

Version 10.6

Particles and Processes in Geant4

Vladimir Ivantchenko

CERN, Geneva, Switzerland & Tomsk State University, Russia

Geant4 Advanced Course 28 September 2020

Outline

- Geant4 interface to physics
 - Geant4 basic interfaces to physics
 - Geant4 particles
 - Geant4 processes
 - Physics Lists
- Elecromagnetic (EM) physics
 - EM physics overview
 - EM physics constructors
 - User interface to EM physics

Geant4 basic interface to physics

- The interface of Geant4 kernel to physics is abstract
- Base physics abstract classes are following:
 - The G4ParticleDefinition objects shared between threads
 - The G4VProcess thread local objects
 - The G4ProcessManager thread local interface class
- Configuration of physics is prepared in the G4VUserPhysicsList mandatory user class
- These interfaces are stable for ~20 years allowing users to work with different Geant4 versions and providing a basis for new developments
 - Concrete physics is implemented in physics models and cross section classes
 - Alternative models and cross sections are provided in Geant4 libraries
 - A user may be also a developer of a custom particle, process, physics model, or cross section

GEANT4 PARTICLES

Geant4 particles

- G4ParticleDefinition is the main object keeping static information about particles
 - Name, mass, charge, quantum numbers, decay table....
- "Stable" particles
 - Leptons: e^{\pm} , μ^{\pm} ,
 - Bosons: G4Gamma, G4OpticalPhoton,
 - Geantino is a particle without any interaction
 - "Stable" hadrons: π^{\pm} , K^{\pm} ,
 - Light ions: d, t, ³He, ⁴He
 - G4Genericlon is used to define physics for all other ions
- "Unstable" hadrons normally do not tracked by Geant4 but used internally by hadronic models
 - Quarks, di-quarks, $\rho(770)$, $\omega(783)$...

Split class – case of particle definition

- In Geant4, each particle type has its own dedicated object of G4ParticleDefinition class.
 - Static quantities: mass, charge, life time, decay channels, etc.,
 - To be shared by all threads.
 - Dedicated object of G4ProcessManager: list of physics processes this particular kind of particle undertakes.
 - Physics process object must be thread-local.

GEANT4 PROCESSES

Geant4 process

- Processes are classified as:
 - Electromagnetic
 - Hadronic
 - Decay
 - Parameterized
 - Transportation
 - **—**
- Any process has process has type and sub-type
 - const G4String& G4VProcess::GetProcessType();
 - G4int G4VProcess::GetSubType();
 - This method is recommended to be used for MC truth
 - The list of sub-types are only updated with new processes
- Any process may be initialized using virtual methods:
 - G4bool IsApplicable(const G4ParticleDefinition &);
 - Used to check if a process can handle the given particle type
 - void PreparePhysicsTable(const G4ParticleDefinition&);
 - void BuildPhysicsTable(const G4ParticleDefinition&);
 - Used for initialization of internal data of the process before run

From G4Track to processes

Geant4 Physics: Electromagnetic

- the standard EM part: provides a complete set of EM interactions (processes) of charged particles and gammas from 1 keV to ~PeV
 - Used practically in all kind of Geant4 applications
- the low energy EM part: includes special treatments for low energy e-/+, gammas and charged hadrons:
 - more sophisticated approximations valid down to lower energies e.g. more atomic shell structure details
 - some of these processes will be valid down to below keV but some can be used only up to few GeV
- optical photons: interactions special only for long wavelength photons
 - processes for reflection/refraction, absorption, wavelength shifting, (special) Rayleigh scattering
 - G4OpticalPhoton is the particle type
- Phonon physics is also implemented within Geant4

Geant4 Physics: Hadronic

- Pure hadronic interactions for 0 to 100 TeV
 - elastic, inelastic, capture, fission
- Radioactive decay:
 - both at-rest and in-flight
- Photo-nuclear interaction from ~1 MeV up to 100 TeV
- Lepto-nuclear interaction from ~100 MeV up to 100 TeV
 - e+ and e- induced nuclear reactions
 - muon induced nuclear reactions
- Recently introduced processes of neutrino-nuclear interactions

