Домашнє завдання 6.

Пема 2. Множини, функції, відношення

Замикання відношень

Стор. 263 – 266

№№ 53(б, д), 54(б, в), 67(в), 68(в), 72(в, г), 73(в, г), 74(в).

53. Нехай R та S – відношення на множині A={1, 2, 3}, задані матрицями

$$M_R = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad M_S = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Знайти матриці відношень:

а)
$$R \cup S$$
; б) $R \cap S$; в) $R \oplus S$; г) $S \circ R$; д) $R \circ R$.

54. Нехай відношення *R* задано матрицею

$$M_R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Знайти матриці відношень:

а)
$$R^2$$
; б) R^3 ; в) R^4 .

- **55.** Нехай R відношення на множині A={0, 1, 2, 3}, яке складається з упорядкованих пар (0, 1), (1, 1), (1, 2), (2, 0), (2, 2) та (3, 0). Знайти:
 - а) рефлексивне замикання R;
 - б) симетричне замикання R.
- **57.** Як граф, що подає рефлексивне замикання відношення на скінченній множині, можна побудувати з графа цього відношення?
- **58.** Побудувати граф рефлексивного замикання для кожного з відношень, поданих графами:

- **59.** Як граф, що подає симетричне замикання відношення на скінченній множині, можна побудувати з графа цього відношення?
 - 60. Побудувати графи симетричного замикання відношень, поданих графами задачі 58.
- **67.** Нехай відношення R утворено парами (a, b), де a та b міста, між якими ϵ пряма авіалінія. Коли пара (a, b) міститься в:

a)
$$R^2$$
, 6) R^3 , B) R^* ?

68. Нехай R – відношення на множині всіх студентів, яке складається з усіх пар (a, b), де студенти a та b слухають принаймні один спільний курс і $a \neq b$. Коли пара (a, b) міститься в:

a)
$$R^2$$
, 6) R^3 , B) R^* ?

- **69.** Нехай відношення R рефлексивне. Довести, що відношення R^* також рефлексивне.
- **70.** Нехай відношення R симетричне. Довести, що відношення R^* також симетричне.
- **71.** Нехай відношення R іррефлексивне. Чи обов'язково буде іррефлексивним відношення R^2 ?
- **72.** За алгоритмом Воршалла побудувати транзитивні замикання відношень на множині {1, 2, 3, 4}:
 - a) $\{(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)\};$
 - 6) {(2, 1), (2, 3), (3, 1), (3, 4), (4, 1), (4, 3)};
 - B) $\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\};$
 - Γ) {(1, 1), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4), (4, 2)}.

- **73.** За алгоритмом Воршалла побудувати транзитивні замикання відношень на множині $\{a, b, c, d, e\}$:
 - a) $\{(a, c), (b, d), (c, a), (d, b), (e, d)\};$
 - \emptyset) {(b, c), (b, e), (c, e), (d, a), (e, b), (e, c)};
 - B) $\{(a, b), (a, c), (a, e), (b, a), (b, c), (c, a), (c, b), (d, a), (e, d)\};$
 - Γ) {(a, e), (b, a), (b, d), (c, d), (d, a), (d, c), (e, a), (e, b), (e, c), (e, e)}.
- **74.** Знайти найменше відношення на множині $A = \{1, 2, 3, 4\}$, яке містить відношення $R = \{(1, 2), (1, 4), (3, 3), (4, 1)\}$ і має такі властивості:
 - а) воно рефлексивне та транзитивне;
 - б) симетричне та транзитивне;
 - в) рефлексивне, симетричне та транзитивне.
- **75.** Довести, що замикання за властивістю q відношення $R = \{(0, 0), (0, 1), (1, 1), (2, 2)\}$ на множині $\{0, 1, 2\}$ не існує, якщо властивість q така:
 - а) відношення не рефлексивне;
 - б) кількість елементів відношення непарна.