Lecture 6: Line search A (more) global Newton's Method

COMP5930M Scientific Computation

Today

Line search

Line search algorithms

Implementation

Efficiency

Summary

A modified Newton algorithm with damping

We can view the Newton step as an n-d search for the solution \mathbf{x}^*

$$\mathbf{J}(\mathbf{x}_k)\delta = -\mathbf{F}(\mathbf{x}_k)$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda \delta$$

- ▶ The vector δ is the current search direction
- We can then seek the optimal distance $\lambda > 0$ to move in that direction (avoiding long steps that <u>cause divergence</u>)
- ▶ **Note:** Not guaranteed that $\mathbf{F}(\mathbf{x}_k + \lambda \delta) = \mathbf{0}$ for any $\lambda > 0$.

A modified Newton algorithm with damping

$$\mathbf{J}(\mathbf{x}_k)\delta = -\mathbf{F}(\mathbf{x}_k)$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda \delta$$

Criteria for choosing $\lambda > 0$:

- ▶ Should guarantee a reduction in $|\mathbf{F}(\mathbf{x}_{k+1})|^2 < |\mathbf{F}(\mathbf{x}_k)|^2$ (can't diverge, but not enough to guarantee convergence either)
- Should approximately minimise $|\mathbf{F}(\mathbf{x})|^2$ along the line segment $\mathbf{x}_k + \lambda \delta$

Computing λ

Two possible methods:

- ▶ A simple algorithm will begin with $\lambda = 1$ but reject any step that increases $|\mathbf{F}(\mathbf{x})|^2$
- A more complex algorithm computes the step length λ that minimises $|\mathbf{F}(\mathbf{x})|^2$ along the direction δ

1. Line-search by step-halving (Armijo rule)

- ► Find Newton search direction $\delta = -\left[\frac{\partial \mathbf{F}}{\partial \mathbf{x}}\right]^{-1} \mathbf{F}(\mathbf{x}_k)$
- ▶ Set $\lambda = 1$
- ► Test $|\mathbf{F}(\mathbf{x_k} + \lambda \delta)|^2 < |\mathbf{F}(\mathbf{x_k})|^2$
- **Proof.** Reject an increase, and repeat with $\lambda
 ightarrow rac{\lambda}{2}$
- Limit the number of rejects to guarantee completion

▶ Using 3 points, construct a quadratic in λ to minimise the one-dimensional function:

$$\phi(\lambda) := |\mathbf{F}(\mathbf{x}_k + \lambda \delta_k)|^2.$$

Find an initial bracket $[\lambda_1, \lambda_2, \lambda_3]$ such that $\min\{\phi(\lambda_1), \phi(\lambda_3)\} > \phi(\lambda_2)$ and compute $\phi_i = \phi(\lambda_i)$.

▶ Using 3 points, construct a quadratic in λ to minimise the one-dimensional function:

$$\phi(\lambda) := |\mathbf{F}(\mathbf{x}_k + \lambda \delta_k)|^2.$$

- Find an initial bracket $[\lambda_1, \lambda_2, \lambda_3]$ such that $\min\{\phi(\lambda_1), \phi(\lambda_3)\} > \phi(\lambda_2)$ and compute $\phi_i = \phi(\lambda_i)$.
- ▶ Define the quadratic polynomial $q_k(\lambda) := a\lambda^2 + b\lambda + c$ such that $q_k(\lambda_i) = \phi_i$ for i = 1, 2, 3

▶ Using 3 points, construct a quadratic in λ to minimise the one-dimensional function:

$$\phi(\lambda) := |\mathbf{F}(\mathbf{x}_k + \lambda \delta_k)|^2.$$

- Find an initial bracket $[\lambda_1, \lambda_2, \lambda_3]$ such that $\min\{\phi(\lambda_1), \phi(\lambda_3)\} > \phi(\lambda_2)$ and compute $\phi_i = \phi(\lambda_i)$.
- ▶ Define the quadratic polynomial $q_k(\lambda) := a\lambda^2 + b\lambda + c$ such that $q_k(\lambda_i) = \phi_i$ for i = 1, 2, 3
- Find the minimiser of q_k , $\lambda^* \in [\lambda_1, \lambda_3]$. The condition on the bracket guarantees that such a minimiser exists.
- ▶ Set $x_{k+1} = x_k + \lambda^* \delta$ and go to next Newton step.