Geant4 Physics: Decay, Parameterized and Transportation

decay processes includes:

- weak decay (leptonic, semi-leptonic decay, radioactive decay of nuclei)
- electromagnetic decay (π^0 , Σ^0 , etc.)
- strong decay not included by default
 - they are part of hadronic models
 - may be assigned by a user to a particle

parameterized process:

- assigned to G4LogicalVolume
- instead of step-by-step simulation provides hits in the logical volume and list of particles living the volume
- for example, EM shower generation in a calorimeter based on parameters obtained from averaged events

transportation process:

- responsible for propagating a particle through the geometry in electromagnetic or gravitational field
- needs to be assigned to each "stable" particle

G4Track is the object "pushed" step by step by the tracking:

- Moving by one step is the responsibility of the "stepping"
 - Which is the core engine of the "tracking" machinery
- These moves/steps are defined by physics or by geometry
 - Step length limit is a result of competition of processes
 - Any process may change the G4Track, let's see how
 - G4Transportation stops track at the volume boundary

- Abstract class defining the common interface of all processes in Geant4:
 - Used by all processes
 - including transportation, etc...
 - Defined in source/processes/management
- Three kinds of actions:
 - AtRest actions:

- Decay, e⁺ annihilation ...
- AlongStep actions:
 - To describe continuous (inter)actions, occurring along the path of the particle, like ionisation;
- PostStep actions:
 - For describing point-like (inter)actions, like decay in flight

G4VProcess: actions summary

- The virtual «action» methods are following:
 - AtRestGetPhysicalInteractionLength(),
 AtRestDoIt();
 - AlongStepGetPhysicalInteractionLength(),
 AlongStepDoIt();
 - PostStepGetPhysicalInteractionLength(),
 PostStepDoIt();
- Optional run time virtual methods:
 - StartTracking(G4Track*);
 - Allowing the process preparation for a new G4Track
 - EndTracking();
 - End of given G4Track

- A process can implement any combination of the three AtRest, AlongStep and PostStep actions:
 - decay = AtRest + PostStep
- If you plan to implement your own process:
 - A set on intermediate classes exist implementing various combinations of actions:
 - For example:
 - G4VDiscreteProcess: only PostStep actions
 - G4VContinuousDiscreteProcess:AlongStep +
 PostStep actions

G4ProcessManager

- It is a Geant4 kernel class
 - A user should not change it
- G4ProcessManager maintains three vectors of actions:
 - One for the AtRest methods of the particle;
 - One for the AlongStep ones;
 - And one for the PostStep actions.
- Note, that the ordering of processes provided by/to the G4ProcessManager vectors is relevant and used by the stepping
 - There are few critical points you should be aware of
 - Multiple scattering can shift end point of a step
 - Scintillation, Cerenkov and some other processes assuming that step and energy deposition at the step are defined

PHYSICS LISTS

Physics Lists

- Physics List is an object that is responsible to:
 - specify all the particles that will be used in the simulation application
 - together with the list of physics processes assigned to each individual particles
- One out of the 3 mandatory objects that the user needs to provide to the G4RunManager in case of all Geant4 applications:
 - it provides the information when, how and what set of physics needs to be invoked
- Provides a very flexible way to set up the physics environment:
 - the user can chose and specify the particles that they want to be used
 - the user can chose the physics (processes) to assign to each particle

Modular Physics Lists

- Current recommendation to use Physics List via inheritance from G4VModularPhysicsList which derives from G4VUserPhysicsList
- Main public methods:
 - G4VModularPhysicsList::RegisterPhysics(G4VPhysicsConstructor*)
 - Addition of physics constructor
 - G4VModularPhysicsList::ReplacePhysics(G4VPhysicsConstructor*)
 - Replacement of the same type of physics constructor
- Constructor types:
 - Electromagnetic, EM extra(lepton-nuclear)
 - Decay, Radioactive Decay
 - Hadron elastic, hadron inelastic
 - Ion elastic and inelastic
 - Stopping of negatively charged particles
 - Step limiters (tracking cuts)
 - Optical
 - User may add custom constructor
- Physics List and its components are unique objects, which called in each thread two methods
 - G4VPhysicsConstructor::ConstructParticle()
 - G4VPhysicsConstructor::ConstructProcess()
 - Only const class members are allowed

