Lindsey Bieda and Joe Frambach Dynamic Programming Problems 9.28.2011

- 13. Our goal is now to consider the Knapsack problem, and develop a method for computing the actual items to be taken in O(L) space and O(nL) time.
 - (a) Consider the following problem. The input is the same as for the knapsack problem, a collection of nitems I_1, \ldots, I_n with weights w_1, \ldots, w_n , and values v_1, \ldots, v_n , and a weight limit L. The output is in two parts. First you want to compute the maximum value of a subset S of the n items that has weight at most L, as well as the weight of this subset. Let us call this value and weight v_a and w_a . Secondly for this subset S you want to compute the weight and value of the items in $\{I_1, \ldots, I_{n/2}\}$ that are in S. Let use call this value and weight v_b and w_b . So your output will be two weights and two values. Give an algorithm for this problem that uses space O(L) and time O(nL).
 - (b) Explain how to use the algorithm from the previous subproblem to get a divide and conquer algorithm for finding the items in the Knapsack problem a and uses space O(L) and time O(nL).

16. Give an algorithm for the following problem whose running time is polynomial in n+W: Input: positive integers w_1, \ldots, w_n , v_1, \ldots, v_n and W. Output: The maximum possible value of $\sum_{i=1}^n x_i v_i$ subject to $\sum_{i=1}^n x_i w_i \leq W$ and each x_i is a nonnegative integer.

17. Give an algorithm for the following problem whose running time is polynomial in n+L, where $L = \max \left(\sum_{i=1}^{n} v_i^3, \prod_{i=1}^{n} v_i \right).$ Input: positive integers v_1, \dots, v_n

Output: A subset S of the integers such that $\sum_{v_i \in S} v_i^3 = \prod_{v_i \in S} v_i$.