

Report No: CCISE180402204

FCC REPORT

Applicant: HUNG WAI HOLDINGS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin,

Hong Kong

Equipment Under Test (EUT)

Product Name: 18.5" LCD non-touch screen android quad core player

Model No.: DT185-AS4G1-720

FCC ID: 2AB6Z-DT185-AS4G1

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 10 Mar., 2018

Date of Test: 10 Mar., to 27 Jun., 2018

Date of report issued: 29 Jun., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	29 Jun., 2018	Android player Main board with wireless module (FCC ID: 2AB6Z-A18RK31) and same antenna were used by the device, only AC Power Line Conducted Emission and Radiated emission were re-tested.

Tested by: Mike Du Date: 29 Jun., 2018

Test Engineer

Reviewed by: Date: 29 Jun., 2018

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4	_	T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND TEST MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	8
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	17
	6.7	Spurious Emission	31
	6.7.1	Restricted Band	31
	6.7.2	2 Unwanted Emissions out of the Restricted Bands	44
	6.8	FREQUENCY STABILITY	60
7	TES	T SETUP PHOTO	61
Ω	FUT	CONSTRUCTIONAL DETAILS	62

4 Test Summary

Test Item	Section in CFR 47	Test Result
Antenna requirement	15.203 & 15.407 (a)	Pass*
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)	Pass*
26dB Occupied Bandwidth	15.407 (a) (5)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a) (1) (iv) & (a) (3)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.407 (b) & 15.205 & 15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

Pass*: The test data refer to FCC ID: 2AB6Z-A18RK31.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI HOLDINGS LIMITED
Address:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/ Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address:	3rd floor, NO. 1, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

D. L. (N.	10 701 00
Product Name:	18.5" LCD non-touch screen android quad core player
Model No.:	DT185-AS4G1-720
Operation Frequency:	Band 1: 5150MHz-5250MHz,
	Band 4: 5725MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2, 802.11ac: 1
	Band 4: 802.11a/802.11n20: 5, 802.11n40: 2, 802.11ac: 1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz,
	802.11ac: 20/40/80MHz
Modulation technology	BPSK, QPSK, 16-QAM, 64-QAM
(IEEE 802.11a):	
Modulation technology	BPSK, QPSK, 16-QAM, 64-QAM
(IEEE 802.11n):	
Modulation technology	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
(IEEE 802.11ac):	
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps,
(IEEE 802.11n20):	MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps,
(IEEE 802.11n40):	MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	External Antenna
Antenna gain:	2.0 dBi
AC adapter:	Model No.:PS36A120Y300OS
	Input: AC100-240V, 50/60Hz, 1.0A
	Output: DC 12V, 3000mA

Operation Frequency each of channel						
	Band 1					
802.11a/802.1	1n20/802.11ac	802.11n40/802.11ac		80	2.11ac	
Channel	Frequency	Channel	Frequency	Channel	Frequency	
36	5180MHz	38	5190MHz	42	5210MHz	
40	5200MHz	46	5230MHz			
44	5220MHz					
48	5240MHz					
		Ва	and 4			
802.11a/802.1	1n20/802.11ac	802.11n40/802.11ac		802.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
149	5745MHz	151	5755MHz	155	5775MHz	
153	5765MHz	159	5795MHz			
157	5785MHz					
161	5805MHz					
165	5825MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802.1	1n20/802.11ac	802.11n40/802.11ac		802.11ac	
Channel	Frequency	Channel	Frequency	Channel	Frequency
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz
Middle channel	5200MHz	Highest channel	5230MHz		
Highest channel	5240MHz				
		Band	4		
802.11a/802.1	1n20/802.11ac	802.11n40/802.11ac		802.11ac	
Channel	Frequency	Channel	Frequency	Channel	Frequency
Lowest channel	5745MHz	Lowest channel	5755MHz	Middle channel	5775MHz
Middle channel	5785MHz	Highest channel	5795MHz		
Highest channel	5825MHz				

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C	24.0 °C		
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100	% duty cycle transmitting with modulation.		
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:				
Per-scan all kind of data rate, and	d found the follow lis	t were the worst case.		
Mode		Data rate		
802.11a	6 Mbps			
802.11n20 6.5 Mbps				
802.11n40		13 Mbps		
802.11ac		29.3 Mbps		

Report No: CCISE180402204

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty (Confidence of 95%)	
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	4.56 dB (k=2)	

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2018	02-24-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2018	02-24-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2018	02-24-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	02-25-2018	02-24-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kH	Z		
Limit:	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	,	
	0.15-0.5	66 to 56*	0.15-0.5	
	0.5-5	56	0.5-5	
	5-30	60	5-30	
	* Decreases with the loga			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Reference Plane			
	LISN 40cm 80cm Filter AC power Equipment E.U.T EMI Receiver			
	E.U.T: Equipment Under Test LISN: Line Impedence Stabiliza Test table height=0.8m	tion Network		
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details.			
Test results:	Passed			

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a) (3)						
Test Method:	ANSI C63.10: 2013, KDB789033						
Limit:	Band 1: 24dBm Band 4: 30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-A18RK31						

6.4 Occupy Bandwidth

0.4 Occupy Bullawiatii	
Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)
Test Method:	ANSI C63.10:2013 and KDB 789033
Limit:	Band 1/2/3/4: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz (6dB Bandwidth)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-A18RK31

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a)(3)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 11 dBm/MHz Band 4: 30 dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-A18RK31				