- When your application has started and when the run manager has been initialized, you can:
- Check the physics processes attached and their ordering:
 - /particle/select e-
 - /particle/processes/dump

- Check what particles exist:
 - /particle/list
- Check a particle property:
 - /particle/select e-
 - /particle/property/dump
- Please type "help" to get the full set of commands for particle category

- Using UI interface Geant4 kernel change cuts and try to count number of steps in the same run
 - /run/setCut 0.01 mm
 - /run/beamOn 100
- Define cuts only for electrons
 - /run/setCutForAGivenParticle e- 10 um
 - /run/setCutForRegion GasDetector 0.1 mm
 - /run/dumpCouples
- How to change low-energy limit of production threshold
 - /cuts/setLowEdge 0.1 keV

Instantiation and ownership of physics objects

- G4PhysicsListHelper provides correct ordering for all processes from Geant4 libraries
 - G4PhysicsListHelper* helper = G4PhysicsListHelper::GetPhysicsListHelper();
 - helper->RegisterProcess(G4VProcess*, G4ParticleDefinition*);
- Custom process should be instantiated with defined ordering
 - G4ParticleDefinition* particle;
 - G4ProcessManager* man = particle->GetProcessManager();
 - man->AddDiscreteProcess(G4VDiscreteProcess*); // added to the end
 - man->AddProcess(G4VProcess*, idxAtRest, idxAlongStep, idxPostStep);
- Ownership of classes is not belonging to the Physics List class
 - G4ParticleDefinition classes are static shared between threads
 - G4VProcess classes are registered in process thread local store
 - Model classes for EM and hadronic physics are also registered in thread local store
 - Hadronic cross sections are registered in another thread local store
 - All registrations are done automatically
- All processes, models, and cross section classes should be instantiated via "new"
 - Should not be included by object in any class

ELECTROMAGNETIC (EM) PHYSICS OVERVIEW

Gamma and electron transport

- Photon processes
 - γ conversion into e+e- pair
 - Compton scattering
 - Photoelectric effect
 - Rayleigh scattering
 - Gamma-nuclear interaction in hadronic sublibrary (Bertini cascade)
- Electron and positron processes
 - Ionization
 - Coulomb scattering
 - Bremsstrahlung
 - Nuclear interaction in hadronic sub-library
 - Positron annihilation
- Suitable for HEP & many other Geant4 applications with electron and gamma beams

Geant4 EM sub-libraries

Located in \$G4INSTALL/sources/processes/electromagnetic

Standard

- γ, e up to 100 TeV
- hadrons up to 100 TeV
- ions up to 100 TeV

Muons

- up to 1 PeV
- energy loss propagator

X-rays

X-ray and optical photon production processes

High-energy

- processes at high energy (E>10GeV)
- physics for exotic particles

Polarisation

simulation of polarised beams

Optical

optical photon interactions

Low-energy

- Livermore library γ, e- from 10 eV up to 1 GeV
- Livermore library based polarized processes
- PENELOPE 2008 code rewrite , γ , e- , e+ from 250 eV up to 6 GeV
- hadrons and ions up to 1 GeV
- atomic de-excitation (fluorescence + Auger)

DNA

- Geant4 DNA modes and processes
- Micro-dosimetry models for radiobiology
- rom 0.025 eV to 10 MeV
- many of them material specific (water)
- Chemistry in liquid water

Adjoint

- sub-library for reverse Monte Carlo simulation from the detector of interest back to source of radiation
- Utils: general EM interfaces and helper classes

Software Design of EM Physics

- The uniform coherent approach for all EM packages
 - low energy and high energy models may work together
- A physical interaction or process is described by a process class
 - For example: G4ComptonScattering
 - Assigned to Geant4 particle types in Physics List
 - Three EM base processes:
 - G4VEmProcess
 - G4VEnergyLossProcess
 - G4VMultipleScattering
- A physical process can be simulated according to several models
 - each model being described by a model class
 - Naming scheme : « G4ModelNameProcessNameModel »
 - For example: G4LivermoreComptonModel
 - Models can be assigned to certain energy ranges and G4Regions
 - Inherit from G4VEmModel base class
- Model classes provide the computation of
 - Cross section and stopping power
 - Sample selection of atom in compound
 - Final state (kinematics, production of secondaries...)

