Words and transducers

Bognár Ivett

2020. Március 6.

Tartalom

Bevezetés

Véges állapotú morfológiai elemzés

Véges állapotú lexikon

Véges állapotú transzducer

FST morfológiai elemzésre

Lexikon + szabályok

Porter Stemmer

Tokenizáció

Helyesírási hibák

Minimum Edit Distance

Bevezetés

Mit szeretnénk?

Meg szeretnénk találni az összeset az összes állatból:

Nem csak annyit szeretnénk tudni, hogy a *woodchuck* többesszáma *woodchucks*, hanem felismerni az olyan többesszámokat is, mint:

fox, foxes; peccary, peccaries; goose, geese

Ehhez szükségünk van:

- Helyesírási szabályok (peccary, peccaries)
- Morfológiai szabályok

Voltaképpen morfolgóiai elemzőt szeretnénk.

Miért szeretnénk?

Mire jó a morfolgóiai elemzés?

• Kap egy felszíni/bemeneti formát going

$$\Rightarrow$$
 VERB $-$ go $+$ GERUND $-$ ing

- Automatikus keresés egy adott szó minden alakjára.
- POS tagging
- Helyesírás ellenőrzés
- Gépi fordítás
- A produktivitás miatt muszáj, hogy legyen morfológiai elemzőnk.

Véges állapotú morfológiai

elemzés

Véges állapotú morfológiai elemzés

	English	Spanish				
Input	Morphological Parse	Input	Morphological Parse	Gloss		
cats	cat +N +PL	pavos	pavo +N +Masc +P1	'ducks'		
cat	cat +N +SG	pavo	pavo +N +Masc +Sg	'duck'		
cities	city +N +Pl	bebo	beber +V +PInd +1P +Sg	'I drink'		
geese	goose +N +Pl	canto	cantar +V +PInd +1P +Sg	'I sing'		
goose	goose +N +Sg	canto	canto +N +Masc +Sg	'song'		
goose	goose +V	puse	poner +V +Perf +1P +Sg	'I was able'		
gooses	goose +V +1P +Sg	vino	venir +V +Perf +3P +Sg	'he/she came'		
merging	merge +V +PresPart	vino	vino +N +Masc +Sg	'wine'		
caught	catch +V +PastPart	lugar	lugar +N +Masc +Sg	'place'		
caught	catch +V +Past					

Figure 3.2 Output of a morphological parse for some English and Spanish words. Spanish output modified from the Xerox XRCE finite-state language tools.

Véges állapotú morfológiai elemzés

Kell hozzá:

- 1. **lexikon**: tövek és affixumok listája, minimális információval (igei vagy főnévi tő, stb.)
- 2. morfotaktika
- 3. helyesírás

Véges állapotú lexikon

Véges állapotú lexikon

- Egy lexikonba nem tudunk minden szót felvenni.
- A lexikonok általában tövek és affixumok listája + morfotaktika, ami elmondja, hogyan kombinálhatjuk őket.
- Morfotaktika modellezésére: véges állapotú automaták.

Angol melléknevek

Véges állapotú transzducer

Véges állapotú transzducer

- "Finite-state transducer or FST is a type of finite automation which maps between two sets of symbols."
- Az FST relációt definiál két string-halmaz között.
- Vagyis: Olvas egy stringet és generál egy másikat.
 - Felismerőként: vesz egy string párt inputként és outputként, elfogadja, ha a pár része a nyelvnek, és elutasítja, ha nem.
 - 2. Generátor: a nyelv string párjait adja vissza.
 - 3. Fordító: olvas egy stringet, és visszaad egy msikat.
 - 4. Set relater

FST

Q	a finite set of N states q_0, q_1, \dots, q_{N-1}
Σ	a finite set corresponding to the input alphabet
Δ	a finite set corresponding to the output alphabet
$q_0 \in \mathcal{Q}$	the start state
$F \subseteq Q$	the set of final states
$\delta(q,w)$	the transition function or transition matrix between states; Given a state $q \in Q$ and a string $w \in \Sigma^*$, $\delta(q, w)$ returns a set of new states $Q' \in Q$. δ is thus a function from $Q \times \Sigma^*$ to 2^Q (because there are 2^Q possible subsets of Q). δ returns a set of states rather than a single state because a given input may be ambiguous in which state it maps to.
$\sigma(q,w)$	the output function giving the set of possible output strings for each state and input. Given a state $q \in Q$ and a string $w \in \Sigma^*$, $\sigma(q, w)$ gives a set of output strings, each a string $o \in \Delta^*$. σ is thus a function from $Q \times \Sigma^*$ to 2^{Δ^*}

9

FST

Ahogy az FSA-k izomorfok a regurális nyelvekre, úgy az FST-k izomorfok a regurális relációkra.

A **reguláris relációk** olyan kifejezések, melyek két reguláris kifejezésből állnak, melyeket : választ el. Egy ilyen azt jelenti, hogy a kettőspont előtti kifejezésnek (a reláció felső tagjának) megfelelő nyelv minden eleme relációban áll a kettőspont után álló kifejezésnek (a reláció alsó tagjának) megfelelő nyelv minden elemével.

FST-k két fontos művelete:

- inverzió: megfordítja az input és az output címkéket.
- kompozíció

FST determinisztikusság

Míg az FSA-król elmondhattuk, hogy mindegyik átalakítható determinisztikussá, az FST-kről ez már nem mondható el.

