

## 525150 - Álgebra 2 - Pauta Evaluación 2

## Problema 1. (15 puntos)

En el espacio vectorial real  $\mathcal{M}_2(\mathbb{R})$ , considere el subespacio

$$S = \left\{ \begin{pmatrix} a+b+2c & a+c \\ b+c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : a,b,c,d \in \mathbb{R} \right\}.$$

Determine una base y dimensión de S.

#### Solución:

$$S = \left\{ \begin{pmatrix} a+b+2c & a+c \\ b+c & d \end{pmatrix} \in \mathcal{M}_{2}(\mathbb{R}) : a,b,c,d \in \mathbb{R} \right\},$$

$$= \left\{ a \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}_{2}(\mathbb{R}) : a,b,c,d \in \mathbb{R} \right\},$$

$$= \left\langle \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \right\rangle.$$

(5 puntos)

Observamos que uno de los vectores del conjunto generador de S es combinación lineal de los otros dos vectores:

$$\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}.$$

Por lo tanto,

$$S = \left\langle \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \right\rangle = \left\langle \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \right\rangle.$$

Determinamos si este nuevo conjunto generador de S es l.i.

$$\alpha \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow \alpha + \beta = 0, \ \alpha = 0, \ \beta = 0, \ \gamma = 0,$$
$$\Leftrightarrow \alpha = 0 \land \beta = 0 \land \gamma = 0.$$

Por lo tanto sí es linealmente independiente.

(5 puntos)

Finalmente, como el conjunto  $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$  genera a S y es linealmente independiente, entonces es base de S. Como tiene tres elementos, la dimensión de S es 3. **(5 puntos)** 

# Problema 2. (17 puntos)

Sea V un e.v. sobre un cuerpo  $\mathbb{K}$ .

- 2.1 (5 puntos) Demuestre que para toda transformación lineal  $T:V\to V$  se cumple que  $\ker(T)\subseteq\ker(T\circ T)$ .
- 2.2 Suponga que dim(V)=4 y que  $\mathcal{A}=\{v_1,v_2,v_3,v_4\}$  es una base de V. Sea  $L:V\to V$  la transformación lineal que satisface

$$[L]_{\mathcal{A}}^{\mathcal{A}} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (8 puntos) Demuestre que  $\eta(L) = 1$ .
- (4 puntos) Determine  $[L \circ L]_{\mathcal{A}}^{\mathcal{A}}$ .

## Solución:

2.1 Debemos demostrar que si  $u \in \ker(L)$ , entonces  $u \in \ker(L \circ L)$ .

Supongamos  $u \in V$  es un elemento de  $\ker(L)$ , entonces  $L(u) = \theta_V$ . (1 punto)

Por tanto, 
$$(L \circ L)(u) = L(L(u)) = L(\theta_V)$$
. (1 punto)

Como L es lineal,  $L(\theta_V) = \theta_V$ , por lo que,  $(L \circ L)(u) = L(\theta_V) = \theta_V$  y se cumple que  $u \in \ker(L \circ L)$ . (2 puntos)

Como hemos demostrado que cada  $u \in \ker(L)$  también pertenece a  $\ker(L \circ L)$ , se cumple que  $\ker(L) \subseteq \ker(L \circ L)$ . (1 punto)

2.2 ■ Veremos cuatro alternativas para responder esta pregunta. En la primera encontraremos una base para  $\ker(L)$  y veremos que este espacio tiene dimensión 1. En la segunda calcularemos una base para  $\operatorname{im}(L)$ . En la tercera calcularemos  $\operatorname{ker}([L]_{\mathcal{A}}^{\mathcal{A}})$  pues este espacio tiene la misma dimensión que  $\operatorname{ker}(L)$ . En la cuarta calcularemos el rango de  $[L]_{\mathcal{A}}^{\mathcal{A}}$  pues éste y el rango de L son iguales.

