Flateintegrales

Husk fra en variabel

Skal arkeide over et rektangel R= [a,b] x [r,d] < 12°

En partisjonning TI on R:

la ni f: R - 1 ik være en kegrenset funksjor.

Nedre trappesom: N(11):= \(m_{ij} - | R_{ij} \)

dure trappeson: $\phi(\pi) := \sum_{i,j} M_{ij} \cdot JR_{ij}$

DEF: \ situasjourn over:

$$\frac{1}{8}$$
 f(r,y) dxdy: ~ inf $\phi(\Pi)$ kalls dv reintegralet

Denom $\iint_{R} f(x,y) dxdy = \iint_{R} f(x,y) dxdy$ six vi at f ex integres box ove f og vi setter

Mork: Ethoert pureintegral er storre eller Zik ethwet nedeintegral,

Setning 6-1.2 Git R = [9,6] x [0,d], f,g:R \rightarrow IR integrer boug, KeIR en konstant holder folgende: over R

- (i) K.f er integrerbon over K

 SS(K.f) dxdy = K. SS f(x) dxdy

 R
- (ii) ftg er integrerber over R og

 SS (ftg) (ry) dxdy = SS fkyldxdy + SSgkyldxdy,

 R R R
- (iii) dosom $f \in g$ si es $SS f(x,y) dx dy \leq SS g(x,y) dx dy.$ R

Integrales au kontinueilige funksjons.

la A C PR voise en mengde og la f: A - 1 PR voise en funksjon.

Minner på kontinuitet: Las x & A. Desom det for en hver Ezo fins en S>0 s.a.

I f(x)-f(x) / E nås |x-x_0| < S sier vi

at f er kontinuertg i x.

Vi sier at f er kontinuertig på A desom f
er kontinuertig i alle x & A.

DEF: Anta at f: A -> B er en funksjon av n variable.

Vi sier at f es <u>uniformt kontinuelly</u> på A
desom det for entwer ezo fins en 8 to sa.

I f(v)-f(v) 1 < E når |v-v|< 8 for alle v, v ∈ X.

Teviem: La R= [a,5] x [c,d] vove et rektongel i IR²,
og la f vouse en kontinuelig funksjon pai R.

Da er er f også uniformt kontinuelig pai R.

(Det samme holder hvis vi by the ut R

(med en generell lukket og begrenset mengde.)

Teorem: La $R = [a_1b] \times [c_1d]$ voue et rektongel î \mathbb{R}^2 og $f: R \to R$ voue kontirvertg. Da er f integresbor over R.

 $\frac{\text{Deris}}{\text{Deris}}$: Má víse: for en hue $\epsilon > 0$ sã fins en parhisjon T av P s.a. $\phi(\pi) - N(\pi) < \epsilon$

GiH εz_0 sá fins δz_0 s.a. $|f(v)-f(v)| < \frac{\varepsilon}{(b-a)(d-c)} \quad \text{nois} \quad |v-v| < \delta,$

(uni form kontinuitet)

La 11 voue en posisjon av R S.a.

desom u, v = Rij så er 10-v] = S.

 $\phi(n)-N(\pi)=\sum_{i,j}M_{ij}|R_{ij}|-\sum_{i,j}M_{ij}|R_{ij}|$

 $=\sum_{i,j}\left(M_{i,j}-M_{i,j}\right)\cdot\left|R_{i,j}\right| \leq \sum_{i,j}\frac{\varepsilon}{(b-a)(d-c)}\cdot\left|R_{i,j}\right|$

$$= \frac{\varepsilon}{(b-a)(d-c)} \cdot \sum_{i \in J} |R_{i,j}| = \varepsilon,$$

Riemannsummer

Git et rektungel R= [a,b] ~ [c,d].

· Foi en postisjon IT au R la vi |IT| betegne maskevidden til IT:

 $|\Pi| := \max_{\zeta_{i}} \left\{ \sqrt{(\chi_{i} - \chi_{i-1})^{2} + (y_{i} - y_{i-1})^{2}} \right\}$

Et utplukk U es et vala Cij E Rij.

V, setter $R(\Pi, V) = \sum_{ij} f(c_{ij}) | R_{ij} |$. (Riemann-sum).

So at: $m(j \leq \beta(c(j)) = M(j)$, sá $N(\pi) \leq R(\pi, \nu) \leq \phi(\pi)$.

Setning 6.1.6. La R=[a,b]x[c,d] vove et rektangel
og la f vove en kontinvelig funksjon
på R. La Π_{K} vove en følge av
povisjonu sa Π_{K} vo og la U_{R} være utplakke for Π_{K} .

Dc &

SS f(r,y) dedy = lin R(Th, Uh),
R

dus, en grense av Remanusummer. Bevis! Folgo av forrige bevis. Herete integrales

\$(40)=2.

Anta f kontinuelig.

Avordon skulle vi kume regne ut SS fley) deady?

Vet: desson vi fikseves K. E [a,b] vet vi hvordan vi skat regne ut ovaelet bil snittet med planet K=6:

Areal = $\int_{c}^{\infty} f(x_{0}, y) dy$

De burde volumet under grafen over R være

5

(\int \f(\epsilon_i y)\dy) dk,