Solver for Hydrologic Unstructured Domain (SHUD)

User Guide

Lele Shu (lele.shu@gmail.com)

2019 - 12 - 17

Contents

PDF version of the User Guide is available via :SHUD User Guide

1 Overview

This file is a user guide or technical documentation of the SHUD modeling system.

The Solver for Hydrologic Unstructured Domain (SHUD - pronounced "SHOULD") is a multi-process, multi-scale hydrological model where major hydrological processes are fully coupled using the semi-discrete **Finite Volume Method** (FVM).

SHUDtoolbox is an open-source GIS and hydrological analysis toolbox designed for the SHUD modeling system. The SHUDtoolbox provides access to the digital data sets (terrain, forcing, and parameters) and tools necessary to drive the model, as well as a collection of GIS-based pre- and post-processing tools.

Collectively the system is referred to as the SHUD Modeling System.

The SHUD and SHUDtoolbox is an open-source software, freely available for download at SHUD website or Github Page along with installation and user guides.

1.1 Standing on the shoulders of giants

As a descendant of PIHM, SHUD inherits the fundamental idea of solving hydrological variables in CVODE. The code has been completely rewritten in a new programming language, with a new discretization and corresponding improvements to the underlying algorithms, adapting new mathematical schemes and a new user-friendly input/output data format. Although SHUD is forked from PIHM's track, SHUD still inherits the use of CVODE for solving the ODEs but modernizes and extends PIHM's technical and scientific capabilities. The SHUD is imcompatible to PIHM.

It is our intention (me and previous PIHM group) to begin a debate on the role of *Community Models* in the hydrologic sciences.

SHUD and PIHM represent our strategy for the synthesis of *multi-state*, *multi-scale* distributed hydrologic models using the integral representation of the underlying physical process equations and state variables.

Our interest is in devising a concise representation of watershed and/or river basin hydrodynamics, which allows interactions among major physical processes operating simultaneously, but with the flexibility to add or eliminate states/processes/constitutive relations depending on the objective of the numerical experiment or purpose of the scientific or operational application.

To satisfy the objectives, the SHUD...

- is a distributed hydrologic model, based on the semi-discrete Finite Volume Method (FVM) in which domain discretization is an unstructured triangular irregular network (e.g. Delaunay triangles) generated with constraints (geometric, and parametric). A local prismatic control volume is formed by the vertical projection of the Delaunay triangles forming each layer of the model. Given a set of constraints (e.g. river network support, watershed boundary, altitude zones, ecological regions, hydraulic properties, climate zones, etc), an "optimal" mesh is generated. River volume cells are also prismatic, with trapezoidal or rectangular cross-section, and are generated along or cross edges of Delaunay triangles. The local control volume contains all equations to be solved and is referred to as the model kernel.
- is a physically-based model in which all equations used are describing the physics of the hydrological processes which control the catchment. The physical model is able to predict the water in the ungage water system, to estimate the sediment, pollutants, and vegetation, etc., such that it is practical to be coupled with biochemistry, geomorphology, limnology, and other water-related research. The global ODE system is assembled by combining all local ODE systems throughout the domain and then solved by a state-of-the-art parallel ODE solver known as CVODE developed at the Lawrence Livermore National Laboratory.
- is a fully-coupled hydrologic model, where the state and flux variables in the hydrologic system are solved within the same time step and conserve the mass. The fluxes are infiltration, overland flow, groundwater recharge, lateral groundwater flow, exchange of river and soil/groundwater and river discharge.
- is of an adaptable temporal and spatial resolution. The spatial resolution of the model varies from meters to kilometers based requirement of modeling and computing resources. The internal time step of the iteration step is adjustable; it is able to export the status of the catchment in less 1 second to days. Also, the time interval for exporting results is configured flexibly. The flexible spatial and temporal resolution is rather valuable for community model coupling.
- is an open-source model; anyone can access the source code, use and submit their improvement.
- is a long-term yield and single-event flood model.

1.2 Brief History of PIHM system

• 2005 PIHM v1.0

Dr. Yizhong Qu (?) developed and verified the first version of PIHM in 2001-2005 during his Ph.D. in Pennsylvania State University, following the blueprint of Freeze and Harlan (1969). This version of PIHM is the soul of the PIHM model.

