Arduino DDS 9851

- Inhalt
- Schaltplan von DK1BS / DK2JK
- Arduino Nano
- Schaltplan NanoESP (Pretzel Board)
- Sketch
- <frequency tuning word>
- 40-bit Steuerwort
- AD9851 Programmschritte
- W1 bis W4 finden
- Bits übertragen
- Informationen

Schaltplan von DK1BS / DK2JK

Quelle: http://www.kh-gps.de/ant_analyzer.htm

Arduino Nano

D9	W_CLK	Blau
D8	FQ_UD	Braun
D7	DATA	Grün
D6	RESET	Orange

Die Belegung der digitalen PIN ist frei wählbar!

Schaltplan NanoESP (Pretzel Board)

D9	W_CLK	Blau
D8	FQ_UD	Braun
D7	DATA	Grün
D6	RESET	Orange

Die Belegung der digitalen PIN ist frei wählbar!

Sketch

```
Pin-Zuordnung im Code
                            8 // Adduino UNO & Nano
                            9 const int RESET=6;
                           10 const int DATA=7;
                           11 const int FQ UD=8;
                           12 const int W_CLK=9;
"frequency tuning word"
                           Anpassung an AD9851 mit 180 MHz:
 182
           // Calculate the DDS word - from AD9850 Datasheet
           // int32 t f = Freq Hz * 4294967296.0/125000000;
 183
                                                              // 125 MHz
 184
           // Calculate the DDS word - from AD9851 Datasheet
       int32_t f = Freq_Hz * 4294967296 / 180e6;
 185
                                                              // 180 MHz inserted by EBW Enno
```

<frequency tuning word>

Quelle	AD9851.pdf
	Im "parallel mode" kann das 40-bit Steuerwort, aufgeteilt in 5 Bytes mit je 8 Bit, Byte für Byte, d.h. in 5 Schritten übertragen werden.
	Die ersten 4 Bytes enthalten das <frequency tuning="" word="">, also die gegebene Frequenz:</frequency>
Frequenz	fout = <system clock=""> * <frequency tuning="" word=""> / 2^32 in Hz</frequency></system>
fout	Geforderte Frequenz in Hz
<system clock=""></system>	"180e6 MHz" Referenzschwingung, hier 30 MHz Quarz multipliziert mit 6. Dann REFCLK setzen.
2^32=	4294967296
<frequency tuning="" word=""></frequency>	= t_freq
	Das <frequency tuning="" word=""> "t_freq" kann berechnet werden mit:</frequency>
t_freq=	fout * 4294967296 / 180e6 in Hz

40-bit Steuerwort

Paichial	fout = <i>10e6</i> Hz				
Beispiel	10ut – 10eb nz				
Dezimal	t_freq = 23860	19296			
Binär	t_freq = B <i>000</i>	01110 00111000	11100011 1001	0000 (Leerzeichen	wegdenken)
40-bit Steuerwort	W0	W1	W2	W3	W4
bestehend aus: 8 bit Steuerbyte und 32 bit Frequenz	s. unten	00001110	00111000	11100011	10010000
Steuerbyte	W0				
REFCLK setzen	0x01 oder B00	000001			
	Beginnend mit übertragen we	·	ss das <frequenc< td=""><td>y tuning word></td><td>Byte für Byte</td></frequenc<>	y tuning word>	Byte für Byte
W_CLK	Das HIGH/LOW	V-schreiben des V	W_CLK-PINs tren	int die Bytes von	einander.
FQ_UD	Das HIGH/LOW	V-schreiben des F	Q_UD-PINs sen	det das 40-bit-Re	gister

AD9851 Programmschritte

Quelle AD9851.pdf

- 1. RESET
- 2. Byte W4 übertragen
- 3. W CLK HIGH/LOW
- 4. Byte W3 übertagen
- 5. W_CLK HIGH/LOW
- 6. Byte W2 übertagen
- 7. W CLK HIGH/LOW
- 8. Byte W1 übertagen
- 9. W_CLK HIGH/LOW
- 10. Byte WO übertragen
- 11. W_CLK HIGH/LOW
- 12. FQ_UD HIGH/LOW

Sketch: W1	his W4	finden
------------	--------	--------

Sichtbarer dezimaler Wert:	t_freq=238609296	
Binär im Speicher:	00001110001110001110010000	
Aufteilen in 4 Byte:	for (int b=0; b<4; b++, t_freq>>=8) { }	mit ">>"-Operator
für b=0:	000011100011100011100011 10010000	
für b=1:	000011100011100011	
für b=2:	0000111000111000	
für b=3:	00001110	
Die ersten 8 Bit selektieren:	(t_freq & 0xFF) mit binärem "&-Operat	or" maskieren
z.B. für b=0:	00001110001110001110001110010000	
	000000000000000000000011111111	Hex "0xFF" mit "&"
	000000000000000000000000000000000000000	Ergibt erstes zu übertragenes Byte

Sketch: Bits übertragen

für b=0:	000000000000000000000000 10010000
	data_to_send =10010000
Aufteilen in Bits	for (int i=0; i<8; i++, data_to_send>>=1) {} mit ",>>"-Operator
i=0	10010000
i=4	00001001 (4 * >>)
i=7	1 (7 * >>)
Das erste Bit selektieren:	(data_to_send & 0x01) mit binärem "&-Operator maskieren
für i=4	00001001
	00000001 Hex "0x01" mit "&"
	00000001 Zu übertragenes Bit rechts

Informationen http://www.dk2jk.darc.de/vna dk2jk/ http://www.dk2jk.darc.de/vna dk2jk/dokumentation/13dez2014/antennen analyser Baumappe%20v2.pdf http://www.kh-gps.de/ant_analyzer.htm https://www.electrodragon.com/w/AD9850 Module DDS Signal Generator V2 http://elektronikbasteln.pl7.de/ad9851.html