MATH 313 HMWK 3

Daniel Xu

February 11, 2018

Exercise 2.2.1 An example of a vercongent sequence would be $x_n = \sin x$. Let $\epsilon = \frac{101}{100}$ and let x = 0. Then x_n converges to 0, since $|\sin x - 0| < \frac{101}{100}$. Since x_n does not converge to any number, it is a vercongent sequence that is also divergent. What a vercongent sequence describes is a sequence for whom all values lie in a certain bound, namely $(x - \epsilon, x + \epsilon)$.

Excercise 2.2.2

(a) Let $\epsilon > 0$ be arbitrary. Now choose N such that

$$N > \frac{3}{25\epsilon} - \frac{4}{5}$$

To verify that our choice of N is appropiate, let $n \in \mathbb{N}$ satisfy $n \geq N$. Then, $n \geq N$ implies that

$$n > \frac{3}{25\epsilon} - \frac{4}{5}$$

$$5n > \frac{3}{5\epsilon} - 4$$

$$5n + 4 > \frac{3}{5\epsilon}$$

$$\epsilon > \frac{3}{5 \cdot (5n + 4)}$$

$$\epsilon > \frac{2 \cdot (5n + 4) - 5 \cdot (2n + 1)}{5 \cdot (5n + 4)}$$

$$\epsilon > \frac{2 \cdot (5n + 4) - 5 \cdot (2n + 1)}{5 \cdot (5n + 4)} - \frac{5 \cdot (2n + 1)}{5 \cdot (5n + 4)}$$

$$\epsilon > \frac{2}{5} - \frac{2n + 1}{5n + 4}$$

$$\epsilon > \left| \frac{2}{5} - \frac{2n + 1}{5n + 4} \right|$$

$$\left| \frac{2}{5} - \frac{2n + 1}{5n + 4} \right| < \epsilon$$

$$\left| \frac{2n + 1}{5n + 4} - \frac{2}{5} \right| < \epsilon$$

(b) Let $\epsilon > 0$ be arbitrary and let $a_n = 2n^2/\left(n^3 + 3\right)$. Choose $N \in \mathbb{N}$ with $N > \frac{4}{\epsilon^2}$. Now, we must show that for all $n \in \mathbb{N}$, $n \ge N$ satisfies $|a_n - L| < \epsilon$. If $n \ge N$, then

$$n > \frac{4}{\epsilon^2}$$

$$\sqrt{n} > \frac{2}{\epsilon}$$

$$\frac{2}{\sqrt{n}} < \epsilon$$

If we can show that $2/\sqrt{n} > \frac{2n^2}{n^3+3}$, then we are done. So,

$$\frac{2n^2}{n^3+3} < \frac{2}{\sqrt{n}}$$
$$\frac{1}{n^3+3} < \frac{1}{\sqrt{n^5}}$$
$$n^3+3 > \sqrt{n^5}$$

The last line is a true statement, so we are done.

(c) Let $\epsilon>0$ be arbitrary. Choose $N\in\mathbb{N}$ with $N>\frac{1}{\epsilon^3}$. To verify that the choice of N was appropriate, let $n\in\mathbb{N}$ satisfy $n\geq N$. Then

$$n \ge \frac{1}{\epsilon^3}$$

$$\frac{1}{n} \le \epsilon^3$$

$$\sqrt[3]{\frac{1}{n}} \le \sqrt[3]{\epsilon^3}$$

$$\frac{1}{\sqrt[3]{n}} \le \epsilon$$

$$\frac{\sin(n^2)}{\sqrt[3]{n}} \le \sin(n^2) \cdot \epsilon$$

However, $-1 \le \sin x \le 1$, so

$$\left| \frac{\sin\left(n^2\right)}{\sqrt[3]{n}} - 0 \right| \le \epsilon$$

Exercise 2.3.1

(a) If $x_n \to 0$, then for any $\epsilon_0 > 0$ there exists $N_0 \in \mathbb{N}$ such that for all $n \geq \mathbb{N}_{\vdash}$, $|x_n - 0| < \epsilon_0$. Since $x_n \geq 0$, then

$$\begin{aligned} x_n &< \epsilon_0 \\ \sqrt{x_n} &< \sqrt{\epsilon_0} \\ \sqrt{x_n} - 0 &< \sqrt{\epsilon_0} \\ |\sqrt{x_n} - 0| &< \sqrt{\epsilon_0} \end{aligned}$$

Now, we can just set any ϵ given to us to $\sqrt{\epsilon_0}$. To supply a given N for an ϵ , we can use the N_0 supplied to us by ϵ_0 .

(b) If $x_n \to x$, then for any $\epsilon_0 > 0$, there exists $N_0 \in \mathbb{N}_{\vdash}$ such that for all $n \ge \mathbb{N}$, $|x_n - x| < \epsilon_0$. Since $x_n \ge 0$, so is x. Then

$$x_n - x < \epsilon_0$$

$$x_n < \epsilon_0 + x$$

$$\sqrt{x_n} < \sqrt{\epsilon_0 + x}$$

$$\sqrt{x_n} - \sqrt{x} < \sqrt{\epsilon_0 + x} - \sqrt{x}$$

$$\left| \sqrt{x_n} - \sqrt{x} \right| < \sqrt{\epsilon_0 + x} - \sqrt{x}$$

We can use the same strategy as last time. We let any ϵ given to us be equal to $\sqrt{\epsilon_0 + x} - \sqrt{x}$ and solve for that particular ϵ_0 . Then, we can find a N_0 that satisfies the definition of convergence for x_n . We set $N = N_0$ and we have an algorithm for finding a N for any given ϵ .

Exercise 2.3.5 If x_n and y_n are both convergent, then there must exist a $N_1, N_2 \in \mathbb{N}$ such that for all $n_1 \geq N_2$ and for all $n_2 \geq N_2$, $|a_n - L| < \epsilon_1$ and $|b_n - L| < \epsilon_2$ for any $\epsilon > 0$ since a_n and b_n both converge to the same limit. In the case of z_n , we choose $N = \max(N_1, N_2)$. Then for all $n \geq N$, we know that $|z_n - L| < \epsilon$. Thus z_n must converge.

Now we must prove the converse. We start with the fact that z_n is convergent. Then by definition, for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for any $n \in \mathbb{N}$ greater than or equal to N, $z_n - L < \epsilon$, where L is the limit that z_n converges to. If we split z_n into x_n and y_n , we can use the same N when given an ϵ for x_n or y_n .

Exercise 2.3.7

- (a) Let $x_n = n$ and $y_n = -n$. Both x_n and y_n diverge. However, $x_n + y_n$ converge to zero.
- (b) Impossible by Algebraic Limit Theorem ii.
- (c) Let $b_n = \frac{1}{n}$ with $b_n \neq 0$ for all $n \in \mathbb{N}$. However, $(1/b_n)$ diverges.
- (d) Impossible. By Theorem 2.3.2, a_n must be a divergent sequence, so then $(a_n b_n)$ is a sequence that diverges.
- (e) Let $a_n = \frac{1}{n}$ and $b_n = n$. a_n converges to 0 and b_n diverges. $(a_n b_n)$ converges to 1.