1

APPENDIX I:

CURRENT CLAIMS:

1. A tricyclic benzoylpyrazole compound of formula I

where:

X is a bond;

Y together with the two carbons to which it is attached forms a 1,2-isoxazole ring which is saturated, partially saturated or unsaturated;

 R^1 , R^2 , R^6 , R^7 are hydrogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy or C_1 — C_6 —haloalkoxy;

 R^3 is halogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy or C_1 — C_6 —haloalkoxy;

Is hydrogen, nitro, halogen, cyano, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkylthio, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —alkylsulfonyl, C_1 — C_6 —haloalkylsulfonyl, aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkylsulfonyl) amino, C_1 — C_6 —haloalkylsulfonyl) amino, C_1 — C_6 —alkyl)— C_1 — C_1 —C

 R^5 is hydrogen, C_1-C_6 -alkyl or halogen;

R8 is hydrogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkylcarbonyl, formyl, C_1-C_6 -alkoxycarbonyl, C_1-C_6 -haloalkoxycarbonyl, C_1-C_6 -alkylsulfonyl or C_1-C_6 -haloalkylsulfonyl;

1 is 0, 1 or 2;

R⁹ is a radical IIa

where

- R^{10} is hydroxyl, mercapto, halogen, OR^{13} , SR^{13} , SO_2R^{14} , $NR^{15}R^{16}$ or N—bonded heterocyclyl, where the heterocyclyl radical may be partially or fully halogenated and/or may carry one to three of the following radicals:
 - nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;
- R^{11} is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy;
- R^{12} is hydrogen, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio or C_1 - C_6 -haloalkylthio;
- R^{13} is C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl, C_3-C_6 -alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, C₁-C₂₀-alkylcarbonyl, C_2-C_{20} —alkenylcarbonyl, C_2-C_6 —alkynylcarbonyl, C_3-C_6 —cycloalkylcarbonyl, C_1-C_6 -alkoxycarbonyl, C_3-C_6 -alkenyloxycarbonyl, $C_3-C_6-alkynyloxycarbonyl$, $C_1-C_6-alkylthiocarbonyl$, $C_1-C_6-alky-alky-alkyloxycarbonyl$ laminocarbonyl, C₃-C₆-alkenylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl, N,N-di(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alke- $N-(C_3-C_6-alky$ $nyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $nyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alke-alke-alkoxy)$ $ny1)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, $N-(C_3-C_6-a)ky$ $ny1)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, $di(C_1-C_6-alkyl)$ aminothiocarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-alkoxyimino- $N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$ C_1 — C_6 —alkyl, $N, N-di(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:
 - cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, $di(C_1$ — C_4 —alkyl)amino, C_1 — C_4 —alkylcarbonyl, C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkyl)amino— C_1 — C_4 —alkoxycarbonyl, hydroxycarbonyl, C_1 — C_4 —alkylaminocarbonyl, $di(C_1$ — C_4 —alkyl)aminocarbonyl, $di(C_1$ — C_4 —alkyl)aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcarbonyloxy or C_3 — C_6 —cycloalkyl;
 - is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxy-carbonyl, phenyloxythiocarbonyl, heterocyclyloxycarbonyl,

heterocyclyloxythiocarbonyl, phenylaminocarbonyl, $N-(C_1-C_6-alkyl)-N-(phenyl)$ aminocarbonyl, heterocyclylaminocarbonyl, $N-(C_1-C_6-alkyl)-N-(heterocyclyl)$ aminocarbonyl, phenyl- $C_2-C_6-alkenyl$ carbonyl or heterocyclyl- $C_2-C_6-alkenyl$ carbonyl, where the phenyl and the heterocyclyl radical of the 18 lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, heterocyclyl or N-bonded heterocyclyl, where the two lastmentioned substituents for their part may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{14} is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkoxy, $di(C_1$ - C_6 -alkyl)amino or $di(C_1$ - C_6 -haloalkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, $di(C_1$ — C_4 —alkyl)amino, C_1 — C_4 —alkylcarbonyl, C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkyl)amino— C_1 — C_4 —alkoxycarbonyl, hydroxycarbonyl, C_1 — C_4 —alkylaminocarbonyl, $di(C_1$ — C_4 —alkyl)aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcarbonyloxy or C_3 — C_6 —cycloalkyl;

is phenyl, heterocyclyl, phenyl— C_1 — C_6 —alkyl, heterocyclyl— C_1 — C_6 —alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 genated and/or may carry one to three radicals of the following group:

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, $di(C_1$ — C_4 —alkyl)amino, C_1 — C_4 —alkylcarbonyl, C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkyl)amino— C_1 — C_4 —alkoxycarbonyl, hydroxycarbonyl, C_1 — C_4 —alkylaminocarbonyl, $di(C_1$ — C_4 —alkyl)aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcarbonyloxy or C_3 — C_6 —cycloalkyl;

is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl or heterocyclyl- C_1 - C_6 -alkyl, where the phenyl or heterocyclyl radical of the four lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 -- C_4 --alkyl, C_1 -- C_4 --haloalkyl, C_1 -- C_4 --alkoxy or C_1 -- C_4 --haloalkoxy;

 R^{16} is C_1 — C_6 —alkyl, C_3 — C_6 —alkenyl, C_3 — C_6 —alkynyl or C_1 — C_6 —alkylcar—bonyl;

or an agriculturally useful salt thereof.