- Sequential transducers: determinisztikusak az input tekintetében.
- Subsequential transducers: a sequential transducer általánosítása, generál további output stringet a végállapotnál, hozzákonkatenálva az eddig produkált outputhoz.

A szavakat úgy vesszük, hogy van egy lexikális szintjük (**lexical level**) és egy felszíni szintjük (**surface level**).

FST esetén ez azt jelenti, hogy van kettő tape:

- lexical tape from Σ
- surface tape from Δ

 $\Sigma + \Delta = \Sigma'$: komplexszimbólumokvégesábécéje.

A szimbólumpárokat ebben megvalósítható pároknak (**feasible pairs**), illetve találhatunk benne párokat, mint pl. *a:a*, amit **default párnak** hívunk.

Angol többesszám

Figure 3.13 A schematic transducer for English nominal number inflection T_{num} . The sym-

Angol többesszám - jobban

Lexikon + szabályok

Rókák generálása

15

Rókák elfogadása

Figure 3.20 Accepting *foxes*: The lexicon transducer T_{lex} from Fig. 3.14 cascaded with the E-insertion transducer in Fig. 3.17.

Homályos rókák

- A foxes lehet ige is.
- A transducer ilyen esetekben nem képes dönteni, szükség van a szövegkörnyezet ismeretére is. (*That trickster foxes me every time!*)
 A legjobb, amit tehetünk, hogy felsoroljuk az összes lehetőséget.
 Amit viszont kezelnünk kell: local ambiguity.
 "Transducers in parallel can be combined by automaton intersection."

Porter Stemmer

Porter Stemmer

- lemmatizálás stemming / (szó)tövesítés vs. lemmatizálás A lemma mindig értelmes szóalak, a szótő pedig olykor nem.
- tokenizáció példányosítás

Porter Stemmer (1980) Egy egyszerű és viszonylag hatékony algoritmus tövesítésre.

Porter szabályai és hibái

Szabályok:

$$\begin{array}{ccc} \text{ATIONAL} & \rightarrow & \text{ATE} & (\text{e.g., relational} \rightarrow \text{relate}) \\ & \text{ING} & \rightarrow & \epsilon & \text{if stem contains vowel (e.g., motoring} \rightarrow \text{motor}) \\ & \text{SSES} & \rightarrow & \text{SS} & (\text{e.g., grasses} \rightarrow \text{grass}) \end{array}$$

Errors of Co	mmission	Errors of	Errors of Omission			
organization	organ	European	Europe			
doing	doe	analysis	analyzes			
numerical	numerous	noise	noisy			
policy	police	sparse	sparsity			

Hibák:

Tokenizáció

Tokenizáció

Azt hinnénk, hogy csak levágjuk a whitespace-t és megvagyunk, de azért ennyire nem egyszerű.

- A tokenizálók általában külön szedik a többszavas kifejezéseket.
 (New York)
 A kérdéskör kicsit a névfelismerésé is.
- Az írásjelek nem mindig egyértelműek: Mr., Inc., stb.
- A mondat szegmentállása lesz az első lépés!
 Szabály alapon, vagy machine learninggel.
- Egyszerű, de nagyszerű tokenizálót lehet csinálni reguláris kifejezésekkel.

Helyesírási hibák

Helyesírási hibák

Miért szeretjük felismerni őket?

- Keresésekhez
- Kézírás felismerőkhoz

Milyen problémákat kell kezelni?

- non-word error detection
 Olyan helyesírási hibák felismerése, amik nem létező szóhoz vezetnek, pl. graffe, giraffe helyett
- isolated-word error correction
 Kijavítjuk a zsiráfot, de csak önmagában nézzük.
- context-dependent error detection and correction
 A kontextust is használjuk, hogy felismerjünk egy hibát, még akkor is, ha az véletlenül éppen egy valódi szó. (real-word error) Pl. desert, dessert helyett.

Minimum Edit Distance

Két string távolsága

Két string távolsága az a szám, ami kifejezi, hogy mennyire hasonló két string egymáshoz.

```
intention

substitute n by e

substitute t by x

insert u

substitute n by c

e x e n t i o n

e x e n t i o n

e x e n t i o n

e x e c u t i o n
```

Figure 3.24 Operation list transforming intention to execution (after Kruskal 1983)

$$(3.5) \quad \textit{distance}[i,j] = \min \left\{ \begin{array}{l} \textit{distance}[i-1,j] + \text{ins-cost}(\textit{target}_{i-1}) \\ \textit{distance}[i-1,j-1] + \text{sub-cost}(\textit{source}_{j-1},\textit{target}_{i-1}) \\ \textit{distance}[i,j-1] + \text{del-cost}(\textit{source}_{j-1})) \end{array} \right.$$

Levenshtein távolság

http://www.let.rug.nl/ kleiweg/lev/

n	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
i	7	6	7	8	9	10	9	8	9	10
t	6	5	6	7	8	9	8	9	10	11
n	5	4	5	6	7	8	9	10	11	10
e	4	3	4	5	6	7	8	9	10	9
t	3	4	5	6	7	8	7	8	9	8
n	2	3	4	5	6	7	8	7	8	7
i	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	e	X	e	c	u	t	i	0	n
Pierre 2.20 Compatible of minimum alitations between interest and market minimum alitations and market minimum alitations.										

Figure 3.26 Computation of minimum edit distance between *intention* and *execution* via algorithm of Fig. 3.25, using Levenshtein distance with cost of 1 for insertions or deletions, 2 for substitutions. In italics are the initial values representing the distance from the empty string.

Köszönöm a figyelmet!