode ser considerada uma variação típica? Explique.

Exercício Ref.:K2L9

Astrônomos tratam o número de estrelas em determinado volume do espaço como uma variável aleatória de Poisson. A densidade na Via Láctea, na vizinhança de nosso sistema solar, é uma estrela por 16 anos-luz 3.

- a Qual é a probabilidade de duas ou mais estrelas em 16 anos-luz 3?
- $\ \, \textbf{0}$ Quantos anos-luz 3 de espaço têm de ser estudados de modo que a probabilidade de uma ou mais estrelas exceda(m) 0,95?

Em uma seção de autoestrada, o número de buracos, que é bastante significativo para requerer reparo, pressupõe seguir uma distribuição de Poisson, com uma média de dois buracos por milha.

- Qual é a probabilidade de que não haja buracos que requeiram reparo em cinco milhas de autoestrada?
- Oual é a probabilidade de que no mínimo um buraco requeira reparo em 0,5 milha de autoestrada?
- Se o número de buracos estiver relacionado com a carga do veículo na autoestrada e algumas seções dessa autoestrada estiverem sujeitas a uma carga pesada de veículos, enquanto outras seções estiverem sujeitas a uma carga leve de veículos, como você se sente a respeito da suposição de distribuição de Poisson para o número de buracos que requerem reparo?

Em 1898, L. J. Bortkiewicz publicou um livro intitulado *The Law of Small Numbers* e empregou dados coletados ao longo de 20 anos, para mostrar que o número de soldados mortos por coices de cavalo em cada ano em cada corporação na cavalaria prussiana seguia uma distribuição de Poisson com média de 0,61.

- a Qual é a probabilidade de mais de uma morte na corporação em um ano?
- Oual é a probabilidade de nenhuma morte na corporação ao longo de cinco anos?

O número de visualizações a uma página da internet segue a distribuição de Poisson, com uma média de 1,5 por minuto.

- a Qual é a probabilidade de nenhuma visualização em um minuto?
- 6 Qual é a probabilidade de duas ou menos visualizações em dez minutos?
- A resposta do item anterior depende do fato de o período de dez minutos ser um intervalo ininterrupto? Explique.
- Obtermine o intervalo de tempo de modo que a probabilidade de nenhuma visualização nesse intervalo seja de 0,001.

Montgomery & Runger (2018)

Se a média é 1,5 por minuto a média em um intervalo de T minutos é 1,5T.

O número de falhas na superfície de painéis de plástico, usados no interior de automóveis, tem uma distribuição de Poisson, com uma média de 0,05 falha por pé quadrado de painel plástico. Considere que o interior de um automóvel contenha dez pés quadrados de painel plástico.

- o Qual é a probabilidade de não haver falha na superfície do interior do automóvel?
- Se dez carros forem vendidos para uma companhia de aluguel de carros, qual será a probabilidade de que nenhum dos dez carros tenha qualquer falha na superfície?

Inclusões são defeitos em um metal vertido causados por contaminantes. O número de inclusões (grandes) em um ferro fundido segue uma distribuição de Poisson, com uma média de 2,5 por milímetro cúbico. Determine o seguinte:

- a A probabilidade de no mínimo uma inclusão em um milímetro cúbico.
- **6** A probabilidade de no mínimo cinco inclusões em 5,0 milímetros cúbicos.
- O volume de material para inspecionar, de modo que a probabilidade de existir pelo menos uma inclusão seja igual a 0,99.
- 6 Em vez de uma média de 2,5 por milímetro cúbico, determine as inclusões médias por milímetro cúbico, de modo que a probabilidade de existir no mínimo uma inclusão seja igual a 0,95.

O artigo "An Association Between Fine Particles and Asthma Emergency Department Visits for Children in Seattle" [Environmental Health Perspectives, junho 1999, Vol. 107(6)] usou modelos de Poisson para o número de atendimentos diários ao Departamento de Asma (DA). Para os CEPs (Código de Endereçamento Postal) estudados, o número médio de atendimentos ao DA foi de 1,8 por dia. Determine o seguinte:

- a Probabilidade de mais de cinco atendimentos em um dia.
- **6** Probabilidade de menos de cinco atendimentos em uma semana.
- Número de dias, de modo que a probabilidade de existir pelo menos um atendimento seja igual a 0,99.
- ① Em vez de uma média de 1,8 por dia, determine o número médio de atendimentos diários, de modo que a probabilidade de haver mais de cinco atendimentos em um dia seja igual a 0,1.

Referências

Montgomery, D. C. & G. C. Runger (2018). Applied Statistics and Probability for Engineers (7th ed.). Wiley.

Ross, S. M. (2010). A First Course in Probability (8 ed.). New York: Pearson Hall.