- 5. The tricyclic benzoylpyrazole compound of formula I defined in claim 1 where
 - R¹, R² are hydrogen;
 - R^3 is C_1-C_6 -alkyl;
 - R^4 is nitro, halogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy, C_1 — C_6 —alkylthio or C_1 — C_6 —alkylsulfonyl;
 - R⁵ is hydrogen;
 - 1 is 0 or 1.
- 6. The tricyclic benzoylpyrazole compound of formula I defined in claim 1 where
 - R¹⁰ is hydroxyl;
 - R^{11} is C_1-C_6 -alkyl or C_3-C_6 -cycloalkyl;
 - R^{12} is hydrogen or C_1-C_6 -alkyl.
- 7. A process for preparing the compound of formula I where R^{10} = halogen as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole compound of formula I α (= I where R^{10} = hydroxy1),

$$R^{1}$$
 R^{2} R^{3} R^{4} R^{4} R^{4}

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with a halogenating agent.

8. A process for preparing the compound of formula I where $R^{10} = OR^{13}$ as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole compound of formula I α (= I where R^{10} = hydroxyl),

$$R^{12}$$
 O X P^{3} $P^{$

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with a compound of formula III

where the variable R^{13} is as defined in claim 1 and L^1 is a nucleophilically replaceable leaving group.

9. A process for preparing the compound of formula I where $R^{10}=OR^{13}$, SR^{13} , $NR^{15}R^{16}$ or N-bonded heterocyclyl as claimed in claim 1, which comprises reacting a compound of formula I β (\equiv I where $R^{10}=halogen$),

where the variables R^1 to $R^5,~R^{11}$ and $R^{12},~X,~Y$ and 1 are as defined in claim 1, with a compound of formula $IV\alpha,~IV\beta,~IV\gamma$ or $IV\delta$

HOR 13 HSR 13 NHR 15 R 16 H(N-bonded heterocyclyl) IV α IV β IV γ IV δ

where the variables R^{13} to R^{16} are as defined in claim 1, optionally in the presence of a base.

10. A process for preparing the compound of formula I where $R^{10} = SO_2R^{14}$ as claimed in claim 1, which comprises reacting a compound of formula Iy (\equiv I where $R^{10} = SR^{14}$),

$$R^{12}$$
 Q R^{1} R^{2} R^{3} R^{12} R^{10} R^{10} R^{4} R^{11} Q R^{12} R^{10} R^{10}

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and l are as defined in claim 1, with an oxidizing agent.

11. A process for preparing the compound of formula I as claimed in claim 1, which comprises reacting a metalated pyrazole compound of formula V where M is a metal and R^{10} to R^{12} are as defined in claim 1, except for R^{10} = hydroxyl and mercapto, with a tricyclic benzoic acid compound of formula VI α where R^1 to R^5 , X, Y and l are as defined in claim 1 and L^2 is a nucleophilically replaceable leaving group.

$$R^{12}$$
 N
 R^{10}
 R^{10}

12. A process for preparing the compound of formula $I\alpha$ (= I where R^{10} = hydroxyl) as claimed in claim 1, which comprises acylating a pyrazole of formula VII in which the variables R^{11} and R^{12} are as defined in claim 1

with an activated tricyclic benzoic acid of formula VI β or with a tricyclic benzoic acid of formula VI γ ,

where the variables R^1 to R^5 , X, Y and l are as defined in claim 1 and L^3 is a nucleophilically replaceable leaving group, and rearranging the acylation product, optionally in the presence of a catalyst.

13. A process for preparing the compound of formula $I\alpha$ (\equiv I where R^{10} = hydroxyl) as claimed in claim 1, which comprises reacting a pyrazole of formula VII in which the variables R^{11} and R^{12} are as defined in claim 1, or an alkali metal salt thereof,

with a tricyclic benzene compound of formula IX where L^4 is a leaving group and the variables X, Y, R^1 to R^5 and l are as defined in claim 1

$$\begin{array}{c|c}
R^1 & R^2 \\
X & Y \\
Y & Y
\end{array}$$
IX

in the presence of carbon monoxide, a catalyst and a base.