• 2009 PIHMgis

Dr. Gopal Bhartt (?) developed the PIHMgis with support of C++, Qt GUI library, TRIANGLE library, and QGIS developing kit. The development of PIHMgis makes the learning curve of PIHM moderate and benefits the developing, modeling and coupling.

• 2015 MM-PIHM

Dr. Yuninh Shi led and developed the MM-PIHM (Multi-Module PIHM), which embedded all modules from PIHM family, such as RT-PIHM, LE-PIHM, flux-PIHM, BGC-PIHM, etc. together. The sophisticated design and coupling of the MM-PIHM is the summit of the PIHM as a *Community Model* that combined all water-related modules together.

• 2019 SHUD

Based on the accumulated contribution of PIHM modeling and coupling with related researches, it is necessary to solve the known bugs and limitations, improve the performance of the model with parallel methods, and adopt new updates from SUNDIALS solver and programming strategy.

Several publications that may helps:

- (?)
- (?)
- (?)
- (?)
- (?)
- (?)
- (?)
- (?)
- (?)
- (?)
- (?)

2 Install SHUD and SHUDtoolbox

2.1 SUNDIALS/CVODE

The SHUD model requires the support of the SUNDIALS or CVODE library. **SUNDIALS** is a SUite of Nonlinear and Differential/ALgebraic equation Solvers, consists of six solvers. **CVODE** is a solver for stiff and nonstiff ordinary differential equation (ODE) systems (initial value problem) given in explicit form y' = f(t, y). The methods used in CVODE are variable-order, variable-step multistep methods. You can install the entire SUNDIALS suite or CVODE only.

Since the SUNDIALS/CVODE keeps updating periodically and significantly, the function names and structure are changed accordingly, we suggest to use the specific version of the solver, rather than the latest solver.

 $SUNDIALS/CVODE \ is \ available \ in \ LLNL: \ https://computation.llnl.gov/projects/sundials/sundials-software$

The installation of CVODE v3.x:

- 1. Go to your Command-Line and enter your workspace and unzip your CVODE source code here.
- 2. make directories for CVODE, including builddir.

mkdir builddir
cd builddir/

1. Try ccmake. Install cmake if you don't have one.

ccmake

1. Run ccmake to configure your compile environment.

ccmake ../sundials/cvode-5.0.0

This is an empty configure. Press ${\tt c}$ to start the configuration.

```
• • •
                               builddir — ccmake ../../sundials-master — 78×42
                ~/Dropbox/SHUD/github/SHUD/InstallSundials/builddir — ccmake ../../sundials-master
                                                                   Page 1 of 2
 BUILD_ARKODE
 BUILD_CVODE
BUILD_CVODES
                                           ON
                                           OFF
 BUILD_IDA
BUILD_IDAS
                                           OFF
OFF
 BUILD_KINSOL
                                           OFF
 BUILD_SHARED_LIBS
 BUILD_STATIC_LIBS
                                           ON
 BUILD_TESTING
CMAKE_BUILD_TYPE
                                           ON
 CMAKE_C_COMPILER
                                           /Applications/Xcode.app/Contents/Develop
 CMAKE_C_FLAGS
 CMAKE_INSTALL_LIBDIR
 CMAKE_INSTALL_PREFIX
CMAKE_OSX_ARCHITECTURES
                                           /Users/leleshu/sundials
 CMAKE_OSX_DEPLOYMENT_TARGET
 CMAKE_OSX_SYSROOT
 CUDA_ENABLE
                                           OFF
                                           ON
OFF
 EXAMPLES_ENABLE_C
EXAMPLES_ENABLE_CXX
                                           ON
 EXAMPLES_INSTALL
 EXAMPLES_INSTALL_PATH F2003_INTERFACE_ENABLE
                                           /Users/leleshu/sundials/example
 F77_INTERFACE_ENABLE
HYPRE_ENABLE
                                           OFF
OFF
 KLU_ENABLE
                                           OFF
 LAPACK_ENABLE
                                           OFF
 MPI_ENABLE
                                           OFF
 OPENMP_DEVICE_ENABLE
OPENMP_ENABLE
                                           OFF
                                           OFF
 PETSC_ENABLE
                                           OFF
 PTHREAD_ENABLE
                                           OFF
 RAJA_ENABLE
                                           OFF
 SUNDIALS_INDEX_SIZE SUNDIALS_PRECISION
                                           64
                                           double
BUILD_ARKODE: Build the ARKODE library
Press [enter] to edit option Press [d] to delete an entry CMake Version 3.11.1
Press [c] to configure
Press [n] for neip Press [q] to quit wi
Press [t] to toggle advanced mode (Currently Off)
                                    Press [q] to quit without generating
```

