22-07-2021 Shift-2

AI24BTECH11012- Pushkar Gudla

1) If the sum and the product of mean and variance of a binomial distribution are 24 and 128 respectively,

	then the probability of one or two successes is:
1	a) $\frac{33}{232}$ b) $\frac{33}{229}$ c) $\frac{33}{228}$ d) $\frac{33}{227}$
2)	If the numbers appeared on the two throws of a fair six-faced die are α and β , then the probability that $x^2 + \alpha x + \beta > 0$ for all $x \in \mathbb{R}$ is:
]	a) $\frac{17}{36}$ b) $\frac{4}{9}$ c) $\frac{1}{2}$ d) $\frac{19}{36}$
	The number of solutions of $ \cos x = \sin x$ such that $-4\pi \le x \le 4\pi$ is:
1	a) 4 b) 6 c) 8 d) 12
	A tower PQ stands on a horizontal ground with base Q on the ground. The point R divides the tower in two parts such that $QR = 15 m$. If from a point A on the ground the angle of elevation of R is 60° and the part PR of the tower subtends an angle of 15° at A , then the height of the tower is: a) $5(2\sqrt{3} + 3)$ m b) $5(\sqrt{3} + 3)$ m c) $10(\sqrt{3} + 1)$ m d) $10(2\sqrt{3} + 1)$ m
	Which of the following statements is a tautology? a) $((\sim p) \lor q) \Longrightarrow p$ b) $p \Longrightarrow ((\sim p) \lor q)$ c) $((\sim p) \lor q) \Longrightarrow q$ d) $q \Longrightarrow ((\sim p) \lor q)$ $(2 -1 -1)$
	Let $A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$ and $B = A - I$. If $\omega = \frac{\sqrt{3}i - 1}{2}$, then the number of elements in the set $\{n \in \{1, 2,, 100\} : A^n + (\omega B)^n = A + B\}$ is equal to
7)	The letters of the word "MANKIND" are written in all possible orders and arranged in serial order

as in an English dictionary. Then the serial number of the word "MANKIND" is _____.

8) If the maximum value of the term independent of t in the expansion of $\left(t^2x^{\frac{1}{5}} + \frac{(1-x)^{\frac{1}{10}}}{t}\right)^{15}$, $x \ge 0$, is

9) Let a, b be two non-zero real numbers. If p and r are the roots of the equation $x^2 - 8ax + 2a = 0$ and q and s are the roots of the equation $x^2 + 12bx + 6b = 0$, such that $\frac{1}{p}, \frac{1}{q}, \frac{1}{r}, \frac{1}{s}$ are in A.P., then

K, then 8K is equal to _

 $a^{-1} - b^{-1}$ is equal to _____

- 10) Let $a_1 = b_1 = 1$, $a_n = a_{n-1} + 2$ and $b_n = a_n + b_{n-1}$ for every natural number $n \ge 2$. Then $\sum_{n=1}^{15} a_n b_n$ is equal to ______.
- equal to _____. 11) Let $f(x) = \begin{cases} |4x^2 - 8x + 5| & \text{if } 8x^2 - 6x + 1 \ge 0\\ [4x^2 - 8x + 5] & \text{if } 8x^2 - 6x + 1 < 0 \end{cases}$

where $[\alpha]$ denotes the greatest integer less than or equal to α . Then the number of points in \mathbb{R} where f is not differentiable is ______.

- 12) If $\lim_{n\to\infty} \frac{(n+1)^{k-1}}{n^{k+1}} [(nk+1) + (nk+2) + \ldots + (nk+n)] = 33 \lim_{n\to\infty} \frac{1}{n^{k+1}} [1^k + 2^k + 3^k + \ldots + n^k]$, then the integral value of k is equal to ______.
- 13) Let the equation of two diameters of a circle $x^2 + y^2 2x + 2fy + 1 = 0$ be 2px y = 1 and 2x + py = 4p. Then the slope $m \in (0, \infty)$ of the tangent to the hyperbola $3x^2 y^2 = 3$ passing through the center of the circle is equal to ______.
- 14) The sum of diameters of the circles that touch (i) the parabola $75x^2 = 64(5y 3)$ at the point $\left(\frac{8}{5}, \frac{6}{5}\right)$ and (ii) the y-axis, is equal to ______.
- 15) The line of shortest distance between the lines $\frac{x-2}{0} = \frac{y-1}{1} = \frac{z}{1}$ and $\frac{x-3}{2} = \frac{y-5}{2} = \frac{z-1}{1}$ makes an angle of $\cos^{-1}\left(\sqrt{\frac{2}{27}}\right)$ with the plane P: ax y z = 0 (a > 0). If the image of the point (1, 1, -5) in the plane P is (α, β, γ) , then $\alpha + \beta \gamma$ is equal to ______.