- 14. A composition, comprising a herbicidally effective amount of at least one compound of formula I or an agriculturally useful salt thereof as claimed in claim 1 and auxiliaries which are customary for formulating crop protection agents.
- 15. A process for preparing the composition defined in claim 14, which comprises mixing a herbicidally effective amount of at least one compound of formula I or an agriculturally useful salt

thereof and auxiliaries which are customary for formulating crop protection agents.

- 16. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one compound of formula I or an agriculturally useful salt thereof as claimed in claim 1 to act on plants, their habitat or on seed.
- 18. A tricyclic benzoic acid compound of formula VI

$$R^{1}$$
 R^{2} R^{3} Y Y R^{4}

in which the variables X, Y, R^1 to R^3 and R^5 and 1 are as defined in claim 1 and

 R^4 nitro, halogen, cyano, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C_1-C_6 -alkylthio, C_1-C_6 -haloal-C₁-C₆-alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, aminosulfonyl, $N-(C_1-C_6-alkyl)$ aminosulfonyl, $N, N-di(C_1-C_6-alkyl)$ aminosulfo- $N-(C_1-C_6-alkylsulfonyl)$ amino, $N-(C_1-C_6-haloalkylsulfo-alk$ $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)$ amino nyl)amino, $N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl)$ amino;

R17 is hydroxyl or a radical which can be removed by hydrolysis.

19. A tricyclic benzene compound of formula IX

$$\begin{array}{c|c}
R^1 & R^2 \\
R^3_{|} \\
Y \\
R^5
\end{array}$$

in which the variables X, Y, R^1 to R^3 and R^5 and R^5 are as defined in claim 1 and

 R^4 halogen, cyano, C_1-C_6 -alkyl, C_1 - C_6 -haloalkyl, is nitro, C_1-C_6 -haloalkylthio, C_1-C_6 -alkylsulfinyl, C_1 — C_6 —alkylthio, C_1-C_6 -haloalkylsulfinyl, C_1-C_6 -alkylsulfonyl, C_1-C_6 -haloalkylaminosulfonyl, $N-(C_1-C_6-alkyl)$ aminosulfonyl, sulfonyl, $N, N-di(C_1-C_6-alkyl)$ aminosulfonyl, $N-(C_1-C_6-alkylsulfonyl)$ ami- $N-(C_1-C_6-al N-(C_1-C_6-haloalkylsulfonyl)$ amino, no,

 $ky1)-N-(C_1-C_6-alkylsulfonyl)$ amino or $N-(C_1-C_6-al-ky1)-N-(C_1-C_6-haloalkylsulfonyl)$ amino;

- R^5 is hydrogen or C_1-C_6 -alkyl;
- L⁴ is halogen, C_1 — C_6 —alkylsulfonyloxy, C_1 — C_6 —haloalkylsulfonyloxy or phenylsulfonyloxy, where the phenyl ring of the lastmentioned radical may be unsubstituted or partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy.

20. An aniline compound of formula XV

$$R^1$$
 R^2 R^3 Y XV R^4

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and \mathbb{R}^5 and 1 are in each case as defined in claim 1 and

R⁴ is nitro, halogen, cyano, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, N- $(C_1$ - C_6 -alkylsulfonyl, N- $(C_1$ - C_6 -alkylsulfonyl) aminosulfonyl, N- $(C_1$ - C_6 -alkylsulfonyl) amino, N- $(C_1$ - C_6 -alkylsulfonyl) amino, N- $(C_1$ - C_6 -alkylsulfonyl) amino or N- $(C_1$ - C_6 -alkyl)-N- $(C_1$ - C_6 -alkylsulfonyl) amino.

21. A nitrile compound of formula XVI

$$\begin{array}{c|c}
R^1 & R^2 \\
 & & \\
R^3 & \\
 & & \\
R^5 & & \\
\end{array}$$

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and 1 are in each case as defined in claim 1 and

 C_1 is nitro, halogen, cyano, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkinyl-sulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, amino-

 \mathbb{R}^5

sulfonyl, $N-(C_1-C_6-alkyl)$ aminosulfonyl, $N,N-di-(C_1-C_6-al-kyl)$ aminosulfonyl, $N-(C_1-C_6-alkyl)$ amino, $N-(C_1-C_6-alkyl)$ amino, $N-(C_1-C_6-alkyl)$ amino, $N-(C_1-C_6-alkyl)$ - $N-(C_1-C_6-alkyl)$ amino or $N-(C_1-C_6-alkyl)$ - $N-(C_1-C_6-alkyl)$ amino; is hydrogen or $C_1-C_6-alkyl$.

23. The compound of formula I defined in claim 1, wherein R^{10} is hydroxyl, mercapto, halogen, OR^{13} , SR^{13} , SO_2R^{14} or $NR^{15}R^{16}$.