The default configuration. Make sure the value for three lines:

```
BUILD_CVODE = ON
CMAKE_INSTALL_PREFIX = ~/sundials
EXAMPLES_INSTALL_PATH = ~/sundials/examples
```

After the modification of values, press c to confirm configuration.

```
• • •
                              builddir — ccmake ../../sundials-master — 78×42
                ~/Dropbox/SHUD/github/SHUD/InstallSundials/builddir — ccmake ../../sundials-master
                                                                  Page 1 of 2
 BUILD_ARKODE
 BUILD_CVODE
                                          ON
 BUILD_CVODES
                                          OFF
 BUILD_IDA
BUILD_IDAS
                                          0FF
                                          OFF
 BUILD_KINSOL
                                          OFF
 BUILD_SHARED_LIBS
                                           ON
 BUILD_STATIC_LIBS
                                          ON
 BUILD_TESTING
CMAKE_BUILD_TYPE
                                          ON
                                          /Applications/Xcode.app/Contents/Develop
 CMAKE_C_COMPILER
 CMAKE_C_FLAGS
 CMAKE_INSTALL_LIBDIR
 CMAKE_INSTALL_PREFIX
CMAKE_OSX_ARCHITECTURES
                                          /Users/leleshu/sundials
 CMAKE_OSX_DEPLOYMENT_TARGET
 CMAKE_OSX_SYSROOT
 CUDA_ENABLE
                                          OFF
 EXAMPLES_ENABLE_C
EXAMPLES_ENABLE_CXX
                                          ON
                                          OFF
 EXAMPLES_INSTALL
                                          ON
 EXAMPLES_INSTALL_PATH
                                           /Users/leleshu/sundials/example
 F2003_INTERFACE_ENABLE
 F77_INTERFACE_ENABLE
HYPRE_ENABLE
                                          OFF
                                          OFF
 KLU_ENABLE
LAPACK_ENABLE
                                          OFF
                                          OFF
 MPI_ENABLE
                                          OFF
 OPENMP_DEVICE_ENABLE
OPENMP_ENABLE
                                          OFF
                                          OFF
 PETSC_ENABLE
                                          OFF
 PTHREAD_ENABLE
                                          OFF
 RAJA_ENABLE
                                          OFF
 SUNDIALS_INDEX_SIZE
SUNDIALS_PRECISION
                                          64
                                          double
BUILD_ARKODE: Build the ARKODE library
Press [enter] to edit option Press [d]
                                                    delete an entry CMake Version 3.11.1
Press [c] to configure
Press [h] for help
                                 Press [g] to generate and exit
Press [g] to quit without generating
Press [t] to toggle advanced mode (Currently Off)
```

The ccmake configures the environment automatically. When the configuration is ready, press g to generate and exit.

1. Then you run commands below:

```
make
make install
```

2.2 SHUD

Configuration in *Makefile*:

- 1. Path of SUNDIALS_DIR. [CRITICAL]. If you install SUNDIALS into ~/sundials, you don't change this line..
- 2. Path of OpenMP if the parallel is preferred.
- 3. Path of SRC DIR, default is SRC_DIR = .
- 4. Path of BUILT_DIR, default is BUILT_DIR = .

After updating the SUNDIALS path in the *Makefile*, user can compile the SHUD with:

```
make clean
make shud
```

There are more options to compile the SHUD code:

- make all clean, then make both shud and shud_omp
- make help help information
- make shud make SHUD executable
- make shud_omp make shud_omp with OpenMP support

2.2.1 OpenMP

If parallel-computing is prefered, please install OpenMP. For mac:

```
brew install llvm clang
brew install libomp
compile flags for OpenMP:
   -Xpreprocessor -fopenmp -lomp
Library/Include paths:
   -L/usr/local/opt/libomp/lib
   -I/usr/local/opt/libomp/include
```

2.2.2 Run SHUD executables.

After the successful installation and compile, you can run SHUD models using

```
./shud <projectname>
```