Alternativa 1, calcular ker(L): Según la matriz dada L es tal que

$$L(v_1) = v_1 - v_2,$$
  

$$L(v_2) = -v_1 + v_2,$$
  

$$L(v_3) = v_3,$$
  

$$L(v_4) = v_2.$$

(2 puntos)

Sea  $u \in V$ , entonces existen escalares  $a, b, c, d \in \mathbb{K}$  de modo que  $u = av_1 + bv_2 + cv_3 + dv_4$ . Por tanto,

$$L(u) = aL(v_1) + bL(v_2) + cL(v_3) + dL(v_4),$$
  
=  $a(v_1 - v_2) + b(-v_1 + v_2) + cv_3 + dv_2,$   
=  $(a - b)v_1 + (-a + b + d)v_2 + cv_3.$ 

(2 puntos)

Ésta es una combinación lineal de vectores que forman un conjunto li (si  $\mathcal{A}$  es base de V,  $\mathcal{A}$  es li y cualquier subconjunto de  $\mathcal{A}$ , en particular  $\{v_1, v_2, v_3\}$ , es li). Esta combinación lineal es igual a  $\theta_V$  si y solo si

$$a-b=0, -a+b+d=0, c=0.$$

(2 puntos)

Reemplazando a = b en la segunda ecuación obtenemos

$$-b+b+d=0 \Rightarrow d=0.$$

Por tanto,  $u \in \ker(L)$  si y solo si  $u = av_1 + av_2 + 0v_3 + 0v_4 = a(v_1 + v_2)$ . Así,

$$\ker(L) = \langle \{v_1 + v_2\} \rangle.$$

El conjunto  $\{v_1 + v_2\}$ , al tener cardinalidad 1, es li y, por tanto,  $\eta(L) = 1$ . (2 puntos)

Alternativa 2, calcular im(L): Según la matriz dada L es tal que

$$L(v_1) = v_1 - v_2,$$
  

$$L(v_2) = -v_1 + v_2,$$
  

$$L(v_3) = v_3,$$
  

$$L(v_4) = v_2.$$

(2 puntos)

Esto significa que

$$\operatorname{im}(L) = \langle \{v_1 - v_2, -v_1 + v_2, v_3, v_2\} \rangle.$$

El conjunto  $\{v_1 - v_2, -v_1 + v_2, v_3, v_2\}$  es generador de im(L), pero no es base de im(L) pues no es li, por ejemplo,  $-v_1 + v_2 = -(v_1 - v_2)$ , el conjunto

$$\{v_1-v_2,v_3,v_2\}$$

Veamos si éste es li. Sean  $a, b, c \in \mathbb{K}$ , entonces

$$a(v_1 - v_2) + bv_3 + cv_2 = \theta_V \iff av_1 + (c - a)v_2 + bv_3 = \theta_V.$$

Ésta es una combinación lineal de vectores que forman un conjunto li (si  $\mathcal{A}$  es base de V,  $\mathcal{A}$  es li y cualquier subconjunto de  $\mathcal{A}$ , en particular  $\{v_1, v_2, v_3\}$ , es li). Esta combinación lineal es igual a  $\theta_V$  si y solo si

$$a = 0, c - a = 0, b = 0 \Leftrightarrow a = b = c = 0.$$

Hemos demostrado entonces que  $\{v_1 - v_2, v_3, v_2\}$  es base de im(L) y, por tanto, r(L) = 3. (2 puntos)

Como dim(V) = 4 se cumple que  $\eta(L) + r(L) = 4$  y, entonces,  $\eta(L) = 1$ . (2 puntos)

