دورة العام ٢٠١٧ العادية الإثنين ١٢ حزيران ٢٠١٧ امتحانات الشهادة الثانوية العامة فرع: العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية

دائرة الامتحانات الرسمية عدد المسائل: ست عدد المسائل: ست مسابقة في مادة الرياضيات الاس الرق المسائل: ست الرق المدة: أربع ساعات الرق ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. الاسم: الرقم:

- يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond.

Questions		Réponses			
	Questions	a	b	c	d
1	f est la fonction définie sur $\left] -\frac{5}{2}; \frac{5}{2} \right[$ par $f(x) = \frac{1}{\sqrt{25 - 4x^2}}$. Une primitive de f est :	$\arcsin \frac{2x}{5}$	arcsin2x	$\frac{1}{2}\arcsin\frac{2x}{5}$	$\frac{2}{5}\arcsin\frac{2x}{5}$
2	Si $T(x) = \int_{1}^{2x} \sqrt{1 + 3\ln^2 t} dt$ où $x > 0$, alors $T'\left(\frac{e}{2}\right) =$	1	2	3	4
3	z et z' sont des nombres complexes. Si $z' = \frac{z-2i}{iz+2}$ avec $z \neq 2i$, alors $ z' =$	1	$\sqrt{\frac{5}{3}}$	√5	2
4	Dans le plan complexe rapporté à un repère orthonormé direct, on donne les deux points M et M' d'affixes non nulles respectives z et z'. Si $z'\sqrt{2} = (1-i)z$, alors le triangle OMM' est:	rectangle	isocèle	équilatéral	rectangle isocèle

II- (2,5 points)

Dans l'espace rapporté à un repère orthonormé direct $(0; \vec{i}, \vec{j}, \vec{k})$, on considère les points

suivants : A (1; -1; 2), B (-1; 1; 3) et E (-1; 4;
$$\frac{3}{2}$$
).

Soit (P) le plan d'équation 2x + y + 2z - 5 = 0 et (Δ) la médiatrice de [AB] dans le plan (P).

- 1) Vérifier que les points A et B appartiennent au plan (P).
- 2) a- Vérifier que $\overrightarrow{V}(1;2;-2)$ est un vecteur directeur de (Δ) .
 - b- Ecrire un système d'équations paramétriques de (Δ).
- 3) Soit I un point de (Δ) tel que $x_I > 0$. Considérons dans le plan (P) le cercle (C) de centre I, de rayon 3 et tangent à (AB).
 - a- Déterminer les coordonnées de I.
 - b- Vérifier que E appartient au cercle (C).
- 4) (D) est la droite définie par $\begin{cases} x = 2t 1 \\ y = 4t + 4 \text{ où } t \in \mathbb{R}. \\ z = -4t + \frac{3}{2} \end{cases}$

Démontrer que la droite (D) est tangente au cercle (C) en E.

III- (2,5 points)

On dispose de deux urnes U_1 et U_2 .

U₁ contient deux boules rouges et une boule verte.

U₂ contient quatre boules rouges et trois boules vertes.

Chaque boule rouge porte le nombre 1 et chaque boule verte porte le nombre -1.

On tire au hasard une boule de U₁.

- Si elle est rouge, on tire alors au hasard une boule de U₂. (On aura donc deux boules)
- Si elle est verte, on tire alors simultanément et au hasard deux boules de U₂. (On aura donc trois boules)

On considère les évènements suivants :

 R_1 : « tirer une boule rouge de U_1 »

 R_2 : « tirer une boule rouge de U_2 »

D: « tirer des boules de même couleur »

- 1) Calculer la probabilité $P(R_1 \cap R_2)$.
- 2) Vérifier que $P(\overline{D}) = \frac{4}{7}$.
- 3) Soit S la somme des nombres portés par les boules tirées.
 - a- Vérifier que les valeurs possibles de S sont : -3; -1; 0; 1; 2.
 - b- Calculer P(S < 0).
 - c- Sachant que S < 0, calculer la probabilité que les boules tirées n'ont pas la même couleur.

IV- (3 points)

Dans le plan muni d'un repère orthonormé $\left(O;\vec{i},\vec{j}\right)$, on donne le point E(2;0) et les deux points variables M(m;0) et N(0;n) tel que OM=EN avec m et n sont deux réels $(m \le -2 \text{ ou } m \ge 2)$. P est le point tel que $\overrightarrow{NP} = \frac{1}{2} \overrightarrow{OM}$.

Partie A

- 1) Vérifier que $m^2 = n^2 + 4$.
- 2) a- Trouver les coordonnées de P en fonction de m et n. b- Démontrer que P varie sur l'hyperbole (H) d'équation $4x^2 - y^2 = 4$.
- 3) Soit A et A' les sommets de (H); F et F' ses foyers. a-Trouver les coordonnées de A, A', F et F' $(x_A > 0 \text{ et } x_F > 0)$. b-Ecrire les équations des asymptotes de (H) et tracer (H).