▶ Using 3 points, construct a quadratic in λ to minimise the one-dimensional function:

$$\phi(\lambda) := |\mathbf{F}(\mathbf{x}_k + \lambda \delta_k)|^2.$$

- Find an initial bracket $[\lambda_1, \lambda_2, \lambda_3]$ such that $\min\{\phi(\lambda_1), \phi(\lambda_3)\} > \phi(\lambda_2)$ and compute $\phi_i = \phi(\lambda_i)$.
- ▶ Define the quadratic polynomial $q_k(\lambda) := a\lambda^2 + b\lambda + c$ such that $q_k(\lambda_i) = \phi_i$ for i = 1, 2, 3
- Find the minimiser of q_k , $\lambda^* \in [\lambda_1, \lambda_3]$. The condition on the bracket guarantees that such a minimiser exists.
- ▶ Set $x_{k+1} = x_k + \lambda^* \delta$ and go to next Newton step.

Illustration of quadratic interpolation

2. Line-search minimisation

- **Note:** It is not guaranteed the approximate line search with a quadratic results in a descent step $\phi(\mathbf{x}_{k+1}) < \phi(\mathbf{x}_k)$.
- ▶ We need to require a bit more to ensure convergence
- **Armijo condition:** Step length λ should satisfy

$$\phi(\mathbf{x}_k + \lambda \delta) \le (1 - C \lambda) \phi(\mathbf{x}_k)$$

for some 0 < C < 1 fixed (e.g. C = 0.001). This condition guarantees convergence to a **local minimum**.

▶ Using 3 points, construct a quadratic in λ and $|\mathbf{F}(\mathbf{x})|^2$ to minimise the one-dimensional function:

$$\phi(\lambda) := |\mathbf{F}(\mathbf{x}_k + \lambda \delta_k)|^2.$$

- Find an initial bracket $[\lambda_1, \lambda_2, \lambda_3]$ such that $\min\{\phi(\lambda_1), \phi(\lambda_3)\} > \phi(\lambda_2)$ and compute $\phi_i = \phi(\lambda_i)$.
- ▶ Define the quadratic polynomial $q_k(\lambda) := a\lambda^2 + b\lambda + c$ such that $q_k(\lambda_i) = \phi_i$ for i = 1, 2, 3
- Find the minimiser of q_k , $\lambda^* \in [\lambda_1, \lambda_3]$. The condition on the bracket guarantees that such a minimiser exists.

- ▶ If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) > \phi(\lambda_2)$ then the new bracket is $[\lambda_1, \lambda_2, \lambda^*]$.
- ▶ If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) < \phi(\lambda_2)$ then the new bracket is $[\lambda_2, \lambda^*, \lambda_3]$.

- ▶ If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) > \phi(\lambda_2)$ then the new bracket is $[\lambda_1, \lambda_2, \lambda^*]$.
- ▶ If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) < \phi(\lambda_2)$ then the new bracket is $[\lambda_2, \lambda^*, \lambda_3]$.
- ▶ If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) = \phi(\lambda_2)$, we can choose either one.

- ▶ If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) > \phi(\lambda_2)$ then the new bracket is $[\lambda_1, \lambda_2, \lambda^*]$.
- ▶ If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) < \phi(\lambda_2)$ then the new bracket is $[\lambda_2, \lambda^*, \lambda_3]$.
- ▶ If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) = \phi(\lambda_2)$, we can choose either one.
- ▶ If $\lambda^* = \lambda_2$ the quadratic step has failed (no new point generated). We return to this case later.