Alternativa 3, calcular  $\ker([L]_{\mathcal{A}}^{\mathcal{A}})$ : Como  $\ker([L]_{\mathcal{A}}^{\mathcal{A}})$  son las coordenadas con respecto a  $\mathcal{A}$  de los vectores en  $\ker(L)$ , se cumple que  $\eta([L]_{\mathcal{A}}^{\mathcal{A}}) = \eta(L)$ . (2 puntos)

$$\ker([L]_{\mathcal{A}}^{\mathcal{A}}) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{K}^4 : [L]_{\mathcal{A}}^{\mathcal{A}} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \theta_{\mathbb{K}^4} \right\},$$

$$= \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{K}^4 : x_1 - x_2 = 0, -x_1 + x_2 + x_4 = 0, x_3 = 0 \right\},$$

$$= \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{K}^4 : x_1 = x_2 \right\},$$

$$= \left\langle \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\} \right\rangle.$$

(3 puntos)

El conjunto  $\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} \right\}$ , al estar formado por un solo vector distinto de  $\theta_{\mathbb{K}^4}$ , es li, por tanto,  $\eta([L]_{\mathcal{A}}^{\mathcal{A}}) = 1$ . (3 puntos)

Alternativa 4, calcular  $r([L]_{\mathcal{A}}^{\mathcal{A}}:)$  Como la imagen de L está formada por los vectores cuyas coordenadas pertenecen a  $im([L]_{\mathcal{A}}^{\mathcal{A}})$ , ambos espacios tienen la misma dimensión. (2 puntos)

$$\operatorname{im}([L]_{\mathcal{A}}^{\mathcal{A}}) = \left\langle \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\} \right\rangle.$$

Dado que  $\begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} = -\begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ , el conjunto anterior es ld y

$$\operatorname{im}([L]_{\mathcal{A}}^{\mathcal{A}}) = \left\langle \left\{ \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \right\} \right\rangle.$$

El conjunto 
$$\left\{ \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \right\} \text{ es li pues}$$

$$a \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \theta_{\mathbb{K}^4} \iff -a = 0, a + c = 0, b = 0, \iff a = b = c = 0.$$

Este conjunto es entonces una base de im( $[L]_{\mathcal{A}}^{\mathcal{A}}$ ) y, por tanto,  $r([L]_{\mathcal{A}}^{\mathcal{A}}) = r(L) = 3$ . (3 puntos)

Dado que  $\eta(L) + r(L) = 4$ , se tiene que  $\eta(L) = 1$ . (3 puntos)

■ La matriz asociada a  $L \circ L$  con respecto a la base  $\mathcal{A}$  de V es el producto de  $[L]_{\mathcal{A}}^{\mathcal{A}}$  consigo misma pues la matriz asociada a una compuesta de transformaciones lineales es el producto de las matrices asociadas a cada transformación. (2 puntos) Entonces

$$[L \circ L]_{\mathcal{A}}^{\mathcal{A}} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 0 & -1 \\ -2 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$(2 \text{ puntos})$$

# Problema 3. (18 puntos)

Sea  $T: \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^3$  la transformación lineal cuya matriz asociada con respecto a las bases

$$\mathcal{A} = \{1, 2 + x, x^2, x + x^3\}$$
 y  $\mathcal{B} = \{(1, 0, 1)^T, (0, 1, 0)^T, (0, 0, 1)^T\}$ 

es:

$$[T]_{\mathcal{A}}^{\mathcal{B}} = \begin{pmatrix} 0 & 0 & 1 & 3\\ 0 & 2 & 1 & 2\\ -1 & -1 & -1 & -2 \end{pmatrix}.$$

- 3.1 (13 puntos) Sean a, b, c, d números reales cualesquiera. Determine  $T(ax^3 + bx^2 + cx + d)$ .
- 3.2 (5 puntos) Decida si

$$\frac{4}{3}x^3 - 4x^2 + 2x + 2 \in \ker(T).$$

Justifique su respuesta.