6.6 Band Edge

Test Requirement:	FCC Part 15 E Section 15.407 (b)								
Test Method:	ANSI C63.10:2013	, KDB 789033							
Receiver setup:	Detector	RBW	VBW	Remark					
	Quasi-peak	120kHz	300kHz	Quasi-peak Value					
	RMS	1MHz	3MHz	Average Value					
Limit:	Band	Limit (dBu	IV/m @3m)	Remark					
	Band 1	68	3.20	Peak Value					
	Dallu I	54	.00	Average Value					
	Band 4	78	3.20	Peak Value					
	Band 4 limit:	54	.00	Average Value					
	25 MHz above or b the band edge incr above or below the edge increasing line Remark: 1. Band 1 limit: E[dBµV/m] = EIR 2. Band 4 limit: E[dBµV/m] = EIR E[dBµV/m] = EIR	elow the band edeasing linearly to band edge, and early to a level of P[dBm] + 95.2=68. P[dBm] + 95.2=68. P[dBm] + 95.2=108.	lge, and from 25 o a level of 15.6 from 5 MHz abo 27 dBm/MHz at 2 dBuV/m, for EIF 5.2 dBuV/m, for EIF	PR[dBm]=-27dBm.					
Test Procedure:	1. The EUT was	placed on the top	of a rotating tab	IPR[dBm]=27dBm. ble 0.8 meters above					
	to determine the 2. The EUT was antenna, which tower. 3. The antenna he the ground to de Both horizontal make the measure and then meters and then meters and the to find the maxure specified Band 6. If the emission the limit specified from the EUT woo have 10dB maxure materials.	ne position of the set 3 meters awan was mounted or eight is varied from the mall and vertical polarsurement. The ected emission, the antenna was erotatable was turinum reading. The system was selected with the extension of the EUT fied, then testing outling the content of the EUT fied, then testing outling the content of the EUT fied, then testing outling the content of the extension would be re-	highest radiation y from the interference to the top of a value of the EUT was arratuned to heights arned from 0 degret to Peak Detection of the value of value	erence-receiving riable-height antenna four meters above the field strength. antenna are set to anged to its worst a from 1 meter to 4 trees to 360 degrees of Function and					

Measurement Data (worst case):

Band 1:

Band 1 – 802.11a										
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.32	31.38	7.05	41.93	42.82	68.20	-25.38	Horizontal		
5150.00	46.43	31.38	7.05	41.93	42.93	68.20	-25.27	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.45	31.38	7.05	41.93	33.95	54.00	-20.05	Horizontal		
5150.00	37.45	31.38	7.05	41.93	33.95	54.00	-20.05	Vertical		
			Test char	nnel: Highest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	47.54	30.82	7.11	41.89	43.58	68.20	-24.62	Horizontal		
5350.00	47.38	30.82	7.11	41.89	43.42	68.20	-24.78	Vertical		
			Detect	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.15	30.82	7.11	41.89	33.19	54.00	-20.81	Horizontal		
5350.00	37.66	30.82	7.11	41.89	33.70	54.00	-20.30	Vertical		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 - 802.11n(HT20)										
	Test channel: Lowest channel									
Detector: Peak										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.38	31.38	7.05	41.93	42.88	68.20	-25.32	Horizontal		
5150.00	46.25	31.38	7.05	41.93	42.75	68.20	-25.45	Vertical		
			De	tector: Avera	ge					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.26	31.38	7.05	41.93	33.76	54.00	-20.24	Horizontal		
5150.00	37.47	31.38	7.05	41.93	33.97	54.00	-20.03	Vertical		
			T	1 1 1 2 1	.11					
				nnel: Highest						
	_	_		ector: Peak Va	alue	l		l		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	47.51	30.82	7.11	41.89	43.55	68.20	-24.65	Horizontal		
5350.00	47.46	30.82	7.11	41.89	43.50	68.20	-24.70	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.18	30.82	7.11	41.89	33.22	54.00	-20.78	Horizontal		
5350.00	37.21	30.82	7.11	41.89	33.25	54.00	-20.75	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT40)									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.21	31.38	7.05	41.93	42.71	68.20	-25.49	Horizontal	
5150.00	46.35	31.38	7.05	41.93	42.85	68.20	-25.35	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.34	31.38	7.05	41.93	33.84	54.00	-20.16	Horizontal	
5150.00	37.37	31.38	7.05	41.93	33.87	54.00	-20.13	Vertical	
			Test chai	nnel: Highest	channel				
				ector: Peak V					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.52	30.82	35.37	7.11	41.89	68.20	-26.31	Horizontal	
5350.00	47.41	30.82	35.37	7.11	41.89	68.20	-26.31	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.13	30.82	7.11	41.89	33.17	54.00	-20.83	Horizontal	
5350.00	37.22	30.82	7.11	41.89	33.26	54.00	-20.74	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT20)										
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.25	31.38	7.05	41.93	42.75	68.20	-25.45	Horizontal		
5150.00	45.39	31.38	7.05	41.93	41.89	68.20	-26.31	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.47	31.38	7.05	41.93	33.97	54.00	-20.03	Horizontal		
5150.00	37.52	31.38	7.05	41.93	34.02	54.00	-19.98	Vertical		
			-							
				nnel: Highest						
				ector: Peak Va	alue		_			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	41.51	30.82	7.11	41.89	37.55	68.20	-30.65	Horizontal		
5350.00	42.72	30.82	7.11	41.89	38.76	68.20	-29.44	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	31.34	30.82	7.11	41.89	27.38	54.00	-26.62	Horizontal		
5350.00	32.42	30.82	7.11	41.89	28.46	54.00	-25.54	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT40)										
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.33	31.38	7.05	41.93	42.83	68.20	-25.37	Horizontal		
5150.00	46.25	31.38	7.05	41.93	42.75	68.20	-25.45	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.25	31.38	7.05	41.93	33.75	54.00	-20.25	Horizontal		
5150.00	37.43	31.38	7.05	41.93	33.93	54.00	-20.07	Vertical		
			Took abou	anali liinkaat	ah an na l					
				nnel: Highest						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	ector: Peak Va Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.65	30.82	7.11	41.89	38.69	68.20	-29.51	Horizontal		
5350.00	41.31	30.82	7.11	41.89	37.35	68.20	-30.85	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.85	30.82	7.11	41.89	28.89	54.00	-25.11	Horizontal		
5350.00	31.19	30.82	7.11	41.89	27.23	54.00	-26.77	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT80)									
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.37	31.38	7.05	41.93	42.87	68.20	-25.33	Horizontal		
5150.00	46.32	31.38	7.05	41.93	42.82	68.20	-25.38	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.38	31.38	7.05	41.93	33.88	54.00	-20.12	Horizontal		
5150.00	37.42	31.38	7.05	41.93	33.92	54.00	-20.08	Vertical		
				nnel: Highest						
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.27	30.82	35.37	7.11	41.89	68.20	-26.31	Horizontal		
5350.00	42.55	30.82	35.37	7.11	41.89	68.20	-26.31	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.87	30.82	7.11	41.89	28.91	54.00	-25.09	Horizontal		
5350.00	33.32	30.82	7.11	41.89	29.36	54.00	-24.64	Vertical		
Damadu								· · · · · · · · · · · · · · · · · · ·		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