- If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) > \phi(\lambda_2)$ then the new bracket is $[\lambda_1, \lambda_2, \lambda^*]$.
- If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) < \phi(\lambda_2)$ then the new bracket is $\lambda_2, \lambda^*, \lambda_3$.
- ▶ If $\lambda^* > \lambda_2$ and $\phi(\lambda^*) = \phi(\lambda_2)$, we can choose either one.
- If $\lambda^* = \lambda_2$ the quadratic step has failed (no new point generated). We return to this case later.

Selection of new bracket

Here $\lambda^* > \lambda_2$ and $\phi(\lambda^*) > \phi(\lambda_2)$ so the new bracket is $[\lambda_1, \lambda_2, \lambda_*]$

Construction of new parabola

Now we find the next λ^* and iterate

Similar decision tree applies in the case $\lambda^* < \lambda_2$:

- ▶ If $\lambda^* < \lambda_2$ and $\phi(\lambda^*) > \phi(\lambda_2)$ then the new bracket is $[\lambda^*, \lambda_2, \lambda_3]$.
- ▶ If $\lambda^* < \lambda_2$ and $\phi(\lambda^*) < \phi(\lambda_2)$ then the new bracket is $[\lambda_1, \lambda^*, \lambda_2]$.
- ▶ If $\lambda^* < \lambda_2$ and $\phi(\lambda^*) = \phi(\lambda_2)$, we can choose either one.
- ▶ If $\lambda^* = \lambda_2$ the quadratic step has failed (no new point generated).

If the quadratic step failed, $\lambda^* = \lambda_2$, check if:

- ▶ Bracket is smaller than tolerance, $\lambda_3 \lambda_1 < TOL$. If so, stop.
- ▶ Otherwise, perturb $\lambda_2 \rightarrow \lambda_2 \pm \varepsilon$ and retry quadratic step.

The quadratic step is iterated in the new bracket until:

$$\lambda_3 - \lambda_1 < TOL$$

or

$$\phi(\lambda_2) < TOL$$
.

Newton's method

```
function [ x,f ] = newtonSysL( fnon, fjac, x0, tol, maxIt )
n = length(x0);
x = x0; % initial point
f = feval(fnon,x); % initial function values
normf = norm(f):
it = 0;
while (normf>tol) && (it<maxIt)
  J = feval(fjac, n, x, f, fnon); % build Jacobian
  delta = -J \ f:
                                  % solve linear system
  [x,f,normf] = lineSearch(fnon, x, normf, delta, 4);
 it = it + 1:
end
end
```

Line search

```
function [ x,f,normf ] = lineSearch( fnon, x0, normf0, delta, maxStep )
step = 0;
lambda = 1;
x1 = x0 + delta; % first update of x
f1 = feval(fnon.x1): % new function values
normf1 = norm(f1);
while ( normf1 > normf0 ) && ( step < maxStep )
  step = step + 1;
 lambda = lambda/2;
 x1 = x0 + lambda*delta: % undate x
 f1 = feval(fnon,x1):
 normf1 = norm(f1);
end
x = x1; % accept final value
f = f1;
normf = normf1:
end
```

Computational expense

For a single Newton iteration:

	Function calls	Algorithmic
Evaluate J	n	n ²
Solve $\mathbf{J}\delta = -\mathbf{F}$	1	n^3
Update \mathbf{x}_{k+1}	$\approx 2-3$	n

Line-search failure

- ▶ It is possible that the line search will not find a suitable point
- The algorithm extends the convergence of Newton's Method from purely local, but does not guarantee global convergence from any initial point x₀
- ► A good initial point **x**₀ is still critical

Comparison of Newton-based approaches

- Newton
 - Not robust in general for scalar case
 - Rarely converges in vector case
- Newton + bisection (scalar case only)
 - Dekker's method uses secant instead of Newton
 - Completely robust
- ▶ Newton + line-search
 - ▶ Better convergence but not guaranteed to be robust

Summary

- ► The practical Newton-type algorithm is composed of several non-trivial stages at each iteration
 - \triangleright Solution of linear system to find Newton direction δ
 - Line-search to find optimal step length λ
- ► Each stage offers several algorithmic possibilities with performance and efficiency considerations
- ▶ The final choice is generally problem dependent