#### Solución:

1. Se sabe que  $[T(p)]_{\mathcal{B}} = [T]_{\mathcal{A}}^{\mathcal{B}}[p]_{\mathcal{A}}$ . Se calculará  $[p]_{\mathcal{A}}$ . Sea  $p \in \mathcal{P}_3(\mathbb{R})$  tal que  $p(x) = ax^3 + bx^2 + cx + d$ , entonces existen  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$  y  $\alpha_4 \in \mathbb{R}$  tales que:

$$ax^{3} + bx^{2} + cx + d = \alpha_{1} \cdot 1 + \alpha_{2} \cdot (2 + x) + \alpha_{3} \cdot (x^{2}) + \alpha_{4} \cdot (x + x^{3})$$
$$= (\alpha_{1} + 2\alpha_{2}) + (\alpha_{2} + \alpha_{4})x + \alpha_{3}x^{2} + \alpha_{4}x^{3}$$

(3 puntos)

Es decir,

$$\begin{array}{rcl} \alpha_4 & = & a, \\ \alpha_3 & = & b, \\ \alpha_2 + \alpha_4 & = & c, \\ \alpha_1 + 2\alpha_2 & = & d, \end{array}$$

por tanto:  $\alpha_1 = d - 2c + 2a$ ,  $\alpha_2 = c - a$ ,  $\alpha_3 = b$  y  $\alpha_4 = a$ , así:

$$[p]_{\mathcal{A}} = \begin{pmatrix} d - 2c + 2a \\ c - a \\ b \\ a \end{pmatrix}$$

(4 puntos)

Luego:

$$[T(p)]_{\mathcal{B}} = \begin{pmatrix} 0 & 0 & 1 & 3 \\ 0 & 2 & 1 & 2 \\ -1 & -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} d - 2c + 2a \\ c - a \\ b \\ a \end{pmatrix} = \begin{pmatrix} b + 3a \\ 2c + b \\ -d + c - 3a - b \end{pmatrix}$$

(3 puntos)

y por consiguiente:

$$T(ax^{3} + bx^{2} + cx + d) = (b+3a)(1,0,1)^{T} + (2c+b)(0,1,0)^{T} + (-d+c-3a-b)(0,0,1)^{T}$$

$$= (b+3a,2c+b,b+3a-d+c-3a-b)^{T}$$

$$= (b+3a,2c+b,c-d)^{T}$$

(3 puntos)

2. Por último,  $T(ax^3 + bx^2 + cx + d) = (b + 3a, 2c + b, -d + c)^T$  implica que

$$T(4/3x^3 - 4x^2 + 2x + 2) = (-4 + 3(4/3), 2(2) - 4, -2 + 2)^{\mathrm{T}} = (0, 0, 0)^{\mathrm{T}}.$$

(3 puntos)

Como  $T(4/3x^3 - 4x^2 + 2x + 2)$  es igual al vector nulo de  $\mathbb{R}^3$ , se cumple que el polinomio  $4/3x^3 - 4x^2 + 2x + 2$  pertenece a ker(T). (2 puntos)

### Problema 4. (10 puntos)

Sea

$$N = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Verifique que N + I es invertible y que  $(N + I)^{-1} = I - N + N^2 - N^3$ .

Recomendación: Podría utilizar que  $N^4 = \Theta$ .

#### Solución:

Verifiquemos que  $(N+I)(I-N+N^2-N^3)=(I-N+N^2-N^3)(N+I)=I.$  Utilizando que  $N^4=\Theta$  se tiene que

$$(N+I)(I-N+N^2-N^3) = N-N^2+N^3-N^4+I-N+N^2-N^3 = -N^4+I=I$$

У

$$(I - N + N^2 - N^3)(N + I) = N + I - N^2 + N + N^3 + N^2 - N^4 - N^3 = I - N^4 = I.$$

(5 puntos)

Como existe matriz cuyo producto por N + I, tanto a la izquierda como a la derecha de N + I, es igual a la identidad, se cumple que N + I es invertible. Esta matriz es  $I - N + N^2 - N^3$  y ella es, por tanto, la inversa de N + I. (5 puntos)

AGA/FJZ/MSS Semestre 1, 2022