			Ва	nd 4 – 802.1	1a					
	Test channel: Lowest channel									
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	46.40	31.03	7.69	41.94	43.18	78.20	-35.02	Horizontal		
5725.00	46.50	31.03	7.69	41.94	43.28	78.20	-34.92	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	36.30	31.03	7.69	41.94	33.08	54.00	-20.92	Horizontal		
5725.00	36.90	31.03	7.69	41.94	33.68	54.00	-20.32	Vertical		
			Test cha	nnel: Highest	channel					
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	46.40	31.37	7.90	42.03	43.64	78.20	-34.56	Horizontal		
5850.00	45.61	31.37	7.90	42.03	42.85	78.20	-35.35	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	36.35	31.37	7.90	42.03	33.59	54.00	-20.41	Horizontal		
5850.00	35.40	31.37	7.90	42.03	32.64	54.00	-21.36	Vertical		

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11n(HT20)										
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	46.34	31.03	7.69	41.94	43.12	78.20	-35.08	Horizontal		
5725.00	46.40	31.03	7.69	41.94	43.18	78.20	-35.02	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	36.22	31.03	7.69	41.94	33.00	54.00	-21.00	Horizontal		
5725.00	36.36	31.03	7.69	41.94	33.14	54.00	-20.86	Vertical		
			Test cha	nnel: Highest	channel					
			Dete	ector: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	46.40	31.37	7.90	42.03	43.64	78.20	-34.56	Horizontal		
5850.00	45.61	31.37	7.90	42.03	42.85	78.20	-35.35	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	36.37	31.37	7.90	42.03	33.61	54.00	-20.39	Horizontal		
5850.00	35.20	31.37	7.90	42.03	32.44	54.00	-21.56	Vertical		
Domark:							_			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 - 802.11n(HT40)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.35	31.03	7.69	41.94	43.13	78.20	-35.07	Horizontal			
5725.00	46.42	31.03	7.69	41.94	43.20	78.20	-35.00	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	36.36	31.03	7.69	41.94	33.14	54.00	-20.86	Horizontal			
5725.00	36.32	31.03	7.69	41.94	33.10	54.00	-20.90	Vertical			
				nnel: Highest							
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.52	31.37	7.90	42.03	43.76	78.20	-34.44	Horizontal			
5850.00	45.84	31.37	7.90	42.03	43.08	78.20	-35.12	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.20	31.37	7.90	42.03	33.44	54.00	-20.56	Horizontal			
5850.00	35.32	31.37	7.90	42.03	32.56	54.00	-21.44	Vertical			
Domorle								· ·			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT20)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.47	31.03	7.69	41.94	43.25	78.20	-34.95	Horizontal			
5725.00	45.50	31.03	7.69	41.94	42.28	78.20	-35.92	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	36.35	31.03	7.69	41.94	33.13	54.00	-20.87	Horizontal			
5725.00	35.46	31.03	7.69	41.94	32.24	54.00	-21.76	Vertical			
	Test channel: Highest channel										
			Dete	ector: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.56	31.37	7.90	42.03	43.80	78.20	-34.40	Horizontal			
5850.00	45.30	31.37	7.90	42.03	42.54	78.20	-35.66	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.60	31.37	7.90	42.03	33.84	54.00	-20.16	Horizontal			
5850.00	35.37	31.37	7.90	42.03	32.61	54.00	-21.39	Vertical			
Domark:	·	·	·				·	•			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT40)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.30	31.03	7.69	41.94	43.08	78.20	-35.12	Horizontal			
5725.00	45.37	31.03	7.69	41.94	42.15	78.20	-36.05	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	36.71	31.03	7.69	41.94	33.49	54.00	-20.51	Horizontal			
5725.00	35.42	31.03	7.69	41.94	32.20	54.00	-21.80	Vertical			
	Test channel: Highest channel										
			Dete	ctor: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.34	31.37	7.90	42.03	43.58	78.20	-34.62	Horizontal			
5850.00	45.23	31.37	7.90	42.03	42.47	78.20	-35.73	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.15	31.37	7.90	42.03	33.39	54.00	-20.61	Horizontal			
5850.00	35.47	31.37	7.90	42.03	32.71	54.00	-21.29	Vertical			
Domark:	·	·	·				·	•			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 - 802.11ac(HT80)										
			Test cha	nnel: Middle	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.42	31.03	7.69	41.94	43.20	78.20	-35.00	Horizontal			
5725.00	45.77	31.03	7.69	41.94	42.55	78.20	-35.65	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.50	31.03	7.69	41.94	43.28	54.00	-10.72	Horizontal			
5725.00	35.51	31.03	7.69	41.94	32.29	54.00	-21.71	Vertical			
				nnel: Middle							
	T			ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.40	31.37	7.90	42.03	43.64	78.20	-34.56	Horizontal			
5850.00	45.35	31.37	7.90	42.03	42.59	78.20	-35.61	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.16	31.37	7.90	42.03	33.40	54.00	-20.60	Horizontal			
5850.00	35.37	31.37	7.90	42.03	32.61	54.00	-21.39	Vertical			
Domorlu		<u> </u>									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band								
	Test Requirement:	FCC Part15 E Se	ection 15	5.407(b)				
	Test Method:	ANSI C63.10: 20)13						
	Test Frequency Range:	4.5 GHz to 5.15	GHz and	d 5.35	GHz to 5.46G	Hz			
	Test site:	Measurement Di	stance:	3m					
	Receiver setup:	Frequency	Detec		RBW		3W	Remark	
		Above 1GHz	Pea RM		1MHz 1MHz		lHz lHz	Peak Value Average Value	
	Limit:	Frequency			t (dBuV/m @:		11 12	Remark	
		Above 1GH			74.00 54.00		Peak Value Average Value		
	Test Procedure:	the ground a to determine 2. The EUT was antenna, wh tower. 3. The antenna the ground the ground the ground the make the m 4. For each su case and the meters and to find the m 5. The test-reconspecified Bar 6. If the emission the limit specified Bar 10 the EUT whave 10dB in the modern specified Bar 10 the EUT whave 10dB in the EUT was antended to the EUT whave 10dB in the EUT was antended to the EUT	at a 3 me of the post as set 3 mich was a height to determental and easurent spected en the at the rota maximum seiver syand width ion level ecified, the would be margin v	eter casition of meters mound is varioned in vertication of the menter o	ne top of a rotamber. The tap of the highest is away from the top of the decircular awas tuned to was turned from the end	meter value on the stopp of a value of the was a stopp of the stopp on	table 1 as rotation. erferent variable to four of the fact anter the fact Funder the fact for th	.5 meters above ted 360 degrees dee-receiving de-height antenna meters above field strength. The sense are set to ded to its worst m 1 meter to 4 s to 360 degrees	
			AE (Turn	EUT Itable)	Horn Au	ntenna Ante	enna Tower		
				Test	Receiver Pre-Ampli	Controlle	or		
	Test Instruments:	Refer to section							
	Test mode:	Refer to section	5.3 for d	etails					
	Test results:	Passed							