Partie B

Soit (E) l'ellipse dont A, A' et B(0;4) sont trois de ses sommets.

- 1) Tracer (E) dans le repère $(O; \vec{i}, \vec{j})$.
- 2) La tangente en B à (E) coupe (H) en L avec x_L > 0.
 a- Démontrer que OFLB est un rectangle.
 b- Calculer l'aire du domaine intérieur au quadrilatère OALB et extérieur à (E).
- 3) Soit G le point tel que $\overrightarrow{OG} = \frac{1}{5}\overrightarrow{OF}$. Démontrer que la droite (LG) est tangente à (H).

V- (3 points)

Dans la figure ci-contre :

- DICE et JIKF sont deux carrés directs de centres respectifs G et E.
- A est le symétrique de C par rapport à I.
- O est le symétrique de E par rapport à D.

Soit S la similitude plane directe qui transforme A en I et I en E.

Partie A

- 1) a- Montrer que le rapport de S est égal à $\sqrt{2}$ et que $\frac{\pi}{4}$ est un angle de S.
 - b- Déterminer S(C).
- 2) a- $S \circ S$ est une similitude. Trouver un angle de $S \circ S$ et calculer son rapport. b- Trouver $S \circ S(A)$ et en déduire que O est le centre de S.
- 3) Les deux droites (OC) et (AD) se coupent en L. Soit L' = S(L). Démontrer que les trois points I, D et L' sont alignés.

Partie B

On suppose que le plan est rapporté à un repère orthonormé direct $(O; \overrightarrow{OA}, \overrightarrow{OD})$.

- 1) Ecrire la forme complexe de S et déterminer l'affixe de G' tel que G' = S(G).
- 2) (T) est l'ellipse de centre I. Les points O et G sont deux sommets de (T). Soit (T') l'image de (T) par S. Ecrire une équation de (T').

VI- (7 points)

Partie A

On considère l'équation différentielle (E): $y' + y = 2 - e^{-x}$.

On pose $y=z+2-xe^{-x}$.

- 1) Former une équation différentielle (E') satisfaite par z.
- 2) Trouver la solution particulière de (E) dont la courbe représentative dans un repère orthonormé, passe par le point A(-2; 2).

Partie B

On définit sur \mathbb{R} la fonction f par $f(x) = 2 - (x+2)e^{-x}$ et on désigne par (C) sa courbe représentative dans un repère orthonormé $\left(O; \vec{i}, \vec{j}\right)$.

- 1) a- Déterminer $\lim_{x \to -\infty} f(x)$.
 - b- Déterminer $\lim_{x\to +\infty} f(x)$. Déduire une asymptote (d) à (C).
- 2) a- Calculer f'(x) et dresser le tableau de variation de f.
 - b- Montrer que l'équation f(x) = 0 admet deux racines α et 0. Vérifier que $-1, 6 < \alpha < -1, 5$.
- 3) a- Montrer que (C) admet un point d'inflexion dont on déterminera les coordonnées.
 - b- Ecrire une équation de la tangente (Δ) à (C) en son point d'inflexion.
- 4) Soit (d') la droite d'équation y = -x.
 - a- Vérifier que $f(x) + x = (x+2)(1-e^{-x})$.
 - b- Etudier, suivant les valeurs de x, la position relative de (d') et (C).
- 5) Tracer (d), (Δ) , (d') et (C).
- 6) a- Utiliser l'équation différentielle (E) pour trouver une primitive de f.
 - b- En déduire l'aire du domaine limité par (C), (d') et les deux droites d'équations $x = \alpha$ et x = 0.
- 7) Soit g la fonction définie par $g(x) = \ln(-x f(x))$.

Déterminer le domaine de définition de g.

عدد المسائل: ست

أسس التصحيح مادة الرياضيات

QI	Corrigé		Note
1	$\int \frac{dx}{\sqrt{25 - 4x^2}} = \frac{1}{5} \int \frac{dx}{\sqrt{1 - (2x/5)^2}} = \frac{1}{2} \arcsin \frac{2x}{5}$	c	1
2	$T'(x) = 2\sqrt{1+3(\ln 2x)^2}$; $T'(\frac{e}{2}) = 2\sqrt{1+3(\ln e)^2} = 2\sqrt{4} = 4$	d	1
3	$ z' = \left \frac{z - 2i}{iz + 2} \right = \frac{ z - 2i }{ iz + 2 } = 1$	a	1
4	$\frac{z'}{z} = e^{-i\frac{\pi}{4}}$; alors OMM' isocèle en O	b	1

