Directions: You may not use a calculator for the exam. Show convincing evidence to receive any partial credit. Part 1 will be taken over a 50 minute class meeting and is made of questions 1-4. Part 2 will be taken at the next class meeting, with maximum allotted time as 50 minutes, and will be made of questions 5 and 6. Part 1 is made of questions 1-4.

1. Let
$$\overline{F}(x,y,z) = \langle 2zx, y^2, -xz \rangle$$
. Find $\iint_{\sigma} (\overline{F} \cdot \overline{n}) dS$ where σ is that portion of the cube $0 \le x \le 1$,

 $0 \le y \le 1$, $0 \le z \le 1$ with inward unit normal orientation, as follows:

- a) without the use of the Divergence Theorem.
- b) use The Divergence Theorem.
- 2. Evaluate $\iint_{\sigma} (x^2 + y^2 z) dS$ where σ is that portion of the paraboloid $z = 4 x^2 y^2$ between z = 1 and z = 2.
- 3. Use Stokes' Theorem to evaluate $\int_C y^2 dx + x^2 dy (x+z) dz$ where C is a triangle in the xy plane with vertices (0,0,0), (1,0,0), and (1,1,0) with a counterclockwise orientation looking down the positive z-axis.
- 4. Compute the flux of $\vec{F}(x,y,z) = \langle x^2, y^2, z^2 \rangle$ through the surface S shown below. Note: The arrow piercing through surface S shown below indicates the direction of the unit normal of S.

Part 2 is made of questions 5 and 6.

- 5. Use The Divergence Theorem to evaluate $\iint_{\sigma} \left(\overrightarrow{F} \cdot \overrightarrow{n} \right) dS$ where $\overrightarrow{F}(x,y,z) = yz\overrightarrow{i} + xy\overrightarrow{j} + xz\overrightarrow{k}$, \overrightarrow{n} is the outer unit normal to σ , and σ is the surface enclosed by the cylinder $x^2 + y^2 = 1$ and the planes y = -1 and y = 1.
- 6. Use Stokes' Theorem to evaluate $\iint_{\sigma} \left(\operatorname{curl} \overrightarrow{F} \right) \cdot \overrightarrow{n} \right) dS$ where $\overrightarrow{F}(x,y,z) = y \overrightarrow{k}$ and σ is that portion of the ellipsoid $4x^2 + 4y^2 + z^2 = 4$ for which $z \ge 0$.