Measurement Data (worst case):

Band 1:

	Band 1 – 802.11a										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.50	29.30	6.80	42.05	41.55	74.00	-32.45	Horizontal			
4500.00	46.70	29.30	6.80	42.05	40.75	74.00	-33.25	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.20	29.30	6.80	42.05	31.25	54.00	-22.75	Horizontal			
4500.00	37.56	29.30	6.80	42.05	31.61	54.00	-22.39	Vertical			
				nnel: Highest							
		-	ı	ector: Peak V	alue	T	_				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	46.48	30.54	7.18	41.85	42.35	74.00	-31.65	Horizontal			
5460.00	47.75	30.54	7.18	41.85	43.62	74.00	-30.38	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	36.23	30.54	7.18	41.85	32.10	54.00	-21.90	Horizontal			
5460.00	35.76	30.54	7.18	41.85	31.63	54.00	-22.37	Vertical			
Remark [.]											

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11n(HT20)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.37	29.30	6.80	42.05	41.42	74.00	-32.58	Horizontal			
4500.00	46.34	29.30	6.80	42.05	40.39	74.00	-33.61	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.20	29.30	6.80	42.05	31.25	54.00	-22.75	Horizontal			
4500.00	37.15	29.30	6.80	42.05	31.20	54.00	-22.80	Vertical			
				nnel: Highest							
	T			ector: Peak Va	alue	ı					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	46.44	30.54	7.18	41.85	42.31	74.00	-31.69	Horizontal			
5460.00	47.70	30.54	7.18	41.85	43.57	74.00	-30.43	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	36.28	30.54	7.18	41.85	32.15	54.00	-21.85	Horizontal			
5460.00	35.77	30.54	7.18	41.85	31.64	54.00	-22.36	Vertical			
Pomork:								·			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 – 802.11n(l	HT40)					
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	47.62	29.30	6.80	42.05	41.67	74.00	-32.33	Horizontal		
4500.00	46.24	29.30	6.80	42.05	40.29	74.00	-33.71	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	37.45	29.30	6.80	42.05	31.50	54.00	-22.50	Horizontal		
4500.00	37.28	29.30	6.80	42.05	31.33	54.00	-22.67	Vertical		
			Tost show	nnel: Highest	channol					
				ector: Peak Va						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	46.46	30.54	7.18	41.85	42.33	74.00	-31.67	Horizontal		
5460.00	47.65	30.54	7.18	41.85	43.52	74.00	-30.48	Vertical		
			Detec	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.45	30.54	7.18	41.85	32.32	54.00	-21.68	Horizontal		
5460.00	35.85	30.54	7.18	41.85	31.72	54.00	-22.28	Vertical		
					-					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11ac(HT20)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.58	29.30	6.80	42.05	41.63	74.00	-32.37	Horizontal			
4500.00	46.46	29.30	6.80	42.05	40.51	74.00	-33.49	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.77	29.30	6.80	42.05	31.82	54.00	-22.18	Horizontal			
4500.00	36.32	29.30	6.80	42.05	30.37	54.00	-23.63	Vertical			
				nnel: Highest							
			Dete	ctor: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	47.51	30.54	7.18	41.85	43.38	74.00	-30.62	Horizontal			
5460.00	46.32	30.54	7.18	41.85	42.19	74.00	-31.81	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	37.55	30.54	7.18	41.85	33.42	54.00	-20.58	Horizontal			
5460.00	36.62	30.54	7.18	41.85	32.49	54.00	-21.51	Vertical			
Domorke					<u> </u>	<u> </u>					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT40)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	47.55	29.30	6.80	42.05	41.60	74.00	-32.40	Horizontal			
4500.00	46.56	29.30	6.80	42.05	40.61	74.00	-33.39	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	37.45	29.30	6.80	42.05	31.50	54.00	-22.50	Horizontal			
4500.00	36.33	29.30	6.80	42.05	30.38	54.00	-23.62	Vertical			
	Test channel: Highest channel										
			Dete	ector: Peak V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	47.62	34.90	7.18	41.85	47.85	74.00	-26.15	Horizontal			
5460.00	46.43	34.90	7.18	41.85	46.66	74.00	-27.34	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	37.55	34.90	7.18	41.85	37.78	54.00	-16.22	Horizontal			
5460.00	36.40	34.90	7.18	41.85	36.63	54.00	-17.37	Vertical			
Domark:											