EM Data Sharing for Geant4 MT

- The scalability of Geant4 application in the MT mode depends on how effectivly data management is performed
- Shared EM physics data:
 - tables for cross sections, stopping powers and ranges are kept by processes
 - Differential cross section data are kept by models
 - Material propertes are in material data classes
 - EM parameters established for Physics Lists in the G4EmParameters class

Tables are filled by Master and have read-only access in run time

In this scheme number of threads is not limited

Gamma processes

- Photo-effect is the main process for absorption of low-energy gamma
 - Rayleigh scattering should not be neglected
- At high energy gamma conversion dominates
- Gammas may be absorbed by nuclei due to giant dipole resonance

Photo-electric effect – example of gamma process

GEANT4

In the photo-electric absorption process a **photon is absorbed** by an atom and an **electron** is **emitted** with an energy:

$$E_{photoelectron} = E_{\gamma} - B_{shell}(Z_i)$$
 (1)

The atom, left in an excited state with a vacancy in the ionized shell, decays to its ground state through a cascade of radiative and non-radiative transitions with the emission of characteristic x-rays and Auger and Coster-Kronig electrons.

Electron processes

- At low energies ionisation dominates
- Above critical energy bremsstrahlung is the main process
 - Radiation energy loss exceed ionization energy loss

EM PHYSICS CONSTRUCTORS

EM Physics Lists Components

- A Physics list is the mandatory user class making the general interface between the physics the user needs and the Geant4 kernel
- List of particles: for which EM physics processes are defined
 - γ, e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , p, Σ^{\pm} , Ξ^{-} , Ω^{-} , anti(Σ^{\pm} , Ξ^{-} , Ω^{-})
 - $-\tau^{\pm}$, B $^{\pm}$, D $^{\pm}$, D $_{s}^{\pm}$, Λ_{c}^{+} , Σ_{c}^{+} , Σ_{c}^{++} , Ξ_{c}^{++} , $\frac{anti}{\Delta_{c}}$, Δ_{c}^{+} , Σ_{c}^{++} , Ξ_{c}^{++})
 - d, t, He3, He4, Genericlon, anti(d, t, He3, He4)
- The G4ProcessManager of each particle maintains a list of processes
- Geant4 provides several configurations of EM physics lists called constructors (G4VPhysicsConstructor) in the physics_lists library of Geant4
- These constructors can be included into a modular Physics list in a user application (G4VModularPhysicsList)

Standard EM Physics Constructors

Geant4 standard EM Physics Constructors for HEP applications

- Description of Coulomb scattering (the same):
 - e[±]: Urban MSC model below 100 [MeV] and the Wentzel WVI + Single scattering (mixed simulation) model above 100 [MeV]
 - muon and hadrons: Wentzel WVI + Single scattering (mixed simulation) model
 - ions: Urban MSC model
- But different MSC stepping algorithms and/or parameters: speed v.s. accuracy

Constructor	Components	Comments
G4EmStandardPhysics	Default: nothing or _EM0 (QGSP_BERT, FTFP_BERT,)	for ATLAS and other HEP simulation applications
G4EmStandardPhysics_option1	Fast: due to simpler MSC step limitation, cuts used by photon processes (FTFP_BERT_EMV)	similar to one used by CMS; good for crystals but not good for sampling calorimeters (i.e. with more detailed geometry)
G4EmStandardPhysics_option2	Experimental: similar to option1 with updated photoelectric model but no-displacement in MSC (FTFP_BERT_EMX)	similar to one used by LHCb

EM Physics Constructors for medical applications

Combined Geant4 EM Physics Constructors

- · The primary goal is more the physics accuracy over the speed
- Combination of standard and low-energy EM models for more accurate physics description
- More accurate models for e[±] MSC (Goudsmit-Saunderson(GS)) and more accurate stepping algorithms (compared to HEP)
- Stronger continuous step limitation due to ionisation (as others given per particle groups)
- Recommended for more accuracy sensitive applications: medical (hadron/ion therapy), space

