

Exploratory Data Analysis (EDA)

An approach to analyzing datasets to summarize their main characteristics, often with visual methods

Exploratory Data Analysis (EDA)

- Trends
- Outliers
- Patterns in data

http://orzo.union.edu/~khetans/Teaching/BNG202/Stats%20Lecture%201.pdf

What do we explore?

- Missing values
- Outliers
- Univariate distribution
- Bivariate and multivariate distribution

Two Types of Variables

1) Numeric

- Continuous Age, Income, Weight
- Discreet Count

2) Categorical

• Race, Gender, Socioeconomic Status

Exploration

Univariate

Bivariate

Multivariate

Univariate Exploration

For numeric variable

- 1) Measures of central tendency Mean, median, quartiles
- 2) Measure of dispersion Variance, range, interquartile range

Visualization – Histogram and boxplot

Univariate Exploration

For categorical variable

- 1) Counts/frequency
- 2) Counts proportion

Frequency table

Visualization - Bar chart/column chart

Bivariate Exploration

Assessing relationship between two numeric variables

Correlation captures the degree of association between two numeric variables

Visualization – Scatter plot

Bivariate Exploration

Assessing relationship between a numeric and a categorical variable

Visualization – Grouped boxplot and grouped histogram

Multivariate Exploration

Map other variables using

- 1. Color (for numeric and categorical variables)
- 2. Shape (for categorical variables)
- 3. Size (for numeric variables)
- 4. Facet grid show separate chart for various subsets of data

GGplot2

Each chart is a combination of:

- 1. Data
- 2. Aesthetic **mappings** (variables) (x axis, y axis, color, shape, size)
- 3. Layer: geometric objects (histogram, boxplot, violin plot, point, line, smooth, bar, col)
- 4. Layer: statistical transformation (identity, log)

GGplot2

Each chart is a combination of:

- 5. Scales: map values from data space to aesthetic space
- 6. Coordinate system (most frequent is Cartesian, others are polar)
- 7. Faceting: break up data into subsets for creating separate graphics based on each subset
- 8. Theme: font size, background color, legend position

Two Functions That Cover Three Major Components

OBJECT is NOT the real word that comes here. It has to be replaced by either histogram, bar, point, line, etc., depending on what geometric object you want to create

Visualization for Univariate Exploration of

Numeric Variable

Histogram

Boxplot

Histogram

Shows a numeric variable grouped in bins/intervals on X axis

 The number of observations that fall in each bucket is represented on Y axis

Boxplot of Price

Price of **75%** observations < Q3 price

50% observations < median price

50% observations > median price

Price of **25%** observations < Q1 price

Outliers will show up here

Outliers will show up here