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	– 802.11ac	(HT80)					
			Test cha	nnel: Lowest	channel					
			Dete	ector: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	47.36	29.30	6.80	42.05	41.41	74.00	-32.59	Horizontal		
4500.00	46.40	29.30	6.80	42.05	40.45	74.00	-33.55	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	37.62	29.30	6.80	42.05	31.67	54.00	-22.33	Horizontal		
4500.00	36.23	29.30	6.80	42.05	30.28	54.00	-23.72	Vertical		
			Test cha	nnel: Highest	channel					
			Dete	ector: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	47.65	30.54	7.18	41.85	43.52	74.00	-30.48	Horizontal		
5460.00	46.67	30.54	7.18	41.85	42.54	74.00	-31.46	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	37.48	30.54	7.18	41.85	33.35	54.00	-20.65	Horizontal		
5460.00	36.59	30.54	7.18	41.85	32.46	54.00	-21.54	Vertical		
Domark:	·		·				·	-		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

			Ва	nd 4 – 802.1	1a					
			Test cha	nnel: Lowest	channel					
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.47	30.82	7.11	41.89	42.51	74.00	-31.49	46.47		
5350.00	45.70	30.82	7.11	41.89	41.74	74.00	-32.26	45.68		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.28	30.82	7.11	41.89	32.32	54.00	-21.68	Horizontal		
5350.00	35.32	30.82	7.11	41.89	31.36	54.00	-22.64	Vertical		
			Toot obo	nnel: Lowest	ahannal					
				ctor: Peak V						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	46.45	30.54	7.18	41.85	42.32	74.00	-31.68	Horizontal		
5460.00	45.33	30.54	7.18	41.85	41.20	74.00	-32.80	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.20	30.54	7.18	41.85	32.07	54.00	-21.93	Horizontal		
5460.00	35.33	30.54	7.18	41.85	31.20	54.00	-22.80	Vertical		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band -	4 – 802.11n(l	HT20)					
			Test cha	nnel: Lowest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.58	30.82	7.11	41.89	42.62	74.00	-31.38	Horizontal		
5350.00	45.35	30.82	7.11	41.89	41.39	74.00	-32.61	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.34	30.82	7.11	41.89	32.38	54.00	-21.62	Horizontal		
5350.00	35.32	30.82	7.11	41.89	31.36	54.00	-22.64	Vertical		
				nnel: Lowest						
		•		ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	46.31	30.54	7.18	41.85	42.18	74.00	-31.82	Horizontal		
5460.00	45.45	30.54	7.18	41.85	41.32	74.00	-32.68	Vertical		
			Detec	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.22	30.54	7.18	41.85	32.09	54.00	-21.91	Horizontal		
5460.00	35.32	30.54	7.18	41.85	31.19	54.00	-22.81	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT40)											
			Test cha	nnel: Lowest	channel							
			Dete	ector: Peak Va	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	46.63	30.82	7.11	41.89	42.67	74.00	-31.33	Horizontal				
5350.00	46.35	30.82	7.11	41.89	42.39	74.00	-31.61	Vertical				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	34.30	30.82	7.11	41.89	30.34	54.00	-23.66	Horizontal				
5350.00	35.26	30.82	7.11	41.89	31.30	54.00	-22.70	Vertical				
	Test channel: Lowest channel											
				ector: Peak Va								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	46.33	30.54	7.18	41.85	42.20	74.00	-31.80	Horizontal				
5460.00	45.34	30.54	7.18	41.85	41.21	74.00	-32.79	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	36.35	30.54	7.18	41.85	32.22	54.00	-21.78	Horizontal				
5460.00	35.31	30.54	7.18	41.85	31.18	54.00	-22.82	Vertical				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	1 - 802.11ac	(HT20)					
			Test cha	nnel: Lowest	channel					
			Dete	ector: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.49	30.82	7.11	41.89	42.53	74.00	-31.47	Horizontal		
5350.00	45.71	30.82	7.11	41.89	41.75	74.00	-32.25	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.26	30.82	7.11	41.89	32.30	54.00	-21.70	Horizontal		
5350.00	35.21	30.82	7.11	41.89	31.25	54.00	-22.75	Vertical		
				nnel: Lowest						
			Dete	ector: Peak V	alue	T				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	46.48	30.54	7.18	41.85	42.35	74.00	-31.65	Horizontal		
5460.00	45.34	30.54	7.18	41.85	41.21	74.00	-32.79	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.25	30.54	7.18	41.85	32.12	54.00	-21.88	Horizontal		
5460.00	35.42	30.54	7.18	41.85	31.29	54.00	-22.71	Vertical		
Damadu								· · · · · · · · · · · · · · · · · · ·		

