Q1: Data processing (2%)

- 1. Describe how do you use the data for intent_cls.sh, slot_tag.sh:
 - a. How do you tokenize the data? 使用sample code進行資料處理,用空白字來去區分文字,再計算每個詞在 dataset中出現幾次。
 - b. The pre-trained embedding you used. sample code的Glove embedding
- 2. If you use the sample code, you will need to explain what it does in your own ways to answer Q1.

利用 glove.840B.300d.txt

Q2: Describe your intent classification model. (2%)

- 1 Describe
 - a. your model

利用sample code的glove embedding將資料轉成詞向量,接著將embedding 傳入LSTM

out, $(h_t, c_t) = LSTM(input, (h_0, c_0))$

接著進入batch_norm和layer_norm,將結果輸入3層linear layer,dropout為預設值0.1,activation function為relu,最後轉成維度為num class的輸出。

b. performance of your model.

Public score: 0.75710 Private score: 0.76420

c. the loss function you used.

nn.CrossEntropyLoss()

d. The optimization algorithm (e.g. Adam), learning rate and batch size.

Optimizor: Adam Learning rate: 0.0001 Batch size: 128 Training epoch: 100

Hidden_size: 512 Num layers :2

Q3: Describe your slot tagging model. (2%)

- 1. Describe
 - a. your model

利用example code的glove embedding將資料轉成詞向量,接著將embedding傳入layer_norm,接著將正規化後的輸出傳入GRU

out, $(h_t, c_t) = GRU(input, (h_0, c_0))$

接著進入batch_nrom和layer_norm,將結果輸入1層linear layer,dropout為預設值0.1,activation function為relu,最後轉成維度為num class的輸出。

b. performance of your model.

Public score: 0.75710 Private score: 0.76420

c. the loss function you used.

nn.CrossEntropyLoss()

d. The optimization algorithm (e.g. Adam), learning rate and batch size.

Optimizor: Adam
Learning rate: 0.0001

Batch size: 128 Training epoch:25 Hidden_size: 512 Num_layers:2

Q4: Sequence Tagging Evaluation (2%)

- Please use <u>sequent</u> to evaluate your model in Q3 on validation set and report classification report(scheme=IOB2, mode='strict').
- Explain the differences between the evaluation method in <u>sequentle</u>, token accuracy, and joint accuracy.

seqeval 評估結果

準確率(accuracy) = 正確預測的元素個數 / 總元素個數 精準率(precision) = 正確預測的實體個數 / 預測的總實體個數 召回率(recall) = 正確預測的實體個數 / label 的總實體個數 F1值(F1 scroe) = 2 * 準確率 * 召回率 / (準確率 + 召回率)

classification report:				
	precision	recall	f1-score	support
date	0.73	0.70	0.72	206
first_name	0.94	0.89	0.91	102
last_name	0.79	0.69	0.74	78
people	0.69	0.68	0.68	238
time	0.84	0.87	0.85	218
micro avg	0.78	0.76	0.77	842
macro avg	0.80	0.77	0.78	842
weighted avg	0.78	0.76	0.77	842

token_accuracy為單一token預測tag正確即計算一次 joint accuracy 為整句話的tag均預測成功才算成功

訓練初期的token accuracy較高但joint accuracy較低,整體預測準確率還太低。

Q5: Compare with different configurations (1% + Bonus 1%)

- Please try to improve your baseline method (in Q2 or Q3) with different configurations (includes but not limited to different number of layers, hidden dimension, GRU/LSTM/RNN) and EXPLAIN how does this affects your performance / speed of convergence / ...
- Some possible BONUS tricks that you can try: multi-tasking, few-shot learning, zero-shot learning, CRF, CNN-BiLSTM
- This question will be graded by the completeness of your experiments and your findings.