QII	Corrigé	Note
1	$2x_A + y_A + 2z_A - 5 = 0$ et $2x_B + y_B + 2z_B - 5 = 0$	0,5
2a	$\overrightarrow{V} \cdot \overrightarrow{AB} = 0$ et $\overrightarrow{V} \cdot \overrightarrow{N}_P = 0$ Ou $\overrightarrow{AB} \wedge \overrightarrow{N}_P / \overrightarrow{V}$	1
2b	$J(0;0;\frac{5}{2}) \text{ milieu de [AB]}; \ (\Delta) \begin{cases} x=k \\ y=2k \\ z=-2k+\frac{5}{2} \end{cases}$	0,5
3a	$IJ = 3$; $IJ^2 = 9$; $k^2 + 4k^2 + 4k^2 = 9$; $k = \pm 1$; $k = 1$ car $x_I > 0$; alors $I(1; 2; \frac{1}{2})$	1
3b	$2x_E + y_E + 2z_E - 5 = 0$, alors $E \in (P)$; $IE^2 = 4 + 4 + 1 = 9$, $IE = 3 = R$	1
4	• $2t - 1 = -1$; $4t + 4 = 4$; $-4t + \frac{3}{2} = \frac{3}{2}$. Donne $t = 0$, alors $E \in (D)$. • $\overrightarrow{V}_D \cdot \overrightarrow{IE} = 0$ alors $(D) \perp (IE)$ • $2(2t-1) + (4t+4) + 2(-4t+\frac{3}{2}) - 5 = 0$, alors $(D) \subset (P)$ Donc (D) est tangente à (C) en E .	1

QIII	Corrigé	Note
1	$P(R_1 \cap R_2) = \frac{2}{3} \times \frac{4}{7} = \frac{8}{21}$	1
2	$P(D) = P(R_1 \cap R_2) + P(V \cap 2V) = \frac{8}{21} + \frac{1}{3} \times \frac{C_3^2}{C_7^2} = \frac{3}{7}, \text{ alors } P(\overline{D}) = \frac{4}{7}$	1
3a	$-3 (V, 2V); -1 (V \text{ et } (R, V)); 0 (R_1 \text{ et } V); 1 (V, 2R); 2 (R_1 \text{ et } R_2)$	1
	P(S < 0) = P(S = -3) + P(S = -1) = P(V, 2V) + P(V, (R, V)) =	
3b	$\frac{1}{3} \times \frac{C_3^2}{C_7^2} + \frac{1}{3} \times \frac{4 \times 3}{C_7^2} = \frac{5}{21}$	1
3c	$P(\overline{D}_{S<0}) = \frac{P(\overline{D} \cap (S<0))}{P(S<0)} = \frac{P(S=-1)}{P(S<0)} = \frac{\frac{4}{21}}{\frac{5}{21}} = \frac{4}{5}$	1

QIV	Cor	rigé		Note
A1	$EN^2 = OE^2 + ON^2$ alors $m^2 = 4 + n^2$			0,5
A2a	$P\left(\frac{m}{2};n\right)$			0,5
A2b	$m = 2x$ et $n = y$ donc $4x^2 - y^2 = 4$ ou x^2	$-\frac{y^2}{4} =$	1	0,5
A3a	A(1;0) et A'(-1;0); $F(\sqrt{5};0)$ et $F'(-\sqrt{5};0)$	5;0)		0,5
A3b	Asymptotes: $y = 2x$ et $y = -2x$. Tra	acée de	(H)	1
B2a	Tangente en B: $y=4$. $4x^2=16+4=20$; $x=\sqrt{5}$; $L(\sqrt{5};4)$; $x_F=x_L$; $\overrightarrow{BL}=\overrightarrow{OF}$ et $\overrightarrow{BOF}=90^\circ$ donc OFLB est un rectangle.	0,5	B1	
B2b	Aire de OALB = $\frac{(1+\sqrt{5})\times 4}{2}$ = $2(1+\sqrt{5})$ Aire demandée = $2(1+\sqrt{5})-\frac{1}{4}$ Aire de (E) = $2(1+\sqrt{5})-\pi$ unités d'aire.	1	3- 2- 1- 00 A	0,5
В3	G $\left(\frac{\sqrt{5}}{5};0\right)$; L($\sqrt{5};4$); pente de (GL) = $\sqrt{5}$; $4x^2 = y^2 + 4$ donc $8x = 2yy'$ et $y' = \frac{4x}{y}$. $y'_L = \frac{4\sqrt{5}}{4} = \sqrt{5} = \text{pente de (GL)}$.	1	-4 -3 -2 -1 0 0 2 3 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	