¹ Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

² The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac(HT40)					
			Test cha	nnel: Lowest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.52	30.82	7.11	41.89	42.56	74.00	-31.44	Horizontal		
5350.00	45.61	30.82	7.11	41.89	41.65	74.00	-32.35	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.35	30.82	7.11	41.89	32.39	54.00	-21.61	Horizontal		
5350.00	35.42	30.82	7.11	41.89	31.46	54.00	-22.54	Vertical		
				nnel: Lowest						
				ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	46.57	30.54	7.18	41.85	42.44	74.00	-31.56	Horizontal		
5460.00	45.43	30.54	7.18	41.85	41.30	74.00	-32.70	Vertical		
			Detect	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.22	30.54	7.18	41.85	32.09	54.00	-21.91	Horizontal		
5460.00	35.56	30.54	7.18	41.85	31.43	54.00	-22.57	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT80)											
			Test cha	nnel: Middle	channel						
			Dete	ctor: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	46.68	30.82	7.11	41.89	42.72	74.00	-31.28	Horizontal			
5350.00	46.54	30.82	7.11	41.89	42.58	74.00	-31.42	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	34.24	30.82	7.11	41.89	30.28	54.00	-23.72	Horizontal			
5350.00	35.29	30.82	7.11	41.89	31.33	54.00	-22.67	Vertical			
			- · ·	1.86.1.11							
				nnel: Middle							
				ctor: Peak Va	alue		_				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	46.51	30.54	7.18	41.85	42.38	74.00	-31.62	Horizontal			
5460.00	45.36	30.54	7.18	41.85	41.23	74.00	-32.77	Vertical			
			Detec	tor: Average '	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	36.33	30.54	7.18	41.85	32.20	54.00	-21.80	Horizontal			
5460.00	35.26	30.54	7.18	41.85	31.13	54.00	-22.87	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

6.7.2 Unwanted Emission									
Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205						
Test Method:	ANSI C63.10: 20)13							
Test Frequency Range:	30MHz to 40GH	Z							
Test site:	Measurement Di	stance: 3m							
Receiver setup:	Frequency	Detector	RBW	VE	3W	Remark			
	30MHz-1GHz	Quasi-peak	100kHz	300)kHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	31/	/lHz	Peak Value			
		RMS	1MHz		/Hz	Average Value			
Limit:	Frequency		mit (dBuV/m @3	3m)		Remark			
	30MHz-88M		40.0 43.5			luasi-peak Value			
	88MHz-216M 216MHz-960M		46.0			luasi-peak Value luasi-peak Value			
	960MHz-1GI		54.0			luasi-peak Value			
			68.20			Peak Value			
	Above 1GH	z	54.00			Average Value			
	Remark:				•				
		Above 1GHz limit:							
	$E[dB\mu V/m] = EIRF$								
Test Procedure:			he top of a rota			sm(below leter camber. The			
						ion of the highest			
	radiation.	naica ooo ac	ji cos to actom		o positi	ion or the highest			
	radiation.2. The EUT was set 3 meters away from the interference-receiving								
	antenna, which was mounted on the top of a variable-height antenna								
	tower.								
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both								
						e set to make the			
	measureme	•		io arito	TITICA CAT	o oot to make the			
						to its worst case			
						eter to 4 meters			
			ned from 0 dec	grees t	o 360 (degrees to find the			
	maximum re 5. The test-red	•	was set to Pea	k Dete	ct Fun	ction and			
			Maximum Hole			otion and			
	· ·					dB lower than the			
						peak values of the			
			Otherwise the e						
			fied and then re			ak, quasi-peak or lata sheet			
Test setup:		ariou do opoci	nou and mon n	ороно	 	ata cricot.			
1 001 0010p.	Below 1GHz								
		.	————	-	Antenna	Tower			
					Antenna	Towa			
		Ι.			Search				
	EUT	> 3m <	I		Antenn				
		40	· _/		RF Test				
					Receiver —	\neg I			
		Turn 0.8m	i Im		\ _				
		Table 0.8m	<u> </u>						
	Ground Plane —								

Measurement Data (worst case):

Below 1GHz

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz: Band 1:

			Band	1 – 802.1	1a			
			Test chann	el: Lowest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	47.72	36.94	9.75	42.02	52.39	68.20	-15.81	Vertical
10360.00	47.65	36.94	9.75	42.02	52.32	68.20	-15.88	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	37.61	36.94	9.75	42.02	42.28	54.00	-11.72	Vertical
10360.00	37.56	36.94	9.75	42.02	42.23	54.00	-11.77	Horizontal
			Test chann	ool: Middle	channel			
				or: Peak V				
	Dood	Antonno	Detecti	l	alue	Limit	Over	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	polarization
10400.00	46.53	36.96	9.85	41.95	51.39	68.20	-16.81	Vertical
10400.00	46.86	36.96	9.85	41.95	51.72	68.20	-16.48	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	36.86	36.96	9.85	41.95	41.72	54.00	-12.28	Vertical
10400.00	37.64	36.96	9.85	41.95	42.50	54.00	-11.50	Horizontal
			Test chann	ol: Highost	channol			
				or: Peak V				
	Dood	Antonno	Detecti	l	alue	l inait	Over	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	47.62	37.49	10.81	42.29	53.63	68.20	-14.57	Vertical
10480.00	46.55	37.49	10.81	42.29	52.56	68.20	-15.64	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	38.64	37.49	10.81	42.29	44.65	54.00	-9.35	Vertical
10480.00	37.35	37.49	10.81	42.29	43.36	54.00	-10.64	Horizontal
Remark:				- <u></u>				

