Лабораторна робота 8

ДОСЛІДЖЕННЯ МЕТОДІВ КОМП'ЮТЕРНОГО ЗОРУ

Мета: використовуючи спеціалізовані бібліотеки та мову програмування Python навчитися обробляти зображення за допомогою бібліотеки OpenCV **Хід роботи:**

Завдання №1: Завантаження зображень та відео в OpenCV.

Код скрипту LR_8_task1.py:

```
import cv2
# LOAD AN IMAGE USING 'IMREAD'
img = cv2.imread("mykoliuk.jpg")
# DISPLAY
cv2.imshow("mykoliuk", img)
cv2.waitKey(0)
```


Рисунок 1 – Результат роботи скрипту LR_8_task1.py

Завдання №2: Дослідження перетворень зображення.

Код скрипту LR_8_task_2.py:

3мн.	Арк.	№ докум.	Підпис	Дата	ДУ «Житомирська політехі	ніка».22	2.121.10	.000 – Лр7
Розр	0 б.	Миколюк В.О.				Літ.	Арк.	Аркушів
Пере	евір.	Філіпов В.О.			Звіт з		1	11
Керіє	зник							
Н. контр.					лабораторної роботи ФІКТ Гр. ІПЗ	3ĸ-20-1[1]		
Зав.	каф.					,		

```
import cv2
import numpy as np
img = cv2.imread("mykoliuk.jpg")
kernel = np.ones((5, 5), np.uint8)
imgGray = cv2.cvtColor(img, cv2.CoLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur(imgGray, (7, 7), 0)
imgCanny = cv2.Canny(img, 150, 200)
imgDialation = cv2.dilate(imgCanny, kernel, iterations=1)
imgEroded = cv2.erode(imgDialation, kernel, iterations=1)
cv2.imshow("Gray Image", imgGray)
cv2.imshow("Blur Image", imgBlur)
cv2.imshow("Canny Image", imgCanny)
cv2.imshow("Dialation Image", imgDialation)
cv2.imshow("Eroded Image", imgEroded)
cv2.waitKey(0)
```


Рисунок 2 – Результат роботи скрипту LR_8_task_2.py

Метод **cvtColor** використовується для перетворення зображення з одного колірного простору в інший, в результаті його використання було отримано зображення у градації сірого кольору.

Метод **GaussianBlur** використовується для застосування Гаусового згладжування до зображення, в результаті його використання було отримано замилене зображення.

Метод **Canny** використовується для виявлення країв зображення, в результаті його використання було отримано зображення з контурами обличчя.

Метод **dilate** використовується для зменшення особливостей зображення, в результаті його використання було отримано зображення з контурами обличчя.

Метод **erode** використовується для підкреслення рис, в результаті його використання було отримано зображення з розмитим контуром обличчя.

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання №3: Вирізання частини зображення.

Код скрипту LR_8_task_3.py:

```
import cv2
img = cv2.imread("mykoliuk.jpg")
print(img.shape)
imgResize = cv2.resize(img, (1000, 500))
print(imgResize.shape)
imgCropped = img[75:400, 30:350]
cv2.imshow("Image", img)
# cv2.imshow("Image Resize", imgResize)
cv2.imshow("Image Cropped", imgCropped)
cv2.waitKey(0)
```


Рисунок 3 – Результат роботи скрипту LR_8_task_3.py

Завдання №4: Розпізнавання обличчя на зображенні.

Код скрипту LR_8_task_4.py:

```
import cv2
faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
img = cv2.imread('mykoliuk.jpg')
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(imgGray, 1.1, 4)
for (x, y, w, h) in faces:
  cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.imshow("Result", img)
cv2.waitKey(0)
```

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 4 – Результат роботи скрипту LR_8_task_4.py

Звдання №5: Розпізнавання об'єктів на зображенні за допомогою методів зіставлення шаблонів (Template Matching).

Код скрипту LR_8_task_5.py:

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
```


Рисунок 5 – Результат роботи скрипту LR_8_task_5.py

Рисунок 6 – Результат роботи скрипту LR_8_task_5.py

		Миколюк В.О.			
		Філіпов В.О.			ДУ
Змн.	Арк.	№ докум.	Підпис	Дата	

Рисунок 7 – Результат роботи скрипту LR_8_task_5.py

Рисунок 8 — Результат роботи скрипту LR_8_task_5.py

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 9 – Результат роботи скрипту LR_8_task_5.py

Рисунок 10 – Результат роботи скрипту LR_8_task_5.py

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

cv.TM CCOEFF:

$$R(x,y) = \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))$$

where

$$\begin{split} T'(x',y') &= T(x',y') - 1/(w \cdot h) \cdot \sum_{x'',y''} T(x'',y'') \\ I'(x+x',y+y') &= I(x+x',y+y') - 1/(w \cdot h) \cdot \sum_{x'',y''} I(x+x'',y+y'') \end{split}$$

with mask

$$\begin{split} &T'(x',y') = M(x',y') \cdot \left(T(x',y') - \frac{1}{\sum_{x'',y''} M(x'',y'')} \cdot \sum_{x'',y''} (T(x'',y'') \cdot M(x'',y'')) \right) \\ &I'(x+x',y+y') = M(x',y') \cdot \left(I(x+x',y+y') - \frac{1}{\sum_{x'',y''} M(x'',y'')} \cdot \sum_{x'',y''} (I(x+x'',y+y'') \cdot M(x'',y'')) \right) \end{split}$$

cv.TM_CCOEFF_NORMED:

$$R(x,y) = \frac{\sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'} T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}}$$

$$R(x,y) = \sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))$$

with mask:

$$R(x,y) = \sum_{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot M(x',y')^2)$$

cv.TM CCORR NORMED:

$$R(x,y) = rac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

with mask

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot M(x',y')^2)}{\sqrt{\sum_{x',y'} (T(x',y') \cdot M(x',y'))^2 \cdot \sum_{x',y'} (I(x+x',y+y') \cdot M(x',y'))^2}}$$

cv.TM_SQDIFF:

$$R(x,y) = \sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2$$

with mask:

$$R(x,y) = \sum_{x', y'} ((T(x',y') - I(x+x',y+y')) \cdot M(x',y'))^2$$

cv.TM_SQDIFF_NORMED:

$$R(x,y) = rac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

with mask:

$$R(x,y) = \frac{\sum_{x',y'} \left(\left(T(x',y') - I(x+x',y+y') \right) \cdot M(x',y') \right)^2}{\sqrt{\sum_{x',y'} \left(T(x',y') \cdot M(x',y') \right)^2 \cdot \sum_{x',y'} \left(I(x+x',y+y') \cdot M(x',y') \right)^2}}$$

На мою думку, cv2.TM_SQDIFF – найкращий метод для поставленої задачі, бо мінімальне значення дає найкращий збіг.

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання №6: Сегментація зображення алгоритмом водорозподілу. Лістинг програми:

Код скрипту LR_8_task_6.py:

```
import numpy as np
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
sure bg = cv2.dilate(opening, kernel, iterations=3)
dist transform = cv2.distanceTransform(opening, cv2.DIST L2, 5)
ret, sure fg = cv2.threshold(dist transform, 0.7 * dist transform.max(), 255, 0)
sure fg = np.uint8(sure fg)
unknown = cv2.subtract(sure bg, sure fg)
cv2.imshow("coins ", opening)
cv2.waitKey(0)
# Маркування міток
ret, markers = cv2.connectedComponents(sure fg)
markers = markers + 1
markers[unknown == 255] = 0
markers = cv2.watershed(img, markers)
img[markers == -1] = [255, 0, 0]
```

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 11 – Результат роботи скрипту LR_8_task_6.py

Рисунок 12 – Результат роботи скрипту LR_8_task_6.py

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 13 – Результат роботи скрипту LR_8_task_6.py

Рисунок 14 – Результат роботи скрипту LR_8_task_6.py

Після виконання програми для більшості монет було правильно відсегментовано області, але проблеми виникли для областей, де монети торкаються одне одного. Через що певні області були не зовсім валідно визначені.

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання №7: Сегментація зображення.

Код скрипту LR_8_task_7.py:

```
import cv2
import numpy as np
from scipy import ndimage as ndi
img = cv2.imread('coins 2.JPG')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
filtro = cv2.pyrMeanShiftFiltering(img, 20, 40)
gray = cv2.cvtColor(filtro, cv2.COLOR_BGR2GRAY)
contornos,
buracos = []
        buracos.append(con)
dist = ndi.distance transform edt(thresh)
dist visual = dist.copy()
local max = peak local max(dist, indices=False, min distance=20, labels=thresh)
markers = ndi.label(local max, structure=np.ones((3, 3)))[0]
labels = watershed(-dist, markers, mask=thresh)
fig = plt.gcf()
fig.set size inches(16, 12)
plt.show()
```

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 15 — Результат роботи скрипту LR_8_task_7.py Висновок: протягом лабораторної роботи було досліджено спеціалізовані бібліотеки мови програмування Python та оброблено зображення за допомогою бібліотеки OpenCV.

Git-репозиторій:

https://github.com/VladyslavMyk/artificial-intelligence-systems.git

		Миколюк В.О.		
		Філіпов В.О.		
Змн.	Арк.	№ докум.	Підпис	Дата