Constructor	Components	Comments
G4EmStandardPhysics_option3	Urban MSC model for all particles	proton/ion therapy
G4EmStandardPhysics_option4	most accurate combination of models (particle type and energy); GS MSC model with Mott correction and error-free stepping for e [±])	the ultimate goal is to have the most accurate EM physics description
G4EmLivermorePhysics	Livermore models for e ⁻ , γ below 1 GeV and standard above; same GS MSC for e [±] as in option4)	accurate Livermore based low energy e ⁻ and γ transport
G4EmPenelopePhysics	PENELOPE models for e [±] , γ below 1 GeV and standard above; same GS MSC for e [±] as in option4)	accurate PENELOPE based low energy e ⁻ , e ⁺ and γ transport

EM Physics Constructors for testing of new models

Experimental Geant4 EM Physics Constructors

- Supposed to be used only by the developers for validations and model developments
- The main difference is in the description of the Coulomb scattering (GS, WVI, SS)

Constructor	Components	Comments
G4EmStandardPhysicsGS	standard EM physics and the GS MSC model for e [±] with HEP settings	may be considered as an alternative to EM0 i.e. for HEP
G4EmStandardPhysicsWVI	WentzelWVI + Single Scattering mixed simulation model for Coulomb scattering	high and intermediate energy applications
G4EmStandardPhysicsSS	single scattering (SS) model description of the Coulomb scattering	validation and verification of the MSC and mixed simulation models
G4EmLowEPPhysics	Monarsh University Compton scattering model, 5D gamma conversion model, WVI-LE model	testing some low energy models
G4EmLivermorePolarized	polarized gamma models	a (polarized) extension of the Livermore physics models

USER INTERFACE TO EM PHYSICS

EM parameters

- EM parameters of any EM physics list may be modified at initialization of Geant4 using C++ interface to the G4EmParameter class or via UI commands
- Example of interfaces of G4EmParameters:
 - SetMuHadLateralDisplacement()
 - SetMscMuHadRangeFactor()
 - SetMscMuHadStepLimitType()
- Corresponding UI commands:
 - /process/msc/MuHadLateralDisplacement
 - /process/msc/RangeFactorMuHad
 - /process/msc/StepLimitMuHad
- Some other UI commands:
 - /process/em/deexcitationIgnoreCut true
 - /process/eLoss/UseAngularGenerator true
 - /process/em/lowestElectronEnergy 50 eV
 - /process/em/lowestMuHadEnergy 100 keV
 - **–**

User Interfaces and Helper Classes

- Geant4 UI commands to define cuts and other EM parameters
- G4EmCalculator
 - easy access to cross sections and stopping powers (TestEm0)
- G4EmParameters
 - C++ interface to EM options alternative to UI commands
- G4EmSaturation
 - Birks effect (recombination effects)
- G4ElectronIonPair
 - sampling of ionisation clusters in gaseous or silicon detectors
- G4EmConfigurator
 - add models per energy range and geometry region
- G4NIELCalculator
 - Helper class allowing computation of NIEL at a step, which should be added in user stepping actions or sensitive detector (TestEm1)

How to extract Physics?

- Possible to retrieve Physics quantities using a G4EmCalculator object
- Physics List should be initialized
- Example for retrieving the total cross section of a process with name procName, for particle and material matName

```
#include "G4EmCalculator.hh"
...
G4EmCalculator emCalculator;

G4Material* material =
  G4NistManager::Instance()->FindOrBuildMaterial(matName);
G4double density = material->GetDensity();
G4double massSigma = emCalculator.ComputeCrossSectionPerVolume
  (energy,particle,procName,material)/density;
G4cout << G4BestUnit(massSigma, "Surface/Mass") << G4endl;</pre>
```

 A good example: \$G4INSTALL/examples/extended/electromagnetic/TestEm0 Look in particular at the RunAction.cc class

THANK YOU