Command line pattern is:

./shud [-0][-p projectfile] [-o output] [-n Num_Threads] <project_name>

- -0 Dummy simulation. Load input and write output, but no calculation.
- project name> is the name of the project.
- [-p projectfile] Specify the project file, which includes the path to input files and output path.
- [-o output_folder] Output directory. Default is output/projname.out
- [-n Num_Threads] Number of threads to run with OpenMP, which works with shud_omp only. Usage:

When the shud program starts to run, the screen should look like this:

2.3 SHUDtoolbox

This SHUDtoolbox is an R package. What you need is to install the package as a source code package. For example:

install_github('SHUD-System/SHUDtoolbox')

2 Install SHUD and SHUDtoolbox

The prerequisite packages for SHUDtoolbox are:

- Rcpp
- reshape2
- ggplot2
- gridExtra
- grid
- fields
- xts
- hydroGOF
- zoo
- raster (>= 2.1.0)
- sp
- rgeos
- RTriangle
- rgdal (>= 1.1.0)
- proj4
- \bullet abind
- utils
- lubridate
- geometry
- methods
- \bullet ncdf4
- GGally
- doParallel

One of the required packages, RT riangle, must be installed via GitHub instead of CRAN, using command:

install_github('shulele/RTriangle/pkg')

3 Input files

List of input files:

	File	Category Comments Header # of column		
.mesh	sp	Domain cell (triangular mesh)	Yes	
.att	sp	Attribute table of triangular cells	Yes	
.riv	sp	Rivers	Yes	
.rivseg	sp	Topologic relation b/w River and cell	Yes	
.calib	cfg	Calibration on physical parameters	Yes	
.para	cfg	Parameters of the model configurature	Yes	
.ic	cfg	Intial conditions	Yes	
.geol	para	Physical parameters for Geology layers	Yes	
.soil	para	Physical parameters for Soil layers	Yes	
.1c	para	Physical parameters for Land cover layers	Yes	
. forc	tsd	List of files to the Time-series forcing data	Yes	
.csv	tsd	Time-series forcing data	Yes	
.lai	tsd	Time-series LAI data	Yes	
.obs	tsd	Time-series observational data for calibration purpose only	Yes	
$.\mathrm{mf}$	tsd	Time-series Melt Factor data	Yes	
.rl	tsd	Time-series Roughness Length data	Yes	
gis/domain	Shapefile	Shapefile of .mesh file	X	X
gis/river	Shapefile	Shapefile of .riv file	X	X
gis/seg	Shapefile	Shapefile of .rivchn file	X	X

The files in folder gis and fig are not involved in SHUD modeling, but they are very useful for your data pre- and post-processing.

3 Input files

Figure 3.1: The screenshot of input files for SHUD $\,$

3.1 Spatial data

3.1.1 .sp.mesh file

```
Sac.sp.mesh

Sac.sp.mesh
```

```
| Sac.sp.mesh |
```

There are two tables in the .mesh file, the one is a table of cells and the other is a table of nodes of cells.

• Block 1 (cell information)

3 Input files

• Pre-table

$$\frac{\overline{\text{Value1}} \quad \text{Value2}}{\text{Number of rows}}$$
 Number of rows ($N_{cell})$
 Number of columns (8)

• Table

	Colname N	Meaning	Range	Unit	Comments
ID	Index	of cell i		$1 \sim N_c$	cell -
Node1	Node 1	of cell i		$1 \sim N_n$	ode -
Node2	Node 2	of cell i		$1 \sim N_n$	ode -
Node3	Node 3	of cell i		$1 \sim N_n$	ode -
Nabr1	Index of Neig	hbor 1 of	$\operatorname{cell}i$	$1 \sim N_c$	cell -
Nabr2	Index of Neig	hbor 2 of	$\operatorname{cell}i$	$1 \sim N_c$	cell -
Nabr3	Index of Neig	hbor 3 of	$\operatorname{cell}i$	$1 \sim N_c$	cell -
Zmax	Surface eleva	ation of c	ell i	-9999 ~	$+\inf$ m

- Block 2 (node information)
- Pre-table:

• Table

	Colname Meaning Ran	nge Unit Com	ments
ID	Index of node i	$1 \sim N_{cell}$	-
X	X coordinate of node i	$1 \sim N_{node}$	-
Y	Y coordinate of node i	$1 \sim N_{node}$	-
AqDepth	Thickness of aquifer i	$0 \sim +\inf$	m
Elevation	Surface elevation of node	$i - 9999 \sim +\inf$	m

3.1.2 .sp.att file

• Pre-table

	Value1	Value2
Number of rows	$\overline{(\ N_{cell})}$	Number of columns (7)

Figure 3.2: Example of .sp.att file

• Table

	Colname Meaning Range	Unit Com	ments	
ID	Index of cell i	$1 \sim N_{cell}$	-	
SOIL	Index of soil type	$1 \sim N_{soil}$	-	
GEOL	Index of geology type	$1 \sim N_{qeol}$	-	
LC	Index of land cover type	$1 \sim N_{lc}$	-	$N_{lc} = N_{lai}$
FORC	Index of forcing site	$1 \sim N_{forc}$	-	
MF	Index of melt factor	$1 \sim N_{mf}$	-	
BC	Index of boundary condition	$1 \sim N_{bc}$	-	
SS	Index of Source/Sink condition	$1 \sim N_{bc}$	-	

3.1.3 .sp.riv file

3 Input files

Colname	Meaning	Range	Unit	Comments
ID	Index of river i	1 ~	-	
DOWN	Index of downstream river	$N_{river} \ 1 \sim \ N_{river}$	-	Negative vlaue indicates outlet
Type	Index of river parameters	$1 \sim \\ N_{rivertype}$	-	
Slope	Slope of river bed	-10 ~ 10	m/m	Height/Length
Length	Length of the river i	$0 \sim \inf$	m	

3.1.4 .sp.rivseg file

Figure 3.4: Example of .sp.rivseg file

• Pre-table

$$\label{eq:value2} \hline \overline{\text{Value1} \quad \text{Value2}} \\ \text{Number of rows (} \overline{N_{segment}) \quad \text{Number of columns (4)} \\ \\$$

$$\frac{\mbox{Colname Meaning Range Unit Comments}}{\mbox{Index of segments } i \mbox{$1\sim N_{segment}$} \mbox{ -}$$

	Colname	Meaning	Range	Unit	Comments
iRiv	Index	of river	1	$\sim N_{riv}$	$_{er}$ -
iEle	Index of cell			$1 \sim N_{cel}$	-
Length	Length of t	he segmen	ts i	$0 \sim \inf$	m

3.2 Model configuration files

3.2.1 .cfg.para file

Colname	Meaning	Range	Unit	Default value
VERBOSE	Verbose mode	-	_	0
INIT_MODE	Initial condition	0~3	-	3 (0=Relief condition,
	mode			1=Dry condition,
				2=Default guess,
				3=Warm start)
ASCII_OUTPU	JT ASCII ouput	1/0	-	0
Binary_OUTP	UT Binary output	1/0	-	1
SPINUPDAY	Days for spinup	$0 \sim \inf$	day	0
SCR_INTV	Number of threads	0 ~	min	1440
	for OpenMP	$N_{threads}$		
ABSTOL	Abosolute tolerance	1e-6 \sim	-	0.0001
	for CVODE solver	0.1		
RELTOL	Relative tolerance	1e-6 \sim	-	0.0001
	for CVODE solver	0.1		
INIT_SOLVER	_ Santa time step for	-	min	1
	CVODE solver			
MAX_SOLVER	R_MSENDAM time step	1~60	min	10
	for CVODE solver			
ET_STEP	Time step of	$1 \sim 360$	min	60
	Evapotranspiration			
START	Start Time	$0 \sim \inf$	day	0
END	End Time	-	day	-
dt_ye_snow	Time step of output	$0 \sim \inf$	min	1440
	snow storage			
dt_ye_surf	Time step of output surface storage	$0 \sim \inf$	min	1440
dt_ye_unsat	Time step of output	$0 \sim \inf$	min	1440
	unsaturated storage			