QV	Corrigé	Note
A1a	$S: A \mapsto I$ $I \mapsto E$ $\frac{IE}{AI} = \frac{IE}{IC} = \sqrt{2}. \text{Angle de } S = \left(\overrightarrow{AI}; \overrightarrow{IE}\right) = \left(\overrightarrow{IC}; \overrightarrow{IE}\right) = \frac{\pi}{4}.$	0,5
A1b	S(C) = F car C est le symétrique de A par rapport à I alors $S(C)$ est le symétrique de I par rapport à E .	0,5
A2a	$S \circ S$ est une similitude de rapport 2 et d'angle $\frac{\pi}{2}$.	0,5
A2b	$S \circ S(A) = S(I) = E$, et on a $OE = 2 OA$; $(\overrightarrow{OA}; \overrightarrow{OE}) = \frac{\pi}{2}$; donc O est le centre de $S \circ S$, d'où O est le centre de S.	1,5
A3	$S(A) = I$, alors $S((AD))$ est une droite passant par I et faisant un angle $\frac{\pi}{4}$ avec (AD) alors c'est la droite (ID). $L \in (AD)$ donc $S(L) = L' \in (ID)$.	1
B1	z' = az + b, S est de centre O, donc $b = 0$, d'où $z' = az$. $a = \sqrt{2}e^{i\frac{\pi}{4}} = 1 + i$; D'où $z' = (1 + i)z$. $z_G = \frac{1}{2} + \frac{3}{2}i$ alors $z_{G'} = (1+i)\left(\frac{1}{2} + \frac{3}{2}i\right) = -1 + 2i$.	1
B2	(T) est de centre I et des sommets O et G ; donc (T') est de centre S(I) = E et des sommets S(O) = O et S(G) = G'. Par suite l'axe focale de (T') est (OE) // axe des ordonnées, E (0 ; 2), a = OE = 2 et b = EG' = 1. D'où une équation de (T') est $x^2 + \frac{(y-2)^2}{4} = 1$.	1

QVI	Corrigé	Note
A1	$y'+y=2-e^{-x}$; $y=z+2-xe^{-x}$; $y'=z'-(e^{-x}-xe^{-x})$; $(E'):z'+z=0$	0,5
A2	La solution générale de (E'): $z = ke^{-x}$; La solution générale de (E): $y = ke^{-x} + 2 - xe^{-x}$. $y(-2) = (k+2)e^2 + 2 = 2$, donc $k = -2$. $f(x) = 2 - (x+2)e^{-x}$. La solution particulière de (E): $y(-2) = 2$ donc $k = -2$ d'où: $y = 2 - (x+2)e^{-x}$.	1
B1a	$\lim_{x \to -\infty} f(x) = +\infty$	0,5
B1b	$\lim_{x \to +\infty} f(x) = 2 ; (d) : y = 2 \text{ asymptote horizontale.}$	1

	$f'(x) = (x+1)e^{-x}$			
B2a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		
B2b	Sur] $-\infty$, -1[: f est continue et strictement décroissante de $+\infty$ à -0,7 donc l'équation f(x) = 0 admet, dans] $-\infty$, -1[, une solution unique α et f(-1,6)×f(-1,5) = 0,0187×(-0,24)<0, alors -1,6 < α < -1,5. De plus f(0) = 0.			
ВЗа	$f''(x) = -e^{-x}(x+1) + e^{-x} = -xe^{-x}$ $f''(x) = 0 \text{ pour } x = 0 \text{ en changeant de signe du positif au négatif, alors } O(0,0) \text{ est un point d'inflexion de } (C).$			
B3b	$f'(0) = 1$; $y - 0 = 1(x - 0)$; $(\Delta) : y = x$ est tangente à (C) .	0,5		
B4a	$f(x) + x = 2 - (x+2)e^{-x} + x = (x+2)(1-e^{-x})$	0,5		
B4b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5		
В5	$\lim_{x \to +\infty} \frac{f(x)}{x} = -\infty \text{ direction asymptotique parallèle à}$ $y'y.$	1,5		
B6a	$f'(x) + f(x) = 2 - e^{-x} \; ; \; f(x) = 2 - e^{-x} - f'(x) \; ; \; \int f(x) dx = 2x + e^{-x} - f(x) + c \; donc$ une primitive de f est $2x + e^{-x} - 2 + (x + 2)e^{-x} = 2x - 2 + (x + 3)e^{-x}$.			
B6b	$A = \int_{\alpha}^{0} [-x - f(x)] dx = -\frac{x^{2}}{2} - 2x + 2 - (x + 3)e^{-x}]_{\alpha}^{0} = -3 + \frac{\alpha^{2}}{2} + 2\alpha + (\alpha + 3)e^{-\alpha} \text{ unit\'es d'aire.}$			
В7	-x-f(x) > 0; $x+f(x) < 0$; d'après B-4-b $-2 < x < 0$ ou bien : graphiquement.	1		