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test chann	- 802.11n(l				
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	47.64	36.94	9.75	42.02	52.31	68.20	-15.89	Vertical
10360.00	47.45	36.94	9.75	42.02	52.12	68.20	-16.08	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10360.00	37.22	36.94	9.75	42.02	41.89	54.00	-12.11	Vertical
10360.00	37.35	36.94	9.75	42.02	42.02	54.00	-11.98	Horizonta
			Test chann	nel: Middle	channel			
			Detecto	or: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	46.66	36.96	9.85	41.95	51.52	68.20	-16.68	Vertical
10400.00	46.87	36.96	9.85	41.95	51.73	68.20	-16.47	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	36.74	36.96	9.85	41.95	41.60	54.00	-12.40	Vertical
10400.00	37.65	36.96	9.85	41.95	42.51	54.00	-11.49	Horizonta
			Test channe	el: Highest or: Peak Va				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	47.62	37.49	10.81	42.29	53.63	68.20	-14.57	Vertical
10480.00	46.57	37.49	10.81	42.29	52.58	68.20	-15.62	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	38.48	37.49	10.81	42.29	44.49	54.00	-9.51	Vertical
10480.00	37.64	37.49	10.81	42.29	43.65	54.00	-10.35	Horizonta

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test chann	el: Lowest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	47.86	36.94	9.75	42.02	52.53	68.20	-15.67	Vertical
10380.00	47.66	36.94	9.75	42.02	52.33	68.20	-15.87	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	37.54	36.94	9.75	42.02	42.21	54.00	-11.79	Vertical
10380.00	37.34	36.94	9.75	42.02	42.01	54.00	-11.99	Horizontal
			Test chann	el: Highest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	46.54	37.49	10.81	42.29	52.55	68.20	-15.65	Vertical
10460.00	46.78	37.49	10.81	42.29	52.79	68.20	-15.41	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	36.67	37.49	10.81	42.29	42.68	54.00	-11.32	Vertical
10460.00	37.49	37.49	10.81	42.29	43.50	54.00	-10.50	Horizontal

Band 1 - 802.11n(HT40)

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11ac				
			Test chann					
			Detect	or: Peak V	alue			T
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	47.54	36.94	9.75	42.02	52.21	68.20	-15.99	Vertical
10360.00	47.66	36.94	9.75	42.02	52.33	68.20	-15.87	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10360.00	37.26	36.94	9.75	42.02	41.93	54.00	-12.07	Vertical
10360.00	36.63	36.94	9.75	42.02	41.30	54.00	-12.70	Horizonta
			Test chann	al: Middle	ohonnol			
				or: Peak V				
	Dood	Antonno	Detecti		alue	l insit	Over	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	46.65	36.96	9.85	41.95	51.51	68.20	-16.69	Vertical
10400.00	46.87	36.96	9.85	41.95	51.73	68.20	-16.47	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	36.86	36.96	9.85	41.95	41.72	54.00	-12.28	Vertical
10400.00	37.52	36.96	9.85	41.95	42.38	54.00	-11.62	Horizonta
			Test chann	el: Highest	channel			
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	47.63	37.49	10.81	42.29	53.64	68.20	-14.56	Vertical
10480.00	46.51	37.49	10.81	42.29	52.52	68.20	-15.68	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	38.48	37.49	10.81	42.29	44.49	54.00	-9.51	Vertical
10480.00	37.66	37.49	10.81	42.29	43.67	54.00	-10.33	Horizonta

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT40)							
	Test channel: Lowest channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	47.56	36.94	9.75	42.02	52.23	68.20	-15.97	Vertical
10380.00	47.62	36.94	9.75	42.02	52.29	68.20	-15.91	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	37.40	36.94	9.75	42.02	42.07	54.00	-11.93	Vertical
10380.00	37.23	36.94	9.75	42.02	41.90	54.00	-12.10	Horizontal
	Test channel: Highest channel							
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	46.45	37.49	10.81	42.29	52.46	68.20	-15.74	Vertical
10460.00	46.86	37.49	10.81	42.29	52.87	68.20	-15.33	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	36.75	37.49	10.81	42.29	42.76	54.00	-11.24	Vertical
10460.00	36.56	37.49	10.81	42.29	42.57	54.00	-11.43	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT80)							
			Test chann	el: Lowest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	47.56	36.96	9.85	41.95	52.42	68.20	-15.78	Vertical
10420.00	47.78	36.96	9.85	41.95	52.64	68.20	-15.56	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	37.43	36.96	9.85	41.95	42.29	54.00	-11.71	Vertical
10420.00	37.62	36.96	9.85	41.95	42.48	54.00	-11.52	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Band 4:								
			Band	4 – 802.1	1a			
			Test chann	el: Lowest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.35	37.49	10.81	42.29	53.36	74.00	-20.64	Vertical
11490.00	46.64	37.49	10.81	42.29	52.65	74.00	-21.35	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.25	37.49	10.81	42.29	42.26	54.00	-11.74	Vertical
11490.00	37.13	37.49	10.81	42.29	43.14	54.00	-10.86	Horizontal
			Test chann					
	I		Detecto	or: Peak V	alue			1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.27	37.55	10.78	42.27	51.33	74.00	-22.67	Vertical
11570.00	46.32	37.55	10.78	42.27	52.38	74.00	-21.62	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.12	37.55	10.78	42.27	42.18	54.00	-11.82	Vertical
11570.00	35.48	37.55	10.78	42.27	41.54	54.00	-12.46	Horizontal
			Test channe	el: Highest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.36	37.60	10.76	42.26	52.46	74.00	-21.54	Vertical
11650.00	46.29	37.60	10.76	42.26	52.39	74.00	-21.61	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	36.68	37.60	10.76	42.26	42.78	54.00	-11.22	Vertical
11650.00	35.81	37.60	10.76	42.26	41.91	54.00	-12.09	Horizontal
Remark:								