Colname	Meaning	Range	Unit	Default value
dt_Qe_surf	Time step of output surface cell flux	0 ~ inf	min	1440
dt_Qe_sub	Time step of output subsurface cell flux	$0 \sim \inf$	min	1440
dt_qe_et0	Time step of output cell flux, interception	$0 \sim \inf$	min	1440
dt _qe_et1	Time step of output cell flux, transpiration	$0 \sim \inf$	min	1440
dt_qe_et2	Time step of output cell flux, evaporation	$0 \sim \inf$	min	1440
dt_qe_etp	Time step of output cell flux, potential ET	0 ~ inf	min	1440
dt_qe_prcp	Time step of output cell flux, interception	0 ~ inf	min	1440
dt_qe_infil	Time step of output cell flux, interception	0 ~ inf	min	1440
dt_qe_rech	Time step of output cell flux, interception	$0 \sim \inf$	min	1440
dt_yr_stage	Time step of output river stage	$0 \sim \inf$	min	1440
dt_Qr_down	Time step of output river flux, downstream	$0 \sim \inf$	min	1440
dt_Qr_surf	Time step of output river flux, surface flow	$0 \sim \inf$	min	1440
dt_Qr_sub	Time step of output river flux, base flow	$0 \sim \inf$	min	1440
dt_Qr_up	Time step of output river flux, upstream	0 ~ inf	min	1440

3.2.2 .cfg.calib file

```
| sac.cfg.para | sac.para.jc | sac.para.jc | sac.para.jc | sac.sp.mesh |
```

Figure 3.5: Example of .cfg.para file

Figure 3.6: Example of .cfg.calib file

$\overline{\text{Col}}$	name Meaning Range Unit Comment
GEOL_KSATH	Horizontal conductivity of ground water
GEOL_KSATV	Vertical conductivity of ground water
GEOL_KMACSATH	Horizontal conductivity of macropore
GEOL DMAC	Macropore depth
GEOL THETAS	Porosity, saturated soil moisture
GEOL THETAR	Residual soil moisture
GEOL_MACVF	Vertical macropore areal fraction
SOIL KINF	Vertical conductivity of top soil
SOIL KMACSATV	Vertical conductivity of soil macropore
SOIL DINF	Infiltration depth
SOIL DROOT	Root depth
SOIL_ALPHA	α value in van Genuchten equation
SOIL_BETA	β value in van Genuchten equation
SOIL_MACHF	Horizontal macropore areal fraction
$LC_VEGFRAC$	Vegetation fraction
LC_ALBEDO	Emissitive reflection ratio
LC_ROUGH	Manning's roughness of cell surface
LC_SOILDGD	Soil degradation
$\overline{\mathrm{LC}}_{-}$ IMPAF	Impervious areal fraction
LC_{ISMAX}	Maximum interception
AQ_DEPTH+	Thichness of aquifer
TS_PRCP	Precipitation
TS_SFCTMP+	Temperature
ET_ETP	Transpiration
$\overline{\mathrm{ET}}$ IC	Interception
$\mathrm{ET}_{-}^{-}\mathrm{TR}$	Evaporation
ET_SOIL	Evaporation
RIV_ROUGH	Manning's roughness of river
RIV_KH	Conductivity of river bed
RIV_DPTH+	Depth of river cross section
RIV_WDTH+	Width of river cross section
RIV_SINU	Sinusity of river path
RIV_CWR	C_{wr} in Chezy equation
RIV_BSLOPE+	Slope of river bed
IC_GW+	Initial condition of groundwater
IC_RIV+	Initial condition of river stage

3.2.3 .cfg.ic file

• Block 1 (cell initial condition)

25

Figure 3.7: Example of .cfg.ic file

• Pre-table

$$\frac{\text{Value1} \quad \text{Value2}}{(\ N_{cell}) \quad \text{Number of columns (6)}}$$

• Table

	Colname	Meaning	Range	Unit	Comments
ID	Inc	dex of cell i		1 ~ N	cell -
Canopy	Canopy	storage of	$\operatorname{cell} i$	$0 \sim i$	m
Snow	Snow s	storage of c	ell i	$0 \sim i$	m
Surface	Surface	storage of	$\operatorname{cell} i$	$0 \sim i$	m
Unsat	Unsaturat	ed storage	of cell i	$0 \sim i$	m
GW	Groundw	ater head o	of cell i	$0 \sim i$	m

- Block 2 (river initial condition)
- Pre-table:

	Value1	Value2
Number of rows	$\overline{(N_{riv})}$	Number of columns (2)

• Table

Coln	ame	Meaning	Range	Unit	Comments
ID	Ind	lex of river	$i 1 \sim N$	I_{riv}	-
Stage	Sta	age of river	$i = 0 \sim i$	\inf	m

