Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik FMI-MA0022

Wintersemester 2020/21

Übungsblatt 5

Liveaufgaben für 09./10.12.2020

Präsenzaufgabe 5.1:

- a) Zeigen Sie, dass R ein Q-Vektorraum ist, wobei die Vektoraddition die gewöhnliche Addition reeller Zahlen und die Skalarmultiplikation die gewöhnliche Multiplikation einer rationalen mit einer reellen Zahl ist. **Teilproblem:** Wie prüft man, ob eine Definition auf ein konkret gegebenes Objekt zutrifft?
- b) Wir betrachten \mathbb{R} als \mathbb{Q} -Vektorraum wie in der vorigen Teilaufgabe. Untersuchen Sie jeweils auf lineare Unabhängigkeit:
 - $S = [\frac{7}{3}, \frac{2}{5}]$
 - $S = [2, \sqrt{2}]$

Teilproblem: Übertragen Sie die Definition der Linearkombination und der linearen (Un-)Abhängigkeit von \mathbb{K}^n auf allgemeine Vektorräume. Wenden Sie das dann auf den hier genannten Spezialfall an.

Präsenzaufgabe 5.2: Komplexität

Sei \mathbb{K} ein Körper, $n \in \mathbb{N}$ und $A, B \in M_n(\mathbb{K})$. Untersuchen Sie obere Schranken für die Anzahl der Additionen und Multiplikationen von Körperelementen, die bei ...

- ... der Berechnung von $A \cdot B$ auftreten.
- ... dem Gaußschen Eliminationsverfahren angewandt auf A auftreten.

Bitte wenden

Präsenzaufgabe 5.3: Matrixprodukte in der Geometrie Für $\alpha \in \mathbb{R}$ definieren wir die Matrix $R_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \in M_2(\mathbb{R}).$ Überlegen Sie sich nötigenfalls Beispiele, etwa $\alpha = \frac{\pi}{4}$, $\alpha = \frac{\pi}{3}$.

- a) Sei $\varphi_{\alpha} \colon \mathbb{R}^{2} \to \mathbb{R}^{2}$ definiert durch $\varphi_{\alpha}(\vec{x}) := R_{\alpha} \cdot \vec{x}$. Beschreiben Sie φ_{α} geometrisch. **Anleitung:** Wenden Sie φ_{α} auf $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ an, tragen Sie das Ergebnis in eine Zeichnung ein und identifizieren Sie α als einen Winkel in Ihrer Zeichnung.
- b) Es seien $\alpha, \beta \in \mathbb{R}$. Finden Sie ein $\gamma \in \mathbb{R}$, so dass $R_{\gamma} = R_{\beta} \cdot R_{\alpha}$. **Hinweis:** Geometrische Intuition für die Gültigkeit von $\varphi_{\gamma}(\vec{x}) = \varphi_{\beta}(\varphi_{\alpha}(\vec{x}))$?
- c) Berechnen Sie nun $R_{\beta} \cdot R_{\alpha}$ und vergleichen Sie koeffizientenweise mit R_{γ} . Machen Sie sich bewusst, dass Sie soeben die Additionstheoreme für den Sinus und den Kosinus begründet haben.
- d) Was hat R_{α} mit \mathbb{C} zu tun?