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4 -	- 802.11n(HT20)			
			Test chann	el: Lowest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.52	37.49	10.81	42.29	53.53	74.00	-20.47	Vertical
11490.00	47.41	37.49	10.81	42.29	53.42	74.00	-20.58	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.32	37.49	10.81	42.29	42.33	54.00	-11.67	Vertical
11490.00	37.52	37.49	10.81	42.29	43.53	54.00	-10.47	Horizontal
	Test channel: Middle channel							
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.22	37.55	10.78	42.27	51.28	74.00	-22.72	Vertical
11570.00	46.45	37.55	10.78	42.27	52.51	74.00	-21.49	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.45	37.55	10.78	42.27	42.51	54.00	-11.49	Vertical
11570.00	35.55	37.55	10.78	42.27	41.61	54.00	-12.39	Horizontal
			Test channe					
	1	T	Detecto	or: Peak V	alue			T
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.35	37.60	10.76	42.26	52.45	74.00	-21.55	Vertical
11650.00	46.28	37.60	10.76	42.26	52.38	74.00	-21.62	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	37.43	37.60	10.76	42.26	43.53	54.00	-10.47	Vertical
11650.00 Remark:	36.32	37.60	10.76	42.26	42.42	54.00	-11.58	Horizontal

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Band 4 – 802.11n(HT40)							
	Test channel: Lowest channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	45.79	37.50	10.81	42.29	51.81	74.00	-22.19	Vertical
11510.00	46.42	37.50	10.81	42.29	52.44	74.00	-21.56	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	35.54	37.50	10.81	42.29	41.56	54.00	-12.44	Vertical
11510.00	36.82	37.50	10.81	42.29	42.84	54.00	-11.16	Horizontal
			Test channe	el: Highest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	46.48	37.56	10.77	42.27	52.54	74.00	-21.46	Vertical
11590.00	45.26	37.56	10.77	42.27	51.32	74.00	-22.68	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	35.55	37.56	10.77	42.27	41.61	54.00	-12.39	Vertical
11590.00	36.46	37.56	10.77	42.27	42.52	54.00	-11.48	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4 –	802.11ac	(HT20)			
			Test chann	el: Lowest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.20	37.49	10.81	42.29	53.21	74.00	-20.79	Vertical
11490.00	46.75	37.49	10.81	42.29	52.76	74.00	-21.24	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.83	37.49	10.81	42.29	42.84	54.00	-11.16	Vertical
11490.00	37.27	37.49	10.81	42.29	43.28	54.00	-10.72	Horizontal
	Test channel: Middle channel							
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.65	37.55	10.78	42.27	51.71	74.00	-22.29	Vertical
11570.00	46.36	37.55	10.78	42.27	52.42	74.00	-21.58	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.22	37.55	10.78	42.27	42.28	54.00	-11.72	Vertical
11570.00	35.60	37.55	10.78	42.27	41.66	54.00	-12.34	Horizontal
			Test channe					
	l		Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	45.22	37.60	10.76	42.26	51.32	74.00	-22.68	Vertical
11650.00	46.63	37.60	10.76	42.26	52.73	74.00	-21.27	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	36.23	37.60	10.76	42.26	42.33	54.00	-11.67	Vertical
11650.00 Remark:	35.75	37.60	10.76	42.26	41.85	54.00	-12.15	Horizontal

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Band 4 – 802.11ac(HT40)							
	Test channel: Lowest channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	45.75	37.50	10.81	42.29	51.77	74.00	-22.23	Vertical
11510.00	46.54	37.50	10.81	42.29	52.56	74.00	-21.44	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	35.65	37.50	10.81	42.29	41.67	54.00	-12.33	Vertical
11510.00	36.87	37.50	10.81	42.29	42.89	54.00	-11.11	Horizontal
	Test channel: Highest channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	46.32	37.56	10.77	42.27	52.38	74.00	-21.62	Vertical
11590.00	45.43	37.56	10.77	42.27	51.49	74.00	-22.51	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	35.50	37.56	10.77	42.27	41.56	54.00	-12.44	Vertical
11590.00	36.63	37.56	10.77	42.27	42.69	54.00	-11.31	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT80)							
	Test channel: Middle channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	46.75	37.54	10.81	42.29	52.81	74.00	-21.19	Vertical
11550.00	46.66	37.54	10.81	42.29	52.72	74.00	-21.28	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	35.45	37.54	10.81	42.29	41.51	54.00	-12.49	Vertical
11550.00	36.56	37.54	10.81	42.29	42.62	54.00	-11.38	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

old Frequency Stability						
Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.					
Test setup:	Temperature Chamber Spectrum analyzer EUT					
	Att. Variable Power Supply					
	Note: Measurement setup for testing on Antenna connector					
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-A18RK31					