3.3 Time-series data

3.3.1 .tsd.forc file

```
| Sac.tsd.forc | Sac.
```

Figure 3.8: Example of .tsd.forc file

Figure 3.9: Example of .csv forcing file

• Table

	Colname	Meaning	Range	Unit	Comments
Day	$^{-}$ $^{-}$	ime	0 -	$\sim N_{day}$	day
PRCP	Preci	pitation) ~ 1	m/day
TEMP	Temp	erature	-10	$00 \sim 70$	C
RH	Relative	Humidity	() ~ 1	_
wind	Wind	l Speed	0	$\sim \inf$	m/day
Rn	Solar (shorty	vave) radiat	tion	?	$J/day/m^2$

3.3.2 .tsd.lai file

Figure 3.10: Example of .tsd.lai file

• Pre-table:

	Colname	Meaning	Rang	e U	Jnit	Comments
TIME		Time	() ~ <i>N</i>	V_{time}	day
Column 2	LAI of	land cover	1	0 ~	\inf	m^{2}/m^{2}
Column i	LAI of land cover $i-1$			$0 \sim$	\inf	m^{2}/m^{2}
•••						

3.3.3 .tsd.rl file

Figure 3.11: Example of .tsd.rl file

• Pre-table:

	Value1	Value2	Value3	
Number of day (N_{time})	Number of	of column	s (N_{lc})	Start day (YYYYMMDD)

	Colname	Meaning	Range	Unit	Comme	nts
TIME		Time		0	$\sim N_{time}$	day
Column 2	Roughness l	ength of lar	nd cover	1	$0 \sim \inf$	m
Column i	Roughness len	igth of land	cover i -	- 1	$0 \sim \inf$	m
					•••	

3.3.4 .tsd.mf file

Figure 3.12: Example of .tsd.mf file

• Pre-table:

 $\frac{\text{Value1} \quad \text{Value2} \quad \text{Value3}}{\text{Number of day (} N_{time}) \quad \text{Number of columns (} N_{mf})} \quad \text{Start day (YYYYMMDD)}$

• Table

Coln	ame	Meaning	Range	Unit	Comments
$\overline{\text{TIME}}$		Time	0 ~	N_{time}	day
Column 2	M	elt factor 1	0 -	~ inf	-
Column i	Mel	t factor i —	1 0	~ inf	-
•••					

3.3.5 .tsd.obs file

• Pre-table:

	Value1	Value2	Value3	
Number of day ($N_{time})$	Number o	of columns	$\overline{s(N_{obs})}$	Start day (YYYYMMDD)

Figure 3.13: Example of .tsd.obs file

	Colname	Meaning	Range	Unit	Comments
TIME		Time		$0 \sim N_{tin}$	day
Column 2	Obser	vational da	ta 1	?	?
Column i	Observa	Observational data $i-1$?	?
•••				•••	•••

4 Output files

4.1 Output file names

Format of output file names:

[Project Name].[Identifier].[Format]

-The $[Project\ Name]$ is user defined name of the project, so every input and output files must start with the $[Project\ Name]$. -The [Format] is one of csv or dat. csv is spreadsheet format and dat is bindary format.

The [Identifier] is a combination of variables features, that in format of: [Model Unit][Variable Type][Variable Name]. [Model Unit] is one of three options of ele (elemtns), riv (river) or lak (lake). Variable type includes y, v and q that are state variable (in L), specific flux (in $L^3/L^2/T$) and flux (in L^3/T) respectively.

The list of output files is in following table.

