Linear Algebra

TOTAL POINTS 5

1. Let two matrices be

1/1 point

1/1 point

$$A = \begin{bmatrix} 1 & -4 \\ -2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$$

What is A + B?

- $\bigcirc \begin{bmatrix} 1 & 7 \\ 7 & 9 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 1 & -1 \\ 7 & 9 \end{bmatrix}$
- $\bigcirc \ \begin{bmatrix} 1 & -7 \\ -7 & -7 \end{bmatrix}$

/

Correct

To add two matrices, add them element-wise.

2. Let $x = \begin{bmatrix} 5 \\ 5 \\ 2 \\ 7 \end{bmatrix}$

What is 2 * x?

- O [10 10 4 14]
- $\begin{bmatrix}
 \frac{5}{2} \\
 \frac{5}{2} \\
 1 \\
 \frac{7}{2}
 \end{bmatrix}$
- $\begin{bmatrix}
 10 \\
 10 \\
 4 \\
 14
 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} \frac{5}{2} & \frac{5}{2} & 1 & \frac{7}{2} \end{bmatrix}$

3. Let u be a 3-dimensional vector, where specifically

1/1 point

 $u = \begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}$

What is u^{T} ?

- \bigcirc [8 1 2]
- $\begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}$
- $\begin{bmatrix} 8 \\ 1 \\ 2 \end{bmatrix}$
- [2 1 8]

✓ Correct

4. Let u and v be 3-dimensional vectors, where specifically

1 / 1 point

$$u = \begin{bmatrix} -3 \\ 4 \\ 3 \end{bmatrix}$$

and

$$v = \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}$$

What is $u^T v$?

(Hint: \boldsymbol{u}^T is a

1x3 dimensional matrix, and v can also be seen as a 3x1

matrix. The answer you want can be obtained by taking

the matrix product of \boldsymbol{u}^T and $\boldsymbol{v}.)$ Do not add brackets to your answer.

5. Let A and B be 3x3 (square) matrices. Which of the following

must necessarily hold true? Check all that apply.

- $\hspace{-0.5cm} \boxed{\hspace{0.2cm}} \hspace{0.2cm} \hspace{0.2$

✓ Correct

Even though matrix multiplication is not commutative in general ($A*B \neq B*A$ for general matrices A,B), for the special case where B=I, we have A*B=A*I=A, and also B*A=I*A=A. So, A*B=B*A.

ightharpoonup If C=A*B, then C is a 3x3 matrix.

✓ Correct

Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m \times n$. matrix, and B a $n \times o$ matrix, then C would be $m \times o$. (In our example, m = n = o = 3.)

A * B = B * A