	Identifier	Mod unit	Type	Var Name Meaning Unit		
. eleyic.	ele	у	ic	Storage of Interception	m	
. eleys now.	ele	У	snow	Storage of snow equivalence	m	
$. {\it eley surf.}$	ele	У	surf	Storage of surface	m	
. eley unsat.	ele	У	unsat	Storage of vados zone	m	
. eley gw.	ele	У	gw	Groundwater head	m	.GW
. elevetp.	ele	v	etp	Potential ET	$\frac{m^3}{m^2d}$	
. elevet a.	ele	\mathbf{V}	eta	Actual ET	$\frac{m^2d}{m^3}$ $\frac{m^3}{m^2d}$ m^3	
. elevet ic.	ele	\mathbf{v}	etic	Evap of interception	$\frac{m^3}{m^2d}$	
. elevet tr.	ele	V	ettr	Transpiration	$\frac{\frac{m^2d}{m^2d}}{\frac{m^2d}{m^2d}}$	
. elevetev.	ele	V	etev	Soil Evaporation	$\frac{\frac{m^2d}{m^2d}}{\frac{m^2d}{m^2d}}$	
. elev prep.	ele	V	prcp	Precipitation	$rac{\overline{m^2 d}}{\overline{m^2 d}}$	
. elevnet prcp.	. ele	v	netprcp	Net Precipitation	$\frac{m^3}{m^2d}$	
$. {\it elevinfil}.$	ele	v	infil	Infiltration Rate	$\frac{m^3}{m^2 d}$	
.elev ex fil.	ele	V	infil	Exfiltration Rate	$\frac{m^3}{m^2d}$	
. elev rech.	ele	V	rech	Recharge Rate	m^3	
.eleq surf.	ele	q	surf	Overland flow	$m^{\frac{m}{m^2d}}/d$	
. eleq sub.	ele	q	sub	Subsurface flow	m^3/d	
. rivy stage.	riv	У	stage	River Stage	m	

	Identifier	Mod unit	Type	Var Name Meaning	Unit
. riv qup.	riv	q	up	Flux to upstre	am
. rivqdown.	riv	\mathbf{q}	down	Flux to downstr	ream
. rivq surf.	riv	\mathbf{q}	surf	Flux to landsur	rface
. rivq sub.	riv	\mathbf{q}	sub	Flux to subsur	face

4.2 Data format in ASCII (.csv) file

N - Number of column of output data, excluding the time column. m - Number of time-step. StartTime - String of date/time (YYYYMMDD or YYYYMMDD.hhmmss)

	N Start			
T_1	$v_{1\cdot 1}$	$v_{1\cdot 2}$		$\overline{v}_{1\cdot N}$
T_2	$v_{2\cdot 1}$	$v_{2\cdot 2}$		$v_{2\cdot N}$
T_3	$v_{3\cdot 1}$	$v_{3\cdot 2}$		$v_{3\cdot N}$
T_m	$v_{m\cdot 1}$	$v_{m\cdot 2}$		$v_{m\cdot N}$

4.3 Data format in binary (.dat) file

The value saved in binary file are identical from ASCII format, but different data structure.

$\overline{\mathrm{ID}}$ i	Value	Format	Length
1	-	N	double 8
2	-	StartTin	ne double 8
3	0	T_1	double 8
4	1	$v_{1\cdot 1}$	double 8
5	2	$v_{1\cdot 2}$	double 8
			double 8
(N+1)*(T-1)+i+	3 N	$v_{1\cdot N}$	double 8
(N+1)*(T-1)+i+	3 0	T_2	double 8
(N+1)*(T-1)+i+	3 1	$v_{2\cdot 1}$	double 8
(N+1)*(T-1)+i+	3 2	$v_{2\cdot 2}$	double 8
(N+1)*(T-1)+i+	3	•••	double 8
(N+1)*(T-1)+i+	3 N	$v_{2\cdot N}$	double 8
(N+1)*(T-1)+i+	3 0	T_3	double 8
(N+1)*(T-1)+i+	3 1	$v_{3\cdot 1}$	double 8
(N+1)*(T-1)+i+	3 2	$v_{3\cdot 2}$	double 8

4.3 Data format in binary (.dat) file

ID i V	alue	Format	Length	
(N+1)*(T-1)+i+i	3		double	8
(N+1)*(T-1)+i+i	3 N	$v_{3\cdot N}$	double	8
(N+1)*(T-1)+i+i	3		double	8
(N+1)*(T-1)+i+i	3		double	8
(N+1)*(T-1)+i+i	3		double	8
(N+1)*(T-1)+i+i	3		double	8
(N+1)*(m-1)+i+	3 0	T_m	double	8
(N+1)*(m-1)+i+	3 1	$v_{m\cdot 1}$	double	8
(N+1)*(m-1)+i+	3 2	$v_{m\cdot 2}$	double	8
(N+1)*(m-1)+i+	3		double	8
(N+1)*(m-1)+i+	3 N	$v_{m\cdot N}$	double	8